First Observation of Large Missing-Momentum (e, e′p) Cross-Section Scaling and the onset of Correlated-Pair Dominance in Nuclei

I. Korover, A.W. Denniston, A. Kiral, A. Schmidt, A. Lovato, N. Rocco, A. Nikolakopoulos, L.B. Weinstein, E. Piasetzky, O. Hen, M.J. Amaryan, Giovanni Angelini, H. Atac, N.A. Baltzell, L. Barion, M. Battagliero, I. Bedlinskiy, Fatiha Bennokhtar, A. Bianconi, L. Biondo, A.S. Biselli, F. Bossù, S. Boiarinov, W.J. Briscoe, D. Bulumulla, V.D. Burket, D.S. Carman, J.C. Carvajal, M. Caudron, P. Chatagnon, T. Chetry, G. Ciullo, L. Clark, P.L. Cole, M. Contalbrigo, G. Costantini, A. D’Angelo, N. Dashyan, R. De Vita, M. Defurme, A. Deur, S. Diehl, C. Djalali, M. Duer, H. Egiyan, M. Ehrhart, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, S. Fegan, R. Fersch, A. Filippi, G. Gavalian, Y. Ghandilyan, G.P. Gilfoyle, F.X. Girod, A.A. Golubenko, R.W. Gothe, K.A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, M. Hattawy, T.B. Hayward, D. Heddle, K. Hicks, A. Hobart, M. Holtrop, C.E. Hyde, Y. Ilieva, D.G. Iredale, E.L. Isupov, H.S. Jo, K. Joo, S. Joosten, D. Keller, A. Kanhal, M. Khandaker, A. Kim, W. Kim, A. Kripko, V. Kubarovsky, L. Lanza, M. Leali, P. Lenisa, K. Livingston, I.J.D. MacGregor, D. Marchand, L. Marsicano, V. Mascagni, B. McKinnon, S. Migliorati, M. Mirazita, V. Mokeev, M. Munoz Camacho, P. Nadel-Turonski, K. Neupane, S. Niccolai, G. Niculescu, T. O’R. O’Connell, M. Osipenko, A.I. Ostrovidov, P. Pandey, M. Paolone, L.L. Pappalardo, R. Paremuzyan, E. Pasyuk, O. Pokhrel, J. Poudel, J.W. Price, Y. Prok, B.A. Raue, T. Reid, M. Ripani, J. Ritman, A. Rizzo, G. Rosner, P. Rossi, J. Rowley, F. Sabatiè, R.A. Schumacher, E.P. Segarra, Y.G. Shabarin, E.V. Shirokov, U. Shrestha, O. Soto, S. Stepanyan, I.I. Strakovsky, S. Strauch, R. Tyson, M. Ungaro, L. Venturelli, H. Voskanyan, A. Vossen, E. Voutier, K. Wei, X. Wei, R. Wishart, M.H. Wood, B. Yale, N. Zachariou, J. Zhang, Z.W. Zhao

(The CLAS Collaboration)

1Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
3The George Washington University, Washington DC 20052, USA
4Old Dominion University, Norfolk, Virginia 23529, USA
5Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
6Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
7Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
8California State University, Dominguez Hills, Carson, CA 90747
9Canisius College, Buffalo, NY
10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
11Catholic University of America, Washington, D.C. 20064
12IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
13Christopher Newport University, Newport News, Virginia 23606
14University of Connecticut, Storrs, Connecticut 06269
15Duke University, Durham, North Carolina 27708-0305
16Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282
17Fairfield University, Fairfield CT 06824
18Universita’ di Ferrara , 44121 Ferrara, Italy
19Florida International University, Miami, Florida 33199
20Florida State University, Tallahassee, Florida 32306
21INFN, Sezione di Ferrara, 44100 Ferrara, Italy
22INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
23INFN, Sezione di Genova, 16146 Genova, Italy
24INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
25INFN, Sezione di Torino, 10125 Torino, Italy
26INFN, Sezione di Catania, 95123 Catania, Italy
27INFN, Sezione di Pavia, 27100 Pavia, Italy
28Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
29Institute fur Kernphysik (Juelich), Juelich, Germany
30James Madison University, Harrisonburg, Virginia 22807
31Kyungpook National University, Daegu 41566, Republic of Korea
Atomic nuclei are complex quantum-mechanical systems that account for most of the visible mass in the universe. The complexity of the strong nuclear interaction makes it difficult to use scattering reactions to experimentally probe the detailed distributions of nucleons inside nuclei. Experimental nuclear physicists thus work together with theorists to find measurable reactions that are sensitive to particular aspects of nuclear dynamics.

