Complete mitochondrial genome of *Zeugodacus tau* (Insecta: Tephritidae) and differentiation of *Z. tau* species complex by mitochondrial cytochrome c oxidase subunit I gene

Hoi-Sen Yong¹, Sze-Looi Song²*, Phaik-Eem Lim²*, Praphathip Eamsobhana³

¹ Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, ² Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia, ³ Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

* szelooi@um.edu.my (SLS); phaikeam@um.edu.my (PEL)

Abstract

The tephritid fruit fly *Zeugodacus tau* (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of *Z. tau* from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of *Z. tau* taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of *Z. tau* had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, *Z. tau* NC_027290 (China) and *Z. tau* ZT1 (China) formed a sister group in the lineage containing also *Z. tau* ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of *cox1* gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and *Z. tau* sp. A from Thailand belong to *Z. tau* sensu stricto. A complete *cox1* gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship.

Introduction

Zeugodacus tau (Walker) is the most common tephritid fruit fly species of the genus *Zeugodacus* found in Southeast Asia [1]. It is among the economically important species belonging to the Dacinae subfamily, occurring from Pakistan to Philippines and south to Indonesia [2]. It is a polyphagous fruit pest, infesting host fruits of the families Anacardiaceae, Cucurbitaceae, Elaeocarpaceae, Moraceae, Myrtaceae, Oxalidaceae, Rutaceae, Sapotaceae, and Solanaceae [3–7]. The adult male flies are attracted to Cue lure.

Studies based on cytogenetics, partial sequences of mitochondrial cytochrome c oxidase subunit I (*cox1*) gene and allozymes have revealed that *Z. tau* (previously referred to as
Bactrocera tau (Walker)) is a species complex comprising eight species (or morphs) in Thailand, with species A designated as Z. tau sensu stricto [8–10]. Z. tau A may be reliably separated from Z. tau B, C, D, E, F, G, and I by the heat shock protein 70 cognate gene BthsC1 [11].

Phylogenetic analysis using mitochondrial cox1 gene sequences revealed that the Z. tau population in Himachal Pradesh (India) is closely related to Z. tau sp. A from Thailand [12]. The overall genetic variability in this Indian taxon is substantial, with 10 different haplotypes detected in 16 individuals. A study of 23 Z. tau populations (Myanmar and western Yunnan; Laos and southern Yunnan; Thailand; southern China, central China and northern Vietnam; and southwestern China), based on mitochondrial NADH dehydrogenase gene (nad1), revealed six genetic groups corresponding to geographical characteristics, and strong genetic structure for the populations in western China, Thailand, and Laos [13]. Z. tau in China has also been reported to exhibit seven cytochrome b haplotypes (NCBI GenBank 26-JUL-2016: AY953491-AY953497).

To date, there is only a single report on the complete mitochondrial genome (mitogenome) of Z. tau [14]. The taxon is from Shenzhen, China. We report here the complete mitogenome of Z. tau from Malaysia and compare it to that of China as well as the mitogenome of other congener. We also carry out phylogenetic analysis using cox1 gene to determine the relationship of Z. tau taxa from different geographical regions.

Materials and methods

Specimen collection and mitochondrial DNA extraction

Male fruit flies of Z. tau were collected in Malaysia (Kuala Lumpur–3.1390˚N, 101.6869˚E) and China (Zhuhai, Guangdong–22.2710˚N, 113.5767˚E) by means of Cue lure according to the method of Yong et al. [15]. The specimens were preserved in absolute ethanol and stored in -20˚C freezer until use. Z. tau is an insect pest. It is not endangered or protected by law. No permits are required to study this fruit fly. The extraction of mitochondrial DNA was according to the method of Yong et al. [16].

Library preparation, genome sequencing and analysis

Sample and library preparation (using Nextera DNA Sample Preparation Kit), genome sequencing using the Illumina MiSeq Desktop Sequencer (2 × 150 bp paired-end reads) (Illumina, USA), and genome analysis were as described in Yong et al. [15–16]. The mitogenome sequences have been deposited in GenBank–accession number MF966383 (ZT1) and MF966384 (ZT3).

Mitogenomes and cytochrome c oxidase subunit I sequences from GenBank

The complete mitogenomes of Tephritidae available from GenBank (Table 1) were used for phylogenetic comparison. Species of Drosophila–D. incompta Wheeler & Takada NC_025936 [17]; D. melanogaster Meigen NC_024511 (unpublished); and D. yakuba Burla NC_001322 [18]–were used as outgroup taxa. Representative cox1 sequences of Z. tau from different geographic regions were used for reconstruction of phylogenetic tree.

