Capacity Results for Binary Fading Interference Channels with Delayed CSIT

Alireza Vahid, Mohammad Ali Maddah-Ali, and Amir Salman Avestimehr

Abstract—To study the effect of lack of up-to-date channel state information at the transmitters (CSIT), we consider two-user binary fading interference channels with Delayed-CSIT. We characterize the capacity region for such channels under homogeneous assumption where channel gains have identical and independent distributions across time and space, eliminating the possibility of exploiting time/space correlation. We introduce and discuss several novel coding opportunities created by outdated CSIT that can enlarge the achievable rate region. The capacity-achieving scheme relies on accurate combination, concatenation, and merging of these opportunities, depending on the channel statistics. The outer-bounds are based on an extremal inequality we develop for a binary broadcast channel with Delayed-CSIT. We further extend the results and characterize the capacity region when output feedback links are available from the receivers to the transmitters in addition to the delayed knowledge of the channel state information. We also discuss the extension of our results to the non-homogeneous setting.

I. INTRODUCTION

The history of studying the effect of feedback channel in communication systems traces back to Shannon [3], and ever since, there have been extensive efforts to discover new techniques that exploit feedback channels in order to benefit wireless networks. In today’s wireless networks, one of the main objectives in utilizing feedback channels is to provide the transmitters with the knowledge of the channel state information (CSI). In slow-fading networks, this task could have been carried on with negligible overhead. However, as wireless networks started growing in size, as mobility became an inseparable part of networks, and as fast-fading networks started playing a more important role, the availability of up-to-date channel state information at the transmitters (CSIT) has become a challenging task to accomplish. Specifically, in fast-fading scenarios, the coherence time of the channel is smaller than the delay of the feedback channel, and thus, providing the transmitters with up-to-date channel state information is practically infeasible.

As a result, there has been a recent growing interest in studying the effect of lack of up-to-date channel state information at the transmitters in wireless networks. In particular, in the context of multiple-input single-output (MISO) broadcast channels (BC), it was recently shown that even completely stale CSIT (a.k.a. Delayed-CSIT) can still be very useful and can change the scale of the capacity, measured by the degrees of freedom (DoF) [1]. A key idea behind the scheme proposed in [1] is that instead of predicting future channel state information, transmitters should focus on the side-information provided in the past signaling stages via the feedback channel, and try to create signals that are of common interest of multiple receivers. Hence, we can increase spectral efficiency by retransmission of such signals of common interest. These ideas were later extended to derive constant-gap approximation of the capacity region of the MISO BCs with Delayed-CSIT [2, 3].

There have also been several recent works in the literature on wireless networks with distributed transmitters and Delayed-CSIT. This includes the study of the DoF region of multi-antenna two-user Gaussian IC and X channel [4, 5], k-user Gaussian IC and X channel [6], [7], and multi-antenna two-user Gaussian IC with Delayed-CSIT and Shannon feedback [8, 9]. In particular, the DoF region of multi-antenna two-user Gaussian IC has been characterized in [10], and it has been shown that the k-user Gaussian IC and X channels can still achieve more than one DoF with Delayed-CSIT [4, 11] (for k > 2).

A major challenge that arises in interference channels with Delayed-CSIT is that in such networks the transmitter has no longer access to all transmit signals in the network. In fact, each transmitter has only access to its own interference contribution. Therefore, unlike broadcast channels in which the task of creating signals of common interest could be simply done at a single transmitter that has access to all messages, exploiting Delayed-CSIT becomes much more challenging. This issue has become a major challenge both in deriving achievability strategies and tight outer-bounds. In order to shed light on fundamental limits of communications with Delayed-CSIT in interference channels, in this paper we focus on a binary fading model as described below.

We consider a two-user interference channel as illustrated in Fig. 1. In this network, the channel gains at each time instant are either 0 or 1 according to some Bernoulli distribution, and are independent from each other and over time. The input and output signals are also in the binary field and if two signals arrive simultaneously at a receiver, then the receiver obtains the exclusive OR (XOR) of them. We shall refer to this network as the two-user Binary Fading Interference Channel (BFIC).
As the main motivation, we study the two-user BFIC as a stepping stone towards understanding the capacity of more complicated fading interference channels with Delayed-CSIT. Lately, the linear deterministic model introduced in [15], has been utilized to translate the results from deterministic networks into Gaussian networks (e.g., [15]–[22]). In the linear deterministic model, there is a non-negative integer representing the channel gain from a transmitter to a receiver. Hence, one can view the binary fading model as a fading interpretation of the linear deterministic model where the non-negative integer associated to each link is either 0 or 1. Furthermore, as demonstrated in [23], the binary fading model provides a simple, yet useful physical layer abstraction for wireless packet networks in which whenever a collision occurs, the receiver can store its received analog signal and utilize it for decoding the packets in future (for example, by successive interference cancellation techniques).

In this work, we fully characterize the capacity region of the two-user BFIC with Delayed-CSIT. We introduce and discuss several novel coding opportunities, created by outdated CSIT, which can enlarge the achievable rate region. In particular, we propose a new transmission strategy, which is carried on over several phases. Each channel realization creates multiple coding opportunities which can be exploited in the next phases, to improve the rate region. However, we observe that merging or concatenating some of the opportunities can offer even more gain. To achieve the capacity region, we find the most efficient combination of combination, concatenation, and merging of the opportunities, depending on the channel statistics. This can take up to five phases of communication for a two-user channel. For converse arguments, we start with a genie-aided interference channel and show that the problem can be reduced to some particular form of broadcast channels with Delayed-CSIT. We establish a new extremal inequality for the underlying BC that leads to a tight outer-bound for the original interference channel. The inequality then helps us prove a tight outer-bound for the original interference channel.

Our contributions are therefore multi-fold. We develop several new coding opportunities for the BFIC with Delayed-CSIT, as well as when the transmitters have access to perfect instantaneous CSIT. We then develop a framework to demonstrate how to combine and merge these coding opportunities in an optimal fashion based on the channel statistics. For converse, we develop an extremal entropy inequality that captures the effect of Delayed-CSIT at the transmitters. Using this extremal entropy inequality, we derive an outer-bound that matches our achievability.

The rest of the paper is organized as follows. In Section II, we formulate our problem. In Section III, we present our main results and illustrate them through an example. We then provide an overview of our main achievability and converse techniques in Section IV. Sections V–X are dedicated to the proof of our main results. In Section XII, we discuss how our results could be extended to more general settings. Section XII concludes the paper and describes several interesting future directions.

II. PROBLEM SETTING

We consider the two-user Binary Fading Interference Channel as illustrated in Fig. 2 and defined below.

Definition 1. The two-user Binary Fading Interference Channel includes two transmitter-receiver pairs in which the channel gain from transmitter T_{x_i} to receiver R_{x_j} at time instant t is denoted by $G_{ij}[t]$, $i, j \in \{1, 2\}$. The channel gains are either 0 or 1 (i.e. $G_{ij}[t] \in \{0, 1\}$), and they are distributed as independent Bernoulli random variables (independent from each other and over time). We consider the homogeneous setting where

$$G_{ij}[t] \overset{d}{=} B(p), \quad i, j = 1, 2, \quad (1)$$

for $0 \leq p \leq 1$, and we define $q \overset{\triangle}{=} 1 - p$.

At each time instant t, the transmit signal at T_{x_i} is denoted by $X_i[t] \in \{0, 1\}$, and the received signal at R_{x_i} is given by

$$Y_i[t] = G_{ii}[t]X_i[t] \oplus G_{ij}[t]X_j[t], \quad i = 1, 2, \quad (2)$$

where the summation is in F_2.

Definition 2. We define the channel state information (CSI) at time instant t to be the quadruple

$$G[t] \overset{\triangle}{=} (G_{11}[t], G_{12}[t], G_{21}[t], G_{22}[t]). \quad (3)$$

We use the following notations in this paper. We use capital letters to denote random variables (RVs), e.g., $G_{ij}[t]$ is a
of the transmitted messages W decoding error is given by such that the decoding error probabilities λ is said to be achievable, if there exists encoding and decoding separate scenario in which an output feedback (OFB) link gains are distributed as i.i.d. Bernoulli random variables. Furthermore for a natural number k, we set

$$G^k \triangleq [G[1], G[2], \ldots, G[k]]^\top.$$ \hspace{1cm} (4)

Finally, we set

$$G_i^t, X_i^t \triangleq G_i^t X_i^t\]$$ \hspace{1cm} (5)

$$\triangleq [G_i[u]X_i[u] \oplus G_i[u]X_i[u] \oplus G_i[u]X_i[u]\]G_i[u]X_i[u]\]^\top.$$ \hspace{1cm} (6)

In this paper, we consider three models for the available channel state information at the transmitters:

1) Instantaneous-CSIT: In this model, the channel state information G^t is available at each transmitter at time instant t, $t = 1, 2, \ldots, n$;

2) No-CSIT: In this model, transmitters only know the distribution from which the channel gains are drawn, but not the actual realizations of them;

3) Delayed-CSIT: In this model, at time instant t, each transmitter has the knowledge of the channel state information up to the previous time instant (i.e. G^{t-1}) and the distribution from which the channel gains are drawn, $t = 1, 2, \ldots, n$.

