Dissecting the mechanisms of cell division

Joseph Y. Ong and Jorge Z. Torres

From the Department of Chemistry and Biochemistry, The Jonsson Comprehensive Cancer Center, and The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA

Running title: Dissecting the mechanisms of cell division

To whom correspondence should be addressed: Jorge Z. Torres, Department of Chemistry and Biochemistry, The Jonsson Comprehensive Cancer Center, and The Molecular Biology Institute, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095. Tel: (310)-206-2092, Fax: (310)-206-5213, Email: torres@chem.ucla.edu

Keywords: Cell cycle, cell division, cancer, chemical biology, computational biology, genomics, proteomics, protein structure, posttranslational modification, classical genetics

ABSTRACT

Cell division is a highly regulated and carefully orchestrated process. Understanding the mechanisms that promote proper cell division is an important step toward unraveling important questions in cell biology and human health. Early studies seeking to dissect the mechanisms of cell division used classical genetics approaches to identify genes involved in mitosis and deployed biochemical approaches to isolate and identify proteins critical for cell division. These studies underscored that post-translational modifications and cyclin-kinase complexes play roles at the heart of the cell division program. Modern approaches to examining the mechanisms of cell division, including the use of high-throughput methods to study the effects of RNAi, cDNA, and chemical libraries, have evolved to encompass a larger biological and chemical space. Here, we outline some of the classical studies that established a foundation for the field and provide an overview of recent approaches that have advanced the study of cell division.

Introduction to cell division

Cell division, or mitosis, is the process by which a mother cell divides its nuclear and cytoplasmic components into two daughter cells. Mitosis is divided into four major phases: prophase, metaphase, anaphase, and telophase. Careful regulation of the cell division program is crucial for proper cell growth, development, and gametogenesis. Dysfunction or misregulation of cell division can lead to growth defects (1, 2), proliferative diseases like cancer (3), and aging-related diseases (4), including Alzheimer’s disease (5). Therefore, analysis of the pathways and mechanisms that promote proper cell division are important avenues through which we can understand cell regulation and its misregulation in human disease.

Cell division is driven by two main modes of post-translational modifications. First, protein kinases like cyclin dependent kinases (CDKs) (6, 7) and Polo-like kinases (8) phosphorylate their substrates to modify their activity or stability; this modification is opposed by protein phosphatase-mediated dephosphorylation (for example, Cdc25 (9) and various PP2A (10) complexes). Second, E3 ubiquitin ligases like the anaphase promoting complex/cyclosome (APC/C) (11) and Cullin 1-based SCF (12) complexes ubiquitylate their substrates and target them for proteasomal degradation; this modification is opposed by deubiquitylases such as USP37 (13) and Cezanne (14). Spatiotemporal control of when these post-translational modifications occur gives rise to the ordered events of cell division. Our current understanding of key regulators of cell division is founded upon many classical genetic and biochemical studies aimed at understanding the cell cycle. We begin by highlighting some of these seminal studies, transition to discussing modern techniques and approaches used to dissect the mechanisms of...
cell division, and conclude with future directions and perspectives on the cell division field.

Classical studies of cell division: posttranslational regulation

Early cell cycle studies established that phosphorylation was important for cell division. These studies assessed the DNA content, size, and doubling time of mutant strains of the yeast *S. pombe* to identify genes, termed cell division cycle (*cdc*) genes (15). One of the first *cdc* genes to be characterized was *cdc9-50*, later renamed *WEE1* (16). *WEE1*-mutant yeast divided at a smaller size than their wild-type counterparts, suggesting that loss of Wee1p activity accelerated mitotic entry and that Wee1p was an inhibitor of mitosis. Later, it was discovered that overexpression the *S. pombe* gene *cdc25*, determined to encode a protein phosphatase (17), led to increased rates of mitotic entry (18). Moreover, Wee1p and Cdc25p worked in opposition to each other, suggesting a balancing act between these two proteins to regulate the initiation of mitosis (19). The cloning of *WEE1* indicated that it resembled a protein kinase (20), suggesting that phosphorylation could regulate cell division. This analysis also suggested that a common substrate of Cdc25p and Wee1p was Cdc2p, a protein kinase (21) known to be involved in the initiation of DNA replication (Cdc2p in *S. pombe*, Cdc28p in *S. cerevisiae*, now known as CDK1 in humans) (22). The possibility that Wee1p and Cdc25p worked in opposition to each other at the biochemical level was later confirmed when it was shown that Wee1p phosphorylated and inactivated Cdc2p (23) and that Cdc25p dephosphorylated and activated Cdc2p (17). Thus, the ability of Cdc2p to regulate mitotic entry depended on its phosphorylation state (24), a theme that has now extended to other mitotic kinases.

Meanwhile, parallel studies in frog oocytes demonstrated that a cytoplasmic substance, termed maturation-promoting factor (MPF), regulated the initiation of meiosis (25, 26). Curiously, the levels of MPF seemed to go up and down during the different phases of meiosis (27). Purification of MPF (28) suggested that this protein complex contained two proteins: a protein kinase of approximately 32 kDa, later identified to be a homologue of *S. pombe* Cdc2p (29), and a protein of about 45 kDa, later identified to be cyclin B (30). The interaction between the kinase Cdc2p and cyclins, a class of proteins named because their protein levels cycled with each mitotic division in sea urchins and clams (31), became a key resource for understanding the mechanisms of cell division. The discovery of CDK2 and CDK2-cyclin A complexes (32, 33) and Cdc2-cyclin A and Cdc2-cyclin B complexes (30, 34) suggested that different cyclin-kinase pairs could regulate different aspects of mitotic entry and progression (32). Subsequent studies in model organisms demonstrated that, among its many substrates, Cdc2 phosphorylated nuclear lamins for nuclear envelope breakdown (35, 36) and cytoskeletal elements for important morphological changes during mitosis (37, 38). The ability of cyclins and their kinases to mediate mitotic entry and progression has become the engine that drives cell division.

Similar to phosphorylation and protein kinases, ubiquitylation and E3 ubiquitin ligases play important roles in cell division. For example, the cycling levels of cyclin B were partially explained by the ubiquitination (39, 40) and subsequent degradation of cyclin B by the APC/C (41, 42). Degradation of Emi1 (43) and Wee1 (44) via ubiquitylation by the Cul1-based SCF complex is necessary for proper mitotic exit. While phosphatases (such as Wee1 or PP2a (10)) have been well studied as antagonizers of cell division kinases, the role of deubiquitinating enzymes and the identification of their substrates remains to be fully explored (49).

Beyond these classical genetic and biochemical studies, modern approaches aimed at dissecting the mechanisms of cell division have greatly advanced our understanding of this dynamic process. Here, we present a broad overview of recent approaches that take a comprehensive and “-omics” view to identify novel components critical for cell division, to understand the function of the cell division machinery, and to analyze the pathways and other novel factors that contribute to cell division.