Phylogenetic analysis

Alignment of nucleotide sequences and reconstruction of phylogenetic trees based on 15 mt-genome and cytochrome c oxidase subunit I gene sequences followed that described in Yong et al. [26].
Results

Mitogenome features

The raw/final sequencing reads produced by next-generation sequencing on Illumina MiSeq Sequencer were 3286014/3205571 for \(Z. \) tau ZT3 (Malaysia) and 3191750/3113181 for \(Z. \) tau ZT1 (China).

The complete mitogenome of \(Z. \) tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop) (Table 2, Fig 1, S1 and S2 Tables). The control region was flanked by \(rrnS \) and \(trnI \) genes respectively, with 745 bp in \(Z. \) tau ZT3 and 946 bp in \(Z. \) tau ZT1. It contained a long polyT-stretch of 14 bp in \(Z. \) tau ZT3 and 19 bp in \(Z. \) tau ZT1. It also contained in both taxa a long poly A-stretch (20 bp) after ‘ATAGA’ motif.

There were 16 intergenic regions with spacing sequence and 9 regions with overlaps in both \(Z. \) tau ZT3 and \(Z. \) tau ZT1. The region between \(trnR \) and \(trnN \) genes in both taxa was separated by the largest sequence of 34 bp. This sequence had clear stem–loop structures.

\(Z. \) tau ZT3 and \(Z. \) tau ZT1 had identical start/stop codons for the 13 PCGs (Table 2, S1 and S2 Tables). Of the start codons, the commonest was ATG (in 6 PCGs—\(\text{cox2} \), \(\text{atp6} \), \(\text{cox3} \), \(\text{nad4} \), \(\text{nad4l} \), \(\text{cob} \)), followed by four ATT (\(\text{nad2} \), \(\text{atp8} \), \(\text{nad5} \), \(\text{nad6} \)), two ATA (\(\text{nad3} \), \(\text{nad1} \)) and one

Table 1. Complete mitogenomes of Tephritidae available from GenBank.

Taxon	Accession no	Reference
Bactrocera arecae (Hardy & Adachi)	NC_028327	[15]
Bactrocera carambolae Drew & Hancock	NC_009772	Unpublished
Bactrocera correcta (Bezzi)	NC_018787	Unpublished
Bactrocera dorsalis (Hendel)	NC_008748	Unpublished
Bactrocera dorsalis (Hendel) (= papayae Drew & Hancock)	NC_009770	Unpublished
Bactrocera dorsalis (Hendel) (= philippinensis Drew & Hancock)	NC_009771	Unpublished
Bactrocera dorsalis (Hendel) (= invadens Drew, Tsuru & White)	NC_031388	[19]
Bactrocera latifrons (Hendel)	NC_029466	[20]
Bactrocera melastomatos Drew & Hancock	NC_029467	[20]
Bactrocera riteimai (Weyenbergh)	MF668132	Unpublished
Bactrocera tryoni (Froggatt)	NC_014611	[21]
Bactrocera umbrosa (Fabricius)	NC_029468	[20]
Bactrocera zonata (Saunders)	NC_027725	[22]
Bactrocera (Daculus) olae (Rossi)	NC_005333	[23]
Bactrocera (Tetradacus) minax (Enderlein)	NC_014402	Unpublished
Zeugodacus caudatus (Fabricius) Malaysia	KT625491	[24]
Zeugodacus caudatus (Fabricius) Indonesia	KT625492	[24]
Zeugodacus cucurbitae (Coquillett)	NC_027254	Unpublished
Zeugodacus depressus Shiraki	KY131831	[25]
Zeugodacus diaphorus (Hendel)	NC_028347	[26]
Zeugodacus scutellatus (Hendel)	NC_027254	Unpublished
Zeugodacus tau (Walker)	NC_027290	[14]
Ceratitis capitata (Wiedemann)	NC_000857	[27]
Ceratitis fasciventrinis (Bezzi)	KY436396	[28]
Dacus longicornis Wiedemann	NC_032690	[29]
Anastrepha fraterculus (Wiedemann)	NC_034912	[30]
Procecidochares utilis Stone	NC_020463	Unpublished

https://doi.org/10.1371/journal.pone.0189325.t001
TCG (cox1). Nine PCGs had a TAA stop codon (nad2, cox2, atp8, atp6, cox3, nad3, nad4, nad4l, nad6), one had TAG (cob), and three had truncated T stop codon (cox1, nad5, nad1).