We assume that the receivers have instantaneous knowledge of the CSI. We consider the scenario in which T_x_t wishes to reliably communicate message $W_i \in \{1, 2, \ldots, 2^{nR_i}\}$ to R_x_i during n uses of the channel, $i = 1, 2$. We assume that the messages and the channel gains are mutually independent and the messages are chosen uniformly. For each transmitter T_x_i, let message W_i be encoded as X^n_i using the encoding function $f_i(\cdot)$, which depends on the available CSI at T_x_i. Receiver R_x_i is only interested in decoding W_i, and it will decode the message using the decoding function $\hat{W}_i = g_i(Y^n_i, G^n)$. An error occurs when $\hat{W}_i \neq W_i$. The average probability of decoding error is given by

$$\lambda_{i,n} \triangleq \mathbb{E}[P[\hat{W}_i \neq W_i]], \quad i = 1, 2,$$ \hspace{1cm} (6)

and the expectation is taken with respect to the random choice of the transmitted messages W_1 and W_2. A rate tuple (R_1, R_2) is said to be achievable, if there exists encoding and decoding functions at the transmitters and the receivers respectively, such that the decoding error probabilities $\lambda_{1,n}, \lambda_{2,n}$ go to zero as n goes to infinity. The capacity region is the closure of all achievable rate tuples.

In addition to the setting described above, we consider a separate scenario in which an output feedback (OFB) link is available from each receiver to its corresponding transmitter. More precisely, we consider a noiseless feedback link of infinite capacity from each receiver to its corresponding transmitter.

Due to the presence of output feedback links, the encoded signal $X_i[t]$ of transmitter T_x_i at time t, would be a function of its own message, previous output sequence at its receiver, and the available CSIT. For instance, with Delayed-CSIT and OFB, we have

$$X_i[t] = f_i[t](W_i, Y_{i-1}^t, G_{i-1}^t), \quad i = 1, 2.$$ \hspace{1cm} (7)

As stated in the introduction, our goal is to understand the effect of the channel state information and the output feedback, on the capacity region of the two-user Binary Fading Interference Channel. Towards that goal, we consider several scenarios about the availability of the CSIT and the OFB. For all scenarios, we provide exact characterization of the capacity region. In the next section, we present the main results of the paper.

III. STATEMENT OF THE MAIN RESULTS

In this paper, we focus on the following scenarios about the availability of the CSIT and the OFB: (1) Delayed-CSIT and no OFB; (2) Delayed-CSIT and OFB; and (3) Instantaneous-CSIT and OFB. In order to illustrate the results, we first establish the capacity region of the two-user BFIC with No-CSIT and Instantaneous-CSIT as our benchmarks.

A. Benchmarks

Our baseline is the scenario in which there is no output feedback link from the receivers to the transmitters, and we assume the No-CSIT model. In other words, the only available knowledge at the transmitters is the distribution from which the channel gains are drawn. In this case, it is easy to see that for any input distribution, the two received signals are statistically the same, hence

$$I(X_1^n; Y_1^n|G^n) = I(X_2^n; Y_2^n|G^n),$$ \hspace{1cm} (8)

$$I(X_1^n; Y_1^n|G^n) = I(X_2^n; Y_2^n|G^n).$$ \hspace{1cm} (8)

Therefore, the capacity region in this case, $C^{\text{No-CSIT}}$, is the same as the intersection of the capacity region of the multiple-access channels (MACs) formed at the receivers:

$$C^{\text{No-CSIT}} = \left\{ \begin{array}{ll}
0 \leq R_i \leq p, & i = 1, 2, \\
R_1 + R_2 \leq 1 - q^2.
\end{array} \right.$$ \hspace{1cm} (9)

The other extreme point on the available CSIT is the Instantaneous-CSIT model. The capacity region in this case is given in the following theorem which is proved in Appendices A and B.

Theorem 1. [Capacity Region with Instantaneous-CSIT] The capacity region of the two-user Binary Fading IC with

\[1\] As we will see later, our result holds for the case in which output feedback links are available from each receiver to both transmitters.
Remark 1. Comparing the capacity region of the two-user BFIC with No-CSIT [9] and Instantaneous-CSIT [10], we observe that the bounds on individual rates remain unchanged while the sum-rate outer-bound is increased by pq. This increase can be intuitively explained as follows. The outer-bound of $1 - q^2$ corresponds to the fraction of time in which at least one of the links to each receiver is equal to 1. Therefore, this outer-bound corresponds to the fraction of time that each receiver gets “useful” signal. This is tight with No-CSIT since each receiver should be able to decode both messages. However, once we move to Instantaneous-CSIT, we can send a private message to one of the receivers by using those time instants in which the link from the corresponding transmitter to that receiver is equal to 1, but that transmitter is not interfering with the other receiver. This corresponds to pq fraction of the time.

Now that we have covered the benchmarks, we are ready to present our main results.

B. Main Results

As the first step, we consider the Delayed-CSIT model. In this case, the following theorem establishes our result.

Theorem 2. [Capacity Region with Delayed-CSIT] The capacity region of the two-user Binary Fading IC with Delayed-CSIT (and no output feedback), C_{DCSIT}, is the set of all rate tuples (R_1, R_2) satisfying

$$C_{DCSIT} = \begin{cases} 0 \leq R_i \leq p, & i = 1, 2, \\ R_i + (1 + q)R_i \leq p(1 + q)^2, & i = 1, 2. \end{cases} \quad (11)$$

Remark 2. Comparing the capacity region of the two-user BFIC with Delayed-CSIT [11] and Instantaneous-CSIT [10], we can show that for $0 \leq p \leq (3 - \sqrt{5})/2$, the two regions are equal. However, for $(3 - \sqrt{5})/2 < p < 1$, the capacity region of the two-user BFIC with Delayed-CSIT is strictly smaller than that of Instantaneous-CSIT. Moreover, we can show that the capacity region of the two-user BFIC with Delayed-CSIT is strictly larger than that of No-CSIT (except for $p = 0$ or 1).

Furthermore, since the channel state information is acquired through the feedback channel, it is also important to understand the effect of output feedback on the capacity region of the two-user BFIC with Delayed-CSIT. In the study of feedback in wireless networks, one other direction is to consider the transmitter cooperation created through the output feedback links. In this context, it is well-known that feedback does not increase the capacity of discrete memoryless point-to-point channels [3]. However, feedback can enlarge the capacity region of multi-user networks, even in the most basic case of the two-user memoryless multiple-access channel [24], [25].

In [18], [20], the feedback capacity of the two-user Gaussian IC has been characterized to within a constant number of bits. One consequence of these results is that output feedback can provide an unbounded capacity increase. This is in contrast to point-to-point and multiple-access channels where feedback provides no gain and bounded gain respectively. In this work, we consider the scenario in which an output feedback link is available from each receiver to its corresponding transmitter on top of the delayed knowledge of the channel state information as depicted in Fig. 3(a).

![Diagram](image_url)

Fig. 3. Two-user Binary Fading Interference Channel: (a) with output feedback links from each receiver to its corresponding transmitter. In this setting, the transmit signal of T_x, at time instant t, would be a function of the message W_x, the available CSIT, and the output sequences Y^{t-1}_1, $i = 1, 2$, and (b) with output feedback links from each receiver to both transmitters. In this setting, the transmit signal of T_x, at time instant t, would be a function of the message W_x, the available CSIT, and the output sequences Y^{t-1}_1, Y^{t-1}_2, $i = 1, 2$.

In the presence of output feedback and Delayed-CSIT, we have the following result.

Theorem 3. [Capacity Region with Delayed-CSIT and OFB] For the two-user binary IC with Delayed-CSIT and OFB, the capacity region $C_{DCSIT,OFB}$, is given by

$$C_{DCSIT,OFB} = \{ R_1, R_2 \in \mathbb{R}^+ \text{ s.t. } R_i + (1 + q)R_i \leq p(1 + q)^2, \; i = 1, 2 \}. \quad (12)$$

Remark 3. The outer-bound on the capacity region with only Delayed-CSIT [11] is in fact the intersection of the outer-bounds on the individual rates (i.e., $R_i \leq p$, $i = 1, 2$) and the capacity region with Delayed-CSIT and OFB [12]. Therefore, the effect of OFB is to remove the constraints on individual rates. This can be intuitively explained by noting that OFB creates a new path to flow information from each transmitter to its corresponding receiver (e.g., $T_x \rightarrow R_x \rightarrow T_x \rightarrow R_x$).
Remark 4. As we will see in Section VII, same outer-bounds hold in the presence of global output feedback where output feedback links are available from each receiver to both transmitters, see Fig. 4(b). Therefore, the capacity region of two-user binary IC with Delayed-CSIT and global output feedback is the same as the capacity region described in (12). This implies that in this case, global output feedback does not provide new coding opportunities, nor does it enhance the existing ones. Similar observation has been made in the context of MIMO Interference Channels [11], [12], even though the coding opportunities in Binary IC and MIMO IC are not the same.

