KNOT FLOER HOMOLOGY AND SEIFERT SURFACES

ANDRÁS JUHÁSZ

Abstract. Let \(K \) be a knot in \(S^3 \) of genus \(g \) and let \(n > 0 \). We show that if \(\text{rk} \hat{HF}(K, g) < 2^{n+1} \) (where \(\hat{HF} \) denotes knot Floer homology), in particular if \(K \) is an alternating knot such that the leading coefficient \(a_g \) of its Alexander polynomial satisfies \(|a_g| < 2^{n+1} \), then \(K \) has at most \(n \) pairwise disjoint non-isotopic genus \(g \) Seifert surfaces. For \(n = 1 \) this implies that \(K \) has a unique minimal genus Seifert surface up to isotopy.

1. Introduction and preliminaries

If \(S_1 \) and \(S_2 \) are Seifert surfaces of a knot \(K \subset S^3 \) then \(S_1 \) and \(S_2 \) are said to be equivalent if \(S_1 \cap X(K) \) and \(S_2 \cap X(K) \) are ambient isotopic in the knot exterior \(X(K) = S^3 \setminus N(K) \), where \(N(K) \) is a regular neighborhood of \(K \). In [4] Kakimizu assigned a simplicial complex \(MS(K) \) to every knot \(K \) in \(S^3 \) as follows.

Definition 1.1. \(MS(K) \) is a simplicial complex whose vertices are the equivalence classes of the minimal genus Seifert surfaces of \(K \). The equivalence classes \(\sigma_0, \ldots, \sigma_n \) span an \(n \)-simplex if and only if for each \(0 \leq i \leq n \) there is a representative \(S_i \) of \(\sigma_i \) such that the surfaces \(S_0, \ldots, S_n \) are pairwise disjoint.

In [10] it is shown that the complex \(MS(K) \) is always connected. I.e., if \(S \) and \(T \) are minimal genus Seifert surfaces for a knot \(K \) then there is a sequence \(S = S_1, S_2, \ldots, S_k = T \) of minimal genus Seifert surfaces such that \(S_i \cap S_{i+1} = \emptyset \) for \(0 \leq i \leq k - 1 \).

The main goal of this short note is to show that for a genus \(g \) knot \(K \) and for \(n > 0 \) the condition \(\text{rk} \hat{HF}(K, g) < 2^{n+1} \) implies \(\dim MS(K) < n \), consequently for \(n = 1 \) the knot \(K \) has a unique Seifert surface up to equivalence. This condition involves the use of knot Floer homology introduced by Ozsváth and Szabó in [8] and independently by Rasmussen in [9]. However, when \(K \) is alternating then this condition is equivalent to \(|a_g| < 2^{n+1} \), where \(a_g \) is the leading coefficient of the Alexander polynomial of \(K \). The alternating case is already a new result whose statement doesn’t involve knot Floer homology. On the other hand, the proof of this particular case seems to need sutured Floer homology techniques, which is a generalization of knot Floer homology that was introduced by the author in [3]. At the time of writing this paper there are very few results in knot theory which can only be proved using Floer homology methods.

Date: November 15, 2018.

1991 Mathematics Subject Classification. 57M27; 57R58.

Key words and phrases. Alexander polynomial; Seifert surface; Floer homology.

Research partially supported by OTKA grant no. T49449.
The above statement does not hold for \(n = 0 \) since every knot has at least one minimal genus Seifert surface. However, it was shown in [6] and [2] that \(\text{rk} \mathcal{HFK}(K, g) < 2 \) implies that the knot \(K \) is fibred.

To a knot \(K \) in \(S^3 \) and every \(j \in \mathbb{Z} \) knot Floer homology assigns a graded abelian group \(\mathcal{HFK}(K, j) \) whose Euler characteristic is the coefficient \(a_j \) of the Alexander polynomial \(\Delta_K(t) \). In [7] it is shown that if \(K \) is alternating then \(\mathcal{HFK}(K, j) \) is non-zero in at most one grading, thus \(\text{rk} \mathcal{HFK}(K, j) = |a_j| \).

Next we are going to review some necessary definitions and results from the theory of sutured manifolds and sutured Floer homology. Sutured manifolds were introduced by Gabai in [1].

Definition 1.2. A sutured manifold \((M, \gamma)\) is a compact oriented 3-manifold \(M\) with boundary together with a set \(\gamma \subset \partial M\) of pairwise disjoint annuli \(A(\gamma)\) and tori \(T(\gamma)\). Furthermore, the interior of each component of \(A(\gamma)\) contains a suture, i.e., a homologically nontrivial oriented simple closed curve. We denote the union of the sutures by \(s(\gamma)\).

Finally every component of \(R(\gamma) = \partial M \setminus \text{Int}(\gamma)\) is oriented. Define \(R_+ (\gamma)\) (or \(R_-(\gamma)\)) to be those components of \(\partial M \setminus \text{Int}(\gamma)\) whose normal vectors point out of (into) \(M\). The orientation on \(R(\gamma)\) must be coherent with respect to \(s(\gamma)\), i.e., if \(\delta\) is a component of \(\partial R(\gamma)\) and is given the boundary orientation, then \(\delta\) must represent the same homology class in \(H_1(\gamma)\) as some suture.

