PROMPTDET: EXPAND YOUR DETECTOR VOCABULARY WITH UNCURATED IMAGES

Chengjian Feng¹ Yujie Zhong¹ Zequn Jie¹ Xiangxiang Chu¹ Haibing Ren¹
Xiaolin Wei¹ Weidi Xie², Lin Ma¹

¹ Meituan Inc. ² Shanghai Jiao Tong University

ABSTRACT

The goal of this work is to establish a scalable pipeline for expanding an object detector towards novel/unseen categories, using zero manual annotations. To achieve that, we make the following four contributions: (i) in pursuit of generalisation, we propose a two-stage open-vocabulary object detector that categorises each box proposal by a classifier generated from the text encoder of a pre-trained visual-language model; (ii) To pair the visual latent space (from RPN box proposal) with that of the pre-trained text encoder, we propose the idea of regional prompt learning to optimise a couple of learnable prompt vectors, converting the textual embedding space to fit those visually object-centric images; (iii) To scale up the learning procedure towards detecting a wider spectrum of objects, we exploit the available online resource, iteratively updating the prompts, and later self-training the proposed detector with pseudo labels generated on a large corpus of noisy, uncurated web images. The self-trained detector, termed as PromptDet, significantly improves the detection performance on categories for which manual annotations are unavailable or hard to obtain, e.g. rare categories. Finally, (iv) to validate the necessity of our proposed components, we conduct extensive experiments on the challenging LVIS and MS-COCO dataset, showing superior performance over existing approaches with fewer additional training images and zero manual annotations whatsoever. Project page with code: https://fcjian.github.io/promptdet

1 INTRODUCTION

Object detection has been one of the most widely researched problems in computer vision, with the goal of simultaneously localising and categorising objects in the image. In the recent literature, the detection community has witnessed tremendous success by training on large-scale datasets, e.g. PASCAL VOC [Everingham et al. (2015)], MS-COCO [Lin et al. (2014)], with objects of certain category being exhaustively annotated with bounding box and category labels. However, the scalability of such training regime is clearly limited, as the model can only perform well on a closed and small set of categories for which large-scale data is easy to collect and annotate.

On the other hand, the recent large-scale visual-language pre-training has shown tremendous success in open-vocabulary image classification, which opens up the opportunity for expanding the vocabulary a detector can operate. In specific, these visual-language models (for example, CLIP [Radford et al. (2021)] and ALIGN [Jia et al. (2021)]) are often trained on billion-scale noisy image-text pairs, with noise contrastive learning, and has demonstrated a basic understanding on ‘what’ generally are the salient objects in an image. However, training detectors in the same manner, i.e. using image-text pairs, clearly poses significant challenge on scalability, as it would require the captions to not only include semantics (i.e. ‘what’), but also spatial information (i.e. ‘where’) of the objects.

In this work, we consider a slightly conservative scenario in open-vocabulary object detection: given an existing object detector trained on abundant data for some base categories, we wish to expand the detector’s ability to localise and recognise novel categories, with minimal human effort. Specifically, we describe a simple idea for pairing the visual latent space with a pre-trained,
The proposed PromptDet is a framework for expanding the vocabulary of an object detector without human annotation. The figure depicts detection examples produced by our model on LVIS validation set, with blue and green boxes denoting the objects from \textit{base} and \textit{novel} categories respectively. Despite no ground truth annotation is provided for the novel categories, PromptDet is still able to reliably localise and recognise these objects with high accuracy.

Frozen language encoder, \textit{i.e.} inheriting the CLIP’s text encoder as a ‘classifier’ generator, and only train the detector’s visual backbone and class-agnostic region proposal. The novelty of our approach is in the two steps for aligning the visual and textual latent spaces. Firstly, we propose to learn a certain number prompt vectors on the textual encoder side, termed as \textit{regional prompt learning (RPL)}, such that its latent space can be transformed to better fit the visual embeddings of object-centric images. When exploiting a large corpus of uncurated web images, we iteratively update the prompt vectors and retrieve a set of images for novel categories with high precision. Secondly, we further self-train the proposed detector with the pseudo-labels generated on the sourced candidate images. The resultant detector is named \textbf{PromptDet}. Experimentally, despite the noise in the image candidates, such self-training regime has shown a noticeable improvement on the open-vocabulary generalisation. Several detection examples produced by PromptDet are illustrated in Figure 1.

To summarise, our contribution are as follows:

- We investigate the problem of open-vocabulary detection based on a simple idea: equipping a standard two-stage object detector with a frozen textual encoder from a pre-trained visual-language model.
- We propose a \textit{regional prompt learning} approach for transforming the embedding space of the text encoder to better suit the object-centric images proposed by the RPN of the detector.
- We introduce a novel learning framework, which allows to iteratively update the prompts and source high-quality external images from the web using the updated prompts, and finally self-train the detector. With the refined prompt and the self-training on a mixture of ground truth (of base categories) and pseudo-labels (of novel categories), the detection performance on novel categories can be significantly improved.
- We conduct thorough ablation studies to validate the necessity of the proposed components. While comparing with previous state-of-the-art open-vocabulary detectors, we substantially outperform their results on the LVIS Gupta et al. (2019) benchmark, despite only using uncurated web images, and less computation, \textit{i.e.} train on smaller resolution and fewer epochs.

