Comparative Study of the Length-Weight Relationships of Some Fish Species along the Turkish Coasts

GÜNDOĞDU S. Cukurova University
BAYLAN M.
ÇEVİK C.
https://doi.org/10.12681/mms.1280

Copyright © 2016

To cite this article:

GÜNDOĞDU, S., BAYLAN, M., & ÇEVİK, C. (2015). Comparative Study of the Length-Weight Relationships of Some Fish Species along the Turkish Coasts. Mediterranean Marine Science, 17(1), 80-108. doi:https://doi.org/10.12681/mms.1280
Comparative Study of the Length-Weight Relationships of Some Fish Species along the Turkish Coasts

S. GÜNDÖĞDU, M. BAYLAN and C. ÇEVIK
Fisheries Faculty, Çukurova University, 01330, Adana, Turkey
Correspondence: Sedat Gündoğdu, Çukurova University, Faculty of Fisheries, Department of Basic Science, 01330, Adana, Turkey
Handling Editor: Praskevi Karachle
Received: 26 February 2015; Accepted: 1 September 2015; Published on line: 20 January 2016

Abstract

This study presents 738 length-weight relationships for 242 species found in Turkish seas. All length-weight relationships presented were collected from a total of 33 studies. These studies were all performed in Turkish coastal waters between 1997 and 2013. For all studies, the median of a value was calculated as 0.014 and the median of b value was calculated as 3.016.

Keywords: Weight-Length Relationships, Black Sea, Mediterranean Sea, Marmara Sea, Aegean Sea, Turkish marine waters.

Introduction

Length weight relationship (LWR) studies have an important role in estimating population biomass, growth rate determination, determining the stock status of fishes and in many other subjects (Pauly, 1983; Safran, 1992; Petrakis & Stergiou, 1995; Gonçalves et al., 1997; Stergiou & Moutopoulos, 2001; Morey et al., 2003; Torcu-Koç et al., 2006). These also carry a significant importance for Fishbase (Froese & Pauly, 2014). The number of these studies has been steadily increasing and this makes the functions of databases like Fishbase more comprehensible (Froese et al., 2011). Despite this importance, the number of comparative studies on LWR has remained quite low. No studies other than Stergiou & Moutopoulos, (2001), Froese, (2006), Torcu-Koç et al., (2008), Froese et al., (2011) and Froese et al., (2014) have been found in literature. Among these studies, Stergiou & Moutopoulos, (2001) has gathered the LWR data of fishes in Greek waters, and Torcu-Koç et al., (2008) has gathered the LWR data of a limited number of lessepsian fishes in Turkish waters. Froese, (2006) and Froese et al., (2014) had analysed the length-weight relationships of all fishes available on the Fishbase website using meta-analysis and Bayesian methods. Froese et al., (2011), on the other hand, lists the important issues that must be considered during the preparation of length-weight relationships for publication.

Turkey is a country with four different marine systems. All four marine systems have different ecological characteristics. Even though there had been many LWR studies on those four seas, except for Torcu-Koç et al., (2008) where LWR of 24 different lessepsian fish species were gathered, no wide scale and comparative study was discovered. In this study, a total of 738 LWR for 242 different fish species were examined for Turkish marine waters.

Materials and Method

All LWR in this study were gathered from a total of 33 studies performed between the years 1997-2013 in the seas of Turkey (Table 1). The studies were evaluated in four main marine regions: Black Sea, Marmara, Aegean and Mediterranean. Some of studies presented length and weight in units other than in centimeters and grams. According to Froese, (2006) this did not affect b value, but the intercept a needed to be converted with the following equation:

\[a' = a10^b \] (if length was given in mm and weight in g)

Different length measurements types also affect a but not b; especially, for the same sample, a increases from total- to fork to standard length (Froese, 2006). For this reason studies were classified for length type and analyzed separately. The descriptive statistics of a, b and \(r^2 \) values estimated by LWR were given for all length type separately. Both LWR parameters, a and b, were tested at the family level and compared per study area using one way variance analysis (ANOVA). In the cases when ANOVA results are significant, Duncan multiple comparison test was used to determine which group this difference comes from (Zar, 1999; Gündoğdu, 2014). To determine the similarities of families with regards to a and b values, hierarchical clustering based on Euclidian distance was applied and Ward’s method was used (Gor-
The b value is 3 or around 3 for the majority of fishes (Tesch, 1968). b=3 means the fish demonstrates isometric growth, and situations to the contrary are taken to be allometric growth (b<3: negative allometry, b>3: positive allometry). For determination of whether b value is different from 3, student t-test was applied.

Joint LWR equations on the family level for each length type were estimated with the help of the median values of the a and b parameters of each family. The correlation between a and b parameters was calculated with the help of the Pearson correlation multiplier for all species together. Froese, (2000) recommend the application of a scatter plot between log (a) and b to demonstrate the interdependency between a and b parameters.

A scatter plot between log (a) and b values was drawn for most reported species to determine the outlier values present in LWR, from, which outliers should be identified and those relationships must be considered problematic (Stergiou & Moutopoulos, 2001; Froese, 2000).

All statistical analysis was performed using the IBM SPSS v20 and R package software and the level of significance was determined as 5%.

Results

The a, b, a’, R2, fishing method, year of sampling, Lmin, Lmax, location where study conducted and the season of sampling of each species, are given in Table 1, 2 and 3. The highest number of studies were performed in the Aegean Sea (n=15) and the lowest number were performed in the Black Sea (n=3) (Table 4). Table 1 shown that 236 species were studied with total length, table 2 shown that 40 species were studied with fork length and table 3 shown that 9 species were studied with disc width. The highest number of LWR studies were performed for Sparidae (13.7%, n=101) and Mullus barbatus (2%, n=15).

Graphs for b values for all length-weight relationships (for each length type separately) are shown in Figure 1 after excluding questionable records. The median values b was calculated as 3.05 for total length, 3.009 for fork length and 3.05 for disc width. For all LWR b values were not different from 3 (p>0.05).

Three significantly different (p<0.05) groups of species were formed as a result of the hierarchical clustering analysis based on the median values of a and b parameters after excluding questionable records (Fig. 2).

The LWR equation estimated from all studies was determined as:
\[W=0.009L^{1.00} \] (n=640, r²=0.99, total length)
\[W=0.0165L^{3.009} \] (n=640, r²=0.99, fork length)
\[W=0.0169L^{3.05} \] (n=640, r²=0.99, disc width)

Significant (p<0.05; Fig. 3) correlation value were calculated for all families as -0.417. Log(a)-b scatter plot for all families, it was discovered that the grouping is mostly around 3 (Fig. 3).

Some of species that have more than ten LWR and that have outliers are considered. It was determined that M. merluccius had two outliers and the others had one outlier each (Fig. 4).

Considering the seasons in which the studies were performed, it is noted that 25 studies were performed with samples gathered over a period of one year while the remaining 8 studies were performed only during a specific period of the year (Table 1, 2 and 3).

Discussion

In Turkish waters 512 fish species have been reported (Bileceñoğlu et al., 2014). Among these species, Gobiidae (43 species), Sparidae (21 species), Blenniidae (20 species) and Labridae (20 species) families are represented by the highest numbers of species. However, the numbers of species focused on by the studies gathered by this study doesn’t match Bileceñoğlu et al., (2014) except for Sparidae. The main reason for this is the preference of the trawling method of fishing for the studies gathered in this study, as this prevents the sampling of the fish species living in coastal waters. Considering catching methods of studies gathered in this study, most of studies used trawl as sampling method (Table 1, 2 and 3). For example, most species belonging to the Gobiidae family live in coastal waters. Thus, it is not possible for these species to be caught by sampling performed using trawl fishing methods (Miller, 1986). When the most heavily studied species are examined, it can be seen that these species match with the ones that are most heavily fished or that are most prominent among the fishes caught using the trawl fishing methods. In fact, the target species and by-catch compositions of fisheries in all four seas are parallel to these three species (Özbilgin & Tosunoğlu, 2003; Özbilgin et al., 2006; Yazıcı et al., 2006; Atar & Malal, 2010; Ceylan et al., 2013).

b value varies between 1.19 (Cepola macroptalmna, from Demirel & Dalkara, 2012) and 4.15 (Raja miraletus from Filiz & Bilge, 2004) for all species. Also, 95% of these values vary between 2.99 and 3.028, which mean the median value of 3 accepted for all fish species is a relevant value. The study performed by Froese, (2006) on all fishes included in Fishbase demonstrates that a range close to this (2.94-3.07) is applicable for 95% of all fishes. Indeed, the t-test performed and given above shows that when all values are considered, b values aren’t different from 3. This also matches the 2.5-3.5 range given by Froese, (2006) and Carlander, (1997) for the b value. However, there are also species with exceptional b values such as C. macroptalmna and R. miraletus. It is already supposed that the families that these two mentioned species belong to were placed in different clusters as a result.
Table 1. Parameters of the length-weight relationship [weight (in g) and length (in cm and total length)] of marine fish species from Turkish marine waters. (M, male; F, female; C, combined); Location = Place where study conducted (AS, Aegean Sea; BS, Black Sea; MS, Marmara Sea; Medit, Mediterranean Sea); Year = year of sampling; Season = sampling season (ASC, all seasons combined; F-W, Fall-Winter; W-S, Winter-Spring); FM = fishing method (T, trawl; L, Longline; BS, beach seine; GN, gill nets; TR, trammel); a = the intercept of the relationship provided by source; a’ = the original standardized intercept corresponding to cm, g (this is calculated only for length given in mm); b = the slope of the relationship; = coefficient of determination; n= the sample size; Species are listed in alphabetical order.

Season	Location	Species	N	Sex	Year	FM	a	a’	b	\(r^2 \)	Source	
ASC	MS	A. sphynx	12	C	2007	BS	2	7.9	0.00820	3.11	Ozen et al. (2009)	
ASC	Medit	A. djedaba**	70	C	1997-1998	T-GN	13	19.2	0.00075	0.4883	2.82	0.86 Taskavak and Bilecenoglu (2001)
ASC	AS	A. fallax	32	C	2004-2005	GN-TR	17.6	24.6	0.01020	2.93	0.88 Karakulak et al. (2006)	
F-W	BS	A. pontica	227	C	2004-2005	T	11.9	27.6	0.00460	2.93	0.88 Kalaycı et al. (2007)	
F-W	BS	A. queketti	11	C	2011	T	7.1	12.3	0.08690	3.09	0.97 Ozen et al. (2009)	
Winter	Medit	A. sphyraena	238	C	2003	T	7.5	20.7	0.00620	2.93	0.88 Ismen et al. (2007)	
Winter	AS	A. sphyraena	92	C	2005-2006	T	8	20.6	0.00426	2.93	0.88 Karakulak et al. (2007)	
Winter	BS	A. queketti	48	C	2007	T	12.3	9.94	0.00002	0.1221	3.47	0.97 Taskavak and Bilecenoglu (2001)
Winter	AS	A. queketti	143	C	1998-2001	TR-GN-T-BS	2.7	7.1	0.00600	3.53	0.97 Ozen et al. (2009)	
Winter	Medit	A. queketti	30	C	2007-2008	T	7.1	12.8	0.11350	2.12	0.69 Karakulak et al. (2006)	
Winter	AS	A. queketti	7	C	2005-2006	T	20	25.5	0.01850	2.74	0.97 Ismen et al. (2007)	
Winter	MS	A. queketti	44	C	2007	BS	2.9	9.8	0.02100	2.98	0.73 Ak et al. (2009)	
Spring	AS	A. queketti	7	C	2004-2005	GN-TR	7.6	18.3	0.01500	2.75	0.99 Deval et al. (2014)	
Spring	AS	A. queketti	32	C	1997-2000	T-L	6.5	26.9	0.00002	0.0203	3.00	0.99 Özkın et al. (2010)
Spring	AS	A. queketti	76	C	2002	T	6	8.9	0.01790	2.60	0.88 Bayhan et al. (2008)	
Spring	AS	A. queketti	1805	C	2005-2006	T	5.5	24.2	0.00719	3.01	0.97 Bayhan et al. (2008)	
Spring	AS	A. queketti	594	C	1999-2000	T	4.5	13.4	0.00970	2.91	0.96 Özaydın et al. (2007)	
Spring	AS	A. queketti	796	C	2002	T	5	17.1	0.00790	3.01	0.97 Bayhan et al. (2008)	
Spring	AS	A. queketti	1805	C	2005-2006	T	11.7	21.1	0.00709	3.05	0.97 Bayhan et al. (2008)	
Spring	AS	A. queketti	1629	C	2006-2007	T	6.8	20	0.00680	3.02	0.96 Bay et al. (2011)	
Season	Location	Species	N	Sex	Year	FM	a	b	Source			
--------	----------	---------	----	-----	------	-----	-----	----	------------------			
ASC	AS	Arnoglossus laterna	721	C	1998-2001	TR-GN-T-BS	6.8	21.9	3.17 0.96	Özaydın et al. (2006)		
ASC	AS	Arnoglossus laterna	328	C	1997-2000	T	5.5	20.5	3.49 0.97	Türk et al. (2009)		
ASC	AS	Arnoglossus laterna	13	C	2002	T	1.6	7.9	2.69 0.95	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	8	C	2004	T	16.2	32.4	3.34 0.98	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	15	C	1997-2000	T	85	11.2	3.12 0.96	Özaydın et al. (2006)		
ASC	AS	Arnoglossus laterna	31	C	2006-2008	T	4.1	7.9	2.71 0.95	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	8	C	2004	T	16.2	32.4	3.34 0.98	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	15	C	1997-2000	T	29	1.1	0.0011	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	31	C	2006-2008	T	4.1	7.9	2.71 0.95	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	8	C	2004	T	16.2	32.4	3.34 0.98	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	15	C	1997-2000	T	29	1.1	0.0011	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	31	C	2006-2008	T	4.1	7.9	2.71 0.95	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	8	C	2004	T	16.2	32.4	3.34 0.98	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	15	C	1997-2000	T	29	1.1	0.0011	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	31	C	2006-2008	T	4.1	7.9	2.71 0.95	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	8	C	2004	T	16.2	32.4	3.34 0.98	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	15	C	1997-2000	T	29	1.1	0.0011	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	31	C	2006-2008	T	4.1	7.9	2.71 0.95	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	8	C	2004	T	16.2	32.4	3.34 0.98	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	15	C	1997-2000	T	29	1.1	0.0011	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	31	C	2006-2008	T	4.1	7.9	2.71 0.95	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	8	C	2004	T	16.2	32.4	3.34 0.98	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	15	C	1997-2000	T	29	1.1	0.0011	Boylan et al. (2008)		
ASC	AS	Arnoglossus laterna	31	C	2006-2008	T	4.1	7.9	2.71 0.95	Boylan et al. (2008)		

