Suicide by poisoning in Pakistan: review of regional trends, toxicity and management of commonly used agents in the past three decades

Maria Safdar*, Khalid Imran Afzal*, Zoe Smith, Filza Ali, Pervaiz Zarif and Zahid Farooq Baig

Background
Suicide is one of the leading mental health crises and takes one life every 40 seconds. Four out of every five suicides occur in low- and middle-income countries. Despite religion being a protective factor against suicide, the estimated number of suicides is rapidly increasing in Pakistan.

Aims
Our review focuses on the trends of suicide and means of self-poisoning in the past three decades, and the management of commonly used poisons.

Method
We searched two electronic databases (PubMed and PakMediNet) for published English-language studies describing agents used for suicide in different regions of Pakistan. A total of 46 out of 85 papers \((N = 54,747 \text{ cases}) \) met our inclusion criteria.

Results
Suicidal behaviour was more common among individuals younger than 30 years. Females comprised 60% of those who attempted suicide in our study sample, although the ratio of completed suicides favoured males. There were regional trends in the choice of agent for overdose. Organophosphate poisoning was reported across the nation, with a predominance of cases from the agricultural belt of South Punjab and interior Sindh. Aluminium phosphide ('wheat pills') was a preferred agent in North Punjab, whereas paraphenylenediamine ('kala pathar') was implicated in deaths by suicide from South Punjab. Urban areas had other means for suicide, including household chemicals, benzodiazepines, kerosene oil and rat poison.

Conclusions
Urgent steps are needed, including psychoeducational campaigns on mental health and suicide, staff training, medical resources for prompt treatment of self-poisoning and updated governmental policy to regulate pesticide sales.

Keywords
Low- and middle-income countries; suicide; mortality; epidemiology; self-harm.

Copyright and usage
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Royal College of Psychiatrists. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Suicide is the second leading cause of death in 15- to 29-year-olds globally, and 10- to 34-year-olds in the USA. The World Health Organization (WHO) estimates that 800,000 people die by suicide every year, which translates into one death every 40 seconds, and 79% of global suicides occur in low- and middle-income countries (LMICs). The World Bank Atlas defines low-income countries as having a gross national income (GNI) per capita of $1025 or less (51.23%), with a male:female ratio of 1.05:1.2 About 50% of the population is under 20 years of age, and 35% is under 15 years of age. The literacy rate in large urban centres such as Karachi and Lahore, the two largest cities in the country, is close to 75%, whereas the average literacy rate in rural areas is <50%. Along with other factors, terrorism has negatively affected sustained economic growth in Pakistan over the past two decades, leading to a high unemployment rate. The health indicators of the country continue to remain poor.

Geography and demography
Geographically, the country is composed of four provinces – Punjab, Sindh, Balochistan, and Khyber Pakhtunkhwa (KPK) – and Gilgit–Baltistan, a newly created province in the north (Fig. 1). The Punjab and Sindh are fertile plains with agriculture-based economies. Balochistan and KPK are bound by strong tribal traditions. Gun ownership is a shared pride between the two provinces. Balochistan is rugged, rich in minerals and mostly barren. In the north of Pakistan, Gilgit–Baltistan is home to three large mountainous ranges: the Himalayas, the Karakoram and the Hindu Kush. The scenic region has beautiful valleys and river-irrigated lands. Shah and Amjad measured the cultural diversity of different regions of Pakistan. They found a high masculinity index score in all provinces, indicating a difference in social genders, with clear-cut roles. Uncertainty avoidance index scores were low in all provinces, mainly because a firm belief in Allah...
(God Almighty) led to most people not feeling threats or uncertainty about the future. Individualism index scores were low in all provinces, especially in KPK and Balochistan, signifying collectivism as a national culture. The people of Pakistan possessed a strong urge toward group cohesiveness and the expectation of loyalty.26

Approximately 96% of the population of Pakistan is Muslim.27,28 Like other major religions, Islam condemns suicide, declaring it an unforgivable sin.29–31 This could be a significant deterrent to suicide, evidenced by the traditionally low rates reported in Muslim countries compared with non-Muslim countries.32 Based on religious tenets, both suicide and self-harm are illegal and punishable by imprisonment and fines under Pakistani law, adding another deterrent to suicide.33–35 Studies from other LMICs and higher-income (GNI per capita of ≥$12,376) Muslim-majority countries also show a lower suicide rate than non-Muslim-majority countries.36,37 Arya et al describe the geographical heterogeneity of suicide rates in the neighbouring LMIC of India, focusing on religion, caste, tribe, etc. The authors found that the rate of suicide was lowest for Sikhs and Muslims, and highest for Hindus and Christians.38

Suicide statistics

Pakistan has no vital registrations and lacks accurate figures for death by suicide.39 As compared with the 2017 global suicide death rate per 100,000 people for both genders of 9.98,40 the estimated age-standardised suicide rate in Pakistan is 4.4 per 100,000 people.41 The suicide death rates in neighbouring India, Bangladesh and Sri Lanka are 13.33, 5.73 and 7.55 per 100,000 people, respectively. Despite the low estimated rate, recent data suggest that suicide is becoming a significant public health problem in Pakistan.42–45 The WHO published a report showing an increase in the reported suicide rate of 2.6% from the year 2000.1 Because of the social, legal and religious factors noted above, suicide and self-harm are not reported or are underreported. Recent reports have shown rapidly increasing rates for suicide and self-harm across the country.34,42,46 Shekhani et al noted a stigmatisation of suicidal behaviour contributing toward a lack of research on the subject.10 We did not find literature on suicide or self-harm that compared different regions of Pakistan or differentiated between urban and rural populations.

To address the gap in current knowledge, this is the first study to map the regional trends of suicide by poisoning in Pakistan, and detail urban versus rural differences. We also aim to provide a detailed account of the pathophysiology and management strategies of agents used in suicide attempts, to give readers a comprehensive review on the subject. Our analysis will provide future research directions and inform policy for suicide prevention in Pakistan, focusing on regional and urban versus rural differences in suicide attempts.

Method

We searched two electronic databases (PubMed and PakMediNet) for studies describing agents used for suicide in different regions
of Pakistan, using the following terms: suicide, death, poisoning, drugs, overdose and Pakistan. We considered studies published in the English language within the past 30 years, and conducted the search from October to December 2019. Our null hypothesis was that there is no regional or urban versus rural difference in suicide by poisoning in Pakistan. We included primary research, case series and case reports, focusing on different agents used by adults of both genders, aged ≥18 years, who attempted suicide. Studies involving ex-pat Pakistanis and those using means of suicide other than overdose were excluded. We did not include single case reports as most focused on uncommon means of death or unusual clinical presentations that were not the focus of our study. The Postgraduate Medical Institute at Lahore, Pakistan, approved all of the data collection for this research project according to its policies regarding studies involving human patients.

After reviewing 85 articles from both databases, two independent reviewers screened the titles and abstracts for relevance. Sixty-two papers met the inclusion criteria; however, sixteen were case reports and were not included. Most studies were descriptive, with only three that used a case-control design. The majority of the studies were from urban areas (74%) and addressed determinants rather than risk factors. The WHO defines determinants as a range of behavioural, biological and socioeconomic factors that influence the health of populations. The studies were from urban areas (74%) and addressed determinants rather than risk factors. Most studies reported gender (95.3%) and age (93.0%) differences. We identified eight distinctive regions, including North and South Punjab, North and South KPK, interior Sindh (all cities except Karachi), urban Sindh (represented by studies from the largest city of Karachi), Balochistan and Gilgit–Baltistan (Table 1).

The four predominant agents used in the attempted and completed suicides were organophosphates, aluminium phosphide (or ‘wheat pills’), paraphenylenediamine (or ‘kala pathar’) and others (including over-the-counter medications and household chemicals). We describe the clinical presentation, pathophysiological mechanism, morbidity, mortality and available treatments in the Discussion section. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Results

Table 1 shows the distribution of studies according to the regions, with details on study design, cohort size, gender, mean age, geographical region, city, suicide attempts or completion methods, and mortality. The exact doses of agents used in the suicide attempts were inconsistently reported and were not statistically meaningful for our study. The majority of the studies were from urban areas (74%) and addressed determinants rather than risk factors. Most studies reported the gender (95.3%) and age (93.0%) of the individuals. We identified eight distinctive regions, including North and South Punjab, North and South KPK, interior Sindh (all cities except Karachi) and urban Sindh (represented by studies from the largest city of Karachi), Balochistan and Gilgit–Baltistan (Table 1). The four predominant agents used in the attempted and completed suicides were organophosphates, aluminium phosphide (or ‘wheat pills’), paraphenylenediamine (or ‘kala pathar’) and others (including over-the-counter medications and household chemicals). Of the 47 studies, 53.2% examined organophosphates (n = 25), 36.2% examined over-the-counter agents and household chemicals (n = 17), 23.4% examined kala pathar (n = 11), 19.1% examined wheat pills (n = 9) and 4.3% examined ‘intoxication’ without indicating the agent used (n = 2). Note that some studies examined multiple agents, so the total exceeds the number of studies included. With the exception of two studies, all papers were published in the past two decades.

The total number of cases across the 53 studies was 54,747 (see Table 2). A total of 60% of overall study participants were female and 40% were male. Suicidal behaviour was more common among individuals aged <30 years, with a mean age of 27.5 years. See Table 3 for more comprehensive demographic information.

