Nonrepetitive edge-colorings of trees

André Kündgen*

california state university San Marcos, San Marcos, CA, USA

Tonya Talbot

received 17th Jan. 2017, accepted 4th June 2017.

A repetition is a sequence of symbols in which the first half is the same as the second half. An edge-coloring of a graph is repetition-free or nonrepetitive if there is no path with a color pattern that is a repetition. The minimum number of colors so that a graph has a nonrepetitive edge-coloring is called its Thue edge-chromatic number.

We improve on the best known general upper bound of $4\Delta - 4$ for the Thue edge-chromatic number of trees of maximum degree Δ due to Alon, Grytczuk, Haluszczak and Riordan (2002) by providing a simple nonrepetitive edge-coloring with $3\Delta - 2$ colors.

Keywords: Thue coloring, Repetition-free coloring, Square-free coloring

1 Introduction

A repetition is a sequence of even length (for example $abacabac$), such that the first half of the sequence is identical to the second half. In 1906 Thue [13] proved that there are infinite sequences of 3 symbols that do not contain a repetition consisting of consecutive elements in the sequence. Such sequences are called Thue sequences. Thue studied these sequences as words that do not contain any square words ww and the interested reader can consult Berstel [2, 3] for some background and a translation of Thue’s work using more current terminology. Thue sequences have been studied and generalized in many views (see the survey of Grytczuk [9]), but in this paper we focus on the natural generalization of the Thue problem to Graph Theory.

In 2002 Alon, Grytczuk, Haluszczak and Riordan [1] proposed calling a coloring of the edges of a graph nonrepetitive if the sequence of colors on any open path in G is nonrepetitive. We will use $\pi'(G)$ to denote the Thue chromatic index of a graph G, which is the minimum number of colors in a nonrepetitive edge-coloring of G. In [1] the notation $\pi(G)$ was used for the Thue chromatic index, but by common practice we will instead use this notation for the Thue chromatic number, which is the minimum number of colors in a nonrepetitive coloring of the vertices of G. Their paper contains many interesting ideas and questions, the most intriguing of which is if $\pi(G)$ is bounded by a constant when G is planar. The best result in this direction is due to Dujmović, Frati, Joret, and Wood [7] who show that for planar graphs on n vertices $\pi(G)$ is $O(\log n)$. Conjecture 2 from [1] was settled by Currie [6] who showed that for the n-cycle C_n, $\pi(C_n) = 3$ when $n \geq 18$. One of the conjectures from [1] that remains open is whether $\pi'(G) = O(\Delta)$ when G is a graph of maximum degree Δ. At least Δ colors are always needed, since nonrepetitive edge-colorings must give adjacent edges different colors.

In this paper we study the seemingly easy question of nonrepetitive edge-colorings of trees. Thue’s sequence shows that if P_n is the path on n vertices, then $\pi'(P_n) = \pi(P_{n-1}) \leq 3$. (Keszegh, Patkós, and Zhu [10] extend this to more general path-like graphs.) Using Thue sequences Alon, Grytczuk, Haluszczak and Riordan [1] proved that every tree of maximum degree $\Delta \geq 2$ has a nonrepetitive edge-coloring with $4(\Delta - 1)$ colors and stated that the same method can be used to obtain a nonrepetitive vertex-coloring with 4 colors. However, while the star $K_{1,t}$ is the only tree whose vertices can be colored nonrepetitively with fewer than 3 colors, it is still unknown which trees need 3 colors, and which need 4 (see Brešar, Grytczuk, Klavžar, Niwczyk, Peterin [5].) Interestingly Fiorenzi, Ochem, Ossona de Mendez, and Zhu [8] showed that for every integer k there are trees that have no nonrepetitive vertex-coloring from lists of size k.

Up to this point the only paper we are aware of that narrows the large gap between the trivial lower bound of Δ colors in a nonrepetitive edge-coloring of a tree of maximum degree Δ and the $4\Delta - 4$ upper bound from [1] is by Sudeep and Vishwanathan [12]. We will describe their results in the next section. The main result of this paper is to give the first nontrivial improvement of the upper bound from [1].

* Supported by ERC Advanced Grant GRACOL, project no. 320812.

ISSN 1365–8050 © 2017 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License
Theorem 1 If G is a tree of maximum degree Δ, then $\pi'(G) \leq 3\Delta - 2$.

We will give a proof of this theorem in Section 4 using a coloring method we describe in Section 3. We discuss some possible ways for further improvements in Section 5.

2 Trees of small height

A k-ary tree is a tree with a designated root and the property that every vertex that is not a leaf has exactly k children. The k-ary tree in which the distance from the root to every leaf is h is denoted by $T_{k,h}$. For convenience we will assume that the vertices in $T_{k,h}$ are labeled as suggested in Figures 1 and 2 with the root labeled 1, its children labeled $2, \ldots, k+1$, their children $k+2, \ldots, k^2+k+1$ and so on. This allows us to write $u < v$ if u is to the left or above v, and also gives the vertices at each level (distance from the root) a natural left to right order.

