Effect of site occupancy disorder on Martensitic properties of Mn$_2$NiIn type alloys: x-ray absorption fine structure study

D. N. Lobo, K. R. Priolkar, A. Koide, and S. Emura

1Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 India
2Department of Materials Molecular Science, Institute of Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
3Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

(Dated: September 11, 2018)

We have carried out ab-initio calculations of local structure of Mn and Ni in Mn$_2$Ni$_{1+\delta}$In$_{0.5}$ alloy with different site occupancies in order to understand the similarities in martensitic and magnetic properties of Mn$_2$Ni$_1$In$_{1-x}$ and Ni$_2$Mn$_1$ xIn$_{1-x}$ alloys. Our results show that in Mn$_2$Ni$_{1+\delta}$In$_{1-x}$ alloys there is a strong possibility of Mn atoms occupying all the three, X, Y and Z sites of X$_2$YZ Heusler structure while Ni atoms preferentially occupy the X sites. Such a site occupancy disorder of Mn atoms is in addition to a local structural disorder due to size differences between Mn and In atoms which is also present in Ni$_2$Mn$_{1+\delta}$In$_{1-x}$ alloys. Further, a comparison of the calculations with experimental XAFS at the Mn and Ni K edges in Mn$_{2-y}$Ni$_{1+\delta+y}$In$_{0.5}$ ($-0.08 \leq y \leq 0.08$) indicate a strong connection between martensitic transformation and occupancy of Z sites by Mn atoms.

I. INTRODUCTION

Mn rich Ni-Mn-Z (Z = Ga, In, Sn or Sb) type shape memory alloys have been studied for their novel properties like giant reverse magneto-caloric effect [1][17], large magnetic field induced strain [18][23], magnetic superelasticity [24] and complex magnetic order [25][31]. The origin of all these effects lie in a strong coupling between structural and magnetic degrees of freedom. Therefore understanding the magnetic interactions between the constituent atoms as the alloys transform structurally gains importance. Despite several attempts, the understanding of the magnetism of martensitic state is still elusive. Though the magnetic moment in Ni-Mn based Heusler alloys is almost entirely due to Mn atoms [32][34], factors like antisite disorder [55] changes in bond distances due to structural transformation [66] as well as local structural disorder [57] bring in newer magnetic interactions and add to the complexities of the problem.

Increasing the Mn content in Ni$_{2-x}$Mn$_{1+x}$Z (Z = Ga, In, Sn, Sb) alloys and at the same time preserving the Heusler structure results in alloys of type Mn$_2$NiZ. Band structure calculations have indicated such alloys to be ferromagnetic due to unequal magnetic moments of antiferromagnetically coupled Mn atoms occupying the X and Y sites of X$_2$YZ Heusler structure [38][42]. Though martensitic transformation has been observed in Mn$_2$NiGa (T$_M \sim$ 270K, T$_C$ = 588K) [39], the same is not observed in other Mn$_2$NiZ alloys where Z = In or Sn. However, increasing of Ni content at the expense of Z atoms to realize alloys of the type Mn$_2$Ni$_{1+x}$Z$_{1-x}$ leads to martensitic instability in them [43][45].

In L2$_1$ Heusler composition, Ni atoms are believed to prefer X sites [46]. According to this premise then in Mn$_2$Ni$_{1+x}$Z$_{1-x}$ alloys, if Ni atoms preferentially occupy X sites, a proportionate amount of Mn atoms would be forced to occupy Z sites leading to what is known as site occupancy disorder. Such an disorder is known to introduce competing ferromagnetic and antiferromagnetic interactions between Mn atoms occupying Y sublattice (Mn(Y)) and Mn atoms occupying Z sublattice (Mn(Z)) leading to observation of exotic properties like exchange bias effect in zero field cooled state, spin valve effect, etc. in these Mn rich martensite alloys [46][49].

