Quantitative Proteomics Reveals GIMAP Family Proteins 1 and 4 to Be Differentially Regulated during Human T Helper Cell Differentiation*

Jan-Jonas Filén‡§¶, Sanna Filén¶§¶, Robert Moulder‡, Soile Tuomela‡**, Helena Ahlfors‡§, Anne West‡, Petri Kouvonen‡, Suvi Kantola‡, Mari Björkman‡, Mikko Katajamaa‡§, Omid Rasool‡, Tuula A. Nyman‡¶, and Riitta Lahesmaa‡§§

T helper (Th) cells differentiate into functionally distinct effector cell subsets of which Th1 and Th2 cells are best characterized. Besides T cell receptor signaling, IL-12-induced STAT4 and T-bet- and IL-4-induced STAT6 and GATA3 signaling pathways are the major players regulating the Th1 and Th2 differentiation process, respectively. However, there are likely to be other yet unknown factors or pathways involved. In this study we used quantitative proteomics exploiting cleavable ICAT labeling and LC-MS/MS to identify IL-4-regulated proteins from the microsomal fractions of CD4⁺ cells extracted from umbilical cord blood. We were able to identify 557 proteins of which 304 were also quantified. This study resulted in the identification of the down-regulation of small GTPases GIMAP1 and GIMAP4 by IL-4 during Th2 differentiation. We also showed that both GIMAP1 and GIMAP4 genes are up-regulated by IL-12 and other Th1 differentiation-inducing cytokines in cells induced to differentiate toward Th1 lineage and down-regulated by IL-4 in cells induced to Th2. Our results indicate that the GIMAP (GTPase of the immunity-associated protein) family of proteins is differentially regulated during Th cell differentiation. *Molecular & Cellular Proteomics 8: 32–44, 2009.

From the ‡Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6B, FI-20520 Turku, Finland, §The National Graduate School in Informational and Structural Biology, FI-20520 Turku, Finland, ¶The Drug Discovery Graduate School, FI-20520 Turku, Finland, ¶¶Turku Graduate School of Biomedical Sciences, FI-20520 Turku, Finland, and §§Institute of Biotechnology, University of Helsinki, FI-00790 Helsinki, Finland

Received, March 28, 2008, and in revised form, August 5, 2008
Published, MCP Papers in Press, August 12, 2008, DOI 10.1074/mcp.M800139-MCP200

1 The abbreviations used are: Th, T helper; GIMAP, GTPase of the immunity-associated protein; STAT, signal transducer and activator of transcription; TCR, T cell receptor; cICAT, cleavable ICAT; IL, interleukin; IFN, interferon; FPR, false positive rate; PHA, phytohemagglutinin; SCX, strong cation exchange; shRNA, short hairpin RNA; siRNA, small interfering RNA; Thp, precursor T helper; FAM, carboxyfluorescein; TAMRA, carboxytetramethylrhodamine.
ing of T helper cell-mediated diseases. Transcriptomics studies have resulted in the identification of genes differentially regulated during Th cell activation and differentiation (22–32), and proteomics studies have provided complementary information about the processes (33–39).

The development of the technologies for stable isotope labeling of proteins/peptides and their application in conjunction with high throughput LC-MS/MS methodology have provided the means to rapidly screen for changes in protein expression (40–43). Although for the most part the analyses of these data are automated, it is important to address the reliability of peptide/protein identifications. The automated interpretation of data from the MS/MS spectra of peptides is generally achieved through the comparison of the observed spectra with the theoretical spectra generated from a sequence database. With the reversal or randomization of these databases, a decoy database may be created, and by a likewise comparison the false positive rates (FPRs) of inferred identification may be estimated, and the criteria for data acceptance can be chosen (44–46). Although searches against decoy databases are now routinely used to provide estimates of false positive rates of identification, consensus identification by different data analysis algorithms can also be used as an additional measure of validation that can also improve the scope of data analysis. The combination of the approaches of consensus identification and FPR evaluations provide an extra measure of certainty and complimentary information for both identification and quantification.

In the present study our aim was to characterize the proteome of the microsomal fraction extracted from naïve Th lymphocytes and, in particular, to identify proteins whose expression would be regulated in response to IL-4-induced Th2 differentiation. We used stable isotope labeling with cleavable ICAT (cICAT) and LC-MS/MS (47–49). To increase the number of protein identifications and at the same time improve their confidence, we performed duplicated data analysis with the database searching algorithms ProICAT/ProID and SEQUEST/XPRESS (Fig. 1). Using this proteomics approach differential expression of a number of IL4-regulated proteins was observed. Of these the expression of STAT1, MXA, and GIMAP4 was corroborated with Western blotting. GIMAP1 and GIMAP4 proteins were selected from the data set for further studies based on their biological and immuno-logical properties.

The different members of the GIMAP (GTPase of the immunity-associated protein) (also termed immune-associated nucleotide-binding proteins (IANs); the nomenclature used here follows that used by Krücken et al. (50) family have been associated in thymocyte development (51), T cell apoptosis (52, 53), antiapoptotic effects (54), T cell survival (55, 56), autoreactivity (57, 58), and leukemia (59), all suggesting that the GIMAP family is important for the immune system. However, there are no previous reports describing the regulation of the GIMAP family members during Th1 or Th2 differentiation. Here we demonstrate that GIMAP1 and GIMAP4 genes are up-regulated by IL-12 and down-regulated by IL-4 during human Th1 and Th2 differentiation. The proteomics application and Western blotting further confirm the similar regulation at the protein level.

Experimental Procedures

Fig. 1 summarizes both the sample preparation and nano-LC-MS/MS analysis protocols and the data analysis pipelines.

Cell Culture—Mononuclear cells were isolated from Ficoll-Paque (Amersham Biosciences) gradient centrifugation either from cord blood samples, which were collected from healthy neonates at Turku University Hospital, or from buffy coats from healthy blood donors (Red Cross Finland Blood Service, Helsinki, Finland). CD4⁺ T cells were enriched from mononuclear cells by anti-CD4 magnetic beads (Dynal Biotech, Oslo, Norway). CD4⁺ T cells were cultured in Yssel’s medium (60) supplemented with 1% AB serum (Red Cross Finland Blood Service). Cells were activated with plate-bound anti-CD3 (2.5 μg/ml for coating) and 500 ng/ml soluble anti-CD28 (both from Immunotech, Marseille, France) or with 100 ng/ml PHA (Murex Diagnostics, Chatillon, France) and irradiated CD32/B7-transfected mouse L fibroblasts. 2.5 ng/ml IL-12 (R&D Systems, Minneapolis, MN) and 10 ng/ml IL-4 (R&D Systems) were used to induce Th1 and Th2 differentiation, respectively. No cytokines were used for the neutral Th0 condition. To support proliferation of the cells, 17 ng/ml IL-2 (R&D Systems) was added on the 2nd culture day to 6–7-day cultures. Instead of IL-12, 100 units/ml highly purified human leukocyte IFN-α (Finnish Red Cross) or 25 ng/ml IL-18 (Medical & Biological Laboratories, Nagoya, Japan) were also used to induce Th1 differentiation. Where indicated, 3 μg/ml neutralizing anti-IFN-γ (clone 25718, R&D Systems) was used to block the endocrine production.

