Benzodiazepines (BDZs) are known to act not only in the central nervous system, but on peripheral cells and tissues binding to the peripheral-type benzodiazepine receptors. In the present study, the influence of two different BDZs (diazepam (Dz) and tofizopam (Tof)) on several immune functions has been examined in vitro. Some differences between Dz and Tof in their effects on human lymphocyte proliferative response, changes in glucocorticoid-induced suppression of cell proliferation and influence on cytokine production (tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2)) have been determined. Dz suppressed mitogen-induced peripheral blood mononuclear cell (PBMC) proliferation, enhanced dexamethasone-induced inhibition of PBMC proliferative response, and suppressed lymphocyte production of TNF-α and IL-2. Tof usually enhanced PBMC proliferation and IL-2 production in low and moderate doses, but in high doses it suppressed both. Tof in all investigated doses enhanced dexamethasone-induced suppression of lymphocyte proliferation and depressed TNF-α production. Thus, both Dz and Tof are shown to have immunomodulating effects in vitro. Tof, opposite to Dz even in the therapeutic doses, is able to enhance in vitro mitogen-induced lymphocyte proliferation and IL-2 production.

Key words: Benzodiazepines, Tofizopam, Diazepam, Immunomodulating effects, Human peripheral blood mononuclear cells, Dexamethasone susceptibility, TNF-α, IL-2

Introduction

During the past two decades, it has become clear that the immune system responds to a great amount of factors originating in the endocrine, central and autonomic nervous systems. Recently, it has become clear that there is also a feedback loop from the immune system to the other systems. (The reverse direction of influence also exists.) The regulation of neuroendocrine function is highly sensitive to the wide array of cytokines released from activated immune cells. The bi-directional communication between these systems is based on the expression of mediators, receptors and use of signal transduction mechanisms that are common to both immune and endocrine cells and to neurons and glia in the central nervous system (CNS).

One of the important links in the neuro-immunoendocrine relations are the central and peripheral benzodiazepine receptors (BDZ-R), which together with their ligands form the molecular basis of a novel regulatory network that contributes to the effects of anxiety on immune status. Benzodiazepines (BDZs) are frequently prescribed because of their anxiolytic, anticonvulsant, muscle-relaxant and hypnotic properties. Many articles reviewed the important topic of the complex relations between BDZs, the stress axes (hypothalamo-pituitary-adrenal and autonomic) and the immune system.

Two types of BDZ-R have been identified. The first, namely central BDZ receptors (CBR), present exclusively in the CNS and are localized to neurons. BDZs bind to a domain that regulates chloride flux by modulating α-aminobutyric acid (GABA) binding to GABA receptors. The second class is the peripheral-type BDZ receptors (PBR) that are ubiquitously distributed in peripheral tissues as well as in glia of the CNS. Our understanding of the PBR is still far from complete. They participate in cholesterol transport, heme biosynthesis, proliferation of different cell lines and immunomodulation. It has been suggested now that the PBR may serve as a receptor in immune cells, which can be a critical locus in the inter-relation between brain, behavior and immunity.

The BDZs diazepam (Dz) and tofizopam (Tof) are related to a mixed type of BDZs that interact both with CBR and PBR by different mechanisms. In man, Tof (a 2,3-benzodiazepine) has been shown to have anxiolytic activity but, in contrast to the widely
used 1,4-benzodiazepines (Dz), it has no appreciable sedative and muscle relaxant effects.12,14

In the present study, some differences between Dz and Tof in their effects on several immune functions \textit{in vitro} are described.

\section*{Material and methods}

\subsection*{Cell cultures}

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized peripheral blood of healthy volunteers by Ficoll-VeroGraphin gradient centrifugation. The cells were washed twice and resuspended in RPMI-1640 medium (ICN, Irvin, CA, USA) supplemented with 2 \times 10^{-5} M HEPES, 2 mM L-glutamine, 2.8 \times 10^{-6} M 2-mercaptoethanol, 20 μg/ml of gentamicin and different sera. Ten percent of heat-inactivated fetal calf serum (FCS) (ICN) were used for PBMC proliferation, tumor necrosis factor-α (TNF-α) production and interleukin-2 (IL-2) assay, and 1% of FCS used for IL-2 production.

