IDENTIFYING THE DEVELOPMENT AND APPLICATION OF ARTIFICIAL INTELLIGENCE IN SCIENTIFIC TEXT*

James Dunham
Center for Security and Emerging Technology
Georgetown University
james.dunham@georgetown.edu

Jennifer Melot
Center for Security and Emerging Technology
Georgetown University
jennifer.melot@georgetown.edu

Dewey Murdick
Center for Security and Emerging Technology
Georgetown University
dewey.murdick@georgetown.edu

February 18, 2020

ABSTRACT

We describe a strategy for identifying the universe of research publications relating to the application and development of artificial intelligence. The approach leverages arXiv’s corpus of scientific preprints, in which authors choose subject tags for their papers from a set defined by editors. We compose from these subjects a functional definition of AI-relevance with intuitive components, by learning the subject definitions from paper metadata, and then inferring the arXiv-subject labels of papers in Web of Science. We find predictive classification F_1 scores between .59 and .86 for AI-relevant subject models. For an all-subjects model, we see precision of .83 and recall of .85. We evaluate the out-of-domain performance of our classifiers against other sources of subject information and results from other methods. We find that for the high-level fields of study represented on arXiv, a supervised solution can generalize for inference in other corpora. This offers a method for identifying AI-relevant publications that updates at the pace of research output, without reliance on subject-matter experts for query development or labeling.

1 Overview

Study of the applications and development of artificial intelligence faces a definitional problem: AI is a moving conceptual target, understood differently across researchers and observers of the field [12]. This presents a challenge for analysts and policy-makers [25]. The proliferation of reports on AI describe only partially overlapping domains [1][18][2], suggesting that the delineation of the field affects the reliability of conclusions [26]. We describe a strategy for addressing this and identifying a universe of AI-relevant scientific publications for use in bibliometric work.

The approach relies on the success of Cornell’s arXiv project in attracting open-access preprints from subfields of computer science, physics, statistics, and other quantitative fields. Authors identify the subjects of papers they upload from a set of labels defined by editors. There are 39 subjects in computer science, including those we will consider relevant to AI: Artificial Intelligence, Computer Vision, Computation and Language (Natural Language Processing), Machine Learning, Multiagent Learning, and Robotics. These and other arXiv labels offer a particular ground truth

*We thank Kevin Boyack, Daniel Chou, Teddy Collins, Dick Klavans, and Ilya Rahkovsky for their feedback and ideas on this work. We are grateful to the team at Elsevier for extended discussions about the methodological details of a related project, and sharing expert-curated keywords and labeled data. Zihe Yang led the replication of the Elsevier approach to identifying AI-relevant research. Neha Tiwari contributed the descriptive analysis of arXiv and conference-paper data, and assisted with model development. For replication materials, see https://github.com/georgetown-cset/ai-relevant-papers

https://arxiv.org
defined by the participation of an expert community. Additionally, arXiv’s implicit definition of subjects has the highly desirable characteristic of updating in real time, as opposed to less-favorable approaches that rely on keyword curation or annotation by subject-matter experts. Those alternatives tend to require maintenance over time, and as we demonstrate, a query that subject-matter experts calibrate to retrieve AI-relevant publications in 2019 may struggle to surface those from 2010.

We are keenly aware that the subjects comprising AI research and applications are contestable. Rather than argue for a single delineation, we offer an approach which requires only that an operational definition is composable from the subjects available to arXiv authors. The sensitivity of all subsequent analysis to that choice of relevant subjects can be assessed through ablation. Researchers may also add or remove particular subjects as appropriate for their analyses.

We implement this approach by training SciBERT classifiers on arXiv metadata and subject labels. Using the arXiv-trained models, we infer the subject relevance of papers in other corpora. The premise of identifying AI-relevant publications in this way is that a model trained on arXiv data will successfully generalize to other sets of publication data, which may significantly differ in content and subject distribution. This approach seems plausible when leveraging SciBERT’s pre-training, but the risk of overfitting to arXiv and gaps in its coverage are concerns we address below with a series of results.

First, to assess performance within arXiv, we partition the data and evaluate our models on a test set. We observe F_1 scores between .59 and .86 for one-versus-all subject models, and .84 for a model trained on labels collapsed to indicate AI-relevance for papers in any of these subjects. For comparison, we also assess a keyword-query solution and a keyword-learner hybrid developed for a recent bibliometric analysis of AI-relevant publications in Scopus [1]. Evaluation against arXiv labels yields F_1 scores of .55 and .66, respectively, for these methods.

We then report results from applying the models to Web of Science (WoS) publications. In the absence of ground-truth arXiv labels throughout WoS, we assess out-of-domain performance using other sources of topical information. We demonstrate rates of predicted subject relevance in selected journals, conference proceedings, and WoS categories. We find that for the high-level fields of study represented on arXiv, generalizing for inference in other corpora is feasible. This offers a method for identifying AI-relevant publications that updates at the pace of research output, without reliance on subject-matter experts for query development or labeling.

2 Development and applications of artificial intelligence

Scientific text offers insight into the development of a field: its analysis can identify the organization of research communities; their breakthroughs or stagnation; and progress from basic research to applications [e.g., 23] [5]. The obstacles to such inference are delineation of that field and the identification of emergent topics or technologies within it [7]. In reference to biotech and nanotech in prior decades, Mogoutov and Kahane write, “Their content and dynamic are difficult to track at a time when they are struggling to define what they are, what they include and exclude, and how they organize and classify themselves internally” [16]. A related problem is identifying as-yet-unknown topics within a field, without the benefit of historical perspective. Even in emergent areas, the distinction between “legacy technologies” and “emerging technology” may be incremental [10].

Recent analyses of AI research using query-based methods to delineate the field [17] [15] [19] have encountered these obstacles. Grappling with the problem of query development in bibliometric work on nanotechnology resulted in principled methods for term curation and their evaluation [16] [9] [14], from which studies of AI could benefit. Drawing from this literature, for example, Huang et al. develop a method for retrieving “big data” research that expands from an initial set of terms across iterations of discovery, manual review, expert checks, and tuning for performance [11].

Other approaches to delineation depend on or begin with the identification of relevant journals [8] or conferences [13] [21]. While appropriate for some analytic purposes, this method risks omitting relevant research in more general-audience venues or other disciplines, which may be a particularly acute problem for AI.

In review of the variety of methods for delineating the field of AI-relevant research, we note that beyond the methodological difficulties, the criteria for a system’s intelligence vary by observer and over time. In the typology developed

1 See https://arxiv.org/category_taxonomy
2 See https://clarivate.com/webofsciencegroup
3 See Dimensions, Scopus, or Semantic Scholar
4 We expect our approach to be similarly adaptable to scientific text in other collections, like Dimensions, Scopus, or Semantic Scholar, but we restrict this paper to WoS.
5 For a discussion of precisely what constitutes emerging technology, see [24].
by Russell and Norvig [20], definitions may emphasize behavior or reasoning, and evaluate it against human or rational standards. In recent survey research [12], AI researchers tended to prefer definitions that emphasized the correctness of decisions and actions, but often disagreed on what satisfied these requirements.

Our own interest in connecting policymakers to high-quality analysis of AI and its security implications requires an AI definition that is robust over time and covers both research and applications. As AI methods, tasks, and applications increase in diversity, expert-informed queries become increasingly impractical. The solution discussed within this paper is most applicable to the AI research community’s output, but the general approach applies to a wide variety of dynamic classifier-based definitions across many types of textual source materials. We therefore require criteria for identifying publications describing AI research or its applications that embrace variation in definitions across contexts and time.

3 Data

arXiv is organized into high-level domain repositories for physics, biology, computer science, statistics, and so forth. Each of these repositories further defines a set of subjects to organize its content. Authors select one or more subjects to describe each paper they submit. Editors later review these subject tags [6]. arXiv’s Computing Research Repository (CoRR) defines 39 subjects including artificial intelligence and machine learning.