Preparation of Microsomal Fraction—Microsomal fractions were prepared as described previously (35). Briefly cells were lysed in hypotonic buffer with a tightly fitting Dounce homogenizer. The nuclear fraction was removed from the cell lysate by centrifugation. The microsomal fraction was then pelleted from the postnuclear supernatant by centrifugation.

cICAT Labeling—The ICAT labeling protocol was performed according to the previously described methods (47, 61) and the protocol provided with the cICAT reagents (Applied Biosystems, Foster City, CA). Proteins from the microsomal fraction were dissolved in denaturing buffer (6 M urea, 0.05% SDS, 5 mM EDTA, and 50 mM Tris, pH 8.5) and reduced for 30 min with 1 mM tris(2-carboxyethyl)phosphine. Equal amounts of microsomal fraction from IL-4-treated and non-treated cells were labeled with heavy and light cleavable ICAT reagent (2 μM per label), respectively. After 2 h of labeling 20 μM DTT was added to stop the reaction, then the ICAT-labeled samples (light and heavy) were mixed, diluted, and digested with trypsin (1:100 (w/w)) (sequencing grade modified trypsin, Promega, Madison, WI) overnight at 37 °C.

Fractionation of the Peptides—The resulting peptide mixtures were fractionated by a strong cation exchange (SCX), avidin affinity, and reversed-phase chromatography. A BioCAD chromatography work station (PerSeptive Biosystems, Freiburg, Germany) was used with a 4.6 × 200 mm-Polysulfobethyl A column (Poly LC Inc., Columbia, MD) for SCX chromatography. Peptides were eluted from the SCX column with a linear gradient from 0 to 60% phase B in 30 min while collecting 1-min fractions. The A and B phases both consisted of 5 mM KH₂PO₄, 25% acetonitrile, at pH 3, with the B phase containing 0.6 M KCl. The cICAT-labeled peptides were then isolated from the SCX fractions by avidin affinity separation (Applied Biosystems) as described in the protocol. “Flow-through” fractions representing non-labeled peptides were retained for MS analysis.
Nano-LC/ESI-MS/MS Analysis—Avidin chromatography fractions, including the ICAT-labeled peptides, were first dried in a vacuum centrifuge, and then cleaving reagents were added (Applied Biosystems) to remove the biotin tag from the ICAT label. After cleavage, the peptides were dried again and suspended to 0.1% HCOOH prior to LC-MS/MS analysis. Flow-through fractions from avidin chromatography were also dried and suspended to 0.1% HCOOH. An LC-MS/MS system consisting of a nano-LC system (Famos, Switchos-II, and Ultimate, LC Packings, Amsterdam, Netherlands) coupled to a QSTAR® Pulsar ESI-hybrid quadrupole time-of-flight instrument (Applied Biosystems/MDS Sciex) was used. On-line sample concentration and desalting followed by reversed-phase separation were performed with a 0.3 × 5-mm PepMap C18 μ-precolumn (LC Packings) and a 75-μm × 200-mm Magic C18 (5 μm, 120 Å, Michrom BioResources) analytical column (prepared in house), respectively. A separation gradient was developed from 5 to 40% phase B over 120 min and then from 40 to 95% phase B over 10 min. The flow rate was 200 nl/min. The phase compositions were as follows: phase A, 5% ACN, 0.1% HCOOH; phase B, 95% ACN, 0.1% HCOOH. The mass spectrometer was set to perform survey scans of 1 s followed by two 3-s MS/MS scans of the two most intense peaks from the survey scan. The program AnalystQS (Applied Biosystems) was used for data acquisition and instrument control.

Data Processing—Two pairs of identification and quantification algorithms were used primarily to increase the confidence of the protein identifications and quantitative information related to protein expression. The data analysis steps are schematically presented in Fig. 1 and described in details in the following paragraphs.

ProICAT and ProID—Data were analyzed using the Applied Biosystems Analyst scripts, ProICAT (version 1.0, service pack 2) for the ICAT fractions and ProID for the non-labeled peptide fractions. The data were searched against the Swiss-Prot human-specific database (Swiss-Prot Release 44.5 containing 11,461 human sequence entries) using a precursor and product ion mass tolerances of 0.3 and 0.2 Da, respectively, while specifying trypsin digestion and one missed cleavage labeling. With the cICAT reagent was set as a fixed modification of cysteines in the ProICAT searches. A confidence value >90 was used to filter the data. ProCAT detects peptide pairs labeled with light and heavy ICAT reagent and calculates their ratio from the relative areas of the precursor ion chromatograms extracted from MS scans. Default parameters of ProCAT were used for the quantification of peptides and proteins.

SEQUEST, XPRESS, and the Transproteomic Pipeline—SEQUEST (ThermoFinnigan) and XPRESS (ThermoFinnigan) were used for comparative and complementary data analysis as described in Fig. 1. The QSTAR data files were converted to mXML format and then to the SEQUEST-compatible .dta format with the Sashimi transproteomic pipeline tools mzStar and mzXML2other, respectively (SourceForge, Inc.) as described previously (62). SEQUEST searches were performed against the Swiss-Prot human-specific database (as above) with the fixed cICAT modification of the cysteine residue specified as 227.14 Da and an associated differential mass of 9.0 Da; the precursor ion tolerance was set to 0.3 Da. The searches were made for tryptic peptides, and the results were filtered such that only assignments with a maximum of one missed cleavage were included. Peptides were filtered using Xcorr values suggested by the reversed database searches. The XPRESS calculations were made using the default mass tolerance of 1.0, specifying cysteine labeling, co-elution of the peaks, and the mass differences between the ICAT pairs as described in the SEQUEST parameters. With XPRESS, ICAT ratios are calculated from the relative areas of the extracted ion chromatograms of the precursor ions and their isotopically distinct equivalents. Finally, SEQUEST- and XPRESS-processed data were filtered and combined using the Sashimi tools Interact (61) and ProteinProphet (63).

Reversed Database Searches to Determine the False Positive Rates for ProICAT and ProID and to Determine the SEQUEST Xcorr Values—The Sashimi tool subsetdb was used to create a reversed form of the human-specific Swiss-Prot database. Using the relationship described by Peng et al. (45) that estimates the false positive rate from the number of protein identifications found with reversed (nrev) and normal (nnorm) database searches (i.e., % false = 2(nrev/nnorm + nnorm)), the ProID/ProICAT false positive rates were calculated, and the SEQUEST data inclusion parameters were selected. The filtering criteria subsequently applied for SEQUEST results were such that the false positive rate per single peptide was −7% for both 2+ and 3+ ions. Using the ΔCN value of 0.1 with Xcorr values of 2.38 and 3.08 gave an estimated false positive rate of 1.3% for proteins identified with at least two peptides.

