The homeostasis of iron, copper, and zinc in Paracoccidioides brasiiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii: a comparative analysis

Mirelle Garcia Silva¹, Augusto Schrank², Elisa Flávia L.C. Bailão³, Alexandre Melo Bailão³, Clayton Luiz Borges⁴, Charley Christian Staats², Juliana Alves Parente¹, Maristela Pereira¹, Silvia Maria Salem-Izacc¹, Maria José Soares Mendes-Giannini⁵, Rosely Maria Zancopé Oliveira⁶, Lívia Knetzsch Rosa e Silva⁷, Joshua D. Nosanchuk⁵,⁶, Marilene Henning Vainstein⁵ and Célia Maria de Almeida Soares¹

1Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
2Laboratório de Biologia Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
3Faculdade de Ciências Farmacêuticas, Universidade Estadual Júlio de Mesquita Filho, Araquara, São Paulo, Brazil
4Laboratório de Micologia, Instituto de Pesquisa Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
5Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
6Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA

Keywords: micronutrient homeostasis, pathogenic fungi, infection

Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiiliensis. Interestingly, in silico analysis of the genomes of P. brasiiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.

INTRODUCTION

A sufficient supply of iron, copper and zinc is essential for all living and proliferating organisms. In infectious diseases, iron, copper and zinc metabolism are important for both the host and the pathogen, and complex responses in each occur to maintain adequate resources of these elements to preserve homeostasis. Iron, in the form of heme and iron–sulfur clusters, is essential as a cofactor of various enzymes, oxygen carriers, and electron-transfer systems involved in vital cellular functions ranging from respiration to DNA replication (Schaible and Kaufmann, 2004). Copper is a redox-active metal ion essential for most aerobic organisms, which also serves as a catalytic and structural cofactor for enzymes involved in energy generation, iron acquisition, oxygen transport, and cellular metabolism, among other processes (Kim et al., 2008). Zinc is also a crucial metal, since it is at the catalytic center of numerous enzymes and plays important roles in the functionality of a wide variety of proteins (Van Ho et al., 2002). Mammalian hosts and microbes have developed sophisticated strategies to acquire these metals, even under conditions in which their availability is limited. One of the strategies developed by mammalian hosts to prevent microbial infections is to limit the availability of iron (Weinberg, 2009). Recently, it has been demonstrated that zinc deprivation is a host defense mechanism utilized by macrophages during Histoplasma capsulatum infection (Winters et al., 2010). In addition, the binding of copper to calgranulin C in human neutrophils could be a mechanism of antimicrobial action (Moroz et al., 2003). In order to counteract these and other host responses, microorganisms employ a range of uptake mechanisms for the targeted acquisition of iron, copper and zinc.

Ferric iron is generally insoluble at physiological pH in the presence of oxygen. Thus, the common mechanisms of iron-assimilation include the reduction of ferric (Fe³⁺) to ferrous (Fe²⁺),...
and solubilization of Fe$^{3+}$ by binding siderophores (Kornitzer, 2009). The reductive system in fungi is regulated by three different mechanisms. First, a low-affinity iron reductase that functions in iron-rich environments generates Fe$^{2+}$, which is transported into the cell by a non-specific low-affinity iron permease. Second, a regulated high-affinity ferric reductase operates in low iron conditions, such as those present in a mammalian host. The produced Fe$^{2+}$ is further oxidized to Fe$^{3+}$ by a membrane multi-copper-oxidase before being transported across the cell membrane by a high-affinity iron permease. The third mechanism is a non-enzymatic reduction, such as that promoted by 3-hydroxyanthranilic acid (3HAA), which is known to maintain a reduced environment to facilitate the release and sustain the presence of Fe$^{2+}$ at the fungal membrane until transport occurs (Howard, 1999).

Ferric iron uptake mediated by siderophores is considered a non-reductive high-affinity mechanism by which microorganisms acquire iron. Siderophores are low-molecular weight ($M_r < 1500$), ferric iron-specific chelators (Neiulands, 1993). Microorganisms produce siderophores as scavenging agents in low iron concentration environments in order to supply iron to the cell through the solubilization of extracellular ferric iron. Siderophores are also produced intracellularly for iron storage in most fungi (Matzanke et al., 1987). Siderophores can be classified into three main groups depending on the chemical nature of the moieties donating the oxygen ligands for Fe$^{3+}$: catechols, carboxylates and hydroxamates (Mietheke and Marahiel, 2007). With the exception of the carboxylate rhizoferrin produced by zygomyces, the other known fungal siderophores are all hydroxamates (Van der Helm and Winklemann, 1994). Fungal hydroxamates are derived from the non-proteinogenic amino acid ornithine and can be grouped into four structural families: rhodotorulic acid, ferrichromes, coprogens and fusarinines. Siderophores are named based on their iron-charged forms, existing in the iron-free form of the ligand called desferri-siderophore. Not all fungi produce siderophores. For example, Saccharomyces cerevisiae is not a siderophore producer (Neiulands et al., 1987). Similarly, Cryptococcus species and Candida albicans are also unable to produce siderophores. However, these pathogenic fungi can utilize iron bound to siderophores secreted by other species (bacteria and fungi), the xenosiderophores (Howard, 1999). After siderophores are synthesized, they can be utilized intracellularly or secreted to the extracellular medium to solubilize ferric iron. For secreted siderophores, the captured metal of the siderophore–iron complex may be utilized either by reductive iron assimilatory systems or by internalization of the whole complex by specific transporters. In fungi, the uptake of siderophore–iron chelates is accomplished by transporters of the siderophore–iron transporter (SIT) subfamily, previously designated as family 16 of the major facilitator superfamily (MFS; Pao et al., 1998). These transporters are integral membrane proteins, with 12–14 predicted transmembrane domains, that mediate the import of siderophores in a highly regulated process (Philpott, 2006).

Several homeostatic mechanisms that ensure the maintenance of copper at a sufficient concentration for cell growth have been identified. Copper homeostasis in fungi is maintained by the transcriptional regulation of genes involved in copper acquisition, mobilization and sequestration and also at the posttranslational level (Gross et al., 2000). In S. cerevisiae copper is reduced from Cu (II) to Cu (I) by cell surface metalloreductases (Hassett and Kosman, 1995; Georgatsou et al., 1997) and uptake is mediated by Ctr1p and Ctr3p, two high-affinity transporters. Both ctr1 and ctr3 genes are regulated at the transcriptional level in response to copper availability, being induced by copper deprivation (Dancis et al., 1994a; Pena et al., 2000). The vacuolar copper transporter Ctr2p is also involved in the intracellular copper homeostasis, since it provides copper via mobilization of intracellular copper stores (Rees et al., 2004).

Zinc homeostasis is maintained by posttranslational and transcriptional homeostatic regulatory mechanisms (Lyons et al., 2000; Eide, 2003). Unlike iron and copper, zinc is taken up as divalent cation. Once inside the cell, zinc is neither oxidized nor reduced (Berg and Shi, 1996). In S. cerevisiae the uptake of zinc is mediated by two separate systems. One system has a high-affinity for this metal and is active in zinc-limited conditions (Zhao and Eide, 1996a). The second system has a lower affinity for zinc and is not highly regulated by zinc concentrations (Zhao and Eide, 1996b). The expression of the high-affinity zinc transporter Zrt1p and the low-affinity zinc transporter Zrt2p is regulated by the transcription factor Zap1p, which plays a central role in zinc homeostasis (Zhao and Eide, 1997). The zinc transporter activity is also posttranslationally regulated. High levels of extracellular zinc trigger the inactivation of Zrt1p through endocytosis of the protein and its subsequent degradation in the vacuole (Gitan et al., 1998).

This paper focuses on the metabolism of iron, copper and zinc in the fungal pathogens Paracoccidioides brasilensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Low iron conditions have been associated with the susceptibility of P. brasilensis, the etiological agent of paracoccidioidomycosis (PCM), to the antimicrobial action of monocytes (Dias-Melicio et al., 2005). Major phenotypic changes in C. neoformans, the etiological agent of cryptococcosis, are regulated by iron availability. For example, low iron concentrations result in the induction of capsule enlargement and the repression of laccase (Jung and Kronstad, 2008). Although iron regulation is well described in Cryptococcus species (Jung et al., 2008), iron associated processes are poorly understood in P. brasilensis. Further, there is limited information on the impact of copper and zinc in P. brasilensis, as well as the impact of zinc in Cryptococcus species. In this paper we performed in silico analyses of genes related to iron, copper and zinc metabolism in P. brasilensis, C. neoformans var. grubii and C. gattii. We also compared the obtained information with data available from S. cerevisiae, which represents the most deeply studied model fungus, and other fungi.

MATERIALS AND METHODS

Sequences of genes related to iron, copper and zinc uptake, as well as to siderophore biosynthesis and uptake were used in the search for orthologs of P. brasilensis and Cryptococcus species genomes. The P. brasilensis database includes the genomes of three isolates (Pb01, Pb03, and Pb18) and the cryptococcal database includes genomes of C. neoformans var. grubii and C. gattii. The sequences used in

1. http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html
2. http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans/MultiHome.html
3. http://www.broadinstitute.org/annotation/genome/cryptococcus_neoformans_b/MultiHome.html
the in silico analysis were obtained from the NCBI databank, and they are primarily from \textit{S. cerevisiae}, but also include genes from other fungi, such as \textit{Aspergillus fumigatus, Aspergillus nidulans, C. albicans} and \textit{H. capsulatum}. The search by orthologs was based on sequence similarity by using the BLAST tool. The expectation value adopted in the databases search was E-value $\leq 10^{-5}$.

The deduced amino acid sequences of the orthologs found in \textit{P. brasiliensis} isolates and \textit{Cryptococcus} species were analyzed. Searches for conserved domains and signal peptides in the orthologs proteins were performed using the Conserved Domain Database at NCBI and the online software SMART. Predictions of putative transmembrane segments were made using the TopPred server and SMART software. Amino acid sequences alignment were performed using the ClustalX2 (Larkin et al., 2007).

