Impacts on Air Quality Index in the Industrial town of Asansol (West Bengal, India) due to COVID-19 lockdown

Dr. Rajrupa Ghosh (rajrupaphd@gmail.com)
Banwarilal Bhalotia College

Research Article

Keywords: COVID-19, lockdown, Air quality index, Asansol

DOI: https://doi.org/10.21203/rs.3.rs-91826/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract
The lockdown phase associated with COVID-19 pandemic initiated in full swing on and from 25th March, 2020 as preventive measures against the spreading of Corona virus. The objective of this study is to analyse the status of air quality of before and after lockdown in Asansol city which is second largest city of West Bengal, India and also known as “coal mining city”. Secondary data of five parameters like CO, SO\textsubscript{2}, NO\textsubscript{2}, PM2.5 and PM10 have been collected from Central Pollution Control Board, India. The result shows significant decrease of five parameters from 42.4 % (CO) to 63.4 % (NO\textsubscript{2}) due to close down of all industrial and transport activities during lockdown period. Based on different investigation a green belt development plan for this polluted city has been suggested for sustainable air quality management.

Highlights
- Significant environmental changes have been evidenced during COVID-19 lockdown in Asansol industrial town.
- CO, SO\textsubscript{2}, NO\textsubscript{2}, PM2.5 and PM10 concentrations were reduced during the COVID-19 lockdown period.
- Green belt development plan for this polluted city has been suggested for sustainable air quality management.

Introduction
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has been identified by a group of virologists (Almeida J D, Berry D M, Cunningham C H, Hamre D, Hofstad M S, Mallucci L, McIntosh K and Tyrrell D A J) and published in Nature, 1968. Corona viruses are zoonotic, meaning that the viruses are transmitted between animals and humans. It was first identified in December 2019 in Wuhan, China and has resulted in an ongoing pandemic (Huang et al. 2020a, b; Zhou et al. 2020a, b; Zhu et al. 2020). The first confirmed case has been traced back to 17 November 2019 and 20 January 2020 WHO issued a statement saying that there was evidence of human-to-human transmission. As of 17 August 2020, more than 26 lakhs cases have been reported across India, resulting in more than 52,000 deaths. Among the highly COVID-19 affected states in India, West Bengal stands at a vulnerable situation with 1,18,000 confirmed cases till August 15, 2020. Common symptoms include fever, cough, fatigue, shortness of breath, and loss of smell and taste. While most cases result in mild symptoms, some progress to acute respiratory distress syndrome (ARDS) possibly precipitated by cytokine storm, multi-organ failure, septic shock, and blood clots. The time from exposure to onset of symptoms is typically around five days but may range from two to fourteen days.

The first confirmed case of COVID-19 in India was reported on 30 January 2020 in the southern state of Kerala (Gautam and Hens 2020). Till now in India the most affected cities are Mumbai, Delhi, Chennai,
Ahmedabad, Pune, Indore, Kolkata, Jaipur, Jodhpur etc. Finally, the CDC (Centres for Disease Control) declared that the virus can transmit person to person through respiratory droplets and thus an infected person can spread the virus to the healthy persons around them. This is spread through shaking of hands or any kinds of close personal contact (touching of eyes, nose, mouth). Infants, older people and those with medical problems like high blood pressure, cancer, diabetes, heart problem, asthma are more prone to develop this disease (Arabi et al. 2019; Ashour et al. 2020; Dong et al. 2020; Zhou et al. 2020).

Social lockdown is considered the most effective measure to control COVID-19 (Das and Patial 2020; Paital et al. 2020). On 19th of March, honourable Prime Minister Narendra Modi first declared for a lockdown of 21 days which was started through a ‘JANATA CURFEW’ on 22nd March and from 25th March 2020 lockdown started. There was a Lakhsman Rekha on our doorstep. All Indian cities were locked down and most industrial and commercial activities have been forced to stop their activities until further notice. Citizens are requested to stay at home and don't leave it except for very specific reasons (buy essential supplies, medical appointments...). In add to these safety actions, the authorities decided also to shut down transportation and travel in and out of the country, close down schools, universities, restaurants and mosques, and to ban the mass gatherings across India. To prevent rapid transmission of coronavirus, countrywide lockdown had been enforced through the halting of economic production and restrictions on mobility of the citizens (Gautam and Hens 2020). Lockdown extended in India upto 31st May 2020 and from 1st June 2020 UNLOCK 1 started with lots of do's and don'ts.

