Supplementary Material for

‘Thompson Sampling for Unsupervised Sequential Selection’

Appendix A. Useful results needed to prove regret bounds of USS-TS

We use the following results in our proofs.

Fact 2 (Chernoff bound for Bernoulli distributed random variables). Let X_1, \ldots, X_n be i.i.d. Bernoulli distributed random variables. Let $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\mu = \mathbb{E}[X_i]$. Then, for any $\varepsilon \in (0, 1 - \mu)$,
\[
\mathbb{P}\{\hat{\mu}_n \geq \mu + \varepsilon\} \leq \exp\left(-d(\mu + \varepsilon, \mu)n\right),
\]
and, for any $\varepsilon \in (0, \mu)$,
\[
\mathbb{P}\{\hat{\mu}_n \leq \mu - \varepsilon\} \leq \exp\left(-d(\mu - \varepsilon, \mu)n\right),
\]
where $d(x, \mu) = x \log \left(\frac{x}{\mu}\right) + (1 - x) \log \left(\frac{1-x}{1-\mu}\right)$.

See Section 10.1 of Chapter 10 of book ‘Bandit Algorithms’ (Lattimore and Szepesvári, 2020) for proof.

Fact 3 (Pinsker’s Inequality for Bernoulli distributed random variables). For $p, q \in (0, 1)$, the KL divergence between two Bernoulli distributions is bounded as:
\[
d(p, q) \geq 2(p - q)^2.
\]

Fact 4. Let $x > 0$ and $D > 0$. Then, for any $a \in (0, 1)$,
\[
\frac{1}{\exp^{Dx} - 1} = \begin{cases} \frac{\exp^{-Dx}}{1-a} & (x \geq \ln (1/a)/D) \\ \frac{1}{Dx} & (x < \ln (1/a)/D) \end{cases}
\]
Further, we have,
\[
\sum_{x=1}^{n} \frac{1}{\exp^{Dx} - 1} \leq \Theta \left(\frac{1}{D^2} + \frac{1}{D}\right).
\]

Proof. Using $\exp^y \geq y+1$ (by Taylor Series expansion), we have $\frac{1}{\exp^{Dx} - 1} \leq \frac{1}{Dx}$ as $\exp^{Dx} - 1 \geq Dx$. We can re-write, $\frac{1}{\exp^{Dx} - 1} = \frac{\exp^{-Dx}}{1-\exp^{-Dx}}$. Since \exp^{-Dx} is strictly decreasing function for all $Dx > 0$, it is easy to check that $\exp^{-Dx} \leq a$ holds for any $x \geq \ln (1/a)/D$ and $a \in (0, 1)$. Hence, $\frac{\exp^{-Dx}}{1-\exp^{-Dx}} \leq \frac{\exp^{-Dx}}{1-a}$ for all $x \geq \ln (1/a)/D$.

Now we will prove the second part,
\[
\sum_{x=1}^{n} \frac{1}{\exp^{Dx} - 1} \leq \frac{\ln(1/a)}{D^2} + \sum_{x \geq \ln(1/a)/D}^{n} \frac{\exp^{-Dx}}{1-a}
\]
\[
\begin{align*}
\leq & \ln(1/a) + \frac{1}{(1-a)} \int_{x=0}^{\infty} \exp^{-Dx} \, dx \\
= & \frac{\ln(1/a)}{D^2} + \frac{1}{(1-a)} \left(\exp^{-Dx} \right)_{x=0}^{\infty} \\
= & \frac{\ln(1/a)}{D^2} + \frac{1}{(1-a)} \left(0 - \exp^{0} \right) \\
= & \frac{\ln(1/a)}{D^2} + \frac{1}{(1-a)D} \\
\implies & \sum_{x=1}^{n} \frac{1}{\exp^{Dx} - 1} \leq \Theta \left(\frac{1}{D^2} + \frac{1}{D} \right). \\
\end{align*}
\]

