A Finite Rank Bundle over J-Holomorphic map Moduli Spaces

An-Min Li and Li Sheng

Department of Mathematics, Sichuan University Chengdu, PRC

Abstract

We study a finite rank bundle F over a neighborhood of J-Holomorphic map Moduli Spaces, prove the exponential decay of the derivative of the gluing maps for F with respect to the gluing parameter.

1 Introduction and Preliminary

In [10], [6] and [2] the authors introduced a finite rank bundle F over a neighborhood of J-Holomorphic map Moduli Spaces. This bundle plays an important role in the study of the Gromov-Witten theory and the relative Gromov-Witten theory. In this paper we study some local analysis properties of this bundle.

Let (M, ω, J) be a closed C^∞ symplectic manifold of dimension $2m$ with ω-tame almost complex structure J, let (Σ, j, y) be a smooth Riemann surface of genus g with n marked points with $n > 2 - 2g$. We fix a local coordinate system $\psi : U \to A$ for the Teichmüller space $T_{g,n}$, where $U \subset T_{g,n}$ is an open set. Let $a_o = (j_o, y_o) \in A$, $u : \Sigma \to M$ be a (j_o, J)-holomorphic map. Then F can be viewed locally as a bundle over $A \times W^{k,2}(\Sigma, u^*TM)$, denoted by \bar{F}. In [4] we study the smoothness of \bar{F}.

In [4] and [6] we study the gluing theory for \bar{F}. Let (Σ, j, y, q) be a marked nodal Riemann surface with one nodal point q. We write $\Sigma = \Sigma_1 \cup \Sigma_2$. Let $u = (u_1, u_2)$, where $u_i : \Sigma_i \to M$ is a (j_i, J)-holomorphic map. We glue Σ and u at q with gluing parameter $(r, \tau) := (r)$ to get $\Sigma(\tau)$ and pregluing map $u(\tau) : \Sigma(\tau) \to M$. We have a gluing map from $\bar{F}|_u$ to $\bar{F}|_{u(\tau)}$. We prove the exponential decay of the derivatives of the gluing maps with respect to the gluing parameter.

1.1 Metrics on Σ

Let (Σ, j, y) be a smooth Riemann surface of genus g with n marked points. In this paper we assume that $n > 2 - 2g$, and $(g, n) \neq (1, 1), (2, 0)$. It is well-known that there is a unique complete hyperboloc metric g_0 in $\Sigma \setminus \{ y \}$ of constant curvature -1 of finite volume, in the given conformal class j (see [12]). Let $\mathbb{H} = \{ \zeta = \lambda + \sqrt{-1} \mu | \mu > 0 \}$ be the half upper plane with the Poincare metric

$$g_0(\zeta) = \frac{1}{(Im(\zeta))^2}d\zeta d\bar{\zeta}.$$

Let

$$D = \{ \zeta \in \mathbb{H} | Im(\zeta) \geq 1 \}$$

$$\zeta \sim \zeta + 1$$

be a cylinder, and g_0 induces a metric on D, which is still denoted by g_0. Let $z = e^{2\pi i \zeta}$, through which we identify D with $D(e^{-2\pi}) := \{ z | |z| < e^{-2\pi} \}$. An important result is that for any punctured point y_i there exists a neighborhood O_i of y_i in Σ such that

$$(O_i \setminus \{ y_i \}, g_0) \cong (D(e^{-2\pi}) \setminus \{ 0 \}, g_0),$$
For every node \(p \) marked nodal surfaces with another metric \(g \) (resp. \(O \) moreover, all \(O \)'s are disjoint with each other. Then we can view \(D_{g_i}(e^{-2\pi}) \) as a neighborhood of \(y_i \) in \(\Sigma \) and \(z \) is a local complex coordinate on \(D_{g_i}(e^{-2\pi}) \) with \(z(y_i) = 0 \). For any \(c > 0 \) denote
\[
D(c) = \bigcup D_{g_i}(c), \quad \Sigma(c) = \Sigma \setminus D(c).
\]

Let \(g' = dzd\bar{z} \) be the standard Euclidean metric on each \(D_{g_i}(e^{-2\pi}) \). We fix a smooth cut-off function \(\chi(|z|) \) to glue \(g_0 \) and \(g' \), we get a smooth metric \(g \) in the given conformal class \(j \) on \(\Sigma \) such that
\[
g = \begin{cases}
 g_0 & \text{on } \Sigma \setminus D(e^{-2\pi}), \\
 g' & \text{on } D\left(\frac{1}{2}e^{-2\pi}\right).
\end{cases}
\]

Let \(g^c = ds^2 + d\theta^2 \) be the cylinder metric on each \(D_{g_i}(e^{-2\pi}) \), where \(z = e^{s+2\pi\sqrt{-1}\theta} \). We also define another metric \(g^\circ \) on \(\Sigma \) as above by glue \(g_0 \) and \(g^c \), such that
\[
g^\circ = \begin{cases}
 g_0 & \text{on } \Sigma \setminus D(e^{-2\pi}), \\
 g^c & \text{on } D\left(\frac{1}{2}e^{-2\pi}\right).
\end{cases}
\]

The metric \(g \) (resp. \(g^\circ \)) can be generalized to marked nodal surfaces in a natural way. Let \((\Sigma, j, y)\) be a marked nodal surfaces with \(\epsilon \) nodal points \(p = (p_1, \cdots, p_\epsilon) \). Let \(\sigma : \tilde{\Sigma} = \bigcup_{\nu=1}^\epsilon \Sigma_\nu \to \Sigma \) be the normalization. For every node \(p_i \) we have a pair \(\{a_i, b_i\} \). We view \(a_i, b_i \) as marked points on \(\tilde{\Sigma} \) and define the metric \(g_\nu \) (resp. \(g^\circ_\nu \)) for each \(\Sigma_\nu \). Then we define
\[
g := \bigoplus_{\nu} g_\nu, \quad g^\circ := \bigoplus_{\nu} g^\circ_\nu.
\]

1.2 Teichmüller space

Denote by \(\mathcal{J}(\Sigma) \subset \text{End}(T\Sigma) \) the manifold of all \(C^\infty \) complex structures on \(\Sigma \). Denote by \(\text{Diff}^+(\Sigma) \) the group of orientation preserving \(C^\infty \) diffeomorphisms of \(\Sigma \), by \(\text{Diff}_0^+(\Sigma) \) the identity component of \(\text{Diff}^+(\Sigma) \). \(\text{Diff}^+(\Sigma) \) acts on \(\mathcal{J}(\Sigma) \times (\Sigma^n \setminus \Delta) \) by
\[
\phi(j, y) = (\{d\phi_x\}^{-1}J_{\phi(x)}d\phi_x, \phi^{-1}y)
\]
for all \(\phi \in \text{Diff}^+(\Sigma), x \in \Sigma \), where \(\Delta \subset \Sigma^n \) denotes the fat diagonal. Put
\[
P := \mathcal{J}(\Sigma) \times (\Sigma^n \setminus \Delta).
\]

The orbit spaces are
\[
\mathcal{M}_{g,n} = (\mathcal{J}(\Sigma) \times (\Sigma^n \setminus \Delta)) / \text{Diff}^+(\Sigma), \quad T_{g,n} = (\mathcal{J}(\Sigma) \times (\Sigma^n \setminus \Delta)) / \text{Diff}_0^+(\Sigma).
\]

\(\mathcal{M}_{g,n} \) is called the Deligne-Mumford space, \(T_{g,n} \) is called the Teichmüller space.

Consider the principal fiber bundle \(\text{Diff}_0^+(\Sigma) \to P \to T_{g,n} \) and the associated fiber bundle
\[
\pi_T : Q := P \times_{\text{Diff}_0^+(\Sigma)} \Sigma \to T_{g,n}.
\]

The following result is well-known (cf [13]):
Lemma 1.1. Suppose that \(n + 2g \geq 3 \). Then for any \(\gamma_0 = [(j_0, y_0)] \in T_{g,n} \) and any \((j_o, y_o) \in \mathbb{P} \) with
\[\pi_T(j_0, y_0) = \gamma_0 \]
there is an open neighborhood \(A \) of zero in \(\mathbb{C}^{3g-3+n} \) and a local holomorphic slice \(\iota = (\iota_0, \ldots, \iota_n) : A \to \mathbb{P} \) such that
\[u_0(o) = j_0, \quad \iota_i(o) = y_{i\alpha}, \quad i = 1, \ldots, n, \]
\[(1.1) \]
and the map
\[A \times \text{Diff}_0(\Sigma) \to \mathbb{P} : (a, \phi) \mapsto (\phi^*(\iota_0(a)), \phi^{-1}(\iota_1(a)), \ldots, \phi^{-1}(\iota_n(a))) \]
is a diffeomorphism onto a neighborhood of the orbit of \((j_o, y_o)\).

From the local slice we have a local coordinate chart on \(U \) and a local trivialization on \(\pi_T^{-1}(U) \):
\[\psi : U \to A, \quad \Psi : \pi_T^{-1}(U) \to A \times \Sigma, \]
\[(1.2) \]
where \(U \subset T_{g,n} \) is a open set. We call \((\psi, \Psi)\) in \([12]\) a local coordinate system for \(Q \). Suppose that we have two local coordinate systems
\[(\psi, \Psi) : (O, \pi_T^{-1}(O)) \to (A, A \times \Sigma), \]
\[(1.3) \]
\[(\psi', \Psi') : (O', \pi_T^{-1}(O')) \to (A', A' \times \Sigma). \]
\[(1.4) \]
Suppose that \(O \cap O' \neq \emptyset \). Let \(W \) be a open set with \(W \subset O \cap O' \). Denote \(V = \psi(W) \) and \(V' = \psi'(W) \). Then (see \([13]\))

Lemma 1.2. \(\psi' \circ \psi^{-1}|_V : V \to V' \) and \(\Psi' \circ \Psi^{-1}|_V : V \times \Sigma \to V' \times \Sigma \) are holomorphic.

1.3 J-holomorphic maps

Let \((M, \omega, J)\) be a closed \(C^\infty \) symplectic manifold of dimension \(2m \) with \(\omega \)-tame almost complex structure \(J \), where \(\omega \) is a symplectic form. Then there is a Riemannian metric
\[G_J(v, w) := < v, w >_J := \frac{1}{2} (\omega(v, Jw) + \omega(w, Jv)) \]
\[(1.5) \]
for any \(v, w \in TM \). Following \([5]\) we choose the complex linear connection
\[\tilde{\nabla}_X Y = \nabla_X Y - \frac{i}{2} J(\nabla_X J) Y \]
induced by the Levi-Civita connection \(\nabla \) of the metric \(G_J \).

Let \((\Sigma, j, y)\) be a marked nodal Riemann surface of genus \(g \) with \(n \) marked points. Let \(\sigma : \tilde{\Sigma} = \sum_{\nu=1}^n \Sigma_\nu \to \Sigma \) be the normalization. Let \(u : \Sigma \to M \) be a smooth map. Here and later we say a map (or section) is smooth we mean that it is a continuous map such that, restricting to every \(\Sigma_\nu \), it is smooth. The map \(u \) is called a \((j, J)\)-holomorphic map if, restricting to each \(\Sigma_\nu \), \(du \circ j = J \circ du \). Alternatively
\[\tilde{\partial}_{j,J}(u) := \frac{1}{2} (du + J(du) du \circ j) = 0. \]
\[(1.6) \]
Given \(A \in H_2(M, \mathbb{Z}) \). Let \(u : \Sigma \to M \) be \((j_0, J)\)-holomorphic map with \(u([\Sigma]) = A \). Set \(b_0 = (s_0, u) \), \(s_0 = (j_0, y_0) \). Let \(A = A_1 \times A_2 \times \ldots \times A_k \) be a local coordinate system of complex structures on \(\Sigma \) such that \(s_0 \in A \). Denote by \(j_s \) the complex structure corresponding to \(s = (j, y) \in A \). Let \(\alpha \) be a small constant such that \(0 < \alpha < 1 \). For any section \(h \in C^\infty(\Sigma; u^*TM) \) and section \(\eta \in C^\infty(\Sigma, u^*TM \otimes \wedge^1_J T^*\Sigma) \) and given integer \(k > 4 \) we define the norms \(\|h\|_{j, k, 2, \alpha} \) and \(\|\eta\|\gamma, k-1, 2, \alpha \) (see \([3]\)). Denote by \(W^{k,2,\alpha}(\Sigma; u^*TM) \) and
$W^{k,2,\alpha}(\Sigma, u^*TM \otimes \Lambda^{0,1}_j T^*\Sigma)$ the complete spaces with respect to the norms $\|h\|_{j,k,2,\alpha}$ and $\|\eta\|_{j,k-1,2,\alpha}$ respectively. We can also define $\mathcal{W}_u^{k,2,\alpha}(\Sigma; u^*TM)$ as in [3]. Let

$$\tilde{B} = \{ u \in W^{k,2,\alpha}(\Sigma, M) \mid u_*([\Sigma]) = A \}.$$

For fixed s_o, restricting to each Σ_ν, \tilde{B} is an infinite dimensional Banach manifold. Let $\delta > 0$, $\rho > 0$ be two small numbers. Denote

$$\tilde{O}_{s_o}(\delta, \rho) := \{ (s, v) \in A \times \tilde{B} \mid d_A(s, s) < \delta, \|h\|_{j,k,2,\alpha} < \rho \},$$

where $v = \exp_{t_u} h$, d_A is the distance function induced by the Weil-Petersson metric on the Deligne-Mumford space $\mathcal{M}_{g,n}$.

2 A finite rank bundle and weighted norms

2.1 A finite rank bundle

We slightly deform ω to get a rational class $[\omega^*]$. By taking multiple, we can assume that $[\omega^*]$ is an integral class on M. Therefore, it is the Chern class of a complex line bundle L over M. Let i be the complex structure on L. We choose a Hermitian metric G_L and the associate unitary connection ∇^L on L.

Let (Σ, j, y) be a marked nodal Riemann surface of genus g with n marked points. Let $u : \Sigma \rightarrow M$ be a $\mathcal{W}_u^{k,2,\alpha}$ map. We have a complex line bundle u^*L over Σ with complex structure u^*i and unitary connection $u^*\nabla^L$. Put $b = (s, u)$, $s = (j, y)$. The unitary connection $u^*\nabla^L$ splits into $u^*\nabla^L := u^*\nabla^L_{(0,1)} \oplus u^*\nabla^L_{(0,1)}$. We can define the spaces $\mathcal{W}_u^{k,2,\alpha}(\Sigma, u^*L)$ and $W^{k-1,2,\alpha}(\Sigma, u^*L \otimes \Lambda^{0,1}_j T^*\Sigma)$ as in [3] (see also section 2.2).

Denote

$$D^L := u^*\nabla^L_{(0,1)} : \mathcal{W}_u^{k,2,\alpha}(\Sigma, u^*L) \rightarrow W^{k-1,2,\alpha}(\Sigma, u^*L \otimes \Lambda^{0,1}_j T^*\Sigma).$$

One can check that

$$D^L(f\xi) = \bar{\partial} j f \otimes \xi + f \cdot D^L\xi.$$

D^L determines a holomorphic structure on u^*L, for which D^L is an associated Cauchy-Riemann operator (see [8, 9]). Then u^*L is a holomorphic line bundle.

Let Σ be a smooth Riemann surface. Let $\{V\}$ be a covering of Σ such that each $V \subset \Sigma$ is a trivializing open set of u^*L. D^L becomes in each V

$$D^L f = \frac{\partial}{\partial z} f + a_V f.$$

(2.1)

Consider the PDE

$$\frac{\partial}{\partial \bar{z}} f + a_V f = 0.$$

(2.2)

We can find a nonvanishing solution e_V of (2.2). (see [8, 9]). Then $\{e_V\}$ define a holomorphic structure on u^*L such that D^L is $\bar{\partial}_j$.

Now let Σ be nodal Riemann surface. For every smooth component Σ_ν, we have a holomorphic structure on u^*L over Σ_ν. Suppose that p is a node of Σ_1 and Σ_2. We choose nonvanishing solutions e_{V_i} of (2.2), where $V_i \subset \Sigma_i$. Since (2.2) is a linear equation, we can choose e_{V_i} such that $e_{V_i}(p) = e_{V_2}(p)$. Then we have a holomorphic structure on u^*L over Σ.
Let $\lambda_{(\Sigma, j)}$ be the dualizing sheaf of meromorphic 1-form with at worst simple pole at the nodal points and for each nodal point p, say Σ_1 and Σ_2 intersects at p,

$$\text{Res}_p(\lambda_{(\Sigma_1, j_1)}) + \text{Res}_p(\lambda_{(\Sigma_2, j_2)}) = 0.$$

Let $\Pi : \overline{\mathcal{C}}_g \to \overline{\mathcal{M}}_g$ be the universal curve. Let λ be the relative dualizing sheaf over $\overline{\mathcal{C}}_g$, the restriction of λ to (Σ, j) is $\lambda_{(\Sigma, j)}$.

Set $\Lambda_{(\Sigma, j)} := \lambda_{(\Sigma, j)} \left(\sum_{i=1}^n y_i \right)$. $\Lambda |_{\mathcal{E}_{g,n}}$ is a line bundle over $\mathcal{E}_{g,n}$. Let $(\psi, \Psi) : (O, \pi_1^{-1}(O)) \to (A, A \times \Sigma)$ be a local coordinate systems, where $O \subset T_{g,n}$ is an open set. Λ induces a line bundle over $A \times \Sigma$, denoted by Λ. Then $\tilde{L} |_b := \mathcal{P}^* \Lambda \otimes u^*L$ is a holomorphic line bundle over Σ, where \mathcal{P} denote the forgetful map. We have a Cauchy-Riemann operator $\bar{\partial}_b$. Then $H^0(\Sigma, \tilde{L} |_b)$ is the ker $\bar{\partial}_b$. Here the $\bar{\partial}$-operator depends on the complex structure j on Σ and the bundle u^*L, so we denote it by $\bar{\partial}_b$.

If Σ_ν is not a ghost component, there exist a constant $h_o > 0$ such that

$$\int_{u|_{\Sigma_\nu}} \omega^* > h_o.$$

Therefore, $c_1(u^*L)(\Sigma_\nu) > 0$. For ghost component Σ_ν, $\lambda_{(\Sigma, j)} \left(\sum_{i=1}^n y_i \right)$ is positive. So for any $b = (s, v) \in \tilde{O}_{\nu_0}(\delta, \rho)$ by taking the higher power of $\tilde{L} |_b$, if necessary, we can assume that $\tilde{L} |_b$ is very ample. Hence, $H^1(\Sigma, \tilde{L} |_b) = 0$. Therefore, $H^0(\Sigma, \tilde{L} |_b)$ is of constant rank (independent of $b \in \tilde{O}_{\nu_0}(\delta, \rho)$). We have a finite rank bundle \mathcal{F} over $\tilde{O}_{\nu_0}(\delta, \rho)$, whose fiber at $b = (j, y, v) \in \tilde{O}_{\nu_0}(\delta, \rho)$ is $H^0(\Sigma, \tilde{L} |_b)$.

Remark 2.1. In [10], [6] and [2] the authors constructed a finite rank bundle \mathcal{F} over a neighborhood of J-Holomorphic map Moduli Spaces. In this paper we study the local analysis properties, so we only give the local construction here.

