Efficient virus-induced gene silencing in *Hibiscus hamabo* Sieb. et Zucc. using tobacco rattle virus

Zhiquan Wang¹, Xiaoyang Xu¹, Longjie Ni¹,², Jinbo Guo¹, Chunsun Gu Corresp. ¹

¹ Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
² College of Forest Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China

Corresponding Author: Chunsun Gu
Email address: chunsungu@cnbg.net

Background. *Hibiscus hamabo* Sieb.et Zucc. is a semi-mangrove plant used for the ecological restoration of saline-alkali land, coastal afforestation and urban landscaping. The genetic transformation *H. hamabo* is currently inefficient and laborious, restricting gene functional studies on this species. In plants, virus-induced gene silencing provides a pathway to rapidly and effectively create targeted gene knockouts for gene functional studies. **Methods.** In this study, we tested the efficiency of a tobacco rattle virus vector in silencing the cloroplastos alterados 1 (*CLA1*) gene through agroinfiltration. **Results.** The leaves of *H. hamabo* showed white streaks typical of *CLA1* gene silencing three weeks after agroinfiltration. In agroinfiltrated *H. hamabo* plants, the *CLA1* expression levels in leaves with white streaks were all significantly lower than those in leaves from mock-infected and control plants. **Conclusions.** The system presented here can efficiently silence genes in *H. hamabo* and may be a powerful tool for large-scale reverse-genetic analyses of gene functions in *H. hamabo.*
Efficient virus-induced gene silencing in *Hibiscus hamabo* Sieb. et Zucc. using tobacco rattle virus

Zhiquan Wang¹, Xiaoyang Xu¹, Longjie Ni¹, ², Jinbo Guo¹, Chunsun Gu¹*

¹Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
²College of Forest Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China.

Corresponding Author:
Chunsun Gu¹
1 Qianhuhoucun Road, Nanjing, Jiangsu, 210014, China
Email address: chunsungu@cnbg.net

Abstract

Background. *Hibiscus hamabo* Sieb.et Zucc. is a semi-mangrove plant used for the ecological restoration of saline-alkali land, coastal afforestation and urban landscaping. The genetic transformation *H. hamabo* is currently inefficient and laborious, restricting gene functional studies on this species. In plants, virus-induced gene silencing provides a pathway to rapidly and effectively create targeted gene knockouts for gene functional studies.

Methods. In this study, we tested the efficiency of a tobacco rattle virus vector in silencing the cloroplastos alterados 1 (*CLA1*) gene through agroinfiltration.

Results. The leaves of *H. hamabo* showed white streaks typical of *CLA1* gene silencing three weeks after agroinfiltration. In agroinfiltrated *H. hamabo* plants, the *CLA1* expression levels in leaves with white streaks were all significantly lower than those in leaves from mock-infected and control plants.

Conclusions. The system presented here can efficiently silence genes in *H. hamabo* and may be a powerful tool for large-scale reverse-genetic analyses of gene functions in *H. hamabo*.

Introduction

Hibiscus hamabo Sieb.et Zucc., which is a shrub plant in the genus *Hibiscus*, family Malvaceae, is an important semi-mangrove plant (Nakanishi 1979). Because of its excellent salt tolerance and morphological characteristics, *H. hamabo* is widely used in public parks, waysides and coastal sands near sea level (Fowler 2017; Li et al. 2012; Yang et al. 2008). In addition, *H. hamabo* is a good plant material for exploring the salt-stress response mechanisms of woody plants (Li et al. 2012). Gene manipulation technologies can be used to determine the gene functions and regulatory mechanisms in *H. hamabo*. However, to date, the inefficient and laborious genetic transformation procedures used have impeded such research. Additionally,
transcriptome analyses have mined many excellent genes that are awaiting functional identification. Appropriate techniques need to be applied successfully to allow the study of gene functions in this plant.