Genetic dissection of cell division

Although the aforementioned traditional yeast mutagenesis studies were seminal to the
field of cell division, in the era of modern genomics, genetic analyses of cell division have become more targeted and efficient. The availability of commercial RNAi and CRISPR-Cas9 gRNA (50) libraries has made studying gene expression knockdowns a viable option for discovering novel genes involved in cell division (Figure 1, upper left). Approaches that screen these libraries are usually coupled with a high-throughput method of multiparametric data analysis, such as assessing mitotic progression via microscopy and DNA content, or via the HeLa FUCCI (fluorescence ubiquitination cell cycle indicator) cell lines, which change color based on the cell cycle phase (51). As an example, our group performed an siRNA screen to assess the importance of approximately 600 mitotic microtubule-associated proteins for their function in cell division and used high content imagers to quantify the mitotic index and apoptotic index of each knockdown (52). Through this approach, we discovered StarD9, a novel protein involved in centrosome cohesion and whose depletion led to a dynamic unstable mitotic arrest (52). Combined with microscopy and computer-aided imaging, siRNA screens have now analyzed the importance of approximately 22,000 genes for cell division, uncovering novel proteins critical for this process (53).

Similarly, expression of fluorescently-tagged fusion proteins, by transfecting vectors encoding cDNAs (54) or bacterial artificial chromosomes containing a gene with its endogenous promoter (55), has enabled the identification of novel cell division proteins. The use of a fluorescently-tagged protein allows for an easy visual analysis for whether the protein has a relevant localization, such as at the kinetochores during mitosis, and is particularly useful when an antibody for the protein of interest is unavailable, either because the gene of interest is novel or because commercially available antibodies could not be validated. Combined with other analyses, such as proteomic data, these approaches have been used to identify novel protein complexes and pathways, such as a subunit of the APC/C (55), the MOZART family of tubulin associated proteins (55), and the katanin family of microtubule-severing enzymes (56).

Together, these genetic approaches have defined a parts list of the critical factors that are required for proper cell division. Importantly, they have allowed for the dissection of key cell division processes like centrosome homeostasis, early mitotic spindle assembly, spindle assembly checkpoint function, and cytokinesis. These studies have also aided the understanding of human genetic diseases like developmental disorders and cancers that have cell division dysregulation at the core of their pathophysiology.

Proteomic dissection of cell division

Classical yeast two-hybrid screens have been used to identify novel protein-protein interactions (57, 58) and to define key domains or amino acids necessary for protein-protein interactions (59) (Figure 1, upper left). However, modern proteomic approaches have greatly expanded the identification of novel protein-protein interactions and protein complexes involved in cell division. We outline two main approaches to the proteomic mapping of cell division: first, affinity-based purifications, based on the strength of protein-protein interactions; and second, proximity-based purifications, based on the spatiotemporal localization of the protein of interest. In affinity purifications, a tagged protein is expressed within cells, and the protein complexes are immunoprecipitated via antibodies that target the protein tag and analyzed by mass spectrometry (Figure 1, upper right) (54, 60). We have used this approach to study various protein complexes of the cell division machinery, including enzymes that regulate the length of the mitotic spindle (61), ubiquitylation complexes that regulate cytokinesis (62), novel light chains of the dynein machinery (63) and a novel kinesin involved in centrosome cohesion (52, 64, 65). In proximity-based purifications, the protein of interest is tagged with a labeling enzyme such as a BirA biotin-ligase mutant called BioID (or its derivatives BioID2, TurboID or miniTurboID (66)) or a peroxide-based enzyme APEX (67). Upon addition of the small ligand biotin to the cell culture media, these labelling enzymes modify proximal proteins with biotin via accessible lysine residues. Following the labeling step, the cells are lysed in denaturing
Dissecting the mechanisms of cell division

conditions, biotinylated proteins are immunoprecipitated by binding to streptavidin beads, and protein complexes are analyzed by mass spectrometry. Examples of proximity-based approaches include the identification of CDK1 protein interactors (68) and the spatial mapping of protein-protein associations within the centrosome (69).

Our group has been interested not only in defining novel components of the cell division machinery but also how these components interact with each other in a spatiotemporal manner. The mapping of cell division protein-protein interactions has been and will continue to be important to understanding how the cell division machinery coordinates to execute cell division with high fidelity. For example, protein interactors of a mitotic protein kinase could represent components of a protein complex, regulators of its activity or localization, and/or substrates for modification. Therefore, cell division protein-protein interaction networks are critical for defining protein function and more broadly how these proteins affect a specific pathway within the cell division program.

Chemical dissection of cell division

Natural and synthetic small molecules that target the cell division machinery are useful research tools that can be used in an acute and temporal manner to dissect the mechanisms of cell division. They can also serve as lead molecules for the development of therapeutics for treating proliferative diseases like cancer. However, these compounds have shown limited use in clinical trials, emphasizing the need to discover new or improved compounds and/or more viable biological targets. Moreover, many critical regulators of cell division have no specific inhibitors, hindering research to improve our understanding of their function and their potential as disease drug targets. Therefore, much progress needs to be made in the discovery and development small molecule inhibitors and modulators of cell division proteins.

Recently we developed a novel cell-based high-throughput chemical screening platform for the discovery of cell cycle phase specific inhibitors that utilizes chemical cell cycle profiling (70, 71). Using this approach we analyzed the cell cycle response of cancer cells to each of approximately 80,000 drug-like molecules (70) (Figure 1, lower left). This screen identified novel inhibitors of each cell cycle phase. Coupled with our computational program CSNAP (Chemical Similarity Network Analysis Pulldown) that relates chemical properties to biological activity (72, 73), this screen presented 266 compounds that impeded cell division and identified many potential biological targets. As an example of the utility of this method, we demonstrated that the novel compound MI-181 was a microtubule destabilizer like colchicine, bound near the colchicine binding pocket (74) and had a potency and efficacy similar to taxol (70). Recently, we screened more than 180,000 chemical compounds and found a small molecule that arrested leukemia cells in G2 and triggered an apoptotic cell death (75). Similarly, chemical screens have also been used to identify APC/C inhibitors (76) and mitotic kinase inhibitors (for example, Plk1 (77) and Aurora kinases (78)) that have been used to study their corresponding protein’s functions in spindle assembly and the spindle-assembly checkpoint (Aurora kinase B (79), Plk1 (80), and APC/C (81)).