We focus in this paper on six subjects that CoRR editors describe as related to AI: Artificial Intelligence, Computation and Language (NLP), Computer Vision and Pattern Recognition (CV), Machine Learning, Multiagent Systems, and Robotics. According to CoRR documentation, the Artificial Intelligence subject “[c]overs all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing),” because these areas have their own subjects. It specifically “includes Expert Systems, Theorem Proving […], Knowledge Representation, Planning, and Uncertainty in AI.” The Machine Learning subject “[c]overs all aspects of machine learning research [and] is also an appropriate primary category for applications of machine learning methods.” Because these applications may have their own subject areas, CoRR documentation specifies, “If the primary domain of the application is available as another category in arXiv and readers of that category would be the main audience, that category should be primary.” Some explicit examples of this are papers on CV, NLP, information retrieval, speech recognition, and neural networks.

Using arXiv submissions in these categories as training data for subject classifiers, and defining AI-relevant research as the union of their positive predictions, is a useful framework for future researchers who may have differing needs or views on what constitutes AI. Adding Neural and Evolutionary Computing or Information Retrieval papers might be warranted in future work. We exclude them here for consistency with the CoRR editors’ description of the Artificial Intelligence subject, but in practice, we suggest evaluating how sensitive quantities of interest are to these choices.

The compositional effect of including or excluding some subjects will be modest due to patterns of cross-posting papers across related subjects. There are 3,464 papers in our data with Information Retrieval as their primary subject, and 42% also appear in one or more of the six subjects we consider AI-relevant here. Of the 2,942 papers with the primary category of Neural and Evolutionary Computing, 39% are cross-posted to at least one of our AI-relevant subjects, primarily Machine Learning.

From 2010 through 2019, authors submitted 1,060,321 papers to arXiv. The largest repositories at the end of this decade, counting by papers’ primary subjects, are physics (540,692), math (270,244), and computer science (194,627). Table 1 shows paper counts in the six computer science subjects we consider relevant. There are 85,670 whose primary subject, the first selected by authors, is one of these six. Authors can cross-post their papers under additional subjects, however, and when including these cross-posts there are 107,380 papers across the relevant subjects.

Our target for inference is the Web of Science (WoS) Core Collection. Training on arXiv is appealing for reasons we have described, but we ultimately care about performance in WoS or other more general knowledge bases, and many

6 The Center for Security and Emerging Technology (CSET) studies the security impacts of emerging technologies and delivers nonpartisan analysis to the policy community. See examples of reports that are dependent on various AI definitions at https://cset.georgetown.edu/reports.

7 See https://arxiv.org/category_taxonomy.

8 We include machine learning papers from the statistics repository (stat.ML) in this subject. Cross-posting between the two categories is automatic. https://arxiv.org/corr/subjectclasses.

9 We restrict this effort to the last decade of arXiv papers to ensure reasonable numbers of papers in each subject in every year.
Table 1: arXiv contains 85,670 papers from 2010–2019 whose primary subject is one of the six we selected as relevant. 107,380 papers, or an additional 21,710, appeared in at least one of the six subjects. This includes cross-posts from other subjects.

Subject	Papers with Primary Subject	Papers Including Cross-posts
Artificial Intelligence (cs.AI)	8,941	19,964
Natural Language Processing (cs.CL)	11,881	15,361
Computer Vision (cs.CV)	28,309	35,254
Machine Learning (cs.LG, stat.ML)	30,175	52,909
Multiagent Systems (cs.MA)	985	2,602
Robotics (cs.RO)	5,379	7,933
Any of the above	85,670	107,380

differences separate the two corpora. WoS includes some conference proceedings, but most of its papers (about 82%) are from journals. Its disciplinary coverage is also far broader, spanning fields in which we expect to find no AI-relevant papers. WoS includes 26.7M publications from 2010 through 2019, about 2.2M to 3.1M in each year.11

4 Learning from arXiv

Our baseline solution uses keyword matches to identify AI-relevant publications. We use 100 terms and patterns that we developed for a variety of document retrieval tasks in early Spring 2019, in a manual process: we reviewed search results and adapted the term list, and iterated until satisfied. (See Appendix A.) If one of these terms is present in the title or abstract of a publication, we consider that publication AI-relevant. Our expectation was that this approach would achieve reasonable precision but low recall. When tested against arXiv papers, considering papers in any of the six chosen subjects to be AI-relevant, we observe precision of .76 and recall of .43 ($F_1 = .55$).

A second approach for comparison is a keyword-classifier hybrid developed by Elsevier [22] as part of a bibliometric study of AI. The Elsevier group first extracted candidate terms from diverse textual sources, drawing from syllabi, books, patents, textbooks, the Cooperative Patent Classification scheme,12 and AI news coverage.13 The initial result was 800,000 keywords, which the group iteratively reduced to 797 distinct and specific terms.

The Elsevier team solicited comments on this set of terms from outside subject-matter experts. Characteristically,14 however, these experts could not agree on any common set of keywords “representative enough to scope the breadth of the field and […] specific enough to AI” [22]. The solution was for internal experts to score the terms on a three-point scale, and then task the outside experts with labeling a collection of publications that included the keywords. This account illustrates the difficulty of delineating the field by consensus, and the investment that expert labeling entails.

Ultimately, incidence of the 797 terms in the input text was the basis for a series of features: variously weighted counts and proportions of lower- and higher-scoring terms in title and abstract text. Following [22], we apply a random forest model to learn weights for these features using a training set drawn from the arXiv corpus.14

We depart from a replication of the Elsevier method by training on arXiv, and the implementation details of doing so may not correspond with the original work. Using a grid search to tune hyperparameter values and evaluating performance through cross-validation, we see precision of .74 and recall of .49 ($F_1 = .59$) in prediction of AI-relevant articles. These results outperform our baseline keyword solution.15

Lastly, we apply SciBERT [4], a BERT [7] model pre-trained on full text from Semantic Scholar then frozen and used to embed the title and abstract text of publications for classification. We first consider papers tagged with any of the

11 These counts describe the collection as queried using bulk data retrieved from Clarivate on January 28, 2020. Throughout, we restrict the data to records in the WoS Core Collection, with WoS-prefixed identifiers, and publication years from 2010 through 2019.
12 https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions
13 https://aitopics.org
14 We partition the arXiv corpus in an 80% training, 10% evaluation, and 10% test split, stratifying by publication year and class.
15 For implementation details and replication code, see https://github.com/georgetown-cset/ai-relevant-papers
six subjects to be AI-relevant and train a binary “all subjects” classifier. In evaluation on the arXiv test set, we find improvements from SciBERT over the previous methods, with precision of 0.83 and recall of 0.85 ($F_1 = 0.84$).

We also train classifiers for AI-relevant subjects separately, one-versus-all\(^\text{16}\). This effort is successful for the three subjects that correspond with well-defined application fields: NLP ($F_1 = 0.86$), Computer Vision ($F_1 = 0.84$) and Robotics ($F_1 = 0.75$).

We see lower performance from a Machine Learning subject model ($F_1 = 0.59$), which suffers from comparatively low recall. Learning the Multiagent Systems and Artificial Intelligence subjects is more challenging, and we leave it to future work. There are very few examples of Multiagent Systems papers (only 2,602, of which 985 have cs.MA as their primary subject). The Artificial Intelligence subject is larger (19,964 papers), but defined so as to exclude papers that belong in any of the other AI-relevant subjects. As described above, it “includes Expert Systems, Theorem Proving [...], Knowledge Representation, Planning, and Uncertainty in AI.” The result is that more than half the papers in the Artificial Intelligence subject are cross-posts from another subject, and we speculate that this leads to greater heterogeneity.