Finally, we present our result for the case of Instantaneous-CSIT and output feedback. Note that in this scenario, although transmitters have instantaneous knowledge of the channel state information, the output signals are available at the transmitters with unit delay. This scenario corresponds to a slow-fading channel where output feedback links are available from the receivers to the transmitters.

Theorem 4. [Capacity Region with Instantaneous-CSIT and OFB] For the two-user binary IC with Instantaneous-CSIT and OFB, the capacity region $C^{ICSIT,OFB}$, is the set of all rate tuples (R_1, R_2) satisfying

\[
C^{ICSIT,OFB} = \begin{cases}
0 \leq R_i \leq 1 - q^2, & i = 1, 2, \\
R_1 + R_2 \leq 1 - q^2 + pq.
\end{cases}
\]

(13)

Remark 5. Comparing the capacity region of the two-user BFIC with Instantaneous-CSIT, with OFB (12), and without OFB (10), we observe that the outer-bound on the sum-rate remains unchanged. However, the bounds on individual rates are further increased to $1 - q^2$. Similar to the previous remark, this is again due to the additional communication path provided by OFB from each transmitter to its intended receiver. However, since the outer-bound on sum-rate with Instantaneous-CSIT and OFB (12) is higher than that of Delayed-CSIT and OFB (13), the bounds on individual rates cannot be eliminated.

The proof of the results is organized as follows. The proof of Theorem 4 is presented in Sections IX and X. The proof of Theorem 3 is presented in Sections VII and VIII, and finally, the proof of Theorem 2 is presented in Sections V and VI. The proof of Theorem 5 is presented in Sections [11] and [12]. We end this section by illustrating our main results via an example in which $p = 0.5$.

C. Illustration of the Main Results for $p = 0.5$

For this particular value of the channel parameter, the capacity region with Delayed-CSIT and Instantaneous-CSIT with or without output feedback is given in Table I and Fig. 4 illustrates the results presented in this table. We notice the following remarks.

p-OFB	Capacity Region with Delayed-CSIT	Capacity Region with Instantaneous-CSIT
---------	-----------------------------------	-------------------------------- -------
No-OFB	$\left\{ R_i \leq \frac{1}{2} \right\}$	\left\{ R_i \leq \frac{1}{2} \right\}
	$R_i + \frac{1}{2} R_2 \leq \frac{2}{3}$	$R_i \leq \frac{1}{2}$
	$R_1 + R_2 \leq \frac{1}{2}$	$R_1 + R_2 \leq 1$
OFB	$\left\{ R_i \leq \frac{1}{2} \right\}$	$\left\{ R_i \leq \frac{1}{2} \right\}$

Remark 6. Note that for $p = 0.5$, we have

$$C^{No-CSIT} \subset C^{ICSIT} \subset C^{ICSIT,OFB}.$$

In other words, the capacity region with Instantaneous-CSIT is strictly larger than that of Delayed-CSIT, which is in turn strictly larger than the capacity region with No-CSIT. Moreover, we have

$$C^{ICSIT,OFB} \subset C^{ICSIT,OFB},$$

meaning that the instantaneous knowledge of the CSIT enlarges the capacity region of the two-user BFIC with OFB compared to the case of Delayed-CSIT.

Remark 7. In Fig. 4(c), we have illustrated the capacity region with Delayed-CSIT, with and without output feedback. First, we observe that OFB enlarges the capacity region. Second, we observe that the optimal sum-rate point is the same for $p = 0.5$. However, this is not always the case. In
fact, for some values of p, output feedback can even increase the optimal sum-rate. Using the results of Theorem 2 and Theorem 3 we have plotted the sum-rate capacity of the two-user Binary Fading IC with and without OFB for the Delayed-CSIT model in Fig. 5. Note that for $0 < p < (3 - \sqrt{5})/2$, the sum-rate capacity with OFB is strictly larger than the no OFB scenario.

Remark 8. Comparing the capacity region of the two-user BFIC with Instantaneous-CSIT, with OFB and without OFB, we observe that OFB enlarges the capacity region. Moreover, similar to the Delayed-CSIT scenario, the optimal sum-rate point is the same for $p = 0.5$. Again, this is not always the case. In fact, for $0 < p < 0.5$, output feedback can even increase the optimal sum-rate. Using the results of Theorem 2 and Theorem 3 we have plotted the sum-rate capacity of the two-user Binary Fading IC with and without OFB in Fig. 6.

Remark 9. In Fig. 5 and Fig. 6 we have identified the range of p for which output feedback provides sum-rate gain. Basically, when the sum-rate capacity without OFB is dominated by the capacity of the direct links (i.e., $2p$), the additional communication paths created by the means of output feedback links help increase the optimal sum-rate.

Remark 10. While our capacity results in Theorem 2 and Theorem 3 are for binary fading interference channels, in [23], we have shown how they can also be utilized to obtain capacity results for a class of wireless packet networks.

In the following section, we present the main ideas that we incorporate in this paper.

IV. OVERVIEW OF THE KEY IDEAS

Our goal in this section is to present the key techniques we use in this paper both for achievability and converse purposes. Although we will provide detailed explanation of the achievability strategy and converse proofs for all different scenarios, we found it instructive to elaborate the main ideas through several clarifying examples. Furthermore, the coding opportunities introduced in this section can be applicable to DoF analysis of wireless networks with linear schemes (Section III.A of [26]) or interference management in packet collision networks (Section IV of [23]).

A. Achievability Ideas with Delayed-CSIT

As we have described in Section I, the channel gains are independent from each other and over time. This way, transmitters cannot use the delayed knowledge of the channel state information to predict future. However, this information can still be very useful. In particular, Delayed-CSIT allows us to evaluate the contributions of the desired signal and the interference at each receiver in the past signaling stages and exploit it as available side information for future communication.

1) Interference-free Bits: Using Delayed-CSIT transmitters can identify previously transmitted bits such that if retransmitted, they do not create any further interference. The following examples clarify this idea.

Example 1 [Creating interference channels with side information]: Suppose at a time instant, each one of the transmitters simultaneously sends one data bit. The bits of TX_1 and TX_2 are denoted by a_1 and b_1 respectively. Later, using Delayed-CSIT, transmitters figure out that only the cross links were equal to 1 at this time instant as shown in Fig. 7(a). This means that in future, transmission of these bits will no longer create interference at the unintended receivers.

Example 2 [Creating interference channels with swapped receivers and side information]: Assume that at a time instant, transmitters one and two simultaneously send data bits a_2 and b_2 respectively. Again through Delayed-CSIT, transmitters realize that all links except the link between TX_1 and RX_2 were equal to 1, see Fig. 7(b). In a similar case, assume that at another time instant, transmitters one and two send data bits a_3 and b_3 at the same time. Through Delayed-CSIT, transmitters realize that all links except the link between TX_2 and RX_1 were connected, see Fig. 7(c). Then it is easy to see that to successfully finish delivering these bits, it is enough that TX_1 sends a_3 to RX_2, while this bit is already available at RX_1; and
TX2 sends b_2 to RX1, while this bit is already available at RX2. Note that here the intended receivers are swapped.

Remark 11. As described in Examples 1 and 2, an interference-free bit can be retransmitted without worrying about creating interference at the unintended receiver. These bits can be transferred to a sub-problem, where in a two-user interference channel, RXi has apriori access to W_i as depicted in Fig. 8, $i = 1, 2$. Since there will be no interference in this sub-problem, such bits can be communicated at higher rates.

2) **Bits of Common Interest:** Transmitters can use the delayed knowledge of the channel state information to identify bits that are of interest of both receivers. Below, we clarify this idea through several examples.

Example 3 [Opportunistic creation of bits of common interest]: Suppose at a time instant, each one of the transmitters sends one data bit, say a_4 and b_4 respectively. Later, using Delayed-CSIT, transmitters figure out that all links were equal to 1. In this case, both receivers have an equation of the transmitted bits, see Fig. 9(a). Now, we notice that it is sufficient to provide either of the transmitted bits, a_4 or b_4, to both receivers rather than retransmitting both bits. We refer to such bits as bits of common interest. Since such bits are useful for both receivers, they can be transmitted more efficiently.