Table 1. (Continued)
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source		
ASC	AS	Buglossidium luteum	28	C	2002	T	7.3	9.6	0.02400	2.57	0.79	Bayhan et al. (2008)
F-W	MS	Buglossidium luteum	27	C	2006-2007	T	9.5	20	0.01950	2.62	0.97	Bok et al. (2011)
ASC	AS	Buglossidium luteum	123	C	2005	T	7	11.4	0.01500	2.82	0.89	Ozaydın et al. (2007)
ASC	AS	Buglossidium luteum	862	C	2005-2006	T	16.1	35.2	0.00910	3.06	0.96	Ilkay et al. (2008)
ASC	MS	Buglossidium luteum	55	C	2009-2011	T	8.4	15.1	0.00500	3.02	0.90	Demirel and Dalkara (2012)
Spring	AS	Buglossidium luteum	208	C	2003	T	9	21.6	0.00650	2.74	0.78	Filiz and Bilge (2004)
ASC	AS	Buglossidium luteum	332	C	2005-2006	T	8.5	27.5	0.00347	3.02	0.91	Ismen et al. (2007)
ASC	AS	Buglossidium luteum	123	C	2005	T	7	11.4	0.01500	2.82	0.89	Ozaydın et al. (2007)
ASC	AS	Buglossidium luteum	862	C	2005-2006	T	16.1	35.2	0.00910	3.06	0.96	Ilkay et al. (2008)
ASC	MS	Buglossidium luteum	55	C	2009-2011	T	8.4	15.1	0.00500	3.02	0.90	Demirel and Dalkara (2012)
Spring	AS	Caelorinchus caelorhincus	208	C	2003	T	9	21.6	0.00650	2.74	0.78	Filiz and Bilge (2004)
ASC	AS	Caelorinchus caelorhincus	332	C	2005-2006	T	8.5	27.5	0.00347	3.02	0.91	Ismen et al. (2007)
ASC	AS	Caelorinchus caelorhincus	123	C	2005	T	7	11.4	0.01500	2.82	0.89	Ozaydın et al. (2007)
ASC	MS	Caelorinchus caelorhincus	55	C	2009-2011	T	8.4	15.1	0.00500	3.02	0.90	Demirel and Dalkara (2012)
Spring	AS	Caelorinchus caelorhincus	208	C	2003	T	9	21.6	0.00650	2.74	0.78	Filiz and Bilge (2004)
ASC	AS	Caelorinchus caelorhincus	332	C	2005-2006	T	8.5	27.5	0.00347	3.02	0.91	Ismen et al. (2007)
ASC	AS	Caelorinchus caelorhincus	123	C	2005	T	7	11.4	0.01500	2.82	0.89	Ozaydın et al. (2007)
ASC	MS	Caelorinchus caelorhincus	55	C	2009-2011	T	8.4	15.1	0.00500	3.02	0.90	Demirel and Dalkara (2012)
Spring	AS	Caelorinchus caelorhincus	208	C	2003	T	9	21.6	0.00650	2.74	0.78	Filiz and Bilge (2004)
ASC	AS	Caelorinchus caelorhincus	332	C	2005-2006	T	8.5	27.5	0.00347	3.02	0.91	Ismen et al. (2007)
ASC	AS	Caelorinchus caelorhincus	123	C	2005	T	7	11.4	0.01500	2.82	0.89	Ozaydın et al. (2007)
ASC	MS	Caelorinchus caelorhincus	55	C	2009-2011	T	8.4	15.1	0.00500	3.02	0.90	Demirel and Dalkara (2012)
Spring	AS	Caelorinchus caelorhincus	208	C	2003	T	9	21.6	0.00650	2.74	0.78	Filiz and Bilge (2004)
ASC	AS	Caelorinchus caelorhincus	332	C	2005-2006	T	8.5	27.5	0.00347	3.02	0.91	Ismen et al. (2007)
ASC	AS	Caelorinchus caelorhincus	123	C	2005	T	7	11.4	0.01500	2.82	0.89	Ozayıd (2007) and Taskavak (2010)
Season Location	Species	N	Sex	Year	FM	Source						
-----------------	---------	---	-----	------	----	--------						
ASC AS	Chelon labrosus*	6	C	2000-2001	L-BS	3.6	15.3	0.00071	1.0821	3.18	1.00	Keskin and Gaygusuz (2010)
Spring AS	Chimaera monstrosa	17	C	2003	T	13.1	75.3	0.00280	2.82	0.98	Filiz and Bilge (2004)	
Spring AS	Chlorophthalmus agassizi	378	C	2003	T	7.7	15.3	0.00071	1.0821	3.18	1.00	Keskin and Gaygusuz (2010)
ASC AS	Chromis chromis	141	C	2004-2005	GN-TR	8.7	14	0.00270	2.70	0.98	Sangun et al. (2007)	
ASC AS	Citharus linguatula*	1236	C	1997-2000	T	69	237	0.00002	3.26	0.98	Türk et al. (2008)	
ASC AS	Clinitrachus argentatus**	99	C	2007	BS	2.6	7.9	0.00602	3.09	0.97	Ozen et al. (2009)	
Winter Medit	Cynoglossus sinusarabici	53	C	2007-2008	T	17.1	12.48	0.02390	2.52	0.98	Erguden et al. (2009)	

Table 1. (Continued)
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source			
ASC	Medit	Cynoglossus sinusarabici**	32	C	1997-1998	T-GN	9.6	13.3	0.00001	0.0024	2.48	0.96	Taskavak and Bilecenoglu (2001)
ASC	Medit	Dasyatis centroura	4	C	2009-2011	T	141.1	220	0.00300	3.00	999.00	Deval et al. (2014)	
ASC	AS	Dasyatis pastinaca	12	C	2004-2005	GN-TR	29.2	37.8	0.00160	3.00	999.00	Karakulak et al. (2006)	
Spring	AS	Dasyatis pastinaca	29	C	2003	T	37.3	74.2	0.01490	2.81	0.85	Filiz and Bilge (2004)	
ASC	AS	Dasyatis pastinaca	48	C	2005-2006	T	20.5	66	0.01259	3.12	0.99	Ismen et al. (2007)	
ASC	Medit	Dasyatis pastinaca	14	C	1999-2000	T	40	74.2	0.00850	3.04	0.97	Ozaydin et al. (2007)	
ASC	Medit	Dasyatis pastinaca	16	C	2005	T	44.2	138	0.00230	3.25	0.99	Ozaydin et al. (2007)	
ASC	AS	Dasyatis pastinaca	334	C	1999-2003	T	23.4	100.9	0.00200	3.24	0.96	Yeldan and Avsar (2007)	
ASC	Medit	Delenostoeus quadrirarmatus	883	C	2005-2006	T	16.3	40.2	0.00010	3.24	0.97	Yildiz et al. (2008)	
F-W	AS	Dentex dentex	39	C	2006	TR-L	23.5	15	0.01050	3.06	0.98	Ceyhan et al. (2009)	
Fall	Medit	Dentex dentex	16	C	2000	L	31.4	51	0.00610	2.50	0.99	Can et al. (2002)	
ASC	AS	Dentex dentex	22	C	2004-2005	GN-TR	16.8	61.5	0.01070	3.03	0.95	Karakulak et al. (2006)	
F-W	Medit	Dentex dentex	5	C	2008-2009	GN-TR	15.9	18.4	0.00310	3.55	0.99	Yigit and Ismen (2009)	
Fall	Medit	Dentex gibbosus	34	C	2000	L	17.6	47.3	0.03410	3.71	0.95	Ilkyaz et al. (2008)	
ASC	AS	Dentex macrophthalmus	249	C	2005-2006	T	8.7	19.9	0.02100	2.89	0.99	Ceyhan et al. (2009)	
F-W	AS	Dentex maroccanus	8	C	2006	TR-L	18.9	34	0.00880	3.18	0.99	Ismen et al. (2007)	
ASC	AS	Diplodus annularis*	81	C	2009-2011	T	10	16.7	0.00400	1.72	3.43	Demir et al. (2012)	
F-W	Medit	Diplodus annularis*	887	C	1999-2000	T	7.9	16.7	0.00014	1.6669	3.17	0.99	Keskin and Gaygusuz (2010)
ASC	AS	Diplodus annularis**	89	C	2000-2001	TR-L	9.6	13.3	0.00001	0.0024	2.48	0.96	Taskavak and Bilecenoglu (2001)
ASC	Medit	Diplodus annularis	33	C	2006	TR-L	21.3	16	0.00610	3.04	0.98	Ceyhan et al. (2009)	
Season Location	Species	N	Sex	Year	FM	a	a'	b	Source				
-----------------	------------------	-----	-----	------------	-------	---------	-----	-----	-----------------------------				
F-W Medit	Diplodus sargus	26	C	2008-2009	GN-TR	11.6	18.1	0.06080	2.50 0.93	Gokce et al. (2010)			
Fall Medit	Diplodus sargus	33	C	2000	L	14.9	26.7	0.03420	2.81 0.85	Can et al. (2002)			
ASC Medit	Diplodus sargus	36	C	2001-2003	T-L	11.2	25.3	0.01080	3.17 0.99	Sangun et al. (2007)			
F-W AS	Diplodus vulgaris	69	C	2006	TR-L	19.2	9.6	0.00690	3.21 0.99	Ceyhan et al. (2009)			
ASC AS	Diplodus vulgaris	93	C	2004-2005	GN-TR	9	25	0.08580	2.43 0.65	Karakulak et al. (2006)			
ASC AS	Diplodus vulgaris	69	C	2002-2003	L	9.6	25.3	0.01450	3.03 0.99	Akyol et al. (2007)			
Fall Medit	Diplodus vulgaris	105	C	2000	L	13.2	27	0.01310	3.12 0.93	Can et al. (2002)			
ASC AS	Diplodus vulgaris	23	C	2005-2006	T	10.2	19.1	0.00925	3.14 0.94	Ismen et al. (2007)			
ASC AS	Diplodus vulgaris	118	C	2005-2006	T	6.6	8.6	0.00380	3.53 0.98	Ilkyaz et al. (2008)			
ASC AS	Diplodus vulgaris	179	C	2005-2006	T	14.9	100	0.00083	3.35 1.00	Ismen et al. (2007)			
Spring AS	Diplodus vulgaris	8	C	2003	T	17.9	22.2	0.0070	3.40 0.99	Filiz and Bilge (2004)			
ASC AS	Diplodus vulgaris	39	C	2005-2006	T	7.3	12.2	0.00010	3.41 0.97	Ilkyaz et al. (2008)			
Spring MS	Echiichthys vipera	24	C	2007	BS	1.7	14.3	0.01664	2.71 0.99	Ozen et al. (2009)			
F-W BS	Engraulis encrasicolus	575	C	2004-2005	T	8	14.7	0.01740	2.60 0.85	Kalayci et al. (2007)			
ASC Medit	Engraulis encrasicolus	392	C	2001-2003	T-L	7	17	0.01560	2.66 0.96	Sangun et al. (2007)			
ASC AS	Engraulis encrasicolus	212	C	2005-2006	T	8.1	14.8	0.00529	2.97 0.87	Ismen et al. (2007)			
ASC Medit	Engraulis encrasicolus	630	C	1999-2000	T	4.3	13.7	0.00370	3.18 0.96	Çiçek et al. (2008)			
ASC AS	Engraulis encrasicolus	28	C	1997-2000	T	85	134	0.00021	2.77 0.66	Türker et al. (2008)			
ASC Medit	Euphacterias myrus	125	C	2002-2003	L	18.6	56.6	0.01780	2.86 0.94	Akyol et al. (2007)			
F-W MS	Epinephelus aeneus	36	C	2006	TR-L	21.6	16	0.00940	3.27 0.95	Ceyhan et al. (2009)			
ASC AS	Epinephelus aeneus	125	C	2002-2003	L	18.6	56.6	0.01780	2.86 0.94	Akyol et al. (2007)			
Fall Medit	Epinephelus aeneus	53	C	2000	L	14.2	55.4	0.08850	2.39 0.93	Can et al. (2002)			
ASC AS	Epinephelus aeneus	59	C	2002-2003	L	14.6	45	0.02660	2.74 0.97	Akyol et al. (2007)			
ASC AS	Epinephelus spinax	11	U	2005-2009	T	10.6	45	0.00230	3.23 0.95	Ismen et al. (2009)			
ASC AS	Epinephelus spinax	24	C	2005-2006	T	10.6	45	0.00172	3.27 0.92	Ismen et al. (2007)			
Winter Medit	Etrumeus teres	61	C	2007-2008	T	16.7	134.6	0.00780	2.99 0.97	Erguden et al. (2009)			
F-W MS	Eutrigla gurnardus	67	C	2006-2007	T	9.6	22.8	0.01050	2.96 0.96	Bok et al. (2011)			
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source			
--------	----------	---------	---	-----	------	----	---	----	---	--------			
ASC AS	Eutrigla gurnardus	7	C	2005-2006	T	9.9	42	0.01040	2.88	1.00	Ilkyaz et al. (2008)		
ASC MS	Eutrigla gurnardus	633	C	2009-2011	T	10.1	25.6	0.00700	3.05	0.93	Demirel and Dalkara (2012)		
ASC AS	Eutrigla gurnardus	23	C	2005	T	11.2	20.3	0.00390	3.33	0.99	Ozaydın et al. (2007)		
ASC AS	Eutrigla gurnardus	251	C	2005-2006	T	10.9	21.2	0.00250	3.42	0.92	Ismen et al. (2007)		
Winter	Medit	Fistularia commersonii	12	C	2007-2008	T	65	60	0.01200	2.50	0.98	Erguden et al. (2009)	
ASC AS	Galcidulus argenteus	331	C	2005-2006	T	6.7	13.5	0.01414	2.85	0.83	Ismen et al. (2007)		
ASC AS	Galcidulus argenteus	110	C	2003	T	6.4	10.5	0.00560	3.24	0.89	Filiz and Bilge (2004)		
ASC MS	Gaidropsarus mediterraneus**	8	C	2000-2001	L-BS	4.2	20.7	0.00680	0.6958	3.01	1.00	Keskin and Gaygusuz (2010)	
F-W MS	Gadus callarias mediterraneus	56	C	2006-2007	T	8.2	14.3	0.00300	3.05	0.93	Koc et al. (2011)		
ASC AS	Galeus melastomus	93	C	2005-2006	T	12	31.7	0.00238	3.03	0.92	Ismen et al. (2007)		
ASC AS	Galeus melastomus	303	U	2005-2009	T	11.3	31.7	0.01414	2.85	0.83	Ismen et al. (2009)		
ASC MS	Gobius argenteus	23	C	2005	T	11.2	20.3	0.00390	3.33	0.99	Ozaydın et al. (2007)		
ASC MS	Gobius niger	73	C	2007	T	9.1	35	0.01000	3.03	0.89	Filiz and Bilge (2004)		
ASC BS	Gobius geniporus	20	C	2005	T	10.1	25.6	0.00700	3.05	0.93	Demirel and Dalkara (2012)		
ASC BS	Gobius melanostomus	184	C	2005-2006	T	5.5	18	0.02400	2.74	0.91	Ak et al. (2009)		
ASC BS	Gobius melanostomus	127	C	2005-2006	T	6.5	18	0.02400	2.74	0.91	Ak et al. (2009)		
ASC BS	Gobius niger	208	C	2005-2006	T	5.6	18	0.02400	2.74	0.91	Ak et al. (2009)		
ASC BS	Gobius niger	14 C	2005-2006	T	5.5	18	0.02400	2.74	0.91	Ak et al. (2009)			
ASC MS	Gobius niger	272	C	2007 BS	T	2.7	11.8	0.00400	2.95	0.56	Ak et al. (2009)		
ASC BS	Gymnothorax cretensis**	13	C	2000-2001	BS	6.6	9.7	0.00120	0.2433	3.13	0.95	Keskin and Gaygusuz (2010)	
ASC BS	Gymnura altavela	17	C	2005	T	37.6	95	0.04490	2.84	0.99	Ozaydın et al. (2007)		
ASC MS	Gymnura altavela	9	C	2003	T	37.5	95	0.04490	2.84	0.99	Ozaydın et al. (2007)		
ASC MS	Gymnura altavela	107	C	1999-2003	T	30.2	83.5	0.00900	3.23	0.99	Yildiz and Avsar (2007)		
ASC AS	Helicolenus dactylopterus	96	C	2005-2006	T	7.6	20.5	0.01628	3.04	0.97	Ismen et al. (2007)		
ASC MS	Helicolenus dactylopterus	178	C	2003	T	5.5	13.5	0.00790	3.28	0.92	Filiz and Bilge (2004)		
ASC AS	Hexanchus griseus	18	C	2005-2009	T	68.6	105	0.00470	3.15	0.97	Ismen et al. (2009)		
ASC AS	Hexanchus griseus	14 C	2005-2006	T	68.6	105	0.00470	3.15	0.97	Ismen et al. (2009)			
ASC MS	Hexanchus griseus	14	C	2005-2006	T	80	114	0.00600	3.28	0.92	Ismen et al. (2009)		
ASC BS	Hexanchus griseus	5	C	2005-2006	T	80	114	0.00600	3.28	0.92	Ismen et al. (2009)		
ASC BS	Hippocampus guttulatus	200	C	2000-2002	TR	100	165	0.01000	2.47	0.64	Gürkan and Taskavak (2007)		
ASC BS	Hippocampus hippocampus	163	C	2007	T	2.7	13.7	0.00400	2.95	0.56	Ak et al. (2009)		
ASC BS	Hippocampus hippocampus	163	C	2007	T	2.7	13.7	0.00400	2.95	0.56	Ak et al. (2009)		

