Baldratia salicorniae – Salicornia fruticosa Interaction and Modeling of Their Habitat in Egypt By Using Maxent Technique.

Sanad H. Ragab¹, Mohamed Kamel², Ahmed S. Bream¹, and Mohamed M. Moursy³.

1. Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
2. Department of Environmental Basic Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo, Egypt.
3. Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.

E-mail: Sanadragab@azhar.edu.eg

ARTICLE INFO

Article History
Received: 22/5/2020
Accepted: 18/8/2020

Keywords:
Galls, Interactions, Maxent, Distribution, Mediterranean coast, *Baldratia salicorniae*, *Salicornia fruticosa*.

ABSTRACT

In some regions of the Deltaic Mediterranean coastal land of Egypt, *Baldratia salicorniae* Kieffer, 1897 (Diptera: Cecidomyiidae) is a gall-forming insect that induces fleshy galls on the stem of *Salicornia fruticosa* (L.) L. (Family: Amaranthaceae). The current study tried to investigate the interaction of *B. salicorniae* with its host plant *S. fruticosa* in some regions of the Mediterranean coast and study the effect of altitude and vegetation cover on galls induction. In addition, to estimate the predicted geographic distribution habitats of *B. salicorniae* and its host plant *S. fruticosa* in Egypt by using MaxEnt technique.

INTRODUCTION

Many organisms can stimulate plant tissues to form a diversity of abnormal swellings on leaves, flowers, stems, and roots. The presence of these structures, known as galls (Barbosa and Wagner, 1989). Galls are abnormal plant growths consisting of pathologically developed cells, tissues, or plant organs, resulting mostly from overgrowth (hypertrophy) and cell proliferation (hyperplasy) (Santos et al., 2018, Ascendino and Maia, 2018). These are initiated by organisms such as fungi, bacteria, nematodes, mites, viruses, and insects (Barbosa and Wagner, 1989).

Gall-Inducing insects are remarkable bioindicators of any modifications in the environment and the quality of habitat due to their abundance, host specificity, close-fitting habit, and easy localization (Julião et al., 2005, Santana and Isaias, 2014). The variety of gall-inducing insects reflects the conservation status of an area (Santana and Isaias, 2014). The galls can clarify the extended phenotypes, the richness, and abundance of the gall-making insects (dos Santos Isaias et al., 2014, Pan et al., 2015). Galls induction is described as parasitic interaction between the gall maker and its host plant (Rocha et al., 2013). Gall-inducing insects benefit from nutrition, assurance, and shelter provided by the plant galls (Ascendino and Maia, 2018).
Salicornia fruticosa (L.) L. syns. Arthrocnemum fruticosum (L.) Moq. (Family: Amaranthaceae) is perennial succulent glabrous subshrub which is located in several habitats such as; salt marshes, Mediterranean coastal region, and Sinai (Boulos, 1999, El-Amier et al., 2014). Some of the Salicornia species used in folk medicine (for treatment of hepatitis, bronchitis, and diarrhea) and expressed important biological properties such as anti-inflammatory, antioxidant, hypoglycemic, and cytotoxic activities (Isca et al., 2014). The different extracts and isolated compounds of S. fruticosa exhibited strong antioxidant activity, anticancer, antimicrobial, anti-proliferative, and anti-inflammatory activities (Gouda and Elsebaie Ahmed, 2016, Elatif et al., 2019). S. fruticosa appears to be a promising biodiesel candidate (Abideen et al., 2015). Besides, the seed oil of S. fruticosa was a high-quality health oil (Elsebaie et al., 2013). S. fruticosa is an important candidate for future use both for processed and fresh food, due to its health and functional properties (Loconsole et al., 2019).

In the Mediterranean area, Baldratia salicorniae Kieffer, 1897 (Diptera: Cecidomyiidae) is a gall-forming insect that induces fleshy galls on internodes of S. fruticosa (Dorchin and Freidberg, 2008, Skuhravá and Skuhravy, 2004, Sánchez et al., 2012).

Species distribution models (SDMs) are a useful tool for assessing the potential for species to locate in regions not previously surveyed (Guisan and Thuiller, 2005). These models have been utilized for providing a baseline for predicting a species’ response to landscape difference and/or climate change (Araújo et al., 2006), and for determining the important regions for conservation (Wilson et al., 2005).