To obtain bounds on the Thue chromatic index of general trees G of maximum degree $\Delta \geq 2$ it suffices to study k-ary trees for $k = \Delta - 1$, since G is a subgraph of $T_{k,h}$ for sufficiently large h. Of course the Thue sequence shows that for $h > 4$ we have $\pi'(T_{1,h}) = \pi'(P_h) = 3$, and it is similarly obvious that $\pi'(T_{k,1}) = \pi'(K_{1,k}) = k$. It is easy to see that the next smallest tree $T_{2,2}$ already requires 4 colors, and Figure 1 shows the only two such 4-colorings up to isomorphism.

![Fig. 1: Nonrepetitive 4-edge-colorings of $T_{2,2}$ of type I and II.](image)

The Masters thesis of the second author [11] contains a proof of the fact that the type II coloring of $T_{2,2}$ extends to a unique 4-coloring of $T_{2,3}$ whereas the type I coloring extends to exactly 5 non-isomorphic 4-colorings of $T_{2,3}$, one of which we show in Figure 2. It is furthermore shown that none of these 6 colorings can be extended to $T_{2,4}$. In fact $\pi'(T_{2,4}) = 5$ as we can easily extend the coloring from Figure 2 by using color 5 on one of the two new edges at every vertex from 8 through 15, and (for example) using colors 1,1,3,4,2,3,2,3 on the other edges in this order.

![Fig. 2: Nonrepetitive 4-edge-coloring of $T_{2,3}$.](image)

On a more general level, Sudeep and Vishwanathan [12] proved that $\pi'(T_{k,2}) = \lfloor \frac{k}{2} \rfloor + 1$ (compare also Theorem 4 of [4]) and $\pi'(T_{k,3}) > \frac{\sqrt{5}+1}{2}k > 1.618k$. Their lower bounds follow from counting arguments, whereas the construction for $h = 2$ consists of giving the edges at the first level colors $0, 1, \ldots, k-1$ and using all the $\lfloor k/2 \rfloor + 1$ remaining colors below each vertex at level 1. The remaining $m = \lfloor k/2 \rfloor - 1$ edges below the edge of color i are colored with $i + 1 \mod k, i + 2 \mod k, \ldots, i + m \mod k$, in other words cyclically.
To explain the general upper bound of Alon, Grytczuk, Hałuszczak and Riordan [1] we let \(T_k \) denote the infinite \(k \)-ary tree. It is not difficult to see that \(\pi'(T_k) \) is the minimum number of colors needed to color \(T_{k,h} \) for every \(h \geq 1 \). They prove that \(\pi'(T_k) \leq 4k \) by giving a nonrepetitive edge-coloring of \(T_k \) on \(4k \) colors as follows:

Starting with a Thue-sequence \(12321 \ldots \) insert 4 as every third symbol to obtain a nonrepetitive sequence \(S = 124324314 \ldots \) that also does not contain a palindrome, that is a sequence of length at least 2 that reads forwards the same as backwards, such as 121. Now color the edges with a common parent at distance \(h - 1 \) from the root with \(k \) different copies \(s^{(1)}, \ldots, s^{(k)} \) of the symbol \(s \) in position \(h \) of \(S \). For example, the type II coloring in Figure 1 is isomorphic to the first two levels of this coloring of \(T_2 \) if we replace \(1(1), 1(2), 2(1), 2(2) \) by \(1, 2, 3, 4 \) respectively. It is now easy to verify that this coloring has no repetitively colored paths that are monotone (i.e. have all vertices at different levels) since \(S \) is nonrepetitive, and none with a turning point (i.e. a vertex whose two neighbors on the path are its children) since \(S \) is palindrome-free.

Sudeep and Vishwanathan noted the gap between the bounds \(1.618k < \pi'(T_k) \leq 4k \), and stated their belief that both can be improved. Even for \(k = 2 \) the gap \(3.2 < \pi'(T_2) \leq 8 \) is large. Whereas obviously \(\pi'(T_2) \geq \pi'(T_{2,4}) = 5 \) is not hard to obtain, the specific question of showing that \(\pi'(T_2) \leq 8 \) is already raised in [1] at the end of Section 4.2. Theorem 1 implies that indeed \(\pi'(T_k) \leq 7 \). On the other hand, improving on the lower bound of 5 (if that is possible) would require different ideas from those in [12] because [11] presents a nonrepetitive 5-coloring of \(T_{2,10} \) as Example 3.2.6.

3 Derived colorings

In this section, which can also be found in [11], we present a way to color the edges of \(T_k \) that is different from that used by Alon, Grytczuk, Hałuszczak and Riordan [1]. While their idea is in some sense the natural generalization of the type II coloring in the sense that the coloring precedes by level, our coloring generalizes the type I coloring by moving diagonally. The fact that the type I colorings could be extended in 5 nonisomorphic ways, whereas the extension of the type II coloring was unique encourages this notion.

