ERRATUM: UNIFORM K-STABILITY AND ASYMPTOTICS OF ENERGY FUNCTIONALS IN KÄHLER GEOMETRY

SÉBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

Abstract. The goal of this note is to indicate a gap in the proof of [BHJ19, Theorem 5.6], and the consequences it has on other results in the same paper. Let us stress that the main result [BHJ19, Theorem A], which expresses the slopes at infinity of functionals in algebro-geometric terms, is independent of the flawed result, and thus remains valid.

We would like to extend our warmest thanks to Yan Li, from Peking University, for pointing out this problem to us.

1. The flawed statement

We first repeat the statement in question [BHJ19, Theorem 5.6].

Theorem 1.1. Let \(G \) be a complex reductive group with a linear action on a finite dimensional complex vector space \(U \). If the (Zariski) closure of the \(G \)-orbit of a point \(x \in \mathbb{P}(U) \) meets a \(G \)-invariant Zariski closed subset \(Z \subset \mathbb{P}(U) \), then some \(z \in Z \cap G\cdot \bar{x} \) can be reached by a 1-parameter subgroup \(\lambda : \mathbb{C}^* \to G \), i.e. \(\lim_{t \to 0} \lambda(t) \cdot x = z \).

Set \(X := \mathbb{P}(U) \), \(K := \mathbb{C}((t)) \) and \(R := \mathbb{C}[t] \). As in [MFF], our approach was based on the Iwasawa decomposition theorem, which states that each double coset in \(G(K) \) modulo \(G(R) \) is represented by a 1-PS of \(G \) (viewed as an element of \(G(K) \)).

By properness of \(X \), each \(\xi \in X(K) \) has a reduction \(\tilde{\xi} \in X(\mathbb{C}) \), to be interpreted as \(\lim_{t \to 0} \xi(t) \). The problem with the proof of [BHJ19, Theorem 5.6] is the claim that for any 1-PS \(\lambda \) of \(G \) and \(\xi \in X(K) \), the reduction of \(\lambda \cdot \xi \) only depends on \(\tilde{\xi} \).

This claim is indeed incorrect, as shown by the following simple counterexample, kindly provided to us by Yan Li.

Example 1.2. Consider \(\xi := [1 : 0] \), \(\xi' := [1 : t] \in \mathbb{P}^1(\mathbb{C}) \) and the 1-PS \(\lambda := \text{diag}(t^2, t^{-2}) \).

Then \(\tilde{\xi} = \tilde{\xi}' = [1 : 0] \in \mathbb{P}^1(\mathbb{C}) \), but \(\lambda \cdot \xi = [t^2 : 0] = [1 : 0] \), \(\lambda \cdot \xi' = [t^2 : t^{-1}] = [t^2 : 1] \), and hence \(\tilde{\lambda} \cdot \tilde{\xi} = [1 : 0] \neq [0 : 1] = \tilde{\lambda} \cdot \tilde{\xi}' \).

Remark 1.3. While our proof of Theorem 1.1 is definitely incorrect, it is nevertheless possible, to the best of our knowledge, that the statement itself remains valid.

2. Other affected results

The main result of [BHJ19] affected by Theorem 5.6 is Theorem 5.4, which itself affects Theorem C and Corollaries D and E. However, Theorem A and Corollary B, which are independent of Theorem 5.6, remain valid. This is more generally the case of all results of [BHJ19] up to and including Section 4.
References

[BHJ19] S. Boucksom, T. Hisamoto and M. Jonsson. Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs. J. Eur. Math. Soc. 21, no. 9 (2019), 2905–2944.

[MFF] D. Mumford, J. Fogarty and F. Kirwan. Geometric invariant theory. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34. Springer-Verlag, Berlin, 1994.