Statistical properties of market collective responses

Shanshan Wang¹, Sebastian Neusüß² and Thomas Guhr¹

¹Fakultät für Physik, Universität Duisburg–Essen, Lotharstraße 1, 47048 Duisburg, Germany
²Deutsche Börse AG, Frankfurt, Germany

E-mail: shanshan.wang@uni-due.de

10 September 2018

Abstract. We empirically analyze the price and liquidity responses to trade signs, traded volumes and signed traded volumes. Utilizing the singular value decomposition, we explore the internal connections of price responses and of liquidity responses across the whole market. The statistical characteristics of their singular vectors are well described by the t location-scale distribution. Furthermore, we discuss the relation between prices and liquidity with respect to their overlapping factors. The factors of price and liquidity changes are non-random when these factors are related to the traded volumes. This means that the traded volumes play a critical role in the price change induced by the liquidity change. In contrast, the two kinds of factors are weakly overlapping when they are related to the trade signs and signed traded volumes. Hence, an imbalance of liquidity is related to the price change.

PACS numbers: 89.65.Gh 89.75.Fb 05.10.Gg

Keywords: market impact, liquidity, singular value decomposition, statistical properties
1. Introduction

The price impact refers to the price change induced by a single trade [1]. In the last two decades, it attracted ever more attention in the academic literature, as it reflects fundamental mechanisms in the market. Also from a practitioners’ viewpoint, the additional transaction costs due to such price changes prompt interest in a careful data analysis. Many earlier studies on price impacts focus on single stocks [2–10]. The price is determined by a continuous double auction of market orders and limit orders [11]. Market orders are immediately executed at the available trade price, while limit orders are placed in the order book until they match another order or until they are expired or cancelled. A market order consumes the volume provided by the limit orders at the best quote, i.e., the best bid or the best ask. If this volume does not suffice, the market order “goes deeper into the order book”, i.e., the volume of the second or even third, fourth, etc. best quote is consumed. Hence, the best quote/price is altered, because new incoming limit orders cannot immediately supply the volumes at the previously best quote. Thus, the price change is generated due to a lack of short-run liquidity, often measured by the bid-ask spread [12]. The transaction cost raised in this way, i.e.,
Statistical properties of market collective impacts

3

by the self-impact, is referred to as liquidity cost [12], reflecting the close connection between price impact and liquidity.

A wealth of data made an empirical analysis of the price impact possible, and led to a microscopic understanding of the self-impact [2, 3, 11, 13]. In particular, the statistical results reveal that a long-memory correlation is present in the order flow [3, 4]. This correlation is not likely to be due to herding behavior, rather it results from order splitting which is a strategy to minimize the above discussed additional transaction costs [3, 14]. Regarding the self-impact, many such strategies have been proposed [5–10].

The study of cross-impacts, i.e., the response of stock prices to a market order in a different stock, emerged as an obvious challenge [15–17]. Large scale data analyses [18–20] revealed non-Markovian features in these cross-impacts and in the corresponding trade sign cross-correlators. Consequently, the Efficient Market Hypothesis cannot hold in a strict form [18]. Efficiency is violated on shorter time scales and only present on longer ones. There are various implications, for instance, asymmetry of information in the market [21, 22], latent arbitrage opportunities [23], or possible compensation by the cost arising from the bid-ask spread [21]. To understand the mechanism of the cross-impacts, model-based interpretations [20, 24–26] are put forward, where the liquidity once more comes into play. As limit orders provide liquidity for the market, whereas market orders take liquidity from the market, the measured liquidity results from a complex dynamical interplay. What are its characteristics? What is the role of the liquidity in the price change across the whole market? To address these issues, we apply the response function to prices and liquidity. Further, we extend the responses not only to trade signs but also to traded volumes and to the signed traded volumes. Here, we focus on the primary price and liquidity changes, which measure the price and liquidity impact without time lags, respectively. To explore the latent factors of responses, we employ the singular value decomposition [20, 27–29]. Furthermore, we discuss the relation between prices and liquidity in view of the overlapping factors.

