Lesões por pressão relacionadas a dispositivos médicos em pacientes críticos: prevalência e fatores associados*

Medical device-related pressure injuries in critical patients: prevalence and associated factors

Lesiones por presión relacionadas con dispositivos médicos en pacientes críticos: prevalencia y factores asociados

ABSTRACT

Objective: To determine the prevalence of medical device-related pressure injuries in critical patients and analyze the associated factors. Method: Epidemiological, cross-sectional study. Sociodemographic, clinical and medical device data were collected. Inspection of the skin/mucous membranes was performed to identify and classify the injuries. Analysis using descriptive statistics, Poisson regression and the Spearman correlation coefficient. Results: Ninety-three patients were evaluated and 58 developed injuries, with a prevalence of 62.4%. Injuries by the orotracheal tube (50%), nasogastric tube (44.1%) and urinary catheter (28.6%) were the most prevalent, and the most affected regions were, respectively, the auricular (79.5%), nasal ala (86.7%) and urethral meatus (76.9%). Factors associated with injuries were severe edema (p=0.005), low Braden (p<0.001) and Glasgow (p=0.008) scores, length of stay in intensive care (p<0.001) and hospitalization diagnosis classified as other causes (p<0.001). The use of more than one device (p<0.001) and a longer time of use (p<0.001) were correlated. Conclusion: The high prevalence of injuries and the associated factors indicate the need for preventive measures and risk monitoring.

DESCRIPTORS

Pressure Ulcer; Equipment and Supplies; Critical Care Nursing; Risk Factors; Prevalence.

Como citar este artigo:
Galetto SGS, Nascimento ERP, Hermida PMV, Busanello J, Malfussi LBH, Lazzari DD. Medical device-related pressure injuries in critical patients: prevalence and associated factors. 2021;55:e20200397. doi: https://doi.org/10.1590/1980-220X-REEUSP-2020-0397.
INTRODUÇÃO

O contexto das Unidades de Terapia Intensiva (UTI) exige uma gama de instrumentos e equipamentos para assistência em saúde, denominados dispositivos médicos. Esses dispositivos são utilizados pela equipe multiprofissional de saúde e empregados de forma isolada ou em combinação com a finalidade do diagnóstico, monitorização, tratamento ou alívio da doença, conforme a condição clínica do paciente e a indicação do fabricante. Se aplicados de maneira inadequada, podem produzir efeitos deletérios, a exemplo das lesões por pressão relacionadas a dispositivos médicos (LPRDM).

As LPRDM resultam do uso de dispositivos criados e aplicados para fins diagnósticos e terapêuticos, comumente se desenvolvem com o mesmo formato dos dispositivos, considerando que estes, em sua maioria, não apresentam padrão compatível com as estruturas anatômicas e possuem pouca flexibilidade. A progressão dessas lesões é rápida, pois normalmente ocorrem em áreas sem tecido adiposo, nas quais há pressão, fricção e cisalhamento ocasionados pelo dispositivo e agravados pela alteração do microclima. Pesquisas internacionais apontam que diversos cenários de cuidados expõem os pacientes a risco de LPRDM, especialmente as UTI. Uma revisão sistemática e metanálise envolvendo 29 estudos, identificou, respectivamente, uma incidência e prevalência combinadas de LPRDM de 14% e 11% em adultos submetidos à intervenções de assistência à saúde. Estudo Austríaco mostrou incidência de LPRDM de 27,9% em pacientes adultos hospitalizados, sendo 68% em UTI. Uma pesquisa realizada em UTI na Turquia corroborou esses dados ao identificar 40% de prevalência de LPRDM. Taxas inferiores foram reveladas em pacientes gravemente enfermos na Austrália e Estados Unidos, onde a prevalência de LPRDM foi de 3,1%, enquanto na Índia foi de 19,2%.

No Brasil, as publicações científicas com enfoque na prevalência e incidência de LPRDM são incipientes. Um estudo de revisão integrativa realizado recentemente por Enfermeiros brasileiros, direcionado a pacientes adultos, identificou apenas pesquisas internacionais sobre a temática. No âmbito nacional, há uma pesquisa com população pediátrica, que evidenciou prevalência de LP de 32,8% em UTI. Além disso, a pesquisa mostrou que 94% dos pacientes com risco de desenvolver qualquer tipo de LP utilizaram dispositivos médicos, com prevalência de 25% de LPRDM.

Os dispositivos descritos como principais responsáveis por ocasionar lesões são os respiratórios. Os cateteres, dispositivos de imobilização, sondas, entre outros, rotineiramente utilizados em cuidados críticos, também contribuem para desencadear as LPRDM. Ademais, os pacientes internados em UTI apresentam fatores associados, tais como o tempo prolongado de internação, alteração do nível de consciência, a imobilidade física, as disfunções orgânicas, uso de drogas vasoativas e os prejuízos nutricionais, que podem causar as LPRDM.

Assim, torna-se imperativo atentar para a problemática das LPRDM nos cenários de cuidados, principalmente nas UTI, pois embora não sejam um fenômeno novo, pesquisas sobre a frequência dessas lesões no Brasil ainda são limitadas. Em outros países, há estudos que buscam evidências científicas sobre cuidados de prevenção, com a implementação de diretrizes clínicas voltadas para o controle dos fatores associados a seu desenvolvimento. Frente a essas considerações, o objetivo deste estudo foi determinar a prevalência das lesões por pressão relacionadas a dispositivos médicos em pacientes críticos e analisar as fatores associados. Esta pesquisa contribui com a melhora da qualidade do cuidado e a segurança do paciente crítico e o direcionamento de estratégias de prevenção eficazes. Além disso, pode colaborar para o avanço do conhecimento, tendo em vista que aborda um tema ainda pouco explorado na literatura, especialmente no âmbito nacional.

MÉTODO

DESENHO DO ESTUDO

Trata-se de um estudo epidemiológico, observacional de delineamento transversal e abordagem quantitativa.

