Unlinking Theorem for Symmetric Quasi-convex Polynomials

He-Jing Honga,b, Ze-Chun Huc,*

aDepartment of Mathematics, Nanjing University
bClinchoice Inc. of Nanjing
cCollege of Mathematics, Sichuan University

January 1, 2021

Abstract Let μ_n be the standard Gaussian measure on \mathbb{R}^n and X be a random vector on \mathbb{R}^n with the law μ_n. U-conjecture states that if f and g are two polynomials on \mathbb{R}^n such that $f(X)$ and $g(X)$ are independent, then there exist an orthogonal transformation L on \mathbb{R}^n and an integer k such that $f \circ L$ is a function of (x_1, \ldots, x_k) and $g \circ L$ is a function of (x_{k+1}, \ldots, x_n). In this case, f and g are said to be unlinked. In this note, we prove that two symmetric, quasi-convex polynomials f and g are unlinked if $f(X)$ and $g(X)$ are independent.

Keywords U-conjecture; quasi-convex polynomial; Gaussian correlation conjecture

Mathematics Subject Classification (2010) 60E15; 62H05

1 Introduction and main result

Let μ_n be the standard Gaussian measure on $\mathbb{R}^n(n \geq 2)$ and X be a random vector on \mathbb{R}^n with the law μ_n. In 1973, Kagan, Linnik and Rao [6] considered the following problem: if f and g are two polynomials on \mathbb{R}^n such that $f(X)$ and $g(X)$ are independent, then is it possible to find an orthogonal transformation L on \mathbb{R}^n and an integer k such that $f \circ L$ is a function of (x_1, \ldots, x_k) and $g \circ L$ is a function of (x_{k+1}, \ldots, x_n)? If the answer is positive, then f and g are said to be unlinked. This problem is called U-conjecture and is still open.

The U-conjecture is true for the case $n = 2$, and some special cases have been proved for larger
number of variables (see Sections 11.4-11.6 of [6]). In 1994, Bhandari and DasGupta [2] proved that the U-conjecture holds for two symmetric convex functions \(f \) and \(g \) under an additional condition. The additional condition can be canceled since the Gaussian correlation conjecture
has been proved (see Royen [10] or Latalska and Matlak [7]).

Bhandari and Basu [11] proved that the U-conjecture holds for two nonnegative convex polynomials \(f \) and \(g \) with \(f(0) = 0 \). Hargé [4] proved that if \(f, g : \mathbb{R}^n \to \mathbb{R} \) are two convex functions in \(L^2(\mu_n) \), and \(f \) is a real analytic function satisfying \(f(x) \geq f(0), \forall x \in \mathbb{R}^n \), and \(f \) and \(g \) are independent with respect to \(\mu_n \), then they are unlinked.

Malicet et al. [8] proved that the U-conjecture is true when \(f, g \) belong to a class of polynomials, which is defined based on the infinitesimal generator of Ornstein-Uhlenbeck semigroup.

In Remark 2 of [1], the authors wish that their result could be extended to symmetric, quasi-convex polynomials. In this note, we will give an affirmative answer based on the first author’s master thesis [5] and prove the following result.

Theorem 1.1 Two symmetric, quasi-convex polynomials \(f \) and \(g \) are unlinked if \(f \) and \(g \) are independent with respect to \(\mu_n \).

2 Proof of Theorem 1.1

Before giving the proof of Theorem 1.1, we present some preliminaries.

A function \(f : \mathbb{R}^n \to \mathbb{R} \) is called quasi-convex if for any \(\alpha \in [0, 1] \) and any \(x, y \in \mathbb{R}^n \),

\[
f(\alpha x + (1-\alpha)y) \leq \max\{f(x), f(y)\}.
\]

It’s easy to know that a convex function is quasi-convex. About the properties of quasi-convex functions, and the relations between convex and quasi-convex functions, refer to a survey paper Greenberg and Pierskalla [3].

Lemma 2.1 Suppose that \(g : \mathbb{R} \to \mathbb{R} \) is a quasi-convex polynomial and there exist \(\lambda_1, \lambda_2 \in \mathbb{R} \) such that \(g(\lambda_1) \neq g(\lambda_2) \). Then one of the following two claims holds.

