Nagaoka’s theorem in the Holstein-Hubbard model

Tadahiro Miyao

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail: miyao@math.sci.hokudai.ac.jp

Abstract

Nagaoka’s theorem on ferromagnetism in the Hubbard model is extended to the Holstein-Hubbard model. This shows that Nagaoka’s ferromagnetism is stable even if the electron-phonon interaction is taken into account. We also prove that Nagaoka’s ferromagnetism is stable under the influence of the quantized radiation field.

1 Introduction

To build rigorous theory of ferromagnetism is a challenging problem. The Hubbard model is one of the most fundamental models for ferromagnetic metals. Nagaoka constructed a first rigorous example of ferromagnetism in this model [20]. He proved that the ground state of the model exhibits ferromagnetism when one electron is fewer than half-filling and the Coulomb strength U is infinitely large. We remark that Thouless also discussed the same mechanism in [27]. Since their discoveries, there have been several crucial developments [6, 8, 26], however, Nagaoka’s theorem has been a major milestone in this field. There are several studies concerning Nagaoka’s theorem; a generalized version of the theorem was given by Tasaki [24]; Shastry et al. studied the instability of Nagaoka’s ferromagnetic state [23], while Kohno extended the theorem to the Hubbard ladders with several holes [4]. This theorem still provides attractive field of studies, see, e.g., [3, 5].

On the one hand, electrons always interact with phonons in actual metals, on the other hand, ferromagnetism is experimentally observed in various metals and has a wide range of uses in daily life. Therefore, if Nagaoka’s theorem contains an essence of real ferromagnetism, Nagaoka’s ferromagnetism should be stable under the influence of the electron-phonon interaction. The main purpose of this paper is to prove this stability. In addition, we show that stability holds even if the electrons interact with the quantized radiation field. To prove these results, we apply operator theoretic correlation inequalities studied by Miyao in the previous works [9, 10, 11, 12, 13, 15, 16].

We mention some related works. In [6], Lieb gave an example of ferromagnetism in the Hubbard model at half-filling. Recently, Lieb’s ferromagnetism is shown to be stable even if the electron-phonon interaction is not so strong [18]. This result is consistent with our results in the present paper.

The organization of the present paper is as follows. In Section 2 we first review Nagaoka’s theorem on the Hubbard model. Then we state stability theorems on the
Holstein-Hubbard model and Hubbard model coupled to the quantized radiation field. In Sections 3-6, we prove main theorems. In Appendix A we prove some correlation inequalities which play an important role in the proofs.

2 Results

2.1 Nagaoka’s theorem revisited

First of all, we review Nagaoka’s theorem in the Hubbard model. The Hamiltonian of the Hubbard model is

\[H = \sum_{x,y \in \Lambda} \sum_{\sigma \in \{\uparrow, \downarrow\}} t_{xy} c_{x\sigma}^* c_{y\sigma} + U \sum_{x \in \Lambda} n_{x\uparrow} n_{x\downarrow} + \sum_{x,y \in \Lambda, x \neq y} U_{xy} n_x n_y. \] (2.1)

\(H_0\) acts in the \(N\)-electron Hilbert space \(E_0 = \wedge^N (\ell^2(\Lambda) \oplus \ell^2(\Lambda))\), where \(\wedge^N\) is the \(n\)-fold anti-symmetric tensor product of \(\ell^2(\Lambda) \oplus \ell^2(\Lambda)\). \(c_{x\sigma}^*\) and \(c_{x\sigma}\) are the standard fermionic operators which create and annihilate the electron at site \(x\) with spin \(\sigma\). \(n_{x\sigma} = c_{x\sigma}^* c_{x\sigma}\) is the electron number operator at site \(x\) with spin \(\sigma\). Moreover, \(n_x = n_{x\uparrow} + n_{x\downarrow}\). \(t_{xy}\) is the hopping matrix element. \(U\) and \(U_{xy}\) are the local and nonlocal Coulomb matrix elements, respectively.

In what follows, we assume the following:

(A. 1) \(\{t_{xy}\}\) and \(\{U_{xy}\}\) are real symmetric matrices.

(A. 2) \(t_{xy} \geq 0\) for all \(x, y \in \Lambda\).

(A. 3) \(N = |\Lambda| - 1\).

We derive an effective Hamiltonian describing the system with \(U = \infty\). Let \(P\) be the Gutzwiller projection given by

\[P = \prod_{x \in \Lambda} (\mathbb{1} - n_{x\uparrow} n_{x\downarrow}), \] (2.2)

where \(\mathbb{1}\) denotes the identity operator. \(P\) is the orthogonal projection onto the subspace with no doubly occupied sites.

\textbf{Theorem 2.1} Assume (A. 1), (A. 2) and (A. 3). We define the effective Hamiltonian \(H_{H,\infty}\) by \(H_{H,\infty} = PH_0^U = 0 P\), where \(H_0^U = 0\) is the Hamiltonian \(H_0\) with \(U = 0\). For all \(z \in \mathbb{C} \backslash \mathbb{R}\), we have

\[\lim_{U \to \infty} (H_0 - z)^{-1} = (H_{H,\infty} - z)^{-1} P \] (2.3)

in the operator norm topology.

Set \(\mathcal{E} := \text{ran}(P)\), where \(\text{ran}(P)\) is the range of \(P\). We denote the restriction of \(H_{H,\infty}\) to \(\mathcal{E}\) by the same symbol.

To state Nagaoka’s theorem, we need some preparations. The set of spin configurations with a single hole is denoted by \(\mathcal{S}\):

\[\mathcal{S} = \{\sigma = \{\sigma_x\}_{x \in \Lambda} \in \{\uparrow, 0, \downarrow\}^\Lambda \mid \exists x_0 \text{ such that } \sigma_{x_0} = 0 \text{ and } \sigma_x \neq 0 \text{ if } x \neq x_0\}. \] (2.4)
We say that the x_0 in \[24\] is the position of the hole, and $\{\sigma_x\}_{x \neq x_0}$ is the spin configuration of electrons. For each $\sigma \in S$, the position of the hole is denoted by $x_0(\sigma)$.

For each $\sigma \in S$, we denote the number of up spins (resp., down spins) in σ by $n_\uparrow(\sigma)$ (resp., $n_\downarrow(\sigma)$), respectively. For each $M \in \{-(|\Lambda|-1)/2, -(|\Lambda|-3)/2, \ldots, (|\Lambda|-1)/2\}$, we set $S_M = \{\sigma \in S | n_\uparrow(\sigma) - n_\downarrow(\sigma) = 2M\}$.

An element (x, σ) in $\Lambda \times S_M$ is called the hole-spin configuration, if $x = x_0(\sigma)$. In what follows, we denote the set of all hole-spin configurations by C_M.

Let $(x, \sigma) \in C_M$. For each $y \in \Lambda \setminus \{x\}$, we define a map $S_{yx} : C_M \to C_M \cup \{\emptyset\}$ by

$$S_{yx}(x, \sigma) = (y, \sigma'),$$

where $\sigma' = \{\sigma'_z\}_{z \in \Lambda} \in S_M$ is defined by

$$\sigma'_z = \begin{cases}
\sigma_y & \text{if } z = x \\
0 & \text{if } z = y \\
\sigma_z & \text{otherwise}
\end{cases}$$

and $S_{yx}(z, \sigma'') = \emptyset$ for all $(z, \sigma'') \in C_M$ with $z \neq x$.

Definition 2.2 (Connectivity condition) We say that Λ has the connectivity, if the following condition holds: For every pair of hole-spin configurations $(x, \sigma), (y, \tau) \in C_M$, there exist sites $x_1, \ldots, x_\ell \in \Lambda$ with $x_1 = x$, $x_\ell = y$ such that

$$t_{x_1x_\ell-1}t_{x_{\ell-1}x_{\ell-2}} \cdots t_{x_2x_1} \neq 0$$

and

$$(S_{x_1x_\ell-1} \circ S_{x_{\ell-1}x_{\ell-2}} \circ \cdots \circ S_{x_2x_1})(x, \sigma) = (y, \tau).$$

The total spin S is an important quantity in the present paper. The spin operators are given by

$$S^{(3)} = \frac{1}{2} \sum_{x \in \Lambda} (n_{x\uparrow} - n_{x\downarrow}), \quad S^{(-)} = \sum_{x \in \Lambda} c^*_xc_x, \quad S^{(+)} = (S^{(-)})^*.$$

They all commute with the Hamiltonian H_I. The total spin operator is defined by

$$(S_{\text{tot}})^2 = (S^{(3)})^2 + \frac{1}{2}S^{(+)}S^{(-)} + \frac{1}{2}S^{(-)}S^{(+)}$$

with eigenvalues $S(S+1)$. We are interested in the eigenvalues of $(S_{\text{tot}})^2$ for the ground states.

The following theorem is due to Tasaki \[24\].

Theorem 2.3 (Generalized Nagaoka’s theorem) Assume (A. 1), (A. 2) and (A. 3). Assume that Λ satisfies the connectivity condition. Then the ground state of $H_{I, \infty}$ has total spin $S = (|\Lambda| - 1)/2$ and is unique apart from the trivial $(2S+1)$-degeneracy.

Remark 2.4 In \[24\], the sufficient condition for the connectivity is given. Using the condition, we know that models with the following (i) and (ii) satisfy the connectivity condition:

(i) Λ is a triangular, square cubic, fcc, or bcc lattice;

(ii) t_{xy} is nonvanishing between nearest neighbor sites.
2.2 Stability I: The Holstein-Hubbard model

The Hamiltonian of the Holstein-Hubbard model is given by

$$H = \sum_{x,y \in \Lambda} \sum_{\sigma \in \{\uparrow, \downarrow\}} t_{xy} c_{x\sigma}^\dagger c_{y\sigma} + U \sum_{x \in \Lambda} n_{x\uparrow} n_{x\downarrow} + \sum_{x,y \in \Lambda, x \neq y} U_{xy} n_{x} n_{y}$$

$$+ \sum_{x,y \in \Lambda} g_{xy} n_{x\uparrow} n_{y\uparrow} + \sum_{x \in \Lambda} \omega b_{x}^\dagger b_{x}. \quad (2.11)$$

H acts in the Hilbert space $\mathcal{E}_{el} \otimes \mathcal{F}$. Here, \mathcal{F} is the bosonic Fock space over $\ell^2(\Lambda)$ defined by $\mathcal{F} = \bigoplus_{n=0}^{\infty} \otimes_n \ell^2(\Lambda)$, where $\otimes_n \mathcal{h}$ is the n-fold symmetric tensor product of \mathcal{h}. b_x^\dagger and b_x are the bosonic creation- and annihilation operators at site x. g_{xy} is the strength of the electron-phonon interaction. The phonons are assumed to be dispersionless with energy $\omega > 0$. H is a self-adjoint operator, bounded from below.

We assume the following:

(A. 4) $\{g_{xy}\}$ is a real symmetric matrix.