CENÁRIO

Desenvolvido na UTI adulto de um hospital público de ensino situado em Florianópolis, Santa Catarina, que dispunha de dez leitos para internação de adultos em situação clínica e cirúrgica no período da pesquisa. Não havia protocolo específico de prevenção de LPRDM neste cenário. Ressalta-se a importância da realização desse tipo de estudo em investigações referentes à LP, conforme recomendação do National Pressure Injury Advisory Panel (NPIAP), para medir a prevalência e conduzir ações de prevenção e tratamento das lesões.

DEFINIÇÃO DA AMOSTRA

A amostra foi constituída por 93 pacientes, conforme cálculo realizado com o programa WINPEPI®, versão 2011. Foi estimada a priori uma prevalência de LPRDM de 40%, tendo como base estudo prévio com pacientes adultos internados em terapia intensiva. Considerou-se uma margem de erro de dez pontos percentuais e um intervalo de confiança (IC) de 95%.

Os critérios de inclusão dos pacientes foram: idade igual ou superior a 18 anos; internação na UTI há pelo menos 48 horas para tratamento clínico ou cirúrgico; uso de pelo menos um dispositivo médico eleito para o estudo: tubo orotracheal, tubo de traqueostomia, cateter nasoentérico/Dobb-Hoff, cateter vesical de demora, oxímetro de pulso. O tempo mínimo de internação na UTI de 48 horas foi determinado com base em estudo no qual o tempo decorrido desde o início do uso do dispositivo, até a deteção de uma LPRDM variou de três a 13 dias. A amostragem foi por conveniência e na seleção dos dispositivos, foram consideradas as características dos pacientes atendidos na UTI estudada e a literatura sobre a temática, que aponta os
dispositivos respiratórios, tubos, sondas e cateteres em geral como principais dispositivos de risco\(^6,13,16\).

Coleta de Dados

A coleta de dados foi realizada entre setembro de 2017 a abril de 2018, por uma das pesquisadoras, enfermeira especialista em terapia intensiva, a partir de instrumento construído para o estudo. O prontuário foi consultado para obtenção das variáveis: idade, raça, presença de comorbidades, tabagismo, diagnóstico e tempo de internação, índice de massa corpórea – IMC (calculado a partir da estimativa do peso corporal pela técnica da compleição corporal), nível de sedação pela Richmond Agitation Sedation Scale (RASS)\(^17\), nível de consciência pela escala de coma de Glasgow (ECG)\(^17\), escore de Braden\(^18\), hematócrito, prognóstico Simplified Acute Physiology Scale – SAPS 3\(^19\), e uso e tempo de uso de drogas vasoativas.

Também foram realizadas a observação/inspeção minuciosa de algumas regiões da pele e mucosas dos pacientes e a avaliação da presença de edema (classificado pelo caçifo positivo). A mucosa oral, lábios, comissura labial, região auricular, face e região craniana foram avaliados nos pacientes em uso de TOT. Nas queimaduras, foram inspecionados o estoma, a área peristomial e região cervical anterior e posterior. Naqueles em uso de VNI, foi avaliada a face (região jugal, região frontal e base alar), região cervical e auricular. Quando em uso de CNG/CNE, avaliou-se a mucosa nasal, região de asa e base alar, além da columela nasal. Nos pacientes em uso de CVD, foi inspecionado mento uretral, perineo, região genital, nádegas ecoxas. Por fim, pacientes em uso de OP tiveram os dedos das mãos, dos pés e região auricular avaliados. A pele e mucosas dos pacientes foram avaliadas uma única vez para fins do estudo.

As LPRDM foram categorizadas no momento em que foram identificadas na avaliação da pele, a partir do sistema de classificação de lesões por pressão do NPIAP: Estágio 1 – pele íntegra com eritema que não embranquece; Estágio 2 – perda da pele em sua espessura parcial com exposição da derme; Estágio 3 – perda da pele em sua espessura total; Estágio 4 – perda da pele em sua espessura total e perda tissular. As LP ainda podem ser classificadas como Lesão por Pressão Não Classificável e Lesão por Pressão Tissue Profunda. As LP em membranas mucosas, dada a anatomia do tecido, não podem ser categorizadas\(^13\).

Análise e Tratamento dos Dados

Os dados foram digitados em planilha no Microsoft Excel\(^*\) 2010 e exportados para o programa Statistical Package for the Social Sciences for Windows\(^*\) (SPSS) versão 20.0, para análise estatística. As variáveis categóricas foram apresentadas por frequências e percentuais. As variáveis quantitativas, com distribuição simétrica foram descritas pela média e desvio padrão e as com distribuição assimétrica, pela mediana e o intervalo interquartil. As prevalências foram descritas com o seu respectivo intervalo de confiança de 95%.

Para associar os possíveis fatores ao desfecho, foi utilizada a Regressão de Poisson com variância robusta e apresentadas as razões de prevalência e o intervalo de confiança de 95%. Na análise univariada, foi utilizada a Regressão de Poisson com variância robusta para cada uma das variáveis de forma isolada. Para ajuste de um modelo de regressão multivariável, considerou-se p < 0,20. Foram avaliadas as correlações entre variáveis quantitativas pelo coeficiente de correlação de Spearman, sendo considerado um nível de significância de 5% para as comparações estabelecidas. Para interpretar a magnitude das correlações, foi adotada a classificação: coeficientes < 0,3 (correlação fraca), ≥ 0,3 a 0,5 (correlação moderada) e > 0,5 (forte correlação)\(^20\). O cálculo do período de prevalência de LPRDM foi realizado a partir da razão do número de pacientes com presença de LPRDM pelo número de pacientes que compuseram a amostra.

Aspectos Éticos

A pesquisa seguiu as orientações e disposições da Resolução nº 466/12, do Conselho Nacional de Saúde e foi aprovada pelo Comitê de Ética em Pesquisa com Seres Humanos da Universidade Federal de Santa Catarina sob o Parecer nº 1.957.843, de 2017.

