Prevalence of common aneuploidy in twin pregnancies

Akiko Konishi1, Osamu Samura2, Jin Muromoto3, Yoko Okamoto4, Hironori Takahashi4, Yasuyo Kasai5, Mayuko Ichikawa6, Naoki Yamada7, Noriko Kato8, Hiroshi Sato9, Hiromi Hamada10, Naoyuki Nakanami11, Maya Machi12, Kiyotake Ichizuka13, Rei Sunami14, Toshitaka Tanaka15, Naoto Yonetani16, Yoshimasa Kamei17, Takeshi Nagamatsu18, Mariko Matsumoto19, Shinya Taira20, Arisa Fujiwara21, Hiroaki Nakamura22, Takashi Harada23, Takafumi Watanabe24, Shoko Sasaki25, Satoshi Kawaguchi26, Sawako Minami27, Masaki Ogawa28, Kiyonori Miura29, Nobuhiro Suzumori30, Junya Kojima31, Tomomi Kotani32, Rumi Sasaki33, Tsukasa Baba34, Naoki Yamada7, Noriko Kato8, Hiroshi Sato9, Hiromi Hamada10, Naoyuki Nakanami11, Maya Machi12, Kiyotake Ichizuka13, Rei Sunami14, Toshitaka Tanaka15, Naoto Yonetani16, Yoshimasa Kamei17, Takeshi Nagamatsu18, Mariko Matsumoto19, Shinya Taira20, Arisa Fujiwara21, Hiroaki Nakamura22, Takashi Harada23, Takafumi Watanabe24, Shoko Sasaki25, Satoshi Kawaguchi26, Sawako Minami27, Masaki Ogawa28, Kiyonori Miura29, Nobuhiro Suzumori30, Junya Kojima31, Tomomi Kotani32, Rumi Sasaki33, Tsukasa Baba34, Aya Toyofuku35, Masayuki Endo36, Naoki Takeshita37, Takeshi Taketani38, Masakatsu Sase39, Keichi Matsubara40, Kei Hayata41, Yoshinobu Hamada42, Makiko Egawa43, Toshiyuki Kakinuma44, Sachio Matsushima45, Michihiro Kitagawa46, Tomomi Shiga47, Ryuei Kurashina48, Hironori Hamada49, Hiroaki Takagi50, Akane Kondo51, Norio Miharu52, Michiko Yamashita53, Madoka Horiya54, Keiji Morimoto55, Ken Takahashi1, Aikou Okamoto1, Akihiko Sekizawa12 and Haruhiko Sago2

© The Author(s) 2021

The incidence of chromosomal abnormalities in twin pregnancies is not well-studied. In this retrospective study, we investigated the frequency of chromosomal abnormalities in twin pregnancies and compared the incidence of chromosomal abnormalities in dichorionic diamniotic (DD) and monochorionic diamniotic (MD) twins. We used data from 57 clinical facilities across Japan. Twin pregnancies of more than 12 weeks of gestation managed between January 2016 and December 2018 were included in the study. A total of 2899 and 1908 cases of DD and MD twins, respectively, were reported, and the incidence of chromosomal abnormalities in one or both fetuses was 0.9% (25/2899) and 0.2% (4/1908) in each group (p = 0.004). In this study, the most common chromosomal abnormality was trisomy 21 (51.7% [15/29]), followed by trisomy 18 (13.8% [4/29]) and trisomy 13 (6.9% [2/29]). The incidence of trisomy 21 in MD twins was lower than that in DD twins (0.05% vs. 0.5%, p = 0.007). Trisomy 21 was less common in MD twins, even when compared with the expected incidence in singletons (0.05% vs. 0.3%, RR 0.15 [95% CI 0.04–0.68]). The risk of chromosomal abnormality decreases in twin pregnancies, especially in MD twins.