Table 1. (Continued)
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source	
ASC	AS	Hippocampus hippocampus	29	C	2000-2002	TR	80	0.00100	3.14	0.76 Gürkan and Taskavak (2007)	
Spring	AS	Hoplostethus mediterraneus	137	C	2003	T	8	0.01490	2.95	0.98 Filiz and Bilge (2004)	
ASC	AS	Hoplostethus mediterraneus	599	C	2005-2006	T	4.5	0.0890	3.16	0.99 Ismen et al. (2007)	
ASC	Medit	Hymenocampus italicus	76	C	2009-2011	T	8.2	0.00770	2.45	0.77 Devet et al. (2014)	
Fall	AS	Hymenocampus italicus	91	C	2011	T	7.4	0.00340	2.89	0.86 Yaprıcı et al. (2015)	
ASC	MS	Labrus viridis	72	C	2007	BS	3	0.01272	2.99	0.99 Ozen et al. (2009)	
ASC	Medit	Lagocephalus lagocephalus	27	C	2001-2003	T-L	12.3	0.00660	3.30	0.95 Sangun et al. (2007)	
Winter	Medit	Lagocephalus spadiceus	89	C	2007-2008	T	26.9	0.02040	2.90	0.94 Erguden et al. (2009)	
ASC	Medit	Lagocephalus spadiceus**	19	C	1997-1998	T-GN	15.9	0.00902	2.95	0.97 Taskavak and Bilecenoglu (2001)	
Winter	Medit	Lagocephalus suezensis	86	C	2007-2008	T	16.7	0.02360	2.75	0.96 Erguden et al. (2009)	
Winter	ASC	Leiodus klunzingeri	212	C	1999-2000	T	2.1	0.00900	3.16	0.96 Ciçek et al. (2006)	
ASC	ASC	Leiodus klunzingeri	632	C	2001-2003	T-L	1.9	0.00750	3.22	0.97 Sangun et al. (2007)	
ASC	Medit	Leiodus klunzingeri**	156	C	1997-1998	T-GN	4.9	0.00600	0.0065	3.27	0.96 Taskavak and Bilecenoglu (2001)
Winter	Medit	Leiodus klunzingeri**	358	C	2007-2008	T	10.9	0.00260	3.71	0.92 Erguden et al. (2009)	
ASC	MS	Lepadogaster lepadogaster	4	C	2007	BS	4.1	0.00415	3.60	0.99 Ozen et al. (2009)	
ASC	AS	Lepadogaster caudatus	13	C	2005-2006	T	36.3	0.00047	3.05	0.99 Ismen et al. (2007)	
Spring	AS	Lepadogaster caudatus	40	C	2003	T	21.9	0.00040	3.11	0.99 Filiz and Bilge (2004)	
ASC	ASC	Lepidostomus boscii	2242	C	2006-2008	T	10.9	0.00390	3.25	0.99 Ozekinci et al. (2009)	
ASC	ASC	Lepidostomus boscii	521	C	2005-2006	T	10.2	0.00316	3.29	0.99 Ismen et al. (2007)	
ASC	ASC	Lepidostomus whitfieldianus	12	C	2006-2008	T	20.2	0.00726	2.33	0.91 Ozekinci et al. (2009)	
MS	ASC	Lepidostomus whitfieldianus	143	C	2009-2011	T	5.9	0.03300	2.63	0.84 Demirel and Dalkara (2012)	
ASC	ASC	Lepidostomus cavillone	1428	C	2005-2006	T	12.7	0.00880	3.15	0.98 Ilkay et al. (2008)	
ASC	AS	Lepidostomus cavillone	855	C	2005-2006	T	7	0.00442	3.41	0.90 Ismen et al. (2007)	
ASC	AS	Lepidostomus cavillone	377	C	1997-2000	T	75	0.00011	2.98	0.89 Türker et al. (2008)	
Spring	AS	Leaneurigobius friesi	17	C	2003	T	6.2	0.03920	2.13	0.72 Filiz and Bilge (2004)	
F-W	MS	Leaneurigobius friesi	580	C	2006-2007	T	4.2	0.01600	2.53	0.85 Bok et al. (2011)	
ASC	AS	Leaneurigobius friesi	149	C	2005-2006	T	6.8	0.00890	2.86	0.99 Ilkay et al. (2008)	
ASC	AS	Leaneurigobius friesi	631	C	2005	T	4	0.00790	3.01	0.95 Ozaydin et al. (2007)	
Fall	AS	Lesueurigobius suerii	13	C	2011	T	3.9	0.00960	2.93	0.91 Yaprıcı et al. (2015)	
ASC	Medit	Lesueurigobius suerii	6	C	2009-2011	T	44.5	0.03900	3.08	0.98 Devet et al. (2014)	
F-W	MS	Lithognathus mormyrus*	141	C	2006	GN-TR	23.7	0.00240	3.50	0.97 Ceyhan et al. (2009)	
ASC	MS	Lithognathus mormyrus**	41	C	2000-2001	L-BS	2.6	0.00097	1.2072	3.10	0.99 Keskin and Gaygusuz (2010)
F-W	Medit	Lithognathus mormyrus**	6	C	2008-2009	GN-TR	16.4	0.01920	2.83	0.99 Gokce et al. (2010)	

(continued)
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source
ASC AS	Lithognathus mormyrus	55	C	2005-2006	T	9.2	30.5	0.0180	3.01	0.98 Ilkyaz et al. (2008)
ASC AS	Lithognathus mormyrus	36	C	2002-2003	L	16	27.8	0.00980	3.04	0.95 Akyol et al. (2007)
ASC Medit	Lithognathus mormyrus	39	C	1999-2000	T	12.6	19.4	0.00920	3.09	0.95 Çiçek et al. (2006)
ASC MS	Liza aurata**	446	C	2000-2001	L-BS	2.3	17.4	0.00088	0.9151	3.02 0.96 Keskin and Gaygusuz (2010)
ASC Medit	Liza aurata**	75	C	2000-2001	L-BS	2.3	18.6	0.00922	0.9371	3.01 0.99 Keskin and Gaygusuz (2010)
ASC AS	Lophius budegassa	29	C	2005-2006	T	7	45.4	0.01160	3.08	0.99 Ilkyaz et al. (2008)
ASC MS	Lophius piscatorius	30	C	2005-2006	T	9.3	18.2	0.02200	2.85	0.81 Demirel and Dalkara (2012)
F-W MS	Lophius piscatorius	40	C	2006-2007	T	36	54	0.00014	2.49	0.88 Bok et al. (2011)
Winter Medit	Leiognathus klunzingeri	358	C	2007-2008	T	10.7	29.2	0.00260	3.71	0.92 Erguden et al. (2009)
ASC MS	Lepadogaster lepadogaster	4	C	2007-2006	BS	4.1	5.1	0.00415	3.60	0.99 Ozen et al. (2009)
Spring AS	Lepidopus caudatus	13	C	2005-2006	T	36.3	80	0.00470	3.05	0.99 Ismen et al. (2007)
ASC MS	Lepidopus caudatus	143	C	2009-2011	T	5.9	14.2	0.03009	2.63	0.84 Demirel and Dalkara (2012)
ASC AS	Lepidopus caudatus	1428	C	2006-2007	T	12.7	33	0.00880	3.15	0.98 Ilkyaz et al. (2008)
ASC MS	Lepidopus caudatus	855	C	2005-2006	T	7	12.8	0.00442	3.41	0.90 Ismen et al. (2007)
Spring AS	Lepidopus caudatus	521	C	2005-2006	T	10.2	39.5	0.00316	3.29	0.99 Ismen et al. (2007)
ASC AS	Lepidopus caudatus	12	C	2006-2008	T	20.2	35.7	0.07260	2.33	0.91 Ozekinci et al. (2009)
Autumn AS	Lepidopus caudatus	171	C	2003-2004	T	10.1	23.7	0.00970	3.02	0.95 Çin and Bilge (2015)
Spring AS	Lepidopus caudatus	377	C	1997-2000	T	75	141	0.00011	2.98	0.89 Tüker et al. (2008)
Spring AS	Lepidopus caudatus	17	C	2003-2004	T	6.9	14.2	0.00490	3.08	0.99 Ismen et al. (2007)
F-W MS	Lepidopus caudatus	580	C	2006-2007	T	4.2	10.7	0.01600	2.53	0.85 Bok et al. (2013)
Fall AS	Lepidopus caudatus	149	C	2005-2006	T	6.8	20.5	0.00890	2.89	0.96 Ilkyaz et al. (2008)
F-W MS	Lepidopus caudatus	631	C	2005-2006	T	4	9.1	0.00790	3.01	0.95 Ozaydin et al. (2007)
F-W AS	Lepidopus caudatus	117	C	2010-2011	T	5.9	14.2	0.00490	3.08	0.99 Ismen et al. (2007)
F-W MS	Lepidopus caudatus	117	C	2010-2011	T	5.9	14.2	0.00490	3.08	0.99 Ismen et al. (2007)
F-W AS	Lepidopus caudatus	141	C	2006-2007	T	23.7	14.5	0.00240	3.50	0.97 Ceyhan et al. (2009)

