Polymorphisms in interleukin-10 gene according to mutations of NOD2/CARD15 gene and relation to phenotype in Spanish patients with Crohn’s disease

Juan L Mendoza, Elena Urcelay, Raquel Lana, Alfonso Martinez, Carlos Taxonera, Emilio G de la Concha, Manuel Díaz-Rubio

INTRODUCTION

Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract. The inflammation may involve any segment of the digestive tract, from the mouth to the anus, and may affect mucosa and deeper layers of the digestive wall, with or without granulomas. The etiopathogenesis of the disease remains poorly understood. Experimental and observational data suggest that intestinal inflammation arise from abnormal immune reactivity to bacterial flora in the intestine of individuals who are genetically susceptible [1]. Epidemiologic and linkage studies suggest that genetic factors play a significant role in determining CD susceptibility. CD has no simple Mendelian pattern of inheritance. As other immune diseases, CD is thought to be a heterogeneous, complex polygenic disease, where both genetic and environmental factors play an important role in the disease and, in which multiple interactions between susceptibility and resistance alleles are involved in disease pathogenesis [2,3].

Human genetic studies, notably the landmark identification in 2001 of NOD2/CARD15 within the linkage region IBD1, have confirmed a genetic influence on CD [4-6], and it is now clear that a genotype-phenotype relationship exists. In our population of Spanish CD patients carrying at least one NOD2/CARD15 mutation, the -1082G allele is associated with ileocolonic disease and the IL-10G14 microsatellite allele is associated with previous history of appendectomy and smoking habit at diagnosis. These data provide further molecular evidence for a genetic basis of the clinical heterogeneity of CD.

© 2006 The WJG Press. All rights reserved.

Key words: Crohn’s disease; NOD2/CARD15 gene; Interleukin-10 gene

Abstract

AIM: To examine the contribution of interleukin-10 (IL-10) gene polymorphisms to Crohn’s disease (CD) phenotype, and the possible genetic epistasis between IL-10 gene polymorphisms and CARD15/NOD2 gene mutations.

METHODS: A cohort of 205 Spanish unrelated patients with Crohn's disease recruited from a single center was studied. All patients were rigorously phenotyped and followed-up for at least 3 years (mean time, 12.5 years). The clinical phenotype was established prior to genotyping.

RESULTS: The correlation of genotype-Vienna classification groups showed that the ileocolonic location was significantly associated with the -1082G allele in the NOD2/CARD15 mutation-positive patients (RR = 1.52, 95%CI, 1.21 to 1.91, P = 0.008). The multivariate analysis demonstrated that the IL-10 G14 microsatellite allele in the NOD2/CARD15 mutation positive patients was associated with two risk factors, history of appendectomy (RR = 2.15, 95%CI = 1.1-4.30, P = 0.001) and smoking habit at diagnosis (RR = 1.29, 95%CI = 1.04-4.3, P = 0.04).

CONCLUSION: In Spanish population from Madrid, in CD patients carrying at least one NOD2/CARD15 mutation, the -1082G allele is associated with ileocolonic disease and the IL-10G14 microsatellite allele is associated with previous history of appendectomy and smoking habit at diagnosis. These data provide further molecular evidence for a genetic basis of the clinical heterogeneity of CD.

© 2006 The WJG Press. All rights reserved.

Supported by Spanish Ministerio de Ciencia y Tecnologia, MCYT SAF2003-08522 and grant 01/108-03 from Fondo de Investigación Sanitaria (FIS), Madrid, Spain

Correspondence to: Juan L Mendoza, Servicio de Aparato Digestivo, Unidad de Enfermedad Inflamatoria Intestinal, Hospital Clínico San Carlos de Madrid, C/ Martin Lagos s/n, E-28040 Madrid, Spain. jmendozah@meditex.es

Received: 2005-05-04 Accepted: 2005-06-24

http://www.wjgnet.com/1007-9327/12/443.asp

World J Gastroenterol 2006 January 21; 12(3): 443-448
World Journal of Gastroenterology ISSN 1007-9327
© 2006 The WJG Press. All rights reserved.
patients from Madrid, mutations in the NOD2/CARD15 gene were a marker of susceptibility to disease and were associated with ileal disease[7].

