The potential association between common comorbidities and severity and mortality of coronavirus disease 2019: A pooled analysis

Liman Luo1,2,5 | Menglu Fu1,5 | Yuanyuan Li1,5 | Shuiqing Hu2,5 | Jinlan Luo1,5 | Zhihui Chen1,5 | Jing Yu1,5 | Wenhua Li1,5 | Ruolan Dong3 | Yan Yang4 | Ling Tu1,5 | Xizhen Xu2,5

1Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
2Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
3Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
4Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
5Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Correspondence
Dr Xizhen Xu, Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology: No. 1095, Jiefang Avenue, Wuhan, Hubei 430030, China. Email: xxux@tjh.tjmu.edu.cn
Dr Ling Tu, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, Hubei 430030, China. Email: lingtutj@tjh.tjmu.edu.cn

Abstract

Background: The association between underlying comorbidities and cardiac injury and the prognosis in coronavirus disease 2019 (COVID-19) patients was assessed in this study.

Hypothesis: The underlying comorbidities and cardiac injury may be associated with the prognosis in COVID-19 patients.

Methods: A systematic search was conducted in PubMed, EMBASE, Web of science, and The Cochrane library from December 2019 to July 2020. The odds ratio (OR) and 95% confidence intervals (95% CI) were used to estimate the probability of comorbidities and cardiac injury in COVID-19 patients with or without severe type, or in survivors vs nonsurvivors of COVID-19 patients.

Results: A total of 124 studies were included in this analysis. A higher risk for severity was observed in COVID-19 patients with comorbidities. The pooled result in patients with hypertension (OR 2.57, 95% CI: 2.12-3.11), diabetes (OR 2.54, 95% CI: 1.89-3.41), cardiovascular diseases (OR 3.86, 95% CI: 2.70-5.52), chronic obstructive pulmonary disease (OR 2.71, 95% CI: 1.98-3.70), chronic kidney disease (OR 2.20, 95% CI: 1.27-3.80), and cancer (OR 2.42, 95% CI: 1.81-3.22) respectively. All the comorbidities presented a higher risk of mortality. Moreover, the prevalence of acute cardiac injury is higher in severe group than in none severe group, and acute cardiac injury is associated with an increased risk for in-hospital mortality.

Conclusion: Comorbidities and acute cardiac injury are closely associated with poor prognosis in COVID-19 patients. It is necessary to continuously monitor related clinical indicators of organs injury and concern comorbidities in COVID-19 patients.

KEYWORDS
cardiac injury, comorbidities, COVID-19, meta-analysis, mortality, severity
Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic and a public health event of widespread concern. To date, more than 3.4 million individuals worldwide with confirmed COVID-19, of whom more than 200,000 have lost their lives. The higher incidence of comorbidities in COVID-19 patients, including hypertension, diabetes and cardiovascular disease, was reported in recent retrospective studies. Cardiovascular metabolic comorbidities may be a risk factor for poor prognosis. In addition, COVID-19 patients have different degrees of myocardial damage in addition to respiratory symptoms, especially in critically ill patients.

Huang et al. first reported that 32% of the cases had comorbidities, 8% developed myocardial injury, and the mortality rate as high as 15% in 41 confirmed patients. The study of Yang et al. indicated that elderly critically ill patients (> 65 years old) with comorbidities and acute respiratory distress syndrome (ARDS) are at higher risk of death. In addition, Guo T et al. and Shi et al. reported that COVID-19 patients with myocardial injury had a significantly higher mortality rate than patients without myocardial injury. Given the worldwide pandemic of this infectious disease, it is necessary to identify the risk factors associated with increased risk of inhospital mortality in COVID-19 patients. Although, some clinical case series studies demonstrated that comorbidities including hypertension, diabetes, and cardiovascular diseases (CVD), chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), and cancer may be predictors for the poor prognosis in COVID-19 patients, the number of enrolled patients was limited, and potential confounding factors were not excluded, so it still needs to be further confirmed. In this study, we conducted a systematic review of available studies to assess the association between underlying comorbidities and acute cardiac injury and the severity or the prognosis in COVID-19 patients.

METHODS

2.1 Search strategy and study selection

We conducted systematic retrieval in PubMed, EMBASE (by Ovidsp), Web of Science and The Cochrane Library from December 2019 to July 2020. The free keywords included “comorbidities”, “hypertension”, “diabetes”, “cardiovascular disease”, “cardiac injury”, “chronic obstructive pulmonary disease”, “chronic kidney disease”, “cancer”, “novel coronavirus pneumonia”, “COVID-19”, “2019-nCoV” and “clinical characteristics”. Additionally, we checked the references of each cited manuscript to identify other possibly eligible studies. This pooled analysis was conducted and reported in compliance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines.