Fact 5. Let \(\varepsilon \in (0, 1) \) and \(0 < x < y < z < 1 \). If \(d(y, z) = d(x, z)/(1 + \varepsilon) \) then

\[
y - x \geq \frac{\varepsilon}{1 + \varepsilon} \cdot \frac{d(x, z)}{\ln \left(\frac{z(1-x)}{x(1-z)} \right)}.
\]

Proof. By definition

\[
d(p, q) = p \ln \frac{p}{q} + (1-p) \ln \left(\frac{1-p}{1-q} \right)
\]

\[
= \ln \left(\left(\frac{p}{q} \right)^p \left(\frac{1-p}{1-q} \right)^{1-p} \right)
\]

\[
= \ln \left(\left(\frac{q(1-p)}{p(1-q)} \right)^{-p} \right) + \ln \left(\frac{1-p}{1-q} \right)
\]

\[
\implies d(p, q) = -p \ln \left(\frac{q(1-p)}{p(1-q)} \right) + \ln \left(\frac{1-p}{1-q} \right).
\]

Set \(l(p, q) = \ln \left(\frac{q(1-p)}{p(1-q)} \right) \). Note that \(l(p, \cdot) \) is a strictly decreasing function of \(p \) and positive for all \(p < q \). We can re-arrange above equation as

\[
p \cdot l(p, q) = -d(p, q) + \ln \left(\frac{1-p}{1-q} \right).
\]

Using above equation, we have

\[
y \cdot l(y, z) - x \cdot l(x, z) = -d(y, z) + \ln \left(\frac{1-y}{1-z} \right) + d(x, z) - \ln \left(\frac{1-x}{1-z} \right).
\]

Using \(d(y, z) = d(x, z)/(1 + \varepsilon) \),

\[
y \cdot l(y, z) - x \cdot l(x, z) = \frac{\varepsilon}{1 + \varepsilon} d(x, z) + \ln \left(\frac{1-y}{1-x} \right).
\]

After adding \(y(l(x, z) - l(y, z)) \) both side, we have

\[
(y - x)l(x, z) = \frac{\varepsilon}{1 + \varepsilon} d(x, z) + \ln \left(\frac{1-y}{1-x} \right) + y(l(x, z) - l(y, z)).
\]
Using \(l(x, z) = \ln \left(\frac{z(1-x)}{z(1-z)} \right) \) and \(l(y, z) = \ln \left(\frac{y(1-x)}{y(1-y)} \right) \)

\[
\begin{align*}
&= \frac{\varepsilon}{1 + \varepsilon} d(x, z) + \ln \left(\frac{1 - y}{1 - x} \right) + y \ln \left(\frac{y(1-x)}{x(1-y)} \right) \\
&= \frac{\varepsilon}{1 + \varepsilon} d(x, z) + \ln \left(\frac{y(1-x)}{x(1-y)} \right) \cdot \frac{y}{1 - x} \\
&= \frac{\varepsilon}{1 + \varepsilon} d(x, z) + \ln \left(\frac{y}{x} \left(\frac{1 - y}{1 - x} \right)^{1-y} \right) \\
&= \frac{\varepsilon}{1 + \varepsilon} d(x, z) + d(y, x)
\end{align*}
\]

As \(d(p, q) \geq 0 \) and dividing both side by \(l(x, z) \),

\[
\implies y - x \geq \frac{\varepsilon}{1 + \varepsilon} \cdot \frac{d(x, z)}{l(x, z)}.
\]

Substituting value of \(l(x, z) \) in the above equation, we get

\[
y - x \geq \frac{\varepsilon}{1 + \varepsilon} \cdot \frac{d(x, z)}{\ln \left(\frac{z(1-x)}{z(1-z)} \right)}.
\]

Appendix B. Leftover proofs from Section 4

Lemma 4. Let \(P \in \mathcal{P}_{WD} \) and satisfies the transitivity property. If \(s \) be the number of times the sub-optimal arm \(j \) is selected by USS-TS then, for any \(j < i^* \),

\[
\sum_{t=1}^{T} \mathbb{P} \{ I_t = j, j < i^* \} \leq \frac{24}{\xi_j^2} + \sum_{s \geq 8/\xi_j} \Theta \left(\exp^{-s \xi_j^2/2} + \frac{\exp^{-sd(p_{i^*j} - \xi_j, p_{i^*j})}}{(s + 1)\xi_j^2} + \frac{1}{\exp s \xi_j^4 - 1} \right).
\]