Several studies reported that reducing anthropogenic activities during COVID-19 outbreak plays a significant role in air pollution formation and could influence the total ambient air quality (He et al. 2020a; Isaifan 2020). PM10, NO₂ and SO₂ are very common ambient air pollutants in urban environments and caused severe health-related problems like respiratory and cardiovascular disorders, blood pressure and lung cancer (Koken et al., 2003; Le Tertre et al. 2002). These pollutants arise from anthropogenic sources, including road traffic and industrial activities (Thorpe and Harrison 2008; He et al. 2020b).

In this context, the objective of the present paper is to assess the atmospheric CO, SO₂, NO₂, PM2.5 and PM10 concentrations of industrial town, Asansol, before and after lockdown measures against the propagation of COVID-19 pandemic.

Materials And Methods

a. Study site

In West Bengal, Asansol (23.673⁰N, 86.952⁰E) which is situated in the Western part of Burdwan district of West Bengal in the eastern India (Fig. 1), is the second largest city of the state. It is also known as ‘coal mining city’ because, the entire region of Asansol sits on layers and layers of coal. The coal is of high-quality superior coal.
Over the last ten years there was hectic development in the area in terms of industries like Indian Iron and Steel Company (IISCO), Burnpur Cement Limited (BCL), Dishergarh Power Supply Company limited, Joy Balaji Sponge Iron Private Limited, Shyam Gel Limited (Power Divisions) etc. In Asansol the ambient air quality has rapidly deteriorated (Banerjee et al. 2005, 2006; Dey 2013) due to mainly for industrialization, modernization, and urbanization, which is affecting human population, other animals, and plant communities.

b. Data sources and analysis

In this study, five parameters like CO, SO$_2$, NO$_2$, PM2.5 and PM10 have been considered to evaluate the deviation of air quality before and after lockdown period (January 1, 2020 to July 31, 2020). The secondary data of above-mentioned selected pollution parameters has been obtained from the Central Pollution Control Board (CPCB), Govt. of India. The maps regarding variation of NO$_2$ and aerosol concentration over India have been obtained from European space agency (ESA) and the National aeronautics and Space Administration (NASA) individually (ESA 2020a; NASA 2020). The five parameters (CO, SO$_2$, NO$_2$, PM2.5 and PM10) measured from January 1, 2020 to July 31, 2020 were subject to ANOVA using SYSTAT.

Results

Lockdown has transferred the air quality significantly which is reflected in the Table 1 and Fig. 2, 3, in which CO level decreased from 0.82 to 0.47 mg/m3, SO$_2$ decreased from 17.4 µg/m3 to 9.32 µg/m3, NO$_2$ decreased from 35.70 µg/m3 to 13.06 µg/m3, PM2.5 decreased from 79.98 µg/m3 to 30.62 µg/m3 and PM10 decreased from 148.82 µg/m3 to 68.67 µg/m3. Even after UNLOCK 1 the air quality parameters showing satisfactory result than pre lockdown period. The decreased percentage of five parameters are shown in Fig. 4. ANOVA data (Table 2) also highlights significant variations in surface atmospheric CO, SO$_2$, NO$_2$, PM2.5 and PM10 between months.

Discussion

Rapid industrialization and urbanization lead to a great role in air pollution in Asansol City. For rapid spreading the contagious virus COVID-19, these factories, transports and other anthropogenic activities were completely shut down on and from 25th March 2020, that resulted in the reduction of CO, SO$_2$, NO$_2$, PM2.5 and PM10 emission.