\subsection*{Lymphocyte proliferation}

PBMC were cultivated in flat-bottomed 96-well plates (Nunc, Roskild, Denmark), and contained 5 \times 10^{4} cells in each well. The final concentration of phytohemagglutinin (PHA) (Calbiochem, La Jolla, CA, USA) was 5 μg/ml. Modulation of lymphocyte proliferation by Tof and Dz was evaluated at four different concentrations within the dose ranges of 0.4–50 μg/ml for Tof and of 0.04–5 μg/ml for Dz. The control wells incubated without BDZs contained a culture medium with mitogen or a culture medium only. The cells in the control wells were incubated with dexamethasone (Dx) (Sigma, St. Louis, MO, USA) was also evaluated. Dx was used at the concentrations of 10^{-8} and 10^{-7} M with or without (control wells) the above doses of Tof and Dz. The cells were incubated for 72 h at 37°C in a humidified atmosphere containing 5% CO_{2} until the monolayer formation. After the culture medium elimination, twofold serial dilution of the samples (100 μl of each dilution) and 100 μl of fresh culture medium with 20 μg/ml of actinomycin D (Serva, Heidelberg, Germany) were added, and further incubated for 18 h under the same conditions. Supernatants were then removed and cells stained with 0.2% crystal violet (Sigma). After washing and drying, plates were finally read at 594 nm on a Titertek Multiskan microElisa reader. Human recombinant TNF-α (Institute of Bioorganic Chemistry, Moscow, Russia) was used as internal standard. For the comparison of experimental and calibrating curves, a probit-analysis method was used.16 The TNF content in the samples was expressed in picograms per milliliter.

\subsection*{IL-2 activity assay}

The amount of IL-2 in separate samples was determined by their ability to maintain the growth of the IL-2-dependent cytotoxic T-cell line (CTLL-2). Supernatants were twofold serially diluted and 100 μl of samples from each dilution and 100 μl of CTLL cell suspension (4 \times 10^{3} cells per well) were added to triplicate wells of a 96-well flat-bottomed plate. Triplicate cell control wells received 100 μl of culture medium instead of samples. Recombinant human IL-2 (code No 86/564; National Institute for Biological Standards and Control, Hertfordshire, UK) and IL-2 containing preparation Ronkoleukin (Cytokine, St. Petersburg, Russia) were used as standards. After 20 h incubation at 37°C and 5% CO_{2}, the colorimetric MTT assay was carried out17 with some modifications.
Immunomodulating effects of tofizopam and diazepam

Mediators of Inflammation · Vol 11 · 2002

FIG. 1. Modulation of PHA-induced PBMC proliferation (counts per minute) with tofizopam and diazepam. Peripheral blood mononuclear donor's cells were stimulated with the optimum PHA dose and incubated for 72 h in the presence of different concentrations of Tof and Dz (see 'Materials and methods'). H, K, P, N, C, D, S, initials of different donors. *p < 0.05 compared with the control value of each donor (Student's t-test with Bonferroni correction for multiple comparisons).
Briefly, 20 μL of 5 mg/ml MTT (Sigma) stock solution were added to each well. Plates were incubated again at the same conditions for 4 h. The supernatants were then removed and 100 μL of dimethylsulfoxide (Sigma) were added to all wells to dissolve the crystals. The plates were read at 570 nm on a Titertek Multiskan microElisa reader. The titration curves of the tested samples and the controls were analyzed by probit analysis. The content of IL-2 was expressed in international units per milliliter.

Statistical analysis

Statistical analysis was performed using the Student’s t-test with Bonferroni correction for multiple comparisons.

Results

PBMC proliferation in the presence of Dz and Tof

Dz in a high dose (1–5 μg/ml), to a considerable extent, suppressed cell proliferation (Fig. 1) and, as a rule, had no effect in a low dose (0.04–0.2 μg/ml). The enhancing effect of Dz on PBMC proliferation was observed only with lymphocytes of donor N. But in this case, the higher doses of Dz and Tof caused the greater increase in PHA-induced lymphocyte proliferation.

Tof usually enhanced cell proliferation (Fig. 1, donors H, K, P and N). Only in high doses (10 or 50 μg/ml) and only in three cases from seven (donors C, D and S) did Tof significantly suppress PBMC blast transformation. It... reliably enhance PBMC proliferation in low and moderate doses, whereas Dz caused significant suppression in doses of 1 and 5 μg/ml (or only 5 μg/ml) and had no effect in lower doses.

