Abstract. Hepatocellular carcinoma (HCC) is a lethal disease and one of the most common types of cancer. HCC is associated with exponentially increasing morbidity and mortality rates. Accumulating evidence has identified circular RNAs (circRNAs) to be regulators of cancer progression. However, to the best of our knowledge, the potential effect of circRNA protein tyrosine phosphatase receptor type A (circRNA_PTPRA) in HCC and its mechanism remain unknown. The present study aimed to assess the effects and underlying mechanism of circRNA_PTPRA in a HCC Huh-7 cells model. The sites of interaction between circRNA_PTPRA and microRNA (miR)-582-3p were predicted using the StarBase software and verified using dual luciferase reporter and RNA immunoprecipitation (RIP) assays in Huh-7 cells. HCC cell viability, apoptosis, migration and invasion were measured using MTT, flow cytometry and Transwell assays, respectively. The expression levels of circRNA_PTPRA, miR-582-3p, cyclin D1, MMP-9, Bcl-2 and Bax were analyzed using reverse transcription-quantitative PCR and western blotting. The results of the dual luciferase reporter and RIP assays demonstrated that miR-582-3p directly targeted circRNA_PTPRA. Compared with the human normal hepatocyte cell line, THLE-2, the expression levels of circRNA_PTPRA were upregulated, which were found to be inversely correlated with those of miR-582-3p expression in Huh-7 and HCCLM3 cells. miR-582-3p overexpression using mimics suppressed cell proliferation, migration and invasion, whilst downregulating cyclin D1 and MMP-9 expression in Huh-7 cells. In addition, transfection of HCC cells with the miR-582-3p mimic promoted apoptosis by downregulating Bcl-2 expression and upregulating Bax expression in Huh-7 cells. Knocking down circRNA_PTPRA expression using small interfering RNA (siRNA) markedly downregulated circRNA_PTPRA expression levels and upregulated miR-582-3p expression, but was reversed by co-transfection with the miR-582-3p inhibitor. Furthermore, reduced HCC cell proliferation, migration and invasion, increased levels of cell apoptosis, upregulated Bax expression and downregulated cyclin D1, MMP-9 and Bcl-2 expression were all observed after knocking down circRNA_PTPRA. All these effects aforementioned were reversed by co-transfection with the miR-582-3p inhibitor. In conclusion, findings from the present study suggested that circRNA_PTPRA may regulate HCC cell proliferation, migration, invasion and apoptosis by sponging miR-582-3p. This indicates that the circRNA_PTPRA/miR-582-3p axis may represent a potential target for HCC diagnosis and treatment.

Introduction

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the most lethal types of malignancy (1), as it currently stands as the second most common cause of cancer-related mortality worldwide (1). The incidence of patients with HCC continue to increase worldwide, with a 75% increase over time from 1990 to 2015 (2), possibly due to changes in lifestyle and unhealthy dietary habits (3,4). In addition, imbalance in the expression of a number of genes has been reported to contribute to the occurrence and development of liver cancer, rendering it a complex and refractory disease (5,6). Despite significant advances in the surgical methods used to treat HCC and the identification of potential therapeutic targets such as long non-coding RNAs and microRNAs (miRNAs/miRs), the prognosis of HCC remains...
poor, with a 5-year survival rate of only 3% worldwide (7,8). Therefore, it remains necessary to investigate the pathogenesis of HCC further to identify novel biomarkers or therapeutic targets to provide effective diagnostic and optimal treatment strategies for HCC.

Circular RNA (circRNA/circ) is different from typical linear RNA, since it cannot be degraded by exonucleases (9). As a type of non-coding RNA, circRNAs have been discovered to serve an important role in the pathological process of various diseases, including gastric and breast cancers (10,11). Zhang et al (10) previously reported that circRNA nuclear receptor interacting protein 1 functioned as a miR-149-5p target to stimulate gastric cancer progression through the AKT1/mTOR signaling pathway. In another study, Liu et al (11) revealed that circ_001783 regulated breast cancer development by targeting miR-200c-3p. It was also demonstrated that circRNAs can serve as key factors in regulating gene expression by acting as a miRNA sponge or by binding to RNA-related proteins to modify the expression of parental genes (12). The potential clinical value of circRNAs in tumor diagnosis, treatment and prognosis has been widely studied (13,14). For example, circRNA protein tyrosine phosphatase receptor type A (circRNA_PTPRA) has been reported to serve a role in the metastasis and growth of several types of cancer, including bladder cancer and non-small cell lung cancer (NSCLC) (15,16). However, to the best of our knowledge, the underlying mechanism of circRNA_PTPRA in HCC remains unclear and requires further study.

