A sufficient condition for the existence of plane spanning trees on geometric graphs

Eduardo Rivera-Campo† and Virginia Urrutia-Galicia‡

Abstract
Let \(P \) be a set of \(n \geq 3 \) points in general position in the plane and let \(G \) be a geometric graph with vertex set \(P \). If the number of empty triangles \(\triangle uvw \) in \(P \) for which the subgraph of \(G \) induced by \(\{u, v, w\} \) is not connected is at most \(n-3 \), then \(G \) contains a non-self intersecting spanning tree.

Keywords. Geometric Graph. Plane Tree. Empty Triangle.

1 Introduction
Throughout this article \(P \) denotes a set of \(n \geq 3 \) points in general position in the Euclidean plane. A geometric graph with vertex set \(P \) is a graph \(G \) drawn in such a way that each edge is a straight line segment with both ends in \(P \). A plane spanning tree of \(G \) is a non-self intersecting subtree of \(G \) that contains every vertex of \(G \). Plane spanning trees with or without specific conditions have been studied by various authors.

A well known result of Károlyi et al. [3] asserts that if the edges of a finite complete geometric graph \(GK_n \) are coloured by two colours, then there exists a plane spanning tree of \(GK_n \) all of whose edges are of the same colour. Keller et al. [4] characterized those plane spanning trees \(T \) of \(GK_n \) such that the complement graph \(T^c \) contains no plane spanning trees.

A plane spanning tree \(T \) is a geometric independency tree if for each pair \(\{u, v\} \) of leaves of \(T \), there is an edge \(xy \) of \(T \) such that the segments \(uv \) and \(xy \) cross each other. Kaneko et al. [2] proved that every complete geometric graph with \(n \geq 5 \) vertices contains a geometric independency tree with at least \(\frac{n}{5} \) leaves.

Let \(k \) be an integer with \(2 \leq k \leq 5 \) and \(G \) be a geometric graph with \(n \geq k \) vertices such that all geometric subgraphs of \(G \) induced by \(k \) vertices have a plane spanning tree. Rivera-Campo [6] proved that \(G \) has a plane spanning tree.

Three points \(u, v \) and \(w \) in \(P \) form an empty triangle if no point of \(P \) lies in the interior of the triangle \(\triangle uvw \). For any geometric graph \(G \) with vertex set \(P \) we say that an empty triangle \(\triangle uvw \) of \(P \) is disconnected in \(G \) if the subgraph of \(G \) induced by \(\{u, v, w\} \) is not connected.

Let \(s(G) \) denote the number of disconnected empty triangles of \(G \). Our result is the following:

*Partially supported by Conacyt, México.
†Corresponding author.
‡Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D.F., C.P. 09340, {erc, vug}@xanum.uam.mx.
Theorem 1. If G is a geometric graph with $n \geq 3$ vertices such that $s(G) \leq n - 3$, then G has a plane spanning tree.

For each $n \geq 3$, let u_1, u_2, \ldots, u_n be the vertices of a regular n-gon and denote by T_n and T_n^c the plane path v_1, u_2, \ldots, u_n and its complement, respectively. The geometric graph T_n^c contains no plane spanning tree and is such that $s(T_n^c) = n - 2$. This shows that the condition in Theorem 1 is tight.

2 Proof of Theorem 1

For every oriented straight line L we denote by L^- the set of points in P which are on or to the left of L and by L^+ the points which are on or to the right of L.

A k-set of P is a subset X of P with k elements that can be obtained by intersecting P with an open half plane. The main tool in the proof of Theorem 1 is the following procedure of Erdős et al [3], used to generate all k-sets of P: Let $L = L_1$ be an oriented line passing through precisely one point v_1 of P with $|L_1^-| = k + 1$. Rotate L clockwise around the axis v_1 by an angle θ until a point v_2 in P is reached. Now rotate L in the same direction but around v_2 until a point v_3 in P is reached, and continue rotating L in a similar fashion obtaining a set of oriented lines $C(L)$ and a sequence of points v_1, v_2, \ldots, v_s, not necessarily distinct, where $v_s = v_1$ when the angle of rotation θ reaches 2π.

