Involvement of Activation of PKR in HBx-siRNA-Mediated Innate Immune Effects on HBV Inhibition

Qiuju Han1, Cai Zhang1, Jian Zhang1, Zhigang Tian1,2*

1 Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China, 2 Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China

Abstract

RNA interference (RNAi) of virus-specific genes offers the possibility of developing a new anti-hepatitis B virus (anti-HBV) therapy. Recent studies have revealed that siRNAs can induce an innate immune response in vitro and in vivo. Here, HBx (HBx) mRNA expression and HBV replication were significantly inhibited, followed by the enhancement of expression of type I interferons (IFNs), IFN-stimulated genes (ISG15 and ISG56) and proinflammatory cytokines after HepG2.2.15 cells were transfected with chemically synthesized HBx-siRNAs. Transfection with HBx-siRNAs also significantly increased expression of dsRNA-dependent protein kinase R (PKR) in HepG2.2.15 cells, followed by activation of downstream signaling events such as eukaryotic initiation factor 2α (eIF2-α). In PKR-over-expressing HepG2.2.15 cells, HBx-siRNAs exerted more potent inhibitory effects on HBV replication and greater production of type I IFNs. By contrast, the inhibitory effect of HBx-siRNAs on HBV replication was attenuated when PKR was inhibited or silenced, demonstrating that HBx-siRNAs greatly promoted PKR activation, leading to the higher production of type I IFN. Therefore, we concluded that PKR is involved in the innate immune effects mediated by HBx-siRNAs and further contributes to HBV inhibition. The bifunctional siRNAs with both gene silencing and innate immune activation properties may represent a new potential strategy for treatment of HBV.

Introduction

Hepatitis B virus (HBV) infection is an important disease with 400 million HBV carriers worldwide. HBV infection may cause cirrhosis and hepatocellular carcinoma (HCC) and HBV-induced diseases cause 1 million deaths annually [1]. Recent studies have shown that RNA interference (RNAi) is a process whereby double-stranded RNA (dsRNA) induces a sequence-specific post-transcriptional silencing of homologous genes. This process is an evolutionarily conserved surveillance mechanism mediated by small interfering RNAs (siRNAs) of the length of 21–23 nucleotides. In the natural RNAi pathway, siRNAs are derived from the processing of long dsRNAs by the nuclease Dicer into discrete 21-mers [2,3]. A number of recent studies have demonstrated that chemically synthesized siRNAs or vector-expressed shRNA targeting HBV elements inhibit HBV replication [4,5,6,7].

It is noted that intracellular delivery of siRNA could activate immune system and induce the production of cytokines both in vitro and in vivo. The response by RNA may be induced by three classes of viral pattern recognition receptors (PRRs): the Toll-like receptors (TLRs), the RIG-like helicase (RLH) receptors such as RIG-I and MDA-5, nucleotide-binding domain (NBD)- and leucine-rich-region (LRR)-containing family of cytoplasmic proteins (known as NLRs) [8]. RIG-I is the key sensor of negative strand RNA viruses in the cytosol of cells [9,10], recognizing RNA with a triphosphate group at the 5′-end in a sequence-independent manner. Some synthetic and natural RNAs (e.g. poly I:C, virus genomes, virus replication intermediates, viral transcripts, or self-RNA cleaved by RNase L) also serve as RIG-I agonists [9,10,11,12,13]. The natural ligand for MDA-5 remains to be identified, but long poly I:C can serve as an artificial agonist for this RLH [14]. TLR3 is engaged specifically by dsRNA, which is present either in viral genomes or generated after viral replication, and is involved in the induction of type I IFN responses. Indeed, a group of siRNAs stimulated monocytes or dendritic cells to produce proinflammatory cytokines and type I IFNs [15,16]. In addition, some studies have demonstrated that immune recognition of siRNA is sequence dependent and likely involves signaling through the endosomal TLR7 pathway [17,18].