The nucleotide compositions of the mitochondrial whole genome, protein-coding genes, rRNA genes and control region of Z. tau ZT3 and Z. tau ZT1 are summarized in S3 and S4 Tables. Both were A+T rich as expected for mitochondrial genomes. The A + T content for PCGs was lowest in cox3 (64.8% for Z. tau ZT3, and 64.6% for Z. tau ZT1) and highest in

Gene	Size (bp)	Size (bp)	Size (bp)	Intergenic sequence (bp)	Start/stop codons
	NC_027290	ZT1	ZT3	NC_027290:ZT1:ZT3	NC_027290:ZT1:ZT3
trnI	66	66	66	-3:-3:-3	
trnQ	69	69	69	8:8:8	
trnM	69	69	69	8:8:8	
trnW	68	68	68	-9:-8:-8	
trnC	66	66	66	-1:-1:-1	
trnY	67	67	67	-2:-2:-2	
cox1	1534	1534	1534	All: TCG/T	
trnL2	66	66	66	4:4:4	
cox2	690	690	690	5:5:5	
trnK	71	71	71	All: ATG/TAA	
trnD	67	67	67	All: ATG/TAA	
atp8	162	162	162	-7:-7:-7	
atp6	678	678	678	-1:-1:-1	
cox3	789	789	789	All: ATG/TAA	
trnG	65	65	65	-3:-3:-3	
nad3	357	357	357	All: ATA/TAA	
trnA	66	66	66	4:4:4	
trnR	64	64	64	34:34:34	
trnN	65	65	65	All: ATG/TAA	
trnS1	68	68	68	34:34:34	
trnE	68	68	68	18:18:18	
trnF	66	66	66	All: ATG/T	
nad5	1720	1720	1720	All: ATG/T	
trnH	65	65	65	All: ATG/T	
nad4	1341	1341	1341	All: ATG/T	
nad4l	297	297	297	All: ATG/T	
trnT	65	65	65	All: ATG/T	
trnP	66	66	66	2:2:2	
nad6	525	525	525	All: ATG/T	
cob	1137	1137	1137	All: ATG/TAG	
trnS2	67	67	67	All: ATG/TAG	
nad1	1020	940	940	All: ATG/T	
trnL1	65	65	65	All: ATG/T	
rmL	1327	1327	1327	All: ATG/T	
trnV	72	72	72	All: ATG/T	
rmS	792	792	792	All: ATG/T	
Control region	801	946	745		
Total size	15687	15835	15631		

https://doi.org/10.1371/journal.pone.0189325.t002

Phylogenetics of Zeugodacus tau species complex

Table 2. Gene order and features of mitochondrial genome of Zeugodacus tau. NC_027290 (China), ZT1 (China), ZT3 (Malaysia).
Fig 1. Complete mitogenomes of Zeugodacus tau ZT3 and Z. tau ZT1 with BRIG visualization showing the protein-coding genes, rRNA and tRNA genes. GC skew is shown on the outer surface of the ring whereas GC content is shown on the inner surface. The anticodon of each tRNAs is shown in bracket.

https://doi.org/10.1371/journal.pone.0189325.g001
nad4l (79.8% for Z. tau ZT3, and 80.1% for Z. tau ZT1). The A + T content of the non-coding control region was 83.5% for Z. tau ZT3 and 85.0% for Z. tau ZT1. For the two ribosomal operons, rrnL had a higher A + T content than rrnS (79.7% vs 74.7% for Z. tau ZT3, and 79.6% vs 74.6% for Z. tau ZT1). The GC skew content which included the whole genome, PCGs, rRNA genes and control region in the two taxa was negative indicating a bias toward the use of Cs over Gs. Although the AT skewness value was positive for the whole genome, rRNA genes and control region, it was variable in the individual PCGs.

As in other insects, the mitogenomes of Z. tau ZT3 and Z. tau ZT1 had three main tRNA clusters: (1) I-Q-M; (2) W-C-Y; and (3) A-R-N-S1–E–F (Fig 1). The cloverleaf structure for the respective tRNAs was similar in Z. tau ZT3 and Z. tau ZT1. The TψC-loop was absent in trnF while trnS1 lacked the DHU-loop (S1 and S2 Figs).

Phylogenetic relationship and genetic divergence

Fig 2 depicts the molecular phylogeny of Z. tau in relation to other congeners and other taxa of the Tephritidae based on 15 mt-genes (13 PCGs + 2 rRNA genes). The phylogram based on 13 PCGs was congruent with that based on 15 mt-genes. Most of the nodes were well-supported.

Fig 2. Maximum likelihood and Bayesian inference tree based on 15 mt-genes (13 PCGs and 2 rRNA genes) of the whole mitogenome of *Zeugodacus tau* and other Tephritid fruit flies with *Drosophila* as outgroup. Numeric values at the nodes are ML bootstrap or Bayesian posterior probabilities. The total nucleotide sequences of 15 mt-genes was 13,377 bp with AIC model = GTR+Gamma and BIC model = SYM+Gamma.

https://doi.org/10.1371/journal.pone.0189325.g002
Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). The genus Zeugodacus was monophyletic and formed a clade with Dacus longicornis.