For $i = 1, 2, \ldots, s - 1$, let $L(v_i, v_{i+1})$ be the line in $C(L)$ that passes through points v_i and v_{i+1} and for $i = 2, 3, \ldots, s - 1$, let L_i be any line in $C(L)$ between $L(v_{i-1}, v_i)$ and $L(v_i, v_{i+1})$.

It is well known that for each line L_j either $L_{j+1}^+ = L_j^+$ and $L_{j+1}^- = (L_j^- \setminus \{v_j\}) \cup \{v_j+1\}$, or $L_{j+1}^+ = (L_j^+ \setminus \{v_j\}) \cup \{v_{j+1}\}$ and $L_{j+1}^- = L_j^-$. In both cases $|L_{j+1}^-| = |L_j^-| = k + 1$ and $|L_{j+1}^+| = |L_j^+| = n - k$. It is also easy to see that if $v_{j+1} \in L_j^+$, then $L^-(v_j, v_{j+1}) = L_j^- \cup \{v_{j+1}\}$ and $L^+(v_j, v_{j+1}) = L_j^+$, and if $v_{j+1} \in L_j^-$, then $L^-(v_j, v_{j+1}) = L_j^-$ and $L^+(v_j, v_{j+1}) = (L_j^- \setminus \{v_j\}) \cup \{v_{j+1}\}$.

The following lemma will be used in the proof of Theorem 1.

Lemma 2. Let $L_i, L_j \in C(L)$ with $i \neq j$. If x, y and z are points of P lying in $L_i^+ \cap L_j^-$, then there are integers k and l with $i \leq k < l < j$ such that $v_k \in \{x, y, z\}$, $x, y, z \in L_k^+ \cap L_j^-$ and such that L_i crosses the triangle $\triangle xyz$.

Proof. Consider the lines $L_i, L_{i+1}, \ldots, L_j$. The result follows from the fact that at each step t, at most one of the points x, y, z switches from L_i^+ to L_{i+1}^-. See Fig. 1.

Let G be a geometric graph with $n \geq 3$ vertices such that $s(G) \leq n - 3$ and let P denote the vertex set of G. If $n = 3$ or $n = 4$, it is not difficult to verify by inspection that G has a plane spanning tree. Let us proceed with the proof of Theorem 1 by induction and assume $n \geq 5$ and that the result is valid for each geometric subgraph of G with k vertices, where $3 \leq k \leq n - 1$.

Let v_1 be a point in P and L_1 be an oriented line through v_1 such that $|L_1^-| = \lceil \frac{n+1}{2} \rceil$ and $|L_1^+| = \lfloor \frac{n+1}{2} \rfloor$. Let $C(L)$ be the set of oriented lines obtained from $L = L_1$ as above.

For every $i \geq 1$, define G_i^- and G_i^+ as the geometric subgraphs of G induced by L_i^- and L_i^+ respectively, and $G^-\left(v_i, v_{i+1}\right)$ and $G^+\left(v_i, v_{i+1}\right)$ as the geometric subgraphs of G induced by $L^-\left(v_i, v_{i+1}\right)$ and $L^+\left(v_i, v_{i+1}\right)$, respectively.
We show there is a line in $C(L)$ for which induction applies to the corresponding graphs G^- and G^+, giving plane spanning trees T^- of G^- and T^+ of G^+. As T^- and T^+ lie in opposite sides of L, their union contains a plane spanning tree of G. We analyse several cases.

Case 1. $s(G^-_1) \leq |L^-_1| - 3$ and $s(G^+_1) \leq |L^+_1| - 3$.

By induction there exist plane spanning trees T^-_1 of G^-_1 and T^+_1 of G^+_1. Since T^-_1 and T^+_1 lie in opposite sides of L_1 and contain exactly one point in common, the graph $T^-_1 \cup T^+_1$ is a plane spanning tree of G.

Case 2. $s(G^-_1) \geq |L^-_1| - 2$ and $s(G^+_1) \geq |L^+_1| - 2$.

Clearly $s(G^-_1) + s(G^+_1) \geq (|L^-_1| - 2) + (|L^+_1| - 2) = n - 3 \geq s(G) \geq s(G^-_1) + s(G^+_1)$. This implies $s(G^-_1) = |L^-_1| - 2$, $s(G^+_1) = |L^+_1| - 2$ and that L_1 does not cross any disconnected empty triangle of G.

