Antifungal susceptibility does not correlate with fungal clearance or survival in AIDS-associated cryptococcal meningitis

Lucy O'Connor¹, Duong Van Anh², Tran Thi Hong Chau², Nguyen Van Vinh Chau³, Lan Nguyen Phu Huong³, Marcel Wolbers², Jeremy N. Day²,⁴.

1. Barts Health NHS Trust, London, United Kingdom
2. Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City, Viet Nam
3. Hospital for Tropical Diseases, 764 Vo Van Kiet, Ho Chi Minh City, Viet Nam
4. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK

Key Words: Cryptococcal meningitis, susceptibility testing, HIV, outcome, mortality

Running title: Susceptibility testing and outcome in cryptococcal meningitis

Corresponding author:
Lucy O’Connor, Adult Critical Care Unit, Royal London Hospital, Whitechapel Road, London, E1 1FR, UK
lucy.oconnor@doctors.org.uk

Alternate corresponding author:
Prof. Jeremy Day, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ho Chi Minh City Q5, Vietnam
jday@oucru.org
Abstract
We investigated the value of susceptibility testing in predicting response in AIDS-associated cryptococcal meningitis using clinical isolates from a randomized controlled trial of antifungal treatment (amphotericin monotherapy, amphotericin with flucytosine, or amphotericin with fluconazole). We found no correlation between antifungal susceptibility and either early or late survival, or fungal clearance.
Introduction

Cryptococcus neoformans causes devastating meningitis and 15% of AIDS-related deaths globally. It is an environmental saprophyte acquired through inhalation; azole-resistance may reflect exposure to agricultural pesticides. WHO guidelines, available at https://www.who.int/hiv/pub/guidelines/cryptococcal-disease/en/, recommend induction therapy with amphotericin and flucytosine, which delivers improved cerebrospinal fluid (CSF) sterilisation and survival [1,2]. Flucytosine is unaffordable for countries with the greatest disease burden. Consequently, many patients receive inferior treatment with amphotericin, alone or with fluconazole [1].

Broth microdilution is the current standard method for antifungal susceptibility testing (AST) of yeasts, as outlined by the Clinical Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) [3]. There is substantial deviation from standardised methods in published literature, with varying media, incubation times and methods of end-point determination. The Sensititre YeastOne system (Thermo Fisher Scientific, UK), is a commercially available broth microdilution method for AST with good essential agreement with CLSI and EUCAST methods [3]. It has the advantages of ease of use and interpretation via a colorimetric binary output, and consistency through central manufacturing.

There is little consensus on the value of AST in cryptococcal meningitis; few studies demonstrate any association between susceptibility and outcome [4–6], although attempts using modified methods have been more successful [6]. The variety of methods, lack of susceptibility breakpoints for _C. neoformans_, heterogeneity of induction regimens and inconsistent assessment of baseline disease severity make these studies difficult to compare.
Previously, we reported the results of a randomised controlled trial (RCT) of induction therapy for AIDS-associated cryptococcal meningitis [1]. Here, we use isolates obtained at diagnosis in this study to determine the ability of AST to predict therapeutic response.

Methods

Patient Population

We enrolled 299 patients into an open-label RCT of antifungal therapy for AIDS-associated cryptococcal meningitis at a single center in Vietnam between 2005 and 2010. Detailed trial methodology has been described previously [1]. Patients received induction treatment with either amphotericin monotherapy (1mg/kg/day for 4 weeks), amphotericin combined with flucytosine (100mg/kg/day for 2 weeks) or amphotericin combined with fluconazole (400mg twice daily for 2 weeks), followed by consolidation with fluconazole monotherapy (400mg daily) until 10 weeks post-randomisation (see supplementary figure 1).

Fungal isolates and susceptibility testing

CSF quantitative fungal counts were determined as previously described [1]. *Cryptococcus* isolates were cultured from CSF at randomization and archived via a full plate sweep with storage on beads (Pro-Lab Diagnostics, UK) at -80°C. For AST, isolates were revived on Sabouraud plates, a single colony selected and purified by culture, and the susceptibility of this single isolate to amphotericin, fluconazole and flucytosine determined using Sensititre YeastOne as per the manufacturer’s instructions.

