Management of implantable cardioverter-defibrillator patients with appropriate ICD shocks: A 3-step treatment concept

Thomas Kleemann, MD, Eleni Lampropoulou, MD, Kleopatra Kouraki, MD, Margit Strauss, MD, András Fendt, MD, Ralf Zahn, MD

From the Klinikum Ludwigshafen, Medizinische Klinik B, Ludwigshafen, Germany.

Introduction

It is known that appropriate implantable cardioverter-defibrillator (ICD) shocks are associated with increased morbidity and mortality. Despite the poor prognosis and high rate of appropriate ICD shocks, treatment after the occurrence of ICD shocks remains unclear. Current guidelines recommend amiodarone or ablation after appropriate ICD shocks, but these treatments do not improve the prognosis. Prognostic heart failure treatment such as valsartan/sacubitril, cardiac resynchronization therapy, or MitraClip are known to improve the survival of patients with heart failure while reducing the rate of sudden cardiac death and the occurrence of ventricular arrhythmias. It is not known whether these heart failure treatments are applicable to patients with ICD shock. Therefore, the present study analyzed the treatment and management of patients with appropriate shocks and defined a treatment concept based on these results.

Methods

The study consisted of 2 parts: (1) a retrospective analysis of the management of ICD patients after appropriate ICD shocks in 601 of 2378 (25%) patients (control group) of the prospective single-center ICD registry Ludwigshafen who received the first appropriate ICD shock between 2000 and August 2018; and (2) the development of a treatment concept and its prospective evaluation in 80 consecutive ICD patients (ToVAMI group) who received appropriate ICD shocks between September 2018 and January 2021. The treatment protocol is shown in Figure 1.

Statistical analysis

The patient population is described by absolute numbers and percentages. The distribution of continuous variables is characterized by means and standard deviation or medians with upper/lower quartile. Categorical variables were compared using the Pearson χ² or Fisher exact test, as appropriate. All P values were 2-tailed. A P value < .05 was considered statistically significant.

Results

Patient characteristics

An overview of the key clinical characteristics of the patients at the time of the index ICD shock is shown in Table 1.

Analysis of the management after ventricular tachycardia/ventricular fibrillation shock

The management of ICD patients with appropriate ICD shock essentially consisted of 3 steps, which can be summarized as the ToVAMI treatment concept (Table 2):

1. Trigger identification and optimization (To = Trigger optimization). The following trigger categories have been identified and can be summarized under the acronym ICD-STEMi: Ischemia, Compliance, Decompensation, Stress, Technical, Electrolyte/endocrinological disorder, and Medical intoxication. Acute therapy after ventricular tachycardia/ventricular fibrillation shock relied on finding triggers and comprised a wide variety of treatment measures, including revascularization by coronary artery bypass graft or percutaneous coronary intervention, counseling of patients and physicians, recompensation, reprogramming of devices, treatment of comorbidities including urgent surgery, lead revision, optimization of electrolyte or endocrinological disorders, or withdrawal of drugs owing to serious side effects.

2. Ventricular Arrhythmia (VA) treatment, which consisted of ventricular ablation or antiarrhythmic drugs.

KEYWORDS Appropriate ICD shock; Defibrillation; Implantable cardioverter defibrillator; ICD shock management; Trigger; Ventricular arrhythmia
(3) **Medical and Interventional (MI)** prognostic heart failure treatment. This included review of current medications, implementation of prognostic heart failure medication according to guidelines, and use of interventional therapies known to improve the condition of the underlying heart disease.

Comparison of therapy between the ToVAMI and the control group

Prospective application of the ToVAMI treatment approach resulted in a 2-fold increase in trigger identification and a 5-fold increase in the rate of heart failure treatment optimization (Table 2).

Discussion

The management of ICD patients with appropriate ICD shock essentially consists of 3 steps that can be summarized as the ToVAMI treatment concept: trigger optimization, ventricular

KEY FINDINGS

- Management of patients with appropriate implantable cardioverter-defibrillator (ICD) shock consists of 3 steps, which can be summarized as the ToVAMI treatment concept: Trigger optimization, Ventricular Arrhythmia therapy, and optimized Medical and Interventional heart failure treatment.

- The acronym ICD-STEMi is a useful screening tool for trigger identification and stands for Ischemia, Compliance, Decompensation, Stress, Technical, Electrolyte/endocrinologic disorders, and Medication intoxication.

- Prospective application of ToVAMI in current daily clinical practice is feasible and significantly increases trigger identification and optimization of heart failure treatment after an appropriate ICD shock.

Management of VT/VF ICD shocks – the ToVAMI treatment concept

Name of patient

1) **To** = Trigger optimization according to the ICD-STEMi scheme

Yes	No	I → Ischemia? (TNI, Angina, known CAD)	TNI, Coro, stress test
		C → Compliance issue? (check drugs)	Counseling
		D → Decompensation (worsening heart failure)	Echo, recompensation
		S → Stress (emotional, concomitant disease, surgery)	Disease therapy
		T → Technical (device/lead defect, arrhythmia induction?)	Device optimization
		E → Electrolyte/ endocrinology disorders?	E’lyte, glucose, TSH
		MI → Medication intoxication? (Long QT? Digitalis?)	ECG, drug level?

