The phytochemical and pharmacological profile of taraxasterol

Fengjuan Jiao1,2*, Zengyue Tan1,2, Zhonghua Yu1,2, Bojie Zhou1,2, Lingyan Meng1,2 and Xinyue Shi1,2

1Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China, 2Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China

Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member of the family Asteraceae. In the animal or cellular models of several ailments, including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and immune system diseases, taraxasterol has been shown to have significant preventive and therapeutic effects. This review aims to evaluate the current state of research and provide an overview of the possible applications of taraxasterol in various diseases. The reported phytochemical properties and pharmacological actions of taraxasterol, including anti-inflammatory, antioxidative, and anti-carcinogenic properties, and its potential molecular mechanisms in developing these diseases are highlighted. Finally, we further explored whether taraxasterol has protective effects on neuronal death in neurodegenerative diseases. In addition, more animal and clinical studies are also required on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.

KEYWORDS

taraxasterol, dandelion, botany, pharmacological profile, phytochemistry

Introduction

Dandelion is a member of the family Asteraceae and is widely distributed in the warmer temperate zones of the Northern Hemisphere (Gonzalez-Castejon et al., 2012). The plant dandelion has long been used as a medicinal herb. Its therapeutic role was mentioned as early as the 10th and 11th centuries by Arabian physicians for the treatment of liver and spleen diseases (Faber, 1958). In traditional Chinese medicine, dandelion is used in combination with other herbs to treat hepatitis and enhance the immune response to upper respiratory tract infections, bronchitis, and pneumonia (Sweeney et al., 2005).

Medicinal plants typically contain several different chemical compounds that may act individually or synergistically to improve health (Gurib-Fakim, 2006). As one of the bioactive triterpenoids found in dandelion, taraxasterol has become a focus of pharmacological studies. Power and Browning were the first to report the isolation of taraxasterol from the non-saponifiable matter of Taraxacum officinale root (Power...
and Browning, 1912). They first described taraxasterol as a phytosterol. Recently, taraxasterol has received increased attention for its anti-inflammatory, anti-oxidative, and anti-carcinogenic activity and its possible beneficial effects against the development of liver damage, cancer, and numerous immune system diseases. This review aims to evaluate the properties of taraxasterol and investigate its phytochemical properties, focusing on the most recent literature analyzing the pharmacological effects of taraxasterol on several diseases.

Phytochemical properties of taraxasterol

Taraxasterol, also known as (3β, 18α, 19α)-Urs-20 (30)-en-3-ol, is a pentacyclic triterpene with a 1,2-cyclopentene phenanthrene structure. The molecular formula of taraxasterol is C30H50O, and its molecular weight and melting point are 426.72 g/mol and 221–222°C, respectively. In the 1950s, the structure and configuration of taraxasterol were reported by (Figure 1) Ames et al. (1954). Oxidosqualene cyclases (OSCs) catalyzed 2,3-oxidosqualene cyclization, which produced triterpene scaffolds (Thimmappa et al., 2014). Recently, it was found that transgenic yeast expressing LsOSC1, one putative lettuce OSC gene, can produce taraxasterol in lettuce (Lactuca sativa) (Choi et al., 2020).

Power and Browning discovered taraxasterol and first reported it from the non-saponifiable matter of *Taraxacum officinale* or Wiggers root (Power and Browning, 1912). The highest levels of taraxasterol were observed in the latex of *Taraxacum officinale* (Burrows and Simpson, 1938; Furuno et al., 1993; Akashi et al., 1994). Taraxasterol was also isolated from wild plants and regenerated organs of *Taraxacum officinale* using a reversed-phase HPLC with CH3CN/H2O (Furuno et al., 1993). In addition, Akashi et al. found that the radioactivity of taraxasterol was mainly observed in differentiated organs of *Taraxacum officinale* with accumulation patterns by HPLC combined with liquid scintillation analysis (Akashi et al., 1994). In this study, the biosynthesis of taraxasterol was revealed by detecting the incorporation time course of radioactivity from [2–14 C] mevalonic acid into individual triterpenols in the shoot segments. It was discovered that taraxasterol was synthesized during the first 24 h of the experiment, with the (pseudo) laticifer cells being the probable site of its biosynthesis (Akashi et al., 1994). According to the HPLC analysis, Sharma et al. reported that the quantity of taraxasterol in the natural root extract of *T. officinale* was 2.96 μg/ml, whereas the quantity of taraxasterol was 3.013 μg/ml in the root callus cultures (Sharma and Zafar, 2014). However, the absolute quantitation of taraxasterol in any plant material is unavailable and needs to be further studied. In addition, taraxasterol is present in esculent plants such as legumes, cereals, nuts, and seeds and in plant oils (Xu et al., 2004). Taraxasterol is obtained from various medicinal plants in addition to esculent ones. The distribution of taraxasterol in plants is summarized in Table 1.

Pharmacological profiles of taraxasterol

The use of taraxasterol has been linked to many health advantages. The following sections review investigations that support the pharmacological properties ascribed to taraxasterol. The pharmacological activities of taraxasterol in the fight against various diseases *in vitro* and *in vivo* are summarized in Table 2. The mechanism of action of taraxasterol is summarized in Figure 2.