Virus-induced gene silencing (VIGS) is a powerful technology that uses engineered viruses to specifically silence host gene expression through post-transcriptional gene silencing (Becker & Lange 2010; Krishnan et al. 2015; Purkayastha & Dasgupta 2009). VIGS is an effective method for large-scale analysis of genes and their functions, and it has been successfully performed in many plants, including tobacco, Arabidopsis, tomato, cotton, wheat, and many woody plants (Burch-Smith et al. 2006; Jiang et al. 2014; Kumagai et al. 1995; Orzaez et al. 2009; Scofield et al. 2005). VIGS works via a mechanism that is similar to that of RNA interference (Baulcombe 1999; Baulcombe 2004; Burch-Smith et al. 2004; Lu et al. 2003; Waterhouse et al. 2001). Double-stranded (ds) RNA is the key to the VIGS process; the dsRNA can be cleaved into short interfering (si) RNAs of 21 to 25 nucleotides (Burch-Smith et al. 2004; Jiang et al. 2014; Lu et al. 2003). Two strands can be obtained from the siRNAs - the guide and passenger strands. The RNA-induced silencing complex incorporates the guide strand to degrade the specific single-stranded RNA that is complementary to the guide RNA, and then, the passenger strand is degraded (Mustafa et al. 2016). As a result, the target gene is silenced and large amounts of siRNAs are produced (Fuchs et al. 2004).

Agrobacterium-mediated VIGS protocols based on tobacco rattle virus (TRV) have been developed and optimized in cotton, and previous studies showed that TRV is a useful vector for VIGS in Gossypium species (Gao et al. 2011; Ge et al. 2016). Tobacco rattle virus (TRV), belonging to genus Tobravirus (family Virgaviridae), is a suitable virus vector system for VIGS (Jiang et al. 2014). A positive sense single-stranded RNA genome exists in TRV, consisting of two components, RNA 1 and RNA 2 (Mustafa et al. 2016). RNA 1 encodes genes with viral replication and movement functions, while RNA 2 encodes the coat protein and some nonessential structural proteins that can be replaced by foreign sequences (Hayward et al. 2011). The TRV vector has been used in G. spp., Arabidopsis and Vernicia fordii to silence the cloroplastos alterados 1 (CLA1) gene, which is involved in chloroplast development (Jiang et al. 2014; Manhães et al. 2015; Mustafa et al. 2016). The CLA1 gene is highly conserved in various plant species (Jiang et al. 2014). The silencing phenotypes of albino leaves were observed in Vernicia fordii two weeks after inoculation using a heterologous TRV-based VIGS system, in which CLA1 was isolated from Populus tomentosa Carr. (Jiang et al. 2014). The silenced CLA1 is a useful marker for determining silencing efficiency because of the bleached phenotype (Mustafa et al. 2016).

In this study, we tested the feasibility of the TRV-VIGS system in H. hamabo using the HhCLA1 gene as a reporter. The agroinfiltrated leaves of H. hamabo showed white streaks typical at three weeks after infection, and the expression levels of the HhCLA1 gene in leaves with white streaks were significantly lower than those in leaves from mock-infected and control plants. Thus, the TRV-VIGS system can efficiently silence genes in H. hamabo. To our knowledge, this is the first report of the successful application of VIGS in H. hamabo.
Materials & Methods

Plant materials and growth conditions.
Seeds of *H. hamabo* were collected from Nanjing’s Sun Yat-Sen Memorial Botanical Garden. The seeds were then treated with concentrated sulfuric acid for 15 min and rinsed thoroughly with sterile water. The pretreated seeds were sown into flowerpots containing a mixture of peat and vermiculite (1:1, v:v) in an illuminated incubator with controlled temperatures of 26 °C/22 °C under a 16 h/8 h (day/night) photoperiod.

Sequence analysis.
Based on the *HhCLA1* sequence (GenBank accession no. MK229167), the deduced protein sequence was analyzed with CLA1 proteins of other species using ClustalX (Liu et al. 2015). The amino acid sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov/). Then, the sequences were used to construct a phylogenetic tree, which was drawn with MEGA 7.0 using the Neighbor-Joining (NJ) method and 1,000 bootstrap replicates.

