An oxime-based glycocluster microarray
Antoine Hoang, Eugénie Laigre, David Goyard, Eric Defrancq, Françoise Vinet, Pascal Dumy, Olivier Renaudet

To cite this version:
Antoine Hoang, Eugénie Laigre, David Goyard, Eric Defrancq, Françoise Vinet, et al.. An oxime-based glycocluster microarray. Organic and Biomolecular Chemistry, Royal Society of Chemistry, 2017, 15 (24), pp.5135-5139. 10.1039/c7ob00889a. hal-03323886

HAL Id: hal-03323886
https://hal.archives-ouvertes.fr/hal-03323886
Submitted on 23 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Oxime-based glycocluster microarray

Antoine Hoang, a Eugénie Laigre, b David Goyard, b Eric Defrancq, b Françoise Vinet, a
Pascal Dumy c and Olivier Renaudet* b,d

[a] LETI-CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
[b] Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
[c] Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’Ecole Normale, 34000 Montpellier, France
[d] Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France

*Corresponding author: olivier.renaudet@univ-grenoble-alpes.fr
Abstract

Carbohydrate microarrays represent powerful tools to study and detect carbohydrate-binding proteins, pathogens or cells. In this paper, we report two original oxime-based methods to prepare surfaces displaying well-defined structures and valency in a given microspot with improved recognition potency with lectins. In a first “direct” approach, fully synthetic aminooxylated glycoclusters have been coated onto aldehyde-activated SiO₂ (silicium substrate doped with 50 nm thermic oxide layer). To improve the preparation of the microarray in term of rapidity and simplicity and to provide addressable surfaces on which sugars can be linked chemoselectively as clusters at defined plots, a second “indirect” strategy has been developed using successive oxime ligation steps. In both cases, binding assays with labelled lectins have revealed more potent and selective interaction due to the clustered presentation of sugars. The observed differences of interaction have been confirmed in solution by ITC.
Introduction

Carbohydrate microarrays have known intensive interests during the last decade.1 Their utility has been widely demonstrated to probe carbohydrate-binding proteins such as lectins, antibodies or enzymes and even pathogens or cells.2-5 Typically, carbohydrates moieties are immobilized on a glass slide at their anomeric position through a linker to both keep the sugar away from the surface and allow its presentation in a multivalent fashion to ensure high affinity with the biological target by means of the ‘glycoside cluster effect’.6 However, despite the large variety of linkers and chemical methodologies used in this area, the resulting two-dimensional multivalent organization and density of sugars on the surface is difficult to control and can thus strongly alter the avidity and selectivity of the interaction process.7,8 To overcome these limitations and improve performance of these systems, recent publications have reported the utilization of glycolmuster-based microarrays. This approach is indeed interesting since it allows the controlled presentation of sugars in a well-defined three-dimensional arrangement instead of randomized spacing between glycans. For example, it has been demonstrated that spatial arrangement of dendrimeric structures offers better interactions with biological targets than monovalent ligands when immobilized onto surfaces.8 So far, a few glycocluster-arrays have been explored successfully with model lectins and multivalent glycoconjugates, sometimes with debatable molecular definition.9-12

In this paper, we report on the preparation of glycocluster arrays following two oxime-based methods to obtain surfaces displaying well-defined structures and valency in a given microspot. In the first approach (Figure 1A), tetravalent cyclopeptide-based
glycoclusters presenting an aminooxy group has been directly immobilized onto aldehyde-activated SiO$_2$ slides through oxime ligation. To provide readily addressable arrays on which sugars can be linked chemoselectively as clusters at defined plots, a second strategy (Figure 1B) has been developed. Unglycosylated cyclopeptide scaffold was first immobilized onto the surface, then successively treated to generate aldehyde functions and to covalently immobilize aminooxylated carbohydrates as clusters. In both cases, binding interactions have been evaluated with labelled lectins, thus confirming the recognition properties of the resulting glyco-surfaces.

Figure 1. Direct (A) and indirect (B) approach for the preparation of glycocluster microarrays using oxime ligation.

