Nonelementary categoricity and projective locally o-minimal classes

Boris Zilber
Nonelementary categoricity and projective locally o-minimal classes

Boris Zilber

Given a cover \mathcal{U} of a family of smooth complex algebraic varieties, we associate with it a class \mathcal{U}, containing \mathcal{U}, of structures locally definable in an o-minimal expansion of the real numbers. We prove that the class is \aleph_0-homogenous over submodels and stable. It follows that \mathcal{U} is categorical in cardinality \aleph_1. In the case when the algebraic varieties are curves we prove that a slight modification of \mathcal{U} is an abstract elementary class categorical in all uncountable cardinals.

1. Introduction

1.1. Let $k_0 \subseteq \mathbb{C}$, a countable subfield, $\{X_i : i \in I\}$ a collection of nonsingular irreducible complex algebraic varieties (of dim > 0) defined over k_0 and $I := (I, \geq)$ a lattice with the minimal element 0 determined by unramified k_0-rational epimorphisms $\text{pr}_{i',i} : X_{i'} \to X_i$, for $i' \geq i$. Let $\mathcal{U}(\mathbb{C})$ be a connected complex manifold and $\{f_i : i \in I\}$ a collection of holomorphic covering maps (local biholomorphisms) $f_i : \mathcal{U}(\mathbb{C}) \to X_i(\mathbb{C})$, $\text{pr}_{i',i} \circ f_i' = f_i$.

as illustrated by

MSC2020: 03C75.

Keywords: categoricity, o-minimal, quasiminimal.
1.2. In a number of publications, abstract elementary classes \mathcal{U} containing structures (U_i, f_i, X_i), with an abstract algebraically closed field K instead of \mathbb{C} (pseudoanalytic structures) have been considered; see [Zilber 2016] for a survey. A typical result is a formulation of a “natural” $L_{\omega_1,\omega}$-axiom system Σ which holds for $(U(\mathbb{C}), f_i, X_i(\mathbb{C}))$ and defines a class \mathcal{U} categorical in all uncountable cardinals. The proofs, in each case, rely on deep results in arithmetic geometry, moreover one often is able to show that the fact of categoricity of Σ implies the arithmetic results.

The above raised the question of whether an uncountably categorical AEC \mathcal{U} containing $(U(\mathbb{C}), f_i, X_i(\mathbb{C}))$ exists under general enough assumptions on the data, leaving aside the question of axiomatisability and related arithmetic theory.

The current paper answers this question in the positive at least in the case when the X_i are curves. We construct \mathcal{U} as the class of structures $U(K)$ ($K = \mathbb{R} + i\mathbb{R}$) locally definable (in the sense of M. Edmundo and others) in models R of an o-minimal expansion of the real numbers projected (restricted) to the language L_{glob} (global) the primitives of which are given by analytic subsets of U^m locally defined in the o-minimal structure. The main theorem states that, for the case when the complex dimension of $U(\mathbb{C})$ is equal to 1, \mathcal{U} can be extended to a class of L_{glob}-structures which is an abstract elementary class categorical in all uncountable cardinals. For the general case we only were able to prove categoricity in \aleph_1.

1.3. Our main technical tool is a slightly generalised theory of K-analytic sets in o-minimal expansions of the real numbers developed by Y. Peterzil and S. Starchenko [2008]. We also make an essential use of the theory of quasiminimal excellence, especially the important paper by M. Bays, B. Hart, T. Hyttinen, M. Kesälä and J. Kirby [Bays et al. 2014].

Note that our main technical results effectively prove that the structures in \mathcal{U} are analytic Zariski in a sense slightly weaker than in [Zilber 2017], where we proved results similar to the current ones for an analytic Zariski class.

1.4. Most of our examples, see Section 2.3, have become objects of interest in the theory of o-minimality due to the Pila–Wilkie–Zannier method of counting special points of Shimura varieties and more generally; see the survey [Scanlon 2012]. Effectively, one counts points of $U(L) \cap D \cap S$ where D is an open subset of $U(\mathbb{C})$ definable in the o-minimal structure, S an L_{glob}-definable analytic subsets of $U(\mathbb{C})$ and L a number field relevant to the case at hand.

At the same time one should note that in representing an L_{glob}-structure as $U(K)$, $K = \mathbb{R} + i\mathbb{R}$, there is a remarkable degree of freedom in the choice of a model R of the underlying o-minimal theory.

This raises a lot of questions on the interaction between the theory of AEC and o-minimality, the model theory–arithmetic geometry perspective of categorical classes and the o-minimal Pila–Wilkie–Zannier method.
2. Preliminaries

2.1. Let \mathbb{R}_{An} be an o-minimal expansion of the real numbers, $\mathbb{C} = \mathbb{R} + i\mathbb{R}$ in the language of rings and

$$\text{Mod}_{An} = \{ R : R \equiv \mathbb{R}_{An} \}$$

the class of models of the complete o-minimal theory $\text{Th}(\mathbb{R}_{An})$ in the language L_{An}. To avoid unnecessary complications we assume that L_{An} is a countable fragment of the full language of \mathbb{R}_{An}.

We write K for the algebraically closed field $K(\mathbb{R}) := \mathbb{R} + i\mathbb{R}$.

2.2. $(\mathbb{R}_{An}, \{ f_i \})$-admissible open cover of $\mathbb{U}(\mathbb{C})$. In addition to the data and notation spelled out in Section 1.1, we assume that:

(i) There is a system of connected open subsets $D_n(\mathbb{C}) \subset \mathbb{U}(\mathbb{C})$, $n \in \mathbb{N}$, definable in \mathbb{R}_{An} (possibly with parameters), such that

$$\text{for any } n \in \mathbb{N}, \quad D_n \subseteq D_{n+1}, \quad \text{and } \bigcup_n D_n(\mathbb{C}) = \mathbb{U}(\mathbb{C}).$$

(ii) The restriction $f_{i,n}$ of f_i on D_n is definable in \mathbb{R}_{An} for each $i \in I$ and $n \in \mathbb{N}$, and for each i there is n such that $f_i(D_n) = \mathbb{X}_i$.

(iii) For all $i \in I$, there is a group Γ_i of biholomorphic transformations on $\mathbb{U}(\mathbb{C})$, so that the restrictions of the transformations to the $D_n(\mathbb{C})$ are L_{An}-definable and fibres of f_i are Γ_i-orbits, that is,

$$f_i : \mathbb{U}(\mathbb{C}) \to \mathbb{X}_i(\mathbb{C}) \cong \mathbb{U}(\mathbb{C}) / \Gamma_i.$$

Moreover, for $i > j$, Γ_i is a finite index subgroup of Γ_j, that is, the cover $\text{pr}_{i,j} : \mathbb{X}_i \to \mathbb{X}_j$ is finite.

(iv) The system of maps f_i, $i \in I$ is \mathbb{U}-complete: there is a chain $I_0 \subseteq I$ such that

$$\bigcap_{l \in I_0} \Gamma_l = \{1\}.$$

2.3. Examples of admissible \mathbb{R}_{An}. In all our examples \mathbb{R}_{An} is a L_{An}-reduct of $\mathbb{R}_{exp,an}$, the real numbers with exponentiation and restricted analytic functions. What varies is \mathbb{U}, k_0 and the choice of the family $\{ f_i, D_n : i \in I, n \in \mathbb{N} \}$ the members of which assumed to be L_{An}-definable.