Theorem 2.5 Assume (A. 1), (A. 2), (A. 3) and (A. 4). We define the effective Hamiltonian H_∞ by $H_\infty = PH^{U=0}P$, where $H^{U=0}$ is the Hamiltonian H with $U = 0$. For all $z \in \mathbb{C} \setminus \mathbb{R}$, we have

$$\lim_{U \to \infty} (H - z)^{-1} = (H_\infty - z)^{-1} P$$

in the operator norm topology.

We denote the restriction of H_∞ to $\mathcal{E} \otimes \mathcal{F}$ by the same symbol.

Theorem 2.6 Assume (A. 1), (A. 2), (A. 3) and (A. 4). Assume that Λ satisfies the connectivity condition. Then the ground state of H_∞ has total spin $S = (|\Lambda| - 1)/2$ and is unique apart from the trivial $(2S + 1)$-degeneracy.

2.3 Stability II: The Hubbard model coupled to the quantized radiation field

We consider an N-electron system coupled to the quantized radiation field. Suppose that the lattice Λ is embedded into the region $V = [-L/2, L/2]^3 \subset \mathbb{R}^3$ with $L > 0$. The system is described by the following Hamiltonian:

$$H = \sum_{x,y \in \Lambda} t_{xy} \exp \left\{ i \int_{C_{xy}} dr \cdot A(r) \right\} c_{x\uparrow}^\dagger c_{y\uparrow} + \sum_{k \in V^*} \sum_{\lambda = 1,2} \omega(k) a(k, \lambda)^* a(k, \lambda)$$

$$+ U \sum_{x \in \Lambda} n_{x\uparrow} n_{x\downarrow} + \sum_{x,y \in \Lambda, x \neq y} U_{xy} n_{x} n_{y}. \quad (2.13)$$

H acts in the Hilbert space $\mathcal{E}_{el} \otimes \mathcal{R}$. \mathcal{R} is the Fock space over $\ell^2(V^* \times \{1,2\})$ with $V^* = (\frac{2\pi}{L})^3$, namely, $\mathcal{R} = \oplus_{n \geq 0} \otimes_n^{\otimes} \ell^2(V^* \times \{1,2\})$. $a(k, \lambda)^*$ and $a(k, \lambda)$ are the
bosonic creation- and annihilation operators, respectively. These operators satisfy the following commutation relations:

\[[a(k, \lambda), a(k', \lambda')] = \delta_{\lambda \lambda'} \delta_{kk'}, \quad [a(k, \lambda), a(k', \lambda')] = 0. \] (2.14)

The quantized vector potential is given by

\[A(x) = |V|^{-1/2} \sum_{k \in V^*} \sum_{\lambda = 1, 2} \frac{\chi_\kappa(k)}{\sqrt{2\omega(k)}} \varepsilon(k, \lambda) \left(e^{ik \cdot x} a(k, \lambda) + e^{-ik \cdot x} a(k, \lambda)^* \right). \] (2.15)

The form factor \(\chi_\kappa \) is the indicator function of the ball of radius \(0 < \kappa < \infty \). The dispersion relation \(\omega(k) \) is chosen to be \(\omega(k) = |k| \) for \(k \in V^* \setminus \{0\} \), \(\omega(0) = m_0 \) with \(0 < m_0 < \infty \). \(C_{xy} \) is a piecewise smooth curve from \(x \) to \(y \). For concreteness, the polarization vectors are chosen as

\[\varepsilon(k, 1) = \frac{(k_2, -k_1, 0)}{\sqrt{k_1^2 + k_2^2}}, \quad \varepsilon(k, 2) = \frac{k}{|k|} \wedge \varepsilon(k, 1). \] (2.16)

To avoid ambiguity, we set \(\varepsilon(k, \lambda) = 0 \) if \(k_1 = k_2 = 0 \). \(A(x) \) is essentially self-adjoint. We denote its closure by the same symbol. This model was introduced by Giuliani et al. in [2]. Remark that \(H \) is essentially self-adjoint and bounded from below. We denote its closure by the same symbol.

Remark 2.7 A more precise definition of \(\int_{C_{xy}} dr \cdot A(r) \) is given in Section 6. ♦

Theorem 2.8 Assume \((A.1), (A.2) \) and \((A.3) \). We define the effective Hamiltonian \(H_\infty \) by \(H_\infty = PHU=0P \), where \(HU=0 \) is the Hamiltonian \(H \) with \(U = 0 \). For all \(z \in \mathbb{C} \setminus \mathbb{R} \), we have

\[\lim_{U \to \infty} (H - z)^{-1} = (H_\infty - z)^{-1} P \] (2.17)

in the operator norm topology.

As before, we denote the restriction of \(H_\infty \) to \(\mathcal{E} \otimes \mathfrak{R} \) by the same symbol.

Theorem 2.9 Assume \((A.1), (A.2) \) and \((A.3) \). Assume that \(\Lambda \) satisfies the connectivity condition. Then the ground state of \(H_\infty \) has total spin \(S = (|\Lambda| - 1)/2 \) and is unique apart from the trivial \((2S + 1)\)-degeneracy.

3 Proof of Theorem 2.5

Let \(H_1 = P^\perp HP^\perp \) and let \(H_{01} = PHP^\perp + P^\perp HP \). Using the fact that \(P(\sum_{x \in \Lambda} n_{x\uparrow} n_{x\downarrow})P = 0 \), we have \(H_\infty = PHP \). Accordingly, we have \(H = H_\infty + H_1 + H_{01} \). Moreover, since \(P \) commutes with boson operators, we have

\[H_{01} = PTP^\perp + P^\perp TP, \] (3.1)

where \(T = \sum_{x,y \in \Lambda} \sum_{\sigma \in \{\uparrow, \downarrow\}} t_{xy} c_{x\sigma}^* c_{y\sigma} \). In particular, \(H_{01} \) is a bounded operator.

We denote the restriction of \(A \) to \(\text{ran}(P^\perp) \) by \(A \upharpoonright P^\perp \).
Lemma 3.1 Let \(E(H_1) = \min \text{spec}(H_1 \mid P^\perp) \), where \(\text{spec}(A) \) is spectrum of \(A \). Then
\[
E(H_1) \geq C + U,
\]
where \(C \) is a constant independent of \(U \).

Proof. For any self-adjoint operator \(A \), bounded from below, we set \(\mathcal{E}(A) := \inf \text{spec}(A) \).
We divide \(H_1 \) into two parts as \(H_1 = H_{1,U=0} + U \sum_{x \in A} n_x \uparrow n_x \downarrow P^\perp \), where \(H_{1,U=0} \) is the Hamiltonian \(H_1 \) with \(U = 0 \). We have \(E(H_1) \geq \mathcal{E}(H_{1,U=0}) + \mathcal{E}(U \sum_{x \in A} n_x \uparrow n_x \downarrow \mid P^\perp) \).
Since \(\mathcal{E}(U \sum_{x \in A} n_x \uparrow n_x \downarrow \mid P^\perp) \geq U \), we obtain the desired result. \(\square \)

Corollary 3.2 If \(U \) is sufficiently large, then \(H_1^{-1}P^\perp \) is a bounded operator.

Lemma 3.3 Let \(z \in \mathbb{C} \setminus \mathbb{R} \). We have
\[
\|(H_1 - z)^{-1}P^\perp\| \leq \{E(H_1) - |z|\}^{-1},
\]
provided that \(U \) is sufficiently large.

Proof. Since \(H_1^{-1}P^\perp \) is bounded, we have
\[
(H_1 - z)^{-1}P^\perp = \sum_{n=0}^{\infty} (H_1^{-1}P^\perp z)^n H_1^{-1}P^\perp.
\]
Thus, we have \(\|(H_1 - z)^{-1}P^\perp\| \leq \sum_{n=0}^{\infty} E(H_1)^{-n} |z|^n = \{E(H_1) - |z|\}^{-1}. \)

Lemma 3.4 Let \(z \in \mathbb{C} \setminus \mathbb{R} \). If \(|\text{Im} z| \) is sufficiently large, then we have
\[
\lim_{U \to \infty} \|(H - z)^{-1} - (H_\infty + H_1 - z)^{-1}\| = 0.
\]

Proof. First, remark that
\[
\left\{(H - z)^{-1} - (H_\infty + H_1 - z)^{-1}\right\} P = (H - z)^{-1}P^\perp(-H_{01})(H_\infty - z)^{-1} P.
\]
The norm of \((H - z)^{-1}P^\perp \) is estimated as follows: Since
\[
(H - z)^{-1}P^\perp = \sum_{n=0}^{\infty} (-1)^n \left\{(H_\infty + H_1 - z)^{-1} H_{01}\right\}^n (H_1 - z)^{-1}P^\perp,
\]
we have, by Lemma 3.3,
\[
\|(H - z)^{-1}P^\perp\| \leq \left(\sum_{n=0}^{\infty} |\text{Im} z|^{-n} \|H_{01}\|^n\right) \{E(H_1) - |z|\}^{-1} := C_z \{E(H_1) - |z|\}^{-1}.
\]
Thus, by Lemma 3.1 and (3.6),
\[
\left\|(H - z)^{-1} - (H_\infty + H_1 - z)^{-1}\right\| P \leq C_z \|H_{01}\| |\text{Im} z|^{-1} \{E(H_1) - |z|\}^{-1} \to 0
\]
as $U \to \infty$.

Next, since
\[
\left\{ (H - z)^{-1} - (H_{\infty} + H_1 - z)^{-1} \right\} P_{\perp} = (H - z)^{-1} P (-H_01)(H_1 - z)^{-1} P_{\perp}, \tag{3.10}
\]
we obtain, by Lemmas 3.1 and 3.3,
\[
\left\| \left\{ (H - z)^{-1} - (H_{\infty} + H_1 - z)^{-1} \right\} P_{\perp} \right\| \leq |\text{Im}z|^{-1} \| H_01 \| \{ E(H_1) - |z| \}^{-1} \rightarrow 0 \tag{3.11}
\]
as $U \to \infty$. \blacksquare

Lemma 3.5 Let $z \in \mathbb{C}\setminus\mathbb{R}$. If $|\text{Im}z|$ is sufficiently large, then we have
\[
\lim_{U \to \infty} \left\| (H_{\infty} + H_1 - z)^{-1} - (H_{\infty} - z)^{-1} P \right\| = 0. \tag{3.12}
\]

Proof. Remark that
\[
(H_{\infty} + H_1 - z)^{-1} - (H_{\infty} - z)^{-1} P = (H_1 - z)^{-1} P_{\perp}. \tag{3.13}
\]
Hence, we obtain, by Lemmas 3.1 and 3.3
\[
\left\| (H_{\infty} + H_1 - z)^{-1} - (H_{\infty} - z)^{-1} P \right\| \leq \{ E(H_1) - |z| \}^{-1} \rightarrow 0 \tag{3.14}
\]
as $U \to \infty$. \blacksquare

Completion of proof of Theorem 2.5

By Lemmas 3.4, 3.5 and [21, Theorem VIII. 19], we obtain the desired result in the theorem. \blacksquare

4 Operator theoretic correlation inequalities

4.1 Self-dual cones

In this section, we will review a general theory of correlation inequalities developed in [9, 10, 11, 12, 13, 15, 16, 17].

