EXISTENCE OF A GROUND STATE AND BLOW-UP PROBLEM FOR A NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL GROWTH

TAKAFUMI AKAHORI
Faculty of Engineering, Shizuoka University
Jyohoku 3-5-1, Hamamatsu 432-8561, Japan

SLIM IBRAHIM
Department of Mathematics and Statistics, University of Victoria
Victoria, British Columbia, Canada

HIROAKI KIKUCHI
School of Information Environment, Tokyo Denki University
Inzai, Chiba 270-1382, Japan

HAYATO NAWA
Division of Mathematical Science, Department of Systems Innovation
Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama-cho, Toyonaka 560-8531, Japan

(Submitted by: Takashi Suzuki)

Abstract. This paper is concerned with a focusing nonlinear Schrödinger equation whose nonlinearity consists of the energy-critical local interaction term with a perturbation of the L^2-super and energy-subcritical term. We prove the existence of a ground state (= a standing-wave solution of minimal action) when the space dimension is four or higher and prove the nonexistence of any ground state when the space dimension is three and the perturbation is small. Once we have a ground state, a so-called potential-well scenario works well, so that we can give a sufficient condition for the nonexistence of global-in-time solutions.

1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation:

$$2i \frac{\partial \psi}{\partial t} + \Delta \psi + \mu |\psi|^{p-1}\psi + |\psi|^{\frac{4}{d-2}}\psi = 0,$$

(NLS)

Accepted for publication: November 2011.
AMS Subject Classifications: 35J20, 35J61, 35Q55.
where $\psi = \psi(x,t)$ is a complex-valued function on $\mathbb{R}^d \times \mathbb{R}$ ($d \geq 3$), Δ is the Laplace operator on \mathbb{R}^d, $\mu > 0$ and $1 + \frac{4}{d} < p < 2^* - 1$ ($2^* := \frac{2d}{d-2}$).

The nonlinearity of (NLS) is attractive and contains the energy-critical term $|\psi|^{\frac{4}{d-2}} \psi$ in the scaling sense. It is known (see [8, 15]) that:

(i) for any $t_0 \in \mathbb{R}$ and datum $\psi_0 \in H^1(\mathbb{R}^d)$, there exists a unique solution $\psi \in C(I_{\max}, H^1(\mathbb{R}^d))$ to (NLS) with $\psi(t_0) = \psi_0$, where I_{\max} denotes the maximal interval on which ψ exists;

(ii) the solution ψ enjoys the following conservation laws:

\[
\|\psi(t)\|_{L^2} = \|\psi_0\|_{L^2} \quad \text{for any } t \in I_{\max},
\]

\[
\mathcal{H}(\psi(t)) = \mathcal{H}(\psi_0) \quad \text{for any } t \in I_{\max},
\]

where

\[
\mathcal{H}(u) := \|\nabla u\|_{L^2}^2 - \mu \frac{2}{p+1} \|u\|_{L^{p+1}}^{p+1} - \frac{d-2}{d} \|u\|_{L^{2^*}}^{2^*}.
\]

We are interested, as in [4], in the existence of a standing wave and the blowup problem for (NLS). Here, the standing wave means a solution to (NLS) of the form $\psi(x,t) = e^{\frac{i}{\omega}t}Q(x)$, so that Q must satisfy the elliptic equation

\[
-\Delta u + \omega u - \mu |u|^{p-1} u - |u|^{\frac{4}{d-2}} u = 0.
\]

When $\mu = 0$, it is well known that the equation (1.4) has no solution for $\omega > 0$. Moreover, if the subcritical perturbation is repulsive, i.e., $\mu < 0$, then there is no non-trivial solution; indeed, using the Pohozaev identity, we can verify that any solution $Q \in H^1(\mathbb{R}^d)$ to (1.4) with $\mu < 0$ obeys

\[
0 = \omega \|Q\|_{L^2}^2 - \mu \left(1 - \frac{d(p-1)}{2(p+1)}\right) \|Q\|_{L^{p+1}}^{p+1},
\]

which, together with $\omega > 0$ and $p < 2^* - 1$, shows Q is trivial. Thus, $\mu > 0$ is necessary for the existence of a non-trivial solution to (1.4).

Our first aim is to seek a special solution to (1.4) called a ground state via a certain variational problem; Q is said to be the ground state, if it is a non-trivial solution to (1.4) and

\[
\mathcal{S}_\omega(Q) = \min \{\mathcal{S}_\omega(u) : u \text{ is a solution to (1.4)}\},
\]

where $\mathcal{S}_\omega(u) := \omega \|u\|_{L^2}^2 + \mathcal{H}(u)$. More precisely, we look for the ground state as a minimizer of the variational problem below:

\[
m_\omega := \inf \left\{ \mathcal{S}_\omega(u) : u \in H^1(\mathbb{R}^d) \setminus \{0\}, \mathcal{K}(u) = 0 \right\},
\]

\[\text{1The solution } Q \in H^1(\mathbb{R}^d) \text{ also belongs to } L^\infty_{\text{loc}}(\mathbb{R}^d) \text{ (see, e.g., Appendix B in [14]).}\]
Existence of a ground state and blow-up problem

where
\[K(u) := \frac{d}{d\lambda} \mathcal{S}_\omega(T_\lambda u) \bigg|_{\lambda=1} = \frac{d}{d\lambda} \mathcal{H}(T_\lambda u) \bigg|_{\lambda=1} \]
\[= 2 \|\nabla u\|_{L^2}^2 - \mu \frac{d(p-1)}{p+1} \|u\|_{L^{p+1}}^{p+1} - 2 \|u\|_{L^{2^*}}^{2^*}, \]
(1.8)

and \(T_\lambda \) is the \(L^2 \)-scaling operator defined by
\[(T_\lambda u)(x) := \lambda^d u(\lambda x) \quad \text{for } \lambda > 0. \]
(1.9)

We can verify the following fact (see [4, 11] for the proof).

Proposition 1.1. Any minimizer of the variational problem for \(m_\omega \) becomes a ground state of (1.4).

We remark that the existence of the ground state is studied by many authors (see, e.g., [2, 3, 4]). In particular, in [2], they proved the existence of a ground state for a class of elliptic equations including (1.4) through a minimization problem different from ours. An advantage of our variational problem is that we can prove the instability of the ground state found through it. Indeed, we can prove the blowup result (see Theorem 1.2 below).

In order to find the minimizer of the variational problem for \(m_\omega \), we also consider the auxiliary variational problem
\[\tilde{m}_\omega = \inf \left\{ \mathcal{I}_\omega(u) : u \in H^1(\mathbb{R}^d) \setminus \{0\}, \ K(u) \leq 0 \right\}, \]
(1.10)

where
\[\mathcal{I}_\omega(u) := \mathcal{S}_\omega(u) - \frac{2}{d(p-1)} K(u) \]
\[= \omega \|u\|_{L^2}^2 + \frac{d(p-1)}{d(p-1)} \|\nabla u\|_{L^2}^2 + \frac{4 - (d-2)(p-1)}{d(p-1)} \|u\|_{L^{2^*}}^{2^*}. \]
(1.11)

Note that the subcritical potential term disappears in the functional \(\mathcal{I}_\omega \). The problem (1.11) is good to treat, since the functional \(\mathcal{I}_\omega \) is positive and the constraint is \(K \leq 0 \) which is stable under the Schwarz symmetrization. Moreover, we have the following.

Proposition 1.2. Assume \(d \geq 3 \). Then, for any \(\omega > 0 \) and \(\mu > 0 \), we have
(i) \(m_\omega = \tilde{m}_\omega \); and
(ii) Any minimizer of the variational problem for \(\tilde{m}_\omega \) is also a minimizer for \(m_\omega \), and vice versa.