Journal of Human Genetics (2022) 67:261–265; https://doi.org/10.1038/s10038-021-01001-0

1Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan. 2Department of Maternal-Fetal Medicine, National Center for Child Health and Development, Tokyo, Japan. 3Department of Obstetrics and Fetal Medicine, Osaka Women's and Children's Hospital, Osaka, Japan. 4Department of Obstetrics and Gynecology, Jichi Medical University Hospital, Shimotsuke, Japan. 5Department of Obstetrics and Gynecology, Japanese Red Cross Medical Center Tokyo, Tokyo, Japan. 6Department of Obstetrics and Gynecology, Nara Medical University Hospital, Kashihara, Japan. 7Department of Obstetrics and Gynecology, Mitoh Saiseikai General Hospital, Mitoh, Japan. 8Department of Obstetrics and Gynecology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan. 9Department of Obstetrics and Gynecology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan. 10Department of Obstetrics and Gynecology, University of Tsukuba Hospital, Tsukuba, Japan. 11Department of Obstetrics, Fukuoka Children's Hospital, Fukuoka, Japan. 12Department of Obstetrics and Gynecology, Showa University Hospital, Tokyo, Japan. 13Department of Obstetrics and Gynaecology, Showa University Northern Yokohama Hospital, Yokohama, Japan. 14Department of Obstetrics and Gynecology, Juntendo University Shizuoka Hospital, Shizuoka, Japan. 15Department of Obstetrics and Gynecology, Tokushima University Hospital, Tokushima, Japan. 16Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan. 17Department of Obstetrics and Gynecology, the University of Tokyo Hospital, Tokyo, Japan. 18Department of Obstetrics and Gynecology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan. 19Department of Obstetrics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan. 20Department of Obstetrics and Gynecology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan. 21Department of Obstetrics and Gynecology, Osaka City General Hospital, Osaka, Japan. 22Department of Obstetrics and Gynecology, Tottori University Hospital, Yonago, Japan. 23Department of Obstetrics and Gynecology, Osaka University Medical School, Suita, Japan. 24Department of Obstetrics and Gynecology, Toho University Kashiwabara Medical Center, Kashiwabara, Japan. 25Department of Obstetrics & Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. 26Department of Obstetrics and Gynecology, Tokyo Women's Medical University, Tokyo, Japan. 27Department of Obstetrics & Gynecology, Kofu Medical Centre, Kofu, Japan. 28Department of Obstetrics and Gynecology, Osaka City General Hospital, Osaka, Japan. 29Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. 30Department of Obstetrics and Gynecology, Nippon Medical School Hospital, Tokyo, Japan. 31Department of Obstetrics and Gynecology, Iwate Medical University Hospital, Morioka, Japan. 32Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan. 33Department of Obstetrics and Gynecology, Fukuoka Children's Hospital, Fukuoka, Japan. 34Department of Obstetrics and Gynecology, Osaka University Medical School, Suita, Japan. 35Department of Obstetrics and Gynecology, Shikoku Medical Center, Tokushima, Japan. 36Department of Obstetrics and Gynecology, mmc Medical Center, Takeo, Japan. 37Department of Obstetrics and Gynecology, Okazaki University Hospital, Okazaki, Japan. 38Department of Obstetrics and Gynecology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan. 39Department of Obstetrics and Gynecology, Tohoku University Kashiwabara Medical Center, Kashiwabara, Japan. 40Department of Obstetrics and Gynecology, Tohoku University Medical School, Sendai, Japan. 41Department of Obstetrics and Gynecology, Tohoku University Medical School, Sendai, Japan. 42Department of Obstetrics and Gynecology, Nara Medical University Hospital, Kashihara, Japan. 43Department of Pediatrics, Shikoku Medical Center, Kagawa, Japan. 44Department of Obstetrics and Gynecology, International University of Health and Welfare Hospital, Saitama, Japan. 45Department of Obstetrics and Gynecology, Kochi Medical School Hospital, Kochi, Japan. 46Department of Obstetrics and Gynecology, Kochi Medical School Hospital, Kochi, Japan. 47Department of Obstetrics and Gynecology, Kyoto University Hospital, Kyoto, Japan. 48Department of Obstetrics and Gynecology, Kochi Medical School Hospital, Kochi, Japan. 49Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan. 50Department of Obstetrics and Gynecology, Tokushima University Hospital, Tokushima, Japan. 51Department of Obstetrics and Gynecology, University of Tsukuba Hospital, Ibaraki, Japan. 52Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan. 53Department of Obstetrics and Gynecology, Okayama University Hospital, Okayama, Japan. 54Department of Obstetrics and Gynecology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan. 55Department of Obstetrics and Gynecology, The Jikei University Daisan Hospital, Tokyo, Japan.

