Supplementary Materials for

First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang’E-4 mission

Pengwei Luo, Xiaoping Zhang*, Shuai Fu, Yong Li, Cunhui Li, Jinbin Cao

*Corresponding author. Email: xpzhangnju@gmail.com

Published 14 January 2022, Sci. Adv. 8, eabk1760 (2022)
DOI: 10.1126/sciadv.abk1760

The PDF file includes:

- Determination of geometric factor of CE-4/LND
- Table S1
- Legends for data files S1 to S5
- References

Other Supplementary Material for this manuscript includes the following:

- Data files S1 to S5
Determination of the geometric factor of CE-4/LND

Geometric factor (GF) is an important property of particle detectors and can be calculated by

$$GF = \frac{N_d}{j},$$

(6)

where N_d is the count rate, j is the spatial differential flux in units of $(cm^{-2} \cdot s^{-1} \cdot sr^{-1})$. The GF of the CE-4/LND used in this work is simulated by the GEANT4 (Geometry And Tracking) toolkit (76-78). In the simulation, a sphere particle source with radius R is used, which can encircle the detector completely. The primary particles inject randomly from the sphere surface and then transport inwardly with cosine distribution (angle between particle incident direction and the local surface normal) to produce an isotropic incident flux in the inner space. The number of particles N traversing the sphere source volume can be written as (79)
\[N_r = \iint j \, ds \, d\Omega = 4\pi R^2 \left(\int_0^\theta \int_0^{\theta/2} d\phi \cos \theta \sin \theta \right) \cdot j = 4\pi^2 R^2 \cdot j. \quad (7) \]

Equation 7 is the one-to-one correspondence relationship between the spatial differential flux and the number of incident particles. On the basis of Eqs. 6 and 7, \(GF \) can be easily deduced to be

\[GF = 4\pi^2 R^2 \cdot \frac{N_d}{N_r}. \quad (8) \]

Here, the error of \(GF \), \(\delta GF \), can be obtained by

\[\delta GF = 4\pi^2 R^2 \cdot \frac{\delta N_d}{N_r}, \quad (9) \]

where \(\delta N_d \) is the error of \(N_d \).

To ensure the detection of charged-particle radiations and the identification of their composition, the CE-4/LND is designed as a telescope configuration, a stack of ten 500-\(\mu \)m-thick dual-segment Si solid-state detectors labeled A through J as shown in figure 4 of (36). To determine the GF for a specific charged particle in an energy channel, coincidence measurements in different detector segments are applied. The information of primary energy ranges and the corresponding detectors stopping in for the proton, \(^3\)He, \(^4\)He, CNO, and heavy ions (HIs) are listed in table 6 of (36), and the criterion for a charged particle stopped in a specific detector segment is listed in table 3 of (36) as well.
In our simulations, R and N_r are set to be 10 cm and 1.0×10^8, respectively, unless otherwise specified. N_d is determined in the simulation by the coincident measurement in detector segments as mentioned above. By now, with this strategy we can obtain the GF of each energy channel for all related ions.

The weighted GFs for the $^3\text{He}+^4\text{He}$, CNO, and HI groups can further be calculated by

$$GF_{\text{wgt}} = \sum_{i=1}^{N} W_i \cdot GF_i,$$ \hspace{1cm} (10)

where N is the total number of component elements for these particle groups, such as $N = 2$ for $^3\text{He}+^4\text{He}$, $N = 3$ for the CNO group, and $N = 10$ for the HI group. GF_i is the measured GF for the ith component element. W_i is the weight of the ith component element, which can be obtained on the basis of the observations from the ACE/SIS for the CNO and HI groups, while a ratio of 3:100 is taken for $^3\text{He}+^4\text{He}$ approximately according to the results of differential flux ratio of ^3He to ^4He obtained in this work, and defined as

$$W_i = \frac{\overline{F}_i}{\sum_{i=1}^{N} \overline{F}_i},$$ \hspace{1cm} (11)

where \overline{F}_i is the average differential flux of the ith component element. The error of W_i, δW_i, can be given as

$$\delta W_i = W_i \cdot \left(\frac{\delta \overline{F}_i}{\overline{F}_i} \right)^2 + \left(\frac{1}{\sum_{i=1}^{N} \overline{F}_i} \right)^2 \left(\sum_{i=1}^{N} \left(\frac{\delta \overline{F}_i}{\overline{F}_i} \right)^2 \right).$$ \hspace{1cm} (12)

Using Eq. 10, the error of GF_{wgt} can be deduced to be

$$\delta GF_{\text{wgt}} = \sqrt{\sum_{i=1}^{N} \left(W_i \cdot GF_i \right)^2 \left(\frac{\delta W_i}{W_i} \right)^2 + \left(\frac{\delta GF_i}{GF_i} \right)^2 \left(\frac{\delta GF_i}{GF_i} \right)^2}. $$ \hspace{1cm} (13)
Finally, the GFs for these particle groups can be calculated on the basis of the Eqs. 6 to 13. The obtained GFs are shown in Table S1. Note that the errors of GFs listed in the table include only contributions from the statistical and misidentification count rate errors of N_d as well as the error of weight W_i.

