Moxalactam (LY127935), a New Semisynthetic 1-Oxa-β-Lactam Antibiotic with Remarkable Antimicrobial Activity: In Vitro Comparison with Cefamandole and Tobramycin

RONALD N. JONES,1* PETER C. FUCHS,2 HERBERT M. SOMMERS,2 THOMAS L. GAVAN,4 ARTHUR L. BARRY,3 AND E. HUGH GERLACH6

Department of Pathology, Kaiser Foundation Laboratory, Clackamas, Oregon 97015; Department of Pathology, St. Vincent Hospital and Medical Center, Portland, Oregon 97225; Department of Pathology, Northwestern Memorial Hospital, Chicago, Illinois 60611; Department of Microbiology, The Cleveland Clinic Foundation, Cleveland, Ohio 44106; Clinical Microbiology Laboratory, University of California–Davis Medical Center, Sacramento, California 95817; and the Department of Laboratories, St. Francis Hospital, Wichita, Kansas 67214

Moxalactam (LY127935) exhibited greater in vitro activity than cefamandole and tobramycin against clinical isolates of Enterobacteriaceae, Aeromonas hydrophila, and Pseudomonas maltophilia. The activities of the three drugs against other microorganisms were as follows: for staphylococci, cefamandole = tobramycin > moxalactam; for streptococci, cefamandole > moxalactam > tobramycin; and for Pseudomonas aeruginosa, tobramycin > moxalactam > cefamandole. Moxalactam also demonstrated significant activity against the Bacteroides fragilis group and other anaerobes. Moxalactam was comparable to cefotaxime (HR756) in its inhibition of cephalothin-resistant and aminoglycoside-resistant clinical isolates.

Organisms in numerous genera and species have developed antimicrobial resistance to commonly used compounds such as the beta-lactams. Pharmaceutical research has responded to this microbial challenge by the modification of various antimicrobial agents, thus rendering them refractory to inactivating bacterial enzymes while significantly increasing antimicrobial activity and spectrum (1, 3, 7, 8, 10–12, 16). Moxalactam (LY127935) (Lilly), also designated 6059-S (Shionogi), is a novel 1-oxa-β-lactam antibiotic having the chemical name (6R, 7R)-7-{[(carboxy-4-hydroxyphenyl) acetyl] amino}-7-methoxy-3-[(1-methyl-1H-tetrazol-5-yl)thio] methyl]-8-oxo-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, disodium. This antibiotic is structurally similar to cefamandole, yet differs in the 4-hydroxy of the phenyl ring, a 7-methoxy group, and the substitution of an oxygen for the 1-sulfa in the cephem ring. Moxalactam is reported to have a broad spectrum and a highly potent antimicrobial activity against Pseudomonas aeruginosa, enterobacters, indole-positive Proteus species, Serratia marcescens, and Bacteroides fragilis group (2, 6, 15, 18–20).

In this collaborative six-medical center in vitro evaluation, we principally compared the antimicrobial activity of moxalactam with those of a broad-spectrum cephalosporin (cefamandole) and an aminoglycoside (tobramycin).

The study compound moxalactam and reference antimicrobial agents (cefamandole and tobramycin) were received as a gift from Eli Lilly and Co., Indianapolis, Ind. Moxalactam was an equal mixture of D and L isomers (lot SI-113-8B).

The bacterial strains studied were those consecutive clinical strains isolated during a 45- to 60-day interval at the six participating laboratories. The number of isolates tested was 8,371, including 4,679 Enterobacteriaceae, 860 nonenteric gram-negative bacilli, 851 streptococci, 1,531 staphylococci, and 150 selected antibiotic-resistant strains. All organisms were identified and processed by methods previously described (7, 8, 11, 12). In addition, 248 anaerobic organisms were tested by broth microdilution and agar dilution methods (9, 13) after identification by gas-liquid chromatography and biochemical micro-tube procedures (9).