Statistical Methods and Data Management—The reports from ProteinProphet and ProICAT were exported into Microsoft Excel format, and the protein measurements were normalized such that the median ICAT ratio was unity for both sets of results (XPRESS and ProICAT).

Western Blot Analysis—The microsomal fraction and cell lysates samples were dissolved in SDS-PAGE loading buffer and boiled for 5 min prior to loading to the SDS-PAGE gel. After electrophoresis, the proteins were transferred from the gel to nitrocellulose membrane (Hybond ECL, Amersham Biosciences). The membranes were stained with P-STAT6 (Cell Signaling Technology Inc.), STAT1 (Cell Signaling Technology Inc.), MxA (a gift from Dr. Juklunen), STAT6 (BD Biosciences), GIMAP4 (a gift from Dr. Cambot (64)), and β-actin (Sigma-Aldrich) antibodies/antiserum. Horseradish peroxidase-conjugated anti-rabbit IgG (Cell Signaling Technology Inc.) and anti-mouse-IgG (Santa Cruz Biotechnology) were used as secondary antibodies.

Quantitative Real Time RT-PCR—Total RNA was isolated from the cells using the RNeasy minikit (Qiagen, Valencia, CA). RNA was treated with DNase I (Invitrogen) and used as a template for cdNA synthesis by SuperScript II (Invitrogen). For detection of GIMAP4 mRNA expression the following primers and probes were used: 5'-FAM-acaagccacagccctagaca-TAMRA-3', 5'-tgacgcagctaactacaacac-TAMRA-3', 5'-gagggagccactgctc-3', 5'-cagggccagtattgcgc-3', and 5'-gcagtcgcaatgaactttacac-TAMRA-3'. 5'-FAM-ccgctgctggctgtccacttcaccac-TAMRA-3', 5'-gagggagccactgctc-3', 5'-cagggccagtattgcgc-3', and 5'-gcagtcgcaatgaactttacac-TAMRA-3'. The Sashimi tool subsetdb was used to create a reversed form of the human-specific Swiss-Prot database. Using the relationship described by Peng et al. (45) that estimates the false positive rate from the number of protein identifications found with reversed (nrev) and normal (nnorm) database searches (i.e., % false = 2(nrev/nnorm + nnorm)), the ProID/ProICAT false positive rates were calculated, and the SEQUEST data inclusion parameters were selected. The filtering criteria subsequently applied for SEQUEST results were such that the false positive rate per single peptide was −7% for both 2+ and 3+ ions. Using the ΔCN value of 0.1 with Xcorr values of 2.38 and 3.08 gave an estimated false positive rate of 1.3% for proteins identified with at least two peptides.

Knockdown of STAT6 with siRNA Oligonucleotide/shRNAs—Human buffy coat CD4+ T cells or neonatal cord blood CD4+ T cells were transfected with 10 μg of plasmid DNA or 1.5 μg of oligonucleotide siRNAs, respectively, at a cell density of 4×106 cells/100 μl of Opti-MEM I (Invitrogen) using the Nucleofector Device (program U-14) (Amaxa, Cologne, Germany) as described earlier (66). The shRNAs

34 Molecular & Cellular Proteomics 8.1
DNA Technology, Aarhus, Denmark) were cloned into the XhoI/BglII-cleaved pSuper-H-2Kk vector. The sequences of the siRNA oligos and the targets of the shRNAs were:
- **Scramble**: 5'-gcgcgcuuuguagauucguu-3' (siRNA oligonucleotides from Sigma/Proligo, Evry Cedex, France).
- **STAT6**: 5'-caguuccgccacuugccaautt-3'.
- **GIMAP1**: 5'-aagcgagaagaacucaaguuutt-3'.
- **GIMAP4**: 5'-gaaucagucaacguguugucatt-3'.

After nucleofection the cells were allowed to rest for 24 h in RPMI 1640 medium supplemented with 10% FBS, penicillin/streptomycin, and 2 mM L-glutamine. After resting the cells were harvested and induced to differentiate along the Th2 lineage as described above. If nucleofected with plasmid DNA, dead cell removal and enrichment of transfected cells were performed before plating as described earlier.

RESULTS

Characterization of the Microsomal Fraction Proteome of Human Th Lymphocytes Stimulated with IL-4—In the present study we used a proteomics-based isotope-coded affinity technology to characterize the expression differences in the proteome of the microsomal fraction of cord blood CD4+ cells stimulated with Th2-promoting cytokine IL-4. The peptide mixtures labeled with cICAT reagents were fractionated by SCX and avidin affinity chromatography, and the resulting fractions were analyzed by LC-MS/MS (Fig. 1). Duplicate data analysis was applied to achieve confident protein identifications as comprehensively as possible (Fig. 1). Using the results of reversed database searches the data inclusion criteria were chosen, and the FPR was estimated; these were <0.1, <1.4, and <8.8% for ProICAT, SEQUEST, and ProID, respectively. With these criteria ProICAT/ProID and SEQUEST/XPRESS resulted in 2636 and 2007 peptide identifications, inferring the detection of 474 and 432 proteins, each with two or more unique peptides, respectively. Of these identifications, 349 proteins were common to both algorithms, whereas an additional 125 proteins were identified by ProICAT/ProID alone, and 83 were identified by SEQUEST/XPRESS alone. Supplemental Table 1 summarizes all the protein identifications. Table I (A) summarizes the number of peptide and protein identifications with different software algorithms and the false positive rates.

Relative Quantitation of the Protein Abundances in the Microsomal Fraction of Naïve Th Lymphocytes—Microsomal fraction proteins, extracted from IL-4-treated and non-treated cells, were labeled with heavy and light cICAT reagents, respectively (IL-4, heavy; non-treated, light). Using the programs ProICAT and XPRESS a total of 304 proteins were quantified of which 136 proteins were quantified by both algorithms, and 21 proteins and 147 were quantified by ProICAT and XPRESS only, respectively. Fig. 2 shows the correlation of the protein quantifications analyzed by the two different algorithms. The corresponding Pearson correlation value was 0.77. Statistics of quantitative information is summarized in Table I (B). A major difference in the numbers of
The protein ICAT ratios presented by the two programs arises because ProICAT only calculates ratios for peptides where both the light and heavy forms are identified, whereas XPRESS calculates extracted ion chromatograms and ratios for both forms by default.

