A NOTE ON REGULAR DE MORGAN SEMI-HEYTING ALGEBRAS

HANAMANTAGOUDA P. SANKAPPANAVAR

Abstract. The purpose of this note is two-fold. Firstly, we prove that the variety RDMSH_1 of regular De Morgan semi-Heyting algebras of level 1 satisfies Stone identity and present (equational) axiomatizations for several subvarieties of RDMSH_1. Secondly, we give a concrete description of the lattice of subvarieties of the variety RDQDStSH_1 of regular dually quasi-De Morgan Stone semi-Heyting algebras that contains RDMSH_1. Furthermore, we prove that every subvariety of RDQDStSH_1, and hence of RDMSH_1, has Amalgamation Property. The note concludes with some open problems for further investigation.

1. Introduction

Semi-Heyting algebras were introduced by us in [12] as an abstraction of Heyting algebras. They share several important properties with Heyting algebras, such as distributivity, pseudocomplementedness, and so on. On the other hand, interestingly, there are also semi-Heyting algebras, which, in some sense, are “quite opposite” to Heyting algebras. For example, the identity $0 \rightarrow 1 \approx 0$, as well as the commutative law $x \rightarrow y \approx y \rightarrow x$, hold in some semi-Heyting algebras. The subvariety of commutative semi-Heyting algebras was defined in [12] and is further investigated in [13].

Quasi-De Morgan algebras were defined in [11] as a common abstraction of De Morgan algebras and distributive p-algebras. In [14], expanding semi-Heyting algebras by adding a dual quasi-De Morgan operation, we introduced the variety DQDSH of dually quasi-De Morgan semi-Heyting algebras as a common generalization of De Morgan Heyting algebras (see [10] and [5]) and dually pseudocomplemented...
Heyting algebras (see [8]) so that we could settle an old conjecture of ours.

The concept of regularity has played an important role in the theory of pseudocomplemented De Morgan algebras (see [9]). Recently, in [15] and [16], we introduced and examined the concept of regularity in the context of DQDSH and gave an explicit description of (twenty five) simple algebras in the (sub)variety DQDStSH of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1. The work in [15] and [16] led us to conjecture that the variety RDMSH of regular De Morgan algebras satisfies Stone identity.

The purpose of this note is two-fold. Firstly, we prove that the variety RDMSH of regular De Morgan semi-Heyting algebras of level 1 satisfies Stone identity, thus settling the above mentioned conjecture affirmatively. As applications of this result and the main theorem of [15], we present (equational) axiomatizations for several subvarieties of RDMSH. Secondly, we give a concrete description of the lattice of subvarieties of the variety RDQDStSH of regular dually quasi-De Morgan Stone semi-Heyting algebras, of which RDMSH is a subvariety. Furthermore, we prove that every subvariety of RDQDStSH, and hence of RDMSH, has Amalgamation Property. The note concludes with some open problems for further investigation.

2. Dually Quasi-De Morgan Semi-Heyting Algebras

The following definition is taken from [12].

An algebra \(L = \langle L, \lor, \land, \to, 0, 1 \rangle \) is a semi-Heyting algebra if \(\langle L, \lor, \land, 0, 1 \rangle \) is a bounded lattice and \(L \) satisfies:

\((SH1) \) \(x \land (x \to y) \approx x \land y \)
\((SH2) \) \(x \land (y \to z) \approx x \land ((x \land y) \to (x \land z)) \)
\((SH3) \) \(x \to x \approx 1. \)

Let \(L \) be a semi-Heyting algebra and, for \(x \in L \), let \(x^* := x \to 0. \) \(L \) is a Heyting algebra if \(L \) satisfies:

\((SH4) \) \((x \land y) \to y \approx 1. \)

\(L \) is a commutative semi-Heyting algebra if \(L \) satisfies:

\((Co) \) \(x \to y \approx y \to x. \)

\(L \) is a Boolean semi-Heyting algebra if \(L \) satisfies:

\((Bo) \) \(x \lor x^* \approx 1. \)

\(L \) is a Stone semi-Heyting algebra if \(L \) satisfies:

\((St) \) \(x^* \lor x^{**} \approx 1. \)
Semi-Heyting algebras are distributive and pseudocomplemented, with a^* as the pseudocomplement of an element a. We will use these and other properties (see [12]) of semi-Heyting algebras, frequently without explicit mention, throughout this paper.