Definition 1 Let \(S = s_1, s_2, \ldots \) be a sequence. The edge-coloring of a \(k \)-ary tree \(T \) derived from \(S \) is obtained as follows: The edges incident with the root receive colors \(s_1, s_2, \ldots, s_k \) going from left to right in this order. If \(v \) is any vertex other than the root and if the edge between \(v \) and its parent has color \(s_i \), then the edges between \(v \) and its children receive colors \(s_{i+1}, s_{i+2}, \ldots, s_{i+k} \) again going from left to right in this order.

To color the edges of the infinite \(k \)-ary tree \(T_k \) in this fashion we need \(S \) to be infinite. To color the edges of \(T_{k,h} \) it suffices for the length of \(S \) to be at least \(kh \) (which is rather small considering that there about \(k^{h} \) edges) as each level will use \(k \) entries of \(S \) more than the previous level (on the edges incident with the right-most vertex). For example the type I coloring of \(T_{2,2} \) is the coloring derived from \(S = 1, 2, 3, 4 \), whereas the coloring of \(T_{2,3} \) in Figure 2 is derived from \(S = 1, 2, 3, 4, 1, 2 \). The next definition will enable us to characterize infinite sequences whose derived coloring is nonrepetitive.

Definition 2 Let \(S = s_1, s_2, \ldots \) be a (finite or infinite) sequence. A sequence of indices \(i_1, i_2, \ldots, i_{2r} \) is called \(k \)-bad for \(S \) if there is an \(m \) with \(1 < m \leq 2r \) such that the following four conditions hold:

a) \(s_{i_1}, s_{i_2}, \ldots, s_{i_{2r}} \) is a repetition

b) \(i_1 > i_2 > \ldots > i_m < i_{m+1} < i_{m+2} < \ldots < i_{2r} \)

c) \(|i_j - i_{j+1}| \leq k \) for all \(j \) with \(1 \leq j < 2r \)

d) \(i_{m+1} < i_m + k \) if \(m < 2r \).

\(S \) is called \(k \)-special if it has no \(k \)-bad sequence of indices.

The following proposition says something about the structure of a \(k \)-special sequence, namely that identical entries must be at least \(2k \) apart.

Proposition 1 A sequence \(S \) has a \(k \)-bad sequence of length at most four with \(m \leq 3 \) if and only if \(s_i = s_j \) for some \(i < j < i + 2k \).
Proof: For the back direction observe that if \(j < i + k \), then the sequence of indices \(j, i \) is \(k \)-bad with \(m = 2 \). If \(i + k < j < i + 2k \), then the sequence \(i + k - 1, i, i + k - 1, j \) is \(k \)-bad with \(m = 2 \).

For the forward direction, observe that if \(i_1, i_2 \) is \(k \)-bad (necessarily with \(m = 2 \)), then we can let \(j = i_1 \) and \(i = i_2 \). If \(i_1, i_2, i_3, i_4 \) is \(k \)-bad with \(m = 2 \) then we let \(i = i_2 \) and \(j = i_4 \) and observe that \(i < i_3 < j < i_4 + k - 1 \leq i + 2k - 1 \).

So we may assume that \(i_1, i_2, i_3, i_4 \) is \(k \)-bad with \(m = 3 \). If \(i_2 = i_4 \), then we let \(i = i_3 \) and \(j = i_1 \) and obtain \(i < i_2 < j \leq i_4 + k - 1 = i_2 + k - 1 = i < 2k - 1 \) as desired. Otherwise \(i_2, i_4 \) are distinct numbers \(x \) with \(i_3 < x \leq i_3 + k \) and we can let \(\{i, j\} = \{i_2, i_4\} \).

We are now ready to prove the following.

Theorem 2 An infinite sequence \(S \) is \(k \)-special if and only if the edge-coloring of \(T_k \) derived from \(S \) is nonrepetitive.

Proof: \((\Rightarrow)\) Suppose that a \(k \)-special sequence \(S \) creates a repetition on a path \(P = v_0, v_1, \ldots, v_{2r} \) in \(T_k \), that is \(R = c(v_0v_1), c(v_1v_2), \ldots, c(v_{2r-1}v_{2r}) \) satisfies \(c(v_jv_{j+1}) = c(v_{i+j}v_{i+j+1}) \) for \(0 \leq i \leq r - 1 \). Observe that \(c(v_jv_{j+1}) = s_{i+j} \) where \(0 \leq j \leq 2r - 1 \), for some \(s_{i+j} \in S \). There are two possibilities; \(v_0, v_1, \ldots, v_{2r} \) is monotone or it has a single turning point.

Case 1: Suppose \(v_0, v_1, \ldots, v_{2r} \) is monotone.
If \(v_0, v_1, v_2, \ldots, v_{2r} \) is monotone then we may assume \(v_0 > v_1 > v_2 > \ldots > v_{2r} \). Since \(v_j > v_{j+1} \) we know that \(v_j \) is the child of \(v_{j+1} \) so we have that \(i_j > i_{j+1} \) and \(|i_j - i_{j+1}| \leq k \). The subsequence \(s_{i_1}, s_{i_2}, \ldots, s_{i_2} \), is a repetition, so that \(i_1, \ldots, i_2 \) is \(k \)-bad with \(m = 2r \), a contradiction.