Recent studies showed that a statistical mechanics approach as the MaxEnt methodology performs very well even with small records (Phillips et al., 2006, Hernandez et al., 2006). The predicted distribution habitats of various species are determined in Egypt by using species distribution models especially MaxEnt technique (El Alqamy et al., 2010, Kamel et al., 2012).

Therefore, the present study tried to investigate the interaction of B. salicorniae with S. fruticosa in some regions of the Mediterranean coast and study the effect of elevation and vegetation cover on galls induction. In addition, to estimate the geographic distribution range of B. salicorniae and its host plant S. fruticosa in Egypt by using MaxEnt technique.

MATERIALS AND METHODS

Study Area:

The Mediterranean coastal region of Egypt has a narrow coastal belt that spreads from Sallum (on the Libyan borders) easting to Rafah (on the Palestinian borders) for about 970 km with an average width ranging between 15-20 km in the north-south direction (Hadidi, 1981). The Deltaic Mediterranean coastal land of Egypt hosts a number of highly populated cities such as Alexandria, Rosetta, Damietta, and Port-Said (El-Amier et al., 2014). The Nile Delta coast is differentiated into four habitats: sand formations, fertile sandy lands, salt marshes, and reed swamps (Mashaly, 2001). The Mediterranean coastal region stills floristically one of the less recognized territories of Egypt (Osman and El-Garf, 2015). The plants grown on coastal sand dunes are playing the main role in protecting the coast from flooding and erosion (El-Amier et al., 2014).

A total of 1083 plant species are recorded in the Mediterranean coastal land, Of the 255 species recorded only from this region and 18 are known to be endemic (El Hadidi and Hosni, 1996). Egypt’s Mediterranean coast regions are characterized by moderate to warm temperatures in summer (20–31°C) and little precipitations occurring in the winter months (Osman and El-Garf, 2015).

The current study was conducted in some regions of The Deltaic Mediterranean.
coastal land of Egypt, the chosen sampling sites for *S. fruticosa* were Abees, Merghem, El-tafaroa, El-amria, Abu-talat, and Burg El-arab city (Fig. 1). The study localities were visited periodically in the period from Feb. 2019 to Jun. 2020, once every two months.

Study Plants:

S. fruticosa (L.) L. syns *fruticosa* in Egypt is shown in (Fig. 8 & Table 1).

Table 1: The recorded locations of *S. fruticosa* in Egypt

No.	Location	Coordinates	References
1	El-burullus city	32.58, 31.26	(Elsebaie et al., 2013)
2	Maruit	31.03, 29.9833	(Shaltout et al., 2019)
3	Edko	31.216, 30.233	(Shaltout et al., 2019)
4	El-biardawill	31.055438, 33.300362	(Shaltout et al., 2019)
5	El-burullus city	31.45, 31.166	(Shaltout et al., 2019)
6	Wadi El-Rayan	27.46, 28.58	(Zahran and Willis, 2009)
7	Bahariya Oasis	27.46, 28.58	(Zahran and Willis, 2009)
8	Bahariya Oasis	28.50, 29.16	(Zahran and Willis, 2009)
9	Ras El-Hilma	31.25, 27.86667	(Boulos, 1995)
10	Faiyum	25.420, 31.967	(Boulos, 1995)
11	Wadi Natrun	30.7367, 30.3477	(Boulos, 1995)
12	Siwa	29.186, 25.475	(Boulos, 1995)
13	Farafra	27.059, 27.979	(Boulos, 1995)
14	Kharga	25.436, 30.549	(Boulos, 1995)
15	Dakhla	25.483, 30.626	(Boulos, 1995)
16	Kurkur	23.887016, 32.355358	(Boulos, 1995)
17	Dungul	23.434790, 31.616681	(Boulos, 1995)
18	Uweinat	21.894, 24.952	(Boulos, 1995)
19	Omaneved	30.822, 29.196	(Salem, 2014)
20	The Nile Delta	29.981, 31.316	(Tackholm and Drar, 1956)
21	Faiyum	29.307, 30.844	(Tackholm and Drar, 1956)
22	El-Sollum	31.575, 25.159	(Tackholm and Drar, 1956)
23	Rafah	31.287, 34.236	(Tackholm and Drar, 1956)
24	El-Tih	29.146, 33.544	(Tackholm and Drar, 1956)
25	Rosetta	31.4, 30.41667	(Tackholm and Drar, 1956)
26	45 km west of Marsa	31.181, 27.469	(El-Morsy, 2010)
27	Matrouh City	31.181, 27.469	(El-Morsy, 2010)
28	Sidi Abd El-Rahman	30.967, 28.735	(El-Morsy, 2010)
29	Alexandria-Rosetta railroad	30.25, 31.25	(El-Ghareeb and Rezk, 1989)
30	Alexandria-Rosetta railroad	30.45, 31.416	(El-Ghareeb and Rezk, 1989)

