Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from *Garcinia kola* seeds, in rat superior mesenteric arteries

Oluwatosin A. ADARAMOYE¹, ² and Isac A. MEDEIROS¹

¹Laboratório de Tecnologia Farmacéutica (LTF), Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil
²Drug Metabolism and Toxicology Unit, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria

Received November 5, 2008; Accepted December 26, 2008

Abstract

Previous studies have established the hepatoprotective, gastroprotective, hypolipidemic and hypoglycemic effects of kolaviron (KV), a biflavonoid complex from *Garcinia kola* seeds. In this study, we investigated the mechanisms involved in the vasorelaxant effects of KV in isolated superior mesenteric arteries from normotensive rats. KV (1, 10, 30, 100, 300, 500 and 1,000 μg/ml) concentration-dependently inhibited the contractions induced by phenylephrine (PHE) (10 μM) and KCl (80 mM) in both endothelium-intact (E_{max} = 58.3 ± 1.7% and 51.4 ± 1.3%, respectively) and -denuded rings (E_{max} = 59.3 ± 5.5% and 64.3 ± 2.4%, respectively). Furthermore, KV reduced CaCl₂-induced contraction in Ca²⁺-free medium containing KCl 60 mM, thus acting as a Ca²⁺-antagonist. In addition, KV inhibited the transient contraction by PHE in Ca²⁺-free medium containing EGTA, suggesting a possible action on the release of intracellular Ca²⁺ via the inositol-1,4,5-triphosphate (IP₃) pathway. KV is not a specific α-adrenoceptor blocker, since it also caused a concentration-dependent inhibition of contractile responses to KCl, suggesting that KV also blocks the L-type Ca²⁺-channel. As a Ca²⁺ antagonist, KV (100 μg/ml) potentiates the relaxant effects of nifedipine in denuded rings (E_{max} = 97.6 ± 1.2%; control = 75.1 ± 3.0%, P<0.05). Also, the vasorelaxation induced by KV was significantly inhibited after pre-treatment of the denuded rings with 4-aminopyridine (4-AP) 1 mM, a selective blocker of voltage-dependent K⁺ (Kᵥ) channels and, tetraethylammonium (TEA) 1 mM or charybdotoxin (ChTX) 0.1 μM, non-selective blockers of large and intermediate conductance Ca²⁺-activated K⁺ (BK_{Ca}) channels. In contrast, neither glibenclamide (10 μM), BaCl₂ (1 mM) nor apamin (0.1 μM), blockers of K_{ATP}, K_{IR} and SK_{Ca} channels, respectively affected the KV-induced vasorelaxation. In conclusion, our results provide functional evidence that the vasorelaxant effects by KV involve extracellular Ca²⁺ influx blockade, inhibition of intracellular Ca²⁺ release and the opening of K⁺ channels sensitive to 4-AP and ChTX with a resultant membrane hyperpolarization/repolarization.

Key words: Ca²⁺ influx, endothelium-independent, *Garcinia kola*, mesenteric artery, vasodilation
Introduction

Recently there has been an upsurge of interest in the therapeutic potentials of medicinal plants as antioxidants in alleviating oxidative stress-induced pathologies (Lans et al., 2007; Lee et al., 2007). Several studies revealed that medicinal plants contain diverse classes of bioactive compounds such as polyphenols, tocopherols, alkaloids, etc. (Gordana et al., 2004; Lee et al., 2007). Among them, flavonoids are particularly attractive as they are known to exhibit various pharmacological properties such as vasoprotection, anti-carcinogenic, anti-microbial, anti-inflammatory and anti-proliferative effects (Gordana et al., 2004). The health benefits of flavonoids have been linked to their actions as antioxidants, free radical scavengers, quencher of singlet and triplet oxygen and inhibitors of peroxidation reactions (Li-chem et al., 2006).