Remark 12 (Pairing bits of common interest to create a two-multicast problem). We note that in Example 3, one of the transmitters takes the responsibility of delivering one bit of common interest to both receivers. To improve the performance, we can pair this problem with another similar problem as follows. Assume that in another time instant, each one of the transmitters sends one data bit, say a_5 and b_5 respectively. Later, transmitters figure out that all links were equal to 1, see Fig. 9(b). In this case, similar to Example 3, one of the bits a_5 and b_5, say b_5, can be chosen as the bit of common interest. Now we can pair cases depicted in Fig. 9(a) and Fig. 9(b). Then transmitters can simultaneously send bits a_4 and b_5 to both receivers. With this pairing, we take advantage of all four links to transmit information.

Remark 13 (Pairing ICs with side information to create a two-multicast problem (pairing Type-I)). The advantage of interference channels with side information, explained in Examples 1 and 2, is that due to the side information, there is no interference involved in the problem. The downside is that half of the links in the channel become irrelevant and unexploited. More precisely, the cross links in Example 1 and the direct links in Example 2 are not utilized to increase the rate. Here, we show that these two problems can be paired together to form an efficient two-multicast problem via creating bits of common interest. Referring to Fig. 7 one can easily verify that it is enough to deliver $a_1 \oplus a_3$ and $b_1 \oplus b_2$ to both receivers. For instance, if $a_1 \oplus a_3$ and $b_1 \oplus b_2$ are available at RX1, it can remove b_1 from $b_1 \oplus b_2$ to decode b_2, then using b_2 and $a_2 \oplus b_2$ it can decode a_2; finally, using a_3 and $a_1 \oplus a_3$ it can decode a_1. Indeed, bit $a_1 \oplus a_3$ available at TX1, and bit $b_1 \oplus b_2$ available at TX2, are bits of common interest and can be transmitted to both receivers simultaneously in the efficient two-multicast problem as depicted in Fig. 10. We note that for the two-multicast problem, the capacity region with no, delayed, or instantaneous CSIT is the same. We shall refer to this pairing as pairing **Type-I** throughout the paper.
Example 4 [Pairing interference-free bits with bits of common interest to create a two-multicast problem (pairing Type-II)]: Suppose at a time instant, each one of the transmitters sends one data bit, say a_6 and b_6 respectively. Later, using Delayed-CSIT, transmitters figure out that all links were equal to 1, see Fig. 11(a). In another time instant, each one of the transmitters sends one data bit, say a_7 and b_7 respectively. Later, transmitters figure out that only the cross links were equal to 1, see Fig. 11(b). Now, we observe that providing $a_6 \oplus a_7$ and $b_6 \oplus b_7$ to both receivers is sufficient to decode the bits. For instance if Rx1 is provided with $a_6 \oplus a_7$ and $b_6 \oplus b_7$, then it will use b_7 to decode b_6, from which it can obtain a_6, and finally using a_6 and $a_6 \oplus a_7$, it can decode a_7. Thus, bit $a_6 \oplus a_7$ available at Tx1, and bit $b_6 \oplus b_7$ available at Tx2, are bits of common interest and can be transmitted to both receivers simultaneously in the efficient two-multicast problem. We shall refer to this pairing as pairing Type-II throughout the paper.

Example 5 [Pairing bits of common interest with interference-free bits with swapped receivers to create a two-multicast problem (pairing Type-III)]: Suppose at a time instant, each one of the transmitters sends one data bit, say a_8 and b_8 respectively. Later, using Delayed-CSIT, transmitters figure out that all links were equal to 1 as in Fig. 12(a). In another time instant, each one of the transmitters sends one data bit, say a_9 and b_9 respectively. Later, transmitters figure out that all links were equal to 1 except the link from Tx2 to Rx1, see Fig. 12(b). In a similar case, assume that at another time instant, transmitters one and two send data bits a_{10} and b_{10} at the same time. Through Delayed-CSIT, transmitters realize that all links except the link between Tx1 and Rx2 were connected, see Fig. 12(c). We observe that providing $a_8 \oplus a_9$ and $b_8 \oplus b_{10}$ to both receivers is sufficient to decode the bits. For instance, if Rx1 is provided with $a_8 \oplus a_9$ and $b_8 \oplus b_{10}$, then it will use a_9 to decode a_8, from which it can obtain b_8, then using b_8 and $b_8 \oplus b_{10}$, it gains access to b_{10}, finally using b_{10}, it can decode a_{10} from $a_8 \oplus b_{10}$. Thus, bit $a_8 \oplus a_9$ available at Tx1, and bit $b_8 \oplus b_{10}$ available at Tx2, are bits of common interest and can be transmitted to both receivers simultaneously in the efficient two-multicast problem. We shall refer to this pairing as pairing Type-III throughout the paper.

As explained in the above examples, there are several ways to exploit the available side information at each transmitter. To achieve the capacity region, the first challenge is to evaluate various options and choose the most efficient one. The second challenge is that different opportunities may occur with different probabilities. This makes the process of matching, combining, and upgrading the status of the bits difficult. Unfortunately, there is no simple guideline to decide when to search for the most efficient combination of the opportunities and when to hold on to other schemes. It is also important to note that most of the opportunities we observe here, do not appear in achieving the DoF of the Gaussian multi-antenna interference channels (see e.g., [7], [8]).

B. Achievability Ideas with Output Feedback

In this subsection, we focus on the effect of the output feedback in the presence of Delayed-CSIT. The first observation is that through output feedback, each transmitter can evaluate the interference of the other transmitter, and therefore, has access to the previously transmitted signal of the other user. Thus, output feedback can create new path for information flow between each transmitter and the corresponding receiver, e.g.,

$$Tx_1 \rightarrow Rx_2 \rightarrow Tx_2 \rightarrow Rx_1.$$
Although this additional path can improve the rate region, the advantage of output feedback is not limited to that. We explain the new opportunities through two examples.

Example 6 [Creating two-multicast problem from ICs with side information]: In the previous subsection, we showed that interference-free transmissions can be upgraded to two-multicast problems through pairing. However, it is important to note that the different channel realizations used for pairing do not occur at the same probability. Therefore, it is not always possible to fully implement pairing in all cases. In particular, in some cases, some interference-free transmissions are left alone without possibility of pairing. In this example, we show that output feedback allows us to create bits of common interest out of these cases, which in turn allows us to create two-multicast problems. Referring to Fig. 13, one can see that through the output feedback links, transmitters one and two can learn a_{11} and a_{11} respectively. Therefore, either of the transmitters is able to create $a_{11} \oplus b_{11}$. It is easy to see that $a_{11} \oplus b_{11}$ is of interest of both receivers. Indeed, output feedback allows us to form a bit of common interest which can be delivered through the efficient two-multicast problem.

Fig. 13. Opportunistic creation of bits of common interest using output feedback: bit b_{11} is available at T_{X_2} via the feedback link from R_{X_1}; it is sufficient that T_{X_1} provides $a_{11} \oplus b_{11}$ to both receivers.

Example 7 [Creating two-multicast problem from ICs with swapped receivers and side information]: As another example, consider the two channel gain realizations depicted in Fig. 14. In these cases, using output feedback T_{X_1} can learn the transmitted bit of T_{X_2} (i.e. b_{12}), and then form $a_{13} \oplus b_{12}$. It is easy to see that $a_{13} \oplus b_{12}$ is useful for both receivers and thus is a bit of common interest. Similar argument is valid for the second receiver. This means that output feedback allows us to upgrade interference-free transmissions with swapped receivers to bits of common interest that can be used to form efficient two-multicast problems.

Fig. 14. Opportunistic creation of bits of common interest using output feedback: using output feedback T_{X_1} can learn the transmitted bit of T_{X_2} (i.e. b_{12}); now, we observe that providing $a_{13} \oplus b_{12}$ to both receivers is sufficient to decode the intended bits.

C. Key Idea for Converse Proofs with Delayed-CSIT

While we provide detailed proofs in Sections VI and VIII, we try to describe the main challenge in deriving the outer-bounds in this subsection. Consider the Delayed-CSIT scenario and suppose rate tuple (R_1, R_2) is achievable. Then for $\beta > 0$, we have

$$n (R_1 + \beta R_2) = H(W_1|W_2,G^n) + \beta H(W_2|G^n)$$

(\text{Fano})

$$\leq I(W_1;Y_1^n|W_2,G^n) + \beta I(W_2;Y_2^n|G^n) + n\epsilon_n$$

$$= \beta H(Y_2^n|G^n) + H(G^n|X_1^n|G^n) - \beta H(G^n|X_1^n|G^n) + n\epsilon_n.$$

(14)

We refer the reader to Section VI for the detailed derivation of each step. Here, we would like to find a value of β such that

$$H(G^n_{11}|X_1^n|G^n) - \beta H(G^n_{12}|X_1^n|G^n) \leq 0,$$

(15)

for any input distribution. Note that since the terms involved are only a function of X_1^n and the channel gains, this term resembles a broadcast channel formed by T_{X_1} and the two receivers. Therefore, the main challenge boils down to understanding the ratio of the entropies of the received signals in a broadcast channel, and this would be the main focus of this subsection.