By using high-energy electron beams to knock out nucleons from nuclei in nearly elastic kinematics, one can learn about the behavior of single nucleons in the nucleus \([1]\). This behavior can be generally explained by nucleons moving in nuclear shell-model states (e.g. \(s-, p-, d-, \ldots\) shells) where the typical nucleon momenta in each shell is smaller than the nuclear Fermi momentum \((k_F)\). Full shell-model calculations improve on this by introducing effective long-ranged correlations between the nucleons \([2]\), which leads to the formation of a nuclear Fermi Surface.

While these models can successfully describe the long-range structure of nuclei, they do not describe the explicit high-resolution effects of short-range correlated (SRC) nucleon pairs. Within a high-resolution picture of nuclear dynamics, SRC pairs arise when two nucleons get so close to each other that the short-range nuclear interaction between them is much stronger than the effective long-ranged nuclear mean field due to their interactions with all the other nucleons in the nucleus \([3, 4]\).

SRCs have been clearly identified in data using large momentum-transfer nucleon knockout reactions \([5, 9]\). They are characterized by a high (greater than \(k_F)\) relative momentum between the nucleons of the pair and are predominantly proton-neutron pairs formed due to the action of the spin-dependent tensor part of the strong nuclear interaction \([10\)−\(13]\). They thus deplete the occupancy of single-particle shell-model states (below \(k_F)\) and populate high-momentum states \([3, 4, 9, 14, 15]\). While shell structures vary among nuclei, SRCs are a universal phenomenon, i.e., they are similar in all nuclei \([3, 17, 19]\), varying primarily in their magnitude.

A complete high-resolution microscopic description of atomic nuclei should thus have the nucleus-dependent

References

1. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
2. University of South Carolina, Columbia, South Carolina 29208
3. Temple University, Philadelphia, PA 19122
4. Lamar University, 4400 MLK Blvd, PO Box 10046, Beaumont, Texas 77710
5. University of Virginia, Charlottesville, Virginia 22901
6. University of Richmond, Richmond, Virginia 23173
7. University of South Carolina, Columbia, South Carolina 29208
8. Rensselaer Polytechnic Institute, Troy, New York 12180-3590
9. II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
10. Universita’ di Roma Tor Vergata, 00133 Rome Italy
11. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
12. University of South Carolina, Columbia, South Carolina 29208
13. Technische Universitat Darmstadt, Fachbereich Physik, Darmstadt, Germany
14. Temple University, Philadelphia, PA 19122
15. Lamar University, 4400 MLK Blvd, PO Box 10046, Beaumont, Texas 77710
16. University of Richmond, Richmond, Virginia 23173
17. University of South Carolina, Columbia, South Carolina 29208
18. University of Virginia, Charlottesville, Virginia 22901
19. Temple University, Philadelphia, PA 19122
20. Rensselaer Polytechnic Institute, Troy, New York 12180-3590
21. II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
22. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
23. University of South Carolina, Columbia, South Carolina 29208
24. Temple University, Philadelphia, PA 19122
25. II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
26. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
27. University of South Carolina, Columbia, South Carolina 29208
28. Temple University, Philadelphia, PA 19122
29. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
30. University of Richmond, Richmond, Virginia 23173
31. University of South Carolina, Columbia, South Carolina 29208
32. Temple University, Philadelphia, PA 19122
33. II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
34. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
35. University of South Carolina, Columbia, South Carolina 29208
36. Temple University, Philadelphia, PA 19122
37. II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
38. University of Richmond, Richmond, Virginia 23173
39. University of South Carolina, Columbia, South Carolina 29208
40. Temple University, Philadelphia, PA 19122
41. II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
42. University of Richmond, Richmond, Virginia 23173
43. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
44. University of South Carolina, Columbia, South Carolina 29208
45. Temple University, Philadelphia, PA 19122
46. Universidad Tecnica Federico Santa Maria, Casilla 110-V Valparaíso, Chile
47. Università degli Studi dell’Insubria, 22100 Como, Italy
48. Università degli Studi di Brescia, 25123 Brescia, Italy
49. Università degli Studi di Messina, 98166 Messina, Italy
50. University of Glasgow, Glasgow G12 8QQ, United Kingdom
51. University of York, York YO10 5DD, United Kingdom
52. University of Virginia, Charlottesville, Virginia 22901
53. College of William and Mary, Williamsburg, Virginia 23187-8795
54. Yerevan Physics Institute, 375036 Yerevan, Armenia
55. Technische Universität Darmstadt, Fachbereich Physik, Darmstadt, Germany

