Risk of lung cancer in patients with gastro-esophageal reflux disease: a population-based cohort study

Chi-Kuei Hsu 1, Chih-Cheng Lai 2, Kun Wang Correspond. 3, Likwang Chen 4

1 Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
2 Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
3 Department of Internal Medicine, Cardinal Tien Hospital, New Taipei city, Taiwan
4 National Health Research Institutes, Miaoli, Taiwan

Corresponding Author: Kun Wang
Email address: kunwang@mospital.com

This large-scale, controlled cohort study estimated the risks of lung cancer in patients with gastro-esophageal reflux disease (GERD) in Taiwan. We conducted this population-based study using data from the National Health Insurance Research Database of Taiwan during the period from 1997 to 2010. Patients with GERD were diagnosed using endoscopy, and controls were matched to patients with GERD at a ratio of 1:4. We identified 15,412 patients with GERD and 60,957 controls. Compared with the controls, the patients with GERD had higher rates of osteoporosis, diabetes mellitus, asthma, chronic obstructive pulmonary disease, pneumonia, bronchiectasis, depression, anxiety, hypertension, dyslipidemia, chronic liver disease, congestive heart failure, atrial fibrillation, stroke, chronic kidney disease, and coronary artery disease (all P < .05). A total of 85 patients had lung cancer among patients with GERD during the follow-up of 42,555 person-years, and the rate of lung cancer was 0.0020 per person-year. By contrast, 232 patients had lung cancer among patients without GERD during the follow-up of 175,319 person-years, and the rate of lung cancer was 0.0013 per person-year. By using stepwise Cox regression model, the overall incidence of lung cancer remained significantly higher in the patients with GERD than in the controls (hazard ratio, 1.53; 95%CI, 1.19-1.98). The cumulative incidence of lung cancer was higher in the patients with GERD than in the controls (P = .0012). In conclusion, our large population-based cohort study provides evidence that GERD may increase the risk of lung cancer in Asians.
Risk of lung cancer in patients with gastro-esophageal reflux disease: a population-based cohort study

Running head: Lung cancer and GERD

Chi-Kuei Hsu¹, Chih-Cheng Lai², Kun Wang³*, Likwang Chen⁴*

¹ Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
² Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan
³ Department of Internal Medicine, Cardinal Tien Hospital, Fu Jen Catholic University College of Medicine, New Taipei City
⁴ Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan

All authors have read and approved the manuscript.

Wang K, and Chen LK contributed equally to this work.

*Correspondence to:

Dr. Kung Wang (E-mail: kunwang@mospial.com)

PhD. Likwang Chen (E-mail: likwang@nhri.org.tw)
ABSTRACT

This large-scale, controlled cohort study estimated the risks of lung cancer in patients with gastro-esophageal reflux disease (GERD) in Taiwan. We conducted this population-based study using data from the National Health Insurance Research Database of Taiwan during the period from 1997 to 2010. Patients with GERD were diagnosed using endoscopy, and controls were matched to patients with GERD at a ratio of 1:4. We identified 15,412 patients with GERD and 60,957 controls. Compared with the controls, the patients with GERD had higher rates of osteoporosis, diabetes mellitus, asthma, chronic obstructive pulmonary disease, pneumonia, bronchiectasis, depression, anxiety, hypertension, dyslipidemia, chronic liver disease, congestive heart failure, atrial fibrillation, stroke, chronic kidney disease, and coronary artery disease (all P < .05). A total of 85 patients had lung cancer among patients with GERD during the follow-up of 42,555 person-years, and the rate of lung cancer was 0.0020 per person-year. By contrast, 232 patients had lung cancer among patients without GERD during the follow-up of 175,319 person-years, and the rate of lung cancer was 0.0013 per person-year. By using stepwise Cox regression model, the overall incidence of lung cancer remained significantly higher in the patients with GERD than in the controls (hazard ratio, 1.53; 95%CI, 1.19-1.98). The cumulative incidence of lung cancer was higher in the patients with GERD than in the controls (P = .0012). In conclusion, our large population-based cohort study provides evidence that GERD may increase the risk of lung cancer in Asians.
INTRODUCTION

