Vacuum fluctuations in the presence of nonlinear boundary conditions

C. D. Foscoa and L. E. Oxmanb

aCentro Atómico Bariloche and Instituto Balseiro
Comisión Nacional de Energía Atómica
R8402AGP Bariloche, Argentina.

bInstituto de Física
Universidade Federal Fluminense
Campus da Praia Vermelha
Niterói, 24210-340, RJ, Brazil.

Abstract

We consider a system consisting of a quantum, massless, real scalar field, in the presence of nonlinear mirrors: infinite parallel planes, upon which the field satisfies nonlinear boundary conditions. The latter are implemented by non-quadratic interaction vertices, strictly localized on the mirrors. By using the appropriate perturbative expansions, we obtain approximate expressions for the Casimir energy corresponding to weak coupling, regarding the strength of the interaction terms. We also comment on an alternative expansion scheme that may be useful when the weak coupling expansion is not justified.

1 Introduction

Quantum vacuum fluctuations may manifest themselves, under the proper circumstances, in the form of observable macroscopic physical effects. For instance, the existence of boundary conditions for a quantum field on a nontrivial geometry can produce a Casimir force, an effect which has been evaluated for different kinds of vacuum fields, geometries, and boundary conditions \cite{1}. Among the many important developments that have emerged in those areas, a topic which has recently received much attention has been the use of a more accurate description of the ‘mirrors’; in other words, of the geometry and nature of the boundary conditions.
A refined description may include corrections that are an attempt to represent, for example, a departure from the idealized situation of exactly conducting, zero-width, smooth-shape mirrors. Examples of those corrections are: roughness, finite temperature and conductivity, as well as a finite width.

Leaving aside the case of nonlocal boundary interactions [2, 3, 4], for which extensive studies have been carried out [5, 6], imperfect boundary conditions are usually represented, at least in some scalar field models, by the introduction of a ‘space dependent mass term’, such that the -otherwise massless- scalar field becomes massive just at the locii of the mirrors [7], therefore ‘penalizing’ the development of non-zero field values on the mirror. Dirichlet boundary conditions appear, in this context, wherever that space-dependent mass tends to infinity [8].

In this kind of model, the relevant properties of the mirrors correspond to a linear response approximation. A ‘microscopic’ way to interpret this approximation, in quantum field theory (QFT) terms, amounts to using a truncated version of the expansion of the effective action, for the vacuum field, due to the microscopic degrees of freedom living on the mirrors, to the second order in the vacuum field [9, 10].

On the other hand, neglecting higher-order terms in the expansion can be expected to be a reliable approximation whenever the magnitude of the quadratic term is large in comparison with the subleading, usually quartic, one. Indeed, since a large quadratic term penalizes the existence of a non zero field configuration around the corresponding mirror, the contributions from higher-order terms (since they involve higher powers of the field) are likely to be suppressed. It is the main purpose of this paper to study the consequences for the Casimir energy of the presence of that kind of nonlinearity, having in mind cases where the conditions to discard it are not necessarily met.

This paper is organized as follows: in Section 2 we define the model and its relevant properties, and in Section 3 we consider its vacuum energy within the context of the functional integral formalism. Then, in Section 4 we present a study of the weak coupling expansion for the nonlinearities. In section 5 we consider a weak coupling expansion adapted to the case when boundary conditions have both linear and nonlinear parts. An alternative, complementary expansion is introduced and considered in Section 6; it corresponds to a situation where there is a small correction on top of a Dirichlet boundary condition. Finally, in Section 7 we present our conclusions.
2 The model

The model that we consider involves a real massless scalar vacuum field $\varphi(x)$ in $3+1$ dimensions, coupled to two flat, parallel, zero-width mirrors, denoted by L and R, which occupy the planes $x_3 = 0$ and $x_3 = a$, respectively. Euclidean coordinates shall be denoted by $x \equiv (x_0, x_1, x_2, x_3)$, and we will also use a specific notation, $x_\parallel \equiv (x_0, x_1, x_2)$, for the coordinates which are parallel to the mirrors’ planes (on which we assume the existence of translation invariance). Alongside the last convention, we shall use letters from the beginning of the Greek alphabet (α, β, \ldots) to denote indices which run over the values 0, 1, and 2.

