Hardware Trust and Assurance through Reverse Engineering: A Survey and Outlook from Image Analysis and Machine Learning Perspectives

Ulbert J. Botero†, Ronald Wilson†, Hangwei Lu, Mir Tanjидur Rahman, Mukhil A. Mallaiyan, Fatemeh Ganji*, Navid Asadizanjani Member, IEEE, Mark M. Tehranipoor Fellow, IEEE, Damon L. Woodard Senior Member, IEEE, and Domenic Forte Senior Member, IEEE

Abstract—In the context of hardware trust and assurance, reverse engineering has been often considered as an illegal action. Generally speaking, reverse engineering aims to retrieve information from a product, i.e., integrated circuits (ICs) and printed circuit boards (PCBs) in hardware security-related scenarios, in the hope of understanding the functionality of the device and determining its constituent components. Hence, it can raise serious issues concerning Intellectual Property (IP) infringement, the ineffectiveness of security-related measures, and even new opportunities for injecting hardware Trojans. Ironically, reverse engineering can enable IP owners to verify and validate the design. Nevertheless, this cannot be achieved without overcoming numerous obstacles that limit successful outcomes of the reverse engineering process. This paper surveys these challenges from two complementary perspectives: image processing and machine learning. These two fields of study form a firm basis for the enhancement of efficiency and accuracy of reverse engineering processes for both PCBs and ICs. In summary, therefore, this paper presents a roadmap indicating clearly the actions to be taken to fulfill hardware trust and assurance objectives.

Index Terms—Hardware Counterfeiting, Hardware Trojan, Imaging, Image Processing, Integrated Circuits, Machine Learning, Printed Circuit Boards, Reverse Engineering, Trust and Assurance.

I. INTRODUCTION

Outsourcing of integrated circuit (IC) and printed circuit board (PCB) design, fabrication, packaging, and testing have dramatically reduced the time and cost of product development. In doing so, this has enabled the widespread availability of microelectronics, which has indeed transformed modern life. However, unintended consequences include malicious design alteration (i.e., hardware Trojan insertion [2, 3]) and the rise of the counterfeit electronics industry [4]. Reverse engineering (RE) is widely applied for educational purposes and for detecting Intellectual Property (IP) infringement, but it can play an even more significant role in hardware trust and assurance. RE of electronic chips and systems refers to the process of retrieving an electronic design layout and/or netlist, stored information (memory contents, firmware, software, etc.), and functionality/specification through electrical testing and/or physical inspection. Although RE is often considered in a negative light (e.g., illegal cloning designs and/or disclosing sensitive information to a competitor or adversary), it is the only foolproof way to detect malicious alteration and/or tampering by semiconductor foundries, find vulnerabilities present in commercial-off-the-shelf (COTS) chips and avoid them, and replace obsolete (i.e., no longer manufactured) hardware.

As for attaining trust and assurance, existing techniques are limited and/or ineffective. For example, run-time monitoring techniques increase the resource requirements – power consumption, memory utilization, and area overhead on ICs/PCBs – due to on-chip/board sensors used to detect anomalous activities. In test time methods, the challenge is to generate test vectors that trigger stealthy, well-placed hardware Trojans in billion-transistor chips. Similarly, in side-channel signal analysis approaches, inescapable process variations and the measurement noise undermine the probability of detecting small Trojans [5]. As a result, the confidence level in detecting Trojans using the aforementioned techniques is quite low [6, 7, 8]. Hence, RE has been gaining more attention in recent years and experiencing community-wide acceptance as an effective approach, in particular, for hardware Trojan detection [9, 10].

In the area of IC counterfeit detection and avoidance, the current best practice requires the use of either classification by subject matter experts (SME), procuring lifetime buys for long-term system maintenance, or acquiring components from untrusted distributors in a supply chain, which potentially involves grey market distributors. Each of these options is non-ideal. The large quantities of components that SME counterfeit analysts are required to analyze and manually classify makes this current practice very inefficient and costly. As for life-of-type buys, it is impractical and almost impossible to predict the lifetime of every component in a design, in anticipation of obsolescence and failure. Overestimation of the lifetime leads to procuring more components than necessary, and consequently, the waste of resources. Underestimation of the lifetime results in non-ideal situations, such as redesign or procurement through grey market distributors necessitated earlier than desired.

For PCBs, counterfeiting and Trojan insertion is a similarly prevalent problem. While there are existing chip-level integrity validation approaches, as mentioned above, they are not readily adaptable to PCBs which is a cause for concern. In response to this concern, a common method for preventing and protecting against PCB counterfeiting is to take advantage of intrinsic characteristics of PCBs making each and every of them (quite) unique [11]. Additionally, [12] has explored using unique patterns seen in images of surface vertical inter-
connect access (via) as fingerprints of design to overcome the problem of counterfeit PCB distribution. While both of these approaches can help us to improve reliability and assurance of a PCB after manufacturing, these techniques would still have to face difficulties in detecting small Trojans, similar to that seen in the October 2018 Bloomberg Businessweek article, entitled "The Big Hack" [2]. In October 2018, it was claimed that unauthorized microchips were found in the products of a manufacturer that provided Apple, Amazon, and even the US government, with specialized servers [3]. As reported in [3], security experts suspected that the assembly facility owned by Supermicro might have implanted the chip, which could serve as a backdoor for spying information exchanged over networks equipped with the altered PCBs of servers. Such an attack, i.e., adding an extra chip maliciously, severely affects the confidentiality and integrity of a system. More importantly, the survivability of this system is strongly influenced due to the typically high degree of complication and obstacles involved in revealing the existence of such threats and recovering the system from them. This can further highlight the strong demand for the verification of security of the physical systems.

According to the above discussion, today more than ever, there is a significant need for fast and fully automated RE, imposed by industries, and especially for security-critical applications. The RE process comprises delayering, imaging, annotation, and netlist extraction. The current state-of-the-art practices are tedious, challenging, and expensive. They usually require a suite of cleanroom and microscopy equipment, very long imaging times, and manual or semi-automated post-processing steps for converting images to netlists. Despite this, recent advancements in failure analysis tools and delayering processes are opening up new dimensions in RE. As an example, plasma etching has achieved better control over ion-energy distribution, thereby improving selective and automation in delayering [13]. Furthermore, the introduction of non-destructive X-ray computed tomography (X-Ray CT) and ptychography in recent years can eliminate the process of delayering, and hence, can speed up the imaging time for the upper metal layers of an IC and an entire PCB. New scanning electronic microscopes (SEMs), such as multi-beam systems, have also been introduced to significantly speed up imaging of nanoscale samples. Nevertheless, they are not widely available and are still several times more expensive than standard SEMs. In addition, since such tools could yield petabytes of data in only a day, the research on automated and intelligent image analysis algorithms is an urgent need to reduce the time and cost of RE.

In this paper, we systematically study the current challenges that automated RE faces in order to be useful for providing trust and assurance. Existing surveys on RE focus on different aspects, e.g., Keshavarz et al. have presented examples of image-based RE applications and discussed hardware attacks in detail [14], while Fyribiak et al. have summarized the process of accessing gate-level netlist from three system models and discussed the evaluation strategies [15]. Compared to our work, they have explored neither the challenges during a typical RE process from imaging perspective nor considered the possibility of applying machine learning approaches in this context. Our paper further describes a typical workflow of RE, and then investigates the possibilities and limitations of processes incorporated in such a workflow from the RE perspective. More precisely, we explain inherent differences between natural images, which virtually all the well-developed image processing algorithms are designed for, and images taken to conduct RE on a hardware device. To this end, we give an exhaustive overview on numerous obstacles to the application of common methods originating in image processing and machine learning. In particular, we place emphasis on the need to incorporate domain knowledge to overcome them. Several examples of such issues are given and reviewed in detail. In summary, this paper aims at providing an outlook on how to improve RE so that it can better handle tasks of detection and avoidance in the context of hardware trust and assurance.

A brief overview and the organization of the paper: Beyond providing a taxonomy of approaches proposed to address trust and assurance issues, Section 2 describes how automated RE can enable us to solve those problems more effectively. Section 3 discusses the challenges involved in adopting existing image processing algorithms and the limitation of RE from an imaging perspective (see the imaging block in Figure 1). This section is complemented by a discussion from a machine learning and image analysis point of view along with a brief discussion on the application of deep learning in RE, in Section 4 and illustrated in the machine learning block in Figure 1. Section 4 further demonstrates how various applications of RE, such as counterfeit and Trojan detection, can leverage the information retrieved through feature extraction and feature analysis. Afterward, Section 5 expands on the development of counter RE methods. As this paper aims at pointing to a new outlook, Section 6 is devoted to future research directions. Finally, we conclude the paper with remarks on the issues addressed in the paper.

II. APPLICATIONS OF RE FOR TRUST AND ASSURANCE

Semiconductor technology has become an integral part of our everyday life, as ICs and embedded systems have been becoming ubiquitous. The spectrum of the applications of these devices and systems covers various areas including, but not limited to, household appliances, critical infrastructures (i.e., commercial facilities sector, government facilities, energy sector, etc.), and military systems. Regardless of these applications, their trustworthiness and reliability must be assured. This section aims to explain how automated RE can address this concern by providing an added degree of precision for the analysis and evaluation, applied at different development stages in electronics industries. We further elaborate on the applications of (automated) RE, namely Trojan detection, and obsolescence replacement.

A. Trojan Detection and Counterfeit Avoidance

Counterfeit and tampered electronics pose serious threats to hardware-based trust and assurance. In particular, cloned chips and hardware Trojans can violate security requirements of root-of-trust, thereby reducing confidentiality, integrity,
Fig. 1: Our systematic overview of an RE process, which can be performed on ICs and PCBs, its challenges and possibilities.
(a) A typical workflow of RE encompassing various stages. Two main blocks of such a workflow are: Image Analysis (see Section I) and Machine Learning (see Section IV). Moreover, we discuss how the outputs of the machine learning-related block can enable us to provide hardware-based trust and assurance, as an application of RE (for a general view, see Section II). Inherent challenges facing us in both cases of ICs and PCBs are further discussed in Section III-IV.
(b) RE workflow for IC: (b1) Deprocessing of the IC [16], (b2) Example of noise removal in the active region using different imaging parameters, (b3) Segmentation and extraction of polysilicon structures and vias in an IC [17, 18], (b4) Netlist of extracted logic cells. (c) RE workflow for PCB: (c1) Image depicting a multi-layered PCB [19]. Depending on the number of the layers in a PCB, different types of RE techniques should be considered. Irrespective of this, these challenges are inevitable: (c2) Example for misaligned layer and reconstructed image, (c3) Segmentation and extraction of vias for X-rayed PCB and labelled components on the surface of an optically imaged PCB, (c4) Segmented layout of PCB layers with connected and not-connected vias [20].
and availability. For ICs, cloning is the process of copying and unauthorized production of a design without having a legal IP rights. Moreover, any malicious modification of the structure, functionality or parameters of the chip that causes the device to operate outside of its specification can be identified as a hardware Trojan. Furthermore, the root-of-trust can be compromised at the system level. PCBs give another opportunity for an attacker to tamper, clone, counterfeit, and insert a hardware Trojan. In fact, since PCBs lie at the heart of an electronic system and integrate several components to achieve the desired functionality, it is increasingly important to guarantee a high level of trust and reliability at such an integration stage. The aforementioned incident allegedly at Supermicro serves as an example (see Section I). Advances in the RE automation process can enable us to shorten the time to identify these type of threats at multiple levels of an electronic system [20, 21].