RESULTADOS

Dos pacientes em uso de dispositivos médicos avaliados (N = 93), a maioria era do sexo masculino (n = 61; 65,6%). A média de idade foi de 55,3 anos (DP = 15,3). Predominaram os pacientes de raça/cor branca (n = 68; 73,1%), portadores de hipertensão arterial (n = 45; 48,4%) e não fumantes (n = 51; 54,8%). A maioria dos pacientes apresentou edema evidenciado pelo Sinal de Cacifo 2+ (n = 40; 43,0%), diagnóstico de insuficiência respiratória (n = 41; 44,1%) e mediana de tempo de internação hospitalar e em UTI de sete e cinco dias, respectivamente (Tabela 1).

Os dispositivos médicos mais frequentemente utilizados pelos pacientes foram, na sequência, o OP (n = 93; 100,0%), o CVD (n = 91; 97,8%) e o TOT (n = 78; 83,9%). Do total de pacientes avaliados, 58 desenvolveram LPRDM, correspondendo a uma prevalência geral de 62,4% (IC95%). Lesões causadas pelo TOT, CNG e CVD foram as mais prevalentes, representadas, respectivamente, por 50,0%, 44,1% e 28,6% (Tabela 2).

Considerando os pacientes que desenvolveram LPRDM (n = 58; 62,4%), alguns apresentaram mais de uma lesão em diferentes regiões do corpo, ocasionadas pelo mesmo dispositivo. As regiões mais afetadas foram a auricular, meato uretral e asa do nariz, comprometidas pelo uso de TOT, cateter vesical e cateter nasogástrico, respectivamente. Quanto ao estágio das lesões, observou-se predomínio do estágio 2. Nao foram identificadas lesões com estágio 4, lesão por pressão não classificável e lesão por pressão tissular profunda. Portanto, na tabela foram discriminados os estágios 1, 2, 3 e não categorizável, quando referente à membrana mucosa (Tabela 3).

A mediana de número de dispositivos utilizados pelos pacientes foi de um dispositivo (intervalo interquartil de 0 a 2). A mediana de lesões foi de quatro (intervalo interquartil de 4 a 5 lesões). A mediana de tempo de uso de dispositivos...
Tabela 1 – Características demográficas e clínicas dos pacientes selecionados no estudo – Florianópolis, SC, Brasil, 2018.

Características	Medidas descritivas¹
Idade	55,3 ± 15,3
Sexo	
Masculino	61 (65,6)
Feminino	32 (34,4)
Raça/cor	
Branca	68 (73,1)
Preta	7 (7,5)
Parda	17 (18,3)
Indígena	1 (1,1)
Presença de comorbididades	
Diabetes Mellitus	26 (28,0)
Hipertensão arterial	45 (48,4)
Doenças pulmonares	22 (23,7)
Doenças vasculares	12 (12,9)
Tabagismo	
Fumante ativo	25 (26,9)
Ex-fumante	17 (18,3)
Não fumante	51 (54,8)
Edema	
Sinal de caciço 1+	19 (20,4)
Sinal de caciço 2+	40 (43,0)
Sinal de caciço 3+	29 (31,2)
Sinal de caciço 4+	5 (5,4)
Diagnósticos e tempo de internação	
Sepse	24 (25,8)
Doenças hepáticas	7 (7,5)
Insuficiência respiratória	41 (44,1)
Estados de choque	21 (22,6)
Doença cardiovascular	3 (3,2)
Diabetes descompensada	3 (3,2)
Cirurgia	28 (30,1)
Outras causas	54 (58,1)
Tempo de internação hospitalar (dias)	7 (4 a 15)
Tempo de internação em UTI² (dias)	5 (4 a 9)
Outros dados clínicos	
IMC²	26,9 ± 8,9
Paciente sedado	72 (77,4)
Escala de sedação RASS¹	-5 (-5 a -3)
Escala de Glasgow	15 (11 a 15)
Escore de Braden	10,5 ± 1,8
Hematócrito	30,7 ± 8,5
Escore SAPS 3¹	64,4 ± 13,3
Uso de drogas vasoativas	57 (61,3)
Tempo de uso de drogas vasoativas (dias)	4 (3–6)

¹Medidas descritivas = n (%) utilizadas para variáveis categóricas; média ± desvio padrão empregada para descrever as variáveis quantitativas com distribuição simétrica; mediana (intervalo interquartil) utilizada para descrever as variáveis com distribuição assimétrica; ²Outras causas = doenças respiratórias, renais, neurológicas, hematológicas, metabolicas, do aparelho digestivo, infecciocontagiosas e causas externas; ³IMC = Índice de Massa Corpórea; ¹RASS = Richmond Agitation Sedation Scale; ²SAPS 3 = Simplified Acute Physiology Score 3. Nota: (N=93).

dos pacientes foi de 19 dias (intervalo interquartil 15 a 34 dias). Quando correlacionados o número de lesões com o de dispositivos, houve correlação positiva e moderada, estatisticamente significativa entre estes (coefficiente rho de Spearman = 0,42, p<0,001). Quando correlacionados o número de lesões com o de dias de uso de dispositivo, também se detectou uma correlação positiva e moderada, estatisticamente significativa entre estes (coefficiente rho de Spearman = 0,40, p<0,001).

Tabela 2 – Prevalência das lesões relacionadas ao uso de dispositivos médicos – Florianópolis, SC, Brasil, 2018.

Dispositivos	Pacientes avaliados N(%)	Prevalência N(%)	IC95%
Prevalência geral	93 (100)	58 (62,4)	52,2–71,8
Tubo orotraqueal	78 (83,9)	39 (50,0)	38,5–61,5
Tubo traqueostomia	13 (14,0)	1 (7,7)	0,2–36,0
Máscara de ventilação não invasiva	24 (25,8)	4 (16,7)	4,7–37,4
Cateter nasogástrico	34 (36,6)	15 (44,1)	27,2–62,1
Cateter nasoentérico	60 (64,5)	12 (20,0)	10,8–32,3
Cateter vesical	91 (97,8)	26 (28,6)	19,6–39,0
Óximetro de pulso	93 (100)	11 (11,8)	6,1–20,2

¹IC = Intervalo de Confiança. Nota: (N=93).