The following definition is taken from [14].

Definition 2.1. An algebra $L = \langle L, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a semi-Heyting algebra with a dual quasi-De Morgan operation or dually quasi-De Morgan semi-Heyting algebra (DQDSH-algebra, for short) if $\langle L, \vee, \wedge, \rightarrow, 0, 1 \rangle$ is a semi-Heyting algebra, and L satisfies:

(a) $0' \approx 1$ and $1' \approx 0$
(b) $(x \wedge y)' \approx x' \vee y'$
(c) $(x \vee y)''' \approx x'' \vee y''$
(d) $x'' \leq x$.

Let $L \in \text{DQDSH}$. Then L is a dually Quasi-De Morgan Stone semi-Heyting algebra (DQDStSH-algebra) if L satisfies (St). L is a De Morgan semi-Heyting algebra or symmetric semi-Heyting algebra (DMSH-algebra) if L satisfies:

(St) $x'' \approx x$.

L is a dually pseudocomplemented semi-Heyting algebra (DPCSH-algebra) if L satisfies:

(PC) $x \vee x' \approx 1$.

The varieties of DQDSH-algebras, DQDStSH-algebras, DMSH-algebras and DPCSH-algebras are denoted, respectively, by DQDSH, DQDStSH, DMSH and DPCSH. Furthermore, DMcmSH denotes the subvariety of DMSH defined by the commutative identity (Co), and DQDBSH denotes the one defined by (Bo).

If the underlying semi-Heyting algebra of a DQDSH-algebra is a Heyting algebra we denote the algebra by DQDH-algebra, and the corresponding variety is denoted by DQDH. In the sequel, a^{**} will be denoted by a^+, for $a \in L \in \text{DQDSH}$. The following lemma will often be used without explicit reference to it. Most of the items in this lemma were proved in [14], and the others are left to the reader.

Lemma 2.2. Let $L \in \text{DQDSH}$ and let $x, y, z \in L$. Then

(i) $1'' = 1$
(ii) $x \leq y$ implies $x' \geq y'$
(iii) $(x \wedge y)^* = x^* \wedge y^*$
(iv) $x'' = x'$
(v) $(x \vee y)' = (x'' \vee y'')'$
(vi) \((x \lor y)' = (x'' \lor y)\)^

(vii) \(x \leq (x \lor y) \rightarrow x\)

(viii) \(x \land [(x \lor y) \rightarrow z] = x \land z\).

Next, we describe some examples of \textbf{DQDSH}-algebras by expanding the semi-Heyting algebras given in Figure 1. These will play a crucial role in the rest of the note.

\[
\begin{array}{c|cc}
2 : & 1 & 0 & 1 \\
\hline
& 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
\end{array}
\quad \begin{array}{c|cc}
2 : & 1 & 0 & 1 \\
\hline
& 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{c|ccc}
L_1 : & a & 0 & 1 \\
\hline
& 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{array}
\quad \begin{array}{c|ccc}
L_2 : & a & 0 & 1 \\
\hline
& 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|ccc}
L_3 : & a & 0 & 1 \\
\hline
& 0 & 1 & 1 \\
0 & 0 & 1 & a \\
\end{array}
\quad \begin{array}{c|ccc}
L_4 : & a & 0 & 1 \\
\hline
& 0 & 1 & 1 \\
0 & 0 & 1 & a \\
\end{array}
\]

\[
\begin{array}{c|ccc}
L_5 : & a & 0 & 1 \\
\hline
& 0 & 1 & a \\
0 & 0 & 1 & 1 \\
\end{array}
\quad \begin{array}{c|ccc}
L_6 : & a & 0 & 1 \\
\hline
& 0 & 1 & a \\
0 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|ccc}
L_7 : & a & 0 & 1 \\
\hline
& 0 & 1 & a \\
0 & 0 & 1 & a \\
\end{array}
\quad \begin{array}{c|ccc}
L_8 : & a & 0 & 1 \\
\hline
& 0 & 1 & a \\
0 & 0 & 1 & a \\
\end{array}
\]

