Realizable and Context-Free Hyperlanguages

Hadar Frenkel, CISPA Helmholtz Center for Information Security, Germany
Sarai Sheinvald, Braude College of Engineering, Israel
Hyperproperties [Clarkson & Schneider ‘10]

Standard Properties:
Behavior of the traces of the system

“All requests are eventually granted”

Property = a set of traces. LTL, Regular expressions, ...

Hyperproperties:
Behavior of the system in its entirety

“For every trace with high-security signals, there exists a trace in which they are unobservable”

Hyperproperty = a set of sets of traces. HyperLTL
In this talk

Finite-Word Hyperautomata

- Hyperautomata
- Realizability of hyperlanguages

Context-Free Hypergrammars

- Hypergrammars
- Synchronous hypergrammars
- Emptiness and membership problems for hypergrammars
Finite-word automata

NFA: non-det finite word automaton

Runs: on words

Accepts a word w if w can reach an accepting state

The language of an NFA A: the set of all words that A accepts

NFA: regular languages
Hyperautomata [Bonakdarpour & Sheinvald ‘21]

Runs: on assignments to the variables

\[x \leftarrow a\ a\ #\ # \]
\[y \leftarrow a\ a\ a\ a \]

Quantification condition \(\alpha \)

An NFH accepts a language \(L \) if \(L \) satisfies \(\alpha \) w.r.t. \(A \)

NFH: non-det finite word hyperautomaton

Underlying NFA \(A \)

\# padding

“For every word there exists a longer word”

Hyperlanguage: all infinite languages over \(\{a\} \)

\(\{L \mid L \text{ is infinite}\} \)

Set of sets of words
Hyperautomata

Can express regular hyperproperties:

Noninference: replacing high-security commands with dummy value does not affect the low-security observable data.

\[\forall x \text{ low, high} \exists y \text{ low, high} \rightarrow \text{ low}^{\text{dummy}} \]
Realizability

With which quantification condition?

Def: $\mathcal{L} = \{L_1, L_2, \ldots\}$ is α-realizable if there is an α-NFH for \mathcal{L}

We study the basic case of singleton hyperlanguages: $\mathcal{L} = \{L\}$

- Various types of L
- Realizability and unrealizability results for various α
In this talk

Finite-Word Hyperautomata

- Hyperautomata ✓
- Realizability of \{L\}
 - Finite \(\setminus\) infinite \(L\)
 - Ordered \(L\)
 - Regular \(L\)

Context-Free Hypergrammars

- Hypergrammars
- Synchronous hypergrammars
- Emptiness and membership problems for hypergrammars
Realizability of \{L\}

Simple \(\alpha\) does not suffice

\[
\forall x : \text{if } L \text{ is accepted then also } L' \subseteq L \quad \Rightarrow \quad \text{not } \forall\text{-realizable}
\]

\[
\exists x : \text{if } L \text{ is accepted with } x \leftarrow w \text{ then also } L' \text{ for } w \in L' \cap L \quad \Rightarrow \quad \text{not } \exists\text{-realizable}
\]
Realizability of \(\{L\} \): finite \(L \)

Simple \(\alpha \) does not suffice

\[
\forall x \quad A : \text{ if } L \text{ is accepted then also } L' \subset L \quad \Rightarrow \quad \text{not } \forall\text{-realizable}
\]

\[
\exists x \quad A : \text{ if } L \text{ is accepted with } x \leftarrow w \text{ then also } L' \text{ for } w \in L' \cap L \quad \Rightarrow \quad \text{not } \exists\text{-realizable}
\]

If \(L \) is finite then \(\{L\} \) is \(\forall\exists \)-realizable: \(L = \{w_1, \ldots, w_n\} \)

\[
\forall x \exists y \quad \text{It is also } \exists^*\forall^*\text{-realizable}
\]
(Un)Realizability of \(\{L\} \): infinite \(L \)

Simple \(\alpha \) does not suffice

\(\{L\} \) is not \(\forall \exists \)-realizable: Suppose that \(\forall x \exists y \) accepts \(L \)

\[
\forall x \quad w_1 \quad w_2 \quad w_3 \quad \ldots \quad w_i \quad w_{i+1} \quad \ldots \quad w_{j-1} \quad w_j = w_i
\]

\(\{w_i, w_{i+1}, \ldots\} \in \mathcal{L}\{A\} \)