Urban Sindh had the most publications (14 studies; n = 25,458), followed by North Punjab (12 studies; n = 2319), South Punjab (7 studies; n = 1901), interior Sindh (6 studies; n = 1027), North KPK (4 studies; n = 438), South KPK (2 studies; n = 541) and one study each from Balochistan (n = 46) and Gilgit–Baltistan (n = 46) (see Table 4 for demographic information by region). The overall mortality rate, regardless of the method, was 24.5%. Organophosphates were the most widely reported agent (25 studies; n = 35,479), with an average mortality rate of 13.9% (11 studies; n = 2364). The highest average mortality rate was for wheat pills, at 44.7% (9 studies; n = 2070). The lowest average mortality rate was for over-the-counter agents and household chemicals (17 studies; n = 20,911), at 12.1%. For kala pathar, the average mortality rate was 38.6% (11 studies; n = 2364). See Table 5 for more demographic information by different agents.

Studies from Karachi (i.e. urban Sindh) included 25,458 individuals, of whom 55.1% were women aged 20–43 years (mean age 27.5 years). The average overall mortality rate for this region was 7.46% and ranged from 0 to 42%. Most studies from Karachi (73.3%) found organophosphates as the agent chosen for death by suicide, with an average mortality rate of 9.33% (range 0–20%). Other agents were also examined, including benzodiazepines, off-label agents, pesticides, corrosives, kerosene oil, rat poison, non-steroidal anti-inflammatory drugs (NSAIDs)/analgesics, and antidepressants. Two studies found that 55–91% of 771 people chose benzodiazepines as the agent of choice for attempting suicide. However, benzodiazepine overdose was associated with a 0% mortality rate in these studies. One study found that 18% of 2546 individuals chose off-label agents, whereas another study found that 15% of 705 individuals chose pesticides. Two studies of 3708 individuals found that 13.5% used corrosives. Kerosene oil was examined in two studies, with 2–14% of 15,259 individuals using it to commit suicide. Finally, rat poison (11% of 2546 individuals), NSAIDs/analgesics (11% of 324 individuals) and antidepressants (10% of 324 individuals) were all examined in one paper.

Interior Sindh included six studies from three cities: Hyderabad, Jamshoro and Nawabshah. The latter two cities are rural. There were 1027 individuals aged 16–43 years (mean age 32.5 years), of whom 53.1% were female. The most commonly studied agent was organophosphates (66.6% of studies, 987 individuals), whereas the other two studies examined kala pathar (40 individuals). Mortality rates for organophosphates ranged from 17 to 27% (mean 20.5%), whereas aluminium phosphide (two studies; n = 40) was higher at 38–42% (mean 40%). Overall mortality rates for this region averaged at 27%.

Within North Punjab, a total of 2319 cases were noted in 12 studies, with a male/female gender ratio of 50.5%/49.5% favouring males. The age range was 20–40 years (mean age 26.6 years) across six cities (Kharian, Lahore, Mianwali, Rawalpindi, Sahiwal and Wah Cantt). Of these cities, Mianwali and Sahiwal are considered rural, and the other four are urban. The overall mortality rates range from 2.5 to 87%, with a mean percentage of 43.8%. In North Punjab, almost half of individuals who ingested wheat pills died by suicide, indicating the high lethality of the agent. The overall mortality rate for wheat pills ranged from 33 to 87%, with an average of 52%. Other agents examined in the region included organophosphates (four studies), corrosives (two studies), benzodiazepines (one study), generic agents (one study), medicine (one study), etc.
Region	City	Reference	Total cases	Age (mean ± s.d./range/median)^	Gender, male: female	Poison used	Mortality	Study type
Organophosphate (25 articles published)								
North Punjab (5 articles)	Wah Cantji	Bhatti N, et al.	126	25.9 ± 9.75	48:52	Drugs 58%, organophosphates 18%, wheat pills 10%, corrosives 6%	–	Descriptive
	Rawalpindi	Madneel, et al.	62	23.3 ± 6.1	53:47	Organophosphates	–	Descriptive
	Rawalpindi	Khumra M, et al.	85	24.35 ± 7.69	41.59	Medicine 53%, organophosphates 21%, corrosives 10%	2.5%	Descriptive
	Mianwali	Tahir MN, et al.	108	11–40	78:22	Toxic substance 36%, pesticides 31%, drug overdose 11%	–	Descriptive
	Lahore	Naheed T, et al.	114	25.89 ± 11.48	53:47	Urban: household toxins and drugs; rural: wheat pills and organophosphates	–	Descriptive
North KPK (3 articles)	Peshawar	Ali Z, et al.	128	25.79 ± 11.23	40:60	Organophosphates 31%, benzo diazepine 13%, wheat pills 11%	Total 12–44%	Descriptive
	Peshawar	Rahim F, et al.	92	26.8 ± 13.9	40:60	Medicine 53%, organophosphates 36%, wheat pills 11%	25%	Descriptive
	Peshawar	Bilal M, et al.	50	30.88 ± 15.72	54.46	Organophosphates	12%	Descriptive
Interior Sindh (4 articles)	Hyderabad	Shaikh MA.	100	37.5 ± 9.5 (43 median)	78:22	Organophosphates	18%	Descriptive
	Nawabshah	Imran S, et al.	387	26.14 ± 10.09	63:37	Organophosphates	27%	Descriptive
	Nawabshah	Faiz MS, et al.	300	32 ± 5.2	17:83	Organophosphates	17%	Descriptive
	Jamshoro	Shaikh MA, et al.	200	38.4 ± 3.5 (45 median)	81:19	Organophosphates	20%	Descriptive
Urban Sindh (12 articles)	Karachi	Amir A, et al.	2546	26.57 ± 11.82	51:49	Organophosphates 46%, off-label products 18%, rat poison 11%	4%	Descriptive
	Karachi	Khan NJ, et al.	705	4–32 (21 median)		Drugs 24%, pesticides 15%, household toxins 9%	–	Descriptive
	Karachi	Ahmed A, et al.	248	27.28 ± 11.5	27:73	Organophosphates	14%	Descriptive
	Karachi	Imitz F, et al.	11 925	14–22 (20 median)	34:66	Organophosphates 62%, kerosine oil 14%, drugs 23%	18%	Descriptive
	Karachi	Asghar SP, et al.	40	12–56 (30 median)	20:80	Organophosphates	Nil	Descriptive
	Karachi	Bashir F, et al.	374	25 ± 10.1	62:38	Organophosphates 47%, corrosives 14%, drugs 23%	–	Descriptive
	Karachi	Ali P, et al.	100	28.6 ± 9.8	48:32	Organophosphates	20%	Case Series
	Karachi	Ather N, et al.	2708	–	51:49	Organophosphates 60%, corrosives 13%, rodenticides 7%, kerosine oil 2%	5%	Descriptive
	Karachi	Turabi A, et al.	3334	8–50 (30 median)	50:50	Organophosphates	–	Descriptive
	Karachi	Hussain AM, et al.	52	–		Organophosphates 40%, tranquilisers 21%, sedatives/hypnotics 10%	5.6%	Descriptive
	Karachi	Jamil H.	1900	11–30	47.53	Organophosphates	–	Descriptive
	Karachi	Jamil H.	755	11–30	40.60	Organophosphates	–	Descriptive
	Karachi	Khan NK, et al.	46	15–35	Nil:100	Organophosphates	–	Descriptive
Balochistan (1 article)	Quetta							
Wheat pills (9 articles published)								
North Punjab (7 articles)	Rawalpindi	Hassen A, et al.	77	16–60	47.53	Wheat pills	33%	Descriptive
	Khanpur	Hisham R, et al.	52	25.10 ± 5.35	48:52	Wheat pills	87%	Descriptive
	Lahore	Ghaz MA.	–	25 ± 5	–	Wheat pills	70%	Review
	Lahore	Naheed T, et al.	114	25.89 ± 11.48	53:47	Urban: household toxins and drugs; rural: wheat pills and organophosphates	–	Descriptive
	Lahore	Shouab S, et al.	107	11–60	55:45	Wheat pills 33%, bleach 26%, benzo diazepines 19%	26%	Descriptive
	Lahore	Asif A, et al.	1390	11–90	69:31	Poison unknown 83%, rat poison pills 4%, wheat pills 3%	–	Descriptive
	Sadiwala	Qureshi MA, et al.	110	12–40	41:59	Wheat pills	44%	Descriptive
North KPK (2 articles)	Peshawar	Ali Z, et al.	128	25.79 ± 11.23	40:60	Organophosphates 31%, benzo diazepines 13%, wheat pills 11%	Total 12–44%	Descriptive
	Peshawar	Rahim F, et al.	92	26.8 ± 13.9	40:60	Medicine 53%, organophosphates 36%, wheat pills 11%	25%	Descriptive
Region	City	Authors	Studies	Median Survival (yr)	Cause of Death	Methodology	% of Studies	Notes
--------------	---------------	------------------------------	---------	----------------------	----------------	-------------	--------------	-------
South Punjab (7 articles)	Sahiwal	Akram A, et al.	88	>14 (92%)	Kala pathar	Descriptive	22:78	
	Multan	Tanweer S, et al.	122	23.21 ± 8.2	Kala pathar	Descriptive	20:80	
	Multan	Haider Sh, et al.	32	21.06 ± 3.25	Kala pathar	Descriptive	34:66	28%
	Bahawalpura	Khan MA, et al.	1258	5–63 (21 median)	Kala pathar	34:66	63:35	24%
	Bahawalpura	Ishaq R, et al.	109	22 ± 3.4	Kala pathar	29:71	74%	39%
	Bahawalpura	Qasim AP, et al.	109	11–60	Kala pathar	11:89	21%	
	Rahim Y Khan	Akbar K, et al.	65	24.35 ± 9.8	Kala pathar	28:72	–	–
South KPK (2 articles)	Dera Ismail	Ansari RZ, et al.	503	12–39	Kala pathar	Descriptive	21:79	
	Dera Ismail	Khan H, et al.	38	22.08 ± 6.42	Kala pathar	5:95	80%	
Interior Sindh (2 articles)	Hyderabad	Kazi MA et al.	24	15–35	Kala pathar	Descriptive	29:71	
	Nawabshah	Khufrro BA, et al.	16	25.87 ± 5.59	Kala pathar	13:87	42%	
Over-the-counter drugs and household chemicals (17 articles published)	North Punjab (6 articles)	Wah Cantt	Bhatti N, et al.	126	25.9 ± 9.75	Drugs 58%, organophosphates 18%, wheat pills 10%, corrosives 6%	Descriptive	48:52
	Rawalpindi	Khurram M, et al.	85	24.35 ± 7.69	Kala pathar	Descriptive	41:59	
	Mianwali	Tahir MN, et al.	108	11–40	Kala pathar	Descriptive	78:22	2.5%
	Lahore	Naheed T, et al.	114	25.89 ± 11.48	Kala pathar	Descriptive	53:47	
	Lahore	Shoaib S, et al.	107	11–60	Kala pathar	Descriptive	55:45	
	Lahore	Asif A, et al.	1390	11–90	Kala pathar	Descriptive	69:31	
	Multan	Hashmi MU, et al.	206	23.44 ± 7.19	Kala pathar	Descriptive	34:66	
South Punjab (1 article)	North KPK (2 articles)	Peshawar	Ali Z, et al.	128	25.79 ± 11.23	Organophosphates 31%, benzodiazepines 13%, wheat pills 11%	Descriptive	40:60
	Urban Sindh (8 articles)	Karachi	Amir A, et al.	2546	4–32 (2 1 median)	Organophosphates 46%, off-label products 18%, rat poison 11%	Descriptive	51:49
	Peshawar	Rahim F, et al.	92	26 ± 13.9	Kala pathar	Descriptive	40:60	
	Karachi	Khan NU, et al.	705	14–22	Kala pathar	Descriptive	34:66	
	Karachi	Imtiaz F, et al.	11925	25 + 10.1	Kala pathar	Descriptive	34:66	
	Karachi	Bashir F, et al.	374	25 + 10.1	Kala pathar	Descriptive	62:38	
	Karachi	Patel MI, et al.	324	32.2 ± 17.0	Kala pathar	Descriptive	35:67	
	Karachi	Turabi A, et al.	3334	8–50	Kala pathar	Descriptive	50:50	
	Karachi	Khan MM, et al.	447	27.50 + 10.62	Kala pathar	Descriptive	40:60	
	Karachi	Jamil H.	1900	11–30	Kala pathar	Descriptive	47:53	
Miscellaneous (2 articles published)	North KPK (1 article)	Chitral	Ahmed Z, et al.	168	10–50	Drowning 52%, hanging 26%, gunshot 17%, intoxication 5%	Descriptive	38:62
	Gilgit-Baltistan (1 article)	Ghizer	Khan MM, et al.	49	16>70 Majority 16–35	Jumping into a river/lake 40%, intoxication 30%, strangulation 11%, firearm 5%	Descriptive	Nil 100

