IRS Pleckstrin Homology Domains Bind to Acidic Motifs in Proteins

(Received for publication, June 5, 1998, and in revised form, August 14, 1998)

Deborah J. Burks‡§, Jian Wang‡, Heather Towery‡, Osamu Ishibashi‡, Douglas Lowe‡, Heimo Riedel‡, and Morris F. White‡**

From the ‡Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, the ‡Department of Biological Sciences and Karmanos Cancer Institute, Wayne State School of Medicine, Detroit Michigan 48202, and the ‡‡First Department of Medicine, Toyama Medical and Pharmacology University, Toyama 939-01, Japan

Using a yeast two-hybrid system, we identified several proteins that interact with the PH domains in IRS-1 and IRS-2, including Lom protease, myeloblast protein, and nucleolin. Although the roles of these molecules in insulin action are not yet known, each protein contained an acidic motif that interacted with the PH domain of IRS-2. However, only the acidic motif in nucleolin bound to IRS-1, suggesting that the PH domain in IRS-1 and IRS-2 are not identical. Moreover, synthetic peptides based on the acidic motif in Lom protease and myeloblast protein inhibited the binding of nucleolin to the PH domain of IRS-2 but not to the PH domain of IRS-1, confirming the selectivity of these PH domains. The ability to bind acidic motifs may be a specific function of the PH domain in IRS proteins, because the PH domains in βARK, phospholipase Cγ, or spectrin did not bind nucleolin. In 32D cells, nucleolin bound to both IRS-1 and IRS-2, and expression of the acidic motif of nucleolin inhibited insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2. These results suggest that the binding of acidic motifs to the PH domain of IRS-1 and IRS-2 disrupts coupling to the activated insulin receptor. Our results are consistent with the hypothesis that the PH domain in the IRS proteins may ordinarily bind acidic peptide motifs in membrane proteins or other acidic membrane elements that couple IRS proteins to activated membrane receptors.

Early steps in cellular signaling by growth factors and cytokines are mediated by molecular interactions that are coordinated by common protein modules. In many cases the molecular basis of these protein-protein interactions are known: Src homology 2 domains and phosphotyrosine binding (PTB) do mains bind to tyrosine phosphorylated motifs in activated receptors or in transiently associated docking proteins; and Src homology 3 domains and WW domains bind to proline-rich motifs in receptors, enzymes, and the cytoskeleton (1). Pleckstrin homology (PH) domains are also frequent participants in the signaling cascades. Most molecules that contain a PH domain interact with membrane components, suggesting that PH domains mediate membrane targeting. However, PH domains display a broad range of binding specificity, which has hindered the identification of ligands for the various PH domain isoforms.

PH domains consist of approximately 100 amino acids, but amino acid sequence alignments reveal few overall identities. A single tryptophan residue in the COOH-terminal α-helix is the only residue conserved in all PH domains (2). Secondary structure is the best predictor of the PH domain. X-ray crystallographic and NMR analysis of several PH domains reveal a common structure with two orthogonal β-sheets assembled from seven β-strands closed at one end with a COOH-terminal α-helix (3–8). PH domains contain a positively charged binding pocket, and several reports suggest that these regions bind phospholipids, including the PH domain in PLCδ that binds to phosphatidylinositol diphosphate and inositol 1,4,5-trisphosphate (9, 10). Because inositol 1,4,5-trisphosphate is a product of PLC catalysis, inositol 1,4,5-trisphosphate may dissociate PLCδ from membranes containing its substrate phosphatidylinositol diphosphate (10). Recent studies reveal that the lipid product of phosphatidylinositol 3-kinase binds to the PH domains of Btk, SOS, Tiam-I, and PKB (11, 12). In the latter case, the interaction of PKB with phosphatidylinositol 3,4,5-trisphosphate or phosphatidylinositol 3,4-diphosphate mediates the translocation of PKB to membranes, which places its regulation under the influence of phosphatidylinositol 3-kinase (13–15). Although the interaction of PH domains with phosphatidylinositol diphosphate and phosphatidylinositol triphosphate provides a common theme to understand their function, not all PH domains bind to these phospholipids (16). Some PH domains bind protein ligands, as illustrated by the association of the βark PH domain with βγ-subunits of heterotrimeric G-proteins (17).