RESULTS AND DISCUSSION

IRON

Uptake of iron at the cell surface by the reductive system

To better understand how \textit{P. brasiliensis} could acquire iron by the reductive system, in silico analyses were performed utilizing \textit{S. cerevisiae} and \textit{C. albicans} sequences. The data showed that \textit{Pb}01 contains four metalloreductase (Frep) homologs, \textit{Pb}03 five homologs, and \textit{Pb}18 three homologs (Table 1). The genes encoding metalloreductases were \textit{fre}1, \textit{fre}3, \textit{fre}5, \textit{fre}7 and \textit{fre}p1. Also, \textit{Pb}01 and \textit{Pb}03 have two homologs each of the ferroxidase \textit{Fetp} and \textit{Fetb} has one. The reductive uptake system was first described in \textit{S. cerevisiae} (Lesuisse et al., 1987). The enzymatic reduction step in \textit{S. cerevisiae} is catalyzed by members of the FRE family of metalloreductases. The products of the \textit{frem} genes are not specific for iron reduction, since they can also promote copper reduction. \textit{S. cerevisiae} \textit{Frem}p and \textit{Frem}p2 are required for growth on media with low concentrations of ferric iron salts. \textit{Frem}p and \textit{Frem}p catalyze uptake of iron from siderophores and \textit{Frem}p7 is under the control of the copper-dependent transcription factor \textit{Mac}1p (Philpott and Protchenko, 2008). The expression of \textit{C. albicans} ferric reductase \textit{Frp}lp1 is upregulated by alkaline pH and iron-limited conditions (Li et al., 2009). Future studies are required to dissect the roles of the different \textit{P. brasiliensis} reductases, especially in in vivo conditions.

Homologs for iron permeases (\textit{Ftp}p and \textit{Fth}p) were not found in \textit{P. brasiliensis} genomes, corroborating the hypothesis that iron is transported by the zinc permeases, as previously suggested by transcriptional analyses (Balbão et al., 2006, 2007, Costa et al., 2007). However, in the present in silico analysis, we identified five zinc transporters (Table 1). These permeases could be coupled with one or more of the ferroxidases homologs (\textit{Fet}tp5, \textit{Fet}tp3p and \textit{Fet}tp3p) identified in the \textit{P. brasiliensis} genome database. In \textit{S. cerevisiae}, reduced iron is taken up through a high-affinity transport complex that consists of \textit{Fet}p3, a multi-copper ferroxidase, and \textit{Ft}tp1p, a permease. Independent studies have demonstrated that \textit{Fet}p3 produced by \textit{S. cerevisiae} \Delta\textit{ftt}1 mutant cells is retained in a cytoplasmic compartment in a copper-free, inactive form. Correspondingly, \textit{Ft}tp1p produced by \textit{S. cerevisiae} \Delta\textit{ftt}3 mutant cells fails to reach the plasma membrane (Stearman et al., 1996). These observations are in agreement with a model in which the two proteins form a heterodimer or higher order structure for correct maturation and trafficking to the plasma membrane (Kosman, 2003).

The \textit{P. brasiliensis} genomes analysis revealed the presence of a \textit{ggt}1 homolog. This gene is presumably responsible for the glutathione (GSHI)-dependent iron reduction activity previously identified in functional studies (Zarnowski and Woods, 2005). The proposed mechanism comprises secretion of a glutathione-dependent ferric reductase (GSH–FeR), named \textit{Ggt}1p, that purportedly utilizes siderophores and Fe$^{2+}$-binding proteins as substrates, enhancing the enzymatic activity under iron-limiting conditions, which is consistent with the function of a high-affinity uptake system, as described in \textit{H. capsulatum} (Timmerman and Woods, 2001).

Homologs of permease genes involved in low-affinity iron reductive systems, such as \textit{snf}, were not detected in our analysis. Hence, the low-affinity permease utilized by \textit{P. brasiliensis} to acquire iron could be one of the zinc permeases, as suggested (Table 1). Despite the absence of iron permease \textit{fth}1 gene homologs, \textit{P. brasiliensis} has one \textit{ccc}1 gene homolog that could drive iron vacuolar transport. \textit{P. brasiliensis} also has homologs of the mitochondrial iron transporters genes \textit{mrs}3 and \textit{mrs}4 and the mitochondrial iron chaperone \textit{Yfh}1p, suggesting mitochondrial iron homeostasis in this pathogen (Table 1). Since mitochondria are major users of iron, it follows that they should contain machinery required for its transport. \textit{Mrs}3p and \textit{Mrs}4p are homologous and functionally redundant proteins found in the inner mitochondrial membrane of \textit{S. cerevisiae}, which are involved in transport under iron-limiting conditions (Fouhy and Roganti, 2002). \textit{Yfh}1p, a homolog of human frataxin, is also involved in mitochondrial iron homeostasis (Babcock et al., 1997). While \textit{Mrs}3p and \textit{Mrs}4p mediate iron delivery from the outside to the inside of mitochondria, the frataxin homolog facilitates the use of iron within this organelle, functioning as a mitochondrial matrix iron chaperone (Zhang et al., 2006; Froschauer et al., 2009).

Cryptococcal genomic databases analysis revealed both \textit{S. cerevisiae} and \textit{C. albicans} homologs for proteins related to iron metabolism (Table 1). Remarkably, the \textit{C. neoformans} var. \textit{grubii} database contains four metalloreductase homologs, while the \textit{C. gattii} genome has three similar homologs. The reason for the multiplicity of metalloreductases isoenzymes is not clear, although it is speculated that some sets of genes are expressed under specific conditions for iron acquisition (Kornitzer, 2009). Concerning the ferroxidases, \textit{C. neoformans} var. \textit{grubii} has three homologs and \textit{C. gattii} contains one. Both genomes possess two iron permeases homologs, whose presence is supported by prior functional analyses (Jung et al., 2008). Two iron permeases, gene orthologs of \textit{S. cerevisiae} \textit{ftr}1, have been identified in \textit{C. neoformans}, namely \textit{Cft}1p and \textit{Cft}2p (Jung et al., 2008). The expression of the \textit{cfl}1 gene is down-regulated at high iron concentrations, suggesting that its product functions as a high-affinity iron permease. The role of \textit{cfl}2 is still unclear, although it supposedly encodes a low-affinity iron permease or a vacuolar permease that could transport stored iron to the cytoplasm, similar to what occurs in \textit{S. cerevisiae} with the iron permease \textit{Fth}1p. One of the iron permeases here identified is probably a \textit{Fth}1p homolog, which

\(^{4}\)http://www.ncbi.nlm.nih.gov/guide/
\(^{5}\)http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
\(^{6}\)http://smart.embl-heidelberg.de/
\(^{7}\)http://mobile.pasteur.fr/cgi-bin/portal.py?form=toppred
\(^{8}\)http://www.yeastgenome.org/
\(^{9}\)http://www.candidageneome.org/
Table 1 | Orthologs to genes related to iron, copper and zinc uptake by reductive systems in *P. brasiliensis* and *Cryptococcus* species.

Gene	Organism/accession number	Predicted function	Orthologs in *Pb* 01, 03 and 18 (accession numbers)1	E-value*	Orthologs in *Cryptococcus* species (accession numbers)1	E-value*
fre1	*S. cerevisiae* NP_013315	Metalloreductase	PAAG_05370.1	e-22	Not identified	–
fre3	*S. cerevisiae* NP_015026	Metalloreductase	PAAG_02079.1	e-35	Not identified	–
fre5	*S. cerevisiae* NP_015029	Metalloreductase	PABG_06003.1	e-19	Not identified	–
fre7	*S. cerevisiae* NP_014489	Metalloreductase	PABG_02329.1	e-35	Not identified	–
fre8	*S. cerevisiae* NP_013148	Metalloreductase	Not identified	–	CNAG_00876.2	e-37
fre9	*C. albicans* XP_711543	Metalloreductase	Not identified	–	CNBG_6082.2	e-37
fre10	*C. albicans* XP_711263	Metalloreductase	PAAG_05667.1	e-40	CNAG_07334.2	e-10
cfl4	*C. albicans* XP_711263	Metalloreductase	Not identified	–	CNAG_06821.2	e-34
frp1	*C. albicans* XP_713315	Metalloreductase	PAAG_04493.1	e-26	Not identified	–
fet3	*S. cerevisiae* NP_013774	Ferroxidase	Not identified	–	CNAG_06241.2	0.0
fet5	*S. cerevisiae* NP_116612	Ferroxidase	PABG_05994.1	e-37	CNBG_4942.2	0.0
fet31	*C. albicans* XP_711263	Ferroxidase	PAAG_06004.1	e-39	CNAG_02958.2	0.0
fet33	*C. albicans* XP_711265	Ferroxidase	PAAG_00163.1	e-33	Not identified	–
fr1/fr2	*C. albicans* XP_715020/ XP_715031	Iron permease	Not identified	–	CNAG_06242.2	0.0
smf1	*S. cerevisiae* NP_014519	Low-affinity permease	Not identified	–	CNAG_06242.2	0.0
fth1	*C. albicans* XP_723298	Vacuolar transporter	Not identified	–	CNBG_4943.2	0.0
ccc1	*S. cerevisiae* NP_013321	Vacuolar transporter	PAAG_07762.1	e-31	CNAG_05154.2	e-23
mrs3/ mrs4	*S. cerevisiae* NP_012402/ NP_012976	Mitochondrial iron transporter	PAAG_05053.1	0.0	CNAG_05011.2	e-18
yfh1	*S. cerevisiae* NP_010163	Mitochondrial matrix chaperone	PAAG_02608.1	e-15	CNBG_4670.2	e-18