Tabela 3 – Descrição da frequência das lesões por dispositivos médicos, região corpórea afetada e estágio de evolução – Florianópolis, SC, Brasil, 2018.

Dispositivo/região	N(%)²	Estágios²		
		1 2 3		
Tubo orotraqueal (N=39)				
Lábio/comissura labial	15 (38,5)	NC²		
Face	2 (5,1)	1 (100,0)		
Região auricular	31 (79,5)	3 (9,7)	15 (48,4)	13 (41,9)
Tubo traqueostomia (N=1)				
Região cervical	1 (100,0)	1 (100,0)		
Máscara de VNI³ (N=4)				
Região frontal	2 (50,0)	1 (100,0)		
Região jugal	1 (25,0)	1 (100,0)		
Face	2 (50,0)	2 (100,0)		
Região auricular	1 (25,0)	1 (100,0)		
Cateter nasogástrico (N=15)				
Asa do nariz	13 (86,7)	8 (61,5)	5 (38,5)	
Mucosa nasal	4 (26,7)	NC²		
Cateter nasoentérico (N=12)				
Asa do nariz	8 (66,7)	6 (75,0)	2 (25,0)	
Mucosa nasal	6 (10,0)	NC²		
Cateter vesical (N=26)				
Meato uretral	20 (76,9)	NC²		
Coxas	3 (11,5)	1 (33,3)	2 (66,7)	
Região perianal	4 (15,4)	4 (100,0)		
Óximetro de pulso (N=11)				
Dedos das mãos	9 (81,8)	4 (44,4)	5 (55,6)	
Região auricular	3 (27,3)	2 (66,7)	1 (33,3)	

²Percentuais de região do corpo e estágios calculados sobre o número de pacientes que desenvolveram lesões por pressão relacionadas a dispositivos médicos; ³NC = Não Categorizável; ³VNI = Ventilação Não Invasiva.
Pela análise univariada, pacientes com edema 3+ têm maior prevalência de lesão quando comparados aos com edema 1+. À medida que aumenta o escore de Braden e a pontuação na ECG, a prevalência de LPRDM diminui. Já o aumento do tempo de internação em UTI aumenta a prevalência de lesões. Não houve associação estatisticamente significativa entre as demais variáveis examinadas e a presença de LPRDM (Tabela 4).

Características	RP* bruta (IC*95%)	p-valor‡	RP* ajustada (IC*95%)	p-valor‡
Idade	0,7 (0,4–1,3)	0,729		
Sexo masculino	1,3 (0,9–1,8)	0,212		
Raça/cor				
Branca	1,5 (0,9–2,5)	0,154		
Preta	0,9 (0,3–2,5)	0,854		
Parda	Ref			
Indígena	n insuficiente			
Presença de comorbidades				
Diabetes Mellitus	1,1 (0,8–1,5)	0,701		
Hipertensão arterial	0,9 (0,6–1,2)	0,381		
Doenças pulmonares	0,9 (0,6–1,4)	0,725		
Doenças vasculares	0,8 (0,4–1,4)	0,405		
Tabagismo				
Fumante ativo	1,2 (0,8–1,7)	0,330		
Ex-fumante	1,2 (0,8–1,8)	0,276		
Não fumante	Ref			
Edema				
Sinal de cacifo 1+	Ref			
Sinal de cacifo 2+	2,5 (1,1–5,4)	0,024		
Sinal de cacifo 3+	3,0 (1,4–6,5)	0,005		
Sinal de cacifo 4+	3,0 (1,3–7,3)	0,012		
Diagnósticos				
Sepse	1,2 (0,9–1,6)	0,285		
Doenças hepáticas	0,9 (0,5–1,8)	0,780		
Insuficiência respiratória	0,9 (0,7–1,3)	0,807		
Estados de choque	1,1 (0,8–1,6)	0,630		
Doença cardiovascular	0,5 (0,1–2,6)	0,434		
Diabetes descompensada	1,1 (0,5–2,4)	0,868		
Cirurgia	0,9 (0,6–1,3)	0,512		
Outras causas5	1,6 (1,1–2,3)	0,013	1,8 (1,3–2,5)	0,001
Tempo de internação hospitalar	1,01 (1,00–1,03)	0,120	1,01 (1,00–1,03)	0,138
Tempo de internação em UTI1	1,03 (1,02–1,05)	<0,001		
Outros dados clínicos				
IMC¶	1,01 (1,00–1,02)	0,283		
Paciente sedado	1,3 (0,8–1,9)	0,328		
Escala de RASS**	0,9 (0,8–1,1)	0,303		
Escala de Glasgow	0,9 (0,8–1,0)	0,008		
Escore de Braden	0,8 (0,8–0,9)	<0,001	0,8 (0,8–0,9)	<0,001
Hematócrito	1,01 (0,98–1,02)	0,941		
Escore SAPS 3††	1,01 (1,00–1,02)	0,173	1,01 (1,00–1,02)	0,173
Uso de drogas vasoativas	1,1 (0,8–1,6)	0,533		

*RP = Razão de Prevalência; †IC = Intervalo de Confiança; ‡p-valor = valor de p proveniente da Regressão de Poisson; §Outras causas = doenças respiratórias, renais, neurológicas, hematológicas, metabólicas, do aparelho digestivo, infecciocontagiosas e causas externas; ‖UTI = Unidade de Terapia Intensiva; ¶IMC = Índice de Massa Corporal; **RASS = Richmond Agitation Sedation Scale; ††SAPS 3 = Simplified Acute Physiology Score 3.
Lesões por pressão relacionadas a dispositivos médicos em pacientes críticos: prevalência e fatores associados

Tabela 5 – Associação do uso de dispositivos médicos com lesões por pressão a partir da Regressão de Poisson – Florianópolis, SC, Brasil, 2018.

