Holographic Thought Experiments

Donald Marolf

Physics Department, UCSB, Santa Barbara, CA 93106, USA
marolf@physics.ucsb.edu

Abstract: The Hamiltonian of classical anti-de Sitter gravity is a pure boundary term on-shell. If this remains true in non-perturbative quantum gravity then i) boundary observables will evolve unitarily in time and ii) the algebra of boundary observables is the same at all times. In particular, information available at the boundary at any one time t_1 remains available at any other time t_2. Since there is also a sense in which the equations of motion propagate information into the bulk, these observations raise what may appear to be potential paradoxes concerning simultaneous (or spacelike separated) measurements of non-commuting observables, one at the asymptotic boundary and one in the interior. We argue that such potentially paradoxical settings always involve a breakdown of semi-classical gravity. In particular, we present evidence that making accurate holographic measurements over short timescales radically alters the familiar notion of causality. We also describe certain less intrinsically paradoxical settings which illustrate the above boundary unitarity and render the notion more concrete.

Keywords: Gravity, AdS/CFT, Unitarity.
1. Introduction

Understanding quantum information in the context of black hole evaporation is a long-standing issue in gravitational physics [1]. One wishes to know whether information initially sent into the black hole is again available after the evaporation is complete and, if so, by what mechanism. At least in the context of string theory with anti-de Sitter (AdS) boundary conditions, the advent of the AdS/Conformal Field Theory (CFT) correspondence [2] appeared to resolve this question by establishing a dual formulation in terms of a unitary field theory associated with the AdS boundary1.

Nevertheless, an important puzzle remains: to what extent and in what form does the information in the CFT remain available in the gravitational description? There is a sense in which this AdS/CFT puzzle is even more acute than the original black hole question. The intriguing point here is that AdS/CFT suggests that information sent into the spacetime through the AdS boundary at any early time t_1 remains available at the boundary at any later time $t_2 > t_1$, whether or not enough time has passed for an energy flux (Hawking radiation or otherwise) to return to the boundary. It is this AdS puzzle that we will study below.

1Though an opposing view was presented in [3].
An explanation was recently offered in [4]. Building on [5] and [6], it was noted that the desired properties follow naturally if the on-shell quantum gravity Hamiltonian remains a pure boundary term as it is in the classical theory. Bulk diffeomorphism invariance is responsible for the classical Hamiltonian being a pure boundary term, but it is natural to expect the Hamiltonian to remain a boundary term in the full quantum theory even if smooth spacetimes, and thus diffeomorphism invariance, turn out to play no fundamental role.

We shall follow [4] in assuming that this is the case. In particular, we assume the Hamiltonian to be a self-adjoint generator of time-translations on the boundary (though we make no a priori commitment to the particular Hilbert space on which it is self-adjoint). By exponentiating this Hamiltonian, it follows immediately that the algebra of boundary observables is independent of time and that information present at an AdS boundary at any one time \(t_1 \) is also present there at any other time \(t_2 \). E.g., for systems invariant under time translations, any boundary observable \(\mathcal{O}(t_1) \) at time \(t_1 \) can be represented as \(e^{-iH(t_1-t_2)\mathcal{O}(t_2)}e^{iH(t_1-t_2)} \) where \(\mathcal{O}(t_2) \) is the same boundary observable at time \(t_2 \) and the Hamiltonian \(H \) is also a boundary observable at time \(t_2 \). An analogous statement holds in the time-dependent case; see appendix A.

This conclusion may cause some readers to question the extent to which the above assumptions are in fact reasonable. Recall, however, that [4] also showed that perturbative gravity about a collapsing black hole background is “holographic” in the sense that i) in the asymptotically flat context a complete set of observables is available within any neighborhood of spacelike infinity (\(\mathcal{I}^0 \)) and ii) in the asymptotically AdS context, a complete set of observables is contained in the algebra of boundary observables at each time (technically, within any neighborhood of any Cauchy surface of the conformal boundary). The perhaps surprising conclusions to which our non-perturbative assumptions lead are thus established facts at the perturbative level, suggesting that these assumptions are worth investigating more deeply.

This is precisely the purpose of our work below. We have three goals: to show more concretely the sense in which information is holographically encoded at the boundary, to begin to investigate what sort of observers can access this information, and to resolve certain potential paradoxes. In particular, while information remains present at the boundary as noted above, it is clear that this information also propagates deep into the bulk. As discussed in [4], there is no claim that quantum information has been duplicated (which would violate the ‘no quantum xerox theorem’ [7]) but rather that the same qubit can be accessed from two spacelike separated regions of spacetime. Nevertheless, this raises interesting questions about non-commuting measurements performed in the two regions: thinking of the qubit as a single spin, what happens if an observer in the interior (say, Bob) measures the \(x \)-component of the spin and a spacelike-separated asymptotic observer (say, Alice) measures the \(z \)-component? Similar issues were considered in [8, 9, 10] with Bob inside a black hole, in which case it was argued that the destruction of the interior observer at the black hole singularity prevents comparison of these measurements and prohibits any true contradiction. However, some other resolution is clearly required in the absence of black holes, or more generally when Bob can communicate with Alice.
The first class of measurements we study gives rise to just such potential paradoxes. Each experiment involves a strong coupling to the Coulomb-part of the gravitational field, and in particular to a certain flux Φ. For reasons to be explained below, we refer to these experiments as the Φ-subtraction protocol (section 3) and the Φ-projection protocol (section 4). The couplings to Φ turn out to resolve the apparent paradox by causing the usual semi-classical framework to break down; such couplings are simply not compatible with smooth non-degenerate metrics. Moreover, if such couplings can be described in some more complete theory, we argue that this description would involve a radical modification of the naive causal structure which allows Alice’s measurement to affect Bob’s results. The second class of experiments (section 5) is less intrinsically paradoxical, but is consistent with smooth non-degenerate metrics. As such, they serve to make our notion of boundary unitarity more concrete. Interestingly, these latter experiments rely on a certain ‘operational density of states’ being finite, while the measurements of sections 3 and 4 succeed without any such assumption. The general framework for our experiments is described in section 2, while the measurements themselves are analyzed in sections 3, 4, and 5. This part of our work will be based purely on bulk physics; no use will be made of AdS/CFT. We then close with some final discussion in section 6. In particular we now use AdS/CFT to argue that, despite taking us out of the usual semi-classical framework, the Φ-projection protocol of section 4 should nevertheless be allowed in a full theory of quantum gravity.

2. A tale of two boundaries

The goal of this section is to set up a general framework useful for discussing various holographic thought experiments. Our main concern will be diffeomorphism-invariance, the gravitational gauge-invariance. This is clearly a key issue since, in the classical theory, it is this symmetry that guarantees the Hamiltonian to be a pure boundary term and leads to boundary unitarity.

As a result, we must be careful to measure only fully gauge-invariant observables. The construction of diffeomorphism-invariant observables is in general difficult in non-perturbative gravity, but the task is greatly simplified by the presence of a boundary. Typical boundary conditions (e.g., fixing the boundary metric) break diffeomorphism-invariance so that the behavior of bulk fields near the boundary readily defines gauge-invariant observables. This is true both at finite boundaries and at asymptotic boundaries such as the AdS conformal boundary. In the second case, boundary operators are defined by suitably rescaled limits of bulk fields as in e.g. [11, 12]. The reader should consult these references for details; we will use this construction without further comment.

We therefore place one observer (Alice) at, or perhaps more properly outside, an asymptotic AdS boundary. Aside from Alice’s measurements (discussed below), the boundary condition at boundary A is of the familiar type which fixes the leading Fefferman-Graham coefficient [14]. E. g., in 3+1 dimensions we take the metric near boundary A to be of the form

$$\begin{aligned} g_{\alpha \beta} = \frac{\ell^2}{r^2} dr^2 + \left(g_{(0)CD} \frac{r^2}{\ell^2} + g_{(1)\alpha\beta} \frac{r}{\ell} + g_{(2)CD} + g_{(3)CD} \frac{\ell}{r} + \ldots \right) dx^C dx^D, \end{aligned}$$

(2.1)
where $g(0)_{CD}$ is fixed and $g(1)_{CD}, g(2)_{CD}$ are determined by g_{ij} and the Einstein equations. See e.g. [15] for various generalizations. For simplicity, we consider the case where g_{ij} takes the simple form

$$
g(0)_{CD} dx^C dx^D = - N_A^2 dt_A^2 + \Omega_{IJ} dy^I dy^J,$$

(2.2)

with y^I coordinates on S^2, Ω_{IJ} the round unit metric on S^2, and N_A a function only of t_A. We will take N_A to be a constant when Alice’s couplings are turned off.