Anti-inflammatory activity

Inflammation describes various physiological and pathological processes triggered by noxious stimuli and conditions, such as infection and tissue injury (Medzhitov, 2008). Akihisa et al. demonstrated that the ID50 of taraxasterol extracted from the Compositae flowers was 0.3 mg/ear on 12-O-tetradecanoylphorbol-13-acetate (TPA-) induced inflammation in mice (Akihisa et al., 1996). After 36 h of treatment with taraxasterol at doses of 2.5, 5, and 10 mg/kg, survival rates in LPS-induced endotoxic shock mouse models
were up to 30, 40, and 70%, respectively. Moreover, no toxic effects of taraxasterol were observed in mice that received doses as high as 10 mg/kg. In addition, taraxasterol (10 mg/kg per day) significantly reduced levels of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), and interleukin-6 (IL-6), and significantly reduced serum levels of inflammatory mediators such as nitric oxide (NO) and prostaglandin E₂ (PGE₂) (Zhang et al., 2014). Intraperitoneal injection of taraxasterol (10 mg/kg per day) can significantly reduce the expression of pro-inflammatory factors, myeloperoxidase activity, and lung wet/dry ratio in a mouse model of LPS-induced acute lung injury (ALI). Mechanistically, the anti-inflammatory effects of taraxasterol may be due to the inhibition of the NF-κB pathway (San et al., 2014). Treatment with taraxasterol at doses of 5 and 10 mg/kg significantly reduced the inflammatory response in a liver injury model induced by concanavalin A (Con A) by inhibiting the toll-like receptor-NF-κB signaling axis. In addition, taraxasterol prevented Con A-induced acute hepatic injury via the Bax/Bcl-2 anti-apoptotic signaling pathway (Sang et al., 2019). Furthermore, the increased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic malondialdehyde (MDA) levels induced by Con A were significantly reduced by taraxasterol treatment (Sang et al., 2019). The potent anti-inflammatory properties of taraxasterol (orally with 10 mg/kg per day) have also been demonstrated in mice of an acute experimental colitis (AEC) model induced by oral

Name of plant	Part containing taraxasterol	References
Taraxacum officinale, Wiggers (Asteraceae)	Roots	(Power and Browning, 1912; Burrows and Simpson, 1938)
Taraxacum officinale Webers (Asteraceae)	Roots	(Baijaj, 1974; Della Loggia et al., 1994)
Calendula officinalis Hohen. (Asteraceae)	Flowers	Akihisa et al. (1996)
Taraxacum japonicum Kouda. (Asteraceae)	Roots	Takasaki et al. (1999)
Hemistepta lyrata (Bunge) Bunge (Asteraceae)	Whole plant	Ren and Yang (2001)
Carthamus lanatus Linn. (Asteraceae)	Aerial parts	Ganeda et al. (2003)
Taraxacum platycarpum Dahsl. (Asteraceae)	Roots	Ryu and Lee (2006)
Mikania cordifolia (L.E) Willd. (Asteraceae)	Aerial parts	Oliveira et al. (2006)
Hieracium pilosella L. (Asteraceae)	Rhizomes	Gawronska-Greywacz and Kraszczewski (2007)
Achillea millefolium Linn. (Asteraceae)	Leaves	Gudaityte and Venkusciunas (2007)
Taraxacum mongolicum Hand-Mazz. (Asteraceae)	Roots	Yarnell and Abasal (2009)
Cichorium glandulosum Boiss. et Huet. (Asteraceae)	Air-dried stems	Wu et al. (2011)
Centipeda minimum (L.) A. Br. and Asch. (Asteraceae)	Flowers	Ngo and Li (2013)
Chrysanthemum morifolium Ramat. (Asteraceae)	Flowers and Aerial parts	Akhillsa et al., 2005; Boutaghane et al., 2013
Arctium lappa L. (Asteraceae)	Aerial parts	Zhao et al. (2014)
Anthemis morimpisaberi Tranzhahr (Asteraceae)	Whole plant	Jassbi et al. (2016)
Arnica L. (Asteraceae)	Leaves	De Amorim et al. (2016)
Cynanthum cinereum (L.) H. Rob. (Asteraceae)	Whole plants	Thongkha et al. (2020)
Cymara cardunculus L. (Compositae)	Flowers	Yasukawa et al. (2010)
Camellia japonica Linn.(Thaeeceae)	Seed oil	Itoh et al. (1980)
Acrocarpus fraxinifolius Wight ex Arn. (Fabaceae)	Seed oil	Saeed et al. (1991)
Holodiscus discolor (Pursh) Maxim (Rosaceae)	Leaves	Haladova et al. (2001)
Stroblanthes callous Nees (Acanthaceae)	Aerial parts	Singh et al. (2002)
Philadelphus coronarius L. (Hydrangeaceae)	Twigs	Valko et al. (2006)
Bryophyllum pinnatum (Lam.) Oken (Crassulaceae)	Aerial parts	Kamboj and Saluja (2009)
Cornus kousa F.Buerger ex Hance (Cornaceae)	Fruits	Lee et al. (2010)
Solanum lycopersicum L. (Solanaceae)	Fruit and leaves	Wang et al. (2011)
Euphorbia tirucalli Linn. (Euphorbiaceae)	Latex and stem	Wang et al. (2011)
Olea europaea Linn. (Oleaceae)	Aerial parts	Stiti and Hartmann (2012)
Ficus carica L. (Moraceae)	Aerial parts	Chauhan et al. (2012)
Table 2: Pharmacological activities of taraxasterol against diseases (*in vitro* and *in vivo* studies)\(^a\)

