Neuroinfection

Original research

Six versus 2 weeks treatment with doxycycline in European Lyme neuroborreliosis: a multicentre, non-inferiority, double-blinded, randomised and placebo-controlled trial

Anne Marit Solheim, Åslaug Rudjord Lorentzen, Audun Olav Dahlberg, Heidi Øyen Flemmen, Synne Brune, Kristine Johanne Nordstrøm Forselv, Are Hugo Prip, Margrete Halvorsen Bø, Randi Eikeland, Harald Reiso, Åse Mygland, Unn Ljøstad

ABSTRACT

Background There is limited evidence regarding optimal duration of antibiotic treatment in neuroborreliosis. We aimed to compare efficacy and safety of oral doxycycline for 2 and 6 weeks in European Lyme neuroborreliosis (LNB).

Methods The trial had a randomised, double-blinded, placebo-controlled, non-inferiority design. Patients with LNB were recruited from eight Norwegian hospitals and randomised to doxycycline 200 mg once daily for 2 weeks, followed by 4 weeks of placebo, or doxycycline 200 mg once daily for 6 weeks. The primary endpoint was clinical improvement as measured by difference in a Composite Clinical Score (0–64 points) from baseline to 6 months. The non-inferiority margin was predetermined to 0.5 points.

Results One hundred and twenty-one patients were included. Fifty-two treated for 2 weeks and 53 for 6 weeks were included in the intention-to-treat analyses, and 52 and 51 in per-protocol analysis. Mean difference in clinical improvement between the groups was 0.06, 95% CI –1.2 to 1.2, p = 0.99 in the intention-to-treat population, and –0.4, 95% CI –1.4 to 0.7, p = 0.51 in the per-protocol population and non-inferiority could not be established. There were no treatment failures and no serious adverse events. The groups did not differ in secondary outcomes including clinical scores at 10 weeks and 12 months, cerebrospinal fluid data and patient-reported outcome measures. Patients receiving 6 weeks doxycycline reported slightly more side effects in week 5.

Conclusion Our results strongly indicate that there are no benefits of doxycycline treatment beyond 2 weeks in European LNB.

Trial registration number 2015-001481-25.

INTRODUCTION

European Lyme neuroborreliosis (LNB) typically presents with painful meningoarachnitis and/or cranial neuritis, accompanied with malaise and fatigue. More rare clinical manifestations areplexus neuritis, mononeuritis and central nervous system (CNS) syndromes such as myelitis, vasculitis and encephalitis. It is an unambiguous agreement that patients with LNB should be treated with antibiotics as soon as possible, but both the choice of antibiotic type and treatment duration have been subjects for discussion.

Intravenously administered beta-lactam antibiotics (penicillin G, cephraxone and cefotaxime) and orally administered doxycycline are proven effective and hold relatively good cerebrospinal fluid (CSF) penetration. Oral administered doxycycline has been shown to be non-inferior to intravenous ceftriaxone in typical LNB, and probably effective in LNB with mainly CNS involvement. In line with this knowledge, European Federation of Neurological Societies (EFNS) guidelines from 2010 recommend treatment with either a beta-lactam antibiotic or doxycycline in adults. The final choice of antibiotic type depends on individual factors such as age, tolerability, pregnancy, breast-feeding and preferred mode of administration. According to the guidelines, patients with encephalitis, myelitis or vasculitis should be treated with intravenous ceftriaxone.
The recommendations regarding treatment duration are divergent. The EFNS guidelines recommend 2 weeks for early LNB, defined as pretreatment symptom duration under 6 months and 3 weeks for late LNB, defined as pretreatment symptom duration over 6 months. The German guidelines from 2020 are in accordance with EFNS guidelines, but the National Institute for Health and Care Excellence guidelines from 2018 recommend 3 weeks irrespective of symptom duration. These recommendations are mainly based on clinical experience, as scientific evidence is scarce. To our knowledge, there is only one previous randomised trial comparing treatment lengths in disseminated Lyme borreliosis. In that trial, including 62 with definite and 53 with possible LNB, the long-term outcome did not differ in patients treated for 3 weeks with intravenous ceftriaxone as compared with patients treated 3 weeks with intravenous ceftriaxone, followed by amoxicillin for 100 days. It is also noticeable that several studies have evaluated prolonged antibiotic treatment in patients suffering from so-called post-Lyme disease without demonstrating benefits.

Irrespective of recommendations, there are clues to substantial variations in clinical practice. In a Norwegian study of adherence to guidelines, 61% of patients with LNB were treated for more than 2 weeks, 36% for more than 3 weeks and 12% for more than 6 weeks. Several factors are likely to influence choice of treatment duration, such as limited evidence in guidelines, local treatment cultures, beliefs and attitudes, and pressure and expectations from the patients due to advocacy in media for long duration of antibiotic treatment in LNB. High-quality research has been called for to pave the way for more evidence-based treatment decisions in the clinical practice.

In light of all this, we aimed to compare efficacy and safety of treatment with oral doxycycline for 2 and 6 weeks in European LNB in a randomised controlled trial. We chose a non-inferiority approach for assessment of efficacy as the short antibiotic regimen was not expected to be superior to the long regimen, but it still offers clear advantages in terms of antibiotic resistance issues, lower costs and less strain on the patients.

METHOD

Study design

The trial has a randomised, double-blinded, placebo controlled, multicentre, non-inferiority design. For further details, we refer to the previously published study protocol. Adult patients were included from neurological or infectious diseases departments at eight hospitals in Southern Norway, with Sørlandet hospital in Agder county as coordinator.

Participants

We included consecutive patients with neurological symptoms suggestive of LNB without other obvious reasons and CSF pleocytosis and/or borrelia-specific antibodies produced intrathecally from hospital wards or outpatient clinics. In accordance with EFNS guidelines, the LNB was classified as possible in the presence of either CSF pleocytosis or borrelia-specific antibodies produced intrathecally, and as definite in the presence of both. All participants gave written informed consent before inclusion. Exclusion criteria are presented in the published protocol.

Randomisation and masking

Patients were randomised into two treatment arms: oral doxycycline 200 mg once daily for 2 weeks, followed by 4 weeks of placebo, or doxycycline 200 mg once daily for 6 weeks. All patients received identically designed tablets and capsules for 6 weeks. Computerised allocation, with stratification according to hospital, was performed by an internet-based solution provided by the Department of Clinical Research Support, Oslo University Hospital. The Department of Clinical research also provided external monitoring of the procedures at all study centres according to good clinical practice. Patients, clinicians and study personnel were blinded to treatment allocation. The blinding was retained until all patients had completed the 6 months visit, the content of all tables and figures were fixed, and the statistical procedures were performed with the two treatment arms marked as groups A and B.

Outcomes

The study procedures are explained in the published protocol. Patients had outpatient follow-up at 10 weeks, 6 months and 12 months after inclusion, and additional blood samples were collected 2 and 4 weeks after the start of treatment. The patients were scored on a Composite Clinical Score (CCS) at each visit. The CSS measures 10 subjective symptoms and 22 objective neurological findings. Each of the 32 items is scored as 0 = none, 1 = mild (without influence on daily life) or 2 = severe (with influence on daily life), and the sum score range from 0 to 64. Clinicians at each site scored patients, and discussed with study coordinators when necessary.

The primary endpoint was clinical improvement 6 months after treatment start as measured by difference in CCS sum score from baseline to 6 months.

Secondary endpoints were CCS at 10 weeks and 12 months, CSF findings at 6 and 12 months, safety and tolerability as measured by blood tests (haematological values, kidney and liver function) at 2 and 4 weeks after treatment start, patient-reported outcome measures (PROMs) and weekly reported side effects in a patient diary for 10 weeks. The PROMs were fatigue scored with Fatigue Severity Scale, subjective somatic symptoms scores with the Patient Health Questionnaire-15 and health-related quality of life (RAND 36). The patient diary consisted of five questions regarding side effects; nausea, diarrhoea, skin changes, genital ailments and decreased appetite. Each question was answered with 0 = no symptoms, 1 = mild symptoms or 2 = severe symptoms, and a sum score was calculated each week ranging from 0 to 10.

Statistical analysis

The primary objective of the study was to determine if treatment duration of 2 weeks doxycycline is as effective as a prolonged regimen of 6 weeks. Accordingly, the null hypothesis was that 2-weeks treatment duration is inferior to 6-weeks treatment duration.

For the sample size calculation, the authors drafting the protocol considered a non-inferiority margin of 0.5 points in mean improvement on the CCS as clinically relevant. In other words, a mean difference in the clinical score from baseline to 6 months after inclusion of up to 0.5 points represented the maximum reduction in effectiveness we would accept, while still considering the short regimen treatment to be non-inferior. We used data from our previous trial with an adult population with European LNB and the same clinical score to calculate sample size and to determine the non-inferiority margin. With a significance level of 0.05 and statistical power at 80% this corresponded to a sample size of 50 patients in each group. To compensate for 20% drop-outs, we planned to include 120 patients, with 60 in each group.
For analyses of the primary endpoint, we applied a general linear model adjusting for gender, age, pretreatment duration of symptoms and CCS at baseline.

The primary endpoint was analysed in an intention-to-treat (ITT) principle population (excluding participants who withdrew consent, discontinued treatment and/or were lost to follow-up) and in a per-protocol population. In the latter, we also excluded one patient who fulfilled treatment according to protocol but was shown to have another diagnosis explaining the symptoms, and one patient who got a fatal additional disease and therefore scored unreasonably high on CCS.

Secondary endpoints, except safety issues, were compared between groups in the per-protocol population, applying independent samples t-tests, non-parametric tests or Pearson’s χ² or Fisher’s exact test for cross tabs as appropriate with a two-sided CI approach. Values of p<0.05 were considered significant.

We used the statistical program SPSS V.26 for analysis.

RESULTS

At least 144 consecutive patients with suspected LNB were assessed for eligibility in the study period from 20 November 2015 to 6 January 2020. Twenty-three were considered ineligible, 4 because clinicians outside the study already had initiated intravenous ceftriaxone (1 due to LNB cerebral vasculitis, 1 due to LNB with cognitive problems for longer than 6 months, and 2 for unknown reason), and 19 because they declined invitation, or met other exclusion criteria. As the screening log was complete only at Sørlandet hospital, it cannot be ruled out that additional patients were considered and found ineligible at the other centres.