The paper is organized as follows. In Sect. 2, we introduce the data used in this study and the details of data processing. In Sect. 3, employing the singular value decomposition, we dissect the price and the liquidity responses to trade signs, traded volumes and signed traded volumes, respectively, and investigate the statistical properties of singular vectors. In Sect. 4, we analyze the relation between prices and liquidity in terms of their overlapping factors. We conclude our results in Sect. 5.

2. Data description

In Sect. 2.1, we describe the data used in this study. In Sect. 2.2, by data processing, we classify the trades into the cases of multiple trades and single trades.
Figure 1. Sketch of data processing for the cases of multiple and single trades. The event time of stocks i and j are t_i and t_j, respectively, and Δm_i is the price change between the previous and followed quotes of stock i for each trade of stock j. The figure is taken from Ref. [22].

2.1. Data set

The empirical analysis is carried out with the TotalView-ITCH data set, featuring 96 stocks, listed in Appendix A, from the NASDAQ stock market in the NASDAQ 100 index. The TotalView-ITCH data set gives detailed information about the order flow with a resolution of one millisecond. By reconstructing the order book with the order flow data, we obtain the best quote and trade information, including the best bid, the best ask, trade time, trade types (buying or selling) and so on. The details for the reconstruction of the order book are given in Ref. [22]. The amount of data available for each trading day renders it possible to consider five trading days from March 7th to March 11th of 2016 for the intraday trading time from 9:40 to 15:50 in east standard time (EST) for each stock.

2.2. Data processing

For each trade of a given stock, we identify the previous and following quotes of the other stock. In this way, an immediate change of quotes triggered by a trade from a different stock can be seen. The trades yield an event (trade) time axis for our study. We find that 35% of the trades, on average, share their previous and following quotes with other trades, the left 65% of the trades do not share their quotes with others. We refer to the former and the latter as to the cases of multiple and single trades, respectively, as sketched in Figure 1. The case of multiple trades suggests that more than one trade is needed to trigger updating the quote of the other stock.

3. Decomposition of responses

In Sect. 3.1, we define a generalized response function and then carry out a singular value decomposition to dissect its internal connections. We apply these methods to the price and liquidity responses in Sects. 3.2 and 3.3, respectively.
3.1. Generalized response functions

The average price change caused by a trade can be described by a response function [18, 19] relating the differences of the logarithmic midpoint prices and the trade signs. The information encoded in trades not only contains trade signs for buy or sell directions, but also the traded volumes. Furthermore, the liquidity may also be changed by trades. For exploring how the price change or liquidity change is induced by trade signs, traded volumes or signed traded volumes, we generalize the response function according to

\[R_{x,ij} = \left\langle \left(\tilde{x}_i^{(f)}(t_j) - \tilde{x}_i^{(p)}(t_j) \right) \tilde{y}_j(t_j) \right\rangle_{t_j}, \]

where the indices \(i, j \) run over all \(N \) stocks, \(i, j = 1, \ldots, N \). The tilde above a quantity indicates the quantity normalized by

\[\tilde{z} = \frac{z - \langle z \rangle}{\sigma(z)}, \]

where \(\langle z \rangle \) and \(\sigma(z) \) are the mean value and the standard deviation of the corresponding time series. The normalization puts all quantities on equal footing. In Equation (1), \(\tilde{y}_j(t_j) \) stands for trade signs \(\tilde{\varepsilon}_j \), traded volumes \(\tilde{v}_j \), and signed traded volumes \(\tilde{\nu}_j = \tilde{\varepsilon}_j \tilde{v}_j \), respectively, for stock \(j \). The trade sign on an event time scale is defined either as +1 for a buy trade or as -1 for a sell trade. It can be empirically obtained from the TotalView-ITCH data set. Moreover, \(\tilde{x}_i(t_j) \) in Equation (1) stands for the midpoint price \(\tilde{m}_i(t_j) \) and the bid-ask spread \(\tilde{s}_i(t_j) \), respectively. For \(\tilde{x}_i(t_j) = \tilde{m}_i(t_j) \), Equation (1) measures the price response \(R_{m,ij} \), and for \(\tilde{x}_i(t_j) = \tilde{s}_i(t_j) \), Equation (1) measures the liquidity response \(R_{s,ij} \). The superscript \((p) \) and \((f) \) indicate that \(\tilde{x}_i(t_j) \) of stock \(i \) is measured prior to or following, respectively, the trade of stock \(j \) at event time \(t_j \). The response function (1) quantifies the primary price or liquidity impact of a trade, without accounting for subsequent trades.

