现代骨盆战伤分级救治专家共识

宗兆文, 陈思旭, 秦昊, 梁华平, 杨磊, 赵玉峰, 中国医学救援协会创伤分会, 中华医学会创伤分会青年委员会, 全军灾难医学专委会及青年委员会, 重庆市中西医结合学会灾难医学分会

Chinese expert consensus on echelons treatment of pelvic fractures in modern war

ZONG Zhao-wen1*, CHEN Si-xu1, QIN Hao1, LIANG Hua-ping2, YANG Lei1, ZHAO Yu-feng3, the Traumatology Branch of the China Medical Rescue Association, the Youth Committee on Traumatology Branch of the Chinese Medical Association, the PLA Professional Committee and Youth Committee on Disaster Medicine, and the Disaster Medicine Branch of the Chongqing Association of Integrative Medicine

1State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400038, China
2First Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
3Department of Trauma Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China

This work was supported by the “Thirteenth Five-Year Plan” Special Project in Military Logistics Scientific Program (AWS16J032), and the Innovation Project of Military Medicine (16CXZ017)

*Corresponding author. E-mail: zongzhaowen@163.com

关键词 骨盆骨折; 战伤; 分级救治; 专家共识

中图分类号 R826.67

文献标志码 A

文章编号 0577-7402(2018)07-0541-12

[基金项目] 全军医学科技“十三五”后勤科研项目重大专项(AWS16J032); 军事医学创新工程资助课题(16CXZ017)

[通讯作者] 宗兆文, E-mail: zongzhaowen@163.com

骨盆骨折约占全身骨折的3%，其中，低能量引起的骨盆骨折为稳定骨折或为轻度不稳定骨折，合并其他部位的损伤，治疗相对简单；而高能量损伤导致不稳定型骨盆骨折，且容易引发致命性大出血、脏器损伤、感染等并发症或并发症，死亡发生率高达5%~20%。在越南战争等早期战争中，骨盆战伤的发生率相对较低，而在伊拉克和阿富汗战争中，随着武器杀伤效应的提高和简易爆炸装置等武器的广泛使用，骨盆战伤的发生率呈现增加趋势，其损伤严重度也明显升高，加之战时救治条件的限制，治疗非常棘手。笔者以现代战争中骨盆部损伤流行病学和最新救治进展为基础，结合我军现行救治阶梯制定现代战争中骨盆战伤评估和救治的专家共识。

在现有专科医院中，目前应用的评估方法基本与平时（即非战争时期）无太大差别，因而本共识只介绍早期救治前的3个救治阶梯中骨盆战伤的评估和救治方法。即将颁布的《战伤救治规则》对现有的救治阶梯进行了调整，拟将现有救治阶梯的救治内容分解为战现场急救和早期救治两个阶段，在其颁布后，本共识将依据新版战伤救治规则进行调整。需要指出的是，战伤救治是一个连续的过程，本专家共识将救治分解在各个救治阶梯中，但实际工作中应该保持救治的完整性和连续性。

本专家共识编写过程中的证据和意见推荐级别主要按照牛津循证医学中心推荐的标准以及临床医学研究中常用的GRADE证据质量分级和推荐强度系统（grading of recommendations, assessment, development and evaluation, GRADE）[4-5]，表述方式为：证据级别/意见推荐级别。

共识意见1: 现代战争中爆炸冲击伤是主要的致伤机制，骨盆骨折损伤严重度和开放性损伤比例增加，且容易合并致命性大出血，会阴部损伤、盆腔脏器损伤和下肢创伤性截肢等，其救治需要更多地采用
损伤控制策略（B级/Ⅰ类）。

1 概 述

不同于平时和越南战争等早期战争，现代战争中爆炸冲击成为骨盆损伤的主要致伤机制，其杀伤效应明显高于枪伤，导致骨盆战伤的发生率显著增加[5-9]，且损伤呈现与平时和既往战争不同的特点，主要包括：①损伤严重度明显增加。在美国的持久自由行动和伊拉克自由行动（operation enduring freedom/operation Iraqi freedom，OEF/OIF）中，骨盆骨折伤员平均损伤严重评分约为41分，而平时骨盆骨折患者的平均损伤严重评分仅为21-32分[10-11]；②开放性骨盆损伤发生率增加。战时开放性骨盆骨折的比例最高可达66%，其合并伤也明显高于平时损伤，如泌尿生殖道损伤发生率约为2.8%，腹腔和盆腔血管损伤的发生率约为6.5%，直肠损伤发生率约为8.5%[11-14]；③容易发生致命性大出血。Morrison等[15]研究发现，在OEF/OIF中，严重骨盆骨折是英军士兵不可压迫性躯体大出血的重要原因，死亡发生率高达85.5%；④并发会阴部损伤发生率高。平时盆骨骨折会阴部损伤发生率约为0.05%，越南战争中约为2.8%，而在OEF/OIF中，会阴部损伤的发生率升高至5.4%，而骨盆骨折合并会阴部损伤的发生率为2.8%[8,16]；⑤下肢创伤性截肢发生率增加。由于简易爆炸装置和地雷等武器的广泛使用，骨盆骨折合并下肢创伤性截肢的发生率明显增加，成为OEF/OIF中的一种特征性损伤[17-18]。