(1) $\mathbb{U}(\mathbb{C}) = \mathbb{C}$, $I = \mathbb{N}$, $\mathbb{X}_i = \mathbb{G}_m$ for all $i \in I$, the algebraic torus,

$$D_n = \{ z \in \mathbb{C} : -2\pi n < \text{Im} z < 2\pi n \},$$

$$f_k(z) = \exp\left(\frac{z}{k}\right),$$

and $k_0 = \mathbb{Q}$.
(2) $\mathbb{U}(\mathbb{C}) = \mathbb{C}, \ I = \mathbb{N}, \ X_i = E_\tau$ for all $i \in I$, an elliptic curve

$$f_k = \exp_{\tau,k} : \mathbb{C} \to E_\tau \subset \mathbb{P}^2, \ z \mapsto \exp_{\tau}(\frac{z}{k}),$$

the covering map for E_τ (\exp_{τ} is constructed from the Weierstrass \wp-function and its derivative \wp', with period $k \Lambda_\tau = k\mathbb{Z} + \tau k\mathbb{Z}$).

D_1 is the interior of the square in \mathbb{C} with vertices $(0, 1, \tau, \tau + 1)$, and $D_n = n \cdot D_1$. Here k_0 is the field of definition of E_τ.

(3) $\mathbb{U}(\mathbb{C}) = \mathbb{H}$, the upper half-plane.

$$D_n = \{ z \in \mathbb{H} : -\frac{1}{2}n \leq \text{Re}(z) < \frac{1}{2}n \ \& \ \text{Im}(z) > \frac{1}{n+1} \}.$$

For $n = 1$ this is the interior of the fundamental domain of the j-function

$$F = \{ z \in \mathbb{H} : -\frac{1}{2} \leq \text{Re}(z) < \frac{1}{2} \ \& \ \text{Im}(z) > \frac{1}{2} \}$$

and the results of [Peterzil and Starchenko 2013] state that the restriction of j to F is defined in $\mathbb{R}_{\exp,\text{an}}$. Note that, for each n, D_n can be covered by finitely many shifts of D_1 by Möbius transformations from $\Gamma := \text{PSL}_2(\mathbb{Z})$. This allows one to define j on D_n in $\mathbb{R}_{\exp,\text{an}}$.

Moreover, we can similarly consider more general functions

$$j_N : \mathbb{H} \to \mathbb{Y}(N) \cong \mathbb{H}/\Gamma(N)$$

onto level N Shimura curves. A fundamental domain for j_N is a finite union of finitely many shifts of F and the analysis of [Peterzil and Starchenko 2013] shows that the restriction of j_N on its fundamental domain is definable in $\mathbb{R}_{\exp,\text{an}}$. Thus we can take the family $\{j_N\}$ to be our $\{f_i\}$ ($i = N$) and $\mathbb{Y}(N)$ to be the X_i. It is well-known that the $\mathbb{Y}(N)$ and j_N are defined over $k_0 = \mathbb{Q}^{ab}$, the extension of \mathbb{Q} by roots of 1.

(4) $\mathbb{U}(\mathbb{C}) = \mathbb{H}$. Let Γ is a Fuchsian subgroup of $\text{PGL}_2(\mathbb{R})$ and $\{\Gamma_i : i \in I\}$ the system of all finite index subgroups of Γ (see [Katok 1992]). Then the \mathbb{H}/Γ_i are biholomorphic to compact projective curves $X_i(\mathbb{C})$ with bounded fundamental domains. Thus one can define D_n and f_i as in Section 2.2, with k_0 being the union of the fields of definition of the X_i.

(5) [Peterzil and Starchenko 2013] supplies us with a plethora of other examples, in particular $\mathbb{U}(\mathbb{C}) = \mathbb{H}_g$, the Siegel half-space, and X_i moduli spaces of polarised algebraic varieties.

3. The K-analytic setting

3.1. Abstract structures definable in \mathbb{R}. Now we extend notations of Section 2.2 and, assuming $R \in \text{Mod}_{\text{An}}$ be given, let $\mathbb{U}, \ X_i, \ (i \in I), \ D_n, \ \Gamma_i$ and f_i be defined as in Section 2.2 in the language L_{An}. In particular, we read $\mathbb{U} := \mathbb{U}(K), \ X_i := X_i(K)$, for $K = K(R)$, when the choice of the model R does not matter.
More precisely, we define
\[\bigcup(K) = \bigcup_n D_n(K), \]
which is an \(L_{\omega_1,\omega} \) interpretation of \(\bigcup \) in \(R \) for each \(i \in I \). Now \(f_i : \bigcup(K) \to \mathbb{X}_i(K) \) is defined to be the map such that it coincides with the map \(f_{i,n} : D_n(K) \to \mathbb{X}_i(K) \) for each \(n \in \mathbb{N} \). Note that the latter is \(K \)-holomorphic in the sense of [Peterzil and Starchenko 2008]. We will often say \(K \)-holomorphic (analytic) in an extended sense: the restriction \(f_{i,n} \) of \(f_i \) to \(D_n(K) \) is \(K \)-holomorphic.

We write \(D_n \subseteq \bigcup^m \) meaning that \(n = \langle n_1, \ldots, n_m \rangle \in \mathbb{N}^m \) and
\[D_n = D_{n_1} \times \cdots \times D_{n_m}. \]

Define \(f_i \) on \(D_n \) as \(\langle u_1, \ldots, u_m \rangle \mapsto \langle f_i(u_1), \ldots, f_i(u_m) \rangle \). This obviously extends to the map \(f_i \) with the domain \(\bigcup^m \).

We will often restrict our analysis of \(K \)-analytic sets to open neighbourhoods, where \(open \) always means definable open.

Let \(k_0 \) be a subfield of \(K \) such that \(k_0 \subseteq \text{dcl}(\emptyset) \), that is any point of \(k_0 \) is definable in \(R \) without parameters. Note that \(k_0 \) contains any point of the form \(f_i(a) \) for \(i \in I \) and a definable point \(a \in D_n \).

More generally, we will work with an arbitrary \(k \) such that \(k_0 \subseteq k \subseteq K \).

Definition 3.2. Given \(S \subseteq \bigcup^m \) we say that \(S \) is \(L_{\text{glob}}(k) \)-primitive if there are \(I_S \subseteq I \) and Zariski closed \(Z_i \subseteq \mathbb{X}_i^m, i \in I_S \), defined over \(k \), such that
\[S = \bigcap_{i \in I_S} f_i^{-1}(Z_i). \]

Remark 3.3. In **Definition 3.2** we may assume without loss of generality that \(I_S \) is a chain and, for \(i' \geq i \) in \(I_S \),
\[\text{pr}_{i'i}(Z_{i'}) = Z_i. \]

Proof. First, we may assume that \(I_S = I \) by setting for \(i \in I \setminus I_S \) \(Z_i := \mathbb{X}_i^m \).

