Temporal ranges and ancestry in the hominin fossil record: The case of *Australopithecus sediba*

In attempting to resolve the phylogenetic relationships of fossil taxa, researchers can use evidence from two sources – morphology and known temporal ranges. For most taxa, the available evidence is stronger for one of these data sources. We examined the limitations of temporal data for reconstructing hominin evolutionary relationships, specifically focusing on the hypothesised ancestor–descendant relationship between *Australopithecus sediba* and the genus *Homo*. Some have implied that because the only known specimens of *A. sediba* are dated to later than the earliest fossils attributed to *Homo*, the former species is precluded from being ancestral to the latter. However, *A. sediba* is currently known from one site dated to 1.98 Ma and, thus, its actual temporal range is unknown. Using data from the currently known temporal ranges of fossil hominin species, and incorporating dating error in the analysis, we estimate that the average hominin species’ temporal range is ~0.97 Myr, which is lower than most figures suggested for mammalian species generally. Using this conservative figure in a thought experiment in which the Malapa specimens are hypothesised to represent the last appearance date, the middle of the temporal range, and first appearance date for the species, the first appearance date of *A. sediba* would be 2.95, 2.47 and 1.98 Ma, respectively. As these scenarios are all equally plausible, and 2.95 Ma predates the earliest specimens that some have attributed to *Homo*, we cannot refute the hypothesis that the species *A. sediba* is ancestral to our genus based solely on currently available temporal data.

Significance:
- We correct a common misconception in palaeoanthropology that a species currently known only from later in time than another species cannot be ancestral to it.
- On temporal grounds alone one cannot dismiss the possibility that *A. sediba* could be ancestral to the genus *Homo*.

Introduction

In evaluating competing phylogenetic hypotheses there are two primary sources of data available to palaeontologists for most fossil taxa: the morphology of the taxa under investigation and their known temporal ranges. For many taxonomic groups, however, the quality of these two sources of data differs substantially. Some taxa are well known morphologically, yet are spatially and temporally restricted. Other taxa are well sampled across sites and through time, yet are represented by limited and/or fragmentary anatomical elements. While some researchers have argued that the incomplete nature of the fossil record makes temporal information unreliable for reconstructing phylogenetic relationships, and that using ‘age to define...ancestry is eminently circular’, morphological evidence regarding evolutionary relationships among fossil taxa can also be equivocal, such as when there are multiple equally parsimonious phylogenetic trees or when there is the potential that homoplasy has substantially influenced phylogenetic interpretations (see Wood and Harrison for a discussion of the latter in hominins). Consequently, it is important to consider the relative strengths of these sources of data when evaluating phylogenetic hypotheses.

Here, we focused on the limitations of temporal data for reconstructing evolutionary relationships in the hominin fossil record, using *Australopithecus sediba* as a case study. Originally proposed as the probable ancestor of the genus *Homo* (a hypothesis that has been generally accepted based on both morphological and, either directly or implicitly, temporal grounds (e.g. see comments by White in Bally et al., Grine in Cherry and Richmond in Gibbons)), leaving aside the morphological arguments for others to debate, here we examine the suggestion that the currently understood first appearance date (FAD) for *A. sediba* of ~1.98 Ma (million years ago) is, in and of itself, negates it as a potential ancestor of the genus *Homo* because putative fossils of early *Homo* appear earlier in the geological record. As these critiques derive from news pieces rather than scholarly articles it is possible that the quotes have been taken out of context and do not reflect what the researchers intended to say. However, they give the impression that at least some in the field of palaeoanthropology, like many in the general public and popular press (see Gibbons for a recent example), think that if all representatives of one taxon are found later in time than at least one specimen attributed to another taxon, it implies that the former cannot be members of the ancestral lineage from which the latter evolved. This issue is especially relevant as these misconceptions are currently being presented in college anthropology textbooks.

As noted by Spoor, two scenarios have been proposed that are consistent with the hypothesis that *A. sediba* is ancestral to *Homo*. First, Berger et al. hypothesised that the Malapa specimens represent late surviving members of the species that gave rise to *Homo* earlier in time. Second, Pickering et al. questioned the validity of specimens attributed to *Homo* that had been recovered from strata predating the Malapa deposits, and suggested that *A. sediba* cannot be precluded as a potential ancestor of *Homo* based on the age of the fossils from Malapa. Notwithstanding the difficulties in recognising early members of the genus *Homo*, we concur with Spoor that the first scenario is more likely. Therefore, in this paper we explore the question of whether it is plausible for *A. sediba* to be the ancestor of the genus *Homo* based on the FADs of specimens currently attributed to these two taxa.
Research methods and data

