Medial Canthus Single Injection Peribulbar Anesthesia Using 13X0,45mm Needle: Technique Presentation

Oliveira AR1, Oliveira Jbr2, Kronbauer Al3, Severo Ns3, Picetti E4
1Anesthesiologist, Roth & Roth Anesthesia Clinic, Porto Alegre, Brazil
2Ophthalmologist, Centro de Olhos do Rio Grande do Sul, Porto Alegre, Brazil
3Ophthalmologist, Visum Ophthalmology Clinic, Porto Alegre, Brazil
4Ophthalmologist, Assistant Professor of Ophthalmology in Residents Program and Chief of Glaucoma Division, Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil

Corresponding Author: Alexandre Roth de Oliveira, Roth & Roth Anesthesia Clinic, Rua Profª Cecilia Corseuil, 196. Porto Alegre. RS. Brazil. ZIP 91920-570, Tel: 55-51-32392898, Email: 4lexandrero7h@gmail.com

Citation: Oliveira AR et al. (2017), Medial Canthus Single Injection Peribulbar Anesthesia Using 13X0,45mm Needle: Technique Presentation. Int J Anes & Rel, 1:2, 23-27. DOI: 10.25141/2575-9736-2017-2.0023

Copyright: ©2017 Oliveira AR et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Received: October 25, 2017; Accepted: November 6, 2017; Published: November 30, 2017

Abstract:
The evolution of ophthalmologic surgery brings back the popularity of regional anesthesia techniques. The search for the ideal anesthetic approach have been based in safety and efficacy basis. Peribulbar medial canthus single was successfully attempted but not with a less traumatic needle. A technique presentation of the peribulbar medial canthus single approach using a 13x0x45mm needle is detailed and advocated as an alternative to perform ophthalmic surgeries

Keywords: Peribulbar Anesthesia, Ophthalmology, Medial Canthus, Caruncle

Introduction:
The main objectives to achieve during anesthesia are safe and efficacy. The ophthalmologic surgical setting considers sight and life-threatening complications relating to safe, although the efficacy represents optimal conditions to the patient and surgeon during surgery. Ocular penetration and/or perforation, retrobulbar or peribulbar hemorrhage and intrathecal anesthetic injection (brainstem anesthesia, seizures) are one of the worst sight and life-threatening complications possible 1,2. Optimal conditions to patient could be in fact a pleasant experience, without pain or any adverse event 3,4. The surgeon requires akinesia, without pain and reflexes (specially oculocardiac reflex), and without any local complication that could interfere with technical excellence (chemosis, hyphema, subconjunctival hemorrhage, etc) 5.

The rationale for the technique presented could be explained answering two questions (table 1):

a) Why use medial canthus? Because after extensive anatomical review we concluded that both in sagittal and coronal axis this approach could represent the safest site, with few main structures (nerves, vascular, muscles) adjacent 6,7 and additionally the preferred location of staphylomas be temporal and not nasal 8.

b) Why use needle 13x0,45mm? Minimize Risk: Because minimizing the local trauma we have less chance to vascular complications (subconjunctival hemotoma or retrobulbar hemotoma) and, in case of perforation, less ocular trauma. This could be more relevant in patients with use of antiplatelet medications 9,10. Efficacy: The length of 13mm seems to be appropriate to reach the peribulbar area, considering that a usual Ocular axial length is 24mm with one third external (8mm) and two thirds internal (16mm) 4,7.
Table 1: Rationale of technique.

Choice	Reason
“Up” Caruncle	a) Stay away the medial retinaculum (improve efficacy)³⁴;
	b) Less presence of staphylomas - 82% infero-lateral (less risk of perforation) ⁸;
	c) Almost avascular (less risk of bleeding complications) ⁵.
Needle 13x0.45	a) Reach almost periconal site, in normal eyes (improve efficacy);
	b) Less tissue trauma (less risk of serious bleeding complications);
	c) Far away from neural sheath (less risk of brainstem anesthesia/seizures).

Technique:
There was no premedication prior to surgery. Tetracaine 1% ophthalmic solution (2 drops), Tropicamide 1.0% (2 drops), Phenylephrine Hydrochloride Ophthalmic Solution 10% (1 drop) was instilled before performing anesthesia. Usual monitoring was used.