Air quality index (AQI) is the assessment of air quality and lower AQI means good air quality. The emission of CO, SO$_2$, NO$_2$, O$_3$ concentration are greatest environmental problem for developed countries (Sharma and Dhar 2018). NO$_2$ is emitted from high temperature combustion process of fossil fuels, especially diesel, thermal power generation, industrial emissions, auto mobile exhaust and shipping (Burnett et al., 2004; Tobias et al., 2020; He et al. 2020c; Sharma et al. 2020) and it causes many health
hazards, acid rain, nitrate aerosols (Biswas et al., 2019). According to report by European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) suggests that environmental quality improved the emission of NO\textsubscript{2} reduced upto 30% (Source: ESA, 2020a and NASA Air Quality Analysis, 2020). NASA collects data using OMI (Ozone Monitoring Institute) on its AURA satellite. While ESA collects data through Sentinel -5P Satellite using TROPOMI (Tropospheric Monitoring Instrument and Ozone Monitoring Instrument). CO and SO\textsubscript{2} are an important indicators of air pollutants that are related to coal consumption, petroleum, and chemical fuel emissions. PM2.5 and PM10 derived from road traffic, industrial exhaust emission, construction works and road dust.

Li et al., 2020, stated that at Yangtze river delta region in China, the emission of NO\textsubscript{2}, SO\textsubscript{2} and PM2.5 decreased in the air than the previous years. Similar result has been found in Almaty, Kazakastan by Kerimray et al. 2020 where CO, NO\textsubscript{2} and PM2.5 level reduced by 49%, 35% and 21% accordingly than pre-lockdown period. In European countries like France, Spain, Italy and Germany showed improved air quality during lockdown due to controlled vehicle movements, limited usage fuel energy and partially closed industrial sectors etc. (Muhammad et al. 2020; ESA 2020b). Even in Wuhan City, China 30% reduction of NO\textsubscript{2} was also found in 2020 than 2019 (He et al. 2020b). in Salé City, Morocco, the concentration of PM10, NO\textsubscript{2} and SO\textsubscript{2} were decreased respectively, by 75%, 96% and 49% within few days after implementation of COVID-19 lockdown (Otmani et al. 2020).

Like European countries and other Asian countries, India is also blessed with good air quality after 24th March 2020 (Mahato et al. 2020; Gautam 2020a; CPCB, 2020; Mate et al. 2020; Mitra et al. 2020; Lau et al. 2020). Sharma et al. 2020 also noticed remarkable positive modifications of air quality (CO\textsubscript{2}, SO\textsubscript{2}, NO\textsubscript{2}, O\textsubscript{3}, PM2.5 and PM10) during March and April 2020 across the 22 cities in India than the same time period in 2017. Same result has been found by Bera et al. 2020 in Kolkata, West Bengal, where the pollutants like CO, SO\textsubscript{2}, NO\textsubscript{2}, PM2.5 and PM10 are significantly decreased during lockdown compared with previous three years because of complete stop of vehicle movement, burning of biomass and dust particles from construction works.

The long-term lockdown system diminishes the materialistic consumption and energy usage as per Jribi et al., 2020. Eroglu, 2020 noticed prominent decline in utilization of coal consumption during the first half of 2020 in comparison with the past years. Presently, as the country is passing through lockdown phase, the industrial and transport activities are paused, reduces the concentration of CO, SO\textsubscript{2}, NO\textsubscript{2}, PM2.5 and PM10 in the atmosphere of industrial and most polluted city like Asansol, which is also a part of Raniganj Coalfield area.

From the environmental point of view lockdown is very much effective for air quality, but, in case of economic point of view of a country, it is not suggestable. So, for sustainable management of air quality, plants help us a lot, because they are the principal recipient of different types of air pollutants and act as a sink (Kaur and Nagpal, 2017). Salih et al. 2017 identified some plant species (Ficus bengalensis - Banyan, Psidium guajava - Guava, Mangifera indica - Mango, Hibiscus rosa-sinensis - China rose,
Bougainvillea spectabilis - Bougainvillea,
Neolamarkia cadamba - Kadam/ Burfower tree,
Ficus religiosa - Peepul,
Cascabela thevetia - Yellow oleander,
Cassia siamea - Cassod tree,
Ricinus communis - Castor oil plant,
Eucalyptus globus - Southern blue gum,
Azadirachta indica - Neem) which has high absorption capacity of specific pollutants. The improvement of green envelop by plantation of tolerant species can combat air pollution of this particular industrial zone. The selection of plant species (based on tolerance level) is a principal factor for the mitigation of urban air pollution. Choudhury and Banerjee 2009 indicated as per APTI (Air Pollution Tolerant Index) values of some plants like **Mangifera indica** (Mango),
Azadirachta indica (Neem),
Ficus benghalensis (Banyan),
Psidium guayava (Guava),
Eucalyptus (Eucalyptus),
Alstonia scholaris (Chattiyan),
Butea monosperma (Palash),
Moringa oleifera (Sajina),
Dalbergia sisoo (Sissoo),
Artocarpus heterophyllus (Jackfruit),
Hibiscus rosasinensis (Jaba),
Calotropis gigantia (Akanda),
Ricinus communis (Bheranda),
Murraya paniculata (Kamini),
Citrus aurantium (Nebu),
Aegle marmelos (Beal),
Ixora coccinea (Rangan),
Nerium indicum (Karabi),
Tamarindus indicus (Tentul),
Thevetia peruviana (Korubi) and **Tabernaemontana divaricata** (Tagar) are tolerant species in Asansol and can be used as greenbelt development in this area.