Table 1. (Continued)
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
ASC	MS	*Liza aurata*	446	C	2000-2001	L-BS	2.3	17.4	0.00088	Keskin and Gaygusuz (2010)				
ASC	Medit	*Liza corinna*	15	C	1997-1998	T-GN	16.7	18.7	0.00002	Taskavak and Bilecenoglu (2001)				
ASC	MS	*Liza saliens*	57	C	2000-2001	L-BS	2.3	18.6	0.00092	Keskin and Gaygusuz (2010)				
ASC	AS	Lophius badegaussa	29	C	2005-2006	T	7	45.4	0.0160	İlkeş et al. (2008)				
ASC	MS	Lophius piscatorius	15	C	2009-2011	T	9.3	18.2	0.02200	Demirel and Dalkara (2012)				
ASC	AS	Lophius piscatorius	15	C	2005	T	22.3	6.7	0.01990	Ozyaydn et al. (2007)				
ASC	AS	Lophius piscatorius	94	C	1998-2001	TR-GN-T-BS	8	48	0.01460	Ismen et al. (2007)				
ASC	AS	Lophius piscatorius	445	C	2005-2006	T	11.2	9.3	0.01239	Ismen et al. (2007)				
ASC	AS	Lophius piscatorius	30	C	2005-2006	T	6.1	9.6	0.01010	İlkeş et al. (2008)				
F-W	MS	Lophius piscatorius	40	C	2006-2007	T	36	54	0.00010	Bok et al. (2011)				
ASC	AS	Lophius piscatorius*	23	C	1997-2000	T	101	440	0.00002	Tüker et al. (2008)				
Spring	AS	Macroramphosus scolopax	43	C	2003	T	7.1	11.4	0.00790	Filiz and Bilge (2004)				
ASC	Medit	Macroramphosus scolopax	124	C	1999-2000	T	3.7	9.2	0.00590	Çiçek et al. (2006)				
ASC	MS	Merlangius merlangus euxinus	234	C	2009-2011	T	10.6	24.5	0.01200	Demirel and Dalkara (2012)				
ASC	AS	Merlangius merlangus euxinus	23	C	2005-2006	T	12.5	19.1	0.01020	Ismen et al. (2007)				
ASC	AS	Merlangius merlangus euxinus	100	C	1998-2001	TR-GN-T-BS	16	31	0.00920	Ozyaydn and Taskavak (2006)				
F-W	BS	Merlangius merlangus euxinus	904	C	2004-2005	T	7.7	22.7	0.00670	Kalayçi et al. (2007)				
F-W	WS	Merlangius merlangus euxinus	166	C	2006-2007	T	7.6	24.2	0.00470	Bok et al. (2011)				
ASC	BS	Merlangius merlangus euxinus	943	C	2007	T	6.7	29.5	0.00400	Ak et al. (2009)				
F-W	AS	Merluccius merluccius	21	C	2006	TR-L	28.1	21.5	0.01990	Ceyhan et al. (2009)				
ASC	AS	Merluccius merluccius*	2711	C	2005	T	2.7	48.8	0.98140	Ozaydın et al. (2007)				
ASC	Medit	Merluccius merluccius	297	C	2001-2003	T-L	13.2	31	0.03370	Sangan et al. (2007)				
ASC	MS	Merluccius merluccius	715	C	2009-2011	T	9.3	52	0.01000	Demirel and Dalkara (2012)				
ASC	MS	Merluccius merluccius	31	C	2012-2013	T	16	28.7	0.00960	Özerol (2014)				
ASC	MS	Merluccius merluccius*	501	C	1998-2001	TR-GN-T-BS	12.3	47	0.00500	Ozyaydn and Taskavak (2006)				
ASC	AS	Merluccius merluccius	22	C	2004-2005	GN-TR	19.7	41.1	0.00490	Karakulak et al. (2006)				
ASC	Medit	Merluccius merluccius	567	C	1999-2000	T	3.1	29.9	0.00460	Çiçek et al. (2006)				
ASC	AS	Merluccius merluccius	2041	C	2005-2006	T	7.9	66	0.00439	Ismen et al. (2007)				
ASC	AS	Merluccius merluccius	1499	C	2005-2006	T	6.9	9.6	0.00390	İlkeş et al. (2008)				
F-W	MS	Merluccius merluccius	319	C	2006-2007	T	8.9	44.8	0.00260	Bok et al. (2011)				
ASC	AS	Merluccius merluccius*	166	C	1997-2000	T	158	372	0.00007	Tüker et al. (2008)				
W-S	BS	Mesogobius batrachocephalus	37	C	2009-2011	T	7.2	13.3	0.02030	Demirhan and Can (2007)				
ASC	AS	Microchirus ocellatus	8	C	2006-2008	T	10.3	13.7	0.03260	Ozekinci et al. (2009)				
ASC	AS	Microchirus ocellatus	6	C	2005-2006	T	5.5	19.8	0.00790	İlkeş et al. (2008)				
ASC	AS	Microchirus variegatus	29	C	2006-2008	T	10.1	15.5	0.01620	Ozekinci et al. (2009)				
ASC	AS	Microchirus variegatus	10	C	2004-2005	GN-TR	10.1	14.6	0.01370	Karakulak et al. (2006)				
Season	Location	Species	N	Sex	Year	FM	a	b	Source					
--------	----------	---------------------------	----	-----	-----------	-----	------	-------	--------------------------------					
ASC	AS	*Microchirus variegatus*	36	C	2005-2006	T	4.4	0.00440	3.31	0.96	İlkyaz et al. (2008)			
ASC	AS	*Microchirus variegatus*	36	C	2002	T	7.3	0.00300	3.42	0.99	Bayhan et al. (2008)			
ASC	AS	*Microstomias postassou*	540	C	2005-2006	T	13.7	0.00350	3.20	0.99	İsmen et al. (2007)			
ASC	AS	*Melva macroura*	192	C	2005-2006	T	27.7	0.00050	3.42	0.98	İsmen et al. (2007)			
ASC	AS	*Monocirrus hexipus*	15	C	2006-2008	T	9.7	0.05650	2.43	0.94	Özekici et al. (2009)			
ASC	AS	*Mullus barbatius*	45	C	1997-2000	T	10	0.06100	3.35	0.99	Türkö et al. (2008)			
F-W	Medit	*Mullus barbatius*	8	C	2008-2009	GN-TR	11	0.01840	2.84	0.99	Gökkız et al. (2010)			
ASC	AS	*Mullus barbatius*	94	C	2009-2011	T	9.6	0.01150	3.00	0.86	Demirel and Dalkara (2012)			
F-W	BS	*Mullus barbatius*	176	C	2004-2005	T	6.6	0.01110	2.96	0.98	Kalaycı et al. (2007)			
ASC	AS	*Mullus barbatius*	3386	C	2005-2006	T	6	0.00762	3.09	0.96	İsmen et al. (2007)			
ASC	AS	*Mullus barbatius*	2021	C	1999-2000	T	3.8	0.00760	3.13	0.98	Çiçek et al. (2006)			
ASC	Medit	*Mullus barbatius*	1565	C	2012-2013	T	8.7	0.00710	3.17	0.99	Özvarol (2014)			
ASC	BS	*Mullus barbatius*	714	C	2007	T	6.1	0.00700	3.14	0.99	Ak et al. (2009)			
ASC	AS	*Mullus barbatius*	1879	C	2005-2006	T	5.8	0.00600	3.22	0.98	İlkyaz et al. (2008)			
W-S	BS	*Mullus barbatius*	432	C	2009-2011	T	6.8	0.00510	3.24	0.97	Demirhan and Can (2007)			
F-W	MS	*Mullus barbatius*	99	C	2006-2007	T	10	0.00490	3.33	0.92	Bok et al. (2011)			
ASC	AS	*Mullus barbatius*	76	C	2004-2005	GN-TR	12.5	0.00490	3.27	0.94	Karakulak et al. (2006)			
ASC	Medit	*Mullus barbatius*	451	C	2001-2003	T-L	8.2	0.00320	3.06	0.94	Sangun et al. (2007)			
F-W	AS	*Mullus surmuletus*	120	C	2006	TR-L	17.2	0.01720	2.98	0.98	Ceyhan et al. (2009)			
ASC	MS	*Mullus surmuletus*	17	C	2000-2001	L-BS	4.7	0.00045	1.0920	3.39	0.99	Keskin and Gaygusuz (2010)		
F-W	MS	*Mullus surmuletus*	145	C	2006-2007	T	11	0.02400	2.72	0.89	Bok et al. (2011)			
ASC	Medit	*Mullus surmuletus*	354	C	2009-2011	T	8.5	0.00600	3.18	0.93	Demirel and Dalkara (2012)			
ASC	AS	*Mullus surmuletus*	59	C	2005-2006	T	11.2	0.00580	3.27	0.98	İlkyaz et al. (2008)			
ASC	Medit	*Mullus surmuletus*	45	C	2012-2013	T	13.7	0.00290	3.47	0.95	Özvarol (2014)			
ASC	AS	*Mustelus asterias*	7	C	2005-2009	T	53.7	0.00060	3.40	1.00	İsmen et al. (2009)			
ASC	AS	*Mustelus mustelus*	17	C	2005	T	51.4	0.00440	2.91	0.98	Özaydın et al. (2007)			
ASC	AS	*Mustelus mustelus*	70	C	2005-2009	T	46.8	0.00340	2.98	0.99	İsmen et al. (2009)			
ASC	AS	*Mustelus mustelus*	148	C	2005-2006	T	5.8	0.00270	3.05	0.98	İlkyaz et al. (2008)			
ASC	AS	*Mustelus mustelus*	26	C	2005-2006	T	58.9	0.00131	3.19	0.99	İsmen et al. (2007)			
Spring	AS	*Myliobatis aquila*	14	C	2003	T	47.5	0.00080	3.34	0.93	Filiz and Bilge (2004)			
Spring	AS	*Myliobatis aquila*	14	C	2003	T	47.5	0.00080	3.34	0.93	Filiz and Bilge (2004)			
ASC	AS	*Myliobatis aquila*	66	C	2005-2007	T	29.5	0.00027	3.56	0.92	Yığın and İsmen (2009)			
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
--------	----------	--------------------------	----	-----	--------------	-----	--------	--------	-------	---				
Winter	Medit	Nemipterus randalli	10	C	2007-2008	T	15.3	10.05	0.01300	Erguden et al. (2009)				
	ASC	Nemipterus randalli	143	C	2012-2013	T	9.5	22	0.01200	Özvarol (2014)				
W-S	BS	Neogobius melanostomus	99	C	2009-2011	T	8.6	19.1	0.00470	Demirhan and Can (2007)				
ASC	MS	Nerophis ophidion**	177	C	2000-2001	L-BS	9.7	21.2	0.000200	Keskin and Gaygusuz (2010)				
ASC	AS	Nerophis ophidion	11	C	1998-2001	TR-GN-T-BS	10.3	18.2	0.00090	Ozyayin and Taskavak (2006)				
ASC	AS	Nerophis ophidion	86	C	2000-2002	TR	78	214	0.00000	Gürkan and Taskavak (2007)				
ASC	Medit	Neottamoma melanarun	75	C	2009-2011	T	25.1	79.8	0.00020	Erguden et al. (2009)				
ASC	Medit	Nezumia aequalis	72	C	2009-2011	T	8.4	20.3	0.00420	Özvarol (2014)				
ASC	Medit	Ophidion barbatum	9	C	2004-2005	GN-TR	9.1	19.8	0.00340	Karakulak et al. (2006)				
ASC	Medit	Ophidion barbatum	316	C	2004-2005	GN-TR	9.1	19.8	0.00340	Karakulak et al. (2006)				
ASC	Medit	Ophidion barbatum	44	C	2005-2006	T	9.5	20.2	0.00175	Ismen et al. (2007)				
ASC	Medit	Ophidion barbatum	41	C	2001-2003	T-L	12.1	30.1	0.00150	Sangun et al. (2007)				
ASC	Medit	Ophiinus serpens	41	C	1997-1998	T-GN	6.1	12.2	0.000001	Taskavak and Bilecenoglu (2001)				
Winter	Medit	Oxyurichthys petersii**	175	C	2007-2008	T	19.2	13.3	0.00640	Erguden et al. (2009)				
ASC	Medit	Oxyurichthys petersii*	83	C	2001-2003	T-L	11	17	0.01186	Sangun et al. (2007)				
ASC	Medit	Pagellus acare	334	C	2005-2006	T	16.4	51.6	0.01040	Ilkyaz et al. (2008)				
ASC	Medit	Pagellus acare	901	C	1999-2000	T	3.6	15.3	0.00750	Çiçek et al. (2006)				
ASC	Medit	Pagellus bogaraveo	77	C	2005-2006	T	10.1	19.8	0.01560	Ilkyaz et al. (2008)				
ASC	Medit	Pagellus bogaraveo	2355	C	2005-2006	T	6.5	25.1	0.00747	Ismen et al. (2007)				
F-W	AS	Pagellus erythrinus	125	C	2006	TR-L	30.9	18.6	0.00620	Ceyhan et al. (2009)				
F-W	Medit	Pagellus erythrinus	87	C	2012-2013	T	11.6	21.5	0.05110	Özvarol (2014)				
ASC	Medit	Pagellus erythrinus	43	C	2008-2009	GN-TR	13.3	20.2	0.04120	Gökçe et al. (2010)				
ASC	Medit	Pagellus erythrinus	365	C	2002-2003	L	12	30	0.01760	Akyol et al. (2007)				
ASC	Medit	Pagellus erythrinus	1787	C	1999-2000	T	1.4	18.6	0.01520	Çiçek et al. (2006)				
ASC	Medit	Pagellus erythrinus	222	C	2001-2003	T-L	7.9	31.58	0.01450	Sangun et al. (2007)				
ASC	Medit	Pagellus erythrinus	1014	C	2005-2006	T	12.1	42.3	0.01340	Ilkyaz et al. (2008)				
ASC	Medit	Pagellus erythrinus	169	C	2004-2005	GN-TR	9.9	29.8	0.01240	Karakulak et al. (2006)				
ASC	Medit	Pagellus erythrinus	2480	C	2005-2006	T	7.2	27	0.01050	Ismen et al. (2007)				
ASC	Medit	Pagellus erythrinus	181	C	1997-2000	T	78	228	0.00110	Türker et al. (2008)				
Fall	Medit	Pognas caeruleostictus	311	C	2000	L	12.5	38.8	0.006710	Can et al. (2002)				
ASC	Medit	Pognas caeruleostictus	664	C	2001-2003	T-L	5.5	20.4	0.01250	Sangun et al. (2007)				
ASC	Medit	Pognas caeruleostictus	10	C	2005-2006	T	6.5	23.7	0.00280	Ilkyaz et al. (2008)				
ASC	Medit	Pognas pugnus	127	C	2012-2013	T	9.5	19	0.01860	Özvarol (2014)				
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
---------	----------	----------------------------	----	-----	-------------	------	----------	----------	----------	--				
ASC AS	Pagrus pagrus**	18 C 2005-2006 T	27.7	83	0.01710	2.97	1.00	Ilkyar et al. (2008)						
ASC MS	Parablennius tentacularis**	10 C 2000-2001 L-BS	3.5	10	0.00072	0.9601	3.13	Keskin and Gaygusuz (2010)						
ASC Medit	Pelates quadrilineatus**	76 C 1997-1998 T-GN	7.9	12.1	0.00001	0.0134	2.96	Taskavak and Bilecenoglu (2001)						
ASC Medit	Pomphitis vancuvalensis**	46 C 1997-1998 T-GN	7.7	15.5	0.00001	0.0120	3.03	Taskavak and Bilecenoglu (2001)						
Spring AS	Perissedon cataphractum	11 C 2003 T	8.1	21.2	0.00480	2.97	0.99	Filiz and Bilge (2004)						
Spring AS	Physic hennoides	359 C 2005-2006 T	16	42.5	0.00209	3.38	0.97	Ismen et al. (2007)						
Spring AS	Physic hennoides	12 C 2003 T	12.3	15	0.00170	3.55	0.89	Filiz and Bilge (2004)						
ASC BS	Platichthys flesus**	51 C 2007 T	19.1	44.5	0.00520	2.96	0.97	Taskavak and Bilecenoglu (2001)						
ASC BS	Pomatoschistus bathi**	19 C 2000-2001 L-BS	2.8	6.3	0.00520	0.9141	3.25	Keskin and Gaygusuz (2010)						
ASC MS	Pomatoschistus marmoratus	16 C 2007 BS	5.5	6.7	0.00363	3.19	0.97	Ozen et al. (2009)						
ASC MS	Pomatoschistus minutus	12 C 2007 BS	4.2	5.6	0.00599	3.12	0.98	Ozen et al. (2009)						
ASC Medit	Pomatoschistus pic tus	30 C 2006-2007 T	22.2	61.2	0.00130	3.39	0.97	Yeldan and Avsar (2007)						
F-W MS	Pomatoschistus saltatrix	30 C 2006-2007 T	22.2	61.2	0.00130	3.39	0.97	Yeldan and Avsar (2007)						
F-W BS	Pomatoschistus saltatrix	170 C 2009-2011 T	9.6	65	0.11300	2.42	0.77	Demiray and Dalkara (2012)						
ASC BS	Pomatoschistus saltatrix	112 C 2005-2006 T	6	60	0.01300	3.12	1.00	Ismen et al. (2007)						
ASC Medit	Pomatoschistus saltatrix	77 C 1999-2003 T	29.3	64.6	0.00370	3.08	0.98	Yeldan and Avsar (2007)						
W-S BS	Pomatoschistus saltatrix	27 C 2009-2011 T	10.7	95.2	0.00190	3.24	0.99	Demiray and Dalkara (2012)						
ASC BS	Pomatoschistus saltatrix	226 C 2005-2007 T	10	88	0.00163	3.32	0.99	Yiggin and Ismen (2009)						
Spring AS	Pomatoschistus saltatrix	37 C 2003 T	20.5	99	0.00160	3.30	0.94	Filiz and Bilge (2004)						
ASC AS	Pomatoschistus saltatrix	31 C 1999-2000 T	20.5	17.7	0.00160	3.29	0.93	Filiz and Mater (2002)						
F-W MS	Pomatoschistus saltatrix	24 C 2006-2007 T	12.2	79	0.00061	2.87	0.89	Bok et al. (2011)						
ASC AS	Pomatoschistus mirakletus	30 C 2005-2006 T	6.5	30.5	0.00891	3.22	0.97	Ismen et al. (2007)						
ASC AS	Pomatoschistus mirakletus	12 C 2005 T	39	53.5	0.00630	2.95	0.97	Ozaydin et al. (2007)						
ASC AS	Pomatoschistus mirakletus	52 C 2005-2007 T	10.5	53.5	0.00173	3.27	0.95	Yiggin and Ismen (2009)						
Spring AS	Pomatoschistus mirakletus	13 C 2005 T	30	50.5	0.00010	4.15	0.93	Filiz and Bilge (2004)						
ASC AS	Pomatoschistus mirakletus	13 C 1999-2000 T	30	56.5	0.00010	4.02	0.93	Filiz and Mater (2002)						
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
--------	----------	---------	---	-----	------	----	---	----	---	--------				
ASC AS	Raja radula	49	C	2005-2006	T	12.5	39	0.01131	3.25	0.98	Ismen et al. (2007)			
ASC AS	Raja radula	25	C	2004-2005	GN-TR	7.4	70	0.00300	3.22	0.94	Karakulak et al. (2006)			
ASC AS	Raja radula	204	C	2005-2007	T	17	61	0.00205	3.32	0.97	Yığın and Ismen (2009)			
ASC Medit	Raja radula	295	C	1999-2003	T	21.1	68.1	0.00120	3.36	0.99	Yeldan and Avsar (2007)			
ASC Medit	Rhinobatos cemiculus	262	M	2010-2011	L-T-GN	32	149	0.00265	3.22	0.94	Basusta et al. (2012)			
ASC Medit	Rhinobatos rhinobatos	262	M	2010-2012	L-T-GN	35	125	0.00110	3.39	0.96	Basusta et al. (2012)			
ASC AS	Rostroraja alba	11	C	2005	T	25.2	53.4	0.00900	3.48	0.99	Ozaydın et al. (2007)			
ASC AS	Rostroraja alba	43	C	2005-2006	T	9.5	93	0.00662	3.20	0.99	Ismen et al. (2007)			
Fall AS	Rostroraja alba	12	C	2011	T	26.1	52	0.00210	3.21	0.99	Yapıcı et al. (2015)			
ASC AS	Rostroraja alba	126	C	2005-2007	T	14	159	0.00194	3.27	0.98	Yığın and Ismen (2009)			
ASC MS	Salaria pavo	14	C	2007	BS	3.7	12.2	0.01653	2.62	0.98	Ozen et al. (2009)			
ASC MS	Sardina pilchardus**	38	C	2000-2001	BS	4.7	6.7	0.00015	0.8262	3.74	0.86	Keskin and Gaygusuz (2010)		
ASC AS	Sardina pilchardus	87	C	1997-2000	T	80	142	0.00031	2.77	0.68	Türker et al. (2008)			
ASC MS	Sardinella aurita**	24	C	2000-2001	BS	4.6	6.8	0.00051	0.8518	3.44	0.81	Keskin and Gaygusuz (2010)		
F-W MS	Sardinella aurita	16	C	2006-2007	T	9.9	16.8	0.03330	2.27	0.88	Bok et al. (2011)			
ASC AS	Sardinella aurita	50	C	2004-2005	GN-TR	16.4	26.2	0.00620	3.08	0.91	Karakulak et al. (2006)			
ASC AS	Sarda salpa	80	C	2002-2003	L	19.6	33.1	0.00460	3.11	0.94	Akyol et al. (2007)			
ASC AS	Saurida undosquamis	100	C	1997-2000	T	158	217	0.00000	3.81	0.99	Türker et al. (2008)			
ASC AS	Saurida undosquamis	79	C	2008-2009	GN-TR	12.8	36.4	0.01050	2.80	0.97	Gokce et al. (2010)			
Winter Medit	Saurida undosquamis	304	C	2007-2008	T	34	99.2	0.00630	2.97	0.99	Erguden et al. (2009)			
ASC AS	Saurida undosquamis	80	C	2002-2003	L	19.6	33.1	0.00460	3.11	0.95	Akşin et al. (2007)			
ASC Medit	Saurida undosquamis	1801	C	1999-2000	T	5	33	0.00390	3.17	0.97	Çiçek et al. (2006)			
ASC Medit	Saurida undosquamis	416	C	2001-2003	T-L	10.6	26.1	0.00390	3.15	0.96	Sancar et al. (2007)			
ASC Medit	Saurida undosquamis	211	C	2012-2013	T	11.5	35.5	0.00370	3.19	0.97	Özvarol (2014)			
ASC MS	Sciaena umbra**	12	C	2000-2001	BS	2.9	12	0.0069	0.9951	3.16	0.98	Keskin and Gaygusuz (2010)		
ASC AS	Sciaena umbra	24	C	2004-2005	GN-TR	13.9	29.8	0.00550	3.23	0.98	Karakulak et al. (2006)			
ASC AS	Scomber japonicus	25	C	2004-2005	GN-TR	18.1	31.2	0.00640	3.11	0.98	Karakulak et al. (2006)			
ASC Medit	Scomber japonicus	11	C	2001-2003	T-L	17.1	22	0.00560	3.11	0.95	Sancar et al. (2007)			
ASC AS	Scomber japonicus	45	C	2005-2006	T	12.2	22	0.00164	3.52	0.97	Ismen et al. (2007)			
ASC AS	Scomber scombrus	100	C	2005-2006	T	13.6	24	0.00286	3.30	0.96	Ismen et al. (2007)			
ASC AS	Scomber scombrus	54	C	2004-2005	GN-TR	22	31.1	0.00250	3.38	0.85	Karakulak et al. (2006)			
ASC AS	Scomber scombrus	52	C	1997-2000	T	158	217	0.00000	3.81	0.99	Türker et al. (2008)			
ASC AS	Scophthalmus rhombus	10	C	2006-2008	T	32	48.9	0.00290	3.42	0.98	Özvarol et al. (2009)			
Season Location	Species	N	Sex	Year	FM	a	a'	b	Source					
-----------------	---------	---	-----	------	----	---	----	---	--------					
ASC BS	Scopthalmus maximus	63	C	2007	T	10	61	0.00700	3.25	0.98	Ak et al. (2009)			
F-W BS	Scopthalmus maximus	144	C	2002-2011	T	5.6	42.1	0.02300	3.25	0.98	Deval et al. (2014)			
ASC AS	Scorpaena notata	113	C	2005	T	5.8	20.2	0.03201	2.75	0.96	Iseri et al. (2007)			
ASC AS	Scorpaena notata	855	C	2005	T	8.4	17	0.02170	3.06	0.96	Özaydın et al. (2006)			
ASC BS	Scorpaena notata	58	C	2007	T	8.1	15.1	0.01650	3.02	0.88	Karakulak et al. (2006)			
F-W MS	Scorpaena notata	357	C	2004-2005	L-BS	7.5	18.7	0.01670	3.06	0.96	Özaydın and Taskavak (2006)			
ASC AS	Scorpaena porcus	114	C	2009-2011	T	5.6	42.1	0.02300	2.88	1.00	Deval et al. (2014)			
ASC MS	Scorpaena porcus* **	45	C	2000-2001	L-BS	10	22	0.00158	1.93	0.98	Keskin and Gaygusuz (2010)			
ASC AS	Scorpaena scrofa	12	C	2005	T	10.5	28.3	0.04480	2.69	0.98	Özaydın et al. (2006)			
ASC AS	Scorpaena scrofa	129	U	2005-2009	T	16.5	61.6	0.00012	0.99	0.99	Özaydın et al. (2009)			
ASC AS	Scorpaena scrofa	1501	C	2005-2006	T	9.6	62	0.00169	3.01	0.97	Özaydın et al. (2007)			
ASC AS	Scorpaena scrofa	153	C	2004-2005	GN-TR	12.3	30.1	0.01400	3.02	0.88	Karakulak et al. (2006)			
ASC AS	Scorpaena scrofa	12	U	2005-2006	T	7.5	16.3	0.00002	0.99	0.99	Özaydın et al. (2009)			
ASC AS	Scorpaena scrofa	198	C	1999-2000	TR-GN-T-BS	20.6	51.5	0.00000	3.25	0.98	Özaydın and Taskavak (2006)			
ASC BS	Scorpaena scrofa	755	U	2005-2009	T	16.5	61.6	0.00000	3.37	0.98	Özaydın et al. (2009)			
F-W MS	Scorpaena scrofa	15	C	2005-2006	GN-TR	10.5	28.3	0.04480	2.69	0.98	Özaydın et al. (2007)			
ASC AS	Syphirhodon carcharias	113	C	1999-2000	T	17.5	52.5	0.00109	2.98	0.96	Karakulak et al. (2006)			
