Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinine and dithymoquinine from Nigella sativa

Eman R. Esharkawy a,⁎, Faisal Almalki b, Taibi Ben Hadda b,c

a Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
c Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MI 524, 60000 Oujda, Morocco

ARTICLE INFO
Keywords:
Antiviral
SARSCoV-19
Thymoquinone
Dithymoquinone
Hydrothymoquinone

ABSTRACT
Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella sativa is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoquinine (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinine and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug. The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.

1. Introduction
The severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2), known internationally as the cause of COVID-19, also known as the coronavirus, was declared a pandemic in March of 2020. The main goal, world-wide, has been to discover drug withenough potential antiviral activity to face this pandemic and overcome it; a drug having limited side effects, unlike synthetic drugs which are known to have a variety ofaftereffects. With that specific and lofty ambition, our team set out for collective information regarding the potential of natural plants asposible antivirals, and published some papers in regards to the activity of medicinal plants which were previously used to treat SARS – CoV-19, due to their similarity and host receptor. Regrettably, SARS-CoV-19 has infected thousands of people whereby every single country has suffered huge losses. Moreover, the death rate with COVID-19 is higher than that of SAES-CoV and MERS-CoV-19 combined. Therefore, our ambitious task has proven quite difficult.

Seeds of Nigella sativa L. (also commonly known as black cumin or black seed) are widely used in traditional Islamic medicine and for culinary purposes worldwide. Nigella seed oil is becoming popular within the Islamic world and beyond. Composition of Nigella seed oil is known to be location-dependent. We investigated the composition of Nigella seed oil prepared by solvent- or by the cold press-extraction ofNigella seeds grown in Morocco. Oil extraction yield was 37% and 27% when solvent or cold press extraction methods were used, respectively. In terms of its oil major components, the composition of Nigella seed oil from Morocco is similar to that ofother Mediterranean countries, who are commonly known for their Nigella seed-oil quality [1].

The antibacterial activity of the essential oil of N.sativa was determined against a panel of strains of bacteria. The GC-MS analysis showed that the major constituents of the oil were monoterpene hydrocarbons and phenolic monoterpenes, whereby the results of antibacterial activity confirmed the possibility of using Nigella sativaessential oils or some of their components in biological and pharmaceutical preparations [2].

To fight against coronavirus by using the constituents of Nigella sativa L, one important question is posed; Which partis the most...
important, the essential oil or the actual seed?

Many reviews were conducted on plants and their secondary metabolites, which have shown activity against SARS-CoV. Numerous scientific reports on the potential of plants and secondary metabolites against SARS-CoV infection, whereby many of the compounds had been studied through computational studies [4-6]. confirmed that the primary host receptor for SARS-CoV-2 is the human angiotensin-converting enzyme 2 (ACE2).

Ye et al. overviewed the existing knowledge about 7 human coronaviruses (HCoVs), with a focus on the history of their discoveries as well as their zoonotic origins and interspecies transmissions. They also compared and contrasted the different HCoVs from a perspective of virus evolution and genome recombination [7].

Lo et al. reported their experience on the evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical features of all 10 patients in Macau, and recommended the assessment of both fecal and respiratory specimens for enhancing diagnostic sensitivity because there were notany specific antiviral drugs available for the treatment of this sudden and lethal disease. Many drugs have been used in thistherapy. Yang et al. [8] reported that greater than 85% of COVID-19 patients in China have been receiving Traditional Chinese Medicine (TCM) treatment, and presented strong clinical evidence showing the beneficial effect of TCM in the treatment of these patients [8].

Zhou and Zhou pointed out the great importance of using therapeutic neutralizing antibodies (NAbs) to control the spread and re-emergence of SARS-CoV-2 and assert that the development of NAbs should therefore be a high priority in future considerations [9].

The two main components of black seed essential oil, Thymoquinone (TQ) and Thymohydroquinone (THQ), were investigated for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, Salmonella enteritidis and Staphylococcus aureus [10,11].

Thymohydroquinone (2), also referred to as Dihydrothymoquinone or Hydrothymoquinone, is the phenolic hydroquinone derivative of Thymoquinin. Thymohydroquinone is the first reductive product of Thymoquinone, which is a significant co-product of the essential oil in Nigella sativa.

Several studies on the biological activity of Thymoquinone have been discussed in literature: oxidative stress, hepatoprotection, the anti-tumor proliferation, the anti-inflammatory, the hypertension, the antimicrobial, neuropathy pain, gastroenterological, the kidney, renal, and the heart [12-14]. In contrast to Thymoquinone, there is no concern over Dithymoquinin or hydrothymoquinon.