Members of the insulin receptor substrate family (IRS proteins) contain an NH₂-terminal PH domain followed immediately by a PTB domain. The PTB domain binds to the phosphorylated NPEY motif in the juxtamembrane region of the activated insulin receptor (18). Although the structures of the PH and PTB domains are very similar, the ligands for the PH domains in IRS proteins are not yet defined (19). A direct interaction between the insulin receptor and the PH domain of IRS-1 has not been detected (20–22). Nevertheless, the PH domain is essential for efficient tyrosine phosphorylation of IRS-1 during insulin stimulation, because deletion of the PH domain significantly reduces insulin-stimulated IRS-1 tyrosine phosphorylation (18, 23). The PH domain in the IRS proteins may have a common function that mediates receptor coupling, because chimeric IRS-1 proteins bearing the PH domains from

* This work was supported by National Institutes of Health Grant DK43808. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Supported in part by a Juvenile Diabetes Foundation International fellowship.

¶ To whom correspondence should be addressed: Howard Hughes Medical Inst., Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215. Tel.: 617-732-2578; Fax: 617-732-2593; E-mail: Whitemor@joslab.harvard.edu.

§ The abbreviations used are: PTB, phosphotyrosine binding; PH, pleckstrin homology; PLCγ, phospholipase Cγ; β-gal, β-galactosidase; GST, glutathione S-transferase; CHO, Chinese hamster ovary.

This paper is available online at http://www.jbc.org

31061
IRS-2 or Gab-1 are phosphorylated normally by the insulin receptor (24). By contrast, chimeric IRS-1 proteins constructed with PH domains from βARK, PLCγ, or spectrin fail to couple to the insulin receptor, suggesting that these heterologous PH domains are incapable of mediating the correct protein coupling. Therefore, to identify potential protein ligands for the PH domains in the IRS proteins, we used the PH domains of IRS-1 and IRS-2 as baits in a yeast two-hybrid screen. Our analysis has revealed that acidic motifs in proteins define provisionally the ligand specificity for the PH domain in IRS proteins.

**EXPERIMENTAL PROCEDURES**

*Yeast Two-hybrid Screen and β-Galactosidase Assay—PH domains of IRS-1 (amino acids 131–331) and IRS-2 (amino acids 161–376) were amplified by polymerase chain reaction and cloned into the yeast two-hybrid plasmid pGBT9 (25). Similarly, the PTB domains of IRS-1 (amino acids 131–331) and IRS-2 (amino acids 161–376) were prepared in the pGST9 plasmid. These bait-containing plasmids were then used to screen a 9.5–10.5 day post-conception mouse embryo library prepared in plasmid pVP16 (26, 27). Positive library clones were isolated from His prototroph and β-galactosidase (β-gal) yeast assays (27). Plasmids were transfected into *Escherichia coli*, sequenced, and then re-introduced into *Saccharomyces cerevisiae* strain L40. The specificity of these interactions was then assessed by mating with the AMR70 strain carrying the control baits which included the PTB domains of IRS-1 and IRS-2, or spectrin as described previously (24). cDNAs for the PH domains of IRS-1 or IRS-2 were transfected into 32D cells. Lysates were prepared for GST pull-down experiments.

**Preparation of GST Fusion Proteins—**pGEX16 plones containing the positive inserts identified by the yeast two-hybrid screen were excised with *NotI* and inserted into the *NotI* cloning sites of pGEX-4T-1 (Amersham Pharmacia Biotech). GST fusion proteins were expressed in *E. coli* strain BL-21 and purified using glutathione-agarose (Amersham Pharmacia Biotech).

**Generation of Antibodies—**Rabbit polyclonal antibodies directed against IRS-1 or IRS-2 have been described previously (23). Anti-lon protease antibodies were a gift of Michael Maurizi (National Institutes of Health) (28). Anti-nucleolin antibodies were provided by the laboratory of Dr. Nancy Maizels (Yale University) (29). Antibodies against sequences encoded by yeast two-hybrid plasmids (myeloblast protein, lon protease, and nucleolin) were generated by immunization of rabbits with GST fusion proteins of these partial cDNA clones (HRP, Denver, PA).

