Density of Bismuth Boro Zinc Glasses Using Machine Learning Techniques

Shaik Amer Ahmed1 · Shaik Rajiya2 · M. A. Samee2 · Shaik Kareem Ahmmad3 · Kaleem Ahmed Jaleeli1

Received: 18 September 2021 / Accepted: 3 December 2021 / Published online: 18 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Machine learning techniques have been employed to predict the glass densities of \(\times \text{Bi}_2\text{O}_3-(70 - \times)\text{B}_2\text{O}_3-20\text{Li}_2\text{O}-5\text{Sb}_2\text{O}_3-5\text{ZnO} \) glasses using a data set of 2000 various \(\text{B}_2\text{O}_3 \) rich glasses using their chemical composition and ionic radius. The experimental density of present glasses strongly depends on \(\text{Bi}_2\text{O}_3 \) content which is increasing with bismuth content. The increasing density in bismuth doped glasses because the \(\text{BO}_3 \) are converted into \(\text{BO}_4 \) units, and besides \(\text{BO}_3 \) units are less heavy than the \(\text{BO}_4 \) units. The FTIR studies also confirm that the intensity of \(\text{B}–\text{O}–\text{B} \) bond decreasing with increasing \(\text{Bi}_2\text{O}_3 \) content which suggested that \(\text{B}–\text{O}–\text{B} \) bond in bond ring isolated to \(\text{BO}_3 \) units transformed into \(\text{BO}_4 \) units. In Raman Spectra the stretching vibrations of \(\text{BO}_4 \) units shifting towards higher wavelengths with increasing \(\text{Bi}_2\text{O}_3 \) content. This shifting conforms that there is a structural changes in the glass-matrix and borate units converting from \(\text{BO}_3 \) to \(\text{BO}_4 \) units. The prepared glasses along with \(\text{B}_2\text{O}_3 \) rich glass data set train on various AI model such as gradient descent, Random Forest regression and Neural Networks to predict present density of glasses. Among the various models RF regression analysis model is successfully acceptable for the glass data with the highest \(R^2 \) value 0.983 which end result conform that the predicted and experimental values correlated. ANNs stood the effective technique in prediction of glass density with the optimum performance resulting with Tanh as the activation function \(R^2 = 0.950 \). The minimum cost 0.018 obtained in the case of gradient decent function which also shows the better performance of regression model.

Keywords Bismuth borate zinc glasses · ML density model · FTIR · Density prediction

1 Introduction

Glasses containing metal oxide such as bismuth and Zinc got the eye of the researcher owing to its wide-range of uses in the field of glass–ceramics such as in thermal sensors, mechanical sensors, reflecting windows, optic apparatuses etc. They possess a cut-off infrared (IR) wavelength of larger range, and non-linear optic-susceptibility of third-order and these properties are ideal to use it as an IR transmission devices, ultrafast optical switches, and opto-photonic devices [1–8].

Doweidar et al. [9] prepared Zinc Bismuth Borate glasses and investigated mechanical properties and Debye temperature by measuring the sound velocities (VL and Vs). The IR spectroscopic studies reveals that when \(\text{ZnO/\text{BaO}} \) is merged into bismuth borate network, forming \(\text{BO}_4 \)-units and \(\text{BiO}_6 \) units formed in glass structure due to the existence \(\text{Bi}_2\text{O}_3 \) units only. The variation in the physical properties like number of atoms in the glass structure and molar volume with respect to \(\text{ZnO/\text{BaO}} \) content ratio discloses that \(\text{BO}_4 \) units associated to \(R^{2+} \) cations are heavier than those associated to positive sites in the Bismuth oxide glass network.

Saddeek [10] investigated mechanical properties with measured density of the glass system \(\text{B}_2\text{O}_3–\text{Bi}_2\text{O}_3–\text{Li}_2\text{O} \) using ultrasonic pulse echo technique and studied the elastic moduli of the bismuth borate glasses and expressed the relation between the number of network bonds in the structure and the cross-link density in the glasses and also stated that the average ring size of the network has been modified with the addition of bismuth.
According to many researchers, mostly the glass densities have been measured from the composition of the particular glasses only [11–13]. To understand the elastic behavior of the glasses by using composition of the network like ceramic-materials were utilized to understand the glass pattern [14]. Several ML-models to measure the density precisely through composition-based parameters such as packing fraction and ionic radii to get least error were also reported [15].

In accordance with recent studies on machine learning models to predict glass properties, they have used huge data-sets making them “data-driven” models that successfully derive a correlation between the input and the output variables [11–15]. These models directly map the chemical composition of the glass to their respective properties. It would be logical if the behavior of glass properties are defined based on an ‘intermediate’ factor that is in turn defined by the atomic network of the glass composition. Recently, several Artificial Intelligence techniques have been successfully applied in predicting glass density in relation to ‘Atomic Packing Fraction’ factor used in the Makishima Mackenzie-model using a dataset compiled from published works which resulted in efficient density prediction correlation to the experimental results [16]. Recently, an improvement in the packing fraction model [17] was proposed with a new packing factor to account for the drawbacks in the previous APF-model based on the oxygen-atom packing fraction called the “Rigid-Unit Packing Fraction” (RUPF).