In our recent work [15], the magnetic properties of Mn$_2$Ni$_1+x$Z$_{1-x}$ alloys in the martensitic state were found to be similar to those of Ni$_2$Mn$_{1+\delta}$In$_{1-x}$ and this was conjectured to be due to site occupancy disorder arising out of preferential occupation of X sites by Ni atoms. But this general picture could not explain the complete suppression of martensitic transformation in Mn$_{2-y}$Ni$_{1+\delta+y}$In$_{0.5}$ due to small increase in Mn concentration at the expense of Ni ($-0.1 < y < 0$) [45]. This is especially important because, the alloy with y = 0 is martensitic with a transformation temperature of ~ 230K which increases with increase in Ni concentration (y > 0). Hence it becomes necessary to understand the correlation between the perceived site occupancy disorder in Mn$_2$Ni$_{1+x}$Z$_{1-x}$ alloys and the observed similarity in martensitic and magnetic properties of these alloys with those of Ni$_2$Mn$_{1+\delta}$In$_{1-x}$ alloys at a microscopic level. To achieve this objective, here we report ab-initio calculations of Ni and Mn K edge x-ray absorption fine structure (XAFS) in prototypical Mn$_2$Ni$_{1.5}$In$_{0.5}$ using FEFF 8.4 program and its comparison with experimental results obtained in Mn$_2$Ni$_{1.5}$In$_{0.5}$ and Mn$_{2-y}$Ni$_{1.6+y}$In$_{0.4}$ ($-0.08 \leq y \leq 0.08$).

II. METHODS

The samples of above composition were prepared by arc melting the weighed constituents in argon atmosphere followed by encapsulating in a evacuated quartz tube and annealing at 750 °C for 48 hours and subsequent quench-
ing in ice cold water. The prepared alloys were cut in suitable sizes using a low speed diamond saw and part of the sample was powdered and re-annealed in the same procedure above. X-ray diffraction (XRD) patterns were recorded at room temperature in the angular range of $20^\circ \leq 2\theta \leq 100^\circ$ and were found to be single phase [43]. Magnetization measurements were performed in the temperature interval $5 \text{ K} \leq T \leq 400 \text{ K}$ using a vibrating sample magnetometer in 100 Oe applied field during the zero field cooled (ZFC) and subsequent field cooled cooling (FCC) and field cooled warming (FCW) cycles.

XAFS at Ni K and Mn K edges were recorded at Photon Factory using beamline 12C at room temperature. For XAFS measurements the samples to be used as absorbers, were ground to a fine powder and uniformly distributed on a scotch tape. These sample coated strips were adjusted in number such that the absorption edge jumps gave $\Delta \mu t \leq 1$ where $\Delta \mu$ is the change in absorption coefficient at the absorption edge and t is the thickness of the absorber. The incident and transmitted photon energies were simultaneously recorded using gas-ionization chambers as detectors. Measurements were carried out from 300 eV below the edge energy to 1000 eV above it with a 5 eV step in the pre-edge region and 2.5 eV step in the XAFS region. At each edge, at least three scans were collected to average statistical noise.

FEFF 8.4 software based on the self-consistent real-space multiple-scattering formalism [50] was employed for calculation of XAFS oscillations at the Mn K and Ni K edge in a prototypical alloy, $\text{Mn}_2\text{Ni}_{1.5}\text{In}_{0.5}$. This alloy composition is not only close to the experimentally studied compositions but also the constituent atoms have non fractional number of near neighbors. For the FEFF calculations spherical muffin tin potentials were self consistently calculated over a radius of 5 Å. A default overlapping muffin tin potentials and Hedín-Lunqvist exchange correlations were used to calculate x-ray absorption transitions to a fully relaxed final state in presence of a core hole. Calculations were carried out for Mn K and Ni K edges assuming L2$_1$ type Heusler structure. Two possible structural models and their variations which are explained in detail in next section were considered. XAFS was calculated for absorbing atoms at occupying X, Y and Z sites of the Heusler structure and combined together by multiplying each site XAFS with appropriate weighting fraction. During calculations the amplitude reduction factor, S_{Mn}^2 was fixed to 0.8 and the σ^2 for respective paths were calculated considering a Debye temperature of 320K [51] and the spectrum temperature of 300K.

III. RESULTS AND DISCUSSION

Figure 1 presents the magnetization measurements carried out in the temperature range $5 \text{ K} \leq T \leq 400\text{K}$ in $\text{Mn}_2\text{Ni}_{1.6+y}\text{In}_{0.4}$ ($y = 0.08, 0$ and -0.08). It can be clearly seen that the alloys with $y = 0$ and 0.08 undergo martensitic transformation at about 230 K and 270 K respectively. While $\text{Mn}_{2.08}\text{Ni}_{1.52}\text{In}_{0.4}$ does not show any martensitic instability down to 5K thus highlighting a drastic change in martensitic transformation temperature with small changes in alloy composition. A detailed study of magnetic properties of these alloys along with $\text{Mn}_2\text{Ni}_{1-x}\text{In}_{1+x}$ ($x = 0.5, 0.6$ and 0.7) has been already presented in Ref. [45]. To understand these changes in martensitic transformation temperature, experimental XAFS data recorded at the Mn K and Ni K edges at room temperature in each of these alloys have been compared with calculated Mn and Ni XAFS data using FEFF.