Samples Collection and Identification:

The width, length, and height of each plant within the sample were measured using a tape meter, besides counting the number of galls on different parts of the plant. Plant samples were identified according to (Boulos, 1999, Migahid, 1988). The immature stages of the gall inducer inside the galls were collected from the field and reared in the laboratory until emerging of the adults, which were identified by using different kinds of keys to reach the family level, genus level, and species level.

Data Analysis:

The collected data were analyzed using the IBM SPSS Statistics ver. 25, 2019). Spearman correlation test was used to determine the relationship between altitude, plant cover, and the number of galls per each plant. Also, One-way ANOVA test was used...
to compare the mean number of galls per plant among different localities.

Mapping and Predicting Distributions of Plant Species:

The presence records for *B. salicorniae* and its host plant *S. fruticosa* are recorded using GPS (Garmin XL 12). The geographic distribution habitats of *B. salicorniae* and *S. fruticosa* in Egypt are estimated by using MaxEnt technique. Maxent software, version (3.3.1) uses the recorded distribution together with the climatic and topographic layers for the study localities (Phillips et al., 2004, Phillips et al., 2006).

Environmental Data of The Model:

Nineteen climatic predictors (Table 2), are used to estimate the eco-physiological tolerances of a species (Graham et al., 2006). These were obtained from the WorldClim dataset ((Hijmans et al., 2005); http://www.worldclim.org/bioclim.htm). While Altitude provided from the Shuttle Radar Topography Mission (SRTM). Furthermore, retrospective distributional records for *S. fruticosa* were obtained from published literature besides our reliable observational data.

Variable Definition
Bio1
Bio2
Bio3
Bio4
Bio5
Bio6
Bio7
Bio8
Bio9
Bio10
Bio11
Bio12
Bio13
Bio14
Bio15
Bio16
Bio17
Bio18
Bio19

Statistical Validation of The Model:

In order to assess the predictive performance of the model, randomly presence records partition into 75% of the points was used to predict species distribution “training data” and 25% for model testing “testing data”. Statistical validation of the model was performed by calculating the area under the curve (AUC) of the receiver operating characteristic (ROC). The area under the curve (AUC) is utilized as a measure of the accuracy of the model (Phillips, 2016). The AUC ranges from 0 to 1. An AUC of 0.5 indicates a model that is no better than random, while an AUC of 1 indicates a perfect model (Phillips et al., 2004, Phillips et al., 2006). The percentage contribution of each predictor to the output model was provided by Maxent, the contribution values are determined by the
increase in gain of the model provided by each variable (Phillips et al., 2006). The MaxEnt model’s internal jackknife test was used to estimate which variables contribute most to the model development.

RESULTS

Insects That Induced Galls:

The gall-midge *Baldratia salicorniae* Kieffer, 1897 (Diptera: Cecidomyiidae) (Fig. 3) induce galls on internodes of *Salicornia fruticosa* (L.) L. (Family: Amaranthaceae). The galls (Fig. 2) appear as swelling of an internodium (1 – 1.5 cm). It is most obvious, partly reddish, and fleshy. Each gall contains a gall chamber with a single orange larva. Pupation takes place inside the gall (Fig. 3), and One generation develops a year. The predominance of *Baldratia salicorniae* occurred during late winter (February) to summer (July). Adults emerge from early April to the end of July. (Fig. 3).

Factors Affecting the Distribution of The Insect Galls Induced on *Salicornia fruticose*:

1. Relationship Between the Number of Galls Per Plant, Plant Cover, And Altitude:

There was a significant negative correlation between the number of galls per plant and the altitude within the study localities (r = -0.367, P < 0.01) (Fig. 4). Meanwhile, there was no significant correlation between the number of galls per plant and the plant cover within the study localities.

