Sequence analysis
The sequence context in poly-alanine regions: structure, function and conservation

Pablo Mier 1,*, Carlos A. Elena-Real2, Juan Cortés3, Pau Bernadó2,* and Miguel A. Andrade-Navarro1

1Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany, 2Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France and 3LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

*To whom correspondence should be addressed.

Abstract

Motivation: Poly-alanine (polyA) regions are protein stretches mostly composed of alanines. Despite their abundance in eukaryotic proteomes and their association to nine inherited human diseases, the structural and functional roles exerted by polyA stretches remain poorly understood. In this work we study how the amino acid context in which polyA regions are settled in proteins influences their structure and function.

Results: We identified glycine and proline as the most abundant amino acids within polyA and in the flanking regions of polyA tracts, in human proteins as well as in 17 additional eukaryotic species. Our analyses indicate that the non-structuring nature of these two amino acids influences the α-helical conformations predicted for polyA, suggesting a relevant role in reducing the inherent aggregation propensity of long polyA. Then, we show how polyA position in protein N-termini relates with their function as transit peptides. PolyA placed just after the initial methionine is often predicted as part of mitochondrial transit peptides, whereas when placed in downstream positions, polyA are part of signal peptides. A few examples from known structures suggest that short polyA can emerge by alanine substitutions in α-helices; but evolution by insertion is observed for longer polyA. Our results showcase the importance of studying the sequence context of homorepeats as a mechanism to shape their structure–function relationships.

Contact: munoz@uni-mainz.de or pau.bernado@cbs.cnrs.fr

Availability and implementation: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein fragments with compositionally biased sequences, the so-called low complexity regions (LCRs), are present in all kingdoms of life where they perform crucial functions (Golding, 1999; Luo et al., 2012; Wootten and Federhen, 1996). There are several families of LCRs depending on the sequence similarity among repeat units, the distance between adjacent repeats, and the complexity of the sequence pattern (Mier et al., 2020a). Homorepeats (or polyX regions), stretches of a single amino acid, represent a very particular and eye-catching family of LCRs (Chavali et al., 2020; Jorda and Kajava, 2010). Bioinformatic analyses indicate that there are homorepeats for the twenty naturally occurring amino acids, although they are not evenly distributed among the different kingdoms of life (Chavali et al., 2017). While eukaryotic genomes code for ~1.5% of proteins hosting at least one homorepeat, they represent less than 1% in bacteria and archaea. Local compositional biases for amino acids with a given physicochemical property in protein sequences induce different cellular localizations and enable homorepeat containing proteins to perform very specialized functions by mediating interactions with other molecules (Chavali et al., 2020).

Accumulation of identical physicochemical properties can also have detrimental consequences and trigger protein aggregation and disease (Lobanov et al., 2016). Concretely, eighteen severe pathologies have been described to originate from abnormal expansions of glutamine (polyQ) and alanine [poly-alanine (polyA)] tracts (nine for each family) (Darling and Uversky, 2017; Orr and Zoghbi, 2007). The toxic mechanisms and the aggregation pathways of polyQ-related diseases have been thoroughly studied both in vivo and in vitro (Saudou and Humbert, 2016; Wetzel, 2012). In parallel, proteome- and genome-wide bioinformatic analyses have revealed functional, structural and evolutionary features common to polyQ-
rich proteins (Mier and Andrade-Navarro, 2018; Ramazzotti et al., 2012; Totzeck et al., 2017; Urbanek et al., 2020a). Especially significant has been the discovery of strong and asymmetric compositional bias in polyQ flanking regions (Mier et al., 2020a; Ramazzotti et al., 2012), which has been experimentally associated to the propagation of secondary structure toward the homorepeat and the modulation of their aggregation propensity and toxicity (Bhattacharyya et al., 2006; Escobedo et al., 2019; Urbanek et al., 2020a).

Conversely to polyQ, less knowledge has been accumulated on the structural, functional and pathological role of polyA stretches. PolyA is the second most abundant homorepeat in Metazoa (present in more than 2% of protein families) after polyE (Mier et al., 2017); 7.8% of human proteins contain tracts with four or more consecutively similar alanines (Pelassa et al., 2014). The pathological threshold of the specific segments triggering polyA-related diseases has been identified (Albrecht and Mundlos, 2005; Amiel et al., 2004; Shoubridge and Gecz, 2012). Interestingly, it has been observed that this threshold is protein-dependent, suggesting an active role of the sequence context in modulating toxic oligomerization.

From a functional perspective, it has been shown that polyA are not mere spacers inserted in proteins, but they are engaged in protein–protein and protein–DNA interactions (Brown and Brown, 2004). Furthermore, polyA-containing proteins present frequently a nuclear localization (Albrecht and Mundlos, 2005). These observations are in line with the large percentage of these proteins (34%) annotated as transcription factors (Lavoie et al., 2003). Interestingly, this percentage increases when only repeats with eight or more consecutive alanines are considered. Placed in the disordered tails of transcription factors, the functional advantages provided by polyA to this family of proteins remain to be unveiled.