Contemporaneous ancestors and descendants in the fossil record

Depending on the mode of speciation, it may or may not be possible for ancestral and descendant taxa to coexist in the fossil record. Speciation resulting from bifurcating cladogenesis or anagenesis (Figure 1: Modes 1 and 2) precludes ancestors from being contemporaneous with their descendants because in both cases the entire ancestral species evolves into one or more descendant species. Alternatively, under a budding cladogenesis model of speciation (Figure 1: Mode 3) ancestors and descendants do co-occur.17 In budding cladogenesis, a subset of a species, usually a geographically isolated population, differentiates from the rest of the species and forms a new descendant taxon. Within the fossil record this is seen as a change in morphology in one population, while the remaining populations retain the ancestral form. Thus, as far as can be perceived, the ancestral species persists after giving rise to its descendant. Recent studies of animal and plant biogeography suggest that this mode of speciation is relatively common,18 and there is genetic evidence that some ancestral species are extant, living contemporaneously with their descendants.19 Some have even argued that budding cladogenesis is the primary mode by which species arise, with most ancestral taxa existing contemporaneously with their descendants for some time.20,21

The coexistence of ancestral and descendant species, which would imply that the latter species evolved via budding cladogenesis, has been hypothesised to be present in the fossil record for a variety of invertebrate groups including bryozoans, ostracods and mollusks (see citations in Gould22). Additionally, budding cladogenesis has been suggested, either explicitly or implied through the hypothesised coexistence of ancestors and descendants, in phylogenetic reconstructions of numerous mammalian groups spanning almost the entire range of body sizes including rodents23,24,25, equids26,27, hippopotamids28 and proboscideans.29,30

Among hominins, examples of putative ancestral and descendant species existing contemporaneously include Homo habilis and Homo erectus, H. erectus and most later Homo species, and Australopithecus afarensis and A. africanus.14,20 Even the transition of Australopithecus anamensis into A. afarensis via anagenesis – generally considered to be the strongest example of this mode of speciation in the early hominin fossil record30 – has been questioned based on a critical reevaluation of the morphological differences between the older A. afarensis material from Laetoli and specimens from the younger Hadar deposits.32 Moreover, fossils tentatively assigned to A. afarensis from the site of Fejej in southern Ethiopia (e.g. Feagle et al.33,34 but see Ward35 for an alternative view) overlap with the currently known temporal range of A. anamensis.36 If this diagnosis holds, then the evolution of A. afarensis from A. anamensis must have also occurred via budding cladogenesis. Although some have argued that the evidence for hominins rarely meets the criteria for budding cladogenesis, specifically that there are few examples of ancestors and descendants overlapping in time,32 if we accept that speciation in hominins can occur via this mechanism, as appears to be common in many other taxa, then contemporaneity in and of itself cannot be used to refute a potential ancestor–descendant relationship between A. sediba and the genus Homo, just as the proposed ~250 kyr of temporal overlap between H. erectus and H. habilis in East Africa does not preclude the latter taxon from being the progenitor of the former.36,37

Recognising budding cladogenesis requires documenting that ancestors and descendants co-occur in the fossil record. It is of course implicit that any specimens utilised are correctly identified to taxon. As an analysis of hominin alpha taxonomy is beyond the scope of this paper, we rely on the analyses of the experts working on the species in question for the identification of the earliest and latest examples of each taxon. Detailed criteria for identifying ancestors in the fossil record are set out by Delson.7 If, for example, one seeks to test whether it is plausible that A. sediba is the ancestor of the genus Homo it would first be necessary to provide evidence that A. sediba is the sister taxon of the genus Homo (i.e. that it shares synapomorphies with Homo that other hominin taxa do not possess). A sister group relationship has been suggested in an extensive recent phylogenetic analysis of hominins38 and in the original description of A. sediba; however, as with any phylogenetic hypothesis, it must withstand further testing by other researchers, especially when additional evidence is obtained. For A. sediba to be ancestral to the genus Homo it would also have to exhibit more primitive hominin features (plesiomorphies) than Homo and cannot exhibit any uniquely derived characters (autapomorphies) as these would indicate that it is also a descendant of the ‘true ancestor’ of both groups. If these criteria are met then one could argue that A. sediba corresponds to the ancestral morphotype of the node shared with Homo that links them as sister taxa. Moreover, Delson7,39 cogently argues that only after morphological criteria are met should one then consider other data such as a taxon being ‘widespread, polytypic, anatomically well known and perhaps of “correct” geographic and chronological age’.

The incomplete nature of the fossil record

The known fossil record likely represents fewer than half of the species that have lived,30 albeit with large differences in representation among taxonomic groups, as a result, at least partly, of differential preservation.28 With respect to primates, it is estimated that between about 3.8% and 7% of taxa have been sampled in the fossil record.41,42

Although it is implicit in evolutionary theory that some portion of an ancestral taxon necessarily preceded its descendants,30 palaeontologists have long recognised that ancestors can potentially live contemporaneously with their descendants and dated to later in time than those of their descendants as a consequence of the incomplete nature of the fossil record.43,44 For example, even after accounting for the known temporal ranges of the ‘abundant and heavily studied’ North American fossil hiranthines, Alroy45–47 notes that the most parsimonious phylogenetic hypothesis has two ancestral species that, based on the available evidence, arose one million years after their descendants, and two additional ancestral taxa that have the same FAD as their descendants. In other examples, the possibility of descendant taxa preceding their ancestors was explored by researchers studying graptoloids and echinoids.46,47 Although these researchers ultimately judged those scenarios as less likely than alternative phylogenetic hypotheses, they did not dismiss them based solely on descendants being present in the known fossil record prior to their ancestors.