\[
\begin{array}{c|ccc}
L_9 : & a & 0 & 1 \\
\hline
& 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
\end{array}
\quad \begin{array}{c|ccc}
L_{10} : & a & 0 & 1 \\
\hline
& 0 & 1 & 0 \\
0 & 0 & 1 & a \\
\end{array}
\]
Let $\mathbf{2}^e$ and $\overline{\mathbf{2}}^e$ be the expansions of the semi-Heyting algebras 2 and $\overline{\mathbf{2}}$ (shown in Figure 1) by adding the unary operation $'$ such that $0' = 1$, $1' = 0$.

Let L_i^d, $i = 1, \ldots, 10$, denote the expansion of the semi-Heyting algebra L_i (shown in Figure 1) by adding the unary operation $'$ such that $0' = 1$, $1' = 0$, and $a' = 1$.

Let L_i^d, $i = 1, \ldots, 10$, denote the expansion of L_i (in Figure 1) by adding the unary operation $'$ such that $0' = 1$, $1' = 0$, and $a' = a$.

We let $C_{10}^{dp} := \{L_i^{dp} : i = 1, \ldots, 10\}$ and $C_{10}^{dm} := \{L_i^{dm} : i = 1, \ldots, 10\}$. We also let $C_{20} := C_{10}^{dm} \cup C_{10}^{dp}$.

Each of the three 4-element algebras D_1, D_2 and D_3 has its lattice reduct as the Boolean lattice with the universe $\{0, a, b, 1\}$, b being the complement of a, has the operation \rightarrow as defined in Figure 1, and has the unary operation $'$ defined as follows: $a' = a$, $b' = b$, $0' = 1$, $1' = 0$. For the variety $V(D_1, D_2, D_3)$ generated by $\{D_1, D_2, D_3\}$, it was shown in [14] that $V(D_1, D_2, D_3) = DQDBSH$.

The following is a special case of Definition 5.5 in [14]. Let $x'^{rs} := x^{2(rs)}$. Note that $x^{2(rs)} \leq x$ in a DMSH-algebra.

DEFINITION 2.3. The subvariety DMSH$_1$ of level 1 of DMSH is defined by the identity: $x \land x'^{rs} \land x^{2(rs)} \approx x \land x'^{rs}$, or equivalently, by the identity:

$$(L1) \ (x \land x'^{rs})'^{rs} \approx x \land x'^{rs}.$$
It follows from [14] that the variety DMSH_1, is a discriminator variety. We note here that the algebras described above in Figure 1 are actually in DMSH_1.

3. Regular De Morgan Semi-Heyting algebras of level 1

Recall that $a^+ := a^{='*}$ in $L \in \text{DMSH}_1$.

DEFINITION 3.1. Let $L \in \text{DMSH}_1$. Then L is regular if L satisfies the following identity:

(R) $x \land x^+ \leq y \lor y^*$.

The variety of regular DMSH_1-algebras will be denoted by RDMSH_1.

In the rest of this section, L denotes an RDMSH_1-algebra and $x, y \in L$. The following lemmas lead us to prove that RDMSH_1 satisfies (St).

LEMMA 3.2. $(x \lor x^*)^* = x' \land x^*$.

Proof.

\[
x' \land x^* = x' \land x''^{*} \\
= (x' \land x'')^{*}_{*} \quad \text{by (L1)} \\
= (x'' \lor x''^{*})^* \\
= (x \lor x^{*})^*, \quad \text{since} \ x'' = x.
\]

\[\square\]

LEMMA 3.3. $x \lor x^* \lor x^* = 1$.

