Determination of trace elements in urine by inductively coupled plasma-tandem mass spectrometry – Biomonitoring of adults in the German capital region

Andy Schmied a,b,*, Aline Murawski b, Marike Kolossa-Gehring b, Peter Kujath a

a Federal Institute for Occupational Safety and Health (BAuA), Berlin, Germany
b German Environment Agency (UBA), Berlin, Germany

ARTICLE INFO

Handling Editor: A. Gies

Keywords:
Human biological monitoring
Metals and metalloids
ICP-MS/MS
General population
Adults
German environmental survey

ABSTRACT

A method was developed and validated for multi-element analyses of human urine samples using inductively coupled plasma-tandem mass spectrometry. The combination of a simple sample preparation and the state-of-the-art technique allows high-throughput and lowest limits of quantification up to 1 ng/L. Thereby coefficients of variation ranges from 0.4% (V) to 3.7% (Be), and 0.9% (Cd) to 4.8% (Ni) for intraday and interday precision, respectively. The method’s performance is demonstrated by successful participation in international interlaboratory comparison programs as external quality assurance.

Moreover, the method was applied for the analysis of first-morning void urine samples of adults (N = 77) living in the German capital region. 15 metals and metalloids (As alk, Be, Bi, Cd, Co, Cr, In, Mn, Mo, Ni, Pb, Sn, Tl, V, and Zn) were determined. With exception of indium, all elements were found in urine samples above the limit of quantification, demonstrating the suitability to measure the general population’s exposure to these metals and metalloids. The method presented here shall be used for analysis of urine samples collected in the upcoming German Environmental Survey, GerES VI, a cross-sectional, population-representative study.

1. Introduction

Biomonitoring is an important tool to assess both the occupational and the general population’s exposure to chemicals (Ganzleben et al., 2017; Louro et al., 2019). It aggregates exposure from different pathways and from different sources by measuring the concentration of a substance and/or its metabolites in human biological matrices, preferably urine and blood. For ubiquitous substances such as metals, metalloids, and their compounds, where exposure occurs e.g. through diet, at workplaces, and from different environmental sources, biomonitoring provides a more accurate estimation of the body burden compared to modelling approaches (Louro et al., 2019).

Several metals, metalloids, and their compounds possess hazardous properties (e.g. mutagenicity, carcinogenicity, and toxicity for reproduction), and have been proposed as substances of very high concern. To reduce exposure, their use has been restricted. At EU level there are restrictions for arsenic, cadmium, chromium, mercury, lead, and their compounds listed in the Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) (EU, 2006). To evaluate the effectiveness of these measures and to identify the demand for additional regulation, accurate data on the general population’s exposure are required. Furthermore, these data are necessary to assess and specifically address occupational exposure by supplying information on the background exposure of the general population for comparison. Therefore, several countries established human biomonitoring programs and carried out cross-sectional studies. In particular besides Germany: Belgium (Schoeters et al., 2012; Hoet et al., 2013), Canada (Saravanabhavan et al., 2017) the Czech Republic (Batářová et al., 2006; Černá et al., 2007), France (Firy et al., 2012), Italy (Aprea et al., 2018), and the USA (CDC, 2019).

Abbreviations: AM, arithmetic mean; As alk, total arsenic; BAR, Biological Reference Values for Chemical Compounds in the Work Area; CV coefficient of variation, CRC; collision reaction cell, GerES; German Environmental Survey, G-EQUAS; German External Quality Assessment Scheme, ICP-MS; inductively coupled plasma mass spectrometry ICP-MS/MS, sector field ICP-MS.