KPK, Khyber Pakhtunkhwa; NSAID, non-steroidal anti-inflammatory drug.

a. Studies cited more than once because of multiple toxins/drugs involved.
toxic substance (one study), pesticides (one study), household toxins (one study), bleach (one study), kala pathar (one study) and rat poison (one study). Mortality rates were not reported for these agents.

There were 1901 cases in 7 studies from three cities in South Punjab (Bahawalpur, Multan and Rahim Yar Khan). This region consisted of all urban cities, although the healthcare facilities’ catchment area extends into vast agricultural lands. Women comprised 68.4% of the samples, with an age range of 21–30 years (mean age 23.4 years). All seven studies examined paraphenylenediamine (kala pathar) poisoning, with a mortality rate of 28% (ranging from 21 to 39%). Only one study examined corrosives as the substance of choice for overdose, but this study did not report mortality.

North KPK included four studies with 438 cases from two cities: Peshawar (urban) and Chitral (rural). Women comprised 57% of the reported cases, with an age range of 26–31 years (mean 28.5 years). Mortality rates ranged from 10 to 44%, with an average overall mortality rate of 21%. No clear choice of agent for overdose emerged; however, similar to urban Sindh, organophosphates were included in three of the four studies, with a prevalence rate of 31–36%. Aluminium phosphide and benzodiazepines were the agents of choice 11% and 13% of the time, respectively. Interestingly, one study included methods outside of poisoning, finding that only 5% of individuals preferred an overdose by agents compared with other methods (drowning 52%, hanging 26%, firearms 17%).

For South KPK, there were two studies, both from Dera Ismail Khan, which is a rural area. There were 541 participants across the two studies, of whom 87% were female, and the average age was 23.8 years (range 12–39 years). Both studies only examined kala pathar,

Table 2	Overall demographic information for included studies
Demographics	Mean/percentage
Participants	N = 54,747
Studies	N = 53
Female: male	60%-40%
Age	27.9 years
Urban: rural area	74%-26%
Mortality rate	24.5%
Regions	Number of participants
Balochistan	46
Gilgit-Baltistan	49
Interior Sindh	1027
North Khyber Pakhtunkhwa	438
North Punjab	2319
South Khyber Pakhtunkhwa	541
South Punjab	1901
Urban Sindh	25,458

Table 3	Demographic information of included studies by region
Region/demographics	Mean/percentage
Balochistan	Participants n = 46
	Female: male 100.0%
	Age 20.5 years
	Mortality rate Not reported
Gilgit-Baltistan	Participants n = 49
	Female: male 100.0%
	Age 25.5 years
	Mortality rate Not reported
Interior Sindh	Participants n = 1027
	Female: male 53.1%-46.9%
	Age 32.5 years
	Mortality rate 27%
North Khyber Pakhtunkhwa	Participants n = 438
	Female: male 57.9%-43%
	Age 28.5 years
	Mortality rate 21%
North Punjab	Participants n = 2319
	Female: male 49.5%-50.5%
	Age 26.6
	Mortality rate 43.8%
South Khyber Pakhtunkhwa	Participants n = 541
	Female: male 87%-13%
	Age 23.8 years
	Mortality rate 63.5%
South Punjab	Participants n = 1901
	Female: male 68.4%-31.6%
	Age 23.4 years
	Mortality rate 28%
Urban Sindh	Participants n = 25,458
	Female: male 55.1%-46.9%
	Age 27.5 years
	Mortality rate 7.46%

Table 4	Demographic information of included studies by agent
Agent/demographics	Mean/percentage
Organophosphates	Participants n = 35,479
	Studies n = 25
	Urban: rural 16%-84%
	Female: male 52.3%-47.7%
	Age 28.9 years
	Mortality rate 13.9%
Over-the-counter agents and household chemicals	Participants n = 20,911
	Studies n = 17
	Urban: rural 6%-94%
	Female: male 51.6%-48.4%
	Age 26.0 years
	Mortality rate 12.1%
Kala pathar	Participants n = 2364
	Studies n = 11
	Urban: rural 74.8%-25.2%
	Female: male 24.5 years
	Mortality rate 38.6%
Wheat pills	Participants n = 2070
	Studies n = 9
	Urban: rural 11%-89%
	Female: male 50.9%-49.1%
	Age 27.7 years
	Mortality rate 44.7%
Miscellaneous	Participants n = 217
	Studies n = 2
	Urban: rural 0%-100%
	Female: male 81%-19%
	Age 27.8 years
	Mortality rate Not reported
Table 5 Overview of commonly used poisons in Pakistan

Poison	Symptoms	Diagnosis	Management	Lethal dose	Mortality	Regional prevalence	Cost
Organophosphates	Bronchorrhoea, bronchoconstriction, excessive sweating, constricted pupils, abdominal cramps, involuntary defaecation and urination, tachycardia, QT prolongation, headaches, dizziness, drowsiness, confusion, anxiety, slurred speech, ataxia, psychosis, convulsions, coma, hypotension and respiratory depression	Clinical	Supportive care; decontaminate the patient and prevent further absorption via the gut, eyes, skin or lungs; administer atropine followed by enzyme reactivation by pralidoxime	Depends on many factors	10–27%	All over Pakistan, but more prevalent in North Punjab and Sindh	1200–1600 PKR per litre
Aluminium phosphide	Epigastric pain, vomiting, diarrhoea, dizziness and dyspnoea, multiorgan failure involving the heart, kidneys, lungs and liver	Silver nitrate test	Supportive care as no antidote is available; gastric lavage with potassium permanganate and mineral or coconut oil; renal replacement therapy in the early stage may be helpful	150–500 mg	33–87%	North Punjab	700–1000 PKR per 500 mg
Paraphenylenediamine	Angioneurotic oedema, rhabdomyolysis causing myoglobinuria, cola-coloured urine, oliguria and acute tubular necrosis leading to acute renal failure	Clinical	Supportive care as no antidote is available; early tracheostomy; intravenous fluids to prevent renal failure; renal replacement therapy in cases where ATN develops	7–10 g	21–47%	South Punjab and South KPK	500 PKR per 10 g
Over-the-counter agents and household chemicals	May present with CNS depression, CNS stimulation or a mixed picture; the heart rate, blood pressure, body temperature, respiratory rate, skin clamminess, pupillary reaction and neuromuscular abnormalities would provide clues to the correct diagnosis	Clinical	Supportive care; decontamination and gastric lavage with activated charcoal antidote (flumazenil for benzodiazepines) should be used if available; haemodialysis, haemofiltration and exchange transfusion could facilitate the removal of some agents	Depends on agent used	2.5–25%	Urban areas	Diazepam is one of the most commonly used benzodiazepines; it is 37 PKR for 10 mg tablets

ATN, acute tubular necrosis; KPK, Khyber Pakhtunkhwa; CNS, central nervous system.
finding a high overall mortality rate of 63.5% (range 47–80%). One study included only 38 participants, 95% of whom were female, with a mortality rate of 47%. The second study confirmed the findings of the first paper, with a much higher number of reported cases (503 cases). The number of men in the second study rose to 21%, and the mortality rate rose to around 80%.

