Diversity of benthic marine mollusks of the Strait of Magellan, Chile (Polyplacophora, Gastropoda, Bivalvia): a historical review of natural history

Cristian Aldea¹², Leslie Novoa², Samuel Alcaino³, Sebastián Rosenfeld³⁴⁵

¹ Centro de Investigación GAIA Antártica, Universidad de Magallanes, Av. Bulnes 01855, Punta Arenas, Chile ² Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Chile ³ Facultad de Ciencias, Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile ⁴ Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Chile ⁵ Instituto de Ecología y Biodiversidad, Santiago, Chile

Corresponding author: Sebastián Rosenfeld (rosenfeld.sebastian@yahoo.com)

Abstract

An increase in richness of benthic marine mollusks towards high latitudes has been described on the Pacific coast of Chile in recent decades. This considerable increase in diversity occurs specifically at the beginning of the Magellanic Biogeographic Province. Within this province lies the Strait of Magellan, considered the most important channel because it connects the South Pacific and Atlantic Oceans. These characteristics make it an interesting area for marine research; thus, the Strait of Magellan has historically been the area with the greatest research effort within the province. However, despite efforts there is no comprehensive and updated list of the diversity of mollusks within the Strait of Magellan up to now. This study consisted of a complete bibliographic review of all available literature that included samples of mollusks in the Strait of Magellan. More than 300 articles were reviewed, covering 200 years of scientific knowledge. There were 2579 records belonging to 412 taxa, of which 347 are valid species. Of the total valid species, 44 (~13%) are considered of doubtful presence in the Strait. This work increases the known richness of mollusks of the Strait of Magellan by 228%; it is also the first report that integrates all available diversity studies of the three most speciose classes of benthic mollusks (Gastropoda, Bivalvia and Polyplacophora) from the Strait of Magellan.
Keywords
benthos, Magellanic Biogeographic Province, Mollusca, South Atlantic, South Pacific, species richness

Introduction

It has been described that mollusks show an increase in diversity towards high latitudes in the Chilean southeastern Pacific coast (Valdovinos et al. 2003). This increase in mollusk richness occurs around 42°S, coinciding with the beginning of the Magellanic Biogeographic Province (Spalding et al. 2007). The Magellanic Province has been the focus of study of several scientific expeditions that contributed to the knowledge of marine mollusks. The first reports were made by King and Broderip (1832), d’Orbigny (1835–1846) and Philippi (1845). Other reports that contributed considerably to the knowledge of mollusks of the Magellanic Province were Smith (1881), Rochebrune and Mabille (1889), Strebel (1904, 1905a, b, 1906, 1907, 1908), Odhner (1926), Marcus (1959) and Soot-Ryen (1959). Carcelles and Williamson (1951) published the first checklist of species of marine mollusks of the Magellanic Province in the 1950s, defining the province from around 37°S in the Pacific coast and 43°S in the Atlantic coast, to 56°S. In their checklist 614 species were reported. Many taxonomic revisions of specific groups have been published (e.g., McLean 1984a; Castellanos 1988; Castellanos and Landoni 1988, 1989, 1990, Castellanos 1990, 1992a, b; Castellanos and Landoni 1993a, b; Castellanos et al. 1993; Ponder and Worsfold 1994; Schrödl 1996), therefore the checklist of Carcelles and Williamson (1951) had to be updated, for species synonyms and newly found species. Linse (1999) presented a new checklist of mollusks of the Magellanic Province, defining the province from around 41°S in the Pacific and Atlantic coasts to 56°S. However, the classes Polyplacophora and Cephalopoda were excluded from this checklist, which included 397 species of mollusks.

One of the most important channels in the Magellanic Province is the Strait of Magellan, where most historical reports of mollusks are focused. This extensive channel connects the Pacific and Atlantic Oceans and is considered the most important one of the province. It is influenced by water masses of the Pacific, Atlantic and Southern Oceans, and it possess several geological characteristics derived from the last glaciation (Antezana 1999). For these reasons the Strait of Magellan offers unique characteristics for the study of biodiversity and related aspects of the biogeography of mollusks (Linse et al. 2006). Linse et al. (2006) presented the only report of mollusk richness in the Strait of Magellan, which contains 116 species. However, a list of species is not provided and only the classes Gastropoda and Bivalvia are included. Between the year 2000 and the present there have been several studies that have provided more information about the diversity of mollusks in the Strait of Magellan (e.g., Ríos et al. 2003; Ríos et al. 2005; Ríos et al. 2007; Thatje and Brown 2009; Aldea et al. 2011; Rosenfeld et al. 2013; Rosenfeld et al. 2015), presenting new records of species. Several taxonomic revisions of specific groups have been published in recent
years, where erroneous records, changes in nomenclature, synonymized species and
descriptions of new species have been made (e.g., Sirenko 2006a; Zelaya and Geiger
2007; Aranzamendi et al. 2009; Zelaya 2009; González-Wevar et al. 2011; Güller et
al. 2016; Pastorino 2016; Güller and Zelaya 2017; Korshunova et al. 2017). In order
to have a comprehensive list of species in the most important channel of the Magel-
lanic Province it is necessary to provide an updated list of records of the malacofauna
of the Strait of Magellan. The objective of this study is to provide the first list of
species of benthic marine mollusks of the three most speciose and best documented
classes (Polyplacophora, Gastropoda, Bivalvia) of the Strait of Magellan, integrating
all studies throughout history.

Materials and methods

To make the list of mollusks as complete as possible, information was gathered from all
the available scientific publications that have sampled or reviewed benthic marine mol-
lusks in the Magellanic Province, from the expedition of the HMS Beagle in the 19th
century (King and Broderip 1832) to the present. A total of 323 articles were reviewed,
of which 146 contained species within the Magellanic Province. The records and their
respective geographical positions were entered into a spreadsheet structured with the
Darwin Core Standard (Wieczorek et al. 2012), adjusted taxonomically according to
the MolluscaBase (2019) and the revisions of classification and systematics of gastro-
pods (Bouchet et al. 2017), bivalves (Neveskaja 2009) and polyplacophorans (Sirenko
2006b). The Strait of Magellan was divided into 420 quadrants of 6×6 minutes of lati-
tude and longitude. The records located within this area were analyzed (Fig. 1), taking
into account their georeference or approximate location. This analysis was developed
using tools for Google Earth (http://www.earthpoint.us), which transforms XLS ex-
tension files (Excel format) to KML (files that contains geographic data). In total, 108
articles provided records for the Strait of Magellan.

Dubious records were counted as were species that were recorded only once in his-
tory. Criteria were followed to determine doubtful species records, as follows: species
that were cited once and later questioned in taxonomic revisions or never reported
again; species that greatly exceed their distribution limit and do not appear in taxo-
nomic revisions or alpha diversity studies; and species that have a huge geographical
discontinuity and are not explained or figured in the article.

A new matrix was elaborated with the Darwin Core standard from the database,
with presence-absence data of each taxon per quadrant entered as 1 or 0, respect-
ively. The quadrants with no species were removed from the matrix and species/taxa
considered doubtful and/or with imprecise locations were not included in the
matrix. However, the above cases were considered in the quantification of total
richness. On the other hand, the records up to or above genus level (registered as
“indet.” or “sp.”) were not considered as valid species for both species richness val-
ues and estimation models, except for those in which the author commented that it
could be a new species.
Finally, to detect whether the historical sampling effort was able to estimate all the species of mollusks in the Strait of Magellan, the non-parametric species accumulation models Chao 2 and Jacknife 1 (Burnham and Overton 1978; Burnham and Overton 1979; Chao 1987; Colwell and Coddington 1994) were used to evaluate the sampling effort spatially and estimate the number of species expected theoretically in the Strait of Magellan. These methods require only presence-absence data; Chao 2 is calculated with the species that occur in only one sample (single or singleton species) and those that occur exactly in two samples (doubletons). Jacknife 1 is a more accurate and less biased estimator, since it only uses the number of singletons and the number of samples (Moreno 2001). Complementarily, parametric accumulation models were used to detect whether the historical sampling effort was able to estimate the total species of mollusks (Soberón and Llorente 1993); the linear dependence and Clench models were used. All samples were randomized so as not to affect the shape of the curve (Colwell and Coddington 1994; Moreno and Halffter 2000). The estimation of the coefficients of each nonlinear regression model was done using the Simplex and Quasi-Newton estimation methods of the statistical package STATISTICA 7. For all models, species with imprecise locations were not included.
Results

A total of 134 articles summarizing two centuries of study were entered in the spreadsheet, representing 2579 records corresponding to 412 taxa distributed in the three classes studied (Table 1, Appendix I). Of the total taxa, 65 were reported up to or above genus level (i.e., “indet.” or “sp.”), finding no evidence that they may correspond to new species. On the other hand, 44 species were considered doubtful. Of the total 303 validated species with effective distribution in the Strait of Magellan (Fig. 2), 57.1% belong to the class Gastropoda (173 species); 24.1% of these correspond to the most diverse families: Buccinidae, Muricidae, Calliostomatidae, Fissurellidae, Eateniellidae, Nassariidae, Rissoideas and Naticidae. The family Buccinidae was the most diverse in the class, with 15 species. The class Bivalvia was represented by 35.3% of the species (107 in total); 17.5% of these correspond to the most diverse families: Mytilidae, Philobryidae, Lasaeidae, Mactridae, Veneridae, Cyamiidae, Neoleptonidae, Nuculidae and Thyasiridae. The remaining 7.6% correspond to the class Polyplacophora (23 species). The family Chitonidae was the most diverse, with 2.0% of the species. In total, 106 families were recorded.

There has been a constant increase since the decade of the 1980s in the number of studies (Fig. 3a) and records (Fig. 3b). The largest number of records in history were incorporated for the Strait of Magellan in the last decade (2007–2018) (Fig. 3b).

Of the 420 quadrants proposed, 163 presented species (Fig. 4, Appendix II). Ordering the matrix of absence and presence of species according to these quadrants, 1229 mollusk records were counted. The eastern microbasin had 35 quadrants with records, while the central microbasin had 104. The western microbasin proved to be the least historically sampled, with only 24 quadrants with records. The total richness of the Strait of Magellan was 303 species. However, 47 species had imprecise locations, as they were described as inhabitants of the Strait of Magellan, but the site of their habitat was not defined with geographical accuracy. These species include three polyplacophorans (Leptochiton sp., Notoplast magellanica and Hemiarthrum setulosum), 25 gastropods (Fissurella nigra, Anatoma euglypta, Scissurella petermannensis, Diloma nigerrimum, Prisogaster niger, Capulus compressus, Hydrobia antarctica, Crucibulum quiriquinae, Buccinanops cochlidium, Savatieria frigida, Concholepas concholepas, Tromina dissectata, Xyomenopsis subnodosus, Mangelia martensi, Mathilda malvinarum, Atomiscala xenophyes, Doris fontainii, Gargamella immaculata, Dialulula punctuolata, Geitodoris patagonica, Thecacera darwini, Tyrinna delicata, Ancula fuegiensis, Tritonia vorax and Eubranchus fuegiensis) and 19 Bivalvia (Solemya notialis, Solemya occidentalis, Malletia chilensis, Modiolus patagonicus, Mytilus galloprovincialis, Barbatia platei, Limopsis perieri, Philobrya antarctica, Aequipecten tehuelchus, Cardium parvulum, Macoploma inornata, Lasaeia petitiana, Mulinia leviscando, Diplodonta patagonica, Proteopitar patagonicus, Netastoma darwinii, Entodesma cuneata, Entodesma soleyalis and Luzonia chilensis).

The quadrants that had species records cover ~37% of the total area of the Strait of Magellan; most of the studies are concentrated in the central microbasin. The quad-
Table 1. Species checklist of benthic marine mollusks of the Strait of Magellan (Polyplacophora, Gastropoda and Bivalvia). Those species with a single record are marked with an asterisk (*) and those which are dubious with a square (▪). Their presence is indicated (+) in the eastern (E), central (C) and western (W) microbasins. References provided at the end of the list.