To explore the sources that cause the price or liquidity change in a statistical approach, we resort to a singular value decomposition of the response matrix \(R_x \) for a given \(x \). In our case, this matrix is a non-symmetric \(N \times N \) square matrix with \(N = 96 \), and its decomposition reads

\[R_x = U_x S_x V_x^T \]

where

\[S_x = \text{diag}(s_{x1}, \ldots, s_{xN}) \]

is the diagonal matrix of the (real) singular values. The \(N \times N \) matrices \(U_x \) and \(V_x \) are orthogonal, their columns \(\hat{U}_{xi} \) and \(\hat{V}_{xi}, i = 1, \ldots, N \), are the left and right singular vectors, respectively, to the index \(i \). We have

\[R_x \hat{V}_{xi} = S_{xi} \hat{U}_{xi} \quad \text{and} \quad R_x^T \hat{U}_{xi} = S_{xi} \hat{V}_{xi}. \]

The singular values may be identified with the latent factors that link the price or liquidity change of stock \(i \) with the trading information of all other stocks \(j \). The
entries of the vectors \vec{U}_{xi} and \vec{V}_{xi} which lie between −1 and +1 are the weights of the latent factors.

According to Equation (1), the price or liquidity change is averaged over all trades, over the trades in the case of single trades only, over the trades in the case of multiple trades only. The different averages result in the responses to all trades $R_{x,ij|\text{at}}$, to single trades $R_{x,ij|\text{st}}$, to multiple trades $R_{x,ij|\text{mt}}$. Moreover, we introduce a weight factor w_{ij} to define a linearly interpolating weighted responses

$$R_{x,ij|\text{wt}} = w_{ij}R_{x,ij|\text{st}} + (1-w_{ij})R_{x,ij|\text{mt}},$$

(6)

where w_{ij} is the ratio of trades identified as single trades to all trades for a stock pair (i, j).

3.2. Decomposing price responses

Instead of looking at the single values, it is advantageous to analyze the singular vectors. One of reasons is the better statistics when the number of stocks is small. More importantly, the singular vectors disclose the correlations between price changes (trades) and the latent factors. A large correlation in the left singular vectors indicates a pronounced dependence of price change due to the corresponding factor. A large correlation in the right singular vectors implies that the factor is robustly associated with the trade. To have an overall view of these correlations in the market, we work out the statistical distribution of the entries of the singular vectors.

Figure 2 shows the empirical probability densities of the left and right singular vectors, i.e., $U_{m,in}$ and $V_{m,jn}$ with the factors $n = 1, \cdots, N$, for the four types of price responses across the whole market. For comparison, normal distributions are fitted to the empirical distributions. Furthermore, $\tilde{x}_i^{(F)}(t_j)$, $\tilde{x}_i^{(P)}(t_j)$ and $\tilde{y}_j(t_j)$ in Equation (1) are replaced by random numbers normalized to mean zero and unit variance, such that Equation (1) results in random responses $R_{r,ij}$. The left and right single vectors of $R_{r,ij}$ are normally distributed as shown in Figure 4, which wipes out the suspicion that the non-normality of distributions of single vectors may come from the random responses. As a result, we find that the price change is not occasional and must be induced by some factors. Regardless of the price responding to trade signs, traded volumes or signed traded volumes, the case of multiple trades is close to random in the correlation between trades and the latent factors. On the contrary, the other cases with the similar distributions are more informative.

