Title	Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic
Authors(s)	Maher, Sam, Leonard, Thomas W, Jacobson, Jette, Brayden, David James
Publication date	2009-12-17
Publication information	Maher, Sam, Thomas W Leonard, Jette Jacobson, and David James Brayden. “Safety and Efficacy of Sodium Caprate in Promoting Oral Drug Absorption: From in Vitro to the Clinic” 61, no. 15 (December 17, 2009).
Publisher	Elsevier
Item record/more information	http://hdl.handle.net/10197/2908
Publisher’s statement	All rights reserved.
Publisher’s version (DOI)	10.1016/j.addr.2009.09.006

Downloaded 2023-08-28T13:02:33Z

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information
Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic

Sam Maher¹,², Thomas W. Leonard ³, Jette Jacobsen ⁴, and David J. Brayden ¹,² *

¹ UCD School of Agriculture, Food Science and Veterinary Medicine and ² UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; ³ Merrion Pharmaceuticals, 219 Racine Drive, Suite D, Wilmington, NC 28403, USA; ⁴ Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark

* Author to whom correspondence should be addressed:

David J. Brayden
UCD School of Agriculture, Food Science and Veterinary Medicine
Belfield
Dublin 4
Tel: +353 1 7166013
Fax: +353 1 7166219
Email: david.brayden@ucd.ie
Abstract

A major challenge in oral drug delivery is the development of novel dosage forms to promote absorption of poorly permeable Class III drugs across the intestinal epithelium. To date, no absorption promoter has been approved in a formulation specifically designed for oral delivery of Class III molecules. Promoters that are designated safe for human consumption have been licensed for use in a recently approved buccal insulin spray delivery system and also for many years as part of an ampicillin rectal suppository.

Unlike buccal and rectal delivery, oral formulations containing absorption promoters have the additional technical hurdle whereby the promoter and payload must be co-released in high concentrations at the small intestinal epithelium in order to generate significant but rapidly reversible increases in permeability. The most advanced promoter in the clinic is the medium chain fatty acid (MCFA), sodium caprate (C10), a compound already approved as a direct food additive. We discuss how it has evolved to a matrix tablet format suitable for administration to humans under the headings of mechanism of action at the cellular and tissue level and in vitro and in vivo efficacy and safety studies.

In specific clinical examples, we review how C10-based formulations are being tested for oral delivery of bisphosphonates using Gastro Intestinal Permeation Enhancement Technology, GIPET® (Merrion Pharmaceuticals, Ireland) and in a related solid dose format for anti-sense oligonucleotides (ISIS Pharmaceuticals, USA).

Keywords: Oral drug delivery, Sodium caprate (C10), absorption promoter, drug delivery platforms, clinical trials, oral formulation, drug delivery systems.
Table of Contents

[1] Introduction
 [1.1] Alternative approaches to delivery of poorly permeable drugs
 [1.2] Intestinal absorption promoters

[2] C_{10}
 [2.1] Intestinal absorption-promoting capacity of C_{10}: cultured human intestinal epithelial monolayers, isolated intestinal mucosae and animal models
 [2.2] Mechanism of C_{10} permeability enhancement across intestinal epithelia
 [2.2.1] Paracellular mode of action studies
 [2.2.2] Physicochemical properties of C_{10} in solution
 [2.2.3] Transcellular mode of action studies
 [2.3] Preclinical safety data for C_{10}

[3] Efficacy and safety of C_{10} in man
 [3.1] Case study I: Rectal delivery of ampicillin using C_{10}
 [3.2] Case study II: Oral delivery of oligonucleotides using C_{10}
 [3.3] Case study III: GIPET®, Oral formulations of poorly permeable drugs with C_{10}

[4] Perspective on the safe and effective use of C_{10} in drug delivery

[5] Conclusions
Introduction

The number of drugs emerging from R & D programmes as lead candidates that are poorly absorbed following oral administration is increasing, the majority of which are delivered by injection at considerable patient inconvenience. Biotech drugs represent a growing proportion of drugs in preclinical development and these have inherently low oral bioavailability (F) [1]. The delivery route has a significant impact on the commercial success of therapeutics for long-term indications and the potential market of selected biotech drugs may not have been maximized due to the requirement for repeated injections [2, 3]. Nasal formulations have largely superseded subcutaneous (s.c.) injections for the peptide calcitonin, but there are still issues of rhinitis and local tolerance that reduce patient compliance and hence an oral delivery system would be preferable [4]. In addition, the first pulmonary formulation of insulin (Exubera®, Pfizer Ltd, USA) was withdrawn due to poor patient uptake, possible side-effects, an unattractive device and a concomitant requirement for insulin injections [5]. One of the major challenges in biopharmaceutical development therefore continues to be the need for effective oral delivery systems.

The biopharmaceutics classification system (BSC) categorizes soluble drugs with poor intestinal permeability as Class III drugs [6]. Candidates comprise peptides, proteins, nucleic acid therapeutics and polysaccharides as well as some conventional organic molecules. Unlike most lipophilic agents, hydrophilic molecules are generally not passively absorbed across intestinal epithelia, largely due to restricted permeation across the brush border and the basolateral membranes (Fig. 1). Absorptive flux of small
hydrophilic molecules including valacyclovir, bestatin and cephalexin may occur to some extent either via carrier-mediated transporters on epithelial cell apical membranes (primarily hPEPT1 [7]) or alternatively by paracellular flux via tight junctions (TJs) [8]. TJs form a barrier to the uncontrolled absorption of noxious luminal antigens (gate function), and maintain epithelial polarity (fence function) [8, 9]. In general, the TJ consists of a restrictive pathway (shunt) with a sharp molecular size cut off, and a second unrestrictive pathway (small pore) that permits paracellular permeation of molecules of radii <4.0 Å [10, 11]. Depending on the intestinal region, TJ pore sizes range from 6-22 Å, sufficient to permit mannitol (6.7 Å) and EDTA (10.8 Å) to permeate to an extent, whereas the passage of inulin (30-40 Å) and fluorescent-dextran 4kDa (FD-4, 26 Å) is essentially impeded [12-16].

A number of approaches have been used to promote oral delivery of Class III drugs (Fig. 1). One of the simplest technical approaches to increasing oral bioavailability is the use of intestinal absorption promoters. Study of absorption promoters began in the 1960s when EDTA was shown to increase absorption of heparin in rats and dogs [17]. Since then, there are numerous reports of epithelial-permeating activity by a number of dietary agents, surfactants and polymers, some of which have ‘generally recognized as safe’ (GRAS) status as food additives. Recently, more sophisticated TJ modulators have emerged in in vitro and preclinical studies arising from a greater understanding of the structure and function of TJs [18-20]. The candidate molecules that are to be delivered orally using absorption promoters should have a sufficiently wide therapeutic index in order to cater for the increased variance in F between individual subjects normally seen in
clinical studies. It also helps if the drug is relatively inexpensive and is of high potency since oral absorption will be significantly reduced when co-formulated with even the most promising delivery technology. To date however, there are only a selected number of intestinal promoters licensed for use as excipients in the delivery of poorly-absorbed drugs, particularly for Class IV drugs. While most of these approved excipients were designed to improve solubility, some increase transcellular permeability (e.g. macrogol-8 glyceride (Labrasol®, Gattefosse Corp., France [21]). Registration of products containing enhancers has however, not occurred to the extent that one might expect, given the many convincing in vitro and preclinical reports. Some valid concerns about the development of enhancer-containing products relate to the known direct intestinal epithelial toxicity induced by many promoters (e.g. surfactants, ethylenediaminetetraacetic acid (EDTA), bacterial-derived toxins and unknown chemical entities), while unresolved issues pertain to the potential for by-stander pathogen and toxin absorption through the reversibly weakening of the gut barrier on a repeated basis.

The medium chain fatty acid (MCFA) promoter, sodium caprate (C_{10}), is a both a food additive and a component of a rectal suppository formerly marketed in Sweden (Doktacillin®, Meda, Solna, formerly marketed by AstraZeneca, Södertälje [22]) and in Japan (Kyoto Pharmaceutical Industries, Ltd, Kyoto [23]). It is currently in clinical trials as a key component of several proprietary oral formulations [24-26]. The nature of its mechanism of action, efficacy, and the possibility of inducing toxicity are of primary interest in commercialization of formulations based on this technology. Here, we focus on the development and current status of C_{10} in formulations designed to increase oral
bioavailability (F) in the context of other absorption-promoting technologies and alternative approaches.

[1.1] **Alternative approaches to delivery of poorly permeable drugs**

There are currently two peptides licensed for use by the oral route. These include cyclosporin (Neoral®, Novartis, Switzerland), which is delivered in a solubilising micro-emulsion. Its oral F of approximately 30% can be explained in part by the unique physicochemical characteristics of the cyclic undecapeptide [27]. Desmopressin (DDAVP®, Sanofi-Aventis, France) is a potent vasopressin analogue that is delivered orally, despite its very low F (0.1%) [28]. Successful approaches to overcoming poor intestinal permeability have also focused on prodrugs, inactive drug precursors with greater permeability across the intestinal epithelium than the active [7, 29-31]. Once absorbed across the intestinal epithelium the prodrug is hydrolytically or enzymatically converted to active drug. The most common prodrugs have a moiety that increase drug lipophilicity thereby promoting passive transcellular diffusion (e.g. enalapril, pivampicillin) or a recognition ligand that enables the drug to be shuttled across the epithelium on an epithelial transporter (e.g. hPEPT1 for valaciclovir and midodrine) (Fig. 1). Although prodrugs have been effective for small organic drugs and some short chain peptides, it has been less successful for macromolecules and longer chain peptides.

Conjugating biotech drugs to polymers that increase transmucosal permeability and stability is also a useful approach. Fatty acid conjugates of calcitonin have been synthesised and they demonstrate greater absorption and stability [32]. Furthermore,
direct site-specific PEGylation to the lysine-18 of salmon calcitonin (sCT) increased peptide stability and led to decreased serum calcium levels upon intra-duodenal instillation in rats [33]. Biotinylation of sCT has been shown to increase transmucosal flux across Caco-2 monolayers through targeting of apical membrane biotin receptors [34]. An alkylated PEGylated amphiphilic insulin conjugate (HIM-2, Biocon Corp., India) increased oral F of insulin in dogs [35] and has reached Phase II clinical studies [36]. An oral amphiphilic calcitonin conjugate is also under investigation using similar technology [37]. Conjugation of insulin to vitamin B₁₂ for receptor-mediated delivery can also lead to increased absorption of insulin in diabetic rats [38], although there are receptor capacity-related issues that may ultimately limit efficacy in man.

Despite encouraging data from peptide conjugations, direct chemical modification is molecule-specific. An attractive alternative is the use of oral drug delivery platforms that do not involve new chemical entities and which can be fine-tuned to apply to a range of impermeable drugs. Mucoadhesive polymers that prolong the contact time between drug and the intestinal epithelium can create a steep concentration gradient to drive passive absorption [39, 40]. Thiomers are an interesting group of mucoadhesives that have shown promise in animal models. For example, improved oral F of low molecular weight heparin and insulin has been achieved in rodents with thiolated polycarbophil formulations [41, 42]. Use of mucoadhesives in the gastrointestinal (GI) tract may however, be problematic because of the high rate of mucus turnover and the large amount of competing mucus in the intestinal lumen [40, 43]. In contrast, mucoadhesion is employed in successful buccal delivery systems including glyceryl trinitrate (Suscard®,

Forest Laboratories, USA) and miconazole (Lauriad®, BioAlliance Pharma, France) [44]. Alternatively, the use of nanoparticles comprising biocompatible polymers (e.g. chitosan, polylactide-co-glycolide, starch and glucans) can protect cargoes from GI proteases, increase GI retention and promote absorption across gut associated lymphoid tissue (GALT) and to a lesser extent, enterocytes [45-47]. Most data on nanoparticle absorption from rodent models suggest that M cells in the follicle-associated epithelium of Peyer’s patches (PP) are the favored site of uptake for particles of diameter 500nm-1000nm [45]. Given the paucity of M cells in the GI tract of adults, the relevance of PP uptake remains controversial and, for example, convincing oral vaccine data using nanoparticles in man is lacking [48, 49]. Recent in vitro data suggests that particle uptake by enterocytes can be increased if interaction with the mucous layer can be overcome using a coating of low molecular weight ‘non-stick’ poly ethylene glycol (PEG) [50], the opposite to mucoadhesion.

Targeted nanoparticles can be created by attaching surface ligands to stimulate receptor-mediated transport of particle-entrapped payload and, unlike the direct ‘payload conjugation-to-ligand’ approach, this may have greater potential to deliver a greater ratio of drug per transporter to compensate for lower receptor numbers or transport capacity [51]. Targeted particle systems for oral delivery unfortunately require complex synthetic and manufacturing processes and rely on unpredictable translation of data from rodent models to man in respect of differences in GI physiology and variable receptor expression. Simpler mixing and blending nanoparticulate drug formats have, however, been very successful in oral delivery of insoluble Class II drugs (e.g. NanoCrystal®,
Elan, Ireland) [52], where permeability is not the issue. It is possible that this technology may also be adapted for poorly permeable peptides since there are surfactants can be adapted into the process [53].

[1.2] **Intestinal absorption promoters**

A large number of well-known substances have been shown to alter intestinal permeability and these range from spices and fatty foods [54, 55], alcohol [56] and drugs [57] to bacterial toxins [58]. Increased intestinal permeability is also associated with inflammatory bowel disease [59] and even strenuous exercise [60]. The majority of absorption promoters tested in cultured intestinal epithelial models have not been tested in man due to inherent toxicity. In any case, only a very small number of drug delivery platforms (of which oral absorption promoters are a subset) have advanced to clinical evaluation [61]. Amongst initial pre-clinical investigations of agents that did not proceed to the clinic are the macrocyclic fungal metabolites, cytochalasins, which increase paracellular permeability through contraction of the perijunctional ring of actin and myosin II (PAMR) causing displacement of TJ proteins [62]. The calcium chelator, ethylene glycol tetraacetic acid (EGTA), increases gut permeability via myosin light chain kinase (MLCK)-dependent dilation of the PAMR [63]. Similarly, some detergent surfactants including sodium dodecyl sulphate (SDS) and Triton-X-100 increase transmucosal drug absorption by destruction of the mucosal surface and exfoliation of epithelia [64].
Microbial toxins also increase paracellular permeability across intestinal epithelial TJs, although they are unlikely candidates for oral drug delivery technology in their native form. Examples include *Zonula occludens* toxin (Zot), a virulence factor in diarrhoea associated with strains of *Vibrio cholera* [58] and *Clostridium perfringens* enterotoxin (CPE), which can cause necrosis and desquamation of the epithelial surface of human ileal mucosae [65]. Structural analogues of Zot and CPE are members of a new generation of promoters that target TJ proteins [18-20, 66-68]. A review of the patent literature reveals a vast number of peptide based promoters that target the paracellular pathway [20]. These promoters offer greater specificity for the paracellular pathway and may offer reduced cytotoxicity compared to many surfactants, but their safety and efficacy in man has yet to be established. It is not yet clear whether transiently-modulating TJs to increase drug absorption (in the absence of effects on transcellular pathways) will increase oral F to an acceptable level in man, since the paracellular pathway comprises only 0.1% of the surface area of the intestinal epithelium, but it may still be a relevant permeation route for selected potent low molecular weight molecules.

One of the most advanced carrier technologies in clinical trials based on absorption promotion is Eligen® (Emisphere Technologies, New Jersey, USA). The proposed mechanism for these delivery agents is that they increase transcellular drug absorption via non-covalent linkage to the carrier [69], although there is ongoing controversy over the thermodynamic aspects of the interaction. Given the structural attributes, it is still likely they act as mild surfactants on the epithelium. An acetylated amino acid carrier, N-[8]-(2-hydroxybenzoyl)amino] caprylate (SNAC), increased oral F of a range of poorly
permeable cargoes in human studies [2, 69-74]. Issues for this and other absorption promoter technologies that must be addressed are large intra-subject variability in efficacy, the large ratio of carrier: active, and the high dosing frequency that would be required. A number of oral peptide proprietary formulations are also in the clinic based on enteric-coated capsules containing promoters that are GRAS excipients (Axcess™ Technology, Bone Medical, Australia [75]). This platform has been used to deliver insulin (Capsulin®) and calcitonin (Capsitonin®) in Phase II clinical studies. Hydroance Technology™ by Lipocine Inc (USA) has constituents including a controlled release system with bile acid/salt and a mixture of hydrophilic and hydrophobic surfactants [76]. Pre-clinical studies in rat, porcine and primate models demonstrated increased absorption of both low molecular weight heparin (LMWH) (5kDa) and a peptide hormone (3.5 kDa). On the polymer side, soluble trimethylated chitosan appears to be a promising absorption promoter and/or vaccine adjuvant in preclinical research as it could offer peptide protection and to aid permeation when presented in a particle format (reviewed [42, 77-79]). Approved in some markets, albeit for buccal delivery, is Oralin® (Generex Biotech, Canada), a formulation for the delivery of insulin which promotes absorption via a microfine mixed micelle spray containing GRAS surfactants and bile salts (RapidMist®, Generex Biotech, Canada) [80].

[2] \(C_{10} \)

\(C_{10} \) is the sodium salt of the aliphatic saturated 10-carbon MCFA, capric acid, also known as sodium decanoate (or the sodium salt of decanoic acid). Capric acid is present in dairy products, particularly milk, where it constitutes a significant proportion of the fatty acid
content. Percentage levels of the total fatty acid content in mammalian milk are: trace amounts in rats, 1-3% in humans and cows, 9% in sheep, 8% in goats and 20% in rabbits [81, 82]. The approximate concentration of capric acid in human and cow milk can therefore be estimated to be as high as 0.2mM [82, 83]. Importantly, this concentration is still 50-to-1000 fold lower than that required to increase drug permeability. Capric acid is also present in a number of oils including coconut oil (4.5-9.7%), palm kernel oil (7-14%), bay tree oil (37%) and elm seed oil (50%) [81]. The LD50 of capric acid following acute oral gavage to rats was 3.7g/kg [84, 85]. Importantly, long term dietary exposure of rats to capric acid added to rice (100g /kg rice) with an approximate daily intake of 500mg /kg rat weight for 150 days resulted in no observable changes in stomach morphology [86]. C10 is approved by the FDA as a direct food additive for human consumption [87, 88]. Furthermore, when reviewed by the FAO/WHO Joint Expert Committee on Food Additives, C10 was not limited to a specific allowable daily intake because it was judged that the presence in food would have no impact on human health [87, 88].

[2.1] Intestinal absorption-promoting capacity of C10: cultured human intestinal epithelial monolayers, isolated intestinal mucosae and animal models

The ability of C10 to facilitate rectal absorption was first discovered over 25 years ago [89-91]. Rectal formulations containing C10 increased the absorption of a range of β-lactam antibiotics in rodent, dog and human studies [89, 92]. Since the initial studies of rectally-administered C10 in 1982, the promoter has since been assessed extensively with a wide range of co-administered poorly permeable drugs in every accepted small- and
large intestinal delivery screening system. These include intestinal epithelial cell monolayers (Table I), isolated animal and human intestinal mucosae (Table II), in situ gut perfusions and intestinal instillations (Table III), and extensive animal (Table III) and human studies (Table IV). The increase in drug absorption one observes with C₁₀ is dependent on the animal species and on the model used. For example, delivery of the same test solution in three rat models demonstrated an enhancement in the following order: jejunal closed loop > anesthetized instillation > catheter intubation to conscious rats (Personal communication, Tillman L.G., ISIS Pharmaceuticals, USA). In vivo model-specific variables include the type of surgery, extent of tissue damage, the damage/repair cascade, the type and rate of delivery of anesthetic and its effect on water absorption and secretion. Therefore, it is important to consider the limitations of the models used to evaluate C₁₀ in order to make an informed assessment.

C₁₀ increases the flux of many different types of poorly permeable agents across intestinal epithelia in vitro, including antibiotics [93], heparin [94] and recombinant EGF [95]. The concentration of C₁₀ required to increase the flux of paracellular markers across Caco-2 monolayers is 10-13mM, close to its reported critical micelle concentration (CMC) in HBSS [96, 97]. In parallel, it causes a rapid reversible concentration-dependent reduction in transepithelial electrical resistance (TEER) values across Caco-2 monolayers (e.g. [96, 98, 99] and Table I). The TEER values of Caco-2 monolayers do not recover after extended exposure periods or from higher concentrations of C₁₀ [96, 98, 100, 101]. Still, the relevance of exposing monolayers to C₁₀ for long exposure times is questionable, since it is rapidly absorbed in vivo. Isolated intestinal mucosa mounted in
Ussing chambers permit comparison between effects of permeation enhancers on different regions of the intestine, thus TEER and flux changes similar to that seen in Caco-2 were noted in jejunal, ileal and colonic mucosae from a range of species upon exposure to C\textsubscript{10}. In tissue mucosae, C\textsubscript{10} decreased TEER with a concomitant increase in flux of poorly permeable markers including phenol red [102], poly-sucrose [103] and a range of FITC-dextrans [104] (Table II). While high concentrations of C\textsubscript{10} (>13mM) invariably lead to greater enhancement of fluxes of paracellular markers in Caco-2 monolayers and isolated intestinal mucosae (Table I and II), conclusions on mechanisms of action and of the presence cytotoxicity become rather irrelevant. Similar to Caco-2 results, the reduction in TEER caused by 10-15mM C\textsubscript{10} in human colonic mucosae was recoverable upon washout [105], as were the promoting effects on paracellular flux [11].