Garcinia kola Heckel (Family; Guttiferae) is a herb grown in Nigeria with a characteristic astringent, bitter and resinous taste. This seed, also called “bitter kola” is eaten raw by the people with the belief that it promotes longevity. Extracts of the plant are used in traditional African medicine for the treatment of laryngitis, cough and liver diseases (Iwu and Igiboko, 1982). Chemical investigations of the seed revealed the presence of Garcinia biflavanone (GB), xanthones, triterpenes and benzophenones (Cotterhill et al., 1978). The biflavonones are the most dominant in most Garcinia species (Waterman and Hussain, 1983). Kolaviron (KV), the predominant constituent in Garcinia kola is a biflavonoid complex that has been reported to prevent hepatotoxicity mediated by several toxins (Iwu et al., 1987; Adaramoye and Adeyemi, 2006a). Likewise, KV is known to exhibit hypoglycemic effects in normal, alloxan and streptozotocin-diabetic animals (Iwu et al., 1990; Adaramoye and Adeyemi, 2006b). Also, KV has been reported to elicit strong antioxidant activity in both in vivo and in vitro experimental models (Adaramoye et al., 2005a). In a preliminary study, we demonstrated that KV elicited hypocholesterolemic effects and reduced the relative weight of the heart in cholesterol fed animals (Adaramoye et al., 2005b), thus providing a background to explore the possible cardiovascular effects of this biflavonoid complex in rats. Accordingly, this study was designed to investigate the mechanisms involved in the vasorelaxant effects induced by KV in isolated rat superior mesenteric arteries.

Methods

Animals

Male Wistar rats (250–300 g) were used for all experiments. The animals were kept in well-ventilated cages at controlled temperature (21 ± 1°C) and under controlled light cycles (12 h light/12 h dark). They were maintained on normal laboratory chow (PURINA-Brazil) and tap water ad libitum. The study was approved by the Committee of Ethics for Animal Research (Comitê De Ética Em Pesquisa Animal) CEPA N° 0805/07, Laboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, João Pessoa, Brazil. The protocols conform to the 1985 guidelines for laboratory animal care of the National Institute of Health (NIH).
Drugs

The drugs used were: L-phenylephrine hydrochloride, acetylcholine hydrochloride, Tween-80, nifedipine, barium chloride, tetraethylammonium, glibenclamide, charybdotoxin, apamin, 4-aminopyridine, caffeine, ethyleneglycol bis(β-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) (Sigma Chemical Co., Saint Louis, MO, USA). Chemicals used for preparing Tyrode’s solutions are; calcium chloride, glucose, magnesium sulphate, potassium dihydrogen phosphate, sodium bicarbonate and sodium chloride (E. Merck, Darmstadt, Germany). The stock solutions were dissolved in distilled water, except nifedipine and glibenclamide that were dissolved in ethanol. The solutions were prepared fresh on the day of experiments.

Extraction of kolaviron (KV)

Garcinia kola seeds were obtained commercially in Ibadan, Nigeria and certified at the herbarium in the Department of Botany, University of Ibadan, Nigeria, where a voucher specimen already exists (UI-00138/01). Three kilogram of peeled seeds was sliced, pulverized with an electric blender and air-dried in the laboratory (25–28°C). Extraction of KV was achieved by the methods of Cotterhill *et al.* (1978) and Iwu *et al.* (1990). Briefly, powdered seeds were extracted with light petroleum ether (bp 40–60°C) in a soxhlet extractor. The defatted, dried marc was repacked and then extracted with methanol. The extract was concentrated and diluted to twice its volume with distilled water and extracted with ethyl acetate (6 × 250 ml). The concentrated ethyl acetate fraction gave a yellow solid known as kolaviron (KV) (Fig. 1) with a percentage yield of 6%. KV was dissolved in 2–3 drops of tween-80 and diluted to desire concentrations with distilled water to give a water-soluble fraction. The drug solutions were prepared fresh on the day of experiments.

Preparation of isolated rat superior mesenteric artery rings

The superior mesenteric arteries from the second order branches were quickly removed and cleaned of adherent connective tissues and fat. Mesenteric rings (2–4 mm length) were obtained and suspended by cotton threads in organ bath containing 10 ml Tyrode’s solution, maintained at 37°C and gassed with a 95% O₂ + 5% CO₂ mixture (pH 7.4). The composition of the Tyrode’s solution (in mM): NaCl 158.3; KCl 4.0; CaCl₂·2H₂O 2.0; MgCl₂·6H₂O 1.05; NaHCO₃ 10.0; NaH₂PO₄·H₂O 0.42 and Glucose 5.6 (Tanaka *et al.*, 1999). Rings were stabilized with a resting tension of 0.75 g, for at least 60 min, with constant changing of Tyrode’s solution (every 15 min) to prevent the accumulation of metabolites that could otherwise lead to misinterpretation of results (Altura and Altura, 1970). The isometric tension was recorded by a force-displacement transducer (Miobath-4, WPI, Sarasota, FL, USA) coupled to an amplifier-recorder (Transbridge-4; WPI, Sarasota, FL, USA) and a computer equipped with an analog-to-digital converter board (AD16JR; WPI, Sarasota, FL, USA). In some experiments, the endothelium layer of the rings was removed by gently rubbing the external surface with a finger moistened with Tyrode’s solution. Endothelial integrity was assessed qualitatively by the degree of relaxation caused by acetylcholine (10 μM) in the presence of contractile tone induced by phenylephrine (PHE, 10 μM). Rings were considered to be endothelium-denuded when acetylcholine-induced relaxant effects were less than 10% and, endothelium-intact when the
relaxant effects were more than 90%.