Changes in Dx-mediated inhibition of PHA-induced lymphocyte proliferation

Changes in lymphocyte susceptibility to glucocorticoid hormones caused by Tof and Dz are presented in Table 1. Dose-dependent enhancing of Dx-mediated inhibition of PHA-induced lymphocyte proliferation was observed as for Tof and for Dz at two corticosteroid concentrations (10 and 100 nM). It is necessary to mention that, with donors H, K and P, lymphocytes tofizopam itself caused the rise of lymphocyte proliferation (Fig. 1) but, in the presence of Dz, Tof increased its suppression. Significant suppression of lymphocyte proliferation in comparison with proliferative response only with Dx without BDZs was shown for high and average doses of Tof and Dz.

Table 1. Changes in dexamethasone (Dx)-mediated inhibition of phytohemagglutinin (PHA)-induced lymphocyte proliferation caused by different doses of tofizopam (Tof) and diazepam (Dz)

Dx dose (nM)	Tof/Dz	Dose (μg/ml)	Donor K	Donor P	Donor C	Donor H	Donor D
10	Tofizopam	–	123 ± 3.4	56 ± 9.1	49 ± 6.6	34 ± 2.5	24 ± 1.3
0.4	–	103 ± 7.9	48 ± 11.9	49 ± 5.6	30 ± 1.2	23 ± 1.9	
2	–	85 ± 3.7*	54 ± 5.5	37 ± 0.7	30 ± 1.4	22 ± 1.1	
10	–	85 ± 3.3*	42 ± 6.7	35 ± 4.6	29 ± 1.7	21 ± 0.5	
50	–	74 ± 4.9*	42 ± 2.9	31 ± 2.5	25 ± 1.7	13 ± 1.7*	
100	Tofizopam	–	31 ± 2.2	32 ± 4.7	5.4 ± 0.7	17 ± 1.7	11 ± 0.4
0.4	–	23 ± 2.3	27 ± 4.3	5.3 ± 1.3	15 ± 1.9	11 ± 1.6	
2	–	26 ± 4.8	22 ± 4.3	3.9 ± 0.8	7.2 ± 0.9*	8.4 ± 1.2	
10	–	23 ± 1.3*	21 ± 2.5	4.1 ± 0.1	7.9 ± 0.5*	8.7 ± 0.4*	
50	–	15 ± 2.6*	15 ± 4.4*	2.9 ± 0.3*	6.6 ± 0.8*	7.3 ± 1.6	
10	Diazepam	–	123 ± 7.7	56 ± 9.1	49 ± 6.6	34 ± 2.5	24 ± 1.3
0.04	–	121 ± 3.6	90 ± 5.7*	40 ± 9.2	38 ± 2.7	30 ± 2.2	
0.2	–	91 ± 1.8*	70 ± 8.9	35 ± 3.7	30 ± 2.7	28 ± 1.9	
1	–	74 ± 4.1*	48 ± 3.0	26 ± 0.7*	25 ± 2.2	18 ± 1.1*	
5	–	24 ± 3.3*	29 ± 6.0*	17 ± 2.9*	11 ± 0.4*	4.6 ± 0.6*	
100	Diazepam	–	31 ± 2.2	32 ± 4.7	5.4 ± 0.7	17 ± 1.7	11 ± 0.4
0.04	–	31 ± 8.6	29 ± 5.5	5.2 ± 0.9	18 ± 4.1	11 ± 1.3	
0.2	–	21 ± 2.6*	26 ± 2.6	4.6 ± 0.7	8.4 ± 0.8*	11 ± 0.2	
1	–	15 ± 1.2*	21 ± 3.3	3.6 ± 0.8	8.1 ± 1.9*	6.0 ± 0.7*	
5	–	4.8 ± 1.1*	5.7 ± 1.1*	2.2 ± 0.9*	2.5 ± 0.8*	2.4 ± 3.3*	

PHA-stimulated donor’s peripheral blood mononuclear cells (PBMC) were cultivated (see ‘Materials and methods’) with 10 or 100 nM of Dx and with or without different doses of Tof and Dz.

Data are presented as counts per min × 1000 and are expressed as mean ± standard error of the mean. Donors K, P, C, H, and D correspond to healthy volunteers.