We state our main theorems.
Theorem 1.1. Assume $d \geq 4$. Then, for any $\omega > 0$ and $\mu > 0$, there exists a minimizer of the variational problem for m_ω. We also have $m_\omega = \tilde{m}_\omega > 0$.

Theorem 1.2. Assume $d = 3$. If μ is sufficiently small, then we have the following.

(i) The variational problem for m_ω has no minimizer.
(ii) There is no ground state for the equation (1.4).

We see from Theorem 1.1 together with Proposition 1.1 that, when $d \geq 4$, a ground state exists for any $\omega > 0$ and $\mu > 0$.

We give the proofs of Proposition 1.2 and Theorem 1.1 in Section 2. The proof of Theorem 1.1 is based on an idea of Brezis and Nirenberg [6]. Since we consider a variational problem different from theirs, we need a little different argument in the estimate of m_ω (see Lemma 2.2). We give the proof of Theorem 1.2 in Section 3.

Next, we move to the blowup problem. Using the variational value m_ω, we define the set $A_{\omega,-}$ by

$$A_{\omega,-} := \left\{ u \in H^1(\mathbb{R}^d) : S_\omega(u) < m_\omega, K(u) < 0 \right\}.$$ \hskip 2cm (1.12)

We can see that $A_{\omega,-}$ is invariant under the flow defined by (NLS) (see Lemma 4.1 below). Furthermore, we have the following result.

Theorem 1.3. Assume $d \geq 4$, $\omega > 0$ and $\mu > 0$. Let ψ be a solution to (NLS) starting from $A_{\omega,-}$, and let I_{max} be the maximal interval on which ψ exists. If ψ is radially symmetric, then I_{max} is bounded.

We will prove Theorem 1.3 in Section 4.

Besides the blowup result, we can also prove the scattering result. Put

$$A_{\omega,+} := \left\{ u \in H^1(\mathbb{R}^d) : S_\omega(u) < m_\omega, K(u) > 0 \right\}.$$ \hskip 2cm (1.13)

Then, we have the following.

Theorem 1.4. Assume $d \geq 5$, $\omega > 0$ and $\mu > 0$. Let ψ be a solution to (NLS) starting from $A_{\omega,+}$. Then, ψ exists globally in time and satisfies $\psi(t) \in A_{\omega,+}$ for any $t \in \mathbb{R}$, and there exists $\phi_+, \phi_- \in H^1(\mathbb{R}^d)$ such that

$$\lim_{t \to +\infty} \| \psi(t) - e^{\frac{i}{2}t\Delta} \phi_+ \|_{H^1} = \lim_{t \to -\infty} \| \psi(t) - e^{\frac{i}{2}t\Delta} \phi_- \|_{H^1} = 0.$$ \hskip 2cm (1.14)

We will give the proof of Theorem 1.4 in a forthcoming paper. In fact, we will prove the scattering result for a more general nonlinearity.

Here, we mention previous works which are relevant to ours. Kenig and Merle [9] studied the equation (NLS) without the energy-subcritical term in
The existence of a ground state and blow-up problem. They showed the corresponding results to our Theorems 1.3 and 1.4 for $3 \leq d \leq 6$ and the radial case. Subsequently, Killip and Visan [10] extended their result to the non-radial case for dimensions five and higher. The three and four dimensional cases remain open, which relates with the restriction $d \geq 5$ in our Theorem 1.4. On the other hand, Akahori and Nawa [1] treated the equation (NLS) without the energy-critical term in $H^1(\mathbb{R}^d)$ for any dimension d. Hence, our results are an extension of the previous works [1, 9, 10].

2. Proofs of Proposition 1.2 and Theorem 1.1

In this section, we prove Proposition 1.2 and Theorem 1.1. In the proofs, we often use the following easy facts.

For any $u \in H^1(\mathbb{R}^d) \setminus \{0\}$, there exists a unique $\lambda(u) > 0$ such that

$$
\mathcal{K}(T_{\lambda}u) \begin{cases} > 0 & \text{for any } 0 < \lambda < \lambda(u), \\ = 0 & \text{for } \lambda = \lambda(u), \\ < 0 & \text{for any } \lambda > \lambda(u).
\end{cases}
$$

(2.1)

Moreover, we see from (2.1) and (2.2) that, for any $u \in H^1(\mathbb{R}^d) \setminus \{0\}$,

$$
\frac{d}{d\lambda} S_\omega(T_{\lambda}u) = \frac{1}{\lambda} \mathcal{K}(T_{\lambda}u) \quad \text{for any } u \in H^1(\mathbb{R}^d) \text{ and } \lambda > 0.
$$

(2.2)

Let us begin with the proof of Proposition 1.2.

Proof of Proposition 1.2. We first show the claim (i): $m_\omega = \bar{m}_\omega$. Let $\{u_n\}$ be any minimizing sequence for \bar{m}_ω; i.e., $\{u_n\}$ is a sequence in $H^1(\mathbb{R}^d) \setminus \{0\}$ such that

$$
\lim_{n \to \infty} \mathcal{I}_\omega(u_n) = \bar{m}_\omega,
$$

(2.5)

$$
\mathcal{K}(u_n) \leq 0 \quad \text{for any } n \in \mathbb{N}.
$$

(2.6)

Using (2.1), for each $n \in \mathbb{N}$, we can take $\lambda_n \in (0,1]$ such that $\mathcal{K}(T_{\lambda_n}u_n) = 0$. Then, we have

$$
m_\omega \leq S_\omega(T_{\lambda_n}u_n) = \mathcal{I}_\omega(T_{\lambda_n}u_n) \leq \mathcal{I}_\omega(u_n) = \bar{m}_\omega + o_n(1),
$$

(2.7)

where we have used $\lambda_n \leq 1$ to derive the second inequality. Hence, we obtain $m_\omega \leq \bar{m}_\omega$. On the other hand, it follows from

$$
\bar{m}_\omega \leq \inf_{u \in H^1(\mathbb{R}^d) \setminus \{0\}} \mathcal{I}_\omega(u) = \inf_{u \in H^1(\mathbb{R}^d) \setminus \{0\}} S_\omega(u) = m_\omega
$$

(2.8)
that $\tilde{m}_\omega \leq m_\omega$. Thus, we have proved that $m = m_\omega$.

Next, we shall show the claim (ii). Let Q be any minimizer for \tilde{m}_ω; i.e., $Q \in H^1(\mathbb{R}^d) \setminus \{0\}$ with $\mathcal{K}(Q) \leq 0$ and $\mathcal{I}_\omega(Q) = \tilde{m}_\omega$. Since $\mathcal{I}_\omega = S_\omega - \frac{2}{d(p-1)} \mathcal{K}$ (see (1.11)) and $m_\omega = \tilde{m}_\omega$, it is sufficient to show that $\mathcal{K}(Q) = 0$. Suppose the contrary that $\mathcal{K}(Q) < 0$, so that there exists $0 < \lambda_0 < 1$ such that $\mathcal{K}(T_{\lambda_0}Q) = 0$. Then, we have

$$\tilde{m}_\omega \leq \mathcal{I}_\omega(T_{\lambda_0}Q) < \mathcal{I}_\omega(Q) = \tilde{m}_\omega,$$

which is a contradiction. Hence, $\mathcal{K}(Q) = 0$ and therefore Q is also a minimizer for m_ω. \hfill \Box

Now, employing an idea of Brézis and Nirenberg [6], we prove Theorem 1.1. To this end, we introduce another variational value σ:

$$\sigma := \inf \left\{ \|\nabla u\|_{L^2}^2 : u \in \dot{H}^1(\mathbb{R}^d), \|u\|_{L^2^*} = 1 \right\}. \quad (2.10)$$

Here, it is well known that the Talenti function

$$W(x) := \left(\frac{\sqrt{d(d-2)}}{1 + |x|^2} \right)^{\frac{d-2}{2}}$$

gives the value of σ such that

$$\sigma^\frac{d}{2} = \|\nabla W\|_{L^2}^2 = \|W\|_{L^2^*}^2 > 0. \quad (2.12)$$

Moreover, it satisfies

$$-\Delta W - |W|^\frac{4}{d-2} W = 0. \quad (2.13)$$

Then, we have the following.