上述骨盆部损伤的变化特点对救治提出了不同于以往的需求，如需要重点进行大出血、并发脏器损伤和会阴部损伤的救治，且战时需要更多地使用损伤控制外科（damage control surgery，DCS）的理念进行复苏和手术治疗[14,19]。

共识意见2：战现场救治阶段，推荐使用MARCH（massive hemorrhage, airway, respiration, circulation and hypothermia）顺序法进行快速伤情评估，判断和处理威胁生命的状态，如大出血、失血性休克、气道阻塞和张力性气胸和不稳定型骨盆骨折等，然后迅速后送伤员（B级/Ⅰ类）。

共识意见3：根据致伤机制、有无下肢旋转和局部的疼痛等综合判断伤员有无骨盆骨折（B级/Ⅱa类）。

共识意见4：不推荐使用骨盆挤压-分离试验来判断伤员是否发生骨盆骨折（B级/Ⅲ类）。

共识意见5：骨盆骨折合下肢创伤性截肢者，应及时使用止血带控制下肢出血；对于会阴软组织的出血，可用止血敷料进行填塞和加压包扎止血（B级/Ⅰ类）。

共识意见6：对于怀疑有骨盆骨折的患者，应使用三角巾将骨盆环形包扎，临时稳定骨盆。有条件者，使用骨盆捆绑带效果更佳。当没有三角巾、骨盆捆绑带时，可使用就便器材如床单、大豆袋或多头带做环形包扎临时固定骨盆（B级/Ⅱa类）。

共识意见7：对于发生失血性休克的骨盆骨折伤员，条件允许时，建议从战现场开始启动液体复苏。复苏液体推荐使用浓缩红细胞等血液制品以及高渗生理盐水和羟乙基淀粉（B级/Ⅱa类）。

共识意见8：对于开放性骨盆骨折伤员，在战现场急救阶段即口服抗生素，以降低感染的发生率。一般建议使用莫西沙星，剂量为400mg（B级/Ⅱa类）。

共识意见9：当伤员疼痛明显时，可口服止痛药或肌注吗啡（B级/Ⅱa类）。

2 骨盆战伤的战现场急救

现场急救一般由营及营以下卫生机构或相当的机构完成，一般在伤后10min内实施。骨盆战伤现场救治的重点为遵循高级创伤生命支持（advanced trauma life support，ATLS）的原则迅速评估伤员，判断是否存在威胁生命的状态（如大出血、失血性休克、气道阻塞、张力性气胸和不稳定型骨折等），然后处理大出血和气道阻塞等致命性状况，并采用快速有效的方式固定骨盆，迅速后送伤员。

2.1 战现场伤情评估 战现场急救阶段可根据ATLS的原则按照“ABCDE”（airway, breathing, circulation, disability, exposure and environment）的顺序评估伤员，对存在威胁患者生命的伤情做出快速的判断，包括有无气道阻塞、张力性气胸、致命性大出血和失血性休克、有无神经损伤等。由于战时大出血是可预防战伤亡亡的主要原因，远超过气道阻塞等其他原因，因而，美军等推荐使用“MARCH”顺序进行评估伤情。其中，“M”是指判断有无致命性大出血（massive hemorrhage），“A”同“ABCDE法”中的A（airway），“R（respiration）”同“ABCDE”顺序中的B（breathing），“C”同“ABCDE”顺序中的C（circulation），而“H”是指是否存在低体温（hypothermia）[20]。

在战现场急救阶段需要判断有无失血性休克，以尽早启动液体复苏，提高伤员的救治率。美军通过分析
其在 OEF/OIF 战争中建立的战地联合创伤数据库 (Joint Theater Trauma Registry, JTTR) 推荐战伤休克的诊断标准为：在没有头颅外伤的情况下，伤员出现神志异常和（或）桡动脉搏动次数明显增加至 120 次/min 以上，变弱或消失，则判断伤员为休克[21]。

在战现场阶段不推荐使用骨盆挤压-分离实验来检测骨盆是否有骨折，因其可能导致不稳定骨盆骨折发生移位而出现致命性大出血。对于下肢创伤性截肢者，应及时使用止血带止血，而对于有骨盆骨折的患者，应立即采取措施确定骨盆骨折，并及时使用骨盆骨折带固定骨盆，迅速后送。2.2 大出血的止血和包扎 现代战争中，特别是简易爆炸装置的使用使骨盆骨折并发会阴软组织损伤和下肢创伤性截肢的发生率极高[8,17-18]，此时容易出现致命性大出血。对于下肢创伤性截肢者，应及时使用止血带止血；而对有骨盆骨折的出血，可用止血敷料进行填塞止血和加压包扎[22-24]。

2.3 骨盆骨折的临时稳定 对怀疑有骨盆骨折的患者，应立即采取措施临时稳定骨盆，减少大出血。我军现行急救包中配发的是三角巾，可用多个三角巾连接环形圈捆绑骨盆，起到临时稳定骨盆的作用。而对于损伤机制上无发生骨盆骨折可能、血液动力学稳定、格拉斯哥昏迷指数(Glasgow coma scale, GCS) 评分正常者不需要固定骨盆。