Despite significantly increasing permeability across \textit{in vitro} and \textit{ex vivo} intestinal models, it is worth noting that the capacity of C\textsubscript{10} to increase the Papp using these models does not always permit the conclusion that there will be a significantly absorbed fraction \textit{in vivo}. For example, the promoter increased the flux of FD70 across isolated rat colonic mucosae by 44-fold at a concentration of 10mM, but the actual resulting Papp value of 10\textsuperscript{-8} cm/s was still very low [104]. In colonic \textit{in situ} instillations however, C\textsubscript{10} did not increase the absorption of FD70 at all, even at a concentration of 100mM [106].

Likewise, in Caco-2 monolayers, the degree of enhancement with C\textsubscript{10} (10-13mM) increased in proportion to molecular weight (MW) of the associated drug [107]. For example, the Papp of [14C]-PEG (MW 326 Da) was increased by just 5-fold over basal compared with that of [14C]-PEG (MW 546 Da, 17-fold). For solutes above a MW of
1200 Da, increased Papp values upon exposure to C_{10} in Caco-2 monolayers were not considered large enough to translate to an increased fraction of absorbed drug \textit{in vivo}. Thus, for larger MW payloads, while the enhancement ratio in the presence of C_{10} may be higher \textit{in vitro} because the basal flux is lower compared to molecules of lower MW, a large MW drug will still have poor oral \textit{F in vivo} unless the concentration of C_{10} is increased significantly [99]. The proportion of \textit{in vivo} studies that used concentrations of C_{10} above the CMC are higher than those used \textit{in vitro} and \textit{ex vivo}. In 15\% of studies using cell culture models, concentrations \(\geq 20 \text{ mM} \) C_{10} were used to increase permeation of larger solutes (Table I). In \textit{ex vivo} intestinal tissue models, 37\% of studies used concentrations \(\geq 20 \text{ mM} \) (Table II) and in those animal studies where the small intestinal luminal concentration can actually be estimated, the percentage increased to 85\% (Table III and IV). The average concentration of C_{10} used \textit{in vivo} (where it could be calculated) was 100 mM (Table III, IV), whereas it was 15mM and 20mM in monolayers (Table I) and isolated tissue (Table II), respectively.

Table III shows the effects of C_{10} on intestinal absorption of Class III molecules in a wide range of different types of animal studies. In some studies, the local concentration at sites along the GI tract could not be calculated because the promoter is part of a solid dosage form. In other studies where the absorption of the candidate drug was assumed to be zero in the absence of promoters, the enhancement ratio could not be determined. Increased absorption has been measured after instillation of C_{10} with an array of associated drugs (e.g. [108-112]) to different intestinal regions of rats (Table III). In general, the promoting action of C_{10} differs significantly, depending on the drug delivery model,
particularly when comparing *in situ* models to *in vivo* oral or to rectal delivery. In summary, C_{10} was effective in promoting drug absorption from oral- and rectally-delivered dosage forms in mice, rats, rabbits, dogs, pigs and cattle (Table III and IV).

There are a number of factors that may affect the absorption promoting activity of C_{10}. The majority of successful *in situ* intestinal studies in rodents demonstrate the effectiveness of co-administering solutions of C_{10} and payload to specific intestinal regions, and the data consequently would suggest that solid-dose formulations that ensure contemporaneous co-release are desirable [113, 114]. Differential rates of release from a solid dosage form could result in the promoter quickly reaching the intestinal epithelium, increasing permeability in a transient reversible fashion, but ahead of the arrival of the payload; this is especially relevant for C_{10}. Unlike SDS and EDTA, enhancement seen with C_{10} is rapid and reversible *in vivo* [21, 98, 104-115]. This is possibly because it is rapidly absorbed with a T_{max} of < 10 min [115-117].

We examined the significance of keeping C_{10} and FD4 together at the gut wall in an *in situ* colonic instillation study in rats. Pretreatment with C_{10} for 15 min (followed by removal) did not increase FD4 absorption when the flux marker was administered 15 min later, in marked contrast to the significant absorption promotion seen when both agents were administered together or when FD4 was administered within 10 min (Wang X, PhD Thesis, NUI Dublin 2009). While another promoter, SDS, increased phenol red absorption in rat intestine, its effects took longer than C_{10} to dissipate [118]. In another rat perfusion study, co-administration of either SDS, EDTA, or C_{10} with cefoxitin increased
absorption of the antibiotic [113]; upon removal of the promoter, cefoxitin plasma levels continued to increase with SDS and EDTA, but not in the case of C\textsubscript{10}. In the same study, co-administration of 50mM C\textsubscript{10} with cefoxitin for 30 min was more effective at delivery than co-administration of 100mM C\textsubscript{10} with the agent for 15 min, suggesting that co-presentation for a sustained period is more important than having a higher concentration of absorption promoter for a shorter time [113]. In a study assessing the effectiveness of C\textsubscript{10}–based solid dosage forms, absorption of sulpiride in the presence of C\textsubscript{10} was increased by ensuring their contemporaneous co-release from hydroxypropyl methyl cellulose (HPMC) matrix formulations compared to non-synchronous matrices [119], and moreover, matching the promoter dissolution to that of the drug is therefore essential, otherwise they may never reach the intestinal mucosa together. This is particularly true in the small intestine where, in addition to rapid absorption of the promoter, the fluid volumes (fasted 105ml, fed 45ml) have a considerable diluting effect compared with those of the large intestine (fasted 13ml, fed 11ml) and rectum (3ml), as well as a quicker transit time which could also prevent the optimal promoter/drug concentration at the small intestinal epithelium [120-122]. Solid dosage forms based on the contemporaneous release of C\textsubscript{10} with payload have been used in man for the delivery of oligonucleotides, bisphosphonates and LMWH [24, 26, 123, 124]. It is worth mentioning that not all formulations designed for the controlled intestinal release of drug with C\textsubscript{10} have had a positive effect on oral absorption. For example, an enteric-coated formulation of C\textsubscript{10} with DMP 728 was absorbed to similar levels as controls [125].
The argument for synchronous delivery of C\textsubscript{10} and payload to the small intestine refers to studies that were carried out primarily in rodents. However, this may not apply in higher species where dilution in the small intestine becomes more important. There is also a case to be made for presentation of payload at its highest concentration when the dosage form disintegrates, while achieving and then maintaining high luminal concentrations of C\textsubscript{10} through additional pulsed release mechanisms [26, 126]. In the case of oligonucleotides, their absorption seems to follow first order kinetics and therefore reductions in the luminal concentration might reduce the absorption rate. The importance of the contemporaneous presence of the promoting agent and cargo shown in animal models has also been confirmed with C\textsubscript{10} in human studies [24]. Intra-jejunal administration of C\textsubscript{10} to human subjects increased sugar absorption up to 20 min after C\textsubscript{10} administration, but not at 40-60 min as measured by the lactulose: mannitol urinary excretion ratio. This dataset confirmed that the window for promoting action is narrow and that oral formulations containing C\textsubscript{10} should be designed to maintain the concentration of C\textsubscript{10} at the intestinal epithelium. It is clear that the concentrations of C\textsubscript{10} and candidate drug released over a set period must be optimized; however, assumptions cannot be made that dosage forms designed for rats will translate effectively to man.

The effect of other excipients on the absorption-promoting action of C\textsubscript{10} could have a significant impact on efficacy. Removal of the jejunal mucus layer should, in theory, permit the direct contact between the promoter/cargo and the intestinal epithelium. Pre-treatment with the mucolytic, N-acetyl cysteine (NAC) with C\textsubscript{10} led to more rapid absorption of sCT in a rat jejunal instillation as measured by serum calcium reduction.
(Wang and Brayden, unpublished data), although this was not the case when both agents were co-administered [127]. A rectal formulation of 5-fluorouracil with C\textsubscript{10} and Witepsol H-15 had a rectal F of 25.5%, however when Witepsol H-15 was replaced with PEG\textsubscript{2000} F increased to 64.4% [128]. In an \textit{in situ} rectal perfusion in rats, C\textsubscript{10} only increased the absorption of hEGF when presented with sodium carboxymethylcellulose (CMC Na) [23]. F increased from 0 % with C\textsubscript{10} (100mM) alone to 68 % when combined with CMC Na (1 % w/v). These reports indicate the potential effects of other excipients in maximizing C\textsubscript{10}’s capacity for enhancement. Such additional actions of co-administered excipients could permit use of C\textsubscript{10} with larger solutes and/or permit use of lower concentrations of the promoter, provided the excipients do not damage the intestinal epithelium.

The most effective region of the GI tract to target with intestinal absorption promoters remains unclear. The barrier properties of the mucosal surface changes in different regions of the intestine due to altered numbers of TJs, thicker mucous secretions [129], as well as different distribution of active transporters. Although the small intestine has a larger surface area for absorption compared to the colon, it has variable fluid volume and composition, short transit time and a higher concentrations of proteases [43, 120, 121, 130-132]. Transit time in the human small intestine is reasonably constant at 4-5 hours, while colonic transit can range from 20-30 hours to over two days, and this may permit longer residence time for co-releasing permeation enhancers and payloads in the colon [120-122, 132]. We examined the effect of jejunal flow on the promoting activity of C\textsubscript{10} in a single pass rat perfusion model [106]. At a constant flow rate of 0.2ml/min, C\textsubscript{10}
increased the Papp of $[^{14}\text{C}]-\text{mannitol}$ by 2-fold, upon lowering the flow rate to 0.1ml/min however, mannitol permeability increased by 9-fold, suggesting that slowing the flow rate is beneficial. Enhancement at the colonic mucosa where the flow rate is naturally lower may therefore have potential in the delivery of peptides [120-122, 132]. It is possible therefore that use of anti-motility agents in the presence of C$_{10}$ could lead to a further increase in F.

A potential advantage of both the colonic and rectal mucosae is their sensitivity to drug enhancement by a large number of promoters including MCFAs [114, 133, 134]. C$_{10}$ increased the absorption of ebiratide [135], phenol red [102], and insulin [136] across rat colonic, but not jejunal epithelial mucosae (Table II). C$_{10}$ also increased paracellular permeability of a number of solutes in the colon but not in the small intestinal mucosae of rats and rabbits [137]. The promoting activity of C$_{10}$ on insulin absorption in the rat in situ closed loop intestinal model was ranked in order of colon>ileum>jejunum>duodenum, similar to the rank order obtained with EDTA and glycocholate [138]. Enhancement of fosfomycin [109] and carboxyfluorescein [139] absorption by C$_{10}$ in rats was also greater in rat colon than jejunum. In an in situ instillation study in rats, the increase in FD-4 bioavailability conferred by C$_{10}$ was greater in the colon than the jejunum. Although, since basal F was greater in the colon than the small intestine, the enhancement ratio was similar in both regions at 33-fold [106]. The reason for greater colonic sensitivity to absorption promoters at least in rats is not fully understood [140]. One of the reasons suggested for this is that there might be a limit to the capacity of a paracellular promoter to further loosen TJs in leaky small intestinal epithelia. Other
possible reasons include differences in residence time and net water fluxes [12, 133, 141]. Not all promoters however, exhibit greater activity in the colon. Unlike C_{10}, which acts in all GI tract regions, the C-terminal of *Clostridium perfringens* enterotoxin (C-CPE) [67], Zot [14], and bile salts [109] have greater promoting activity in the upper GI tract, likely due to their enriched target receptor expression in that region.

[2.2] **Mechanism of C_{10} permeability enhancement across intestinal epithelia**

While the mode of action of C_{10} in humans is not yet fully understood, *in vitro* and *in vivo* studies suggest that the promoter acts on both the transcellular and paracellular pathways (Fig. 2a). Concentrations of C_{10} that are effective in cell cultures (10-13mM) are thought to promote paracellular permeability through modulation of TJs. The higher concentrations of the promoter that are required in animal and human studies potentially relate to the promoter’s additional mild surfactant properties. These result in destabilization and solubilization of enterocyte membranes, which impact on the contribution of the transcellular permeation pathway. Another potential aspect to the mechanism of action of C_{10} is the non covalent interaction of either monomeric, micellar or vesiclar C_{10} with the candidate drug (e.g. GnRH antagonists) altering its physicochemical properties thereby improving drug absorption across the epithelium in a fashion not too dissimilar to the eligen technology. However, this aspect to C10’s mode of action has not been widely studied.

[2.2.1] **Paracellular mode of action studies**
C_{10} caused dilation of 42% of TJs in Caco-2 monolayers (Fig. 2b) [142], which was accompanied by contraction, redistribution and disbandment of perijunctional actin and also alteration in the localization of zonula occludens-1 (ZO-1), occluden and claudin-1 [96, 97, 143-145]. C_{10} also disassembled F-actin at the TJ in human ileal mucosae [146] and dilated TJs in 34% and 37% of isolated rat [103] and human [146] ileal mucosae, respectively. In addition to intestinal epithelia, the involvement of specific tight junction proteins has also been described in airway and kidney epithelia and in skin epidermis. In human airway epithelial (HAE) monolayers, C_{10} caused redistribution of F-actin and reorganization of claudin-1, claudin-4, β-catenin, junctional adhesion molecule (JAM), but not ZO-1 [147, 148]. In Madin-Darby canine kidney (MDCK) epithelial monolayers C_{10} displaced claudin-4, -5 and occluden from lipid rafts into soluble microdomains with greater fluidity [149]. Although the study showed that C_{10} acted on specific tight junction proteins, it is not clear whether the displacement results from activation of a signal transduction pathway or whether the transcellular surfactant activity of C_{10} has the ability to destabilize the TJ by extracting loosely held TJ proteins from the low fluidity region of the lipid raft microdomain. In human epidermal keratinocytes, C_{10} induced reversible redistribution of the tight junction proteins, claudin and occluden, as well as deterioration of TJ strands [150].

A proposed mechanism that describes how C_{10} increases epithelial paracellular permeability is based on data generated from exposure of Caco-2 monolayers to C10. Based on these studies, the data suggest that activation of phospholipase C (PLC) causes cleavage of phosphatidylinositol 4,5-bisphosphate (PIP$_2$) into inositol triphosphate (IP3)
and diacylglycerol (DAG) [97, 151]. The activation of PLC can also be linked to surfactant actions of the promoter. Low concentrations of surfactants can affect membrane-bound enzyme activity by either activation or inhibition with some enzyme activity increasing as much as ten fold [152]. IP₃ then mobilizes intracellular Ca²⁺, which complexes with calmodulin (CaM) to alter its structural conformation. The Ca²⁺/CaM complex subsequently activates CaM-dependent protein kinases, CaMKII and MLCK. The latter then phosphorylates the regulatory light chain of myosin II (MLC) leading to contraction of perijunctional ring of actin and myosin II (PAMR), which opens the tight junction [153]. In support of this model, the absorption promoting activity of C₁₀ was attenuated with PLC inhibitors in Caco-2 monolayers [97, 144, 151]. C₁₀ also mobilized intracellular Ca²⁺ from stores in Caco-2 cells (Fig. 2c) [144, 151, 154], while pre-treatment with the intracellular Ca²⁺ chelator, BAPTA-AM, attenuated C₁₀’s permeation-enhancing activity [97, 143, 145] and its effects on F-actin reorganization [145]. Pharmacological inhibition of CaM and CaMKII prevented C₁₀ from increasing paracellular permeability across Caco-2 monolayers, suggesting that calcium-induced activation of CaM is a downstream event in the mechanism [97, 145, 155, 156], data that were confirmed in isolated rat and human colonic mucosae [157]. Further along the pathway, pharmacological inhibition of MLCK in Caco-2 cells and isolated rat and mouse colonic mucosa [158] also decreased the permeation-enhancement activity [97, 143, 158]. In the latter study, C₁₀ phosphorylated the MLC of both rodent models (Fig. 2d), an effect that was attenuated by inhibition of MLCK [158]. Inhibition of CaM with high concentrations of the antagonist, W7, also reduced the absorption-promoting action of C₁₀ from a rectal suppository in rats [159]. Inhibition of the other PIP₂ cleavage
product, DAG, (a PKC agonist), also inhibited C\textsubscript{10}’s effects on permeability [97]. DAG’s action on permeability may be independent of action on PKC since inhibition of the kinase increased the permeation-enhancement action of C\textsubscript{10} in Caco-2 [97, 151, 155]. Consistent with these Caco-2 data, pretreatment with a PKC antagonist did not reduce the absorption-promoting activity of C\textsubscript{10} from a rectal suppository nor did it block the reduction in TEER caused by the promoter [159]. In summary, C\textsubscript{10} has a permeation-enhancing effect \textit{in vitro} that appears to be mediated in sequence through PLC, calmodulin and MLCK activation, whereas the role of DAG and the involvement of PKC have yet to be fully deciphered.

Another lesser known mechanism that has been proposed for C\textsubscript{10} is that the presence of the promoter leads to a reduction in intracellular ATP [97], which can lead to increased paracellular permeability [156]. The decrease in ATP induced by C\textsubscript{10} in hamster colonic cells was comparable to that seen with three other promoters (tartaric acid, lauroylcarnitine and palmitoylcarnitine) [97, 156]. C\textsubscript{10} also depleted ATP and increased the energy charge potential (a marker of accessible energy supply) in human ileal epithelial mucosae [146]. It also depleted ATP in airway epithelia, but this did not seem to contribute to the acute effects of the promoter [147]. The decrease in ATP induced by low concentrations of C\textsubscript{10} used \textit{in vitro} might not however, be sufficient to account for the permeation enhancement activity of C\textsubscript{10} [97], but the higher concentrations of C\textsubscript{10} used \textit{in vivo} could result in significant ATP depletion. In Caco-2, large increases in permeability induced by C\textsubscript{10} were also correlated with reduced mitochondrial dehydrogenase activity [160]. Ultrastructural studies on monolayers and isolated mucosae
revealed swelling of the mitochondria in the presence of C\textsubscript{10} [96, 97, 104, 105, 146].

Taken together, these data suggest that the effects of C\textsubscript{10} on cellular respiration could be an indirect part of the mechanism of action, particularly at the higher concentrations that pertain to \textit{in vivo} studies. However, to-date there have been no studies carried out \textit{in vivo} that report the involvement of cellular respiration in the promoting action of C\textsubscript{10}.

\[
\textbf{[2.2.2]} \quad \textbf{Physicochemical properties of C}_{10}\textbf{ in solution}
\]

Before we can address the surfactant activity and transcellular mode of action of C\textsubscript{10}, it is important to outline how the promoter behaves in solution. In aqueous solutions, surfactants self-assemble by forming a range of structures. Sodium and potassium salts of fatty acids are water soluble and form an intermediate liquid crystalline phase before reaching a narrow concentration range when micelles are formed [161]. Subsequent addition of fatty acid leads to the formation of large colloidal structures. The presence of monomeric fatty acids and one or more colloidal structures may impact on the concentration of fatty acid presented at the intestinal absorption site. The concentration range at which a surfactant starts to form micelles and when the free monomer is at its highest concentration is defined as the critical micelle concentration (CMC) (Table V). Below the CMC no micelles are detected, and above the CMC, all additional surfactant forms micelles or vesicles [162]. A unique CMC value cannot be defined because it depends much on test conditions including temperature, pH, ionic strength, concomitant surfactants (e.g. phospholipids, bile salts), as well as methods of measurement [162-164]. The CMC of C\textsubscript{10} depends especially on the ionic strength of the buffer and on pH because close packing of the carboxyl head groups is strongly opposed by electrostatic repulsion.
unless this is offset by sufficient salt (counter ion) or acid protonation [152, 162, 165, 166]. In addition to the CMC value, a critical concentration for vesicle formation (CVC) has been proposed. C\textsubscript{10} in aqueous solution exists in monomeric form in equilibrium with a number of different phases, including micelles and/or vesicles (Fig. 3). While it forms micelles in alkaline conditions, vesicles are generated when the pH is lowered to ~6.5-8, with possible co-formation of micelles and vesicles at a pH of 7.5 [163]. It is therefore advisable to be cautious if attempting to correlate permeability data to an exact CMC value. The reported CMC values of C\textsubscript{10} vary considerably, ranging between ~10-100 mM (see Table V and see also [163]). C\textsubscript{10} forms heterogenic-sized vesicles at a pH of 6.4-7.8; CVC values ranged from 8-26 mM (pH 6.6-7.6 [163]) and from 14-29 mM (pH 6.8-7.4 [166]). The poly-disperse particulate structures of C\textsubscript{10} formed at a concentration of 200 mM in saline are shown in Fig. 3 and can be viewed in the Supporting Information (motion of particles recorded by Nanosight LM20, NanoSight Ltd, Amesbury, UK). The effects of these large vesicular nano-particulate structures on the promoting action and cytotoxicity of C\textsubscript{10} have not yet been defined.

The pKa of capric acid can affect its solubility and it’s CMC; it can impact on its promoting action and in turn on its own absorption. Although the pKa of C\textsubscript{10} has long been thought to be similar to that of short chain fatty acids (pH 5), one study showed that due to the closer packing of C\textsubscript{10} molecules at the interface, there is an increase in pKa in fatty acids that follows chain length [167]. The pKa of C\textsubscript{10} may therefore be closer to pH 7 [163, 167], which underscores the likelihood of the molecule to convert to the unionised acid form at the pH of the small intestine and consequently to be rapidly
absorbed or to precipitate out as an inactive oil. This is an important aspect to consider in designing an oral formulation.