Gastro-esophageal reflux disease (GERD) is a condition that develops when the reflux of stomach contents causes troublesome symptoms and complications (Bredenoord, Pandolfino, & Smout, 2013; Moayyedi & Talley, 2006; Vakil, van Zanten, Kahrilas, Dent, & Jones, 2006). GERD is a global issue that affects both children and adults (El-Serag, Sweet, Winchester, & Dent, 2014). The incidence of the disease appears to have increased during the past 2 decades, particularly in North America and East Asia (El-Serag, 2007; El-Serag et al., 2014; Vakil, 2010). The most common manifestations of GERD are esophageal symptoms, including heartburn, dysphagia, and regurgitation, and it can cause extra-esophageal presentation such as bronchospasm, laryngitis, and chronic cough. Because it may cause lung injury from recurrent microaspiration, GERD is associated with the risk of several lung diseases, such as idiopathic pulmonary fibrosis, cystic fibrosis, connective tissue disease, asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung disease (Blondeau et al., 2008; D'Ovidio et al., 2005; Mise et al., 2010; Morehead, 2009; Pacheco-Galvan, Hart, & Morice, 2011; Pashinsky, Jaffin, & Litle, 2009; Salvioli et al., 2006; Sweet, Patti, Hoopes, Hays, & Golden, 2009).

Recently, Vereczkei et al (Vereczkei, Horvath, Varga, & Molnar, 2008) investigated the association between GERD and non-small cell lung cancer (NSCLC) and found that a considerably higher proportion of patients with NSCLC had GERD than the general population, irrespective of cell type. Therefore, a study proposed that GERD-associated chronic lung injury may be one element of lung cancer promotion (Herbella, Neto, Santoro, & Figueiredo, 2015). However, it enrolled only 25 patients with surgically treated adenocarcinoma and squamous cell carcinoma, and the relationship between GERD and lung cancer remains unclear (Herbella et al., 2015; Vereczkei et al., 2008). Therefore, whether GERD is associated with an increased risk of
lung cancer should be determined. Hence, we performed a large-scale, controlled cohort study to estimate the hazard rates of lung cancer in patients with GERD by using a nationwide, population-based database in Taiwan.
MATERIALS & METHODS

Data Source

The National Health Insurance (NHI) program of Taiwan is a nationwide insurance program that covers outpatient visits, hospital admissions, prescriptions, interventional procedures, and disease profiles for >99% of the population of Taiwan (23.12 million people in 2009) (Chen, Muo, Lee, Yu, & Sung, 2011). The Taiwan's National Health Research Institute (NHRI) used the original data from the NHI program to construct a longitudinal database of patients admitted between 1997 and 2010. This cohort includes 2,619,534 hospitalized patients, representing 10% of all NHI enrollees. This sampled fraction (a 3.4:1 ratio) is based on a regulation that limits the maximal amount of NHI data that can be extracted for research purposes. The National Health Insurance Research Database (NHIRD) is one of the largest and most comprehensive databases worldwide and has been used extensively in various studies of prescription use, diagnoses, and hospitalizations. This study has obtained the approval of Institutional Review Board of Cardinal Tien Hospital (Number: EC1011008-E-R1).

Identification of patients with GERD and without GERD

To investigate the associations between GERD and the risk of lung cancer, we performed a cohort study. All beneficiaries with GERD from 1997 to 2010 were extracted using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes 530.85, 530.11, and 530.81. Patients with GERD were identified using the ICD-9-CM
codes and procedure codes for endoscopy as previous study (Lee et al, 2014). Patients who were not diagnosed with GERD after receiving endoscopy were excluded. Patients with a history of lung cancer or peptic ulcer disease were also excluded. We matched controls (patients without GERD) to patients with GERD by age, sex, and the index date at a ratio of 1:4. In the non-GERD group, patients with a history of lung cancer or peptic ulcer disease were excluded.

Baseline variables

We collected data on demographic and clinical characteristics of the study population, including age, sex, and comorbidities. Comorbidities were defined according to the ICD-9-CM and procedure codes within 1 year before index admission. We used a relatively strict criterion to define comorbidities: coding one morbidity required at least one admission or 3 outpatient clinic visits for disease treatment during the year before index admission.