The importance of applying RE for addressing trust and assurance-related issues are twofold, namely detection and avoidance (see Figure 2). When it comes to avoidance, we are interested in approaches that can prevent counterfeit parts from entering the supply chain. For this purpose, it is crucial to develop relatively less costly and time-consuming counterfeit detection methods [22]. Therefore, due to this close connection between avoidance and detection, in this paper, our primary focus of interest is detection methods. In the detection process, the incoming electronic components undergo a physical or electrical inspection process to examine authenticity. As RE is an interior, physical-inspection-based approach, to decide whether a chip/system is cloned or to detect a Trojan, one should rely on the availability of golden data. Golden data can be images from a known authentic chip or PCB, bill of materials (BoM), schematic, layout, or device, whose functionality, structural and electrical parametric signatures are available for comparison.

For example, a layout [4] is determined as golden if the IP holder and System-on-Chip (SoC) designer/PCB manufacturer are authorized and trusted [23]. A golden layout or design can provide a benchmark for assessing the functionality of the chip or analyzing its physical structure. The designer's layout (see Figure 3(a)) can be compared to the SEM image taken from the respective manufactured design (see Figure 3(b)), to determine possible Trojan insertions. However, it does not provide any reference for side-channel parametric profiles, e.g., power, path timing, electromagnetic signature, photonic emission, etc., which can only be characterized by using a fabricated chip or board. Additionally, a device is considered golden, when either it is fabricated from a golden layout in a trusted facility or its functionally and physical characteristics are verified through full-blown RE [3]. The primary concern regarding fabricating a golden sample in a trusted facility is a prohibitively costly process. Besides, the parametric profile of the golden device is different from the same parametric profile of devices produced in another facility for the same technology node, even within the same fabrication facility.

Nevertheless, common test methodologies may not always be helpful for detecting Trojans [24]. In this context, an RE approach can also be employed to detect extra insertions and deletions [25, 26]. Note that although IC camouflaging [4], especially dummy contact-based IC camouflaging, can impair the effectiveness of malicious RE of ICs, the designer can greatly benefit from an automated RE along with a golden

2After performing the translation of a specification into a behavioral description (typically in a hardware design language (HDL)), this description is synthesized to generate a design implementation of logic gates, i.e., netlist. This netlist is used to produce a layout (GDSII file) by conducting placement/routing. To fabricate ICs, this GDSII is sent to a foundry by the design house.

3 A trusted party is defined as one committed to ensuring a proper IC design/fabrication flow (i.e., does not insert Trojans, protects IP confidentiality, etc.). An untrusted party cannot ensure such a proper flow or performs malicious activities intentionally.

4 A technique that can be employed to mask the circuit functionality by synthesizing circuits with logic cells, which look similar, but can have different functionalities.
chip or layout to deal with such cases. Yet the challenges with RE-based approaches are the SME involvement and the execution time (see Section II-B).

For PCBs, due to the minute details involved in the Trojan insertion process, the availability of golden data to facilitate full-blown PCB RE is even more pressing. The modern nature of PCB designs, being multi-layered, provides a variety of Trojan insertion possibilities that are nearly impossible to prevent without full-blown RE. Specifically, an attacker can take advantage of unused pins, multiple layers, and hidden vias in the design to alter connections throughout the internal layers/hidden vias, as well as the properties of these connections. Altering traces in the internal layers can make no structural difference, but produces undesired functionality under certain conditions. Such alterations include modifying the mutual coupling capacitance, characteristic impedance and loop inductance as well as adding ultra-low areas, and power components in the internal layers. Moreover, the chances of detecting these modifications via exhaustive testing is low since malicious functions are barely triggered during in-circuit and boundary-scan-based functional tests. With a full-blown RE, the design dimensions going down to the trace widths and spacing can be extracted and compared for tamper detection and to give the IP holder an available golden sample. If the attacker alters the design structure, by comparing the designed and extracted netlists, the detection can be less challenging, and the full-blown RE can be more effective (for more details see Section II-B).

In general, the detection techniques have progressed at a fast pace, due in part to advancements in artificial intelligence, and in particular, machine learning. Techniques originating from machine learning have been widely employed in hardware security. For instance, machine learning algorithms have been applied for Trojan and IC counterfeit detection; for a comprehensive survey, see [28]. Nevertheless, when it comes to approaches leveraging the strengths and capabilities of both reverse engineering and machine learning methods, e.g., [22, 30], less effort has been made to develop such approaches. Only recently, as a result of the advancements in image analysis incorporated with the developments of techniques relying on SEM, X-Ray CT, and optical imaging, more reliable, faster and automated hardware Trojans detection methods have been developed, being also useful for detecting cloned chips/systems. Such a process generally involves several steps, namely image pre-processing, feature extraction, and classification.

Image pre-processing influences the accuracy of perceptual feature extraction through noise reduction, edge enhancement, segmentation, etc. As the name implies, feature extraction deals with extracting salient features from the images of the electronic component, acquired by using the SEM/X-ray CT/optical microscope. Those features are represented as inputs for machine learning algorithms, e.g., neural network, support vector machine (SVM) or clustering approaches, which can determine modifications in the function or the structure in the system. However, to benefit from advances in machine learning, relatively large sets of data are necessary to train machine learning algorithms. Especially for deep learning methods, a vast number of data samples are required to achieve an acceptable level of performance. Nonetheless, advanced methods, e.g., Trojan Scanner [23], can direct trust and assurance-related studies towards partial RE-based hardware Trojan detection methods.

In the presence of data derived from a golden sample, different methodologies, e.g., the structural test comparison between a suspected sample and the golden sample/layout, can be deployed to identify cloned devices [22]. Over the years, to address the availability of neither a golden chip/layout nor a sufficiently large training dataset when dealing with protecting chips/systems, different avoidance methodologies like the secure split-test, physically unclonable functions, and lightweight on-chip sensors have been proposed for counterfeit detection and avoidance. In line with this, the fast and automated RE can enable us to establish a secured supply chain comprised of a trusted manufacturing facility and distribution for the security-critical applications. Such improvement offers effective measures for the avoidance of cloned or Trojan-infected chips.

B. Obsolescence

In addition to Trojan detection and counterfeit avoidance, an RE-based method also provides trust and assurance for the obsolete or near-term life technologies and components. These technologies, usually referred to as legacy electronics/systems, are prominent in many critical systems. Typically the production cycle for electronics is under pressure from the fast-paced consumer electronics industry, where the next generation of devices with improved properties is expected and adopted in the course of the following calendar year. Yet, the opposite is the case in military and government electronic systems that go through longer development cycles and deployment. These systems are designed to be in operation for decades [31]. However, since these systems are deployed for increasingly longer periods, the cost of maintenance begins to increase due to needed parts becoming obsolete. The long life span of these components and systems opens up new possibilities for malicious activities including security concerns and vulnerabilities. Most notably, diminishing manufacturing sources for obsolete components can force original equipment manufacturers (OEMs) to purchase from untrustworthy distributors. This has been identified as a known source for recycled, remarked or counterfeit components/systems and consequently, a pressing concern for governments, as reported by, e.g., the United States Senate [32].

Although a full system redesign is an option to address this concern, it is impractical due to the associated costs and manpower [31]. In particular, if previous design information that would be used for the redesign is no longer available or scarce, performing RE to acquire the needed design information can result in destroying the only available samples. This is often the case in legacy systems, where previous designs are lost over time through company migrations/transitions or components are obsolete and discontinued. These concerns are present for both of the IC and PCB levels, but can be addressed thanks to advances in image analysis and machine learning.
1) **IC Level Upgrades:** As an interdisciplinary field including several key components from image analysis and machine learning fields of study, automated RE enables us to replace obsolete technologies and provide additional trust and assurance in hardware security. With respect to the ability of automated RE to segment, identify, and interpret different properties of IC layouts, it is possible to not only deconstruct the netlist of a device, but also reconstruct it. By identifying various components on a layout and comparing them with the standard cells, the functionality and netlist of an IC can be deconstructed. Afterward, this information can be used either to analyze possible faults in the layout or for reproduction, if the reverse-engineered device is obsolete and no longer in distribution. Furthermore, once the functionality is deduced and the netlist is reconstructed, any desired upgrades (additional logic, security primitives, etc.) can be added to the design and the new upgraded design and layout are ready for fabrication [33].

2) **PCB Level Upgrades:** The above-mentioned advances enable us to offer the maintenance or replace obsolete or rare PCBs as well. In a similar fashion to ICs, automated RE can be used on PCBs to identify key components, traces, vias, and layers to reconstruct the design and netlist [34]. Coupling these techniques with advances in non-destructive RE via X-Ray CT [20] leads to an all-encompassing process that completely removes the traditionally needed SME. This is especially useful for PCBs, whose design information has been mishandled or with scarce supply. This can be explained by the fact that traditional RE may result in the destruction of samples undergoing the process [35]. Providing a substantial cost and efficiency savings achieved through this gathered design information, it is now possible to perform design-to-manufactured product validation, product-to-product comparison, and the ability to upgrade past designs. All of these provide an added level of trust and assurance to the systems that require the utmost attention to security.

III. **INHERENT CHALLENGES ASSOCIATED WITH IMAGING ELECTRONIC COMPONENTS AND SYSTEMS**

In the context of natural scenes, image processing plays the role of enhancing the image to the point of being discernible and pleasing to the viewer. The fine-tuning of different parameters of the image such as the contrast and intensity is considered as an art rather than an application of a set of predefined algorithms. However, with the advent of machine learning and the higher likelihood of the image being delivered to a computer than a human, the adjustment of the imaging parameters must be performed regarding the application for a particular domain and nature of the problem being addressed. For instance, a camera placed on an assembly line in a manufacturing facility might only require to examine the presence of an object rather than its color or shape. Modifying the image to be visually pleasing is neither required nor recommended in this case. As indicated in this example, optimizing images for a certain purpose requires in-depth knowledge of the domain and application, posing a significant challenge to the application of image processing in electronics, e.g., images taken from ICs or PCBs.

Along with the extensive application of image processing in natural scene-related scenarios, the factors affecting the quality of images such as motion blur, sensor noise, and uneven lighting are well known and studied. This in-depth understanding enables the development of image processing algorithms that can suppress the effect of noise sources, as mentioned above, and produce high quality images. However, this does not hold true for imaging modalities used for acquiring images of ICs and/or PCBs.