2. Spatial Distribution of The Number of Galls Induced on *Salicornia Fruticosa* Among Different Localities:

There was a significant difference, in the number of galls induced on *Salicornia fruticosa* among different localities (Abees, Merghem, El-tafaroa, El-amria, Abu-talat, and Burg El-arab city) (F (5, 48) =8.171 P < 0.05) (Fig. 5). Abees showed the greatest mean number of galls per plant 190.73; as compared to 1, 2.4, 30, 2 and 75 at Merghem, El-tafaroa, El-amria, Abu-talat, and Burg El-arab city, respectively.

The post hoc test showed that there was a significant difference between Abees and Merghem, El-tafaroa, El-amria, Abu-talat, and Burg El-arab city equal to 189.72, 188.32, 160.72, 188.72, and 115.72, respectively. (P < 0.05).

Spatial Prediction Model of *Salicornia fruticose*:

1. The Predicted Distribution Range of *S. fruticosa* in Egypt:

The MaxEnt model for *S. fruticosa* is shown in (Fig. 6). The predicted distribution habitat of *S. fruticosa* covers wide regions of the Mediterranean coastal lands, in addition to some localities in the Nile land region, the Red Sea coast, south of Egypt at Nasser lack, and South Sinai. 23 presence records used for training the model, 7 for testing. The AUC (Fig. 7) for the training points was 0.906 and for the test, points were 0.745, with a standard deviation of 0.098; The AUC was greater than 0.90, indicating outstanding discrimination for *S. fruticosa*. The test points were classified correctly significantly more than a random model (p <0.001).

2. Effect of Predictor Variables in The Representation of The Maxent Model for *S. fruticose*:

According to the percent contribution heuristic test of the variables (Fig. 8), *S. fruticosa* showed high sensitivity to Precipitation of Wettest Month (BIO13), Temperature Annual Range (BIO7), Altitude, Precipitation of Warmest Quarter (BIO18), Isothermality (BIO3), Annual Precipitation (BIO12), and Temperature Seasonality (BIO4), with contribution percentage equal to 60%, 11%, 7%, 6%, 6%, 6%, and 4%, respectively.

The jackknife test of variable importance showed that Precipitation of Wettest Month (BIO13) and Altitude were the most important predictors of *S. fruticosa* habitat distribution. These variables showed higher gains that included the most information as compared to the other variables.

Spatial Prediction Model of *Baldratia salicorniae*:

1. The Predicted Distribution Range of *B. salicorniae* in Egypt:

The MaxEnt model for *B. salicorniae* is shown in (Fig. 9). The predicted
distribution habitat of *B. salicorniae* is mainly concentrated in some areas close to the Mediterranean coastal land, in addition to some areas in the Nile delta region. 11 presence records used for training, and 3 for testing. The AUC (Fig. 10) for the training points was 0.995 and for test, points were 0.983, with a standard deviation of 0.011; The AUC was greater than 0.90, indicating outstanding discrimination for *B. salicorniae*. The Maxent model classifies the test records correctly significantly more than a random model (p <0.001).

2. Effect of Predictor Variables in The Representation of The Maxent Model for *B. salicorniae*:

According to the analysis of the variables contribution heuristic test (Fig. 11), *B. salicorniae* showed high sensitivity to Precipitation of Wettest Quarter (BIO16), Altitude, Precipitation of Wettest Month (BIO13), Precipitation of Coldest Quarter (BIO19), Mean Diurnal Range (BIO2), Precipitation of Driest Quarter (BIO17), and Mean Temperature of Warmest Quarter (BIO10), with contribution percentage equal to 43%, 24%, 10%, 7%, 6%, 5%, and 5%, respectively.

The jackknife test of variable importance showed that altitude was the most important predictor of *B. salicorniae* habitat distribution. This variable provided higher gains that contains the most information as compared to the other variables.
Fig. 1. Location map showing the study localities in North coast of Egypt.
(Map source: IESR, GIS unit & google map - https://www.google.com.eg/maps/@30.9582663,29.6814612,10z).

Fig. 2. The swelling galls of *Baldratia salicorniae* Kieffer, 1897 (Diptera: Cecidomyiidae).
Fig. 3. The gall-midge *Baldratia salicorniae* Kieffer, 1897 (Diptera: Cecidomyiidae) ;(a & b) Larvae inside the gall (2 mm), (c) Pupa (2.5 mm), (d) Adult (2 mm) and (e) Emerging of an adult from the gall. (a & e, after (Claerbout, 2020)).

