Evaluation of Ca$_3$Co$_2$O$_6$ as cathode material for high-performance solid-oxide fuel cell

Tao Wei1, Yun-Hui Huang1, Rui Zeng1, Li-Xia Yuan1, Xian-Luo Hu1, Wu-Xing Zhang1, Long Jiang1, Jun-You Yang1 & Zhao-Liang Zhang2

1State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China, 2School of Chemistry and Chemical Engineering, University of Jinan, No. 106, Jiwei Road, Jinan 250022, China.

A cobalt-based thermoelectric compound Ca$_3$Co$_2$O$_6$ (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (τ) and interfacial shearing stress (σ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm$^{-2}$ is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC.

Over the centuries, people always dream of applying the simple but powerful chemical equation, $\text{H}_2(g) + \frac{1}{2}\text{O}_2(g) = \text{H}_2\text{O}(g) \quad (\Delta H_{298^\circ C} = -236.46 \text{ kJ mol}^{-1})$, into the daily life1–5. Water is the only byproduct of the hydrogen-oxygen reaction. But so far, it is hopeful but difficult to have a hydrogen-powered future with clean ecological environment. The conventional solid-oxide fuel cells (SOFCs) with yttria-stabilized zirconia (YSZ) as electrolyte and hydrogen as fuel have showed excellent performance, which brings hope to us to provide clean energy at high temperature; but the electrochemical performance is highly susceptible to temperature6–8. Intermediate-temperature (IT) SOFCs have brought an extremely attractive prospect for low cost, high efficiency and mild operating condition9. For development of IT-SOFCs, cathode, anode and electrolyte materials are crucial. Compared with fast hydrogen oxidation reaction at the anode, oxygen reduction reaction (ORR) at the cathode is relatively slower. Therefore, exploration of new cathode materials with high performance has attracted much attention worldwide. Among them, the Co-based perovskites usually possess excellent electrochemical property as SOFC cathodes10,11. However, these cathodes such as Ba$_{0.6}$Sr$_{0.4}$Co$_{0.8}$Fe$_{0.2}$O$_3$ (BSCF) have some limitation. For example, they are sensitive to CO$_2$ 12–14, and easy to encounter phase separation from cubic perovskite to mixture of cubic perovskite and hexagonal phase at temperatures below 850°C15,16. Moreover, compared with the IT electrolytes with low thermal expansion coefficient (TEC), such as Ca$_{0.8}$Sr$_{0.2}$O$_{2.0}$ (SDC) or La$_{0.8}$Sr$_{0.2}$Ga$_{0.8}$Mg$_{0.2}$O$_{3-\delta}$ (LSGM), the mismatched TEC and thermodynamic parameters restrict the long-term stability and economical competitiveness17.

To be commercially viable, the IT-SOFC cathode materials need to overcome the barriers mentioned above. Substantial effort has been devoted to development of new cathode materials or innovation of cathode structures18,19. The new cathode materials should be stable in the cathode atmosphere and more catalytically active for oxygen reduction.

Ca$_3$Co$_2$O$_6$ (CCO) is an interesting compound, showing rich magnetic, electric and thermoelectric behaviors20–24. It consists of parallel one-dimensional (1D) Co$_2$O$_6$$^{2-}$ chains separated by Ca$^{2+}$ ions, which is chemically stable up to 1300 K25. As a thermoelectric material, it is almost regarded as useless for application due to its high electrical resistivity at room temperature26. This may be the reason why few people research this compound as the thermoelectric material. However, in this work we use CCO in a totally different field, i.e., as a new cathode material for SOFC. We previously developed a thermoelectric SOFC concept by employing Co-based n-type Na$_{1-x}$Cu$_x$Co$_2$O$_4$ ($0 \leq x \leq 1$) as dual thermoelectric-cathode materials, and observed an additional thermoelectric voltage attached to the cell voltage27. Here we demonstrate Ca$_3$Co$_2$O$_6$ as the cathode material for IT-SOFC,
which exhibits high oxygen-reduction activity and excellent cell performance in air or oxygen atmosphere. Systematic evaluation on electrochemical performance as well as mechanical, thermal and thermoelectric behaviors has been carried out.

