Production and Utilisation of Artificial Coarse Aggregate in Concrete - a Review

George K George1* and P Revathi2

1 Ph.D. Research Scholar, Department of Civil Engineering, Pondicherry Engineering College, Pillaichavady, Puducherry, India
2 Assistant Professor, Department of Civil Engineering, Pondicherry Engineering College, Pillaichavady, Puducherry, India
*gkgpec@gmail.com

Abstract. This present work provides a study of several successful approaches in producing artificial aggregates using a pelletiser machine and the parameters affecting efficiency. These aggregates were contrived from substances of nature such as fly-ash, GGBS, Rice husk ash, volcanic ash, etc. Different sets of artificial aggregates are to be made with different molarity. The common methods of developing them include cold bonding, autoclaving, and sintering. The aggregate pellets (with lightweight and possessing less specific gravity and high impact value than gravel) were batch manufactured by a cold bonded technique using disc pelletiser (used to perform agglomeration). The prepared aggregates are characterised based on their crushing and impact strength rate and also moisture absorption. This paper explicitly reviews various effective and eco-friendly artificial aggregate and their potential usage in the construction industry.

1. Introduction
In day-to-day life, enormously booming construction field demands mass production of Portland cement and aggregates. The tremendous growth in the infrastructural sector around the world and the demand for a huge quantity of cement and aggregates in construction have occurred. Aggregates are obtained from natural resources such as granite and other rocks, especially the ones which are fine grained find their source enormously from natural river sand. Due to the enormous demand for these aggregates, natural resources are depleting faster leading to demand for alternate mode of aggregates. The scarcity of river sand has increased the burden on coarse aggregates. So crushed granite is replaced by river sand in almost all construction activities. Hence there is no scarcity of fine aggregate due to the availability of M sand. It is produced from hard granite stone by crushing. The enormous production of M-sand leads to the depletion of natural resources. This leads to serious issues of the unavailability of coarse aggregates also. So in-order to avoid the depletion of natural aggregates, coarse aggregates are replaced by recycled aggregates or artificial aggregates. Recycled aggregates are nothing but released aggregates from different concrete waste products in construction. The major limitation with respect to the utilisation of recycled aggregates is the quality of recycled aggregates, such as high water absorption and lower strength. So there is a major necessity of utilisation of artificial coarse aggregates for construction purposes. They were obtained from the engineered co-products such as ashes of fly, husk or volcanic type and GGBS. In India, in most of the industries (like the thermal power plant, iron industry) coal is burnt in large numbers. Thus in the above process, a significant amount of fly types of ashes were produced in our country, but they turned as a menace to our society owing to their health hazard. This burning issue was overcome by stacking them on low-lands, producing bricks, and
proportioning concrete mix [1]. The fly-ash replaced coarse aggregate in construction with a mix of cement as a binder gave good cementation quality and also provided an efficient solution by depressing the environment concern. For purpose of sustainable city with green purpose, fly-ash aggregates are also critical as it is manufactured by recycling of fly-ash from industries. Like fly-ash, several raw materials can be used for the manufacture of artificial aggregates. Identical to waste materials like fly-ash, several others can also be used effectively for the production of aggregates. Their utilisation as by-products of artificial aggregates production also found to address the disposal issue in these industrial waste along with concern for healthy environment [2]. This paper reviews the techniques, materials, and methodologies for producing and utilising artificial aggregates in the construction industry.

2. Artificial aggregates

2.1. Materials
The fractional binding alternative by FA for the creation of artificial aggregate improves their cementitious properties. These artificially fabricated ones decoded the major environmental issue of pollution and natural resource depletion. The parent materials of concrete production plays the main governing factor in the behaviour of their properties [3]. By the process of geopolymerisation, full replacement of cement by other materials is possible. Geopolymers, with an amorphous microstructure and chemical composition of zeolites, is a co-polymerisation product of high pH and single alunino and silicate species (composing silicon and aluminium in dissolved form) with soluble alkali metal silicates. The unused alunino-silicate materials in surroundings were utilised as building and mining materials, as they possessed satisfactory chemical and physical properties [4]. By pelletisation technique, artificial geopolymer aggregates can be made from volcano ash, which reacts with the geopolymer binder and alkaline activator (sodium silicate (Na$_2$SiO$_3$) and sodium hydroxide (NaOH) solutions). These aggregates sized with 14-20 mm are sintered at temperature 500 °C, 600 °C and 800 °C for 1 hour [5]. Various waste materials like FA, Volcanic ash, etc. can be used for the production of artificial aggregates. Upon close examination of these materials and their properties, minimal change in their nature and strength was noticed. The physical properties of different materials for the production of aggregates are shown in table 1.

