Pluronic L-81 ameliorates diabetic symptoms in db/db mice through transcriptional regulation of microsomal triglyceride transfer protein

Wo-Shing Au, Li-Wei Lu, Sidney Tam, Otis King Hung Ko, Billy KC Chow, Ming-Liang He, Samuel S Ng, Chung-Man Yeung, Ching-Chiu Liu, Hsiang-Fu Kung, Marie C Lin

RESULTS: Treatment of db/db mice with L-81 significantly reduced and nearly normalized their body weight, hyperphagia and polydipsia. L-81 also markedly decreased the fasting plasma glucose level, improved glucose tolerance, and attenuated the elevated levels of plasma cholesterol and triglyceride. At the effective dosage, little toxicity was observed. Treatment of HepG2 cells with L-81 not only inhibited apoB secretion, but also significantly decreased the mRNA level of the MTP gene. Similar to the action of insulin, L-81 exerted its effect on the MTP promoter.

CONCLUSION: L-81 represents a promising candidate in the development of a selective insulin-mimetic molecule and an anti-diabetic agent.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Pluronic L-81; db/db mice; Animal models; diabetes; Microsomal triglyceride protein

INTRODUCTION

Pluronic surfactants or poloxamers are synthetic copolymers based on ethylene oxide and propylene oxide. They are synthesized by controlled addition of propylene oxide to the two hydroxyl groups of propylene glycol[1]. Pluronic surfactants are widely used in industries as defoaming and antifoaming agents in dishwashing, antifreeze, cutting and grinding fluids, water treatment, etc. They are also being investigated as drug delivery vectors[2] and cancer therapies[3]. Pluronic L-81...
L-81 has profound effects on the lipid metabolism of the intestine and the liver. Chronic feeding of rats with L-81 greatly reduced the lymphatic lipid transport from their intestine, without affecting the digestion and absorption of lipid into enterocytes. The absorbed lipid was however accumulated in the enterocytes, suggesting that L-81 interferes with lipoprotein assembly and/or exit of lipoproteins from the mucosal cells[4]. L-81 inhibits chylomicron formation but not very low density lipoprotein (LDL) secretion in hepatocytes[8]. Assembly of VLDL in hepatocytes depends very much on the endoplasmic reticulum-residing protein microsomal triglyceride transfer protein (MTP). There is evidence that L-81 inhibits MTP activity in hepatocytes[5]. Consistent with these molecular effects, rodents fed with L-81 exhibited obvious weight loss, which is reversible upon withdrawal of the compound in the diet[9]. Because the inhibitory effect of L-81 on lipid transport is rapid and readily reversible, it is an attractive drug for controlling obesity.

Obesity, defined as a body mass index exceeding 30 kg/m², is epidemic in many developed countries. For instance, more than 50% of the adults in the USA are either overweight or obese[10]. Obesity is a strong risk factor for the development of insulin resistance and type 2 diabetes[11]. The risk of developing type 2 diabetes increases in parallel with increasing severity of overweight and obesity[12]. On the other hand, weight reduction is associated with a decreased incidence of type 2 diabetes[13]. Obesity is also strongly associated with cardiovascular diseases and cancers[14,15]. Clearly, it would be of great clinical benefit if effective prevention and treatments for obesity and associated type 2 diabetes were established.

Although L-81 is a potent anti-obesity drug, its potential in alleviating obesity-induced insulin resistance and type 2 diabetes has not been fully explored. Here we aimed to test whether L-81 could ameliorate diabetic symptoms using a mouse model of type 2 diabetes, db/db mice. db/db mice have a mutant leptin receptor which results in high plasma triglyceride and cholesterol levels. db/db mice develop significant obesity, fasting hyperglycemia and hyperinsulinemia within 6 wk of age[16]. We also investigated the possibility that L-81 affects MTP activity through transcription regulation.