Let \mathcal{H} be a complex Hilbert space. By a convex cone, we understand a closed convex set $P \subset \mathcal{H}$ such that $tP \subseteq P$ for all $t \geq 0$ and $P \cap (-P) = \{0\}$. In what follows, we always assume that $P \neq \{0\}$.

Definition 4.1 The dual cone of P is defined by
\[
P^\dagger = \{ \eta \in \mathcal{H} \mid \langle \eta | \xi \rangle \geq 0 \ \forall \xi \in P \}. \tag{4.1}
\]
We say that P is self-dual if $P = P^\dagger$. \Diamond

Remark 4.2 [17] P is a self-dual cone if and only if P is a Hilbert cone.\checkmark \Diamond

1 Let \mathcal{H} be a complex Hilbert space. A convex cone \mathcal{P} in \mathcal{H} is called a *Hilbert cone*, if it satisfies the following: (i) $\langle \xi | \eta \rangle \geq 0$ for all $\xi, \eta \in \mathcal{P}$; (ii) Let $\mathcal{H}_{\mathbb{R}}$ be a real subspace of \mathcal{H} generated by \mathcal{P}. Then for all $\xi \in \mathcal{H}_{\mathbb{R}}$, there exist $\xi_+, \xi_- \in \mathcal{P}$ such that $\xi = \xi_+ - \xi_-$ and $\langle \xi_+ | \xi_- \rangle = 0$; (iii) $\mathcal{H} = \mathcal{H}_{\mathbb{R}} + i\mathcal{H}_{\mathbb{R}} = \{ \xi + i\eta \mid \xi, \eta \in \mathcal{H}_{\mathbb{R}} \}$.

7
Definition 4.3
(i) A vector ξ is said to be positive w.r.t. \mathcal{P} if $\xi \in \mathcal{P}$. We write this as $\xi \geq 0$ w.r.t. \mathcal{P}.

(ii) A vector $\eta \in \mathcal{P}$ is called strictly positive w.r.t. \mathcal{P} whenever $\langle \xi | \eta \rangle > 0$ for all $\xi \in \mathcal{P}\setminus\{0\}$. We write this as $\eta > 0$ w.r.t. \mathcal{P}. ◊

Example 1 Let \mathcal{X} be a finite-dimensional Hilbert space and let $\{x_n\}_{n=1}^N$ be a complete orthonormal system in \mathcal{X}. We set

$$
\mathcal{P} = \text{Coni}\{x_n | n = 1, \ldots, N\},
$$

where Coni(S) is the conical hull of S. Then \mathcal{P} is a self-dual cone in \mathcal{X}. $x \geq 0$ w.r.t. \mathcal{P} if and only if $\langle x_n | x \rangle \geq 0$ for all $n \in \{1, \ldots, N\}$. In addition, $x > 0$ w.r.t. \mathcal{P} if and only if $\langle x_n | x \rangle > 0$ for all $n \in \{1, \ldots, N\}$. ◊

Example 2 Let (M, μ) be a σ-finite measure space. We set

$$
L^2(M, d\mu)_+ = \{ f \in L^2(M, d\mu) | f(m) \geq 0 \ \mu\text{-a.e.}\}.
$$

$L^2(M, d\mu)_+$ is a self-dual cone in $L^2(M, d\mu)$. Clearly, $f \geq 0$ w.r.t. $L^2(M, d\mu)_+$ if and only if $f(m) \geq 0$ μ-a.e.. On the other hand, $f > 0$ w.r.t. $L^2(M, d\mu)_+$ if and only if $f(m) > 0$ μ-a.e. ◊

4.2 Operator inequalities associated with self-dual cones

In subsequent sections, we use the following operator inequalities.

Definition 4.4 We denote by $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H}. Let $A, B \in \mathcal{B}(\mathcal{H})$. Let \mathcal{P} be a self-dual cone in \mathcal{H}.

If $A\mathcal{P} \subseteq \mathcal{P}$, we then write this as $A \triangleright 0$ w.r.t. \mathcal{P}. In this case, we say that A preserves the positivity w.r.t. \mathcal{P}. Let \mathcal{H}_R be a real subspace generated by \mathcal{P}. Suppose that $A\mathcal{H}_R \subseteq \mathcal{H}_R$ and $B\mathcal{H}_R \subseteq \mathcal{H}_R$. If $(A - B)\mathcal{P} \subseteq \mathcal{P}$, then we write this as $A \triangleright B$ w.r.t. \mathcal{P}. ◊

Remark 4.5 $A \triangleright 0$ w.r.t. $\mathcal{P} \iff \langle \xi | A \eta \rangle \geq 0$ for all $\xi, \eta \in \mathcal{P}$. ◊

Example 3 Let \mathcal{X} be a finite-dimensional Hilbert space and let \mathcal{P} be a self-dual cone given in Example 1. A matrix A acting in \mathcal{X} satisfies $A \triangleright 0$ w.r.t. \mathcal{P} if and only if $\langle x_m | Ax_n \rangle \geq 0$ for all $m, n \in \{1, \ldots, N\}$. ◊

Proof. Let $x, y \in \mathcal{P}$. We can express x and y as $x = \sum_{n=1}^N a_n x_n$ and $y = \sum_{n=1}^N b_n x_n$ with $a_n, b_n \geq 0$. Since $\langle x_n | Ay \rangle = \sum_{m,n=1}^N a_m b_n A_{mn}$, we conclude the assertion by Remark 4.5. □

Example 4 Let $L^2(\mathbb{R})$ be the space of Lebesgue square integrable functions on \mathbb{R}. Let p be a differential operator defined by $p = -id/dx$. For each $a \in \mathbb{R}$, we set $U_a = e^{iap}$.

The unitary operator U_a satisfies $U_a \triangleright 0$ w.r.t. $L^2(\mathbb{R})_+$. ◊

2 For each subset $\mathcal{C} \subseteq \mathcal{H}$, $A\mathcal{C}$ is defined by $A\mathcal{C} = \{Ax | x \in \mathcal{C}\}$.

3 This symbol was introduced by Miura [19].
Proof. Remark that \((U_{a}f(x) = f(x + a)\) a.e. \(x\) for each \(f \in L^{2}(\mathbb{R})\). If \(f \in L^{2}(\mathbb{R})_{+}\), that is, \(f(x) \geq 0\) a.e. \(x\), then \((U_{a}f(x) = f(x + a) \geq 0\) a.e. \(x\).

The following proposition is fundamental in the present paper.

Proposition 4.6 Let \(A, B, C, D \in \mathcal{B}(\mathcal{F})\) and let \(a, b \in \mathbb{R}\).

(i) If \(A \geq 0, B \geq 0\) w.r.t. \(\mathcal{P}\) and \(a, b \geq 0\), then \(aA + bB \geq 0\) w.r.t. \(\mathcal{P}\).

(ii) If \(A \geq B \geq 0\) and \(C \geq D \geq 0\) w.r.t. \(\mathcal{P}\), then \(AC \geq BD \geq 0\) w.r.t. \(\mathcal{P}\).

(iii) If \(A \geq 0\) w.r.t. \(\mathcal{P}\), then \(A^{\ast} \geq 0\) w.r.t. \(\mathcal{P}\).

Proof. (i) is trivial.

(ii) If \(X \geq 0\) and \(Y \geq 0\) w.r.t. \(\mathcal{P}\), we have \(XY \geq X \geq \mathcal{P} \subseteq \mathcal{P}\). Hence, it holds that \(XY \geq 0\) w.r.t. \(\mathcal{P}\). Hence, we have

\[
AC - BD = A \bigg(C - D \bigg) + (A - B) D \geq 0 \text{ w.r.t. } \mathcal{P}.
\]

(iii) For each \(\xi, \eta \in \mathcal{P}\), we know that

\[
\langle \xi | A^{\ast} \eta \rangle = \bigg\langle \begin{array}{c} \xi \\ \mathcal{\xi} \geq 0 \\ \geq 0 \end{array} | \begin{array}{c} \eta \\ \mathcal{\eta} \geq 0 \end{array} \bigg\rangle \geq 0. \tag{4.4}
\]

Thus, by Remark 4.5, we conclude (iii).

Proposition 4.7 Let \(\{A_{n}\}_{n=1}^{\infty} \subseteq \mathcal{B}(\mathcal{F})\) and let \(A \in \mathcal{B}(\mathcal{F})\). Suppose that \(A_{n}\) converges to \(A\) in the weak operator topology. If \(A_{n} \geq 0\) w.r.t. \(\mathcal{P}\) for all \(n \in \mathbb{N}\), then \(A \geq 0\) w.r.t. \(\mathcal{P}\).

Proof. By Remark 4.5, \(\langle \xi | A_{n} \eta \rangle \geq 0\) for all \(\xi, \eta \in \mathcal{P}\). Thus, \(\langle \xi | A \eta \rangle = \lim_{n \to \infty} \langle \xi | A_{n} \eta \rangle \geq 0\) for all \(\xi, \eta \in \mathcal{P}\). By Remark 4.5 again, we conclude that \(A \geq 0\) w.r.t. \(\mathcal{P}\).

Definition 4.8 Let \(A \in \mathcal{B}(\mathcal{F})\). We write \(A \rhd 0\) w.r.t. \(\mathcal{P}\), if \(A_{\xi} \rhd 0\) w.r.t. \(\mathcal{P}\) for all \(\xi \in \mathcal{P} \setminus \{0\}\). In this case, we say that \(A\) improves the positivity w.r.t. \(\mathcal{P}\).

Example 5 Let \(X\) and \(\mathcal{P}\) be given in Example 1. Let \(A\) be an \(N \times N\) matrix acting in \(X\). Suppose that \(A \rhd 0\) w.r.t. \(\mathcal{P}\). If, for each \(m, n \in \mathbb{N}\), there exists an \(\ell \in \{0\} \cup \mathbb{N}\) such that \(\langle x_{m} | A^{\ell} x_{n} \rangle > 0\), then \(e^{A} \rhd 0\) w.r.t. \(\mathcal{P}\).