Eligible studies should be written in English, and describe the relationship between age, gender, comorbidities and the prognosis of adult COVID-19 patients. The number of enrolled patients is more than ten. Case reports, reviews, letters, family-based studies, non-human studies, studies without adequate information, studies written not in English, studies focused only on children or pregnant women, and patients not stratified with the degree of severity or survivors were excluded. The inclusion of each study was determined by two researchers. Disagreements were resolved through a consensus.
2.2 Data extraction

Two reviewers independently extracted data from the included studies. Discrepancies were resolved by consensus between the two reviewers. Variables included authors, sample size, age, gender, relevant data on comorbidity of severe and nonsevere, and of survivors and nonsurvivors (including hypertension, diabetes, CVD, COPD, CKD, and cardiac injury). Cardiac injury was defined by elevation of Troponin I/T. The New castle Ottawa scale (NOS) was followed to assess the quality of studies. The primary outcome was to explore the association between the comorbidities or acute cardiac injury and severity or mortality in confirmed COVID-19 patients.

![Figure 2](image_url)

Figure 2 The association of comorbidities (hypertension, diabetes, and cardiovascular diseases (CVD), chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), and cancer) with COVID-19 severity.

Study ID	OR (95% CI)	% Weight
Aggarwal S	0.20 (0.02, 1.71)	0.63
Bhargava A	1.56 (0.81, 2.98)	2.15
Borobia AM	4.33 (3.47, 5.40)	2.74
Buckner FS	0.98 (0.45, 2.14)	1.94
Cai QX	5.26 (2.68, 10.30)	2.11
Cao Z	0.40 (0.12, 1.35)	1.34
Chen Q	1.81 (0.71, 4.63)	1.70
Chen X	4.48 (2.25, 8.94)	2.08
Colaneri M	0.71 (0.19, 2.61)	1.23
Feng Y	1.82 (1.15, 2.87)	2.45
Gao C	1.87 (1.57, 2.23)	2.78
Gao S	0.85 (0.41, 1.76)	2.02
Gao Y	2.00 (0.52, 7.65)	1.19
Ghwell AA	2.43 (0.64, 9.30)	1.20
Guan WJ	3.98 (2.50, 6.08)	2.66
Hu L	1.78 (1.11, 2.88)	2.42
Huang H	5.70 (1.60, 20.32)	1.27
Huang R	0.54 (0.12, 2.42)	1.04
Huang S	2.41 (1.50, 3.88)	2.42
Itelman E	3.37 (1.42, 7.97)	1.81
Ji W	6.06 (5.25, 6.99)	2.80
Lee JY	2.68 (1.75, 4.09)	2.50
Li J (3)	3.50 (0.98, 12.44)	1.27
Li KH	1.59 (0.25, 10.18)	0.78
Li Q	3.03 (1.34, 6.86)	1.88
Li T	6.16 (3.46, 10.97)	2.27
Liu JY	3.45 (0.93, 12.88)	1.22
Liu L	2.28 (0.20, 25.61)	0.52
Lv Z	1.09 (0.62, 1.88)	2.31
Ma LK	1.75 (0.47, 6.57)	1.21
Mao L	3.22 (1.67, 4.18)	2.14
Qin C	2.63 (1.66, 4.18)	2.44
Schalekamp S	1.29 (0.84, 1.96)	2.49
Shahriarrad R	4.17 (1.14, 15.23)	1.94
Shi Y	5.65 (3.06, 10.45)	2.20
Wan S	1.06 (0.31, 3.67)	1.30
Wang B	1.19 (0.44, 3.19)	1.62
Wang W	1.23 (0.54, 2.77)	1.88
Wang YF	5.22 (1.96, 13.92)	1.63
Wang YP	3.59 (1.79, 7.19)	2.08
Wei Y	7.62 (2.51, 23.18)	1.46
Xie H	0.68 (0.19, 2.42)	1.28
Yang Q	4.70 (2.02, 10.94)	1.84
Yao Q	7.22 (2.25, 23.14)	1.39
Ye C	4.63 (3.11, 6.89)	2.54
Yu C	1.44 (1.13, 1.85)	2.72
Yu X	2.43 (1.03, 5.73)	1.82
Zhang GQ	4.42 (2.27, 8.61)	2.12
Zhang J	1.89 (0.91, 3.94)	2.02
Zhang SY	5.06 (3.08, 8.33)	2.39
Zhang XY	2.48 (0.86, 7.10)	1.54
Zhao W	4.08 (1.27, 13.10)	1.39
Zhong F	8.07 (3.04, 21.37)	1.64
Zhong S	3.24 (1.00, 10.53)	1.38
Zhu Z	3.83 (1.30, 11.29)	1.50

Overall (I-squared = 82.8%, p = 0.000)