The minimum inhibitory concentrations (MICs) of all study compounds were determined by agar dilution methods or microdilution broth procedures. In the broth microdilution procedure, Mueller-Hinton broth (Difco) was supplemented with 50 mg of calcium and 25 mg of magnesium per liter. Media and antibiotics were dispensed into plastic trays utilizing the MIC-2000 (Cooke Laboratory Products, Alexandria, Va.) by techniques previously reported (7, 8, 11, 12). Agar dilution tests were performed after the method of the International Collaborative Study (4) using Mueller-Hinton agar inoculated by a Steers replicator (17) with an inoculum density...
of ca. 10^4 colony-forming units per spot. The antibiotic-containing agar plates and microdilution trays were incubated for 15 to 18 h at 35°C. The effect of inoculum concentrations of 10^3, 10^5, and 10^7 colony-forming units per ml on the MICs was also determined.

Intra- and interlaboratory MIC variations were assessed using four quality control strains

Table 1. In vitro antimicrobial activity comparison of moxalactam, tobramycin, and cefamandole against 4,679 recent clinical isolates of Enterobacteriaceae

Organism (no.)	Antibiotic	<0.5	1	2	4	8	16	32
Citrobacter diversus (36)	Moxalactam	97	100					
	Tobramycin	83	97	100				
	Cefamandole	50	78	86	94	97		
C. freundii (110)	Moxalactam	82	86	88	95	98	99	100
	Tobramycin	64	94	96				
	Cefamandole	53	69	73	74	77	78	
Enterobacter aerogenes (160)	Moxalactam	77	79	85	92	94	97	99
	Tobramycin	57	86	88	92	97	99	
	Cefamandole	28	52	61	71	78	80	81
E. agglomerans (26)	Moxalactam	77	81	88	92	96		
	Tobramycin	81	85	100				
	Cefamandole	31	65	81	85	88		
E. cloaceae (201)	Moxalactam	79	86	86	88	91	93	98
	Tobramycin	66	95	97	97	98	98	99
	Cefamandole	15	35	60	74	78	81	82
Escherichia coli (2572)	Moxalactam	93	97	97	98	99	99	
	Tobramycin	41	85	93	96	98	99	99
	Cefamandole	63	82	88	92	96	97	98
Klebsiella oxytoca (101)	Moxalactam	92	97	98	99	100		
	Tobramycin	66	99	100				
	Cefamandole	45	73	89	91	92	94	97
K. pneumoniae (570)	Moxalactam	93	96	97	97	98	99	99
	Tobramycin	70	95	97	97	98	99	99
	Cefamandole	48	77	83	89	94	95	96
Morganella morganii (103)	Moxalactam	88	92	93	96	97		
	Tobramycin	61	74	82	94	97	98	
	Cefamandole	5	18	28	31	40	62	76
Proteus mirabilis (424)	Moxalactam	94	97	98	99	99	99	
	Tobramycin	54	89	99	99	100		
	Cefamandole	48	85	95	97	97	97	98
P. vulgaris (30)	Moxalactam	90						
	Tobramycin	80	87	93	97	100		
	Cefamandole	3	7	10	17	23	33	
Providencia rettgeri (13)	Moxalactam	100						
	Tobramycin	46	85	100				
	Cefamandole	69		77	92	100		
P. stuartii (30)	Moxalactam	93	97	100				
	Tobramycin	7	13	37	63	80	90	93
	Cefamandole	53	67	90	97			
Salmonella enteritidis (18)	Moxalactam	100						
	Tobramycin	100						
	Cefamandole	72	100					
Serratia marcescens (227)	Moxalactam	52	66	84	88	93	96	99
	Tobramycin	5	26	55	66	72	74	75
	Cefamandole	2		3	10	18	30	
Other Enterobacteriaceae species (58)\(^b\)	Moxalactam	81	93	97	98			
	Tobramycin	64	86	98				
	Cefamandole	29	50	58	67	75	81	85

\(^a\) Boldfaced numbers represent the mode if within or below the dilution range tested.