大量的临床和战伤救治数据显示，商品化的多种骨盆捆绑带，如骨盆创伤固定装置 (trauma pelvic orthoticdevice, T-POD) 和战伤休克裤改装的骨盆临时捆绑带 (combat trouser binder, CTB) 等是院前控制严重骨盆出血的有力装置，应该尽早使用。在可能的情况下，应在解救伤员脱困前使用骨盆捆绑带固定骨盆[29-32]。当没有三角巾、骨盆捆绑带等时，可使用就便器材如床单、大豆袋或多头带做环形包扎临时固定骨盆。2.4 战现场启动液体复苏 美军等北约军队的经验提示，对于大出血和出血性休克的患者从战现场开始进行液体复苏可降低多器官功能障碍的发生率和病死率[34]。在控制敌人火力后将伤员转移到掩体后，即可建立静脉通道或骨髓输液通道进行液体复苏。使用的复苏液体种类以高渗生理盐水、代血浆为主，而条件许可时，可使用浓缩红细胞和新鲜冰冻血浆等血液制品[35-36]。O’Reilly 等[36]回顾性评估了转运途中到达野战医院前输血在治疗严重创伤中的效果，研究群体为 2006~2011 年阿富汗的一个野战医院中收治的 1592 例伤员，他们发现院前进行输血液制品可降低严重创伤伤员凝血病的发生率和病死率。

2.5 口服抗生素和止痛药 对于开放性骨盆骨折者，在战现场急救阶段即口服抗生素，以降低感染的发生率。一般建议使用莫西沙星，剂量为 400mg[37-41]。当伤员疼痛明显时，可口服止痛药或肌注吗啡。口服止痛药以塞来昔布和依托昔布等环氧化酶-2特异性抑制剂为主，其对中枢系统的副作用小。而吗啡是最常用的院前镇痛药，许多国际急救医疗组织认为它在平时创伤中使用是安全和有效的。美国儿童急救医疗组织认为在战时使用使用吗啡硫酸盐，并使用纳洛酮以拮抗其副作用。使用硫酸吗啡来治疗在战时骨折和烧伤等情况下发生的剧烈疼痛仍是一个金标准。一般推荐使用静脉注射，起效快（只需要数分钟），且便于控制剂量。而战时建立静脉通道困难，此时可使用肌内注射，但起效较慢，需要 30~60min[35,42]。2.6 迅速后送 对于骨盆骨折的伤员，不应过多搬动，妥善制动和稳定后，应安排优先后送，接受进一步的治疗。

共识意见10：在紧急救治机构中，需评估并补充处理大出血、气道阻塞、失血性休克等紧急伤情，仍可使用 MARCH 顺序法评估伤员病情 (B 级/Ⅱa 类)。

共识意见11：在紧急救治机构中，对于止血和固定不完善的伤员，需要补充包扎和固定，并行进一步抗休克治疗等 (B 级/Ⅰ类)。

共识意见12：对于严重骨盆骨折伴大出血者，建议在伤后 1h 内给予首剂 1g 氨甲环酸，后续 1g 持续静脉输入 8h(A 级/Ⅱa 类)。

3 骨盆会阴部战伤的紧急救治

骨盆会阴部战伤的紧急救治一般由团（旅）救护所及相当救治机构担负紧急救治任务，一般在伤后 3h 内实施。紧急救治是战现场救治的延续，主要内容为进一步检查和评估伤员，补充包扎和固定，以及进一步
抗休克治疗等。

3.1 二次评估 在这一救治阶梯中，评估的主要内容是判断需要紧急处理的伤情，如大出血、气道阻塞和失血性休克，需要及时分流的内脏损伤等，仍可使用MARCH顺序法评估伤员伤情。

3.2 进一步稳定骨盆 检查战现场急救阶段骨盆临床固定是否牢靠，如果不牢靠，在尽量不去除原固定物的情况下，增加捆绑带和三角巾等以进一步稳定骨盆。

3.3 进一步完善止血 对于没有控制住的外出血继续完善止血，如加用止血带和止血敷料等。同时，对于严重骨盆骨折患者，特别是合并多发伤和大出血者，应尽早使用氨甲环酸。建议在伤后1h内给予首剂1g氨甲环酸，后续1g持续静脉输注8h[43-44]。在分析OEF/OIF战争中的JTTR数据库后，Howard等[45]发现氨甲环酸有增加肺梗死和深静脉血栓的风险，认为其安全性需要进一步观察。而在世界卫生组织的组织下，共40个成员国参与的一项多中心随机双盲对照试验观察氨甲环酸对严重创伤患者的作用，研究纳入了20 211例严重创伤大出血患者，其中10 096例使用氨甲环酸，10 115例为对照，结果显示，氨甲环酸组出血量和死亡发生率明显低于对照组；两组在栓塞事件、输血量、需要外科手术等方面差异无统计学意义[46]。所以总体而言，对于严重骨盆骨折伤员，氨甲环酸是安全有效的。

