ON COMBINATORICS OF QUIVER COMPONENT FORMULAS

ALEXANDER YONG

Abstract. Buch and Fulton [7] conjectured the nonnegativity of the quiver coefficients appearing in their formula for a quiver variety. Knutson, Miller and Shimozono [21] proved this conjecture as an immediate consequence of their “component formula”. We present an alternative proof of the component formula by substituting combinatorics for Gröbner degeneration [21, 20]. We relate the component formula to the work of Buch, Kresch, Tamvakis and the author [8] where a “splitting” formula for Schubert polynomials in terms of quiver coefficients was obtained. We prove analogues of this latter result for the type BCD-Schubert polynomials of Billey and Haiman [4].

1. Introduction

Buch and Fulton [7] established a formula for a general kind of degeneracy locus associated to an oriented quiver of type A. This formula is in terms of Schur polynomials and certain integers, the quiver coefficients, which generalize the classical Littlewood-Richardson coefficients. Buch and Fulton further conjectured the nonnegativity of these quiver coefficients, and this conjecture was recently proved by Knutson, Miller and Shimozono [21]. In fact, they obtained a stronger result, the “component formula”, whose proof was based on combinatorics, a “ratio formula” derived from a geometric construction due to Zelevinsky [28] and the method of Gröbner degeneration, applying multidegree formulae for matrix Schubert varieties from [20].

In this paper, we prove a combinatorial result that replaces the Gröbner degeneration part of their argument. This allows for an entirely combinatorial proof of the component formula from the ratio formula. The component formula is connected to the work of Buch, Kresch, Tamvakis and the author [8], where a formula was obtained for Fulton’s universal Schubert polynomials [10]. There, this formula was used to obtain a “splitting” formula for the ordinary Schubert polynomials of Lascoux and Schützenberger [24] in terms of quiver coefficients. We provide analogues of this splitting formula for the type BCD-Schubert polynomials of Billey and Haiman [4], in terms of a new collection of positive combinatorial coefficients.

Let \mathbb{X} be a nonsingular complex variety and $E_0 \to E_1 \to \ldots \to E_n$ a sequence of vector bundles and bundle maps over \mathbb{X}. A set of rank conditions for this sequence is a collection of nonnegative integers $r = \{r_{ij}\}$ for $0 \leq i \leq j \leq n$. This data defines a degeneracy locus in \mathbb{X},

$$\Omega_r(E_\bullet) = \{x \in \mathbb{X} \mid \text{rank}(E_i(x) \to E_j(x)) \leq r_{ij}, \forall i < j\},$$

where r_{ii} is by convention the rank of the bundle E_i. We require that the rank conditions r occur, i.e., there exists a sequence of vector spaces and linear maps $V_0 \to V_1 \to \cdots \to V_n$ such that $\text{dim}(V_i) = r_{ii}$ and $\text{rank}(V_i \to V_j) = r_{ij}$. This

Date: June 2, 2003.
is known to be equivalent to \(r_{ij} \leq \min(r_{i,j-1}, r_{i+1,j}) \) for \(i < j \) and \(r_{ij} - r_{i-1,j} - r_{i,j+1} + r_{i-1,j+1} \geq 0 \) for \(0 \leq i \leq j \leq n \) where \(r_{ij} = 0 \) if \(i \) or \(j \) are not between 0 and \(n \).

The expected (and maximal) codimension of the locus \(\Omega_r(E_\bullet) \) in \(X \) is

\[
d(r) = \sum_{i<j} (r_{i,j-1} - r_{ij}) \cdot (r_{i+1,j} - r_{ij}).
\]

Buch and Fulton [7] gave a formula for the quiver cycle, the cohomology class of \(\Omega_r(E_\bullet) \) in \(H^*(X) \), assuming it has this codimension:

\[
[\Omega_r(E_\bullet)] = \sum_{\mu} c_{\mu}(r) s_{\mu_1}(E_0 - E_1) \cdots s_{\mu_n}(E_{n-1} - E_n).
\]

Here the sum is over sequences of partitions \(\mu = (\mu_1, \ldots, \mu_n) \), each \(s_{\mu_i} \) is a supersymmetric Schur function in the Chern roots of the bundles in its argument, and the quiver coefficients \(c_{\mu}(r) \) are integers, conjectured to be nonnegative by Buch and Fulton. These coefficients generalize the Littlewood-Richardson coefficients, the coefficients in the expansion of a Stanley symmetric function into Schur functions, and the coefficients in the monomial expansions of Schubert polynomials [7, 6, 8].

This Buch-Fulton conjecture was recently proved by Knutson, Miller and Shimozono [21]. In fact, they prove the following “component formula”:

\[
[\Omega_r(E_\bullet)] = \sum_{W \in W_{\text{min}}(r)} F_{w_1}(E_0 - E_1) \cdots F_{w_n}(E_{n-1} - E_n),
\]

where \(W_{\text{min}}(r) \) is the set of minimal length “lacing diagrams” for \(r \), and each \(F_{w_i} \) is a double Stanley symmetric function. The nonnegativity of the quiver coefficients (and a positive combinatorial interpretation for what they count) follows immediately from [8] by using a formula for the expansion of a Stanley symmetric function into a positive sum of Schur functions [11, 25].

The set \(W_{\text{min}}(r) \) is both of combinatorial and geometric interest. This set is derived from the strand diagrams of Abeasis and Del Fra [1], and generalizes the “reduced factorizations” appearing in [8] (the latter fact is proved in Section 5). Moreover, this set is in canonical bijection with the irreducible components of “degenerated quiver cycles” [21].

The proof of [8] in [21] uses the new “ratio formula” for \([\Omega_r(E_\bullet)] \), which is derived from an alternate form of a geometric construction originally due to Zelevinsky [28] and developed scheme-theoretically by Lakshmibai and Magyar [22] (see Section 8.3) for details. The proof proceeds by utilizing combinatorics to derive an intermediate formula for \([\Omega_r(E_\bullet)] \) as a multiplicity-free sum of products of Stanley functions over some minimal length lacing diagrams for \(r \). Then Gröbner geometry and Gröbner degeneration [21, 20] are used to prove that all minimal length lacing diagrams for \(r \) actually appear.

The first goal this paper is to prove a combinatorial result that can be substituted for the Gröbner degeneration part of this proof of [8]. Combined with the rest of [21], this provides a combinatorial derivation of the component formula [8] from the ratio formula. Our main result in this direction (Theorem 1 in Section 2) is an explicit injection of \(W_{\text{min}}(r) \) into \(RC(v(r)) \), the set of RC-graphs for the “Zelevinsky permutation” of \(r \). This is proved using a characterization of Zelevinsky permutations (Proposition 2 in Section 6).
In Section 2, we review the definitions of some combinatorial objects associated to a collection of rank conditions, and state our first main result. The proof is postponed until Section 6. In Section 3, we explain the connection between this result and the proof of \[8\]. In Section 4, we provide a bijection between the labeling set in the righthand side of \[8\] when the rank conditions are determined by a permutation, and its counterpart in the formula for Fulton’s universal Schubert polynomials obtained by Buch, Kresch, Tamvakis and the author \[8\]. This explains how the component formula generalizes the aforementioned formula of \[8\].

