TWO SOLUTIONS TO KAZDAN-WARNER’S PROBLEM ON SURFACES

LI MA

ABSTRACT. In this paper, we study the sign-changing Kazdan-Warner's problem on two dimensional closed Riemannian manifold with negative Euler number $\chi(M) < 0$. We show that once, the direct method on convex sets is used to find a minimizer of the corresponding functional, then there is another solution via a use of the variational method of mountain pass. In conclusion, we show that there are at least two solutions to the Kazdan-Warner’s problem on two dimensional Kazdan-Warner equation provided the prescribed function changes signs and with this average negative.

Mathematics Subject Classification 2010: 53C20, 35J60, 58G99. Keywords: Kazdan-Warner problem, mountain pass, direct method on convex sets, multiple solutions.

1. Introduction

The aim of this paper is to study the sign-changing Kazdan-Warner’s problem on two dimensional closed Riemannian manifold with $\chi(M) < 0$ and we show that there are at least two solutions to (1). This non-uniqueness problem is open since 1974 and the precise result is stated below.

For a given smooth function K on a compact Riemannian manifold (M, g), Kazdan-Warner studied the following problem

\begin{equation}
- \Delta u + \alpha = K(x)e^{2u}, \text{ in } M,
\end{equation}

where Δ is the Laplacian operator of the metric g (and which is $\sum_i \partial_i^2$ on \mathbb{R}^2) and α is a given real constant. Integrating by part we have that necessarily,

$$\alpha |M| = \int_M K e^{2u} \, dv$$

where $|M| = \int_M dv$ is the volume of (M, g) with dv being the volume element of the metric g. Assume that $\alpha < 0$. Using the method of super and sub solutions, Kazdan-Warner have proved that there exists a constant $\alpha_0 < 0$ such that for each $\alpha \in (\alpha_0, 0)$ there is a solution to (1). The critical number α_0 is defined by

$$\alpha_0 = \inf \{ \alpha; (1) \text{ is solvable for } \alpha \}.$$
Using a very beautiful argument, Kazdan and Warner [9] have showed that
\[\alpha_0 = \infty \text{ if and only if } K \text{ is nontrivial non-positive function on } M. \]

For the case when the given smooth function \(K \) is positive somewhere with negative average, by the result of Kazdan and Warner mentioned above we have the critical number \(\alpha_0 > -\infty \). W.Chen and C.Li [6] have proved that there is a solution \(u_0 \) to (1) at \(\alpha = \alpha_0 \) and \(u_0 \) is the \(H^1 \) limit of stable solution sequence \(\{ u_k \} \) (corresponding to \(\alpha_k \to \alpha_0^+ \)). Their argument is based on the solutions obtained by Kazdan-Warner and they have used the variational argument to get their solution. Note that in this case, there is a positive smooth function \(\psi \) such that

\[-\Delta \psi - 2K(x)e^{2u_0}\psi = 0, \text{ in } M. \]

The remaining question is whether the solution to (1) is unique.

We show that there is no uniqueness of solutions to (1) when \(\alpha \in (\alpha_0, 0) \). We denote by \(\chi(M) \) the Euler characteristic of for the surface \(M \). We have two solutions result to 1 in this case.

Theorem 1. On the 2-dimensional compact Riemannian manifold \((M, g)\) with \(\chi(M) < 0 \), for \(\alpha \in (\alpha_0, 0) \), there are at least two solutions to (1) provided the given smooth function \(K \) is positive somewhere with negative average.

This result will be proved by the mountain pass argument below. There are some interesting works about prescribed sign-changing Gauss curvature on closed surfaces and related works on scalar curvature problems. We mention the interesting works such as the classical books [1] and [10], the papers of M.Berger [2], Chang-Yang [4], Kazdan-Warner [8], Chen-Li [6], [7], Borger-Luca-Struwe [3], Ma-Hong [12], etc, and one may refer to Ma [13] and Ma-Wei [16] for more related references.

The plan of this paper is below. In section 2 we consider the method of super and sub solutions (the monotone method) to obtain a solution to (1) in any dimensions. In section 3 we consider the mountain pass solution to (1) in dimension two. The key step is the verification of Palais-Smale condition to the related functional. In the last section we give a variational argument of Kazdan-Warner’s result.

2. THE FIRST SOLUTION VIA THE DIRECT METHOD ON CONVEX SETS

In this section, we use the direct method on convex sets to get a solution to (1), our construction is slightly different from the one used in (1) on a compact Riemannian manifold \((M, g)\). We have the following result and the new part in it is the local minima property, which will play a role in the mountain pass argument in next section.