Pharmacological activities	Part of plant	Cells and/or animal models of disease	Dose	Mechanisms	References
Anti-inflammatory activity	Aerial parts of *Inula japonica* (Miq.) Komarov	LPS-induced endotoxic shock in mice	2.5, 5 and 10 mg/kg	TNF-α\(^{1}\), IFN-γ\(^{1}\), IL-1β\(^{1}\), IL-6\(^{1}\), NO\(^{1}\), and PGE\(_{2}\)	Zhang et al. (2014)
Compositae flowers	TPA-induced inflammation in mice	0.3 mg per ear	Not mentioned	Akihisa et al. (1996)	
Aerial parts of *Inula japonica* (Miq.) Komarov	LPS-induced ALL in mice	10 mg/kg	Inhibition of NF-κB and MAPK pathways	San et al. (2014)	
Aerial parts of *Inula japonica* (Miq.) Komarov	ConA-induced acute hepatic injury in mice	5 and 10 mg/kg	TNF-α\(^{1}\), IL-6\(^{1}\), IFN-γ\(^{1}\), and IL-4\(^{1}\); TLR2\(^{1}\), TLR4\(^{1}\), and NF-κB p65\(^{1}\); Bax/Bcl-2 \(^1\)	Sang et al. (2019)	
Taraxacum officinale	DSS-induced AEC in mice	10 mg/kg	TNF-α\(^{1}\), IL-1β\(^{1}\), and IL-6\(^{1}\)	Chen et al. (2015b)	
Aerial parts of *Inula japonica* (Miq.) Komarov	HT-29 cells treated with LPS; DSS-induced colitis in mice	Cells 2.5, 5 and 10 μg/ml; animals 25, 50, and 100 mg/kg	IL-6\(^{1}\), TNF-α\(^{1}\), p53\(^{1}\), Bax\(^{1}\), caspase-3 \(^1\)	Che et al. (2019)	
Aerial parts of *Inula japonica* (Miq.) Komarov	Primary human chondrocytes treated with IL-1β	2.5, 5, and 10 μg/ml	NO\(^{1}\), iNOS\(^{1}\), NF-κB\(^{1}\), IL-6\(^{1}\), and IL-8\(^{1}\); NLRP3 \(^1\)	Piao et al. (2015)	
Taraxacum mongolicum Hand-Mazz	Primary HFLS-Ra treated with IL-1β, CIA mice	Cells 3, 10, and 30 μM; animals 10 mg/kg	TNF-α\(^{1}\), IL-6\(^{1}\), and IL-8\(^{1}\); NF-κB\(^{1}\); NLRP3 \(^1\)	Chen et al. (2019a)	
Aerial parts of *Inula japonica* (Miq.) Komarov	FCA-induced arthritis in rat	2, 4, and 8 mg/kg	TNF-α\(^{1}\), IL-1β\(^{1}\), and PGE\(_{2}\)	Wang et al. (2016)	
Not mentioned	Acne mice	5 and 10 mg/kg	IL-1β\(^{1}\), IL-8\(^{1}\), TGF-β1\(^{1}\), Smad3\(^{1}\)	Liu et al. (2020)	
Aerial parts of *Inula japonica* (Miq.) Komarov	BV2 microglia cells treated with LPS	3, 6, and 12 μg/ml	TNF-α\(^{1}\), IL-1β\(^{1}\), NF-κB\(^{1}\), LXRa\(^{1}\) and ABCA1\(^{1}\)	Liu et al. (2018)	
Aerial parts of *Inula japonica* (Miq.) Komarov	HUVECs treated with LPS	5, 10, and 15 μg/mL	TNF-α\(^{1}\), IL-8\(^{1}\), PGE2\(^{1}\), COX-2 \(^1\), NF-κB\(^{1}\), and LXRα	Zheng et al. (2018)	
Anti-oxidative activity	Aerial parts of *Inula japonica* (Miq.) Komarov	BRI induced AKI in mice; HK-2 cells stimulated with H/R	Cells 5 and 10 μM; animals 5 and 10 mg/kg	ROS\(^{1}\), Bax\(^{1}\), and Bcl2\(^{1}\)	Li et al. (2020a)
Aerial parts of *Inula japonica* (Miq.) Komarov	Ethanol-induced liver injury in mice	2.5, 5, and 10 mg/kg	ROS\(^{1}\), MDA\(^{1}\), GSH\(^{1}\), and SOD\(^{1}\)	Xu et al. (2018)	
Taraxacum officinale	Ethanol and high-fat diet-induced liver injury in mice	2.5, 5, and 10 mg/kg	CYP2E1\(^{1}\), total and nuclear Nrf2\(^{1}\), HO-1\(^1\)	Li et al. (2020b)	
Aerial parts of *Inula japonica* (Miq.) Komarov	CS-induced lung inflammation in mice	2.5, 5, and 10 mg/kg	Inhibition of TLR4 translocate to lipid rafts; ROS\(^1\)	Xuebojue et al. (2016)	
Taraxacum mongolicum	OGD/R-induced hippocampal neurons injury	2.5, 5, and 10 μM	ROS\(^{1}\), MDA\(^{1}\), HO-1\(^1\), NQO-1\(^1\), and GPx-3\(^1\); Nuclear Nrf2\(^1\)	He et al. (2020)	
Aerial parts of *Inula japonica* (Miq.) Komarov	Cardiomyocyte ischemia/reperfusion mice	5, 10, and 30 μmol/L	SOD\(^{1}\), MADI\(^{1}\), p-ERK1/2\(^1\)	Wang et al. (2018)	
Anti-carcinogenic activity	Tabular flowers of artichoke	TPA-induced skin tumor in mice	2.0 μmol	Not mentioned	Yasukawa et al. (1996)
The herbs of *Taraxacum officinale*	HepG2 and SK-Hep-1 cells	17.0 μM	Hnt1\(^1\), Bax\(^1\), Bcl2\(^1\), and cyclin D1\(^1\)	Bao et al. (2018)	
Aerial parts of *Inula japonica* (Miq.) Komarov	Xenograft tumor model of gastric cancer in mice	25 μg/ml	EGF\(^{1}\), total AKT1\(^{1}\), p-AKT1\(^{1}\), and p-EGF\(_{R}\); RNF31\(^{1}\), p38	Tang et al. (2021)	

\(^a\) Continued on following page
administration of dextran sulfate sodium (DSS) (Chen W. et al., 2019). Peroxisome proliferator-activated receptor γ (PPARγ) plays a central role in the regulation of inflammatory signaling pathways by acting on kinases and transcription factors, such as NF-κB, c-Jun, c-Fos, and nuclear factor of activated T cell (NFAT), and by inhibiting the production of IL-1β and TNF-α (Su et al., 1999; Yang et al., 2000; Desreumaux et al., 2001). In the DSS-induced AEC animal models, taraxasterol...
(10 mg/kg) reversed DSS-induced PPARγ downregulation in AEC colon tissues and improved DSS-induced colitis, offering a novel insight into potential therapeutic strategies for acute colitis (Chen W. et al., 2019). In addition, Che et al. reported that taraxasterol significantly reduced the expression levels of IL-6 and TNF-α in a dose-dependent manner at doses between 2.5 and 10 μg/ml in vitro and 25 and 100 mg/kg in vivo (Che et al., 2019). Although there is evidence that taraxasterol has anti-inflammatory effects in various diseases, the precise mechanism by which it regulates inflammatory responses is still unclear. For example, both upstream multiple proteins and some non-encoded RNAs, such as RACK1 (Yao et al., 2014), tripartite motif-containing proteins (TRIMs) (Roy and Singh, 2021), microRNA-144 (Yang et al., 2022), and AMPK (Zhai et al., 2018), can regulate NF-κB expression. It is unclear whether taraxasterol inhibits NF-κB expression by regulating the expression of these proteins. Thus, further discussion is required in vitro and in vivo.