Consider the line L_m in $C(L)$ parallel to L_1 with opposite orientation. As $L^+_1 \subset L^-_m$, any disconnected empty triangle of G^+_1 is also a disconnected empty triangle of G^-_m. By Lemma 2 there exists a line in $C(L)$ that crosses a disconnected empty triangle of G. Let j be the smallest integer such that L_{j+1} crosses a disconnect empty triangle $\triangle xyz$ of G.

Since L_1, L_2, \ldots, L_j do not cross any disconnected empty triangle of G, it follows that $s(G^-_j) = s(G^-_1) = |L^-_1| - 2 = |L^-_j| - 2$ and that $s(G^+_j) = s(G^+_1) = |L^+_1| - 2 = |L^+_j| - 2$. Moreover, also by Lemma 2 the axis vertex v_j of L_j must be one of the vertices x, y, or z, since L_{j+1} crosses $\triangle xyz$ while L_1, L_2, \ldots, L_j do not. Without loss of generality we assume $z = v_j$. See Fig. 2.

Case 2.1. $v_{j+1} \in L^+_j$.

In this case $\triangle xyz$ is a disconnected empty triangle of G^-_j, see Fig. 2 (left) and Fig. 3. Let $i \geq j + 1$ be the smallest integer such that the axis vertex v_{i+1} of L_{i+1} lies in L^-_j. By the choice of i, all points $v_{j+1}, v_{j+2}, \ldots, v_i$ lie in L^+_j and therefore $L^+_i = L^+_i = \cdots = L^+_j$. It follows that $G^+_i = G^+_i = \cdots = G^+_j$ and that $s(G^+_i) = s(G^+_i) = \cdots = s(G^+_j)$.

Again by the choice of i, $L^-_{k+1} = (L^-_k \setminus \{v_k\}) \cup \{v_{k+1}\}$ for $k = j, j + 1, \ldots, i - 1$ and therefore $L^-_i = (L^-_j \setminus \{v_j\}) \cup \{v_i\}$. Moreover, all lines $L_i, L_{i-1}, \ldots, L_{j+1}$ cross $\triangle xyz$. This implies $s(G^-_i) \leq s(G^-_j) - 1$ since $\triangle xyz$ is a disconnected empty triangle of G^-_j.
Figure 2: L_1, L_2, \ldots, L_j do not cross any disconnected empty triangle of G and L_{j+1} crosses a disconnected empty triangle $\triangle xyv_j$ of G.

Figure 3: $v_{j+1}, v_{j+2}, \ldots, v_i \in L_i^+, L_{i+1} \in L_i^-$.

Now consider the line $L(v_i, v_{i+1})$ and notice that $L^-(v_i, v_{i+1}) = L_i^- = L_i^+ \cup \{v_{i+1}\}$ because $v_{i+1} \in L_i^-$. Therefore

$$|L^-(v_i, v_{i+1})| = |L_i^-| = |L_j^-| \quad \text{and} \quad |L^+(v_i, v_{i+1})| = |L_i^+| + 1 = |L_j^+| + 1$$

Also notice that $s(G^-(v_i, v_{i+1})) = s(G_i^-)$ and $s(G^+(v_i, v_{i+1})) = s(G_i^+)$ because no empty triangle of G contained in $L^+(v_i, v_{i+1})$ has v_{i+1} as one of its vertices since L_j does not cross any empty triangle of G. Therefore

$$s(G^-(v_i, v_{i+1})) = s(G_i^-) = s(G_j^-) - 1 = (|L_j^-| - 2) - 1 = |L_j^-| - 3 = |L^-(v_i, v_{i+1})| - 3$$

and

$$s(G^+(v_i, v_{i+1})) = s(G_i^+) = |L_i^-| - 2 = (|L_i^+(v_i, v_{i+1})| - 1) - 2 = |L^+(v_i, v_{i+1})| - 3.$$

By induction, there exist plane spanning trees T^- of $G^-(v_i, v_{i+1})$ and T^+ of $G^+(v_i, v_{i+1})$. The theorem follows since $T^- \cup T^+$ contains a plane spanning tree of G.