Proof. Applying Lemma 3 and properties of conditional expectations, we have

\[
\sum_{t=1}^{T} \mathbb{P} \{ I_t = j, j < i^* \} = \sum_{t=1}^{T} \mathbb{E} \left[\mathbb{P} \{ I_t = j, j < i^* | \mathcal{H}_t \} \right].
\]

As \(q_{j,t} \) is fixed given \(\mathcal{H}_t \),

\[
\implies \sum_{t=1}^{T} \mathbb{P} \{ I_t = j, j < i^* \} \leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{(1 - q_{j,t})}{q_{j,t}} \mathbb{P} \{ I_t \geq i^* | \mathcal{H}_t \} \right] \\
\leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{(1 - q_{j,t})}{q_{j,t}} 1_{\{I_t \geq i^*\}} | \mathcal{H}_t \right].
\]

Using law of iterated expectations,

\[
\implies \sum_{t=1}^{T} \mathbb{P} \{ I_t = j, j < i^* \} \leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{(1 - q_{j,t})}{q_{j,t}} 1_{\{I_t \geq i^*\}} \right].
\]
Let s_m denote the time step at which the output of arm i^* is observed for the m^{th} time for $m \geq 1$, and let $s_0 = 0$. For $j < i^*$, whenever the output from arm i^* is observed then the output from arm j is also observed due to the cascade structure. Note that $q_{j,t} = P\left\{ \hat{p}_{i^*j}^{(t)} > p_{i^*j} - \xi_j | \mathcal{H}_t \right\}$ changes only when the distribution of $\hat{p}_{i^*j}^{(t)}$ changes, that is, only on the time step when the feedback from arms i^* and j are observed. It only happens when selected arm $I_t \geq i^*$. Hence, $q_{j,t}$ is the same at all time steps $t \in \{s_m + 1, \ldots, s_{m+1}\}$ for every m. Using this fact, we can decompose the right hand side term in Eq. (14) as follows,

\[
\sum_{t=1}^{T} \mathbb{E}\left[\frac{1 - q_{j,t}}{q_{j,t}} \mathbbm{1}_{\{I_t \geq i^*\}} \right] = \sum_{m=0}^{T-1} \mathbb{E}\left[\frac{1 - q_{j,s_{m+1}}}{q_{j,s_{m+1}}} \sum_{t=s_{m+1}}^{s_{m+1}} \mathbbm{1}_{\{I_t \geq i^*\}} \right] \\
\leq \sum_{m=0}^{T-1} \mathbb{E}\left[\frac{1 - q_{j,s_{m+1}}}{q_{j,s_{m+1}}} \right] \\
= \sum_{k=0}^{T-1} \mathbb{E}\left[\frac{1}{q_{j,s_{m+1}}} - 1 \right].
\]

Using above bound in Eq. (14), we get

\[
\sum_{t=1}^{T} P\{I_t = j, j < i^*\} \leq \sum_{m=0}^{T-1} \mathbb{E}\left[\frac{1}{q_{j,s_{m+1}}} - 1 \right].
\]

Substituting the bound from Lemma 2 with $\mu = p_{i^*j}, x = p_{i^*j} - \xi_j, \Delta(x) = \xi_j$, and $q_n(x) = q_{j,s_{m}}$, we obtain the following bound,

\[
\sum_{i=1}^{T} P\{I_t = j, j < i^*\} \leq \frac{24}{\xi_j^2} \sum_{s \geq 8/\xi_j} \Theta\left(\exp^{-s \xi_j^2/2} + \frac{\exp^{-s d(p_{i^*j} - \xi_j, p_{i^*j})}}{(s + 1) \xi_j^2} + \frac{1}{\exp^{s \xi_j^2/4} - 1} \right).
\]