Results and discussion
Modified glycans can be easily immobilized onto a large panel of commercially available supports including silica, aluminium oxide and gold surfaces displaying functional groups such as activated ester, epoxide, aldehyde, azide, alkyne or thiol. In addition, it was also demonstrated that oligonucleotide-, streptavidin- and polymer-functionalized surfaces can also serve for non-covalent immobilization but may cause unspecific interactions with the biological target. In the present study, we have decided to design our experiments on SiO$_2$ slides modified using a previously reported protocol that was found suitable to immobilize oligonucleotides by oxime ligation. Briefly, the support was treated by silanization using 5,6-epoxyhexyltriethoxysilane at 80°C to anchor epoxide functions onto the surfaces. Subsequent hydrolysis of the epoxide moieties and oxidation of the so-formed vicinal diols with sodium periodate generated aldehyde groups as confirmed by multireflexion IR experiments (i.e. presence of the carbonyl band at 1720 cm$^{-1}$). Atomic Force Microscopy (AFM) was allowed to measure the roughness of the silane’s layer on the surface at about 5-6 nm.

With these aldehyde surfaces in hand, four aminooxy-glycosylated structures have been synthesized to be immobilized. On the basis of recent binding studies performed with lectin and cyclopeptide-based glycoclusters in solution and on solid-support, we have selected similar structures (Figure 2) for this study that are: i) tetravalent cyclopeptides displaying β-lactose or α-N-acetylgalactosamine and ii) monomeric glycans which are selective for lectins PNA from Arachis hypogae (peanut) and HPA (Helix pomatia agglutinin) respectively.
Figure 2. Structures of the glycans and glycoclusters coated on the solid surface.

Cyclopeptide scaffolds 1a-b have been prepared from 5a-b by acylation of the free lysine with N-hydroxysuccinimidyld ester of Boc-aminoxy (BocAoaOSu)40 in DMF as (Scheme 1). After Boc deprotection in a mixture of 50% of TFA in CH\textsubscript{2}Cl\textsubscript{2} and reverse-phase HPLC purification, the aminooxylated structures 1a-b were obtained in ~ 40% yield.
Scheme 1. Synthesis of the aminooxylated structures 1a-b.

Several parameters were next evaluated to immobilize and study these structures onto aldehyde coated surfaces, such as the coating buffer, the concentration dropped onto the plate and the protein concentration. These preliminary experiments have indicated that the ideal coating concentration for the aminooxylated ligands is 50 µM and the minimal detectable concentration of protein is approximately 1/10000 dilution of a solution at 1 mg/mL. Following these conditions, compounds 1a-b and 2a-b have been manually coated horizontally (Figure 3, lines 1-4) at the same concentration (0.2 µL at a concentration of 50 µM in water) and in triplicate on the modified surface with a spot diameter on the range of the millimeter. For comparison we have also immobilized compound 2b at higher concentration (i.e. 250 µM, Figure 3, line 5). After 12 hours at room temperature, the slide was washed with phosphate buffer pH 7 containing 1% tween and the surface was saturated successively with methoxylamine and bovine serum albumin (BSA) to prevent unspecific interactions of the resulting surfaces with the lectins. Finally, the full slide was incubated with the lectin HPA labeled with FITC in phosphate buffer pH 7 for 1 hour at 37°C and the presence of the lectin on the spot was visualized using a fluorescence microarray scanner.
Figure 3. FITC-labelled HPA binds to immobilized tetravalent GalNAc-glycocluster 1b only.

As shown at line 3, HPA binds strongly to the tetravalent cluster 1b displaying GalNAc. This observation first suggests that the immobilization of the glycocluster does not affect its recognition properties for HPA, which is indeed in excellent agreement with previous binding assays on bead of resin.\(^{41}\) In addition, when similar compounds displaying Lac instead of GalNAc were spotted, no trace of lectin was observed on the corresponding plots (lines 1 and 2, Figure 3), thus confirming the specificity of the interaction. More interestingly, only a little interaction with HPA can be detected when monomeric GalNAc 2b alone is immobilized even at high concentration (lines 4-5, *i.e.* five time more concentrated than 1b). These results indicate that the presentation of GalNAc as a cluster strongly favors the interaction with HPA in comparison with the monosaccharide. To explain this effect, we hypothesize that the interaction is not only due to the local concentration of GalNAc on the array but also to a more appropriate spatial arrangement of the sugar at the surface of the cyclopeptide scaffold, which may promote multivalent interaction with HPA. It should be finally mentioned that different plot diameters are observed when 1b and 2b are spotted, presumably due to the difference of viscosity of both solutions leading to different drop spreading on the surface.