Definition of outcome

We followed up each patient until December 31, 2010, to observe for the development of de novo lung cancer. In Taiwan, patients with cancer can apply for a catastrophic illness certificate that exempts them from any out-of-pocket expenses for cancer evaluation and care. The development of de novo lung cancer was identified by ICD-9-CM code 162 having been noted on the catastrophic illness certificate as previous study (Jian et al, 2015). The follow-up duration was calculated from the date of GERD diagnosis (index date) to the date of the first recorded cancer code.
Statistical analysis

All data were analyzed using SAS Version 9.3 software (SAS Institute). Categorical variables are expressed as numbers or percentages and were compared using the chi-square test. Incidence rates of lung cancer in both GERD and non-GERD groups were calculated by Poisson regression. The Kaplan–Meier method was used to estimate the cumulative incidence rate of lung cancer in patients with or without GERD. The cumulative incidence curves of both groups were compared using the log-rank test. We used Log-Minus-Log survival plots to evaluate proportional hazard assumption. To assess the risk of lung cancer, a list of potential risk factors associated both with admission of lung cancer and with GERD status was considered in the Cox regression model. Univariable and multivariable Cox regression models (stepwise selection) were performed to examine the association of lung cancer with potential confounding factors such as osteoporosis, diabetes mellitus (DM), asthma, COPD, pneumonia, anxiety, hypertension, dyslipidemia, chronic liver disease, congestive heart failure (CHF), atrial fibrillation, stroke, chronic kidney disease (CKD), and coronary artery disease (CAD). Two-sided P values < .05 were considered statistically significant.
RESULTS

Initially, the NHIRD was used to identify 97,221 patients diagnosed with GERD after undergoing esophagogastroduodenoscopy from January 1, 1997 to December 31, 2010. After excluding 943 patients aged <18 or >100 years, 71,255 patients diagnosed with lung cancer or peptic ulcer before the index date, 9,397 patients without GERD diagnosis 1 year later after the index date, and 182 patients with missing demographic data, we found only 15,444 patients eligible for matching. Overall, we identified 15,444 patients with GERD and 60,957 age- and sex-matched controls (Figure 1).

A total of 85 patients had lung cancer among patients with GERD during the follow-up of 42,555 person-years, and the rate of lung cancer was 0.0020 per person-year. By contrast, 232 patients without GERD had lung cancer during the follow-up of 175,319 person-years, and the rate of lung cancer was 0.0013 per person-year (Table 1). The baseline characteristics and comorbidities are listed in Table 2. Compared with the controls, the patients with GERD displayed higher rates of osteoporosis, asthma, COPD, pneumonia, bronchiectasis, depression, anxiety, hypertension, dyslipidemia, chronic liver disease, CHF, atrial fibrillation, stroke, CKD, and CAD (all P < .05).

There is no violation of proportional hazard assumption. By using stepwise Cox regression model, we found all potential confounding variables are not significant associated with lung cancer except for GERD (HR, 1.53; 95%CI, 1.19-1.98; Table 3). As shown in Figure 2, the cumulative incidence of lung cancer was higher in the patients with GERD than in the controls (P = .0012).
DISCUSSION

This large, population-based, long-term follow-up cohort study is the first to investigate the relationship between GERD and lung cancer. Besides the strong association between GERD and esophageal cancer, several studies have shown that GERD is also an important risk factor for laryngeal/pharyngeal cancer (Bacciu et al., 2004; Langevin et al., 2013; Vaezi, Qadeer, Lopez, & Colabianchi, 2006). Additionally, the significant association between GERD and laryngeal cancer with pooled odds ratios of 2.86 (95% CI, 2.73-2.99) and 2.37 (95% CI 1.38-4.08) on the basis of fixed-effect and random-effect models, respectively, were demonstrated in one meta-analysis (Qadeer, Colabianchi, & Vaezi, 2005). Although it may be logical that the lungs as one of organ near esophagus, and supposed to be affected by the gastric refluxate, no study has assessed the possible relationship between GERD and lung cancer. Our study is the first to demonstrate a significant positive association between GERD and lung cancer. This finding was supported by the increased risk of lung cancer in comparison with age- and sex-matched controls (crude HR, 1.53; 95%CI, 1.19-1.98). Our findings have some clinical implications. After confirming this significant association between GERD and lung cancer, it was suggested that aggressive treatment of GERD possibly preventing the development of lung cancer. However, further studies should be warranted to prove the possible chemopreventive role of antacid use in patients with GERD.
Our study has several strengths. First, all of the patients with GERD and controls in this study were enrolled from the Taiwan NHIRD, which is a highly representative database. Therefore, the bias of recall and selection can be minimizing. Second, our study identified lung cancer patients by using valid and definite approaches. In the Taiwan NHI program, individuals with registration of cancer for a catastrophic illness certificate required biopsy and histological verification. Third, by using medical records from NHIRD, we can reduce the likelihood of non-response and loss of follow-up to mininum. Besides, there were some variables during the multivariable analysis. We have controlled them by statistic methods (table 3). Most important of all, we used a nationwide and population-based database – Taiwan NHIRD. Thus, the findings in the present work can be generalized in the real world.

