Multiplexed rapid technologies for sexually transmitted infections: a systematic review

Angela Karellis, Faheel Naeem, Suma Nair, Sneha D Mallya, Jean-Pierre Routy, Jacqueline Gahagan, Cédric P Yansouni, John Kim, Nitika Pant Pai

Multiplexed technologies for sexually transmitted infections offer a convenient diagnostics option to screen, confirm, and treat multiple pathogens simultaneously. Due to scarce published real-world diagnostic performance data, we did a systematic review. Two reviewers searched major databases for data published between Jan 1, 2009, and April 20, 2020, and abstracted and analysed sensitivity and specificity data from 24 studies, which assessed 17 multiplex rapid nucleic acid amplification test platforms and seven multiplex immunochromatographic devices. Overall, these studies evaluated 19 sexually transmitted infections in 26126 individuals. High sensitivity and specificity were shown for rapid nucleic acid amplification platform tests and immunochromatographic devices, with performance varying by pathogen, device, seropositivity, and subpopulation screened. As most devices yielded more than 95% sensitivity and specificity, immunochromatographic tests and rapid nucleic acid amplification test platforms can be advised for screening and confirmatory use. These highly accurate devices are appropriate for integrated, rapid screening initiatives for sexually transmitted infections to screen and treat many of these infections simultaneously, for antimicrobial stewardship, and for disease elimination programmes.

Introduction

According to WHO, more than 1 million new sexually transmitted infections are acquired every day, leading to a high clinical and socioeconomic burden, both for patients and society. Since the 1980s, WHO has recommended syndromic management to combat the influx of bacterial and viral sexually transmitted infections. Despite the increased popularity of this approach over the past several years, in 2021, regular screening for co-infections among key at-risk populations is needed to enable early diagnosis and optimal management. Although many screening approaches exist, the conventional diagnostic method entails the collection of samples from individuals for laboratory-based testing to produce results in a matter of days. This technique is considered the gold standard to detect sexually transmitted infections, but the use of this method is associated with several disadvantages. The joint COVID-19 and sexually transmitted infection screening initiatives have improved rapid testing, allowing same-day results, which complement laboratory testing in the spectrum of diagnostic care. Besides, antimicrobial stewardship is increasing as countries fight to combat resistant organisms. As such, exploring technologies and solutions to allow individuals to get tested and obtain their results in a single patient visit becomes pertinent.

Multiplexed rapid testing addresses several issues simultaneously by: reducing the number of visits to test for sexually transmitted infections thereby decreasing stigma, discrimination, and anxiety associated with frequent and multiple clinic visits; the burden of coordinating multiple patient appointments and tests; and loss of patients to follow-up. Multiplexed rapid testing further addresses issues related to routine testing’s high cost and low access.

Also, as several sexually transmitted infections share common transmission routes, at-risk individuals have an increased risk of acquiring many sexually transmitted infections, particularly as certain infections, such as syphilis, predispose the development of HIV infection. As such, we decided to explore multiplex rapid testing; this form of assessment simultaneously tests for several pathogens in a single assay while obtaining results with a rapid turnaround time. When the world is facing the COVID-19 pandemic, so as to avoid the neglect of routine screening, the importance of multiplex rapid testing is mounting.

To accommodate the needs of these various settings, two rapid testing options can screen for multiple sexually transmitted infections: immunochromatographic point-of-care tests and rapid nucleic acid amplification test (RNAAT) platforms. Immunochromatographic devices are handheld tests that detect host antibodies, whereas RNAAT platforms are larger bench-top devices, which can perform molecular testing to detect pathogens directly.

To the best of our knowledge, no systematic review provides insights on real-world comparative diagnostic accuracy to aid decision makers in selecting the appropriate test for their setting. To fill this knowledge gap, we reviewed the diagnostic performance of multiplex RNAAT platforms and multiplex immunochromatographic tests to evaluate which are best suited for rapid, simultaneous, multiple screening for sexually transmitted infections and for integrated screening, antimicrobial stewardship, and disease elimination of these key pathogens.

Methods

Search strategy and selection criteria

AK and FN independently evaluated articles in any language published on MEDLINE (via PubMed) and Embase between Jan 1, 2009, and April 20, 2020, for eligibility. They also screened bibliographies in relevant primary studies and review articles. All discrepancies were discussed and resolved between them and by discussion with a senior reviewer (NPP). The population, intervention, comparison, and outcome were defined and pre-specified.

Correspondence to: Dr Nitika Pant Pai, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada (nitika.pai@mcgill.ca)
Comparator, and outcomes strategy is presented in the appendix (p 1). Keywords used in the search string included multiplex*, duplex*, triplex*, quadruplex*, simultaneous*, point-of-care, rapid, platform, molecular, sexually transmitted infection*, and sexually transmitted disease*.

We included all observational studies or randomised controlled trials in clinical care including human participants tested with a commercialised multiplex rapid immunochromatographic test or RNAAT platform. Case series, case reports, and studies that used pre-collected specimens were excluded. We specified infections (HIV, acquired immunodeficiency syndrome, chlamydia, gonorrhea*, hepatitis, syphilis, Treponema pallidum, human papillomavirus, herpes simplex, and trichomonas).

Data analysis

A prepiolated data abstraction form was developed in Excel. Variables abstracted were authors, year of publication, publication type (ie, paper or abstract), study design, funding source, country of study, all specimen type of sexually transmitted infections, type of technology (RNAAT or immunochromatographic), specific test, pathogens able to be detected by the specified test, reference test, population, and sample size. When possible, sensitivity and specificity results were collected by specimen; however, when studies pooled accuracy results by specimen type, these parameters were reported herein as in the publication (appendix p 1).

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to critically appraise studies reporting diagnostic accuracy.12,13 We also explored funding sources to assess potential risk of bias. The protocol detailing the method of this systematic review has been registered in the PROSPERO database (registration number CRD4202179218).14

Results

4440 citations were screened overall, of which 4417 were excluded; an additional eligible study was retrieved during a review of bibliographies (figure). Finally, 24 studies satisfying the predefined criteria were included in the final set. Of these included studies, a total of 26126 individual study participants were assessed. The study characteristics and populations are presented in table 1. There were nine studies (37·5%) from Europe, six (25·0%) from Africa, three (12·5%) from Asia, three (12·5%) from North America, two (8·3%) from South America, and one (4·2%) from Australia. By study design, all studies were observational (20 [83·3%] were cross-sectional, two [8·3%] were cohort studies, one [4·2%] was a case-control study, and one [4·2%] was unclear).