\(\{w_i, w_{i+1}, \ldots, w_j\} \in \mathcal{L}\{A\} \)

It is also not \(\exists^* \forall^* \)-realizable
Realizability of \{L\}: Ordered \(L\)

Def: \(L\) is ordered if:

\[L = \{w_1, w_2, \ldots \} \] and there exists an NFA \(A_L\)
Realizability of \(\{L\} \): **Ordered** \(L \)

Def: \(L \) is ordered if:

\[L = \{w_1, w_2, \ldots \} \] and there exists an NFA \(A_L \):

If \(L \) is ordered then \(\{L\} \) is \(\exists \forall \exists \) -realizable:

\[\exists x \forall y \exists z \]

\[w_1 \]

\[w_1 \]

\[w_2 \]

\[w_2 \]

\[w_3 \]

\[w_3 \]

\[\vdots \]

\[\vdots \]

\[w_i \]

\[w_i \]

\[w_{i+1} \]

\[w_{i+1} \]
Realizability of \(\{L\} \): Partially Ordered \(L \)

Def: \(L \) is \((m, k)\)-ordered if: \(L = \{w_1, w_2, \ldots\} \)

\[\exists \text{ relation } R \]

\(u_1' \quad u_2' \quad \ldots \quad u'_k \)

\(u_1 \quad u_2 \quad \ldots \quad u_m \)

\(k \) successors for each word

\(m \) minimal elements

If \(L \) is \((m, k)\)-ordered then \(\{L\} \) is \(\exists^m \forall^k \)-realizable:

\[\exists x_1 \ldots x_m \; \forall y \exists z_1 \ldots z_k \]

There exists an NFA \(A_R \) for \(R \)

\[w \quad w' \]

\[u \quad u' \]

\[v \quad v' \]

\[w_1 \quad w_2 \quad \ldots \quad w_m \]

\[u \quad v_1 \quad v_2 \quad \ldots \quad v_k \]

\[\in L \]

\[\text{succ}(u) \]
Realizability of \(\{L\} \): Regular \(L \)

If \(L \) is regular then \(\{L\} \) is \((m,k)\)-ordered and \(\exists^m \forall \exists^k \) -realizable

\(m \):
Minimal elements - simple paths to accepting states
\(uv \in \text{Min} \)

\(k \):
Successors words - one additional simple cycle
\(uxv \in \text{succ}(uv) \)
In this talk

Finite-Word Hyperautomata
- Hyperautomata
- Realizability of \(\{L\} \)
 - Finite \(\backslash \) infinite \(L \)
 - Ordered \(L \)
 - Regular \(L \)

Context-Free Hypergrammars
- Hypergrammars
- Synchronous hypergrammars
- Emptiness & membership
A terminal word w is in the language of a CGF G if w can be derived from the initial variable

$$S \Rightarrow a S b \Rightarrow a a S b \Rightarrow a a b b$$
Context-Free Hypergrammars

CFHG: context-free hypergrammar

\[
S \rightarrow aSb | A
\]

\[
A \rightarrow a\#A\#\#a\#b
\]

Quantification condition \(\alpha\)

padding
Underlying CFG G

Quantification condition α

"For every word of type $a^n b^n$ there exists a longer word"

Hyperlanguage: all infinite languages $\subseteq \{a^n b^n | n \in \mathbb{N}\}$

CFHG: context-free hypergrammar

A GFHG accepts a language L if L satisfies α w.r.t. G

Derives: assignments to the variables

$x \leftarrow a a \# \# b b$

$y \leftarrow a a a b b b$

padding

Set of sets of words
Context-Free Hypergrammars

∀ x ∈ y S → a a S b b | A

A → # a A # b | # # a b
Context-Free Hypergrammars

\[
\forall x \exists y \quad S \rightarrow a \quad S \quad b \quad | \quad A
\]

\[
A \rightarrow \# \quad A \quad | \quad \# \quad \# \quad a \quad b
\]

\[
S \Rightarrow a \quad S \quad b \quad \Rightarrow \quad a \quad a \quad S \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad \Rightarrow \quad a \quad a \quad A \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad A \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad A \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b \quad \Rightarrow \quad a \quad a \quad a \quad a \quad b \quad b \quad b
\]
Context-Free Hypergrams

∀x ∃y \quad S \rightarrow a \quad S \quad b \quad \mid A

A \rightarrow \# \quad A \quad \mid \# \quad \# \quad \# \quad \#
Synchronous Context-Free Hypergrammars