2 RELATED WORK

2.1 OBJECT DETECTION

Generally speaking, modern object detection frameworks can be divided into two-stage [He et al. (2017); Ren et al. (2015); Feng et al. (2021b)] and one-stage ones [Lin et al. (2017); Tian et al. (2019); Feng et al. (2021a); Zhong et al. (2020)]. The two-stage detectors first generate a set of region proposals, and then classify and refine these proposals. In contrast, the one-stage detectors directly predict the category and bounding box at each location. The majority of existing detectors require a large number of training data with bounding box annotations, and can only recognise a fixed set of categories that are present in the training data. Recently, several works develop few-shot detection [Kang et al. (2019); Fan et al. (2020); Kaul et al. (2022)] and zero-shot detection [Gu et al. (2021); Zhou et al. (2022)] to relax the restriction from expensive data annotations. In specific, few-shot detection aims to detect novel categories by adjusting the detector with one or few annotated samples. Zero-shot detection aims to identify novel categories without any additional examples.
2.2 Open-vocabulary Object Detection

In the recent literature, open-vocabulary detection has attracted increasingly more interest within the community. The goal is to detect objects beyond a closed set, in Bansal et al. (2018), the authors propose to replace the last classification layer with language embeddings of the class names. Li et al. (2019), Rahman et al. (2020) introduce the external text information while computing the classifier embedding. OVR-CNN Zareian et al. (2021) trains the detector on image-text pairs with contrastive learning. ViLD Gu et al. (2021) and ZSD-YOLO Xie & Zheng (2021) propose to explicitly distill the knowledge from the pre-trained CLIP visual embedding into the visual backbone of a Faster RCNN. One closely related work is the Detic Zhou et al. (2021), which seeks to self-train the detector on ImageNet21K, to expand the vocabulary of detector. Nonetheless, it still requires a tremendous amount of human effort for annotating these ImageNet21K images. In contrast, our proposed self-training framework poses less limitations, and enables to directly train on uncurated web images.

2.3 Zero-shot Learning

Zero-shot learning aims to transfer the learned knowledge from some seen object classes to novel classes. In object recognition, early works exploit the visual attribution such as class hierarchy, class similarity and object parts to generalize from seen classes to unseen classes Rohrbach et al. (2011); Akata et al. (2016); Zhao et al. (2017); Elhoseiny et al. (2017); Ji et al. (2018). Other line of research learns to map visual samples and the semantic descriptors to a joint embedding space Frome et al. (2013); Cacheux et al. (2019).

2.4 Vision-Language Pre-training

In computer vision, joint visual-textual learning has been researched for a long time. In the early work from Mori et. al. Mori et al. (1999), connections between image and words in paired text documents were first explored. Weston et al. (2011) learnt a joint image-text embedding for the case of class name annotations. In the recent literature, CLIP Radford et al. (2021) and ALIGN Jia et al. (2021) collect a million/billion-scale image-caption pairs from the Internet, and jointly train an image encoder and a text encoder with simple noise contrastive learning, which has shown to be extremely effective for a set of downstream tasks, such as zero-shot image classification.

3 Methodology

In this paper, we aim to expand the vocabulary of a standard two-stage object detector, to localise and recognise objects from novel categories with minimal manual effort. This section is organized as follows, we start by introducing the basic blocks for building an open-vocabulary detector, that can detect objects of arbitrary category, beyond a closed set; In Section 3.2 we describe the basic idea for pairing the visual backbone with a frozen language model, by inheriting CLIP’s text encoder as a classifier generator; In Section 3.3 to encourage alignment between the object-centric visual representation and textual representation, we introduce the regional prompt learning (RPL); In Section 3.4 we introduce an iterative learning scheme, that can effectively leverage the uncurated web images, and source high-quality candidate images of novel categories. As a consequence, PromptDet can thus be self-trained on these candidate images in a scalable manner.

3.1 Open Vocabulary Object Detector

Here, we consider the same problem setup as in Gu et al. (2021). Assuming we are given an image detection dataset, \(D_{\text{train}} \), with exhaustive annotations on a set of base categories, \(C_{\text{train}} = C_{\text{base}} \), i.e. \(D_{\text{train}} = \{(I_1, y_1), \ldots, (I_n, y_n)\} \), where \(I_i \in \mathbb{R}^{H \times W \times 3} \) refers to the \(i \)-th image, and \(y_i = \{(b_k, c_k)\}_m \) denotes the coordinates \((b_k \in \mathbb{R}^4) \) and category label \((c_k \in \mathbb{R}^{C_{\text{novel}}}) \) for a total of \(m \) objects in such image. The goal is to train an object detector that can successfully operate on a test set, \(D_{\text{test}} \), with objects beyond a closed set of base categories, i.e. \(C_{\text{test}} = C_{\text{base}} \cup C_{\text{novel}} \), thus termed as an open-vocabulary detector. In particular, we conduct the experiments on LIVS dataset Gupta et al. (2019), and treat the union of common and frequent classes as base categories, and the rare classes as novel categories.
Figure 2: **Left**: the proposed open-vocabulary object detector. We inherit the category embeddings as an open-vocabulary classifier, and train the visual backbone to align with the classifier. **Right**: the procedure for the off-line regional prompt learning. We take crops for all base categories, and use their visual embeddings to optimise the learnable prompt (Section 3.3 has detailed description).