A major proportion of studies (n=17; 70·8%) evaluated RNAAT platforms, whereas the rest (n=7; 29·2%) evaluated immunochromatographic tests. RNAAT platforms assessed a vast array of pathogens: Chlamydia trachomatis (n=16; 64·0%), Neisseria gonorrhoeae (n=15; 62·5%), Mycoplasma genitalium (n=5; 20·8%), Trichomonas vaginalis (n=5; 20·8%), Ureaplasma urealyticum and Ureaplasma parvum (n=2; 8·3%), Mycoplasma hominis (n=2; 8·3%), and herpes simplex virus-2 (n=1; 4·2%). Pathogens screened solely by rapid immunochromatographic tests were hepatitis B (n=1; 4·2%), hepatitis C (n=2; 8·3%), HIV (n=6; 25·0%), and Treponema pallidum (n=5; 20·8%).

The populations and eligibility criteria for screening varied considerably between studies. Whereas certain studies classified their patient population on the basis of symptoms, such as symptomatic or paucisymptomatic patients, others included asymptomatic volunteers.15,18,34

Across numerous studies, study participants seeking regular screening for sexually transmitted infections, medical consultation, or a biological check-up, suspected
Study design	Sample size	Country	Testing setting	Multiplexed test	Sexually transmitted infections assessed	Population
Cross-sectional	202	France	Hospital laboratory	Anyplex II STI-7 Detection kit PCR (Seegene, Seoul, South Korea)	Chlamydia trachomatis, Neisseria gonorrhoea, Trichomonas vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum	Symptomatic and paucisymptomatic patients
Cross-sectional	292	Netherlands	Remote laboratory	Siemens VERSANT kPCR (Tarrytown, NY, USA)	C trachomatis and N gonorrhoea	NA
Cross-sectional	198	Australia	Onsite (remote Australian areas) for rapid testing and laboratory for reference testing	GeneXpert CT/NG (Cepheid, Sunnyvale, CA, USA)	C trachomatis and N gonorrhoea	Aboriginal populations
Cross-sectional	897	South Korea	Hospital laboratory	Anyplex II STI-7 Detection kit PCR; BD ProbeTec strand displacement amplification (Becton Dickinson, Sparks, MD, USA); AmpliSens PCR assay (InterLabService, Moscow, Russia); Mycoplasma IST 2 Kit (bioMérieux, Marcy l’Étoile, France); Seeplex PCR (Seegene, Seoul, South Korea)	C trachomatis, N gonorrhoea, T vaginalis, M genitalium, M hominis, U urealyticum, and U parvum	Symptomatic patients and asymptomatic volunteers
Cross-sectional	1768	Belgium	NA	5-DiaMGTV multiplex diagenode kit (Diagenode, Liege, Belgium)	M genitalium, T vaginalis	Men who have sex with men
Cross-sectional	267	Spain	Hospital laboratory	Anyplex II STI-7 Detection kit PCR	C trachomatis, N gonorrhoea, T vaginalis, M genitalium, M hominis, U urealyticum, and U parvum	Individuals seeking care suspected of having a sexually transmitted and blood-borne infection, HIV-negative men who have sex with men
Cross-sectional	997	China	National and Abbott laboratories	Abbott RealTime CT/NG (Des Plaines, IL, USA)	C trachomatis and N gonorrhoea	Female sex workers
Cross-sectional	453	France	Sexually transmitted disease clinic	Bio-Rad Dx CT/NG/MG (Hercules, CA, USA)	C trachomatis, N gonorrhoea, and M genitalum	Males and females attending a sexually transmitted and blood-borne infection clinic
Cross-sectional	51	Belgium	Hospital	Taqman Array Card (Thermo Fisher Scientific, Waltham, MA, USA)	C trachomatis, N gonorrhoea, M genitalium, and T vaginalis	Men who have sex with men
Cohort	247	South Africa	Clinic for rapid testing and laboratory for reference testing	GeneXpert CT/NG	C trachomatis and N gonorrhoea	Women seeking syndromic care
Cross-sectional	383	Zimbabwe	Laboratories (type unspecified)	GeneXpert CT/NG	C trachomatis and N gonorrhoea	Men and women with genital discharge syndrome
Case-control	242	Rwanda	Hospital laboratory	STDFinder (multiplex ligation-dependent probe amplification, PathoFinder, Maastricht, Netherlands)	C trachomatis, N gonorrhoea, T vaginalis, M genitalium, Treponema pallidum, and herpes simplex virus-1 and virus-2	Women who are infertile
Cross-sectional	491	Colombia	Public health laboratory	Acon Duo (Acon Laboratories, San Diego, CA, USA)	C trachomatis and N gonorrhoea	Sexually active women aged 14–49 years with lower urinary tract infection symptoms
Cross-sectional	1261	Sweden	Hospital laboratory	AmpliSens PCR (Hologic, San Diego, CA, USA)	C trachomatis, N gonorrhoea, M genitalium, and T vaginalis	Sexually transmitted and blood-borne infection clinic attendees
Prospective cohort	955	France	University laboratory for reference testing (unspecified for rapid testing)	Bio-Rad Dx CT/NG/MG	C trachomatis, N gonorrhoea, M genitalium, and T vaginalis	Individuals who undergo sexually transmitted and blood-borne infection screening, medical consultation, or biological check-up

(Table 1 continues on next page)
of having a sexually transmitted infection, women seeking syndromic care, or sexually active women aged 14–49 years presenting with lower urinary tract infection symptoms were included.18,19,21,25,27–18,19

Many studies focused on key at-risk populations such as men who have sex with men, transgender populations, Aboriginal populations, people who inject drugs, women with at least two recent partners, female sex workers, and labourers who have paid for sex.7,18,21,24,26,32,33–17,18 Additional populations of interest included pregnant women, women who are infertile, and patients with genital ulcer disease (table 1).

Table 2 presents the diagnostic accuracy of all RNAAT platforms by pathogen, which covered a total of 19 infections. A total of 15 RNAAT platforms were included in the Review, able to detect eight sexually transmitted infections, of which seven pathogens were bacteria and one was a virus (table 2).