ASC AS	Syphirhodon carcharias	744	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	1998-2000	GN-TR	19.9	51.9	0.00120	3.00	0.68	Karakulak et al. (2006)			
ASC MS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Özaydın et al. (2006)			
ASC AS	Syphirhodon carcharias	914	C	2005-2006	T	11.9	21.8	0.00120	2.99	0.94	Öz	0.68	0.94	Özaydın et al. (2006)
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
--------	----------	------------------	-----	-----	----------	----	-------	------	-------	-----------------------------				
ASC	AS	Serranus cabrilla	974	C	2005	T	7.4	26	0.0110	Özyaydın et al. (2007)				
F-W	MS	Serranus cabrilla	15	C	2006-2007	T	6.9	11.7	0.00910	3.19 0.98 Bok et al. (2011)				
ASC	Medit	Serranus cabrilla	52	C	2012-2013	T	9	18.5	0.00910	3.05 0.96 Özvarol (2014)				
ASC	AS	Serranus cabrilla	34	C	2005-2006	T	11	27.5	0.00861	3.06 0.95 Ismen et al. (2007)				
ASC	AS	Serranus cabrilla	602	C	1997-2000	T	87	234	0.00071	2.63 0.87 Türker et al. (2008)				
ASC	MS	Serranus hepatus*	5	C	2000-2001	L-BS	2	6.8	0.00153	1.5230 3.00 1.00 Keskin and Gaygusuz (2010)				
ASC	AS	Serranus hepatus	78	C	1997-2000	T	78	114	0.00910	3.19 0.98 Bok et al. (2011)				
ASC	AS	Serranus hepatus	379	C	2009-2011	T	6.5	13.7	0.03600	2.62 0.75 Demirel and Dalkara (2012)				
ASC	AS	Serranus hepatus	111	C	2006-2007	T	5.9	11.8	0.03190	2.71 0.87 Bok et al. (2011)				
ASC	Medit	Serranus hepatus	100	C	2012-2013	T	5.8	13.9	0.02880	2.73 0.73 Özvarol (2014)				
ASC	AS	Serranus hepatus	2543	C	2005	T	6.7	11.6	0.02410	2.79 0.95 Özaydın et al. (2007)				
ASC	AS	Serranus hepatus	143	C	1998-2001	TR-GN-T-BS	5.7	11.1	0.01620	3.00 0.98 Özaydın and Taskavak (2006)				
F-W	MS	Serranus hepatus	584	C	1999-2000	T	2.4	10.5	0.01610	3.03 0.97 Çiçek et al. (2006)				
ASC	AS	Serranus hepatus	1285	C	2005-2006	T	6.2	15.2	0.01490	3.06 0.95 Ismen et al. (2007)				
ASC	Medit	Serranus hepatus	573	C	2001-2003	T-L	4.8	13	0.01450	3.04 0.95 Sangun et al. (2007)				
ASC	AS	Serranus scabba	313	C	2005	T	8.3	23.5	0.00970	3.14 0.99 Özaydın et al. (2007)				
ASC	AS	Serranus scabba	311	C	2004-2005	GN-TR	10.2	21.3	0.00650	3.24 0.97 Karakulak et al. (2006)				
ASC	Medit	Serranus scabba	8	C	2001-2003	T-L	13.6	17	0.00440	3.41 0.95 Sangun et al. (2007)				
F-W	AS	Siganus luridus*	22	C	2006	TR-L	16.5	13.2	0.01450	3.03 0.96 Çeyhan et al. (2009)				
Winter	Medit	Siganus luridus	21	C	2007-2008	T	16.3	14.19	0.01360	2.92 0.95 Ergüden et al. (2009)				
Winter	Medit	Siganus rivulatus**	56	C	2006	TR-L	16.2	11.7	0.00980	3.04 0.88 Çeyhan et al. (2009)				
Winter	Medit	Siganus rivulatus	122	C	2007-2008	T	18	15.61	0.01700	2.82 0.89 Ergüden et al. (2009)				
Winter	Medit	Siganus rivulatus	5	C	2008-2009	GN-TR	8	19.9	0.01270	2.92 0.99 Gökek et al. (2010)				
Winter	Medit	Siganus rivulatus**	355	C	1997-1998	T-GN	10.7	24.1	0.00000	0.0075 3.20 0.98 Taskavak and Bilecenoglu (2001)				
Winter	Medit	Siganus rivulatus**	23	C	2007-2008	T	20.5	14.52	0.00550	3.06 0.96 Ergüden et al. (2009)				
Winter	Medit	Siganus rivulatus**	108	C	1997-1998	T-GN	9.4	20.3	0.00000	0.0032 3.36 0.93 Taskavak and Bilecenoglu (2001)				
F-W	MS	Solea kleinii	20	C	2006-2007	T	4.6	25.9	0.03140	2.50 0.98 Bok et al. (2011)				
F-W	BS	Solea nasuta**	5	C	2000-2001	L-BS	5.7	17.6	0.0050	0.8394 3.23 1.00 Keskin and Gaygusuz (2010)				
F-W	BS	Solea nasuta**	100	C	2007	T	11.3	21.7	0.01600	2.76 0.96 Ak et al. (2009)				
Winter	Medit	Solea nasuta**	13	C	2008-2009	GN-TR	11.2	24.4	0.04900	2.35 0.98 Gökek et al. (2010)				
ASC	AS	Solea nasuta**	44	C	2002	T	9.2	15.5	0.02320	2.73 0.74 Bayhan et al. (2008)				
ASC	AS	Solea nasuta**	130	C	2006-2008	T	10	32	0.01920	2.73 0.96 Özçakıcı et al. (2009)				
ASC	AS	Solea nasuta**	53	C	2009-2011	T	20	33.2	0.00660	3.06 0.85 Kömürel and Dalkara (2012)				
ASC	AS	Solea nasuta**	55	C	2006-2007	T	6.9	16	0.00430	3.17 0.93 Özvarol (2014)				
ASC	AS	Solea nasuta**	79	C	2005-2006	T	14.7	39.2	0.00375	3.25 0.97 Ismen et al. (2007)				
ASC	AS	Solea nasuta**	72	C	2005-2006	T	4.5	8.4	0.00300	3.27 0.97 İlyaz et al. (2008)				
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
--------	----------	-----------------	----	-----	------	------------	-----	------	------	-------------------------				
ASC	AS	Solea solea	74	C	1998-2001	TR-GN-T-BS	20.4	37	0.00220	3.39 0.96	Ozaydın and Taskavak (2006)			
ASC	AS	Solea solea	110	C	2005	T	19.7	31.9	0.00210	3.20 0.95	Özaydın et al. (2007)			
F-W	AS	Sparus aurata	59	C	2006	TR-L	26.7	14.6	0.01760	2.89 0.97	Ceyhan et al. (2009)			
Fall	Mediterr	Sparus aurata	21	C	2000	L	16.9	32	0.04060	2.68 0.97	Can et al. (2002)			
ASC	Medit	Sparus aurata	298	C	2001-2003	T-L	10.3	31.8	0.02200	2.84 0.90	Sangun et al. (2007)			
ASC	Medit	Sparus aurata	13	C	1999-2000	T	15.5	27.9	0.01450	2.99 0.97	Çiçek et al. (2006)			
AS	Medit	Sparus aurata	141	C	2002-2003	L	14.5	32.6	0.01220	3.03 0.97	Akkol et al. (2007)			
AS	Medit	Sparus aurata	123	C	2005-2006	T	14.6	26.4	0.01000	3.09 0.98	İlkyaz et al. (2008)			
ASC	Medit	Sphyraena chrysotaenia**	54	C	1997-1998	T-GN	12.6	23.1	0.00003	0.0124 2.63 0.96	Taskavak and Bilecenoglu (2001)			
Winter	Medit	Sphyraena chrysotaenia	67	C	2007-2008	T	32.2	28.93	0.00110	3.41 0.90	Ergüden et al. (2009)			
ASC	Medit	Sparus aurata	440	C	2012-2013	T	9	17.3	0.02600	2.66 0.82	Özvarol (2014)			
F-W	AS	Sparus aurata	17	C	2008-2009	GN-TR	13.3	17.9	0.01210	3.03 0.96	Demirel and Dalkara (2012)			
ASC	AS	Sparus aurata	1081	C	2005-2006	T	15.2	59.3	0.01210	3.09 0.96	Yang et al. (2008)			
ASC	MS	Sparus aurata	175	C	2009-2011	T	10.4	17.9	0.00984	3.01 0.96	Yang et al. (2008)			
ASC	Medit	Sparus aurata	1381	C	1999-2000	T	4.2	17.9	0.00984	3.01 0.96	Yang et al. (2008)			
ASC	Medit	Sparus aurata	298	C	2001-2003	T	8.7	17.1	0.00984	3.01 0.96	Yang et al. (2008)			
ASC	Medit	Sparus aurata	830	C	2004-2005	GN-TR	11	22	0.00220	3.51 0.92	Yang et al. (2008)			
ASC	Medit	Sparus aurata	176	C	2001-2003	T-L	7.5	16.9	0.02800	2.95 0.92	Yang et al. (2008)			
ASC	Medit	Sparus aurata	360	C	1999-2000	T	4.9	14.9	0.01950	2.67 0.95	Yang et al. (2008)			
ASC	Medit	Sparus aurata	130	C	2004-2005	GN-TR	11.5	18.7	0.01380	2.88 0.95	Yang et al. (2008)			
ASC	AS	Sparus aurata	1449	C	2005-2006	T	8.2	18.6	0.01800	2.92 0.95	Yang et al. (2008)			
ASC	BS	Sparus aurata	528	C	2007	T	8.3	24.2	0.00990	3.01 0.86	Yang et al. (2008)			
F-W	MS	Sparus aurata	403	C	2006-2007	T	5.9	17.7	0.00890	3.08 0.86	Yang et al. (2008)			
F-W	BS	Sparus aurata	42	C	2005-2006	T	12	51.4	0.00770	3.07 0.97	Yang et al. (2008)			
ASC	BS	Sparus aurata	83	C	2004-2005	T	11.2	20	0.00630	3.15 0.96	Yang et al. (2008)			
ASC	BS	Sparus aurata	139	C	1997-2000	T	105	157	0.00051	3.86 0.92	Yang et al. (2008)			
ASC	AS	Spondyliosoma cantharus**	46	C	2004-2005	GN-TR	8.2	28.7	0.01920	2.87 0.89	Yang et al. (2008)			
ASC	AS	Spondyliosoma cantharus**	45	C	2005-2006	T	9.6	22.7	0.00902	3.18 0.98	Yang et al. (2008)			
ASC	MS	Sprattus sprattus**	52	C	2000-2001	L-BS	3.8	5.5	0.0023	0.7758 3.53 0.80	Keskin and Gaygusuz (2010)			
F-W	BS	Sprattus sprattus	5087	C	2004-2005	T	5.6	12.6	0.00790	2.87 0.88	Yang et al. (2008)			
ASC	AS	Sprattus sprattus**	565	C	2005-2009	T	17.1	115	0.00370	3.05 0.97	Yang et al. (2008)			
ASC	MS	Sprattus sprattus**	32	C	2003	T	27	70.5	0.00310	3.11 0.98	Yang et al. (2008)			
ASC	MS	Sprattus sprattus**	32	C	1999-2000	T	27	70.5	0.00310	3.11 0.98	Yang et al. (2008)			
F-W	MS	Sprattus sprattus**	8	C	2006-2007	T	41	52	0.00003	2.62 0.96	Yang et al. (2008)			
ASC	AS	Squalus acanthias	299	C	2005-2006	T	21.5	117.5	0.00345	3.06 0.98	Yang et al. (2008)			
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
--------	----------	---------	---	-----	------	----	---	----	----	--------				
ASC AS	Squalus blainvillei	27	C	2005-2009	T	30.5	121.6	0.00300	3.07	0.99	Ismen et al. (2009)			
F-W	Squalus blainvillei	18	C	2006-2007	T	38	56	0.00004	2.48	0.96	Bok et al. (2011)			
ASC	Stegolepis diadema	52	C	2001-2003	T-L	7.3	14.2	0.02760	2.83	0.98	Sangun et al. (2007)			
Winter	Stegolepis diadema	56	C	2007-2008	T	13.5	11.62	0.01460	3.08	0.98	Erguden et al. (2009)			
ASC Medit	Stegolepis diadema	207	C	1997-1998	T-GN	7.1	13	0.00001	0.0104	3.19	0.92	Taskavak and Bilecenoglu (2001)		
ASC	Symphodus boa	52	C	2009-2011	T	10	25.9	0.00050	3.36	0.94	Deval et al. (2014)			
ASC	Symphodus cinereus*	20	C	2005	T	4	7	0.01140	3.07	0.96	Ozaydın et al. (2007)			
ASC	Symphodus cinereus*	8	C	2005-2006	T	9	45.5	0.00050	3.26	0.99	Ilkyaz et al. (2008)			
ASC	Symphodus dederkini	15	C	2005	T	5.5	9.6	0.00093	1.4044	3.18	0.99	Keskin and Gaygusuz (2010)		
ASC	Symphodus mediterraneus	39	C	2004-2005	GN-TR	9.8	14.2	0.00009	1.2263	3.08	0.98	Keskin and Gaygusuz (2010)		
ASC	Symphodus mediterraneus	39	C	2005	T	4.9	20.2	0.00050	3.08	0.98	Ozaydın et al. (2007)			
ASC MS	Symphodus ocellatus*	575	C	2000-2001	L-BS	1.8	10.7	0.00010	1.2263	3.08	0.98	Keskin and Gaygusuz (2010)		
ASC	Symphodus ocellatus*	216	C	2005	T	4.7	9.2	0.00650	3.22	0.96	Ozaydın et al. (2007)			
ASC	Symphodus roissali*	22	C	2000-2001	L-BS	2.4	14.1	0.00069	1.6782	3.39	0.99	Keskin and Gaygusuz (2010)		
ASC	Symphodus roissali*	8	C	2005-2006	T	9	45.5	0.00050	3.26	0.99	Ilkyaz et al. (2008)			
ASC	Symphodus rossicus	19	C	2004-2005	GN-TR	9.6	12.7	0.00093	1.4044	3.18	0.99	Keskin and Gaygusuz (2010)		
ASC	Symphodus rossicus	36	C	2005	T	7.1	9.6	0.00093	1.4044	3.18	0.99	Keskin and Gaygusuz (2010)		
ASC MS	Symphodus tinca*	41	C	2000-2001	L-BS	2.1	15.5	0.00011	1.3910	3.10	0.99	Keskin and Gaygusuz (2010)		
ASC	Symphodus tinca*	89	C	2005	T	6.7	23	0.00130	3.08	0.98	Ozaydın et al. (2007)			
ASC	Symphodus tinca*	248	C	2004-2005	GN-TR	10	26.8	0.00050	3.05	0.97	Keskin and Gaygusuz (2010)			
Fall Medit	Symphurus nigrisculus	10	C	2000	L	12.1	17.2	0.00010	0.3034	3.18	0.99	Can et al. (2002)		
ASC MS	Symphurus nigrisculus	182	C	2005-2006	T	7.7	12.7	0.00880	2.98	0.96	Ilkyaz et al. (2008)			
ASC	Symphurus nigrisculus	7	C	2006-2008	T	9.8	10.9	0.00750	3.15	0.91	Ozekinci et al. (2009)			
Fall	Symphurus nigrisculus	10	C	2000	L	12.1	17.2	0.00010	0.3034	3.18	0.99	Can et al. (2002)		
ASC	Syngnathus abaster*	298	C	2000-2001	L-BS	2.1	12.6	0.00020	3.034	3.18	0.90	Keskin and Gaygusuz (2010)		
ASC	Syngnathus acus**	15	C	2000-2001	L-BS	10.3	37.8	0.00040	0.4689	3.07	0.96	Keskin and Gaygusuz (2010)		
F-W MS	Syngnathus acus	17	C	2006-2007	T	21.3	28.4	0.00050	3.12	0.95	Bok et al. (2011)			
ASC	Syngnathus acus	202	C	1998-2001	TR-GN-T-BS	6.1	20.7	0.00010	3.63	0.97	Ozaydın and Taskavak (2006)			
ASC	Syngnathus acus	570	C	2000-2002	TR	33	256	0.00000	3.54	0.95	Gürkan and Taskavak (2007)			
ASC	Syngnathus typhle**	375	C	2000-2001	L-BS	6.2	31.6	0.00020	0.3141	3.20	0.97	Keskin and Gaygusuz (2010)		
ASC	Syngnathus typhle**	125	C	2000-2002	TR	40	258	0.00000	3.00	0.96	Gürkan and Taskavak (2007)			
ASC Medit	Synodus saurus	161	C	1999-2000	T	10.7	31	0.00730	3.02	0.96	Ciçek et al. (2006)			
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
--------	----------	---------	---	-----	------	----	----	-----	-----	--------				
ASC	AS	Synognathus typhle	14	C	1998-2001	TR-GN-T-BS	7.5	20.3	0.00920	3.22	0.94	Ozaydın and Taskavak (2006)		
ASC	AS	Torpedo marmorata	20	C	2005-2006	T	13.2	28.6	0.05920	2.64	0.99	Ismen et al. (2007)		
ASC	AS	Torpedo marmorata	12	C	2005	T	10.3	37	0.05330	2.64	0.98	Ozaydın et al. (2007)		
ASC	AS	Torpedo marmorata	20	C	1999-2000	T	9.6	25	0.04880	2.69	0.96	Filiz and Mater (2002)		
Spring	AS	Torpedo marmorata	37	C	2003	T	9.2	34	0.02730	2.91	0.98	Filiz and Bilge (2004)		
ASC	AS	Torpedo marmorata	35	C	2005-2006	T	8.1	14.1	0.02520	2.98	0.99	Ilkyaz et al. (2008)		
ASC	AS	Torpedo marmorata	22	C	2004-2005	GN-TR	16.4	38.9	0.01390	3.10	0.95	Karakulak et al. (2006)		
ASC Medit	Torpedo nobiliana	92	M	2010-2013	L-T-GN	12	35	0.01500	3.06	0.85	Basusta et al. (2012)			
ASC	AS	Torpedo marmorata	95	C	2005-2006	T	8.2	28.2	0.00520	3.10	0.97	Ilkyaz et al. (2008)		
ASC Medit	Torpedo marmorata	54	C	2001-2003	T-L	9	20	0.00520	3.09	0.99	Sangun et al. (2007)			
ASC	AS	Torpedo marmorata	338	C	2007	T	5	35	0.00400	3.43	0.88	Ak et al. (2009)		
ASC	AS	Trachinus draco	45	C	2005	T	17.2	34.1	0.00400	3.18	0.96	Ozaydın et al. (2007)		
ASC	AS	Trachinus draco	1025	C	2005-2006	T	15	37	0.00366	3.20	0.97	Ismen et al. (2007)		
ASC MS	AS	Trachurus mediterraneus	496	C	2009-2011	T	7.5	18.5	0.01800	2.73	0.84	Demirel and Dalkara (2012)		
ASC Medit	Trachurus mediterraneus	373	C	2001-2003	T-L	7	19.1	0.01280	2.81	0.88	Sangun et al. (2007)			
ASC Medit	Trachurus mediterraneus	718	C	1999-2000	T	2.6	16	0.01080	2.86	0.98	Çiçek et al. (2006)			
ASC AS	AS	Trachurus mediterraneus	31	C	2004-2005	GN-TR	14.2	26.6	0.00470	3.17	0.95	Karakulak et al. (2006)		
ASC AS	AS	Trachurus mediterraneus*	446	C	2005-2006	T	7.5	20.9	0.00318	3.37	0.96	Ismen et al. (2007)		
ASC MS	AS	Trachurus mediterraneus*	76	C	1997-2000	T	73	225	0.00941	3.10	0.97	Türker et al. (2008)		
ASC MS	AS	Trachurus trachurus*	156	C	2009-2011	T	11.2	21	0.02700	2.95	0.77	Demirel and Dalkara (2012)		
ASC AS	AS	Trachurus trachurus*	264	C	2004-2005	GN-TR	10.5	24.3	0.01150	2.90	0.92	Karakulak et al. (2006)		
F-W BS	BS	Trachurus trachurus	747	C	2004-2005	T	7.3	18.3	0.00860	2.98	0.96	Kalayci et al. (2007)		
F-W MS	BS	Trachurus trachurus	307	C	2006-2007	T	8	16.4	0.00560	3.13	0.92	Bok et al. (2011)		
ASC AS	AS	Trachurus trachurus	159	C	2005-2006	T	13.7	24.5	0.00470	3.20	0.98	Ilkyaz et al. (2008)		
ASC AS	AS	Trachurus trachurus	1205	C	2005-2006	T	7.5	33	0.00467	3.20	0.97	Ismen et al. (2007)		
ASC BS	BS	Trachurus trachurus	267	C	2007	T	6	15.7	0.00400	3.25	0.95	Ak et al. (2009)		
ASC AS	AS	Trachurus trachurus*	174	C	1997-2000	T	78	243	0.00021	2.88	0.94	Türker et al. (2008)		
ASC Medit	Trichurus lepturus	84	C	2001-2003	T-L	20.5	58.8	0.00850	2.33	0.73	Sangun et al. (2007)			
ASC AS	AS	Trigla lyra	26	C	2005-2006	T	25.6	125.1	0.00070	2.74	0.98	Ilkyaz et al. (2008)		
ASC MS	AS	Trigla lyra	27	C	2009-2011	T	16.5	32.3	0.01200	2.83	0.93	Demirel and Dalkara (2012)		
ASC AS	AS	Trigla lyra	531	C	2005-2006	T	18.6	47.1	0.00915	2.94	0.97	Ismen et al. (2007)		
F-W MS	MS	Trigla lyra	96	C	2006-2007	T	4.5	51	0.00620	3.05	0.99	Bok et al. (2011)		
Season	Location	Species	N	Sex	Year	FM	a	a'	b	Source				
--------	----------	-----------------------	----	-----	------------	-----	-------	------	---------	---				
ASC	MS	Trigloporus lastoviza	44	C	2009-2011	T	5.5	18	0.04900	Demirel and Dalkara (2012)				
ASC	MS	Tripterygon delasi	7	C	2007	BS	2.8	5.6	0.00605	Ozen et al. (2009)				
ASC	MS	Tripterygon tripteronus	8	C	2007	BS	2.9	6.2	0.00593	Ozen et al. (2009)				
Fall	AS	Trisopterus capelanus	695	C	2011	T	8.5	22.2	0.00710	Yaprıcı et al. (2015)				
ASC	AS	Trisopterus minutus	980	C	2005-2006	T	23.5	54.5	0.00650	Ilkyaz et al. (2008)				
ASC	AS	Trisopterus lucas capelanus	14	C	1997-2000	T	13.1	200	0.00004	Türkler et al. (2008)				
ASC	AS	Trisopterus minutus	780	C	2005	T	8.4	22.6	0.00710	Özyaydın et al. (2007)				
ASC	AS	Trisopterus minutus	158	C	1998-2001	T	12.1	19.9	0.00670	Özyaydın and Taskavak (2006)				
ASC	AS	Upeneus moluccensis**	265	C	1997-1998	T-GN	10.2	17	0.00001	Taskavak and Bilecenoglu (2001)				
F-W	Medit	Upeneus moluccensis	975	C	1999-2000	T	4.9	19	0.00550	Çiček et al. (2006)				
ASC	Medit	Upeneus moluccensis	93	C	2012-2013	T	9.5	19.2	0.00530	Özvaroılı (2014)				
Winter	Medit	Upeneus moluccensis	297	C	2007-2008	T	17.7	11.98	0.00340	Erguden et al. (2009)				
Winter	Medit	Upeneus moluccensis	651	C	2001-2003	T-L	7	18	0.00240	Sangun et al. (2007)				
Winter	Medit	Upeneus pori	210	C	2007-2008	T	17	11.63	0.01570	Erguden et al. (2009)				
ASC	Medit	Upeneus pori	1225	C	1999-2000	T	5.1	15.5	0.00870	Çiček et al. (2006)				
ASC	Medit	Upeneus pori**	102	C	1997-1998	T-GN	9.1	14.7	0.00000	Taskavak and Bilecenoglu (2001)				
ASC	AS	Uranoscopus scaber	62	C	2004-2005	GN-TR	10.8	30.6	0.01560	Karakulak et al. (2006)				
ASC	MS	Uranoscopus scaber	49	C	2009-2011	T	8	25.1	0.01500	Demirel and Dalkara (2012)				
W-S	BS	Uranoscopus scaber	69	C	2009-2011	T	5.3	21.8	0.01500	Demirhan and Can (2007)				
F-W	MS	Uranoscopus scaber	82	C	2006-2007	T	10.7	24.6	0.01090	Bok et al. (2011)				
ASC	Medit	Uranoscopus scaber	92	C	2001-2003	T-L	5.2	24.7	0.01030	Sangun et al. (2007)				
ASC	AS	Uranoscopus scaber	157	C	2005	T	10.1	29.1	0.01000	Özyaydın et al. (2007)				
ASC	AS	Uranoscopus scaber	219	C	2005-2006	T	12.2	20.2	0.00970	Ilkyaz et al. (2008)				
ASC	AS	Uranoscopus scaber	71	C	2005-2006	T	12.5	27.4	0.00804	Ismen et al. (2007)				
ASC	BS	Uranoscopus scaber	620	C	2007	T	1.8	56.4	0.00800	Ak et al. (2009)				
ASC	MS	Zebras zebra	5	C	2007	BS	2.6	3.8	0.00973	Ozen et al. (2009)				
ASC	Medit	Zeus faber	261	C	1999-2000	T	2.1	20.8	0.03270	Çiček et al. (2006)				
ASC	AS	Zeus faber	83	C	2005-2006	T	10.1	15.1	0.01770	Ilkyaz et al. (2008)				
ASC	AS	Zeus faber	242	C	2005-2006	T	5.5	57.5	0.01477	Ismen et al. (2007)				
ASC	AS	Zeus faber	22	C	2005	T	10.4	44.5	0.01330	Özydın et al. (2007)				
ASC	AS	Zosterisessor ophiocephalus	168	C	1998-2001	TR-GN-T-BS	9.3	20.5	0.00440	Özydın et al. and Taskavak (2006)				
Table 2. Parameters of the length-weight relationship [weight (in g) and length (in cm and fork length)] of marine fish species from Turkish marine waters. Sex: (M, male; F, female; C, combined); Location= Place where study conducted (AS, Aegean Sea; BS, Black Sea; MS, Marmara Sea; Medit, Mediterranean Sea) Year= year of sampling; Season = sampling season (ASC, all seasons combined; F-W, Fall-Winter; W-S, Winter-Spring); FM= fishing method (T, trawl; L, Longline; BS, beach seine; GN, Gill nets; TR, trammel); a= the intercept of the relationship provided by source; b= the slope of the relationship − coefficient of determination; n= the sample size; Species are listed in alphabetical order.