We now describe the second goal of this paper. The formula for the universal Schubert polynomials obtained in \[8\] was applied there to prove a “splitting” formula for the ordinary Schubert polynomials \[24\] in terms of quiver coefficients. In Section 5, we obtain analogues of this splitting formula for the type BCD-Schubert polynomials of Billey and Haiman \[4\]. These formulas are in terms of a collection of positive combinatorial coefficients that appear combinatorially analogous to the quiver coefficients. It would be interesting to understand a geometric context for these formulas.

We thank Sergey Fomin and Ezra Miller for their questions that initiated this work. We are extremely grateful to Ezra Miller for introducing us to the results in \[21\] and for his many helpful comments, including suggesting a simplification in the proof of Theorem 1 and providing macros for drawing RC-graphs and pipe dreams. We would also like to thank Anders Buch, Harm Derksen, Bill Fulton, Andrew Kresch, John Stembridge and Harry Tamvakis for enlightening discussions.

2. Embedding lacing diagrams into RC-graphs

2.1. Ranks and laces. Let \(r = \{r_{ij}\} \) for \(0 \leq i \leq j \leq n \) be a set of rank conditions. It is convenient to arrange them in a rank diagram \[7\]:

\[
E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots \rightarrow E_n
\]

\[
\begin{array}{ccc}
 r_{00} & r_{11} & r_{22} & \cdots & r_{nn} \\
 r_{01} & r_{12} & \cdots & r_{n-1,n} \\
 r_{02} & \cdots & r_{n-2,n} \\
 \vdots \\
 r_{0n}
\end{array}
\]

We will need some notation and terminology introduced in \[21\]. The lace array \(s(r) \) is defined by

\[
s_{ij}(r) = r_{ij} - r_{i-1,j} - r_{i,j+1} + r_{i-1,j+1},
\]

for \(0 \leq i \leq j \leq n \), where as before, \(r_{ij} = 0 \) if \(i \) or \(j \) are not between 0 and \(n \). Note that each entry of \(s_{ij}(r) \) is nonnegative, by our assumptions on \(r \). A lacing diagram \(W \) is a graph on \(r_{00} + \cdots + r_{nn} \) vertices arranged in \(n \) bottom-justified columns labeled from 0 to \(n \). The \(i^{th} \) column consists of \(r_{ii} \) vertices. The edges of \(W \) connect consecutive columns in such a way that no two edges connecting two given columns share a vertex. A lace is a connected component of such a graph and an \((i,j)\)-lace starts in column \(i \) and ends in column \(j \). Also, \(W \) is a lacing diagram for \(r \) if the number of \((i,j)\)-laces equals \(s_{ij}(r) \).
Example 1. For $n = 3$, the rank conditions

$$E_0 \to E_1 \to E_2 \to E_3$$

$$\mathbf{r} = \begin{pmatrix} 2 & 3 & 4 & 2 \\ 1 & 2 & 1 & \\ 0 & 1 & & \end{pmatrix}$$

give

$$s(\mathbf{r}) = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 0 & & \\ 2 & 1 & 0 & 2 \\ 0 & 1 & 0 & 3 \end{pmatrix}$$

Each lacing diagram W corresponds to an ordered n-tuple (w_1, w_2, \ldots, w_n) of partial permutations, where w_i is represented by the $r_{i-1} \times r_i$ $(0,1)$-matrix with an entry 1 in position (α, β) if and only if an edge connects the α^{th} vertex in column $i - 1$ (counting from the bottom) to the β^{th} vertex in column i. For example, the lacing diagram W from Example 1 corresponds to:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Any $a \times b$ partial permutation ρ has a minimal length embedding $\tilde{\rho}$ in the symmetric group S_{a+b}. The permutation matrix for $\tilde{\rho}$ is constructed to have ρ as its northwest submatrix. In the columns of $\tilde{\rho}$ to the right of ρ, place a 1 in each of the top a rows for which ρ does not already have one, making sure that the new 1’s progress from northwest to southeast. Similarly, in every row of $\tilde{\rho}$ below ρ, place 1’s going northwest to southeast, in those columns which do not have one yet. For example, the following are the embeddings of the above partial permutations:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

We define the length of a partial permutation matrix ρ to be equal to $\ell(\tilde{\rho})$. Here $\ell(\tilde{\rho})$ is the length of $\tilde{\rho}$, the smallest number ℓ for which $\tilde{\rho}$ can be written as a product of ℓ simple transpositions. The length of a lacing diagram $W = (w_1, w_2, \ldots, w_n)$ is denoted $\ell(W)$, where $\ell(W) = \ell(w_1) + \ell(w_2) + \cdots + \ell(w_n)$. A lacing diagram W for \mathbf{r} is a minimal length lacing diagram if $\ell(W) = d(\mathbf{r})$. For instance, the lacing diagram W in Example 1 is of minimal length. We denote the set of minimal length lacing diagrams for \mathbf{r} by $W_{\text{min}}(\mathbf{r})$.
2.2. The Zelevinsky permutation. Also associated to \(r \) is the Zelevinsky permutation \(v(r) \in S_d \), where \(d = r_{00} + r_{11} + \cdots + r_{nn} \). This is defined via its graph \(G(v(r)) \), the collection of the \(d^2 \) points \(\{(i, w(i))\}_{1 \leq i \leq d} \) in \(d \times d = [1,d] \times [1,d] \).

Partition the \(d \times d \) box into \((n+1)^2\) blocks \(\{M_{ij}\} \) for \(0 \leq i, j \leq n \), read as in block matrix form; so \(M_{ij} \) has dimension \(r_{ii} \times r_{n-n-j,n-j} \) (later, we will also need the sets \(H_j = \bigcup_{i=0}^{n} M_{ij} \) and \(V_i = \bigcup_{j=0}^{n} M_{ij} \) of horizontal and vertical strips respectively).

Beginning with \(M_{nn} \) and continuing right to left and bottom up, place \(s_{n-j,i}(r) \) points into the block \(M_{ij} \), as southeast as possible such that no two points lie in the same row or column (in particular, points go northwest-southeast in each block). Complete the empty rows and columns by placing points in the super-antidiagonal blocks \(M_{i,n-i-1}, i = 0, \ldots, n-1 \). In general, this concluding step is achieved by placing points contiguously on the main diagonal of each of the super-antidiagonal blocks. That this procedure produces a permutation matrix is proved in [21].