Recent studies have shown that taraxasterol exerts an anti-arthritic effect. These studies showed that taraxasterol reduced IL-1β-stimulated inflammatory responses in vitro and in vivo by suppressing the expression of COX-2 and iNOS and reducing NF-κB activation (Piao et al., 2015; Chen J. et al., 2019). Chen et al. reported that taraxasterol suppressed the NOD-like receptor protein 3 (NLRP3) inflammasome through inhibition of the expression of NLRP3, apoptosis-associated speck-like protein containing (ASC), and caspase-1 within a dose range of 0.3 to 0 μm in HFLS-RA cells and with 10 mg/kg in collagen-induced arthritis (CIA) mice (Chen J. et al., 2019). In another investigation, Wang et al. studied the protective effect of taraxasterol against Freund’s complete adjuvant- (FCA-) induced arthritis in rats. They found that taraxasterol (at doses of 2, 4, and 8 mg/kg) inhibited bone destruction by increasing serum OPG production and inhibiting the overproduction of serum inflammatory cytokines (Wang et al., 2016). In addition, Liu et al. showed that taraxasterol (10 mg/kg) improved propionibacterium acnes-induced inflammatory responses in a mouse ear edema model and suppressed pro-inflammatory chemokine production via the TGF-β/Smad pathway (Liu et al., 2020). The liver X receptors (LXRα)s are members of the nuclear receptor superfamily that bind and are activated by oxysterols (Lehmann et al., 1997). Liu et al. showed that taraxasterol (0 to 12 μg/ml) was a ligand of LXRa and inhibited the expression of TNF-α and IL-1β via the activation of LXRa in LPS-stimulated BV2 microglia (Liu et al., 2018). These results suggested that taraxasterol may exert anti-inflammatory effects via activation of LXRa in the central nervous system. Similarly, another study on LPS-stimulated human umbilical vein endothelial cells also showed that taraxasterol (5–15 μg/ml) exerted anti-inflammatory effects by activating LXRa (Zheng et al., 2018).

Anti-oxidative activity

Oxidative stress is caused by exposure to reactive oxygen intermediates, which can damage proteins, nucleic acids, lipids, and cell membranes (Storz and Imlay, 1999). Studies have shown that cumulative damage caused by reactive oxygen species (ROS) contributes to numerous diseases (Apel and Hirt, 2004; Jakubczyk et al., 2020). Several studies have characterized the anti-oxidative effects of taraxasterol. In mice with acute kidney injury (AKI) induced by ischemia/reperfusion injury (IRI), Li et al. showed that taraxasterol (5 and 10 mg/kg) inhibited mitochondrial ROS production and ameliorated apoptosis in the kidney by decreasing Bax expression and increasing Bcl2 expression (Li C. et al., 2020). The transcription factor Nrf2 regulates the expression of phase II detoxification enzymes and a series of antioxidant enzymes (Chen et al., 2015). Heme oxygenase (HO-1), a phase II detoxification enzyme regulated by Nrf2, also plays an important antioxidant role (Suh et al., 2006). Many studies have shown that taraxasterol (2.5–10 mg/kg) inhibited oxidative stress by increasing the activity of the CYP2E1/Nrf2/HO-1 pathway in animal models of ethanol and high-fat diet-induced liver injury (Xu et al., 2018; Li Z. et al., 2020). Moreover, taraxasterol (2.5–10 mg/kg) also reduced the production of ROS, malondialdehyde (MDA), and increased glutathione (GSH) levels and superoxide dismutase (SOD) activity in ethanol-induced liver injury (Xu et al., 2018). An in vivo study showed that taraxasterol inhibited cigarette smoke-induced lung inflammation by inhibiting ROS production and ROS-mediated recruitment of TLR4 into lipid rafts within a dose range of 2.5–10 mg/kg. Moreover, taraxasterol also upregulated GSH production (Xueshibojie et al., 2016). In addition, taraxasterol has been shown to exert protective effects against neurological diseases. In oxygen-glucose deprivation/ reperfusion- (OGD/R-) induced hippocampal neurons, taraxasterol (2.5–10 μm) significantly suppressed ROS production and MDA generation. Furthermore, taraxasterol induced nuclear Nrf2 accumulation and promoted increased expression of HO-1, NQO-1, and GPx-3 (He et al., 2020). Wang et al. found that taraxasterol increased the phosphorylation level of ERK1/2 in a cardiomyocyte ischemia/ reperfusion (I/R) model, which indicated that taraxasterol exerted protective effects against oxidative stress by upregulating the ERK pathway at a dose of 30 μm (Wang et al., 2018). These results demonstrated that taraxasterol protected cardiomyocytes against hypoxia, suggesting that it may be significant for treating heart diseases (Wang et al., 2018).