Season	Location	Species	N	Sex	Year	SM	a	b	Source
ASC	AS	Atherina boyeri	138	C	1998-2001	TR-GN-T-BS	4.8	9.8	0.0048 3.165 0.98 Ozaydın and Taskavak (2006)
ASC	AS	Boops boops	1197	C	1998-2001	TR-GN-T-BS	10.7	23.5	0.0127 3.03 0.92 Ozaydın and Taskavak (2006)
ASC	AS	Chelidonichthys lastoviza	366	C	2005	T	8.2	19.8	0.0124 3.008 0.974 Ozaydın et al. (2007)
ASC	AS	Chelidonichthys lucerna	85	C	2005	T	16.2	41.1	0.0057 3.019 0.977 Ozaydın et al. (2007)
ASC	AS	Chelon labrosus	94	C	1998-2001	TR-GN-T-BS	13.5	24.9	0.0533 3.252 0.97 Ozaydın and Taskavak (2006)
ASC	AS	Chromis chromis	27	C	2005	T	8.2	11.2	0.0144 3.066 0.953 Ozaydın et al. (2007)
ASC	AS	Dentex dentex	17	C	2005	T	17.8	29.7	0.0164 3.032 0.985 Ozaydın et al. (2007)
ASC	AS	Dentex macrophthalus	51	C	1998-2001	TR-GN-T-BS	9.9	19.5	0.0178 3.051 0.97 Ozaydın and Taskavak (2006)
ASC	AS	Diplodus annularis	2517	C	2005	T	5.1	16.1	0.019 3.046 0.93 Ozaydın et al. (2007)
ASC	AS	Diplodus annularis	2517	C	2005	T	5.1	16.1	0.019 3.046 0.93 Ozaydın et al. (2007)
ASC	AS	Diplodus puntazzo	27	C	2005	T	8.6	21.4	0.0423 2.775 0.996 Ozaydın et al. (2007)
ASC	AS	Diplodus vulgaris	63	C	1998-2001	TR-GN-T-BS	8	15.4	0.0184 3.094 0.98 Ozaydın and Taskavak (2006)
ASC	AS	Diplodus vulgaris	1615	C	2005	T	5.5	23.1	0.0344 2.841 0.95 Ozaydın et al. (2007)
ASC	AS	Engraulis encrasicholus	513	C	1998-2001	TR-GN-T-BS	10.5	14.9	0.0116 2.84 0.94 Ozaydın and Taskavak (2006)
ASC	AS	Gobius niger	727	C	1998-2001	TR-GN-T-BS	6	15.6	0.0134 2.914 0.94 Ozaydın and Taskavak (2006)
ASC	AS	Lepidotrigla cavillone	31	C	1998-2001	TR-GN-T-BS	8	21.1	0.0101 3.143 0.95 Ozaydın and Taskavak (2006)
ASC	AS	Lepidotrigla cavillone	1517	C	2005	T	3.8	15.3	0.0117 3.051 0.95 Ozaydın and Taskavak (2006)
ASC	AS	Lithognathus mormyrus	35	C	1998-2001	TR-GN-T-BS	15.5	22	0.0094 3.181 0.96 Ozaydın and Taskavak (2006)
ASC	AS	Liza asarata	81	C	1998-2001	TR-GN-T-BS	15.7	27.8	0.0113 3.016 0.93 Ozaydın and Taskavak (2006)
ASC	AS	Liza saliens	329	C	1998-2001	TR-GN-T-BS	15.8	35	0.012 2.999 0.95 Ozaydın and Taskavak (2006)
ASC	AS	Mullus barbatus	479	C	1998-2001	TR-GN-T-BS	7.5	20	0.0102 3.176 0.96 Ozaydın and Taskavak (2006)
ASC	AS	Mullus barbatus	1910	C	2005	T	5.4	21.2	0.0089 3.233 0.981 Ozaydın et al. (2007)
ASC	AS	Mullus surmuletus	51	C	1998-2001	TR-GN-T-BS	8.4	17	0.0167 3.011 0.96 Ozaydın and Taskavak (2006)
ASC	AS	Mullus surmuletus	117	C	2005	T	7.4	21.9	0.0106 3.202 0.99 Ozaydın et al. (2007)
F-W	AS	Pagellus acarne	46	C	2006	TR-L	14.1	12.1	0.0088 3.112 0.952 Ceyhan et al. (2009)
ASC	AS	Pagellus acarne	335	C	1998-2001	TR-GN-T-BS	8.6	14.5	0.0942 2.868 0.95 Ozaydın and Taskavak (2006)
ASC	AS	Pagellus acarne	303	C	2005	T	9.4	17.5	0.0302 2.782 0.963 Ozaydın et al. (2007)