Later we will need the fact that

\[
\ell(v(r)) = |\bigcup_{i+j \leq n-2} M_{ij}| + d(r).
\]

This follows from [21, Section 1.2] but can also be directly verified from (1) and (4).

Example 2. For the rank conditions \(r \) from Example 1, we obtain

\[
G(v(r)) = \begin{array}{ccccccccccc}
\bullet & & & & & & \bullet & & & \\
& \bullet & & & & & & & & \bullet \\
& & \bullet & & & & & & & \\
& & & \bullet & & & & & & \\
& & & & \bullet & & & & & \\
& & & & & \bullet & & & & \\
& & & & & & \bullet & & & \\
& & & & & & & \bullet & \end{array}
\]

Thus,

\[
v(r) = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
7 & 10 & 3 & 4 & 11 & 1 & 5 & 6 & 8 & 2 & 9
\end{pmatrix}.
\]

2.3. RC-graphs. We continue by recalling the definition of the set \(RC(w) \) of RC-graphs for a permutation \(w \in S_d \). For positive integers \(a \) and \(b \), consider the \(a \times b \) square grid with the box in row \(i \) and column \(j \) labeled \((i, j)\) as in an \(a \times b \) matrix. Tile the grid so that each box either contains a cross \(\bigg\square \) or an elbow joint \(\bigg\downarrow \). Thus the tiling appears as a “network of pipes”. Such a tiled grid is a pipe dream [20].
A pipe dream for w is a pipe dream where $a = b = d$, no crosses appear in the lower triangular part of the grid and the pipe entering at row i exits at column $w(i)$. Finally, the set $RC(w)$ of RC-graphs for a permutation $w \in S_d$ is the set of pipe dreams for w such that any two pipes cross at most once. We omit drawing the “sea of waves” that appear at the lower triangular part of an RC-graph.

![Figure 1. An RC-graph for $v(r)$ from Example 2](image)

Each RC-graph is known to encode a reduced word for w. Let $u_1 u_2 \cdots u_{\ell(w)}$ be a reduced word for w. Then a sequence $(\mu_1, \mu_2, \ldots, \mu_{\ell(w)})$ is a reduced compatible sequence for w if it satisfies

- $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_{\ell(w)}$
- $\mu_j \leq u_j$ for $1 \leq j \leq \ell(w)$
- $\mu_j < \mu_{j+1}$ if $u_j < u_{j+1}$

The following fact follows from the definition of an RC-graph:

Proposition 1. (2) If $(\mu_1, \ldots, \mu_{\ell(w)})$ is a reduced compatible sequence for w, then the pipe dream with crosses at $(\mu_k, u_k - \mu_k + 1)$ for $1 \leq k \leq \ell(w)$ and elbow joints elsewhere, is an RC-graph for w.

2.4. Main result.

Let $W = (w_1, w_2, \ldots, w_n)$ be a lacing diagram and fix $r = \{r_{ij}\}$, $0 \leq i \leq j \leq n$. A pipe dream R for w maps to W if for all $1 \leq k \leq n$, $1 \leq s \leq r_{k-1,k-1}$ and $1 \leq t \leq r_{kk}$, a pipe enters at the top of the box

\[(r_{00} + r_{11} + \cdots + r_{k-2,k-2} + 1, r_{nn} + r_{n-1,n-1} + \cdots + r_{k-1,k-1} - s + 1)\]

and exits at the bottom of the box

\[(r_{00} + r_{11} + \cdots + r_{k-1,k-1}, r_{nn} + r_{n-1,n-1} + \cdots + r_{kk} - t + 1)\]

if and only if the (s, t) entry of the partial permutation matrix w_k equals 1. Here, we set $r_{kk} = 0$ if $k < 0$. In other words, R maps to W if the above pipes correspond to the laces of W. For example, the RC-graph for $v(r)$ in Figure 1 maps to the lacing diagram W from Example 1. This can be seen in the picture below: straightening the (partial) pipes of W and right-justifying the result gives W, after reflecting across a northwest-southeast diagonal.
The following is our main result, whose proof is delayed until Section 6:

Theorem 1. Let \(r = \{r_{ij}\} \) for \(0 \leq i \leq j \leq n \) be a set of rank conditions. There is an explicit injection from \(W_{\text{min}}(r) \hookrightarrow RC(v(r)) \) sending \(W \mapsto D \) such that \(D \) maps to \(W \).

As explained in Section 3, combinatorics combined with the ratio formula gives the following variation of (3):

\[
[\Omega_r(E_\bullet)] = \sum_{W \in W_{\text{RP}}(r)} F_{w_1}(E_0 - E_1) \cdots F_{w_n}(E_{n-1} - E_n),
\]

where \(W_{\text{RP}}(r) \) are those \(W \in W_{\text{min}}(r) \) for which there is a \(D \in RC(v(r)) \) such that \(D \) maps to \(W \). Thus, Theorem 1 supplies the missing ingredient for a combinatorial derivation of (3) from the ratio formula.

3. The component formula

3.1. Schubert polynomials.

We begin by recalling the definition of the double Schubert polynomials of Lascoux and Schützenberger [23, 24]. Let \(X = (x_1, x_2, \ldots) \) and \(Y = (y_1, y_2, \ldots) \) be two sequences of commuting independent variables. Given a permutation \(w \in S_d \), the double Schubert polynomial \(\mathfrak{S}_w(X; Y) \) is defined as follows. If \(w = w_0 \) is the longest permutation in \(S_d \) then we set

\[
\mathfrak{S}_{w_0}(X; Y) = \prod_{i \neq j \leq d} (x_i - y_j).
\]

Otherwise there is a simple transposition \(s_i = (i, i+1) \in S_d \) such that \(\ell(ws_i) = \ell(w) + 1 \). We then define

\[
\mathfrak{S}_w(X; Y) = \partial_i(\mathfrak{S}_{ws_i}(X; Y))
\]

where \(\partial_i \) is the divided difference operator given by

\[
\partial_i(f) = \frac{f(x_1, \ldots, x_i, x_{i+1}, \ldots, x_d) - f(x_1, \ldots, x_{i+1}, x_i, \ldots, x_d)}{x_i - x_{i+1}}
\]
The (single) Schubert polynomial is defined by \(S_w(X) = S_w(X;0) \). By convention, if \(w \) is a partial permutation, we define \(S_w = S_{\tilde{w}} \) where \(\tilde{w} \) is its minimal length embedding as a permutation.

3.2. Symmetric functions. Let \(x_i = (x_1^i, x_2^i, \ldots, x_{r_i}^i) \) be the Chern roots of the bundle \(E_i \) for \(0 \leq i \leq n \). Then for any partition \(\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots \geq 0) \) define

\[
s_\lambda(E_i - E_{i+1}) = s_\lambda(x_i^i - x_{i+1}^{i+1})
\]

to be a super-symmetric Schur function in these roots. We will make use of the notation \(x_r = (x_1^r, \ldots, x_{r_r}^r) \) and \(\tilde{x}_r = (x_r^0, \ldots, x_r^0) \). Similarly, \(y_r = (y_r^0, \ldots, y_r^0) \), where \(y_i^j = (y_1^j, \ldots, y_{r_i}^j) \) for \(0 \leq i \leq n \). We will also need collections of infinite alphabets \(x, \tilde{x} \) and \(y \), where we set \(r_{ii} = \infty \) for each \(i \) in the definitions above.