A total of 121 patients were included and randomised to 2 or 6 weeks treatment with oral doxycycline, and 105 and 103 were included in statistical analysis according to ITT and per-protocol principle, respectively (figure 1). The 16 drop-outs were younger as compared with those included in the ITT analysis (mean age 48 vs 56 years, p=0.03), otherwise the baseline characteristic did not differ. Four of the six patients that withdrew consent were prescribed further antibiotics by their general practitioner (GP) after 2 weeks of treatment because of incomplete recovery. One additional patient received further antibiotics from the GP between the 10 weeks and 6 months follow-up. Study personnel evaluated all of these patients and found no new symptoms or findings consistent with treatment failure, and they did not differ in baseline CCS. Another patient developed suspected Lyme arthritis in a knee after 1 week of treatment and was prescribed additional 2 weeks of unblinded doxycycline. One patient had a much higher CCS score at 6 months follow-up as compared with baseline. Retrospectively, we consider this finding to be attributed to cancer disease, not LNB, as the patient at this point had been transferred to hospice care and died soon afterwards. This patient was excluded from the per-protocol analysis.

The baseline characteristics of the ITT population are shown in table 1. Among the 18 patients classified as possible LNB, 1 had normal CSF cell count but positive intrathecal antibody ratio, 2 had CSF pleocytosis but missing data on intrathecal antibody production and 15 had CSF pleocytosis, but negative intrathecal antibody ratio at inclusion and at 6 months after inclusion. Of these 15, 6 had negative borrelia antibodies also in serum (2 with only facial palsy in the 6 weeks treatment groups, 2 with facial palsy and other radiculitis in the 6 weeks treatment group, and 2 with radiculitis in the 2 weeks treatment group) throughout the study. Fifteen of the 18 were tested for tickborne encephalitis antibodies in serum with negative result, 15 were tested for herpes simplex and varicella zoster PCR in CSF of which 1 tested positive for variella zoster (excluded from per-protocol analysis), and 12 were tested for enterovirus PCR in CSF with negative result.

Only one patient had a confirmed LNB CNS syndrome with clinical and radiological signs of myelitis. Thirteen patients (seven in the 2 weeks treatment group and six in the 6 weeks treatment group) had scores that could indicate CNS involvement. The findings were subtle, however, mostly scored as mild, and none were confirmed by MRI. Mild central findings in one extremity (n=five), in hemipattern (n=one), or in both legs.

Figure 1 Flow chart of included patients. CCS, Composite Clinical Score. MS, Multiple Sclerosis
Table 1 Baseline demographics, clinical and laboratory findings of the intention to treat population. Data are number of patients (%) or mean (SD) unless otherwise stated

Population	2 weeks treatment N=52	6 weeks treatment N=53	P value	Mean difference (95% CI)
Age, years	58 (12)	55 (15)		
Female	21 (40%)	25 (47%)		
Male	31 (60%)	28 (53%)		
Pretreatment symptom duration*				
Days, median (IQR)	21 (20)	21 (26)		
>6 months	1 (2%)	2 (4%)		
Tick bite last 6 months	28 (55%)	27 (50%)		
Erythema migrans last 6 months	12 (24%)	8 (15%)		
Lyme neuborrellosis diagnosis†				
Definite	45 (87%)	42 (79%)		
Possible	7 (13%)	11 (21%)		
Clinical presentation				
Mean Composite Clinical Score	8.8 (3.8)	9.5 (4.6)		
Mean Subjective Symptoms Score	6.5 (3.5)	7.1 (4.1)		
Mean Objective Sum Score	2.3 (1.4)	2.4 (1.6)		
Subjective symptoms only	5 (10%)	18 (35%)		
Composite Clinical Score>10	18 (35%)	23 (43%)		
Facial palsy	28 (54%)	24 (45%)		
Other cranial neuritis	5 (10%)	10 (19%)		
Radiculitis‡	39 (75%)	42 (79%)		
Fatigue				
Fatigue severity scale mean score	4.5 (1.9)	5.0 (1.7)		
Fatigue severity scale ≥4	32 (62%)	40 (75%)§§		
Cerebrospinal fluid findings				
Cell count M/L, median (IQR)	97 (134)	122 (197)		
Protein g/L, median (IQR)	0.99 (1.27)	1.0 (1.02)		
Oligo clonal bands ≥2	27/44 (61%)	31/45 (69%)		

Table 2 Main outcome. clinical improvement 6 months after treatment start as measured by difference in clinical composite sum score from baseline to 6 months

Population	Mean improvement (95% CI) 2 weeks treatment	Mean improvement (95% CI) 6 weeks treatment	P value	Mean difference (95% CI)
Intention to treat	6.4 (5.5 to 7.2)	6.4 (5.6 to 7.2)	0.99	0.06 (−1.2 to 1.2)
Per protocol	6.3 (5.6 to 7.1)	6.7 (6.0 to 7.4)	0.51	−0.4 (−1.4 to 0.7)

At 6 months, the proportions of patients with any complaint, including symptoms without influence on daily life was 73% and 71% in the 2 and 6 weeks treatment groups, respectively. The proportions with at least one complaint influencing daily life (CCS≥2) were 23% (n=12) and 22% (n=11). One patient treated for 6 weeks had an elevated CSF cell count at 6 months (baseline 82 M/L, 6 months 28 M/L), but had no other signs of treatment failure or disease progression, and the CSF cell count normalised at 12 months (3 M/L). We did not register any serious adverse events, and no patients were excluded, or had to stop treatment, because of adverse events. Weekly patient-reported side effects for 10 weeks are summarised in figure 3. There was a trend towards more patients with high sum scores in week 3–7 in the 6 weeks treatment group, but the difference was statistically significant only in week 5 (p=0.03). There were no difference in median sum scores between the treatment groups at any time point. The only single question that differed between the treatment groups was report of nausea at week 5, where nine patients reported mild and two serious nausea in the 6 weeks treatment group as compared with three patients with mild nausea in the 2 weeks treatment group (p=0.03). At week 10, two patients, one in each group, reported seriously decreased appetite, otherwise, the patients reported few and only mild remaining possible side effects. There were no statistically significant differences in frequencies of pathological blood sample findings between the two groups at 2 and 4 weeks after start of treatment.

DISCUSSION

In this randomised double-blinded treatment trial in European LNB, the primary outcome measure, improvement in a CSS at 6 months, did not differ between patients treated with 2 and 6 weeks of doxycycline neither when analysed in an ITT principle population, in a per-protocol population, nor in subgroups of patients with definite and possible LNB. Still, the lower bound of the 95% CI of the mean difference exceeded the predetermined non-inferiority margin of 0.5 points in both the ITT population and the per-protocol population, and we can, therefore, not claim statistical non-inferiority. Our results still strongly indicate that 6 weeks of doxycycline does not offer any benefits over 2 weeks in European LNB in adults.

This conclusion is supported by important findings beside the primary outcome. First, the treatment groups did not differ in any secondary outcomes including clinical scores at 10 weeks and 12 months, CSF data, and patient-reported outcomes on fatigue, subjective somatic symptoms scores and health-related quality of life. Second, we did not register any treatment failures in any of the two groups. The vast majority of patients improved well, but some had residual complaints. A proportion of 77% with any kind of residual complaint, and 17% with at least one residual complaint that influenced daily life at 12 months after start of treatment, is in accordance with earlier findings. Depending on scoring and sub-grouping, previous studies have found residual complaints in 24% to 48% at 12 months after treatment.15–20 As
Neuroinfection

such, we do not regard the residual complaints as an indication of treatment failure, rather as sequelae in a few patients that is often found in this patient population, and we plan to evaluate possible prognostic markers in our cohort in future publications.

Regarding safety, we did not register any serious adverse events related to the treatment, and weekly median total score on self-reported side effects for ten weeks after start of treatment did not differ between the groups. In week five a higher proportion of patients receiving the longer course reported higher side effect sum scores and higher burden of nausea than patients receiving placebo, but our findings indicate that treatment with doxycycline is safe and rather well tolerated in prolonged treatment. In terms of antibiotic treatment, however, there is a consensus that “shorter is better” to decrease the burden of possible adverse effects, superinfections and microbial resistance.

In terms of trial limitations, there is a potential selection bias towards inclusion of patients with a less severe course of LNB, as some patients were found ineligible due to clinician or patient preferred choice of intravenous antibiotics. Such a choice could indicate that these patients had a higher symptom burden, longer pre-treatment symptom duration or confirmed CNS syndromes. At Sørlandet hospital, which had a complete and accurate screening log, and where 84 patients were included, only four patients were excluded due to choice of intravenous antibiotics. The proportion of patients excluded from trial participation due to a severe disease course may have been higher at the other study centres, but the screenings logs are unfortunately incomplete.

Table 3 Secondary endpoints

Time from inclusion	10 weeks	6 months	12 months
Treatment length			
2 weeks	n=51	n=52	n=46
6 weeks	n=50	n=51	n=46
P value			
Composite Clinical Score			
Mean total score	3.2 (2.6)	2.8 (2.8)	2.4 (2.3)
Patients with total score=0	11 (22%)	14 (27%)	8 (18%)
Patients without complaints influencing daily life*	37 (73%)	40 (77%)	40 (87%)
Patient reported questionnaires/PROMS			
Fatigue			
Fatigue Severity Scale Score	3.9 (1.7)	3.6 (1.5)	3.4 (1.6)
Fatigue Severity Scale Score ≥4	28/52 (54%)†	22 (42%)	19/45 (42%)
PHQ-15 ≥10†	NA	9 (18%)	12/48 (25%)
RAND-36	NA	NA	NA
PCS	NA	NA	NA
MCS	NA	NA	NA
Cerebrospinal fluid findings			
Cell count M/L, median (IQR)	NA	NA	2 (3)
Protein g/L	NA	0.44 (0.2)	0.43 (0.18)
Oligo clonal bands≥2	NA	18/34 (53%)	5/12 (33%)
Positive antibody ratio	NA	24 (70%)	8 (50%)

Data are number of patients (%) or mean (SD) unless otherwise stated.

*Patients without any ‘serious’ scores on the CCS.
†One patient with completed FSS, but missing CCS data at 10 weeks.
‡intrathecal Borrelia-specific antibody production.

CCS, Composite Clinical Score; FSS, Fatigue Severity Scale; MCS, Mental Component Summary; NA, not available; PCS, Physical Component Summary; PHQ-15, Patient Health Questionnaire-15; PROMS, patient-reported outcome measures.

Figure 2 Composite Clinical Score throughout the study in the two treatment groups.

Figure 3 Side effects reported in patient diaries for ten weeks (week number on X axis), shown as proportion of patients each week with sum scores from 0 to 10 (none had sum score above 6) on five predefined symptoms (nausea, diarrhoea, skin changes, genital ailments and decreased appetite scored as 0 (none), 1 (mild), or 2 (severe)).
unreliable. In the final analyses, three patients had pretreatment symptom duration over 6 months, 44 had clinical score ≥10, 12 had subtle findings indicating possible CNS involvement, and one had a confirmed CNS syndrome (myelitis). In light of this, we think a possible selection bias regarding overall symptom burden is ignorable, but possible regarding patients with long pre-treatment symptom duration or LNB with manifestations such as myelitis, vasculitis or encephalitis. Patients with late LNB or with confirmed CNS syndromes are very rare however, and such as myelitis, vasculitis or encephalitis. Patients with late LNB and patients with confirmed CNS syndromes.