Conclusion

This study investigates for better insight of COVID-19 and how current lockdown effects the various parameter like CO, SO$_2$, NO$_2$, PM2.5 and PM10 which is responsible for air pollution. The improvement of air quality opened our eye to the magnitude of damage caused by unregulated anthropogenic activities in the city. There is a chance that when the lockdown period is over environmental pollution can be back with more pace so human effort towards saving the environment can do everlasting effect. Strict implementation of environmental related laws along with mass awareness should be followed to eco-restore the city atmosphere.

Declarations

Acknowledgement

The authors are grateful to the Central Pollution Control Board (CPCB), Govt. of India, for providing necessary data related with air quality changes in Asansol of before and after of the lockdown period. The authors would also like to acknowledge the European Space agency (ESA), USA and National Aeronautics and Space Administration (NASA).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Compliance with Ethical Standards

Conflicts of Interest - The authors declare no conflicts of interest.
Ethics Approval - No ethical (human or animal) approval was required to conduct the study.

Funding - Not applicable

Consent to Participate - Not applicable.

Code Availability - Not applicable.

References

Arabi YM, Deeb AM, Al-Hameed F, Mandourah Y, Almekhlafi GA, Sindi AA, AlOmar A, Shalhoub S, Mady A, Alraddadi B, Amotairi AA, Khatib K, Abdulmomen A, Qushmag I, Solaiman O, Al-Aithan AM, Al-Raddadi R, Ragab A, AA, Kharaba A, Jose J, Dabbagh T, Fowler RA, Balkhy HH, Merson I, Hayden FG (2019) Saudi critical care trials group. Macrolides in critically ill patients with Middle East Respiratory Syndrome. Int J Infect Dis 81:184–190.

Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA (2020) Insight into the recent 2019 novel coronavirus (SAR-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9 (3): E186.

Banerjee D, Agarwalla NL (2006) Dispersion Modelling for a Chemical Manufacturing Plant. Indian J Air Pollut Control 6 (1): 29-39.

Banerjee D et al. (2005) Analysis of air quality in Asansol City. Environ Pollut Control J 8 (6): 54-60

Bera B, Bhattacharjee S, Shit PK, Sengupta N, Saha S (2020) Significant impacts of COVID-19 lockdown on urban air pollution in Kolkata (India) and amelioration of environmental health. Environ Dev Sustain https://doi.org/10.1007/s10668-020-00898-5

Burnett RT, Stieb D, Brook JR, Cakmak S, Dales R, Raizenne M, Vincent R, Dann T (2004) Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities. Arch Environ Health 59: 228–236.

Choudhury P, Banerjee D (2009) Biomonitoring of Air Quality in the Industrial Town of Asansol using the Air Pollution Tolerance Index Approach. Res J Chem Environ Vol. 13: (1).

CPCB (2020) Impact of lockdown (25th March to 15th April) on air quality. Ministry of Environment, Forest and Climate Change, Govt. of India, Delhi, 1–62. https://cpcb.nic.in/latest-cpcb.php

Das K, Patial B (2020) The synergy between philosophy and science, need of the contemporary society. Int J Humanities Soc Sci Res 6 (1): 45–51.

Tyrrell DAJ, Almeida JD, Berry DM, Cunningham CH, Hamre D, Hofstad MS, Mallucci L and McIntosh K (1968) Coronaviruses. Nature 220: 650.
Dey M (2013) A Contingent Valuation Approach to Estimate the Maximum Willingness-to-pay for Improved Air Quality in Asansol, Industrial Area of West Bengal. Int J Trend Econ Manag Tech Vol. II: Issue IV.