Table S1. List of the GFs for the proton, 3He, 4He, 3He+4He, and the CNO and HI groups detected by the CE-4/LND on the basis of the GEANT4 simulations.

	Energy Channels (MeV/nuc)	9.0-10.6	10.7-12.7	12.8-15.7	15.9-18.4	18.6-21.0	21.2-29.2	29.6-31.3	31.5-33.0	33.4-34.5
3He	GF_{wff} ($cm^2 \cdot sr^{-1}$)	0.2940 ±0.0051	0.2757 ±0.0049	0.2795 ±0.0085	0.2642 ±0.0060	0.2403 ±0.0095	0.2416 ±0.0021	-	-	-
	GF_{wff} ($cm^2 \cdot sr^{-1}$)	-	0.2945 ±0.0062	0.2830 ±0.0062	0.2784 ±0.0068	0.2639 ±0.0072	-	-	-	-
4He	Energy Channels (MeV/nuc)	8.9-9.5	9.6-10.9	10.9-12.6	12.8-15.7	15.9-18.5	-	-	-	-
	GF_{wff} ($cm^2 \cdot sr^{-1}$)	-	0.2847 ±0.0049	0.2897 ±0.0050	0.2824 ±0.0071	0.2479 ±0.0066	-	-	-	-
3He+ 4He	Energy Channels (MeV/nuc)	18.5-21.0	21.0-29.3	29.3-31.4	31.4-32.8	32.8-34.4	-	-	-	-
	GF_{wff} ($cm^2 \cdot sr^{-1}$)	0.2304 ±0.0132	0.2452 ±0.0409	-	-	-	-	-	-	-
CNO	Energy Channels (MeV/nuc)	16.6-20.5	20.5-25.5	25.5-31.0	31.0-37.3	37.3-42.3	42.3-54.5	54.5-57.8	57.8-61.2	61.2-72.8
	GF_{wff} ($cm^2 \cdot sr^{-1}$)	0.1378 ±0.0352	0.2822 ±0.0351	0.1911 ±0.0300	0.1430 ±0.0430	0.1184 ±0.0202	0.2001 ±0.0746	0.0443 ±0.0204	0.0371 ±0.0163	0.0328 ±0.0146
HI	Energy Channels (MeV/nuc)	24.6-37.7	31.0-38.2	38.2-47.5	47.5-52.1	52.1-67.1	67.1-91.6	91.6-79.8	79.8-101.6	101.6-132.5
Data file S1.
Data on the CE-4/LND and spacecraft observations and the CRÈME modeling CR energy spectra for the proton, helium, and the CNO and HI groups in Fig. 1.

Data file S2.
Data on the CR flux ratios of the CE-4/LND measurements to the near-earth spacecraft observations at 1 AU and the CRÈME modeling results for the proton, helium, and the CNO and HI groups in Fig. 2.

Data file S3.
Data on the weighted average flux ratios of the CE-4/LND measurements to the spacecraft observations and those predictions from the CRÈME models for the proton, helium, and the CNO and HI groups in Fig. 3.

Data file S4.
Data on the CR energy spectra of ^3He and ^4He along with the ratios of ^3He to ^4He from observations and the GALPROP model’s predictions in Fig. 4.

Data file S5.
Data on the ratios of the observed CR fluxes in the lunar local morning to those in the lunar local afternoon for the proton, helium, and the CNO and HI groups in Fig. 5.

GF_{eff}	0.1903 ±0.0183	0.0763 ±0.0115	0.0605 ±0.0341	0.0380 ±0.0246	0.0372 ±0.0239	0.1033 ±0.0665	0.0067 ±0.0086	0.0144 ±0.0059	0.0023 ±0.0076

| \((\text{cm}^2\cdot\text{sr}^{-1}) \) | \(0.1903 \) | \(0.0763 \) | \(0.0605 \) | \(0.0380 \) | \(0.0372 \) | \(0.1033 \) | \(0.0067 \) | \(0.0144 \) | \(0.0023 \) |
REFERENCES AND NOTES

1. G. Li, G. P. Zank, W. K. M. Rice, Acceleration and transport of energetic particles at CME-driven shocks. *Adv. Space Res.* **32**, 2597–2602 (2003).

2. S. Fu, Y. Jiang, V. Airapetian, J. Hu, G. Li, G. Zank, Effect of star rotation rate on the characteristics of energetic particle events. *Astrophys. J. Lett.* **878**, 36 (2019).

3. V. G. Sinitsyna, V. Y. Sinitsyna, Y. I. Stozhkov, Red dwarf stars as a new source type of galactic cosmic rays. *Astron. Nachr.* **342**, 342–346 (2021).

4. C. Pierre Auger, Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8×10^{18} eV. *Science* **357**, 1266–1270 (2017).

5. E. G. Berezhko, G. F. Krymskiï, Acceleration of cosmic rays by shock waves. *Soviet Phys. Uspekhi* **31**, 27–51 (1988).