The phylogenetic relationship of some of the component taxa of genus Bactrocera was not congruent between ML and BI analyses (Fig 2). For example, ML analysis indicated B. melastomatos to be a member of the B. dorsalis complex, but in BI analysis it was basal to the other taxa of subgenus Bactrocera. Nonetheless, the genus Bactrocera was monophyletic.

Phylogenetic analysis based on partial cox1 sequences from bp 50–700 indicated that the Z. tau taxa from China, Bangladesh, India (Meghalaya, north of Bangladesh) and Malaysia formed a clade with several haplotypes (Fig 3). The uncorrected genetic distance ranged from 'p' = 0 to ‘p’ = 0.72% (S5 Table).

Based on the partial cox1 sequence from bp 900–1500, the Z. tau taxa from India, Sri Lanka, Malaysia, Laos, China and Japan formed a clade with Z. tau sp. A from Thailand (Fig 4), with uncorrected genetic distance ranging from ‘p’ = 0% to ‘p’ = 1.39% (S6 Table). This clade was distinctly different from Z. tau sp. B, C, D, E, F, G, and I from Thailand, with uncorrected genetic distance ranging from ‘p’ = 9.03% to ‘p’ = 14.06% (S6 Table).

Haplotype diversity and nucleotide diversity

Twelve haplotypes were revealed in the present 18 cox1 sequences (from bp 50–700) of Z. tau from four geographical regions (China, Malaysia, Bangladesh and India) (Fig 5). A common haplotype was found in China (3 sequences), Bangladesh (2 sequences) and India (1 sequence). The haplotype/gene diversity was 0.8954 ± 0.0653, and the nucleotide diversity was 0.0033 ± 0.0022.

Sixteen haplotypes were revealed in the 22 cox1 sequences (from bp 900–1500) of Z. tau sensu stricto from six geographical regions (China, Laos, Malaysia, India, Sri Lanka, and Thailand sp. A) (Fig 6). A common haplotype was found in China (2 sequences), Japan (1 sequence), India (1 sequence) and Sri Lanka (1 sequence). Another haplotype was common to Malaysia (2 sequences) and India (1 sequence). The haplotype/gene diversity was 0.9437 ± 0.0372, and the nucleotide diversity was 0.0056 ± 0.0034. Z. tau sp. B, C, D, E, F, G and I from Thailand formed a distinct cluster from Z. tau sensu stricto, and each was represented by a distinct haplotype. The haplotypes of Z. tau F and Z. tau B had a small difference of 4 bp.

Fig 3. Bayesian inference and maximum likelihood tree based on partial sequence from bp 50–700 of mitochondrial cox1 gene of Zeugodacus tau with Bactrocera dorsalis and B. carambolae as outgroup. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

https://doi.org/10.1371/journal.pone.0189325.g003
Discussion

The genus Zeugodacus is represented by 52 named and some 19 unnamed species [31]. To date, the complete mitogenome has been reported for seven taxa—Z. caudatus Malaysia, Z. caudatus Indonesia, Z. cucurbitae, Z. depressus, Z. diaphorus, Z. scutellatus and Z. tau (China).

Fig 4. Bayesian inference and maximum likelihood tree based on partial sequence from bp 900–1500 of mitochondrial cox1 gene of Zeugodacus tau with Bactrocera dorsalis and B. carambolae as outgroup. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

https://doi.org/10.1371/journal.pone.0189325.g004

Fig 5. Haplotype network of Zeugodacus tau based on cytochrome c oxidase subunit I (cox1) sequences (from bp 50–700) generated by NETWORK software. Circles represent haplotypes and numbers within the circle represent individuals sharing the specific haplotype.

https://doi.org/10.1371/journal.pone.0189325.g005
Molecular studies indicate that *Z. caudatus* Malaysia and *Z. caudatus* Indonesia are sibling species [24,32], and *Z. tau* in Thailand consists of eight species [8–10].

The gene order of *Z. tau* mitogenome conforms to other *Zeugodacus* and other tephritid mitogenomes [15,20,24,25,28–30]. The mitogenome of *Z. tau* ZT3 (Malaysia) is shorter than that of *Z. tau* ZT1 (China) and *Z. tau* NC_027290 (China), while *Z. tau* ZT1 is longer than *Z. tau* NC_027290 (Table 2). The difference in the total size of the mitogenome is due mainly to the length of the control region—745 bp for *Z. tau* ZT3, 946 bp for *Z. tau* ZT1 and 801 bp for *Z. tau* NC_027290 (Table 2).

There are differences in the spacing/overlap sequence in some intergenic regions among *Z. tau* mitogenomes: -1 bp in *Z. tau* NC_027290 between *trnC* and *trnY* versus 1 bp in *Z. tau* ZT3 and *Z. tau* ZT1 (Table 2).

