Solar PV Modelling and Parameter Extraction Using Iterative Algorithms

Mohammed Rasheed¹, Mustafa Nuhad Al-Darrajii², Suha Shihab¹, Ahmed Rashid³ and Taha Rashid³, ⁴

1 Applied Sciences Department, University of Technology, Baghdad, Iraq
2 Department of Biology, College of Sciences, University Of Al-Anbar, Anbar, Iraq
3 Al Iraqia University, College of Arts, Baghdad Iraq
4 Computer and Microelectronics System, Faculty of Engineering, University Technology Malaysia (UTM), Skudai 81310, Johor Bahru, Malaysia

E-mail: rasheed.mohammed40@yahoo.com, mohammed.s.rasheed@uotechnology.edu.iq

Abstract. In the present work, improvement of Newton's method with high order convergence has been suggested. This improvement is based on Two-Point Bracketing method. The proposed method Inverse Quadratic Interpolation method requires two steps per iteration. By means of the numerical equation of the one diode model of PV equivalent circuit, included five values of R from 1 to 5 ohms (load resistance of the circuit). The results obtained explain that the new suggested technique is easy to use, more accurate and efficient than other numerical methods are presented here.

Keywords: Inverse Quadratic Interpolation method; Two-Point Bracketing method; equivalent circuit; zeroes; single diode.

1. Introduction
Linear equations represent a stable system. Nonlinear equations represent systems of instability or chaos and relate to most systems in nature. They are difficult-to-solve equations, and they lead to complex phenomena and changes, beginning with a small change, but leading to a significant difference in the system at a large level. Nonlinear equations seek to identify the system in this chaos, and enter the theory of chaos in many areas such as recognition of the state of the atmosphere and changes that occur in the solar system in addition to the state of the economy, and these equations receive the attention of engineers, physicists, and mathematicians. The algorithms employed in order to solve non-linear experiments in the many field like physics [1-30].

In this paper, we applied two numerical iterative techniques, Inverse Quadratic Interpolation method (IQIM) and Two-Point Bracketing (TPBM) formulas with the 1 to 5 ohms of R (load resistance) in order to find a root of one diode model of PV circuit which is non-linear function based on Eq. 3. The suggested algorithm IQIM requires five evaluations of the function while the other technique (TPBM) needs 7 evaluation of the function. The following steps are investigate the procedure of this work: section two, three and four demonstrating the analytical model and the root finding of IQIM and TPBM algorithms respectively while; section five and six indicate the numerical problems, discussion and conclusion results respectively.
2. Model of One Diode

KCL Kirchhoff’s law is employed in order to depict the electrical parameters of PV cell scheme [31-49]

\[I = I_{ph} - I_D \] where: \[I_D = I_0 \left(\frac{-V_{pv}}{e^{\frac{V_{pv}}{kT}} - 1} \right) \] and \[I = I_{ph} - I_0 \left(\frac{-V_{pv}}{e^{\frac{V_{pv}}{kT}} - 1} \right) \] . \[V_T = \frac{kT}{q} = 27.5 \text{ mV} \] , \[k = \frac{1.38 \times 10^{-23}\text{J/K}}{=\text{Boltzmann constant}}, I_0 = \text{reverse saturation current of the diode} = 10^{-12} \text{A}, I_{ph} = \text{the photocurrent}, m \text{ values is between 1 to 2 indicate the recombination factor}, T = p - n \text{ junction temperature}, q = 1.6 \times 10^{-19} \text{C=} \text{electron charge}.

\[I_{ph} = I_{source} \] , \[I_D = I_s \left(\frac{V_{ph}}{e^{\frac{V_{ph}}{kT}} - 1} \right) \] \[I_{pv} = \frac{V_{pv}}{R} \] , \[P_{pv} = I_{pv} \times V_{pv} \] \[(I_{source}) = 10^{-12} \left(\frac{V}{e^{1.2 + 0.026} - 1} \right) = V / R \]

3. Two Point Bracketing Algorithm (TPBM)

Two-Point Bracketing is a root-finding algorithm, a numerical method for solving nonlinear equations in the form of \(f(x) = 0 \). This method starts with two \(x \) as initial values, initially found by trial-and-error, at which the function \(f(x) \) has opposite signs. Suppose the current bracketing interval is \([a_b, b_k]\), then the new solution convergent to \(c_k \) is obtained by

\[c_k = \frac{a_k + b_k}{2} \] \[\text{Thus } c_k \text{ is between } a_k \text{ and } b_k \].