13 devices were able to detect C. trachomatis, and the tests with highest diagnostic accuracy were STDFinder (PathoFinder, Maastricht, Netherlands; vaginal),26 AmpliSens PCR (Hologic, San Diego, CA, USA; vaginal),28 Amplicell II STI-7 Detection kit PCR (Seegene, Seoul, South Korea; urine for male participants).22 Certain devices yielded 100·0% sensitivity with very high specificity, such as Aurora FLOW (Roche, Basel, Switzerland; pooled vaginal for female participants and urine [urethral], rectal, or throat for male participants).36 Siemens VERSANT kPCR (Tarrytown, NY, USA; urine),36 and Bio-Rad Dx CT/NG/MG (Hercules, CA, USA; female urine)36 with a perfect combination of sensitivity (100.0%) and specificity (100.0%; table 2).

Certain devices yielded 100.0% sensitivity with very high specificity, such as Aurora FLOW (Roche, Basel, Switzerland; pooled vaginal for female participants and urine [urethral], rectal, or throat for male participants).36 Siemens VERSANT kPCR (Tarrytown, NY, USA; urine),36 and Bio-Rad Dx CT/NG/MG (Hercules, CA, USA; female urine)36 with a perfect combination of sensitivity (100.0%) and specificity (100.0%; table 2).
Conversely, the tests with optimal specificity and lesser sensitivity included AmpliSens PCR (vaginal and urine or urine for female participants and urine for male participants),28 Abbott RealTime CT/NG (Des Plaines, IL, USA; cervical),21 Bio-Rad Dx CT/NG/MG (urogenital and anorectal),29 and Taqman Array Card (Thermo Fisher Scientific, Waltham, MA, USA; unknown specimen type).21

Notably, in the study by Le Roy and colleagues,22 no positive cases of *C trachomatis* were identified, limiting the ability to test the Bio-Rad Dx CT/NG/MG’s sensitivity with urethral samples. However, the specificity of this test was 100·0% (95% CI 64·5–100·0; table 2). Additional tests presented with varying accuracy, with sensitivities ranging between 30·5% (17·9–43·1) and 99·3% (96·1–99·9) and specificities between 97·8% (not available) and 99·8% (99·2–100·0).15,18,20,25,27,31

12 RNAAT platforms can identify *N gonorrhoeae*. Several studies showed tests with 100·0% sensitivity and specificity, such as AmpliSens PCR (pooled vaginal and...
Index test

Reference test	Specimen type	Sensitivity, % (95% CI)	Specificity, % (95% CI)
Neisseria gonorrhoeae			
Van der Pol et al (2016) 31	BD Max CT/GC/TV (Becton Dickinson, Sparks, MD, USA)	Vaginal	95.7 (93.8–97.6)
Van der Pol et al (2016) 31	BD Max CT/GC/TV	Endocervical	95.7 (93.8–97.6)
Van der Pol et al (2016) 31	BD Max CT/GC/TV	Urine (female)	91.5 (85.8–95.4)
Van der Pol et al (2016) 31	BD Max CT/GC/TV	Urine (male)	96.1 (92.9–98.4)
Muvunjii et al (2011) 11 A	STD Finder (multiplex ligation-dependent probe amplification; PathoFinder, Maastricht, Netherlands)	Abbott RealTime CT/NG assay and gene-probe Aptima Combo 2 assay	Vaginal
Lorea et al (2018) 31	Taqman Array Card (Thermo Fisher Scientific, Waltham, MA, USA)	NA	75.0 (35.6–95.5)

Neisseria gonorrhoeae

Reference test	Specimen type	Sensitivity, % (95% CI)	Specificity, % (95% CI)		
Rumyantseva et al (2015) 32 A	AmpliSens PCR	Vaginal and urine (female) and urine (male)	100.0 (40.2–100.0)	100.0 (99.7–100.0)	
Rumyantseva et al (2015) 32 A	AmpliSens PCR	Vaginal	NA	100.0 (98.2–100.0)	
Rumyantseva et al (2015) 32 A	AmpliSens PCR	Urine (female)	100.0 (19.3–100.0)	100.0 (99.2–100.0)	
Rumyantseva et al (2015) 32 A	AmpliSens PCR	Urine (male)	100.0 (19.3–100.0)	100.0 (99.2–100.0)	
Bençot et al (2015) 31 A	Anyplex II STI-7 Detection kit PCR	Urine, endocervical, vaginal, and pelvic fluid	100.0 (86.0–94.0)	98.4 (NA)	
Choe et al (2013) 31 A	Anyplex II STI-7 Detection kit PCR	Laboratory tests	100.0 (100.0–100.0)	99.2 (98.6–99.8)	
Choe et al (2013) 31 A	Seeplex PCR	Laboratory tests	100.0 (100.0–100.0)	99.7 (99.3–100.0)	
Choe et al (2013) 31 A	BD ProbeTec strand displacement amplification	Laboratory tests	88.9 (76.6–100.0)	99.9 (97.1–100.0)	
Fernández et al (2016) 20 A	Anyplex II STI-7 Detection kit PCR	Abbott RealTime CT/NG	100.0 (31.0–100.0)	100.0 (87.1–100.0)	
Fernández et al (2016) 20 A	Anyplex II STI-7 Detection kit PCR	Abbott RealTime CT/NG	100.0 (51.7–100.0)	100.0 (95.4–100.0)	
Fernández et al (2016) 20 A	Anyplex II STI-7 Detection kit PCR	Abbott RealTime CT/NG	88.9 (63.9–98.1)	100.0 (86.3–100.0)	
Fernández et al (2016) 20 A	Anyplex II STI-7 Detection kit PCR	Abbott RealTime CT/NG	100.0 (62.9–100.0)	100.0 (62.9–100.0)	
Han et al (2014) 21 A	Abbott RealTime CT/NG	Roche Cobas Amplicor CT/NG and Qiagen care CT PCR assay	Cervical	95.5 (75.1–99.8)	99.9 (99.3–100.0)
Cauer et al (2015) 31 G	GeneXpert CT/NG	Cobas 4800 CT/NG test or Aptima Combo 2 assay	Urine	100.0 (96.5–100.0)	100.0 (97.5–100.0)
Mitchel et al (2017) 21 A	GeneXpert CT/NG	Anyplex II STI-7 and fast track diagnostic STD9	Vaginal	100.0 (NA)	99.6 (NA)
Munganti et al (2015) 21 A	GeneXpert CT/NG	ProbeTecTM/multiplex PCR	Vaginal (female) and urine (male)	97.8 (94.1–99.3)	98.5 (95.3–99.6)
Bongaerts et al (2011) 21 A	Siemens VERSANT kPCR	BD ProbeTec ET System	Urine	100.0 (66.3–100.0)	100.0 (98.0–100.0)
Le Roy et al (2012) 21 A	Bio-Rad Dx CT/NG/MG	Culture	Urine, vaginal, endocervical, and urethral	100.0 (NA)	100.0 (NA)
Sednaoui et al (2011) 21 A	Bio-Rad Dx CT/NG/MG	Culture	Urogenital and anorectal	100.0 (85.9–100.0)	99.7 (98.8–99.9)
Nuñez-Foero and et al (2016) 21 A	Bio-Rad Dx CT/NG/MG	Laboratory tests	Endocervical	12.5 (0.0–41.7)	99.8 (99.3–100.0)
Van der Pol et al (2016) 31 A	BD Max CT/GC/TV	BD ProbeTec NG Q, Aptima Combo 2, and BD ProbeTec CT/GC assay	Endocervical	95.5 (84.9–98.7)	99.9 (99.7–100.0)
Van der Pol et al (2016) 31 A	BD Max CT/GC/TV	BD ProbeTec NG Q, Aptima Combo 2, and BD ProbeTec CT/GC assay	Urine (female)	95.7 (85.5–98.8)	99.7 (99.4–99.9)