(Continued)
Gene	Organism/accession number	Predicted function	Orthologs in Pb 01, 03 and 18 (accession numbers)†	E-value*	Orthologs in Cryptococcus species (accession numbers)†	E-value*
ggt1	H. capsulatum EGC49121	Secreted glutathione-dependent ferric reductase	PAAG_06130.1, PABG_06527.1, PADG_07986.1	0.0 0.0 0.0	CNAG_02888.2, CNBG_35372.2	0.0 0.0
mac1	S. cerevisiae NP_013734	Copper metalloregulatory transcription factor	PAAG_08210.1, PABG_07429.1	e-5 e-5	CNAG_07724.2, CNBG_2252.2	e-7 e-7
ctr3	S. cerevisiae NP_013515	High-affinity copper transporter of the plasma membrane	PAAG_05251.1, PABG_07607.1, PADG_05084.1	e-22 e-21 e-21	CNAG_00979.2, CNBG_0560.2	e-14 e-14
ctr1	S. cerevisiae NP_015449	High-affinity copper transporter of the plasma membrane	Not identified		Not identified	
ctr2	S. cerevisiae NP_012045	Putative low-affinity copper transporter of the vacuolar membrane	PABG_01536.1, PADG_04146.1	e-14 e-14	CNAG_01872.2	e-13
atx1	S. cerevisiae NP_14140	Cytosolic copper metallochaperone	PAAG_00326.1, PABG_06615.1, PADG_02352.1	e-12 e-12 e-12	CNAG_02434.2, CNBG_4136.2	e-10 e-11
ccc2	S. cerevisiae NP_010556	Cu²⁺ transporting P-type ATPase	PAAG_07053.1, PABG_03057.1, PADG_01582.1	0.0 0.0 0.0	CNAG_06415.2, CNBG_5045.2	0.0 0.0
cup1	S. cerevisiae NP_011920	Metallothionein	Not identified		Not identified	
cup2	S. cerevisiae NP_011922	Metallothionein	Not identified		Not identified	
sod1	S. cerevisiae NP_012638	Cytosolic superoxide dismutase	PAAG_04164.1, PABG_03954.1, PADG_07418.1	0.0 0.0 0.0	CNAG_01019.2, CNBG_0899.2	0.0 0.0
sod2	S. cerevisiae NP_011872	Mitochondrial superoxide dismutase	PAAG_02725.1, PABG_03204.1, PADG_01756.1	0.0 0.0 0.0	CNAG_04388.2, CNBG_2661.2	0.0 0.0
zrt1	S. cerevisiae NP_011259	High-affinity zinc transporter of the plasma membrane	PAAG_08727.1, PABG_07725.1, PADG_08567.1	0.0 0.0 0.0	CNAG_03398.2, CNBG_2209.2	e-40 e-41
zrt2	S. cerevisiae NP_013231	Low-affinity zinc transporter of the plasma membrane	PAAG_03419.1, PABG_05498.1, PADG_06417.1	e-27 e-26 e-28	CNAG_00895.2	0.0
Table 1 | Continued

Gene	Organism/accession number	Predicted function	Orthologs in Pb 01, 03 and 18 (accession numbers)	E-value*	Orthologs in Cryptococcus species (accession numbers)	E-value*
zrc1	S. cerevisiae NP_013970	Vacuolar membrane zinc transporter	PAAG_00702.1	e-41	Not identified	–
cot1	S. cerevisiae NP_014961	Vacuolar membrane zinc transporter	PAAG_07885.1	e-44	CNAG_02806.2	e-40
zrt3	S. cerevisiae NP_012746	Vacuolar membrane zinc transporter	PAAG_08074.1	e-23	Not identified	–
msc2	S. cerevisiae NP_010491	Cation diffusion facilitator protein of the endoplasmic reticulum and nucleus	PABG_07115.1	e-40	CNAG_05394.2	e-23
zap1	S. cerevisiae NP_012479	Zinc-regulated transcription factor	PAAG_03645.1	e-20	CNAG_05392.2	e-40
			PABG_03305.1	e-18	CNBG_4460.2	e-28
			PADG_01870.1	e-24	CNBG_4458.2	e-24

*Similarities with E-values <10^-4 were considered significant.

*Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to C. neoformans var. grubii and CNBG refers to C. gattii.

is likely involved in vacuolar iron uptake. Moreover, we could identify iron transporter ccc1 gene homologs in the genome, suggesting that a vacuolar iron homeostasis system exists in Cryptococcus. Data mining revealed one homolog of the low-affinity gene smf family, confirming the presence of both high and low-affinity iron reductase systems, as described (Jacobson et al., 1998). The presence of mitochondrial mrs3, mrs4 and yfh1 gene homologs in C. neoformans var. grubii supports a mechanism for iron homeostasis (Nyhus and Jacobson, 1999; Jacobson et al., 2005). Additionally, our in silico analyses demonstrated that cryptococcal reductive systems are closely related to that of S. cerevisiae (Table 1). Although no activity for the enzyme glutathione-dependent ferric reductase had been reported in Cryptococcus, both genomes contain ggt1 homologs suggesting the presence of a GSH–FeR system. A comparative analysis of iron uptake by reductive systems in P. brasiliensis, C. neoformans var. grubii and C. gattii is depicted in Figure 1.

Conserved domains in proteins related to the reductive iron metabolism

Amino acid sequence analyses of orthologs proteins found in the P. brasiliensis isolates and Cryptococcus species may support the assumption of conserved functions. Searching for conserved domains in all the analyzed sequences (Table A1 in Appendix) revealed that most of the P. brasiliensis and Cryptococcus deduced proteins codified by the genes related to reductive iron metabolism contain conserved domains related to specific functions. Regarding to metalloreductases, the presence of a ferric reductase domain and a FAD- and/or a NAD-binding domain can be essential for functional enzymatic activity, since they are responsible for electron donation, as described in other organisms (De Luca and Wood, 2000). A schematic diagram presenting the cited motifs in a metalloreductase Frep is shown in Figure 2. An HPFTXXS motif is believed to be a site for FAD-binding and a glycine-rich motif and a cysteine–glycine couple are thought to be involved in NADPH binding (Shatwell et al., 1996). As well, copper-oxidase domains are required for ferroxidase activity. S. cerevisiae Fet3p is a multi-copper-oxidase and, like other copper proteins, possesses three distinct types of Cu²⁺-binding sites. Oxidation of Fe²⁺ occurs at the type 1 copper site followed by the reduction of molecular oxygen to 2H₂O at the other two copper sites (Hassett et al., 1998; Kosman, 2003). The ferroxidases in the P. brasiliensis isolates and Cryptococcus species present such domain, suggesting they are functional proteins.

Siderophore production

Culture supernatants of P. brasiliensis grown in media with low iron concentrations display higher iron binding capacity when compared with culture supernatants from iron-rich media (Arago and Restrepo, 1988), which has suggested that siderophores are involved in iron acquisition in this fungus. Furthermore, in silico analysis of P. brasiliensis structural genomes indicates that this fungus can potentially produce siderophores. The three sequenced P. brasiliensis genomes show sequences that potentially encode all the necessary enzymes for siderophore synthesis: sidA, sidF, sidC and sidD (A. fumigatus orthologs), as shown in Table 2 and Figure 1. This biosynthetic pathway may lead to the production of hydroxamate-type siderophores. The first committed step in siderophore biosynthesis is the N³-hydroxylation of ornithine catalyzed by ornithine-N³-oxygenase. The sid1 gene of Ustilago maydis, the etiologic agent of corn smut, was the first characterized fungal ornithine-N³-oxygenase-encoding gene (Mei et al., 1993).
Orthologs of *sid1* have been identified in *A. fumigatus* (*sidA*) and *H. capsulatum* (*sid1*). In the latter, disruption of *sid1* causes poor growth under low iron conditions and loss of siderophore production, suggesting an important role of siderophore production in iron-limiting conditions (Schrettl et al., 2004; Hwang et al., 2008). The formation of the hydroxamate group consists of the transfer of an acyl group from acyl-coenzyme A to *N*₅-hydroxyornithine. Different acyl group usage results in the production of distinct siderophores.

FIGURE 1 | Schematic comparison of iron metabolism in *P. brasiliensis* isolates and *Cryptococcus* species. Sit1p, MirAp, MirBp and MirCp are membrane transporters that traffic siderophores bound to ferric iron into the intracellular environment. SidAp, SidFp, SidCp and SidDp are enzymes from the biosynthetic pathway of hydroxamate-type siderophores. Ccc1p is a vacuolar membrane iron transporter. Mrs3/4p are iron transporters found in the inner mitochondrial membrane and Yfh1p is a mitochondrial matrix iron chaperone.
siderophores. Acetyl is used for rhodotorulic acid and ferrichrome synthesis, while anhydromevalonyl is utilized in the fusarines and coprogens pathway (Haas et al., 2008). A. fumigatus sidF encodes an N²-hydroxyornithine: cis anhydromevalonyl coenzyme A-N²-transacylase involved in the synthesis of fusarines and triacetylfusarine (Schrettl et al., 2007). The sidF ortholog of H. capsulatum, sid3 gene, is transcriptionally induced under iron restricted conditions (Hwang et al., 2008). Hydroxamates are covalently linked via peptide (rhodotorulic acid, ferrichromes, coprogens) or ester bonds (fusarines, coprogens) carried out by non-ribosomal peptide synthetases (NRPSs; Finking and Marahiel, 2004). In A. fumigatus, sidC and sidD encodes two NRPSs involved in ferricrocin (intracellular siderophore) and triacetylfusarine C (TAFc) biosynthesis, respectively. Some siderophores additionally require acetylation at the N²-amino group, such as coprogen and TAFc. For example, sidG deletion in A. fumigatus results in the abrogation of the TAFc siderophore production (Schrettl et al., 2007). Given that our in silico analysis of P. brasiliensis identified sequences capable of coding for SidAp, SidFp, SidCp and SidDp, it is reasonable to hypothesize that P. brasiliensis may be able to synthesize both intracellular and extracellular siderophores.