For the ab-initio calculations of Mn K and Ni K edge XAFS in $\text{Mn}_2\text{Ni}_{1.5}\text{In}_{0.5}$ alloy, two structural models, designated as MODEL A and MODEL B were considered. In MODEL A, the X sites of X_2YZ are occupied equally by Ni and Mn, while all the Y sites are occupied by Mn and In and the remaining Ni atoms occupy the Z sites. In MODEL B, entire fraction of Ni atoms occupy the X sites, forcing the proportionate amount of Mn atoms to occupy the Z sites along with Y sites. Thus resulting in Mn occupying all the three X, Y and Z sites in different fractions. The site occupancies in both these models is tabulated in Table II.

In figure 2 calculated spectra at the Ni and Mn K edges according to MODEL A and MODEL B are compared with the experimental data recorded at room temperature. It is observed that the oscillatory parts of the experimental Mn and Ni K edge XAFS spectra are reproduced by the two theoretical models. The calculated Ni K XAFS spectra of MODEL B gives a much better description with the experimental data for the entire k range under consideration than MODEL A. A similar conclusion could also be drawn for the calculated Mn K spectra although one can observed a mismatch between experimental and calculated Mn K XAFS spectra.
TABLE I. Assumed site occupancies of X, Y and Z sites of X2YZ Heusler structure in MODEL A and MODEL B used for XAFS calculations of Mn2Ni1.5In0.5.

Sites	MODEL A	MODEL B	MODEL B1	MODEL B2
X	Ni	Ni1.5	Ni1.5	Ni
	Mn	Mn0.5	Mn0.5	Mn
Y	Mn	Mn	Mn0.75	Mn0.75
			Mn0.25	Mn0.25
Z	Ni0.5	Mn0.5	Mn0.75	Mn0.75
	In0.5	In0.5	In0.25	In0.25

![Figure 2](image1.png)

FIG. 2. Calculated Ni and Mn K edge XAFS for MODEL A and MODEL B along with experimental data.

![Figure 3](image2.png)

FIG. 3. Comparison of experimental XAFS data at the Mn K edge with the calculated Mn K edge XAFS for MODEL’s B, B1 and B2 for undistorted lattice ((a) - (c)), for a lattice with local structural distortion wherein Mn atoms at the Z site are displaced closer to X sites by 0.1 Å ((d)-(f)) and 0.2 Å ((g)-(i)).

220K does not significantly affect the calculated spectra.

The calculated Mn K edge EXAFS of MODELS B, B1 and B2 along with the experimental data have been plotted in Fig 3(a), Fig 3(b) and Fig 3(c) respectively. A comparison of the calculated Mn K edge XAFS spectra with the experimental data does not conclusively suggest any one of these models to be a better descriptor of experimental data.

In Ni2Mn1+xIn1−x alloys, a local structural distortion especially in the position of Mn atoms at Z site (Mn(Z)) was shown to be responsible for the martensitic transformation for x > 0.3 [54]. Since in MODEL B both, Mn and In atoms occupy the Z sites, a similar local structural distortion can exist in Mn2Ni1.5In0.5 alloys resulting in a shorter Mn(Z)-X bond as compared to In-X bond. Such a distortion was introduced by tweaking the coordinates of Mn(Z) atoms in the FEFF input file. The coordinates of Mn(Z) atoms in MODELS B, B1 and B2 were changed in such a way that they were closer to X site atoms by 0.1 Å and 0.2 Å as compared to the In atoms occupying the Z sites. Fig. 3(d)-(f) and Fig. 3(g)-(i) shows the comparison for MODEL B, B1 and B2 at the Mn K edge EXAFS with experimental data for local structure distortion of 0.1Å and 0.2Å respectively in the k range from 2 to 12 Å⁻¹.