IL-4-induced Differences in the Protein Expression of the Microsomal Fraction of the CB CD4\(^+\) Cells—Proteins that showed at least 1.4-fold difference in expression between the IL-4-treated and non-treated sample were considered as potential IL-4-regulated proteins. Table II lists all these 46 proteins. Eight of the proteins were quantified with both ProICAT and SEQUEST/XPRESS, whereas ProICAT detected independently 13 proteins, and SEQUEST/XPRESS detected independently 25 proteins. Fig. 2 presents the correlation of the protein quantifications between the two algorithms. The eight proteins detected by both algorithms (A and D in both Table II and Fig. 2) were considered more reliable hits than the proteins detected by only a single algorithm (B, C, and E in both Table II and Fig. 2). However, in view of the differences in the identification algorithms and the FRP estimates, we felt that it was important to also take into account the single algorithm hits: a particularly interesting example was the finding of the change observed in the expression of GIMAP4 protein. In our study four different proteins, namely STAT1 (P42224, STA1 in Table II), MXA (P20591, MX1),

TABLE I

Protein identifications and quantifications	ProICAT\(^a\)	ProID\(^a\)	Sequest/XPRESS\(^b\)
A. Protein identifications\(^c\)			
Proteins\(^c\)	474	432	
False positive rate\(^c\) (%)	<0.1	8.8	1.4
Peptides	431	2205	2007
Matching proteins\(^c\)			349
All proteins\(^c\)			557
B. Protein identifications with quantitative information\(^c\)			
Proteins\(^c\)	157		283
Matching proteins\(^c\)			136
All proteins\(^c\)			304
1.4-fold up-regulated proteins			3 \(1^d\)
1.4-fold down-regulated proteins			5 \(25^d\)

\(^a\) Filtered with confidence value > 90.

\(^b\) Filtered with \(\Delta CN = 0.1, Xcorr = 1.80, 2.38, \) and 3.08 for 1+, 2+, and 3+ respectively.

\(^c\) Refers to proteins identified by at least 2 different peptide sequences.

\(^d\) Bold number represents the matching up- and down-regulated proteins, whereas the number in the parentheses indicates all the up- and down-regulated proteins (matching proteins and single algorithm observations).

Fig. 2. Correlation of the protein quantifications between ProICAT and XPRESS. The horizontal axis presents ProICAT quantifications, and XPRESS quantifications are on the vertical axis. Proteins, which were quantified only by another of the algorithms, are presented on the axis. All the proteins are present in A, and proteins showing >1.4-fold expression difference are in B. The correlation was determined also by Pearson’s test resulting in a value of 0.77. A, proteins detected by both algorithms and up-regulated; B, proteins detected by ProICAT and up-regulated; C, proteins detected by SEQUEST/XPRESS and up-regulated; D, proteins detected by both algorithms and down-regulated; E, proteins detected by ProICAT or SEQUEST/XPRESS and down-regulated.
Regulation of GIMAP1/GIMAP4 during Th Cell Differentiation

Protein Information	ProID	ProCAT	SEQUEST	XPRESS	Protein Score														
Accession number1	entry_name2	protein_name	peak ID	peak area	exact mass	charge	sequence coverage (%)												
P59665	DEF1_HUMAN	Neutrophil defensin 1 precursor	0	DEF1_HUMAN	2	3	3	1.54	0.04	0.65	16.8								
P22234	PUR6_HUMAN	Multifunctional protein ADE2	0	PUR6_HUMAN	2	2	2	1.54	1.00	0.65	10.8								
P07996	TSP1_HUMAN	Thrombospondin 1 precursor	0	TSP1_HUMAN	2	5	5	1.61	0.20	0.62	9.1								
Q99829	CNE1_HUMAN	Copine I	0	CNE1_HUMAN	2	2	1	2.77	0.36	9.9									
P22626	ROA2_HUMAN	Heterogeneous nuclear ribonucleoproteins A2	7	98	7	98	27.8	ROA2_HUMAN	6	15	1	3.19	0.31	31.7					
Q9NUV9	IMP4_HUMAN	Immunity-associated protein 4	0	IMP4_HUMAN	2	4	4	1.53	0.24	0.65	13.1								
P48643	TCPE_HUMAN	T-complex protein 1, epsilon subunit	3	98	3	53	9.8	TCPE_HUMAN	3	3	1	1.99	0.50	9.1					
P13804	ETFA_HUMAN	Electron transfer flavoprotein alpha-subunit, mitochondrial precursor	6	98	29	0	8	121	36.3	0.63	0.14	44.4							
P13010	KU86_HUMAN	ATP-dependent DNA helicase II, 80 kDa subunit	8	98	1	90	9	123	16.8	1.24	KU86_HUMAN	12	18	6	0.72	0.18	1.40	23.9	
Q9Y5M8	SRPB_HUMAN	Signal recognition particle receptor beta subunit	1	98	1	90	2	28	10.3	0.58	SRPB_HUMAN	35	3	1.33	0.14	0.75	25.1		
P08575	CD45_HUMAN	Leukocyte common antigen precursor	12	98	6	99	18	249	19.1	0.69	0.04	CD45_HUMAN	24	59	41	1.26	0.14	0.79	28.4
P49458	SR09_HUMAN	Signal recognition particle 9 kDa protein	19	2	1	90	2	22	25.6	1.54	0.02	SR09_HUMAN	3	8	60	0.75	0.02	1.34	38.8
Q02338	BDH_HUMAN	D-beta-hydroxybutyrate dehydrogenase, mitochondrial precursor	1	98	1	99	2	37	15.6	1.21	BDH_HUMAN	4.3	4.5	2.09	3.33	25.1			
P32322	STAA_HUMAN	Signal transducer and activator of transcription 1-alpha	7	98	2	99	8	131	19.8	0.46	0.04	STAA_HUMAN	81	4	6	1.67	0.23	0.60	23.1
P07806	PIRC01_HUMAN	Delta-1-pyruvate synthase	5	98	5	87	8.4	PIRC01_HUMAN	9	10	3	0.65	0.03	1.67	16.3				
P38506	RXCA_HUMAN	60S ribosomal protein L5	2	98	2	27	12.4	RXCA_HUMAN	4	6	2	0.63	0.06	1.56	31.5				
G00797	UGCA_HUMAN	Neutrophil elastase precursor	6	98	1	90	7	85	9.9	UGCA_HUMAN	4	4	2	0.61	0.02	1.56	11.8		
Q35933	URIA_HUMAN	Delta-1-pyruvate synthase	5	98	5	87	8.4	URIA_HUMAN	9	10	3	0.65	0.03	1.67	16.3				
P40374	RL10_HUMAN	60S ribosomal protein L10	2	98	2	27	12.4	RL10_HUMAN	4	6	2	0.63	0.06	1.56	31.5				
Q8TDB6	BBAP_HUMAN	B-lymphoma- and BAL-associated protein	34	99	99	2	28	3.8	BBAP_HUMAN	4	5	4	1.29	0.09	0.77	8.9			
P13804	ETFA_HUMAN	Electron transfer flavoprotein alpha-subunit, mitochondrial precursor	6	98	2	29	0	8	121	36.3	0.63	0.14	44.4						
P30405	PPIF_HUMAN	Peptidyl-prolyl cis-trans isomerase, mitochondrial precursor	19	81	90	25	2	25.1	0.71	PPIF_HUMAN	3	4	3	1.23	0.14	0.81	29.5		
P45880	POR2_HUMAN	Voltage-dependent anion-selective channel protein 2	5	98	3	90	8	114	38.8	0.68	0.07	POR2_HUMAN	8	10	4	1.21	0.08	0.83	38.9
Q9P2J5	SYLC_HUMAN	Leucyl-tRNA synthetase, cytoplasmic	0	SYLC_HUMAN	2	21	0.56	SYLC_HUMAN	4.3	4.5	2.09	3.33	25.1						
Q8NBS9	TXN5_HUMAN	Thioredoxin domain containing protein 5 precursor	1	98	1	99	2	37	15.6	1.21	TXN5_HUMAN	4	13	8	0.70	0.03	1.62	16.1	
Q16718	NUFM_HUMAN	NADH-ubiquinone oxidoreductase 13 kDa-B subunit	0	NUFM_HUMAN	2	5	2	0.72	0.01	NUFM_HUMAN	2	5	2	0.72	0.01	1.39	22.6		