Effect of KV on sustained contractions induced by phenylephrine or KCl in isolated preparations from rat superior mesenteric arteries

After equilibration, steady tension was evoked by PHE (10 µM) for endothelium-intact and -denuded rings to induce contraction of similar magnitude and KV was added cumulatively (1, 10, 30, 100, 300, 500 and 1,000 µg/ml). The ability of KV to attenuate the 80 mM KCl-induced sustained contraction in the rings was also examined. For comparison, the vasorelaxant effect of nifedipine (10⁻¹⁴–10⁻⁵ M), a blocker of voltage-dependent Ca²⁺ channels (Priviero et al., 2006), was also evaluated against the contractions induced by PHE or KCl, in both, endothelium-intact and -denuded rings. Furthermore, the ability of KV (10, 30 and 100 µg/ml) to ameliorate the vasorelaxant effects of nifedipine (10⁻¹⁴–10⁻⁵ M) in endothelium denuded rings pre-contracted with PHE was studied. The relaxations were measured by comparing the developed tension before and after addition of KV or nifedipine.
Investigation of the role of K+ channels in the KV-induced vasorelaxant response in isolated rat superior mesenteric arteries

In another set of experiments, the rings without endothelium were pre-contracted with PHE (10 μM) for 30 min after being pre-incubated with one of the following inhibitors: glibenclamide (10 μM), selective blocker of K\textsubscript{ATP} channels; BaCl\textsubscript{2} (1 mM), selective blocker of K\textsubscript{IR} channels; tetraethylammonium (TEA) (1 mM) or charybdotoxin (ChTX) 0.1 μM, non-selective blockers of BK\textsubscript{Ca} channels, 4-aminoypyridine (4-AP) (1 mM), a selective blocker of K\textsubscript{v} channels, ouabain (100 μM), a selective inhibitor of Na+-K+ ATPase and apamin (0.1 μM), a specific blocker of SK\textsubscript{Ca} channels. The concentration used for each blocker/inhibitor of K+ channels is sufficient to antagonize selectively those channels in arterial smooth muscle (Nelson and Quayle, 1995; Lagaud \textit{et al.}, 1999; Cortes \textit{et al.}, 2001; Oliveira \textit{et al.}, 2006). After stabilization of the tonic contraction induced by PHE, increasing cumulative concentrations of KV (1, 10, 30, 100, 300, 500 and 1,000 μg/ml) were added to the organ bath. The concentrations were chosen on the basis of previous studies in our laboratories (Santos \textit{et al.}, 2006; Santos \textit{et al.}, 2007).

Effect of KV on sustained contractions induced by CaCl\textsubscript{2}, and Ca2+ release from intracellular stores sensitive to phenylephrine and caffeine

To further investigate the mechanism of vasorelaxation induced by KV, concentration-response curves to CaCl\textsubscript{2} were constructed using endothelium-denuded rings (Lagaud \textit{et al.}, 1999). Briefly, the rings were pre-contracted with 60 mM KCl to confirm tissue viability. The Tyrode’s solution was replaced with depolarizing Tyrode’s solution (KCl 60 mM) nominally without Ca2+ (15 min). Thereafter, concentration-response curves to CaCl\textsubscript{2} (1 μM–10 mM) were constructed in the absence or presence of KV. To determine whether KV could interfere with Ca2+ release from intracellular stores, the denuded rings were pre-contracted with KCl, washed and exposed to Ca2+-free Tyrode’s solution containing EGTA (1 mM). The rings were then stimulated with phenylephrine (10 μM) or caffeine (20 mM) (Hugdins and Weiss, 1968). The contractions of both agonists were obtained in the absence (control) or after incubation with KV.

Statistical analysis

Two pharmacological parameters were analyzed in this study; E_{max} (Maximal effect generated by agonist) and pD_2 (-log EC\textsubscript{50}). Values are expressed as means ± standard error of the mean (S.E.M.). Statistical analysis was performed using one-way analysis of variance (ANOVA) or Student’s t-test using GraphPad Prism TM 4.0 version software, San Diego, CA, USA. Post hoc comparisons were performed after ANOVA using Dunnett’s test as indicated in the text. The level of significance considered in all the tests was 0.05 ($P<0.05$).