Since the seminal study by Grazier and Dory (1963), the structural properties of polyA homorepeats have attracted the biological community. Although this pioneering study suggested that the polyA forms a highly stable α-helix in aqueous solutions, different conclusions were subsequently derived. In a series of studies using multiple biophysical techniques, Kallenbach’s group suggested that polyA peptides are disordered with some prevalence for poly-proline II conformations (Chen et al., 2004, 2007; Shi et al., 2002). Importantly, these investigations were performed on short blocked model peptides, which could display different structural properties than polyA tracts in their protein context. Indeed, two recent nuclear magnetic resonance (NMR) studies have unambiguously identified three stretches with five, six and eight consecutive alanines as partially formed α-helical structures (Chen and Huang, 2020; Hong et al., 2019). These contradictory observations suggest a relevant structural role of polyA flanking regions. Up to now, the amino acid enrichment in polyA flanking regions has not been systematically studied, although an enhanced occurrence of proline, glycine and serine has been observed for some of the polyA tracts of the transcript factor HOXA13 in mammals (Morilock et al., 2000). In addition to the putative role in modulating polyA secondary structure, the physicochemical nature of the flanking regions and the amino acid insertions can exert a strong influence on the protein functional and disease-related properties. For instance, neighboring residues could modulate the oligomerization propensity of polyA, which seems to proceed via the formation of α-helical clusters and/ or coiled coil interactions (Pelassa et al., 2014; Polling et al., 2014, 2015). Difficulties in elucidating experimentally the structural propensity of homorepeats have hampered the definition of the structure–function relationship in polyA (Katti et al., 2000; Urbanek et al., 2020b; van der Lee et al., 2014), and have promoted the application of bioinformatic approaches (Lavoie et al., 2003; Pelassa et al., 2014).

In the present study, we have analyzed the human proteome and 17 additional eukaryotic proteomes to study the sequence trends and structural properties in polyA and their flanking regions. These analyses provide indications on the role of polyA in mitochondrial localization or evolutionary trends. Moreover, our results indicate that amino acid prevalence in alanine-rich sequences regulate the structural properties of these regions, suggesting a mechanism to tune the interaction with their biological partners and the modulation of the aggregation propensity in pathologically expanded polyA tracts.

2 Materials and methods

2.1 Data retrieval and processing

We obtained the complete reference human proteome (hsa) from UniProtKB v2021_02 (UniProt Consortium, 2021), consisting of 20 614 proteins. Additionally, we downloaded the proteome of 17 other eukaryotic species from the same source (Supplementary File S1): Mus musculus (mmu), Bos taurus (bta), Ornithorhynchus anatinus (oan), Taeniopygia guttata (tgu), Anolis carolinensis (aca), Xenopus tropicalis (xtr), Danio rerio (dre), Takifugu rubripes (tru), Branchiostoma floridae (bfl), Stronglylocentrotus purpuratus (spu), Drosophila melanogaster (dme), Anopheles gambiae (aga), Apis mellifera (ame), Daphnia pulex (dpu), Caenorhabditis elegans (cel), Arabidopsis thaliana (ath) and Velella carteri f. nagarimensis (vca).

Positional annotations [mitochondrial transit peptides (mTPs) and signal peptides] were predicted using TargetP v2.0 (Almagro Armenteros et al., 2019), and the subcellular location annotation was obtained from UniProtKB v2021_02.

2.2 Search for polyA regions

The search for polyA regions was done with an in-house script, similar to those used in previous studies for other homorepeats (Mier et al., 2017, 2020b). To locate a large number of pure polyA regions we used a lax threshold of four alanine residues in a local window of four amino acids. Once a region matching the threshold was found in a protein, it was extended until a non-Ala residue was located. We named these regions consisting of consecutive alanine residues as pure polyA. To locate impure polyA regions, regions mostly composed of Ala residues, we used a threshold of four to five alanine residues in a window of 6. As with the pure regions, once an impure polyA region was located, it was extended until the threshold was not met.

2.3 Secondary structure prediction

The secondary structure propensities of the polyA stretches and the 12 residues flanking them were predicted using the local structural propensity predictor (LS2P) (Estaña et al., 2020). Briefly, the LS2P method splits the sequence into overlapping tripeptides, with two amino acids shared between them. Then, a database of tripeptides extracted from coil regions of experimentally determined high-resolution structures is searched to assign structural preferences to each tripeptide. In addition, to take into account the sequence context of a tripeptide a, the structural preferences of the two preceding (i–2, i–1) and following (i+1, i+2) tripeptides are also considered within an analytical equation to predict structure. The final secondary structure propensity calculated in this manner is assigned to the central amino acid of each overlapping tripeptide along the sequence. LS2P considers 27 structural classes for tripeptides, as a combination of α, β and γ regions of the Ramachandran’s space (details can be found in the original study; Estaña et al., 2020). In this work, we considered ααα (all three residues of the tripeptide in a helical conformation), βββ (all three residues of the tripeptide in an extended conformation), and Others, which groups all the other classes. Note that to avoid artifacts at the termini, only the conformational preferences of the ten preceding (−1 to −10) and following (+1 to +10) residues of the polyA are reported.