Generally speaking, a popular two-stage object detector, for example, Mask-RCNN, is consisted of a visual backbone encoder, a region proposal network (RPN) and classification module:

$$\{\hat{y}_1, \ldots, \hat{y}_n\} = \Phi_{\text{CLS}} \circ \Phi_{\text{RPN}} \circ \Phi_{\text{ENC}}(I)$$ (1)

Constructing an open-vocabulary detector would therefore require to solve two subsequent problems: (1) to effectively generate class-agnostic region proposals, and (2) to accurately classify each of these proposed regions beyond a close set of visual categories, i.e. open-vocabulary classification.

Class-agnostic region proposal networks (Φ_{RPN}): refers to the ability of proposing all regions that are likely to have objects, regardless of their categories. Here, we parametrise the anchor classification, bounding box regression and mask prediction in a class-agnostic manner, i.e. sharing parameters for all the categories. This is also in line with the discovery in recent work Kaul et al. (2022); Zhou et al. (2022).

Open-vocabulary classification (Φ_{CLS}): aims to categorise the visual object beyond a fixed-size vocabulary. We make the assumption that, there exists a common latent space between vision and natural language, classifying any visual object can thus be achieved by looking for its closest embedding in the language latent space, for example, to classify a region as "almond" or "dog", the classification probability for being "almond" can be computed:

$$c_{\text{almond}} = \phi_{\text{text}}(g(\text{"this is a photo of [almond]"}))$$ (2)

$$c_{\text{dog}} = \phi_{\text{text}}(g(\text{"this is a photo of [dog]"}))$$ (3)

$$p_{\text{almond}} = \frac{\exp(<v, c_{\text{almond}}>/\epsilon)}{\exp(<v, c_{\text{almond}}>/\epsilon) + \exp(<v, c_{\text{dog}}>/\epsilon)}$$ (4)

where $v \in \mathbb{R}^D$ denotes the ROI pooled features from region proposal network, $g(\cdot)$ refers to a simple tokenisation procedure, with no trainable parameters, ϕ_{text} denotes a hyper-network that maps the natural language to its corresponding latent embedding, note that, the input text usually follows a manually defined format, e.g. “this is a photo of [category]”, which converts the classification tasks into the same format as pre-training objectives. As both visual and textual embedding have been L2 normalised, a temperature parameter ϵ is also introduced. The visual backbone is trained by optimising the classification loss, to pair the regional visual embedding and its corresponding textual embedding.

Discussion: Despite the simplicity in formulating an open-vocabulary detector, training such models would suffer from great challenges, due to the lack of exhaustive annotations for large-scale dataset. Until recently, the large-scale visual-language models, such as CLIP and ALIGN, have been trained to align the latent space between vision and language, using simple noise contrastive learning at the image level. Taking benefit from the rich information in text descriptions, e.g. actions, objects, human-object interactions, and object-object relationships, these visual-language models have demonstrated remarkable ‘zero-shot’ generalisation for various image classification tasks, which opens up the opportunity for expanding the vocabulary of an object detector.
3.2 Naïve Alignment via Detector Training

In this section, we aim to train a Mask-RCNN on D_{train}, i.e. only base categories, by optimising the visual backbone and the class-agnostic RPN to align with the object category classifier, that is inherited from the pre-trained frozen text encoder from CLIP, as shown in Figure 2 (left). Note that, such training regime has also been investigated in several previous work, for example, Bansal et al. (2018); Gu et al. (2021).

However, as indicated by our experiments, naively aligning the visual latent space to textual ones only yields very limited open-vocabulary detection performance. We conjecture that the poor generalisation mainly comes from three aspects: Firstly, computing the category embedding with only class name is sub-optimal, as they may not be precise enough to describe a visual concept, leading to the lexical ambiguity, For example, “almond” either refers to an edible oval nut with a hard shell or the tree that it grows on; Secondly, the web images for training CLIP are scene-centric, with objects occupying only a small portion of the image, whereas the object proposals from RPNs often closely localise the object, leading to an obvious domain gap on the visual representation; Thirdly, the base categories used for detector training are significantly less diverse than those used for training CLIP, thus, may not be sufficient to guarantee a generalisation towards novel categories. In the following sections, we propose a few simple steps to alleviate the above issues.

3.3 Alignment via Regional Prompt Learning

Comparing with the scene-centric images used for training CLIP, the output features from RPNs are local and object-centric. Naïvely aligning the regional visual representation to the frozen CLIP text encoder would therefore encourage each proposal to capture more context than it is required. To this end, we propose a simple idea of regional prompt learning (RPL), steering the textual latent space to better fit object-centric images.