Theorem 2. We assume that on a compact Riemannian manifold \((M, g)\) of any dimension, the smooth function \(K \) changes signs and \(\bar{K} < 0 \). Then
for any $\alpha \in (\alpha_0, 0)$, there is a solution to (I), which is a local minimizer of the functional

$$I(u) = \int_M (|\nabla u|^2 + \alpha u) dv - \int_M Ke^{2u} dv$$

on $H^1(M)$.

The proof may be outlined below. Let $u_+ = u_0$ be the solution obtained by Kazdan-Warner [9] for some $\alpha_1, \alpha_0 < \alpha < \alpha_1$. Then for any $\alpha \in (\alpha_1, 0)$,

$$-\Delta u_+ + \alpha - K(x)e^{2u_+} > -\Delta u_+ + \alpha_1 - K(x)e^{2u_+} = 0,$$

i.e., u_+ is the super solution to (I) for $\alpha \in (\alpha_1, 0)$.

To get a solution by the method of super and sub solutions, we need to find a sub solution $u_- < u_+$ to (I). We do this below.

Recall that $\alpha < 0$. Note that for any real number c very negative and $v_c = c$, we have

$$\Delta v_c - \alpha + Ke^{v_c} = -\alpha + Ke^c > 0, \text{ in } M.$$

Then $u_- = c(< u_+)$ is a sub solution to (I). Then we have a solution u_1 to (I) in the interval $[c, u_+]$, which is a local minimizer of the functional

$$I(u) = \int_M (|\nabla u|^2 + \alpha u) dv - \int_M Ke^{2u} dv$$

on $H^1(M)$. We refer to [5] for related references.

3. The Second Solution: The Mountain Pass

In this section we consider the equation (I) on the closed surface (M, g) with $\chi(M) = \frac{1}{2\pi} \int_M k dv$, where k is the Gauss curvature of g. Note that Theorem 3 below implies Theorem 1.

Theorem 3. On the 2-dimensional compact Riemannian manifold (M, g) with $\chi(M) < 0$, there is a mountain-pass solution to (I) provided the given smooth function K such that $K > 0$ somewhere and $\bar{K} < 0$.

We now give the idea to prove this result. We recall the functional

$$I(u) = \int_M (|\nabla u|^2 + \alpha u) dv - \int_M Ke^{2u} dv$$

on $H^1(M)$. Note that the solution u_1 obtained by the method of super and sub solutions can also be described as the minimizer of the functional I on $[u_-, u_+] \cap H^1(M)$. Hence, for any $\phi \in H^1(M)$, $< P'(u_1)\phi, \phi > \geq 0$, i.e.,

$$\int_M (|\nabla \phi|^2 - 2Ke^{2u_1}\phi^2) dv \geq 0.$$

Recall that u_1 satisfies

$$-\Delta u_1 + \alpha = Ke^{2u_1}, \text{ in } M,$$
and then
\[\int_M Ke^{2u_1} dv = \alpha |M|. \]

We give a remark here. If \(u_1 \) is a strict minimizer, then we have some uniform constant \(c > 0 \) such that
\[\int_M (|\nabla \phi|^2 - 2Ke^{2u_1} \phi^2) dv \geq c \int_M \phi^2 dv, \quad \forall \phi \in H^1(M). \]

Otherwise, we have a positive solution \(\phi \) to the linear equation
\[-\Delta \phi - 2Ke^{2u_1} \phi = 0, \quad \text{in } M.\]

We want to find another solution of the form \(u_1 + u \) such that \(u \neq 0 \) satisfies
\[-\Delta (u_1 + u) + \alpha = Ke^{2u_1 + 2u}, \quad \text{in } M.\]

Then we have that
\[-\Delta u = Ke^{2u_1} (e^{2u} - 1), \quad \text{in } M.\]

So we look for a non-trivial critical point of the functional
\[J(u) = \int_M |\nabla u|^2 dv + \int_M R(x)(2u - e^{2u}) dv \]
on \(H^1(M) \), where we have set \(R(x) = Ke^{2u_1} \). Note that \(\int_M Ke^{2u_1} = \alpha |M| \).

Recall that \(u = 0 \) is a local minimizer of \(J \) on \(H^1(M) \).

For small \(\epsilon > 0 \), we let \(M_\epsilon = \{ R(x) \geq \epsilon \} \) and \(M_{-\epsilon} = \{ -R(x) \geq \epsilon \} \). As above, we denote by \(\bar{u} = \frac{1}{\text{vol}(M)} \int_M u dv \). We now choose a smooth function \(w_0 \in C^1_0(M_\epsilon \cup M_{-\epsilon}) \) which is positive in \(\{ R(x) \geq \epsilon \} \) for some \(\epsilon > 0 \) and \(\bar{w}_0 = 0 \). Note that as \(t \to \infty \),
\[J(tw_0) = t^2 \int_M |\nabla w_0|^2 dv + \int_M R(x)(2tw_0 - e^{2tw_0}) dv \to -\infty \]
and we may choose \(t_0 > 0 \) large such that \(J(t_0w_0) < J(0) = 0 \).