\(^b\) Includes (number of strains): Arizona arizona (2), Citrobacter amalonatica (6), E. coli AD group (12), Hafnia alvei (13), Klebsiella ozaenae (6), Providencia alcalifaciens (2), Salmonella typhi (2), Serratia liquefaciens (6), and Shigella species (9).
with known reproducible MICs. The organisms included *Escherichia coli* (ATCC 25922 or K380), *P. aeruginosa* (ATCC 27853), *Staphylococcus aureus* (ATCC 25923 or 29213), and *Streptococcus pneumoniae* (ATCC 29212). Approximately 98% of all tabulated MICs (462 total) were within 1 log₂ dilution interval from the mode. Statistical analysis of laboratory, media, and antimicrobial activity differences was calculated using the Kalmzoorov-Smirnov test (8).

Moxalactam demonstrates remarkable activity against all the *Enterobacteriaceae* (Table 1). The moxalactam modal MIC was ≤0.5 µg/ml for all species, compared to the range of ≤0.5 to >32 µg/ml for cefamandole and ≤0.5 to 4 µg/ml for tobramycin. The increased in vitro activity of moxalactam over both cefamandole and tobramycin statistically significant (*P* = <0.001) for *Enterobacter cloacae, E. coli, Klebsiella pneumoniae, Morganella morganii, Proteus mirabilis*, and *S. marcescens*. Lesser degrees of significance (*P* = < 0.05 or *P* = < 0.01) were found favoring moxalactam against *Enterobacter agglomerans and Providencia stuartii* compared to cefamandole, and moxalactam against *Enterobacter aerogenes and Klebsiella oxytoca* when

Organism (no.)	Moxalactam MIC (µg/ml)	Tobramycin MIC (µg/ml)	Cefamandole MIC (µg/ml)							
	Mode	MIC₇₅*	MIC₉₀*	Mode	MIC₇₅	MIC₉₀	Mode	MIC₇₅	MIC₉₀	
Staphylococcus aureus (936)	8	8	16	≤0.5	≤0.5	4	≤0.5	≤0.5	1	1
S. epidermidis (583)	8	16	>32	≤0.5	8	32	≤0.5	1	2	
Streptococcus faecalis (680)	>32	>32	>32	32	32	>32	32	32	>32	
Streptococcus group D not faecalis (54)	>32	>32	>32	>32	>32	>32	>32	>32		
S. agalactiae (49)	8	8	16	16	>32	>32	≤0.5	≤0.5	≤0.5	
S. pyogenes (17)	1, 2	2	4	32	32	32	≤0.5	≤0.5	≤0.5	
Beta-streptococci, not group A, B, or D (17)	2	16	32	32	32	32	≤0.5	≤0.5	1	
S. pneumoniae (23)	≤0.5	8	16	≤0.5	16	32	≤0.5	≤0.5	≤0.5	
Viridans group (31)	≤0.5	16	>32	≤0.5	2	8	≤0.5	8	32	
Other gram-positive bacteria* (64)	≤0.5	16	>32	≤0.5	2	8	≤0.5	8	32	
Aeromonas hydrophila (13)	≤0.5	≤0.5	16	≤0.5	4	4	≤0.5	2	>32	
Acinetobacter calcoaceticus subsp. anitratus (76)	>32	>32	>32	≤0.5	2	4	>32	>32	>32	
A. calcoaceticus subsp. lwoffi (24)	8	16	32	≤0.5	32	>32	32	>32	>32	
Moraxella sp. (17)	≤0.5	≤0.5	2	≤0.5	≤0.5	2	≤0.5	2	8	
Pseudomonas aeruginosa (658)	16	32	>32	1	2	4	>32	>32	>32	
P. maltophilia (37)	4	16	>32	>32	>32	>32	>32	>32	>32	
Pseudomonas spp. (36)	16	32	>32	≤0.5	1	8	>32	>32	>32	
Other nonenteric gram-negative bacilli** (19)	4	4	16	>32	>32	>32	≤0.5, 16	16	>32	