Statistical analysis

We analysed the joint effect of the relevant drug MICs for patients on combination therapy and the effect of amphotericin MIC for patients on monotherapy. Primary outcome was
survival until 70 days analysed using Cox regression. Secondary outcomes were survival until 14 days and 6 months, and CSF fungal decline over the first 14 days (estimated from longitudinal measurements during that period and a linear mixed-effects model). The Cox model was also analysed with adjustment for baseline fungal burden and Glasgow Coma Score (GCS), these factors being associated with worse outcome [1]. Data were included for all strains with a valid MIC result, and are presented for participants by trial arm in terms of the effect that a two-fold increase in MIC has on the outcome measure of interest. We also defined isolates as fully sensitive or not, using breakpoints from published literature and as suggested in CLSI guidelines; MIC $\leq 0.512\mu g/ml$ for amphotericin B, $\leq 4\mu g/ml$ for flucytosine, $\leq 8\mu g/ml$ for fluconazole at 72 hours [4]. All analyses were performed using R software version 2.13.1 (https://www.r-project.org/).

Results

Of 299 study participants, 23 were excluded (no viable baseline isolate n=9; inadequate growth by 72 hours n=12; missing purity plate data, n=2). Baseline characteristics of the primary analysis population are in supplementary table 1. Drug susceptibilities were similar between treatment arms (supplementary table 2); the range of susceptibilities is illustrated in supplementary figure 2.

Primary outcomes (Patient survival)

Table 1 shows the estimated effect on survival of decreasing antifungal susceptibility by 70 days post-randomisation, without adjustment for disease severity. There was no consistent trend in hazard ratios (HR) produced by the model. Due to the multiplicity of analyses, individual HR estimates and p-values should be interpreted with caution. The adjusted model produced similar results.
The Kaplan-Meier curves in supplementary figure 3 illustrate the estimated effect of antifungal susceptibility on time to death up to 6 months when patients’ isolates are categorised as either ‘fully sensitive’ or ‘non-susceptible’ (supplementary table 3). We found no evidence that this categorisation affected risk of death, including in an exploratory analysis of patients with high fungal loads (defined as \(>6\times10^6\) colony forming units/mL CSF).

Secondary outcomes

We found no evidence that antifungal susceptibility affected either the early (day 14) or late (6 month) hazard of death (Table 1). The adjusted model produced similar results for all outcome measures. We found no consistent effect of drug susceptibility on the rate of fungal clearance from CSF for any of the three drugs tested.

Discussion

The most effective induction regimen for cryptococcal meningitis, amphotericin combined with flucytosine, results in mortality rates of 15% to 40% [1,2]. Trial data suggests that amphotericin accelerates CSF fungal clearance, but amphotericin toxicity contributes to mortality when therapy continues for more than one week [2]. Given the high mortality rate, toxicity and cost of combination induction therapy, the ability to predict a patient’s response to antifungal therapy at diagnosis would enable optimisation of the limited therapeutic options available [6]. However, we found no evidence that AST, measured using Sensititre YeastOne, can help guide treatment choices in cryptococcal meningitis.
Some small studies report an association between *Cryptococcus* susceptibility and survival. Witt and colleagues found that fluconazole susceptibility was an independent predictor of treatment outcome (survival at 10 weeks with sterile CSF) in HIV-associated disease; however, they failed to demonstrate this association using the CLSI macrotiter method, used an amphotericin-free treatment regimen and did not adjust for baseline disease severity. A small, retrospective study by Lee (n=46) found an association between fluconazole susceptibility and survival, but none for amphotericin B or flucytosine. This study included a heterogeneous patient population managed with multiple treatment regimens, which were not adjusted for in the statistical analysis, potentially confounding results [6].