The tolerance \(\varepsilon = 10^{-6} \); in order to guess the zero of the functions, the following expression has been used

\[\sigma = |x_{n+1} - x_n| < \varepsilon, |f(x_n)| < \varepsilon \]

4. Inverse Quadratic Interpolation Method (IQIM)

The zero finding technique is Inverse quadratic interpolation for solving equations of the form \(y = w(x) = 0 \). Quadratic interpolation has been used for the approximation the inverse of \(w. IQIM \) required three initial values \(x_0, x_1, x_2 \) and realized by the recurrence relation

\[x_{n+1} = \frac{w_{n-1}w_n}{w_{n-2}w_n} x_{n-2} + \frac{w_{n-2}w_n}{(w_{n-1} - w_{n-2})(w_{n-1} - w_n)} x_{n-1} + \frac{w_{n-2}w_n}{(w_{n-1} - w_{n-2})(w_n - w_{n-1})} x_n \]

This method can be proved using secant method and the order of convergence is 1.8.

5. Results and Discussion

Now, we appointed two numerical experiments suggested in this paper to solve non-linear functions and compare with each other. The execution of the Two-Point Bracketing method (TPBM) got in the present work for solving non-linear function with the initial estimate \(x_0 = 1 \) and we compare it with Inverse Quadratic Interpolation algorithm (IQIM) with three initial estimate \(x_0, x_1 \) and \(x_3 \). The convergence criteria have been used here 10-9, which means that the distance between two consecutive iterates. We applied Eq. 3 with five experiments based on \(R \) (1 to 5) ohm, which is the load resistance. All accounting are carried out with the algorithm precision introduced in Tables and
Figures 1 to 5. The results indicate that IQIM algorithm needs 5 iterations while TPBM technique need 6 iterations to reach to the convergence which reveals that IQIM is faster than TPBM.

Table 1. The efficiency of the TPBM and IQIM techniques with the value of tolerance.

Iterations	ψ-TPBM	FP-TPBM	ψ-IQIM	FP-IQIM
1	0.959074734	0.91982434	0.922954788	0.851845541
2	0.938299156	0.88040531	0.92243119	0.850879300
3	0.926556800	0.85850750	0.922423138	0.850864445
4	0.922840947	0.85163541	0.922423135	0.850864439
5	0.922428568	0.85087446	0.922423135	0.850864439
6	0.922423135	0.85086444	0.922423135	0.85086444
7	0.922423135	0.85086444	0.922423135	0.85086444

Table 2. The efficiency of the TPBM and IQIM techniques with the value of tolerance.

Iterations	ψ-TPBM	FP-TPBM	ψ-IQIM	FP-IQIM
1	0.958226219	0.45909874	0.917952981	0.45897649
2	0.936128222	0.43816802	0.917057361	0.45852868
3	0.922636611	0.42562915	0.917035404	0.45851770
4	0.917752815	0.42135115	0.917035382	0.45851769
5	0.917051142	0.42049139	0.917035382	0.45851769
Table 3. The efficiency of the TPBM and IQIM techniques with the value of tolerance.

Iterations	V_{pv}-TPBM	I_{pv}-TPBM	P_{pv}-TPBM	V_{pv}-IQIM	I_{pv}-IQIM	P_{pv}-IQIM
1	0.957364012	0.319121337	0.305515284	0.912063454	0.304021151	0.277286582
2	0.93389237	0.311279746	0.29068524	0.910468531	0.30348951	0.276317648
3	0.918236042	0.306078681	0.281052476	0.910403541	0.30347847	0.276278202
4	0.911689551	0.30348132	0.276307856	0.910403374	0.303467791	0.276287101
5	0.910452397	0.30348132	0.276307856	0.910403374	0.30347847	0.276278201
6	0.910403453	0.30347818	0.276278149	0.910403374	0.303467791	0.276278101
7	0.910403374	0.303467791	0.276278101	0.910403374	0.303467791	0.276278101

Table 4. The efficiency of the TPBM and IQIM techniques with the value of tolerance.