* Corresponding author. Nildnerstrasse 40/42, 10317, Berlin, Germany.
E-mail address: Schmied.Andy@baua.bund.de (A. Schmied).

https://doi.org/10.1016/j.chemosphere.2021.131425
Received 15 March 2021; Received in revised form 29 June 2021; Accepted 1 July 2021
Available online 6 July 2021
0045-6535/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
In Germany, complementary to the human samples in the Environmental Specimen Bank collected from young occupationally not specifically exposed adults, the German Environmental Survey (GerES) as a population-representative, cross-sectional biomonitoring program for the general population has been established since the early 1980s (Kolossa-Gehring et al., 2012). GerES has repeatedly been conducted in close cooperation with the health examinations of the Robert Koch Institute on adults, children, and adolescents, completing the latest cycle, GerES V, on 3-17-year-olds in 2017 (Schulz et al., 2007, 2017). The last survey on adults aged 18-69 was GerES III, sampled 1997-1999.

Hence, for Germany there are no current, population-representative data on adult’s exposure to metals and metalloids and only a limited number of elements has been determined in urine samples in the past German Environmental Surveys (Schulz et al., 2007). To close the data gap, a broader spectrum of elements shall be analysed in samples of the upcoming GerES VI.

Focus of this publication is the validation of a method that will be used to determine metal and metalloid concentrations in urine samples of GerES VI using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). In general, inductively coupled plasma-mass spectrometry (ICP-MS) is the state-of-the-art technique for multi-element analysis in biological samples. In the biomonitoring studies mentioned above high-resolution sector field ICP-MS (sf-ICP-MS) or quadrupole-based ICP-MS instruments equipped with collision-reaction cells (ICP-CRC-QMS) were used to overcome spectral overlaps. In contrast, our method uses the advantages of tandem mass spectrometry to resolve spectral overlaps and to achieve low limits of quantification (LOQ). The methods performance is demonstrated by internal and external quality assurance. Furthermore, results from 77 adults participating in the GerES VI pilot study that took place in the German capital region, are shown.

2. Materials and methods

2.1. Reagents and chemicals

All solutions were prepared using ultrapure water provided by a water purification system (18.2 MΩ cm). All chemicals and single element standards used for analysis were of highest purity and suitable for ICP-MS. Nitric acid (Normatom®) was supplied by VWR (Darmstadt, Germany). Lyophilised control materials were supplied by Recipie (ClinChek® (Lot. 1227), Munich, Germany) and Invicon (Seronorm™, Lot. 1403080, 1706878, Munich, Germany). Samples of the 64th G-EQUAS (Erlangen-Nuremberg, Germany) were used as additional reference materials.

2.2. Instrumentation

Multi-element analysis was carried out on an Agilent 8900 ICP-MS/MS equipped with a SPS-4 autosampler and an ISIS 3 sample introduction system (Agilent technologies, Waldbronn, Germany). Operation conditions were optimised daily to obtain a maximum sensitivity, oxide ratio <1% (140Ce/160O, 140Ce/160O<sup>2+</sup>) and doubly charged ratio <2% (140Ce<sup>2+</sup>/140Ce<sup>4+</sup>). To avoid interferences, helium was used as collision gas in the Single Quadrupole mode, whereas oxygen was applied as reaction gas in the MS/MS mode. According to the characteristic of each element the gas mode was chosen as listed in Table 1. Further operation conditions are summarised in Table 2.

2.3. Sample preparation

To avoid sample contamination, the sample preparation was performed under a laminar flow hood, metal free tubes were used for dilution steps, pipette tips were cleaned with 2% (v/v) nitric acid prior use, and the prepared samples were measured directly after preparation.

The deep frozen urine samples were thawed on an overhead rotator. For sample preparation 400 μL of a urine sample were mixed with 3.2 μL of a urine sample were mixed with 3.2 μL of an internal standard solution.