N. sativa seeds contain 36–38% fixed oil and low concentrations of some unusual unsaturated fatty acids. Different components were characterized from the oil: the major ones were TQ (28–57%) and para-cymene (7–15%), whereas low concentrations of the dimeric form of TQ (Dithymoquinone), and only a minimal quantity of Dihydrothymoquinone (DHTQ) were detected in the oil [15]. DHTQ could be formed in the body after TQ ingestion, following the action of reductases, as reported for DT-diaphorase, which catalyzes reduction of TQ to DHTQ in different organs [16].

Thymoquinone (TQ), the main, active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities [17].

Using POM Theory, a relatively new computational method for virtually screening many compounds from natural source, we screened 20 compounds derived from Nigella sativa, Artemisia herba alba and thymus. The choice of these plants, as previously discussed, was made because of their role in traditional medicine for curing a variety of diseases, with special focus on influenza, fever, and colds. Unfortunately, only a few of these plants have been screened against SARS-CoV, with very limited references reporting these plants as a possible antiviral source. From amongst these selected plants, we choose only 5 compounds, Thymole, Thymoquinone, Dihydrothymoquinon (DHQ) and Dithmoquinon (DTQ) and Artemisinin (ARTM) all show promising results. So, we began the work protocol by studying in vitro, antiviral activity of these compounds against COVID-19.

The aim of this current study is to understand and emphasize the potential antiviral activity of Thymohydroquinon (THQ), and dithymoquinon (DTQ), whereby themany papers study the effect of Nigella sativa as antiviral [1-18]. However, there is not a single study of antiviral compounds derived from this plant, documenting antiviral activity against SARS-CoV19.

2. Material and methods

2.1. Material and equipment

Thymoquinone, solvent, acetone, ethanol, glacial acetic acid and TLC, HPLC-grade methanol were purchased from Sigma-Aldrich.

FTIR Spectra (Bruker Tensor 27 with ATR configuration), H1NMR (BrukerAvance 400 NMR spectrometer), UV–Visible spectra (Varian Cary® 50 Scan spectrometer in a 1.0 cm square cuvette).

2.2. Synthesis of compounds (1, 3)

Thymoquinone was used for synthesis two compound HTQ and DTQ.

2.3. Synthesis hydrothymoquinon ene HTQ (2)

Thymoquinone (0.50 g, 3.1 mmol) was dissolved in glacial acetic acid (10.0 mL). Zinc (0.75 g) powder was added, and the reaction mixture was stirred at room temperature for 12 h. The progress of the reaction was monitored by TLC. After completion of the reaction, acetic acid was concentrated under vacuum and neutralized by Na$_2$CO$_3$ (2 M solution, 50 mL). Then, dichloromethane (50 mL) was added, and the organic materials were partitioned between the two phases. The organic layer was separated, dried over anhydrous MgSO$_4$, and evaporated under reduced pressure, the separated compound was then purified by column chromatography using silica gel as the stationary phase and hexane/ethyl acetate (9:1) mobile phase. White solid, 288 mg, yield 60%. was obtained [16].

2.4. Characterisation of compound 2 HTQ

The obtained FTIR spectra of the bending alkane vibration band, the bending 8(C–H) vibration of the resulting absorption band is displayed here [19]. The strong band appeared at 1231 cm$^{-1}$ due to stretching vibrations of ν(C–O) of aromatic ether. The two medium absorption
bands at 1124 cm\(^{-1}\) and 900 cm\(^{-1}\) attributed to bending vibration of \(\delta\) (C–C) of \(\alpha,\beta\)-unsaturated alkenes, broad band appears at 3300 cm\(^{-1}\) corresponding stretching vibrations of \(\nu\)OH. \(^1\)H NMR (CDCl\(_3\), 500 MHz, \(\delta\) in ppm): 1.04–1.06 (d, \(j = 1.6, 6\)H), 1.98 (s, CH\(_3\)), 3.3 (m, 1H,CH), 6.42 (d, CH\(_3\)j = 2.4), 8.35 (d, CH\(_3\)j = 2.4). MS detection show apex at \(m/z\) 165 [M – H\(^+\)] corresponding to the formation of HTQ. Also the absence of peak at \(m/z\) 163 [M – H\(^+\)] relayed to TQ confirmed the complete reaction which also confirmed by comparison the compound by authentic sample on TLC System ethyl acetate:hexane (1:9). All spectral data confirmed the presence of pure HTQ compound, and its purity was confirmed by HPLC.

