Introduction to Artificial Neural Networks

Why ANNs ?
- Biological inspiration
- Some examples of problems
- Historical background
- Neural computation
 - feature extraction
 - classification – regression – adaptive filtering – projection
 - principle of learning (non-linearity, error criterion)
 - difficulties: learning and generalization, the curse of dimensionality, overfitting and model complexity
- NN structure and learning rule
- How to use ANN’s?
Why Ann's?

Von Neumann's computer	(Human) brain
determinism	fuzzy behaviour
sequence of instructions	parallelism
high speed	slow speed
repetitive tasks	adaptation to situations
programming	learning
uniqueness of solutions	different solutions
ex: matrix product	ex: face recognition

Brain “Properties”

- Robust (cells die!) and fault-tolerant
- Flexible (does not need C or java...)
- Information is fuzzy, probabilistic, noisy, or inconsistent
- Highly parallel
- Learning
- Slow
- Small, compact, dissipates little power
- Auto-organization
- Non-unique behavior
Neurosciences - Neuroengineering

Some examples of problems

From “Handbook of neural computation”, E. Fiesler, R. Beale eds., IOP and Oxford University Press, 1996, p. A2.2:3

Michel Verleysen
Introduction - 5

From “DARPA Neural Network Study”, 1988

Michel Verleysen
Introduction - 6
Examples of tasks

- face recognition
- time-series prediction
- process identification
- process control
- optical character recognition
- adaptive filtering
- etc.

Historical Background

Year	Person	Contribution
1940 – 1965	Hebb	biological learning rule
	McCulloch & Pitts	binary decision units
	Rosenblatt	Perceptron - learning
1969	Minsky & Papert	limits to Perceptrons
1974	Werbos	back-propagation
1980 –	Hopfield	feedback networks
	Parker, LeCun, Rumelhart, McClelland	back-propagation
	Kohonen	Self-Organizing Maps
Hebb’s rule

“\text{When a neuron of cell A is near enough to excite a neuron of cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.}”

\textbf{‘Basic’ scheme}

\textbf{Hebb’s rule: how coupling between neurons (synaptic values) influences and is influenced by the operation performed by a group of neurons.}

\textbf{Symmetrical Hebb’s rule for artificial networks:}
- To avoid saturation
- Because 1 and 0 are conventional

\textbf{Weight update:}
- Increase
- No change

\textbf{Weight update:}
- Increase
- No change
Similarity levels

- "elements" level
 - neurons → sums & non-linear functions
 - synapses → multiplication
 - other elements → not useful for computation

- functional blocks level
 - visual cortex → pattern recognition
 - sensory-motor cortex → control
 - ...

- structure level
 - distributed information
 - ...

Artificial Neural Networks

- Artificial neural networks ARE NOT:
 - an attempt to understand biological systems
 - an attempt to reproduce the behavior of a biological system

- Artificial neural networks ARE:
 - a set of tools aimed to solve "perceptive" problems ("perceptive" <-> "rule-based")

 At least in the framework of this lecture, i.e. "Neural Computation"...
Why “Artificial neural networks”?

- Structure: many computation units in parallel (McCulloch & Pitts 1943)
- Learning rule (adaptation of parameters): similar to Hebb’s rule (1949)

And that’s all...

Learning

- Give - many - examples (input-output pairs, or training samples)
- Compute the parameters to fit the examples
- Test the result!
Why Neural Computation?

- Hypothetical problem of optical character recognition (OCR)

- If:
 - image 256 x 256 pixels
 - 8-bits pixel values (256 gray levels)
 then:
 - 10198000 different images

- Necessity to work with **features**!

Feature Extraction

- Example of feature in OCR:
 ratio height/width (x_1) of the character

- Histogram of feature value

“a” class

“b” class

x_1
Multi-dimensional Features

- Necessity to classify according to several, but not too much features

Several: because of the overlap in histogram with 1 feature
Not too much: because classification methods are easier in small dimensional spaces

What can be done with ANNs?

- regression
- classification
- adaptive filtering
- projection
What can be done with ANNs?

- regression
- classification
- adaptive filtering
- projection

Classification - Regression

- regression features → regression Output value (continuous variable)
- classification features → classification Class label (discrete variable)
What can be done with ANNs?

- regression
- classification
- adaptive filtering
- projection
Non-linear parametric regression model

Parameter adaptation

desired outputs (error criteria)

Principle

Model: restrictions about the possible relation
Principle

Non-linear parametric regression model

inputs → outputs

Parameter adaptation

desired outputs (error criteria)

Parametric: learning parameters to adjust (contain the information)

Non-linear: more powerful than linear
Principle

- **Non-linear parametric regression model**
- **Parameter adaptation**
- **Outputs**
- **Inputs**
- **Desired outputs (error criteria)**

Universal approximator!