Results

Pure CCO can be obtained by sintering the precursor powder at 800–900 °C for 10 h under air or oxygen atmosphere (Supplementary Fig. S1). The phase is indexed into a rhombohedral symmetry with space group R-3c\(^{26}\). To test the stability of CCO in the working atmosphere of SOFC cathode, high temperature X-ray diffraction (XRD) measurement was carried out in air from 500 to 1100 °C. No decomposition was detected for CCO even at 1100 °C (Fig. 1a), indicating that CCO is thermally stable. The diffraction angle shifts regularly with temperature (T). The calculated lattice parameters are shown in Fig. 1b. With increasing T, the axis a and unit cell volume V both increase, while the axis c decreases. The cell volume slightly expands at high temperature.

With CCO (20 \(\mu\)m thickness) as cathode, the electrochemical performance was investigated in a conventional dual chamber fuel cell with LSGM (100 \(\mu\)m thickness) as supporting electrolyte. 30 \(\mu\)m “NiO (40%) + SDC (60%)” layer served as anode, and 10 \(\mu\)m additional SDC layer as buffer interlayer between the anode and the electrolyte to prevent the interaction of NiO with LSGM. With air as oxygen source and H\(_2\) as fuel, the maximum power density (\(P_{\text{max}}\)) reaches as high as 1.47 W cm\(^{-2}\) at 800 °C, 1.14 W cm\(^{-2}\) at 750 °C, and 0.66 W cm\(^{-2}\) at 700 °C (Fig. 2). Such a high \(P_{\text{max}}\) indicates that CCO is a promising cathode material especially for IT-SOFC.

In SOFC, the cathode provides reaction zone for oxygen reduction. Overpotential (\(\eta_c\)) is an important parameter to evaluate the cathode performance\(^1\). Here, we compared CCO with BSCF. The testing atmosphere for \(\eta_c\) was switched between air and pure oxygen. The \(\eta_c\) for CCO and BSCF cathode were tested first in air and then in pure oxygen with current densities from 0 to 1.6 A cm\(^{-2}\) at 800 °C. As shown in Fig. 3, the \(\eta_c\) values are very low for both of the two cathodes. In air atmosphere, the \(\eta_c\) value of the CCO cathode is slightly higher than that of BSCF, but it drops obviously from 0.37 to 0.24 V when the atmosphere is switched from air to oxygen. If the testing atmosphere is switched back from oxygen to air, the \(\eta_c\) is recovered to the initial one for the two cathodes, demonstrating that both of them are stable. We define a parameter \(\xi\) to express the sensitivity of \(\eta_c\) on oxygen. \(\xi\) is calculated as \(\xi = \frac{\text{slopec}_{\text{air}}}{\text{slopec}_{\text{oxygen}}}\) from the slope of \(\eta_c\) tested in air and oxygen. The \(\xi\) is 1.54 for CCO and 1.21 for BSCF. The higher \(\xi\) indicates that CCO is more sensitive than BSCF for oxygen catalyzing reaction as SOFC cathode.