* MIC₇₅, MIC₉₀, MICs inhibiting 75 and 90%, respectively, of isolates tested.
** Includes (number of isolates): various nonhemolytic ungrouppable streptococci (23), *Bacillus* spp. (13), *Corynebacterium* spp. (13), *L. monocytogenes* (3), and *Micrococcus* spp. (12).
*** Includes *Pseudomonas* sp. NOS (31), *P. fluorescens* (2), and *P. putida* (3).
** Includes *Achromobacter xylosoxidans* (9), *Alcaligenes* spp. (2), *Flavobacterium* spp. (2), CDC group IVc (1), and *Pasteurella multocida* (5).
compared to tobramycin. A comparison of agar and broth dilution MICs by enteric species showed no significant difference (P = > 0.05) in moxalactam MIC results. In contrast, ceftamandole broth MICs were consistently and significantly higher for *Citrobacter freundii*, *E. cloacae*, *E. aerogenes*, and *M. morganii* (5). The opposite phenomenon was found for *E. coli*, *K. pneumoniae*, and *P. mirabilis*. Only one significant moxalactam media MIC difference involving the "other gram-negative bacteria" was noted; it favored higher moxalactam activity against *P. aeruginosa* when tested by the agar dilution procedures.

The anti-staphylococcal activity of moxalactam was markedly less than that of ceftamandole or tobramycin (Table 2). Cephalothin had approximately 16-fold-lower staphylococcal MICs. However, 97.4% of the 936 *S. aureus* isolates were inhibited by ≤32 μg of moxalactam per ml, which is said to be a readily achievable serum concentration (R. Kammer, personal communication). This compares to 96.0 and 98.1% inhibition at concentrations of 1 and 8 μg of ceftamandole per ml. Significantly higher *S. aureus* (P = < 0.001) moxalactam broth MICs were found, though moxalactam broth and agar modal MICs were identical. Similar activity and media results were encountered for the *Streptococcus epidermidis* isolates tested. The activ-

Table 3. Comparative in vitro antimicrobial activity of moxalactam and other antibiotics against the *Bacteroides fragilis* group and other anaerobic bacteria

Organism	Drug	Cumulative % inhibited at MIC (μg/ml) of:					
		≤1	2	4	8	16	32
Bacteroides fragilis group (94)	Moxalactam	51	74	86	92	96	
	Carbenicillin	52	78	87			
	Cefoxitin	29	61	82	95	100	
	Chloramphenicol	11	70	97	100		
	Clindamycin	95	96	98	100		
Bacteroides spp. (48)	Moxalactam	38	44	48	69	97	96
	Carbenicillin	81	85	89			
	Cefoxitin	46	63	75	88	96	100
	Chloramphenicol	27	52	88	96	100	
	Clindamycin	97	100				
Clostridium spp. (22)	Moxalactam	64	73	82			
	Carbenicillin	100					
	Cefoxitin	73	82				
	Chloramphenicol	9	41	86	91	100	
	Clindamycin	91	95	100			
Eubacterium spp. (17)	Moxalactam	24	35	53	65	76	100
	Carbenicillin	76	82	100			
	Cefoxitin	41	47	76	100		
	Chloramphenicol	29	53	88	94	100	
	Clindamycin	82	88				
Fusobacterium spp. (15)	Moxalactam	87	100				
	Carbenicillin	100					
	Cefoxitin	88	100				
	Chloramphenicol	100					
	Clindamycin	100					
Anaerobic gram-positive cocci (46)	Moxalactam	20	37	67	80	83	87
	Carbenicillin	83	87	89			
	Cefoxitin	76	78	83	87	91	96
	Chloramphenicol	29	61	96			
	Clindamycin	93	96				
Other anaerobic species (6)†	Moxalactam	33	50	100			
	Carbenicillin	100					
	Cefoxitin	33	67	83	100		
	Chloramphenicol	33	83	100			
	Clindamycin	83	100				