For a finite \(J \subseteq I \), take a \(i_J \in I \) such that \(i_J \geq J \). Set, for each \(k \in J \),
\[Z_{i_J,k} := \text{pr}_{i_J,k}^{-1}(Z_k) \subseteq \mathbb{X}_i^m \quad \text{and} \quad Z_{i_J}^* = \bigcap_{k \in J} Z_{i_J,k}. \]

Then, since \(f_k = \text{pr}_{i_J,k} \circ f_{i_J} \),
\[f_{i_J}^{-1}(Z_{i_J,k}) = f_k^{-1}(Z_k) \quad \text{and} \quad \bigcap_{k \in J} f_k^{-1}(Z_i) = f_{i_J}^{-1}(Z_{i_J}^*). \]

Since \(I \) is a countable lattice we can represent
\[I = \bigcup_{n \in \mathbb{N}} J_n \]
where \(J_n \subseteq I_S \) are finite and \(J_{n+1} \supseteq J_n \) for each \(n \).
Consider (2) with \(J = J_n \) and write \(i_{J_n} \) as \(i_n \). Clearly, \(i_{n+1} \geq i_n \) and

\[
S = \bigcap_{n \in \mathbb{N}} f_{i_n}^{-1}(Z_{i_n}^*). \tag{3}
\]

Finally, note that in (3) \(\text{pr}_{i,n,i_l}(Z_{i_n}^*) \subseteq Z_{i_l}^* \) for \(n \geq l \), and \(\text{pr}_{i_n,i_l}(Z_{i_n}^*) \) is a Zariski closed subset of \(\mathbb{X}_i^m \) since \(\text{pr}_{i_n,i_l} \) is unramified (and étale). Hence, we may replace \(Z_{i_l}^* \) by \(\bigcap_{n \geq l} \text{pr}_{i_n,i_l}(Z_{i_n}^*) \) while keeping (3). Doing this consecutively for \(l = 1, 2, \ldots \) delivers us (1). \(\square \)

Remark. The equality relation is \(\text{L}_{\text{glob}}(k_0) \)-primitive.

3.4. K-holomorphic maps and K-analytic subsets.

We refer to [Peterzil and Starchenko 2008] for definitions and basic facts on K-analyticity in open definable subsets \(D_\bar{n} \). By slight abuse of the terminology we call a subset \(S \subseteq \mathbb{U}^m \) K-analytic if \(S \cap D_\bar{n} \) is K-analytic for each \(D_\bar{n} \subseteq \mathbb{U}^m \).

Since the complex covering maps \(f_i \) are holomorphic, the maps \(f_{i,n} : D_n(K) \to \mathbb{X}_i(K) \) are K-holomorphic and locally K-biholomorphic. It follows the sets \(f_i^{-1}(Z_i) \) in Definition 3.2 are K-analytic and are locally K-biholomorphically isomorphic to the \(Z_i \).

The dimension \(\text{dim} \) is always the K-dimension of a K-analytic set. When \(Z \) is an algebraic variety, the dimension of the respective K-analytic set is \(\text{dim} Z := \text{dim} Z(K) \), and this coincides with the dimension in the sense of algebraic geometry.

Lemma 3.5. Given an \(\text{L}_{\text{glob}}(k) \)-primitive \(S \), \(S \cap D_\bar{n} \) is K-analytic in \(D_\bar{n} \). \(S \) is K-analytic in \(\mathbb{U}^m \).

Proof. Let \(S \) be as in Definition 3.2 with the assumption (1) and let \(S_l := f_{i_l}^{-1}(Z_l) \). It follows by definition that the \(S_l \cap D_\bar{n} \) are K-analytic. We need to prove that \(\bigcap_{i \in I_S} S_i \cap D_\bar{n} \) is analytic.

Let \(s \in S \cap D_\bar{n} \). For each \(i \in I_S \) there is an open neighbourhood \(O_{s,i} \) of \(s \) such that \(S_i \cap O_{s,i} \) is irreducible. We may assume that \(S_i' \cap O_{s,i'} \subseteq S_i \cap O_{s,i} \) for \(i' \geq i \). Then there exists \(i_0 \in I_S \) such that for \(i' \geq i_0 \), \(\text{dim} S_i' \cap O_{s,i'} = \text{dim} S_i \cap O_{s,i} \).

Since \(S_i \cap O_{s,i} \) is irreducible, \(S_i' \cap O_{s,i'} = S_i \cap O_{s,i} \) for all \(i' \geq i \geq i_0 \). Thus \(S \cap O_{s,i} = S_i \cap O_{s,i} \), which proves that \(S \) is K-analytic in the neighbourhood, and hence in \(D_\bar{n} \). \(\square \)

Remark 3.6. \(S_{\text{sing}} \), the set of singular points of \(\text{L}_{\text{glob}}(k) \)-primitive \(S \), is also an \(\text{L}_{\text{glob}}(k) \)-primitive since

\[
S_{\text{sing}} = \bigcap_{i \in I_S} f_i^{-1}(Z_i^{\text{sing}}).
\]

Proposition 3.7. Let \(S \subseteq \mathbb{U}^m \) be \(\text{L}_{\text{glob}}(k) \)-primitive and let, for some \(n \), \(S_{j,\bar{n}} \subseteq S \cap D_\bar{n} \) be a K-analytic irreducible component of \(S \cap D_\bar{n} \). Then:
For any $D_{n'} \supseteq D_n$ there is unique $S_{j,n'} \supseteq S_{j,n}$ a K-analytic irreducible component of $S \cap D_{n'}$. The set

$$S_j := \bigcup_{D_{n'} \supseteq D_n} S_{j,n'}$$

is well-defined. (Call it an irreducible component of S.)

(ii) The number of K-analytic components S_j of S is at most countable.

(iii) The irreducible components S_j are $L_{\text{glob}}(k')$-primitive for some algebraic extension k' of k.

(iv) For any i, $f_i(S_j)$ is a Zariski closed k'-definable geometrically irreducible subset of \mathbb{X}_i^m.

Proof. By [Peterzil and Starchenko 2008, 4.12], $S_{j,n'}$ is irreducible if and only if $S_{j,n'} \setminus S_{j,n'}^{\text{sing}}$ is definably connected. The union of any two irreducible extensions of $S_{j,n} \setminus S_{j,n}^{\text{sing}}$ will be connected, since any two points in the union can be connected by a definable path passing through $S_{j,n} \setminus S_{j,n}^{\text{sing}}$. Hence the extensions coincide, which gives us the first statement of proposition.

The number of such irreducible components is at most countable since the number of components in each $D_{n'}$ is finite. This proves (i) and (ii).

Define $\dim S_j$ to be $\dim S_{j,n}$, which does not depend on D_n as long as $S_j \cap D_n \neq \emptyset$, since irreducible sets are of pure dimension (the proof is the same as in the complex case, see also [Peterzil and Starchenko 2008]). Define

$$\dim S := \max_j \dim S_j. \quad (4)$$

We may assume that

$$S = \bigcap_{i \in I_0} f_i^{-1}(Z_i)$$

for some chain $I_0 \subseteq I$, some Zariski closed $Z_i \subseteq \mathbb{X}_i^m$ such that $\dim Z_i = \dim S$ and $\text{pr}_{i,l}(Z_i) = Z_l$ for $i > l$ in I_0.