Proof.

\[
x \lor x^* \lor x^* = (x^* \land x' \land x^*)^* \quad \text{by (DM)} \\
= [(x^* \land (x \lor x^*))^*] \quad \text{by Lemma 3.2} \\
= (x^* \land 0)^* \quad \text{by Lemma 2.2 (viii)} \\
= 0^* \\
= 1.
\]

\[\square\]

LEMMA 3.4. We have

\[
x \land (x^+ \lor y \lor y^*) = x \land (y \lor y^*).
\]
Proof. \[x \land (y \lor y^*) = x \land [(x \land x^+) \lor (y \lor y^*)] \text{ by (R)} \]
\[= (x \land x^+) \lor [x \land (y \lor y^*)] \]
\[= x \land [x^+ \lor y \lor y^*]. \]
\[\square \]

Lemma 3.5. Let \(x \neq 1 \). Then \(x \leq x' \).

Proof. Since \(x \neq 1 \), we have \(x \land x^* = 0 \) by (L1). So,
\[x \land x' = (x \land x') \lor (x \land x^*) \]
\[= x \land (x' \lor x^*) \]
\[= x \land (x^+ \lor x' \lor x^*) \text{ by Lemma 3.4} \]
\[= x \land 1 \text{ by Lemma 3.3} \]
So, \(x \leq x' \). \[\square \]

Lemma 3.6. Let \(x^* \neq 0 \). Then \(x \lor x^* = 1 \).

Proof. Since \(x^* \neq 0 \), we have \(x^{*'} \neq 1 \), so \(x^{*'} \leq x^* \) by Lemma 3.3 and (DM), implying \(x \lor x^* = 1 \) by Lemma 3.3. \[\square \]

Theorem 3.7. Let \(L \in \text{RDMSH}_1 \). Then \(L \models x^* \lor x^{**} \approx 1 \).

Proof. Let \(a \in L \). If \(a^* = 0 \), Then the theorem is trivially true. So, we can assume that \(a^* \neq 0 \). Then \(a \lor a^* = 1 \), in view of the preceding lemma. The conclusion is now immediate. \[\square \]

Recall from [14] that the subvariety \(\text{DMSH}_2 \) of level 2 of \(\text{DMSH} \)
is defined by the identity: \(x \land x^{*'} \land x^{2(*)} \approx x \land x^{*'} \land x^{2(*)} \land x^{3(*)} \), or equivalently, by the identity:

\[\text{(L2)} \ (x \land x^{*'})^{2(*)} \approx (x \land x^{*'})^{(*)}. \]

Remark 3.8. The above theorem fails in \(\text{RDMSH}_2 \), as the following example shows:
4. Applications

Let $V(K)$ denote the variety generated by the class K of algebras. The following corollary is immediate from Theorem 3.7 and Corollary 3.4(a) of [16], and hence is an improvement on Corollary 3.4(a) of [16].

COROLLARY 4.1. We have

(a) $\text{RDMSh}_1 = \text{RDMStSh}_1 = V(C_{10}) \lor V(D_1, D_2, D_3)$

(b) $\text{RDMSH}_1 = \text{RDMStH}_1 = V(L_{dm}^1) \lor V(D_1)$

(c) $\text{RDMcmSh}_1 = V(L_{dm}^9, L_{dm}^{10}, D_1) = V(L_{dm}^1) \lor V(D_1)$.

Let $L \in \text{DMSH}_1$. We say L is pseudocommutative if $L \models (x \to y)^* = (y \to x)^*$.

COROLLARY 4.2. Let V be a subvariety of RDMSh_1. Then V is pseudocommutative iff $V = V(L_{dm}^9, L_{dm}^{10}, D_1)$.

Proof. It suffices, in view of (a) of the preceding corollary, to verify that L_{dm}^9, L_{dm}^{10}, and D_1 satisfy the pseudocommutative law, while the rest of the simples in RDMSH_1 do not. \[\square\]

The proofs of the following corollaries are similar.

COROLLARY 4.3. The variety $V(L_{dm}^9, L_{dm}^{10}, D_1)$ is also defined, modulo RDMSh_1, by

$x^* \to y^* \approx y^* \to x^*$.

COROLLARY 4.4. The variety $V(L_{dm}^1, L_{dm}^2, L_{dm}^3, L_{dm}^4, D_2, D_3)$ is defined, modulo RDMSh_1, by
\[(0 \to 1)^+ \to (0 \to 1)^{**} \approx 0 \to 1. \]

It was proved in [14] that \(V(D_1, D_2, D_3) = DQDBSH \). Here are some more bases for \(V(D_1, D_2, D_3) \).