Materials and Methods

1. Swiss-Prot (SP) accession number.
2. Entry name of the accession number in Swiss-Prot Release 44.5.
3. Peptides identified by ProID (not used for quantification).
4. Peptides identified by ProCAT (used for quantification).
5. Average ICAT ratio and its S.D. are calculated from all the constituent peptides (e.g. peptides identified from different fractions and peptides with different charge states).
6. Corresponds to ProCAT quantification.
7. Sequence coverage of SEQUEST-identified proteins was determined from the whole data set by ProteinProphet.
8. Database entry names correspond to protein names STAT1, GIMAP1, MXA, and GIMAP4.
Expression of GIMAP Family Members 1 and 4 in Th1 and Th2 Cells—The expression of GIMAP1 and GIMAP4 mRNA was studied in human cord blood CD4+ cells that were stimulated using PHA and irradiated CD32-B7-transfected fibroblasts and induced to differentiate to either Th1 or Th2 lineage for 7 days or stimulated to proliferate by PHA and feeder cells (Th0) (Fig. 5A). Quantitative real-time RT-PCR analysis was performed on samples taken at different time points from four individuals, and statistical significance was determined by Student’s t test. The results showed that IL-12 and IL-4 signaling differentially regulated both GIMAP1 and GIMAP4 genes during Th1 and Th2 differentiation. Furthermore, the genes showed remarkably similar expression profiles. Western blot analysis demonstrated the differential expression of GIMAP4 also on the protein level in peripheral blood CD4+ cells induced to differentiate to the Th1 or Th2 direction (Fig. 5B).

While cloning GIMAP4 we found two splicing variants. The isoforms differ by 42 amino acids. The shorter isoform is the previously described transcript (i.e. NM_018326) (64), and the longer isoform has been described as a full-length expressed sequence tag in GenBank™ (i.e. CF594134). To further study the regulation of the expression of the differentially spliced GIMAP4 isoforms in CD4+ cells real time RT-PCR was performed with reaction conditions specific for either the short or the long isoform. Plate-bound anti-CD3 and soluble anti-CD28 antibodies were used for TCR stimulation, and polarizing cytokines IL-12 or IL-4 were added to the cell culture media. A portion of the cells was cultured in neutral conditions without any polarizing cytokines. Because CD4+ T cells start to produce large amounts of IFN-γ after activation, neutralizing anti-IFN-γ was added to rule out the effects of the IFN-γ produced by the cells themselves. Both isoforms of GIMAP4 were regulated during the early differentiation of both Th1 and Th2 cells (Fig. 6). Furthermore the observed regulation of the

FIG. 3. Western blot analysis of STAT1, MXA, and GIMAP4 confirmed the down-regulation by IL-4. Human cord blood CD4+ cells were activated by anti-CD3/anti-CD28 (Act.) and induced to differentiate toward Th2 cells with activation + IL-4. STAT1, MXA, and GIMAP4 were all down-regulated by IL-4.

FIG. 4. MS and MS/MS data from protein GIMAP1. MS quantification of the peptide shows the down-regulation of GIMAP1 in the microsomal fraction of IL-4-treated cord blood CD4+ cells (A). Peptide fragmentation by MS/MS is shown in B, and Y- and B-ions present in the fragmentation spectrum are shown in C.
GIMAP4 gene was not a secondary effect of the differential regulation of IFN-γ by IL-12 and IL-4. If that were the case, adding anti-IFN-γ to the cultures would have abolished the differential regulation of GIMAP4 observed in response to IL-12 and IL-4. It is also notable that although both of the GIMAP4 isoforms follow a similar pattern of gene expression, the up-regulation of the long isoform in response to the indicated cytokines is clearly more potent. However, the short isoform was expressed at a significantly higher level than the long isoform in Thp cells (44-fold difference measured by real time RT-PCR, *p* < 0.003, data not shown).

We also studied the effects of other Th1-inducing cytokines, namely IFN-α and IL-18, in the regulation of GIMAP4 protein expression (Fig. 7, A and B). Again anti-IFN-γ was added to inhibit autocrine IFN-γ signaling. The results showed that GIMAP4 protein is slightly up-regulated also by IFN-α and IL-18. It is also notable that the differential regulation of GIMAP4 in cells induced to the Th1 or Th2 direction was not detected on the protein level until 48 h of culture, although on the mRNA level the differential regulation was highly significant already after 5 h of polarization.

IL-4-induced STAT6 Signaling Negatively Regulates GIMAP4 Expression—The finding that GIMAP4 gene expression was significantly down-regulated by IL-4 (Fig. 5) led us to examine whether the expression was regulated by STAT6 signaling pathway. The expression of STAT6 was knocked down in CD4+ cells using RNA interference, and cells were induced to differentiate along the Th2 lineage. Fig. 8 shows that the IL-4-induced repression of GIMAP4 expression was released when STAT6 signaling was disturbed by RNA interference. On the mRNA level the increase in GIMAP4 expression induced by STAT6 knockdown was, on average, 2-fold after 48 h of culture (data not shown). Thus, STAT6 signaling negatively regulates the GIMAP4 expression.
An LC-MS/MS shotgun proteomics approach was used in combination with cICAT reagents to elucidate qualitatively and quantitatively the microsomal fraction of the proteome of Th lymphocytes isolated from cord blood. Although the application of such methodology can create large volumes of informative data, the validation and interpretation process can be labor-intensive, time-consuming, and prone to error. To facilitate this task a number of powerful software algorithms have been developed (for a recent review, see Palagi et al. (67)). Comparisons of different software programs have shown that in addition to the overlapping protein identifications there are also unique protein identifications for individual programs (62, 68, 69). In this study a paired algorithm strategy was used to both speed up the data processing in an automated way and to analyze the data as comprehensively and reliably as possible. Protein identification and quantification with two different algorithms increase the confidence of the results obtained with both the algorithms. However, the proteins detected with a single algorithm might be as important in offering novel biological information.