(Table 2 continues on next page)
Index test	Reference test	Specimen type	Sensitivity, % (95% CI)	Specificity, % (95% CI)
Van der Pol et al (2016)	BD Max CT/GC/TV	BD ProbeTec NG Q, Aptima Combo 2, and BD ProbeTec CT/GC assay	Urine (male)	99.1 (94.9–99.8) 100.0 (99.5–100.0)
Muvunyi et al (2011)	STDFinder (multiplex ligation-dependent probe amplification)	Abbott RealTime CT/NG assay and gene-probe Aptima Combo 2 assay	Vaginal	100.0 (65.5–100.0) 100.0 (98.0–100.0)
Lorea et al (2018)	Taqman Array Card	NA	NA	85.7 (42.0–99.2) 93.2 (80.3–98.2)
Van der Pol et al (2016)	BD Max CT/GC/TV	Wet-prep microscopy or InPouch T vaginalis culture (BioMed Diagnostics, White City, OR, USA) and Aptima T vaginalis assay	Vaginal	96.1 (91.7–98.2) 98.9 (98.0–99.4)

Mycoplasma genitalium

Index test	Reference test	Specimen type	Sensitivity, % (95% CI)	Specificity, % (95% CI)
Choe et al (2013)	Anyplex II STI-7 Detection kit PCR	Laboratory tests	Urine and endocervical	100.0 (100.0–100.0) 100.0 (100.0–100.0)
Choe et al (2013)	AmpliSens PCR	Laboratory tests	Urine and endocervical	100.0 (100.0–100.0) 99.3 (98.7–99.9)
Choe et al (2013)	Seeplex PCR	Laboratory tests	Urine and endocervical	91.7 (80.7–100.0) 99.8 (99.5–100.0)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay	Vaginal	81.9 (70.7–89.7) 100.0 (99.6–100.0)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay	Vaginal	76.5 (64.2–93.0) 100.0 (99.3–100.0)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay	Urethral	84.6 (65.9–95.1) 100.0 (99.9–100.0)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay	pharyngeal	91.5 (86.9–98.5) 99.2 (98.4–99.7)
De Baetselier et al (2017)	S-DiaMGTV multiplex diagenode kit (Diagenode, Liege, Belgium)	Real-time PCR	Vaginal	91.5 (85.4–95.7) 99.7 (99.1–99.9)
De Baetselier et al (2017)	S-DiaMGTV multiplex diagenode kit	Real-time PCR	pharyngeal	87.0 (73.7–95.1) 99.7 (99.1–99.9)
De Baetselier et al (2017)	S-DiaMGTV multiplex diagenode kit	Real-time PCR	Anorectal	94.7 (86.9–98.5) 99.2 (98.4–99.7)
De Baetselier et al (2017)	S-DiaMGTV multiplex diagenode kit	Real-time PCR	pharyngeal	88.9 (51.8–99.7) 99.7 (99.1–99.9)

Trichomonas vaginalis

Index test	Reference test	Specimen type	Sensitivity, % (95% CI)	Specificity, % (95% CI)
Choe et al (2013)	Anyplex II STI-7 Detection kit PCR	Laboratory tests	Urine and endocervical	100.0 (100.0–100.0) 99.3 (99.1–100.0)
Choe et al (2013)	Seeplex PCR	Laboratory tests	Urine and endocervical	100.0 (100.0–100.0) 99.3 (99.1–100.0)
Fernández et al (2016)	AmpliSens PCR	Culture	Urine	93.9 (78.4–98.9) 96.0 (73.1–99.7)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay and Aptima T vaginalis assay	Vaginal	100.0 (16.5–100.0) 100.0 (99.1–100.0)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay and Aptima T vaginalis assay	pharyngeal	91.5 (86.7–98.9) 99.9 (98.7–100.0)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay and Aptima T vaginalis assay	Anorectal	81.0 (65.7–94.1) 100.0 (99.6–100.0)
Rumyantseva et al (2015)	AmpliSens PCR	Aptima Combo 2 assay and Aptima T vaginalis assay	Urine (male)	84.6 (78.0–91.0) 100.0 (98.9–100.0)
Van der Pol et al (2016)	BD Max CT/GC/TV	Wet-prep microscopy or InPouch T vaginalis culture (BioMed Diagnostics, White City, OR, USA) and Aptima T vaginalis assay	Vaginal	96.1 (91.7–98.2) 98.9 (98.0–99.4)
Van der Pol et al (2016)	BD Max CT/GC/TV	Wet-prep microscopy or InPouch T vaginalis culture and Aptima T vaginalis assay	Endocervical	83.4 (85.5–97.6) 99.3 (98.5–99.7)
Van der Pol et al (2016)	BD Max CT/GC/TV	Wet-prep microscopy or InPouch T vaginalis culture and Aptima T vaginalis assay	pharyngeal	92.9 (87.7–96.0) 99.3 (98.5–99.7)
Muvunyi et al (2011)	STDFinder (multiplex ligation-dependent probe amplification)	Microscopic evaluation and confirmed by PCR	Vaginal	100.0 (84.0–100.0) 90.3 (85.3–93.8)
Table 2: Diagnostic accuracy of rapid nucleic acid amplification test platform devices

