Using Gaussian Mixture Models to Detect Figurative Language in Context

Linlin Li and Caroline Sporleder

Cluster of Excellence, MMCI
Saarland University, Germany

NAACL-HLT, 2010
Outline

1. Introduction
2. Using Gaussian Mixture Model to Detect Figurative Language
3. Evaluating the GMM Approach
4. Conclusion
What is figurative language and why is it a problem?

Unambiguous Idiom
The 19th century windjammers like Cutty Sark were able to maintain progress *by and large* even in bad wind conditions.

Ambiguous Idiom
The government agent *spilled the beans* on the secret dossier.
When Peter reached for the salt he knocked over the can and *spilled the beans* all over the table.

General Creative Usage
Take the sock out of your mouth, and create a brand new relationship with your mom.
Machine Translation (Babel Fish)

Example

- The government agent **spilled the beans** on the secret dossier.
- Der Regierungsbefugte **verschüttete die Bohnen** auf dem geheimen Dossier.
The Gaussian Mixture Model

Idea

Literal and non-literal data are generated by two different Gaussians, **literal** and **non-literal** Gaussian.

Model

\[
p(x) = \sum_{c \in \{l,n\}} w_c \times N(x|\mu_c, \Sigma_c)
\]

- \(c\): the category of the Gaussian
- \(\mu_c\): mean
- \(\Sigma_c\): covariance matrix
- \(w_c\): Gaussian weight
Figurative Language Detection

Idea

Which Gaussian has the higher probability of generating the instance?

Decision Rule

\[c(x) = \arg \max_{i \in \{l, n\}} \{ w_i \times N(x|\mu_i, \Sigma_i) \} \]

1. \(w_i \times N(x|\mu_i, \Sigma_i) \): fit the data to different Gaussians
2. \(\arg \max_{i \in \{l, n\}} \): choose the Gaussian that maximizes the probability of generating the specific instance
Feature Design

Aim

- Phrase independent features
- Generalize across different figurative usages

Features

- Semantic cohesion features
- Use normalized Google distance (Cilibrasi and Vitanyi, 2007), to model semantic cohesion
Semantic Cohesion Features (5 types)

- $x1$: the average relatedness between the target expression and context words
 \[
 x1 = \frac{2}{|T| \times |C|} \sum_{(w_i, c_j) \in T \times C} \text{relatedness}(w_i, c_j)
 \]

- $x2$: the average semantic relatedness of the context words
 \[
 x2 = \frac{1}{\binom{|C|}{2}} \sum_{(c_i, c_j) \in C \times C, i \neq j} \text{relatedness}(c_i, c_j)
 \]

- $x3$: $x1 - x2$

- $x4$: prediction of the co-graph (Sporleder and Li, 2009)

- $x5$: the top n relatedness scores ($n = 100$)
 \[
 x5(k) = \max_{(w_i, c_j) \in T \times C, \{\text{relatedness}(w_i, c_j)\}} (k)
 \]
Cohesion Features
An Example

Literal Case
- *beans*
 - *can*
 - *reach*
 - *table*
 - *knock*

Nonliteral Case
- *beans*
 - *secret*
 - *govern*
 - *dossier*
 - *agent*

Features:
- target word connectivity (x_1)
Cohesion Features
An Example

Literal Case
- *beans*
 - *can*
 - *reach*
 - *table*
 - *knock*

Nonliteral Case
- *beans*
 - *secret*
 - *govern*
 - *dossier*
 - *agent*

Features:
- average discourse connectivity (x_2)
Cohesion Features
An Example

Literal Case

- **beans**
 - **can**
 - **reach**
 - **table**
 - **knock**

Nonliteral Case

- **beans**
 - **secret**
 - **govern**
 - **dossier**
 - **agent**

Features:
- cohesion graph \(x_1 - x_2\)
Cohesion Features
An Example

Literal Case
- beans
- can
- table
- reach
- knock

Nonliteral Case
- beans
- secret
- dossier
- govern
- agent

Features:
- top connected words (x_5)
Cohesion Features
An Example

Literal Case

- **Beans**
- **Can**
- **Reach**
- **Table**
- **Knock**

Nonliteral Case

- **Beans**
- **Secret**
- **Govern**
- **Dossier**
- **Agent**

Features:
- Target word connectivity \((x_1) \)
- Average discourse connectivity \((x_2) \)
- Cohesion graph \((x_1 - x_2) \)
- Top connected words \((x_5) \)
Data