Several mechanisms can help explain the significant relationship between GERD and lung cancer. First, several studies have shown that the refluxate can destroy the epithelium of the larynx or pharynx by means of introducing chronic inflammation (Rees et al., 2008), or activating proliferative signaling pathways (Dvorak et al., 2011; Johnston et al., 2012; Sung et al., 2003), and further result in malignant transformation. In addition, based on the studies investigating the pathogenesis of Barrett’s esophagus and esophageal carcinoma, both acid and bile can promote carcinogenesis through the induction of DNA damage and the influence of cell proliferation and apoptosis (Denlinger & Thompson, 2012; Fang et al., 2013). These
pathogenesis may happen in the respiratory tract, and contribute to the development of lung
cancer. Second, the trend of the predominance of lung adenocarcinoma among all cell type is
similar with the distribution trend of esophageal cancer (Etzel et al., 2006; Liam, Pang, Leow,
Poosparajah, & Menon, 2006). Third, the origin of central lung adenocarcinoma is different from
the peripheral lung cancer. Lung cancer at central site is more prone to be affected by gastric
refluxate than at a peripheral site. Thus, lung adenocarcinoma at central site is more likely to
arise in the glandular epithelium in contrast to lung cancer at a peripheral site which possibly
originates from type II pneumocytes and Clara cells (Fukui et al., 2013).

However, this study also had several limitations. First, we cannot obtain the data such as
smoking, which is an important risk factor for both GERD and lung cancer. However, we try to
include some smoking-related disorders such as dyslipidemia, hypertension, CAD, or COPD to
minimize the influence of smoking. In addition, the data regarding the type of lung cancer was
not available. Therefore, we cannot further analysis the association between GERD and the
specific type of lung cancer. Second, patients with GERD may more often visit physicians than
patients without GERD and this difference may cause possible surveillance bias. Finally, we did
not collect the data about the use of anti-GERD treatments such as proton pump inhibitors or
histamine-2-receptor antagonist.

CONCLUSIONS
Our large, population-based cohort study provides evidence that GERD may increase the risk of lung cancer.

Data Availability

The following information was supplied regarding the deposition of related data: Raw data for this work was obtained by application from the National Health Insurance Research Database, Taiwan (http://nhird.nhri.org.tw/en/index.htm) and may not be shared according to the Database’s rules governing use. Access to the data used in this study may be obtained by citizens of the Republic of China who fulfill the requirements of conducting research projects.
REFERENCES

203 Bacciu, A., Mercante, G., Ingegnoli, A., Ferri, T., Muzzetto, P., Leandro, G., . . . Bacciu, S. (2004). Effects of gastroesophageal reflux disease in laryngeal carcinoma. *Clin Otolaryngol Allied Sci*, 29(5), 545-548. doi: 10.1111/j.1365-2273.2004.00851.x

206 Blondeau, K., Dupont, L. J., Mertens, V., Verleden, G., Malfroot, A., Vandenplas, Y., . . . Sifrim, D. (2008). Gastro-oesophageal reflux and aspiration of gastric contents in adult patients with cystic fibrosis. *Gut*, 57(8), 1049-1055. doi: 10.1136/gut.2007.146134

209 Bredenoord, A. J., Pandolfino, J. E., & Smout, A. J. (2013). Gastro-oesophageal reflux disease. *Lancet*, 381(9881), 1933-1942. doi: 10.1016/s0140-6736(12)62171-0

211 Chen, P. C., Muo, C. H., Lee, Y. T., Yu, Y. H., & Sung, F. C. (2011). Lung cancer and incidence of stroke: a population-based cohort study. *Stroke*, 42(11), 3034-3039. doi: 10.1161/strokeaha.111.615534

214 Denlinger, C. E., & Thompson, R. K. (2012). Molecular basis of esophageal cancer development and progression. *Surg Clin North Am*, 92(5), 1089-1103. doi: 10.1016/j.suc.2012.07.002

216 D'Ovidio, F., Singer, L. G., Hadjiliadis, D., Pierre, A., Waddell, T. K., de Perrot, M., . . . Keshavjee, S. (2005). Prevalence of gastroesophageal reflux in end-stage lung disease candidates for lung transplant. *Ann Thorac Surg*, 80(4), 1254-1260. doi: 10.1016/j.athoracsur.2005.03.106