Taxa	Reference	E	C	W
Polyplacophora indet.	ab, as, bo, cp	+		
Order Lepidopleurida				
Leptochitonidae				
Leptochiton sp.	f	+		
Leptochiton kerguelensis Hadd., 1886	t, cd, bm, b, cq, as	+	+	+
Leptochiton laurae Schwabe & Sellanes, 2010	cd	+	+	
Leptochiton lineae Sirenko, 2015	cd	+		
Leptochiton medius (Plate, 1899)	as, cd, cq, bm, h	+	+	+
Leptochiton smirnovi ▪ Sirenko, 2016	as	+		
Lepidopleurus culleri ▪ Rochebrune, 1899	as, bm	+	+	
Order Chitonida				
Ischnochitonidae				
Ischnochiton sp.*	e	+		
Ischnochiton punctulatissimus (Sowerby I, 1832)	b	+	+	
Ischnochiton pusio (Sowerby I, 1832)	b, cq, br	+	+	
Ischnochiton straminus (G. B. Sowerby I, 1832)	p, cq, cc, b, t, bv, am, ej	+	+	+
Ischnochiton striolatus ▪ (Gray, 1828)	br			
Sienosemus exaratus (Sars G. O., 1878)	cq	+		
Chaetopleuridae				
Chaetopleura angulata ▪ Spengler, 1797	br			
Chaetopleura isablet ▪ (d’Orbigny, 1841)	br			
Chaetopleura peruiana ▪ Lamarck, 1819	h, e	+		
Callochitonidae				
Callochiton bouveti Thiele, 1906	bm, as	+	+	
Callochiton gausi Thiele, 1908	t, as	+		
Callochiton punicus (Gould, 1846)	am, as, bm, ct, i, b, cq, bn, bo, e, t, br, am, bv, ej	+	+	+
Callochiton steinii (Pfeffer, 1886)	bm, as	+	+	
Chitonidae				
Acanthopleura granulata ▪ (Gmelin, 1791)	p			
Chiton sp.	bl	+		
Chiton boweni King, 1833	b, j, bv, cc, ct, ej	+	+	
Chiton magnificus ▪ Gmelin, 1791	dd			
Chiton magnificus ▪ Deshayes, 1827	h, j	+		
Chiton olivaceus ▪ Spengler, 1797	p			
Tonicia sp.	b, i, j	+		
Tonicia atrata (G. B. Sowerby II, 1840)	cq, ct, j, as, bm, bo, e, s, bu, bv, ar, ej	+	+	+
Tonicia calbuscae Plate, 1897	cq, j	+	+	
Tonicia chilensis (Fremblay, 1827)	j, as, bm, bu, bv	+	+	
Tonicia disjuncta ▪ (Fremblay, 1827)	as	+		
Tonicia lebruni Rochebrune, 1884	bm, cq, ej	+	+	+
Tonicia smithi Leloup, 1980	b, cc, bu, bv, b, a, am, cc	+		
Mopaliidae				
Nuttalochiton hesperus ▪ Rochebrune, 1884	p	+		
Nuttalochiton martialis ▪ Rochebrune, 1884	b, cq, br, t, bv	+	+	
Plaxisophora aurata (Spalowsky, 1795)	bu, bv, cq, bm, bo, e, j, am, a, br, ar, bk, ba, bl, t, i, b	+	+	+
Acanthochitonidae				
Notoplax magellanica ▪ Thiele, 1909	am			
Hemiarthridae				
Hemiarthrus setulosus Carpenter in Dall, 1876	br, cc			
Class Gastropoda				
Gastropoda indet.	as, j, bo	+		
Diversity of benthic marine mollusks of the Strait of Magellan, Chile

Taxa	Reference	E	C	W	
Order Patellida					
Lottia sp.	bl, bk, cb	+			
Lottia orbignyi (Dall, 1909)	h				
Scurria ceciliana (d’Orbigny, 1841)	br, b, a, cs	+	+		
Scurria ceciliana magellanica (Strebel, 1907)	co, de	+			
Scurria plana (Philippi, 1846)	bg				
Scurria variabilis (G. B. Sowerby I, 1839)	e	+			
Lepetidae					
Lepetidae indet.*	as	+			
Iothia enarginoloides (Philippi, 1868)	co, bm, b, ce, bv, v, ad	+	+	+	
Nacellidae					
Nacellidae indet.*	as	+			
Nacella sp.*	as, bv, bl	+			
Nacella sp. juvenile	b	+			
Nacella datassata (Gmelin, 1791)	cv, co, as, ab, aa, b, a, bm, aq, cb, bw, e, y, d, bu, bv, ba, bg, bk, bb, br, cd, j	+	+	+	
Nacella flammula (Gmelin, 1791)	b, bu, bv, j, e, i, y, ar, bk, bl, aa	+			
Nacella magellanica (Gmelin, 1791)	as, bw, an, ah, a, y, cs, aq, co, b, a, cv, bl, bk, bg, br, e, bu, aa, h, j, ar, cb, ab, d	+	+		
Nacella neotima (Helbling, 1779)	co, cv, z, bw, cs, bg, i, as, b, bv, br, x, aa, bk, at, ba, bo, cg, cp	+	+	+	
Order Seguenziida					
~Seguenzioidae					
Lisostena imperiva (Strebel, 1908)	b	+			
Order Lepetellida					
Fissurellidae					
Fissurellidae indet.	as	+	+		
Didora patagonica (d’Orbigny, 1839)	bg	+			
Fissurella sp.	as, b, e, bo, bl, ab, j	+	+		
Fissurella niger Lesson, 1831	k				
Fissurella orienti G. B. Sowerby I, 1834	co, b, bu, bv, i, br, bo, ce, ao	+	+		
Fissurella picta (Gmelin, 1791)	co, bu, e, ar, bo, bk, bl, bg	+	+		
Fissurella picta picta (Gmelin, 1791)	a, b, ao, bv	+			
Fissurella nudosa Lesson, 1831	b, ao, ar, e, br, bu, cr, ba	+	+		
Fissurellidea patagonica (Strebel, 1907)	bw, ap	+			
Lucapinella herzel (Martens, 1900)	k, av	+			
Parmaparella sp.*	as	+			
Puncturella sp.	bm, as	+	+		
Puncturella conica (d’Orbigny, 1841)	b, f, k, cy	+	+		
Puncturella mouchins (Linneaus, 1771)	as, co	+	+		
Scissurellidae					
Scissurella clathrata Strebel, 1908	cz, b, dj, eb	+			
Scissurella petersonnensis Lamy, 1910	cz				
Anatomidae					
Anatoma conica (d’Orbigny, 1841)	cz	+			
Anatoma euglypta (Pelseneer, 1903)	df				
Order Trochida					
Trochidae					
Trochidae indet.*	as	+			
Diloma nigerrimum (Gmelin, 1791)	h				
Calliostomatidae					
Calliostoma sp.*	b		+		
Calliostoma iriartii Strebel, 1905	cl	+	+		
Calliostoma modestulum Strebel, 1908	bv, as	+	+		
Calliostoma moebiusi Strebel, 1905	bm, as, l	+	+		
Calliostoma nudum (Philippi, 1845)	as, bm, b, j, bv, cl, l	+	+	+	
Margarella sp.*	as	+			
Margarella expansa (G. B. Sowerby I, 1838)	a, b, bv, ci, bt	+	+		
Taxa	Reference	E	C	W	
-------------------------------------	--------------------	---	---	---	
Margarella jason	Powell, 1951	av, as	+		
Margarella pruinosa	(Rochafrance & Mabilde, 1885)	bq, l	+		
Margarella violacea	(King, 1832)	as, cl, b, bt, av, i, bd, cg, bm, ar, bv, s, bo, bw, e, j, ak, ba	+	+	+
Pbostinastoma tantiatum	(G. B. Sowerby I, 1825)	as, bm, bv, bq, f, av, l	+	+	
Pbostinula coerulescens	(King, 1832)	br, av, bm, ar, i, as, bn, bk, ce, bg, s, ak, bp, cl, al	+	+	
Pbostinula crustibay	E. A. Smith, 1905	cg	+		
Pbostinula roseolincta	(E. A. Smith, 1885)	bm, bw	+		
Colloniidae					
Homalopoma cunninghami	(E. A. Smith, 1881)	bm, as, b, h, cl	+	+	+
Margaritidae					
Margarites sp.		bm	+		
Margarites pigeretus	(Sowerby I, 1838)	ci	+		
Tegulidae					
Tegula atra	(Lesson, 1830)	b, as, bw, j, o	+	+	
Tegula patagonica	(d’Orbigny, 1835)	bg, l	+		
Turbinidae					
Frostogaster niger	(W. Wood, 1828)	h			
Caenogastropoda unassigned					
Turritellidae		as	+		
Turritellidae indet.*				+	
Epitonidae		as	+	+	
Epitonidae indet.				+	
Ceratotrema magellanicum	(Philippi, 1845)	br, bh	+		
Ceratotrema strebeli	Zelaya & Güller, 2018	cm, ed	+	+	
Newtoniellidae					
Eumetula michaelseni	(Strebel, 1906)	as, cm, ef	+		
Eumetula pulla	(Philippi, 1845)	b, bm, bv, as, sm, ce, bh	+	+	+
Order Littorinimorpha					
Eatoniiidae					
Eatoniella sp.		as, b, bm	+	+	+
Eatoniella afronigna	Ponder & Worsfold, 1994	bv, bc	+		
Eatoniella argentinoenius	Castellanos & Fernández, 1972	bm	+		
Eatoniella denticularis	Ponder & Worsfold, 1994	bc, h	+	+	
Eatoniella eberina	Ponder & Worsfold, 1994	bc, h	+	+	
Eatoniella gloriosa	Ponder & Worsfold, 1994	bc	+		
Eatoniella pico	Ponder & Worsfold, 1994	bc	+		
Eatoniella turrucula	Ponder & Worsfold, 1994	bc	+		
Capulidae					
Capulus compressus	Pelseneer, 1903	m			
Capulus subcompressus	Pelseneer, 1903	as	+		
Capulus ungaricoides	(d’Orbigny, 1841)	av	+		
Littorinidae					
Laevilitorina caliginosa	(Gould, 1849)	b, ar, co, bk	+	+	
Naticidae					
Naticidae indet.*		as	+		
Euprura constricta	Dall, 1908	bh	+		
Falsilunatia carcellesi	Dell, 1990	as, bm, al, dj	+	+	
Falsilunatia falklandica	(Preston, 1913)	bm	+		
Falsilunatia patagonica	(Philippi, 1845)	br, av, bw, bh, cn, b, v, i, f, dj, dz	+	+	
Natica sp.		s	+		
Natica limbata	d’Orbigny, 1837	cg, dz	+		
Notocochlis isabelleana*	(d’Orbigny, 1840)	bm	+		
Polinices sp.		dz			
Tectonatica impersa	(Philippi, 1845)	bh, cn, bm, v, b, o, dz	+	+	+
Rissoidae					
Onoba georgiana	(Pfeffer, 1886)	bc	+		
Onoba lacuniformis	Ponder & Worsfold, 1994	bc	+		
Taxa	Reference	E	C	W
Onoba schythei (Philippi, 1868)	b, bc, as, af			+
Onoba subincisa Ponder & Worsfold, 1994	bc			+
Onoba sulcula* H. Adams & A. Adams, 1852	b			+
Powellisetia microsrita Ponder & Worsfold, 1994	bc, b			+
Caeicidae				
Caeicum chilense* Stuardo, 1962	b			+
Caeicum magellanicum (di Geronimo, Privitera & Valdovinos, 1995)	dg			+
Cochliopidae				
Littoridina angustiarum* Preston, 1915	bh			+
Littoridina faminensis* Preston, 1915	bh			+
Littoridina limna* Preston, 1915	bh			+
Littoridina lioneli* Preston, 1915	bh			+
Caecidae				
Caecum chilense* Stuardo, 1962	b			+
Caecum magellanicum (di Geronimo, Privitera & Valdovinos, 1995)	dg			+
Hydrobiidae				
Hydrobia antarctica Philippi, 1868	bh			+
Eulimidae				
Eulimidae indet.	as			+
Calyptraeida				
Calyptraeida indet.*	as			+
Crepitella sp.	dh			+
Crepitella dilatata (Lamarck, 1822)	b, br, ar, e, bw, as, bn, bo, cn			+
Crucibulum quiriquinae (Lesson, 1830)	di			+
Trochita pileolus (d’Orbigny, 1841)	as, av, bm, bn, b, f, dj, ec			+
Trochita pileus (Lamarck, 1822)	bm, bw, cn, av, as, a, bu, bv, ar, o, i, bn, bh, ce, dj, ec			+
Velutinidae				
Lamellaria sp.*	j			+
Lamellaria ampla Streb, 1906	dj			+
Lamellaria elata Streb, 1906	dj, m			+
Lamellaria hyadesi* Mabille & Rochebrune, 1889	br			+
Lamellaria mopsicolor* Ev. Marcus, 1958	dk			+
Lamellaria patagonica Mabille & Rochebrune, 1889	as, cn			+
Lamellaria perspicua (Linnaeus, 1758)	dl			+
Marenipiopsis pacifica* Bergh, 1886	m			+
Cymatiidae				
Argobuccinum pustulosum (Lightfoot, 1786)	b, s, j			+
Fusiatrix magellanicus (Röding, 1798)	j, b, s			+
Order Neogastropoda				
Volutidae				
Volutidae indet.*	as			+
Adelomelon ancilla (Donovan, 1824)	cn, bi, as, bm, s, av, e, br, f, i, ba			+
Adelomelon beckii (Powell, 1951)	bi, cn			+
Adelomelon ferusacii (Donovan, 1824)	s, cn			+
Odontocymbiola magellancina (Gimelin, 1791)	as, e, bi			+
Cancellariidae				
Admete sp.*	f			+
Admete magellanica (Streb, 1905)	as, bm, cm			+
Admete philippi* Ihering, 1907	s			+
Admete sphybei (Philippi, 1855)	b, bi			+
Buccinidae				
Buccinidae indet.	as, dj			+
Anonomacme smithi Streb, 1905	as, bm			+
Antistreptus magellanicus Dall, 1902	bi, as, dj			+
Argeneuthria cerealis (Rochebrune & Mabille, 1885)	b, bv			+
Argeneuthria euthrooides* (Streb, 1905)	cm			+
Argeneuthria paesi (Streb, 1905)	cm, b, bv			+
Argeneuthria philippii (Streb, 1905)	az, cm			+
Falsimacme koebelii (Streb, 1905)	cm, az			+
Glypteuthria meridionalis (E. A. Smith, 1881)	as, az, cm, ce			+
Taxa	Reference	E	C	W
---	-------------------------------	---	---	---
Meteuthria martensi (Strebel, 1905)	cm, az, b	+	+	+
Microdeuthria michaelseni (Strebel, 1905)	as, az, b, bm, cm, bv	+	+	+
Pareuthria atrata (E. A. Smith, 1881)	as, b, cm, ak, bm, av, az, o, ce, dj	+	+	+
Pareuthria fuscata (Bruguère, 1789)	az, j, bw, ar, cm, bu, bv, as, a, f, i, ab, cb, b, bd, bk, e, bn, ak, o	+	+	+
Savatieria areolata* Strebel, 1905	bm			
Savatieria coppingeri (E. A. Smith, 1881)	as, cm			+
Savatieria frigida Rochebrune & Mabille, 1885	as, cm, dm			+
Savatieria meridionalis (E. A. Smith, 1881)	b, cm, bw, ce			+