[2.2.3] Transcellular mode of action studies

Transcellular enhancement by surfactants results from detergent-like perturbation of enterocyte plasma membranes, which results in leakage of drug across the intestinal epithelium. The effect of a number of promoters on transcellular permeability has been reviewed [133, 168, 169]. The behavior of a large number of absorption promoters tend to be concentration-dependent with greater transcellular enhancement and cytotoxicity at higher concentrations [170]. C_{10} causes plasma membrane aberrations based on release of carboxyfluorescein from jejunal and colonic brush border membrane vesicles (BBMV) [108, 137]. In studies in artificial lipid bilayers, effects of C_{10} were associated with changes to the hydrophobic and polar domains leading to increased fluidity [168]. It also caused a concentration- and time-dependent decrease in the fluorescence polarization of lipid- and water-soluble probes in jejunal and colonic BBMV, suggesting that the promoter induces transcellular packing reorganization in both the lipid and protein domains [108, 137, 171]. It seems that C_{10} therefore partitions into lipid bilayers, disrupting intermolecular forces between membrane phospholipids to decrease resistance to transcellular permeation. Similar data has been presented for mixed micelles of oleic acid and azone [172-174]. High concentrations of fatty acids also effect the interior of phosphatidylcholine-rich liposomes leading to bilayer destabilization, and this is likely to be similar to actions at the plasma membrane [134, 175, 176].
The interaction of surfactants with biological membranes has been eloquently reviewed elsewhere [152, 162, 165, 177, 178]. In general, surfactant monomers partition in the plasma membrane where they form defects leading to subtle alterations in permeability [152, 162, 169]. Low concentrations of surfactant monomer penetrate the lipid bilayer and act as wedges, thereby increasing the surface area and alter the osmotic equilibrium to increase the permeability of drug substances [152]. Increasing the surfactant concentration also leads to increased fluidity, perturbation and destabilization of the plasma membrane, which can lead to cell lysis [133, 152, 177]. The lytic process can be divided into stages: adsorption of the surfactant monomer to the plasma membrane, penetration into the membrane, change in the molecular architecture, alteration in permeability and osmotic equilibrium, and leakage of intracellular content [152]. After lysis, the final actions of a surface active agent are solubilisation of the lamellar bilayer structure into mixed micelles [152, 178]. Solubilisation results in a mixture of protein surfactant complexes, mixed micelles and surfactant micelles that are in equilibrium with free surfactant monomers at the CMC [152, 177]. Typically, the concentration of the surfactant required to solubilise the plasma membrane tends to increases with the CMC value. The higher the CMC value, the lower the hydrophobicity of the fat soluble moiety and the less effective the surface active agent is at penetrating lipid bilayers. To emphasise, while there is no evidence of the full solubilisation cascade occurring when C_{10} promotes transcellular absorption in a rapid reversible fashion, this is the general principle for surfactants.
The CMC was initially considered a good criterion for identifying the threshold concentration of capric acid and other MCFAs to enhance absorption [160]. However, it is now clear that the CMC alone is not the overriding factor in determining the effectiveness of MCFAs in increasing transmucosal drug flux [179]. In general, both very non-polar and highly polar surfactants are poor promoters; the optimum is in the mid-range [169]. Another criterion used to assess the interaction of surfactants with biological membranes and the formation of micelles is the hydrophilic-lipophilic balance (HLB), a measure of the solubility of aqueous and lipidic moieties of the molecule. The HLB values of capric acid and C10 are 4.8 and 21, respectively [180], which further emphasizes that the pH and counter ion concentration of the luminal fluid are important factors in the promoter’s surfactant properties.

Surfactants can increase bilayer permeability below the CMC [169, 181]. For example, in vitro and in vivo studies that show C_{10} alters the integrity of the intestinal epithelium leading to release of intracellular mediators ([182]), or to internalization of normally excluded dyes (propidium iodide [96, 182] and trypan blue [100]). This is not unique to C_{10} as other surfactants, including endogenous bile salts also cause lysis at concentrations below their CMC [152]. Concentrations of C_{10} that promote drug absorption in cultured epithelial monolayers were also found to damage the integrity of erythrocyte membranes leading to release of haemoglobin (data not shown). However, erythrocytes are highly susceptible to changes in tonicity and are far removed from more sophisticated models used to assess cell membrane perturbation. While the above solubilisation model has been proposed for many surfactants, it has not yet been conclusively demonstrated with
C$_{10}$ and the exact nature of the promoter’s interaction with the intestinal mucosa remains unclear.

The physicochemical properties of C$_{10}$ presented at the intestinal mucosae can also be influenced by formulation excipients, luminal fluid composition and pH, the region of the GI tract and dietary composition. The importance of an appropriate medium for the use of C$_{10}$ as a delivery agent is highlighted by studies examining the role of osmolality on the interaction of the promoter with the intestinal epithelium. In Caco-2, anisotonic solutions of C$_{10}$ increased the apical-to-basolateral flux of mannitol compared to isotonic solutions, which was also accompanied by greater cytotoxicity [142]. Clinical trials with Doktacillin® suppositories containing C$_{10}$ suggest that the hyper-osmolality of the formulation contributed significantly to the absorption enhancement and to temporary mucosal damage [22]. It is therefore important to examine the absorption promoting activity of C$_{10}$ in both fasted-state-simulating intestinal fluid (FaSSIF) and fed-state-simulating intestinal fluid (FeSSIF), a media dominated by high concentrations of deoxycholate, salt and lecithin. In Caco-2 monolayers, FaSSIF did not significantly influence the permeating-enhancement effects of C$_{10}$. However, it did reduce the effectiveness of palmitoylcarnitine chloride by over 15-fold [164]. The formation of mixed micelles between C$_{10}$ and bile salts or other dietary surfactants in the upper GI tract could affect the promoter’s CMC and could hasten solubilisation of the enterocyte membrane [169]. For example, a mixture of capric acid with bile acids enhanced the membrane lytic activity of the promoter [183]. In contrast to bile salts and mixed micelles, CMC of the fatty acids alone does not appear to correlate with the lytic effect.
The consensus however, is that dissolved monomeric fatty acids perturb the enterocyte membrane whereas mixed micelles are not absorbed per se (for review see [184]). The rate of uptake of fatty acids depends on the concentration and permeability coefficient of monomeric fatty acids, where the latter reflects the partition between the aqueous milieu and the lipidic enterocyte membrane. The amount of monomeric decanoic acid available for penetration into the enterocyte therefore depends on the equilibrium between the amount of dissolved monomeric decanoic acid, mixed micelles (where the decanoic acid preferentially is solubilised), and on whether the pH microclimate favours formation of decanoate/decanoic acid vesicles. The pH microclimate determines the ratio of C_{10} to capric acid while the amount of free monomeric unionized capric acid ready for penetration into the enterocyte depends on the equilibrium between the dissolved free monomer, pure or mixed surfactant micelles or vesicles and the amount of capric acid already bound the plasma membrane.

[2.3] **Preclinical safety data for C_{10}**

The effect of C_{10} on cell viability and morphology has been studied in intestinal epithelial cell cultures and isolated intestinal mucosae (Table VI-VII). Assessment is far more complex and germane in vivo, where the (usually higher) concentrations of the promoter fluctuate considerably due to variable residence time caused by dilution of intestine fluid volume [120], individual variation in gastrointestinal transit [132] and absorption of the promoter itself [116]. Data from intestinal monolayer cultures indicate incubation with C_{10} can perturb the mucosal membrane of enterocytes, leading to release of intracellular content and/or uptake of dyes normally excluded from the cell (e.g. [101, 185, 186] and s
Table VI). In these *in vitro* models the effects on viability were typically concentration- and time-dependent and reversible. In some studies C₁₀ led to a concentration-dependent reduction in cell viability in MTT assay (e.g. [96, 98, 185] and see Table VI). Light microscopy revealed that morphological deterioration was measured only at high concentrations (> 15mM) [99]. These higher concentrations led to membrane solubilisation, cell extrusion, and cell death [96, 99]. In anisotonic conditions, C₁₀ caused focal damage to enterocyte microvilli [142]. Some *in vitro* studies suggest that there is a relationship between cytotoxicity and promoting action [187]. Damage caused by C₁₀ partially recovered over 2-5 days depending on the concentration and initial exposure time [98] and the epithelial insult was hypothesized to primarily be due to a temporary reduction of oxidative phosphorylation rather than to cell death [64, 98].

Damage also appeared to be caused by C₁₀ in isolated intestinal tissues (Table VII). In isolated rat and human colonic mucosae C₁₀ perturbs the mucosal surface leading to the release of intracellular mediators [104, 171]. The effect of the promoter on the release of LDH from mucosae was however, significantly lower than the detergent, Triton X-100 [104]. Acute exposure of human colonic mucosae to C₁₀ led to abrasion of the apical surface and there was evidence of early oedema in the sub-mucosa [104]. Similarly, C₁₀ uncoupled oxidative phosphorylation leading to a drop in intracellular ATP in isolated human intestinal mucosae [146]. These results were not corroborated in other *in vitro* studies however, where there was no toxicity associated with the promoter. For example, in the rat everted intestinal sac model there was an increase in the aqueous pore radius to paracellular markers, but no evidence of mucosal damage [188].
Although in vitro models may be useful tools in the preliminary assessment of mucosal cytotoxicity, they lack contextual aspects of in vivo studies (e.g. transit time, dilution, histological changes and food effects). Toxicity of C₁₀ has been comprehensively studied in animal models (Table VIII). In studies where the local intestinal concentration can be estimated, 10-fold higher concentrations of C₁₀ are often required in situ and in vivo to promote drug absorption and therefore one might expect to detect increased mucosal toxicity. A number of in situ intestinal studies show that C₁₀ perturbs the mucosal surface causing release of membrane phospholipids, protein and intracellular protein (Table VIII). Similar to in vitro toxicity assays, the rate of release of LDH into the small intestinal lumen was however significantly lower for C₁₀ than for SDS [189]. Regional delivery of C₁₀ (100 mM) led to mild abrasion of the epithelial surface in rats [104]. Concentrations of the promoter between 200-400mM also increased the histological damage score and caused rectal contraction in rats [67, 190, 191]. While region-specific promotion by C₁₀ suggests the actions of the promoter are not related to general membrane damage [137], the duodenum and jejunum are designed to be able to cope with mild surfactants due to their continuous exposure to high concentrations of bile salts.

It is possible for mucosal erosion to progress to ulceration so it is important to understand the effect of C₁₀ on the intestinal epithelium in vivo, especially upon repeated administration [192]. Repeated oral administration of capric acid (500mg/kg) to rats for 150 days was well tolerated and did not lead to gross morphological damage in either forestomach or glandular stomach [86]. Oral delivery of an enteric-coated oligonucleotide formulation containing promoting concentrations of C₁₀ did not induce
intestinal histopathology after 13 weeks of repeated administration in rats or dogs [193]. Oral delivery of high doses of C10 also showed no effect on histology of the intestinal mucosae of dogs or pigs, nor did it lead to abnormalities in clinical chemistry [24, 115, 194]. Other than producing lipid-rich stools, dogs dosed with up to 1 g of C10 for 7 days displayed no adverse effects [24]. Furthermore, the oral delivery to dogs of the GIPET® formulation containing C10 and C12 (1:2) at a dose of 0.9g/kg/day did not lead to adverse findings in ECG, clinical chemistry or histology measurements [24]. A few dogs showed weight loss and vomited, which was thought to be more associated with the intake of up to 18 capsules per day.

In vitro measurements of cytotoxicity are often unrelated to *in vivo* toxicity and are unlikely to be predictive [24, 133, 192]. For example, erythrocyte haemolysis (a highly sensitive assay) is widely used to test the effect of drugs on membrane integrity. C10 (10mM) causes 100% haemolysis, but significantly higher concentrations of the promoter in animal models do not result in any appreciable toxicity (Table VIII). Gross morphological damage to Caco-2 monolayers by C10 (50mM) was not reflected in noteworthy histological damage in rat single pass jejunal perfusion at the same concentration, nor in rat rectal instillations at even a ten-fold higher concentration [99, 106]. In a combined *in situ* and *in vitro* rat colonic loop and isolated tissue mucosae study, washout completely reversed C10’s effects on permeation enhancement of mannitol flux, which suggests that any morphological damage was not very relevant [11] and implies a primary mechanism of mixed micelle enhancement in this model.

Furthermore, mucosal aberration was less apparent in a number of *in situ* and *in vivo* drug
delivery models compared to \textit{in vitro} models (Table VIII). There are a number of potential reasons why C\textsubscript{10} does not lead to comparable toxicity \textit{in vivo} compared with \textit{in vitro}. Firstly, C\textsubscript{10} may have restricted access to the mucosal surface due to infoldings in the intestinal lumen. Furthermore, the presence of a thick mucous layer, glycoproteins (e.g. glycocalyx), and the phospholipid composition of the lipid bilayer can reduce the solubilising action of detergents on the cell membrane [152]. Secondly, the rate of absorption of C10 is rapid, and the time course of exposure is extremely short relative to \textit{in vitro} experiments. Thirdly, the small intestinal mucosa has a rapid cell turnover where an estimated 100 million cells are sloughed in to the lumen per minute and the entire intestinal surface is replenished over 2-6 days, so damaged mucosae are rapidly regenerated [130, 192]. Injured cells extend membranous lamellipodia projections to cover the breached epithelial barrier to assist epithelial restitution [195, 196]. Many studies describe the ability of the intestinal epithelium to be repaired (for review see [133]). For example, damage to human colonic mucosa was estimated at 95\% after a 5 min exposure to HCl (100mM); there was restitution after 15 min and recovery to a level of less than 20 \% damage after 3 hours [197]. Focal epithelial denudation induced by Triton X-100 was repaired over 2 hours in isolated ileal mucosae of guinea pigs [198]. Mucosal erosion caused by the strong surfactants, TDC and NP-POE-10.5 was comparable to control levels after just 2-3 hours in the rat perfusion model [199]. In rat rectal perfusions using sodium lauryl sulfate, sodium deoxycholate and EDTA, epithelial recovery was seen within two hours [200]. Physiological concentrations of dietary surface active lipids can compromise the mucosal epithelium, but the epithelium is rapidly repaired [55]. In a rat perfusion study, oleic acid emulsified in rat hepatic bile
caused rapid mucosal damage to the jejunal epithelium which recovered after 50 min [201]. Indeed, even in the most extreme cases of epithelial damage (including almost total loss of the epithelium) induced by absorption promoters in rats, the damage has been interpreted as reversible by qualified veterinary pathologists [114]. Finally, the concentrations of bile salts and mixed micelles found in the duodenum and jejunum can lead to mucosal damage, yet repair is the typical outcome [169]. Rapid mucosal repair and regeneration are therefore normal physiological processes and hence the mucosal perturbation caused by dietary substances, endogenous secretions and absorption promoters can be tolerated.

Understanding the kinetics of epithelial damage and recovery at the selected dosage frequency is important. In an in situ rat colonic instillation model, C_{10} caused mild mucosal damage when the tissue was histologically-assessed at the Tmax for absorption promotion [106]. A number of other in situ and in vivo rat studies show barely discernable C_{10}-induced mucosal damage at later time points, likely masked by the intestinal epithelium’s ability to recover as the agent is absorbed. In addition to examining the kinetics of epithelial recovery, any damage caused must be examined objectively and compared to that of other xenobiotics. To put it in context, many other dietary substances also cause mild intestinal epithelial aberrations during the absorption process and this is normal. For example, ethanol can cause mucosal damage in rats and dogs at concentrations commonly found in typical alcoholic beers (~4% v/v) [202], and a number of marketed rectal suppositories have been shown to reversibly damage the rectal epithelium [122, 203].
The premature progression of epithelial cells from the crypts to the villi surface during epithelial restitution could compromise nutrient absorption since these immature cells might not yet adequately express all of the proteins required for nutrient absorption and fluid homeostasis [192, 204]. C_{10} inhibits Ca^{2+}- and cAMP- dependent electrogenic chloride secretion in rat and human colonic mucosae [104, 205]. The effect of the promoter on reducing the chloride secretion induced by the adenylate cyclase activator, forskolin, and muscarinic agonists was reversed at 24 hours [156]. C_{10} also decreases the basal short circuit current (Isc, μA.cm2) in rat and human colonic mucosae [105, 156]. In a rat rectal perfusion, C_{10} was also shown to increase water absorption [206]. Inhibition of electrogenic chloride and alteration to water absorption-secretion processes, if present in vivo, could affect the hydration of the mucosal surface. This could potentially affect the intestinal relationship with commensal bacteria, the flushing away of pathogens, as well as impacting on the efficiency of nutrient absorption.

One of the key safety concerns with transiently-modulating gut permeability is that other xenobiotics, antigens, toxins and bacteria present in the lumen could be co-absorbed leading to inflammation of the sub-mucosa and/or septicaemia [14]. Capric acid and C_{10} have established antibacterial- and antiviral properties at similar concentrations to those required for absorption-promotion [207-209]. We found that C_{10} does not increase the translocation of $E. coli$ across Caco-2 monolayers, while the detergent, Triton X-100, significantly increased $E. coli$ flux at concentrations that modulate permeability (Fig. 4a). This could be related to the antimicrobial activity of C_{10} against the test organism at
concentrations that promote solute absorption (Fig. 4b), while *E. coli* are resistant to the surfactant actions of Triton X-100 [210] (Fig. 4c). Further studies with bacteria that are resistant to high concentrations of C\textsubscript{10} and/or micro-particles that mimic bacteria could help to understand whether the promoter has the propensity to increase bacterial translocation. This could be difficult because a wide range of bacteria are susceptible to capric acid and C\textsubscript{10}, including *E. coli*, *S. typhimurium*, and *L monocytogenes*, *C. jejuni*, *C. perfringens* and *S. sonnei* [207, 208]. Capric acid also has antimicrobial activity against a panel of bacteria that are frequently found in clinical microbiology [211]. In a screen of 13 bacterial isolates, C\textsubscript{10} inhibited growth and biofilm formation at concentrations that are used to promote absorption in cell cultures and *in vivo* models (Unpublished data, Rawlinson L. and Brayden DJ). In addition to antimicrobial activity, C\textsubscript{10} has been shown to reduce adhesion of *S. typhimurium* to isolated ileal mucosa of rats [207]. Capric acid has antiviral activity against a number of enveloped viruses [209], antifungal activity [211] as well as anti/protozoal activity against the common intestinal parasite, *Giardia duodenalis* [212]. In cultured monolayers of human airway epithelial cells, pre-treatment with C\textsubscript{10} increased the translocation of adenovirus (AdlacZ and Ad-CFTR) vectors [148]. C\textsubscript{10} pre-treatment has also been shown to effectively increase viral gene transfer *in vivo* in both murine nasal [213] and murine tracheal [214] models. However, co-administration of AdlacZ adenovirus with concentrations of C\textsubscript{10} above the CMC (13mM) completely abolished gene transfection because of the interaction of C\textsubscript{10} with the virus [213].

The initial bacterial and viral data reported above suggests that the high luminal concentration of C\textsubscript{10} required to enhance epithelial permeability, could prevent...
infiltration of micro-organisms. The corollary is that its anti-bacterial activity could neutralize local commensal bacteria in the gastrointestinal lumen, but this requires investigation. Perhaps the most convincing data that C_{10} does not lead to inflammation of the rectum or distal colon, at least in short term use, is the presence of the promoter at high concentrations in Doktacillin®. While the presence of the ampicillin in the rectal preparation could confound this aspect of the safety data, intestinal inflammation or septicemia was not reported in any of the human trials. Finally to put the issue in context, C_{10} significantly enhances permeability of drugs with a typical Mw cut off of approximately 3-10 kDa with a molecular radii of 10-20 A. Lipopolysaccharides, enterobacterial toxins, bacteria and viruses have MW values and radii far in excess of those values.

[3] Promoting activity and safety of C_{10} in man

Care must also be taken when extrapolating permeability enhancement data from intestinal cell cultures and isolated mucosal tissues to effects in humans [170, 215]. Promoters that are effective in rats may have little or no promoting activity in larger animals and humans [140, 203]. Similarly, in vitro and in situ mechanistic studies may have little or no relevance to the human oral absorption. The efficacy and safety of C_{10} can only be established in well-designed clinical studies. The promoting activity of C_{10} in man has been assessed thoroughly with rectal formulations of antibiotics carried out almost 25 years ago (Table IV). C_{10} (10%, 100mg) increased the proportion of ampicillin excreted in urine over six hours from 1.7% to 38.1% from a suppository [89]. Suppositories of ceftizoxime formulated with C_{10} (3-5%, 15-25mg) had a Tmax of 30
min and the Cmax was 10-12µg/ml, although the extent of enhancement was not examined because all of the formulations contained C₁₀ [216]. Ceftizoxime suppositories containing C₁₀ (3%, 15mg) were also assessed in pediatric patients, where the Tmax was also 30 min and the Cmax was 8.9µg/ml [216]. Rectal antibiotic suppositories containing both ampicillin, Witepsol H5 and C₁₀ (2% w/w) or ceftizoxime with 3% w/w C₁₀ were licensed in pediatric patients in Japan in the mid-1980s (Kyoto Pharma Industries and Sumitomo Pharma Co, Japan).

The efficacy and safety of these antibiotic suppositories in pediatric patients has been reviewed in a number of clinical studies [217-220]. 543 patients received 3 to 4 ampicillin suppositories per day to yield a bacterial eradication rate of over 80% [219, 220]. In an equivalent study with ceftizoxime, 248 patients with a daily frequency of 3 to 4 suppositories also had a bacterial eradication rate of over 80%. Although these studies did not specifically identify the promoting action of C₁₀ in the suppositories, data from related animal studies would indicate that the promoter does have considerable enhancing effects following rectal administration (e.g. [218] and see Table III). C₁₀ was also formulated as part of a rectal suppository with glycyrrhizin for the treatment of chronic hepatitis [221]. Patients receiving the suppository twice daily over 12 weeks showed a significant drop in alanine aminotransferase levels with the effects comparable to an i.v. formulation. In contrast, C₁₀ (18mM) was ineffective in the delivery of antipyrine and phenoxyethylpenicillin when delivered as a solution in a rectal perfusion device [215]. Apart from the low dose of C₁₀ used compared to most other human rectal studies, the
relatively high rectal perfusion flow rate (2.5ml/min) could have a significant bearing on the lack of effect [106].

