Association Between Morning Surge in Systolic Blood Pressure and SYNTAX Score I in Patients With Stable Coronary Artery Disease

Alaa Quisi, MD1; Gokhan Alici, MD2; Hazar Harbalioglu, MD3; Omer Genc, MD4; Ibrahim Halil Kurt, MD4; Murat Cayli, MD1

1Department of Cardiology, Medline Adana Hospital, Adana, Turkey
2Department of Cardiology, Okmeydani Training and Research Hospital, Istanbul, Turkey
3Department of Cardiology, Duzce Ataturk State Hospital, Duzce, Turkey
4Department of Cardiology, Adana City Training and Research Hospital, Adana, Turkey

A high morning surge in systolic blood pressure poses a risk in people who have cardiovascular disease. We investigated the relationship between this phenomenon and the SYNTAX score I in patients who had stable coronary artery disease.

Our single-center study included 125 consecutive patients (109 men and 16 women; mean age, 54.3 ± 9 yr) in whom coronary angiography revealed stable coronary artery disease. We calculated each patient’s sleep-trough morning surge in systolic blood pressure, then calculated the SYNTAX score I.

The morning surge was significantly higher in patients whose score was >22 (mean, 22.7 ± 13.2) than in those whose score was ≤22 (mean, 12.4 ± 7.5) (P <0.001). Forward stepwise logistic regression analysis revealed that morning surge in systolic blood pressure was the only independent predictor of an intermediate-to-high score (odds ratio=1.183; 95% CI, 1.025–1.364; P=0.021).

To our knowledge, this is the first study to show an association between morning surge in systolic blood pressure and the SYNTAX score I in patients who have stable coronary artery disease. (Tex Heart Inst J 2021;48(2):e197092)

The onset of cardiovascular (CV) events peaks shortly after people awaken.1-3 This finding raised interest in the circadian pattern of blood pressure (BP), which generally decreases at night and sharply increases in the morning, and suggested that high morning surge (MS) in systolic BP (SBP) may be involved in CV events. The link has been studied in hypertensive patients4,5 and in the general population.6,7 Although the surge level at which risk increases is still unknown, its usefulness in predicting CV events, including myocardial infarction, stroke, and sudden death, has been shown.8-10 A major BP surge can cause target-organ damage (including left ventricular hypertrophy),9,11 and it affects carotid artery intima-media thickness.12 Until now, MS in BP has not been studied in patients who have extensive coronary atherosclerosis.

The SYNTAX score I (SSI) is used to evaluate the extent and complexity of coronary artery disease (CAD) and to determine its optimal treatment.13 A higher score indicates a higher risk of major adverse CV events and a greater therapeutic challenge.14,15 In this study, we used the SSI to determine the relationship between MS in SBP and the extent, severity, and complexity of disease in patients with stable CAD.

Patients and Methods

This single-center, cross-sectional study included 125 consecutive patients (109 men and 16 women; mean age, 54.3 ± 9 yr) who underwent coronary angiography (CA) from July through December 2018 (Table I). Patients included in the study had signs of ischemic heart disease (such as angina pectoris), positive or equivocal results on...
noninvasive myocardial ischemia screening tests, or both. Ninety-one patients (73%) had positive treadmill exercise test results, 29 (23%) had positive myocardial perfusion scintigraphy results, and 5 (4%) had positive results on computed tomographic CA (at least 64-slice).

We excluded patients who had a history of coronary artery bypass grafting, severe heart failure, severe valvular heart disease, atrial fibrillation, obstructive sleep apnea, infective or inflammatory disease, malignancy, cerebrovascular disease, chronic kidney disease (estimated glomerular filtration rate [eGFR], <60 mL/min/1.73 m²), or chronic liver disease. During the study period, 158 patients had undergone CA; 33 (8 men and 25 women) were excluded because they had normal coronary arteries. In-office BP and noninvasive 24-hour ambulatory BP monitoring (ABPM) measurements were obtained from each patient, and cardiac medications were recorded. The body mass index of each patient was calculated.