We envision Alice as an experimenter with the following characteristics:

i) She has a notion of time evolution which coincides with that of some preferred co-ordinate t_A on the asymptotic boundary. Reparametrizations of t_A are not a gauge symmetry.

ii) At her disposal are additional degrees of freedom (ancilla) which are not part of the gravitating AdS spacetime. We encourage the reader to envision Alice as having a large laboratory which contains the gravitating AdS system in a (conformally compactified) box. The ancilla are various useful apparatus and quantum computers in this laboratory which exist outside the AdS box. See figure 2.

iii) Alice can couple her ancilla to AdS boundary observables as described by any time-dependent Hamiltonian. Classically, this Hamiltonian is again a boundary term (see appendix A for details) and we assume this to be true in the non-perturbative quantum theory as well. A detailed example of coupling the AdS space to such external degrees of freedom was recently studied in [13], though we will not need that level of detail.

We will assume that Alice can choose the coupling arbitrarily, so long as it is local in t_A. In particular, we allow Alice to couple to boundary observables which are non-local in space (e.g., integrals over $t_A = constant$ surfaces, spacelike Wilson lines, etc). One might say that we impose only a non-relativistic notion of causality on Alice’s ancilla.

We also allow such couplings to depend explicitly on t_A.

These assumptions provide an interesting and relatively simple framework for exploration. We defer any discussion of the extent to which they model a realistic observer to section 6.

It remains to introduce our second experimenter (Bob). It might seem natural to place Bob at Alice’s boundary. However, doing so would reduce any discussion of measurements to one familiar from non-relativistic quantum mechanics. The point is that, in this case, Alice and Bob would share a common notion of time generated by a common Hamiltonian H, and this Hamiltonian would transfer information between the AdS space and both experimenter’s ancilla. The issues then boil down to the extent that we allow Alice and Bob to couple to each other’s ancilla. For example, if Alice cannot examine Bob’s apparatus, then despite the unitarity of e^{iHt} and that fact that the information remains available to a sufficiently boundary powerful observer, Alice simply does not have access to all information and Bob’s measurements will tend to disturb Alice’s. Similarly, Alice’s measurements will tend to disturb Bob’s.

2Some readers may desire a more concrete model which allows such couplings. One such model is to suppose that Alice’s lab has more dimensions than the AdS space, and that she can embed the AdS box in her lab in such a way that events on the AdS boundary can be connected by causal curves in her lab even when no such curve exists on the AdS boundary itself.
On the other hand, placing Bob in the bulk raises two issues. First, it becomes complicated to describe the gauge-invariant observables to which Bob can couple. Second, such a placement raises the possibility that all of Bob’s apparatus may be holographically encoded in boundary observables accessible to Alice. Alice then has the ability to interact directly with Bob’s ancilla, and in particular to undo any measurement that Bob may have made. In this context no paradoxes need arise.

We therefore add a second (interior) boundary (B) to the AdS spacetime. We locate Bob at this boundary and endow him with properties at boundary B in direct analogy with properties (i,ii,iii) assumed for Alice at her boundary (A). The one difference between the two boundaries is that we take boundary B to have a fixed finite metric. I.e., it is not an asymptotic conformal boundary, but instead lies at a finite distance from points in the interior. This is a useful framework because classical spacetimes allow signals respecting bulk causality to be exchanged between the two boundaries. In contrast, two asymptotic AdS boundaries tend to be separated by horizons in any classical solution, as occurs for example in the maximally extended AdS-Schwarzschild black hole. Such horizons limit (and plausibly remove) any settings for potential paradoxes.

As we stress below and in appendix A, even in the presence of a second boundary the Hamiltonian boundary term at boundary A generates time-translations along Alice’s boundary alone. Bob’s boundary remains invariant. Similarly, the the Hamiltonian boundary term at boundary B generates time-translations along Bob’s boundary but leaves boundary A invariant. Again, these statements hold in classical gravity and we assume they continue to hold at the non-perturbative quantum level (in the same spirit as our original assumption concerning the Hamiltonian as a boundary term). Readers unfamiliar with these classical statements may see them most quickly by noting that Gauss’ law defines gravitational fluxes that are separately conserved at each boundary when appropriate boundary conditions are imposed; further details and references are given in appendix A.

As explained in detail below, the result of the above assumptions is that information Alice injects into the AdS spacetime through boundary A at time \(t_1 \) still remains available at boundary A at time \(t_2 \) no matter what Bob does at boundary B. E.g., even if Alice injects the information as spins that travel to boundary B where they are measured by Bob. We investigate various such settings below.

We are most interested in cases where Alice’s measurement does not commute with Bob’s. In sections 3 and 4, Alice performs a holographic measurement at what appears to be a spacelike separation from Bob’s experiment, leading to the potential paradox described in the introduction. In particular, in section 3, Alice attempts to directly measure the somewhat artificial-looking observable \(e^{-i\Phi_A(t_1-t_2)}O(t_2)e^{i\Phi_A(t_1-t_2)} \), where \(O(t_2) \) is a local boundary observable at \(t_A = t_2 \) and \(\Phi_A \) is the gravitational flux at boundary A which
gives the associated boundary term in the Hamiltonian. For reasons explained in section 3, we refer to this experiment as the Φ-subtraction protocol. Since, in the absence of Alice’s measurements, Φ_A is the full generator of t_A-translations, this measurement allows Alice to recover information about O at the earlier time t_A = t_1. Despite the unfamiliar nature of this experiment, it serves as a simple, clean example to illustrate the consequences of Alice’s coupling to Φ_A: Such couplings necessarily alter the boundary conditions at boundary A and, for large enough couplings of the right sign, are inconsistent with smooth non-degenerate metrics. It is of course an open question whether such couplings can be described in non-perturbative quantum gravity and we save discussion of this issue for section 6. However, assuming that they are allowed, we argue in section 3 that they alter the naive notion of causality so that Alice’s measurement can in fact affect Bob’s.

In section 4, Alice performs a somewhat more physical measurement, again at apparent spacelike separation from that of Bob. We refer to this experiment as the Φ-projection protocol. In rapid succession, Alice simply measures Φ_A, a local boundary observable O, and Φ_A again, all with high resolution. After a final interference experiment, and after repeating this protocol many times on identically prepared AdS systems, Alice obtains enough data to compute A(E, λ, E') := ⟨Ψ|P_{Φ_A=E}P_{O(t_2)=λ}P_{Φ_A=E'}|Ψ⟩. Here |Ψ⟩ is the quantum state of the system, P_{Φ_A=E}, P_{Φ_A=E'} are projections onto the eigenspaces of Φ_A with eigenvalues E, E', and P_O=λ is the projection onto the eigenspace of O with eigenvalue λ. Integrating A(E, λ, E') against e^{-i(E-E')(t_1-t_2)}, Alice computes ⟨Ψ|P_{O(t_1)}|Ψ⟩ and again recovers information about O at any other time t_1. However, the couplings to Φ_A required for Alice to perform measurements of the desired accuracy again impose boundary conditions inconsistent with smooth invertible metrics and lead to the same discussion as in section 3.

It is therefore of interest to ask if Alice can recover the information using couplings compatible with smooth invertible bulk metrics. Section 5 describes two experiments where this is possible, provided that a certain ‘operational density of states for Alice’ is finite. This density of states counts only states distinguishable from boundary A, but allows Alice to reason as if the spectrum of Φ_A were discrete. The first experiment is just a weak-coupling version of the Φ-projection protocol in which Alice compensates for the weak coupling by letting the experiment run for for an exponentially long time. Due to this long time, her experiment is causally connected to Bob’s, avoiding the potential paradoxes of sections 3 and 4. In the second experiment, Alice uses a generic coupling to drain information from the AdS space into a universal quantum computer (where she may then analyze the information at will). This experiment also requires enough time to make what is effectively causal contact with Bob’s measurement, though in principal polynomial times will suffice.

3. Measuring the past

As described in section 2, we consider two observers (Alice and Bob), with Alice at an
are manifestly non-gravitational theory. But gravity changes this conclusion since both \(\Phi_A(t_1) \) and \(\mathcal{O}(t_2) \) are accessible to Alice at any time \(t_2 \). As a result, she needs only to measure \(e^{-i\Phi_A(t_2-t_1)}\mathcal{O}(t_2)e^{i\Phi_A(t_2-t_1)} = \mathcal{O}(t_1) \). Here we have used the fact (briefly reviewed in the appendix) that \(\Phi_A \) is the on-shell generator of \(t_A \)-translations invariant.