3.4 继续液体复苏 我军在紧急救治机构中已配备了血液制品，对于有失血性休克的伤员，可结合血液制品和晶体液及胶体液进行复苏。具体复苏策略参见共识意见17。

共识意见13：对于骨盆战伤伤员，需要实施损伤控制策略的指征包括：①严重脏器损伤伴大血管损伤；②严重多发伤；③大量失血；④出现低体温、酸中毒和凝血功能障碍；⑤在上述指标处于临界值而预计手术时间>90min(B级/Ⅱa类)。

共识意见14：严重骨盆战伤的DCS主要内容包括综合的止血措施、恰当的复苏策略、处理并发的脏器和血管损伤、战地重症监护等(B级/Ⅰ类)。

共识意见15：根据具体情况，选择骨盆外固定支架稳定骨盆、腹膜后填塞、双侧髂内动脉结扎和手术处理损伤的脏器等措施控制骨盆大出血(B级/Ⅱa类)。

共识意见16：在没有控制出血前，建议实施“限制性低压液体复苏”的策略，液体复苏维持平均动脉压在70mmHg左右(B级/Ⅱa类)。

共识意见17：在早期救治机构内，对于严重骨盆骨折大量失血的伤员优先推荐使用红细胞：新鲜冰冻血浆：血小板按1：1：1比例搭配输注。当血液制品不足时，可组织进行全血采集，进行全血输注(A级/Ⅰ类)。

共识意见18：当无法获得红细胞、新鲜冰冻血浆等血液制品或全血时，冻干血浆可作为复苏的一种选择(B级/Ⅱa类)。

共识意见19：当无法获得红细胞、新鲜冰冻血浆等血液制品、全血或冻干血浆时，选择羟乙基淀粉作为复苏液体(B级/Ⅱa类)。

共识意见20：骨盆战伤合并直肠损伤时，应行结肠造口术，并彻底清洁腹腔，以防感染(B级/Ⅱa类)。

共识意见21：骨盆战伤合并尿道损伤，建议选择膀胱造口术，二期修复损伤的尿道。怀疑或诊断有膀胱损伤时，应行急诊手术探查修复膀胱(B级/Ⅱa类)。

共识意见22：骨盆战伤合并睾丸和附睾损伤时，如预计可能影响生殖者，建议在完成取精并保存后再进行清创(B级/Ⅱa类)。

共识意见23：骨盆战伤合并会阴和臀部软组织损伤时，只有在肛门外括约肌损伤或有严重的小肠损伤时，才推荐行结肠造口术；如肛门外括约肌功能完好或肛周有完整的皮肤时，可不造口，建议使用反复多次清创、负压封闭吸引并辅以直肠内导管，可有效防止感染的发生(B级/Ⅱa类)。

共识意见24：作为战时DCS策略的一部分，当骨盆战伤合并下肢的创伤性截肢时，对于毁损严重的创伤性截肢者应早期实施截肢术，而不是尝试保肢。C级/Ⅱa类)

共识意见25：加强严重骨盆战伤伤员的战地重症监护，在伤员生命体征平稳后，迅速后送到下一级救治机构接受进一步治疗(B级/Ⅰ类)。

4 骨盆战伤的早期救治

骨盆骨折的早期救治任务一般由师救护所及相当的救治机构担任，一般在伤后6h内实施。如前所述，
战时开放性骨盆骨折发生率高，容易合并泌尿生殖道、盆腔血管、直肠损伤、失血性休克及其他部位的损伤，损伤严重，多需要采用DCS策略[11-14]。平时DCS策略是：针对严重创伤患者处于生理极限时采用早期简化手术，待生理紊乱得到适当纠正、全身情况改善后再施行确定性手术的救治策略。而战时的DCS与平时相比有较多不同点，如常涉及多个独立的救治机构、多位医师、多个复苏和稳定的过程、直升机转运及固定翼飞机转运等，并且在此过程中如何在战时保障DCS的顺利实施至关重要[47-48]。同时，由于战时救治条件和救治措施的限制，严重骨盆战伤的DCS主要内容包括综合的止血措施、恰当的复苏策略、处理并发的脏器和血管损伤、战地重症监护等。

4.1 评估和初步诊断 在战时早期救治机构内，可结合致伤机制、既往史、体格检查、实验室和影像学检查，对伤员病情做出较为准确的诊断。其中，我军早期救治机构内配备了B超和X线片，B超诊断具有方便快捷、无创、便携等优点，对战伤伤员可行床旁检查，减少伤员搬动可能带来的附加损伤，对判断是否合并腹腔和盆腔脏器损伤很有帮助[49]。在实验室检查方面，我军早期救治机构内可进行血常规、凝血和血气分析等项目的检查，可判断伤员是否有凝血功能障碍和低血容量等情况[46,50]。此外，还可使用血栓弹力描记图监测伤员的凝血功能状态，相比常规的凝血实验更准确，可动态监测血栓形成、血小板功能、纤维蛋白原和纤维蛋白等异常情况。与传统的凝血检查相比，血栓弹力描记图具有检查迅速，可精确反映凝血途径中问题环节，可实时提供凝血和纤溶信息[51-53]等特点。目前，我军在早期救治机构中尚未配备血栓弹力描记仪，鉴于其在评估伤员凝血功能中的重要意义，预测会在不久的将来配备在我军的早期救治机构中。

