Single neutral pion production by charged-current $\bar{\nu}_\mu$ interactions on hydrocarbon at $\langle E_\nu \rangle = 3.6$ GeV

T. Lea,*, J.L. Palominob, L. Aliagac,†, O. Altimokd, A. Bercellied, A. Bodeke, A. Bravarf, W.K. Brooksg, A. Butkevichh, D.A. Martínez Caicedoi,j, M.F.Carneirob, M.E. Christyi, J. Chvojkai, H. da Mottab, J. Devanj, S.A. Dyelmani, G.A. Díazk, B. Eberlyl,1, J. Félixm, L. Fieldsm,n, R. Finep, A.M. Gagoq, H. Gallagherr, R. Grans, D.A. Harrist, A. Higuerau, K. Hurtadob,1, M. Korsoskya, E. Maheru, S. Manlyv, W.A. Mannw, C.M. Marshally, K.S. McFarlando,o, C.L. McGivernz, A.M. McGowanz, J. Millero, J.G. Morfino, J.K. Nelsono, A. Norricki, J. Ostav, V. Paolonev, J. Parkx, C.E. Patrickx, G.N. Perduex, L. Rakotondravohitrao,2, R.D. Ransomeo, H. Rayo, L. Renj, P.A. Rodriguesr, D. Ruterborieso, H. Schellmanm, D.W. Schmitzo,2, J.T. Sobczyko,3, C.J. Solano Salinasw, N. Taggo, B.G. Ticeb,4, E. Valenciai, T. Waltoni, J. Wolcotti, H. Yepes-Ramirezz, G. Zavalai, D. Zhango, B.P. Ziemera

aCorresponding author

1Now at SLAC National Accelerator Laboratory, Stanford, California 94309 USA
2Also at Department of Physics, University of Antananarivo, Madagascar
3Also at Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
4Now at Argonne National Laboratory, Argonne, Illinois 60439, USA

Abstract

Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for e^- appearance oscillation experiments. The differential cross sections for π^0 momentum and production angle, for events with a single observed π^0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π^0 kinematics for this process.

Keywords: Neutrino-nucleus scattering, Final state interaction

PACS: 13.15.+g, 25.80.Hp, 13.75.Gx

1. Introduction

Neutrino- and antineutrino-induced interactions at energies of a few GeV are a proving ground for weak interaction phenomenology in nuclei [1]. Measurements in this energy range are important because neutrino oscillation experiments [2, 3] need detailed understanding of the large variety of processes allowed. As a result, there is a growing body of new high-quality measurements for neutrino-nucleus interactions [4–7]. In particular, neutrino
charged-current neutral pion production has become an important benchmark providing new challenges to theories describing this process [8–11].

Most of the published data for pion production in nuclei uses neutrino beams. Neutral pion production in nuclei for anti-neutrinos, however, is much less studied. Only one data point for this channel in the few-GeV energy range exists in the literature: a measurement of $\nu_\mu p \rightarrow \mu^+ n\pi^0$ from SKAT in a heavy liquid (CF$_3$Br) bubble chamber based on 20 events at an average neutrino energy of 7 GeV [12]. Measurements of π^0 production by neutrinos have been made in deuterium bubble chambers [13–16] and more recently on nuclear targets in the 0.1 - 1 GeV energy range using the MiniBooNE detector [17] with a mineral oil (CH$_2$) target, and using the SciBar detector in K2K and SciBooNE experiments [18, 19] with plastic scintillator (CH). These recent measurements, as well as data on charged pion production [7, 20] and neutral pion production [21] have been difficult for event generators and theoretical calculations to describe accurately [8–11]. Every prediction must have a model for π^0 production from nucleons; all use isospin decompositions within a helicity formalism that are tuned to available data [22].

Charged-current single π^0 (1π^0) production in the few-GeV region is modeled both as decays of nucleon resonances (most strongly the Δ(1232)) and nonresonant processes. The production in nuclei can be either direct, through the reaction $\nu_\mu p \rightarrow \mu^+ n\pi^0$, or indirect, for example, through charge exchange (CEX) of a charged pion in the nucleus, $p\pi^- \rightarrow n\pi^0$ or $n\pi^+ \rightarrow p\pi^0$. New data will provide useful tests of both neutrino-induced resonance production and final state interaction (FSI) models.