Index test	Reference test	Specimen type	Sensitivity, % (95% CI)	Specificity, % (95% CI)	
U urealyticum	Seeplex PCR	Laboratory tests	Urine and endocervical	100.0 (100.0-100.0)	99.4 (98.9–99.9)
T vaginalis	STDFinder (multiplex ligation-dependent probe amplification)	Argene real-time PCR and Abbott RealTime HSV1/2	Vaginal	100.0 (51.7–100.0)	95.2 (92.6–98.1)

NA=not available. *Diagnostic accuracy to detect U urealyticum or U parvum.

100·0% sensitive and 99·4% specific. Although none yielded perfect diagnostic accuracy, the remaining tests observed present sensitivities between 92·9% (95% CI 87·7–96·0) and 96·1% (91·7–98·2) and specificities between 95·0% (73·1–99·7) and 99·3% (98·5–99·7; table 2).10

Three RNAAT platforms can detect U urealyticum, although none yielded perfect diagnostic accuracy. The Seeplex PCR (urine and endocervical) was 100·0% (95% CI 100·0–100·0) sensitive and 99·4% (98·9–99·9) specific.10 The Anyplex II STI-7 Detection kit PCR (urine and endocervical) showed 97·8% (94·8–100·0) sensitivity and 99·3% (98·7–99·9) specificity; whereas the Mycoplasma IST 2 Kit (bioMérieux, Marcy l’Etoile, France; urine and endocervical) showed 44·9% (36·6–53·2) sensitivity and...
The Anyplex II STI-7 Detection kit had a sensitivity of 70.0% (59.7–80.3) and specificity of 97.0% (not available). Although the Mycoplasma IST 2 Kit had low sensitivity (urine and endocervical), high specificity (99.7% [99.2–100.0]; table 2) was observed. Herpes simplex virus-2 could be identified by STDFinder (vaginal), which was associated with ideal sensitivity (100.0%) and a specificity of 96.2% (92.6–98.1) to detect this virus (table 2).

Table 3 shows the diagnostic accuracy of all rapid multiplexed immunochromatographic tests by pathogen. Nine immunochromatographic tests are included in our Review, which can identify four sexually transmitted
infections, one of which is a bacterial pathogen and three are viral pathogens.

To detect *T pallidum*, the sole bacterium detected by immunochromatographic tests, the SD Bioline HIV/Syphilis Duo Test (Standard Diagnostics, Giheung-gu, South Korea) was shown to have optimal diagnostic accuracy (for venous blood) in the study by Ormeling and colleagues, and 86.4% (95% CI 65.1–97.1) sensitivity and 100.0% (99.1–100.0) specificity in the study by Lodiongo and colleagues. Two additional studies showed moderate to high sensitivities and specificities with fingerstick blood. The INSTI Multiplex HIV-1/HIV-2/ syphilis antibody test kit (BioLytical, Richmond, BC, Canada) yielded suboptimal sensitivity (56.8% [44.7–68.2]) and high specificity (98.5% [95.7–99.7]; table 3).

For the detection of hepatitis B virus (table 3), the sole immunochromatographic test that could detect the virus was HIV/HCV/HBsAg Triplex (BioSynex, Strasbourg, France; blood), which yielded optimal diagnostic accuracy. Similar to hepatitis B virus values, the HIV/HCV/ HBsAg Triplex (blood) yielded ideal sensitivity and specificity. Two tests showed 100.0% specificity and variable sensitivity: MedMira HIV/HCV/HBV (whole blood) and MedMira HIV/HCV (whole blood). The remaining tests generally showed higher specificity than sensitivity. Sensitivities varied between 80.4% (95% CI 66.1–90.6) and 92.3% (88.4–96.2) and specificities between 85.3% (73.8–93.0) and 99.5% (98.9–100.0). HIV can be detected by three different immunochromatographic tests (table 3), two of which show 100.0% sensitivity and 100.0% specificity: SD Bioline HIV/Syphilis (BioLytical, Richmond, BC, Canada; fingerstick, serum blood, or venous blood) and HIV/HCV/HBsAg Triplex (BioLytical, Richmond, BC, Canada; blood). The SD Bioline HIV/Syphilis Duo Test (venous blood [plasma] or fingerstick blood) and the INSTI Multiplex HIV-1/HIV-2/ syphilis antibody test (fingerstick blood) were shown to yield optimal or near-optimal sensitivity and specificity.

The quality assessment as evaluated by the QUADAS-2 checklist is described in the appendix (pp 1–2). An important subset of questions showed positive answers for the majority of studies, including appropriate study design and use of a quality index and reference standard tests, among others. Furthermore, few studies exhibited evidence of introducing bias, although several studies presented limited information to definitively confirm absence of bias.

Discussion

Our Review consolidates all available literature published between Jan 1, 2009, and April 20, 2020, on rapid multiplex technologies (commercialised RNAAT platforms and immunochromatographic point-of-care multiplexed tests) able to detect at least two sexually transmitted infections simultaneously. To our knowledge, this evaluation is the first of its kind to assess the diagnostic accuracy in real-world settings (ie, point-of-care, near patient care, or in laboratory facilities).

A key trend observed was the overall high diagnostic performance as exhibited by both immunochromatographic tests and RNAAT platforms. With respect to sensitivity, 55.6% (ten of 18 entries) of immunochromatographic results and 65.7% (65 of 99) of RNAAT results, showed sensitivity values of at least 95%, spanning the various sexually transmitted infections examined. In fact, 38.9% (seven of 18) of immunochromatographic entries and 44.0% (44 of 99) of RNAAT entries showed 100.0% sensitivity. The majority of results showed high specificity as well: among RNAAT platforms, 45.0% (45 of 99) showed 100.0% specificity and 94.9% (94 of 99) were at least 95.0%; among immunochromatographic tests, 55.6% (ten of 18) showed perfect specificity and 100.0% (18 of 18) showed more than 95.0% specificity. This result alludes to the high benefit of immunochromatographic tests and RNAAT platforms during screening and for confirmatory purposes. Nearly all commercialised RNAAT platform devices yielded high diagnostic performance (for both sensitivity and specificity), as shown by several studies.