Further evaluation was carried out for CCO as cathode in SOFC to match with several commonly-used IT-electrolytes. We tested the performances of the single cells supported by 300 \(\mu\)m thick LSGM, SDC and BaZr\(_{0.1}\)Ce\(_{0.7}\)Y\(_{0.2}\)O\(_3\) (BZCY) electrolytes (Fig. 4). As expected, the cells show acceptable power density and stability. The \(P_{\text{max}}\) at 800 °C is 0.76 W cm\(^{-2}\) for LSGM, 0.51 W cm\(^{-2}\) for SDC and 0.40 W cm\(^{-2}\) for BZCY. Obviously, with LSGM as electrolyte, the power output is the highest. For the sake of comparison with the CCO cathode, we fabricated 300 \(\mu\)m LSGM-supported single cell with “80% BSCF + 20% SDC” as cathode. Under exactly the same operating condition, the \(P_{\text{max}}\) at 800 °C is 0.76 W cm\(^{-2}\) for CCO and 0.68 W cm\(^{-2}\) for “BSCF + SDC”. The former exhibits higher power...
half cells. Area specific resistance (ASR) was determined from raw change in
Fig. 5, with increasing Gleeble 3500 System from RT to 800
2 value is (12.02
mal expansion is almost linearly dependent on temperature. Its TEC
based cathodes from practical application. For CCO, the linear ther-
SCIENTIFIC
REPORTS
of the CCO cathode was measured on symmetric CCO
rent voltage (OCV) (Supplementary Fig. S2). Polarization resistance
EIS) of the LSGM-based single cells was measured under open cur-
output than the latter. Electrochemical impedance spectroscopy
(EIS) of the LSGM-based single cells was measured under open cur-
rent voltage (OCV) (Supplementary Fig. S2). Polarization resistance
of the CCO cathode was measured on symmetric CCO/LSGM/CCO
half cells. Area specific resistance (ASR) was determined from raw
impedance plots. The ASR value is only 0.13 Ω cm² for CCO at 800°C
(Supplementary Fig. S3), which is comparable to some excellent
cathode systems reported previously29,30. The low resistance may
result in a low power loss due to ohmic drop. To confirm this, we
further tested the stability of the 300 μm LSGM-supported CCO cell.
The cell was operated with a preset voltage of 0.6 V for 100 h at 800°C.
No obvious change in Pmax was observed (Supplementary Fig. S4). After running the single cell for 100 h, no impurity was
detected for the CCO cathode; and no chemical reaction took place
between CCO and LSGM examined by XRD patterns (Supple-
mentary Fig. S5), indicating that CCO is chemically stable in the
working environment. The morphology of the tested cell was
observed by scanning electron microscope (SEM, Fig. S6), indicating a
close connection between CCO and LSGM. In addition, XRD test-
ing also indicates no obvious chemical reaction between CCO and
other IT-electrolytes (SDC and BZCY) (Fig. S7). The obtained high
power density, long stable operation and chemical stability demon-
strate that CCO is a promising cathode material to match the
IT-electrolytes.

As cathode material, the comparability of thermal and mechanical
behaviors with the electrolyte is significantly important especially for
the large-scale planar or tubular type stacks. Thermal expansion
coefficient (TEC) was measured. Since the Co-rich perovskites usu-
ally undergo a transition from low-spin to high-spin state with increasing temperature, their TECs are higher than those of LSGM
and SDC electrolytes17,31,32. Mismatch in TEC will restrict the cobalt-
ated cathode and thus induce a cold-snap of the electrolyte (Fig. 6C),
which should be ascribed to the oxygen escape from the lattice. The calculated oxygen vacancy concentration δ is 0.23
when the temperature is higher than 700°C, i.e., CCO can be written as
CoO$_{6/3}$CoO$_{3/7}$. Oxygen permeation property was further measured for
the CCO film by gas chromatography (GC). The detected oxygen
ionic conductivity is 9.5×10^{-3} S cm$^{-1}$ at 800°C. The yielded oxygen
vacancy and considerable ionic conductivity confirm that CCO is
indeed an MIEC, which can accelerate the electrochemical reaction by expanding the oxygen reduction reaction zone from three phase
boundary to the whole cathode. The MIEC behavior of CCO can be
attributed to its unique coplanar-sharing chain structure, which can
provide a short distance for transportation of oxygen ions and elec-
trons between octahedra and trigonal prisms. Moreover, it may pro-
duce three possible channels for oxygen ions and electrons transport
from one CoO$_{6/3}$ structure to another with more convenient path (Fig. 7c). This can explain why CCO exhibits high power density and
low overpotential as cathode material.

Discussion
In CCO, CoO$_{6/3}$ coplanar-sharing octahedra and CoO$_{6/3}$ polyhedra
of trigonal prisms connect alternately to form subsystem chains, as
illustrated in Fig. 7a. The subsystem chains array in a subparallel
mode along the c axis. For the conventional Co-based perovskite
cathode, the primary reaction zone for catalysis of oxygen reduction
is the cobalt octahedra. We suggest that the primary zone in CCO
cathode for oxygen diffusion, dissociative adsorption and charge
transfer happen through the chains of coplanar-sharing octahedra
and trigonal prisms (see the scheme in Fig. 7b).