In the present work, the machine learning density model is applied to prepared x Bi$_2$O$_3$–(70−x) B$_2$O$_3$–20Li$_2$O–5Sb$_2$O$_3$–5ZnO (x = 0, 2.5, 5, 7.5 and 10 mol%) glasses and density of glasses predicted through it chemical composition and ionic radii. A data set of 2000 B2O3-rich glass with various compositions was compiled from scholarly publications to predict glass density.

2 Experimental

The present glass composition xBi$_2$O$_3$–(70−x) B$_2$O$_3$–20Li$_2$O–5Sb$_2$O$_3$–5ZnO (x = 0, 2.5, 5, 7.5 and 10 mol%) was prepared by the popular melt quenching method. To obtain pure glasses, 99.99% highly pure oxide (all Sigma Aldrich) Boron dioxide (B$_2$O$_3$), Bismuth oxide (Bi$_2$O$_3$), Zinc Oxide (ZnO), Antimony trioxide (Sb$_2$O$_3$) and lithium carbonate (Li$_2$CO$_3$) were taken in suitable amount. A 10 g mixture of oxides were taken in porcelain crucible and mixed frequently for proper mixing and kept it in a pre-heated furnace at the temperature of 1100–1200 °C for about 1 h. During the heating process in order to get homogeneity, the glass liquid was frequently swirled. In order to get desired glasses, the liquefied glassy compound were casted in a stainless steel mould and quenched at 200 °C. The glass specimens were prepared in different forms like disc-shaped, square-shaped and rod-shaped. Post quenching, the prepared glass samples were annealed at 200 °C for 24 h to remove stress and strain. XRD technique was carried out by using the diffractometer (model, Phillips PW 1830 Cu, Kα radiation of 1.54 Å wavelengths, from 10° to 80°) in order to conform the amorphous nature of the prepared glasses illustrated Fig. 1. Bruker Optics (Tensor 27, Germany) absorption spectrometer was used to carry out infrared studies of the present glasses in the form of thin pellets mixed with KBr in the range 4000–200 cm$^{-1}$. Raman spectrometer from WITec (Germany) equipped with a confocal aperture used to record micro-Raman measurements of prepared glasses of 1 mm thickness and 1 cm in diameter. Raman spectrum was studied for wavelength ranging 200–2000 cm$^{-1}$. An Olympus LM-Plan microscope objective (NIR optimized), a grating of 1800 lines/mm along with an external CCD-detector were utilized. A precision of ~0.3 cm$^{-1}$ is maintained while measuring the Raman shifts with a 1 cm$^{-1}$ spectral resolution order.

3 Data Set

A wide range of 2000 distinct B$_2$O$_3$ rich glasses configurations were sourced from reputed journals with their laboratory tested density values. This dataset can be easily obtainable for observation purposes on the website www.nridg.com designed by the author. This distinct database came into existence with the authors intense efforts, by analyzing a wide range of reputed journals of various academic publications so as to arrive at the accurate Artificial Intelligence model.
4 Results and Discussion

4.1 Density

The density was calculated from the following relation.

\[\rho = \frac{W_A}{W_A - W_L} \times \rho_L \]

where \(W_A \) and \(W_L \) are weight of the glass sample in air and sample immersed in Xylene liquid simultaneously. \(\rho_L \) is the density of immersed liquid at room temperature (\(\rho_L = 0.86 \)).

Molar volume (\(V_m \)) is explained as the volumetric area occupied by one mole of glass, and is given by

\[V_m = \frac{\text{molecular weight of glass}(\text{MW})}{\text{density}(\rho)} \]

The oxygen packing density (OPD) is defined as the no of packing of the oxides present in the network of the glass and is given by

\[\text{OPD} = \frac{1000n}{V_m} \]

where \(n \) is number of oxygens present in the glass composition.

Figure 2 represents the variation in experimental density and associated molar volume with variation of Bismuth content. Figure 2 shows that measured density (\(\rho \)) increases from 2.671 to 3.610 (gram/cc) and the molar volume (\(V_m \)) also climbs from 27.46 to 31.30 (cc/mol) with increasing \(\text{Bi}_2\text{O}_3 \) content. The calculated density, oxygen packing density values are tabulated in Table 1.

Saddeek [10] reported that in ternary system 25\(\text{Li}_2\text{O}-(75 - x)\text{B}_2\text{O}_3-x\text{Bi}_2\text{O}_3 \) density and molar volume are increasing with increase in modifier content. With the addition of bismuth in the glass structure the NBOs result increases and as a result the density of the glass increases. Doweidar et al. [9] investigated the physical properties of \(x\text{ZnO}-30\text{Bi}_2\text{O}_3-(70 - x)\text{B}_2\text{O}_3 \) glasses and they found that the density increases from 4.99 to 5.50 g/cc when \(\text{ZnO} \) oxide is introduced into the glass network by structural changes. The increase in density of the present glasses is due to the substitution of heavier \(\text{Bi}_2\text{O}_3 \) molecules (\(M = 465.96 \) g/mol) for lighter \(\text{B}_2\text{O}_3 \) molecules (\(M = 69.62 \) g/mol) and the addition of network modifiers like bismuth in the borate structure leads to increase of the Non bridging oxygen in the glass structure which results in the increase of density of the glass [18]. Because a significant proportion of oxygen ions are present in the glass structure, there is an incorporation of heavier \(\text{Bi}^{3+} \) ions in the glass structure which leads to structural alteration. In bismuth doped glasses, the oxygen ions are converted from \(\text{BO}_3 \) to \(\text{BO}_4 \) structural units, the structural unit \(\text{BO}_3 \) in a network is heavier than the \(\text{BO}_2 \) units in the same network, and hence the increase in density of the glass [19]. The conversion of \(\text{BO}_3 \) units into \(\text{BO}_4 \) units when \(\text{Bi}_2\text{O}_3 \) content increases explained as follows.