Iterations	$ε$-TPBM	$ε$-IQIM
1	0.046960638	0.00166008
2	0.023435863	6.51565E-05
Figure 3. The number of iterations between TPBM and IQIM algorithms.

Table 4. The efficiency of the TPBM and IQIM techniques with the value of tolerance.

Iterations	V_{pv}-TPBM	I_{pv}-TPBM	P_{pv}-TPBM	V_{pv}-IQIM	I_{pv}-IQIM	P_{pv}-IQIM
1	0.956487771	0.239121943	0.228717214	0.904961087	0.226240272	0.204738642
2	0.931420865	0.232855216	0.216886207	0.901959808	0.225489952	0.203382874
3	0.913234752	0.228308688	0.208499428	0.901742228	0.225435557	0.203284761
4	0.9042121	0.226053025	0.204399881	0.901740602	0.225435151	0.203284028
5	0.901910105	0.225477526	0.20360459	0.901740602	0.22543515	0.203284028
6	0.901741552	0.225435388	0.203284457			
7	0.901740602	0.225435151	0.203284028			

Iterations	ε-TPBM	ε-IQIM
1	0.054747169	0.003220485
2	0.029680263	0.000219206
3	0.01149415	1.62595E-06
4	0.002471498	1.49680E-10
5	0.000169503	0
6	9.50442E-07	0
7	0	0
Figure 4. The number of iterations between TPBM and IQIM algorithms.

Table 5. The efficiency of the TPBM and IQIM techniques with the value of tolerance.

Iterations	V_{pu}-TPBM	I_{pu}-TPBM	P_{pu}-TPBM	V_{pu}-IQIM	I_{pu}-IQIM	P_{pu}-IQIM
1	0.955597145	0.191119429	0.182633181	0.896134809	0.179226962	0.160611519
2	0.928860287	0.185772057	0.172556287	0.890013457	0.17802691	0.158424791
3	0.907465744	0.18193149	0.164988155	0.889116273	0.177823255	0.15810555
4	0.894506327	0.178901265	0.160028314	0.88909274	0.177818548	0.15809718
5	0.889801386	0.177960277	0.158349301	0.889092715	0.177818543	0.158097171
6	0.889109249	0.17782185	0.158103051	0.889092715	0.177818543	0.158097171
7	0.889092724	0.177818545	0.158097174	0.889092715	0.177818543	0.158097171

Iterations	ϵ-TPBM	ϵ-IQIM
1	0.066504431	0.007042094
2	0.039767572	0.000920742
3	0.018373029	2.35586E-05
4	0.005413612	2.35618E-08
5	0.000708671	0
6	1.65338E-05	0
7	9.59537E-09	0
8	0	0
Figure 5. The number of iterations between TPBM and IQIM algorithms.

The computational results in Figures and Tables from 1 to 5 with R values varies from 1 to 5 ohms respectively, observe that TPBM algorithm comparable with IQIM algorithm for all the cases gives better results in terms of the function evaluation. The algorithm IQIM established in this paper has less number of computational functions than RFM, then the computing time is reduced and the IQIM technique is faster.

6. Conclusion
In this paper, based on Newton's and two-point bracketing algorithms, we obtain further modification of the algorithm to acquire higher order convergence iterative algorithm. Many examples reveal that the suggested algorithm in this article is more efficient accurate and easy to use because it takes (5) lesser iterations compared with other algorithm (7) and realizes better than common and classical Newton's algorithm and some other methods.