Proof. Let \(u, v \in \mathcal{P} \setminus \{0\}\). Then we can express \(u\) and \(v\) as \(u = \sum_{n=1}^{N} u_{n} x_{n}\) and \(v = \sum_{n=1}^{N} v_{n} x_{n}\). Since \(u\) and \(v\) are non-zero vectors, there exist \(m, n \in \{1, \ldots, N\}\) such that \(u_{m} > 0\) and \(v_{n} > 0\). Remark that, since \(A \rhd 0\) w.r.t. \(\mathcal{P}\), it holds that \(A^{k} \rhd 0\) w.r.t. \(\mathcal{P}\) for all \(k \in \mathbb{N}\). In particular, all matrix elements of \(A^{k}\) are positive numbers. By choosing \(\ell \in \{0\} \cup \mathbb{N}\) such that \(\langle x_{m} | A^{\ell} x_{n} \rangle > 0\), we have

\[
\langle u | e^{A} v \rangle = \sum_{k=0}^{\infty} \frac{1}{k!} \langle u | A^{k} v \rangle \geq \frac{1}{\ell!} \langle u | A^{\ell} v \rangle \geq \frac{u_{m} v_{n}}{\ell!} \langle x_{m} | A^{\ell} x_{n} \rangle > 0. \tag{4.5}
\]

Thus, \(e^{A} \rhd 0\) w.r.t. \(\mathcal{P}\).
Example 6 Let $L^2(\mathbb{R})$ be the space of Lebesgue square integrable functions on \mathbb{R}. Let us consider an operator $h = -\frac{d^2}{dx^2} + x^2$ acting in $L^2(\mathbb{R})$. h is self-adjoint and bounded from below. Moreover, $e^{-\beta h} > 0$ w.r.t. $L^2(\mathbb{R})_+$ for all $\beta > 0$, see, e.g., Theorems XIII. 44 and XIII. 47.

The following theorem plays an important role.

Theorem 4.9 (Perron–Frobenius–Faris) Let A be a self-adjoint operator, bounded from below. We set $E(A) := \inf \text{spec}(A)$. Suppose that $0 \in \text{spec}(A)$ for all $t \geq 0$ and that $E(A)$ is an eigenvalue. Let P_A be the orthogonal projection onto the closed subspace spanned by eigenvectors associated with $E(A)$. Then, the following are equivalent:

(i) $\dim \text{ran} P_A = 1$ and $P_A \perp 0$ w.r.t. P.
(ii) $0 \perp e^{-tA}$ w.r.t. P for all $t > 0$.
(iii) For each $\xi, \eta \in H \setminus \{0\}$, there exists a $t > 0$ such that $\langle \xi | e^{-tA} \eta \rangle > 0$.

Proof. See, e.g., [1, 9, 22].

Remark 4.10 (i) is equivalent to the following: there exists a unique $\xi \in H$ such that $\xi \perp 0$ w.r.t. P and $P_A = |\xi\rangle\langle\xi|$. Of course, ξ satisfies $A\xi = E(A)\xi$.

5 Proof of Theorem 2.6

5.1 The $S^{(3)} = M$ subspace

Recall the definition of $S^{(3)}$ given in (2.9). We denote the spectrum of $S^{(3)}$ by $\text{spec}(S^{(3)})$. Remark that $\text{spec}(S^{(3)}) = \{-(|\Lambda| - 1)/2, -(|\Lambda| - 3)/2, \ldots, (|\Lambda| - 1)/2\}$. Thus, we have the following decomposition:

$$E = \bigoplus_{M \in \text{spec}(S^{(3)})} E(M), \quad E(M) = \ker(S^{(3)} - M) \cap E. \quad (5.1)$$

In this paper, we call $E(M) \otimes \mathfrak{S}$ the $S^{(3)} = M$ subspace.

5.2 The Lang-Firsov transformation

Let

$$L = \omega^{-1} \sum_{x,y \in \Lambda} g_{xy}n_x(b_y^* - b_y). \quad (5.2)$$

L is essentially anti-self-adjoint. We denote its closure by L. We set $H'_\infty = e^LH_\infty e^{-L}$.

Let

$$T = \sum_{x,y \in \Lambda} \sum_{\sigma = \uparrow, \downarrow} \vartheta_{xy}(\sigma), \quad (5.3)$$

where

$$T_{xy}(\sigma) = t_{xy}Pe_{xy}^*c_{y\sigma}P \quad (5.4)$$
and
\[
\vartheta_{xy} = \exp \left\{ -i\sqrt{2} \omega^{-3/2} \sum_{z \in \Lambda} (g_{xz} - g_{yz})p_z \right\} \tag{5.5}
\]
with \(p_x\) the self-adjoint extension of \(i\sqrt{2}(b^*_x - b_x)\).

Since \(P\) commutes with \(L\), we obtain
\[
H'_\infty = T + U_{\text{eff}}P + \omega N_bP + \text{Const.}, \tag{5.6}
\]
where \(N_b = \sum_{x \in \Lambda} b^*_x b_x\) and
\[
U_{\text{eff}} = \sum_{x \neq y} U_{\text{eff},xy} n_x n_y \tag{5.7}
\]
with \(U_{\text{eff},xy} = U_{xy} - \omega^{-1} \sum_{z \in \Lambda} g_{xz}g_{zy}\). Henceforth, we ignore the constant term in (5.6), because it does not affect our proof below.

5.3 Definition of the connector and its related operators

For each \((x, \sigma) \in \mathcal{C}_M\), we define \(\sigma' = \{\sigma'_z\}_{z \in \Lambda} \in \{\uparrow, \downarrow\}^\Lambda\) by
\[
\sigma'_z = \begin{cases}
\uparrow & \text{if } z = x \\
\sigma_z & \text{otherwise.}
\end{cases} \tag{5.8}
\]

Following Tasaki [24, 25], we define a complete orthonormal system \(\{|x, \sigma\rangle | (x, \sigma) \in \mathcal{C}_M\} \subset \mathcal{E}\) by
\[
|x, \sigma\rangle = c_{x\uparrow} \prod_{z \in \Lambda} c^*_{\sigma'_z} \Omega_f, \tag{5.9}
\]
where \(\Omega_f\) is the Fock vacuum and \(\prod_{z \in \Lambda}\) indicates the ordered product according to an arbitrarily fixed order in \(\Lambda\).

For each \(M \in \{-(|\Lambda| - 1)/2, -(|\Lambda| - 3)/2, \ldots, (|\Lambda| - 1)/2\}\), a canonical self-dual cone in \(\mathcal{E}(M)\) is defined by
\[
\mathcal{E}_+(M) = \text{Coni}\left\{|x, \sigma\rangle \mid (x, \sigma) \in \mathcal{C}_M\right\}. \tag{5.10}
\]

We begin with the following lemma.

Lemma 5.1 For every \(x,y \in \Lambda\) and \(\sigma \in \{\uparrow, \downarrow\}\), we have
\[
\langle y', \sigma' | \{-T_{xy}(\sigma)\} | x', \tau \rangle = t_{xy} \delta_{x'x} \delta_{y'y} \delta_{S_{yy}(\tau)\sigma}. \tag{5.11}
\]

In addition, \(-T_{xy}(\sigma) \succeq 0\) w.r.t. \(\mathcal{E}_+(M)\).

Proof. To check (5.11) is easy, or see [25, Eq. (4.3)]. Let \(\phi, \psi \in \mathcal{E}_+(M)\). Thus, we can express these as \(\phi = \sum_{(x, \sigma) \in \mathcal{C}_M} \phi_{x,\sigma} |x, \sigma\rangle\), \(\psi = \sum_{(x, \sigma) \in \mathcal{C}_M} \psi_{x,\sigma} |x, \sigma\rangle\) with \(\phi_{x,\sigma} \geq 0\) and \(\psi_{x,\sigma} \geq 0\). Using these expressions and (5.11), we can check that \(\langle \phi | \{-T_{xy}(\sigma)\} \psi \rangle \succeq 0\). Thus, by Example 3 we conclude that \(-T_{xy}(\sigma) \succeq 0\) w.r.t. \(\mathcal{E}_+(M)\). \(\Box\)
Definition 5.2 We say that \(p = \{x_1, x_2, \ldots, x_\ell\} \) in Definition 2.2 is a connector between \((x, \sigma)\) and \((y, \tau)\). The number \(\ell - 1 \) is called the length of \(p \) and denoted by \(|p|\).

For each connector \(p \) between \((x, \sigma)\) and \((y, \tau)\), we define a linear operator \(\tau(p) \) by

\[
\tau(p) = \{-T_{x_{\ell-1}x_1}(\sigma_1)\} \cdots \{-T_{x_1x_2}(\sigma_1)\}.
\]

Proposition 5.3 Let \((x, \sigma), (y, \tau) \in C_M\). Let \(p \) be a connector between \((x, \sigma)\) and \((y, \tau)\). Then we have

\[
\tau(p) \geq t_{x_{\ell}x_{\ell-1}} \cdots t_{x_2x_1} |y, \tau\rangle \langle x, \sigma| \quad \text{w.r.t.} \quad \mathcal{E}_+(M).
\]

In particular, we have \(\langle y, \tau | \tau(p) | x, \sigma \rangle \geq t_{x_{\ell}x_{\ell-1}} \cdots t_{x_2x_1} > 0 \).

Proof. We set

\[
(x_1, \sigma_1) := (x, \sigma), \quad (x_2, \sigma_2) := S_{x_1x_1}(x_1, \sigma_1), \ldots, (x_\ell, \sigma_\ell) := S_{x_{\ell-1}x_{\ell-1}}(x_{\ell-1}, \sigma_{\ell-1}),
\]

where \(S_{xy} \) is defined by (2.2). Remark that \((x_\ell, \sigma_\ell) = (y, \tau)\). Define

\[
P_1 := |x_1, \sigma_1\rangle \langle x_1, \sigma_1|, \ldots, P_\ell := |x_\ell, \sigma_\ell\rangle \langle x_\ell, \sigma_\ell|.
\]

Since \(\mathbb{1} \triangleright P_k \) w.r.t. \(\mathcal{E}_+(M) \) for all \(k = 1, \ldots, \ell \)\(^4\) we obtain, by Proposition 4.6 and Lemma 5.1,

\[
\tau(p) = \mathbb{1}\{-T_{x_{\ell-1}x_1}(\sigma_1)\} \cdots \mathbb{1}\{-T_{x_1x_2}(\sigma_1)\} P_1 \cdots P_{\ell-1} \{-T_{x_{\ell-2}x_{\ell-1}}(\sigma_{\ell-1})\} P_{\ell-2} \cdots P_2 \{-T_{x_1x_2}(\sigma_1)\} P_1
\]

\[
\geq t_{x_\ell x_{\ell-1}} \cdots t_{x_2x_1} |y, \tau\rangle \langle x, \sigma|.
\]

This completes the proof. \(\square \)

Lemma 5.4 For each \(\beta \geq 0 \), \(e^{-\beta U_{\text{eff}}} \geq 0 \) w.r.t. \(\mathcal{E}_+(M) \) for all \(\beta \geq 0 \).

Proof. For each \((x, \sigma) \in C_M\), \(|x, \sigma\rangle \) is an eigenvector of \(U_{\text{eff}} \). We denote the corresponding eigenvalue by \(U_{\text{eff}}(x, \sigma) \). Then one sees that \(e^{-\beta U_{\text{eff}}} |x, \sigma\rangle = e^{-\beta U_{\text{eff}}(x, \sigma)} |x, \sigma\rangle \). Since \(e^{-\beta U_{\text{eff}}(x, \sigma)} \) is a positive number, we conclude the assertion by Remark 4.5. \(\square \)

5.4 The Schrödinger representation

Let \(q_x = \frac{1}{\sqrt{2\omega}}(b_x + b_x^*) \). \(q_x \) is essentially self-adjoint. We denote its closure by the same symbol. Recall that \(p_x \) is the closure of \(i\sqrt{2\omega}(b_x^* - b_x) \).