Generally in \(\text{B}_2\text{O}_3 \) based glasses Boron exists mainly in two types of structural units, one of which is trigonal \([\text{BO}_3] \) called bridging oxygens and the other is tetrahedral \([\text{BO}_4] \) units called non bridging oxygens. When \(\text{Bi}_2\text{O}_3 \) is introduced

![Fig. 2 Density and molar volume of present glasses](image-url)

\(\text{Bi}_2\text{O}_3 \) mol%	Exp. density	Predicted density	\(\text{BO}_3 \) separation						
	Gradient decent	Random forest	Artificial Neural network						
	Sigmoid	ReLu	Identity	tanh					
X = 0	2.671	2.630	2.650	2.620	2.591	2.590	2.630	0.13	0.18
X = 2.5	2.960	2.905	2.925	2.895	2.866	2.852	2.919	0.09	0.21
X = 5	3.261	3.181	3.201	3.171	3.142	3.141	3.199	0.05	0.25
X = 7.5	3.423	3.453	3.400	3.370	3.341	3.340	3.350	0	0.27
X = 10	3.610	3.721	3.570	3.540	3.511	3.500	3.490	0	0.28
into the glass network it produces a low crystallization and form stable glasses which are moisture resistant [20]. The network modifier Li2O in the current glasses convert some triangular units [BO3] to tetrahedral units [BO4] which are then integrated in complex cyclic groups as Di-, Tri-, Tetra- or Penta-Borate groups [21]. We know that Bi2O3 being a conditional glass former, Bi3+ possesses a high polarizability thus creating a solid structural effect in the glass network. In the present study the calcinations of Boron separation in BO3 and BO4 units are also calculated and the values are tabulated in Table 1. From the above table it has been observed that the Boron separation in BO3 units increases with Bi2O3 content, whereas the separation decreases in BO4 units. This variation results the BO3 units to transformed into BO4 units in the present glasses. The conformation of conversion of units in the present study is also confirmed by the FITR and Raman and the details analysis is explained as follows:

FTIR absorbance spectra was captured in the wave number ranging 400–1700 cm−1 with an illustration in Fig. 3. The de-convoluted spectra of all the glass samples are illustrated in Fig. 4. The de-convoluted parameters and band assignments are presented in Tables 2 and 3. The present IR spectra was de-convoluted with 6 Gaussian peaks for better understanding the deconvolution process [22–25] and structural changes in the glass network.

In general, there are four principal bands around 500 cm−1, 680 cm−1, 1050 cm−1, 1397 cm−1 with a shoulder of 950 cm−1 and 1260 cm−1 observed in all the prepared glasses. In the present IR spectra, as Bi2O3 matter climbs, the band at 510 cm−1 contributing to the Bi–O–Bi vibrations of distorted [BiO6] octahedral units [26] and this peak shifts to lower wave numbers. The BiO3 polyhedra vibration band does not appear in the IR absorption as it is around 840 cm−1 [26, 27]. Hence only the [BiO3] octahedral units contribute to the bismuth structure present in the glasses. There is a change in wave numbers from 674 cm−1 to 694 cm−1 and is increasing with Bi2O3 content which is attributed to B–O–B in [BO3] units [26]. The electrostatic field of the strongly polarizing Bi2+ ions may create this shift. The rise in Bi2O3 content increases the density of the electron cloud about BO3 oxygen units, leading to increasing roll-torque of B–O–B band therefore adds to bending vibrations of B–O–B band shifting towards a greater wave-number.

The band at above 691 cm−1 is attributable to the bending vibrations of Boro-Oxy-Boro bonds in boroxole rings. Kaur et al. [28] reported the band being at 693 cm−1 credit to the same vibrations of B–O–B bonds. Sayed et al. [29] observed a strong bond around 635 cm−1 which is due to the B–O–B bending vibrations. Rani et al. [20] reported a band around 700 cm−1 is attributed to the bending vibrations of B–O–B in BO3 units. The band in the range 937–983 cm−1 of the IR spectra confirms that the presence of [BO4] units point toward the addition of Bi2O3 to B2O3 which causes a progressive conversion of [BO3] units to [BO4] units [26]. Cheng et al. [26] observed the stretching vibrations of [BO4] units in Bi2O3–B2O3 glasses in the spectral range of 900–950 cm−1 which confirms the conversion of structural units form BO3 units to BO4. The IR bands observed ranging within 1051–1056 cm−1 are attributed to Boron-Oxygen stretching vibrations on BO4 units thus form tri-borate, tetra-borate, and penta-borate groups, while the bands detected at 1263–1282 cm−1 are assigned to Boron-Oxygen stretching vibrations of BO3, while 1397–1408 cm−1 are allocated to similar vibrations of B–O of trigonal (BO3)3− units in meta-, pyro-, and ortho-borates [20, 30]. The derived area and center of the above two band are tabulated in Table 2. From Table 2 it has been observed that the relative area of these two band marginally increases with increase in Bi2O3 content. Rani et al. [20] reported the IR spectra of lithium bismuth borate zinc glasses and observed that the area of both the bands at 1020 and 1384 cm−1 increases with increasing the Bi2O3 content and also reported a red-shift in band 1020 cm−1 when Bi2O3 content increases. The present study also noted that when Bi2O3 content increases, a red shift in the band range 1056–1051 cm−1 is observed which is attributable to the transformation of BO3 to BO4 structural units.