Since the spin travels into the bulk at time \(t_1 \), it might appear that Alice can no longer access the desired qubit after this time. Such a conclusion would hold in a local non-gravitational theory. But gravity changes this conclusion since both \(\Phi_A(t_2) \) and \(\mathcal{O}(t_2) \) are accessible to Alice at any time \(t_2 \). As a result, she needs only to measure \(e^{-i\Phi_A(t_2-t_1)}\mathcal{O}(t_2)e^{i\Phi_A(t_2-t_1)} = \mathcal{O}(t_1) \). Here we have used the fact (briefly reviewed in the appendix) that \(\Phi_A \) is the on-shell generator of \(t_A \)-translations invariant.

Now, if the bulk metric is in a semi-classical state in which such notions make sense and if she has enough information about this state, Alice can choose \(t_2 \) to be spacelike separated from the event where Bob measures the qubit of interest. This situation may seem to give rise to a paradox. On the one hand, since Alice is just measuring \(\mathcal{O}(t_1) \), it seems clear that the effect of Alice’s measurement must be identical to what would have
occurred if she had measured the qubit directly at time t_1. Such a measurement would have correlated $O(t_1)$ (say, the z-component of a spin) with Alice’s measuring device, so that Bob would receive the spin in what was effectively a mixed state. Even if the spin was in a S_z-eigenstate before t_1, Bob would find equal probability for both S_z-eigenstates when the spin reaches his boundary. On the other hand, Alice’s measurement occurred at time $t_A = t_2$, which by construction was spacelike separated from Bob’s experiment. So, how did this decoherence occur?

Answering this question requires a model of the couplings Alice engineers to perform her experiment; i.e., of the relevant modifications to (3.1). Recall that Alice wishes to couple to $e^{-i\Phi_A(t_2-t_1)}O(t_2)e^{i\Phi_A(t_2-t_1)}$. Since the action is a function of c-number field histories, it is not natural to include such a commutator directly. However, the same effect is achieved by modifying the action in three steps:

i) At time $t_2 - \epsilon$ for small ϵ, add a term $-\delta(t_2 - \epsilon - t_A) \Phi_A(t_2 - t_1)$ to the Hamiltonian; i.e., add $\int dt_A \delta(t_2 - \epsilon - t_A) \Phi_A(t_2 - t_1)$ to the action.

ii) At time t_2, couple Alice’s apparatus to the new $O(t_2)$. Due to step (i), this differs from the $O(t_2)$ described by (3.1) by conjugation by $e^{-i\Phi_A(t_2-t_1)}$.

iii) At time $t_2 + \epsilon$, add a term $-\delta(t_2 + \epsilon - t_A)\Phi_A(t_2 - t_1)$ to the Hamiltonian; i.e., add $\int dt_A \delta(t_2 + \epsilon - t_A) \Phi_A(t_2 - t_1)$ to the action.

We will need to analyze only step (i) in detail. Because it subtracts a term from the Hamiltonian, we refer to this experiment as the Φ-subtraction protocol. Now, due to the observations after eq. (3.2), adding the specified term to the action is completely equivalent to shifting the lapse on boundary A by $N_A \rightarrow 1 - \delta(t_2 - \epsilon - t_A) (t_2 - t_1)$. Thus, N_A becomes a function of t_A which in particular must become negative. Even if the delta-function is replaced by a smooth approximation, the lapse must still change sign and, in the smooth case, must pass through zero. Such boundary conditions are incompatible with smooth invertible metrics, and any attempt to define the theory requires input beyond our usual notion of semi-classical gravity.

It is of course an open question whether such boundary conditions can be described in non-perturbative quantum gravity. We will discuss this issue in section 6 taking some input from AdS/CFT. However, having assumed that Alice has the ability to add arbitrary couplings (and in particular the one associated with step (i)), for now we simply suppose that such couplings are allowed and press onward with our discussion.

We must therefore supply the required additional dynamical input by hand. We shall do so using a certain analytic continuation. To begin, consider a less drastic version of steps (i-iii) associated with a A-boundary lapse $N_A = 1 - \delta N_A(t)$, where this time we take $\delta N_A(t) < 1$. In this case the analogues of steps (i-iii) above merely implement a measurement of O at what for $N_A = 1$ have been called time time $t_2 - \Delta t$, where $\Delta t = \int \delta N_A(t)$. The shift $N_A \rightarrow 1 - \delta N_A(t)$ is essentially a change in the relationship between proper time on boundary A and the time t_A which governs the behavior of Alice’s ancilla, including any clocks present in Alice’s laboratory.
It is therefore natural to define the effect of (i-iii) above by analytic continuation in Δt: we declare that the net effect of the original steps (i-iii) is equivalent to Alice simply measuring $O(t_1)$ directly at time t_1 except that, due to the above shift, the relevant information appears in her measuring device only at time t_2. In particular, although Alice’s measurement occurs at $t_A = t_2$ and thus would appear to have been causally separated from Bob’s measurement, the fact that Bob’s measurement occurs in the causal future of time $t_A = t_1$ nevertheless allows it to be influenced by Alice’s. Alice’s experiment has fundamentally altered causality in this system.

4. A more physical measurement

The Φ-subtraction protocol of section 3 involved couplings which allowed Alice to recover information apparently sent into the bulk at a much earlier time. While these couplings may strike some readers as rather contrived, the discussion served to illustrate a fundamental point: Coupling directly to the gravitational flux Φ_A changes the boundary conditions, and strong such couplings (of the correct sign) are incompatible with smooth invertible boundary metrics. Furthermore, if the system can in fact be defined with such boundary conditions, one expects the effective causal structure to be radically altered.

Since it is precisely the inclusion of Φ_A that makes the algebra of A-boundary observables complete at each time, one might expect this to be a generic feature of Alice’s attempts to holographically recover information at time t_2 which was previously present on the A-boundary at time t_1. Below, we investigate this conjecture by analyzing a somewhat more physical experiment in which Alice simply performs non-demolition measurements of Φ_A, O, and Φ_A again in quick succession. We refer to this experiment as the Φ-projection protocol. As will be explained in detail below, if her measurements are of sufficient accuracy, and if she repeats such measurements on a large number of identically prepared systems, she can recover information associated with the operator $O(t)$ any earlier time $t_2 - \lambda$. However, such experiments raise issues quite similar to those of section 3. The key point is that any direct measurement of Φ_A involves a coupling to Φ_A, and that measuring Φ_A to high accuracy requires a coupling that is in some sense strong.

To be specific, we us consider a model in which Alice has 4 distinct ancilla systems. The first is simply a spin, i.e., a $j = 1/2$ representation of SU(2). The associated SU(2) generators will be denoted S_x, S_y, S_z and we assume the spin to be prepared in the $S_z = +1/2$ state. The other ancilla are 3 pointer variables described by canonical pairs X_i, P_i (with canonical commutation relations) for $i = 1, 2, 3$. These ancilla are initially prepared in Gaussian wavepackets of widths σ_i. For simplicity we take all ancilla operators to be independent of time except as dictated by their couplings to the AdS space; i.e., the free Hamiltonians of Alice’s ancilla vanish. We again take the A-boundary metric to be (2.2) with $N_A = 1$, except as modified by Alice’s experiment below.

We model Alice’s non-demolition measurements by von-Neumann couplings [22] to the pointer-variables X_1, X_2, X_3. The spin will be used to produce certain important interference terms in the final stage of the experiment. In particular, although the spin is prepared in the state $S_z = +1/2$, Alice will design her measurements to take place only if
\(S_x = +1/2 \). At the end of the experiment, Alice measures the probability that the spin and pointer-variables take various values. The resulting interference terms between the \(S_x = \pm 1/2 \) states will allow her to determine \(A(E, \lambda, E') := \langle \Psi | P_{\Phi_A = E} P_{O(t_2) = \lambda} P_{\Phi_A = E'} | \Psi \rangle \) where \(| \Psi \rangle \) is the quantum state of the system (see footnote 3). The probability distribution of \(O(t_1) \) may then be recovered by integrating \(A(E, \lambda, E') \) against \(e^{-i(E-E')(t_1-t_2)} \).

As usual in quantum mechanics, Alice must have access to arbitrarily many identically prepared copies of the AdS space to measure the above probabilities. We assume that this is the case.