For each permutation \(w \in S_d \) there is a stable Schubert polynomial or Stanley symmetric function \(F_w \) in \(X \) which is uniquely determined by the property that

\[
F_w(x_1, \ldots, x_k, 0, 0, \ldots) = \mathcal{S}_{1^m \times w}(x_1, \ldots, x_k, 0, 0, \ldots)
\]

for all \(m \geq k \). Here \(1^m \times w \in S_{d+m} \) is the permutation which is the identity on \(\{1, \ldots, m\} \) and which maps \(j \) to \(w(j-m) + m \) for \(j > m \) (see \([21](7.18)\]). When \(F_w \) is written in the basis of Schur functions, one has

\[
F_w = \sum_{\alpha: |\alpha| = \ell(w)} d_{\alpha \alpha} s_\alpha
\]

for some nonnegative integers \(d_{\alpha \alpha} \). This also defines the double Stanley symmetric function \(F_w(X; Y) \).

3.3. Combinatorics and the proof of (3). Let us now explain how our work from Section 3 leads to a combinatorial proof of (3). First, we summarize the development in \([21]\):

The double quiver polynomial is defined using the following ratio formula:

\[
Q_{r}(x_r; y_r) = \frac{S_{v(r)}(x_r; y_r)}{S_{v(Hom)}(x_r; y_r)}
\]

where

\[
S_{v(Hom)}(x_r; y_r) = \prod_{\alpha \leq j \leq n - 2, r_{ii} \leq r_{n-j,n-j}} (x_\alpha^i - y_{ij}^{n-j})
\]

It is an easy consequence of known facts about double Schubert polynomials (see, e.g., \([15]\)) and the definition of \(v(r) \) that \(S_{v(Hom)} \) divides \(S_{v(r)} \).

For an integer \(m \geq 0 \), let \(m + r \) be the set of rank conditions \(\{m + r_{ij}\} \), for \(0 \leq i \leq j \leq n \). It is shown that the limit

\[
F_r(x - y) := \lim_{m \to \infty} Q_{m+r}(x - y)
\]

exists \([21](Proposition 6.3)\). That is, the coefficient of any fixed monomial eventually becomes constant.

Recall \(W_{RP}(r) \) is the set of those \(W \in W_{\min}(r) \) for which there is a \(D \in RC(v(r)) \) such that \(D \) maps to \(W \). It is proved combinatorially that

\[
F_r(x_r - y_r) = \sum_{W \in W_{RP}(r)} F_{w_1}(x_r^0 - y_r^1) \cdots F_{w_n}(x_r^{n-1} - y_r^n),
\]

where \(W = (w_1, \ldots, w_n) \).
There are two facts coming from geometry that are needed. The first is:

\[(10) \quad \Omega_r = Q_r(x - \tilde{x})\]

which is derived from an alternate form of a geometric construction originally due to Zelevinsky [28], and developed scheme-theoretically by Lakshmibai and Magyar [22] (and also reproved in [21]). The second is:

\[(11) \quad c_{\mu}(m + r) = c_{\mu}(r)\]

for all \(\mu \) and \(m \geq 0 \), which is a consequence of the main theorem of [7].

By (10) and the main theorem of [7], one has

\[Q_r(x - \tilde{x}) = \sum_{\mu} c_{\mu}(r) s_{\mu_1}(x^0 - x^1) \cdots s_{\mu_n}(x^{n-1} - x^n)\]

Since this holds for any ranks \(r \), it holds for \(m + r \) when \(m \) is large. By (11),

\[F_r(x - \tilde{x}) = \sum_{\mu} c_{\mu}(r) s_{\mu_1}(x^0 - x^1) \cdots s_{\mu_n}(x^{n-1} - x^n)\]

Then (3) follows after specializing \(x^i \) to \(x_r^i \) for each \(i \), i.e., by setting all “tail” variables \(x^i_j \) for \(j \geq r_{ii} + 1 \) to zero.

At this point, this argument gives a formula for \(\Omega_r (E_n) \) as a multiplicity-free sum of products of Stanley functions over some minimal length lacing diagrams for \(r \). It remains to show that actually all appear. The proof of this fact in [21] was obtained from the geometric method of Gröbner degeneration, by subsequently applying multidegree formulae for matrix Schubert varieties from [20]. However, this is also immediate from Theorem [11]. This completes a combinatorial derivation of (3) from the ratio formula (although we emphasize that the proof of the latter very much depends on geometry). Note that in this proof, facts coming from geometry are only required in order to connect the combinatorics of the polynomials above to quiver cycles.

In [7], an explicit positive combinatorial formula was conjectured for \(c_{\mu}(r) \). This is proved in [21] using combinatorics, together with the ratio formula and the component formula. Thus, Theorem 1 also allows for a combinatorial proof of that conjecture, starting from the ratio formula.

4. Relations to Fulton’s universal Schubert polynomials

In this section, we report on the details of a bijection which shows how the component formula (3) generalizes a formula for Fulton’s universal Schubert polynomials given in [8]. This bijection was also found independently in [21], where a proof was sketched. We provide another proof below.

Let \(X \) be a nonsingular complex variety and let

\[(12) \quad G_1 \to \cdots \to G_{n-1} \to G_n \to H_n \to H_{n-1} \to \cdots \to H_1\]

be a sequence of vector bundles and morphisms over \(X \), such that \(G_i \) and \(H_i \) have rank \(i \) for each \(i \). For every permutation \(w \) in the symmetric group \(S_{n+1} \) there is a degeneracy locus

\[\Omega_w (G_n \to H_n) = \{ x \in X \mid \text{rank}(G_q(x) \to H_p(x)) \leq r_w(p, q) \text{ for all } 1 \leq p, q \leq n \},\]
where \(r_w(p,q) \) is the number of \(i \leq p \) such that \(w(i) \leq q \). The universal double Schubert polynomial \(\mathcal{S}_w(c;d) \) of Fulton [10] gives a formula for this locus; this is a polynomial in the Chern classes \(c_i(j) = c_i(H_j) \) and \(d_i(j) = c_i(G_j) \) for \(1 \leq i \leq j \leq n \). These polynomials are known to specialize to the single and double Schubert polynomials and the quantum Schubert polynomials [12] [10].

