Orthostatic Hypotension Following Posterior Spinal Fusion Surgeries for Spinal Deformity Correction in Adolescents: Prevalence and Risk Factors

Ying Yang
Peking Union Medical College Hospital

Yaping Chen
Peking Union Medical College Hospital

Bingdu Tong
Peking Union Medical College Hospital

Xue Tian
Peking Union Medical College Hospital

Chunjie Yu
Peking Union Medical College Hospital

Zhe Su
Peking Union Medical College Hospital

Jianguo Zhang (✉️ jgzhang_pumch@yahoo.com)
Peking Union Medical College Hospital

Research Article

Keywords: orthostatic hypotension (OH), spinal deformity, laminectomy, osteotomy

DOI: https://doi.org/10.21203/rs.3.rs-618724/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Study Design: Retrospective case series.

Objectives: This study aimed to determine the prevalence and risk factors for orthostatic hypotension (OH) in adolescents undergoing posterior spinal fusion for spinal deformity correction.

Methods: The data of 312 consecutive adolescents who underwent posterior spinal fusion for spinal deformity correction in our center over 12 months were retrieved. Patient characteristics, including whether laminectomy or osteotomy was performed during the surgery, the occurrence of postoperative nausea and vomiting (PONV), perioperative hemoglobin albumin changes, perioperative blood transfusion, length of bed rest, willingness to ambulate, length of postoperative exercises of the lower limbs, and length of hospital stay, were collected and compared statistically between patients who did and did not develop postoperative OH.

Results: Of 312 patients, 225 (72.1%) developed OH postoperatively, and all cases completely resolved 5 days after the first out-of-bed exercises. Significant differences in BMI, the incidence of PONV, the willingness to ambulate and the length of postoperative exercises of the lower limbs were observed. The mean length of hospital stay of the patients with OH was longer than that of the patients without OH.

Conclusion: Our study suggests that temporary OH is a common manifestation following posterior spinal fusion for spinal deformity correction in adolescents. Postoperative OH may increase the length of hospital stay in these patients. Patients with PONV, who are not willing to ambulate and who perform postoperative lower limb exercises for a shorter time are more likely to have OH.

Introduction

Orthostatic hypotension (OH), which is when a patient’s blood pressure falls when moving from a supine position to a standing position, is a common cardiovascular disorder. It is defined as a decrease in the systolic blood pressure (BP) by more than 20 mmHg or a decrease in the diastolic BP be more than 10 mmHg from the baseline BP within 3 minutes of changing the body position from a supine position to an upright posture (1). Postoperative OH is a common manifestation following various surgeries, and its etiology is multifactorial and may vary according to the type of surgery (2, 3). Postoperative OH is often characterized by symptoms of syncope, dizziness, and light headedness. However, weakness, fatigue, cognitive issues, visual blurring, headache, neck pain, orthostatic dyspnea, or chest pain caused by OH may also occur in some patients and make patients distressed, potentially delaying recovery after surgery (4, 5). An association between OH and many types of surgeries, including cervical spine surgery, has been reported (3, 6, 7). However, to date, no studies have studied the association between OH and posterior spinal fusion surgeries for the treatment of adolescent spinal deformities. We conducted this study to evaluate the prevalence and risk factors for OH in adolescent patients undergoing posterior spinal fusion for spinal deformity correction.
Methods

After institutional review board approval was received, all adolescent patients who had undergone posterior spinal fusion surgery under general anesthesia for spinal deformity correction from March 2019 to June 2020 were enrolled. The inclusion criteria were as follows: 1) patients who underwent posterior fusion surgery for spinal deformity correction; 2) patients aged between 10 years and 20 years; 3) patients without dura tears during surgery; 4) patients without a history of OH; and 5) patients without a history of neuromuscular disease or neurological deficits. All patients were asked to perform early ambulation and stand within 72 hours after surgery. Postoperative OH was observed and recorded. The SRS-22 questionnaire was used to evaluate function at 3 months after surgery.

