Study of fish fauna and productivity of Loni reservoir, Tq. Kinwat (Maharashtra)

A.T. Kamble1 and L.M. Mudkhede*2

1Department of Zoology, Baliram Patil College, Kinwat, Dist. Nanded – 431804 (M.S.)
2Department of Zoology, Yeshwant Mahavidyalaya, Nanded – 431602 (M.S.)

*Correspondence Info:
L.M. Mudkhede,
Department of Zoology, Baliram Patil College,
Kinwat, Dist. Nanded – 431804 (M.S.), India
E-mail: sk.afsar3@gmail.com

Abstract

Loni reservoir is a medium project. It is used for irrigation, drinking and for fish production. It exhibits diversity of fish fauna. It represents 15 species of fish. Amongst there 3 species of major carps, 4 species of murrels, 4 species of cat fishes, 2 species of snake fishes, 2 species of ornamental fishes. Out of these 15 species 12 species are commercially important. Average fish production is 8.82 kg/ha/yr.

Keywords: Loni reservoir, Fish fauna

1. Introduction

Fishes of the inland water bodies of the Indian sub-continent have been subject to study since last century. Indian water resources are diversified, as they are plentiful. Lakes and reservoirs contribute the single largest inland fishery resources both in terms and size and production potential.

Ichthyofauna of a lake basically represents the fish faunal diversity and their abundance. Indian lake preserve a rich variety of fish species which support the commercial fisheries. The present study deals to observe the fish diversity in reservoir Loni, Taluka Kinwat of Maharashtra State.

Indian reservoirs preserve a rich variety of fish species, on the basis of studies conducted so far, large reservoirs on an average harbour 60 species of fishes; of which 40 species contribute to the commercial fisheries. Indian major carps occupy a prominent place among the commercially important fishes. More recently, number of exotic species have contributed substantially to commercial fisheries. Being basically a carp country both the indigenous and exotic carps, catla, rohu, mrigal, silver carp, grass carp and common carp, account for a great bulk of the production.

2. Material and Methods

Present work carried out in the reservoir Loni in Kinwat taluka of Maharashtra state. This work conducted during the year 2009-10. Area of reservoir is 142 hectares.

The fishes collected from the reservoir every month by repeated netting and preserved in 4% formalin for further studies. The fishes were identified up to species level with the help of Day, Jayaram, Qureshi and Tamot.14, 22, 36, 50.

The fish productivity was calculated with the help of the following formula as described by Agarwal2.

\[P = NS \]

Where, \(P \) = Fish Productivity (kg/ha/yr)
\(N \) = Constant including natural mortality 0.25 and accidental mortality 0.40 i.e. 0.65
3. Result and Discussion

This reservoir has diversity of fish fauna with 15 species (Table 1). The major carps catla, rohu, mrigal are dominated due to their seed stocking. The other group of fishes found in reservoir are murrels (4 species), cat fishes (4 species), snake fishes (2 species), and other food fishes (2 species).

The major carps, murrell (3 species), cat fishes (4 species), snake fishes (1 species) and other fishes (1 species). All fishes useful as food fishes except Gambusia, which is a larvivorous fish. Out of 15 species found in this reservoir 12 are commercially important. The major carps, Catla catla, Labeo rohita, Cirrhina mrigala. The murrels Channa striatus, Channa punctatus. The cat fishes Clarias batrachus, Heteropneustes fossilis, Aorichthys scenghala, Mystus bleekeri. The snake fishes, Mastacembelus armatus, Mastacembelus punctul and other fishes like Cerasseus auratus are important commercially.

Ahirrao (2000) recorded 32 fish species belonging to 25 genera and 8 families from Parbhani district of Maharashtra. Joshi25 reported the ichthyofauna of Bori reservoir in Maharashtra. Krishna & Ravi Shankar27 reported 31 ichthyofauna in secrete lake, Durgamcheru, Ranga Reddy District. Hiware and Pawar20 recorded 43 fish species from Nuth Sagar Dam Paithan in Aurangabad district. Battul et al6 recorded 18 fish species in Ebkukh lake near Solapur, Maharashtra. Jayabhaye et al21 recorded 25 fish species belonging to 7 orders in Jawalgaon reservoir in Solapur district of Maharashtra. Gaur and Mohan4 recorded 19 fish species belong to 8 families and 14 genera. The Loni reservoir shows less fish diversity in comparison to other reservoirs.

The fish productivity of major carp in Loni reservoir was 8.82 kg/ha/yr during 2009-2010 (Table 3).