Moreover, in typical natural scene images, the amount of information extracted is rarely dependent on the value of a few pixels, but on the entire image or a large section of the image. This results in an increase in the reliability of feature extraction algorithms. On the other hand, by increasing the level of integration that puts together a higher number of transistors into a limited space, the size of the features in an IC image usually expands to only a few pixels (see Figure 4 (a, b)). Hence, depending on the intensity of noise affecting such features, there are situations, where a structure containing a few pixels cannot be categorized into a feature or a noise artifact (see Figure 4 (c)). In the context of hardware assurance, the ambiguity in this matter may lead to a Trojan detection error. As an example of such a malicious modification, consider a Trojan implemented to cause malfunction of the cell by adding transistors [25]. This modification indeed has an impact on the shape of the cell. Similarly, PCB images used for RE are subject to this challenge, albeit in a different way, due to the
different modalities the images are taken from. For instance, optical imaging can easily fail to detect an extra component acting as a Trojan, when the color of the motherboard and the components on it are both black. Furthermore, the via detection through X-Ray CT imaging may not be helpful when vias are blurred by the presence of high impedance materials that attenuate X-rays.

In summary, schematics extracted from images with such uncertainty can alter the functionality of the reverse-engineered device or system. As the goal of most RE applications is either the accurate reconstruction of the target device/system or the detection of anomalies, the presence of such limitations would be counterproductive and reduce the effectiveness of RE.

Although one may make certain modifications to the RE workflow (see Figure 1(a)) on the basis of the end goal/purpose, depending on whether ICs or PCBs are considered, the core processes involved remains the same. Each block in this workflow will be discussed in detail in the coming sections.

A. Problems Associated with Handling IC Images

In the early days of RE, image acquisition was done using an optical microscope with individual images stitched together to form a holistic view of the entire IC [19]. With the scale of integration available during that time period, the resolution of an optical microscope was sufficient to determine the features and extract the structure and logical elements of the IC. Even though this had been a tedious and time consuming process, it was still been possible to perform IC RE in a realistic time frame. However, for today’s ICs using technology nodes around 10nm, this is no longer possible. Nowadays, the RE relies solely on electron microscopy to acquire high quality images of the ICs, where the most commonly used equipment is the Scanning Electron Microscope (SEM). Other imaging modalities such as Confocal Electron Microscopy (CEM) can also be used to capture images of the IC. Excluding studies presented in [38] and [39], where CEM is utilized, other methods found in the literature apply destructive approaches to take images from different layers of the IC. Although the existence of electron microscopy imaging techniques enable the acquisition of high-resolution images of the IC, they do have certain inherent drawbacks which are listed below.

- **Manufacturing process variations:** The intensity of each pixel in the image depends on the material and its thickness [38]. Due to the high accuracy of the imaging modality, any small variation in the manufacturing process would cause changes in the acquired image. The degree of influence of this factor on the RE process depends on the precision/tolerance of the manufacturing process and the resolution of the imaging modality.

- **Topography of the material:** Areas with high roughness or edges between materials in the IC have larger escape areas for the secondary electrons [40]. Hence, the intensities of the image might not be accurate.

- **Diffusion:** In the case of non-metal materials, the atoms diffuse laterally in the material causing the edges between the materials in the same layer to blur and fade out [41].

- **Atmospheric exposure:** During the deprocessing of the IC, the die is exposed to air, which may cause oxidation in the metallic interconnects present in the IC.

- **Electromigration:** If the IC has been used, there are chances of having electromigration and changes in the physical structure of the materials [42]. This type of defect is usually found in metal interconnects, through which high density currents flow.

- **Conductivity:** Insulating materials may charge positively and suppress the secondary electrons [40]. If the material is considerably thin, it may also let the electrons pass through and the sensors cannot detect them [43]. This leads to localized pockets of bright and dark regions in the image.

Taking the above points into account, the degree of contribution of these noise sources to the quality of the image cannot be always adequately assessed. Moreover, the above list of the noise sources may not also be comprehensive. This lack of understanding is one of the major challenges that one has to face, when image analysis comes into play to solve RE tasks.

In addition to the inherent limitations associated with imaging an IC, several challenges are introduced by the RE process. One such challenge is the iterative physical deprocessing. A typical IC, nowadays, consists of several layers of materials put on top of each other. These layers (see Figure 5) play their own unique role in making the IC functional. These layers have to be imaged in their entirety to perform an effective RE. As discussed earlier, the imaging process can be destructive, in which layers of pre-defined thickness – typically chosen by an experienced operator – are removed in an iterative manner. This continues until a clear view of the target layer is made visible. In the RE-related terminology, this step of the sample preparation is called physical deprocessing (see Figure 1(a)).

Deprocessing can be carried out from either the backside or the frontside of the IC (see Figure 6). Irrespective of that, the basic processes involved in both of those cases are mostly the same: first, the protective casing around the IC is removed. This process is commonly referred to as de-potting or de-packaging [19]. There are several approaches to accomplish this task ranging from chemical to physical abrasions and followed by mechanical polishing of the IC die. The first source of the error is introduced at this point. As the ratio of the surface area to the cross-section of the IC wafer is extremely small, the wafer has the tendency to warp with a small curvature (see Figure 7) [16]. This tendency sometimes results in uneven polishing and skew in the images acquired with a low level of zoom.

Secondly, layers with predefined thickness are removed incrementally from the IC wafer, and the thickness is usually determined by the operator. When the effect of uneven polishing is accumulated, the delaying process can also be uneven across the surface of the IC. In some cases, structures from the contact layer (CO) of an IC would show up in images acquired

8Backside denotes the bottommost layer of an IC, which is populated by active devices such as transistors. By the term “Frontside”, we mean the topmost layer of an IC including passivation, metal pads, and global interconnects.
Fig. 5: The sequence of the layers in an IC along with their cross-sectional view [36, 37]

at the doping layer (DO), and so on. Depending on the degree of inevitable undesired blending between the different layers, it may be difficult to separate the features from the constituent layers, especially with the errors accumulating over time. In addition, the method used for removing layers of the IC may leave residue on the imaging surface, thereby reducing the quality of the acquired image (see Figure 8) [41].

Finally, the holistic view of the IC is reconstructed by stitching individual images together. Due to the noise introduced at the deprocessing stage, off-the-shelf algorithms for stitching may produce erroneous results, even with considerable overlap between consecutive images. Acquiring images at higher magnification levels can reduce the amount of work needed for stitching, but in turn, may reduce the quality of the image (see Figure 9). Last but not least, note that these are some common issues and examples of the inherent challenges associated with acquiring and handling images for IC RE.

B. Problems Associated with Handling PCB Images

The challenges and limitations associated with PCB RE overlap significantly with those presented earlier in IC RE scenarios. The main difference being that PCB RE focuses on two major themes: external and internal RE. External PCB RE deals with the information that one can observe at both surfaces, the top and bottom layer of a PCB. This information typically consists of the components of a design...
(passive elements, active elements, ICs, processors, etc.), their connections, silkscreen markings, and a variety of ports [36]. External RE would usually suffice if the PCB has only two layers, but this is often not the case. More common, however, are PCBs manufactured with multiple layers, where the majority of them are internal to the board and have structural and connectivity information not visible externally. In these cases, internal RE is necessary [36]. The main challenges for each PCB RE modality can be broadly categorized into how to handle the noise associated with the imaging modality used for data acquisition, and determining the desired features to be extracted.

The imaging modality used for data acquisition in external PCB RE is typically an optical microscope or a digital camera. Both are used to take images of a PCB at varying resolutions to enable the detection, classification, and analysis of the design information. Specifically, external RE uses these images to identify the components, connections, silkscreen markings and different types of ports (high speed serial/parallel, program/debug, display) present on the topside and bottomside of a PCB [19] [35]. Among all imaging modalities, the illumination variance is the most prominent noise source. In some cases, imaging an entire PCB board requires stitching, which results in multiple regions of the entire board with varying illuminance. This variation may cause differences in the appearance of even the same sample, therefore, drastically impacting the effectiveness of image analysis algorithms and the inspection results.

Depending on the magnification of the microscope or camera used for data acquisition, the image patches obtained vary in size and the amount of information included in them. While an increase in the magnification obtains more detailed features for extraction, the illumination noise is also amplified (see Figure 10) causing an information loss. For instance, using low magnification results in a larger image view, but we may lose small features (e.g., characters on resistor) due to the reflection. This, of course, makes the detection of Trojans, i.e., maliciously inserted/replaced components, more challenging. Although more features per image means more details, more image patches should be stitched together to complete the whole image and thus, regions with the various illuminance are involved in the fully stitched sample. Furthermore, when the image magnification increases to obtain more details, some large components on a PCB are separated into different patches, which may be affected by the stitching error. Moreover, since many of the existing image analysis algorithms for segmentation, detection, and classification are heavily parameter-dependent or pixel intensity sensitive, a holistic solution should minimize tuning of the respective parameters to generalize well.

If the PCB under RE has only one to two layers, the challenges encountered by the expert would be solely limited to those discussed above. However, it is more likely that modern PCBs are multilayered, where chips are connected to each other on the top, bottom, and through internal layers. Therefore, for multilayered PCBs, internal RE is required to
complete the RE process. When discussing internal RE, there are two predominant methods: destructive and non-destructive RE. Traditionally, internal RE has been a destructive process similar to that of IC RE. The process involves delayering (similar to IC deprocessing) and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.

Fortunately, recent progress toward non-destructive RE via X-Ray CT has pushed the current state-of-the-art RE methods similar to that of IC deprocessing and imaging of a PCB layer-by-layer until a working physical sample no longer exists. The imaging component of this process is typically done optically by using a digital camera or a high-quality optical microscope, but the destructive nature of the delayering process introduces multiple potential sources of the noise that could impact the quality of the image. Some examples include broken traces, disconnected vias, or just poor quality images making feature extraction much more difficult in the analysis stage of the process. This is due to fact that the effectiveness of the RE process is tied to the quality of the imaging, which is not always excellent.
PCBs. However, several factors can limit the application of general machine learning in the field of RE, including image quality, IC and PCB features, the fabrication technology, unavailability of ground truth, and computational resource required for image analysis in the field of RE. These challenges are discussed in detail in the following sections from the perspective of both IC and PCB.

A. Challenges Associated with IC

High-quality images help to improve the reconstruction accuracy and the overall image analysis results. There are two ways to improve image quality: (1) by reducing the noise using a learned noise model, and (2) by appropriately tuning the imaging parameters. In SEM imaging, the following parameters are commonly fine-tuned depending on the features that need to be extracted:

- **Excitation voltage**: The excitation voltage of the electrons controls the depth of penetration into the sample. A higher excitation voltage can show structures that are hidden below the visible surface (see Figure 12).
- **Dwelling time**: This refers to the time that the scanning beam takes to measure the intensity value of a single pixel in the image. A longer dwelling time would give a better estimation of the true intensity of the value at the given position (see Figure 13).
- **Magnification**: This refers to the size ratio between an object and its scaled projection. A high level of magnification enables us to take images of small features that cannot be seen at a low magnification (see Figure 14).
- **Resolution**: This parameter refers to the number of pixels in the image. Higher pixel count produces better images (see Figure 15).