The media inside each mirror is assumed to be strictly confined to the respective plane, so that the full Euclidean action for the system, $S(\varphi)$, naturally decomposes as follows:

$$S(\varphi) = S_f(\varphi) + S_I(\varphi),$$

where S_f denotes the free action (i.e., in the absence of mirrors) for the real scalar field:

$$S_f(\varphi) = \frac{1}{2} \int_x (\partial \varphi)^2,$$

and

$$S_I(\varphi) = S_L(\varphi) + S_R(\varphi),$$

while S_L and S_R account for the coupling between φ and the respective mirror. These terms shall be assumed to have a similar structure. We will endow them with, for the sake of simplicity, a local form, confined to a $2+1$-dimensional spacetime, the world-volumes generated by the static mirrors during the course of (trivial) time evolution:

$$S_L = \int_{x_\parallel} \mathcal{V}_L[\varphi(x_\parallel, 0)], \quad S_R = \int_{x_\parallel} \mathcal{V}_R[\varphi(x_\parallel, a)],$$

where \mathcal{V}_L and \mathcal{V}_R are local functions of their arguments, involving no derivatives of the fields.

From the classical equations of motion that follow from the real-time version of the action for φ, we see that they imply the boundary conditions:

$$\left\{ \begin{array}{l} \partial_3 \varphi(x_\parallel, 0^+) - \partial_3 \varphi(x_\parallel, 0^-) = \frac{\partial \mathcal{V}_L}{\partial \varphi}[\varphi(x_\parallel, 0)] \\ \partial_3 \varphi(x_\parallel, a^+) - \partial_3 \varphi(x_\parallel, a^-) = \frac{\partial \mathcal{V}_R}{\partial \varphi}[\varphi(x_\parallel, a)] \end{array} \right.,$$

which necessarily introduce nonlinearities as soon as one of the functions \mathcal{V}_L or \mathcal{V}_R involves more than two powers of its argument. A consequence of this
very same property is the following: when there are more than two powers of the field in one of the mirrors, the quantum equations of motion for ϕ, namely, the equations for its mean value $\langle \phi \rangle$, are different to their classical counterparts. Indeed, from:

$$0 = \int D\phi \frac{\delta}{\delta \phi(x)} e^{-S(\phi)},$$

we obtain

$$\Box \langle \phi(x) \rangle + \delta(x_3) \langle \frac{\partial V_L}{\partial \phi} [\phi(x_\parallel, 0)] \rangle + \delta(x_3 - a) \langle \frac{\partial V_R}{\partial \phi} [\phi(x_\parallel, a)] \rangle,$$

(6)

from which linear boundary conditions are obtained only when the potentials $V_{L,R}$ are quadratic. On the contrary, for non-quadratic interactions the equation involves Green’s function with more than one field, and the resulting system of equations does not close; in other words, it becomes infinite.

3 Vacuum energy

The vacuum energy E will be obtained from the effective action Γ (for the static configuration of two parallel planes already defined) when evaluated for a long, yet finite, time interval of length T:

$$E = \lim_{T \to \infty} \frac{\Gamma_T}{T},$$

(7)

where $\Gamma = -\log Z$, and Z denotes the Euclidean vacuum transition amplitude:

$$Z = \int D\phi e^{-S(\phi)},$$

(8)

and the action is evaluated on the (Euclidean) time interval $[-\frac{T}{2}, \frac{T}{2}]$.

By factoring out the partition function corresponding to S_f, we see that Z may be rewritten in the equivalent way:

$$Z = Z_f \times Z_I$$

(9)

with

$$Z_f = \int D\phi e^{-S_f(\phi)},$$

(10)

and

$$Z_I = \langle e^{-S_I(\phi)} \rangle$$

(11)

where we have introduced a ‘Gaussian average’ symbol $\langle \ldots \rangle$ to denote the functional averaging with the weight defined by S_f, namely, for any expression, its average is given by:

$$\langle \ldots \rangle \equiv \frac{\int D\phi \ldots e^{-S_f(\phi)}}{\int D\phi e^{-S_f(\phi)}}.$$
Then,
\[\Gamma = \Gamma_f + \Gamma_I \] (13)
where \(\Gamma_f = -\log Z_f \) and \(\Gamma_I = -\log Z_I \). Note that \(\Gamma_f \) yields the vacuum energy corresponding to the free field system, while \(\Gamma_I \) contains contributions due to the presence of the boundary conditions.

Since the Casimir force is insensitive to \(\Gamma_f \), we shall discard that contribution in what follows. Besides, note that \(\Gamma, \Gamma_f \) and \(\Gamma_I \) are not only proportional to \(T \), but also to \(L^2 \), the area of the mirrors. This is just a manifestation of the fact that the system has translation invariance along the two parallel directions to the mirrors, as well as being time independent. Thus rather than working with energies, which are extensive and therefore proportional to \(L^2 \), we will use instead energies per unit area, denoted by \(E_I \), \(E_f \), and \(E_I \), respectively. Thus, the interesting quantity shall be:
\[E_I = -\lim_{T,L \to \infty} \left[\frac{1}{TL^2} \log \langle e^{-S_I(\phi)} \rangle \right]. \] (14)

Since we just need to keep terms that do contribute to the Casimir force, we can also subtract from \(E_I \) contributions which, although sensitive to the existence of the boundary conditions, are independent of the distance between the mirrors. That is the case of the mirrors’ self-energies which, although certainly may depend on the details of each interaction term \(S_L \) and \(S_R \), are independent of the distance \(a \) between \(L \) and \(R \).