Although much work has been done to chemically dissect cell division, much work lies ahead to define inhibitors of the cell division machinery. Importantly, most chemical studies have focused on structure-based approaches, which rely on the prior identification of key cell division enzymes through genetic approaches and an understanding of their 3D structure. High-throughput phenotypic chemical profiling of cell division pathways is still lacking. Additionally, new synthetic and natural chemical libraries with broad chemical space continue to become available and represent opportunities for the discovery of molecules that will enable researchers to interrogate cell division. Finally, much effort has been invested in targeting the active site of mitotic enzymes, but the targeting of key protein-protein interactions with small molecules like peptidomimetics has been lagging.

Structural dissection of cell division
Dissecting the mechanisms of cell division

Studies into the structure of key proteins and protein complexes in cell division have elucidated key mechanisms in the assembly and function of the cell division machinery. While there have been many important structural studies, we focus on Mad2, one of the key regulators of the spindle assembly checkpoint. Structural studies have been particularly useful in elucidating the role of Mad2 within cell division because Mad2 function is dependent on its structure. Via NMR studies, it was discovered that Mad2 alternates between two main structural conformations, an open (O-Mad2) and a closed (C-Mad2) state, differing mainly at the C-terminal tail (82, 83). Only C-Mad2 is active and able to bind to Mad1 and Cdc20. Conversion of O-Mad2 to C-Mad2 requires the formation of an O-/C-Mad2 heterodimer (84–86). Crystal structures of Mad2-Mad1 complexes demonstrated a flexible C-terminal tail termed the “safety belt” or “hinge loop” (87) involved in regulating C-Mad2 binding to Mad1 (88) and Cdc20 (89), prohibiting the metaphase-anaphase transition. These structural studies helped elucidate the means by which Mad2 functions within the mitotic checkpoint complex (MCC).

Increasing developments in cryo-EM have allowed for more complex structures to be elucidated. For example, cryo-EM studies have solved the structure of the APC/C (90, 91), helping to explain the purpose of both APC/C-binding E2 ubiquitin conjugating enzymes Ube2c and Ube2s (92) and clarifying the mechanism of Mad2 inhibition of the APC/C (93). Moreover, complex structures like the kinetochores have also been visualized by cryo-EM. While traditional X-ray crystallography methods have been used to solve the structures of some kinetochore complexes, such as the MIND complex in Figure 1 (lower middle), cryo-EM structures of yeast kinetochores and kinetochore-associated proteins in situ (94), purified from yeast (95), or reassembled in vitro (96) have elucidated the composition, geometry, and assembly and disassembly of eukaryotic kinetochores. Structural information, particularly of large structures like the kinetochores or centrosomes, is important for understanding the protein complexes formed during mitosis and toward developing small molecules that can disrupt these interactions.

Computational dissection of cell division

Computational and mathematical approaches to study cell division have complemented and informed biochemical and biological techniques. One of the earliest attempts toward rationalizing mitotic entry suggested that, because of feedback loops between Cdc2, its activator Cdc25 and its inhibitor Wee1, Cdc2 activity should oscillate within the cell cycle as a function of cyclin concentration (97). These models were later confirmed by experiments that revealed Cdc2 exhibited hysteresis and bistability: regulation of Cdc2 prevents premature mitotic exit because a higher concentration of cyclin B is needed to enter mitosis than to maintain a mitotic state (98, 99). A mathematical model assessed cell growth as a function of protein kinase activity (100) suggested that an unknown phosphatase might regulate Nek1, a phosphatase later identified to be PP2A-Cdc55 (101). Other mathematical models have taken similar approaches to assess the roles of the spindle assembly checkpoint components relative to checkpoint function (102, 103) and to model the mitotic spindle as a function of biophysical forces (104) and microtubule dynamics and cell size (105).

Computational techniques to glean information from time-lapse imaging of cell division have also been developed. With the advent of advanced imaging software and fluorescently-tagged proteins, researchers have generated spatiotemporal data about protein localization and concentration, resulting in information about protein complex assembly and disassembly (106). Combining datasets from different proteins allowed for the prediction of protein complexes and for the assessment of protein stoichiometry within a complex. Among other results, this imaging technique enabled the quantification of the number of cohesion molecules on DNA during mitosis, confirmed 1:1 stoichiometry of Aurora kinase B and Borealin, and visualized Aurora kinase B localization to the cytokinetic bridge (106).

Beyond microscopy, computational approaches have also been used to discover novel substrates of mitotic protein kinases. The
basic structure of these algorithms is to use sequence information of known phosphorylation sites to identify a consensus phosphorylation motif and predict novel substrates, as outlined in Figure 1 (lower right) for Plk1. Many computational tools that expand on this basic approach have been published (107, 108); we highlight a recent study that identified SPICE1 as an Aurora kinase A substrate via a computational algorithm and validated the interaction via biochemistry (109).

Given the wealth of information generated by chemical, proteomic, and genetic screens and cheminformatics and bioinformatics analyses, there is a pressing need to develop computational methods to integrate and analyze these data. In regard to this, our group recently used computational cell cycle profiling for prioritizing FDA-approved drugs with potential for repurposing as anticancer therapies (71). Methods like this that combine and synthesize data sets from multiple sources into multiparametric analyses will become increasingly critical in order to develop a comprehensive view of cell division and how best to target it for therapeutic purposes.

Future perspectives

While much has been discovered about the mechanisms that drive cell division, many novel factors that play a role in cell division are still being discovered. For example, endogenous RNA interference (RNAi) has been shown to regulate the expression of cell division proteins like Plk1 (110, 111), Mad1 (112), Bub1 (113), and Aurora kinase B (114). Many other RNAi have been shown to affect at least one aspect of cell division (115–119), and some have no identified targets (120). Given the clinical importance of misregulated endogenous RNAi and the therapeutic potential of exogenous RNAi, a systematic understanding of how different forms of RNAi influence the proteins involved in cell division may help uncover novel levels of regulation for cell division.

In addition to RNAi, small molecules and reactive oxygen species (ROS) have been shown to play critical roles in mitotic progression. For example, folate deficiency leads to replicative stress during DNA replication and consequently to missegregation defects during mitosis (121). Similarly, the lipid family of phosphoinositides was shown to directly influence mitotic progression through proteins like NuMA (122) or phosphatases (123) and by regulating cytoskeletal elements (124, 125). Sterols have also been shown to play a role in cell division: cells deprived of cholesterol have difficulty undergoing cytokinesis (126) and the cholesterol derivative pregnenolone localizes to the spindle poles, binds Shugoshin 1, and promotes centriole cohesion (127). In S. pombe, intracellular concentrations of glucose affect Wee1 activity and thus cell size at mitotic entry (128). Whether glucose or other metabolites serve roles during mitosis in human cells is largely unexplored. Interestingly, in cancer cells, ROS levels are elevated during mitosis, leading to an increased oxidation of biomolecules, but the functional implications of this oxidation, if any, are unknown (129). Thus, comprehensive metabolomic, lipidomic, and nucleic acid studies of cell division are likely to yield interesting and previously underappreciated biological aspects of cell division (Figure 1, upper middle).

