INTRODUCTION

A burn injury of the hand can lead to devastating functional sequelae such as contracture deformities and cosmetic disfigurement. A palmar burn contracture results in joint stiffness and contracture of the metacarpophalangeal (MCP) joints, disabling hand movements. Therefore, contracture release and subsequent reconstruction procedures are performed with the primary goal of restoring the normal range of motion of the hand. However, for a successful surgical outcome, palmar burn-scar contracture release and a reconstruction procedure should be able to overcome the technical difficulty of restoring intricate palmar anatomy and functional characteristics along with preventing possible recurrence of the deformity.

The unique functional characteristics of palmar skin include its glabrous nature along with a higher number of sensory mechanoreceptors\(^1\). Also, reconstructed palmar...
skin must be durable (to withstand mechanical stress) and sensitive (to perceive delicate stimuli) and should meet the patient’s expectations cosmetically. Here, we report our experience in managing a case with a long-standing postburn contracture that we treated surgically with a release procedure integrated with adductor pollicis myotomy, K-wire insertion, and reconstruction with a sensate medial plantar free flap transfer, thereby restoring the sensitivity and durability of the palmar skin along with the pinching and grasping functions of the hand. The written informed consent for the patient’s photography was obtained.

CASE REPORT

A 53-year-old male patient presented to the clinic with a history of burn contracture on the right palm with amputations performed at the level of the proximal interphalangeal joints of all fingers. Severe scalding burn injury of bilateral hands led to amputation of the necrotic area of distal fingers when the patient was a 9-year-old. The burn contracture of the right palm had caused the MCP joints of the 3rd, 4th, and 5th fingers to be immobilized at 90° flexion, and the 1st and 2nd MCP joints were contracted and fixed at 45° flexion position (Fig. 1A). Also, the 1st metacarpal bone was completely adducted and contracted, resembling a “thumb-in-palm” deformity, usually seen in patients with cerebral palsy. The range of motion of all the right MCP joints and fingers was severely restricted. The patient was unable to perform pinching movement and grasp an object with the right hand. A preoperative hand X-ray confirmed that all the right fingers had been amputated at the level of the proximal phalangeal joint (Fig. 1B).

The damaged palmar skin was required to be replaced by a suitable alternative graft tissue that possessed good stability and had acute dermal sensitivity. For the reconstructive procedure, we chose a free medial plantar flap, which has the advantages of being a thin, sensate, and glabrous neurofasciocutaneous flap with high mechanical stability.

Under general anesthesia, the palmar contracture was released. The severely scarred areas were identified, and the fibrotic tissue adhesions were removed. The palmar aponeurosis, neurovascular tissues, and flexor tendons were preserved, while adductor pollicis myotomy was performed proximal to the muscle origin to relieve the thumb contraction. However, only the transverse head of the muscle was dissected in order to preserve its function to a certain extent (Fig. 2A). The flexed and contracted MCP joints were fixed with Kirschner wires (K-wires) in a position of full extension. The radial artery, the radial vein, and a branch of the superficial radial nerve were dissected for microvascular anastomoses. The size of the defect in the right palm was found to be 8.5×8 cm.

A medial plantar flap was elevated from the right side. We used a pencil Doppler to locate the medial plantar artery, which branches from the posterior tibial artery. We designed and performed an incision that would expose the medial plantar vessels and allow us to elevate the flap to a level that would be sufficient to cover the palmar defect. The flap was elevated from the non-weight bearing surface of the foot, from over the medial edge of the plantar aponeurosis at the point where the perforators

Fig. 1. Preoperative (A) clinical photograph and (B) radiograph of the postburn palmar contracture.
emerge from the medial plantar artery. After exposing the abductor hallucis muscle and performing a transmuscular dissection, a flap containing neurovascular and fasciocutaneous components including the secured medial plantar artery, venae comitantes, and the medial plantar nerve was elevated, while the lateral plantar artery and nerve were left undisturbed (Fig. 2B, Fig. 3B). The flap size was measured to be 9×8.5 cm.

Under a microscope, the medial plantar artery was anastomosed with the radial artery using an interpositional vein graft in an end-to-side fashion. The venae comitantes of the medial plantar artery were successfully anastomosed with the cephalic vein in an end-to-end fashion using a Y-shaped interpositional vein graft, as a venous spasm had been observed while attempting to anastomose the former with the venae comitantes of the radial artery. The dissected medial plantar nerve was anastomosed with a split portion of the superficial branch of the radial nerve (Fig. 2C, Fig. 3C). Following a confirmation of the patency of its pedicle on Doppler, the flap was set in position after trimming the margin (Fig. 3D). The defect at the flap donor site was covered with split-thickness skin graft from the right thigh. An aseptic light dressing along with a static splint was applied on the right hand and forearm, and a usual tied-over dressing was performed for the right foot.