The bosonic Fock space \(\mathfrak{F} \) can be naturally identified with \(L^2(Q) \) with \(Q = \mathbb{R}^{\mathcal{A}} \). In addition, \(q_x \) and \(p_x \) can be identified with a multiplication operator and \(p_x = -i\partial / \partial q_x \), respectively. In what follows, we use this representation. A natural self-dual cone in \(L^2(Q) \) is

\[
L^2(Q)_+ = \{ f \in L^2(Q) \mid f(q) \geq 0 \ \text{a.e.} \}.
\]

\(^4\) To show this, remark that \(\mathbb{1} = \sum_{(x, \sigma) \in C_M} |x, \sigma\rangle \langle x, \sigma| \). Since \(|x, \sigma\rangle \langle x, \sigma| \geq 0 \) w.r.t. \(\mathcal{E}_+(M) \) for all \((x, \sigma) \in C_M\), we obtain that \(\mathbb{1} \triangleright |x, \sigma\rangle \langle x, \sigma| \) w.r.t. \(\mathcal{E}_+(M) \) for all \((x, \sigma) \in C_M\).
Lemma 5.5 We have the following:

(i) For each \(x, y \in \Lambda\), \(\partial_{xy} \geq 0\) w.r.t. \(L^2(Q)_+\).
(ii) \(e^{-\beta \omega N_b} > 0\) w.r.t. \(L^2(Q)_+\) for all \(\beta > 0\).

Proof. (i) Since \(p_x = -i\partial/\partial q_x, e^{iap_x} \) is a translation operator. Thus, by Example \(4\), \(e^{iap_x} \geq 0\) w.r.t. \(L^2(Q)_+\) for all \(a \in \mathbb{R}\), which implies \(\theta_{xy} \geq 0\) w.r.t. \(L^2(Q)_+\) for all \(x, y \in \Lambda\).

(ii) We remark that \(\omega N_b = \frac{1}{\pi} \sum_{x \in \Lambda} (-\partial^2/\partial q_x^2 + q_x^2 - |A|^2)\). Hence, (ii) follows from [22] Theorems XIII. 44 and XIII. 47] (see also Example \(3\)). \(\square\)

5.5 A natural self-dual cone in \(\mathfrak{E}(M) \otimes \mathfrak{F}\)

First, we remark the following identification:

\[
\mathfrak{E}(M) \otimes L^2(Q) = \int_Q \mathfrak{E}(M) dq. \quad (5.18)
\]

We take the following self-dual cone in the full space \(\mathfrak{E}(M) \otimes \mathfrak{F}\):

\[
\mathfrak{P}_M = \left\{ \Phi \in \mathfrak{E}(M) \otimes L^2(Q) \mid \Phi(q) \geq 0 \text{ w.r.t. } \mathfrak{E}_+(M) \text{ for a.e. } q \right\}. \quad (5.19)
\]

Lemma 5.6 \(\mathfrak{P}_M\) is a self-dual cone in \(\mathfrak{E}(M) \otimes L^2(Q)\).

Proof. We will prove that \(\mathfrak{P}^\dagger_M = \mathfrak{P}_M\). It is easy to check that \(\mathfrak{P}_M \subseteq \mathfrak{P}^\dagger_M\). Thus, it suffices to show the reverse. Let \(\Psi = \int_Q \Phi(q) dq \in \mathfrak{P}^\dagger_M\). Then, for all \(\Phi \in \mathfrak{P}_M\), we have \(\langle \Psi | \Phi \rangle \geq 0\). By choosing \(\Phi = |x, \sigma\rangle \otimes f\) with \(f \in L^2(Q)_+\), we have \(\int_Q \langle \Psi | x, \sigma \rangle f(q) dq \geq 0\). Since \(f\) is arbitrarily, we have \(\langle \Psi | x, \sigma \rangle \geq 0\) for all \((x, \sigma) \in C_M\), which implies that \(\psi(q) \geq 0\) w.r.t. \(\mathfrak{E}_+(M)\). Hence, \(\Psi \in \mathfrak{P}_M\). \(\square\)

Lemma 5.7 Let \(A \in \mathcal{B}(\mathfrak{E}(M))\) and \(B \in \mathcal{B}(L^2(Q))\). Assume that \(A \geq 0\) w.r.t. \(\mathfrak{E}_+(M)\) and \(B \geq 0\) w.r.t. \(L^2(Q)_+\). We have \(A \otimes B \geq 0, 1 \otimes B \geq 0\) and \(A \otimes B \geq 0\) w.r.t. \(\mathfrak{P}_M\).

Proof. Let \(\Psi = \int_Q \Psi(q) dq \in \mathfrak{P}_M\). Thus, \(\Psi(q) \geq 0\) w.r.t. \(\mathfrak{P}_+(M)\) for a.e. \(q\). Remark that \(A \otimes \mathbb{1} \Psi = \int_Q A \Psi(q) dq\).

Since \(A \geq 0\) w.r.t. \(\mathfrak{E}_+(M)\), it holds that \(A \Psi(q) \geq 0\) w.r.t. \(\mathfrak{E}_+(M)\) for a.e. \(q\). Thus, the RHS of \(5.20\) is positive w.r.t. \(\mathfrak{P}_M\). This implies that \(A \otimes \mathbb{1} \geq 0\) w.r.t. \(\mathfrak{P}_M\).

We decompose \(\Psi\) as \(\Psi = \sum_{(x, \sigma) \in C_M} |x, \sigma\rangle \otimes f_{x, \sigma}, \) where \(f_{x, \sigma}(q) = \langle x, \sigma | \Psi(q) \rangle\). Since \(\Psi \geq 0\) w.r.t. \(\mathfrak{P}_M, f_{x, \sigma}(q) \geq 0\) for a.e. \(q\) and every \((x, \sigma) \in C_M\). Because \(B \geq 0\) w.r.t. \(L^2(Q)_+\), we have that \(B f_{x, \sigma} \geq 0\) w.r.t. \(L^2(Q)_+\), which implies \(\mathbb{1} \otimes B \Psi = \sum_{(x, \sigma) \in C_M} B_{x, \sigma} \geq 0\) w.r.t. \(\mathfrak{P}_M\). Thus, we conclude that \(\mathbb{1} \otimes B \geq 0\) w.r.t. \(\mathfrak{P}_M\).

Finally, we have \(A \otimes B = (A \otimes B)(1 \otimes B) \geq 0\) w.r.t. \(\mathfrak{P}_M\). \(\square\)

Remark 5.8 Let \(A \in \mathcal{B}(\mathfrak{E}(M))\) and \(B \in \mathcal{B}(L^2(Q))\). In this paper, we abbreviate the tensor products \(A \otimes \mathbb{1}\) and \(\mathbb{1} \otimes B\) simply as \(A\) and \(B\) if no confusion arises. For example, a claim that \(A \geq 0\) w.r.t. \(\mathfrak{P}_M\) means that \(A \otimes \mathbb{1} \geq 0\) w.r.t. \(\mathfrak{P}_M\). \(\Diamond\)
Proposition 5.9 Let p be a connector between (x, σ) and (y, τ). We have $(-T)^{|p|} \geq \vartheta_{yx\tau}(p) \geq 0$ w.r.t. \mathfrak{P}_M.

Proof. By Lemmas 5.1, 5.5 and 5.7 we have

$$-T \geq \theta_{xy}(-T_{xy}(\sigma)) \geq 0 \quad (5.21)$$

w.r.t. \mathfrak{P}_M for all $x, y \in \Lambda$ and $\sigma \in \{\uparrow, \downarrow\}$. By using this and Proposition 4.6 (ii), we have

$$(-T)^{\ell-1} \geq \{ -\theta_{x_{\ell-1}x_{\ell}} T_{x_{\ell-1}x_{\ell}}(\sigma_{\ell}) \} \cdots \{ -\theta_{x_{1}x_{2}} T_{x_{1}x_{2}}(\sigma_{1}) \} \quad (5.22)$$

w.r.t. \mathfrak{P}_M. Since $\theta_{x_{1}x_{2}} \cdots \theta_{x_{\ell-1}x_{\ell}} = \theta_{x_{1}x_{\ell}} = \theta_{xy}$, we obtain the desired result. □

5.6 Uniqueness of the ground states

The purpose of this subsection is to prove the following:

Theorem 5.10 For each $M \in \{-(|\Lambda| - 1)/2, -(|\Lambda| - 3)/2, \ldots, (|\Lambda| - 1)/2 \}$, it holds that $e^{-\beta H_\infty} \geq 0$ w.r.t. \mathfrak{P}_M for all $\beta > 0$. Thus, the ground states of H'_∞ is unique and can be chosen to be strictly positive w.r.t. \mathfrak{P}_M by Theorem 4.9.

To prove Theorem 5.10 we begin with the following lemma.

Lemma 5.11 $e^{-\beta H_\infty} \geq 0$ w.r.t. \mathfrak{P}_M for all $\beta \geq 0$.

Proof. By (5.21) and Proposition 4.6 (ii), we have $(-T)^n \geq 0$ w.r.t. \mathfrak{P}_M for all $n \in \mathbb{N}$, which implies that

$$e^{-\beta T} = \sum_{n=0}^{\infty} \frac{\beta^n}{n!} (-T)^n \geq 0 \quad (5.23)$$

w.r.t. \mathfrak{P}_M for all $\beta \geq 0$. On the other hand, we have, by Lemmas 5.4, 5.5 and 5.7

$$e^{-\beta(U_{eff} P + \omega N_b)} = e^{-\beta U_{eff} P} e^{-\beta \omega N_b} \geq 0 \quad (5.24)$$

w.r.t. \mathfrak{P}_M for all $\beta \geq 0$. Thus, by the Trotter-Kato product formula and Proposition 4.7 we have

$$e^{-\beta H'_\infty} = \text{strong- lim}_{n \to \infty} \left(e^{-\beta T/n} e^{-\beta(U_{eff} P + \omega N_b)/n} \right)^n \geq 0 \quad (5.25)$$

w.r.t. \mathfrak{P}_M for all $\beta \geq 0$, because $e^{-\beta T/n} e^{-\beta(U_{eff} P + \omega N_b)} \geq 0$ for all $\beta \geq 0$ and $n \in \mathbb{N}$. □

Let $H'_{\infty,0}$ be the Hamiltonian H'_∞ with $U_{xy} = 0$ for all $x, y \in \Lambda$.

Proposition 5.12 The following (i) and (ii) are equivalent:

(i) $e^{-\beta H'_{\infty,0}} \geq 0$ w.r.t. \mathfrak{P}_M for all $\beta > 0$.

(ii) \(e^{-\beta H'_{\infty,0}} \rhd 0\) \(w.r.t. \ \mathfrak{P}_M\) for all \(\beta > 0\).