The details of the \(\Phi \)-projection protocol can be described in the Schrödinger picture as a sequence of unitary transformations and projections onto apparatus variables. The procedure is:

\begin{itemize}
 \item[i:] Apply \(\exp (i g_1 \Phi_A (S_x + 1/2) P_1) \). If \(S_x = +1/2 \), this implements a von Neumann measurement of \(\Phi_A \) by \(X_1 \) with coupling \(g_1 \).
 \item[ii:] Apply \(\exp (i g_2 O(S_x + 1/2) P_2) \). If \(S_x = +1/2 \), this implements a von Neumann measurement of \(O \) by \(X_2 \) with coupling \(g_2 \).
 \item[iii:] Apply \(\exp (i g_3 \Phi_A (S_x + 1/2) P_3) \). If \(S_x = +1/2 \), this implements a von Neumann measurement of \(\Phi_A \) by \(X_3 \) with coupling \(g_3 \).
 \item[iv:] Project onto eigenstates of \(X_1, X_2, X_3 \) with eigenvalues \(x_1, x_2, x_3 \) (more properly, onto corresponding spectral intervals); i.e., measure the operators \(X_1, X_2, X_3 \) and abort the experiment unless the values \(x_1, x_2, x_3 \) are obtained.
 \item[v:] Pick a unit vector \(\vec{v} \in \mathbb{R}^3 \) and project onto states with \(\vec{v} \cdot \vec{S} = +1/2 \); i.e., measure \(\vec{v} \cdot \vec{S} \) and abort the experiment unless the values \(+1/2\) is obtained.
\end{itemize}

By the usual rules of quantum mechanics, the probability that the experiment succeeds (i.e., that the experiment is not aborted in either stage (iv) or stage (v)) is given by

\[
P(x_1, x_2, x_3, \vec{v}) = \frac{1}{2} \left| \alpha | \Psi \rangle + \beta P_{H_A = x_3} P_{O = x_2} P_{H_A = x_1} | \Psi \rangle \right|^2, \tag{4.1}
\]

where, with appropriate conventions for the spin-eigenstates, we have

\[
\alpha = i \langle \vec{v} \cdot \vec{S} = +1/2 | S_x = -1/2 \rangle, \quad \beta = \langle \vec{v} \cdot \vec{S} = +1/2 | S_x = +1/2 \rangle. \tag{4.2}
\]

By repeating the experiment many times on identically prepared systems and varying the choice of \(x_1, x_2, x_3, \vec{v} \), Alice can determine the entire function (4.1) to arbitrary accuracy. Note that \(|\alpha|^2 + |\beta|^2 = 1 \), but that \(\alpha \) and \(\beta \) may otherwise be chosen arbitrarily. From her measurements of \(P(x_1, x_2, x_3, \vec{v}) \), Alice may thus calculate the term in (4.1) proportional to \(\alpha^* \beta \); i.e., she may calculate the amplitude

\[
A(x_1, x_2, x_3, \vec{v}) = \langle \Psi | P_{H_A = x_3} P_{O = x_2} P_{H_A = x_1} | \Psi \rangle. \tag{4.3}
\]

The probability distribution of \(O(t_2 - \lambda) \) may then be recovered by integrating (4.3) against \(e^{-i\lambda x_1} e^{i\lambda x_3} \). Similarly, any other data that Alice might have accessed at time \(t - \lambda \) can be
accessed at time t by simply replacing step (ii) with the procedure to measure this data directly, conditioned as above on having $S_x = +1/2$.

As in section 3, we wish to understand the impact of Alice’s measurements on dynamics, and in particular on the boundary conditions. Each step in the Φ-projection protocol is of course associated with the addition of an appropriate term to the action. The terms of most interest will be those associated with steps (i) and (iii) which take the form

$$S_{(i)+(iii)} = - \int dt_A \left(f_1(t_A) \Phi_A(S_x + 1/2)P_1 + f_3(t_A) \Phi_A(S_x + 1/2)P_3 \right),$$

where $\int dt_A f_1(t_A) = g_1$ and $\int dt_A f_3(t_A) = g_3$. Such terms resemble the couplings of section 3 with the magnitude of the coupling being set by $f_1(t_A)(S_x + 1/2)P_1$ and $f_3(t_A)(S_x + 1/2)P_3$.

When $f_3(t) = 0$, the boundary term (4.4) forces the A-boundary lapse to be $N_A = 1 - f_1(t_A)(S_x + 1/2)P_1$. Since the case of interest is $S_x = +1/2$, the lapse remains positive only if $f_1(t_A)P_1 < 1$. Imposing such a requirement would restrict the resolution of the measurement in terms of the time Δt_A which elapses during the experiment. In particular, it would require $g_1 \Delta P_1 < \Delta t_A$, where $\Delta P_1 = 1/\sigma_1$ is the momentum-space width of the Gaussian initial state for this pointer-variable. Since the position-space width is $\Delta X_1 = \sigma_1$, and since the interaction translates X_1 by $g_1 \Phi_A$, Alice’s experiment measures Φ_A with a resolution $\Delta \Phi_A = \frac{1}{g_1 \Delta X_1}$. Keeping the lapse positive would thus require $\Delta \Phi_A > \frac{1}{\Delta X_1}$. While this is reminiscent of an energy-time Heisenberg uncertainty relation, it is important to recall that other quantum systems do allow better measurements of energy on much shorter timescales [23]. We will save for section 6 any discussion of whether $\Delta \Phi_A \Delta t_A > 1$ constitutes a fundamental restriction in the AdS context or merely limits the familiar semi-classical framework.

Now, how accurately does Alice need to measure Φ_A in order to recover information at $t_A = t_1$? If she makes no assumptions about the spectrum of Φ_A, she must allow for frequencies of order $\frac{1}{t_2-t_1}$, where t_2 is the time at which stage (ii) is performed. Alice thus needs $\Delta \Phi_A \sim \frac{1}{t_2-t_1}$ to obtain even rough information, and she will require $\Delta \Phi_A \ll \frac{1}{t_2-t_1}$ to obtain high resolution. But if t_1 occurs before the experiment begins, then since stage (i) itself takes time Δt_A we have $t_2 - t_1 > \Delta t_A$. Thus $\Delta \Phi_A \Delta t_A \ll 1$ for a precision measurement. In summary, if she makes no assumptions about the spectrum of Φ_A, obtaining significant information about observables before her experiment began requires Alice to use couplings strong enough to raise the same issues as in section 3. Again, if we assume that such couplings are nevertheless allowed, the natural conclusion is that they alter the naive notion of causality so that Alice’s experiment can effect Bob’s. While Alice measures a coherent qubit, the qubit Bob receives is in a mixed state as if the z-component of its spin had already been measured.

5. Operationally discrete spectra

Section 4 discussed the Φ-projection protocol making no assumptions about the spectrum of Φ_A. Of course, it is also interesting to suppose that Alice does know something about the
spectrum of Φ_A. An interesting case arises if this spectrum is discrete, so that any resolution finer than the smallest level spacing suffices to obtain information about the very distant past. Thus, Alice may be able to complete her measurement using couplings compatible with familiar AdS asymptotics and avoiding radical effects on the causal structure.

In fact, we will require finiteness only of the A-boundary’s ‘operational density of states.’ The idea is that only states which can be actively probed from boundary A are relevant, and that we discard any other states in computing this density. After introducing this notion below, we reconsider the Φ-projection protocol in section 5.1. We also consider a new experiment (the quantum computer protocol) in section 5.2 which does not involve direct couplings to Φ_A.

To define Alice’s operational density of states, we first suppose that Alice has access to a large number of AdS systems which define identical states ρ on the A-boundary observables. We explicitly allow ρ to be a mixed state and use the notation of density matrices. We emphasize that only the restriction of the state to A-boundary observables is relevant, and that these states need not be identical in any deeper sense.

Now consider the Hilbert space defined by the Gelfand-Naimark-Segal construction (see e.g. [24]) using ρ and this observable algebra; i.e., for each (bounded) observable O_A at Alice’s boundary we define a state $|O_A\rangle$ and introduce the inner product

$$\langle O_A^1 | O_A^2 \rangle = \text{Tr} \left((\rho O_A^1) O_A^2 \right).$$

The right-hand side is positive semi-definite and sesquilinear. We may thus quotient by the zero-norm states and complete to define Alice’s ‘operational’ Hilbert space \mathcal{H}_A. We take her operational density of states to be the entropy $S(E)$ defined by the operator Φ_A on \mathcal{H}_A. If $S(E)$ is finite, we say that the density of AdS states is operationally finite. In cases where some AdS states cannot be distinguished by A-boundary observables, the true number of states can be far larger than $S(E)$.