The dsRNA-dependent protein kinase R (PKR), acting as a cytoplasmic RNA sensor, can also recognize molecular patterns in RNA and thus differentiate self from non-self. During viral infection, PKR binds viral dsRNA, autophosphorylates and subsequently phosphorylates the alpha subunit of translation initiation factor 2 (eIF2-α) [19,20]. Several reports reported that siRNAs can activate PKR signal pathway in a sequence independent manner, particularly when they are combined with lipids, during in vitro cell transfection [21,22,23]. The mechanisms that enable cells to sense and respond to dsRNA are not completely understood.

The HBV genome consists of four open reading frames (ORFs) with overlapping sequences. The HBVx (HBx) gene is essential for HBV viral infection and plays an important role in the development of hepatoma. Here, we designed four pairs of HBx-specific siRNAs on basis of the conserved region among the x gene and...
then examined whether the HBx-siRNAs with a lipid carrier can trigger immune responses in HepG2.2.15 cells. We then provided evidence that the non-specific innate immune responses induced by HBx-siRNAs were mediated by PKR. As type I IFN can be used for the treatment of virus hepatitis, these observations prompted us to investigate if the siRNA complex could achieve both gene silencing and IFN induction in hepatocytes. We finally prompted us to investigate if the siRNA complex could achieve the properties of siRNAs to HBV inhibition revealed in our study, demonstrating that the contribution of the immunostimulatory properties of siRNAs to HBV inhibition revealed in our study would be helpful for the siRNA-based antiviral therapy.

Materials and Methods

Cell line and cell culture

HepG2.2.15 cells (serotype ayw, genotype D), derived from HepG2 cells transfected with a plasmid carrying HBV genome DNA [20], were maintained in complete Dulbecco’s modified Eagle medium (DMEM; GIBCO/BRL, USA) supplemented with 10% fetal bovine serum (FBS) at 37°C in a humidified atmosphere containing 5% CO2.

Transfection

The sense and antisense strands of HBx-siRNAs were annealed and depurated by HPLC (RiboBio, Guangzhou China). HBx-siRNA sequences are shown in Table 1. HepG2.2.15 cells were seeded for 12 h, and transfected with Lipofectamine™ 2000/ siRNA (Invitrogen Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s description. The PKR inhibitor siRNA (Invitrogen Life Technologies, Carlsbad, CA, USA) was dissolved in DMSO according to the manufacturer’s instructions and was added to C16 (Merck Calbiochem, Germany) was dissolved in DMSO according to the manufacturer’s instructions. The PKR inhibitor siRNA (Invitrogen Life Technologies, Carlsbad, CA, USA) was dissolved in DMSO according to the manufacturer’s instructions. The PKR inhibitor siRNA (Invitrogen Life Technologies, Carlsbad, CA, USA) was dissolved in DMSO according to the manufacturer’s instructions.

Quantitative real-time polymerase chain reaction (PCR) analysis

Total RNA was prepared from treated HepG2.2.15 cells using Trizol extraction reagent (Invitrogen, Carlsbad, CA, USA). The Full-length human PKR expressing vector was kindly supplied by BCCM/LMBP (Belgian Co-ordinated Collections of Micro-Organisms). The PKR catalytically inactive vector (cMyc-His-tagged PEF6-HPKR-K296R) was kindly supplied by BCCM/LMBP (Belgian Co-ordinated Collections of Micro-Organisms). The PKR inhibitor siRNA (Invitrogen Life Technologies, Carlsbad, CA, USA) was dissolved in DMSO according to the manufacturer’s instructions. The PKR inhibitor siRNA (Invitrogen Life Technologies, Carlsbad, CA, USA) was dissolved in DMSO according to the manufacturer’s instructions.

Table 1. Sequences of chemically synthesized HBx-siRNAs.