Moreover, certain high-throughput and low-throughput platforms consistently yielded high sensitivity and specificity for several sexually transmitted infections; these included the Anyplex II STI-7 Detection kit PCR, AmpliSens PCR, Bio-Rad Dx CT/NG/MG, HIV/HCV/HBsAg Triplex, STDFinder, Siemens VERSANT kPCR, and Cepheid’s GeneXpert. Among all immunochromatographic tests, the high performance of the SD Bioline HIV/Syphilis Duo Test stood out. In particular, the Anyplex II STI-7 Detection kit PCR, STDFinder, and AmpliSens PCR offer additional benefits in clinical care due to their ability to detect at least four sexually transmitted infections concurrently.

With respect to usefulness in diagnostic care, the majority of RNAAT platforms were used in laboratories. At or near the point of care, several investigators who led field-based studies expressed the clinical usefulness and high diagnostic accuracy of Cepheid’s GeneXpert low-throughput RNAAT platform device for use near patients, particularly to diagnose gonorrhoeae and chlamydia. Systematic review findings, including a 2014 evaluation done by the Pacific Northwest Evidence-based Practice Center, further support this statement. The device’s diagnostic performance in particular is a winning point: GeneXpert’s high sensitivity and specificity (both >97.0%) eliminates the need for confirmatory testing, allowing for a rapid triage of patients to treatment pathways, obviating losses to follow-up.

Rapid multiplexed immunochromatographic tests complement the usage of RNAAT platform testing and
might prove useful to fill timely access and screening gaps for simultaneous testing as shown in many studies done in diverse outpatient clinics or mobile units at or near the point of care. These tests are generally best suited for application in remote or low-resource areas at or near the point of care, although screening can also be done by rapid sample collection in the field followed by sample testing with an RNAAT platform at a centralised facility. Immunochromatographic tests do not require sophisticated laboratory techniques, thereby enabling their use in outreach settings. On the basis of the findings, we recommend that, before widespread implementation, health-care professionals and policy makers assess the needs of the populations who would undergo screening and the characteristics of their specific settings. We recommend that health-care professionals can use immunochromatographic tests, in particular for screening purposes, to reach populations in outreach settings and those who seek rapid HIV, hepatitis B, hepatitis C, and syphilis testing, whereas health-care professionals with access to platform testing can use RNAAT devices, especially for confirmation. In fact, a large number of RNAAT platforms able to detect HIV and hepatitis C virus are very useful in practice including in middle-income and high-income settings, which increase the speed and efficiency of diagnostic testing.

We observed that the performance of rapid immunochromatographic tests varied depending on several factors: (1) co-infection prevalence; (2) individuals screened and the eligibility or screening criteria used; (3) the interplay of various pathogens with the patient’s immune system; (4) many cofactors that contaminate diagnostic accuracy in the immunochromatographic test; and (5) algorithms used to evaluate index test performance. These factors played a role in the performance of rapid multiplexed RNAAT platforms to a lesser degree than in rapid immunochromatographic tests. In this Review, although we focused our evaluation of diagnostic accuracy by pathogen, type of device, specimen type, and population, decision makers could incorporate these additional factors to further aid the selection of appropriate diagnostic tools for their settings. For instance, the varying populations might attribute to the differing results as observed by Berço and colleagues and by Fernández and colleagues. The study by Berço and colleagues included symptomatic and paucisymptomatic patients whereas the study by Fernández and colleagues evaluated a more diverse patient population, including individuals seeking care suspected of having a sexually transmitted infection and HIV-negative men who have sex with men. More specifically, although the same index test (Anyplex II STI-7 Detection kit PCR) and reference test (Abbott RealTime CT/NG assay) were used in these studies, sensitivity (85-1% and 93-0-100-0%) and specificity (97-8% and 98-4-100-0%) values varied during the ongoing pandemic.

The results of this Review will allow decision makers to objectively select the appropriate test for use in accordance with devices’ diagnostic accuracy, most common sexually transmitted infections diagnosed in their setting, available clinical infrastructure, and testees’ preference of specimen collected.

Although some technologies showed perfect diagnostic accuracies (100-0% sensitivity and specificity), some of these results should be interpreted with caution. For instance, several studies were associated with wide CIs for select devices, such as the variable reference standard tests. Volunteer and selection bias (convenience sampling) were present and interpretation bias (limitation of human readers) can lead to false positive readings.

With RNAAT platforms, challenges observed were the ability to amplify, which impedes the capacity to
simultaneously detect multiple pathogens, due to the competition of various mix reactions or the use of non-specific interactions between primer and probes; the requirement of intensive labour to use RNAAT testing; and in a specific case, the inability of the Mycoplasma IST 2 Kit to distinguish between species of the *Mycoplasma* genus. Of note, as made evident by this Review, although RNAAT platforms are generally recognised as highly accurate tests (for both sensitivity and specificity) to screen and diagnose sexually transmitted infections, our findings showed that each infection is optimally detected by one type of multiplexed technology (RNAAT or immunochromatographic). Although we acknowledge that multiplex RNAAT platforms and immunochromatographic sexually transmitted infection tests complement each other well in settings outside the laboratory, this fact limits the testing capacity of some clinics to detect bacterial sexually transmitted infections, principally because costly infrastructure and training are required for RNAAT testing. However, of note, this Review solely included commercialised tests used in routine care. We excluded some studies that presented results associated with novel diagnostic rapid multiplexed technologies used outside routine diagnostic settings from our Review. In the event that some of these tests are to become commercialised in the future, pathogens such as *T. pallidum*, HIV, hepatitis A virus, hepatitis B virus, and human papillomavirus could be detected via RNAAT testing.

Overall, diagnostic performance varied by sexually transmitted infection, populations screened, prevalence and seropositivity, reference standards that varied in settings (immunochromatographic and RNAAT), and type of technology. As a result, we conclude that the majority of commercialised immunochromatographic tests and RNAAT platforms are suitable for both screening and confirmatory purposes. Nonetheless, due to device-specific features, such as portability and the requirement of infrastructure, immunochromatographic tests might be best suited for initial screening and high-throughput RNAAT platforms for confirmatory testing. Combining benefits of clinical usefulness and high diagnostic accuracy, promising platform technologies are useful for both point-of-care screening and diagnosis.