4
Case 2.2. \(v_{j+1} \in L_j^- \).
In this case \(\triangle xyz \) is a disconnected empty triangle of \(G_j^+ \), see Fig. 2 (right). The proof is analogous to that of Case 2.1.

Case 3. \(s(G_1^-) \geq |L_1^-| - 2 \) and \(s(G_1^+) \leq |L_1^+| - 3 \).
If for every \(L_j \in C(L) \),
\[
s(G_j^-) \geq |L_j^-| - 2 \quad \text{and} \quad s(G_j^+) \leq |L_j^+| - 3,
\]
then for \(L_m \) in particular, the line in \(C(L) \) parallel to \(L_1 \) with the opposite orientation, we have that
\[
s(G_m^-) \geq |L_m^-| - 2 \quad \text{and} \quad s(G_m^+) \leq |L_m^+| - 3.
\]

If \(n \) is odd, then \(L_1 \) and \(L_m \) are the same line but with opposite orientations, in which case \(L_m^- = L_1^+ \) and \(L_m^+ = L_1^- \). It follows that
\[
|L_m^-| - 2 = |L_1^-| - 2 \leq s(G_1^-) = s(G_m^+) \leq |L_m^+| - 3,
\]
which is not possible.

If \(n \) is even, then \(L_1 \) and \(L_m \) are parallel lines with opposite orientations, with \(L_m \) to the left of \(L_1 \) and with \(|L_1^+| + |L_m^+| = n \). This implies that there are no points between \(L_1 \) and \(L_m \). Therefore every empty triangle of \(G_1^- \) contains points in \(L_m^+ \) and every empty triangle of \(G_m^- \) contains points in \(L_1^+ \). Thus no empty triangle of \(G_1^- \) is also an empty triangle of \(G_m^- \), see Fig 4.

![Diagram](image)

Figure 4: No empty triangle of \(G \) is contained in \(L_1^- \cap L_m^- \).

It follows that \(s(G_1^-) + s(G_m^-) \leq s(G) \) which is also a contradiction since
\[
s(G) \leq n - 3 < n - 2 = |L_1^-| - 2 + |L_m^-| - 2 \leq s(G_1^-) + s(G_m^-).
\]
Therefore, there exists \(L_k \in C(L) \) such that
\[
s(G_k^-) \geq |L_k^-| - 2 \quad \text{and} \quad s(G_k^+) \leq |L_k^+| - 3,
\]
while
\[s(G_{k+1}^-) \leq |L_{k+1}^-| - 3 \quad \text{or} \quad s(G_{k+1}^+) \geq |L_{k+1}^+| - 2. \]

Since \(L_{k+1}^- = L_k^- \) or \(L_{k+1}^+ = L_k^+ \), it must happen that either
\[s(G_{k+1}^-) \leq |L_{k+1}^-| - 2 \quad \text{and} \quad s(G_{k+1}^+) \leq |L_{k+1}^+| - 3 \]
\[\text{or} \]
\[s(G_{k+1}^-) > |L_{k+1}^-| - 3 \quad \text{and} \quad s(G_{k+1}^+) > |L_{k+1}^+| - 3 \]

which are Case 1 and Case 2, respectively.

Case 4. \(s(G_1^-) \leq |L_1^-| - 3 \) and \(s(G_1^+) \geq |L_1^+| - 2 \)

As above, let \(L_m \) be the line in \(C(L) \) parallel to \(L_1 \) with opposite orientation. If \(n \) is odd, then \(L_m = L_1^+ \) and \(L_m = L_1^- \). Therefore \(s(G_m^-) \geq |L_1^-| - 2 \) and \(s(G_m^+) \leq |L_1^+| - 3 \) which is Case 3.

Since \(s(G_m^-) \geq |L_1^-| - 2 \) and \(s(G_m^+) \leq |L_1^+| - 3 \), we have,
\[|L_1^+| - 2 \leq s(G_1^+) \leq s(G_m^-) \leq |L_m^-| - 3 = |L_m^+| - 2 \]
and
\[|L_m^+| - 2 \leq s(G_m^+) \leq s(G_1^-) \leq |L_1^-| - 3 = |L_1^+| - 2 \]

which implies \(s(G_1^+) = s(G_1^-) = s(G_m^-) = s(G_m^+) \), since \(|L_1^+| = |L_m^-| \).