Name	Type	Sequence 5\' → 3\'	size (bp)
siRNA1-sense RNA	GGUCUCAUAAGAAGGACUdTdT	555	
siRNA1-antisense RNA	AGCTTCTTATGTAAGACCdTdT	137	
siRNA2-sense RNA	GGAGGGCUCUUUGUUAAGCUGdtdt	157	
siRNA2-antisense RNA	ACGTAAACAAAGGACGTCTcddt	83	
siRNA3-sense RNA	CCGACCUUGGCAUACUdtdt	193	
siRNA3-antisense RNA	AAGUAGUGGCUCAAAGGGGCcddt	157	
siRNA4-sense RNA	UUGCGACUCUCGCUCACCUdtdt	126	
siRNA4-antisense RNA	AGGTTAGGGAAGGAGATGAGG	76	

Table 2. Sequences of specific human genes used for real-time PCR analysis.

Target sequence	Sequence (5\' → 3\')	size (bp)
GAPDH	R: GAAGTTGAAATTCCTAGGGT F: CATGGTTAAGCACTATTTGGA	155
IFN-α	R: CTC CCT TCT CCT CTC TCC TGA AG F: AAG TGT CTC ATC CCA CAG ATC	170
IFN-β	R: TGCTCTCCCTGGTCTCCTC F: CATCTCATAGATGCTGCTGAGG	222
ISG15	R: GGCACAAATGGCTGAGGCT C: CCCTGCAAGGCGCGAGCA	158
ISG56	R: CTTGACCTCCCTGGTTCG F: GCCTATCTCTGCTGCTGAGA	137
INOS	R: GACCAAGAGGCTGCCCCC C: GCTGGGAGCTAGGACCGCC	559
IL-6	R: CCAACAGACAGCCACCTAC F: AGGTGTCTTGGCTGCGAGG	146
IL-8	R: ACTCACAAGGCTGGCGTGGCTCCTGCTTCCA F: TGAATCTCAGGCCTCTCCA	295
TNF-α	R: ATCTTCTGACCGGGGCAAGTC F: CGGTTACCAGCTAGGGAC	83
CXCL10	R: AGGAACTTCAGTGCAAGCAC G: CAAAATCTGGCTGGAGGGATT	193
CXCL2	R: TGCAGGCTAGGTCTGAGAC F: TCTTACACCTGGGCGATGTC	157
CCL4	R: GCCTGCTGGCTTCTTCTACAC F: GACAGTCTGCTGTCCCTTTCG	126
PKR	R: ATGATGAGGAAAGGGAAATG C: TCTTCCAGGCTTCTCCTTTCG	76
HBV-X	R: CGGCTGCTGGCTTCTTCTACAG F: ACCAGTCAGGCTTCTCCTC	256
HBV S/P	R: ATCTGCTGCTATGCTCATCC T: ACAGTGGGGGAAAGGCTTACCA A: 314	

Approximately 2 µg of RNA was reverse transcribed using the M-MLV first-strand cDNA synthesis kit (Promega Corporation, Madison, WI, USA) and oligo(dT) primer as recommended by the manufacturer. Quantitative PCR was performed on an iCycler iQ real-time PCR system (Bio-Rad, USA). Amplified products were detected using SYBR Green PCR Master Mix (Toyobo Co. Ltd., Osaka, Japan). The sequences of primer pairs specific for each gene are shown in Table 2. The PCR was initially denatured at 95°C for 10 min, followed by 45 PCR cycles of 95°C for 30 s, 60°C for 30 s and 72°C for 30 s. The fold changes in expression were calculated relative to the expression of GAPDH.
Activation of PKR on HBV inhibition

HBx-siRNAs inhibit HBV expression in HepG2.2.15 cells

Results

HBx-siRNAs promote the activation of PKR and its downstream signal pathway

Several reports have demonstrated that siRNA can induce IFN responses in immune and non-immune cells and that these fluorophore. The reaction was carried out for 40 cycles in the iCyclerIQ real-time PCR system (Bio-Rad, USA).

Flow cytometry

The cells were transfected with siRNA for 4 h. Intracellular detection of Stat-1 activation was determined by flow cytometry. Briefly, the cells were washed once before fixing in 0.4% paraformaldehyde in the dark at 4°C for 30 min. Cells were then washed twice in PBS before incubation with phycoerythrin (PE)-labeled antibody (Ab) to p-Stat-1 (BD Pharmingen, USA). Intracellular staining was performed in FACS buffer containing 0.01% saponin at 4°C for 1 h. Results were analyzed by FACS Calibur™ and CELL Quest™ software.