The computation of B2O3 structural groups can be explained by the calculations of four coordinate B-atoms N4 and three coordinate B-atoms N3 as [22]:

\[N_4 = [A_1] / \left([A_3] + [A_4] \right) \] and \[N_3 = 1 - N_4 \]

where \(A_3 \) and \(A_4 \) denotes the areas of BO3 and BO4 units respectively.

![Fig. 3 FTIR spectra of present glasses](image-url)
Fig. 4 De-convoluted FTIR spectra of $x\text{Bi}_2\text{O}_3 - (70 - x)\text{B}_2\text{O}_3 - 20\text{Li}_2\text{O} - 5\text{Sb}_2\text{O}_3 - 5\text{ZnO}$ glasses
The calculated \(N_3 \) and \(N_4 \) values for present IR spectra were calculated. The variation of \(N_3 \) and \(N_4 \) values are illustrated in Fig. 5. From this it was observed that \(N_3 \) values are decreasing whereas \(N_4 \) values are increasing with \(Bi_2O_3 \) content. This result confirms the fact that when \(Bi_2O_3 \) is incorporated into the glass system, structural changes occur in the glass matrix and \(BO_3 \) units transformed to \(BO_4 \) units.

In the present IR spectra the peak at 468 \(\text{cm}^{-1} \) is attributed to the Li cation vibrations and the 479 \(\text{cm}^{-1} \) is attributed to the \(Sb_2O_3 \) bending vibrations [31]. In the present IR study we observed a weak signal for \(Li_2O \) and \(ZnO \) and this is due to the fact that the mol\% of above compounds were less participation in the glass network.

The Raman spectra of the samples \(xBi_2O_3-(100-x)B_2O_3-20Li_2O-5Sb_2O_3-5ZnO \) glasses were studied at room temperature for spectral wave number ranging 200–2000 \(\text{cm}^{-1} \) and are presented in Fig. 6. The recorded Raman spectra are characterized by several broad bands which may be the mixture of more than one peak. The de-convoluted Raman spectra of typical glass samples presented in Fig. 7 and band assignments provided in the Table 4. In the present spectra there are 3 major bands with wave number 300 \(\text{cm}^{-1} \), 490 \(\text{cm}^{-1} \) and 1300 \(\text{cm}^{-1} \) where as there are five less intense bands of wave number 400 \(\text{cm}^{-1} \), 1100 \(\text{cm}^{-1} \), 1495 \(\text{cm}^{-1} \), 1655 \(\text{cm}^{-1} \) and 1840 \(\text{cm}^{-1} \).

The band in the range 297–304 \(\text{cm}^{-1} \) is attributed to bending vibrations of Zinc-Oxygen in tetrahedral \(\text{ZnO}_4 \) units,

![Fig. 5 N3 and N4 variation of present glasses](image)

Table 2: De-convoluted parameters of FT-IR spectra of \(xBi_2O_3-(70-x)B_2O_3-20Li_2O-5Sb_2O_3-5ZnO \) glasses

\(X = 0 \)	\(X = 2.5 \)	\(X = 5 \)	\(X = 7.5 \)	\(X = 10 \)										
\(C \)	\(W \)	\(A \)	\(C \)	\(W \)	\(A \)	\(C \)	\(W \)	\(A \)	\(C \)	\(W \)	\(A \)			
468.02	82.22	0.40	479.09	83.62	1.18	498.90	59.48	0.11	506.86	96.35	0.96	510.10	71.35	0.24
674.47	81.01	0.62	686.39	82.44	1.55	679.83	75.44	0.45	696.14	66.15	0.44	694.97	69.10	0.47
937.25	130.81	1.42	953.00	128.87	3.99	950.04	136.34	1.76	887.06	86.97	0.32	983.09	127.24	2.13
1051.85	105.54	1.87	1052.14	92.84	3.40	1052.29	99.32	1.92	1056.16	106.77	2.86	1054.97	101.26	3.98
1282.33	76.44	0.62	1263.54	75.20	0.80	1280.41	82.29	0.37	1271.87	60.68	0.17	1274.13	76.20	0.46
1401.36	159.64	2.38	1408.03	177.65	5.90	1397.65	154.16	2.67	1408.09	135.45	1.64	1404.77	136.70	3.13

\(C \) is component band centre (cm\(^{-1}\)) and \(A \) is relative area (%) of the component band.