An image that is less affected by the noise can be acquired by increasing the magnification, resolution, and dwelling time; however, this requires significantly longer imaging times. The time cost of taking images for a 130 nm IC is reported in Table I [23]. It can be observed that full-blown RE for a single layer, with high-quality image acquisition settings, takes over 30 days to complete.

In the context of hardware assurance for ICs, machine learning has been implemented in a variety of scenarios. SEM imaging-based IC Trojan detection applications are explored in [9, 22, 25, 26, 29, 48, 47, 48, 49], and they have also demonstrated the efficiency of automated Trojan detection with the use of machine learning concepts. In addition to the correlation method used in [9, 25], Bao et al. use metal layer features with Support Vector Machine (SVM) to detect the structure difference between golden sample and Trojan sample [29], while Shi et al. also employs SVM but with the features from doping layer (see Figure 5) [26]. The Trojan scanner proposed in [26] removes the requirement of a golden SEM image by inserting in-chip training gates, whose location information can be obtained from the layout image. This method reduces the imaging variations between training and test samples, which also provide the results from different near-optimal imaging parameters. However, the works discussed above do not explore the challenges from the machine learning viewpoint or discuss the image analysis in detail. In contrast to the typical demonstration of performance measures, the underlying challenges with each step of the machine learning paradigm (see Figure 1(a)) will be discussed in detail in the following paragraphs.

The machine learning aspect of the RE workflow can be executed in three mutually-dependent sequential steps (see Figure 1(a)). First, the identification of device node technology from images of the IC wafer, which are taken layer by layer, is of great importance. Machine learning techniques can be employed at this level to improve the quality and reliability of the acquired images, which is commonly referred to as pre-processing. The pre-processed image is then forwarded to the
TABLE I: Time table of SEM imaging for an IC with the following characteristics: technology node: 130nm, and size: 1.5 mm x 1.5 mm.

Scanning Speed	Field of View	Resolution	500um x 500um	20um x 20um
1 usec/pixel	512x512	9 sec	1 hr 33 min	
1 usec/pixel	1024x1024	18 sec	3 hr 7 min	
1 usec/pixel	2048x2048	54 sec	9 hr 22 min	
10 usec/pixel	512x512	45 sec	7 hr 48 min	
10 usec/pixel	1024x1024	3 min 18 sec	1 d 10 hr	
10 usec/pixel	2048x2048	6 min 25 sec	5 d 12 hr	
32 usec/pixel	512x512	1 min 30 sec	15 hr 0 sec	
32 usec/pixel	1024x1024	6 min 30 sec	1 d 21 hr	
32 usec/pixel	2048x2048	24 min 0 sec	11 d 1 hr	
100 usec/pixel	512x512	4 min 48 sec	2 d 2 hr	
100 usec/pixel	1024x1024	18 min 54 sec	8 d 4 hr	
100 usec/pixel	2048x2048	1 hr 11 min	30 d 20 hr	

feature extraction step where information from the images are extracted for further image analysis.

As mentioned above, the first phase of the IC RE framework involves acquiring images of the IC to recover the node technology employed in its design, with the aim of obtaining the heuristic model of the design rules used to manufacture the IC. A standard IC consists of active, polysilicon, contact, metal-1, and multiple upper via and metal layers (see Figure 3). The active layer (see Figure 16) consists of N and P doping regions, with shapes that fit the constraints of Manhattan geometry on a cartesian space. The polysilicon layer (Figure 17) in conjunction with the contact and metal layers (Figure 18) connect the electrical circuit. Because of different functionally of each layer, they are usually designed with particular structural patterns. Therefore, it is intuitive to match those detected patterns with a standard cell library, and further extract the netlist.

In natural scene images, the additive noise model or at least a fit-to-purpose, heuristic model of the noise statistics can be derived, which aids in the selection of noise filtering approaches. Common methods such as spatial and frequency domain filtering [50, 51, 52, 53] can suppress noise. However, the effectiveness of these methods depends on a prior knowledge of the characteristics of the additive noise. For instance, median filtering is effective against salt-and-pepper noise [54]. With imaging modalities such as SEM and CEM, the noise models for images taken from ICs are more complicated and, thus, a comprehensive understanding of the noise sources is required to perform effective RE.

Feature extraction involves the segmentation, modeling and analysis of structures in the silicon substrate, which requires the layer-by-layer separation in sequence rather than at the same time. When discussing feature extraction for IC RE, features are mostly acquired from the active, contact and metal layers. Some approaches to the segmentation of selected features such as via, metal and polysilicon are discussed in [17, 18, 55, 56].

The features can be extracted from the silicon substrate based on the intensity difference caused by the respective constituent materials. Among the three layers in an IC, active, polysilicon, and metal layers, the polysilicon layer has the highest separation error due to the noise (see Figure 17). This is because the structure of polysilicon layer is easily affected by the lateral diffusion of pixel intensity along the side of its structures. It further introduces the islands of pixels in the structures that has pixel values corresponding to the silicon substrate. More specifically, this noise may lead to the discontinuity of the polysilicon structure or the fusion of neighboring structures. On the other hand, the metal layer and the contact layer are easier to be distinguished compared to the active and polysilicon regions [41] (see Figures 17 and 18).

Hence, as can be understood, the degree of susceptibility of certain materials used in the IC to noise are different. However, when the image quality is low, the noise effect is observed in all layers and affects the feature extraction. Additionally, although each layer presents different intensities, they have significant overlaps in between. It can be clearly concluded that the off-the-shelf image segmentation algorithms that rely entirely on the intensity pixel values cannot provide accurate segmentation results. The importance of accuracy in segmentation is critical for a variety of RE application scenarios and can be demonstrated by an example. Suppose that we are interested to find an inserted Trojan cell having a specific aspect ratio. The noise may add additional pixels on the boundary of the Trojan cell, and consequently, changes this aspect ratio and results in Trojan detection failure.
Different amounts of available information in each layer of an IC also challenges the feature extraction. For instance, in advanced technology nodes, the amount of information contained in the polysilicon layer is negligible as this layer mostly consists of straight lines with varying counts. Its counterparts in older technology nodes consist of more complicated two-dimensional shapes. This phenomenon has been partially studied in [57], where two open-source academic standard cell library datasets for 32nm and 90nm ICs have been considered. The study found significant variation in the amount of the information contained in each layer, which can be used in machine learning-based classifications. If the amount and nature of information contained in each layer can be quantified for a wider range of technology nodes and manufacturers, the settings required to acquire images for that specific layer can be optimized so that a good compromise between image quality and imaging time can be reached.

Feature analysis is the final step in the IC RE workflow (see Figure 1(a)). After the extraction of features, layers are grouped together to form a three-dimensional representation of the IC. Some of these extracted features join together to form the basic logic units of the IC, i.e., the standard cells. The rest of the features are auxiliary units such as capacitors and memory. There are a large number of tools and approaches that enable the extraction of these standard cells and the gate-level netlist, see for instance [19, 58, 59, 60, 61, 62, 63]. The major limitation of these tools is the assumption made on the availability of the standard cell libraries used in the design process of the IC. However, the standard cell library is considered highly confidential and is not available for public use. This imposes a limitation on how these libraries can be used to perform RE: only manufacturer and clients having access to the standard libraries can leverage the information included in them. In such cases, the RE of COTS devices can only be achieved with the assistance of SME in a time-consuming and tedious fashion.

In [57], an algorithm has been introduced that could extract candidates from the standard cell library using the contact layer constrained by the amount of data available. Another approach using the doping layer has also been discussed in [64]. The extracted standard cell library can be used to generate the netlist of the IC. With a successful extraction of the gate-level netlist, the information can be further fed into a machine learning algorithm such as ones suggested in [65, 66, 67, 68] to understand the purpose of the given circuit.

One of the major drawbacks associated with applying machine learning to RE is the lack of extracted features that can be generalized to other ICs. For example, the contrast between features in the active region of ICs within different technology nodes (see Figures 16 and 19). Due to the confidential nature of IC design and proprietary optimization techniques, the features associated with the major layers in the IC are different. This intrinsic characteristic of the features prevents us from using information acquired through RE of one IC to another. This is against one of the core principles of machine learning that is, the generalization of a learned model, even within the same domain. Hence, the application of machine learning techniques in RE has to be limited to the IC under test or, at best, ICs of the same technology node produced by the same foundry.

B. Challenges Associated with PCB

Machine learning combined with image analysis have proven invaluable for quality control and hardware assurance in the PCB manufacturing industry, enabling automated defect detection and visual inspection to a certain degree [69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. Several studies have applied image subtraction to compare a golden, reference image of a PCB design or schematic to a manufactured PCB, whose quality needs to be tested [69, 70, 71, 72, 73]. Other more complex approaches for defect detection in PCBs involve modeling-based methods such as evaluating the roundness of drilled vias [77], or using multi-marked point processes for solder paste defect detection [75].

Similar to IC RE, challenges also exist in both imaging and machine learning for PCB RE. The PCB RE can be categorized as external PCB RE and the internal PCB RE, where the optical imaging or X-Ray can be applied, respectively. In an optical imaging scenario, a digital microscope or a digital single-lens reflex camera can obtain high-quality images easily due to the advance in CMOS technology. When using X-Ray to acquire images, adjustable parameters can be taken into account, which can affect the image quality, as discussed below.

- **Tube voltage:** This parameter adjusts the peak energy of the X-Ray beam (i.e., raises the average energy of the photons). The choice of the tube voltage affects the image contrast in the scanning process. An increase in this voltage leads to a lower contrast in the images.
- **Tube current-exposure time product:** This refers to the number of photons produced per unit time. Random, thin, bright and dark streaks are considered as noise that may appear in the images due to the low photon counts.
- **Resolution:** The resolution of the image is defined as the pixel size selected during X-Ray image acquisition, where the pixel size can be identified as the limiting factor for spatial resolution.
- **Filtration:** Filters are used to reduce the beam hardening effects in the X-Ray beam. As the low-energy photons do not penetrate through the object, filtration improves the quality of the beam.

The first phase of the machine learning for PCB deals with identifying whether the PCB is imaged optically or via X-Ray CT and whether external RE or internal RE should be considered, respectively. Clearly, the pre-processing required
for each of these modalities is different as the noise sources vary from one to another. For external RE, this step includes generating the design’s BoM by extracting the components, vias, traces, silkscreen annotations, etc. Internal PCB RE mainly concerns with extracting the internal routings and connections of traces and vias, with the main difference being the noise involved. The final step for both external and internal RE infers the purpose and functionality of the circuit, sub-circuit, or system in the design.

