Optimization of TiO2 thin film thickness for dye sensitized solar cell applications

By: Al-Bat’hi, SAM (Al-Bat’hi, S. A. M.); Ahmed, N (Ahmed, N.); Othman, R (Othman, R.); Othman, M (Othman, M.)

INTERNATIONAL CONFERENCE ON ADVANCES IN MANUFACTURING AND MATERIALS ENGINEERING (ICAMME 2017)
Book Group Author(s): IOP
Book Series: IOP Conference Series-Materials Science and Engineering
Volume: 290
Article Number: UNSP 012004
DOI: 10.1088/1757-899X/290/1/012004
Published: 2018
Document Type: Proceedings Paper

Conference
Conference: International Conference on Advances in Manufacturing and Materials Engineering (ICAMME)
Location: Int Islam Univ, Kuala Lumpur, MALAYSIA
Date: AUG 08-09, 2017

Abstract
Dye sensitized solar cells (DSSCs) rely on the absorption of photons by the dye molecules which are transported to the conduction band of the TiO2 electrode. The microstructure, energy gap and the absorption spectra of the TiO2 electrodes highly affects the efficiency of the cell. In this paper, the absorption spectra and energy gap has been studied by varying the thickness of the TiO2 paste. Nanocrystalline TiO2 thin films were deposited on ITO glass substrate with three different thickness (4.54 µm, 7.12 µm and 12.3 µm) by using doctor blade method. After deposition all the samples were sintered at 450 degrees C after deposition to enhance the particle bonding and for achieving better adhesion. The samples were characterized by UV-VIS spectra for determining the absorption spectra and Scanning Electron Microscopy (SEM) for investigating the thickness and the surface morphology. Fabricating the electrodes with different thickness showed significant changes in the energy gap and from the results it can be concluded that the energy gap increases with the increased thickness. The highest energy gap of 2.25 eV and absorption 3.791 was achieved by 12.3 µm thick sample. The absorption spectra also shows better absorption throughout the whole visible light range but the SEM images suggest that 12.3 µm thick sample shows cracks all over the deposited region which will cause current leakage when the cell is assembled. Therefore, the optimum result was achieved by 7.12 µm thick sample providing 1.9 eV energy gap and 3.91 absorption peak.

Author Information
Reprint Address: Al-Bat’hi, SAM (reprint author)
Address: IIUM, Dept Mfg & Mat Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia.
Cited References: 13

Showing 13 of 13 [View All in Cited References page](#) (from Web of Science Core Collection)

#	Reference	Cited Times
1	**TiO₂ Anatase with a Bandgap in the Visible Region**	119
	By: Dette, Christian; Perez-Osorio, Miguel A.; Kley, Christopher S.; et al.	
	NANO LETTERS Volume: 14 Issue: 11 Pages: 6533-6538 Published: NOV 2014	
2	**Optimization of paste formulation for TiO₂ nanoparticles with wide range of size distribution for its application in dye sensitized solar cells**	40
	By: Dhungel, Suresh Kumar; Park, Jesse G.	
	RENEWABLE ENERGY Volume: 35 Issue: 12 Pages: 2776-2780 Published: DEC 2010	
3	**Efficiency of dye sensitized solar cells with various compositions of TiO2 based screen printed photoactive electrodes**	10
	By: Gemeiner, P.; Mikula, M.	
	Acta Chim. Slovaca Volume: 6 Pages: 29-34 Published: 2013	
	URL: http://dx.doi.org/ezaccess.library.uitm.edu.my/10.2478/acs-2013-0006	
4	**EFFECTS OF TiO₂ PARTICLE SIZE ON THE PERFORMANCE OF DYE-SENSITIZED SOLAR CELLS USING IONIC LIQUID ELECTROLYTES**	4
	By: Ito, Seigo; Murakami, Takurou N.; Zakeeruddin, Shaik M.; et al.	
	NANO Volume: 9 Issue: 5 Special Issue: SI Article Number: 1440010 Published: JUL 2014	
5	**Fabrication of screen-printing pastes from TiO₂ powders for dye-sensitised solar cells**	726
	By: Ito, Seigo; Chen, Peter; Comte, Pascal; et al.	
	PROGRESS IN PHOTOVOLTAICS Volume: 15 Issue: 7 Pages: 603-612 Published: NOV 2007	