(a) There exists \(\lambda_0 \) such that \(g(u) < g(v) \) for any \(\lambda_0 \leq u < v \) and \(\lim_{\lambda \to \infty} g(\lambda) = \infty \).

(b) There exists \(\lambda_0 \) such that \(g(u) < g(v) \) for any \(v < u \leq \lambda_0 \) and \(\lim_{\lambda \to -\infty} g(\lambda) = \infty \).

Proof. Since \(g \) is a polynomial on \(\mathbb{R} \), we can write it as

\[
g(\lambda) = a_n\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0.
\]

By the assumption, \(g \) is not a constant, so \(n \geq 1 \) and \(a_n \neq 0 \). By (2.1), we obtain

\[
g'(\lambda) = na_n\lambda^{n-1} + (n-1)a_{n-1}\lambda^{n-2} + \cdots + a_1.
\]

2
Since \(h \) is quasi-convex, we know that

\[
\text{By (2.8) and (2.1), we know that one of the following two claims must hold:}
\]

\[
\text{By (2.10), there exists } \lambda \text{ such that for any } \lambda > \lambda_2, \ h(\lambda) \leq h(\lambda), \ i.e. \]

\[
g(\lambda) \leq g(\lambda), \ \forall \lambda > \lambda_2.
\]

By (2.1) and (2.4), we get that \(a_n > 0 \), and thus

\[
\lim_{\lambda \to \infty} g(\lambda) = \lim_{\lambda \to \infty} \left(a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 \right) = \infty. \tag{2.5}
\]

If \(n = 1 \), then \(g(\lambda) = a_1 \lambda + a_0 \) with \(a_1 > 0 \), and thus (a) holds in this case. If \(n \geq 2 \), then

\[
\lim_{\lambda \to \infty} g'(\lambda) = \lim_{\lambda \to \infty} \left(na_n \lambda^{n-1} + (n-1) a_{n-1} \lambda^{n-2} + \cdots + a_1 \right) = \infty. \tag{2.6}
\]

By (2.6), there exists \(\lambda_0 \) such that for any \(\lambda > \lambda_0 \), \(g'(\lambda) > 0 \), which together with (2.3) implies that (a) holds in this case.

Case 2: \(g(\lambda_1) > g(\lambda_2) \). Define \(\tilde{h}(\lambda) := g(\lambda) - g(\lambda_2) \). Then \(\tilde{h}(\lambda_2) = 0 \), and as in Case 1, \(\tilde{h} \) is a quasi-convex function and for any \(\lambda < \lambda_1 \), we have

\[
\tilde{h}(\lambda) = \tilde{h} \left(\frac{\lambda_1 - \lambda}{\lambda_2 - \lambda} \right) \leq \max\{\tilde{h}(\lambda_2), \tilde{h}(\lambda)\} = \max\{0, \tilde{h}(\lambda)\}. \tag{2.7}
\]

Since \(\tilde{h}(\lambda_1) = g(\lambda_1) - g(\lambda_2) > 0 \), by (2.7), we obtain that for any \(\lambda < \lambda_1 \), \(\tilde{h}(\lambda) \leq \tilde{h}(\lambda_1) \), i.e.

\[
g(\lambda_1) \leq g(\lambda), \ \forall \lambda < \lambda_1. \tag{2.8}
\]

By (2.8) and (2.1), we know that one of the following two claims must hold:

(i) \(n \) is even and \(a_n > 0 \); (ii) \(n \) is odd and \(a_n < 0 \).

If (i) holds, then by the proof of Case 1 above, we know that (a) is true.

If (ii) holds, then

\[
\lim_{\lambda \to -\infty} g(\lambda) = \lim_{\lambda \to -\infty} \left(a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0 \right) = \infty. \tag{2.9}
\]

If \(n = 1 \), then \(g(\lambda) = a_1 \lambda + a_0 \) with \(a_1 < 0 \), and thus (b) holds in this case. If \(n \geq 3 \), then

\[
\lim_{\lambda \to -\infty} g'(\lambda) = \lim_{\lambda \to -\infty} \left(na_n \lambda^{n-1} + (n-1) a_{n-1} \lambda^{n-2} + \cdots + a_1 \right) = -\infty. \tag{2.10}
\]

By (2.10), there exists \(\lambda_0 \) such that for any \(\lambda < \lambda_0 \), \(g'(\lambda) < 0 \), which together with (2.9) implies that (b) holds in this case. \(\Box \)
Corollary 2.2 Let $g : \mathbb{R} \to \mathbb{R}$ be a quasi-convex polynomial. If g has an upper bound, then g is a constant function.