Let $S^i := f_i^{-1}(Z_i)$ and let $S^i = \bigcup_{j \in J_i} S_j^i$ be the decomposition into irreducible analytic components with maximum dimension equal to $\dim S$. It follows that the components of S^i are also components of S^l for $i > l$, and thus S_j is a component of $f_l^{-1}(Z_l)$.

Fix l for the time being. We can represent $Z_l = \bigcup_{p \in P} Z_{l,p}$, a finite union of geometrically irreducible algebraic subvarieties $Z_{l,p}$ defined over some algebraic extension k' of k. Also, S can be represented as a finite union of $L_{\text{glob}}(k')$-primitives,

$$S = \bigcup_{p \in P} T_{l,p}, \quad \text{where} \quad T_{l,p} = S \cap f_i^{-1}(Z_{l,p})$$

and the irreducible component S_j of S is an irreducible component of one of $T_{l,p}$.
We assume without loss of generality that Z_l is geometrically irreducible, P is a singleton and, since we are only interested in S_j, assume

$$S = f_l^{-1}(Z_l).$$

We omit the subscript l in the claim below.

Claim. $f(S_j) = Z$ and for any other component S_k of S there is $\gamma \in \Gamma$ such that $\gamma \cdot S_j = S_k$.

Proof. By Section 1.1 there is \bar{n} such that $f(D_{\bar{n}}) = \mathbb{X}^m$.

By our assumption then

$$Z = f\left(\bigcup_{k \in J} S_k \right) = \bigcup_{k \in J} f(S_k \cap D_{\bar{n}}) = \bigcup_{k \in J_0} f(S_k \cap D_{\bar{n}})$$

where J lists all the components of S and J_0 lists the components S_k such that $S_k \cap D_{\bar{n}} \neq \emptyset$, so J_0 is finite.

Hence for the finite J_1, $J_0 \subseteq J_1 \subseteq J$, we have

$$Z = \bigcup_{k \in J_1} f(S_k).$$

Let Z^{sing} the singular points of Z and S^{sing} the singular points of S, which by the fact that f is a local biholomorphisms are related as

$$f^{-1}(Z^{\text{sing}}) = S^{\text{sing}}. \tag{5}$$

Note that if $s \in S_j \cap S_k$, a common point of two distinct components of S then $s \in S^{\text{sing}}$. That is $S \setminus S^{\text{sing}}$, the analytic subset of the open set $\mathbb{X}^m \setminus S^{\text{sing}}$, splits into nonintersecting analytic components $S_k \setminus S^{\text{sing}}$. We get from (5)

$$Z \setminus Z^{\text{sing}} = \bigcup_{k \in J_1} f(S_k \setminus S^{\text{sing}}). \tag{6}$$

The union on the right cannot be disjoint, that is, either J_1 is a singleton, or there are distinct $k_0, k_1 \in J_1$ such that $f(S_{k_0} \setminus S^{\text{sing}}) \cap f(S_{k_1} \setminus S^{\text{sing}}) \neq \emptyset$. Indeed, suppose for a contradiction that it is disjoint. Note that for a respective $D_{\bar{n}}$, $f : D_{\bar{n}} \to \mathbb{X}^m$ is a (definably) closed covering map since it is locally biholomorphisms. Hence $f(D_{\bar{n}} \cap S_k \setminus S^{\text{sing}})$, $k \in J_1$, are disjoint definably closed subsets the union of which is the definably connected algebraic set $Z \setminus Z^{\text{sing}}$, which is a contradiction.

Now we claim that

$$f(S_{k_0} \setminus S^{\text{sing}}) = Z \setminus Z^{\text{sing}} \quad \text{for a } k_0 \in J_1. \tag{7}$$

Indeed, otherwise there are $k_0, k_1 \in J_1$ such that $f(S_{k_0} \setminus S^{\text{sing}}) \neq f(S_{k_1} \setminus S^{\text{sing}})$ but $f(S_{k_0} \setminus S^{\text{sing}}) \cap f(S_{k_1} \setminus S^{\text{sing}}) \neq \emptyset$. The latter means that there are $s_0 \in S_{k_0} \setminus S^{\text{sing}}$ and $s_1 \in S_{k_1} \setminus S^{\text{sing}}$ such that $f(s_1) = f(s_0)$, and hence $s_1 = \gamma \cdot s_0$ for some $\gamma \in \Gamma$.

It follows that the K-analytic sets S_{k_1} and $\gamma \cdot S_{k_0}$ intersect in a nonsingular point of $S \cap D_{\tilde{n}}$ and thus $S_{k_1} \cap D_{\tilde{n}} = \gamma \cdot S_{k_0} \cap D_{\tilde{n}}$, and so

$$S_{k_1} = \gamma \cdot S_{k_0} \quad \text{and} \quad f(S_{k_1}) = f(S_{k_0}).$$

(7) follows. This finishes the proof of the claim and of the statement (iv). \square

Now, for any $i \in I$ consider

$$Z_{ij} := f_i(S_j)$$

which we proved to be Zariski closed irreducible and

$$f_i^{-1}(Z_{ij}) = \bigcup_{\gamma \in \Gamma_i} \gamma \cdot S_j.$$

Since by assumption $\bigcap_{l \in I} \Gamma_l$ is trivial, for some chain $I_1 \subseteq I$ extending I_0 we have

$$S_j = \bigcap_{l \in I_1} f_l^{-1}(Z_{lj}),$$

proving (iii). \square

Definitions 3.8. For an m-tuple u in U and a subfield $k \subset K$ the locus of u over k, written $\text{loc}(u/k)$, is the minimum $L_{\text{glob}}(k)$-primitive containing u.

We say an $L_{\text{glob}}(k)$-primitive S is k-irreducible if S cannot be represented as $S_1 \cup S_2$ with $L_{\text{glob}}(k)$-primitives S_1 and S_2, both distinct from S.

Remark. Note that $\text{loc}(u/k)$ is k-irreducible.

4. L_{glob}-structures

4.1. Recall, see [Pillay and Steinhorn 1986], that an o-minimal structure R is a pregeometry, i.e., has a well-behaved dependence relation, and one can define a notion of a (combinatorial) dimension $\text{cdim} A$ of a subset $A \subseteq R$ (not to be confused with K-dimension) as the cardinality of a maximal independent subset of A.

In particular, $\text{cdim} R_0 = 0$ for the prime model R_0 of the theory $\text{Th}(\mathbb{R}_{\text{An}})$. And, if $\text{card} \ R = \kappa > \aleph_0$, then $\text{cdim} R = \kappa$.

This has the following relationship with $\text{dim}_R S$ (the “real” dimension in the sense of [Peterzil and Starchenko 2008]) for an R-manifold $S \subseteq R^m$ defined over a set C: assuming $\text{cdim} R / C \geq m$, for any $d \in \mathbb{N}$,

$$\text{dim}_R S \geq d \text{ if and only if there exists } \langle s_1, \ldots, s_m \rangle \in S \text{ such that } \text{cdim}(\{s_1, \ldots, s_m\}/C) \geq d. \quad (8)$$

Recall that if S is K-analytic, then

$$\text{dim} S = \frac{1}{2} \text{dim}_R S. \quad (9)$$
Definition 4.2. Given $R \in \text{Mod}_{\text{An}}$, define $\mathfrak{A}(R)$ to be the structure with universe $\bigcup(K)$ (K the field $R + iR$) in the language of $L_{\text{glob}}(k_0)$-primitives.