Proposition 2.1. Assume that, for $\omega > 0$ and $\mu > 0$, we have

$$m_\omega < \frac{2}{d} \sigma^\frac{d}{2}. \quad (2.14)$$

Then, there exists a minimizer of the variational problem for m_ω.

Proof of Proposition 2.1. Let $\{u_n\}$ be a minimizing sequence of the variational problem for \tilde{m}_ω. Extracting some subsequence, we may assume that

$$\mathcal{I}_\omega(u_n) \leq 1 + \tilde{m}_\omega \quad \text{for any } n \in \mathbb{N}. \quad (2.15)$$

We denote the Schwarz symmetrization of u_n by u_n^*. Then, we easily see that

$$\mathcal{K}(u_n^*) \leq 0 \quad \text{for any } n \in \mathbb{N}, \quad (2.16)$$

$$\lim_{n \to \infty} \mathcal{I}_\omega(u_n^*) = \tilde{m}_\omega, \quad (2.17)$$
\begin{align}
\sup_{n \in \mathbb{N}} \|u_n^*\|_{H^1} < \infty \quad \text{for any } n \in \mathbb{N}. \tag{2.18}
\end{align}

Since \(\{u_n^*\}\) is radially symmetric and bounded in \(H^1(\mathbb{R}^d)\), there exists a radially symmetric function \(Q \in H^1(\mathbb{R}^d)\) such that
\begin{align}
\lim_{n \to \infty} u_n^* &= Q \quad \text{weakly in } H^1(\mathbb{R}^d), \tag{2.19}
\lim_{n \to \infty} u_n^* &= Q \quad \text{strongly in } L^q(\mathbb{R}^d) \text{ for } 2 < q < 2^*, \tag{2.20}
\lim_{n \to \infty} u_n^*(x) &= Q(x) \quad \text{for almost all } x \in \mathbb{R}^d. \tag{2.21}
\end{align}

This function \(Q\) is a candidate for a minimizer of the variational problem (1.7). We shall show that it is actually a minimizer.

Let us begin with the non-triviality of \(Q\). Suppose the contrary that \(Q\) is trivial. Then, it follows from (2.16) and (2.20) that
\begin{align}
0 &\geq \limsup_{n \to \infty} K(u_n^*) = 2 \limsup_{n \to \infty} \left\{ \|\nabla u_n^*\|_{L^2}^2 - \|u_n^*\|_{L^{2^*}}^{2^*} \right\}, \tag{2.22}
\end{align}
so that
\begin{align}
\limsup_{n \to \infty} \|\nabla u_n^*\|_{L^2}^2 \leq \liminf_{n \to \infty} \|u_n^*\|_{L^{2^*}}^{2^*}. \tag{2.23}
\end{align}
Moreover, this together with the definition of \(\sigma\) (see (2.10)) gives us
\begin{align}
\limsup_{n \to \infty} \|\nabla u_n^*\|_{L^2}^2 \geq \sigma \liminf_{n \to \infty} \|u_n^*\|_{L^{2^*}}^{2^*} \geq \sigma \limsup_{n \to \infty} \|\nabla u_n^*\|_{L^2} \tag{2.24}
\end{align}
so that
\begin{align}
\sigma^d \leq \limsup_{n \to \infty} \|\nabla u_n^*\|_{L^2}. \tag{2.25}
\end{align}
Hence, if \(Q\) is trivial, then we have
\begin{align}
\tilde{m}_\omega &= \lim_{n \to \infty} I_\omega(u_n^*) \\
&\geq \lim_{n \to \infty} \left\{ \frac{d(p-1)}{d(p-1)} \|\nabla u_n^*\|_{L^2}^2 + \frac{4 - (d-2)(p-1)}{d(p-1)} \|u_n^*\|_{L^{2^*}}^{2^*} \right\} \tag{2.26}
\end{align}
\begin{align}
&\geq \frac{2}{d} \liminf_{n \to \infty} \|\nabla u_n^*\|_{L^2}^2 \geq \frac{2}{d} \sigma^d.
\end{align}
However, this contradicts the hypothesis (2.14). Thus, \(Q\) is non-trivial.

We shall show that \(\mathcal{K}(Q) = 0\). By the Brezis-Lieb lemma (see [5]), we have
\begin{align}
I_\omega(u_n^*) - I_\omega(u_n^* - Q) - I(Q) = o_n(1). \tag{2.27}
\end{align}
Since \(\lim_{n \to \infty} I_\omega(u_n^*) = \tilde{m}_\omega\) and \(I_\omega\) is positive, we see from (2.27) that
\begin{align}
I_\omega(Q) \leq \tilde{m}_\omega. \tag{2.28}
\end{align}
First, we suppose that $\mathcal{K}(Q) < 0$, which together with the definition of \tilde{m}_ω (see (1.10)) and (2.28) implies that $\mathcal{I}_\omega(Q) = \tilde{m}_\omega$. Moreover, we can take $\lambda_0 \in (0, 1)$ such that $\mathcal{K}(T_{\lambda_0}Q) = 0$. Then, we have

$$\tilde{m}_\omega \leq \mathcal{I}_\omega(T_{\lambda_0}Q) < \mathcal{I}_\omega(Q) = \tilde{m}_\omega. \quad (2.29)$$

This is a contradiction. Therefore $\mathcal{K}(Q) \geq 0$.

Second, suppose the contrary that $\mathcal{K}(Q) > 0$. Then, it follows from (2.16) and

$$\mathcal{K}(u_n^*) - \mathcal{K}(u_n^* - Q) - \mathcal{K}(Q) = o_n(1) \quad (2.30)$$

that $\mathcal{K}(u_n^* - Q) < 0$ for any sufficiently large $n \in \mathbb{N}$, so that there exists a unique $\lambda_n \in (0, 1)$ such that $\mathcal{K}(T_{\lambda_n}(u_n^* - Q)) = 0$. Then, we easily verify that

$$\tilde{m}_\omega \leq \mathcal{I}_\omega(T_{\lambda_n}(u_n^* - Q)) \leq \mathcal{I}_\omega(u_n^* - Q) = \mathcal{I}_\omega(u_n^* - Q) + o_n(1) = \tilde{m}_\omega - \mathcal{I}_\omega(Q) + o_n(1). \quad (2.31)$$

Hence, we conclude $\mathcal{I}_\omega(Q) = 0$. However, this contradicts the fact that Q is non-trivial. Thus, $\mathcal{K}(Q) = 0$.