From Fig. 3 it is observed that with increasing disorder from 0.1 Å to 0.2 Å for all three models, the amplitude of calculated EXAFS oscillations for all models reduce and tend towards the experimental data which is an indication of presence of local structure disorder in these alloys. Since all the alloys have long range structural order as evidenced from Bragg reflections in x-ray diffraction data, a displacement of a particular atom by 0.2Å...
from its crystallographic site position may be a bit unrealistic. Hence models with 0.1Å displacement of Mn(Z) atoms were taken to provide the most realistic description of site occupancies in such Mn2Ni1+xIn1−x alloys. Of the three MODEL B was preferred over MODELS B1 and B2 due to its relative simplicity. Irrespective of the choice of models, the present analysis clearly suggests antisite disorder along with a local structural distortion of Mn2NiIn type alloys. Antisite disorder has also been reported to be responsible for physical properties of Mn2NiIn alloys in NiIn type alloys, it does not exhibit any martensitic transformation down to 4K. At the same time Mn1.92Ni1.68In0.4 exhibits martensitic transformation at a higher temperature of 250K. To understand the possible cause of such drastic variation of martensitic transformation temperatures in these alloys, a linear component fitting (LCF) analysis was performed on the experimental data recorded at the Mn and Ni K edge XAFS in the above three compositions using the FEFF calculated XAFS of Ni and Mn occupying different site positions at 232K, the alloy Mn2.08Ni1.52In0.4 alloy does not exhibit any martensitic transformation down to 4K. At the same time Mn1.92Ni1.68In0.4 exhibits martensitic transformation at a higher temperature of 250K. To understand the possible cause of such drastic variation of martensitic transformation temperatures in these alloys, a linear component fitting (LCF) analysis was performed on the experimental data recorded at the Mn and Ni K edge XAFS in the above three compositions using the FEFF calculated XAFS of Ni and Mn occupying different site positions.

![Graph](image)

FIG. 4. Ni K edge XAFS data calculated as for MODEL B for (a) undistorted lattice and (b) lattice with local structural distortion wherein Mn atoms at In site are displaced closer to X site atoms by 0.1 Å.

Sample	Model Ni-Mn(Z) (position) bond distance concentration disorder	Ni EXAFS
Mn2.08Ni1.52In0.4 A(X) -	79 ± 20	
A(Z) -	14 ± 07	
B(X) 0.1	12 ± 14	
Mn2Ni1.6In0.4 A(X) -	83 ± 13	
B(X) 0.1	17 ± 11	
Mn1.92Ni1.68In0.4 A(X) -	86 ± 14	
B(X) 0.1	14 ± 13	

TABLE II. LCF analysis for Ni K edge XAFS The bracketed letters indicates the crystallographic site positions.

Sample	Model Ni-Mn(Z) (position) bond distance concentration disorder	Mn EXAFS
Mn2.08Ni1.52In0.4 A(X) -	62 ± 05	
B(Y) 0.1	38 ± 05	
Mn2Ni1.6In0.4 A(X) -	49 ± 6	
B(Y) 0.1	31 ± 10	
B(Z) 0.1	20 ± 07	
Mn1.92Ni1.68In0.4 A(X) -	50 ± 25	
B(Y) 0.1	23 ± 5.4	
B(Y) 0.1	27 ± 7.7	

TABLE III. LCF analysis for Mn K edge XAFS The bracketed letters indicates the crystallographic site positions.

TABLE III. LCF analysis for Mn K edge XAFS The bracketed letters indicates the crystallographic site positions.

Sample	Model Ni-Mn(Z) (position) bond distance concentration disorder	Mn EXAFS
Mn2.08Ni1.52In0.4 A(X) -	62 ± 05	
B(Y) 0.1	38 ± 05	
Mn2Ni1.6In0.4 A(X) -	49 ± 6	
B(Y) 0.1	31 ± 10	
B(Z) 0.1	20 ± 07	
Mn1.92Ni1.68In0.4 A(X) -	50 ± 25	
B(Y) 0.1	23 ± 5.4	
B(Y) 0.1	27 ± 7.7	

TABLE II. LCF analysis for Ni K edge XAFS The bracketed letters indicates the crystallographic site positions.

TABLE III. LCF analysis for Mn K edge XAFS The bracketed letters indicates the crystallographic site positions.
while Ni is present at the Z site. While in case of the other two alloys, Ni primarily occupies X sites while Mn is found to occupy all the three sites. Presence of Mn at the Z site along with a local structural distortion in its position gives rise to a shorter Ni-Mn bond as compared to Ni-In and Ni(3d) - Mn(3d) hybridization which plays an important role in martensitic transformation in Ni2Mn1+x−yIn1−x alloys. A clear differentiation between site occupancies of Mn2Ni type alloys undergoing martensitic transformation and non-martensitic alloys highlights the importance of antisite disorder along with local structural distortion in inducing martensitic transformation in these alloys.