Neutrino interaction measurements are also important to the analysis of neutrino oscillation experiments [2, 3, 23, 24]. These experiments require the neutrino flavor be identified and the neutrino energy to be reconstructed on an event-by-event basis. An accurate modeling of these particles requires knowledge of both the underlying neutrino-nucleon interactions and of the final-state modifications that arise within the target nuclei (such as carbon) of which the massive oscillation detectors are comprised. Pion production is a source of backgrounds and systematic uncertainties in neutrino oscillation experiments. Neutral-current π^0 production, for example, is a dominant background in ν_e ($\bar{\nu}_e$) appearance experiments because the π^0 can mimic a final state electron (positron). In addition, experiments that reconstruct neutrino energy by identifying quasielastic events, $\nu_e N(n) \rightarrow \ell^- p$ or $\bar{\nu}_e N(p) \rightarrow \ell^+ n$, interactions in which a pion is produced but then absorbed in the target nucleus can be mistaken for quasielastic signal and yield an incorrect estimate of the incident neutrino energy.

New measurements of $1\pi^0$ production by charged-current ν_μ interactions in plastic scintillator (CH) using the MINERvA detector are presented. Flux-integrated single differential cross sections as a function of π^0 momentum and production angle for events with a single observed π^0 and no π^\pm exiting the interaction nucleus have been measured and are compared to predictions from the GENIE [25], NuWro [26, 27], and NEUT [28] event generators.

2. Experiment

The data presented here were taken using the MINERvA detector and the wideband antineutrino beam produced by the NuMI beamline in the low-energy mode [29] with a mean energy of 3.6 GeV. The antineutrino flux is estimated from a simulation of the neutrino beamline based on Geant4 [30, 31], with hadron production in the simulation constrained by proton-carbon external data [32–34]. The MINERvA detector consists of a fully active region of scintillator strips surrounded on the sides and downstream end by electromagnetic and hadronic calorimeters, and is described in detail in Ref. [35]. There are three orientations (views) for the strips (X,U,V), offset by 60° from each other, which enable three-dimensional reconstruction of particle trajectories. The X view is sampled twice as often as the other views. The downstream edge of the MINERvA detector is located 2 m upstream of the MI-NOS Near Detector, a magnetized iron spectrometer [36] used in this analysis to reconstruct the momentum and charge of muons. The transport of particles from neutrino interactions in the detector is simulated by a Geant4-based program. The readout simulation is tuned so that both the photostatistics and the reconstructed energy deposited by momentum-analyzed through-going muons agree between data and the simulation. The detector simulation of single particle responses is validated using testbeam data taken with a scaled-down version of the MINERvA detector [37].

Neutrino interactions are simulated using the GENIE 2.6.2 neutrino event generator. Details concerning GENIE and its associated parameters are described in Ref. [25]. For baryon resonance production, the formalism of Rein-Sehgal [22] is used with modern resonance properties [38]. Non-resonant pion production is simulated using the Bodek-Yang model [39] and is constrained below $W = 1.7$ GeV by neutrino-deuteron bubble chamber data [40, 41]. Pion and nucleon FSI are modeled in GENIE using a parameterized intranuclear cascade model, with the full cascade being represented by a single interaction. For all models fitting data for light nuclei such as carbon, the pion most often has one interaction as it propagates through the nucleus. For each interaction, choice of the channel (e.g. charge exchange) is based on total cross section data and calculations [42, 43] and the kinematics and multiplicity of the final state are taken from fits to more detailed data. At the energies important for this measurement, the hadron-nucleus cross sections have large uncertainties. For example, the cross section of $\pi^- \rightarrow \pi^0$ CEX on carbon has an uncertainty of about 50%. Reaction cross sections for π^\pm are estimated from measured cross sections for π^\pm scattering using isospin symmetry or theoretical models. The most significant advantages of
the single interaction used in GENIE's FSI model are the ability to exactly reweight and to characterize each event with a single final state channel. The uncertainties in the FSI model are evaluated by varying its strength within previously measured hadron-nucleus cross-section uncertainties.

This analysis uses data taken between October 2009 and February 2012 with 2.01 × 10^{20} protons on target (POT) in the νμ mode. About half of the exposure (0.945 × 10^{20} POT) was taken during construction with the downstream half of the detector. In this period the ArgoNeuT detector [44] was situated between the MINERvA and MINOS Near detectors. Because the two sub-samples of the data have different efficiencies, they were analyzed separately and their results combined.

3. Event reconstruction and selection

The MINERvA detector records the charge and time of energy depositions (hits) in each scintillator strip. Hits are first grouped in time and then clusters of energy are formed by spatially grouping adjacent hits in each scintillator plane. Clusters with energy more than 1 MeV are then matched among the three views to create a track. The per-plane position resolution is 2.7 mm and the angular resolution of the muon track is better than 10 mrad [35] in each view. The μ± is identified by matching a track that exits the back of MINERvA with a positively-charged track entering the front of MINOS. The reconstruction of the muon in the MINOS spectrometer gives a typical momentum resolution of 11%. Event pile-up causes a decrease in the muon track reconstruction efficiency. This effect is studied in both MINERvA and MINOS by projecting tracks found in one of the detectors to the other and measuring the mis-reconstruction rate. This results in a ~4.4% (~1.1%) correction to the simulated efficiency for muons below (above) 3 GeV/c.