Corollary 4.5. Each of the following identities is a base for the variety \(V(D_1, D_2, D_3) \) modulo \(RDMSH_1 \):

1. \(x \to y \approx y^* \to x^* \) (Law of contraposition)
2. \(x \lor (y \to z) \approx (x \lor y) \to (x \lor z) \)
3. \([(x \lor (x \to y^*)) \to (x \to y^*)] \lor (x \lor y^*) = 1 \).

Corollary 4.6. The variety \(V(L_{dm}^1, L_{dm}^2, L_{dm}^3, L_{dm}^4, L_{dm}^5, D_1, D_2, D_3) \) is defined, modulo \(RDMSH_1 \), by

\[x \to y^* \approx y \to x^*. \]

Corollary 4.7. The variety \(V(L_{dm}^7, L_{dm}^8, L_{dm}^9, L_{dm}^{11}, D_1, D_2, D_3) \) is defined, modulo \(RDMSH_1 \), by

\[x \lor (x \to y) \approx x \lor [(x \to y) \to 1]. \]

Corollary 4.8. The variety \(V(L_{dm}^7, L_{dm}^8, D_2) \) is defined, modulo \(RDMSH_1 \), by

1. \(x \lor (x \to y) \approx x \lor [(x \to y) \to 1] \)
2. \((0 \to 1)^{**} \approx 1. \)

Corollary 4.9. The variety \(V(2^e, L_{dm}^7, L_{dm}^8, L_{dm}^9, L_{dm}^{11}) \) is defined, modulo \(RDMSH_1 \), by

1. \(x \lor (x \to y) \approx x \lor [(x \to y) \to 1] \)
2. \(x^{*'} \approx x^{**}. \)

Corollary 4.10. The variety \(V(2^e, L_{dm}^9, L_{dm}^{11}) \) is defined, modulo \(RDMSH_1 \), by

1. \(x \lor (x \to y) \approx x \lor [(x \to y) \to 1] \)
2. \(x^{*'} \approx x^{**} \)
3. \((0 \to 1)^* \lor (0 \to 1)^* \approx 1. \)

Corollary 4.11. The variety \(V(L_{dm}^9, L_{dm}^{11}) \) is defined, modulo \(RDMSH_1 \), by

1. \(x \lor (x \to y) \approx x \lor [(x \to y) \to 1] \)
2. \(x^{*'} \approx x^{**} \)
3. \((0 \to 1)^* \approx 1. \)

Corollary 4.12. The variety \(V(L_{dm}^1, L_{dm}^2, L_{dm}^3, L_{dm}^4, L_{dm}^5, L_{dm}^6, L_{dm}^7, L_{dm}^8) \) is defined, modulo \(RDMSH_1 \), by
COROLLARY 4.13. The variety $V(L_{dm_1}^1, L_{dm_2}^2, L_{dm_3}^3, L_{dm_4}^4, D_2)$ is defined, modulo $RDMSH_1$, by
\begin{align*}
(1) & \; (0 \to 1)^* \approx 1 \\
(2) & \; (0 \to 1)^{**} \approx 1.
\end{align*}

COROLLARY 4.14. The variety $V(L_{dm_1}^1, L_{dm_3}^3, D_1, D_2, D_3)$ is defined, modulo $RDMSH_1$, by
\begin{align*}
(1) & \; y \to (y \to x) \approx (x \lor y) \to x \\
(2) & \; (0 \to 1)^* \approx 1.
\end{align*}

COROLLARY 4.15. The variety $V(L_{dm_1}^1, L_{dm_3}^3, D_2)$ is defined, modulo $RDMSH_1$, by
\begin{align*}
(1) & \; y \to (x \to y) \approx (x \lor y) \to x \\
(2) & \; (0 \to 1)^{**} \approx 1 \\
(3) & \; (0 \to 1)^* \approx 1.
\end{align*}