References
[1] Ali, A. H., RASHEED, M., SHIHAB, S., RASHID, T., & Hamed, S. H. A. (2021). A Novel Blurring and Sharpening Techniques Using Different Images Based on Heat Equations. Journal of Al-Qadisiyah for computer science and mathematics, 13(1), Page-45. doi:10.29304/jqcm.2021.13.1.771
[2] Ali, A. H., RASHEED, M., SHIHAB, S., RASHID, T., & Hamed, S. H. A. (2021). A Modified Heat Diffusion Based Method for Enhancing Physical Images. Journal of Al-Qadisiyah for computer science and mathematics, 13(1), Page-77. doi:10.29304/jqcm.2021.13.1.777
[3] Ali, A. H., RASHEED, M., SHIHAB, S., RASHID, T., Sabri, A. A., & Hamed, S. H. A. (2021). An Effective Color Image Detecting Method for Colorful and Physical Images. Journal of Al-
Qadisiyah for computer science and mathematics, 13(1), Page-88. doi:10.29304/jqcm.2021.13.1.778.

[4] Rasha Jalal, Suha Shihab, Mohammed Abed Alhadi, Mohammed Rasheed, "Spectral Numerical Algorithm for Solving Optimal Control Using Boubaker-Turki Operational Matrices", Journal of Physics: Conference Series, IOP Publishing, vol. 1660 (1) (2020) 012090.

[5] M. M. Abbas and M. Rasheed, "Solid State Reaction Synthesis and Characterization of Cu doped TiO2 Nanomaterials", Journal of Physics: Conference Series, IOP Publishing, vol. 1795 (2021) 012059.

[6] M. RASHEED, S. SHIHAB and Omniea Wissam Sabah, "An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012052.

[7] M. Enneffatia, M. Rasheed, B. Louatia, K. Guidaraa, S. Shihab and R. Barillé, "Investigation of structural, morphology, optical properties and electrical transport conduction of Li0.25Na0.75CdVO4 compound", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012050.

[8] M. Rasheed, O. Y. Mohammed, S. Shihab and Aqiel Al-Adili, "A comparative Analysis of PV Cell Mathematical Model", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012042.

[9] M Rasheed, S Shihab, O Y Mohammed and Aqiel Al-Adili, "Parameters Estimation of Photovoltaic Model Using Nonlinear Algorithms", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012058.

[10] M. Rasheed, O. Y. Mohammed, S. Shihab and Aqiel Al-Adili, "Explicit Numerical Model of Solar Cells to Determine Current and Voltage", Journal of Physics: Conference Series. IOP Publishing, 1795 (2021) 012043.

[11] A A Abdulrahman, M RASHEED, S SHIHAB, "The Analytic of image processing smoothing spaces using wavelet", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[12] S Shihab, M Rasheed, O Alabdali and A A Abdulrahman, "A Novel Predictor-Corrector Hally Technique for Determining The Parameters for Nonlinear Solar Cell Equation ", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[13] M A Sarhan, S Shihab, B E Kashem and M Rasheed, "New Exact Operational Shifted Pell Matrices and Their Application in Astrophysics", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[14] M Rasheed, S Shihab, O Alabdali and H H Hussein, "Parameters Extraction of a Single-Diode Model of Photovoltaic Cell Using False Position Iterative Method", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[15] M Rasheed, O Alabdali and S Shihab, "A New Technique for Solar Cell Parameters Estimation of The Single-Diode Model", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[16] M. Rasheed and R. Barillé, "Room temperature deposition of ZnO and Al: ZnO ultrathin films on glass and PET substrates by DC sputtering technique", Optical and Quantum Electronics, vol. 49 (5) (2017), pp. 1-14.

[17] M. Rasheed and Régis Barillé, Optical constants of DC sputtering derived ITO, TiO2 and TiO2: Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices, Journal of Non-Crystalline Solids, vol. 476 (2017), pp. 1-14.

[18] M. Rasheed and R. Barillé, Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics, Journal of Alloys and Compounds, vol. 728 (2017), pp. 1186-1198.

[19] T. Saidani, M. Zaabat, M. S. Aida, R. Barillé, M. Rasheed, Y. Almohamed, Influence of precursor source on sol–gel deposited ZnO thin films properties, Journal of Materials Science: Materials in Electronics, vol. 28 (13) (2017), pp. 9252-9257.
[20] K. Guergouria A. Boumezoued, R. Barille, D. RecHEME, M. Rasheed M. Zaabata, ZnO nanopowders doped with bismuth oxide, from synthesis to electrical application, Journal of Alloys and Compounds, vol. 791 (2019), pp. 550-558.