Anti-carcinogenic activity

Previous studies have shown that extracts of Taraxacum officinale inhibited proliferation and induced apoptosis in hepatocellular carcinoma (HCC), HepG2, and HuH7 cells.
prostate cancer) and HT-29 (human colon cancer) cells. The IC50 values of the taraxasterol compound were determined as 37.1 and 89.7 µm in the PC3 and HT-29 cells at 48 h, respectively (Boutaghaane et al., 2013). However, among other tumor cells, including MCF-7 (human breast carcinoma), HeLa (human cervix carcinoma), SK-MEL-5 (human melanoma), KB (human nasopharyngeal carcinoma), P388 (murine leukemia), MOLT-4 (human acute lymphoblastic leukemia), and SK-OV-3 (human ovary carcinoma) cells, taraxasterol did not exhibit significant inhibitory activity with IC50 values equal to or higher than 49 mm, suggesting that the anti-carcinogenic activity of taraxasterol may have cellular specificity (Villardreal et al., 1994; Lee et al., 2010; Jassbi et al., 2016). In an in vivo two-stage test, administration with 2 µmol/mouse of taraxasterol markedly inhibited the tumor-promoting effect of TPA on skin tumor formation following initiation with 7,12-dimethylbenz[a]anthracene. In this study, taraxasterol caused an 86% reduction in the average number of tumors per mouse at week 20 (Yasukawa et al., 1996). However, a subsequent study showed that taraxasterol (850 nmol/ml) also exhibited about 60% inhibition of the average number of papillomas per mouse at 20 weeks in terms of the two-stage carcinogenesis test (Takasaki et al., 1999). Furthermore, in the C3H/Outj female mice treated with taraxasterol (2.5 mg in 100 ml of drinking water), the survival ratio of the mice was 80% even at 70 weeks of breeding, suggesting that taraxasterol can remarkably suppress the spontaneous mammary carcinogenesis in the C3H/Outj female mice (Takasaki et al., 1999). Histidine triad nucleotide-binding protein 1 (Hint1) is a tumor suppressor often downregulated in association with the development of cancer (Wang et al., 2007; Wang et al., 2009). Bao et al. found that taraxasterol (IC50 17.0 µm) selectively inhibited the proliferation of HepG2 cells by inducing cell cycle arrest at G0/G1 and inhibited apoptosis by upregulating Hint1 transcription to regulate the expression of Bax, Bcl2, and cyclin D1 (Bao et al., 2018). In addition, oral administration of 25 µg/ml of taraxasterol in drinking water for 30 days can effectively inhibit the growth of the implanted SK-Hep1 tumor in vivo (Bao et al., 2018). In a gastric cancer subcutaneous xenograft model, taraxasterol (25 µg/ml) inhibited the growth of xenograft tumors by inhibiting EGFR/AKT1 signaling (Chen et al., 2020). The E3 ubiquitin ligase RNF31 is overexpressed in many tumors and is associated with tumorigenesis (Guo J. et al., 2015; Zhu et al., 2016; Qiu et al., 2018). Tang et al. found that taraxasterol (50 µg/ml) promoted the degradation of RNF31 by activating autophagy, thereby inhibiting the p53 degradation and colorectal cancer (CRC) cell proliferation (Tang et al., 2021). In addition, taraxasterol can inhibit cell growth of breast, cervical, and melanoma in vitro (Dai et al., 2001; Lee et al., 2010). These findings indicated that taraxasterol may be a promising candidate for treating tumors.

Others

Liu et al. found that taraxasterol (5 and 10 mg/kg) significantly decreased the production of the Th2 cytokines IL-4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF) and reduced the levels of ovalbumin- (OVA-) specific IgE in serum (Liu et al., 2013). In addition, taraxasterol (2.5–10 mg/kg) suppressed airway hyperresponsiveness (AHR) in a dose-dependent manner. Histological studies showed that taraxasterol substantially suppressed OVA-induced inflammatory cell infiltration into lung tissues and goblet cell hyperplasia in airways, which suggested that taraxasterol may protect against allergic asthma (Liu et al., 2013). In an in vitro study, taraxasterol (7.5 and 12.5 µg/ml) reduced the number of CaOx crystals in a dose-dependent manner and reduced the diameter of CaC2O4 dihydrate crystals. In addition, the inhibition of nucleation was increased by taraxasterol in the range of 26%–64% (Yousefi Ghale-Salimi et al., 2018). A recent study found that taraxasterol also exerted anti-viral effects. Taraxasterol (24 µg/ml) significantly reduced the secretion of HBsAg, HBeAg, HBV DNA, and intracellular HBsAg. Moreover, the treatment of taraxasterol (24 µg/ml for 48 h) also decreased the protein expression levels of the host factors poly-pyrimidine tract binding protein 1 (PTBP1) and sirtuin 1 (SIRT1) in HepG2.2.15 cells (Yang et al., 2020). In addition, pretreatment with different concentrations of taraxasterol (30, 60, 90, 120, 150, 180, or 210 µm) markedly prevented cell injury and inflammation in H2O2-induced HUVECs by reducing the expression of vascular cell adhesion molecule 1 (VCAM-1) and the cluster of differentiation 80 (CD80) (Yang et al., 2015). In addition, taraxasterol has also been shown to exert significantly antimicrobial effects. Taraxasterol obtained from the Mexican plants of the Asteraceae elicited a significant minimum inhibitory concentration (MIC) value (12.5 µg/ml) against Staphylococcus aureus (Villardreal et al., 1994). However, Boutaghaane et al. observed weak inhibition of Mycobacterium tuberculosis (Boutaghaane et al., 2013). Akhisa group described the anti-tubercular activity of taraxasterol against Mycobacterium tuberculosis with the MIC values of 64 µg/ml (Akhisa et al., 2005).

Conclusion

Taraxasterol is a natural pentacyclic triterpene primarily extracted from dandelion. This article gives a general overview of the pharmacological activities of taraxasterol for treating...
Various illnesses, such as respiratory, gastrointestinal, and urinary disorders. Taraxasterol was discovered to have excellent potential for preventing the above disorders. Anti-inflammatory, anti-oxidative, and anti-carcinogenic mechanisms may be responsible for its protective effects.

Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), cause progressive damage to the nervous system. The abnormal aggregation of some proteins in particular brain regions is a pathological hallmark of neurodegenerative diseases mainly caused by impaired protein-degradation systems, such as the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS) (Zheng et al., 2014; Finkbeiner, 2020). Recently, it was found that taraxasterol promoted the degradation of RNF31 protein by enhancing autophagy and further alleviating the degradation of p53 through proteasome, indicating that taraxasterol may regulate the protein degradation pathways in cells (Tang et al., 2021). It is necessary to conduct more in vivo and in vitro studies to determine whether taraxasterol prompts the degradation of aggregate proteins by regulating ALP and UPS pathways in neurodegenerative diseases. Previous studies have shown that inflammatory stimulation can be active by genetic mutation and protein aggregation in neurodegenerative diseases (Glass et al., 2010; Stephenson et al., 2018). Microglia and astrocytes are mainly responsible for persistent inflammatory responses (Xu et al., 2016; Stephenson et al., 2018). Taraxasterol may have effects on inhibiting the inflammatory response induced by glial cells and potentially protective effect on neuronal death caused by abnormal activation of glial cells in neurodegenerative diseases, according to recent research conducted in vitro. Taraxasterol inhibited the expression of proinflammatory factors via the activation of LXR in LPS-stimulated BV2 microglia (Liu et al., 2018). However, taraxasterol can directly act on glial cells through the blood–brain barrier (BBB), and its concentration in the cerebrospinal fluid requires further investigation.