The difference in size of the *nad1* gene (1020 bp in *Z. tau* NC_027290, and 940 bp in *Z. tau* ZT1 and *Z. tau* ZT3) and the stop codon (TAA in NC_027290 and incomplete T in ZT1 and ZT3) can be attributed to annotation of the intergenic space between *trnS2* and *nad1* genes (overlap of 65 bp in NC_027290 and spacing sequence of 15 bp in ZT3 and ZT1); this intergenic space is 15 bp in most of the *Zeugodacus* taxa. Incomplete stop codons have been reported in other taxa of tephritid fruit flies [15,20,24]. The incomplete stop codons can be converted to TAA by post-translational polyadenylation [33].

A long poly-A stretch of 20 bp is present in the control region after 'ATAGA' motif in the Malaysian and China taxa of *Z. tau*. In addition, a long poly-T stretch is present in the control...
region of *Z. tau* ZT3 (14 bp) and *Z. tau* ZT1 (19 bp); this poly-T stretch is not present in *Z. tau* NC_027290.

In both *T. tau* ZT3 and *Z. tau* ZT1, the TΨC-loop was absent in *trnF* while *trnS1* lacked the DHU-loop (*S1* and *S2* Figs). The TΨC-loop and DHU-loop of tRNA act as special recognition site during protein biosynthesis or translation [34–36]. It has been reported that misacylation of tRNA can affect the survivability of an organism [36]. However, deviant tRNA secondary structures are frequent in Arthropoda [37].

The mitochondrial *cox1* gene has been commonly used for differentiation of various taxa of *Z. tau* [9,12,38–46]. In the present study based on partial sequences of *cox1* gene (Figs 3–6), the *Z. tau* taxa showed several haplotypes. The taxa from China, Japan, Laos, Malaysia, Bangladesh, India, and Sri Lanka were genetically similar to *Z. tau* sp. A from Thailand, with 'p' = 0–1.39% (*S5* and *S6* Tables). As Fuzhou (Foochow), Fujian, China is the type locality of *Z. tau*, the taxa from various geographical regions that grouped with those from China can be designated as *Z. tau* sensu stricto. Although many taxa had been included for comparison, none were similar to any of the *Z. tau* sp. B, C, D, E, F, G, and I reported from Thailand. Among the *Z. tau* taxa from Thailand, the genetic distance between *Z. tau* F and *Z. tau* B was 'p' = 0.69% (*S6* Table) with haplotype difference of 4 bp (Fig 6), indicating that these two taxa may be conspecific.

In the present study based on partial *cox1* sequences, *Z. tau* ZT1 (China) and *Z. tau* NC_027290 (China) were not closely related to each other compared to *Z. tau* ZT3 (Malaysia) (Figs 3 and 4). This differs from their closer relationship based on complete *cox1* gene (*S3* Fig) and 15 mt-genes (Fig 2). A complete *cox1* gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is therefore more appropriate for determining phylogenetic relationship.

At the higher-level phylogeny, the phylogenetic analysis indicated that *Anastrepha fraterculus* (Tribe Toxotrypanini) of subfamily Trypetinae was grouped with Tribe Dacini of Dacinae, while *Procecidochares utilis* (Tribe Ceceidocharini) of subfamily Trypetinae was basal to the clade containing Dacinae and *A. fraterculus* (Fig 2). This discrepancy may be due to insufficient taxon sampling. A broader taxa sampling, particularly Trypetinae, is needed to better elucidate the higher-level phylogeny of the tribes and subfamilies of Tephritidae.

In summary, we have successfully sequenced the complete mitogenome of *Z. tau* from Malaysia and China and confirmed that they were conspecific. Based on partial *cox1* sequences, the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and *Z. tau* sp. A from Thailand are conspecific and belong to *Z. tau* sensu stricto. The mitogenome will prove useful for studies on phylogenetics and systematics of fruit flies of the *Z. tau* species complex and other taxa of Tephritidae.

Supporting information

S1 Fig. Cloverleaf structure of the 22 inferred tRNAs in the mitogenome of Zeugodacus tau ZT3 (Malaysia). The cloverleaf structure for *trnF* lacked the TΨC-loop, and *trnS1* lacked the DHU-loop. (TIF)

S2 Fig. Cloverleaf structure of the 22 inferred tRNAs in the mitogenome of Zeugodacus tau ZT1 (China). The cloverleaf structure for *trnF* lacked the TΨC-loop, and *trnS1* lacked the DHU-loop. (TIF)

S3 Fig. Bayesian inference and maximum likelihood tree based on complete sequence of mitochondrial cox1 gene of Zeugodacus tau with Bactrocera dorsalis and B. carambolae as
outgroup. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

S1 Table. Characteristics of the mitochondrial genome of Zeugodacus tau ZT3 (Malaysia).
The anticodon of each tRNAs is shown in bracket. J (+) or N (-) indicates gene directions.