In alignment with international and national sexually transmitted infection disease agendas, rapid multiplexed RNAAT molecular platforms are ready for deployment in integrated sexually transmitted infection screening initiatives. Although immunochromatographic tests are suitable to screen for HIV, hepatitis C virus, and syphilis, there is an urgent need to develop rapid multiplex point-of-care devices for chlamydia, gonorrhoea, and human papillomavirus. Regardless, due to the high feasibility and high accuracy shown, both rapid multiplexed technologies offer immense potential to complement traditional testing in the detection of several pathogens simultaneously. These devices can also have an impact in low-resource settings, further adding value on access and expanded testing to reach, screen, and link undiagnosed populations to care and prevention pathways.

References
1. WHO. Sexually transmitted infections (STIs). 2013. https://apps.who.int/iris/bitstream/handle/10665/82207/WHO_RHR_13.02_eng.pdf?sequence=1 (accessed Jan 16, 2020).
2. WHO. Laboratory diagnosis of sexually transmitted infections, including immunodeficiency virus. 2013. https://apps.who.int/iris/bitstream/handle/10665/85343/9789241505840_eng.pdf?sequence=1. (accessed Jan 17, 2020).
3. St John A, Price CP. Existing and emerging technologies for point-of-care testing. *Clin Biochem Rev* 2014; 35: 155–67.
4. Nilsson AC, Björkman P, Welinder-Olsson C, Widell A, Persson K. Clinical severity of *Mycoplasma pneumoniae* (MP) infection is associated with bacterial load in oropharyngeal secretions but not with MP genotype. *BM C Infect Dis* 2010; 10: 39.
5. Takahashi T, Tamura M, Takahashi SN, et al. Quantitative nested real-time PCR assay for assessing the clinical course of tuberculous meningitis. *J Neurol Sci* 2007; 255: 69–76.
6. Stanford KA, McNulty MC, Schmitt JR, et al. Incorporating HIV screening with COVID-19 testing in an urban emergency department during the pandemic. *JAMA Intern Med* 2021; 181: 1001–03.
7. Pant Pai N, Daher J. Multiplexed testing for HIV and related bacterial and viral co-infections at the point-of-care: quo vadis? *Expert Rev Mol Diagn* 2015; 15: 463–69.
8. Longo JD, Mbounou Bouassa RS, Mbeleo Simalo M, et al. Usefulness of simultaneous screening for HIV-specific and HCV-specific antibodies and HBsAg by a capillary-based multiplex rapid diagnostic test to strengthen linkage-to-care in sub-Saharan patients attending sexually transmitted infection clinic. *J Med Viral* 2018; 90: 1549–52.
9. Bachmann LH, Grimley DM, Waihaka Y, Desmond R, Saag MS, Hook EW 3rd. Sexually transmitted disease/HIV transmission risk behaviors and sexually transmitted disease prevalence among HIV-positive men receiving continuing care. *Sex Transm Dis* 2005; 32: 20–26.
10. Cohen MS. When people with HIV get syphilis: triple jeopardy. *Sex Transm Dis* 2006; 33: 149–50.
11. Primiceri E, Chiriacò MS, Notarangelo FM, et al. Key enabling technologies for point-of-care diagnostics. *Sensors (Basel)* 2018; 18: 3607.
12. Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. *BM C Med Res Methodol* 2003; 3: 25.
14 Karellis A, Naem F, Mallya SD, et al. Evaluation of rapid multiplex diagnostic devices for sexually-transmitted infections: a systematic review. 2020; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020079218 (accessed July 30, 2020).

15 Berçoğlu B, Amarsy R, Goulard A, et al. Assessment of coinfection of sexually transmitted pathogen microbes by use of the arup II T7 molecular kit. J Clin Microbiol 2015; 53: 991–93.

16 Bongaerts M, van de Bovenkamp JHB, Morré SA, Manders MELM, Hedema ER. Evaluation of the Siemens VERSANT® CT/NG DNA 1.0 assay (pPCR) for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Microbiol Methods 2011; 87: 139–42.

17 Causer LM, Hengel B, Natoli L, et al. A field evaluation of a molecular-based point-of-care test for chlamydia and gonorrhoea in remote Aboriginal health services in Australia. Sex Health 2015; 12: 27–33.

18 Chohe HS, Lee DS, Lee SJ, et al. Performance of Arup II multiplex real-time PCR for the diagnosis of seven sexually transmitted infections: comparison with currently available methods. Int J Infect Dis 2013; 17: e114–40.

19 De Baetelier I, Smet H, Vuytsleke B, Crucitti T. Mycoplasma genitalium and trichomonas vaginalis detection in a cohort of men who have sex with men in Belgium: evaluation of the digene s-diagnostic multiple kit. Sex Transm Infect 2017; 93 (suppl 2): A53.

20 Fernández G, Martínez E, González V, et al. Usefulness of a novel multiplex real-time PCR assay for the diagnosis of sexually transmitted infections. Enferm Infec Microbiol Clin 2016; 34: 471–76.

21 Han Y, Yin YP, Shi MQ, et al. Evaluation of Abbott RealTime CT/NG assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in cervical swabs from female sex workers in China. PLoS One 2014; 9:e89658.

22 Le Roy C, Le Hen I, Clerc M, et al. The first performance report for the Bio-Rad Dx Ct/NG assay for simultaneous detection of Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium in urethral samples. J Microbiol Methods 2012; 89: 193–97.

23 Lores S, Henrard S, Montesinos I, Goftard JC. Simultaneous detection of multiple sexually transmitted infections (STIs) pathogens with Taqman Array Card (TAC) compared to traditional methods. Acta Clinica Belgica. Int J Clin Lab Med 2018; 73 (suppl 2): 54.

24 Mitchev N, Singh R, Naidoo J, et al. Evaluation of the point-of-care Xpert CT/NG and Osom trichomonas rapid tests against the arupTexTmi STI-7 detection assay. Sex Transm Infect 2017; 93 (suppl 2): A136.