Table 3: Wavenumbers and band assignments of present glasses

Peak position	FTIR band assignment
468 \(\text{cm}^{-1} \), 479 \(\text{cm}^{-1} \)	Attributed to the Li cation vibrations, attributed to the \(Sb_2O_3 \) bending vibrations [31]
510 \(\text{cm}^{-1} \)	\(Bi-O-Bi \) vibrations of distorted \([BiO_6]\) octahedral units [26]
674–694 \(\text{cm}^{-1} \)	\(B-O-B \) bending vibrations,bending vibrations of \(B-O-B \) in \(BO_3 \) units [29] [20]
937–983 \(\text{cm}^{-1} \)	Stretching vibrations of \([BO_4]\) [26]
1051–1056 \(\text{cm}^{-1} \)	Attributed to B-O stretching vibrations on \(BO_4 \) units form tri-, tetra-, and penta borate groups [20, 30]
1263–1282 \(\text{cm}^{-1} \)	Assigned to B-O stretching vibrations of \(BO_3 \) units [20, 30]
1397–1408 \(\text{cm}^{-1} \)	Stretching vibrations of the B–O of trigonal \((BO_3)_3-\) units in metaborates, pyrobo-
rates, and orthoborates [20] |
and similar vibrations of Bi–O–/Bi–O–Zn [32]. The band around 1116–1137 cm$^{-1}$ was observed and is attributed to the normal-vibrations of tri-borate, tetra-borate and penta-borate groups and Boron–Oxygen stretching-vibrations of the BO$_4$ tetrahedra units with presence of di-borate groups. It has been observed that this band is shifting towards higher wavelengths when Bi$_2$O$_3$ content is increasing in the glass. This shifting confirms that there is a structural change in the glass network and the borate units are converting from BO$_3$ to BO$_4$ [32]. The band range 1297 cm$^{-1}$ to 1319 cm$^{-1}$ is due to the stretching-vibrations of B–O bonds of pyroborate groups; vibrations are due to BO$_2$–O–triangularly-linked with B–O units [32, 33]. The Raman bands in the range 1495 to 1870 cm$^{-1}$ is attributed to BO stretching-vibrations in BO$_3$ triangular units due to various borate groups [33, 34].

4.2 Density Model

The ionic packing-ratio (V_p) and density (ρ) relation and is conveyed as [15]:

![Raman spectra of xBi$_2$O$_3$–(70 − x)B$_2$O$_3$–20Li$_2$O–5Sb$_2$O$_3$–5ZnO glasses](image1.png)

Fig. 6 Raman spectra of xBi$_2$O$_3$–(70 − x)B$_2$O$_3$–20Li$_2$O–5Sb$_2$O$_3$–5ZnO glasses

![De-convoluted Raman spectra of X = 10 typical glass sample](image2.png)

Fig. 7 De-convoluted Raman spectra of X = 10 typical glass sample

Peak position (cm$^{-1}$)	Raman band assignment
297–304 cm$^{-1}$	Zn–O tetrahedral bending vibrations of ZnO$_4$ units, bending modes of ZnO$_4$ units and symmetric stretching anion motion in the angularly constrained cation–anion–cation configuration in the BiO$_6$ units [32]
400–492 cm$^{-1}$	Vibrations of Bi–O and Bi–O–Bi in distorted BiO$_6$ units, Bi–O stretching vibrations in distorted linked BiO$_6$ units and stretching vibrations of Bi–O–/Bi–O–Zn [32]
1116–1137 cm$^{-1}$	attributed to the normal vibrations of tri-, tetra- and penta-borate groups and B–O stretching vibrations of the BO$_4$ tetrahedral [33]
1297–1319 cm$^{-1}$	Stretching vibrations of B–O bonds of pyroborate groups; vibrations due to BO$_2$–O—triangles linked with BO units [32, 33]
1495–1870 cm$^{-1}$	BO stretching vibrations in BO$_3$ triangular units [33, 34]
Mi = mole weight in gram per mole, xi = mole portion in mole percent, ρ = glass Exp. Density (gram/cc), and Vi = density parameter volume in meter³/mol evaluated by [35]:

$$V_P = \rho \frac{\sum (V_i x_i)}{\sum (M_i x_i)}$$ \hspace{1cm} (4)

$$M_i = \text{mole weight in gram per mole}, x_i = \text{mole portion in mole percent}, \rho = \text{glass Exp. Density (gram/cc)}, \text{and } V_i = \text{density parameter volume in meter}^3/\text{mol evaluated by [35]}:$$

$$V_i = \frac{4}{3} \pi \cdot N_A \cdot (X \cdot r_M^3 + Y \cdot r_O^3)$$ \hspace{1cm} (5)

$$N_A = \text{Avogadro's number}, r_M, r_O \text{ are respective metallic and ionic radius of oxygen.}$$

Inaba and Fujino’s empirical model for predicting the glass density based on experimental results prevails as a viable method [36]. A ± 10% error was reported due to the ionic packing ratio proposed as constant by the authors. Inaba’s formulation was based on the packing fraction which was also used by Makishima and Mackenzie [35] to theoretically compute Young’s modulus using Pauling’s ionic radii. It has been observed from previous study [16] there is no proper relation established between the exp.glass density to the fraction of volume to the molar weight i.e \(\sum (V_i x_i)/(M_i x_i)\), here packing ratio assumed to be unchanged, the Eq. (4) would be given linear relation between dependent and independent variables. This concept was applied for all the ML models in the present study where \(\frac{M_i x_i}{V_i x_i}\) becomes as an independent variable whereas experimental density holds as the depending y variable. Figure 8 illustrated the relation between the \(\frac{M_i x_i}{V_i x_i}\) and glass measured density of B₂O₃ rich glasses along with prepared samples.

Recently Deng [13] studied the physical property such as density and mechanical properties of oxide glasses using machine learning tools, the parameters like density and elastic moduli of oxide glasses were predicted successfully and driven by using large dataset size of 24,858 and 8519. The author claim that Lasso linear regression performs the best for prediction of density although to achieve the best R² value around 0.7 with random forest is difficult only with the poisson’s ratio.