VIGS vector construction.
Total RNA was extracted from the leaves of *H. hamabo* using a Plant RNeasy Mini Kit (Qiagen, Hilden, Germany). The first-strand cDNA was synthesized using a SuperScript II reverse transcriptase kit (TaKaRa, Dalian, China). The primer pair *HhCLA1*-F and *HhCLA1*-R (Table 1) was designed using Oligo 6.0 software (Molecular Biology Insights, Inc., Cascade, CO, USA) based on the conserved domain of *HhCLA1*. To amplify partial fragments of *HhCLA1*, the primer pair, cDNA and PrimeSTAR™ HS DNA polymerase (TaKaRa) were used. *Eco*RI enzyme cleavage sites were added to the upstream primers and *Sac*I enzyme cleavage sites were added to the downstream primers. PCR product were generated with the following reaction program: 30 cycles of 98°C for 10 s, 60°C for 5 s and 72°C for 1 min. The reactions final volume was 50 µL, containing 25 µL of 2 × PrimeSTAR™ GC Buffer, 4 µL dNTP mixture (2.5 mM), 0.2 µM of each primer (final), 100 ng of cDNA and 0.5 µL of PrimeSTAR™ HS DNA Polymerase (2.5 U/µL). The pTRV1 and pTRV2 vectors were used in this study as described previously (Gao et al. 2011; Liu et al. 2002). The PCR products were ligated into pTRV2 (Supplementary Fig. S1) (double-digested with *Eco*RI and *Sac*I enzymes) using a ClonExpress® IIOne Step Cloning Kit (Vazyme, Nanjing, China). The resulting vector was designated pTRV2-*HhCLA1*.

Agroinfiltration.
pTRV2-*HhCLA1* was transformed into *Agrobacterium tumefaciens* strain 'GV3101' using the freeze-thawing method (Höfgen & Willmitzer 1988). PCR-confirmed single colonies were then selected and independently inoculated into 3 mL of Luria-Bertani medium containing 25 mg/L rifampicin and 50 mg/L kanamycin and grown overnight in a shaker at 28°C. For the VIGS assay, 3-mL cultures of *A. tumefaciens* strain GV3101 independently containing either pTRV1 or pTRV2 was grown overnight in the same culture conditions. These overnight starter cultures were subsequently used to inoculate 50-mL cultures that were grown overnight at 28°C. *Agrobacterium* cultures were harvested by centrifugation at 4,000 × g for 10 min, and the pellets were resuspended in an infiltration buffer (10 mM MES (2- (4- Morpholino) Ethanesulfonic...
Acid), 10 mM MgCl₂ and 200 µM acetosyringone, pH 5.6) at an optical density of 2.0 at 600 nm and incubated at room temperature for 3 h without shaking. *Agrobacterium* cultures containing mixtures of pTRV1 and pTRV2-HhCLA1 (1:1 ratio) were infiltrated with 1-mL needleless syringes into the backs of cotyledons of 2-week-old *H. hamabo* seedlings, following a protocol described previously (Gao et al. 2011). To determine whether the TRV vector can directly infect *H. hamabo*, a mixture of *Agrobacterium* cultures containing pTRV1 and pTRV2 constructs in a 1:1 ratio was infiltrated into the backs of cotyledons of eight 2-week-old *H. hamabo* to serve as the mock. Experimental and non-injected control plants were transferred to a growth chamber and maintained under set conditions.

Quantitative real-time PCR (qPCR).

To determine the relative levels of the endogenous *HhCLA1* transcripts in infected leaves exhibiting visible silencing phenotypes, qPCR was performed using the primer pair qHhCLA1-F/qHhCLA1-R (Table 1). For the experiments, leaves from plants with significant white streak symptoms were analyzed in comparison with leaves of the mock and control plants after three weeks of agroinfiltration. Four groups of plants with significant white streak symptoms, one control group, and one mock group, in order to analyze the test results more accurately, were further analyzed in this experiment. Each group contained three biological replicates. Total RNA was extracted from these leaves using a Plant RNeasy Mini Kit (Qiagen) and treated with DNase I to remove residual DNA. The first-strand cDNA was synthesized using a SuperScript II reverse transcriptase kit (TaKaRa). The qPCR assays were performed using the SYBR Green PCR Master Mix (Bimake, Houston, TX, USA) and a StepOne™ System (ABI, USA). The transcript level of 18S rRNA served as the internal controls. All experiments were repeated three times. The relative gene expression level was calculated using the 2^−ΔΔCt method (Gu et al. 2018; Liao et al. 2016).

Statistical analysis.

One-way analysis of variance (ANOVA) and Duncan’s multiple range test (*P < 0.05*) were performed using IBM SPSS (Version 21).

Results

Characterization of the *HhCLA1* gene in *H. hamabo*.