220 Dvorak, K., Goldman, A., Kong, J., Lynch, J. P., Hutchinson, L., Houghton, J. M., . . . Westra, W. M. (2011). Molecular mechanisms of Barrett's esophagus and adenocarcinoma. *Ann NY Acad Sci*, 1232, 381-391. doi: 10.1111/j.1749-6632.2011.06062.x

223 El-Serag, H. B. (2007). Time trends of gastroesophageal reflux disease: a systematic review. *Clin Gastroenterol Hepatol*, 5(1), 17-26. doi: 10.1016/j.cgh.2006.09.016

225 El-Serag, H. B., Sweet, S., Winchester, C. C., & Dent, J. (2014). Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. *Gut*, 63(6), 871-880. doi: 10.1136/gutjnl-2012-304269

228 Etzel, C. J., Lu, M., Merriman, K., Liu, M., Vapordiyian, A., & Spitz, M. R. (2006). An epidemiologic study of early onset lung cancer. *Lung Cancer*, 52(2), 129-134. doi: 10.1016/j.lungcan.2005.11.018

231 Fang, Y., Chen, X., Bajpai, M., Verma, A., Das, K. M., Souza, R. F., . . . Dvorak, K. (2013). Cellular origins and molecular mechanisms of Barrett's esophagus and esophageal adenocarcinoma. *Ann NY Acad Sci*, 1300, 187-199. doi: 10.1111/nyas.12249

234 Fukui, T., Shaykhiev, R., Agosto-Perez, F., Mezey, J. G., Downey, R. J., Travis, W. D., & Crystal, R. G. (2013). Lung adenocarcinoma subtypes based on expression of human
236 airway basal cell genes. *Eur Respir J*, 42(5), 1332-1344. doi: 10.1183/09031936.00144012

238 Herbella, F. A., Neto, S. P., Santoro, I. L., & Figueiredo, L. C. (2015). Gastroesophageal reflux disease and non-esophageal cancer. *World J Gastroenterol*, 21(3), 815-819. doi: 10.3748/wjg.v21.i3.815

241 Jian, Z. H., Huang, J. Y., Ko, P. C., Jan, S. R., Nfor, O. N., Lung, C. C., Ku, W. Y., Ho, C. C., Pan, H. H., & Liaw, Y. P. (2015). Impact of coexisting pulmonary diseases on survival of patients with lung adenocarcinoma: a STROBE-compliant article. *Medicine (Baltimore)*. 94(4):e443. doi: 10.1097/MD.0000000000000443.

245 Johnston, N., Yan, J. C., Hoekzema, C. R., Samuels, T. L., Stoner, G. D., Blumin, J. H., & Bock, J. M. (2012). Pepsin promotes proliferation of laryngeal and pharyngeal epithelial cells. *Laryngoscope*, 122(6), 1317-1325. doi: 10.1002/lary.23307

248 Langevin, S. M., Michaud, D. S., Marsit, C. J., Nelson, H. H., Birnbaum, A. E., Eliot, M., . . . Kelsey, K. T. (2013). Gastric reflux is an independent risk factor for laryngopharyngeal carcinoma. *Cancer Epidemiol Biomarkers Prev*, 22(6), 1061-1068. doi: 10.1158/1055-9965.epi-13-0183

252 Liam, C. K., Pang, Y. K., Leow, C. H., Poosparajah, S., & Menon, A. (2006). Changes in the distribution of lung cancer cell types and patient demography in a developing multiracial Asian country: experience of a university teaching hospital. *Lung Cancer*, 53(1), 23-30. doi: 10.1016/j.lungcan.2006.03.009

256 Lee, Y. L., Hu, H. Y., Yang, N. P., Chou, P., & Chu D. (2014). Dental prophylaxis decreases the risk of esophageal cancer in males; a nationwide population-based study in Taiwan. *PLoS One* 9(10):e109444. doi: 10.1371/journal.pone.0109444. eCollection 2014.