Specifically, while computing the category embedding, we prepend/append a sequence of learnable vectors to the textual input, termed as ‘continuous prompt vectors’. These prompt vectors do not correspond to any real concrete words, and the subsequent layers of the text encoder will attend these vectors, as if they were a sequence of ‘virtual tokens’, to generate the classifier or embedding. Additionally, we also include more detailed description into the prompt template to alleviate the lexical ambiguity, for instance, \{category: ”almond”, description: “oval-shaped edible seed of the almond tree”\}. Note that, the description can often be easily sourced from Wikipedia or meta data from the dataset. The embedding for each individual category can thus be generated as:

$$c_{\text{almond}} = \phi_{\text{text}}([p_1, \ldots, p_j, g(\text{category}), p_{j+1}, \ldots, p_{j+h}, g(\text{description})])$$ \hspace{1cm} (5)

where p_i ($i \in \{1, 2, \ldots, j + h\}$) denote the learnable prompt vectors with the same dimension as word embedding, [category] and [description] are calculated by tokenising the category name and detailed description. As the learnable vectors are class-agnostic, and shared for all categories, they are expected to be transferable to novel categories after training.

Optimising prompt vectors. To save computations, we consider to learn the prompt vectors in an off-line manner, specifically, we take all the object crops of base categories from LVIS, resize them accordingly and pass through the frozen CLIP visual encoder, to generate the image embeddings. To optimise the prompt vectors, we keep both the visual and textual encoder frozen, and only leave the learnable prompt vectors to be updated, with a standard cross-entropy loss to classify these image crops. The process of RPL is displayed in Figure 2 (right).

Discussion. With the proposed RPL, the textual latent space is therefore re-calibrated to match the object-centric visual embeddings. Once trained, we can re-compute all the category embeddings, and train the visual backbone to align with the prompted text encoder, as described in Figure 2 (left). In our experiments, we have confirmed the effectiveness of the proposed RPL in Section 4.3, which indeed leads noticeable improvements on the open-vocabulary generalisation.

3.4 PromptDet: Alignment via Self-training

Till here, we have obtained an open-vocabulary object detector by aligning the visual backbone to prompted text encoder, however, RPL has only exploited limited visual diversity, i.e. only with
base categories. In this section, we further unleash such limitation, and propose to leverage the large-scale, uncurated, noisy web images. Specifically, as shown in Figure 3, we describe a learning framework that iterates the procedure for RPL and candidate images sourcing, followed by generating pseudo ground truth boxes, and self-training the open-vocabulary detector.

Sourcing candidate images. We take the LAION-400M dataset as an initial corpus of images, with the visual embeddings pre-computed by CLIP’s visual encoder. To acquire candidate images for each category, we compute the similarity score between the visual embedding and the category embedding, which are computed with the learnt regional prompt. We keep the images with highest similarity (an ablation study on the selection of the number of the images has been conducted in Section 4.3). As a consequence, an additional set of images is constructed with both base and novel categories, with no ground truth bounding boxes available, e.g. $D_{\text{ext}} = \{(I_{\text{ext}})_i\}_{i=1}^{|D_{\text{ext}}|}$.

Iterative prompt learning and image sourcing. Here, we can alternate the procedure of the regional prompt learning (Figure 3 Stage-I) and sourcing Internet images with the learned prompt with high precision (Figure 3 Stage-II). Experimentally, such iterative sourcing procedure has shown to be beneficial for mining object-centric images with high precision, as a result, enabling to generate more accurate pseudo ground truth boxes, and largely improve the detection performance on novel categories after self-training.

Bounding box generation. For each image in D_{ext}, we run the inference with our open-vocabulary detector. Since these sourced candidate images are often object-centric, the output object proposals from class-agnostic RPN usually guarantee a decent precision and recall. We retain the top-K object proposals with max objectness scores (experiments have been conducted on selecting the value of K), and readout the classification score for these boxes. Finally, we only keep the box with maximal confidence score as the pseudo ground truth for each image.

Note that, despite an image may contain multiple objects of interest, we only pick the top-1 prediction as pseudo ground truth. Overall, such procedure would successfully mine a large set of previously unlabeled instances with pseudo ground truth, which are later used for re-training the visual backbone and RPN (including regression head) in Mask-RCNN, effectively resembling the self-training procedure.

Discussion. Concurrent to our work, Detic Zhou et al. (2022) also attempts to train an open-vocabulary detector by exploiting external data, our proposed approach differs in three major aspects: (1) in Detic, the ImageNet21K is used as the initial image corpus, which have already been well-curated with manual annotations, in contrast, we advocate and more challenging and scalable scenario, with all external images uncurated; (2) to pseudo-label the bounding boxes, Detic uses a heuristic, to always pick the max-sized proposal, while in our case, we choose the box with most confident prediction; (3) our image sourcing and self-training can be iteratively conducted, and shown to lead significant performance boost, as indicated in Section 4.3.
4 Experiment

4.1 Dataset & Evaluation Metrics

LVIS. We mainly conduct training and evaluation on the large-vocabulary object detection dataset LVIS [Gupta et al. (2019)]. The latest version v1.0 contains 1203 categories with both bounding box and instance mask annotations. The categories are divided into three groups based on the number of images that each category appears in the train set: rare (1-10 images), common (11-100 images), and frequent (>100 images). We follow the same problem setting as in ViLD [Gu et al. (2021)] and Detic [Zhou et al. (2022)], where the frequent and common classes are treated as base categories (\(C_{\text{base}}\)), and the rare classes as the novel categories (\(C_{\text{novel}}\)).