Agarwal (1990) recorded the productivity of fish in many small and minar reservoirs in Haryana - Suraj Kund - 355.7 kg/ha/yr, Hallipark – 227.8 kg/ha/yr, Karnal – 17 kg/ha/yr, Dhoz – 160 kg/ha/yr, Tillyar – 138 kg/ha/yr, Damdara 63.95 kg/ha/yr, Mornital – 138 kg/ha/yr. Devi16 recorded the productivity of 445 kg/ha/yr and 528 kg/ha/yr during 1993-95 in Ibrahimbagh and Shanthamraj reservoirs of Rangareddy district, Andhra Pradesh.

The present productivity of fish observed in Loni Reservoir was much less than small and minor reservoirs but shows close association with large reservoirs, which were observed by Srivastava and Tamor. The present yield of fish from the Loni reservoir shows close relationship 8.82 kg/ha/yr during 2009-2010 (Table 3).

The present yield of fish from the Loni reservoir shows close relationship 8.82 kg/ha/yr. It has been estimated that the catch rate from large, medium and small reservoirs is as low as 11.43, 12.30 and 49.90 kg/ha/yr respectively with a gross average of 29.70 kg/ha/yr. Data collected by CIFRI suggests that the fish production potential of reservoirs is much higher, ranging from 50-75 kg/ha/yr for medium and large reservoir fisheries, till recent past, and inadequate implementation of management norms are the main cause for the present poor production from Indian reservoirs. Sreenivasan47 estimated the production potential of Indian reservoirs at 100 kg/ha/yr. Even according to a conservative administrative estimate the potential yield of Indian reservoirs is around 50 kg/ha/yr. Burli and Sontakki7 reported that low fish production (4-6 kg/ha/yr) was noticed in Malaprabha and Ghapatrabha reservoirs of Karnataka, though the fish seed is stocked. This is due to the poor management practices in reservoirs. Tamor77 has studied the fish production of irrigation reservoirs of Madhya Pradesh and the production is only 70 kg/ha/yr. Bandyopadhyay et al5 reported that after the introduction of Indian major carps and exotic carps in Manipur waters, dramatic change in the fish production was observed Gowda18 reported the productivity of reservoirs of Karnataka as 30 kg/ha/yr with a total water spread area of 2.10 lakh ha (73 reservoirs). The increase was due to stock monitoring, fishing efforts in the reservoirs marking use of improved gears would enhance fish production. Srivastava and Tamor33 reported that based on the primary production studies PFY
(Potential Fish Yield) of Tawa reservoir would be around 84 kg/ha/yr and observed only 33% of PFY. They further reported that there is still enough scope of increasing fish yield even to 50% to 60% of PFY, which could be achieved easily through scientific management norms. Das reported that a large gap existed between fish yield potential (383.3 kg/ha/yr) and actual harvest (80 kg/ha/yr) in Yerrakalva reservoir, West Godavari, Andhra Pradesh. He opined that there is an ample scope of increasing fish production which could be achieved by sustainable management norms. The same trend may apply to enhance the fish production.

Table 1. Ichthyofaunal diversity in medium reservoir Loni, Taluka Kinwat, Maharashtra

Variety / Common Name	Scientific Name
Major Carps (3 Species)	Catla catla, Labeo rohita, Cirrhina mrigala
Murrels (4 Species)	Channa marulius, Channa striatus, Channa punctatus, Channa gachua
Cat Fishes (4 Species)	Clarias batrachus, Heteropneustes fossilis, Aorichthys scenghala, Mystus bleekeri
Snake Fishes (2 Species)	Mastacembelus armatus, Mastacembelus punculan
Ornamental Fishes (2 Species)	Cerasseus auratus, Gambasia affinis

Table 2. The total fish catches in Loni reservoir during 2007-2008

Sr. No.	Type of Fish	Total Quantity (Kg.)	Percentage	Fish Catch (kg/ha/yr)
1.	Major Carps	1052	83.99	2007-08 8.82
2.	Murrels	50	7.99	
3.	Cat Fishes	50	7.99	
4.	Other Food Fishes	0.5	0.039	
			1252.5	

Table 3. The total major carps catches in Loni reservoir during 2007-2008

Sr. No.	Type of Fish	Total Quantity (Kg.)	Percentage
1.	Catla	520	49.43
2.	Rohu	210	19.96
3.	Mrigal	322	30.61
		1052	