Concluding remarks

Methods to dissect the mechanisms that govern cell division have progressed rapidly over the last few decades. The strategies discussed here allow for a genome- or proteome-wide assessment of proteins, drugs, and small molecules involved in cell division. In addition, advances in structural biology and computation have aided the study of cell division, particularly with regards to complex structures that are difficult to study with traditional biochemical techniques. Altogether, these approaches have allowed for the discovery and study of the ensemble of proteins and other factors necessary for proper cell division.

Acknowledgements- Work was supported by a National Institutes of Health NIGMS grant R01GM117475 to JZT. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Institutes of Health NIGMS. JYO is supported by a Ruth L. Kirschstein National Research Service Award GM007185 (UCLA Cellular and
Molecular Biology Training Program) and a National Science Foundation Graduate Research Fellowship (DGE-1650604). We thank the Journal of Biological Chemistry for artistic help in constructing Figure 1.

Author contributions- JYO and JZT discussed the content and wrote the paper.

Conflict of interest- The authors declare that they have no conflicts of interest with the contents of this article.

FOOTNOTES
*To whom correspondence should be addressed: Jorge Z. Torres, Department of Chemistry and Biochemistry, The Jonsson Comprehensive Cancer Center and The Molecular Biology Institute, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095. Tel: (310)-206-2092, Fax: (310)-206-5213, Email: torres@chem.ucla.edu
REFERENCES
1. Tomkins, D. J., and Sisken, J. E. (1984) Abnormalities in the cell-division cycle in Roberts syndrome fibroblasts: a cellular basis for the phenotypic characteristics? *Am. J. Hum. Genet.* **36**, 1332–40
2. Hung, C. Y., Volkmar, B., Baker, J. D., Bauer, J. W., Gussoni, E., Hainzl, S., Klausegger, A., Lorenzo, J., Ihalek, I., Rittinger, O., Tekin, M., Dallman, J. E., and Bodamer, O. A. (2017) A defect in the inner kinetochore protein CENPT causes a new syndrome of severe growth failure. *PLoS One.* **12**, e0189324
3. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of Cancer: The Next Generation. *Cell.* **144**, 646–674
4. Macedo, J. C., Vaz, S., Bakker, B., Ribeiro, R., Bakker, P. L., Escandell, J. M., Ferreira, M. G., Medema, R., Foijer, F., and Logarinho, E. (2018) FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. *Nat. Commun.* **9**, 2834
5. Yang, Y., Varvel, N. H., Lamb, B. T., and Herrup, K. (2006) Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. *J. Neurosci.* **26**, 775–84
6. Peter, M., Nakagawa, J., Dorée, M., Labbé, J. C., and Nigg, E. A. (1990) Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. *Cell.* **60**, 791–801
7. Bischoff, J. R., Friedman, P. N., Marshak, D. R., Prives, C., and Beach, D. (1990) Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. *Proc. Natl. Acad. Sci. U. S. A.* **87**, 4766–70
8. Fu, Z., Malureanu, L., Huang, J., Wang, W., Li, H., van Deursen, J. M., Tindall, D. J., and Chen, J. (2008) Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. *Nat. Cell Biol.* **10**, 1076–1082
9. Lammer, C., Wagerer, S., Saffrich, R., Mertens, D., Ansorge, W., and Hoffmann, I. (1998) The cdc25B phosphatase is essential for the G2/M phase transition in human cells. *J. Cell Sci.* **111 (Pt 16)**, 2445–53
10. Torres, J. Z., Ban, K. H., and Jackson, P. K. (2010) A Specific Form of Phospho Protein Phosphatase 2 Regulates Anaphase-promoting Complex/Cyclosome Association with Spindle Poles. *Mol. Biol. Cell.* **21**, 897–904
11. Davey, N. E., and Morgan, D. O. (2016) Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. *Mol. Cell.* **64**, 12–23
12. Yu, Z. K., Gervais, J. L., and Zhang, H. (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 11324–9
13. Huang, X., Summers, M. K., Pham, V., Lill, J. R., Liu, J., Lee, G., Kirkpatrick, D. S., Jackson, P. K., Fang, G., and Dixit, V. M. (2011) Deubiquitinase USP37 Is Activated by CDK2 to Antagonize APCCDH1 and Promote S Phase Entry. *Mol. Cell.* **42**, 511–523
14. Bonacci, T., Suzuki, A., Grant, G. D., Stanley, N., Cook, J. G., Brown, N. G., and Emanuele, M. J. (2018) Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. *EMBO J.* **37**, e98701
15. Hartwell, L. H., Mortimer, R. K., Culotti, J., and Culotti, M. (1973) Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. *Genetics.* **74**, 267–86
16. Nurse, P. (1975) Genetic control of cell size at cell division in yeast. *Nature.* **256**, 547–551
17. Lee, M. S., Ogg, S., Xu, M., Parker, L. L., Donoghue, D. J., Maller, J. L., and Piwnica-Worms, H. (1992) cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2. *Mol. Biol. Cell.* **3**, 73–84
18. Russell, P., and Nurse, P. (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. *Cell.* **45**, 145–53
19. Fantes, P. (1979) Epistatic gene interactions in the control of division in fission yeast. *Nature.* **279**, 428–430
20. Russell, P., and Nurse, P. (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. *Cell* 49, 559–67
21. Hindley, J., and Phear, G. A. (1984) Sequence of the cell division gene CDC2 from *Schizosaccharomyces pombe*; patterns of splicing and homology to protein kinases. *Gene* 31, 129–34
22. Conrad, M. N., and Newlon, C. S. (1983) Saccharomyces cerevisiae cdc2 mutants fail to replicate approximately one-third of their nuclear genome. *Mol. Cell. Biol.* 3, 1000–12
23. Lundgren, K., Walworth, N., Booher, R., Dembski, M., Kirschner, M., and Beach, D. (1991) mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. *Cell* 64, 1111–22
24. Gould, K. L., and Nurse, P. (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. *Nature* 342, 39–45
25. Hara, K., Tydeman, P., and Kirschner, M. (1980) A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. *Proc. Natl. Acad. Sci. U. S. A.* 77, 462–6
26. Masui, Y., and Markert, C. L. (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. *J. Exp. Zool.* 177, 129–45
27. Gerhart, J., Wu, M., and Kirschner, M. (1984) Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. *J. Cell Biol.* 98, 1247–55
28. Lohka, M. J., Hayes, M. K., and Maller, J. L. (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. *Proc. Natl. Acad. Sci. U. S. A.* 85, 3009–13
29. Dunphy, W. G., Brizuela, L., Beach, D., and Newport, J. (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. *Cell* 54, 423–431
30. Draetta, G., Luca, F., Westendorf, J., Brizuela, L., Ruderman, J., and Beach, D. (1989) cdc2 protein kinase is complexed with both cyclin A and B: Evidence for proteolytic inactivation of MPF. *Cell* 56, 829–838
31. Tsai, L.-H., Harlow, E., and Meyerson, M. (1991) Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. *Nature* 353, 174–177
32. Labbé, J. C., Capony, J. P., Caput, D., Cavadore, J. C., Derancourt, J., Kaghad, M., Lelias, J. M., Picard, A., and Dorée, M. (1989) MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. *EMBO J.* 8, 3053–8
33. Dessev, G., Iovcheva-Dessev, C., Bischoff, J. R., Beach, D., and Goldman, R. (1991) A complex containing p34cdc2 and cyclin B phosphorylates the nuclear lamin and disassembles nuclei of clam oocytes in vitro. *J. Cell Biol.* 112, 523–33
34. Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. *Nature* 349, 132–138
35. Chou, Y. H., Ngai, K. L., and Goldman, R. (1991) The regulation of intermediate filament reorganization in mitosis. p34cdc2 phosphorylates vimentin at a unique N-terminal site. *J. Biol. Chem.* 266, 7325–8
36. Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. *Nature* 349, 169–172
37. Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R. E., and Cohen, L. H. (1991) Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. *J. Biol. Chem.* 266, 16376–9
38. Glotzer, M., Murray, A. W., and Kirschner, M. W. (1991) Cyclin is degraded by the ubiquitin pathway. *Nature* 349, 132–138
39. King, R. W., Peters, J. M., Tugendreich, S., Rolfe, M., Hieter, P., and Kirschner, M. W. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of
ubiquitin to cyclin B. *Cell.* 81, 279–88

42. Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F. C., Ruderman, J. V., and Hershko, A. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. *Mol. Biol. Cell.* 6, 185–97

43. Margottin-Goguet, F., HSu, J. Y., Loktev, A., Hsieh, H. M., Reimann, J. D. R., and Jackson, P. K. (2003) Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. *Dev. Cell.* 4, 813–26

44. Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T., and Osaka, H. (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. *Proc. Natl. Acad. Sci. U. S. A.* 101, 4419–24

45. Bai, C., Sen, P., Hofmann, K., Ma, L., Goeb, M., Harper, J. W., and Elledge, S. J. (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. *Cell.* 86, 263–74

46. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J., and Harper, J. W. (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. *Cell.* 91, 209–19

47. Feldman, R. M., Correll, C. C., Kaplan, K. B., and Deshaies, R. J. (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. *Cell.* 91, 221–30

48. Ong, J. Y., and Torres, J. Z. (2019) E3 Ubiquitin Ligases in Cancer and Their Pharmacological Targeting. In *The Ubiquitin/Proteasome System [Working Title]*, IntechOpen, 10.5772/intechopen.82883

49. Mapa, C. E., Arsenaulet, H. E., Conti, M. M., Poti, K. E., and Benanti, J. A. (2018) A balance of deubiquitinating enzymes controls cell cycle entry. *Mol. Biol. Cell.* 29, 2821–2834

50. McKinley, K. L., and Cheeseman, I. M. (2017) Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. *Dev. Cell.* 40, 405-420.e2

51. Sakae-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., and Miyawaki, A. (2008) Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. *Cell.* 132, 487–498

52. Torres, J. Z., Summers, M. K., Peterson, D., Brauer, M. J., Lee, J., Senese, S., Gholkar, A. A., Lo, Y.-C., Lei, X., Jung, K., Anderson, D. C., Davis, D. P., Belmont, L., and Jackson, P. K. (2011) The STARD9/Kif16a Kinesin Associates with Mitotic Microtubules and Regulates Spindle Pole Assembly. *Cell.* 147, 1309–1323

53. Neumann, B., Walter, T., Hériché, J.-K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, R., Wünsche, A., Satagopam, V., Schnitz, M. H. A., Chapuis, C., Gerlich, D. W., Schneider, R., Eils, R., Huber, W., Peters, J.-M., Hyman, A. A., Durbin, R., Pepperkok, R., and Ellenberg, J. (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. *Nature.* 464, 721–727

54. Torres, J. Z., Miller, J. J., and Jackson, P. K. (2009) High-throughput generation of tagged stable cell lines for proteomic analysis. *Proteomics.* 9, 2888–2891

55. Hutchins, J. R. A., Toyoda, Y., Hegemann, B., Poser, I., Hériché, J.-K., Sykora, M. M., Augsburg, M., Hudecz, O., Buschhorn, B. A., Bulkescher, J., Conrad, C., Comartin, D., Schleiffer, A., Sarov, M., Pozniakovsky, A., Slabiecki, M. M., Schloissnig, S., Steinmacher, I., Leuschner, M., Sykora, A., Lawo, S., Pelletier, L., Stark, H., Nasmyth, K., Ellenberg, J., Durbin, R., Buchholz, F., Mecthler, K., Hyman, A. A., and Peters, J.-M. (2010) Systematic analysis of human protein complexes identifies chromosome segregation proteins. *Science.* 328, 593–9

56. Cheung, K., Senese, S., Kuang, J., Bui, N., Ongpipattanakul, C., Gholkar, A., Cohn, W., Capri, J., Whitelegge, J. P., and Torres, J. Z. (2016) Proteomic Analysis of the Mammalian Katanin Family of Microtubule-severing Enzymes Defines Katanin p80 subunit B-like 1 (KATNBL1) as a
Regulator of Mammalian Katanin Microtubule-severing. *Mol. Cell. Proteomics* **15**, 1658–69

57. Jeong, A. L., Lee, S., Park, J. S., Han, S., Jang, C.-Y., Lim, J.-S., Lee, M. S., and Yang, Y. (2014) Cancerous inhibitor of protein phosphatase 2A (CIP2A) protein is involved in centrosome separation through the regulation of NIMA (never in mitosis gene A)-related kinase 2 (NEK2) protein activity. *J. Biol. Chem.* **289**, 28–40

58. Hwang, L. H., Lau, L. F., Smith, D. L., Mistrot, C. A., Hardwick, K. G., Hwang, E. S., Amon, A., and Murray, A. W. (1998) Budding yeast Cdc20: a target of the spindle checkpoint. *Science* **279**, 1041–4

59. Vidal, M., Braun, P., Chen, E., Boeke, J. D., and Harlow, E. (1996) Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. *Proc. Natl. Acad. Sci. U. S. A.* **93**, 10321–6

60. Bradley, M., Ramirez, I., Cheung, K., Gholkar, A. A., and Torres, J. Z. (2016) Inducible LAP-tagged Stable Cell Lines for Investigating Protein Function, Spatiotemporal Localization and Protein Interaction Networks. *J. Vis. Exp.* 10.3791/54870