LAION-400M and LAION-Novel. For self-training, we also use an external dataset, LAION-400M [Schuhmann et al. (2021)], which consists of 400 million image-text pairs filtered by pre-trained CLIP. It provides the pre-computed CLIP embedding for all the images, and we search for the images by using its 64G \(knn\) indices and download about 300 images for each novel category, as illustrated by Stage-II in Figure 3. We refer to this subset of LAION-400M as LAION-novel.

MS-COCO. We directly evaluate on MS-COCO [Lin et al. (2014)] without any finetuning on it. Specifically, MS-COCO contains 80 categories, with only 59 categories covered by LVIS-base (denoted as base categories, \(C_{\text{base}}\)). Therefore, the other 21 categories can be used to benchmark the generalisation ability of PromptDet.

While training an initial open-vocabulary object detector, we use LVIS-base. For self-training, we use a combination of LVIS-base and LAION-novel datasets. We summarise the dataset statistics in Table 1. For evaluation on LVIS v1.0 minival set and MS-COCO, we mainly consider the mask Average Precision for novel categories, i.e. \(AP_{\text{novel}}\). However, to complete the AP metric, we also report \(AP_c\) (for common classes) and \(AP_f\) (for frequent classes). Lastly, the mask Average Precision for all categories is denoted by \(AP\), which is computed as the mean of all the APs ranging from 0.5 to 0.95 IoU threshold (in a step of 0.05).

Dataset	Train	Eval.	Definition	#Images	#Categories
LVIS	–	–	original LVIS dataset	0.1M	1203
LVIS-base	✓	×	image-text pairs filtered by CLIP	400M	unlabeled
LVIS minival	×	✓	standard LVIS validation set	20K	1203 (866+337)
MS-COCO	×	✓	standard COCO validation set	5K	80 (59+21)

Table 1: A summary of dataset statistics. The numbers in brackets refer to the number of base and novel categories.

4.2 Implementation Details

Detector training. We conduct all the experiments using Mask-RCNN [He et al. (2017)] with a ResNet-50-FPN backbone. Similar to Detic [Zhou et al. (2022)], we use sigmoid activation and binary cross-entropy loss for classification. We adopt the Stochastic Gradient Descent (SGD) optimizer with a weight decay of 0.0001 and a momentum of 0.9. Unless specified, the models are trained for 12 epochs (1× learning schedule) and the initial learning rate is set to 0.02 and then reduced by a factor of 10 at the 8-th epoch and the 11-th epoch. This detector training schedule is used for both the naïve alignment (Section 3.2) and self-training (Section 3.4). In terms of the data augmentation for the naïve alignment, we use 640-800 scale jittering and horizontal flipping.

Regional prompt learning. We train the learnable prompt vectors for 6 epochs. Empirically, we find that the model is not sensitive to the number of prompt vectors, we therefore use two vectors, one before \(g(\text{category})\) as a prefix vector, and one after \(g(\text{category})\) as a suffix vector.

One-iteration prompt learning and image sourcing. For the first iteration, we train the prompt using the image crops from LVIS-base [Gupta et al. (2019)]. Specifically, we expand the ground truth bounding box to triple the height or width for each side, and take crops from the images based on the

[1] Gupta et al. (2019)
[2] Schuhmann et al. (2021)
[3] Gu et al. (2021)
[4] Zhou et al. (2022)
[5] Lin et al. (2014)
extended bounding box. Then we randomly select up to 200 image crops for each base class to train the prompt vectors. At the stage of image sourcing, we search for the web images on LAION-400M using the learned prompt via the \textit{knn} indices of LAION-400M, and download about 300 images for each novel class, forming LAION-novel for later self-training.

Multi-iteration prompt learning and image sourcing. If we perform the prompt learning and image sourcing for more than one iteration, we start the prompt learning using LVIS-base, and search more images for base categories from LAION-400M. Combining the original LVIS-base and newly sourced images, we can again update the prompt vectors, and used to search images for novel categories later on, constructing the external LAION-novel dataset.

Self-training. We first train the detector using the LVIS-base images for 6 epochs, and then train on both LVIS-base and LAION-novel for another 6 epochs. For the images in LAION-novel, they are often object-centric due to the regional prompt learning, we use a smaller resolution and do 160~800 scale jittering. To guarantee high-quality of pseudo labels, we adopt a multi-scale inference scheme to generate the pseudo ground truth bounding boxes for images from LAION-novel dataset. Specifically, one image scale is randomly selected from 160~360, and the other is randomly selected from 360~800. The two images of different scales are fed into the detector, and one pseudo bounding box is generated for each of them. We select the most confident prediction from both images as the final pseudo bounding boxes, and use them to further self-train the detector.