3 Results

3.1 A Survey of the polyA regions in the human proteome

PolyA or A-rich regions are general terms to denote a protein sequence with a high frequency of alanine residues. To characterize these regions, we must first accurately define them. A polyA region
can be pure, if it is only composed of alanines, or impure, if it contains one or a few non-alanine residues. Following previous work, we require a minimum of four consecutive alanines for a pure polyA; for an impure polyA, we require at least four alanine residues in a six residue region (Mier et al., 2017, 2020a). Longer regions with lower but significantly high frequencies of alanine also belong to the category of A-rich sequences, for example defined as compositionally biased regions (Promponas et al., 2000), but are not considered in this study.

By applying these thresholds, we located 2030 pure and 6295 impure polyA regions in the human proteome (Table 1). Note that we report more polyA than Lavoie et al. in 2003, which used a stricter threshold (five consecutive alanine residues, 604 regions), but a similar number than Pelassa et al. (2014). We found pure and impure polyA regions in 1582 (7.67%) and 4398 (21.33%) human proteins, respectively. Approximately 30% of pure and 40% of impure polyA-containing proteins have more than one polyA tract. A large variability in the number of polyA-containing proteins was found when performing equivalent analyses in other 17 eukaryotic proteomes (Supplementary File S1). The percentage of proteins containing pure polyA tracts ranged from 3% (C. elegans) to 39% (V. carteri), and increased from 11% (C. elegans and X. tropicalis) to 57% (V. carteri) for impure homorepeats. Interestingly, no correlation was found between the number of polyA along evolution.

An analysis of the amino acids found as impurities in polyA regions revealed that the frequency of such residues varies with respect to their frequencies in the human proteome (Fig. 1A). On the one hand, D, H, I, N and Y are strongly depleted in polyA regions (ratio all/bg > 0.5). On the other hand, G and P are enriched as impurities in polyA stretches (ratio > 1.5). An evolutionary study of these trends in the 18 eukaryotic species shows that the trend of high G and P in human is not general for all species, but it is mainly shared within Amniota, equivalently to the depletion in N and I (Supplementary Fig. S1). Dipterans (Anopheles gambiae, Drosophila melanogaster) have also high G and P levels, but also higher levels of T and V, and lower R than Amniota. Depletion of C, D and aromatic residues (F, H, W, Y) can be observed across all species. This overview suggests that while some general rules may exist for the insertion of amino acids in polyA, there is appreciable inter-species variability with some trends clustered in wide taxa, which suggest some functional association. The very high levels of impurities of P and T stand out in C. elegans and V. carteri, respectively. Properties related to the specific lifestyle of these species could play a role in these cases.

Our analysis shows length-dependency in the frequency of the non-alanine residues within the polyA regions for G and P, which are more prevalent in long impolyA regions, and for L, which is more prevalent in short polyA (Fig. 1A). Regarding the position of the impurities, we observed a tendency for them to be located in the second half of the polyA (relative position >0.5; Fig. 1B), with I in the five amino-acid (aa) long polyA as the most C-terminally positioned. Exceptions were observed in long polyA for D, H, N and Q (relative position <0.3).

Table 1. Frequency of polyA regions in the human proteome

Length	PolyA	Proteins	Length	PolyA	Proteins
4	1185	1056	5	1427	1292
>4	845	687	6	2919	2457
>6			>6	1949	1580
Total	2030	1582	Total	6295	4398

3.2 The sequence context of polyA regions

The sequence context in which polyQ regions are placed is important from a structural and functional perspective, and has been extensively studied (Bhattacharyya et al., 2006; Escobedo et al., 2019; Ramazzotti et al., 2012; Shen et al., 2016; Urbanek et al., 2020a).

Fig. 1. Characterization of non-Alanine residues in human impure polyA regions. (A) Frequency and (B) relative position within the impure polyA regions of non-Alanine residues in short (length < 5 aa), medium (6 aa) and long (>6 aa) polyA. To calculate the background frequency per amino acid (‘Bg’) we used the complete human proteome. The ratio All/Bg is shown on the top of panel (A) for all amino acids. The boxplots indicate second to third quartile and median.

Fig. 2. Amino acid context of polyA regions. Amino acid abundance per position of the N-terminal (−10 to −1) and C-terminal (+1 to +10) flanking regions for all pure and impure human polyA regions. Horizontal dashed lines indicate the background frequency of the corresponding amino acid in the human proteome. Vertical dashed line (position 0) indicates the position of the polyA region.

Here, we similarly investigated the context of polyA sequences, studying amino acids before (−1 to −10) and after (+1 to +10) the polyA (Fig. 2). Interestingly, the regions surrounding polyA stretches are enriched in alanine residues, notably around pure tracts. This suggests that polyA tend to be contained within longer alanine-rich regions.
Most of the other amino acids display a flat distribution with values near the background frequency. There are, however, a few exceptions: I and K stand out by their low frequencies, and P and G by their high frequency. A few amino acids present higher frequencies at specific positions near the polyA, most of which are only present or more pronounced for pure polyA: G and T at position +1, M at position −1, and S and V at positions −1 and +1. E at position −1 seems to be more pronounced for impure polyA (Fig. 2).