(continued)
Season	Location	Species	N	Sex	Year	SM a	b	Source
	ASC	Pagellus bogaraveo	51	C	2005	8.8	17.9	Ozaydın et al. (2007)
	ASC	Pagellus erythrinus	226	C	1998-2001	9	28.2	Ozaydın and Taskavak (2006)
	F-W	Pagellus erythrinus	226	C	1998-2001	9.2	28.2	Ozaydın and Taskavak (2006)
	ASC	Pagrus pagrus	12	C	2006	10.3	15.7	Ozaydın et al. (2007)
	ASC	Sardenella aurita	677	C	1998-2001	10.3	24.1	Ozaydın and Taskavak (2006)
	ASC	Sarpa salpa	77	C	1998-2001	19.9	29.9	Ozaydın et al. (2007)
	ASC	Sphyraena chrysotaenia	57	C	2006	18	28.6	Ozaydın et al. (2007)
	ASC	Sphyraena sphyraena	78	C	2006	21	31.2	Ozaydın et al. (2007)
	ASC	Spicara flexuosa	765	C	1998-2001	8.3	18.3	Ozaydın et al. (2007)
	ASC	Spicara maena	194	C	1998-2001	8.7	19.7	Ozaydın et al. (2007)
	ASC	Spicara smaris	163	C	1998-2001	8.3	18.3	Ozaydın et al. (2007)
	ASC	Trachurus mediterraneus	45	C	1988-2001	8.3	18.3	Ozaydın et al. (2007)
	ASC	Upeneus moluccensis	51	C	2006	8.4	17.4	Ozaydın et al. (2007)