miRNAs is another class of small non-coding RNAs that have also been demonstrated to play important roles in the regulation of gene transcription (17). In addition, miRNAs were identified to be promising markers of diseases, such as nervous system disease, cardiovascular disease and cancer and have been reported to modulate a number of fundamental cellular processes, including cell proliferation, migration, invasion and apoptosis (18). For instance, miR-34a inhibited colon carcinoma cell proliferation and promoted cell apoptosis by targeting synaptotagmin 1 (19). By contrast, miR-582-3p was found to mediate both oncogenic and antitumor effects in cancer (20-22). For example, miR-582-3p was previously reported to enhance the tumorigenicity and recurrence of NSCLC (20). However, Huang et al (21) demonstrated that miR-582-3p suppressed prostate cancer metastasis to the bone by suppressing TGF-β signaling. In addition, miR-582-3p was revealed to suppress HCC progression by targeting distal-less homeobox 2 (DLX2) (22). However, to the best of our knowledge, the role and underlying mechanism of miR-582-3p in HCC has not been fully determined. Notably, since circRNAs can function as miRNA sponges by competitively interacting with and inhibiting their downstream functions (23,24), unravelling the roles of circRNAs and their potential miRNA targets may yield useful results for understanding the pathophysiology of HCC. This information can then be applied to identify novel biomarkers or therapeutic targets for HCC.

The present study aimed to explore whether circRNA_PTPRA participated in the progression of HCC, determine the association between circRNA_PTPRA and miR-582-3p and identify the underlying mechanism of the effects of circRNA_PTPRA in the occurrence of HCC. The results of the present study may uncover novel targets for HCC treatment.

Materials and methods

Cell lines and culture. Liver cancer cell lines Huh-7 and HCCLM3 and the human normal hepatocyte cell line THLE-2 were purchased from the American Type Culture Collection (ATCC). HCCLM3 cells were cultured in RPMI-1640 medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% FBS (Invitrogen; Thermo Fisher Scientific, Inc.). 293T (ATCC), Huh-7 cells and THLE-2 cells were all cultured in DMEM (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% FBS and 1% penicillin-streptomycin. All cells were maintained at 37°C with 5% CO2 in an incubator.

Dual luciferase reporter assay. Bioinformatics software (StarBase version 2.0; http://starbase.sysu.edu.cn/) was used to predict the binding sites between miR-582-3p and circRNA_PTPRA. The 3'-untranslated region (UTR) of circRNA_PTPRA, which contained the miR-582-3p binding site or a mutated target site, was synthesized by reverse transcription (RT) PCR using a PrimeScript™ RT reagent kit (cat. no. RR037A; Takara Bio, Inc.); incubating for 5 min at 25°C followed by 60 min at 42°C from total RNA preparations extracted from Huh-7 cells. The UTR was cloned into the pMIR-REPORT Luciferase plasmid (Ambion; Thermo Fisher Scientific, Inc.) to construct the circRNA_PTPRA wild-type (PTPRA-WT) or circRNA_PTPRA mutated-type (PTPRA-MUT) reporter vector. Huh-7 cells were co-transfected with 1 µg PTPRA-WT or 1 µg-MUT vector and 100 nM miR-582-3p mimic (5'-UAACUGGUUGAACACAGAACCAA-3'; Shanghai GenePharma Co., Ltd.) or 100 nM mimic control (5'-UCACAACCUCCUAGAAAGAGUAGA-3'; Shanghai GenePharma Co., Ltd.) using Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, Inc.) for 48 h, according to the manufacturer's protocol. The relative luciferase activity was measured using a Dual Luciferase Reporter assay system (Promega Corporation) and the results were normalized to Renilla luciferase activity.

RNA immunoprecipitation (RIP) assay. An argonaute 2 (AGO2) RIP assay (25) was performed to identify the interaction between circRNA_PTPRA and miR-582-3p using a Magna RIP RNA Binding Protein Immunoprecipitation kit (cat. no. 17-701; EMD Millipore) according to the manufacturer's protocol. Cells were lysed using RIP buffer (Beyotime Institute of Biotechnology) on ice for 5 min. The anti-Argonaute 2 (cat. no. ab186733; dilution, 1:50) and anti-IgG (cat. no. ab109489; dilution: 1:300) antibodies were obtained from Abcam and used according to the manufacturers' protocols. The magnetic beads (Beyotime Institute of Biotechnology) were washed with 0.5% or 1% Nonidet P-40 (NP-40)-buffered saline and incubated at 4°C for 6 hr. Subsequently, the cell lysate (20 µg protein) was added to the above magnetic beads-antibody mixture and incubated at 4°C for 1 h, according to the manufacturer's instructions. Resultant RNA levels were analyzed via reverse transcription-quantitative (RT-q)PCR analysis.