Corollary 2.3 Let $U : \mathbb{R}^n \to \mathbb{R}$ be a quasi-convex polynomial. Suppose that for two fixed vectors $\beta_1, \beta_2 \in \mathbb{R}^n$, $U(\beta_1 + \lambda \beta_2)$ is a constant function of $\lambda \in \mathbb{R}$. Then for any fixed vector $b \in \mathbb{R}^n$, $U(b + \lambda \beta_2)$ is a constant function of λ.

Proof. For any fixed vector $b \in \mathbb{R}^n$, define $g(\lambda) = U(b + \lambda \beta_2), \lambda \in \mathbb{R}$. Then $g(\lambda)$ is a polynomial of λ. By the quasi-convexity of U, we know that for any $\alpha \in [0, 1]$ and $\lambda_1, \lambda_2 \in \mathbb{R}$, we have

$$
g(\alpha \lambda_1 + (1 - \alpha) \lambda_2) = U(b + (\alpha \lambda_1 + (1 - \alpha) \lambda_2) \beta_2) = U(\alpha (b + \lambda_1 \beta_2) + (1 - \alpha)(b + \lambda_2 \beta_2)) \leq \max\{U(b + \lambda_1 \beta_2), U(b + \lambda_2 \beta_2)\} = \max\{g(\lambda_1), g(\lambda_2)\}.
$$

Thus $g(\lambda)$ is a quasi-convex polynomial. By the quasi-convexity of U,

$$
g(\lambda) = U(b + \lambda \beta_2) = U\left(\frac{1}{2}(2b - \beta_1) + \frac{1}{2}(\beta_1 + 2\lambda \beta_2)\right) \leq \max\{U(2b - \beta_1), U(\beta_1 + 2\lambda \beta_2)\}. \tag{2.11}
$$

By (2.11) and the assumption that $U(\beta_1 + \lambda \beta_2)$ is a constant function of λ, we get that the quasi-convex polynomial $g(\lambda)$ has an upper bound. Hence by Corollary 2.2 we know that $U(b + \lambda \beta_2)$ is a constant function of λ. \qed

Corollary 2.4 Let $U : \mathbb{R}^n \to \mathbb{R}$ be a quasi-convex polynomial with $U(0) = 0$. Define

$$
S_U := \{\alpha : U(\lambda \alpha) = 0, \forall \lambda \in \mathbb{R}\}. \tag{2.12}
$$

Then S_U is a vector subspace of \mathbb{R}^n.

Proof. Let $\alpha_1, \alpha_2 \in S_U$. For any $c_1, c_2, \lambda \in \mathbb{R}$, by Corollary 2.3 we get that

$$
U(\lambda (c_1 \alpha_1 + c_2 \alpha_2)) = U(\lambda c_1 \alpha_1 + \lambda c_2 \alpha_2) = U(\lambda c_1 \alpha_1) = 0.
$$

Hence $c_1 \alpha_1 + c_2 \alpha_2 \in S_U$, and thus S_U is a vector subspace of \mathbb{R}^n. \qed

Now suppose that U and V are two quasi-convex polynomials from \mathbb{R}^n into \mathbb{R} satisfying that $U(0) = V(0) = 0$. Define S_U by (2.12). Similarly, define S_V.

Definition 2.5 U and V are said to be concordant of order r, if

$$
\dim(S_U^\perp) - \dim(S_U^\perp \cap S_V) = r. \tag{2.13}
$$
Note that this definition is symmetric in U and V, i.e. if 2.13 holds, then (see [2])

$$\dim(S_U^+) - \dim(S_V^+ \cap S_U) = r.$$

Theorem 2.6 Let X be an $n \times 1$ random vector distributed as $N(0, I_n)$. Let U and V be two symmetric (i.e. $U(x) = U(-x)$, $V(x) = V(-x)$) quasi-convex polynomials on \mathbb{R}^n satisfying $\text{Cov}(U(X), V(X)) = 0$. Furthermore, assume that $U(0) = V(0) = 0$, and U and V are concordant of order r. Then there exists an orthogonal transformation $Y = LX$ such that U and V can be expressed as functions of two different sets of components of Y, i.e. U and V are unlinked.