The entropy $S(E)$ counts the density of states with $\Phi_A = E$ that can be distinguished using A-boundary observables. It is thus tempting to use the gravitational thermodynamics of asymptotically AdS spaces to conclude, at least in the absence of an inner boundary, that $S(E)$ must be finite and that for large E it is given by the AdS Bekenstein-Hawking entropy $S_{BH}(E)$. This conclusion will hold if time-independent couplings of the AdS system to Alice’s finite-entropy ancilla generically lead to thermodynamic equilibrium states in which the AdS system is well-described by semi-classical calculations. However, we saw in sections 3 and 4 that strong couplings to Φ_A take us outside the usual framework of semi-classical gravity. Thus, this framework cannot be said to probe generic couplings. We will return to this issue in section 6, but for the rest of this section we simply assume that $S(E)$ is finite without imposing any particular restriction on its form.

The discussion above has not explicitly mentioned either Bob or any inner boundary. If they are present, Bob and his ancilla are merely part of the system that Alice probes through her couplings to the AdS boundary, and Alice need not distinguish them from the bulk AdS system. This is another reason not to specify the form of $S(E)$; this density will generically depend on the ancilla that Bob couples to the AdS space.
Even just taking $S(E)$ to be finite imposes certain restrictions on Bob’s couplings. In particular, it forbids most explicitly time-dependent couplings. The point is that acting with $\exp(i\lambda \Phi_A)$ translates boundary A relative to boundary B. As a result, if Alice can send signals which probe Bob’s measuring devices and return, and if Bob’s couplings determine a preferred time t_0 in the original state ρ, the observables at boundary A are sensitive to $t_0 - \lambda$. Acting with $\exp(i\lambda \Phi_A)$ then generates an infinite-dimensional Hilbert space of states distinguished by A-boundary observables. One exception occurs when Bob’s couplings are periodic, though in that case any analysis is much like the time-independent case. One might also attempt to forbid Alice from actively probing Bob’s couplings, though it is not clear how this can be done. In particular, if the state ρ was such that Bob’s couplings turned on only inside a black hole, then acting with $\exp(i\lambda \Phi_A)$ can translate the system to a state where the above t_0 occurs before the black hole formed or, for classically eternal black holes, to when it experienced a rare quantum fluctuation into a horizon-free spacetime filled with thermal radiation. One concludes that Bob’s couplings are not truly hidden and that the operational density of states will again diverge if his couplings define a distinguished time t_0.

We therefore require Bob’s couplings to be time-independent below. This makes sense only with then boundary conditions at boundary B have a time-translation symmetry: for Dirichlet-like boundary conditions the (fixed) metric on boundary B must be stationary. It is not immediately clear to what extent such boundary conditions are compatible with the interesting case where Bob enters (the future-trapped region of) a black hole. A proper treatment of such cases may require more flexible boundary conditions, and in any case is complicated by failure of classical physics near the black hole singularity. We therefore avoid this setting in sections 5.1 and 5.2 below, though we provide a few brief comments in section 5.3.

5.1 A return to projections

We now reconsider the Φ-projection protocol of section 4 assuming the AdS system to have an operationally finite density of states for Φ_A, and further assuming that Alice knows the spectrum of Φ_A precisely. This may be either because she has solved the full quantum theory, or because she has already performed a large number of experiments to determine this spectrum.

The typical spacing between Φ_A-eigenstates is $\Delta \Phi_A \sim \mu e^{-S(E)}$, where μ is an appropriate energy scale. Thus, by allowing both stages (i) and (iii) to take time $\Delta t_A \gg \mu^{-1} \exp(S(E))$, Alice can obtain accurate information about $A(E, \lambda, E', \vec{v})$ for essentially all eigenvalues E, E' of Φ_A while still satisfying $\Delta t_A \Delta \Phi_A > 1$. She can then use this information to extrapolate back to much earlier times. The the only errors in her calculation arise from the off chance that she measured an eigenvalue E_i for Φ_A when the actual result was some other eigenvalue E_j. Since we began with detectors in Gaussian wave packets $\propto e^{-x_1^2/\Delta x_1^2}$, the probability for this to occur is Gaussian in $E_i - E_j$ and is typically of order $\exp\left(-g_1^2 \mu^2 e^{-2S(E)}/\Delta x_1^2\right) \sim \exp\left(-\Delta t_A^2 \mu^2 e^{-2S(E)}\right)$, where we have chosen $f_1(t)$ such that $\Delta t_A \Delta \Phi_A \sim 1$. Since there are $\exp(S(E))$ states, and since the full state enters
quadratically in Alice’s calculation, her total error is of order
\[
\exp \left(2S(E) - \Delta t_A^2 \mu^2 e^{-2S(E)} \right),
\]
and so is exponentially small for \(\Delta t_A \gg \sqrt{S(E)} e^{S(E)}. \) Thus, provided that no energy levels have an unnaturally small splitting of eigenvalues, for such \(\Delta t_A \) there is essentially no limit to Alice’s lookback time. We note that exact degeneracies (e.g., due to symmetries) cause no problems; for our present purposes, there is no need to distinguish states with identical time-dependence.

Due to the long timescale \(\Delta t_A \), it is not difficult to reconcile Alice’s measurements with Bob’s measurement of a non-commuting observable. We suppose that Bob arranges a time-independent coupling to his devices at boundary B, and that this coupling is consistent with the finiteness of Alice’s operational density of states \(S(E) \). Such an interaction might be triggered by the approach of spins with certain characteristics, but the coupling remains non-zero at all times. Bob’s device is a like a photodetector that is always on. As a result, while information may flow into Bob’s device during the experiment, the information can leak back out if Alice allows her experiment to run for a long enough time. Since \(\Delta t_A \sim \exp \left(S(E) \right) \), any information remaining in Bob’s ancilla is associated with states split in energy by much less than \(e^{-S(E)} \). If such states exist, they limit the success of Alice’s experiment in precisely the same way as would any other finely-tuned near degeneracies in the spectrum of \(\Phi_A \). On the other hand, to recover the desired information, there will be some timescale over which all information does leak out of Bob’s ancilla. Alice simply needs to extend the experiment to run over this longer period of time.

5.2 Quantum computers and generic couplings

We noted above that an operationally finite density of states allows Alice to perform useful holographic experiments without radical alterations of the causal structure at her boundary. The particular experiment discussed used measurements over very long times \(\Delta t_A \gg e^{S(E)} \) to measure \(\Phi_A \) to great accuracy. It is therefore interesting to ask if similarly useful experiments can be performed over shorter timescales or with more generic couplings.

We now argue that this is the case, and that (at least when Bob does not interfere) one should be able to reduce \(\Delta t_A \) to roughly the timescale associated with the evaporation of black holes in flat space. In this experiment, Alice will couple a small quantum memory device \((QM_1, \text{with entropy } S_1 \ll S(E))\) to the A-boundary in a fairly generic way, let the system equilibrate, and then couple the A-boundary to a large quantum memory device \((QM_2, \text{with entropy } S_2 \gg S(E))\). If \(S_2 \) is sufficiently large, almost all of the information originally available in \(QM_1 \) will be accessible from \(QM_2 \) once the system reaches its final equilibrium. The argument itself is not particularly novel: we merely use the idea that there is a unitary generator \(H_A \) of time-translations along the A-boundary to translate standard reasoning to our setting from non-relativistic quantum mechanics. In particular, we will make use of the fact emphasized in appendix A that the use of time-dependent couplings merely makes \(H_A \) a time-dependent function of A-boundary observables and Alice’s ancilla.
As before, we assume Alice’s operational density of states to be finite. However, for this new experiment, we also assume the system Alice probes to have an ‘operationally unique ground state’ (though our argument readily extends to the case of multiple vacuua so long as Alice can distinguish such vacuua by non-demolition experiments). Our specific assumption is that, if Alice were to couple ancilla with an infinite density of states to the A-boundary, the system generically relaxes to a state such that

- Alice’s boundary observables are uncorrelated with any of her other degrees of freedom.
- The expectation value $\text{Tr}(\rho O_A)$ of any A-boundary observable is independent of both the coupling used and the initial state ρ_i (so long as it is a density matrix on \mathcal{H}_A).

These assumptions again involve only the restriction of the state to Alice’s observables; we make no assumptions about any further observables which might be inaccessible to Alice.

In general, one expects the above relaxation to be rapid compared with the exponentially long timescales $e^{S(E)}$ of section 5.1. Certainly, free radiation in AdS will propagate to where it registers in A-boundary observables on timescales comparable to the AdS scale. Thus, such radiation can be rapidly extracted by Alice’s boundary couplings. While the relaxation proceeds more slowly in the presence of black holes, the couplings can allow Hawking radiation to rapidly leak out through the AdS boundary and one expects the relevant timescale to be some power law in the energy resembling the timescale for black hole decay in flat space\(^4\). As a result, at least when Bob’s ancilla are not coupled to the system, one expects this experiment to proceed much faster than that of section 5.1.