Results

Effect of KV on sustained contractions induced by phenylephrine or KCl

KV inhibited the sustained contractions induced by phenylephrine (PHE, 10 μM) in isolated rat mesenteric arterial rings in a concentration dependent manner. The pD_2 and E_{max} values of KV for contractions induced by PHE were 2.13 ± 0.06 and 58.3 ± 1.7% for endothelium-intact and,
Fig. 2. Relaxation responses induced in isolated rat mesenteric arteries; (A) by kolaviron (KV) in endothelium-intact and -denuded rings pre-contracted with phenylephrine (PHE) (10 μM), (B) denuded rings pre-constricted with either KCl (80 mM), or pre-incubated with KCl (20 mM) before constricted with PHE, (C) intact rings pre-constricted with either KCl (80 mM), or pre-incubated with KCl (20 mM) before constricted with PHE, (D) by nifedipine in endothelium intact and denuded rings pre-contracted with KCl or PHE (E).
Vasodilation induced by kolaviron

2.48 ± 0.05 and 59.3 ± 5.5%, for denuded rings, respectively (Fig. 2A). The pD2 and Emax values of KV for PHE-induced contractions did not differ significantly in endothelium-intact from denuded rings. Similarly, no significant difference (P>0.05) was found in the pD2 and Emax values of KV for KCl-induced contractions in endothelium-intact (2.09 ± 0.04 and 57.4 ± 2.3%) when compared with denuded (2.14 ± 0.05 and 64.3 ± 2.4%) rings, respectively (Figs. 2B and 2C). The effect of the solvent (vehicle) used to prepare KV was insignificant with Emax value of 6.3 ± 1.1% (Fig. 2A). Nifedipine significantly relaxed KCl-induced tonic contraction in intact and denuded rings (pD2 and Emax values = 9.23 ± 0.08 and 92.0 ± 2.1%, 9.58 ± 0.07 and 95.6 ± 1.5%, respectively), but its relaxation of PHE-induced contraction was lesser (pD2 and Emax values = 8.89 ± 0.10 and 77.3 ± 0.9%, 8.74 ± 0.11 and 75.1 ± 3.0%, for intact and denuded rings respectively) (Figs. 2D and 2E).

Effect of KV (10, 30 and 100 µg/ml) on nifedipine-induced vasorelaxant response in denuded rings

As shown in Fig. 3A and Table 2, nifedipine (10−11–10−3 M) concentration-dependently relaxed PHE-induced contraction of endothelium-denuded rings (Emax and pD2 values = 75.1 ± 3.0% and 8.74 ± 0.11, respectively). Furthermore, the relaxation induced by nifedipine remains unaltered when denuded rings where pre-incubated with KV at 10 µg/ml (Emax and pD2 values = 79.3 ± 1.0% and 8.51 ± 0.04, respectively) and, KV at 30 µg/ml (Emax and pD2 values = 80.2 ± 2.0% and 8.54 ± 0.09, respectively). However, KV at 100 µg/ml shifted the concentration-response curve to nifedipine to the left with significant increases (P<0.05) in Emax and pD2 values (97.6 ± 1.2% and 9.49 ± 0.02, respectively) (Fig. 3B and Table 2).

Effect of K+ channel blockers on the vasorelaxant response induced by KV

In denuded rings pre-contracted with PHE in the presence of KCl 20 mM, the concentration-response curve for KV was significantly shifted to the right with decreased Emax and pD2 values
= 39.0 ± 1.9% and 1.95 ± 0.06, respectively when compared to the control (59.3 ± 5.5% and 2.48 ± 0.05, respectively) (Fig. 2B and Table 1), indicating the involvement of K^+ channels in the vasorelaxant effects of KV. Furthermore, in denuded rings pre-incubated with TEA (1 mM), ChTX (0.1 μM), 4-AP (1 mM) and ChTX + 4-AP before contracted with PHE, produced a rightward displacement of the concentration-response curves for KV with decreased E_{max} and pD_2 values = 35.4 ± 1.7% and 1.84 ± 0.02, 39.0 ± 1.7% and 2.01 ± 0.05, 43.5 ± 1.4% and 2.29 ± 0.03, 35.4 ± 1.8% and 1.86 ± 0.04, respectively (Fig. 4 and Table 1). On the other hand, glibenclamide

Fig. 3. Effects of kolaviron (KV) (10 and 30 μg/ml) (A) and, 100 μg/ml (B) pre-incubated for 30 min on nifedipine-induced relaxant responses in denuded mesenteric rings. Steady tension was evoked by phenylephrine (10 μM) and nifedipine (10^{-11}–10^{-5} M) was added cumulatively. Control, represents rings that were relaxed by nifedipine in the absence of KV. *, Significantly different from control ($P<0.05$), ANOVA followed by Dunnett’s multiple comparison test.
(10 µM), BaCl₂ (1 mM), apamin (0.1 µM) and ouabain (100 µM) did not alter the vasorelaxant effects of KV in the denuded rings (Fig. 4).