Define
\[X = H^1(M) \]
and
\[c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} J(\gamma(t)), \]
where
\[\Gamma = \{ \gamma \in C([0,1], X); \gamma(0) = 0, \gamma(1) = t_0w_0 \}. \]

Note that \(c \geq 0 \). We shall verify that \(J \) satisfies the Palais-Smale condition on \(X \). Then, there is a "mountain pass" critical point of \(J \) on \(X \) satisfies
\[-\Delta u - R(x)e^{2u} + R(x) = 0, \]
weakly in \(H^1(M) \). By the result of K.C.Chang \[5\], \(c \) is a mountain pass critical value of the function \(J \) and may be obtained by the function \(w \neq 0 \), which gives a solution, which is different from the solution \(u_1 \) obtained by the monotone method above. Thus as we have noted before, we get the proof of Theorem \[3\].
The main topic now is to check the Palais-Smale condition for the functional J on $H^1(M)$. Set $M_- = \{ x \in M; R(x) < 0 \}$, which is a non-empty open set in M. We have the following compactness result for the functional J on $H^1(M)$.

Lemma 4. The functional J satisfies the Palais-Smale condition at the level $c \geq 0$ in the function space $X = H^1(M)$. That is, if any sequence $\{u_k\} \subset X$ satisfies $J(u_k) \to c$ and $J'(u_k) \to 0$ in the dual space X^*, then there is a subsequence of $\{u_k\}$ converges in X.

Proof. Assume that the sequence $\{u_k\} \subset X$ satisfies $J(u_k) \to c$ and $J'(u_k) \to 0$ in the dual space X^*. That is,

\begin{equation}
\int_M (|\nabla u_k|^2 + R(x)(2u_k - e^{2u_k}))dv \to c
\end{equation}

and

\begin{equation}
\int_M (\nabla u_k \cdot \nabla \phi + R(x)\phi - R(x)e^{2u_k}\phi)dv = o(||\phi||), \quad \phi \in X
\end{equation}

where $|| \cdot ||$ is the norm on X. Set $\phi = 1$ in (3), we have

\begin{equation}
\int_M R(x)(1 - e^{2u_k})dv \to 0, \quad \text{i.e.,} \quad \int_M R(x)e^{2u_k}dv \to \int_M R(x)dv = d < 0.
\end{equation}

By (2), we have

\begin{equation}
\int_M (|\nabla u_k|^2 + R(x)(2u_k))dv \to c + d.
\end{equation}

Let

$$
\bar{u}_k = \frac{1}{vol(M)} \int_M u_k dv := c_k.
$$

Then we have

\begin{equation}
\int_M (|\nabla u_k|^2 + 2R(x)(u_k - c_k))dv + 2c_kd \to c + d.
\end{equation}

Note that

\begin{equation}
|\int_M R(x)(u_k - c_k)dv| \leq |R|_{\infty} \int_M |u_k - c_k|dv \leq \frac{1}{2} \int_M |\nabla u_k|^2 + C_1
\end{equation}

for some C_1. Then

\begin{equation}
\int_M (|\nabla u_k|^2 + 2R(x)(u_k - c_k))dv + 2c_kd \geq -C_1 + 2c_kd.
\end{equation}

Let $u_k^+(x) = \sup(u_k(x), 0)$. We want to show that the sequence $\{u_k^+\}$ is locally bounded in $H^1_{loc}(M_-)$. Take any non-empty domain D in M_- with $\text{dist}(D, \partial M_-) := d > 0$ and $-R(x) \geq \delta > 0$ on D. We show that there is a constant $C(D)$ such that $||u_k^+|| \leq d(D)$. Take any $p \in M_-$ such that $B_d := B_d(p) \subset M_-$, where $B_r(p)$ is the geodesic ball centered at p with radius $r > 0$. Choose the cut-off function $\eta \in C^1_0(B_{d/2})$ such that $\eta = 1$ on
$B_{d/4}$ and $|\nabla \eta|^2/\eta \leq C$ for some uniform constant $C > 0$. Set $\phi = u_k^+ \eta^2$ in (3). Then we have some uniform $C > 0$ such that

$$\int_M (\nabla u_k \cdot \nabla (u_k^+ \eta^2) + R(x)u_k^+ \eta^2 - R(x)e^{2u_k}u_k^+ \eta^2)dv \leq C(||u_k^+ \eta^2||).$$