3.3. Decomposing liquidity responses

Figure 3 presents the probability density distributions of the entries $U_{s,in}$ or $V_{s,jn}$ of the singular vectors for liquidity responses across the whole market. The normal distributions are fitted for comparison. The mismatching between the empirical and the fitted distributions are visible at the heavy tails of the distributions. Thus, the connection between liquidity change and the latent factors cannot be coincidental, when
Statistical properties of market collective impacts

Figure 2. Probability density distributions of the entries of left and right singular vectors $U_{m,in}$ and $V_{m,jn}$ for the price response across the whole market. (a) and (b): price response to trade signs; (c) and (d): price response to traded volumes; (e) and (f): price response to signed traded volumes. The empirical distributions are drawn with marks. The fits to normal distributions $P_N(x)$ with $x = U_{m,in}, V_{m,jn}$ are shown as black lines, and the fits to t location-scale distributions $P_t(x)$ with $x = U_{m,in}, V_{m,jn}$ are shown as red lines. In each subplot, the four cases of responses, i.e., the case of all trades, the case of single trades, the case of multiple trades and the case of weighted trades, are displayed.
Figure 3. Probability density distributions of the entries of left and right singular vectors $U_{s,in}$ and $V_{s,jn}$ for the liquidity response across the whole market. (a) and (b): liquidity response to trade signs; (c) and (d): liquidity response to traded volumes; (e) and (f): liquidity response to signed traded volumes. The empirical distributions are drawn with marks. The fits to normal distributions $P_N(x)$ with $x = U_{s,in}, V_{s,jn}$ are shown as black lines, and the fits to t location-scale distributions $P_t(x)$ with $x = U_{s,in}, V_{s,jn}$ are shown as red lines. In each subplot, the four cases of responses, i.e., the case of all trades, the case of single trades, the case of multiple trades and the case of weighted trades, are displayed.
the liquidity responds to trade signs, traded volumes or signed traded volumes. It is worth to keep in mind that the factors for liquidity may differ from the ones for prices. In the middle row of Figure 3, all cases except for the one of multiple trades present remarkable information in singular vectors, implying that the liquidity is highly sensitive to traded volumes.

3.4. A unified description

The heavy tails are remarkable in the distributions of singular-vector entries. We introduce the t location-scale distribution to quantify the potential information. The probability density function of the t location-scale distribution, i.e., of the non-standardized Student’s t-distribution [30], is given by

$$p(x) = \frac{\Gamma \left(\frac{\beta+1}{2} \right)}{\sigma \sqrt{\beta \pi} \Gamma \left(\frac{\beta}{2} \right)} \left[\frac{\beta + \left(\frac{x-\mu}{\sigma} \right)^2}{\beta} \right]^{-(\frac{\beta+1}{2})}.$$ \hfill (7)

Here, $\Gamma(\cdot)$ is the gamma function, μ is the location parameter, σ is the scale parameter, and β is the shape parameter. When the shape parameter β becomes very large, the distribution approaches the normal distribution. The smaller β, the heavier are the tails. Hence, by altering β, the t location-scale distribution can either be a surrogate of the normal distribution or model the heavy-tailed distribution. This makes it appropriate for our purpose. For the price and the liquidity responses, the empirical result is fitted perfectly, especially for the heavy tails in the distribution, as shown in Figs. 2 and 3. The fitted values especially for β, listed in tables 1 and 2, corroborate nicely the findings stated in Sects. 3.2 and 3.3.
Table 1. Fit parameters for price responses

Response to	Cases of trades	\(U_{m,in} \) \(\mu \) \(\sigma \) \(\beta \)	\(V_{m,jn} \) \(\mu \) \(\sigma \) \(\beta \)				
trade signs	all	0.00021	0.011	0.980	0.00009	0.012	1.028
	single	-0.00017	0.014	1.035	0.00012	0.017	1.131
	multiple	-0.00190	0.057	2.304	-0.00127	0.097	21.156
	weighted	0.00030	0.011	0.982	0.00010	0.012	1.032
trade volumes	all	0.00053	0.051	1.984	-0.00032	0.068	3.217
	single	-0.00022	0.057	2.357	-0.00177	0.081	5.307
	multiple	0.00017	0.056	2.242	0.00119	0.072	3.678
	weighted	-0.00118	0.054	2.151	-0.00161	0.072	3.678
signed trade volumes	all	-0.00019	0.010	0.957	-0.00033	0.011	1.008
	single	0.00005	0.014	1.031	0.00009	0.017	1.139
	multiple	-0.00024	0.058	2.362	-0.00125	0.094	12.794
	weighted	0.00055	0.011	0.984	0.00044	0.012	1.034

