Effect of Wood-Ash as Partial Replacement to Cement on Performance of Concrete

Kunamineni Vijay¹, Korrakuti Hari Babu¹, Yarlagadda Vidya Indrasena¹

¹Assistant professor, Department of Civil Engineering, Bapatla Engineering College, Bapatla

Abstract: Concrete is a mixer of various materials. These materials include water, cement, and aggregates respectively. The making of cement produces enormous quantity of greenhouse emissions. There is a need to develop substitute materials for cement. It reduces both greenhouse emissions and the cost of concrete. In this work, an endeavor has been made to utilize wood-ash as a substitute material to cement. The effect of wood-ash as an alternative to cement on the performance of concrete has been studied. Wood is a sustainable source for energy and eco-amiable material. The cement has been replaced with wood ash by 5%, 10%, 15%, and 20%, and studied for the performance of concrete. Results confirm that the wood-ash addition as a partial alternative to cement improves the overall performance of concrete.

Key-words: Wood-Ash, Strength, Water absorption

1. INTRODUCTION

Concrete is the most usually utilized construction material because its easy availability of materials, strength and durability. Cement is the main binding material in concrete. The one ton manufacturing of cement produces 0.9 ton of CO₂ to the atmosphere. About 5-7% of global Greenhouse gas emissions are from cement plants[1][2][3]. Researchers are searching for alternatives to conventional materials in concrete [4][5][6]. Ground granulated blast-furnace slag (GGBS), fly-ash, and rice husk-ash, etc., are used as cement replacements. The utilization of fly-ash as cement replacing material in concrete up to 25% improves the performance of concrete [6][7]. The addition of rice-husk ash as an alternative to cement also improves the performance of concrete [8][9]. Similarly, steel, iron industry wastes and GGBS are also used as substitute to cement [10][11]. However, use of these alternate materials not completely eliminates the use of cement in concrete. There is a need to search for alternate materials to cement for considerable reduction in environmental pollution [12]. Recently, wood ash gained popularity as substitute material to cement in concrete [13][14]. Wood is a sustainable energy source and an eco-friendly material. Hence, the utilization of waste wood for energy generation is growing and more wood ash waste is thus created [15]. The utilization of wood ash in concrete not only serves to minimise disposal and environmental issues, but also to make it economical. Very limited work on the impact of wood ash partially substitutes to cement on the concrete's properties was reported. This work aims to use wood ash as alternative material to cement in concrete. The role of wood ash on strength and water absorption of concrete is highlighted in the present study.
2. MATERIALS

43 grade Ordinary Portland cement having specific gravity of 3.01 is utilized as a binder in this study. River sand with specific gravity 2.6 and crushed granite of 20 mm maximum size with specific gravity 2.6 are utilized as fine and coarse aggregate respectively. Wood ash attained by ignition of wood waste from wood furnishing plant is ground to powder to pass from 90 micron sieve. Fig.1 shows the pictorial view of wood ash.

![Fig.1 Image of wood ash used in this study](image)

3. CONCRETE MIX DETAILS

Concrete mix proportions are prepared as per IS: 10262-2019 [16] for 0.4 water-cement ratio. The cement has been partially replaced with the wood ash by 10%, 15%, and 20% by weight. The mix proportion details are illustrated in Table.1.

Mix Details	Cement	Wood ash	Water	Fine Aggregate	Coarse Aggregate
CM	410	Nil	164	545	1063
WM10	369	41	164	545	1063
WM15	348.5	61.5	164	545	1063
WM20	328	82	164	545	1063

4. RESULTS AND DISCUSSION

4.1 Compressive strength

Strength test is performed to all concrete mixes on triplicate. Fig.2 illustrates the results of compressive strength for different mixes.
From the figure it is noticed that the utilization of wood ash in concrete enhances the strength. There is a maximum of 8.24% improvement in compressive strength was noticed by the utilization of 15% wood ash as substitute to cement. The utilization of wood ash up to 15% enhances the compressive strength. The addition of 20% of wood ash as substitute material to cement in concrete slightly diminishes the strength.

4.2 Flexural strength

Concrete beams specimen of size 100 x 100 x 500 mm are prepared for testing flexural strength of concrete. The test has been performed to all concrete mixes on triplicate at an age of 28 days. Fig. 3 illustrates the flexural strength results of different mixes. From the figure it is noticed that the utilization of wood ash considerably enhances the flexural strength. Pattern of results is similar to compressive strength. There is a maximum of 7% improvement in flexural strength was noticed with addition of 15% of wood ash as a substitute to cement.
4.3 Water absorption

The test has been performed to all concrete mixes on triplicate. The 28 days cured specimens were oven dried at 110°C in oven for 24 hours. The specimens were removed from the oven after 24 hours and cooled in room temperature. The weight of the oven dried cubes was noted (W₁) and these cubes were saturated in water for 24 hours. The cubes were separated from curing after 24 hours and the surface water was wiped and the weights of saturated specimens were taken (W₂). The water absorption capacity of concrete is calculated using equation (1).

\[
\text{Water absorption (\%) } = \frac{W₂ - W₁}{W₁} \times 100 \quad \text{(1)}
\]

Fig.4 shows the water absorption test results of different mixes. From the figure it is noticed that the utilization of wood ash as alternative to cement posses higher water absorption in concrete. As the wood ash proportion increases the water absorption also increases. Similar, pattern of results are observed in [17] as the dosage of wood ash in concrete increases the water absorption also increases.