We report the first measurement of \(x_B\)-scaling in \((e, e’p)\) cross-section ratios off nuclei relative to deuterium at large missing-momentum of \(350 \leq p_{\text{miss}} \leq 600\) MeV/c. The observed scaling extends over a kinematic range of \(0.7 \leq x_B \leq 1.8\), which is significantly wider than \(1.4 \leq x_B \leq 1.8\) previously observed for inclusive \((e, e’)\) cross-section ratios. The \(x_B\)-integrated cross-section ratios become constant (i.e., scale) beginning at \(p_{\text{miss}} \approx k_F\), the nuclear Fermi momentum. Comparing with theoretical calculations we find good agreement with Generalized Contact Formalism calculations for high missing-momentum (> 375 MeV/c), suggesting the observed scaling results from interacting with nucleons in short-range correlated (SRC) pairs. For low missing-momenta, mean-field calculations show good agreement with the data for \(p_{\text{miss}} \leq k_F\), and suggest that contributions to the measured cross-section ratios from scattering off single, un-correlated, nucleons are non-negligible up to \(p_{\text{miss}} \approx 350\) MeV/c. Therefore, SRCs become dominant in nuclei at \(p_{\text{miss}} \approx 350\) MeV/c, well above the nuclear Fermi Surface of \(k_F \approx 250\) MeV/c.

(Dated: September 7, 2022)
mean field and long-ranged nuclear shell model parts as well as explicit nucleus-independent effects of SRC pairs.

Here we study the onset of SRC dominance in semi-inclusive high-energy electron scattering reactions, where we detect the knocked-out proton in addition to the scattered electron, \((e,e'p)\). For the first time in \((e,e'p)\) reactions, we observed scaling in the cross-section ratios of nuclei from carbon to lead relative to deuterium over a broad range in the Bjorken scaling variable, \(x_B\). This scaling substantially extends the kinematical range where SRCS can be identified and studied, as compared with previous inclusive \((e,e')\) measurements. Thereby, they provide direct experimental evidence for the dominance SRCS in the scattering response at high missing momenta, and allow quantifying the onset of this dominance.

Our experiment ran at the Thomas Jefferson National Accelerator Facility. It used a 5.01 GeV electron beam incident on a target system consisting of a deuterium cell followed by an interchangeable solid foil of carbon (C), aluminum (Al), iron (Fe), or lead (Pb) \[20\]. Scattered electrons and knocked-out protons were identified and measured using the CEBAF Large Acceptance Spectrometer (CLAS) \[21\] (see supplementary materials for details).

In high-energy scattering, the electron transfers a single virtual photon to the nucleus with momentum \(\vec{q}\) and energy \(\omega\). In the high-resolution quasielastic (QE) reaction picture, the virtual photon is absorbed by a single nucleon, which gets knocked-out of the nucleus with momentum \(\vec{p}_p\). By measuring both the scattered electron and knocked-out proton, i.e. the \((e,e'p)\) reaction, we can determine the missing momentum \(\vec{p}_{miss} = \vec{p}_p - \vec{q}\). The reaction is further characterized by the four-momentum transfer \(Q^2 = \vec{q}^2 - \omega^2\) and Bjorken scaling variable \(x_B = Q^2/(2m_\omega)\) where \(m\) is the nucleon mass.