Table 2. Fit parameters for liquidity responses

Response to	Cases of trades	\(U_{s,in} \) \(\mu \) \(\sigma \) \(\beta \)	\(V_{s,jn} \) \(\mu \) \(\sigma \) \(\beta \)				
trade signs	all	-0.00136	0.085	6.491	-0.00026	0.084	6.033
	single	-0.00018	0.089	8.722	0.00038	0.091	10.422
	multiple	-0.00032	0.098	27.156	-0.00226	0.097	18.985
	weighted	0.00058	0.086	6.781	0.00046	0.084	6.307
trade volumes	all	-0.00035	0.024	1.073	-0.00005	0.032	1.344
	single	0.00092	0.039	1.500	0.00091	0.053	2.148
	multiple	-0.00129	0.098	23.204	0.00088	0.087	7.223
	weighted	0.00088	0.027	1.137	0.00073	0.039	1.567
signed trade volumes	all	-0.00132	0.088	7.774	0.00054	0.085	6.549
	single	0.00143	0.092	10.892	0.00053	0.091	9.371
	multiple	0.00105	0.097	21.939	-0.00157	0.093	11.637
	weighted	-0.00071	0.088	7.695	0.00017	0.087	7.044

4. Relations between prices and liquidity

Compared with the case of multiple trades, the case of single trades contains useful information. To study the relations between prices and liquidity, we focus on the case of single trades, which do not share their previous and following quotes with other trades. In Sect. 4.1, we define overlap matrices of factors. In Sect. 4.2, we analyze the structural characteristics with respect to overlap matrices in different cases. In Sect. 4.3, we dissect the overlap matrices by a singular value decomposition and discuss the relations between prices and liquidity.
4.1. Overlap matrices

To find out the common factors between price and liquidity changes, we introduce overlap matrices of factors. The overlap matrix [20] is defined with the left singular vectors \tilde{U}_x. We first normalize the entries $U_{x,in}$, $n = 1, \ldots, N$, according to

$$\tilde{U}_{x,in} = \frac{U_{x,in} - \langle U_{x,in} \rangle_n}{\sigma(U_{x,in})_n}$$

where the average and the standard deviation for each stock i are worked out over all N factors. This defines the normalized left singular vectors \tilde{U}_{xi} and thereby the normalized matrix \tilde{U}_x, where x stands for price changes when $x = m$ or liquidity changes when $x = s$. Hence, the $N \times N$ overlap matrix of factors reads

$$C_{ms} = \tilde{U}_m^T \tilde{U}_s$$

It measures the overlap of the N factors of price change with the N factors of liquidity changes. Likewise, the $N \times N$ overlap matrices for the factors of price changes and for the factors of liquidity changes are defined as

$$C_{mm} = \tilde{U}_m^T \tilde{U}_m \quad \text{and} \quad C_{ss} = \tilde{U}_s^T \tilde{U}_s$$

respectively.

4.2. Overlap structures

Figure 5 displays the overlap structure of factors, as measured with the matrices C_{mm} (top row), C_{ss} (middle row) and C_{ms} (bottom row), where the factors are related to trade signs (left column), traded volumes (middle column) and signed traded volumes (right column), respectively. The overlaps are remarkable in the subplots (a), (b), (c) and (e). In particular, the factors of price changes are clearly related to the trade signs and the signed traded volumes. Thus, the price is easily moved by trade directions, i.e., buying or selling. On the other hand, the liquidity is significantly affected by the factors related to the traded volumes rather than by others. These overlapping features in C_{mm} and C_{ss} are striking when comparing with the features in random overlap matrices, shown in Figure 6. The random overlap matrices result from the random response matrices in which the mean values and standard deviations are the same as the empirical response matrices. In Figure 6, the small overlaps are randomly distributed in each random overlap matrix, quite different from the empirical cases.