In contrast, larger studies, including ours, with more robust sampling and less selection bias by analysis of subsets of RCTs, fail to show an association between susceptibility and survival [4,5,7–9]. Our study’s strengths are its size, the randomized allocation of induction therapy (removing bias in treatment selection), standardisation of drug formulations, care delivery within a single institution and AST within a single laboratory. We found no evidence that AST of isolates at the point of diagnosis predicts mycological response or survival, even in patients with high fungal burdens. This was true for all 3 key antifungal drugs (amphotericin, flucytosine and fluconazole), for survival at both early (14 day) and late (70, 182 day) time-points, and following adjustment for baseline factors associated with severity, including fungal burden. We must conclude that AST has no utility in optimising therapy for patients with a first presentation of cryptococcal meningitis.

There are several possible explanations for the poor correlation between antifungal susceptibility of *C. neoformans* and therapeutic outcomes. These include significant differences between in vivo infection and in vitro AST environments. *C. neoformans* variably
expresses its phenotype in different models and culture systems, including virulence factors
(melanisation, polysaccharide capsule size, titan cell formation) which may influence
susceptibility. Secondly, host-drug interactions may play a role in clinical response;
amphotericin may have immunomodulatory effects promoting yeast clearance that cannot be
reflected in vitro, and may be variably expressed in AIDS patients [6].
A potential weakness of our study is that we tested only single purified isolates from our
patients. While the majority of immunosuppressed patients have infections from a single
strain of C. neoformans, multiple strain infections may occur in up to 18%, challenging the
concept of correlating outcome with the susceptibility of a single isolate [10]. A further
potential weakness is that we tested only baseline isolates; C. neoformans displays the
phenomenon of heteroresistance to azoles whereby a resistant sub-population can emerge
from within a predominantly susceptible single strain following azole exposure; this may
contribute to disease relapse [11,12].
In conclusion, we present robust data that AST of baseline isolates of C. neoformans in
AIDS-associated cryptococcal meningitis does not correlate with survival or mycological
clearance; it has no place in routine clinical use in first cases of cryptococcal meningitis.
However, several aspects warrant further investigation. Our study enrolled only severely
immunosuppressed patients, which may confound any effect of susceptibility on outcome;
similar data should be generated for immunocompetent patients. Furthermore, because of the
phenomenon of heteroresistance, AST may be more informative if measured following a few
days of treatment [11].

Funding
Supported by the Wellcome Trust [077078/Z/05/A and 089276/Z/09/Z] and British Infection
Acknowledgements

We thank the patients and staff of the Hospital for Tropical Diseases.

Potential conflicts of interest. MW is currently an employee of Roche Pharma. The contributions to this manuscript are unrelated to this position and were conducted during earlier employment or in his personal capacity only. J.D. reports grants from Wellcome Trust and the British Infection Society during the conduct of the study. L.O.C., D.V.A., T.T.H.C., N.V.V.C. and L.N.P.H. report no potential conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Day JN, Chau TTH, Wolbers M, et al. Combination Antifungal Therapy for Cryptococcal Meningitis. N Engl J Med 2013; 368:1291–1302. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3978204&tool=pmcentrez&rendertype=abstract%5Cnhttp://www.nejm.org/doi/abs/10.1056/NEJMoa1110404.

2. Molloy SF, Kanyama C, Heyderman RS, et al. Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa. N Engl J Med 2018; 378:1004–1017.

3. Delma FZ, Al-Hatmi AMS, Buil JB, et al. Comparison of MIC Test Strip and Sensititre YeastOne with the broth microdilution reference methods CLSI and EUCAST for in vitro antifungal susceptibility testing of Cryptococcus neoformans. Antimicrob Agents Chemother 2020;

4. Arechavala AI, Ochiuzzi ME, Borgnia MD, Santiso GM. Fluconazole and amphotericin B susceptibility testing of Cryptococcus neoformans: Results of minimal
inhibitory concentrations against 265 isolates from HIV-positive patients before and after two or more months of antifungal therapy. Rev Iberoam Micol 2009; 26:194–197.