In CD, the mucosal inflammation is associated with an exaggerated and prolonged immune response because of a dysregulated production and interaction of pro-inflammatory and anti-inflammatory cytokines and their receptors[8]. A variety of genes encoding various proteins involved in the immune regulation have been postulated as possible candidates for disease susceptibility, including, among others, cytokines as interleukin-10 (IL-10). IL-10 is a regulatory cytokine that has several functions, but one important role is to act as an inhibitor of development of Th1 cells, activated macrophages and their products interleukin-12 (IL-12), tumor necrosis factor (TNF) and interferon-gamma (IFN-γ). Even though it is usually considered an inhibitory cytokine, it also has stimulatory effects (e.g. stimulating B cell proliferation)[9]. Recently, we have also shown that IL-10 polymorphisms contribute to susceptibility to CD in our Spanish population. IL-10G14 microsatellite allele as well as -1082G allele (guanine at position -1082) were significantly increased in Crohn’s disease patients. The combined presence of both alleles in one individual notably increased the risk to develop CD[10].

Although the pathogenetic mechanisms mediated by NOD2/CARD15 remain elusive, it has recently been shown that one of the mutations in the NOD2/CARD15 gene results in defective release of IL-10 from blood mononuclear cells after stimulation with Toll-like receptor (TLR) 2 ligands and this could contribute to the overwhelming inflammation seen in CD[11].

As IL-10 polymorphisms appear to confer a risk to develop CD in the Spanish population, the present study examined genotype-phenotype correlations in the disease process. Moreover, after stratifying the patients on the basis of the presence or absence of the well-established NOD2/CARD15 mutations, we looked for susceptibility factors being present in one specific phenotypic subpopulations.

MATERIALS AND METHODS

Study population

We studied a cohort of 205 Caucasian unrelated consecutive patients with CD who were recruited in a Unit of Inflammatory Bowel Disease (IBD) from a single tertiary referral center in Madrid, Spain. Diagnosis of Crohn’s disease was based on standard clinical, radiologic, endoscopic, and histologic criteria[12]. Phenotypic details were obtained by review of clinical charts and personal interview with the patients. The same clinical questionnaire was completed for each patient. This questionnaire included: date of birth, sex, familial IBD, age at diagnosis, follow-up interval, smoking habits, history of surgery (tonsillectomy, appendectomy), definitions of the Vienna classification for age at diagnosis (A1, < 40 years; A2, ≥ 40 years), disease location (L1, terminal ileum; L2, colon; L3, ileocolon; L4, upper gastrointestinal), behavior (B1, nonstricturing nonpenetrating; B2, stricturing; B3, penetrating), perianal disease (defined as the presence of perianal abscess, fistulas and/or ulceration), extraintestinal clinical manifestations (articular and cutaneous), and previous treatment as an indication of severity of disease (surgical intervention, corticosteroids, immunosuppressant agents, infliximab). All patient data were recorded by a gastroenterologist from the Unit of IBD (J. L. M.) who was blind to the genotype status of each patient. The protocol was approved by the Ethics Committee of the Hospital Clínico San Carlos, Madrid, and all patients were included in the study after giving informed consent.

Genotyping

IL-10 polymorphisms: IL-10G and IL-10R microsatellites were amplified using primers and conditions as previously described[13]. Blood samples were subsequently denatured and run on an ABI Prism 3100 automatic sequencer (Applied Biosystems, Foster City, CA, USA). Each sample included an internal size standard (HD400 ROX, Applied Biosystems) in order to achieve a highly consistent measure. The results were analyzed using GeneMapper v3.0 (Applied Biosystems).

As previously described[14], a combined amplification of the IL-10G microsatellite and the -1082 and -819 SNPs was performed. Our typing method allowed us to construct haplotypes directly. SNPs at positions -1082, -819 and -592 only form three different haplotypes in our population[15,16], namely, ACC, ATA and GCC. Based on this previous finding, we only typed the samples for the two first SNPs, as the information provided by the third one is redundant.