If the knocked-out nucleon does not re-interact as it leaves the nucleus, then \(\vec{p}_{miss}\) is equal to the initial momentum of that nucleon. Thus we expect the reaction to be sensitive to mean-field nucleons at low-\(p_{miss}\) and to SRCS at high-\(p_{miss}\) \[22\]. In the SRC-dominated region, the cross section ratio for any two nuclei should be constant (i.e., independent of \(p_{miss}\)) and equal to the relative number of high-momentum nucleons in the two nuclei \[4\ \[9\ \[14\ \[23\ \[26\]. Thus, by measuring the \((e,e'p)\) cross section ratio for nuclei relative to deuterium for different minimum \(p_{miss}\), we can establish the onset of scaling that corresponds to SRC pair dominance in the nuclear momentum distribution.

To study this, we measured the \((e,e'p)\) reaction in conditions sensitive to the knockout of protons from SRC pairs. We required \(Q^2 \geq 1.5\) (GeV/c)^2 and \(350 \leq p_{miss} \leq 600\) MeV/c to ensure a high-resolution reaction that can resolve single nucleons in SRC pairs. We further required that the proton be emitted within 25° of the momentum transfer, to ensure that the measured proton was the nucleon that absorbed the virtual photon \[28\ \[29\].

We suppressed inelastic (non-QE) scattering events by requiring \(M_{miss}\), the missing mass for \((e,e'p)\) scattering from a two-nucleon pair at rest, to be smaller than the nucleon mass \(m\) plus pion mass \(m_\pi\), \(0.8 \leq M_{miss} \leq m + m_\pi = 1.08\) GeV/c^2. In non-QE reactions the momentum transferred to undetected particles (e.g., pions) shifts the direction of \(\vec{p}_{miss}\). Therefore such events will have a larger \(\theta_{\vec{p}_{miss},\vec{q}}\), the angle between \(\vec{p}_{miss}\) and \(\vec{q}\). We thus further suppressed the small non-QE tail below \(M_{miss} = 1.08\) GeV/c^2 by observing that the measured \(\theta_{\vec{p}_{miss},\vec{q}}\) distribution has two maxima, corresponding to QE and non-QE scattering, and selecting events in the \(\theta_{\vec{p}_{miss},\vec{q}}\) QE peak. See Figs. S1 and S2 and supplementary materials for details.

We tested our identification of scattering from protons in SRC pairs by comparing the measured width of the \(M_{miss}\) peak with that calculated using the Generalized Contact Formalism (GCF) model for SRC pairs (see Fig. \[1\] \[8\ \[13\ \[27\ \[29\ \[34\]). This width depends on the CLAS resolution and on the SRC pair center of mass (CM) motion. We corrected for the effects of the CLAS resolution by subtracting the deuterium \(M_{miss}\)
peak width from that of ^{12}C to get the intrinsic width:

$$\sigma_{\text{int}}^{^{12}\text{C}} = \sqrt{(\sigma_{\text{Cexp}}^{^{12}\text{C}})^2 - (\sigma_{\text{exp}}^{^{12}\text{C}})^2}.$$

The measured x_B dependence of $\sigma_{\text{int}}^{^{12}\text{C}}$ agrees well with a GCF calculation that assumes electron scattering from nucleons in SRC pairs with a realistic Gaussian CM momentum distribution [32], as was done in Refs. [8, 27, 29]. The calculation accounts for the CLAS detector acceptance and resolution and our event selection cuts. The width of the CM momentum distributions, σ_{CM}, and the excitation energy of the residual nuclear system after the SRC breakup, E^*, were the only two free parameters used in the calculation and were determined from a fit of the calculation to the data (see inset of Fig. 1). For σ_{CM} the fitted values of $160 - 210$ MeV/c (125 - 220) at 68% (90%) confidence agree well with previous direct measurements [8, 32]. For E^*, while not previously measured, the fitted values of $20 - 55$ MeV (0 - 70 MeV) at 68% (90%) confidence are consistent with those used by previous analyses [29]. The sensible values of the resulting fit parameters and the agreement between the x_B dependence of the GCF calculation and the data further support our interpretation of the data as dominated by scattering off SRC pairs.