One might argue that the intensive focus on recovering hominins over the past ~100 years at sites in East and South Africa would have resulted in a relatively complete fossil record. However, hominins make up very small percentages of most Plio-Pleistocene faunal assemblages
when compared to other medium- and large-sized mammals. Although published percentages are not fully comparable as different research teams include different taxonomic groups and body size subsets of the overall mammalian assemblages in their data sets, hominins are nonetheless relatively rare at most African sites from this time period. For instance, hominins make up only 5.3% of the reported mammalian assemblages at sites yielding robust australopiths in South Africa, and even this figure is likely to be an overestimate given the enhanced scrutiny that they receive, relative to non-hominins. Hominins are even less common (<2%) at sites in East Africa such as Omo, Hadar and Laetoli[20,21], although they make up a greater percentage (9% of the vertebrate fauna) of the smaller sample of mammalian fossils from Kanapoi[1].

If we accept that hominin fossils are rare, their recovery is likely to be more strongly influenced by stochastic factors than is the case for other mammals (e.g. bovids or suids). Consequently, current FADs and last appearance dates (LADs) for hominins are likely not representative of their actual temporal ranges[22,23], and the FADs of hominins that are not known from long stratigraphic sections in particular are 'subject to substantial error' [24]. Moreover, some have noted that the hominin record has 'a disproportionate contribution from the East African Rift Valley' and, accordingly, have contended that this 'precludes firm conclusions regarding immigration or speciation events'[25,26]. It is entirely possible that earlier (or later) populations of hominin species that are currently only known from one or a few localities and from a limited temporal range will be identified in under-sampled regions of Africa. Depending on how many distinct hominins species one recognises, there are as many as seven that are currently known from only one locality (i.e. they are arguably 'single hits') (Table 1). As Fonte and Raag[27,28] argue, 'a very high frequency of single hits suggests the possibility of a poor fossil record which should be analyzed with caution'. The implications of the above are that hominins are not as well known as might be expected based on the number of published articles on this group, and that a substantial amount of the hominin fossil record may be unknown. This claim is bolstered by the relatively large number of new hominin taxa named over the past 25 years, which has nearly doubled the number of putative hominin species (see citations in Wood and Boyle[29]). As such, it is likely that even the more generous estimates for hominin species durations significantly underestimate the true temporal ranges of these taxa, and this needs to be considered when evaluating hypotheses of ancestor–descendant relationships.

Species temporal ranges

Numerous methods have been developed to estimate 'true' temporal ranges for fossil taxa[30–32], but none of these methods can be applied to A. sediba because they require that specimens be known from more than a single stratum. Thus, calculating confidence intervals for the FAD and LAD of A. sediba using these methods is not possible and we must use indirect methods for estimating its temporal range.

One million years (Myr) has been cited as the typical mammalian species longevity (e.g. Martin[33] and references therein), a value that can be traced back through several studies to Kürten[34] analysis of the Pleistocene mammals of Europe. In contrast, recently compiled average species durations from a survey of published data sets of Cenozoic mammals ranged from 0.8 to 6.3 Myr[21]. Although these types of estimations are highly dependent on the group of mammals under consideration (e.g. large versus small mammals) and the data set used, most of the studies yielded average species durations between 2 and 4 Myr[21]. Taxonomic practices (e.g. tendencies to ‘lump’ or ‘split’) also influence estimates of species longevity and vary between groups. Given that related taxonomic groups tend to share similar preservation potential[1,21], and similar risks of extinction[15], it seems most appropriate to use the temporal ranges of fossil primate species in general, and hominins in particular, as models for hominin species durations.

Unfortunately, few estimates of overall primate species longevity can be found in the literature (e.g. Martin[34]). Based on published hominin species temporal ranges from a recent study[34], the estimated average hominin species longevity is 0.43 Myr, which is substantially lower than that of other mammalian groups. However, these estimates include taxa that are recorded from only one locality. Given that species known from a single locality cannot provide an estimate of the temporal range of that species, unless that locality samples a range of time within well-defined strata, removing them from these calculations seems appropriate. By removing these taxa, and H. sapiens, which lacks an LAD at the time of writing, the average hominin species duration would be 0.50 Myr using published hominin species range data, and 0.69 Myr when the estimated dating error (Table 1) is incorporated (Table 1). Furthermore, if we group hominin species that many researchers ‘lump’ together (e.g. those that are listed as ‘low confidence’ in Table 2 of Wood and Boyle[21]), the average published, and with dating error, species durations for hominins rise to 0.62 and 0.97 Myr, respectively (Table 1). We acknowledge that the choice of which taxa to retain may not be agreed upon by all researchers, but note that the larger 0.97 Myr average hominin species duration utilising the data set with error is still on the low end of the ranges reported for other groups of mammals,[41] and is very close to the 1.0±0.25 Myr range suggested by Wood and Boyle.[41] As such, we will use this estimate to assess the possibility that, based on their currently estimated temporal ranges, A. sediba could be ancestral to the genus Homo.