Because oxime ligation is a highly reproducible and quantitative reaction that can be performed under mild aqueous conditions, we next aimed at developing another strategy to prepare readily addressable arrays on which sugars can be linked chemoselectively as clusters at defined positions. Such an “indirect” approach would indeed present the advantage to avoid time-consuming full synthesis of the
glycoclusters in solution since the glyccocluster is assembled on the surface, and to prevent the manipulation (i.e. purification, solution storage, etc) of such compounds that may be unstable.36 Instead, only simple aminooxylated building blocks are required in this case. The feasibility of this approach has been validated previously on resin beads.41 For this purpose, the unglycosylated cyclopeptide scaffold 3 which presents four serine residues (Figure 1) was first immobilized through oxime ligation on the full aldehyde surface by dipping the glass slide in water. After washings and blocking with methoxylamine and BSA, the slide was treated with sodium periodate in water to convert serine residues into aldehydes and thus obtain surfaces fully covered with cyclopeptide presenting four aldehyde functions. We next dropped manually in triplicate aminooxylated Lac 2a (Figure 4A, line 1) and GalNAc 2b (Figure 4A, line 2) to generate glycoclusters 1a and 1b on the spotting area through oxime ligation with the aldehyde groups. To evaluate the efficiency of this process, we have compared the binding result, after incubation with the FITC-labelled PNA lectin, with a control experiment realized following the direct immobilization method described above, \textit{i.e.} compounds 1a (Figure 4A, line 1) and 1b (Figure 4B, line 2) anchored to aldehyde slides.
As shown in Figure 4, the presence of PNA is clearly visualized on the expected lines 1 (Lac) and not on line 2 (GalNAc) which again confirms the specificity of the interaction. More remarkably, the fluorescence intensity is similar in Figure 4A and 4B which undoubtedly indicates that the full synthesis of glycocluster 1a on the surface was efficient as no difference of interaction is observed when the direct approach is used (Figure 4B). To our knowledge, this result represents the first example of glycocluster-microarray synthesis on slides.

We finally used the undirected approach to compare the recognition potency between the tetravalent scaffold and a monovalent analog and thus confirm that the difference of interaction observed in Figure 3 are not due to the fact that the monovalent sugar is far closer to the surface than the tetravalent system (Figure 4C). To do this, the cyclopeptide 4 functionalized with an oxyamine and bearing only one serine residue was immobilized on the slide and treated as described above with GalNAc 2b. As observed in Figure 3, the binding with FITC-HPA has revealed a stronger interaction on the plot functionalized with tetravalent structures (Figure 4C, two spots above). This result demonstrates again that the clustered presentation is
more favorable for the interaction than monovalent conjugates (Figure 4C, two spots below). All these data are in excellent agreement with previous studies performed on different surfaces and using different sugar density and lectins.\(^{38,39,41,42}\) However, to confirm the difference of interaction, the binding affinity of the tetravalent and monovalent cyclopeptide-based structures (6 and 7, Figure S9) as well as of the corresponding monosaccharide (GalNAc) have been measured by isothermal titration calorimetry (ITC) with HPA (Figure S10-12). As expected, this experiment has indicated a \(K_d\) of approximately 548 nM for the tetravalent compound 6, which corresponds to a 757-fold binding improvement compared to the monovalent compound 7 \((K_d\) of 415 µM). It is also interesting to note that the binding constant measured for GalNAc is in good agreement with the literature (205 µM)\(^{43}\) and is rather comparable with the monovalent structure 7, thus suggesting that the scaffold itself has only a limited influence in the binding. Altogether, ITC experiments clearly validate the reliability of the microarray methodology.