Nassariidae

Buccinanops cochlidium* (Dillwyn, 1817)	c			
Buccinanops deformis* (King, 1832)	c			+
Buccinanops monilifer (Kienet, 1834)	c			+
Buccinanops paytenis (Kienet, 1834)	c, bw,r			+
Nassarius coppingeri* (E. A. Smith, 1881)	b			+
Nassarius gayii (Kienet, 1834)	h, r			+
Nassarius laevigatus* (Philippi, 1845)	r			

Muricidae

Acarinina monodon (Pallas, 1774)	bw, e, ar, bu, bk, bl, cg			+
Acanthina unicorni* (Bruguère, 1789)	w			+
Concholepas concholepas (Bruguère, 1789)	dn			
Coronism acanthodes (Watson, 1882)	ay			+
Enistrophon veronicæ* Pastorino, 1999	ax			+
Fuegostron pallidus (Broderip, 1833)	as, ce, bm, ar, bv, ak, a, ck, dj, eg	+	+	+
Tronomina sp.*	bm			+
Tronomina dipectata Dell, 1990	cu, q			
Trophon sp.	as, ab			+
Trophon geversianus (Pallas, 1774)	b, e, i, j, s, ar, av, ay, ck, ce, cf, bu, bv, bw, br, bk, bl, bi	+	+	+
Trophon minutus* Melvill & Standen, 1907	as			+
Trophon ohlini Strebel, 1904	as, ck, dj, eg			+
Trophon plicatus (Lightfoot, 1786)	ar, ck, av, ce, b, ay, cu, f	+	+	+
Xymenopsis buccinatus (Lamarck, 1816)	cn, ak, av, aw	+	+	+
Xymenopsis muriciformis (King, 1832)	b, ak, ar, as, av, aw, bi, bk, bl, bo, br, bv, bw, cu, ce, cn, eg, p	+	+	+
Xymenopsis subnodosus (Gray, 1839)	aw			

Borsoniidae

Typhlodaphne filiariata (Strebel, 1905)	cm, eh	+	+	+
Typhlodaphne payeni (Rochebrune & Mabille, 1885)	b	+	+	+
Typhlodaphne strebli Powell, 1951	b	+	+	+

Cochlespiridae

| Aforia sp. | bm | | | + |

Drilliidae

| Agadrillia fuegiensis (Smith, 1888) | bm, as, bi | + | + | + |
| Lepadrillia elio* (Dall, 1919) | bm, as | + | + | + |

Mangelidae

Belarina cunninghami* (E. A. Smith, 1881)	b, eh			+
Lorabela sp.	bm			+
Mangelia martensi (Strebel, 1905)	do			+
Mangelia michaelseni (Strebel, 1905)	bm, cm			+
Oenopota magellanica (Martens, 1881)	br, cm, dj			+

Petudomelatomidae

| Leucocyrinx sp.* | as | | | + |

Raphitomidae

| Pleurotomella ohlini (Strebel, 1905) | cm, eh | + | + | + |
| Thesia michaelseni (Strebel, 1905) | cm, eh | + | + | + |

Turridae

| Turridae indet. | as | | | + |
Taxa	Reference	E	C	W
Infraclass “Lower Heterobranchia”				
Mathildidae				
Mathilda magellanica Fischer, 1873	b		+	
Mathilda malvinarum (Melvill & Standen, 1907)	df			
Cimidae				
Atomiscala xenophyes (Melvill & Standen, 1912)	df			
Infraclass Euthyneura				
Acteonidae				
Acteon biplicatus (Strebel, 1908)	bm, bv, bj	+		+
Acteon delicatus ▪ Dall, 1889	bj			
Ringiculidae				
Microglyphis curtula ▪ (Dall, 1890)	as		+	
Order Pleurobranchida				
Pleurobranchidae				
Berthella platei (Bergh, 1898)	bn			+
Order Nudibranchia				
Dorididae				
Doris fontainii ▪ d’Orbigny, 1837	by			
Doris kerguelenensis (Bergh, 1884)	bx, by, at	+		+
Doris magellanica ▪ Cunningham, 1871	s			
Discodorididae				
Disaulus hispida ▪ (d’Orbigny, 1834)	by, bx		+	
Disaulus punctulata ▪ (d’Orbigny, 1837)	by			
Gargamella immaculata ▪ Bergh, 1894	by			
Geitodorus patagonica ▪ Odhner, 1926	by			
Polyceridae				
Holoplacanus papposus Odhner, 1926	bx, by, bj	+		+
Thecacera darwini ▪ Pruvot-Fol, 1950	by			
Chromodorididae				
Tyrinna delicata (Abraham, 1877)	dp			
Cadlinidae				
Cadlina magellanica Odhner, 1926	by, bx		+	
Onchidorididae				
Acanthodoris falklandica ▪ Eliot, 1907	by, j		+	
Goniodorididae				
Ancula fuegiensis ▪ Odhner, 1926	by			
Janolidae				
Janolus sp. ▪	j		+	
Tritoniidae				
Tritonia australis ▪ (Bergh, 1898)	h		+	
Tritonia challengeriana Bergh, 1884	by, bx, j		+	
Tritonia vorax ▪ (Odhner, 1926)	by			
Coryphellidae				
Itaxia falklandica (Eliot, 1907)	by, bx		+	
Cuthonidae				
Cuthona valentini ▪ (Eliot, 1907)	by, bx			+
Eubranchidae				
Eubranchus fuegiensis ▪ Odhner, 1926	by			
Aeolidiidae				
Aeolidia sp. ▪	as, bk	+		+
Aeolidia campbellii ▪ (Cunningham, 1871)	by, ar, h, dq	+		
Facelinidae				
Phidiana patagonica ▪ (d’Orbigny, 1836)	bx		+	
Order Cephalaspidea				
Cyllhniidae				
Cylchne gelida ▪ (E. A. Smith, 1907)	as			+
Toledonia sp. ▪	as		+	
Taxa	Reference			
------	-----------			
Toledonia paretata* Dell, 1990	bs +			
Toledonia perplexa Dall, 1902	cm, b, n, bj, dj +			
Diaphanidae				
Diaphana paesleri (Strebel, 1905)	b, dj +			
Superorder Sacoglossa				
Plakobranchidae				
Elysia hedgpethi Marcus, 1962	bx +			
Limapontiidae				
Ercolaniana evelinae* (Marcus, 1959)	bx +			
Limapontia sp.*	bx +			
Hermaeidae				
Aplysiopsis brattstroemi* (Marcus, 1959)	bx +			
Order Siphonariida				
Siphonariidae				
Siphonaria fuegiensis* Güller, Zelaya & Ituarte, 2016	a, ea +			
Siphonaria laeviuscula* G. B. Sowerby I, 1835	dr			
Siphonaria lateralis Gould, 1846	b, co, ar, bk, ab, ea + + +			
Siphonaria lessonii Blainville, 1824	b, bw, ab, ar, e, co, a, bu, bk, bl, ba, cb, ea + + +			
Williamia magellanea Dall, 1927	n +			
Superorder Pylopulmonata				
Pyramidellidae				
Odostomia sp.	b +			
Turbonilla sp.*	as +			
Turbonilla sanmatiensis* Castellanos, 1982	bm + +			
Turbonilla smithii (Strebel, 1905)	as, bm + +			
Turbonilla strebeli Corgan, 1969	b + +			
Order Systellommatophora				
Onchidiidae				
Onchidella marginata (Couthouy in Gould, 1852)	b +			
Class Bivalvia				
Bivalvia indet.	as, bm +			
Order Nuculida				
Nuculidae				
Ennucula eltanini Dell, 1990	as, v + +			
Ennucula grayi (d’Orbigny, 1846)	as, cw, cp, bn +			
Ennucula puebla (d’Orbigny, 1842)	t, cw +			
Linucula sp.*	as +			
Linucula pisum (G. B. Sowerby I, 1833)	cw +			
Nucula sp.	as, cp + +			
Nucula falklandica Preston, 1912	b, cw, dj + +			
Order Solemyida				
Solemyidae				
Acharax patagonica (E. A. Smith, 1885)	as + +			
Solemya notialis Simone, 2009	du			
Solemya occidentalis Deshayes, 1857	dt			
Order Nuculanida				
Sareptidae				
Aequiyoldia sp.*	i +			
Nuculanidae				
Nuculana sp.*	s +			
Propeleda longicuadata* (Thiele, 1912)	cp +			
Mallettiidae				
Malletia chilensis* Desmoulins, 1832	h			
Malletia inequalis Dall, 1908	ds +			
Malletia subaequalis (G. B. Sowerby II, 1870)	as, cw, be, f +			
Neilonellidae				
Neilonella sulculata (Gould, 1852)	b, f, as, br, cw + +			
Taxa

Taxa	Reference	E	C	W
Siliculidae				
Silicula patagonica (Dall, 1908)	as, v			
Tindariidae				
Tindaria virens (Dall, 1890)	as			
Yoldiidae				
Yoldia sp.	as			
Yoldiella chilensis (Dall, 1908)	as, cw			
Yoldiella granula (Dall, 1908)				
Yoldiella indolens (Dall, 1908)	as, cw			
Yoldiella valettei (Lamy, 1906)				
Order Mytilida				
Mytilus chilensis Hupé, 1854				
Mytilus galloprovincialis Lamarck, 1819				
Mytilus platensis d’Orbigny, 1842				
Perumytilus purpuratus (Lamarck, 1819)				
Order Arcida				
Barbatia platei (Stempell, 1899)				
Limopsidae				
Limopsis sp.				
Limopsis hirtella Rochebrune & Mabille, 1889	as, v			
Limopsis marionensis E. A. Smith, 1885				
Limopsis perieri P. Fischer in de Folin & Périer, 1870	as, v			
Philobryidae				
Lissa comoara (Philippi, 1845)				
Philobrya sp.				
Philobrya aequivalvis (Odhner, 1922)				
Philobrya antarctica (Philippi, 1868)				
Philobrya atlantica Dall, 1896				
Philobrya blakosana (Melvill & Standen, 1914)				
Philobrya capillata Dell, 1964				
Philobrya crispata Limse, 2002				
Philobrya magellanica (Stempell, 1899)				
Philobrya sublaevis Pelseneer, 1903				
Order Pectinida				
Pectinidae				
Aequipecten tehuelucho (d’Orbigny, 1842)				
Austrochlamys natanu (Philippi, 1845)				
Chlamys sp.				
Deletempecten vitreus Gmelin, 1791				
Zygochlamys patagonica (King & Broderip)				
Propeamussiidae				
Cyclopecten sp.				
Cyclochlamyidae				
Cyclochlamys multistrata Linse, 2002				
Taxa	Reference	E	C	W
---	-----------	---	---	---
Order Limida				
Limidae				
Limidae indet.	as	+		
Acosta patagonica (Dall, 1902)	bn	+		
Linea pygmaea (Philippi, 1845)	as, v, t, b, bv, bm, ch	+	+	+
Limatula decepcionensis (Preston, 1916)	as	+		
Limatula hodgsoni (E. A. Smith, 1907)	as, v	+		
Order Lucinida				
Lucinidae				
Epicodakia fallilandica Dell, 1964	as, b	+	+	
Lucinoma lamellata (E. A. Smith, 1881)	as, aj, cf	+		+
Loripes pertenuis (E. A. Smith, 1881)	ce, br			
Thysiridae				
Adontorbina pisum (Dall, 1908)	ac, be	+	+	
Parathyasira magellanica (Dall, 1901)	db	+		
Thyasira debili (Thiele, 1912)	db, cp, as	+		
Thyasira fuigiensis (Dall, 1890)	db	+		
Thyasira patagonica Zelaya, 2010	dc	+	+	
Order Carditida				
Carditidae				
Cyclocardia compresa (Reeve, 1843)	as, ce, b	+	+	
Cyclocardia thunarrii (d’Orbigny, 1845)	s		+	
Cyclocardia velutina (E. A. Smith, 1881)	as, bn, f, bf	+		
Condylocarditidae				
Carditella exulata (E. A. Smith, 1885)	bf	+		
Carditella naviformis (Reeve, 1843)	ag, as, bv	+		
Carditella tegulata (Reeve, 1843)	b	+	+	
Carditopsis flabellum (Reeve, 1843)	u, b, ag	+	+	
Carditopsis malvinae (d’Orbigny, 1845)	as	+	+	
Astartidae				
Astarte longirostra d’Orbigny, 1842	as, bm, ce, bv, b, u, v	+	+	+
Order Cardiida				
Cardiidae				
Cardium parvulum Dunker, 1861	ag			
Tellinidae				
Macoploma inornata (Hanley, 1844)	br			
Superorder Imparidonta				
Cymiiidae				
Cymoicardium sp.	as	+		
Cymoicardium dabil Soot-Ryen, 1957	b	+		
Cymoicardium denticulatum (E. A. Smith, 1885)	v, bm, as	+	+	
Cymoicardium yokumada Urcoila & Zelaya, 2018	dy	+		
Cymium sp.	b	+		
Cymium antarcticum (Philippi, 1845)	br	+		
Kidderia pusilla (Gould, 1850)	br			
Gaimardiidae				
Gaimardia trapesina (Lamarck, 1819)	b, bw, bv, i, br, cg, ak	+	+	
Order Galeommatida				
Lasaetidae				
Alternaeutmahillii (Dall, 1908)	be, v	+		
Kella bullata Philippi, 1845	bm, br, as	+	+	
Lasaea adamsii (Gmelin, 1791)	b	+	+	
Lasaea millanii (Philippi, 1845)	u	+		
Lasaea petigena (Récluz, 1843)	h			
Mysella sp.	cp, bm, b	+	+	
Mysella rochebrunzi (Dall, 1908)	ds	+		
Pseudokellya cardiformis (E. A. Smith, 1885)	bm, v, as	+	+	
Taxa of Benthic Marine Mollusks of the Strait of Magellan, Chile

