Impact of variables affecting biogas production from biomass

Manish Saraswat¹, Monika Garg²*, Mehul Bhardwaj³, Mridul Mehrotra⁴, Ritik Singhal⁵

¹ Associate Professor, Department of Mechanical Engineering, ABES Engineering College, Ghaziabad
²,³,⁴,⁵ Scholars, Department of Mechanical Engineering, ABES Engineering College, Ghaziabad

*Corresponding Author: monika.15bme2045@abes.ac.in

Abstract. As a substitution of fossil fuels and a resource of Renewable Energy, Biogas is of vital important in this era of abated energy resources. Production of biogas from anaerobic digestion by utilization of waste and organic matter provides an excellent solution for waste management. In this review, it is shown that what are the main factors which affect the biogas production, how they are affecting and at what condition optimal results are produced. Temperature is the important factor which affects the biogas production. At higher temperature, maximum biogas is produced. There are other factors like the C/N ratio, pH value, compression ratio, and the total solid concentration which are affecting the biogas production. In this paper, concentration of all these factors at various conditions has been noted and the optimal condition is specified. It is also specified at what condition the higher gas yield will be produced.

Key Words: Renewable Energy; Biogas; biogas from

1. Introduction

Accomplishing the demand of energy there are many resources but some fuels like fossil fuels are depleting day by day and also these fuels are harmful to the environment so to save our environment and for the replacement of these fuels Biogas is the best option. Biogas can be produced from various wastes like animal manure and slurry, sewage, sludge, municipal solid waste, and food waste so it can reduce waste and also some fertilizers suitable for the agricultural purpose are also produced during biogas production process. In India total waste generation is 531.53 lakh MT/Annum referred to in reply o part (a) of the LokSabha Unstarred Question No. 2974 for 04/01/2018 regarding “Generation of Solid waste”.

Anaerobic digestion is the process to produce biogas from biomass. Biogas composition is mainly of methane(CH4) two-thirds by volume and CO2. This process includes four phases to produce biogas Hydrolysis, Acidification, Acetogenesis, and Methanogenesis. Hydrolysis is the process in which disintegration of water into H+ and OH- ions occurs. By hydrolysis breakdown of various organic polymers like protein, fats and carbohydrates occur. Acidogenesis is the next step of anaerobic digestion which includes the breakdown of organic matter by acidogenic bacteria which produce H2, CO2, H2S, Volatile fatty acids and other products. In the third step which is acetogenesis, acetate generates which is a derivative of acetic acid. In the final step, methane is produced from the products of the last step. There are various factors which affect the digestion process and these factors will also affect the biogas production, so biogas production depends on various factors like temperature, pH value, C/N ratio, HRT. In this review paper, it is shown that how this factor will affect the biogas production.
1.1 Effect of Temperature
Temperature is an important factor which affects biogas production. On increasing the temperature biogas production increases. Season temperature affects the biogas production. So during winter, less biogas is produced as compared to the summer season. There are many bacteria’s which develops and helps in producing the biogas. These bacteria also develop at various temperatures. According to Barik (2012) anaerobic bacteria develop well at temperature of about 309.9K (mesophilic) and 327.6K (thermophilic). Biodeg (2013) had done research on biogas generation from cow dung at different temperature condition. He had taken the volume of slurry as 3g dung with 10cm3 water at different temperature and observes in different time duration. The following table 1 shows the results:

Table 1: Physio-chemical properties of biomass

Properties	Flask			
	A	B	C	D
Volume of slurry	3g dung 10cm3 water			
Temperature	Ambient 25±20C	Ambient 25±20C	Sunlight outdoors	400C
Gas collection over water	water	Lime water	----	----
Gas yield production	Highest (15.60cm3)	----	----	----
Highest percentage gas	Week 3 (41.30%)	Week 4 (53.85%)	----	Week 2 (39.29%)
yield week				

According to Biodeg (2013) highest gas yield produced was 15.60cm3 at ambient temperature which is collected over lime water in week 4.