Since Q is non-trivial and $\mathcal{K}(Q) = 0$, we have

$$m_\omega \leq \mathcal{S}_\omega(Q) = \mathcal{I}_\omega(Q). \quad (2.32)$$

Moreover, it follows from (2.27) and Proposition 1.2 that

$$\mathcal{I}_\omega(Q) \leq \liminf_{n \to \infty} \mathcal{I}_\omega(u_n^*) \leq \tilde{m}_\omega = m_\omega. \quad (2.33)$$

Combining (2.32) and (2.33), we obtain that $\mathcal{S}_\omega(Q) = \mathcal{I}_\omega(Q) = m_\omega$. Thus, we have proved that Q is a minimizer for the variational problem (1.7).

We shall give the proof of Theorem 1.1. In view of Proposition 2.1, it suffices to show the following lemma.

Lemma 2.2. Assume $d \geq 4$. Then, for any $\omega > 0$ and $\mu > 0$, we have

$$m_\omega < \frac{2}{d} \sigma^\frac{4}{d}. \quad (2.34)$$

Proof of Lemma 2.2. In view of Proposition 1.2, it suffices to show that

$$\tilde{m}_\omega < \frac{2}{d} \sigma^\frac{4}{d}. \quad (2.35)$$

We recall the Talenti function W in (2.11). Put $W_\varepsilon(x) := \varepsilon^{-\frac{d-2}{2}} W(\varepsilon^{-1} x)$ for $\varepsilon > 0$. Then, it follows from (2.12) that

$$\sigma^\frac{4}{d} = \|\nabla W_\varepsilon\|_{L^4}^2 = \|W_\varepsilon\|_{L^{\frac{4}{d}}}^2 \quad \text{for any } \varepsilon > 0. \quad (2.36)$$
We easily see that W_ε belongs to $L^2(\mathbb{R}^d)$ for $d \geq 5$. When $d = 4$, W_ε no longer belongs to $L^2(\mathbb{R}^4)$ and we need a cut-off function in our proof: Let $b \in C^\infty(\mathbb{R}^4)$ be a function such that

$$b(x) = \begin{cases} 1 & \text{if } |x| \leq 1, \\ 0 & \text{if } |x| \geq 2. \end{cases}$$

(2.37)

We define the function w_ε by

$$w_\varepsilon := \begin{cases} bW_\varepsilon & \text{when } d = 4, \\ W_\varepsilon & \text{when } d \geq 5. \end{cases}$$

(2.38)

Then, for any $\varepsilon < 1$, we can verify (see page 35 of [16]) that

$$\|\nabla w_\varepsilon\|_{L^2}^2 = \sigma \frac{d}{2} + O(\varepsilon^{d-2}),$$

(2.39)

$$\|w_\varepsilon\|_{L^2}^2 = \sigma \frac{d}{2} + O(\varepsilon^d),$$

(2.40)

$$\|w_\varepsilon\|_{L^2}^2 = \begin{cases} C_1 \varepsilon^2 \log \varepsilon + O(\varepsilon^2) & \text{if } d = 4, \\ C_1 \varepsilon^2 + O(\varepsilon^{d-2}) & \text{if } d \geq 5, \end{cases}$$

(2.41)

$$\|w_\varepsilon\|_{L^2}^{p+1} = C_2 \varepsilon^d \left[\frac{d(p-1)}{2} + O(\varepsilon^{d-2}) \right] + O(\varepsilon^{(d-2)(p+1)/2}),$$

(2.42)

where C_1 and C_2 are positive constants independent of ε. Moreover, it follows from (2.1) that:

For any $\varepsilon \in (0,1)$, there exists a unique $\lambda_\varepsilon > 0$ such that

$$0 = K(T_{\lambda_\varepsilon} w_\varepsilon) = 2\lambda_\varepsilon^2 \|\nabla w_\varepsilon\|_{L^2}^2 - \mu \frac{d(p-1)}{p+1} \lambda_\varepsilon^\frac{d(p-1)}{2} \|w_\varepsilon\|_{L^{p+1}}^{p+1} - 2\lambda_\varepsilon^{2\varepsilon} \|w_\varepsilon\|_{L^2}^2.$$

(2.43)

Combining (2.39)–(2.42) and (2.43), we obtain

$$\lambda_\varepsilon^\frac{4}{d-2} = 1 - C\lambda_\varepsilon^\frac{d(p-1)-4}{2} \varepsilon^{d-(d-2)(p+1)/2} + O(\varepsilon^{d-2}),$$

(2.44)

where $C > 0$ is some constant which is independent of ε. Since $\frac{4}{d-2} > \frac{d(p-1)}{2} - 2$, we also find from (2.44) that $\lim_{\varepsilon \to 0} \lambda_\varepsilon = 1$. Put $\lambda_\varepsilon = 1 + \alpha_\varepsilon$, where $\lim \alpha_\varepsilon = 0$. Then, (2.44) together with the expansion $(1 + \alpha_\varepsilon)^q = 1 + q\alpha_\varepsilon + o(\alpha_\varepsilon)$ ($q > 0$) gives us

$$1 + \frac{4}{d-2} \alpha_\varepsilon + o(\alpha_\varepsilon)$$

$$= 1 - C \left\{ 1 + \frac{d(p-1)-4}{2} \alpha_\varepsilon + o(\alpha_\varepsilon) \right\} \varepsilon^{d-(d-2)(p+1)/2} + O(\varepsilon^{d-2}),$$

(2.45)
so that
\[\alpha_\varepsilon = -C_0 \varepsilon^{d - \frac{(d-2)(p+1)}{2}} + O(\varepsilon^{d-2}) \quad \text{for any sufficiently small } \varepsilon > 0, \] (2.46)
where \(C_0 > 0 \) is some constant which is independent of \(\varepsilon \). When \(d \geq 4 \), \(d - 2 > d - \frac{(d-2)(p+1)}{2} \) and hence we find from (2.46) that
\[\lambda_\varepsilon = 1 - C_0 \varepsilon^{d - \frac{(d-2)(p+1)}{2}} + O(\varepsilon^{d-2}) \quad \text{for any sufficiently small } \varepsilon > 0. \] (2.47)
Using (2.39)–(2.42) and (2.47), we obtain
\[\bar{m}_\omega \leq I_\omega(T_\lambda \omega) \]
\[\quad = \omega \|w_\varepsilon\|^2_{L^2} + \frac{d(p-1) - 4}{d(p-1)} \lambda_\varepsilon^2 \|\nabla w_\varepsilon\|^2_{L^2} + \frac{4 - (d-2)(p-1)}{d(p-1)} \lambda_\varepsilon^{2p} \|w_\varepsilon\|^2_{L^{2p}} \]
\[\leq \omega C_1 \varepsilon^2 |\log \varepsilon| + \frac{d(p-1) - 4}{d(p-1)} \lambda_\varepsilon^2 \sigma^\frac{d}{2} + \frac{4 - (d-2)(p-1)}{d(p-1)} \lambda_\varepsilon^{2p} \sigma^\frac{d}{2} + O(\varepsilon^{d-2}) \]
\[\leq \omega C_1 \varepsilon^2 |\log \varepsilon| + \frac{d(p-1) - 4}{d(p-1)} \left\{ 1 - 2C_0 \varepsilon^{d - \frac{(d-2)(p+1)}{2}} \right\} \sigma^\frac{d}{2} \]
\[+ \frac{4 - (d-2)(p-1)}{d(p-1)} \left\{ 1 - 2C_0 \varepsilon^{d - \frac{(d-2)(p+1)}{2}} \right\} \sigma^\frac{d}{2} + o(\varepsilon^{d - \frac{(d-2)(p+1)}{2}}) \]
\[= \frac{2}{d} \sigma^\frac{d}{2} - \frac{16}{d(d-2)} C_0 \varepsilon^{d - \frac{(d-2)(p+1)}{2}} + \omega C_1 \varepsilon^2 |\log \varepsilon| + o(\varepsilon^{d - \frac{(d-2)(p+1)}{2}}) \]
for any sufficiently small \(\varepsilon > 0 \).