4 Weak coupling expansion

Let us calculate here the contribution to the Casimir energy due to purely nonlinear coupling terms, under the assumption that those terms are small. The procedure is entirely analogous, although applied to a nonlinear medium, to the approach followed, for example, in [11] and [12] to derive exact results in the weak coupling regime of the static Casimir effect.

The perturbative expansion, taking as zeroth order the free action \(S_f \), amounts to expand \(\Gamma_I \) in powers of \(S_I \),
\[\Gamma_I = \Gamma_I^{(1)} + \Gamma_I^{(2)} + \ldots, \] (15)
where the superscript denotes the order (in \(S_I \)) of each term in the perturbative expansion.

Up to the second order, the explicit form of the terms is as follows:
\[\Gamma_I^{(1)} = \langle S_I \rangle, \] (16)
and
\[\Gamma_i^{(2)} = -\frac{1}{2} \left[\langle \mathcal{S}_i \rangle^2 - \langle \mathcal{S}_i \rangle^2 \right]. \] (17)

Regarding the first-order term, we note that, since the quantum averaging is defined with the free action, the result is a sum of two self-energy terms, each one independent of the distance \(a \) between the two mirrors. Thus, there is no contribution from this term to the Casimir interaction energy.

Let us now consider the second order term for the concrete example of mirrors described by the terms:
\[\mathcal{S}_L = \int_{x_{||}} \frac{g_L}{k_L!} : \varphi(x_{||},0) \varphi(x_{||},0) : , \quad \mathcal{S}_R = \int_{x_{||}} \frac{g_R}{k_R!} : \varphi(x_{||},a) \varphi(x_{||},0) : , \] (18)
where the normal-order symbol means that contractions at the same vertex are to be discarded.\(^{1}\)

The second-order term can then be written as follows:
\[\Gamma_i^{(2)} = -\langle \mathcal{S}_L \mathcal{S}_R \rangle . \] (19)

More explicitly, one can see that \(\Gamma_i^{(2)} \) vanishes unless \(k_L = k_R = k \), and
\[\Gamma_i^{(2)} = -\frac{g_L g_R}{k!} \int_{x_{||}, x'_{||}} \left[\langle \varphi(x_{||},a) \varphi(x'_{||},0) \rangle \right]^k \]
\[= -\frac{g_L g_R}{k!} TL \int_{x_{||}} \left[\langle \varphi(x_{||},a) \varphi(0,0) \rangle \right]^k , \] (20)
where
\[\langle \varphi(x_{||},x_3) \varphi(y_{||},y_3) \rangle = \frac{1}{4\pi^2} \left[(x_{||} - y_{||})^2 + (x_3 - y_3)^2 \right] . \] (21)

The fact that the non vanishing contributions to the Casimir interaction appear only for \(k_L = k_R \) is represented in Figure 1, for the particular case \(k_L = k_R = 4 \).

A rather straightforward calculation yields for the interaction energy per unit area:
\[\mathcal{E}_i^{(2)} = -\frac{g_L g_R}{k!} \frac{\pi^{1/2} \Gamma(2k-3/2)}{2(2\pi)^{2k-1} \Gamma(k)} \frac{1}{a^{2k-3}} , \] (22)
which is an expression formally valid for any \(k > 3/4 \). It is interesting to note that, for ‘perfect’ boundary conditions (Dirichlet, for instance), the only

\(^{1}\)The normal order symbol could be dropped at the expense of adding a certain number of counterterms, which form a polynomial of degree \(k_{L,R} - 2 \) at the respective mirror, having the parity of the integer \(k_{L,R} \).
Figure 1: The first nontrivial correction in the weak coupling regime, for

$k = 4$.

dimensionful quantity which appears in the energy density is the distance a; this implies that $\mathcal{E}_f \propto \frac{1}{a^4}$. On the other hand, the perturbative result above should be valid for weak coupling, and one cannot therefore take the limit when the couplings tend to infinity. However, we may note that, since the mass dimension of the coupling constants is $[M]^{3-K}$, when $k = 3$ they become dimensionless. Thus, in that situation the dependence with a is entirely analogous to the case of Dirichlet or Neumann boundary conditions, since:

$$[\mathcal{E}^{(2)}_I]_{k \to 3} = -\frac{g_L g_R}{1536\pi^4 a^3}.$$ \hspace{1cm} (23)

It is rather straightforward to check that, for the $k = 3$ case, the third order term vanishes, except for self-energy contributions.