2.2 Weighted norms

Let (V, z) be a local coordinate system on Σ around a nodal point (or a marked point) q with $z(q) = 0$. Let $b = (s, u) \in \tilde{O}_{\nu_0}(\delta_0, \rho_0)$ and e be a local holomorphic section of $u^*L|_V$ with $\|e\|_{G^L}(q) \neq 0$ for $q \in V$. Then for any $\phi \in \mathcal{F}|_b$ we can write

$$\phi|_V = f \left(\left(\frac{dz}{z} \otimes e \right)^p \right), \quad \text{where } f \in \mathcal{O}(V), \quad p \in \mathbb{Z}. \quad (2.3)$$

In terms of the holomorphic cylindrical coordinates (s, t) defined by $z = e^{s+2\pi \sqrt{-1}t}$ we re-written (2.3) as

$$\phi(s, t)|_V = f(s, t) \left((ds + 2\pi \sqrt{-1}dt \otimes e)^p \right),$$

where $f(z) \in \mathcal{O}(V)$. It is easy to see that $|f(s, t) - f(-\infty, t)|$ uniformly exponentially converges to 0 with respect to $t \in S^1$ as $|s| \to \infty$.

The metrics G^L and g^∞ together induce a metric G on \tilde{L}. We define weighted norms for $C^\infty_c(\Sigma, \tilde{L}|_b)$ and $C^\infty_c(\Sigma, \tilde{L}|_b \otimes \Lambda_j^{0,1} T^* \Sigma)$. Fix a positive function W on Σ which has order equal to $e^{\alpha|s|}$ on each end of Σ_i, where α is a small constant such that $0 < \alpha < 1$. For any $\zeta \in C^\infty_c(\Sigma, \tilde{L}|_b)$ and any section $\eta \in C^\infty_c(\Sigma, \tilde{L}|_b \otimes \Lambda_j^{0,1} T^* \Sigma)$ we define the norms

$$\left\| \zeta \right\|_{j,k,2,\alpha} = \left(\int_{\Sigma} e^{2\alpha|s|} \sum_{i=0}^k |\nabla^i \zeta|^2 dv_{\text{col}}(\Sigma) \right)^{1/2}, \quad (2.4)$$
First we recall a fact about the exponential map on a compact Riemannian manifold. Remark 10.5.5). There are two smooth families of endomorphisms $W_{k-1,2,\alpha}^k$.

Then for $\tilde{\mathcal{F}}$ on top strata F on top strata.

We choose R_0 so large that $u_t(\{s_i \geq \frac{R}{2}\})$ lie in $O_{u_t}(q)$ for any $r > R_0$. In this coordinate system we identify $\tilde{T}_b M$ with $T_{u_t(q)} M$ for all $x \in O_{u_t}(q)$. With respect to the base $(e \otimes \frac{dz}{z})^p$ for \tilde{L}_b we have a local trivialization. Any $\zeta_0 \in \tilde{L}_b(q)$ may be considered as a vector field in the coordinate neighborhood. We fix a smooth cutoff function g:

$$g(s) = \begin{cases} 1, & \text{if } |s| \geq \tilde{d} \\ 0, & \text{if } |s| \leq \frac{\tilde{d}}{2} \end{cases}$$

where \tilde{d} is a large positive number. Put $\hat{\zeta}_0 = g\zeta_0$.

Then for \tilde{d} large enough $\hat{\zeta}_0$ is a section in $C^\infty(\Sigma; \tilde{L}_b)$ supported in the tube $\{s, t||s| \geq \frac{\tilde{d}}{2}, t \in S^1\}$. Denote

$$\mathcal{W}^{k,2,\alpha}(\Sigma; \tilde{L}_b) = \left\{\zeta + \hat{\zeta}_0|\zeta \in \mathcal{W}^{k,2,\alpha}(\Sigma; \tilde{L}_b), \zeta_0 \in \tilde{L}_b(q)\right\}.$$

We define weighted Sobolev norm on $\mathcal{W}^{k,2,\alpha}$ by

$$\|\zeta + \hat{\zeta}_0\|_{\mathcal{W}^{j,k,2,\alpha}} = \|\zeta\|_{j,k,2,\alpha} + |\zeta_0|,$$

where $|\zeta_0| = [G(\zeta_0, \xi_0)_\alpha]\frac{\tilde{d}}{2}$.

Let $b = (s, u)$. We define a Cauchy-Riemann operator

$$D\tilde{L}_b : \mathcal{W}^{k,2,\alpha}(\Sigma; \tilde{L}_b) \rightarrow \mathcal{W}^{k-1,2,\alpha}(\Sigma; \tilde{L}_b \otimes \wedge_{j}^{0,1} T^* \Sigma) \text{ by}$$

$$D\tilde{L}_b(f(k \otimes e)^p) = (\tilde{\partial} f)(k \otimes e)^p + (f)(k \otimes D^L e) \otimes (k \otimes e)^p - 1,$$

where k is a local frame field of $\tilde{\Lambda}$, $f(k \otimes e)^p \in \mathcal{W}^{k,2,\alpha}(\Sigma; \tilde{L}_b)$.

With respect to the holomorphic structure $\{e_{\nu}\}$ we have $D\tilde{L}_b = \tilde{\partial}_b$. The linearized operator of $D\tilde{L}_b$ is also $\tilde{\partial}_b$.

3 Smoothness of \tilde{F} on top strata

Let (Σ, j, y) be a smooth Riemann surface of genus g with n marked points. Let $b_0 = (a_o, u_o) = (j_o, y_o, u_o)$, $b = (a, u), u = \exp_{u_o} h, b \in \tilde{Q}_{b_0}(\delta_0, \rho_0)$.

3.1 Smoothness of $\tilde{F}(h, \xi)$

First we recall a fact about the exponential map on a compact Riemannian manifold M (see [5], Page 362, Remark 10.5.5). There are two smooth families of endomorphisms

$$E_i(p, \xi) : T_p M \rightarrow T_{\exp_p \xi} M, \quad i = 1, 2,$$
that are characterized by the following property. Let $\gamma : \mathbb{R} \to M$ be any smooth path in M and $v(t) \in T_{\gamma(t)}M$ be any smooth vector field along this path then the derivative of the path $t \to \exp_{\gamma(t)}(v(t))$ is given by the formula

$$
\frac{d}{dt} \exp_{\gamma}(v) = E_1(\gamma, v) \dot{\gamma} + E_2(\gamma, v) \nabla_t v,
$$

where $\dot{\gamma} = \frac{d\gamma}{dt}$. We have

$$
E_1(p, 0) = E_2(p, 0) = Id : T_pM \to T_pM, \quad \forall p \in M,
$$

and $E_i(p, \xi)$ are uniformly invertible for sufficiently small ξ. Since M is compact, there exists a constant ϵ such that for any $p \in M$ and $\xi \in T_pM$ with $|\xi|_{T_pM} \leq \epsilon$, $E_i(p, \xi)$ are uniformly invertible.

Given $x \in M$ and $\zeta \in T_xM$ we define two linear maps

$$
E_x(\zeta) : T_xM \xrightarrow{T_{\exp_x(\zeta)}M} L_{\exp_x(\zeta)}
$$

and

$$
\Psi_x(\zeta) : T_xM \times T_xM \to L_{\exp_x(\zeta)}
$$

Choose a local coordinate system x_1, \ldots, x_{2m} on M, denote $\frac{\partial}{\partial x_i} = \partial_{x_i}$. Let ξ be a smooth section of the bundle L over a neighborhood U_α of $u_\alpha(\Sigma)$. Let $u = \exp_{u_\alpha} h$. Let $\Phi^{L}_{u_\alpha,u}$ be the parallel transport with respect to the connection ∇^L, along the geodesics $s \to \exp_{u_\alpha}(sh)$. $\Phi^{L}_{u_\alpha,u}$ induce two isomorphisms

$$
W^{k,2,\alpha}(\Sigma, u^*_\alpha L) \to W^{k,2,\alpha}(\Sigma, u^* L), \quad W^{k-1,2,\alpha}(\Sigma, u^*_\alpha L \otimes \wedge^1 \Sigma) \to W^{k-1,2,\alpha}(\Sigma, u^* L \otimes \wedge^1 \Sigma),
$$

still denote them by $\Phi^{L}_{u_\alpha,u}$. Denote $u_t = \exp_{u_\alpha}(h + th')$. We calculate $(u^*_t \nabla^L)_t (\Phi^{L}_{u_\alpha,u} u^*_\alpha \xi)|_{t=0}$. By definition, for any $p \in \Sigma$,

$$
(u^*_t \nabla^L)_t (\Phi^{L}_{u_\alpha,u} u^*_\alpha \xi)(p)|_{t=0} = \nabla^L_t (\Phi^{L}_{u_\alpha,u} \xi) \circ u_t|_{t=0} (p) = \Psi_{u_\alpha}(h; h', \xi)(u(p)).
$$

Since L and ∇^L are smooth on M, $\Psi_{u_\alpha}(h; h', \xi) = \nabla^L_{E_{u_\alpha}(h)h'}(\Phi_{u_\alpha,u} \xi)$ and $\Psi_{u_\alpha}(0; h', \xi) = 0$, there is a constant $C > 0$ independent of p such that

$$
|\Psi_{u_\alpha}(h; h', \xi)|_{u(p)} \leq C|h(p)||h'(p)||(|\xi| + |\nabla \xi|)|_{u(p)}, \quad (3.1)
$$

when $\|h\|_{k,2} \leq \epsilon$. If no danger of confusion we denote $(u^*_t \nabla^L)_t$ by ∇^L_t. Then we have

$$
\|\nabla^L_t (\Phi^{L}_{u_\alpha,u} u^*_\alpha \xi)|_{t=0}\|_{C^0} \leq C\|h\|_{C^0} \|h'\|_{C^0} \|\xi\|_{C^1(U_\alpha)}
$$

for some constant $C > 0$. By the Sobolev embedding Theorem we have

$$
\left\|\nabla^L_t (\Phi^{L}_{u_\alpha,u} u^*_\alpha \xi)|_{t=0}\right\|_{k,2} \leq C\|h\|_{k,2} \|h'\|_{k,2}
$$

where $C > 0$ is a constant depending on $\|\xi\|_{C^{k+1}(U_\alpha)}$, the Sobolev constant and the metric of M. Then the operator

$$
\nabla^L_{E_{u_\alpha}(h)}(\Phi^{L}_{u_\alpha,u}) \xi : W^{k,2}(\Sigma, u^*_\alpha TM) \to W^{k-1,2,\alpha}(\Sigma, u^* L)
$$

is a bounded linear operator. For any $l \in \mathbb{Z}^+$, denote $t = (t_1, \ldots, t_l)$, $u_t = \exp_{u_\alpha}(h + \sum_{i=1}^l t_i h_i)$ and

$$
T^l(h; h_1, \ldots, h_l) \xi = \nabla^L_{t_1} \cdots \nabla^L_{t_l} (\Phi^{L}_{u_\alpha,u} u^*_\alpha \xi)|_{t=0}.
$$

A direct calculation gives us

$$
|T^l(h; h_1, \ldots, h_l) \xi| \leq C \Pi_{i=1}^l |h_i(p)|. \quad (3.3)
$$
By the same way as above we can show that

\[T^l(h; \cdots) : W^{k,2}(\Sigma, u^*_o TM) \times \cdots \times W^{k,2}(\Sigma, u^*_o TM) \times W^{k,2,\alpha}(\Sigma, u^* L) \to W^{k,2,\alpha}(\Sigma, u^* L) \]

is a bounded linear operator with respect to \(h_1, \cdots, h_l \).

Now we calculate \(\nabla^L_t(D^L_t(\Phi_{u_o, u^*_o}(\cdot))) \). Let \(\partial_o \) be a section of \(T\Sigma \), denote \((u^* \nabla^L_t)\partial_o = \nabla^L_t \partial_o \). Then, by the definition of curvature and \([\partial_o, \partial_o] = 0\), we have

\[\nabla^L_t \nabla^L_t \Phi_{u_o, u^*_o}(\cdot) |_{t=0} = \nabla^L_t \nabla^L_t \Phi_{u_o, u^*_o}(\cdot) |_{t=0} + R(\partial_o, \partial_o) \Phi_{u_o, u^*_o}(\cdot) |_{t=0} \]

By (3.2) we get

\[R(\partial_o, \partial_o) \Phi_{u_o, u^*_o}(\cdot) |_{t=0}(p) \]

\[= \frac{1}{2} \| \nabla^L_t \nabla^L_t \Phi_{u_o, u^*_o}(\cdot) |_{t=0} \| \leq C \| \Phi_{u_o, u^*_o}(\cdot) \|_{k,2}. \]

Since curvature \(R \) is a tensor, we have

\[\| \nabla^L_t \nabla^L_t \Phi_{u_o, u^*_o}(\cdot) |_{t=0} \| \leq C \| h' \|_{k,2}. \]

Let \(u_t \) be as above. One can check that

\[\| \nabla^L_t \nabla^L_t \Phi_{u_o, u^*_o}(\cdot) |_{t=0} \| \leq C \| h' \|_{k,2}. \]

Define

\[\tilde{T}^l(h; \cdots) \nabla^L_t : W^{k,2}(\Sigma, u^*_o TM) \times \cdots \times W^{k,2}(\Sigma, u^*_o TM) \times W^{k,2,\alpha}(\Sigma, u^* L) \to W^{k-1,2,\alpha}(\Sigma, u^* L \otimes L^1 T\Sigma) \]

by

\[\tilde{T}^l(h; h_1, \cdots, h_l) \nabla^L_t \Phi_{u_o, u^*_o}(\cdot) |_{t=0}. \]

We can show that \(\tilde{T}^l(h; \cdots) \nabla^L_t \) is a bounded linear operator with respect to \(h_1, \cdots, h_l \). Define

\[\mathcal{F} : W^{k,2}(\Sigma, u^*_o TM) \times W^{k,2,\alpha}(\Sigma, u^*_o L) \to W^{k-1,2,\alpha}(\Sigma, u^*_o L \otimes L^1 T\Sigma) \]

by

\[\mathcal{F}(h, \xi) = (\Phi_{u_o, u^*_o})^{-1} D^L_{\alpha} \Phi_{u_o, u^*_o} \xi. \]

Lemma 3.1. \(\mathcal{F}(h, \xi) \) is a smooth map.

Proof. Note that \(L \) has finite rank and for any fixed \(h \), \(\mathcal{F}(h, \xi) \) is a linear map. The key point is to prove the smoothness of \(\mathcal{F}(h, \xi) \) with respect to \(h \). Since both \(T^l(h; \cdots) \) and \(\tilde{T}^l(h; \cdots) \) are bounded linear operators for any \(l, \ell \in \mathbb{Z}^+ \), the smoothness of \(\mathcal{F}(h, \xi) \) follows. □
For any $j_0 \in J(\Sigma)$ near j_0 we can write $j_0 = (I + H)j_0(I + H)^{-1}$ where $H \in T_{j_0} J(\Sigma)$. We define two maps

\[\tilde{\Psi}_{j_0,j_0}: \tilde{L}|_{\Sigma} \times J(\Sigma) \to \tilde{L}|_{\Sigma} \times J(\Sigma) \]

by

\[\tilde{\Psi}_{j_0,j_0}(\eta) = \frac{1}{2}(\Phi_{a,a}^\Lambda \eta - \Phi_{a,a}^\Lambda \eta \cdot j_0) \quad \tilde{\Psi}_{j_0,j_0}(\omega) = \frac{1}{2}(\Phi_{a,a}^\Lambda \omega - \Phi_{a,a}^\Lambda \omega \cdot j_0) \]

Note that

\[u^* i(k \otimes e_a) = k \otimes u^* i(e_a) \]

\[\Phi_{a,a}(k \otimes e_u) = \Phi_{a,a}(k) \otimes e_u \]

We have $u^* i \circ \Phi_{a,a}^\Lambda = \Phi_{a,a}^\Lambda u^* i$. Since $u^* i \eta = -\eta j_0$ and $u^* i \omega = -\omega j_0$ for any

\[\eta \in \tilde{L}|_{\Sigma} \times J(\Sigma) \] \[\omega \in \tilde{L}|_{\Sigma} \times J(\Sigma) \]

One can check that $u^* i \tilde{\Psi}_{j_0,j_0}(\eta) = -\tilde{\Psi}_{j_0,j_0}(\eta) j_0$ and $u^* i \tilde{\Psi}_{j_0,j_0}(\omega) = -\tilde{\Psi}_{j_0,j_0}(\omega) j_0$. Then $\tilde{\Psi}_{j_0,j_0}$ and $\tilde{\Psi}_{j_0,j_0}$ are well defined. The proof of the following lemma is similar to the proof of Lemma 7.3 in [3], we omit it here.

Lemma 3.2. Both $\tilde{\Psi}_{j_0,j_0}$ and $\tilde{\Psi}_{j_0,j_0}$ are isomorphisms when $|H|$ small enough.

Set

\[P_{b_0}^{\tilde{L}} = \tilde{\Psi}_{j_0,j_0} \circ \Phi_{a,a}^{\tilde{L}} \]

We consider the map

\[\mathcal{F}: A \times W^{k,2}(\Sigma, u_0^* TM) \times W^{k,2}(\Sigma, \tilde{L}|_{\Sigma}) \to W^{k-1,2}(\Sigma, \tilde{L}|_{\Sigma}) \]

defined by

\[\mathcal{F}(a, h, \xi) = P_{b_0}^{\tilde{L}} \circ D_{b_0}^{\tilde{L}} \circ (P_{b_0}^{\tilde{L}})^{-1} \xi \]

Lemma 3.3. The following hold.

1. $\frac{\partial}{\partial x} \mathcal{F}(a, 0, 0, \lambda \xi) |_{\lambda=0} = D_{\xi} \mathcal{F}|_{a_0}(\xi) = \tilde{\Psi}_{j_0,j_0}(a_0) \circ D_{b_0}^{\tilde{L}}|_{a_0} \circ (\tilde{\Psi}_{j_0,j_0})^{-1}(\xi)$

2. \mathcal{F} is smooth functional of (a, h, ξ).

Proof. (1) is obtained by a direct calculation. Since $\tilde{\Lambda}$ is a smooth finite rank bundle over A, by Lemma 3.1 we obtain (2). □

Lemma 3.4. In the local coordinate system A the bundle $\tilde{\mathcal{L}}$ is smooth. Furthermore, for any base $\{ e_a \}$ of the fiber at b_0 we can get a smooth frame fields $\{ e_a(a, h) \}$ for the bundle $\tilde{\mathcal{L}}$ over $\tilde{O}_{b_0}(\delta_{a_0}, \rho_0)$.