The overlap matrix visualizes the overlapping of factors that individually change the price or the liquidity, but it fails to identify the overlapping of factors that jointly drive the price and the liquidity, because the largely positive and negative overlaps are mixed and look like the random patterns in the subplots (g)—(i) of Figure 5. Therefore, the singular value decomposition is applied once more to the overlap matrices.
Figure 5. Overlap matrices of factors C_{mm} (top row), C_{ss} (middle row) and C_{ms} (bottom row), whose the factors are related to the trade signs (left column), the traded volumes (middle column) and the signed traded volumes (right column), respectively. In each subplot, the vertical axis is stock i, the horizontal axis is stock j.

Figure 6. Random overlap matrices, each subplot corresponds one-to-one to the subplot in Figure 5.
Figure 7. Probability density distributions of entries $U_{xy,an}$ and $V_{xy,bn}$ of singular vectors for the overlap matrices C_{mm} (top row), C_{ss} (middle row) and C_{ms} (bottom row). The factors are related to the trade signs (left column), the traded volumes (middle column) and the signed traded volumes (right column), respectively. All empirical distributions are fitted by normal distributions $P_N(U_{xy,an})$, $P_N(V_{xy,bn})$ and by t location-scale distributions $P_t(U_{xy,an})$, $P_t(V_{xy,bn})$.

Figure 8. The probability density distributions of entries $U_{xy,an}$ and $V_{xy,bn}$ of singular vectors for the random overlap matrices, where each subplot one-to-one corresponds to the subplot in Figure 7. All distributions are fitted by normal distributions $P_N(U_{xy,an})$, $P_N(V_{xy,bn})$ and by t location-scale distributions $P_t(U_{xy,an})$, $P_t(V_{xy,bn})$.
Table 3. Fit parameters for correlations of factors

Correlation between factors related to	$U_{xy,an}$	$V_{xy,bn}$				
	μ	σ	β	μ	σ	β
factors of price change						
trade signs	0.00003	0.029	1.378	0.00003	0.029	1.378
traded volumes	-0.00183	0.075	4.107	0.00070	0.075	4.109
signed volumes	0.00062	0.030	1.401	0.00062	0.030	1.401
factors of liquidity change						
trade signs	0.00151	0.095	14.370	-0.00087	0.095	14.472
traded volumes	-0.00128	0.064	2.889	-0.00128	0.064	2.889
signed volumes	-0.00117	0.098	26.769	-0.00117	0.098	26.769
factors of price change and of liquidity change	0.00108	0.041	1.784	0.00148	0.094	13.893
trade signs	0.00141	0.083	5.655	-0.00112	0.070	3.421
traded volumes	-0.00063	0.038	1.630	-0.00129	0.097	22.677

4.3. Decomposing overlap matrices

For a given x and y, the overlap matrix C_{xy} is decomposed into left and right singular vectors which are the columns of orthogonal $N \times N$ matrices U_{xy} and V_{xy}, respectively. The corresponding singular values are ordered in the diagonal matrix S_{xy}. Thus, the decomposition reads

$$C_{xy} = U_{xy}S_{xy}V_{xy}^T.$$ (11)

The entries $U_{xy,an}$ and $V_{xy,bn}$ with $a, b, n = 1, \ldots, N$ in the singular vector matrices measure the correlation between the n-th common factors and the a-th individual factors of x and the correlation between the n-th common factors and the b-th individual factors of y, respectively. In Figure 7, we show the probability densities of the left and right singular vectors of overlap matrices C_{mm}, C_{ss} and C_{ms}, where both the normal distribution and the t location-scale distribution are fitted to the empirical distributions. Table 3 lists all fit parameters. For comparison, the same procedure is carried out for the random overlap matrices, shown in Figure 8.