Another possible limitation is the use of an unvalidated clinical score (CCS) that carries both inter-and intra-observer variability. The randomisation procedure is assumed to equalise this variability, but still the score is encumbered with imprecise absolute scores that may cause wide 95% CIs. We chose the score since we were familiar with it from a previous trial, it reflects assessments done of these patients in clinical practice, and it has also been used in a modified form by other researchers.

Our study included 18 patients with possible LNB including six with negative antibodies in both serum and CSF. A relatively short pretreatment symptom duration, ranging from two to 7 days, could explain persistent antibody negativity in these six patients, and it is possible that some of them did not have LNB. Two had facial palsy as their only symptom, and retrospectively thought to have suffered from Bell’s palsy. The inclusion of some patients with unclear diagnosis is unavoidable in a treat-ment trial of LNB due to low sensitivity of intrathecal antibody production in the early phase of the disease, and the need to start antibiotic treatment before antibody results are available. This study included relatively few such patients, however.

Overall, we consider the trial to be well designed with few sources of bias and high internal validity. We also think the trial results reflect everyday clinical practice by including patients with both definite and possible LNB from different centres, and thereby possess high external validity.

CONCLUSION
We could not establish statistical non-inferiority using the pre-specified margins when comparing efficacy on clinical improve-ment after 6 months in 2 and 6 weeks treatment with oral doxycycline in European LNB. Still, our study results strongly indicate that there is no added benefit of treatment beyond the 2 weeks in current guidelines.

Author affiliations
1Department of Neurology, Sørlandet sykehus HF Kristiansand, Kristiansand, Norway
2Institute of Clinical Medicine, University of Bergen, Bergen, Norway
3The Norwegian National Advisory Unit on Tick-borne diseases, Sørlandet sykehus HF Arendal, Arendal, Norway
4Department of Neurology, Møre og Romsdal Hospital Trust, Molde, Norway
5Department of Neurology and Clinical Neurophysiology, Norwegian University of Science and Technology, Trondheim, Norway
6Department of Neurology, Ullevaal Hospital, Oslo, Norway
7Department of Neurology, Oslo University Hospital, Oslo, Norway
8Biostatistics and Epidemiology Unit, Oslo University Hospital, Oslo, Norway
9Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
10Institute of Health and Nursing Science, University of Agder, Kristiansand, Norway

Correction notice This article has been corrected since it was first published. The open access licence has been updated to CC BY.

Acknowledgements We thank all our collaborators at each of the eight hospitals for facilitating the study, recruiting patients and collecting data: Anna Wie Børsheim at Haukeland University Hospital, Marion Jim at Vestre Viken Hospital, Marie Mørck

References
1 Karlsson M, Hammers S, Nilsson-Ehle I, et al. Concentrations of doxycycline and penicillin G in sera and cerebrospinal fluid of patients treated for neuroborreliosis. Antimicrob Agents Chemother 1996;40:1104-7.
2 Lipstad U, Skogøy E, Eikeland R, et al. Oral doxycycline versus intravenous ceftriaxone for European Lyme neuroborreliosis: a multicentre, non-inferiority, double-blind, randomised trial. Lancet Neurol 2008;7:690–5.

Author affiliations
1Department of Neurology, Sørlandet sykehus HF Kristiansand, Kristiansand, Norway
2Institute of Clinical Medicine, University of Bergen, Bergen, Norway
3The Norwegian National Advisory Unit on Tick-borne diseases, Sørlandet sykehus HF Arendal, Arendal, Norway
4Department of Neurology, Møre og Romsdal Hospital Trust, Molde, Norway
5Department of Neurology and Clinical Neurophysiology, Norwegian University of Science and Technology, Trondheim, Norway
6Department of Neurology, Ullevaal Hospital, Oslo, Norway
7Department of Neurology, Oslo University Hospital, Oslo, Norway
8Biostatistics and Epidemiology Unit, Oslo University Hospital, Oslo, Norway
9Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
10Institute of Health and Nursing Science, University of Agder, Kristiansand, Norway
3 Kortela E, Kanerva MJ, Puustinen J, et al. Oral doxycycline compared to intravenous ceftriaxone in the treatment of Lyme neuroborreliosis: a multicenter, equivalence, randomized, open-label trial. *Clin Infect Dis* 2021;72:1232–31.

4 Bremer D, Dotevall L. Oral doxycycline for Lyme neuroborreliosis with symptoms of encephalitis, myelitis, vasculitis or intracranial hypertension. *Eur J Neurol* 2014;21:1162–7.

5 Mygland A, Østlie U, Fingerle V, et al. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. *Eur J Neurol* 2010;17:8–e4.

6 Rauer S, Kastenbauer S, Hofmann H, et al. Guidelines for diagnosis and treatment in neurology - Lyme neuroborreliosis. *Ger Med Sci* 2020;18:Doc03.

7 Cruickshank M, O’Flynn N, Faust SN, et al. Lyme disease: summary of NICE guidance. *BMJ* 2018;361:k1261.

8 Oksi J, Nikoskelainen J, Hiekkanen H, et al. Duration of antibiotic treatment in disseminated Lyme borreliosis: a double-blind, randomized, placebo-controlled, multicenter clinical study. *Eur J Clin Microbiol Infect Dis* 2007;26:571–81.

9 Berende A, ter Hofstede HJM, Vos FJ, et al. Randomized trial of longer-term therapy for symptoms attributed to Lyme disease. *N Engl J Med* 2016;374:1209–20.

10 Krupp LB, Freitag MH, Grimson R, et al. Study and treatment of post Lyme disease (STOP-LD): a randomized double masked clinical trial. *Neurology* 2003;60:1923–30.

11 Kullberg BJ, Vrijmoeth HD, van de Schoor F, et al. European neuroborreliosis: neuropsychological findings 30 months post-treatment. *Eur J Neurol* 2012;19:e1447–55.

12 Dersch R, Freitag MH, Schmidt S, et al. Efficacy and safety of pharmacological treatments for acute Lyme neuroborreliosis - a systematic review. *Eur J Neurol* 2015;22:1249–59.

13 Cadavid D, Auwaert P, Rumbaugh J, et al. Antibiotics for the neurological complications of Lyme disease. *Cochrane Database Syst Rev* 2016;12:CD006978.

14 Solheim AM, Østlie U, Mygland A. Six versus two weeks treatment with doxycycline in Lyme neuroborreliosis: the protocol of a multicentre, non-inferiority, double-blinded and randomised controlled trial. *BMJ Open* 2019;9:e027083.

15 Bremell D, Dotevall L. Oral doxycycline for Lyme neuroborreliosis with symptoms of encephalitis, myelitis, vasculitis or intracranial hypertension. *Eur J Neurol* 2014;21:1162–7.

16 Dersch R, Freitag MH, Schmidt S, et al. Efficacy and safety of pharmacological treatments for acute Lyme neuroborreliosis - a systematic review. *Eur J Neurol* 2015;22:1249–59.

17 Berende A, ter Hofstede HJM, Vos FJ, et al. Randomized trial of longer-term therapy for symptoms attributed to Lyme disease. *N Engl J Med* 2016;374:1209–20.
Lyme borreliosis; a scientific approach to reduce diagnostic and therapeutic uncertainties (BorrSci)

WP2; SIX VERSUS TWO WEEKS TREATMENT WITH DOXYCYCLINE IN LYME NEUROBORRELIOSIS; A MULTICENTER, NON-INFERIORITY, PENTA-BLIND, RANDOMIZED TRIAL

Protocol Identification Number: BorrSciWP2
EudraCT Number: 2015-001481-25

SPONSOR:
Frode Gallefoss
Research department, Sørlandet Hospital HF, Servicebox 416, 4604 Kristiansand, Norway
Tel : +47 38 07 30 00
E-mail: frode.gallefoss@sshf.no

COORDINATING INVESTIGATORS: Åse Mygland and Unn Ljøstad
Department of Neurology, Sørlandet Hospital HF, Servicebox 416, 4604 Kristiansand, Norway
Tel : +47 38 07 39 10
E-mail: aase.mygland@sshf.no
unn.ljostad@sshf.no

PROTOCOL VERSION NO. 4 - July 2017
CONTACT DETAILS

Sponsor:
Frode Gallefoss,
MD, Professor, PhD, leader of research department
Sørlandet Hospital HF,
Servicebox 416,
4604 Kristiansand
Tel : +47 38 07 30 00
E-mail: frode.gallefoss@sshf.no

Coordinating Investigators
Unn Ljøstad, MD, Professor, PhD
Department of Neurology, Sørlandet Hospital HF,
Servicebox 416,
4604 Kristiansand
Tel : +47 38 07 39 10
E-mail: unn.ljostad@sshf.no

Åse Mygland, MD, Professor PhD
Department of Neurology, Sørlandet Hospital HF,
Servicebox 416,
4604 Kristiansand
Tel : +47 38 07 39 10
E-mail: aase.mygland@sshf.no

Principal investigator (at each participating site or if single site study):

Name and title
Address
Tel :
E-mail:

Participating Departments:

Name and title
Address
Tel :
E-mail:

Participating Departments:

Name and title
Address
Tel :
E-mail:

Monitor:

Department of Clinical Research Support, Marta Colban
Oslo University Hospital,
Postbox 4956 Nydalen
0424 Oslo
E-mail: Marcol@ous-hf.no
SIGNATURE PAGE

Title
Lyme borreliosis; a scientific approach to reduce diagnostic and therapeutic uncertainties (BorrSci)
WP2; six versus two weeks treatment with doxycycline in Lyme Neuroborreliosis; a multicenter,
non-inferiority, penta-blind, randomized trial

Protocol ID no: BorrSciWP2
EudraCT no: 2015-001481-25

I hereby declare that I will conduct the study in compliance with the Protocol, ICH GCP and the applicable regulatory requirements:

Name	Title	Role	Signature	Date
PROTOCOL SYNOPSIS

Protocol title	Six versus two weeks treatment with doxycycline in Lyme Neuroborreliosis; a multicenter, non-inferiority, penta-blind, randomized trial
Sponsor	Sørlandet Hospital HF
Phase and study type	Phase III, interventional
Investigational Medical Product (IMP) (including active comparator and placebo):	Doxycycline 200 mg once daily for six weeks versus Doxycycline 200 mg once daily for two weeks + placebo for four weeks
Centers:	Sørlandet Hospital + 5-10 other Norwegian hospitals
Study Period:	Estimated date of first patient enrolled: 01.10.15 Anticipated recruitment period: 01.10.15–31.12.19 Estimated date of last patient completed: 31.12.20
Treatment Duration:	Six weeks
Follow-up:	13 months
Objectives	**Primary objective**
	To answer the question “is two weeks doxycycline treatment (currently suggested treatment) at least as effective as six weeks doxycycline treatment in Lyme Neuroborreliosis?”
	Key secondary objectives
	To provide a better understanding of the pathogenesis and long-term complaints, and to search for new biomarkers in LNB
	To collect clinical data, blood, and CSF in a biobank for future research
Endpoints:	**Primary endpoint:**
	Improvement in composite clinical score defined as clinical score at inclusion minus clinical score at 6 months.
	Secondary endpoints:
	Fatigue Severity Scale (FSS)
	Patient Health Questionnaire (PHQ-15)
	Short Form 36 (SF-36)
	Blood and CSF findings
	MRI, and neuropsychological assessments in a subset of patients
	Adverse events
Study Design:	Multicenter, non-inferiority, randomized, penta-blind, placebo-controlled trial
Main Inclusion Criteria:	1. Neurological symptoms suggestive of LNB without other obvious reasons and one or both of
	a. Cerebrospinal fluid pleocytosis (≥ 5 leukocytes/mm3)
	b. Intrathecal Bb antibody production
	2. Signed informed consent
Main Exclusion Criteria	– Age less than 18 years
	– Pregnancy, breast-feeding
	– Adverse reaction to tetracyclines
	– Treatment with cephalosporin, penicillin, or tetracycline the last 14 days
	– Serious liver or kidney disease that contraindicates use of doxycycline
	– Lactose intolerance
	– Need to use medications contraindicated according to SmPC of the IMP
Sample Size:	120 patients
Efficacy Assessments:	Comparison of clinical outcome six months after end of treatment between the two treatment groups.
Safety Assessments:	Subjective experiences and blood tests including hematology and biochemistry for four weeks after ended treatment.
TABLE OF CONTENTS

CONTACT DETAILS .. 2

SIGNATURE PAGE .. 3

PROTOCOL SYNOPSIS ... 4

TABLE OF CONTENTS ... 5

LIST OF ABBREVIATIONS AND DEFINITIONS OF TERMS .. 8

1 INTRODUCTION .. 9

1.1 Background – Lyme Neuroborreliosis (LNB) ... 9

1.2 Background - Therapeutic Information .. 9

1.3 Pre-Clinical & Clinical Experience with Investigational Medicinal Product (IMP) .. 9

1.4 Rationale for the Study and Purpose .. 9

2 STUDY OBJECTIVES AND RELATED ENDPOINTS .. 10

2.1 Primary Endpoint .. 10

2.2 Secondary Endpoints .. 11

3 OVERALL STUDY DESIGN ... 12

4 STUDY POPULATION .. 12

4.1 Selection of Study Population .. 12

4.2 Number of Patients ... 12

4.3 Inclusion Criteria .. 12

4.4 Exclusion Criteria .. 13

5 TREATMENT ... 13

5.1 Drug Identity, Supply and Storage .. 13

5.2 Dosage and Drug Administration .. 13

5.3 Duration of Therapy ... 13

5.4 Concomitant Medication ... 13

5.5 Subject Compliance .. 14

5.6 Drug Accountability ... 14

5.7 Drug Labeling .. 14

5.8 Subject Numbering .. 14

6 STUDY PROCEDURES ... 14

6.1 Flow Chart ... 14

6.2 By Visit .. 15

6.2.1 Screening/Before Treatment Starts Visit .. 15

6.2.2 During Treatment ... 16

6.2.3 End of Treatment Visit (four weeks after ended treatment) ... 16

6.2.4 Withdrawal Visit (desirable but voluntary) .. 16

6.2.5 Six months After End of Treatment (Follow-up) .. 16

6.2.6 Twelve months After End of Treatment (Follow-up) .. 16
6.3 Criteria for Patient Discontinuation

6.4 Procedures for Discontinuation

6.4.1 Patient Discontinuation

6.4.2 Trial Discontinuation

6.5 Laboratory Tests

7 ASSESSMENTS

7.1 Assessment of Efficacy

7.2 Safety and Tolerability Assessments

8 SAFETY MONITORING AND REPORTING

8.1 Definitions

8.1.1 Adverse Event (AE)

8.1.2 Serious Adverse Event (SAE)

8.1.1 Suspected Unexpected Serious Adverse Reaction (SUSAR)

8.2 Expected Adverse Events

8.3 Disease Progression

8.4 Time Period for Reporting AE and SAE

8.5 Recording of Adverse Events

8.6 Reporting Procedure

8.6.1 AEs and SAEs

8.6.2 SUSARs

8.6.3 Annual Safety Report

8.6.4 Clinical Study Report

8.7 Procedures in Case of Emergency

9 DATA MANAGEMENT AND MONITORING

9.1 Case Report Forms (CRFs)

9.2 Source Data

9.3 Study Monitoring

9.4 Confidentiality

9.5 Database management

10 STATISTICAL METHODS AND DATA ANALYSIS

10.1 Determination of Sample Size

10.2 Randomization

10.2.1 Allocation- sequence generation

10.2.2 Blinding and emergency unblinding

10.3 Population for Analysis

10.4 Planned analyses

10.5 Statistical Analysis

11 STUDY MANAGEMENT

11.1 Investigator Delegation Procedure

11.2 Protocol Adherence
Section	Page
11.3 Study Amendments	22
11.4 Audit and Inspections	22
12 ETHICAL AND REGULATORY REQUIREMENTS	22
12.1 Ethics Committee Approval	22
12.2 Other Regulatory Approvals	22
12.3 Informed Consent Procedure	22
12.4 Subject Identification	23
13 TRIAL SPONSORSHIP AND FINANCING	23
14 TRIAL INSURANCE	23
15 PUBLICATION POLICY	23
16 REFERENCES	24
17 LIST OF APPENDICES	25
LIST OF ABBREVIATIONS AND DEFINITIONS OF TERMS

Abbreviation or special term	Explanation
AE	Adverse Event
AR	Adverse Reactions
Bb	Borrelia burgdorferi
CIOMS	Council for International Organizations of Medical Sciences
CNS	Central Nervous System
CONSORT	Consolidated Standards of Reporting Trials
CRF	Case Report Form (electronic/paper)
CSF	Cerebrospinal Fluid
CSR	Clinical Study Report
CTC	Common Toxicity Criteria
CTCAE	Common Terminology Criteria for Adverse Event
CTU	Clinical Trial Unit
DAE	Discontinuation due to Adverse Event
DMC	Disease Monitoring Committee
EC	Ethics Committee
FSS	Fatigue Severity Scale
GCP	Good Clinical Practice
ICF	Informed Consent Form
ICH	International Conference on Harmonization
IMP	Investigational Medicinal Product (includes active comparator and placebo)
ISF	Investigator’s Study File
ITT	Intention to treat
LNB	Lyme Neuroborreliosis
MRI	Magnetic Resonance Imaging
NMA	Norwegian Medical Agency
NTNU	Norwegian University of Science and Technology
OUS	Oslo Universitetssykehus
PHQ-15	Patient Health Questionnaire
PNS	Peripheral Nervous System
SAE	Serious Adverse Event
SDV	Source document verification
SF-36	Short Form 36
SmPC	Summary of Product Characteristics
SOP	Standard Operating Procedure
SSHF	Sørlandet Sykehus HF
SUSAR	Suspected Unexpected Serious Adverse Reactions
TMF	Trial Master File
WP	Work Package

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
1 INTRODUCTION

1.1 Background – Lyme Neuroborreliosis (LNB)

Lyme borreliosis is a multisystem infectious disease, caused by the tick-borne spirochete *Borrelia burgdorferi* (*Bb*), which frequently affects the nervous system. The most common clinical manifestations of European Lyme Neuroborreliosis (LNB) are painful radiculitis and cranial neuropathy (most often the facial nerve). Rarer manifestations are myelitis, encephalitis, and peripheral neuropathies. The diagnosis of LNB is based on a combination of clinical neurological findings, lymphocytic pleocytosis and intrathecal *Bb* antibody production (1).

Most patients recover well within weeks to a few months after standard antibiotic treatment, but 25-50% of LNB patients report residual complaints often labelled post-Lyme syndrome (2-9). The most common remaining complaints are subjective symptoms as fatigue, pain, concentration and memory problems. Remaining objective findings as facial palsy and radiculopathy are rarer.

The impact and prevalence of post-Lyme syndrome are debated, as similar symptoms are common in the general population. It is also questioned if the complaints are more common after LNB than after other infections in the nervous system. There are few controlled studies on the issue, but one previous study found more fatigue and lower mean scores on health related quality of life among 50 well-characterized LNB patients 30 months after treatment for LNB than among 50 matched healthy controls (3).

The underlying mechanism of post-Lyme syndrome is also debated and largely unresolved. Theories as ongoing chronic *Bb* infection (10), dysregulated immune responses (11, 12), genetic predisposition (13), co-infection with multiple tick-borne pathogens (14), structural changes in the Central Nervous System (CNS) (15), and personal traits (16, 17), have been suggested.

In the current trial, we will address the persistent infection hypothesis by assessing long-term prognosis after extended antibiotic treatment. Further, the trial is a part of the compound and large BorrSci study (Lyme borreliosis; a scientific approach to reduce diagnostic and therapeutic uncertainties) which also aims to address the other hypotheses mentioned above. These approaches are further described in the protocols for the other workpackages (WP) of BorrSci (Appendix A). The blood and cerebrospinal fluid (CSF) specimens along with comprehensive clinical information collected from the patients included in the current treatment trial is an important contribution to the biobank that will be established for these purposes.

1.2 Background - Therapeutic Information

Standard treatment for Lyme Neuroborreliosis (LNB) is intravenous ceftriaxone or penicillin, or oral doxycycline for two to four weeks (1). Previous studies have shown that two weeks of oral doxycycline and intravenous ceftriaxone are equally effective for LNB with painful radiculitis or cranial neuritis (5, 18). However, evidence about the optimal duration of treatment is currently lacking. There are a few studies of prolonged antibiotic treatment in LNB, but they are hampered with poorly-characterized patients, insufficient statistical power, lack of matched controls, and ambiguous results (19-23). A case series reported excellent or good response in 90% of patients with disseminated Lyme (including some with neuroborreliosis) after treatment with oral cefixime or IV ceftriaxone for 14 days followed by oral amoxicillin for 100 days (24). A controlled study of 152 patients with disseminated Lyme disease (including 62 with neuroborreliosis) (20), however, found similar outcome in patients treated with 3 weeks with IV ceftriaxone followed by oral amoxicillin for 100 days and patients treated with 3 weeks IV ceftriaxone followed by placebo for 100 days. An American openlabel randomized comparison of 14-days versus 28-days treatment with ceftriaxone for late Lyme borreliosis (143 patients, of whom a third with neurological symptoms), showed more treatment failures in the 14-day group than in the 28-day group, but did not have the power to determine if a clinical subset of patients may benefit from 28 days of therapy. There were more discontinuations because of adverse events in the 28- days group (25). Another series of late LNB showed disappearance of symptoms in 87% after 100 days regimens with various antibiotics, whereas 14 days with ceftriaxone cured 31% (26).