| Element | Internal Standard | Integration time/s | Instrument mode |
|---------|-------------------|---------------------|-----------------|
| As      | 3, TbO           | 3                   | O<sub>2</sub>, mass-shift |
| Be      | 2, Tb             | 2                   | No gas |
| Bi      | 2, Tb             | 2                   | No gas |
| Cd      | 3, Rh             | 3                   | O<sub>2</sub>, on-mass |
| Co      | 1, Rh             | 1                   | He |
| Cr      | 1, Rh             | 1                   | He |
| In      | 1, Tb             | 1                   | He |
| Mn      | 1, Rh             | 1                   | He |
| Mo      | 1, TbO            | 1                   | O<sub>2</sub>, mass-shift |
| Ni      | 1, Rh             | 1                   | He |
| Pb      | 2 each isotope    | 2                   | No gas |
| Sn      | 2, Tb             | 2                   | He |
| TI      | 2, Tb             | 2                   | No gas |
| V       | 1, TbO            | 1                   | O<sub>2</sub>, mass-shift |
| Zn      | 1, Rh             | 1                   | He |

| Replicate | Sweeps/Repl. | Gas mode | Cell gas flow | m/z Q1 | He mode | m/z Q2 | He mode | m/z Q1 |
|------------|--------------|----------|---------------|--------|---------|--------|---------|--------|
| 3          | 50           | No gas   | 0 mL/min      | 9 (Be), 159 (Tb), 205 (Ti), 206, 207, 208 (Pb), 209 (Bi) | 52 (Cr), 55 (Mn), 59 (Co), 60 (Ni), 66 (Zn), 103 (Rh), 115 (In), 118 (Sn), 159 (Tb) | 67 (V), 91 (AsO), 103 (Rh), 114 (Cd), 118 (Sn), 130 (MoO2), 175 (TbO) | 4.6 mL/min | 0.5 mL/min |
| 2          |              | No gas   | 0 mL/min      | 205 (Ti), 206, 207, 208 (Pb), 209 (Bi) | 52 (Cr), 55 (Mn), 59 (Co), 60 (Ni), 66 (Zn), 103 (Rh), 115 (In), 118 (Sn), 159 (Tb) | 67 (V), 91 (AsO), 103 (Rh), 114 (Cd), 118 (Sn), 130 (MoO2), 175 (TbO) | 0.5 mL/min | 0.5 mL/min |

Table 1: Instrument modes, integration time and internal standards for analysed elements.

Table 2: ICP-MS/MS operating conditions.
2.4. Calibration

A matrix-matched calibration was applied using a pooled urine sample. First, multielement stock solutions were prepared freshly in PFA flasks by diluting 10 μg/L single element standards. For the calibration standards, defined volumes of the stock solutions were mixed with 400 μL of the pooled urine sample and 400 μL of the internal standard solution and then filled up to a final volume of 4 mL with 2% (v/v) nitric acid.

With exception of tin, eight calibration solutions were prepared. The added concentrations were in the range from 0.005, to 2 μg/L. For the elements As, Mo, Zn the added concentrations in the same solutions were in the range from 0.05 to 20 μg/L. For tin ten calibration solutions were prepared. The added concentration in the two additional calibration solutions were 100 and 200 μg/L.

2.5. Study population sample collection

To ensure consistency with previous GerES cycles, first-morning void urine samples were collected. All participants (N = 77) were volunteer, non-specifically occupationally exposed adults, living in the area of Berlin. They provided informed consent and the Ethics Committee of the Berlin Chamber of Physicians approved the project (Eth-31/18). 43 adults were female, 34 were male. The participant’s age was in the range of 19–78 years (arithmetic mean: 45.8 a).

Urine samples were collected in polyethylene containers which were cleaned with 2% (v/v) nitric acid prior collection. Complete amounts of first-morning void urine were collected by the participants themselves at their homes. Furthermore, 15 field blanks (polyethylene containers filled with ultrapure water) were opened for a short period of time at selected participant’s homes.

All samples were, aliquoted in polypropylene tubes (Sarstedt, Germany), frozen (–20 °C) and kept frozen until analysis.

2.6. Statistical analysis

Generated concentration data were analysed descriptively using MS Excel. Biomarker concentrations below the LOQ were assigned with the quantile function of MS Excel. Percentiles were calculated using the quantile function below the LOQ. Percentiles were calculated using the quantile function of MS Excel.