Additional research is also necessary to identify the effective concentration of taraxasterol in plasma. Zhang et al. reported that the amount of taraxasterol in the plasma of rats following oral administration could be accurately detected through a highly selective and sensitive liquid chromatography/tandem mass spectrometry (Zhang et al., 2015). This finding may aid in the pharmacokinetic study of taraxasterol in humans and other animals. Furthermore, more clinical studies are necessary on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.

Author contributions

FJ contributed to the study design and wrote the manuscript. ZT, ZY, BZ, XS, and LM revised and approved the manuscript. All authors reviewed and approved the manuscript.

Funding

This work was supported by the Shandong Traditional Chinese Medicine Science and Technology Development Plan (Grant number: 2019-0446 to FJ), the Research Fund for Academician Lin He New Medicine (Grant number: JYHL2019ZD04 to FJ), and Undergraduate Innovation Training Project (Grant number: S202010443008 to BZ).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Akashi, T., Furuno, T., Takahashi, T., and Ayaibe, S.-I. (1994). Biosynthesis of triterpenoids in cultured cells, and regenerated and wild plant organs of Taraxacum officinale. Phytochemistry 36 (2), 303–308. doi:10.1016/0031-9422(94)90165-1

Akhisar, T., Frenzilblau, S. G., Ukiya, M., Okuda, H., Zhang, F., Yasukawa, K., et al. (2005). Antibacterial activity of triterpenoids from Asteraceae flowers. Biol. Pharm. Bull. 28 (1), 158–160. doi:10.1248/bpb.28.158

Akhisar, T., Yasukawa, K., Oizumi, H., Kasahara, Y., Yamanouchi, S., Takada, M., et al. (1996). Triterpene alcohols from the flowers of composite and their anti-inflammatory effects. Phytochemistry 43 (6), 1255–1260. doi:10.1016/0031-9422(96)00343-3

Ames, T. R., Beton, J. L., Bowers, A., Halall, T. G., and Jones, E. (1954). The chemistry of the triterpenes and related compounds Part XXIII the structure of taraxasterol β-taraxasterol (heterolupeol) and lupenol-I. J. Chem. Soc. 1954 (25), 307–318. doi:10.1039/jr5400001902

Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. doi:10.1146/annurev.arplant.55.031903.141701

Bajaj, Y. (1994). Medicinal and aromatic plants. Biotechnol. Agric. For. 51, 1232. doi:10.1007/978-3-642-73617-9

Bao, T., Ke, Y., Wang, Y., Wang, W., Li, Y., Wang, Y., et al. (2018). Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression. J. Mol. Med. 96 (7), 661–672. doi:10.1007/s00188-018-1652-7
Boutaghane, N., Voutenque-Nazabadiklo, L., Simon, A., Harakat, D., Benlabled, K., Kabouche, Z., et al. (2013). A new triterpene diester from the aerial parts of Chrysanthemum macropasum. Phytochem. Lett. 6 (4), 519–525. doi:10.1016/j.phytol.2013.06.009

Burrows, S., and Simpson, J. C. E. (1938). 389 the triterpene group. Part IV. The triterpene alcohols of Taxarcum root. J. Chem. Soc., 2042–2047. doi:10.1039/BR8000002042

Chauhan, R., Ruby, K., and Dwivedi, J. (2012). Golden herbs used in piles controlled environment. Biochem. Syst. Ecol. 48 (4), 307–316. doi:10.1016/j.bse.2012.04.009

Gao, J. B., Ye, H. H., and Chen, J. F. (2015b). Anti-proliferation effect of Taraxacum mongolicum extract in HepG2 cells and its mechanism. Zhong Yao Cai 38 (10), 2129–2133. doi:10.1386/zycc.2015.04.0508

Gao, J., Liu, X., and Wang, M. (2015a). mFLC-5 suppresses tumor cell proliferation and metastasis by directly targeting BNIP3 in prostate cancer. Biochem. Biophys. Res. Commun. 464 (4), 1302–1308. doi:10.1016/j.bbrc.2015.07.127

Guirb-Fakim, A. (2006). Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 27 (1), 1–93. doi:10.1016/mam.2005.07.008

Haladova, M., Eisenreichova, E., Budesinsky, M., Ublik, K., and Grancalci, D. (2001). Constituents of the leaves of helodiscus discolor (pursh) maxims. Ceska Slov. Farm. 50 (6), 280–282.

He, Y., Jiang, K., and Zhao, X. (2020). Taraxacum protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activation of NFκB signaling pathway. Artif. Cells Nanomed. Biotechnol. 48 (1), 252–258. doi:10.1080/21692040.2019.1699831

Itoh, T., Uetsuki, T., Tamura, T., and Matsumoto, T. (1988). Characterization of triterpene alcohols of seed oils from some species of theaceae, phytolaccaceae and sapotaceae. Lipids 15 (6), 407–411. doi:10.1007/BF02340644

Jakubczyk, K., Dec, K., Kaldunska, J., Kawczuga, D., Kochman, J., Janda, K., et al. (2020). Reactive oxygen species - sources, functions, oxidative damage. Pol. Merkur. Lek. 48 (284), 124–127.

Jasbi, A. R., Firuzi, O., Miri, R., Salhei, S., Zare, S., Zare, M., et al. (2016). Cytotoxic activity and chemical constituents of Anthenis mirheydari. Pharm. Biol. 54 (10), 2044–2049. doi:10.1186/s13168-016-01142-0

Kamboj, A., and Saluja, A. (2009). Bryophyllum pinnatum (lâm.) kurz. Phytochemical and pharmacological profile. A review. Pharmacogn. Rev. 3 (6), 364.