对骨盆骨折而言，早期救治机构还应重点评估需要实施DCS的伤员。目前，一般认为需要实施损伤控制手术的指征包括：①严重脏器损伤伴大血管损伤；②严重多发伤；③大量失血；④出现低体温、酸中毒和凝血功能障碍；⑤在上述指标处于临界值而预计手术时间>90min[54-56]。

4.2 针对不同的损伤情况，选择合适的止血措施 因骨盆骨折经常与其他威胁生命的创伤一起发生，如果发现伤员血流动力学不稳定，则需对腹部、胸部和其他潜在受伤部位进行评估，检查所有可能发生大出血的部位。在排除胸腹部大出血后，重点评估有无骨盆出血。了解骨盆骨折出血的来源才能采用正确的措施进行止血，一般情况下骨盆骨折出血的来源有：①骨折部位。构成骨盆环的松质骨血运丰富，骨折端持续或反复出血是主要的出血来源。②盆内静脉和静脉丛。伴随盆内动脉走行的两条同名静脉和盆骨多个静脉丛血管壁薄，易受损伤；破裂的静脉收缩力差，其周围组织结构松软，难以产生压迫止血作用，因而损伤的静脉出血是另一重要的出血来源。③盆内动脉。动脉管壁厚，富有弹性，骨盆骨折损伤动脉造成大出血的概率较低。经动脉造影或尸检证实骨盆骨折大出血来自动脉者为2.4%~18.0%，但动脉破裂出血汹涌，可危及生命。④盆壁软组织和盆内脏器。骨盆骨折合并盆壁软组织和筋膜大面积剥脱或并发盆内脏器损伤者出血较多。针对这些出血来源，常用止血方法有抗休克裤、骨盆外固定支架、动脉造影和栓塞术、髂内动脉结扎术以及纱布垫填塞盆腔压迫止血等[57-59]。

在团卫生所或野战医疗所中，需要在现有配备的器材、药物和设备的基础上，选择合适的止血措施进行止血。由于我军当前团卫生所或野战医疗所没有配备动脉造影相关设备，可选择的止血措施包括骨盆外固定支架、腹膜后填塞、髂内动脉结扎术和手术处理损伤的脏器止血等。因而，我们建议在现有条件下，按照图1的流程进行骨盆大出血的止血，具体包括：

4.2.1 骨盆外固定支架 现在商品化的骨盆外固定支架主要包括固定前环和后环两大类。在战时，比较实用的是固定前环的外固定支架。Mathieu等人[61]报告了法军自2004-2009年在OEF/OIF战争中使用骨盆外固定支架作为损伤控制性复苏（damage control resuscitation，DCR）的经验，即在使用骨盆外固定支架的18例伤员中，部分可延续到骨折愈合，部分需要更换为内固定支架，全组均无发生感染的病例。

4.2.2 腹膜后填塞 对于后腹膜破裂的骨盆骨折患者，失去了腹膜后的填塞效应容易发生常规止血方法无法控制的致命性大出血，此时，腹膜后填塞可有效地控制出血[57-61]。可采用两种手术入路[64]：若患者并发内脏破裂或需探查，则行腹直肌切口，向下延伸至耻骨联合上；若无探查指证，则行耻骨联合上横行切口，不切开腹膜。从前方暴露后腹膜血肿，并清除血和血凝块，用牵开器向外侧拉开膀胱，仔细探查骨盆缘并徒手分离，小心避免剥离髋骨和闭孔血管之间的任何血管分支，沿骨盆边缘尽可能深地向后方探查，依次填塞带透视标志的湿纱垫，用卵圆钳夹住一角向下后方塞入，一般第一块湿纱垫置于骶髂关节的下方；第二块置于骨盆窝的中部、第一块纱布的前方；第三块置于膀胱后外侧的耻骨后窝，直至填满塞紧为止。一般共需5~6块25cm×25cm湿纱垫。冲洗伤口，逐层、连续缝合。术后48~72h取出填塞纱布，以防感染。Arul等人[65]发现，使用腹膜外
The treatment process is designed based on the current treatment level and the equipment in each of the medical units of the PLA. It will be changed accordingly with their development; ATLS. Advanced trauma life support

Emergency treatment

1. Life-threatening conditions are assessed and treated in accordance with ATLS principles, e.g., controlling visible massive bleeding, airway obstruction, and tension pneumothorax
2. In case of suspected pelvic fractures, triangular scarves and pelvic binding straps are used to temporarily fix the pelvis
3. In the case of suspected shock, liquid resuscitation is performed on site

Early treatment

1. For patients with unstable hemodynamics, liquid resuscitation is continued, and measures such as pelvic fastening are taken to temporarily fix the pelvis
2. When possible, use anti-shock pants
3. Keep warm

Battlefield on-site first aid

1. Is the patient hemodynamically stable?

 - No
 - No response to fluid resuscitation + positive abdominal signs or an open pelvic fracture
 - B-mode ultrasound examination on chest and abdomen
 - Imaging of pelvic fractures
 - Excluding an exploratory laparotomy to control abdominal bleeding
 - Corresponding surgeries, e.g., bladder repair, rectal repair, and colostomy
 - Yes
 - Responsive to fluid resuscitation but requires continuous fluid resuscitation
 - Evacuation with external fixation on unstable pelvic fractures