In Figure 7, the subplots (a), (b), (c) and (e) show the heavy tails for C_{mm} and C_{ss}, coinciding with the larger overlaps in Figure 5. In particular, the irregular patterns for C_{ms} in Figure 5 are verified to be non-random. The information encoded in the overlap matrices are quantified by the t location-scale distribution. By comparison with others, the factors related to the traded volumes are more pronounced to connect the price change and the liquidity change together. Put differently, the traded volume plays an important role when the price is changed by the liquidity. This is plausible, as the trades from the stock itself are able to affect the short-run liquidity by eating up the volumes in the best quote, and move the price to another level immediately. In contrast, the factors related to the trade signs and the signed traded volumes generate much weak links between price changes and liquidity changes. This reveals that the liquidity changes are almost cancelled out by the opposite trade directions. However, we still cannot ignore the factors that lead to the weak liquidity responses to the trade signs and the signed traded volumes, as the resulting liquidity imbalance contributes to
the price change.

5. Conclusions

We explored the whole market response to trade signs, traded volumes and signed traded volumes, focusing on the primary price and liquidity responses. Utilizing the singular value decomposition, the response matrices were dissected into the left and right singular vectors and the corresponding singular values. We analyzed the statistics properties of the singular vectors, where the left singular vectors correlate the price or liquidity change with the latent factors, and the right singular vectors correlate these factors with the trading information. In our study, the trade information includes the trade signs, the traded volumes and the signed traded volumes. We found that the heavy-tailed distributions of singular vectors either for price responses or for liquidity responses are well described by t location-scale distributions. The price responds significantly to the trade signs and signed traded volumes, whereas the liquidity is very sensitive to the traded volumes.

We also looked at the overlap matrices for the factors that individually change the price or the liquidity and for the factors that joint change the price and the liquidity. The overlap matrices reveal non-random structures. The overlaps are remarkable when the factors of price changes are related to the three kinds of trading information and when the factors of liquidity changes are related to the traded volumes. By carrying out a singular value decomposition for the overlap matrices, we found that the factors related to the traded volumes are significant to connect the price change with the liquidity change. Hence, the unsigned traded volumes appear critical for the price change caused by the liquidity. On the other hand, the bid-ask spread can be enlarged either by a buy trade or by a sell trade, resulting in a reduction of liquidity. If the market is efficient, the liquidity responses to trade signs or signed traded volumes should be counterbalanced. However, we found the two kinds of liquidity responses are weak but cannot be ignored, as they imply an imbalance of liquidity, which is related to the price change.

Acknowledgments

We thank S. Krause, Y. Stepanov and D. Waltner for fruitful discussions.

Appendices

A. Stock information

Table A.1 lists 96 stocks used in this study and their average daily numbers of trades. The daily number of trades is restricted to the intraday trading time from 9:40 to 15:50 EST, and the average is performed over five trading days from March 7th to March 11th.
Table A.1. Averaged daily number of trades over five trading days

stock	number	stock	number	stock	number	stock	number
AAL	4,563	COST	3,487	JD	3,596	REGN	1,300
AAPL	13,598	CSCO	3,273	KHC	3,140	ROST	3,868
ADBE	4,553	CTSH	4,823	KLAC	1,803	SBAC	1,935
ADI	2,931	CTXS	2,477	LBTYA	2,759	SBUX	5,719
ADP	2,954	DISC	3,152	LLTC	2,300	SIRI	514
ADSK	3,389	DISH	2,261	LMCA	1,585	SNDC	3,687
AKAM	2,439	DLTR	4,021	LRCX	3,826	SPLS	1,108
ALXN	2,466	EA	4,708	IVNTA	1,063	SRCL	1,588
AMAT	2,066	EBAY	2,850	MAR	3,495	STX	4,056
AMGN	5,132	EQIX	1,615	MAT	2,918	SYMC	1,784
AMZN	5,376	ESRX	6,144	MDLZ	3,666	TRIP	3,473
ATVI	3,882	EXPD	2,310	MNST	1,591	TSCO	1,535
AVGO	5,518	FAST	2,816	MSFT	9,245	TSLA	3,367
BBBY	2,590	FB	14,921	MU	2,351	TXN	3,479
BDJU	2,729	FISV	1,856	MYL	5,969	VIAB	3,769
BIIB	2,818	FOXA	2,388	NFLX	9,164	VIP	217
BMRN	2,135	GILD	11,681	NTAP	2,210	VOD	926
CA	1,531	GOOG	4,426	NVDA	2,935	VRSK	1,264
CELG	6,742	GRMN	1,909	NXPI	3,824	VRTX	3,037
CERN	3,440	HSIC	674	ORLY	1,837	WDC	6,662
CHKP	2,030	ILMN	1,860	PAYX	1,838	WFM	3,775
CHRW	2,021	INTC	3,933	PCAR	3,315	WYNN	4,046
CHTR	2,650	INTU	2,299	PCLN	1,029	XLNX	2,450
CMCSA	5,984	ISRG	616	QCOM	7,030	YHOO	6,258