The amino acid sequence alignment indicated that the HhCLA1 protein showed high homology to known CLA1 proteins from *G. barbadense*, *G. hirsutum* and other species (Fig. 1 and Supplementary Table S1). The phylogenetic analysis showed that HhCLA1 clustered with *G. barbadense* and *G. hirsutum* in a clade (Fig. 2).

Silencing efficiency of the *HhCLA1* gene in *H. hamabo* using the VIGS system.

In total, fifty-two *H. hamabo* plants were inoculated with *A. tumefaciens* 'GV3101' harboring pTRV2-HhCLA1. Two weeks after agroinfiltration, white streaks began to appear in the emerging leaves of partially agroinoculated plants. At three weeks post infiltration, 87% of the *H. hamabo* plants showed white-streak leaf symptoms similar to the photobleached phenotype (Table 2; Fig. 3A and Supplementary Fig. S2). At three weeks after agroinfiltration, plants
inoculated with pTRV1 and pTRV2 (Mock) showed no obvious differences in leaf morphology compared with the control (Fig. 3B, 3C and Supplementary Fig. S2). The leaves in Fig. 3D are from plants infiltrated with pTRV2-HhCLA1 (CLA1), empty vector infiltrated plant (Mock) and the control plant (CK) separately. Leaf phenotypic characteristics suggested that the HhCLA1 gene expression might be suppressed in plants infiltrated with pTRV2-HhCLA1 compared with mock and CK plants.

q-PCR analysis of the knockdown levels of HhCLA1.

The efficiency of gene silencing was analyzed by monitoring expression levels of HhCLA1 in plants showing white-streak leaf symptoms. Results showed that HhCLA1 gene expression levels were unchanged in mock-injected plants, while the HhCLA1 expression levels were 62.6%-76.4% lower in the pTRV2-HhCLA1 agroinfiltrated plants than in the non-infiltrated plants (control) (Fig. 4 and Table S2). The phenotypic characteristics were consistent with the expression characteristics of HhCLA1. This clearly indicates that the expression of HhCLA1 was significantly down-regulated through TRV-VIGS in H. hamabo, and TRV-VIGS led to an albino phenotype on leaves.

Discussion

In this study, we demonstrated for the first time that TRV-VIGS can effectively down-regulate endogenous gene expression levels in the salt-tolerant species H. hamabo. The genetic transformation of this species is currently laborious, time-consuming and technically challenging. To resolve these problems, effective and low-cost techniques need to be developed to enable the rapid validation of gene functions. In future studies, stress-responsive genes isolated in H. hamabo could be silenced in loss-of-function screens using the TRV-VIGS system.

The CLA1 gene is involved in chloroplast development and is a useful marker in the TRV-VIGS system (Mustafa et al. 2016). In this research, multiple sequence alignments indicated that HhCLA1 was similar to CLA1 proteins of other species. Additionally, the phylogenetic analysis indicated that HhCLA1 was highly similar to CLA1 proteins in Malvaceae, including G. barbadense and G. hirsutum.

The most cost-efficient and effective method of inoculating plants with virus-based vectors is agroinfection (Grimsley et al. 1986), but its efficiency varies among plants (Zhang et al. 2016). In turf grass, the silencing efficiency of the RTBV-VIGS system in Cynodon dactylon was such that 65.8%-72.5% of the agroinfected plants developed symptoms typical for phytoene desaturase gene silencing, while the silencing efficiency in Zoysia japonica was much lower, with only 52.7%-55% of agroinfected plants developing the phenotype (Zhang et al. 2016). The ability of the TRV vector to directly infect woody plant species has been tested, and TRV-mediated VIGS was effective in Vernicia fordii, weak in Populus tomentosa Carr., and ineffective in Camellia oleifera (Jiang et al. 2014). In this study, the silencing efficiency of the TRV-VIGS system in H. hamabo was high, with 87% of agroinfected plants developing a white-
streak leaf phenotype. The HhCLAI mRNA level was also down-regulated by TRV-VIGS in H. hamabo.

Conclusions

In conclusion, we demonstrated that TRV-mediated VIGS can effectively silence genes in H. hamabo, which adds to the increasing list of wood species for which VIGS-mediated studies can be used. The loss-of-function assay using TRV-mediated VIGS developed in this study provides an alternative tool for functional genes studies of H. hamabo.