Although Cryptococcus species have been described as unable to produce siderophores (Jacobson and Petro, 1987), in silico analysis of C. neoformans var. grubii and C. gattii structural genomes indicates the presence of sidD and sidG genes, which are also involved in other metabolic pathways in fungi. However, sidA and sidF genes were not found, and these genes are essential, especially since they act early in the pathway for siderophore production (Table 2; Figure 1). It will be interesting to examine if sidA and sidF have other functions and how siderophore-associated iron uptake was replaced to account for this loss.

Conserved domains in proteins related to siderophore biosynthesis

As described above, the third siderophore biosynthetic step is performed by NRPSs. These enzymes have a modular structure where one module, the catalytic unit, is composed of an adenylation domain (A) for substrate specificity and activation, a peptidyl carrier (PCP) domain that binds a 4′ phosphopantetheine cofactor for attachment of the activated substrate, and a condensation (C) domain for bond formation (Finking and Marahiel, 2004). As Cryptococcus species are not siderophore producers, NRPSs domains analysis was performed only with SidCp ortholog found in P. brasiliensis genomes. These analyses revealed that, as in A. fumigatus, the three domains essential for NRPS function are present in SidCp from the three P. brasiliensis isolates examined (Figure 3A). Domains found in other siderophore biosynthesis related proteins are shown in Table A2 in Appendix.

Siderophore uptake

The presence of orthologs for appropriate siderophore genes and the fact that the iron binding capacity of medium from low iron cultures of P. brasiliensis is greater than that of iron-replete medium (Arango and Restrepo, 1988) supports our hypothesis that P. brasiliensis produces and captures siderophores from the extracellular environment. Therefore, we have categorized putative P. brasiliensis siderophore transporters by sequence homology analysis (Table 2; Figure 1). Searches of the P. brasiliensis genomes revealed that all three isolates contain the S. cerevisiae gene homolog SIT sit1. S. cerevisiae can utilize siderophore-bound iron either by the reductive iron-assimilation system or by membrane transporters. In the latter case, the uptake is mediated by four transporters that differ in substrate specificity: Sit1p/Arn3p, Arn1p, Taflp/Arn2p, Enb1p/Arn4p (Lesuisse et al., 1998; Heymann et al., 1999, 2000b; Yun et al., 2000a,b). Sit1p/Arn3p recognizes ferroxamines, coprogen, and ferrichromes lacking anhydromevalonic acid. Additionally, P. brasiliensis isolates possess the A. nidulans SIT gene homologs, mirB, and mirC (Table 2; Figure 1). Heterolog expression assays of A. nidulans mir genes in a S. cerevisiae mutant strain unable to uptake siderophores have demonstrated that MirBp transports native TAFC, a hydroxamate siderophore. The growth of P. brasiliensis is stimulated by coprogen B and dimerin acid (DA), a derivative of rhodotorulic acid from Blastomyces dermatitidis, suggesting that P. brasiliensis can use hydroxamate compounds as iron sources (Castaneda et al., 1988).

The siderophore transporter Sit1p/Arn3p and the transporters of the SIT-family (mirA, mirB and mirC) were found in C. neoformans var. grubii and C. gattii (Table 2; Figure 1). The homolog gene sit1/arn3 was previously identified in C. neoformans var. neoformans using SAGE employed to examine the transcriptome under iron-limiting and iron-replete conditions (Lian et al., 2005). Mutants defective in sit1 had increased melamin production and elevated transcript levels for the laccase gene, lac1. The melamin phenotype may be caused by changes in iron homeostasis or membrane trafficking, perhaps leading to altered copper loading of laccase in the cell wall. Studies with mutants lacking sit1/arn3 in C. neoformans var. grubii and C. neoformans var. neoformans have demonstrated that the gene sit1 is required for siderophore utilization (ferroxamine B) and growth in low iron-environments (Tangen et al., 2007). An overview of the siderophore biosynthesis and uptake in P. brasiliensis and Cryptococcus species is shown in Figure 1.

Analysis of transmembrane domains in siderophore–iron transporters

Amino acid sequences of siderophore transporter orthologs found in P. brasiliensis isolates and Cryptococcus species were analyzed in the TopPred server to predict their transmembrane domain topologies. Figure 3B presents the transmembrane segments of Sit1p in S. cerevisiae, P. brasiliensis isolates, C. neoformans var. grubii and C. gattii.
hemoglobin-binding protein (Weissman et al., 2008). Although there is no experimental evidence regarding the utilization of iron from the heme group by *P. brasiliensis*, there are genes that show similarity with Hmx-1p (Pendrak et al., 2004), and exhibit a heme oxygenase domain (PAAG_06626.1 in Pb01; PABG_02644.1 in Pb03; PADG_01082.1 in Pb18) in each of the *P. brasiliensis* isolates. These genes are annotated as conserved hypothetical or as predicted proteins.

C. neoformans var. *grubii* is also able to utilize heme and hemoglobin as iron sources, but the mechanism(s) of heme utilization by this fungus are still unclear (Jung et al., 2008).

Transferrin has also been shown to be an iron source for both *C. albicans* and *C. neoformans* var. *grubii*. These fungi employ high-affinity permeases to acquire iron from transferrin in mammalian serum. The number of segments varies between 12 and 15. Identical topology was found in Sit1p from *P. brasiliensis* isolates Pb03 and Pb18, whereas Pb01 has a different topology. Transmembrane domains were also identified in all the other siderophore transporters, as shown in Table A2 in Appendix. These transporters also contain a MFS1 domain, which indicates that they belong to the MFS of transporters.

Iron source preferences

Several fungal pathogens utilize heme or hemoglobin as sources of iron (Foster, 2002; Jung et al., 2008). *C. albicans* expresses surface receptors for hemoglobin and hemolytic factors (Manns et al., 1994). Interestingly, heme–iron utilization in *C. albicans* is facilitated by Rbt5p, an extracellular glycosylphophatidylinositol (GPI)-anchored hemoglobin-binding protein (Weissman et al., 2008). Although there is no experimental evidence regarding the utilization of iron from the heme group by *P. brasiliensis*, there are genes that show similarity with Hmx-1p (Pendrak et al., 2004), and exhibit a heme oxygenase domain (PAAG_06626.1 in Pb01; PABG_02644.1 in Pb03; PADG_01082.1 in Pb18) in each of the *P. brasiliensis* isolates. These genes are annotated as conserved hypothetical or as predicted proteins. *C. neoformans* var. *grubii* is also able to utilize heme and hemoglobin as iron sources, but the mechanism(s) of heme utilization by this fungus are still unclear (Jung et al., 2008).

Transferrin has also been shown to be an iron source for both *C. albicans* and *C. neoformans* var. *grubii*. These fungi employ high-affinity permeases to acquire iron from transferrin in mammalian serum.

Table 2 | Orthologs to genes related to siderophore biosynthesis and to iron uptake by the non-reductive siderophore transport system in *P. brasiliensis* and *Cryptococcus* species.

Gene	Organism/accession number	Predicted function	Orthologs in Pb01, 03 and 18 (accession numbers)*	E-value*	Orthologs in *Cryptococcus* species (accession numbers)†	E-value*
sidA	*A. fumigatus*/XP_755103	Ornithine-N⁵- monooxygenase	PAAG_01682.1	0.0	Not identified	–
sidF	*A. fumigatus*/XM_743567	N⁵-transacylases	PAAG_01680.1	0.0	Not identified	–
sidC	*A. fumigatus*/XP_753088	Non-ribosomal peptide synthetase	PAAG_08527.1	0.0	Not identified	–
sidD	*A. fumigatus*/XP_748662	Non-ribosomal peptide synthetase	PAAG_01679.1	0.0	CNAG_03588.2	e-40
sidG	*A. fumigatus*/XP_748685	N⁵-transacetylase	Not identified	–	CNAG_04355.2	2e-5
sit1/arn3	*S. cerevisiae*/NP_010849	Siderophore transporter	PAAG_06516.1	0.0	CNAG_00815.2	0.0
mirA	*A. nidulans*/AY027565	Siderophore transporter	PAAG_01685.1	0.0	CNAG_07751.2	0.0
mirB	*A. nidulans*/XP_681809	Siderophore transporter	PAAG_01685.1	0.0	CNAG_07751.2	0.0
mirC	*A. nidulans*/AY135152	Siderophore transporter	PAAG_02233.1	0.0	CNAG_07519.2	0.0

Gene	Organism/accession number	Predicted function	Orthologs in Pb01, 03 and 18 (accession numbers)*	E-value*	Orthologs in *Cryptococcus* species (accession numbers)†	E-value*
sidA	*A. fumigatus*/XP_755103	Ornithine-N⁵- monooxygenase	PAAG_01682.1	0.0	Not identified	–
sidF	*A. fumigatus*/XM_743567	N⁵-transacylases	PAAG_01680.1	0.0	Not identified	–
sidC	*A. fumigatus*/XP_753088	Non-ribosomal peptide synthetase	PAAG_08527.1	0.0	Not identified	–
sidD	*A. fumigatus*/XP_748662	Non-ribosomal peptide synthetase	PAAG_01679.1	0.0	CNAG_03588.2	e-40
sidG	*A. fumigatus*/XP_748685	N⁵-transacetylase	Not identified	–	CNAG_04355.2	2e-5
sit1/arn3	*S. cerevisiae*/NP_010849	Siderophore transporter	PAAG_06516.1	0.0	CNAG_00815.2	0.0
mirA	*A. nidulans*/AY027565	Siderophore transporter	PAAG_01685.1	0.0	CNAG_07751.2	0.0
mirB	*A. nidulans*/XP_681809	Siderophore transporter	PAAG_01685.1	0.0	CNAG_07751.2	0.0
mirC	*A. nidulans*/AY135152	Siderophore transporter	PAAG_02233.1	0.0	CNAG_07519.2	0.0

*Similarities with E-values < 10⁻⁵ were considered significant.

†Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to *C. neoformans* var. *grubii* and CNBG refers to *C. gattii*.

See Table A2 in Appendix for full details.
hosts through the reductive system (Knight et al., 2005; Jung et al., 2008). In the P. brasiliensis genome databases, genes were found (PAAG_04670.1; PABG_00038.1; PADG02428.1, respectively for isolates P. brasiliensis isolates and Cryptococcus species. White boxes represent putative segments, according to cutoff parameters (cut-off for certain transmembrane segments 1.00; cut-off for putative transmembrane segments 0.60). E: extracellular environment; C: cytosol. The topology prediction was performed using the TopPred server. Accession numbers in A: AtXp (NP_010849), Pb01 (PAAG_08527.1), Pb03 (PAAG_04670.1), Pb18 (PADG_05295.1). Accession numbers in B: Sc (XP_753088), Pb01 (PAAG_08527.1), Pb03 (PAAG_04670.1), Pb18 (PADG_05295.1), Cn (CNAG_00819.2), and Cg (CNBG_1123.2).

COPPER

Copper uptake by the reductive system

Little is known about copper metabolism in P. brasiliensis. However, our in silico analyses of the S. cerevisiae copper metabolism–related genes in comparison to P. brasiliensis genomic databases revealed genes related to the copper reduction metalloreguctase, frc. Copper transport is well described in S. cerevisiae where it is reduced from Cu (II) to Cu (I) by several cell surface metalloductases encoded by several frc genes. These metalloductases are regulated by iron and copper availability, mediated by the transcriptional factor Mac1p (Jungmann et al., 1993). Homologs of the copper metalloregulatory transcription factor gene (mac1) are present in both Pb01 and Pb03 genomes, but not in Pb18. Additionally, the high-affinity copper transporter (Ctr3p) was found in all three genome isolates. In S. cerevisiae, after reduction, copper is transported by the high-affinity copper transporter comprised by Ctrlp and Ctr1p, which are functionally redundant, although they have distinct amino acid sequences. Ctrl3p is an integral membrane protein that assembles as a trimer to form a competent copper uptake permease at the plasma membrane. S. cerevisiae Ctrl1p is localized at the plasma membrane and exists as an oligomer in vivo. These two high-affinity copper transport proteins are induced by copper deprivation and repressed by copper excess (Dancis et al., 1994a; Pena et al., 2000). In our in silico analyses, genes for the high-affinity copper transporter of the plasma membrane (ctr1) were not found, suggesting that high-affinity copper transport is performed only by the Ctrl3p protein.

Genes related to metallochaperone (atxl), Cu{sup +} transporting P-type ATPase (ccc2) and superoxide dismutases (sod1 and sod2; Table 1) were also found in P. brasiliensis genomes. In the cell, copper is transported by Atx1p, a cytosolic copper metallochaperone protein, that transports Cu (I) to Ccc2p, a transporting P-type ATPase containing a cytoplasmic region containing two distinct soluble metal-binding domains that interact with Atx1p (Banci et al., 2007). Ccc2p mediates the export of copper from the cytosol and distributes it to cupric proteins (Yuan et al., 1997). S. cerevisiae also has a detoxification pathway formed by Cup1p and Cup2p, metallothioneins (Table 1), that protect against copper poisoning (Hamer et al., 1985). An alternative copper transport system is mediated by Ctr2p, a vacular membrane protein of S. cerevisiae, that mobilizes vacuolar copper stores to cytosolic copper chaperones (Rees et al., 2004). Homologs of the low-affinity copper transporter of the vacular membrane (Ctr2p) are in Pb03 and Pb18, but not in Pb01. Additionally, the metallothioneins (encoded by cup1 and cup2 genes) were not identified in P. brasiliensis isolates Pb01, Pb03 and Pb18.

In silico analysis (Table 1) revealed that Cryptococcus species have orthologs encoding ferric/cupric reductases, suggesting that the copper reduction process is similar to that described for S. cerevisiae. Homologs of the high-affinity copper transporter ctr3 gene and copper metalloregulatory transcription factor gene (mac1) have previously been identified (Waterman et al., 2007). Also, proteins with similarity to the cytosolic copper metallochaperone (atxl gene), the Cu{sup +} transporting P-type ATPase (ccc2 gene) and the cytosolic and mitochondrial superoxide dismutases (sod1 and sod2 genes) have also identified, suggesting that copper distribution in Cryptococcus species occurs as described in S. cerevisiae. A homolog of the ctr2 gene was identified only in C. neoformans var. grubii. Recently it was demonstrated that Ctr2p links copper homeostasis to polysaccharide capsule production in C. neoformans. The lack of this protein resulted in increased phagocytosis by murine macro-
phage, sensitivity to copper starvation and defects in polysaccharide capsule formation and melanization (Chun and Madhani, 2010).

The gene *ctr1* for the high-affinity copper transporter of the plasma membrane and the genes *cup1* and *cup2* for metallothioneins were not found in *Cryptococcus* species. These analyses suggest that the high-affinity copper transport in cryptococcal cells is primarily performed by the protein encoded by *ctr3*.

Analysis of conserved motifs present in copper transporters

Searches for conserved domains revealed the presence of Mets and MXXXM motifs in the Ctr3p of the *P. brasiliensis* isolates and the *Cryptococcus* species (Figure 4). Studies in yeast and mammalian cells have revealed that proteins of the CTR family are integral membrane proteins containing three membrane-spanning domains, with high protein sequence homology (Dancis et al., 1994a; Lee et al., 2002). With the exception of *S. cerevisiae* Ctr3p, all CTR family members are rich in methionine residues within the amino-terminal portion (Labbe et al., 1999). These residues are arranged as MXXX and/or MXM, called Mets motifs, and it has been suggested that they could be involved in extracellular copper binding (Dancis et al., 1994b). It has been demonstrated that these clustered methionine residues together with an MXXXM motif in the transmembrane domain of CTR family members are important for copper uptake (Puig et al., 2002). In *P. brasiliensis* the MXXXM motif is found within the third transmembrane segment. The Ctr3p of *Cryptococcus* species contains only two predicted transmembrane domains instead of the three transmembrane segments described for other fungi. In *C. neoformans* var. *grubii* and *C. gattii*, the MXXXM motif is within the second transmembrane domain. Conserved domains were also found in amino acid sequences of other proteins involved in copper metabolism (Table A1 in Appendix), suggesting that the orthologs found in *P. brasiliensis* and *Cryptococcus* may have activities that are similar to genes with established functions in other fungi.

ZINC

Zinc uptake

Comparisons to the *S. cerevisiae* genes related to zinc metabolism performed in *P. brasiliensis* genomes are presented in Table 1. Analyses demonstrate that *P. brasiliensis* has homologs to zinc transporters described in *S. cerevisiae* that are localized in the plasmatic, vacular and endoplasmic reticulum membranes. Importantly, five genes encoding to transporters of the ZIP family, with homology to *S. cerevisiae* Zrt1p or Zrt2p, are in the *P. brasiliensis* genomic database. In *S. cerevisiae*, zinc is transported by proteins belonging to the ZIP family, which is composed by a zinc high-affinity transporter protein encoded by the *zrt1* gene and a low-affinity transporter encoded by the *zrt2* gene (Gaither and Eide, 2001). We have previously identified homologs of zinc transporters by transcriptional analysis of *P. brasiliensis* yeast cells after incubation in human blood and plasma (Balão et al., 2006, 2007). Interestingly, *P. brasiliensis* isolate Pb01 has two vacuolar membrane zinc transporters, encoded by the *zrc1* and *cot1* genes, whereas isolates Pb03 and Pb18 contain only the *cot1* homolog. Intracellularly, zinc is in vacuoles in association with the vacuolar membrane proteins Zrc1p and Cot1p, members of the cation diffusion facilitator (CDF) family (MacDiarmid et al., 2002). A homolog of the transcription factor Zap1p is also present in the three *P. brasiliensis* isolates. The expression of the genes associated with zinc homeostasis is positively regulated in *S. cerevisiae* by the transcription factor Zap1p, which regulates the expression of *zrt1*, *zrt2*, *zrt3*, *fet4*, and *zcr1* under zinc limiting conditions (Wu et al., 2008). Therefore, zinc assimilation in *P. brasiliensis* may be similar to that of *S. cerevisiae*.