The event vertex, defined as the most upstream cluster on the muon track, is restricted to be within the central 108 planes of the scintillator tracking region and no closer than 22 cm to any edge of the planes. These requirements define a fiducial volume with a mass of 5.47 metric tons. Due to the requirement that the μ± is tracked in MINOS for charge and momentum measurement, the detection efficiency has a strong dependence on muon angle θμ and momentum |pμ|, which drops to zero for events with θμ greater than 20 degrees or |pμ| less than 1.0 GeV/c. The corrections for the angle and momentum efficiency are estimated from the event simulation. Only events with a single track at the vertex, the μ± matched to MINOS, are used in order to reject events including charged pion production. Accepted events are passed to the π0 reconstruction.

The neutral pion has a lifetime of 8.52 × 10^{-17} s and decays into two photons with a branching ratio of 98.8% [38], so the two photons appear to come from the event vertex. Plastic scintillator has a radiation length X0 ∼ 40 cm, which allows the two photons to convert by e+e− pair production or Compton scattering far away from the vertex, thus producing isolated energy deposits. The photons can also have significant energy leakage or escape the detector without conversion. Furthermore, energy deposits produced by neutrons from the same neutrino interaction can be mistaken for low-energy photon conversions, further complicating the pattern of energy deposits. The π0 reconstruction must correctly group these energy deposits into the two photons.

The reconstruction can be separated into two steps: pattern recognition and kinematic reconstruction. The pattern recognition builds upon the knowledge of the vertex location of the event. In the X view, clusters that are close in polar angle with respect to the vertex but can be separated in radial distance from the vertex are grouped into photon candidates. Then, for each candidate, clusters in the U and V views consistent with the stereo condition are added. Photon candidates must have clusters from at least two views for three-dimensional direction reconstruction.

In the second step, photon position, direction, and energy are determined from the clusters that have been assigned to the photons. The photon direction is reconstructed from the cluster energy-weighted slopes in each view. The photon vertex is defined by the closest cluster to the event vertex on the photon direction axis. The photon energies are reconstructed by calorimetry using calibration constants determined from the simulation. The overall calibration constant that sets the absolute energy scale is determined by matching the peak in the γγ invariant mass distribution to the π0 nominal mass of 134.97 MeV/c^2 [38]. This procedure is done separately for data and simulation which enables correction for a difference in energy scales of 5% between the data and simulation. Finally, the π0 momentum is calculated from momentum conservation, \(\vec{p}_{\pi^0} = \vec{k}_1 + \vec{k}_2 \), where \(\vec{k}_i \) are reconstructed photon momenta. The π0 is reconstructed with a 25% energy resolution and 3.5 degrees angular resolution in each view. The incoming neutrino energy is reconstructed from the μ± and π0 4-momenta using

\[
E_{\nu}^{\text{rec}} = E_\mu + E_{\pi^0} + T_n
\]

\[
T_n = \frac{1}{2} \left[\frac{(E_\mu - p_\mu^\parallel) + (E_{\pi^0} - p_{\pi^0}^\parallel)^2 + (\vec{p}_\mu^\perp + \vec{p}_{\pi^0}^\perp)^2}{m_N - (E_\mu - p_\mu^\parallel) - (E_{\pi^0} - p_{\pi^0}^\parallel)} \right],
\]

where \(\vec{p}^\parallel, p^\parallel \) are the transverse and longitudinal components of momentum, respectively. It is assumed that the initial nucleon is at rest and that the π0 is produced together with a nucleon. The neutrino energy is reconstructed with 10% resolution. The \(\gamma\gamma \) invariant mass \(m_{\gamma\gamma} \) is reconstructed from the photon energies \(E_{1,2} \) and the separation angle \(\theta_{\gamma\gamma} \) between the two photons using

\[
m_{\gamma\gamma}^2 = 2E_1E_2(1 - \cos \theta_{\gamma\gamma}).
\]
that E_{ν}^{cc} is between 1.5 and 20 GeV. The lower energy cut is needed due to MINOS acceptance while the upper cut is to reduce flux uncertainties. Finally, it is required that $m_{\gamma\gamma}$ is between 75 MeV/c^2 and 195 MeV/c^2. The selected sample has 1304 events. The total selection efficiency is 6% and purity 55%, according to the simulation. The background is dominated (70% of the total background) by events with at least one π^0 in the detector. Half of this is due to multi-pion production, $\pi^0 + \pi^\pm$, where the π^\pm is not tracked, while the other half has a secondary π^0 produced by $\pi^- \rightarrow \pi^0$ CEX or nucleon scattering in the detector but outside the primary interaction nucleus. The non-π^0 background is mostly due to energy deposits by π^- and neutrons which are mistakenly identified as photons, and accounts for the remaining 30% of the total background.