Considering the low resistance (Fig. 5b), CCO should be a mixed
oxide-ion/electron conductor (MIEC). Since it is chemically stable25,
the normal molecular formula is stoichiometric Ca$_3$CoO$_4$.
We tested its thermal behavior in air from room temperature to 900°C
to examine the possible oxygen vacancy. The thermogravimetric
(TG) curve (Fig. S11) shows a clear weight loss of about 1.1% at
600–700°C, which should be ascribed to the oxygen escape from
the lattice. The calculated oxygen vacancy concentration δ is 0.23
when the temperature is high than 700°C, i.e., CCO can be written as
Ca$_3$CoO$_{3.77}$. Oxygen permeation property was further measured for
the CCO film by gas chromatography (GC). The detected oxygen
ionic conductivity is 9.5×10^{-3} S cm$^{-1}$ at 800°C. The yielded oxygen
vacancy and considerable ionic conductivity confirm that CCO is
indeed an MIEC, which can accelerate the electrochemical reaction by expanding the oxygen reduction reaction zone from three phase
boundary to the whole cathode. The MIEC behavior of CCO can be
attributed to its unique coplanar-sharing chain structure, which can
provide a short distance for transportation of oxygen ions and elec-
trons between octahedra and trigonal prisms. Moreover, it may pro-
duce three possible channels for oxygen ions and electrons transport
from one CoO$_{6/3}$ structure to another with more convenient path
(Fig. 7c). This can explain why CCO exhibits high power density and
low overpotential as cathode material.
Our experimental results of TEC, σ and τ show that CCO can thermally and mechanically match well with several IT-electrolytes, which also account for the stable power output. For practical application, cell local damage caused by high temperature gradient is a big challenge for the cell design and internal thermal management. In general, two routes can be employed to solve this problem. One is to remove the cell internal heat by increasing the air mass flow, but it will reduce the air utilization. The other is to enhance the cell operating voltage (for example, for the YSZ-based cell, the operating voltage is set at 0.7 V not at the peak power voltage 0.5 V), but this will result in reducing the valuable cell power density33. As described in our previous work27, if the thermoelectric material is used as electrode for SOFC, it will not only transfer the heat to electricity to generate an additional voltage (ΔV), but also reduce the cell temperature gradient to a certain extent. Therefore, the thermoelectric component is helpful for the SOFC thermal transfer. The thermoelectric voltage can be expressed as $\Delta V = S^*_\text{c} (T_1 - T_2)$, where S is the Seebeck coefficient and $(T_1 - T_2)$ is the temperature gradient. The generated ΔV can be attached to the cell voltage to increase the operation voltage of the cell. With the increase of furnace temperature, the power output of the thermoelectric SOFC will increase.

CCO is a thermoelectric material, which shows a heat-to-electricity conversion over the IT-SOFC working temperature range (Supplementary Figs. S12, S13). The extra thermoelectric power was measured on a designed SOFC with elongated porous CCO column (1.5 cm in length and 1 cm in diameter) as cathode. The fabrication details of the thermoelectric SOFC was described elsewhere27. The thermoelectric SOFC was continuously monitored at 0.6 V for 1 h at 800°C. As shown in Fig. 8, compared with the preset 0.6 V testing voltage, the elongated CCO cathode creates additional 11.7 mV thermoelectric voltage by consuming the waste heat. In addition, the average open-circuit voltage (OCV) increases from 1.121 to 1.134 V due to the CCO thermoelectric cathode (Fig. S15). The created thermoelectric voltage monotonically increases with T from 700 to 800°C (Fig. S14). The results clearly confirm that the CCO cathode can produce additional thermoelectric voltage attached to the cell voltage, which favors not only the reduction of cell temperature gradient but also the enhancement of cell power output.

In summary, we developed a new Co-based cathode material for SOFC to attain superior performance. Systematic evaluation was carried out for Ca$_3$Co$_2$O$_6$ as the cathode material. Measurements of some important thermal and mechanical parameters TEC, σ...
and τ which CCO can match well with several commonly-used IT-electrolytes whatever LSGM, SDC or BCZCY, which is promising for application without damage or chemical reaction over long cell operating period. Maximum power density as high as 1.47 mW cm⁻² and additional 11.7 mV thermoelectric voltage were obtained at 800°C, demonstrating that CCO is an excellent cathode material for IT-SOFCs. The superior electrochemical performance of CCO can be attributed to the mixed oxide-ion/electron conductive behavior caused by the unique coplanar-sharing chain structure, matched thermal and mechanical properties with the electrolyte and the thermoelectric effect. It should be pointed out that the generated power output from the thermoelectric effect in CCO may open up the possibility to promote the electrochemical performance by taking use of the waste heat in SOFCs.