The possibility that a longer treatment with doxycycline, such as six weeks, is superior to the current standard treatment of two weeks in LNB has not been properly addressed in a randomized controlled trial.

1.3 Pre-Clinical & Clinical Experience with Investigational Medicinal Product (IMP)

Doxycycline is a well-known drug with a good safety profile used for several infectious diseases worldwide.

1.4 Rationale for the Study and Purpose

The main purpose of the trial is to answer the “is two weeks doxycycline treatment (currently suggested treatment) at least as effective as six weeks doxycycline treatment in LNB?” The benefits of a positive answer to this question would
be a reduced frequency of persisting complaints after treatment. The benefits of a negative answer would be avoidance of unnecessarily prolonged treatment with antibiotics and thereby reduced antibiotic resistance. Doxycycline 200 mg daily for 2 weeks is recommended for LNB, and half of the study patients will receive this standard treatment (and additional four weeks of placebo). The other half will receive doxycycline 200 mg daily for six weeks. Possible disadvantages for the trial participants are more adverse advents as nausea and diarrhea, disturbances in leukocyte and thrombocyte count, and skin reactions (mostly photosensitivity). Longer antibiotic treatment may also lead to higher prevalence of resistant bacteria in patients and the general society. We regard these possible disadvantages as minor as the patients’ subjective experiences and blood cell count will be closely monitored during the study, and both groups of patients will be discouraged sunbathing during treatment and up to two weeks after drug intake. In our opinion, the benefit of determination of preferred duration of treatment for the future eliminates the disadvantage of exposing. Besides this, several spin off effects strengthens the rationale for conducting the study. The collected clinical data and specimens (blood and CSF) from well-characterized LNB patients may enable us to address other hypotheses regarding long-term complaints as immune dysregulation, genetic predisposition, co-infections and structural changes in CNS, and it facilitates search for new biomarkers of LNB which could be used in diagnostics.

2 STUDY OBJECTIVES AND RELATED ENDPOINTS

Objectives	Endpoints	Assessments
Primary	- Primary endpoint: Improvement of clinical score six months after ended treatment	- Composite clinical score. See section: 2.1
1. To answer the question "is two weeks doxycycline treatment (currently suggested treatment) at least as effective as six weeks doxycycline treatment in LNB?"	- Secondary endpoints: Fatigue, subjective somatic symptoms, health related quality of life, cognitive function, safety, inflammation.	- FSS, PHQ-15, SF-36, adverse events inflammatory parameters in CSF. See section 2.2
Secondary 1. To provide a better understanding of the pathogenesis of LNB and long-term complaints	- Antibody and inflammatory profiles	Described in WP4 of BorrSci. See appendix A
2. To search for new biomarkers in LNB	- Genomic profiles	
Exploratory	- Brain MRI	
To collect clinical data, blood, and CSF from well-characterized LNB patients in a biobank	- Neuropsychological profiles	Described in WP3 of BorrSci. See appendix A
	- Further search for biomarkers, co-infections and other factors involved in LNB	

Table 1. Summary of objectives, endpoints, and assessments

2.1 Primary Endpoint

The primary endpoint is improvement on a composite clinical score (Table 2) from inclusion to six months after ended treatment defined as clinical score at inclusion minus clinical score at six months.
Table 2. Composite clinical score.

Each item is scored 0=none, 1=mild, without influence on daily life, or 2=severe, with influence on daily life. Maximum total score=64 (sum of subjective symptoms and objective findings)

* Temporally and otherwise related to current LNB

** Abnormal sensory findings in a radicular pattern

** Paresis in a radicular pattern

** Abnormal sensory findings in a non-radicular pattern (matching with peripheral nerve or plexus)

** Paresis in a non-radicular pattern (matching with peripheral nerve or plexus)

** Central weakness and/or spasticity (central paresis, spasticity and/or impairment in pace or fine motor skills)

2.2 Secondary Endpoints

Improvement of composite clinical score from inclusion to 12 months after end of treatment defined as clinical score at inclusion minus clinical score at 12 months. (Table 1)

Fatigue Severity Scale (FSS) at six and 12 months after end of treatment. FSS is translated and validated for Norwegian purposes (12). It measures level of agreement (1–7) with nine statements. The final score represents the mean value of the nine items. Severe fatigue is defined as a score >5 in a Norwegian population. Reported mean score in 20 American
healthy adults is 2.3 (13), and reported mean score in 50 Norwegian patients treated for LNB is 3.5 versus 2.1 in the control group (3).

Patient Health Questionnaire (PHQ-15) at six months, PHQ-15 is a brief, validated questionnaire, which consists of 13 questions concerning severity of different subjective somatic symptoms the last 4 weeks, and 2 questions concerning sleep and tiredness. Each item is scored from 0 to 2, and sum score ranges from 0 to 30. Sum scores of 5, 10, and 15 represent cutpoints for low, medium, and high symptom severity, respectively (27).

Short Form-36 (SF-36): SF-36 is a valid and reliable questionnaire assessing health related quality of life. It consists of 36 questions concerning general health perceptions, physical functioning, physical role functioning, emotional role functioning, social role functioning, bodily pain, vitality and mental health. A Norwegian normal material exist (28).

CSF findings at six and 12 months: Cell count, IgG index, OCB’s, and *Bb* antibodies

Other laboratory tests, MRI, and neuropsychological assessments: In a subset of patients at inclusion and six months after end of treatment (WP4 of BorrSci).

Safety as measured by serious adverse events and less serious side effects of treatment (Table 3)

Table 3. Safety measures

Treatment week	0	1	2	3	4	5	6	7-10
Nausea			x	x	x	x	x	x
Vomiting					x	x	x	x
Diarrhea						x	x	x
Skin reactions							x	x
Vaginitis								x
Bloodtests (Hb, Hb, white blood cell count with differential, platelet count, ASAT, ALAT, GT, ALP, Creatinine)			x	x				
Other AE or complications							x	x

Secondary and exploratory objectives and their endpoints and assessments are detailed in WP 3 and 4 (Appendix A)

3 OVERALL STUDY DESIGN

The study is a phase III, randomized, penta-blind, placebo-controlled, multicenter trial with a non-inferiority design. The trial will be conducted and reported according to the CONSORT statement (Consolidated Standards of Reporting Trials), the SPIRIT initiative (Standard Protocol Items: Recommendations for Interventional Trials), and Good Clinical Practice (GCP) standards, and registered in ClinicalTrials.gov

Study Period

- Estimated date of first patient enrolled: 01.10.15 (startup at Sørlandet Hospital 2015, recruitment from other centres gradually during 2016)
- Anticipated recruitment period: 01.10.15 - 31.12.19
- Estimated date of last patient completed: 31.12.20

Treatment Duration: Six weeks

Follow-up: 13 months

4 STUDY POPULATION

4.1 Selection of Study Population

The study will be headed from Sørlandet Hospital HF (SSHF). Selected hospitals throughout Norway (5-10) will recruit consecutive patients diagnosed with LNB. A contact person, familiar with diagnosis and treatment of LNB, at each study site will be trained in the current study and in general GCP.

4.2 Number of Patients

We plan to enroll 120 patients, 60 in each treatment arm.

4.3 Inclusion Criteria

In everyday clinical practice, patients with suspected LNB are routinely examined neurologically and their CSF is analyzed regarding cell count, protein level, IgG index, oligoclonal bands (OCB’s) and *Bb* antibodies (including...
calculations whether there are intrathecal production of \textit{Bb} antibodies). Diagnostics may be somewhat uncertain in subacute cases as antibiotic treatment is often initiated before \textit{Bb} antibody results are available, and \textit{Bb} antibody production may be absent in early phases of LNB. In this trial, we will therefore use the following inclusion criteria:

1. Neurological symptoms suggestive of LNB without other obvious reasons, and one or both of
 a. CSF pleocytosis (leucocytes ≥ 5/mm3)
 b. Intrathecal \textit{Bb} antibody production

2. Signed informed consent

During the course of the disease, the patients will be classified as either definite or possible LNB according to European diagnostic criteria (Table 4) (1).

Table 4. European diagnostic criteria

If criterion 3 is lacking after a duration of six weeks, there have to be found \textit{Bb}-specific antibodies in serum.

Definite LNB	Possible LNB*
All three criteria fulfilled	Two criteria fulfilled
1. Neurological symptoms suggestive of LNB without other obvious reasons	
2. Cerebrospinal fluid pleocytosis	
3. Intrathecal \textit{Bb} antibody production	

4.4 Exclusion Criteria

Patients will be excluded from the study if they meet any of the following criteria:

- Age less than 18 years
- Pregnancy, breast-feeding and/or women of childbearing potential not using adequate contraception. Adequate contraception include oral, injected or implanted hormonal methods of contraception, placement of an intrauterine device or system, vasectomized partner, or sexual abstinence imposed during treatment.
- Adverse reaction to tetracyclines
- Treatment with cephalosporin, penicillin, or tetracycline macrolide during the last 14 days before start of doxycycline treatment *
- Serious liver or kidney disease that contraindicates use of doxycycline
- Lactose intolerance
- Need to use medications contraindicated according to SmPC of the IMP (Antacid drugs, Didanosin, Probenecide, Phenobarbital, Phenytoin, Carbamazepine, Rifampicin)

*If used for other conditions than LNB, or if the active LNB has been treated with antibiotic drugs or dosage deviating from the protocol

5 TREATMENT

For this study, doxycycline and placebo are defined as Investigational Medicinal Product (IMP). Included patients will be randomized to two weeks treatment with oral doxycycline (200 mg once daily) followed by four weeks placebo or six weeks treatment with oral doxycycline (200 mg once daily).

5.1 Drug Identity, Supply and Storage

IMPs (active drug and placebo) will be produced at Kragerø Tablettproduksjon. Production documentation is described in a separate document (Appendix B). All included patients will receive active drug (doxycycline) for 14 days, thereafter half of them will receive placebo and the other half will receive active drug (doxycycline) for four weeks.

5.2 Dosage and Drug Administration

Both active drug and placebo will be administered per os as capsules every 24 hours. IMPs should be taken together with abundant water and a small meal. Iron tablets, calcium preparations youghurt, milk and food/ beverages that contain calcium may weaken the effect of doxycycline, and should not be taken less than three hours before or after intake of IMP.