TABLE I. Baseline Characteristics of the Study Groups

Variable	SYNTAX Score I ≤22 (n=80)	SYNTAX Score I >22 (n=45)	P Value*
Age (yr)	54.5 ± 9.3	54 ± 8.5	0.781
Men	69 (86.3)	40 (88.9)	0.672
Body mass index	28.4 (23.9–41.5)	26.8 (21.3–31.7)	0.998
Diabetes	23 (28.8)	11 (24.4)	0.604
Hypertension	51 (62.8)	23 (51.1)	0.168
Hyperlipidemia	18 (22.5)	9 (20)	0.744
Family history of CAD	38 (47.5)	31 (68.9)	0.021
Smoking	29 (36.3)	23 (51.1)	0.106
Hemoglobin level (mmol/L)	8.8 ± 1	8.7 ± 0.9	0.594
Leukocyte count (×10³/µL)	9.7 (5.4–20.5)	9.4 (5.4–16)	0.271
Platelet count (×10³/µL)	235.3 ± 65.2	272.4 ± 144.3	0.051
eGFR (mL/min/1.73 m²)	95.2 (61.9–143.3)	95 (79.7–165.6)	0.328
Triglycerides (mmol/L)	1.8 (0.6–7.6)	1.5 (0.5–6)	0.597
Total cholesterol (mmol/L)	5.1 ± 1.1	5.4 ± 1.2	0.324
HDL cholesterol (mmol/L)	1 ± 0.3	0.9 ± 0.3	0.549
LDL cholesterol (mmol/L)	4.2 (1.4–5.2)	4.3 (1.1–6.1)	0.321
LVEF (%)	62.9 (43–73)	58.8 (30.7–67.1)	<0.001
CCS grade of angina pectoris	—	—	0.094
I	20 (25)	7 (15.6)	—
II	38 (47.5)	16 (35.6)	—
III	17 (21.3)	15 (33.3)	—
IV	5 (6.3)	7 (15.6)	—
Coronary arteries involved	—	—	<0.001
1	44 (55)	0	—
2	31 (38.8)	11 (24.4)	—
3	3 (3.8)	27 (60)	—
4	2 (2.5)	7 (15.6)	—
ACEI/ARB use	67 (83.8)	37 (62.2)	0.826
Calcium channel blocker use	4 (5)	1 (2.2)	0.653
β-blocker use	72 (90)	44 (97.8)	0.155
Statin use	73 (91.3)	40 (88.9)	0.755

ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; CAD = coronary artery disease; CCS = Canadian Cardiovascular Society; eGFR = estimated glomerular filtration rate; HDL = high-density-lipoprotein, LDL = low-density-lipoprotein; LVEF = left ventricular ejection fraction

*P values were calculated by using the independent-samples t or Mann-Whitney U test for continuous variables, and the χ² or Fisher exact test for categorical variables, as appropriate. The Fisher exact test was performed for calcium channel blocker, β-blocker, and statin use.

Data are presented as mean ± SD, number and percentage, or median and range. P <0.05 was considered statistically significant.
The eGFR was calculated by using the Chronic Kidney Disease Epidemiology Collaboration equation.

The study was conducted in accordance with the Declaration of Helsinki. An institutional ethics committee approved the study protocol, and each participant provided written informed consent.

Ambulatory Blood Pressure Measurements and Morning Surge in Blood Pressure

Each patient underwent noninvasive 24-hour ABPM with use of a Tracker NIBP2 portable digital recorder (Del Mar Reynolds Medical Ltd.) during a day of typical activity. Participants whose sleep-trough SBP decreased by >20% or more in comparison with awake SBP were classified as extreme dippers; those with a decrease of 0 to <20%, as dippers; and those whose decrease was <0%, as nondippers.

In this study, the sleep-trough MS in SBP was calculated as the difference between the average of 4 SBP readings during the 2 hours after awakening and the mean SBP during the hour that included the lowest reading during sleep.4

SYNTAX Score I Measurements

The SSI for each patient was calculated by using the online SYNTAX score I calculator (syntaxscore.org). A low SSI was defined as ≤22, an intermediate score as 23 to 32, and a high score as ≥33.46 The number of patients with SSI >22 was small, so we divided the study population into 2 groups by score: the ≤22 group (the low-score tertile; n=80) and the >22 group (the intermediate- and high-score tertiles; n=45).

Statistical Analysis

Data were analyzed with use of SPSS version 22.0 software (SPSS Inc., an IBM company). Continuous variables were expressed as mean ± SD or as median and range, and categorical variables as number and percentage. Normal distribution of continuous variables was evaluated by using the Kolmogorov-Smirnov test. The χ² or Fisher exact test was used to compare categorical variables, and the independent-samples t or Mann-Whitney U test to compare continuous variables. Correlation between variables was analyzed with use of the Pearson correlation coefficient. All significant values in the univariate analysis (P <0.05) were selected for the multivariable model, and forward stepwise logistic regression revealed MS in SBP, nighttime diastolic BP, MS in SBP, and systolic dipper status, were included in the multivariate analysis. All significant factors related to the intermediate-to-high SSI (odds ratio=1.183; 95% CI, 1.025–1.364; P=0.021).