6. S. P. Reynolds, Supernova remnants at high energy. *Annu. Rev. Astron. Astrophys.* **46**, 89–126 (2008).

7. E. Amato, P. Blasi, Cosmic ray transport in the Galaxy: A review. *Adv. Space Res.* **62**, 2731–2749 (2018).

8. M. Garcia-Munoz, G. M. Mason, J. A. Simpson, A new test for solar modulation theory: The 1972 May-July low-energy galactic cosmic-ray proton and helium spectra. *Astrophys. J.* **182**, L81–L84 (1973).

9. L. A. Fisk, B. Koslovsky, R. Ramaty, An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays. *Astrophys. J.* **190**, L35–L37 (1974).

10. M. E. Pesses, J. R. Jokipii, D. Eichler, Cosmic ray drift, shock wave acceleration, and the anomalous component of cosmic rays. *Astrophys. J.* **246**, L85–L88 (1981).

11. A. C. Cummings, E. C. Stone, Composition of anomalous cosmic rays. *Space Sci. Rev.* **130**, 389–399 (2007).
12. D. Hovestadt, O. Vollmer, G. Gloeckler, C. Y. Fan, Differential energy spectra of low-energy (< 8.5 MeV per nucleon) heavy cosmic rays during solar quiet times. *Phys. Rev. Lett.* **31**, 650–653 (1973).

13. F. B. McDonald, B. J. Teegarden, J. H. Trainor, W. R. Webber, The anomalous abundance of cosmic-ray nitrogen and oxygen nuclei at low energies. *Astrophys. J.* **187**, L105 (1974).

14. A. C. Cummings, E. C. Stone, C. D. Steenberg, Composition of anomalous cosmic rays and other heliospheric ions. *Astrophys. J.* **578**, 194–210 (2002).

15. J. A. Simpson, Elemental and isotopic composition of the galactic cosmic-rays. *Annu. Rev. Nucl. Part S* **33**, 323–382 (1983).

16. I. C. Task Group on Radiation Protection in Space On behalf of the ICRP, G. Dietze, D. T. Bartlett, D.A. Cool, F. A. Cucinotta, X. Jia, I. R. McAulay, M. Pelliccioni, V. Petrov, G. Reitz, T. Sato, ICRP PUBLICATION 123: Assessment of radiation exposure of astronauts in space. *Ann. ICRP* **42**, 1–339 (2013).

17. C. Zeitlin, A. W. Case, H. E. Spence, N. A. Schwadron, M. Golightly, J. K. Wilson, J. C. Kasper, J. B. Blake, M. D. Looper, J. E. Mazur, L. W. Townsend, Y. Iwata, Measurements of galactic cosmic ray shielding with the CRaTER instrument. *Space Weather* **11**, 284–296 (2013).

18. S. Fu, L. Zhao, X. Zhang, P. Luo, Y. Li, Comparison of anomalous and galactic cosmic-ray oxygen at 1 au during 1997–2020. *Astrophys. J. Lett.* **920**, L12 (2021).

19. M. Durante, F. A. Cucinotta, Physical basis of radiation protection in space travel. *Rev. Mod. Phys.* **83**, 1245–1281 (2011).

20. J. D. Wrbanek, S. Y. Wrbanek, “Space radiation and impact on instrumentation technologies” (NASA Technical Note NASA/TP-2020-220002, 2020); https://ntrs.nasa.gov/api/citations/20200001895/downloads/20200001895.pdf.

21. Y. Li, X. Zhang, W. Dong, Z. Ren, T. Dong, A. Xu, Simulation of the production rates of cosmogenic nuclides on the Moon based on Geant4. *J. Geophys. Res. Space Physics* **122**, 1473–1486 (2017).
22. J. Garrett, S. Valluri, M.S. Mendonca, R.M. Bigsby, J. Lopez, A. Caperell-Grant, J. Nees, J.R. Dynlacht, The protective effect of estrogen against radiation cataractogenesis is dependent upon the type of radiation. *Radiat. Res.* **194**, 557–565 (2020).

23. F. A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. *Lancet Oncol.* **7**, 431–435 (2006).

24. J. Chen, S. Yun, T. Dong, Z. Ren, X. Zhang, Investigate the radiation-induced damage on an atomistic DNA model by using Geant4-DNA toolkit. *Nucl. Instrum. Methods Phys. Res. Sect. B* **494**, 59–67 (2021).

25. Cucinotta, F. A., Alp, M., Sulzman, F. M., Wang, M., Space radiation risks to the central nervous system. *Life Sci. Space Res.* **2**, 54–69 (2014).

26. N. A. Schwadron, J. F. Cooper, M. Desai, C. Downs, M. Gorby, A. P. Jordan, C. J. Joyce, K. Kozarev, J. A. Linker, Z. Mikíc, P. Riley, H. E. Spence, T. Török, L. W. Townsend, J. K. Wilson, C. Zeitlin, Particle radiation sources, propagation and interactions in deep space, at Earth, the Moon, Mars, and beyond: Examples of radiation interactions and effects. *Space Sci. Rev.* **212**, 1069–1106 (2017).