In Table 2 we summarize the performance of the baseline keyword solution, the Elsevier method, and the SciBERT models. The all-subjects SciBERT model outperforms the alternative methods in the test data, and in comparison with the keyword-reliant solutions, we find appealing the availability of real-time updates from new arXiv content and the straightforward decomposability of AI-relevant research into subjects like computer vision.

Method	Precision	Recall	F_1
CSET Keywords	.76	.43	.55
Elsevier Keyword-classifier Hybrid\[22\]	.74	.49	.59
SciBERT All Subjects	\textbf{.83}	\textbf{.85}	\textbf{.84}
SciBERT Natural Language Processing (cs.CL)	.86	.86	.86
Computer Vision (cs.CV)	.87	.81	.84
Machine Learning (cs.LG, stat.ML)	.79	.47	.59
Robotics (cs.RO)	.78	.73	.75

The keyword solution performs best in the year we developed it, 2019, with F_1 of 0.61, and declines steadily in prior years. (See Figure\[1\].) This variation is unsurprising in a fast-moving field. Elsevier’s model and the SciBERT all-subjects model exhibit the same pattern, but for different reasons. Higher performance from the supervised methods in more recent years is due in large part to longitudinal imbalance in the training data\[17\].

The appropriate response is context-sensitive, because the expansion of arXiv since 2010 is attributable to its popularity relative to traditional journals, the growth of the particular fields arXiv covers, and secular trends in research output. When training a classifier on arXiv for inference in WoS or elsewhere, one might seek the highest performance overall or prefer stable performance within strata meaningful in downstream analysis. We suggest comparing the performance of a single model to that of period-specific models if inference focuses on time-series measures.

\[\text{16}\] The all-subject AI-relevance model is trained and evaluated on the same data as the Elsevier solution. For each of the subject models, we use same split proportions but stratify by year and the corresponding binary class (e.g., positive if Computer Vision, else negative). Throughout, we use the same tuning parameters as reported for the text classification task in [4].

\[\text{17}\] It is also possible that classification in earlier years is more difficult than in recent years, or for that matter easier, but the imbalance confounds direct evaluation.
Figure 1: Higher performance from the supervised methods in more recent years is due in large part to longitudinal imbalance in the training data. Resampling or other strategies for imbalanced data can address this as appropriate for downstream analyses. The variation in keyword performance, by contrast, is the sign of a fast-moving field.

5 Generalization

Because we lack gold labels for straightforward estimation of the models’ performance in WoS, we evaluate their predictions by comparison to other indicators of subject information. Figure 2 shows the proportion of articles predicted relevant by each subject model in a set of AI and ML journals available in WoS.

The Artificial Intelligence subject model shows high rates of positive predictions across many of the journals: 96% of the articles in Journal of AI Research, for example, and 87% in Journal of Machine Learning Research. The ML model also identifies a large number of articles as relevant. By comparison, the positive predictions of the NLP, CV, and Robotics models are far more restricted to domain-specific journals.

Figure 3 shows the positive-prediction rates for conference proceedings. Here, the Multiagent Systems model identifies 93-94% of Autonomous Agents and Multiagent Systems articles as relevant, while the NLP model flags 98-99% of proceedings from the three NLP conferences. The AI model is once again less subject-specific, as is the ML model to a lesser degree.

Lastly, we report the proportion of each WoS category predicted relevant by the subject models. Figure 4 contains a set of fields represented to some degree on arXiv, primarily in quantitative disciplines. Although without labeled data we cannot report accuracy scores, the highest proportions are in plausible categories: robotics, imaging, remote sensing, computer science, and automation and control systems. We exclude from inference the WoS categories whose contents are unlikely to overlap with arXiv’s. (See Appendix B.)
Figure 2: SciBERT models predict high proportions of publications in AI and ML journals in WoS to be subject-relevant.

Source of Journals	AI	NLP	CV	ML	MA	RO
Journal of AI Research	0.96	0.18	0.06	0.48	0.55	0.27
Computational Linguistics	0.97	0.98	0.04	0.69	0.14	0.01
Computational Linguistics and Related Fields	0.92	0.89	0.08	0.58	0.03	0.03
Computational Linguistics: Applications	0.93	1.00	0.00	0.20	0.27	0.07
Computer Vision and Image Understanding	0.47	0.03	0.99	0.49	0.08	0.42
Int'l Journal of Computer Vision	0.58	0.04	0.99	0.53	0.04	0.41
Pattern Recognition	0.58	0.06	0.96	0.73	0.06	0.13
Journal of Machine Learning Research	0.87	0.08	0.29	0.98	0.11	0.05
IEEE Transactions on Neural Networks	0.81	0.05	0.40	0.86	0.14	0.12
IEEE Transactions on Neural Networks and Learning Systems	0.77	0.04	0.42	0.83	0.18	0.17
Neural Networks	0.62	0.06	0.42	0.72	0.18	0.14
Robotics and Autonomous Systems	0.59	0.02	0.48	0.29	0.63	0.98
IEEE Transactions on Robotics	0.35	0.01	0.28	0.12	0.46	0.99
Advanced Robotics	0.45	0.03	0.29	0.14	0.41	0.98

Figure 3: In WoS conference proceedings, subject models predict varying proportions of publications to be subject-relevant.

Source of Conference	AI	CL	CV	LG	MA	RO
Chinese Computational Linguistics	0.96	0.99	0.14	0.71	0.85	0.00
Computational Linguistics and Intelligent Text Processing	0.98	0.99	0.04	0.57	0.09	0.01
Association for Computational Linguistics	0.98	0.98	0.03	0.70	0.11	0.02
Int'l Joint Conf. on Neural Networks	0.91	0.12	0.44	0.85	0.20	0.16
Int'l Joint Conf. on AI	0.92	0.22	0.19	0.55	0.45	0.20
Symposium on Applied Machine Intelligence and Informatics	0.56	0.11	0.17	0.18	0.42	0.34
Int'l Symposium on Applied Machine Intelligence and Informatics	0.55	0.09	0.20	0.18	0.34	0.34
Int'l Conf. on Autonomous Agents and Multiagent Systems	0.93	0.13	0.08	0.53	0.83	0.44
Autonomous Agents and Multiagent Systems	0.92	0.14	0.10	0.43	0.94	0.44
Figure 4: Where WoS and arXiv share topical coverage, we observe plausible rates of predicted subject relevance. Each row in the table represents publications in a WoS category, and each column a subject model. Cells give the proportion of publications in a category predicted relevant by a model. From left to right, the arXiv subject abbreviations refer to Artificial Intelligence, Computation and Language (NLP), Computer Vision, Machine Learning, Multiagent Systems, and Robotics.