Koo, H. N., Hong, S. H., Song, B. K., Kim, C. H., Yoo, Y. H., Kim, H. M., et al. (2004). Taraxacum officinale induces cytotoxicity through TNF-α and IL-1α secretion in Hep G2 cells. Life Sci. 74 (9), 1149–1157. doi:10.1016/j.lfs.2003.07.030

Lawrence, T. (2009). The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1 (6), a001651. doi:10.1101/chp.a001651

Lee, D. Y., Jung, L., Park, J. H., Yoo, K. H., Chung, I. S., Baek, N. I., et al. (2010). CYTOTOXIC TRITERPENDIONS FROM Corinusa kousa FRUITS. Chem. Nat. Compd. 46 (1), 142–145. doi:10.1007/s10527-010-9550-4

Lehmann, J. M., Klawer, S. A., Moore, L. B., Smith-Oliver, T. A., Oliver, B. B., Su, J. L., et al. (1997). Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272 (6), 3137–3140. doi:10.1074/jbc.272.6.3137

Li, C., Zheng, Z., Xie, Y., Zhu, N., Bao, J., Yu, Q., et al. (2020a). Protective effect of taraxacum against ischaemia/reperfusion-induced acute kidney injury via inhibition of oxidative stress, inflammation, and apoptosis. Int. Immunopharmacol. 89 (Pt A), 107169. doi:10.1016/j.intimp.2020.107169

Li, Z., Yuan, Y., Wei, R., Jin, L., Cao, H., Zhao, T., et al. (2020b). Effects of taraxacum against ethanol and high-fat diet-induced liver injury by regulating TLR4/MyD88/NF-κB and NFκB/1 signaling pathways. Life Sci. 262, 118546. doi:10.1016/j.lfs.2020.118546

Liu, B., He, Z., Wang, J., Xin, Z., Wang, J., Li, F., et al. (2018). Taraxacum inhibits LPS-induced inflammatory response in BV2 microglia cells by activating LXRα. Front. Pharmacol. 9, 274. doi:10.3389/fphar.2018.00278

Liu, H., Sun, X., Sun, M., and Jin, C. (2020). Effects of taraxacum on inflammatory factor levels and morphology of thymus in acme model of mice through TGF-β1Smad pathway. J. Hebei Med. Univ. 41, 810–814. doi:10.3969/j.issn.1000-3205.2020.07.015

Liu, J., Xiong, H., Cheng, Y., Cui, C., Zhang, X., Xu, L., et al. (2013). Effects of taraxacum on pollen-induced allergic asthma in mice. J. Ethnopharmacol. 148 (3), 787–793. doi:10.1016/j.jep.2013.05.006

Medzhutov, R. (2008). Origin and physiological roles of inflammation. Nature 454 (7208), 428–435. doi:10.1038/nature07210

Ngo, S. T., and Li, M. S. (2013). Top-leads from natural products for treatment of Alzheimer’s disease: docking and molecular dynamics study. Mol. Simul. 39 (4), 279–291. doi:10.1080/08927022.2012.718769

Oliva, P. A. D., Turatti, I. C. C., and Oliveira, D. C. R. D. (2006). Comparative analysis of triterpenoids from Mikania cordifolia collected from four different locations. Rev. Bras. Cienc. Farm. 42, 547–552. doi:10.1590/s0100-83582006000400010

Piao, T., Ma, Z., Liu, X., and Liu, J. (2015). Taraxacum inhibits IL-1β-induced inflammatory response in human osteoarthritic chondrocytes. Eur. J. Pharmacol. 756, 38–42. doi:10.1016/j.ejphar.2015.03.012

Power, F. B., and Browning, H. (1912). CCLI.—the constituents of taraxacum root. J. Chem. Soc. Trans. 101, 2411–2429. doi:10.1039/j1910120241
Phytomedicine: antimicrobial activities of triterpenoids from Strobilanthes callosus nees. Soc.

Transformation of dandelion in κ405 epithelial in (1999). A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the CNS neurodegenerative diseases. 12922 mice.

effect of taraxasterol on acute lung injury induced by lipopolysaccharide in 47 (1), 3929 (2006). Cytotoxicity of water extracts from leaves and branches of Philadelphus coronarius L.

Cytotoxic and antimicrobial screening of selected terpenoids from (1994). Cytotoxic and antimicrobial screening of selected terpenoids from Chinese medicinal plant Hemistepha lyrata Bunge. Zhongguo Zhong Yao Za Zhi 26 (6), 405–406. doi:10.3321/j.issn:0513-4870.2001.0007

Roy, M., and Singh, R. (2021). TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell. Mol. Life Sci. 78 (17-18), 6069–6086. doi:10.1007/s00018-021-03900-z

Ryu, S. B., and Lee, H.-Y. (2006). Methods for Agrobiotechner-mediated transformation of dandelion. US patent application.

Saeecd, M. T., Agarwal, R., Khan, M., Ahmad, F., Matsumoto, T., Akihisa, T., et al. (2022). Anti-inflammatory and anti-arthritic effects of taraxasterol on adjuvant-induced arthritis in rats. J. Ethnopharmacol. 187, 42–48. doi:10.1016/j.jep.2021.06.0341

Wang, W., Zhang, H., Wang, and Bao, T. (2018). Protective effects of taraxasterol on oxidatively injured cardiomyocytes. Chongqing YiXue 47, 1572–1579.