Safety assessment of rectal formulations containing C$_{10}$ shows the promoter can lead to irritation of the rectal mucosa in a concentration-dependent fashion (Table IX). Suppositories containing 40-60μg of C$_{10}$ with glycyrrhizin did not irritate the rectal mucosa [221]. However, the higher dose of 80μg caused severe irritation to the rectal mucous membrane. This could be related to synergy between C$_{10}$ and glycyrrhizin [154]. In ceftizoxime suppositories containing C$_{10}$ (5%, 25mg) that were administered 3 times a day for 5 days, there was a slight increase in the feeling of a foreign body and a propensity for defecation, but no burning sensation or pain [216]. In the same study, no irritation was noted in pediatric patients that received the single dose ceftizoxime suppository containing C$_{10}$ (3%, 15mg) [216]. In an ampicillin suppository administered 3 to 4 times daily to 642 pediatric patients, only 17 patients had diarrhea (3.6%), six patients had soft stools (1.3%), 1 patient had abdominal pain (0.2%) and 4 had periproctal redness (0.8%) [219, 220]. Abdominal clinical symptoms were similar in pediatric patients receiving a ceftizoxime suppository, although a higher percentage of patients had diarrhea (8.6%) [219, 220]. Further to this study, suppositories containing 80mg of C$_{10}$, (where the concentration of C$_{10}$ could be over 100 mM assuming complete dissolution), there was a slightly increased sensation of defecation over 30 min, yet scores of pain, burning or itch were similar to control formulations [191]. It is worth stating that there is not enough evidence to conclude that there is a relationship of these rare adverse events to direct effects of C$_{10}$ in the suppositories.
The importance of the contemporaneous delivery of the promoting agent and drug cargo shown in animal models has also been demonstrated with C\textsubscript{10} in human studies [24]. Intra-jejunal administration of C\textsubscript{10} (500mg) to healthy human subjects increased sugar absorption up to 20 min after C\textsubscript{10} administration, but not at 40-60 min as measured by the lactulose: mannitol urinary excretion ratio. These data confirmed that the window for promoting action is narrow and that oral formulations containing C\textsubscript{10} should be designed to synchronize the release of C\textsubscript{10} and payload.

[3.1] **Case study I: Rectal delivery of ampicillin using C\textsubscript{10}**

The major success of C\textsubscript{10} to date was the approval in Sweden of Doktacillin® in 1992 [142, 222]. The composition of the Doktacillin® suppository was similar to the formulation licensed for use in pediatric patients in Japan in 1985 with only minor differences in the suppository base [219, 220]. Doktacillin® suppositories (125 or 250 mg ampicillin, 15 or 25mg sodium caprate) administered to 421 pediatric patients for between 3-10 days cured 37% and improved the condition of 52 % of patients with *Otitis media*, with mean plasma concentrations of 5.9 or 8.5µg/ml for the low and high dose formulation respectively [223]. Gastrointestinal disturbances including diarrhea, loose stools and perianal pain were reported in 28% of patients. However, the study was not placebo-controlled, thus hampering direct assessment of safety and efficacy of C\textsubscript{10} in the formulation. The most comprehensive clinical assessment of Doktacillin® suppositories in the public domain was carried out by Lindmark et al (1997) [22]. C\textsubscript{10} formulated with ampicillin and Pharmasol B-105 increased urinary recovery, plasma C\textsubscript{max} and AUC of
ampicillin by 1.8-, 2.6- and 2.3- fold, respectively compared to the triglyceride base alone. Local rectal irritation was examined by histological scoring following a rectal biopsy. The triglyceride base alone led to a loss of epithelial cells and damaged the basal lamina. The authors suggest that the reversible damage detected was due to the solubilising concentrations (≤86mM) of the promoter released from the suppository [96, 97]. The damage may also have been due to a synergistic effect of the combination of C₁₀ with the triglyceride base, along with the influence of high osmolality of rectal fluid [142]. The efficacy and safety of C₁₀ in this rectal formulation has therefore never been accurately investigated, stripped of confounding factors. However, these studies do indicate that mild reversible mucosal damage caused by agents that promote rectal absorption by transcellular perturbation in humans are acceptable for short term treatments.

[3.2] **Case study II: Oral delivery of oligonucleotides using C₁₀**

ISIS Pharmaceuticals (California, USA) first disclosed formulations for the oral delivery of oligonucleotides with C₁₀ and other adjuvants [224]. Pulsatile formulations containing high concentrations of C₁₀ were effective in promoting the oral delivery of antisense oligonucleotides in a Phase I study [26]. Mini-tablets containing ISIS 104838 (antisense to TNF-α) and C₁₀ were coated with varying concentrations of Eudragit® RS30D to create a mixture of immediate- and delayed-release pellets. The mini-tablets were encapsulated in an enteric-coated capsule with Eudragit® L30 D55. The pulsatile formulations were designed to cause release of C₁₀ and oligonucleotide at high concentrations followed by a sustained release of the promoter, which itself is rapidly
absorbed; this might maintain the enhancement window while there are still high concentrations of the oligonucleotide present in the intestinal lumen. The final weight of C₁₀ in each capsule was 660mg, over 25-fold greater than that found in Doktacillin® suppositories [22, 26]. The maximal oral F of ISIS 104838 was 12% in fasted patients and 12.9% in patients fed a high fat meal prior to dosing [26]. An assumption is made that the oral F of ISIS 104838 in the absence of C₁₀ in the capsule would be close to zero. The formulations were well tolerated with no adverse effects seen on physical examination or clinical chemistry. This was consistent with safety studies with C₁₀ in rats and dogs with another ISIS oligonucleotide (ISIS 301012 [225], an antisense inhibitor of apolipoprotein B (ApoB) [193]. In another Phase I clinical study, a once-daily dosage of ISIS 301012 in a formulation containing C₁₀ for up to 90 days significantly reduced serum LDL-cholesterol and apoB [123, 124]. A mean F₀·²₄h of 6 % was observed upon oral administration and the optimal PK responses for both apoB and LDL-cholesterol were achieved on days 55 and 69 (see Fig. 5). Again, while there was no treatment group without C₁₀, it can be assumed that the unenhanced oral F of such a large hydrophilic molecule is negligible. In support of this, the oral F of ISIS 2302, (antisense to ICAM-1) following rat jejunal instillation was ~0 % without an absorption promoter, while in the presence of a combination of C₁₀ and C₁₂, the oral F was significantly increased to 8% [224]. In this study, the oral formulation containing C₁₀ was generally well tolerated with only mild, intermittent GI symptoms reported.

[3.3] Case study III: GIPET®, Oral formulations of poorly permeable drugs with C₁₀
GIPET® formulations (Merrion Pharmaceuticals, Dublin, Ireland) are a group of oral solid dosage forms designed to promote absorption of poorly permeable drugs. The typical GIPET®-I preparation contains a poorly-absorbed drug with C_{10} as the promoter in an enteric-coated tablet. The absorption-promoting actions of constituents of GIPET® have been disclosed in preclinical and clinical studies [226]. One such pilot study assessed the effect of intra-jejunal administration of high concentrations of C_{10} (550mg-1650mg) on the absorption of low molecular weight heparin (LMWH) in healthy human volunteers [226]. The promoter-drug mixture was delivered in 15mls of water and F was measured relative to a s.c. reference. The concentration of the promoter in this volume ranged between 185-566mM (Table III). C_{10} increase the oral F for LMWH to 5-9 % compared to sub-cutaneous bioavailability. The amount of C_{10} used in this oral human study was up to 66 times greater than that of the Doktacillin® suppository, even though orally-administered C_{10} is diluted in a larger small intestinal volume than the rectum, the concentration of C_{10} at the jejunal mucosa should be considerably higher than the latter. The clinical efficacy and safety of GIPET® formulations in oral delivery of a range of unrelated poorly permeable drugs has recently been reviewed [24, 25]. Briefly, GIPET® improved the oral F of LMWH to between 3.9-7.6% relative to s.c. administration [24]. Oral F of LMWH in humans and dogs following intra-jejunal intubation of GIPET-LMWH® was approximately 10 % and 20 %, respectively [25]. It is worth pointing out that these estimates of oral F for LMWH are based on pharmacodynamic measurements and are therefore based on indirect metrics.
The impact of GIPET® on oral absorption of the gonadotropin-release hormone antagonist, acyline (Mer-104), was first demonstrated in a preclinical in situ duodenal instillations in beagle dogs [227]. The formulation increased F of acyline versus the unenhanced formulation by 5-16 fold. In a subsequent human trial, single dose administration of acyline in a GIPET® formulation suppressed serum gonadotropin and testosterone biosynthesis in normal men [228]. In a Phase I study, GIPET® also improved the oral F of the bisphosphonate, alendronate, 12-fold compared to alendronate sodium tablets (Fosam®x, Merck), to yield an oral F of 7.2 % based on urinary excretion data of the unchanged molecule [24, 229]. The absorption-promoting action of GIPET® in humans complemented studies in dogs where oral and intra-jejunal delivery of alendronate- GIPET® improved permitted an oral F of 2.3 % and 3.3 %, respectively [25].

Zoledronic acid (Zometa®, Norvartis, Switzerland) is a bisphosphonate drug that is used to reduce the potential for skeletal related events caused by the debilitating effects of bone metastases. Since it has very poor oral F, Zometa (4mg) is normally delivered once monthly by a 15 min i.v. infusion, which requires continuous involvement of healthcare professionals and bisphosphonate-naïve is inconvenient to patients. Nephrotoxicity is related to the Cmax of the drug and occurs at this dose and infusion rate in some patients. Preclinical studies in beagles demonstrated that intra-duodenal delivery of GIPET® improved the absolute oral F of zoledronic acid to 7-10%, as measured via urinary excretion [230]. In a recent subsequent multi-center Phase II study in hormone-refractory prostate cancer patients, once-weekly zoledronic acid (20mg) administered orally in a
GIPET® solid dosage form (Orazol®) had similar bioavailability as the marketed parenteral preparation delivered once-monthly [231]. In addition, there was no significant difference in the primary endpoints: blood and urine biomarkers of bone metabolism between Orazol® and the reference group. A study in healthy human volunteers established that the percent urinary excretion of zoledronic acid from Orazol® was comparable to that of the Zometa® infusion (Fig. 6).

In each of the Phase I and II studies using GIPET® the formulations were well tolerated (Table IX). Importantly, the alendronate-GIPET® formulation permits one twelfth of the dose of the bisphosphonate to be used compared to the marketed form of alendronate (Fosamax®, Merck, UK). The large reduction in the alendronate dose appeared to reduce gastric- and oesophageal-related toxicity. This formulation may eventually promote better compliance since patients were not required to take the medication with a full glass of water or remain upright for over 30 min after administration according to established dosing requirements [25]. In a total of 16 Phase I studies involving 300 volunteers, some 800 exposures to GIPET® did not induce measureable toxicity; indeed in some cases individual patients were safely dosed up to six times each [24]. In routine blood biochemical assessments, a single dose administration of GIPET® to healthy volunteers did not lead to abnormal haematology, clinical chemistry or hepatic function [228]. In the Phase II study of Orazol® referred to above, GIPET® was administered once weekly for 8 weeks and was well tolerated with no abnormalities in urinalysis, haematology or clinical chemistry. These data closely reflect the safety data for GIPET® observed in dogs (see Table VIII).
Perspective on the safe and effective use of C_{10} in oral drug delivery

The promoter with the greatest efficacy in vitro or in situ is not necessarily the best candidate for clinical assessment [169]. Many additional factors impact on the ultimate potential of promoters, including safety, effectiveness and stability in the GI tract, and the kinetics of intestinal absorption of the promoter itself. Promoters that solely increase paracellular permeability through the transient opening of TJs might be considered to be potentially safer than ones with multiple mechanisms of action because they activate physiological-based processes that may not lead to mucosal epithelial damage (reviewed [18-20, 66, 232]). TJ-specific candidates include C-terminal of C-CPE [67], Zot [14], the rotavirus spike protein VP8 [233] as well as a number of engineered peptide-based promoters [20, 68]. However, the TJs of the small intestine are relatively leaky and there is a view that paracellular promoters might not be able to open TJs any further in vivo [137]. It is also likely that a degree of perturbation of the apical membrane of enterocytes is necessary to promote significant drug absorption across the small intestine in man and that TJ openings per se will not be adequate. Another concern with the use of some absorption promoters is their safety in the event of systemic absorption, in contrast to the well-accepted safety profile of well-absorbed dietary C_{10} [87, 88].

C_{10} has the capacity to cause superficial damage to the intestinal epithelium in vivo.

Despite this, data from the initial clinical trials and from repeat-dosing studies in a range of species suggest that C_{10} should be safe for use in high concentrations in oral dosage forms that may need to be given repeatedly even on a long-term basis. However, it might not be advisable to administer C_{10} formulations contemporaneously with other drugs that
have the potential to elicit gastrointestinal side effects (e.g. NSAIDs, alcohol), nor to subjects with inflammatory bowel disease where basal intestinal permeability is already increased. In one human study where C_{10} was coadministered with glycyrrhizin in a rectal suppository, there was a higher degree of rectal irritation at a much lower concentration of C_{10} than in most of the studies reported for C_{10} alone ([221] and Table IX). It is notable that the repeat administration of C_{10}-ISIS 301012 oral tablets to human subjects for up to 90 days yielded just mild intermittent gastrointestinal symptoms [123]. Although epithelial repair after jejunal exposure of C_{10} is extremely rapid in healthy volunteers, this could potentially be offset by disease, other medications, and excessive bile secretion [181].

The current safety profile of C_{10} compares well with other dietary constituents and endogenous secretions, and is significantly better than agents including aspirin, paracetamol, alcohol and codeine [122, 203, 234, 235]. Importantly, the damage and repair cycle that occurs through continuous exposure to bile salts is a physiologically-normal phenomenon, so similar effects likely to be induced by C_{10} should be viewed with concern [169]. Indeed, in a study examining the effects of bile salts and dietary fatty acids on the mucosal surface, it was concluded that mucosal injury might be caused by the normal hydrolytic digestion of fat following the intake of a fatty meal [201]. Finally, it is noteworthy that many other formulation excipients that are well-established (e.g. Witepsols) could have greater toxicity compared to C_{10} [122, 203].
The co-absorption of antigens is a legitimate safety concern with the use of intestinal absorption promoters. In a vaccination study in the African catfish, orally-administered C₁₀ increased *Vibrio anguillarum* O₂ serum antigen- and antibody levels [236]. Similar effects were demonstrated with sodium salicylate and with the vitamin E analogue, TPGS. Alcohol consumption has been shown to increase plasma endotoxin levels in alcoholics, presumably by increasing intestinal permeability [202]. The absorption of bystander antigens is not necessarily a pathophysiological process, since antigens are routinely absorbed into the portal blood and sequestered by Kupffer cells in the liver [192]. However, since endotoxemia can progress to endotoxic shock, further studies are required to assess whether C₁₀ causes an increase in plasma endotoxin levels. Studies in man would indicate this is not the case, since delivery of the promoter to the bacteria-rich rectum in suppositories has not been reported to increase plasma endotoxin levels, even though absorption by this route partially bypasses first pass metabolism. Another area that may warrant further study is the effect of the promoter on translocation of viral particles. Rectal administration of a non-ionic surfactant with the *Salmonella* 0-1 Felix phage in rabbits rapidly increased the serum viral load [237]. Overall, the intestinal histological data in relation to C₁₀ would suggest that any induced reversible mucosal-damage would not be at the level induced by NSAIDs, alcohol or even many other formulation excipients. *In vivo* data in humans indicate that increases in intestinal permeability induced by C₁₀ are a fraction of those seen with NSAIDs, both in magnitude as well as in respect of the time course. The increased epithelial permeability as defined by the lactulose:mannitol urinary excretion assay in healthy volunteers taking aspirin ranged from 146%-1967% [238-241] greater than control subjects, yet the increase with
GIPET® was 50% (data not shown). While aspirin is not considered to be a more effective intestinal absorption promoter than C₁₀, such studies suggest that the promoting actions of either monomeric, micellar or vesicular C₁₀ could relate to its physical interaction with the candidate drug. A final consideration is that coincidental enhanced absorption of a second drug with a narrow therapeutic index could potentially result in over-exposure [169, 192]. Such potential drug interactions are unrealistic however, since it is unlikely that the co-administered marketed drug would be poorly absorbed per se, and it is even less likely that it would leave the stomach at the same time as the solid dose enteric-coated formulation. It would then require a similar GI tract transit time as the original payload so as to ensure presence at the same small intestinal epithelial region just as C₁₀ was being released.
Conclusions

Evidence from preclinical and clinical studies indicate that C_{10} in solid dosage forms, designed for the initial simultaneous release of high concentrations of promoter and cargo, can effectively increase the oral F of Class III drugs, including peptides, oligonucleotides and polysaccharides, as well as poorly-absorbed antibiotics and bisphosphonates. From the standpoint of efficacy, significant oral F has been achieved for selected low MW molecules with a relatively narrow intra-subject variation. Mode of action studies suggest the actions of the promoter in vivo using high concentrations pertain to a transient transcellular perturbation in addition to the well-studied paracellular pathway. It seems that damage caused to the intestinal epithelium of enterocytes may not be physiologically-relevant as it is transient, mild and reversible. Finally, although some of the safety concerns with the use of absorption promoters have been addressed in recent clinical studies and the marketed antibiotic suppositories, certain safety aspects may require additional study. These include the effect of repeat administration, as well as the effect of the promoter on the absorption of other drugs, luminal antigens and nutrients.

Acknowledgements and disclosure

This work was financially supported by Science Foundation Ireland (Strategic Research Cluster Grant 07/SRC/B1154) and by The Irish Research Council for Science, Engineering and Technology. The authors would like thank Dr. Lloyd Tillman (ISIS Pharmaceuticals) and Dr. John Fox (Merrion Pharmaceuticals) for critical review of the manuscript. David Brayden is a consultant to Merrion Pharmaceuticals, Dublin, Ireland.
Fig. 1:

(a) Diagram showing labeled structures (1) to (6) with TJ markers.

(b) Micrograph image of a tissue section, possibly showing cellular structures and TJ in detail.
Fig. 2:

(a) Diagram showing the regulation of cell permeability and cytoskeletal contraction through various pathways involving Ca^{2+}, PKC, and MLC-P. The diagram highlights the effects of 48/80 and U73122 on the cellular processes.

(b) Image showing a mitochondrial swelling reaction.

(c) Image showing intracellular Ca^{2+} level distribution with a color gradient indicating low to high levels.

(d) Western blots showing MLC-P and β-actin expression levels under control (Ctrl) and treatment (C_{10}).
Fig. 3:
Fig. 4:

(a)

E. coli translocation (CFU) vs. Time (min)

(b)

Viability % control vs. C10 (mM)

(c)

Viability % control vs. Triton X-100 (mM)
Fig. 5:

- apoB100 LDL-C
- Placebo
- Oral active

p < 0.01
p < 0.001

% Baseline

apoB100
LDL-C

p < 0.01
p < 0.001
Fig. 6:
Figure Legends

Fig. 1: (a) Schematic representation of drug delivery systems that have been shown to increase transmucosal drug permeability. (1) Most oral drugs with the desired solubility are normally absorbed passively by transcellular path without the need for a drug delivery system, (2) receptor mediated prodrug formulation (e.g. valaciclovir) (3) modified solubility prodrug formulation (e.g. enalapril), (4) Absorption promoters can increase permeability by paracellular permeability and/or by transcellular perturbation (not shown in this Fig.) (e.g. C\textsubscript{10}) (5) Receptor mediated nanoparticle endocytosis (e.g. vitamin B12) and (6) Carrier-based drug delivery systems (e.g. Eligen®, Emisphere, USA) (b) EM of a cross section of the human colonic mucosa with intact transcellular and paracellular barriers. Single arrow head denotes tight junction. Vertical bar denotes 2\textmu m.

Fig. 2: (a) Schematic representation of the mechanisms through which C\textsubscript{10} is thought to promote drug absorption across the intestinal epithelium, (b) shows induction of TJ dilation by C\textsubscript{10} (10mM) across Caco-2 monolayers, (c) increased intracellular calcium induced by C\textsubscript{10} in Caco-2 monolayers (arrow head) and (d) C\textsubscript{10} (10mM) induction of myosin light chain phosphorylation in isolated rat colonic mucosae mounted in Ussing chambers [96, 145, 158].

Fig. 3: Polydisperse particulate structures of C\textsubscript{10} formed in saline at 200mM. Motion of particles can be viewed in the Supporting Information (motion of particles recorded by Nanosight LM20, NanoSight Ltd, Amesbury, UK).
Fig. 4: Do promoters increase translocation of commensal bacteria across the intestinal epithelium as they promote absorption of poorly absorbed solutes? (a) Effect of C_{10} (10-100mM) and Triton-x-100 (16mM) on the translocation of *E. coli* (pHKT3 [285]) across Caco-2 monolayers over 3 hours, (b-c) Effect of C_{10} and Triton-x-100 on the viability of *E. coli* (pHKT3) measured with an antimicrobial assay from the Clinical and Laboratory Standards Institute (Maher S and Brayden DJ, unpublished data).

Fig. 5: Oral delivery of ISIS 103012, antisense to apolipoprotein B, compared to placebo control in human patients over 55 and 69 days [124]. The primary endpoint was a measure of the mean (trough) plasma LDL-cholesterol and apolipoprotein B. Oral ISIS 301012 was formulated in an enteric coated pulsatile formulation with C_{10}. The absorption of ISIS 301012 in the absence of the promoter is assumed to be negligible.