*Lowest tested concentration of carbenicillin.
† Includes (number of isolates): *Bacteroides fragilis* (68), *B. thetaiotaomicron* (6), *B. vulgatus* (12), *B. ovatus* (2), and *B. distasonis* (4).
§ Includes *Lactobacillus* spp. (4), *Bifidobacterium* spp. (1), and *Veillonella* spp. (1).
ity of all three drugs was poor against most *Streptococcus* species, especially the enterococci. Cefamandole was generally from 4- to >16-fold more active than moxalactam (*P* = < 0.001) against *Streptococcus agalactiae*, *Streptococcus pyogenes*, other beta-streptococci, and the *Streptococcus viridans* group. Among the other gram-positive bacteria, all tested strains of *Listeria monocytogenes* and *Bacillus* species were resistant (>32 µg/ml) to moxalactam, whereas the corynebacteria were generally susceptible to the lower concentrations tested.

Moxalactam demonstrated equal or slightly superior in vitro activity as compared to cefamandole and tobramycin against only three non-*Enterobacteriaceae* species, e.g., *Aeromonas hydrophila*, *Moraxella* sp., and *Pseudomonas maltophilia*. For all other tabulated species and species groups, tobramycin was significantly (*P* = < 0.001) more active than either moxalactam or cefamandole. Though moxalactam *P. aeruginosa* MICs were much lower (mode = 16 µg/ml) than those of cefamandole, only 27.6 and 77.9% of the strains were inhibited at 8 and 32 of moxalactam per ml, respectively.

Moxalactam showed antimicrobial activity similar to that of cefoxitin against most of the 248 strict anaerobes shown in Table 3. Moxalactam inhibited 92% of the tested *Bacteroides fragilis* group strains at ≤8 µg/ml. Against other anaerobes, moxalactam had equal or fourfold less activity when compared with cefoxitin. Two antibiotic-resistant populations of bacteria were also tested against 13 antimicrobial agents (Table 4). The cefalothin-resistant strains were selected from each of the participating laboratories, and their numbers were adjusted to simulate the clinical incidence of cefalothin-resistant isolates. Cefotaxime (72% inhibited at ≤ µg/ml) and moxalactam (69% inhibited at ≤8 µg/ml) were the most active among the “cephalosporins” tested; amikacin (92% inhibited at ≤16 µg/ml) was the most active aminoglycoside; and piperacillin (86% inhibited at ≤64 µg/ml)

Table 4. In vitro comparison of moxalactam and 12 other antibiotics against two populations of antibiotic-resistant bacteria
Population (no. of isolates)

Cephalothin resistant (100)^b

^a MIC₉₀, MIC₅₀, MIC₁₀, MICs inhibiting 25, 50, or 90% of isolates tested.

^b Cephalothin-resistant (MIC, ≥32 µg/ml) bacteria representing those species most commonly found in the clinical population tested (current study).

^c Gram-negative and gram-positive organisms resistant to kanamycin (MIC, ≥64 µg/ml), gentamicin (MIC, ≥16 µg/ml), tobramycin (MIC, ≥16 µg/ml), any two, or all three.
and mezlocillin (81% inhibited at \(\leq 64 \, \mu g/ml \)) were the most active new penicillins. The aminoglycoside-resistant strains were those obtained from previous studies (7, 8) and others kindly supplied by G. Miller of Schering Corp. and K. Price of Bristol Laboratories. The rank order of in vitro activity against this latter resistant population was piperacillin (68% inhibited at \(\leq 64 \, \mu g/ml \)) > moxalactam (66% inhibited at \(\leq 8 \, \mu g/ml \)) > carbenicillin (62% inhibited at \(\leq 128 \, \mu g/ml \)) > mezlocillin (60% inhibited at \(\leq 64 \, \mu g/ml \)) = cefotaxime (60% inhibited at \(\leq 8 \, \mu g/ml \)).

