INTRODUCTION

A nonventilated air space in the lung measuring more than 1 cm in diameter is defined as a bulla, which is commonly associated with emphysema and chronic obstructive pulmonary disease (COPD). Bullae contribute to decreased lung function in COPD patients, effective decompression of large bullae is important. Bronchoscopic lung volume reduction via endobronchial one-way valves is less invasive and has a lower mortality rate than lung volume reduction surgery. We report the case of a 48-year-old male who presented with giant bullae that were expeditiously resolved with endobronchial valves and percutaneous catheter insertion. Three days later, imaging revealed marked decreases in the extent of bullae and atelectasis of the contralateral lung without any complications, including air leakage or pneumothorax. Combination of endobronchial valves and percutaneous catheter insertion might be helpful to accelerate the release of large bullae and to achieve improved lung function and higher levels of physical activity in patients with COPD.

Key Words: Bullae, endobronchial valves, bronchoscopic lung volume reduction, chronic obstructive pulmonary disease

CASE REPORT

A 48-year-old male with a 2-year history of progressive dyspnea was referred for the management of giant bullae. His spirometry showed severe COPD with a predicted FEV₁ of 40%, and the ratio of FEV₁ to forced vital capacity (FVC) was 67%. On chest X-ray and computer tomography (CT) scan (Fig. 1), multiple bullae were observed. Written informed consent was obtained from the patient for publication of this manuscript and any accompanying images.
clustered giant bullae occupied his right upper lobe and en-
croached the left hemithorax across the anterior mediastinal
junction line. The right middle and lower lobes were severely
compressed by these giant bullae. The right interlobar fissures
were complete at CT scan. Bronchoscopy under conscious se-
dation was performed for implantation of three EBVs (Zephyr,
4.0 mm). Postprocedural chest radiograph at 4 hours after bron-
choscopy showed no acute complications, including pneumo-
thorax. A percutaneous drainage catheter was inserted in the
bullae for more rapid drainage of entrapped air within giant
bullae (Fig. 2). Three days later, imaging exhibited remarkable
decreases in the extent of bullae (Figs. 1 and 2) without any
complications, including air leakage and pneumothorax. Af-
fter 3 months, the patient recovered well with near-normal pul-
monary function with a predicted FEV₁ of 79% and FEV₁/FVC
of 74%. Six months later, the patient reported that he could ex-
ercise enough to sweat without breathlessness and had planned
to return to work.

DISCUSSION

This report highlights an instance of expeditious resolution of
giant bullae with a combination of EBVs and a percutaneous
drainage catheter. EBV are implantable one-way valves, appli-
cable to a patient with a flexible video-bronchoscopy under
deep conscious sedation with spontaneous breathing, using
short-acting benzodiazepine, such as midazolam and low dose
propofol. The most common acute complications of EBV in-
sertion are pneumothorax and pneumonia, without major com-
lications, such as death, and the effects of reduced lung vol-
ume usually remain stable for at least 5 years. In the present
case, we drained a huge quantity of entrapped air within the bullae via a percutaneous catheter after EBV insertion. It is noteworthy to mention that the volume of the previously over-inflated right upper lobe markedly decreased in just a few days and that the atelectasis of the right middle, right lower lobes, and even contralateral left lung, also completely re-expanded, completely relieving the mass effect of giant bullae in the right upper lobe.

Recently, several randomized controlled trials have set out to evaluate the role of EBV insertion in severe emphysema patients. These studies reported that emphysema patients without collateral ventilation who were treated with EBV showed better clinical improvements, assessed by lung function and exercise capacity, than controls.11-14 To the best of our knowledge, clinical outcomes were assessed at 6–12 months after bronchoscopic lung volume reduction treatment using EBVs. However, without active intervention with closed thoracotomy drainage of bullous air in the correct upper lobe, it might take months for giant bullae to collapse spontaneously by very slow, natural gradual resorption of entrapped air, even after insertion of EBVs. In this regard, when complete interlobar fissures are confirmed on chest CT scan, thereby eliminating any risk of unexpected collateral air drift, closed thoracotomy of bulla puncture for rapid drainage of bullous air can help patients to recover instantaneously from persistent respiratory distress after insertion of EBVs.