Taxa	Reference	E	C	W
Galeommatoidea				
Montacutidae indet.*	f			
Order Venerida				
Mactridae				
Darina solenoides (King, 1832)	ca, s, br, al, cg			
Mactra fuegiensis E. A. Smith, 1905	ca			
Mulinia byronensis Gray, 1837	ca			
Mulinia edulis (King, 1832)	w, s, bw, bf, bm, al, br			
Mulinia exalbida (King, 1832)	s, ca			
Mulinia levicardo (E. A. Smith, 1881)	br, ca			
Ungulinidae				
Diplodonta patagonica (d'Orbigny, 1842)	o			
Diplodonta punctata (Sav, 1822)	dx			
Veneridae				
Veneridae indet.*				
Eurhomalea exalbida (Dillwyn, 1817)	as, b, bf, i, bm, f, bp, cj.			
Leukoma antiqua (King, 1832)	b, bw, cj, o			
Petricola dactylus G. B. Sowerby I, 1823	dw			
Pitar rostratus (Philippi, 1844)	h, bf			
Proteopitar patagonicus (d'Orbigny, 1842)	br			
Tawera elliptica (Lamarck, 1818)	bw, cp, bl, b, as, ce, cg			
Venus inflata King & Broderip, 1832	al			
Neoleptonidae				
Neolepton sp.				
Neolepton amatia* Zelaya & Ituarte, 2004	b			
Neolepton cobbi* (Cooper & Preston, 1910)	as			
Neolepton concentricum (Preston, 1912)	b, da, bm, as			
Neolepton hupe Soot-Ryen, 1957	as			
Neolepton yagan Zelaya & Ituarte, 2004	b, da			
Order Myida				
Myida				
Sphonia batcher Pilsbry, 1899				
Pholadidae				
Netastoma darwinii (G. B. Sowerby II, 1849)	dt			
Teredinidae				
Bankia martensi (Stempell, 1899)				
Order Adapedonta				
Hiatellidae				
Hiatellidae indet.*	as			
Hiatella sp.	bv, as, ce			
Hiatella antarctica (Philippi, 1845)	b			
Hiatella arctica (Linnaeus, 1767)	as, bu, e, i, u, ar, f, bm, bo, ch			
Pharidae				
Ensis macha (Molina, 1782)				
Superorder Anomalodesmata				
Pandoridae				
Pandora braziliensis G. B. Sowerby II, 1874	br, bm, as, f, ae			
Pandora cistula Gould, 1850	as, br			
Lyonsiidae				
Entodermus cuneata (Gray, 1828)				
Entodermus elongatus Soot-Ryen, 1957	bm, as			
Entodermus angulatulus (Lamarck, 1818)	bf			
Laternulidae				
Laternula elliptica (King, 1832)				
Cupidaridae				
Cupidaria sp.	as			
Cupidaria patagonica (E. A. Smith, 1885)	as, bm, cp, bf			
Cupidaria tenella (E. A. Smith, 1907)	as			
rant with the highest richness was Punta Santa Ana and Fuerte Bulnes (C59), 60 km south of Punta Arenas with 112 nominal taxa, greatly exceeding the diversity of other quadrants (Fig. 4). The most common species was the gastropod *Nacella magellanica*, present in 33 quadrants, followed by *Pareuthria fuscata* (25 quadrants), *Callochiton punicus* (23), *Nacella deaurata* (23), *Margarella violacea* (23), *Nacella mytilina* (22), *Trophon geversianus* (22), *Aulacomya atra* (22), *Trochita pileus* (21), *Plaxiphora aurata* (20), *Zygochlamys patagonica* (20), *Mytilus chilensis* (19), *Pareuthria atrata* (18), *Leptoehiton kerguelensis* (17), and *Xyomenis muriciformis* (17).

The estimated prediction for the richness of species associated with the sampling effort for the Strait of Magellan determined by the Clench model showed that the values of the constants were \(a = 5.664075\) and \(b = 0.014764\). The relation of these values (\(a / b\)) obtained a maximum expected richness of 383.6 species (value of the asymptote of the species accumulation curve with \(R^2 = 0.97\), higher than the 270 species observed. The constants of the linear dependence model were \(a = 4.953160\) and \(b = 0.017756\), thus the maximum expected richness (\(a / b\)) was 279 species with \(R^2 = 0.97\), obtaining a higher value in 9 species than observed in this study (Fig. 5a).
Figure 2. Species richness of mollusks from the Strait of Magellan, highlighting the families with higher diversity. The numbers of species and their percentages are indicated in parentheses.

Figure 3. A number of studies per decade of the Strait of Magellan mentioned in this study B number of mollusk records per decade reported in the Strait of Magellan.
Therefore, neither of the two theoretical models predicted exactly the observed number of mollusk species for the Strait of Magellan. Both non-parametric models estimated an expected richness much higher than that observed empirically (Chao 2 = 353.49; Jacknife 1 = 360.39), and both curves were above that of observed richness (Fig. 5b).

Discussion

According to Valdovinos (1999), the Chilean coast has about 959 species of the three most diverse classes of benthic marine mollusks (671 gastropods, 226 bivalves and 62 polyplacophorans), including Antarctic and oceanic island species. The Magellan Biogeographic Province (41°S to 56°S) is one of the geographical areas with the highest diversity of mollusks on the Chilean coast (Valdovinos et al. 2003). Taking into account this database, the 303 mollusk species recorded in this study correspond to ~31.6% of the species cited for the Chilean coast (Fig. 6). About 400 species of marine mollusks, 250 gastropods, 131 bivalves (Linse 1999) and 19 polyplacophorans (Sirenko 2006a) have been reported for the Magellan Province. Therefore, the 303 species recorded for the Strait of Magellan represent 75% of the mollusks reported for the MBP. However, comparing the value of richness found in this study (303 species) to the 116 species of gastropods and bivalves reported for the Strait of Magellan by Linse et al. (2006), plus 17 species of polyplacophorans by Sirenko (2006a), the richness of mollusks for the Strait of Magellan was increased by 228% (Fig. 6). Most of the records were reported in the last 70 years. However, records of the late 19th century and early 20th century
greatly increased the knowledge of the zone, surpassing previous reports (see Fig. 3). This is mainly due to the publications of Rochebrune and Mabille (1889) and Strebel (1904, 1905a, b, 1906, 1907) which reported 267 records in the Strait. The number of

Figure 5. a accumulation curves of mollusk species according to the parametric estimators Clench and linear dependence, and b according to the non-parametric estimators Chao 2 and Jack 1 for the Strait of Magellan.
studies has increased in the last 40 years, and therefore the records (see Fig. 3). However, some of these records belong to reviews of biological collections and older studies. One criterion was followed to determine doubtful species; those records that were cited in the past and have been questioned in taxonomic reviews. Species such as *Carditella exulata* or *Pandora cistula* were identified as dubious according to these criteria (Güller and Zelaya 2013; Güller and Zelaya 2016b). Other criteria included records in which the same taxonomist discussed the species described such as the case of *Doris magellanica* (Cunningham, 1871), records that considerably exceed their distribution limit and do not appear in taxonomic revisions or alpha diversity studies or are simply dismissed, such as *Lottia orbignyi*, *Leptochiton smirnovi*, *Falsilunatia falklandica*, etc. (Espoz et al. 2004; Pastorino 2005b; Sirenko 2016), and records that have a huge biogeographical discontinuity and are not explained or figured in the article, is the case of *Ischnochiton striolatus*, *Puncturella noachina* and *Acteon delicatus* (Rochebrune and Mabille 1889; Strebel 1907; Ramírez 2000). On the other hand, of the taxa reported up to or above genus level (“indet.” or “sp.”), only two could correspond to new species, according to the authors’ remarks: *Leptochiton* sp. (Sirenko 2006a) and *Crepipatella* sp. (Nuñez et al. 2012).

Recent studies using molecular tools have observed that several species co-distributed in the Antarctic Peninsula and South America actually belong to different lineages, with evolutionary units separated by millions of years (Poulin et al. 2014). This has been mainly observed in species of the genus *Aequiyoldia* Soot-Ryen, 1951 (González-Wevar et al. 2019).
Finally, there are species in the list that do not qualify as doubtful, but which have been classified as unknown species due to their low number of records or due to its small body size, which makes it difficult to identify the species, with poor ecological or descriptive information (Castellanos 1979; Geiger 2012; Rosenfeld et al. 2017), e.g., Notoplax magellanica, Lissotesta impervia, Onoba sulcula, Onoba georgiana, Microglyphis curtula, Cylichna gelida, Turbonilla sanmatiensis, Philobrya atlantica. In this sense, it should be noted that much of the mollusk information that was collected in this work comes from manual collections and various types of sampling gears, trawl and grabs (e.g., Watson 1886; Rochebrune and Mabille 1889; Strebel 1907; Linse 2002; Ríos et al. 2003). However, taxonomic works on specific groups have allowed a good representation of unknown micromollusks (Ponder and Worsfold 1994; Geiger 2012; Pastorino 2016; Di Luca and Pastorino 2018). Despite the aforementioned contributions, micromollusks could continue to be underestimated, since the comparative morphology of various species is only beginning to be illustrated and described in detail (Di Luca and Pastorino 2018).

This historical compilation of the richness of benthic mollusks of the Strait of Magellan promotes the need and urgency for the management of coastal environments. Despite the historical sampling effort and about 192 years of records, the Strait of Magellan has a high diversity of mollusk species which is not yet fully known. The richness estimated by the parametric models was greater than that observed. Two reasons may explain this: i) the sampling effort along the Strait of Magellan has been low (only about 36% of the total area is recorded), and ii) there is still a lack of knowledge about the taxonomy of many mollusk groups, since many species remain undetermined and are not included in the listings or are not recognized in the field. According to Soberón and Llorente (1993), the probability of finding a new species in the Clench model will increase according to experience in the field. Therefore, the Clench model suggests increasing the sampling effort but at a broader spatial and temporal scale to reach the asymptote in the estimation of mollusk species from the Strait of Magellan.

The richness estimated by non-parametric models was higher than the observed. These non-parametric models work based on the number of unique (number of species that occur only in one sample) and duplicate (number of species that occur in exactly two samples). This is based on the assumption that individuals of a species do not live alone in ecosystems, but in populations (Magurran 1988), therefore many unique species in a sample may be indicating that a sufficient number of sampling units has not been used. This historical compilation showed that there are many places in the Strait of Magellan that only have one or two records, which was reflected in both estimators.