The effect of raising the inoculum concentration from \(10^4 \) to \(10^6 \) colony-forming units per ml was minimal with moxalactam, cefamandole, and tobramycin (not shown). However, MICs of all three antibiotics with an inoculum of \(10^6 \) colony-forming units per ml were generally in the resistant range. The moxalactam and tobramycin MICs were also less affected than those of cefamandole when compared to the results with an inoculum of \(10^5 \) colony-forming units per ml.

Moxalactam possesses potent antimicrobial activity against the Enterobacteriaceae and lesser degrees of inhibition against anaerobes, staphylococci, and \(P. \) aeruginosa (2, 6, 15, 18–20). The spectrum of activity and high potency against the enteric bacilli was similar to those reported for cefotaxime and cefoperazone (3, 6, 10, 14, 20). Moxalactam inhibited 98.9% of the Enterobacteriaceae at \(\leq 8 \, \mu g/ml \), compared to 85.0 and 93.8% for \(\leq 8 \, \mu g \) of cefamandole and \(\leq 4 \, \mu g \) of tobramycin per ml, respectively. Though moxalactam was somewhat active against \(P. \) aeruginosa, the high modal MIC of 16 \(\mu g/ml \) and incomplete coverage (77.9% of all isolates inhibited at \(\leq 32 \, \mu g/ml \)) cast some doubt on its potential clinical usefulness. Similarly, moxalactam had higher modal MICs against both \(S. \) aureus and \(S. \) epidermidis than did cefamandole and tobramycin. However, moxalactam inhibited nearly equal numbers (66.6%) of gram-positive organisms at \(\leq 32 \, \mu g/ml \) compared to cefamandole (69.6%) at \(\leq 8 \, \mu g/ml \).

Moxalactam and cefotaxime appear to offer promise for the treatment of some resistant populations of bacteria prevalent in certain institutions (7, 8, 14). Cefotaxime and moxalactam were among the most active beta-lactams against both the cephalothin- and aminoglycoside-resistant strains. The newer semisynthetic penicillins, piperacillin and mezlocillin, also appear effective against both of these resistant populations.

This 1-oxa-\(\beta \)-lactam antibiotic, moxalactam (LY127935), inhibited 76.8 and 87.2% of all facultative bacteria tested in this series of MICs of \(\leq 8 \) and \(\leq 32 \, \mu g/ml \), respectively. This compared favorably with the two most active (on a weight basis) representatives of the currently available aminoglycosides and cephalosporins, e.g., tobramycin and cefamandole. Tobramycin inhibited 82.5% of the isolates at \(\leq 4 \, \mu g/ml \), and cefamandole inhibited 72.2% of the strains at \(\leq 8 \, \mu g/ml \). Further in vitro and in vivo investigations are considered appropriate.