In Balochistan, there was only one study examining agents used by people attempting suicide. This sample included only 46 female participants in Quetta, an urban centre and the largest city in the province. This study only examined organophosphates but did not report mortality rates.

The Gilgit–Baltistan region included only one study, in the city of Ghizer (a rural town). This study included 49 individuals, all of whom were female. The means of suicide included jumping into a body of water (40%), ingesting a poisonous agent (30%), strangulation (11%) and the use of a firearm (5%). Mortality rates were not reported in this study.

In summary, organophosphate poisoning was reported from all four provinces. However, organophosphates played a more substantial role in the cases of suicide reported from North Punjab and interior Sindh, where it accounted for up to 60% of reported cases. Aluminium phosphate (wheat pill) poisoning was noted in agent overdoses reported mainly from North Punjab and North KPK, whereas paraphenylenediamine (kala pathar) was primarily used in suicide from South Punjab, with some reports from South KPK and interior Sindh. Compared with the rural population (where pesticides and paraphenylenediamine were most common), the urban population chose more varied agents for overdose, including household chemicals (bleach, corrosives), medicines (sedatives, tranquilisers, NSAIDs, antidepressants), rat poison pills and other toxic substances. Other means of suicide, such as hanging (asphyxiation), gunshot and drowning, were not the focus of our paper. Some studies in our analysis reported the reason for the suicide attempt. Five themes emerged, including financial problems, family conflicts, illicit spousal relationships, serious medical illness and failed romance. Studies did not report risk factors for suicide consistently enough to allow for a complete analysis of regional or urban versus rural differences in these risk factors.

Discussion

To our knowledge, this is the first study to focus on the regional difference in suicide by poisoning in Pakistan. The results also suggest urban versus rural differences in the choice of poison. We discuss determinants of suicide behaviour and comprehensive management strategies for commonly used agents, to address existing gaps in suicide literature.

Our study found that pesticides (organophosphates and aluminium phosphate) are the most frequently used agents for suicide across Pakistan. As noted above, agriculture is the backbone of Pakistan’s economy. The main crops include cotton, wheat, rice, maize and sugarcane, in addition to a large variety of regional fruits and vegetables. The need to meet the ever-increasing demand is one of the driving forces of the phenomenal rise in pesticide use in farming and agriculture. It does not spare even the remote areas of Pakistan. Pesticides are regulated in Pakistan by the Agriculture Pesticide Ordinance of 1971 (amended up to 1997) and Agriculture Pesticides Rules of 1973. Pakistan’s Agriculture and Research Council detailed several elements regarding registration, production, procurement, transportation, distribution, sale, storage, usage and the safe disposition of empty containers. However, pesticides are readily available, and their unrestricted use continues to be widespread. A sobering study from the Khój Foundation in 2009 reported that Pakistan used 14 times more pesticides for wheat and rice crops than India. Furthermore, the researchers found:

‘Pesticides are often stored in living rooms, among cookware and plates, and the bags in which they are sold are sometimes reused and torn into quilts or floor covering. Utensils used to mix pesticides are often also used for cooking. They found that because women are not involved in the decision making around pesticide use and work both in the fields and in the home where pesticides are stored, they are at increased risk of poisoning.’

Corresponding to these findings, several studies have investigated suboptimal or a complete lack of knowledge and awareness of pesticide hazards in these regions. Although unintentional poisoning is beyond the scope of this paper, this information is crucial in providing a glimpse of the problem and how it relates to easy accessibility and means for self-harm and suicide.

In our analysis, organophosphate overdose was reported in studies from across Pakistan, with the highest number of cases from the Punjab and Sindh regions (Table 5). Twelve studies were from Karachi, representing urban Sindh. We believe that, being the largest city of the province and Pakistan, Karachi receives patients with suicide overdose from all over Sindh, to receive care in its well-equipped medical institutions. Thus, the number of organophosphate poisonings from Karachi likely represents rural rather than urban Sindh. Similarly, studies from other metropolitan cities, such as Lahore or Rawalpindi in Punjab, treated patients with poisoning who were transferred from the surrounding rural areas to receive treatments. In the wheat-growing regions of North Punjab, aluminium phosphate or wheat pills are more readily available and were the most common agents to attempt suicide. North KPK also reported a high incidence of aluminium phosphate use.

Interestingly, there was no report of aluminium phosphate overdose from urban or interior Sindh, indicating that availability could be the critical factor in the choice of agent in suicide. As opposed to inhalational or skin contact in unintentional poisoning, ingestion was the most common method for suicide by pesticide. The chemical structure and management of organophosphates and aluminium phosphate poisoning are discussed later in the paper.

Paraphenylenediamine is an ingredient in a compound commonly known as kala pathar (Black Stone) in Urdu. It is used as a chemical ingredient in temporary tattoo ink, fabrics, dark makeup, photocopying inks, printing, rubber products and gasoline. In the Indian subcontinent and North Africa, paraphenylenediamine is an ingredient of black henna, which is used for hair dye and tattoo ink. Paraphenylenediamine was noted as the agent of choice for suicide in South Punjab, South KPK and interior Sindh. Its easy availability, unrestricted sale as a hair dye and the associated low cost of 10 PKR for a single dose (1 USD = 160.36 PKR (at the time of publication)) are the likely reasons behind the increasing number of cases in recent years. The ease of preparing the suicide concoction by mixing kala pathar in water increases the probability of its use in poisoning. Following the increasing number of cases, a unified social and print media campaign against the rapidly rising number of suicides with kala pathar led Punjab’s government to issue a temporary ban on its open trading in September 2017 in South Punjab. In April 2018, the Punjab government expanded the temporary ban on kala pathar throughout the whole province. The management of paraphenylenediamine poisoning is discussed later.

We found significant differences in the choice of agents for suicide in urban versus rural populations (see Table 4). Kala
"pathar" was used in 36% of overdose cases in the urban areas as opposed to 64% from the rural regions. More than 85% of the poisoning cases choosing organophosphates, aluminium phosphide and miscellaneous agents were from rural areas, whereas 94% of over-the-counter poisoning cases were from urban areas. Over-the-counter agents included drugs/medicines (benzodiazepines, tranquillisers, NSAIDs/analogues, antidepressants, etc.), household toxins (bleach, rat poison pills or rodenticides, insecticides) and kerosene oil. The availability, accessibility and ease of use appeared to be significant factors influencing the choice of agents for suicide in our study.

Interestingly, the gender distribution was relatively similar for all agents except ‘kala pathar’, which favoured females (74% female v. 25% male). The category of ‘miscellaneous agents’ was mostly reported in males (19% female v. 81% male). Drowning or jumping into a lake or a river was a preferred method for suicide in North KPK and Gilgit–Baltistan, where there is ready access to rivers, lakes and streams. Except for North Punjab, where the female:male suicide ratio is almost equal, all other reported regions showed a higher incidence of reported suicide in females compared with males (see Table 3). The average age of suicide in our data was 27.9 years, with the youngest reported age of 20.5 years in Balochistan.