1.2 Effect of C/N Ratio
Carbon mass to nitrogen mass ratio is called as C/N ratio. C/N ratio affects the volume of the biogas produced. During acidification process bacteria’s develop under acidic conditions so to produce acetic acid carbon and oxygen is required. When anaerobic environment is deficient with oxygen then nitrogen is required for the growth of micro-organisms. During hydrolysis ammonia is produced as by-product from nitrogenous compound. Proper hydrolysis is important for the production of ammonia otherwise this will lead to a condition termed as ammonia toxicity. Ammonia is important factor causing methanogenesis inhibition. Excess ammonia is also dangerous as it may lead to digester failure.

Microorganisms generally utilize 25-30 times carbon than nitrogen during anaerobic digestion. Greatest suitable C/N ratio in methane generation is considered as 20-30. If C/N ratio is high, then nitrogen will consume initially which will make process to slow down. Amount of nitrogen will be high in digester and carbon will be low if C/N ratio would be too low [18-19].

1.3 Effect of pH
pH value is main factor in anaerobic digestion. Development of microbes during anaerobic fermentation affected by pH. pH of digester content depends on carbon dioxide and volatile fatty acids. This is also affected by the temperature of reaction medium. Yadvi (2004) state that if pH is greater than 5 then production of CH4 would be greater than 75%. Shiva Subramaniam(2014) investigated different pH (5, 6, 7, 8, 9, & 10) on biogas production from food waste with a retention time of 30
days. Better yield of biogas and bacteria growth was found at pH 7. Edison Muzenda conducted an experiment in which he took 3 different pH values and for each value the rate of biogas production was different. The highest biogas production was at a pH of 6.5.

1.4 Total Solid Concentration
Total solids concentration is a measurement that includes the combination of total dissolved solids and total suspended solids. M. Kannan (2017) conducted an experiment in which total solids concentration of 5%, 10%, 15% and 20% were taken and the effect on biogas production was investigated in the reactors with mesophilic temperature condition and hydraulic retention time of 30d. The volume of biogas produced was measured at regular intervals (24hr) using water displacement method. The results show that the reactor with 10% of total solid concentration had greater biogas production as compared with other reactors. Budiyono (2010) conducted an experiment in which the effect of Total Solid concentration on biogas production was studied by varying TS from 2.64% - 18.40% for a period of 90 days.

1.5 Hydraulic Retention Time
It is average duration of time holding slurry in digester. Shorter Hydraulic Retention time means less active bacteria and larger HRT needs larger digester which means more cost and low efficiency. Types of bacteria’s or micro-organisms and temperature affect the HRT. Shorter HRT in thermophilic temperature system while greater HRT in mesophilic temperature system. At high temperature, reaction occurs fast and so the degradation will also be faster and HRT will be less. As HRT is affected by some factors and it also affects some factors so it is not easy to find suitable HRT as shown in table 2.

Table 2: Effect of HRT

Effects of HRT	Hydraulic Retention Time		
	20days	40days	60days
Methane Content	22.4%	36.9%	42.4%
pH value	5.8-7.1	6.6-7.4	6.3-7.3
Biogas production	48.8ml/g TS	79.9 ml/g TS	89.1 ml/g TS
	55.2 ml/g volatile solids	94.3 ml/g volatile solids	105.2 ml/g volatile solids
Degradation of cellulose	43.8%	52.1%	55.4%
Degradation of hemicellulose	47.1%	71.4%	76.8%

2. Conclusion
According to all the factors that are mentioned the suitable condition for the production of biogas can be. The temperature for the biogas production ranges from the 310K-330K. C/N Ratio for the generation of the biogas is 20-30. pH for the suitable anaerobic digestion of the Biogas is 6-7. Total solid concentration required ranges from 5%-9%. Hydraulic Retention Time should be higher for more micro-organisms to develop in Biomass.
References