The loci associated with universal Schubert polynomials are special cases of these quiver varieties. Given \(w \in S_{n+1} \) we define rank conditions \(r_i^{(n)}(w) = \{ r_{ij}^{(n)} \} \) for \(1 \leq i \leq j \leq 2n \) by

\[
 (13) \quad r_i^{(n)}(w) = \begin{cases}
 r_w(2n+1-j,i) & \text{if } i \leq n < j \\
 i & \text{if } j \leq n \\
 2n+1-j & \text{if } i \geq n+1.
 \end{cases}
\]

The expected (and maximal) codimension of this locus is \(\ell(w) \).

Thus the quiver polynomial specializes to give a formula for the universal Schubert polynomial. We say that a product \(u_1 \cdots u_{2n-1} \) is a reduced factorization of \(w \) if \(u_1 \cdots u_{2n-1} = w \) and \(\ell(u_1) + \cdots + \ell(u_{2n-1}) = \ell(w) \). The following was proved:

Theorem 2. ([5]) For \(w \in S_{n+1} \), \[\mathcal{G}_{w(\tau)} = \sum_{u_1 \cdots u_{2n-1} = w} F_{u_1}(G_1 - G_2) \cdots F_{u_{2n-1}}(H_2 - H_1) \]

where the sum is over all reduced factorizations \(w = u_1 \cdots u_{2n-1} \) such that \(u_i \in S_{\min(i,2n-i)+1} \) for each \(i \).

There does not appear to be any a priori reason, such as by linear independence or geometry, that proves that this expansion coincides with [40] under the conditions [12] and [13]. However, this follows from:

Proposition 2. The map \(\Gamma \) that sends \(W = (w_1, \ldots, w_{2n-1}) \in W_{\min}(r_w^{(n)}) \) to \(\tilde{w}_{2n-1}^{-1} \tilde{w}_{2n-2}^{-1} \cdots \tilde{w}_1^{-1} \) is a bijection between minimal length lacing diagrams of \(r_w^{(n)} \) and reduced factorizations of \(w = u_1 \cdots u_{2n-1} \) such that \(u_i \in S_{\min(i,2n-i)+1} \) for each \(i \).

Example 3. Let \(n = 2 \) and \(w = s_2s_1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right) \in S_3 \). This corresponds to the following rank conditions:

\[
 \mathbf{r}^{(2)}(w) = \begin{pmatrix}
 1 & 2 & 2 & 1 \\
 1 & 1 & 1 & 0 \\
 0 & 1 & 2 & 3 & 4 \\
 3 & 2 & 1 & 3 \\
 \end{pmatrix}
\]

The unique lacing diagram associated to \(\mathbf{r}^{(2)}(w) \) is drawn below with bold lines and solid vertices. By drawing “phantom” laces and vertices, \(w \) is encoded by reading the paths from right-to-left.

[1] See also [9] for a K-theoretic generalization.
Proof of Proposition 4. The following lemma is an easy consequence of the definition of \(r_w(p, q) \):

Lemma 1. Let \(w \in S_{n+1} \), then \(r_w(p, q) - r_w(p-1, q) - r_w(p, q-1) + r_w(p-1, q-1) \) is equal to 1 if \(w(p) = q \) and is equal to 0 otherwise. Here we set \(r_w(p, q) = 0 \) if \(p < 0 \) or \(q < 0 \).

Lemma 1 combined with 4 and 13 implies that \(s_{ij}(r_w^{(n)}) \) for \(1 \leq i \leq j \leq 2n \) is 1 if \((i, j)\) falls into one of the following three cases:

(i) \((w(\alpha), 2n - \alpha + 1)\) and \(1 \leq w(\alpha) \leq n, 1 \leq \alpha \leq n\);

(ii) \((w(n+1), n)\) and \(w(n+1) \neq n+1\);

(iii) \((n+1, 2n - w^{-1}(n+1) + 1)\) and \(w^{-1}(n+1) \neq n + 1\);

and is equal to 0 otherwise.

First, we check that \(\Gamma \) is well-defined. If \(W = (w_1, w_2, \ldots, w_{2n-1}) \in W_{\text{min}}(r_w^{(n)}) \) then it is immediate from 13 that \(\tilde{w}_{2n-1}^1 \in S_{\text{min}(i, 2n-i)+1} \) for \(1 \leq i \leq 2n - 1 \). Also the conditions (i), (ii) and (iii) are exactly saying that \(\tilde{w}_{2n-1}^{-1} \tilde{w}_{n-1}^{-1} \cdots \tilde{w}_1^{-1} = w \) (e.g., by generalizing the picture in Example 4). Further, since

\[
\ell(\tilde{w}_{2n-1}^{-1}) + \cdots + \ell(\tilde{w}_1^{-1}) = d(r_w^{(n)}) = l(w),
\]

this factorization of \(w \) is reduced.

It is clear that \(\Gamma \) is injective. To check surjectivity, let \(u_1 u_2 \cdots u_{2n-1} \) be a reduced factorization of \(w \) such that \(u_i \in S_{\text{min}(i, 2n-i)+1} \). Then let \(W = (u_{2n-1}, \ldots, u_1) \) be the lacing diagram obtained by interpreting each \(u_{2n-i} \) as the partial permutation represented by a \(\min(i, 2n-i) \times (\min(i, 2n-i) + 1) \) matrix, for \(i < n \) and a \((\min(i, 2n-i) + 1) \times \min(i, 2n-i) \) matrix for \(i > n \), and an \(n \times n \) matrix for \(i = n \) (in the last case, we ignore \(n+1 \) in the domain and range of \(u_n \)). This combined with \(u_1 \cdots u_{2n-1} = w \) shows there is a unique \((i, j)\)-lace when one of the conditions (i),(ii) or (iii) hold, and no other laces. Thus our calculation of \(s(r_w^{(n)}) \) shows \(W \) is a lacing diagram for \(r_w^{(n)} \). This lacing diagram is of minimal length since \(u_1 u_2 \cdots u_{2n-1} = w \) is a reduced factorization and \(\ell(w) = d(r_w^{(n)}) \). Finally, \(\Gamma \) maps \(W \) to \(u_1 u_2 \cdots u_{2n-1} \), as desired.

5. Splitting Schubert polynomials for classical Lie types

In this section, we present “splitting” formulas for Schubert polynomials in each of the classical Lie types, i.e., formulas for polynomial representatives of Schubert classes in the cohomology ring of generalized flag varieties [3, 5]. In [8], a splitting formula for the Schubert polynomials of [24] was deduced from Theorem 2. Our analogues use the Schubert polynomials of types \(B_n, C_n \) and \(D_n \) defined by Billey and Haiman [4].