More recently the Artificial density model was developed [16] based on the chemical composition and exp. Density using large data set 6630 oxide glass samples. In this study authors claim gradient decent, RF regression and ANNs successfully fit the glass data.

The above literature claim that Machine learning techniques required the large data to run the algorithm techniques to predict glass properties. In the present study the density prediction of prepared sample xB₂O₃–(70 – x) B₂O₃–20Li₂O–5Sb₂O₅–5ZnO (x = 0, 2.5, 5, 7.5 and 10 mol%) determined by training the large data set of 2000 B₂O₃ glass samples using different ML techniques.

4.3 Machine Learning Models

4.3.1 Gradient Descent

The gradient descent algorithm (GD) employs the input dependent and independent variables along with slope derived from pre-processing the glass data using linear regression analysis. For linear regression, the glass data is split into 0.25 and 0.75 as test and train sizes and the resulting output slope ‘m’ obtained is taken as input for executing gradient decent. This ‘pre-processing’ is run distinctly for glass formers and combined glass datasets. For arriving at an optimum learning rate and epoch, exhaustive analysis was implemented which ultimately concluded in optimized gradient descent results.

The GD algorithmic equation is built and modifying curve equations are followed by:

$$D_m = \frac{1}{n} \sum_{i=0}^{n} 2(y_i - (mx_i + c))(-x_i)$$ \hspace{1cm} (6)

$$D_m = \frac{-2}{n} \sum_{i=0}^{n} x_i(y_i - \bar{y}_i)$$ \hspace{1cm} (7)
D_m = partial derive with respect to slope and n where n is total number of data points.
Similarly, the partial derive regarding intercept c i.e., D_c and it is computed by Chain rule.

\[D_c = -\frac{2}{n} \sum_{i=0}^{n} (y_i - \bar{y}_i) \] (8)

The values of ‘m’ and ‘c’ are revised using:
\[m = m - L \times D_m \] (9)
\[c = c - L \times D_c \] (10)

With ‘L’ is learning rate
The cost may be calculated using power chain rule and it given by
\[\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2 \] (11)

Using above algorithm we can predict the densities using calculated slope m and intercepts at zero with minimum cost function.

Figure 9 clarifies the plot between the predicted and measured density of B_2O_3 rich glasses and prepared glasses. The computed errors like RMSE, mean square error, R^2 and cost values were presented in Table 5. For the both the dataset the learning value is taken as constant 0.001. The cost function obtained in this algorithm is 0.018 which show the good performance of the algorithm. The R^2 value obtained in the study 0.897 Shows good results from the gradient decent algorithm which trains to the glass data and predicts density values. The experimental and predicted density values for the present glasses presented in the Table 1.

4.3.2 Artificial Neural Networks

In this technique, a single layer ANN employing activation functions like Identity, ReLU, Sigmoid and Tanh are used to train the glass datasets which were split as 0.2 and 0.8 for test and train respectively. To obtain optimization for the present algorithm, numerous iterations were run for varying hidden layer sizes with solver function taken as ‘lbfgs’.

Deng [13] used various AI-techniques to predict glass properties like density and elastic moduli for a large combined-dataset of ~ 25,000 datapoints and obtained an R^2 of 0.942 for ANN prediction of glass densities. Effendy et al. [11] also obtained an R^2 of 0.99942–1.00 for glass composition yBi_2O_3–(1–y)TeO_2. The high R^2 can be attributed to the very small size of the dataset. The results of ANNs gave satisfactory prediction performance with an R^2 of 0.84 using Tanh activation function in a previous study [15] employing a large dataset in case of combined glasses. The binary glass prediction to possess more accuracy than other glass refractive index prediction. The results of this distinctive study also produced the best results as compared to the previous literature available employing large glass datasets, thus enabling the findings of this work to future glass research

Table 5 Error analysis of various ML models

Error	Gradient decent	Random forest	Artificial neural network			
	Sigmoid	ReLu	Identity	tanh		
MSE	0.141	0.069	0.272	0.299	0.230	0.229
MAE	0.030	0.263	0.099	0.100	0.104	0.100
R^2	0.897	0.983	0.910	0.920	0.944	0.950
employing Artificial Intelligence. Previous studies \cite{13–16} also proved ANNs to perform better than other algorithms for prediction using glass datasets.

Figure 10 shows the variation of predicted and exp. densities with different activation functions of the present data set.

The programmable output errors were tabulated in Table 5 and it has been observed that tanh activation function found to dominating in the density prediction of present glasses. Compare to the gradient decent model the ANNs is better to fit the dataset. The obtained R^2 of 0.950 which is much
better than gradient decent and conclude that artificial neural network is predicting glass density successfully.

4.3.3 Random Forest Regression

After data pre-processing, the dataset was split as testing and training sets with the first in ratio 0.2 for all the glass datasets and the remaining 0.8 for training the data. Tuning of hyperparameters like n_estimators and random_state functions was performed for optimizing the algorithm. Relative to the individual dataset sizes, we arrived at the maximum possible n_estimators value after thorough analysis.

The RF fitting stimulated line for dependent and independent variables is presented in Fig. 11. The density prediction from the RF regression analysis is shown in Fig. 12 and the calculated various errors are tabulated in Table 5. Form the results of Fig. 12 it has been conclude that the RF egres- sion is fitting the glass data perfectly with the maximum R² values 0.983 which is also shows the glass data is successfully train with RF algorithm compared to gradient and ANN functions. Summarizing the prediction performance, the densities values in the case of random forest regression are very close the experimental density followed by ANN and gradient decent. Figure 13 represents that the RFR is suitable for predicting the glass density comparably Linear Regression and ANNs for the present data set.