Special treatment

1. Those with stable hemodynamics are evacuated
2. Abdominal organ damage
 - Retroperitoneal packing is performed on patients who are hemodynamically unstable
 - External pelvic fixation + Continued liquid resuscitation
 - Open the abdominal cavity (if necessary)
3. Definitive treatment of pelvic fracture with co-incident organ damage
 - An exploratory laparotomy is performed to control intra-abdominal bleeding
 - Corresponding surgeries, e.g., bladder repair, rectal repair, and colostomy
 - External pelvic fixator
 - Retroperitoneal packing (if necessary)
 - In case of continuous bleeding, bilateral iliac artery ligations are performed
 - Open the abdominal cavity (if necessary)

Fig. 1 Treatment procedures for pelvic fractures in modern war

The treatment process is designed based on the current treatment level and the equipment in each of the medical units of the PLA. It will be changed accordingly with their development; ATLS. Advanced trauma life support

4.2.3 骼内动脉结扎术 上述方法无效时，可选双侧髂内动脉结扎协助控制出血。髂内动脉结扎有两种手术途径，即经腹结扎和经腹膜外结扎。

4.2.4 手术处理损伤的脏器 当临床症状、体征和B超等方法综合判断有合并的脏器损伤时，应及时剖腹探查，处理损伤的脏器，控制出血。各种伴发脏器损伤的具体处理方法见后文所述。

4.3 损伤控制性复苏

4.3.1 限制性(低压)液体复苏 骼骨骨折合并脏器损伤，在脏器损伤出血尚未得到有效控制时，主张采用“延迟性液体复苏”，又名“限制性(低压)液体复苏”策略。尤其是在伴有心脏大血管伤剖胸术前，过
多过快补液有害无益，当有心脏压塞时，大量补液非但不能增加心排出量，反可因心内压增高和凝块冲脱诱发致命性再出血或栓塞，错过手术时机。如果可触及桡动脉搏动，收缩压在90mmHg左右，在出血控制前可不补液。桡动脉搏动微弱或不能触及、血压更低可先给患者适量平衡液。如果桡动脉搏动消失后又恢复，液体复苏可在密切监视下暂时推迟或中止[66-68]。

骨盆骨折患者发生休克的液体复苏时，建议不宜过多使用缩血管药物，只在充分的液体复苏后血压仍无法维持者给予使用。以血压维持在正常低值为宜，以免加重出血导致的血液有效成分的大量丢失，加重病情。

4.3.2 液体复苏种类和比例选择 在早期救治机构内，对于严重骨盆骨折大量失血的伤员，优先推荐使用红细胞/新鲜冰冻血浆/血小板按1:1:1比例搭配输注[69-71]，当血液制品不足时，可组织进行全血采集，输注给伤员[72]。出于血浆（dried plasma，DP）可在2~35℃的环境中保存15~24个月，其凝血活性仍可保持在75%~100%。目前，市场上商品化的产品为LyoPlas和LyoPhil。当无法获得红细胞、新鲜冰冻血浆等血液制品或全血时，冻干血浆可作为复苏的一种选择。现在DP已获英军、法军、德军和以色列军队中被批准使用[74]，但美国FDA没有批准，仅有部分美军特种部队携带法国产的冻干血浆备用。只有当无法获得红细胞、新鲜冰冻血浆等血液制品，全血或冷冻血浆时，才选择羟乙基淀粉作为复苏液体[75-77]。

4.4 合并直肠损伤的治疗 现代战争中，骨盆骨折合并直肠损伤的发生率约为8.5%。下腹痛、里急后重感和肛门出血是直肠损伤的重要临床表现。肛门指诊时，骶前有压痛，有时可触及刺入直肠的骨折端或肠壁裂口，手套上可见血迹；如直肠破裂在腹膜反折以上，即会出现明显的腹膜刺激症。直肠位置深在，损伤后的表现易被骨盆后环骨折或其他盆腔脏器损伤的临床症状所掩盖，因此对肛门出血或指诊有血迹的骶骨骨折者，均应考虑有直肠损伤的可能[41,78]。

判断有直肠损伤时，需行急诊手术[78]。一般自下腹正中或左旁正中进入腹腔，清除腹腔内污染，找到肠壁破口，修剪后行横向双层缝合，并行近端结肠造口术，使粪便改道，以利伤口愈合。

4.5 合并尿道损伤的治疗 伤后下腹疼痛，有尿急，但不能排尿，尿道口有少量血性尿液或血迹者，均可检查腹部有无压痛、腹肌紧张、反跳痛、肠鸣音减弱或消失等腹膜刺激体征，对有阳性体征的伤员应进一步检查，以明确诊断。膀胱破裂应急诊手术探查修复膀胱[16]。