RT-qPCR. Total RNA was extracted from Huh-7, HCCLM3 and THLE-2 cells using an TRIzol® reagent (Thermo Fisher Scientific, Inc.) according to the manufacturer's protocol. Total RNA was reverse transcribed into cDNA using a PrimeScript™
RT reagent kit (Takara Bio, Inc.). qPCR was subsequently performed on an ABI PRISM 7900 Real-Time PCR detection system (Applied Biosystems; Thermo Fisher Scientific, Inc.) using SYBR® Premix Ex Taq™ (Takara Bio, Inc.) to determine the expression levels of cyclin D1, MMP-9, miR-582-3p and circRNA_PTPRA. The following thermocycling conditions were used for qPCR: Initial denaturation at 95˚C for 5 min; followed by 40 cycles of 15 sec at 95˚C, 1 min at 60˚C and 30 sec at 72˚C; and a final extension for 10 min at 72˚C. Primers were obtained from Sangon Biotech Co., Ltd. and the sequences were as follows: miR-582-3p forward, 5'-GCA CACATTTAGAGGACAGAC-3' and reverse, 5'-TATTGGA AGGGGTTCTGTTG-3'; U6 forward, 5'-CTCGCTTCGG GCACGACA-3' and reverse, 5'-AACGCTTCAGAATTTCGT-3'; GAPDH forward, 5'-GCTGTTGGAATCCAGGTCCTTA-3' and reverse, 5'-GCTGCTACAGTTTGGTCAGCG-3'; CT-3', circRNA_PTPRA forward, 5' - ACACACACACACA CACAC-3' and reverse, 5'-CTGGTCAAGCAGCTTACCA-3'; cyclin D1 forward, 5'-GCTCGGAAATGGAAACCT-3' and reverse, 5'-CTCCCTTCTGCACACATTGAA-3' and MMP-9 forward, 5'-AGACCTGGGGCAGATTCAC-3' and reverse, 5'-CGCGAAATTCTGTCAGATTGT-3'. U6 for miRNA and GAPDH for mRNA were used as the internal controls. Gene expression was quantified using the 2^(-ΔΔCq) method (26).

Cell transfection. Mimic control (5'-UCACAACCUCU AGAAAAGAGUAG-3'; Shanghai GenePharma Co., Ltd.), miR-582-3p mimic (5'-UAACUGGUUGAACAACUGAC CAA-3'), control-small interfering RNA (siRNA; sense, 5'-UUCUGCCAGUGUACUGTT-3'; antisense, 5'-ACUG UGACAGCUUGCGAGATT-3'), circRNA_PTPRA-siRNA (PTPRA-siRNA; sense, 5'-CUGGACCACCCUUAAUUA ATT-3'; antisense, 5'-UAAAUUGGGGGUCCCAGTT-3'), inhibitor control (5'-CAGUACUUUUGUGUGUAGUAC-3') and miR-582-3p inhibitors (5'-UGUGGUCCACGUGUGCAC-3') (all from Shanghai GenePharma Co., Ltd.) were transfected into Huh-7 cells using Lipofectamine® 2000 for 48 h according to the manufacturer's instructions. RT-qPCR was subsequently performed to evaluate the transfection efficiencies in the cells.

MTT assay. Following 48 h of transfection, Huh-7 cells (10^4 cells per well) were plated into 96-well plates and cultured at 37°C. Cells were subsequently incubated with 10 μl MTT (5 mg/ml) solution at 37°C for a further 4 h. The cell culture medium was then removed and 150 μl DMSO was added to each well to dissolve the formazan product. The optical density (OD) was measured at a wavelength of 570 nm using a multifunctional plate reader (BioTek Instruments, Inc.) after 15 min of mixing with a shaker, according to the manufacturer's protocol of the MTT reagent.