Very recently [13] employing APF to predict glass densities obtained R² values as high as 0.62 for the combined glass dataset versus 0.985 obtained in the present study employing APF in density prediction. Previous research [15], the glass data was analyzed using RFR algorithm which resulted in an R² of 0.989 for a very large size combined glass dataset. The present results surpass the previous works which can be accredited to the more logical Rigid Unit Packing Parameter concept incorporated in the RFR algorithm.

5 Conclusions

Bismuth borate zinc glass system xBi₂O₃–(70 – x) B₂O₃–20Li₂O–5Sb₂O₃–5ZnO were prepared and experimental density correlated with glass composition by incorporating machine learning techniques to predict the glass densities. The following are the major results form the above study.

- The glass composition xBi₂O₃–(70 – x)B₂O₃–20Li₂O–5Sb₂O₃–5ZnO prepared and measured the experimental density using Archimedes principle.
- The experimental densities of the studied glasses improves with increasing Bi₂O₃ content 2.671 to 3.610 (g/cc). In bismuth doped samples the oxygen ions are converted from BO3 structural units to BO4 structural units, the BO4 units are heavier when compared to BO3 units that increase the density of the glass.
- A wide range of 2000 distinct B₂O₃ rich glasses configurations was sourced from reputed journals with their...
laboratory tested density values to train on various ML models.

- The input variable (Mi.xi) / (Vi.xi) and measured densities were incorporated to ML models to perform glass density prediction which shows good agreement with the testing data.
- As comparison with Linear regression and ANNs, forest regression shows better performance that was confirms from the result that the value R^2 is high as 0.983.
- The density values derived from the random forest regression are similar to the experimental values due to higher R^2 values.
- Predicting the densities through Tanh as the activating function result in the best prediction performance in Artificial neural networks.
- The different neural networks were developed for the prediction of the densities but here ANNs were got to be best result in predicting glass densities with Tanh being the optimum activating function compared to identity.
- There is a shift in wavenumbers form 674 to 694 cm⁻¹, which is attributed to the transformation of structural units from BO3 to BO4.
- The Raman band ranging 297–304 cm⁻¹ is attributed to Boro-Oxy-Boro chain in [BO3] units [22]. This may be created by electrostatic field of the strong polarizability of Bi²⁺ ions.
- When Bi2O3 content increases and red shift in the IR band range 1056 to 1051 cm⁻¹ observed which is attributed to the transformation of structural units from BO3 to BO4.
- The Raman band ranging 297–304 cm⁻¹ is attributed to Zn–O tetrahedral bending-vibrations of ZnO4 units.
- In Raman band range 1116–1137 cm⁻¹ is shifting towards higher wavelengths when Bi2O3 content increasing in the glass. This shifting is conforms that there is structural changes in the glass matrix and borate units converting from BO3 to BO4 units.

Acknowledgements The authors of this manuscript thankful to Prof. Karuna Sagar, Head Department of Physics, College of Science, OU for providing laboratory facility and Late Prof. Syed Rahman, former head, Department of Physics, OU who passed away recently due to COVID-19 for his outstanding contribution and suggestions.