Consider a transmitter that is connected to two receivers through binary fading channels as depicted in Fig. 15. We would like to understand how much this transmitter can privilege receiver one to receiver two, given outdated knowledge of the channel state information. Our metric would be the ratio of the entropies of the received signals. In other words, we would like to understand what is the lower-bound on the ratio of the entropy of the received signal at R_{X_2} to that of R_{X_1}. We first point out the result for the No-CSIT and Instantaneous-CSIT cases. With No-CSIT, from transmitter’s point of view the two receivers are identical and it cannot favor one over the other and as a result, the two entropies would be equal. However with Instantaneous-CSIT, transmitter can choose to transmit at time t only if $G_1[t] = 1$ and $G_2[t] = 0$. Thus, with Instantaneous-CSIT the ratio of interest could be as low as 0.

We point out that if $H(G^n_{11}|X_1^n|G^n) = 0$, then ratio is not defined. But we keep in mind that what we really care about is (15).
channel state information in order to favor receiver one. It is important to keep in mind that this should not be considered as a proof but rather just a helpful intuition. Also, we point out that for the two-user BFIC with Delayed-CSIT and OFB, we will derive a variation of this lemma in Section VIII.

Lemma 1. [Entropy Leakage] For the channel described above with Delayed-CSIT, and for any input distribution, we have

\[H(Y_2^n|G^n) \geq \frac{p}{1-q^2} H(Y_1^n|G^n). \]

(16)

Now that we have described the key ideas we incorporate in this paper, starting next section, we provide the proof of our main results.

V. **Achievability Proof of Theorem 1 [Delayed-CSIT]**

For \(0 \leq p \leq (3 - \sqrt{5})/2\), the capacity of the two-user BFIC with Delayed-CSIT is depicted in Fig. 17(a) and as a result, it is sufficient to describe the achievability for point \(A = (p, p)\). However, for \((3 - \sqrt{5})/2 < p \leq 1\), all bounds are active and the region, as depicted in Fig. 17(b), is the convex hull of points \(A, B,\) and \(C\). By symmetry, it is sufficient to describe the achievability for points \(A\) and \(C\) in this regime.

We first provide the achievability proof of point \(A\) for \(0.5 \leq p \leq 1\) in this section. Then, we provide an overview of the achievability proof of corner point \(C\) and we postpone the detailed proof to Appendix D. Finally in Appendix C, we present the achievability proof of point \(A\) for \(0 \leq p < 0.5\).

![Fig. 16. Four possible channel realizations for the network in Fig. 2. The transmitter sends out a data bit at time instant \(t\), and at the next time instant, using Delayed-CSIT, he knows which channel realization has occurred. If either of the realizations (a) or (b) occurred at time \(t\), then we remove the transmitted bit from the initial queue. However, if either of the realizations (c) or (d) occurred at time \(t\), we leave this bit in the initial queue. This way the transmitter favors receiver one over receiver two.](image)

As mentioned before, we do not intend to prove this lemma here. We only provide an input distribution for which this lower-bound is tight. Consider \(m\) bits drawn from i.i.d. Bernoulli 0.5 random variables and assume these bits are in some initial queue. At any time instant \(t\), the transmitter sends one of the bits in this initial queue (if the queue is empty, then the scheme is terminated). At time instant \(t + 1\), using Delayed-CSIT, the transmitter knows which one of the four possible channel realizations depicted in Fig. 16 has occurred at time \(t\). If either of the realizations (a) or (b) occurred at time \(t\), then we remove the transmitted bit from the initial queue. However, if either of the realizations (c) or (d) occurred at time \(t\), we leave this bit in the initial queue (i.e., among the bits that can be transmitted at any future time instant). Note that this way, any bit that is available at \(R_2\) would be available at \(R_1\). However, there will be bits that are only available at \(R_1\). Hence, transmitter has favored receiver one over receiver two. If we analyze this scheme, we get

\[H(Y_2^n|G^n) = \frac{p}{1-q^2} H(Y_1^n|G^n), \]

(17)

meaning that the bound given in (16) is achievable and thus, it is tight.

![Fig. 17. Capacity Region of the two-user Binary Fading IC with Delayed-CSIT for: (a) \(0 \leq p \leq (3 - \sqrt{5})/2\); and (b) \((3 - \sqrt{5})/2 < p \leq 1\).](image)

A. **Achievability Strategy for Corner Point \(A\)**

In this subsection, we describe a transmission strategy that achieves a rate tuple arbitrary close to corner point \(A\) for \(0.5 \leq p \leq 1\) as depicted in Fig. 17(b), i.e.,

\[R_1 = R_2 = \frac{1 - q^2}{1 + (1 - q^2)^{-1}p}. \]

(18)

Let the messages of transmitters one and two be denoted by \(W_1 = a_1, a_2, \ldots, a_m\), and \(W_2 = b_1, b_2, \ldots, b_m\), respectively, where data bits \(a_i\)'s and \(b_i\)'s are picked uniformly and
independently from \(\{0, 1\} \), \(i = 1, \ldots, m \). We show that it is possible to communicate these bits in
\[
n = (1 - q^2)^{-1} m + (1 - q^2)^{-2} pm + O(m^{2/3})
\]
time instants\(^3\) with vanishing error probability (as \(m \to \infty \)). Therefore achieving the rates given in \((18) \) as \(m \to \infty \).

Our transmission strategy consists of two phases as described below.

Phase 1 [uncategorized transmission]: At the beginning of the communication block, we assume that the bits at \(Tx \) are in queue \(Q_{i \rightarrow j} \) (the initial state of the bits), \(i, j = 1, 2 \). At each time instant \(t \), \(Tx \) sends out a bit from \(Q_{i \rightarrow j} \), and this bit will either stay in the initial queue or transition to one of the following possible queues will take place according to the description in Table[I] if at time instant \(t \), \(Q_{i \rightarrow j} \) is empty, then \(Tx \), \(i, j = 1, 2 \), remains silent until the end of Phase 1.

- **(A)** \(Q_{i,C} \): The bits that at the time of communication, all channel gains were equal to 1.
- **(B)** \(Q_{i \rightarrow j(1,2)} \): The bits that are of common interest of both receivers and do not fall in category (A).
- **(C)** \(Q_{i,j,i} \): The bits that are required by \(Rx \) but are available at the unintended receiver \(Rx \). A bit is in \(Q_{i,j,i} \) if \(Rx \) gets it without interference and \(Rx \) does not get it with or without interference.
- **(D)** \(Q_{i,j,i} \): The bits that are required by \(Rx \) but are available at the intended receiver \(Rx \). More precisely, a bit is in \(Q_{i,j,i} \) if \(Rx \) gets the bit without interference and \(Rx \) gets it with interference.
- **(E)** \(Q_{i \rightarrow F} \): The bits that we consider delivered and no retransmission is required for them.

More precisely, based on the channel realizations, a total of 16 possible configurations may occur at any time instant as summarized in Table[I]. The transition for each one of the channel realizations is as follows.