References

1. Abhijit Paul, B.K. Das and S.K. Das (2007) Interrelationship between primary productivity and environmental nutrients of two water bodies in Kalyani, West Bengal, *Indian J. Fish* 54(3): 259-265.
2. Agarwal, S.C. (1990) Fishery Management. Ashish Publishing House, New Delhi.
3. Ahirrao, S.D. and A.S. Mane (2000) The diversity of ichthyofauna, taxonomy and fisheries from freshwater of Parbhani, Dist. Maharashtra State, *J. Aqua. Biol.*, 15(1&2): 40-43.
4. Archana Gaur and Devendra Mohan (2008) Vertebrate faunal diversity in and around three small wetlands of Jodhpur, Rajasthan, India, *J. Aqua. Boil.*, Vol.23(1): 34-42.
5. Bandyopadhyay, M.K., Singh, S.K. and Sarkar, B. (2003) Possibility of raising Indian major carp seed in cases for stocking larger water Bodies. *CA – I, Nat. Sem. Fish and Shellfish culture* 37.
6. Battul, P.N., Rao, K.R., Navale, R.A., Bagale, M.D., Shah, N.V. (2007) Fish diversity from Ekrukh lake near Solapur, Maharashtra, *J. of Aquatic Biology* Vol.22(2).
7. Burli, A.S. and Sontakki, B.S. (2002) A comparative study & Fisheries Management in Malaprabha and Ghataprabha Reservations of Karnataka, AR-16, The Sixth Indian Fisheries Forum 54.

8. Das, A.K. (2002) Evaluation of production potential in a peninsular reservoir (Yerrakalva). *J. Inland. Fish. Soc. India*, 34 (2).

9. Das, A.K. (2002) Limno–chemistry of some Andhra Pradesh Reservoirs. *J. Inland Fish. Soc. India*. 32(2): 37–44.

10. Das, A.K., Krishna Rao, D.S., Sukumaran, P.K. and Karthikeyan, M. (2002) Strategies for Management of Karnataka reservoirs. *Fishing Chimes*. 22(2): 17–21.

11. Day F. (1994) The fishes of India, Burma and Ceylon, Forth Indian Report, Vol. I & II, Jagmander Book Agency, New Delhi.

12. Day, F. (1878) The fishes of India being a natural history of the fishes known to inhabit the seas and freshwater of India, Burma and Ceylon. I&II : XX778.

13. Day, F.S. (1878) The fishes of India. William and Sons Ltd., London.

14. Day, Francis (1889) The fauna of British India including Ceylon and Burma, *Fishes*, 1: 548: 2: 509. The London, Taylor and Francis. Misra, K.S. (1962) An aid to the identification of the common commercial fishes of India and Pakistan. *Rec. Indian Mus.* 57 (1-4): 320.

15. Dehadrai, (2001) Reservoir fisheries in India. *Proc.Nat.Sem. Reverine and Reservoir Fishers*, pp.97 - 104.

16. Devi, B.S. (1997) Present status, potentialities, management and economics of fisheries of two minor reservoir of Hydrabad, Ph.D. thesis, Osmania University.

17. Ganapati, S.V. (1972) Organic production in seven types of aquatic ecosystems in India. In Golley P.M. and Golley F.B. (eds). Tropical ecology with emphasis on organic production Univ. of Georgia, Athens, pp.312–350.

18. Gowda, H.S.V. (2002) Status of Fisheries Development in Karnataka. *Fishing Chimes*. 22(1): 86-94.

19. Hamilton-Buchanan (1822) An account of the fishes found in the river Ganges and its branches, Edinburgh & London, VIII + 405 pp.39.

20. Hiware, C.J. and Pawar, R.T. (2006) Ichthyofauna of Paithan Reservoir (Nath Sagar Dam) in Aurangabad Dist. of Marathwada region Maharashtra, *Ecology and Environment*, APH Publishing Corporation, New Delhi.

21. Jayabhaye U.M. and G.D. Khedkar (2008) Fish diversity of Sawana dam in Hingoli dist. of Maharashtra, *J. Aqua. Biol.* Vol.23(1): 26-28.

22. Jayaram, K.C. (1999) The freshwater fishes of Indian region, Narendra Publishing House, New Delhi.

23. Jayram, K.C. (1981) The freshwater fishes of India, Pakistan, Bangladesh, Burma and Sri Lanka. Handbook. Zoological Survey of India, p.475.

24. Jhingran, A.G. and Sugunan, V.V. (1990) General guidelines and planning criteria for small reservoir fisheries management. *Proc. Nat. workshop Reservoir Fish.* 1-8.

25. Joh, P.K. and Sakhare, V.B. (2002) Ecology and Ichthyofauna of Bori reservoir in Maharashtra. *Fishing Chimes*. 22(4): 40– 41.