Flow cytometry analysis. Following transfection for 48 h, the apoptosis of Huh-7 cells was measured using an Annexin V-FITC/PI apoptosis detection kit (Beyotime Institute of Biotechnology) according to the manufacturer's protocol. Briefly, cells (10^4 cells) were collected, washed, pelleted and stained with 5 μl Annexin V-FITC and 5 μl PI on ice in the dark at 4˚C for 15 min. Apoptotic cells were visualized using a flow cytometer (BD FACSCalibur™; BD Biosciences) and analyzed using the Kaluza analysis software (version 2.1.1.20653; Beckman Coulter, Inc.).

Transwell migration and invasion assays. Transwell plates (8-μm pore size; Corning, Inc.) were used for the migration assay and Matrigel-coated 24-well Transwell plates (cat. no. 354480; Corning, Inc.) were used for invasion assays. Following 48 h of transfection, Huh-7 cells (2x10^4) were incubated in serum-free medium for starvation and seeded into the upper chamber of the Transwell chambers, whilst 600 μl DMEM supplemented with 10% FBS was added into the lower chambers. Following incubation at 37°C in a 5% CO2 atmosphere for 24 h, the cells that remain in the upper chamber were removed with a cotton swab whereas cells in the lower chamber were fixed with 4% paraformaldehyde at room temperature for 30 min and stained with 0.1% crystal violet at room temperature for 10 min. The number of migratory and invasive cells were counted in five randomly selected fields of view using an light inverted microscope at x100 magnification (TS100; Nikon Corporation).

Western blotting. Following 48 h of transfection, total protein was extracted from Huh-7 cells using RIPA lysis buffer (Beyotime Institute of Biotechnology). Total protein was quantified using a BCA Protein assay kit (Beyotime Institute of Biotechnology). Densitometric analysis was performed using Gel-Pro Analyzer densitometry software (version 6.3; Media Cybernetics, Inc.). Statistical analysis was performed using the GraphPad Prism 6.0 software (GraphPad Software, Inc.). Data are presented as the mean ± SD from three independent experiments. Statistical differences between groups were determined using a one-way ANOVA followed by Tukey's post hoc test or an unpaired Student's t-test. P<0.05 was considered to indicate a statistically significant difference.

Results
circRNA_PTPRA and miR-582-3p expression levels in HCC cells. The expression levels of circRNA_PTPRA in HCC cells were analyzed using RT-qPCR. As shown in Fig. 1A, the expression levels of circRNA_PTPRA were significantly increased in HCC cells compared with normal liver tissues. The expression levels of miR-582-3p were also significantly increased in HCC cells compared with normal liver tissues.
higher in HCC cell lines (Huh-7 and HCCLM3) compared with those in normal THLE-2 hepatocytes. These data suggest that circRNA_PTPRA may participate in the regulation of HCC physiology. To determine the molecular mechanisms by which circRNA_PTPRA regulates the progression of HCC, the StarBase database was used to identify putative target genes of circRNA_PTPRA. As shown in Fig. 1B, circRNA_PTPRA was predicted to be a potential target of miR-582-3p. The association between circRNA_PTPRA and miR-582-3p was subsequently verified using dual luciferase reporter (Fig. 1C) and RIP assays (Fig. 1D). The dual luciferase reporter assay indicated that compared with the cells co-transfected with circRNA_PTPRA wild-type and mimic control, the luciferase activity of cells co-transfected with circRNA_PTPRA wild-type and miR-582-3p mimic were significantly reduced (Fig. 1C). While no significant changes were observed of the luciferase activity in cells co-transfected with circRNA_PTPRA wild-type and mimic control and cells co-transfected with circRNA_PTPRA wild-type and miR-582-3p mimic (Fig. 1C). The results of the RIP assay verified that circRNA_PTPRA can directly target miR-582-3p, evidenced by significant enhancement of circRNA_PTPRA and miR-582-3p in the Anti-Ago2 group in Huh-7 cells compared with in the Anti-IgG group (Fig. 1D). These results indicate that circRNA_PTPRA interacts with miR-582-3p.

miR-582-3p mimic suppresses the cell viability, migration and invasion of Huh-7 cells. To further understand the role of miR-582-3p in HCC cells, a mimic control or miR-582-3p mimic were transfected into Huh-7 cells for 48 h to determine the influence of this miRNA on cell viability, migration and invasion. The results from RT-qPCR analysis revealed that transfection with the miR-582-3p mimic significantly upregulated miR-582-3p expression in Huh-7 cells compared with that in the mimic control group (Fig. 2A). In addition, as shown in Fig. 2B-D, transfection with the miR-582-3p mimic significantly reduced Huh-7 cell viability, migration and invasion. Furthermore, the expression levels of proliferation- and metastasis-associated markers cyclin D1 and MMP-9 (27,28), were analyzed using RT-qPCR and western blotting. Transfection with the miR-582-3p mimic markedly downregulated cyclin D1 and MMP-9 protein (Fig. 2E) and mRNA (Fig. 2F and G) expression levels compared with those in the mimic control group. These results suggest that the overexpression of miR-582-3p may inhibit the viability, invasion and migration of HCC cells.