NOTE: Weights are from random effects analysis.
2.3 | Statistical analysis

Pooled analysis was performed using STATA software (version 14.0). The odds ratio (OR) and 95% confidence intervals (95% CI) were used to estimate the probability of comorbidities or cardiac injury in COVID-19 patients with or without severe type, or in survivors vs nonsurvivors of COVID-19 patients. Magnitude of heterogeneity was calculated using the I^2 statistic: 25%, 50%, and 75% representing low, medium, and high heterogeneity, respectively. Due to the heterogeneity between studies, a random effect model was performed to estimating the average effect.12 In order to assess the impact of age (mean age or median age) and sex (percentage of males), univariable meta-regression models were performed. Publication bias was evaluated by the Bgger's test, with $P > .05$ indicated no evidence of publication bias.13
RESULTS

3.1 Search results and study characteristics

Initial database search identified 6196 studies and 34 additional records through reference and citation searches (Figure 1). Overall, 329 of them with full-text were reviewed for eligibility, of which 124 studies were included in this analysis.7-9,14-134 The NOS scores ranged between 5 and 8. The key characteristics of included studies were presented in Table S1. The majority of included studies were based in Asia, the minority was from the USA, Italy, Spain and other countries. With most studies including more males than females, and the mean age varied from a median of 40 to 84 years of age. 58 studies compared the incidence of hypertension or diabetes in severe vs nonsevere cases with COVID-19 and 29 studies compared the prevalence of CVD. Eleven studies reported the association between acute cardiac injury and the severity of COVID-19. Sixty three documents reported the incidence of cardiovascular metabolic diseases in nonsurvivors vs survivors.

3.2 Meta-analysis

The association between comorbidities and disease severity were presented in Figure 2. A heterogeneity between the studies varied from moderate to high. A higher risk for severity was observed in COVID-19 patients with hypertension, diabetes, CVD, COPD, CKD or cancer, and the pooled result was (OR 2.57, 95% CI: 2.12-3.11), (OR 2.54, 95% CI: 1.89-3.41), (OR 3.86, 95% CI: 2.70-5.52), (OR 2.71, 95% CI: 1.98-3.70), (OR 2.20, 95% CI: 1.27-3.80) and (OR 2.42, 95% CI: 1.81-3.22) respectively (Figure 2, Table S2). At the same time, the risk for in-hospital mortality was significantly increased in COVID-19 patients with hypertension (OR 2.50, 95% CI: 2.02-3.11), diabetes (OR 2.09, 95% CI: 1.80-2.42), CVD (OR 2.65, 95% CI: 1.87-3.77), COPD (OR 2.48, 95% CI: 2.05-3.00), CKD (OR 3.07, 95% CI: 2.43-3.88) or cancer (OR 1.90, 95% CI: 1.57-2.30) (Figure 3, Table S2). Moreover, it is observed that the prevalence of acute cardiac injury is higher in severe group than in nonsevere group (OR:6.57; 95% CI 3.70-11.65), and acute cardiac injury is associated with an increased risk for mortality (OR:16.96; 95% CI 7.89-36.44) (Figure 4).

![FIGURE 2](Continued)
The results of univariable meta-regression analyses showed the impact of age and sex on the association between comorbidities or acute cardiac injury and the prognosis (severity and mortality) in COVID-19 patients. There was a clearer effect of increasing age on the association between hypertension and diabetes and severity of COVID-19 (sFig1, sFig2). Conversely, there is no significant association between the proportion of males with the risk of severity or mortality. No obvious evidence of publication bias existed (Table S2).
DISCUSSION

The pandemic of COVID-19 poses a huge challenge to countries all over the world. SARS-CoV-2 infection is more serious among individuals with immune deficiency and comorbidities. Reliable population epidemiology, clinical characteristics, and laboratory parameters can help distinguish high-risk COVID-19 patients and enable more active management of hospitalized or critically ill patients. At present, some laboratory indicators that may predict the deterioration of COVID-19 have been identified, including leukocytosis, lymphopenia, thrombocytopenia, and elevated inflammatory cytokines. Notably, early studies reported some clinical indicators such as age, gender, as well as existing hypertension, diabetes and CVD can predict the prognosis of COVID-19. CVD have the highest prevalence.

FIGURE 3 The association of comorbidities (hypertension, diabetes, and cardiovascular diseases (CVD), chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), and cancer) with COVID-19 mortality