Fig. 6: Comparison of the urinary excretion of zoledronic acid following oral delivery in GIPET® (10-20mg Orazol® tablet, n=12) and i.v. administration (Zometa® infusion, n=11). Values are given as mean ± standard deviation from the mean.
Table I: Permeating-enhancement properties of C\textsubscript{10} in Caco-2 monolayers

Marker/Drug	C\textsubscript{10} (mM)	Enhancement ratio	Ref
Clodronate	10	<1†	[242]
Mannitol	0.75	1	[243]
Mannitol	13	15†	[96]
Mannitol	5	1.3†	[143]
Mannitol	10	1†	[242]
Mannitol	10	6.3†	[145]
Mannitol	13	9	[244]
Mannitol	13	12	[107]
Mannitol	10	8	[142]
Mannitol	16	7.7	[245]
Mannitol	10	5†	[164]
Mannitol	50	66†	[99]
Mannitol	50	64†	[95]
Decapeptide	25	3†	[99]
Atenolol	13	20†	[246]
Danshensu	13	>13†	[246]
Salvianolic acid B	13	>40†	[246]
Lucifer yellow	5	>10†	[143]
Ardeparin	13	7.3	[244]
rhEGF	50	10.6†	[95]
Fluorescein	5	1.4	[154]
Fluorescein	10	2.7†	[247]
Fluorescein	13	3†	[97]
-------	-----	-----	---
FD4	5	0.9	[154]
FD4	5	>10†	[143]
FD4	1	1.7	[101]
FD4	10	16.5†	[247]
FD4	10	3†	[158]
FD4	10	6.5	[248]
FD4	10	10.6†	[182]
FD4	13	6†	[155]
FD4	13	5.5†	[151]
FD4	13	37	[107]
FD4	50	4.3†	[249]
FD10	5	>10†	[143]
FD20	5	>10†	[143]
FD20	13	56	[107]
FD40	5	>10†	[143]
Acamprosate	16	2.3†	[245]
Rhodamine	10	4.6†	[247]
Inulin	50	70†	[95]
PEG 900	25	>10†	[99]
Cyclopeptide	10	17†	[182]
Penicillin G	13-16	—	[96]
Penicillin V	10	>2	[187]
Penicillin V	10	8.5	[145]
Penicillin V	10	16	[93]
Cimetidine	50	20†	[95]
Heparin	10	2.3†	[94]
------------------	-----	---	------
Vasopressin	13	10	[107]
Epirubicin	10	1.4 †	[250]
PEG 326	10	5	[107]
PEG 546	10	17	[107]
Streptokinase	10-20	>50	[185]
PEG 4000	13	3.5	[251]

† Drop in TEER across monolayers treated with C₁₀
Table II: Permeating-enhancing properties of C\textsubscript{10} using \textit{ex vivo} models of the GI tract.

Species	Intestinal Region	Model	Marker/Drug	C\textsubscript{\text{10}} (mM)	Enhancement Ratio	Ref
Mouse	Colon	Ussing	Mannitol	10	3†	[158]
Rat	Stomach	Ussing	Ardeparin	13	1.1	[244]
Rat	Duodenum	Ussing	Ardeparin	13	1.3	[244]
Rat	Jejunum	Ussing	Ardeparin	13	1.3	[244]
Rat	Jejunum	Ussing	Ebiratide	20	1.5	[135]
Rat	Jejunum	Ussing	Insulin	20	0.97	[136]
Rat	Jejunum	Ussing	Phenol red	20	1.1	[102]
Rat	Jejunum	Ussing	Ardeparin	13	1.3	[244]
Rat	Jejunum	Everted sac	Epirubicin	100	4.5	[250]
Rat	Jejunum	Everted sac	Cefotaxime	13	4.7	[171]
Rat	Jejunum	Everted sac	Ceftazidime	13	1.8	[171]
Rat	Ileum	Ussing	Ardeparin	13	1.3	[244]
Rat	Ileum	Ussing	Mannitol	30	80	[207]
Rat	Ileum	Ussing	EDTA	10	4.5†	[103]
Rat	Ileum	Ussing	Poly-sucrose	10	10†	[103]
Rat	Ileum	Everted sac	Epirubicin	100	2	[250]
Rat	Colon	Ussing	Ardeparin	13	1.6	[244]
Rat	Colon	Ussing	Insulin	20	2.5	[136]
Rat	Colon	Ussing	Phenol red	20	4	[102]
Rat	Colon	Ussing	Phenol red	—	7.6	[252]
Rat	Colon	Ussing	Ebiratide	20	3.8	[135]
Rat	Colon	Ussing	Mannitol	10	7†	[104]
Animal	Tissue	Method	Agent	Concentration	TEER Drop	Reference
--------	--------	--------	-------	---------------	-----------	-----------
Rat	Colon	Ussing	Mannitol	10	3.9†	[158]
Rat	Colon	Ussing	Mannitol	13	11†	[11]
Rat	Colon	Ussing	FD4	10	25†	[104]
Rat	Colon	Ussing	FD4	26	31†	[157]
Rat	Colon	Ussing	FD70	10	44†	[104]
Rat	Colon	Everted sac	Inulin	13	>5	[188]
Rat	Rectum	Franz cell	Propranolol	—	1.5	[253]
Rabbit	Jejunum	Ussing	Inulin	13	1	[137]
Rabbit	Jejunum	Ussing	Mannitol	13	1	[137]
Rabbit	Jejunum	Ussing	Thiourea	13	<1	[137]
Rabbit	Colon	Ussing	Gly-L-Phe	50	>2	[254]
Human	Ileum	Ussing	EDTA	10	7†	[146]
Human	Colon	Ussing	Mannitol	10	5†	[104]
Human	Colon	Ussing	FD4	10	7†	[104]
Human	Colon	Ussing	FD4	26	17†	[157]
Human	Colon	Ussing	EDTA	10	2†	[105]
Human	Colon	Ussing	HRP	10	2†	[105]

† Drop in TEER across mucosae treated with C₁₀₀
Table III: Absorption-promotion properties of C$_{10}$ in animal models.

Species	Marker/Drug	Intestinal Region	C$_{10}$ (mM)	Model	Enhancement Ratio	Ref
Mouse	Ampicillin	Rectum	—	Suppository	—	[255]
Mouse	Ceftizoxime	Rectum	—	Suppository	—	[255]
Rat	Insulin	Duodenum	50	In situ loop	1	[256]
Rat	LMWH	Duodenum	—	Instillation	24	[257]
Rat	Calcein	Duodenum	—	Instillation	19*	[180]
Rat	O. japonicus polysaccharide	Duodenum	—	Solid dosage delivery	5-20	[258]
Rat	Cefoxitin	Jejunum	50-100	Perfusion	>5	[113]
Rat	Cefotaxime	Jejunum	13	Single pass perfusion	3.1	[189]
Rat	Danshensu	Jejunum	25	Single pass perfusion	3.3	[246]
Rat	Salvianolic acid B	Jejunum	25	Single pass perfusion	1.1	[246]
Rat	Acamprosate	Jejunum	16	Perfusion	2	[245]
Rat	Mannitol	Jejunum	50	Single pass perfusion	9	[106]
Rat	Carboxyfluorescein	Jejunum	20	In situ loop	1.4	[139, 259]
Rat	Insulin	Jejunum	50	In situ loop	—	[256]
Rat	FD4	Jejunum	50-125	In situ loop	3-13	[260]
Rat	FD4	Jejunum	205	In situ loop	12.7	[67]
Rat	FD4	Jejunum	103	In situ loop	4.7	[261]
Rat	Cefmetazole	Jejunum	13	In situ loop	6	[137]
Rat	Phenol red	jejunum	20	In situ loop	1.2	[262]
Rat	phenolsulfonphthalein	Jejunum	100	In situ loop	12	[263]
Specimen	Compound	Site	Dose	Administration Method	Delivery	Reference
----------	----------	------	------	------------------------	----------	-----------
Rat	Fosphonmcyin	Jejunum	50	In situ loop	6	[109]
Rat	FD4	Jejunum	250	Instillation	2	[127]
Rat	FD4	Jejunum	100	Instillation	33	[106]
Rat	Sulpiride	Jejunum	—	Solid dosage delivery	2.5	[112]
Rat	Sulpiride	Jejunum	—	Solid dosage delivery	>6	[119]
Rat	Carboxyfluorescein	Ileum	20	In situ loop	2.5	[139, 259]
Rat	Insulin	Ileum	50	In situ loop	1.7	[256]
Rat	FD4	Colon	100	Instillation	33	[106]
Rat	FD70	Colon	100	Instillation	<1	[106]
Rat	sCT	Colon	5	Instillation	—	[154]
Rat	Carboxyfluorescein	Colon	30	Instillation	5	[134]
Rat	Phenol red	Colon	—	Solid dosage delivery	4	[252]
Rat	FD4	Colon	20	Single pass perfusion	4.5	[101]
Rat	Cefmetazole	Colon	13	In situ loop	10	[108]
Rat	Phenol red	Colon	100	In situ loop	2.8	[264]
Rat	Glycyrrhizin	Colon	100	In situ loop	37	[264]
Rat	FD4	Colon	100	In situ loop	85	[264]
Rat	FD4	Colon	103	In situ loop	6.7	[261]
Rat	FD4	Colon	205	In situ loop	12.7	[67]
Rat	FD10	Colon	100	In situ loop	1587	[264]
Rat	FD40	Colon	100	In situ loop	193	[264]
Rat	Phenolsulfonphthalein	Colon	100	In situ loop	7.7	[263]
Rat	Rebamipide	Colon	100	In situ loop	18	[265]
Rat	Carboxyfluorescein	Colon	20	In situ loop	13	[139, 259]
Rat	Insulin	Colon	50	In situ loop	9	[256]
Rat	Substance	Site	Dose	Mode	Value	Reference
-----------	-----------------	--------	------	--------------------	-------	-----------
Rat	Cefmetazole	Colon	50	In situ loop	11.6	[188]
Rat	Fosphomycin	Colon	50	In situ loop	35	[109]
Rat	Phenol red	Colon	20	In situ loop	2.7	[266]
Rat	Antipyrine	Rectum	50	Recirculated perfusion	1.7	[206]
Rat	P-aminobenzoic acid	Rectum	—	In situ loop	—	[116]
Rat	Phenolsulfonphtalein	Rectum	—	In situ loop	—	[116]
Rat	Trypan blue	Rectum	—	In situ loop	—	[116]
Rat	FD4	Rectum	—	In situ loop	—	[116]
Rat	FD10	Rectum	—	In situ loop	—	[116]
Rat	hEGF	Rectum	100	In situ loop	>68	[26]
Rat	Decapeptide	Rectum	500	Instillation	5	[99]
Rat	Glycyrrhizin	Rectum	50	Instillation	2.7	[267]
Rat	Erythropoietin	Rectum	515	Instillation	>300	[111]
Rat	Insulin	Rectum	50	Instillation	24	[110]
Rat	Carboxyfluorescein	Rectum	100	Instillation	>20	[268]
Rat	Phenolsulfonphtalein	Rectum	—	Instillation	5	[92]
Rat	P-aminobenzoate	Rectum	—	Instillation	15	[92, 218]
Rat	Ampicillin	Rectum	—	Instillation	50	[92, 218]
Rat	Ampicillin	Rectum	160	Infusion	9.9	[269]
Rat	Ampicillin	Rectum	154	Infusion	26	[270]
Rat	Cefoxitin	Rectum	220	Infusion	>9	[271]
Rat	Cefoxitin	Rectum	—	Suppository	2.4	[159]
Rat	Acyclovir	Rectum	—	Suppository	2.2	[272]
Rat	Atenolol	Rectum	—	Suppository	1.4	[273]
Rat	5-fluorouracil	Rectum	—	Suppository	3.7	[128]
Rat	Ampicillin	Rectum	—	Suppository	6	[179]
Animal	Drug	Application Site	Route 1	Route 2	Value	Reference
--------	------------	------------------	---------	-------------------	-------	-----------
Rat	Ampicillin	Rectum	—	Suppository	—	[255]
Rat	Ceftizoxime	Rectum	—	Suppository	—	[255]
Rat	Antipyrine	Rectum	50	Circulated perfusion	1.7	[179]
Rat	Cefotaxime	Oral	—	Oral	2.4	[189]
Rat	DMP 728	Oral	—	Oral	2.5	[125]
Rat	DMP 532	Oral	—	Oral	1.1	[274]
Rat	Acamprosate	Oral	—	Oral	2	[245]
Rat	Ardeparin	Oral	—	Oral	1.4	[244]
Rat	Insulin	Oral	—	Oral	3.6	[275]
Rat	Danshensu	Oral	—	Oral	1.6	[246]
Rat	Salvianolic acid B	Oral	—	Oral	1.4	[246]
Rat	Glycyrrhizin	Oral	200	Oral	63	[267]
Rabbit	Rebamipide	Rectum	—	Suppository	41	[276]
Rabbit	Eel calcitonin	Rectum	—	Suppository	1.6	[112]
Rabbit	Atenolol	Rectum	—	Suppository	1.5	[273]
Rabbit	Vancomycin	Rectum	—	Suppository	3.7	[277]
Rabbit	Ampicillin	Rectum	—	Suppository	—	[255]
Rabbit	Ceftizoxime	Rectum	—	Suppository	—	[255]
Rabbit	Norfloxacin	Oral	—	Oral	1.7	[278]
Dog	Acyline	Duodenum	—	Instillation	5.5-15.9	[227]
Dog	Zoledronic acid	Duodenum	—	Instillation	—	[230]
Dog	Alendronate	Duodenum	—	Intubation	3.3	[25]
Dog	LMWH	Duodenum	—	Intubation	—	[25]
Dog	Alendronate	Oral	—	Oral	2.3	[25]
Dog	Isis oligonucleotides	Oral	—	Oral	—	[194]
Dog	DMP 728	Oral	—	Oral	3.8	[274, 279]
Data were pooled from literature that examined enhancement in a number of *in situ* and *in vivo* models. In some studies, the local concentration of C_{10} and enhancement ratios cannot be calculated although they do demonstrate improved delivery of marker/drug.

Animal	Drug	Route	—	—	Ratio	Reference
Dog	DMP 728	Oral	—	Oral	1.4	[125]
Dog	Uracil	Rectum	—	Instillation	—	[280]
Dog	Ampicillin	Rectum	—	Suppository	—	[255]
Dog	Ceftizoxime	Rectum	—	Suppository	—	[255]
Pig	ISIS oligonucleotides	Jejunum	—	Instillation	—	[115]
Cattle	Ampicillin	Rectum	—	Suppository	3.5	[281]
Table IV: Absorption-promotion properties of C_{10} in human trials.

Marker/Drug	C_{10} (mM)	Model	Enhancement Ratio	Ref
LMWH	—	Intrajejunal intubation	—	[25]
Ceftizoxime	—	Rectal suppository	—	[216]
Ceftizoxime	—	Rectal suppository	—	[219, 220]
Ampicillin	—	Rectal suppository	—	[219, 220]
Ampicillin	—	Rectal suppository	1.8	[22]
Ampicillin	—	Rectal suppository	—	[223]
Glycyrrhizin	—	Rectal suppository	—	[221]
Cefoxitin	—	Rectal suppository	2.4	[168]
Penicillin V*	18	Rectal perfusion	0.4	[215]
Antipyrine*	18	Rectal perfusion	0.9	[215]
Alendronate	—	Oral	—	[24]
LMWH	—	Oral	—	[24]
ISIS oligonucleotides	—	Oral	—	[26, 123]
Acyline	—	Oral	—	[228]
Zoledronic acid	—	Oral	—	[231]

*No improvement detected in these studies from same group
Table V: CMC reported for capric acid or C\textsubscript{10} in different buffers and by different methods of measurement.

Buffer	CMC (mM)	Temperature	Ref
Saline	140	20	[271]
Saline (0.9% w/v)	25-30	25-37	unpublished data
HEPES with NaCl and KCl	45	Not specified	[183]
HEPES with NaCl, KCl and cholate (5mM)	5	Not specified	[183]
HBSS with 25mM HEPES without Ca++	13	22	[96, 97]
HBSS without Ca++ or Mg++	13	Room temperature	[142]
HBSS without Ca++ or Mg++	51	Not specified	[100]
HBSS without CaCl\textsubscript{2}	28.8	37	[160]
HBSS	28.1	Not specified	[93]
Borate buffer (50mM) pH 9	80-100	25	[166]
Water	95.5-106	25-50	[282]
Water	50	22-25	[163]
Table VI: Cytotoxicity of C$_{10}$ in Caco-2 monolayers

C$_{10}$ (mM)	Cytotoxicity	Ref
13	● Membrane damage measured by uptake of PI	[96]
	● No effect on enterocyte structure in TEM	
50	● Morphological deterioration in light microscopy	[99]
26	● Membrane damage measured by uptake of trypan blue integrity test and protein and DNA release assays	
 | ● No cytotoxicity in neutral red dye uptake assay | [100] |
| 1-10 | ● Concentration-dependent cytotoxicity and membrane damage measured by MTT conversion and LDH release assays, respectively | [101] |
| 13-16 | ● Impaired respiration measured by a drop in cellular dehydrogenase activity and ATP levels
 | ● Mitochondrial swelling (TEM) | [97] | |
| 5-10 | ● Membrane damage measured by bilateral LDH release | [143] |
| 10-20 | ● Cytotoxicity measured by MTT conversion assay | [185] |
| | ● Irreversible membrane damage measured by trypan blue dye exclusion assay | |
| 10 | ● No cytotoxicity or membrane damage measured by MTT conversion and LDH release assays, respectively | [94] |
| 10 | ● Membrane damage measured by LDH release and uptake of PI | [182] |
| 10 | ● Focal enterocyte perturbation in anisotonic conditions in TEM | [142] |
| 10-13 | ● Cytotoxicity measured by MTT conversion assay | [187] |
| 5-10 | ● Cytotoxicity measured by MTT conversion assay | [242] |
| 10 | ● Cytotoxicity and membrane damage measured by MTT conversion and LDH release assays, respectively | [98] |
| 5 | ● No cytotoxicity or membrane damage when co-administered with glycyrrhizin as measured by Neutral red dye uptake assay and LDH release assays, respectively | [154] |
| 5-10 | ● Cell lysis measured by LDH and alkaline phosphatase assays | [183] |
| 10 | ● Focal enterocyte damage in TEM | [93] |
| 10 | ● No effect on enterocyte structure in TEM | [107] |
| 13-50 | ● Concentration-dependent cytotoxicity measured by MTT assay | [244] |
| 25-40 | ● Concentration dependent cytotoxicity measured in MTT assay | [246] |
Tissue	Ex vivo Model	C$_{10}$ (mM)	Cytotoxicity	Ref
Rat jejunum	Everted sac	13	● Membrane damage measured by an increase in total protein release but significantly lower than positive control	
● Mild mucosal damage in light microscopy	[171]			
Rat jejunum	Sac	13	● No effect on rat jejunal enterocytes in TEM	[189]
Rat colon and jejunum	BBMV	10-13	● Membrane perturbation measured by release of CF from BBMV	
● Disorder in both the lipid and protein domains in bilayers measured by fluorescent polarization studies	[108]	[137]	[171]	
Rat ileum	Ussing	10	● No effect on enterocyte structure in TEM	[103]
Rat colon	Ussing	10	● Mild morphological damage in light microscopy and TEM	
● Membrane damage measured by LDH release although significantly lower than positive control				
● Inhibition of electrogenic chloride secretion induced by the cholinomimetic, carbachol	[104]			
Rat colon	Ussing	0.1-1	● Inhibition of electrogenic chloride secretion induced by carbachol and forskolin	[283]
Rat colon	Isolated crypts	1	Intracellular acidification	[283]
Rat colon	Ussing	10-20	● No significant increase in LDH release	[136]
Rat colon	Ussing	26	● Modulation of electrogenic ion transport	[156]
Rat jejunum and colon	Ussing	20	● No effect on enterocyte structure in TEM	
● Membrane damage in the jejunum and colon measured by protein release	[135]			
Human colon	Ussing	10	● Mitochondrial swelling (TEM)	
● Swelling of the mitochondria and endoplasmic reticulum in TEM				
● Drop in short circuit current	[105]			
Human ileum	Ussing	10	● Mitochondrial swelling (TEM)	
● No enterocyte membrane damage
● Impaired respiration measured by a drop in cellular ATP levels and ECP | [146] |
Table VIII: Toxicity of C_{10} in animal models