Proof. Based on the lemmas and corollaries established above, the proof of this theorem is similar to the one of [2]. For the reader's convenience, we spell out the details in the following.

Let $\{\alpha_1, \ldots, \alpha_{r+t}\}$, $\{\alpha_{r+1}, \ldots, \alpha_{r+t}\}$, $\{\alpha_1, \ldots, \alpha_{r+t+m}\}$ and $\{\alpha_1, \ldots, \alpha_n\}$ be orthonormal bases of S_U^+, $S_V^+ \cap S_U$, $S_U^+ + S_V^+$, and \mathbb{R}^n, respectively. We will show that if $r > 0$ then $\text{Cov}(U(X), V(X)) > 0$, which contradicts the condition given in the theorem, and so we get $r = 0$, and thus U and V are unlinked.

Define Y_1, Y_2, \ldots, Y_n by $X = \sum_{i=1}^n Y_i \alpha_i$, i.e. Y_i is the i-th component of X. Then Y_1, Y_2, \ldots, Y_n are i.i.d. as $N(0, 1)$. By Corollary 2.3

$$U(X) = U\left(\sum_{i=1}^n Y_i \alpha_i\right) = U\left(\sum_{i=1}^r Y_i \alpha_i + \sum_{i=r+1}^{r+t} Y_i \alpha_i\right),$$
$$V(X) = V\left(\sum_{i=1}^n Y_i \alpha_i\right) = U\left(\sum_{i=1}^r Y_i \alpha_i + \sum_{i=r+t+1}^{r+t+m} Y_i \alpha_i\right).$$

Assume that $r > 0$. Let $y^* = (y_1, \ldots, y_r)'$ be a nonzero vector in \mathbb{R}^r. Define

$$U^*(y^*) := E\left[U\left(\sum_{i=1}^r y_i \alpha_i + \sum_{i=r+1}^{r+t} Y_i \alpha_i\right)\right],$$
$$V^*(y^*) := E\left[V\left(\sum_{i=1}^r y_i \alpha_i + \sum_{i=r+t+1}^{r+t+m} Y_i \alpha_i\right)\right].$$

Then U^* and V^* are two symmetric quasi-convex polynomials of y^*.

By the choice of the bases, $U(\lambda \sum_{i=1}^r y_i \alpha_i)$ is not a zero function of λ. By Corollary 2.3 and the condition $U(0) = 0$, we know that $U(\lambda \sum_{i=1}^r y_i \alpha_i + \sum_{i=r+1}^{r+t} y_i \alpha_i)$ is not a constant of λ. In addition, by the symmetry and quasi-convexity of U, $U(x) \geq U(0), \forall x \in \mathbb{R}^n$. Hence by Lemma 2.1 we get that when $\lambda \to \infty$,

$$U\left(\lambda \sum_{i=1}^r y_i \alpha_i + \sum_{i=r+1}^{r+t} Y_i \alpha_i\right) + U\left(-\lambda \sum_{i=1}^r y_i \alpha_i + \sum_{i=r+1}^{r+t} Y_i \alpha_i\right) \to \infty.$$ (2.14)
Similarly, and simple calculations, we have \(e.g. [9, \text{Theorem 21.3}] \) or \([11, \text{Remark 2.3.6(1)}]\), we obtain

\[
U^*(\lambda y^*) \to \infty \quad \text{as} \quad \lambda \to \infty. \tag{2.15}
\]

Taking the expectation of (2.14) with respect to \(Y \)

\[
\text{Symmetric convex sets (see [3, Table II]). By the Gaussian correlation inequality (see [10] or [7]),}
\]

\[
A_k \quad \text{When} \quad M \quad \text{By (2.15), (2.16), and Lemma 2.1, the Lebesgue measure of } \{M \in \mathbb{R}^n : y^* \leq k\} \quad \text{is positive. Hence by (2.17),}
\]

\[
A_{k_1} = \{y^* : U^*(y^*) \leq k_1\}, \quad B_{k_2} = \{y^* : V^*(y^*) \leq k_2\}.
\]