Proof. Note that $D_{\xi} \mathcal{F}|_{b_0} = D_{\tilde{L}}^{\tilde{L}}|_{b_0}$. It is a Fredholm operator with $\text{coker} D_{\tilde{L}}^{\tilde{L}}|_{b_0} = 0$ (because of $H^1(\Sigma, \tilde{L}|_{b_0}) = 0$). There is a right inverse $Q_{b_0}^{\tilde{L}}$ of $D_{b_0}^{\tilde{L}}|_{b_0}$. Now we view a and h as parameters. It is easy to check that the conditions of the implicit function theorem (Theorem 7.1 Theorem 7.2) hold. Then there exist $\delta_{a_0} > 0$, $\rho_0 > 0$ and a small neighborhood O of $0 \in \ker D_{\tilde{L}}^{\tilde{L}}|_{b_0}$ and a unique smooth map

\[f^{\tilde{L}}: \tilde{O}_{b_0}(\delta_{a_0}, \rho_0) \times O \to W^{k-1,2}(\Sigma, \tilde{L}|_{\Sigma}) \]

such that for any $\zeta \in O$ and any $b \in \tilde{O}_{b_0}(\delta_{a_0}, \rho_0)$

\[D_{b_0}^{\tilde{L}} \circ (P_{b_0}^{\tilde{L}})^{-1}(\zeta + Q_{b_0}^{\tilde{L}} \circ f^{\tilde{L}}(\zeta)) = 0. \]

We get the smoothness of \tilde{F} in $\tilde{O}_{b_o}(\delta_o, \rho_o)$. Furthermore, choosing a base $\{e_\alpha\}$ of the fiber at b_o, we get a smooth frame fields $\{e_\alpha(a, h)\}$ by Theorem 7.2. We complete the proof. □

Let (Σ, j, y) be a smooth Riemann surface of genus g with n marked points, $u : \Sigma \to M$ be a C^∞ map. Denote $b = (j, y, u)$. For any $\phi \in Diff^+(\Sigma)$ denote

$$b' = (j', y', u') = \phi \cdot (j, y, u) = (\phi^*j, \phi^{-1}y, \phi^*u).$$

Then

$$(u')^*i = \phi^*(u^*i), \quad (u')^*\nabla^L = \phi^*(u^*\nabla^L). \tag{3.5}$$

Let $\phi \in Diff^+(\Sigma)$. For any section $\xi \in L$ we have

$$(\phi \cdot (u^*\xi))^p = (\phi^* \circ u^*\xi)^p = ((u \circ \phi)^*\xi)^p = ((u')^*\xi)^p \tag{3.6}$$

and for any $f(z)(dz)^p$

$$\phi \cdot f(z)(dz)^p = f(\phi^{-1}(w))[d(\phi^{-1}(w))]^p, \tag{3.7}$$

where $w = \phi(z)$. We have the following lemma

Lemma 3.5. $(\phi \cdot \tilde{L})|_{b'} = \phi^*(\tilde{L}|_b)$, $D\tilde{L}|_{b'}(\phi^*\xi) = \phi^*(D\tilde{L}|_b(\xi))$ for any $\xi \in \tilde{L}|_b$.

Proof. The first inequality follows from (3.6) and (3.7). For any $f(k \otimes e_a)^p \in \tilde{L}|_b$, we have

$$D\tilde{L}|_b(k \otimes e_a)^p = \partial(f \cdot (k \otimes e_a)^p + pf \cdot k \otimes D\tilde{L}|_b(e_a) \otimes (k \otimes e_a)^p)^{p-1}.$$

By $\phi \cdot f(z, \bar{z}) = f(\phi^{-1}(w), \phi^{-1}(w))$, we get

$$\partial(\phi(f(z, \bar{z}))) = \frac{\partial f}{\partial z}(\phi^{-1}(w), \phi^{-1}(w))\frac{\partial \phi^{-1}(w)}{\partial w}d\bar{w} = \frac{\partial f}{\partial z}(\phi^{-1}(w), \phi^{-1}(w))d\phi^{-1}(w).$$

Similar (3.7) we have

$$\nabla(\phi(f(z, \bar{z}))) = \phi \cdot \left[\frac{\partial f}{\partial z}(z, \bar{z})d\bar{z}\right] = \frac{\partial f}{\partial z}(\phi^{-1}(w), \phi^{-1}(w))d\phi^{-1}(w).$$

It follows that $\phi \cdot (\bar{\partial}f) = \bar{\partial}(\phi \cdot f)$. Since $D\tilde{L}|_b = (u^*\nabla^L)^{0,1}$ and ϕ is holomorphic, by (3.5) we have

$$D\tilde{L}|_{b'} = ((u')^*\nabla^L)^{0,1} = (\phi^* (u^*\nabla^L))^{0,1} = \phi^* (\nabla^L)^{0,1} = \phi^* D\tilde{L}|_b.$$

Then the second inequality follows from the first inequality. □

Remark 3.6. Let G_{b_o} be the isotropy group at b_o. By Lemma 3.5, $D\tilde{L}$ is G_{b_o}-equivariant and G_{b_o} acts on $ker D\tilde{L}|_{b_o}$. We may choose a G_{b_o}-equivariant right inverse $Q_{b_o}^\tilde{L}$. In fact, let $Q_{b_o}^\tilde{L}$ be a right inverse of $D\tilde{L}|_{b_o}$, we define

$$Q_{b_o}^\tilde{L}(\eta) = \frac{1}{|G_{b_o}|} \sum_{\phi \in G_{b_o}} \phi^{-1} \cdot \tilde{Q}_{b_o}(\phi \cdot \eta).$$

Then, for any $\phi' \in G_{b_o}$, we have

$$Q_{b_o}^\tilde{L}(\phi' \cdot \eta) = \frac{1}{|G_{b_o}|} \sum_{\phi \in G_{b_o}} \phi^{-1} \cdot \tilde{Q}_{b_o}(\phi \cdot \phi' \cdot \eta) = \frac{1}{|G_{b_o}|} \sum_{\phi \in G_{b_o}} \phi' \cdot (\phi')^{-1} \phi^{-1} \cdot \tilde{Q}_{b_o}(\phi \cdot \phi' \cdot \eta) = \phi' \cdot Q_{b_o}(\eta).$$

By uniqueness, it follows that $f^\tilde{L}$ is G_{b_o}-equivariant. So we have a G_{b_o}-equivariant version of Lemma 3.4. In particular, for any base $\{e_\alpha\}$ of the fiber at b_o we can get a smooth G_{b_o}-equivariant frame fields $\{e_\alpha(a, h)\}$ for the bundle \tilde{F} over $\tilde{O}_{b_o}(\delta_o, \rho_o)$.

10
Remark 3.7. Note that what Lemma 3.4 claim is the smoothness in a local coordinate system \((\psi, \Psi) : (O, \pi^{-1}_T(O)) \to (\mathbf{A}, \mathbf{A} \times \Sigma)\). If we choose another local coordinate system \((\psi', \Psi') : (O', \pi^{-1}_T(O')) \to (\mathbf{A}', \mathbf{A'} \times \Sigma)\) we have \(u' = u \circ d\varphi^{-1}_{a}\) where \(\varphi = \Psi' \circ \Psi^{-1}\). If \(u\) is only \(W^{k,2}\) map, the coordinate transformation is not smooth. Nevertheless the Lemma 3.4 is still very useful in the study of the smoothness of top strata of virtual neighborhood, as we have a PDE here, we can use the standard elliptic estimates to get the smoothness of \(u\) (see [3]).

4 Gluing

4.1 Pregluing for maps

Let \(\Sigma = \Sigma_1 \wedge \Sigma_2, j = (j_1, j_2), y = (y_1, y_2), q = (q_1, q_2)\),

\[
(\Sigma = \Sigma_1 \wedge \Sigma_2, j = (j_1, j_2), y = (y_1, y_2), q = (q_1, q_2)),
\]

where \((\Sigma_i, j_i, y_i, q_i)\) are smooth Riemann surfaces, \((j_i, y_i) \in \mathbf{A}_i, i = 1, 2\). We say that \(q_1, q_2\) are paired to form \(q\). Assume that \((\Sigma_i, j_i, y_i, q_i)\) is stable, i.e., \(n_i + 2g_i + 1 \geq 3, i = 1, 2\). We choose metric \(g_i\) on each \(\Sigma_i\) as in [11]. Let \(z_i\) be the cusp coordinates around \(q_i, z_i(q_i) = 0, i = 1, 2\). Let

\[
z_1 = e^{-s_1 - 2\pi \sqrt{-1} t_1}, \quad z_2 = e^{s_2 + 2\pi \sqrt{-1} t_2},
\]

\((s_i, t_i)\) are called the cusp holomorphic cylindrical coordinates near \(q_i\). In terms of the cusp holomorphic cylindrical coordinates we write

\[
\bar{\Sigma}_1 := \Sigma_1 \setminus \{q_1\} \cong \Sigma_{10} \cup \{[0, \infty) \times S^1\}, \quad \bar{\Sigma}_2 := \Sigma_2 \setminus \{q_2\} \cong \Sigma_{20} \cup \{(-\infty, 0) \times S^1\}.
\]

Here \(\Sigma_{10} \subset \Sigma_i, i = 1, 2\), are compact surfaces with boundary. Put \(\bar{\Sigma} = \Sigma \setminus \{q_1, q_2\} = \bar{\Sigma}_1 \cup \bar{\Sigma}_2\). We introduce the notations

\[
\Sigma_i(R_0) = \Sigma_i \cup \{(s_i, t_i) | |s_i| \leq R_0\}, \quad \Sigma(R_0) = \Sigma_1(R_0) \cup \Sigma_2(R_0).
\]

For any gluing parameter \((r, \tau)\) with \(r \geq R_0\) and \(\tau \in S^1\) we construct a surface \(\Sigma_{(r)}\) with the gluing formulas:

\[
s_1 = s_2 + 2r, \quad t_1 = t_2 + \tau.
\]

(4.1)

where we use \((r)\) to denote gluing parameters.

Let \(b_0 = (a_o, u), a_o = (\Sigma, j, y, q), u = (u_1, u_2)\), where \(u_1 : \Sigma_i \to M\) are are \((j_i, J)\)-holomorphic maps with \(u_1(q) = u_2(q)\). We will use the cusp holomorphic cylinder coordinates to describe the construction of \(u_{(r)} : \Sigma_{(r)} \to M\). We choose local normal coordinates \((x^1, \ldots, x^{2m})\) in a neighborhood \(O_{u(q)}\) of \(u(q)\) and choose \(R_0\) so large that \(u([|s_i| \geq \frac{r}{2}])\) lie in \(O_{u(q)}\) for any \(r > R_0\). We glue the map \((u_1, u_2)\) to get a pregluing maps \(u_{(r)}\) as follows. Set

\[
u_{(r)} = \begin{cases} u_1 & \text{on } \Sigma_{10} \cup \{(s_1, t_1) | 0 \leq s_1 \leq \frac{r}{2}, t_1 \in S^1\} \\
u_1(q) = u_2(q) & \text{on } \{(s_1, t_1) | \frac{3r}{4} \leq s_1 \leq \frac{5r}{4}, t_1 \in S^1\} \\
u_1 & \text{on } \Sigma_{20} \cup \{(s_2, t_2) | 0 \geq s_2 \geq -\frac{r}{2}, t_2 \in S^1\} \end{cases}
\]
To define the map \(u(r) \) in the remaining part we fix a smooth cutoff function \(\beta : \mathbb{R} \to [0, 1] \) such that

\[
\beta(s) = \begin{cases}
1 & \text{if } s \geq 1 \\
0 & \text{if } s \leq 0
\end{cases}
\]

(4.2)

and \(\sqrt{1 - \beta^2} \) is a smooth function, \(0 \leq \beta'(s) \leq 4 \) and \(\beta^2(\frac{1}{2}) = \frac{1}{2} \). We define

\[
u(r) = u_1(q) + \left(\beta \left(3 - \frac{4s_1}{r} \right) (u_1(s_1, t_1) - u_1(q)) + \beta \left(\frac{4s_1}{r} - 5 \right) (u_2(s_1 - 2r, t_1 - \tau) - u_2(q)) \right).
\]

4.2 Pregluing for \(\tilde{\mathcal{F}} \)

Let \(b_0 = (a_0, u), u = (u_1, u_2), u : \Sigma_i \to M \) are \((j_i, J)\)-holomorphic maps, \(i = 1, 2 \). We choose \(\{e_V\} \) as in (4.2) such that \(\tilde{L}_{|b_0} \) is a holomorphic lie bundle. Then \(D\tilde{L}_{|b_0} = \tilde{\partial}_{j,u} \). Recall that with respect to the base \((\frac{D}{\tilde{z}} \otimes e)^p \) for \(\tilde{L}_{|b} \) we have a local trivialization.

Denote

\[
\beta_{1;R}(s_1) = \beta \left(1, \frac{r - s_1}{R} \right), \quad \beta_{2;R}(s_2) = \sqrt{1 - \beta^2 \left(\frac{1, s_2 + r}{R} \right)},
\]

where \(\beta \) is the cut-off function defined in (4.2). Then we have

\[
\beta_{2;R}(s_1 - 2r) = 1 - \beta^2 \left(\frac{1, s_1 - r}{R} \right) = 1 - \beta_{1;R}(s_1).
\]

(4.3)

For any \(\eta \in C^\infty(\Sigma_{(r)}; \tilde{L}_{|b_{(r)}} \otimes \Lambda^0_{J_{\alpha}} T\Sigma_{(r)}) \), let

\[
\eta_i(p) = \begin{cases}
\eta & \text{if } p \in \Sigma_{i0} \cup \{|s_i| \leq r - 1\} \\
\beta_{i=2}(s_i)\eta(s_i, t_i) & \text{if } p \in \{r - 1 \leq |s_i| \leq r + 1\} \\
0 & \text{otherwise.}
\end{cases}
\]

If no danger of confusion we will simply write \(\eta_i = \beta_{i=2}\eta \). Then \(\eta_i \) can be considered as a section over \(\Sigma_i \).

Define

\[
\|\eta\|_{r, k-1, 2, \alpha} = \|\eta_1\|_{\Sigma_{1, j_1, k-1, 2, \alpha}} + \|\eta_2\|_{\Sigma_{2, j_2, k-1, 2, \alpha}}.
\]

(4.4)

We now define a norm \(\| \cdot \|_{r, k, 2, \alpha} \) on \(C^\infty(\Sigma_{(r)}; \tilde{L}_{|b_{(r)}}) \). For any section \(\zeta \in C^\infty(\Sigma_{(r)}; \tilde{L}_{b_{(r)}}) \) denote

\[
\zeta_0 = \int_{S_{1}} \zeta(r, t)dt,
\]

\[
\zeta_1(s_1, t_1) = (\zeta - \zeta_0)(s_1, t_1) \cdot \beta_{1=2}(s_1), \quad \zeta_2(s_2, t_2) = (\zeta - \zeta_0)(s_2, t_2) \cdot \beta_{2=2}(s_2).
\]

We define

\[
\|\zeta\|_{r, k, 2, \alpha} = \|\zeta_1\|_{\Sigma_{1, j_1, k, 2, \alpha}} + \|\zeta_2\|_{\Sigma_{2, j_2, k, 2, \alpha}} + |\zeta_0|.
\]

(4.5)

Denote the resulting completed spaces by \(W^{k-1, 2, \alpha}(\Sigma_{(r)}; \tilde{L}_{|b_{(r)}} \otimes \Lambda^0_{J_{\alpha}} T\Sigma_{(r)}) \) and \(W^{k, 2, \alpha}(\Sigma_{(r)}; \tilde{L}_{|b_{(r)}}) \) respectively.

In terms of the cusp holomorphic cylinder coordinates we may write

\[
D\tilde{L}_{|b_{(r)}} = \tilde{\partial}_{j_0} + E_{b_{(r)}},
\]

where \(\tilde{\partial}_{j_0} = \frac{1}{2} \left(\frac{\partial}{\partial t} + \sqrt{-1} \frac{\partial}{\partial s} \right), \left(\frac{\partial}{\partial t} \right) = j_0 \frac{\partial}{\partial s} \) and

\[
E_{b_{(r)}} = \frac{p}{2} \left(\sum \frac{\partial u_i^{(r)}}{\partial s} + \sqrt{-1} \sum \frac{\partial u_i^{(r)}}{\partial t} \right) \left(\nabla_{\partial z_j} e_{u_{(r)}}, e_{u_{(r)}} \right).
\]

(4.6)
In fact, for any \(f(k \otimes e_{u(r)})^p \in \tilde{L}|_{b(r)} \), by (2.6) we have

\[
D\tilde{L}|_{b(r)} (f(k \otimes e_{u(r)})^p) \left(\frac{\partial}{\partial s} \right) = \tilde{\partial}_s f(k \otimes e_{u(r)})^p + pf(k \otimes D^L e_{u(r)}) \left(\frac{\partial}{\partial s} \right) (k \otimes e_{u(r)})^{p-1}.
\]

(4.7)

On the other hand, using \(D^L = \frac{1}{2} \left(\nabla^L + u^* L \cdot \nabla^L : j_o \right) \), we obtain that

\[
D^L e_{u(r)} \left(\frac{\partial}{\partial s} \right) = \frac{1}{2} \left(\nabla^L (e_{u(r)}) \left(\frac{\partial}{\partial s} \right) + u^* \nabla^L (e_{u(r)}) \left(\frac{\partial}{\partial t} \right) \right)
\]

\[
= \frac{1}{2} \nabla C(t ; \eta_{u(r)}) \left(\frac{\partial u^*_\eta}{\partial s} \right) + \sqrt{-1} \left(\frac{\partial u^*_\eta}{\partial t} \right)
\]

\[
= \frac{1}{2} \left(\nabla C(t ; \eta_{u(r)}) \left(\frac{\partial u^*_\eta}{\partial s} \right) \right) - \left(\frac{\partial u^*_\eta}{\partial s} \right)
\]

where we used the fact that \(L \) is a line bundle. Substituting (4.8) into (4.7) we get (4.6).

Note that \(u_i(s_i, t_i) \) exponentially converges to 0, with higher-order derivatives, as \(s_i \to \infty, i = 1, 2 \). We have

\[
E^L_{b(r)} \bigg|_{s_i \leq \frac{T}{2}} = 0, \quad \sum_{p+q=d} \left| \frac{\partial^j E^L_{b(r)}}{\partial s^j \partial t^q} \right| \to 0,
\]

(4.9)

for \(i = 1, 2, \forall d \geq 0 \), exponentially and uniformly in \(t_i \) as \(r \to \infty \).