Suicide is a complex phenomenon, and its identity is often shrouded in mystery. Unspoken religious and cultural factors, especially in LMICs, may contribute toward its inadequate understanding, and Pakistan is no exception.116 Our study highlights social determinants such as financial problems, gender and cultural stressors influencing suicide. Although not reported in all of the studies, we identified economic issues, family conflicts, illicit spousal relationships, serious illness and failed romance as commonly identified reasons for suicide. Pakistan is an economically strained country with a high unemployment rate.119 Previous reports from the region similarly found a range of socially and culturally specific family problems, typically involving spouses, in-laws, parent–child conflicts, unfulfilled expectations at work or failure in school, and mental turmoil to be factors in suicide attempts.116 Pakistan’s regional differences influence the execution of cultural norms. As discussed earlier, a low individualism index promotes collective culture, and a high masculinity index defines boundaries and gender roles.26 A deviation from tribal tradition could lead to a sense of betrayal among other clan members that can incite violence, especially against women.10 We found that all reported cases of suicide from Balochistan and Gilgit–Baltistan were females. In a recent news report, female suicides in the region were associated with the lack of freedom in choosing potential husbands.117

Ali et al suggest domestic and social issues as the most common reason for overdose accounting for up to 70% of the cases.118 In comparison, prior psychiatric history of suicide was possibly linked with suicide attempts in only 10% of the patients.34 As opposed to high-income countries, where primary psychiatric disorders such as major depression are often reported to be present in 80%–90% of deaths by suicide, in Pakistan, a premorbid mental health diagnosis is often absent.119 Treatment could potentially be delayed, as the patient’s history, although very important, is often unreliable in suicide attempts.20,121 Fear of persecution, stigma and confidentiality around such a sensitive issue may lead to the concealment of facts, both by the patient and the family.112

Gender inequality and discrimination are significant issues both globally and in Pakistan.123 The country has a deep-rooted patriarchal culture with unequal gender role expectations.114,115 Women are expected to do household chores for the extended family. Men are the primary authority figures and considered the traditional breadwinners, which gives them a superior position to women. Although an increasing number of women are economically active, both in rural and urban areas, society has yet to recognise their contribution.124 Women are seldom included in decision-making and continue to be victims of abuse.125,126 Lack of gender-sensitive policies seems to hinder equitable political and economic status, birth gender ratios, illiteracy rates, maternal mortality rates and other health indicators in South Asian women.127,128 As opposed to the West, marriage does not seem to be a protective factor against suicide in Pakistan. This likely indicates the high level of marital stress married women face compared with single women.129 Ali et al identified the pursuit of higher education as an agent toward change for all genders in Pakistan. The authors also recognised the role of mass media in supporting women’s empowerment.125

With the increasing availability of handheld devices and internet access in both urban and rural areas of Pakistan, the influence of social media on suicide behaviour cannot be disregarded. In a recent study, Cheng et al identified the role of social media and Facebook in depicting suicide and having an intended effect of similar choice of agent in other suicides.130,131 Others have focused on local newspapers and the impact of reporting suicide on the front pages.132

Religious beliefs can provide a series of effective coping strategies (e.g. prayer, rituals, religious services and social networks) that are considered as protective factors against suicide.133 A strong belief in God and that whatever happens is by Allah’s will may create an atmosphere of acceptance rather than desperation in Muslims.26 Rezaeian argues that Islam attempts to address the underlying factors contributing to the suicidal state, such as promoting mental health by the remembrance of the creator (Zikr), decreasing poverty by the distribution of wealth through mandatory charity (Zakat), and forbidding alcohol and other intoxicants.134 Although religious beliefs and laws against suicide may be a deterrent, inadvertent negative consequences, such as a delay in help-seeking, fear of prosecution by the police and legal authorities, stigma and a lack of reliable statistics, can also occur.30 For religious families, suicide is viewed as a sin and a failure rather than an illness. It may dictate family reactions, treatment-seeking behaviours, explanations of disease and adherence to treatment.26 It is important to note that the clinicians’ own religious view of suicidal behaviour may lead to unconscious biases in delivering clinical care, and could lead to moral and ethical dilemmas when treating such patients.30

Recent literature has challenged the notion of outright faith-based protection. Pritchard et al explored ‘hidden’ or missed suicides in Islamic countries. They suggested that the official records seemed to be at odds with the study results purporting a higher number of suicides in Muslim-majority countries than previously reported.39,135 The authors identified the risk of the unrecognised or denied extent of suicidal behaviour, undermining the necessary steps to support the individual and prevent fatal outcomes. Similarly, Jordans et al found a higher reported suicide rate in South Asia, mainly driven by Bangladesh (a Muslim-majority country), India and Sri Lanka, compared with the global average.136

Our data did not report on individual risk factors for suicide. However, we include a brief overview to emphasise its importance in the study of suicide. Previous analyses showed poor impulse control, premorbid depression, a history of physical/sexual or emotional abuse, high risk-taking behaviour and low self-esteem as contributing toward self-harm and suicide.137 Cognitive factors such as low IQ and limited education; poor problem-solving or inadequate communication skills; lack of distress tolerance; and the timing of the attempt, such as after a similar attempt in the family or neighbourhood, may also have a significant effect on the choice of agent in self-poisoning.138 Copycat suicides or Werther’s syndrome have long been identified as drivers of cluster suicides.139–143
Although we did not look for the timing of cluster suicides in our analysis, it should be explored in future studies. In short, the prevalence, characteristics and methods of suicidal behaviour vary widely between different communities, across other demographic groups and over time. Structural determinants of health account for some of the regional variations noted in our study. We argue that the easy and unrestricted availability of drugs/medicines could be one reason for these regional variations. Ali et al. have raised concern about the lack of regulation for over-the-counter drugs in Pakistan, leading to misuse and overuse. The authors did not consider the risk of suicide overdose with uncontrolled access to medications, which we believe should be factored into future regulations. Pakistan’s growing income inequality and increase in poverty are concerning. Li and Khatireddi emphasised the urban-rural inequalities as a driver of suicide trends. The efforts to decriminalise suicide in Pakistan gained momentum likely after India decriminalised suicide in 2015. Although Islam condemns those who commit suicide, no legal or societal punishment is mentioned for suicide survivors in the Quran. In February of 2018, the Pakistan Senate passed a bill for treatment of those who attempt suicide and survive, rather than punishment under Section 325 of the Pakistan Penal Code.

With the alarming rise of suicide rates in Pakistan, we must emphasise urgent steps to halt and gradually reverse the suicide trends. It is imperative to initiate mental health literacy and psychoeducational campaigns in vulnerable communities, to identify high-risk individuals and the hazardous effects of agricultural chemicals. Furthermore, increasing the availability of resources for timely and prompt treatment of overdose may prevent dire consequences. The role of partnership with local leaders and utilisation of existing resources in such endeavours, such as governmental or non-governmental organisations, especially in rural areas, cannot be overemphasised. In a recent article, Edlesteon and Gunnell focused on preventing suicide through regulating pesticides, especially in LMICs. Chowdhury et al. reported the promising effects of a ban on class I pesticides in Bangladesh and a corresponding overall decrease in suicide rate in the region.

Similarly, Sri Lanka and South Korea have achieved success through governmental regulations in the availability of pesticides and insecticides. With our collective effort, there is no reason that Pakistan could not achieve the same. After the next three decades, a strikingly different review focusing on suicide rate reduction success may be reported. As noted above, the Punjab Government has taken the first steps to ban potentially harmful agents. The Federal Government of Pakistan must follow suit in steering the campaign against suicide in the right direction. In a recent paper, Zia emphasised the need for clear warning labels, phrases in local languages and symbols on pesticides and other hazardous chemicals. The author suggested that the advertisement must include safety warnings as for cigarettes, and a strict following of Food and Agriculture Organization of the United Nations guidelines should be implemented. The need for systemic media campaigns for awareness and safe pesticide is necessary. We believe that despite the recent step of passing the decriminalisation of suicide bill in the Senate, it will take a concerted effort to decrease stigma against suicide survivors.

Management of individual agents

A summary of the management of agents is as follows (see Table 5):

Organophosphates

Organophosphate compounds are a diverse group of chemicals used in domestic, industrial and agricultural settings. Examples include insecticides and pesticides (malathion, parathion, etc.), herbicides (glyphosate, atrazine, etc.) and nerve gases (sarin, tabun, VX). Organophosphate poisoning is one of the most common methods used for suicide, and is a leading cause of death in young people in Pakistan, China, India, Sri Lanka and other Asian countries. It is recognised as the principal mode of poisoning in southern Punjab, and accounts for 47–60% of instances reported in Sindh. Data from other parts of the country suggest organophosphates as a cause of poisoning in 20 to 40% of cases.

Inhalation, ingestion or skin contact can lead to organophosphate poisoning. The organophosphate molecule binds and inactivates acetylcholinesterase enzyme in red blood cells. This leads to an overabundance of acetylcholine within both nicotinic and muscarinic synapses and the neuromuscular junctions. The nicotinic effects are rapid in onset and may include twitching of fine muscles, fasciculations and hyperreflexia, which may progressively lead to flaccid paralysis. Muscarinic receptors are located in both the sympathetic and parasympathetic nervous systems, and are usually slower in onset because of their action via G-protein-coupled receptors. Symptoms such as bronchorrhea, bronchoconstriction, excessive sweating, constricted pupils, abdominal cramps, involuntary defecation and urination, tachycardia, QT prolongation, headache, dizziness, drowsiness, confusion, anxiety, slurred speech, ataxia, psychosis, convulsions, coma, hypotension and respiratory depression can occur.

The diagnosis of organophosphate poisoning is clinical and based on the presenting history, collateral information from the attendants and the clinical signs. Confirmation of organophosphate poisoning can be obtained by measuring plasma butyrylcholinesterase activity or acetylcholinesterase in whole blood; however, such assays are not readily available to inform clinical decision-making. The first step is to decontaminate the patient and prevent further absorption via the eyes, skin or lungs. Personal protective equipment must be used to avoid exposure. The standard treatment of organophosphate poisoning is the reversal of muscarinic manifestations using atropine, followed by enzyme reactivation by pralidoxime. Frequent atropine doses or continuous infusion are used to clear excessive respiratory secretions and to treat bradycardia. Atropine should be continued for 1–3 days after successful atropinisation. Pralidoxime facilitates the recovery of neuromuscular transmission at the nicotinic synapses. It significantly reduces atropine consumption in organophosphate poisoning, and signs of atropinisation may occur earlier with its use than without its administration.