Proof. To prove Proposition 5.12 it suffices to check the conditions (a)-(c) in Theorem A.1. To this end, we set \(U_{\text{eff}}^{(n)} = (1 - \frac{1}{n})U_{\text{eff}}\). Let \(H_{\infty}^{(n)} = H'_{\infty,0} + U_{\text{eff}}^{(n)} P\). Choose \(\psi \in \mathfrak{C}[M] \otimes \mathfrak{g}_0\), arbitrarily, where \(\mathfrak{g}_0\) is the finite particle subspace of \(\mathfrak{C}\) and \(\otimes\) indicates the algebraic tensor product. We easily check that \(H_{\infty}^{(n)} \psi \rightarrow H'_{\infty,0} \psi\), \((H'_{\infty} - U_{\text{eff}}^{(n)} P) \psi \rightarrow H'_{\infty,0} \psi\) as \(n \rightarrow \infty\). Thus, by [21, Theorem VIII. 25], \(H_{\infty}^{(n)}\) converges to \(H'_{\infty}\) and \(H'_{\infty} - U_{\text{eff}}^{(n)} P\) converges to \(H'_{\infty,0}\) in the strong resolvent sense. Thus, the condition (a) is satisfied. To check (b) is easy.

To prove (c), let \(\varphi, \psi \in \mathfrak{P}_M\) with \(\langle \varphi | \psi \rangle = 0\). Hence,

\[
\sum_{(x, \sigma) \in C_M} \langle \varphi_{x, \sigma} | \psi_{x, \sigma} \rangle_{L^2(Q)} = 0. \tag{5.27}
\]

Since \(\varphi_{x, \sigma}(q) \geq 0\) and \(\psi_{x, \sigma}(q) \geq 0\) for a.e. \(q\), it holds that \(\langle \varphi_{x, \sigma} | \psi_{x, \sigma} \rangle = 0\) for all \((x, \sigma) \in C_M\). Recalling the notations in the proof of Lemma 5.4 we have

\[
\langle \varphi | e^{-\beta U_{\text{eff}}^{(n)} P} \psi \rangle = \sum_{(x, \sigma) \in C_M} e^{-\beta (1 - n^{-1})U_{\text{eff}}(x, \sigma)} \langle \varphi_{x, \sigma} | \psi_{x, \sigma} \rangle = 0. \tag{5.28}
\]

Thus, (c) is satisfied. \(\square\)

For our purpose, it suffices to prove that \(e^{-\beta H'_{\infty,0}} \rhd 0\) \(w.r.t. \ \beta > 0\) by Proposition 5.12. To this end, we use the Duhamel expansion:

\[
e^{-\beta H'_{\infty,0}} = \sum_{n=0}^{\infty} D_n(\beta), \tag{5.29}
\]

where

\[
D_n(\beta) = \int_{0 \leq s_1 \leq \cdots \leq s_n \leq \beta} \{ -T(s_1) \} \cdots \{ -T(s_n) \} e^{-\beta \omega N_h} \tag{5.30}
\]

with \(T(s) = e^{-s \omega N_h} T e^{s \omega N_h}\). Note that the RHS of (5.29) converges in the operator norm topology.

Lemma 5.13 For all \(n \in N_0 := \{0\} \cup N\) and \(\beta \geq 0\), \(D_n(\beta) \rhd 0\) \(w.r.t. \ \mathfrak{P}_M\).

Proof. By Lemma 5.5 and 5.21, the integrand in the RHS of (5.30) satisfies

\[
e^{-s_1 \omega N_h} (-T) e^{-s_2 - s_1 \omega N_h} \cdots e^{-s_n - s_{n-1} \omega N_h} (-T) e^{-\beta s_n \omega N_h} \rhd 0\tag{5.31}
\]

w.r.t. \(\mathfrak{P}_M\) for all \(0 \leq s_1 \leq \cdots \leq s_n \leq \beta\). Thus, it holds that \(D_n(\beta) \rhd 0\) \(w.r.t. \ \mathfrak{P}_M\). \(\square\)

To be precise,

\[
\mathfrak{g}_0 = \{ \Phi = \{ \Phi_n \}_{n=0}^\infty | \text{There exists an } n_0 \in \{0\} \cup N \text{ such that } \Phi_n = 0 \text{ for all } n \geq n_0 \}. \tag{5.26}
\]

Let \(A\) be a self-adjoint operator and let \(\{ A_n \}_{n=1}^\infty \) be a family of self-adjoint operators. Then \(A_n\) is said to converge to \(A\) in the strong resolvent sense if \((A_n - \lambda)^{-1} \rightarrow (A - \lambda)^{-1}\) for all \(\lambda \) with \(\text{Im} \lambda \neq 0\) in the strong operator topology.

15
We remark that, in a way similar to Definition 5.14, the ergodicity of $\{D_n(\beta)\}$ is defined.

Lemma 5.15 If $\{D_n(\beta)\}$ is ergodic w.r.t. \mathcal{P}_M, then $e^{-\beta H_{\infty,0}} > 0$ w.r.t. \mathcal{P}_M for all $\beta > 0$.

Proof. Choose $\varphi, \psi \in \mathcal{P}_M \setminus \{0\}$, arbitrarily. By the ergodicity of $\{D_n(\beta)\}$, there exist $n_0 \in \mathbb{N}_0$ and $\beta_0 \geq 0$ such that $\langle \varphi | D_n(\beta_0) \psi \rangle > 0$. By Lemma 5.13, we have $e^{-\beta_0 H_{\infty,0}} \geq D_{n_0}(\beta_0)$ w.r.t. \mathcal{P}_M, which implies $\langle \varphi | e^{-\beta_0 H_{\infty,0}} \psi \rangle \geq \langle \varphi | D_{n_0}(\beta_0) \psi \rangle > 0$. By Theorem 4.9 we conclude that $e^{-\beta H_{\infty,0}} > 0$ w.r.t. \mathcal{P}_M for all $\beta > 0$. \(\square\)

For each $n \in \mathbb{N}$ and $\beta \geq 0$, we set

$$C_n(\beta) = (-T)^n e^{-\beta \omega_N}.$$ \(5.32\)

We remark that, in a way similar to Definition 5.14, the ergodicity of $\{C_n(\beta)\}$ can be defined.

Lemma 5.16 If $\{C_n(\beta)\}$ is ergodic w.r.t. \mathcal{P}_M, then $\{D_n(\beta)\}$ is ergodic w.r.t. \mathcal{P}_M.

Proof. We denote the integrand of the RHS of (5.30) by $F(s_1, \ldots, s_n)$. In the proof of Lemma 5.13, we have already proved that $F(s_1, \ldots, s_n) \geq 0$ w.r.t. \mathcal{P}_M, provided that $0 \leq s_1 \leq \cdots \leq s_n \leq \beta$. Also remark that $F(0, \ldots, 0) = C_n(\beta)$.

Let $\varphi, \psi \in \mathcal{P}_M \setminus \{0\}$. Since $\{C_n(\beta)\}$ is ergodic, there exist $n_0 \in \mathbb{N}_0$ and $\beta_0 \geq 0$ such that $\langle \varphi | C_{n_0}(\beta_0) \psi \rangle > 0$. Thus, since a function $\langle \varphi | F(s_1, \ldots, s_n) \psi \rangle$ is continuous in s_1, \ldots, s_n, we have

$$\langle \varphi | D_{n_0}(\beta_0) \psi \rangle = \int_{0 \leq s_1 \leq \cdots \leq s_n \leq \beta} \langle \varphi | F(s_1, \ldots, s_n) \psi \rangle > 0.$$ \(5.33\)

This means that $\{D_n(\beta)\}$ is ergodic. \(\square\)

Theorem 5.17 $\{C_n(\beta)\}$ is ergodic w.r.t. \mathcal{P}_M.

Proof. In this proof, we will use the following notation: Let $\xi, \eta \in \mathcal{P}_M$. If $\xi - \eta \in \mathcal{P}_M$, then we express this as $\xi \equiv \eta$ w.r.t. \mathcal{P}_M.

The following property is useful: Let A be a linear operator acting in $\mathcal{C}(\mathcal{M}) \otimes L^2(\mathcal{Q})$. Suppose that $A \geq 0$ w.r.t. \mathcal{P}_M. If $\xi \geq \eta$ and $\xi' \geq \eta'$ w.r.t. \mathcal{P}_M, then we have $\langle \xi | A \xi' \rangle \geq \langle \eta | A \eta' \rangle$.

For each $\varphi, \psi \in \mathcal{P}_M \setminus \{0\}$, there exist (x, σ) and (y, τ) such that $\varphi \geq |x, \sigma| \otimes \varphi_{x, \sigma}$, $\psi \geq |y, \tau| \otimes \psi_{y, \tau}$ w.r.t. \mathcal{P}_M, \(5.34\)

where $\varphi_{x, \sigma}, \psi_{y, \tau} \in L^2(\mathcal{Q}) \setminus \{0\}$. \(\footnote{To see this, we remark that φ can be expressed as $\varphi = \sum_{(x, \sigma) \in \mathcal{C}_M} |x, \sigma| \otimes \varphi_{x, \sigma}$, where $\varphi_{x, \sigma}(q) = \langle x, \sigma | \varphi(q) \rangle$. Since $\varphi(q) \geq 0$ w.r.t. $\mathcal{E}_1(\mathcal{M})$, it holds that $\varphi_{x, \sigma} \geq 0$ w.r.t. $L^2(\mathcal{Q})$. Thus, $|x, \sigma| \otimes \varphi_{x, \sigma} \in \mathcal{P}_M$ for all $(x, \sigma) \in \mathcal{C}_M$, which implies $\geq |x, \sigma| \otimes \varphi_{x, \sigma}$ for all $(x, \sigma) \in \mathcal{C}_M$. Since φ is nonzero, there exists a $(x_0, \sigma_0) \in \mathcal{C}_M$ such that $\varphi_{x_0, \sigma_0} \neq 0$. Hence, we obtain $\geq |x_0, \sigma_0| \otimes \varphi_{x_0, \sigma_0}$.}

By the connectivity condition, there exists a connector p between (x, σ) and (y, τ). By Proposition 5.9 we have

$$\langle \varphi | C_p(\beta) \psi \rangle \geq \langle x, \sigma | \sigma(p) | y, \tau \rangle \langle \varphi_{x, \sigma}, \psi_{y, \tau} \rangle e^{-\beta \omega_N} \psi_{y, \tau}.$$ \(5.35\)
Since $\theta_{yx} \geq 0$ and $e^{-\beta\omega N_b} > 0$ w.r.t. $L^2(Q)_+$ for all $\beta > 0$, it holds that
\[\langle \varphi_x, \sigma | \theta_{yx} e^{-\beta\omega N_b} \psi_y, \tau \rangle > 0, \tag{5.36} \]
which implies that the RHS of (5.35) is strictly positive by Proposition 5.2. Thus, \{C_n(\beta)\} is ergodic. \hfill \Box

As a consequence of Theorem 5.17 we obtain Theorem 5.10. \hfill \Box

5.7 \hspace{1em} Completion of proof of Theorem 2.6

Recall the definitions of $S^{(-)}$ and $S^{(+)}$ given in (2.10). Remark that $S^{(-)}$ maps $\mathcal{E}(M)$ into $\mathcal{E}(M - 1)$ for all $M \in \text{spec}(S^{(3)}) \backslash \{-(|\Lambda| - 1)/2\}$. Moreover, we have the following:

Lemma 5.18 $S^{(-)}$ maps $\mathcal{E}_+(M) \backslash \{0\}$ into $\mathcal{E}_+(M - 1) \backslash \{0\}$ for all $M \in \text{spec}(S^{(3)}) \backslash \{-(|\Lambda| - 1)/2\}$.