Study ID	OR (95% CI)	% Weight
Ruan Q	1.91 (0.97, 3.77)	1.83
Berenguer J	3.23 (2.74, 3.75)	2.21
Borobia AM	1.87 (1.26, 2.78)	2.08
Cao J	7.13 (2.7, 22.65)	1.39
Chen Y	2.48 (1.34, 4.60)	1.89
Chen F	2.41 (2.0, 4.43)	2.01
Chen FF	2.68 (1.76, 4.13)	2.05
Chen R	6.86 (3.86, 12.19)	1.93
Chen T	2.86 (1.71, 4.80)	1.98
Chen TL	20.12 (2.42, 167.15)	0.71
Chen XH	4.01 (1.25, 4.50)	1.34
Chelmilinski S	2.44 (1.58, 3.77)	2.05
Clarduilla S	2.38 (1.50, 3.77)	2.03
Ciceri F	2.78 (1.71, 4.52)	2.01
Covino M	0.37 (0.13, 1.04)	1.48
Deng G	3.05 (2.56, 3.62)	2.20
Deng Y	3.16 (1.67, 5.96)	1.87
Du RH	4.08 (1.58, 10.31)	1.57
Escalera-Antezana JP	13.63 (2.28, 79.23)	0.89
Fan H	6.19 (1.64, 23.50)	1.21
Fu L	2.02 (0.94, 4.35)	1.75
Gao C	3.80 (2.71, 5.53)	1.96
Gayam V	0.29 (0.20, 0.40)	2.12
Grasselli G	133.85 (57.15, 238.05)	1.97
Gregoriano C	0.87 (0.38, 1.99)	1.68
Guan WJ	6.86 (3.86, 12.19)	1.93
Gupta S	1.84 (1.53, 2.21)	2.20
Halvatsiotis P	0.81 (0.32, 2.01)	1.60
Hu H	1.34 (0.46, 3.96)	1.43
Huang S	1.83 (1.03, 3.27)	1.93
Iaccarino G	1.11 (0.35, 3.83)	1.58
Inciardi RM	1.11 (0.35, 3.83)	1.58
Jang JG	2.71 (1.06, 6.93)	1.57
Javanian M	5.23 (1.81, 15.09)	1.46
Kalyanaraman	1.04 (0.93, 1.17)	2.22
Lee JY (2)	1.95 (0.70, 5.42)	1.49
Li K	2.30 (0.75, 7.03)	1.40
Liu J	2.23 (1.57, 3.16)	2.11
Mehra MR	0.94 (0.77, 1.16)	2.19
Mikami T	1.56 (1.32, 1.85)	2.21
Novak B	1.88 (0.94, 3.73)	1.83
Pan F	1.49 (0.68, 3.28)	1.72
Pellaul C	0.26 (0.10, 0.58)	1.72
Shah P	4.34 (1.84, 10.24)	1.66
Shahriari Rad R	1.20 (0.23, 6.22)	0.98
Shi S (2)	4.08 (2.38, 7.00)	1.96
Sun H	1.85 (1.11, 3.10)	1.99
Wang D	5.00 (1.75, 14.30)	1.46
Wang K	2.54 (1.36, 4.14)	2.01
Wang K (2)	6.65 (2.52, 17.57)	1.54
Wang Y	2.08 (1.34, 3.24)	2.04
Wu C	2.69 (0.97, 7.48)	1.49
Xu J	0.96 (0.57, 1.62)	1.98
Xu PP	6.47 (1.66, 25.73)	1.80
Ye C	15.19 (1.61, 24.19)	0.38
Yu C (2)	2.42 (1.76, 3.32)	2.13
Yuan M	35.00 (1.66, 738.65)	0.41
Zhang F	1.32 (0.37, 4.73)	1.26
Overall (I² = 92.8%, p = 0.000)	2.50 (2.03, 3.11)	100.00

NOTE: Weights are from random effects analysis

FIGURE 3 The association of comorbidities (hypertension, diabetes, and cardiovascular diseases (CVD), chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), and cancer) with COVID-19 mortality.
among potential patients at higher risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.135 Comorbidities such as hypertension and diabetes are recognized as poor prognostic factors for ARDS and SIRS.136,137 However, the relationship between these comorbidities and COVID-19 severity or poor survival outcomes remains unclear.

This pooled analysis is based on data from 124 studies with confirmed COVID-19. In this study, it is observed that the comorbidities make COVID-19 patients more likely to develop severe clinical type and increase the risk for in-hospital death. Comorbidities may be a risk factor for critically ill patients with poor prognosis. Another important finding is that acute cardiac injury increased the risk of severity and...
in-hospital death for patients with COVID-19. According to the current research data, some patients with COVID-19 suffered acute cardiac injury, and the incidence of acute cardiac injury is much higher in severe cases.6,21,24 However, the pathogenesis of acute cardiac injury associated with COVID-19 is still needs further investigation. The unique and significant affinity of SARS-CoV-2 for the host ACE2 receptor increases the possibility of direct infection of vascular endothelium and myocardium. Meanwhile, hypoxemia and cytokine storm may also be an important cause of acute cardiac injury.6 Therefore, it is necessary to monitor acute cardiac injury markers and cardiac function during hospitalization, and pay more attention to heart damage related to SARS-CoV-2 infection in the course of disease treatment, and take more active treatment for patients with acute cardiac injury.