Results

The SSI ≤22 group comprised 80 patients (mean age, 54.5 ± 9.3 yr; 69 men), and the SSI >22 group comprised 45 patients (mean age, 54 ± 8.5 yr; 45 men) (Table I). Family history of CAD was significantly more prevalent in patients whose SSI was >22 (68.9%) than in patients whose score was ≤22 (47.5%) (P=0.021). Left ventricular ejection fraction was significantly lower in patients whose score was >22 (58.8%; range, 30.7%–67.1%) than in patients whose score was ≤22 (62.9%; range, 43%–73%) (P<0.001). Most patients with a score ≤22 had 1 or 2 involved coronary arteries, whereas most patients with a score >22 had 2 or 3 involved arteries (P<0.001).

Patients whose SSI was >22 had significantly higher in-office and mean 24-hour BP measurements than did patients whose score was ≤22 (Table II). The sleep-trough MS in SBP was significantly higher in patients whose score was >22, and systolic dipper status differed significantly between the 2 groups.

In-office BP, mean 24-hour BP, daytime BP, SSI (Fig. 1), and the number of involved coronary arteries were significantly associated with MS in SBP (Table III).

All significant factors in the univariate analysis (P<0.01), including family history of CAD, platelet count, left ventricular ejection fraction, Canadian Cardiovascular Society angina grade, number of involved coronary arteries, in-office BP, mean 24-hour BP, daytime SBP, nighttime diastolic BP, MS in SBP, and systolic dipper status, were included in the multivariate analysis. Forward stepwise logistic regression revealed MS in SBP as the only independent predictor of intermediate-to-high SSI (odds ratio=1.183; 95% CI, 1.025–1.364; P=0.021).

Discussion

Major surges in BP are closely associated with CV events.4,6,17 Our major finding is that an MS in SBP independently predicts an intermediate-to-high SSI in patients who have stable CAD. To our knowledge, this is the first report to associate MS in SBP with the extent and complexity of CAD.

The potential pathophysiologic mechanisms of this finding may be related to increased inflammation, oxidative stress, and platelet aggregation in individuals who have a high MS in SBP. An association between peak SBP and CV events in older patients has been shown.8 In addition, high MS in BP has been associated with factors related to atherosclerosis, including increased oxidative stress,19 increased inflammation,20 increased platelet aggregation,21 and coronary microvascular dysfunction.22 Hypertensive patients whose SBP surged had higher levels of carotid intima-media thickness and inflammatory markers than did other patients.23 In addition, histologic studies of carotid endarterectomy specimens revealed that carotid plaques in patients who had a high MS in SBP were associated with characteristics of vulnerable plaques, increased levels of oxidative stress markers, and activation of the ubiquitin-proteasome system.20,24 All
these factors may increase the risk of CV events in patients who have a high MS in SBP.

Investigators have reported an independent clinical impact of SBP surge in predicting CV events such as sudden death, myocardial infarction, and stroke. These studies were often performed in divergent populations with use of different methodologies, perhaps explaining inconsistent findings. Li and colleagues reported that a high MS in SBP posed a significantly higher risk of all-cause death and total CV events in the general population. Verdecchia and colleagues reported that a blunted...
MS was associated with higher CV risk. Conversely, Bombelli and associates reported that MS was not an independent predictor of CV or all-cause death.

In nondippers, an altered circadian BP profile may contribute to the development of CAD as well as subclinical coronary atherosclerosis,26 CAD,9 alterations in hemostasis or endothelial function,22 and increased platelet activation and inflammatory response.23 Considering all of these factors, nondipper status may contribute to the severity of CAD. Indeed, in our study, most patients who had a score >22 were nondippers.