27. T. P. Dachev, B.T. Tomov, Y.N. Matviichuk, P.S. Dimitrov, S.V. Vadawale, J.N. Goswami, G. de Angelis, V. Girish, An overview of RATOM results for Earth and Moon radiation environment on Chandrayaan-1 satellite. *Adv. Space Res.* **48**, 779–791 (2011).

28. H. E. Spence, A. W. Case, M. J. Golightly, T. Heine, B. A. Larsen, J. B. Blake, P. Caranza, W. R. Crain, J. George, M. Lalic, A. Lin, M. D. Looper, J. E. Mazur, D. Salvaggio, J. C. Kasper, T. J. Stubbs, M. Doucette, P. Ford, R. Foster, R. Goeke, D. Gordon, B. Klatt, J. O’Connor, M. Smith, T. Onsager, C. Zeitlin, L. W. Townsend, Y. Charara, CRaTER: The cosmic Ray telescope for the effects of radiation experiment on the lunar eecnnaissance orbiter mission. *Space Sci. Rev.* **150**, 243–284 (2010).

29. P. B. Crandall, J. J. Gillis-Davis, R. I. Kaiser, Untangling the origin of molecular hydrogen in the lunar exosphere. *Astrophys. J.* **887** (2019).
30. M. Horányi, Z. Sternovsky, M. Lankton, C. Dumont, S. Gagnard, D. Gathright, E. Grün, D. Hansen, D. James, S. Kempf, B. Lamprecht, R. Srama, J.R. Szalay, G. Wright, The lunar dust experiment (LDEX) onboard the lunar atmosphere and dust environment explorer (LADEE) mission. Space Sci. Rev. 185, 93–113 (2014).

31. L. L. Hood, A. Zakharian, J. Halekas, D. L. Mitchell, R. P. Lin, M. H. Acuña, A. B. Binder, Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J. Geophys. Res. Planets 106, 27825–27839 (2001).

32. D. L. Mitchell, J.S. Halekas, R.P. Lin, S. Frey, L.L. Hood, M.H. Acuña, A. Binder, Global mapping of lunar crustal magnetic fields by Lunar Prospector. Icarus 194, 401–409 (2008).

33. H. Tsunakawa, F. Takahashi, H. Shimizu, H. Shibuya, M. Matsushima, Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations. J. Geophys. Res. Planets 120, 1160–1185 (2015).

34. J. Liu, X. Ren, W. Yan, C. Li, H. Zhang, Y. Jia, X. Zeng, W. Chen, X. Gao, D. Liu, X. Tan, X. Zhang, T. Ni, H. Zhang, W. Zuo, Y. Su, W. Wen, Descent trajectory reconstruction and landing site positioning of Chang’E-4 on the lunar farside. Nat. Commun. 10, 4229 (2019).

35. J. E. Mazur, W. R. Crain, M. D.Looper, D. J. Mabry, J. B. Blake, A. W. Case, M. J. Golightly, J. C. Kasper, H. E. Spence, New measurements of total ionizing dose in the lunar environment. Space Weather 9, S07002 (2011).

36. R. F. Wimmer-Schweingruber, J. Yu, S. I. Böttcher, S. Zhang, S. Burmeister, H. Lohf, J. Guo, Z. Xu, B. Schuster, L. Seimetz, J. L. Freiherr von Forstner, A. Ravanbakhsh, V. Knierim, S. Kolbe, H. Woyciechowski, S. R. Kulkarni, B. Yuan, G. Shen, C. Wang, Z. Chang, T. Berger, C. E. Hellweg, D. Matthiä, D. Hou, A. Knappmann, C. Büschel, X. Hou, B. Ren, Q. Fu, The Lunar Lander Neutron and Dosimetry (LND) experiment on Chang’E 4. Space Sci. Rev. 216, 40 (2020).

37. S. Zhang, R. F. Wimmer-Schweingruber, J. Yu, C. Wang, Q. Fu, Y. Zou, Y. Sun, C. Wang, D. Hou, S. I. Böttcher, S. Burmeister, L. Seimetz, B. Schuster, V. Knierim, G. Shen, B. Yuan, H. Lohf, J. Guo, Z. Xu, Johan L Freiherr von Forstner, S. R. Kulkarni, H. Xu, C. Xue, J. Li, Z. Zhang, H.
Zhang, T. Berger, D. Matthiä, C. E. Hellweg, X. Hou, J. Cao, Z. Chang, B. Zhang, Y. Chen, H. Geng, Z. Quan, First measurements of the radiation dose on the lunar surface. Sci. Adv. 6, eaaz1334 (2020).

38. R. C. Elphic, V. R. Eke, L. F. A. Teodoro, D. J. Lawrence, D. B. J. Bussey, Models of the distribution and abundance of hydrogen at the lunar south pole. Geophys. Res. Lett. 34, L13204 (2007).