NOD2/CARD15 polymorphisms: SNP13 (Leu1007fsinsC) was genotyped using a TaqMan assay (Applied Biosystems, Foster City, CA, USA). Primers and probes used were as previously described[15,17] and PCR products were analysed on an ABI 7700 Sequence Detector (Applied Biosystems). SNP8 (Arg702Trp) (sense, 5’-CAT CTG AGA AGG CCC TGC TC(C/T)-3’; antisense, 5´-CAG ACA CCA GCG GGC ACA-3´) and SNP12 (Gly908Arg) (sense, 5´-TTG GCC TTT TCA GAT TCT GG (G/C)-3´; antisense, 5´-CCC CTC GTC ACC CAC TCT G-3´) were typed by allele-specific PCR. Detection of wild-type/mutant variants was assessed in an ABI 7700 Sequence Detector by an SYBRGreen assay. Previously sequenced samples were used as controls. In cases of doubt, samples were sequenced to confirm the result.

Statistical analysis

The frequencies for the IL-10 polymorphisms and NOD2/CARD15 mutations were estimated by counting gene and calculating sample proportions. Subsequently, Hardy Weinberg equilibrium for each of the polymorphisms was tested to check for Mendelian inheritance using χ² test with one degree of freedom. Carrier status was considered if any subject inherited at least one copy of the mutant allele 2. The association between IL-10 polymorphisms and phenotypic characteristics of CD was estimated by the relative risk (RR) with the 95% confidence interval (CI). Logistic regression analysis was performed to assess whether IL-10 polymorphisms were correlated with a particular clinical phenotype. The multiple logistic regression analysis was
mutation positive patients (NOD2/CARD15 alleles) on phenotypic characteristics was not observed (data not shown). When we examined the associated IL-10G14 and -1082G alleles in the NOD2/CARD15 mutation positive and negative patients separately, three new positive associations were found. With regard to Vienna classifications of the disease, ileocolonic disease was significantly associated with -1082G allele in the CARD15/NOD2 mutation positive patients (P=0.002). On the other hand, relative to risk factors for Crohn disease, two significant associations of the IL-10G14 allele carriership and history of appendectomy (P=0.002) and smoking habit at diagnosis (P=0.02) in the NOD2/CARD15 mutation positive patients as compared with the negative patients were observed (Table 3). The multivariate analysis demonstrated that IL-10G14 allele was associated with history of appendectomy (P=0.001, RR=2.15, 95%CI=1.1-4.30) and with smoking habit at diagnosis (P=0.04, RR=1.29, 95%CI=1.04-4.3).

DISCUSSION

In this study, we performed a genotype-phenotype correlation study in a cohort of 205 Caucasian patients with Crohn’s disease from the community of Madrid...
(central Spain) who had been followed-up for a mean of 12.57 years. The clinical diagnosis of Crohn’s disease was confirmed by the criteria of Gasche et al[19]. Our results showed that a relation existed between disease location (ileocolon), risk factors for CD (appendectomy and smoking habit) and genetic heterogeneity in our population. This could suggest an epistatic interaction of both genes.

CD is an extensively heterogeneous disease. Epidemiologic and genetic data suggest that heterogeneity of CD may be genetically determined. Recently, Ahmad et al[20] have shown the importance of the NOD2/CARD15 gene and the HLA region in determining clinical subgroups of CD. Similarly, in our CD population, we confirmed the association between NOD2/CARD15 mutations and ileal disease and the strong association confirmed the association between ileocolonic location and mutations of the NOD2/CARD15 gene[7]. In contrast, this association has been found between the NOD2/CARD15 variants and IL-10 -1082G carriers. This suggests the importance of classifying the patients according to the different genes implicated in the etiopathogenesis of CD and, therefore, of performing the molecular characterization of CD patients. Tagore et al[21] have shown that IL-10 production is associated with three biallelic polymorphisms within the promoter region of the IL-10. The allele -1082G is associated with higher IL-10 production in peripheral blood leukocytes. This different levels of IL-10 expression has been found between the CARD15/NOD2 (-) and non-smokers (P = 0.02, RR = 2.47, 95% CI = 1.28-4.8). IL-10 G14 in NOD2/CARD2 mutation positive patients: smokers vs non-smokers (P = 0.002, RR = 3.29, 95% CI = 1.45-7.7)