Interestingly, the general enrichment of G and P encompasses the two flanking regions and is even greater for long and pure polyA (Supplementary Fig. S2).

In order to evaluate the evolutionary conservation of these trends, we performed the same type of analysis for the additional 17 additional eukaryotic species. This analysis shows that some trends found in the human proteome are conserved in all the eukaryotes analyzed, although the enrichments found were not homogeneous in all proteomes (Fig. 3). The results indicate that the peak in G + 1 is common to most species. Conversely, the M + 1 peak for pure polyA is observed in Deuterostomia (from spu to hsa; Fig. 3) with higher values in Amniota (from aca to hsa; Fig. 3). Given that M and A translate from distinct codons (AUG and GCx, respectively), sequencing or translation errors could not be at the origin of this enrichment. In the next section, we discuss this case in more detail.

When analyzing the overall enrichment of P and G encompassing both flanking regions, we observed that this feature is especially significant only for Amniota. Interestingly, the enrichment in values in the immediate residues of polyA, V −1 and V + 1, is significant for the eukaryotes non deuterostomes, from vca to dme, with the exception of cel (Fig. 3). Although less intense, similar results were observed for the enrichment of serines, S + 1 and S −1. When comparing the compositional bias in pure and impure polyA, we observed that the evolutionary trends described above are common for both sets, although the enrichment is systematically lower for impure sequences.

3.3 The protein context of polyA regions and their association to TPs and cellular localization

When analyzing the position of the polyA tracts in proteins, we observed that these regions have a strong bias toward the N-termini of proteins in Amniniota (aca to hsa; Fig. 4A—left). This evolutionary distribution resembles the one found for methionine preceding polyA (M −1). When analyzing proteins of the M −1 group, we observed that polyA tracts are highly enriched at the N-termini of these proteins in Amniniota, while no special localization was found for the other species (Fig. 4A—right). Indeed, almost two thirds of these polyA are at position 2, right after the initial methionine. These N-terminal polyA are not the sole responsible for the N-terminal bias in Amniniota, since this positional bias (relative position ∼0.30−0.40) remains even when considering only polyA starting at position >2 (data not shown).

The positional bias of polyA regions in Amniniota proteins suggested a putative role of these homorepeats as TPs or signal peptides (SPs), which are coding sequences labeling proteins for secretion or cellular localization (Ojwi et al., 2018). These sequences, which are normally 25−30 residue long, often present a α-helical hydrophobic core that is the main responsible of their selective localization (Hatsuzawa et al., 1997; Von Heijne, 1990). Using the TargetP v2.0 server (Almagro Armenteros et al., 2019), we analyzed whether proteins with an N-terminal polyA were predicted to have TPs or SPs. To simplify the analyses for the cases in which a protein has more than one polyA region, we only took into consideration the most N-terminal one.

PolyA-containing proteins are 2-fold enriched in mTPs (Table 2), compared to proteins without any polyA. This enrichment is 5.5-fold when the polyA starts at position 2. We compared these values with those for predicted SPs, in which an enrichment is only seen in proteins with the polyA starting in positions 3−20 (1.4-fold enrichment). These observations suggest a functional role of N-terminal polyA regions in protein localization. To test this hypothesis, the subcellular localization of human polyA-containing proteins was analyzed as a function of the position of the homorepeat. In fact,
Table 2. Mitochondrial transit peptides (mTP) and signal peptides (SP) predicted for human proteins, considering the most terminal polyA region per protein

PolyA start position	Proteins	mTP	SP	%mTP	%SP
No polyA	15 784	337	2894	2.14	18.34
Any	4830	213	749	4.41	15.51
2	229	27	11.79	11.35	
3–20	622	45	156	7.23	25.08
>20	3979	110	539	2.76	13.35

mitochondrial and secreted polyA-containing proteins have their polyA regions significantly more N-terminally than nuclear and cytoplasmic proteins (Fig. 4B). Interestingly, results by subcellular location also show that polyA in mitochondrial proteins are located more N-terminally than in secreted ones. Conversely, there is no difference in the relative position of the polyA for nuclear and cytoplasmic proteins, both in the ~0.30–0.40 range described before (Fig. 4A).

3.4 The sequence context of polyA regions modulates their inherent helical propensity

The compositional biases found as polyA impurities and in their flanking regions necessarily exert strong influence on the structural properties of the homorepeat. To better understand this influence, we predicted the structural propensities of the polyA fragments including the ten preceding and following residues. The structural propensities were calculated with a recently developed algorithm that enumerates the structures of overlapping three-residue fragments (tripeptides) found in a database of experimentally determined high-resolution protein structures (Estaña et al., 2020). The method considers 27 structural classes and quantifies the propensity for each overlapping tripeptide segment along the sequence to be observed in each class. To simplify the interpretation of our analysis, we reduced the 27 classes into three: α-helix (~αα), extended (βββ) and Others, which encompasses all the other 25 conformational classes.