Since

$$\int_M \nabla u_k \cdot \nabla (u_k^+ \eta^2) = \int_M |\nabla (\eta u_k^+)|^2 - \int_M (u_k^+)^2 |\nabla \eta|^2,$$

we then have

$$\int_M (|\nabla (\eta u_k^+)|^2-R(x)e^{2u_k}u_k^+ \eta^2)dv \leq C \int_M |\nabla \eta|^2 (u_k^+)^2 - \int_M R(x)u_k^+ \eta^2 + C(||u_k^+ \eta||).$$

By $e^{2t} \geq t^3$ for any real t and $|\nabla \eta|^2 \leq C\eta$, we have,

$$\int_M (|\nabla (\eta u_k^+)|^2 + \delta \eta^2 (u_k^+)^4)dv \leq C \int_M \eta (u_k^+)^2 - \int_M R(x)u_k^+ \eta^2 + C(||u_k^+ \eta||).$$

Using the Holder inequality we then have

$$\int_M (|\nabla (\eta u_k^+)|^2 + \frac{1}{2} \delta \eta^2 (u_k^+)^4)dv \leq C(\delta) + C(||u_k^+ \eta||),$$

which implies that there is a uniform constant $C := C(d)$ such that

$$\int_M (|\nabla (\eta u_k^+)|^2 + \frac{1}{4} \delta \eta^2 (u_k^+)^4)dv \leq C.$$ We now show that $\int_M u_k^2$ is uniformly bounded (and is equivalent to c_k being a bounded sequence). If this is true, then the Palais-Smale sequence is bounded in X. Then we may assume that there is a subsequence, still denoted by u_k, which weakly converges to u in X. Then the subsequence converges in X by (3) and the fact that for any $p > 1$,

$$e^{2u_k} \rightarrow e^{2u}, \quad \text{in } L^p(M).$$

To show $|u_k|^2 := \int_M u_k^2$ being uniformly bounded, we argue by contradiction and assume $|c_k| \rightarrow \infty$. Let

$$v_k = u_k/|u_k|_2 = (w_k + c_k)/\sqrt{|w_k|^2 + c_k^2 Vol(M)}.$$

Then by (5) we have

$$\int_M |\nabla v_k|^2 dv \rightarrow 0.$$

We may assume that v_k converges to v strongly in $L^2(M)$ and weakly in X with $|v|_2 = 1$. Then $\int_M |\nabla v|^2 dv = 0$ and $v = \beta$ is a constant. Since u_k^+ is locally bounded in $H^1_{loc}(M_\pm)$, we have $v_+ = 0$ in M_- and then $\beta < 0$ since $|v|^2 = 1$ and $c_k \rightarrow -\infty$. However, this is impossible by (6) and (7). We may let u be the weak limit of u_k in $H^1(M)$. Choosing $\phi = u_k - u$, this then shows that (u_k) is a convergent PS sequence of J. \(\square\)

Once we have the compactness result for the functional J as above, the proof of Theorem 3 is complete.
4. LOCAL MINIMIZER FOR $K \leq 0$

As we mentioned before, using a very beautiful argument, Kazdan and Warner [9] have showed that $\alpha_0 = \infty$ if and only if K is nontrivial non-positive function on M. The question now is if one can use the variation method to get a solution in the case treated by Kazdan-Warner. Using the variational method on convex set we answer this question affirmatively. Precisely, we prove the following result by the variational method on convex set.

Theorem 5. On the any dimensional compact Riemannian manifold (M, g), for $\alpha \in (-\infty, 0)$ and for any non-trivial smooth function $K \leq 0$ on M, there is a solution to (1), which is a local minimizer of the functional defined by

$$F(u) = \int_M (|\nabla u|^2 + 2\alpha u)dv - \int_M K(x)e^{2u}dv, \; u \in H^1(M).$$

This result is basically obtained in [9], where they have used the monotone method. Here we prefer to give a variational proof for completeness which also complements Berger’s program of application of variational methods to problems of prescribed non-positive Gauss curvature on closed surface, which are of the same type to (1). The variational method was used by C.Hong [11] to study the problem (1) on the two-sphere.