Assuming that the ground state of QM_1 is unique, the argument is now immediate. Alice couples first QM_1 and then QM_2 to boundary A and lets the system equilibrate. Both QM_1 and the A-boundary observables are then in their ground states, and the final state of QM_2 is unitarily related to the initial state of QM_1. To see this, one need only solve the Heisenberg equations of motion at boundary A (A.5) to relate any late time operator O_{QM_2} of QM_2 to the early time operators of QM_1, QM_2, and the observables at boundary A. The algebra of operators defined by QM_1, QM_2, and boundary A at an early time $t_A = t_1$ thus suffices to compute $\text{Tr}(\rho O_{QM_2})$ at any time.

Similarly, any observable of QM_1 at t_1 can be expressed in terms of observables for QM_2, QM_1, and boundary A at any late time $t_A = t_2$. Since the A-boundary relaxes to a known state and QM_1 relaxes to its (known) ground state, correlators of early time operators for QM_1 can be computed in terms of late-time correlators of QM_2; i.e., the full information in the initial state of QM_1 can be recovered from the observables of QM_2.

So long as his couplings do not destroy the above assumptions, including Bob requires no changes in this discussion. As in section (5.1), his measurements are easily reconciled with those of Alice. Because he leaves all of his couplings turned on, over the long time

\(^4\)In fact, as noted in [8, 9], with certain additional assumptions (concerning either the form of $S(E)$ or the “mixing time”), versions of this experiment with Bob inside a black hole may in fact be conducted over much shorter timescales, in some cases only logarithmically longer than the light-crossing time of the black hole. However, for simplicity we avoid such extra assumptions below.
it takes Alice’s experiment to run any information in his ancilla can leak back out to the AdS boundary. It is true that if Bob’s couplings are weak or if the entropy of his ancilla is large, his presence can greatly affect the time required for the A-boundary to relax to its ground state (and thus for equilibrium to be reached). However, since Alice has access to arbitrarily many identical copies of the AdS system (coupled identically to Bob’s ancilla), she may simply measure this relaxation time and then design her experiment accordingly.

5.3 Experiments inside Black Holes

Perhaps the most interesting setting for our experiments occurs when Bob (or, more properly, boundary B) falls into a black hole. However, as noted earlier, it is unclear to what extent such situations are consistent with time-translation invariance at boundary B, and in particular with taking the metric on boundary B to be stationary, which was assumed for all experiments in this section (the weak coupling Φ-projection protocol and the quantum computer protocol).

Nonetheless, since the experiments above last long enough for any black hole to either evaporate or to fluctuate into a horizon-free geometry, the details of Bob’s experience inside the black hole may not be relevant. Suppose, for example, that boundary B remains present after the black hole evaporation or fluctuation, and that it remains connected to the same asymptotic region of spacetime. In that case the discussions above continue to apply, though the details may be of interest.

Let us examine these details in the context of the quantum computer protocol (section 5.2). Recall that Alice couples only to outgoing radiation, which may consist both of Hawking radiation and of additional radiation emitted by Bob’s ancilla after the evaporation of the black hole. In the absence of boundary B, unitarity would imply that the von Neumann entropy of the Hawking radiation is the same as that of the state which formed the black hole. The mechanism for this was outlined in [4], and the key step was to relate the A-boundary Hamiltonian to the Hawking radiation. As the black hole evaporates, one notes that the gravitational Gauss’ law relates the radiation stress tensor to the difference between Φ_A and the corresponding gravitational flux Φ_horizon at the black hole horizon. When the horizon disappears, Φ_horizon vanishes and Φ_A is completely encoded in the Hawking radiation.

However, if boundary B remains present after evaporation, the gravitational Gauss’ law relates Φ_A to both the radiation stress tensor and to a similar gravitational flux Φ_B at boundary B. The von Neumann entropy of the Hawking radiation thus remains linked to that of Bob’s ancilla through Φ_B. Until Bob’s ancilla spontaneously de-excite and decorrelate themselves with the bulk AdS space, the A-boundary observables will not relax to their ground state. Alice’s experiment must run for a time dictated by Bob’s ancilla and not just by Hawking evaporation of the black hole. Similar conclusions can be reached for the Φ-projection protocol of section 5.1.

In contrast, one might also investigate the case where boundary B ceases to exist after evaporation of the black hole. Versions of the quantum computer protocol were studied for such cases in [8, 9, 10]. Due to making additional, assumptions about either S(E) or the “mixing time,” refs. [8, 9, 10] considered experiments that ran for much shorter times.
than ours, though such times were always at least logarithmically longer than the light-crossing time of the black hole. We have nothing new to add to this discussion here and continue to rely on the resolution suggested in [8, 9, 10]. In particular, since the quantum computer protocol couples directly to the Hawking radiation, it is difficult to see how it could lead to causality-violating effects of the sort caused by our short-time Φ-subtraction and Φ-projection protocols. Instead, [8, 9, 10] argued that no true paradox could result unless the observers were able to compare the results of their experiments, and that the time required for these experiments was long enough to make comparison impossible before Bob is destroyed in the black hole singularity.

Finally, one might consider cases where boundary B continues to exist beyond the black hole singularity, but where it ceases to be connected to the same asymptotic region. Perhaps it enters a ‘baby universe.’ In such cases it is more difficult to reconcile Alice and Bob’s non-commuting measurements, though this might be possible in some more complete theory. If not, then baby universe production may be incompatible with an operationally finite density of states (and with an operationally unique ground state).

6. Discussion

We have explored a number of thought experiments in asymptotically AdS quantum gravity featuring holographic measurements performed by a boundary observer (Alice). Our focus was on experiments in which Alice couples directly to the gravitational flux Φ associated with the boundary term in the gravitational Hamiltonian, as opposed to attempts to extract information directly from outgoing radiation. We also allowed for a second observer (Bob) who performs a more local measurement. Both observers were taken to lie outside the spacetime so that there was no danger of Alice having access to a holographic encoding of Bob, and so that we could cleanly discuss gauge-invariant observables. The goal was to make more concrete the notion of boundary unitarity discussed in [4] and to resolve various potential paradoxes. It is clearly also of interest to understand the extent to which holographic measurements are possible for observers who are themselves part of the gravitating system, but we have not pursued this question here.

Interesting cases arise when the two observers measure operators that do not commute. The first class of settings (sections 3 and 4) seemed particularly paradoxical as the measurements occurred at events which, in the absence of the measurements, would not have been causally connected. By general principles of quantum mechanics, non-commuting measurements should interfere with each other. Moreover, Alice’s holographic measurements were guaranteed to succeed as planned under the assumptions of [4]. Thus, it was Alice’s holographic measurement which must somehow interfere with Bob’s familiar local measurement, despite the apparent causal structure.

The resolution was that, for each experiment, a complete analysis was not possible within the usual framework of semi-classical gravity. Furthermore, the particular form of this failure suggested radical modifications to the naive causal structure. In particular, these experiments involved strong couplings to the gravitational flux Φ_A associated with the usual ADM-like boundary term in the Hamiltonian. Such couplings were shown to
alter the boundary conditions in a manner incompatible with smooth invertible metrics, even at the asymptotic boundary. Instead, they required the lapse N_A at this boundary to pass through zero and become negative. We argued by analytic continuation that, if this behavior is allowed in the full theory of AdS quantum gravity, we expect it to modify the causal structure so that Alice’s experiment can in fact influence Bob’s. In the scenarios discussed, Alice’s measurement proceeded as she expected but resulted in Bob receiving what was effectively a mixed state. I.e., the result was the same as if Alice’s measurement had occurred in Bob’s causal past.

Given that they force us out of the familiar semi-classical domain, the reader may wonder whether the couplings of sections 3 and 4 (the Φ-subtraction and Φ-projection protocols) are in fact allowed in any complete theory. Could it be that we have granted Alice unphysical powers in making her measurements, perhaps in the same way that certain measurements are unphysical in relativistic field theory $[25, 26]$? Since a complete answer requires some input from quantum gravity, it is enlightening to ask this question in the context of AdS/CFT: Suppose that the AdS system has a dual formulation in terms of some large N gauge theory, and that it is this gauge theory which sits in a box in Alice’s lab. In that context, we see no obstacle to making precise measurements of the energy on short timescales. In particular, recall that Aharonov and Bohm showed $[23]$ how, for non-relativistic quantum systems, precise measurements of energy can be made arbitrarily rapidly. In the relativistic case, one expects that any additional restrictions are set by the light-crossing time of the gauge theory system in Alice’s laboratory and not by the intrinsic resolution of the measurement. Thus, at least in this context, the Φ-projection experiment of section 4 seems to be allowed.