Category	AI	CL	CV	LG	MA	RO
Acoustics	0.14	0.13	0.15	0.19	0.04	0.08
Astronomy & Astrophysics	0.00	0.00	0.01	0.01	0.00	0.01
Automation & Control Systems	0.31	0.02	0.12	0.15	0.32	0.44
Biochemistry & Molecular Biology	0.02	0.01	0.02	0.03	0.01	0.00
Biophysics	0.03	0.00	0.10	0.04	0.02	0.10
Biotechnology & Applied Microbiology	0.02	0.01	0.01	0.02	0.01	0.01
Cell Biology	0.01	0.01	0.02	0.01	0.00	0.00
Chemistry	0.01	0.00	0.01	0.01	0.01	0.00
Computer Science	0.45	0.10	0.21	0.24	0.28	0.13
Developmental Biology	0.01	0.01	0.04	0.01	0.01	0.01
Energy & Fuels	0.07	0.00	0.01	0.04	0.11	0.04
Engineering	0.10	0.01	0.08	0.06	0.09	0.11
Genetics & Heredity	0.02	0.02	0.01	0.03	0.01	0.00
Geochemistry & Geophysics	0.02	0.00	0.07	0.03	0.01	0.01
Geology	0.02	0.00	0.06	0.02	0.04	0.01
Imaging Science & Photographic Technology	0.26	0.02	0.66	0.18	0.05	0.12
Information Science & Library Science	0.30	0.26	0.03	0.04	0.39	0.01
Instruments & Instrumentation	0.04	0.00	0.08	0.04	0.02	0.05
Life Sciences & Biomedicine - Other Topics	0.06	0.02	0.05	0.05	0.10	0.03
Marine & Freshwater Biology	0.00	0.00	0.02	0.01	0.05	0.01
Materials Science	0.01	0.00	0.01	0.01	0.01	0.02
Mathematical & Computational Biology	0.33	0.06	0.18	0.30	0.11	0.06
Mathematics	0.06	0.01	0.02	0.06	0.04	0.01
Mechanics	0.01	0.00	0.01	0.01	0.03	0.06
Metallurgy & Metallurgical Engineering	0.02	0.00	0.01	0.01	0.03	0.03
Meteorology & Atmospheric Sciences	0.01	0.00	0.02	0.03	0.02	0.00
Microbiology	0.00	0.01	0.00	0.00	0.00	0.00
Microscopy	0.01	0.00	0.17	0.02	0.00	0.01
Mineralogy	0.01	0.00	0.01	0.00	0.01	0.00
Neurosciences & Neurology	0.11	0.04	0.15	0.04	0.02	0.07
Nuclear Science & Technology	0.03	0.00	0.02	0.01	0.02	0.01
Optics	0.02	0.00	0.12	0.02	0.01	0.02
Physics	0.01	0.00	0.01	0.01	0.01	0.01
Remote Sensing	0.13	0.00	0.55	0.17	0.06	0.12
Robotics	0.47	0.03	0.31	0.16	0.46	0.91
Thermodynamics	0.02	0.00	0.01	0.01	0.03	0.02
6 Conclusion

Our results demonstrate high classification performance from SciBERT [4] models applied to learning arXiv subjects. Although we did not evaluate SciBERT against a comparable BERT model pre-trained on Wikipedia and the BookCorpus [7], we attribute some of this performance to transfer learning via SciBERT’s embedding of scientific vocabulary after pre-training on Semantic Scholar. Within the set of topics the models saw in training on arXiv papers, inference in WoS appears feasible: we observe plausible rates of predicted relevance in conference proceedings, journal articles, and the journal-based categories in WoS.

Looking forward, manual annotation is the obvious solution to our lack of labeled examples in WoS. However, developing guidelines for labeling publications for AI-relevance would require addressing definitional questions we sidestepped in this work; it would represent a departure from using the implicit delineation of the field provided by arXiv preprints. But we anticipate that labeling examples to approximate the boundaries of arXiv subjects, like NLP and computer vision, is far more tractable than manual labeling for AI relevance.

The arXiv corpus exhibits a class imbalance of about 9:1 in favor of negative examples. In WoS, whose topical coverage is broader, we assume the true imbalance is greater. The appropriate tuning for class performance will depend on the application.

Another major direction for future work is expanding domain generalizibility, particularly in potential application areas. We have substantive interest in papers on topics unavailable in arXiv, from agriculture to medicine. We would consider reports of AI applications in trade journals to be AI-relevant in principle, for example, but we focus in this paper on a delineation of the field whose implementation may not include them. To expand into these areas, we anticipate leveraging bibliometric data in addition to text: applying scientometric methods to extend the identification of publications describing the development and applications of AI beyond arXiv’s coverage.

References

[1] Artificial intelligence: How knowledge is created, transferred, and used. URL https://www.elsevier.com/research-intelligence/resource-library/ai-report

[2] G. C. Allen. Understanding china’s AI strategy: Clues to chinese strategic thinking on artificial intelligence and national security.

[3] S. K. Arora, A. L. Porter, J. Youtie, and P. Shapira. Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95(1):351–370, Apr. 2013. ISSN 1588-2861. doi: 10.1007/s11192-012-0903-6.

[4] I. Beltagy, K. Lo, and A. Cohan. Scibert: Pretrained language model for scientific text. In EMNLP, 2019.

[5] K. W. Boyack, M. Patek, L. H. Ungar, P. Yoon, and R. Klavans. Classification of individual articles from all of science by research level. 8(1):1–12. ISSN 1751-1577. doi: 10.1016/j.joi.2013.10.005. URL http://www.sciencedirect.com/science/article/pii/S1751157713000825

[6] C. B. Clement, M. Bierbaum, K. P. O’Keeffe, and A. A. Alemi. On the use of ArXiv as a dataset. URL http://arxiv.org/abs/1905.00075 version: 1.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[8] F. Gao, X. Jia, Z. Zhao, C.-C. Chen, F. Xu, Z. Geng, and X. Song. Bibliometric analysis on tendency and topics of artificial intelligence over last decade. ISSN 0946-7076, 1432-1858. doi: 10.1007/s00542-019-04426-y. URL http://link.springer.com/10.1007/s00542-019-04426-y

[9] C. Huang, A. Notten, and N. Rasters. Nanoscience and technology publications and patents: A review of social science studies and search strategies. The Journal of Technology Transfer, 36(2):145–172, Apr. 2011. ISSN 1573-7047. doi: 10.1007/s10961-009-9149-8.

[10] Y. Huang, J. Schuehle, A. L. Porter, and J. Youtie. A systematic method to create search strategies for emerging technologies based on the web of science; illustrated for ‘big data’. 105(3):2005–2022. ISSN 0138-9130, 1588-2861. doi: 10.1007/s11192-015-1638-y. URL http://link.springer.com/10.1007/s11192-015-1638-y
[11] Y. Huang, J. Schuehle, A. L. Porter, and J. Youtie. A systematic method to create search strategies for emerging technologies based on the Web of Science: Illustrated for ‘Big Data’. *Scientometrics*, 105(3):2005–2022, Dec. 2015. ISSN 0138-9130, 1588-2861. doi: 10.1007/s11192-015-1638-y.

[12] P. M. Krafft, M. Young, M. Katell, K. Huang, and G. Bugingo. Defining AI in policy versus practice. URL http://arxiv.org/abs/1912.11095.

[13] F. Martínez-Plumed, B. S. Loe, P. Flach, S. Ó hÉigeartaigh, K. Vold, and J. Hernández-Orallo. The Facets of Artificial Intelligence: A Framework to Track the Evolution of AI. In *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence*, pages 5180–5187, Stockholm, Sweden, July 2018. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-992411-2-7. doi: 10.24963/ijcai.2018/718.

[14] D. H. Milanez, E. Noyons, and L. I. L. de Faria. A delineating procedure to retrieve relevant publication data in research areas: the case of nanocellulose. 107(2):627–643. ISSN 1588-2861. doi: 10.1007/s11192-016-1922-5. URL https://doi.org/10.1007/s11192-016-1922-5.

[15] K. Miyazaki and R. Sato. Analyses of the technological accumulation over the 2 nd and the 3 rd AI boom and the issues related to AI adoption by firms. In *2018 Portland International Conference on Management of Engineering and Technology (PICMET)*, pages 1–7. IEEE. ISBN 978-1-890843-37-3. doi: 10.23919/PICMET.2018.8481822. URL https://ieeexplore.ieee.org/document/8481822/.

[16] A. Mogoutov and B. Kahane. Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. 36(6):893–903. ISSN 00487333. doi: 10.1016/j.respol.2007.02.005. URL https://linkinghub.elsevier.com/retrieve/pii/S0048733307000479.