Lemma 6. For any $x_j > p_{i^*j}$,

\[
\sum_{t=1}^{T} P\left\{ \hat{p}_{i^*j}^{(t)} > x_j \right\} \leq \frac{1}{d(x_j, p_{i^*j})}.
\]

Proof. Let s_m denote the time step at which the outputs of arm i^* and j is observed for the m^{th} time for $m \geq 1$, and let $s_0 = 0$. Note that probability $P\left\{ \hat{p}_{i^*j}^{(t)} > x_j \right\}$ changes when the outputs from both arm i^* and j are observed. Hence, we have

\[
\sum_{t=1}^{T} P\left\{ \hat{p}_{i^*j}^{(t)} > x_j \right\} \leq \sum_{m=0}^{T-1} P\left\{ \hat{p}_{i^*j}(s_{m+1}) > x_j \right\} \\
= \sum_{m=0}^{T-1} P\left\{ \hat{p}_{i^*j}(s_{m+1}) - p_{i^*j} > x_j - p_{i^*j} \right\} \\
\leq \sum_{m=0}^{T-1} \exp^{-kd(p_{i^*j} + x_j - p_{i^*j}, p_{i^*j})} \quad \text{(using Fact 2)}
\]
Using $\sum_{a \geq 0} \exp^{-sa} \leq 1/a$, we get
\[
\sum_{t=1}^{T} \mathbb{P} \left\{ \hat{p}_{i,*}^{(t)} > x_{j} \right\} \leq \frac{1}{d(x_{j}, p_{i,*})}.
\]

Lemma 7. Let $P \in \mathcal{P}_{WD}$. For any $\varepsilon > 0$ and $j > i^*$,
\[
\sum_{t=1}^{T} \mathbb{P} \left\{ j > i^*, j > i^* \right\} \leq (1 + \varepsilon) \frac{\ln T}{d(p_{i,*}, p_{i,*} + \xi_j)} + O \left(\frac{1}{\varepsilon^2} \right).
\]

Proof. Let $p_{i,*} < x_j < y_j < p_{i,*} + \xi_j$ for any $j > i^*$. Then,
\[
\sum_{t=1}^{T} \mathbb{P} \left\{ j > i^*, j > i^* \right\} = \sum_{t=1}^{T} \mathbb{P} \left\{ \hat{p}_{i,*}^{(t)} > p_{i,*} + \xi_j \right\}
\]
\[
\leq \sum_{t=1}^{T} \mathbb{P} \left\{ \hat{p}_{i,*}^{(t)} > y_j \right\}
\]
\[
\leq \sum_{t=1}^{T} \mathbb{P} \left\{ \hat{p}_{i,*}^{(t)} \leq x_j, \hat{p}_{i,*}^{(t)} > y_j \right\} + \sum_{t=1}^{T} \mathbb{P} \left\{ \hat{p}_{i,*}^{(t)} > x_j \right\}.
\]

Using Lemma 6 and Lemma 5, we have
\[
\sum_{t=1}^{T} \mathbb{P} \left\{ j > i^*, j > i^* \right\} \leq \frac{\ln T}{d(x_j, y_j)} + 1 + \frac{1}{d(x_j, p_{i,*})}.
\]

For $\varepsilon \in (0, 1)$, we set $x_j \in (p_{i,*}, p_{i,*} + \xi_j)$ such that $d(x_j, p_{i,*} + \xi_j) = d(p_{i,*}, p_{i,*} + \xi_j)/(1 + \varepsilon)$, and set $y_j \in (x_j, p_{i,*} + \xi_j)$ such that $d(x_j, y_j) = d(x_j, p_{i,*} + \xi_j)/(1 + \varepsilon) = d(p_{i,*}, p_{i,*} + \xi_j)/(1 + \varepsilon)^2$. Then this gives
\[
\frac{\ln(T)}{d(x_j, y_j)} = (1 + \varepsilon)^2 \frac{\ln(T)}{d(p_{i,*}, p_{i,*} + \xi_j)}.
\]