Case 2: Suppose \(v_0, v_1, v_2, \ldots, v_{2r} \) has a turning point \(v_m \) for some \(m \) with \(0 < m < 2r \). By the definition of a turning point \(v_{m-1} \) and \(v_{m+1} \) are the children of \(v_m \), and thus \(v_0 > v_1 > \ldots > v_{m-1} > v_m < v_{m+1} < \ldots < v_{2r} \). We may also assume without loss of generality that \(v_{m-1} < v_m < v_{m+1} \). Observe that \(v_0, v_1, \ldots, v_m \) is moving towards the root and \(v_{m+1}, \ldots, v_{2r} \) is moving away from the root. Let \(c(v_jv_{j+1}) = s_{i_{j+1}} \). We will show that \(i_1 > i_2 > \ldots > i_{m-1} > i_m < i_{m+1} < \ldots < i_{2r} \) and that this sequence is \(k \)-bad for \(S \). Since \(v_{j-1} > v_j > v_{j+1} \) for \(1 \leq j < m \) we know that \(v_j \) is the child of \(v_{j+1} \) and the parent of \(v_{j-1} \) so we have \(i_j > i_{j+1} \) and \(|i_j - i_{j+1}| \leq k \). Similarly, since \(v_{j-1} < v_j < v_{j+1} \) for \(m < j < 2r \) we know that \(v_j \) is the child of \(v_{j-1} \) and the parent of \(v_{j+1} \) so \(i_j < i_{j+1} \) and \(|i_j - i_{j+1}| \leq k \). Finally, since \(v_m \) is the parent of \(v_{m-1} \) and \(v_{m+1} \) so \(|m - i_{m-1}| < k \) and \(i_m < i_{m+1} \) since we assumed \(v_{m-1} < v_m < v_{m+1} \). The subsequence \(s_{i_1}, s_{i_2}, \ldots, s_{i_2} \), is a repetition, leading to the contradiction that \(i_1, \ldots, i_{2r} \) is \(k \)-bad.

\((\Leftarrow)\) We proceed by contrapositive. So suppose \(S \) has a \(k \)-bad sequence \(i_1, i_2, \ldots, i_{2r} \). We will show that there is a path on vertices \(v_0, v_1, v_2, \ldots, v_{2r} \) with \(c(v_jv_{j+1}) = s_{i_{j+1}} \), where the color pattern \(c(v_0v_1), c(v_1v_2), \ldots, c(v_{2r-1}v_{2r}) \) is a repetition in the derived edge-coloring of \(T_k \). The left child of a vertex \(v \) is the child with the smallest label, and we will denote this child as \(v' \). Observe that if \(c(vp(v)) = s_{a_0} \), then \(c(vp'(v)) = s_{a_1} \).

If \(m = 2r \) then we start at the root and successively go to the left child of the current vertex until we find a vertex \(v_{2r} \) such that \(c(v_{2r}v'_{2r}) = s_{i_{2r}} \), and let \(v_{2r-1} = v'_{2r} \). Let \(v_{2r-2} \) be the child of \(v_{2r-1} \) with \(c(v_{2r-1}v_{2r-2}) = s_{i_{2r-1}} \) (this exists since \(|i_j - i_{j+1}| \leq k \)). We continue in this way until we have found \(v_0 \). Now observe that the color pattern of \(v_0, v_1, \ldots, v_{2r} \) is \(s_{i_1}, s_{i_2}, \ldots, s_{i_{2r}} \), as desired.

If \(m < 2r \) then we start at the root and successively go to the left child of the current vertex until we find a vertex \(v_m \) such that \(c(v_mv'_m) = s_{i_m} \) and let \(v_{m-1} = v'_m \). Let \(v_{m+1} \) be the child of \(v_m \) with \(c(v_mv_{m+1}) = s_{i_{m+1}} \) (this exists since \(i_m < i_{m+1} < i_m + k \)). Now, for \(0 \leq p \leq (m - 1) \) we successively find a child \(v_{p+1} \) of \(v_p \) such that \(c(v_pv_{p+1}) = s_{i_{p+1}} \), which we can do since \(|i_q - i_{q+1}| \leq k \). Now observe that the color pattern of \(v_0, v_1, \ldots, v_{2r} \) is \(s_{i_1}, s_{i_2}, \ldots, s_{i_{2r}} \), as desired.

Remark 1 Observe that the proof of the forward direction also works for the finite case \(T_{k,h} \), a fact we will use in Section 5. However, the back direction need not hold in this case: We already mentioned that the coloring derived from \(S = 1, 2, 3, 4, 1, 2 \) in Figure 2 is nonrepetitive (see also \(k = 2 \) in Proposition 3), but this sequence \(S \) is not \(2 \)-special, because the index-sequence \(3, 1, 2, 3, 5, 6 \) is \(2 \)-bad.