Since \(d - \frac{(d-2)(p+1)}{2} < 2 \) for \(p > 1 \), we obtain \(\bar{m}_\omega < \frac{2}{7} \sigma^\frac{d}{2} \).

3. Non-existence result in 3D

In this section, we will give the proof of Theorem 1.2. Before proving the theorem, we prepare the following lemma.

Lemma 3.1. Assume \(d \geq 3 \), \(\omega > 0 \) and \(\mu > 0 \). Let \(u \) be a minimizer of the variational problem for \(m_\omega \). Then, we have
\[\|u\|_{H^1} \lesssim 1, \] (3.1)
where the implicit constant is independent of \(\mu \).

Proof of Lemma 3.1. Fix a non-trivial function \(\chi \in C^\infty_c(\mathbb{R}^d) \) and put
\[\tilde{\chi} := \left(\frac{\|\nabla \chi\|_{L^2}^2}{\|\chi\|_{L^{2p}}^2} \right)^{\frac{1}{p-2}} \chi. \] (3.2)
It is easy to see that
\[\| \nabla \tilde{\chi} \|^2_{L^2} = \left(\frac{\| \nabla \chi \|^2_{L^2}}{\| \chi \|^2_{L^2}} \right)^{\frac{2}{2-q}} \| \nabla \chi \|^2_{L^2} = \left(\frac{\| \nabla \chi \|^2_{L^2}}{\| \chi \|^2_{L^2}} \right)^{\frac{2}{2-q}} \| \chi \|^2_{L^2}, \]
so that \(K(\tilde{\chi}) < 0 \). Hence, we obtain
\[\tilde{m}_\omega \leq I_\omega(\tilde{\chi}). \] (3.3)

Note here that \(I_\omega(\tilde{\chi}) \) is independent of \(\mu \).

Now, we take any minimizer \(u \) for \(m_\omega \). Then, Proposition 1.2 shows that \(u \) is also a minimizer for \(\tilde{m}_\omega \). Hence, we see from (3.4) that
\[\| u \|^2_{H^1} \lesssim I_\omega(u) = \tilde{m}_\omega \leq I_\omega(\tilde{\chi}), \] (3.5)
where the implicit constant is independent of \(\mu \). Thus, we have completed the proof.

Proof of Theorem 1.2. We first prove the claim (i). Suppose the contrary, that there exists a minimizer \(u \) for \(m_\omega \). It follows from Proposition 1.2 that \(u \) is also a minimizer for \(\tilde{m}_\omega \). Hence, we have (3.4) that
\[\| u \|^2_{H^1} \lesssim I_\omega(u) = \tilde{m}_\omega \leq I_\omega(\tilde{\chi}), \]
where the implicit constant is independent of \(\mu \). Thus, we have completed the proof.

Now, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We first prove the claim (i). Suppose the contrary, that there exists a minimizer \(u \) for \(m_\omega \). It follows from Proposition 1.2 that \(u \) is also a minimizer for \(\tilde{m}_\omega \). Hence, we see from (3.4) that
\[\| u \|^2_{H^1} \lesssim I_\omega(u) = \tilde{m}_\omega \leq I_\omega(\tilde{\chi}), \]
where the implicit constant is independent of \(\mu \). Thus, we have completed the proof.

Let \(g \in W^{3,\infty}([0, \infty)) \). Multiplying \(g\phi' \) by the equation (3.6) and integrating the resulting equation, we obtain

\[-\frac{g(0)}{2} (\phi'(0))^2 - \frac{1}{2} \int_0^\infty g'\phi'^2 + \frac{1}{2} \int_0^\infty g\phi^2 \] (3.7)
\[+ \mu \int_0^\infty \left(\frac{p-1}{p+1} r^{-p} g - \frac{1}{p+1} r^{1-p} g' \right) |\phi|^{p+1} + \int_0^\infty \left(\frac{1}{2} r^{-5} g - \frac{r^{-4}}{6} g' \right) |\phi|^6 = 0. \]

On the other hand, multiplying the equation (3.6) by \(g\phi/2 \) and integrating the resulting equation, we obtain

\[-\frac{1}{2} \int_0^\infty g'\phi'^2 + \frac{1}{4} \int_0^\infty g''\phi^2 - \frac{1}{2} \int_0^\infty g\phi^2 \] (3.8)
\[+ \mu \int_0^\infty r^{-p} g |\phi|^{p+1} + \frac{1}{2} \int_0^\infty r^{-4} |\phi|^6 g' = 0. \]
Subtracting (3.8) from (3.7), we have the identity
\[-\frac{g(0)}{2}(\phi'(0))^2 + \frac{1}{4} \int_0^\infty (g''' - 4g')\phi^2 \]
\[= \mu \int_0^\infty \left\{ \frac{p - 1}{p + 1}g - \frac{p + 3}{2(p + 1)}rg' \right\} r^{-p}|\phi|^{p+1} + \frac{2}{3} \int_0^\infty \{ g - rg' \} r^{-5}|\phi|^6. \]
We take \(g \) such that
\[g'''(r) - 4g'(r) = 0, \quad g(0) = 0, \quad r > 0. \]
\((3.10)\)

It is easy to verify that
\[g(r) := \frac{1 - e^{-2r}}{2} \]
is a solution to (3.10). \((3.11)\)

Besides, we see from an elementary calculation that
\[g(r) - rg'(r) = \frac{1 - e^{-2r}}{2} - r e^{-2r} \geq 0 \quad \text{for any } r > 0, \]
\((3.12)\)

\[(g(r) - rg'(r))' = 2re^{-2r} > 0 \quad \text{for any } r > 0. \]
\((3.13)\)

Taking this function, we see from the formula (3.9) that
\[0 = \mu \int_0^\infty \left\{ \frac{p - 1}{p + 1}g - \frac{p + 3}{2(p + 1)}rg' \right\} r^{-p}|\phi|^{p+1} + \frac{2}{3} \int_0^\infty \{ g - rg' \} r^{-5}|\phi|^6. \]
\((3.14)\)

We shall show that
\[\left| \int_0^\infty \left\{ \frac{p - 1}{p + 1}g - \frac{p + 3}{2(p + 1)}rg' \right\} r^{-p}|\phi|^{p+1} \right| \lesssim 1, \]
\((3.15)\)

\[\liminf_{\mu \to 0} \int_0^\infty \{ g - rg' \} r^{-5}|\phi|^6 \gtrsim 1, \]
\((3.16)\)

where the implicit constants are independent of \(\mu \). Once we obtain these estimates, taking \(\mu \to 0 \) in (3.9), we derive a contradiction. Thus, the claim \((i)\) holds.