Datesets:

- Idiom dataset
 - 3964 idiom occurrences (17 types)
 - manually labeled as literal or figurative

- Random V+NP dataset
 - Randomly selected sample of 500 V+NP constructions from the idiom corpus (subset from the Gigaword corpus)
Annotation

Different types of figurative usage

- **nas**: ambiguous phrase-level figurative (7.3%)
 - spill the beans
- **nsu**: unambiguous phrase-level figurative (1.9%)
 - trip the light fantastic
- **nw**: token-level figurative (9.2%)
 - During the Iraq war, he was a *sparrow*; he didn’t condone the bloodshed but wasn’t bothered enough to go out and protest.
- **l**: literal (81.5%)
 - steer the industry (word senses)
Two Experimental Settings

- GMM estimated by EM
 - Priors of Gaussian components, means and covariance of each components, are initialized by the k-means clustering algorithm (Hartigan, 1975)
- GMM estimated from annotated data
GMM Estimated by EM
Idiom Dataset

Model	C	Pre.	Rec.	F-S.	Acc.
Co-Graph	n	90.55	80.66	85.32	78.38
	l	50.04	69.72	58.26	
GMM	n	90.69	80.66	85.38	78.39
	l	50.17	70.15	58.50	
GMM Estimated by EM
V+NP Dataset

Model	C Pre.	Rec.	F-S.	Acc.	
Baseline	n	21.79	22.67	22.22	71.87
	l	83.19	82.47	82.83	
Co-Graph	n	37.29	84.62	51.76	70.92
	l	95.12	67.83	79.19	
GMM	n	40.71	73.08	52.29	75.41
	l	92.58	75.94	83.44	
GMM\{nsu,l\}	n	8.79	1.00	16.16	76.49
	l	1.00	75.94	86.33	
GMM\{nsa,l\}	n	22.43	77.42	34.78	76.06
	l	97.40	75.94	85.34	
GMM\{nw,l\}	n	23.15	64.10	34.01	74.74
	l	94.93	75.94	84.38	
GMM Estimated from Annotated Data

V+NP Dataset

Model	C	Pre.	Rec.	F-S.	Acc.
GMM	n	40.71	73.08	52.29	75.41
	l	92.58	75.94	83.44	
GMM+f	n	42.22	73.08	53.52	76.60
	l	92.71	77.39	84.36	
GMM+f+s	n	41.38	54.55	47.06	83.44
	l	92.54	87.94	90.18	

- **f**: fix the Gaussian components, estimate from the annotated idiom data
- **s**: select most confident examples, abstain from making a prediction when the probability of belonging to a certain Gaussian is below the selected threshold
Conclusion

- Distinguish potential idiomatic expressions, and discover new **figurative expressions**
- Due to the **homogeneity** of nonliteral language, features can be designed in a cross-expression manner
- The components of GMM can be effectively estimated using **EM** in an unsupervised way
- The performance can be further improved when employing an **annotated** data set for parameter estimation
GMM Estimated from different Idiom Data

V+NP Dataset

Train (size)	C	Pre.	Rec.	F-S.	Acc.
bite one’s tongue	n	40.79	79.49	53.91	74.94
(166)	l	94.10	73.91	82.79	
break the ice	n	39.05	52.56	44.81	76.12
(541)	l	88.36	81.45	84.77	
pass the buck	n	41.01	73.08	52.53	75.65
(262)	l	92.61	76.23	83.62	
play with fire	n	39.29	84.62	53.66	73.05
(566)	l	95.29	70.43	81.00	

- None of the difference is statistically significant