For any \(b = (a, v) \) with \(v = \exp_{u(r)} (h_r) \), denote \(e_v = P^\tilde{L}_{b(r), b} e_{u(r)} \). We have

\[
(P^\tilde{L}_{b(r), b})^{-1} \circ D\tilde{L}_{b(r), b} e_{u(r)} = \tilde{\partial}_a + E^\tilde{L}_b,
\]

where \(\tilde{\partial}_a = \frac{\partial}{\partial a} + \sqrt{-1} j_a \frac{\partial}{\partial s} \) and

\[
E^\tilde{L}_b = \frac{p}{2} \sum \left(\frac{\partial \delta^j}{\partial s} + \sqrt{-1} \left(j_a \frac{\partial}{\partial s} \right) (v^j) \right) \frac{((P^\tilde{L}_{b(r), b})^{-1} \nabla^L e_v, e_{u(r)})}{(e_{u(r)}, e_{u(r)})}.
\]

(4.10)

It is easy to check that

\[
\|D\tilde{L}_{b(r)} - (P^\tilde{L}_{b(r), b})^{-1} \circ D\tilde{L}_{b(r), b}\| \leq C(|a - a_o| + ||h||_{k, 2, \alpha, r}).
\]

(4.11)

Given \(\eta \in W^{k-1, 2, \alpha}(\Sigma; W^r \tilde{L}|_{b(r)}) \otimes \wedge_{Ja}^{0,1} T\tilde{\Sigma}(r) \) denote

\[
(Q^\tilde{L}_{b_o})^{-1}(\eta) = (\zeta_{\eta}(s_1, s_2, t_2)) = (\beta_{2,2}(s_2)\eta(s_1, t_1), \beta_{2,2}(s_2)\eta(s_1, t_1)),
\]

where \(Q^\tilde{L}_{b_o} \) is a right inverse of \(D\tilde{L}_{b_o} \). Define

\[
\left(Q^\tilde{L}_{b(r)} \right)'(\eta) := (\zeta_{\eta}(s_1, s_2, t_2)) = (\beta_{2,2}(s_1)\eta(s_1, t_1) + \beta_{2,2}(s_2)(s_1 - s_2, t_1 - t_2))).
\]

Lemma 4.1. For any \(\eta \in W^{k-1, 2, \alpha}(\Sigma; W^r \tilde{L}|_{b(r)}) \otimes \wedge_{Ja}^{0,1} T\tilde{\Sigma}(r) \) we have

\[
D\tilde{L}_{b(r)} \circ \left(Q^\tilde{L}_{b(r)} \right)'(\eta) - \eta = \sum (\tilde{\partial}_{\beta_{i,r}}) \zeta_i + \sum \beta_{i,r} E^\tilde{L}_{b(r)} \zeta_i
\]

(4.12)

\[\right.++(\sum (\beta_{i,r} \beta_{i,2} - 1) \eta.\]
Proof: It is obvious that
\[D_{b_{1}\cap} \circ (Q_{b_{1}})^{r} = \eta \quad \text{for} \quad |s_{i}| \leq \frac{r}{2}, \]
(4.13)

It suffices to calculate the left hand side in the annulus \(\{ \frac{r}{2} \leq |s_{i}| \leq \frac{3r}{2} \} \). By choosing \(r \) large enough we may assume that \(\{ \frac{r}{2} \leq |s_{i}| \leq \frac{3r}{2} \} \subset \Sigma \setminus \Sigma (R_{0}) \). Note that in this annulus
\[D_{b_{1}} = \partial_{j_{0},u}, \quad D_{b_{1}} \partial_{i} = D_{b_{1}} |_{\Sigma} \eta_{i}, \quad \beta_{1,r} D_{b_{1}} \partial_{i} \eta_{i} + \beta_{2,r} D_{b_{1}} \partial_{i} \eta_{i} = \sum_{\frac{i=r}{2}}^{2} \beta_{i,r} \beta_{i,2r}. \]

By a direct calculation we get (4.12). □

Lemma 4.2. \(D_{b_{1}} \) is surjective for \(r \) large enough. Moreover, there is a right inverse \(Q_{b_{1}} \) such that
\[\| Q_{b_{1}} \| \leq C \]
(4.14)
for some constant \(C > 0 \) independent of \(r \).

Proof: We first show that
\[\left\| Q_{b_{1}}^{r} \right\| \leq C, \]
(4.15)
\[\| D_{b_{1}} \circ (Q_{b_{1}})^{r} - \text{Id} \| \leq \frac{2}{3} \]
(4.16)
for some constant \(C > 0 \) independent of \(r \). Since \(0 \leq \beta_{1,r} \leq 1 \) we have
\[|(\zeta_{r})_{0}| \leq e^{\alpha r} \max_{t_{s} \in S_{i}} |e^{\alpha r} \zeta_{r}(r, t)| \leq e^{\alpha r} \max_{t_{s} \in S_{i}} |e^{\alpha r} \zeta_{r}(r, t)| \]
\[\leq Ce^{\alpha r} \sum_{i=1,2} \| e^{r} |s_{i}| \zeta_{r}(s_{i}, t_{i}) |_{r-1|s_{i}|r} \| k_{2} \leq Ce^{\alpha r} \sum_{i=1,2} \| \zeta_{i} \| k_{2,\alpha}, \]
(4.17)
where we used the Sobolev embedding theorem in the third inequality. By \(\| Q_{b_{1}}^{r} \| \leq C \) and the definition of \(\| \cdot \| k_{2,\alpha,\gamma} \), we have
\[\| \zeta_{r} \| k_{2,\alpha,\gamma} = \sum_{\beta_{1,2}} \| \beta_{1,2} (\zeta_{r} - \hat{\zeta}_{r})_{0} \| k_{2,\alpha} + |(\zeta_{r})_{0}| \]
\[\leq 2(C + 1) \| \zeta_{r} \| k_{2,\alpha} \leq C \| (\eta_{1}, \eta_{2}) \| k_{2,\alpha} \leq C \| \eta \| k_{2,\alpha,\gamma} \]
where we used (4.17) in the second inequality. Then (4.15) follows.

We prove (4.16). It follows from (4.12) that
\[\left\| D_{b_{1}} \circ (Q_{b_{1}})^{r} \right\| \eta_{-r} \right\| k_{-1,2,\alpha,\gamma} \leq \frac{C}{r} \| \eta \| k_{-1,2,\alpha,\gamma} \]
\[\leq \left(\frac{C}{r} + \frac{1}{2} \right) \| \eta \| k_{-1,2,\alpha,\gamma}, \]
where we used \(\frac{1}{2} \leq \sum_{\beta_{1,2}} \beta_{1,2} \leq \sqrt{2}, \quad \sum_{\beta_{1,2}} \beta_{1,2} \| E_{b_{1}} \| | \Sigma (r/2) | = 0 \), \(\sum_{i=1}^{2} | E_{b_{1}} | \leq C e^{\alpha r} \) in (4.17) in the first inequality, and used \(\| Q_{b_{1}}^{r} \| \leq C \) in the last inequality. Then (4.16) follows when \(r \) large enough.

The estimate (4.16) implies that \(D_{b_{1}} \circ (Q_{b_{1}})^{r} \) is invertible, and a right inverse \(Q_{b_{1}}^{r} \) of \(D_{b_{1}} \) is given by
\[Q_{b_{1}}^{r} = \left(Q_{b_{1}}^{r} \right)^{r} \left[D_{b_{1}} \circ (Q_{b_{1}})^{r} \right]^{-1}. \]
(4.19)
Then the Lemma follows. □

For any \(\zeta + \hat{\zeta}_0 \in \ker D\bar{L}|_{b_o} \), we set

\[
\zeta(r) = \beta_{1;r}(s_1)\zeta_1(s_1, t_1) + \beta_{2;r}(s_1 - 2r)\zeta_2(s_1 - 2r, t_1 - r) + \hat{\zeta}_0,
\]

(4.20)

Define \(I_{(r)}^\bar{L} : \ker D\bar{L}|_{b_o} \to \ker D\bar{L}|_{b(r)} \) by

\[
I_{(r)}^\bar{L}(\zeta + \hat{\zeta}_0) = \zeta(r) - Q_{b(r)}^{\bar{L}} \circ D\bar{L}|_{b(r)}(\zeta(r)).
\]

(4.21)

Lemma 4.3. \(I_{(r)}^\bar{L} : \ker D\bar{L}|_{b_o} \to \ker D\bar{L}|_{b(r)} \) is an isomorphism for \(r \) large enough, and

\[
\| I_{(r)}^\bar{L} \| \leq C
\]

for some constant \(C > 0 \) independent of \(r \).

Proof. Let \(\zeta + \hat{\zeta}_0 \in \ker D\bar{L}|_{b_o} \) with \(I_{(r)}^\bar{L}(\zeta + \hat{\zeta}_0) = 0 \). By (4.21) and (4.14), we have

\[
\| \zeta(r) \|_{k,2,\alpha,r} = \left\| I_{(r)}^\bar{L}(\zeta + \hat{\zeta}_0) - \zeta(r) \right\|_{k,2,\alpha,r} \leq C\| D\bar{L}|_{b(r)}(\zeta(r)) \|
\]

for some constant \(C > 0 \). A direct calculation gives us

\[
D\bar{L}|_{b(r)}(\zeta(r)) = \sum_{i=1}^{2} \beta_{i;r}(s_1)\beta_{i;r}(s_2)\zeta_1(s_1, t_1) + \sum_{i=1}^{2} (\partial \beta_{i;r})\zeta_i + \sum_{i=1}^{2} \beta_{i;r} E_{b(r)}^{\bar{L}}(\zeta_i + E_{b(r)}^{\bar{L}} \hat{\zeta}_0).
\]

(4.22)

Since \(E_{b(r)}^{\bar{L}}|_{\Sigma(r/2)} = E_{b_o}^{\bar{L}}|_{\Sigma(r/2)} \), by \(D\bar{L}|_{b_o}(\zeta + \hat{\zeta}_0) = \bar{\partial}_{j_o}(\zeta + \hat{\zeta}_0) = 0 \), we have

\[
\| \zeta(r) \|_{k,2,\alpha,r} \leq \frac{C}{r} \left(\| \zeta \|_{k,2,\alpha} + |\hat{\zeta}_0| \right)
\]

(4.23)

for some constant \(C > 0 \).

Let \(\epsilon' \in (0, 1) \) be a constant. By Lemma 7.3 we can choose \(R \) large enough such that

\[
\| \zeta \|_{|s_1| \geq 2R} \leq \epsilon' \left(\| \zeta \|_{k,2,\alpha} + |\hat{\zeta}_0| \right).
\]

Therefore

\[
\| \zeta(r) \|_{k,2,\alpha,r} \geq \| \zeta \|_{|s_1| \leq 2R} \| \zeta \|_{k,2,\alpha} + |\hat{\zeta}_0| \geq (1 - \epsilon')(\| \zeta \|_{k,2,\alpha} + |\hat{\zeta}_0|),
\]

(4.24)

for \(r > 4R \). Then (4.23) and (4.24) give us \(\zeta = 0 \) and \(\hat{\zeta}_0 = 0 \). Hence \(I_{(r)}^\bar{L} \) is injective.

Since \(H^0(\Sigma, \bar{L}|_{b_o}) \) and \(H^0(\Sigma, \bar{L}|_{b(r)}) \) have the same dimension, the Lemma follows. □

4.3 Equivariant Gluing

Let \(b_o \) be as in (2.2) and (4.4). Assume that \((\Sigma_i, y_i, q) \) is stable. Let \(G_{b_o} = (G_{b_1}, G_{b_2}) \) be the isotropy group at \(b_o \), thus,

\[
G_{b_o} = \{ \phi = (\phi_1, \phi_2) | \ \phi_1 \inDiff f^+(\Sigma_i), \ \phi_1^*(j_i, y_i, q, u_i) = (j_i, y_i, q, u_i) \}.
\]

Obviously, \(G_{b_o} \) is a subgroup of \(G_{a_o} \).

It is easy to check that the operator \(D\bar{L}|_{b_o} \) is \(G_{b_o} \)-equivariant. Then we may choose a \(G_{b_o} \)-equivariant right inverse \(Q_{b_o}^{\bar{L}} \). \(G_{b_o} \) acts on \(\ker D\bar{L}|_{b_o} \) in a natural way. Put

\[
\ker D\bar{L}|_{b_o} = \ker D\bar{L}|_{b_o}/G_{b_o}.
\]
Note that we used the cusp holomorphic cylinder coordinates \((s_i, t_i)\) on \(\Sigma_i\) near \(q\) to do gluing in \([\mathsection 2.2]\) and \([\mathsection 4.4]\). Since the cut-off function \(\beta(s)\) depends only on \(s\), \(G_{b_0}\) acts on \(\tilde{O}_{b_0}(\delta, \rho)\).

Denote \(a_{(r)} = (\Sigma_{(r)}, j, y)\) and \(b_{(r)} = (a_{(r)}, u_{(r)})\). Denote by \(G_{b_{(r)}}\) the isotropy group at \(b_{(r)}\), \(G_{b_{(r)}}\) acts on \(\ker D^L_{b_{(r)}}\) in a natural way. Put

\[
\ker D^L|_{b_{(r)}} = \ker D^L_{b_{(r)}}/G_{b_{(r)}}.
\]

It is easy to see that \(G_{b_{(r)}}\) is a subgroup of \(G_{b_0}\) and can be seen as rotation in the gluing part. Then the gluing map is a \(\frac{|G_{b_0}|}{|G_{b_{(r)}}|}\)-multiple covering map. Since \(\beta_{1,r}\) is independent of \(\tau\), \(Q_{b_{(r)}}^L\) is \(G_{b_{(r)}}\)-equivariant. By the definition of \(Q_{b_{(r)}}^L\) and the \(G_{b_{(r)}}\)-equivariance of \(D^L|_{b_{(r)}}\), we conclude that \(Q_{b_{(r)}}^L\) is \(G_{b_{(r)}}\)-equivariant. By the uniqueness, \(f^L\) is \(G_{b_{(r)}}\)-equivariant. Then we have

Lemma 4.4. (1) \(\tilde{I}^L_{(r)} : \ker D^L|_{b_{(r)}} \longrightarrow \ker D^L_{b_{(r)}}\) is a \(\frac{|G_{b_0}|}{|G_{b_{(r)}}|}\)-multiple covering map.

(2) \(\tilde{I}^L_{(r)}\) induces a isomorphism \(I^L_{(r)} : \ker D^L|_{b_{(r)}} \longrightarrow \ker D^L_{b_{(r)}}\).

4.4 Pregluing several nodes

The above estimates can be generalized to gluing several nodes. Let \((\Sigma, j, y)\) be a marked nodal Riemann surface of genus \(g\) with \(n\) marked points. Suppose that \(\Sigma\) has \(e\) nodal points \(q = (q_1, \cdots, q_e)\) and \(t\) smooth components. For each node \(q_i\) we can glue \(\Sigma\) and \(u\) at \(q_i\) with gluing parameters \(r = ((r_1, \tau_1), \cdots, (r_e, \tau_e))\) to get \(\Sigma_{(r)}\) and \(u_{(r)}\). The operators \(D^L_{b_0}\) and \(D^L_{b_{(r)}}\) are \(G_{b_0}\)-equivariant and \(G_{b_{(r)}}\)-equivariant respectively. We may choose a \(G_{b_0}\)-equivariant right inverse \(Q^L_{b_0}\) and \(G_{b_{(r)}}\)-equivariant right inverse \(Q^L_{b_{(r)}}\). \(G_{b_0}\) (resp. \(G_{b_{(r)}}\)) acts on \(\ker D^L_{b_0}\) (resp. \(\ker D^L_{b_{(r)}}\)) in a natural way. Put

\[
\ker D^L|_{b_0} = \ker D^L_{b_0}/G_{b_0}, \quad \ker D^L_{b_{(r)}} = \ker D^L_{b_{(r)}}/G_{b_{(r)}}.
\]

By the same methods as in \([\mathsection 2.2]\), \([\mathsection 4.4]\) and \([\mathsection 4.3]\) we can prove

Lemma 4.5. (1) \(\tilde{I}^L_{(r)} : \ker D^L|_{b_{(r)}} \longrightarrow \ker D^L_{b_{(r)}}\) is a \(\frac{|G_{b_0}|}{|G_{b_{(r)}}|}\)-multiple covering map for \(r_{i}, 1 \leq i \leq e, \text{ large enough, and } ||\tilde{I}^L_{(r)}|| \leq C\) for some constant \(C > 0\) independent of \(r\).

(2) \(\tilde{I}^L_{(r)}\) induces a isomorphism \(I^L_{(r)} : \ker D^L|_{b_{(r)}} \longrightarrow \ker D^L_{b_{(r)}}\).

For fixed \(r\) we consider the family of maps:

\[
\mathcal{F}_{(r)} : \mathbb{A} \times W^{k,2,\alpha}(\Sigma_{(r)}, \nu_{(r)} T M) \times W^{k,2,\alpha}(\Sigma_{(r)}, \tilde{L}_{b_{(r)}}) \rightarrow W^{k-1,2,\alpha}(\Sigma_{(r)}, \Lambda^{0,1} T \Sigma_{(r)} \otimes \tilde{L}_{b_{(r)}})
\]

defined by

\[
\mathcal{F}_{(r)}(s, h, \xi) = P^L_{b_{(r)}} \circ D^L|_b \circ (P^L_{b_{(r)}})^{-1} \xi,
\]

where \(b = ((r), s, v_r)\) and \(v_r = \exp_{u_{(r)}} h\). By implicit function theorem (Theorem \(7.11\), Theorem \(7.2\)), there exist \(\delta > 0, \rho > 0\) and a small neighborhood \(\tilde{O}_{(r)}\) of \(0 \in \ker D^L|_{u_{(r)}}\) and a unique smooth map

\[
\tilde{f}^L_{(r)} : \tilde{O}_{b_{(r)}}(\delta, \rho) \times \tilde{O}_{(r)} \rightarrow W^{k-1,2,\alpha}(\Sigma_{(r)}, \Lambda^{0,1} T \Sigma_{(r)} \otimes \tilde{L}_{b_{(r)}})
\]

such that for any \((b, \zeta) \in \tilde{O}_{b_{(r)}}(\delta, \rho) \times \tilde{O}_{(r)}\)

\[
D^L|_b \circ (P^L_{b_{(r)}})^{-1} \left(\zeta + Q^L_{b_{(r)}} \circ \tilde{f}^L_{s, h_{(r)}}(\zeta) \right) = 0.
\]
Together with Lemma [4.5] and \(I^L_{(r)} \), we have gluing map

\[
\text{Gl}u^L_{(r)} : \text{F} \big|_{[b_o]} \to \text{F} \big|_{[b]} \quad \text{for any } b \in O_{(b)}(\delta, \rho)
\]

defined by

\[
\text{Gl}u^L_{(r)}(\zeta) := \left((P^L_{b_{(r)}})^{-1} \left(\begin{array}{c} i_{\zeta} + Q^L_{b_{(r)}} \circ f^L_{s,h_{(r)}} f_r \left(\begin{array}{c} \zeta \end{array} \right) \end{array} \right) \right) \quad \forall [\zeta] \in \text{F} \big|_{[b_o]}.
\]

Given a frame \(e_\alpha(z) \) on \(\tilde{F} \big|_{b_o}, 1 \leq \alpha \leq \text{rank } \tilde{F} \), as Remark [3.6] we have a \(G_{b_o} \)-equivariant frame field

\[
e_\alpha((r), s, h)(z) = (P^L_{b_{(r)}})^{-1} \left(\left(\begin{array}{c} i_{\zeta} + Q^L_{b_{(r)}} \circ f^L_{s,h_{(r)}} f_r \left(\begin{array}{c} \zeta \end{array} \right) \end{array} \right) \right)(z)
\]

over \(D^*_{R_0}(0) \times \tilde{O}_{b_o}((\delta, \rho_{b_o})) \), where \(z \) is the coordinate on \(\Sigma \), and

\[
D^*_{R_0}(0) := \bigcup_{i=1} \{(r, \tau) | R_0 < r < \infty, \tau \in S^1 \}.
\]

For any fixed \((r) \), \(e_\alpha \) is smooth with respect to \(s, h \) over \(\tilde{O}_{b_o}((\delta, \rho_{b_o})) \).

4.5 Gluing \(J \)-holomorphic maps

We recall some results in [3]. Let \(b_o = (a_o, u) \) and \(u \) be a \((j_o, J)\)-holomorphic map. The domain \(\Sigma \) of elements of \(M^1 \) are marked nodal Riemann surfaces. Suppose that \(\Sigma \) has nodes \(p_1, \ldots, p_t \) and marked points \(y_1, \ldots, y_n \). We choose local coordinate system \(A \) and define a pregluing map \(u_{(r)} : \Sigma_{(r)} \to M \) as in [4.4]. Set

\[
t_i = e^{-2r_i - 2\pi i}, \quad |r| = \min\{r_1, \ldots, r_t\}, \quad b_{(r)} := (a_o, (r), u_{(r)}).
\]

Let \(K \) be a \(N \)-dimensional linear space. Let

\[
i : K \times A \times W^{k,2,\alpha}(\Sigma(R_o), (u |_{\Sigma(R_o)})^*TM) \to W^{k-1,2,\alpha}(\Sigma(R_o), (u |_{\Sigma(R_o)})^*TM \otimes \lambda_{j_o}^0 T^*Sigma(R_o))
\]

be a smooth map such that \(D_v + di(\kappa, s, v |_{\Sigma(R_o)}) \) is surjective for any \((\kappa, b) \in K \times O_{b_o}(R, \delta, \rho), \) where \(b = (s, (r), v), v = \exp_{u_{(r)}} h \) and \(O_{b_o}(R, \delta, \rho) = \cup_{|r| \geq R} O_{b_o}(\delta, \rho) \).