Methods

Preparation of materials. The CatCoO₃₋₄ (CCO) powders were synthesized via a sol-gel method. Citric acid was used as complexing agent. The molar ratio of citric acid to the total metal ions is 2:1. The process of preparation can be described as below. First citric acid was dissolved into distilled water, and then Ca(NO₃)₂·4H₂O and C₂H₃(CO₂H)₂·4H₂O were added respectively to achieve a clear solution. The solution was slowly evaporated on a hot plate under stirring over night to form a gel. The gel was deposed at 250°C in air for 5 h to combust carbonaceous components. Then the powder was ground in a mortar, and calcined under pure oxygen or air at 800–900°C for 10 h. The SDC and BCZCY were synthesized by sol-gel process, and LSGM was synthesized by conventional solid-state reaction, as described elsewhere.

Fuel cell fabrication and test. The fuel cells with a conventional configuration of Ni/SDC/SDC(electrolyte)/cathode were fabricated with dense LSGM, SDC or BCZCY as supporting electrolytes. The diameter of electrolyte was about 1.5 cm for the conventional fuel cell and 2 cm for the elongated column cathode fuel cell. A thin SDC buffer interlayer with thickness of about 10 μm was used to prevent chemical reaction between NiO and LSGM; the SDC slurry was screen-printed onto LSGM disk and sintered at 1300°C for 1 h in stagnant air. No buffer interlayer was used for SDC and BCZCY electrolyte. The anode layer (~30 μm) was attained by screen-printing the NiO+SDC (weight ratio of 60:40) slurry on the electrolyte and successively baking at 1250°C for 4 h. CCO slurry was screen-printed onto another side of the electrolyte and fired at 900°C for 5 h to achieve porous CCO cathode with thickness of ~20 μm and active area of 0.24 cm². “BSCF + SDC” (weight ratio of 80:20) cathode was fired at 1050°C for 2 h. Ag slurry and Ag wire were used as current collector for both the anode and cathode sides for electrochemical test. Ag has a high conductivity and cannot chemically react with CCO as confirmed by the XRD pattern (Fig. S16). Moreover, Ag has been proved to have a low electrochemical performance as cathode for oxygen catalyst. Therefore, Ag current collector has almost no influence for the measured electrochemical data of CCO. For the testing cells, each one was sealed on an alumina tube with Ag slurry as sealing material and heated to 800°C. For SDC fuel cell to the anode; the cathode side was used to be fired for 5 h. For BCZCY fuel cell, the cathode side was used to be fired for 1 h, 2 h, and 5 h. For CCO fuel cell, the cathode side was used to be fired for 1 h, 2 h, and 5 h. A thin Ag layer was coated on the column to improve the conductivity.

Other characterizations. The phase purity and the structure parameters of the powder was ground in a mortar, and calcined under pure oxygen or air at 800–900°C for 5 h to achieve porous CCO cathode with thickness for symmetrical SOFCs. The phase purity and the structure parameters of the powder was ground in a mortar, and calcined under pure oxygen or air at 800–900°C for 5 h to achieve porous CCO cathode with thickness for symmetrical SOFCs.

Acknowledgements

We thank the National Science Foundation of China (Grant Nos. 50825203 and 21077043) and the PCSIRT (Program for Changjiang Scholars and Innovative Research Team in University, grant No. IRT1044) for support of this work.
Author contributions
T.W., Y.H.H., R.Z., L.X.Y., X.L.H. and W.X.Z. conceived and designed the experiments. T.W., Y.H.H. and Z.L.Z. analysed the measurements. T.W., L.J. and R.Z. prepared the experimental samples. T.W. and J.Y.Y. performed the thermoelectric testing. T.W. and Y.H.H. wrote the manuscript in collaboration with all the authors. We thank Prof. Zongping Shao and Mr. Dong Xu in Nanjing University of technology for oxygen permeation property measurement.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.
License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
How to cite this article: Wei, T. et al. Evaluation of Ca₃Co₂O₆ as cathode material for high-performance solid-oxide fuel cell. Sci. Rep. 3, 1125; DOI:10.1038/srep01125 (2013).