Using 0.97 Myr as the average species duration for hominins, we estimate three temporal distributions for A. sediba by assuming that the Malapa specimens represent either the LAD, midpoint or FAD of the species (Scenarios 1, 2, and 3) (Figure 2). If we assume the Malapa specimens represent the LAD (Scenario 1), then the species would have originated around 2.95 Ma and gone extinct at 1.98 Ma. Alternatively, if Malapa is at the midpoint of the temporal range for the species (Scenario 2), then A. sediba could be estimated to have arisen at around 2.47 Ma and gone extinct at around 1.49 Ma. Finally, the possibility that the Malapa specimens represent early members of the species, chronologically closer to or at the speciation event (FAD) (Scenario 3), yields a potential temporal range of 1.98–1.01 Ma.

Thus, Scenarios 1, 2 and 3 would date the FAD of A. sediba to 2.95, 2.47 and 1.98 Ma, respectively, with all three being equally plausible based on currently available temporal data. The earliest specimen that some have attributed to the genus Homo is the partial mandible LD 350-1 from Ledi-Geraru, which is dated to 2.75–2.8 Ma.[14] Under Scenarios 2 and 3 in which the Malapa specimens represent the midpoint of the temporal range or the FAD of A. sediba it would not be possible for that species to be the ancestor of the genus Homo based on the estimate we are using for the average hominin temporal range. However, under Scenario 1 (i.e. the Malapa specimens represent the LAD of A. sediba), the Malapa specimens are currently the oldest undisputed hominin fossils in Africa and a descendant relationship would be possible even if we incorporate the ‘with error’ FAD estimates from Wood and Boyle[41] for LD 350-1 (Figure 2).

It is important to carefully examine whether the first scenario is plausible, because if it is not, then the possibility that A. sediba is ancestral to the genus Homo would be considered unlikely given the parameters discussed above. In this regard, we make several observations. First, if the Malapa specimens are correctly identified as part of an ‘australopith adaptive grade’[5] then these deposits likely contain some of the latest surviving members of the gracile form of this grade of early hominin. As such, the dates for the Malapa deposits may be close to the LAD for A. sediba. Second, given the mosaic nature of the morphology of A. sediba and, thus, the difficulty of determining whether the taxon is represented by other, more incomplete specimens in the hominin fossil record, it may be that researchers have already recovered, or will recover at a later date, other fossils from earlier (or later) in time that should be attributed to this taxon. Furthermore, we note that some researchers have questioned the taxonomic attribution of LD 350-1.[12] If the specimen does not belong to the genus Homo, the earliest putative specimens of our genus would be dated to ~2.4 Ma using published hominin species range data,[13] and 2.6 Ma utilizing the ‘with error’ estimate (Table 1). As such, both Scenarios 1 and 2 would be possible if 2.4 Ma accurately reflects the FAD for Homo, although again, only Scenario 1 remains possible at a 2.6 Ma FAD for Homo. Recall, however, that the 0.97 Ma average hominin duration used to generate a FAD for A. sediba is only an estimate based on current temporal range data from other hominins that also suffer from incomplete sampling. It is entirely possible that this figure underestimates the true temporal range for A. sediba.
Table 1: Data from Wood and Boyle\(^5\) used to calculate average hominin species duration estimates. The first series represent the ‘conservative’ data with corresponding first appearance date (FAD), last appearance date (LAD) and temporal ranges, while the second series represents the ‘with error’ data. Calculated average hominin durations are provided in bold, with those in brackets generated using a lumping approach. Taxa that were grouped together are indicated by footnotes. Taxa below the dashed line are considered single hits and were not used in average hominin species duration calculations.

Taxon	Observed range\(^a\)	Dating error incorporated\(^b\)				
	FAD	LAD	Range	FAD	LAD	Range
Orrorin tugenensis	6	5.7	0.3	6.14	5.52	0.62
Ardipithecus kadabba	6.3	5.2	1.1	6.7	5.11	1.59
Ardipithecus ramidus	4.51	4.3	0.21	4.6	4.262	0.338
Australopithecus anamensis	4.2	3.9	0.3	4.37	3.82	0.55
Australopithecus afarensis	3.7	3	0.7	3.89	2.9	0.99
Kenyanthropus platyops	3.54	3.35	0.19	3.65	3.35\(^c\)	0.3
Australopithecus deyiremedei\(^d\)	3.5	3.3	0.2	3.596	3.33	0.266
Australopithecus africanus	3	2.4	0.6	4.02	1.9	2.12
Paranthropus aethiopicus	2.66	2.3	0.36	2.73	2.23	0.5
Paranthropus boisei	2.3	1.3	1	2.5	1.15	1.35
Paranthropus robustus	2	1	1	2.27	0.87	1.4
Homo habilis	2.35	1.65	0.7	2.6	1.65\(^e\)	0.95
Homo rudolfensis	2	1.95	0.05	2.09	1.78	0.31
Homo erectus	1.81	0.027	1.783	1.85	0.027\(^f\)	1.823
Homo ergaster\(^g\)	1.7	1.4	0.3	2.27	0.87	1.4
Homo antecessor\(^i\)	1	0.936	0.064	1.2	0.936\(^i\)	0.264
Homo heidelbergensis	0.7	0.1	0.6	0.7\(^h\)	0.1\(^h\)	0.6
Homo helmei\(^j\)	0.26	0.08	0.18	0.26\(^k\)	0.08\(^k\)	0.18
Homo neanderthensis	0.13	0.04	0.09	0.197	0.03922	0.15778
Homo rhodesiensis\(^k\)	0.6	0.3	0.3	0.6\(^l\)	0.3\(^l\)	0.3
Average				**0.501 (0.620)**	**0.800 (0.969)**	
Sahelanthropus tchadensis\(^1\)	7.2	6.8	0.4	7.43	6.38	1.05
Australopithecus bahrelghazali\(^1\)	3.58	3.58	–	3.85	3.31	0.54
Australopithecus garhi\(^1\)	2.5	2.45	0.05	2.5\(^1\)	2.488	0.012
Australopithecus sediba\(^1\)	1.98	1.98	–	2.05	1.91	0.14
Homo georgicus\(^1\)	1.85	1.77	0.08	1.85\(^1\)	1.77\(^1\)	0.08
Homo floresiensis\(^4\)	0.074	0.017	0.057	0.108	0.016	0.092
Homo sapiens\(^4\)	0.195	0	0.195	0.2	0	0.2
Homo naledi\(^4\)	0.286	0.286	–	?	?	?