Western blot analysis

HepG2.2.15 cells were lysed in lysing buffer [20 mM Tris–HCl, 150 mM NaCl, 1 mM Na2VO4, 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM ethylene glycol tetraacetic acid (EGTA), 1 mM phenylmethylsulfonyl fluoride (PMSF), 50 mM NaF and 1% NP-40]. After SDS-PAGE, proteins were transferred to polyvinylidene fluoride (PVDF) membranes and then incubated with the following antibodies: mouse anti-human HBx mAb (Millipore, USA), rabbit anti-human–PKR and anti-p-PKR mAb, rabbit anti-human-eIF2-α and anti-p-eIF2-α mAb (Santa Cruz, CA, USA), or anti-human-β-actin mAb (Cell Signaling Technology, New England Biolabs Inc., USA) diluted in 1:1000 at 4°C. After washing with Tris-buffered saline-Tween 20 (TBST) three times, the membranes were incubated with horseradish peroxidase (HRP)-conjugated secondary antibody. Protein bands were visualized using Anmobilon™ Western chemiluminescent HRP Substrate system (Millipore Corporation, Billerica, Massachusetts, USA).

ELISA

The cells were treated as above. Supernatants were harvested after 24 h or 48 h stimulation with siRNA (150 nM). The level of IFNα was quantified using sandwich ELISA kits from R&D Systems. The levels of HBcAg and HBsAg were detected by ELISA kit from Rong Sheng (Shanghai, China).

Immunocytochemical staining

HepG2.2.15 cells were grown on glass cover slips in a 24-well plate at a density of 5×103 cells per well. Then, the cells were transfected with HBx-siRNAs. After 40 h, the cells were fixed in 4% paraformaldehyde for 10 min, and permeabilized with 0.2% Triton X-100 for 30 min. Then cells were exposed to 3% H2O2 for 10 min at 25°C and blocked in 5% bovine serum albumin (BSA) for 30 min. The cells were incubated with anti-core antigen (HBcAg) antibody (Genetech company, Shanghai, China) at 4°C overnight, washed, and incubated with appropriate biotin-conjugated secondary antibody for 10 min followed by incubation with streptavidin-peroxidase for 10 min and 3,3′-diaminobenzidine (DAB) detection. The staining was visualized by light microscopy (Olympus).

Data analyses

Data are expressed as mean ± SD for three or more independent experiments. Statistical differences between any two groups were determined by t-test. p-values <0.05 were considered statistically significant.
PKR activation is found to be involved in the innate immune responses induced by siRNA [19]. To explore the possible mechanism of HBx-siRNA-mediated IFN induction, the expression level of PKR was examined. RT-PCR analysis demonstrated that transfection of HepG2.2.15 cells with HBx-siRNA did increase the expression of PKR at the mRNA level (Figure 3A). Western blot analysis demonstrated that transfection with HBx-siRNA promoted the phosphorylation of PKR, and that the PKR substrate eIF2-α was also phosphorylated (Figure 3B). We further performed a longer kinetics over a few hours (0, 4, 6, 8, 12 and 24 h) and found that HBx-siRNA promoted the phosphorylation of PKR until 6 h and enhanced the activation of eIF2-α until 12 h post-transfection (Figure 3C), while the scramble siRNA showed a weak activation of PKR (Figure 3D). These results demonstrated that PKR might be involved in the immune responses induced by HBx-siRNA in HepG2.2.15 cells.