Figure 1. Expression levels of circRNA_PTPRA and miR-582-3p in HCC cell lines. (A) circRNA_PTPRA expression levels were analyzed in HCC cell lines Huh-7 and HCCLM3 and in normal THLE-2 hepatocytes. (B) Schematic diagram of the miR-582-3p binding site in the 3'-untranslated region of circRNA_PTPRA. Relationship between miR-582-3p and circRNA_PTPRA was validated using (C) dual luciferase reporter and (D) RNA immunoprecipitation assays. (E) miR-582-3p expression levels were determined in HCC cell lines Huh-7 and HCCLM3 and in normal THLE-2 hepatocytes by reverse transcription-quantitative PCR. **P<0.01 vs. THLE-2 cells; ***P<0.01 vs. mimic control; ****P<0.01 vs. anti-IgG. Ago2, argonaute 2; circRNA_PTPRA, circular RNA protein tyrosine phosphatase receptor type A; WT, wild-type; MUT, mutant; miR or miRNA, microRNA; HCC, hepatocellular carcinoma.
conducted. Control-siRNA, PTPRA-siRNA, inhibitor control or miR-582-3p inhibitors were transfected into Huh-7 cells for 48 h before transfection efficiency was determined using RT-qPCR. Compared with those in the control-siRNA group, the expression levels of circRNA_PTPRA were significantly downregulated in PTPRA-siRNA-transfected Huh-7 cells (Fig. 4A). Moreover, compared with that in the inhibitor control group, the miR-582-3p inhibitor significantly downregulated miR-582-3p expression in Huh-7 cells (Fig. 4B). However, the expression levels of miR-582-3p were significantly upregulated in PTPRA-siRNA-transfected Huh-7 cells compared with those in the control-siRNA group, which was significantly reversed in the PTPRA-siRNA + miR-582-3p inhibitor co-transfected cells (Fig. 4C). This suggest that circRNA_PTPRA may negatively regulate miR-582-3p expression in HCC cells.

miR-582-3p inhibitor reverses the inhibitory effects of PTPRA-siRNA on Huh-7 cell proliferation, migration and invasion. To further understand the regulatory mechanisms of miR-582-3p and circRNA_PTPRA in HCC, control-siRNA, PTPRA-siRNA, PTPRA-siRNA + inhibitor control or PTPRA-siRNA + miR-582-3p inhibitor were transfected into Huh-7 cells for 48 h. The results from the MTT and Transwell assays revealed that PTPRA-siRNA transfection significantly suppressed Huh-7 cell viability (Fig. 5A) and significantly inhibited cell migration (Fig. 5B) and invasion (Fig. 5C). In addition, western blotting and RT-qPCR analysis demonstrated that the expression levels of cyclin D1 and MMP-9 were markedly downregulated in PTPRA-siRNA-transfected Huh-7 cells (Fig. 5D-F). However, these findings were markedly reversed following co-transfection with the miR-582-3p inhibitor. These findings suggest that circRNA_PTPRA may regulate Huh-7 cell viability, migration and invasion by regulating miR-582-3p expression.

miR-582-3p inhibitor reverses the effects of PTPRA-siRNA on Huh-7 cell apoptosis. The levels of apoptosis in Huh-7 cells following transfection with control-siRNA, PTPRA-siRNA, PTPRA-siRNA + inhibitor control or PTPRA-siRNA + miR-582-3p inhibitor were determined using western blotting and RT-qPCR, respectively. **P<0.01 vs. mimic control. miR, microRNA; RT-qPCR, reverse transcription-quantitative PCR.
+ miR-582-3p inhibitor were investigated. As shown in Fig. 6A and B, transfection with PTPRA-siRNA significantly increased Huh-7 cell apoptosis compared with that in the control-siRNA group. Results from the western blotting analysis revealed that PTPRA-siRNA transfection markedly downregulated Bcl-2 expression and upregulated Bax expression in Huh-7 cells (Fig. 6C), thereby significantly increasing the Bax/Bcl-2 ratio (Fig. 6D). However, all of the effects aforementioned were reversed in PTPRA-siRNA + miR-582-3p inhibitor-transfected Huh-7 cells. These findings suggest that circRNA_PTPRA may increase HCC cell apoptosis by downregulating miR-582-3p expression.