Table 3 Distribution of IL-10G14 allele among the different clinical subgroups of CD stratified by NOD2/CARD15 status

Phenotypic characteristics	Phenotype frequency of IL-10.G14 (+) (n = 47) (%)	P	CARD15/NOD2 (+) IL-10.G14, (n = 22) (%)	P	CARD15/NOD2 (+) IL-10.G14, (n = 25) (%)	P
Sex						
Men	23 (48.9)	0.74	13 (59.1)	0.08	10 (40)	0.32
Women	24 (51.1)	1.00	9 (40.9)	0.60	15 (60)	0.32
Age at diagnosis (yr)						
A1, < 40	39 (83.0)	0.5	21 (95.5)	0.27	18 (72)	0.68
A2, ≥40	8 (17.0)	0.93	1 (4.5)	0.56	7 (28)	0.88
Family history						
Smokers	9 (19.1)	0.54	4 (18.2)	0.52	5 (20)	0.88
Appendectomy	24 (51.1)	0.51	16 (72.7)	0.021	8 (32)	0.41
Nonstricturing, nonpenetrating (BI)	5 (10.6)	0.63	3 (13.6)	0.48	2 (8)	0.36
Location of disease						
Terminal ileum (L1)	23 (48.9)	0.26	15 (68.2)	0.54	8 (32)	0.24
Colon (L2)	4 (8.5)	0.37	1 (4.5)	0.18	3 (12)	0.12
Ileocolon (L3)	17 (36.2)	0.27	5 (22.7)	0.021	12 (48)	0.32
Upper gastrointestinal (L4)	3 (6.4)	0.86	1 (4.5)	0.47	2 (8)	0.24
Perianal	14 (29.8)	0.08	4 (18.2)	0.47	10 (40)	0.28
Extraintestinal clinical manifestations	8 (17.0)	0.62	3 (13.6)	0.30	5 (20)	0.56
Cutaneous	13 (27.7)	0.32	6 (27.3)	0.53	7 (28)	0.36
Articular						
Surgical intervention	20 (42.6)	0.98	10 (45.5)	0.81	10 (40)	0.22
Infliximab	7 (14.9)	0.79	5 (22.7)	0.31	2 (8)	0.21
Immunosuppressants	18 (38.3)	0.61	10 (45.5)	0.81	8 (32)	0.23

1IL-10G14 in NOD2/CARD2 mutation positive patients: smokers vs non-smokers (P = 0.02, RR = 2.47, 95% CI = 1.28-4.8). 2IL-10 G14 in NOD2/CARD2 mutation positive patients: appendectomy vs non-appendectomy (P = 0.002, RR = 3.29, 95% CI = 1.45-7.7)

www.wjgnet.com
The IL-10 gene knockout mouse spontaneously develops a chronic enterocolitis\(^{26}\) and gene therapy using an adenovirus IL-10 construct is successful in preventing experimental colitis in rats\(^{34}\). Moreover, there have been preliminary reports of amelioration of clinical symptoms of CD following administration of human recombinant IL-10\(^{27,23}\).

Regarding the risk factors for CD, we found two significant associations between carriage of the IL-10G14 microsatellite allele in CARD15-positive patients and previous history of appendectomy and smoking habit at diagnosis. The interaction between genetics and smoking has been demonstrated in siblings from mixed-disease families, where some individuals develop CD and others in the same family develop ulcerative colitis. There is a strong positive relationship between smoking and CD and an equally strong negative relationship between smoking and ulcerative colitis\(^{34}\). Appendectomy provides a spectrum of protection against ulcerative colitis development and progression, whereas its role in CD remains unclear. Russel et al\(^{35}\) have also noted a positive association of CD and previous appendectomy, suggesting that, in some cases, appendectomy is a result of still undiagnosed CD. Recently, other retrospective study concluded the risk of CD after appendectomy was associated with an increased risk of CD dependent on the patient’s sex, age, and the diagnosis at operation\(^{34}\). Future work should pursue to investigate the epidemiological relationships in CD, addressing a greater number of potentially important confounders, such as smoking, hygiene, and pathology of the appendix. And parallel with these clinical observations, new target could be defined by genetic and immunologic analysis to evaluate if appendicitis could be correlated with any particular genetic modification involved for patients with CD\(^{30}\).