When applying external RE, the desired features are the components, text and logo markings, vias, traces, etc. From an image analysis perspective, the extraction of such features falls within the scope of object detection, classification, and identification. Existing algorithms for achieving these goals are well-developed in natural scene images [79, 80]. Nevertheless, adapting these algorithms for external PCB RE-related applications remains challenging. The components on the surface of a PCB vary in size and color depending on their functionality and packaging. This could challenge the feature extraction process. First, the lighting conditions and color of PCB surfaces may impact the extraction performance. Traditional image analysis methods convert an RGB image to another color map to address the lighting variance [81, 82]; however, this cannot prevent shadowing on PCB surface due to the existence of tall components, which may result in an error in color-based segmentation methods. Moreover, according to the literature, the complications when the color of a PCB’s surface is similar to the color of components has not been addressed completely (see Figure 20 where the colors of the surface of the PCB and components are all black). Besides, in an optically imaged PCB, text markings, traces, and vias are packed tightly compared to the objects in a natural scene image. This increased image complexity challenges feature localization, especially in a densely populated design. In addition, with the advances in technology, the size and shape of components become smaller, and their placements/orientations in the design are decided by the designer. Therefore, neither specific rules nor the encoding that hold from one design to another across even one generation can be defined.

While the above challenges should be faced, there is a plethora of side information on the board itself that can be leveraged to make the extraction task easier. The text marking near a component on a board represents the type of components (see Figure 21 where C2/C3/C29 are capacitors and U5 is an IC). Those markings can be used as ground truth, which provide machine learning classifiers with either the labels or additional features during classification. Although there are substantial applications for these markings, extracting them is particularly challenging. The Optical Character Recognition (OCR) is the most widely used tool for text recognition [83], but its performance is not stable in the case of PCB inspection. The markings are etched or printed on PCB boards using a variety of materials and colors, and they vary in orientation, which degrades performance of the OCR engine [84]. This stresses the importance of having a robust text recognition system for external PCB RE application.

In addition to the above-mentioned markings, information can be derived from the traces and vias on the board. The extraction and localization of traces and vias are critical because they determine the functionality and the performance of the board, which allow the validation of the system's integrity. Existing research on detection of traces and vias has mainly focused on finding defects and usually uses the bare board to illustrate the problem [85, 86]; however, the proposed approaches are not robust in practice, when traces and vias are overlapping with components.

For internal PCB RE, the important design information are the vias and traces on a board and the layers throughout the board. The vias establish connectivity between the layers and are consistent from one layer to another, except in a rare
case of a blind/buried vias in a space constrained design. These blind vias are unique only to their respective layers as opposed to being at the same location throughout [34]. Traces provide the main discriminatory information for each layer and determine the connectivity of the vias throughout the board. As stated previously, the noise affects the X-Ray image quality, which particularly impacts the feature extraction stage, when the traces and vias in internal PCB RE can be significantly altered due to the blur and high-z material noise artifacts. For example, vias in the raw image can be linked (see Figure 22 (a)) or their shape can be noticeably distorted (see Figure 22 (b)). The distortion may degrade performance of the feature localization and identification. Vias and traces within a PCB are mainly circles and lines (see Figure 23). The predominant class of algorithms for detecting these geometries, line/circle detection using model fitting, is quite sensitive to the parameters and pixel intensities. Thus, it likely would require manual tuning from one sample to another to minimize the number of missing or falsely detected objects. This is neither practical nor ideal for automated PCB RE, where it should be noise-tolerant, generalizable and scalable for multiple technologies, and designs.

In addition to the challenges mentioned above, improper alignment causes another difficulty that affects the feature extraction in both external and internal PCB RE cases. Due to the trade-off between details included in the features and the size of the features in external PCB imaging, some components cannot be captured completely in a single image, and thus we require aligned (stitched) images to extract the features. Although this matter has been dealt with by using the Charge-Coupled Device (CCD) camera and SEM imaging [87, 88], the lighting condition and the number of assembled components can still lead to the stitching errors (see Figure 24) in external PCB images. The same issue happens in the internal PCB RE. The aliasing effect in the slices that make up the 3D board sample (see Figure 11) is a byproduct of misalignment. This leads eventually to having the layers containing various amounts of feature information that may associate to a single layer or an adjacent one. Additionally, misalignment can also lead to another issue – missing information (see Figure 25 where red dashed regions show areas of missing information). Therefore, it is important to not only be able to detect these features at each slice during feature extraction, but also address misalignment beforehand in order to localize and correspond the features to their correct layer.

Similar to the feature analysis of IC, the extracted and localized PCB features are also analyzed to generate a netlist that can be further manufactured. This requires the translation of the image features from the pixel domain to the geometrical domain (see Figure 26). Once the BoM has been obtained from the PCB board, a software is applied to interpret the information by comparing that to a standard BoM for inspection, see, e.g., [89, 90]. Moreover, the systems such as the work proposed in [91] can generate a schematic from a netlist, enabling applications such as schematic verification, anomaly detection, replacement/upgrades, etc. However, these applications assume that the extracted features from PCB are correct, which may lead to inspection failure if the error is accumulated from earlier steps as mentioned in the previous section. Accordingly, it is crucial to do in-depth research in PCB feature extraction and analysis to obtain a more robust PCB RE scheme.

C. Common Challenges Associated with RE

A complementary aspect to time complexity is the resource complexity imposed by the images acquired at higher levels of quality. As discussed before, for both PCB and IC RE, these images indeed require more memory on a computer system to store them. As an example, the space complexity associated
with acquiring images of the entire doping layer of a 45nm node technology IC has been over 22 gigabytes [64]. For a full-blown RE process conducted on ICs with present-day technology nodes or a multi-layered PCB, several terabytes of data should be stored. Besides, additional resources are also necessary to process such images. This aspect has been highlighted in [92]. Hence, the resource complexity can be another limiting factor for an effective RE process.

Imaging involves human interaction from the initial step to the final one. In addition to adjusting the imaging parameters as mentioned above, optimizations are performed by the operator, if such settings are provided by the microscope manufacturer. These include, but are not limited to, contrast, focus, doppler shift, aberration and a suite of other functions. Hence, the bias caused by an operator is also a source of randomness in the image acquisition phase of the RE framework.

Summary: Finally, to recap, the most prominent algorithms used in RE at various stages of the workflow are given in Table II. Although we discuss the challenges linked to application of various methods in RE, similar to other studies on this matter, a quantitative analysis on the performance of the algorithms cannot be presented. This is a direct consequence of the lack of a comprehensive benchmark dataset that can be used to compare the algorithms. Such a database cannot be built easily due to the complex undertaking involved in the preparation of instances. This problem can be even more severe for deep learning algorithms, as discussed in the following section.

D. Limitations of Deep Learning

Deep learning models are employed in the domain of image analysis, where their applications range from noise suppression, segmentation, and classification to image reconstruction. Due to the relative simplicity of such approaches along with the availability of a wide variety of supporting tools and programming libraries, deep learning has become a common approach to replace feature analysis. A deep learning framework can be applied to approximate a mapping function from an input to the respective output, provided that the model has sufficient degrees of freedom to learn the representation. The robustness of the model depends on the availability of a fairly large number of diverse, high-quality images as inputs and their corresponding accurate labels as ground truth. If these conditions are not met, the model cannot be generalized to unseen data. To the best of our knowledge, a dataset meeting this condition is not available for ICs or PCBs. Moreover, further attention should be given to the nature of the noise in the images. In the presence of the noise, even if a few pixels are affected, the model produces erroneous results [93, 94]. Hence, the scope of application of deep learning in RE is currently limited. With the lack of features being generalizable across different technology nodes and manufacturers, to effectively denoise, segment and extract models, it needs to (1) perform imaging of a large number, typically thousands, of individual ICs [95], and (2) give pixel level, accurate labels manually, with the help of SMEs. This remains a major undertaking as the amount of data and the required time scale up as shown in Table I. Most studies done with deep learning in context of RE and hardware assurance look for generalizable features such as vias and metal connections [63, 92].

Deep learning for PCB RE is equally challenging. Although for external PCB RE, it may seem apt to apply deep learning to conduct object detection/classification, it can be easily broken. Since deep learning models are usually heavily reliant on the data, which they have been trained on, they can be confused when encountering custom ICs developed in house or by a third-party foundry, as opposed to those seen commercially. Besides, the passive components have a variety of footprints that often overlap, and consequently, a correct classification cannot be achieved in a straightforward manner. Nevertheless, deep learning has been adopted in studies on internal PCB RE. As an example, Qiao et al. has suggested to use a Deep Convolutional Neural Network (DCNN) with the graph cuts to achieve segmentation in PCB CT images [96]. Although the performance is improved, when compared to the state-of-the-art methods, it leaves room for improvement in terms of accuracy for full PCB RE. To apply deep learning in PCB RE cases, the authors of [96] leverage transfer learning in combination with image patches from the complete image to address overfitting and other challenges caused due to the limited size of the training database. Nonetheless, it is not clear how well this technique generalizes to the vast variety of board samples and whether training is required for every new sample. Even if this issue can be resolved by adding other board samples, this intensifies the labeling problem.
Article	Main Contribution	Scope	Algorithms	Features Used	Metrics	Evaluation Method	Shortcomings for RE
53	Segmentation	IC	Edge detection	Metal layers	NA	Visual	Optical microscope images
18	Segmentation	IC	K-means and SVM	Contact and Metal layers	F-score	Ground truth	Only applicable to via and metal connections
17, 55	Segmentation	IC	K-means, Fuzzy C-Means, SVM	Polysilicon and Contact layers	Intersection over Union (IoU), pixel accuracy	Ground truth	Requires population of shape library
20	Segmentation	IC	Spatial and frequency domain filtering	Contact and Metal layers	NA	Visual	Naive applications of image processing
64	Extraction of Standard Cell Library	IC	Normalized cross-correlation	Doping layer	NA	Ground truth	Designed for partial RE
52	Extraction of Standard Cell Library	IC	Rule based	Contact layer	NA	AES designs with ground truth	Over/Under-segmented cells
69, 92	Localizing standard cells	IC	Template Matching	Conductive layers	NA	NA	Uses approximation to speed up cell localization
58, 59	Netlist generation	IC	Template Matching	All layers	NA	NA	Requires standard cell library
61	Netlist generation	IC	XGBoost	All layers with pixel intensity, gradient and Hu moments	NA	Ground truth	Needs to be fine tuned for different ICs
66, 67, 68, 98	High-level description of sub-circuits	IC	Topological analyses, fuzzy structural similarity	Netlist	NA	Ground truth	Uses similarity between known libraries of functional blocks to generate description
19, 99, 100	Development of tools for RE	IC	NA	All layers	NA	NA	Assumes availability of some information, e.g., the standard cell library
25, 26	IC Trojan detection on active layer	IC	Rule based	Shape of logic cells	NA	Designed on-chip training data	Semi-destructive, need manual polishing
20	Non-Destructive Imaging and Netlist Extraction	PCB	X-Ray CT Imaging and Image Segmentation	X-Ray CT Slices	NA	Dataset with De-Populated Board	Very manual and parameter dependent image processing
69, 70, 71, 73, 74, 75, 86	PCB Defect Detection and Quality Control	PCB	Image Subtraction	PCB Layer Images	Precision and F-Score	Golden PCB Layer Image	Requires bare board golden layer images
84	Text Recognition on PCB Surface	PCB	Optical Character Recognition, Binarization, and Background Estimation	Board surface image	F-Score, Precision, and Recall	Compared against freely available OCR engines OCRAD, Tesseract-OCR, Cuneiform-linux, and GOCR on ground truth	Sub-optimal accuracy
96	Trace segmentation	PCB	DCNN and Graph Cuts-based Semantic Segmentation	PCB CT Images	Pixel accuracy, IoU, F1-Score, Precision, Recall	50 PCB CT test images	Dealing with the noise, reliance on training data, and variance across designs/imaging
The technical advancement in the field of RE has also led to the development of counter RE methods. They are applied to impair the effectiveness of the RE at all three levels of the RE framework; however, here we introduce solely a couple of them, being within the scope of our paper. Several techniques that counter RE at the image acquisition phase rely on obfuscation of key visual information or addition of unwanted information to make RE more tedious [101, 102, 103]. For instance, the method discussed in [104] relies on the insertion of dummy logic cells on the unused silicon substrate in the design of the IC. They are connected at a logic level, but do not affect the functionality of the circuit. The work presented in [26] achieves a similar goal, however, by inserting functional logic cells. These methods successfully hide the boundary between different standard cells making the extraction of gate-level netlist difficult. At the same time, their method prevents the insertion of hardware Trojans by utilizing all free space in the IC die [26]. Although it may be possible to predict the development trend of RE techniques, accounting for all of them is rather difficult.