Species	C_{10} (mM)	Toxicity	Ref
Mouse	—	● Capric acid LD50 129mg/kg by i.v. route	[84]
Mouse	—	● No Damage in histology after 13 weeks oral administration	[193]
Rat	—	● Capric acid LD50 3730mg/kg by oral route	[85]
Rat	—	● No damage to gastric mucosa in histology upon 150 day repeat oral exposure (~5g/kg/day)	[86]
Rat	25	● No release of phospholipids or proteins into the intestinal lumen in an *in situ* jejunal loop	[109]
Rat	13	● Release of phospholipids but not protein into the intestinal lumen in an *in situ* colonic loop	[108]
Rat	20	● Release of phospholipids and proteins into the intestinal lumen in an *in situ* colonic loop	[266]
Rat	—	● Release of LDH and protein into the intestinal lumen in an *in situ* jejunal loop	[261]
Rat	13	● Release of LDH into the intestinal lumen, but significantly less than positive control in an in situ single pass jejunal perfusion	[189]
Rat	20	● Release of protein into the intestinal lumen, but not phospholipids in jejunal in situ loop	[262]
Rat	205	● Release of LDH in an *in situ* jejunal loop ● Increased histological damage score in a *in situ* jejunal loop	[67]
Rat	205	● Mucosal damage in histology including erosion of the membrane structure in an *in situ* jejunal loop ● Release of LDH into the intestinal lumen in an *in situ* jejunal loop	[190]
Rat	—	● Release of protein into the intestinal lumen following solid dosage delivery to the colon ● No damage in histology following solid dosage delivery to the colon	[252]
Rat	5	● No damage in histology in an *in situ* colonic instillation	[154]
Species	Dose (mg/kg)	Effects in Histology	Reference
---------	-------------	---------------------	-----------
Rat	—	No damage in histology in in situ rectal instillation	[99]
Rat	—	No damage in histology following oral administration	[244]
Rat	100	Mucosal damage in histology including coagulation necrosis in an in situ colonic loop	[265]
Rat	100	Rectal contraction in an in situ colonic instillation	[268]
Rat	400	Increased histological damage score following rectal delivery, Rectal contraction following rectal delivery	[191]
Rat	50-100	Mild mucosal damage in histology and TEM in an in situ colonic instillation	[106]
Rabbit	—	Rectal damage in histology including mucosal erosion, flattening of epithelial cells and inflammatory cell infiltration following insertion of a rectal suppository	[276]
Rabbit	—	Irritation on uncovered rabbit belly following topical administration, Severe corneal injury in rabbits following topical administration	[85]
Dog	—	No damage in histology after oral administration, No unusual finding in clinical chemistry after oral administration	[193, 194]
Dog†	—	Emesis only at high concentrations (0.9g/kg/day) after oral administration, No unusual findings in ECG, haematology, plasma biochemistry or urinalysis following oral administration, No damage in histology following oral administration	[24]
Pig	—	No damage in histology in an in situ jejunal instillation, No abnormalities in post mortem examination in an in situ jejunal instillation	[115]
Cattle	—	No adverse reaction was observed after in insertion of a rectal suppository	[281]

†GIPET™ formulation containing C₁₀
Table IX: Toxicity of C_{10} in humans

Route	Toxicity	Ref
Intra-jejunal	● No reported toxicity	[24]
Topical	● Irritant to human skin	[284]
Rectal*	● Increased histological damage score	[22]
	● Mucosal damage in TEM including sloughing of cells, discontinuities in the epithelium and flattening of microvilli	
Rectal	● Slight increase in scores on defecating sensation, but not pain, itching and burning	[191]
Rectal	● Diarrhea in 3.6-8.6% of patients receiving suppositories of containing ampicillin or ceftizoxime with witepsol H-5 and C_{10}	[219, 220]
Rectal	● Severe irritation to the rectal mucosa at the highest concentration tested	[221]
Rectal	● No adverse effects reported	[215]
Rectal	● Little or no irritation in 5 day repeat administration	[216]
	● Slight sensation of a foreign body and defecation but no pain or burning at the highest dose tested	
	● No irritation in children	
Rectal	● Gastrointestinal disturbances reported in minority of patients including diarrhoea, perianal pain and redness	[223]
Oral†	● No reported toxicity	[24]
Oral	● No adverse effects in routine physical examination	[26]
	● No adverse effects in routine clinical chemistry tests	
Oral	● Mild gastrointestinal disturbance upon repeated high dose administration	[123, 124]
Oral†	● No adverse effects in clinical chemistry tests	[228]
Oral†	● No reported toxicity	[231]

* Reported toxicity not directly attributable to C_{10}
† GIPET™ formulation containing C_{10}
References

[1] G. Walsh, Market Development of Biopharmaceuticals. Genetic Engineering in Livestock: New Applications and Interdisciplinary Perspectives 34 (2009) 69-89.
[2] M. Goldberg, I. Gomez-Orellana, Challenges for the oral delivery of macromolecules. Nature Rev 2(4) (2003) 289-295.
[3] E. Glowka, A. Sapin-Minet, P. Leroy, J. Lulek, P. Maincent, Preparation and in vitro-in vivo evaluation of salmon calcitonin-loaded polymeric nanoparticles. J Microencapsul (2009) 1-12.
[4] U. Yasothan, S. Kar, Osteoporosis: overview and pipeline. Nature Rev 7(9) (2008) 725-726.
[5] J. Mitri, A.G. Pittas, Inhaled insulin--what went wrong. Nat Clin Pract Endocrinol Metab 5(1) (2009) 24-25.
[6] G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3) (1995) 413-420.
[7] M. Brandsch, I. Knutter, E. Bosse-Doenecke, Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol. 60(5) (2008) 543-585.
[8] S. Tsukita, M. Furuse, M. Itoh, Multifunctional strands in tight junctions. Nature Rev 2(4) (2001) 285-293.
[9] K. Shin, V.C. Fogg, B. Margolis, Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22 (2006) 207-235.
[10] C.J. Watson, M. Rowland, G. Warhurst, Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol 281(2) (2001) C388-397.
[11] T. Sawada, T. Ogawa, M. Tomita, M. Hayashi, S. Awazu, Role of paracellular pathway in nonelectrolyte permeation across rat colon epithelium enhanced by sodium caprate and sodium caprylate. Pharm Res 8(11) (1991) 1365-1371.
[12] T.Y. Ma, D. Hollander, R.A. Erickson, H. Truong, H. Nguyen, P. Krugliak, Mechanism of colonic permeation of inulin: is rat colon more permeable than small intestine? Gastroenterology 108(1) (1995) 12-20.
[13] J. Ambati, C.S. Canakis, J.W. Miller, E.S. Gragoudas, A. Edwards, D.J. Weisgold, I. Kim, F.C. Delori, A.P. Adamis, Diffusion of high molecular weight compounds through sclera. Investigative ophthalmology & visual science 41(5) (2000) 1181-1185.
[14] A. Fasano, S. Uzzau, Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 99(6) (1997) 1158-1164.
[15] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1-3) (2001) 3-26.
[16] J.L. Madara, K. Dharmathaphorn, Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol 101(6) (1985) 2124-2133.
[17] E. Windsor, G.E. Cronheim, Gastro-intestinal absorption of heparin and synthetic heparinoids. Nature 190(477) (1961) 263-264.
[18] P.H. Johnson, D. Frank, H.R. Costantino, Discovery of tight junction modulators: significance for drug development and delivery. Drug Discov Today 13(5-6) (2008) 261-267.
[19] M. Kondoh, T. Yoshida, H. Kakutani, K. Yagi, Targeting tight junction proteins: significance for drug development. Drug Discov Today 13(3-4) (2008) 180-186.
[20] L. Gonzalez-Mariscal, S. Hernandez, J. Vega, Inventions designed to enhance drug delivery across epithelial and endothelial cells through the paracellular pathway. Recent Pat Drug Deliv Formul 2(2) (2008) 145-176.
[21] K. Koga, Y. Kusawake, Y. Ito, N. Sugioka, N. Shibata, K. Takada, Enhancing mechanism of Labrasol on intestinal membrane permeability of the hydrophilic drug gentamicin sulfate. Eur J Pharm Biopharm 64(1) (2006) 82-91.
[22] T. Lindmark, J.D. Soderholm, G. Olaison, G. Alvan, G. Ocklind, P. Artursson, Mechanism of absorption enhancement in humans after rectal administration of ampicillin in suppositories containing sodium caprate. Pharm Res 14(7) (1997) 930-935.
[23] T. Murakami, M. Kawakita, M. Kishimoto, Y. Higashi, H. Amagase, T. Hayashi, N. Nojima, T. Fuwa, N. Yata, Intravenous and subcutaneous pharmacokinetics and rectal bioavailability of human epidermal growth factor in the presence of absorption promoter in rats. Int J Pharm 46(1-2) (1988) 9-17.
[24] T.W. Leonard, J. Lynch, M.J. McKenna, D.J. Brayden, Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET. Expert Opin Drug Deliv 3(5) (2006) 685-692.
[25] D.C. Coughlan, E. O’Toole, T.W. Leonard, Advancing gastrointestinal permeation enhancement formulations into the clinical: GIPET™, In M.J Rathbone (Ed.), Modified-release drug delivery technology (Drugs and the pharmaceutical science), Informa Healthcare, New York, London, Vol. 183 (2nd edition) (2008) 239-249.
[26] L.G. Tillman, R.S. Geary, G.E. Hardee, Oral delivery of antisense oligonucleotides in man. J Pharm Sci 97(1) (2008) 225-236.
[27] J.M. Kovarik, E.A. Mueller, J.B. van Bree, S.S. Fluckiger, H. Lange, B. Schmidt, W.H. Boesken, A.E. Lison, K. Kutz, Cyclosporine pharmacokinetics and variability from a microemulsion formulation--a multicenter investigation in kidney transplant patients. Transplantation 58(6) (1994) 658-663.
[28] A. Fjellestad-Paulsen, P. Hoglund, S. Lundin, O. Paulsen, Pharmacokinetics of 1-deamino-8-D-arginine vasopressin after various routes of administration in healthy volunteers. Clin Endocrinol 38(2) (1993) 177-182.
[29] I. Gomez-Orellana, Strategies to improve oral drug bioavailability. Expert Opin Drug Deliv 2(3) (2005) 419-433.
[30] J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, J. Savolainen, Prodrugs: design and clinical applications. Nature Rev 7(3) (2008) 255-270.
[31] L.R. Brown, Commercial challenges of protein drug delivery. Expert Opin Drug Deliv 2(1) (2005) 29-42.
[32] I. Gomez-Orellana, D.R. Paton, Advances in the oral delivery of proteins. Exp opin ther patents 9(3) (1999) 247-253.
[33] Y.S. Youn, J.Y. Jung, S.H. Oh, S.D. Yoo, K.C. Lee, Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J Control Release 114(3) (2006) 334-342.
[34] M. Cetin, Y.S. Youn, Y. Capan, K.C. Lee, Preparation and characterization of salmon calcitonin-biotin conjugates. AAPS PharmSciTech 9(4) (2008) 1191-1197.
[35] R.B. Shah, F. Ahsan, M.A. Khan, Oral delivery of proteins: progress and prognostication. Crit Rev Ther Drug Carrier Syst 19(2) (2002) 135-169.
[36] S. Clement, P. Dandona, J.G. Still, G. Kosutic, Oral modified insulin (HIM2) in patients with type 1 diabetes mellitus: results from a phase I/II clinical trial. Metabolism: clinical and experimental 53(1) (2004) 54-58.
[37] C.M. Chin, M. Gutierrez, J.G. Still, G. Kosutic, Pharmacokinetics of modified oral calcitonin product in healthy volunteers. Pharmacotherapy 24(8) (2004) 994-1001.
[38] A.K. Petrus, A.R. Vortherms, T.J. Fairchild, R.P. Doyle, Vitamin B12 as a carrier for the oral delivery of insulin. Chem Med Chem 2(12) (2007) 1717-1721.
[39] J.D. Smart, The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 57(11) (2005) 1556-1568.
[40] N.A. Peppas, J.B. Thomas, J. McGinty, Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. J biomater sci 20(1) (2009) 1-20.
[41] A. Bernkop-Schnurch, Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev 57(11) (2005) 1569-1582.
[42] T.W. Wong, Chitosan and its use in design of insulin delivery system. Recent Pat Drug Deliv Formul 3(1) (2009) 8-25.
[43] F.J. Varum, E.L. McConnell, J.J. Sousa, F. Veiga, A.W. Basit, Mucoadhesion and the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst 25(3) (2008) 207-258.
[44] S. Rossi, G. Sandri, C.M. Caramella, Buccal drug delivery: A challenge already won? Drug Discov Today 2(1) (2005) 59-65.
[45] S.A. Galindo-Rodriguez, E. Allemann, H. Fessi, E. Doelker, Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst 22(5) (2005) 419-464.
[46] C.P. Reis, F.J. Veiga, A.J. Ribeiro, R.J. Neufeld, C. Damge, Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J Pharm Sci 97(12) (2008) 5290-5305.
[47] M.L. Forrest, G.S. Kwon, Clinical developments in drug delivery nanotechnology. Adv Drug Deliv Rev 60(8) (2008) 861-862.
[48] D.J. Brayden, A.W. Baird, Apical membrane receptors on intestinal M cells: potential targets for vaccine delivery. Adv Drug Deliv Rev 56(6) (2004) 721-726.
[49] D.J. Brayden, M.A. Jepson, A.W. Baird, Keynote review: intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discov Today 10(17) (2005) 1145-1157.
[50] S.K. Lai, Y.Y. Wang, J. Hanes, Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61(2) (2009) 158-171.
[51] A.K. Petrus, T.J. Fairchild, R.P. Doyle, Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs. Angewandte Chemie 48(6) (2009) 1022-1028.
[52] A. Fahr, X. Liu, Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 4(4) (2007) 403-416.
[53] E. Merisko-Liversidge, S.L. McGurk, G.G. Liversidge, Insulin nanoparticles: a novel formulation approach for poorly water soluble Zn-insulin. Pharm Res 21(9) (2004) 1545-1553.
[54] E. Jensen-Jarolim, L. Gajdzik, J. Haberl, D. Kraft, O. Scheiner, J. Graf, Hot spices influence permeability of human intestinal epithelial monolayers. J Nutr 128(3) (1998) 577-581.
[55] N.G. Ilback, M. Nyblom, J. Carlfors, B. Fagerlund-Aspenstrom, S. Tavelin, A.W. Glynn, Do surface-active lipids in food increase the intestinal permeability to toxic substances and allergenic agents? Medical Hypotheses 63(4) (2004) 724-730.
[56] T.Y. Ma, D. Nguyen, V. Bui, H. Nguyen, N. Hoa, Ethanol modulation of intestinal epithelial tight junction barrier. The Am J Physiol 276(4 Pt 1) (1999) G965-974.
[57] R.J. Playford, C.E. MacDonald, D.P. Calnan, D.N. Floyd, T. Podas, W. Johnson, A.C. Wicks, O. Bashir, T. Marchbank, Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability. Clin Sci (Lond) 100(6) (2001) 627-633.
[58] A. Fasano, B. Baudry, D.W. Pumplin, S.S. Wasserman, B.D. Tall, J.M. Ketley, J.B. Kaper, Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A 88(12) (1991) 5242-5246.
[59] D. Hollander, Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep 1(5) (1999) 410-416.
[60] C.V. Gisolfi, Is the GI system built for exercise? News Physiol Sci 15 (2000) 114-119.
[61] J.Y. Chien, R.J. Ho, Drug delivery trends in clinical trials and translational medicine. J Pharm Sci 97(7) (2008) 2543-2547.
[62] J.L. Madara, R. Moore, S. Carlson, Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. The Am J Physiol 253(6 Pt 1) (1987) C854-861.
[63] T.Y. Ma, D. Tran, N. Hoa, D. Nguyen, M. Merryfield, A. Tarnawski, Mechanism of extracellular calcium regulation of intestinal epithelial tight junction permeability: role of cytoskeletal involvement. Microsc Res Tech 51(2) (2000) 156-168.
[64] J. Hochman, P. Artursson, Mechanisms of absorption enhancement and tight junction regulation. J Control Release 29(3) (1994) 253-267.
[65] M.E. Fernandez Miyakawa, V. Pistone Creydt, F.A. Uzal, B.A. McClane, C. Ibarra, Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect Immun 73(12) (2005) 8407-8410.
[66] N.N. Salama, N.D. Eddington, A. Fasano, Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 58(1) (2006) 15-28.
[67] M. Kondoh, A. Masuyama, A. Takahashi, N. Asano, H. Mizuguchi, N. Koizumi, M. Fujii, T. Hayakawa, Y. Horiguchi, Y. Watanbe, A novel strategy for the enhancement of drug absorption using a claudin modulator. Mol Pharmacol 67(3) (2005) 749-756.
[68] M. Kondoh, A. Takahashi, M. Fujii, K. Yagi, Y. Watanabe, A novel strategy for a drug delivery system using a claudin modulator. Biol Pharm Bull 29(9) (2006) 1783-1789.
[69] D. Malkov, R. Angelo, H.Z. Wang, E. Flanders, H. Tang, I. Gomez-Orellana, Oral delivery of insulin with the eligen technology: mechanistic studies. Curr Drug Deliv 2(2) (2005) 191-197.
[70] M. Kidron, S. Dinh, Y. Menachem, R. Abbas, B. Variano, M. Goldberg, E. Arbit, H. Bar-On. A novel per-oral insulin formulation: proof of concept study in non-diabetic subjects. Diabet Med 21(4) (2004) 354-357.
[71] A. Hoffman, B. Qadri, Eligen insulin--a system for the oral delivery of insulin for diabetes. I Drugs 11(6) (2008) 433-441.
[72] E. Arbit, M. Goldberg, I. Gomez-Orellana, S. Majuru, Oral heparin: status review. Thromb J 4 (2006) 6.
[73] T. Buclin, M. Cosma Rochat, P. Burckhardt, M. Azria, M. Attinger, Bioavailability and biological efficacy of a new oral formulation of salmon calcitonin in healthy volunteers. J Bone Miner Res 17(8) (2002) 1478-1485.
[74] F.G. Welt, T.C. Woods, E.R. Edelman, Oral heparin prevents neointimal hyperplasia after arterial injury: inhibitory potential depends on type of vascular injury. Circulation 104(25) (2001) 3121-3124.
[75] R. New, US Patent 7303762 (2004).
[76] F.-J. Chen, M.V. Patel, D.T. Fikstad, US Patent 6458383 (2002).
[77] M. Werle, H. Takeuchi, A. Bernkop-Schnurch, Modified chitosans for oral drug delivery. J Pharm Sci 98(5) (2009) 1643-1656.
[78] V.K. Mourya, N.N. Inamdar, Trimethyl chitosan and its applications in drug delivery. J mater sci 20(5) (2009) 1057-1079.
[79] M. Thanou, J.C. Verhoef, H.E. Junginger, Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52(2) (2001) 117-126.
[80] G. Bernstein, Delivery of insulin to the buccal mucosa utilizing the RapidMist system. Expert Opin Drug Deliv 5(9) (2008) 1047-1055.
[81] E.S. Lower, Capric Acid Uses and Properties .1. Manufacturing Chemist 55(5) (1984) 61-63.
[82] F.B. Padley, F.D. Gunstone, J.L. Harwood, Occurrence and characteristics of oils and fats, in: F.D. Gunstone, J.L. Harwood and F.B. Padley (Eds.), The lipid handbook, Chapman and Hall, (1994) 47-224.
[83] R.G. Jensen, Fatty acids in Milk and dairy products, in: C.K. Chow (Ed.), Fatty acids in Foods and their implications, Marcel Dekker, NY, (2000) 109-123.
[84] L. Oro, A. Wretlind, Pharmacological effects of fatty acids, triolein and cottonseed oil. Acta Pharmacol Toxicol 18 (1961) 141-152.
[85] H.F. Smyth, Jr., C.P. Carpenter, C.S. Weil, U.C. Pozzani, J.A. Striegel, Range-finding toxicity data: List VI. Am Ind Hyg Assoc J23 (1962) 95-107.
[86] K. Mori, Production of gastric lesions in the rat by the diet containing fatty acids. Gan 44(4) (1953) 421-427.
[87] Anonymous, Salts of fatty acids, In: Food additives permitted for direct addition to food for human consumption, US Food and Drug Administration, (2008) CFR 21, part 3, section 172.860.
[88] Anonymous, Evaluation of certain food additives and contaminants. 29th report of the joint FAO/WHO Expert Committee on Food Additives. WHO technical report series (1986) No. 733.
[89] K. Kitao, K. Nishimura, US Patent 4338306 (1982).
[90] K. Kakeya, K. Kitao, Nishimura, K., Japan Patent 80315 (1982).
[91] K.K. Kitao, K. Nishimura, Japan. Patent 149209 (1980).
N. Yata, Y. Higashi, T. Murakami, R. Yamajo, W.M. Wu, K. Taku, Y. Sasaki, Y. Hideshima, A Possible Mechanism of Absorption Promoters. J Pharmacobiodyn 6(4) (1983) S78-S78.

M. Shima, K. Yohdoh, M. Yamaguchi, Y. Kimura, S. Adachi, R. Matsuno, Effects of medium-chain fatty acids and their acylglycerols on the transport of penicillin V across Caco-2 cell monolayers. Biosci Biotechnol and Biochem 61(7) (1997) 1150-1155.

S.Y. Cho, J.S. Kim, H. Li, C. Shim, R.J. Linhardt, Y.S. Kim, Enhancement of paracellular transport of heparin disaccharide across Caco-2 cell monolayers. Arch Pharm Res 25(1) (2002) 86-92.

I.W. Kim, H.J. Yoo, I.S. Song, Y.B. Chung, D.C. Moon, S.J. Chung, C.K. Shim, Effect of excipients on the stability and transport of recombinant human epidermal growth factor (rhEGF) across Caco-2 cell monolayers. Arch Pharm Res 26(4) (2003) 330-337.

E.K. Anderberg, T. Lindmark, P. Artursson, Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm Res 10(6) (1993) 857-864.

T. Lindmark, Y. Kimura, P. Artursson, Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther 284(1) (1998) 362-369.

M. Shima, Y. Kimura, S. Adachi, R. Matsuno, Recovery of Caco-2 cell monolayers to normal from the transport-enhanced state induced by capric acid sodium salt an its monoacylglycerol. Biosci Biotechnol and Biochem 63(4) (1999) 680-687.

A.C. Chao, J.V. Nguyen, M. Broughall, A. Griffin, J.A. Fix, P.E. Daddona, In vitro and in vivo evaluation of effects of sodium caprate on enteral peptide absorption and on mucosal morphology. Int J Pharm 191(1) (1999) 15-24.