The inpatient records were reviewed for patient characteristics such as age, sex, body mass index (BMI), the number of levels instrumented and fused, whether laminectomy or osteotomy was performed during the surgery, the occurrence of postoperative nausea and vomiting (PONV), perioperative hemoglobin albumin changes, perioperative blood transfusion, the length of bed rest, the willingness to ambulate, the length of postoperative exercises of the lower limbs, and the length of hospital stay.

Statistical analysis was performed using IBM SPSS Statistics (version 22.0), and significance tests were 2-sided at 5%. The results are expressed as means and SDs for the continuous variables and frequencies for the categorical variables. The P values were calculated using independent-samples t tests or nonparametric tests. For the categorical variables, the chi-square or Fisher’s exact test was used. Binary logistic regression analysis was used to identify the risk factors affecting postoperative OH. The significance level was set at $\alpha = 0.05$.

Results

Three hundred and twelve patients were enrolled. None of them had perioperative neurological deficits. There were 191 males and 121 males. The mean age was 15.5 ± 4.8 (10–20) years, and postoperative OH occurred in 225 (72.1%) patients. Most postoperative OH cases occurred within 2 days after the patient started standing from bed. All OH cases completely resolved after the fifth day of standing (Fig. 1). One hundred ninety patients developed OH the first time they stood postoperatively. Among the 122 patients who did not develop OH the first time they stood postoperatively, 35 developed OH when standing from the supine position on a subsequent day (Table 1).
Table 1
Timing of the postoperative OH

OH occurred at the time of 1st postoperative standing		
Duration of OH(≤ 2days)	175	92.11%
Duration of OH(> 2days)	15	7.89%
Without OH at the time of 1st postoperative standing		
Without OH until discharge	87	71.31%
OH occurred during the following Days	35	28.69%

A t test or chi-square test was performed to compare the variables between patients with and without postoperative OH. There were no significant differences in age, sex, the number of levels instrumented and fused, whether laminectomy or osteotomy was performed during the surgery, perioperative hemoglobin albumin changes, perioperative blood transfusion or the length of bed rest. Significant differences were found in the occurrence of PONV (P = 0.008), willingness to ambulate (P = 0.000), length of postoperative exercises of the lower limbs (P = 0.000) and BMI (P = 0.001). The mean length of hospital stay of the patients with OH was longer than that of the patients without OH (P = 0.002). No significant differences were found in the SRS-22 score at 3 months after surgery (P = 0.638) (Table 2).
	Cases (n)	With OH	Without OH	Incidence of OH	\(\chi^2/t\)	P value
Gender						
Male	191	131	60	68.59%	3.050	0.081
Female	121	94	27	77.68%		
Occurrence of PONV						
+	145	128	17	88.28%	6.974	0.008
-	167	97	70	58.08%		
Ambulation willingness						
+	202	119	83	58.9%	49.678	0.000
-	110	106	4	96.36%		
Blood transfusion						
+	79	61	18	77.22%	1.368	0.242
-	233	164	69	70.39%		
Length of postoperative Lower-limb exercise						
0-15min/d	157	153	4	97.45%	138.445	0.000
15-30min/d	103	64	39	62.14%		
>30min/d	52	8	44	15.38%		
Length of staying in bed(h)	62.44 ± 11.93	61.75 ± 8.35	-0.957	0.339		
Age(years)	12.24 ± 5.14	11.49 ± 1.68	-1.324	0.187		
Height(cm)	1.53 ± 0.15	1.55 ± 0.24	0.481	0.631		
Weight(kg)	40.37 ± 16.77	37.73 ± 10.08	-1.892	0.059		
Body mass index	18.89 ± 3.31	14.49 ± 2.79	-3.480	0.001		
HGB decrease value (g/L)	29.94 ± 9.94	29.10 ± 10.13	-0.590	0.556		
Binary logistic regression was used to evaluate the risk factors for OH that had been identified with the t test or chi-square test. The occurrence of PONV, willingness to ambulate, and time of postoperative exercises of the lower limbs were found to be significantly associated with postoperative OH (Table 3).