Using Fact 5, if $\varepsilon \in (0, 1)$, $x_j \in (p_{i,*}, p_{i,*} + \xi_j)$, and $d(x_j, p_{i,*} + \xi_j) = d(p_{i,*}, p_{i,*} + \xi_j)/(1 + \varepsilon)$ then
\[
x_j - p_{i,*} \geq \frac{\varepsilon}{1 + \varepsilon} \frac{d(p_{i,*}, p_{i,*} + \xi_j)}{\ln \left(\frac{p_{i,*} + \xi_j}{p_{i,*} (1 + \varepsilon)} \right)}.
\]

Using Pinsker’s Inequality (Fact 3), $1/d(x_j, p_{i,*}) \leq 1/(x_j - p_{i,*})^2 = O(1/\varepsilon^2)$ where big-Oh is hiding functions of the $p_{i,*}$ and ξ_j,
\[
\sum_{t=1}^{T} \mathbb{P} \left\{ j > i^*, j > i^* \right\} \leq (1 + \varepsilon)^2 \frac{\ln(T)}{d(p_{i,*}, p_{i,*} + \xi_j)} + O \left(\frac{1}{\varepsilon^2} \right)
\]
Theorem 1 (Problem Dependent Bound). Let $P \in \mathcal{P}_{WD}$ and satisfies the transitivity property. If $\varepsilon > 0$ then, the expected regret of USS-TS in T rounds is bounded by

$$R_T \leq \sum_{j > i^*} \frac{(1 + \varepsilon) \ln T}{d(p_{i^*}, p_{i^*} + \xi_j)} \Delta_j + O \left(\frac{K - i^*}{\varepsilon^2}\right),$$

where $\varepsilon' = 3\varepsilon$ and the big-Oh above hides p_{i^*} and ξ_j in addition to the absolute constants. Replacing ε by ε' completes the proof.

Proof. Let $M_j(T)$ is the number of times arm j is selected by USS-TS. Then, the regret is

$$R_T = \sum_{j \in [K]} \mathbb{E} [M_j(T)] \Delta_j = \sum_{j \in [K]} \mathbb{E} \left[\sum_{t=1}^T \mathbbm{1}_{\{I_t = j\}} \right] \Delta_j$$

$$= \sum_{j \in [K]} \sum_{t=1}^T \mathbb{E} \left[\mathbbm{1}_{\{I_t = j\}} \right] \Delta_j = \sum_{j \in [K]} \sum_{t=1}^T \mathbb{P} \left\{ I_t = j \right\} \Delta_j$$

$$= \sum_{j \in [K]} \sum_{t=1}^T \mathbb{P} \left\{ I_t = j, j \neq i^* \right\} \Delta_j$$

$$\implies R_T = \sum_{j < i^*} \sum_{t=1}^T \mathbb{P} \left\{ I_t = j, j < i^* \right\} \Delta_j + \sum_{j > i^*} \sum_{t=1}^T \mathbb{P} \left\{ I_t = j, j > i^* \right\} \Delta_j$$

First, we bound the first term of summation. From Lemma 4, we have

$$\sum_{t=1}^T \mathbb{P} \left\{ I_t = j, j < i^* \right\} \leq \frac{24}{\xi_j^2} + \sum_{s \geq 8/\xi_j} \Theta \left(\frac{\exp^{-s\xi_j^2/2}}{(s + 1)\xi_j^2} + \frac{1}{\exp^{s\xi_j^2/4 - 1}} \right).$$

Using $\sum_{s \geq 0} \exp^{-sa} \leq 1/a, d(p_{i^*}, p_{i^*} - \xi_j, p_{i^*}) \leq 2\xi_j^2$ (Fact 3), and Fact 4, we have

$$\sum_{t=1}^T \mathbb{P} \left\{ I_t = j, j < i^* \right\} \leq \frac{24}{\xi_j^2} + \Theta \left(\frac{1}{\xi_j^2} + \frac{1}{\xi_j^2} + \frac{1}{\xi_j^2} + \frac{1}{\xi_j^2} \right) \leq O(1).$$