Characterization of the microsomal fraction proteome of cord blood CD4\(^+\) cells treated with Th2-polarizing IL-4 resulted in 557 protein identifications with at least two distinct peptides (Fig. 2). ICAT quantification was determined for 304 of the identified proteins (Table II). Proteins with a 1.4-fold difference were filtered as potential IL-4-regulated proteins. The -fold difference was set to 1.4-fold because we wanted to filter potential IL-4-regulated proteins as comprehensively as possible. Eight of the proteins were identified and quantified by both ProICAT and SEQUEST/XPRESS, whereas 13 of the proteins were detected by ProICAT alone, and 25 of them were detected only by SEQUEST/XPRESS. Differential regulation of STAT1, MXA, and GIMAP4, discovered by the ICAT and LC-MS/MS analysis, was validated with Western blotting.

GIMAP1 and GIMAP4 are members of the GIMAP family, a newly described family of putative small GTPases highly conserved among Arabidopsis, mouse, rat, and human (50). There are seven functional GIMAP genes and one pseudogene clustered in human chromosome 7, eight functional genes and one pseudogene in mouse chromosome 6, and seven functional genes in rat chromosome 4. The GIMAP family members all share an evolutionary highly conserved AIG1 domain, which includes the GTP binding motif. Initially it was shown that the expression of human GIMAP4 is for the most part restricted to spleen (64). In a more recent report a wider tissue distribution of GIMAP4 in non-lymphoid organs, especially of the reproductive system, was demonstrated, although the highest expression was detected in the cells of the immune system (50). GIMAP4 has been shown to localize mainly in cytoplasm (51, 52) but also in endoplasmic reticulum and Golgi (50). GIMAP1 is preferably expressed in spleen and lymph nodes, but the expression is not restricted to cells of the immune system (70). GIMAP1 has been shown to localize in endoplasmic reticulum (70). This study suggests membrane localization of both GIMAP1 and GIMAP4 because they were identified from the microsomal fractions of human CD4\(^+\) T cells by mass spectrometric analysis.

In the context of T cell biology the studies on the expression and molecular function of the individual GIMAP members have mostly dealt with T cell development in the thymus and apoptosis and cell survival. The studies by Nitta et al. (51) showed differential regulation of mouse GIMAP proteins in the developing thymocytes and associated GIMAP4 with proapoptotic BAX and GIMAP3 and GIMAP5 with antiapoptotic proteins BCL-2 and BCL-XL. Studies on rat Gimap genes also showed differential regulation of the Gimap genes during thymocyte development (71).

Mouse GIMAP4 has been linked to T cell apoptosis also in a study where splenic T cells from Gimap4-deficient knock-out mice showed a delayed apoptosis phenotype in response to proapoptotic stimuli (serum starvation, γ-irradiation, etopo-
side, and dexamethasone) compared with wild type cells (52). Similar results, although not as pronounced, were reported in a study describing a natural hypomorphic variant of rat Gimap4 gene (53). However, GIMAP3, GIMAP5, and GIMAP8 have been shown to be antiapoptotic and important for T cell survival (51, 54, 56). On the other hand, overexpression of GIMAP4 in a pre-B hematopoietic cell line, BaF3, had no effect on apoptosis (64). Thus, not only is the function of the GIMAP members different but the molecular function of the individual GIMAPs seems to be dependent on the cell type.

This is the first report where differential regulation of the expression of GIMAP1 and GIMAP4 proteins during Th1 and Th2 differentiation is shown. Their expression was found to be down-regulated in microsomal fractions of cells treated with IL-4. Our results also showed that both GIMAP1 and GIMAP4 gene expression was up-regulated by TCR signaling in cord blood CD4+ T cells, further enhanced by IL-12, a Th1-inducing cytokine, and down-regulated by IL-4, a Th2-inducing cytokine. Our results are in keeping with the findings of Cambot et al. (64) and Schnell et al. (52) indicating that the amount of GIMAP4 protein was decreased in activated T cells. However, contrary to their results we found that activation of human cord blood CD4+ T cells by

![Fig. 7. GIMAP4 is up-regulated by Th1-inducing cytokines IFN-α and IL-18.](image1.png)

Fig. 7. GIMAP4 is up-regulated by Th1-inducing cytokines IFN-α and IL-18. Human umbilical cord blood CD4+ cells were cultured under the indicated conditions for 24 and 48 h, and the level of GIMAP4 protein expression was analyzed by Western blotting. A, besides IL-12, other Th1-inducing cytokines, namely IFN-α and IL-18, induced up-regulation of GIMAP4 expression. Cytokine-induced regulation of GIMAP4 was detectable only after 48 h of culture. GIMAP4/β-actin ratios were calculated from the Western blot presented. B, relative quantitation of GIMAP4 protein level after 48 h of culture showing average values from four individual cultures. Error bars, S.D.; p values were obtained using Student’s t test. act, activation.

![Fig. 8. GIMAP4 gene expression is regulated by the STAT6 signaling pathway.](image2.png)

Fig. 8. GIMAP4 gene expression is regulated by the STAT6 signaling pathway. Human CD4+ cells were transiently transfected with shRNA/siRNA targeting STAT6 or with control (scramble) and induced to differentiate toward the Th2 lineage using anti-CD3/anti-CD28 activation (act) and IL-4. Western blotting showed an effective knock down of STAT6 by STAT6 siRNA and high dependence for GIMAP4 expression on STAT6. The figure is a representative of three individual experiments showing a similar pattern of expression.

Molecular & Cellular Proteomics 8.1
anti-CD3/anti-CD28 up-regulated the mRNA expression instead of stable gene expression. We also investigated the expression of two different splice variants of GIMAP4 of which the long isoform has not been previously studied. Although it was notable that the up-regulation of the long isoform by activation and IL-12 was more potent than that of the short isoform, the short isoform was clearly more abundant during the 2-day culture.

In this study, we demonstrated that GIMAP4 gene expression is negatively regulated by STAT6 signaling pathway during the early phases of Th2 differentiation by showing that IL-4-induced STAT6 signaling is necessary for effective repression of GIMAP4 expression. Studies verifying the binding of STAT6 to the regulatory areas of the GIMAP gene cluster are underway in our group. Notably a recent genome wide gene expression analysis performed in our group showed markedly similar gene expression kinetics for the whole GIMAP gene cluster in response to IL-12 or IL-4 stimuli during the early phases of Th1 and Th2 differentiation, respectively. The molecular mechanisms responsible for this remain to be studied.