**Preparation of Chimeric IRS-1 Proteins—**The native PH domain in IRS-1 was replaced with the PH domains of IRS-2, Gab1, βARK, PLCγ, or spectrin as described previously (24). cDNAs for the PH domains of rat PLCγ (Asp263–Thr373), human β-spectrin (Pro409–Lys536), and bovine βARK (Pro437–Gly580) were graciously provided by Dr. Robert Leffkowitz (Duke University) (30). These PH domains were excised from pGEX-2T, adapted by polymerase chain reaction with initiation codons, *SacI* restriction sites, and cloned in-frame into the pCMVhis expression vector containing the cDNA for IRS1<sub>437</sub> (16). The PH domains of IRS-2 (Val152–Leu308) and Gab-1 (Lys13–Gly116) were generated by polymerase chain reaction and ligated into the yeast two-hybrid plasmid cDNA for IRS1<sub>437</sub> (18). All constructs were then excised from the pCMV<sub>his</sub> vector with SnaI and SalI and ligated into the pBABE expression vector.

**RESULTS**

**Isolation and Characterization of PH Domain Ligands (PH Ligands)—**We used the yeast two-hybrid system to identify proteins that bind to the PH domains of IRS-1 and IRS-2 in a 10.5-day mouse embryo cDNA library. Bait constructs were prepared with each PH domain, and the initial screen revealed 47 cDNA clones. The binding specificity of each clone was analyzed in yeast using the PH or PTB domains of IRS-1 or IRS-2 and different control constructs, including the intracellular domain of the insulin or the IGF-1 receptor, PKC<sub>δ</sub>, or GALA (Table I). All 47 clones interacted with the PH domain of

---

**Table I**

| Ligands | Activity |
|---------|----------|
| IRS1-PH | + + + + |
| IRS2-PH | + + + + |
| IRS1-PTB| + + + + |
| IRS2-PTB| + + + + |
| IR      | + + + + |
| IGFI R  | + + + + |
| pGBT    | + + + + |

**Characterization of PH ligands**

A β-gal assay was used to evaluate the specificity of the interactions between the four groups of cDNA clones and the PH domains of IRS-1 and IRS-2. Additionally, the clones were introduced into yeast strains carrying the control baits which included the PTB domains of IRS-1 and IRS-2, the entire intracellular domain of the β-subunit of the insulin receptor, the catalytic domain of the IGF-1 receptor, and the bait plasmid pGBT.

Positive interacting colonies were scored positive based on the development of blue color according to a standard assay as described under "Experimental Procedures." Colonies that displayed blue color were scored positive + + + + , and those that were positive after 30 min were scored + + + . The absence of color demonstrates the lack of an interaction and was determined after a 24-h incubation. The scoring presented here was compiled from at least two independent β-gal assays.
IRS PH Domains Bind to Acidic Motifs in Proteins

IRS-2, whereas only 4 clones interacted with the PH domain of IRS-1. None of the clones interacted with the other test baits.

Many of the initial clones represented duplicates of the same cDNA, and restriction mapping classified the 47 cDNA clones into four unique groups. DNA sequencing analysis revealed that these sets of cDNAs contained partial murine isoforms of nucleolin, Lon protease, or myeloblast protein (Fig. 1). A fourth set of clones encoded a repetitive open reading frame of nucleolin, Lon protease, or myeloblast protein (Fig. 1). Therefore, these interactions in this cellular context were not regulated by insulin.

**PH Domains of IRS-1 and IRS-2 Mediate Nucleolin Binding in Vivo**—Based on the binding of PHL\textsuperscript{nuc} with IRS-1 and IRS-2, the interaction of nucleolin with IRS-1 and IRS-2 was investigated in CHO cells. Lysates of CHO cells expressing IRS-1 or IRS-2 or a mutant of IRS-1 lacking the PH domain (IRS\textsuperscript{1PH}) were incubated with antibodies against IRS-1 and IRS-2. Subsequently, blots were re-probed with anti-nucleolin antibodies. Western blots are representative of duplicate experiments.