26. Kohli, M.P.S. (1998). Manpower requirements in Indian Fisheries Sector. *Fishing Chimes*. 18(2), 42-46.

27. Krishna S.M. & Ravi Shankar Piska (2006) Ichithgofaunal biodiversity in secret lake Durgamcheruvu, Ranga Reddy Dist., Andhra Pradesh, India, *J. Aqua. Bio.* Vol.21(1), 2006-77-79.

28. Mahapatra, D.K. (2003) Present status of Fisheries of Hirakud reservoirs, Orissa. *Fishing Chimes*. 22 (10 & 11): 76-79.

29. Mohan, D. and Singh, S. (2006) Fish faunal diversity of Thar Desert of Rajasthan, *J. Natcon.* 18(2): 261-270.

30. Patel, M.I. Thaker, D.B. and Shukla, N.M. (2002) Fisheries of Vallabhasagar reservoir Ukai, Gujarat. *Fishing Chimes*. 22(6): 27-31.

31. Pawar, S.K., Mane, A.M. and Pulle, J.S. (2007) The fish fauna of Pethwadas Dam Taluka Kandhar in Nanded District, Maharashtra, India, *J. Aqua. Bio.* Vol.22(2): 55-58.

32. Pulle, J.S. and Khan, A.M. (2001) Seasonal variations in primary production in Isapur Dam, Maharashtra. *J. Aqua.*
Kamble & Mudkhede

Project, 16(2): 19–33.

33. Qureshi, T.A. and N.A. Qureshi (1983) Indian Fishes, BRU Brothers, Sultana Road, Bhopal.

34. Rao L.M., Rao G.V. and G. Sivani (1999) Hydrobiology and Ichthyofauna of Mehadrigedda stream of Visakhapatham Andhra Pradesh, *Act. Bio*. Vol.13 (1&2): 25-28.

35. Rao, D.S.R. (2005) Strategies for enhancement of fish production from Indian reservoirs. *Fishing Chimes*, 25(1): 86-90.

36. Sakhare, V.B. (2001) Ichthyofauna of Jawalgaon reservoir in Solapur district of Maharashtra, *J. Aqua. Biol*. 16(1&2): 31-33.

37. Sakhare, V.B. and Joshi, P.K. (2003) Reservoir fishery potential of Parbhani District of Maharshtra. *Fishing Chimes* 23(5): 13-16.

38. Sakhre, V.B. and P.K. Joshi (2003) Physico-chemical limnology of Paphas : A minor wetland in Tuljapur Town, Maharashatra, *J. Aqua. Biol.*, 18(2): 93-95.

39. Sharma, M.S. and Durve, V.S. (1985) Tropic status and fishery potential of Rajastan waters. In: Mishra, S.D., Sen, D.N. and Ahmed I. Eds. *Pro. Nat. Symp. Evaluation of Environ*. pp.180-186.

40. Singh, G. (2001) Status of Development of Fisheries of Pong Reservation (Himachal Pradesh). *Fishing Chimes*, 21(1):88-90.

41. Somashankar and Sreenath (1984) Effect of fungicides on primary production in aquatic environments. Black Wel. Sci. Publs. Oxford.

42. Sreenivasan, A. (2001) Stagnating reservoir fish production of India. *Fishing Chimes*. 21(1): 39-43.

43. Srivastava, A. and Tamot, P. (2002) Liminified status of Kernian Reservoir with special reference to Socio-economic survey of threatened fish Mahseer. AE–9, The Sixth Indian Fisheries forum, CIFE, Mumbai, India, p.90.

44. Sultan, S. and M.C. Chauhan (2005) Fish productivity and catch analysis of Pahunj reservoir, *Fishing Chimes*, 25(1): 179-181.

45. Suresh, V.R. (2003) Status of Laktak lake fisheries and approach for their sustainable development. *Fishing Chimes*, 23(3): 40–44.

46. Talwar, P.K. and Jhingran, A. (1991) Inland fishes of India and adjacent countries. Oxford and IBH Publisher, New Delhi.

47. Tamot, S. (2002) Fisheries Potential in Madhya Pradesh. AR-15 The Sixth Indian Fisheries forum, 96.

48. Tapaskumar Paik and Susnatakumar Chakraborty (2003) Ichthyofauna of East Sighbhum District, Jharkhand, India, *J. Aqua. Biol*. 18(2): 55-60.

49. Wallen Weider, R.A. (1976) A manual on methods for measuring primary productivity in Aquat. Environment Blockwel Sci. Publications, Oxford.

50. Yezdani, G.M. (1996) Fish diversity in Thar district, In: Faunal diversity in the Thar Desert, Gaps in Research. (Eds.) A.K. Ghosh, Q.H. Baqri, I. Prakash, Scientific Publication, Jodhpur, pp.285-295.