COROLLARY 4.16. The variety $V(L_{dm_1}^1, L_{dm_2}^2, L_{dm_3}^3, D_1, D_2, D_3)$ is defined, modulo $RDMSH_1$, by
\begin{align*}
y \lor (y \to (x \lor y)) & \approx (0 \to x) \lor (x \to y).
\end{align*}

COROLLARY 4.17. The variety $V(L_{dm_1}^1, L_{dm_2}^2, L_{dm_8}^3, D_1, D_2, D_3)$ is defined, modulo $RDMSH_1$, by
\begin{align*}
x \lor [y \to (0 \to (y \to x))] & \approx x \lor y \lor (y \to x).
\end{align*}

$V(D_2)$ was axiomatized in [14]. Here are some more bases for it.

COROLLARY 4.18. Each of the following identities is an equational base for $V(D_2)$, mod $RDMH_1$:
\begin{align*}
(1) & \; y \to [0 \to (y \to x)] \approx y \lor (y \to x) \\
(2) & \; x \lor (y \to z) \approx (x \lor y) \to (x \lor z) \\
(3) & \; x \lor [y \to (y \to x)^*] \approx x \lor y \lor (y \to x) \\
(4) & \; [\{x \lor (x \to y^*)] \to (x \to y^*) \lor x \lor y^* \approx 1.
\end{align*}

$V(D_1)$ was axiomatized in [14]. Here are more bases for it.

COROLLARY 4.19. Each of the following identities is an equational base for $V(D_1)$, mod $RDMcmSH_1$:
\begin{align*}
(1) & \; y \to [0 \to (y \to x)] \approx y \lor (y \to x) \\
(2) & \; x \lor (y \to z) \approx (x \lor y) \to (x \lor z) \\
(3) & \; x \lor [y \to (y \to x)^*] \approx x \lor y \lor (y \to x) \\
(4) & \; [\{x \lor (x \to y^*)] \to (x \to y^*) \lor x \lor y^* \approx 1.
\end{align*}
\[y \lor (y \rightarrow (x \lor y)) \approx (0 \rightarrow x) \lor (x \rightarrow y) \]
\[x \lor [y \rightarrow (y \rightarrow x)] \approx x \lor y \lor (y \rightarrow x) \]
\[\{x \lor (x \rightarrow y^*) \rightarrow (x \rightarrow y^*)\} \lor x \lor y^* \approx 1 \]
\[x \lor (y \rightarrow z) \approx (x \lor y) \rightarrow (x \lor z). \]

COROLLARY 4.20. The variety \(V(\text{L}^{\text{dm}}_1, \text{L}^{\text{dm}}_2, \text{L}^{\text{dm}}_3, \text{D}_1, \text{D}_2, \text{D}_3) \) is defined, mod \(\text{RDMSH}_1 \), by
\[x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z). \]

COROLLARY 4.21. The variety \(V(\text{C}^{\text{dm}}_{10}) \) is defined, mod \(\text{RDMSH}_1 \), by
\[x \land x' \leq y \lor y' \text{ (Kleene identity)}. \]

COROLLARY 4.22. The variety \(V(\text{L}^{\text{dm}}_{10}) \) is defined, mod \(\text{RDMSH}_1 \), by
\[x \land x' \leq y \lor y' \text{ (Kleene identity)} \]
\[x \rightarrow y \approx y \rightarrow x. \]

5. **Lattice of subvarieties of \(\text{RDQDStSH}_1 \)**

We now turn to describe the lattice of subvarieties of \(\text{RDQDStSH}_1 \) which contains \(\text{RDMSH}_1 \) in view of Theorem 3.7. For this purpose we need the following theorem which is proved in [15].

THEOREM 5.1. Let \(\text{L} \in \text{RDQDStSH}_1 \). Then TFAE:
\[(1) \text{L} \text{ is simple} \]
\[(2) \text{L} \text{ is subdirectly irreducible} \]
\[(3) \text{L} \in \{\text{2}^e, \bar{\text{2}}^e\} \cup \text{C}_{20} \cup \{\text{D}_1, \text{D}_2, \text{D}_3\}. \]

Let \(\mathcal{L} \) denote the lattice of subvarieties of \(\text{RDQDStSH}_1 \). \(\text{T} \) denotes the trivial variety, and, for \(n \) a positive integer, \(\text{B}_n \) denotes the \(n \)-atom Boolean lattice. We also let \(1 + \text{B} \) denote the lattice obtained by adding a new least element 0 to the Boolean lattice \(\text{B} \).