in 2016. Here, the information of trades is obtained by reconstructing the order book with the TotalView-ITCH data set.

References

[1] J.P. Bouchaud, *Price impact*, in *Encyclopedia of Quantitative Finance* (John Wiley & Sons, Ltd, 2010)

[2] F. Lillo, J.D. Farmer, R.N. Mantegna, *Nature* **421**(6919), 129 (2003)

[3] J.P. Bouchaud, Y. Gefen, M. Potters, M. Wyart, Quant. Finance **4**(2), 176 (2004)

[4] F. Lillo, S. Mike, J.D. Farmer, Phys. Rev. E **71**(6), 066122 (2005)

[5] J. Gatheral, Quant. Finance **10**(7), 749 (2010)

[6] J. Gatheral, A. Schied, A. Slynko, Math. Finance **22**(3), 445 (2012)

[7] J. Gatheral, A. Schied, *Dynamical models of market impact and algorithms for order execution*, in *HANDBOOK ON SYSTEMIC RISK*, edited by J.P. Fouque, J. A. Langsam (Cambridge, 2013), pp. 579–599

[8] A.A. Obizhaeva, J. Wang, J. Financ. Mark. **16**(1), 1 (2013)

[9] A. Alfonsi, J.I. Acevedo, Appl. Math. Finance **21**(3), 201 (2014)

[10] A. Alfonsi, P. Blanc, Finance Stochastics **20**(1), 183 (2016)

[11] J. Doyne Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen, Quant. Finance **4**(4), 383 (2004)

[12] H. Demsetz, Q. J. Econ. **82**(1), 33 (1968)

[13] X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, *Nature* **423**(6937), 267 (2003)
[14] B. Tóth, I. Palit, F. Lillo, J.D. Farmer, J. Econ. Dynam. Control 51, 218 (2015)
[15] J. Hasbrouck, D.J. Seppi, J. Finan. Econ. 59(3), 383 (2001)
[16] P. Pasquariello, C. Vega, Rev. Financ. 19, 229 (2013)
[17] A. Boulatov, T. Hendershott, D. Livdan, Rev. Econ. Stud. 80(1), 35 (2013)
[18] S. Wang, R. Schäfer, T. Guhr, Eur. Phys. J. B 89, 105 (2016)
[19] S. Wang, R. Schäfer, T. Guhr, Eur. Phys. J. B 89, 207 (2016)
[20] M. Benzaquen, I. Mastromatteo, Z. Eisler, J.P. Bouchaud, J. Stat. Mech. Theor. Exp. 2017(2), 023406 (2017)
[21] M. Schneider, F. Lillo, SSRN: https://ssrn.com/abstract=2889029 (2016)
[22] S. Wang, S. Neusüß, T. Guhr, arXiv:1710.07959 (2017)
[23] S. Wang, arXiv:1701.03098 (2017)
[24] S. Wang, T. Guhr, arXiv:1609.04890 (2016)
[25] F. Patzelt, J.P. Bouchaud, arXiv:1706.04163 (2017)
[26] F. Patzelt, J.P. Bouchaud, arXiv:1708.02411 (2017)
[27] G.W. Stewart, SIAM Rev. 35(4), 551 (1993)
[28] H. Samet, Foundations of multidimensional and metric data structures (Morgan Kaufmann, 2006), p. 671
[29] S. Banerjee, A. Roy, Linear algebra and matrix analysis for statistics (CRC Press, 2014), p. 371
[30] S. Jackman, Bayesian analysis for the social sciences (John Wiley & Sons, Ltd, 2009), p. 507