S2 Table. Characteristics of the mitochondrial genome of Zeugodacus tau ZT1 (China).
The anticodon of each tRNAs is shown in bracket. J (+) or N (-) indicates gene directions.

S3 Table. Nucleotide composition of whole mitogenome, protein-coding genes, rRNA genes and control region of Zeugodacus tau ZT3 (Malaysia).

S4 Table. Nucleotide composition of whole mitogenome, protein-coding genes, rRNA genes and control region of Zeugodacus tau ZT1 (China).

S5 Table. Uncorrected genetic distance (%) between pairs of Zeugodacus tau taxa with Bac- trocera dorsalis and B. carambolae as outgroup taxa based on partial sequence from bp 50–700 of mitochondrial cox1 gene.

S6 Table. Uncorrected genetic distance (%) between pairs of Zeugodacus tau taxa with Bac- trocera dorsalis and B. carambolae as outgroup taxa based on partial sequence from bp 900–1500 of mitochondrial cox1 gene.

Acknowledgments
We would like to thank our institutions for providing various support and facilities.

Author Contributions

Conceptualization: Hoi-Sen Yong, Sze-Looi Song.

Data curation: Hoi-Sen Yong, Sze-Looi Song.

Formal analysis: Hoi-Sen Yong, Sze-Looi Song.

Funding acquisition: Hoi-Sen Yong.

Investigation: Hoi-Sen Yong, Sze-Looi Song.

Methodology: Hoi-Sen Yong, Sze-Looi Song.

Project administration: Hoi-Sen Yong, Sze-Looi Song.

Resources: Hoi-Sen Yong, Sze-Looi Song, Phaik-Eem Lim, Praphathip Eamsobhana.

Software: Hoi-Sen Yong, Sze-Looi Song.

Supervision: Hoi-Sen Yong.

Validation: Hoi-Sen Yong, Sze-Looi Song, Phaik-Eem Lim, Praphathip Eamsobhana.

Visualization: Hoi-Sen Yong, Sze-Looi Song.

Writing – original draft: Hoi-Sen Yong, Sze-Looi Song.
Writing – review & editing: Hoi-Sen Yong, Sze-Looi Song, Phaik-Eem Lim, Praphathip Eamsobhana.