The second class of settings (section 5) was less intrinsically paradoxical, but maintained the standard causal structure on the boundary. In such settings, Alice’s experiments lasted for long enough intervals of time to place Bob and Alice in a form of causal contact\footnote{Though in some cases this required the evaporation of black holes or their fluctuation into horizon-free geometries, in which case we had to make further assumptions about how this affected Bob’s boundary. See section 5.3.}. However, these experiments succeed only if the AdS space has an ‘operationally finite density of states’ $S(E)$. We noted that the details of both $S(E)$ and the timescale the experiment requires may depend on Bob’s choices of ancilla and couplings.

The discussion above allowed Bob to work at a finite boundary, at finite distance from bulk events. Suppose however that we imposed more familiar boundary conditions allowing only asymptotic boundaries. Since we know of no classical solutions in which two asymptotically AdS boundaries are causally connected, it is natural to assume that the A-boundary density of states $S(E)$ is independent of any ancilla or couplings at other boundaries. In this context, one might hope to calculate $S(E)$ from semi-classical gravitational physics, and it is tempting to conclude that it agrees with the Bekenstein-Hawking entropy $S_{BH}(E)$ at large E. In particular, we note that $S(E)$ is precisely the density of states that can affect the exterior of the black hole, which was advocated to correspond to black hole entropy in e.g. $[27, 3]$. One possible loophole is that some dynamical selection mechanism might forbid certain states described by $S(E)$ from appearing in thermal equilibrium, and it was
noted in section 5 that this might occur if high resolution measurements of Φ are fundamentally forbidden. However, we have now argued that such measurements are allowed (at least in the context of AdS/CFT), making this loophole less plausible.

As a final remark, the reader should note that the resolutions described above are quite different from those proposed in [8, 9, 10] for related thought experiments. Because they studied the extraction of information from Hawking radiation, and because the observer outside the black hole had to wait long enough to collect enough radiation, these works found that the two observers were unable to compare their results after the experiments were completed. The authors argued that, as a result, no true paradox could arise. In contrast, our settings include those where the observers can compare results. In particular, we considered short-time versions of the Φ-subtraction and Φ-projection protocols. Whether comparison is possible, we find that our experiments are not as independent as they might seem: one of the two experiments decoheres the qubit of interest so that the other experimenter interacts with a mixed state. The surprise was that, in the Φ-subtraction and Φ-projection experiments of sections 3 and 4, the holographic measurement was directly responsible for radical effects on the causal structure which allowed this decoherence to occur.

Acknowledgements

The author has benefited from many discussions with physicists at UCSB, the Perimeter Institute, the ICMS workshop on Gravitational Thermodynamics and the Quantum Nature of Space Time in Edinburgh, and the ICTS Monsoon Workshop on String theory in Mumbai. In particular, he thanks Roberto Emparan and especially Ted Jacobson and Simon Ross for their thought-provoking comments and questions. This work was supported in part by the US National Science Foundation under Grant No. PHY05-55669, and by funds from the University of California. The author thanks the Tata Institute for Fundamental Research and the International Center for Theoretical Sciences for their hospitality and support during critical stages of this project.

A. Diffeomorphism invariance and the Hamiltonian

This appendix provides a brief reminder of certain technical details associated with charges and symmetries in diffeomorphism-invariant theories. We wish to address three sorts of complications: i) situations with multiple boundaries, ii) the coupling of external (non-gravitating) degrees of freedom to boundary observables and iii) time-dependent boundary couplings (i.e., time-dependent boundary conditions). Situations of interest will typically involve all three issues simultaneously.

The general setting for our discussion is an action functional defined on a gravitating system (with boundaries) as well as some additional degrees of freedom (ancilla) associated with each boundary. For definiteness and simplicity, let us consider the case of two boundaries (A,B) which is of most interest in the main text. These may be either finite boundaries (in which the boundary lies at finite proper distance from the interior) or conformal boundaries with AdS asymptotics.
The ancilla associated with boundary A (B) are denoted $\alpha_A \ (\alpha_B)$. On each boundary (A,B) we choose some time coordinate (t_A, t_B) (such that the surfaces $t_A = constant, \ t_B = constant$ are Cauchy surfaces within the respective boundaries) which will define a notion of causality respected by the ancilla. The action will be stationary under an appropriate boundary condition which relates the ancilla α_A, α_B to the fields and their derivatives on a finite boundary, and to the Fefferman-Graham coefficients (see e.g. [14, 15]) of the bulk fields at an AdS conformal boundary. Below, we use the term ‘boundary values’ to refer to both the fields and their normal derivatives at a finite boundary, and to the two independent Fefferman-Graham coefficients for each field at an AdS conformal boundary. What is important for our purposes is that these boundary conditions may be chosen to share any symmetries of the action, and that the boundary conditions break diffeomorphism invariance (so that boundary diffeomorphisms are not gauge symmetries). In particular, we assume that all boundary values of bulk fields are gauge-invariant observables.

We assume the action to be invariant under diffeomorphisms generated by vector fields that vanish sufficiently fast at the (perhaps conformal) boundaries of the spacetime (see e.g. [15] for AdS details). We take the entire action to be the integral of a local density over the bulk spacetime, together with an appropriate set of (local) boundary terms and two additional terms of the form

$$S_{int} = \int dt_A L_A + \int dt_B L_B, \quad (A.1)$$

where $L_A \ (L_B)$ is a function of the $\alpha_A \ (\alpha_B)$ and the A-boundary (B-boundary) observables at time $t_A \ (t_B)$. Any coupling functions appearing in $L_A \ (L_B)$ are allowed to depend only on the time coordinate $t_A \ (t_B)$. Thus S_{int} describes the full physics of the ancilla, including any interaction terms.

Let us first suppose that the action does not explicitly depend on t_A, and that the boundary vector field $\partial \over\partial t_A$ can be smoothly extended into the bulk such a way that the diffeomorphism it generates preserves both the action and boundary conditions. Because diffeomorphisms that vanish sufficiently fast at the boundaries are pure gauge, this means that the action is invariant under the simultaneous transformations $t_A \rightarrow t_A + \tau$ on the ancilla α_A and a diffeomorphism of the AdS space which restricts to $t_A \rightarrow t_A + \tau$ on boundary A but which vanish on boundary B. By Noether’s theorem, there is a conserved generator H_A of this symmetry which we may call the Hamiltonian at boundary A. Since the transformation vanishes at boundary B and bulk diffeomorphisms are pure gauge, on shell this Hamiltonian is just a boundary term at boundary A. This last statement is manifest in any on-shell covariant phase space formulation (see e.g. [28] for discussions based on symplectic structures or [29] for a discussion based on the Peierls bracket). In particular, one sees from e.g. [29] that H_A is the sum of an integral of the usual boundary stress tensor [19, 20] over the hypersurface in boundary A defined by $t_A = constant$ and some additional terms constructed from L_A at the same time t_A. Since it generates a symmetry, H_A is independent of the choice of t_A.

For later use it is convenient to construct the Hamiltonian using an ADM-like canonical formulation. We write the action in canonical form by performing the usual space+time
decomposition in the bulk (see e.g. [16]) and introducing canonical momenta \(p_A, p_B \) for the ancilla. If the spatial manifold \(\Sigma \) has boundaries \(\partial_A \Sigma, \partial_B \Sigma \) where it intersects the A- and B-boundaries, the result must take the schematic form

\[
S_{\text{total}} = \int_{\Sigma \times \mathbb{R}} \left(\pi \dot{\phi} - N\mathcal{H} - N^i \mathcal{H}_i \right) - \int_{\partial_A \Sigma \times \mathbb{R}} \left(N\mathcal{E}_A + N^i \mathcal{P}_{Ai} \right) + \int_{\partial_A \Sigma} dt_A \left(p_A \dot{\alpha}_A - \Delta_A \right) - \int_{\partial_B \Sigma \times \mathbb{R}} \left(N\mathcal{E}_B + N^i \mathcal{P}_{Bi} \right) + \int_{\partial_B \Sigma} dt_B \left(p_B \dot{\alpha}_B - \Delta_B \right).
\]

Here \(\phi, \pi \) denote the full set of bulk fields and momenta, including metric degrees of freedom, and a sum over fields is implied. The usual lapse and shift are denoted \(N, N^i \) and \(\mathcal{H}, \mathcal{H}_i \) are the usual (densitized) bulk constraints, with \(i \) running over directions on \(\Sigma \). The boundary terms \(\mathcal{E}_A, \mathcal{E}_B, \mathcal{P}_{Ai}, \mathcal{P}_{Bi} \) are the boundary terms which would arise for \(L_A, L_B = 0 \). They depend only on the boundary values of \(\phi, \pi \), their derivatives along \(\partial_A \Sigma \), and perhaps certain coupling functions on the A- and B-boundaries. The terms \(\Delta_A, \Delta_B \) encode contributions from \(L_A, L_B \). As a result, they depend on the respective ancilla (\(\alpha_A, p_A \) or \(\alpha_B, p_B \)) as well as boundary values of \(\phi, \pi \), their derivatives along \(\partial_A \Sigma \), and any coupling constants present in \(L_A, L_B \). As for the bulk fields, \(p_A \dot{\alpha}_A \) and \(p_B \dot{\alpha}_B \) are canonical ancilla kinetic terms and a sum over all ancilla fields is implied.