Table 1. Physical properties of raw materials [6].
Raw materials
Cement
FA
GGBS
RHA

By and large, their creation is observed primarily to occur when the ground discarded materials as new pellets are blended in their predetermined dimension. The diverse varieties of raw materials, binders and additives used in the manufacture of artificial aggregates with reference to the literatures are particularised below in table 2.

Table 2. The different types of raw materials, binders and additives used for the manufacture of artificial aggregates.
Sl No

1
2.2. Methods of manufacturing

Production of different artificial aggregates from various sources involves various methods. The primary focus is integration of the reduced residue to any definite predetermined size for their targeted production. After the process of agglomeration through pelletisation, the new post-processed pellets achieved forte as aggregate replacement in concrete. Sintering, autoclaving, and cold bonding are the commonly available techniques used for the post-processing of fly-ash aggregates.

2.2.1. Sintering. This technique involves the fusion of green pellets (GP) at a temperature of more than 1200°C [10]. For that, a large quantity of coal requirement helped this course in producing the aggregates. But the huge energy requirement for making aggregates makes the process undesirable. Better durability properties like corrosion resistance and permeability exhibited by them, showed this process advantageous. In this process, the fused FA particles at the contact points form good strength pellets. For this process, spot welding with very high temperature is preferred additionally with maintained minimal temperature for overcoming enormous fusion. Through the sintering surface, the 200-300 mm thick GP is conveyed on the endless belt. The high volume of coal content, causing higher sintering temperature, leads to enormous energy usage and money for the preparation of aggregates [11].

2.2.2. Autoclaving. This method mainly consists of chemical accumulation like cement, lime, or gypsum in the agglomeration phase. The formed material binding property produced good aggregate strength. At 1400°C temperature, the new pellets are healed in coerced drenched vapour. This method gave fast aggregate production with a minimal binding material and curing time[12].

2.2.3. Cold bonding. In this method, normal curing water at room temperature was used. At ordinary room temperatures, this process leads to FA reaction with calcium hydroxide resulting in a moisture-proof binder. By using compaction agglomeration techniques, drying shrinkage and the creep of the bonding material can be overwhelmed. Agglomeration stands for the conversion of the complete consolidation of solid particles into larger shapes. This can be achieved by agitation granulation by drum granulation, disc granulation, etc. [11]. This method helps to prevent energy utilisation compared to other methods of manufacturing. The increment of curing time provided the comparable aggregate properties as on autoclaving and steam curing and gave the maximum strength to the aggregates. [13].

2.3. Properties of artificial aggregates

The improved moisture absorption and lesser density are the fundamental assets of the artificial fly ash aggregates. Their mechanical properties rest on the binder kind and measure, curing temperature, and its duration. In contrast, the moisture content influences the size, shape, and texture of the aggregates and angle of pelletisation used. Mechanical properties like crushing strength and specific gravity are the
significant properties of artificial aggregates. The average value of crushing strength is generally expressed in terms of their ‘aggregate crushing value’. Mainly artificial aggregates were synthesised using the pelletisation technique of various fraction of waste material and cement. Numerous mix proportions with replacement of 20, 40, 60, 80, and 100 % of natural replacing artificial aggregate in concrete were found out with their characteristics [1]. Mechanical Properties of artificial geopolymer aggregates are mainly specific gravity, water absorption, etc. The Specific Gravity of artificial geopolymer aggregate produced by the sintering process is less compared to natural aggregates. For the production of lightweight concrete, these types of aggregates are beneficial. The water absorption for artificial geopolymer aggregate with volcano ash is more compared to natural aggregates. The water absorption can be controlled by adjusting the expansion sintering temperature [5]. Pelletisation based on aggregate size obtained from the various works of literature is listed in Table 3. The aggregate strength based on various experimental methods is tabulated below in table 4.