[21] N. B. Azaza, S. Elleuch, M. Rasheed, D. Gindre, S. Abid, R. Barille, Y. Abid, H. Ammar, 3-(p-nitrophenyl) Coumarin derivatives: Synthesis, linear and nonlinear optical properties, Optical Materials, vol. 96, (2019), pp. 109328.

[22] D. Bouras, A. Mecif, R. Barillé, A. Harabi, M. Rasheed, A. Mahdjoub, M. Zaabat, Cu: ZnO deposited on porous ceramic substrates by a simple thermal method for photocatalytic application, Ceramics International, vol. 44 (17) (2018), pp. 21546-21555.

[23] W. Saidi, N. Hfaïdh, M. Rasheed, M. Girtan, A. Megréche, M. El Maaoui, Effect of B2O3 addition on optical and structural properties of TiO2 as a new blocking layer for multiple dye sensitive solar cell application (DSSC), RSC Advances, vol. 6 (73) (2016), pp. 68819-68826.

[24] A. AUKŠTUOLIS, M. Girtan, G. A. Mousdis, R. Mallet, M. Socol, M. Rasheed, A. Stanculescu, Measurement of charge carrier mobility in perovskite nanowire films by photo-CELIV method, Proceedings of the Romanian Academy Series a-Mathematics Physics Technical Sciences Information Science, vol. 18 (1) (2017), pp. 34-41.

[25] F. Dkhilalli, S. Megdiche, K. Guidara, M. Rasheed, R. Barillé, M. Megdiche, AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2WO4, Ionics, vol. 24 (1) (2018), pp. 169-180.

[26] F. Dkhilalli, S. M. Borchani, M. Rasheed, R. Barille, K. Guidara, M. Megdiche, Structural, dielectric, and optical properties of the zinc tungstate ZnWO4 compound, Journal of Materials Science: Materials in Electronics, vol. 29 (8) (2018), pp. 6297-6307.

[27] F. Dkhilalli, S. M. Borchani, M. Rasheed, R. Barille, S. Shihab, K. Guidara, M. Megdiche, Characterizations and morphology of sodium tungstate particles, Royal Society open science, vol. 5 (8) (2018), pp. 1-12.

[28] M. Enneffati, B. Louati, K. Guidara, M. Rasheed, R. Barillé, Crystal structure characterization and AC electrical conduction behavior of sodium cadmium orthophosphate, Journal of Materials Science: Materials in Electronics, vol. 29 (1) (2018), pp. 171-179.

[29] M. Enneffati, M. Rasheed, B. Louati, K. Guidara, R. Barillé, Morphology, UV–visible and ellipsometric studies of sodium lithium orthovanadate, Optical and Quantum Electronics, vol. 51 (9) (2019), pp. 299.

[30] E. Kadri, M. Krichen, R. Mohammed, A. Zouari, K. Khirouni, Electrical transport mechanisms in amorphous silicon/crystalline silicon germanium heterojunction solar cell: impact of passivation layer in conversion efficiency, Optical and Quantum Electronics, vol. 48 (12) (2016), pp. 1-15.

[31] E. Kadri, O. Messaoudi, M. Krichen, K. Dhahri, M. Rasheed, E. Dhahri, A. Zouari, K. Khirouni, R. Barillé, Optical and electrical properties of SiGe/Si solar cell heterostructures: Ellipsometric study, Journal of Alloys and Compounds, vol. 721 (2017), pp. 779-783.

[32] E. Kadri, K. Dhahri, A. Zaafouri, M. Krichen, M. Rasheed, K. Khirouni, R. Barillé, Ac conductivity and dielectric behavior of a−Si:H/c− Si1−yGey/p−Si thin films synthesized by molecular beam epitaxial method, Journal of Alloys and Compounds, vol. 705 (2017), pp. 708-713.

[33] Emna Kadri, Khaled Dhahri, Régis Barillé, Mohamed Rasheed. "Novel method for the determination of the optical conductivity and dielectric constant of SiGe thin films using Kato-Adachi dispersion model", Phase Transitions, 94(2), (2021), pp. 65–76.