- **Case 1** \((\rightarrow) \): If at time instant \(t \), Case 1 occurs, then each receiver gets a linear combination of the bits that were transmitted. Then as illustrated in Fig.18 if either of such bits is provided to both receivers then the receivers can decode both bits. The transmitted bit of \(Tx \) leaves \(Q_{1 \rightarrow i} \) and joins \(Q_{i,C} \), \(i = 1, 2 \). Although we can consider such bits as bits of common interest, we keep them in an intermediate queue for now and as we describe later, we combine them with other bits to create bits of common interest.
- **Case 2** \((\rightarrow) \): In this case, \(Rx \) has already received its corresponding bit while \(Rx \) has a linear combination of the transmitted bits, see Table[I]. As a result, if the transmitted bit of \(Tx \) is provided to \(Rx \), it will be able to decode both bits. In other words, the transmitted bit from \(Tx \) is available at \(Rx \) and is required by \(Rx \). Therefore, transmitted bit of \(Tx \) leaves \(Q_{1 \rightarrow i} \) and joins \(Q_{1 \rightarrow 2|1} \). Note that the bit of \(Tx \) will not be retransmitted since upon delivery of the bit of \(Tx \), \(Rx \) can decode its corresponding bit. Since no retransmission is required, the bit of \(Tx \) leaves \(Q_{2 \rightarrow 2} \) and joins \(Q_{2,F} \) (the final state of the bits).
- **Case 3** \((\rightarrow) \): This is similar to Case 2 with swapping user IDs.
- **Case 4** \((\rightarrow) \): In this case, each receiver gets its corresponding bit without any interference. We consider such bits to be delivered and no retransmission is required. Therefore, the transmitted bit of \(Tx \) leaves \(Q_{i \rightarrow i} \) and joins \(Q_{i,F} \), \(i = 1, 2 \).
- **Case 5** \((\rightarrow) \) and **Case 6** \((\rightarrow) \): In these cases, \(Rx \) gets its corresponding bit interference free. We consider this bit to be delivered and no retransmission is required. Therefore, the transmitted bit of \(Tx \) leaves \(Q_{1 \rightarrow i} \) and joins \(Q_{1,F} \), while the transmitted bit of \(Tx \) remains in \(Q_{2 \rightarrow 2} \).
- **Case 7** \((\rightarrow) \): In this case, \(Rx \) has a linear combination of the transmitted bits, while \(Rx \) has not received anything, see Table[I]. It is sufficient to provide the transmitted bit of \(Tx \) to both receivers. Therefore, the transmitted bit of \(Tx \) leaves \(Q_{2 \rightarrow 2} \) and joins \(Q_{2 \rightarrow 1|2} \). Note that the bit of \(Tx \) will not be retransmitted since upon delivery of the bit of \(Tx \), \(Rx \) can decode its corresponding bit. This bit leaves \(Q_{1 \rightarrow 1} \) and joins \(Q_{1,F} \). Similar argument holds for Case 8 \((\rightarrow) \).
- **Cases 9,10,11, and 12**: Similar to Cases 5,6,7, and 8 with swapping user IDs respectively.
- **Case 13** \((\rightarrow) \): In this case, \(Rx \) has received the transmitted bit of \(Tx \) while \(Rx \) has not received anything, see Table[I]. Therefore, the transmitted bit of \(Tx \) remains in \(Q_{1 \rightarrow 1} \), while the transmitted bit of \(Tx \) is required by \(Rx \) and it is available at \(Rx \). Hence, the transmitted bit of \(Tx \) leaves \(Q_{2 \rightarrow 2} \) and joins \(Q_{2 \rightarrow 2|1} \). Queue \(Q_{2 \rightarrow 2} \) represents the bits at \(Tx \) that are available at \(Rx \), but \(Rx \) does not need them.
- **Case 14** \((\rightarrow) \): This is similar to Case 13 with swapping user IDs.
- **Case 15** \((\rightarrow) \): In this case, \(Rx \) has received the transmitted bit of \(Tx \) while \(Rx \) has received the transmitted
TABLE II
ALL POSSIBLE CHANNEL REALIZATIONS AND TRANSITIONS FROM THE INITIAL QUEUE TO OTHER QUEUES; SOLID ARROW FROM TRANSMITTER Tx1 TO RECEIVER Rxj INDICATES THAT G_{ij}[t] = 1, i, j ∈ {1, 2}, t = 1, 2, . . . , n. BIT “a” REPRESENTS A BIT IN Q_{1→1} WHILE BIT “b” REPRESENTS A BIT IN Q_{2→2}.

case ID	channel realization at time instant n	state transition	case ID	channel realization at time instant n	state transition		
1	a → Q_{1,c_1}	b → Q_{2,c_1}	9	a → Q_{1→1}	b → Q_{2→F}		
2	a → Q_{1→2	1}	b → Q_{2→F}	10	a → Q_{1→1}	b → Q_{2→F}	
3	a → Q_{1→F}	b → Q_{2→1	2}	11	a → Q_{1→(1,2)}	b → Q_{2→F}	
4	a → Q_{1→F}	b → Q_{2→F}	12	a → Q_{1→(1,2)}	b → Q_{2→F}		
5	a → Q_{1→F}	b → Q_{2→2}	13	a → Q_{1→1}	b → Q_{2→2	1}	
6	a → Q_{1→F}	b → Q_{2→2}	14	a → Q_{1→1	2}	b → Q_{2→2}	
7	a → Q_{1→F}	b → Q_{2→(1,2)}	15	a → Q_{1→1	2}	b → Q_{2→2	1}
8	a → Q_{1→F}	b → Q_{2→(1,2)}	16	a → Q_{1→1}	b → Q_{2→2}		

bit of Tx1, see Table [II]. In other words, the transmitted bit of Tx2 is available at Rx1 and is required by Rx2; while the transmitted bit of Tx1 is available at Rx2 and is required by Rx1. Therefore, we have transition from Q_{i→n} to Q_{i→|i|}, i = 1, 2.

- Case 16: The transmitted bit of Tx1 remains in Q_{i→i}, i = 1, 2.

Phase 1 goes on for

\[(1 - q^2)^{-1} m + m^2\] \((20) \)

time instants, and if at the end of this phase, either of the queues Q_{i→i} is not empty, we declare error type-I and halt the transmission (we assume m is chosen such that m^2 ∈ Z).

Assuming that the transmission is not halted, let N_{i,c_1}, N_{i→j|j}, and N_{i→(1,2)} denote the number of bits in queues Q_{i,c_1}, Q_{i→j|j}, and Q_{i→(1,2)} respectively at the end of the transitions, i = 1, 2, and j = i, i. The transmission strategy will be halted and an error type-II will occur, if any of the following events happens.

\[N_{i,c_1} > \mathbb{E}[N_{i,c_1}] + m^2 \triangleq n_{i,c_1}, \quad i = 1, 2;\]
\[N_{i→j|j} > \mathbb{E}[N_{i→j|j}] + m^2 \triangleq n_{i→j|j}, i = 1, 2, \quad j = i, i;\]
\[N_{i→(1,2)} > \mathbb{E}[N_{i→(1,2)}] + m^2 \triangleq n_{i→(1,2)}, i = 1, 2. \quad (21)\]

From basic probability, we know that

\[\mathbb{E}[N_{i,c_1}] = \frac{\Pr (\text{Case 1}) m}{1 - \sum_{i=9,10,13,16} \Pr (\text{Case i})} = (1 - q^2)^{-1} p^4 m, \]
\[\mathbb{E}[N_{i→j|j}] = \frac{\sum_{j=14,15} \Pr (\text{Case j}) m}{1 - \sum_{i=9,10,13,16} \Pr (\text{Case i})} = (1 - q^2)^{-1} pq^2 m, \]
\[\mathbb{E}[N_{i→(1,2)}] = \frac{\Pr (\text{Case 2}) m}{1 - \sum_{i=9,10,13,16} \Pr (\text{Case i})} = (1 - q^2)^{-1} p^3 q m, \]
\[\mathbb{E}[N_{i→(1,2)}] = \frac{\sum_{j=11,12} \Pr (\text{Case j}) m}{1 - \sum_{i=9,10,13,16} \Pr (\text{Case i})} = (1 - q^2)^{-1} p^2 q m. \quad (22)\]

Furthermore, we can show that the probability of errors of types I and II decreases exponentially with m. More
precisely, we use Chernoff-Hoeffding bound\(^5\) to bound the error probabilities of types I and II. For instance, to bound the probability of error type-I, we have

\[
Pr[\text{error type - I}] \leq \sum_{i=1}^{2} Pr[|Q_{i\rightarrow i}| \text{ is not empty}] \\
\leq 4 \exp \left(\frac{-m^{4/3}}{4(n(1-q^2))q^2} \right) \\
= 4 \exp \left(\frac{-m^{4/3}}{4(1-q^2)q^2 \left[(1-q^2)^{-1} n + m \frac{\bar{z}}{2} \right]} \right),
\]

which decreases exponentially to zero as \(m \to \infty\).

At the end of Phase 1, we add 0’s (if necessary) in order to make queues \(Q_{1,c_1}, Q_{i\rightarrow j|j},\) and \(Q_{i\rightarrow (1,2)}\) of size equal to \(n_i, c_1, n_i\rightarrow j|j,\) and \(n_i\rightarrow (1,2)\) respectively as defined in \((21)\), \(i = 1, 2,\) respectively.

For the rest of this subsection, we assume that Phase 1 is completed and no error has occurred.

We now use the ideas described in Section IV-A to further create bits of common interest. Depending on the value of \(p,\) we use different ideas. We break the rest of this subsection into two parts: (1) \(0.5 \leq p \leq \left(\sqrt{5} - 1 \right)/2\); and (2) \(\left(\sqrt{5} - 1 \right)/2 < p \leq 1\).

In what follows, we first describe the rest of the achievability strategy for \(0.5 \leq p \leq \left(\sqrt{5} - 1 \right)/2\).

In particular, we demonstrate how to incorporate the ideas of Section IV-A to create bits of common interest in an optimal way.