Similar to methods used in the anti-IC RE, anti-PCB RE approaches are focused on making RE at the PCB level prohibitively more expensive and time consuming than it is worth. This is done in a variety of ways, with varying complexities. The work presented in [54] focuses on the design and implementation of few passive components, more unmarked ICs, using custom silicon, and/or having cases of missing silkscreens. These methods have low to moderate overhead with regards to design cost and manufacturing impact. However, they also only increase RE costs by a small margin. Instead, by utilizing a multi-layer board, blind and buried vias, and/or routing signals for the inner layers, the RE costs can be significantly raised [55]. Additionally, obfuscation can also be utilized for anti-RE of PCBs [105], similar to its application for anti-RE at the IC level. Components referred to as permutation blocks can be used to hide the interconnects among the circuit components on PCBs.

Existing research on how to counter X-Ray-enabled RE focuses on inserting X-Ray detecting sensors and using specific materials. X-Ray detecting sensors are devices embedded in a PCB design, being sensitive to X-Rays and react once a predetermined length of exposure to X-Rays has occurred. Afterward, the sensors signal a destructive measure to take place in the board to delay the RE process or simply act as an indicator that RE has taken place. Furthermore, high density materials with high X-Ray attenuation factors, such as Zirconia powder, could be used throughout a board to reduce the quality of the X-Ray images. Using this material in a specific pattern throughout several layers can drastically affect the X-Ray transmission through a PCB, resulting in a much lower signal-to-noise ratio and low quality 3D reconstruction of the PCB sample [44]. The combination of the anti-RE techniques for external RE with these techniques for internal RE could provide a holistic solution to protect the system from RE.

VI. Future Research Directions

Up until this point, we’ve described the main building blocks of a typical RE framework (see Figure 1(a)) put together to meet the main requirements of an automated approach. In fact, the end goal of the entire RE process is to leverage the advantages offered by image analysis and machine learning and eventually perform RE in an automated manner. In addition to obvious benefits, namely the reduction in manpower and costs, automated RE enables a variety of applications, which can further exploit the information provided by the RE. In this regard, the below topics are possible directions for future research.

1) Enhanced Hardware Assurance: With automated RE achieved at both of the IC and PCB levels, it can allow for enhanced levels of assurance, when validating or verifying a design. The detection of defects, design alterations, or IP infringement can be improved to a pixel-level accuracy and performed more efficiently. However, it is not known whether a substantial improvement over the state-of-the art techniques can be achieved through these advancements. This needs to be explored in future work in this area.

2) Qualitative Evaluation of Reverse Engineering: While each block in the RE framework is necessary to achieve a high level of automation, no method has been yet developed in the literature that can evaluate the performance of the RE process at each stage of the framework, let alone the whole process. Defining metrics and criteria for the quality assessment of RE can also provide the ability to explore not only the trade-offs between the quality at various stages, but also their impact on the entire RE process. This can, of course, facilitate possible improvements in the efficiency in terms of time, complexity, and required computational resources.

3) Functional vs. Design Equivalence: Our earlier discussion of image analysis- and machine learning-enabled RE has focused on developing a method to reproduce an IC or, similarly, a PCB as close to the original one as possible. However, there are often scenarios, where only a functionally-equivalent reproduction is necessary rather than a precise design reproduction. As an example, we can refer to an automated generation of a new design built upon some arbitrary standard cells, but with the same functionally as the original one with the foundry-specific standard cells. For PCBs, this can be even more straightforward: producing a PCB, whose connectivity is maintained, but not its specifications, e.g., the trace/via width or distances. Future research should not only focus on such cases, but also go beyond those by considering a broader range of equivalence options, instead of solely functional and design equivalence.

4) Reverse Engineering Optimization via Deep Learning: In previous sections, the challenges towards applying deep learning in RE-related studies have been discussed
(see Section V-D). More precisely, due to the lack of a sufficiently large amount of data as well as the variations in data collected across designs, the requirements of effective deep learning models cannot be fulfilled. However, after conducting an RE process, certain stages, e.g., de-noising, via/trace feature extraction, etc., can be optimized via deep learning. In this regard, we can employ synthetic data generation and augmentation, along with using previously extracted RE data as ground truth. This can indeed help to make those stages more time-efficient, when conventional deep neural networks or convolutional neural networks are applied. As this has not been thoroughly explored, the actual extent of such improvement is not known.

5) Missing Data Reconstruction: Regardless of the modality, one has to deal with the noise in the collected data. The impact of the noise can range from missing regions of the information in a de-processed IC to missing artifacts on a PCB after performing the X-Ray CT. If RE can be automated, it is reasonable to acquire a large amount of data to model particular noise characteristics, observed during image acquisition. These models could then be employed to correct noisy data and even reconstruct missing data. While this is well studied in machine learning- and image analysis-related literature, the feasibility, and extent to which this can be achieved for IC and PCB RE have yet to be explored.

6) Compression Algorithms for RE: Another interesting aspect of RE to be taken into account in future work is that the minimum amount of information or data required for a successful reconstruction of images should be collected and stored on a computer system. In addition to speeding up the process of image acquisition, this has the added benefit in terms of space complexity. Unlike common image compression algorithms that attempt to attain the highest possible level of visual quality, new algorithms can be designed or adapted to accurately reconstruct the required features, which leads to a saving of the storage and processing resources.

7) Cross-Modality Comparison and Evaluation: One of the biggest challenges facing us, when evaluating the performance of an RE process, is to compare results across different modalities. Irrespective of the modality (i.e., SEM, Optical, X-Ray CT), the final output of the RE framework should be compared to either a software-provided golden design in a digital format or a PCB schematic. This also requires the exploration of new techniques that can incorporate various factors including different characteristics of the data, the impact of the noise, and variations across the modalities.

8) Countermeasures against Advanced RE-based Attacks: While the techniques mentioned in Section V are useful to stop an attacker enjoying the advantages of the current, commonly applied RE framework, this cannot be guaranteed in the future. In particular, to deal with adversaries that can conduct RE, enhanced through the adoption of machine learning and image analysis algorithms, the designer has to predict the risk of such emerging attacks. To this end, it is crucial to estimate the amount of effort that the attacker has to put and design measures to make the RE process significantly less effective and inefficient. Unfortunately, such estimations cannot be carried out in a straightforward manner. Therefore, new research directions regarding the development of counter automated-RE can be of great interest for researchers from government, industry, and academia.

VII. CONCLUSION

In this paper, we have comprehensively discussed the challenges associated with RE of ICs and PCBs. It has been observed that for hardware trust and assurance, even though existing, well-known methods (e.g., functional analysis) can be considered useful, the challenges of such methods rise in proportion to the complexity of the IC. The aim of the design in the semiconductor industry is to move towards a higher performance and efficiency and the upward trend of complexity can remain intact for the years to come. Hence, the need for effective RE becomes greater than ever before.

From the imaging perspective, it has been noted that the primary challenge to be faced by an effective RE-based method is the lack of understanding of the nature of the noise in imaging modalities used for RE, e.g., SEM and CEM. This can be augmented by the techniques used to pre-process the IC for imaging such as depotting and delayering. Furthermore, the time spent to acquire high-quality images with a reduced level of the noise makes RE infeasible for ICs employing today’s technology nodes.

Our overview of machine learning going hand in hand with RE has demonstrated the need for quantifying the amount of useful information in each layer. In addition, the effect of counter-RE on machine learning-enabled techniques has been further investigated. Finally, the high variability of features between the layers of different ICs and the lack of high-quality datasets addressing this issue have been observed and regarded as an obstacle to employment of deep learning for RE.

While relevant literature regarding PCB RE is not rich, there has been a clear interest in taking advantage of image analysis and machine learning algorithms for quality assurance in PCB manufacturing processes. These approaches typically involve image subtraction or (to some extent) building models for detecting defect/anomaly during the manufacturing process. Nevertheless, algorithms implemented for these purposes are not sufficient as they cannot resolve challenges with the external or internal PCB RE. As a prime example, external PCB RE requires that robust, illumination-invariant algorithms to be developed, which ensures effective, high-quality component extraction and analysis. In addition to the intensity inhomogeneity, algorithms designed to deal with internal PCB RE must also be robust to blurring artifacts caused by the X-ray, high-z materials, and aliasing from neighboring layers.
Furthermore, due to the wide variety of designs across technologies and the lack of representative datasets, generalization of the results can pose a serious problem to RE.

Finally, we believe that this paper paves the way for the necessary broad discussion on the above issues and how hardware trust and assurance can benefit greatly from RE.

ACKNOWLEDGMENT

This paper is based upon work supported by Cisco, AFOSR under award No. FA9550-14-1-0351, National Science Foundation under grant No. 1821780, and National Science Foundation Graduate Research Fellowship under Grant Nos. 1315138 and 1842473.