**FIG. 2.** Nucleolin co-immunoprecipitates with IRS-1 and IRS-2. Lysates of CHO cells overexpressing the insulin receptor and either IRS-1, IRS-1 without the PH domain (IRS\textsuperscript{1PH}), or IRS-2 were immunoprecipitated (IP) with anti-nucleolin antiserum (\(\alpha\text{Nuc}\)), or preimmune serum (Cntr). Immune complexes were probed with antibodies against IRS-1 and IRS-2. Subsequently, blots were re-probed with anti-nucleolin antibodies. Western blots are representative of duplicate experiments.

only to the PH domain of IRS-2 (Table I). Because the cloned fragments of nucleolin, Lon protease, and myeloblast protein bind to the PH domains of IRS-1 or IRS-2, they are PH ligands (PHL): PHL\textsuperscript{nuc}, PHL\textsuperscript{lon}, and PHL\textsuperscript{MB}, respectively. Nucleolin is a ubiquitously expressed nucleolar protein that becomes phosphorylated in response to insulin and may have a role in RNA export in cells (31). In bacteria Lon proteases function to degrade abnormal proteins; however, the function of these enzymes in mammalian cells is unknown (32). The human myeloblast protein was cloned from human KG-1 cells, but no information regarding its function is currently available.

**Binding Selectivity of the PH Ligands in Vitro**—The selectivity of the PH ligands was verified in vitro by measuring their binding to recombinant IRS-1 or IRS-2 in transfected 32D cells. GST fusion proteins expressing PHL\textsuperscript{nuc}, PHL\textsuperscript{lon}, or PHL\textsuperscript{MB} were prepared and attached to glutathione-Sepharose. Crude cell extracts containing IRS-1 or IRS-2 were incubated with each GST fusion protein. GST alone did not bind to IRS-1 or IRS-2. Consistent with the yeast screen, the GST fusion proteins containing PHL\textsuperscript{nuc} or PHL\textsuperscript{MB} associated with IRS-2 but not with IRS-1 (Fig. 1). As expected, IRS\textsuperscript{2PH}, a mutant of IRS-2 that lacks the PH domain, did not associate with PHL\textsuperscript{lon} or PHL\textsuperscript{MB}, which is consistent with the conclusion that the PH domain mediates the binding (Fig. 1). By contrast, PHL\textsuperscript{nuc} associated with both IRS-1 and IRS-2 in the 32D cell extracts (Fig. 1C). Insulin stimulation of 32D cells failed to change the association of the PH ligands with IRS-1 or IRS-2, suggesting that these interactions in this cellular context were not regulated by insulin.

**FIG. 1.** Characterization of IRS PH ligand clones. A yeast two-hybrid cDNA library (10.5-day mouse embryo) was screened with bait plasmids containing the PH domain of either IRS-1 or IRS-2. Positive clones were purified and sequenced using primers based on the library plasmids containing the PH domain of either IRS-1 or IRS-2. BLAST searches of databases revealed that three of these sets of cDNA molecules encoded partial murine isoforms of nucleolin, Lon protease, or myeloblast protein. GST alone was used as a control in all pull-down experiments. A, clone 4 encodes a COOH-terminal amino acids 1065–1185) region of the mouse homologue of the human myeloblast protein KIAA0211 (GenBank\textsuperscript{TM} accession number D86966). B, clone 8 encodes mouse nucleolin (EMBL accession number X07699). Regions encoded by the yeast cDNA clones are indicated with boxed inserts. The acidic peptide motifs in each PH ligand are underlined. The GST pull-downs are representative of triplicate experiments. IB, immunoblot.

IRS-2, whereas only 4 clones interacted with the PH domain of IRS-1. None of the clones interacted with the other test baits.