It was injected Propofol intravenously to obtain light sedation during the puncture 11. A 13x0.45 mm needle was fully inserted in the semilunaris fold, just above the caruncle lacrimali (up-caruncle approach) (Photo 1) at an angle of 90º both in longitudinal and in transversal axis (photo 2).
The needle was fully advanced in an anteroposterior direction, at a parallel situation among the Globe and the medial wall of Orbit. The local anesthetic mixture was then slowly injected (lidocaine 2% + hyaluronidase 10 IU/mL) in an initial fixed volume of 5mL. Compression was then applied for 2 min using a Chandler’s maneuver to lower intraocular pressure and improve the orbital spread of the anesthetic solution 12. Akinesia (globe and eyelids) and analgesia was assessed before surgery and if necessary a supplemental injection was performed by the anesthetist using the same technique but with a volume of 3-5mL of anesthetic. The time elapsed from block to surgery must be at least 10min, but ideally, we respect more than 15min, to reach better efficacy as advocated by former studies 13, 14. There is a special comment about anesthesiologist position when performing the technique: The authors realizes that while one hand keeps the eyelids open the other hand proceed the block. In this scenario, to do not cross hands, a right-handed anesthesiologist must be positioned right-caudal to the patient for right eye block and cranial for left eye block (photo 3 and 4).

PHOTO 2: The 90 degree’s angles of entrance in longitudinal and transversal axis.

PHOTO 3: Right-handed anesthesiologist approach to the right eye of the patient
Discussion:
Ophthalmologic surgeries can be performed under topical, regional and general anesthesia. General anesthesia usually is reserved for special situations and have a decreased utility as the minimal invasive techniques evolve. Topical anesthesia is increasing in preference because eliminate the risks related to injection, but it presents limitations about peri and postoperative pain and frightening experience to patient, and must be reserved for short surgeries and cooperative patients. Peribulbar, retrobulbar and sub-tenon's block are the ideal regional anesthesia techniques and have been extensively investigated in the literature. Peribulbar anesthesia is a safe and effective regional anesthesia option to perform Ophthalmologic surgeries, with minimal advantages and disadvantages compared with another needle based techniques. The alleged safe superiority of sub-Tenon's block is falling with more evidences about serious complications with this approach too. The ultrasound guided block could improve safety and efficacy to regional anesthesia of the eye, but its application to ophthalmic regional anesthesia remains restricted because the risks related to the equipment. There are evidences supporting single punction peribulbar anesthesia using caruncle site. The difference of the previous techniques described remains in the needle used to perform the eye block (25G) and the mean depth introduced (15-20mm). The authors found only one reference to caruncle approach with a similar needle, but it was used associated with traditional inferior-lateral peribulbar block. Those authors postulated the efficacy of the caruncle technique based on the existence of “hernial orifices” above and below the connective tissue septa and check ligament in nasal side of medial rectus muscle. The authors postulate that this technique could be ideal for Glaucoma surgery because the low volume used and medial approach cause less influence in IOP (Intraocular pressure).

The authors believe that this approach could be incorporated into the practice of the ophthalmic anesthesiologists to increase the data about its efficacy and safety. We are now conducting a comparative study to improve the quality of the evidences about the technique.

References:
1. Palte HD. Ophthalmic regional blocks: management, challenges, and solutions. Local and Regional Anesthesia 2015;8:57–70.
2. Gayer, S. Key Components of Risk Associated with Ophthalmic Anesthesia. Anesthesiology 2006; 105:859.
3. Chaudhry TA, Aqil A, Aziz K, Javed AA, Tauqir MZ, Ahmad K. Patients’ visual experience during phacoemulsification cataract surgery and associated fear. BMC Res Notes. 2014 20;7:663.
4. Palte HD, Gayer S, Kumar C. Role of the anaesthetist during cataract surgery under local anaesthesia. Br J Anaesth. 2010;105(2):235
5. Nouvellon E, Cuviollon P, Ripart, J; Regional Anesthesia and Eye Surgery. Anesthesiology 2010;113(5):1236-1242.
6. Bertelli E, Regoli M, Bracco S. An update on the variations of the orbital blood supply and hemodynamic. Surg Radiol Anat.
Oliveira AR et al. (2017), Medial canthus single Injection Peribulbar Anesthesia Using 13X0,45mm Needle: Technique Presentation. Int J Anes & Rel, 1:2, 23-27. DOI: 10.25141/2575-9736-2017-2.0023

7. Remington LA (1998) Clinical Anatomy of Visual System. (1st Edition), Butterworth-Heinemann, Newton, MA, USA, Chapters 8 to 13, pp 123-228.