In a study conducted in the Netherlands, patient-reported outcomes and goals were investigated 1 year after EBV insertion.15 Most of the patients (77%) were able to walk, and only 25% of the patients could exercise. COPD patients with giant bullae were excluded from the largest clinical trial of EBV in treatment of COPD.16 However, a couple of case series have reported the efficacy of EBV treatment for giant bullae, albeit with limited information regarding lung function, imaging, or physical activity.3,17 One case series showed that out of five patients, only one patient whose bulla occupied the whole right middle lung experienced a long-term benefit. In our case, the giant bullae in right upper lobe showed sustained long-term improvement, leading to the patient being able to exercise with lung function improvement. Considering that the indication for EBV insertion in the LIBERATE study was 40 to 75 years of age,7 higher goals in relation to quality of life and physical activity should be set. Our case suggests that resolution of giant bullae with EBVs and percutaneous catheter insertion might be useful to helping reach these higher goals. Further studies are, however, warranted to determine the role of additional percutaneous catheter drainage after EBV insertion in giant bullae in terms of improvement of pulmonary function and patient-reported goals.

A few potential limitations should be acknowledged. First, regarding the possibility that the presence of collateral ventilation is associated with iatrogenic bronchopleural fistula with percutaneous drainage after EBVs implantation, chest CT was evaluated for completeness of fissures before EBV insertion. However, chest CT may not be sufficient to assess complete fissure. Use of the Chartis system is necessary to verify negative collateral ventilation and to lower the risk of postprocedural complications, such as bronchopleural fistula, even though the Chartis system does not completely predict the risk of complications. Second, the patient in our case study was considered as a suitable candidate for expeditious resolution of giant bullae via sequential EBV and Pig-tail catheter drainage (PCD) insertion after careful evaluation by a multidisciplinary team comprised of expert pulmonologists and radiologists. There-
Before, the results of our study may not be generalized to other patients with giant bullae. Careful review of candidates is essential, focusing on other comorbidities of the patient and the size and location of bullae that may affect the potential benefits and risks from two consecutive interventions. Moreover, the risk of severe complications, such as bronchopleural fistula, pneumothorax due to rapid expansion of the affected lung, prolonged air leakage, and EBV removal, should be considered before the procedure. Third, future studies should be conducted to evaluate the long-term efficacy and safety of this technique with a larger number of patients and a well-designed study protocol that considers both ethical and scientific aspects, including the appropriate time point to insert PCD after EBV and treatment strategies for the management of severe complications.

In conclusion, EBV insertion is feasible and efficient in lung volume reduction, although the time to reduction may take up to a month. A combination of EBV and percutaneous catheter insertion might be helpful to accelerate the release of large bullae and the achievement of improved lung function and higher levels of physical activity in patients with COPD. Notwithstanding, the benefits and risks of this technique should be considered carefully before application to patients.

AUTHOR CONTRIBUTIONS

Conceptualization: Yunjoo Im and Hojoong Kim. Data curation: Yunjoo Im and Tae Sung Kim. Formal analysis: Yunjoo Im, Byeoong-Ho Jeong, and Hye Yun Park. Funding acquisition: Hojoong Kim. Investigation: Hojoong Kim. Methodology: Byeoong-Ho Jeong and Hye Yun Park. Project administration: Hojoong Kim. Resources: all authors. Supervision: Hojoong Kim. Visualization: Tae Sung Kim. Writing—original draft: Yunjoo Im and Hye Yun Park. Writing—review & editing: all authors. Approval of final manuscript: all authors.