5.3 Duration of Therapy

The patients will be treated for six weeks unless disease progression (see section 8.3) or unacceptable toxicity.

5.4 Concomitant Medication

The following medications are not allowed while the patient is in the treatment phase of the study:
- Antacid drugs (single use)
- Didanosin (single use)
- Probencide (chronic use)
- Phenobarbital (chronic use)
- Phenytoin (chronic use)
- Carbamazepine (chronic use)
- Rifampicin (chronic use)

All concomitant medication (incl. vitamins, herbal preparation and other “over-the-counter” drugs) used by the patient will be recorded in the patient’s file and CRF.

5.5 **Subject Compliance**

Pillcount and patients compliance diary will be used to determine adherence to treatment.

5.6 **Drug Accountability**

The responsible site personnel will confirm receipt of study drug and will use the study drug only within the framework of this clinical study and in accordance with this protocol. Distribution and return of the study drug will be documented in the drug accountability log and in the CRFs.

If patients are included in the study after already having started doxyxycline 200 mg per day, the responsible site personnel will ensure that the appropriate amount of capsules, depending on the number of days already treated, are removed from the study drug packaging before distribution to the patients. The amount of study drug delivered to the patients will be documented in the CRF.

5.7 **Drug Labeling**

The IMPs will have a label permanently affixed to the outside and will be labeled according with GCP and national regulations (29, 30), stating that the material is for clinical trial/investigational use only and should be kept out of reach of children. The labeling will be prepared by Kragerø Tablettproduksjon. All text will be in Norwegian. Labeling details are described in separate document attached (Appendix C). Labels will also include blank lines for:
- Patient’s initials
- Patient’s enrolment code
- Date dispensed
- Name of prescribing doctor

5.8 **Subject Numbering**

Each subject is identified in the study by a unique subject number that is assigned when the subject is entered into the eCRF for the first time, after signing the Informed Consent Form. Once assigned the subject number cannot be reused for any other subject. The study treatment will be dispensed to the subject by authorized site personnel only.

6 **STUDY PROCEDURES**

6.1 **Flow Chart**

Time	Baseline	Treatment and post-treatment Period	Follow-up Period	
	Before treatment	Week 1-10	6 months after end of treatment	12 months after end of treatment
Enrollment and Informed consent	x			
Basic demographics	x			
Medical History	x			
Concomitant medications	x			x

BorrSciWP2 Version no.3. – November 2016
Baseline

Time	Baseline	Treatment and post-treatment Period	Follow-up Period				
	Before treatment	Once weekly	Week 2 - 4	Day 6-8 after start of treatment	End of week 10	6 months after end of treatment	12 months after end of treatment
Telephone to check for reasons to discontinue IMP (treatment failure, toxicity, and so on)	x				x	x	x
Composite clinical score (Table 2)	x				x	x	x
FSS	x				x	x	x
PHQ-15	x				x	x	x
SF-36	x				x	x	x
CSF sampling	X**				x	x	x
Blood sampling	X**				x	x	x
IMP delivery	x				x	x	x
Patient registration of compliance, concomitant medication, and adverse events (Table 3)	x				x	x	x
Blood tests to check toxicity of treatment	x				xx	x	x
Pill count and collection of patients diaries	x						
Cerebral MRI*	x				x	x	x
Neuropsychological screening tests*	x						
Neuropsychological testing*	x						

Table 5. Trial flow chart

*a subset of patients (WP4)

** obtained by clinician before inclusion

6.2 By Visit

Clinical data will be collected in a clinical research e-database at Department of clinical research support at Oslo University Hospital (OUS).

6.2.1 Screening Visit

- Evaluate patient eligibility based on symptoms, findings and CSF findings
- Demographic data: Age, sex, education, occupational status, civil status
- Medical history: Comorbidity, medication, tick bite (ever and last six months), Erythema Migrans (ever and last six months), earlier treatment for Lyme borreliosis
- Clinical picture: Symptom description, symptom duration
- Physical examination: General clinical and neurological examination including composite clinical score
- Concomitant medication: All concomitant medication (incl. vitamins, herbal preparation and other “over-the-counter” drugs) used by the subject within 28 days of treatment start will be recorded in the CRF.
- Laboratory analysis from samples obtained before inclusion
 - Blood: Hb, white blood cell count with differential, platelet count, ASAT, ALAT, GT, ALP, Creatinine, CRP, electrophoresis, Bb antibodies, TBE antibodies. Pregnancy test should have been taken within the last 14 days before inclusion in fertile women.
 - CSF: Cellcount, protein level, Oligoclonal bands, Bb antibodies, PCR for Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV) and Enterovirus
- In addition aliquots of specimens will be transferred for biobank storage after inclusion
6.2.2 During Treatment
- Adverse events: Diary (on paper or electronic - optional) every week until four weeks after ended treatment
- Registration of concomitant medications
- Blood analyses 2 and 4 weeks after treatment start (Hb, white blood cell count with differential, platelet count, ASAT, ALAT, GT, ALP, Creatinine)
- Talk (meeting or telephone, optional) 1 week after treatment start to uncover reasons for discontinuation of IMP (deterioration, progression or other - see 6.3)
- Non-scheduled visit in case of disease progression SAE or SUSAR
- Cerebral MRI and neuropsychological screening in a subset of patients (see APPENDIX A)

6.2.3 End of Treatment Visit (four weeks after ended treatment)
- Counting and relinquishment of remaining pills
- Collection of patients diary
- Registration of symptoms, concomitant medication, and adverse events
- Composite clinical score
- FSS

6.2.4 Withdrawal Visit (desirable but voluntary)
- Interview about medical history, symptom description, concomitant medication, reason for withdrawal, and adverse events
- Composite clinical score

6.2.5 Six months After End of Treatment (Follow-up)
- Interview about symptom description, concomitant medication, and sick leave attributable to LNB
- Composite clinical score
- FSS, PHQ-15, SF-36
- Laboratory analyses
 - Blood: Hb, white blood cell count with differential, platelet count, ASAT, ALAT, GT, ALP, Creatinine, CRP, electrophoresis, Bb antibodies, TBE antibodies
 - CSF: Cellcount, protein level, Oligoclonal bands, Bb antibodies,
 - In addition aliquots of specimens will be transferred for biobank storage
- Cerebral MRI and neuropsychological testing in a subset of patients (Appendix A)

6.2.6 Twelve months After End of Treatment (Follow-up)
- Interview about symptom description, concomitant medication, and sick leave attributable to LNB
- Composite clinical score
- FSS, PHQ-15
- Laboratory analyses
 - Blood: Hb, white blood cell count with differential, platelet count, ASAT, ALAT, GT, ALP, Creatinine, CRP, electrophoresis, Bb antibodies, TBE antibodies
 - CSF: Cellcount, protein level, Oligoclonal bands, Bb antibodies,
 - In addition aliquots of specimens will be transferred for biobank storage

6.3 Criteria for Patient Discontinuation
Patients may be discontinued from study treatment and assessments at any time. Specific reasons for discontinuing a patient for this study are:
- Voluntary discontinuation by the patient who is at any time free to discontinue his/her participation in the study, without prejudice to further treatment.
- Safety reason as judged by the coordinating investigators
- Major protocol deviation
• Incorrect enrolment ie, the patient does not meet the required inclusion/exclusion criteria for the study
• Patient lost to follow-up
• A female patient becoming pregnant during treatment
• Disease progression
• Deterioration in the patient’s condition which in the opinion of the coordinating investigators warrants study medication discontinuation (to be recorded as an AE or under Investigator Discretion)
• Patient’s non-compliance to study treatment and/or procedures

6.4 Procedures for Discontinuation

6.4.1 Patient Discontinuation
Patients who withdraw or are withdrawn from the study, will either stop further treatment or receive another antibiotic therapy. If possible, a final assessment shall be made (withdrawal visit and/or follow-up visits). The reason for discontinuation will be recorded, and the investigator will follow up any significant adverse events until the outcome is either recovered or resolved. Patients who withdraw or are withdrawn from the study before start of treatment, will be replaced.

6.4.2 Trial Discontinuation
The whole trial may be discontinued in the event of any of the following:
• Occurrence of AEs unknown to date in respect of their nature, severity and duration
• Medical or ethical reasons affecting the continued performance of the trial
• Difficulties in the recruitment of patients
The coordinating investigators will inform all investigators, the relevant Competent Authorities and Ethics Committees of the termination of the trial along with the reasons for such action. If the study is terminated early on grounds of safety, the Competent Authorities and Ethics Committees will be informed within 15 days.

6.5 Laboratory Tests
Blood and CSF samples will be analyzed at the local laboratories for registration of side effects of treatment and for diagnostic purposes according to existing routines. In addition, aliquots of specimens will be transferred for biobank storage and applied for genetic and immunologic purposes. Details regarding collection, handling, storage, packaging, shipment and destruction will be described in WP3 and WP4 in BorrSci (Appendix A).

7 ASSESSMENTS

7.1 Assessment of Efficacy
The treatment efficacy will be assessed by measuring symptoms and signs six months after ended treatment and summarized on a composite clinical score which reports subjective symptoms and objective findings in a clinical neurological examination. The primary endpoint is improvement in the composite clinical score. The score is a modified version of a score used in an earlier treatment trial in LNB (5). Even if the score is not validated it is, in our opinion, the best way to assess outcome after LNB as it addresses and grades the most commonly reported remaining symptoms and signs. Our experience with the previous score was that it worked well, but some points were not entirely clear or somewhat overlapping. We therefore find it appropriate and more accurate to simplify it to reduce interrater disagreement and scala biases.
To support treatment effect assessment we have chosen several secondary endpoints; inflammatory findings in CSF as measured by cellcount, protein level and oligoclonal bands, fatigue as measured by FSS, burden of somatic symptoms as measured by PHQ-15, and health related quality of life as measured by SF-36. We will also apply proportion of patients with full recovery (score zero on the composite clinical score) as a secondary endpoint. In a subset of patients, MRI findings and neuropsychological profile will be a secondary endpoint.

7.2 Safety and Tolerability Assessments
Significant findings that are present prior to the signing of informed consent will be included in the relevant medical history/ current medical condition page of the CRF. For the assessment of safety and tolerability, refer to Flow chart in Section 6 and Table 3.
8 SAFETY MONITORING AND REPORTING

The site investigators and the coordinating investigators are responsible for the detection and documentation of events meeting the criteria and definition of an adverse event (AE) or serious adverse event (SAE). Each patient will be instructed to contact the site investigator immediately should they manifest any signs or symptoms they perceive as serious.