[17] J. Niu, W. Tang, F. Xu, X. Zhou, and Y. Song. Global research on artificial intelligence from 1990–2014: Spatially-explicit bibliometric analysis. 5(5):66. ISSN 2220-9964. doi: 10.3390/ijgi5050066. URL http://www.mdpi.com/2220-9964/5/5/66.

[18] Raymond Perrault, Yoav Shoham, Erik Brynjolfsson, Jack Clark, John Etchemendy, Barbara Grosz, Terah Lyons, James Manyika, Saurabh Mishra, and Juan Carlos Niebles. The AI index 2019 annual report. URL https://hai.stanford.edu/sites/g/files/sbiybj10986/f/ai_index_2019_report.pdf.

[19] J. Rincon-Patino, G. Ramirez-Gonzalez, and J. C. Corrales. Exploring machine learning: A bibliometric general approach using Citespace. *F1000Research*, 7:1240, Aug. 2018. ISSN 2046-1402. doi: 10.12688/f1000research.15619.1.

[20] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, 3 edition edition. ISBN 978-0-13-604259-4.

[21] A. K. Shukla, M. Janmaijaya, A. Abraham, and P. K. Muhuri. Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018). *Engineering Applications of Artificial Intelligence*, 85:517–532, Oct. 2019. ISSN 09521976. doi: 10.1016/j.engappai.2019.06.010.

[22] M. Siebert, C. Kohler, A. Scerri, and G. Tsatsaronis. Technical background and methodology for the elsevier’s artificial intelligence report.

[23] H. Small, K. W. Boyack, and R. Klavans. Identifying emerging topics in science and technology. 43(8):1450–1467. ISSN 00487333. doi: 10.1016/j.respol.2014.02.005. URL https://linkinghub.elsevier.com/retrieve/pii/S0048733314000298.

[24] A. Suominen and N. C. Newman. Exploring the Fundamental Conceptual Units of Technical Emergence. In *2017 Portland International Conference on Management of Engineering and Technology (PICMET)*, pages 1–5, July 2017. doi: 10.23919/PICMET.2017.8125287.

[25] D. Tarraf, W. Shelton, E. Parker, B. Alkire, D. Carey, J. Grana, A. Levedahl, J. Leveille, J. Mondschein, J. Ryseff, A. Wyne, D. Elinoff, E. Geist, B. Harris, E. Hui, C. Kenney, S. Newberry, C. Sachs, P. Schirmer, D. Schlang, V. Smith, A. Tingstad, P. Vedula, and K. Warren. The Department of Defense Posture for Artificial Intelligence: Assessment and Recommendations. RAND Corporation. ISBN 978-1-977404-05-3. doi: 10.7249/RR4229. URL https://www.rand.org/pubs/research_reports/RR4229.html.

[26] M. Zitt. Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation. 102(3):2223–2245. ISSN 1588-2861. doi: 10.1007/s11192-014-1482-5. URL https://doi.org/10.1007/s11192-014-1482-5.
Keywords

Table A.1: We use these terms and patterns in our baseline search strategy. Originally, we developed this list for document retrieval tasks on a variety of knowledgebases, such as WoS, ProQuest, Dimensions, and CNKI, in early Spring 2019. The * character represents a wildcard that matches zero or more non-whitespace characters.

Active Learning	Incremental Clustering	Adaptive Learning	Information Extraction	Anomaly Detection	Information Fusion	Artificial Intelligence	Information Retrieval	Associative Learning	K Nearest Neighbor
Autonomous Navigation	Knowledge Based System*	Autonomous System*	Knowledge Discovery	Autonomous Vehicle*	Knowledge Representation	Average Link Clustering	Language Identification	Back Propagation	Machine Learning
Backpropagation	Machine Perception	Binary Classification	Machine Translation	BioNLP	Multi Class Classification	Character Recognition	Multi Task Learning	Classification Algorithm	Natural Language Generation
Classification Algorithm	Natural Language Processing	Classification Label*	Natural Language Understanding	Clustering Method*	Neural Network	Complete Link Clustering	Object Recognition	Computer Aided Diagnosis	One Shot Learning
Computer Vision	Pattern Matching	Deep Learning	Pattern Recognition	Ensemble Learning	Random Forest	Evolutionary Algorithm	Recommendation System*	Fac Expression Recognition	Recurrent Network
Fac Identification	Reinforcement Learning	Fac Recognition	Scene* Classification	Feature Extraction	Scene* Understanding	Feature Learning	Self Driving Car*	Feature Matching	Semi Supervised Learning
Feature Selection	Sentiment Classification	Feature Vector	Image Classification	Feedback Forward Network	Spatial Learning	Fuzzy Clustering	Speech Processing	Gradient Algorithm	Speech Recognition
Generative Adversarial Network	Speech Synthesis	Graph Matching	Statistical Learning	Graphical Model	Strong Artificial Intelligence	Handwriting Recognition	Supervised Learning	Hierarchical Clustering	Support Vector Machine
Hierarchical Model	Text Mining	Human Robot	Text Processing	Image Annotation	Transfer Learning	Image Classification	Translation System	Image Matching	Unsupervised Learning
Image Classification	Video Classification	Image Matching	Video Processing	Image Processing	Image Registration	Image Representation	Weak Artificial Intelligence	Image Retrieval	Zero Shot Learning
arXiv coverage

Table B.1: We limit inference to the WoS categories listed below whose contents are likely to overlap with arXiv’s. Category names are given verbatim, as they appear in Clarivate data. Typology values refer to WoS `ascatype`.

Category	Typology	Count
Acoustics	Traditional	154,404
Acoustics	Extended	154,703
Astronomy & Astrophysics	Traditional	467,534
Astronomy & Astrophysics	Extended	479,191
Astronomy Astrophysics	Traditional	7,763
Automation & Control Systems	Traditional	492,410
Automation & Control Systems	Extended	627,700
Automation Control Systems	Traditional	129,647
Biochemistry & Molecular Biology	Traditional	1,450,357
Biochemistry & Molecular Biology	Extended	1,731,807
Biology	Traditional	388,531
Biophysics	Traditional	375,695
Biophysics	Extended	378,238
Biotechnology & Applied Microbiology	Traditional	571,706
Biotechnology & Applied Microbiology	Extended	586,875
Biotechnology Applied Microbiology	Traditional	9,965
Business & Economics	Extended	1,279,720
Cell Biology	Traditional	829,144
Cell Biology	Extended	858,881
Computer Science	Extended	2,955,517
Computer Science Cybernetics	Traditional	3,001
Computer Science Interdisciplinary Applications	Traditional	295,152
Computer Science, Artificial Intelligence	Traditional	868,308
Computer Science, Cybernetics	Traditional	100,954
Computer Science, Hardware & Architecture	Traditional	322,719
Computer Science, Information Systems	Traditional	759,069
Computer Science, Interdisciplinary Applications	Traditional	534,590
Computer Science, Software Engineering	Traditional	392,885
Computer Science, Theory & Methods	Traditional	897,664
Construction Building Technology	Traditional	112,822
Economics	Traditional	651,087
Energy Fuels	Traditional	108,762
Engineering Aerospace	Traditional	60,964
Engineering Biomedical	Traditional	3,472
Engineering Chemical	Traditional	166,717
Engineering Electrical Electronic	Traditional	317,137
Engineering Industrial	Traditional	83,927
Engineering Manufacturing	Traditional	20,239
Engineering Mechanical	Traditional	76,829
Engineering Multidisciplinary	Traditional	49,358
Engineering, Aerospace	Traditional	138,674
Engineering, Biomedical	Traditional	343,099
Engineering, Chemical	Traditional	615,237
Engineering, Civil	Traditional	388,419
Engineering, Electrical & Electronic	Traditional	2,667,329
Engineering, Environmental	Traditional	295,582
Engineering, Geological	Traditional	95,575
Engineering, Industrial	Traditional	204,533
Engineering, Manufacturing	Traditional	228,759
Engineering, Marine	Traditional	40,723
Engineering, Mechanical	Traditional	647,335
Table B.1: We limit inference to the WoS categories listed below whose contents are likely to overlap with arXiv’s (continued).