THEOREM 5.2. \(\mathcal{L} \cong (1 + \text{B}_9) \times (1 + \text{B}_5) \times \text{B}_9 \).
Proof. Let $S_1 := \{L_{dm}^i : i = 1, 2, 3, 4\} \cup \{L_{dp}^i : i = 1, 2, 3, 4\} \cup \{D_2\}$, $S_2 := \{L_{dm}^i : i = 9, 10\} \cup \{L_{dp}^i : i = 9, 10\} \cup \{D_1\}$, and $S_3 := \{L_{dm}^i : i = 5, 6, 7, 8\} \cup \{L_{dp}^i : i = 5, 6, 7, 8\} \cup \{D_3\}$. Observe that each of the simples in S_1 contains 2^e. Let us first look at the interval $[V(2^e), V(S_1)]$. Since each algebra in S_1 is an atom in this interval, we can conclude that the interval is a 9-atom Boolean lattice; thus the interval $[T, V(S_1)]$ is isomorphic to $1 + B_9$. Similarly, since each of the simples in S_2 contains $\overline{2}^e$, it is clear that the interval $[T, V(S_2)]$ is isomorphic to $1 + B_5$. Likewise, since each of the simples in S_3 has only one subalgebra, namely the trivial algebra, the interval $[T, S_3]$ is isomorphic to B_9. Observe that the intersection of the subvarieties $V(S_1)$, $V(S_2)$ and $V(S_3)$ is T and their join is $RDQDSH_1$ in L. It, therefore, follows that L is isomorphic to $(1 + B_9) \times (1 + B_5) \times B_9$. □

COROLLARY 5.3. The lattice of subvarieties of $RDMSH_1$ is isomorphic to $(1 + B_5) \times (1 + B_3) \times B_5$.

COROLLARY 5.4. The lattice of subvarieties of $RDPCSH_1$ is isomorphic to $(1 + B_4) \times (1 + B_2) \times B_4$.

Similar formulas can be obtained for other subvarieties of $RDQDSH_1$.

6. Amalgamation

We now examine the Amalgamation Property for subvarieties of the variety $RDQDStSH_1$. For this purpose we need the following theorem from [3].

THEOREM 6.1. Let K be an equational class of algebras satisfying the Congruence Extension Property, and let every subalgebra of each subdirectly irreducible algebra in K be subdirectly irreducible. Then K satisfies the Amalgamation Property if and only if whenever A, B, C are subdirectly irreducible algebras in K with A a common subalgebra of B and C, the amalgam $(A; B, C)$ can be amalgamated in K.

THEOREM 6.2. Every subvariety of $RDQDStSH_1$ has the Amalgamation Property.

Proof. It follows from [14] that $RDQDStSH_1$ has CEP. Also, it follows from Theorem 5.1 that every subalgebra of each subdirectly irreducible (= simple) algebra in $RDQDStSH_1$ is subdirectly irreducible. Therefore, in each subvariety V of $RDQDStSH_1$, we need only consider
an amalgam \((A : B, C)\), where \(A, B, C\) are simple in \(\text{RDQDStSH}_1\) and \(A\) a subalgebra of \(B\) and \(C\). Then it is not hard to see, in view of the description of simples in \(\text{RDQDStSH}_1\) given in Theorem 5.1 that \((A : B, C)\) can be amalgamated in \(V\).

\[\square\]

7. Concluding Remarks and Open Problems

We know from [14] that every simple algebra in \(\text{RDQDH}_1\) is quasiprimal.

Of all the 25 simple algebras in \(\text{RDQDStSH}_1\), \(2^e, \bar{2}^e,\) and \(L_i, i = 5, 6, 7, 8,\) and \(D_3\) are primal algebras and the rest are semiprimal algebras. We now mention some open problems for further research.