Thus to get a good upper bound on \(\pi'(T_k) \) we just need an infinite \(k \)-special sequence with few symbols. As every \(2k \) consecutive elements must be distinct, the following simple idea turns out to be useful: from a sequence \(S \) on \(q \) symbols we can form a sequence \(S^{(w)} \) on \(qw \) symbols by replacing each symbol \(i \) in \(S \) by a block \(T = t^{(0)}, t^{(1)}, \ldots, t^{(w-1)} \) of \(w \) symbols. In [11] it is shown that if \(S \) is nonrepetitive and palindrome-free then \(S^{(k)} \) is \(k \)-special. This gives a new proof of the result from [1] that \(\pi'(T_k) \leq 4k \). In the next section we will improve on that.
4 Main result

We begin with the simple observation, that if S is a sequence then $S^{(k+1)} = S^+$ has the property that if i, j are indices with $s_i^j = x^{(u)}$ and $s_i^j = y^{(v)}$ then $i < j \leq i + k$ implies that either $x = y$ and $u < v$, or s_i^j and s_i^j are in consecutive blocks XY of S^+ and $u > v$. In other words we can tell whether we are moving left or right through the sequence just by looking at the superscripts (as long as consecutive symbols in S are distinct.) As a starting point we immediately get the following result.

Corollary 1 For all $k \geq 1$, $\pi'(T_k) \leq 3k + 3$.

Proof: It is enough to show that S^+ on $3(k+1)$ is k-special whenever S is an infinite Thue sequence on 3 symbols. Suppose there is a k-bad sequence of indices i_1, \ldots, i_{2r}. Since every sequence of $2(k+1)$ consecutive symbols in S^+ is distinct we get that $r > 1$ by Proposition 1. If $m < 2r$, then we can find an index j such that $i_j > i_{j+1}$ and $i_{r+j} < i_{r+j+1}$ with $s_{i_j} = s_{i_{j+1}} = x^{(u)}$ and $s_{i_{r+j+1}} = y^{(v)}$. Indeed, if $2 < m \leq r$ we let $j = 1$, and otherwise we let $j = m - r$. In this case $x = y$ and $u < v$ would violate $i_j > i_{j+1} \geq i_{j} + 2$, whereas $u > v$ would violate $i_{r+j} < i_{r+j+1} \leq i_{r+j} + 2$. Similarly if $x \neq y$, then $u > v$ would violate $i_j > i_{j+1} \geq i_{j} + 2$, whereas $u < v$ would violate $i_{r+j} < i_{r+j+1} \leq i_{r+j} + 2$.

It remains to observe that in the case when $m = 2r$ the sequence $s_{i_1}, s_{i_2}, \ldots, s_{i_{2r}}$ in S^+ yields a repetition in S by erasing the superscripts and merging identical consecutive terms where necessary.

This bound can be improved to $3k + 2$ by removing all symbols of the form $a^{(0)}$ from S^+ for one of the symbols a from S and showing that the resulting sequence is still k-special. However, we can do a bit better. In fact, Theorem 1 follows directly from our main result in this section.

Theorem 3 There are arbitrarily long k-special sequences on $3k + 1$ symbols.

One difficulty is that removing two symbols from S^+ can easily result in the sequence not being k-special anymore. To make the proof work we need to start with a Thue sequence with additional properties. The following result was proved by Thue [14] and reformulated by Berstel [2, 3] using modern conventions.

Theorem 4 There are arbitrarily long nonrepetitive sequences with symbols a, b, c that do not contain aba or bab.

To give an idea of how such a sequence can be found, observe that it must be built out of blocks of the form ca, cb, cab, and cba which we denote by x, y, z, u, respectively. (In fact, Thue primarily studied two-way infinite sequences, but for our purposes we may simply assume our sequence starts with c.) We first build a sufficiently long sequence on the 5 symbols A, B, C, D, E by starting with the sequence "B" and then in each step simultaneously replacing each letter as follows:

\[
\begin{array}{|c|c|c|c|c|}
\hline
 & A & B & C & D & E \\
\hline
\text{Replace} & \text{BDACE} & \text{BDC} & \text{BDAC} & \text{BEAC} & \text{BEAC} \\
\hline
\end{array}
\]

In the resulting sequence we then let $A = zuyux, B = zu, C = zuy, D = zux, E = zxy$. Lastly we replace x, y, z and u as aforementioned. For example, from B we obtain BDC, and then after a second step $BDCBEACBDAE$.

This translates to the intermediate sequence $zuuxuzyuzxuzuyuzxuzuyuzxuxzy$, which gives us the desired sequence $cabcacbacbcaacbacbaacbacbaacbacbcaacbacbaac bac.
Claim: If there is an index j with $0 < j < r$ such that $i_j > i_{j+1}$ and $i_{r+j} < i_{r+j+1}$, then $s_i = s_{i+r} = x^{(u)}$ and $s_{i+j} = x^{(v)}$ for some u, v, x, y. Consequently, $i_j - i_{j+1} = k = i_{r+j+1} - i_{r+j}$.