It follows that no disconnected empty triangle \(\triangle xyz \) of \(G_1^- \) has \(v_1 \) as one of its vertices, otherwise \(L_m \) must cross \(\{x, y, z\} \) in which case \(s(G_m^-) < s(G_1^-) \) because \(G_m^+ \) is a subgraph of \(G_1^- \).

By our assumption, the same argument can be applied to every line \(L_j \) in \(C(L) \) and therefore for each graph \(G_j^- \), no disconnected empty triangle of \(G_j^- \) has \(v_j \) as one of its vertices.

To reach a contradiction consider any disconnected empty triangle \(\triangle xyz \) of \(G_1^- \). As \(L_m \) is parallel to \(L_1 \) and to the left of \(L_1 \), then \(\triangle xyz \) is also a disconnected empty triangle of \(G_m^- \) and therefore \(\triangle xyz \) lies to the right of \(L_1 \) and to the left of \(L_m \). By Lemma[2] there is a line \(L_k \) in \(C(L) \) with \(1 < t < m \) such that \(\triangle xyz \) is a disconnected empty triangle of \(G_t^- \) and one of its vertices is precisely \(v_t \), which is the contradiction, see Fig. [5]

As in Case 3, there is a line \(L_k \) in \(C(L) \) such that
\[s(G_k^-) \leq |L_k^-| - 3 \quad \text{and} \quad s(G_k^+) \geq |L_k^+| - 2, \]
while
\[s(G_k^+) \geq |L_k^+| - 2 \quad \text{or} \quad s(G_k^+) \leq |L_k^+| - 3 \]

Again, since \(L_k^- = L_k^- \) or \(L_k^+ = L_k^+ \), it must happen that either
\[s(G_k^-) \leq |L_k^-| - 3 \quad \text{and} \quad s(G_k^+) \leq |L_k^+| - 3 \]
\[\text{or} \]
\[s(G_k^-) > |L_k^-| - 3 \quad \text{and} \quad s(G_k^+) > |L_k^+| - 3 \]

which are Case 1 and Case 2, respectively. This ends the proof of Theorem[1]
3 Final Remark

For $n \geq 5$, let $v_1, v_2, \ldots, v_{n-1}$ be the vertices of a regular $(n - 1)$-gon and let w be a point closed to v_{n-1} and in the interior of the triangle $\triangle v_{n-3}v_{n-2}v_{n-1}$. Denote by R_n and R^c_n the plane path $v_1, v_2, \ldots, v_{n-1}, w$ and its complement, respectively. The geometric graph R^c_n is such that $s(R^c_n) = n - 3$ and both graphs R_n and R^c_n contain plane spanning trees. This shows that Theorem 1 is not (at least not an immediate) consequence of the result by Károlyi et al mentioned above.

4 Acknowledgments

We thank the anonymous referees for their suggestions that help us to improve the organisation and readability of the paper.

References

[1] Erdős P., Lovász, L., Simmons, A., Straus, E.G., Dissection graphs of planar point sets, in: G. Srivastava (Ed.), A Survey of Combinatorial Theory, North-Holland, Amsterdam, 1973, 139–149.

[2] Kaneko, A., Oda, Y., Yoshimoto, K., On geometric independency trees for point sets in the plane, Discrete Math. 258, 2002, 93–104.

[3] Károlyi, G., Pach, J., Tóth, G., Ramsey-type results for geometric graphs I. ACM Symposium on Computational Geometry (Philadelphia, PA, 1996), Discrete Comput. Geom. 18 No. 3, 1997, 247–255.
[4] Keller, C., Perles, M. A., Rivera-Campo, E., Urrutia-Galicia, V., Blockers for non-crossing spanning trees in complete geometric graphs, to appear in: J. Pach (Ed.), *Thirty essays in geometric graph theory*, Springer (2012).

[5] Lovász, L., On the number of halving lines. *Annal. Univ. Sci. Budapest. de Rolando Eötvös Nominatae, Sectio Math.* **14**, 1971, 107-108.

[6] Rivera-Campo, E., A note on the existence of plane spanning trees of geometric graphs, *Discrete and Computational Geometry* (Tokyo, 1998), *Lecture Notes in Comput. Sci.* **1763**, 2000, 274–277.