8. Vohra SB, Good PA. Altered globe dimensions of axial myopia as risk factors for penetrating ocular injury during peribulbar anesthesia. Br J Anaesth. 2000;85(2):242–245.

9. Kiire CA, Mukherjee R, Ruparelia N, Keeling D, Prendergast B, Norris JH. Managing antiplatelet and anticoagulant drugs in patients undergoing elective ophthalmic surgery. Br J Ophthalmol. 2014;98(10):1320-4

10. Takaschima A, Marchioro P, Sakae TM, Porporatti AL, Mezzomo LA, De Luca Canto G (2016) Risk of Hemorrhage during Needle-Based Ophthalmic Regional Anesthesia in Patients Taking Antithrombotics: A Systematic Review. PLoS ONE11(1): e0147227. https://doi.org/10.1371/journal.pone.0147227

11. Habib NE, Balmer HG and Hocking G. Efficacy and safety of sedation with propofol in peribulbar anaesthesia Eye (2002) 16, 60–62.

12. Melo MAP, Garcia EA: Chandler maneuver following peribulbar anesthesia for reduction of intraocular pressure in facetomy. Acta Medica Missericordiae 2001; 4:29-31.

13. Ripart J1, Lefrant JY, Lalourcey L, Benbabaali M, Charavel P et al. Medial canthus (caruncle) single injection perioculic anesthesia. Anesth Analg. 1996; 83(6): 1234-8.

14. Calvachea JA, López H, Castro-Delgado OE. Local experience with caruncular single injection peribulbar anesthesia. Rev Colomb Anestesiol 2014; 42:16-9.

15. Lee RMH, Thompson JR, Eke T. Severe adverse events associated with local anesthesia in cataract surgery: 1 year national survey of practice and complications in the UK. Br J Ophthalmol 2016; 100:772–776.

16. Cass GD. Choices of local anesthetics for ocular surgery. Ophthalmol Clin North Am. 2006 Jun;19(2):203-7.

17. Guay J, Sales K. Sub-Tenon’s anaesthesia versus topical anaesthesia for cataract surgery. Cochrane Database of Systematic Reviews 2015, Issue 8. Art. No.: CD006291.

18. Alhassan MB, Kyari F, Ejere HOD. Peribulbar versus retrobulbar anaesthesia for cataract surgery. Cochrane Database of Systematic Reviews 2015, Issue 7. Art. No.: CD004083.

19. Frieman BJ, Friedberg MA. Globe perforation associated with subtenon’s anaesthesia Am J Ophthalmol. 2001; 131(4):520-1.

20. Subbiah S, McGimpsey S, Best RM Retrobulbar hemorrhage after sub-Tenon’s anesthesia. J Cataract Refract Surg. 2007 Sep;33(9):1651-2.

21. Quantock CL, Goswami T. Death potentially secondary to sub-Tenon’s block. Anaesthesia 2007; 62: 175 – 7.

22. Ali-Melkkila T, Virkkila M, Leino K, Palve H. Regional anesthesia for cataract surgery: comparison of three techniques. Br J Ophthalmol 1993; 77: 771-773.

23. Paletta Guedes RA, Paletta Gudes VM, Assis de Castro Palleta J, Pereira da Silva AC. Anesthesia in glaucoma surgery. J Fr Ophtalmol. 2009;32(3):221-5.

24. Kang H, Takahashi Y, Nakano T, Asamoto K, Ikeda H, Kajizaki H. Medial canthal support structures: the medial retinaculum: a review. Annals of Plastic Surgery 2015;74(4): 508-14.

Acknowledgements
Clinica Visão Oftalmologia – Porto Alegre/ Brazil
Centro de Olhos do Rio Grande do Sul – Porto Alegre/ Brazil

Conflict of Interest
The authors declare no Conflict of Interest.