Fig. 4. The relationship between the number of galls per plant and the altitude within the study localities.
Fig. 5. The spatial pattern of gall distribution on the *Salicornia fruticosa* among different study localities.

Fig. 6. The predicted distribution range of the *S. fruticosa* according to MaxEnt. (Map source: IESR, GIS unit & google map https://www.google.com.eg/maps/@27.4846067,31.3939551,6z).

Fig. 7. Training data (AUC = 0.906) and test data (AUC = 0.745) compared to random prediction (AUC = 0.5) in the receiver operating characteristic (ROC) curve for representation of the MaxEnt distribution model for *S. fruticosa*
Fig. 8. Analysis of variables contributes to the prediction distribution model of S. fruticosa.

Fig. 9. The predicted distribution range of the B. salicorniae according to the MaxEnt model. (Map source: IESR, GIS unit & google map https://www.google.com.eg/maps/@27.4846067,31.3939551,6z).

Fig. 10. Training data (AUC = 0.995) and test data (AUC = 0.983) compared to random prediction (AUC = 0.5) in ROC curve for representation of the MaxEnt model for B. salicorniae.
Fig. 11. Analysis of variables contribute to the prediction model of *B. salicorniae*.

DISCUSSION

According to the plant vigor hypothesis, that more energetic, potent, fast-growing plants will be prioritized by several types of herbivores that depend on high meristematic activity, where the gall inducers usually prefer fast-growing and large plant organs, such as shoots and leaves (Price, 1991). The current study showed that the stem of *S. fruticosa* is the most vital organ of the plant subjected to galls induction. It may be strongly attributed to the large diameter of the stem that may provide enough area for gall induction (De Bruyn, 1994). Also, the gall making insects prefer the more rewarding plant organs to form the gall (Whitham, 1978).

The altitude is an important variable determining the distribution of gall-inducing insects (Kamel et al., 2012). The current study showed that the altitudinal gradient has a negative effect on the gall inducers. This role is clear from the negative correlation between the number of galls per plant and the altitude. It can be explained by the effect of temperature on gall inducers; as, the temperature will increase with the decrease of altitude, which is concurred with the view of (Fernandes and Price, 1988) who reported that temperate shrubs supported more galling inducers than did another plant, and the view of (Blanche and Ludwig, 1998) who suggested that gall inducers’ richness increases as environments become drier and hotter because there are fewer gall insect enemies in dry, hot environments.

The current study suggests that the predicted distribution habitats of *B. salicorniae* and its host plant *S. fruticosa* in Egypt can be modeled using a small number of presence records together with environmental predictors for the study area through the maximum entropy modeling technique (MaxEnt). So the present study agrees with the view of (Hernandez et al., 2006, Kamel et al., 2012) who suggested that the Maxent entropy modeling technique performed better for species with very small recorded locations that have relatively wide geographic distributions.

Also, the present study showed that the predicted distribution range size for *B. salicorniae* is less than the total predicted distribution range size for *S. fruticosa*. The predicted distribution habitat of *B. salicorniae* is mainly concentrated in some
areas close to the Mediterranean coast, in addition to some regions in the Nile delta region. This agrees with the findings of (Skuhravá et al., 2014) who reported that the distribution of *B. salicorniae* is concentrated in Mediterranean regions. While The predicted distribution habitat of *S. fruticosa* covers wide regions of the Mediterranean coastal lands, in addition to some localities in the Nile land region, the Red Sea coast, south of Egypt at Nasser lack, and South Sinai. This has concurred with the view of (Boulos, 1995, El-Ghareeb and Rezk, 1989, Tackholm and Drar, 1956, El-Morsy, 2010, Zahran and Willis, 2009, Salem, 2014, Elsebaie et al., 2013, Shaltout et al., 2019) whose recorded *S. fruticosa* in different areas of Egypt.

The MaxNet results showed that altitude was the most important predictor for the habitat distribution of *B. salicorniae* and its host plant *S. fruticosa* in Egypt This agrees with the findings of (Semida, 2006, Kamel et al., 2012) whose suggested that the altitude is an important variable determining the distribution of gall-forming insects.