Define a thickened Fredholm system \((K \times O_{b_o}(R, \delta, \rho), K \times E |_{O_{b_o}(R, \delta, \rho)}, S)\) with

\[
S(\kappa, b) = \delta_{j_o} v + i(\kappa, b).
\]

The following lemma is proved in [3].

Lemma 4.6. For \(|r| > R_0 \) there is an isomorphism \(I_{(r)} : \ker DS_{(\kappa_o, b_o)} \to \ker DS_{(\kappa_o, h_{(r)})} \).

For fixed \((r) \) we consider the family of maps:

\[
F_{(r)} : K \times A \times W^{k,2,\alpha}(\Sigma_{(r)}, u^*_r TM) \to W^{k-1,2,\alpha}(\Sigma_{(r)}, (u^*_r TM \otimes \lambda_{j_o}^0 T^*Sigma_{(r)}),
\]

\[
F_{(r)}(\kappa, s, h) = \Psi_{j_o, b_o} \Phi_{u_{(r)}}(h)^{-1} \left(\delta_{j_o} v + i(\kappa, b) \right),
\]

where \(b = (s, (r), v), v = \exp_{u_{(r)}} h \) and

\[
\Psi_{j_o, b_o} \Phi_{u_{(r)}}(h)^{-1} : W^{k-1,2,\alpha}(\Sigma_{(r)}, v^*TM \otimes \lambda_{j_o}^0 T^*Sigma_{(r)}) \to W^{k-1,2,\alpha}(\Sigma_{(r)}, u^*_r TM \otimes \lambda_{j_o}^0 T^*Sigma_{(r)}).
\]

17
By implicit function theorem (Theorem 7.1, Theorem 7.2), there exist \(\delta > 0, \rho > 0, R > 0 \), a small neighborhood \(O(r) \) of \(0 \in \ker DS|_{b(r)} \) and a unique smooth map

\[
f_r : \mathbf{A} \times O(r) \to W^{k-1,2,\alpha}(\Sigma(r), u_r^*TM \otimes \wedge^{0,1}T\Sigma(r))
\]

such that for any \((\kappa, s, h) \in \mathbf{A} \times O(\varepsilon) \) and \(|r| > R\),

\[
S(\kappa, b) = 0. \tag{4.28}
\]

Let \((s_l^i, t_l^i), l = 1, 2\) be the cylinder coordinates near the node \(q_i \). Set

\[
V_i := \bigcup_{l=1}^2 \{ (s_l^i, t_l^i) \in \Sigma \mid \frac{\pi}{4} \leq |s_l^i| \leq \frac{3\pi}{4}\}.
\]

Let \(\pi : K \times W^{k,2,\alpha}_{r}(\Sigma_{(\varepsilon)}, u_0^*TM) \to W^{k,2,\alpha}_{r}(\Sigma, u^*TM) \) be the projection. Denote

\[
\begin{align*}
Glu_{s,(r)}(\kappa, \xi) &= I(r)(\kappa, \xi) + Q_{(\kappa, b(\varepsilon))} \circ f_{s,(r)} \circ I_r(\kappa, \xi), \\
Glu_{r}(\kappa, \xi) &= I_r(\kappa, \xi) + Q_{(\kappa, b(\varepsilon))} \circ f_{s,(r)} \circ I_r(\kappa, \xi).
\end{align*}
\]

In [3] we proved

Theorem 4.7. There exists positive constants \(C, d, R_0 \) such that for any \((\kappa, \xi) \in \ker DS_{(\kappa, b_0)}\) with \(\|(\kappa, \xi)\| < d \), and any \(X_i \in \{ \frac{\partial}{\partial \psi_i}, \frac{\partial}{\partial \rho_i}\} \), \(i = 1, \ldots, \varepsilon \), the following estimate hold

\[
\begin{align*}
\|X_i \left(\text{Glu}_{s,(r)}^* (\kappa, \xi) \right) \|_{k-2,2,\alpha} &\leq Ce^{-\varepsilon (\varepsilon - 5\alpha)^{\frac{d_2}{4}}} , \\
\|X_iX_j \left(\text{Glu}_{s,(r)}^* (\kappa, \xi) \right) \|_{k-2,2,\alpha} + \|X_i \left(\text{Glu}_{s,(r)}^* (\kappa, \xi) \right) \|_{V_i} \|_{k-2,2,\alpha} &\leq Ce^{-\varepsilon (\varepsilon - 5\alpha)^{\frac{r_i + r_j}{4}}},
\end{align*}
\]

\(1 \leq i \neq j \leq \varepsilon \), for any \(s \in \bigotimes_{i=1}^\varepsilon O_i \).

5 **Smoothness of \(\text{Glu}_{r}^L(e_\alpha) \mid \Sigma(R_0) \)**

We have shown in [4,4] that for any fixed \((r) \), \(\text{Glu}_{r}^L \) is smooth with respect to \(s, h \) over \(\tilde{O}_{b_0}(\delta_0, \rho_0) \). In this section we discuss the smoothness with respect to \((r) \), \(s, h \). To this end we need to fix a Riemann surface \(\Sigma_{(R_0)} \).

We first consider gluing one node case. Let \(\alpha_{(r)} : [0, 2r] \to [0, 2R_0] \) be a smooth increasing function satisfying

\[
\alpha_{(r)}(s) = \begin{cases}
\frac{R_0}{2} + \frac{R_0}{2r - R_0} (s - R_0/2) & \text{if } s \in [0, R_0/2 - 1] \\
2r + 2R_0 & \text{if } s \in [0, 2r - R_0/2 + 1, 2r]
\end{cases}
\]

Set \(\alpha_{(r)} : [-2r, 0] \to [-2R_0, 0] \) by \(\alpha_{(r)}(s) = -\alpha_{(r)}(-s) \). We can define a map \(\varphi_{(r)} : \Sigma_{(r)} \to \Sigma_{(R_0)} \) as follows:

\[
\varphi_{(r)} = \begin{cases}
p, & p \in \Sigma(R_0/4), \\
(\alpha_{(r)}(s_1), t_1), & (s_1, t_1) \in \Sigma_{(r)} \setminus \Sigma(R_0/4).
\end{cases}
\]

Obviously, \(\varphi_{(r)}^{-1}(y) = y \). For any \(s_1 \in [0, 2r] \) and \(s_2 \in [-2r, 0] \), we have

\[
s_1 = s_2 + 2r \iff \alpha_{(r)}(s_1) = \alpha_{(r)}(s_2) + 2R_0. \tag{5.1}
\]

Then we obtain a family of Riemann surfaces \(\left(\Sigma_{(R_0)}, (\varphi_{(r)}^{-1})^*j_r, \varphi_{(r)}^{-1}(y) \right) \).
Denote \(u^0_{(r)} := u_{(r)} \circ \varphi_r^{-1} \). The \(\varphi_r^{-1} \) induce an isomorphism

\[
(\varphi_r^{-1})^* : W^{k,2,\alpha}(\Sigma_{(r)}, u^0_{(r)} TM) \rightarrow W^{k,2,\alpha}(\Sigma_{(r)}, (u^0_{(r)})^* TM).
\]

For any \(h \in W^{k,2,\alpha}(\Sigma_{(r)}, (u_{(r)})^* TM), \) denote \(v = \exp u_{(r)}(h) \), we have map \(\varphi^*_r v : \Sigma_{(r)} \rightarrow M. \) There exists a family of functions \(\hat{h}_{(r)} \in W^{k,2,\alpha}(\Sigma_{(r)}, (u_{(r)})^* TM) \) such that \(u^0_{(r)} = \exp u_{(r)}(\hat{h}_{(r)}) \). It is easy to check that \(\hat{h}_{(r)} \) is a smooth family of functions and for any \(l \in \mathbb{Z}^+ \),

\[
\left\| \hat{h}_{(r)} \right\|_{C^l(\Sigma_{(r)})} \leq C(r,l), \tag{5.2}
\]

for some constant \(C(r,l) > 0 \) depending only on \(r \) and \(l \). Denote

\[
j_r^0 = (\varphi_{(r)}^{-1})^* j_r, \quad b_{(r)} := (j_{(r)} u_{(r)}), \quad b^0_{(r)} := (j_r^0, u^0_{(r)}), \quad b := (j_r^0, v).
\]

Let \((s, t)\) be the holomorphic coordinates on \(\Sigma_{(r)} \setminus \Sigma_{(R_0)}\) such that \(j_r^0(\frac{\partial}{\partial s^0}) = \frac{\partial}{\partial s^0}, j_r(\frac{\partial}{\partial t}) = -\frac{\partial}{\partial t} \). Denote \((s^0, t^0) = \varphi_r(s, t)\). Then we have

\[
 j^0_r \frac{\partial}{\partial s^0} = \frac{1}{\varphi_r'(s)} \frac{\partial}{\partial s^0}, \quad j^0_r \frac{\partial}{\partial t^0} = -\varphi_r'(s) \frac{\partial}{\partial s^0} \quad \text{in } \Sigma_{(r)} \setminus \Sigma_{(R_0)/4}. \tag{5.3}
\]

Then for any \(\eta \in W^{k-1,2,\alpha}(\Sigma_{(R_0)}), v^* \tilde{L} \otimes \Lambda_{j_r}^0 T^* \Sigma_{(R_0)} \) and \(p \in \Sigma_{(R_0)}, \Psi_{j_r, j_{(r)}} \eta(p) \) is a smooth family of isomorphisms. Since \(M, u_{(r)} \) and \(v \) are smooth, \(\Phi_{u_{(r)}, v} \) is also a smooth family of isomorphisms. It follows that \(\Phi_{b_{(r)}, v} \) is a smooth family of isomorphisms. In particular, \(\Phi_{b_{(r)}, v} \) is smooth with respect to \(r \).

We have the operator

\[
D_{\tilde{L}}|_{b_{(r)}} : W^{k,2}(\Sigma_{(r)}, L|_{b_{(r)}}) \rightarrow W^{k-1,2}(\Sigma_{(r)}, L|_{b_{(r)}}),
\]

Using (5.3) one can easily check that

\[
(\varphi_{(r)}^{-1})_* D_{\tilde{L}}|_{b_{(r)}} = D_{\tilde{L}}|_{b_{(r)}}.
\]

We define \(Q_{\tilde{L}}^r_{b_{(r)}} : W^{k-1,2}(\Sigma_{(R_0)}, L|_{b_{(r)}}) \otimes \Lambda_{j_r}^0 T^* \Sigma_{(R_0)} \rightarrow W^{k,2}(\Sigma_{(R_0)}, L|_{b_{(r)}}) \) by

\[
Q_{\tilde{L}}^r_{b_{(r)}} \eta_{b_{(r)}}^0 = (\varphi_{(r)}^{-1})^* \left(Q_{\tilde{L}}^r (\varphi_{(r)}^* \eta_{b_{(r)}}^0) \right).
\]

We define \(Q_{\tilde{L}}^r_{b_{(r)}} : W^{k-1,2}(\Sigma_{(R_0)}, L|_{b_{(r)}}) \otimes \Lambda_{j_r}^0 T^* \Sigma_{(R_0)} \rightarrow W^{k,2}(\Sigma_{(R_0)}, L|_{b_{(r)}}) \) by

\[
Q_{\tilde{L}}^r_{b_{(r)}} = Q_{\tilde{L}}^r_{b_{(r)}} \left[D_{\tilde{L}}|_{b_{(r)}} Q_{\tilde{L}}^r_{b_{(r)}} \right]^{-1}.
\]

We can also define \(\tilde{I}_{\tilde{L}}^r_{b_{(r)}} : Ker D_{\tilde{L}}|_{b_{(r)}} \rightarrow Ker D_{\tilde{L}}|_{b_{(r)}} \) by

\[
\tilde{I}_{\tilde{L}}^r_{b_{(r)}}(\zeta) = (\varphi_{(r)}^{-1})^* (I_{(r)}^r(\zeta)).
\]

It is easy to see that

\[
C(k, \alpha, r)^{-1}\| Q_{\tilde{L}}^r_{b_{(r)}} \| \leq \| Q_{\tilde{L}}^r_{b_{(r)}} \| \leq C(k, \alpha, r)\| Q_{\tilde{L}}^r_{b_{(r)}} \|
\]

where \(C(k, \alpha, r) \) is a constant depending only on \(k, \alpha \) and \(r \).

Denote

\[
D_{\tilde{L}} = F_{b_{(r)}b_{(r)}} \circ D_{\tilde{L}}|_{b_{(r)}} \circ \left[F_{b_{(r)}b_{(r)}} \right]^{-1}, \quad Q_{\tilde{L}} = F_{b_{(r)}b_{(r)}} \circ Q_{\tilde{L}}^r_{b_{(r)}} \circ \left[F_{b_{(r)}b_{(r)}} \right]^{-1},
\]
\[Q^L = P^{\tilde{L}}_{b'(r),b(R_0)} \circ Q^L_{b'(r)} \circ \left[P^{\tilde{L}}_{b'(r),b(R_0)} \right]^{-1}. \]

For any \(\eta \in W^{k-1,2}(\Sigma(R_0), L|_{b(R_0)} \otimes \wedge^1_{J_{R_0}} T\Sigma(R_0)) \) denote \(\eta^o_{\phi} = \left[P^{\tilde{L}}_{b'(r),b(R_0)} \right]^{-1} \eta \) and \(\eta_r = \varphi_r^* \eta^o_{\phi} \). Let \((\eta_1, \eta_2) = (\beta_{1,2}(s_1) \eta_r(s_1, t_1), \beta_{1,2}(s_2) \eta_r(s_2, t_2))\). Denote \((h_1, h_2) = Q^L_{b'(r)}(\eta_1, \eta_2)\). Since \((s_1^0, t_1^0) = \varphi(s_1, t_1)\), we have

\[
Q^L_{b'(r)} \circ \left[P^{\tilde{L}}_{b'(r),b(R_0)} \right]^{-1} \eta = Q^L_{b'(r)} \circ \eta^o_{\phi} = (\varphi_r^{-1})^* \left(Q^L_{b'(r)}(\eta_r) \right)
= \beta_{1,r} \cdot \varphi_r^{-1}(s_1^0)h_1 \cdot \varphi_r^{-1}(s_1^0, t_1^0) + \beta_{2,r} \cdot \varphi_r^{-1}(s_1^0 - 2R_0)h_1 \cdot \varphi_r^{-1}(s_1^0 - 2R_0, t_1^0 - 2R_0).
\]

Since \(P^{\tilde{L}}_{b'(r),b(R_0)} \) is a smooth, we have

\[
\| \nabla^L_{\phi} Q^L_{b'} \eta \|_{k,2} \leq C(k, \alpha, r)\| \eta \|_{k-1,1,2}.
\]

Similarly, we obtain that

\[
\| \nabla^L_{\phi} D^{\tilde{L}}(\zeta) \|_{k-1,2} \leq C(k, \alpha, r)\| \zeta \|_{k+1,2}, \quad \| \nabla^L_{\phi} Q^L_{b'} \eta \|_{k,2} \leq C(k, \alpha, r)\| \eta \|_{k-1,1,2}, \quad (5.4)
\]

\[
\| \nabla^L_{\phi} \left(P^{\tilde{L}}_{b'(r),b(R_0)} \circ I^{\tilde{L}}_{b'(r)} \right)(\zeta') \|_{k,2} \leq C(k, \alpha, r)\| \zeta' \|_{k+1,2}, \quad \forall \zeta' \in \text{Ker} D^L_{b'} \quad (5.5)
\]

The above estimates can be generalized to gluing several nodes.

We can define \(\varphi(r), b'(r) \) and \(b(R_0) \) as above. We define a map

\[
\mathcal{F} : D^L_{R_0}(0) \times A \times W^{k,2}(\Sigma(R_0), u'|_{R_0} TM) \times \mathcal{W}^{k,2,\alpha}(\Sigma, \tilde{L}|_{b_0}) \to W^{k-1,2,\alpha}(\Sigma(R_0), \tilde{L}|_{b(R_0)} \otimes \wedge^1_{J_{R_0}} T\Sigma(R_0))
\]

by

\[
\mathcal{F}((r), s, h, \zeta) = P^{\tilde{L}}_{b(b'(r))} \circ D_{b'} \circ (P^{\tilde{L}}_{b(b'(r))})^{-1} I_{b'(r)}(\zeta),
\]

where \(b = (\Sigma(R_0), (r), s, v), s(j_o, y) = 0 \) and \(v = \exp u|_{R_0}(h) \). By the same argument as in Lemma \(3.3 \), we see that \(\mathcal{F} \) is a smooth function. There exists a family smooth function \(h_r(r) \) such that \(u^o_r = \exp u|_{R_0}(h_r(r)) \).

Obviously, when \(\| h - h_r(r) \|_{k,2} \) small we have

\[
\mathcal{F}((r), s, h, \zeta) = P^{\tilde{L}}_{b(b'(r))} (P^{\tilde{L}}_{b(b'(r))})^{-1} (\varphi_r^{-1})^* \left(\mathcal{F}(r)(s, h', I_{h_r(r)}(\zeta)) \right),
\]

where \(h' = (\exp u^o_r \circ (\exp u|_{R_0}(h) \circ \varphi(r)) \). Then by \(4.26 \) and the uniqueness of the implicit function we have

\[
D^{\tilde{L}} \circ (P^{\tilde{L}}_{b(b'(r))})^{-1} \left(I_{b'(r)}(\zeta) + Q^{\tilde{L}}_{b'(r)} \circ I_{s,h,b'(r)}(\tilde{L}_{b'(r)}(\zeta)) \right) = 0
\]

as \(\| s \| \) and \(\| h \|_{k,2} \) small. Since

\[
D \mathcal{F}(r)(s, h', 0)(\zeta_1) = \mathcal{F}(r)(s, h', \zeta_1), \quad D \mathcal{F}(r)(s, h', 0)(0) = 0,
\]

we have an explicit formula for \(f^{\tilde{L}}_{a,h',r}(r) \) (see \(7.6 \)) in the proof of Theorem \(7.2 \):

\[
f^{\tilde{L}}_{a,h',r}(r) \circ I_{r}(\zeta) = \mathcal{F}(r)(0, 0, \mathcal{H}^{-1}(I_{r}(\zeta))
\]

where and \(\mathcal{H} \) is defined by

\[
\mathcal{H}(x) := x + Q^{\tilde{L}}_{r}(\mathcal{F}(r)(s, h', x) - \mathcal{F}(r)(0, 0, x)).
\]
It follows that
\[f_{a,h,b_0}^L \circ I_{b_0}^L(\zeta) = f_{b_0}^L(\rho_{b_0}(P_{b_0}(R)))^{-1} F((r), 0, \hat{h}(r), (I_{b_0}^L)^{-1} \circ \mathcal{H}_0^{-1} \circ (I_{b_0}^L(\zeta))) \]
where
\[\mathcal{H}_0(x) := x + Q_{b_0}^L \left((P_{b_0}(R))^{-1} F((r), s, h, x) - (P_{b_0}(R))^{-1} F((r), 0, \hat{h}(r), x) \right). \]

Choose \(\delta, \rho \) small and \(|r| \) big enough. By (5.4) and \(\nabla_r \mathcal{H}_0^{-1} = -\mathcal{H}_0^{-1} \circ (\nabla_r \mathcal{H}_0) \circ \mathcal{H}_0^{-1} \), one can check that
\[\|\nabla_r^l \left(f_{b_0}^L \circ f_{a,h,b_0}^L \circ I_{b_0}^L \right)(\zeta) \|_{k-1,2} \leq C\|\zeta\|_{k+l,2,\alpha}, \]
where \(\nabla_r = \nabla_{r_1} \cdots \nabla_{r_l} \) with \(\sum_{i=1}^l l_i = l \). Then we have for any \(\zeta \in Ker \mathcal{D}^L|_{b_0}, \)
\[\left\| \nabla_r \left[f_{b_0}^L \circ I_{b_0}^L \right](\zeta) \right\|_{k,2} \leq C\|\zeta\|_{k+l,2,\alpha}. \]

On the other hand, since \(u \) is smooth and \(\mathcal{D}^L|_{b_0} = \partial u \zeta = 0 \), by the standard elliptic estimate we have
\[\|\zeta\|_{k+l,2,\alpha} \leq C\|\zeta\|_{k,2,\alpha}. \]

Hence \(Glu_{s_0(r),h_0}^L(e_0) \circ \varphi_r^{-1} \) is a smooth family. We have proved

Lemma 5.1. There exists positive constants \(d, R \) such that for any \(\zeta \in Ker \mathcal{D}^L|_{b_0} \), \(h \in W^{k,2,\alpha}(\Sigma(R_0), (u(R_0))^* TM) \) with
\[\|\zeta\|_{W^{k,2,\alpha}} \leq d, \quad \|h - \hat{h}(r)\| \leq d, \quad |r| \geq R, \]
\((\varphi_r^{-1})^*(Glu_{s_0(r),h_0}^L(e_0))\) is smooth with respect to \((s, (r), h)\) for any \(e_0 \in Ker \mathcal{D}^L|_{b_0} \), where \(h' = (\exp_{u_0}^L \circ (\exp_{u_0(R_0)}^L (h)) \circ \varphi_r). \) In particular \(Glu_{s_0(r),h_0}^L(e_0) \mid_{\Sigma(R_0)} \) is smooth.