Effect of KV on CaCl₂-induced contractile response and Ca²⁺ release from intracellular stores in endothelium denuded rings

In Fig. 5, pre-incubation of endothelium denuded rings with KV attenuated CaCl₂-induced contraction in Ca²⁺-free medium containing KCl 60 mM. CaCl₂-induced a concentration-dependent contraction of mesenteric rings (Eₘₐₓ = 100%; pD₂ = 3.45 ± 0.05, control, Table 3). Pre-incubation of the rings with KV at 1, 10, 30, 100, 300, 500 and 1,000 µg/ml altered the concentration-response curves of CaCl₂, but with significant effects (P<0.05) at any concentrations of KV (Fig. 5). The effects of KV on the Eₘₐₓ and pD₂ values for CaCl₂-induced contractions are given in Table 3. Figure 6 shows that KV significantly (P<0.05) antagonized the transient contractions induced by PHE in endothelium denuded rings in Ca²⁺-free media containing EGTA (1 mM). In contrast, KV produced no significant effect (P>0.05) on the transient contractions induced by caffeine (20 mM) under similar conditions.

Discussion

The present study provides the first direct evidence that KV induces vasorelaxation in isolated rat blood vessels. Our findings indicate that KV elicits a concentration-dependent relaxation of rat superior mesenteric arteries that is mediated by the blockade of Ca²⁺ influx from extracellular medium as well as inhibition of Ca²⁺ release from intracellular stores sensitive to phenylephrine. In addition, the vasorelaxant effect of KV is linked to the opening of K⁺ channels sensitive to 4-aminopyridine and charybdotoxin.

The pD₂ and Eₘₐₓ values of KV for inhibiting the PHE or KCl induced contractions of rat mesenteric arteries with or without functional endothelium are similar, which suggest that the vasorelaxant effects of KV are independent of endothelium. Furthermore, the pD₂ and Eₘₐₓ values of nifedipine on intact or denuded rings pre-contracted with PHE or KCl were higher than with KV, indicating that nifedipine may be a better vasorelaxant agent. We investigated the possible link between KV-induced vasorelaxation and the inhibition of Ca²⁺ influx from the extracellular medium. We observed that CaCl₂-induced contractions in Ca²⁺-free media

Groups	Eₘₐₓ (%)	pD₂
Control	75.1 ± 3.0	8.74 ± 0.11
After KV (10 µg/ml)	79.3 ± 1.0	8.51 ± 0.04
After KV (30 µg/ml)	80.2 ± 2.0	8.54 ± 0.09
After KV (100 µg/ml)	97.6 ± 1.2*	9.49 ± 0.02*

Values are the Mean ± S.E.M., n= 6 experiments. * Significantly different from control (P<0.05). ANOVA followed by Dunnett’s Multiple Comparison Test.
containing KCl 60 mM were significantly inhibited in a concentration-dependent manner by KV. The rightward shift in the concentration-response curves for CaCl$_2$ with a decrease in the E_{max} values, indicates that the biflavonoid behaves as a calcium antagonist. These results support the notion that KV can block Ca$^{2+}$ influx through Ca$^{2+}$ channels present in the vascular smooth
Vasodilation induced by kolaviron (KV) 49

However, this behaviour does not rule out the possibility that KV may reduce the sensitivity of the contractile filaments to Ca$^{2+}$. Contractions of VSMCs induced by KCl rely almost exclusively on Ca$^{2+}$ influx through activation of voltage-sensitive channels.

Fig. 5. Effect of kolaviron (KV) on CaCl$_2$-induced contractile response in endothelium-denuded mesenteric arterial rings. Concentration-response curves for CaCl$_2$ were determined in Ca$^{2+}$-free solution containing KCl (60 mM). The curves were determined in the absence (control) and after incubation with KV (1, 10, 30, 100, 300, 500 and 1,000 µg/ml). *, Significantly different from control ($P<0.05$), ANOVA followed by Dunnett’s multiple comparison test.