Category	Typology	Count
Engineering, Multidisciplinary	Traditional	344,869
Engineering, Ocean	Traditional	46,010
Engineering, Petroleum	Traditional	68,667
Genetics Heredity	Traditional	37,373
Geochemistry & Geophysics	Traditional	223,783
Geochemistry & Geophysics	Extended	232,184
Green & Sustainable Science & Technology	Traditional	146,852
Imaging Science & Photographic Technology	Traditional	251,296
Imaging Science & Photographic Technology	Extended	253,317
Imaging Science Photographic Technology	Traditional	836
Information Science & Library Science	Traditional	251,050
Information Science & Library Science	Extended	263,526
Information Science Library Science	Traditional	7,911
Instruments & Instrumentation	Traditional	408,552
Instruments & Instrumentation	Extended	415,074
Language & Linguistics	Traditional	188,787
Language Linguistics	Traditional	794
Life Sciences & Biomedicine - Other Topics	Extended	391,636
Logic	Traditional	23,145
Materials Science	Extended	2,415,451
Materials Science Multidisciplinary	Traditional	132
Materials Science Paper Wood	Traditional	2,117
Materials Science Textiles	Traditional	1,607
Materials Science, Biomaterials	Traditional	113,911
Materials Science, Ceramics	Traditional	138,510
Materials Science, Characterization & Testing	Traditional	106,330
Materials Science, Coatings & Films	Traditional	157,952
Materials Science, Composites	Traditional	100,521
Materials Science, Multidisciplinary	Traditional	1,817,377
Materials Science, Paper & Wood	Traditional	45,318
Materials Science, Textiles	Traditional	52,610
Mathematical & Computational Biology	Traditional	142,131
Mathematical & Computational Biology	Extended	153,402
Mathematical Computational Biology	Traditional	10,940
Mathematical Methods In Social Sciences	Extended	61,831
Mathematics	Traditional	589,478
Mathematics	Extended	1,329,236
Mathematics Applied	Traditional	22,906
Mathematics, Applied	Traditional	527,864
Mathematics, Interdisciplinary Applications	Traditional	178,185
Mechanics	Traditional	446,852
Mechanics	Extended	460,610
Meteorology & Atmospheric Sciences	Traditional	234,653
Meteorology & Atmospheric Sciences	Extended	272,158
Meteorology Atmospheric Sciences	Traditional	34,535
Microbiology	Traditional	457,169
Microbiology	Extended	460,385
Microscopy	Traditional	33,121
Microscopy	Extended	33,137
Nanoscience & Nanotechnology	Traditional	547,640
Neuroimaging	Traditional	52,795
Neurosciences	Traditional	1,066,397
Neurosciences & Neurology	Extended	1,756,544
Nuclear Science & Technology	Traditional	215,737
Nuclear Science & Technology	Extended	240,096
Table B.1: We limit inference to the WoS categories listed below whose contents are likely to overlap with arXiv’s (continued).

Category	Typology	Count
Nuclear Science Technology	Traditional	21,181
Optics	Traditional	870,400
Optics	Extended	879,145
Physics	Extended	3,189,791
Physics Applied	Traditional	457
Physics Atomic Molecular Chemical	Traditional	4,449
Physics Multidisciplinary	Traditional	109,509
Physics Nuclear	Traditional	6,070
Physics, Applied	Traditional	1,388,092
Physics, Atomic, Molecular & Chemical	Traditional	327,528
Physics, Condensed Matter	Traditional	665,465
Physics, Fluids & Plasmas	Traditional	182,213
Physics, Mathematical	Traditional	215,522
Physics, Multidisciplinary	Traditional	505,808
Physics, Nuclear	Traditional	181,227
Physics, Particles & Fields	Traditional	278,522
Plant Sciences	Traditional	561,836
Plant Sciences	Extended	568,219
Polymer Science	Traditional	358,720
Polymer Science	Extended	360,136
Quantum Science & Technology	Traditional	40,025
Remote Sensing	Traditional	197,070
Remote Sensing	Extended	200,094
Robotics	Traditional	168,571
Robotics	Extended	174,071
Science & Technology - Other Topics	Extended	1,616,680
Spectroscopy	Traditional	149,683
Spectroscopy	Extended	151,151
Statistics & Probability	Traditional	199,849
Telecommunications	Traditional	776,565
Telecommunications	Extended	779,352
Thermodynamics	Traditional	231,418
Thermodynamics	Extended	234,360
Zoology	Traditional	294,619
Zoology	Extended	326,130

Table B.2: We exclude from inference the WoS categories listed below whose contents are not likely to overlap with arXiv’s. Category names are given verbatim, as they appear in Clarivate data. Typology refers to WoS ascatype.

Category	Typology	Count
Agricultural Economics & Policy	Traditional	29,709
Agricultural Economics Policy	Traditional	26,124
Agricultural Engineering	Traditional	82,333
Agriculture	Extended	1,121,220
Agriculture Multidisciplinary	Traditional	174,550
Agriculture, Dairy & Animal Science	Traditional	180,338
Agriculture, Multidisciplinary	Traditional	138,433
Agronomy	Traditional	304,306
Allergy	Traditional	112,097
Allergy	Extended	113,863
Anatomy & Morphology	Traditional	43,775
Anatomy & Morphology	Extended	47,082
Table B.2: We exclude from inference the WoS categories listed below whose contents are not likely to overlap with arXiv’s (continued).

Category	Typology	Count
Anatomy Morphology	Traditional	581
Andrology	Traditional	14,405
Anesthesiology	Traditional	154,360
Anesthesiology	Extended	155,534
Anthropology	Traditional	148,928
Anthropology	Extended	151,542
Archaeology	Traditional	86,286
Archaeology	Extended	91,422
Architecture	Traditional	110,406
Architecture	Extended	110,518
Area Studies	Traditional	144,905
Area Studies	Extended	151,249
Art	Traditional	165,849
Art	Extended	166,135
Arts & Humanities - Other Topics	Extended	425,537
Asian Studies	Traditional	60,949
Asian Studies	Extended	63,839
Audiology & Speech-Language Pathology	Extended	47,136
Audiology & Speech-Language Pathology	Traditional	47,136
Behavioral Sciences	Traditional	143,265
Behavioral Sciences	Extended	143,587
Biochemical Research Methods	Traditional	332,781
Biochemistry Molecular Biology	Traditional	25,466
Biodiversity & Conservation	Extended	100,000
Biodiversity Conservation	Traditional	97,899
Biomedical Social Sciences	Extended	85,753
Business	Traditional	289,968
Business Finance	Traditional	14,419
Business, Finance	Traditional	162,612
Cardiac & Cardiovascular Systems	Traditional	804,110
Cardiac Cardiovascular Systems	Traditional	574
Cardiovascular System & Cardiology	Extended	1,109,975
Cell & Tissue Engineering	Traditional	55,696
Chemistry	Extended	3,712,333
Chemistry Analytical	Traditional	59,982
Chemistry Applied	Traditional	581
Chemistry Multidisciplinary	Traditional	67,157
Chemistry Organic	Traditional	28,163
Chemistry Physical	Traditional	51,751
Chemistry, Analytical	Traditional	442,433
Chemistry, Applied	Traditional	272,801
Chemistry, Inorganic & Nuclear	Traditional	255,875
Chemistry, Medicinal	Traditional	261,868
Chemistry, Multidisciplinary	Traditional	1,428,721
Chemistry, Organic	Traditional	396,120
Chemistry, Physical	Traditional	1,024,973
Classics	Traditional	61,230
Classics	Extended	62,474
Clinical Neurology	Traditional	1,008,455
Communication	Traditional	122,860
Communication	Extended	124,943
Construction & Building Technology	Traditional	194,776
Construction & Building Technology	Extended	315,958
Criminology & Penology	Traditional	69,699
Criminology & Penology	Extended	70,576

15
Table B.2: We exclude from inference the WoS categories listed below whose contents are not likely to overlap with arXiv’s (continued).