Figure 1 shows the $m_{\gamma\gamma}$ distributions for both data and simulation of the selected sample before the invariant mass cut. There is a clear peak centered around the π^0 nominal mass in both data and simulation. The distribution from simulation is broken down into signal and background components. The signal is defined as antineutrino charged-current events with single π^0 and no π^\pm escaping the nucleus. The background is anything else that is not signal. By this definition, it is possible for signal events to have the π^0's mis-reconstructed from non-π^0 energy deposits. The signal events at high $m_{\gamma\gamma}$, outside the signal mass width, have one or both candidate photons reconstructed from neutron energy deposits. The same mis-reconstruction happens to signal events in the selected sample but at a smaller rate (14%). The π^0 momentum and angular shapes of these events are found to be similar to the rest of the signal events. The enhancement in the background distribution around the π^0 mass is due to background events with at least one π^0 in the detector.

After event selection, the selected sample still has substantial background to be subtracted statistically from the total distribution for each observable. The background distribution for each observable is estimated from the simulation with the total background rate constrained by data. This significantly reduces the uncertainties in the estimated background. The background rate is determined from a binned extended maximum likelihood fit of an invariant mass model to the data [45]. The invariant mass model $M(m_{\gamma\gamma})$ is a two-component model constructed from the $m_{\gamma\gamma}$ distributions of signal and background events,

$$M(m_{\gamma\gamma}) = N_{sig}M_{sig}(m_{\gamma\gamma}) + N_{bkg}M_{bkg}(m_{\gamma\gamma}),$$

where $M_{sig}(m_{\gamma\gamma}), M_{bkg}(m_{\gamma\gamma})$ are the shapes of the signal and background $m_{\gamma\gamma}$ distributions from the simulation, respectively. The expected numbers of signal and background events N_{sig}, N_{bkg} in the range 0-500 MeV/c^2 are the parameters determined from the fit. After the fit, a background rate of 541±37 events is obtained by integrating the curve $N_{bkg}M_{bkg}(m_{\gamma\gamma})$ over the mass peak region from 75 MeV/c^2 to 195 MeV/c^2, the same range as required by the event selection. The fit reduces the background normalization by a factor of 0.8 compared to the simulation prediction.

![Figure 1: Distribution of the invariant mass of the $\gamma\gamma$ pair. Data are shown as solid circles with statistical error bars. The shaded histograms show the Monte-Carlo predictions for CC1π^0 signal (top) and for background (bottom). The signal is defined as antineutrino charged-current events with single π^0 and no π^\pm escaping the nucleus. The background is anything else that is not signal. The vertical lines indicate the invariant mass cut, 75 MeV/c^2 < $m_{\gamma\gamma}$ < 195 MeV/c^2.](image-url)
pendently estimated. The uncertainty in neutron response is evaluated by changing the neutron inelastic cross section within experimental uncertainties [47–54] through event reweighting. The reweighting is applied to the leading neutron in the event. A large fraction of the secondary π⁰ in the background is estimated to arise from π⁻ → π⁰ CEX, for which the cross sections are poorly known. The effect of this uncertainty on our measurement is evaluated by changing the neutron inelastic cross section within its uncertainty of ±50% [43, 55, 56], and then re-measuring the cross sections. Finally, the electromagnetic energy scale uncertainty (2.2%) is taken from the fitted mean uncertainty of the data mγγ distribution. Flux-integrated single differential cross sections in π⁰ momentum and angle with statistical, systematic, and total uncertainties are summarized in Tables.⁵

4. Results and discussion

The measured differential cross sections as function of π⁰ momentum and angle with respect to the beam direction are shown in Figures. 2 and 3, respectively. The data are compared to the predictions from GENIE with and without FSI. Above 0.7 GeV/c, FSI effects have little influence on the π⁰ momentum distribution, and both predictions are in good agreement with the data. For momenta below 0.3 GeV/c, inclusion of FSI gives an increased and shifted cross section relative to the no FSI case. This trend is exhibited by the data; GENIE calculations with and without FSI give a χ² of 25.4 and 50.0 for 11 degrees of freedom (dof), respectively. For the distribution of π⁰ production angle in Fig. 3, inclusion of FSI into the GENIE simulation results in a mild flattening of the distribution with no significant improvement in the χ² compared to the no FSI case, 16.7 versus 16.0 for 11 degrees of freedom. Thus the effects of FSI are more pronounced with respect to π⁰ momenta than with π⁰ production angle. This situation likely reflects the influence of the Δ(1232) resonance, which gives a particularly strong momentum dependence to the pion-nucleus interaction for pπ ≈ 0.26 GeV/c where the pion-carbon cross section is maximum.