A recent study on influenza showed that patients with cardiovascular disease and hypertension have a higher risk of death than those without comorbidities.138 Previous studies in patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) found that comorbidities were significantly associated with poor prognosis.139 Recently, meta-analysis have evaluated the impact of comorbidities in the population of COVID-19, and the results are consistent with this review,140-143 but with fewer the included studies. This pooled results are based on more data and included studies from many countries including China, the United States, Italy and so on. However, the local policy of COVID-19 research and the time of patient enrollment is different, and some studies only included severely ill or elderly patients. Over time, people’s attention to the epidemic, the implementation of related policies, and improvement of treatment plans may reduce the overall severity and mortality of COVID-19. In addition, there are reports that some controversial studies of COVID-19 patients have been withdrawn after the author failed to demonstrate the reliability of the data. This review included retrospective observational studies, which are prone to selection and recall bias in the collection and processing of data, and the definition of outcome may be different in each study. In order to make our results as accurate as possible, we

Study ID	OR (95% CI)	%	Weight
Cao J	8.89 (1.36, 58.09)	2.17	
Chen T	3.63 (1.44, 9.14)	4.03	
Chen TL	2.86 (0.74, 11.06)	3.07	
Chilimurt S	2.48 (1.42, 4.34)	4.88	
Ciardullo S	1.76 (1.14, 2.70)	5.14	
Deng G	5.42 (4.33, 6.80)	5.44	
Deng Y	3.79 (1.20, 12.01)	3.50	
Fan H	9.81 (0.54, 179.14)	1.17	
Fu L	0.68 (0.15, 3.13)	2.73	
Guan WJ	5.56 (2.48, 12.45)	4.32	
Halvatsiotis P	0.59 (0.18, 2.00)	3.37	
Hu H	0.90 (0.10, 8.18)	1.76	
Jang JG	0.39 (0.05, 3.28)	1.86	
Javanian M	4.18 (1.40, 12.54)	3.62	
Kalyanaraman	1.31 (1.16, 1.49)	5.32	
Lee JY (2)	0.88 (0.23, 3.45)	3.04	
Li J (2)	4.06 (2.24, 7.34)	4.81	
Liu J	3.02 (1.83, 4.97)	5.00	
Nowak B	2.22 (1.10, 4.45)	4.57	
Pan F	0.83 (0.29, 2.38)	3.71	
Ruan Q	40.14 (2.34, 689.08)	1.21	
Shahriarirad R	1.84 (0.35, 9.75)	2.49	
Wang D	7.97 (2.29, 27.75)	3.29	
Wang Y	2.13 (1.09, 4.13)	4.65	
Wu C	3.90 (0.42, 36.46)	1.73	
Xu J	0.93 (0.45, 1.93)	4.49	
Yu PP	18.26 (7.90, 42.18)	4.24	
Yang X	0.93 (0.14, 6.21)	2.16	
Ye C	20.80 (0.81, 534.07)	0.98	
Yuan M	16.33 (0.75, 356.88)	1.06	
Overall (I-squared = 85.7%, p = 0.000)	2.65 (1.86, 3.78)	100.00	

NOTE: Weights are from random effects analysis

FIGURE 3 (Continued)
removed studies that clearly had overlapping cohorts because they specified the same hospital and time period. However, we cannot be sure that the data among all studies does not overlap. The actual prevalence of comorbidities in COVID-19 patients and their impact on prognosis remain unknown.

In summary, we updates the evidence on the association between comorbidities or cardiac injury and COVID-19. The pooled result support that patients with comorbidities may increase the severity of SARS-CoV-2 infection, and may also greatly affect the survival outcome of COVID-19 patients. The successful treatment of severe or...
critical cases is the key to reduce in-hospital mortality. Prevention and intervention measures for these patients should be strengthened, and patients with underlying chronic diseases are strongly recommended to avoid any close contact with others in the community, especially in endemic areas. It is necessary to continuously monitor blood pressure, blood glucose, and related clinical indicators of organs injury in COVID-19 patients with comorbidities.

Indeed, there are some limitations in this study. First, the baseline characteristics of included population in various studies may bias the results. Second, patients with one or more comorbidities and different clinical treatment strategies will lead to different survival outcomes. In addition, although we collect as much complete and reliable data as possible, most of the studies included are from China since it is the main focus of the pandemic rise. The actual prevalence and mortality rates may vary in different countries. Finally, we evaluated publication bias through Bgger regression test, but currently these common statistical methods (such as funnel plot, Bgger test and Egger test) are not considered to be useful evaluation tools. The influence of publication bias cannot be completely ruled out. Prospective randomized control trials are warranted to further confirm the conclusions in this study.

5 | CONCLUSION

Comorbidities and acute cardiac injury are closely associated with poor prognosis in COVID-19 patients. It is necessary to continuously monitor related clinical indicators of organs injury and concern comorbidities in COVID-19 patients.

CONFLICT OF INTEREST

The authors declare they have no conflict of interest.