Using the selected event samples, we extracted the $(e,e'p)$ cross section ratios for scattering off the solid targets relative to deuterium. We first divided the ratio of the measured numbers of events for a given target to deuterium with the ratio of the experimentally determined integrated luminosities to obtain the normalized-yield ratios. We then determined the cross section ratios by correcting the normalized-yield ratios for attenuation of the outgoing protons as they traverse the different nuclei [33], electron radiation effects, and the small difference in the CLAS acceptance for detecting particles emitted from the deuterium and the solid targets. At the large Q^2 of this measurement, the attenuation correction is less sensitive to the initial nucleon momenta and therefore both mean-field and SRC breakup reactions have the same attenuation [33]. Acceptance effects were calculated using the CLAS detector simulation [34] and an electron scattering reaction event generator based on the GCF as applied in previous studies [27, 29] (see supplementary materials for details).

Figure 2 shows the per nucleon $(e,e'p)$ cross section ratios for $350 \leq p_{\text{miss}} \leq 600$ MeV/c for carbon, aluminum, iron, and lead relative to deuterium as a function of x_B. The $(e,e'p)$ ratios scale (i.e., are constant) for all four nuclei over the entire measured x_B range. This implies that the reaction is probing similar nuclear configurations in the measured nuclei and in deuterium. As the deuteron is a simple proton-neutron correlated two-body system, we interpret this high missing-momentum scaling as observation of deuteron-like proton-neutron SRC pairs in nuclei. The cross-section ratio is thus a measure of their relative abundance.

This interpretation is supported by the consistency between our measured $(e,e'p)$ cross section ratios and previously measured inclusive (e,e') scattering cross section ratios at similar Q^2 and at $x_B \geq 1.5$ [14, 23, 26] (see open symbols in Fig. 2). As the inclusive scaling onset at $x_B \approx 1.5$ has been attributed to scattering off nucleons with momenta greater than ~ 275 MeV/c [14, 35], it is also associated with scattering off nucleons in deuteron-like proton-neutron SRC pairs, formed by the strong tensor interaction [23, 26] (see supplementary materials for details). Proton detection extends the cross-section ratio plateau down to $x_B = 0.7$, providing a new experimental tool to study the transition to SRC dominance in nuclei over a broad range in x_B.

We next examined how this scaling depends on the minimum p_{miss} range of the data. Figure 3 shows the per nucleon $(e,e'p)$ cross section ratios for the measured nuclei relative to deuterium as a function of x_B for different minimum p_{miss}. For all nuclei, the curve for $p_{\text{miss}}^{\text{min}} = 0$ are similar to the inclusive data of Schmookler et al. [26], with a plateau for $x_B \geq 1.5$ and a minimum at $x_B \approx 1$. As $p_{\text{miss}}^{\text{min}}$ increases, this minimum fills in. For $p_{\text{miss}}^{\text{min}} \gtrsim 200 - 250$ MeV/c, it is completely filled in and the $(e,e'p)$ cross section ratio scales over the full measured x_B range of 0.7 to 1.8. This indicates that short-range interactions become dominant at around $k_F \approx 220 - 260$ MeV/c [36], as expected.

To better quantify this transition, Figure 4 shows the $p_{\text{miss}}^{\text{min}}$ dependence of the $(e,e'p)$ cross section ratio for the different nuclei relative to deuterium, integrated over the scaling regions of $0.7 \leq x_B \leq 1.8$. The measured cross section ratio for carbon ($k_F \approx 220$ MeV/c), alu-
minimum \(k_F \approx 235\,\text{MeV}/c\), and iron \(k_F \approx 260\,\text{MeV}/c\) all become flat starting around the Fermi momentum at \(p_{\text{miss}} \approx 250\). The lead ratio shows a similar transition but does not fully plateau, possibly owing to its much larger neutron-to-proton ratio or to increased final state interactions due to its larger size.

We thus conclude that the data indicate the existence of a clear transition in the nuclear response around the nuclear Fermi momentum, resulted by the onset of the SRC dominance at high-momenta.