Training for more epochs. To compare with state-of-the-art detectors, we train the models with a batchsize of 64 on 8 GPUs, for 72 epochs (6× learning schedule), with 100~1280 scale jittering.

4.3 Ablation Study

In this section, we conduct ablation studies on the LVIS dataset, to thoroughly validate the effectiveness of the proposed components, including the RPL, iterative candidate sourcing, and self-training. In addition, as for studying other hyper-parameters, we also conduct comparison experiment to other heuristics for box selection, effect of sourced candidate images, and finally on the training detail for whether to update the class-agnostic region proposal during self-training.

Regional prompt learning (RPL). To demonstrate the effectiveness of training open-vocabulary detector, by aligning the visual and textual latent space, we compare the learned prompt with the manual prompt. For simplicity, we only use two learnable vectors (one for prefix, and one for suffix) in RPL. When using more prompt vectors, we did not observe clear benefits.

As shown in Table 2, we first investigate the performance with the manual prompt of "a photo of [category]", which has also been used in previous works [Zhou et al., 2021; Gu et al., 2021; Zhou et al., 2022]. However, it only brings a limited generalisation, yielding a 7.4 AP for detecting objects of novel categories; Secondly, after adding more detailed description to the prompt template, \textit{i.e.} use the “a photo of [category], which is [description]”, the lexical ambiguity can be alleviated, and lead to an improvement of 1.8 AP on novel categories; Lastly, we verify the effectiveness of our proposed prompt learning, which further brings a performance improvement by 3.7 AP and 2.1 AP on novel categories, comparing to the two manual prompts respectively.

Prompt	AP$_{novel}$	AP$_{c}$	AP$_{f}$	AP	
“a photo of [category]”	manual	7.4	17.2	26.1	19.0
“a photo of [category], which is [description]”	manual	9.0	18.6	26.5	20.1
regional prompt learning	[1+1]	11.1	18.8	26.6	20.3

Table 2: Comparison on manually designed and learned prompt. Here, we only use two learnable prompt vectors in RPL, \textit{i.e.} [1 + 1] refers to using one vector for prefix, and one vector for suffix.

Self-training. We evaluate the performance of after self-training the detector, both with and without the iterative candidate image sourcing. As shown in Table 3, it can always bring a noticeable improvement with different prompts, for example, from 9.0 to 15.3 AP for manual prompt, and 11.1 to 15.9 AP for learnt prompt. Additionally, while conducting a second-round regional prompt learning and image sourcing, our proposed PromptDet really shines, significantly outperforming the
manually designed prompt, reaching 19.0 AP on novel categories. It demonstrates the effectiveness of self-training and iterative prompt learning for sourcing higher quality images.

Prompt	Self-training	AP_{novel}	AP_c	AP_f	AP
“a photo of [category], which is [description]”	manual	9.0	18.6	26.5	20.1
	manual	15.3	17.7	25.8	20.4
Regional prompt learning	[1+1]	11.1	18.8	26.6	20.3
PromptDet (1-iter)	✓	15.9	17.6	25.5	20.4
PromptDet (2-iter)	✓	19.0	18.5	25.8	21.4

Table 3: Effectiveness of self-training with different prompts. 1-iter and 2-iter denote that Stage-I (i.e. RPL) and Stage-II (i.e. image sourcing) are performed for one or two iterations, respectively.

Box generation. As for pseudo labeling the boxes, we show some visualisation examples by taking the most confident predictions on the sourced candidate images, as shown in Figure 4.

![Visualisation of the generated pseudo ground truth for the sourced candidate images.](image)

Quantitatively, we compare with three different heuristic strategies for box generation, as validated in Detic [Zhou et al. 2022]: (1) use the whole image as proposed box; (2) the proposal with max size; (3) the proposal with max RPN score.

As shown in Table 4 (left), we observe that using the most confident predictions as pseudo ground truth significantly outperforms the other strategies. Specifically, we conjecture this performance gap between ours and the max-size boxes (used in Detic) might be due to the difference on the external data. Detic exploits ImageNet21K with images being manually verified by human annotators, however, we only adopt the noisy, uncurated web images, training on the bounding boxes generated by heuristic may thus incur erroneous supervision in the detector training.

Sourcing variable candidate images. We investigate the performance variation while increasing the number of uncurated web images for self-training. As shown in Table 4 (right), 0 image denotes the training scenario with no self-training involved, and when increasing the number of sourced images from 50 to 300, the performance tends to be increasing monotonically, from 14.6 to 19.0 AP on novel categories, showing the scalability of our proposed self-training mechanism. However, we found the LAION-400M dataset can only support at most 300 images for most categories, and sourcing more images would require to use a larger corpus, we leave this as a future work.

Method	AP_{novel}	AP_c	AP_f	AP
w/o self-training	10.4	19.5	26.6	20.6
image	9.9	18.8	26.0	20.1
max-size	9.5	18.8	26.1	20.1
max-obj.-score	11.3	18.7	26.0	20.3
max-pred.-score (ours)	19.0	18.5	25.8	21.4

#Web images	AP_{novel}	AP_c	AP_f	AP
0	10.4	19.5	26.6	20.6
50	14.6	19.3	26.2	21.2
100	15.8	19.3	26.2	21.4
200	17.4	19.1	26.0	21.5
300	19.0	18.5	25.8	21.4

Table 4: **Left:** the comparison on different box generation methods. **Right:** the effect on increasing the sourced candidate images.