39. A. J. Tylka, J.H. Adams, P.R. Boberg, B. Brownstein, W.F. Dietrich, E.O. Flueckiger, E.L. Petersen, M.A. Shea, D.F. Smart, E.C. Smith, CREME96: A revision of the cosmic ray effects on micro-electronics code. IEEE Trans. Nucl. Sci. 44, 2150–2160 (1997).

40. J. H. Adams, Jr., A. F. Barghouty, M. H. Mendenhall, R. A. Reed, B. D. Sierawski, J. W. Watts, Jr., R. A. Weller, CRÈME: The 2011 revision of the cosmic ray effects on micro-electronics code. IEEE Trans. Nucl. Sci. 59, 3141–3147 (2012).

41. A. E. Vladimirov, S.W. Digel, G. Jóhannesson, P.F. Michelson, I.V. Moskalenko, P. L. Nolan, E. Orlando, T.A. Porter, A.W. Strong, GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Comput. Phys. Commun. 182, 1156–1161 (2011).

42. J. Chen, S. Yun, T. Dong, Z. Ren, X. Zhang, Validation of Geant4 physics models for nuclear beams in extended media. Nucl. Instrum. Methods Phys. Res., Sect. B 434, 113–119 (2018).

43. S. Fu, L. Zhao, G. P. Zank, M. Wang, Y. Jiang, An ACE/CRIS-observation-based galactic cosmic rays heavy nuclei spectra model II. Sci. China Phys. Mech. Astron. 63, 219511 (2020).

44. J. Wu, H. Chen, Revisit cosmic ray propagation by using 1H, 2H, 3He and 4He. Phys. Lett. B 789, 292–299 (2019).

45. R. Hajra, Weakest solar cycle of the space age: A study on solar wind–magnetosphere energy coupling and geomagnetic activity. Solar Phys. 296, 33 (2021).
46. S. Fu, X. Zhang, L. Zhao, Y. Li, Variations of the galactic cosmic rays in the recent solar cycles. *Astrophys. J. Suppl. Ser.* **254**, 37 (2021)

47. R. A. Nymnik, M. I. Panasyuk, T. I. Pervaja, A. A. Suslov, A model of galactic cosmic ray fluxes. *Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas.* **20**, 427–429 (1992).

48. ISO TS 15390, Space environment (natural and artificial)—Galactic cosmic ray model. ISO 15390: 2004 (E) (2004).

49. R. A. Mewaldt, A. C. Cummings, E. C. Stone, Anomalous cosmic rays: Interstellar interlopers in the heliosphere and magnetosphere. *Eos Trans. Am. Geophys. Union* **75**, 185–193 (1994).

50. A. Riskus, G. Liutkus, An improved algorithm for the approximation of a cubic bezier curve and its application for approximating quadratic bezier curve. *Inf. Technol. Control* **42**, 303–308 (2013).

51. P. A. Zyla, R. M. Barnett, J. Beringer, O. Dahl, D. A. Dwyer, D. E. Groom, C. –J. Lin K. S. Lugovsky, E. Pianori, D. J. Robinson, C. G. Wohl, W.–M. Yao, K. Agashe, G. Aielli, B. C. Allanach, C. Amsler, M. Antonelli, E. C. Aschenauer, D. M. Asner, H. Baer, S. Banerjee, L. Baudis, C. W. Bauer, J. J. Beatty, V. I. Belousov, S. Bethke, A. Bettini, O. Biebel, K. M. Black, E. Blucher, O. Buchmuller, V. Burkert, M. A. Bychkov, R. N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, R. Sekhar Chivukula, G. Cowan, G. D’Ambrosio, T. Damour, D. de Florian, A de Gouvêa, T. De Grand, P. de Jong, G. Dissertori, B. A. Dobrescu, M. D’Onofrio, M. Doser, M. Drees, H. K. Dreiner, P. Eerola, U. Egede, S. Eidelman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, A. Freitas, H. Gallagher, L. Garren, H. –J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A. A. Godizov, M. C. Gonzalez-Garcia, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, M. Grünewald, A. Gurtu, T. Gutsche, H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J. Hernández-Rey, K. Hikasa, J. Hisano, A. Höcker, J. Holder, A. Holtkamp, J. Huston, T. Hyodo, K. F. Johnson, M. Kado, M. Karliner, U. F. Katz, M. Kenzie, V. A. Khoze, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Y. Kwon, O. Lahav, J. Laiho, L. P. Lellouch, J. Lesgourgues, A. R. Liddle, Z. Ligeti, C. Lippmann, T. M. Liss, L. Littenberg, C. Lourenço, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano, A. Masoni, J. Matthews, U. –G. Meißner, M. Mikhasenko, D. J. Miller, D. Milstead, R. E. Mitchell, K. Mönig, P. Molaro, F. Moortgat, M.
Moskovic, K. Nakamura, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A.
Olive, C. Patrignani, J. A. Peacock, S. T. Petcov, V. A. Petrov, A. Pich, A. Piepke, A. Pomarol, S.
Profumo, A. Quad, K. Rabbertz, J. Rademacker, G. Raffelt, H. Ramani, M. Ramsey-Musolf, B. N.
Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romanionk, L. J. Rosenberg, J. L.
Rosner, G. Rybka, M. Ryskin, R A Ryutin, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider,
K. Scholberg, A. J. Schwartz, J. Schwiening, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt, M. Silari,
T. Sjöstrand, P. Skands, T. Skwarnicki, G. F. Smoot, A. Soffer, M. S. Sozzi, S. Spanier, C. Spiering,
A. Stahl, S L Stone, Y. Sumino, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tanabashi, J.
Tanaka, M. Taševský, K. Terashi, J. Terning, U. Thoma, R. S. Thorne, L. Tiator, M. Titov, N. P.
Tkachenko, D. R. Tovey, K. Trabelsi, P. Urquiijo, G. Valencia, R. Van de Water, N. Varelas, G.
Venanzoni, L. Verde, M. G Vincter, P. Vogel, W. Vogelsang, A. Vogt, V. Vorobyev, S. P. Wakely,
W. Walkowiak, C. W. Walter, D. Wands, M. O. Wascko, D. H. Weinberg, E. J. Weinberg, M.
White, L. R. Wiencke, S. Willocq, C. L. Woody, R. L. Workman, M. Yokoyama, R. Yoshida, G.
Zanderighi, G. P. Zeller, O. V. Zenin, R. –Y. Zhu, S. –L. Zhu, F. Zimmermann, J. Anderson, T.
Basaglia, V. S. Lugovsky, P. Schaffner, W. Zheng, Review of particle physics. Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