Many of the initial clones represented duplicates of the same cDNA, and restriction mapping classified the 47 cDNA clones into four unique groups. DNA sequencing analysis revealed that these sets of cDNAs contained partial murine isoforms of nucleolin, Lon protease, or myeloblast protein (Fig. 1). A fourth set of clones encoded a repetitive open reading frame that contained a Glu-Arg polymer; however, this clone was not studied further. In a yeast \(\beta\)-gal assay, the nucleolin fragment bound to the PH domain of IRS-1 and IRS-2, whereas the cloned fragments of lon protease or myeloblast protein bound
The PH Domain Binds Acidic Motifs in the PH Ligands—

Alignment of PHLnu, PHLlo, and PHLM did not reveal a common motif. However, each protein contained a stretch of acidic residues. Moreover, a fourth set of cDNA clones isolated from the PH ligand domain containing a repetitive sequence of Glu residues, suggesting that acidic motifs in proteins may bind to the PH domain. To test this possibility, PHLnuc was truncated to partially or completely remove its acidic motif, and the interaction of the acidic motif between residues 239–280 in nucleolin.

Peptides Containing Acidic Motifs Disrupt the Interaction between the PH Domain of IRS Proteins and PHLnu—Short peptides based on the acid motifs in nucleolin, Lon protease, or myeloblast were used to inhibit the interaction between PHLnu and recombinant IRS-1 or IRS-2. The peptide was phosphorylated by the insulin receptor, whereas chimeric proteins containing an homologous PH domain from spectrin, βARK, or PLCγ were not phosphorylated (24). To examine whether the PH ligands isolated from yeast two-hybrid screen specifically interact with PH domains from IRS proteins, we investigated the binding of these chimeric IRS1 proteins to PHLnu. These proteins were expressed in 32D cells as described previously and used in GST pull-down experiments. Consistent with their functional specificity, chimeric IRS-1 containing the PH domain from IRS-2 or Gab-1 associated with PHLnu; however, binding to the Gab-1 PH domain was significantly weaker. Interestingly, the IRS-1 chimeras containing homologous PH domains from spectrin, βARK, or PLCδ did not associate with PHLnu (Fig. 4). These results suggest that the acidic motif in nucleolin interacts specifically with the PH domains of IRS proteins.

Nucleolin Interaction Is Specific for the PH Domain in IRS Proteins—Our previous results suggest that PH domains in homologous IRS proteins, including IRS-1, IRS-2, and Gab-1 have similar functions, because each PH domain couples IRS proteins to the insulin receptor (24). Chimeric IRS-1 proteins containing an homologous PH domain from IRS-2 or Gab-1 were phosphorylated by the insulin receptor, whereas chimeric proteins containing a heterologous PH domain from spectrin, βARK, or PLCγ were not phosphorylated (24). To examine whether the PH ligands isolated from yeast two-hybrid screen specifically interact with PH domains from IRS proteins, we investigated the binding of these chimeric IRS1 proteins to PHLnu. These proteins were expressed in 32D cells as described previously and used in GST pull-down experiments. Consistent with their functional specificity, chimeric IRS-1 containing the PH domain from IRS-2 or Gab-1 associated with PHLnu; however, binding to the Gab-1 PH domain was significantly weaker. Interestingly, the IRS-1 chimeras containing homologous PH domains from spectrin, βARK, or PLCδ did not associate with PHLnu (Fig. 4). These results suggest that the acidic motif in nucleolin interacts specifically with the PH domains of IRS proteins.
of IRS-1 and IRS-2; however, PHL^{ion} and PHL^{MB} only inhibited IRS-2 tyrosine phosphorylation (Fig. 6, A and B, and data not shown). Direct blotting of these cells lysates demonstrated that samples in this experiment contain equal amounts of the IRS protein (lower panel, Fig. 6B). Quantitation of the anti-phosphotyrosine blots by densitometric analysis suggests that nucleolin overexpression in 32D/IR/IRS1 cells reduced the insulin-stimulated phosphorylation of IRS-1 by 80%; in 32D/IR/IRS2 cells transfected with either PHL^{MB} or PHL^{ion}, tyrosine phosphorylation of IRS-2 was decreased by approximately 50%. These results imply the possibility that these PH ligands inhibit the active site of the PH domain that mediates coupling to the activated insulin receptor.