Problem 1: For each variety \(V(L)\), where \(L\) is a simple algebra in \(\text{RDMSH}_1\) (except \(V(2^e)\)), find a Propositional Calculus \(P(V)\) such that the equivalent algebraic semantics for \(P(V)\) is \(V(L)\) (with 1 as the designated truth value, using \(\rightarrow\) and \(\not\) as implication and negation respectively). (For the variety \(V(2^e)\), the answer is, of course, well known: Classical Propositional Calculus.)

We think such (many-valued) logics will be of interest in computer science and in switching circuit theory.

Problem 2: Describe simples in the variety of pseudocommutative \(\text{RDQDStSH}_1\)-algebras.

Problem 3: Find equational bases for the remaining subvarieties of \(\text{RDMSH}_1\).

Problem 4: Let \(\text{RDmsStSH}_1\) denote the subvariety of \(\text{DQDStSH}_1\) defined by: \((x \lor y) \approx x' \land y'\). Describe simples in \(\text{RDmsStSH}_1\).

References

[1] R. Balbes and PH. Dwinger, Distributive lattices, Univ. of Missouri Press, Columbia, 1974.
[2] S. Burris and H.P. Sankappanavar, A course in universal algebra, Springer–Verlag, New York, 1981. The free, corrected version (2012) is available online as a PDF file at math.uwaterloo.ca/~snburris.
[3] G. Grätzer and H. Lakser, *The structure of pseudocomplemented distributive lattices II: Congruence extension and amalgamation*, Trans. Amer. Math. Soc., 156 (1971), 343-358.

[4] B. Jónsson, *Algebras whose congruence lattices are distributive*, Math. Scand. 21 (1967), 110–121.

[5] A. Monteiro, *Sur les algèbres de Heyting symétriques*, Portugaliae Mathematica 39 (1980), 1–237.

[6] W. McCune, *Prover9 and Mace 4*, http://www.cs.unm.edu/mccune/prover9/

[7] H. Rasiowa, *An algebraic approach to non-classical logics*, North–Holland Publ.Comp., Amsterdam, (1974).

[8] H.P. Sankappanavar, *Heyting algebras with dual pseudocomplementation*, Pacific J. Math. 117 (1985), 405–415.

[9] H.P. Sankappanavar, *Pseudocomplemented Okham and De Morgan algebras*, Zeitschr. f. math. Logik und Grundlagen d. Math. 32 (1986), 385–394.

[10] H.P. Sankappanavar, *Heyting algebras with a dual lattice endomorphism*, Zeitschr. f. math. Logik und Grundlagen d. Math. 33 (1987), 565–573.

[11] H.P. Sankappanavar, *Semi-De Morgan algebras*, J. Symbolic. Logic 52 (1987), 712–724.

[12] H.P. Sankappanavar, *Semi–Heyting algebras: An abstraction from Heyting algebras*, Actas del IX Congreso Dr. A. Monteiro (2007), 33-66.

[13] H.P. Sankappanavar, *Semi–Heyting algebras II*. In Preparation.

[14] H.P. Sankappanavar, *Expansions of Semi–Heyting algebras. I: Discriminator varieties*, Studia Logica 98 (1-2) (2011), 27-81.

[15] H.P. Sankappanavar, *Dually quasi-De Morgan Stone semi–Heyting algebras I. Regularity*, Categories and General Algebraic Structures with Applications, 2 (2014), 47-64.

[16] H.P. Sankappanavar, *Dually quasi-De Morgan Stone semi–Heyting algebras II. Regularity*, Categories and General Algebraic Structures with Applications, 2 (2014), 65-82.

[17] H.P. Sankappanavar, *Expansions of Semi–Heyting algebras. II. In Preparation.*

[18] J. Varlet, *A regular variety of type (2,2,1,1,0,0)*, Algebra Univ. 2 (1972), 218-223.

[19] H. Werner, *Discriminator algebras*, Studien zur Algebra und ihre Anwendungen, Band 6, Academie–Verlag, Berlin, 1978.

Department of Mathematics
State University of New York
New Paltz, NY 12561

sankapph@newpaltz.edu