In our analysis, mortality ranged from 10 to 27%. It was dependent on the amount of substance ingested, the time to reach an emergency department or time to initiation of treatment, and the use of a ventilator for assisted breathing. Other predictors of mortality include age >40 years, bradycardia, low pH, high glucose, high lactate dehydrogenase and low Glasgow Coma Scale score. Aluminium phosphide

Aluminium phosphide is a highly toxic, solid fumigant insecticide and rodenticide used for grain conservation. It is referred to as wheat pills in Pakistan, and is also known as rice pills or rice tablets in other countries. It is not regulated by the government and is available for over-the-counter purchase without any restriction, making it an ideal agent for self-poisoning in the wheat-growing areas of northern and central Punjab. Studies have reported its use as an agent of suicide by ingestion from Rawalpindi, Kharian, Lahore, Sahiwal and Peshawar in KPK. In these areas, domestic conflicts or petty quarrels are a frequent cause of overdose, resulting in fatal outcomes. The lack of an antidote makes it a prevalent and particularly lethal suicide agent.
When exposed to moisture in the stomach after ingestion, phos-
phine gas is produced. This toxic gas inhibits cytochrome c oxidase
and other vital cellular enzymes, disrupting several metabolic path-
ways and destabilising cell membranes. Disruption of mitochon-
drial function produces reactive hydroxyl radicals, leading to
cellular hypoxia, free-radical-mediated injury and eventual cell
death.176,186 The presenting symptoms of aluminium phosphide
poisoning may include epigastric pain, vomiting, diarrhoea, dizzi-
ness and dyspnoea.178 Multiorgan failure involving the heart,
kidneys, lungs and liver later ensues, with metabolic acidosis,
hepatic necrosis, renal failure, cardiac arrhythmia, congestive
heart failure and hypotensive shock.180,181

A silver nitrate test can be performed to confirm the diagnosis.
Paper impregnated with silver nitrate turns black after exposure to
the patient’s breath or gastric contents, as a result of the reaction
between phosphides and silver nitrate. The sensitivity of the test
strip is 50% with a breath test and 100% with gastric contents.182

The treatment is supportive because of the absence of an anti-
dote. Gastric lavage with potassium permanganate and mineral
or coconut oil has been shown to reduce morbidity.183 Besides symp-
tomatic treatment, renal replacement therapy in the early stage is
also recommended.184

Aluminium phosphide is termed ‘agent of sure death’.185 and
the mortality rate ranged from 33 to 87% in our data.186 The
lethal dose for an adult is 150–500 mg. The presence of vomiting,
exposure of tablets before ingestion and early availability of support-
ive care can help decrease mortality.

Paraphenylenediamine

Paraphenylenediamine is an ingredient of a compound commonly
known as kala pathar or ‘Black Stone’ in Urdu. It is used as a chemi-
cal ingredient in temporary tattoo ink, fabrics, dark makeup,
photocopying inks, printing, rubber products and gasoline. In the
Indian subcontinent and North Africa, it is an ingredient of black
henna for hair dye and tattoo ink.54–80 Paraphenylenediamine is
metabolised into benzquinone diamine by cytochrome P450 per-
oxidase, and further oxidation results in the formation of
Brandowaski’s base. Both of these by-products are responsible for
their toxicity.187,188 Paraphenylenediamine ingestion is another
conventional means to commit suicide in southern Punjab.189

The most common clinical presentations after paraphenylen-
diamine intoxication include cervicofacial oedema, rhabdomyolysis
causing myoglobinuria, cola-coloured urine, oliguria and acute
tubular necrosis leading to renal failure.190 A study of 150 cases of
paraphenylenediamine poisoning from Sudan revealed angioneur-
otic oedema and conjunctival discolouration in 100% of cases,
and acute kidney injury requiring haemodialysis in 60% of cases.191

There is no antidote available for paraphenylenediamine poi-
soning. As the chemical is nondialysable, the mainstay of manage-
ment remains supportive.192 The patient must be observed in the
intensive care unit. Management includes early tracheostomy for
cervicofacial oedema and intravenous fluids, with aggressive diur-
esis and urine alkalisation for renal failure.193–197 Rhabdomyolysis
may lead to acute tubular necrosis, requiring haemodialysis.

The outcome of paraphenylenediamine ingestion depends on
the dose taken. The lethal dose of paraphenylenediamine is
unknown, and estimates vary from 7 to 10 g.186,198 A large quantity
(>7 g) might cause death within the first 6–24 h from angioneurotic
oedema or cardiotoxicity.199 The mortality ranges from 21 to 47%.

Others

This group included over-the-counter agents, prescription medi-
cine, agents of abuse and household chemicals. This type of poison-
ing was more common in young patients (15–35 years) from urban

backgrounds.50,76,77,91,199 Males overdosed at a higher rate than
females.91,199 Benzodiazepines were the most common agent used for
overdose; however, other agents used were NSAIDs,
analgesics, sedatives, tricyclics, anti-emetics, antiallergics, anti-epi-
leptics, oral hypoglycaemics, warfarin, digoxin, methamphetamine
and cocaine.50,92,197 Corrosives, kerosene oil, rubbing alcohol,
copper sulphate, bleach, rat poison pills and home insecticide
sprays were also used.81–76,77,91,199 Most patients taking an overdose
had an intention to commit suicide; however, other reasons for
overdose were to gain attention, express distress or get
revenge.50,200 The researchers interviewed a total of 80 individuals
admitted after suicide overdose, to determine their intention to
die, and noted that the patients with such an intention chose orga-
 nophosphates because of its known high lethality.

The most common presentation was drowsiness owing to
central nervous system depression; others presented with central
nervous system stimulation or a mixed picture.91 Heart rate,
blood pressure, body temperature, respiratory rate, skin clammi-
ness, pupillary reaction and neuromuscular abnormalities provided
cues to the correct diagnosis.

Treatment includes decontamination and gastric lavage
with activated charcoal. The use of the benzodiazepine antidote
flumazenil remains controversial as it could precipitate withdrawal
seizures in individuals who have developed tolerance from
chronic use.201 Flumazenil use in paediatric benzodiazepine over-
dose may be used as young children are unlikely to be tolerant to
benzodiazepines.202 Haemodialysis, haemofiltration and exchange
transfusion could facilitate removing the agents or chemicals from
circulation. Supportive care is indicated for strict airway monitor-
ing, gastrointestinal protection and the treatment of hypo-
or hypertension.

Mortality varied from 2.5 to 25%, depending on the place of
study. General medical wards reported lower death rates than inten-
care units, likely related to the severity of the patient’s condi-
tion.50,54 Mortality was also dependant on the level of care
available in the centre where the patient was under treatment.

There are several limitations to this analysis. We considered
papers in the English language, from only two electronic databases,
and excluded single case reports in this retrospective analysis.
Significant variations in the reported information in descriptive
studies make it difficult to analyse or present the data in a meta-
analysis. Limited data were available from Balochistan and Gilgit-
Baltistan, and studies from other provinces also represented only
larger cities. Risk factors were not available for extensive analysis.

More comprehensive studies are required to explore how individual
differences influence regional trends of suicide and other means of
suicide that were not addressed in our review.

Summary and future directions

Our study found that there are striking regional and urban versus
rural differences in the choice of agents used for suicide. As the
suicide rate in Pakistan is rapidly increasing, we must take
several steps to reverse the trend of the past three decades. We
should launch customised mental health literacy and public
health awareness campaigns across the country, to address the
stigma against suicide and mental health. The success and accept-
ance of such endeavours will depend on partnership with local
authorities, tribal or clan leaders, religious leaders and influential
community figures. Print (newspapers, magazines, etc.), electronic
(network television, radio, etc.) and social media (Facebook,
Twitter, Instagram, YouTube, etc.) may enhance the dissemination
of the message. Efforts are needed to enforce the existing national
pesticide policy. There is a need to have regulations to restrict
over-the-counter sales of potentially dangerous medications,

https://doi.org/10.1192/bjo.2021.923 Published online by Cambridge University Press
such as benzodiazepines, opiates and opioid derivatives. Finally, our hospitals need consistent medical supplies and specialised equipment, along with training of medical staff, to manage victims adequately. These interventions are necessary to reduce morbidity and mortality related to suicide poisoning in this time of crisis.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Maria Safdar (1), Department of Forensic Medicine, Postgraduate Medical Institute, Pakistan; Khalid Imran Afzal (1), Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Illinois, USA; Zoe Smith (2), Department of Psychology, Loyola University, Illinois, USA; Filza Ali (3), Department of Forensic Medicine, CMH Multan Institute of Medical Sciences, Pakistan; Pervaiz Zarif (4), Department of Forensic Medicine, Postgraduate Medical Institute, Pakistan; Zahid Farron Bag (5), Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Pakistan

Correspondence: Maria Safdar. Email: mariasafdar79@gmail.com

First received 12 Jul 2020, final revision 26 Apr 2021, accepted 7 May 2021

Author contributions

M.S., F.A., Z.F.B. and P.Z. identified review articles and planned the review. Z.S. analysed the data and wrote the Results section and the associated tables. M.S. and K.I.A. wrote the manuscript. Z.F.B. wrote the management section of the Discussion section and created the associated table. All authors contributed to and have approved the final manuscript.

Funding

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Declaration of interest

None.