According to our approach, pure polyA regions have a strong tendency to adopt α-helical conformations (in line with NMR studies of polyA tracts in proteins; Chen and Huang, 2020; Hong et al., 2019), which extend to the immediate flanking residues (Fig. 5A). Very similar results were obtained when analyzing impure polyA sequences, indicating that the thresholds used to select polyA were appropriate.

The general enrichment of G and P, two amino acids normally classified as non-structuring, in regions surrounding polyA (Fig. 2), which gets stronger for longer polyA (Supplementary Fig. S2), clearly reduces the predicted α-helical propensity of the sequence surrounding polyA. This behavior is exacerbated when the polyA regions have a G in position +1 (Fig. 5B). In this case, the glycine and the following residue adopt higher percentages of Others conformations than the rest of the neighboring residues of the flanking region.

Our results show that polyA and their flanking regions display opposite structural preferences and suggest that the specific sequences found around polyA could serve to restrain or limit the extent of the inherent helical structure of this repeat. The observation that longer polyA, which might be expected to form more stable helical structures, present a higher frequency of structure-breaking residues G and P is consistent with this view (Supplementary Fig. S2).

3.5 Structural and evolutionary information suggest various mechanisms of polyA emergence

The types of evolutionary emergence of a sequence feature can be used to obtain information about the constraints that surround its function and structure; this approach has been used to study polyQ, distinguishing cases where it is inserted or generated by glutamine substitutions (Mier and Andrade-Navarro, 2020). To identify mechanisms by which polyA emerges in evolution in the context of protein structures, we searched the Protein Data Bank (Burley et al., 2021) to investigate particular examples of experimentally solved structures of polyA regions in human proteins. Additionally, we used the online tool dAPE (Mier and Andrade-Navarro, 2017), which displays precomputed results comparing the position and type of homoepeptes in protein families, to verify the evolutionary conservation of polyA in very distant species. While there are many structures of human proteins containing polyA, these regions tend to be absent from the modeled parts, suggesting their flexible nature, particularly for longer ones (six or more alanines).

Here, we present some examples of long unmodeled polyA. KDM1A (UniProtKB: O603451) has a polyA of length 12 starting at position 7, conserved down to B. taurus but not in Gallus gallus and beyond. COPS6 (UniProtKB: Q7LSN1) has a polyA of length 9 conserved down to X. tropicalis but not in T. rubripes and beyond. SNRPB (UniProtKB: P14678) has a region A3TATAT at position 151 conserved down to T. rubripes but not in Ciona intestinalis and beyond. MAPK1 (UniProtKB: P28482) has a region A6GA at position 2 and is conserved in X. laevis but not in T. rubripes and beyond. These evolutionary patterns suggest that establishment in a taxonomic range is very stable and becomes fixed once it occurs. The fact that these polyA were absent from the corresponding 3D structures suggests their flexible nature. We found one particular exception for MZT1 (UniProtKB: Q08AG7), which has a polyA of length 10 at position 7 (AGAs), conserved down to B. taurus. In the available structure of this protein (PDB: 6M3S; Wiczkorek et al., 2020), the last five alanines of the polyA are part of a modeled 24-residue long α-helix.

We present two illustrative examples of pure polyA of length 5 within solved structures. To study in detail their conservation in very distant species, we obtained sets of selected orthologs using multiple evolutionary paths from the ProteinPathTracker online tool (Mier et al., 2018). In both cases, the polyA is part of a larger helix. Furthermore, the alignment with very distant orthologs (including proteins from plant and fungi) suggests that both polyA did not emerge by insertion, but by successive alanine substitution (Fig. 6). This hypothesis is exemplified for the case of MTOR (UniProtKB: P42345), which displays a pure polyA of length 5 at position 1516 in the first helix of a TPR tandem repeat (PDB: 4JSV; Yang et al., 2013) (Fig. 6A). Note that TPR repeats are composed of two anti-parallel helices (Das et al., 1998). Tandem repeats such as TPR emerge by tandem duplication of an ancestral unit and often diverge rapidly in sequence so that their detection becomes difficult by sequence analysis even if their structures maintain the repetitive pattern (Andrade et al., 2001; Kajava, 2012). The fact that a polyA occurs within a TPR unit indicates that it must have been originated by replacing consecutive residues by alanine within the α-helix.

The second example suggests a function that could be more general and exemplifies the advantages (and potential dangers) of polyA
Within a flexible context. In TNNI3K (UniProtKB: Q59H18; PDB: 6B5J; Philp et al., 2018), a pure polyA of length 5 at position 671 is part of an α-helix, where the flanking regions are rich in prolines and adopt a coil structure, placing the helix away from the rest of the protein (Fig. 6B). In the crystallographic structure, two proteins actually intertwine forming a homodimer that is grappled by the polyA-containing helix.

These examples from solved structures confirm the α-helical nature of polyA and their increased flexibility with the length. Conservation over long evolutionary distances, even for the short polyA, suggests a relevant functional role. Exemplary structures indicate that polyA can emerge by successive residue substitutions in α-helices. Furthermore, the case of TNNI3K suggests that they could form flexible hooks with the capacity to adopt a rigid helical structure upon the interaction with a partner, resembling the coiled-coil interactions leading to the aggregation of abnormally expanded polyA (Pelassa et al., 2014; Polling et al., 2015).