3. Result and discussion

3.1. Method validation

In human urine samples the elements As, Be, Bi, Cd, Co, Cr, In, Mn, Mo, Ni, Pb, Sn, Ti, V, and Zn can occur in ranges from a few ng/L to mg/L. Our aim was to determine all of these elements in a single method and thereby keep this method as simple as possible. In general, the determination of element concentrations in biological samples using ICP-MS is compromised by polyatomic ions having the same mass-to-charge ratio as the analyte ions. However, several polyatomic interferences described for urine analyses such as $^{43}$Ca$^{16}$O$^{+}$ on $^{99}$Co$^{+}$, $^{44}$Ca$^{16}$O$^{+}$ on $^{60}$Ni$^{+}$ and $^{40}$Ar$^{15}$C$^{+}$ on $^{52}$Cr$^{+}$ could already be resolved sufficiently using ICP-CRC-QMS and helium as collision gas (Heiland and Köster, 2004; Morton et al., 2014). Some elements exhibit no relevant interferences. Therefore, the determination of cobalt, chromium, indium, manganese, nickel, and tin was conducted in the single-quadrupole mode of the ICP-MS/MS using helium as collision gas and beryllium, bismuth, lead, and thallium were analysed without a collision gas.

Molybdenum-based polyatomic interferences such as $^{96}$Mo$^{15}$O$^{+}$ or $^{97}$Mo$^{16}$O$^{1+}$ can result in an overestimation of cadmium (Jarrett et al., 2008). Neither sf-ICP-MS, nor helium as collision gas in ICP-CRC-QMS enable a cadmium determination without mathematical molybdenum correction (Vrijens et al., 2011). However, with oxygen MoO$^{-}$ can be quantitatively converted into MoO$_{2}$. Since the reaction of $^{113}$Cd and oxygen is not favourable, a determination on mass is possible. Thereby, the tandem mode of the ICP-MS/MS enables full control of the reaction. The addition of molybdenum to a native urine sample, did not affect the measured cadmium concentration (0.21 μg/L (no Mo added) vs. 0.21 μg/L (added Mo concentration: 1 mg/L)). There are further isotopes that can interfere on Cd isotopes. For that reason a mathematical interference correction was applied for $^{114}$Sn a low abundance tin isotope: $l_{114}(Cd) = l_{114}(Cd+114Sn)\cdot 0.027 \cdot l_{114}(Sn)$. Another mathematical interference correction was necessary for indium: $l_{115}(In) = l_{115}(In+115Sn)\cdot 0.016 \cdot l_{115}(Sn)$.

As$^{+}$ and V$^{+}$ react readily with oxygen (Balcaen et al., 2015; Boele–Fernandez et al., 2017) and therefore determined interference-free in the mass shift mode. The most common interfering ions such as $^{40}$Ar$^{16}$Cl$^{+}$ on $^{79}$As$^{+}$ and $^{38}$Cl$^{16}$O$^{+}$ on $^{53}$V$^{+}$ are removed completely. The addition of sodium chloride added chloride concentration: 0.5 g/L) to a urine sample did not affect the measured arsenic (15.88 μg/L vs. 15.87) and vanadium (19.00 μg/L vs. 18.96 μg/L) concentrations. In addition, considerably lower LOQs are reached in comparison to Heiland and Köster (Asc: 0.02 vs. 0.26 μg/L; V: 0.005 vs. 0.056 μg/L) (Heiland and Köster, 2004). The method was validated regarding method LOQ, accuracy and precision.

The LOQ was determined by LOQ = 10·CV$_{B}$·c/SBR using the SBR-RSD approach (signal-to-background ratio - relative standard deviation of the background) (Boumans, 1991). CV$_{B}$ is the coefficient of variation of the background intensity of 12 measurements, c is the concentration of the element in solution and SBR is the signal to background ratio.

For internal quality assurance and to evaluate accuracy and precision of the method, control materials in different concentration levels were used. Values were not certified for indium and bismuth. Therefore, a native urine sample was spiked using single element standards. Measured and certified values of the control materials are compared in Table 3. Measured values are average values of ten individual measurements plus-minus the standard deviation. All measured values are within the certified range.