REFERENCES

Abideen, Z., Qasim, M., Rizvi, R., Gul, B., Ansari, R. & Khan, M. 2015. Oilseed halophytes: a potential source of biodiesel using saline degraded lands. *Biofuels*, 6, 241-248.

Araújo, M. B., Thuiller, W. & Pearson, R. G. J. J. O. B. 2006. Climate warming and the decline of amphibians and reptiles in Europe. *journal of biogeography*, 33, 1712-1728.

Ascendino, S. & Maia, V. C. 2018. Insects galls of Pantanal areas in the State of Mato Grosso do Sul, Brazil: characterization and occurrence *Anais da Academia Brasileira de Ciências*, 90, 1543-1564.

Barbosa, P. & Wagner, M. R. 1989. Chapter 10 - Gall-Forming Insects. In: BARBOSA, P. & WAGNER, M. R. (eds.) *Introduction to Forest and Shade Tree Insects*. San Diego: Academic Press.

Blanche, R. & Ludwig, J. 1998. Is there a cool-wet to hot-dry gradient of increasing gall-forming insect diversity? *United States Department Of Agriculture Forest Service General Technical Report No*, 57-60.

Boulos, L. 1995. *Flora of Egypt. Checklist*, Cairo (Egypt) Al Hadara Pub.

Boulos, L. 1999. *Flora of Egypt, Vol. 1*, Cairo, Egypt, Al hadara publishing.

Claerbout, S. 2020. Plant Parasites of Europe: leafminers, galls and fungi [Online]. Available:https://bladmineerders.nl/parasites/animalia/arthropoda/insecta/diptera/nematocera/cecidomyiidae/cecidomyiinae/lasiopteridi/lasiopterini/baldratia/baldratia-salicorniae/ [Accessed 2020].

De Bruyn, L. 1994. Life history strategies of three gall-forming flies tied to natural variation in growth of Phragmites australis. In: price, p. w., mattson ,w. j. & baranchikov, y. n. (eds.) The Ecology and Evolution of Gall-Forming Insects. U.S. Dept. Of agriculture, Forest service, North central forest experiment station.

Dorchin, N. & Freidberg, A. 2008. The Chenopodiaceae-Feeding Gall Midges (Diptera:Cecidomyiidae) Of The Na’Aman Salt Marsh, Israel. *Zootaxa*, 1-22.

Dos Santos Isaas, R. M., Da Silva Carneiro, R. G., Santos, J. C. & De Oliveira, D. C. 2014. Gall morphotypes in the Neotropics and the need to standardize them. *Neotropical insect galls*. Springer.

El-Amier, Y., El-Halawany, E. & Abdullah, T. 2014. Composition and Diversity of Plant Communities in Sand Formations Along the Northern Coast of the Nile Delta in Egypt. *Research Journal of Pharmaceutical, Biological and Chemical*, 5, 826-847.

El-Ghareeb, R. & Rezk, M. R. 1989. A preliminary study on the vegetation of the Mediterranean coastal land at Bouselli(Egypt). *Journal of the University of Kuwait(science)*. *Kuwait*, 16, 115-128.
El-Morsy, M. 2010. Relative Importance of Salt Marshes as Range Resources in The North Western Mediterranean Coast of Egypt. Journal of Phytology, 2, 39-50.

El Alqamy, H., Ismael, A., Abdelhameed, A., Nagy, A., Hamada, A., Rashad, S. & Kamel, M. 2010. Predicting the status and distribution of the Nubian Ibex (Capra nubiana) in the high-altitude mountains of south Sinai (Egypt). J Galemys: Newsletter of the Spanish Society for the Preservation Study of Mammals, 22, 517-530.

El Hadidi, M. N. & Hosni, H. A. 1996. Biodiversity in the flora of Egypt. In: Van Der Maesen, L. J. G., Van Der Burgt, X. M. & Van Medenbach De Rooy, J. M. (eds.) The Biodiversity of African Plants: Proceedings XIVth AETFAT Congress 22-27 August 1994, Wageningen, The Netherlands. Dordrecht: Springer Netherlands.

Elatif, R., Shabana, M., Fawzy, L., Mansour, R., Awad, H. & Sharaf, M. 2019. Chemical Composition and Biological Activity of Salicornia fruticosa L. Egyptian Journal of Chemistry, 63(5), 24-25.