If arm $I_t > i^*$ is selected then there exists at least one arm $k_1 > i^*$ which must be preferred over i^*, since the same property, arm $k_2 > k_1$, which must be preferred over k_1, By transivity property, arm k_2 is also preferred over i^*. If the index of arm k_2 is still smaller of the selected arm, we can repeat the same argument. Eventually, we can find an arm k' whose index is larger than the selected arm, and it is preferred over over k_1, \ldots, k_1, i^*. Note that the selected arm must be preferred over k'; hence the selected arm is also preferred over i^*. We can write it as follows:

$$\sum_{t=1}^T \mathbb{P} \left\{ I_t = j, j > i^* \right\} \Delta_j = \sum_{t=1}^T \mathbb{P} \left\{ I_t = j, j > i^*, k'_{t} > k, k_{t} > j \right\} \Delta_j$$

6
\[
\sum_{t=1}^{T} P\{I_t = j, j > i^*, k' > t, k' > j\} \Delta_j \quad \text{(Definition 5)}
\]
\[
= \sum_{t=1}^{T} P\{j > t, k, \forall k > j, j > i^*, k' > t, k' > j\} \Delta_j \quad \text{(Lemma 1)}
\]
\[
= \sum_{t=1}^{T} P\{j > t, k, \forall k > j, j > i^*, j > t, i^*\} \Delta_j \quad \text{(Definition 5)}
\]
\[
\Rightarrow \sum_{t=1}^{T} P\{I_t = j, j > i^*\} \Delta_j \leq \sum_{t=1}^{T} P\{j > t, i^*\} \Delta_j.
\] (17)

Using Lemma 7 to upper bound \[
\sum_{t=1}^{T} P\{j > t, i^*, j > i^*\} \Delta_j \quad \text{and with Eq. (16), we get}
\]
\[
\mathcal{R}_T \leq O(1) + \sum_{j > i^*} (1 + \varepsilon) \frac{\ln(T)}{d(p_{i^*j}, p_{i^*j} + \xi_j)} + O\left(\frac{1}{\varepsilon^2}\right) \Delta_j
\]
\[
\Rightarrow \mathcal{R}_T \leq \sum_{j > i^*} \frac{(1 + \varepsilon) \ln(T)}{d(p_{i^*j}, p_{i^*j} + \xi_j)} \Delta_j + O\left(\frac{K - i^*}{\varepsilon^2}\right).
\]

Theorem 2 (Problem Independent Bound). Let \(P \in \mathcal{P}_{WD}\) and satisfies the transitivity property. Then the expected regret of USS-TS in \(T\) rounds

- for any instance in \(\mathcal{P}_{SD}\) is bounded as
 \[
 \mathcal{R}_T \leq O\left(\sqrt{KT \ln T}\right).
 \]
- for any instance in \(\mathcal{P}_{WD}\) is bounded as
 \[
 \mathcal{R}_T \leq O\left((K \ln T)^{1/3} T^{2/3}\right).
 \]

Proof. Let \(M_j(T)\) is the number of times arm \(j\) preferred over the optimal arm in \(T\) rounds. From Lemma 4, for any \(j < i^*\), we have

\[
\mathbb{E}[M_j(T)] = \sum_{t=1}^{T} P\{I_t = j, j < i^*\}
\]
\[
\leq \frac{24}{\xi_j^2} + \sum_{s \geq 8/\xi_j} \Theta\left(\exp^{-s \xi_j^2 / 2} + \exp^{-sd(p_{i^*j} - \xi_j, p_{i^*j})} + \frac{1}{\exp^{s \xi_j^2 / 4} - 1}\right).
\]