For intraday precision, the same sample was prepared separately ten times on one day. The sample preparation was repeated on nine further days to determine interday precision. For a bioanalytical methods, the European Medical Agency recommends a coefficient of variation (CV) below 15% for intra- and interday precision (EMA, 2011). Intraday CVs ranges from 0.4% for vanadium to 3.7% for beryllium. For interday precision slightly higher CVs were observed in a range from 0.9% (cadmium, manganese, and lead) to 4.8% (nickel).

A native urine sample exhibiting a low burden was spiked to evaluate recoveries of lower concentrations than given in the control materials. Spike recoveries for added concentrations of 15 μg/L for arsenic, molybdenum and zinc, and 0.6 μg/L for chromium and nickel, and 0.15 μg/L for all other trace elements were in the range of 94–106%.

External quality control was assured by participating in international interlaboratory comparison programs performed by the Clinic for Occupational, Social and Environmental Medicine of the Friedrich-Alexander-University Erlangen-Nuremberg (German External Quality Assessment Scheme, G-EQUAS) and the Institut National De Santé Publique Du Québec (Quebec Multielement External Quality Assessment Scheme, QUEMQAS). Participation in both programs allows external quality assessment for all measured elements in this study. Table 4 summarises the results. All measured values are within the acceptable range and the deviation of measured and the target values is less than 10%.

Reference materials were diluted with ultrapure water to evaluate the effect of different matrix concentrations on the determined metal and metalloid concentrations. The results are summarised in table S1.
concentrations were observed in the dilution range of 1/40 (v/v) to 1/5 (v/v). Compared to the 1/10 (v/v) dilution described above, no effects on the determined metal and metalloid concentrations were below the respective LOQs indicating no contamination of the urine samples from the sampling site. According to the German MAK commission’s recommendation (Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area) (Weihrauch et al., 2000), only urine samples with creatinine concentrations of 0.5–2.5 g/L were regarded as valid and used for further statistical analysis.

The results of the 65 urine samples meeting this criterion are summarised in Table 5, which describes the percentage equal to or above the LOQ, concentration ranges, mean concentrations, and percentiles. Values are given volume based and corrected for creatinine to adjust effects of urinary dilution. Due to limited number of participants no stratification by age and sex has been done. Moreover, the samples are not population-representative.

With the exception of indium, all elements were found in urine samples above the LOQ which demonstrates the suitability of the presented method to measure the general population’s exposure to metals, metalloids, and their compounds. Arsenic, cadmium, cobalt, molybdenum, nickel, lead, tin, thallium, vanadium, and zinc could be quantified in 100% of the samples.

Since the general population’s exposure to elements is influenced by factors that may differ between countries such as lifestyle (e.g. smoking behaviour, use of consumer products), diet (food preferences), and the environment, we focus on German human biomonitoring data generated through multi-element ICP-MS analyses for comparison.
obtained results in our study are comparable to those reported by them.
A. Schmied et al. 0.17 uptake, which was not taken into consideration neither by Heitland and assumption of sea food (Becker et al., 2003), highly influences the arsenic monitoring Commission. The Human Biomonitoring Values (HBM-I guidance values have been derived by the German Human Bio young not specifically exposed volunteers. German Environmental Specimen Bank (ESB, 2021) for urine samples of low. Beryllium is usually found solely in individual cases. For Belgium, our results are in line with those studies. Although our method reference concentration in the general adult population without occu sional exposure to this metal (Schaller, 2009). Our results, although sider the BAR value. Furthermore, the application for biomonitoring of the general pop ulation has been demonstrated by analysing native urine samples. These data are the base for planning multi-element analysis of samples of the full-scale study GerES VI.