Figures. 2 and 3 also show predictions including FSI from the NuWro and NEUT event generators. Any prediction requires knowledge of νμN → μ⁺π⁰N reactions. Because of the dearth of data for these channels, the calculations use isospin relations to extrapolate from other pion production channels [22, 57]. Both NuWro and NEUT use full cascade models [58] for the FSI description. The χ²/dof values for the NuWro and NEUT comparisons are 25.0/11 and 24.9/11 for the π⁰ momentum and 11.8/11 and 14.0/11 for the π⁰ production angle, respectively. These χ² values indicate that a common level of agreement is achieved by all three generators for π⁰ momentum, and that modest differences with predictions versus data are observed for π⁰ production angle.

There are uncertainties in the FSI used in all calculations. Each assumes the pion FSI after production in the nuclear medium is the same as for pion beams; this assumes no medium effects beyond Fermi momentum and a simple binding energy. Since π⁰ beams are not possible, isospin relations must be used for π⁰ FSI. Experiments like these are valuable for testing these approximations. In spite of these uncertainties, the calculations give adequate descriptions of these new data.

⁵See Supplemental Material in the Appendix
improve the agreement with data. On the other hand, Fig. 5 indicates such changes would worsen the agreement with the data for pion production at backwards angles. Thus it appears that a refined description might require separate, independent adjustments to the two spectra.

While the previously reported information on the reaction studied here is too limited to enable comparisons, it is useful to compare with the recently reported MINERvA observations on ν_μ induced charged pion production [20]. The latter data was obtained using a low-energy exposure in the same beamline, and the cross section normalizations are carried out in a similar way for both analyses. Existence of both results provides stronger constraints on the calculations. The π^0 momentum range in this analysis is wider than the range shown for the charged pions of Ref. [20] (0-1.5 GeV/c versus 0.1-0.5 GeV/c) because the π^+ data is limited by tracking and particle identification requirements. Nevertheless, both analyses show that GENIE predictions are significantly improved when FSI are accounted for. Both results show a peak in the momentum distribution at $p_\pi \approx$ 0.2 GeV/c which is seen in the GENIE calculations, but do not have the correct distribution at energies near this peak. The GENIE predictions for the absolute rates for singly-produced pions exceed the observed rates in both analyses, however the discrepancy is less severe for production by $\bar{\nu}_\mu$ as reported here.

5. Conclusion

The single differential cross sections in π^0 momentum and angle have been measured for $1\pi^0$ production by $\bar{\nu}_\mu$ charged-current interactions in plastic scintillator (CH). The measurements are found to be in agreement with the predictions from GENIE, NuWro, and NEUT event generators. This agreement is interesting because of the approximations needed to make predictions for this channel. The
measured cross section in π^0 momentum disfavors the GE-
NIE prediction without FSI effects at low π^0 momentum,
which is not surprising since FSI is expected for hadrons
inside nuclei. A decomposition of the FSI effects shows
that inelastic scattering and CEX reactions are responsi-
ble for the peak at p_π ≈ 0.2 GeV/c. These contributions
could be adjusted within external experimental errors to
achieve even better agreement of calculations with the π^0
momentum data. However, these changes would not be as
effective for the π^0 polar angle.

Charged-current single pion production in the few GeV
region of neutrino energy is an important class of inter-
actions in long-baseline neutrino oscillation experiments.
This work presents the first detailed measurements of the
kinematic distributions for single π^0's produced in charged
current ν_e interactions on carbon. These distributions pro-
vide constraints on antineutrino-induced π^0 backgrounds
as will occur in ν_μ appearance experiments.

Acknowledgments

This work was supported by the Fermi National Accel-
erator Laboratory under US Department of Energy con-
tract No. DE-AC02-07CH11359 which included the MIN-
ERvA construction project. Construction support also
was granted by the United States National Science Foun-
dation under Award PHY-0616727 and by the University of
Rochester. Support for participating scientists was pro-
vided by NSF and DOE (USA) by CAPES and CNPq
(Brazil), by CoNaCyT (Mexico), by CONICYT (Chile),
by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), by
Latin American Center for Physics (CLAF) and by RAS
and the Russian Ministry of Education and Science (Rus-
sia). We thank the MINOS Collaboration for use of its
near detector data. Finally, we thank the staff of Fermilab
for support of the beamline and the detector.