DATA AVAILABILITY STATEMENT

The data supporting this systematic review are from previously reported studies and datasets, which have been cited.
REFERENCES

1. Hui DS, Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan. China Int J Infect Dis. 2020;91:264-266.

2. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020;92(4):401-402.

3. Wuhan Municipal Health Commission. Report of novel coronavirus-infected pneumonia in China. Accessed January 31, 2020.

4. Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323(8):707-708. https://doi.org/10.1001/jama.2020.0757.

5. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 66. World Health Organization, 27 March 2020.

6. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China the Lancet. 2020;395(10223):497-506.

7. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475-481. https://doi.org/10.1016/S2213-2600(20)30079-5.

8. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:811. https://doi.org/10.1001/jamacardio.2020.1017.

9. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. https://doi.org/10.1001/jamacardio.2020.0950.

10. Stewart LA, Clarke M, Rovers M, et al. Preferred reporting items for systemat- ic review and meta-analyses of individual participant data: the PRISMA-IPD statement. Jama. 2015;313:1657-1665.

11. Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8:359-368.

12. DerSimonian R, Laird N. Meta-analysis in clinical trials. Cont Clin Trials. 1986;198(7):177-188. https://doi.org/10.1016/0197-2456(86)90046-2.

13. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455-463.

14. Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in Northeast Chongqing. J Med Virol. 2020;92:797-806. https://doi.org/10.1002/jmv.25783.

15. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan. China Allergy. 2020;75:1730-1741. https://doi.org/10.1101/all.141238.

16. Aggarwal S, Garcia-Telles N, Aggarwal G, Lavie C, Lippi G, Henry BM. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): first report from the United States. Diagnostics. 2020;7(2):91-96. https://doi.org/10.1515/dx-2020-0046.

17. Al-Salameh A, Lanoix JP, Bennis Y, et al. Characteristics and outcomes of COVID-19 in hospitalized patients with and without diabetes. Diabetes Metab Res Rev. 2020;e3388. https://doi.org/10.1002/dmr.3388.

18. Alkundi A, Mahmoud I, Musa A, Naveed S, Alshawwaf M. Clinical characteristics and outcomes of COVID-19 hospitalized patients with diabetes in the United Kingdom: a retrospective single Centre study. Diabetes Res Clin Pract. 2020;165:108263. https://doi.org/10.1016/j.diabres.2020.108263.

19. Almazedi S, Al-Youha S, Jamal MH, et al. Characteristics, risk factors and outcomes among the first consecutive 1096 patients diagnosed with COVID-19 in Kuwait. EClinicalMedicine. 2020;24:100448. https://doi.org/10.1016/j.eclinm.2020.100448.

20. Berenguer J, Ryan P, Rodríguez-Baño J, et al. Characteristics and predictors of death among 4,035 consecutively hospitalized patients with COVID-19 in Spain. Clin Microbiol Infect. 2020;S1198-743X(20):30431-30436. https://doi.org/10.1016/j.cmi.2020.07.024.

21. Bhargava A, Fukushima EA, Levine M, et al. Predictors for severe COVID-19 infection. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa674.

22. Borobia AM, Carcas AJ, Arnalich F, et al. A cohort of patients with COVID-19 in a major teaching hospital in Europe. J Clin Med. 2020;9(6):1733. https://doi.org/10.3390/jcm9061733.

23. Buckner FS, McCulloch DJ, Atliu V, et al. Clinical features and outcomes of 105 hospitalized patients with COVID-19 in Seattle, Washington. Clin Infect Dis. 2020;ciaa632. https://doi.org/10.1093/cid/ciaa632.

24. Cai Q, Huang D, Ou P, et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province. China Allergy. 2020;75(7):1742-1752. https://doi.org/10.1111/all.14309.

25. Cao J, Tu WJ, Cheng W, et al. Clinical features and short-term outcomes of 102 patients with Coronavirus disease 2019 in Wuhan. China Clin Infect Dis. 2020;22-755. https://doi.org/10.1093/cid/ciaa243.

26. Cao Z, Li T, Liang L, et al. Clinical characteristics of coronavirus disease 2019 patients in Beijing, China. PLoS One. 2020;15(6):e0234764. https://doi.org/10.1371/journal.pone.0234764.

27. Cen Y, Chen X, Shen Y, et al. Risk factors for disease progression in patients with mild to moderate coronavirus disease 2019—A multi-Centre observational study. Clin Microbiol Infect. 2020;26(9):1242-1247. https://doi.org/10.1016/j.cmi.2020.05.041.

28. Chen F, Sun W, Sun S, Li Z, Wang Z, Yu L. Clinical characteristics and risk factors for mortality among inpatients with COVID-19 in Wuhan, China. Transl Med. 2020;10(2):e40. https://doi.org/10.1002/ctm2.240.