61. Xia, X., Gholkar, A., Senese, S., and Torres, J. Z. (2015) A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size. *Cell Cycle* **14**, 1938–47

62. Gholkar, A. A., Senese, S., Lo, Y.-C., Vides, E., Contreras, E., Hodara, E., Capri, J., Whitelegge, J. P., and Torres, J. Z. (2016) The X-Linked-Intellectual-Disability-Associated Ubiquitin Ligase Mid2 Interacts with Astrin and Regulates Astrin Levels to Promote Cell Division. *Cell Rep.* **14**, 180–8

63. Gholkar, A. A., Senese, S., Lo, Y.-C., Capri, J., Deardorff, W. J., Dharmarajan, H., Contreras, E., Hodara, E., Whitelegge, J. P., Jackson, P. K., and Torres, J. Z. (2015) Tectex1d2 associates with short-rib polydactyly syndrome proteins and is required for ciliogenesis. *Cell Cycle* **14**, 1116–25

64. Senese, S., Cheung, K., Lo, Y.-C., Gholkar, A. A., Xia, X., Wohlschlegel, J. A., and Torres, J. Z. (2015) A unique insertion in STARD9’s motor domain regulates its stability. *Mol. Biol. Cell* **26**, 440–52

65. Torres, J. Z. (2012) STARD9/Kif16a is a novel mitotic kinesin and antimitotic target. *Bioarchitecture* **2**, 19–22

66. Branon, T. C., Bosch, J. A., Sanchez, A. D., Udeshi, N. D., Svinkina, T., Carr, S. A., Feldman, J. L., Perrimon, N., and Ting, A. Y. (2018) Efficient proximity labeling in living cells and organisms with TurboID. *Nat. Biotechnol.* **36**, 880–887

67. Rhee, H.-W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., and Ting, A. Y. (2013) Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging. *Science (80-.).* **339**, 1328–1331

68. Schopp, I. M., Amaya Ramirez, C. C., Debeljak, J., Kreibich, E., Skribbe, M., Wild, K., and Béthune, J. (2017) Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. *Nat. Commun.* **8**, 15690

69. Firat-Karalar, E. N., Rauniyar, N., Yates, J. R., Stearns, T., and Stearns, T. (2014) Proximity interactions among centrosome components identify regulators of centriole duplication. *Curr. Biol.* **24**, 664–70

70. Senese, S., Lo, Y. C., Huang, D., Zangle, T. A., Gholkar, A. A., Robert, L., Homet, B., Ribas, A., Summers, M. K., Teitell, M. A., Damoiseaux, R., and Torres, J. Z. (2014) Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development. *Cell Death Dis.* **5**, e1462

71. Lo, Y.-C., Senese, S., France, B., Gholkar, A. A., Damoiseaux, R., and Torres, J. Z. (2017) Computational Cell Cycle Profiling of Cancer Cells for Prioritizing FDA-Approved Drugs with Repurposing Potential. *Sci. Rep.* **7**, 11261

72. Lo, Y.-C., Senese, S., Li, C.-M., Hu, Q., Huang, Y., Damoiseaux, R., and Torres, J. Z. (2015) Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens. *PLoS Comput. Biol.* **11**, e1004153

73. Lo, Y.-C., Senese, S., Damoiseaux, R., and Torres, J. Z. (2016) 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping. *ACS Chem. Biol.* **11**, 2244–53
74. McNamara, D. E., Senese, S., Yeates, T. O., and Torres, J. Z. (2015) Structures of potent anticancer compounds bound to tubulin. Protein Sci. 24, 1164–72
75. Xia, X., Lo, Y.-C., Gholkar, A. A., Senese, S., Ong, J. Y., Velasquez, E. F., Damoiseaux, R., and Torres, J. Z. (2019) Leukemia Cell Cycle Chemical Profiling Identifies the G2-Phase Leukemia Specific Inhibitor Leusin-1. ACS Chem. Biol. 14, 994–1001
76. Verma, R., Peters, N. R., D’Onofrio, M., Tochtrop, G. P., Sakamoto, K. M., Varadan, R., Zhang, M., Coffino, P., Fushman, D., Deshaies, R. J., and King, R. W. (2004) Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science, 306, 117–20
77. Steegmaier, M., Hoffmann, M., Baum, A., Lénárt, P., Petronczki, M., Krssák, M., Gürtler, U., Garin-Chesa, P., Lieb, S., Quant, J., Grauert, M., Adolf, G. R., Kraut, N., Peters, J.-M., and Rettig, W. J. (2007) BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316–22
78. Ditchfield, C., Johnson, V. L., Tighe, A., Ellston, R., Haworth, C., Johnson, T., Mortlock, A., Keen, N., and Taylor, S. S. (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–80
79. Gadea, B. B., and Ruderman, J. V (2005) Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol. Biol. Cell. 16, 1305–18
80. Lénárt, P., Petronczki, M., Steegmaier, M., Di Fiore, B., Lipp, J. J., Hoffmann, M., Rettig, W. J., Kraut, N., and Peters, J.-M. (2007) The Small-Molecule Inhibitor BI 2536 Reveals Novel Insights into Mitotic Roles of Polo-like Kinase 1. Curr. Biol. 17, 304–315
81. Zeng, X., Sigoillot, F., Gaur, S., Choi, S., Pfaff, K. L., Oh, D.-C., Hathaway, N., Dimova, N., Cuny, G. D., and King, R. W. (2010) Pharmacologic Inhibition of the Anaphase-Promoting Complex Induces A Spindle Checkpoint-Dependent Mitotic Arrest in the Absence of Spindle Damage. Cancer Cell. 18, 382–395
82. Luo, X., Tang, Z., Rizo, J., and Yu, H. (2002) The Mad2 Spindle Checkpoint Protein Undergoes Similar Major Conformational Changes Upon Binding to Either Mad1 or Cdc20. Mol. Cell. 9, 59–71
83. Luo, X., Tang, Z., Xia, G., Wassmann, K., Matsumoto, T., Rizo, J., and Yu, H. (2004) The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat. Struct. Mol. Biol. 11, 338–345
84. Hara, M., Özkan, E., Sun, H., Yu, H., and Luo, X. (2015) Structure of an intermediate conformer of the spindle checkpoint protein Mad2. Proc. Natl. Acad. Sci. 112, 11252–11257
85. Yang, M., Li, B., Liu, C.-J., Tomchick, D. R., Machius, M., Rizo, J., Yu, H., and Luo, X. (2008) Insights into Mad2 Regulation in the Spindle Checkpoint Revealed by the Crystal Structure of the Symmetric Mad2 Dimer. PLoS Biol. 6, e50
86. Hewitt, L., Tighe, A., Santaguida, S., White, A. M., Jones, C. D., Musacchio, A., Green, S., and Taylor, S. S. (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J. Cell Biol. 190, 25–34
87. Dimitrova, Y. N., Jenni, S., Valverde, R., Khin, Y., and Harrison, S. C. (2016) Structure of the MIND Complex Defines a Regulatory Focus for Yeast Kinetochore Assembly. Cell. 167, 1014-1027.e12
88. Sironi, L., Mapelli, M., Knapp, S., De Antoni, A., Jeang, K.-T., and Musacchio, A. (2002) Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a “safety belt” binding mechanism for the spindle checkpoint. EMBO J. 21, 2496–2506
89. Chao, W. C. H., Kulkarni, K., Zhang, Z., Kong, E. H., and Barford, D. (2012) Structure of the mitotic checkpoint complex. Nature. 484, 208–213
90. Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H., and Barford, D. (2014) Molecular architecture and mechanism of the anaphase-promoting complex. Nature. 513, 388–393
91. Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H., and Barford, D. (2015) Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature. 522, 450–454
92. Brown, N. G., VanderLinden, R., Watson, E. R., Weissmann, F., Orduzurea, A., Wu, K.-P., Zhang, W., Yu, S., Mercredi, P. Y., Harrison, J. S., Davidson, I. F., Qiao, R., Lu, Y., Dube, P., Brunner, M. R., Grace, C. R. R., Miller, D. J., Haselbach, D., Jarvis, M. A., Yamaguchi, M., Yanishevski, D., Petzold, G., Sidhu, S. S., Kuhlman, B., Kirschner, M. W., Harper, J. W., Peters, J.-M., Stark, H., and Schulman, B. A. (2016) Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell 165, 1440–1453