Similarly, zinc homeostasis in *Cryptococcus* species is poorly studied. *In silico* analysis was performed by comparing *S. cerevisiae* genes related to zinc metabolism in genomic cryptococcal databases (Table 1). The results show that *C. neoformans* var. *grubii* and *C. gattii* have Zrt1p and Zrt2p zinc transporters homologs. These proteins putatively internalize zinc into the cell. Further, homologs of the vacuolar transporter Cot1p and the CDF Msc2p are present. Cot1p is presumably in the vacuolar membrane and should be related to zinc storage in this compartment. Msc2p, an endoplasmic reticulum membrane zinc transporter, could be related to zinc transport to this organelle. The protein encoded by msc2 (CDF) is responsible for zinc homeostasis in the endoplasmic reticulum in *S. cerevisiae* (Ellis et al., 2004). A homolog of the transcription factor Zap1p is also present in *Cryptococcus*. Since homologs to the vacuolar membrane zinc transporter gene *zrt3* were not identified, the *zrc1* and *cot1* genes, encoding vacuolar membrane zinc transporters

![FIGURE 4](image_url) **Conserved features found in the primary structure of Ctr3p of *P. brasiliensis* isolates and *Cryptococcus* species.** Ctr3p from *P. brasiliensis* isolates contains three putative transmembrane domains (TMD1-3, shown in black) while Ctr3p from *Cryptococcus* species presents only two TMDs. All species contain putative copper binding motifs (Mets motifs) arranged as MXXX and/or MXM. MXXXM motif in TMD3 in *P. brasiliensis* isolates and TMD2 in *Cryptococcus* species are represented in white characters. The length of each protein, in amino acids, is shown on the right. Accession numbers: Pb01 (PAAG_05251.1), Pb03 (PAAG_05084.1), Pb18 (PADG_05084.1), Cn (CNAG_00979.2) and Cg (CNBG_0560.2).
FIGURE 5 | Alignment of amino acid sequences of Zrt1p from *S. cerevisiae*, *P. brasiliensis* isolates and *Cryptococcus* species. The predicted transmembrane domains are shown in gray boxes. The black boxes inside the transmembrane segment contain conserved histidine-serine and glycine residues. The histidines found in the amino-terminal region of Zrt1p from *Cryptococcus* species and in the loop between transmembrane domains III and IV in *P. brasiliensis* and *S. cerevisiae* are boxed. Asterisks indicate amino acid identity and dots represent conserved substitutions. Accession numbers: Pb03 (PABG_07725.1), Pb18 (PADG_08567.1), Pb01 (PAAG_08727.1), Sc (NP_011259), Cn (CNAG_03398.2) and Cg (CNBG_2209.2).
could be responsible for the zinc transport to this organelle. This analysis suggests that *C. neoformans* var. *grubii* and *C. gattii* could obtain zinc via routes similar to that described for *S. cerevisiae*.

Analysis of conserved regions in the high-affinity zinc transporter (Zrt1p) in *P. brasiliensis* isolates and Cryptococcus species

Alignment of Zrt1p amino acid sequence from *S. cerevisiae*, *P. brasiliensis* isolates and *Cryptococcus* species revealed some conserved features (Figure 5). Concerning the predicted transmembrane domain number, all *P. brasiliensis* isolates contain eight predicted domains, while both *C. neoformans* var. *grubii* and *C. gattii* have nine. Proteins belonging to the ZIP family are predicted to have from five to eight transmembrane domains and they vary in size from 233 to 477 amino acid residues. The variations in the amino-terminal portion are usually responsible for the differences in size. The transmembrane domain IV has the most conserved portions of ZIP family proteins, with conserved histidine and glycine residues. The histidine residue and the adjacent polar residue, usually a serine, within the transmembrane domain are predicted to comprise part of a heavy metal-binding site in the center of the membrane (Eng et al., 1998). The amino acid sequence of *S. cerevisiae* Zrt1p presents a number of histidine residues in a large loop between the transmembrane segments III and IV, which is a putative metal ion binding site (Zhao and Eide, 1996a). The histidine-serine and glycine residues are conserved within the fourth transmembrane region in *P. brasiliensis* and within the fifth transmembrane region in *Cryptococcus*. Regarding the histidine-rich region, it is conserved between transmembrane domains III and IV in *P. brasiliensis* isolates, whereas are conserved at the amino-terminal portion in *Cryptococcus* species, as occurs in other members of the ZIP family (Eng et al., 1998). Conserved domains are also found in amino acid sequences of other proteins involved in zinc metabolism that were identified in the search for orthologs (Table A1 in Appendix).

CONCLUSION

As we have described, microorganisms are extremely well equipped to exploit host metal sources during growth and infection. *Cryptococcus* species demonstrate remarkable flexibility in gaining access to and utilizing iron, the most investigated micronutrient in this organism. Our laboratories have begun to elucidate the mechanisms for the uptake and metabolism of micronutrients such as iron, copper and zinc in *P. brasiliensis*. Studies on individual genes and pathways are revealing unique features of micronutrients metabolism in this fungus. The application of systems biology approaches that incorporates genomic and proteomic data will further generate hypotheses about the common and specific responses to micronutrient deprivation in both pathogenic fungi and potentially lead to the development of novel therapeutics exploiting their metal requirements.

ACKNOWLEDGMENT

This work at laboratories was supported by grants from MCT/FINEP/Rede GENOPROT Grant number 01.07.0552.00.

REFERENCES

Arago, R., and Restrepo, A. (1988). Growth and production of iron chelants by *Paracoccidioides brasiliensis* mycelia and yeast forms. *J. Med. Vet. Mycol.* 26, 113–118.

Babcock, M., de Silva, D., Oaks, R., Davis-Kaplan, S., Jiralerspong, S., Montermini, L., Pandolfino, M., and Kaplan, J. (1997). Regulation of mitochondrial iron accumulation by Yih1p, a putative homolog of frataxin. *Science* 276, 1709–1712.

Bailão, A. M., Schrank, A., Borges, C. L., Dutra, V., Molinari-Madlum, E. E. W. I., Felipe, M. S. S., Mendes-Giannini, M. J. S., Martins, W. S. E., Pereira, M., and Soares, C. M. A. (2006). Differential gene expression by *Paracoccidioides brasiliensis* in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. *Microbes Infect.* 8, 2686–2697.

Bailão, A. M., Shrank, A., Borges, C. L., Parente, J. A., Dutra, V., Felipe, M. S., Fiuza, R. B., Pereira, M., and Soares, C. M. A. (2007). The transcriptional profile of *Paracoccidioides brasiliensis* yeast cells is influenced by human plasma. *FEMS Immunol. Med. Microbiol.* 51, 43–57.

Banci, L., Bertini, L., Chasapis, C. T., Rosato, A., and Tenori, L. (2007). Interaction of the two soluble metal-binding domains of yeast Gcc2 with copper(Ⅰ)-Atx1. *Biochim. Biophys. Acta.* 1764, 645–649.

Berg, J. M., and Shi, Y. (1996). The galvanization of biology: a growing appreciation for the roles of zinc. *Science* 271, 1081–1085.

Castaneda, E., Brummer, E., Perlman, A. M., McKewen, J. L. G., and Stevens, D. A. (1998). A culture medium for *Paracoccidioides brasiliensis* with high plating efficiency, and the effect of siderophores. *J. Med. Vet. Mycol.* 26, 351–358.

Chun, C. D., and Madhani, H. D. (2010). Ctr2 links copper homeostasis to polysaccharide capsule formation in *Cryptococcus neoformans*.* PLoS ONE* 5, e12503. doi: 10.1371/journal.pone.0012503.

Costa, M., Borges, C. L., Bailão, A. M., Meirelles, G. V., Mendonca, Y. A., Dantas, S. F., de Faria, F. P., Felipe, M. S., Molinari-Madlum, E. E., Mendes-Giannini, M. J., Fiuza, R. B., Martins, W. S., Pereira, M., and Soares, C. M. A. (2007). Transcriptome profiling of *Paracoccidioides brasiliensis* yeast-phase cells recovered from infected mice brings new insights into fungal response upon host interaction. *Microbiology* 153, 4194–4207.

Dancis, A., Haile, D., Yuan, D. S., and Klausner, R. D. (1994a). The *Saccharomyces cerevisiae* copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. *J. Biol. Chem.* 269, 25660–25667.

Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J., and Klausner, R. D. (1994b). Molecular characterization of a copper transport protein in *S. cerevisiae*: an unexpected role for copper in iron transport. *Cell* 76, 393–402.

De Luca, N. G., and Wood, P. M. (2000). Iron uptake by fungi: contrasted mechanisms with internal or external reduction. *Adv. Microb. Physiol.* 43, 39–74.

Dias-Melício, L. A., Calvi, S. A., Peracoli, M. T., and Soares, A. M. (2003). Inhibitory effect of deferoxamine on *Paracoccidioides brasiliensis* survival in human monocytes: reversal by holotransferrin not by apotransferrin. *Rev. Inst. Med. Trop. Sao Paulo* 47, 263–266.

Eide, D. J. (2003). Multiple regulatory mechanisms maintain zinc homeostasis in *Saccharomyces cerevisiae*. *J. Nutr.* 133, 1525S–1535S.

Ellis, C. D., Wang, F., MacDiarmid, C. W., Clark, S., Lyons, T., and Eide, D. J. (2004). Zinc and the Mscz zinc transporter protein are required for endoplasmic reticulum function. *J. Cell Biol.* 166, 325–335.

Eng, B. H., Guarinot, M. L., Eide, D., and Saier, M. H. Jr. (1998). Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. *J. Membr. Biol.* 166, 1–7.

Finkinger, R., and Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. *Annu. Rev. Microbiol.* 58, 433–488.

Foster, L. A. (2002). Utilization and cell-surface binding of hemin by *Histoplasma capsulatum*. *Can. J. Microbiol.* 48, 437–442.

Foury, F., and Roganti, T. (2002). Deletion of the mitochondrial carrier genes *MR3S* and *MR4S* suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. *J. Biol. Chem.* 277, 24475–24483.

Froschauer, E. M., Schweeney, R. I., and Wiesenberger, G. (2009). The yeast mitochondrial carrier proteins *Msr3p* and *Msr4p* mediate iron transport across the inner mitochondrial membrane. *Biochim. Biophys. Acta.* 1788, 1044–1050.

Gaither, L. A., and Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. *Biometals* 14, 251–270.
Jacobson, E. S., Troy, A. J., and Nyhus, K. J. (2005). Mitochondrial functioning of constitutive iron uptake mutations in Cryptococcus neoformans. Mycopathologia 159, 1–6.

Jung, W. H., and Kronstad, J. W. (2008). Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell. Microbiol. 10, 277–284.

Kornitzer, D. (2009). Fungal mechanisms of the major facilitator superfamily. Curr. Opin. Microbiol. 12, 301–306.

Krumm, M., and Eide, D. (1998). Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J. Biol. Chem. 273, 28617–28624.