REFERENCES

[1] F. Ganji, D. Forte, N. Asadizanjani, M. Tehranipoor, and D. Woodard, “The power of ic reverse engineering for hardware trust and assurance,” Electronic Device Failure Analysis (EDFA), 2019. [https://static.asminternational.org/EDFA/201905/30] Accessed: August 9, 2019.

[2] J. Robertson and M. Riley, “The Big Hack: Amazon, Apple, Supermicro, and the Chinese Government.” Bloomberg Businessweek. Oct. 2018. https://www.bloomberg.com/news/articles/2018-10-04/the-big-hack-amazon-apple-supermicro-and-beijing-respond [Accessed: August 9, 2019].

[3] S. K. Moore, “This tech would have spotted the secret chinese chip in seconds,” Jul 2018.

[4] M. M. Tehranipoor, U. Guin, and D. Forte, “Counterfeit integrated circuits,” in Counterfeit Integrated Circuits, pp. 15-36. Springer, 2015.

[5] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” in 2008 IEEE International workshop on hardware-oriented security and trust, pp. 51–57, IEEE, 2008.

[6] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and S. Bhunia, “Tesr: A robust temporal self-referencing approach for hardware trojan detection,” in 2011 IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 71–74, IEEE, 2011.

[7] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia, “Mero: A statistical approach for hardware trojan detection,” in International Workshop on Cryptographic Hardware and Embedded Systems, pp. 396–410, Springer, 2009.

[8] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and detection,” IEEE design & test of computers, vol. 27, no. 1, pp. 10–25, 2010.

[9] F. Bourbon, P. Loubet-Moudi, J. J. Fournier, and A. Tria, “A high efficiency hardware trojan detection technique based on fast sem imaging,” in Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 788–793, EDA Consortium, 2015.

[10] C. Bao, D. Forte, and A. Srivastava, “On reverse engineering-based hardware trojan detection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 1, pp. 49–57, 2016.

[11] F. Zhang, A. Hennessy, and S. Bhunia, “Robust counterfeit pcb detection exploiting intrinsic trace impedance variations,” in 2015 IEEE 33rd VLSI Test Symposium (VTS), pp. 1–6, IEEE, 2015.

[12] T. Iqbal and K.-D. Wolf, “Pcb surface fingerprints based counterfeit detection of electronic devices,” Electronic Imaging, vol. 2017, no. 7, pp. 144–149, 2017.

[13] M. Rahman and M. Dewan, “Analytical determination of collisional sheath properties for triple frequency capacitively coupled plasma,” IEEE Transactions on Plasma Science, vol. 42, no. 3, pp. 729–734, 2014.

[14] S. Keshavarz, C. Yu, S. Ghandali, X. Xu, and D. Holcomb, “Survey on applications of formal methods in reverse engineering and intellectual property protection,” Journal of Hardware and Systems Security, vol. 2, no. 3, pp. 214–224, 2018.

[15] M. Fyrbiak, S. Strauß, C. Kison, S. Wallat, M. Elson, N. Rummel, and C. Paar, “Hardware reverse engineering: Overview and open challenges,” in 2017 IEEE 2nd International Verification and Security Workshop (IVSW), pp. 88–94, IEEE, 2017.

[16] E. Principe, N. Asadizanjani, D. Forte, M. Tehranipoor, R. Chivas, M. DiBattista, S. Silverman, M. Marsh, N. Piche, and J. Mastovich, “Steps toward automated deprocessing of integrated circuits,” in ISTFA 2017: Proceedings from the 43rd International Symposium for Testing and Failure Analysis, p. 285. ASM International, 2017.

[17] D. Cheng, Y. Shi, B.-H. Gwee, K.-A. Toh, and T. Lin, “A hierarchical multiclassifier system for automated analysis of delayed ic images,” IEEE Intelligent Systems, vol. 34, no. 2, pp. 36–43, 2018.

[18] D. Cheng, Y. Shi, T. Lin, B.-H. Gwee, and K.-A. Toh, “Hybrid k-means clustering and support vector machine method for via and metal line detections in delayed ic images,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 12, pp. 1849–1853, 2018.

[19] R. Torrance and D. James, “The state-of-the-art in ic reverse engineering,” in International Workshop on Cryptographic Hardware and Embedded Systems, pp. 363–381, Springer, 2009.

[20] N. Asadizanjani, M. Tehranipoor, and D. Forte, “Pcb reverse engineering using nondestructive x-ray tomography and advanced image processing,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 2, pp. 292–299, 2017.

[21] M. T. Rahman, Q. Shi, S. Tajik, H. Shen, D. L. Woodard, M. Tehranipoor, and N. Asadizanjani, “Physical inspection & attacks: New frontier in hardware security,” in 2018 IEEE 3rd International Verification and Security Workshop (IVSW), pp. 93–102, IEEE, 2018.

[22] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit integrated circuits: detection, avoidance, and the challenges ahead,” Journal of Electronic Testing, vol. 30, no. 1, pp. 9–23, 2014.

[23] N. Vashistha, M. T. Rahman, H. Shen, D. L. Woodard, N. Asadizanjani, and M. Tehranipoor, “Detecting hardware trojans inserted by untrusted foundry using physical inspection and advanced image processing,” Journal of Hardware and Systems Security, vol. 2, no. 4, pp. 333–344, 2018.

[24] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware trojan design and implementation,” in 2009 IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 50–57, IEEE, 2009.

[25] N. Vashistha, H. Lu, Q. Shi, M. T. Rahman, H. Shen, D. L. Woodard, N. Asadizanjani, and M. Tehranipoor, “Trojan scanner: Detecting hardware trojans with rapid semi imaging combined with image processing and machine learning,” in ISTFA 2018: Proceedings from the 44th International Symposium for Testing and Failure Analysis, p. 286. ASM International, 2018.

[26] Q. Shi, N. Vashistha, H. Lu, H. Shen, B. Tehranipoor, D. L. Woodard, and N. Asadizanjani, “Golden gates: A new hybrid approach for rapid hardware trojan detection using testing and imaging,” in 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 61–71, IEEE, 2019.

[27] S. Ghosh, A. Basak, and S. Bhunia, “How secure are printed circuit boards against trojan attacks?,” IEEE Design & Test, vol. 32, no. 2, pp. 7–16, 2014.

[28] R. Elnaagar and K. Chakraborty, “Machine learning for hardware security: Opportunities and risks,” Journal of Electronic Testing, vol. 34, no. 2, pp. 183–201, 2018.

[29] C. Bao, D. Forte, and A. Srivastava, “On application of
one-class svm to reverse engineering-based hardware trojan detection,” in *Fifteenth International Symposium on Quality Electronic Design*, pp. 47–54, IEEE, 2014.

[30] C. Bao, D. Forte, and A. Srivastava, “On reverse engineering-based hardware trojan detection,” *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 35, no. 1, pp. 49–57, 2015.

[31] R. C. Stogdill, “Dealing with obsolete parts,” *IEEE Design & Test of Computers*, vol. 16, no. 2, pp. 17–25, 1999.

[32] S. A. S. Committee et al., “Inquiry into counterfeit electronic parts in the department of defense supply chain,” *Washington, DC: Author*, 2012.

[33] U. J. Botero, M. M. Tehranipoor, and D. Forte, “Upgrade/downgrade: Efficient and secure legacy electronic system replacement,” *IEEE Design & Test*, vol. 36, no. 1, pp. 14–22, 2019.

[34] I. McLoughlin, “Secure embedded systems: The threat of reverse engineering,” in 2008 14th IEEE International Conference on Parallel and Distributed Systems, pp. 729–736, IEEE, 2008.

[35] J. Grand, “Printed circuit board deconstruction techniques,” in *8th *(USENIX)* Workshop on Offensive Technologies *(WOOT)*, 2014.

[36] S. E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazzomahadi, L. Wang, J. Chandy, and M. Tehranipoor, “A survey on chip to system reverse engineering,” *ACM journal on emerging technologies in computing systems (JETC)*, vol. 13, no. 1, p. 6, 2016.

[37] J. Abt and C. Pawlowicz, “Circuit analysis techniques: Delaying and circuit vision,” 2012. Link: http://www.techinsights.com/.

[38] M. Holler, M. Guizar-Sicairos, E. H. Tsai, R. Dinapoli, E. Müller, O. Bunk, J. Raabe, and G. Aeppli, “High-resolution non-destructive three-dimensional imaging of integrated circuits,” *Nature*, vol. 543, no. 7645, p. 402, 2017.

[39] E. Matlin, M. Agrawal, and D. Stoker, “Non-invasive recognition of poorly resolved integrated circuit elements,” *IEEE Transactions on Information Forensics and Security*, vol. 9, no. 3, pp. 354–363, 2014.

[40] L. Harriott, A. Wagner, and F. Fritz, “Integrated circuit repair using focused ion beam milling,” *Journal of Vacuum Science & Technology B: Microelectronics and Processing*, vol. 4, no. 1, pp. 181–184, 1986.

[41] S. Blythe, B. Fraboni, S. Lall, H. Ahmed, and U. de Rui, “Layout reconstruction of complex silicon chips,” *IEEE journal of solid-state circuits*, vol. 28, no. 2, pp. 138–145, 1993.

[42] S. P. Frigo, Z. H. Levine, and N. J. Zaluzec, “Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy,” *Applied Physics Letters*, vol. 81, no. 11, pp. 2112–2114, 2002.

[43] M. Salzer, A. Spettl, O. Stenzel, J.-H. Smått, M. Lindén, I. Manke, and V. Schmidt, “A two-stage approach to the segmentation of fib-scm images of highly porous materials,” *Materials Characterization*, vol. 69, pp. 115–126, 2012.

[44] N. Asadizanjani, S. Shahbazzomahadi, M. Tehranipoor, and D. Forte, “Non-destructive pcb reverse engineering using x-ray micro computed tomography,” in *41st International symposium for testing and failure analysis*, 2015.

[45] F. E. Boas and D. Fleischmann, “Ct artifacts: causes and reduction techniques,” *Imaging in Medicine*, vol. 4, no. 2, pp. 229–240, 2012.

[46] A. A. Nasr and M. Z. Abdulmageed, “Automatic feature selection of hardware layout: a step toward robust hardware trojan detection,” *Journal of Electronic Testing*, vol. 32, no. 3, pp. 357–367, 2016.

[47] A. A. Nasr and M. Z. Abdulmageed, “An efficient reverse engineering hardware trojan detector using histogram of oriented gradients,” *Journal of Electronic Testing*, vol. 33, no. 1, pp. 93–105, 2017.

[48] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit fingerprints for hardware trojan detection,” in *2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)*, pp. 246–251, IEEE, 2015.

[49] E. Sarkar and M. Maniatakos, “On automating delayered ic analysis for hardware ip protection,” in *Proceedings of the International Conference on Omni-Layer Intelligent Systems*, pp. 205–210, ACM, 2019.