Define \mathfrak{A} to be the class of all structures of the form $\mathfrak{A}(R)$.

Fact 4.3. For K an algebraically closed field, consider the structure $\mathcal{X}(K)_{\text{Zar},k_0}$ on an infinite algebraic variety $\mathcal{X}(K)$ over k_0 equipped with relations $Z \subseteq \mathcal{X}^m$, all Zariski closed Z over k_0.

The field structure K together with its k_0-points is \emptyset-interpretable in $\mathcal{X}(K)_{\text{Zar},k_0}$.

This is well-known. A detailed proof is given in [Bays 2009, Appendix A].

Proposition 4.4. $\mathfrak{A}(R)$ interprets in the first order way over \emptyset the field K, points of the subfield k_0 and all the maps $f_i : \bigcup \to \mathcal{X}_i(K)$.

Proof. First note that the equivalence relations on \bigcup,

$$E_i(u_1, u_2) \equiv f_i(u_1) = f_i(u_2),$$

are $L_{\text{glob}}(k)$-primitives. Thus the sets $\mathcal{X}_i(K)$ are \emptyset-interpretable as \bigcup/E_i together with the maps $f_i : \bigcup \to \bigcup/E_i$.

Given a Zariski closed $Z_i \subseteq \mathcal{X}^m_i$ we have $Z_i^{\bigcup} := f_i^{-1}(Z_i)$, a definable subset of \bigcup^m. Thus $Z_i = f_i(Z_i^{\bigcup})$ are \emptyset-interpretable.

Now the structure $\mathcal{X}_0(K)_{\text{Zar},k_0}$ equipped with relations $Z \subseteq \mathcal{X}^m_0$, for all Zariski closed Z over k_0, is \emptyset-interpretable.

It follows from Fact 4.3 that one can interpret K and k_0-points in $\mathfrak{A}(R)$. \hfill \square

Corollary 4.5. Any $L_{\text{glob}}(K)$-primitive is type-definable in $\mathfrak{A}(R)$ using parameters.

Below \bigcup is always the universe $\bigcup(K)$ for some $\mathfrak{A}(R)$ in \mathfrak{A}.

Lemma 4.6. If k is algebraically closed then $\text{loc}(u/k)$, the locus of u over k, is K-analytically irreducible.

If $S \subseteq \bigcup^m$ is an $L_{\text{glob}}(k)$-primitive and K-analytically irreducible, then $S = \text{loc}(u/k)$, for some $u \in S$.

Proof. The first statement is just a corollary to Proposition 3.7(iv).

Let $\dim S = d$. By (8) and (9) there is a $u \in S$ such that $u = \langle s_1, \ldots, s_m \rangle$ with $\text{cdim}(s_1, \ldots, s_m/k) = 2d$. Then $\text{loc}(u/k) \subseteq S$ and, again by (8) and (9), $\dim \text{loc}(u/k) \geq d$. Since S is K-analytically irreducible, $\text{loc}(u/k) = S$. \hfill \square

Lemma 4.7. Let $S \subseteq \bigcup^m$ be an $L_{\text{glob}}(k)$-primitive, $\dim S = d$. Assume also $\text{cdim}(R/k) \geq \aleph_0$. Then, for any family $L_{j \in J}$ of $L_{\text{glob}}(k)$-primitives such that $\dim L_j < d$, for all $j \in J$,

$$S \setminus \bigcup_{j \in J} L_j \neq \emptyset. \quad (10)$$

Proof. S contains a point $u = \langle s_1, \ldots, s_m \rangle$ with $\text{cdim}(s_1, \ldots, s_m/k) = 2d$, which is not a point of any L_j. \hfill \square
Proposition 4.8 (the projection of an irreducible analytic set). Let k be algebraically closed, $\text{cdim}(R/k) \geq \aleph_0$. Let $T \subseteq \mathbb{U}^{m+1}$ be an $L_{\text{glob}}(k)$-primitive K-analytically irreducible, and let $p : \mathbb{U}^{m+1} \to \mathbb{U}^m$ be the projection onto the first m coordinates. Then there are an $L_{\text{glob}}(k)$-primitive $S \subseteq \mathbb{U}^m$, an $i_0 \in I$ and a Zariski closed subset $R \subseteq X_{i_0}^m$ defined over k such that $\dim R < \dim S$ and

$$S \setminus f_{i_0}^{-1}(R) \subseteq p(T) \subseteq S. \quad (11)$$

Moreover, for any $d \leq \dim T - \dim S$, there is a Zariski closed $R_d \subseteq X_{i_0}^m$ defined over k such that $R \subseteq R_d$, $\dim R_d < \dim S$ and

$$p(T) \setminus f_{i_0}^{-1}(R_d) = p_d(T), \quad (12)$$

where

$$p_d(T) := \{s \in p(T) : \dim(p^{-1}(s) \cap T) \leq d\}.$$

Proof. By Lemma 4.6,

$$T = \text{loc}(\tilde{u}v/k)$$

for some $\tilde{u}v \in \mathbb{U}^{m+1}$, $(\tilde{u} \in \mathbb{U}^m, v \in \mathbb{U})$.

Let

$$S = \text{loc}(\tilde{u}/k).$$

By definition

$$S = \bigcap_{i \in I_0} f_i^{-1}(Z_i), \quad T = \bigcap_{i \in I_0} f_i^{-1}(W_i)$$

for some Zariski closed $Z_i \subseteq X_i^m$, $W_i \subseteq X_i^{m+1}$ over k and we apply the same notation to the projection map $p : X_i^{m+1} \to X_i^m$. By Proposition 3.7(iv) we may assume that all the Z_i and W_i are irreducible and of dimension equal to that of S and T respectively,

$$f_i(S) = Z_i \quad \text{and} \quad f_i(T) = W_i \quad \text{for all } i \in I_0,$$

and $f_i(\tilde{u})$ is a generic point of Z_i, $f_i(\tilde{u}) \cap f_i(v)$ a generic point of W_i.

By basic algebraic geometry, $p(W_i)$ is a constructible irreducible set and $f_i(\tilde{u})$ its generic point, and thus the Zariski closure of $p(W_i)$ is equal to Z_i. That is, there are Zariski closed $R_i \subseteq Z_i$ over k such that

$$Z_i = p(W_i) \cup R_i \quad \text{and} \quad \dim R_i < \dim Z_i. \quad (13)$$

Since

$$p\left(\bigcap_{i \in I} f_i^{-1}(W_i)\right) \subseteq \bigcap_{i \in I_0} p(f_i^{-1}(W_i)) = \bigcap_{i \in I_0} f_i^{-1}(p(W_i)),$$

we have

$$p(T) \subseteq S.$$
Let i_0 be an element of I_0 and, for simplicity of notation, $f := f_{i_0}$, so $f(T) = W$, $f(S) = Z$ and $Z = p(W) \cup R$ as in (13).