\(^a\)Conservative estimates reported in Wood and Boyle\(^5\) (table 1).
\(^b\)Estimates with dating error reported in Wood and Boyle\(^5\) (table 1).
\(^c\)No ‘with error’ date provided in original publication; this value represents those reported in the ‘conservative estimate’.
\(^d\)Taxon and associated dates lumped with A. afarensis in calculation of temporal range.
\(^e\)Taxon and associated dates lumped with H. erectus in calculation of temporal range.
\(^f\)Taxon and associated dates lumped with H. heidelbergensis in calculation of temporal range.
\(^g\)‘Single hit’ taxa not considered in calculating average hominin duration.
\(^h\)Mid-range of most parsimonious age estimates reported in Dirks et al.\(^6\).
Thus, although arguments can be made against Scenarios 2 and 3, we find insufficient evidence to refute Scenario 1, and, as a result, would argue that it is not implausible that *A. sediba* is the ancestor of the genus *Homo* based on our analysis of the dates of specimens currently attributed to these and other hominin taxa.

Conclusions

While some researchers have critiqued the hypothesis that *A. sediba* is ancestral to the genus *Homo* on morphological grounds, others have based their criticism, at least partly if not largely, on the date of the Malapa specimens. Although the known temporal range of a fossil species can be an important piece of evidence in testing ancestor–descendant hypotheses, palaeontologists do not typically dismiss the possibility that a fossil species is the ancestor of another based solely on the two species’ currently recognised FADs.44,46 Echoing previous researchers6,32,64, Foote6,16,17 argues, whether species are preserved in the ‘wrong’ order does not affect the facts of their genealogical relationships, which we must attempt to reconstruct regardless of where we find the species stratigraphically. This does not mean that temporal data cannot be informative, particularly for taxa that have a well-sampled fossil record, such as deep-sea microplankton.43 However, if a taxon is not well known in the fossil record and/or is only known from a highly localised area, such as is the case for *A. sediba* and many other hominins (Table 1), the likelihood that its known record is an accurate reflection of the entire temporal range during which that taxon lived is substantially reduced. This limitation is demonstrated by the specimens attributed to *Homo floresiensis* and *Homo naledi* that are both suggested to have ghost lineages extending back much earlier in time based on their more primitive morphological features.65,66 FADs and LADs are especially likely to be inaccurate for taxa like early hominins that had low population densities and relatively sparse fossil records.53(fig.1) Therefore, it is difficult to have confidence in hypothesised evolutionary relationships that are based on the dates attributed to a handful of specimens.

Criticisms of the putative relationship of *A. sediba* and *Homo* based on their relative temporal ranges may be related, in part, to a dispute over the mode by which hominin species arose, with some taking the view that budding cladogenesis occurred rarely, if at all, in hominin evolution (e.g. White et al.30). However, as discussed above, this mode of speciation appears to be relatively common in mammalian, including hominin, evolution. Given that there is no theoretical reason to suspect that human evolution was any different than the evolution of any other mammal, we would argue that it would not be unusual to find evidence for contemporaneous ancestors and descendants in the human fossil record (e.g. Spoor et al.29).
Finally, we stress that the date for the Malapa deposits containing the A. sediba specimens should be interpreted for what it is – evidence of one particular moment in time when the species existed, but which cannot provide an accurate estimate of the lineage’s temporal range (i.e. absence of evidence is not evidence of absence). In this paper, we are neither advocating for the position that A. sediba is the ancestor of the genus Homo, nor are we addressing questions about the taxonomic attribution of the Malapa specimens. We are merely pointing out that the critiques of A. sediba as a potential ancestor of the genus Homo based on temporal criteria are at the very least premature and are prone to misinterpretation by the media and general public. Until such time as additional data on its temporal range are available for A. sediba, any inferences about the evolutionary relationship between it and Homo should be based primarily on morphological data. While the arguments presented here have specifically revolved around one taxon, they are germane to studies of all hominin taxa in the fossil record, particularly ‘single hit’ taxa (Table 1) for which we have no clear understanding of the species’ true temporal range. As such, we urge caution for all scientists involved in studies of human evolution to carefully think about how temporal data can, and should be, used in assessing phylogenetic hypotheses.