2) **VA** = Ventricular Arrhythmia therapy

- VT ablation (VT, ischemic CMP, electrical storm)
- Amiodarone (no trigger, no VT ablation)

3) **Medical and Interventional prognostic heart failure therapy**

- Medication optimization: Entresto, BB, Spiro, Dapagliflozine, Empagliflozine
- Interventional optimization: CRT upgrade
- TAVI (severe aortic valve stenosis)
- Mitra Clip (severe mitral valve insufficiency)
- PVI (paroxysmal or persistent AF < 1 year) or AV nodal ablation
- other

Figure 1 The ToVAMI treatment protocol.
Clinical characteristics of patients at implantable cardioverter-defibrillator shock

Clinical characteristics	Control group (n = 601)	ToVAMI group (n = 80)	P value
Age (years)	66 ± 11	68 ± 11	n.s.
Female sex	16%	7.5%	.04
EF < 30%	63%	83%	<.001
Coronary artery disease	60%	60%	n.s.
History of AF	41%	60%	.001
Diabetes	30%	34%	n.s.
Renal impairment	26%	33%	.01
Primary prophylactic ICD	52%	61%	n.s.
Biventricular device	23%	19%	n.s.

Table 2 Trigger identification and therapy after ventricular tachycardia/ventricular fibrillation shock according to the ToVAMI scheme

Trigger optimization	Control group, (n = 601)	ToVAMI group, (n = 80)	P value
Ischemia optimization	28%	55%	<.001
Revascularization (CABG/PCI)	13 (2%)	7 (8.8%)	.001
Compliance	64 (11%)	20 (25%)	<.001
Decompensation	19 (3%)	10 (13%)	<.001
Technical issue	9 (1.5%)	2 (2.5%)	n.s.
Electrolyte/ endocrinologic disorders	44 (7%)	7 (8.8%)	n.s.

Arrhythmia therapy, and medical and interventional prognostic heart failure treatment.

According to the guidelines, treatment options after appropriate ICD shocks consist of antiarrhythmic therapy with amiodarone or ablation therapy.2 The present study clearly demonstrates that the therapy is far more complex. The occurrence of malignant ventricular tachyarrhythmias and their management is determined by the interaction of the factors triggers, arrhythmogenic substrate, and progression of heart failure (Figure 2). It highlights the need for systematic workflows for the treatment of patients with appropriate ICD shock. The application of the ToVAMI concept in the current ICD population was feasible and increased the rate of identified triggers and the rate of optimized heart failure treatment. This is mainly due to the recent development of new prognostic drugs or interventional therapies, which offer new perspectives in the treatment of heart failure.5

In conclusion, the ToVAMI concept represents a treatment approach for patients with appropriate ICD shock. Further studies should investigate whether the ToVAMI concept can improve mortality in ICD patients with appropriate ICD shocks.

Table 2 Trigger identification and therapy after ventricular tachycardia/ventricular fibrillation shock according to the ToVAMI scheme

Medical optimization of heart failure therapy	Control group, (n = 601)	ToVAMI group, (n = 80)	P value
New beta blocker	19 (3.2%)	5 (6.3%)	n.s.
New spironolactone	15 (2.5%)	6 (7.5%)	.02
New valsartan/sacubitril	4 (0.7%)	18 (23%)	<.001
Intervention optimization	16 (2.7%)	11 (14%)	<.001
Upgrade to CRT	6 (1%)	9 (11%)	<.001
PVI, AV nodal ablation, isthmus ablation	3 (0.5%)	3 (3.8%)	.02
TAVI/surgical aortic valve replacement	2 (0.3%)	0 (0%)	n.s.
MitraClip/mitral valve replacement	5 (0.7%)	0 (0%)	n.s.
No change of therapy	46%	10%	<.001

AV = atrioventricular; CABG = coronary artery bypass surgery; CRT = cardiac resynchronization therapy; PCI = percutaneous coronary intervention; PVI = pulmonary vein isolation; TAVI = transcatheter aortic valve implantation; VT = ventricular tachycardia.

Acknowledgment
This paper contains data from the dissertation of Eleni Lampropoulou.

Funding Sources
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Disclosures
The authors have no conflicts to disclose.
Authorship
All authors attest they meet the current ICMJE criteria for authorship.

Patient Consent
All participants gave written informed consent.

Ethics Statement
The study complied with the Declaration of Helsinki and the ICD registry was approved by the local ethics committee of the Landesärztekammer Rheinland Pfalz.

References
1. Poole JE, Johnson GW, Hellkamp AS, et al. Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med 2008;359:1009–1017.
2. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015;36:2793–2867.
3. De Diego C, González-Torres L, Núñez JM, et al. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhythm 2018;15:395–402.
4. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539–1549.
5. Ledwoch J, Nommensen A, Keelani A, et al. Impact of transcatheter mitral valve repair on ventricular arrhythmias. Europace 2019;21:1385–1397.
6. Kowlgi GN, Cha YM, Management of ventricular electrical storm: a contemporary appraisal. Europace 2020;22:1768–1780.

Figure 2 The triad of implantable cardioverter-defibrillator shock is determined by the interaction of the factors trigger, arrhythmogenic substrate, and progression of heart failure (adapted from Figure 1 in Kowlgi and colleagues6).