Category	Typology	Count
Critical Care Medicine	Traditional	253,975
Crystallography	Traditional	197,470
Crystallography	Extended	197,779
Cultural Studies	Traditional	57,679
Cultural Studies	Extended	59,852
Dance	Extended	36,111
Dance	Traditional	36,111
Demography	Traditional	34,511
Demography	Extended	36,672
Dentistry Oral Surgery Medicine	Traditional	22,677
Dentistry, Oral Surgery & Medicine	Traditional	224,355
Dentistry, Oral Surgery & Medicine	Extended	249,707
Dermatology	Traditional	286,332
Dermatology	Extended	288,882
Developmental Studies	Extended	46,520
Developmental Studies	Traditional	46,520
Developmental Biology	Traditional	114,300
Developmental Biology	Extended	116,108
Ecology	Traditional	371,343
Education & Educational Research	Traditional	529,168
Education & Educational Research	Extended	680,855
Education, Scientific Disciplines	Traditional	7,282
Education, Special	Traditional	530
Emergency Medicine	Traditional	90,582
Emergency Medicine	Extended	93,874
Endocrinology & Metabolism	Traditional	579,750
Endocrinology & Metabolism	Extended	595,991
Endocrinology Metabolism	Traditional	195
Energy & Fuels	Traditional	632,499
Energy & Fuels	Extended	749,388
Engineering	Extended	6,344,262
Entomology	Traditional	139,402
Entomology	Extended	142,530
Environmental Sciences	Traditional	1,009,900
Environmental Sciences & Ecology	Extended	1,474,360
Environmental Studies	Traditional	206,046
Ergonomics	Traditional	33,112
Ethics	Traditional	76,246
Ethnic Studies	Traditional	43,473
Ethnic Studies	Extended	48,784
Evolutionary Biology	Extended	136,263
Evolutionary Biology	Traditional	136,263
Family Studies	Extended	58,526
Family Studies	Traditional	58,526
Film Radio Television	Traditional	55
Film, Radio & Television	Extended	98,276
Film, Radio, Television	Traditional	98,221
Fisheries	Traditional	137,544
Fisheries	Extended	137,655
Folklore	Traditional	17,117
Food Science & Technology	Traditional	433,732
Table B.2: We exclude from inference the WoS categories listed below whose contents are not likely to overlap with arXiv’s (continued).

Category	Typology	Count
Food Science & Technology	Extended	516,086
Food Science Technology	Traditional	71,329
Forestry	Traditional	151,593
Forestry	Extended	153,966
Gastroenterology & Hepatology	Traditional	578,127
Gastroenterology & Hepatology	Extended	578,877
Gastroenterology Hepatology	Traditional	160
General & Internal Medicine	Extended	1,981,284
Genetics & Heredity	Traditional	497,124
Genetics & Heredity	Extended	538,484
Geography	Traditional	119,322
Geography	Extended	125,556
Geography, Physical	Traditional	108,154
Geology	Traditional	120,300
Geology	Extended	639,757
Geosciences Multidisciplinary	Traditional	71,444
Geosciences, Multidisciplinary	Traditional	441,098
Geriatrics & Gerontology	Traditional	144,277
Geriatrics & Gerontology	Extended	201,882
Gerontology	Traditional	127,831
Government & Law	Extended	612,045
Health Care Sciences & Services	Traditional	298,787
Health Care Sciences & Services	Extended	361,661
Health Policy & Services	Traditional	184,094
Hematology	Traditional	511,342
Hematology	Extended	511,925
History	Traditional	602,685
History	Extended	616,148
History & Philosophy Of Science	Traditional	109,953
History & Philosophy Of Science	Extended	110,244
History Of Social Sciences	Traditional	41,988
Horticulture	Traditional	164,497
Hospitality, Leisure, Sport & Tourism	Traditional	92,321
Humanities Multidisciplinary	Traditional	518
Humanities, Multidisciplinary	Traditional	310,361
Immunology	Traditional	686,286
Immunology	Extended	690,647
Industrial Relations & Labor	Traditional	40,123
Industrial Relations Labor	Traditional	297
Infectious Diseases	Traditional	334,215
Infectious Diseases	Extended	339,668
Integrative & Complementary Medicine	Extended	72,228
Integrative & Complementary Medicine	Traditional	72,228
International Relations	Traditional	162,992
International Relations	Extended	165,720
Law	Traditional	226,907
Legal Medicine	Extended	40,280
Limnology	Traditional	39,672
Linguistics	Traditional	156,533
Linguistics	Extended	273,025
Literary Reviews	Traditional	161,784
Literary Theory & Criticism	Traditional	92,415
Literary Theory Criticism	Traditional	3
Literature	Traditional	181,859
Literature	Extended	646,905
Table B.2: We exclude from inference the WoS categories listed below whose contents are not likely to overlap with arXiv’s (continued).

Category	Typology	Count
Literature American	Traditional	12
Literature, African, Australian, Canadian	Traditional	17,278
Literature, American	Traditional	26,529
Literature, British Isles	Traditional	33,078
Literature, German, Dutch, Scandinavian	Traditional	29,165
Literature, Romance	Traditional	104,049
Literature, Slavic	Traditional	15,173
Management	Traditional	365,430
Marine & Freshwater Biology	Traditional	215,811
Marine & Freshwater Biology	Extended	247,068
Medical Ethics	Extended	26,182
Medical Ethics	Traditional	26,182
Medical Informatics	Extended	77,036
Medical Informatics	Traditional	77,036
Medical Laboratory Technology	Traditional	91,106
Medical Laboratory Technology	Extended	93,651
Medicine General Internal	Traditional	794,946
Medicine, General & Internal	Traditional	907,739
Medicine, Legal	Traditional	40,280
Medicine, Research & Experimental	Traditional	543,200
Medieval & Renaissance Studies	Traditional	72,264
Metallurgy & Metallurgical Engineering	Traditional	362,643
Metallurgy & Metallurgical Engineering	Extended	539,933
Metallurgy Metallurgical Engineering	Traditional	164,388
Mineralogy	Traditional	123,996
Mineralogy	Extended	125,890
Mining & Mineral Processing	Traditional	64,704
Mining & Mineral Processing	Extended	97,881
Mining Mineral Processing	Traditional	27,357
Multidisciplinary Sciences	Traditional	864,971
Music	Extended	168,745
Music	Traditional	168,745
Mycology	Traditional	47,602
Mycology	Extended	47,823
Nursing	Extended	197,697
Nursing	Traditional	197,697
Nutrition & Dietetics	Traditional	252,581
Nutrition & Dietetics	Extended	253,652
Obstetrics & Gynecology	Traditional	389,689
Obstetrics & Gynecology	Extended	427,290
Obstetrics Gynecology	Traditional	32,525
Oceanography	Traditional	157,749
Oceanography	Extended	160,252
Oncology	Traditional	1,404,745
Oncology	Extended	1,408,017
Operations Research & Management Science	Traditional	249,652
Operations Research & Management Science	Extended	252,977
Ophthalmology	Traditional	335,794
Ophthalmology	Extended	336,700
Ornithology	Traditional	26,882
Orthopedics	Traditional	242,782
Orthopedics	Extended	244,714
Otorhinolaryngology	Traditional	135,459
Otorhinolaryngology	Extended	137,217
Paleontology	Traditional	62,404
Table B.2: We exclude from inference the WoS categories listed below whose contents are not likely to overlap with arXiv’s (continued).