2.5. Synthesis of Dithymoquinone DTQ (3)

In a 500 mL glass beaker, compound 1 (0.50 g) was dissolved in 5.0 mL acetone. The bright yellow solution was gently rotated along the inner surfaces of the beaker until complete evaporation occurred, into a thin, crystalline layer. The resulting thin layer (solid state) of 1 was exposed to UV lamp (345 \(\lambda\) max) in a fume hood at room temperature. The reaction was found to be greater than 99% complete after 8 h. The photodiemiration reaction was monitored by TLC. Crude product was dissolved in asmall amount of DCM, loaded on silica gel, and then pu-
rified by column chromatography using silica gel as the stationary phase and hexane:ethyl acetate (9:1) mobile phase. Compound (DTQ) was dissolved in a minimal volume of ethyl alcohol, transferred to a smaller Erlenmeyer flask, and then evaporated to dryness over gentle heat. Crystallization of compound was performed using ethanol to give fine, pale yellow needle-like crystals, ultra-pure water and cold 2-propanol, re-centrifuged and lyophilized overnight to dryness. The method was confirmed by comparison the compound by authentic sample [20].

2.6. Characterization of compound 3 DTQ

Compound 3, 110 mg, 22% yield, m.p. 200.5 \(^\circ\)C, UV max 250 nm and UV min 380 nm. IR (solid state): 3060 cm\(^{-1}\) (vinylic C–H stretch), 2969–2872 cm\(^{-1}\) (C–H stretch of aliphatic groups), H-NMR (600 MHz), \(\delta\) 6.70 (s, 2H), 3. (s, 2H), 3.12–3.06 (septet, \(j = 6.6, 2\)H), 1.22 (s, 6H), 1.16–1.13 (2d, \(j = 7.2, 6.6, 12\)H). ESIMS: 329 [M + 1].

2.7. Cytotoxicity assay

To assess the half maximal cytotoxic concentration (CC\(_{50}\)), stock solutions of the test compounds were prepared in 10% DMSO in ddH\(_2\)O and diluted further to the working solutions with DMEM. The cytotoxic activity of the extracts was tested in VERO-E6 cells by using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modifications. Briefly, the cells were seeded in 96 well-plates (100 \(\mu\)l/well at a density of 3 \(\times\) 105 cells/ml) and incubated for 24 h at 37 \(^\circ\)C in 5% CO\(_2\). After 24 h, cells were treated with various concentrations of the tested compounds in triplicates. 24 h later, the supernatant was discarded, and cell monolayers were washed with sterile 1x phosphate buffer saline (PBS) 3 times and MTT solution (20 \(\mu\)l of 5 mg/mL stock solution) was added to each well and incubated at 37 \(^\circ\)C for 4 h followed by medium aspiration. In each well, the formed formazan crystals were dissolved with 200 \(\mu\)l of acidified isopropanol (0.04 M HCl in absolute isopropanol = 0.073 M HCL in 50 mL iso-
propanol). Absorbance of formazan solutions was measured at \(\lambda\) max 540 nm with 620 nm as a reference wavelength using a multi-well plate reader. The percentage of cytotoxicity compared to the untreated cells was determined with the following equation.

The plot of % cytotoxicity versus sample concentration was used to calculate the concentration which exhibited 50% cytotoxicity (CC\(_{50}\)) [21].

2.8. Inhibitory concentration 50 (IC\(_{50}\)) determination

In 96-well tissue culture plates, 2.4 \(\times\) 104 Vero-E6 cells were distributed in each well and incubated overnight at a humidified 37 \(^\circ\)C incubator under 5% CO\(_2\) conditions. The cell monolayers were then washed once with 1x PBS and subjected to virus adsorption (hCoV-19/ Egypt/NRC-03/2020 (Accession Number on GSAID: EPI_ISL_430820)) for 1 h at room temperature (RT). The cell monolayers were further overlaid with 100 \(\mu\)l of DMEM containing varying concentrations of the test compounds. Following incubation at 37 \(^\circ\)C in a5% CO\(_2\) incubator for 72 h, the cells were fixed with 100 \(\mu\)l of 4% paraformaldehyde for 20 min and stained with 0.1% crystal violet in distilled water for 15 min at RT. The crystal violet dye was then dissolved using 100 \(\mu\)l absolute methanol per well and the optical density of the color wasmeasured at 570 nm using Anthos Zenyth 200rt plate reader (Anthos Labtec Instruments, Heerlugowua, Netherlands). The IC\(_{50}\) of the compound is that required to reduce the virus-induced cytopathic effect (CPE) by 50%, relative to the virus control.