We now consider any observable \(\mathcal{O}(t_A) \) built from the boundary values of \(\phi, \pi \) and the ancilla \(\alpha_A, p_A \) at boundary time \(t_A \). It follows by direct calculation from (A.2) that

\[
\frac{d\mathcal{O}}{dt_A} = \{ \mathcal{O}, H_A \} + \frac{\partial\mathcal{O}}{\partial t_A},
\]

where \(\frac{\partial\mathcal{O}}{\partial t_A} \) evaluates any explicit dependence of \(\mathcal{O} \) on \(t_A \) and the A-boundary Hamiltonian is

\[
H_A = \int_{\Sigma} \left(N\mathcal{H} + N^i \mathcal{H}_i \right) + \int_{\partial_A \Sigma} \left(N\mathcal{E}_A + N^i \mathcal{P}_{Ai} \right) + \Delta_A.
\]

Here we have assumed that \(\partial_A \Sigma \) coincides with a surface of constant \(t_A, t_B \) on the A- and B-boundaries. In (A.3) the lapse and shift are arbitrary in the bulk and vanish on boundary B. On boundary A, the lapse and shift are dictated by the boundary conditions which may force them to depend on the ancilla \(\alpha_A, p_A \). On-shell, we have \(\mathcal{H} = \mathcal{H}_i = 0 \) and the Hamiltonian is a pure boundary term. When the action is independent of \(t_B \), a similar result holds for the Hamiltonian \(H_B \) which generates time translations along boundary B while leaving boundary A unaffected.

We now wish to consider the case where the action does depend on \(t_A \). We note that any such action may still be written in the form (A.2), with the only difference being that all coupling constants in \(\mathcal{E}_A, \mathcal{P}_{Ai}, \Delta_A \), may now depend on \(t_A \). Direct calculation now implies

\[
\frac{d\mathcal{O}}{dt_A} = \{ \mathcal{O}, H_A(t_A) \} + \frac{\partial\mathcal{O}}{\partial t_A},
\]
with $H_A(t_A)$ again given by (A.4) evaluated at A-boundary time t_A. As desired, we see that this notion of time-evolution is generated on-shell by a (time-dependent) boundary term constructed only from A-boundary observables and Alice’s ancilla α_A, p_A.

References

[1] S. W. Hawking, “Particle Creation by Black Holes”, Commun. Math. Phys., 43, 199-220, (1975).
[2] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)][arXiv:hep-th/9711200].
[3] T. Jacobson, “On the nature of black hole entropy,” in “General Relativity and Relativistic Astrophysics, Eighth Canadian Conference, Montréal, Québec, 1999,” (AIP, Melville, NY, 1999, eds. C. P. Burgess and R. Myers); [arXiv:gr-qc/9908031].
[4] D. Marolf, “Unitarity and Holography in Gravitational Physics,” from slightly earlier in today’s arxiv listing, tentatively 0808.2842 [gr-qc].
[5] T. Banks, L. Susskind and M. E. Peskin, “Difficulties For The Evolution Of Pure States Into Mixed States,” Nucl. Phys. B 244, 125 (1984).
[6] V. Balasubramanian, D. Marolf and M. Rozali, “Information recovery from black holes,” Gen. Rel. Grav. 38, 1529 (2006) [Int. J. Mod. Phys. D 15, 2285 (2006)] [arXiv:hep-th/0604045].
[7] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299 (1982) 802; D. Dieks, “Communication By Epr Devices,” Phys. Lett. A 92, 271 (1982).
[8] L. Susskind, L. Thorlacius and J. Uglum, “The Stretched Horizon And Black Hole Complementarity,” Phys. Rev. D 48, 3743 (1993) [arXiv:hep-th/9306069]; L. Susskind and L. Thorlacius, “Gedanken experiments involving black holes,” Phys. Rev. D 49, 966 (1994) [arXiv:hep-th/9308100].
[9] P. Hayden and J. Preskill, “Black holes as mirrors: quantum information in random subsystems,” JHEP 0709, 120 (2007) [arXiv:0708.4025 [hep-th]].
[10] Y. Sekino and L. Susskind, “Fast Scramblers,” arXiv:0808.2096 [hep-th].
[11] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998)[arXiv:hep-th/9802150].
[12] K. H. Rehren,K. H. Rehren, “Local quantum observables in the anti-deSitter - conformal QFT correspondence,”Phys. Lett. B 493, 383 (2000)[arXiv:hep-th/0003120].
[13] J. V. Rocha, “Evaporation of large black holes in AdS: coupling to the evaporon,” arXiv:0804.0055 [hep-th].
[14] C. Fefferman and C.R. Graham, “Conformal Invariants,” in Élie Cartan et les Mathématiques d’Aujourd’hui (Asterisque, 1985) 95.
[15] I. Papadimitriou and K. Skenderis, “Thermodynamics of asymptotically locally AdS spacetimes,” JHEP 0508, 004 (2005) [arXiv:hep-th/0505190].
[16] R.M. Wald, General Relativity, (University of Chicago Press, Chicago, 1984).
[17] M. Henneaux and C. Teitelboim, “Asymptotically Anti-De Sitter Spaces,” Commun. Math. Phys. 98, 391 (1985).

[18] S. Hollands, A. Ishibashi and D. Marolf, “Comparison between various notions of conserved charges in asymptotically AdS-spacetimes,” Class. Quant. Grav. 22, 2881 (2005) [arXiv:hep-th/0503045].

[19] M. Henningson and K. Skenderis, “The holographic Weyl anomaly,” JHEP 9807, 023 (1998) [arXiv:hep-th/9806087].

[20] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity,” Commun. Math. Phys. 208, 413 (1999) [arXiv:hep-th/9902121].

[21] A. Ashtekar, A. Magnon, Asymptotically anti-de Sitter space-times, Classical and Quantum Gravity Lett. 1, L39 (1984).

[22] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press: Princeton 1955).

[23] Y. Aharonov and D. Bohm, “Time in the quantum theory and the uncertainty relation for time and energy,” Phys. Rev. 122 (1961) 1649. Reprinted in Quantum Theory and Measurement, (eds J. A. Wheeler and W. H. Zurek, Princeton University Press, Princeton, 1983) pg 715-724.

[24] J. Dixmier, C*-algebres , (North Holland, 1982).

[25] R. D. Sorkin, Impossible measurements on quantum fields, in Directions in General Relativity, Vol. 2, B. L. Hu and T. A. Jacobson (eds.), (Cambridge, Cambridge University Press, 1993), gr-qc/9302018.

[26] D. Beckman, D. Gottesman, A. Kitaev and J. Preskill, “Measurability of Wilson loop operators,” Phys. Rev. D 65, 065022 (2002) [arXiv:hep-th/0110205].

[27] T. Banks, “Lectures on black holes and information loss,” Nucl. Phys. Proc. Suppl. 41, 21 (1995) [arXiv:hep-th/9412131].

[28] V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50, 846 (1994) [arXiv:gr-qc/9403028]; R. M. Wald and A. Zouzas, “A General Definition of ”Conserved Quantities” in General Relativity and Other Theories of Gravity,” Phys. Rev. D 61, 084027 (2000) [arXiv:gr-qc/9911095].

[29] S. Hollands, A. Ishibashi and D. Marolf, “Counter-term charges generate bulk symmetries,” Phys. Rev. D 72, 104025 (2005) [arXiv:hep-th/0503105].