Table 3. Effect of KV on E_{max} and pD_2 for CaCl$_2$-induced contraction in endothelium denuded mesenteric rings in Ca$^{2+}$-free medium

KV (µg/ml)	pD_2	E_{max} (%)
Control	3.45 ± 0.05	100
1	3.31 ± 0.03	98.1 ± 2.9
10	3.56 ± 0.04	88.1 ± 4.2
30	3.24 ± 0.04	83.8 ± 3.2
100	2.80 ± 0.06*	74.2 ± 2.4*
300	2.63 ± 0.09*	61.3 ± 3.2*
500	2.33 ± 0.07*	57.7 ± 1.9*
1000	2.01 ± 0.11*	47.8 ± 1.6*

Values are the Mean ± S.E.M., n=42 for control; n=6 for others. *Significantly different from control ($P<0.05$). ANOVA followed by Dunnett’s Multiple Comparison Test.

muscle cells (VSMCs). However, this behaviour does not rule out the possibility that KV may reduce the sensitivity of the contractile filaments to Ca$^{2+}$. Contractions of VSMCs induced by KCl rely almost exclusively on Ca$^{2+}$ influx through activation of voltage-sensitive channels.
(Hirata et al., 1998), whereas contractions induced by PHE are mediated by an increase in Ca$^{2+}$ influx through both receptor-operated channels (Lee et al., 2001a) and voltage-sensitive channels (Eckert et al., 2000; Lee et al., 2001b). Since KV relaxed mesenteric rings precontracted with PHE and KCl (80 mM) with statistically similar E_{max} and pD_2 values, it could be suggested that the biflavonoid blocks Ca$^{2+}$ influx through interference with both voltage- and receptor-operated channels. This led us to investigate whether KV could exert its vasorelaxant effects by interfering with the release of intracellular calcium, [Ca$^{2+}$], via the phosphoinositide-dependent or -independent pathway following receptors activation. In Ca$^{2+}$-free media containing EGTA, the biflavonoid significantly decreased the transient contractions induced by PHE, which stimulates inositol-1,4,5-triphosphate (IP$_3$)-dependent Ca$^{2+}$ release from intracellular stores (Leijten and van Breemen, 1984), whereas, the caffeine-induced contractions, which releases [Ca$^{2+}$], by an (IP$_3$)-independent mechanism (Standen et al., 1989) were unaltered. Thus, it seems likely that the vascular effects of KV involve a reduction in Ca$^{2+}$ release from

Fig. 6. Effect of KV (1, 10, 30, 100, 300, 500 and 1,000 µg/ml) on phenylephrine (10 µM) and caffeine (20 mM) induced transient contractions in endothelium-denuded mesenteric arterial rings in Ca$^{2+}$-free medium containing EGTA (1 mM). *, Significantly different from control (P<0.05), ANOVA followed by Dunnett’s multiple comparison test.

PHE = Phenylephrine (10 µM); CAF = Caffeine (20 mM)
intracellular stores sensitive to PHE. This result does not rule out the possibility that KV may interfere with other elements in the sarco-endoplasmic reticulum, especially the Ca$^{2+}$-ATPases. This observation needs further evaluation.

In order to analyze the contribution of different types of K$^+$ channels to the KV-induced endothelium-independent relaxation in the mesenteric rings, we used agents that are known to possess a K$^+$ channel-blocking activity. Glibenclamide is known to be one of the most selective blockers of K$_{ATP}$ channels, but it can also block voltage-dependent K$^+$ (K$_V$) channels in concentrations higher than 10 μM (Schaffer et al., 1999; Schuldt et al., 2005). In the present study, glibenclamide did not produce any significant effect on concentration-response curves of KV, suggesting that K$_{ATP}$ channels are not involved in the vasorelaxation induced by the biflavonoid. Similarly, neither apamin, BaCl$_2$ nor ouabain, blockers of SK$_C$, KR channels and Na$^+$-K$^+$ ATPase, respectively (Cortes et al., 2001; Tirapelli et al., 2004; Oliveira et al., 2006) affected the concentration-response curves of KV, hence these channels and the ATPase are not involved in the vasorelaxant effects of KV. TEA and ChTX, at these concentrations are non-selective blockers of large and intermediate conductance Ca$^{2+}$-activated K$^+$ channels (BK$_C$). Both TEA and ChTX significantly inhibited the concentration-response curves of KV, indicating that the opening of these channels is required for the vasorelaxation induced by the biflavonoid. Similarly, 4-AP, a selective blocker of voltage-dependent K$^+$-channels significantly affected KV-induced relaxation, thus the activation of K$_V$ channels also plays a role in KV-induced relaxation.