A sutured manifold is called taut if \(R(\gamma)\) is incompressible and Thurston norm minimizing in \(H_2(M, \gamma)\).

The following definition was introduced in [3].

Definition 1.3. A sutured manifold \((M, \gamma)\) is called balanced if \(M\) has no closed components, \(\chi(R_+ (\gamma)) = \chi(R_-(\gamma))\), and the map \(\pi_0(A(\gamma)) \to \pi_0(\partial M)\) is surjective.

Example 1.4. If \(R\) is a Seifert surface of a knot \(K\) in \(S^3\) then we can associate to it a balanced sutured manifold \(S^3(R) = (M, \gamma)\) such that \(M = S^3 \setminus (R \times I)\) and \(\gamma = K \times I\). Observe that \(R_- (\gamma) = R \times \{0\}\) and \(R_+ (\gamma) = R \times \{1\}\). Furthermore, \(S^3(R)\) is taut if and only if \(R\) is of minimal genus.

Sutured Floer homology is an invariant of balanced sutured manifolds defined by the author in [3], and is a common generalization of the invariants \(\widehat{HF}\) and \(\mathcal{HFK}\). It assigns an abelian group \(SFH(M, \gamma)\) to each balanced sutured manifold \((M, \gamma)\). The following theorem is a special case of [2, Theorem 1.5].

Theorem 1.5. Let \(K\) be a genus \(g\) knot in \(S^3\) and suppose that \(R\) is a minimal genus Seifert surface for \(K\). Then

\[
SFH(S^3(R)) \approx \mathcal{HFK}(K, g).
\]

A sutured manifold \((M, \gamma)\) is called a product if it is homeomorphic to \((\Sigma \times I, \partial \Sigma \times I)\), where \(\Sigma\) is an oriented surface with boundary. If \((M, \gamma)\) is a product then \(SFH(M, \gamma) \approx \mathbb{Z}\). Let us recall [2, Theorem 1.4] and [2, Theorem 9.3].

Theorem 1.6. If \((M, \gamma)\) is a taut balanced sutured manifold then \(SFH(M, \gamma) \geq \mathbb{Z}\). Furthermore, if \((M, \gamma)\) is not a product then \(SFH(M, \gamma) \geq \mathbb{Z}^2\).

Definition 1.7. Let \((M, \gamma)\) be a balanced sutured manifold. An oriented surface \(S \subset M\) is called a horizontal surface if \(S\) is open, \(\partial S = s(\gamma)\) in an oriented sense; moreover, \(|S| = |R_+(\gamma)|\) in \(H_2(M, \gamma)\), and \(\chi(S) = \chi(R_+(\gamma))\).
A horizontal surface S defines a horizontal decomposition

$$(M, \gamma) \rightsquigarrow (M_-, \gamma_-) \coprod (M_+, \gamma_+)$$

as follows. Let M_{\pm} be the union of the components of $M \setminus \text{Int}(N(S))$ that intersect $R_\pm(\gamma)$. Similarly, let γ_{\pm} be the union of the components of $\gamma \setminus \text{Int}(N(S))$ that intersect $R_\pm(\gamma)$.

The following proposition is a special case of [2, Proposition 8.6].

Proposition 1.8. Suppose that (M, γ) is a taut balanced sutured manifold and let S be a horizontal surface in it. Then

$$\text{rkSFH}(M, \gamma) = \text{rkSFH}(M_-, \gamma_-) \cdot \text{rkSFH}(M_+, \gamma_+).$$

The following definition can be found for example in [6].

Definition 1.9. A balanced sutured manifold (M, γ) is called **horizontally prime** if every horizontal surface S in (M, γ) is isotopic to either $R_+(\gamma)$ or $R_-\gamma(\gamma)$ rel γ.

2. The results

Theorem 2.1. Let (M, γ) be a taut balanced sutured manifold such that both $R_+(\gamma)$ and $R_-(\gamma)$ are connected. Suppose that there is a sequence of pairwise disjoint non-isotopic connected horizontal surfaces $R_-(\gamma) = S_0, S_1, \ldots, S_n = R_+(\gamma)$. Then

$$\text{rkSFH}(M, \gamma) \geq 2^n.$$

Proof. We prove the theorem using induction on n. If $n = 1$ then (M, γ) is not a product since $R_-(\gamma)$ and $R_+(\gamma)$ are non-isotopic. Thus Theorem 1.9 implies that $\text{rkSFH}(M, \gamma) \geq 2$.