259 Mise, K., Capkun, V., Jurcev-Savicevic, A., Sundov, Z., Brdaric, A., & Mladinov, S. (2010). The influence of gastroesophageal reflux in the lung: a case-control study. *Respirology*, 15(5), 837-842. doi: 10.1111/j.1440-1843.2010.01777.x

262 Moayyedi, P., & Talley, N. J. (2006). Gastro-oesophageal reflux disease. *Lancet*, 367(9528), 2086-2100. doi: 10.1016/s0140-6736(06)68932-0

264 Morehead, R. S. (2009). Gastro-oesophageal reflux disease and non-asthma lung disease. *Eur Respir Rev*, 18(114), 233-243. doi: 10.1183/09059180.0002509

266 Pacheco-Galvan, A., Hart, S. P., & Morice, A. H. (2011). Relationship between gastro-oesophageal reflux and airway diseases: the airway reflux paradigm. *Arch Bronconeumol*, 47(4), 195-203. doi: 10.1016/j.arbes.2011.02.001

269 Pashinsky, Y. Y., Jaffin, B. W., & Little, V. R. (2009). Gastroesophageal reflux disease and idiopathic pulmonary fibrosis. *Mt Sinai J Med*, 76(1), 24-29. doi: 10.1002/msj.20088
Patti, M. G., Gasper, W. J., Fisichella, P. M., Nipomnick, I., & Palazzo, F. (2008). Gastroesophageal reflux disease and connective tissue disorders: pathophysiology and implications for treatment. J Gastrointest Surg, 12(11), 1900-1906. doi: 10.1007/s11605-008-0674-9

Qadeer, M. A., Colabianchi, N., & Vaezi, M. F. (2005). Is GERD a risk factor for laryngeal cancer? Laryngoscope, 115(3), 486-491. doi: 10.1097/01.mlg.0000157851.24272.41

Rees, L. E., Pazmany, L., Gutowaska-Owsia, D., Inman, C. F., Phillips, A., Stokes, C. R., . . . Birchall, M. A. (2008). The mucosal immune response to laryngopharyngeal reflux. Am J Respir Crit Care Med, 177(11), 1187-1193. doi: 10.1164/rccm.200706-895OC

Salvioli, B., Belmonte, G., Stanghellini, V., Baldi, E., Fasano, L., Pacilli, A. M., . . . Corinaldesi, R. (2006). Gastro-oesophageal reflux and interstitial lung disease. Dig Liver Dis, 38(12), 879-884. doi: 10.1016/j.dld.2006.05.012

Sung, M. W., Roh, J. L., Park, B. J., Park, S. W., Kwon, T. K., Lee, S. J., & Kim, K. H. (2003). Bile acid induces cyclo-oxygenase-2 expression in cultured human pharyngeal cells: a possible mechanism of carcinogenesis in the upper aerodigestive tract by laryngopharyngeal reflux. Laryngoscope, 113(6), 1059-1063. doi: 10.1097/00005537-200306000-00027

Sweet, M. P., Patti, M. G., Hoopes, C., Hays, S. R., & Golden, J. A. (2009). Gastro-oesophageal reflux and aspiration in patients with advanced lung disease. Thorax, 64(2), 167-173. doi: 10.1136/thx.2007.082719

Vaezi, M. F., Qadeer, M. A., Lopez, R., & Colabianchi, N. (2006). Laryngeal cancer and gastroesophageal reflux disease: a case-control study. Am J Med, 119(9), 768-776. doi: 10.1016/j.amjmed.2006.01.019

Vakil, N. (2010). Disease definition, clinical manifestations, epidemiology and natural history of GERD. Best Pract Res Clin Gastroenterol, 24(6), 759-764. doi: 10.1016/j.bpg.2010.09.009

Vakil, N., van Zanten, S. V., Kahrilas, P., Dent, J., & Jones, R. (2006). The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol, 101(8), 1900-1920; quiz 1943. doi: 10.1111/j.1572-0241.2006.00630.x

Vereczkei, A., Horvath, O. P., Varga, G., & Molnar, T. F. (2008). Gastroesophageal reflux disease and non-small cell lung cancer. Results of a pilot study. Dis Esophagus, 21(5), 457-460. doi: 10.1111/j.1442-2050.2007.00796.x
Study algorithm for patient enrollment

Figure 1.
Figure 2. Cumulative incidence rate of lung cancer for patients with or without GERD.
Table 1. Incidence rates of lung cancer events per 10,000 person-year among gastro-esophageal reflux disease (GERD) and non-GERD group.