The systemic hemodynamic atherothrombotic syndrome, proposed by Kario,7 is a vicious cycle of hemodynamic stress and vascular disease that advances organ damage and triggers CV disease. Coronary artery disease is one of its clinical phenotypes. The MS in BP is an important hypertension biomarker, a significant predictor of adverse CV events, and an independent predictor of SSI in stable CAD. Effectively detecting and managing this important manifestation of hypertension is crucial. A single in-office BP reading may underestimate both the prevalence and severity of hypertension and its associated risks. International guidelines advocate out-of-office BP measurements to diagnose and monitor hypertension.26,29 These approaches maximize the chances of detecting surges, and they facilitate more effective individualized CV protection. Despite inconsistencies in the current definition of MS in BP, ongoing and future research should lead to better scientific understanding that will improve the detection and treatment of arterial hypertension and minimize adverse outcomes.

The molecular mechanisms associating peak MS in BP with vulnerable atherosclerotic plaque are not clear, although inflammation, central to the atherosclerotic cascade, has been related to MS.23 After finding that an exaggerated MS was significantly associated with vulnerable plaques, Marfella and colleagues25 stressed the importance of oxidative stress and activation of the ubiquitin-proteasome system as the mechanism of plaque instability related to MS. Major surge seems to take part in the initial stage and progression of atherosclerosis.29 The current study did not evaluate the role of MS in atherogenesis; it merely describes the association between MS in SBP and the extent and complexity of stable CAD. All patients in this study had substantial CAD, and patients without CAD were excluded, so the impact of MS on the presence of CAD could not be investigated. Further studies of the overall sensitivity and specificity of MS in BP in predicting coronary atherosclerosis are warranted.

Study Limitations

Our study has several limitations. First, it included relatively few patients at a single center. A larger multicenter study may produce more significant results and data. Second, the patients were consecutive, and most were men, a condition that was not controlled. Of note, 25 of the 33 patients excluded for having normal coronary arteries after CA screening were women. Third, MS measurements were obtained only from a single recording of 24-hour ABPM (although, in fairness, the lack of reproducibility of MS in SBP has been criticized). Fourth, the lack of data on dosage and timing of antihypertensive drugs may have affected the calculations of MS in BP.

Conclusion

We found that a high MS in SBP is associated with the extent and complexity of CAD, evaluated in terms of the SSI, in patients who have stable CAD.

Published: 4 June 2021

References

1. Marler JR, Price TR, Clark GL, Muller JE, Robertson T, Moltjer J, et al. Morning increase in onset of ischemic stroke. Stroke 1989;20(6):473-6.
2. Muller JE. Morning increase of onset of myocardial infarction: implications concerning triggering events. Cardiology 1989;76(2):96-104.
3. Willich SN, Goldberg RJ, Machure M, Perriello L, Muller JE. Increased onset of sudden cardiac death in the first three hours after awakening. Am J Cardiol 1992;70(1):65-8.
4. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation 2003;107(10):1401-6.
5. Verdeccia P, Angeli F, Mazzotta G, Garofoli M, Ramundo E, Gentile G, et al. Day-night dip and early-morning surge in blood pressure in hypertension: prognostic implications. Hypertension 2012;60(1):34-42.
6. Li Y, Thijs L, Hansen TW, Kikuya M, Boggia J, Richart T, et al. Prognostic value of the morning blood pressure surge in 5645 subjects from 8 populations. Hypertension 2010;55(4):1040-8.
7. Bombelli M, Foddi D, Tso E, Macchiarulo M, Cairo M, Facchetti R, et al. Relationship among morning blood pressure surge, 24-hour blood pressure variability, and cardiovascular outcomes in a white population. Hypertension 2014;64(5):943-50.
8. Kario K. Caution for winter morning surge in blood pressure: a possible link with cardiovascular risk in the elderly. Hypertension 2006;47(2):139-40.
9. Kario K. Morning surge in blood pressure and cardiovascular risk: evidence and perspectives. Hypertension 2010;56(5):765-73.
10. Sogunuru GP, Kario K, Shin J, Chen CH, Buranakitjaroen P, Chia YC, et al. Morning surge in blood pressure and blood pressure variability in Asia: evidence and statement from the HOPE Asia Network. J Clin Hypertens (Greenwich) 2019;21(2):324-34.
11. Shibuya Y, Ikeda T, Gomi T. Morning rise of blood pressure assessed by home blood pressure monitoring is associated with left ventricular hypertrophy in hypertensive patients receiving long-term antihypertensive medication. Hypertens Res 2007;30(10):903-11.
12. Alpaydin S, Tunar Y, Caliskan M, Caliskan Z, Aksu F, Ozyildirim S, et al. Morning blood pressure surge.
is associated with carotid intima-media thickness in prehypertensive patients. Blood Press Monit 2017;22(3):131-6.