8.1 Definitions

8.1.1 Adverse Event (AE)

An AE is any untoward medical occurrence in a patient administered a pharmaceutical product and which does not necessarily have a causal relationship with this treatment. The term AE is used to include both serious and non-serious AEs. An AE can be any unfavorable and unintended sign (including an abnormal laboratory finding), symptom, or disease temporally associated with the use of a medicinal (investigational) product, whether or not related to the medicinal (investigational) product.

8.1.2 Serious Adverse Event (SAE)

Any untoward medical occurrence that at any dose:

- Results in death
- Is immediately life-threatening
- Requires in-patient hospitalization or prolongation of existing hospitalization
- Results in persistent or significant disability or incapacity
- Is a congenital abnormality or birth defect
- Is an important medical event that may jeopardize the subject or may require medical intervention to prevent one of the outcomes listed above

Medical and scientific judgment is to be exercised in deciding on the seriousness of a case. Important medical events may not be immediately life threatening or result in death or hospitalization, but may jeopardize the subject or may require intervention to prevent one of the listed outcomes in the definitions above. In such situations, or in doubtful cases, the case should be considered as serious. Hospitalization for administrative reason (for observation or social reasons) is allowed at the investigator’s discretion, and will not qualify as serious unless there is an associated adverse event warranting hospitalization.

8.1.1 Suspected Unexpected Serious Adverse Reaction (SUSAR)

Adverse Reaction: all untoward and unintended responses to an investigational medicinal product related to any dose administered.

Unexpected Adverse Reaction: an adverse reaction, the nature or severity of which is not consistent with the applicable product information.

Suspected Unexpected Serious Adverse Reaction: SAE (see section 8.1.2) that is unexpected as defined in section 8.2 and possibly related to the IMP.

8.2 Expected Adverse Events

Nausea, vomiting, diarrhea, vaginitis, skin reactions, disturbances in blood tests are all expected AE. The manufacturer’s SmPC will be used as reference document. All AE will be recorded in the CRF.

8.3 Disease Progression

Disease progression in this trial is defined as worsening of the patient’s condition attributable to LNB despite treatment for 14 days with doxycycline, or serious progression of neurological signs from CNS (myelitis or encephalitis) during treatment. Events that are definitely due to disease progression will not be reported as an AE/SAE unless the investigator considers there is a causal relationship between treatment with IMP or protocol design/procedures and the disease progression/recurrence. Death due to progressive disease is to be recorded on a specific from in the CRF but not as an SAE.

8.4 Time Period for Reporting AE and SAE

For each patient the standard time period for collecting and recording AE and SAEs will begin at start of study treatment and will continue for at least four weeks following the last dose of study treatment for each patient. During the course of the study all AEs and SAEs will be proactively followed up for each patient; events should be followed up to resolution, unless the event is considered by the investigator to be unlikely to resolve due to the underlying
disease. Every effort should be made to obtain a resolution for all events, even if the events continue after discontinuation/study completion.

8.5 Recording of Adverse Events

If the patient has experienced adverse event(s), the investigator will record the following information in the CRF:

- The nature of the event(s) will be described by the investigator in precise standard medical terminology (i.e. not necessarily the exact words used by the patient).
- The duration of the event will be described in terms of event onset date and event ended data.
- The intensity of the adverse event: Mild/Moderate/Severe according to Common Terminology Criteria for Adverse Events version 4.0 (CTCAE).
- The Causal relationship of the event to the study medication will be assessed as one of the following:
 - **Unrelated**: There is not a temporal relationship to investigational product administration (too early, or late, or investigational product not taken), or there is a reasonable causal relationship between non-investigational product, concurrent disease, or circumstance and the AE.
 - **Unlikely**: There is a temporal relationship to investigational product administration, but there is not a reasonable causal relationship between the investigational product and the AE.
 - **Possible**: There is reasonable causal relationship between the investigational product and the AE. Dechallenge information is lacking or unclear.
 - **Probable**: There is a reasonable causal relationship between the investigational product and the AE. The event responds to dechallenge. Rechallenge is not required.
 - **Definite**: There is a reasonable causal relationship between the investigational product and the AE.

- Action taken
- The outcome of the adverse event – whether the event is resolved or still ongoing.

8.6 Reporting Procedure

8.6.1 AEs and SAEs

All adverse events and serious adverse events that should be reported as defined in section 8.1.1 will be recorded in the patient’s CRF.

SAEs must be reported by the site investigator to the sponsor represented by the coordinating investigators within 24 hours after the site has gained knowledge of the SAE. Every SAE must be documented by the investigator on the SAE pages (to be found as part of the CRF). The Serious Adverse Event Report Form must be completed and signed. The initial report shall promptly be followed by detailed, written reports if necessary. The initial and follow-up reports shall identify the trial subjects by unique code numbers assigned to the latter.

The coordinating investigators keep detailed records of all SAEs reported and perform an evaluation with respect to seriousness, causality and expectedness.

8.6.2 SUSARs

SUSARs will be reported to the Competent Authority according to national regulation. The following timelines should be followed:

On suspicion of SUSAR the site investigator report to the sponsor represented by the coordinating investigators. If the coordinating investigators consider the event as a SUSAR they report it to the Department of clinical research support. Personell at the department of clinical research support, not otherwise involved in the trial, will unblind the treatment and ensure that all relevant information about SUSARs that are fatal or life-threatening is recorded and reported unblinded as soon as possible to the Competent Authority, no later than seven days after knowledge of such a case, and that relevant follow-up information is subsequently communicated within an additional eight days.

All other SUSARs will be reported to the Competent Authority concerned and to the Ethics Committee concerned as soon as possible but within a maximum of 15 days of first knowledge.
SUSARs will be reported using the CIOMS form.

8.6.3 Annual Safety Report
Once a year throughout the clinical trial, the sponsor will provide the Competent Authority with an annual safety report. The format will comply with national requirements.

8.6.4 Clinical Study Report
The adverse events and serious adverse events occurring during the study will be discussed in the safety evaluation part of the Clinical Study Report.

8.7 Procedures in Case of Emergency
The site investigators are responsible for assuring that there are procedures and expertise available to cope with emergencies during the study. Code break may be relevant in case of toxicity and other events were knowledge of treatment arm matters for further management of the patient. Envelopes with randomization codes are available in such cases.

9 DATA MANAGEMENT AND MONITORING

9.1 Case Report Forms (CRFs)
The designated investigator staff will enter the data required by the protocol into an electronic Case Report Form (CRF). The site investigators are responsible for assuring that data entered into the CRF is complete, accurate, and that entry is performed in a timely manner. The signature of the investigator will attest the accuracy of the data on each CRF. If any assessments are omitted, the reason for such omissions will be noted on the CRFs. Corrections, with the reason for the corrections will also be recorded.

9.2 Source Data
The medical records for each patient should contain information which is important for the patient’s safety and continued care, and to fulfill the requirement that critical study data should be verifiable.

To achieve this, the medical records of each patient should clearly describe:
- That the patient is participating in the study, e.g. by including the enrollment number and the study code or other study identification;
- Date when Informed Consent was obtained from the patient and statement that patient received a copy of the signed and dated Informed Consent;
- Results of all assessments confirming a patient’s eligibility for the study;
- Diseases (past and current; both the disease studied and others, as relevant);
- Treatments withdrawn/withheld due to participation in the study;
- Results of assessments performed during the study;
- Treatments given, changes in treatments during the study and the time points for the changes;
- Visits to the clinic / telephone contacts during the study, including those for study purposes only;
- Non-Serious Adverse Events and Serious Adverse Events (if any) including causality assessments;
- Date of, and reason for, discontinuation from study treatment;
- Date of, and reason for, withdrawal from study;
- Date of death and cause of death, if available;
- Additional information according to local regulations and practice.

9.3 Study Monitoring
We plan a strategic monitoring with focus on the most critical data, such as primary endpoint data and key safety data, including adverse events and a higher source document verification (SDV) coverage on the first one or two subjects enrolled at each site in order to establish an early data quality “yardstick” for each site. A risk-based monitoring plan will be made.

Monitors, and/or competent authorities will be allowed access to source data for SDV in which case a review of those parts of the hospital records relevant to the study may be required.
9.4 Confidentiality
The investigator shall arrange for the secure retention of the patient identification and the code list. Patient files shall be kept for the maximum period of time permitted by each hospital. The study documentation (CRFs, Site File etc) shall be retained and stored during the study and for 15 years after study closure. All information concerning the study will be stored in a safe place inaccessible to unauthorized personnel.

9.5 Database management
The Department of clinical research support, OUS, will perform data management in accordance with ICH guidelines, CRS SOPs, and described in the trial specific Data Handling Plan. The plan will describe the processes and documentation related to data capture and data quality control. The data will be captured in an electronic CRF (eCRF). The eCRF will ensure security (to prevent unauthorized access to, or loss of data) and storage during trial. After database lock, the trial will be archived by sponsor and removed from the eCRF.

10 STATISTICAL METHODS AND DATA ANALYSIS

10.1 Determination of Sample Size ** Manuela?
In a previous trial on well-characterized LNB patients, 102 patients were treated with either oral doxycycline or IV cephrtriaxone for two weeks. From this trial we have available outcome scores at 12 months from 93 patients, measured on a slightly different composite clinical scale, but with the same max score of 64. We consider the scales as so similar that the results from the former trial can be used in power analyses in the current planned trial. The mean score in the former trial was 1.7 with a standard deviation (SD) of 2.6.

10.2 Randomization

10.2.1 Allocation- sequence generation
Computerized allocation to two or six weeks doxycycline (1:1) will be performed at Department of clinical research support, OUS by an internet based solution. Automatic e-mails with the result of the randomization will be sent to the involved hospitals.

10.2.2 Blinding and emergency unblinding
To achieve maximum objective performance and reporting of the study we will use the “penta blind” approach. First, we use the traditional double blind design with blinding of participants and investigators (first and second blinding). The staff evaluating end-points and adverse effects is blinded to all other study information (third blinding). Then the content of all tables and figures are fixed before any study data are available (fourth blinding) and then the statistical procedures are performed with treatment groups marked as group A and B. First, when all the tables and figures are filled out, the randomization code is broken. Unblinding for the investigator will be done when all patients have completed the six month visit (primary and several secondary end-points answered), and for the patients after the 12 month registration. Emergency unblinding is permissible as described in section 8.7. Unblinding procedure in case of SUSAR is described in section 8.6.2.

10.3 Population for Analysis
The following populations will be considered for the analyses:
- Intention to treat (ITT) population: All randomized participant, regardless of protocol adherence.
- Per-protocol population (PP): Includes all without significant protocol deviation
- Safety population: Includes all subjects who have received at least one dose of study medication. Subjects who withdraw from the study will be included in the safety analysis. A list of withdrawn subjects, preferably with the reasons for withdrawal, will be made.