We analyzed the effect of overexpressing full-length nucleolin on tyrosine phosphorylation in CHO^{IR} and CHO^{IR}/IRS-1 cells. Cells were stimulated with insulin, and lysates were immunoblotted to assess tyrosine phosphorylation of endogenous or recombinant IRS-1. Overexpression of nucleolin significantly reduced tyrosine phosphorylation of IRS-1 in both cell lines (Fig. 7A). However, the inhibitory effect of nucleolin was more pronounced on the endogenous IRS-1 in CHO^{IR} cells. When the acidic motifs of nucleolin were deleted (amino acids 239–290), nucleolin failed to produce an inhibitory effect on IRS-1 phosphorylation, suggesting that this region was required to inhibit the interaction between IRS-1 and the insulin receptor (Fig. 7B).

To exclude the possibility that overexpression of nucleolin generally disrupts phosphorylation events, insulin-stimulated tyrosine phosphorylation of the insulin receptor and Shc were also analyzed in CHO^{IR} cells in the absence (Fig. 7C, lanes a and b) and presence of overexpressed nucleolin (Fig. 7C, lanes c and d). Anti-phosphotyrosine immuno-blots revealed that only IRS-1 phosphorylation was reduced by overexpression of nucleolin, whereas the insulin receptor and Shc were not inhibited (Fig. 7C, left panels). Based on densitometric analysis of these immunoblots, tyrosine phosphorylation of IRS-1 was reduced more than 60% in the presence of overexpressed nucleolin, whereas the tyrosine phosphorylation of the insulin receptor and Shc were enhanced by approximately 10%. Re-probing of these blots with appropriate antibodies indicated that the samples contained equal levels of IRS-1, IR, or Shc (Fig. 7C, lanes e–h). These results are consistent with the hypothesis that the PH domain-mediated association between IRS-1 and overexpressed nucleolin disrupts the interactions required for productive coupling of the IRS proteins to the activated insulin receptor.

**DISCUSSION**

Although multiple mechanisms exist to couple IRS proteins to activated receptors, several observations suggest that the PH domain is essential for insulin-stimulated tyrosine phosphorylation of IRS-1 (18, 23, 33). However, the cellular elements that interact with the PH domains in IRS proteins are
unknown. Because the insulin receptor does not interact directly with the PH domain, other membrane-associated elements may act as the interface between IRS proteins and activated receptors (20–22). By analogy with other PH domains, membrane phospholipids have been proposed as ligands for the PH domains in IRS proteins, but no published reports support this hypothesis. Our yeast two-hybrid screen identified nucleolin, Lon protease, and myeloblast protein as potential ligands for the IRS-2 PH domain. Although these proteins are unrelated, each contains an acidic motif that interacts with the PH domain of IRS-2. The acidic motif in nucleolin has the highest affinity for this PH domain, and unlike the other potential ligands, it binds equally well to the PH domain in IRS-1. This defines a novel and selective interaction that may be functionally important.

Based on information available from solved PH domain structures, certain PH domains may bind to a short peptide sequence that is not incorporated into larger folded domains of interacting proteins (3–10). Although such ligands could be variable in sequence, consistent with the PH domain divergence, the positive charge clustered in the putative binding pocket in solved PH domain structures suggests an interaction with a negatively charged ligand such as the acidic motifs contained in nucleolin or the myeloblast protein identified in our screen (3–8). Because the PH domains of IRS-1 and IRS-2 are only 60% identical, certain binding specificity might be expected, which may explain the selective binding observed in our experiments. The acidic motif in nucleolin that binds to the PH domain of IRS-1 and IRS-2 includes a stretch of 31 aspartic acid and glutamic acid residues. Shorter peptides based on this motif, including KVAEEEDDEE, also bind, suggesting that the recognition motif is somewhat shorter. The acidic motifs in lon protease (EEQDPEDE) and myeloblast protein (DQQEEEEEE) include an asparagine residue, which may provide the apparent specificity for the IRS-2 PH domain. However, further work using a series of peptides will be necessary to fully define the selectivity of the IRS-1 and IRS-2 PH domain and extend the analysis to the PH domain of the other IRS proteins.