References

1. F. Borsa, D.R. Torgeson, S. Martin, H. Patel, Phys. Rev. B 46, 795 (1992). https://doi.org/10.1103/PhysRevB.46.795
2. Y. Dimitriev, A.C. Wright, V. Mihailova, E. Gattef, C.A. Guy, An X-ray diffraction study of bismuthate glasses. J. Mater. Sci. Lett. 14, 347–350 (1995). https://doi.org/10.1007/BF00592146
3. Y. Cheng, H. Xiao, W. Guo, W. Guo, Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochim. Acta 444, 173 (2006). https://doi.org/10.1016/j.tca.2006.03.016
4. H. Zheng, J.D. Mackenzie, Phys. Rev. B 38, 7166 (1988). https://doi.org/10.1103/PhysRevB.38.7166
5. A. Madhu, B. Eraiah, N. Srinatha, Infrared Phys. Technol. 107, 103300 (2020). https://doi.org/10.1016/j.infrared.2020.103300
6. D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D. Weidman, Nonlinear optical susceptibilities of high-index glass. Appl. Phys. Lett. 54, 1293 (1989). https://doi.org/10.1063/1.100697
7. M. Onishi, M. Kyoto, M. Watanabe, Properties of Bi-Pb-Sr-Cu-Cu-O glass-ceramic fibers formed by glass-drawing method. Jpn. J. Appl. Phys. 30, L988 (1991). https://doi.org/10.1143/JJAP.30.L988
8. A. Madhu, B. Eraiah, N. Srinatha, J. Luminescence 221, 117080 (2020). https://doi.org/10.1016/j.lumin.2020.117080
9. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids 355, 348–354 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.12.008
10. Y.B. Saddeek, Ultrasonic study and physical properties of some borate glasses. Mater. Chem. Phys. 83, 222–228 (2004). https://doi.org/10.1016/j.matchemphys.2003.09.051
11. A. Fluegel, Global model for calculating room-temperature glass density from the composition. J. Am. Ceram. Soc. 90(8), 2622–2625 (2007). https://doi.org/10.1111/j.1551-2916.2007.01751.x
12. M.L. Huggins, J.M. Stevels, Comparison of two equations for calculation of densities of glasses from their compositions. J. Am. Ceram. Soc. 37(10), 474–479 (1954). https://doi.org/10.1111/j.1151-2916.1954.tb19779.x
13. B. Deng, Machine learning on density and elastic property of oxide glasses driven by large dataset. J. Non Cryst. Solids 529, 119768 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119768
14. S.K. Ahmmad, M. Hamraj, S.T.U. Ahmed, N. Jabeen, physical properties of ordinary Portland cements. Bikaner (2020). https://doi.org/10.1063/5.0001386
15. M.A. Marzouk, S.M. Abo-Naf, H.A. Zayed, N.S. Hassan, Photo-luminescence and semiconducting behavior of Fe Co, Ni and Cu implanted in heavy metal oxide glasses. J. Market. Res. 5(3), 226–233 (2016). https://doi.org/10.1016/j.jmrte.2015.11.003
16. S.K. Ahmmad, N. Jabeen, S.T.U. Ahmed, S.A. Ahmed, S. Rahman, Ceram. Int. 47, 7946–7956 (2021). https://doi.org/10.1016/j.ceramint.2020.11.144
17. Y. Shi, A. Tandia, B. Deng, S.R. Elliott, M. Bauchy, Acta Mater. 195, 252–262 (2020). https://doi.org/10.1016/j.actamat.2020.05.047
18. M. Kurudirek, N. Chutahanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 745, 355–364 (2018). https://doi.org/10.1016/j.jallcom.2018.02.158
19. H.D. Shashikala, N.K. Udayashankar, Influence of Fe 3 + ions on optical, structural, thermal and mechanical properties of Li2O–Na2O–K2O–ZnO–B2O3 based glass system. Ceram. Int. (October) 2019. https://doi.org/10.1016/j.ceramint.2019.10.269
20. S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J. Alloys Compd. 597, 110–118 (2014). https://doi.org/10.1016/j.jallcom.2014.01.211
21. P. Pascuta, G. Borodi, E. Culea, J. Non-Cryst. Solids 354, 5475 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.09.010
22. M. Bala, S. Agrohiya, S. Dahiya, A. Ohlan, R. Punia, A.S. Maan, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128589
23. M. Bala, S. Agrohiya, S. Dahiya, A. Ohlan, R. Punia, A.S. Maan, J. Mol. Struct. 1234, 130160 (2021). https://doi.org/10.1016/j.molstruc.2021.130160
24. S. Dahiya, R. Punia, A.S. Maan, Structural and other physical properties of lithium doped bismuth zinc vanadate semiconducting
glassy system. J. Mol. Struct. 1079, 189–193 (2015). https://doi.org/10.1016/j.molstruc.2014.09.047

25. N. Berwal, S. Dhankhar, P. Sharma, R.S. Kundu, R. Punia, N. Kishore, Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. J. Mol. Struct. 1127, 636 (2017). https://doi.org/10.1016/j.molstruc.2016.08.033

26. Y. Cheng, H. Xiao, W. Guo, W. Guo, Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochim. Acta 444, 173–178 (2006)

27. M.E. Lines, A.E. Miller, K. Nassau, K.B. Lyons, J. Non-Cryst. Solids 89, 163–180 (1987). https://doi.org/10.1016/S0022-3093(87)80930-7

28. P. Kaur, K.J. Singh, S. Thakur, M. Kurudirek, M.M. Rafiei, Structural investigations and nuclear radiation shielding ability of bismuth lithium antimony borate glasses. J. Phys. Chem. Solids. (2020). https://doi.org/10.1016/j.jpcs.2020.109812

29. M.I. Sayyed, H.O. Tekin, M.M. Taki, M.H.A. Mhareb, O. Agar, E. Sakar, K.M. Kaky, Bi2O3–B2O3–ZnO–BaO–Li2O glass system for gamma ray shielding applications. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.163525

30. M. Toderas, S. Filip, I. Ardelean, J. Opt. Electron. Adv. Mater. 8, 1121 (2006)

31. G. Lakshminarayana, S.O. Bakib, K.M. Kaky, M.I. Sayyedc, H.O. Tekind, A. Lirae, I.V. Kitykf, M.A. Mahdia, Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Crystalline Solids 471(1), 222–237 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.06.001

32. B. Sharnugavelu, V.V.R.K. Kumar, Thermal, structural and electrical studies of bismuth Zinc borate glasses. Solid State Sci. 20, 59–64 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.03.008

33. S. Stalina, A. Edukondalu, M.A. Sameec, C. Srinivas, S. Rahman, Physical and optical investigations of Bi2O3–TeO2–B2O3–GeO2 glasses. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab689c

34. M. Purnima, S. Stalin, A. Edukondalu, M.A. Samee, S.K. Ahmad, S. Rahman, Spectroscopic studies on Li2O–MgO–Bi2O3–B2O3 glasses. Chin. J. Phys. 66, 517–526 (2020)

35. A. Makishima, J.D. Mackenzie, J. Non-Cryst. Solids 12, 35–45 (1973). https://doi.org/10.1016/0022-3093(73)90053-7

36. S. Inaba, S. Fujino, J. Am. Ceram. Soc. 93, 217–220 (2010). https://doi.org/10.1111/j.1551-2916.2009.03363.x

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.