10.4 Planned analyses
The main statistical analysis is planned when all patients have completed the six months visit. Deviation from the original statistical plan will be described and justified in the Clinical Study Report. Amendments to plan can be done until day of database lock.

10.5 Statistical Analysis **Manuela?
Results will be reported as mean scores with standard deviation or proportions as appropriate.
To compare the two groups on the primary outcome, we will use a general linear model with treatment group as factor and adjust for duration of symptoms, gender and age. The analysis will be conducted according to the intention to treat principle.

For other analysis, comparison between groups will be done with e.g. independent samples t-test, nonparametric Mann-Whitney-U test or Pearsons chi-square test for crosstabs as appropriate.
P-values <0.05 are considered statistically significant.

11 STUDY MANAGEMENT

11.1 Investigator Delegation Procedure

The coordinating investigators are responsible for making and updating a “delegation of tasks” listing all the involved co-workers and their role in the project. They will ensure that appropriate training relevant to the study is given to all of these staff, and that any new information of relevance to the performance of this study is forwarded to the staff involved.

11.2 Protocol Adherence

Investigators ascertain they will apply due diligence to avoid protocol deviations.

All significant protocol deviations will be recorded and reported in the Clinical Study Report (CSR).

11.3 Study Amendments

If it is necessary for the study protocol to be amended, the amendment and/or a new version of the study protocol (Amended Protocol) must be notified to and approved by the Competent Authority and the Ethics Committee according national regulations.

11.4 Audit and Inspections

Authorized representatives of a Competent Authority and Ethics Committee may visit the centre to perform inspections, including source data verification. Likewise the representatives from sponsor may visit the center to perform an audit. The purpose of an audit or inspection is to systematically and independently examine all study-related activities and documents to determine whether these activities were conducted, and data were recorded, analyzed, and accurately reported according to the protocol, and any applicable regulatory requirements. The principal investigators will ensure that the inspectors and auditors will be provided with access to source data/documents.

12 ETHICAL AND REGULATORY REQUIREMENTS

The study will be conducted in accordance with ethical principles that have their origin in the Declaration of Helsinki and are consistent with ICH/Good Clinical Practice and applicable regulatory requirements. Registration of patient data will be carried out in accordance with national personal data laws.

12.1 Ethics Committee Approval

The study protocol, including the patient information and informed consent form to be used, must be approved by the regional ethics committee before enrolment of any patients into the study.

The investigator is responsible for informing the ethics committee of any serious and unexpected adverse events and/or major amendments to the protocol as per national requirements.

12.2 Other Regulatory Approvals

The protocol will be submitted and approved by the applicable competent authorities before commencement of the study. The protocol will also be registered in www.clinicaltrials.gov before inclusion of the first patient.

12.3 Informed Consent Procedure

The investigator is responsible for giving the patients full and adequate verbal and written information about the nature, purpose, possible risk and benefit of the study. They will be informed as to the strict confidentiality of their patient data, but that their medical records may be reviewed for trial purposes by authorized individuals other than their treating physician.

It will be emphasized that the participation is voluntary and that the patient is allowed to refuse further participation in the protocol whenever she/he wants. This will not prejudice the patient’s subsequent care. Documented informed consent must be obtained for all patients included in the study before they are registered in the study. This will be done in
accordance with the national and local regulatory requirements. The investigator is responsible for obtaining signed informed consent. A copy of the patient information and consent will be given to the patients. The signed and dated patient consent forms will be filed in the Investigator Site File binder and also scanned to be part of the patient’s electronic medical record at the hospital.

12.4 Subject Identification
The investigator is responsible for keeping a list of all patients (who have received study treatment or undergone any study specific procedure) including patient’s date of birth and personal number, full names and last known addresses. The patients will be identified in the CRFs by patient number, initials and date of birth.

13 TRIAL SPONSORSHIP AND FINANCING
The study is sponsored by HELSEFORSK funds from the Research Council of Norway administered by Sørlandet Hospital HF. The funds are assigned the composite project BorrSci.

14 TRIAL INSURANCE
The coordinating investigators will obtain insurance coverage through membership of the Drug Liability Association.

15 PUBLICATION POLICY
Upon study completion, the results of this study will be submitted for publication. The results of this study will also be submitted to the Competent Authority and the Ethics Committee according to national regulations. All personnel who have contributed significantly with the planning and performance of the study (Vancouver convention 1988) may be included in the list of authors.
16 REFERENCES

1. Mygland A, Ljostad U, Fingerle V, Rupprecht T, Schmutzhard E, Steiner I. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2010;17(1):8-16, e1-4.

2. Ljostad U, Mygland A. Remaining complaints 1 year after treatment for acute Lyme neuroborreliosis: frequency, pattern and risk factors. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2010;17(1):118-23.

3. Eikeland R, Mygland A, Herlofson K, Ljostad U. European neuroborreliosis: quality of life 30 months after treatment. Acta neurologica Scandinavica. 2011;124(5):349-54.

4. Eikeland R, Ljostad U, Mygland A, Herlofson K, Lohagen GC. European neuroborreliosis: neuropsychological findings 30 months post-treatment. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2012;19(3):480-7.

5. Ljostad U, Skogvoll E, Eikeland R, Midgard R, Skarpaas T, Berg A, et al. Oral doxycycline versus intravenous ceftriaxone for European Lyme neuroborreliosis: a multicentre, non-inferiority, double-blind, randomised trial. The Lancet Neurology. 2008;7(8):690-5.

6. Berglund J, Stjernberg L, Ornstein K, Tykesson-Joelsson K, Walter H. 5-y Follow-up study of patients with neuroborreliosis. Scandinavian journal of infectious diseases. 2002;34(6):259-62.

7. Vrethem M, Hellblom L, Widlund M, Ahl M, Danielsson O, Ernerudh J, et al. Chronic symptoms are common in patients with neuroborreliosis -- a questionnaire follow-up study. Acta neurologica Scandinavica. 2002;106(4):205-8.

8. Treib I, Fernandez A, Haass A, Grauer MT, Holzer G, Woessner R. Clinical and serologic follow-up in patients with neuroborreliosis. Neurology. 1998;51(5):1489-91.

9. Cameron DJ. Proof that chronic lyme disease exists. Interdisciplinary perspectives on infectious diseases. 2010;2010:876450.

10. Strle K, Stupica D, Drouin EE, Steere AC, Stule F. Elevated levels of IL-23 in a subset of patients with post-lyme disease symptoms following erythema migrans. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;58(3):372-80.

11. Soloski MJ, Crowder LA, Lahey LJ, Wagner CA, Au cott JN. Serum inflammatory mediators as markers of human Lyme disease activity. PloS one. 2014;9(4):e93243.

12. Steere AC, Klitz W, Drouin EE, Falk BA, Kwok WW, Nepom GT, et al. Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide. The Journal of experimental medicine. 2001;201(8):186.

13. Steere AC, Klitz W, Drouin EE, Falk BA, Kwok WW, Nepom GT, et al. Serum inflammatory mediators as markers of human Lyme disease activity. PloS one. 2014;9(4):e93243.

14. Belongia EA. Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector borne and zoonotic diseases. 2002;2010:876450.

15. Aalto A, Sjowall J, Davidsson L, Forsberg P, Smedby O. Brain magnetic resonance imaging does not contribute to the diagnosis of chronic neuroborreliosis. Acta radiologica (Stockholm, Sweden : 1987). 2007;48(7):755-62.

16. Djukic M, Schmidt-Samoa C, Nau R, von Steinbuchel N, Eiffert H, Schmidt H. The diagnostic spectrum in neuroborreliosis -- a questionnaire follow-up study. Acta neurologica Scandinavica. 2002;106(4):205-8.

17. Ljostad U, Mygland A, Fingerle V, Rupprecht T, Schmutzhard E, Steiner I. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2010;17(1):8-16, e1-4.

18. Belongia EA. Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector borne and zoonotic diseases. 2002;2010:876450.

19. Krupp LB, Hyman LG, Grimson R, Coyle PK, Melville P, Ahnn S, et al. Study and treatment of post Lyme disease (STOP-LD): a randomized double masked clinical trial. Neurology. 2003;60(12):1923-30.

20. Oksi J, Nikoskelainen J, Hiekkanen H, Lauhio A, Peltomaa M, Pitkaranta A, et al. Duration of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. The New England journal of medicine. 2010;362(16):1507-1516.

21. Sjowall J, Ledel A, Ernerudh J, Ekerfelt C, Forsberg P. Doxycycline-mediated effects on persistent symptoms and systemic cytokine responses post-neuroborreliosis: a randomized, prospective, cross-over study. BMC infectious diseases. 2012;12:186.

22. Klempner MS, Hu LT, Evans J, Schmid CH, Johnson GM, Trevino RP, et al. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. The New England journal of medicine. 2001;345(2):85-92.
23. Delong AK, Blossom B, Maloney EL, Phillips SE. Antibiotic retreatment of Lyme disease in patients with persistent symptoms: a biostatistical review of randomized, placebo-controlled, clinical trials. Contemporary clinical trials. 2012;33(6):1132-42.

24. Oksi J, Nikoskelainen J, Viljanen MK. Comparison of oral cefixime and intravenous ceftriaxone followed by oral amoxicillin in disseminated Lyme borreliosis. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology. 1998;17(10):715-9.

25. Dattwyler RJ, Wormser GP, Rush TJ, Finkel MF, Schoen RT, Grunwaldt E, et al. A comparison of two treatment regimens of ceftriaxone in late Lyme disease. Wiener klinische Wochenschrift. 2005;117(11-12):393-7.

26. Wahlberg P, Granlund H, Nyman D, Panelius J, Seppala I. Treatment of late Lyme borreliosis. The Journal of infection. 1994;29(3):255-61.

27. Kroenke K, Spitzer RL, Williams JB. The PHQ-15: validity of a new measure for evaluating the severity of somatic symptoms. Psychosomatic medicine. 2002;64(2):258-66.

28. Loge JH, Kaasa S. Short form 36 (SF-36) health survey: normative data from the general Norwegian population. Scandinavian journal of social medicine. 1998;26(4):250-8.

29. Helse-og omsorgsdepartementet. Merking av utprøvepreparater 2009. Available from: https://lovdata.no/dokument/SF/forskrift/2009-10-30-1321.

30. Norwegian Medicines Agency. Veiledning ved klinisk forskning med legemidler på mennesker. Available from: http://www.legemiddelverket.no/Godkjenning_og_regelverk/Klinisk-utproving/Veiledning_klinisk_forskning/Sider/default.aspx.

17 LIST OF APPENDICES

A Protocoll for work packages 3, 4, and 5 in BorrSci
B Chemical and pharmacological documentation of IMPs
C Details of labeling of IMPs
D Informed consent