Table 3 Risk factors of OH (Binary logistic regression)

Factors	Regression coefficients	Standard error	Wald	P	Odds ratio	95% Confidence Interval	
						Upper	Lower
Constant	6.514	1.658	15.433	0.000	---		
PONV	1.465	0.451	10.538	0.001	4.327	1.787	10.479
Ambulation willingness	-2.678	0.590	20.623	0.000	0.069	0.022	0.218
Lower limb exercise time	-2.386	0.345	47.721	0.000	0.092	0.047	0.181
Body mass index	0.026	0.077	0.117	0.732	1.027	0.883	1.194

Discussion

OH is a common cardiovascular disorder whose clinical significance is increasingly being recognized, as OH can decrease quality of life and potentially worsen prognoses (8, 9). OH has been well studied and is closely associated with other common chronic diseases, including hypertension, congestive heart failure,
diabetes mellitus, and Parkinson’s disease. The prevalence of OH in patients older than 65 years of age was found to be approximately 20% (10).

Most previous studies on OH were population-based cohort studies or performed in elderly individuals (11, 12). However, there are few studies on OH in hospitalized patients. Hospitalized patients are particularly vulnerable to the consequences of OH, particularly falls, because postural BP regulation may be disturbed by many common acute illnesses as well as by bed rest and drug treatment (2, 13). Feldstein reported that OH occurred in as many as 60% of hospitalized adults. Acute physiological and psychological changes due to illness, surgery and anesthesia occur in patients who undergo surgery. Postoperative OH has been well-documented (2). Hanada et al found that approximately 40% of 195 patients undergoing cardiothoracic and abdominal surgery experience OH during early postoperative mobilization (7).

Early mobilization is important after major orthopedic surgery to prevent morbidities and long hospital stays. Postoperative OH can prevent early mobilization and has been observed in patients undergoing major orthopedic surgeries. Postoperative OH can lead to failed physiotherapy in patients who have undergone hip arthroplasty, and its incidence has been reported to be 40%-50% (6, 14). Associations between OH and spine surgeries and spinal cord injuries have also been found. Edward et al found that 22 of 190 patients who underwent cervical spine surgery (11.6%) developed postoperative OH. The authors found that the presence of neurological deficits is a risk factor for postoperative OH (3). The link between spinal cord injuries (SCIs) and the development of OH has been observed (15). Postural changes during physiotherapy and mobilization have been shown to induce clinically significant OH in 74% of SCI patients, with symptoms in 59% of patients (15). Significant differences in the incidence of OH between patients with compressive cervical myelopathy and healthy controls were found in Srihari’s study (16). Furthermore, McKinley et al found that traumatic SCI patients had a significantly higher incidence of OH than did nontraumatic SCI patients (36.7% vs 5.3%) (17).

Previous studies have shown that early ambulation can decrease the length of hospital stay and perioperative complications and improve functional outcomes in adolescent and adult patients undergoing correction surgery for spinal deformities (18, 19). Thus, we asked patients in this group to perform out-of-bed exercises and stand within 72 hours after surgery. Postoperative OH may occur and affect recovery in these patients. However, until now, there have been no studies on postoperative OH following posterior spinal fusion surgeries for spinal deformity correction in adolescents. In the current study, we determined the incidence of postoperative OH following posterior spinal fusion for the treatment of adolescent spinal deformities. Two hundred and twenty-five (72.1%) of 312 adolescent patients who underwent correction surgeries for spinal deformities and performed out-of-bed exercises early and stood within 72 hours after surgery developed postoperative OH, which mostly occurred within 2 days of standing, and all cases completely resolved after the fifth day of standing. The presence of postoperative OH significantly increased the length of hospital stay. However, no differences in the SRS-22 score were found between the patients with and without postoperative OH.
The risk factors for postoperative OH following spine surgeries remain unclear. Neurological deficits and traumatic SCI have been reported to be associated with a higher incidence of postoperative OH (3). In our study, we found that age, sex, the number of levels instrumented and fused, whether laminectomy or osteotomy was performed during the surgery, the postoperative hemoglobin level and the postoperative albumin level were not significantly associated with postoperative OH following posterior spinal fusion surgeries for the correction of spinal deformities in adolescent patients. Significant associations between PONV, willingness to ambulate, length of postoperative exercises of the lower limbs and postoperative OH were found. The association between PONV and OH was reported in a previous study. Franz et al found that female patients with preoperative OH had an increased risk of PONV (20). For patients with risk factors for PONV, including the female sex, a history of motion sickness or previous PONV, a nonsmoking status, and the use of postoperative opioid drugs, therapies should be given to decrease the occurrence or severity of PONV and postoperative OH. Early postoperative exercise, including lower limb strength training, is an essential component of rehabilitation protocols following posterior spinal fusion surgeries and can improve function and shorten the hospital stay (21–23). According to our findings, better patient education of early postoperative ambulation to encourage patients to perform early postoperative out-of-bed exercises and postoperative strategies to increase the mobility of the lower limbs may be helpful to decrease the incidence of postoperative OH following posterior spinal fusion surgeries for the treatment of adolescent spinal deformities.