The weak coupling approximation can also be applied to situations where the interaction terms are not necessarily of a polynomial form. Indeed, assuming that the functions $\mathcal{V}_{L,R}$ can be represented in terms of their Fourier transforms, $\tilde{\mathcal{V}}_{L,R}$, respectively:

$$\mathcal{V}_L[\varphi(x\parallel, 0)] = \int \frac{d\lambda_L}{2\pi} \tilde{\mathcal{V}}_L(\lambda_L)e^{i\lambda_L \varphi(x\parallel, 0)},$$

$$\mathcal{V}_R[\varphi(x\parallel, a)] = \int \frac{d\lambda_R}{2\pi} \tilde{\mathcal{V}}_R(\lambda_R)e^{i\lambda_R \varphi(x\parallel, a)},$$ \hspace{1cm} (24)
the normal-ordered versions of these objects are given by [13]:

\[V_L[\varphi(x_\parallel, 0)] : = \int \frac{d\lambda_L}{2\pi} \tilde{V}_L(\lambda_L) : e^{i\lambda_L \varphi(x_\parallel, 0)} : \]

\[V_R[\varphi(x_\parallel, a)] : = \int \frac{d\lambda_R}{2\pi} \tilde{V}_R(\lambda_L) : e^{i\lambda_R \varphi(x_\parallel, a)} : \] \quad \text{(25)}

where

\[e^{i\lambda_L \varphi(x_\parallel, 0)} : = e^{i\lambda_L \varphi(x_\parallel, 0) + \frac{1}{2} \lambda_L^2 \langle \varphi(x_\parallel, 0)\varphi(x_\parallel, 0) \rangle} \] \quad \text{(26)}

and

\[e^{i\lambda_R \varphi(x_\parallel, a)} : = e^{i\lambda_R \varphi(x_\parallel, a) + \frac{1}{2} \lambda_R^2 \langle \varphi(x_\parallel, a)\varphi(x_\parallel, a) \rangle} \] \quad \text{(27)}

Thus, the first non-trivial contribution to the interaction energy comes from:

\[\Gamma^{(2)}_I = -\int \frac{d\lambda_L}{2\pi} \int \frac{d\lambda_R}{2\pi} \tilde{V}_L(\lambda_L) \tilde{V}_R(\lambda_R) \int_{x_\parallel, x_\parallel'} \langle : e^{i\lambda_L \varphi(x_\parallel, 0)} : e^{i\lambda_R \varphi(x_\parallel, a)} : \rangle \]

\[= -TL^2 \int \frac{d\lambda_L}{2\pi} \int \frac{d\lambda_R}{2\pi} \tilde{V}_L(\lambda_L) \tilde{V}_R(\lambda_R) \int_{x_\parallel} e^{-\lambda_L \lambda_R \langle \varphi(x_\parallel, a)\varphi(0, 0) \rangle} , \] \quad \text{(28)}

and the surface density of (interaction) energy may be put in the form:

\[E^{(2)}_I = -4\pi \int \frac{d\lambda_L}{2\pi} \int \frac{d\lambda_R}{2\pi} \tilde{V}_L(\lambda_L) \tilde{V}_R(\lambda_R) \int_0^{\infty} dr \frac{e^{-\lambda_L \lambda_R}}{4\pi^2 r^3} . \] \quad \text{(29)}

It is interesting to see that the previous expression can be expanded for large \(a \), obtaining:

\[E^{(2)}_I \sim \sum_{l=2}^{\infty} \frac{c_l}{a^{2l-3}} \] \quad \text{(30)}

with:

\[c_l = \frac{(-1)^{l+1} \pi^{1/2} \Gamma(l - 3/2)}{2^{2l} \pi^{2l-1} \Gamma(l) l!} \left(\int \frac{d\lambda_L}{2\pi} \tilde{V}_L(\lambda_L) \lambda_L' \right) \left(\int \frac{d\lambda_R}{2\pi} \tilde{V}_R(\lambda_R) \lambda_R' \right) \] \quad \text{(31)}

which depends on the momenta of the Fourier transform of the ‘potentials’. This shows, in particular, that the wider the Fourier transform for the potentials, the larger shall the (negative) degree in the distance \(a \) of the terms contributing to the energy.
5 Linear plus nonlinear boundary conditions