PKR is involved in the innate immune responses induced by HBx-siRNAs in HepG2.2.15 cells

To find out if PKR is indeed responsible for the immunomodulatory effects of HBx-siRNAs, we first treated HepG2.2.15 cells with PKR specific inhibitor C16 and then transfected cells with HBx-siRNA. We found that the induction of IFN-α and IFN-β mRNA as well as the expression of IFN-stimulated genes ISG15 and ISG56 were attenuated significantly after HBx-siRNA transfection (Figure 4A and 4B). p-Stat1 activation was also suppressed as assayed by flow cytometry (Figure 4C). In addition, proinflammatory factors TNF-α and IL-6 were also decreased when C16 was added (Figure 4D). We then cotransfected siRNA targeting PKR (siPKR) and HBx-siRNA in HepG2.2.15 cells to further determine the involvement of PKR in the innate immune responses. As shown in Figure 4E, siPKR decreased PKR protein level (top) and significantly attenuated the induction of IFN-α and IFN-β (bottom).
Furthermore, HepG2.2.15 cells were first transfected with full-length PKR plasmids followed by HBx-siRNA transfection. As illustrated in Figure 5A, PKR was successfully over-expressed in HepG2.2.15 cell line at the transcriptional level. We found that the mRNA levels of IFN-α and IFN-β in PKR-overexpression cells were increased more markedly when stimulated with HBx-siRNA than that in control vector-transfected cells (Figure 5B, 5C). Furthermore, HepG2.2.15 cells were transfected with a PKR catalytically inactive vector (hPKR-K296R) \[26\]. As the PKR-K296R plasmid contains the C-terminal Myc epitope and polyhistidine tag (His-tag), we assayed 6His expression by FACS to detect the PKR-K296R expression. The results showed that PKR-K296R has been successfully expressed (Figure 5F, top). We found that PKR-K296R overexpression could not further promote type I IFN production induced by HBx-siRNA as full-length PKR (wide type) did (Figure 5F, bottom). These results suggest that the promotion of PKR in IFN induction mediated by HBx-siRNA is dependent on the catalytic activity of PKR. In general, the results above confirm that PKR activation indeed contributes to the innate immune responses induced by HBx-siRNAs.

PKR activation contributes to HBV inhibition in HepG2.2.15 cells

To determine if immune stimulation induced by HBx-siRNAs contributes to the inhibition of HBV, HepG2.2.15 cells were treated with C16 to inhibit PKR activity before HBx-siRNA transfection. As shown in Figure 6, C16 strongly attenuated the effects of HBx-siRNAs in HBV inhibition. Transfection of HBx-siRNAs resulted in 63.2, 68.5, 69.6, and 65.8% suppression of HBx gene expression respectively compared with the solvent treatment group. Treatment with C16 significantly attenuated the suppression of HBx expression (Figure 6A). The inhibition of HBV DNA, HBsAg or HBcAg was also attenuated (Figure 6B–6D). We further knocked down PKR expression in HepG2.2.15 cells by siPKR, and found that siPKR also significantly attenuated the HBx inhibition by HBx-siRNA (Figure 6E).

To further determine if the observed up-regulation of PKR leads to a reduction in HBV apart from the specific inhibition of HBV through RNAi pathway, we transfected HepG2.2.15 cells with plasmid containing full-length PKR, and then assessed the changes in HBV expression. As shown in Figure 5D and 5E, the...
levels of HBx and HBs/p were decreased more obviously in cells with over-expression of PKR. These results indicated that over-expression of PKR further increased the inhibition of HBV expression by HBx-siRNAs and that recognition and activation of PKR were involved in and promoted the inhibition of HBV expression by siRNA. In conclusion, our results suggested that HBx-siRNAs-induced innate immune responses play important roles in HBV inhibition and clearance in addition to the direct RNA silencing by RNAi.

Discussion

This study and earlier studies have shown that RNAi can be successfully used for HBV inhibition. In addition, we report that: (1) HBx-siRNA can induce innate immune response associated with the release of type I IFN and related cytokines in HepG2.2.15 cells; (2) this effect does boost silencing of specific targets; and (3) these innate immune stimulatory effects of lipid-siRNA in HepG2.2.15 cells are at least partly mediated by the cytoplasmic kinase, PKR.