Dispositivos	RP’ bruta (IC95%)	p-valor†
Tubo orotraqueal	1,7 (0,9–3,2)	0,117
Tempo tubo orotraqueal	1,07 (1,04–1,10)	<0,001
Tubo traqueostomia	1,7 (1,3–2,1)	<0,001
Tempo tubo traqueostomia	0,99 (0,975–1,01)	0,472
Máscara ventilação não invasiva	0,7 (0,4–1,1)	0,094
Tempo máscara ventilação não invasiva	0,8 (0,5–1,3)	0,406
Cateter nasogástrico	1,2 (0,9–1,7)	0,197
Tempo cateter nasogástrico	1,03 (1,00–1,05)	0,024
Cateter naoentérico	1,3 (0,9–1,9)	0,138
Tempo cateter nasoentérico	1,03 (1,01–1,04)	0,002
Cateter vesical	1,3 (0,3–5,1)	0,752
Tempo cateter vesical	1,05 (1,03–1,07)	<0,001
Oxímetro de pulso	0,6 (0,5–0,7)	<0,001
Tempo oxímetro de pulso	1,03 (1,02–1,05)	<0,001

†RP = Razão de Prevalência; †IC = Intervalo de Confiança; †p-valor proveniente da Regressão de Poisson.

A utilização de TQT (p < 0,001) e de OP (p < 0,001), bem como os tempos de uso de TOT (p < 0,001), CNG (p = 0,024), CNE (p = 0,002), CVD (p < 0,001) e de OP (p < 0,001) estão associados com maior prevalência de LP pelo uso do respectivo dispositivo (Tabela 5). Não foi possível o ajuste de um modelo de Regressão para todos estes fatores, já que estão altamente correlacionados.

DISCUSSÃO

A prevalência geral de LPRDM (62,4%) foi superior aos achados (3,1% a 40%) da literatura internacional(20-22), também obtidos em cenários de terapia intensiva. Lesões causadas por tubo orotraqueal, cateter vesical e cateter nasogástrico foram, nessa ordem, as mais prevalentes.

Os dispositivos respiratórios são considerados os principais responsáveis pelas LPRDM em pacientes graves, com taxas que variam de 30% a 70%(13,16). O TOT foi o dispositivo que mais causou LPRDM, com prevalência de 50%. Comparativamente, em UTIs da Austrália, Estados Unidos e Turquia, em amostras de 132, 351 e 175 pacientes, respectivamente, esse dispositivo foi a causa da maioria das LPRDM, com prevalências que chegaram a 45%(7,8). A prevalência das LP decorrentes de máscaras de VNI (16,7%) foi inferior aos achados de outras investigações, que mostraram ocorrência de 20% em estudo com 146 pacientes gravemente enfermos em UTI médica, cardiotorácica e neurocirúrgica(19) e de 50% em instituições de saúde dos Estados Unidos e Canadá, conforme análise retrospectiva de um banco de dados que incluiu 99.876 pacientes adultos(21).

A taxa de LP pela TQT (7,7%) evidenciada no presente estudo se assemblhou a outras encontradas na literatura(22), com prevalência de 5–10% de lesões associadas a este dispositivo. O surgimento dessas lesões pode estar associado ao efeito de alavanca da TQT sobre estruturas orofaringeas e a traqueia, com atrito e pressão persistente. Ademais, esse dispositivo requer fixação geralmente adaptada, que também aumenta o risco dos danos sobre as estruturas adjacentes(7,22).

É necessário implementar medidas de prevenção específicas para os dispositivos respiratórios, que envolvam avaliação, higiene, proteção e acolhamento das estruturas envoltas, bem como a troca, reposicionamento e rodízio da fixação dos mesmos(3,5,15,22).

A prevalência de LP decorrente de CNG (44,1%) divergiu das taxas evidenciadas em outras pesquisas realizadas com pacientes críticos, e foi maior do que a revelada em um hospital do norte da Índia (12,3%) e menor do que a identificada em um hospital de Israel, no qual 100% dos pacientes avaliados apresentavam LP em região extranasal(23). Ainda referente a esses dispositivos, neste estudo, embora um maior número de pacientes tenha utilizado CNE (poliuretano), quando comparado aos que usaram CNG (polivinil), a prevalência de LP pela primeira foi menor. Esse fenômeno pode ter relação com o tipo de material, pois muitos dispositivos são confeccionados ou fixados com material rígido e essa rigidez e/ou inelasticidade causa pressão e pode ocasionar LPRDM(22,24).

A prevalência de LP relacionada ao CVD (28,6%), foi superior ao evidenciado em uma investigação desenvolvida com 304 pacientes internados em três hospitais dos Estados Unidos, cuja prevalência foi de 15%(16). Já as LP relacionadas ao OP tiveram prevalência de 11,8%, resultado que se aproximou ao identificado em outro estudo, com prevalência de 8% de LP pelo mesmo dispositivo(7). Em ambas as pesquisas, as lesões causadas nos dedos se destacaram. Em estudo sobre as ações de enfermagem prescritas por enfermeiros para prevenir a LP e sua ocorrência em UTI, a prescrição de rodízio do sensor do oxímetro se revelou estatisticamente associada à prevenção dessas lesões(25).

Quanto às regiões do corpo mais afetadas pelas LPRDM, observou-se predominância das regiões auricular, meato uretral e asa do nariz. As lesões auriculares foram ocasionadas, sobretudo, pela fixação do TOT. O meato uretral foi lesionado pelo uso do CVD, enquanto a asa do nariz teve lesão associada ao uso do CNG e CNE. Desse modo, os enfermeiros precisam garantir a troca e/ou fixação do TOT e/ou CNE/CNG, e a observação de seu posicionamento e fixação, haja vista que essas intervenções foram associadas à prevenção de LP(15,25).

As LPRDM devem ser avaliadas e classificadas de acordo com o comprometimento tecidual. Sobre o estágio das lesões, em consonância com os achados da presente investigação, outros estudos acerca de LPRDM em pacientes de terapia intensiva e/ou CNE/CNG, e a observação de seu posicionamento e fixação, haja vista que essas intervenções foram associadas à prevenção de LP(15,25).