Indeed, $s_i = s_{i+r} = x^{(u)}$ and $s_{i+j} = x^{(v)}$ for some u, v, x, y. If $x = y$, then $u = v$ would violate $i_j > i_{j+1} > j - k$, whereas $u = v$ would violate $i_{r+j} < i_{r+j+1} = i_{j+k}$. Thus $x
eq y$. Now $u > v$ would violate $i_j > i_{j+1} > j - k$, whereas $u > v$ would violate $i_{r+j} < i_{r+j+1} + k$. So we may assume that $u = v$. If $x = c$, then this would violate $i_j > i_{j+1} > i_j + k$ (as the presence of $c^{(u)}$ means that the distance is $k + 1$). Similarly if $y = c$, then this violates $i_{r+j} < i_{r+j+1} + k$. Hence we must have $(x, y) = \{c, b\}$ finishing the proof of the claim.

If $r < 2$, then we can apply the claim with $j = m - r$ and obtain consequently that $i_{m+1} - i_m = k$, in direct contradiction to condition d) from Definition 2.

So we suppose that $2 \leq m \leq r$. In this case we will let $j = m - 1$ in our claim and we may assume due to the symmetry of S in a, b that $x = a$ and $y = b$. Thus for some u with $1 \leq u \leq k$ we get $s_{i_m-1} = a^{(u)} = s_{i_m+r-1}$ and $s_{i_m} = b^{(u)} = s_{i_m+r}$. So we may apply the claim again with $j = m - 2$ to obtain that $s_{i_{m-2}} = b^{(u)} = s_{i_{m+r}}$. However, the fact that $i_{m-2} > i_{m-1} > i_m$ correspond to symbols $b^{(u)}$, $a^{(u)}$, $b^{(u)}$ means that S' must have consecutive blocks BAB, yielding a contradiction to the fact that in S we had no consecutive symbols bab.

So we may assume that $m = 2$. Since $r > 2$ and $s_i = b^{(u)}$ and $i_2 < \ldots < i_r$ we have that for $3 \leq j \leq r$ either s_{i_j} are of the form $b^{(u)}$ or there is a smallest index j such that $s_{i_j} = x^{(v)}$ for some $x \neq b$. In the first case it follows that there must be consecutive blocks ABA (yielding a contradiction) such that i_1 and i_r+1 are in the A block, i_2, \ldots, i_r are in the first B-block and i_{r+2}, \ldots, i_{2r} are in the second. In the second case it follows that since there must be blocks BA with i_1 in A and i_2 in B, that j must be in the A block again, that is $s_{i_j} = a^{(u)}$. However, since $i_{r+1} < i_{r+2} < \ldots < i_r$ it follows that there must be consecutive blocks ABA in S' (our final contradiction), such that i_{r+1} is in the first A block, i_r+1 in the second and $i_{r+2}, \ldots, i_{r+j} - 1$ are in the B block.

\[\Box \]

5. k-special sequences on at most $3k$ symbols

One possible way to improve on Theorem 1 is to study k-special sequences on at most $3k$ symbols. The sequence $S_{n,c}$ for $n = 1, 2, \ldots, n, 1, 2, \ldots, c$ for $n > c \geq 0$ turns out to be a key example in this situation.

Recall that by Proposition 1 the entries in a block of length $2k$ of a k-special sequence must all be distinct. Thus, if we let $f_k(n)$ denote the maximum length of a k-special sequence S on n symbols, then this observation immediately implies that $f_k(n) = n$ when $n < 2k$ and up to isomorphism the only sequence achieving this value is $S_{n,0}$. When $n \geq 2k$ we can furthermore assume without loss of generality that if S is nonrepetitive on n symbols, then S_i for $1 \leq i \leq 2k$ (just like $S_{n,c}$).

If $n = 2k$ then it follows from Proposition 1 that a sequence achieving $f_k(2k)$ must be of the form $S_{2k,c}$. It is easy
case check $S_{2k,1}$ is in fact k-special, whereas $S_{2k,2}$ contains the k-bad index sequence $k + 1, 1, 2, k + 1, 2k + 1, 2k + 2$, which yields the repetition $k + 1, 1, 2, k + 1, 1, 2$. Thus $f_k(2k) = 2k + 1$ with $S_{2k,1}$ being the unique sequence achieving this value. This k-bad index sequence also explains why we could not have consecutive blocks ABA or BAB in our construction for Theorem 3. For the remaining range we get

Proposition 2

a) If $n \geq 2k$, then $S_{n,n-k}$ has a k-bad sequence only when $n = 2k$ and such a sequence must have $2 = m < r$.

b) If $n \geq 2k + 1$, then $f_k(n) \geq 2n - k$.

Proof: It suffices to prove the first statement, as it immediately implies the second. So suppose $n \geq 2k$ and $I = i_1, \ldots, i_{2r}$ is a k-bad sequence of indices for some m. If $m = 2r$, then I is decreasing and so the fact that $s_{i_j} = s_{i_{j+r}}$ for all $1 \leq j \leq r$ implies that $i_1 > \ldots > i_r \geq n + 1$ and $n - k \geq i_{r+1} > \ldots > i_{2r}$, yielding the contradiction $i_j - i_{j+r} > k$. So we may assume that $m < 2r$.