Easy solution:

hypergrammar G: $\forall x \exists y \ G$

$$G \cap \sum^* \cdot \{\#\}^*$$

Result: only the synchronous part of G

Can we define a hypergrammar that is inherently synchronous?
Can we define a hypergrammar that is inherently synchronous?

\[
S \rightarrow AB
\]

\[
A \rightarrow \begin{array}{l}
a \\
\text{#} \\
a \\
b \\
a \\
b \\
\end{array}
\]

\[
B \rightarrow \begin{array}{l}
\text{#} \\
\text{#} \\
\text{#} \\
c \\
c \\
\end{array}
\]

\[
S \Rightarrow \begin{array}{l}
a \\
\text{#} \\
\text{#} \\
a \\
b \\
\end{array}
\Rightarrow
\begin{array}{l}
a \\
\text{#} \\
\text{#} \\
\text{#} \\
\text{#} \\
\text{#} \\
\text{c} \\
\text{c} \\
\end{array}
\]

Rgt(w) \subseteq Lft(w')

set of indices in which w contains # on the right

set of indices in which w' contains # on the left

Avoid # at the middle of the word
Can we define a hypergrammar that is inherently synchronous?

S → aSb | A
A → #A#b | #aba

Lft(X) = \(\cap_{X \rightarrow \alpha} \) Lft(\(\alpha \))
Rgt(X) = \(\cup_{X \rightarrow \alpha} \) Rgt(\(\alpha \))
Can we define a hypergrammar that is inherently synchronous?

\[S \rightarrow \begin{cases} a & \text{S} \\ b & \text{A} \end{cases} \]

\[A \rightarrow \begin{cases} # & \text{A} \\ b & \# \\ a & \# \end{cases} \]

Lft(X) = \bigcap_{X \rightarrow \alpha} \text{Lft}(\alpha)

Rgt(X) = \bigcup_{X \rightarrow \alpha} \text{Rgt}(\alpha)
Can we define a hypergrammar that is inherently synchronous?

S → a S b | A
A → # A # b | # #

R_{w} \subseteq L_{w'}
Synchronous Context-Free Hypergrammars

Can we define a hypergrammar that is inherently synchronous?

Rgt(S) = \{1\} \not\subseteq Lft(\text{bb}) = \{\}

Lft = \{\} Rgt = \{1\}

Rgt(w) \subseteq Lft(w')
In this talk

Finite-Word Hyperautomata
- Hyperautomata
- Realizability of \{L\}
 - Finite \(\setminus\) infinite \(L\)
 - Ordered \(L\)
 - Regular \(L\)

Context-Free Hypergrammars
- Hypergrammars ✓
- Synchronous hypergrammars ✓
- Emptiness & membership
Emptiness: $\forall^* \text{syncCFHG}$

$\forall x \forall y \ G : \text{if } L \text{ is accepted then also } L' \subset L \implies$

G is not empty iff is a singleton language $\{w\} \in \mathcal{L}(G) \implies w \in G$

Same proof also works for $\exists \forall^*$

Check emptiness of the underlying grammar
Emptiness: Undecidable for $\forall^*\text{CFHG}$

Reduction from Post correspondence problem

$S \rightarrow \text{a#} \ \text{ba} \ \text{a} \ \text{ab} \ \text{aa} \ \text{bb} \ \text{bba} \ \text{ab} \ \text{aa} \ \text{bba} \ \text{bb#}$

Same proof also works for $\exists\forall^*$
Regular Membership

EXPTIME for $\exists^*(\text{sync})\text{CFHG}$

$L \in \exists x_1 \ldots \exists x_k G$?

Undecidable for $\forall^*(\text{sync})\text{CFHG}$

Reduction from the universality problem of CFG

G is universal \iff

$\Sigma^* \subseteq G$ \iff

$\Sigma^* \in \forall x G$
Questions?

Hyperautomata
- Realizability of \(\{L\} \) for
 - Finite \(\setminus \) infinite \(L \)
 - Ordered \(L \)
 - Regular \(L \)

Hypergrammars
- Synchronous hypergrammars
- Emptiness \(\forall^*, \exists \forall^* \)
 [in the paper: \(\exists^*, \exists^* \forall^* \)]
- Regular membership \(\exists^*, \forall^* \)
 [in the paper: finite membership]