It is east to show that \[
\frac{\exp^{-sd(p_{i^*j} - \xi_j, p_{i^*j})}}{(s+1)\xi_j^2} \leq \frac{1}{(s+1)\xi_j^2}\] and \(\exp^{s \xi_j^2 / 4} - 1 \geq s \xi_j^2 / 4\) (as \(\exp^y \geq y + 1\)),

\[
\mathbb{E}[M_j(T)] \leq \frac{24}{\xi_j^2} + \sum_{s \geq 8/\xi_j} \Theta\left(\frac{1}{\xi_j^2} + \frac{1}{(s+1)\xi_j^2} + \frac{4}{s \xi_j^2}\right).
\]
By using $\sum_{s \geq 0} \exp^{-sa} \leq 1/a$ and $\sum_{s=1}^{T} (1/s) = \log T$,

$$
\mathbb{E}[M_j(T)] \leq \frac{24}{\xi_j^2} + \Theta \left(\frac{1}{\xi_j^2} + \frac{\ln T}{\xi_j^2} \right) \implies \mathbb{E}[M_j(T)] \leq O \left(\frac{\ln T}{\xi_j^2} \right). \tag{18}
$$

For any $j > i^*$, using Lemma 5 and Lemma 6 with Eq. (17), we have

$$
\mathbb{E}[M_j(T)] = \sum_{t=1}^{T} \mathbb{P}\{I_t = j, j > i^*\} \leq \sum_{t=1}^{T} \mathbb{P}\{j > t i^*, j > i^*\} \leq \frac{\ln T}{d(x_j, y_j)} + 1 + \frac{1}{d(x_j, p_i, j)}.
$$

By setting $x_j = p_i, j + \frac{\xi_j}{3}$ and $y_j = p_i, j + \frac{2\xi_j}{3}$, we have $d(x_j, y_j) \geq \frac{2\xi_j^2}{9}$ and $d(x_j, p_i, j) \geq \frac{2\xi_j^2}{9}$ (using Fact 3).

$$
\mathbb{E}[M_j(T)] \leq \frac{9\ln T}{2\xi_j^2} + 1 + \frac{9}{2\xi_j^2} \implies \mathbb{E}[M_j(T)] \leq O \left(\frac{\ln T}{\xi_j^2} \right). \tag{19}
$$

The regret of USS-TS is given by

$$
\mathcal{R}_T = \sum_{j \neq i^*} \mathbb{E}[M_j(T)] \Delta_j = \sum_{j < i^*} \mathbb{E}[M_j(T)] \Delta_j + \sum_{j > i^*} \mathbb{E}[M_j(T)] \Delta_j
$$

Recall $\Delta_j = C_j + \gamma_j - (C_{i^*} + \gamma_{i^*})$ and for any two arms i and j, $0 \leq p_{ij} - (\gamma_j - \gamma_{i^*}) \leq \beta$. By using Eq. (8a) for $j < i^*$, we have $\Delta_j = \xi_j - (p_{i^*, j} - (\gamma_{i^*} - \gamma_j)) \implies \Delta_j \leq \xi_j$, and using Eq. (8b) for $j > i^*$, we have $\Delta_j = \xi_j + (p_{i^*, j} - (\gamma_{i^*} - \gamma_j)) \implies \Delta_j \leq \xi_j + \beta$. Replacing Δ_j,

$$
\implies \mathcal{R}_T \leq \sum_{j < i^*} \mathbb{E}[M_j(T)] \xi_j + \sum_{j > i^*} \mathbb{E}[M_j(T)] (\xi_j + \beta).
$$

Let $0 < \xi' < 1$. Then \mathcal{R}_T can be written as:

$$
\mathcal{R}_T \leq \sum_{\xi' > \xi_j \ j < i^*} \mathbb{E}[M_j(T)] \xi_j + \sum_{\xi' < \xi_j \ j < i^*} \mathbb{E}[M_j(T)] \xi_j + \sum_{\xi' > \xi_j \ j > i^*} \mathbb{E}[M_j(T)] (\xi_j + \beta) + \sum_{\xi' < \xi_j \ j > i^*} \mathbb{E}[M_j(T)] (\xi_j + \beta).
$$