For a permutation \(w \in S_n \) and a sequence of nonnegative integers \(\{a_j\} \) with \(1 \leq a_1 < a_2 < \cdots < a_k < n \), we say that \(w \) is compatible with \(\{a_j\} \) if whenever \(\ell(ws_i) < \ell(w) \) for a simple transposition \(s_i \), then \(i \in \{a_j\} \). Also, let \(\text{col}(T) \) denote the column word of a semi-standard Young tableau \(T \), the word obtained by reading the entries of the columns of the tableau from bottom to top and left to right. The following is the splitting formula for the \(A_{n-1} \) Schubert polynomials of [24].
Theorem 3. (S) Suppose \(w \in S_n \) is compatible with \(\{a_1 < a_2 < \ldots < a_k\} \). Then we have

\[
S_w(X) = \sum_{\lambda} c_{\lambda}(w)s_{\lambda}(X_1) \cdots s_{\lambda}(X_k)
\]

where \(X_i = \{x_{a_{i-1}+1}, \ldots, x_{a_i}\} \) and the sum is over all sequences of partitions \(\lambda = (\lambda^1, \ldots, \lambda^k) \). Each \(c_{\lambda}(w) \) is a quiver coefficient, equal to the number of sequences of semi-standard tableaux \((T_1, \ldots, T_k) \) such that:

(i) \(T_1, T_2, \ldots, T_k \) have entries strictly larger than \(0, a_1, \ldots, a_{k-1} \) respectively;
(ii) the shape of \(T_i \) is conjugate to \(\lambda^i \);
(iii) \(\text{col}(T_1) \cdots \text{col}(T_k) \) is a reduced word for \(w \).

We will need some notation and definitions. When \(\mu = (\mu_1 > \mu_2 > \ldots > \mu_\ell) \) is a partition with \(\ell \) distinct parts, there is a shifted shape given by a Ferrers shape of \(\mu \) where each row is indented one space from the left of the row above it. A shifted tableau of shape \(\mu \) is a filling of the shifted shape of \(\mu \) by numbers and circled numbers \(1^\circ < 1 < 2^\circ < 2 < \ldots \) that is non-decreasing along each row and column. A shifted tableau is a circled shifted tableau if no circled number is repeated in any row and no uncircled number is repeated in any column.

The weight \(x^T = x_1^{w_1}x_2^{w_2} \cdots \) of a circled shifted tableau is defined by setting \(w_i \) to be the number of \(i \) or \(i^\circ \) occurring in \(T \). With this, the Schur \(Q \) function \(Q_{\mu}(X) \) is defined as \(\sum_T x^T \), taken over all circled shifted tableaux of shape \(\mu \). The Schur \(P \) function \(P_{\mu}(X) \) is defined to be \(2^{-\ell(\mu)}Q_{\mu}(X) \), where \(\ell(\mu) \) is the number of parts of \(\mu \) (see, e.g., [17, 18]).

The Weyl group for the types \(B_n \) and \(C_n \) is the hyperoctahedral group \(\mathbb{B}_n \) of signed permutations on \(\{1, 2, \ldots, n\} \). It is generated by the simple transpositions \(s_i \) for \(1 \leq i \leq n-1 \) together with the special generator \(s_0 \), which changes the sign of the first entry of the signed permutation. The Weyl group of type \(D_n \) is the subgroup \(\mathbb{D}_n \) of \(\mathbb{B}_n \) whose elements make an even number of sign changes. It is generated by the simple transpositions \(s_i \) for \(1 \leq i \leq n-1 \) together with \(s_0 = s_0 s_1 s_0 \).

The \(B_n \) and \(D_n \) analogues of Stanley functions, \(F_w(X) \) for \(w \in \mathbb{B}_n \) and \(E_w(X) \) for \(w \in \mathbb{D}_n \), respectively, are defined in [4] by

\[
F_w(X) = \sum_{\mu} f_{w\mu}Q_{\mu}(X)
\]

\[
E_w(X) = \sum_{\mu} e_{w\mu}Q_{\mu}(X)
\]
and

\[E_w(X) = \sum_{\mu} e_{w\mu} P_\mu(X), \]

for certain nonnegative integers \(f_{w\mu} \) and \(e_{w\mu} \) given by explicit positive combinatorial formulas which we will not reproduce here; see [4] for details.

In [4], the theory of \(A_{n-1} \) Schubert polynomials [24] was extended to types \(B_n, C_n \) and \(D_n \) (see [14] for an alternative approach). In each case, the corresponding generalized flag variety of order \(n \) naturally projects into the one of order \(n + 1 \). This yields maps on the corresponding cohomology rings that sends Schubert classes to Schubert classes, which in turn yields Schubert polynomials in the inverse limit. These are computed as the unique solution of an infinite system of divided difference equations. See [4] for details.

For types \(B_n, C_n \) and \(D_n \), the Schubert polynomials \(\mathfrak{B}_n, \mathfrak{C}_n \) and \(\mathfrak{D}_n \) respectively live in the polynomial ring \(\mathbb{Q}[x_1, x_2, \ldots; p_1(Z), p_2(Z), \ldots] \), where \(p_k(Z) = z_1^k + z_2^k + \cdots \) is a power series in a new collection of variables \(Z = \{z_1, z_2, \ldots\} \). It is then proved in [4] that for \(w \in \mathfrak{B}_n \),

\[\mathfrak{C}_w = \sum_{u,v} F_u(Z) \mathfrak{S}_v(X), \]

where the sum is over \(u \in \mathfrak{B}_n \) and \(v \in S_n \) with \(uv = w \) and \(\ell(u) + \ell(v) = \ell(w) \). Also, if \(s(w) \) is the number of sign changes of \(w \), then

\[\mathfrak{B}_w = 2^{-s(w)} \mathfrak{C}_w. \]

Similarly for \(w \in \mathfrak{D}_n \),

\[\mathfrak{D}_w = \sum_{u,v} E_u(Z) \mathfrak{S}_v(X), \]

where the sum is over \(u \in \mathfrak{D}_n \) and \(v \in S_n \), with \(uv = w \) and \(\ell(u) + \ell(v) = \ell(w) \).

More generally, if \(w \in \mathfrak{B}_n \) and a sequence of nonnegative integers \(\{a_j\} \) with \(1 \leq a_1 < a_2 < \cdots < a_k < n \), we say that \(w \) is compatible with \(\{a_j\} \) if whenever \(\ell(ws_i) < \ell(w) \) for a simple transposition \(s_i \), then \(i \in \{a_j\} \).