Received: 7 August 2021 Revised: 19 November 2021 Accepted: 26 November 2021 Published online: 1 January 2022
INTRODUCTION
The incidence of twin pregnancies, particularly dizygotic pregnancies, which positively correlate with the maternal age and use of assisted reproductive technologies (ART), has increased [1]. Twin pregnancies have a higher risk of intrauterine growth retardation, preterm delivery, and neonatal mortality. Many studies have found that twin pregnancies also have a higher risk of congenital anomalies than singleton pregnancies [2–4]. Approximately 25% of congenital anomalies are attributed to chromosomal abnormalities [5], and twin pregnancies have also been considered to have a high risk of chromosomal abnormalities. However, it was reported that the incidence of trisomy 21 was lower in twin than in singleton pregnancies, most notably in monozygotic twins [6], although these findings were not universal. The risk of chromosomal abnormalities in twin pregnancies remains controversial.

This study retrospectively investigated the frequency of chromosomal abnormalities in twin pregnancies in Japan. The incidence of chromosomal abnormalities in dichorionic diamniotic (DD) and monochorionic diamniotic (MD) twins were compared using data collected from 57 clinical facilities across Japan. We also compared the observed incidence of trisomy 21 among twin pregnancies with that expected based on maternal age-matched singletons.

MATERIALS AND METHODS
This retrospective observational study used data collected from 57 perinatal centers that handle twin deliveries all over Japan. We asked facilities that handle many deliveries in Japan to participate in this research, and 57 of them cooperated. Cases of twin pregnancies between January 2016 and December 2018, wherein choriocity was determined using ultrasound examination and that continued beyond 12 weeks of gestation, were included in the study. Cases of spontaneous abortion, artificial stillbirth, and single fetal demise after 12 weeks of gestation were not excluded. Cases of unknown age at the time of ovum collection and cases of ovum donation were excluded because the risk of chromosomal abnormalities in these cases may not be correlated with maternal age. Cases of unknown chorionicity, monochorionic monoamniotic (MM) twins, membrane unknown; n = 68, MM twins, membrane unknown; n = 68.

An additional 5 cases were of vanishing twins, and 11 cases were of MM twins and of unknown chorionicity, 22 cases were of vanishing twins, and 11 cases were of unknown age at the time of ovum collection, 5 cases were of vanishing twins, and 11 cases were of MM twins.

RESULTS
The study cohort included 120,927 deliveries from 57 facilities across Japan, among which 4921 (4.1%) were twin pregnancies. A total of 114 cases were excluded from the analysis, of which 68 cases were of MM twins and of unknown chorionicity, 22 cases were of ovum donation, 8 cases were of unknown age at the time of ovum collection, 5 cases were of vanishing twins, and 11 cases were of unknown age.

Table 1. Maternal characteristics of twin pregnancies.

	DD twins (n = 2899)	MD twins (n = 1908)	p-value
Maternal age (mean ± SD years)	33.1 ± 4.8	32.4 ± 5.1	<0.001
Conception mode (% of total pregnancies studied)	<0.001		
Natural conception	1333 (46.0)	1473 (77.2)	
Infertility treatment	1566 (54.0)	435 (22.8)	
Ovulation drugs	495 (17.1)	66 (3.5)	
AIH	263 (9.1)	44 (2.3)	
IVF-ET	509 (17.6)	213 (11.2)	
ICSI	258 (8.9)	92 (5.1)	
Other	41 (1.4)	20 (0.9)	
Gestational age at delivery (mean ± SD weeks)	35.7 ± 3.0	34.6 ± 4.6	<0.001

Abbreviations: AIH Artificial insemination with donor semen, DD Dichorionic diamniotic, ICSI Intracytoplasmic sperm injection, IVF-ET In vitro fertilization and embryo transfer, MD Monochorionic diamniotic, and SD Standard deviation.

Further investigations such as amniocentesis were performed. If there were no findings suggestive of chromosomal abnormalities during the fetal or neonatal period, chromosomal tests were not performed and the case was deemed to have “no chromosomal abnormalities”. Karyotype annotation was in accordance with the International System for Human Cytogenomic Nomenclature 2016.