A functional role for GIMAP4 in Th1/Th2 differentiation is supported by the finding that the inbred Brown Norway rat, which carries a natural hypomorphic variant of Gimap4 (53), is biased to Th2-type immune responses (72) and generates very high IgE responses (73). Although there is growing interest in GIMAP family members, the cellular functions of these proteins remain ill defined. It will be interesting to determine in which signaling pathways these GTPases are participating and whether they share similar or different functions.

Acknowledgments—ThermoFinnigan (R. Barkov) is thanked for the trial use of SEQUEST and the Institute of Systems Biology in Seattle for the use of the Sashimi programs. Outi Melin, Marjo Linja, Marjo Hakkarainen, Sarita Heinonen, and Raija Andersen are acknowledged for excellent technical assistance. The Proteomics and Mass Spectrometry Unit of the Turku Centre for Biotechnology and The Finnish DNA Microarray Centre are acknowledged for assistance. Dr. Garry Corthals is thanked for reviewing the manuscript.

* This work was supported by grants from the National Technology Agency of Finland (TEKES), Academy of Finland, Sigrid Juselius Foundation, Turku University Hospital Fund, Finnish Cultural Foundation, Väinö and Laina Kivi Foundation, Tampere Tuberculosis Foundation, and Ida Montin Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

REFERENCES

1. Agnello, D., Lankford, C. S., Bream, J., Morinobu, A., Gadina, M., O’Shea, J. J., and Frucht, D. M. (2003) Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immunol. 23, 147–161.
2. Constant, S. L., and Bottomly, K. (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322.
3. Lee, G. R., Kim, S. T., Sallianakis, C. G., Fields, P. E., and Flavell, R. A. (2006) T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24, 369–379.
4. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L. (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357.
5. Mosmann, T. R., and Coffman, R. L. (1989) Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol. 46, 111–147.
6. Reinhardt, R. L., Kang, S. J., Liang, H. E., and Locksley, R. M. (2006) T helper cell effector fates—who, how and where? Curr. Opin. Immunol. 18, 271–277.
7. Swain, S. L., Weinberg, A. D., English, M., and Huston, G. (1990) IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806.
8. Haieh, C. S., Heimberger, A. B., Gold, J. S., O’Garra, A., and Murphy, K. M. (1992) Differential regulation of T helper phenotype development by interleukins 4 and 10 in an αβ T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. U. S. A. 89, 6065–6069.
9. Seder, R. A., Paul, W. E., Davis, M. M., and Fazekas de St Groth, B. (1992) The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098.
10. Nelms, K., Keegan, A. D., Zamorano, J., Ryan, J. J., and Paul, W. E. (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738.
11. Mowen, K. A., and Gilmcher, L. H. (2004) Signaling pathways in Th2 development. Immunol. Rev. 202, 203–222.
12. Galizzi, J. P., Zuber, C. E., Harada, N., Gorman, D. M., Djossou, O., Kastelein, R., Banchereau, J., Howard, M., and Miyajima, A. (1999) Molecular cloning of a cDNA encoding the human interleukin 4 receptor. Int. Immunol. 2, 669–675.
13. Russell, S. M., Keegan, A. D., Harada, N., Nakamura, Y., Noguchi, M., Leland, P., Friedmann, M. C., Miyajima, A., Puri, R. K., and Paul, W. E. (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262, 1880–1883.
14. Witthuhn, B. A., Silvennoinen, O., Miura, O., Lai, K. S., Cwik, C., Liu, E. T., and Ihle, J. N. (1994) Involvement of the jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370, 153–157.
15. Russell, S. M., Johnston, J. A., Noguchi, M., Kawamura, M., Bacon, C. M., Friedmann, M., Berg, M., McVicar, D. W., Witthuhn, B. A., and Silvennoinen, O. (1994) Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: Implications for XSCID and XCID. Science 266, 1042–1045.
16. Reichel, M., Nelson, B. H., Greenberg, P. D., and Rothman, P. B. (1997) The IL-4 receptor alpha-chain cytoplasmic domain is sufficient for activation of JAK-1 and STAT6 and the induction of IL-4-specific gene expression.
17. Leonard, W. J., and O’Shea, J. J. (1998) Jak and STATs: biological implications. *Annu. Rev. Immunol.* 16, 293–322

18. Andrews, R. P., Erickson, M. B., Cunningham, C. M., Daines, M. O., and Hershey, G. K. (2002) Analysis of the life cycle of Stat6. Continuous cycling of Stat6 is required for IL-4 signaling. *J. Biol. Chem.* 277, 36563–36569

19. Hebenstreit, D., Wünsberger, G., Hörejsi-Hocek, J., and Duschl, A. (2006) Signaling mechanisms, interaction partners, and target genes of Stat6. *Cytokine Growth Factor Rev.* 17, 173–188

20. Romagnani, S. (1996) Th1 and Th2 in human diseases. *Clin. Immunol.* Immunopathol.* 80, 225–235

21. Romagnani, S. (1994) Lymphokine production by human T cells in disease states. *Clin. Immunol.* Immunopathol.* 71, 227–257

22. Lu, B., Zagouras, P., Fischer, J. E., Lu, J., Li, B., and Flavell, R. A. (2004) New family of interferon-alpha-induced human primary T helper cells. *Proteomics* 4, 371–379

23. Chtanova, T., Kemp, R. A., Sutherland, A. P., Ronchese, F., and Mackay, C. R. (2001) Gene microarrays reveal extensive differential gene expression in both CD4+ and CD8+ type 1 and type 2 T cells. *J. Immunol.* 167, 3057–3067

24. Lund, R., Aittokallio, T., Nevalainen, O., and Lahesmaa, R. (2003) Identification of novel genes regulated by IL-12, IL-4, or TGF-β during the early polarization of CD4+ lymphocytes. *J. Immunol.* 171, 5328–5336

25. Chen, Z., Lund, R., Aittokallio, T., Kosonen, M., Nevalainen, O., and Lahesmaa, R. (2003) Identification of novel IL-4/Stat6-regulated genes in T lymphocytes. *J. Immunol.* 171, 3627–3635

26. Chtanova, T., Tangye, S. G., Newton, R., Frank, N., Hodge, M. R., Rolph, M. S., and Mackay, C. R. (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. *J. Immunol.* 173, 68–78

27. Lu, B., Zagouras, P., Fischer, J. E., Lu, J., Li, B., and Flavell, R. A. (2004) Kinetic analysis of genomewide gene expression reveals molecule circuits that dictate cell activation and Th1/2 differentiation. *Proc. Natl. Acad. Sci. U. S. A.* 101, 3023–3028