M. Sakai, T. Imai, H. Ohtake, M. Otagiri, Cytotoxicity of absorption enhancers in Caco-2 cell monolayers. J Pharm Pharmacol. 50(10) (1998) 1101-1108.

Y.S. Quan, K. Hattori, E. Lundborg, T. Fujita, M. Murakami, S. Muranishi, A. Yamamoto, Effectiveness and toxicity screening of various absorption enhancers using Caco-2 cell monolayers. Biol Pharm Bull 21(6) (1998) 615-620.

T. Sugiyama, A. Yamamoto, Y. Kawabe, T. Uchiyama, Y.S. Quan, S. Muranishi, Effects of various absorption enhancers on the intestinal absorption of water soluble drugs by in vitro Ussing chamber method: correlation with an in situ absorption experiment. Biol Pharm Bull 20(7) (1997) 812-814.

J.D. Soderholm, H. Oman, L. Blomquist, J. Veen, T. Lindmark, G. Olaison, Reversible increase in tight junction permeability to macromolecules in rat ileal mucosa in vitro by sodium caprate, a constituent of milk fat. Dig Dis Sci 43(7) (1998) 1547-1552.

S. Maher, R. Kennelly, V.A. Bzik, A. Baird, X. Wang, D.C. Winters, D.J. Brayden, Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in Isolated rat and human colonic mucosae. Eur J Pharm Sci (2009) (In Press).

C. Wallon, Y. Braaf, M. Wolving, G. Olaison, J.D. Soderholm, Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand J Gastroenterol 40(5) (2005) 586-595.
S. Maher, X. Wang, V.A. Bzik, S. McClean, D.J. Brayden, Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. Eur J Pharm Sci (In Press).

T. Lindmark, N. Schipper, L. Lazorova, A.G. de Boer, P. Artursson, Absorption enhancement in intestinal epithelial Caco-2 monolayers by sodium caprate: assessment of molecular weight dependence and demonstration of transport routes. J Drug Target 5(3) (1998) 215-223.

M. Tomita, M. Hayashi, T. Horie, T. Ishizawa, S. Awazu, Enhancement of colonic drug absorption by the transcellular permeation route. Pharm Res 5(12) (1988) 786-789.

T. Ishizawa, M. Hayashi, S. Awazu, Enhancement of jejunal and colonic absorption of fosfomycin by promoters in the rat. J Pharm Pharmacol. 39(11) (1987) 892-895.

N. Muranushi, E. Mack, S.W. Kim, The Effects of Fatty-Acids and Their Derivatives on the Intestinal-Absorption of Insulin in Rat. Drug Dev. Ind. Pharm. 19(8) (1993) 929-941.

A. Mizuno, M. Ueda, G. Kawanishi, Effects of salicylate and other enhancers on rectal absorption of erythropoietin in rats. J Pharm Pharmacol. 44(7) (1992) 570-573.

Y. Watanabe, Y. Mizufune, A. Kubomura, M. Kiriyama, N. Utoguchi, M. Matsumoto, Studies of drug delivery systems for a therapeutic agent used in osteoporosis. I. Pharmacodynamics (hypocalcemic effect) of elcatonin in rabbits following rectal administration of hollow-type suppositories containing elcatonin. Biol Pharm Bull 21(11) (1998) 1187-1190.

M. Baluom, M. Friedman, A. Rubinstein, The importance of intestinal residence time of absorption enhancer on drug absorption and implication on formulative considerations. Int J Pharm 176(1) (1998) 21-30.

J.A. Fix, Strategies for delivery of peptides utilizing absorption-enhancing agents. J Pharm Sci 85(12) (1996) 1282-1285.

A.A. Raoof, Z. Ramtoola, B. McKenna, R.Z. Yu, G. Hardee, R.S. Geary, Effect of sodium caprate on the intestinal absorption of two modified antisense oligonucleotides in pigs. Eur J Pharm Sci 17(3) (2002) 131-138.

K. Takahashi, T. Murakami, R. Yumoto, T. Hattori, Y. Higashi, N. Yata, Decanoic acid induced enhancement of rectal absorption of hydrophilic compounds in rats. Pharm Res 11(10) (1994) 1401-1404.

J. Jorgensen, K. Holtug, P.B. Jeppesen, P.B. Mortensen, Human rectal absorption of short- and medium-chain C2-C10 fatty acids. Scand J Gastroenterol 33(6) (1998) 590-594.

Y. Narkar, R. Burnette, R. Bleher, R. Albrecht, A. Kandela, J.R. Robinson, Evaluation of mucosal damage and recovery in the gastrointestinal tract of rats by a penetration enhancer. Pharm Res 25(1) (2008) 25-38.

M. Baluom, M. Friedman, P. Assaf, A.I. Haj-Yehia, A. Rubinstein, Synchronized release of sulpiride and sodium decanoate from HPMC matrices: a rational approach to enhance sulpiride absorption in the rat intestine. Pharm Res 17(9) (2000) 1071-1076.

C. Schiller, C.P. Frohlich, T. Giessmann, W. Siegmund, H. Monnikes, N. Hosten, W. Weitschies, Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther 22(10) (2005) 971-979.
[121] A.G. De Boer, D. Breimer, GI-tract absorption enhancement: general introduction and simulation of time-concentration-effect profiles of absorption enhancers, in: A.G De Boer (Ed.), Drug absorption enhancement concepts, possibilities, limitations and trends, Harwood Academic Publishers, (1994) 155-175.

[122] E. van Hoogdalem, A.G. de Boer, D.D. Breimer, Pharmacokinetics of rectal drug administration, Part I. General considerations and clinical applications of centrally acting drugs. Clin Pharmacokinet 21(1) (1991) 11-26.

[123] G. Hardee, R. Geary, L.G. Tillman, J. Bradley, J. Su, S. Dokka, M. Wedel, A phase I study of orally administered ISIS 301012 for the reduction of ApoB-100 and LDL-cholesterol. AAPS 8(S1) (2006).

[124] G.E. Hardee, L.G. Tillman, R.S. Geary, Routes and formulation for the delivery of antisense oligonucleotides, in: S.T. Crooke (Ed.), Antisense drug technology principle, strategies and applications, CRC press, (2008) 217-236.

[125] D.L. Burcham, B.A. Aungst, M. Hussain, M.A. Gorko, C.Y. Quon, S.M. Huang, The effect of absorption enhancers on the oral absorption of the GP IIB/IIIA receptor antagonist, DMP 728, in rats and dogs. Pharm Res 12(12) (1995) 2065-2070.

[126] S. Weinbach, L.G. Tillman, R.S Geary, G.E. Hardee, US Patent application 2005/0196443 (2005).

[127] S. Takatsuka, T. Kitazawa, T. Morita, Y. Horihiro, H. Yoshino, Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant. Eur J Pharm Biopharm 62(1) (2006) 52-58.

[128] H. Umejima, A. Kikuchi, N.S. Kim, T. Uchida, S. Goto, Preparation and evaluation of Eudragit gels. VIII. Rectal absorption of 5-fluorouracil from Eudispert hv gels in rats. J Pharm Sci 84(2) (1995) 199-202.

[129] C. Atuma, V. Strugala, A. Allen, L. Holm, The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280(5) (2001) G922-929.

[130] J.F. Woodley, Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst 11(2-3) (1994) 61-95.

[131] S. Haupt, A. Rubinstein, The colon as a possible target for orally administered peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 19(6) (2002) 499-551.

[132] G. Van den Mooter, Colon drug delivery. Expert opin Drug Deliv 3(1) (2006) 111-125.

[133] V.H. Lee, A. Yamamoto, U.B. Kompella, Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit Rev Ther Drug Carrier Syst 8(2) (1991) 91-192.

[134] S. Muranishi, Absorption barriers and absorption promoters in the intestine, in: D.D. Breimer and P. Speiser (Eds.), Topics in Pharmaceutical Science, Elsevier B.V., Amsterdam (1987) 445-455.

[135] A. Yamamoto, T. Okagawa, A. Kotani, T. Uchiyama, T. Shimura, S. Tabata, S. Kondo, S. Muranishi, Effects of different absorption enhancers on the permeation of ebiratide, an ACTH analogue, across intestinal membranes. J Pharm Pharmacol. 49(11) (1997) 1057-1061.

[136] T. Uchiyama, T. Sugiyama, Y.S. Quan, A. Kotani, N. Okada, T. Fujita, S. Muranishi, A. Yamamoto, Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: their intestinal mucosal toxicity and
absorption-enhancing mechanism of n-lauryl-beta-D-maltopyranoside. J Pharm Pharmacol. 51(11) (1999) 1241-1250.

[137] M. Tomita, T. Sawada, T. Ogawa, H. Ouchi, M. Hayashi, S. Awazu, Differences in the enhancing effects of sodium caprate on colonic and jejunal drug absorption. Pharm Res 9(5) (1992) 648-653.

[138] M. Morishita, I. Morishita, K. Takayama, Y. Machida, T. Nagai, Site-Dependent Effect of Aprotinin, Sodium Caprate, Na2EDTA and Sodium Glycocholate on Intestinal-Absorption of Insulin. Biol Pharm Bull 16(1) (1993) 68-72.

[139] G. Fetih, S. Lindberg, K. Itoh, N. Okada, T. Fujita, F. Habib, P. Artersson, M. Attia, A. Yamamoto, Improvement of absorption enhancing effects of n-dodecyl-beta-D-maltopyranoside by its colon-specific delivery using chitosan capsules. Int J Pharm 293(1-2) (2005) 127-135.

[140] S. Muranishi, A. Yamamoto, Mechanisms of absorption enhancement through gastrointestinal epithelium, in: A.G De Boer (Ed.), Drug absorption enhancement concepts, possibilities, limitations and trends, Harwood Academic (1994) 67-100.

[141] M. Mackay, J. Phillips, J. Hastewell, Peptide drug delivery: Colonic and rectal absorption. Adv Drug Deliv Rev 28(2) (1997) 253-273.

[142] T. Lindmark, T. Nikkila, P. Artursson, Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther275(2) (1995) 958-964.

[143] T. Suzuki, H. Hara, Diffructose anhydride III and sodium caprate activate paracellular transport via different intracellular events in Caco-2 cells. Life Sci 79(4) (2006) 401-410.

[144] M. Sakai, T. Imai, H. Ohtake, H. Azuma, M. Otagiri, Effects of absorption enhancers on cytoskeletal actin filaments in Caco-2 cell monolayers. Life Sci 63(1) (1998) 45-54.

[145] Y. Kimura, Y. Hosoda, M. Yamaguchi, H. Nagano, M. Shima, S. Adachi, R. Matsuno, Effects of medium-chain fatty acids in intestinal calcium levels and the cytoskeleton in human intestinal (Caco-2) cell monolayers. Biosci Biotechnol and Biochem 65(4) (2001) 743-751.

[146] J.D. Soderholm, G. Olaison, K.H. Peterson, L.E. Franzen, T. Lindmark, M. Wiren, C. Tagesson, R. Sjodahl, Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut 50(3) (2002) 307-313.

[147] C.B. Coyne, C.M. Ribeiro, R.C. Boucher, L.G. Johnson, Acute mechanism of medium chain fatty acid-induced enhancement of airway epithelial permeability. J Pharmacol Exp Ther 305(2) (2003) 440-450.

[148] C.B. Coyne, M.M. Kelly, R.C. Boucher, L.G. Johnson, Enhanced epithelial gene transfer by modulation of tight junctions with sodium caprate. Am J Respir Cell Mol Biol 23(5) (2000) 602-609.

[149] K. Sugibayashi, Y. Onuki, K. Takayama, Displacement of tight junction proteins from detergent-resistant membrane domains by treatment with sodium caprate. Eur J Pharm Sci 36(2-3) (2009) 246-253.

[150] M. Kurasawa, S. Kuroda, N. Kida, M. Murata, A. Oba, T. Yamamoto, H. Sasaki, Regulation of tight junction permeability by sodium caprate in human keratinocytes and reconstructed epidermis. Biochem Biophys Res Commun 381(2) (2009) 171-175.
[151] M. Tomita, M. Hayashi, S. Awazu, Absorption-enhancing mechanism of sodium caprate and decanoylcarnitine in Caco-2 cells. J Pharmacol Exp Ther 272(2) (1995) 739-743.
[152] A. Helenius, K. Simons, Solubilization of membranes by detergents. Biochim Biophys Acta 415(1) (1975) 29-79.
[153] J.R. Turner, 'Putting the squeeze' on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol 11(4) (2000) 301-308.
[154] T. Imai, M. Sakai, H. Ohtake, H. Azuma, M. Otagiri, Absorption-enhancing effect of glycyrrhizin induced in the presence of capric acid. Int J Pharm 284(1-2) (2005) 11-21.
[155] M. Tomita, M. Hayashi, S. Awazu, Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J Pharm Sci 85(6) (1996) 608-611.
[156] M. Hayashi, T. Sakai, Y. Hasegawa, T. Nishikawahara, H. Tomioka, A. Iida, N. Shimizu, M. Tomita, S. Awazu, Physiological mechanism for enhancement of paracellular drug transport. J Control Release 62(1-2) (1999) 141-148.
[157] T. Shimazaki, M. Tomita, S. Sadahiro, M. Hayashi, S. Awazu, Absorption-enhancing effects of sodium caprate and palmitoyl carnitine in rat and human colons. Dig Dis Sci 43(3) (1998) 641-645.
[158] L.M. Feighery, S.W. Cochrane, T. Quinn, A.W. Baird, D. O'Toole, S.E. Owens, D. O'Donoghue, R.J. Mrsnj, D.J. Brayden, Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharm Res 25(6) (2008) 1377-1386.
[159] H. Takahashi, T. Shibasaka, K. Takeshita, F. Kaiho, M. Hayashi, The enhancing mechanism of capric acid (C10) from a suppository on rectal drug absorption through a paracellular pathway. Biol Pharm Bull 20(4) (1997) 446-448.
[160] Y. Kimura, Y. Hosoda, M. Shima, S. Adachi, R. Matsuno, Physico-chemical properties of fatty acids for assessing the threshold concentration to enhance the absorption of a hydrophilic substance. Biosci Biotechnol and Biochem 62(3) (1998) 443-447.
[161] D.M. Small, Surface and bulk interactions of lipids and water with a classification of biologically active lipids on these interactions. Fed Proc 29(4) (1970) 1320-1326.
[162] D. Lichtenberg, R.J. Robson, E.A. Dennis, Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim Biophys Acta 737(2) (1983) 285-304.
[163] T. Namani, P. Walde, From decanoate micelles to decanoic acid/dodecylbenzenesulfonate vesicles. Langmuir 21(14) (2005) 6210-6219.
[164] T.K. Tippin, D.R. Thakker, Biorelevant refinement of the Caco-2 cell culture model to assess efficacy of paracellular permeability enhancers. J Pharm Sci 97(5) (2008) 1977-1992.
[165] H. Heerklotz, Interactions of surfactants with lipid membranes. Q Rev Biophys 41(3-4) (2008) 205-264.
[166] K. Morigaki, P. Walde, M. Misran, B.H. Robinson, Thermodynamic and kinetic stability. Properties of micelles and vesicles formed by the decanoic acid/decanoate system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 213(1) (2003) 37-44.
[167] J.R. Kanicky, A.F. Poniatowski, N.R. Mehta, D.O. Shah, Cooperativity among molecules at interfaces in relation to various technological processes: Effect of chain length on the pK(a) of fatty acid salt solutions. Langmuir 16(1) (2000) 172-177.
168] S. Muramushi, Absorption enhancers. Crit Rev Ther Drug Carrier Syst 7(1) (1990) 1-33.

169] E. Scott Swenson, W.J. Curatolo, (C) Means to enhance penetration : (2) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv Drug Deliv Rev 8(1) (1992) 39-92.

170] K. Whitehead, N. Karr, S. Mitragotri, Safe and effective permeation enhancers for oral drug delivery. Pharm Res 25(8) (2008) 1782-1788.

171] P. Sharma, M.V. Varma, H.P. Chawla, R. Panchagnula, Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Farmaco 60(11-12) (2005) 884-893.

172] T.M. Turunen, A. Urtti, P. Paronen, K.L. Audus, J.H. Rytting, Effect of some penetration enhancers on epithelial membrane lipid domains: evidence from fluorescence spectroscopy studies. Pharm Res 11(2) (1994) 288-294.

173] M. Noriyuki, K. Mariko, N. Yasuko, M. Shozo, S. Hitoshi, Mechanism for the inducement of the intestinal absorption of poorly absorbed drugs by mixed micelles I. Effects of various lipid--bile salt mixed micelles on the intestinal absorption of streptomycin in rat. Int J Pharm 4(4) (1980) 271-279.

174] M. Noriyuki, N. Yasuko, K. Mariko, M. Shozo, S. Hitoshi, Mechanism for the inducement of the intestinal absorption of poorly absorbed drugs by mixed micelles II. Effect of the incorporation of various lipids on the permeability of liposomal membranes. Int J Pharm 4(4) (1980) 281-290.

175] N. Muranushi, N. Takagi, S. Muramushi, H. Sezaki, Effect of fatty acids and monoglycerides on permeability of lipid bilayer. Chem Phys Lipids 28(3) (1981) 269-279.

176] A. Yamamoto, S. Muramushi, Rectal drug delivery systems Improvement of rectal peptide absorption by absorption enhancers, protease inhibitors and chemical modification. Adv Drug Deliv Rev 28(2) (1997) 275-299.

177] M.N. Jones, Surfactants in membrane solubilisation. Int J Pharm 177(2) (1999) 137-159.

178] D. Lichtenberg, Characterization of the solubilization of lipid bilayers by surfactants. Biochim Biophys Acta 821(3) (1985) 470-478.

179] K. Nishimura, Y. Nozaki, A. Yoshimi, S. Nakamura, M. Kitagawa, N. Kakeya, K. Kitao, Studies on the promoting effects of carboxylic acid derivatives on the rectal absorption of beta-lactam antibiotics in rats. Chem Pharm Bull 33(1) (1985) 282-291.

180] P.P. Constantinides, G. Welzel, H. Ellens, P.L. Smith, S. Sturgis, S.H. Yiv, A.B. Owen, Water-in-oil microemulsions containing medium-chain fatty acids/salts: formulation and intestinal absorption enhancement evaluation. Pharm Res 13(2) (1996) 210-215.

181] B. Godin, E. Toutou, Enhancers for enteral delivery of macromolecules with emphasis on surfactants, in: E. Toutou and B.W. Barry (Eds.), Enhancement in drug delivery, CRC press (2006) 37-56.