Now suppose that the theorem is true for $n - 1$. Since each S_i is connected we can suppose without loss of generality that S_1 separates S_i and S_0 for every $i \geq 2$. Let (M_-, γ_-) and (M_+, γ_+) be the sutured manifolds obtained after horizontally decomposing (M, γ) along S_1. Note that both (M_-, γ_-) and (M_+, γ_+) are taut. Since S_0 and S_1 are non-isotopic (M_-, γ_-) is not a product so as before $\text{rkSFH}(M_-, \gamma_-) \geq 2$. Applying the induction hypothesis to (M_+, γ_+) and to the surfaces $R_-(\gamma_+), S_2, \ldots, S_n = R_+(\gamma_+)$ we get that $\text{rkSFH}(M_+, \gamma_+) \geq 2^{n-1}$. So using Proposition 1.8 we see that $\text{rkSFH}(M, \gamma) \geq 2^n$. \qed

Corollary 2.2. If (M, γ) is a taut balanced sutured manifold and $\text{rkSFH}(M, \gamma) < 4$ then (M, γ) is horizontally prime. More generally, if $n > 0$ and $\text{rkSFH}(M, \gamma) < 2^{n+1}$ then (M, γ) can be cut into horizontally prime pieces by less than n horizontal decompositions.

Proof. Suppose that $\text{rkSFH}(M, \gamma) < 2^{n+1}$. If (M, γ) is not horizontally prime then there is a surface S_1 in (M, γ) which is not isotopic to $R_\pm(\gamma)$. Decomposing (M, γ) along S_1 we get two sutured manifolds (M_-, γ_-) and (M_+, γ_+). If they are not both horizontally prime then repeat the the above process with a non-prime piece and obtain a horizontal surface S_2, etc. This process has to end in less than n steps according to Theorem 2.1. \qed

Theorem 2.3. Let K be a knot in S^3 of genus g and let $n > 0$. If $\text{rkHF}(K, g) < 2^{n+1}$ then K has at most n pairwise disjoint non-isotopic genus g Seifert surfaces, in other words, $\dim MS(K) < n$. If $n = 1$ then K has a unique Seifert surface up to equivalence.
Proof. Suppose that R, S_1, \ldots, S_n are pairwise disjoint non-isotopic Seifert surfaces for K. According to Theorem 1.5 we have $\widehat{HF}(K, g) \approx SFH(S^3(R))$. Let $S^3(R) = (M, \gamma)$. If $R_+\gamma$ and $R_-\gamma$ were isotopic then (M, γ) would be a product and R would be equivalent. So the surfaces $R_-\gamma = S_0, S_1, \ldots, S_n, S_{n+1} = R_+\gamma$ satisfy the conditions of Theorem 2.1, thus $\text{rk} SFH(S^3(R)) \geq 2^{n+1}$, a contradiction.

In particular, if $n = 1$ then $\dim MS(K) = 0$. But according to [10] the complex $MS(K)$ is connected, so it consists of a single point. □

Corollary 2.4. Suppose that K is an alternating knot in S^3 of genus g and let $n > 0$. If the leading coefficient a_g of its Alexander polynomial satisfies $|a_g| < 2^{n+1}$ then $\dim MS(K) < n$. If $|a_g| < 4$ then K has a unique Seifert surface up to equivalence.

Proof. This follows from Theorem 2.3 and the fact that for alternating knots $\text{rk} \widehat{HF}(K, g) = |a_g|$. □

Remark 2.5. In [5] Kakimizu classified the minimal genus Seifert surfaces of all the prime knots with at most 10 crossings. The $n = 1$ case of Corollary 2.4 is sharp since the knot 74 is alternating, the leading coefficient of its Alexander polynomial is 4, and has 2 inequivalent minimal genus Seifert surfaces. On the other hand, the Alexander polynomial of the alternating knot 92 is also 4, but has a unique minimal genus Seifert surface up to equivalence.

Also note that [2, Theorem 1.7] implies that if the leading coefficient a_g of the Alexander polynomial of an alternating knot K satisfies $|a_g| < 4$ then the knot exterior $X(K)$ admits a depth ≤ 1 taut foliation transversal to $\partial X(K)$. Indeed, for alternating knots $g = g(K)$ and $|a_g| = \text{rk} \widehat{HF}(K, g) \neq 0$, so the conditions of [2, Theorem 1.7] are satisfied.

Acknowledgement

I would like to thank Zoltán Szabó for his interest in this work and Ko Honda and Tamás Kálmán for inspiring conversations.

References

1. D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), 445–503.
2. A. Juhász, Floer homology and surface decompositions, math.GT/0609779.
3. O. Kakimizu, Finding disjoint incompressible spanning surfaces for a link, Hiroshima Math. J. 22 (1992), no. 2.
4. O. Kakimizu, Classification of the incompressible spanning surfaces for prime knots of 10 or less crossings, Hiroshima Math. J. 35 (2005), no. 1.
5. Y. Ni, Knot Floer homology detects fibred knots, math.GT/0607156.
6. P. Ozsváth and Z. Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225–254.
7. J. A. Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003).
8. M. Scharlemann and A. Thompson, Finding disjoint Seifert surfaces, Bull. London Math. Soc. 20 (1988), no. 1.