Discussion

HCC is one of the most common types of malignancies that is regulated by numerous oncogenes (such as VEGF and β-catenin) and tumor suppressor genes (such as...
Currently available therapies for HCC are comprised of surgical resection and pharmacological treatments (such as Lenvatinib and Sorafenib), which improved the 5-year survival rate to 30-70% (30,31). However, <20% patients with HCC are eligible for surgery after diagnosis (32), emphasizing the importance of the early diagnosis of HCC. Therefore, an increasing number of studies have focused on identifying novel biomarkers with the potential to be used to diagnose HCC and allow intervention at the early phase of the disease (33,34).

CircRNAs are a type of endogenous RNA that serve important regulatory functions in numerous cancer types, such as breast cancer, colon cancer, glioblastoma and HCC (35,36). Numerous studies have reported that circRNAs serve roles in several physiological processes, including cell proliferation, apoptosis and metastasis (15,37,38). This highlights circRNAs as potential targets for the treatment of diseases. For example, Liu et al (37) reported that circRNA 5'-nucleotidase, cytosolic II functioned as an oncogene and promoted osteosarcoma proliferation and metastasis by targeting miR-448 (37). The expression of circRNA_PTPRA, which is transcribed from the PTPRA gene, was found to be dysregulated in bladder carcinoma (38). Wei et al (15) previously demonstrated that circRNA_PTPRA suppressed NSCLC cell transformation and metastasis by targeting miR-96-5p. In another study, He et al (38) found that circRNA_PTPRA serves as a tumor suppressor in bladder cancer by targeting miR-636 to upregulate Kruppel like factor 9 expression. Therefore, circRNA_PTPRA may play a key role in the tumorigenesis of HCC. However, to the best of our knowledge, little is known regarding the role of circRNA_PTPRA in HCC progression. Therefore, the present study aimed to determine the underlying mechanism of circRNA_PTPRA in HCC. First, the expression levels of circRNA_PTPRA in HCC cell lines Huh-7 and HCCLM3 and normal THLE-2 hepatocytes were determined using RT-qPCR. The data revealed that circRNA_PTPRA expression levels were significantly upregulated in Huh-7 and HCCLM3 cells compared with those in normal THLE-2 hepatocytes. These observations suggest that circRNA_PTPRA may play a role in the regulation of HCC cell malignancy.

Previous studies have reported that miRNAs can either act as oncogenes or tumor suppressors in a large number of
cancers (39,40). It has been reported extensively that circRNAs can serve roles in cancer development by targeting miRNAs, decoying proteins and regulating gene translation (41). As a result, the present study aimed to identify the latent targets of circRNA_PTPRA in HCC. Results from the dual luciferase reporter and RIP assays revealed that miR‑582‑3p directly interacted with circRNA_PTPRA, suggesting the involvement of miR‑582‑3p in HCC oncogenesis downstream of circRNA_PTPRA. In a previous study, miR‑582‑3p was found to alleviate osteoarthritis progression by targeting Yes1 associated transcriptional regulator (42). Furthermore, Xu et al (43) found that miR‑582‑3p inhibition by circRNA eyes absent 1 suppressed cervical adenocarcinoma tumorigenesis by upregulating C‑X‑C motif chemokine ligand 14 expression. Huang et al (21) reported that miR‑582‑3p suppressed prostate cancer metastasis to the bone by repressing TGF‑β signaling. In addition, miR‑582‑3p was found to suppress HCC progression by targeting DLX2 expression (22). The present study further analyzed miR‑582‑3p expression in HCC cell lines. RT‑qPCR analysis revealed that the expression levels of miR‑582‑3p were downregulated in HCC cell lines Huh‑7 and HCCLM3 compared with those in normal hepatocyte THLE‑2 cells. A previous study reported that the dysregulation of miRNA expression was associated with the progression of multiple cancer types (44). Therefore, it was hypothesized in the present study that the alteration of miR‑582‑3p or circRNA_PTPRA expression may influence the function of HCC cells. The present results revealed that the overexpression of miR‑582‑3p by the miR‑582‑3p mimic markedly inhibited Huh‑7 cell viability, migration and invasion. Metastasis is a significant hallmark of malignancy and represents a major challenge for effective HCC treatment (45). The present study also analyzed the expression levels of genes related to cell proliferation and migration, namely cyclin D1 and MMP‑9 (27,28). Transfection with the miR‑582‑3p
mimic markedly downregulated cyclin D1 and MMP-9 expression compared with that in the mimic control group. Inefficient apoptosis is also an important characteristic of cancer cells, where and stimulating cell apoptosis can block various types (such as lung, gastric, breast and cervical cancer and HCC) of tumor development (46). The present findings revealed that transfection with the miR-582-3p mimic increased the number of apoptotic Huh-7 cells compared with that in the mimic control group. Bax, a proapoptotic factor which was identified to be a transcriptional target for p53 and Bcl-2-associated death promoter, promotes the permeability of the mitochondrial membrane and release of cytochrome c into the cytosol (47). The present study found that transfection with the miR-582-3p mimic upregulated Bax expression, downregulated Bcl-2 expression and increased the Bax/Bcl-2 ratio compared with those in the mimic control group. These results suggest that the overexpression of miR-582-3p may reduce cell viability and enhancing apoptosis in HCC cells. However, the relationship between these genes and miR-582-3p was not analyzed and the target genes of miR-582-3p were not identified in the present study, which is a limitation that should be explored in-depth in future studies.