However, it is important to consider that in order to evaluate the behavior of the different estimators, it is necessary to know the number of species in the community (Walther and Moore 2005; González-Oreja et al. 2010). Unless the community has been thoroughly sampled, these curves may not work properly (Magurran 2004). Therefore, some authors recommend not working with only one estimator, but testing several models to see how they behave with the data (González-Oreja et al. 2010), since these may vary depending on the situation or for a specific group of organisms.
The results of the four models used in this study allows us to infer that greater sampling effort is needed in the Strait of Magellan, mainly because the largest number of records and species richness are concentrated at the same points within the Strait of Magellan, in the central microbasin.

Conclusion

This study provides a clearer idea of the diversity of mollusks in the Strait of Magellan, identifying erroneous records and those that need verification, encouraging other researchers to sample less-studied areas of the strait. This will update knowledge of the diversity of mollusks of the Strait of Magellan, contributing to Chile’s biodiversity heritage and future studies of biogeographical models that are currently based on the 116 species of gastropods and bivalves cited by Linse et al. (2006) and the 17 species of polyplacophorans cited by Sirenko (2006a) for the Strait of Magellan. Finally, with this information of all the records, it will be possible to identify the hotspots of diversity for study and gaps in knowledge, among other things.

Acknowledgements

This work was financially supported by the Direction of Research of the Universidad de Magallanes (Program PR-06-CRN-18) to C.A. and S.R.; by Project PIA CONICYT ACT172065 to S.R.; Conicyt PIA Support CCTE AFB170008 through the Institute of Ecology and Biodiversity (IEB) to S.R. and the Institutional Development Fund, Student Entrepreneurship Line (FDI 2015 UMAG), of the Ministry of Education of Chile to S.A. The authors appreciate the permanent endorsement of Dr Andrés Mansilla (UMAG). Likewise, we acknowledge Dr Jesús Troncoso (UVIGO-Spain) and Dr Claudio González-Wevar (UACH) for their comments in the initial stages of the MS. Finally, we especially thank Lafayette Eaton for English revision and editing and Leonardo Santos de Souza for his comments to improve the manuscript.

References

Alamo V, Valdivieso V (1997) Lista Sistemática de Moluscos Marinos del Perú. Segunda Edición, Revisada y Actualizada. Instituto del Mar del Perú, Callao, 183 pp.

Aldea C, Rosenfeld S (2011) Moluscos intermareales de la Playa Buque Quemado (Estrecho de Magallanes, Chile). Revista de Biología Marina y Oceanografía 46(2): 115–124. https://doi.org/10.4067/S0718-19572011000200002

Aldea C, Rosenfeld S, Cárdenas J (2011) Caracterización de la diversidad de moluscos bentónicos sublitorales en la isla Carlos III y áreas adyacentes, Estrecho de Magallanes, Chile. Anales del Instituto de la Patagonia 39(2): 73–89. https://doi.org/10.4067/S0718-686X2011000200006
Allmon WD (1990) Review of the *Bullia* Group (Gastropoda: Nassariidae) with comments on its evolution, biogeography, and phylogeny. Bulletins of American Paleontology 99(335): 1–179.

Andrade C, Brey T (2014) Trophic ecology of limpets among rocky intertidal in Bahía La Redo, Strait of Magellan (Chile). Anales del Instituto Patagonia 42(2): 65–70. https://doi.org/10.4067/S0718-686X2014000200006

Andrade C, Ríos C, Gerdes D, Brey T (2016) Trophic structure of shallow-water benthic communities in the sub-Antarctic Strait of Magellan. Polar Biology 39(12): 2281–2297. https://doi.org/10.1007/s00300-016-1895-0

Antezana T (1999) Hydrographic features of Magellan and Fuegian inland passages and adjacent Subantarctic waters. Scientia Marina 63(S1): 23–34. https://doi.org/10.3989/scimar.1999.63s123

Aranzamendi C, Gardenal N, Martin JP, Bastida R (2009) Limpets of the genus *Nacella* (Patellogastropoda) from the Southwestern Atlantic: species identification based on molecular data. Journal of Molluscan studies 75(3): 241–251. https://doi.org/10.1093/mollus/eyp025

Araya JF (2015) Current status of the non-indigenous molluscs in Chile, with the first record of *Otala punctata* (Müller, 1774) (Gastropoda: Helicidae) in the country and new records for *Cornu aspersum* (Müller, 1774) and *Deroceras laeve* (Müller, 1774). Journal of Natural History 49: 1731–1761. https://doi.org/10.1080/00222933.2015.1006703

Arnitz W, Gorny M (1996) Cruise report of the Joint Chilean-German-Italian Magellan “Victor Hensen” Campaign in 1994. Berichte zur Polarforschung 190: 1–113.

Astorga MS, Rodríguez EM, Díaz C (2007) Comparison of mineral and trace element concentrations in two molluscs from the Strait of Magellan (Chile). Journal of Food Composition and Analysis 20: 273–279. https://doi.org/10.1016/j.jfca.2006.06.007

Brattström H, Johanssen A (1983) Ecological and regional zoogeography of the marine benthic fauna of Chile. Sarsia 68: 289–339. https://doi.org/10.1080/00364827.1983.10420583

Burnham KP, Overton WS (1978) Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65: 625–633. https://doi.org/10.1093/biomet/65.3.625

Burnham KP, Overton WS (1979) Robust estimation of population size when capture probabilities vary among animals. Ecology 60: 927–936. https://doi.org/10.2307/1936861

Cañete J, Aldea C, Figueroa T (2014) Guía Para la Identificación de la Macrofauna Bentónica de la Bahía de Porvenir, Chile. Editorial Universidad de Magallanes, Punta Arenas, 83 pp.

Carcelles A, Williamson S (1951) Catálogo de los moluscos marinos de la Provincia Magallánica. Revista del Museo Argentino de Ciencias Naturales «Bernardino Rivadavia» 2: 225–383.

Cárdenas CA (2008) Factores que Organizan la Estructura Comunitaria del Megaepibentos del Submareal Rocoso de Punta Santa Ana, Estrecho de Magallanes, Chile. Tesis de Magíster en Ciencias con Mención Manejo y Conservación de Recursos Naturales de Ambientes Subantárticos. Universidad de Magallanes.

Castellanos ZA (1970) Catálogo de los moluscos marinos bonaerenses. Anales de la Comisión Científica 8: 9–365.
Castellanos ZA (1979) Micromoluscos poco conocidos del sur Argentino-Chileno. Neotropica 25: 133–140.

Castellanos ZA (1988) Catálogo Descriptivo de la Malacofauna Marina Magallánica 1. Placóforos. Comisión de Investigaciones Científicas, Buenos Aires, 41 pp.

Castellanos ZA (1990) Catálogo Descriptivo de la Malacofauna Marina Magallánica 5. Mesogastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 36 pp.

Castellanos ZA (1992a) Catálogo Descriptivo de la Malacofauna Marina Magallánica 7. Neogastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 41 pp.

Castellanos ZA (1992b) Catálogo Descriptivo de la Malacofauna Marina Magallánica 8. Neogastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 27 pp.

Castellanos ZA, Landoni NA (1988) Catálogo Descriptivo de la Malacofauna Marina Magallánica 2. Archigastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 40 pp.

Castellanos ZA, Landoni NA (1989) Catálogo Descriptivo de la Malacofauna Marina Magallánica 3. Archigastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 40 pp.

Castellanos ZA, Landoni NA (1990) Catálogo Descriptivo de la Malacofauna Marina Magallánica 6. Mesogastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 38 pp.

Castellanos ZA, Landoni NA (1993a) Catálogo Descriptivo de la Malacofauna Marina Magallánica 9. Neogastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 25 pp.

Castellanos ZA, Landoni NA (1993b) Catálogo Descriptivo de la Malacofauna Marina Magallánica 11. Neogastropoda. Comisión de Investigaciones Científicas, Buenos Aires, 31 pp.

Castellanos ZA, Landoni NA, Dadon J (1993) Catálogo Descriptivo de la Malacofauna Marina Magallánica 12. Opisthobranchia. Comisión de Investigaciones Científicas, Buenos Aires, 29 pp.

Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics: 783–791. https://doi.org/10.2307/2531532

Coan EV (1997) Recent species of the genus Petricola in the Eastern Pacific (Bivalvia: Veneroida). The Veliger 40: 298–340.

Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 345: 101–118. https://doi.org/10.1098/rstb.1994.0091

Cunningham R (1871) XVII. Notes on the Reptiles, Amphibia, Fishes, Mollusca, and Crustacea obtained during the voyage of HMS 'Nassau' in the years 1866-69. Transactions of the Linnean Society of London 27(4): 465–502. https://doi.org/10.1111/j.1096-3642.1871.tb00219.x

d’Orbigny A (1835–1846) Voyage dans l’Amérique Méridionale Exécuté Pendant les Années 1826–1833 par Alcide d’Orbigny. 5. Mollusques. Libraire de la Société géologique de Paris, France.

Dall WH (1901) Synopsis of the Lucinacea and of the American species. Proceedings of the United States National Museum 23: 779–833. https://doi.org/10.5479/si.00963801.23-1237.779

Dall WH (1908) The Mollusca and the Brachiopoda. Reports of the dredging operations off the coast of Central America to the Galapagos... [and] Reports on the scientific results of the expedition to the eastern tropical Pacific... Bulletin of the Museum of Comparative Zoology at Harvard College 43: 205–487. [22 pls.]

Dall WH (1909) Report on a Collection of Shells from Perú, with a summary of the littoral marine mollusca of the Peruvian Zoological Province. Proceedings of the United States National Museum 37: 147–294. https://doi.org/10.5479/si.00963801.37-1704.147
Dell RK (1964) Antarctic and sub-Antarctic Mollusca: Amphineura, Scaphopoda and Bivalvia. Discovery Reports 33: 99–250.
Dell RK (1971) The marine Mollusca of the Royal Society Expedition to southern Chile, 1958–1959. Records of the Dominion Museum 7(17): 155–233.
Dell RK (1990) Antarctic Mollusca with special reference to the fauna of the Ross Sea. Bulletin of the Royal Society of New Zealand 27: 1–311.
Di Geronimo I, Privitera S, Valdovinos C (1995) Fartulum magellanicum (Prosobranchia, Ceccidae): A new species from the Magellanic Province. Boletín de la Sociedad de Biología de Concepción 66: 113–118.
Di Luca J, Pastorino G (2018) A revision of the genus Savatieria Rochebrune & Mabille, 1885: an endemic group of buccinulid gastropods from the Magellanic region. Journal of Molluscan Studies 84: 293–302. https://doi.org/10.1093/mollus/eyy019
Di Luca J, Zelaya DG (2019) Gastropods from the Burdwood Bank (southwestern Atlantic): an overview of species diversity. Zootaxa 4544: 41–78. https://doi.org/10.11646/zootaxa.4544.1.2
Espoz C, Lindberg DR, Castilla JC, Simison W (2004) Los patelogastrópodos intermareales de Chile y Perú. Revista Chilena de Historia Natural 77(2): 257–283. https://doi.org/10.4067/S0716-078X2004000200006
Geiger DL (2012) Monograph of the Little Slit Shells (1st ed.). Santa Barbara Museum of Natural History, Santa Barbara, 1291 pp.
González-Oreja J, de la Fuente-Díaz-Ordaz A, Hernández-Santín L, Buzo-Franco D, Bonache-Regidor C (2010) Evaluación de estimadores no paramétricos de la riqueza de especies. Un ejemplo con aves en áreas verdes de la ciudad de Puebla, México. Animal Biodiversity and Conservation 33: 31–45.
González-Wevar CA, Nakano T, Cañete J, Poulin E (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Molecular Phylogenetics and Evolution 56(1): 115–124. https://doi.org/10.1016/j.ympev.2010.02.001
González-Wevar CA, Nakano T, Cañete JI, Poulin E (2011) Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic Province. Molecular Ecology 20: 1936–1951. https://doi.org/10.1111/j.1365-294X.2011.05065.x
González-Wevar CA, Hühn M, Rosenfeld S, Gérard K, Mansilla A, Poulin E (2016a) Patrones de diversidad y estructura genética en especies antárticas y subantárticas de Nacella (Nacellidae). Anales Instituto Patagonia 44(3): 49–64. https://doi.org/10.4067/S0718-686X2016000300005
González-Wevar CA, Rosenfeld S, Segovia NI, Hühn M, Gérard K, Ojeda J, Mansilla A, Brickle P, Díaz A, Poulin E (2016b) Genetics, Gene Flow, and Glaciation: The Case of the South American Limpet Nacella mytilina. PLoS ONE 11(9): e0161963. https://doi.org/10.1371/journal.pone.0161963
González-Wevar CA, Nakano T, Palma A, Poulin E (2017) Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special emphasis on the Relationships of Southern Hemisphere Oceanic Island Species. PloS ONE 12(1): e0170103. https://doi.org/10.1371/journal.pone.0170103
González-Wevar CA, Gérard K, Rosenfeld S, Sauède T, Naretto J, Díaz A, Morley SA, Brickle P, Poulin E (2019) Cryptic speciation in Southern Ocean Aequiyoldia eightsii (Jay, 1839):
Mio-Pliocene trans-Drake Passage separation and diversification. Progress in Oceanography 174: 44–54. https://doi.org/10.1016/j.pocean.2018.09.004

Guarda B (2015) Producción Secundaria del Ensamble Macrobentónico en el Intermareal de Bloques y Cantos: una Comparación Entre Grupos Tróficos. Tesis de pregrado. Universidad de Magallanes, Punta Arenas.