MATERIALS AND METHODS

Cell culture and measurement of apoB secretion rates in HepG2 cells

HepG2 cells were obtained from the American Type Culture Collection (ATCC) and maintained in basal medium (MEM supplemented with 1.5 g/L sodium bicarbonate, 2 mmol/L glutamate, 2 mmol/L sodium pyruvate) with 10% FBS. In a typical experiment, cells were seeded into 6-well (35 mm) culture plates, allowed to grow to 70% confluence, and then incubated with 3 mL of either the control medium (basal medium supplemented with 3% BSA) or experimental media (control medium plus test substances) at 37°C for the indicated time. At the end of the experiments, media were collected and analyzed for apolipoprotein B (apoB) and apoA-I by ELISA as described previously[18].

Measurement of human MTP and actin mRNA levels

Total RNA was isolated from HepG2 cells by the guanidinium thiocyanate method and the relative levels of the MTP large subunit and β-actin mRNA were determined by the DNA excess solution hybridization assays as described previously[19].

MTP promoter construct, transfection and reporter assay

The promoter-luciferase construct (MTP-250) which contains a 336-bp fragment encompassing position -250 to +86 of the human MTP promoter was generated by PCR as described in our earlier study[16] and cloned into promoterless pGL3-Basic vector (Promega, Madison, WI). For transfection, HepG2 cells were grown overnight (70% confluent) in 6-well plates and washed twice with serum-free medium. DNA-lipofectAMINE 2000 complexes, containing 1 μg MTP promoter-firefly luciferase construct, 0.1 μg pRL-SV40 renilla luciferase control vector, and 2 μg lipofectAMINE 2000 (Invitrogen) in 200 μL serum-free medium in each well, were allowed to form at room temperature for 30 min. The cells were then overlaid with the complex for 6 h at 37°C. After 16 h of recovery in complete culture medium, the cells were washed twice with serum-free medium, and experimental media with or without the indicated concentration of Pluronic L-81 were subsequently added. After 24 h, the cells were washed twice with ice-cool PBS and treated with passive lysis buffer (Promega, Madison, WI). The lysates were assayed for both luciferase activities using the Dual-luciferase assay kit (Promega, Madison, WI) according to the manufacturer’s instructions. Luciferase activities were determined by Lumat LB 9507 luminometer (Berthold).

Animals and L-81 treatment

Male and genetically diabetic BKS·Cg-m +/+ Lepr^{db} (db/db) mice and their non-diabetic littermates C57BLKS/J (BKS) (5-6 wk of age; n = 3 mice per group) were obtained from Jackson Laboratories (Bar Harbor, ME). They were housed in environmentally controlled conditions with a 12-h light/dark cycle. Mice were fed a standard rodent chow diet (powdered) and water <i>ad libitum</i> in sterile cages. Animals were gathered together for 2 wk before the commencement of the experiment. Pluronic L-81 was kindly provided by BASF Corporation (Parsippany, NJ). To prepare food with the indicated amount of L-81 for treatment, L-81 was first dissolved in ethanol and sprayed on the powdered chow. The food was then air-dried to remove the carrier ethanol before it was used to feed the mice. Various parameters of the

www.wjgnet.com
mice including body weight, food and water intake were monitored on a regular basis as indicated.

Animal blood sampling, metabolic measurements, intraperitoneal glucose tolerance test (IPGTT), and histological analysis

Animals (n = 3 mice per group) were fasted for 5 h before blood was sampled from the retro-orbital sinus. Plasma glucose, insulin, adiponectin, triglycerides, cholesterol, alkaline phosphatase (ALP), alanine aminotransferase (ALT) levels were measured using standard enzyme assay kits. For IPGTT, mice were first fasted for 5 h and then received an intraperitoneal administration of glucose (2 g/kg). Blood glucose levels were determined using the One-touch Ultra Blood Glucose Monitoring System (LifeScan Inc) from the tail blood samples at 0 (before glucose administration), 30, 60, 90, and 120 min after glucose administration. Tissues were collected and fixed in 10% phosphate-buffered formalin for histological analysis. Paraffin-embedded tissues were sectioned (5 μm thick) and stained with hematoxylin and eosin (HE) using standard procedures.