IV. CONCLUSION

We have carried out ab-initio calculations at the Ni and Mn K edge to understand the driving force for martensitic transformation in Mn2Ni1+x−yIn1−x alloys. Presence of Mn at Z sites appears to be the main requirement for the alloy composition to undergo martensitic transformation. The ab-initio XAFS calculations indicate preferential occupation of X sites by Ni atoms while Mn occupy all X, Y and Z sites of the X2YZ Heusler structure. Such a site occupancy disorder of Mn atoms is in addition to a local structural disorder due to size differences between Mn and In atoms which is also present in Ni3Mn1+x−yIn1−x alloys. This augers well with the observed similarities in magnetic properties of martensitic state of Mn2Ni1+x−yIn1−x and Mn2Mn1+x−yIn1−x alloys. Further the drastic suppression of martensitic transformation with small changes in composition in Mn2−yNi1+6−yIn0.4 can also be understood based on occupancy of Mn at Z sites. Mn20.08Ni1.52In0.4 which has no Mn atoms at the Z site, does not undergo martensitic transformation while Mn2Ni1.6In0.4 which has about 20% Z site occupancy of Mn, undergoes martensitic transformation at about 230K.

ACKNOWLEDGEMENTS

Authors would like to acknowledge the financial assistance from Science and Engineering Research Board (SERB), DST, Govt. of India under the project SB/S2/CMP-096/2013. The work at Photon Factory was performed under the Proposal No. 2011G0077

[1] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nat. Mater. 4, 450 (2005).
[2] P. A. Bhobe, K. R. Priolkar, and A. K. nigam, Appl. Phys. Lett. 91, 242503 (2007).
[3] M. Khan, I. Dubenko, S. Stadler, and N. Ali, J. Appl. Phys. 102, 113914 (2007).
[4] J. Du, Q. Zheng, W. J. Ren, W. J. Feng, X. G. Liu, and Z. D. Zhang, J. Phys. D 40, 5523 (2007).
[5] J. Liu, N. Scheerbaum, J. Lyubina, and O. Gutleich, Appl. Phys. Lett. 93, 102512 (2008).
[6] M. Khan, N. Ali, and S. Stadler, J. Appl. Phys. 101, 053919 (2007).
[7] I. Dubenko, M. Khan, A. K. Pathak, B. R. Gautam, S. Stadler, and N. Ali, J. Magn. Magn. Mater. 321, 754 (2009).
[8] A. K. Nayak, K. G. Suresh, and A. K. nigam, J. Appl. Phys. 107, 09A927 (2010).
[9] Z. D. Han, D. H. Wang, C. L. Zhang, H. C. Xuan, B. X. Gu, and Y. W. Du, Appl. Phys. Lett. 90, 042507 (2007).
[10] V. K. Sharma, B. M. Chattopadhyay, R. Kumar, T. Ganguli, P. Tiwari, and S. B. Roy, J. Phys. Condens. Matter 19, 496207 (2007).
[11] P. J. Shamberger and F. S. Ohuchi, Phys. Rev. B 79, 144407 (2009).
[12] V. D. Buchelnikov and V. V. Sokolovskiy, Phys. Met. Metallogr. 112, 633 (2011).
[13] Z. Li, C. Jing, J. Chen, S. Yuan, S. Cao, and J. Zhang, Appl. Phys. Lett. 91, 112505 (2007).
[14] H. C. Xuan, Q. Q. Cao, C. L. Zhang, S. C. Ma, S. Y. Chen, D. H. Wang, and Y. W. Du, Appl. Phys. Lett. 96, 202502 (2010).
[15] N. M. Bruno, C. Yegin, I. Karaman, J.-H. Chen, J. H. R. Jr., J. Liu, and J. Li, Acta Materialia 74, 66 (2014).
[16] J.-H. Chen, N. M. Bruno, I. Karaman, Y. Huang, J. Li, and J. H. R. Jr., Acta Materialia 105, 176 (2016).
[17] J.-H. Chen, N. M. Bruno, I. Karaman, Y. Huang, J. Li, and J. H. R. Jr., Journal of Applied Physics 116, 203901 (2014).
[18] K. Koyama, K. Watanebe, T. Kanomata, R. Kainuma, K. Oikawa, and K. Ishida, Appl. Phys. Lett. 88, 132505 (2006).
[19] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Nature(London) 439, 957 (2006).
[20] R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, and T. Kanomata, Appl. Phys. Lett. 88, 192513 (2006).
[21] K. Haldar, D. C. Lagoudas, and I. Karaman, Journal of the Mechanics and Physics of Solids 69, 33 (2014).
[22] H. E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y. I. Chumlyakov, and H. J. Maier, Advanced Functional Materials 19, 983 (2009).
[23] H. Karaca, I. Karaman, B. Basaran, Y. Chumlyakov, and H. Maier, Acta Materialia 54, 233 (2006).
[24] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, and B. Oulad-diaf, Phys. Rev. B 75, 104414 (2007).
[25] V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Sharov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, Phys. Rev. B 72, 224408 (2005).