Clinically, Ca$^{2+}$ antagonists and K$^+$ channels openers are used for the treatment of hypertension due to their ability to induce vascular smooth muscle relaxation. It is therefore possible to suggest, considering its vascular effects, that KV is a potential agent that could exert antihypertensive action in vivo. It should be noted that KV (100 μg/ml) potentiates the relaxant effect of nifedipine in denuded rings pre-contracted with PHE. This observation calls for a caution in the intake of Garcinia kola seeds, which contain KV, by hypertensive patients on Ca$^{2+}$ channel blockers in order to avoid hypotension.

In summary, the vasorelaxation-induced by KV occurs through an endothelium-independent mechanism that involves the blockade of extracellular Ca$^{2+}$ influx by interfering with both voltage- and receptor-operated channels. In addition, it inhibited Ca$^{2+}$ release from intracellular stores via the IP$_3$ pathway and opened BK$_C$ and K$_V$ channels with a resultant membrane hyperpolarization/repolarization. However, further studies are needed to evaluate the involvement of other K$^+$ channel-independent pathways in the vasorelaxation induced by KV.

Acknowledgements

This work was supported by one-year postdoctoral fellowship from the Brazilian National Council for Scientific and Technological Development (CNPq) and The Academy of Sciences for the Developing World (TWAS). Authors are CNPq Fellows.

References

Adaramoye, O.A., Farombi, E.O., Adeyemi, E.O. and Emerole, G.O. (2005a). Inhibition of human low-
density lipoprotein oxidation by flavonoids of *Garcinia kola* seeds. *Pak. J. Med. Sci.* **21**: 331–339.

Adaramoye, O.A., Nwaneri, V.O., Anyanwu, K.C., Farombi, E.O. and Emerole, G.O. (2005b). Possible antiatherogenic effect of kolaviron (A *Garcinia kola* seed extract) in hypercholesterolemic rats. *Clin. Exp. Pharmacol. Physiol.* **32**: 40–46.

Adaramoye, O.A. and Adeyemi, E.O. (2006a). Hepatoprotection of D-galactosamine-induced toxicity in mice by purified fractions from *Garcinia kola* seed. *Basic Clin. Pharmacol. Toxicol.* **98**: 135–141.

Adaramoye, O.A. and Adeyemi, E.O. (2006b). Hypoglycaemic and hypolipidaemic effects of fractions from kolaviron, a biflavonoid complex from *Garcinia Kola* in streptozotocin-induced diabetes mellitus rats. *J. Pharm. Pharmacol.* **18**: 121–128.

Altura, B.M. and Altura, B.T. (1970). Calcium content and force of drug-induced contractions of arterial muscle during recovery in *vitro*. *Proc. Soc. Exp. Biol. Med.* **135**: 739–744.

Côrtes, S.F., Rezende, B.A., Corriu, C., Medeiros, I.A., Teixeira, M.M., Lopes, M.J. and Lemos, V.S. (2001). Pharmacological evidence for the activation of potassium channels as the mechanism involved in the hypotensive and vasorelaxant effect of dioclein in rat small resistance arteries. *Br. J. Pharmacol.* **133**: 849–858.

Gordana, S.C., Sonja, M.D., Jasna, M.C. and Vesna, T.T. (2004). Antioxidant properties of marigold extracts. *Food Res. Int.* **37**: 643–650.

Hudgins, A. and Weiss, G. (1968). Different effects of Ca$^{2+}$ removal upon vascular smooth muscle contraction induced by norepinephrine, histamine and potassium. *J. Pharmacol. Exp. Ther.* **159**: 91–97.

Hirata, S., Enoki, T., Kitamura, R., Vinh, V.H., Nakamura, K. and Mori, K. (1998). Effects of isoflurane on receptor-operated Ca$^{2+}$ channels in rat aortic smooth muscle. *Br. J. Anaesth.* **81**: 578–583.

Iwu, M.M. and Igboko, O.A. (1982). Flavonoids of *Garcinia kola* seeds. *J. Nat. Prod.* **45**: 650–651.

Iwu, M.M., Igboko, O.A., Okunji, C.O. and Tempesta, M.S. (1990). Anti-diabetic and aldose reductase activities of biflavonones of *Garcinia kola*. *J. Pharm. Pharmacol.* **42**: 290–292.

Iwu, M.M., Igboko, O.A., Onwuche, U. and Okunji, C.O. (1987). Evaluation of the anti-hepatotoxicity of the biflavonoids of *Garcinia kola* seeds. *J. Ethnopharmacol.* **21**: 127–138.

Lagaud, G.J., Randriambavonjy, V., Roul, G., Stoclet, J.C. and Andriansitohaina, R. (1999). Mechanism of Ca$^{2+}$ release and entry during contraction elicited by norepinephrine in rat resistance arteries. *Am. J. Physiol.* **276**: H300–H308.