Güller M, Zelaya D (2011) On the generic allocation of “Aligena” pisum Dall, 1908. Malacologia 53(2): 373–378. https://doi.org/10.4002/040.053.0208

Güller M, Zelaya D (2013) The families Carditidae and Condylocardidiidae in the Magellan and Perú-Chile provinces (Bivalvia: Carditoidea). Zootaxa 3682(2): 201–239. https://doi.org/10.11646/zootaxa.3682.2.1

Güller M, Zelaya D (2016a) Species of Iothia (Gastropoda: Lepetidae) from Shallow Waters of the Magellan Region. Malacologia 59(2): 321–330. https://doi.org/10.4002/040.059.0210

Güller M, Zelaya D (2016b) Unravelling the identity of Pandora species (Bivalvia: Pandoridae) from southern South America. Journal of Molluscan Studies 82(3): 440–448. https://doi.org/10.1093/mollus/eyw008

Güller M, Zelaya D (2017) New insights into the diversity of rissoids from sub-antarctic and antarctic waters (Gastropoda: Rissooidea). Polar Biology 40(10): 1923–1937. https://doi.org/10.1007/s00300-017-2108-1

Güller M, Zelaya D, Ituarte C (2016) How many Siphonaria species (Gastropoda: Euthyneura) live in southern South America? Journal of Molluscan Studies 82(1): 80–96.

Guzmán L (1978) Patrón de distribución espacial y densidad de Nacella magellanica (Gmelin, 1971) en el intermareal del sector oriental del Estrecho de Magallanes (Mollusca, Gastropoda). Anales del Instituto de la Patagonia 9: 205–219.

Guzmán L, Ríos C (1987) Age and Growth of the Subantarctic Limpet Nacella (Patinigera) magellanica magellanica (Gmelin, 1791) from the Strait of Magellan, Chile. The Veliger 30(2):159–166.

Holmes AM, Oliver PG, Sellanes J (2005) A new species of Lucinoma (Bivalvia: Lucinoidea) from a methane gas seep off the southwest coast of Chile. Journal of Conchology 38(6): 673–682.

Hombro JB, Jacquinot H (1854) Voyage au Pôle Sud et dans l’Océanie. Zoologie, Mollusques. Gide et J. Baudry, Paris, 152 pp.

Huber M (2010) Compendium of Bivalves: a Full-Color Guide to 3300 of the World’s Marine Bivalves; a Status on Bivalvia After 250 Years of Research. ConchBooks, Hackenheim, 901 pp.

Huber M (2015) Compendium of Bivalves 2: a Full-Color Guide to the Remaining Seven Families; a Systematic Listing of 8’500 Bivalve Species and 10’500 Synonyms. ConchBooks, Hackenheim, 907 pp.

Kaas P, Strack HL, VanBelle RA (2006) Monograph of living chitons: Mollusca: Polyplacophora. 6: Suborder Ischnochitonina (concluded): Schizochitonidae & Chitonidae; additions to volumes 1–5. Brill, Leiden, 464 pp.

Kienberger K, Carmona L, Pola M, Padula V, Gosliner TM, Cervera JL (2016) Aeolidia papillosa (Linnaeus, 1761) (Mollusca: Heterobranchia: Nudibranchia), single species or a cryptic species complex? A morphological and molecular study. Zoological Journal of the Linnean Society 177: 481–506. https://doi.org/10.1111/zoj.12379
King PP, Broderip WJ (1832) Description of the Cirripedia, Conchifera and Mollusca, in a collection formed by the officers of H.M.S. Adventure and Beagle employed between the years 1826 and 1830 in surveying the southern coasts of South America. Zoological Journal 5: 332–349.

Korshunova T, Martynov A, Bakken T, Evertsen J, Fletcher K, Mudianta WI, Saito H, Lundin K, Schrödl M, Picton B (2017) Polyphyly of the traditional family Flabellinidae affects a major group of Nudibranchia: aeolidacean taxonomic reassessment with descriptions of several new families, genera, and species (Mollusca, Gastropoda). ZooKeys 717: 1–139. https://doi.org/10.3897/zookeys.717.21885

Leloup E (1956) Reports of the Lund University Chile Expedition 1948–49. Lunds Universitets Arsskrifter 52(15): 1–94.

Linse K (1999) Mollusca of the Magellan region. A checklist of the species and their distribution. Scientia Marina 63(S1): 399–407. https://doi.org/10.3989/scimar.1999.63s1399

Linse K (2002) The shelled Magellanic Mollusca: with Special Reference to Biogeography Relations in the Southern Ocean. A.R.G. Gantner Verlag KG, Ruggell, 251 pp.

Linse K, Griffiths H, Barnes D, Clarke A (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep-Sea Research II 53: 985–1008. https://doi.org/10.1016/j.dsr2.2006.05.003

Magurran AE (1988) Ecological Diversity and its Measurement. Princeton University Press, Princeton, N.J, 179 pp. https://doi.org/10.1007/978-94-015-7358-0

Magurran AE (2004) Measuring Biological Diversity. Blackwell Pub, Malden, 256 pp.

Mancilla R (2010) Respuestas Poblacionales de Nacella (Patinigera) magellanica (Gmelin, 1791) en Ambientes Intermareales Estructuralmente Diferentes del Estrecho de Magallanes. Tesis de pregrado. Universidad de Magallanes, Punta Arenas.

Marcus E (1959) Lamellariacea and Opisthobranchia. Lunds Universitets Arsskrifter 55(9): 1–133.

McLean JH (1984a) Systematics of Fissurella in the Peruvian and Magellanic faunal provinces (Gastropoda: Prosobranchia). Contributions in Science, Natural History Museum of Los Angeles County 354: 1–70.

McLean JH (1984b) Shell reduction and loss in fissurellids: a review of genera and species in the Fissurellidea group. American Malacological Bulletin 2: 21–34.

Menéndez S (2013) Estrategia Reproductiva en Nacella magellanica (Gmelin, 1791) y Nacella deaurata (Gmelin, 1971) en una Zona del Estrecho de Magallanes. Tesis de pregrado. Universidad de Magallanes, Punta Arenas.

MolluscaBase (2019) MolluscaBase. http://www.molluscabase.org [2019-07-31]

Moreno CE (2001) Métodos para Medir la Biodiversidad. CYTED, ORCYT – UNESCO, Sociedad Entomológica Aragonesa, Zaragoza, 84 pp.

Moreno CE, Halffter G (2000) Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology 37: 149–158. https://doi.org/10.1046/j.1365-2664.2000.00483.x

Mutschke E, Ríos C, Montiel A (1998) Situación actual de la macrofauna presente en el intermareal de bloques y cantos de Bahía Laredo, Estrecho de Magallanes. Anales del Instituto de la Patagonia, Serie Ciencias Naturales 26: 5–29.

Nakano T, Ozawa T (2007) Worldwide phylogeography of limpets of the order Patellogastropoda: molecular, morphological and palaeontological evidence. Journal of Molluscan Studies 73: 79–99. https://doi.org/10.1093/mollus/eym001
Nevesskaja L (2009) Principles of systematics and the system of bivalves. Paleontological Journal 43(1): 1–11. https://doi.org/10.1134/S0031030109010018

Nuñez JJ, Vejar-Pardo A, Guzmán BE, Barriga EH, Gallardo CS (2012) Phylogenetic and mixed Yule-coalescent analyses reveal cryptic lineages within two South American marine snails of the genus Crepipatella (Gastropoda: Calyptraeidae). Invertebrate Biology 131: 301–311. https://doi.org/10.1111/ivb.12003

OBIS (2018) Ocean Biogeographic Information System. Census of Marine Life. http://iobis.org/ [Intergovernmental Oceanographic Commission of UNESCO]

Odhner NH (1926) Die Opisthobranchien. In: Further Zoological Results of the Swedish Antarctic Expedition 1901–1903 under the direction of Dr. Otto Nordenskjold 2(1): 1–100.

Osorio C (1999) Gastrópodos Prosobranquios del Extremo sur de Chile. Museo Nacional de Historia Natural, Chile 48: 37–49.

Osorio C (2002) Moluscos Marinos en Chile, Especies de Importancia Económica, Guía para su Identificación. Facultad de Ciencias, Universidad de Chile, Santiago de Chile, 211 pp.

Oyarzún PA, Toro JE, Cañete JI, Gardner JPA (2016) Bioinvasion threatens the genetic integrity of native diversity and a natural hybrid zone: smooth-shelled blue mussels (Mytilus spp.) in the Strait of Magellan. Biological Journal of the Linnean Society 117: 574–585. https://doi.org/10.1111/bij.12687

Pastorino G (1999) A new species of Gastropod of the genus Trophon Montfort, 1810 (Mollusca: Gastropoda: Muricidae) from subantarctic waters. The Veliger 42(2): 169–174.

Pastorino G (2005a) A revision of the genus Trophon Montfort, 1810 (Gastropoda: Muricidae) from southern South America. The Nautilus 119(2): 55–82.

Pastorino G (2005b) Recent Naticidae (Mollusca: Gastropoda) from the Patagonian coast. The Veliger 47(4): 225–258.

Pastorino G (2016) Revision of the genera Pareuthria Strebel, 1905, Glypteuthria Strebel, 1905 and Meteuthria Thiele, 1912 (Gastropoda: Buccinulidae) with the description of three new genera and two new species from Southwestern Atlantic waters. Zootaxa 4179(3): 301–344. https://doi.org/10.11646/zootaxa.4179.3.1

Pastorino G, Harasewych MG (2000) A revision of the Patagonian genus Xymenopsis Powell 1951 (Gastropoda: Muricidae). The Nautilus 114(2): 38–58.

Pastorino G, Urtega D (2012) A taxonomic revision of the genus Trochita Schumacher, 1817 (Gastropoda: Calyptraeidae) from the southwestern Atlantic. The Nautilus 126(2): 68–78.

Pelseneer P (1903) Mollusques (Amphineures, Gastropodes et Lamellibranches). Résultats du voyage du S.Y. Belgica en 1897–1898–1899 sous le commandement de A. de Gerlache de Gomery. Rapports Scientifiques Zoologie R14: 14–85.

Philippi RA (1845) Diagnosen einiger neuen Conchylien. Archiv für Naturgeschichte 11: 50–71.

Ponder WF, Worsfold TM (1994) A review of the rissoiform gastropods of Southwestern South America (Mollusca, Gastropoda). Contributions in Science, Natural History Museum of Los Angeles County 445: 1–63.