### Table 5

| Element | % ≥ LOQ | Range (μg/L) | GM (μg/L) | AM (μg/L) | P90 (μg/L) | Range (μg/g creatinine) | GM (μg/g creatinine) | AM (μg/g creatinine) | P90 (μg/g creatinine) |
|---------|---------|-------------|----------|----------|-----------|-------------------------|---------------------|---------------------|----------------------|
| As      | 100     | 1.5–174    | 9.2      | 17.6     | 39        | 1.4–140                 | 8.7                | 16                  | 34                   |
| Be      | 2       | <LOQ – 0.005 | –        | –        | <LOQ      | 0.0001 – 0.005          | –                   | –                   | 0.0021               |
| Bi      | 38      | <LOQ – 0.14 | –        | –        | 0.027     | 0.0011 – 0.14           | 0.15                | 0.18                | 0.35                 |
| Cd      | 100     | 0.021–0.91 | 0.16     | 0.21     | 0.38      | 0.036–0.59              | 0.15                | 0.18                | 0.35                 |
| Co      | 100     | 0.049–3.5  | 0.35     | 0.62     | 1.6       | 0.078–5.9               | 0.33                | 0.58                | 1.3                  |
| Cr      | 68      | <LOQ – 1.1 | –        | –        | 0.23      | 0.037–0.78              | 0.21                | –                   | –                    |
| In      | 0       | <LOQ       | –        | –        | –         | –                      | –                   | –                   | –                    |
| Mn      | 11      | <LOQ – 1.7 | –        | –        | <LOQ      | 0.014–1.1               | –                   | –                   | 0.082                |
| Mo      | 100     | 3–135      | 32       | 43       | 85        | 3–126                   | 30                  | 38                  | 72                   |
| Ni      | 100     | 0.39–4.6   | 1.4      | 1.7      | 3.1       | 0.40–4.0                | 1.4                 | 1.6                 | 2.7                  |
| Pb      | 100     | 0.10–3.4   | 0.59     | 0.75     | 1.3       | 0.12–2.6                | 0.56                | 0.68                | 1.4                  |
| Sn      | 100     | 0.07–13.6  | 0.41     | 0.80     | 1.2       | 0.06–8.7                | 0.39                | 0.65                | 1.3                  |
| TI      | 100     | 0.06–0.85  | 0.21     | 0.24     | 0.40      | 0.09–0.61               | 0.19                | 0.21                | 0.31                 |
| V       | 100     | 0.010–0.27 | 0.040    | 0.051    | 0.079     | 0.013–0.34              | 0.038               | 0.049               | 0.11                 |
| Zn      | 100     | 65–1230    | 308      | 401      | 821       | 48–1490                 | 288                 | 355                 | 675                  |

LOQ (limit of quantification); GM = geometric mean; AM = arithmetic mean; P90 = 90th percentile; VOLQ = corresponding volume based value is < LOQ.

Credit author statement

Andy Schmied Formal analysis, Writing – original draft, Investigation, Aline Murawski Writing – original draft, Writing – review & editing, Marike Kolossa-Gehring Funding acquisition, Supervision, Writing – review & editing, Peter Kujath Funding acquisition, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank M. Schmied-Tobies for proof reading and discussion, and J. Neuhoff, and L. Marske for the aliquoting of the urine samples.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2021.131425.

References

Apel, P., Angerer, J., Wilhelm, M., Kolossa-Gehring, M., 2017. New HBM values for emerging substances, inventory of reference and HBM values in force, and working principles of the German Human Biomonitoring Commission. Int. J. Hyg Environ. Health 220, 359–366.

Aprea, M.C., Apostoli, P., Bettinelli, M., Lovreglio, P., Negri, S., Perbellini, L., Perico, A., Ricossa, M.C., Salamon, F., Scappellato, M.L., Iavicoli, I., 2018. Urinary levels of metal elements in the non-smoking general population in Italy: SIVR study 2012-2015. Int. J. Hyg Environ. Health 221, 177–185.

Balačen, L., Bolea-Fernandez, E., Resano, M., Vanhaecke, F., 2014. Inductively coupled plasma – tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra)trace elements – a tutorial review. Anal. Chim. Acta 894, 7–19.