93. Yamaguchi, M., VanderLinden, R., Weissmann, F., Qiao, R., Dube, P., Brown, N. G., Haselbach, D., Zhang, W., Sidhu, S. S., Peters, J.-M., Stark, H., and Schulman, B. A. (2016) Cryo-EM of Mitotic Checkpoint Complex-Bound APC/C Reveals Reciprocal and Conformational Regulation of Ubiquitin Ligation. Mol. Cell 63, 593–607

94. Ng, C. T., Deng, L., Chen, C., Lim, H. H., Shi, J., Surana, U., and Gan, L. (2019) Electron cryotomography analysis of Dam1C/DASH at the kinetochore-spindle interface in situ. J. Cell Biol. 218, 455–473

95. Gonen, S., Akiyoshi, B., Iadanza, M. G., Shi, D., Duggan, N., Biggins, S., and Gonen, T. (2012) The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat. Struct. Mol. Biol. 19, 925–929

96. Hinshaw, S. M., and Harrison, S. C. (2019) The structure of the Ctf19c/CCAN from budding yeast. Elife 10.7554/eLife.44239

97. B. Novak, and J. J. Tyson (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. [online] http://www.ncbi.nlm.nih.gov/pubmed/1667014 (Accessed March 28, 2019)

98. Pomerening, J. R., Sontag, E. D., and Ferrell, J. E. (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346–351

99. Sha, W., Moore, J., Chen, K., Lasaleta, A. D., Yi, C.-S., Tyson, J. J., and Sible, J. C. (2003) Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl. Acad. Sci. 100, 975–980

100. Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., and Tyson, J. J. (2004) Integrative Analysis of Cell Cycle Control in Budding Yeast. Mol. Biol. Cell. 15, 3841–3862

101. Queralt, E., Lehane, C., Novak, B., and Uhmann, F. (2006) Downregulation of PP2ACdc55 Phosphatase by Separase Initiates Mitotic Exit in Budding Yeast. Cell. 125, 719–732

102. Henze, R., Dittrich, P., and Ibrahim, B. (2017) A Dynamical Model for Activating and Silencing the Mitotic Checkpoint. Sci. Rep. 7, 3865

103. Mistry, H. B., MacCallum, D. E., Jackson, R. C., Chaplain, M. A. J., and Davidson, F. A. (2008) Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc. Natl. Acad. Sci. U. S. A. 105, 20215–20

104. Civelekoglu-Scholey, G., Sharp, D. J., Mogilner, A., and Scholey, J. M. (2006) Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 90, 3966–82

105. Lacroix, B., Letort, G., Pitayu, L., Sallé, J., Stefanutti, M., Maton, G., Ladoucer, A.-M., Canman, J. C., Maddox, P. S., Maddox, A. S., Min, N., Nédélec, F., and Dumont, J. (2018) Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Dev. Cell. 45, 496-511.e6

106. Cai, Y., Hossain, M. J., Hériche, J.-K., Politi, A. Z., Walther, N., Koch, B., Wachsmuth, M., Nijmeijer, B., Kuebler, M., Martinie-Kavur, M., Ladurner, R., Alexander, S., Peters, J.-M., and Ellenberg, J. (2018) Experimental and computational framework for a dynamic protein atlas of human cell division. Nature. 561, 411–415

107. Ayati, M., Wiredja, D., Schlatter, D., Maxwell, S., Li, M., Koyutürk, M., and Chance, M. R. (2019) CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation analysis. PLOS Comput. Biol. 15, e1006678

108. Song, J., Wang, H., Wang, J., Leier, A., Marquez-Lago, T., Yang, B., Zhang, Z., Akutsu, T., Webb, G. I., and Daly, R. J. (2017) PhosphoPredict: A bioinformatics tool for prediction of human
dissecting the mechanisms of cell division

109. Deretic, J., Kerr, A., and Welburn, J. P. I. (2019) A rapid computational approach identifies SPICE1 as an Aurora kinase substrate. *Mol. Biol. Cell.* 30, 312–323

110. Wang, Z.-D., Shen, L.-P., Chang, C., Zhang, X.-Q., Chen, Z.-M., Li, L., Chen, H., and Zhou, P.-K. (2016) Long noncoding RNA Inc-R1 is a new regulator of mitosis via targeting miRNA-210-3p to release PLK1 mRNA activity. *Sci. Rep.* 6, 25385

111. Shi, W., Alajez, N. M., Bastianutto, C., Hui, A. B. Y., Mocanu, J. D., Ito, E., Busson, P., Lo, K.-W., Ng, R., Waldron, J., O’Sullivan, B., and Liu, F.-F. (2009) Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. *Int. J. Cancer.* 126, NA-NA

112. Bhattacharyya, S., Nath, S., Ghose, J., Maiti, G. P., Biswas, N., Bandyopadhyay, S., Panda, C. K., Bhattacharyya, N. P., and Roychoudhury, S. (2013) miR-125B promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression. *Cell Death Differ.* 20, 430–442

113. Luo, M., Weng, Y., Tang, J., Hu, M., Liu, Q., Jiang, F., Yang, D., Liu, C., Zhan, X., Song, P., Bai, H., Li, B., and Shi, Q. (2012) MicroRNA-450a-3p Represses Cell Proliferation and Regulates Embryo Development by Regulating Bub1 Expression in Mouse. *PLoS One.* 7, e47914