4 Discussion

This study shows that the sequence context in which a polyA region is located in a protein plays an important role at functional, evolutionary and structural levels. From a functional perspective, polyA has been associated to protein–protein and protein–DNA interactions (Brown and Brown, 2004), and has been assigned as important elements in transcription factors (Albrecht and Mundlos, 2005). Here, we describe an additional function of polyA regions as part of TPs and SPs in Amniota: either in mTPs when polyA regions start at position 2 of the protein, just after the initial methionine, or as part of SPs when the polyA is placed in positions 3–20. Their involvement in TPs is shared by other homorepeats, being polyL the most common one (Labaj et al., 2010; Mier et al., 2017). The hydrophobic character of alanine and its inherent propensity to adopt α-

Fig. 6. Structures of polyA regions in human proteins. (A) MTOR (UniProtKB: P42345) has a pure five-residue long polyA at position 1516 in the first helix of a TPR tandem repeat (PDB: 4JSV; Yang et al., 2013). (B) TNNI3K (UniProtKB: Q59H18) has a five-residue long pure polyA at position 671, which is part of an α-helix (PDB: 6B5J; Philp et al., 2018); the two subunits that form the homodimer are shown, in white and orange. Orthologs of the human proteins were obtained using ProteinPathTracker (Mier et al., 2018), proteins were aligned with MUSCLE (Edgar, 2004), and alignments were displayed using ClustalW (Larkin et al., 2007). The boxes above the alignments correspond to the structural elements similarly colored in the structures (A color version of this figure appears in the online version of this article).
The sequence context in poly-alanine regions

The sequence context in poly-alanine regions has a strong influence on their structural properties. According to our predictions, polyA regions in the context of proteins tend to adopt α-helical conformations, in line with several biophysical studies (Chen and Huang, 2020; Gratzer and Dorf, 1963; Hong et al., 2019). While this conformation is needed for their function as interactor hubs, it may lead to aggregation if polyA regions are expanded beyond a certain threshold (Bernacki and Murphy, 2011), as described for nine developmental and neurodegenerative diseases (Albrecht and Mundlos, 2005; Amiel et al., 2004; Shoubridge and Gecz, 2012). Indeed, the aggregation mechanism of polyA is triggered by the formation of helical contacts, most probably through coiled-coil structures (Pelassa et al., 2014; Polling et al., 2015). In this context, the presence of α-helix-breaking residues would modulate the length and stability of polyA helical conformations, exerting a protective role to aggregation. In line with this hypothesis, the enrichment in P and G is dependent and, although this trend is shared by all eukaryotes, it is especially relevant for amnion. The finding that also P and G are the two most frequent amino acids within long impure polyA (Fig. 1A) is consistent with this hypothesis. Their higher frequency in the second half of the polyA (Fig. 1B) suggests a directional preference in their function as helix breakers and agrees with the high frequency of G at the C-terminus of polyA, enhanced in pure polyA tracts (G + 1; Fig. 3).

Our hypothesis on the protecting role of helix-breaking amino acids in polyA is also substantiated by clinical and biochemical studies. In a clinical study of two brothers with an unusual gene duplication in RUNX2 as well as its transcriptional activity. In the context of our study, the specific amino acid enrichments found as impurities or in the flanking regions induce opposite effects. While the enrichment of valine as impurity, and valine and serine in the immediacy of polyA regions, will have a stabilizing effect for helical conformations, the presence of glycine and/or proline will reduce or destroy the polyA in structural propensity. Interestingly, more structurally neutral amino acids have been depleted from polyA-rich regions. Thus, the length and stability of the helical polyA tracts tune the function and aggregation propensity of their hosting proteins.

Structural and conservation information suggests that while all polyA can be conserved across very long evolutionary distances, longer polyA are more flexible (and more absent from modeled regions in solved 3D structures) than shorter polyA. Few existing structures from the PDB identified in this study confirm the α-helical propensity and conservation mechanisms of polyA tracts. Furthermore, the analysis of their orthologs suggests that polyA can emerge by hijacking existing α-helical content by successive alanine substitution of consecutive residues. Given the polyA structural propensity, providing the polyA with flexible flanking regions could facilitate the function of this homorepeat in protein interactions, where the polyA could further rigidify upon partner recognition. However, the insertion mechanism, involving the rapid appearance of several consecutive alanines, seems to be preferred in long and evolutionarily stable polyA tracts. The sudden emergence of these fragments suggests the incorporation of novel activities to the protein or an enhanced performance in its function.

The structural control exerted by polyA flanking regions seems stronger than the one described for polyQ regions, probably due to the enhanced α-helical propensity of alanine with respect to glutamine. For polyQ tracts, it has been shown that the number of proline residues after the polyQ region is correlated with the polyQ length and that it also exerts a protective role (Bhattarcharyya et al., 2006; Urbaneck et al., 2020a). However, no such α-helix-breaking behavior is found in the flanking region preceding the polyQ. This difference is probably related to the structural features of both homorepeats. While polyQ requires a coupling with the upstream flanking region to adopt a stable helical structure (Escobedo et al., 2019; Urbaneck et al., 2020a), polyA seems to be inherently structured. Consequently, the mechanisms put in place to minimize aggregation and disease between both homorepeats differ. In line with these observations, the pathogenic threshold of polyA regions, although different for each disease-associated protein, is systematically smaller than for polyQ, 12–27 and 21–55 for polyA and polyQ, respectively (Darling and Uversky, 2017), which could also explain the need for a stronger flanking region structural control.