Poulin E, González-Wevar C, Díaz A, Gérard K, Hune M (2014) Divergence between Antarctic and South American marine invertebrates: What molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Global and Planetary Change 123: 392–399. https://doi.org/10.1016/j.gloplacha.2014.07.017
Diversity of benthic marine mollusks of the Strait of Magellan, Chile

Powell AWB (1951) Antarctic and Subantarctic Mollusca: Pelecypoda and Gastropoda. Discovery Reports 26: 47–196. https://doi.org/10.5962/bhl.part.16335

Ramírez J (1993a) Catálogo: Moluscos de Chile. 4° Vol.: Bivalvia. Tomo 1. Santiago, Chile, 145 pp.
Ramírez J (1993b) Catálogo: Moluscos de Chile. 4° Vol.: Bivalvia. Tomo 2. Santiago Chile, 143 pp.
Ramírez J (1996a) Moluscos de Chile. Volumen I: Archaeogastropoda (2da edn.). Santiago, Chile, 157 pp.
Ramírez J (1996b) Catálogo: Moluscos de Chile. Volumen II: Mesogastropoda (2da edn.). Santiago, Chile, 194 pp.
Ramírez J (1997) Catálogo: Moluscos de Chile. Volumen III: Neogastropoda (2da edn.). Santiago, Chile, 185 pp.
Ramírez J (2000) Catálogo: Moluscos de Chile. Volumen V: Opisthobranchia. Santiago, Chile. 83 pp.
Ríos C, Arntz WE, Gerdes D, Mutschke E, Montiel A (2007) Spatial and temporal variability of the benthic assemblages associated to the holdfasts of the kelp *Macrocystis pyrifera* in the Straits of Magellan, Chile. Polar Biology 31: 89–100. https://doi.org/10.1007/s00300-007-0337-4
Ríos C, Gerdes D (1997) Ensamble bentónico epifaunístico de un campo intermareal de bloques y cantos en bahía Laredo, estrecho de Magallanes. Anales del Instituto de la Patagonia 24: 47–55.
Ríos C, Mutschke E (1999) Community structure of intertidal boulder-cobble fields in the Straits of Magellan, Chile. Scientia Marina 63(S1): 193–201. https://doi.org/10.3989/scimar.1999.63s1193
Ríos C, Mutschke E, Morrison E (2003) Biodiversidad bentónica sublitoral en el estrecho de Magallanes, Chile. Revista de Biología Marina y Oceanografía 38(1): 1–12.
Ríos C, Mutschke E, Montiel A, Gerdes D, Arntz WE (2005) Soft-bottom macrobenthic faunal associations in the southern Chilean glacial fjord complex. Scientia Marina 69(2): 225–236. https://doi.org/10.3989/scimar.2005.69s2225
Ríos C, Mutschke E, Montiel A (2010) Estructura de la comunidad macrofaunística bentónica en la boca oriental del estrecho de Magallanes, Chile austral. Anales del Instituto de la Patagonia 38(1): 83–96. https://doi.org/10.4067/S0718-686X2010000100005
Rochebrune A, Mabille J (1885) Diagnoses de mollusques nouveaux, recueillis par les membres de la mission du Cap Horn et M. Lebrun, Préparateur au Muséum, chargé d’une mission à Santa-Cruz de Patagonie. Bulletin de la Société Philomathique de Paris 7(9): 100–111.
Rochebrune A, Mabille J (1889) Mollusques. Mission Scientifique du Cap Horn. VI, Zoologie, Paris, 129 pp.
Rosenfeld S, Aldea C (2011) Un ignoto opistobranquio (Mollusca: Gastropoda) en la región de Magallanes (*Toledonia parelata* Dell, 1990): nuevos registros y especies similares. Anales del Instituto de la Patagonia 39(2): 133–136. https://doi.org/10.4067/S0718-686X2011000200012
Rosenfeld S, Aldea C, Ojeda J (2011) Nuevos antecedentes sobre la biología y distribución del gasterópodo *Margarella expansa* (Sowerby, 1838). Amici Molluscarum 19: 19–26.
Rosenfeld S, Marambio J, Aldea C (2013) Comparación de ensambles de moluscos en dos substratos intermareales de la cuenca central del estrecho de Magallanes. Amici Molluscarum 21(2): 7–18.
Rosenfeld S, Aldea C, Mansilla A, Marambio J, Ojeda J (2015) Richness, systematics, and distribution of molluscs associated with the macroalga *Gigartina skottsbergii* in the Strait of Magellan, Chile: A biogeographic affinity study. ZooKeys 519: 49–100. https://doi.org/10.3897/zookeys.519.9676

Rosenfeld S, Aldea C, Ojeda J, Mansilla A, Rozzi R (2017) Diferencias morfométricas de dos especies del género *Eatoniella* en Isla Navarino, Reserva de Biosfera Cabo de Hornos, Chile. Revista de Biología Marina y Oceanografía 52: 169–173. https://doi.org/10.4067/S0718-19572017000100015

Rosenfeld S, Marambio J, Aldea C (2016) Primer reporte de la colección de moluscos presentes en el Museo Maggiorino Borgatello (Punta Arenas, Chile). Gayana 80(1): 75–91. https://doi.org/10.4067/S0717-65382016000100009

Schrödl M (1996) Nudibranchia y Sacoglossa de Chile: Morfología externa y distribución. Gayana Zoología 60(1): 17–62.

Schrödl M (1999) Zoogeographic relationship of Magellan Nudibranchia (Mollusca: Opistobranchia) with particular reference to species from adjacent regions. Scientia Marina 63(1): 409–416. https://doi.org/10.3989/scimar.1999.63s1409

Schrödl M (2000) Revision of the Nudibranchia genus *Cadlina* (Gastropoda: Opistobranchia) from the Southern Ocean. Journal of the Marine Biology Association of the United Kingdom 80(2): 299–309. https://doi.org/10.1017/S0025315499001873

Schrödl M (2003) Sea slugs of Southern South America. Systematics, Biogeography and Biology of Chilean and Magellanic Nudipleura (Mollusca: Opisthobranchia). Conchbooks, München, 165 pp.

Sellanes J (2018) Base de datos de la Sala de Colecciones Biológicas de la Universidad Católica del Norte (SCBUCN). Version 1.2. Universidad Católica del Norte. Occurrence dataset https://doi.org/10.15468/d3auf9 accessed via GBIF.org [2018-11-21]

Signorelli J, Pastorino G (2011) Revision of the Magellanic Mactridae Lamarck, 1809 (Bivalvia: Heterodonta). Zootaxa 2757: 47–67. https://doi.org/10.11646/zootaxa.2757.1.4

Silva F (2015) Efecto de los mitíldidos sobre la estructura y diversidad de comunidades intermareales del Estrecho de Magallanes. Tesis de pregrado. Universidad de Magallanes, Punta Arenas.

Sirenko B (2006a) Report on the present state of our knowledge with regard to the chitons (Mollusca: Polyplacophora) of the Magellan Strait and Falkland Islands. Venus 65(1–2): 81–89.

Sirenko BI (2006b) New Outlook On the System of Chitons (Mollusca: Polyplacophora). Venus 65(1–2): 27–49.

Sirenko BI (2015) Shallow and deep-sea chitons of the genus *Leptochiton* Gray, 1847 (Mollusca: Polyplacophora: Lepidopleurida) from Peruvian and Chilean waters. Zootaxa 4033(2): 151–202. https://doi.org/10.11646/zootaxa.4033.2.1

Sirenko BI (2016) A new South African *Leptochiton* (Mollusca: Polyplacophora: Lepidopleurida). Ruthenica 26(3–4): 145–151.

Smith EA (1881) Account of the zoological collections made during the survey of the H.M.S. “Alert” in the Straits of Magellan and on the coast of Patagonia. IV. Mollusca and Molluscoidea. Proceedings of the Zoological Society of London 1881: 22–44.

Smith EA (1885) Report on the Lamellibranchiata collected by H.M.S. Challenger during the years 1873–1876. Reports of the Scientific Results of the Exploratory Voyage of H.M.S. Challenger. Zoology 13(35): 1–341.
Smith EA (1905) On a small collection of Mollusca from Tierra del Fuego. Proceedings of the Malacological Society of London VI: 333–339.

Soberón J, Llorente J (1993) The use of the species accumulation functions for the prediction of species richness. Conservation Biology 7: 480–488. https://doi.org/10.1046/j.1523-1739.1993.07030480.x

Soot-Ryen T (1959) Pelecypoda. Reports of the Lund University Chile Expedition 1948–49. Lunds Universitets Arsskriften 55(6): 1–86.

Sowerby GB (1838) A descriptive catalogue of the species of Leach's genus Margarita. Malacological and Conchological Magazine 1: 23–27.

Sowerby GB (1847) Thesaurus Conchyliorum or monographs of genera of shells (Vol. 1). London.

Spalding M, Fox H, Allen G, Davidson N, Ferdaña Z, Finlayson M, Halpern B, Jorge M, Lombana A, lourie S, Martin K, McManus E, Molnar J, Recchia C, Robertson J (2007) Marine ecoregions of the world: A Bioregionalization of coastal and shelf Areas. BioScience 57(7): 573–583. https://doi.org/10.1641/B570707

Strebel H (1904) Beiträge zur Kenntnis der Molluskenfauna der Magalhaen-Provinz. Zoologische Jahrbücher, Abtheilung für Systematik, Geographie und Biologie der Thiere 21: 171–248. https://doi.org/10.5962/bhl.title.46554

Strebel H (1905a) Beiträge zur Kenntnis der Molluskenfauna der Magalhaen-Provinz, II. Die Trochiden. Zoologische Jahrbücher Suppl. 8: 121–166. https://doi.org/10.5962/bhl.title.46554

Strebel H (1905b) Beiträge zur Kenntnis der Molluskenfauna der Magalhaen-Provinz. No 3. Zoologische Jahrbücher, Abtheilung für Systematik, Geographie und Biologie der Thiere 22: 575–666.

Strebel H (1906) Beiträge zur Kenntnis der Mollusken Fauna der Magalhaen Provinz. No 4. Zoologische Jahrbücher, Abtheilung für Systematik, Geographie und Biologie der Thiere 24: 91–174.

Strebel H (1907) Beiträge zur Kenntnis der Molluskenfauna der Magalhaen-Provinz. No 5. Zoologische Jahrbücher, Abtheilung für Systematik, Geographie und Biologie der Thiere 25: 79–196.

Strebel H (1908) Die Gastropoden (mit Ausnahme de nackten Opisthobranchier). Wissenschaftliche Ergebnisse der Schwedischen Süd polar-Expedition 1901–1903 6(1): 1–111.

Thatje S, Brown A (2009) The macrobenthic ecology of the Straits of Magellan and the Beagle Channel. Anales del Instituto de la Patagonia 37(2): 17–27. https://doi.org/10.4067/S0718-686X2009000200002

Thiele J (1908) Die Antarktischen and Subantarktischen Chitonen. In: Drygalski E von (Ed.) Deutsche Südpolar-Expedition (1901–1903) 10: 8–23.

Tryon GW (1880) Manual of conchology. Structural and systematic with illustrations of the species. Philadelphia, II, 287 pp. [70 pls.] https://doi.org/10.5962/bhl.title.10543

Tryon GW, Pilsbry HA (1890) Manual conchology. Structural and systematic with illustrations of the species. Philadelphia, XII, 321 pp. [62 pls.]

Tryon GW, Pilsbry HA (1891) Manual of conchology. Structural and systematic with illustrations of the species. Philadelphia, XIII, 195 pp. [74 pls.]

Tryon GW, Pilsbry HA (1892) Manual of conchology. Structural and systematic with illustrations of the species. Philadelphia, XIV, 350 pp. [31 pls.]
Tucker JK (2004) Catalog of Recent and fossil turrids (Mollusca: Gastropoda). Zootaxa 682: 1–1295. https://doi.org/10.11646/zootaxa.682.1.1

Urcola MR, Zelaya DG (2018) The genus *Cyamiocardium* Soot-Ryen, 1951 (Bivalvia: Cyamiidae) in sub-Antarctic and Antarctic waters. Polar Biology 41: 1157–1174. https://doi.org/10.1007/s00300-018-2275-8

Valdovinos C (1999) Biodiversidad de moluscos chilenos: base de datos taxonomica y distribucional. Gayana 63: 111–164.

Valdovinos C, Navarrete S, Marquet P (2003) Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography 26: 139–144. https://doi.org/10.1034/j.1600-0587.2003.03349.x

Valdovinos C, Rüth M (2005) Nacellidae limpets of the southern end of South America: taxonomy and distribution. Revista Chilena de Historia Natural 78: 497–517. https://doi.org/10.4067/S0716-078X2005000300011

Villarroel M, Stuardo J (1998) Protobranchia (Mollusca: Bivalvia) chilenos recientes y algunos fósiles. Malacologia 40(1–2): 113–229.

Waloszek D (1984) Variabilität, Taxonomie und Verbreitung von *Chlamys patagonica* (King and Broderip, 1832) und Anmerkungen zu weiteren *Chlamys*-Arten von der Südspitze Süd-Amerikas (Mollusca, Bivalvia, Pectinidae). Verhandlungen des Naturwissenschaftlichen Vereins zu Hamburg 27: 207–276.

Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28: 815–829. https://doi.org/10.1111/j.2005.0906-7590.04112.x

Watson RB (1886) Report on the Scaphopoda and Gasteropoda collected by H.M.S. Challenger during the years 1873–76. Report on the Scientific Results of the Voyage of H.M.S. Challenger, 1873–1876, Zoology 15: 1–756.

Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglaïs D (2012) Darwin Core: An evolving community-developed biodiversity data standard. PloS ONE 7(1): e29715. https://doi.org/10.1371/journal.pone.0029715

Zelaya DG (2009) The genera *Thyasira* and *Parathyasira* in the Magellan Region and adjacent Antarctic waters (Bivalvia: Thyasiridae). Malacologia 51(2): 271–290. https://doi.org/10.4002/0076-2997-49.2.393

Zelaya DG (2010) New species of *Thyasira, Mendicula*, and *Axinulus* (Bivalvia, Thyasiroidea) from Sub-Antarctic and Antarctic waters. Polar Biology 33: 607–616. https://doi.org/10.1007/s00300-009-0736-9

Zelaya DG, Geiger DL (2007) Species of Scissurellidae and Anatomidae from Sub-Antarctic and Antarctic waters (Gastropoda: Vetigastropoda). Malacologia 49(2): 393–443. https://doi.org/10.4002/0076-2997-49.2.393

Zelaya DG, Güller M (2017) Undercover speciation of wentletraps (Caenogastropoda: Epitoniiidae) in the Southwestern Atlantic. Zootaxa 4286: 41–69. https://doi.org/10.11646/zootaxa.4286.1.2

Zelaya DG, Ituarte C (2004) The genus *Neolepton* Monterosato, 1875 in Southern South America (Bivalvia: Neoleptonidae). Journal of Molluscan Studies 70: 123–137. https://doi.org/10.1093/mollus/70.2.123
Appendix I

Registration in GBIF database.
Publication date: June 9, 2020
Hosted by: Ministerio del Medio Ambiente de Chile
License: CC BY-NC 4.0
Endpoints: http://gbif-chile.mma.gob.cl/ipt/archive.do?r=moluscos-estrecho-magallanes (Darwin Core Archive), http://gbif-chile.mma.gob.cl/ipt/eml.do?r=moluscos-estrecho-magallanes (EML)
Preferred identifier, DOI: https://doi.org/10.15468/znrbm9
Alternative identifiers: http://gbif-chile.mma.gob.cl/ipt/resource?r=moluscos-estrecho-magallanes

Appendix II

Quadrants of the Strait of Magellan in which mollusks are recorded.