If $m > r$, then let $m' = m - r$. Since $s_{i_m} = s_{i_m}$ and $i_m' > i_m$, it follows that $i_m = i_{m'} - n \in \{1, \ldots, n-k\}$. Since $i_m' \geq n$, $i_m \leq n - k$ and for all j we have $i_j - i_{j+1} \leq k$ it follows that there must be some j with $m' < j < m$ such that $i_j \in \{n-k+1, \ldots, n\}$. Since I yields a repetition with $i_1 > \ldots > i_m$, but the symbol $s_{i_j} = i_j$ is unique in $S_{n,n-k}$ we conclude that $i_j = i_{j+r}$. It follows that $j = m' + 1$, since otherwise $i_{m'} > i_{j-1} > i_j$ and $i_m < i_{j+r-1} < i_{j+r}$ would contradict $s_{i_{j-1}} = s_{i_{j+r-1}}$ as the sets $\{s_{i_1}, s_{i_2}, \ldots, s_{i_{m-1}}\}$ and $\{s_{i_{m-1}}, s_{i_{m-2}}, \ldots, s_{i_1}\}$ are disjoint. Now $j = m' + 1$ implies that $i_{m'} - k = i_{j-1} - k \leq i_j = i_{j+r} = i_{m+1} \leq i_m + k - 1$, and since $i_{m'} = i_m + n$ we get $n \leq 2k - 1$, a contradiction.
Nonrepetitive edge-colorings of trees

If $m \leq r$, then let $m' = m + r$. It follows again that $i_{m'} = i_m + n$, and that there must be some j such that $i_j = i_{j+r} \in \{n-k-1, \ldots, n\}$ and $j < m < j + r$. Thus $m' = j + r$ this time. It follows that $j = m - 1$, since otherwise $i_j > i_{j+1} > i_m$ and $i_{j+r} < i_{j+1} < i_{m'}$ would contradict $s_{i_{j+1}} = s_{i_{j+r}}$. As the sets $\{s_{i_{m+1}}, s_{i_{m+2}}, \ldots, s_{i_{m-1}}\}$ and $\{s_{i_{j+1}}, s_{i_{j+2}}, \ldots, s_{i_{j+r-1}}\}$ are still disjoint. Now $j = m - 1$ implies that $i_m + k = i_{j+1} + k \geq i_j = i_{j+r} = i_{m-1} \geq i_{m'} - k$, and since $i_m = i_m + n$ we get $n \leq 2k$, a contradiction unless $n = 2k$. In this case also $i_m + k = i_j = i_{j+r} = i_m - k = x$ for some $k + 1 \leq x \leq n = 2k$.

If we have $m > 2$ then $j - 1 = m - 2 \geq 1$ and we consider i_{j-1}. Since $i_{j+r} < i_{j+r}$ and $k + 1 = n - k + 1 \leq s_i \leq n = 2k$ implies that $s_{i_{j+r-1}} \in \{x-k, x-k-1, \ldots, x-1\}$. Similarly $i_{j-1} > i_j$ implies that $s_{i_{j-1}} \in \{x+1, x+2, \ldots, n\} \cup \{1, 2, \ldots, k-(n-x) = x-k\}$. Since $s_{i_{j+r-1}} = s_{i_{j-1}}$ it now follows that this value must be $x - k = i_m$. Hence $i_{j+r-1} = i_m$ and thus $m = j + r - 1 = (m-1) + r - 1$. This implies the contradiction $2 = r \geq m > 2$. Hence $m = 2$ and the fact that $r > 2$ follows from Proposition 1 and the fact that the distance between identical labels is k.

We believe that for in Proposition 2 b) equality holds when $2k < n < 3k$. An exhaustive search by computer shows that this is the case when $2k < n < 3k$ with $n \leq 16$. Moreover $S_{2k+1,k+1}$ turns out to be the unique sequence achieving $f_k(2k+1) = 3k + 2$, whereas for $2k + 2 \leq n \leq 3k$ a typical sequence achieving $f_k(n)$ is obtained by permuting the last $n - k$ entries of $S_{n,n-k}$.

Proposition 3 The coloring of $T_{k,3}$ derived from $S_{2k,k}$ is nonrepetitive.

Proof: If the coloring of $T_{k,3}$ derived from $S_{2k,k}$ contains a repetition of length $2r$, then as in the proof of Theorem 2 it follows that there must be a k-bad sequence of $2r$ indices. From Proposition 2 a) it now follows that $r > m = 2$. Since a longest path in $T_{k,3}$ has 6 edges we must have $r = 3$. However, any repetition of length 6 would have to connect two leaves and turn around at the root, and as such would have $m = 3$, a contradiction.

Combining everything we know so far we get

Corollary 2 If $h \geq 3$, then $\pi'(T_{h,k}) \leq \left\lceil \frac{k+1}{2} k \right\rceil$.

Proof: If $h = 3$, then the result follows from Proposition 3. For $h \geq 3$ we can apply Proposition 2 b) with $n = \left\lceil \frac{k+1}{2} k \right\rceil$. Since $2n - k \geq hk$ it now follows from Remark 1 that the coloring of $T_{k,h}$ derived from $S_{n,n-k}$ is nonrepetitive.