Barátorová, A., Švehlová, V., Červenák, M., 2007. Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. Int. J. Hyg Environ. Health 209, 359–366.

Boumans, P.W.J.M., 1991. Measuring detection limits in inductively coupled plasma emission spectrometry using the “SRB—RSDB approach”—I. A tutorial discussion of the theory. Spectrochim. Acta Part B At. Spectrosc. 46, 431–445.

4. Conclusion

We presented a method that allows the simple determination of 15 metals and metalloids in urine samples in ng/L ranges. Spectral interferences are resolved using ICP-MS/MS.

Furthermore, the application for biomonitoring of the general population’s exposure has been demonstrated by analysing native urine samples.
Chemosphere 285 (2021) 131425

A. Schmied et al.

Czech Republic. Int. J. Hyg Environ. Health 210, 495–499.

EMA, 2011. Guideline on Bioanalytical Method Validation.

FDA, 2018. Bioanalytical Method Validation Guidance for Industry.

ESB, 2021. Environmental Specimen Bank. Homepage available at: umweltprobenbank.de/en. (Accessed 11 February 2021).

EU, 2006. Regulation (EC) No 1907/2006: Regulation Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency (ECHA).

ECHA, 2011. Guideline on Bioanalytical Method Validation.

CDC, 2019. National Center for Environmental Health: Fourth National Report on Human Exposure to Environmental Chemicals.

Cerná, M., Spěváčková, V., Batarírová, A., Smidl, J., Čejčanová, M., Ocádliková, D., Bavorová, H., Benet, B., Kubinová, R., 2007. Human biomonitoring system in the Czech Republic. Int. J. Hyg Environ. Health 210, 495–499.

Jarrett, J.M., Xiao, G., Caldwell, K.L., Henane, D., Shakirova, G., Jones, R.L., 2008. Determination of 61 elements in urine samples collected from a non-occupationally exposed UK adult population. Toxicol. Lett. 231, 179–193.

Saravanabhavan, G., Werry, K., Walker, M., Haines, D., Malowany, M., Khoury, C., 2017. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007–2013. Int. J. Hyg Environ. Health 220, 189–200.

Schaller, K.H., 2009. Addendum to Beryllium and its Inorganic Compounds [BAT Value Documentation, 2010]. The MAK-Collection for Occupational Health and Safety, pp. 1–4.

Schaefer, G., Rousselle, C., Ougier, E., Alvito, P., Martins, C., Assunção, A., Seiwert, M., 2012. Environmental surveys, specimen bank and health related exposure. Int. J. Hyg Environ. Health 210, 495–509.

Schulz, C., Wilhelm, M., Heudorf, U., Kolossa-Gehring, M., 2012. Reprint of “update of the reference and HBM values derived by the German human biomonitoring commission”. J. Hyg. Environ. Health 215 (2), 150–158.

Schulz, C., Kolossa-Gehring, M., Gies, A., 2017. German environmental survey for children and adolescents 2014–2017 (GerES V) – the environmental module of KiGGS wave 2. J. Health Monitor. 2 (S3) https://doi.org/10.17886/RKI-GBE-2017-108.

US EPA, Office of Research and Development, 1998. Guidance for Data Quality Assessment, Quality Assessment: Practical Methods for Data Analysis. EPA/600/R-96/084, Washington, DC.

Vrijens, J., Crouch, O., Schojen, C., Baeyens, W., Leermakers, M., 2011. Spectral interferences in the analysis of cadmium in human blood by ICP-MS: comparison between high resolution sector field ICP-MS and quadrupole ICP-MS. J. Anal. At. Spectrom. 26, 1819–1826.

Weihrauch, M., Schulze, B., Schaller, K.H., Lehnert, G., 2000. Kreatinin als Bezugsgröße für Stoffkonzentrationen im Urin [BAT Value Documentation in German language, 2000]. The MAK-Collection for Occupational Health and Safety, pp. 21–31.