Dong L, Hu S, Gao J (2020) Discovering drugs to treat coronavirus disease 2019 (COVID19). Drug Discov Ther 14 (1): 58–60.

Eroglu H (2020) Effects of Covid-19 outbreak on environment and renewable energy sector. Environ Dev Sustain https://doi.org/10.1007/s10668-020-00837-4.

ESA 2020a. ESA (2020) https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/ Air_pollution_drops_in_India_following_lockdown.

ESA 2020b. ESA (2020) https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/ Coronavirus_lockdown_leading_to_drop_in_pollution_across_Europe.

Gautam S (2020a) COVID-19: air pollution remains low as people stay at home. Air. Qual. Atmos. Hlth. https://doi.org/10.1007/s11869-020-00842-6.

Gautam S, Hens L (2020) SARS-CoV-2 pandemic in India: what might we expect? Environ. Dev. Sustain. 22: 3867–3869. https://doi.org/10.1007/s10668-020-00739-5

He G, Pan Y, Tanaka T (2020a) COVID-19, City Lockdown, and Air Pollution: Evidence from China. MedRxiv, 2020.03.29.20046649. https://doi.org/10.1101/ 2020.03.29.20046649

He L, Zhang S, Hu J, Li Z, Zheng X, Cao Y, Xu G, Yan M, Wu Y (2020b) On-road emission measurements of reactive nitrogen compounds from heavy duty diesel trucks in China. Environ Pollut 262: 114280. https://doi.org/10.1016/j.envpol.2020.114280.

He MZ, Kinney PL, Li T, Chen C, Sun Q, Ban J et al. (2020c) Short- and intermediate-term exposure to NO2 and mortality: a multi-county analysis in China. Environ Poll 261: 114165. https://doi.org/10.1016/j.envpol.2020.114165.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Huang X, Ding A, Gao J, Zheng B, Zhou D, Qi X, et al. (2020) Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. EarthArXiv. https://doi.org/10.31223/osf.io/hvuzy.

Isaifan RJ (2020) The dramatic impact of coronavirus outbreak on air quality: has it saved as much as it has killed so far? 6 (3): 275–288. https://doi.org/10.22034/ gjesm.2020.03.01.
Jibi S, Ismai HB, Doggui D, Debbabi K (2020) COVID-19 virus outbreak lockdown: What impacts on household food wastage? Environ Dev Sustain 22: 3939–3955. https://doi.org/10.1007/s10668-020-00740-y

Kaur M, Nagpal AK (2017) Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Environ Sci Pollut R 24: 18881–18895. https://doi.org/10.1007/s11356-017-9500-9.

Kerimray A, Baimatova N, Ibragimova OP, Bukenov B, Kenessov B, Plotitsyn P, et al (2020) Assessing air quality changes in large cities during COVID-19 lockdowns: the impacts of traffic free urban conditions in Almaty, Kazakhstan Sci Total Environ 730: 1–8. https://doi.org/10.1016/j.scitotenv.2020.139179.

Koken PJ, Piver WT, Ye F, Elixhauser A, Olsen LM, Portier CJ (2003) Temperature, air pollution and hospitalization for cardiovascular diseases among elderly people in Denver. Environ Health Perspect 111 (10): 1312–1317.

Lau H, Khosrawipour V, Kocbach P, Mikolajczyk A, Schubert J, Bania J, et al. (2020) The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J Travel Med 37: 1–14. https://doi.org/10.1093/jtm/taaa037

Le Tertre A, Medina S, Samoli E, Forsberg B, Michelozzi P, Boumghar A, Vonk JM, Bellini A, Atkinson R, Ayres JG, Sunyer J, Schwartz J, Katsouyanni K (2002) Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Community Health 56: 773–779.

Li L, Li Q, Huang L, Wang Q, Zhu A, Xu J, et al. (2020) Air quality changes during the COVID19 lockdown over the Yangtze River Delta Region: an insight into the impact of human activity pattern changes on air pollution variation. Sci Total Environ 732: 1–11. https://doi.org/10.1016/j.scitotenv.2020.139282.