References

References

[1] L. Alvarez-Ruso, Y. Hayato, J. Nieves, Progress and open ques-
tions in the physics of neutrino cross sections at intermediate
energies, New J. Phys. 16 (2014) 075015. arXiv:1403.2673,
doi:10.1088/1367-2630/16/7/075015.
[2] D. S. Ayres, et al., NOvA Proposal to Build a 30 Kiloton Off-
Axis Detector to Study Neutrino Oscillations in the Fermilab
NuMI Beamline, arXiv:hep-ex/0503053.
[3] T. Akiri, et al., The 2010 Interim Report of the Long-Baseline
Neutrino Experiment Collaboration Physics Working Groups,
arXiv:1110.6249.
[4] A. A. Aguilar-Arevalo, et al., Measurement of muon neu-
trino quasi-elastic scattering on carbon, Phys. Rev. Lett. 100
(2008) 032301. arXiv:0706.0926, doi:10.1103/PhysRevLett.
100.032301.
[5] V. Lyubushkin, et al., A Study of quasi-elastic muon neu-
trino and antineutrino scattering in the NOMAD experi-
ment, Eur.Phys.J. C63 (2009) 355-381. arXiv:0812.4543, doi:10.
1140/epjc/s10052-009-1113-0.
[6] L. Fields, J. Chvojka, et al., Measurement of Muon Antineutrino
Quasi-Elastic Scattering on a Hydrocarbon Target at E_ν ≈ 3.5
GeV, Phys. Rev. Lett. 111 (2013) 022501. arXiv:1305.2234.
[7] A. A. Aguilar-Arevalo, et al., Measurement of neutrino-induced
charged-current charged pion production cross sections on min-
eral oil at E_ν ≈ 1 GeV, Phys. Rev. D 83 (2011) 052007.
doi:10.1103/PhysRevD.83.052007.
[8] O. Lalakulich and U. Mosel, Pion production in the Mini-
BooNE experiment, Phys. Rev. C 87 (2013) 014602.
doi: 10.1103/PhysRevC.87.014602.
[9] E. Hernández, J. Nieves, and M.J. Vicente Vacas, Single π pro-
duction in neutrino nucleon scattering, Phys. Rev. D 87 (2013)
113009. doi:10.1103/PhysRevD.87.113009.
[10] P. Rodrigues, Comparing pion production models to Mini-
BooNE data arXiv:1402.4709.
[11] J. Y. Yu, E. Paschos, I. Schienbein, Comparison of the ANP
model with the data for neutrino induced single pion pro-
duction from the MiniBooNE and MINERvA experiments,
Phys.Rev. D91 (5) (2015) 054038. arXiv:1411.6637,
doi:10.1103/PhysRevD.91.054038.
[12] H. J. Grabosch, et al., Z. Phys. C 41 (1989) 527.
[13] D. Allasia, et al., Nucl. Phys. B 343 (1999) 285.
[14] S. Barish, et al., Phys. Rev. D 19 (1979) 2521.
[15] G. Radeczyk, et al., Phys. Rev. D 25 (1982) 1161.
[16] T. Kitagaki, et al., Phys. Rev. D 34 (1986) 2554.
[17] A. A. Aguilar-Arevalo, et al., The MiniBooNE Detector, Nucl.
Instrum. Meth. A 599 (2009) 28–46. arXiv:0806.4201,
doi:10.1016/j.nima.2008.10.028.
[18] C. Mariani, Neutral pion cross section measurement at K2K,
AIP Conf.Proc. 967 (2007) 174–178. doi:10.1063/1.2834471.
[19] Y. Kurimoto, et al., Measurement of Inclusive Neutral Cur-
rent neutral π^0 Production on Carbon in a Few-GeV Neu-
trino Beam, Phys.Rev. D 81 (2010) 033004. arXiv:0910.5768,
doi:10.1103/PhysRevD.81.033004.
[20] B. Eberly, et al., Charged Pion Production in ν_μ Interactions
on Hydrocarbon at (E_ν)= 4.0 GeV arXiv:1406.6415.
[21] A. Aguilar-Arevalo, et al., Phys. Rev. D 83 (2011) 052009.
[22] D. Rein, L. M. Sehgal, Neutrino Excitation of Baryon Reso-
nances and Single Pion Production, Annals Phys. 133 (1981)
79–153. doi:10.1016/0003-4916(81)90242-6.
[23] K. Abe, et al., The T2K Experiment, Nucl. Instrum. Meth. A
659 (2011) 106–135. arXiv:1106.1238, doi:10.1016/j.nima.
2011.06.067.
[24] A. A. Aguilar-Arevalo, et al., Event Excess in the Mini-
BooNE Search for ν_μ → ν_τ Oscillations, Phys. Rev. Lett. 105
(2010) 181801. arXiv:1007.1150, doi:10.1103/PhysRevLett.
105.181801.
[25] C. Andreopoulos, et al., The GENIE neutrino Monte Carlo gen-
erator, Nucl. Instrum. Meth. A 614 (1) (2010) 87 – 104. Program
version 2.6.2 used here. doi:10.1016/j.nima.2009.12.009.
[26] C. Juszczak, J. A. Nowak, J. T. Sobczyk, Simulations from
a new neutrino event generator, Nucl. Phys. Proc. Suppl.
159 (2006) 211–216. arXiv:hep-ph/0512365, doi:10.1016/j.
nuclphysbps.2006.08.069.
[27] T. Golan, J. Sobczyk, J. Zmuda, NuWro: the Wroclaw Monte
Carlo Generator of Neutrino Interactions, Nucl. Phys. Proc.
Suppl. 229-232 (2012) 499. doi:10.1016/j.nuclphysbps.2012.09.
136.
[28] Y. Hayato, A neutrino interaction simulation program library
NEUT, Acta Phys.Polon. B40 (2009) 2477–2489.
[29] K. Anderson, et al., The NuMi Facility Technical Design Re-
port, Fermilab-design-1998-01 (1998).
[30] S. Agostinelli, et al., Geant4 simulation toolkit, Nucl. In-
strum. Meth. A 506 (2003) 250 – 303. doi:10.1016/j
.nima.2008.10.028.
[31] J. Allison, et al., Geant4 developments and applications, Nu-
clear Science, IEEE Transactions on 53 (1) (2006) 270–278.
doi:10.1109/TNS.2006.868926.
[32] C. Alt, et al., Inclusive production of charged pions in p+C
collisions at 158-GeV/c beam momentum, Eur. Phys. J. C49
(2007) 897–917. arXiv:hep-ex/0606028. doi:10.1140/epjc/
7
D. Barton, G. Brandenburg, W. Busza, T. Dobrowolski, J. Friedman, et al., Experimental Study of the a-Dependence of Inclusive Hadron Fragmentation, Phys.Rev. D27 (1983) 2580. doi:10.1103/PhysRevD.27.2580.