Updating class-agnostic RPN and box head. Here, we conduct the ablation study on updating or freezing the class-agnostic RPN or box regression during self-training. As shown in Table 5 (left), we find that freezing these two components can be detrimental, leading to a 1.8 AP (from 19.0 to 17.2) performance drop on detecting the novel categories.

Method	AP_{novel}	AP_c	AP_f	AP
w/o self-training	10.4	19.5	26.6	20.6
image	9.9	18.8	26.0	20.1
max-size	9.5	18.8	26.1	20.1
max-obj.-score	11.3	18.7	26.0	20.3
max-pred.-score (ours)	19.0	18.5	25.8	21.4

#Web images	AP_{novel}	AP_c	AP_f	AP
0	10.4	19.5	26.6	20.6
50	14.6	19.3	26.2	21.2
100	15.8	19.3	26.2	21.4
200	17.4	19.1	26.0	21.5
300	19.0	18.5	25.8	21.4

Table 5: **Left:** the ablation study on updating or freezing the class-agnostic RPN or box regression during self-training. **Right:** the effect on increasing the sourced candidate images.
Top-K proposals for pseudo labeling. We investigate the performance by varying the number of box proposal in the pseudo-labeling procedure. As shown in Table 5 (right), selecting the most confident prediction among the top-20 proposals yields the best performance, and taking all object proposals presents the worst performance (10.4 AP vs. 19.0 AP) for novel categories. The other options are all viable, though with some performance drop. We set K = 20 for in our experiments.

RPN classifier	Box head	AP\textsubscript{novel}	AP\textsubscript{c}	AP\textsubscript{f}	AP
✓	✓	17.2	18.2	25.8	21.0
✓	✓	18.1	18.3	25.7	21.2
✓	✓	19.0	18.5	25.8	21.4
✓	✓	10	17.2	18.7	25.7

Table 5: Left: the ablation study on updating class-agnostic RPN and box regression during self-training. Right: the analysis on the effect of generating variable pseudo boxes from RPN.

4.4 Comparison with the State-of-the-Art

In Table 6, we compare the proposed method with other open-vocabulary object detectors Gu et al. (2021); Zhou et al. (2022) on the LIVS v1.0 validation set. Limited by the computational resource, our best model is only trained for 72 epochs, and achieving 21.4 AP for the novel categories, surpassing the recent state-of-the-art ViLD-ens Gu et al. (2021) and Detic Zhou et al. (2022) by 4.8 AP and 3.6 AP respectively. Additionally, we observe that training for longer schedule can significantly improve the detection performance on common and frequent categories, from 18.5 AP to 23.3 AP and 25.8 AP to 29.3 AP respectively.

Method	Epochs	Scale	Jitter	Input Size	#External	AP\textsubscript{novel}	AP\textsubscript{c}	AP\textsubscript{f}	AP
ViLD-text	384	100~2048		1024×1024	0	10.1	23.9	32.5	24.9
ViLD	384	100~2048		1024×1024	0	16.1	20.0	28.3	22.5
ViLD-ens	384	100~2048		1024×1024	0	16.6	24.6	30.3	25.5
Detic	384	100~2048		1024×1024	1.2M*	17.8	26.3	31.6	26.8
PromptDet	12	640~800		800×800	0.1M	19.0	18.5	25.8	21.4
PromptDet learnable	72	100~1280		800×800	0.1M	21.4	23.3	29.3	25.3

Table 6: Detection results on the LVIS v1.0 validation set. Both Detic and our proposed approach have exploited the external images. However, in Detic, the images are manually annotated and thus indicated by ‘∗’. Notably, PromptDet does not require a knowledge distillation from the CLIP visual encoder at the detector training, which is shown to prominently boost the performance but significantly increase the training costs.

To demonstrate the generalisation, we directly evaluate on MS-COCO, without any finetuning on it. Since there are no class descriptions in the meta data of MS-COCO, we use the descriptions from LVIS for the base categories. For the novel categories, we get their descriptions by searching on Google, for instance, \{category: “donut”, description: “a small fried cake of sweetened dough, typically in the shape of a ball or ring”\}.

As shown in Table 7, the learned regional prompt improves the generalisation of the detector, and achieves 29.0 AP for the novel categories, suppressing the manual prompt by 1.6 AP (27.4 AP vs. 29.0 AP). Similarly, with more training (72 epochs), the model reaches 31.4 AP on detecting the 21 novel categories on MS-COCO.