ORCID iDs

Yunjoo Im https://orcid.org/0000-0002-0892-334X
Byeoong-Ho Jeong https://orcid.org/0000-0002-3124-1718
Hye Yun Park https://orcid.org/0000-0002-5937-9671
Tae Sung Kim https://orcid.org/0000-0001-7512-0283
Hojoong Kim https://orcid.org/0000-0001-9207-0433

REFERENCES

1. Mura M, Zompatari M, Mussoni A, Fasano L, Pacilli AM, Ferro O, et al. Bullous emphysema versus diffuse emphysema: a functional and radiologic comparison. Respir Med 2005;99:171-8.
2. Bhattacharyya P, Sarkar D, Nag S, Ghosh S, Roychoudhury S. Transbronchial decompression of emphysematous bullae: a new therapeutic approach. Eur Respir J 2007;29:1003-6.
3. Tian Q, An Y, Xiao BB, Chen LA. Treatment of giant emphysematous bulla with endobronchial valves in patients with chronic obstructive pulmonary disease: a case series. J Thorac Dis 2014;6:1674-80.
4. Meyers BE, Patterson GA. Chronic obstructive pulmonary disease. 10: bullectomy, lung volume reduction surgery, and transplantation for patients with chronic obstructive pulmonary disease. Thorax 2003;58:634-8.
5. Palli A, Desideri M, Rossi G, Bardi G, Mazzantini D, Muzzi A, et al. Elective surgery for giant bullous emphysema: a 5-year clinical and functional follow-up. Chest 2005;128:2043-50.
6. Criner GJ, Cordova E, Sternberg AL, Martínez FJ. The national emphysema treatment trial (NETT) part II: lessons learned about lung volume reduction surgery. Am J Respir Crit Care Med 2011;184:881-93.
7. Criner GJ, Sue R, Wright S, Dransfield M, Rivas-Perez H, Wiese T, et al. A multicenter randomized controlled trial of Zephyr endobronchial valve treatment in heterogeneous emphysema (LIBERATE). Am J Respir Crit Care Med 2018;198:1151-64.
8. Shah PL, Slobos DJ. Bronchoscopic interventions for severe emphysema: where are we now? Respir Res 2020;25:972-80.
9. Fiorelli A, Santoriello C, De Felice A, Ferrigno F, Carlucci A, De Ruberto E, et al. Bronchoscopic lung volume reduction with endobronchial valves for heterogeneous emphysema: long-term results. J Vis Surg 2017;3:170.
10. Slobos DJ, Shah PL, Herth FJ, Valipour A. Endobronchial valves for endoscopic lung volume reduction: best practice recommendations from expert panel on endoscopic lung volume reduction. Respiration 2017;93:138-50.
11. Davey C, Zoumot Z, Jordan S, McNulty WH, Carr DH, Hind MD, et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial. Lancet 2015;386:1066-73.
12. Klooster K, ten Hacken NH, Hartman JE, Kersstjens HA, van Rikxoort EM, Slobos DJ. Endobronchial valves for emphysema without interlobar collateral ventilation. N Engl J Med 2015;373:2325-35.
13. Valipour A, Slobos DJ, Herth FJ, Darwiche K, Wagner M, Ficker JH, et al. Endobronchial valve therapy in patients with homogeneous emphysema. Results from the IMPACT study. Am J Respir Crit Care Med 2016;194:1073-82.
14. Kemp SV, Slobos DJ, Kirk A, Kornaszewska M, Carron K, Ek L, et al. A multicenter randomized controlled trial of Zephyr endobronchial valve treatment in heterogeneous emphysema (TRANSFORM). Am J Respir Crit Care Med 2017;196:1535-43.
15. Hartman JE, Klooster K, Ten Hacken NHT, van Dijk M, Slobos DJ. Patient satisfaction and attainment of patient-specific goals after endobronchial valve treatment. Ann Am Thorac Soc 2021;18:68-74.
16. Sciurba FC, Ernst A, Herth FJ, Strange C, Criner GJ, Marquette CH, et al. A randomized study of endobronchial valves for advanced emphysema. N Engl J Med 2010;363:1233-44.
17. Santini M, Fiorelli A, Vicidomini G, Di Crescenzo VG, Messina G, Laperuta P. Endobronchial treatment of giant emphysematous bullae with one-way valves: a new approach for surgically unfit patients. Eur J Cardiothorac Surg 2011;40:1425-31.