In this case, we consider mirrors which are described by coupling terms including both quadratic and non-quadratic pieces. The former can and will be treated here exactly, while the latter will be expanded in a perturbative expansion. For the quadratic part, we include mass-like terms for the fields at the mirrors, and, in order to evaluate \mathcal{Z} (and Γ), we shall use a perturbative expansion in the nonlinear terms; we split the full action into its quadratic and quartic parts:

$$S(\varphi) = S_0(\varphi) + S_I(\varphi),$$

(32)

where now S_0 includes both the free action S_f and quadratic terms responsible of the linear coupling to the mirror:

$$S_0(\varphi) = \frac{1}{2} \int_x (\partial \varphi)^2 + \int_{x\parallel} \left[\frac{\mu_L}{2} \varphi^2(x\parallel, 0) + \frac{\mu_R}{2} \varphi^2(x\parallel, a) \right],$$

(33)

where $\mu_{L,R}$ are constants, and S_I as in (3).

The known result for \mathcal{E}_0, is:

$$\mathcal{E}_0 = \frac{1}{2} \int \frac{d^3k\parallel}{(2\pi)^3} \log \left[1 - \frac{e^{-2|k\parallel|a}}{\left(1 + \frac{2|k\parallel}{\mu_L} \right) \left(1 + \frac{2|k\parallel}{\mu_R} \right)} \right].$$

(34)

Again, as in the previous section, we need to evaluate functional averages of expressions involving powers of the scalar field. Since the functional weight is again a Gaussian, Wick’s theorem for vacuum expectation values holds true, this time with a different elementary contraction. Therefore, the evaluation of each term requires the knowledge of G, the 2-point correlation function for the scalar field, in the presence of the Gaussian weight:

$$G(x; y) \equiv \langle \varphi(x) \varphi(y) \rangle,$$

(35)

where we keep the same symbol for the average as in the previous section, albeit the functional weight is determined by S_0.

The exact form of G may be explicitly found, and it can be written as follows:

$$G(x; y) = G_f(x; y) - H(x; y),$$

(36)

where G_f denotes the correlation function corresponding to the free field, i.e., in the absence of mirrors:

$$G_f(x; y) = \langle x | (-\partial^2)^{-1} | y \rangle = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik(x-y)}}{k^2}.$$

(37)
while
\[
H(x; y) = \int \frac{d^3k}{(2\pi)^3} \frac{dp_3 dq_3}{2\pi} e^{ik\parallel (x_3-y_3)} \frac{1}{(k_\parallel^2 + p_3^2)(k_\parallel^2 + q_3^2)D(k_\parallel)} \times
\]
\[
\times \left\{ \left(\frac{1}{\xi_R(k_\parallel)} + \frac{1}{2|k_\parallel|} \right) e^{i(p_3 x_3 - q_3 y_3)} + \left(\frac{1}{\xi_L(k_\parallel)} + \frac{1}{2|k_\parallel|} \right) e^{i(p_3 (x_3-a)+q_3(a-y_3))}
- \frac{e^{-|k_\parallel|a}}{2|k_\parallel|} \left[e^{i(p_3 x_3+q_3(a-y_3))} + e^{i(p_3(x_3-a)-q_3 y_3)} \right] \right\}, \tag{38}
\]
with
\[
D(k_\parallel) = \left(\frac{1}{\mu_L} + \frac{1}{2|k_\parallel|} \right) \left(\frac{1}{\mu_R} + \frac{1}{2|k_\parallel|} \right) - \frac{e^{-2|k_\parallel|a}}{4k_\parallel^2}. \tag{39}
\]

Note that \(G_f(x; y) \) is the limit to which the \(G(x; y) \) correlation function tends when its arguments are at fixed positions with \(0 < x_3, y_3 < a \), while the mirrors’s positions are infinitely far away.

There is also another limit that we need to consider when calculating perturbative corrections: it corresponds to taking the \(a \to \infty \) limit, while at the same time assuming that its two arguments belong to one of the mirrors.

The results corresponding to the two cases (both arguments on the \(L \) or the \(R \) mirror) are, respectively, as follows:
\[
(G(x_\parallel,0;y_\parallel,0) |_{a \to \infty} = \int \frac{d^3k}{(2\pi)^3} e^{ik\parallel (x_3-y_3)} \frac{1}{2|k_\parallel| + \mu_L}, \tag{40}
\]
and
\[
(G(x_\parallel,a;y_\parallel,a) |_{a \to \infty} = \int \frac{d^3k}{(2\pi)^3} e^{ik\parallel (x_3-y_3)} \frac{1}{2|k_\parallel| + \mu_R}. \tag{41}
\]

Equipped with the previous ingredients, we now evaluate the explicit form of the first order terms in the expansion, for the case of quartic vertices with coefficients \(g_L \) and \(g_R \).