[50] B. M. Trindade, E. Ukwatta, M. Spence, and C. Pawlowicz, “Segmentation of integrated circuit layouts from scan electron microscopy images,” in *2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)*, pp. 1–4, IEEE, 2018.

[51] G. Masalskis et al., “Reverse engineering of cmos integrated circuits,” *Elektronika ir elektrotechnika*, vol. 88, no. 8, pp. 25–28, 2008.

[52] A. Doudkin, A. Inyutin, and M. Vatkin, “Objects identification on the color layout images of the integrated circuit layers,” in *2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications*, pp. 610–614, IEEE, 2005.

[53] D. Lagunovsky, S. Ablameyko, and M. Kutas, “Recognition of integrated circuit images in reverse engineering,” in *Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170)*, vol. 2, pp. 1640–1642, IEEE, 1998.

[54] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization,” *IEEE Transactions on image processing*, vol. 14, no. 10, pp. 1479–1485, 2005.

[55] D. Cheng, Y. Shi, T. Lin, B.-H. Gwee, and K.-A. Toh, “Global template projection and matching method for training-free analysis of delayered ic images,” in *2019 IEEE International Symposium on Circuits and Systems (ISCAS)*, pp. 1–5, IEEE, 2019.

[56] R. Nakagaki, Y. Takagi, and K. Nakamue, “Automatic recognition of circuit patterns on semiconductor wafers from multiple scanning electron microscope images,” *Measurement Science and Technology*, vol. 21, no. 8, p. 085501, 2010.

[57] R. Wilson, R. Y. Acharya, D. Forte, N. Asadizanjani, and D. Woodard, “A novel approach to unsupervised automated extraction of standard cell library for reverse engineering and hardware assurance,” in *ISTFA 2019: Proceedings from the 45th International Symposium for Testing and Failure Analysis*, p. To Be Published, ASM International, 2019.

[58] K. Y. Kenneth and C. N. Berglund, “Automated system for extracting design and layout information from an integrated circuit,” Feb. 4 1992. US Patent 5,086,477.

[59] H. Ahmed, S. Blythe, and B. Fraboni, “Integrated circuit structure analysis,” Mar. 2 1993. US Patent 5,191,213.

[60] V. L. Zavadsky, V. Gont, E. Keyes, J. Abt, and S. Begg, “Method of design analysis of existing integrated circuits,” Aug. 25 2009. US Patent 7,580,557.

[61] R. Quijada, R. Dura, J. Pallares, X. Formatje, S. Hidalgo, and F. Serra-Graells, “Large-area automated layout extraction methodology for full-ic reverse engineering,” *Journal of Hardware and Systems Security*, vol. 2, no. 4, pp. 322–332, 2018.

[62] R. Quijada, A. Raventós, F. Tarrés, R. Dura, and S. Hidalgo, “The use of digital image processing for ic reverse engineering,” in *2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)*, pp. 1–4, IEEE, 2014.

[63] B. Lippmann, M. Werner, N. Unverricht, A. Singla, P. Egger, A. Dibotzky, H. Gieser, M. Rasche, O. Kellermann, and H. Graeb, “Integrated flow for reverse engineering of nanoscale technologies,” in *Proceedings of the 24th Asia and South Pacific Design Automation Conference*, pp. 82–89, ACM, 2019.

[64] F. Courbon, “Practical partial hardware reverse engineering analysis,” *Journal of Hardware and Systems Security*, pp. 1–
References

[65] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 benchmarks: A case study in reverse engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[66] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using behavioral pattern mining,” in 2012 IEEE international symposium on hardware-oriented security and trust, pp. 83–88, IEEE, 2012.

[67] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik, N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures in a sea of bit-level gates,” in 2013 IEEE international symposium on hardware-oriented security and trust (HOST), pp. 67–74, IEEE, 2013.

[68] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and S. Malik, “Reverse engineering digital circuits using functional analysis,” in 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1277–1280, IEEE, 2013.

[69] R. R. Chavan, S. A. Chavan, G. D. Dokhe, M. B. Wagh, and A. S. Vaidya, “Quality control of pcb using image processing,” International Journal of Computer Applications, vol. 975, p. 8887, 2016.

[70] V. Chaudhary, I. R. Dave, and K. P. Upla, “Automatic visual inspection of printed circuit board for defect detection and classification,” in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WISPNET), pp. 733–737, IEEE, 2017.

[71] B. Kaur, G. Kaur, and A. Kaur, “Detection and classification of printed circuit board defects using image subtraction method,” in 2014 Recent Advances in Engineering and Computational Sciences (RAECS), pp. 1–5, IEEE, 2014.

[72] X. Huang, S. Zhu, X. Huang, B. Su, C. Ou, and W. Zhou, “Detection of plated through hole defects in printed circuit board with x-ray,” in 2015 16th International Conference on Electronic Packaging Technology (ICEPT) 2015 16th International Conference on Electronic Packaging Technology (ICEPT), pp. 1296–1301, IEEE, 2015.

[73] X. Tian, L. Zhao, and H. Dong, “Application of image processing in the detection of printed circuit board,” in 2014 IEEE Workshop on Electronics, Computer and Applications, pp. 157–159, IEEE, 2014.

[74] F. R. Leta, F. F. Feliciano, and F. P. Martins, “Computer vision system for printed circuit board inspection,” in ABCM Symposium Series in Mechatronics, vol. 3, pp. 623–632, 2008.

[75] C. Benedek, O. Krammer, M. Janóczki, and L. Jakab, “Solder paste scooping detection by multilevel visual inspection of printed circuit boards,” IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2318–2331, 2012.

[76] M. E. Scaman and L. Economikos, “Computer vision for automatic inspection of complex metal patterns on multichip modules (mcm-d),” IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol. 18, no. 4, pp. 675–684, 1995.

[77] W.-C. Wang, S.-L. Chen, L.-B. Chen, and W.-J. Chang, “A machine vision based automatic optical inspection system for measuring drilling quality of printed circuit boards,” IEEE Access, vol. 5, pp. 10817–10833, 2016.

[78] J.-O. Kim, Y.-A. Lee, and T.-H. Park, “Automatic extraction of component inspection regions from printed circuit board,” in 2012 IEEE/SICE International Symposium on System Integration (SII), pp. 871–876, IEEE, 2012.

[79] P. Viola and M. J. Jones, “Robust real-time face detection,” International journal of computer vision, vol. 57, no. 2, pp. 137–154, 2004.

[80] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.

[81] Y. LeCun, F. J. Huang, L. Bottou, et al., “Learning methods for generic object recognition with invariance to pose and lighting,” in CVPR (2), pp. 97–104, Citeseer, 2004.

[82] S. Sural, G. Qian, and S. Pramanik, “Segmentation and histogram generation using the hsv color space for image retrieval,” in Proceedings. International Conference on Image Processing, vol. 2, pp. II–II, IEEE, 2002.

[83] R. Smith, “An overview of the tesseract ocr engine,” in Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633, IEEE, 2007.

[84] W. Li, S. Neullens, M. Breier, M. Bosling, T. Pretz, and D. Merhof, “Text recognition for information retrieval in images of printed circuit boards,” in IECN 2014–40th Annual Conference of the IEEE Industrial Electronics Society, pp. 3487–3493, IEEE, 2014.

[85] N. Dave, V. Tambade, B. Pandhare, and S. Saurav, “Pcb defect detection using image processing and embedded system,” International Research Journal of Engineering and Technology (IRJET), vol. 3, no. 5, pp. 1897–1901, 2016.

[86] S. Tang, F. He, X. Huang, and J. Yang, “Online pcb defect detector on a new pcb defect dataset,” arXiv preprint arXiv:1902.06197, 2019.

[87] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” International journal of computer vision, vol. 74, no. 1, pp. 59–73, 2007.

[88] B. Ma, T. Zimmermann, M. Rohde, S. Winkelbach, F. He, W. Lindenmaier, and K. E. Dittmar, “Use of autostitch for automatic stitching of microscope images,” Micron, vol. 38, no. 7, pp. 492–499, 2007.

[89] C.-W. Fu, G.-X. Zeng, D.-S. Qiu, and H.-Z. Wang, “System and method for generating a bill of material file,” Mar. 29 2007. US Patent App. 11/309,173.

[90] S.-H. Jin, “Method for transforming original bill-of-material for printed circuit board into standard bill-of-material,” Mar. 21 2000. US Patent 6,041,268.

[91] B. Naveen and K. Raghunathan, “An automatic netlist-to-schematic generator,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 36–41, 1993.

[92] X. Hong, D. Cheng, Y. Shi, T. Lin, and B. H. Gwee, “Deep learning for automatic ic image analysis,” in 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), pp. 1–5, IEEE, 2018.

[93] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and A. C. Berg, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[94] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,” IEEE Transactions on Evolutionary Computation, 2019.

[95] D.-u. Lim, Y.-G. Kim, and T.-H. Park, “Smd classification for automated optical inspection machine using convolution neural network,” in 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 395–398, IEEE, 2019.

[96] K. Qiao, L. Zeng, J. Chen, J. Hui, and B. Yan, “Wire segmentation for printed circuit board using deep convolutional neural network and graph cut model,” IET Image Processing, vol. 12, no. 5, pp. 793–800, 2018.

[97] V. L. Zavadsky, V. Gont, E. Keyes, J. Abt, and S. Begg, “Likelihood of automating the ic analysis process,” in 2017 IEEE/ACM International Conference on Computational Imaging, 2017.

[98] K. E. Dittmar, “Use of autostitch for automatic stitching of microscope images,” Micron, vol. 38, no. 7, pp. 492–499, 2007.

[99] B. Naveen and K. Raghunathan, “An automatic netlist-to-schematic generator,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 36–41, 1993.

[100] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” International Journal of Computer Vision, vol. 74, no. 1, pp. 59–73, 2007.

[101] S. Chen, J. Chen, D. Forte, J. Di, M. Tehranipoor, and L. Wang, “Chip-level anti-reverse engineering using transformable interconnects,” in 2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems.
(DFTS), pp. 109–114, IEEE, 2015.

[102] H. Gomez, C. Duran, and E. Roa, “Defeating silicon reverse engineering using a layout-level standard cell camouflage,” *IEEE Transactions on Consumer Electronics*, vol. 65, no. 1, pp. 109–118, 2019.

[103] H. Gomez, C. Duran, and E. Roa, “Standard cell camouflage method to counter silicon reverse engineering,” in *2018 IEEE International Conference on Consumer Electronics (ICCE)*, pp. 1–4, IEEE, 2018.

[104] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit camouflage integration for hardware ip protection,” in *Proceedings of the 51st Annual Design Automation Conference*, pp. 1–5, ACM, 2014.

[105] Z. Guo, M. Tehranipoor, D. Forte, and J. Di, “Investigation of obfuscation-based anti-reverse engineering for printed circuit boards,” in *2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC)*, pp. 1–6, IEEE, 2015.