Wang, Z., Guanghong, O., Yao, R., Li, F., Yeats, T. H., Rose, J. K., et al. (2011). Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant Physiol. 155 (1), 540–552. doi:10.1104/pp.110.168283

Wu, H., Xin, X., Su, Z., and Aisa, H. (2011). 1,2-Iso-propyl-6-methylpyrimidin-4(3H)-one and taraxasterol from the stems of Cichorium glandulosum. Chem. Nat. Compd. 47 (4), 654–666. doi:10.1007/s11097-011-0552-4

Xuehijoue, L., Dao, Y., and Tiejun, W. (2016). Taraxasterol inhibits cigarette smoke-induced lung inflammation by inhibiting reactive oxygen species-induced TL14 trafficking to lipidic Eur. J. Pharmacol. 789, 301–307. doi:10.1016/j.ejphar.2016.10.014

Yoon, J. Y., Cho, H. S., Lee, J. J., Lee, H. J., Jun, S. Y., Lee, J. H., et al. (2016). Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells. Mol. Carcinog. 55 (4), 387–396. doi:10.1002/omc.22288

Youself Ghale-Salimi, E., Eidi, M., Ghaemi, N., and Khavari-Nejad, R. A. (2018). Inhibitory effects of taraxasterol and aqueous extract of Taraxacum officinale on Asteraceae species. J. Ethnopharmacol. 42 (1), 25–29. doi:10.1016/s0378-8741(94)90019-1

Wang, L., Li, H., Zhang, Y., Santella, R. M., and Weinstein, I. B. (2009). HN1T inhibits beta-catenin/TCF4, USF2 and NF-kB signaling activity in human hematopoietic cells. Int. J. Cancer 124 (7), 1526–1534. doi:10.1002/ijc.24072

Wang, L., Zhang, Y., Li, H., Xu, Z., Santella, R. M., Weinstein, I. B., et al. (2007). HN1t inhibits growth and activator protein-1 activity in human colon cancer cells. Cancer Res. 67 (10), 4700–4708. doi:10.1158/0008-5472.CAN-06-4645

Wang, S., Wang, Y., Liu, X., Guan, L., Yu, L., Zhang, X., et al. (2016). Anti-inflammatory and anti-arthritic effects of taraxasterol on adjuvant-induced arthritis in rats. J. Ethnopharmacol. 187, 42–48. doi:10.1016/j.jep.2016.04.031

Wang, W., Zhang, H., Wang, and Bao, T. (2018). Protective effects of taraxasterol on oxidatively injured cardiomyocytes. Chongqing YiXue 47, 1572–1579.

Yang, D., Liu, X., Liu, M., Chi, H., Liu, J., Han, H., et al. (2015). Protective effects of quercetin and taraxasterol against H2O2-induced human umbilical vein endothelial cell injury in vitro. Exp. Ther. Med. 10 (4), 1253–1260. doi:10.3892/etm.2015.2713

Yang, L., Zheng, W., Lv, X., Xin, S., Sun, Y., Xu, T., et al. (2022). microRNA-144 modulates the NF-κB pathway in miyui croaker (Mischthyss miyui) by targeting Ikβα gene. Dev. Comp. Immunol. 130, 104359. doi:10.1016/j.devimm.2022.104359

Yang, W., Wang, H., Chen, T., Hodge, D. R., Resau, J. H., DaSilva, L., et al. (2008). Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J. Biol. Chem. 275 (7), 4541–4544. doi:10.1074/jbc.M703941200

Yao, F., Long, L. Y., Deng, Y. Z., Feng, Y. Y., Ying, G. Y., Bao, W. D., et al. (2014). RACK1 modulates NF-κB activation by interfering with the interaction between TRAF2 and the IKK complex. Cell Res. 24 (5), 359–371. doi:10.1038/cr.2013.162

Yarnell, E., and Abascal, K. (2009). Dandelion (Taraxacum officinale and T. mongolicum). Integr. Med. 8 (2), 35–38.

Yasukawa, K., Akihisa, T., Oinuma, H., Kaminaga, T., Kanno, H., Kasahara, Y., et al. (1996). Inhibitory effect of taraxasterol on the growth of human T lymphocytes in vitro. Int. Immun. Pharmacol. 6 (2), 179–183. doi:10.1016/s1369-5171(96)00012-6

Yasukawa, K., Akihisa, T., Oinuma, H., Kaminaga, T., Kanno, H., Kasahara, Y., et al. (1996). Inhibitory effect of taraxasterol on the growth of human T lymphocytes in vitro. Int. Immun. Pharmacol. 6 (2), 179–183. doi:10.1016/s1369-5171(96)00012-6

Youself Ghale-Salimi, E., Eidi, M., Ghaemi, N., and Khavari-Nejad, R. A. (2018). Inhibitory effects of taraxasterol and aqueous extract of Taraxacum officinale on
calcium oxalate crystallization. *Ren. Fail.* 40 (1), 298–305. doi:10.1080/0886022X.2018.1455595

Zhai, C., Shi, W., Feng, W., Zhu, Y., Wang, J., Li, S., et al. (2018). Activation of AMPK prevents monocrotaline-induced pulmonary arterial hypertension by suppression of NF-κB-mediated autophagy activation. *Life Sci.* 218, 87–95. doi:10.1016/j.lfs.2018.07.018

Zhang, N., Pang, L., Dong, N., Xu, D., and Xu, H. (2015). Quantification of taraxasterol in rat plasma by LC/MS/MS: Application to a pharmacokinetic study. *Biomed. Chromatogr.* 29 (11), 1643–1649. doi:10.1002/bmc.3473

Zhang, X., Xiong, H., Li, H., and Cheng, Y. (2014). Protective effect of taraxasterol against LPS-induced endotoxic shock by modulating inflammatory responses in mice. *Immunopharmacol. Immunotoxicol.* 36 (1), 11–16. doi:10.3109/08923973.2013.861482

Zhao, J., Evangelopoulos, D., Bhakta, S., Gray, A. I., and Seidel, V. (2014). Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. *J. Ethnopharmacol.* 155 (1), 796–800. doi:10.1016/j.jep.2014.06.034

Zheng, C., Geetha, T., and Babu, J. R. (2014). Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. *Neurodegener. Dis.* 14 (4), 161–175. doi:10.1159/000367694

Zheng, F., Dong, X., and Meng, X. (2018). Anti-inflammatory effects of taraxasterol on LPS-stimulated human umbilical vein endothelial cells. *Inflammation* 41 (5), 1755–1761. doi:10.1007/s10753-018-0818-3

Zhu, J., Zhao, C., Zhuang, T., Jonsson, P., Sinha, I., Williams, C., et al. (2016). RING finger protein 31 promotes p53 degradation in breast cancer cells. *Oncogene* 35 (15), 1955–1964. doi:10.1038/onc.2015.260