对伤后下腹疼痛，有尿急，但不能排尿，尿道口有少量血性尿液或血迹者，均应检查腹腔有无无压痛、腹肌紧张、反跳痛、肠鸣音减弱或消失等腹膜刺激体征，对有阳性体征的伤员应进一步检查，以明确诊断。膀胱破裂应急诊手术探查修复膀胱[16]。
伤、高乳酸、热缺血时间过长等情况，需考虑截肢。同时，损伤肢体严重度评分等可协助判断是否需要进行截肢治疗。美军在阿富汗和伊拉克战争中的经验显示，综合使用临床症状、损伤肢体严重度评分、超声多普勒和CT血管造影等检查的血管损伤情况判断，可提高判断的准确性。在骨盆损伤严重时，对于损伤严重的创伤性截肢者应早期实施截肢术，而不是将尝试保肢作为DCS的一种措施。

4.9 早期使用抗生素 目前金黄色葡萄球菌和绿脓杆菌仍然是我国创伤软组织感染的主要致病菌，在没有确定的药敏实验结果前，可针对这些致病菌进行经验性抗生素治疗。待获得药敏试验结果后，应根据药敏结果选择有效的抗生素。在抗生素实际应用的过程中，需要注意：①抗生素是治疗创伤软组织感染时外科手段的辅助措施，不能滥用，否则会造成耐药菌的产生，给后续治疗造成更大的困难；②致病菌菌株谱在一地区和不同环境中会发生改变，如在野战条件下，发生芽孢杆菌感染（气性坏疽）和厌氧芽胞梭菌感染（破伤风）的可能性增加，此时需要开放伤口，注射破伤风抗毒素，并选择合适的抗生素（如青霉素）。

4.10 战地重症监护 重症监护是骨盆战伤DCS策略的一个重要组成部分。直至20世纪90年代末美国都未在战地医院设置重症监护单元，他们所做的是尽快将危重伤员后送。从OIF战争初期起，美军开始在战地医院设立重症监护单元，采用以重症监护师为中心的战地重症监护模式，在不增加后勤补给负担的情况下有效地降低了死亡发生率，减少了伤员住院时间。

5 展望
综上，战时骨盆损伤与平时呈现不同的损伤特点，救治流程也与平时有很多不同。基于现有的救治理念和我军现役的救治阶梯，我们制定了现代战争条件下骨盆战伤救治的专家共识，随着救治技术和理念的进步、未来战争武器杀伤效应的不同和我军战斗单位编制的变化，救治的流程会做出相应的调整和更新。同时，有力的后勤保障是上述救治措施得以实现的前提。
Rommens PM, Hofmann A, Hessmann MH. Management of acute hemorrhage in pelvic trauma: an overview[J]. Eur J Trauma Emerg Surg, 2010, 36(2): 91-99.

Mathieu L, Bazile F, Barthelemy R, et al. Damage control orthopaedics in the context of battlefield injuries: the use of temporary external fixation on combat trauma soldiers[J]. Orthop Traumatol Surg Res, 2011, 97(4): 852-859.

Papakostidis C, Giannoudis PV. Pelvic ring injuries with haemodynamic instability: efficacy of pelvic packing, a systematic review[J]. Injury, 2009, 40(Suppl 1): S33-S61.

Hu P, Zhang Y. Surgical hemostatic options for damage control of pelvic fractures[J]. Chin Med J, 2013, 126(12): 2384.

Cox SG, Westgarth-Taylor CJ, Dix-Peel SK, et al. Pre-peritoneal pelvic packing in a paediatric unstable pelvic fracture: An undescribed complication of lower limb compartment syndrome[J]. Injury, 2013, 44(2): 258-260.

Arul G, Bowley D, DiRusso S. The use of Celox™ Gauze as an adjunct to pelvic packing in otherwise uncontrollable pelvic haemorrhage secondary to penetrating trauma[J]. J R Army Med Corps, 2012, 158(4): 331-334.

Duchesne JC, Kaplan LJ, Balogh ZJ, et al. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension[J]. Anesthesiol Intensive Ther, 2015, 47(2): 143-155.

Chang R, Holcomb JB. Optimal fluid therapy for traumatic hemorrhagic shock[J]. Crit Care Clin, 2017, 33(1): 15-36.

Butler FK. Fluid resuscitation in tactical combat casualty care: yesterday and today[J]. Wilderness Environ Med, 2017, 28(2): 574-581.

Davenport R, Curry N, Manson J, et al. Hemostatic effects of fresh frozen plasma may be maximal at red cell ratios of 1:2[J]. J Trauma Acute Care Surg, 2011, 70(1): 90-96.

British Committee for Standards in Haematology. Guidelines for the use of platelet transfusions[J]. Br J Haematol, 2003, 122(1): 10.

Schnuriger B, Inaba K, Abdelhayyed GA, et al. The impact of platelets on the progression of traumatic intracranial hemorrhage[J]. J Trauma Acute Care Surg, 2010, 68(4): 881-885.

Pidoce HF, Aden JK, Mora AG, et al. Ten-year analysis of transfusion in Operation Iraqi Freedom and Operation Enduring Freedom: increased plasma and platelet use correlates with improved survival[J]. J Trauma Acute Care Surg, 2012, 73(6): S45-S452.

Spinella PC. Warm fresh whole blood transfusion for severe hemorrhage: US military and potential civilian applications[J]. Crit Care Med, 2008, 36(7): S340-S345.