In the calculation of the first order term, we face the emergence of a divergence; indeed, we see that:
\[
\Gamma^{(1)}_I = \frac{3}{4!} \left\{ g_L \int_{x_\parallel} [G(x_\parallel,0;x_\parallel,0)]^2 + g_R \int_{x_\parallel} [G(x_\parallel,a;x_\parallel,a)]^2 \right\}, \tag{42}
\]
which, as a rather straightforward calculation shows, is divergent. This kind of divergence can be dealt with, however, by a similar procedure to the normal ordering of standard QFT. The important difference here is that the contraction depends on the distance between the plates, as it is seen from the form of \(G \). Therefore, we subtract from the interaction term contributions
which correspond to contractions performed when the planes are infinitely far apart. In other words, the normal ordering is performed at \(a \to \infty \), so that the interaction actions are renormalized in an intrinsic way for each mirror, that is, independently of the presence of the other mirror.

Thus,

\[
\left[\Gamma_1^{(1)} \right]_{\text{ren}} = \frac{3}{4!} g_L \int_{x||} \left\{ \left[G(x||, 0; x||, 0) \right]^2 - 2 \left[G(x||, 0; x||, 0) \right]_{a \to \infty} \right\} G(x||, 0; x||, 0) \\
+ \left[G(x||, 0; x||, 0) \right]_{a \to \infty}^2 \right\} \\
+ \frac{3}{4!} g_R \int_{x||} \left\{ \left[G(x||, a; x||, a) \right]^2 - 2 \left[G(x||, a; x||, a) \right]_{a \to \infty} \right\} G(x||, a; x||, a) \\
+ \left[G(x||, a; x||, a) \right]_{a \to \infty}^2 \right\} .
\]

The previous expression may also be put in the following form:

\[
\left[\Gamma_1^{(1)} \right]_{\text{ren}} = \frac{3}{4!} g_L \int_{x||} \left[G_1(x||, 0; x||, 0) \right]^2 \\
+ \frac{3}{4!} g_R \int_{x||} \left[G_1(x||, a; x||, a) \right]^2 ,
\]

with:

\[
G_1(x||, 0; x||, 0) = G(x||, 0; x||, 0) - \left[G(x||, 0; x||, 0) \right]_{a \to \infty} \\
G_1(x||, a; x||, a) = G(x||, a; x||, a) - \left[G(x||, a; x||, a) \right]_{a \to \infty} .
\]

A rather straightforward calculation shows that:

\[
G_1(x||, 0; x||, 0) = \int \frac{d^3k||}{(2\pi)^3} \frac{-2|k||}{\mu_L^2} \frac{1}{(1 + \frac{2|k||}{\mu_L})(1 + \frac{2|k||}{\mu_R})e^{2|k||a} - 1} \\
G_1(x||, a; x||, a) = \int \frac{d^3k||}{(2\pi)^3} \frac{-2|k||}{\mu_R^2} \frac{1}{(1 + \frac{2|k||}{\mu_L})(1 + \frac{2|k||}{\mu_R})e^{2|k||a} - 1} .
\]

It is worth noting that most of what we have said before could also have been obtained for the case of momentum dependent coefficients \(\mu_{L,R} \), (with an action which is a straightforward generalization of the one for constant coefficients). This allows us to consider a rather ‘economical’ model, consisting of one where the mass dimensions of the coefficients for the quadratic terms are given by the momentum itself, so that we are just left with dimensionless coefficients. Namely,

\[
\mu_{L,R}(k||) = \zeta_{L,R}|k|| ,
\]
where $\zeta_{L,R}$ are dimensionless constants.

In this case, the first order contribution to the vacuum energy is:

$$E^{(1)} = \frac{3}{4a^4} \left[\frac{1}{\zeta_L^4} (1 + \frac{1}{\zeta_L})^2 + \frac{1}{\zeta_R^4} (1 + \frac{1}{\zeta_R})^2 \right] \left[I(\zeta_L, \zeta_R) \right]^2$$ \hspace{1cm} (48)

where

$$I(\zeta_L, \zeta_R) = \frac{1}{4\pi^2} \int dp \rho \frac{1}{(1 + \frac{1}{\zeta_L})(1 + \frac{1}{\zeta_R})^2} e^{2\rho - 1}. \hspace{1cm} (49)$$

6 Alternative expansion

Finally, we will consider here an alternative expansion, still under the same general structure of the ones considered before, but such that the interaction terms can (by assumption) be represented in terms of the generalized Fourier transformations:

$$e^{-S_L(\varphi)} = \frac{1}{N_L} \int \mathcal{D}\xi_L e^{-W_L(\xi_L) + i \int_{x_\parallel} \xi_L(x_\parallel) \varphi(x_\parallel, 0)}$$

$$e^{-S_R(\varphi)} = \frac{1}{N_R} \int \mathcal{D}\xi_R e^{-W_R(\xi_R) + i \int_{x_\parallel} \xi_R(x_\parallel) \varphi(x_\parallel, a)}, \hspace{1cm} (50)$$

where ξ_L and ξ_R are auxiliary fields, and $N_{L,R}$ are normalization constants.