5. Manosuthi W, Sungkanuparph S, Thongyen S, et al. Antifungal Susceptibilities of Cryptococcus Neoformans Cerebrospinal Fluid Isolates and Clinical Outcomes of Cryptococcal Meningitis in HIV-Infected Patients with / without Fluconazole Prophylaxis. J Med Assoc Thai 2006; 89:795–802.

6. Grossman NT, Casadevall A. Physiological Differences in Cryptococcus neoformans Strains In Vitro versus In Vivo and Their Effects on Antifungal Susceptibility. Antimicrob Agents Chemother 2017; 61.

7. Nasri H, Kabbani S, Alwan MB, et al. Retrospective Study of Cryptococcal Meningitis With Elevated Minimum Inhibitory Concentration to Fluconazole in Immunocompromised Patients. Open Forum Infect Dis 2016; :1–5.

8. Dannaoui E, Abdul M, Arpin M, et al. Results obtained with various antifungal susceptibility testing methods do not predict early clinical outcome in patients with cryptococciosis. Antimicrob Agents Chemother 2006; 50:2464–2470.

9. Nascimento E, Vitali LH, Kress MR von Z, Martinez R. Cryptococcus neoformans and C. Gattii isolates from both HIV-infected and uninfected patients: Antifungal susceptibility and outcome of cryptococcal disease. Rev Inst Med Trop Sao Paulo 2017; 59.

10. Desnos-Ollivier M, Patel S, Spaulding AR, et al. Mixed infections and In Vivo evolution in the human fungal pathogen Cryptococcus neoformans. MBio 2010; 1.

11. Hope W, Stone NRH, Johnson A, et al. Fluconazole Monotherapy Is a Suboptimal Option for Initial Treatment of Cryptococcal Meningitis Because of Emergence of Resistance. MBio 2019; 10.
12. Sionov E, Chang YC, Garaffo HM, Kwon-Chung KJ. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 2009; 53:2804–2815.
Table 1. The estimated effect, defined by hazard ratio (HR) and 95% confidence intervals, of a two-fold increase in the MICs estimated at 72 hours for amphotericin, fluconazole and flucytosine on survival outcomes at 14, 70 and 182 days post-randomisation for the primary analysis population and the effect on mycological outcome (the rate of decline of CSF fungal count, log10 Colony Forming Units/mL CSF/day).

	Group 1		Group 2		Group 3	
	Amphotericin (n=92)	Amphotericin and Flucytosine (n=96)	Amphotericin and Fluconazole (n=88)			
Death by day 14	HR	P value	HR	P value	HR	P value
	0.64	0.28	0.86	0.75	0.69	0.43
	(0.28, 1.44)		(0.35, 2.13)		(0.27, 1.75)	
Amphotericin	-	-	0.70	0.34	-	-
Flucytosine	-	-	(0.33, 1.47)		-	-
Flucytosine	-	-	-	-	1.23	0.54
Flucytosine	-	-	-	-	(0.63, 2.43)	
Death by day 70	HR	P value	HR	P value	HR	P value
	0.94 (0.65, 1.86)	0.83 (0.31, 1.09)	0.58	0.58	0.97	0.94
Amphotericin	-	-	0.88	(0.55, 1.39)	-	-
Flucytosine	-	-	0.89	-	0.87	0.61
Flucytosine	-	-	(0.58, 1.39)		(0.51, 1.49)	
Death by 6 months (day 182)	HR	P value	HR	P value	HR	P value
	1.10 (0.65, 1.86)	0.72 (0.34, 1.11)	0.62	0.62	1.28	0.42
Amphotericin	-	-	0.89	(0.58, 1.39)	-	-
Flucytosine	-	-	(0.80, 1.49)		0.86	0.51
Flucytosine	-	-	(0.54, 1.36)		(0.54, 1.36)	
Change in CSF fungal decline in first 14 days (log10 CFU/mL of CSF per day) per two-fold increase in MIC	Effect estimate	P value	Effect estimate	P value	Effect estimate	P value
Amphotericin	-0.01 (-0.07, 0.04)	0.59	0.02 (-0.03, 0.07)	0.40	0.00 (-0.04, 0.04)	0.95
Flucytosine	-	-	1.10	0.63	-	-
Flucytosine	-	-	(0.80, 1.49)		0.01	0.53
Flucytosine	-	-	(0.02, 0.04)		-	-
When adjusted for baseline CSF log-quantitative fungal count, GCS below 15 and Cryptococcus genotype at recruitment the results for a two-fold increase in 72 hour MIC for amphotericin in group 2 were 0.55 (95% CI, 0.30-1.01), P value 0.053.