Acknowledgements

C.R. thanks Eric Delson and Lauren Helenar and T.L.C. thanks Kersten Bergstrom for their helpful comments during the development of this paper. Funding was generously provided by the Texas A&M University Cornerstone Faculty Fellowship and the University of Calgary.

Authors’ contributions

C.R. and D.J.d.R. conceptualised the project with contributions to the research goals later provided by T.L.C and S.C. T.L.C. developed the conceptual framework, while C.R. and D.J.d.R. conceptualised the project with contributions to the methodology. C.R. and D.J.d.R. conceptualised the project with contributions to the hypotheses. T.L.C. and S.C. conceptualised the project with contributions to the methodology and assumptions. C.R. and D.J.d.R. conceptualised the project with contributions to the methodology. C.R. and D.J.d.R. conceptualised the project with contributions to the methodology and assumptions. C.R. and D.J.d.R. conceptualised the project with contributions to the methodology. C.R. and D.J.d.R. conceptualised the project with contributions to the methodology and assumptions. C.R. and D.J.d.R. conceptualised the project with contributions to the methodology.

References

1. Foresy PL. Time as arbiter. In: Smith A, moderator. Is the fossil record adequate? Nature debates [online]. c1998 [cited 2017 Dec 17]. Available from: http://www.nature.com/nature/debates/fossil/fossil_11.html
2. Siddall ME. Stratigraphic fit to phylogenies: A proposed solution. Cladistics. 1996;14:201–208. https://dx.doi.org/10.1111/j.1096-0031.1996.tb00333.x
3. Delson E. Catarrhine phylogeny and classification: Principles, methods and comments. J Hum Evol. 1977;6:453–459. https://dx.doi.org/10.1016/0047-2484(77)80057-2
4. Wood B, Harrison T. The evolutionary context of the first hominins. Nature. 2011;470:347–352. https://dx.doi.org/10.1038/nature09709
5. Berger LR, De Ruiter DJ, Churchill SE, Schmitz P, Carlson KJ, Dirks P et al. Australopithecus sediba: A new species of Homo-like australopith from South Africa. Science. 2010;328:195–204. https://dx.doi.org/10.1126/science.1184944
6. Pickering R, Dirks P, Jinnah Z, De Ruiter DJ, Churchill SE, Herries AIR, et al. Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo. Science. 2011;333:1421–1423. https://dx.doi.org/10.1126/science.1203697
7. Spoor P. Paleoanthropology: Malapa and the genus Homo. Nature. 2011;478:44–45. https://dx.doi.org/10.1038/478044a
8. Lordkipanidze D, Ponce de León MS, Margvelashvili A, Rak Y, Rightmire GR, Uxua A, et al. A complete skull from Omotani Village and the evolution of early Homo. Science. 2013;342:326–331. https://dx.doi.org/10.1126/science.1238484
9. Kimbel WH, Rak Y. Australopithecus sediba and the emergence of Homo: Questionable evidence from the cranium of the juvenile holotype MH 1. J Hum Evol. 2017;107:94–106. https://dx.doi.org/10.1016/j.jhevol.2017.03.011
10. Bailer M. Candidate human ancestor from South Africa sparks praise and debate. Science. 2010;328:154–155. https://dx.doi.org/10.1126/science.328.5975.154
11. Cherry M. Claim over ‘human ancestor’ sparks furor. Nature News [online]. 2010 April 08. https://dx.doi.org/10.1038/news.2010.171
12. Gibbons A. A human smile and funny walk for Australopithecus sediba. Science. 2013;340:132–133. https://dx.doi.org/10.1126/science.340.6129.132
13. Kimbel WH, Johanson DC, Rak Y. Systematic assessment of a maxilla of Homo from Hadar, Ethiopia. Am J Phys Anthropol. 1997;103:235–262. https://dx.doi.org/10.1002/(SICI)1096-8644(199706)103:2<235::AID-AJP98>3.0.CO;2-S
14. Vignola B, Kimbel WH, Seymour C, Campisano CJ, DMaggio EN, Rowan J, et al. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science. 2015;347:1352–1355. https://dx.doi.org/10.1126/science.aaat334
15. Gibbons A. A famous ‘ancestor’ may be ousted from the human family. Science News [online]. 2017 April 23; Africa, Anthropology. https://dx.doi.org/10.1126/science.aaw1099
16. Haveland WA, Prins H, Wraith D, McBride B. Anthropology: The human challenge. 15th ed. Belmont: Wadsworth Cengage; 2017.
17. Foote M. On the probability of ancestors in the fossil record. Paleobiology. 1996;22:141–151. https://dx.doi.org/10.1016/S0094-8373(00)01614-6
18. Hörandi E, Stuessy TF. Paraphyletic groups as natural units of biological classification. Taxon. 2010;59:1631–1653.
19. Wagner PJ, Marcat JD. Probabilistic phylogenetic inference in the fossil record: Current and future applications. In: Alroy J, Hunt G, editors. Paleontological Society Papers: Vol. 16. Quantitative methods in paleobiology. Lubbock: The Paleontological Society; 2010. p. 189–211.
20. Hörandi E. Paraphyletic versus monophyletic taxa – evolutionary versus cladistic classifications. Taxon. 2006;55:564–570.
21. Van Valen L. A new evolutionary law. Evol Theory. 1973;1:1–30.
22. Gould SJ. The structure of evolutionary theory. Cambridge: Belknap Press; 2002.
23. Flynn LJ. Species longevity, stasis, and stepwise changes in rhizomyid rodents. In: Flanagan KM, Lillegraven JA, editors. Contributions to geology. Vol. 3. Vertebrates, phylogeny, and philosophy. Laramie, WY: University of Wyoming; 1986. p. 273–285.
24. White TD, Harris JM. Suid evolution and correlation of African hominid localities. Science. 1977;196:13–21. https://dx.doi.org/10.1126/science.331477
25. Cooke HBS. Horses, elephants and pigs as clues in the African later Cenozoic. In: Vogel JC, editor. Late Cenozoic palaeoecologies of the southern hemisphere. Rotterdam: A.A. Balkema; 1984. p. 473–482.
26. Boisserie J-R. The phylogeny and taxonomy of Hippopotamidae (Mammalia: Artiodactyla): A review based on morphology and cladistic analysis. Zool J Linnean Soc. 2005;143:1–26. http://dx.doi.org/10.1111/j.1096-3642.2004.00138.x
27. Maglio VJ. Origin and evolution of the Elephantidae. Trans Am Philos Soc. 1973;63:1–149.
28. McHenry H. Tempo and mode in human evolution. Proc Natl Acad Sci USA. 1994;91:6780–6786.
29. Spoor F, Leakey MG, Gathogo PN, Brown FH, Antón SC, McDougall I, et al. Implications of new early Homo fossils from Ilter, east of Lake Turkana, Kenya. Nature. 2007;448:688–691. https://dx.doi.org/10.1038/nature05986
30. White TD, WoldeGabriel G, Asfaw B, Ambrose S, Beyene Y, Bernor RL, et al. Asa Issie, Aramis and the origin of Australopithecus. Nature. 2006;440:883–889. https://dx.doi.org/10.1038/nature04629
31. Kimbel WH, Lockwood CA, Ward CV, Leakey MG, Johanson DC. Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. J Hum Evol. 2006;51:134–152. https://doi.org/10.1016/j.jhevol.2006.02.003
32. Harrison T. Hominins from Upper Lantoli and Upper Ndolanya Beds, Lantoli. In: Harrison T, editor. Palaeontology and geology of Lantoli: Human evolution in context; Volume 1: Geology; geochronology, paleoecology and paleoenvironment. New York: Springer; 2011. p. 141–188. https://doi.org/10.1007/978-90-481-9962-4_7