Acknowledgements

We thank International Science Editing for editing this manuscript.

References

Baulcombe D. 1999. Viruses and gene silencing in plants. 100 Years of Virology: Springer, 189-201.

Baulcombe D. 2004. RNA silencing in plants. Nature 431(7006): 356.

Becker A, and Lange M. 2010. VIGS–genomics goes functional. Trends in Plant Science 15: 1-4.

Burch-Smith TM, Schiff M, Liu Y, and Dinesh-Kumar SP. 2006. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiology 142: 21-27.

Burch-Smith TM, Anderson JC, Martin GB, and Dinesh-Kumar S. P. 2004. Applications and advantages of virus - induced gene silencing for gene function studies in plants. Plant Journal 39(5): 734-746.

Fowler E. 2017. Assessment and characterization of microbial communities in salt affected soils on Galveston Island. SFA scholarworks, Electronic Theses and Dissertations. 76, Stephen F Austin State University.

Fuchs U, Damm-Welk C, and Borkhardt A. 2004. Silencing of disease-related genes by small interfering RNAs. Current Molecular Medicine 4: 507-517.

Gao X, Britt Jr RC, Shan L, and He P. 2011. Agrobacterium-mediated virus-induced gene silencing assay in cotton. Journal of Visualized Experiments: JoVE 54: e2938.

Ge X, Wu J, Zhang C, Wang Q, Hou Y, Yang Z, Yang Z, Xu Z, Wang Y, Lu L, Zhang X, Hua J, and Li F. 2016. Prediction of VIGS efficiency by the Sfold program and its reliability analysis in Gossypium hirsutum. Science Bulletin 61(7): 543-551.

Grimsley N, Hohn B, Hohn T, and Walden R. 1986. “Agroinfection,” an alternative route for viral infection of plants by using the Ti plasmid. Proceedings of the National Academy of Sciences 83:3282-3286.

Gu C, Liu L, Song A, Liu Z, Zhang Y, and Huang S. 2018. Iris lactea var. chinensis (Fisch.) cysteine-rich gene ICDT1 enhances cadmium tolerance in yeast cells and Arabidopsis thaliana. Ecotoxicology and Environmental Safety 157:67-72.

Höfgen R, and Willmitzer L. 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research 16:9877.

Hayward A, Padmanabhan M, and Dinesh-Kumar S. 2011. Virus-induced gene silencing in Nicotiana benthamiana and other plant species. Plant Reverse Genetics: Springer 55-63.

Jiang Y, Ye S, Wang L, Duan Y, Lu W, Liu H, Fan D, Zhang F, and Luo K. 2014. Heterologous gene silencing induced by tobacco rattle virus (TRV) is efficient for pursuing functional
genomics studies in woody plants. *Plant Cell Tissue & Organ Culture* 116:163-174.

Krishnan A, Mahadevan C, Mani T, and Sakuntala M. 2015. Virus-induced gene silencing (VIGS) for elucidation of pathogen defense role of serine/threonine protein kinase in the non-model plant *Piper colubrinum* Link. *Plant Cell Tissue & Organ Culture* 122:269-283.

Kumagai M, Donson J, Della-Cioppa G, Harvey D, Hanley K, and Grill L. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. *Proceedings of the National Academy of Sciences* 92:1679-1683.

Li J, Liao J, Guan M, Wang E, and Zhang J. 2012. Salt tolerance of *Hibiscus hamabo* seedlings: a candidate halophyte for reclamation areas. *Acta Physiologiae Plantarum* 34:1747-1755.

Luo R, Martin-Hernandez AM, Peart JR, Malcuit I, and Baulcombe DC. 2003. Virus-induced gene silencing in plants. *Methods* 30(4): 296-303.

Manhães AMEdA, de Oliveira MV, and Shan L. 2015. Establishment of an Efficient Virus-Induced Gene Silencing (VIGS) Assay in *Arabidopsis* by Agrobacterium-Mediated Rubbing Infection. *Plant Gene Silencing* Springer 235-241.

Mustafa R, Shafiq M, Mansoor S, Briddon RW, Scheffler BE, Scheffler J, and Amin I. 2016. Virus-induced gene silencing in cultivated cotton (*Gossypium* spp.) using tobacco rattle virus. *Molecular Biotechnology* 58:65-72.