Statistical analysis

For each animal experiment, C57 lean mice and db/db mice (n = 3 mice per group) were either untreated (control) or treated with different concentrations of L-81 or 0.005% rosiglitazone (rosig). The experiment was performed 3 times to obtain data with statistical significance. Data shown were obtained from at least 3 independent experiments and presented as mean ± SD. One-way analysis of variance (ANOVA) was used to compare multiple experimental groups. Differences were considered to be statistically significant when P < 0.05.

RESULTS

L-81 treatment induced weight loss and ameliorated diabetes

The nonionic surfactant L-81 has been shown to be an effective weight-reducing drug in rats[14]. We observed a similar effect in db/db mice. Thus, while db/db mice weighed 40 g on average at 5-6 wk of age, and their weight continued to increase during observation, mice treated with 1% or 1.5% L-81 for 30 d lost weight to a small extent (n = 3 mice per group) (Figure 1A and B). Their plasma total cholesterol and plasma triglycerol (TG) were also reduced by L-81 treatment (Figure 1C and D). Examination of their epididymal fat pads revealed that adipocytes in mice treated with L-81 were smaller than in the db/db controls, although they were still larger than those in C57 lean control mice (Figure 1E). These data showed that L-81 is, as already found in rats, a hypolipemic agent in db/db mice.

While the weight control effect of L-81 is well documented, its implication in diabetes control is less well understood. So we asked, given the fact that L-81 is effective in control of obesity, is it able to ameliorate diabetes? To answer this we measured some diabetic parameters in L-81 treated db/db mice. In this study, we compared L-81 with rosig, a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist and an anti-diabetes drug [10].

Hyperphagia and polydipsia are two common symptoms of diabetes. We first observed whether a 4-wk L-81 treatment could affect the feeding and drinking behaviors of the mice. Compared with lean controls, db/db mice ingested about 2 g more food and 4 g more water per day. Inclusion of 1% or 1.5% L-81, or 0.005% of rosig in their diet could reduce their food and water intake to the lean control level (Figure 2A and B).

Fasting plasma glucose levels of the mice were measured at the beginning and the end of a 21 d treatment period. As shown in Figure 2C, db/db mice exhibited elevated fasting blood glucose levels of about 25 mmol/L, as compared with 10 mmol/L in lean controls. Twenty one days of rosig or L-81 treatment reduced this parameter to near the lean control level (Figure 2C). db/db mice have a typical diabetic glucose profile after glucose injection (Figure 2D). Rosig or L-81-treated mice showed improved glucose tolerance, thus their blood glucose level started to drop slightly or stopped increasing at 30 min after injection (Figure 2D). However, the levels were never as low as in lean control mice.

db/db mice are insulin-resistant and therefore have an elevated plasma insulin level[14]. We found that db/db mice treated for 21 d with rosig or L-81 exhibited a lowered plasma insulin concentration (Figure 2E). The effects of rosig and L-81 were comparable. Rosig effectively increased the plasma level of adiponectin, an adipocytokine responsible for increasing tissue sensitivity to insulin. This, however, was not observed in L-81 treated mice (Figure 2F). Taken together, oral L-81 treatment can effectively improve diabetic symptoms in the db/db mouse model.

L-81 inhibited MTP transcription

L-81 treated cells showed decreased activity of MTP. However MTP purified from those cells exhibited normal TG transfer activity[7], suggesting that L-81 does not affect MTP activity post-translationally. We have shown previously that MTP activity is largely controlled at the transcription level[15]. We therefore wished to address the possibility that L-81 controls MTP activity by modulating the transcription of the MTP gene. To do this we transiently transfected a MTP promoter-luciferase reporter construct as previously described[16] into HepG2 and treated the cells with L-81.

As shown in Figure 3A, the expression of luciferase driven by the full-length MTP promoter (-612 to +86) was reduced by about 25% in the presence of 1% L-81. This figure agrees with that observed previously[7]. Given that MTP plays an essential role in the assembly and secretion of apoB-containing lipoproteins, we tested the effect of L-81 on apoB secretion in HepG2 cells. As shown in Figure 3B, L-81 dose-dependently inhibited the apoB secretion in HepG2 cells, while no significant changes were observed in apoA-I secretion. By examining the cell morphology, lactate dehydrogenase activity (a marker of necrosis), and total cellular proteins
in HepG2 cells, we also determined that in vitro L-81 treatment (0-3 μmol/L) had little or no cytotoxic effect on the cells (data not shown). Taken together, these results demonstrated that L-81 causes a reduction of apoB secretion in HepG2 cells at least partly via the inhibition of MTP expression.