The different recognition of nucleolin, Lon protease, and myeloblast protein by the PH domain of IRS-2 and IRS-1 reveals a potential mechanism for differential recruitment or regulation of the IRS proteins. This provisional hypothesis is supported by the finding that overexpression of nucleolin inhibits insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2, whereas only IRS-2 is inhibited by lon protease or myeloblast protein. Recent work suggests that IRS-1 and IRS-2 mediate distinct signals during insulin stimulation. Without IRS-1, mice are small and insulin-resistant, but they do not develop diabetes unless additional insulin resistance is imposed by a second molecular or physiological defect (34). By contrast, disruption of IRS-2 causes progressive development of insulin resistance leading to diabetes owing to inadequate \( \beta \)-cell compensation (35). The distinct biological properties of IRS-1 and IRS-2 may arise partially from the unique specificity of the PH domain revealed by our experiments. However, other unique properties may also be involved, including the presence of different phosphorylation motifs or the KRLB domain in IRS-2 (36). Future experiments based on the hypothetical role of acidic motifs will address these questions.

Ligands for the PH domain of the IRS proteins could mediate several biological effects required for normal signaling. Membrane proteins with acidic motifs may be juxtaposed with the insulin receptor to recruit IRS proteins into a signaling complex. These proteins may be associated with activated membrane receptors to provide an efficient mechanism to recruit several biological effects required for normal signaling. Membrane proteins with acidic motifs may be juxtaposed with the insulin receptor to recruit IRS proteins into a signaling complex.
ubiquitously expressed nucleolar protein, has many cellular activities including transcription of b-cell-specific complexes and processing of ribosomal RNA (29, 37). This protein is a substrate of casein kinase 2 (38), cyclin-D kinase (39), and PKCζ (40). Interestingly, for the present study, insulin stimulates the phosphorylation and nuclear translocation of nucleolin in 3T3–442A cells (31). Therefore, the interaction of this protein with the PH domains of IRS-1 and IRS-2 may reveal a novel mechanism to build the IRS signal transduction complex and may provide a means for IRS proteins to regulate such cellular events as RNA efflux.

Identification of potential ligands for the PH domains of IRS proteins will now facilitate studies aimed at defining the function of this structural module in IRS-mediated signaling. Although the physiological relevance of the interactions between IRS proteins and these PH ligands requires further study, the presence of a negatively charged motif provides a tool for designing structural studies of the IRS PH domain. It will be of interest to determine precisely using mutational analysis the amino acid residues in the IRS PH domain that mediate recognition of the negatively charged motif.

Acknowledgments—We thank Dr. Michael Maurizi (National Institutes of Health) for antibodies to human lon protease. We are also grateful to the laboratory of Dr. Nancy Maizels (Yale University) for the nucleolin cDNA and antibodies generated against this protein.

