QUOTIENTS OF DEFINITE PERIODIC KNOTS ARE DEFINITE

KEEGAN BOYLE

Abstract. A knot K is definite if $|\sigma(K)| = 2g(K)$. We prove that the quotient of a definite periodic knot is definite by considering equivariant minimal genus Seifert surfaces.

1. **Introduction**

Let K be a knot in S^3 with signature $\sigma(K)$ and genus $g(K)$. Then K is definite if $|\sigma(K)| = 2g(K)$. This is a relatively small class of knots, but this condition has a nice geometric interpretation. Specifically, a knot is definite if and only if it has a Seifert surface with definite linking form.

A knot $K \subset S^3$ is periodic if it is fixed by a finite cyclic group acting on S^3 with fixed set an unknot disjoint from K. In this case we refer to the image of K in $S^3/(\mathbb{Z}/p)$ as the quotient knot.

The goal of this paper is to investigate periodic definite knots, and in particular apply a result of Edmonds [Edm84, Theorem 4] to prove the following theorem.

Theorem 1. The quotient of a periodic definite knot is definite.

2. **Background**

Definition 2.1. A quadratic form $\langle -, - \rangle$ is positive (resp. negative) definite if $\langle x, x \rangle \geq 0$ (resp. ≤ 0) for all $x \neq 0$.

We will also use the equivalent characterisation that a matrix is positive (resp. negative) definite if and only if all of its eigenvalues are positive (resp. negative).

Definition 2.2. A Seifert surface S for K is positive (resp. negative) definite if the (symmetrized) linking form $\text{lk}(-, -)$ on $H_1(S)$ as defined in [GL78, Section 2] is positive (resp. negative) definite. That is, the symmetrized Seifert matrix for S is definite.

Definition 2.3. A knot is definite if it has a definite Seifert surface.

Lemma 1. Let $K \subset S^3$ be a knot. Then the following are equivalent.

1. K is definite.
2. Every minimal genus Seifert surface for K is definite.
3. $|\sigma(K)| = 2g(K)$, where $g(K)$ is the genus of K.

Proof. (2) implies (1) is obvious, and we will show that (1) implies (3) and (3) implies (2).

To see that (1) implies (3), suppose K is definite with definite Seifert surface S and corresponding symmetrized Seifert matrix $M \in M_n(\mathbb{Z})$. Since M is definite, $\sigma(M) = \pm n = \sigma(K)$. In particular, M is a minimal dimensional symmetrized Seifert matrix and so S is a minimal genus Seifert surface. Hence $|\sigma(K)| = 2g(K)$.

On the other hand, suppose $|\sigma(K)| = 2g(K)$. Then taking any minimal genus Seifert surface S with symmetrized Seifert matrix $M \in M_n(\mathbb{Z})$, we see that $|\sigma(K)| = |\sigma(M)| \leq \dim(M) = 2g(K)$, and hence $|\sigma(M)| = n$ so M is definite. \qed
The following proposition gives a strong restriction on the Alexander polynomial of definite knots.

Proposition 1. Let $K \subset S^3$ be a definite knot. Then $|\Delta_K(t)| = |\sigma(K)| = 2g(K)$, where $|\Delta_K(t)|$ is the width of the Alexander polynomial.

Proof. Let S be a definite Seifert surface for K with Seifert matrix $M \in M_n(\mathbb{Z})$, and recall that $\Delta_K(t) = \det(M^T - tM)$. Multiplying both sides by $\det(M^{-1})$ makes it clear that the first and last terms of $\Delta_K(t)$ will be $\det(M)t^n$ and $\det(M)$ respectively. Since M is definite, $\det(M) \neq 0$, and so the width of the Alexander polynomial is $n = |\sigma(M)| = |\sigma(K)|$. The second inequality is proved in Lemma 1. □

3. Periodic definite knots

Theorem 1. The quotient knot of a periodic definite knot is definite.

The proof of this theorem relies on the following theorem of Edmonds.

Theorem 2. [Edm84, Theorem 4] Let \tilde{K} be a periodic knot. Then there exists a minimal genus Seifert surface \tilde{S} for \tilde{K} which is preserved by the periodic action. Furthermore, the image of \tilde{S} in the quotient is a Seifert surface for the quotient knot K.

We will also need the following lemma.

Lemma 2. If the preimage of a Seifert surface S under a \mathbb{Z}/p rotation action in S^3 is a positive (resp. negative) definite Seifert surface \tilde{S}, then S is positive (resp. negative) definite.

Proof. Consider a curve $C \subset S$ which is homologically non-trivial. Let \tilde{C} be the (possibly disconnected) preimage of C in \tilde{S}. Note that since C is homologically non-trivial, so is \tilde{C}. Now suppose \tilde{S} is positive definite so that $\text{lk}(\tilde{C}, \tilde{C}) > 0$. We claim that $\text{lk}(C, C) > 0$, so that S is also positive definite. The linking number $\text{lk}(C, C)$ is the sum of (signed) intersection points between C and the Seifert surface Σ for a positive push-off of C. Let $\tilde{\Sigma}$ be the preimage of Σ which is an equivariant Seifert surface for a positive push-off of \tilde{C}. Then each intersection point between \tilde{C} and $\tilde{\Sigma}$ lifts to p intersection points (with the same sign) between \tilde{C} and $\tilde{\Sigma}$. Hence $\text{lk}(\tilde{C}, \tilde{C}) = p \cdot \text{lk}(C, C)$, and so $\text{lk}(C, C) > 0$. □

Proof of Theorem 1. By Theorem 2 any periodic knot \tilde{K} has an equivariant minimal genus Seifert surface \tilde{S} with quotient S. By Lemma 1, \tilde{S} is definite, and so by Lemma 2 S is as well. □

References

[Edm84] Allan L. Edmonds. Least area Seifert surfaces and periodic knots. *Topology Appl.*, 18(2-3):109–113, 1984.

[GL78] C. McA. Gordon and R. A. Litherland. On the signature of a link. *Invent. Math.*, 47(1):53–69, 1978.

E-mail address: kboyle@uoregon.edu