To locate the sequence element responsible for mediating the inhibitory effect of L-81 on MTP promoter, we transfected HepG2 cells with various MTP promoter/luciferase reporter deletion constructs (see Figure 3A), and their relative promoter activities were determined from the cells treated with 1% L-81. It was found that the inhibitory effect of L-81 (and insulin) persists up to the deletion construct MTP-115 (Figure 3A), suggesting that L-81 (and insulin) responsive sequence resides between -102 and -115. A mutation of promoter sequence -102 to -108 [where a hepatocyte nuclear factor (HNF)-1 site is located] abolished the inhibitory effect, suggesting that this region is responsible for mediating the inhibition. Either deletion or mutation of the HNF-1 site caused an almost complete shutdown of the MTP promoter activity (Figure 3A), indicating that this site is involved not only in the regulation but also in the basal expression of the MTP gene.

L-81 caused no detectable toxicity to the liver

Pharmacological inhibition of MTP transcription has been explored as a means of treating dyslipidemia. It is believed that by interfering with hepatic and intestinal VLDL packaging, MTP transcription inhibitors would reduce the plasma level of VLDL. Many MTP transcription
inhibitors have been developed and put into clinical trials. However, from the clinical trial data, it is obvious that MTP transcription inhibitors very often cause hepatosteatosis (fatty liver). We were hence concerned whether L-81’s MTP transcription inhibitory effect would lead to hepatosteatosis and a decline of liver function.

To check whether L-81 treatment caused any gross hepatic injury, we measured the plasma ALT level of db/db mice treated with the indicated drugs for 4 wk. *P < 0.05 compared with untreated control.

Figure 2 L-81 ameliorated diabetes. A: Food intake and (B) water intake of mice fed on a chow diet, with or without the indicated drugs (n = 3 in each group); C: Fasting plasma glucose levels of lean control mice or db/db mice treated with L-81 or rosig before and after a 21 d treatment of the indicated drugs; D: Glucose tolerance of mice treated with the indicated drugs. Mice injected with glucose had their blood glucose level monitored by OneTouch Ultra Blood Glucose Monitoring system; E: Plasma insulin level of db/db mice treated with the indicated drugs for 4 wk; F: Plasma adiponectin level of db/db mice treated with the indicated drugs for 4 wk. *P < 0.05 compared with untreated control.

Figure 3 L-81 regulated MTP transcription. A: The human MTP promoter was linked with luciferase reporter. Deletion or mutation constructs of MTP promoter-luciferase were transfected into HepG2 cells. The cells were treated with (black bars) or without (white bars) 1% L-81 in the medium. The luciferase activity in the cell lysate was measured. xxx = disabling mutations; B: L-81 inhibited apoB secretion in HepG2 cells. HepG2 cells were treated with the indicated concentration of L-81. The concentration of apoA-I and apoB in the culture medium were measured and normalized against the untreated control.
After 21 d of L-81 treatment, C57L mice did not show any difference in plasma ALT level compared to untreated control mice, indicating that L-81 did not induce liver injury (Figure 4A). However, db/db mice treated with L-81 had a higher level of plasma ALT compared to untreated mice, but this was not significantly different (Figure 4A). Histological examination did not reveal any liver damage (Figure 4C).

Conditioned taste aversion (CTA) was measured as a test for whether L-81 would render the mice ill. L-81-treated mice consumed a similar ratio of saccharin to their total fluid intake as untreated db/db mice (Figure 4B). Treatment with rosiglitazone gave a similar response. In contrast, lithium chloride produced a robust CTA (Figure 4B). Together, these results indicate that L-81 treatment did not cause any toxicity.