114. Mäki-Jouppila, J. H. E., Pruikkonen, S., Tambe, M. B., Aure, M. R., Halonen, T., Salmela, A.-L., Laine, L., Borresen-Dale, A.-L., and Kallio, M. J. (2015) MicroRNA let-7b regulates genomic balance by targeting Aurora B kinase. *Mol. Oncol.* 9, 1056–1070

115. Hwang, W.-L., Jiang, J.-K., Yang, S.-H., Huang, T.-S., Lan, H.-Y., Teng, H.-W., Yang, C.-Y., Tsai, Y.-P., Lin, C.-H., Wang, H.-W., and Yang, M.-H. (2014) MicroRNA-146a Directs the Symmetric Division of Snail-Dominant Colostral Cancer Stem Cells. *Nat. Cell Biol.* 16, 268–280

116. Roy, S., Hooiveld, G. J., Seehawer, M., Caruso, S., Heinzmann, F., Schneider, A. T., Frank, A. K., Cardenas, D. V., Sonntag, R., Luedde, M., Trautwein, C., Stein, I., Pikarsky, E., Loosen, S., Tacke, F., Ringelhan, M., Avsaroglu, S. K., Goga, A., Buendia, M.-A., Vucur, M., Heikenwalder, M., Zucman-Rossi, J., Zender, L., Roderburg, C., and Luedde, T. (2018) microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis. *Gastroenterology.* 155, 1951-1966.e26

117. Takacs, C. M., and Giraldez, A. J. (2016) miR-430 regulates oriented cell division during neural tube development in zebrafish. *Dev. Biol.* 409, 442–450

118. Pruikkonen, S., and Kallio, M. J. (2017) Excess of a Rassf1-targeting microRNA, miR-193a-3p, perturbs cell division fidelity. *Br. J. Cancer.* 116, 1451–1461

119. Kriegel, A. J., Terhune, S. S., Greene, A. S., Noon, K. R., Pereckas, M. S., and Liang, M. (2018) Isoemer-specific effect of microRNA miR-29b on nuclear morphology. *J. Biol. Chem.* 293, 14080–14088

120. Stein, P., Rozhkov, N. V., Li, F., Cárdenas, F. L., Davydenk, O., Vandivier, L. E., Gregory, B. D., Hannon, G. J., Schultz, R. M., and Schultz, R. M. (2015) Essential Role for Endogenous siRNAs during Meiosis in Mouse Oocytes. *PLOS Genet.* 11, e1005013

121. Bjerregaard, V. A., Garribba, L., McMurray, C. T., Hickson, I. D., and Liu, Y. (2018) Folate deficiency drives mitotic missegregation of the human FRAXA locus. *Proc. Natl. Acad. Sci.* 115, 13003–13008

122. Kotak, S., Busso, C., and Gonczy, P. (2014) NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. *EMBO J.* 33, 1815–1830

123. Sierra Potchanant, E. A., Cerabona, D., Sater, Z. A., He, Y., Sun, Z., Gehlhausen, J., and Nalepa, G. (2017) INPP5SE Preserves Genomic Stability through Regulation of Mitosis. *Mol. Cell. Biol.* 10.1128/MCB.00500-16

124. Zheng, P., Baibakov, B., Wang, X.-h., and Dean, J. (2013) PtdIns(3,4,5)P3 is constitutively synthesized and required for spindle translocation during meiosis in mouse oocytes. *J. Cell Sci.* 126, 715–721

125. Tuncay, H., Brinkmann, B. F., Steinbacher, T., Schürmann, A., Gerke, V., Iden, S., and Ebnet, K.
Dissecting the mechanisms of cell division

(2015) JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat. Commun. 6, 8128

126. Fernández, C., Lobo, M. del V. T., Gómez-Coronado, D., and Lasunción, M. A. (2004) Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp. Cell Res. 300, 109–120

127. Hamasaki, M., Matsumura, S., Satou, A., Takahashi, C., Oda, Y., Higashiura, C., Ishihama, Y., and Toyoshima, F. (2014) Pregnenolone functions in centriole cohesion during mitosis. Chem. Biol. 21, 1707–21

128. Allard, C. A. H., Opalko, H. E., and Moseley, J. B. (2019) Stable Pom1 clusters form a glucose-modulated concentration gradient that regulates mitotic entry. Elife. 10.7554/eLife.46003

129. Patterson, J. C., Joughin, B. A., van de Kooij, B., Lim, D. C., Lauffenburger, D. A., and Yaffe, M. B. (2019) ROS and Oxidative Stress Are Elevated in Mitosis during Asynchronous Cell Cycle Progression and Are Exacerbated by Mitotic Arrest. Cell Syst. 8, 163-167.e2

130. Jia, L., Li, B., and Yu, H. (2016) The Bub1–Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat. Commun. 7, 10818

131. Bassermann, F., Frescas, D., Guardavaccaro, D., Busino, L., Peschiaroli, A., and Pagano, M. (2008) The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell. 134, 256–67

132. van Vugt, M. A. T. M., Gardino, A. K., Linding, R., Ostheimer, G. J., Reinhardt, H. C., Ong, S.-E., Tan, C. S., Miao, H., Keezer, S. M., Li, J., Pawson, T., Lewis, T. A., Carr, S. A., Smerdon, S. J., Brummelkamp, T. R., and Yaffe, M. B. (2010) A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol. 8, e1000287

133. Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 3, 341–8

134. Li, H., Liu, X. S., Yang, X., Song, B., Wang, Y., and Liu, X. (2010) Polo-like kinase 1 phosphorylation of p150Glued facilitates nuclear envelope breakdown during prophase. Proc. Natl. Acad. Sci. U. S. A. 107, 14633–8

135. Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2003) Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J. Biol. Chem. 278, 25277–80
Dissecting the mechanisms of cell division

FIGURE LEGENDS

FIGURE 1. **Overview of approaches used to dissect the mechanisms of cell division.** Multiple approaches have been used to dissect the mechanisms of cell division, including genetic, proteomic, chemical, structural, and computational approaches. Figure contains the structure of the MIND complex from *K. lactis* [PDB ID: 5T58 (Dimitrova et al., 2016, Cell 167, 1014–1027) from the Protein Data Bank (www.rcsb.org; Berman et al., 2000 Nucleic Acids Res 28:235) created using the NGL Viewer (Rose et al., 2018 Bioinformatics 34:3755)]. Examples of Plk1 interacting proteins are Bub1 (130), Cdh1 (131), and Chk2 (132). Examples of PLK1 substrates are FOXM1 (8), Cdc25C (133), p150Glued (134), Myt1 (135), and Wee1 (44).

FIGURES