Elsebaie, E. M., Elsanat, S. Y., Gouda, M. S. & Elnemr, K. M. 2013. Oil and Fatty Acids Composition in Glasswort (Salicornia Fruticosa) Seeds. IOSR Journal of Applied Chemistry, 4, 06-09.

Fernandes, G. W. & Price, P. W. 1988. Biogeographical gradients in galling species richness. Oecologia, 76, 161-167.

Gouda, M. & Elsebaie Ahmed, E. 2016. Glasswort (Salicornia Spp) as a Source of Bioactive Compounds and Its Health Benefits: A Review. Alexandria Journal of Food Science and Technology, 13, 1-7.

Graham, C. H., Hijmans, R. J. J. G. E. & Biogeography 2006. A comparison of methods for mapping species ranges and species richness. Global Ecology Biogeography, 15, 578-587.

Guisan, A. & Thuiller, W. J. E. L. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.

Hadidi, M. N. 1981. An Outline of the Planned Flora of Egypt. In: TÄCKHOLM, V. (ed.) Flora of Egypt. Egypt: O. Koeltz.

Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. J. E. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. J. I. J. O. C. A. J. O. T. R. M. S. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.

Isca, V., Seca, A. M., Pinto, D. C. & Silva, A. J. N. P. R. R. 2014. An overview of Salicornia genus: the phytochemical and pharmacological profile. Research Reviews, 2, 145-164.

Julião, G. R., Fernandes, G. W., Negreiros, D., Bedê, L. & Araújo, R. C. 2005. Insetos galhadores associados a duas espécies de plantas invasoras de áreas urbanas e peri-urbanas. J Revista Brasileira de Entomologia, 49, 97-106.

Kamel, M., Semida, F. & Abdel-Dayem, M. 2012. Galls inducing insects in Sinai ecosystem, Egypt. Gall inducing insects and their host plants in St. Katherine Protectorate, KG Heinrich-Böcking-Straße, Germany, Lambert Academic Publishing GmbH & Co. .

Loconsole, D., Cristiano, G. & De Lucia, B. 2019. Glassworts: From Wild Salt Marsh Species to Sustainable Edible Crops. Agriculture, 9, 14-26.

Mashaly, I. A. 2001. Contribution to the ecology of the deltaic Mediterranean coast, Egypt. Journal of Biological Sciences, 1, 628-635.

Migahid, A. M. 1988. Flora of Saudi Arabia, volume I, Riyadh, Saudi Arabia, king Saud university libraries.

Osman, A. K. & El-Garf, I. A. 2015. Studies on the shallow wadis of the Mareotis sector of the Mediterranean coastal land of Egypt: Floristic
features of Wadi Hashem. *Flora Mediterranea*, 25, 57-71.

Pan, L. Y., Chen, W. N., Chiu, S. T., Raman, A., Chiang, T. C. & Yang, M. M. 2015. Is a Gall an Extended Phenotype of the Inducing Insect? A Comparative Study of Selected Morphological and Physiological Traits of Leaf and Stem Galls on Machilus thunbergii (Lauraceae) Induced by Five Species of Daphnephila (Diptera: Cecidomyiidae) in Northeastern Taiwan. *Zoology Science*, 32, 314-21.

Phillips, S. 2016. A brief tutorial on Maxent, versions: 3.3.1. . *Lessons in Conservation*, 3, 108-135.

Phillips, S. J., Anderson, R. P. & Schapire, R. E. J. E. M. 2006. Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190, 231-259.

Phillips, S. J., Dudík, M. & Schapire, R. E. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the twenty-first international conference on Machine learning, 655-662.

Price, P. W. J. O. 1991. The plant vigor hypothesis and herbivore attack. *Oikos*, 2, 244-251.

Rocha, S., Branco, M., Boas, L. V., Almeida, M. H., Protasov, A. & Mendel, Z. 2013. Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree. *Tree Physiology*, 33, 388-397.

Salem, B. 2014. Omayed Biosphere Reserve. *Innovative ways for a sustainable use of drylands: final report of the Sumamad Project*, 60-72.

Sánchez, I., Skuhravá, M. & Skuhravý, V. 2012. Gall midges (Diptera: Cecidomyiidae) of Cádiz Province (South-western Spain). *Boletín de la Sociedad Entomológica Aragonesa*, 51, 221-236.