Heymann, P., Ernst, J. F., and Winkelmann, G. (1999). Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J. Biol. Chem. 275, 32310–32316.

Hass, H., Eisendle, M., and Turgeon, B. G. (2008). Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 46, 149–187.

Heymann, P., Ernst, J. F., and Petro, M. J. (2008). Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell 7, 20–27.

Pierson, C. C., and Kauffmann, S. H. (2004). Iron and microbial infection. Nat. Rev. Microbiol. 2, 946–953.

Schrettl, M., Bignell, E., Koechli, C., Rogers, C., Arlt, H. N. Jr., Haynes, K., and Haas, H. (2004). Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 200, 1213–1219.

Jung, W. H., and Kronstad, J. W. (2008). Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Path. 4, e45. doi: 10.1371/journal.ppat.0040045

Jungmann, J., Reins, H. A., Lee, J., Romeo, A., Hassett, R., Kosman, D., and Jentsch, S. (1993). MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12, 5051–5056.

Kim, B. H., Nevitt, T., and Thiele, D. J. (2002). Biochemical characterization of ferric/cupric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor. FEBS Lett. 9, 270–277.

Liang, Y., S. R. Gitan, H., Xing, L., and Li, M. C. (2009). Candida albicans ferric reductase Cdr1 is a member of a reduction step. EMBO J. 28, 1674–1685.

Lewis, E. M., and Whisstock, J. C. (2009). Structure of the human Cu2+-siderophore transport gene (TAF1) in S. cerevisiae and the C. albicans orthologue. Acta Crystallogr. D Biol. Crystallogr. 65, 859–867.

Neilsland, J. B. (1993). Siderophore transporters. Arch. Biochem. Biophys. 302, 1–3.

Neilsland, J. B., Konopka, K. A., Skowy, B., May, T. P., Rathman, M., and Bugg, A. (1997). “Comparative biochemistry of microbial iron assimilation,” in Iron Transport in Microbes, Plants and Animals, eds G. Winkelmann, D. Van der Helm, and J. Neilands (New York: VCH Publishers), 3–34.

Nyhus, K. J., and Jacobson, E. S. (1999). Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans. Infect. Immun. 67, 2357–2365.

Pao, S. S., Paulsen, I. T., and Saier, M. H. Jr. (1998). Major facilitator superfamily. Mol. Microbiol. 30, 1–34.
reductase in utilization of environmental and host ferric compounds by *Histoplasma capsulatum*. *Infect. Immun.* 69, 7671–7678.

Van der Helm, D., and Winkelmann, G. (1994). "Hydroxamates and poly-carbonates as iron transport agents (siderophores) in fungi," in *Metal Ions in Fungi*, eds G. Winkelmann and D. R. Winge (New York: Marcel Dekker), 39–148.

Van Ho, A., Ward, D. M., and Kaplan, J. (2002). Transition metal transport in yeast. *Annu. Rev. Microbiol.* 56, 237–261.

Waterman, S. R., Hacham, M., Hu, G., Zhu, X., Park, Y. D., Shin, S., Panepinto, J., Valyi-Nagy, T., Beam, C., Husain, S., Singh, N., and Williamson, P. R. (2007). Role of a CUF1/CTR4 copper regulatory axis in the virulence of *Cryptococcus neoformans*. *J. Clin. Invest.* 117, 794–802.

Weinberg, E. D. (2009). Iron availability and infection. *Biochim. Biophys. Acta* 1790, 600–605.

Weissman, Z., Shemer, R., Conibear, E., and Kornitzer, D. (2008). An endocytic mechanism for haemoglobin-iron acquisition in *Candida albicans*. *Mol. Microbiol.* 69, 201–217.

Winters, M. S., Chan, Q., Caruso, J. A., and Depe, G. S., Jr. (2010). Metallomic analysis of macrophages infected with *Histoplasma capsulatum* reveals a fundamental role for zinc in host defenses. *J. Infect. Dis.* 202, 1136–1145.

Wu, C. Y., Bird, A. I., Chung, I. M., Newton, M. A., Winge, D. R., and Eide, D. J. (2008). Differential control of Zap1-regulated genes in response to zinc deficiency in *Saccharomyces cerevisiae*. *BMC Genomics* 9, 370. doi: 10.1186/1471-2164-9-370

Yuan, C. W., Tiedeman, J. S., Moore, R. E., and Yun, C. W. (2006). Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. *J. Biol. Chem.* 281, 22493–22502.

Zhao, H., and Eide, D. (1996a). The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. *Proc. Natl. Acad. Sci. U.S.A.* 93, 2445–2458.

Zhao, H., and Eide, D. (1996b). The ZRT2 gene encodes the low affinity zinc transporter protein of a high-affinity uptake system induced by zinc limitation. *Proc. Natl. Acad. Sci. U.S.A.* 93, 10783–10787.

Yun, C. W., Ferea, T., Rashford, J., Ardon, O., Brown, P. O., Botstein, D., Kaplan, J., and Philpott, C. C. (2000a). Desferrioxamine-mediated iron uptake in *Saccharomyces cerevisiae*. Evidence for two pathways of iron uptake. *J. Biol. Chem.* 275, 10796–10799.

Yun, C. W., Tiedeman, J. S., Moore, R. E., and Philpott, C. C. (2000b). Siderophore-iron uptake in *Saccharomyces cerevisiae*. Identification of ferrichrome and fusaricine transporters. *J. Biol. Chem.* 275, 16354–16359.

Zarnowskii, R., and Woods, J. P. (2005). Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi. *Microbiology* 151, 2233–2240.

Zhang, Y., Lyver, E. R., Knight, S. A., Pain, D., Lesuisse, E., and Dancis, A. (2006). Mr3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. *J. Biol. Chem.* 281, 22493–22502.
Table A1 | Conserved domains in proteins involved in iron, copper and zinc uptake by reductive systems in *P. brasiliensis* isolates and *Cryptococcus* species.

Gene product	Predicted function	Organism/accession number	Conserved domains*	Transmembrane domains*	Signal peptide*
Fre1 Metalloreductase	*P. brasiliensis* 01/PAAG_05370.1	Ferric reductase domain	7	Yes	
Fre1 Metalloreductase	*P. brasiliensis* 03/PABG_06003.1	FAD-binding domain	6	No	
Fre2 Metalloreductase	*P. brasiliensis* 01/PAAG_02079.1	Ferric reductase domain	6	Yes	
Fre2 Metalloreductase	*P. brasiliensis* 03/PABG_02329.1	FAD-binding domain	6	Yes	
Fre2 Metalloreductase	*P. brasiliensis* 18/PADG_00813.1	NAD-binding domain	6	Yes	
Fre3 Metalloreductase	*P. brasiliensis* 01/PAAG_02079.1	Ferric reductase domain	6	Yes	
Fre3 Metalloreductase	*P. brasiliensis* 03/PABG_02329.1	FAD-binding domain	6	Yes	
Fre3 Metalloreductase	*P. brasiliensis* 18/PADG_00813.1	NAD-binding domain	6	Yes	
Fre5 Metalloreductase	*P. brasiliensis* 03/PABG_07812.1	Ferric reductase domain	6	No	
Fre5 Metalloreductase	*P. brasiliensis* 03/PABG_07812.1	FAD-binding domain	6	No	
Fre5 Metalloreductase	*P. brasiliensis* 18/PADG_00813.1	NAD-binding domain	6	Yes	
Fre6 Metalloreductase	*P. brasiliensis* 01/PAAG_06164.1	Ferric reductase domain	8	No	
Fre6 Metalloreductase	*P. brasiliensis* 03/PABG_06497.1	FAD-binding domain	8	No	
Fre6 Metalloreductase	*P. brasiliensis* 18/PADG_07967.1	NAD-binding domain	8	No	
Fre8 Metalloreductase	*C. neoformans* CNAG_00876.2	NAD-binding domain	7	No	
Fre8 Metalloreductase	*C. neoformans* CNAG_07334.2	Ferric reductase domain	6	No	
Fre8 Metalloreductase	*C. gattii* CNBG_6082.2	Ferric reductase domain	8	No	
Fre10 Metalloreductase	*C. neoformans* CNAG_06821.2	Ferric reductase domain	4	No	
Fre10 Metalloreductase	*C. gattii* CNBG_8882.2	Ferric reductase domain	4	No	
Cfl4 Metalloreductase	*C. neoformans* CNAG_06524.2	Ferric reductase domain	5	No	
Cfl4 Metalloreductase	*C. gattii* CNBG_2116.2	Ferric reductase domain	5	No	
Frp1 Metalloreductase	*P. brasiliensis* 01/PAAG_04493.1	Ferric reductase domain	5	No	
Frp1 Metalloreductase	*P. brasiliensis* 03/PABG_04278.1	FAD-binding domain	6	No	
Frp1 Metalloreductase	*P. brasiliensis* 18/PADG_04652.1	NAD-binding domain	5	No	
Fet3 Ferroxidase	*C. neoformans* CNAG_06241.2	Copper-oxidase domain	1	Yes	
Fet5 Ferroxidase	*P. brasiliensis* 03/PABG_06667.1	Copper-oxidase domain	–	No	
Fet31 Ferroxidase	*P. brasiliensis* 01/PAAG_06004.1	Copper-oxidase domain	1	Yes	
Fet33 Ferroxidase	*P. brasiliensis* 01/PAAG_00163.1	Copper-oxidase domain	–	No	
Fet33 Ferroxidase	*P. brasiliensis* 03/PABG_05183.1	Copper-oxidase domain	–	Yes	
Ftr1/Ftr2 Iron permease	*C. neoformans* CNAG_06242.2	FTR1 domain	7	Yes	
Fth1 Iron permease	*C. neoformans* CNAG_02959.2	FTR1 domain	7	Yes	
Fth1 Iron permease	*C. gattii* CNBG_4943.2	FTR1 domain	7	Yes	