The effects of circRNA_PTPRA on the physiology of Huh-7 cells and miR-582-3p expression was subsequently investigated. Compared with the control-siRNA group, PTPRA-siRNA significantly enhanced miR-582-3p expression in Huh-7 cells, while this enhancement was reversed by miR-582-3p inhibitor. The data indicated that circRNA_PTPRA negatively regulated miR-582-3p expression in Huh-7 cells. In addition, the present results indicated that silencing miR-582-3p partially reversed the inhibitory effects of PTPRA-siRNA on cell proliferation, apoptosis, migration and invasion. Contrary to the previously reported anticancer effects of circRNA_PTPRA in bladder cancer (38) and NSCLC (15), the present study found that circRNA_PTPRA exerted a cancer-promoting effect in HCC. Therefore, the roles of circRNAs in different cancer types are unlikely to be identical (48), such that circRNAs can act as tumor-promoting and tumor suppressor genes depending on the type of cancer in question (48-50). For example, Huang et al (49) reported that the expression levels of hsa_circ_0000745 were significantly downregulated in gastric cancer tissues compared with those in non-cancerous tissues, where it was suggested to play a tumor-suppressive role. Conversely, Jiao et al (50) reported that hsa_circ_0000745 promoted cervical cancer by increasing cervical cancer cell proliferation, migration and invasion.

However, the present study remain to be a preliminary in vitro study of the role of circRNA_PTPRA/miR-582-3p in HCC cells. To verify the role of circRNA_PTPRA/miR-582-3p in HCC, further in-depth research is required. For example, the expression levels of circRNA_PTPRA and miR-582-3p should be analyzed in clinical samples of HCC and the association between their expression levels and the clinicopathological features of patients with HCC should be investigated. In addition, the roles of circRNA_PTPRA and miR-582-3p in HCC should be confirmed in other HCC cell lines and animal models.

In conclusion, findings of the present study suggest that circRNA_PTPRA may regulate HCC cell proliferation, migration, invasion and apoptosis by regulating miR-582-3p expression. These findings may provide novel prognostic biomarkers and therapeutic targets for HCC.

Acknowledgements
Not applicable.