52. G. A. De Nolfo, A measurement of cosmic ray deuterium from 0.5-2.9 GeV/nucleon. AIP Conf.
Proc. 528, 425–428 (2000).

53. W. Menn, M. Hof, O. Reimer, M. Simon, A. J. Davis, A. W. Labrador, R. A. Mewaldt, S. M.
Schindler, L. M. Barbier, E. R. Christian, K. E. Krombel, J. F. Krizmanic, J. W. Mitchell, J. F.
Ormes, R. E. Streitmatter, R. L. Golden, S. J. Stochaj, W. R. Webber, I. L. Rasmussen, The absolute
flux of protons and helium at the top of the atmosphere using IMAX. Astrophys. J. 533, 281–297
(2000).

54. J. Z. Wang, E. S. Seo, K. Anraku, M. Fujikawa, M. Imori, T. Maeno, N. Matsui, H. Matsunaga, M.
Motoki, S. Orito, T. Saeki, T. Sanuki, I. Ueda, K. Yoshimura, Y. Makida, J. Suzuki, K. Tanaka, A.
Yamamoto, T. Yoshida, T. Mitsui, H. Matsumoto, M. Nozaki, M. Sasaki, J. Mitchell, A. Moiseev, J.
Ormes, R. Streitmatter, J. Nishimura, Y. Yajima, T. Yamagami, Measurement of cosmic-ray
hydrogen and helium and their isotopic composition with the BESS experiment. Astrophys. J.
564, 244–259 (2002).
55. Nicolas Picot-Clemente, K Abe, H Fuke, S Haino, T Hams, M Hasegawa, A Horikoshi, A Itazaki, K C Kim, T Kumazawa, A Kusumoto, M H Lee, Y Makida, S Matsuda, Y Matsukawa, K Matsumoto, J W Mitchell, A A Moiseev, J Nishimura, M Nozaki, R Orlov, J F Ormes, K Sakai, M Sasaki, E S Seo, Y Shikaze, R Shinoda, R E Streitmatter, J Suzuki, Y Takasugi, K Takeuchi, K Tanaka, N Thakur, T Yamagami, A Yamamoto, T Yoshida, K Yoshimura, Precise measurements of hydrogen and helium isotopes with BESS-Polar II, in *35th International Cosmic Ray Conference, Volume 301 - 35th International Cosmic Ray Conference (ICRC2017) - Session Cosmic-Ray Direct. CRD- direct measurements* (Proceedings of Science, 2017).