It may be thought of as a particular case of the previous section, namely, when the constants μ_L and μ_R tend to infinity, while the microscopic interactions are such that, there still are non-vanishing small non-quadratic functions $W_{L,R}$.

We then insert the representations (50) into the definition (8) of Z, and integrate out the scalar field φ, to obtain:

$$Z = \frac{Z_f}{N_L N_R} \int \mathcal{D}\xi_L \mathcal{D}\xi_R e^{-W_q(\xi_L, \xi_R) - W_L(\xi_L) - W_R(\xi_R)} \hspace{1cm} (51)$$

where $W_q(\xi_L, \xi_R)$ denotes the quadratic form in the auxiliary fields:

$$W_q(\xi_L, \xi_R) = \frac{1}{2} \int_{x_\parallel, x_\parallel'} \xi_A(x_\parallel) K_{AB}(x_\parallel, x_\parallel') \xi_B(x_\parallel') , \hspace{1cm} A = L, R, \hspace{1cm} (52)$$

where

$$K_{AB}(x_\parallel, x_\parallel') = \int \frac{d^3k_\parallel}{(2\pi)^3} e^{ik_\parallel \cdot (x_\parallel - x_\parallel')} \tilde{K}_{AB}(k_\parallel) \hspace{1cm} (53)$$

with:

$$\left[\tilde{K}_{AB}(k_\parallel) \right] = \frac{1}{2|k_\parallel|} \left(\begin{array}{cc} 1 & e^{-|k_\parallel|a} \\ e^{-(k_\parallel a)} & 1 \end{array} \right). \hspace{1cm} (54)$$
Proceeding in an analogous manner to the one followed for the weak coupling expansion, but with \(W_q \) playing a role similar to \(S_f \), we see that:

\[
\Gamma = \Gamma_q + \Gamma_s \tag{55}
\]

with

\[
e^{-\Gamma_q} = \int \mathcal{D}\xi_L \mathcal{D}\xi_R e^{-W_q(\xi_L,\xi_R)} \tag{56}
\]

and

\[
e^{-\Gamma_s} = \langle e^{-W_L(\xi_L)-W_R(\xi_R)} \rangle_q
\]

\[
\langle \ldots \rangle_q = \frac{\int \mathcal{D}\xi_L \mathcal{D}\xi_R \ldots e^{-W_q(\xi_L,\xi_R)}}{\int \mathcal{D}\xi_L \mathcal{D}\xi_R e^{-W_q(\xi_L,\xi_R)}}. \tag{57}
\]

It is worth noting that, as well as for the weak coupling case, there will be self-energies coming from the subleading terms in the series. A convenient way to get rid of them is to apply a normal ordering, in such a way that \(a \) independent contributions coming from contractions between points on the same vertex are discarded. In the weak coupling case, that amounts to the usual normal ordering, since the free propagator is independent of \(a \). Here, on the contrary, the propagator for the auxiliary fields does depend on \(a \). Thus, the normal ordering subtracts from it a contribution which is independent of \(a \). More explicitly, when including tadpoles, they contribute:

\[
\langle \xi_L(x_\parallel)\xi_L(x_\parallel) \rangle_q = \int \frac{d^3k_\parallel}{(2\pi)^3} \frac{2|k_\parallel| e^{2|k_\parallel| a - 1}}{4!} = \langle \xi_R(x_\parallel)\xi_R(x_\parallel) \rangle_q. \tag{58}
\]

The leading term is then \(\Gamma_q \) which is identical to the Dirichlet result, and therefore the corresponding energy per unit area is given by:

\[
\mathcal{E}_q = -\frac{\pi^2}{1440 a^3}. \tag{59}
\]

Let us now consider the expansion of \(\Gamma_s \), which contains the subleading terms. Note that, since now the Gaussian average depends on \(a \), even the first order terms in \(W_{L,R} \) may produce non-trivial contributions to the interaction energy. Indeed, we see that:

\[
\Gamma_s^{(1)} = \langle W_L(\xi_L) \rangle_q + \langle W_R(\xi_R) \rangle_q. \tag{60}
\]