LITERATURE CITED

1. Barry, A. L., C. Thornberry, R. N. Jones, P. C. Fuchs, T. L. Gavan, and E. H. Gerlach. 1977. Cefuroxime, an in vitro comparison with six other cephalosporins. Proc. R. Soc. Med. 29(Suppl.) 9:63–71.
2. Barza, M., F. P. Tally, N. V. Jacobus, and S. L. Gorbach. 1979. In vitro activity of LY127935. Antimicrob. Agents Chemother. 16:287–292.
3. Chabbert, Y. A., and A. J. Luta. 1978. HR756, the syn isomer of a new methoxyiminocephalosporin with unusual antibacterial activity. Antimicrob. Agents Chemother. 14:749–754.
4. Ericsson, H. M., and J. C. Sherris. 1971. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol. Microbiol. Scand. Sect. B Suppl. 217.
5. Findell, C. M., and J. C. Sherris. 1976. Susceptibility of Enterobacter to cefamandole: evidence for a high mutation rate to resistance. Antimicrob. Agents Chemother. 9:970–974.
6. Fu, K. P., and H. C. Neu. 1979. The comparative beta-lactamase resistance and inhibitory activity of 1-oxa-cephalosporin, cefoxitin, and cefotaxime. J. Antibiot. 32:909–914.
7. Jones, R. N., A. L. Barry, P. C. Fuchs, T. L. Gavan, E. H. Gerlach, and H. Sommers. 1978. 1-N-(3-aminomethyl-2-hydroxypropionyl)gentamicin B(SCH21420): a collaborative in vitro susceptibility comparison with amikacin and gentamicin against 12,984 clinical bacterial isolates. Curr. Microbiol. 1:359–364.
8. Jones, R. N., A. L. Barry, P. C. Fuchs, T. L. Gavan, H. Sommers, and E. H. Gerlach. 1979. Fortimicin A: a collaborative in vitro susceptibility comparison with amikacin and gentamicin against 11,664 clinical bacterial isolates. Antimicrob. Agents Chemother. 16:823–828.
9. Jones, R. N., and P. C. Fuchs. 1976. Identification and antimicrobial susceptibility of 250 Bacteroides fragilis subspecies tested by broth microdilution methods. Antimicrob. Agents Chemother. 9:719–721.
10. Jones, R. N., P. C. Fuchs, A. L. Barry, T. L. Gavan, H. M. Sommers, and E. H. Gerlach. 1980. Cefoperazone (T-1551), a new semisynthetic cephalosporin: comparison with cephalexin and gentamicin. Antimicrob. Agents Chemother. 17:473–479.
11. Jones, R. N., P. C. Fuchs, T. L. Gavan, E. H. Gerlach, A. L. Barry, and C. Thornberry. 1977. BL-S786, a new parenteral cephalosporin. I. A collaborative in vitro susceptibility comparison to cephalexin against 5,762 clinical bacterial isolates. J. Antibiot. 30:576–582.
12. Jones, R. N., P. C. Fuchs, E. H. Gerlach, and T. L. Gavan. 1979. Piperacillin and carbenicillin: a collaborative in vitro comparison against 10,838 clinical bacterial isolates. Cleveland Clin. Q. 46:49–55.
13. Jones, R. N., P. C. Fuchs, C. Thornberry, and N. Rhodes. 1978. Antimicrobial susceptibility tests for anaerobic bacteria. Comparison of Wilkins-Chalgren agar reference method and a microdilution method and
determination of stability of antimicrobics frozen in broth. Curr. Microbiol. 1:81-83.

14. LeNoc, P., A. Marmonier, and J. Croize. 1979. Activite d'une nouvelle cephalosporine, le RU 24756, sur 636 souches de bacilles gram-negatifs d'origine hospitaliere resistants a la cefalotine. Med. Mal. Infect. 9:25-29.

15. Neu, H. C., N. Aswapokee, K. P. Fu, and P. Aswapokee. 1979. Antibacterial activity of a new 1-oxa cephalosporin compared with that of other lactam compounds. Antimicrob. Agents Chemother. 16:141-149.

16. Neu, H. C., K. P. Fu, N. Aswapokee, P. Aswapokee, and K. Kung. 1979. Comparative activity and beta-lactamase stability of cefoperazone, a piperazine cephalosporin. Antimicrob. Agents Chemother. 16:150-157.

17. Steers, E., E. L. Foltz, and B. S. Graves. 1959. An inocula replicating apparatus for routine testing of bacterial susceptibility to antibiotics. Antibiot. Chemother. 9:307-311.

18. Trager, G. M., G. W. White, V. M. Zimelis, and A. P. Panwalker. 1979. LY-127935: a novel beta-lactam antibiotic with unusual antibacterial activity. Antimicrob. Agents Chemother. 16:297-300.

19. Watanakunakorn, C., and C. Glotzbecker. 1979. Comparative in vitro activity of LY127935 (6069-S), seven cephalosporins, cefoxitin and cefotaxime. J. Antibiot. 32:1019-1024.

20. Wise, R., J. M. Andrews, and K. A. Bedford. 1979. LY127935, a novel oxo-beta-lactam: an in vitro comparison with other beta-lactam antibiotics. Antimicrob. Agents Chemother. 16:341-345.