29. Chen FF, Zhong M, Liu Y, et al. The characteristics and outcomes of 681 severe cases with COVID-19 in China. J Crit Care. 2020;60:32-37. https://doi.org/10.1016/j.jcrc.2020.07.003.

30. Chen Q, Zheng Z, Zhang C, et al. Clinical characteristics of 145 patients with corona virus disease 2019 (COVID-19) in Taizhou, Zhejiang. China Infection. 2020;48(4):543-551. https://doi.org/10.1007/s15010-020-01432-5.

31. Chen R, Liang W, Jiang M, et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a Nationwide analysis in China. Chest. 2020;158(1):97-105. https://doi.org/10.1016/j.chest.2020.04.010.

32. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1096. https://doi.org/10.1136/bmj.m1091.

33. Chen T, Dai Z, Mo P, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci. 2020. https://doi.org/10.1093/gerona/glaa089.

34. Chen X, Zheng F, Qing Y, et al. Epidemiological and clinical features of 291 cases with coronavirus disease 2019 in areas adjacent to Hubei, China: a double-center observational study. medRxiv. 2020. https://doi.org/10.1101/2020.03.03.20030353.
103. Wang D, Yin Y, Hu C, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care. 2020;24:188. https://doi.org/10.1186/s13054-020-02895-6.

104. Wang K, Zhang Z, Yu M, et al. 15-day mortality and associated risk factors for hospitalized patients with COVID-19 in Wuhan, China: an ambispective observational cohort study. Intensive Care Med. 2020;46(7):1472-1474. https://doi.org/10.1007/s00134-020-00647-w.

105. Wang L, Wang Q, Wang P, et al. Retrospective study of risk factors and predicting COVID-19 mortality risk: a retrospective study in Wuhan, China. Clin Transform Dis. 2020;ciaa538. https://doi.org/10.1093/cid/ciaa538.

106. Wang W, Xin C, Xiong Z, et al. Clinical characteristics and outcomes of 421 patients with coronavirus disease 2019 treated in a mobile cabin hospital. Chest. 2020;158(3):939-946. https://doi.org/10.1016/j.chest.2020.05.515.

107. Wang Y, Lu X, Li Y, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med. 2020;201(11):1430-1434. https://doi.org/10.1164/rcrm.202003-0736LE.

108. Wang YF, Zhou Y, Yang Z, Xia D, Hu Y, Geng S. Clinical characteristics of patients with severe pneumonia caused by the SARS-CoV-2 in Wuhan, China. Respiration. 2020;1-9. https://doi.org/10.1159/000507940.

109. Wang YP, Liao B, Guo Y, et al. Clinical characteristics of patients infected with the novel 2019 coronavirus (SARS-CoV-2) in Guangzhou, China. Open Forum Infect Dis. 2020;7(6):ofaa187. https://doi.org/10.1093/ofid/ofaa187.

110. Wei JF, Huang FY, Xiong TY, et al. Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart. 2020;106(15):1154-1159. https://doi.org/10.1136/heartjnl-2020-317007.

111. Wei Y, Zeng W, Huang X, et al. Clinical characteristics of 276 hospitalized patients with coronavirus disease 2019 in Zengdu District, Hubei Province: a single-center descriptive study. BMC Infectious Diseases. 2020;20:549. https://doi.org/10.1186/s12879-020-05252-8.

112. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):1-11. https://doi.org/10.1001/jamainternmed.2020.0994.

113. Xu H, Zhao J, Lian N, Lin S, Xie Q, Zhuo H. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: a retrospective study. Liver Int. 2020;40(6):1321-1326. https://doi.org/10.1111/liv.14449.

114. Xie Y, You Q, Wu C, et al. Impact of cardiovascular disease on clinical characteristics and outcomes of coronavirus disease 2019 (COVID-19). Circ J. 2020;84(8):1277-1283. https://doi.org/10.1253/circj.CJ-20-0348.

115. Xu J, Yang X, Yang L, et al. Clinical course and predictors of 60-day mortality in 239 critically ill patients with COVID-19: a multicenter retrospective study from Wuhan, China. Crit Care. 2020;24(1):394. https://doi.org/10.1186/s13054-020-03098-9.

116. Xu PP, Tian RH, Luo S, et al. Risk factors for adverse clinical outcomes with COVID-19 in China: a multicenter, retrospective, observational study. Theranostics. 2020;10(14):6372-6383. https://doi.org/10.7150/thno.46833.

117. Yang Q, Xie L, Zhang W, et al. Analysis of the clinical characteristics, drug treatments and prognoses of 136 patients with coronavirus disease 2019. J Clin Pharm Ther. 2020;45(4):609-616. https://doi.org/10.1111/jcpt.13170.

118. Yao Q, Wang P, Wang X, et al. Retrospective study of risk factors for severe SARS-CoV-2 infections in hospitalized adult patients. Pol Arch Intern Med. 2020;130(5):390-399. https://doi.org/10.20452/pamw.15312.