13. Ong AT, Serruys PW, Mohr FW, Morice MC, Kappetein AP, Holmes DR Jr, et al. The SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) study: design, rationale, and run-in phase. Am Heart J 2006;151(6):1194-204.

14. Capodanno D, Di Salvo ME, Cincotta G, Miano M, Tamburino C, Tamburino C. Usefulness of the SYNTAX score for predicting clinical outcome after percutaneous coronary intervention of unprotected left main coronary artery disease. Circ Cardiovasc Interv 2009;2(4):302-8.

15. Safarian H, Alidoosti M, Shafiee A, Salarifar M, Poorhosseini H, Nematipour E. The SYNTAX score can predict major adverse cardiac events following percutaneous coronary intervention. Heart Views 2014;15(4):99-105.

16. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease [published erratum appears in N Engl J Med 2013;368(6):584]. N Engl J Med 2009;360(10):961-72.

17. Amici A, Cicconi P, Sagrafoli C, Baratta A, Passador P, Pecchi T, et al. Exaggerated morning blood pressure surge and cardiovascular events: a 5-year longitudinal study in normotensive and well-controlled hypertensive elderly. Arch Gerontol Geriatr 2009;49(2):e105-9.

18. Wizner B, Dechering DG, Thijis L, Atkins N, Fagard R, O’Brien E, et al. Short-term and long-term repeatability of the morning blood pressure in older patients with isolated systolic hypertension. J Hypertens 2008;26(7):1328-35.

19. Moussa T, el-Sayed MA, Motawea AK, Salama MA, Elhendy A. Association of blunted nighttime blood pressure dipping with coronary artery stenosis in men. Am J Hypertens 2004;17(10):977-80.

20. Marfella R, Siniscalchi M, Portoghese M, Di Filippo C, Ferraraccio F, Schiattarella C, et al. Morning blood pressure surge as a destabilizing factor of atherosclerotic plaque: role of ubiquitin-proteasome activity. Hypertension 2007;49(4):784-91.

21. Kaya MG, Yarlioglu E, Gunebakmaz O, Gunturk E, Inanc T, Dogan A, et al. Platelet activation and inflammatory response in patients with non-dipper hypertension. Atherosclerosis 2010;209(1):278-82.

22. Lee KW, Blann AD, Lip GY. High pulse pressure and nondipping circadian blood pressure in patients with coronary artery disease: relationship to thrombogenesis and endothelial damage/dysfunction. Am J Hypertens 2005;18(1):104-15.

23. Marfella R, Siniscalchi M, Nappo F, Gualdiero P, Esposito K, Sasso FC, et al. Regression of carotid atherosclerosis by control of morning blood pressure peak in newly diagnosed hypertensive patients. Am J Hypertens 2005;18(3):308-18.

24. Marfella R, D’Amico M, Di Filippo C, Siniscalchi M, Sasso FC, Ferraraccio F, et al. The possible role of the ubiquitin proteasome system in the development of atherosclerosis in diabetes. Cardiovasc Diabetol 2007;6:35.

25. Pierdomenico SD, Pierdomenico AM, Di Tommaso R, Coccina F, Di Carlo S, Porreca E, Cuccurullo F. Morning blood pressure surge, dipping, and risk of coronary events in elderly treated hypertensive patients. Am J Hypertens 2016;29(1):39-45.

26. Viera AJ, Lin FC, Hinderliter AL, Shimbo D, Person SD, Pletcher MJ, Jacobs DR Jr. Nighttime blood pressure dipping in young adults and coronary artery calcium 10-15 years later: the coronary artery risk development in young adults study. Hypertension 2012;59(6):1157-63.

27. Kario K. Systemic hemodynamic atherothrombotic syndrome and resonance hypothesis of blood pressure variability: triggering cardiovascular events. Korean Circ J 2016;46(4):456-67.

28. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013;31(7):1281-357.

29. Pedersen OL, Mancia G, Pickering T, Hoeigholm A, Julius S, Kjeldsen SE, et al. Ambulatory blood pressure monitoring after 1 year on valsartan or amlodipine-based treatment: a VALUE substudy. J Hypertens 2007;25(3):707-12.

30. Kario K. Vascular damage in exaggerated morning surge in blood pressure. Hypertension 2007;49(4):771-2.