2.9. Statistical analysis

Statistical test were carried out using GraphPad Prism 5.01 software. Data are presented as average of means. the IC \(_{50}\) and CC\(_{50}\) curve represent the nonlinear fit of Normalize of Transform of the obtained data.

3. Result and discussion

Thymoquinone was used for synthesis hydrothymoquinone (HTQ) and dithymoquinone (DTQ) to study their antiviral activity. Compounds HTQ and DTQ were synthesis by method described in material and methods part and the identification of copounds were follow by UV, IR, H\(^1\)NMR and ESIMS. The purity of compounds was confirmed by HPLC. And the data were present in suplmantry material.
3.1. Antiviral assay

To identify the proper concentrations to define the antiviral activity of the selected drugs, half-maximal cytotoxic concentration "CC_{50}" was calculated by MTT assay for each individual drug. The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with low aselectivity index (CC_{50}/IC_{50}, 31.74/23.15 = 1.4). Whereby dimthymoquinone shows high cytotoxicity as in Fig. 1.

3.2. POM analyses of compounds 1–3

The three compounds 1–3 were also screened for the in-silico POM
study to calculate various general properties along with the prediction of antiviral bioactivity. Data was analyzed and compared with a standard anti-malaria Artemisinin drug. Osiris and Molinspiration are two cheminformatic-based software tools which help in calculation of toxicity risks, molecular properties as well as in the forecasting of bioactivity scores of the screened compounds.

As our tested compounds 1–3 have a molecular weight of less than 500 g/mol, so they may be highly absorbed because most of the traded drugs, i.e., approximately 80% of them have molecular weights in this range (Table 1). In contrast to compounds 1 and 3 which have a negative drug-score, the dimer drug with amolecular weight of 328 g/mol also shows best drug likeness at 92% with an exceptional drug-score at 72%. The drug likeness of compounds 1 and 2 are −1.2 and −6.33 and their drug-scores are limited to 35% and 22%, respectively (Table 1).

From Molinspiration data (Table 2) it was concluded that the series of tested compounds 1–3 satisfy the rule of Lipinski and behave as a drug and exclusively whereby only the dimer compound 3 has anarueceptor ligand along with enzyme inhibition properties. The cLogP value of the compounds 1–3 falls in the standard range, (i.e., less than 5) therefore these compounds may be highly hydrophilic and thus, meet the criteria of market drugs (Table 3).

3.3. Identification of antiviral pharmacophore sites of compounds 1–3

The invention of POM Theory leads us to identify each type of pharmacophore sites with real success, on the basis of semi-empirical data of about 7,000 antibacterial, antifungal, antitumor and antiviral commercial and new drugs. All details of therapeutic applications of POM Theory are given in the literature and the identification of different and various types of pharmacophore sites is well established [23–98].

The Atomic charge calculation of compounds 1–3 (Table 4) show that all oxygen atoms are negatively charged (Fig. 2). The distance between any couple of two oxygen can be obtained after optimization of molecular structure by using the Petra program.

4. Discussion

COVID-19 is considered a critical threat to public health, and what aggravated the situation is that there is no existing antiviral therapy that is clinically approved for the management of this disease. Searching for new drugs for this disease is a global duty for scientists, so the current study concern searching for new drugs from natural plants have a history in the treatment of many diseases, antiviral, antioxidant, antidiabetic and anticancer.

In this study, three proposed anti-COVID-19 supportive drugs/treatments; Thymoquinone (1), hydrothymoquinone (2), and Dithymoquinone (3) have been analysed, and their pharmacophore sites are characterized via bioinformatic POM analysis. Osiris calculations of analysed compounds reveal that Thymoquinone and dihydrothymoquinone are relatively moresafe than hydroxychloroquine. The dithymoquinone is the safest one. The most important antiviral activities of dithymoquinone and dihydrothymoquinone on agree with the POM results obtained and the tested Thymoquinone derivatives via a synergic mechanism.

In vitro study the results revealed among two investigated compound, HTQ has anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with low a selectivity index (CC50/IC50, 31.74/23.15 = 1.4). Whereby DTQ shows high cytoxicity, So the compounds isolated from N. sativa and nigela sativa plant may be used in treatment of CoV-19 after further clinical studies.

Mode of action still has not been identified, however, Molecular docking studies on the TQ showed a notable antiviral activity against a SARS-CoV-19 strain isolated from Egypt, whereby astudy revealed that TQ has potent antiviral activity through binding to the receptor. Its binding domain on the spike and envelopeproteins of SARS-CoV-19, which may hinder virus entry in to the host cell and inhibit its ion channel and pore-forming activity [92]. The authors of this current study suggest the same mechanism of HTQ inhibition, therefore this will be discussed in a future study.