Funding
No funding was received.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Authors’ contributions
YJ and YZ contributed to the study design, data collection, statistical analysis, data interpretation and manuscript preparation. XL contributed to data collection, statistical analysis and manuscript preparation. YJ and YZ confirm the authenticity of all the raw data. All authors have read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Njei B, Rotman Y, Ditah I and Lim JK: Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology 61: 191-199, 2015.
2. Global Burden of Disease Liver Cancer Collaboration; Akinyemiju T, Abra S, Ahmed M, Alam N, Alemayohu MA, Allen C, Al-Raddadi R, Alvis-Guzman N, Amoako Y, et al: The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the Global Burden of Disease Study. JAMA Oncol 3: 1683-1691, 2015.
3. Qian X, Yan X, Zhai X, Li N, Qu C and Lu F: Hepatocellular carcinoma surveillance and treatment: A way to reduce cancer-related mortality in cirrhotic patients. J Clin Transl Hepatol 7: 1-2, 2019.
4. Berkel C and Cacan E: DYNLL1 is hypomethylated and up-regulated in a tumor stage- and grade-dependent manner and associated with increased mortality in hepatocellular carcinoma. Exp Mol Pathol 117: 104567, 2020.
5. Wang M, Gu B, Yao G, Li P and Wang K: Circular RNA expression profiles and the Pro-tumorigenic function of CircRNA_10156 in Hepatitis B Virus-related liver cancer. Int J Med Sci 17: 1351-1365, 2020.
6. Banaudha KK and Verma M: Epigenetic biomarkers in liver cancer. Methods Mol Biol 1238: 65-76, 2015.
7. Ren Z, Ma X, Duan Z and Chen X: Diagnosis, therapy, and prognosis for hepatocellular carcinoma. Anal Cell Pathol (Amst) 2020: 8157406, 2020.
8. Ronot M, Purcell Y and Vilgrain V: Hepatocellular carcinoma: Current imaging modalities for diagnosis and prognosis. Dig Dis Sci 64: 934-950, 2019.
9. Altesha MA, Ni T, Khan A, Liu K and Zheng X: Circular RNA in cardiovascular disease. J Cell Physiol 234: 5588-5600, 2019.
The circRNA circPTPRA suppresses β-catenin signaling. Mol Ther Nucleic Acids 16: 91‑104, 2019.

Zhong W, Zhang X, Song E and Gong C: Circ_001783 regulates HCC invasion and metastasis via targeting miR‑582‑3p. Sci Rep 6: 30919, 2016.

Zhao C, Chen Y, Wei C, Ye Z, Wang Y, Wang M, Xu L, Jiang Y, Li X, Geng J, Shen Y, Li Q, Wang X, Zhao C, Chen Y, et al: The circRNA circPTPRA suppresses epithelial-mesenchymal transition and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine 44: 182‑193, 2019.

Zhong Z, Lv M and Chen J: Screening differentially expressed circular RNA expression profiles reveals the regulatory role of circTGF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6: 30919, 2016.

Daoud AZ, Mulholland EJ, Cole G and McCarthy HO: MicroRNAs in pancreatic cancer: Biomarkers, prognostic, and therapeutic modulators. BMC Cancer 19: 1130, 2019.

Peng H, Dong JY, Zhao YN, Wu WB, Yang XL, Chen D, Hu KF, Chen LH and Liu J: The effect of methylation level of microRNA promoter on the expression of microRNAs and on the proliferation, migration and invasion of lung cancer cells. Sichuan Da Xue Xue Bao Yi. Xue Ban 50: 182‑187, 2019 (In Chinese).

Lu H, Hao L, Yang H, Chen J and Liu J: miRNA-34a suppresses colon carcinoma proliferation and induces cell apoptosis by targeting SYT1. Int J Clin Exp Pathol 12: 2887‑2897, 2019.

Fang L, Cai J, Chen B, Wu S, Li R, Xu X, Yang Y, Gnan H, Zhu X, Zhang L, et al: Aberrantly expressed circ-miR-582-3p maintains lung cancer stem cell-like traits by: Activating Wnt/β-catenin signaling. Nat Commun 6: 8640, 2015.

Huang S, Zou C, Tang Y, Wu Q, Peng X, Chen X, Yang C, Ren D, Huang Y, Liao Z, et al: miR-582-3p and miR-582-5p suppress prostate cancer metastasis to bone by repressing TGF-β signaling. Mol Ther Nucelic Acids 16: 91-104, 2019.

Zhang H, Dai Q, Zheng L, Yuan X, Pan S and Deng J: Knockdown of circHIPK3 inhibits tumorigenesis of hepatocellular carcinoma via the miR-582-3p/DLX2 axis. Biochem Biophys Res Commun 533: 501‑509, 2020.

Hansen TB, Jensen TK, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature 495: 384‑388, 2013.

Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7: 11251, 2016.

Li Y, Chen B and Huang S: Identification of circRNAs for miRNA targets by Argonaute2 RNA immunoprecipitation and luciferase screening assays. Methods Mol Biol 1724: 209-218, 2018.

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25: 402-408, 2001.

Tchakarska G and Sola B: The double dealing of cyclin D1. Cell Cycle 19: 163‑178, 2020.

Huang H: Matrix Metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent Advances. Sensors (Basel) 18: 3249, 2018.

Couvi T and Piliia A: Goals and targets for personalized therapy for HCC. Hepatol Int 13: 125‑137, 2019.

Vogl TJ and Gruber-Rouh T: HCC: Transarterial therapies-what the interventional radiologist can offer. Dig Dis Sci 64: 959‑967, 2019.