Quadrant	Location	Latitude (S) / Longitude (W)
E1	Dungeness Point 1	52°24'12"S, 68°23'40"W
E10	Dungeness Point 2	52°24'11"S, 68°26'35"W
E11	Dungeness Point 3	52°21'58"S, 68°26'50"W
E12	Dungeness Point 4	52°20'59"S, 68°28'23"W
E22	Point Catalina	52°27'55"S, 68°46'17"W
E26	Cape Possession 1	52°19'40"S, 68°51'5"W
E27	Cape Possession 2	52°19'3"S, 68°56'50"W
E28	Cape Possession 3	52°16'20"S, 69°0'33"W
E40	Possession Bay 1	52°14'25"S, 69°12'30"W
E48	Possession Bay 2	52°17'8"S, 69°12'30"W
E49	Possession Bay 3	52°13'30"S, 69°17'12"W
E50	Tandy Point	52°15'20"S, 69°21'58"W
E51	Possession Bay 4	52°17'8"S, 69°17'17"W
E54	Punta Anegada	52°25'59"S, 69°25'26"W
E55	Nunciación Bay	52°20'09"S, 69°26'38"W
E57	Punta Delgada	53°27'12"S, 69°32'7"W
E58	First Narrow 1	52°32'25"S, 69°34'10"W
E59	Punta Remo	52°38'20"S, 69°39'27"W
E61	First Narrow 2	52°32'55"S, 69°40'31"W
E63	Punta Barranca 1	52°32'28"S, 69°43'12"W
E64	Punta Barranca 2	52°37'7"S, 69°43'53"W
E66	Punta Piedras 1	52°44'48"S, 69°50'40"W
E67	Punta Piedras 2	52°38'58"S, 69°50'43"W
E68	Santiago Bay 1	52°34'6"S, 69°50'40"W
E69	Santiago Bay 2	52°29'33"S, 69°51'3"W
E70	Santiago Bay 3	52°31'44"S, 69°55'33"W
E71	Triton Bank 1	52°36'52"S, 69°55'39"W
E72	Triton Bank 2	52°41'44"S, 69°56'6"W
E78	Gregorio Bay 1	52°34'34"S, 70°04'47"W
E79	Gregorio Bay 2	52°35'00"S, 70°08'23"W
E80	Gregorio Bay 3	52°38'13"S, 70°07'58"W
E82	Cape Gregorio	52°39'27"S, 70°14'25"W
E83	Second Narrow 1	52°43'5"S, 70°14'48"W
Quadrant	Location	Latitude (S) / Longitude (W)
----------	----------	----------------------------
E86	Second Narrow 2	52°41'44"S, 70°26'17"W
E90	Punta Remo	52°42'43"S, 69°40'28"W
C5	Cabo Negro 1	52°56'30"S, 70°47'46"W
C6	Río Seco	53°22'27"S, 70°49'50"W
C7	Punta Arenas 1	53°8'8"S, 70°51'30"W
C8	Punta Arenas 2	53°11'47"S, 70°55'52"W
C9	Leñadura 1	53°15'24"S, 70°51'35"W
C10	Leñadura 2	53°15'46"S, 70°56'32"W
C11	Santa María Point 1	53°21'57"S, 70°57'37"W
C12	Colorado River 1	53°29'10"S, 70°56'49"W
C13	Colorado River 2	53°28'47"S, 70°51'4"W
C14	Santa María Point 2	53°21'53"S, 70°51'16"W
C16	Paso Ancho 1	53°8'53"S, 70°43'11"W
C17	Paso Ancho 2	53°4'5"S, 70°42'43"W
C18	Cabo Negro 2	52°56'29"S, 70°44'50"W
C21	Marta Island	52°52'57"S, 70°34'48"W
C23	Paso Ancho 3	52°58'19"S, 70°39'54"W
C24	Paso Ancho 4	53°2'11"S, 70°40'1"W
C25	Paso Ancho 5	53°7'34"S, 70°41'34"W
C26	Paso Ancho 6	53°13'4"S, 70°42'24"W
C28	Paso Ancho 7	53°23'35"S, 70°48'47"W
C32	Paso Ancho 8	53°2'15"S, 70°32'49"W
C33	Paso Ancho 9	52°56'34"S, 70°32'5"W
C34	Paso Ancho 10	52°56'19"S, 70°27'31"W
C36	Zegers Point	52°56'20"S, 70°18'52"W
C37	Gente Grande Bay 1	52°55'44"S, 70°12'33"W
C38	Gente Grande Bay 2	52°55'40"S, 70°7'41"W
C42	Gente Point	53°3'13"S, 70°25'45"W
C43	Paso Ancho 10	53°9'47"S, 70°26'17"W
C44	Paso Ancho 11	53°16'46"S, 70°28'16"W
C45	Porvenir Bay 1	53°20'57"S, 70°27'33"W
C49	Paso Boquerón	53°25'59"S, 70°19'40"W
C50	Porvenir Bay 2	53°18'29"S, 70°22'45"W
C52	Carrera Bay	53°33'53"S, 70°54'57"W
C53	Paso del Hambre 1	53°32'47"S, 70°49'20"W
C55	Paso del Hambre 2	53°32'30"S, 70°39'57"W
C57	Cape Valentin 1	53°32'12"S, 70°24'51"W
C58	Inútil Bay 1	53°32'8"S, 70°17'0"W
C59	Santa Ana Point	53°37'55"S, 70°54'11"W
C60	Paso del Hambre 3	53°37'51"S, 70°49'53"W
C64	Cape Valentin 2	53°39'16"S, 70°27'59"W
C65	Inútil Bay 2	53°39'4"S, 70°19'33"W
C66	Inútil Bay 3	53°38'40"S, 70°14'8"W
C67	Cape Boquerón	53°32'26"S, 70°13'43"W
C68	Inútil Bay 4	53°31'49"S, 70°09'20"W
C78	Puerto Nuevo	53°22'23"S, 69°22'14"W
C81	Inútil Bay 5	53°31'36"S, 69°23'42"W
C82	Inútil Bay 6	53°26'59"S, 69°23'58"W
C84	Inútil Bay 7	53°31'5"S, 69°30'41"W
C85	Inútil Bay 8	53°25'58"S, 69°35'25"W
C86	Inútil Bay 9	53°29'40"S, 69°35'4"W
C87	Inútil Bay 10	53°26'28"S, 69°44'32"W
C88	Inútil Bay 11	53°32'24"S, 69°44'48"W
C89	Inútil Bay 12	53°37'18"S, 69°39'42"W
C91	Inútil Bay 13	53°39'9"S, 69°45'59"W
C93	Inútil Bay 14	53°33'13"S, 69°52'27"W
C94	Inútil Bay 15	53°27'20"S, 69°52'32"W
Quadrant	Location	Latitude (S) / Longitude (W)
----------	---------------------	-------------------------------------
C95	Inútil Bay 16	53°33'38"S, 69°59'57"W
C96	Cameron Point 1	53°39'3"S, 69°59'10"W
C97	Inútil Bay 17	53°35'41"S, 70°7'51"W
C98	Inútil Bay 18	53°40'22"S, 70°8'39"W
C99	Inútil Bay 19	53°40'23"S, 70°15'42"W
C100	Cameron Point 2	53°43'38"S, 69°59'20"W
C101	Cape Nose 1	53°44'21"S, 70°5'37"W
C102	Cape Nose 2	53°45'22"S, 70°10'58"W
C104	Whiteside Channel 1	53°45'35"S, 70°2'24"W
C105	Kelp Point	53°47'10"S, 70°25'49"W
C106	Chown Point	53°52'8"S, 70'10'17"W
C107	Whiteside Channel 2	53°52'7"S, 70°14'29"W
C108	Whiteside Channel 3	53°52'12"S, 70°18'59"W
C109	Harris Bay	53°51'18"S, 70°25'33"W
C111	Cóndor River	53°56'44"S, 70°7'46"W
C113	No Entres Bay	53°58'37"S, 70°21'2"W
C115	Owen Sound 1	53°59'9"S, 70°35'16"W
C116	Owen Sound 2	53°59'14"S, 70°38'46"W
C117	Karukinka Point	53°47'37"S, 70°5'17"W
C118	Whiteside Channel 4	54°4'10"S, 70°32'47"W
C122	Owen Sound 3	54°48'3"S, 70°32'47"W
C124	Port Castillo	54°9'47"S, 69°54'58"W
C134	Alta Island	54°16'21"S, 69°55'49"W
C165	Árbol Point	53°45'50"S, 70°57'51"W
C166	Paso del Hambre 4	53°45'57"S, 70°51'16"W
C167	Lomas Bay 1	53°45'50"S, 70°44'45"W
C169	Lomas Bay 2	53°50'6"S, 70°39'51"W
C171	Amigo Bay	53°51'3"S, 70°52'12"W
C172	Paso del Hambre 5	53°52'12"S, 70°57'27"W
C173	Glascott Point	53°51'45"S, 71°5'25"W
C175	Valdés Point	53°55'9"S, 70°52'54"W
C183	Magdalena Channel	53°55'36"S, 70°56'51"W
C184	Magdalena Sound 1	54°5'5"S, 70°57'30"W
C185	Magdalena Sound 2	54°3'8"S, 71°45'31"W
C189	Paso Froward 1	53°58'35"S, 71°13'35"W
C193	Paso Froward 2	53°51'23"S, 71°31'58"W
C200	Cape Holland	53°50'34"S, 71°37'16"W
C204	Andrés Bay	53°45'50"S, 71°49'0"W
C207	West Point	53°44'38"S, 71°55'28"W
C210	Fortescue Bay	53°42'25"S, 72°1'36"W
C211	Charles Island 1	53°44'22"S, 72°4'14"W
C214	Bárbara Bay	53°48'42"S, 72°9'6"W
C217	Charles Island 2	53°45'25"S, 72°8'42"W
C219	Choiseul Bay	53°45'14"S, 72°19'21"W
C220	Charles Island 3	53°40'56"S, 72°8'34"W
C221	Rupert Island	53°39'55"S, 72°14'14"W
C222	Ballena Sound 1	53°40'38"S, 72°19'31"W
C223	Ballena Sound 2	53°40'9"S, 72°25'25"W
C226	Cape Froward	53°53'52"S, 71°5'9"W
W2	Carlos III Island	53°34'32"S, 72°20'6"W
W3	Paso Tortuoso	53°32'25"S, 72°26'20"W
W4	Jerónimo Channel	53°30'13"S, 72°25'4"W
W13	Spider Island	53°31'14"S, 72°40'26"W
W15	Glacier Bay	53°22'9"S, 72°55'35"W
W17	Paso Largo	53°20'52"S, 73°2'12"W
W23	Lewis Bay	53°15'0"S, 73°19'51"W
W37	Chapman Isles	53°3'18"S, 73°45'13"W
Quadrant	Location	Latitude (S) / Longitude (W)
----------	----------------	-------------------------------
W40	Cape Tamar	52°56'38"S, 73°44'54"W
W41	Brazo Damián	53°1'31"S, 73°55'23"W
W42	Tamar Island	52°55'31"S, 73°50'14"W
W46	Sholl Bay	52°43'42"S, 73°50'16"W
W49	Patranca Island	52°56'46"S, 74°1'59"W
W50	Félix Point	52°56'6"S, 74°8'12"W
W53	Tuesday Bay	52°50'43"S, 74°24'40"W
W55	Paso Tamar 1	52°50'27"S, 74°14'40"W
W56	Paso Tamar 2	52°50'43"S, 74°7'21"W
W57	Paso Tamar 3	52°50'24"S, 74°1'10"W
W60	Paso Tamar 4	52°44'34"S, 74°0'41"W
W65	Cape Pilar 1	52°43'29"S, 74°33'11"W
W67	Cape Pilar 2	52°41'56"S, 74°38'45"W
W69	Western entrance	52°37'40"S, 74°33'38"W
W85	Western entrance	52°33'27"S, 74°45'44"W
W102	Victoria Island	52°18'31"S, 74°50'16"W