References

1 World Health Organization (WHO). Preventing Suicide: A Global imperative. WHO, 2014 (https://apps.who.int/iris/bitstream/handle/10665/131056/9789241564878_eng.pdf?sequence=208).
2 National Center for Injury Prevention and Control. 10 Leading Causes of Death by Age Group, United States – 2017. Centers for Disease Control and Prevention, 2019 (https://www.cdc.gov/injury/data/leading-causes-death_by_age_group_2017/1100w650.png).
3 World Health Organization (WHO). Mental Health and Substance Use: Suicide Data. WHO, 2019 (https://www.who.int/mental_health/prevention/suicide/suicideprevent/en/).
4 Prytz EB, Wadhwa D. Classifying Countries by Income. The World Bank, 2019 (https://data.worldbank.org/indicator/SE.ADT.LITR.ZS?contextual=aggregate&locations=PK).
5 Cha ES, Chang SS, Choi Y, Lee WU. Trends in pesticide suicide in South Korea, 1983–2014. Epidemiol Psychiatri Sci 2019; 29: 625.
6 Demir M. Trends in suicide methods by age group. Asia Pac Psychiatry 2018; 10(4): e12334.
7 Ohberg A, Lonnvist J, Sarna S, Vuori E, Penttilä A. Trends and availability of suicide methods in Finland. Proposals for restrictive measures. Br J Psychiatry 1995; 166(1): 35–43.
8 Snowden J. Differences between patterns of suicide in East Asia and the West. The importance of sociocultural factors. Asian J Psychiatry 2018; 37: 106–11.
9 Abdullah M, Khaliy MT, Ahmad I, Haq Z. Psychological autopsy review on mental health crises and suicide among youth in Pakistan. Asia Pac Psychiatry 2018; 10(4): e12338.
10 Shekhan SS, Perveen S, Hashmi DE, Akbar K, Bachani S, Khan MM. Suicide and deliberate self-harm in Pakistan: a scoping review. BMC Psychiatry 2018; 18: 44.
11 United States Census Bureau. U.S. Census Bureau Current Population. United States Census Bureau, 2020 (https://www.census.gov/popclock/print.php?component=counter&image=https://www.census.gov/images/census-logo-white8B.png).
12 Pakistan Bureau of Statistics. 6th Population and Housing Census 2017. Pakistan Bureau of Statistics, 2017 (https://www.pbs.gov.pk/content/final-results-census-2017/).
13 Rehman A, Jindong L, Shazad B, Chandio AA, Hussain I, Nabi G, et al. Economic perspectives of major field crops of Pakistan: an empirical study. Pac Sci Rev B: Humanit Soc Sci 2015; 1(3): 145–58.
14 UNESCO Institute for Statistics. Literacy Rate, Adult Total (% of People Ages 15 and Above) – Pakistan 2017. The World Bank, 2020 (https://data.worldbank.org/indicator/SE.ADT.LITR.ZS?contextual=aggregate&locations=PK).
15 Hunter R. Education in Pakistan. World Education Services, 2020 (https://wener.wes.org/2020/02/education-in-pakistan).
16 Rehman A, Jindong L, Hussain I. The province-wise literacy rate in Pakistan and its impact on the economy. Pac Sci Rev B: Humanit Soc Sci 2015; 1(3): 140–4.
17 Zakaria M, Jun W, Ahmed H. Effect of terrorism on economic growth in Pakistan: an empirical analysis. Econ Res Ekonomska Istraživanja 2019; 32 (1): 1794–812.
18 Khan NH, Ju Y, Hassan ST. Modeling the impact of economic growth and terrorism on the human development index: collecting evidence from Pakistan. Environ Sci Pollut Res 2018; 25(34): 34661–73.
19 World Economic Outlook. Unemployment Rate Percent - Pakistan 2021. International Monetary Fund, 2021 (https://www.imf.org/external/datamapper/URW=WO/Pakistan).
20 Shah Z. Underperforming on Most Social Development Indicators. The Express Tribune, 2017 (https://tribune.com.pk/story/1410585/underperforming-social-development-indicators/).
21 Anjum A, Saeed Ali T, Akber Pradhan N, Khan M, Karmallani R. Perceptions of stakeholders about the role of health system in suicide prevention in Ghizer, Gilgit-Baltistan, Pakistan. BMC Public Health 2020; 20: 991.
22 Rej A. Gilgit-Baltistan to Become a New Province of Pakistan, Announces Khan Government. The Diplomat, 2020 (https://thediplomat.com/2020/11/gilgit-baltistan-to-become-a-new-province-of-pakistan-announces-khan-government/).
23 UKEssays. Culture Diversity In Pakistan Cultural Studies Essay. UKEssays, 2018 (https://www.ukeffays.com/essays/cultural-studies/culture-diversity-in-pakistan-cultural-studies-essay.php?ref=1).
24 Finlayson C. Chapter 9.3: Pakistan and Bangladesh. In World Regional Geography: People, Places and Globalization. University of Minnesota Libraries Publishing, 2014.
25 Buhkari SM. The Serenity of Ghancha: Of Mountains, Rivers and Valleys. Dawn, 2017 (https://www.dawn.com/news/1176091).
26 Shah SAM, Amjad S. Cultural diversity in Pakistan: national vs provincial. Mediterr J Soc Sci 2011; 2: 331–44.
27 Pakistan Bureau of Statistics. Population by Religion. Pakistan Bureau of Statistics, 2019; 9 Jan 2021; cited 9 Jan 2021. (https://www.pbs.gov.pk/sites/default/files/tables/POPULATION%20BY%20RELIGION.pdf).
28 Hussain R. “Pakistan.” In The Oxford Encyclopaedia of the Islamic World. Oxford Islamic Studies Online, 2021.
29 Gearing RE, Lizard D. Religion and suicide. J Relig Health 2009; 48(3): 332–41.
30 Khan MM, Mian AI. ‘The one truly serious philosophical problem’: ethical aspects of suicide. Int Rev Psychiatry 2010; 22(3): 288–93.
31 Chalebs KS. Issues in forensic psychiatry in Islamic jurisprudence. Bull Am Acad Psychiatry Law 1996; 24(1): 117–24.
32 Simpson ME, Conklin GH. Socioeconomic development, suicide and religion: a test of Dukheim’s theory of religion and suicide. Soc Forces 1989; 67(4): 942–65.
33 Faruqui R, Afghani S. POI-445 - suicide risk awareness in Pakistan: influence of religious, cultural, legal, socio-economic and interpersonal factors. Eur Psychiatry 2011; 26: 1615.
34 Khan MM, Hyder AA. Suicides in the developing world: case study from Pakistan. Suicide Life Threat Behav 2006; 36(1): 76–81.
35 Lester D. Suicide and Islam. Arch Suicide Res 2006, 10(1): 77–97.
36 Eskini M, AlbuHuraihan F, Rezaeiyan M, Abdel-Khalek AM, Harlak H, El-Nayal M, et al. Suicide thoughts, attempts and motives among university students in 12 Muslim-majority countries. Int Rev Psychiatry 2016; 28(4): 331–44.
37 Chalebs KS. Issues in forensic psychiatry in Islamic jurisprudence. Bull Am Acad Psychiatry Law 1996; 24(1): 117–24.
38 Simpson ME, Conklin GH. Socioeconomic development, suicide and religion: a test of Dukheim’s theory of religion and suicide. Soc Forces 1989; 67(4): 942–65.
39 Karamouzian M, Rostami M. Suicide statistics in Iran: let’s get specific. Am J Mens Health 2019; 13(1): 1557983818807079.
40 Araya V, Page A, Dandonia R, Vjayakumar L, Mayer P, Armstrong G. The geographic heterogeneity of suicide rates in India by religion, caste, tribe, and other backward classes. Crisis 2019; 40(5): 370–4.
Prevalence of chemical poisoning for suicidal attempts in Karachi, Pakistan. Br J Psychiatry 2008; 193(5): 402–5.

Yousafzai AW, Yousafzai S, Khan SA. Rising suicide rates in Pakistan: is it about time to break the silence? J Ayub Med Coll Abbottabad 2020; 32(2): 152–4.

Khan MM, Ahmed A, Khan SR. Female suicide rates in Ghizer, Pakistan. Suicide Life Threat Behav 2009; 39(2): 227–30.

Anjum A, Saeed Ali T, Akber Pradhan D, Khan M, Karmaliani R. Perceptions of stakeholders about the role of health system in suicide prevention in Ghizer, Gilgit-Baltistan, Pakistan. BMC Public Health 2020; 20: 991.

Hassan T. Why Are More Pakistanis Taking Their Own Lives? Dawn, 2019 [https://www.dawn.com/news/1481836].

World Health Organization (WHO). The World Health Report 2004 – Changing History. WHO, 2004 [https://www.who.int/en/2004/en/].

Bhatti N, Khan DA, Saleem S, Ijaz A, Aamir M. Frequency of drug poisoning in adults at tertiary care hospital. Waj Carett. Pak J Pathol 2015; 26(1): 27–34.

Maqbool F, Satti AI, Jeelani RA, Baqai HZ. Organophosphate poisoning: 22 years experience from a tertiary care hospital in Karachi, Pakistan. J Pak Armed Forces Med J 2011; 4(1): 350–3.

Ghazi MA. Wheat pill (aluminium phosphide) poisoning: clinically ignored dilemma. A comprehensive clinical review. Professional Med J 2013; 20(6): 855–63.

Shaoba S, Nadeem M, Khan Z. Causes and outcome of suicidal cases presented to a medical ward. Ann King Edward Med Univ 2014; 11(4): 30–2.