During the hospitalization, the flap was kept soft and...
warm until discharge. The postoperative course was un-
eventful and the surgical wound and the donor site healed
well. After completion of 3 postoperative weeks, the K-
wires were removed. The patient underwent daily phys-
iotherapy for rehabilitation of the MCP joints along with
the maintenance of the operated fingers in a long-stand-
ing night-splint for three months. In the 6th postoperative
month, patient could use all five right metacarpal joints
with a markedly increased range of motion (Fig. 4A).
No recurrence of the contracture was observed. He could
grasp a pen and write his name, showing a restoration of
finer hand movements (Fig. 4B). He could appreciate two
distinct stimuli separated by 7-8 mm on the static two-
point discrimination test performed on the reconstructed
palm during the 12-month follow-up, which indicates an
achievement of normal skin sensitivity.

DISCUSSION

The surgical release and reconstruction of a postburn
palmar contracture is particularly challenging. The pro-
cedure aims at not only resolving the MCP joint contract-
tures and preventing their possible recurrence, but also
at restoring the functional neurovascular tissues and at
preserving the adductor pollicis tendon along with the
functional tendons of other digital muscles, to regain
hand dexterity. The resurfaced palm should be able to
achieve prompt tactile gnosis in response to external skin
stimuli. Lastly, the restored integument should be char-
acteristically thin but resistant to pressure and shearing
forces, a requirement for using any tools effectively with
the remodeled palm.

The palmar skin has many unique features such as a
hairless integument, which protects underlying structures,
and the presence of a durable fibrous septum connecting
the skin and subcutaneous fat, thus enabling the per-
formance of repetitive grasping and gripping motions.\(^1\)
These unique characteristics emphasize the necessity of
reconstructing palmar skin with structurally similar tissue
following the scar tissue excision.\(^3\) Restoring the func-
tionality of the hand depends not only on the donor-tissue
enabling a smooth gliding motion of tendons during
muscle movements but also on it being able to match the
surface-level sensitivity of the original palmar skin. The
recovery of sensation is especially essential for an earlier
rehabilitation of overall hand function.

The medial plantar flap bears a structural similarity
to palmar tissue and offers many advantages when uti-
лизирован for its reconstruction. The medial plantar skin is
also glabrous, thin, and has high mechanical stability.
Moreover, the medial plantar flap depends on the medial
plantar neurovascular pedicle and can therefore be uti-
лизирован as a free and sensate flap during the transfer. This
enables the reconstructed palm to retain acuity of sensa-
tion as compared to its preoperative state, and a speedy
recovery of the tactile sense shortens the rehabilitative
duration required to resume activities of daily living.\(^4\)
Previous reports on the static two-point discrimination
test performed over a sensate medial plantar flap fol-
lowing palmar reconstruction found that the patients
achieved perfect scores (7-8 mm), showing an attain-
ment of precise dermal sensitivity, as seen in this case
(at the 12-month follow-up), in which the medial plantar
nerve was anastomosed to the superficial branch of radial
nerve.\(^3\) Moreover, a medial plantar flap elevation does
not significantly impede the vascular and neural supply

![Fig. 4. Clinical photos taken at 6 months postoperatively. (A) Release of postburn palmar contracture and successful coverage with free medial plantar sensate flap. (B) Finer hand function restored as demonstrated by the patient grasping a pen and writing.](https://www.handmicro.org)
over the foot, as the technique excludes the lateral plantar nerve and artery. These continue supply to the weight bearing portions of the foot, thereby incurring low morbidity at the donor site. The size of the medial plantar free flap is limited to 9×10 cm as it is harvested from the non-weight-bearing plantar arch. If required, it is possible to extend the size by combining it with a medialis pedis flap for covering a larger palmar soft tissue defect. If required, it is possible to extend the size by combining it with a medialis pedis flap for covering a larger palmar soft tissue defect. Our patient had flexion contractures of all MCP joints of the affected right palm along with an adduction of the first MCP joint across the palm due to the severely diminished 1st webspace. The resultant malformation mimicked the “thumb-in-palm” deformity seen in cerebral palsy patients. Therefore, a myotomy was performed solely on the transverse head of the adductor pollicis muscle to preserve a pinching movement which would have been be weaker with a complete myotomy.

We inserted K-wires through the MCP joints to preserve them in the released state. Following a contracture release, there can be a gradual shortening of the aponeurosis, the flexor tendons, and the neurovascular structures leading to a recurrence of the deformity. To avoid this relapse, immobilization of the released joints during the postoperative period (using K-wires) is mandatory. The stabilization of the extended joints with K-wires helps maintain the corrected position of the structures and ensures a satisfactory take of the transferred medial plantar free flap. The K-wires were removed 3 weeks after the operation, and a night splint was applied for a further 3-month duration to sustain the corrected positioning.