Santana, A. P. & Isaías, R. M. D. S. 2014. Galling insects are bioindicators of environmental quality in a Conservation Unit J Acta Botanica Brasilica, 28, 594-608.

Santos, M. G., Hanson, P., Maia, V. C. & Mehltreter, K. 2018. A Review of Galls on Ferns and Lycophytes. *Environmental Entomology*, 48, 53-60.

Semida, F. M. M. 2006. Ungulate grazing impact on the local distribution of the rare species Rhopalomyia Tanaceticola karsh. (Diptera: Cecidomyiidae), In south Sinai ecosystem. *Bulletin of the Entomological Society of Egypt*, 83, 51-60.

Shaltout, K., El-Bana, M. & Galal, T. 2019. Coastal Lakes as Hot Spots for Plant Diversity in Egypt. In: NEGM, A. M., BEK, M. A. & ABDEL-FATTAH, S. (eds.) *Egyptian Coastal Lakes and Wetlands: Part II: Climate Change and Biodiversity*. Cham: Springer International Publishing.

Skuhravá, M. & Skuhravý, V. 2004. Gall midges (Cecidomyiidae, Diptera) of Mallorca (Balearic Islands, Spain). *Boletín de la Asociación Española de Entomología*, 28, 105-119.

Skuhravá, M., Skuhravý, V. & Elsayed, A. 2014. Gall midges (Diptera: Cecidomyiidae) of Egypt: annotated list and zoogeographical analysis. *Acta Societatis Zoologicae Bohemicae*, 78, 241-268.

Tackholm, V. & Drar, M. 1956. *Students' flora of Egypt*, Anglo-Egyptian Bookshop.

Whitham, T. G. J. E. 1978. Habitat selection by Pemphigus aphids in response to environmental quality and competition. *Ecology*, 59, 1164-1176.

Wilson, K. A., Westphal, M. I., Possingham, H. P. & Elith, J. J. B. C. 2005. Sensitivity of conservation planning to different approaches to using predicted species distribution data. *Biological Conservation*, 122, 99-112.

Zahran, M. A. & Willis, A. J. 2009. The Western Desert. In: *ZAHRAN, M. A. & WILLIS, A. J. (eds.) The Vegetation of Egypt*. Dordrecht: Springer Netherlands.
Baldratia salicorniae – Salicornia fruticosa Interaction and Modeling of Their Habitat in Egypt

ARABIC SUMMARY

دراسة العلاقة بين بالدراتي ساليكورنيا وساليكورنيه فروتيكوزا ونمذجة موطنها في مصر باستخدام تقنية الماكسنت

แสน حسين رجب ¹، محمد كامل ²، أحمد صابر بالرقم ³، ومحمد متولي مرسى ³

1- قسم علم الحيوان – كلية العلوم – جامعة الأزهر - مصر.
2- قسم العلوم الأساسية البيئية – معهد الدراسات والبحوث البيئية – جامعة عين شمس - مصر.
3- قسم النبات والميكروبيولوجي – كلية العلوم – جامعة الأزهر - مصر.

تعتبر حشرة بالدراتي ساليكورنيا (فصيلة السيسيدوميدي، رتبة ثنائيات الأجنحة) من الحشرات المسببة للأورام النباتية في بعض مناطق الدلتا الساحلية على البحر الأبيض المتوسط في مصر حيث تحديث أورام نباتية لحمية على ساقان بنات ساليكورنيه فروتيكوزا (فصيلة القطيفية، رتبة القنفليات). تهدف الدراسة الحالية إلى التحقق من العلاقة بين حشرة بالدراتي ساليكورنات والنبات العائل لها ساليكورنيه فروتيكوزا في بعض مناطق ساحل البحر الأبيض المتوسط وهدف هذه الدراسة أيضا إلى التعرف على تأثير العوامل البيئية المختلفة مثل الارتفاع عن سطح البحر بالإضافة لعوامل الكفاءة الخضرية على عملية تكون الأورام النباتية. وقد حاولت الدراسة تحديد التوزيع الجغرافي المحتمل للمواويل الخاصة بحشرة بالدراتي ساليكورنات والنبات العائل لها ساليكورنيه فروتيكوزا في مصر باستخدام تقنية الماكسنت.