Why non-linear?

- If world was linear:

 Push on a flexible bar, and it will shrink…

 (one equilibrium point, stability, linearity, etc.)
Why non-linear?

But world is non-linear:

Push on a flexible bar, and it will bend, to the left or to the right!
(unstable equilibrium point, bifurcation, non-linearity, etc.)

Error criterion

- regression
- classification
- adaptive filtering
- projection

\[\sum_{i} \partial_i^2 \]
Error criterion

- regression
- classification
- adaptive filtering
- projection

Wrong classifications

Independence between outputs
Error criterion

- regression
- classification
- adaptive filtering
- projection

Independence between outputs

Polynomial Curve Fitting

- Strong similarity between polynomial curve fitting and regression with neural networks
- Polynoms: \(y = w_0 + w_1x + w_2x^2 + \cdots + w_Mx^M = \sum_{j=0}^{M} w_jx^j \)
- Neural networks: \(y = f(w, x) \)
- Error criterion: \(E = \sum_{\rho=1}^{P} (y^\rho - t^\rho)^2 \)

Polynoms: \(E \) is quadratic in \(w \rightarrow \min(E) \) is the solution of a set of linear equations
Neural networks: \(E \) is non-linear in \(w \rightarrow \) local minima
Learning - generalization

Learning: process of
- finding parameters w which
- minimize the error function E
- given a set of input-output pairs (x^p, t^p)

Learning - generalization

generalization: process of
- assigning an output value y to
- a new input x
- given the parameters vector w
Overfitting

- Compromise between
 - model complexity and
 - number of learning pairs

- Neural networks are
 - universal approximation models with
 - a (relatively) low complexity

- But overfitting must be a serious concern!

Overfitting in classification

![Diagram of overfitting in classification]
Model complexity

❖ Compromise between performance and complexity: difficult to evaluate a priori

❖ Alternative: to control the effective complexity:
 ❖ new error function \[\tilde{E} = E + \lambda \Omega \]
 ❖ penalty term (example) \[\Omega = \frac{1}{2} \int \left(\frac{d^2 y}{dx^2} \right)^2 dx \]

❖ But:
 ❖ many possible forms of penalty terms
 ❖ \(\lambda \) difficult to choose/adjust

The Curse of Dimensionality

❖ Histograms: the number of boxes is exponential with the dimension
❖ More features \(\rightarrow \) reduced performances
❖ If # data is limited \(\rightarrow \) dimension must be low
❖ Concept of intrinsic dimensionality of data
Supervised - unsupervised learning

- Supervised learning: building an input-output relation known through examples (input-output pairs)

- Unsupervised learning: modeling a property of the input data (for example density)

- Reinforcement learning: outputs are good/bad (but how much good or bad is not know!)

What is a neural network?

- Model = structure + learning rule

- structure

- learning rule
 How to compute (estimate) the parameters of the network?

- Several learning rules for one structure
- Similar learning rules for several structures
How to use ANNs

1) examine problem

2) formulate problem in terms of data analysis
How to use ANNs

1) examine problem
2) formulate problem in terms of data analysis
3) collect -many- data for learning
4) understand data
How to use ANNs

1) examine problem
2) formulate problem in terms of data analysis
3) collect -many- data for learning
4) understand data
5) choose an ANN model
6) learn
How to use ANNs

1) examine problem
2) formulate problem in terms of data analysis
3) collect -many- data for learning
4) understand data
5) choose an ANN model
6) learn
7) test the results

unsuccessful:
How to use ANNs

1) examine problem
2) formulate problem in terms of data analysis
3) collect -many- data for learning
4) understand data
5) choose an ANN model
6) learn
7) test the results

successful!
Sources and References

Some ideas developed in these slides come from:

- Handbook of neural computation, E. Fiesler, R. Beale eds., IOP and Oxford university press, 1996
- Neural networks for pattern recognition, C. Bishop, Clarendon press, Oxford, 1995

Other references:

- Les Réseaux de Neurones Artificiels, F. Blayo, M. Verleysen, Presses Universitaires de France, collection "Que sais-je?", Paris (1996), 126 pages. Short introduction in French, not sufficient, but easy to read.
- Pattern classification, R.O. Duda, P.E. Hart, D.G. Strok, second edition, Wiley, 2000 (a good book on pattern classification, including, but not limited to, neural networks).