Focusing on the carbon nucleus, where theoretical calculations are readily available, we find that the high-\(p_{\text{miss}}\) data are in excellent agreement with an asymptotic GCF calculation of the cross-section ratio (brown band in Fig. 4 left panel). The calculation was done using a factorized plane-wave impulse approximation (PWIA) for the scattering reaction, with SRC-pair spectral functions calculated using the GCF \[27\] and transparency and single-charge exchange corrections as done in Ref. \[27, 29, 38\] (see supplementary materials for details). The SRC-pair abundance parameters used by the GCF calculation were all previously determined by \[27\] and SKyrme calculations are re-normalized (quenched) to agree with our low-\(p_{\text{miss}}\) \((\leq 150\,\text{MeV}/c)\) high-\(Q^2\) data. This effectively accounts for their lack of single-nucleon strength lost to long- and short-ranged correlations and/or few-body reaction operators that can compensate for it \[43\]. In contrast, the QMC calculation extracts the underlying single-nucleon states from the fully correlated high-resolution wave function. It thus has fewer than six protons in its mean-field orbitals and does not require additional quenching. The agreement of the QMC calculation with the low-\(p_{\text{miss}}\) data thus con-
firms the completeness of the calculation.

The different single-nucleon calculations are similar and all show the existence of residual single nucleon contributions above \(k_F \). We subtracted the calculated one-body mean-field contribution from the measured cross-section ratio (see the inset in Fig. 4). Accounting for these contributions can shift the scaling onset from the purely experimental onset at \(\sim k_F \) to a higher value of \(\sim 350 \text{ MeV/c} \). Such a shift would be consistent with the existence of a nuclear Fermi-surface that accounts for long-range correlations above \(k_F \).

To conclude, the new nuclear scaling measurements presented herein allow isolating interactions with SRC pairs in a substantially-extended kinematical regime. By examining the scaling onset in missing momentum, we observe a universal transition in the scattering response above the nuclear Fermi momentum. Using model-dependent estimates for mean field contributions, we see an indication for the onset of full SRC dominance above \(\sim 350 \text{ MeV/c} \). Detailed theoretical calculations will be able to use our data to fully quantify this mean-field to SRC transition region and to obtain an effective high-resolution description of a wide range of heavy nuclei.

We acknowledge the efforts of the staff of the Accelerator and Physics Divisions at Jefferson Lab that made this experiment possible. The analysis presented here was carried out as part of the Jefferson Lab Hall B data-mining project supported by the U.S. Department of Energy (DOE). The research was also supported by the National Science Foundation, the Israel Science Foundation, the Pazi Foundation, the Chilean Comisión Nacional de Investigación Científica y Tecnológica, the French Centre National de la Recherche Scientifique and Commissariat a l’Energie Atomique, the French–American Cultural Exchange, the Italian Istituto Nazionale di Fisica Nucleare, the National Research Foundation of Korea, and the UK Science and Technology Facilities Council. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility for the DOE, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

* Equal Contribution
† Contact Author hen@mit.edu
‡ Current address: Universit’a degli Studi di Brescia, 25123 Brescia, Italy
§ Current address: Idaho State University, Pocatello, Idaho

1 J. Kelly, Adv. Nucl. Phys. 23, 75 (1996).
2 W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004), nucl-th/0402034.
3 L. Frankfurt and M. Strikman, Phys. Rep. 160, 235 (1988).
4 C. Ciofi degli Atti, Phys. Rept. 590, 1 (2015).
5 A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003), nucl-ex/0206003.