Conclusion

Herein we present two approaches based on oxime ligation to prepare glyocluster-based microarrays and the binding studies with FITC-labelled lectins. On one side, fully synthetic aminooxylated glycoclusters displaying four copies of Lac or GalNAc have been coated on aldehyde SiO\(_2\) slides under mild aqueous conditions. Binding assays have revealed both potent and selective interaction with HPA due to multivalent effect as observed previously on different surfaces.\(^{38,39,41,42}\) Binding constant have been measured by ITC and have confirmed the reliability of the microarray experiments. On the other side, we have developed an indirect method to
generate glycoclusters on surfaces using successive oxime ligation steps. Comparative interaction studies between both direct and indirect approach with PNA have confirmed the formation of the glycocluster with similar binding efficiency. This indirect approach represents a unique and significant improvement for the preparation of glycocluster microarrays in term of rapidity and simplicity without affecting recognition properties. To our opinion, it is indeed advantageous in the fact that it only requires simple building blocks and highly efficient ligation reactions to generate universal surfaces on which sugars can be linked chemoselectively as clusters at defined plots. Further studies are currently under development in our laboratory with the aim to increase valency and diversity of the immobilized structures.

Acknowledgments

This work was supported by CNRS, Université Grenoble Alpes, the “Communauté d’agglomération Grenoble-Alpes Métropole” (Nanobio program) and Labex ARCANE (ANR-11-LABX-0003-01). O.R. acknowledge the french Agence Nationale de la Recherche (ANR-12-JS07-0001-01 “VacSyn”) and the European Research Council Consolidator Grant “LEGO” (647938) for D. G. and E. L.

References

1. S. Park, J. C. Gildersleeve, O. Blixt and I. Shin, *Chem. Soc. Rev.*, 2013, **42**, 4310.
2. J. Hirabayashi, M. Yamada, A. Kuno and H. Tateno, *Chem. Soc. Rev.*, 2013, **42**, 4443.
3. K. T. Pilobello, L. Krishnamoorthy, D. Slawek and L. K. Mahal, *ChemBioChem*, 2005, **6**, 985.
4 L. D. Huang, A. K. Adak, C. C. Yu, W. C. Hsiao, H. J. Lin, M. L. Chen and C. C. Lin,
Chem. Eur. J., 2015, 21, 3956.

5 N. Laurent, J. Voglmeir and S. L. Flitsch, Chem. Commun., 2008, 4400.

6 J. J. Lundquist and E. J. Toone, Chem. Rev., 2002, 102, 555.

7 K. Godula, D. Rabuka, K. T. Nam and C. R. Bertozzi, Angew. Chem. Int. Ed., 2009,
48, 4973.

8 S. N. Narla, H. Nie, Y. Li and X. L. Sun, Glycoconj. J., 2015, 32, 483.

9 H. M. Branderhorst, R. Ruijtenbeek, R. M. J. Liskamp and R. J. Pieters,
ChemBioChem, 2008, 9, 1836.

10 A. L. Martin, B. Li and E. R. Gillies, J. Am. Chem. Soc., 2009, 131, 734.

11 K. Godula and C. R. Bertozzi, J. Am. Chem. Soc., 2012, 134, 15732.

12 X. Zhou, C. Turchi and D. Wang, J. Proteome Res., 2009, 8, 5031.

13 S. H. Chang, J. L. Han, S. Y. Tseng, H. Y. Lee, C. W. Lin, Y. C. Lin, W. Y. Jeng, A. H.
J. Wang, C. Y. Wu and C. H. Wong, J. Am. Chem. Soc., 2010, 132, 13371.

14 D. H. Min, J. Su and M. Mrksich, Angew. Chem., 2004, 116, 6099.

15 O. Blixt, S. Head, T. Mondala, C. Scanlan, M. E. Huflejt, R. Alvarez, M. C. Bryan, F.
Fazio, D. Calarese and J. Stevens, et al., Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
17033.

16 C. Y. Huang, D. A. Thayer, A. Y. Chang, M. D. Best, J. Hoffmann, S. Head and C. H.
Wong, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15.