5. Conclusion

The current study highlight in vitro antiviral studies on two compounds from three major compounds in Nigella sativa depending on bioinformatic analysis, which reveals the importance of three major

Table 3

Molinspiration analysis of compounds 1–3.

Compound	Molecular Properties	Bioactivity Scores
	cLogP 1.90	GPCR ligand -1.40
	TPKA 34.14	Ion channel modulator
	natoms 12	-0.31
	MW 164.20	Kinase inhibitor -1.27
	nOHN 2	-1.47
	nviolations 0	-1.45
	nrotb 1	Protease inhibitor
	volume 500.97	Enzyme inhibitor -0.40

Table 4

Atomic charge of Oxygen of the antiviral (O2, O3) pharmacophore sites of 1–3.

Compd.	O1	O2	O3	O4	Distance (Å)	Pharmacophore sites
1	-0.032	-0.32	---	---	O1-O2 5.99	One Medium Antiviral Site
2	-0.28	-0.28	---	---	O1-O2 5.99	One Medium Antiviral Site
3	-0.30	-0.30	-0.30	-0.30	O1-O2 4.12	Two Medium Antiviral Sites
compounds (TQ, DTQ, and HTQ), as antiviral agents. in vitro antiviral screening on two compounds (DTQ and HTQ) showed the tested drugs exhibited a promising in vitro activity against COVID-19, and have promising antiviral activities, further investigations in clinical trials to determine actual in vivo activity in the treatment of COVID-19 have recommended.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Fig. 2. Atomic charge of compounds 1–3.

Acknowledgement

The authors extend their appreciation to the Deputation for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number “IF_2020_NBU_301”.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2021.105587.

References

[1] S. Gharby, H. Harhar, D. Guillaume, A. Roudani, S. Boulbaroud, M. Ibrahimi, M. Ahmad, S. Sultana, T.B. Hadda, I. Chalchaoui-Moussaoui, Z. Charrouf,
Noxide quinolin-2-yl amide Derivatives, Med. Chem. Res. 23 (4) (2014) 1956–1965.
[80] Harjee Juneja, Dhanashri Panchbhai, Javed Sheikh, Vishwas Ingle, Taibi Ben Hadda. Synthesis, Antimicrobial Screening and POM Analyses of Novel Bis-isoaxazoly/Pyrazoyl-1,3-diols. 2013, Med Chem Res. DOI 10.1007/s00044-013-0755-5.
[81] T.B. Hadda, S. Srivastava, B. Das, H. Salgado-Zamora, U. Shaheen, A. Bader, M. M. Naseer, POM Analyses of Antimicrobial activity of Some 2,3-Armed 4,5,6,7-tetrahydro-1-Benzothiophenes: Favourable and Unfavourable-Physico-chemical Parameters in Design of Antibacterial and Mycotoxic Agents, Med. Chem. Res. 23 (2) (2014) 995–1003, https://doi.org/10.1007/s00044-013-0707-0.
[82] T.B. Hadda, M. Ahmad, S. Sultana, U. Shaheen, A. Bader, S. Srivastava, B. Das, H. Salgado-Zamora, POM analyses for Antimicrobial evaluation of Thienopyrimidinones Derivatives: A Rapid Method for Drug Design, Med. Chem. Res. 23 (1) (2014) 16–24, https://doi.org/10.1007/s00044-013-0614-4.
[83] T. Ben Hadda, R. Mouhoub, R. Jawarkar, V. Masand, I. Warnad, POM analyses of antitrypanosomal activity of 2-iminobenzimidazoles: favorable and unfavorable parameters for drugs optimization, Med. Chem. Res. 22 (3) (2013) 1438–1449, https://doi.org/10.1007/s00044-012-043-6.
[84] T. Ben Hadda, M.A. Ali, V. Masand, S. Gharby, T. Fergoug, I. Warnad, Tautomeric Origin of Dual Effects of N1-nicotinoyl-3-(4'-hydroxy-3'-methyl phenyl)-5-[(sub) phenyl]-2-pyrazolines on Bacterial and Viral Strains: POM Analyses as New Efficient Bioinformatics’ Platform to Predict and Optimize Bioactivity of Drugs, Med. Chem. Res. 22 (3) (2013) 1438–1449, https://doi.org/10.1007/s00044-012-043-6.
[85] T. Ben Hadda, J. Fathi, L. Chafchaouni, V. Masand, Z. Charrouf, Z.H. Chohan, Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. Drug Des Devel Ther. 2021;15:1819-1833.https://doi.org/10.2147/DDDT.S308863.