Category	Typology	Count
Paleontology	Extended	62,791
Parasitology	Traditional	98,060
Parasitology	Extended	100,012
Pathology	Traditional	307,609
Pathology	Extended	309,306
Pediatrics	Traditional	473,447
Pediatrics	Extended	482,052
Peripheral Vascular Disease	Traditional	453,394
Pharmacology & Pharmacy	Traditional	967,993
Pharmacology & Pharmacy	Extended	1,274,526
Pharmacology Pharmacy	Traditional	137,791
Philosophy	Traditional	230,405
Philosophy	Extended	237,410
Physical Geography	Extended	114,415
Physiology	Traditional	287,400
Physiology	Extended	291,511
Poetry	Traditional	41,586
Political Science	Traditional	382,117
Primary Health Care	Traditional	52,820
Psychiatry	Traditional	586,368
Psychiatry	Extended	593,529
Psychology	Traditional	212,547
Psychology	Extended	1,020,210
Psychology Multidisciplinary	Traditional	11,083
Psychology, Applied	Traditional	101,369
Psychology, Biological	Traditional	55,700
Psychology, Clinical	Traditional	185,894
Psychology, Developmental	Traditional	107,005
Psychology, Educational	Traditional	52,964
Psychology, Experimental	Traditional	169,345
Psychology, Mathematical	Traditional	13,123
Psychology, Multidisciplinary	Traditional	265,542
Psychology, Psychoanalysis	Traditional	26,121
Psychology, Social	Traditional	82,545
Public Administration	Traditional	73,580
Public Administration	Extended	207,916
Public Environmental Occupational Health	Traditional	77,977
Public, Environmental & Occupational Health	Traditional	698,326
Public, Environmental & Occupational Health	Extended	786,526
Radiology, Nuclear Medicine & Medical Imaging	Traditional	636,954
Radiology, Nuclear Medicine & Medical Imaging	Extended	638,708
Regional & Urban Planning	Traditional	134,920
Rehabilitation	Traditional	178,866
Rehabilitation	Extended	180,271
Religion	Extended	270,286
Religion	Traditional	270,286
Reproductive Biology	Traditional	169,017
Reproductive Biology	Extended	171,394
Research & Experimental Medicine	Extended	547,770
Respiratory System	Traditional	396,574
Respiratory System	Extended	397,705
Rheumatology	Traditional	220,643
Rheumatology	Extended	221,803
Social Issues	Traditional	87,334
Social Issues	Extended	89,867
Table B.2: We exclude from inference the WoS categories listed below whose contents are not likely to overlap with arXiv’s (continued).

Category	Typology	Count
Social Sciences - Other Topics	Extended	483,051
Social Sciences Interdisciplinary	Traditional	906
Social Sciences Mathematical Methods	Traditional	296
Social Sciences, Biomedical	Traditional	83,498
Social Sciences, Interdisciplinary	Traditional	247,255
Social Sciences, Mathematical Methods	Traditional	60,023
Social Work	Traditional	62,286
Social Work	Extended	62,505
Sociology	Traditional	225,233
Sociology	Extended	232,336
Soil Science	Traditional	93,640
Sport Sciences	Traditional	238,951
Sport Sciences	Extended	240,200
Substance Abuse	Traditional	100,091
Substance Abuse	Extended	100,783
Surgery	Traditional	1,150,579
Surgery	Extended	1,159,981
Theater	Extended	50,387
Theater	Traditional	50,387
Toxicology	Traditional	274,198
Toxicology	Extended	274,890
Transplantation	Traditional	245,611
Transplantation	Extended	246,998
Transportation	Traditional	143,431
Transportation	Extended	251,724
Transportation Science & Technology	Traditional	141,134
Tropical Medicine	Extended	87,544
Tropical Medicine	Traditional	87,544
Urban Studies	Traditional	85,644
Urban Studies	Extended	88,481
Urology & Nephrology	Traditional	415,848
Urology & Nephrology	Extended	420,386
Urology Nephrology	Traditional	24
Veterinary Sciences	Traditional	362,412
Veterinary Sciences	Extended	365,769
Virology	Traditional	152,546
Virology	Extended	153,859
Water Resources	Traditional	274,775
Water Resources	Extended	275,614
Women’s Studies	Extended	75,124
Women’s Studies	Traditional	75,124
Table C.1: Keyword performance in the complete arXiv corpus is highest in 2019. Its decline in earlier years suggests the need for continuous maintenance of term lists. Scores are given for the positive class and the support column refers to the number of AI-relevant articles.

Year	Precision	Recall	\(F_1 \)	Support	Total
2010	.50	.27	.35	1,379	70,286
2011	.54	.24	.33	2,025	76,605
2012	.63	.25	.36	3,370	84,389
2013	.65	.25	.36	4,561	92,866
2014	.66	.31	.43	4,896	97,598
2015	.71	.36	.48	6,663	105,128
2016	.78	.41	.54	10,566	113,436
2017	.77	.44	.56	15,670	123,781
2018	.77	.48	.59	23,891	140,392
2019	.80	.49	.61	34,359	155,840
All	.76	.43	.55	103,380	1,060,321

Table C.2: In evaluation against arXiv test data, the keyword-classifier hybrid developed by Elsevier shows improvements over our baseline keyword solution. Longitudinal imbalance in the training data results in higher performance in recent years.

Year	Positive Class	Negative Class	Wtd. Avg.							
	Precision	Recall	\(F_1 \)	Support	Precision	Recall	\(F_1 \)	Support	F	Support
2010	.50	.31	.38	138	.99	.99	.99	6,891	.98	7,029
2011	.50	.30	.38	202	.98	.99	.99	7,458	.97	7,660
2012	.58	.26	.36	337	.97	.99	.98	8,102	.96	8,439
2013	.60	.28	.39	456	.96	.99	.98	8,831	.95	9,287
2014	.59	.31	.41	489	.96	.99	.98	9,271	.95	9,760
2015	.69	.42	.52	666	.96	.99	.97	9,847	.95	10,513
2016	.75	.45	.57	1,057	.95	.98	.97	10,287	.93	11,344
2017	.74	.49	.59	1,567	.93	.98	.95	10,811	.91	12,378
2018	.75	.55	.64	2,389	.91	.96	.94	11,650	.89	14,039
2019	.81	.55	.66	3,436	.88	.96	.92	12,148	.86	15,584
All	.74	.49	.59	10,737	.94	.98	.96	95,296	.92	106,033
Table C.3: All-subjects SciBERT test performance is highest in recent years, primarily because of longitudinal imbalance in the training data. There is also a class imbalance of about 9:1 in favor of negative examples whose effect on performance is apparent.

Year	Precision	Recall	\(F_1 \)	Support	Precision	Recall	\(F_1 \)	Support	\(F_1 \)	Support
2010	.64	.63	.64	138	.99	.99	.99	6,891	.99	7,029
2011	.65	.63	.64	202	.99	.99	.99	7,458	.98	7,660
2012	.74	.69	.72	337	.99	.99	.99	8,102	.98	8,439
2013	.80	.74	.77	456	.99	.99	.99	8,831	.98	9,287
2014	.74	.73	.74	489	.99	.99	.99	9,271	.97	9,760
2015	.78	.79	.78	666	.99	.98	.99	9,847	.97	10,513
2016	.82	.84	.83	1,057	.98	.98	.98	10,287	.97	11,344
2017	.83	.89	.85	1,567	.98	.97	.98	10,811	.96	12,378
2018	.83	.90	.87	2,389	.98	.96	.97	11,650	.95	14,039
2019	.87	.89	.88	3,436	.97	.96	.97	12,148	.95	15,584
All	.83	.85	.84	10,737	.98	.98	.98	95,296	.97	106,033