Type I Combining bits in \(Q_{i\rightarrow i}|i,\) and \(Q_{i\rightarrow i}|i\); consider the bits that were transmitted in Cases 2 and 14, see Fig. 19. Observe that if we provide \(a_1 \oplus a_2\) to both receivers then \(Rx_1\) can decode bits \(a_1\) and \(a_2\), whereas \(Rx_2\) can decode bit \(b_1\). Therefore, \(a_1 \oplus a_2\) is a bit of common interest and can join \(Q_{1\rightarrow (1,2)}\).

Hence, as illustrated in Fig. 20 we can remove two bits in \(Q_{1\rightarrow 2}|1\) and \(Q_{1\rightarrow 2}|2,\) by inserting their XOR in \(Q_{1\rightarrow (1,2)}\), and we deliver this bit of common interest to both receivers during the second phase. Note that due to the symmetry of the channel, similar argument holds for \(Q_{2\rightarrow 1}|2\) and \(Q_{2\rightarrow 2}|1\).

![Fig. 19.](image)

For 0.5 \(\leq p \leq \left(\sqrt{5} - 1 \right)/2,\) we have \(E[N_{i\rightarrow i}|i] \leq E[N_{i\rightarrow i}|i]\). Therefore, after this combination, queue \(Q_{i\rightarrow i}|i\) becomes empty and we have

\[
E[N_{i\rightarrow i}|i] - E[N_{i\rightarrow i}|i] = (1-q^2)^{-1} pq (q-p^2) m
\]

bits left in \(Q_{i\rightarrow i}|i\).

Type II Combining the bits in \(Q_{1,c_1}\) and \(Q_{i\rightarrow i}|i\); consider the bits that were transmitted in Cases 1 and 15, see Fig. 21. It is easy to see that providing \(a_1 \oplus a_2\) and \(b_1 \oplus b_2\) to both receivers is sufficient to decode their corresponding bits. For instance, \(Rx_1\) removes \(b_2\) from \(b_1 \oplus b_2\) to decode \(b_1\), then uses \(b_1\) to decode \(a_1\) from \(a_1 \oplus b_1\). Therefore, \(a_1 \oplus a_2\) and \(b_1 \oplus b_2\) are bits of common interest and can join \(Q_{1\rightarrow (1,2)}\) and \(Q_{2\rightarrow (1,2)}\) respectively.

Hence, we can remove two bits in \(Q_{1,c_1}\) and \(Q_{i\rightarrow i}|i\), by inserting their XOR in \(Q_{i\rightarrow (1,2)}, i = 1, 2,\) and then deliver this bit of common interest to both receivers during the second phase.

![Fig. 20.](image)

For 0.5 \(\leq p \leq \left(\sqrt{5} - 1 \right)/2,\) we have \((1-q^2)^{-1} pq (q-p^2) m \leq E[N_{i\rightarrow i}|c_1].\) Therefore, after combining the bits, queue \(Q_{i\rightarrow i}|c_1\) becomes empty and we have

\[
E[N_{i\rightarrow i}|c_1] + m \frac{\bar{z}}{2} - E[N_{i\rightarrow i}|c_1] - E[N_{i\rightarrow i}|i] = (1-q^2)^{-1} pq (q-p^2) m + m \frac{\bar{z}}{2}
\]

bits left in \(Q_{i\rightarrow i}, i = 1, 2.\)

Finally, we need to describe what happens to the remaining \((1-q^2)^{-1} pq (q-p^2) m + m \frac{\bar{z}}{2}\) bits in \(Q_{i,c_1}.\) As mentioned before, a bit in \(Q_{i,c_1}\) can be viewed as a bit of common interest by itself. For the remaining bits in \(Q_{i,c_1},\) we put the first half

\[\text{... } \bar{a}_1 \bar{a}_2 \bar{a}_1 \bar{a}_2 \bar{a}_1 \bar{a}_2 \text{...} \]

\[\text{... } \bar{a}_2 \oplus \bar{a}_2 \oplus \bar{a}_1 \oplus \bar{a}_1 \text{...} \]
in $Q_{1 \rightarrow \{1,2\}}$ (suppose m is picked such that the remaining number of bits is even). Note that if these bits are delivered to R_{X_2}, then R_{X_2} can decode the first half of the remaining bits in Q_{2,c_1} as well. Therefore, the first half of the bits in Q_{2,c_1} can join $Q_{2,F}$.

Then, we put the second half of the remaining bits in Q_{2,c_1} in $Q_{2 \rightarrow \{1,2\}}$. Similar to the argument presented above, the second half of the bits in Q_{1,c_1} join $Q_{1,F}$.

Hence at the end of Phase 1, if the transmission is not halted, we have a total of

$$
(1 - q^2)^{-1} \left[\frac{p^2 q}{2} + \frac{pq^2}{2} \right] \text{Cases 11 and 12 XOR opportunities}
+ 0.5 (p^4 - pq^2 + p^3 q) m + 2.5m^{2/3}
$$

remaining Case 1

$$
= (1 - q^2)^{-1} 0.5pm + 2.5m^{2/3}
$$

number of bits in $Q_{1 \rightarrow \{1,2\}}$. Same result holds for $Q_{2 \rightarrow \{1,2\}}$.

This completes the description of Phase 1 for $0.5 \leq p \leq \sqrt{5} / 2$. For $(\sqrt{5} - 1) / 2 < p \leq 1$, we combine the bits as follows. For this range of p, after Phase 1, the number of bits in each queue is such that the mergings described above are not optimal and we have to rearrange them as described below.

- **Type I** Combining $Q_{1 \rightarrow i_1}$ and $Q_{i_1 \rightarrow i_2}$: We have already described this opportunity for $0.5 \leq p \leq \sqrt{5} / 2$. We create the XOR of the bits in $Q_{1 \rightarrow i_1}$ and $Q_{1 \rightarrow i_2}$ and put the XOR of them in $Q_{1 \rightarrow \{1,2\}}$. Note that due to the symmetry of the channel, similar argument holds for $Q_{2 \rightarrow \{1,2\}}$.

For $(\sqrt{5} - 1) / 2 < p \leq 1$, $E[N_{1 \rightarrow i_1}] \leq E[N_{i_1 \rightarrow i_2}]$, $i = 1, 2$. Therefore after combining the bits, queue $Q_{1 \rightarrow i_1}$ becomes empty, and we have

$$
E[N_{1 \rightarrow i_1}] - E[N_{i_1 \rightarrow i_2}] = (1 - q^2)^{-1} pq (p^2 - q) m
$$

(27)

bits left in $Q_{1 \rightarrow i_1}$, $i = 1, 2$.

- **Type III** Combining the bits in Q_{i,c_1} and $Q_{i \rightarrow i_2}$: Consider the bits that were transmitted in Cases 1, 2, and 3, see Fig. 22. Now, we observe that providing $a \oplus c$ and $b \oplus f$ to both receivers is sufficient to decode their corresponding bits. For instance, R_{X_1} will have $a \oplus b$, c, $e \oplus f$, $a \oplus c$, and $b \oplus f$, from which it can recover a, c, and e. Similar argument holds for R_{X_2}. Therefore, $a \oplus c$ and $b \oplus f$ are bits of common interest and can join $Q_{1 \rightarrow \{1,2\}}$ and $Q_{2 \rightarrow \{1,2\}}$ respectively. Hence, we can remove two bits in Q_{1,c_1} and $Q_{i \rightarrow i_2}$, by inserting their XORs in $Q_{1 \rightarrow \{1,2\}}$, $i = 1, 2$, and then deliver this bit of common interest to both receivers during the second phase.

For $(\sqrt{5} - 1) / 2 < p \leq 1$, we have

$$
(1 - q^2)^{-1} pq (p^2 - q) m \leq E[N_{i,c_1}].
$$

Therefore after combining the bits, queue $Q_{1 \rightarrow i_1}$ becomes empty and we have

$$
E[N_{i,c_1}] + m^2 - (E[N_{i \rightarrow i_1}] - E[N_{i \rightarrow i_2}])
= (1 - q^2)^{-1} (p^4 - p^3 q + pq^2) m + m^2
$$

(28)

bits left in Q_{1,c_1}.

We treat the remaining bits in Q_{1,c_1} as described before. Hence at the end of Phase 1, if the transmission is not halted, we have a total of

$$
(1 - q^2)^{-1} \left[\frac{p^2 q}{2} + \frac{pq^2}{2} \right] \text{Cases 11 and 12 XOR opportunities}
+ 0.5 (p^4 - pq^2 + p^3 q) m + 2.5m^{2/3}
$$

remaining Case 1

$$
= (1 - q^2)^{-1} 0.5pm + 2.5m^{2/3}
$$

(29)

number of bits in $Q_{1 \rightarrow \{1,2\}}$. Same result holds for $Q_{2 \rightarrow \{1,2\}}$.