Groups	Person-year	Number of lung cancer	Rate (per 10,000 person-year)	95% CI
GERD	42555.51	85	0.0020	(0.0016, 0.0024)
non-GERD	175319.72	232	0.0013	(0.0012, 0.0015)
Table 2. Baseline characteristics of study population stratified by gastro-esophageal reflux disease (GERD) and non-GERD group

Variables	Number (%) of patients with GERD N=15,412	Number (%) of patients without GERD N=60,957	χ^2(df)	p-value
Gender			0.326(1)	0.568
Female	7849 (50.9)	31201 (51.2)		
Male	7563 (49.1)	29756 (48.8)		
Age group			4.203(2)	0.122
18-54 years	6503 (42.2)	26049 (42.7)		
54-64	5961 (38.7)	23677 (38.8)		
≥65 years	2948 (19.1)	11231 (18.4)		
Underlying diseases/conditions			15.366(1)	<0.001
Osteoporosis				
No	15173 (98.5)	60250 (98.84)		
Yes	239 (1.6)	707 (1.2)		
Diabetes mellitus			16.298(1)	<0.001
No	14078 (91.3)	55030 (90.3)		
Yes	1334 (8.7)	5927 (9.7)		
Tuberculosis			0.930(1)	0.335
No	15342 (99.6)	60714 (99.6)		
Condition	Yes	No	χ²	p
----------------------------------	-----------	------------	----------	---------
Asthma	70 (0.5)	14881 (96.6)	95.058(1)	<0.001
Chronic obstructive pulmonary diseases	531 (3.5)	59673 (97.9)	259.590(1)	<0.001
Pneumonia	1254 (8.4)	58015 (95.2)	247.106(1)	<0.001
Pneumoconiosis	483 (3.1)	800 (1.3)	0.031 (1)	0.861
Bronchiectasis	63 (0.4)	110 (0.2)	28.373(1)	<0.001
Depression	170 (1.1)	387 (0.6)	37.239(1)	<0.001
Condition	Yes	No	p-value	
--------------------------------	----------	----------	---------	
Anxiety	1245 (8.1)	14167 (91.9)	365.826(1)	<0.001
Hypertension	3381 (22.0)	12031 (78.1)	9.954(1)	0.002
Dyslipidemia	1419 (9.2)	13993 (90.8)	11.772(1)	<0.001
Chronic liver disease	547 (3.6)	14865 (96.5)	75.039(1)	<0.001
Congestive heart failure	294 (2.0)	15118 (98.1)	21.013(1)	<0.001
Atrial fibrillation	138 (0.9)	15274 (99.1)	4.635(1)	0.031
Myocardial infarction	443 (0.7)	60514 (99.3)	0.289(1)	0.591
Condition	No (99.6%)	Yes (98.5%)		
---	------------	-------------		
Stroke	15316	60600		
No	96	357		
Yes				
Periperal vascular disease	14581	58190		
No	831	2767		
Yes				
Chronic kidney diseases	15350	60724		
No	62	233		
Yes				
Coronary artery diseases	15083	60050		
No	329	907		
Yes				
Table 3. Crude hazard ratios (HR) among gastro-esophageal reflux disease (GERD) and non-GERD group.

Variables	beta value	crude HR (95%CI)	p value
GERD	0.43	1.53 (1.19-1.98)	0.001
Osteoporosis	0.59	1.80 (0.88-3.69)	0.110
Diabetes mellitus	0.05	1.05 (0.76-1.46)	0.752
Asthma	0.20	1.22 (0.65-2.29)	0.538
Chronic obstructive pulmonary diseases	0.30	1.34 (0.92-1.96)	0.125
Pneumonia	0.40	1.49 (0.76-2.90)	0.245
Bronchiectasis	0.69	2.00 (0.18-22.06)	0.571
Depression	0.84	2.31 (0.55-9.69)	0.251
Anxiety	-0.08	0.92 (0.53-1.60)	0.765
Hypertension	-0.11	0.90 (0.69-1.17)	0.429
Dyslipidemia	-0.02	0.98 (0.65-1.46)	0.913
Chronic liver disease	-0.25	0.78 (0.36-1.71)	0.539
Congestive heart failure	-0.88	0.42 (0.15-1.19)	0.102
Atrial fibrillation	-1.23	0.29 (0.07-1.25)	0.098
Stroke	-0.42	0.66 (0.41-1.05)	0.079
Chronic kidney diseases	-0.31	0.73 (0.33-1.60)	0.433
Coronary artery diseases	-0.28	0.76 (0.36-1.58)	0.458