We first prove (3.15). It is easy to verify that the right-hand side of (3.15) is bounded by
\[\int_0^\infty (1 - e^{-2r})r|u^*)(r)|^{p+1} dr + \int_0^\infty e^{-2r}r^2|u^*(r)|^{p+1} dr \]
\[\lesssim \int_0^\infty r^2|u^*(r)|^{p+1} dr \sim \|u\|_{L^{p+1}(\mathbb{R}^3)}^{p+1} \lesssim \|u\|_{H^1}^{p+1}, \]
\((3.17)\)
where the implicit constants are independent of μ. Combining (3.17) with Lemma 3.1, we obtain the estimate (3.15). Next, we prove (3.16). It follows from (3.12), (3.13) and the mean value theorem that

$$\int_0^\infty \left\{ g - rg' \right\} r^{-5} |\phi|^6 = \int_0^\infty \left\{ g - rg' \right\} r|u^*|^6 \gtrsim \int_0^\infty r^2 |u^*|^6 \sim \|u\|_{L^6}^6,$$

(3.18)

where the implicit constants are independent of μ. Here, using the Sobolev embedding, $K(u) = 0$, the Hölder inequality and Lemma 3.1, we obtain that

$$\|u\|_{L^6}^2 \lesssim \|
abla u\|_{L^2}^2 \lesssim \|u\|_{L^6}^{3(p-1)} + \|u\|_{L^6}^6 \quad \text{for all } 0 < \mu \leq 1.$$

(3.19)

Hence, we find that

$$1 \lesssim \|u\|_{L^6}^6 \quad \text{for all } 0 < \mu \leq 1.$$

(3.20)

The estimate (3.18) together with (3.20) gives (3.16).

We shall prove the claim (ii). Let Q be a ground state of the equation (1.4). We see from (1.6) and Proposition 1.1 that Q is also a minimizer for m_ω. However, this contradicts the claim (i). Thus, (ii) follows.

\[\Box\]

4. Blowup result

In this section, we prove Theorem 1.3. The key lemma is the following.

Lemma 4.1. Assume $d \geq 4$, $\omega > 0$ and $\mu > 0$. Let ψ be a solution to (NLS) starting from $A_\omega, -$ and let I_{\max} be the maximal interval where ψ exists. Then, we have

$$\psi(t) \in A_\omega, - \quad \text{for any } t \in I_{\max}, \quad \text{sup}_{t \in I_{\max}} K(\psi(t)) < 0.$$

(4.1)

(4.2)

Proof of Lemma 4.1. Since the action $S_\omega(\psi(t))$ is conserved with respect to t, we have $S_\omega(\psi(t)) < m_\omega$ for any $t \in I_{\max}$. Thus, it suffices for (4.1) to show that

$$K(\psi(t)) < 0 \quad \text{for any } t \in I_{\max}.$$

(4.3)

Suppose the contrary that $K(\psi(t)) > 0$ for some $t \in I_{\max}$. Then, it follows from the continuity of $\psi(t)$ in $H^1(\mathbb{R}^d)$ that there exists $t_0 \in I_{\max}$ such that $K(\psi(t_0)) = 0$. Then, we see from the definition of m_ω that $S_\omega(\psi(t_0)) \geq m_\omega$, which is a contradiction. Thus, (4.3) holds.
Next, we shall prove (4.2). Since $\mathcal{K}(\psi(t)) < 0$ for any $t \in I_{\text{max}}$, we see the following from (2.1):

For any $t \in I_{\text{max}}$, there exists $0 < \lambda(t) < 1$ such that $\mathcal{K}(T_{\lambda(t)} \psi(t)) = 0$.
(4.4)

This together with the definition of m_ω shows that

$$S_\omega(T_{\lambda(t)} \psi(t)) \geq m_\omega.$$
(4.5)

Moreover, it follows from the concavity (2.4) together with (2.2), (4.3) and (4.5) that

$$S_\omega(\psi(t)) > S_\omega(T_{\lambda(t)} \psi(t)) + (1 - \lambda(t)) \frac{d}{d\lambda} S_\omega(T_{\lambda} \psi(t)) \bigg|_{\lambda=1}$$
(4.6)

$$= S_\omega(T_{\lambda(t)} \psi(t)) + (1 - \lambda(t)) \mathcal{K}(\psi(t)) > m_\omega + \mathcal{K}(\psi(t)).$$

Fix $t_0 \in I_{\text{max}}$. Then, we have from (4.6) and the conservation law of S_ω that

$$\mathcal{K}(\psi(t)) < -m_\omega + S_\omega(\psi(t)) = m_\omega + S_\omega(\psi(t_0)).$$
(4.7)

Hence, (4.2) follows from the hypothesis $S_\omega(\psi(t_0)) < m_\omega$. □

Let us move to the proof of Theorem 1.3.

Proof of Theorem 1.3. The proof is based on the idea of [12, 13]. We introduce the generalized version of virial identity: Let ρ be a smooth function on \mathbb{R} such that

$$\rho(x) = \rho(4 - x) \quad \text{for all } x \in \mathbb{R},$$
(4.8)

$$\rho(x) \geq 0 \quad \text{for all } x \in \mathbb{R},$$
(4.9)

$$\int_{\mathbb{R}} \rho(x) \, dx = 1,$$
(4.10)

$$\text{supp } \rho \subset (1, 3),$$
(4.11)

$$\rho'(x) \geq 0 \quad \text{for all } x < 2.$$
(4.12)

Put

$$w(r) := r - \int_{0}^{r} (r - s) \rho(s) \, ds \quad \text{for } r \geq 0,$$
(4.13)

$$W_R(x) := R^2 w\left(\frac{|x|^2}{R^2}\right) \quad \text{for } x \in \mathbb{R}^d \text{ and } R > 0.$$
(4.14)

Then, for any solution $\psi \in C(I_{\text{max}}, H^1(\mathbb{R}^d))$ to (NLS) and $t_0 \in I_{\text{max}}$, putting $\psi_0 := \psi(t_0)$, we have the identity

$$\int_{\mathbb{R}^d} W_R|\psi(t)|^2 = \int_{\mathbb{R}^d} W_R|\psi_0|^2 + (t - t_0) \Im \int_{\mathbb{R}^d} \nabla W_R \cdot \nabla \psi_0 \overline{\psi_0}$$
\[+ \int_{t_0}^{t} \int_{t_0}^{t'} K(\psi(t'')) \, dt'' \, dt' - \int_{t_0}^{t} \int_{t_0}^{t'} \left\{ 2 \int_{0}^{|x|^2} \rho(r) \, dr \, |\nabla \psi(t'')|^2 \right. \\
\left. \quad + \frac{4|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right) \frac{x}{|x|} \cdot \nabla \psi(t'') \right\} \, dt'' \, dt' \]

\[+ \int_{t_0}^{t} \int_{t_0}^{t'} \left\{ d \int_{0}^{|x|^2} \rho(r) \, dr + \frac{2|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right) \right\} \left\{ \frac{\mu p - 1}{p + 1} |\psi(t'')|^{p+1} + \frac{2}{d} |\psi(t'')|^{2^*} \right\} \, dt'' \, dt' \]

\[- \frac{1}{4} \int_{t_0}^{t} \int_{t_0}^{t'} \int_{\mathbb{R}^d} \Delta^2 W_R \left| \psi(t'') \right|^2 \, dt'' \, dt' \quad \text{for any } t \in I_{\text{max}} \text{ and } R > 0. \]

We easily verify that

\[|\nabla W_R(x)|^2 \leq 4W_R(x) \quad \text{for any } R > 0 \text{ and } x \in \mathbb{R}^d \]

(4.16)

\[\|W_R\|_{L^\infty} \lesssim R^2, \quad \|\nabla W_R\|_{L^\infty} \lesssim R, \]

(4.17) (4.18)

\[\|\Delta^2 W_R\|_{L^\infty} \lesssim \frac{1}{R^2} \|\rho\|_{W^{2,\infty}(\mathbb{R})}. \]

(4.19)

Now, let \(\psi \) be a solution to (NLS) starting from \(A_\omega \). We see from Lemma 4.1 that

\[\varepsilon_0 := - \sup_{t \in I_{\text{max}}} K(\psi(t)) > 0. \]

(4.20)

Our aim is to show that the maximal existence interval \(I_{\text{max}} \) is bounded. We divide the proof into three steps.