Nakanishi H. 1979. Distribution and ecology of a semi-mangrove plant, *Hibiscus hamabo* SIEB. et ZUCC. and its community. *Acta Phytotaxonomica Et Geobotanica* 30:169-179.

Orzaez D, Medina A, Torre S, Fernández-Moreno JP, Rambla JL, Fernández-del-Carmen A, Butelli E, Martin C, and Granell A. 2009. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation. *Plant Physiology* 150:1122-1134.

Purkayastha A, and Dasgupta I. 2009. Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. *Plant Physiology and Biochemistry* 47:967-976.

Scofield SR, Huang L, Brandt AS, and Gill BS. 2005. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. *Plant Physiology* 138:2165-2173.

Waterhouse PM, Wang MB, and Lough T. 2001. Gene silencing as an adaptive defence against viruses. *Nature* 411:834.

Yang H, Du GJ, and Wang KH. 2008. Study on the Physiological Characteristics of *Hibiscus hamabo* under Stress. *Journal of Zhejiang Forestry Science and Technology* 3:011.
Figure 1

Multiple alignment of the HhCLA1 amino acid sequence with sequences from different species using the ClustalW program.

Multiple alignment of protein sequences of the HhCLA1 gene in *Hibiscus hamabo* Sieb. et Zucc., *Gossypium barbadense* (ABN13970.1), *Gossypium hirsutum* (NP_001314056.1), *Theobroma cacao* (EOY06359.1), *Arabidopsis thaliana* (NP_193291.1) and *Populus tomentosa* (AGT02336.1).
Figure 2 (on next page)

Phylogenetic analysis of the protein of HhCLA1.

Phylogenetic analysis of HhCLA1 proteins in different species.
Figure 3

TRV-induced HhCLA1 silencing in *H. hamabo*.

(A) Newly formed leaves of *H. hamabo* plants infiltrated with pTRV2-HhCLA1 (*CLA1*) showing white-streaked leaf symptoms after three weeks. (B) Empty vector infiltrated plants (Mock) with the normal phenotype. (C) Control plants (CK). (D) The leaf phenotypes of the treatments. The three leaves on the left in Fig. 3D are from plants infiltrated with pTRV2-HhCLA1 (*CLA1*), the leaf in the middle is from an empty vector infiltrated plant (Mock) and the right one is from a control plant (CK).
Relative expression levels of *HhCLA1* transcripts in control (CK), empty vector-infected (Mock) and pTRV-HhCLA1-infected plants (pTRV2-*HhCLA1*).

Error bars represent standard errors, and any two samples with a common capital letter are not significantly different at the $P < 0.01$ level, as with a same small letter are not significantly different at the $P < 0.05$ level.
Table 1 (on next page)

Primers used in this TRV-VIGS system.

Note: Underlines indicate restriction enzyme cleavage sites used in this TRV-VIGS system.
Table 1 Primers used in this TRV-VIGS system

Primer Name	Primer Sequence
HhCLAI-F	CTG1AGTGTTACCCAAATTTCTCATGTTTACGAAAGG
HhCLAI-R	CTCGAGACCGTGAGCTCATAGCAATTTACGGCGAG
qHhCLAI-F	CGCCAGGAAACAAAGGGGT
qHhCLAI-R	AATCGTGATCCGCGACAGT
18S rRNA-F	GGTCGGATTTGGAACGCGA
18S rRNA-R	CTCCACGGGCGATCGAG

Note: Underlines indicate restriction enzyme cleavage sites used in this TRV-VIGS system.
Table 2 (on next page)

Efficiency of *HhCLA1* gene silencing in *Hibiscus hamabo* using TRV-VIGS system at three weeks post agroinfiltration.

Silencing efficiency indicates the number of plants showing silencing phenotypes/number of plants treated by TRV-VIGS system.
Table 2 Efficiency of *HhCLAI* gene silencing in *Hibiscus hamabo* using TRV-VIGS system at three weeks post agroinfiltration

Treatment	Number of plants assayed	Silencing efficiency*
pTRV2-*HhCLAI*	52	45/52 (87%)
Mock	8	0/8 (0%)
Control	8	0/8 (0%)

Silencing efficiency indicates the number of plants showing silencing phenotypes/number of plants treated by TRV-VIGS system.