33. Fleagle JG, Rasmussen DT, Yirga S, Bown TM, Grine FE. New hominid fossils from Fejej, Southern Ethiopia. J Hum Evol. 1991;21:145–152. https://doi.org/10.1016/0047-2484(91)90005-G

34. Kappelman J, Swisher III CC, Fleagle JG, Yirga S, Bown TM, Feseha M. Age of Australopithecus afarensis from Fejej, Ethiopia. J Hum Evol. 1996;30:139–146. https://doi.org/10.1006/jhev.1996.0010

35. Ward C. Taxonomic affinity of the Pliocene hominin fossils from Fejej, Ethiopia. J Hum Evol. 2014;73:98–102. https://doi.org/10.1016/j.jhevol.2014.05.008

36. Brown RH, McDougall I, Gathogo PN. Age ranges of Australopithecus species, Kenya, Ethiopia, and Tanzania. In: Reed KE, Fleagle JG, Leakey RE, editors. The paleobiology of Australopithecus. New York: Springer; 2013. p. 7–20. https://doi.org/10.1007/978-94-007-5919-0_2

37. Spoor F, Gunz P, Neubauer S, Sterzer S, Scott N, Kwekason A, et al. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature. 2015;519:83–86. https://doi.org/10.1038/nature14224

38. Dembo M, Natzke NJ, Mooers AO, Collard M. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proc R Soc Lond B. 2015;282:Art. #20150943, 9 pages. https://doi.org/10.1098/rspb.2015.0943

39. Benton MJ, Hitchin R. Congruence between phylogenetic and stratigraphic data on the history of life. Proc R Soc Lond B. 1997;264:885–890. https://dx.doi.org/10.1006/MPEV.1998.0492

40. Wood B, Boyle EK. Hominin taxic diversity: Fact or fantasy? Yearb Phys Anthropol. 2016;59(S61):37–78. https://dx.doi.org/10.1038/japa.22902

41. Martin RD. Primate origins: Plugging the gaps. Nature. 1993;363:223–234. https://dx.doi.org/10.1038/363223a0

42. Tavaré S, Marshall CR, Will O, Soligo C, Martin RD. Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature. 2002;416:726–729. https://dx.doi.org/10.1038/363223a0

43. Lazarus DB, Prothero DR. The role of stratigraphic and morphologic data in phylogeny. J Paleontol. 1984;58:163–172.

44. Airoy J. Continuous track analysis: A new phylogenetic and biogeographic method. Syst Biol. 1995;44:152–178. https://dx.doi.org/10.1093/sysbio/44.2.152

45. Paul CRC. The adequacy of the fossil record. In: Jonesy KA, Friday AE, editors. Problems of phylogenetic reconstruction. London: Academic Press; 1982. p. 7–117.