*p < 0.05; in comparison with proliferative response only with Dx, without BDZs (–); Student’s t-test with Bonferroni correction for multiple comparisons. Proliferation of the same donor’s PBMC without Dx can be seen in Fig. 1.
Enhancing of Dx-induced suppression by BDZs did not depend on individual susceptibility to glucocorticoids.

Changes in TNF production

In the experiments of cytokine production, we used not so wide but therapeutically used range of doses of BDZs. We examined the influence of Tof and Dz on TNF-α production by PHA-stimulated PBMC of five healthy volunteers. Neither Tof nor Dz in analyzed doses affected the growth of the L929 test-cell line. Dose-dependent suppression of TNF-α production has been shown for both of the BDZs (Fig. 2) (*p < 0.05).

Changes in IL-2 production

The influence of Tof (7.5, 15 and 30 μg/ml) and Dz (1.25, 2.5 and 5 μg/ml) on IL-2 production was examined on lymphocytes of three healthy volun-
The presented results indicate that the mixed-type BDZs diazepam and tofizopam are able to modulate the immune responses. The enhancing effect on IL-2 release treated with Tof was marked with PBMC from all of the volunteers (Fig. 3). Not all of the doses gave an expressed effect. The doses of 7.5 and 15 μg/ml significantly stimulated production of this cytokine for two donors (Fig. 3, donors A and K; \(p < 0.05 \)). The dose of 7.5 μg/ml insignificantly enhanced and the dose 15 of μg/ml significantly suppressed IL-2 release from lymphocytes of donor D. The dose of 30 μg/ml (maximal therapeutic concentration in serum) significantly suppressed IL-2 production for all donors (\(p < 0.05 \)). Our results indicate that the effect of Tof on IL-2 production could vary from marked enhancement to appreciable suppression. Thus, we notice a dose-dependent bell-shaped curve. Also, the same dose could elicit different effects for different individuals. Dz as opposed to Tof suppressed IL-2 production in all investigated doses (\(p < 0.05 \)), but also in this case the identical doses cause various degrees of effects for different individuals.

It should be mentioned that only high doses (> 50 μg/ml for Tof and > 10 μg/ml for Dz) of BDZs, which were not used in the experiments, slightly reduced CTL proliferation.

Discussion

The presented results indicate that the mixed-type BDZs diazepam and tofizopam are able to modulate the immune responses in vitro: lymphocyte proliferation response management, change in glucocorticoid susceptibility and influence on cytokine production (TNF-α, IL-2). The former behaves as an immunosuppressive agent in therapeutic doses, whereas the latter seems to upregulate immune functions (PBMC blast transformation, IL-2 production) in some conditions. This modulation in vitro is realized not through CBR but through PBR, at least partially. PBR have been identified on thymocytes, macrophages, neutrophils, leukocytes and lymphocytes. The PBR is implicated in both stimulation of cell growth rate and DNA synthesis and in inhibition of cell proliferation. The former requires nanomolar concentrations, whereas the latter requires micromolar concentrations of PBR ligands. This ambiguity of the PBR in the mediation of benzodiazepine-induced effects on mitosis has been suggested to be due to the existence of receptor subtypes or another BDZ low affinity binding site (platelet-activating factor receptor, platelet-activating factor receptor). The immunomodulatory action of benzodiazepines may be of pharmacological importance because, during their application, their plasma concentrations reach micromolar levels.

It is known that chronically treated BDZ users had some alterations in immune and neuroendocrine system. Hence it is necessary to emphasize meaning of the received data about an opportunity of BDZs to increase corticosteroid-induced (stress-induced) immunosuppression. It is more interesting to search among the novel BDZs, those with immunostimulatory activity. Tof as opposed to Dz, even in the therapeutic doses, is able to enhance in vitro mitogen-induced lymphocyte proliferation and IL-2 production.

Each person has an individual susceptibility to mitogen or antigen-induced lymphocyte stimulation, glucocorticoids and BDZs. That is why a certain type of BDZ should be administered in individually selected doses and courses. They should be prescribed with caution, especially to immunocompromised patients (e.g. because of aging, treatment with immunosuppressive drugs, suffered from chronic obstructive pulmonary disease (COPD), chronic heart or renal failures, etc.).