Conclusion

Temporary OH is a common manifestation following posterior spinal fusion for spinal deformity correction in adolescents, and all patients’ OH completely resolved after the fifth day of out-of-bed activity. Postoperative OH may increase the length of hospital stay in these patients. Patients with PONV, who are not willing to perform out-of-bed exercises and perform postoperative lower limb exercises for a shorter time are more likely to have postoperative OH. Hence, we suggest that postural BP should be routinely monitored in this group of patients so that early intervention can be initiated. Strategies to prevent PONV, to improve patients’ willingness to ambulate and to increase the length of postoperative lower limb exercises may be helpful to decrease the occurrence of postoperative OH in these patients.

Declarations

Acknowledgements

None.

Authors’ contributions

Y.Y. and Z.S. wrote the main manuscript text. Y.C. and X.T. prepared figure 1. B.T., Y.C. and C.Y. prepared table 1-3. Y.Y. and J.Z. provided the clinical material. All authors reviewed the manuscript.

Funding
The study was supported by grants from National Natural Science Foundation of China (81972037).

Availability of data and materials

The datasets generated and analyzed during the current study are not publicly available due risk of compromising individual privacy but are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Approval for the study was obtained from the ethics committee at Peking Union Medical College Hospital. Due to the retrospective nature of this research, exemption of informed consent was granted by the ethics committee at Peking Union Medical College Hospital. The authors confirmed that all methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest.

IRB Approval Statement. This study has been approved from the Institutional Review Board.

References

1. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res. 2011;21(2):69–72.

2. Feldstein C, Weder AB. Orthostatic hypotension: a common, serious and underrecognized problem in hospitalized patients. J Am Soc Hypertens. 2012;6(1):27–39.

3. Ong ET, Yeo LK, Kaliya-Perumal AK, Oh JY. Orthostatic Hypotension Following Cervical Spine Surgery: Prevalence and Risk Factors. Global Spine J. 2020;10(5):578–82.

4. Lanier JB, Mote MB, Clay EC. Evaluation and management of orthostatic hypotension. Am Fam Physician. 2011;84(5):527–36.

5. Palma JA, Kaufmann H. Management of Orthostatic Hypotension. Continuum (Minneap Minn). 2020;26(1):154–77.

6. Jans Ø, Bundgaard-Nielsen M, Solgaard S, Johansson PI, Kehlet H. Orthostatic intolerance during early mobilization after fast-track hip arthroplasty. Br J Anaesth. 2012;108(3):436–43.

7. Hanada M, Tawara Y, Miyazaki T, Sato S, Morimoto Y, Oikawa M, et al. Incidence of orthostatic hypotension and cardiovascular response to postoperative early mobilization in patients undergoing cardiothoracic and abdominal surgery. BMC Surg. 2017;17(1):111.
8. Ricci F, De Caterina R, Fedorowski A. Orthostatic Hypotension: Epidemiology, Prognosis, and Treatment. J Am Coll Cardiol. 2015;66(7):848–60.