In conclusion, our study has shown that in the Spanish population from Madrid, in CD patients carrying at least an NOD2/CARD15 mutant, the -1082G allele might be associated with ileocolonic disease, and the IL-10G14 microsatellite allele might be associated with previous history of appendectomy and smoking habit at diagnosis. Identification of plausible factors that may interact with genes is a promising step toward understanding how sequence variation influences disease susceptibility.

REFERENCES

1 Shanahan F. Crohn’s disease. Lancet 2002; 359: 62-69
2 Morahan G, Morel L. Genetics of autoimmune diseases in humans and in animal models. Curr Opin Immunol 2002; 14: 803-811
3 Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182-205
4 Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tardieu M, Marot H, C 名田 M, Liaudin P, Devauchelle P, Seksik P, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599-603
5 Hanpe J, Cuthbert A, Croucher P, Mirza MM, Mascheretti S, Fisher S, Frenzel H, King K, Hasselmeyer M, MacPherson AJ, Bridge S, van Deventer S, Forbes A, Nikolaus S, Lennard-Jones JE, & Lesage S. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001; 357: 1925-1928
6 Ogura Y, Bonen DK, Itohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliukas C, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirchner BS, Sandkuijl LA, Nunez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603-606
7 Mendoza JL, Murillo LS, Fernandez L, Peña AS, Lara R, Urcelay E, Cruz-Santamaria DM, de la Concha EG, Diaz-Rubio M, Garcia-Paredes J. Prevalence of mutations of the NOD2/CARD15 gene and relation to phenotype in Spanish patients with Crohn disease. Scand J Gastroenterol 2005; 38: 1235-1240
8 van der Linde K, Bork P, Hooijbergen MA, Savelkoul HF, Wilson JH, de Rooij FW. A Gly15Arg mutation in the interleukin-10 gene reduces secretion of interleukin-10 in Crohn disease. Scand J Gastroenterol 2003; 38: 611-617
9 Mecellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM. The dual role of IL-10. Trends Immunol 2003; 24: 36-43
10 Fernandez I, Martinez A, Mendoza JL, Urcelay E, Fernandez-Arquero M, Garcia-Paredes J, Diaz-Rubio M, de la Concha EG. Interleukin-10 polymorphisms in Spanish patients with IBD. Inflamm Bowel Dis 2005; 11: 739-743
11 Netea MG, Kullberg BJ, de Jong DJ, Franke B, Spreng T, Naber TH, Drent HJ, Van der Meer JW. NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn’s disease. Eur J Immunol 2004, 34: 2052-2059
12 Leonard-Jones JE. Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 1989; 170: 2-6; discussion 16-19
13 Eskdale J, Gallagher G, Verweij CE, Keijzers V, Westendorp RG, Huizinga TW. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci U S A 1998; 95: 9465-9470
14 Cavet J, Middleton PG, Segall M, Noreen H, Davies SM, Dickinson AM. Recipient tumor necrosis factor-alpha and interleukin-10 gene polymorphisms associate with early mortality and acute graft-versus-host disease severity in HLA-matched sibling bone marrow transplants. Blood 1999; 94: 3941-3946
15 Martinez A, Pascual M, Pascual-Salcedo D, Balsa A, Martin J, de la Concha EG. Genetic polymorphisms in Spanish rheumatoid arthritis patients: an association and linkage study. Genes Immun 2003; 4: 117-121
16 Martinez Doncel A, Rubio A, Arroyo R, de las Heras V, Martin C, Fernandez-Arquero M, de la Concha EG. Interleukin-10 polymorphisms in Spanish multiple sclerosis patients. J Neuroimmunol 2002; 131: 169-172
17 Fernandez L, Mendoza JL, Martinez A, Urcelay E, Fernandez-Arquero M, Garcia-Paredes J, Peña AS, Diaz-Rubio M, de la Concha EG. IBD1 and IBD3 determine location of Crohn’s disease in the Spanish population. Inflamm Bowel Dis 2004; 10: 715-722
18 Gasche C, Scholmerich J, Brynskov J, D’Haens G, Hanauer SB, Irvine Ej, Jewell DP, Rachmilewitz D, Sachar DB, Sandborn WJ, Sutherland LR. A simple classification of Crohn’s disease. Proc Natl Acad Sci U S A 1998; 115: 722
19 Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, Crawshaw J, Large O, de Silva A, Cook JT, Barnardo M, Cullen S, Welsh KL, Jewell DP. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 2002, 122: 854-866
20 Bell J. The new genetics in clinical practice. BMJ 1998; 316: 618-620
21 Louis E, Collard A, Oger AF, Degroote E, Aboul Nasef El Yafi FA, Belaiche J. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut 2001; 49: 777-782
22 Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S, Tysk C, O’Morain C, Cassull G, Binder V, Finkel Y, C 名田 M, Liaudin P, Devauchelle P, Seksik P, Thomas G. Association between insertion mutation in NOD2 gene and inflammatory bowel disease. Am J Hum Genet 2002; 70: 845-857
Vavassori P, Borgiani P, D'Apice MR, De Negris F, Del Vecchio Blanco G, Monteleone I, Biancone L, Novelli G, Pallone E. 3020insC mutation within the NOD2 gene in Crohn's disease: frequency and association with clinical pattern in an Italian population. *Dig Liver Dis* 2002; 34: 153

Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, Jahnseen J, Moum B, Klump B, Krawczak M, Mirza MM, Foelsch UR, Vatn M, Schreiber S. Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease. *Lancet* 2002; 359: 1661-1665

Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ, Mascheretti S, Sanderson J, Forbes A, Mansfield J, Schreiber S, Lewis CM, Mathew CG. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. *Gastroenterology* 2002; 122: 867-874

Tagore A, Gonsalkorale WM, Pravica V, Hajeer AH, McMahon R, Whorwell PJ, Sinnott PJ, Hutchinson IV. Interleukin-10 (IL-10) genotypes in inflammatory bowel disease. *Tissue Antigens* 1999; 54: 386-390

Schreiber S, Heinig T, Thiele HG, Raedler A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. *Gastroenterology* 1995; 108: 1434-1444

Li MC, He SH. IL-10 and its related cytokines for treatment of inflammatory bowel disease. *World J Gastroenterol* 2004; 10: 620-625

Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. *Cell* 1993; 75: 263-274

Barbara G, Xing Z, Hogaboam CM, Gauldie J, Collins SM. Interleukin 10 gene transfer prevents experimental colitis in rats. *Gut* 2000; 46: 344-349

van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn's disease. Crohn's Disease Study Group. *Gastroenterology* 1997; 113: 383-389

Bridger S, Lee JC, Bjarnason I, Jones JE, Macpherson AJ. In siblings with similar genetic susceptibility for inflammatory bowel disease, smokers tend to develop Crohn's disease and non-smokers develop ulcerative colitis. *Gut* 2002; 51: 21-25

Russel MG, Dorant E, Brummer RJ, van de Kruis MA, Muris JW, Bergers JM, Goedhard J, Stockbrügger RW. Appendectomy and the risk of developing ulcerative colitis or Crohn's disease: results of a large case-control study. South Limburg Inflammatory Bowel Disease Study Group. *Gastroenterology* 1997; 113: 377-382

Andersson RE, Olaison G, Tysk C, Ekbom A. Appendectomy is followed by increased risk of Crohn's disease. *Gastroenterology* 2003; 124: 40-46

Adani GL, Baccarani U, Risaliti A, Donini A, Aoki T, Avital I. Appendicectomy and Crohn's disease: clinical and genetic associations. *Gastroenterology* 2003; 125: 1562-1563