6 Estimates of derivatives with respect to gluing parameters

In this section we prove the following theorem.

Theorem 6.1. Let \(l \in \mathbb{Z}^+ \) be a fixed integer. Let \(u : \Sigma \rightarrow M \) be a \((j, J)\)-holomorphic map. Let \(c \in (0, 1) \) be a fixed constant. For any \(0 < \alpha < \frac{1}{1000} \), there exists positive constants \(C, d, R \) such that for any \(\zeta \in Ker \mathcal{D}^L|_{b_0}, \)
\((\kappa, \xi) \in Ker \mathcal{D} h_{(\kappa, \xi), b_0} \) with
\[\|\zeta\|_{W^{k,2,\alpha}} \leq d, \quad \|(\kappa, \xi)\| \leq d, \quad |r| \geq R, \]
restricting to the compact set \(\Sigma(R_0) \), the following estimate hold.
\[\left\| X_i \left(Glu_{s_0(h_0)}^L((r)) \right) \right\|_{C^l(\Sigma(R_0))} \leq C_1 e^{-(\epsilon - 5\alpha)\frac{r}{4}}, \quad (6.1) \]
\[\left\| X_i X_j \left(Glu_{s_0(h_0)}^L((r)) \right) \right\|_{C^l(\Sigma(R_0))} \leq C_2 e^{-(\epsilon - 5\alpha)\frac{r + r}{4}} \quad (6.2) \]
for any \(X_i \in \left\{ \frac{\partial}{\partial r_i}, \frac{\partial}{\partial r_j} \right\}, i = 1, \cdots, c, s \in \bigotimes_{i=1}^c O_i \) and any \(1 \leq i \neq j \leq c. \)
6.1 Some operators

It is important to estimate the derivative of the gluing map with respect to \(r \). To this end we need to take the derivative \(\frac{\partial}{\partial r} \) for \(Q^L_{\mathcal{B}(r)} \) and other operators. Note that both \(Q^L_{\mathcal{B}(r)} \) and \(f^L_{\mathcal{B}(r)} \) are global operators, so we need a global estimate. On the other hand, since the domain \(\Sigma_{(r)} \) depends on \(r \), in order to make the meaning of the derivative \(\frac{\partial}{\partial r} \) for these operators clear we need transfer all operators defined over \(\Sigma_{(r)} \) into a family of operators defined over \(\overset{\circ}{\Sigma}_1 \cup \overset{\circ}{\Sigma}_2 \), depending on \(r \). To simplify notations we will denote

\[
W^{k,2,\alpha}_u = W^{k,2,\alpha}(\Sigma, \tilde{L}|_{b_0}), \quad W^{k,2,\alpha}_u = W^{k,2,\alpha}(\Sigma, \tilde{L}|_{b_0}), \quad L^{k-1,2,\alpha}_u = W^{k-1,2,\alpha}(\Sigma, \tilde{L}|_{b_0} \otimes \Lambda_{\alpha}^{0,1} T^* \Sigma).
\]

\[
W^{k,2,\alpha}_{r,u(r)} = W^{k,2,\alpha}_{(r), \tilde{L}|_{b(r)}}, \quad L^{k-1,2,\alpha}_{r,u(r)} = W^{k-1,2,\alpha}_{(r), \tilde{L}|_{b(r)} \otimes \Lambda_{\alpha}^{0,1} T^* \Sigma_{(r)}}.
\]

We first define three maps

\[
H_r : L^{k-1,2,\alpha}_{r,u(r)} \to L^{k-1,2,\alpha}_u, \quad P_r : L^{k-1,2,\alpha}_u \to L^{k-1,2,\alpha}_{r,u(r)}, \quad \phi_r : W^{k,2,\alpha}_u \to W^{k,2,\alpha}_{r,u(r)}
\]

as following. Given \(\eta \in L^{k-1,2,\alpha}_{r,u(r)} \) define

\[
H_r \eta = (\beta_{1,2}(s_1) \eta(s_1, t_1), \beta_{2,2}(s_2) \eta(s_2, t_2)),
\]

where \(\eta(s_i, t_i) \) is the expression of \(\eta \) in terms the coordinates \((s_i, t_i)\). Given \((\eta_1, \eta_2) \in L^{k-1,2,\alpha}_u \) define

\[
P_r(\eta_1, \eta_2) = \begin{cases}
\eta_1 & \text{if } p \in \Sigma(r/2) \\
\beta_{1,2}(s_1) \eta_1(s_1, t_1) + \beta_{2,2}(s_2 - 2 r) \eta_2(s_2 - 2 r, t_1 - \tau) & \text{if } p \in \Sigma(r) \setminus \Sigma(r/2).
\end{cases}
\]

If no danger of confusion we will denotes \((6.3)\) by \(P_r(\eta_1, \eta_2) = \sum \beta_i \eta_i \). Given \((\zeta_1 + \hat{\zeta}_0, \zeta_2 + \hat{\zeta}_0) \in W^{k,2,\alpha}_u \) with supp \(\zeta_i \subset \Sigma(3r/2), \) define

\[
\phi_r \left(\zeta_1 + \hat{\zeta}_0, \zeta_2 + \hat{\zeta}_0 \right) \bigg|_{\Sigma(r/2)} = \left(\zeta_1 + \hat{\zeta}_0 \right) (s_1, t_1) \bigg|_{\Sigma(r/2)},
\]

\[
\phi_r \left(\zeta_1 + \hat{\zeta}_0, \zeta_2 + \hat{\zeta}_0 \right) \bigg|_{\frac{r}{2} \leq s_1 \leq \frac{3r}{2}} = \left(\zeta_1 (s_1, t_1) + \zeta_2 (s_1 - 2r, t_1 - \tau) + \hat{\zeta}_0 \right) \bigg|_{\frac{r}{2} \leq s_1 \leq \frac{3r}{2}}.
\]

By \((4.3)\) one can check that

\[
P_r H_r = 1d, \quad H_r P_r(\eta_1, \eta_2) = (\tilde{\zeta}_1, \tilde{\zeta}_2).
\]

where

\[
\tilde{\zeta}_1 = \beta_{1,2}(\beta_{1,2}(s_1, t_1) + \beta_{2,2}(s_2 - 2r, t_1 - \tau)),
\]

\[
\tilde{\zeta}_2 = \beta_{2,2}(\beta_{1,2}(s_2 + 2r, t_2 + \tau) + \beta_{2,2}(s_2, t_2)).
\]

In particular, \(H_r \) is injective and \(P_r \) is surjective.

Next we introduce the following three operators

\[
\left(Q^L_{\mathcal{B}(r)} \right)^* : L^{k-1,2,\alpha}_{r,u(r)} \to W^{k,2,\alpha}_u, \quad \left(Q^L_{\mathcal{B}(r)} \right)^* : L^{k-1,2,\alpha}_{r,u(r)} \to W^{k,2,\alpha}_u, \quad \left(f^L_{\mathcal{B}(r)} \right)^* : \ker \tilde{D}|_{b_0} \to W^{k,2,\alpha}_u \).
\]

Given \(\eta \in L^{k-1,2,\alpha}_{r,u(r)} \), denote

\[
(\zeta_1, \zeta_2) = Q^L_{\mathcal{B}(r)} H_r \eta.
\]

Set

\[
(\zeta^*_r = (\beta_{1,r}(s_1) \zeta_1(s_1, t_1), \beta_{2,r}(s_2) \zeta_2(s_2, t_2)) \in W^{k,2,\alpha}_u.
\]

(6.6)
Define
\[
(Q_{b(r)}^L)^* \eta = \zeta_r, \quad (Q_{b(r)}^L)^* = (Q_{b(r)}^L)^* \left(D_{b(r)}^L Q_{b(r)}^L \right)^{-1}.
\] (6.7)

Then we have maps
\[
(Q_{b(r)}^L)^* P_r : L_u^{k-1,2,\alpha} \rightarrow W_u^{k,2,\alpha}, \quad (Q_{b(r)}^L)^* P_r : L_u^{k-1,2,\alpha} \rightarrow W_u^{k,2,\alpha}.
\]

For any \(\zeta + \hat{\zeta}_0 \in \text{ker} D_{b,0}^L \), where \(\zeta = (\zeta_1, \zeta_2) \in W_u^{k,2,\alpha} \), we set
\[
\zeta_r^* = \left(\zeta_1 \beta_{1:r} + \hat{\zeta}_0, \quad \zeta_2 \beta_{2:r} + \hat{\zeta}_0 \right).
\] (6.8)

Define
\[
(I_{r(r)}^L)^*(\zeta + \hat{\zeta}) = \zeta_r^* - (Q_{b(r)}^L)^* D_{b(r)}^L \circ \phi_r \zeta_r^*.
\] (6.9)

By the definition we have
\[
I_{r(r)}^L = \phi_r \circ (I_{r(r)}^L)^*, \quad Q_{b(r)}^L = \phi_r \circ (Q_{b(r)}^L)^*.
\]

Define an operator \(X : L_u^{k-1,2,\alpha} \rightarrow L_r^{k-1,2,\alpha} \) by
\[
X(\eta_1, \eta_2) = D_{b(r)}^L Q_{b(r)}^L P_r(\eta_1, \eta_2) - P_r(\eta_1, \eta_2).
\]

Using \(E_{u, s}^L = 0 \), one can check that
\[
X(\eta_1, \eta_2) = \sum (\tilde{\beta} \beta_{i:r}) h_i + \sum \beta_{i:r} E_{u, s}^L h_i + \left(\sum \beta_{i:r} \beta_{i;2} - 1 \right) \sum \beta_{i;2} \eta_i,
\]
where \((h_1, h_2) = Q_{b(r)}^L H_r P_r(\eta_1, \eta_2) \). Obviously, \(\text{supp} X(\eta_1, \eta_2) \subset \{ \frac{r}{2} \leq |s_i| \leq \frac{3r}{2} \} \).

Let \(b = (a, v) \in \tilde{O}_{b, \alpha}(\delta_{\alpha}, \rho_0) \), where \(v = \text{exp}_{u, r}(h) \). We define
\[
Gl u_{a, h, (r)}^L := \left(I_{r(r)}^L \right)^* + (Q_{b(r)}^L)^* \circ f_{a, h, (r)}^L \circ \left(I_{r(r)}^L \right)^*: \bar{F}_{b, 0} \rightarrow W_u^{k,2,\alpha}(\Sigma, \bar{L}_{b, 0}).
\]

This definition can be extended to the gluing several nodes case in a natural way:
\[
Gl u_{a, h, (r)}^L := \left(I_{r(r)}^L \right)^* + (Q_{b(r)}^L)^* \circ f_{a, h, (r)}^L \circ \left(I_{r(r)}^L \right)^*: \bar{F}_{b, 0} \rightarrow W_u^{k,2,\alpha}(\Sigma, \bar{L}_{b, 0}).
\]

It is easy to see that, restricting to \(\Sigma(0) \), we have \(Gl u_{a, h, (r)}^L(\zeta) = P_{b, h, (r)}^L \circ Gl u^L_{a, h, (r)}(\zeta) \) for any \(\zeta \in D_{b, 0}^L \).

6.2 Estimates of the first derivatives

Let \(\eta = (\eta_1, \cdots, \eta_k) \in L_u^{k-1,2,\alpha} \). Denote
\[
D^i_j(R_0) = \left\{ (s^i_1, t^i_2) \in \Sigma \mid |s^i_1| \geq R_0 \right\}, \quad D^i(R_0) = \bigcup_{i=1}^n D^i_j(R_0).
\]

Denote \(h_{(r)} = \pi \circ Gl u_{a, (r)}(\kappa, \xi), \quad h'_{(r)} = \pi \circ Gl u^*_{a, (r)}(\kappa, \xi) \) and \(v_{(r)} = \text{exp}_{u, (r)}(h_{(r)}) \). Set
\[
\beta_{1,i,R}(s^i_1) = \beta \left(\frac{1}{2} + \frac{r^i - s^i_1}{R} \right), \quad \beta_{2,i,R}(s^i_2) = \sqrt{1 - \beta^2 \left(\frac{1}{2} - \frac{s^i_2 + r^i}{R} \right)}.
\]

To simplify notations we denote
\[
D := D_{b(r)}, \quad Q := Q_{b(r)}^L, \quad I^* := \left(I_{r(r)}^L \right)^*, \quad f = f_{r(r)}^L, \quad Q' := \left(Q_{b(r)}^L \right)^*, \quad P = P_{b(r)}^L, \quad E = E_{b(r)}^L, \quad (Q')^* := \left(Q_{b(r)}^L \right)^{f*}, \quad Q^* := \left(Q_{b(r)}^L \right)^{r*}.
\]

The following Lemmas can be proved by the same method and word-by-word as in [3], we omit them.
Lemma 6.2. For any \((\eta_1, \eta_2) \in L^{k-1, 2, \alpha}_u\), the following estimates hold:

\[
(1) \| (Q')^* P_r(\eta_1, \eta_2) \|_{k, 2, \alpha} \leq C \left(e^{-(c-\alpha)\bar{T}} \sum_{|s_i| \leq \bar{T}} \| \eta_i \|_{s_i \leq r+1} \| k-1, 2, \alpha + \sum_{i=1}^{2} \| \eta_i \|_{s_i \leq r+1} \| k-1, 2, \alpha } \right),
\]

\[
(2) \left\| \frac{\partial}{\partial r} ((Q')^* P_r)(\eta_1, \eta_2) \right\|_{k-1, 2, \alpha} \leq C \left(e^{-(c-\alpha)\bar{T}} \sum_{|s_i| \leq \bar{T}} \| \eta_i \|_{s_i \leq r+1} \| k-1, 2, \alpha + \sum_{i=1}^{2} \| \eta_i \|_{s_i \leq r+1} \| k-1, 2, \alpha } \right),
\]

\[
(3) \left\| \frac{\partial}{\partial r} (H_r(DQ')^{-1} P_r)(\eta_1, \eta_2) \right\|_{k-1, 2, \alpha} \leq C \left(e^{-(c-\alpha)\bar{T}} \| \eta_1 \|_{s_1 \leq \bar{T}} \| k-1, 2, \alpha + \| \eta_1 \|_{s_2 \leq \bar{T}} \| k-1, 2, \alpha } \right),
\]

\[
(4) \left\| H_r(DQ')^{-1} P_r(\eta_1, \eta_2) \right\|_{k-1, 2, \alpha} \leq C \left(e^{-(c-\alpha)\bar{T}} \| \eta_1 \|_{s_1 \leq \bar{T}} \| k-1, 2, \alpha + \| \eta_1 \|_{s_2 \leq \bar{T}} \| k-1, 2, \alpha } \right),
\]

\[
(5) \left\| \frac{\partial}{\partial r} (H_r P_r)(\eta_1, \eta_2) \right\|_{k-1, 2, \alpha} \leq C \sum_{i=1}^{2} \left\| \eta_i \right\|_{s_i \leq \bar{T}} \| k-1, 2, \alpha + \| \eta_i \|_{s_i \leq \bar{T}} \| k-1, 2, \alpha } \right).
\]

Lemma 6.3. There exists a constant \(C > 0\), independent of \(r\), such that for any \(h + \hat{h}_0 \in kerD|_{h_0}\):

\[
\left\| \frac{\partial}{\partial r} \nu^*(h + \hat{h}_0) \right\|_{k-1, 2, \alpha} \leq C \left\| h_i \right\|_{s_i \leq \bar{T}} \| k-1, 2, \alpha + C e^{(c-\alpha)\bar{T}} \| \hat{h}_0 \|. \quad (6.10)
\]

Denote \(\nu_{(r)} = P^{-1} \circ Glv_{h_0}^{L_r}(\cdot)\), and \(\nu^*_{(r)} := \text{Gl}v_{h_0}^{L_r}(\cdot)\). Obviously, \(\nu_{(r)} = \phi_r(\nu^*_{(r)})\)

\[
\nu_{(r)} = I_r(\zeta) + Q \circ f \circ I_r(\zeta), \quad \nu^*_{(r)} = I^*_r(\zeta) + Q^* \circ f \circ I_r(\zeta). \quad (6.11)
\]

Set \(h^* = (h_1\beta_1 + h_0, h_2\beta_2 + h_0)\). Since \(u\) (resp. \(v\)) is a \((j_0, J)\) (resp. \((j_0, J)\)) holomorphic map, we have

\[
\sum_{i+j=d} \left\| \frac{\partial^{i+j} E}{\partial s^i \partial t^j} \right\| + \sum_{i+j=d} \left\| \frac{\partial^{i+j} E^L}{\partial s^i \partial t^j} \right\| \leq C d e^{-c|s|}, \quad R_0 \leq |s| \leq r. \quad (6.12)
\]

Taking derivative \(D\) on \(\nu_{(r)}\) we have

\[
f \circ I_{(r)}(\zeta) = \partial_{\nu_{(r)}}(\nu_{(r)}) + E \nu_{(r)}. \quad (6.13)
\]

On the other hand, by \(D^L h(P \nu_{(r)}) = 0\) we have

\[
\partial_{\nu_{(r)}}(\nu_{(r)}) + P^{-1} \left(\nabla \nu_{(r)}(P(\nu_{(r)}) + E^L h(P \nu_{(r)}) \right) = 0. \quad (6.14)
\]

By the exponential decay of \(u_{(r)}\) and \(v_{(r)}\) we have

\[
\left\| \nabla \nu_{(r)}(P) \right\| \leq C (|du_{(r)}| + |dv_{(r)}|) \leq C d e^{-c|s|}, \quad R_0 \leq |s| \leq r. \quad (6.15)
\]