REFERENCES

1. Pawson, T. (1995) Nature 374, 573–580
2. Gibson, T. J., Hyvonen, M., Musacchio, A., and Saraste, M. (1994) Trends Biochem. Sci. 19, 349–353
3. Yoon, H. S., Hajduk, P. J., Petros, A. M., Olejniczak, E. T., Meadows, R. P., and Schlessinger, J. (1994) J. Biol. Chem. 269, 10217–10220
4. Ferguson, K. M., Lemmon, M. A., Schlessinger, J., and Sigler, P. B. (1994) Cell 79, 199–209
5. Downing, A. K., Driscoll, P. C., Gout, I., Zvelebil, M. J., and Waterfield, M. D. (1994) Biochemistry 34, 1475–1481
6. Fushman, D., Cahill, S., Lemmon, M. A., Schlessinger, J., and Cowburn, D. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 816–820
7. Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B., and Schlessinger, J. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10472–10476
8. Garcia, P., Gupta, R., Shah, S., Morris, A. J., Rudge, S. A., Scarlata, S., Petrova, V., McLaughlin, S., and Rebecchi, M. J. (1995) Biochemistry 35, 1591–1598
9. Li, Z., Wahl, M. L., Eguinoa, A., Stephens, L. R., Hawkins, P. T., and Witte, O. N. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 13820–13825
10. Koshina, S., Kigawa, T., Kim, J. H., Shirouzu, M., Bowtell, D., and Yokoyama, S. (1997) J. Mol. Biol. 269, 579–591
11. Franke, T. F., Kaplan, D. R., Cantley, L. C., and Toker, A. (1997) Science 275, 665–668
12. Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G. F., Holmes, A. B., Gaffney, P. R., Reese, C. B., McCormick, F., Tempst, P., Coadwell, J., and Hawkins, P. T. (1998) Science 278, 710–714
13. Pullen, N., Dennis, P. B., Andjelkovic, M., Dunfer, A., Keama, S. C., Hemmings, B. A., and Thomas, G. (1998) Science 279, 707–710
14. Rameh, L. E., Arvidsson, A., Carraway, K. L., III, Couvillon, A. D., Rathbun, G., Crompton, A., VanRenterghem, B., Czech, M. F., Ravichandran, K. S., Burakoff, S. J., Wang, D. S., Chen, C. S., and Cantley, L. C. (1997) J. Biol. Chem. 272, 22059–22066
15. Pitcher, J. A., Touhara, K., Payne, E. S., and Leffkowitz, R. J. (1995) J. Biol. Chem. 270, 11707–11710
16. Yenush, L., Makati, K. J., Smith-Hall, J., Ishibashi, O., Myers, M. G., Jr., and White, M. F. (1996) J. Biol. Chem. 271, 24300–24306
17. Eck, M. J., Dhe-Paganon, S., Trub, T., Tße, R. T., and Shoelson, S. E. (1996) J. Biol. Chem. 271, 11707–11710
18. Burks, D. J., Fons, S., Towery, H., Smith-Hall, J., Myers, M. G., Jr., Yenush, L., and White, M. F. (1997) J. Biol. Chem. 272, 27176–27271
19. Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9578–9582
20. Vojtek, A. B., Horenberg, S. M., and Cooper, J. A. (1993) Cell 74, 205–214
21. Riedel, H., Wang, J., Hansen, H., and Yousaf, N. (1997) J. Biol. Chem. 122, 1105–1113
22. Wang, N., Gottesman, S., Willingham, M. C., Gottesman, M. M., and Maurizi, M. R. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 11247–11251
23. Nakahari, L. A., Depsey, L. A., Li, M. J., and Maizels, N. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 3605–3610
24. Tremblay, A. J., Ingless, J., Pitcher, J. A., Shaw, G., and Leffkowitz, R. J. (1994) J. Biol. Chem. 369, 10217–10220
25. Csermely, P., Schnaid, T., Csehatham, B., Olson, M. O. J., and Kahn, C. R. (1993) J. Biol. Chem. 268, 9747–9752
26. Ricles, R. J., Botfield, M. C., Zhou, X. M., Henry, P. A., Brugge, J. S., and Zoller, M. J. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10909–10913
27. Volovitch, H., Schindler, D. G., Hadari, Y. R., Taylor, S. I., Accili, D., and Zick, Y. (1996) J. Biol. Chem. 270, 18083–18087
28. Bruning, J. C., Winnay, J., Bonner-Weir, S., Taylor, S. I., Accili, D., and Kahn, C. R. (1997) Cell 88, 561–572
29. Withers, D. J., Sanchez-Gutierrez, J. C., Towery, H., Ren, J. M., Burks, D. J., Prens, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G. I., Bonner-Weir, S., and White, M. F. (1998) Nature 391, 900–903
30. Sawka-Verhelle, D., Baron, V., Mothe, I., Filloux, C., White, M. F., and Van Obberghen, E. (1997) J. Biol. Chem. 272, 16415–16420
31. Ginisty, H., Amlie, P., and Beuzet, P. (1998) EMBO J. 17, 1476–1486
32. Li, D., Dobrowolska, G., and Krebs, E. G. (1996) J. Biol. Chem. 271, 15662–15668
33. Szecovic, B., Liles, R., and Sutherland, R. L. (1997) J. Biol. Chem. 272, 33237–33337
34. Zhou, G., Seibenhener, M. L., and Wooten, M. W. (1997) J. Biol. Chem. 272, 31130–31137