In this case, a 44-year-old palmar postburn contracture with a resultant deformity of the inner-hand structures that had worsened due to the natural growth since sustaining the injury, was successfully managed with a release and reconstruction surgery. The postsurgical immobilization of the operated MCP joints in full extension may have acted as an internal splint and maintained the released tissues and joints in a stretched position. Surprisingly, we were able to restore the patient’s skillful hand movements and the palmar acute sensory function with delicate contracture release combined with an adductor pollicis myotomy, K-wire insertion procedures, and an analogous, sensate medial plantar free flap transfer. However, further studies and applications of this unique combination of techniques is needed to establish the validity of our surgical approach. Our successful experience suggests that this approach may have further applications in the treatment of old postburn palmar contractures.

CONFLICTS OF INTEREST

The authors have nothing to disclose.

REFERENCES

1. Ninkovic MM, Schwabegger AH, Wechselberger G, Anderl H. Reconstruction of large palmar defects of the hand using free flaps. J Hand Surg Br. 1997;22:623-30.
2. Engelhardt TO, Rieger UM, Schwabegger AH, Pierer G. Functional resurfacing of the palm: flap selection based on defect analysis. Microsurgery. 2012;32:158-66.
3. Ninković M, Wechselberger G, Schwabegger A, Anderl H. The instep free flap to resurface palmar defects of the hand. Plast Reconstr Surg. 1996;97:1489-93.
4. Kuran I, Turgut G, Bas L, Ozkan T, Bayri O, Gulgonen A. Comparison between sensitive and nonsensitive free flaps in reconstruction of the heel and plantar area. Plast Reconstr Surg. 2000;105:574-80.
5. Chai YM, Wang CY, Wen G, Zeng BF, Cai PH, Han P. Combined medialis pedis and medial plantar fasciocutaneous flaps based on the medial plantar pedicle for reconstruction of complex soft tissue defects in the hand. Microsurgery. 2011;31:45-50.
6. Yavari M, Ghazisaidi MR, Hoseini Zahmatkesh S, Jahadi R. Comparison of sole to palm reconstruction using the combined medial plantar and medial pedis free flaps and abdominal pedicle flap for extensive palm injuries. Acta Med Iran. 2010;48:214-7.
7. Van Heest AE. Surgical technique for thumb-in-palm deformity in cerebral palsy. J Hand Surg Am. 2011;36:1526-31.
8. Azar FM, Beaty JH, Canale ST. Campbell’s operative orthopaedics. 13th ed. Elsevier; 2016. 3650-2.
9. Sungur N, Ulusoy MG, Boyacgil S, et al. Kirschner-
wire fixation for postburn flexion contracture deformity and consequences on articular surface. Ann Plast Surg. 2006;56:128-32.

10. Saraiya H. Is 20 years of immobilization, not sufficient to render metacarpophalangeal joints completely useless? - correction of a 20-year old post-burn palmar contracture: a case report. Burns. 2001;27:192-5.
내측족저 피판 및 무지내전근 근절제술을 이용한 손바닥 화상 구축의 치료

구인회 · 정의철
서울대학교 의과대학 성형외과학교실

손바닥 피부 및 연부조직에 발생한 화상 후 구축은 수부운동기능의 심각한 손상을 야기한다. 수술적 교정 시에는 중수지 관절의 관절운동범위 개선을 시키고 조직 결손 부위를 손바닥의 특이적인 해부학적 구조와 유사한 조직으로 대체할 수 있어야 한다. 저자는 우측 수부의 종수지 관절 및 손바닥 연부조직에 발생한 화상 후 구축을 주소로 내원한 53세 남성에 대해 구축완화술, 무지내전근 근절제술, 유리감각 내측족저 피판술을 시행하였다. 이후 환측 손바닥은 높은 내구성과 평활 피부의 특성을 갖는 피판으로 재건되었고 예민한 감각기능을 회복하였으며 중수지 관절의 관절운동범위를 개선시킬 수 있었다. 동시에 무지내전근 근절제술로 내전 구축되어 있던 무지의 변형을 해소하였으며 ‘집기’와 ‘잡기’가 가능하게 되어 정교한 수부 기능을 회복하였음을 보고하는 바이다.

색인단어: 피판술, 수부, 화상, 구축

접수일 2019년 2월 28일 수정일 2019년 4월 25일 게재확정일 2019년 6월 3일
교신저자 정의철
07061, 서울시 동작구 보라매로5길 20, 서울대학교병원영서울특별시보라매병원 성형외과
TEL 02-870-2331 FAX 02-831-2826 E-mail ecjeong@snu.ac.kr
ORCID https://orcid.org/0000-0003-2434-875X