A. V. Lebedev, Ratio of pion kaon production in proton carbon interactions, FERMILAB-THESIS-2007-76.

L. Aliaga, et al., Design, Calibration, and Performance of the MINERvA Detector, Nucl. Instrum. Meth. A 743 (2013) 130. arXiv:1305.5199.

D. G. Michael, et al., The Magnetized steel and scintillator calorimeters of the MINOS experiment, Nucl. Instrum. Meth. A 596 (2008) 190–228. arXiv:0805.3170, doi:10.1016/j.nima.2008.08.003.

L. Aliaga, et al., MINERvA neutrino detector response measured with test beam data, Nucl.Instrum.Meth. A 789 (2015) 28–42. arXiv:1501.06431, doi:10.1016/j.nima.2015.04.003.

A. Bodek, I. Park, U.-K. Yang, Improved low Q^2 model for neutrino and electron nucleon cross sections in few GeV region, Nucl. Phys. Proc. Suppl. 139 (2005) 113–118. arXiv:hep-ph/0411202, doi:10.1016/j.nuclphysbps.2004.11.208.

T. Kitagaki, et al., Study of $\nu_d \rightarrow \mu^- pp_s$ and $\nu_d \rightarrow \mu^- \Delta^{++}(1232)n_s$ using the BNL 7-foot deuterium filled bubble chamber, Phys. Rev. D 42 (1990) 1331–1338. doi:10.1103/PhysRevD.42.1331.

T. Lee, R. Redwine, Pion nucleus interactions, Ann. Rev. Nucl. Part. Sci. 52 (2002) 23–63.

D. Ashery, et al., True Absorption and Scattering of Pions on Nuclei, Phys. Rev. C 23 (1981) 2173–2185.

C. Anderson, et al., The ArgoNeuT detector in the NuMI low-energy beam line at Fermilab, Journal of Instrumentation 7 (2012) 10019.

R. J. Barlow, C. Beeston, Fitting using finite Monte Carlo samples, Comput.Phys.Commun. 77 (1993) 219–228, as implemented in TFractionFitter, ROOT framework. doi:10.1016/0010-4655(93)90005-W.

G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A 362 (1995) 487–498. doi:10.1016/0168-9002(95)00274-X.

W. P. Abfalterer, et al., Measurement of neutron total cross-sections up to 560-MeV, Phys. Rev. C 63 (2001) 044608. doi:10.1103/PhysRevC.63.044608.

W. Schimmerling, et al., Neutron-nucleus total and inelastic cross-sections - 900 to 2600 MeV/c, Phys. Rev. C 7 (1973) 248–262. doi:10.1103/PhysRevC.7.248.

R. G. P. Voss, R. Wilson, Proc. Roy. Soc. A236 (1956) 41.

I. Slypen, V. Corcalciuc, J. P. Meulders, Proton and deuteron production in neutron-induced reactions on carbon at E(n) = 42.5, 62.7, and 72.8 MeV, Phys. Rev. C 51 (1995) 1303–1311. doi:10.1103/PhysRevC.51.1303.

J. Franz, et al., Neutron induced production of protons, deuterons and tritons on copper and bismuth, Nucl. Phys. A510 (1990) 774–802. doi:10.1016/0375-9474(90)90360-X.