As an example, let us consider:

\[
W_R(\xi_R) = \int \frac{g_R}{4!} [\xi_R(x_\parallel)]^4, W_L(\xi_L) = 0, \tag{61}
\]

13
namely, a nonlinear mirror at $x_3 = a$ and a Dirichlet one at $x_3 = 0$. In this case, we obtain,

$$\Gamma_s^{(1)} = \frac{g_R}{8} \left(\int \frac{d^4k}{(2\pi)^3} \frac{2|k_0|}{e^{2|k_0|^2a} - 1} \right)^2$$

$$= \frac{\pi^6}{460800g_R a^8}. \quad (62)$$

7 Conclusions

We have presented a perturbative treatment for the calculation of the Casimir energy in a system where the boundary conditions, imposed on a real scalar field, are nonlinear. This has the consequence that, for example, there is no Lifshitz formula [14] to account for the Casimir interaction energy, since the mirrors' properties cannot be represented just by reflection and transmission coefficients when they are nonlinear.

We have considered different situations: first the case of semitransparent nonlinear mirrors, then mirrors including both linear and nonlinear contributions in their boundary conditions, and finally situations where the mirrors can be described as having a small nonlinear contribution on top of an otherwise perfect (Dirichlet) plane.

The nonlinearities manifest themselves, at this level, in the presence of terms in the interaction energy which have a non standard dependence on the distance a, even when they are semitransparent.

Acknowledgements

C.D.F has been supported by CONICET, ANPCyT and UNCUyo, Argentina. The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) is also acknowledged for financial support.

References

[1] G. Plunien, B. Müller, and W. Greiner, Phys. Rep. 134, 87 (1986); P. Milonni, The Quantum Vacuum (Academic Press, San Diego, 1994); V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and its Applications (Clarendon, London, 1997); M. Bordag, The Casimir Effect 50 Years Later (World Scientific, Singapore, 1999); M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001); K.
A. Milton, *The Casimir Effect: Physical Manifestations of the Zero-Point Energy* (World Scientific, Singapore, 2001); S. Reynaud et al., C. R. Acad. Sci. Paris IV-2, 1287 (2001); K. A. Milton, J. Phys. A: Math. Gen. 37, R209 (2004); S.K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005); Special Issue "Focus on Casimir Forces", New J. Phys. 8 (2006).

[2] E. Elizalde and S. D. Odintsov, Class. Quant. Grav. 12, 2881 (1995).

[3] A. Saharian and G. Esposito, J. Phys. A 39, 5233 (2006); ibidem, *In the Proceedings of 11th Marcel Grossmann Meeting on General Relativity, Berlin, Germany, 23-29 Jul 2006, pp 2761-2763*.

[4] C. D. Fosco and E. Losada, Phys. Lett. B 675, 252 (2009).

[5] R. Esquivel-Sirvent, C. Villarreal, W. L. Mochán, A. M. Contreras-Reyes and V. B. Svetovoy, J. Phys. A 39 (2006) 6323; R. Esquivel-Sirvent, C. Villarreal and W. L. Mochán, Phys. Rev. A 68 052103; R. Esquivel-Sirvent, C. Villarreal and W. L. Mochán, Phys. Rev. A 71 029904; R. Esquivel-Sirvent and W. L. Mochán, *Quantum Field Theory Under the Influence of External Conditions*, Ed. K. Milton (New Jersey: Rinton).

[6] Z. Bajnok, L. Palla and G. Takács, Phys. Rev. D73 065001 (2006); Z. Bajnok, L. Palla and G. Takács, Nucl. Phys. B772 290 (2007).

[7] See, for example: N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, O. Schroeder and H. Weigel, Nucl. Phys. B 677, 379 (2004), and references therein.

[8] R. L. Jaffe, AIP Conf. Proc. 687, 3 (2003).

[9] C. D. Fosco, F. C. Lombardo and F. D. Mazzitelli, Phys. Lett. B 669, 371 (2008) [arXiv:0807.3539 [hep-th]].

[10] C. D. Fosco, F. C. Lombardo and F. D. Mazzitelli, Phys. Rev. D 80, 085004 (2009).

[11] K. A. Milton, P. Parashar and J. Wagner, Phys. Rev. Lett. 101, 160402 (2008).

[12] J. Wagner, K. A. Milton and P. Parashar, J. Phys. Conf. Ser. 161, 012022 (2009).
[13] J. Zinn-Justin, Int. Ser. Monogr. Phys. 113, 1 (2002).

[14] E.M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955) [Sov. Phys. JETP 2, 73 (1956)].