Step 1. We claim the following.

There exists \(m_* > 0 \) and \(R_* > 0 \) such that, for any \(R \geq R_* \),

\[m_* < \inf \left\{ \int_{|x| \geq R} |v(x)|^2 \, dx : v \in H^1_{\text{rad}}(\mathbb{R}^d), \quad K^R(v) \leq -\frac{\varepsilon_0}{4} \right\}, \]

(4.21)

where \(H^1_{\text{rad}}(\mathbb{R}^d) \) is the set of radially symmetric functions in \(H^1(\mathbb{R}^d) \), and

\[K^R(v) := \int_{\mathbb{R}^d} \left\{ 2 \int_0^{|x|^2} \rho(r) \, dr + \frac{4|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right) \right\} |\nabla v|^2 \]

\[- \int_{\mathbb{R}^d} \left\{ d \int_0^{|x|^2} \rho(r) \, dr + \frac{2|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right) \right\} \left\{ \frac{\mu p - 1}{p + 1} |v|^{p+1} + \frac{2}{d} |v|^{2^*} \right\}. \]

(4.22)
Let $R > 0$ be a sufficiently large constant to be chosen later, and let v be a function such that

$$v \in H^1_{rad}(\mathbb{R}^d),$$ \hspace{1cm} (4.23)

$$K^R(v) \leq -\frac{\epsilon_0}{4},$$ \hspace{1cm} (4.24)

$$\|v\|_{L^2} \leq \|\psi_0\|_{L^2}.$$ \hspace{1cm} (4.25)

Then, we see from (4.24) that

$$\frac{\epsilon_0}{4} + \int_{\mathbb{R}^d} \left\{ 2 \int_0^{\frac{|x|^2}{R^2}} \rho(r) \, dr + \frac{4|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right) \right\} |\nabla v|^2$$

$$\leq -K^R(v) + \int_{\mathbb{R}^d} \left\{ 2 \int_0^{\frac{|x|^2}{R^2}} \rho(r) \, dr + \frac{4|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right) \right\} |\nabla v|^2$$

$$= \int_{\mathbb{R}^d} \left\{ d \int_0^{\frac{|x|^2}{R^2}} \rho(r) \, dr + \frac{2|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right) \right\} \left\{ \mu \frac{p-1}{p+1} |v|^{p+1} + \frac{2}{d} |v|^2 \right\}.$$ \hspace{1cm} (4.26)

To estimate the right-hand side of (4.26), we employ the following inequality (see Lemma 6.5.11 in [7]): Assume that $d \geq 1$. Let κ be a non-negative and radially symmetric function in $C^1(\mathbb{R}^d)$ with $|x|-(d-1) \max \{-x \cdot \nabla \kappa, 0\} \in L^\infty(\mathbb{R}^d)$. Then, we have, for any $u \in H^1_{rad}(\mathbb{R}^d)$,

$$\|\kappa^\frac{1}{2} u\|_{L^\infty} \lesssim \|u\|_{L^2} \left\{ \| |x|^{-(d-1)} \kappa \frac{x \cdot \nabla u}{|x|} \|_{L^2} \right.$$

$$\left. + \left\| |x|^{-(d-1)} \max \left\{ -\frac{x \cdot \nabla \kappa}{|x|}, 0 \right\} \right\|_{L^\infty} \|u\|_{L^2} \right\}$$ \hspace{1cm} (4.27)

where the implicit constant depends only on d. Now, put

$$\kappa_1(x) := 2 \int_0^{\frac{|x|^2}{R^2}} \rho(r) \, dr + \frac{4|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right),$$ \hspace{1cm} (4.28)

$$\kappa_2(x) := d \int_0^{\frac{|x|^2}{R^2}} \rho(r) \, dr + \frac{2|x|^2}{R^2} \rho \left(\frac{|x|^2}{R^2} \right),$$ \hspace{1cm} (4.29)

so that

$$K^R(v) = \int_{\mathbb{R}^d} \kappa_1 |\nabla v|^2 - \int_{\mathbb{R}^d} \kappa_2 \left(\mu \frac{p-1}{p+1} |v|^{p+1} + \frac{2}{d} |v|^2 \right).$$ \hspace{1cm} (4.30)

Then, we can verify that

$$\text{supp} \kappa_j \subset \{|x| \geq R\} \quad \text{for } j = 1, 2,$$ \hspace{1cm} (4.31)
\[
\|\kappa_j\|_{L^\infty} \lesssim 1 \quad \text{for } j = 1, 2, \tag{4.32}
\]
\[
\sup_{x \in \mathbb{R}^d} \max \left\{ -\frac{x \cdot \nabla \sqrt{\kappa_2(x)}}{|x|}, 0 \right\} \lesssim \frac{1}{R}, \tag{4.33}
\]
\[
1 \lesssim \inf_{|x| \geq R} \frac{k_1(x)}{\kappa_2(x)}. \tag{4.34}
\]

The inequality (4.27) together with (4.32), (4.33) and (4.25) yields
\[
\int_{\mathbb{R}^d} \kappa_2 \frac{2}{d} |v|^2 \leq \|\sqrt{\kappa_2} v\|_{L^\infty} \int_{\mathbb{R}^d} \kappa_2 \frac{4}{d-2} |v|^2 \tag{4.35}
\]
\[
\lesssim \frac{1}{R^{2(d-1)/d}} \|v\|_{L^2(|x| \geq R)}^2 \left\{ \|\sqrt{\kappa_2} \nabla v\|_{L^2}^2 + \frac{1}{R^{2(d-2)/d}} \|v\|_{L^2} \right\} \|v\|_{L^2}^2
\]
\[
\leq \frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}} \left(\frac{\|v\|_{L^2(|x| \geq R)}^2}{\|\sqrt{\kappa_2} \nabla v\|_{L^2}^2} \right)^{\frac{2}{d-2}} + \frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}},
\]
where the implicit constant depends only on \(d\) and \(\rho\). Moreover, applying the Young inequality (ab \(\leq \frac{a^r}{r} + \frac{b^s}{s}\) where \(\frac{1}{r} + \frac{1}{s} = 1\)) to the right-hand side of (4.35), we obtain
\[
\int_{\mathbb{R}^d} \kappa_2 \frac{2}{d} |v|^2 \lesssim \|v\|_{L^2(|x| \geq R)}^2 \|\sqrt{\kappa_2} \nabla v\|_{L^2}^2 + \left(\frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}} \right)^{\frac{d-2}{d-3}} + \frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}}. \tag{4.36}
\]
Similarly, we have
\[
\int_{\mathbb{R}^d} \kappa_2 \frac{2}{d} |v|^{p+1} \lesssim \|v\|_{L^2(|x| \geq R)}^2 \|\sqrt{\kappa_2} \nabla v\|_{L^2}^2 + \left(\frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}} \right)^{\frac{d-2}{d-3}} + \frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}}. \tag{4.37}
\]
If \(R\) is so large that
\[
\left(\frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}} \right)^{\frac{d-2}{d-3}} + \frac{\|\psi_0\|_{L^2}^2}{R^{2(d-1)/d}} \ll \varepsilon_0, \tag{4.38}
\]
then (4.26) together with (4.36) and (4.38) shows that
\[
\int_{\mathbb{R}^d} \left(\kappa_1 - C \|v\|_{L^2(|x| \geq R)} \kappa_2 \right) |\nabla v|^2 \leq \frac{-\varepsilon_0}{8} \tag{4.39}
\]
for some constant \(C > 0\) depending only on \(d\), \(\mu\), \(p\) and \(\rho\) (the notation \(A \ll \varepsilon_0\) means that the quantity \(A\) is much smaller than \(\varepsilon_0\)). Hence, we conclude that
\[
\inf_{|x| \geq R} \frac{k_1(x)}{\kappa_2(x)} < C \|v\|_{L^2(|x| \geq R)}^2, \tag{4.40}
\]
which together with (4.34) gives us the desired result.
Step 2. Let m_\ast and R_\ast be constants found in (4.21), and let $T_{\text{max}} := \sup I_{\text{max}}$. Then, our next claim is that