U. Tippawan, et al., Light-ion production in the interaction of 96-MeV neutrons with carbon, Phys. Rev. C 79 (2009) 064611. arXiv:0812.0701, doi:10.1103/PhysRevC.79.064611.

R. Bevilacqua, et al., Light-ion production from O, Si, Fe and Bi induced by 175 MeV quasi-monoenergetic neutron arXiv:1303.4637.

C. I. Zanelli, et al., Total non-elastic cross sections of neutrons on C, O, Ca, and Fe at 40.3 and 50.4 MeV, Phys. Rev. C 23 (1981) 1015–1022. doi:10.1103/PhysRevC.23.1015.

T. Bowles, D. Geesaman, R. Holt, H. Jackson, J. Julien, et al., Inclusive (π^{\pm}, n^{0}) Reactions in Nuclei, Phys.Rev. C23 (1981) 439–447. doi:10.1103/PhysRevC.23.439.

M. Jones, R. Ransome, V. Cupps, R. Ferguson, C. Mor-
6. Appendix

This Appendix contains additional tables that are referenced in the article.

Table 1: Flux-averaged differential cross section in π^0 momentum, $d\sigma/dp_{\pi^0}(10^{-40}cm^2/nucleon/(GeV/c))$, for $1\pi^0$ production with statistical (stat), systematic (sys), and total (tot) uncertainties.

p_{π^0} (GeV/c)	$d\sigma/dp_{\pi^0}$	stat(%)	sys(%)	tot(%)
0.00 - 0.08	3.75	41	33	53
0.08 - 0.14	22.60	14	21	25
0.14 - 0.20	27.75	10	18	21
0.20 - 0.28	17.92	11	21	24
0.28 - 0.36	14.26	11	20	23
0.36 - 0.45	12.77	10	20	22
0.45 - 0.55	8.65	11	20	23
0.55 - 0.65	5.86	13	22	26
0.65 - 0.75	4.67	12	20	24
0.75 - 1.00	2.25	11	18	21
1.00 - 1.50	1.27	15	21	26

Table 2: Flux-averaged differential cross section in π^0 angle, $d\sigma/d\theta_{\pi^0}(10^{-42}cm^2/nucleon/deg.)$, for $1\pi^0$ production with statistical (stat), systematic (sys), and total (tot) uncertainties.

θ_{π^0} (deg.)	$d\sigma/d\theta_{\pi^0}$	stat(%)	sys(%)	tot(%)
0 - 10	3.97	34	19	40
10 - 20	14.25	15	15	22
20 - 30	12.88	13	15	21
30 - 40	14.06	12	15	19
40 - 50	12.70	12	15	19
50 - 60	10.32	14	15	21
60 - 70	8.14	17	15	23
70 - 80	8.95	17	16	23
80 - 90	5.11	21	18	28
90 - 120	4.73	16	18	24
120 - 180	1.75	20	20	28
SUPPLEMENTAL MATERIAL

This supplemental material contains additional tables that are referenced in the article.

TABLE I: Flux-averaged differential cross section in π^0 momentum, $d\sigma/dp_{\pi^0} (10^{-40} \text{cm}^2/\text{nucleon}/(\text{GeV}/c)$, for $1\pi^0$ production with statistical (stat), systematic (sys), and total (tot) uncertainties.

p_{π^0} (GeV/c)	$d\sigma/dp_{\pi^0}$	stat(%)	sys(%)	tot(%)
0.00 - 0.08	3.75	41	33	53
0.08 - 0.14	22.60	14	21	25
0.14 - 0.20	27.75	10	18	21
0.20 - 0.28	17.92	11	21	24
0.28 - 0.36	14.26	11	20	23
0.36 - 0.45	12.77	10	20	22
0.45 - 0.55	8.65	11	20	23
0.55 - 0.65	5.86	13	22	26
0.65 - 0.75	4.67	12	20	24
0.75 - 1.00	2.25	11	18	21
1.00 - 1.50	1.27	15	21	26

TABLE II: Flux-averaged differential cross section in π^0 angle, $d\sigma/d\theta_{\pi^0} (10^{-42} \text{cm}^2/\text{nucleon}/\text{deg})$, for $1\pi^0$ production with statistical (stat), systematic (sys), and total (tot) uncertainties.

θ_{π^0} (deg.)	$d\sigma/d\theta_{\pi^0}$	stat(%)	sys(%)	tot(%)
0 - 10	3.97	34	19	40
10 - 20	14.25	15	15	22
20 - 30	12.88	13	15	21
30 - 40	14.06	12	15	19
40 - 50	12.70	12	15	19
50 - 60	10.32	14	15	21
60 - 70	8.14	17	15	23
70 - 80	8.95	17	16	23
80 - 90	5.11	21	18	28
90 - 120	4.73	16	18	24
120 - 180	1.75	20	20	28