Statistical analysis was performed using the EZR software (Saitama Medical Center, Jichi Medical University, Shimotsu, Japan) and statistical significance was set at p < 0.05. The expected incidence of trisomy 21 in twin pregnancies was calculated by extrapolating from maternal age-matched risk using the Morris model [7]. The Morris model calculates the risk of Down syndrome using the following formula: risk = 1/(1 + exp (7.330 – 4.211/1 + exp (–0.282 × (age – 37.23)))). Relative risks (RR) with 95% confidence intervals (95% CI) were estimated to compare the incidence of trisomy 21 between twin pregnancies and singleton pregnancies. RR were adjusted for maternal age divided into 1-year blocks.
were of reduced fetuses. Of the 4807 included twin pregnancies, 2899 (60.3%) were DD twins and 1908 (39.7%) were MD twins (Fig. 1).

Table 1 shows a comparison of the maternal characteristics of DD and MD twins. The mean maternal age was 33.1 ± 4.8 and 32.4 ± 5.1 years in DD and MD twins, respectively ($p < 0.001$). As for the method of conception, MD twins had significantly more natural pregnancies ($p < 0.001$), whereas more than half of DD twins were conceived through infertility treatment. The maternal age distribution of DD and MD twins are shown in Fig. 2.

The incidence of chromosomal abnormalities in DD and MD twins is shown in Table 2. We classified chromosomal abnormalities into three types: recognizable phenotype, mild phenotype, and no phenotype. The incidence of chromosomal abnormalities in one or both fetuses were 0.9% (25/2899) in DD twins, which was significantly higher than that in MD twins (0.2% [4/1908] ($p = 0.004$). The most common chromosomal abnormality was trisomy 21 (51.7% [15/29]), followed by trisomy 18 (13.8% [4/29]), and trisomy 13 (6.9% [2/29]). The incidence of trisomy 21 in DD twins was significantly higher than that in MD twins (0.5% vs. 0.05%, $p = 0.007$). Trisomy 21 was identified in only one fetus of the twin pairs in DD twins; however, trisomy 21 occurred in both fetuses of one pair in MD twins. There were no significant differences in the frequency of chromosomal abnormalities other than trisomy 21 between DD and MD twins. Eleven cases (8 DD and 3 MD twins) had abnormal findings, such as cardiac malformations and multiple malformations; however, the results of karyotyping were normal.

Table 3 shows a comparison of the observed and expected incidence of trisomy 21 per fetus in each group. The observed incidence of trisomy 21 was significantly lower than the expected incidence in both MD (0.05% vs. 0.3%, RR 0.15 [95% CI 0.04–0.68]) and total (0.2% vs. 0.4%, RR 0.45 [95% CI 0.25–0.83]) twins. However, there were no significant differences between the observed and expected incidence of trisomy 21 in DD twins (0.2% vs. 0.4%, RR 0.64 [95% CI 0.33–1.24]).

DISCUSSION

This retrospective investigation provides an overview of the rates of chromosomal abnormalities in twin pregnancies after 12 weeks of gestation. In this study, approximately half of the chromosomal abnormalities were trisomy 21. We found that the incidence of chromosomal abnormalities in MD twins was lower than that in DD twins, and the incidence of trisomy 21 in MD twins was lower than that in DD twins. We also compared the observed incidence of trisomy 21 for twin pregnancies with the expected incidence based on maternal age-matched singletons and found that the observed incidence was lower than the expected incidence, especially in MD twins.

Half of the chromosomal abnormalities found in twin pregnancies in this study included trisomy 21 (51.7% [15/29]), followed by trisomy 18 (13.8% [4/29]), and trisomy 13 (6.9% [2/29]).
findings were similar to the general frequency in fetuses or neonates reported previously [8, 9]. No cases of sex chromosome aneuploidy were found in this study. It is suspected that neonates with sex chromosome aneuploidy were not karyotyped because they showed no dysmorphic features.