When adjusted as before, results for a two-fold increase in 72 hour MIC for amphotericin in group 2 were 0.58 (95% CI, 0.33-1.03), P value 0.06.
Supplementary Appendix

Methods for Susceptibility Testing

Minimum inhibitory concentrations (MICs) were estimated for all isolates after 72 hours incubation at 35°C. Isolates without growth at 35°C were incubated at 30°C, and MICs estimated as before. Candida krusei ATCC 6258 was used as a control strain.

Statistical methods

Quantitative fungal counts were log-transformed for all analyses. Prior to analysis, MICs below the limit of detection were replaced by \((\text{min}/2)\), where \(\text{min}\) is the lowest concentration of antifungal agent in the Sensititre YeastOne system; MICs above the limit of detection were replaced by \(2^*\text{max}\), where \(\text{max}\) is the highest concentration of antifungal agent.

Analyses were adjusted for randomised treatment assignment and tested for interaction between MICs and trial treatment arms. Analyses comparing the survival effect of ‘susceptible’ and ‘non-susceptible’ isolates in a Cox regression model were performed both with and without adjustment for baseline CSF log-quantitative fungal count, Glasgow Coma Scale score (GCS) below 15 at recruitment (previously identified as independent predictors of outcome), and AFLP cluster (VN1gamma versus not VN1gamma) [1,2].

Time to fungal clearance was estimated with a cause-specific Cox regression model adjusted for baseline CSF log-quantitative fungal count.

Results

CSF log-quantitative fungal count and GCS below 15 at recruitment produced similar results.
Supplementary Table 1. Summary of baseline characteristics for the primary analysis population (n=276)

Characteristic	Group 1 Amphotericin (n=92)	Group 2 Amphotericin and Flucytosine (n=96)	Group 3 Amphotericin and Fluconazole (n=88)
Age – yr ^a			
Median	28	28	27
Interquartile range	25, 31	25, 33	24, 31
Male sex – no. (%)	76 (83)	76 (79)	75 (85)
Intravenous drug use – no./total no. (%)	47/84 (56)	45/90 (50)	48/87 (55)
Glasgow Coma Scale score ^b			
Median	15	15	15
Interquartile range	13, 15	14, 15	15, 15
CD4 count – cells/mm^c			
Median	18	16	14
Interquartile range	8, 36	9, 27	8, 41
CSF opening pressure – cmH₂O ^d			
Median	27	32	24
Interquartile range	15, 40	19, 40	16, 40
CSF white cell count – cells/mL ^e			
Median	34	26	25
Interquartile range	8, 86	7, 63	7, 84
CSF yeast count – log₁₀ CFU/mL ^f			
Median	5.95	5.82	5.74
Interquartile range	5.60, 6.49	4.70, 6.15	4.80, 6.23
Weight – kg ^g			
Median	46	48	48
Interquartile range	42, 50	41, 50	45, 50

^aData were missing for 1 patient in group 3
^bData were missing for 2 patients in group 1, 1 in group 2 and 1 in group 3
^cData were missing for 23 patients in group 1, 24 in group 2, 23 in group 3
^dData were missing for 16 patients in group 1, 19 in group 2, 17 in group 3
^eData were missing for 9 patients in group 1, 10 in group 2, 10 in group 3
^fData were missing for 19 patients in group 1, 19 in group 2, 19 in group 3
^gData were missing for 2 patients in group 1, 2 in group 2 and 2 in group 3
Supplementary Table 2. Summary of susceptibility test outcomes by each trial treatment arm for the primary analysis population. MIC$_{50}$ and MIC$_{90}$; refer to the median and 90% quantile of isolates in the study respectively.