Theorem 4. Let \(w \in \mathfrak{B}_n \) be compatible with \(\{a_1 < a_2 < \ldots < a_k\} \). Then we have

\[\mathfrak{C}_w = \sum_{\mu: \Delta} c_{\mu: \Delta}(w) Q_\mu(Z) s_{\lambda_1}(X_1) s_{\lambda_2}(X_2) \cdots s_{\lambda_k}(X_k) \]

and

\[\mathfrak{B}_w = 2^{-s(w)} \sum_{\mu: \Delta} c_{\mu: \Delta}(w) Q_\mu(Z) s_{\lambda_1}(X_1) s_{\lambda_2}(X_2) \cdots s_{\lambda_k}(X_k). \]

If in addition, \(w \in \mathfrak{D}_n \), then

\[\mathfrak{D}_w = \sum_{\mu: \Delta} d_{\mu: \Delta}(w) P_\mu(Z) s_{\lambda_1}(X_1) s_{\lambda_2}(X_2) \cdots s_{\lambda_k}(X_k). \]

In the above formulas, \(X_i = \{x_{a_{i-1}+1}, \ldots, x_{a_i}\} \), \(\mu \) is a partition with distinct parts and \(\Delta = (\lambda^1, \ldots, \lambda^k) \) is a sequence of partitions. Also, \(c_{\mu: \Delta}(w) = f_{u\mu} c_\Delta(v) \) and \(d_{\mu: \Delta} = e_{u\mu} c_\Delta(v) \) where \(uv = w \), \(\ell(u) + \ell(v) = \ell(w), v \in S_n \), and \(u \in \mathfrak{B}_n \) or \(u \in \mathfrak{D}_n \), respectively.
Proof. Suppose \(w \in \mathcal{B}_n \) (or respectively, \(w \in \mathcal{D}_n \)) and \(uv = w \) with \(\ell(u) + \ell(v) = \ell(w) \) where \(u \in \mathcal{B}_n \) (or \(u \in \mathcal{D}_n \)) and \(v \in \mathcal{S}_n \).

Let \(i \geq 1 \) be such that \(\ell(ws_i) < \ell(v) \). Then by our assumptions and standard properties of the length function (see, e.g., [19, Section 5.2]) we have
\[
\ell(ws_i) = \ell(u) + \ell(v) < \ell(u) + \ell(v) = \ell(w).
\]
Hence \(i \) is one of the \(a_j \), i.e., \(v \) is compatible with \(\{ a_j \} \). Therefore, the result follows from equations (15), (16) and (17) combined with Theorem 6.

Example 4. Consider \(w = \left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & -2
\end{array} \right) = s_1s_0s_1s_2s_1 \in \mathcal{B}_3 \). This signed permutation is compatible with the sequence \(1 < 2 \). In [4] the following was computed:
\[
\mathcal{C}_w = Q_{41} + Q_{4}s_1(x_1) + Q_{31}s_1(x_1) + Q_{31}s_1(x_2) + Q_{3}s_2(x_1) + Q_{3}s_1(x_1)s_1(x_2) + Q_{2}x_1x_2 + Q_2x^2_1x_2.
\]
This may be rewritten as
\[
(21) \quad \mathcal{C}_w = Q_{41} + Q_{4}s_1(x_1) + Q_{31}s_1(x_1) + Q_{31}s_1(x_2) + Q_{3}s_2(x_1) + Q_{3}s_1(x_1)s_1(x_2) + Q_{2}s_1(x_1)s_1(x_2) + Q_2x_1x_2 + Q_2x^2_1x_2,
\]
in agreement with Theorem 4.

In [8] it was explained why [13] provides a geometrically natural solution to the Giambelli problem for partial flag varieties. For the other classical types, the choice of variables makes it unclear what the underlying geometry of [13, 19] and [20] might be. On the other hand, given the shape of the formulas, by analogy with the \(A_{n-1} \) case, it is natural to ask if there is a degeneracy locus setting for which the coefficients \(c_{\mu\lambda}(w) \) (and their positivity) appear.

6. PROOF OF THEOREM 4

Let \(S_d(r) \) denote the set of permutations \(w \) in \(S_d \) such that \(G(w) \) contains the same number of points in \(M_{ij} \) as \(G(v(r)) \) does, for all \(0 \leq i, j \leq n \). Our proof of Theorem 4 uses the following:

Proposition 3. Let \(r = \{ r_{ij} \} \) for \(0 \leq i \leq j \leq n \) be a set of rank conditions and let \(w \in S_d \), \(d = r_{00} + r_{11} + \cdots + r_{nn} \). The following are equivalent:

(I) \(w = v(r) \);

(II) \(w \) is the minimal length element of \(S_d(r) \);

(III) there exists a pipe dream \(D \) for \(w \) and there exists a lacing diagram \(W \) for \(r \) such that \(D \) has every box in \(\bigcup_{i+j \leq n-2} M_{ij} \) tiled by crosses, \(D \) maps to \(W \), and \(\ell(w) \leq \ell(v(r)) \).

Proof. The length of \(w \in S_d(r) \) is computed from \(G(w) \) by counting those pairs of dots where one is situated to the northeast of the other. Call such a pair unavoidable if the dots actually appear in blocks where one is situated (strictly) northeast of the other. The number of unavoidable pairs is constant on \(S_d(r) \). Moreover, observe that all of the pairs contributing to the length of \(v(r) \) are unavoidable. On the other hand, if \(w \neq v(r) \), then at least one pair contributing to \(\ell(w) \) is not unavoidable. Thus (I) is equivalent to (II).

That (I) implies (III) is immediate from [21, Theorem 5.10], but we include a proof for completeness. Take any \(D \in RC(v(r)) \). The definition of \(v(r) \) implies that \(D \) has every box in \(\bigcup_{i+j \leq n-2} M_{ij} \) tiled by crosses. Moreover, \(D \) gives a lacing
diagram W such that D maps to W. Observe that the number of pipes of D that enter in the i^{th} horizontal strip and exit in the j^{th} vertical strip is equal to the number of points of $G(v(r))$ in M_{ij} for $0 \leq i, j \leq n$. From this and the definition of $v(r)$ it follows that W is in fact a lacing diagram for r.

Finally, suppose (III) holds. By considering where the pipes of D go in relation to W, one finds that $G(w)$ and $G(v(r))$ have the same number of points in any block on the main anti-diagonal and below, i.e., blocks M_{ij} where $i + j \geq n$. The condition on the boxes of $\bigcup_{i+j \leq n-2} M_{ij}$ implies that the only other points of $G(w)$ appear in the blocks $M_{i,n-i-1}$, $0 \leq i \leq n - 1$ on the super-antidiagonal. Since w is a permutation, each of these blocks must have the same number of points as its counterpart in $G(v(r))$, i.e. $w \in S_d(r)$. Since we already know $v(r)$ is the unique minimal length element of $S_d(r)$, the assumption that $\ell(w) \leq \ell(v(r))$ implies (II).

6.1. Proof of Theorem 1 Let ρ be a partial permutation represented by an $a \times b$ matrix. Consider the diagram $D(\hat{\rho})$ of $\hat{\rho}$, which consists of the boxes (i, j) in $(a + b) \times (a + b)$ such that $\hat{\rho}(i) > j$ and $\hat{\rho}^{-1}(j) > i$. Associated to $\hat{\rho}$ is its canonical reduced word. This is obtained by numbering the boxes of $D(\hat{\rho})$ consecutively in each row, from right to left, starting with the number of the row. Then the rows are read left to right, from top to bottom (see, e.g., [27]).