By the basic assumptions, given arbitrary $t \in T$, $s = p(t)$, for some R-definable open neighbourhood $U \subset \mathbb{U}^m$ of s and open neighbourhood $U \times V \subset \mathbb{U}^{m+1}$ of t, with $V \subset \mathbb{U}$, the restriction $f_U : U \to \mathbb{X}^m$ and $f_{U \times V} : U \times V \to \mathbb{X}^{m+1}$ are injective.

Thus we obtain the commutative diagram

$$
\begin{array}{ccc}
T \cap (U \times V) & \xrightarrow{f_{U \times V}} & W \\
\downarrow p & & \downarrow p \\
S \cap U & \xrightarrow{f_U} & p(W) \supseteq Z \setminus R
\end{array}
$$

(14)

By comparing images of the downward-pointing arrows we conclude

$$
S \cap U \supseteq p(T \cap (U \times V)) \supseteq f_U^{-1}(Z \setminus R).
$$

Note that

$$
f_U^{-1}(Z \setminus R) = S \cap U \setminus f^{-1}(R),
$$

and the choice of R is independent on the choice of U. Hence $p(T) \supseteq S \setminus f^{-1}(R)$ and (11) is proved.

To prove the second statement recall another basic fact of algebraic geometry: there is a Zariski closed $R_d \subset \mathbb{X}^m$ such that

$$
p(W) \setminus R_d = p_d(W) := \{ z \in p(W) : \dim p^{-1}(z) \cap W \leq d \}.
$$

Now repeat the argument with the diagram (14) with $p_d(W)$ in place of $p(W)$. This proves (12).

Recall the notion of an analytic Zariski structure, see [Zilber 2010; 2017].

Corollary 4.9. Assuming that k is algebraically closed and $\text{cdim}(R/k) \geq \aleph_0$, the structure $\mathcal{U}(R)$ in the language $\mathcal{L}_{\text{glob}}(k)$ is an analytic Zariski structure.

Proof. The statement of Proposition 4.8 asserts that the structure on \mathcal{U} determined by $\mathcal{L}_{\text{glob}}(k)$-primitives satisfies the key axioms (WP) and (FC) of the definition of an analytic Zariski structure. The rest of the axioms follow easily from definitions and basic algebraic geometry.

The next statements and their proofs are similar to one of the main statements of [Zilber 2017] for analytic Zariski structures. More early work of M. Gavrilovich also proves this for complex analytic Zariski structures.

Proposition 4.10. \mathcal{U} is \aleph_0-homogeneous over algebraically closed subfields:

Suppose $\mathcal{U}(R_1), \mathcal{U}(R_2) \in \mathcal{U}, R_0, R_1, R_2 \in \text{Mod}_{\text{An}}, R_0 \subseteq R_1, R_0 \subseteq R_1$.

Let $k \subseteq K_0 = K(R_0)$ be an algebraically closed subfield such that $\text{cdim}(R_1/k) \geq \aleph_0$ and $\text{cdim}(R_2/k) \geq \aleph_0$.

Then for any \(\bar{u}_1 \in \bigcup^m(K_1), \bar{u}_2 \in \bigcup^m(K_2), \) and \(w_1 \in \bigcup(K_1) \) such that
\[
\text{loc}(\bar{u}_1/k) = \text{loc}(\bar{u}_2/k)
\]
there is \(w_2 \in \bigcup(K_2) \) such that
\[
\text{loc}(\bar{u}_1 w_1/k) = \text{loc}(\bar{u}_2 w_2/k).
\]

Proof. Let \(S = \text{loc}(\bar{u}_1/k) \) and \(T = \text{loc}(\bar{u}_1 w_1/k) \). Note that \(\bar{u}_1 \) and \(\bar{u}_2 \) are nonsingular points of \(S \) and \(\bar{u}_1 w_1 \) a nonsingular point of \(T \), by Remark 3.6.

Let \(d := \dim p^{-1}(\bar{u}_1) \cap T \) be the dimension of the fibre over \(\bar{u}_1 \), and the subset \(p_{d}(T) \) be as defined in Proposition 4.8. Note that by the dimension theorem of algebraic geometry \(\dim p_{d}(T) = \dim S \), since \(\dim p_{d}(W) = \dim S \) (in the notation of Proposition 4.8). Note also that
\[
\dim T = \dim S + d
\]
since respective equality holds for the dimensions of \(W \) and \(Z \).

It follows that \(p_{d}(T) \) contains all generic over \(k \) points of \(S, \bar{u}_2 \in p_{d}(T) \) and thus
\[
\dim p^{-1}(\bar{u}_2) \cap T = d.
\]

Thus there exists \(w_2 \) such that \(\bar{u}_2 w_2 \in p^{-1}(\bar{u}_2) \cap T \) and \(\dim(w_2/\bar{u}_2 k) = d \). Since \(T \) is \(k \)-irreducible,
\[
T = \text{loc}(\bar{u}_2 w_2/k).
\]

Lemma 4.11. Let \(S \subseteq \bigcup^{m+n} \) be an \(L_{\text{glob}}(k) \)-primitive and \(\bar{u} \in \bigcup^{m} \). Let
\[
S_{\bar{u}} = \{ \bar{v} \in \bigcup^{n} : \bar{u} \bar{v} \in S \}.
\]
Then \(S_{\bar{u}} \) is an \(L_{\text{glob}}(k') \)-primitive, for \(k' \), extension of \(k \) by coordinates of \(f_i(\bar{u}), i \in I \).

Proof. By definition \(S = \bigcap_{i \in I} f_i^{-1}(Z_i) \) for \(Z_i \subseteq X_i^{m+n} \).

Let, for \(z_i \in X_i^{m}(K) \),
\[
Z_{i,z_i} = \{ x_i \in X_i^{n}(K) : z_i x_i \in Z_i \}.
\]

Thus
\[
S_{\bar{u}} = \{ \bar{v} \in \bigcup^{n} : \bigwedge_{i \in I} f_i(\bar{u}) f_i(\bar{v}) \in Z_i \} = \bigcap_{i \in I} f_i^{-1}(Z_{i,f_i(\bar{u})}) \quad \square
\]

Corollary 4.12. Assuming \(k_0 \) is algebraically closed, \(\mathcal{U} \) is \(\aleph_0 \)-homogenous over \(\emptyset \) and over small submodels: Using the notation of Proposition 4.10, let \(V = \emptyset \) or \(V = \bigcup(K_0) \) and assume \(c\dim(R_i/K_0) \geq \aleph_0 \) for \(i = 1, 2 \).

Then, for any \(\bar{u}_1 \in \bigcup^{m}(K_1), \bar{u}_2 \in \bigcup^{m}(K_2), w_1 \in \bigcup^{m}(K_1) \) such that
\[
\text{tp}(\bar{u}_1/V) = \text{tp}(\bar{u}_2/V)
\]
there is \(w_2 \in \bigcup^{m}(K_2) \) such that
\[
\text{tp}(\bar{u}_1 w_1/V) = \text{tp}(\bar{u}_2 w_2/V),
\]
where \(\text{tp} \) is the quantifier-free type of the form (10).
Proof. For the language without parameters use Proposition 4.10 with \(k = k_0 \). Over the submodel use the statement of Proposition 4.10 with \(k = K_0 \).