No presente estudo, a presença de edema acentuado tiveram maior prevalência de LPRDM (29,1%), em consonância com os achados da presente investigação, outros estudos acerca de LPRDM em pacientes de terapia intensiva e/ou CNE/CNG, e a observação de seu posicionamento e fixação, haja vista que essas intervenções foram associadas à prevenção de LP(15,25).
edema, que foi considerado fator estatisticamente associado (p=0,012) ao desenvolvimento de LP. A formação de edema é um problema que acomete os pacientes críticos e é condicionado pela redução da hemoglobina e albumina, que leva ao vazamento intersticial e aumenta a pressão e deterioração da troca de nutrientes nos tecidos. O edema também pode ser resultado do prejuízo circulatório e linfático ocasionado pela compressão da fixação dos próprios dispositivos(27).

Quanto ao escore de Braden, em consonância com os resultados do presente estudo, outra pesquisa em unidades de terapia intensiva evidenciou que os pacientes que desenvolveram LP apresentaram escore médio de 10, correspondendo a alto risco(20). Neste estudo, a escala de Braden se mostrou eficaz na avaliação do risco de LPRDM, uma vez que a prevalência de lesões foi maior em pacientes que apresentaram um escore de Braden menor. Ressalta-se a eficácia da utilização de escalas de predição de risco, tais como a de Braden, mesmo quando estas não são exclusivas para LPRDM(30).

O comprometimento neurosensorial e a diminuição do nível de consciência são manifestações clínicas persistentes entre os pacientes críticos, evidenciadas pela alteração da ECG, que no presente estudo se apresentou como um fator associado ao desenvolvimento de LPRDM. A redução da atividade, a imobilidade e o cisalhamento são agravantes do prejuízo neurológico e considerados como fatores de risco ao desenvolvimento de LP(3). Pacientes sob efeito de fármacos psicoativos também apresentam essas limitações, mas neste estudo, o nível de sedação não teve significância estatística.

Quanto ao tempo de internação em UTI e o tempo de uso dos dispositivos, uma coorte(25) realizada com 175 pacientes em reanimação anestésica, cirurgia cardiovascular, clínica médica, neurocirurgia e doença torácica atendidos em cinco UTIs, evidenciou que nas primeiras 24 horas de observação, houve ocorrência de LPRDM de 11,8%. No quarto dia, o número subiu para 48,0% e no décimo primeiro dia para 82,3%, mostrando que à medida que os pacientes permaneciam internados e usando dispositivos médicos, aumentava a ocorrência de LPRDM.

O uso de TQT e OP, assim como o tempo de uso de TOT, CNG, CNE, CVD e OP também foram associados à maior prevalência de LPRDM. Pesquisa recomenda que os relatórios de eventos adversos das instituições, no tocante às LPRDM, especifiquem o dispositivo médico e o total de dias de uso do dispositivo relacionado à formação da lesão(24). Isto poderá contribuir para que investigações futuras sobre esse tipo de lesão associada ao total de dias com o dispositivo, por exemplo, produzam conhecimento para estabelecer estratégias eficazes para a sua prevenção(31).

Também se identificou correlação positiva entre o número de dispositivos e a ocorrência de LPRDM, sendo que quanto mais dispositivos os pacientes usaram, mais lesões desenvolveram. A mesma correlação foi observada quanto ao tempo de uso dos mesmos. O uso de múltiplos dispositivos e a presença de edema sob os mesmos, expõe os pacientes a maior risco de LP, logo, nesses casos, recomenda-se inspeção cutânea mais frequente para prevenir tais agravos(22,27). A recomendação é para que os profissionais sempre se questionem se manter o dispositivo é essencial para o paciente, tendo em vista que a sua remoção, quando não há mais indicação de uso, ainda é a melhor medida para prevenir LP(21).

Quando a manutenção dos dispositivos é necessária, recomenda-se: monitorar regularmente a tensão das fixações dos dispositivos, e sempre que possível, solicitar a autoavaliação do conforto do paciente; avaliar a pele abaixo e ao redor do dispositivo para identificar sinais de lesão por pressão pelo menos duas vezes ao dia, com atenção especial para pacientes mais vulneráveis, com emagrecimento acentuado, diminuição do tumor da pele e/ou edema; reduzir ou redistribuir a pressão na interface do dispositivo com a pele, girando ou reposicionando regularmente o dispositivo e/ou o paciente e removendo o dispositivo assim que possível; e usar curativo profilático abaixo do dispositivo para reduzir o risco de lesão. Outras recomendações igualmente importantes para prevenir as LPRDM, tais como treinamento da equipe e implementação de protocolos para orientação prática do cuidado com foco na prevenção e tratamento dessas lesões, devem ser consideradas(31).

A prevalência geral de LPRDM identificada no presente estudo se sobressaiu quando comparada aos achados da literatura, resultado que leva à reflexão sobre o contexto institucional no qual essas lesões ocorreram. Em se tratando de um hospital de ensino, esperava-se identificar menor prevalência. Contudo, deve-se considerar a vigência de recursos públicos escassos, déficit de materiais e de profissionais, em especial, na UTI dessa instituição. Pesquisa mostrou associação entre a carga de trabalho e a incidência de LP, cujo risco para as lesões aumentou 1,5% para cada ponto registrado no Nursing Activities Score(28). Uma revisão sistemática de literatura(29) sobre a influência da carga de trabalho de enfermagem na ocorrência de eventos adversos em pacientes adultos internados em UTI também revelou que a carga de trabalho de enfermagem requerida por pacientes críticos é fator de risco para a ocorrência de eventos adversos, como as LP. Isto demanda análise da carga para adequar a relação entre número de profissionais e pacientes, em busca da prevenção de lesões e segurança do paciente crítico.