Asif A, Yusuf F, Halder K, Gul H, Usman S, Akbar S, et al. Epidemiology of attempted suicides in emergency of Mayo Hospital in 2004. Ann King Edward Med Univ 2005; 11(4): 384–6.

Qureshi MA, Nadeem S, Ahmed T, Farid, Rehman, Qasim AP. Aluminium phosphide poisoning: clinical profile and outcome of patients admitted in a tertiary care hospital. Ann Pak Med Coll 2018; 12(3): 191–4.

Kazmi A, Shahid Tariq M, Kala Pathar (Paraphenylene Diamine) poisoning. Role of tracheostomy: our experience at DHQ hospitals. Pak J Med Sci 2018; 12(2): 865–6.

Tanweer S, Saeed M, Zaidi S, Aslam W. Clinical profile and outcome of Paraphenyline Diamine. J Coll Physicians Surg Pak. 2018; 28(5): 374–7.

Haidar SH, Sultan A, Salzman Z, Wari S, Bandesha Y. Paraphenyline diamine poisoning: clinical presentations and outcomes. Anaesth Pain Intensive Care 2017; 21(4): 43–7.

Khan MA, Akram S, Shah HBU, Hamdani SAM, Khan M. Epidemiology of Kala Pathar (Paraphenyline Diamine) poisoning: an emerging threat in Southern Punjab. J Coll Physicians Surg Pak. 2018; 28(1): 44–7.

Ishaq R, Shafiq S, Iman A, Masroor Ali Q, Khan R, Tariq H, et al. Frequency of acute hepatitis following acute paraphenyline diamine intoxication. Cureus 2017; 9(4): e1186.

Qasim AP, Ali AM, Baig A, Moazzam MS. Emerging trend of self harm by using ‘kala pathar’ hair dye (paraphenyline diamine): an epidemiological study. Ann Punjab Med Coll 2016; 10(1): 26–30.

Akbar K, Iqbal J, Rehman H, Iqbal R. Acute renal failure among kala pathar poisoning. J Sheikh Zayed Med Coll. 2017; 8(2): 1153–6.

Ansari RZ, Khosa AH, Yadain SM, Shafi S, Haq AU, Khalil ZHR. Incidence of paraphenyline diamine poisoning in three district headquarter hospitals of Pakistan. J Ayub Med Coll Abbottabad 2019; 31(4): 544–7.

Khan H, Khan N, Khan N, Ahmad I, Shah F, Rahman AU, et al. Clinical presentation and outcome of patients with paraphenyline dianmine (kala-pathar) poisoning. J Gomal J Med Sci. 2016; 14: 3–6.

Kazi MA, Shahid AR, Samad A, Bibi I, Khan M. Kala pathar (Paraphenyline Diamine) poisoning: an ICU based observational study at Hyderabad, Pakistan. Indo Am. J. P. Sci 2018; 5(9): 9334–7.

Khuhrro BA, Khaskhel MS, Shikheet AA. Paraphenyline dianmine poisoning: our experience at PMCH. Naval Anaesth Pain Intensive Care 2012; 16(3): 243–6.

Hashmi MU, Ali M, Ullah K, Aleem A, Khan IH. Clinico-epidemiological characteristics of corrosive ingestion: a cross sectional study at a tertiary care hospital of Multan, South Pakistan. Cureus 2018; 10(5): e2704.

Patel MJ, Shahid M, Riaz M, Kashfi W, Ayaz SI, Khan MS, et al. Drug overdose: a wake up call! Experience at a tertiary care centre in Karachi, Pakistan. J Pak Med Assoc 2006; 56(6): 296–301.

Khan MM, Reza H. Benzodiazepine self-poisoning in Pakistan: implications for prevention and harm reduction. J Pak Med Assoc 1998; 48: 293–5.
14

119 Knipe D, Williams AJ, Hannam-Swain S, Upton S, Brown K, Bandara P, et al. Psychiatric morbidity and suicidal behaviour in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med 2019; 16(10): e1002905-e.

120 Hom MA, Stanley H, Duffy ME, Rogers ML, Hanson JE, Gutierrez PM, et al. Investigating the reliability of suicide attempt history reporting across five measures: a study of US military service members at risk of suicide. J Clin Psychol 2019; 75(1): 1332–49.

121 Hom MA, Joiner TE, Bernert RA. Limitations of a single-item assessment of suicide attempt history: implications for standardized suicide risk assessment. Psychol Assess 2016; 28(3): 1026–30.

122 Naveed S, Qadir T, Afzaal T, Waqas A. Suicide and its legal implications in Pakistan: a literature review. Cureus 2017; 9(9): e1665-e.

123 Hausmann R, Tyson LDA, Zahid S (eds). The Global Gender Gap Report 2012. World Economic Forum Geneva, 2012 (http://www3.weforum.org/docs/WEF_GenderGap_Report_2012.pdf).

124 Chauhan K. Patriarchal Pakistan: women’s representation, access to resources, and institutional practices. In Gender inequality in the Public Sector in Pakistan: Representation and Distribution of Resources (ed. Chauhan K): 57–87. Palgrave Macmillan, 2014.

125 Ali TS, Krantz G, Gul R, Asad N, Johansson E, Mogren I. Gender roles and their influence on life prospects for women in urban Karachi, Pakistan: a qualitative study. Glob Health Action 2011; 4: 7448.

126 Georgas JE, Berry JW, Van de Vlier FJ, Kajić/tcb@cš CE, Poortinga YH. Families Across Cultures: A 30-Nation Psychological Study. Cambridge University Press, 2006.

127 Rabbani F, Qureshi F, Rizvi N. Perspectives on domestic violence: case study from Karachi, Pakistan. East Mediterr Health J 2008; 14(2): 415–26.

128 Gill R, Stewart DE. Relevance of gender-sensitive policies and general health indicators to compare the status of South Asian women’s health. Womens Health Issues 2011; 21(1): 12–6.

129 Shahid M, Iqbal R, Khan MM, Shamisi US, Naekeer R. Risk factors for deliberate self-harm in patients presenting to the emergency departments of Karachi. J Coll Physicians Surg Pak 2015; 25(1): 50–5.

130 Cheng Q, Chen F, Yip PS. Media effects on suicide methods: a case study on Hong Kong 1998–2005. PLoS One 2017; 12(4): e0175580.

131 Ruder TD, Hatch GM, Anpanzoji G, ThalI MJ, Fischer N. Suicide announcement on Facebook. Crisis 2011; 32(5): 280–2.

132 Sun FK, Lu CY, Tseng YS, Chiang CY. Factors predicting recovery from suicide in attempted suicide patients. J Clin Nurs 2017; 26(23–24): 4404–12.

133 Gearing RE, Alonzo D. Religion and suicide: new findings. J Relig Health 2018; 57(6): 2478–99.

134 Rezaeian M. Islam and suicide: a short personal communication. Omega (Westport) 2008; 58(1): 77–85.

135 Pritchard C, Amaranullah S. An analysis of suicide and undetermined deaths in 17 predominantly Islamic countries contrasted with the UK. Psychol Med 2007; 37(3): 421–30.

136 Jordans ML, Kaufman A, Brennan NF, Adhikari RK, LuTel NP, Tol WA, et al. Suicide in South Asia: a scoping review. BMC Psychiatry 2014; 14: 358.

137 Khezeli M, HazavehSM, Ariaipooran S, AhmadI, Soltanian A, Rezarup-Shahkolai F. Individual and social factors related to attempted suicide among women: a qualitative study from Iran. Health Care Women Int 2019; 40(3): 295–315.

138 Cole AB, Littlefield AK, Gauthier JM, Bagge CL. Impulsivity facets and perceived likelihood of future suicide attempt among patients who recently attempted suicide. J Affect Disord 2019; 257: 195–9.

139 Celik M, Kalenderoglu A, Almis H, Turgut M. Copycat suicides without an intention to die after watching TV programs: two cases at five years of age. Psikiyatri Arsivi 2015; 25(5): e3871.

140 ICAET 2011; 27(10): 911–3.

141 Celik M, Kalenderoglu A, Almis H, Turgut M. Copycat suicides without an intention to die after watching TV programs: two cases at five years of age. Psikiyatri Arsivi 2015; 25(5): e3871.

142 Celik M, Kalenderoglu A, Almis H, Turgut M. Copycat suicides without an intention to die after watching TV programs: two cases at five years of age. Psikiyatri Arsivi 2015; 25(5): e3871.

143 Celik M, Kalenderoglu A, Almis H, Turgut M. Copycat suicides without an intention to die after watching TV programs: two cases at five years of age. Psikiyatri Arsivi 2015; 25(5): e3871.

144 Celik M, Kalenderoglu A, Almis H, Turgut M. Copycat suicides without an intention to die after watching TV programs: two cases at five years of age. Psikiyatri Arsivi 2015; 25(5): e3871.
200 Parkar SR, Dawani V, Weiss MG. Clinical diagnostic and sociocultural dimensions of deliberate self-harm in Mumbai, India. Suicide Life Threat Behav 2006; 36(2): 223–38.

201 Weinbroum AA, Flaishon R, Sorkine P, Szold O, Rudick V. A risk-benefit assessment of flumazenil in the management of benzodiazepine overdose. Drug Safety 1997; 17(3): 181–96.

202 Shalansky SJ, Naumann TL, Englander FA. Effect of flumazenil on benzodiazepine-induced respiratory depression. Clin Pharm 1993; 12(7): 463–7.