28. Lund, R. J., Chen, Z., Scheinin, J., and Lahesmaa, R. (2004) Early target genes of IL-12 and STAT4 signaling in Th cells. *J. Immunol.* 172, 6775–6782

29. Chtanova, T., Newton, R., Liu, S. M., Weininger, L., Young, T. R., Silva, D. G., Berti, F., Rinaldi, A., Chappaz, S., Sallusto, F., Rolph, M. S., and Mackay, C. R. (2005) Identification of T cell-restricted genes and signatures for different T cell responses, using a comprehensive collection of microarray datasets. *J. Immunol.* 175, 7837–7847

30. Lund, R., Ahlfors, H., Kainonen, E., Lahesmaa, A. M., Dixon, C., and Lahesmaa, R. (2005) Identification of genes involved in the initiation of human Th1 or Th2 cell commitment. *Eur. J. Immunol.* 35, 3307–3319

31. Bosco, A., McKenna, K. L., Devitt, C. J., Firth, M. J., Sly, P. D., and Holt, P. T. (2006) Identification of novel Th1/Th2-associated genes in T memory responses to allergens. *J. Immunol.* 176, 4766–4777

32. Lund, R. J., Loyer, J., NPN, M., Naumenan, T., Dixon, C., Chen, Z., Ahlfors, H., Tuomela, S., Tahvanainen, J., Scheinin, J., Henttinen, T., Rasool, O., and Lahesmaa, R. (2007) Genome-wide identification of novel genes involved in early Th1 and Th2 cell differentiation. *J. Immunol.* 178, 3648–3660

33. Nyman, T. A., Media, S., Sarenena, T., Julkunen, I., and Kalkkinen, N. (2006) Proteome analysis reveals ubiquitin-conjugating enzymes to be a new family of interferon-α-regulated genes. *Eur. J. Biochem.* 267, 4011–4019

34. Rautajoki, K., Nyman, T. A., and Lahesmaa, R. (2004) Proteome characterization of human T helper 1 and 2 cells. *Proteomics* 4, 84–92

35. Fillen, J. J., Nyman, T. A., Korhonen, J., Goodlett, D. R., and Lahesmaa, R. (2005) Characterization of microsomal fraction proteome in human lymphoblasts reveals the down-regulation of galecin-1 by interleukin-12. *Proteomics* 5, 4719–4732

36. Loyet, K. M., Ouyang, W., Eaton, D. L., and Stults, J. T. (2005) Proteomic profiling of surface proteins on Th1 and Th2 cells. *J. Proteome Res.* 4, 400–409

37. Rosengren, A. T., Nyman, T. A., Syyrakki, S., Matikainen, S., and Lahesmaa, R. (2005) Proteomic and transcriptomic characterization of interferon-alpha-induced human primary T helper cells. *Proteomics* 5, 337–342
The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus. J. Med. Genet. 44, 314–321

Zenz, T., Roessner, A., Thomas, A., Frohling, S., Dohner, H., Calabretta, B., and Daheron, L. (2004) hIan5: the human ortholog to the rat ian4/iddm1/lyp is a new member of the ian family that is overexpressed in B-cell lymphoid malignancies. Genes Immun. 5, 109–116

Yssel, H., De Vries, J. E., Koken, M., Van Blitterswijk, W., and Spits, H. (1984) Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. J. Immunol. Methods 72, 219–227

Han, D. K., Eng, J., Zhou, H., and Aebersold, R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 4646–4658

Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658

Cambot, M., Aresta, S., Kahn-Perles, B., de Gunzburg, J., and Romeo, P. H. (2002) Human immune associated nucleotide 1: a member of a new guanosine triphosphatase family expressed in resting T and B cells. Blood 99, 3293–3301

Hamalainen, J., Meissner, S., and Lahesmaa, R. (2000) Signaling lymphocyte activation molecule (SLAM) is differentially expressed in human Th1 and Th2 cells. J. Immunol. Methods 242, 9–19

Tahvanainen, J., Pykalainen, M., Kallonen, T., Lahteenmaki, H., Rasool, O., and Lahesmaa, R. (2006) Enrichment of nucleofected primary human CD4+ T cells: a novel and efficient method for studying gene function and role in human primary T helper cell differentiation. J. Immunol. Methods 310, 30–39

Palagi, P. M., Hernandez, P., Walther, D., and Appel, R. D. (2006) Proteome informatics I: bioinformatics tools for processing experimental data. Proteomics 6, 5435–5444

Chamrad, D. C., Korting, G., Stuhler, K., Meyer, H. E., Klose, J., and Bluggel, M. (2004) Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. Proteomics 4, 619–628

Kapp, E. A., Schulz, F., Connolly, L. M., Chakel, J. A., Meza, J. E., Miller, C. A., Feny, D., Eng, J. K., Adkins, J. N., Omenn, G. S., and Simpson, R. J. (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5, 3475–3490

Stamm, O., Krucken, J., Schmitt-Wrede, H. P., Benten, W. P., and Wunderlich, F. (2002) Human ortholog to mouse gene imap38 encoding an ER-localizable G-protein belongs to a gene family clustered on chromosome 7q32–36. Gene (Amst.) 282, 159–167

Dion, C., Carter, C., Hepburn, L., Coadwell, W. J., Morgan, G., Graham, M., Pugh, N., Anderson, G., Butcher, G. W., and Miller, J. R. (2005) Expression of the ian family of putative GTPases during T cell development and description of an ian with three sets of GTP/GDP-binding motifs. Int. Immunol. 17, 1257–1268

Hylkema, M. N., van der Deen, M., Pater, J. M., Kampina, J., Nieuwenhuis, P., and Groen, H. (2000) Single expression of CD45RC and RT6 in correlation with T-helper 1 and T-helper 2 cytokine patterns in the rat. Cell. Immunol. 199, 89–96

Prouvost-Danon, A., Abadie, A., Sapin, C., Bazin, H., and Druet, P. (1981) Induction of IgE synthesis and potentiation of anti-ovalbumin IgE antibody response by HgCl2 in the rat. J. Immunol. 126, 699–792

Fournie, G. J., Caubin, B., Xystrakis, E., Danois, J., Mas, M., Lagrange, D., Bernard, I., Subra, J. F., Pelletier, L., Druet, P., and Saoudi, A. (2001) Cellular and genetic factors involved in the difference between brown Norway and Lewis rats to develop respectively type-2 and type-1 immune-mediated diseases. Immunol. Rev. 184, 145–160

Cousins, L., Graham, M., Tooze, R., Carter, C., Miller, J. R., Powrie, F. M., Macpherson, G. G., and Butcher, G. W. (2006) Eosinophilic bowel disease controlled by the BB rat-derived lymphopenia/Gimap5 gene. Gastroenterology 131, 1475–1485