□

Lemma 4.13. The structure \(\Omega(R_0) \), for \(R_0 \) the prime model of the o-minimal theory \(\text{Th}(\mathbb{R}^\text{An}) \), is a prime model of \(\Omega \), that is, there is an \(L_{\text{glob}} \)-embedding \(\Omega(R_0) \subseteq \Omega(R) \) for any \(R \in \text{Mod}_{\text{An}} \).

Proof. An embedding \(R_0 \preceq R \) induces an embedding \(\Omega(R_0) \subseteq \Omega(R) \).

□

Theorem 4.14. Suppose \(k_0 \) is algebraically closed. Let \(R_1, R_2 \in \text{Mod}_{\text{An}} \) and \(\aleph_0 \leq c\dim R_1 = c\dim R_2 \leq \aleph_1 \). Then \(\Omega(R_1) \cong \Omega(R_2) \).

In particular, \(\Omega \) is categorical in cardinality \(\aleph_1 \).

Proof. First consider the case when \(c\dim R_1 = c\dim R_2 = \aleph_0 \). Then \(\Omega(R_1) \) and \(\Omega(R_2) \) are countable and so we can construct an isomorphism via a countable back-and-forth process using Corollary 4.12, where \(K_0 = K(R_0), R_0 \) is the prime model of \(\text{Th}(\mathbb{R}^\text{An}) \).

In the case when \(c\dim R_1 = c\dim R_2 = \aleph_1 \), we represent by \(R_1 = \bigcup_{\alpha < \aleph_1} R_{1,\alpha} \) and \(R_2 = \bigcup_{\alpha < \aleph_1} R_{2,\alpha} \) the ascending chains of elementary extensions, \(c\dim(R_{i,\alpha+1}/R_{i,\alpha}) = \aleph_0 \) for \(i = 1, 2 \), and \(R_{1,0} = R_{2,0} \) are prime models. Then the required isomorphism is constructed by induction on \(\alpha \): Assume that \(R_{1,\alpha} \cong R_{2,\alpha} \), and even that both are equal to a \(R_\alpha \). Now apply Corollary 4.12 with \(K_0 = K(R_\alpha), K_1 = K(R_{1,\alpha+1}), \) and \(K_2 = K(R_{2,\alpha+1}) \). This again produces an isomorphism \(R_{1,\alpha+1} \cong R_{2,\alpha+1} \) by the back-and-forth procedure.

For limit indices the extension of isomorphism is obvious.

□

5. The one-dimensional case

5.1. Let \(P(\mathbb{U}) \) stand for the power-set of \(\mathbb{U} \). Define a closure operator \(\text{cl} : P(\mathbb{U}) \to P(\mathbb{U}) \) by the condition

\[u \in \text{cl}(\bar{w}) \quad \text{if and only if} \quad \dim \text{loc}(u \bar{w}/k) = \dim \text{loc}(\bar{w}/k) \]

for \(\bar{w} \subset \mathbb{U} \) finite. And

\[\text{cl}(W) = \bigcup \{ \text{cl}(\bar{w}) : \bar{w} \subset_{\text{fin}} W \} \]

for \(W \) infinite.

Lemma 5.2. Suppose \(W \in P(\mathbb{U}) \) and \(\text{cl}(W) = W \). Then, for any \(i \in I \), the subset \(f_i(W) \subset \aleph_i(K) \) is closed under \(\text{acl} \), the algebraic closure in the sense of fields.
There is an algebraically closed subfield \(L = L_W \subseteq K \).

\[f_i(W) = X_i(L) \quad \text{for all } i \in I. \]

Proof. Let \(\bar{w} \in W^n \) and \(f_i(\bar{w}) = \bar{x} \in X_i^n(K) \). Let \(y \in X_i(K) \) such that \(y \in acl(\bar{x}) \), where \(acl \) is over the base field \(k \). Thus, for

\[X = \text{loc}(\bar{x}/k), \quad Y = \text{loc}(\bar{x}y/k) \]

we have \(\dim X = \dim Y \). Hence, since \(f_i \) is a local biholomorphism, for any \(v \in f_i^{-1}(y) \), we have

\[\dim \text{loc}(\bar{w}/k) = \dim \text{loc}(\bar{w}v/k), \]

which implies \(v \in \text{cl}(\bar{w}) \subseteq W \). This proves that \(f_i(W) \) is closed under \(acl \) and hence \(f_i(W) = X_i(L) \) for some algebraically closed field \(L = L_{W,i} \).

We claim that \(L_{W,i} = L_{W,j} \) for any \(i, j \in I \). Indeed, consider the direct product \(U \times U \) instead of \(U \) and

\[f_i \times f_j : U \times U \to X_i \times X_j \]

instead of \(f_i \) and \(f_j \), which still are local biholomorphisms onto smooth algebraic varieties. Clearly, \(cl(W \times W) = W \times W \) for \(cl \) in the product structure and

\[X_i(L_{W,ij}) \times X_j(L_{W,ij}) = (f_i \times f_j)(W \times W) = X_i(L_{W,i}) \times X_j(L_{W,j}), \]

that is, \(L_{W,ij} = L_{W,i} = L_{W,j} = L. \)

\(\square \)

5.3. Recall (see [Bays et al. 2014]) that one calls \((U, cl)\) a *quasiminimal pregeometry structure* if the following holds:

QM1 The pregeometry is determined by the language. That is, if \(tp(v\bar{w}) = tp(v'\bar{w}') \) then \(v \in cl(\bar{w}) \) if and only if \(v' \in cl(\bar{w}') \).

QM2 \(U \) is infinite-dimensional with respect to \(cl \).

QM3 (Countable closure property) If \(W \subseteq U \) is finite then \(cl(W) \) is countable.

QM4 (Uniqueness of the generic type) Suppose that \(W, W' \subseteq U \) are countable subsets, \(cl(W) = W, cl(W') = W' \) and \(W, W' \) enumerated so that \(tp(W) = tp(W') \).

If \(v \in U \setminus W \) and \(v' \in U \setminus W' \) then \(tp(Wv) = tp(W'v') \) (with respect to the same enumerations for \(W \) and \(W' \)).

QM5 (\(\aleph_0 \)-homogeneity over closed sets and the empty set) Let \(W, W' \subseteq U \) be countable closed subsets or empty, enumerated such that \(tp(W) = tp(W') \), and let \(\bar{w}, \bar{w}' \) be finite tuples from \(U \) such that \(tp(W\bar{w}) = tp(W'\bar{w}') \), and let \(v \in cl(W\bar{w}) \). Then there is \(v' \in U \) that \(tp(\bar{w}vW) = tp(\bar{w}'v'W') \).

Proposition 5.4. Assume that \(k_0 \) is algebraically closed, \(dim U = 1 \) and \(cdim R \geq \aleph_0 \). Then \((U(R), cl)\) is a quasiminimal pregeometry.
Proof. QM1 is by definition.

QM2 is by the assumption on \(R \).

QM3 follows from the fact that in the language of o-minimal structure \(\text{acl}(W) \) is countable and that \(\text{cl}(W) \subseteq \text{acl}(W) \), by (8) and (9).