A relevância que pode ser atribuída à educação permanente, em relação à prevalência de LPRDM também merece destaque. Nos Estados Unidos, ao reduzir a ocorrência desse tipo de lesão com a implementação de um projeto de melhoria da qualidade cujo objetivo era criar uma diretiz baseada em evidências para a prevenção de LPRDM e adotar um novo dispositivo de fixação de cateter para alimentação, defendeu-se a educação permanente dos profissionais para sustentar resultados positivos(30). O uso da tecnologia de informação pode ser extremamente útil. Estudo(31) de pesquisadores brasileiros descreveu a construção e validação de um website para prevenção e manejo de LP, composto por conteúdos, fotos e figuras abordando a segurança do paciente, ocorrência das lesões e intervenções para prevenção, tratamento e manuseio das mesmas. Esse tipo de recurso educacional pode ser utilizado online, de forma a complementar o processo educativo.
CONCLUSÃO

A prevalência geral de LPRDM foi 62,4%. As maiores prevalências de lesões por pressão relacionadas a dispositivos médicos foram identificadas nos pacientes em uso de tubo orotraqueal, cateter nasogástrico (polivinil) e cateter vesical de demora sendo, portanto, os dispositivos de maior risco para esse tipo de lesão. As regiões do corpo mais afetadas foram a auricular, meato uretral e asa do nariz, com predomínio de lesões em estágio 2.

Os fatores estatisticamente associados à prevalência de LPRDM foram edema corporal acentuado, maior tempo de internação em UTI, baixos escores de Braden e de Glasgow, diagnóstico de internação classificado como outras causas, utilização de TQT e OP, bem como os tempos de uso de TOT, CNG, CNE, CVD e OP. O número de dispositivos em uso e maior tempo de uso dos mesmos teve correlação com maior prevalência de lesões. A elevada prevalência geral de LPRDM, assim como os fatores associados e regiões corporais afetadas, indicam a necessidade de medidas preventivas e monitorização do risco dessas lesões.

RESUMO

Objetivo: Determinar a prevalência das lesões por pressão relacionadas a dispositivos médicos em pacientes críticos e analisar fatores associados. Método: Estudo epidemiológico, transversal. Dados sociodemográficos, clínicos e dos dispositivos médicos foram coletados. Realizou-se inspeção da pele/mucosas para identificação e classificação das lesões. Análise estatística descritiva, regressão de Poisson e coeficiente de correlação de Spearman. Resultados: Foram avaliados 93 pacientes e 58 desenvolveram lesões, com prevalência de 62,4%. Lesões pelo tubo orotraqueal (50%), cateter nasogástrico (44,1%) e vesical (28,6%) foram as mais prevalentes, e as regiões mais afetadas foram, respectivamente: auricular (79,5%), asa do nariz (86,7%) e meato uretral (76,9%). Fatores associados às lesões: edema acentuado (p<0,005), baixo escore de Braden (p<0,001) e de Glasgow (p=0,008), tempo de internação em UTI, baixos escores de Braden e de Glasgow, diagnóstico de internação classificado como outras causas, utilização de TQT e OP, bem como os tempos de uso de TOT, CNG, CNE, CVD e OP. O número de dispositivos em uso e maior tempo de uso dos mesmos teve correlação com maior prevalência de lesões. A elevada prevalência geral de LPRDM, assim como os fatores associados e regiões corporais afetadas, indicam a necessidade de medidas preventivas e monitorização do risco dessas lesões.

DESCRITORES
Lesão por Pressão; Equipamentos e Provisões; Enfermagem de Cuidados Críticos; Fatores de Risco; Prevalência.

REFERÊNCIAS
1. Ekhämetalor K, Fisher LA, Bruce C, Aqurt A, Minott J, Hanna C. Guidelines for Intensive Care Unit admission, discharge and triage. West Indian Med J. 2019; 12:68 Suppl 2:46-54. DOI: http://dx.doi.org/10.7727/wimj.2018.197
2. World Health Organization. Global atlas of medical devices. Geneva: WHO; 2017.
3. European Pressure Ulcer Advisory Panel; National Pressure Injury Advisory Panel and Pan Pacific Pressure Injury Prevention and treatment of pressure ulcers/injuries: quick reference guide. London: Emily Haesler; 2019.
4. Edsberg LE, Black JM, Goldberg M, McNichol L, Moore L, Sieggreen M. Revised national pressure ulcer advisory panel pressure injury staging system: revised pressure injury staging system. J Wound Ostomy Continence Nurs. 2016;43(6):585-97. DOI: http://dx.doi.org/10.1097/VON.0000000000000281
5. Barakat-Johnson M, Barnett C, Wand T,White K. Medical device-related pressure injuries: an exploratory descriptive study in an acute tertiary hospital in Australia. J Tissue Viability. 2017;26(4):246-53. DOI: http://dx.doi.org/10.1016/j.jtv.2017.09.008
6. Jackson D, Sarkic AM, Betteridge R, Brookebe J. Medical device-related pressure ulcers: a systematic review and meta-analysis. Int J Nurs Stud. 2019;109(2):109-20. DOI: https://doi.org/10.1016/j.ijnurstu.2019.02.006

7. Hanouz S, Karadag A. A prospective, descriptive study to determine the rate and characteristics of and risk factors for the development of medical device-related pressure ulcers in intensive care units. Ostomy Wound Manage. 2017;62(2):12-22.

8. Coyer FM, Stotts NA, Blackman VS. A prospective window into medical device-related pressure ulcers in intensive care. Int Wound J. 2014;11(6):656-64. DOI: http://dx.doi.org/10.1111/iwj.12026

9. Mehta C, Ali T, Mehta Y, George JV, Singh MK. MDRPU - an uncommonly recognized common problem in ICU: a point prevalence study. J Tissue Viability. 2019;28(1):35-9. DOI: http://dx.doi.org/10.1016/j.jtv.2018.12.002

10. Cavalcanti EO, Kamada I. Medical-device-related pressure wound injury on adults: an integrative review. Texto Contexto Enf. 2020;29(e20180371). DOI: https://doi.org/10.1590/1980-265x-tce-2018-08371.