6 R. Subedi et al., Science 320, 1476 (2008), 0908.1514.
7 O. Hen et al., Science 346, 614 (2014), 1412.0138.
8 M. Patsyk et al. (BM0N), Nature Physics 17, 693 (2021), 2102.02626.
9 O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Rev. Mod. Phys. 89, 045002 (2017).
10 R. Schiavilla, R. B. Wiringa, S. C. Pieper, and J. Carlson, Phys. Rev. Lett. 98, 132501 (2007).
11 M. M. Sargsian, T. V. Abrahamyan, M. I. Strikman, and L. L. Frankfurt, Phys. Rev. C 71, 044615 (2005).
12 M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. Lett. 100, 162503 (2008).
13 T. Neff, H. Feldmeier, and W. Horiuchi, Phys. Rev. C 92, 024003 (2015).
14 K. Egiyan et al. (CLAS Collaboration), Phys. Rev. Lett. 96, 082501 (2006).
15 S. Paschalis, M. Petri, A. O. Macchiavelli, O. Hen, and E. Piasetzky, Phys. Lett. B 800, 135110 (2020), 1812.08051.
16 J. Ryckebeusch, W. Cosyn, T. Vieijra, and C. Casert, Phys. Rev. C 100, 054620 (2019), 1907.07259.
17 C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).
18 J. Ryckebeusch, M. Vanhalst, and W. Cosyn, Journal of Physics G: Nuclear and Particle Physics 42, 055104 (2015).
19 R. Cruz-Torres et al., Nature Physics 17, 306 (2020), 1907.03658.
20 H. Hakobyan et al., Nucl. Instrum. Meth. A592, 218 (2008).
21 B. A. Mecking et al., Nucl. Instrum. Meth. A503, 513 (2003).
22 M. Duer et al. (CLAS Collaboration), Nature 560, 617 (2018).
23 L. Frankfurt, M. Strikman, D. Day, and M. Sargsyan, Phys. Rev. C 48, 2451 (1993).
24 K. Egiyan et al. (CLAS Collaboration), Phys. Rev. C 68, 041313 (2003).
25 N. Fomin et al., Phys. Rev. Lett. 108, 092502 (2012).
26 B. Schmookler et al. (CLAS Collaboration), Nature 566, 354 (2019).
27 J. Pybus, I. Korover, R. Weiss, A. Schmidt, N. Barnea, D. Higinbotham, E. Piasetzky, M. Strikman, L. Weinstein, and O. Hen, Phys. Lett. B 805, 135429 (2020), 2003.02318.
28 O. Hen et al., Science 346, 614 (2014), 1412.0138.
29 A. Schmidt et al. (CLAS), Nature 578, 540 (2020), 2004.11221.
30 R. Weiss, B. Bazak, and N. Barnea, Phys. Rev. C 92, 054311 (2015), 1503.07047.
31 R. Weiss, R. Cruz-Torres, N. Barnea, E. Piasetzky, and O. Hen, Phys. Lett. B 780, 211 (2018).
32 E. O. Cohen et al. (CLAS Collaboration), Phys. Rev. Lett. 121, 092501 (2018), 1805.01981.
33 M. Duer et al. (CLAS Collaboration), Phys. Lett. B797, 134792 (2019), 1811.01823.
34 E. Wolin, Clas - geant simulation (1996), URL https://www.jlab.org/Hall-B/document/gsim/userguide.html
35 R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A. Schmidt, L. B. Weinstein, and N. Barnea, Phys. Rev. C 103, L031301 (2021), 2005.01621.
36 E. J. Moniz, I. Sick, R. R. Whitney, J. R. Ficenec, R. D. Kephart, and W. P. Trower, Phys. Rev. Lett. 26, 445
[37] R. Weiss, I. Korover, E. Piasetzky, O. Hen, and N. Barnea, Phys. Lett. B791, 242 (2019), 1806.10217.
[38] M. Duer et al. (CLAS Collaboration), Phys. Rev. Lett. 122, 172502 (2019), 1810.05343.
[39] T. O’Neill, W. Lorenzon, P. Anthony, R. Arnold, J. Arrington, E. Beise, J. Belz, P. Bosted, H.-J. Bulten, M. Chapman, et al., Physics Letters B 351, 87 (1995), ISSN 0370-2693.
[40] N. Makins et al., Phys. Rev. Lett. 72, 1986 (1994).
[41] M. Waroquier, J. Sau, K. Heyde, P. Van Isacker, and H. Vincx, Phys. Rev. C 19, 1983 (1979).
[42] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998), [Erratum: Nucl.Phys.A 643, 441–441 (1998)].
[43] A. J. Tropiano, S. K. Bogner, and R. J. Furnstahl, Phys. Rev. C 104, 034311 (2021), 2105.13936.