(Continued)
Gene product	Predicted function	Organism/accession number†	Conserved domains*	Transmembrane domains*	Signal peptide*
Smf1	Low-affinity Permease	C. neoformans/CNAG_05640.2	Nramp domain	11	No
		C. gattii/CNBG_6162.2			
Ccc1	Vacuolar transporter	P. brasiliensis 01/PAAG_07762.1	DUF125 domain	4	No
		P. brasiliensis 03/PABG_00362.1			
		P. brasiliensis 18/PADG_02775.1			
		C. neoformans/CNAG_05154.2			
		C. gattii/CNBG_4540.2			
Mrs3/Mrs4	Mitochondrial iron transporter	P. brasiliensis 01/PAAG_05053.1	Mitochondrial carrier	–	No
		P. brasiliensis 03/PABG_04509.1	domain	–	No
		P. brasiliensis 18/PADG_04903.1			
		C. neoformans/CNAG_02522.2			
		C. gattii/CNBG_4218.2			
Yfh1	Mitochondrial matrix iron chaperone	P. brasiliensis 01/PAAG_02608.1	Frataxin domain	–	No
		P. brasiliensis 03/PABG_03095.1			
		P. brasiliensis 18/PADG_01626.1			
		C. neoformans/CNAG_05011.2			
		C. gattii/CNBG_4670.2			
Ggt1	Secreted glutathione-dependent ferric reductase	P. brasiliensis 01/PAAG_06130.1	Gamma-	1	Yes
		P. brasiliensis 03/PABG_06527.1	glutamyltranspeptidase	1	Yes
		P. brasiliensis 18/PADG_07986.1	domain	1	Yes
		C. neoformans/CNAG_05011.2			
		C. gattii/CNBG_35372			
Mac1	Copper metalloregulatory transcription factor	P. brasiliensis 01/PAAG_08210.1	Copper fist domain	–	No
		P. brasiliensis 03/PABG_07429.1			
		P. brasiliensis 18/PADG_01626.1			
		C. neoformans/CNAG_07724.2			
		C. gattii/CNBG_2252.2			
Ctr3	High-affinity copper transporter of the plasma membrane	P. brasiliensis 01/PAAG_05251.1	Ctr domain	3	No
		P. brasiliensis 03/PABG_07607.1			
		P. brasiliensis 18/PADG_05084.1			
		C. neoformans/CNAG_0979.2			
		C. gattii/CNBG_0560.2			
Ctr2	Putative low-affinity copper transporter of the vacuolar membrane	P. brasiliensis 03/PABG_01536.1	Ctr domain	3	No
		P. brasiliensis 18/PADG_04146.1			
		C. neoformans/CNAG_01872.2			
Atx1	Cytosolic copper metallochaperone	P. brasiliensis 01/PAAG_00326.1	HMA domain	–	No
		P. brasiliensis 03/PABG_06615.1			
		P. brasiliensis 18/PADG_02352.1			
		C. neoformans/CNAG_02434.2			
		C. gattii/CNBG_4136.2			
Ccc2	Cu²⁺ transporting P-type ATPase	P. brasiliensis 01/PAAG_07053.1	HMA domain	7	No
		P. brasiliensis 03/PABG_03057.1			

(Continued)
Gene product	Predicted function	Organism/accession number†	Conserved domains*	Transmembrane domains*	Signal peptide*
Sod1	Cytosolic superoxide dismutase	*P. brasiliensis* 01/PAAG_04164.1	Hydrolase domain 8	No	-
		C. neoformans CNAG_06415.2	E1-E2 ATPase domain 8	No	-
		C. gattii CNBG_0599.2	-	No	-
Sod2	Mitochondrial superoxide dismutase	*P. brasiliensis* 01/PAAG_02725.1	SOD domain –	No	-
		P. brasiliensis 03/PABG_03204.1	SOD N-terminal domain –	No	-
		C. neoformans CNAG_03398.2	9	Yes	-
		C. gattii CNBG_2209.2	9	Yes	-
Zrt1	High-affinity zinc transporter of the plasma membrane	*P. brasiliensis* 01/PAAG_08727.1	Zip domain 8	No	-
		P. brasiliensis 03/PABG_07725.1	8	No	-
		P. brasiliensis 18/PADG_08567.1	8	No	-
		C. neoformans CNAG_00895.2	6	Yes	-
		C. gattii CNBG_2209.2	9	Yes	-
Zrt2	Low-affinity zinc transporter of the plasma membrane	*P. brasiliensis* 01/PAAG_03419.1	Zip domain 8	Yes	-
		P. brasiliensis 03/PABG_05498.1	8	Yes	-
		P. brasiliensis 18/PADG_06417.1	8	Yes	-
		C. neoformans CNAG_00895.2	8	Yes	-
Zrc1	Vacular membrane zinc transporter	*P. brasiliensis* 01/PAAG_00702.1	Cation efflux domain 6	Yes	-
Cot1	Vacular membrane zinc transporter	*P. brasiliensis* 01/PAAG_07885.1	Cation efflux domain 5	Yes	-
		P. brasiliensis 03/PABG_07467.1	4	No	-
		P. brasiliensis 18/PADG_08196.1	5	Yes	-
		C. neoformans CNAG_02806.2	6	Yes	-
		C. gattii CNBG_3460.2	4	Yes	-
Zrt3	Vacular membrane zinc transporter	*P. brasiliensis* 01/PAAG_09074.1	Zip domain 6	No	-
		P. brasiliensis 03/PABG_04697.1	6	No	-
		P. brasiliensis 18/PADG_05322.1	6	No	-
Msc2	Cation diffusion facilitator protein of the endoplasmic reticulum and nucleus	*P. brasiliensis* 03/PABG_07115.1	Cation efflux domain 10	No	-
		P. brasiliensis 18/PADG_06381.1	10	No	-
		C. neoformans CNAG_05394.2	11	No	-
		C. gattii CNBG_4458.2	10	No	-
Zap1	Zinc-regulated transcription factor	*P. brasiliensis* 01/PAAG_03645.1	Zinc finger C2H2 domain –	No	-
		P. brasiliensis 03/PABG_03305.1	–	No	-
		P. brasiliensis 18/PADG_01870.1	–	No	-
		C. neoformans CNAG_05392.2	–	No	-
		C. gattii CNBG_4460.2	–	No	-

*†Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to *C. neoformans* var. grubii and CNBG refers to *C. gattii.*

Amino acid sequence analysis was performed using the online software SMART.
Table A2 | Conserved domains in proteins related to siderophore biosynthesis and to iron uptake by the non-reductive siderophore transport system in *P. brasiliensis* isolates and *Cryptococcus* species.

Gene product	Predicted function	Organism/accession number†	Conserved domains*	Transmembrane domains*	Signal peptide*
SidA	Ornithine-N^5-	*P. brasiliensis* 01/PAAG_01682.1	Pyr_redox_2 domain	–	No
	monoxygenase	*P. brasiliensis* 03/PABG_03730.1	–	–	No
		P. brasiliensis 18/PADG_00097.1	–	–	No
SidF	N^5-transacylases	*P. brasiliensis* 01/PAAG_01680.1	AlcB domain	–	No
		P. brasiliensis 03/PABG_03728.1	–	–	No
		P. brasiliensis 18/PADG_00100.1	–	–	No
SidC	Non-ribosomal	*P. brasiliensis* 01/PAAG_08527.1	Adenylation domain	–	No
	peptide synthetase	*P. brasiliensis* 03/PABG_04670.1	Peptidyl carrier domain	–	No
		P. brasiliensis 18/PADG_05295.1	Condensation domain	–	No
SidD	Non-ribosomal	*P. brasiliensis* 01/PAAG_01679.1	Adenylation domain	–	Yes
	peptide synthetase	*P. brasiliensis* 03/PABG_03726.1	Peptidyl carrier domain	–	No
		P. brasiliensis 18/PADG_00102.1	–	–	No
		*C. gattii/CNBG_2041.2	–	–	No
		*C. neoformans/CNAG_03588.2	Condensation domain	–	No
SidG	N^5-transacylase	*C. neoformans/CNAG_04355.2	MYND-type zinc finger domains	–	No
		*C. gattii/CNBG_2703.2	Acetyltransferase domain	–	No
Sit1/Am3	Siderophore	*P. brasiliensis* 01/PAAG_06516.1	MFS1 domain	12	No
	transporter	*P. brasiliensis* 03/PABG_02063.1	–	14	No
		P. brasiliensis 18/PADG_00462.1	–	14	No
		*C. neoformans/CNAG_00815.2	–	13	No
		*C. gattii/CNBG_1123.2	–	13	No
MirA	Siderophore	*C. neoformans/CNAG_02083.2	MFS1 domain	12	No
	transporter	*C. gattii/CNBG_5232.2	–	11	No
MirB	Siderophore	*P. brasiliensis* 01/PAAG_01685.1	MFS1 domain	14	No
	transporter	*P. brasiliensis* 03/PABG_03732.1	–	14	No
		P. brasiliensis 18/PADG_00095.1	–	14	No
		*C. neoformans/CNAG_07751.2	–	14	No
		*C. gattii/CNBG_2036.2	–	14	No
MirC	Siderophore	*P. brasiliensis* 01/PAAG_02233.1	MFS1 domain	8	No
	transporter	*P. brasiliensis* 03/PABG_04747.1	–	12	No
		P. brasiliensis 18/PADG_05373.1	–	12	No
		*C. neoformans/CNAG_07519.2	–	10	No
		*C. gattii/CNBG_10872	–	14	Yes

*Amino acid sequence analysis was performed using the online software SMART.
†Accession numbers: PAAG refers to Pb01; PABG refers to Pb03; PADG refers to Pb18; CNAG refers to C. neoformans var. grubii and CNBG refers to C. gattii.