56. M. Aguilar, J. Alcaraz, J. Allaby, B. Alpat, G. Ambrosi, H. Anderhub, L. Ao, A. Arefiev, L. Arruda, P. Azzarello, M. Basile, F. Barao, G. Barreira, A. Bartoloni, R. Battiston, R. Becker, U. Becker, L. Bellagamba, J. Berdugo, P. Berges, B. Bertucci, A. Biland, V. Bindi, G. Boella, M. Boschini, M. Bourquin, G. Bruni, M. Buénerd, J. D. Burger, W. J. Burger, X. D. Cai, P. Cannarsa, M. Capell, D. Casadei, J. Casaus, G. Castellini, I. Cernuda, Y. H. Chang, H. F. Chen, H. S. Chen, Z. G. Chen, N. A. Chernoplekov, T. H. Chieu, Y. Y. Choi, F. Cindolo, V. Commichau, A. Contin, E. Cortina-Gil, D. Crespo, M. Cristinziani, T. S. Dai, C. dela Guia, C. Delgado, S. di Falco, L. Djambazov, I. D’Antone, Z. R. Dong, M. Duranti, J. Engelberg, F. J. Eppling, T. Eronen, P. Extermann, J. Favier, E. Fiandrini, P. H. Fisher, G. Flügge, N. Fouque, Y. Galaktionov, M. Gervasi, F. Giovacchini, P. Giusti, D. Grandi, O. Grimm, W. Q. Gu, S. Haino, K. Hangarter, A. Hasan, V. Hermel, H. Hofer, W. Hungerford, M. Ionica, M. Jongmans, K. Karlamaa, W. Karpinski, G. Kenney, D. H. Kim, G. N. Kim, K. S. Kim, T. Kirn, A. Klimentov, R. Kossakowski, A. Kounine, V. Koutsenko, M. Kraeber, G. Laborie, T. Laitinen, G. Lamanna, G. Laurenti, A. Lebedev, C. Lechanoine-Leluc, M. W. Lee, S. C. Lee, G. Levi, C. H. Lin, H. T. Liu, G. Lu, Y. S. Lu, K. Lübelsmeyer, D. Luckey, W. Lustermann, C. Maña, A. Margotti, F. Mayet, R. R. McNeil, M. Menichelli, A. Mihul, A. Mujunen, S. Natale, A. Oliva, F. Palmonari, M. Paniccia, H. B. Park, W. H. Park, M. Pauluzzi, F. Pauss, R. Pereira, E. Perrin, A. Pevsner, F. Pilo, M. Pimenta, V. Plyaskin, V. Povaíàev, M. Pohl, N. Produit, L. Quadrani, P. G. Rancoita, D. Rapin, D. Ren, Z. Ren, M. Ribordy, E. Riihonen, J. Ritakari, S. Ro, U. Roeser, R. Sagdeev, D. Santos, G. Sartorelli, P. Saouter, C. Sbarra, S. Schael, A. S. von Dratzig, G. Schwering, E. S. Seo, J. W. Shin, E. Shoumilo, V. Shoutko, T. Siedenburg, R. Siedling, D. Son, T. Song, F. R. Spada, F. Spinella, M. Steuer, G. S. Sun, H. Suter, X. W. Tang, S. C. C. Ting, S. M. Ting, N. Tomassetti, M. Tomikoski, J. Torsti, J. Trümper, J. Ulbricht, S. Urpo, E. Valtonen, J. Vandenhirtz,
E. Velikhov, B. Verlaat, I. Veltitsky, F. Vezzu, J. P. Vialle, G. Viertel, D. Vité, H. von Gunten, S. W. Wicki, W. Wallraff, J. Z. Wang, K. Wiik, C. Williams, S. X. Wu, P. C. Xia, S. Xu, Z. Z. Xu, J. L. Yan, L. G. Yan, C. G. Yang, J. Yang, M. Yang, S. W. Ye, H. Y. Zhang, Z. P. Zhang, D. X. Zhao, F. Zhou, Y. Zhou, G. Y. Zhu, W. Z. Zhu, H. L. Zhuang, A. Zichichi, B. Zimmermann, P. Zucco, Isotopic composition of light nuclei in cosmic rays: Results from AMS-01. Astrophys. J. 736, 105 (2011).

57. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, P. Carlson, M. Casolino, G. Castellini, C. D. Donato, C. D. Santis, N. D. Simone, V. D. Felice, V. Formato, A. M. Galper, A. V. Karelin, S. V. Koldashov, S. Koldobskiy, S. Y. Krutkov, A. N. Kvashnin, A. Leonov, V. Malakhov, L. Marcelli, M. Martucci, A. G. Mayorov, W. Menn, M. Mergè, V. V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, R. Munini, G. Osteria, F. Palma, B. Panico, P. Papini, M. Pearce, P. Picozza, M. Ricci, S. B. Ricciarini, R. Sarkar, V. Scotti, M. Simon, R. Sparvoli, P. Spillantini, Y. I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S. A. Voronov, Y. T. Yurkin, G. Zampa, N. Zampa, Measurements of cosmic-ray hydrogen and helium isotopes with thepamelaexperiment. Astrophys. J. 818, 68 (2016).

58. A. W. Strong, I. V. Moskalenko, Models for galactic cosmic-ray propagation. Adv. Space Res. 27, 717–726 (2001).

59. V. S. Ptuskin, I. V. Moskalenko, F. C. Jones, A. W. Strong, V. N. Zirakashvili, Dissipation of magnetohydrodynamic waves on energetic particles: Impact on interstellar turbulence and cosmic-ray transport. Astrophys. J. 642, 902–916 (2006).

60. M. E. Wiedenbeck, N.E. Yanasak, A.C. Cummings, A.J. Davis, J.S. George, R.A. Leske, R.A. Mewaldt, E.C. Stone, P. L. Hink, M.H. Israel, M. Lijowski, E.R. Christian, T.T. von Rosenvinge, The origin of primary cosmic rays: Constraints from ACE elemental and isotopic composition observations. Space Sci. Rev. 99, 15–26 (2001).