46. Melchin MJ, Mitchell CE, Naczek-Cameron A, Fan JX, Loxton J. Phylogeny and adaptive radiation of the Neograpta (Graptoida) during the Hirnantian mass extinction and Silurian recovery. P Yerks Geol Soc. 2011;58:281–309. https://dx.doi.org/10.1016/j/sysbio.2014.04.068

47. De Ruiter DJ, Spehermeier M, Lee-Thorp JA. Indications of habitat association of Australopithecus robustus in the Bloubank Valley, South Africa. J Hum Evol. 2008;55:1015–1030. https://dx.doi.org/10.1016/j.jhevol.2008.06.003

48. Reed KE. Paleoenological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. J Hum Evol. 2008;54:743–768. https://dx.doi.org/10.1016/j.jhevol.2007.08.013

49. Su D, Harrison T. Ecological implications of the relative rarity of fossil hominins at Lantoli. J Hum Evol. 2008;55:672–681. https://dx.doi.org/10.1016/j.jhevol.2007.08.007

50. Bobe R, Leakey MG. Ecology of Plio-Pleistocene mammals in the Omo-Turkana Basin and the emergence of Homo. In: Grine FE, Fleagle JG, Leakey RE, editors. The first humans: Origin and early evolution of the genus Homo. Amsterdam: Springer; 2009. p. 173–184.

51. Bobe R. Fossil mammals and paleoenvironments in the Omo-Turkana Basin. Evol Anthropol. 2011;20:254–263. http://dx.doi.org/10.1002/evan.20330

52. White TD. African omnivores: Global climatic change and Plio-Pleistocene hominids and suids. In: Vrba ES, Denton GH, Partridge TC, Burckle LH, editors. Paleoclimate and evolution with emphasis on human origins. New Haven, CT: Yale University Press; 1995. p. 369–384.

53. Wood B, Lonergan N. The hominin fossil record: Taxa, grades and clades. J Anat. 2008;212:354–376. https://dx.doi.org/10.1111/j.1469-7580.2008.00871.x

54. Wood B. Did early Homo migrate “out of” or “in to” Africa? Proc Natl Acad Sci USA. 2011;108:10375–10376. https://dx.doi.org/10.1073/pnas.1107724108

55. Foote M, Raup DM. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology. 1990;16:1–10. https://dx.doi.org/10.1006/pbio.1990.0012

56. Wagner PJ. Stratigraphic tests of cladistic hypotheses. Paleobiology. 1995;21:153–179. https://dx.doi.org/10.1046/j.1089-4481.1990.00163.x

57. Marshel CM. Confidence intervals on stratigraphic ranges. Paleobiology. 1996;22:121–140. https://dx.doi.org/10.1017/S0094837300016134

58. Wood B, Boyle EK. Hominin taxic diversity: Fact or fantasy? Yearb Phys Anthropol. 2016;59(S61):37–78. https://dx.doi.org/10.1038/japa.22902

59. Foote M, Hunter JP, Janis CM, Sepkoski Jr J. Evolutionary and preservational constraints on origins of biologic groups: Divergence times of eutherian mammals. Science. 1999;283:1310–1314. https://dx.doi.org/10.1126/science.283.5406.1310

60. Kurtén B. Pleistocene mammals of Europe. Chicago, IL: Aldine Publishing Company; 1968.

61. Prothero DR. Species longevity in North American fossil mammals. Integr Zool. 2014;9:383–393. https://dx.doi.org/10.1111/1749-4877.12054

62. Hawkes J, De Ruiter DJ, Berger LR. Comment on “Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia.” Science. 2015;348:1326. https://dx.doi.org/10.1126/science.aaq0591

63. Eldredge N, Cracraft J. Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. New York: Columbia University Press; 1980.

64. Patterson C. Significance of fossils in determining evolutionary relationships. Annu Rev Ecol Syst. 1981;12:195–223. https://dx.doi.org/10.1146/annurev.es.12.110181.001211

65. Argue, D, Groves CP, Lee MSY, Jungers WL. The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters. J Hum Evol. 2017;107:107–133. https://dx.doi.org/10.1016/j.jhevol.2017.02.006

66. Berger LR, Hawkes J, Dirks PHGM, Elliott M, Roberts EM. Homo naledi and Pleistocene hominid evolution in subequatorial Africa. eLife 2017;6, e24234, 19 pages. http://dx.doi.org/10.7554/eLife.24234

67. Dirks PHGM, Roberts EM, Hilbert-Wolf H, Kramers JD, Hawkes J, Dosseto A, et al. The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. eLife 2017;6, e24231, 59 pages. http://dx.doi.org/10.7554/eLife.24231