9. Kanjwal K, George A, Figueredo VM, Grubb BP. Orthostatic hypotension: definition, diagnosis and management. J Cardiovasc Med (Hagerstown). 2015;16(2):75–81.

10. Magkas N, Tsioufis C, Thomopoulos C, Dilaveris P, Georgiopoulos G, Sanidas E, et al. Orthostatic hypotension: From pathophysiology to clinical applications and therapeutic considerations. J Clin Hypertens (Greenwich). 2019;21(5):546–54.

11. Hiitola P, Enlund H, Kettunen R, Sulkava R, Hartikainen S. Postural changes in blood pressure and the prevalence of orthostatic hypotension among home-dwelling elderly aged 75 years or older. J Hum Hypertens. 2009;23(1):33–9.

12. Villavicencio-Chávez C, Miralles Basseda R, González Marín P, Cervera AM. [Orthostatic and postprandial hypotension in elderly patients with chronic diseases and disability: prevalence and related factors]. Rev Esp Geriatr Gerontol. 2009;44(1):12–8.

13. Rhebergen GA, Schölzel-Dorenbos CJ. [Orthostatic and postprandial hypotension in patients aged 70 years or older admitted to a medical ward]. Tijdschr Gerontol Geriatr. 2002;33(3):119–23.

14. Jans Ø, Mehlsen J, Kjærsgaard-Andersen P, Husted H, Solgaard S, Josiassen J, et al. Oral Midodrine Hydrochloride for Prevention of Orthostatic Hypotension during Early Mobilization after Hip Arthroplasty: A Randomized, Double-blind, Placebo-controlled Trial. Anesthesiology. 2015;123(6):1292–300.

15. Illman A, Stiller K, Williams M. The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord. 2000;38(12):741–7.

16. Srihari G, Shukla D, Indira Devi B, Sathyaprabha TN. Subclinical autonomic nervous system dysfunction in compressive cervical myelopathy. Spine (Phila Pa 1976). 2011;36(8):654–9.

17. McKinley WO, Tewksbury MA, Godbou C. Comparison of medical complications following nontraumatic and traumatic spinal cord injury. J Spinal Cord Med. 2002;25(2):88–93.

18. Adogwa O, Elsamadicy AA, Fialkoff J, Cheng J, Karikari IO, Bagley C. Early Ambulation Decreases Length of Hospital Stay, Perioperative Complications and Improves Functional Outcomes in Elderly Patients Undergoing Surgery for Correction of Adult Degenerative Scoliosis. Spine (Phila Pa 1976). 2017;42(18):1420–5.

19. Fletcher ND, Andras LM, Lazarus DE, Owen RJ, Geddes BJ, Cao J, et al. Use of a Novel Pathway for Early Discharge Was Associated With a 48% Shorter Length of Stay After Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis. J Pediatr Orthop. 2017;37(2):92–7.

20. Pusch F, Berger A, Wildling E, Zimpfer M, Moser M, Sam C, et al. Preoperative orthostatic dysfunction is associated with an increased incidence of postoperative nausea and vomiting. Anesthesiology. 2002;96(6):1381–5.

21. Liu SK, Song YL, Ding WY, Yang DL, Ma L, Yang SD. The effect of systematic lower-limb rehabilitation training in elderly patients undergoing lumbar fusion surgery: a retrospective study. Oncotarget. 2017;8(68):112720–6.
22. Wang H, Huo Y, Zhao Y, Zhang B, Yang D, Yang S, et al. Clinical Rehabilitation Effect of Postoperative Lower-Limb Training on the Patients Undergoing OLIF Surgery: A Retrospective Study. Pain Res Manag. 2020;2020:1065202.

23. Tarnanen S, Neva MH, Dekker J, Häkkinen K, Vihtonen K, Pekkanen L, et al. Randomized controlled trial of postoperative exercise rehabilitation program after lumbar spine fusion: study protocol. BMC Musculoskelet Disord. 2012;13:123.