By \((6.12)\) and \((6.15)\) we conclude that \(\nu_{(r)}\) satisfies the assumption of Lemma \(7.4\) in Appendix. Then Lemma \(7.4\) gives us

\[
\left\| \nu_{(r)} \|_{\xi \leq |s| \leq \bar{T}} \right\|_{k-1, 2, \alpha} \leq C e^{-(c-\alpha)\bar{T}}, \quad (6.16)
\]

It follows from \((6.13)\) and \((6.16)\) that

Lemma 6.4.

\[
\left\| H_r f \circ I_{(r)}(\zeta) \|_{|s| \geq \bar{T}} \right\|_{k-1, 2, \alpha} \leq C e^{-(c-\alpha)\bar{T}} (1 + \| \zeta \|_{k, 2, \alpha}), \quad \forall r \geq 8R_0. \quad (6.17)
\]
Similar Lemma 4.7 in [3], we have

Lemma 6.5. There exists a constant $C > 0$ such that for any $\zeta \in \ker D\tilde{L}_b$ we have

$$\left\| \frac{\partial}{\partial s_i} \nu_{(r),i} \right\|_{k-1,2,\alpha} \leq C e^{-(\epsilon - 5\alpha)\frac{\zeta}{r}} (\|\zeta\|_{k,2,\alpha} + 1).$$

An estimate similar to Lemma 4.8 in [3] can be proved:

Lemma 6.6.

$$\left\| H_r \circ D\phi_r \left(\frac{\partial}{\partial r} \nu_{(r)}^* \right) \right\|_{k-1,2,\alpha} \leq C \left(d \left\| \frac{\partial}{\partial r} \nu_{(r)}^* \right\|_{k-1,2,\alpha} + e^{-(\epsilon - 5\alpha)\frac{\zeta}{r}} \right). \quad (6.18)$$

Proof. We estimate $\left\| \beta_{1:2} D\phi_r \left(\frac{\partial}{\partial r} \nu_{(r)}^* \right) \right\|_{k-1,2,\alpha}$. The estimates of $\left\| \beta_{2:2} D\phi_r \left(\frac{\partial}{\partial r} \nu_{(r)}^* \right) \right\|_{k-1,2,\alpha}$ is the same. As in [3] we construct two smooth family $\tilde{u}(r), \tilde{h}(r)$, depending on (r), defined over Σ_1 as follows:

$$\tilde{u}(r) = \begin{cases} u(r), & \text{in } \Sigma_1(r + 1), \\ u_1(q) + \beta(r + 2 - s_1)(u_1(s_1, t_1) - u_1(q)), & \text{if } s_1 \geq r + 1 \end{cases} \quad (6.19)$$

$$\tilde{h}(r) = \begin{cases} h(r), & \text{in } \Sigma_1(r + 1), \\ \beta(r + 2 - s_1)h(r), & \text{if } s_1 \geq r + 1 \end{cases}. \quad (6.20)$$

Set $\tilde{v}(r) = \exp_{\tilde{u}(r)}(\tilde{h}(r)), \tilde{b} = (s, \tilde{v}(r))$ and $\tilde{b}(r) = (s, \tilde{u}(r))$. We can define $\tilde{v}(r)$ as the definition of $\tilde{h}(r)$. So the meaning of $\frac{\partial \tilde{u}}{\partial \nu_{(r)}}, \frac{\partial \tilde{h}}{\partial \nu_{(r)}}$ and $\nabla_{\tilde{v}} \tilde{v}(r)$ is clear. Set

$$\Lambda_r := P^{-1} \circ D\tilde{L} \circ P(\nu_{(r)}), \quad \tilde{\Lambda}_r := P^{-1} \circ D\tilde{L} \circ P(\tilde{v}(r)).$$

Obviously, $\Lambda_r = 0$ and $\Lambda_r|_{\Sigma_{r+1}} = \tilde{\Lambda}_r|_{\Sigma_{r+1}}$. We calculate $\frac{\partial}{\partial r} (\beta_{1:2} \Lambda_r)$:

$$\frac{\partial}{\partial r} (\beta_{1:2} \Lambda_r) = \frac{\partial}{\partial r} (\beta_{1:2} \tilde{\Lambda}_r) = \beta_{1:2} P^{-1} \left[\nabla_r \left(D\tilde{L} \circ P \right) (\tilde{v}(r)) + D\tilde{L} \circ P(\nabla_r \tilde{v}(r)) \right]. \quad (6.21)$$

Using Theorem 4.7 we have

$$\left\| \beta_{1:2} \nabla_r \left(D\tilde{L} \circ P \right) (\tilde{v}(r)) \right\|_{k,2,\alpha} \leq C e^{-(\epsilon - 5\alpha)\frac{\zeta}{r}}. \quad (6.22)$$

Restricting in $\Sigma_1(r + 1)$ we have

$$\nabla_r \tilde{v}(r) = \phi_r(\nabla \nu_{(r)}^*) - 2\nabla_{s_2} \nu_{(r),2},$$

where $\nu_{(r)}^* = \left(\nu_{(r),1}, \nu_{(r),2} \right)$. By Lemma 6.5 we have

$$\left\| \nabla_{s_2} (P\nu_{(r),2}) \right\|_{\Sigma_{r+1}} \leq C e^{-(\epsilon - \alpha)\frac{\zeta}{r}} \left(\| P\nu_{(r),2} \|_{k,2,\alpha} + 1 \right).$$

Applying the exponential decay of $u_{(r)}$ and $v_{(r)}$, we get

$$\left\| \nabla_{s_2} (\nu_{(r),2}) \right\|_{k,2,\alpha} \leq C e^{-(\epsilon - \alpha)\frac{\zeta}{r}} \left(\| \nu_{(r),2} \|_{k,2,\alpha} + 1 \right). \quad (6.23)$$

Then Lemma follows from (4.11), (6.21), (6.22) and (6.23).
Proof of (6.1). By the definition of $\nu_{(r)}^r$, we have
\[
\frac{\partial}{\partial r} \nu_{(r)}^r = \frac{\partial}{\partial r} I^*(\zeta) + \frac{\partial}{\partial r} (Q^* P_r) H_r f I_r(\zeta) + Q^* P_r \frac{\partial}{\partial r} (H_r f I_r(\zeta)).
\] (6.24)

Then multiplying $H_r D \phi_r$ on both sides of (6.24) we get
\[
H_r D \phi_r \frac{\partial \nu_{(r)}^r}{\partial r} = H_r D \phi_r \frac{\partial I^*(\zeta)}{\partial r} + H_r D \phi_r \frac{\partial}{\partial r} (Q^* P_r) H_r f I_r(\zeta) + H_r D \phi_r \frac{\partial}{\partial r} (H_r f I_r(\zeta)).
\]

It follows together with (6.18) and Theorem 4.7 that
\[
\left\| H_r P_r \frac{\partial (H_r f I_{(r)}(\zeta))}{\partial r} \right\|_{k-2,2,\alpha} \leq C \left[\left\| \frac{\partial \nu_{(r)}^r}{\partial r} \right\|_{k-1,2,\alpha} + e^{-\frac{(\zeta-5a)^2}{4}} \right] + (A) + (B),
\] (6.25)

where
\[
(A) = \left\| H_r D \phi_r \left(\frac{\partial}{\partial r} I^*(\zeta) \right) \right\|_{k-2,2,\alpha}, \quad (B) = \left\| H_r D \phi_r \left(\frac{\partial}{\partial r} (Q^* P_r) \circ H_r f (I_r(\zeta)) \right) \right\|_{k-2,2,\alpha}.
\]

For any (h_1, h_2) with $\text{supp } h_i \subset \Sigma(R_0) \cup \{|s_i| \leq \frac{3r}{2} \}$ we have
\[
\beta_{1,2} D \phi_r(h_1, h_2) = \beta_{1,2} \partial \beta_{s_r}(h_1 + h_2) + \beta_{1,2} E(h_1 + h_2).
\] (6.26)

Then
\[
\left\| H_r D \phi_r(h_1, h_2) \right\|_{k-1,2,\alpha} \leq C \left\| (h_1, h_2) \right\|_{k,2,\alpha}.
\] (6.27)

Taking the derivation $\frac{\partial}{\partial r}$ of (6.26) we obtain
\[
\left\| \frac{\partial}{\partial r} (\beta_{1,2} D \phi_r)(h_1, h_2) \right\|_{k-2,2,\alpha} \leq C \left[\left\| h_2 \right\|_{\zeta \leq s_1 \leq r+1} + e^{-\frac{(\zeta-5a)^2}{4}} + \|D \phi_r(h_1, h_2)\|_{r-1 \leq s_1 \leq r+1} \right].
\] (6.28)

Since $H_r D \phi_r I_{(r)}^*(\zeta) = 0$, we have $H_r D \phi_r \frac{\partial I_{(r)}^*}{\partial r}(\zeta) = \frac{\partial H_r D \phi_r}{\partial r} I_{(r)}^*(\zeta)$. Then
\[
(A) \leq C e^{-\frac{(\zeta-5a)^2}{4}}.
\] (6.29)

Since
\[
\frac{\partial}{\partial r} (Q^* P_r) = \frac{\partial}{\partial r} ((Q')^* P_r) \circ (H_r D Q')^{-1} P_r + (Q')^* P_r \circ \frac{\partial}{\partial r} (H_r D Q')^{-1} P_r
\]
by (1), (2), (3), (4) of Lemma 6.2 we get
\[
\left\| \frac{\partial}{\partial r} (Q^* P_r)(\eta_1, \eta_2) \right\|_{k-1,2,\alpha} \leq C \left(e^{-\frac{(\zeta-5a)^2}{4}} \sum \left\| \eta_i \right\|_{s_i \leq r+1} \left\| \nu_{(r)}^r \right\|_{k-1,2,\alpha} + \sum_{i=1}^{2} \left\| \eta_i \right\|_{\zeta \leq s_i \leq r+1} \right).
\] (6.30)

It follows from Lemma 6.3, (6.27) and (6.30) that
\[
(B) \leq C e^{-\frac{(\zeta-5a)^2}{4}}.
\] (6.31)

Note that $H_r P_r \frac{\partial}{\partial r} (H_r f I_{(r)}(\zeta)) + \frac{\partial}{\partial r} (H_r P_r) H_r f I_{(r)}(\zeta) = \frac{\partial}{\partial r} ((H_r f I_{(r)})(\zeta))$. Then (6.29), (6.31), (5) of Lemma 6.2 together with (6.25) gives
\[
\left\| \frac{\partial}{\partial r} (H_r f I_{(r)}(\zeta)) \right\|_{k-1,2,\alpha} \leq C e^{-\frac{(\zeta-5a)^2}{4}} + C \left\| \frac{\partial}{\partial r} (\nu_{(r)}^r) \right\|_{k-1,2,\alpha}.
\] (6.32)
Substituting this into (6.24), and using (6.30), Lemma 6.3, Lemma 6.4 we conclude that

\[\left\| \frac{\partial}{\partial r} \nu^*_r \right\|_{k-1,2,\alpha} \leq C e^{-(\epsilon - 5\alpha)/2} \tag{6.33} \]

when \(d \) small. Since \(\nu^*_r \) is a \((j_\alpha, J)\) holomorphic map, by the standard elliptic estimates we have (6.1).

Repeating the all arguments in this section, one can prove that there exists a constant \(C > 0 \) such that

\[\left\| \frac{\partial}{\partial r} \nu^*_r \right\|_{k-1,2,\alpha} \leq C e^{-(\epsilon - 5\alpha)/2} (d + 1) \tag{6.34} \]

for any \(\zeta \in \ker \tilde{D}_{b_\alpha}^L \).

6.3 Estimates of the second derivatives

We can define \(H_r \) and \(P_r, \cdots \) as before. Let \(\xi = Q_{b_\alpha}^L H_r P_r \eta \) and \(\eta^i_l = \eta \big|_{D^l_i(R_0)} \), \(l = 1, 2 \). Obviously

\[H_r P_r \eta \big|_{D^l_i(R_0)} = \left(\frac{\sum_{i=1}^{2} \beta_{i,1,2} \eta^i}{} \right) \, \left(\frac{\sum_{i=1}^{2} \beta_{i,2,1} \eta^i}{} \right) \tag{6.35} \]

Set \(W_l^i = \{ (s_l^i, t_l^i) \} \). It is easy to see that for any \(1 \leq i \neq j \leq \epsilon \), and \(l = 1, 2 \),

\[\text{supp} \frac{\partial E}{\partial r_i} \subset V_i, \quad \frac{\partial \beta_{i,j,r}^i}{\partial \xi_r} = 0, \quad \text{supp} \frac{\partial H_r P_r}{\partial r_i} \subset V_i, \quad \text{supp} \frac{\partial \beta_{i,j,r}^i}{\partial \xi_r} \subset V_i. \tag{6.37} \]

It follows that

\[\left\| \frac{\partial}{\partial r_i} \xi \right\|_{k-1,2,\alpha} \leq C \left\| \frac{\partial}{\partial r_i} H_r P_r (\eta) \right\|_{k-2,2,\alpha} \leq C \| \eta \|_{V_i} \| \beta \|_{k-2, \alpha} \tag{6.38} \]

Let \(\xi^i_l = \xi \big|_{D^l_i(R_0)} \), \(l = 1, 2 \). Then \(\xi^1_l, \xi^2_l \) is the restriction of \(\xi \) near the node \(q_i \). Since \(D_{b_\alpha}^L \frac{\partial}{\partial r_i} \xi = \frac{\partial}{\partial r_i} (H_r P_r (\eta)) \), by Lemma 7.4 and (6.37) we have for any \(j \neq i \)

\[\sum_{l=1}^{2} \left\| \frac{\partial}{\partial r_i} \xi \right\|_{W_l^i} \leq C e^{-(\epsilon - \alpha)/2} \left\| \frac{\partial}{\partial r_i} H_r P_r (\eta) \right\|_{k-2,2,\alpha} \leq C e^{-(\epsilon - \alpha)/2} \| \eta \|_{V_i} \| \beta \|_{k-2, \alpha} \tag{6.39} \]

In the following we assume that \(1 \leq i \neq j \leq \epsilon \). It is easy to see that

\[\frac{\partial^2 \xi}{\partial r_i \partial r_j} \right|_{D^l} = 0, \quad (Q^\star P_r \eta) \big|_{D^l} = (\beta_{1,l,r}^i \xi^1_l, \beta_{2,l,r}^i \xi^2_l), \quad \forall \, 1 \leq l \leq \epsilon. \tag{6.39} \]

Taking the derivative \(\frac{\partial}{\partial r_i} \) and \(\frac{\partial^2}{\partial r_i \partial r_j} \) of \((Q^\star P_r) \), by (6.36), (6.37), (6.39) and \((Q^\star P_r) \big|_{D^l_i(R_0)} = \xi \), we obtain

\[\frac{\partial}{\partial r_j} (Q^\star P_r) \big|_{D^l_i(R_0)} = \frac{\partial^2}{\partial r_i \partial r_j} (Q^\star P_r) \big|_{D^l_i(R_0)} = \frac{\partial^2}{\partial r_i \partial r_j} \left(\frac{\partial \xi^1_l}{\partial r_i}, \frac{\partial \xi^2_l}{\partial r_i} \right) \big|_{D^l_i(R_0)} \],

and \(\text{supp} \frac{\partial^2}{\partial r_i \partial r_j} (Q^\star P_r) \big|_{D^l_i(R_0)} \subset V_i \cup V_j \). By (6.38) we get

\[\sum_{l=1}^{2} \left\| \frac{\partial}{\partial r_j} ((Q^\star P_r) \eta) \right\|_{W_l^i} + \left\| \frac{\partial^2}{\partial r_i \partial r_j} ((Q^\star P_r) \eta) \right\|_{k-2,2,\alpha} \leq C e^{-(\epsilon - \alpha)/2} \| \eta \|_{V_i} \| \beta \|_{k-2, \alpha} + C \epsilon \]
A direct calculation gives us

\[
H_T \circ DQ' \circ P_T|_{D'} = \left(\beta_{1,1,2} \left(\frac{\partial}{\partial \eta}\left(\sum_{\ell=1}^{2} \beta_{\ell,i,r} \xi^\ell_i \right) + E \sum_{\ell=1}^{2} \beta_{\ell,i,r} \xi^\ell_i \right), \beta_{2,1,2} \left(\frac{\partial}{\partial \eta}\left(\sum_{\ell=1}^{2} \beta_{\ell,i,r} \xi^\ell_i \right) + E \sum_{\ell=1}^{2} \beta_{\ell,i,r} \xi^\ell_i \right) \right).
\]

It follows from \(H_T DQ' P_T|_{\Sigma \cup D'(r_i/2)} = 1\), \(H_T DQ' P_T|_{\Sigma \cup D'(r_i/2)} = 0\), (6.37) and \(\frac{\partial E}{\partial r_i}|_{V_i} = 0\) that

\[
\sup \frac{\partial}{\partial r_i} (H_T DQ' P_T) \subset \bigcup_{j=1}^{\epsilon} V_j, \quad \sup \frac{\partial^2}{\partial r_i \partial r_j} (H_T DQ' P_T) \subset V_j \cup V_i.
\]

(6.41)

Taking the derivative \(\frac{\partial}{\partial r_i}\) and \(\frac{\partial^2}{\partial r_i \partial r_j}\) of \(H_T (DQ')_r\), using (6.36), (6.37), (6.38) and (6.39) one can easily check that

\[
\sum_{l=1}^{2} \left\| \frac{\partial}{\partial r_j} (H_T DQ' P_T) (\eta) \right\|_{W^k_{1,2,\alpha}} + \left\| \frac{\partial^2}{\partial r_i \partial r_j} (H_T DQ' P_T) (\eta) \right\|_{k-2,2,\alpha} \leq C e^{-\frac{(\epsilon-\alpha)r_i}{4}} \|\eta\|_{k-1,2,\alpha} + C e^{-\frac{(\epsilon-\alpha)r_i}{4}} \|\eta\|_{k-1,2,\alpha}.
\]

(6.42)

Note that

\[
\frac{\partial}{\partial r_i} (H_T (DQ')_r) \circ H_T (DQ')^{-1}_r + H_T (DQ')_r \circ \frac{\partial}{\partial r_i} (H_T (DQ')^{-1}_r) = \frac{\partial H_T P_T}{\partial r_i}.
\]

Multiplying \(H_T (DQ')^{-1}_r\) on the both sides, by

\[
\frac{\partial}{\partial r_i} (H_T (DQ')^{-1}_r) = H_T P_T \frac{\partial}{\partial r_i} (H_T (DQ')^{-1}_r) + \frac{\partial H_T P_T}{\partial r_i} H_T (DQ')^{-1}_r,
\]

we have

\[
\frac{\partial}{\partial r_i} (H_T (DQ')^{-1}_r) = H_T (DQ')^{-1}_r \frac{\partial H_T P_T}{\partial r_i} + \frac{\partial H_T P_T}{\partial r_i} H_T (DQ')^{-1}_r - H_T (DQ')^{-1}_r \circ \frac{\partial}{\partial r_i} (H_T (DQ')_r) \circ H_T (DQ')^{-1}_r.
\]

(6.43)

Using (4), (5) of Lemma6.2, (6.36) to the first term, and (6.36) to the second term, applying (4) of Lemma6.2 and (6.42) to the last term we have

\[
\sum_{l=1}^{2} \left\| \frac{\partial}{\partial r_i} (H_T (DQ')^{-1}_r) \right\|_{W^k_{1,2,\alpha}} \leq C e^{-\frac{(\epsilon-\alpha)r_i}{4}} \|\eta\|_{k-1,2,\alpha}.
\]