DISCUSSION

The prevalence of obesity is now escalating globally and insulin resistance resulting from increased fat mass is a key factor driving T2DM. Clinically, patients with T2DM display elevated blood glucose and plasma lipids, which are responsible for 80% of diabetic mortality and hospitalizations for diabetic complications. Diabetes is recognized as a coronary heart disease “risk equivalent”, with a 2.5-fold increased risk of myocardial infarction in diabetic patients. Therefore, new therapeutic strategies for diabetes should target both blood glucose and lipid disorders.

Our present study provides evidence that L-81 is a potent lipid-lowering compound and anti-diabetic agent for db/db mice. L-81 normalizes plasma lipids and reduces fat mass, thereby attenuating obesity and its complications, which are linked to insulin resistance and macrovascular diseases. L-81 also improved fasting glycemic control and glucose tolerance in db/db mice. It reduced hyperphagia and polydipsia, which are symptoms of diabetes. Remarkably, L-81 treatment did not cause any hepatotoxicity and was not associated with sickness.

Moreover, L-81 significantly improved fasting glycemic control and glucose tolerance in db/db mice. It reduced hyperphagia and polydipsia, which are symptoms of diabetes. L-81 decreased food intake in db/db mice, likely to be an element of its therapeutic action. Earlier studies showed that L-81 treatment did not affect food intake in db/db mice.
consumption in lean mice8,28. Our data on the lean mice are consistent with this previous observation. Compared with rosig, a PPAR-\(\gamma\) agonist17 and a well marketed anti-diabetic drug, L-81 exhibited comparable potency in lipid and glycemic control without eliciting overt weight gain which is the side effect of the former8,29,30.

Consistent with previous studies, we observed that treatment with L-81 led to an accumulation of lipid stored in intestinal villi. Since the turnover rate of the intestinal epithelial lining is rapid, the excess lipids may be excreted together with obsolete cells. It is believed that the intestine is the principal site of action of L-81 when the drug is included in the diet8,28. Functionally, L-81 impairs the transepithelial lipid flux during fat absorption and arrests the trafficking of apoB-containing lipoproteins within the enterocytes, which leads to a cytosolic and endoplasmic reticulum lipid accumulation and thereby prevents the absorption of lipids4,29,30. This action appears to be selective and does not affect other lipid metabolism such as fatty acid synthesis, cholesterol re-esterification, and more importantly the absorption of other nutrients4,5,29,30. Taken together, our present results indicate that L-81 exhibits prominent antidiabetic activities in the diabetic \(db/db\) mice and suggest that L-81 may represent a new class of anti-diabetic agent conferring both efficacy and safety.

MTP exists in the lumen of the endoplasmic reticulum as a heterodimer with protein-disulfide isomerase and plays a pivotal role in the assembly and secretion of the apoB-containing lipoproteins31. Our \textit{in vitro} studies showed that L-81 treatment induced a significant reduction in apoB secretion of HepG2 cells, at least partly \textit{via} the inhibition of MTP gene expression. We also found that the expression of MTP transcripts in the liver of L-81-treated mice was significantly decreased, supporting our \textit{in vitro} data which demonstrated that L-81 could reduce MTP expression. These results indicated that attenuation of the MTP gene expression by L-81 may partially contribute to the improvement of the lipid profiles in diabetic \(db/db\) mice. Moreover, we showed that L-81 inhibited MTP promoter activity, in a similar fashion as insulin, in L6 cells with an enforced expression of HNF-1\(\alpha\), suggesting that L-81 mimics insulin action and exerts an inhibitory effect on the MTP gene \textit{via} the same HNF-1 element.