Table 3. Pelletisation based on aggregate size.

Sl. No.	Size of Aggregate (mm)	Pelletiser dimensions	Mechanical parameters of pelletiser	Pelletisation duration (min)	Reference			
		Diameter (mm)	Depth (mm)	Angle (˚)	Speed (rpm)			
1	16-20	800	300	53	35	-	[6]	
2	4-8	400	100	35 & 40	20,30,40	15	[7]	
3	10	400	150	43	45	20	[14]	
4	2-8	1000	150	45	15	15	[15]	
5	10-12	500	270	36	55	15	[16]	
6	10-20	560	250	55	50	7- 14	[17]	
7	4-14	800	350	30-92	54	20	[18]	

Table 4. The strength of the aggregate based on experimental approaches.

Sl. No.	Raw materials	Crushing Strength of LWA (MPa)	Water Absorption (%)	Specific gravity (g/cm³)	Reference
1	FA + GGBS + RHA	8.1–8.8	9.8–10.1%	-	[6]
2	Fly Ash	22.7	13.23	2.12	[19]
3	FA	5.7	10.6%	-	[6]
4	Volcanic Ash	5.1—8.6	12-16%	1.1 to 1.8	[8]
5	FA + GGBS	15.5–15.7	7.8–8.3%	-	[6]
6	FA + RHA	6.0–8.1	10.8–20.5%	-	[6]

2.4. Properties of concrete produced from artificial aggregates

Artificial aggregates comprise of the waste products like fly-ash, GGBS whose properties depend mainly on the native material, cementing material, the structure to develop them, and other factors, which primarily affect the strength and durability of concrete.

2.4.1. Properties of fresh concrete. The fresh concrete is controlled by the texture and shape of aggregate, notably the smooth-edged ones stimulate the workability, and the pointed nature helped with better workability. The cost reduction in concrete by well-graded aggregate consumed lesser and denser cement paste, by reducing the void ratio which further lead to the decreased amount of paste for void filling. This reduction in void reduced the workability of the concrete as the latter depends on the volume fraction of cold bonded aggregate, which can be overcome by proper gradation of aggregate[12].

2.4.2. Hardened properties of concrete. In the case of hardened properties, such as compressive strength, flexural strength, tensile strength, etc.; they change based on the aggregate properties. The strength also varies with the volume fraction of cold bonded aggregates. The novel geopolymer artificial aggregate concrete showed an average compressive strength of 37 MPa, which is the vital element of the final mix
strength[20]. The high strength artificial aggregates (fly ash) concrete produced high strength than the conventional aggregate concrete [2].

2.4.3. *Durability of concrete produced from artificial aggregates*. Concrete durability depends upon the degree of exposure, the concrete grade (or strength), and the cement content. Since concrete is a porous material, reinforcement bars within the concrete will be subject to possible corrosion. So permeability is an important parameter in the durability of concrete. The permeability of artificial aggregate concrete was lower than the conventional concrete, whereas when cold-bonded fly ash was used for lightweight concrete, the permeability value increases [21]. Their properties such as the resistance to acid attack, corrosion, etc., are primary factors affecting the durability of the concrete. Also, the durability of concrete is determined by the pore structure. The value of durability is measured by the water penetration depth. Its value was found to be less for concrete. The water depth should be measured after the water penetration test on the hardened concrete cubes [15]. Water and chloride ion permeability of fly ash aggregate lightweight concrete were slightly lower than normal-weight concrete. This transportation by the water within the unsaturated concrete specimens can be determined from the sorptivity. The Nano-silica particles usage in concrete reduces the water sorptivity and improve the durability of concrete [22].

3. Conclusions

The main observations which can be drawn from the study are as follows:

- The outbreak of construction activities and the fast depletion of natural resources demands the use of artificial aggregate.
- The specific gravity of artificial aggregate is 30 to 50 % less than natural aggregates favouring the lightweight concrete structures.
- Water absorption of artificial aggregates is 2 to 5 times higher when compared with normal aggregate.
- The compressive strength of the mix with artificial aggregates was found to be almost 5- 15 % less than conventional concrete.
- The durability varies according to different methods in manufacturing of artificial aggregates and mix design of concrete and it is less than conventional concrete.