Define \(Y^* = (Y_1, \ldots, Y_r)' \). By the independence of components of \(X = (Y_1, \ldots, Y_r, Y_{r+1}, \ldots, Y_n)' \) and simple calculations, we have

\[
\text{Cov}(U(X), V(X)) = E[U(X)V(X)] - E[U(X)]E[V(X)]
\]

\[
= E[U^*(Y^*)V^*(Y^*)] - E[U^*(Y^*)]E[V^*(Y^*)]
\]

\[
= \int_0^{\infty} \int_0^{\infty} \left[P(Y^* \in A_{k_1}^c \cap B_{k_2}^c) - P(Y^* \in A_{k_1}) P(Y^* \in B_{k_2}) \right] \, dk_1 \, dk_2
\]

where

\[
P(Y^* \in A_{k_1} \cap B_{k_2}) - P(Y^* \in A_{k_1}) P(Y^* \in B_{k_2}) \geq 0. \tag{2.18}
\]

Define a set

\[
M = \{(k_1, k_2) \in (0, \infty) \times (0, \infty) | A_{k_1} \subset B_{k_2}, P(Y^* \in B_{k_2}^c) > 0, P(Y^* \in A_{k_1}) > 0\}
\]

When \(A_{k_1} \subset B_{k_2} \), we have

\[
P(Y^* \in A_{k_1} \cap B_{k_2}) - P(Y^* \in A_{k_1}) P(Y^* \in B_{k_2})
\]

\[
= P(Y^* \in A_{k_1})(1 - P(Y^* \in B_{k_2}))
\]

\[
= P(Y^* \in A_{k_1}) P(Y^* \in B_{k_2}^c).
\]

Hence we obtain

\[
M \subset \{(k_1, k_2) \in (0, \infty) \times (0, \infty) | P(Y^* \in A_{k_1} \cap B_{k_2}) - P(Y^* \in A_{k_1}) P(Y^* \in B_{k_2}) > 0\}. \tag{2.19}
\]

By (2.15), (2.16), and Lemma 2.1, the Lebesgue measure of \(M \) is positive. Hence by (2.17), (2.18) and (2.19), we obtain

\[
\text{Cov}(U(X), V(X)) > 0,
\]

which contradicts the assumption, and so \(r = 0 \). \(\square \)
Remark 2.7 The assumption that \(U(0) = V(0) = 0 \) in Theorem 2.6 can be taken out since by the symmetry and quasi-convexity of \(U \) and \(V \), we have \(U(x) \geq U(0), V(x) \geq V(0) \) for all \(x \in \mathbb{R}^n \), and we can consider the polynomials \(U(x) - U(0) \) and \(V(x) - V(0) \), which satisfy the conditions in Theorem 2.6.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 11771309; 11871184).

References

[1] Bhandari, S. K., Basu, A. On the unlinking conjecture of independent polynomial functions. *J. Multivariate Anal.*, 97: 1355-1360 (2006)

[2] Bhandari, S. K., DasGupta, S. Unlinking theorem for symmetric convex functions, in: *Multivariate Analysis and Its Applications*, in: IMS Lecture Notes-Monograph Series, 24: 137-141 (1994)

[3] Greenberg, H. J., Pierskalla, W. P. A review of quasi-convex functions, *Operations Research*, 19(7): 1553-1570 (1971)

[4] Hargé, G. Characterization of equality in the correlation inequality for convex functions, the U-conjecture. *Ann. Inst. H. Poincaré Probab. Statist.*, 41: 753-765 (2005)

[5] Hong, H. J. The Gaussian correlation conjecture and its application (in Chinese), Master thesis of Nanjing University, 2009.

[6] Kagan, A. M, Linnik, Y. V, Rao, C. R. Characterization Problems in Mathematical Statistics, Wiley, NewYork, 1973

[7] Latała, R., Matlak, D. Royen’s proof of the Gaussian correlation inequality. *Geometric Aspects of Functional Analysis*, 265-275, Springer, 2017.

[8] Malicet, D., Nourdin, I., Peccati, G., Poly, G. Squared chaotic random variables: New moment inequalities with applications. *J. Funct. Anal.*, 270: 649-670 (2016).

[9] Munroe, M. E. Introduction to Measure and Integration, Addison-Wesley, Cambridge, Mass, 1952.

[10] Royen T. A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions. *Far East J. Theoret. Stat.*, 48: 139-145 (2014).

[11] Yan, J. A. Lectures on Measure Theory (2nd Edition, in Chinese), Science Preess, Beijing, 2004.