We have previously shown that the consensus HNF-1 element is functionally equivalent to the slightly modified HNF-1 element found on the MTP promoter in mediating the negative insulin response32. This finding implies that the HNF-1-mediated negative insulin response is not only limited to the MTP gene but also to other genes containing the HNF-1 binding motif. In addition to the MTP gene, the transcription of other HNF-1-containing genes may be elevated under diabetic conditions, which could potentially result in abnormal lipid and glucose metabolism and elevated plasma triglyceride, cholesterol and glucose levels. Thus, compounds like L-81 that can mimic the insulin effect and suppress the transcription of MTP and other HNF-1-containing genes should provide relief to these syndromes. Since HNF-1\(\alpha\) contributes to the transcriptional regulation of many rate-limiting steps in gluconeogenesis and also binds to genes whose products are central to normal hepatic functions, including carbohydrate synthesis and storage, lipid metabolism, detoxification, and synthesis of serum proteins33, the potential regulation of these genes by L-81 warrants further investigation in order to gain more insight into the mechanisms of L-81 action.

COMMENTS

Background

Obesity is common in many developed countries; more than 50% of the adults in the USA are either overweight or obese. The risk of developing type 2 diabetes and cardiovascular diseases increases in parallel with increasing severity of obesity. Therefore, it is crucial to establish effective prevention and treatments for obesity and its associated type 2 diabetes.

Research frontiers

Pluronic L-81 (L-81) effectively inhibits absorption of dietary lipids from the intestine, and secretion of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) from the liver. In this study, the authors demonstrated that oral L-81 treatment can alleviate diabetes symptoms in a mouse model of diabetes (\(db/db\) mice) and suppress apolipoprotein B (apoB) secretion and microsomal triglyceride protein (MTP) gene transcription in HepG2 cells.

Innovations and breakthroughs

Although L-81 is a potent anti-obesity drug, its potential in alleviating obesity-induced insulin resistance and type 2 diabetes has not been fully explored. This is the first study to report that L-81 has anti-diabetic effects on \(db/db\) mice, and it mimics the action of insulin by reducing the transcription of the MTP gene.

Applications

By elucidating the molecular mechanism of the anti-diabetic actions of L-81, this study provides the basis for the development of L-81 as a selective insulin mimetic and anti-diabetic agent in the future.

Terminology

Pluronic® surfactants are synthetic copolymers based on ethylene oxide and propylene oxide. They have been widely used in industries as defoaming and antifoaming agents in dishwashing, antifreeze, cutting and grinding fluids. L-81 contains 10% hydrophilic and 90% hydrophobic polyoxyethylene residues with a molecular weight of 2750.

Peer review

The authors investigated the anti-diabetic actions of a nonionic surfactant, L-81, in a mouse model of diabetes. They found that L-81 markedly ameliorated the diabetes symptoms in \(db/db\) mice by reducing their body weight and plasma glucose, cholesterol and triglyceride levels. Similar to the action of insulin, L-81 was found to inhibit apoB secretion and MTP gene transcription in HepG2 cells. The results are important and lay down the foundation of developing L-81 as an anti-diabetic drug.