17 O. Oyelaran, Q. Li, D. Farnsworth and J. C. Gildersleeve, J. Proteome Res., 2009, 8,
3529.

18 Y. Zhang, C. Campbell, Q. Li and J. C. Gildersleeve, Mol. Biosyst., 2010, 6, 1583.

19 S. E. Tully, M. Rawat and L. C. Hsieh-Wilson, J. Am. Chem. Soc., 2006, 128, 7740.

20 O. Michel and B. J. Ravoo, Langmuir, 2008, 24, 12116.

21 O. J. Barrett, A. Pushechnikov, M. Wu and M. D. Disney, Carbohydr. Res., 2008, 343,
2924.

22 S. Park, M. Lee, S. J. Pyo and I. Shin, J. Am. Chem. Soc., 2004, 126, 4812.
L. G. Harris, W. C. E. Schofield, K. J. Doores, B. G. Davis and J. P. S. Badyal, *J. Am. Chem. Soc.*, 2009, **131**, 7755.

Y. Chevolot, C. Bouillon, S. Vidal, F. Morvan, A. Meyer, J. P. Cloarec, A. Jochum, J. P. Praly, J. J. Vasseur and E. Souteyrand, *Angew. Chem. Int. Ed.*, 2007, **46**, 2398.

K. Godula and C. R. Bertozzi, *J. Am. Chem. Soc.*, 2010, **132**, 9963.

O. E. Galanina, M. Mecklenburg, N. E. Nifantiev, G. V. Pazynina and N. V. Bovin, *Lab. Chip*, 2003, **3**, 260.

O. Norberg, I. H. Lee, T. Aastrup, M. Yan and O. Ramström, *Biosens. Bioelectron.*, 2012, **34**, 51.

E. Defrancq, A. Hoang, F. Vinet and P. Dumy, *Bioorg. Med. Chem. Lett.*, 2003, **13**, 2683.

N. Dendane, A. Hoang, L. Guillard, E. Defrancq, F. Vinet and P. Dumy, *Bioconjugate Chem.*, 2007, **18**, 671.

M. Monestier, P. Charbonnier, C. Gateau, M. Cuillel, F. Robert, C. Lebrun, E. Mintz, O. Renaudet and P. Delangle, *ChemBioChem*, 2016, **17**, 590.

B. Thomas, C. Pifferi, G. C. Daskhan, M. Fiore, N. Berthet and O. Renaudet, *Org. Biomol. Chem.*, 2015, **13**, 11529.

N. Berthet, B. Thomas, I. Bossu, E. Dufour, E. Gillon, J. Garcia, N. Spinelli, A. Imberty, P. Dumy and O. Renaudet, *Bioconjugate Chem.*, 2013, **24**, 1598.

M. Fiore, N. Berthet, A. Marra, E. Gillon, P. Dumy, A. Dondoni, A. Imberty and O. Renaudet, *Org. Biomol. Chem.*, 2013, **11**, 7113.

I. Bossu, N. Berthet, P. Dumy and O. Renaudet, *J. Carbohydr. Chem.*, 2011, **30**, 458.

S. André, O. Renaudet, I. Bossu, P. Dumy and H. J. Gabius, *J. Pept. Sci.*, 2011, **17**, 427.

I. Bossu, M. Šulc, K. Křenek, E. Dufour, J. Garcia, N. Berthet, P. Dumy, V. Křen and O. Renaudet, *Org. Biomol. Chem.*, 2011, **9**, 1948.

O. Renaudet and P. Dumy, *Org. Lett.*, 2003, **5**, 243.
38 N. Dendane, A. Hoang, O. Renaudet, F. Vinet, P. Dumy and E. Defrancq, *Lab. Chip*, 2008, **8**, 2161.

39 M. Wilczewski, A. Van der Heyden, O. Renaudet, P. Dumy, L. Coche-Guérente and P. Labbé, *Org. Biomol. Chem.*, 2008, **6**, 1114.

40 Ide, K. Akamatsu, Y. Kimura, K. Michiue, K. Makino, A. Asaeda, Y. Takamori, and K. Kubo, *Biochemistry*, 1993, **32**, 8276.

41 O. Renaudet and P. Dumy, *Org. Biomol. Chem.*, 2006, **4**, 2628.

42 M. P. Dubois, C. Gondran, O. Renaudet, P. Dumy, H. Driguez, S. Fort and S. Cosnier, *Chem. Commun.*, 2005, 4318.

43 J. F. Sanchez, J. Lescar, V. Chazalet, A. Audfray, J. Gagnon, R. Alvarez, C. Breton, A. Imberty and E. P. Mitchell, *J. Biol. Chem.*, 2006, **281**, 20171.