QM4 follows from the fact that \(U \) is one-dimensional irreducible and \(v \not\in \text{cl}(W) \), \(v' \not\in \text{cl}(W') \).

QM5. If \(W \) and \(W' \) are empty then the required follows from Proposition 4.10 when \(k = k_0 \). In the nonempty case we may assume by \(\aleph_0 \)-homogeneity over \(\emptyset \) that \(W = W' \). Now Lemma 5.2 allows us to replace \(\text{tp}(wW) \) and \(\text{tp}(w'W') \) by \(\text{loc}(\overline{w}/L_W) \) and \(\text{loc}(\overline{w'}/L_W) \), and \(\text{tp}(wvW) \) and \(\text{tp}(w'v'W') \) by \(\text{loc}(\overline{w}v/L_W) \) and \(\text{loc}(\overline{w'}v'/L_W) \), respectively.

The existence of \(v' \) follows from Proposition 4.10 when \(k = L_W \). \(\square \)

Now we recall that given a quasiminimal pregeometry structure \((U, \text{cl}) \) one can associate with it an abstract elementary class containing the structure, see [Bays et al. 2014, 2.2–2.3], or more generally [Zilber 2017, 2.17–2.18]. Call this class \(\mathfrak{U}_{\text{glob}} \).

By definition, one starts with a structure \(U = \mathfrak{U}(R) \) for a \(R \) of cardinality \(\aleph_1 \). Define \(\mathfrak{U}_{\text{glob}}^- \) to be the class of all \(\text{cl} \)-closed substructures of \(U \) with embedding \(< \) of structures defined as a closed embedding, that is, \(U_1 < U_2 \) if and only if \(U_1 \subseteq U_2 \) and, for finite \(W \subseteq U_1 \),

\[
\text{cl}_{U_1}(W) = \text{cl}_{U_2}(W).
\]

Now define \(\mathfrak{U}_{\text{glob}} \) to be the smallest class which contains \(\mathfrak{U}_{\text{glob}}^- \) and is closed under unions of \(< \)-chains.

Lemma 5.5. \(\mathfrak{U} \subseteq \mathfrak{U}_{\text{glob}} \).

Proof. We need to show that \(\mathfrak{U}(R) \in \mathfrak{U}_{\text{glob}} \), for any \(R \in \text{Mod}_{\text{An}} \).

We prove by induction on \(\kappa = \text{card} R \geq \aleph_1 \) that there is a \(\kappa \)-chain

\[
\{U_\lambda \in \mathfrak{U}_{\text{glob}} : \lambda \in \kappa \} \text{ such that } \bigcup_{\lambda \in \kappa} U_\lambda = \mathfrak{U}(R).
\]

Indeed, \(R \) can be represented as

\[
R = \bigcup_{\lambda < \kappa} R_\lambda
\]

for an elementary chain

\[
\{R_\lambda : \lambda \in \kappa \}, \quad \text{card} R_\lambda = \text{card} \lambda + \aleph_0, \quad R_\lambda < R_\mu \quad \text{for } \lambda < \mu.
\]

Hence

\[
U_\lambda := \mathfrak{U}(R_\lambda) \in \mathfrak{U}_{\text{glob}}
\]

which proves the inductive step and the lemma. \(\square \)
Theorem 5.6. Assuming $\dim K \cup = 1$, the class $\mathcal{U}_{\text{glob}}$ is an abstract elementary class extending \mathcal{U}. $\mathcal{U}_{\text{glob}}$ is categorical in uncountable cardinals and can be axiomatised by an $L_{\omega_1,\omega}(Q)$-sentence.

Proof. The first part is by Proposition 5.4 and Lemma 5.5. The second part is the main result, Theorem 2.3, of [Bays et al. 2014]. □

Acknowledgement

I would like to thank Martin Bays and Andres Villaveces for some useful remarks and commentaries.

References

[Bays 2009] M. Bays, *Categoricity results for exponential maps of 1-dimensional algebraic groups and Schanuel conjectures for powers and the CIT*, Ph.D. thesis, Oxford University, 2009, available at https://people.maths.ox.ac.uk/~bays/dist/thesis/thesis.pdf.

[Bays et al. 2014] M. Bays, B. Hart, T. Hyttinen, M. Kesälä, and J. Kirby, “Quasiminimal structures and excellence”, *Bull. Lond. Math. Soc.* 46:1 (2014), 155–163. MR Zbl

[Katok 1992] S. Katok, *Fuchsian groups*, University of Chicago, 1992. MR Zbl

[Peterzil and Starchenko 2008] Y. Peterzil and S. Starchenko, “Complex analytic geometry in a nonstandard setting”, pp. 117–165 in *Model theory with applications to algebra and analysis*, vol. 1, edited by Z. Chatzidakis et al., London Math. Soc. Lecture Note Ser. 349, Cambridge University Press, 2008. MR Zbl

[Peterzil and Starchenko 2013] Y. Peterzil and S. Starchenko, “Definability of restricted theta functions and families of abelian varieties”, *Duke Math. J.* 162:4 (2013), 731–765. MR Zbl

[Pillay and Steinhorn 1986] A. Pillay and C. Steinhorn, “Definable sets in ordered structures, I”, *Trans. Amer. Math. Soc.* 295:2 (1986), 565–592. MR Zbl

[Scanlon 2012] T. Scanlon, “Counting special points: logic, Diophantine geometry, and transcendence theory”, *Bull. Amer. Math. Soc. (N.S.)* 49:1 (2012), 51–71. MR Zbl

[Zilber 2010] B. Zilber, *Zariski geometries: geometry from the logician’s point of view*, London Mathematical Society Lecture Note Series 360, Cambridge University Press, 2010. MR Zbl

[Zilber 2016] B. Zilber, “Model theory of special subvarieties and Schanuel-type conjectures”, *Ann. Pure Appl. Logic* 167:10 (2016), 1000–1028. MR Zbl

[Zilber 2017] B. Zilber, “Analytic Zariski structures and non-elementary categoricity”, pp. 299–324 in *Beyond first order model theory*, edited by J. Iovino, Taylor and Francis, 2017. MR Zbl

Received 25 Jul 2022.

BORIS ZILBER:
zilber@maths.ox.ac.uk

Mathematical Institute, University of Oxford, Oxford, United Kingdom
Complete type amalgamation for nonstandard finite groups

AMADOR MARTIN-PIZARRO and DANIEL PALACÍN

Bounded ultrimaginary independence and its total Morley sequences

JAMES E. HANSON

Quelques modestes compléments aux travaux de Messieurs Mark DeBonis, Franz Delahan, David Epstein et Ali Nesin sur les groupes de Frobenius de rang de Morley fini

BRUNO POIZAT

Nonelementary categoricity and projective locally o-minimal classes

BORIS ZILBER

A Pila–Wilkie theorem for Hensel minimal curves

VICTORIA CANTORÁL FARFÁN, KIEN HUU NGUYEN, MATHIAS STOUT and FLORIS VERMEULEN

Model theory in compactly generated (tensor-)triangulated categories

MIKE PREST and ROSE WAGSTAFFE