Fig.4 Water absorption results of different concrete mixes

5. CONCLUSIONS

The effect of wood ash as alternative to cement was studied in this work. The wood ash has been added in concrete by 10%, 15%, and 20% by weight of cement. The addition of wood ash in concrete improves the strength of concrete. There is an 8.24% maximum improvement in strength of concrete was identified by the utilization of 15% of wood ash as replacement to cement. The water absorption test results show that the utilization of wood ash slightly diminishes the durability of concrete. The addition of wood ash in concrete up to 15% as partial substitute material cement is suggested for developing sustainable concrete.

6. REFERENCE

[1] T. C. Madhavi, L. S. Raju, and D. Mathur, “Durabilty and Strength Properties of High Volume Fly Ash Concrete,” J. Civ. Eng. Res., vol. 4, pp. 7–11, 2014.
[2] E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, “Global strategies and potentials to curb CO$_2$ emissions in cement industry,” *J. Clean. Prod.*, vol. 51, pp. 142–161, 2013.

[3] Y. Paluri, S. Mogili, H. Mudavath, and V. Noolu, “Materials Today: Proceedings Effect of fibres on the strength and toughness characteristics of recycled aggregate concrete,” *Mater. Today Proc.*, no. xxxx, pp. 10–13, 2020.

[4] Y. Paluri, V. Noolu, H. Mudavath, and R. K. Pancharathi, “Flexural Fatigue Behavior of Steel Fiber-Reinforced Reclaimed Asphalt Pavement – Based Concrete : An Experimental Study,” *Pr. Period. Struct. Des. Constr.*, vol. 26, pp. 1–10, 2021.

[5] Y. Paluri, S. Mogili, H. Mudavath, and R. K. Pancharathi, “A study on the influence of steel fibers on the performance of Fine Reclaimed Asphalt Pavement (FRAP) in pavement quality concrete,” *Mater. Today Proc.*, vol. 32, no. 4, pp. 657–662, 2020.

[6] A. K. Saha, “Effect of class F fly ash on the durability properties of concrete,” *Sustain. Environ. Res.*, vol. 28, no. 1, pp. 25–31, 2018.

[7] K. G. Babu and G. S. N. Rao, “Efficiency of Fly Ash in Concrete,” *Cem. Concr. Compos.*, vol. 15, pp. 223–229, 1994.

[8] N. Vishvanath, S. V Deo, and M. Murmu, “Effect of Fly Ash and Rice Husk Ash as Partial Replacement of Cement on Packing Density and Properties of Cement,” *Int. J. Innov. Technol. Explor. Eng.*, vol. 8, no. 7, 2019.

[9] S. A. Zareei, F. Ameri, F. Dorostkar, and M. Ahmadi, “Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties,” *Case Stud. Constr. Mater.*, pp. 1–20, 2017.

[10] R. Palod and S. V. D. G. D. Ramtekkar, “Utilization of waste from steel and iron industry as replacement of cement in mortars,” *J. Mater. Cycles Waste Manag.*, pp. 1–15, 2019.

[11] R. Palod and S. Deo, “Review and Suggestions on use of Steel Slag in Concrete and its Potential use as Cementitious Component Combined with GGBS,” *Int. J. Civ. Eng. Technol.*, vol. 8, no. 4, pp. 1–11, 2017.

[12] F. Ash and R. H. Ash, “State of art of usage of alternative materials in concrete,” *Int. J. Eng. Sci. Manag. Res.*, vol. 2, no. 12, pp. 32–37, 2015.

[13] Z. Yang, J. Huddleston, and H. Brown, “Effects of Wood Ash on Properties of Concrete and Flowable Fill,” *J. Mater. Sci. Chem. Eng.*, vol. 4, pp. 101–114, 2016.

[14] R. Siddique, “Resources, Conservation and Recycling Utilization of wood ash in concrete manufacturing,” *Resources, Conserv. Recycl.*, vol. 67, pp. 27–33, 2012.

[15] A. S. Batt and G. Anshul, “Partial Replacement of Wood Ash with Ordinary Portland Cement and
Foundry Journal of Civil & Environmental Partial Replacement of Wood Ash with Ordinary Portland Cement and Foundry Sand as Fine Aggregate,” *J. Civ. Environ. Eng.*, vol. 7, no. 2, pp. 1–5, 2017.

[16] IS: 10262 - 2019, “Concrete Mix Proportioning - Guidelines,” *Bur. Indian Stand.*, no. 1, pp. 1–21, 2019.

[17] A. V. Viet, C. Alain, B. Bissonnette, B. Pierre, and D. Jrose, “The Effect of Wood Ash as a Partial Cement Replacement Material for Making Wood-Cement Panels,” *Materials (Basel)*., vol. 12, pp. 1–11, 2019.