In this study, MD twins were found to have a significantly lower incidence of chromosomal abnormalities compared with DD twins (0.9% vs. 0.2%, \(p = 0.004 \)). The incidence of trisomy 21 was also significantly lower in MD twins than in DD twins (0.5% vs. 0.05%, \(p = 0.007 \)). Monozygotic twins have a reportedly lower frequency of trisomy 21 compared with dizygotic twins [6], although monozygotic twins are not exactly the same as MD twins. Of note, 25–30% of monozygotic twins are DD twins [10].

We found that the risk of trisomy 21 is lower in twins, especially in MD twins than in singleton pregnancies. The incidence of chromosomal abnormalities was found to be lower in twins than that reported in singleton pregnancies [8, 9], contrasting with previous reports that suggested that twins had a higher risk of chromosomal abnormalities [11, 12]. Some studies from America and Europe showed a lower risk of trisomy 21 in twins than in singletons. There was only one report which mentioned that the ratio of observed-to-expected trisomy 21 incidence per pregnancy for monozygotic, dizygotic, and all twins was 33.6%, 75.2%, and 70.0%, respectively [6]. In our study, the observed incidence of trisomy 21 was significantly lower than the expected incidence in both MD twins (0.05% vs. 0.3%, RR 0.15 [95% CI 0.04–0.68]) and total twins (0.2% vs. 0.4%, RR 0.45 [95% CI 0.25–0.83]).

The low frequency of chromosomal abnormalities in twin pregnancies could be attributed to the fact that many twin pregnancies are lost or converted to singleton pregnancies [13–15]. Most twins are lost very early in the pregnancy. One study estimated that only one in eight individuals originating as a twin actually goes on to be born as a twin [16]. Furthermore, the abortion rate in twin pregnancies is three times higher than in singleton pregnancies [17, 18]. In addition, in twin pregnancies, embryos and fetuses with chromosomal abnormalities are likely to be eliminated, resulting in singleton pregnancies or miscarriages [10]. Therefore, the incidence of chromosomal abnormalities in twin pregnancies that reach 12 weeks of gestation is likely to be lower than that in singleton pregnancies, and our results support this argument. Early pregnancy loss is significantly more common in monochorionic than in dichorionic twins and, in the setting of concordance for aneuploidy, an even higher risk of loss may have contributed to the relatively low incidence of Down syndrome in monochorionic pregnancies [19, 20].

This study has some limitations given the nature of the data used and the study design. Since this study included only cases where fetal heartbeats were confirmed after 12 weeks of gestation, cases of spontaneous abortion before the diagnosis of chromosomal abnormalities as well as of induced abortion without fetal chromosomal examination were excluded. In addition, some cases deemed to have “no chromosomal abnormalities” might have had chromosomal abnormalities with minor phenotypic manifestations, mosaicism, or sex chromosome abnormalities, since chromosomal tests were not performed in all cases. In cases without karyotyping, we diagnosed “no chromosomal abnormalities” by ultrasound examination during the fetal period, which does not show morphological abnormalities or multiple malformations that are often accompanied by chromosomal abnormalities, and no external surface malformations or clinical findings that are suspected to be chromosomal abnormalities after birth. Nonetheless, all cases with more than 12 weeks of gestation, and not just cases in the third trimester, were included in the study, ensuring that the cases of induced abortion due to prenatal diagnosis were also included. In this study, chromosomal tests were not performed in all cases, but at least chromosomal abnormalities that affect the phenotype could be extracted. In some cases, chromosomal abnormalities were not observed even if there were phenotypic abnormalities, such as multiple malformations.

In this study, DD and MD twins were compared based on membrane and not zygosity. Of note, 25–30% of monozygotic twins are DD twins [10]. Although DNA analyses of newborns are required to determine zygosity, chorionicity is more practical because it is determined by prenatal ultrasound. In clinical practice, the management of twin pregnancies depends on chorionicity. Therefore, the results of this study are clinically more useful.