25 Mungati M, Mugurungi O, Machiha A, et al. Performance of GeneXpert CT/NG in the diagnosis of Neisseria gonorrhoeae and Chlamydia trachomatis among men and women with genital discharge syndrome in Zimbabwe. Sex Transm Infect 2015; 91: A155–56.

26 Muvumi CM, Dhont N, Verhelst R, et al. Evaluation of a new multiplex real-time PCR assay STDfinder for the simultaneous detection of 7 sexually transmitted disease pathogens. Diagn Microbiol Infect Dis 2011; 71: 29–37.

27 Nuínez-Forero I, Moyano-Ariztía L, Gaitán-Durarte H, et al. Diagnostic accuracy of rapid tests for sexually transmitted infections in asymptomatic women. Sex Transm Infect 2016; 92: 26–28.

28 Rumyantseva T, Golparian D, Nilsson CS, et al. Evaluation of the new AmpliSens multiplex real-time PCR assay for simultaneous detection of Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, and Trichomonas vaginalis. APMIS 2015; 123: 879–86.

29 Sednoufi P, Nassar N, Alleleinou G, Castano F, Monfort L. Evaluation of the Bio-Rad Dx CT/NG/MG assay, a new real-time PCR test for the simultaneous detection of Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium. Clinical Microbiol Infect 2011; 4: 5486.

30 Vahidinia A, Costa S, Veenings S, Tuin H, van Loon L, Blikkenkla H. Comparative evaluation of Roche Aurora FLOW, Becton and Dickinson Viper system, and Dynex DS2 for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis in various clinical specimens. Diagn Microbiol Infect Dis 2014; 80: 191–92.

31 Van der Pol B, Williams JA, Fuller D, Taylor SN, Hook EW 3rd. Combined testing for chlamydia, gonorrhea, and trichomonas by use of the BD Max CT/CC/TV assay with genitourinary specimen types. J Clin Microbiol 2016; 55: 155–64.

32 Bristow CC, Leon SR, Huang E, et al. Field evaluation of a dual rapid diagnostic test for HIV infection and syphilis in Lima, Peru. Sex Transm Infect 2016; 92: 182–85.

33 Fisher DG, Hess KL, Elyanna E, Reynolds GL, Cummins CA, Alonzo TA. Comparison of rapid point-of-care tests for detection of antibodies to hepatitis C virus. Open Forum Infect Dis 2015; 2: ofv101.

34 Kalla GMC, Voundi EV, Gaiadumi R, In-Fa L, Blecic I, Mollo-Keuse FX. Mass campaigns for HIV, HBV (HBsAg) and HCV screening by multiplex rapid diagnostic test in sub-Saharan Africa using mobile units: the game changer. Int J Infect Dis 2019; 79 (suppl 1): 107.

35 Loddogo DK, R Bior W, Durns G, et al. Field evaluation of SD Bioline HIV/Syphilis Duo assay among pregnant women attending routine antenatal care in Juba, South Sudan. PLoS One 2018; 13:e0205383.

36 Osmond D, Katawera V, Siedner M, Bouny Y 2nd. Evaluation of SD Bioline HIV/Syphilis Duo test kit in Uganda. BMC Infect Dis 2016; 16: 450.

37 Stafylis C, Bristow CC, Natoli LJ, et al. Field evaluation of a dual rapid human immunodeficiency virus and treponemal syphilis rapid test in community-based clinics in Los Angeles and New York. Diagn Microbiol Infect Dis 2019; 93: 325–28.

38 Herbst de Cortina S, Bristow CC, Joseph Davey D, Klauzner JD. A systematic review of point of care testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. Infect Dis Obstet Gynecol 2016; 2016: 4386127.

39 Nelson HD, Zakher B, Cantor A, Deagas M, Pappas M. Screening for gonorrhoea and chlamydia: systematic review to update the U.S. Preventive Services Task Force Recommendations. Rockville, MD, USA: Agency for Healthcare Research and Quality (US), 2014.

40 Pai NP, Dhurat R, Potter M, et al. Will a quadruple multiplexed point-of-care screening strategy for HIV-related co-infections be feasible and impact detection of new co-infections in at-risk populations? Results from cross-sectional studies. BMJ Open 2014; 4: e005040.

41 COVID-19 Clinical Research Coalition. Global coalition to accelerate COVID-19 clinical research in resource-limited settings. Lancet 2020; 395: 1322–25.

42 Gaydos CA, Quinn TC, Willis D, et al. Performance of the Aptima Combo 2 assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in female urine and endocervical swab specimens. J Clin Microbiol 2003; 41: 304–9.

43 Wi TE, Ndowa FJ, Ferreyra C, et al. Diagnosing sexually transmitted infections in resource-constrained settings: challenges and ways forward. J Int AIDS Soc 2019; 22 (suppl 6): e25343.

44 Peeling RW. Applying new technologies for diagnosing sexually transmitted infections: perspectives and advances. Expert Rev Anti Infect Ther 2014; 12: 657–72.

45 Battle TJ, Golden MR, Suchland KL, et al. Evaluation of laboratory testing methods for Chlamydia trachomatis infection in the era of nucleic acid amplification. J Clin Microbiol 2001; 39: 2924–27.

46 Zhou L, Gong R, Lu X, Zhang Y, Tang J. Development of a multiplex real-time PCR assay for the detection of Treponema pallidum, HCV, HIV-1, and HBV. J Int Infecct Dis 2015; 68: 481–87.

47 Ohnuma H, Tanaka T, Yoshikawa A, et al. The first large-scale nucleic acid amplification testing (NAT) of donated blood using multiple reagents for simultaneous detection of HBV, HCV, and HIV-1 and significance of NAT for HBV. Microbiol Immunol 2001; 45: 667–72.

48 Müller MM, Fraile MI, Hourfar MK, et al. Evaluation of two, commercial, multi-dye, nucleic acid amplification technology tests, for HBV/HCV/HIV-1/HIV-2 and HBV and HIV-1, for screening blood and plasma for further manufacture. Vox Sang 2013: 104: 19–29.

49 Jackson C, Tremblay G. Accelerating our response: government of Canada five-year action plan on sexually transmitted and blood-borne infections. Can Commun Dis Rep 2019; 45: 123–26.

50 WHO. Global health sector strategy on sexually transmitted infections, 2016–2021. Geneva: World Health Organization, 2016. Copyright © 2021 Elsevier Ltd. All rights reserved.