4. References

[1] Manju K, B Dhanush Kumar, S Suresh Kumar and S Nirmal Kumar 2018 Behaviour of concrete by using artificial aggregates a review Engineering and Technolog 7 255–8
[2] Harilal B and Thomas J 2013 Concrete made using cold bonded artificial aggregate American Journal of Engineering Research 1 20–5
[3] Santhi A S, P Priyadharshini and G M Ganesh 2012 Effect of cold bonded Fly ash aggregates on strength and restrained shrinkage properties of concrete Science and Management 3 160–4
[4] Van Deventer and Hau Xu 2000 The Geopolymerisation of alumino- silicate mineralis Miner. Process 59 247–66
[5] Rafiza A R, A M Mustafa Al Bakri, H Kamarudin, I KhairulNizar, D Hardjito and Y Zarina 2013 Evaluation of pelletized artificial geopolymer aggregate manufactured from volcano ash Basic and Applied Sciences 7 15–20
[6] Bui L A, Hwang C, Chen C, Lin K and Hsieh M 2012 Manufacture and performance of cold bonded lightweight aggregate using alkaline activators for high performance concrete Construction and Building Materials 35 1056–62
[7] Tajra F, M AbdElrahman and Stephan D 2019 The production and properties of cold-bonded aggregate and its applications in concrete: A review Construction and Building Materials 225 29–43
[8] Razak R A, Abdullah A M, Hussain K and Ismail K N 2014 Assessment on the potential of volcano ash as artificial lightweight aggregates using geopolymerisation method Material science and engineering 7 65–73
[9] Abdullah A, Razak R A, Hussain K and Ismail K N 2014 Compressive strength and morphology of fly ash based geopolymer as artificial aggregate with different curing temperature Engineering Materials 3 151–5
[10] Terzic A, Pezo L, Mitic V and Radojevic Z 2015 Artificial fly ash based aggregates properties influence on lightweight concrete performances Ceramics International 41 2714–26
[11] Bijen J M 1986 Manufacturing processes of artificial lightweight aggregates from fly ash The International Journal of Cement Composites and Lightweight Concrete 8(3) 191–9
[12] Manikandan R and Ramamurthy K 2008 Effect of curing method on characteristics of cold bonded fly ash aggregates Cement and Concrete Composites 30(9) 848–53
[13] Geetha S and Ramamurthy K 2010 Environmental friendly technology of cold-bonded bottom ash aggregate manufacture through chemical activation Journal of Clean Production 18(15) 1563–9
[14] Kockal N U and Ozturan T 2011 Characteristics of lightweight fly ash aggregates produced with different binders and heat treatments Cement and Concrete Composites 33 61–7
[15] Tang P, Florea M V A and Brouwers H J H 2017 Employing cold bonded pelletisation to produce lightweight aggregates from incineration fine bottom ash J. Cleaner Prod. 165 1371–84
[16] Gomathi P and A Sivakumar 2015 Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete Construction and Building Materials 77 276–87
[17] Geetha S and K Ramamurthy 2015 Reuse potential of low-calcium bottom ash as aggregate through pelletisation Waste Manage. 30 1528–35
[18] Gesoğlu M, E Güneyisi, H Ö Öz 2012 Properties of lightweight aggregates produced with cold-bonding pelletisation of fly ash and ground granulated blast furnace slag Mater. Struct. 45 1535–46
[19] Priyadharshini P, Ganesh G M and Santhi A S 2011 Experimental study on cold bonded fly ash aggregates International Journal of Civil and Structural Engineering 2 493–501
[20] Gunasekara C, Sujeeva S, David W L, Nick W and Trevor B 2018 Engineering properties of Geopolmer aggregate concrete Materials in Civil Engineering 30 11–22
[21] Kockal N U and Ozturan T 2010 Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes Journal of Hazardous Materials 179 954–65
[22] Their J M and Ozakca M 2018 Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano silica and steel fiber Construction and Building Materials 180 12–22