One interesting aspect that we did not approach in this work is the study of the genomic sequences corresponding to polyA regions, specifically to assess whether the enrichment of certain types of amino acids within or in the vicinity of polyA corresponds to codons that are one mutational step away from alanine codons. Such a study should provide insights into the genetic mechanisms by which polyA arise in a controlled sequence environment in proteins.

Our findings suggest a capital role of sequence context in defining the structural features of homorepeats that, in turn, modulates their function while controlling their aggregation propensity. Structural mechanisms exerted by flanking regions are expected to apply not only to disease-related homorepeats, but also to other homorepeats through interactions that will be amino acid dependent and that remain to be explored.

Funding
This work has been supported by the European Union’s Horizon 2020 under grant agreements No: 778247, No: 823886 and No: 648030; Labex EpiGenMed ANR-10-LABX-12-01; and MUSE-App 2021 Ondine ANR-16-
IDEX-0006 awarded to PR. JC was partially supported by the French National Research Agency through grant number ANR-19-PIA-0004.

Conflict of Interest: none declared.

References

Albrecht,A. and Mundlos,S. (2005) The other trinucleotide repeat: polyala-
nine expansion disorders. Curr. Opin. Genet. Dev., 15, 285–293.
Almagro Armenteros,J.J. et al. (2019) Detecting sequence signals in targeting
peptides using deep learning. Life Sci. Alliance, 2, e201900429.
Ami,J. et al. (2004) Polyalanine expansions in human. Hum. Mol. Genet.,
13, 235.
Andrade,M.A. et al. (2001) Protein repeats: structures, functions, and evolu-
tion. J. Struct. Biol., 134, 117–131.
Barnacki,J.P. and Murphy,R.M. (2011) Length-dependent aggregation of un-
interrupted polyalanine peptides. Biochemistry, 50, 9200–9211.
Bhattacharyya,A. et al. (2006) Oligopropylene effects on polyglutamine con-
formation and aggregation. J. Mol. Biol., 355, S24–S35.
Brown,L.Y. and Brown,S.A. (2004) Alanine tracts: the expanding story of
amino acid repeats in eukaryotic proteins. Nat. Struct. Mol. Biol., 24,
755–777.
Brown,L.Y. et al. (2020) The features of polyglutamine regions depend on
their evolutionary stability. Genome Biol. Evol., 10, 816–825.
Chavali,S. et al. (2017) Constraints and consequences of the emergence of
amino acid repeats in eukaryotic proteins. Nat. Struct. Mol. Biol., 24,
420–434.
Chen,K. et al. (2017) Context characterization of amino acid homorepeats
using evolution, position, and order. Proteins, 85, 709–719.
Chen,K. et al. (2016) Single amino acid repeats in signal peptides.
J. Mol. Biol., 463, 910–926.
Chen,K. et al. (2016) Non-random distribution of homo-repeats: links with
biological functions and human diseases. Sci. Rep., 6, 26941.
Chen,K. et al. (2017) dAPE: a web server to detect homorepeats and follow
their evolution. Bioinformatics, 8, 1221–1223.
Chua,K. et al. (2017) Structure and function of the polyQ tract. Biochim.
Biophys. Acta, 1860, 502–516.
Clements,C. et al. (2006) Oligopropylene effects on polyglutamine coiled
coils mediates expansion disease-related protein aggregation and dysfunc-
tion. Hum. Mol. Genet., 23, 3402–3420.
Dalton,G. et al. (2019) Arginine tracts contribute to self-association in the
intrinsically disordered regions of RNA-binding proteins. Int. J. Mol. Sci., 21, 2289.
Darling,A.L. and Uversky,V.N. (2017) Intrinsically disorder in proteins with
pathogenic repeat expansions. Molecules, 22, 2027.
Dax,A.K. et al. (1998) The structure of the tetrapeptoid repeats of protein
phosphatase 5: implications for TRP-mediated protein-protein interactions.
EMBO J., 17, 1192–1199.
Demos,M.K. et al. (2009) Clinical study of two brothers with a novel 35 bp
duplication in the ARX gene. Am. J. Med. Genet., 149A, 1482–1486.
Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy
and fast conformance to genomic sequence data. Nucleic Acids Res., 49,
D349–D357.
Edgar,R.C. et al. (2019) Classification of intrinsically disordered regions
using sequence tracts. Complexity analysis of sequence tracts. Bioinformatics,
16, 915–922.
Edgar,R.C. et al. (2019) Automated selection of homologs to track the evolution-
of genes with sequences coding for polyalanine domains. Hum. Mol. Genet.,
12, 2967–2979.
Lobanov,M.Y. et al. (2016) Non-random distribution of homo-repeat: links