Proof. Recall that $K \leq 0$ on M and $\bar{K} = \frac{1}{|M|} \int_M Kdv < 0$. It is well-known that by the direct method, we can solve the Poisson equation

$$-\Delta w = K - \bar{K}, \; \text{in } M$$

to get the smooth solution w with $w > 0$ on M. We take $b > 0$ and $b = e^r$ and let

$$v = bw + r.$$

Choose $b > 0$ such that $-b\bar{K} + \alpha > 0$. Note that

$$-K(e^{bw} - 1) \geq 0.$$

Then we have

$$-\Delta v + \alpha - Ke^v = -b\Delta w - Ke^{bw+r} + \alpha$$

$$= -b(\bar{K} - K) - bKe^{bw} + \alpha$$

$$= -b\bar{K} - bK(e^{bw} - 1) + \alpha$$

$$> 0.$$

This implies that $u_+ := v$ is a super solution to (1).

Similar to [2], we define

$$F(u) = \int_M (|\nabla u|^2 + 2\alpha u)dv - \int_M K(x)e^{2u}dv$$

on the convex set $H := \{v \in H^1(M), u \leq u_+\}$, which is a convex functional on H by the condition $K \leq 0$ on M. Here $v \leq u_+$ means that $v(x) \leq u_+(x)$.

almost everywhere on \(M \). Set \(\mu = \inf_H F(u) \). We shall show that \(\mu > -\infty \). Assume that \(\mu = \infty \), and we shall have a sequence \(\{u_k\} \subset H \) such that \(F(u_k) \to \mu = -\infty \). Note that
\[
F(u) = \int_M |\nabla u|^2 dv - \int_M K(x)e^{2u} dv + 2\alpha |M| \bar{u}.
\]
Then we must have
\[
\bar{u}_k \to \infty,
\]
which is impossible by the constraint condition
\[
u_k \leq u_+.
\]
Then \(\mu > -\infty \) and \(\bar{u}_k \) is uniformly bounded. Hence \(\{u_k\} \subset H^1(M) \) is a bounded sequence in \(H^1(M) \) and then we have a weakly convergent subsequence, still denoted by \(u_k \) with limit \(u \). Hence \(F(u) = \mu \) and one can directly verify [14] that \(u \) is a solution to (1) on \(M \) and a local minimizer of the functional \(F \) [14]. This completes the proof of the result.

References

[1] T. Aubin, *Some nonlinear problems in Riemannian geometry*. Springer, 1998.

[2] Melvyn Berger, *On Riemannian structures of prescribed Gauss curvature for compact two-dimensional manifolds*. J. of Diff. Geo. 5 (1971), 325-332.

[3] F. Borer, Luca Galimberti, M. Struwe, "Large" conformal metrics of prescribed Gauss curvature on surfaces of higher genus. Comment. Math. Helv. 90 (2015), no. 2, 407-428.

[4] S. Y. A. Chang, P. C. Yang, *Prescribing Gaussian curvature on \(S^2 \)*, Acta Math., 159(1987)215-259.

[5] K.C. Chang, *Infinite dimensional Morse theory and multiple solution problems*. Birkhauser, 1992

[6] W. Chen, C. Li, *Gauss curvature in the negative case*. Proc A.M.S., 131(2003), 741-744.

[7] W. Ding, J. Liu, *A note on the problem of prescribing Gaussian curvature on surfaces*. Trans. Amer. Math. Soc. 347 (1995), no. 3, 1059-1066.

[8] J.L. Kazdan, F. Warner, *Prescribing curvatures*. Proc. Symposia in Math., vol.27, 1975, pp.309-391.

[9] J. Kazdan and F. Warner, *Curvature functions for compact 2-manifolds*. Annals Math. 99(1974)14-47.

[10] E. Hebey, *Nonlinear analysis on manifolds: Sobolev spaces and inequalities*, CIMS Lecture Notes, Courant Institute of Mathematical Sciences, Volume 5, 1999.

[11] Chongwei Hong, *Equation \(\Delta u + K(x)e^{2u} = f(x) \) on \(R^2 \) via stereographic projection*, Journal of mathematical analysis and applications, 130(1988)484-492.

[12] Li Ma, Min-Chun Hong, *Curvature flow to the Nirenberg problem*. Arch. Math. (Basel) 94 (2010), no. 3, 277-289.

[13] Li Ma, Nirenberg’s problem in 90’s, in Differential Geometry of sub-manifolds, pp.171-177, U. Simon, etc, ed., 2000, World Scientific.

[14] Li Ma, *Mountain pass on a closed convex set*, J. Math. Anal. and Applications, 205(1997)531-536.

[15] Li Ma, J. Wei, *Stability of the Lichnerowicz equation*. Journel Math.Pure Appl., 99 (2013) 174-186.

[16] Li Ma; Ingo Witt, *Discrete Morse flow for Ricci flow and porous medium equation*. Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158-164. (Reviewer: Kin Ming Hui) 53C44 (35K55)