Proof. We just remark that
\[S^{(-)}[x, \sigma] = \sum_{y \in \Lambda, y \neq x} |x, t_y(\sigma)\rangle, \tag{5.37} \]
where
\[(t_y(\sigma))_z = \begin{cases} \sigma_z & z \neq y \\ \bar{\sigma}_z & z = y \end{cases} \tag{5.38} \]
with $\bar{\uparrow} = \downarrow$ and $\uparrow = \downarrow$. \hfill \Box

By Theorem 5.10, the ground states of H'_∞ in the $S^{(3)} = M$ subspace is unique. We denote the unique ground state by ψ_M. Remark that $\psi_M > 0$ w.r.t. \mathcal{P}_M. We set $\psi^\dagger = \psi_M, \psi^\dagger \in \mathcal{E}_+(|\Lambda| - 1)$. ψ^\dagger can be expressed as
\[\psi^\dagger = \sum_{x \in \Lambda} |x, \uparrow_x\rangle \otimes f_x, \tag{5.39} \]
where $f_x > 0$ w.r.t. $L^2(Q)_+$ and the spin configuration \uparrow_x is defined by
\[(\uparrow_x)_y = \begin{cases} \uparrow & y \neq x \\ 0 & y = x. \end{cases} \tag{5.40} \]
By Lemma 5.18, $(S^{(-)})^n \psi^\dagger \geq 0$ w.r.t. $\mathcal{P}_M = \frac{1}{2}(\Lambda | - n - 1)$ and $(S^{(-)})^n \psi^\dagger \neq 0$ whenever $0 \leq n \leq 2(|\Lambda| - 1)$. Let E_M be the ground state energy of H'_∞ in the $S^{(3)} = M$ subspace. We set $E^\dagger = E_M = \frac{1}{2}(\Lambda | - 1)$. Since $S^{(-)}$ commutes with H'_∞, we have $H'_\infty (S^{(-)})^n \psi^\dagger = E^\dagger (S^{(-)})^n \psi^\dagger$. Because ψ_M is strictly positive w.r.t. \mathcal{P}_M, we have $\langle \psi_M | (S^{(-)})^{|\Lambda| - 2M - 1} \psi^\dagger \rangle > 0$. Hence, $(S^{(-)})^{|\Lambda| - 2M - 1} \psi^\dagger$ is the ground state of H'_∞ in the $S^{(3)} = M$ subspace and $E^\dagger = E_M$ for all $M \in \text{spec}(S^{(3)})$. Accordingly, E^\dagger is the lowest eigenvalue of H'_∞ and ψ^\dagger is the ground state of H'_∞. Clearly, ψ^\dagger has total spin $S = \frac{1}{2}(|\Lambda| - 1)$. Since $E_M = E^\dagger$ for all $M \in \text{spec}(S^{(3)})$, every ψ_M are ground states of H'_∞ as well. This completes the proof of Theorem 2.6. \hfill \Box
6 Proof of Theorems 2.8 and 2.9

6.1 A remark on the Hamiltonian

We have to clarify a mathematical definition of the integral $\int_{C_{xy}} dr \cdot A(r)$. For each $x, y \in \Lambda$ with $x \neq y$, let

$$F_{x,y}(k) = \frac{1}{ik \cdot (y - x)} (e^{ik \cdot y} - e^{ik \cdot x}).$$

(6.1)

Remark that $|F_{x,y}(k)| \leq 1$ for every $k \in V^* \setminus \{0\}$. We define a field operator ϕ by

$$\phi = \sum_{k \in V^*} \sum_{\lambda = 1, 2} \frac{\chi(k)}{\sqrt{\omega(k)}} \varepsilon(k, \lambda) \cdot \frac{x - y}{|x - y|} \{ F_{x,y}(k)a(k, \lambda) + \text{h.c.} \}.$$

(6.2)

ϕ is essentially self-adjoint on $E(M) \hat{\otimes} \mathcal{R}_0$. Here, \mathcal{R}_0 is the finite particle subspace. By choosing C_{xy} as $C_{xy} = \{(1 - s)x + sy \in V | s \in [0, 1] \}$, we easily check that $\int_{C_{xy}} dr \cdot A(r) = \phi$ on $E(M) \hat{\otimes} \mathcal{R}_0$. Thus, $\int_{C_{xy}} dr \cdot A(r)$ is essentially self-adjoint on $E(M) \hat{\otimes} \mathcal{R}_0$. We denote its closure by the same symbol.

6.2 Sketch of the proof

Since the proof of Theorem 2.8 is similar to that of Theorem 2.5, we omit it. We provide a sketch of a proof of Theorem 2.9.

We switch to the \mathcal{Q}-representation [7, 14]. In the \mathcal{Q}-representation, \mathcal{R} is identified with $L^2(\mathcal{Q}, d\mu)$, where $d\mu$ is some Gaussian measure. $A(x)$ can be regarded as a multiplication operator by some real valued function.

For notational convenience, we introduce two operators:

$$H_f = \sum_{k \in V^*} \sum_{\lambda = 1, 2} \omega(k) a(k, \lambda)^* a(k, \lambda), \quad N_f = \sum_{k \in V^*} \sum_{\lambda = 1, 2} a(k, \lambda)^* a(k, \lambda).$$

(6.4)

H_f and N_f are essentially self-adjoint. So, we denote their closures by the same symbols, respectively.

Let $\xi = e^{i\pi N_f/2}$. Let $E(x) = \xi A(x) \xi^{-1}$. Then we have the following:

Lemma 6.1 (i) $e^{i\pi E(x)} \geq 0$ w.r.t. $L^2(\mathcal{Q}, d\mu)_+$ for all $a \in \mathbb{R}^3$ and $x \in \mathcal{V}$.

(ii) $e^{-\beta H_f} \geq 0$ w.r.t. $L^2(\mathcal{Q}, d\mu)_+$ for all $\beta > 0$.

Proof. Proofs of (i) and (ii) are similar to those of [7, Lemma 7.27] and [7, Proposition 7.28], respectively. □

Remark 6.2 To understand the meaning of (i), we recall the following example: Let $L^2(\mathbb{R})$ be the space of Lebesgue square integrable functions on \mathbb{R}. For each $a \in \mathbb{R}$, let V_a be a multiplication operator defined by $(V_a f)(x) = e^{i\pi x} f(x)$. V_a is a unitary

To be precise,

$$\mathcal{R}_0 = \{ \Phi = \{ \Phi_n \}_{n=0}^\infty \in \mathcal{R} \mid \text{There exists an } n_0 \in \mathbb{N} \text{ such that, if } n \geq n_0, \text{ then } \Phi_n = 0 \}.\tag{6.3}$$

18
operator acting in \(L^2(\mathbb{R}) \). Trivially, \(V_a \) does not preserve the positivity w.r.t. \(L^2(\mathbb{R})_+ \). Consider the Fourier transformation:

\[
(\mathcal{F}f)(k) = (2\pi)^{-1/2} \int_{\mathbb{R}} f(x)e^{-ikx} \, dx, \quad f \in L^2(\mathbb{R}).
\]

\(\mathcal{F} \) is a unitary operator on \(L^2(\mathbb{R}) \). As is well-known, we have \(\mathcal{F}V_a\mathcal{F}^{-1} = -i\frac{d}{dx} \). Thus, \(\mathcal{F}V_a\mathcal{F}^{-1} \) becomes a translation, that is, \(\mathcal{F}V_a\mathcal{F}^{-1} = \exp(iap) \), where \(p = -i\frac{d}{dx} \). We already know that \(\exp(iap) \geq 0 \) w.r.t. \(L^2(\mathbb{R})_+ \) by Example 4.

Now, let go back to Lemma 6.1. Notice the following correspondence:

\[
A(x) \leftrightarrow x, \quad E(x) \leftrightarrow -i\frac{d}{dx}, \quad \xi \leftrightarrow \mathcal{F}.
\]

In this context, \(\xi \) can be regarded as a kind of Fourier transformation on \(L^2(\mathcal{A}, d\mu) \). A multiplication operator \(e^{iA(x)} \) does not preserve the positivity, but \(e^{iA(x)} = \xi e^{iA(x)}\xi^{-1} \) does; namely, \(e^{iA(x)} \) becomes a kind of translation in \(L^2(\mathcal{A}, d\mu) \).

For each \(x, y \in \Lambda \), we define

\[
\Phi_{xy} = \exp \left\{ i \int_{C_{xy}} dr \cdot E(r) \right\}.
\]

Lemma 6.3 For each \(x, y \in \Lambda \), we have \(\Phi_{xy} \geq 0 \) w.r.t. \(L^2(\mathcal{A}, d\mu)_+ \).

Proof. For each \(N \in \mathbb{N} \), we set

\[
\Phi_{xy}^{x,y} = \sum_{j=1}^{N+1} \frac{1}{N} \frac{x - y}{|x - y|} \cdot A \left(x + \frac{j - 1}{N} (y - x) \right).
\]

\(\Phi_{xy}^{x,y} \) is essentially self-adjoint. We denote its closure by the same symbol. Using the formulas \(\|e^{iB} - 1\| \varphi \leq \|B\varphi\| \) for \(B \) self-adjoint and \(\|a(f)^\# \varphi\| \leq \|f\|\| (N_1 + 1) \varphi \| \), we have

\[
\left\| e^{i\int_{C_{xy}} dr \cdot A(r)} - e^{i\Phi_{xy}^{x,y}} \right\| \leq 2 \left\| \frac{\chi_{\Lambda}}{\sqrt{2\omega}} \frac{x - y}{|x - y|} (F_{xy} - F_{xy}^N) \right\| \| (N_1 + 1) \varphi \| \]

for all \(\varphi \in \mathcal{C}(M) \otimes \mathfrak{R}_0 \), where \(F_{xy}^N(k) = \sum_{j=1}^{N+1} \frac{1}{N} \exp\{ik \cdot (x + \frac{j - 1}{N}(y - x))\} \). Since \(F_{xy}^N \) converges to \(F_{xy} \) in \(L^2(V^* \times \{1, 2\}) \), \(e^{i\Phi_{xy}^{x,y}} \) strongly converges to \(e^{i\int_{C_{xy}} dr \cdot A(r)} \) on \(\mathcal{C}(M) \otimes \mathfrak{R}_0 \) by (6.11). Since \(\mathcal{C}(M) \otimes \mathfrak{R}_0 \) is dense in \(\mathcal{C}(M) \otimes \mathfrak{R} \), the convergence holds on whole \(\mathcal{C}(M) \otimes \mathfrak{R} \).