119. Ye C, Zhang S, Zhang X, et al. Impact of comorbidities on patients with COVID-19: a large retrospective study in Zhejiang, China. J Med Virol. 2020. https://doi.org/10.1002/jmv.26183.

120. Yu C, Lei Q, Li W, et al. Epidemiological and clinical characteristics of 1663 hospitalized patients infected with COVID-19 in Wuhan, China: a single-center experience. J Infect Public Health. 2020;13(9):1202-1209. https://doi.org/10.1016/j.jiph.2020.07.002.

121. Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One. 2020;15(3):e0230548. https://doi.org/10.1371/journal.pone.0230548.

122. Zhang F, Yang D, Li J, et al. Myocardial injury is associated with in-hospital mortality of confirmed or suspected COVID-19 in Wuhan, China: a single-center retrospective cohort study. medRxiv. 2020. https://doi.org/10.1101/2020.03.21.20040121.

123. Zhang GQ, Hu C, Luo L, et al. Clinical features and outcomes of 221 patients with COVID-19 in Wuhan, China. medRxiv. 2020. https://doi.org/10.1101/2020.10.03.20196551.

124. Zhang SY, Lian JS, Hu JH, et al. Clinical characteristics of different subtypes and risk factors for the severity of illness in patients with COVID-19 in Zhejiang, China. Infect Dis Poverty. 2020;9(1):85. https://doi.org/10.1186/s40249-020-00710-6.

125. Zhao SY, Xu XY, Yin HS, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis. 2020;20(1):311. https://doi.org/10.1186/s12879-020-05010-w.

126. Zhang Y, Cui Y, Shen M, et al. Association of diabetes mellitus with disease severity and prognosis in COVID-19: a retrospective cohort study. Diabetes Res Clin Pract. 2020;165:108227. https://doi.org/10.1016/j.diabres.2020.108227.

127. Zhao J, Gao HY, Feng ZY, Wu QJ. A retrospective analysis of the clinical and epidemiological characteristics of COVID-19 patients in Henan provincial People’s hospital, Zhengzhou, China. Front Med (Lausanne). 2020;7:286. https://doi.org/10.3389/fmed.2020.00286.

128. Zhao W, Yu S, Zha X, et al. Clinical characteristics and durations of hospitalized patients with COVID-19 in Beijing: a retrospective cohort study. medRxiv. 2017;21(1):1-9.

129. Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of coronavirus disease 2019 (COVID-19) in Changsha. Eur Rev Med Pharmacol Sci. 2020;24(6):3404-3410. https://doi.org/10.26355/eurrev_202003_20711.

130. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-march 2020: retrospective cohort study. BMJ. 2020;369:m4143. https://doi.org/10.1136/bmj.m4143.

131. Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with covid-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068-1077. https://doi.org/10.1016/j.cmet.2020.04.021.

132. Zhu Z, Cai T, Fan L, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332-339. https://doi.org/10.1016/j.ijid.2020.04.041.

133. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-1776. https://doi.org/10.1001/jama.2020.4683.
136. Azoulay E, Lemiale V, Mourvillier B, et al. Management and outcomes of acute respiratory distress syndrome patients with and without comorbid conditions. *Intensive Care Med*. 2018;44(7):1050-1060.

137. Chakraborty RK, Burns B. Systemic inflammatory response syndrome. Treasure Island (FL): StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK547669/.

138. Mertz D, Kim TH, Johnstone J, et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. *BMJ*. 2013;347:f5061.

139. Alraddadi BM, Watson JT, Almarashi A, et al. Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia. *Emerging Infectious Diseases*. 2016;22:49-55.

140. Singh AK, Gillies CL, Singh R, et al. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: a systematic review and meta-analysis. *Diabetes Obes Metab*. 2020. https://doi.org/10.1111/dom.14124.

141. Toraih EA, Elshazli RM, Hussein MH, et al. Association of cardiac biomarkers and comorbidities with increased mortality, severity, and cardiac injury in COVID-19 patients: a meta-regression and decision tree analysis. *J Med Virol*. 2020. https://doi.org/10.1002/jmv.26166.

142. Mantovani A, Byrne CD, Zheng MH, Targher G. Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: a meta-analysis of observational studies. *Nutr Metab Cardiovasc Dis*. 2020;30(8):1236-1248. https://doi.org/10.1016/j.numecd.2020.05.014.

143. Matsushita K, Ding N, Kou M, et al. The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: a systematic review and meta-analysis. *medRxiv*. https://doi.org/10.1101/2020.04.05.20054155.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Luo L, Fu M, Li Y, et al. The potential association between common comorbidities and severity and mortality of coronavirus disease 2019: A pooled analysis. *Clin Cardiol*. 2020;43:1478-1493. https://doi.org/10.1002/clc.23465