with biological functions and human diseases. Sci. Rep., 6, 26941.
Luo,H. et al. (2012) ProRepeat: an integrated repository for studying amino
acid tandem repeats in proteins. Nucleic Acids Res., 40, D394–D399.
Mier,P. and Andrade-Navarro,M.A. (2017) dAPE: a web server to detect
homorepeats and follow their evolution. Bioinformatics, 8, 1221–1223.
Mier,P. and Andrade-Navarro,M.A. (2018) Glutamine codon usage and polyQ
expansion in primates depend on the Q stretch length. Genome Biol.
Evol., 10, 816–825.
Mier,P. and Andrade-Navarro,M.A. (2020) The features of polyglutamine
regions depend on their evolutionary stability. BMC Evol. Biol., 20, 59.
Mier,P. et al. (2017) Context characterization of amino acid homorepeats
using evolution, position, and order. Proteins, 85, 709–719.
Mier,P. et al. (2018) Automated selection of homologs to track the evolution-
ary history of proteins. BMC Bioinformatics, 19, 431.
Mier,P. et al. (2020a) Disentangling the complexity of low complexity pro-
tains. Brief. Bioinform., 21, 458–472.
Mier,P. et al. (2020b) The importance of definitions in the study of polyQ
tracts: a tale of thresholds, imperfections and sequence context. Comput.
Struct. Biotechnol., 17, 306–313.
Mortlock,D.P. et al. (2000) Evolution of N-terminal sequences of the verte-
brate HOXA13 protein. Mamm. Genome, 11, 151–158.
Orr,J.T. and Zoghbi,H.Y. (2007) Trinucleotide repeat disorders.
Annu. Rev. Neurosci., 30, 573–621.
Ouw,H. et al. (2018) A comprehensive review of signal peptides: structure,
function and applications. Eur. J. Cell Biol., 6, 422–441.
Pellicer,S. et al. (2014) Association of polyalanine and polyglutamine coiled
coils mediates expansion disease-related protein aggregation and dysfunc-
tion. Hum. Mol. Genet., 23, 3402–3420.
Phip,J. et al. (2018) 4,6-Diaminopyrimidines as highly preferred tropolin-
I-interacting kinase (TNNSK) inhibitors. J. Med. Chem., 61, 3076–3088.
Polling,b. et al. (2014) Misfolded polyglutamine, polyalanine, and superoxide
dismutase 1 aggregate via distinct pathways in the cell. J. Biol. Chem.,
289, 6669–6680.
Polling,S. et al. (2015) Polyalanine expansions drive a shift into z-helical clusters
without amyloid-fibril formation. Nat. Struct. Mol. Biol., 22, 1008–1015.
Promponas,V. et al. (2000) CAST: an iterative algorithm for the complexity
analysis of sequence tracts. Complexity analysis of sequence tracts.
Bioinformatics, 16, 915–922.
Ramazzotti,M. et al. (2012) Polyglutamine repeats are associated to specific
sequence biases that are conserved among eukaryotes. PLoS One, 7, e30824.
Saudou,F. and Humbert,S. (2016) The biology of huntingtin. Neuron, 89,
910–926.
Shen,K. et al. (2016) Control of the structural landscape and neuronal proteo-
toxicity of mutant huntingtin by domains flanking the polyQ tract. Elife, 5,
1–29.
Shi,Z. et al. (2002) Polypropylene II structure in a sequence of seven alanine resi-
dues. Proc. Natl. Acad. Sci. USA, 99, 9186–9193.
Shoobridge,C. and Goez,J. (2012) Polyalanine tract disorders and neurocogni-
tive phenotypes. Adv. Exp. Med. Biol., 769, 185–203.
Totzeck,F. et al. (2017) The protein structure context of PolyQ regions. PLoS
One, 12, e0170801.
UniProt Consortium. (2021) UniProt: the universal protein knowledgebase in
2021. Nucleic Acids Res., 49, D480–D489.
Urbanek,A. et al. (2020a) Flanking regions determine the structure of the
poly-glutamine in Huntington through mechanisms common among
glutamine-rich human proteins. Structure, 28, 733–746.e5.
Urbanek,A. et al. (2020b) Site-specific isotopic labeling (SSL): access to
high-resolution structural and dynamic information in low-complexity pro-
tains. Chembiochem, 21, 769–775.
van der Lee,R. et al. (2014) Classification of intrinsically disordered regions
and proteins. Chem. Rev., 114, 6589–6631.
Van Heijne,G. (1990) The signal peptide. J. Membr. Biol., 3, 195–201.
Wetzel,R. (2012) Physical chemistry of polyglutamine: intriguing tales of a
monotonous sequence. J. Mol. Biol., 421, 466–490.
Wieczorek,M. et al. (2020) MZT proteins form multi-faceted structural mod-
edules in the γ-tubulin ring complex. Cell Rep., 31, 107791.
Wootton,J.C. and Federhen,S. (1996) Analysis of compositionally biased
sequences in sequence databases. Methods Enzymol., 266, 544–571.
Yang,H. et al. (2013) mTOR kinase structure, mechanism and regulation.
Nature, 497, 217–223.