72 hour MIC (µg/mL)	Group 1 Amphotericin (n=92)	Group 2 Amphotericin and Flucytosine (n=96)	Group 3 Amphotericin and Fluconazole (n=88)
Amphotericina			
MIC$_{50}$	0.512	0.512	0.512
MIC$_{90}$	1.024	1.024	1.024
Geometric mean	0.6089	0.6688	0.6692
Interquartile range	0.256, 1.024	0.2560, 1.024	0.256, 2.048
Fluconazoleb			
MIC$_{50}$	8	8	8
MIC$_{90}$	16	16	16
Geometric mean	7.5846	7.2687	7.1085
Interquartile range	0.125, 512	1, 32	2, 32
Flucytosinec			
MIC$_{50}$	8	8	8
MIC$_{90}$	16	12	8
Geometric mean	6.1224	6.2586	6.6077
Interquartile range	0.96, 16	2, 64	2, 128

aData were missing for 7 patients in group 1, 4 in group 2, 4 in group 3.

bData were missing for 1 patient in group 1, 2 in group 2, 1 in group 3 at 72 hours.

cData were missing for 1 patient in group 1, 1 in group 3 at 72 hours.

Supplementary Table 3

Classification of isolates as ‘fully sensitive’ or not as per CLSI suggestion$^{[3,4]}$

	‘Fully sensitive’ strains	Other
	N	N
Amphotericina	173	103
Flucytosineb	114	162
Fluconazolec	213	63

aFully sensitive = MIC ≤ 0.512µg/ml for amphotericin B

bMIC ≤ 4µg/ml for flucytosine,

cMIC ≤ 8µg/ml
Supplementary Figure 1. Study enrolment and treatment assignment for our RCT of induction therapy for AIDS-associated cryptococcal meningitis in Vietnam [1]
Supplementary Figure 2. Distribution of antifungal susceptibilities of all isolates for amphotericin, flucytosine and fluconazole. The diagonal shows histograms of log2-transformed MICs, the panels below the diagonal display scatterplots (with jittering to avoid over-plotting) and the panels above the diagonal show Pearson rank correlations.
Supplementary Figure 3. Kaplan-Meier curves illustrating the estimated effect of antifungal susceptibility on time to death when comparing ‘susceptible’ and ‘non-susceptible’ isolates of *C. neoformans* for amphotericin susceptibility among patients receiving amphotericin monotherapy induction; fluycytosine susceptibility among patients receiving flucytosine combination therapy induction; and fluconazole susceptibility across the primary analysis population and among patients receiving fluconazole combination therapy induction.
References

1. Day JN, Chau TTH, Wolbers M, et al. Combination Antifungal Therapy for Cryptococcal Meningitis. N Engl J Med 2013; 368:1291–1302. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3978204&tool=pmcentrez

2. Jarvis JN, Bicanic T, Loyse A, et al. Determinants of Mortality in a Combined Cohort of 501 Patients With HIV-Associated Cryptococcal Meningitis: Implications for Improving Outcomes. Clin Infect Dis 2014; 58:736–745.

3. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts M27-A2. 2nd ed. Wayne, Philadelphia: 2002.

4. Arechavala AI, Ochiuzzi ME, Borgnia MD, Santiso GM. Fluconazole and amphotericin B susceptibility testing of Cryptococcus neoformans: Results of minimal inhibitory concentrations against 265 isolates from HIV-positive patients before and after two or more months of antifungal therapy. Rev Iberoam Micol 2009; 26:194–197.