Using $\sum_{\xi' > \xi_j} \mathbb{E}[M_j(T)] \leq T$ for any j such that $\xi' > \xi_j$,

$$
\mathcal{R}_T \leq T \xi' + \sum_{\xi' < \xi_j \ j < i^*} \mathbb{E}[M_j(T)] \xi_j + \sum_{\xi' < \xi_j \ j > i^*} \mathbb{E}[M_j(T)] (\xi_j + \beta).
$$
Substituting the value of \mathcal{R}_T from Eq. (18) and Eq. (19),

\[\mathcal{R}_T \leq T\xi' + \sum_{\xi' < \xi_j} O\left(\frac{\xi_j \ln T}{\xi_j^2}\right) + \sum_{\xi' \geq \xi_j} O\left(\frac{(\xi_j + \beta) \ln T}{\xi_j^2}\right) \]

\[\leq T\xi' + \sum_{\xi' < \xi_j} O\left(\frac{\ln T}{\xi_j}\right) + \sum_{\xi' < \xi_j} O\left(\frac{\ln T}{\xi_j} + \frac{\beta \ln T}{\xi_j^2}\right) \]

\[\leq T\xi' + O\left(\frac{K \ln T}{\xi'}\right) + O\left(\frac{K \ln T}{\xi'} + \frac{\beta K \ln T}{\xi'^2}\right) \]

\[= T\xi' + O\left(K \ln T \left(\frac{1}{\xi'} + \frac{\beta}{\xi'^2}\right)\right) \]

Let there exist a variable α such that $O\left(K \ln T \left(\frac{1}{\xi'} + \frac{\beta}{\xi'^2}\right)\right) \leq \alpha K \ln T \left(\frac{1}{\xi'} + \frac{\beta}{\xi'^2}\right)$,

\[\implies \mathcal{R}_T \leq T\xi' + \alpha K \ln T \left(\frac{1}{\xi'} + \frac{\beta}{\xi'^2}\right). \] \hspace{1cm} (20)

Consider \mathcal{P}_{WD} class of problems. As $\xi' < 1$ and $\beta \leq 2$ (as arms in the cascade may not be ordered by their error-rates, it is possible that $\gamma_i < \gamma_j$), we have $\left(\frac{1}{\xi'} + \frac{\beta}{\xi'^2}\right) \leq \frac{\beta + 1}{\xi'^2} \leq \frac{3}{\xi'^2}$,

\[\mathcal{R}_T \leq T\xi' + \frac{3\alpha K \ln T}{\xi'^2}. \]

Choose $\xi' = \left(\frac{6\alpha K \ln T}{T}\right)^{1/3}$ which maximize above upper bound and we get,

\[\mathcal{R}_T \leq (6\alpha K \ln T)^{1/3} T^{2/3} + \frac{(6\alpha K \ln T)^{1/3} T^{2/3}}{2} \]

\[\implies \mathcal{R}_T \leq 2 \left(6\alpha K \ln T\right)^{1/3} T^{2/3} = O\left((K \ln T)^{1/3} T^{2/3}\right) \]

It completes our proof for the case when any problem instance belongs to \mathcal{P}_{WD}.

Now we consider any problem instance $\theta \in \mathcal{P}_{SD}$. For any $\theta \in \mathcal{P}_{SD} \Rightarrow \forall j \in [K]$, $p_{ij} = \gamma_i - \gamma_j \implies \beta = 0$ (Setting $P \{Y^i = Y, Y^j \neq Y\} = 0$ for $j > i$ in Proposition 3 of Hanawal et al. (2017)). We can rewrite Eq. (20) as

\[\mathcal{R}_T \leq T\xi' + \frac{\alpha K \ln T}{\xi'}. \]

Choose $\xi' = \left(\frac{\alpha K \ln T}{T}\right)^{1/2}$ which maximize above upper bound and we get,

\[\implies \mathcal{R}_T \leq 2 \left(\alpha KT \ln T\right)^{1/2} = O\left(T \ln T\right) \]

This complete proof for second part of Theorem 2.