Since

\[
\xi e^{i\Phi_{xy}^{x,y}}\xi^{-1} = \prod_{j=1}^{N+1} \exp \left\{ i \frac{1}{N} \frac{x - y}{|x - y|} \cdot E \left(x + \frac{j - 1}{N} (y - x) \right) \right\},
\]

we have, by Lemma 6.1 (i), \(\xi e^{i\Phi_{xy}^{x,y}}\xi^{-1} \geq 0 \) w.r.t. \(L^2(\mathcal{A}, d\mu)_+ \). Because \(\xi e^{i\Phi_{xy}^{x,y}}\xi^{-1} \) strongly converges to \(e^{i\int_{C_{xy}} dr \cdot E(r)} \), we conclude the desired result by Proposition 4.7. □
Let
\[T = \sum_{x,y \in \Lambda} \sum_{\sigma \in \uparrow, \downarrow} \Phi_{xy} T_{xy}(\sigma). \] (6.11)

We define a self-dual cone \(\mathcal{D}_M \) by
\[\mathcal{D}_M = \left\{ \Psi \in \mathcal{E}(M) \otimes L^2(\mathcal{Q}, d\mu) \mid \Psi(\phi) \geq 0 \text{ w.r.t. } \mathcal{E}_+(M) \text{ for } \mu\text{-a.e.} \right\}. \] (6.12)

Here, we use the following identification:
\[\mathcal{E}(M) \otimes L^2(\mathcal{Q}, d\mu) = \int_{\mathcal{Q}} \mathcal{E}(M) d\mu. \] (6.13)

Corresponding to Proposition 5.9, we have the following:

Proposition 6.4 Let \(p \) be a connector between \((x, \sigma) \) and \((y, \tau) \). We have
\[(-T)p |_\beta \Phi_{yx} \tau(p) |_0 \] w.r.t. \(\mathcal{D}_M \).

Let
\[C_n(\beta) = (-T)^n e^{-\beta H_\ell}. \] (6.14)

In a similar way as in the proof of Theorem 5.10, we can prove the following:

Lemma 6.5 If \(\{C_n(\beta)\} \) is ergodic w.r.t. \(\mathcal{D}_M \), then \(\xi e^{-\beta H_\ell} \xi^{-1} \gg 0 \) w.r.t. \(\mathcal{D}_M \) for all \(\beta > 0 \).

Thus, it suffices to prove that \(\{C_n(\beta)\} \) is ergodic w.r.t. \(\mathcal{D}_M \).

For each \(\varphi, \psi \in \mathcal{D}_M \setminus \{0\} \), there exist \((x, \sigma) \) and \((y, \tau) \) such that
\[\varphi \geq |x, \sigma> \otimes \varphi_{x,\sigma}, \quad \psi \geq |y, \tau> \otimes \psi_{y,\tau}, \] (6.15)

where \(\varphi_{x,\sigma}, \psi_{y,\tau} \in L^2(\mathcal{Q}, d\mu) \setminus \{0\} \). By the connectivity condition, there exists a connector \(p \) between \((x, \sigma) \) and \((y, \tau) \). By Proposition 6.4 we have
\[\langle \varphi | C_p(\beta) \psi \rangle \geq \langle x, \sigma | \tau(p) | y, \tau \rangle \langle \varphi_{x,\sigma} | \Phi_{yx} e^{-\beta H_\ell} \psi_{y,\tau} \rangle. \] (6.16)

Since \(\Phi_{yx} \gg 0 \) and \(e^{-\beta H_\ell} \gg 0 \) w.r.t. \(L^2(\mathcal{Q}, d\mu) \) by Lemma 6.1, we obtain
\[\langle \varphi_{x,\sigma} | \Phi_{yx} e^{-\beta H_\ell} \psi_{y,\tau} \rangle > 0, \] (6.17)

which implies that the RHS of (6.16) is strictly positive by Proposition 6.3

Acknowledgments. This work was partially supported by KAKENHI (20554421) and KAKENHI(16H03942). I would be grateful to the anonymous referee for useful comments.
A A fundamental theorem

Theorem A.1 Let A and B be self-adjoint operators, bounded from below. Assume the following conditions:

(a) There exists a sequence of bounded self-adjoint operator C_n such that $A + C_n$ converges to B in the strong resolvent sense and $B - C_n$ converges to A in the strong resolvent sense as $n \to \infty$;

(b) $e^{-tC_n} \geq 0$ w.r.t. \mathcal{P} for all $t \in \mathbb{R}$ and $n \in \mathbb{N}$;

(c) For all $\xi, \eta \in \mathcal{P}$ such that $\langle \xi | \eta \rangle = 0$, it holds that $\langle \xi | e^{-tC_n} \eta \rangle = 0$ for all $n \in \mathbb{N}$ and $t \geq 0$.

The following (i) and (ii) are mutually equivalent:

(i) $e^{-tA} \geq 0$ w.r.t. \mathcal{P} for all $t > 0$;

(ii) $e^{-tB} \geq 0$ w.r.t. \mathcal{P} for all $t > 0$.

Proof. The proof is similar to [1, Theorem 3]. For readers’ convenience, we provide a proof.

(i) \implies (ii): By (a) and the Trotter-Kato formula, we have

$$e^{-tB} = \lim_{n \to \infty} \lim_{k \to \infty} \left(e^{-tA/k} e^{-tC_n/k} \right)^k$$

(A.1)

in the strong operator topology. Since $e^{-tA} \geq 0$ w.r.t. \mathcal{P} for all $t \geq 0$ and (b), we conclude that $e^{-tB} \geq 0$ w.r.t. \mathcal{P} for all $t \geq 0$ by Proposition 4.7.

Let $\xi \in \mathcal{P} \setminus \{0\}$. We set $K(\xi) = \{ \eta \in \mathcal{P} | \langle \eta | e^{-tB} \xi \rangle = 0 \ \forall t \geq 0 \}$. To prove (ii), it suffices to show that $K(\xi) = \{0\}$. If $\eta \in \mathcal{P}$ and $\langle \eta | e^{-tB} \xi \rangle = 0$, then, by (c), $\langle e^{sC_n} \eta | e^{-tB} \xi \rangle = 0$. Hence, $e^{sC_n} K(\xi) \subseteq K(\xi)$ for all $s \in \mathbb{R}$. It is trivial that $e^{-tB} K(\xi) \subseteq K(\xi)$ for all $t \geq 0$. Accordingly, $(e^{-tB/k} e^{tC_n/k})^k K(\xi) \subseteq K(\xi)$, which implies $e^{-tA} K(\xi) \subseteq K(\xi)$ by the Trotter-Kato product formula. In particular, if $\eta \in K(\xi)$, then $\langle \eta | e^{-tA} \xi \rangle = 0$. Since $e^{-tA} \geq 0$ w.r.t. \mathcal{P} for all $t > 0$, we conclude that $\eta = 0$.

Similarly, we can prove that (ii) \implies (i). □

References

[1] W. G. Faris, Invariant cones and uniqueness of the ground state for fermion systems. Jour. Math. Phys. 13 (1972), 1285-1290.

[2] A. Giuliani, V. Mastropietro, M. Porta, Lattice quantum electrodynamics for graphene. Ann. Physics 327 (2012), 461-511.

[3] H. Katsura, A. Tanaka, Nagaoka states in the $SU(n)$ Hubbard model, Phys. Rev. A 87 (2013), 013617.

[4] M. Kohno, Aspects of the ground state of the $U = \infty$ Hubbard ladder. Phys. Rev. B 56 (1997), 15015-15024.
[5] M. Kollar, R. Strack, D. Vollhardt, Ferromagnetism in correlated electron systems: Generalization of Nagaoka’s theorem, Phys. Rev. B 53 (1996), 9225-9231.

[6] E. H. Lieb, Two theorems on the Hubbard model. Phys. Rev. Lett. 62 (1989), 1201-1204.

[7] J. Lorinczi, F. Hiroshima, V. Betz, Feynman-Kac-type theorems and Gibbs measures on path space: with applications to rigorous quantum field theory, Walter de Gruyter, 2011.

[8] A. Mielke, Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A 24 (1991), L73.

[9] T. Miyao, Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Operator Theory 64 (2010), 207-241.

[10] T. Miyao, Self-dual cone analysis in condensed matter physics. Rev. Math. Phys. 23 (2011), 749-822.

[11] T. Miyao, Ground state properties of the SSH model. Jour. Stat. Phys. 149 (2012), 519-550.

[12] T. Miyao, Monotonicity of the polaron energy. Rep. Math. Phys. 74 (2014), 379-398.

[13] T. Miyao, Monotonicity of the polaron energy II: General theory of operator monotonicity. Jour. Stat. Phys. 153 (2013), 70-92.

[14] T. Miyao, Upper bounds on the charge susceptibility of many-electron systems coupled to the quantized radiation field, Lett. Math. Phys., 105 (2015), 1119-1133.

[15] T. Miyao, Quantum Griffiths inequalities. Jour. Stat. Phys. 164 (2016), 255-303.

[16] T. Miyao, Rigorous results concerning the Holstein–Hubbard model. Ann. Henri Poiccare, 18 (2017), 193-232.

[17] T. Miyao, Correlation inequalities for Schrodinger operators. arXiv:1608.00648

[18] T. Miyao, Ground state properties of the Holstein-Hubbard model. arXiv:1610.09039

[19] Y. Miura, On order of operators preserving selfdual cones in standard forms. Far East J. Math. Sci. (FJMS) 8 (2003), 1–9.

[20] Y. Nagaoka, Ground state of correlated electrons in a narrow almost half-filled s band, Solid State Commun. 3 (1965), 409-412.

[21] M. Reed, B. Simon, Methods of Modern Mathematical Physics Vol. I: Functional Analysis, Revised and Enlarged Edition, Academic Press, New York, 1980.

[22] M. Reed, B. Simon, Methods of Modern Mathematical Physics Vol. IV: Analysis of Operators, Academic Press, New York, 1978.
[23] B. S. Shastry, H. R. Krishnamurthy, P. W. Anderson, Instability of the Nagaoka ferromagnetic state of the $U = \infty$ Hubbard model, Phys. Rev. B 41 (1990), 2375-2379.

[24] H. Tasaki, Extension of Nagaoka’s theorem on the large-U Hubbard model, Phys. Rev. B 40 (1989), 9192-9193.

[25] H. Tasaki, From Nagaoka’s Ferromagnetism to Flat-Band Ferromagnetism and Beyond An Introduction to Ferromagnetism in the Hubbard Model, Prog. Theor. Phys. 99 (1998), 489-548.

[26] H. Tasaki, Ferromagnetism in the Hubbard model: A constructive approach, Comm. math. phys. 242 (2003), 445-472.

[27] D. J. Thouless, Exchange in solid 3He and the Heisenberg Hamiltonian, Proc. Phys. Soc. London 86 (1965), 893-904.