This is the first attempt to investigate the frequency of chromosomal abnormalities in twin pregnancies in Japan. In most of the previous studies conducted in Europe and in the United States, only the incidence of Down syndrome was investigated [6, 21]. In contrast, in this study, the rate of all chromosomal aberrations in twin pregnancies was evaluated, which revealed that MD twins have a lower chromosomal aberration rate than DD twins. This study may provide useful information that could pave the way for better genetic counseling before prenatal testing.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. Leila P, Sedigheh A, Shahrzad J, Ahmadreza Z, Mohammad SSA. Obstetrics and perinatal outcomes of dichorionic twin pregnancy following ART compared with spontaneous pregnancy. Int J Reprod Biomed. 2016;14:317–22.
2. Tang Y, Ma CX, Cui W, Chang V, Ariet M, Morse SB, et al. The risk of birth defects in multiple births: a population-based study. Matern Child Health J. 2006;10:75–81.
3. Zhang XH, Qiu LQ, Huang JP. Risk of birth defects increased in multiple births. Birth Defects Res A Clin Mol Teratol. 2011;91:34–8.
4. Glinianaia SV, Rankin J, Wright C. Congenital anomalies in twins: a register-based study. Hum Reprod. 2008;23:1106–11.
5. Toufaily MH, Westgate MN, Lin AE, Holmes LB. Causes of congenital malformations. Birth Defects Res. 2018;110:87–91.
6. Teresa NS, Mary EN, Monica F, Sara G, Robert JC. Observed rate of Down syndrome in twin pregnancies. Obstet Gynecol. 2016;128:1127–33.
7. Morris JK, Mutton DE, Alberman E. Revised estimates of the maternal age specific live birth prevalence of Down’s syndrome. J Med Screen. 2002;9:2–6.
8. Wellesley D, Dolk H, Boyd PA, Greenlees R, Haeusler M, Nelen V, et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from
population-based congenital anomaly registers in Europe. Eur J Hum Genet. 2012;20:521–6.
9. Nishiyama M, Yan J, Yotsumoto J, Sawai H, Sekizawa A, Sago H, et al. Chromosome abnormalities diagnosed in utero: a Japanese study of 28983 amniotic fluid specimens collected before 22 weeks gestations. J Hum Genet. 2015;60:133–7.
10. Hall JG. Twinning. Lancet 2003;362;735–43.
11. John FR, James FXE, Alicia C, Robert MG, William ES. Calculated risk of chromosomal abnormalities in twin gestations. Obstet Gynecol. 1990;76:1037–41.
12. Benirschke K, Kim CK. Multiple pregnancy. N. Engl J Med. 1973;288:1329–36.
13. Landy HJ, Weiner S, Corson SL, Batzer FR, Bolobnese RJ. The “vanishing twin”: Ultrasonographic assessment of fetal disappearance in the first trimester. Am J Obst Gynecol. 1986;155:14–9.
14. Levi S. Ultrasonic assessment of the high rate of human multiple pregnancy in the first trimester. J Clin Ultrasound. 1976;4:3–5.
15. Varma TR. Ultrasound evidence of early pregnancy failure in patients with multiple conceptions. Br J Obstet Gynaecol. 1979;86:290–2.
16. Boklage CE. Survival probability of human conceptions from fertilization to term. Int J Fertil. 1990;35:75–94.
17. Livingston JE, Poland BJ. A study of spontaneously aborted twins. Teratology 1980;21:139–48.
18. Uchida IA, Freeman VCP, Gedeon M, Goldmaker J. Twinning rate in spontaneous abortions. Am J Hum Genet. 1983;35:987–93.
19. D’Antonio F, Khalil A, Dias T, Thilaganayhan B. Early fetal loss in monochorionic and dichorionic twin pregnancies: analysis of the Southwest Thames Obstetric Research Collaborative (STORC) multiple pregnancy cohort. Ultrasound Obstet Gynecol. 2013;41:632–6.
20. McPherson JA, Odbio AO, Sharks AL, Roehl KA, Macones GA, Cahill AG. Impact of chorionicity on risk and timing of intrauterine fetal demise in twin pregnancies. Am J Obstet Gynecol. 2012;207:190.e1–6.
21. Boyle B, Morris JK, McConkey R, Game E, Loane M, Dolk H, et al. Prevalence and risk of Down syndrome in monozygotic and dizygotic multiple pregnancies in Europe: implications for prenatal screening. Br J Obstet Gynaecol. 2014;121:809–19.

FUNDING
This work was in part supported by the Japan Society for the Promotion of Science, KAKENHI Grant-in-Aid for Scientific Research (C; Number 17K10194).

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Osamu Samura.
Reprints and permission information is available at http://www.nature.com/reprints
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021