Studies have demonstrated that RNA can be recognized by PRRs, including PKR, TLR3, TLR7, TLR8, RIG-I and MDA-5 [19,21,23,27,28]. PKR is an important cytoplasmic sensor of viral infection that can be activated by dsRNA. During viral infection, PKR can phosphorylate eIF2-α and activate the NF-κB pathway for regulation of cytokine expression and the inflammatory response [19,20,21]. The RNA-binding sites of PKR contain two dsRNA-binding motifs (dsRBMs) linked by 20 amino acids. Previous studies have suggested that PKR required at least 30 bp of dsRNA for efficient activation, whereas another study demonstrated that as little as 17 bp of dsRNA could activate PKR signal [29,30]. Recent studies have reported that siRNA induces non-specific immunostimulatory effects in non-immune cells, such as epidermal keratinocytes, breast cancer cell MCF-7, glioma cell T98G, mouse embryo fibroblasts MEFs and renal cell carcinoma [19,21,23,31]. Here, for the first time, we found the up-regulation of type I IFN and related genes as well as inflammatory cytokines, the increased expression of PKR, and the phosphorylation of eIF2-α in HepG2.2.15 cells after exposure to HBx-siRNAs. Inhibition of PKR activity by PKR inhibitor C16 or...
silencing of PKR expression by RNAi significantly attenuated these effects, while PKR overexpression further promoted IFN responses and HBV inhibition. Our results demonstrated that HBx-siRNAs activated innate immune responses in hepatoma cells in a PKR-dependent manner. We attribute this HBV inhibition to the combination of RNAi and immune stimulation, which may arise from the production of type I IFN and other antiviral genes. In addition, we found that HBx-siRNAs transfection also increased TLR3 expression significantly and promoted RIG-I expression slightly in HepG2.2.15 cells (data not shown). We propose that TLR3 and RIG-I recognition might also contribute to the activation of innate immune responses induced by HBx-siRNAs, which need to be further determined. It is well known that TLRs can respond to RNA molecules and play crucial roles in the host defense against viral infection. In plasmacytoid dendritic cells, siRNA induces IFN-α secretion in a sequence-dependent manner through TLR7 [28]. Here, in HepG2.2.15 cells, we observed that HBx-siRNAs transfection neither stimulated TLR7 expression, nor activated the TLR7 signaling pathway (data not shown), thus suggesting that TLR7 is not involved in HBx-siRNA recognition in HepG2.2.15 cells.

As a direct evidence of PKR activation, eIF2-α phosphorylation is thought to inhibit translation of most cell and viral mRNAs [32]. However, some reports have found that it do not affect the overall translation of the cell mRNAs [33]. In contrast, translation of some mRNAs is enhanced after eIF2-α phosphorylation. For example, activation of PKR can induce the expression of Fas and trigger apoptosis through the FADD/caspase-8 death signaling pathway.
For type I IFN, it has been found that PKR activation promotes the production of autocrine IFN, in addition to inhibiting the translation of viral mRNAs through phosphorylation of eIF2-α [36]. Indeed, we show in the present study that PKR activation by HBx-siRNA increased production of IFN-α and IFN-β both at mRNA and protein level (Figure 4A). The mechanisms is probably that PKR activation transmits signals not only to eIF2-α and the translational machinery but also to various factors such as STAT, interferon regulatory factor 1 (IRF-1), as well as engaging the NF-κB pathway.

Accumulating data have shown that HBV products inhibit type I IFN production through suppressing TLR- or RIG-I-mediated innate immune signal pathway [37,38,39]. Recent data suggest that HBV-bearing supernatants, purified HBV virions, and recombinant HBsAg or HBeAg can suppress the innate immune response elicited by TLR stimulation in hepatocytes and nonparenchymal liver cells, leading to suppression of IRF-3 activation and down-regulation of IFN-β production [38,40]. HBx, acting as an inhibitor of TLR-triggered induction of type I IFNs, suppresses MxA expression at the promoter level and inhibits cellular proteasome activities [39,41,42].