Lee, C.H., Park, K.K., Lim, S.S., Park, J.H. and Chung, W.Y. (2007). Effects of the licorice extract against tumor growth and cisplatin-induced toxicity in a mouse xenograft model of colon cancer. *Biol. Pharm. Bull.* **30**: 2191–2195.

Lee, C.H., Poburko, D., Sahota, P., Sandhu, J., Ruehlmann, D.O. and van Breemen, C. (2001a). The mechanism of phenylephrine-mediated [Ca$^{2+}$], oscillations underlying tonic contraction in the rabbit inferior vena cava. *J. Physiol.* **534**: 641–650.

Lee, C.N., Wong, K.L., Liu, J.C., Chen, Y.J., Cheng, J.T. and Chan, P. (2001b). Inhibitory effect of stevioside on calcium influx to produce antihypertension. *Planta Med.* **67**: 796–799.

Leijten, P.A. and van Breemen, C. (1984). The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. *J. Physiol. (Lond.)* **357**: 327–339.

Li-chem, W., Hsiu-Wen, H., Yun-Chen, C., Chih-Chung, C., Yu-In, L. and Ja-an, A.H. (2006). Antioxidant
and antiproliferative activities of red pitaya. *Food Chem.* **95**: 319–327.

Nelson, M.T. and Quayle, J.M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. *Am. J. Physiol.* **268**: C799–C822.

Oliveira, A.P., Furtado, F.F., da Silva, M.S., Tavares, J.F., Mafra, R.A., Araújo, D.A., Cruz, J.S. and Medeiros, I.A. (2006). Calcium channel blockade as a target for the cardiovascular effects induced by the 8 (17), 12E, 14-labdatrien-18-oic acid (labdane-302). *Vascul. Pharmacol.* **44**: 338–344.

Priviero, F.B., Teixeira, C.E., Toque, H.A., Claudino, M.A., Webb, R.C., De Nucci, G., Zanesco, A. and Antunes, E. (2006). Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade. *Clin. Exp. Pharmacol. Physiol.* **33**: 448–455.

Santos, M.R., Nascimento, N.M., Antoniolli, A.R. and Medeiros, I.A. (2006). Endothelium-derived factors and K⁺ channels are involved in the vasorelaxation induced by *Sida cordifolia* L. in the rat superior mesenteric artery. *Pharmazie* **61**: 466–469.

Santos, M.R., Carvalho, A.A., Medeiros, I.A., Alves, P.B., Marchioro, M. and Antoniolli, A.R. (2007). Cardiovascular effects of *Hystis fruticosa* essential oil in rats. *Fitoterapia* **78**: 186–191.

Schaffer, P., Pelzmann, B., Bernhart, E., Lang, P., Mächler, H., Rigler, B. and Koidl, B. (1999). The sulphonylurea glibenclamide inhibits voltage dependent potassium currents in human atrial and ventricular myocytes. *Br. J. Pharmacol.* **128**: 1175–1180.

Schuldt, E.Z., Bet, A.C., Hort, M.A., Iannsen, C., Maraschin, M., Ckless, K. and Ribeiro-do-Valle, R.M. (2005). An ethyl acetate fraction obtained from a Southern Brazilian red wine relaxes rat mesenteric arterial bed through hyperpolarization and NO-cGMP pathway. *Vascul. Pharmacol.* **43**: 62–68.

Standen, N.B., Quayle, J.M., Davies, N.W., Brayden, J.E., Huang, Y. and Nelson, M.T. (1989). Hyperpolarizing vasodilators activate ATP-sensitive K⁺ channels in arterial smooth muscle. *Sci.* **14**: 177–180.

Tanaka, Y., Mochizuki, Y., Tanaka, H. and Shigenobu, K. (1999). Significant role of neuronal non-N-type calcium channels in the sympathetic neurogenic contraction of rat mesenteric artery. *Br. J. Pharmacol.* **128**: 1602–1608.

Tirapelli, C.R., Ambrosio, S.R., da Costa, F.B., Coutinho, S.T., de Oliveira. D.C. and de Oliveira. A.M. (2004). Analysis of the mechanisms underlying the vasorelaxant action of kaurenoic acid in the isolated rat aorta. *Eur. J. Pharmacol.* **492**: 233–241.

Waterman, P.G. and Hussain, R.A. (1983). Systematic significance of xanthones, benzophenones and biflavonoids in *Garcinia*. *Biochem. Sys. Ecol.* **11**: 21–30.