61. I. G. Usoskin, K. Alanko, K. Mursula, G. A. Kovaltsov, Heliospheric modulation strength during the neutron monitor era. Solar Phys. 207, 389–399 (2002).
62. C. Li, W. Zuo, W. Wen, X. Zeng, X. Gao, Y. Liu, Q. Fu, Z. Zhang, Y. Su, X. Ren, F. Wang, J. Liu, W. Yan, X. Tan, D. Liu, B. Liu, H. Zhang, Z. Ouyang, Overview of the Chang’e-4 mission: Opening the frontier of scientific exploration of the lunar far side. *Space Sci. Rev.* 217, 35 (2021).

63. Z. Xu, J. Guo, R. F. Wimmer-Schweingruber, J. L. Freiher von Forstner, Y. Wang, N. Dresing, H. Lohf, S. Zhang, B. Heber, M. Yang, First solar energetic particles measured on the lunar far-side. *Astrophys. J.* 902, L30 (2020).

64. D. Hou, S. Zhang, J. Yu, R. F. Wimmer-Schweingruber, S. Burmeister, H. Lohf, B. Yuan, G. Shen, C. Wang, X. Hou, B. Ren, Removing the dose background from radioactive sources from active dose rate measurements in the Lunar Lander Neutron & Dosimetry (LND) experiment on Chang’E 4. *J. Instrum.* 15, P01032 (2020).

65. E. C. Stone, C.M.S. Cohen, W.R. Cook, A.C. Cummings, B. Gauld, B. Kecman, R.A. Leske, R.A. Mewaldt, M.R. Thayer, B.L. Dougherty, R.L. Grumm, B.D. Milliken, R.G. Radocinski, M.E. Wiedenbeck, E.R. Christian, S. Shuman, T.T. von Rosenvinge, The solar isotope spectrometer for the advanced composition explorer. *Space Sci. Rev.* 86, 357–408 (1998).

66. R. E. Gold, S.M. Krimigis, S.E. Hawkins, III, D.K. Haggerty, D.A. Lohr, E. Fiore, T.P. Armstrong, G. Holland, L.J. Lanzerotti, Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. *Space Sci. Rev.* 86, 541–562 (1998).

67. E. C. Stone, A.M. Frandsen, R.A. Mewaldt, E.R. Christian, D. Margolies, J.F. Ormes, F. Snow, The Advanced Composition Explorer. *Space Sci. Rev.* 86, 1–22 (1998).

68. V. Domingo, B. Fleck, A. I. Poland, The SOHO mission: An overview. *Solar Phys.* 162, 1–37 (1995).

69. M. L. Kaiser, The STEREO mission: An overview. *Adv. Space Res.* 36, 1483–1488 (2005).

70. R. A. Mewaldt, C. M. S. Cohen, W. R. Cook, A. C. Cummings, A. J. Davis, S. Geier, B. Kecman, J. Klemic, A. W. Labrador, R. A. Leske, H. Miyasaka, V. Nguyen, R. C. Ogliore, E. C. Stone, R. G. Radocinski, M. E. Wiedenbeck, J. Hawk, S. Shuman, T. T. von Rosenvinge, K. Wortman, The Low-
Energy Telescope (LET) and SEP Central Electronics for the STEREO Mission. *Space Sci. Rev.* **136**, 285–362 (2008).

71. R. A. Weller, M. H. Mendenhall, R. A. Reed, R. D. Schrimpf, K. M. Warren, B. D. Sierawski, L. W. Massengill, Monte Carlo simulation of single event effects. *IEEE Trans. Nucl. Sci.* **57**, 1726–1746 (2010).

72. M. H. Mendenhall, R. A. Weller, A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations. *Nucl. Instrum. Methods Phys. Res. Sect. A* **667**, 38–43 (2012).

73. A. I. Mrigakshi, D. Matthiä, T. Berger, G. Reitz, R. F. Wimmer-Schweingruber, Assessment of galactic cosmic ray models. *J. Geophys. Res. Space Phys.* **117**, A08109 (2012).

74. V. Angelopoulos, The ARTEMIS Mission. *Space Sci. Rev.* **165**, 3–25 (2011).

75. D. H. Fairfield, Average and unusual locations of the Earth’s magnetopause and bow shock. *J. Geophys. Res.* **76**, 6700–6716 (1971).

76. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Arai, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglio, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo,
M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4—A simulation toolkit. *Nucl. Instrum. Methods Phys. Res. Sect. A* **506**, 250–303 (2003).

77. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnáčová, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M.G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadiлов, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J.P. Wellisch, D.C. Williams, D. Wright, H. Yoshida, Geant4 developments and applications. *IEEE Trans. Nucl. Sci.* **53**, 270–278 (2006).

78. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortés-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Gensler, V.M. Grichine, S. Guatelli, P. Guèye, P. Gumplinger, A.S. Howard, I. Hřivnáčová, S. Huang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrović, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristić Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tomé, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in Geant4. *Nucl. Instrum. Methods Phys. Res. Sect. A* **835**, 186–225 (2016).
79. G. Santin, Normalisation modelling sources. Geant4 (2007).