Our recent finding and other research show that HBV, particular HBx, inhibits RIG-I activation and down-regulates production of type I IFN [41,42,43]. Therefore, we concluded that the type I IFN induction in response to HBx-siRNAs probably derived from two aspects: on one hand, HBx-siRNAs stimulate PKR activation and then induce IFN-α or IFN-β production; on the other hand, HBx-siRNAs relieve the inhibition of innate immune response mediated by HBV.

The present study showed that HBx-siRNA-induced PKR activation contributes to HBV inhibition and this dual function of HBx-siRNAs in both inhibiting HBV replication and triggering innate immunity in a PKR-dependent manner would be beneficial for HBV clearance. In addition to type I IFN, levels of inflammatory cytokines TNF-α, IL-6, and IL-8 were also increased significantly upon PKR activation by HBx-siRNA (Figure 2B); we believed that they contributes to the suppression of HBV replication, as reported by others that inflammatory cytokines, esp. IL-6, control HBV gene expression in HBV infection [25,44]. Future work will focus on in vivo immune modulation strategies of these dual functional HBx-siRNAs available to inhibit HBV.
In conclusion, this study demonstrates that HepG2.2.15 cells can recognize siRNA and develop non-specific innate immune responses through intracellular kinase PKR and that the induction of innate responses facilitates the effects of HBV inhibition. In addition to HBV, other virus-related siRNAs, such as siRNA targeting respiratory syncytial virus NS1 (siNS1) and siRNA targeting human papillomavirus (HPV), are also reported to induce innate immune responses by upregulating expression of IFN-β and IFN-inducible genes [45,46]. Understanding and controlling the activation of the immune response is an important step toward using siRNA molecules therapeutically. The combination of RNAi and immune stimulation may be beneficial for treatment of HBV and other infectious virus diseases, raising concerns about clinical trials of systemically delivered siRNAs.

Author Contributions
Conceived and designed the experiments: CZ JZ ZT. Performed the experiments: QH. Analyzed the data: QH CZ JZ ZT. Wrote the paper: QH CZ ZT.

References
1. Seeger C, Mason WS (2000) Hepatitis B virus biology. Microbiol Mol Biol Rev 64: 51–68.
2. Hannon GJ (2002) RNA interference. Nature 418: 244–251.
3. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20: 6877–6888.
4. Konishi M, Wu CH, Wu GY (2003) Inhibition of HBV replication by siRNA in a stable HBV-producing cell line. Hepatology 38: 842–850.
5. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, et al. (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21: 639–644.
6. Morrissey DV, Blanchard K, Shaw L, Jensen K, Lockridge JA, et al. (2005) Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41: 1349–1356.
7. Shlomai A, Shaul Y (2003) Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37: 764–770.
8. Sabbah A, Chang TH, Harneck R, Froehlich V, Tominaga K, et al. (2003) Activation of innate immune antiviral responses by Nod2. Nat Immunol 10: 1073–1080.
9. Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, et al. (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140: 397–408.
10. Habjan M, Andersson I, Klingstrom J, Schumann M, Martin A, et al. (2008) Processing of genome 5’ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One 3: e2032.
11. Horumung V, Ellegast J, Kim S, Broska K, Jung A, et al. (2006) 5’-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997.
12. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, et al. (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible
gene-I and melanoma differentiation-associated gene 5. J Exp Med 205: 1601–1610.

13. Takahashi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, et al. (2008) Noncell RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29: 428–440.

14. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105.

15. Karioku K, Bhuyma P, Capodici J, Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172: 6545–6549.

16. Sodol M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348: 1079–1090.

17. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, et al. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23: 457–462.

18. Bourquin C, Schmidt L, Lanz AL, Storch B, Wurzenberger C, et al. (2009) Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7. J Immunol 183: 6078–6086.

19. Zhang Z, Weisbrod T, Guo K, Schlessinger HJ (2006) siRNA binding proteins of microglial cells: PKR is an unanticipated ligand. J Cell Biochem 97: 1217–1229.

20. Nayak R, Pinel DJ (2007) Adeno-associated viruses can induce phosphorylation of eIF2alpha via PKR activation, which can be overcome by helper adenovirus type 5 virus-associated RNA. J Virol 81: 11900–11916.

21. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834–839.

22. Armstrong ME, Gantier M, Li L, Chung WY, McCann A, et al. (2008) Small interfering RNAs induce macrophage migration inhibitory factor production and proliferation in breast cancer cells via a double-stranded RNA-dependent protein kinase-deendent mechanism. J Immunol 180: 7125–7133.

23. Clemens MJ, Elia A (1997) The double-stranded-RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17: 503–524.

24. Garcia MA, Gil J, Ventoso I, Guerra S, Domingo E, et al. (2006) Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70: 1052–1060.

25. Balachandran S, Kim CN, Yeh WC, Mak TW, Bhalla K, et al. (1998) Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J 17: 6888–6902.

26. Donze O, Destie J, Sonenberg N (1999) Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 256: 322–329.

27. Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, et al. (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunol 15: 129–141.

28. Yu S, Chen J, Wu M, Chen H, Kato N, et al. (2010) Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulated factor 3 activation and dampening of the interaction between TRIF/IKKeulin and DDX5. J Gen Virol 91: 2089–2090.

29. Xu Y, Hu Y, Shi B, Zhang X, Wang J, et al. (2009) HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells. Mol Immunol 46: 2640–2646.

30. Jiang J, Tang H (2010) Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein Cell 1: 1106–1117.

31. Wu J, Meng Z, Jiang M, Pei R, Trippler M, et al. (2009) Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49: 1132–1140.

32. Wang X, Li Y, Mao A, Li C, Tien P (2010) Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-beta induction by disrupting the VISA-associated complex. Cell Mol Immunol 7: 341–348.

33. Wei C, Ni C, Song T, Liu Y, Yang X, et al. (2010) The hepatitis B virus X protein disrupts innate immunity by downregulating mitochontrial antiviral signaling protein. J Immunol 185: 1158–1168.

34. Han Q, Zhang C, Zhang J, Tian Z (2011) Reversal of hepatitis B virus-induced immune tolerance by an immunostimulatory 3p-HBx-siRNAs in a retinoic acid differentiated murine hepatocellular carcinoma cell line. J Gastroenterol Hepatol 26: 2116–2123.

35. Balachandran S, Kim CN, Yeh WC, Mak TW, Bhalla K, et al. (1998) Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J 17: 6888–6902.

36. Donze O, Destie J, Sonenberg N (1999) Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 256: 322–329.

37. Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, et al. (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunol 15: 129–141.

38. Yu S, Chen J, Wu M, Chen H, Kato N, et al. (2010) Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulated factor 3 activation and dampening of the interaction between TRIF/IKKeulin and DDX5. J Gen Virol 91: 2089–2090.

39. Xu Y, Hu Y, Shi B, Zhang X, Wang J, et al. (2009) HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells. Mol Immunol 46: 2640–2646.

40. Jiang J, Tang H (2010) Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein Cell 1: 1106–1117.

41. Wu J, Meng Z, Jiang M, Pei R, Trippler M, et al. (2009) Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49: 1132–1140.

42. Wang X, Li Y, Mao A, Li C, Tien P (2010) Hepatitis B virus X protein suppresses virus-triggered IRF3 activation and IFN-beta induction by disrupting the VISA-associated complex. Cell Mol Immunol 7: 341–348.

43. Wei C, Ni C, Song T, Liu Y, Yang X, et al. (2010) The hepatitis B virus X protein disrupts innate immunity by downregulating mitochontrial antiviral signaling protein. J Immunol 185: 1158–1168.

44. Han Q, Zhang C, Zhang J, Tian Z (2011) Reversal of hepatitis B virus-induced immune tolerance by an immunostimulatory 3p-HBx-siRNAs in a retinoic acid inducible gene I-dependent manner. Hepatology 54: 1179–1189.

45. Hosel M, Quasdorff M, Wiegmann K, Webb D, Zedler U, et al. (2009) Not interferon-induced double-stranded RNA-dependent and the protein kinase DAI. Mol Cell Biol 12: 5239–5248.