[34] Mohammed Rasheed, Ali Hasan Ali, Osama Alabdali, Suha Shihab, Ahmed Rashid, Taha Rashid, Saad Abed Hamad, "The Effectiveness of the Finite Differences Method on Physical and Medical Images Based on a Heat Diffusion Equation", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.
[35] Mohammed Rasheed, Osama Alabdali, Suha Shihab, Ahmed Rashid, Taha Rashid, "On the Solution of Nonlinear Equation for Photovoltaic Cell Using New Iterative Algorithms", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[36] Mohammed Rasheed, Suha Shihab, Osama Alabdali, Ahmed Rashid, Taha Rashid, "Finding Roots of Nonlinear Equation for Optoelectronic Device", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[37] Mohammed Rasheed, Osama Alabdali, Suha Shihab, Ahmed Rashid, Taha Rashid, "Two Numerical Models for Solving Nonlinear Equation of Photovoltaic Cell", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[38] Mohammed Rasheed, Mustafa Nuhad Al-Darraj, Suha Shihab, Ahmed Rashid, Taha Rashid, "A Fast Strategy to Investigate The Electrical and Physical Parameters of Photovoltaic Cell", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[39] Mohammed Rasheed, Mustafa Nuhad Al-Darraj, Suha Shihab, Ahmed Rashid, Taha Rashid, "The numerical Calculations of Single-Diode Solar Cell Modeling Parameters", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[40] Mohammed Rasheed, Mustafa Nuhad Al-Darraj, Suha Shihab, Ahmed Rashid, Taha Rashid, "A Simplified and Comprehensive Approach to Characterize Photovoltaic Cell Performance", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[41] Osama Alabdali, Suha SHIHAB, Mohammed RASHEED and Taha RASHID, "Orthogonal Boubaker-Turki Polynomials Algorithm for Problems Arising in Engineering", Journal of Physics: Conference Series. IOP Publishing, (2021), in press.

[42] Suha Shihab and Shazad Shawki Ahmed, "Discrete Spectral Tau Shifted Chebyshev Method for Solving a System Volterra Integro-Fractional Differential Equations", AIP Conference Proceedings, (2021), in press.

[43] Bushra Esaa Kashem, Suha SHIHAB, "Approximate solution of Lane-Emden problem via modified Hermite operation matrix method", Samarra Journal of Pure and Applied Science, 2(2) (2020), pp.57-67.

[44] Anam Alwan Salih, Suha SHIHAB, "New operational matrices approach for optimal control based on modified Chebyshev polynomials", Samarra Journal of Pure and Applied Science, 2(2) (2020), pp. 68-78.

[45] Anam Alwan Salih, Suha Shihab Alrawy, "Shifted modified chebyshev direct method for solving quadratic optimal control problem", Samarra Journal of Pure and Applied Science, 2(1), (2020), pp.67-75.

[46] M. A. Sarhan, S. SHIHAB and M. RASHEED, "Some Results on a Two Variables Pell Polynomials", Al-Qadisiyah Journal of Pure Science, vol. 26, (1), (2020), pp. 55-70.

[47] M. RASHEED, S. SHIHAB and T. RASHID, "Two Step and Newton- Raphson Algorithms in the Extraction for the Parameters of Solar Cell", Al-Qadisiyah Journal of Pure Science, vol. 26 (1), (2021), pp.143-154.

[48] Semaa Hassan Aziz, Suha SHIHAB and Mohammed RASHEED, "On Some Properties of Pell Polynomials", Al-Qadisiyah Journal of Pure Science, vol. 26 (1), (2021), pp. 39-54.

[49] S Gharbi, R Dhahri, M Rasheed, E Dhahri, R Barille, M Rguiti, A Tozri, Mohamed R Berber, "Effect of Bi substitution on nanostructural, morphologic, and electrical behavior of nanocrystalline La1-xBixNi0.5Ti0.5O3 (x= 0 and x= 0.2) for the electrical devices", Materials Science and Engineering: B, 270, 115191, (2021).