REFERENCES

1. Schmollka IR. A review of block polymer surfactants. \textit{J Am Oil Chem} 1977; 54: 110-116
2. O’Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. \textit{Eur J Pharmacol} Sci} 2002; 15: 405-415
3. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. \textit{Adv Drug Deliv Rev} 2002; 54: 725-750
4. Tso P, Balint JA, Rodgers JB. Effect of hydrophobic surfactant (Pluronic L-81) on lymphatic lipid transport in the rat. \textit{Am J Physiol} 1980; 239: G348-G353
5. Tso P, Drake DS, Black DD, Sabesin SM. Evidence for separate pathways of chylomicron and very low-density lipoprotein assembly and transport by rat small intestine. \textit{Am J Physiol} 1984; 247: G599-G610
6. Manowitz NR, Tso P, Drake DS, Frase S, Sabesin SM.
Dietary supplementation with Pluronic L-81 modifies hepatic secretion of very low density lipoproteins in the rat. [J Lipid Res 1986; 27: 196-207]
7 Fatma S, Yakubov R, Anwar K, Hussain MM. Pluronic L81 enhances triacylglycerol accumulation in the cytosol and inhibits chylomicron secretion. [J Lipid Res 2006; 47: 2422-2432]
8 Brunelle CW, Bochenek WJ, Abraham R, Kim DN, Rodgers JB. Effect of hydrophobic detergent on lipid absorption in the rat and on lipid and sterol balance in the swine. [Dig Dis Sci 1979; 24: 718-725]
9 Must A, Spadano J, Coakley EH, Field AE, Colditz GA, Dietz WH. The disease burden associated with overweight and obesity. [JAMA 1999; 282: 1523-1529]
10 Marx J. Unraveling the causes of diabetes. [Science 2002; 296: 686-689]
11 Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E, Colditz GA. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. [Arch Intern Med 2001; 161: 1581-1586]
12 Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. [Ann Intern Med 1995; 122: 481-486]
13 Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. [Cell 2004; 116: 337-350]
14 Kobayashi K, Forte TM, Taniguchi S, Ishida BY, Oka K, Chan L. The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. [Metabolism 2000; 49: 22-31]
15 Lin MC, Gordon D, Wetterau JR. Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression. [J Lipid Res 1995; 36: 1073-1081]
16 Au WS, Kung HF, Lin MC. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKer and MAPKp38. [Diabetes 2003; 52: 1073-1080]
17 Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. [Endocrinology 2003; 144: 2201-2207]
18 Burnett JR, Watts GF. MTP inhibition as a treatment for dyslipidemias: time to deliver or empty promises? [Expert Opin Ther Targets 2007; 11: 181-189]
19 Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. [Trends Endocrinol Metab 2003; 14: 137-145]
20 Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. [Nature 2001; 414: 821-827]
21 Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. [N Engl J Med 1998; 339: 229-234]
22 Bak JF, Moller N, Schmitz O, Saak A, Pedersen O. In vivo insulin action and muscle glycogen synthase activity in type 2 (non-insulin-dependent) diabetes mellitus: effects of diet treatment. [Diabetologia 1992; 35: 777-784]
23 Cancello R, Touian A, Poitou Ch, Clement K. Adiposity signals, genetic and body weight regulation in humans. [Diabetes Metab 2004; 30: 215-227]
24 Freudenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. [J Clin Invest 1988; 82: 1398-1406]
25 Rodgers JB, Kyriakides EC, Kapucinska B, Peng SK, Bochenek WJ. Hydrophobic surfactant treatment prevents atherosclerosis in the rabbit. [J Clin Invest 1983; 71: 1490-1494]
26 Chaput E, Saladin R, Silvestre M, Edgar AD. Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight. [Biochim Biophys Res Commun 2000; 271: 445-450]
27 Mukherjee R, Hoenner PA, Jow L, Bilakovic J, Klausing K, Mais DE, Faulkner A, Croston GE, Pernarteni JR Jr. A selective peroxisome proliferator-activated receptor-gamma (PPARgamma) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. [Mol Endocrinol 2000; 14: 1425-1433]
28 Pidlich J, Renner F, Ellinger M, Huttinger M, Pavelka M, Gangl A. Effect of pluronic L-81 on intestinal lipoprotein secretion in the rat. [Dig Dis Sci 1996; 41: 1445-1451]
29 Tso P, Balint JA, Bishop MB, Rodgers JB. Acute inhibition of intestinal lipid transport by Pluronic L-81 in the rat. [Am J Physiol 1981; 241: G487-G497]
30 Nutting DF, Tso P. Hypolipidemic effect of intravenous pluronic L-81 in fasted rats treated with Triton WR-1339: possible inhibition of hepatic lipoprotein secretion. [Horm Metab Res 1989; 21: 113-115]
31 Wetterau JR, Lin MC, Jamil H. Microsomal triglyceride transfer protein. [Biochim Biophys Acta 1997; 1345: 136-150]
32 Au WS, Lu L, Yeung CM, Liu CC, Wong OG, Lai L, Kung HF, Lin MC. Hepatocytic nuclear factor 1 binding element within the promoter of microsomal triglyceride transfer protein (MTP) gene is crucial for MTP basal expression and insulin responsiveness. [J Mol Endocrinol 2008; 41: 229-238]
33 Odom DT, Zitzberger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenk P, Bell GI, Young RA. Control of pancreas and liver gene expression by HNF transcription factors. [Science 2004; 303: 1378-1381]