Table 2. (Continued)
Table 3. Parameters of the length-weight relationship (weight \((\text{in g})\) and length \((\text{in cm and disk width})\) of marine fish species from Turkish marine waters. Sex: (M, male; F, female; C, \(\text{ASC}, \text{all seasons combined}; \text{F-W}, \text{fall-winter}; \text{W-S}, \text{winter-spring}\); FM= fishing method \((T, \text{trawl}; L, \text{Longline}; B, \text{beach seine}; GN, \text{gill nets}; TR, \text{trammel})\); \(a\) and \(b\), the intercept of the regression line (log-log scale) and the slope of the relationship; \(r^2\), the coefficient of determination; \(n\), the sample size; Species are listed in alphabetical order.

Species	Sex	Location	Year	N	SM	Season	Intercept \((a)\)	Slope \((b)\)	Source
Dasyatis pastinaca	M	ASC	2010-2011	417	M	L-T-GN	0.0419	3.3169	Basusta et al., (2012)
Ilkyaz et al., (2008)									
Gymnura altavela	C	ASC	2005-2006	31	C	T	0.0102	3.374	Ilkyaz et al., (2008)
Ilkyaz et al., (2008)									
Myliobatis aquila	C	ASC	2005-2006	39	C	T	0.0058	3.374	Ilkyaz et al., (2008)
Ilkyaz et al., (2008)									
Pteromylaeus bovinus	M	ASC	2010-2011	22	M	L-T-GN	0.0194	2.9034	Basusta et al., (2012)
Raja clavata	C	ASC	2005-2006	24	C	T	0.0335	2.892	Ilkyaz et al., (2008)
Ilkyaz et al., (2008)									
Raja miraletus	M	ASC	2010-2011	22	M	L-T-GN	0.0021	3.263	Basusta et al., (2012)
Ilkyaz et al., (2008)									
Raja polystigma	C	ASC	2005-2006	18	C	T	0.0218	3.052	Ilkyaz et al., (2008)
Rostroraja alba	C	ASC	2005-2006	5	C	T	0.0083	3.131	Ilkyaz et al., (2008)

As a result, this study offers a collected list of the LWR parameters for most species prevalent in Turkey’s seas. In addition, it will serve as an effective resource in demonstrating the factors that impact both parameters in general.
Fig. 1: Frequency distribution of exponent b based on 709 records for 242 species.

Fig. 2: Similarity dendogram for LWR parameters based on families. The average and medians of a and b values of the clusters determined by hierarchical clustering; (the letters above indicate differences and questionable records were excluded) Cluster-1=0.016, Cluster-2=0.007, Cluster-3=0.071.
Fig. 3: Scatter plot of mean log a over mean b for 242 fish species. Areas of negative allometric, isometric and positive allometric change in body weight relative to body length are indicated.

Fig. 4: The log(a) vs b graph of 4 species with more than 10 studies. The circled points are the outliers.

References

Ak, O., Kutlu, S., Aydın, I., 2009. Length-weight relationship for 16 fish species from the Eastern Black Sea, Turkey. Turkish Journal of Fisheries and Aquatic Science, 9, 125-126.

Akyol, O., Kınaeggil, H., Şevik, R., 2007. Longline fishery and length-weight relationships for selected fish species in Gökova Bay Aegean Sea, Turkey. International Journal of Natural and Engineering Sciences, 1, 1-4.

Arbuckle, J. L., 2013. IBM® SPSS® Amos™ 20 User’s Guide. Chicago, IL: IBM.

Atar, H., Malal, S. 2010. Determination of bycatch and discard catch rates on trawl fishing in Mersin-Anamur fishing ground. Journal of Food, Agriculture Environment, 81, 348-352.

Başusta, A., Başusta, N., Sulikowski, J., Driggers, W., Demirhan, S., Çiçek, E., 2012. Length–weight relationships for nine species of batoids from the Iskenderun Bay, Turkey. Journal of Applied Ichthyology, 28 (5), 850-851.

Bayhan, B., Sever, T. M., Taşkavak, E., 2008. Length-weight relationships of seven flatfishes Pisces: Pleuronectiformes from Aegean Sea. Turkish Journal of Fisheries and Aquatic Science, 8, 377-389.

Bilecenoglu, M., Kaya, M., Cinangir, B., Çiçek, E., 2014. An updated checklist of the marine fishes of Turkey. Turkish Journal of Zoology, 38, 901-929. doi: 10.3906/zoo-1405-60
Özbilgin, H., Tosunoğlu, Z. 2003. Comparison of the selectivities of double and single codends. *Fisheries Research*, 63 (1), 143-147.

Özbilgin, Y., Tosunoğlu, Z., Özbilgin, H., 2006. By-catch in a 40 mm PE demersal trawl codend. *Turkish Journal of Veterinary and Animal Sciences*, 30, 179-185.

Özekinci, U., Cengiz, Ö., İsmen, A., Altınagac, U., Ayaz, A., 2009. Length-weight relationships of thirteen flatfishes Pisces: Pleuronectiformes from Saroz Bay North Aegean Sea, Turkey. *Journal of Animal and Veterinary Advances*, 8 (9), 1800-1801.

Özvarol, Y., 2014. Length-weight relationships of 14 fish species from the Gulf of Antalya northeastern Mediterranean Sea, Turkey. *Turkish Journal of Zoology*, 38 (3), 342-346.

Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO Fisheries Technical Paper, Rome, 52 pp.

Petrakis, G., Stergiou, K., 1995. Weight-length relationships for 33 fish species in Greek waters. *Fisheries Research*, 21 (3), 465-469.

Safran, P., 1992. Theoretical analysis of the weight-length relationship in fish juveniles. *Marine Biology*, 112 (4), 545-551.

Sangun, L., Akamca, E., Akar, M., 2007. Weight-length relationships for 39 fish species from the north-eastern Mediterranean coast of Turkey. *Turkish Journal of Fisheries and Aquatic Sciences*, 7 (1), 37-40.

Stergiou, K., 1993. Abundance-depth relationship, condition factor and adaptive value of zooplanktophagy for red bandfish, *Cepola macrophthalmus*. *Journal of Fish Biology*, 42 (5), 645-660.

Sangun, L., Akamca, E., Akar, M., 2007. Weight-length relationships for 39 fish species from the north-eastern Mediterranean coast of Turkey. *Turkish Journal of Fisheries and Aquatic Sciences*, 7 (1), 37-40.

Stergiou, K., Economidis, P., Sinis, A. 1992. Age, growth and mortality of red bandfish, *Cepola macrophthalmus L.*, in the western Aegean Sea Greece. *Journal of Fish Biology*, 40 (3), 395-418.

Stergiou, K., Moutoupoulos, D., 2001. A review of length-weight relationships of fishes from Greek marine waters. *Naga, the ICLARM quarterly*, 24 (1-2), 23-39.

Taskavak, E., Bilecenoglu, M., 2001. Length-weight relationships for 18 Lessepsian Red Sea immigrant fish species from the eastern Mediterranean coast of Turkey. *Journal of the Marine Biological Association of the United Kingdom*, 81(5), 895-896.

Team, R. D. C., 2013. *R Foundation for statistical computing*. Vienna, Austria.

Tesch, F., 1968. Age and growth. p. 93-123. In: *Methods for assessment of fish production in fresh waters* Ricker W. (Eds). Blackwell Scientific Publications, Oxford.

Torcu-Koc, H., Erdogan, Z., Tezer, T., 2006. A review of length-weight relationships of fishes from freshwaters of Turkey. *Journal of Applied Ichthyology*, 22 (4), 264-270.

Torcu-Koc, H., Çakır, D., Başusta, N., 2008. A review of length-weight relationships of lessepsian fishes from Turkish seas. *e-Journal of New World Sciences Academy Natural And Applied Sciences*, 31, 145-150.

Turker-Cakir, D., Torcu-Koc, H., Basusta, A., Basusta, N., 2008. Length-weight relationships of 24 fish species from Edremit Bay Aegean Sea. *e-Journal of New World Scientific Academy National Applied Science*, 3, 47-51.

Wootton, R. J., 1990. *Ecology of teleost fishes*. Springer, 404 pp.

Yapıcı, S., Karachle, P., Filiz, H., 2015. First length-weight relationships of 11 fish species in the Aegean Sea. *Journal of Applied Ichthyology*, 31(2), 398-402.

Yazıcı, M., İsmen, A., Altınagaç, U., Ayaz, A., 2006. Marmara Denizi’nde Karides Algarnasının Av Kompozisyonu ve Hedeflenmemeyi Av Üzerine Bir Çalışma. *E.Ü. Su Ürünleri Dergisi*, 233-4, 269-275.

Yeldan, H., Avsar, D., 2007. Length–weight relationship for five elasmobranch species from the Cilician Basin shelf waters northeastern Mediterranean. *Journal of Applied Ichthyology*, 23 (6), 713-714.

Yığın, C., İsmen, A., 2009. Length–weight relationships for seven rays from Saros Bay North Aegean Sea. *Journal of Applied Ichthyology*, 25 (S1), 106-108.

Zar, J.H., 1999. *Biostatistical analysis*. Pearson Publishing, Cloth, 929 pp.