Prompt	Epochs	AP\textsubscript{novel}	AP\textsubscript{base}	AP	
“a photo of [category], which is [description]”	manual	12	27.4	26.9	27.0
PromptDet	learnable	12	29.0	26.5	27.2
PromptDet learnable	learnable	72	31.4	29.1	29.7

Table 7: Generalisation from LVIS-base to MS-COCO with different prompts. The trained detector is directly transferred to MS-COCO by replacing the category and description embedding in the classifiers without fine-tuning.
4.5 Qualitative Results

In Figure 5, we show the qualitative results from PromptDet. Without any manual annotations, the detector can now accurately localise and recognise the objects from a diverse set of novel categories.

Figure 5: Qualitative results from our PromptDet on images from LVIS validation set. The boxes with green denote the objects from novel categories, while blue boxes refer to the objects from base categories.

5 Conclusion

In this work, we propose an open-vocabulary object detector PromptDet, which is able to detect novel categories without any manual annotations. Specifically, we first use the pretrained, frozen CLIP text encoder, as an “off-the-shelf” classifier generator in two-stage object detector. Then we propose a regional prompt learning method to steer the textual latent space towards the task of object detection, i.e., transform the textual embedding space, to better align the visual representation of object-centric images. In addition, we further develop a self-training regime, which enables to iteratively high-quality source candidate images from a large corpus of uncurated, external images, and self-train the detector. With these improvements, PromptDet achieved a 21.4 AP of novel classes on LVIS, surpassing the state-of-the-art open-vocabulary object detectors by a large margin, with much lower training costs.
REFERENCES

Zeynep Akata, Mateusz Malinowski, Mario Fritz, and Bernt Schiele. Multi-cue zero-shot learning with strong supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 59–68, 2016.

Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay Divakaran. Zero-shot object detection. In Proceedings of the European Conference on Computer Vision, pp. 384–400, 2018.

Yannick Le Cacheux, Herve Le Borgne, and Michel Crucianu. Modeling inter and intra-class relations in the triplet loss for zero-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10333–10342, 2019.

Mohamed Elhoseiny, Yizhe Zhu, Han Zhang, and Ahmed Elgammal. Link the head to the” beak”: Zero shot learning from noisy text description at part precision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5640–5649, 2017.

Mark Everingham, SM Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1):98–136, 2015.

Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. Few-shot object detection with attention-rpn and multi-relation detector. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013–4022, 2020.

Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned one-stage object detection. In Proceedings of the International Conference on Computer Vision, pp. 3490–3499. IEEE Computer Society, 2021a.

Chengjian Feng, Yujie Zhong, and Weilin Huang. Exploring classification equilibrium in long-tailed object detection. In Proceedings of the International Conference on Computer Vision, pp. 3417–3426, 2021b.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. Deivse: A deep visual-semantic embedding model. Advances in neural information processing systems, 26, 2013.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364, 2019.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the International Conference on Computer Vision, pp. 2961–2969, 2017.

Zhong Ji, Yanwei Fu, Jichang Guo, Yanwei Pang, Zhongfei Mark Zhang, et al. Stacked semantics-guided attention model for fine-grained zero-shot learning. Advances in Neural Information Processing Systems, 31, 2018.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In Proceedings of the International Conference on Machine Learning, pp. 4904–4916. PMLR, 2021.

Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell. Few-shot object detection via feature reweighting. In Proceedings of the International Conference on Computer Vision, pp. 8420–8429, 2019.

Prannay Kaul, Weidi Xie, and Andrew Zisserman. Label, verify, correct: A simple few shot object detection method. In Proceedings of the International Conference on Computer Vision, 2022.
Zhihui Li, Lina Yao, Xiaqin Zhang, Xianzhi Wang, Salil Kanhere, and Huaxiang Zhang. Zero-shot object detection with textual descriptions. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, pp. 740–755, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In Proceedings of the International Conference on Computer Vision, pp. 2980–2988, 2017.

Yasuhide Mori, Hironobu Takahashi, and Ryuichi Oka. Image-to-word transformation based on dividing and vector quantizing images with words. In MISRM, 1999.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021.

Shafin Rahman, Salman Khan, and Nick Barnes. Improved visual-semantic alignment for zero-shot object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015.

Marcus Rohrbach, Michael Stark, and Bernt Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2011.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laiou-400m: Open dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object detection. In Proceedings of the International Conference on Computer Vision, pp. 9627–9636, 2019.

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI, 2011.

Johnathan Xie and Shuai Zheng. Zsd-yolo: Zero-shot yolo detection using vision-language knowledge distillation. arXiv preprint arXiv:2109.12066, 2021.

Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object detection using captions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.

Hang Zhao, Xavier Puig, Bolei Zhou, Sanja Fidler, and Antonio Torralba. Open vocabulary scene parsing. In Proceedings of the International Conference on Computer Vision, pp. 2002–2010, 2017.

Yujie Zhong, Zelu Deng, Sheng Guo, Matthew R Scott, and Weilin Huang. Representation sharing for fast object detector search and beyond. In Proceedings of the European Conference on Computer Vision, pp. 471–487. Springer, 2020.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. arXiv preprint arXiv:2109.01134, 2021.

Xingyi Zhou, Rohit Girdhar, Armand Joulin, Phillip Krähenbühl, and Ishan Misra. Detecting twenty-thousand classes using image-level supervision. arXiv preprint arXiv:2201.02605, 2022.