(6.44)

Taking derivative \(\frac{\partial}{\partial r_j}\) of (6.43), by (6.36) we get

\[
\frac{\partial^2}{\partial r_i \partial r_j} (H_T (DQ')^{-1}_r) = \frac{\partial}{\partial r_j} (H_T (DQ')_r) \frac{\partial H_T P_T}{\partial r_i} + \frac{\partial H_T P_T}{\partial r_i} \frac{\partial}{\partial r_j} (H_T (DQ')_r) - \frac{\partial}{\partial r_j} (H_T (DQ')^{-1}_r) \circ \frac{\partial}{\partial r_i} (H_T (DQ')_r) \circ H_T (DQ')^{-1}_r - H_T (DQ')^{-1}_r \circ \frac{\partial^2}{\partial r_i \partial r_j} (H_T (DQ')_r) \circ H_T (DQ')^{-1}_r - H_T (DQ')^{-1}_r \circ \frac{\partial^2}{\partial r_i \partial r_j} (H_T (DQ')_r) \circ H_T (DQ')^{-1}_r.
\]

By (3), (4) of Lemma6.2, (6.36), (6.44) and (6.42) one can check that

\[
\left\| \frac{\partial^2}{\partial r_i \partial r_j} (H_T (DQ')^{-1}_r) (\eta) \right\|_{k-2,2,\alpha} \leq C e^{-\frac{(\epsilon-\alpha)r_i}{4}} \|\eta\|_{k-1,2,\alpha} + C e^{-\frac{(\epsilon-\alpha)r_i}{4}} \|\eta\|_{k-1,2,\alpha}.
\]

(6.45)
By (6.40), (6.45) and
\[
\frac{\partial^2 Q^* P_r}{\partial r_i \partial r_j} = \frac{\partial^2 (Q^*)^* P_r}{\partial r_i \partial r_j} \circ H_r (DQ')^{-1} P_r + (Q^*)^* P_r \frac{\partial^2}{\partial r_i \partial r_j} \left(H_r (DQ')^{-1} P_r \right) \\
+ \frac{\partial (Q^*)^* P_r}{\partial r_i} \circ \frac{\partial}{\partial r_j} \left(H_r (DQ')^{-1} P_r \right) + \frac{\partial (Q^*)^* P_r}{\partial r_j} \circ \frac{\partial}{\partial r_i} \left(H_r (DQ')^{-1} P_r \right),
\]
we have
\[
\sum_{l=1}^2 \left\| \frac{\partial}{\partial r_j} (Q^* P_r) (\eta) \right\|_{W^*_{k-1,2,\alpha}} + \left\| \frac{\partial^2}{\partial r_i \partial r_j} (Q^* P_r) (\eta) \right\|_{k-2,2,\alpha}
\leq C e^{-\frac{\gamma - \alpha}{4} r_i + r_j} \| \eta \|_{k-1,2,\alpha} + C e^{-\frac{\gamma - \alpha}{4} r_i + r_j} \| \eta \|_{k-1,2,\alpha}.
\]
\[(6.46)\]
Since for any \(\zeta + \hat{\zeta}_0 \in Ker D^L_{b_0}\)
\[
D \phi_r (\zeta^*_r) = \sum (\partial \beta_{\zeta,r}) \zeta_i + \sum \beta_{\zeta,r} (E - E_{\alpha}) (\zeta_i + \hat{\zeta}_0),
\]
we have
\[
supp H_r D \phi_r (\zeta^*_r) \subset \bigcup_i V_i, \quad supp \frac{\partial}{\partial r_i} \left(H_r D \phi_r (\zeta^*_r) \right) \subset V_i, \quad \frac{\partial^2}{\partial r_i \partial r_j} \left(H_r D \phi_r (\zeta^*_r) \right) = 0.
\]
Since \(I^*_r (\zeta + \hat{\zeta}_0) = (Id - Q^* P_r \circ H_r D \circ \phi_r (\zeta^*_r), (6.28)\) and \(6.46), we have
\[
\sum_{l=1}^2 \left\| \frac{\partial}{\partial r_j} I^*_r (\zeta + \hat{\zeta}_0) \right\|_{W^*_{k-1,2,\alpha}} + \left\| \frac{\partial^2}{\partial r_i \partial r_j} I^*_r (\zeta + \hat{\zeta}_0) \right\|_{k-2,2,\alpha}
\leq C e^{-\frac{\gamma - \alpha}{4} r_i + r_j} \| \zeta + \hat{\zeta}_0 \|_{W^*_{k,2,\alpha}}.
\]
\[(6.47)\]
Note that, restricting in \(V_i, i \neq j\)
\[
\tilde{\nabla}_i \tilde{\nu}_r (\tau) = \phi_r \tilde{\nabla}_i \tilde{\nu}_r (\tau), \quad \tilde{\nabla}_i \tilde{h}_r (\tau) = \phi_r \tilde{\nabla}_i \tilde{h}_r (\tau), \quad \frac{\partial E}{\partial r_j} = 0.
\]
Similar \((6.18),\) by Theorem \(4.7\) we can prove that
\[
\sum_{l=1}^2 \left\| H_r \circ D \phi_r \circ \frac{\partial}{\partial r_j} \nu_r^* \right\|_{W^*_{k-1,2,\alpha}} \leq Cd \sum_{l=1}^2 \left\| \frac{\partial}{\partial r_j} \nu_r^* \right\|_{W^*_{k-1,2,\alpha}} + C e^{-\frac{\gamma - \alpha}{4} r_i + r_j}.
\]
\[(6.48)\]
Using \((6.40), (6.42), (6.48),\) and the same argument as in \(13,\) we have
\[
\sum_{l=1}^2 \left\| \frac{\partial}{\partial r_i} \nu_r^* \right\|_{W^*_{k-1,2,\alpha}} + \sum_{l=1}^2 \left\| \frac{\partial}{\partial r_i} \frac{\partial}{\partial r_j} \nu_r^* \right\|_{W^*_{k-1,2,\alpha}} \leq C e^{-\frac{\gamma - \alpha}{4} r_i + r_j}.
\]
\[(6.49)\]
By \((6.49),\) Theorem \(4.7\) the Cauchy-Schwarz inequality and the same argument of \((6.18),\) we have
\[
\left\| H_r D \phi_r \circ \frac{\partial^2}{\partial r_i \partial r_j} \nu_r^* \right\|_{k-2,2,\alpha} \leq C \left[d \left\| \frac{\partial^2}{\partial r_i \partial r_j} \nu_r^* \right\|_{k-2,2,\alpha} + e^{-\frac{\gamma - \alpha}{4} r_i + r_j} \right].
\]
\[(6.50)\]
Taking the derivative \(\frac{\partial^2}{\partial r_i \partial r_j} \) of \(\nu_r^* \) and multiplying \(H_r D \phi_r\) on both sides we get
\[
H_r D \phi_r \circ \frac{\partial^2}{\partial r_i \partial r_j} (\nu_r^*)
= H_r D \phi_r \circ \frac{\partial^2}{\partial r_i \partial r_j} (I^*_r (\zeta)) + H_r D \phi_r \circ \frac{\partial^2}{\partial r_i \partial r_j} (Q^* P_r) \circ H_r (DQ')^{-1} P_r + H_r (DQ')^{-1} P_r \frac{\partial^2}{\partial r_i \partial r_j} (H_r f I_r (\zeta))
+ H_r D \phi_r \circ \frac{\partial}{\partial r_j} (Q^* P_r) \circ H_r (DQ')^{-1} P_r + H_r D \phi_r \circ \frac{\partial}{\partial r_i} (Q^* P_r) \circ H_r (DQ')^{-1} P_r.
\]
Moreover, if using Lemma 6.2 and Theorem 4.7, we get
\[\partial \frac{\partial (H_r f(I_r(\zeta)))}{\partial r_j} = \partial \frac{\partial (H_r P_r)}{\partial r_j} \circ H_r f(I_r(\zeta)) + H_r P_r \frac{\partial}{\partial r_j} (H_r f(I_r(\zeta))), \]
using Lemma 6.2 and Theorem 4.7 we get
\[\left\| \frac{\partial (Q^* P_r)}{\partial r_i} \frac{\partial (H_r f(I_r(\zeta)))}{\partial r_j} \right\|_{k-2,2,\alpha} \leq C e^{-(\epsilon - 5\alpha) \frac{r^i + r_j}{2}}. \] (6.51)

Then using Theorem 4.7 and repeating the proof of (6.32) we have
\[\left\| \frac{\partial^2 (H_r f(I_r(\zeta)))}{\partial r_i \partial r_j} \right\|_{k-2,2,\alpha} \leq C e^{-(\epsilon - 5\alpha) \frac{r^i + r_j}{2}} + C d \left\| \frac{\partial^2 \nu^r}{\partial r_i \partial r_j} \right\|_{k-2,2,\alpha}. \] (6.52)

By the definition of \(\nu^r \), we have
\[\frac{\partial^2 \nu^r}{\partial r_i \partial r_j} = \frac{\partial^2 \nu^r}{\partial r_i \partial r_j} + \frac{\partial^2 (Q^* P_r)}{\partial r_i \partial r_j} \circ H_r f(I_r(\zeta)) + Q^* P_r \frac{\partial^2 (H_r f(I_r(\zeta)))}{\partial r_i \partial r_j} + \frac{\partial (Q^* P_r)}{\partial r_i} \frac{\partial (H_r f(I_r(\zeta)))}{\partial r_j} + \frac{\partial (Q^* P_r)}{\partial r_j} \frac{\partial (H_r f(I_r(\zeta)))}{\partial r_i}. \]

Applying (6.47) to the first term, (6.46) to the second term, (6.52) to the third term, and (6.51) to the last two term we can obtain the estimate of (6.2).

7 Appendix

7.1 Implicit function theorem

We can generalize Theorem A.3.3 and Proposition A.3.4 in [5] to the case with parameters by the same method.

Theorem 7.1. Let \((A, \| \cdot \|_A), (X, \| \cdot \|_X)\) and \((Y, \| \cdot \|_Y)\) be Banach spaces, \(U \subset X\) be open sets and \(V \subset A\). \(U \subset X\) be open sets and \(F : V \times U \to Y\) be a continuously differentiable map. For any \((a, x) \in V \times U\) define
\[D_a F(a, x)(g) = \frac{d}{dt} F(a + tg, x) \big|_{t=0}, \quad D_x F(a, x)(h) = \frac{d}{dt} F(a, x + th) \big|_{t=0}, \quad \forall \ g \in A, \ h \in X. \]
Suppose that \(D_x F(a_0, x_0)\) is surjective and has a bounded linear right inverse \(Q_{(a_0, x_0)} : Y \to X\) with \(\|Q_{(a_0, x_0)}\| \leq C\) for some constant \(C > 0\). Choose a positive constant \(\delta > 0\) such that
\[\| D_x F(a, x) - D_x F(a_0, x_0) \| \leq \frac{1}{2C}, \quad \forall \ x \in B_\delta(x_0, X), \ a \in B_\delta(a_0, A). \] (7.1)
where \(B_\delta(a_0, A) = \{a \in A \mid \|a - a_0\|_A \leq \delta\}, B_\delta(x_0, X) = \{x \in X \mid \|x - x_0\|_X \leq \delta\}\). Suppose that \(x_1 \in X\) and \(a \in B_\delta(a_0, A)\) satisfies
\[\| F(a, x_1) \|_Y < \frac{\delta}{4C}, \quad \| x_1 - x_0 \|_X \leq \frac{\delta}{8}. \] (7.2)
Then there exists a unique \(x \in X\) such that
\[F(a, x) = 0, \quad x - x_1 \in im Q, \quad \| x - x_0 \|_X \leq \delta, \quad \| x - x_1 \|_X \leq 2C\| F(a, x_1) \|_Y. \] (7.3)
Moreover, if \(\| F(a_0, x_0) \|_Y \leq \frac{\delta}{4C}\), there exist a constant \(\delta' > 0\) and a unique family differential map \(f_a : ker D_x F(a_0, x_0) \to Y\) such that for any \((a, x) \in F^{-1}(0) \cap (B_{\delta'}(a_0, A) \times B_{\delta'}(x_0, X))\), we have
\[F(a, x) = 0 \iff x = x_0 + \zeta + Q_{(a_0, x_0)} \circ f_a(\zeta), \quad \zeta \in ker D_x F(a_0, x_0) \] (7.4)
Using Theorem 7.1, we can obtain the smoothness of implicit function.

Theorem 7.2. Let F satisfies the assumption of Theorem 7.1. If $F : V \times U \rightarrow Y$ is of class C^ℓ, where ℓ is a positive integer, then there exists a constant $\delta' > 0$ such that $F^{-1}(0)|_{B_\delta'(a_o, A) \times B_\delta'(x_o, X)}$ is C^ℓ manifold, and $\xi \rightarrow x_o + \xi + Q \circ f_a(\xi)$ is a C^ℓ-chart of $F^{-1}(0)|_{B_\delta'(a_o, A) \times B_\delta'(x_o, X)}$. In particular,

$$\|D_a (x_o + \xi + Q(a_o,x_o) \circ f_a(\xi))\| \leq C,$$

where $C > 0$ is a constant depending only on $C_1, C, \delta', \|f_a\|$ and $\|D^2_{a\xi} F(a, x_o)\|$.

Proof. Since $F(a, x)$ satisfies the assumption of Theorem 7.1, $F^{-1}(0)|_{\{a\} \times B_{\delta_1}(x_o, X)}$ is a smooth manifold. We only need consider the smoothness of $F^{-1}(0)$ with respect to a.

By the same argument in the proof of Theorem A.3.3 in [5], we have a explicit formula for f_a

$$f_a(\xi) = D_x F(a_o, x_o) \circ \phi_a^{-1}(\xi + x_o) - D_x F(a_o, x_o)(x_o),$$

where ϕ_a is defined by

$$\phi_a(x) := x + Q(a_o,x_o) (F(a, x) - D_x F(a_o, x_o)(x - x_o)).$$

We choose δ' small such that in $B_{\delta'}(a_o, A) \times B_{\delta'}(x_o, X)$,

$$|\phi_a(x) - I| \leq \frac{1}{2}. \quad (7.7)$$

Then by the smoothness of F and

$$\frac{\partial}{\partial a} \phi_a^{-1}(x) = -\phi_a^{-1} \circ \frac{\partial \phi_a}{\partial a} \circ \phi_a^{-1}(x),$$

we conclude that f_a is a smooth function of (a, x). It follows that the zero set of F is smooth for a and holds.

7.2 Exponential decay in tube

By the same method as in [3], we can prove the following lemmas

Lemma 7.3. Let $\eta \in L^{k-1,2,\alpha}_{w} \cap H^{k,2,\alpha}$ and $h + \hat{h}_0 \in W^{k,2,\alpha}_{w}$ be a solution of $D^L|_{b}(h + \hat{h}_0) = \eta$ over $\Sigma \setminus \Sigma(R_0)$. Suppose that, for any $p, q \geq 0$,

$$\left| \frac{\partial^{p+q} E_{b,c}^{L}}{\partial s^p \partial t^q} \right| \leq C_{p,q} e^{-c|s|}, \quad \forall |s| \geq R_0, \quad l = 1, 2 \quad (7.8)$$

for some constant $C_{p,q} > 0$. Then for any $0 < \alpha < \frac{2}{5}$, there exists a constant $C > 0$ such that for any $R > \max\{R_0, \tilde{R}\}$ and $R' > 2 + R$

$$\|h\|_{s_1 \geq R'} k_{2,\alpha} \leq C \left((e^{-(e-\alpha)(R'-R)} + e^{-(e-\alpha)R})\|h + \hat{h}_0\|_{W^{k,2,\alpha}} + \|\eta\|_{s_1 \geq R} k_{1-2,\alpha} \right) \quad (7.9)$$

In particular, if $D^L|_{b}$ has a bounded right inverse $Q_b : L^{k-1,2,\alpha}_{w} \rightarrow W^{k,2,\alpha}_{w}$. Let $h = Q_b \eta$ be a solution of $D^L|_{b}(h) = \eta$ over $(R_0, \infty) \times S^1$. Then there exists a constant $C' > 0$ independent of r such that

$$\|h\|_{s_1 \geq R'} k_{2,\alpha} \leq C' \left((e^{-(e-\alpha)(R'-R)} + e^{-(e-\alpha)R})\||\eta||_{k-1,2,\alpha} + \|\eta\|_{s_1 \geq R} k_{1-2,\alpha} \right). \quad (7.10)$$
Lemma 7.4. Let \(h + \hat{h}_0 \in W^{k,2,\alpha}_{r,u(c)} \) be a solution of \(\mathcal{D}L|_b(h + \hat{h}_0) = 0 \) over \(\Sigma_{(r)} \setminus \Sigma(R_0) \). Suppose that, for any \(p, q \geq 0 \),
\[
\left| \frac{\partial^{p+q} \mathcal{P}^L_{h}}{\partial s^p \partial t^q} \right| \leq C_{p,q} e^{-c \min(s_1, 2lr - s_1)} , \quad \forall |s_i| \geq R_0, \ l = 1, 2 \tag{7.11}
\]
for some constant \(C_{p,q} > 0 \). Then for any \(0 < \alpha < \frac{c}{2} \), there exists a constant \(C > 0 \) such that for any \(R > \max\{R_0, \bar{d}\} \) and \(R' > 2 + R \)
\[
\| h \|_{R' \leq s_1 \leq 2lr - R'} \leq C (e^{-c\alpha(R'-R)} + e^{-(c\alpha)R}) \| h + \hat{h}_0 \|_{W^{k,2,\alpha}} \tag{7.12}
\]

References

[1] S. K. Donaldson, Floer homology groups in Yang-Mills theory. With the assistance of M. Furuta and D. Kotschick. Cambridge Tracts in Mathematics, 147. Cambridge University Press, Cambridge, 2002. viii+236 pp.

[2] A-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3- folds, Invent. Math. 145, 151-218 (2001)

[3] A-M. Li and Sheng, The Exponential Decay of Gluing Maps and Gromov-Witten Invariants, [arXiv:1506.06333]

[4] A-M. Li and L. Sheng, Virtual Neighborhood Technique for Holomorphic Curve Moduli Spaces, [arXiv:1710.10581]

[5] D. McDuff and D. Salamon, \(J \)-holomorphic curves and symplectic topology, Colloquium Publications, vol. 52, Amer. Math. Soc., Providence, RI, 2004.

[6] Y. Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Turkish Jour. of Math. 1(1999), 161-231.

[7] S. Lang, Real analysis, second edition, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. xv+533 pp.

[8] H. Hofer, V. Lizan, J.-C. Sikorav: On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. (1997) 7, 149-159.

[9] S. Ivashkovich, V. Shevchishin: Pseudo-holomorphic curves and envelopes of meromorphy of two-spheres in \(\mathbb{C}P^2 \), [arXiv:math/9804014]

[10] B. Siebert, Gromov-Witten invariants for general symplectic manifolds, arXiv:9608005

[11] B. Siebert, Symplectic Gromov-Witten invariants. New trends in algebraic geometry (Warwick, 1996), 375-424, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999.

[12] S. Wolpert, Cusps and the family hyperbolic metric, Duke Jou. Math., vol. 138, no. 3, 423-443, 2007.

[13] J. Robbin, D. Salamon, A construction of the Deligne-Mumford orbifold. J. Eur. Math. Soc. (JEMS) 8 (2006), no. 4, 611-699.