References

1. Savino W, Dardeine M. Immune-endocrine interactions. Immunol Today 1995; 16: 518–522.
2. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system I: expression and recognition. Trends Neurosci 1995; 18: 85–88.
3. Blalock JE. The syntax of immune-neuroendocrine communication. Immunol Today 1994; 15: 504–511.
4. Zavala F. Benzodiazepines, anxiety and immunity. Pharmacol Ther 1997; 75: 199–216.
5. Zisterer DM, Williams DC. Peripheral-type benzodiazepine receptors. Gen Pharmacol 1997; 29: 305–314.
6. Kelly S, Hertzman C, Daniels M. Searching for the biological pathways between stress and health. Ann Rev Public Health 1997; 18: 437–462.
7. Young WS, Kuhar MJ. Autoradiographic localisation of benzodiazepine receptors in the brains of humans and animals. Nature (London) 1979; 280: 393–395.
8. Olsen RW, Tobin AJ. Molecular biology of GABA\(_A\) receptors. EASEB J 1990; 4: 1469–1480.
9. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high affinity \([\text{H}]\text{diazepam binding. Proc Natl Acad Sci USA}\) 1977; 74: 1839–1847.
10. Shoemaker H, Biss M, Yamamura H. Specific high affinity saturable binding of \([\text{H}]\text{Ro5–4864 to benzodiazepine binding sites in rat cerebral cortex. Eur J Pharmacol}\) 1981; 71: 173–175.
11. Drugan RC. Are the non-mitochondrial peripheral-type benzodiazepine receptors on leukocytes a novel intermediary of brain, behavior and immunity. Lab Invest 1994; 70: 1–5.
12. Petycz L. Pharmacologic effects of tofizopam (Grandaxin). Acta Pharmacol Hung 1993; 65: 79–82.
13. Saano V. Tofizopam selectively increases the action of anticonvulsants. Med Biol 1986; 64: 201–206.
14. Szejgy J, Somogyi G, Papp E. Effects of the clinical-pharmacological and clinical studies of Grandaxin. Acta Pharmacol Hung 1993; 65: 83–91.
15. Ruff MR, Gifford GE. Tumor necrosis factor. In: Pick E, ed. Lymphokines, New York: Academic Press, 1981; 235–241.
16. Petroz L. Pharmacologic effects of tofizopam (Grandaxin). Acta Pharmacol Hung 1993; 65: 55–63.
17. Van der Linden R. Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxicity assays. J Immunol Methods 1991; 146: 235–247.
18. Wang JKT, Taniguchi T, Sagikura M, Spector S. Presence of benzodiazepine binding sites in mouse thymocytes. Biochem Biophys Res Commun 1984; 126: 1577–1583.
19. Cahard D, Canat X, Carayon P, Roque C, Cassellas P, Le Fur G. Subcellular localization of peripheral-type benzodiazepine receptors on human leucocytes. Lab Invest 1994; 70: 23–28.
20. Ferrarese C, Cevelletti G, Albo H, Perapoli C, Marzorati C, Bianchi G, Pizzini G, Fratolla L. Subcellular localization of peripheral-type benzodiazepine receptors in human lymphocytes. Eur J Neurosci 1992; 5: 129–135.
23. Ikezaki K, Black KL. Stimulation of cell growth and DNA synthesis by peripheral benzodiazepines. Cancer Lett 1990; 49: 115–120.
24. Wang JKT, Morgan JJ, Spector S. Benzodiazepines that bind at peripheral sites inhibit cell proliferation. Proc Natl Acad Sci USA 1984; 81: 753–756.
25. Mukhin AG, Zhong P, Kreuger KE. Cofractionation of the 17-kDa PK 14105 binding site protein with solubilised peripheral-type benzodiazepine binding sites. Biochem Pharmacol 1990; 40: 983–989.
26. Kornecki E, Ehrlich YH, Lenox RH. Platelet-activating factor-induced aggregation of human platelets specifically inhibited by triazolobenzodiazepines. Science 1984; 226: 1454–1456.

27. Lechin E, van der Dijs B, Vitelli-Hires G, Baes S, Lechin ME, Lechin AE, Orozco B, Rada I, Leon G, Jimenez V. Peripheral blood immunological parameters in long-term benzodiazepine users. Clin Neuropharmacol 1994, 17: 63–72.
28. Horvath EJ, Salamon C, Bakonyi A, Fekete MI, Palkovits M. [(3)H]-girisopam, a novel selective benzodiazepine for the 2,5-benzodiazepine binding site. Brain Res Brain Res Protoc 1999, 4: 230–235.

Received 17 October 2001
Accepted 3 December 2001