$$\sup_{t \in [t_0, T_{\text{max}}]} \int_{|x| \geq R} |\psi(x, t)|^2 \, dx \leq m_\ast$$

for any $R > R_\ast$ satisfying the following properties:

$$\|\Delta^2 W_R\|_{L^\infty} \|\psi_0\|_{L^2}^2 \leq \varepsilon_0, \tag{4.42}$$

$$\int_{|x| \geq R} |\psi_0(x)|^2 \, dx < m_\ast, \tag{4.43}$$

$$\frac{1}{R^2} \left(1 + \frac{1}{\varepsilon_0} \|\nabla \psi_0\|_{L^\infty}^2\right) \int_{\mathbb{R}^d} W_R|\psi_0|^2 < m_\ast. \tag{4.44}$$

Here, we remark that it is possible to take R satisfying (4.44) (see [12]).

In order to prove (4.41), we introduce

$$T_R := \sup \left\{ T > t_0 : \sup_{t_0 \leq t < T} \int_{|x| \geq R} |\psi(x, t)|^2 \, dx \leq m_\ast \right\} \quad \text{for } R > 0, \tag{4.45}$$

and prove that $T_R = T_{\text{max}}$ for any $R > 0$ satisfying (4.42)-(4.44).

It follows from (4.43) together with the continuity of $\psi(t)$ in $L^2(\mathbb{R}^d)$ that $T_R > t_0$. We suppose the contrary, that $T_R < T_{\text{max}}$. Then, we have

$$\int_{|x| \geq R} |\psi(x, T_R)|^2 \, dx = m_\ast. \tag{4.46}$$

Hence, we see from the definition of m_\ast (see (4.21)) together with the mass conservation law (1.1) that

$$-\frac{\varepsilon_0}{4} \leq K^R(\psi(T_R)). \tag{4.47}$$

Combining the generalized virial identity (4.15) with (4.47) and (4.42), we obtain

$$\int_{\mathbb{R}^d} W_R|\psi(T_R)|^2$$

$$< \int_{\mathbb{R}^d} W_R|\psi_0|^2 + T_R \Delta \int_{\mathbb{R}^d} \nabla W_R \cdot \nabla \psi_0 \overline{\psi_0} - T_R^2 \varepsilon_0 + \frac{T_R^2}{8} \varepsilon_0 + \frac{T_R^2}{8} \varepsilon_0$$

$$= \int_{\mathbb{R}^d} W_R|\psi_0|^2 + \frac{1}{\varepsilon_0} \int_{\mathbb{R}^d} \nabla W_R \cdot \nabla \psi_0 \overline{\psi_0} \right)^2 - \frac{\varepsilon_0}{4} \left(T_R - \frac{2}{\varepsilon_0} \int_{\mathbb{R}^d} \nabla W_R \cdot \nabla \psi_0 \overline{\psi_0} \right)^2$$

$$\leq \left(1 + \frac{1}{\varepsilon_0} \|\nabla W_R\|_{L^\infty}^2\right) \int_{\mathbb{R}^d} W_R|\psi_0|^2.$$
Existence of a ground state and blow-up problem

Hence, we see from (4.44) that
\[
\int_{\mathbb{R}^d} W_R|\psi(T_R)|^2 < R^2 m_*. \tag{4.49}
\]
Since \(W_R(x) \geq R^2 \) for \(|x| > R \), (4.49) gives us
\[
\int_{|x| \geq R} |\psi(x,T_R)|^2 dx = \frac{1}{R^2} \int_{|x| \geq R} R^2|\psi(x,T_R)|^2 dx \leq \frac{1}{R^2} \int_{\mathbb{R}^d} W_R|\psi(T_r)|^2 < m_*, \tag{4.50}
\]
which contradicts (4.46). Thus, we have proved \(T_R = T_{\text{max}} \) and therefore (4.41) holds.

Similarly, putting \(T_{\text{min}} := \inf I_{\text{max}} \), we have
\[
\sup_{t \in [T_{\text{min}}, t_0]} \int_{|x| \geq R} |\psi(x,t)|^2 dx \leq m_*, \tag{4.51}
\]
for any \(R > R_* \) satisfying (4.42)–(4.44).

Step 3 We complete the proof of Theorem 1.3. Take \(R > R_* \) satisfying (4.42)–(4.44). Then, it follows from the definition of \(m_* \) together with (4.41) and (4.51) that
\[
-\frac{\epsilon_0}{4} \leq K_R(\psi(t)) \quad \text{for any } t \in I_{\text{max}}. \tag{4.52}
\]
Hence, we see from the generalized virial identity (4.15) together with (4.52) and (4.42) that
\[
\int_{\mathbb{R}^d} W_R|\psi(t)|^2 \leq \int_{\mathbb{R}^d} W_R|\psi_0|^2 + t\Im \int_{\mathbb{R}^d} \nabla W_R \cdot \nabla \psi_0 \psi_0 - \frac{\epsilon_0 t^2}{2} \quad \text{for any } t \in I_{\text{max}}. \tag{4.53}
\]
Supposing \(\sup I_{\text{max}} = +\infty \) or \(\inf I_{\text{max}} = -\infty \), we have from (4.53) that
\[
\int_{\mathbb{R}^d} W_R|\psi(t)|^2 < 0 \quad \text{for some } t \in I_{\text{max}}, \tag{4.54}
\]
which is a contradiction. Thus, \(I_{\text{max}} \) is bounded. \(\Box \)

Acknowledgements. T.A. is partially supported by Grant-in-Aid for Young Scientists (B) #22740092. S. I. is partially supported by NSERC #371637-2009 grant and a start up fund from University of Victoria. H.K. is partially supported by Grant-in-Aid for Research Activity Start-up #23840037 H.N. is partially supported by Grant-in-Aid for Scientific Research (B) #23340030.
References

[1] T. Akahori and H. Nawa, Blowup and Scattering problems for the Nonlinear Schrödinger equations, preprint, arXiv:1006.1485.

[2] C.O. Alves, M.A.S. Souto, and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Published online in Calc. Var.

[3] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345.

[4] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489–492.

[5] H. Brézis and E.H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983) 485–489.

[6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477.

[7] T. Cazenave, “Semilinear Schrödinger Equations,” Courant Lecture Notes in Mathematics, 10, New York university, Courant Institute of Mathematical Sciences, New York, 2003.

[8] T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H^s, Nonlinear Anal., 14 (1990), 807–836.

[9] C.E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645–675.

[10] R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361–424.

[11] S. Le Coz, A note on Berestycki-Cazenave’s classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455–463.

[12] H. Nawa, Asymptotic and Limiting Profiles of Blowup Solutions of the Nonlinear Schrödinger Equations with Critical Power, Comm. Pure Appl. Math., 52 (1999), 193–270.

[13] T. Ogawa and Y. Tsutsumi, Blow-up of H^1-solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317–330.

[14] M. Struwe, “Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,” Fourth edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Springer-Verlag, Berlin.

[15] T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations, 118 (2005), 1–28.

[16] M. Willem, “Minimax Theorems,” Birkhäuser, 1996.