[1] MaviCliment et al. 2007, “Effects of thermal and mechanical pre-treatments of secondary sludge on biogas production under thermophilic conditions”, Chemical Engineering Journal, 133, 335-342
[2] Yadavika et al. 2004, “Enhancement of biogas production from solid substrates using different techniques – A review”, Bioresource Technology 95, 1–10
[3] G. N. Tiwari et al. 1991, “A comparison of active heating of Biogas system for higher production”, International Journal of Solar Energy, Volume 10, Issue 1-2
[4] M. Fatih Demirbas et al. 2009, “Progress and Recent Trends in Biogas Processing” International Journal of Green Energy, Volume 6, Issue 2
[5] Ashish Malik et al. 2009, “Utilization of biomass as engine fuel”, Journal of Scientific & Industrial Research, Vol.68, pp.887-890
[6] Fabbiana Passos et al. 2013, “Impact of low temperature pretreatment on the anaerobic digestion of microagal biomass”, Bioresource Technology, Volume 138, pages 79-86
[7] Paul Dobră et al. 2014, “Main factors affecting biogas production - an overview”, Romanian Biotechnological Letters, Vol.19, No3
[8] Wilson Parawira et al. 2012, “Enzyme research and applications in biotechnological intensification of biogas production”, Crit Rev Biotechnol; 32(2):172-86. doi: 10.3109/07388551.2011.595384. Epub
[9] R.T. Haug et al. 1983, “Thermal pretreatment of sludges—a field demonstration”, J. Water Pollut. Control Fed; 55, 23–34
[10] Alexandre Valo et al. 2004, “Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion”, Journal of Chemical Technology and Biotechnology; 79:1197–1203
[11] H. B. Nielsen et al. 2004, “Comparison of Two-Stage Thermophilic (68°C/55°C) Anaerobic Digestion With One-Stage Thermophilic (55°C) Digestion of Cattle Manure”, The Environmental Microbiology and Biotechnology Group, BioCentrum-DTU, Denmark; 10.1002/bit.20037
[12] Jia Lin et al. 2011, “Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China”, Journal of Environmental Science; 23:1403–1408
[13] Le Chen et al. 2016, “Anaerobic digestion in mesophilic and room temperature 2 conditions: Digestion performance and soil-borne 3 pathogen survival”, Journal of Environmental Science; JES-00582
[14] Hamed M. El-Mashad et al. 2004, “Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure”, Bioresource Technology; 95, 191–201
[15] C. Gonza’lez-Ferna’ndez et al. 2012, “Thermal pretreatment to improve methane production of Scenedesmus biomass”, Biomass and Bioenergy; 40, 105-111
[16] Willy Verstraete et al. et al., “Revival of the Biological Sunlight-to-Biogas Energy Conversion System”, Biotechnology & Bioengineering; DOI 10.1002/bit.22257
[17] Hong-Wei Yen et al. 2007, “Anaerobic co-digestion of algal sludge and waste paper to produce methane”, Bioresource Technology; 98, 130–134
[18] Manish Saraswat et al. 2018, “Assessment Study of Butanol-Gasoline Blends in Variable Compression Ratio Spark Ignition Engine”, JSIR Vol.77(07), 405-409
[19] Manish Saraswat et al. 2018, “Assessment Study of Butanol-Gasoline Blends in Variable Compression Ratio Spark Ignition Engine”, JSIR Vol.77(12), 723-727
[20] Walter Mulbry et al. 2005, “Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer”, Bioresource Technology; 96, 451–458
[21] Nuruol Syuhadaa Mohd et al. 2015, “Investigation of the Performance and Kinetics of Anaerobic Digestion at 45°C”, Journal of Water Resource and Protection; Vol.7 No.14
[22] Barnett, A et al. 1978, “Biogas technology in the third world: a multi-disciplinary Review”, *IDRC; Ottawa, Canada, 51*

[23] Vinzant T.B. et al. 1990, “Aerobic and anaerobic digestion of processed municipal solid waste: eVects of retention time on cellulose degradation”, *Applied Biochemistry and Biotechnology, 24/25*, 765–771.

[24] Gene F. Parkin et al. 2005, “FUNDAMENTALS OF ANAEROBIC DIGESTION OF WASTEWATER SLUDGES”, *Journal of Environmental Engineering*112*, 867–920.