11. Pellegrino DMS, Chacon JMF, Blanes L, Ferreira LM. Prevalence and incidence of pressure injuries in pediatric hospitals in the city of São Paulo, SP, Brazil. J Tissue Viability. 2017;26(4):241-45. DOI: https://doi.org/10.1016/j.jtv.2017.07.001

12. Delmore B, Yello EA. Pressure injuries caused by medical devices and other objects: a clinical update. Am J Nurs. 2017;117(12):36-45. DOI: https://doi.org/10.1136/1553-7250.1541035-9

13. Padula WV, Makic MB, Walsd HL, Campbell JD, Nair KV, Mishra MK, et al. Hospital-acquired pressure ulcers at Academic Medical Centers in the United States, 2008–2012: tracking changes since the CMS nonpayment policy. Jt Comm J Qual Patient Saf. 2015;41(6):257-63. DOI: https://doi.org/10.1016/S1553-7250(15).01037-4

14. Coyer F, Tayyib N. Risk factors for pressure injury development in critically ill patients in the intensive care unit: a systematic review protocol. Syst Rev. 2017;6(58):1-6. DOI: https://doi.org/10.1186/s13643-017-0451-5

15. Galetto SGS, Nascimento ER, Herdina PMV, Malufssi LBH. Medical-device-related pressure injuries: an integrative literature review. Rev Bras Enferm. 2019;72(3):S305-12. DOI: https://doi.org/10.1590/0034-7167-2018-0530

16. Arnold-Long M, Ayer M, Borchert K. Medical device-related pressure injuries in long-term acute care hospital setting. J Wound Ostomy Continence Nurs. 2017;44(4):320-35. DOI: https://doi.org/10.1097/01.WON.0000500000003047

17. Nassar Junior AP, Pires Neto RC, Figueiredo WB, Park M. Validity, reliability and applicability of portuguese version of sedation-agitation scales among critically ill patients. Sao Paulo Med J. 2008;126(4):215-9. DOI: http://dx.doi.org/10.1590/S1516-31802008000400003

18. Paranhos WY, Santos VLCG. Avaliação de risco para úlceras de pressão por meio da escala de Braden, na língua portuguesa. Rev Esc Enferm USP. 1999;33(n.esp):191-206. Disponível em: http://www.ee.usp.br/reeusp/upload/pdf/799.pdf

19. Silva Junior JM, Malbouisson LMS, Nogueira LS, Barbosa LGT, Marubayashi LY, Teixeira IC, et al. Aplicabilidade do Escore Fisiológico Agudo Simplificado (SAPS 3) em hospitais brasileiros. Rev Bras Anestesiol. 2010;60(1):20-31. DOI: http://dx.doi.org/10.1590/S0034-70942010000100003

20. Grove SK, Cipher DJ. Statistics for nursing research: a workbook for evidence-based practice. 2nd ed. St. Louis: Elsevier; 2017.

21. Kayser SA, VanGilder CA, Ayello EA, Lachenbruch C. Prevalence and analysis of medical device-related pressure injuries: results from the international pressure ulcer prevalence survey. Adv Skin Wound Care. 2018;31(6):276-85. DOI: https://doi.org/10.1097/01.NAW.0000527460.93222.31

22. Ham WH, Schoonhoven L, Schuurmans MJ, Leenen LP. Pressure ulcers in trauma patients with suspected spine injury: a prospective cohort study with emphasis on device-related pressure ulcers. Int Wound J. 2017;14(1):104-11. DOI: http://dx.doi.org/10.1111/iwj.12568

23. Mehta C, Ali T, Mehta Y, George JV, Singh MK. MDRPU - an uncommonly recognized common problem in ICU: a point prevalence study. J Tissue Viability. 2019;28(1):35-9. DOI: http://dx.doi.org/10.1016/j.jtv.2018.12.002

24. Coyer F, Tayyib N. Risk factors for pressure injury development in critically ill patients in the intensive care unit: a systematic review protocol. Syst Rev. 2017;6(58):1-6. DOI: https://doi.org/10.1186/s13643-017-0451-5

25. Galetto SGS, Nascimento ER, Herdina PMV, Malufssi LBH. Medical-device-related pressure injuries: an integrative literature review. Rev Bras Enferm. 2019;72(3):S305-12. DOI: https://doi.org/10.1590/0034-7167-2018-0530

26. Arnold-Long M, Ayer M, Borchert K. Medical device-related pressure injuries in long-term acute care hospital setting. J Wound Ostomy Continence Nurs. 2017;44(4):320-35. DOI: https://doi.org/10.1097/01.WON.0000500000003047

27. Nassar Junior AP, Pires Neto RC, Figueiredo WB, Park M. Validity, reliability and applicability of portuguese version of sedation-agitation scales among critically ill patients. Sao Paulo Med J. 2008;126(4):215-9. DOI: http://dx.doi.org/10.1590/S1516-31802008000400003

28. Paranhos WY, Santos VLCG. Avaliação de risco para úlceras de pressão por meio da escala de Braden, na língua portuguesa. Rev Esc Enferm USP. 1999;33(n.esp):191-206. Disponível em: http://www.ee.usp.br/reeusp/upload/pdf/799.pdf

29. Silva Junior JM, Malbouisson LMS, Nogueira LS, Barbosa LGT, Marubayashi LY, Teixeira IC, et al. Aplicabilidade do Escore Fisiológico Agudo Simplificado (SAPS 3) em hospitais brasileiros. Rev Bras Anestesiol. 2010;60(1):20-31. DOI: http://dx.doi.org/10.1590/S0034-70942010000100003

30. Grove SK, Cipher DJ. Statistics for nursing research: a workbook for evidence-based practice. 2nd ed. St. Louis: Elsevier; 2017.

31. Kayser SA, VanGilder CA, Ayello EA, Lachenbruch C. Prevalence and analysis of medical device-related pressure injuries: results from the international pressure ulcer prevalence survey. Adv Skin Wound Care. 2018;31(6):276-85. DOI: https://doi.org/10.1097/01.NAW.0000527460.93222.31

Apoio financeiro

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Código de Financiamento 001.

Este é um artigo em acesso aberto, distribuído sob os termos da Licença Creative Commons.