Lemma 2. Let $u_1 u_2 \cdots u_{\ell(\hat{\rho})}$ be the canonical reduced word for $\hat{\rho}$. Then the set \{ $k_1 < k_2 < \ldots < k_p$ \} of indices k where $u_k < u_{k+1}$ has size at most a. Moreover, $j \leq u_k$ for all $k \in [k_{j-1} + 1, k_j]$, where $k_0 = 0$.

Proof. By construction, $D(\hat{\rho})$ sits inside the northwest $a \times b$ rectangle of the $(a + b) \times (a + b)$ box. Since the labels of the boxes in the construction of the canonical reduced word decrease from left to right along each row, there can be at most a indices k where $u_k < u_{k+1}$. The fact that each entry of the t^{th} row of the filling of $D(\hat{\rho})$ is at least t implies the remainder of the claim.

Example 5. Let ρ be the partial permutation represented by the matrix:

$$
\begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

The canonical reduced word for $\hat{\rho}$ is obtained below (see Figure 2).

The following fact is immediate from the main theorem of [2]. We include a proof for completeness:

Lemma 3. There exists an RC-graph for $\hat{\rho}$ such that all crosses occur in its northwest $a \times b$ sub-rectangle.

Proof. Let $u_1 u_2 \cdots u_{\ell(\hat{\rho})}$ be the canonical reduced word for $\hat{\rho}$. By Lemma 2

$$
(1, 1, \ldots, 1, 2, 2, \ldots, 2, \ldots, p, p, \ldots, p)
$$

is a reduced compatible sequence for $\hat{\rho}$, and the conclusion follows from Proposition 1.
Example 6. Continuing the previous example, the reduced compatible sequence corresponding to the canonical reduced word for $\tilde{\rho}$ is

$$(1, 1, 1, 1, 2, 2).$$

By Proposition 1, there is an RC-graph for $\tilde{\rho}$ with crosses from

$$\{(1, 4), (1, 3), (1, 2), (1, 1), (2, 3), (2, 2)\}.$$

That RC-graph is

Figure 3. The canonical reduced word $4321 \cdot 43$ for $\tilde{\rho}$

Proof of Theorem 1. Construct a pipe dream D starting with a $d \times d$ box as follows. For $k = 1, 2, \ldots, n$ let D_k be the RC-graph obtained by applying Lemma 3 to the partial permutation w_k. Then let \overline{D}_k denote the northwest $r_{k-1,k-1} \times r_{kk}$ sub-pipe dream, rotated 180 degrees. Overlay \overline{D}_k into $M_{k-1,n-k}$. For the remaining boxes, place crosses in the top $r_{00} + r_{11} + \cdots + r_{n-2,n-2}$ rows of the $d \times d$ box and elbow joints elsewhere. This defines a pipe dream D for some permutation $w \in S_d$. By construction, D maps to W and moreover, the number of crosses in D is

$$| \bigcup_{i+j \leq n-2} M_{ij} | + \ell(W).$$

Since W is minimal length, $\ell(W) = d(r)$ and so by (5), $l(w) \leq l(v(r))$. Then by Proposition 5, $w = v(r)$ and thus $D \in RC(v(r))$. This construction describes the desired injection.

For example, the RC-graph given in Figure 1 is the image of W from Example 1 under the embedding map of Theorem 1.
Figure 4. Construction of D

References

[1] S. Abeasis and A. Del Fra, Degenerations for the representations of an equioriented quiver of type A_n, Boll. Un. Mat. Ital. Suppl. 1980, no. 2, 157–171.
[2] N. Bergeron and S. Billey, RC-graphs and Schubert polynomials, Experimental Math. 2 (1993), no. 4, 257–269.
[3] I. N. Berstein, I. M. Gelfand and S. I. Gelfand, Schubert cells and cohomology of the spaces G/P, Russian Math. Surveys, 28 (1973), 1–26.
[4] S. Billey and M. Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), 443–482.
[5] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115–207.
[6] A. S. Buch, Stanley symmetric functions and quiver varieties, J. Algebra 235 (2001), 243–260.
[7] A. S. Buch and W. Fulton, Chern class formulas for quiver varieties, Invent. Math. 135 (1999), 665–687.
[8] A. S. Buch, A. Kresch, H. Tamvakis and A. Yong, Schubert polynomials and quiver formulas, Duke Math. J., to appear.
[9] A. S. Buch, A. Kresch, H. Tamvakis and A. Yong, Grothendieck polynomials and quiver formulas, preprint.
[10] I. Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–524.
[11] M. Edelman and C. Greene, Balanced tableaux, Adv. Math. 63 (1987), 42–99.
[12] S. Fomin, S. Gelfand and A. Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), 565–596.
[13] S. Fomin and C. Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1-3, 179–200.
[14] S. Fomin and A. N. Kirillov, Combinatorial B_n-analogues of Schubert polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3591–3620.
[15] S. Fomin and A. N. Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math. 153 (1996), no. 1-3, 123–143, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993).
[16] W. Fulton, Universal Schubert polynomials, Duke Math. J. 96 (1999), no. 3, 575–594.
[17] W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics 1689, Springer-Verlag, New York, 1998.
[18] P. Hoffman and J. Humphreys, Projective representations of the symmetric groups. Q-functions and shifted tableaux., The Clarendon Press, Oxford University Press, New York, 1992.
[19] J. Humphreys, *Reflection groups and Coxeter groups*, Cambridge University Press, Cambridge, 1990.

[20] A. Knutson and E. Miller, *Gröbner geometry of Schubert polynomials*, Ann. of Math., to appear.

[21] A. Knutson, E. Miller and M. Shimozono, *Four positive formulae for type A quiver polynomials*, preprint.

[22] V. Lakshmibai and P. Magyar, *Degeneracy schemes, quiver schemes, and Schubert varieties*, Internat. Math. Res. Notices (1998), no. 12, 627-640.

[23] A. Lascoux, *Classes de Chern des variétés de drapeaux*, C.R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 5, 393–398.

[24] A. Lascoux and M.-P. Schützenberger, *Polynômes de Schubert*, C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447–450.

[25] A. Lascoux and M.-P. Schützenberger, *Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux*, C.R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629-633.

[26] I.G. Macdonald, *Notes on Schubert polynomials*, Publ. LACIM 6, Univ. de Québec à Montréal, Montréal, 1991.

[27] L. Manivel, *Symmetric functions, Schubert polynomials and degeneracy loci*, American Mathematical Society, Providence 2001.

[28] A. Zelevinsky, *Two remarks on graded nilpotent classes*, Uspehi. Mat. Nauk. 40 (1985), no. 1(241), 199–200.

Department of Mathematics, University of Michigan, 525 East University Ave., Ann Arbor, MI 48109-1109, USA

E-mail address: ayong@umich.edu