182] W. Kamm, A. Jonczyk, T. Jung, G. Luckenbach, P. Raddatz, T. Kissel, Evaluation of absorption enhancement for a potent cyclopeptidic alpha(nu)beta(3)-antagonist in a human intestinal cell line (Caco-2). Eur J Pharm Sci 10(3) (2000) 205-214.
[183] J.A. Lapre, D.S. Termo, A.K. Groen, R. Van der Meer, Lytic effects of mixed micelles of fatty acids and bile acids. The Am J Physiol 263(3 Pt 1) (1992) G333-337.
[184] C.J. Porter, N.L. Trevaskis, W.N. Charman, Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Rev 6(3) (2007) 231-248.
[185] T. Mukherjee, E. Squillantea, M. Gillespie, J. Shao, Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Del 11(1) (2004) 11-18.
[186] P. Sharma, M.V. Varma, H.P. Chawla, R. Panchagnula, Relationship between lipophilicity of BCS class III and IV drugs and the functional activity of peroral absorption enhancers. Farmaco 60(11-12) (2005) 870-873.
[187] M. Shima, Y. Kimura, S. Adachi, R. Matsuno, The relationship between transport-enhancement effects and cell viability by capric acid sodium salt, monocaprin, and dicaproin. Biosci Biotechnol and Biochem 62(1) (1998) 83-86.
[188] M. Tomita, M. Shiga, M. Hayashi, S. Awazu, Enhancement of colonic drug absorption by the paracellular permeation route. Pharm Res 5(6) (1988) 341-346.
[189] P. Sharma, M.V. Varma, H.P. Chawla, R. Panchagnula, In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. Farmaco 60(11-12) (2005) 874-883.
[190] Y. Sugita, K. Takao, Y. Toyama, A. Shirahata, Enhancement of intestinal absorption of macromolecules by spermine in rats. Amino Acids 33(2) (2007) 253-260.
[191] Y. Kinouchi, Y. Takeichi, N. Yata, A novel method for the preclinical assessment of rectal irritation. J Pharm Pharmacol. 48(3) (1996) 310-315.
[192] W. Curatolo, R. Ochoa, Safety assessment of intestinal permeability enhancers, in: A.G De Boer (Ed.), Drug absorption enhancement concepts, possibilities, limitations and trends, Harwood Academic (1994) 155-175.
[193] R. Geary, R. Yu, T.-W. Kim, A. Levin, S. Dokka, L.G. Tillman, G. Hardee, Pharmacokinetics and tolerability of daily oral antisense oligonucleotide, ISIS 301012, in mice and dogs for 13 weeks. AAPS Journal 7(S2) (2005).
[194] A.A. Raoof, P. Chiu, Z. Ramtoola, I.K. Cumming, C. Teng, S.P. Weinbach, G.E. Hardee, A.A. Levin, R.S. Geary, Oral bioavailability and multiple dose tolerability of an antisense oligonucleotide tablet formulated with sodium caprate. J Pharm Sci 93(6) (2004) 1431-1439.
[195] A.T. Blikslager, A.J. Moeser, J.L. Gookin, S.L. Jones, J. Odle, Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87(2) (2007) 545-564.
[196] R. Moore, S. Carlson, J.L. Madara, Villus contraction aids repair of intestinal epithelium after injury. The Am J Physiol 257(2 Pt 1) (1989) G274-283.
[197] W. Feil, E.R. Lacy, Y.M. Wong, D. Burger, E. Wenzl, M. Starlinger, R. Schiessel, Rapid epithelial restitution of human and rabbit colonic mucosa. Gastroenterology 97(3) (1989) 685-701.
[198] R. Moore, S. Carlson, J.L. Madara, Rapid barrier restitution in an in vitro model of intestinal epithelial injury. Laboratory investigation; a journal of technical methods and pathology 60(2) (1989) 237-244.
[199] E.S. Swenson, W.B. Milisen, W. Curatolo, Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility. Pharm Res 11(8) (1994) 1132-1142.
[200] K. Nakanishi, M. Masada, T. Nadai, Effect of pharmaceutical adjuvants on the rectal permeability of drugs. III. Effect of repeated administration and recovery of the permeability. Chem Pharm Bull 31(11) (1983) 4161-4166.
[201] P.R. Kvetys, R.D. Specian, M.B. Grisham, P. Tso, Jejunal mucosal injury and restitution: role of hydrolytic products of food digestion. The Am J Physiol 261(3 Pt 1) (1991) G384-391.
[202] V. Purohit, J.C. Bode, C. Bode, D.A. Brenner, M.A. Choudhry, F. Hamilton, Y.J. Kang, A. Keshavarzian, R. Rao, R.B. Sartor, C. Swanson, J.R. Turner, Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol (Fayetteville, N.Y 42(5) (2008) 349-361.
[203] E.J. van Hoogdalem, A.G. de Boer, D.D. Breimer, Pharmacokinetics of rectal drug administration, Part II. Clinical applications of peripherally acting drugs, and conclusions. Clin Pharmacokinet 21(2) (1991) 110-128.
[204] K.E. Barrett, S.J. Keely, Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 62 (2000) 535-572.
[205] S. Maher, L. Feighery, D.J. Brayden, S. McClean, Melittin as a permeability enhancer II: in vitro investigations in human mucus secreting intestinal monolayers and rat colonic mucosae. Pharm Res 24(7) (2007) 1346-1356.
[206] M. Shiga, M. Hayashi, T. Horie, S. Awazu, Promotion of drug rectal absorption related to water absorption. Chem Pharm Bull 34(5) (1986) 2254-2256.
[207] A.B. Cox, L.A. Rawlinson, A.W. Baird, V. Bzik, D.J. Brayden, In vitro interactions between the oral absorption promoter, sodium caprate (C(10)) and S. typhimurium in rat intestinal ileal mucosae. Pharm Res 25(1) (2008) 114-122.
[208] R.C. Sprong, M.F. Hulstein, R. Van der Meer, Bactericidal activities of milk lipids. Antimicrob Agents Chemother 45(4) (2001) 1298-1301.
[209] H. Thormar, C.E. Isaacs, H.R. Brown, M.R. Barshatzky, T. Pessolano, Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother 31(1) (1987) 27-31.
[210] C.A. Schnaitman, Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J Bacteriol 108(1) (1971) 545-552.
[211] J.J. Kabara, D.M. Swiecikowski, A.J. Conley, J.P. Truant, Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother2 (1) (1972) 23-28.
[212] P. Rayan, D. Stenzel, P.A. McDonnell, The effects of saturated fatty acids on Giardia duodenalis trophozoites in vitro. Parasitol Res 97(3) (2005) 191-200.
[213] L.G. Gregory, R.P. Harbottle, L. Lawrence, H.J. Knapton, M. Themis, C. Coutelle, Enhancement of adenovirus-mediated gene transfer to the airways by DEAE dextran and sodium caprate in vivo. Mol Ther 7(1) (2003) 19-26.
[214] L.G. Johnson, M.K. Vanhook, C.B. Coynes, N. Haykal-Coates, S.H. Gavett, Safety and efficiency of modulating paracellular permeability to enhance airway epithelial gene transfer in vivo. Hum Gene Ther 14(8) (2003) 729-747.
[215] H. Lennernas, K. Gjellan, R. Hallgren, C. Graffner, The influence of caprate on rectal absorption of phenoxybenzylpenicillin: experience from an in-vivo perfusion in humans. J Pharm Pharmacol. 54(4) (2002) 499-508.
[216] T. Motohiro, M. Aramaki, K. Tanaka, T. Koga, Y. Shimada, N. Tomita, Y. Sakata, T. Fujimoto, T. Nishiya, N. Kuda, et al., [Fundamental study on ceftizoxime suppositories in adults and children]. Jpn J Antibiot 38(10) (1985) 3013-3056.
[217] E. Bergogne-Berezin, A. Bryskier, The suppository form of antibiotic administration: pharmacokinetics and clinical application. J Antimicrob Chemother 43(2) (1999) 177-185.

[218] R. Fuji, G.H. McCracken, Antibiotic suppositories, In: J. Ishigami (Ed.), Proceedings of the 14th International Congress of Chemotherapy. Recent advances in chemotherapy. Section 3, University of Tokyo Press, Tokyo, (1985) 2709-2715.

[219] T. Motohiro, M. Aramaki, K. Oda, A. Kawakami, K. Tanaka, T. Koga, Y. Shimada, S. Tomita, Y. Sakata, et al., Antibiotic Suppositories. Pediatrics International 28(4) (2007) 535-543.

[220] T. Motohiro, M. Aramaki, K. Oda, A. Kawakami, K. Tanaka, T. Koga, Y. Shimada, S. Tomita, Y. Sakata, et al., Antibiotic Suppositories. Acta Paediatrica Japonica 28(4) (1986) 535-543.

[221] T. Fujio, T. Kondou, A. Fukuhara, S. Tounou, M. Mine, N. Matak, K. Hanada, M. Ozaka, K. Mitani, T. Nakaya, T. Iwai, H. Miyakawa, Efficacy of a glycyrrhizin suppository for the treatment of chronic hepatitis C: a pilot study. Hepatol Res 26(1) (2003) 10-14.

[222] Anonymous, Swedis database (http://sweweb.mpa.se/swedisii/). Data obtained from the Medical Products Agency, Uppsala, Sweden.

[223] B.K. Bergstrom, S.O. Bertilson, G. Movin, Clinical evaluation of rectally administered ampicillin in acute otitis media. J Int Med Res 16(5) (1988) 376-385.

[224] C.-L. Teng, P.D., Cook, L. Tillman, G.E. Hardee, D.J. Ecker, M. Manoharan, US Patent 6747014 (2004).

[225] Y. Wang, Isis-301012 - Antisense inhibitor of apolipoprotein B treatment of lipoprotein disorders. Drug Future 32(8) (2007) 699-702.

[226] K.I. Cumming, Z. Ramtoola, T.W Leonard, US Patent application publication 11/400689 (2007).

[227] T. Leonard, D. Coughlan, B. Adamczyk, E. O'Toole, A. Lee, A bioavailability and pharmacodynamic study of GIPv™ formulations of acyline, a GnRH antagonist, administered by intraduodenal instillation in beagle dogs. (2007) AAPS journal 9(S2).

[228] J.K. Amory, T.W. Leonard, S.T. Page, E. O'Toole, M.J. McKenna, W.J. Bremner, Oral administration of the GnRH antagonist acyline, in a GIPv((R))-enhanced tablet form, acutely suppresses serum testosterone in normal men: single-dose pharmacokinetics and pharmacodynamics. Cancer Chemother Pharmacol 64(3) (2009) 641-645.

[229] T.W. Leonard, B. Adamczyk, A. Lee, E. O'Toole, Eliminating the Bisphosphonate Dosing Ritual with an Improved Dosage Form of Alendronate, MER-103, Menopause 14(6): (2007) 1098. 2007.

[230] A. Cullen, C. McHugh, O. Feeney, E. O'Toole, T. Leonard, A bioavailability study of GIPv™ formulations of zoledronic acid, administered by intraduodenal instillation in beagle dogs. (2007) AAPS journal 9(S2).

[231] C. McHugh, K. Madigan, A. Walsh, J. Fox, T.W. Leonard, J.B. Quint, MER-101-03, a multicenter, phase II study to compare MER-101 20mg tablets to intravenous zoledronic acid 4mg in prostate cancer patients. Vol. 27, 2009, pp. 5161-.

[232] S. Maher, D.J. Brayden, L. Feighery, S. McClean, Cracking the junction: update on the progress of gastrointestinal absorption enhancement in the delivery of poorly absorbed drugs. Crit Rev Ther Drug Carrier Syst 25(2) (2008) 117-168.
P. Nava, S. Lopez, C.F. Arias, S. Islas, L. Gonzalez-Mariscal, The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J Cell Sci 117(Pt 23) (2004) 5509-5519.

I. Bjarnason, Intestinal permeability. Gut 35(1 Suppl) (1994) S18-22.

M.M. Wolfe, D.R. Lichtenstein, G. Singh, Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med 340(24) (1999) 1888-1899.

S. Vervarcke, F. Ollevier, R. Kinget, A. Michoel, Oral vaccination of African catfish with Vibrio anguillarum O2: effect on antigen uptake and immune response by absorption enhancers in lag time coated pellets. Fish & Shellfish Immunology 16(3) (2004) 407-414.

I. Sechter, E. Touitou, M. Donbrow, The influence of a non-ionic surfactant on rectal absorption of virus particles. Arch Virol106(1-2) (1989) 141-143.

I.M. Twiss, J. Burggraaf, R.C. Schoemaker, R.M. van Elburg, J. den Hartigh, A.F. Cohen, P. Vermeij, The sugar absorption test in the evaluation of the gastrointestinal intolerance to bisphosphonates: studies with oral pamidronate. Clin Pharmacol Ther 69(6) (2001) 431-437.

M. Dastych, M. Dastych, Jr., H. Novotna, J. Cihalova, Lactulose/mannitol test and specificity, sensitivity, and area under curve of intestinal permeability parameters in patients with liver cirrhosis and Crohn’s disease. Dig Dis Sci 53(10) (2008) 2789-2792.

G.P. Lambert, L.J. Broussard, B.L. Mason, W.J. Mauermann, C.V. Gisolfi, Gastrointestinal permeability during exercise: effects of aspirin and energy-containing beverages. J Appl Physiol 90(6) (2001) 2075-2080.

A.J. Ryan, R.T. Chang, C.V. Gisolfi, Gastrointestinal permeability following aspirin intake and prolonged running. Medicine and science in sports and exercise 28(6) (1996) 698-705.

J. Raiman, S. Tormalehto, K. Yritys, H.E. Junginger, J. Monkkonen, Effects of various absorption enhancers on transport of clodronate through Caco-2 cells. Int J Pharm 261(1-2) (2003) 129-136.

D.Z. Liu, E.L. LeCluyse, D.R. Thakker, Dodecylphosphocholine-mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers. J Pharm Sci 88(11) (1999) 1161-1168.

N.A. Motlekar, K.S. Srivenugopal, M.S. Wachtel, B.B. Youan, Oral delivery of low-molecular-weight heparin using sodium caprate as absorption enhancer reaches therapeutic levels. J Drug Target 13(10) (2005) 573-583.

T. Zornoza, M.J. Cano-Cebrian, R. Nalda-Molina, C. Guerri, L. Granero, A. Polache, Assessment and modulation of acamprosate intestinal absorption: comparative studies using in situ, in vitro (Caco-2 cell monolayers) and in vivo models. Eur J Pharm Sci 22(5) (2004) 347-356.

L. Zhou, M.S.S. Chow, Z. Zuo, Effect of sodium caprate on the oral absorptions of danshensu and salvianolic acid B. Int J Pharm In Press, Accepted Manuscript.

M. Sakai, T. Imai, H. Ohtake, H. Azuma, M. Otagiri, Effects of absorption enhancers on the transport of model compounds in Caco-2 cell monolayers: assessment by confocal laser scanning microscopy. J Pharm Sci 86(7) (1997) 779-785.

M. Hayashi, M. Tomita, Mechanistic analysis for drug permeation through intestinal membrane. Drug Metab. Pharmacokinet 22(2) (2007) 67-77.
[249] K. Nakamura, Y. Maitani, K. Takayama, The enhancing effect of nasal absorption of FITC-dextran 4,400 by beta-sitosterol beta-D-glucoside in rabbits. J Control Release 79(1-3) (2002) 147-155.

[250] Y.L. Lo, J.D. Huang, Effects of sodium deoxycholate and sodium caprate on the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. Biochem Pharmacol 59(6) (2000) 665-672.

[251] M. Tomita, M. Hayashi, S. Awazu, Comparison of absorption-enhancing effect between sodium caprate and disodium ethylenediaminetetraacetate in Caco-2 cells. Biol Pharm Bull 17(5) (1994) 753-755.

[252] A.A. Badawi, H.M. El-Laithy, H.M. Abu Amara, Optimization and evaluation of amoxicillin medium chain fatty acids/salts microemulsions: intestinal absorption and cytotoxicity. J. Drug Deliv. Sci. Technol. 18(2) (2008) 109-118.

[253] T. Ogiso, M. Iwaki, Y. Kashitani, K. Yamashita, Enhancement by fatty acids of the rectal absorption of propranolol: in vitro evaluation in the rat. J Pharmacobiodyn 14(7) (1991) 385-391.

[254] A. Nishiura, V.H.L. Lee, Paracellular transport of proteolytically labile peptides in the rabbit intestine. Pharm Res 9(10 SUPPL.) (1992) S216.

[255] N. Kakeya, Development of new adjuvants for enhanced rectal absorption, In: J. Ishigami (Ed.), Proceedings of the 14th International Congress of Chemotherapy. Recent advances in chemotherapy. Section 3, University of Tokyo Press, Tokyo (1985) pp 2711.

[256] M. Morishita, I. Morishita, K. Takayama, Y. Machida, T. Nagai, Site-dependent effect of aprotinin, sodium caprate, Na₂EDTA and sodium glycocholate on intestinal absorption of insulin. Biol Pharm Bull 16(1) (1993) 68-72.

[257] S. Mori, A. Matsuura, Y.V. Rama Prasad, K. Takada, Studies on the intestinal absorption of low molecular weight heparin using saturated fatty acids and their derivatives as an absorption enhancer in rats. Biol Pharm Bull 27(3) (2004) 418-421.

[258] X. Lin, D.S. Xu, Y. Feng, S.M. Li, Z.L. Lu, L. Shen, Release-controlling absorption enhancement of enterally administered Ophiopogon japonicus polysaccharide by sodium caprate in rats. J Pharm Sci 95(11) (2006) 2534-2542.

[259] G. Fetih, F. Habib, H. Katsumi, N. Okada, T. Fujita, M. Attia, A. Yamamoto, Excellent absorption enhancing characteristics of NO donors for improving the intestinal absorption of poorly absorbable compound compared with conventional absorption enhancers. Drug Metab. Pharmacokinet 21(3) (2006) 222-229.

[260] Y. Kamio, Y. Saito, N. Utoguchi, M. Kondoh, N. Koizumi, M. Fujii, Y. Watanabe, Epinephrine is an enhancer of rat intestinal absorption. J Control Release 102(3) (2005) 563-568.

[261] N. Numata, K. Takahashi, N. Mizuno, N. Utoguchi, Y. Watanabe, M. Matsumoto, T. Mayumi, Improvement of intestinal absorption of macromolecules by nitric oxide donor. J Pharm Sci 89(10) (2000) 1296-1304.

[262] A. Yamamoto, T. Uchiyama, R. Nishikawa, T. Fujita, S. Muranishi, Effectiveness and toxicity screening of various absorption enhancers in the rat small intestine: effects of absorption enhancers on the intestinal absorption of phenol red and the release of protein and phospholipids from the intestinal membrane. J Pharm Pharmacol. 48(12) (1996) 1285-1289.
K. Takahashi, T. Murakami, A. Kamata, R. Yumoto, Y. Higashi, N. Yata, Pharmacokinetic analysis of the absorption enhancing action of decanoic acid and its derivatives in rats. Pharm Res 11(3) (1994) 388-392.

K. Higaki, T. Yata, M. Sone, K. Ogawara, T. Kimura, Estimation of absorption enhancement by medium-chain fatty acids in rat large intestine. Res Comm Mol Pathol Pharmacol 109(3-4) (2001) 231-240.

M. Miyake, Y. Oka, T. Minami, H. Toguchi, M. Odomi, K. Ogawara, K. Higaki, T. Kimura, Combinatorial use of sodium laurate with taurine or L-glutamine enhances colonic absorption of rebamipide, poorly absorbable antiulcer drug, without any serious histopathological mucosal damages. J Pharm Sci 92(4) (2003) 911-921.

T. Uchiyama, A. Yamamoto, H. Hatano, T. Fujita, S. Muranishi, Effectiveness and toxicity screening of various absorption enhancers in the large intestine: intestinal absorption of phenol red and protein and phospholipid release from the intestinal membrane. Biol Pharm Bull 19(12) (1996) 1618-1621.

K. Sasaki, S. Yonebayashi, M. Yoshida, K. Shimizu, T. Aotsuka, K. Takayama, Improvement in the bioavailability of poorly absorbed glycyrrhizin via various non-vascular administration routes in rats. Int J Pharm 265(1-2) (2003) 95-102.

Y. Kinouchi, N. Yata, Effect of some amino acids on the rectal irritation caused by sodium caprate in conscious rats. Biol Pharm Bull 19(3) (1996) 375-378.

E.J. Van Hoogdalem, A.G. De Boer, D.D. Breimer, Rectal absorption enhancement of rate-controlled delivered ampicillin sodium by sodium decanoate in conscious rats. Pharm Weekbl 10(2) (1988) 76-79.

M. Mishima, A. Nagatomi, T. Yamakita, Y. Miura, O. Tsuzuki, Promotion of rectal absorption of sodium ampicillin by disodium glycyrrhetinic acid 3 beta-O-monohemiphthalate in rats. Biol Pharm Bull 18(4) (1995) 566-570.

E.J. van Hoogdalem, M.A. Hardens, A.G. de Boer, D.D. Breimer, Absorption enhancement of rectally infused cefoxitin sodium by medium-chain fatty acids in conscious rats: concentration-effect relationship. Pharm Res 5(7) (1988) 453-456.

M. Yamazaki, S. Itoh, M. Sawanoi, M. Kobayashi, S. Suzuki, T. Komatsu, K. Tanabe, The effect of fatty acids on the rectal absorption of acyclovir in rats. J Pharm Pharmacol. 42(6) (1990) 441-443.

K. Tanabe, N. Miyaji, N. Tatara, S. Itoh, M. Yamazaki, Effects of suppository bases on rectal absorption of atenolol. Jpn J Hosp Pharm. 15(3) (1989) 202-208.

B.J. Aungst, H. Saitoh, D.L. Burcham, S.-M. Huang, S.A. Mousa, M.A. Hussain, Enhancement of the intestinal absorption of peptides and nonpeptides. J Control Release 41(1-2) (1996) 19-31.

M.A. Radwan, H.Y. Aboul-Enein, The effect of oral absorption enhancers on the in vivo performance of insulin-loaded poly(ethylcyanoacrylate) nanospheres in diabetic rats. J Microencapsul 19(2) (2002) 225-235.

M. Miyake, T. Minami, Y. Oka, N. Kamada, H. Yamazaki, Y. Kato, T. Mukai, H. Toguchi, M. Odomi, K. Ogawara, K. Higaki, T. Kimura, Optimization of suppository preparation containing sodium laurate and taurine that can safely improve rectal absorption of rebamipide. Biol Pharm Bull 29(2) (2006) 330-335.

Y. Matsumoto, Y. Watanabe, I. Yamamoto, S. Shinozaki, T. Kakuhihari, M. Matsumoto, M. Obayashi, S. Anjou, Rectal absorption enhancement of vancomycin in...
rabbits by sodium hyaluronate or medium-chain fatty acids. Yakuzaigaku 54(1) (1994) 29-34.

[278] I. Dos Santos, F. Fawaz, A.M. Lagueny, F. Bonini, Improvement of norfloxacin oral bioavailability by EDTA and sodium caprate. Int J Pharm 260(1) (2003) 1-4.

[279] B.J. Aungst, H. Saitoh, C. Gerard, S.A. Mousa, D.L. Burcham, S.M. Huang, M. Hussain, Oral absorption enhancement of acyclic peptide fibrinogen antagonist using sodium caprate. Pharm Res 12(9 SUPPL.) (1995) S291.

[280] Y. Takeichi, K. Baba, Y. Kinouchi, Y. Iida, Y. Umeno, S. Muranishi, Y. Nakai, Combinative improving effect of increased solubility and the use of absorption enhancers on the rectal absorption of uracil in beagle dogs. Chem Pharm Bull 38(9) (1990) 2547-2551.

[281] H. Sakamoto, Y. Takahashi, M. Sakamoto, K. Misumi, Y. Kawasaki, K. Okamoto, Rectal absorption of ampicillin suppository in cattle. Animal Sci and Technol 66(11) (1995) 969-975.

[282] A.N. Campbell, G.R. Lakshmin, Conductances and surface tensions of aqueous solutions of sodium decanoate sodium laurate and sodium myristate at 25 degrees and 35 degrees. Can J Chem 43(6) (1965) 1729-1737.

[283] G. Schultheiss, R. Ribeiro, M. Diener, Fatty acids inhibit anion secretion in rat colon: apical and basolateral action sites. Pflugers Arch 442(4) (2001) 603-613.

[284] R.E. Kellum, Acne vulgaris. Studies in pathogenesis: relative irritancy of free fatty acids from C2 to C16. Arch Dermatol 97(6) (1968) 722-726.

[285] K.L. Tomlin, S.R. Clark, H. Ceri, Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J Microbiol Methods 57(1) (2004) 95-106.