References
1. Hardy D (1973) The fruit flies (Tephritidae–Diptera) of Thailand and bordering countries. Pacific Insects Monograph 31: 1–353.
2. Vargas RI, Piñero JC, Leblanc L (2015) An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific Region. Insects 6: 297–318. https://doi.org/10.3390/insects6020297 PMID: 26463186
3. White IM, Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomics. CAB International, Wallingford, UK.
4. Carroll LE, Norrbom AL, Dallwitz MJ, Thompson FC (2004 onwards). Pest fruit flies of the world–larvae. Version: 8th December 2006. http://delta intkey.c om accessed 31 August 2017.
5. Kimthawee S, Dujardin JP (2010) The geometric approach to explore the Bactrocera tau complex (Diptera: Tephritidae) in Thailand. Zoology 113: 243–249. https://doi.org/10.1016/j.zool.2009.12.002 PMID: 20817492
6. Khan M, Tahira-Binte-Rashid, Howlader AJ (2011) Comparative host susceptibility, oviposition, and colour preference of two polyphagous tephritids: Bactrocera cucurbitae (Coq.) and Bactrocera tau (Walker). Research Journal of Agriculture and Biological Sciences 7(3): 343–349.
7. Yong H-S (2014) Trichosnathes wallichiana (Cucurbitaceae): a new host fruit of Bactrocera tau (Insecta, Tephritidae). Journal of Science and Technology in the Tropics 10(2): 95–98.
8. Baimai V, Phinchongsakuldit J, Sumrandee C, Tigvattananont S (2000) Cytological evidence for a complex of species within the taxon Bactrocera tau (Diptera: Tephritidae) in Thailand. Biological Journal of Linnaean Society 69: 399–409.
9. Jamnongluk W, Baimai V, Kittayaporn P (2003) Molecular phylogeny of tephritid fruit flies in the Bactrocera tau complex using the mitochondrial COI sequences. Genome 46(1): 112–118. https://doi.org/10.1139/g02-113 PMID: 12669803
10. Saelee A, Tigvattananont S, Baimai V (2006) Allozyme electrophoretic evidence for a complex of species within the Bactrocera tau group (Diptera: Tephritidae) in Thailand. Songklanakarin Journal of Science and Technology 28(2): 249–259.
11. Thanaphum S, Thaenkham U (2003) Relationships of Forms within the Bactrocera tau (Walker) (Diptera: Tephritidae) Taxon Based on Heat Shock Protein 70 Cognate Sequences. Annals of the Entomological Society of America 96(1): 44–53.
12. Prabhakar CS, Sood P, Mehta PK, Sharma PN (2013) Population genetic structure of the pumpkin fruit fly, Bactrocera tau (Walker) (Diptera: Tephritidae) in Himachal Pradesh, India. Biochemical Systematics and Ecology 51: 291–296.
13. Shi W, Kerdhelue C, Ye H (2014) Genetic structure and colonization history of the fruit fly Bactrocera tau (Diptera: Tephritidae) in China and Southeast Asia. Journal of Economic Entomology 107(3): 1256–1265.
14. Tan M, Zhang R, Xiang C, Zhou X (2016) The complete mitochondrial genome of the pumpkin fruit fly, Bactrocera tau (Diptera: Tephritidae). Mitochondrial DNA Part A DNA Mapping, Sequencing, and Analysis 27: 2502–2503.
15. Yong H-S, Song S-L, Lim P-E, Chan K-G, Chow W-L, Eamsobhana P (2015) Complete mitochondrial genome of Bactrocera arecae (Insecta: Tephritidae) by next-generation sequencing and molecular phylogeny of Dacini tribe. Scientific Reports 5: 15155. https://doi.org/10.1038/srep15155 PMID: 26472633
16. Yong H-S, Song S-L, Lim P-E, Eamsobhana P, Suana IW (2016) Differentiating sibling species of Zeugodacus caudatus (Insecta: Tephritidae) by complete mitochondrial genome. Genetica 144: 513–521. https://doi.org/10.1007/s10709-016-9919-9 PMID: 27502929
17. De Re FC, Wallau GL, Ribe LJ, Loreto EL (2014) Characterization of the complete mitochondrial genome of flower-breeding Drosophila incompata (Diptera, Drosophilidae), Genetica 142: 525–535. https://doi.org/10.1007/s10709-014-9799-9 PMID: 25416157
18. Clary DO, Wolstenholme DR (1985) The ribosomal RNA genes of Drosophila mitochondrial DNA. Nucleic Acids Research 13: 4029–4045. PMID: 2999784
19. Zhang L-J, Jiang L-H, Wei C-Y, Liu R-S, Liu X-L, Li J-G, Xue H-J (2016) The status of Bactrocera invadens Drew, Tsuruta & White (Diptera: Tephritidae) inferred from complete mitochondrial genome analysis. Mitochondrial DNA B Resources 1: 680–681.
20. Yong H-S, Song S-L, Lim P-E, Eamsobhana P, Suana IW (2016) Complete mitochondrial genome of three Bactrocera fruit flies of subgenus Bactrocera (Diptera: Tephritidae) and their phylogenetic implications. PLoS ONE 11: e0148201. https://doi.org/10.1371/journal.pone.0148201 PMID: 26840430

21. Nardi F, Carapelli A, Boore JL, Roderick GK, Dallai R, Frati F (2010) Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Molecular Phylogenetics and Evolution 57: 678–686. https://doi.org/10.1016/j.mpev.2010.08.006 PMID: 20723608

22. Choudhary JS, Naaz N, Prabhakar CS, Rao MS, Das B (2015) The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): Complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing. Gene 569: 191–202. https://doi.org/10.1016/j.gene.2015.05.066 PMID: 26031235

23. Nardi F, Carapelli A, Dallai R, Frati F (2003) The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Molecular Biology 12: 605–611. PMID: 14986921

24. Yong H-S, Song S-L, Lim P-E, Eamsobhana P, Suana IW (2016) Differentiating sibling species of Zeugodacus caudatus (Insecta: Tephritidae) by complete mitochondrial genome. Genetica 144: 513–521. https://doi.org/10.1007/s10709-016-9919-9 PMID: 27502829

25. Jeong SY, Kim MJ, Kim JS, Kim I (2017) Complete mitochondrial genome of the pumpkin fruit fly, Bactrocera depressa (Diptera: Tephritidae). Mitochondrial DNA Part B Resources 2: 85–87.

26. Zhang KJ, Liu L, Rong X, Zhang GH, Liu H, Liu YH (2016) The complete mitochondrial genome of Dacus longicornis (Diptera: Tephritidae): distinct genetic lineages in northern and southern hemispheres. PLoS ONE 10(6): e0129455. https://doi.org/10.1371/journal.pone.0129455 PMID: 26090853

27. Jiang F, Pan X, Li X, Yu Y, Zhang J, Jiang H, et al. (2016) The first complete mitochondrial genome of Dacus longicornis (Diptera: Tephritidae): using next-generation sequencing and mitochondrial genome phylogeny of Dacin tribe. Scientific Reports 6: 36426. https://doi.org/10.1038/srep36426 PMID: 27812024

28. Isaza JP, Alzate JF, Canal NA (2017) Complete mitochondrial genome of the Andean morphotype of Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). Mitochondrial DNA Part B Resources 2: 210–211.

29. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290: 470–474. PMID: 7219536

30. De Meyer M, Clarke AR, Vera MT, Hendrichs J (Eds) Resolution of cryptic species complexes in pest and pest management. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J (Eds) Resolution of cryptic species complexes in pest and pest management. Insect Molecular Biology 9: 139–144. PMID: 10762421

31. Drosopoulou E, Pantelidou C, Gariou-Papalexiou A, Augustinos AA, Chartomatsidou T, Kyritsis GA, Spanos L, Koutroubmas G, Kotsyfakis M, Louis C (2000) The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. Insect Molecular Biology 9: 139–144. PMID: 10762421

32. Jiang F, Pan X, Li X, Yu Y, Zhang J, Jiang H, et al. (2016) The first complete mitochondrial genome of Dacus longicornis (Diptera: Tephritidae): using next-generation sequencing and mitochondrial genome phylogeny of Dacin tribe. Scientific Reports 6: 36426. https://doi.org/10.1038/srep36426 PMID: 27812024

33. Chan CW, Chetnani B, Mondragón A (2013) Structure and function of the T-loop structural motif in non-coding RNAs. Wiley Interdisciplinary Reviews RNA 4: 507–522. https://doi.org/10.1002/wrna.1175 PMID: 23754657

34. Hendrickson TL (2001) Recognizing the D-loop of transfer RNAs. Proceedings of the National Academy of Sciences 98: 13473–13475.

35. Mitchell J, Saryar B, Sharif NM, Hara J (2016) Differentiation of sibling species of Zeugodacus (Diptera: Tephritidae): distinct genetic lineages in northern and southern hemispheres. PLoS ONE 10(6): e0129455. https://doi.org/10.1371/journal.pone.0129455 PMID: 26090853

36. Ju¨hling F, Pu¨tz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF (2012) Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Research 40: 2833–2845. https://doi.org/10.1093/nar/gkr1131 PMID: 22139921

37. Chua TH, Chong YV, Lim SH (2010) Species determination of Malaysian Bactrocera pests using PCR-RFLP analyses (Diptera: Tephritidae). Pest Management Science 66(4): 379–384. https://doi.org/10.1002/ps.1886 PMID: 19946858
39. Hu J, Zhang JL, Nardi F, Run J, Zhang RJ (2008) Population genetic structure of the melon fly, Bactrocerca cucurbitae (Diptera: Tephritidae), from China and Southeast Asia. Genetic 134: 319–324. https://doi.org/10.1007/s10709-007-9239-1 PMID: 18188668

40. Jiang F, Li ZH, Deng YL, Wu JJ, Liu RS, Buahom N (2013) Rapid diagnosis of the economically important fruit fly, Bactrocera correcta (Diptera: Tephritidae) based on a species-specific barcoding cytochrome oxidase I marker. Bulletin of Entomological Research 103(3): 363–371. https://doi.org/10.1017/S0007485312000806 PMID: 23458744

41. Jiang F, Jin Q, Liang L, Zhang AB, Li ZH (2014) Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp. Molecular Ecology Resources 14(8): 1114–1128. https://doi.org/10.1111/1755-0998.12259 PMID: 24690386

42. Leblanc L, San Jose M, Barr N, Rubinoff D (2015) A phylogenetic assessment of the polyphyletic nature and intraspecific color polymorphism in the Bactrocera dorsalis complex (Diptera, Tephritidae). Zookeys 540: 339–367.

43. Lim PE, Tan J, Suana IW, Eamsobhana P, Yong HS (2012) Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences. PLoS ONE 7(5): e37276. https://doi.org/10.1371/journal.pone.0037276 PMID: 22615962

44. Virgilio M, Backeljau T, Nevado B, De Meyer M (2010) Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics 11: 206. https://doi.org/10.1186/1471-2105-11-206 PMID: 20420717

45. Virgilio M, Jordana K, Verwimp C, White IM, De Meyer M. (2015) Higher phylogeny of frugivorous flies (Diptera, Tephritidae, Dacini): Localised partition conflicts and a novel generic Classification. Molecular Phylogenetics and Evolution 85: 171–179. https://doi.org/10.1016/j.ympev.2015.01.007 PMID: 25681676

46. Zhang B, Liu YH, Wu WX, Wang ZL (2010) Molecular phylogeny of Bactrocera species (Diptera: Tephritidae: Dacini) inferred from mitochondrial sequences of 16S rDNA and COI sequences. Florida Entomologist 93(3): 369–377.