Martinad C, Asset S, Deshayes AV, et al. Use of freeze-dried plasma in French intensive care unit in Afghanistan[J]. J Trauma Acute Care Surg, 2011, 71(6): 1761-1765.

Ravi PR, Puri B. Fluid resuscitation in haemorrhagic shock in combat casualties[J]. Disaster Mil Med, 2017, 3(1): 2.

Guerado E, Bertrand ML, Valdes L, et al. Resuscitation of polytrauma patients: the management of massive skeletal bleeding[J]. Open Orthop J, 2015, 9(Suppl 1): 283-295.

Guerado E, Medina A, Mata M, et al. Protocols for massive blood transfusion: when and why, and potential complications[J]. Eur J Trauma Emerg Surg, 2016, 42(3): 283-293.

Lunsojo K, Abu-Zidan FM. Does colostomy prevent infection in open blunt pelvic fractures? A systematic review[J]. J Trauma Acute Care Surg, 2006, 60(3): 1145-1148.

Banti M, Walter J, Hudak S, et al. Improved explosive device–related lower genitourinary trauma in current overseas combat operations[J]. J Trauma Acute Care Surg, 2016, 80(1): 131-134.

Paquette EL. Genitourinary trauma at a combat support hospital during Operation Iraqi Freedom: the impact of body armor[J]. J Urol, 2007, 177(6): 2196-2199.

Fu Q, Zhang J, Sa YL, et al. Recurrence and complications after transperineal bulboprostatic anastomosis for posterior urethral strictures resulting from pelvic fracture: a retrospective study from a urethral referral centre[J]. BJU Int, 2013, 112(4): E358-E363.

Abdin T, Zamir G, Pikarsky A, et al. Cutaneous tube ureterostomy: a fast and effective method of urinary diversion in emergency situations[J]. Res Rep Urol, 2015, 7: 10.

Bordes J, Goutorbe P, Asencio Y, et al. A non-surgical device for faecal diversion in the management of perineal burns[J]. Burns, 2008, 34(6): 840-844.

Farinier PD, Mullins RJ, Feliciano PD, et al. Selective fecal diversion in complex open pelvic fractures from blunt trauma[J]. Arch Surg, 1994, 129(5): 958-964.

Pell M, Flynn WJ, Seibel RW. Is colostomy always necessary in the treatment of open pelvic fractures?[J]. J Trauma Acute Care Surg, 1998, 45(2): 371-373.

Labler L, Trento O. The use of vacuum assisted closure (VACTM) in soft tissue injuries after high energy pelvic trauma[J]. Langenbecks Arch Surg, 2007, 392(5): 601-609.

Hasankhani EG, Omidi-Kashani F. Treatment outcomes of open pelvic fractures associated with extensive perineal injuries[J]. Clin Orthop Surg, 2013, 5(4): 263-268.

van Wessel KJ, Mackay PJ, King KL, et al. Selective faecal diversion in open pelvic fractures: Reassessment based on recent experience[J]. Injury, 2012, 43(4): 522-525.

Busis Z, Lovec Z, Amc E, et al. War injuries of the extremities: twelve-year follow-up data[J]. Mil Med, 2006, 171(1): 55.

Dougherty PJ, McFarland LV, Smith DG, et al. Multiple traumatic limb loss: A comparison of Vietnam veterans to OIF/OEF servicemembers[J]. J Rehabil Res Dev, 2010, 47(4): 333.

Dougherty PJ, McFarland LV, Smith DG, et al. Combat-incurred bilateral transfemoral limb loss: a comparison of the Vietnam War to the wars
in Afghanistan and Iraq [J]. J Trauma Acute Care Surg, 2012, 73(6): 1590-1595.

[92] Ege T, Unlu A, Tas H, et al. Reliability of the mangled extremity severity score in combat-related upper and lower extremity injuries [J]. Indian J Orthop, 2015, 49(6): 656.

[93] van Dongen T, Idenburg F, Tan E, et al. Combat related vascular injuries: Dutch experiences from a role 2 MTF in Afghanistan [J]. Injury, 2016, 47(1): 94.

[94] Govaert G, Siriwardhane M, Hatzifotis M, et al. Prevention of pelvic sepsis in major open pelviperineal injury [J]. Injury, 2012, 43(4): 533-536.

[95] Grathwohl KW, Venticinque SG. Organizational characteristics of the austere intensive care unit: the evolution of military trauma and critical care medicine; applications for civilian medical care systems [J]. Crit Care Med, 2008, 36(7): S275-S283.

[96] Rasmussen TE, Baer DG, Cap AP, et al. Ahead of the curve: Sustained innovation for future combat casualty care [J]. J Trauma Acute Care Surg, 2015, 79(4 Suppl 2): S61-64.

[97] Rentas F, Lincoln D, Harding A, et al. The armed services blood program: blood support to combat casualty care 2001 to 2011 [J]. J Trauma Acute Care Surg, 2012, 73(6 Suppl 5): S472-478.

(收稿日期: 2018-01-10; 修回日期: 2018-05-17)
(责任编辑: 沈宁)