The bound in Corollary 2 is better than that derived from Theorem 3 when $h \leq 5$ and we obtain the following table of values for $\pi'(T_{h,k})$, where the presence of two values denotes a lower and an upper bound. The values marked by an asterisk were confirmed by computer search. The programs used are based on those found in [11] and the Python code is available at http://public.csusm.edu/akundgen/Python/Nonrepetitive.py

| k\big| h | 1 | 2 | 3 | 4 | 5 | 6-10 | $h \geq 11$
|---|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
| 3 | 3 | 5 | 6* | 6* | 6* | 6* | 6* |
| 4 | 4 | 7 | 7* | 7* | 7* | 7* | 7* |
| 5 | 5 | 8 | 9,10 | 9,13 | 9,15 | 9,16 | 9,16 |
| \vdots |
| k | k | $1.5k+1$ | 1.61k, 2k | 1.61k, 2.5k | 1.61k, 3k | 1.61k, 3$k+1$ | 1.61k, 3$k+1$ |

It is worth noting that even though it may be possible to use derived colorings to improve individual columns of this table by a more careful argument (as we did in Proposition 3), this seems unlikely to work for $\pi'(T_{h,k})$ in general. Theorem 2 implies that the infinite sequence from which we derive the coloring must be k-special, and while we were able to provide such a sequence on $3k + 1$ symbols, it seems unlikely that there are such sequences on $3k$ symbols. An exhaustive search shows that for $k \leq 5$ the maximum length of a k-special sequence on $n = 3k$ symbols is $5k + 3$, which is only 3 more than the length of $S_{n,n-k}$. The $k!$ examples achieving this value are all of the strange form $[1, 2k], [1, 2k+1, 3k], x_1, [k+2, 2k], 1, x_2, x_3, \ldots, x_k, x_1, 2k+1$ where $\{x_1, \ldots, x_k\} = \{2, \ldots, k+1\}$ and $[a, b]$ denotes $a, a+1, a+2, \ldots, b$. In other words they are $S_{3k,2k+1}$ with the last $2k + 1$ entries permuted and with 1 and x_1 inserted after positions 2k and 3k.

A more promising next step would be to try to improve the lower bounds for $\pi'(T_{k,h})$ for $h = 3, 4, 5$.

The code is available at http://public.csusm.edu/akundgen/Python/Nonrepetitive.py
References

[1] N. Alon, J. Grytczuk, M. Haluszczak, and O. Riordan, *Nonrepetitive colorings of graphs*, Random Structures Algorithms, 21 (2002), pp. 336–346. Random structures and algorithms (Poznan, 2001).

[2] J. Berstel, *Axel Thue’s papers on repetitions in words: a translation*, vol. 20 of Publications du LaCIM, Université du Québec à Montréal, Montréal, Canada, 1995.

[3] ———, *Axel Thue’s work on repetitions in words*, Invited Lecture at the 4th Conference on Formal power series and algebraic combinatorics, Montreal, L.I.T.P. Institute Blaise Pascal, Université Pierre et Marie Curie, June 1992.

[4] L. Bezugová, B. Lužar, M. Mockovčiaková, R. Soták, and R. Škrekovski, *Star edge coloring of some classes of graphs*, J. Graph Theory, 81 (2016), pp. 73–82.

[5] B. Brešar, J. Grytczuk, S. Klavžar, S. Niwczyk, and I. Peterin, *Nonrepetitive colorings of trees*, Discrete Math., 307 (2007), pp. 163–172.

[6] J. D. Currie, *There are ternary circular square-free words of length n for n ≥ 18*, Electron. J. Combin., 9 (2002), pp. Note 10, 7 pp. (electronic).

[7] V. Dujmović, F. Frati, G. Joret, and D. R. Wood, *Nonrepetitive colourings of planar graphs with O(log n) colours*, Electron. J. Combin., 20 (2013), pp. Paper 51, 6.

[8] F. Fioreni, P. Ochem, P. Ossona de Mendez, and X. Zhu, *Thue choosability of trees*, Discrete Appl. Math., 159 (2011), pp. 2045–2049.

[9] J. Grytczuk, *Thue type problems for graphs, points, and numbers*, Discrete Math., 308 (2008), pp. 4419–4429.

[10] B. Keszei, B. Patkós, and X. Zhu, *Nonrepetitive colorings of lexicographic product of paths and other graphs*, Discrete Math. Theor. Comput. Sci., 16 (2014), pp. 97–110.

[11] T. Reeves, *Repetition-free edge-coloring of k-ary trees*, master’s thesis, California State University San Marcos, 12 2014. https://csusm-dspace.calstate.edu/handle/10211.3/131312.

[12] K. S. Sudep and S. Vishwanathan, *Some results in square-free and strong square-free edge-colorings of graphs*, Discrete Math., 307 (2007), pp. 1818–1824.

[13] A. Thue, *Über unendliche Zeichenreihen*, vol. 7 of Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, Norske Vid Selsk Skr I Mat Nat Kl Christiana, 1906.

[14] ———, *Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen*, vol. 10 of Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, Norske Vid Selsk Skr I Mat Nat Kl Christiana, 1912.