Mahato S, Pal S, Ghosh KG (2020) Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India Sci Total Environ 730: 139086

Mate A, Killian JA, Wilder B, Charpignon M, Awasthi A, Tambe M, et al. (2020) Evaluating COVID-19 Lockdown Policies for India: a Preliminary Modeling Assessment for Individual States. SSRN, 3575207. https://doi.org/10.2139/ssrn.3575207.

Mitra A, Chaudhuri TR, Mitra A, Pramanick P, Zaman S, Mitra A, Chaudhuri TR, Mitra A, Pramanick P; Zaman S (2020) Impact of COVID-19 related shutdown on atmospheric carbon dioxide level in the city of Kolkata. Sci Educ 6: 84–92. https://sites.google.com/site/pjsciencea.

Muhmmad S, Long X, Salman M (2020) COVID-19 pandemic and environmental pollution: a blessing in disguise? Sci Total Environ 728: 1–5. https://doi.org/10.1016/j.scitotenv.2020.138820.

NASA (2020). NASA, 2020. https://earthsky.org/earth/satellite-images-air-pollution-india-covid19.
Otmani A, Benchrif A, Tahri M, Bounakhla M, Chakir EM, Bouch MEI, Krombi M (2020) Impact of Covid-19 lockdown on PM10, SO₂ and NO₂ concentrations in Salé City (Morocco). Sci Total Environ 73: 139-541 10.1016/j.scitotenv.2020.139541

Paital B, Das K, Parida SK (2020) Inter nation social lockdown versus medical care against COVID-19, a mild environmental insight with special reference to India Sci Total Environ 728: 138914.

Sharma P, Dhar A (2018) Effect of hydrogen supplementation on engine performance and emissions. Int J Hydrog Energy 43: 7570–7580.

Sharma S, Zhang M, Gao J, Zhang H, Kota SH (2020) Effect of restricted emissions during COVID-19 on air quality in India Sci Total Environ 728: 1–8. https://doi.org/10.1016/j.scitotenv.2020.138878.

Thorpe AJ, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400: 270–282.

Tobías A, Camarero C, Reche C, Massagué J, Via M, Minguillón MC, Alastuey A, Querol X (2020) Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic Sci Total Environ 726: 138540. https://doi.org/10.1016/j.scitotenv.2020.138540.

Zhou F, Yu T, Du R, et al. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, S0140–6736(20): 30566–30573. https://doi.org/10.1016/s0140-6736(20)30566-3.

Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al., (2020). Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin BioRxiv https://doi.org/10.1101/2020.01.22.914952.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. (2020) A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382: 727–733. https://doi.org/10.1056/NEJMoa2001017.

Tables

| Table 1 Emission level of selective pollutants (monthly average) present in air before and after lockdown in Asansol City |
|---|---|---|---|---|---|
| | CO (mg/m³) | SO₂ (µg/m³) | NO₂ (µg/m³) | PM2.5 (µg/m³) | PM10 (µg/m³) |
| Before lockdown (Jan 1 - March 24) | 0.829167 | 17.4731 | 35.69976 | 79.97786 | 148.8502 |
| After lockdown (March 25 - May 31) | 0.473529 | 9.328209 | 13.06075 | 30.61821 | 68.67657 |
| Unlock Period (June 1 - July 21) | 0.444918 | 3.089508 | 7.593443 | 25.77246 | 49.54787 |
Table 2 ANOVA for the atmospheric CO, SO$_2$, NO$_2$, PM 2.5 and PM10 between months

Parameters	F- obs	F- crit
CO	28.34	2.15
SO$_2$	81.70	2.15
NO$_2$	72.02	2.15
PM2.5	76.18	2.15
PM10	66.71	2.15

Figures

Figure 1
Geographical distribution of COVID-19 cases all over India on 22nd March, 2020 (Day of JANATA CURFEW) and location of the study area (23.6730N, 86.9520E)
Figure 2

The changing trend of atmospheric CO (mg/m³) during study period.

Figure 3

The changing trend of atmospheric SO₂ (µg/m³), NO₂ (µg/m³), PM₂.5 (µg/m³) and PM₁₀ (µg/m³) during study period.
Figure 4

Decrease percentage of atmospheric CO, SO2, NO2, PM2.5 and PM10 during study period