To summarize, at the end of Phase 1 assuming that the transmission is not halted, by using coding opportunities of types I, II, and III, we are only left with $(1 - q^2)^{-1} 0.5pm + 2.5m^{2/3}$ bits in queue $Q_{i \rightarrow \{1,2\}}$, $i = 1, 2$.

We now describe how to deliver the bits of common interest in Phase 2 of the transmission strategy. The problem resembles a network with two transmitters and two receivers where each transmitter Tx_i wishes to communicate an independent message W_i to both receivers, $i = 1, 2$. The channel gain model is the same as described in Section III. We refer to this network as the two-multicast network as depicted in Fig. 23.

We have the following result for this network.

![Fig. 23. Two-multicast network. Transmitter Tx_i wishes to reliably communicate message W_i to both receivers, $i = 1, 2$. The capacity region with no, delayed, or instantaneous CSIT is the same.](image)

Lemma 2. For the two-multicast network as described above, we have

$$
C_{multicast}^{\text{No-CSIT}} = C_{multicast}^{\text{DCSIT}} = C_{multicast}^{\text{ICSIT}}
$$

(30)

and, we have

$$
C_{multicast}^{\text{ICSIT}} = \begin{cases}
R_i & i \leq p, \\
R_1 + R_2 & i = 1, 2 \end{cases}
$$

(31)

This result basically shows that the capacity region of the two-multicast network described above is equal to the capacity region of the multiple-access channel formed at either of the receivers. The proof of Lemma 2 is presented in Appendix E.
Phase 2 [transmitting bits of common interest]: In this phase, we deliver the bits in $Q_{1 \rightarrow \{1,2\}}$ and $Q_{2 \rightarrow \{1,2\}}$ using the transmission strategy for the two-multicast problem. More precisely, the bits in $Q_{i \rightarrow \{1,2\}}$ will be considered as the message of Tx_i and they will be encoded as in the achievability scheme of Lemma 2 when $i = 1, 2$. Fix $\epsilon, \delta > 0$, from Lemma 2 we know that rate tuple

$$(R_1, R_2) = \frac{1}{2} \left((1 - q^2) - \delta, (1 - q^2) - \delta \right)$$

is achievable with decoding error probability less than or equal to ϵ. Therefore, transmission of the bits in $Q_{1 \rightarrow \{1,2\}}$ and $Q_{2 \rightarrow \{1,2\}}$ will take

$$t_{total} = \frac{(1 - q^2)^{-1} pm + 5m^2/3}{(1 - q^2) - \delta}. \quad (32)$$

Therefore, the total transmission time of our two-phase achievability strategy is equal to

$$(1 - q^2)^{-1} m + m^2 + \frac{(1 - q^2)^{-1} pm + 5m^2/3}{(1 - q^2) - \delta}, \quad (33)$$

hence, if we let $\epsilon, \delta \to 0$ and $m \to \infty$, the decoding error probability of delivering bits of common interest goes to zero, and we achieve a symmetric sum-rate of

$$R_1 = R_2 = \lim_{m \to \infty} \frac{m}{t_{total}} = \frac{(1 - q^2)}{1 + (1 - q^2)^{-1} p}. \quad (34)$$

This completes the achievability proof of point A for $0.5 \leq p \leq 1$.

B. Overview of the Achievability Strategy for Corner Point C

We now provide an overview of the achievability strategy for corner point C depicted in Fig. 17 for $\left(3 - \sqrt{5}\right)/2 < p \leq 1$, i.e.

$$(R_1, R_2) = (pq(1 + q), p), \quad (35)$$

and we postpone the detailed proof to Appendix D.

Compared to the achievability strategy of the sum-rate point, the challenges in achieving the other corner points arise from the asymmetricity of the rates. At this corner point, while Tx_2 (the primary user) communicates at full rate of p, Tx_1 (the secondary user) communicates at a lower rate and tries to coexist with the primary user. The achievability strategy is based on the following two principles.

1) If the secondary user creates interference at the primary receiver, it is the secondary user’s responsibility to resolve this interference;

2) For the achievability of the optimal sum-rate point A (see Fig. 17(b)), the bits of common interest were transmitted such that both receivers could decode them. However, for corner point C, when the primary receiver obtains a bit of common interest, we revise the coding scheme in a way that favors the primary receiver.

Our transmission strategy consists of five phases as summarized below.

- Phase 1 [uncategorized transmission]: This phase is similar to Phase 1 of the achievability of the optimal sum-rate point A. The main difference is due to the fact that the transmitters have unequal number of bits at the beginning. In Phase 1, Tx_1 (the secondary user) transmits all its initial bits while Tx_2 (the primary user) only transmits part of its initial bits. Transmitter two postpones the transmission of its remaining bits to Phase 3.

- Phase 2 [upating status of the bits transmitted when either of the Cases 7 or 8 (11 or 12) occurred]: For the achievability of optimal sum-rate point A, we transferred the transmitted bits of Tx_2 (Tx_1) to the two-multicast subproblem by viewing them as bits of common interest. However, this scheme turns out to be suboptimal for corner point C. In this case, we retransmit these bits during Phase 2 and update their status based on the channel realization at the time of transmission. Phase 2 provides coding opportunities that we exploit in Phases 4 and 5.

- Phase 3 [uncategorized transmission vs interference management]: In this phase, the primary user transmits the remaining initial bits while the secondary user tries to resolve as much interference as it can at the primary receiver. To do so, the secondary user sends the bits that caused interference at the primary receiver during Phase 1, at a rate low enough such that both receivers can decode and remove them regardless of what the primary transmitter does. Note that pq of the time, each receiver gets interference-free signal from the secondary transmitter, hence, the secondary transmitter can take advantage of these time instants to deliver its bits during Phase 3.

- Phases 4 and 5 [delivering interference-free bits and interference management]: In the final phases, each transmitter has two main objectives: (1) communicating the
bits required by its own receiver but available at the unintended receiver; and (2) mitigating interference at the unintended receiver. This task can be accomplished by creating the XOR of the bits similar to coding type-I described in Section [V] with a modification: we first encode these bits and then create the XOR of the encoded bits. Moreover, the balance of the two objectives is different between the primary user and the secondary user.

As mentioned before, the detailed proof of the achievability for corner point C is provided in Appendix [D]. In the following section, we describe the converse proof for the two-user BFIC with Delayed-CSIT.

VI. CONVERSE PROOF OF THEOREM [DELAYED-CSIT]

In this section, we provide the converse proof for Theorem [2]. As mentioned in Remark [3], the outer-bound on the capacity region with only Delayed-CSIT ([11]) is in fact the intersection of the outer-bounds on the individual rates (i.e., $R_i \leq p$, $i = 1, 2$) and the capacity region with Delayed-CSIT and OFB ([12]), Therefore, the converse proof that we will later present in Section [VIII] for the case of Delayed-CSIT and OFB suffices. However, specific challenges arise when OFB is present and careful considerations must be taken into account. Here, we independently present the converse proof of Theorem [2] to highlight the key techniques without worrying about the details needed for the case of OFB.

We first present the Entropy Leakage Lemma that plays a key role in deriving the converse. Consider the scenario where a transmitter is connected to two receivers through binary fading channels as in Fig. [24]. Suppose $G_1[t]$ and $G_2[t]$ are distributed as i.i.d. Bernoulli RVs (i.e., $G_i[t] \sim B(p)$), $i = 1, 2$. In this channel the received signals are given as

$$Y_i[t] = G_i[t]X[t], \quad i = 1, 2,$$

where $X[t]$ is the transmit signal at time t. We have the following lemma.

Lemma 3. [Entropy Leakage] For the channel described above with Delayed-CSIT and for any input distribution, we have

$$H(Y_2^n|G^n) \geq \frac{1}{2-p} H(Y_1^n|G^n).$$

Remark 14. Note that with No-CSIT, from the transmitter’s point of view, the two receivers are identical and it cannot favor one over the other and as a result, we have $H(Y_2^n|G^n) = H(Y_1^n|G^n)$. With Instantaneous-CSIT this ratio can become zero. Therefore, this lemma captures the effect of Delayed-CSIT on the entropy of the received signals at the two receivers.

Proof: For time instant t where $1 \leq t \leq n$, we have

$$H(Y_2[t]|Y_2^{t-1}, G_t) = pH(X[t]|Y_2^{t-1}, G_2[t] = 1, G_t^{t-1})$$

$$(a) = pH(X[t]|Y_2^{t-1}, G_t)$$

$$(b) \geq pH(X[t]|Y_2^{t-1}, Y_1^{t-1}, G_t)$$

$$(c) = \frac{p}{1-q^2} H(Y_1[t], Y_2[t]|Y_2^{t-1}, Y_1^{t-1}, G_t^{t-1}, G_t^t),$$

where (a) holds since $X[t]$ is independent of the channel realization at time instant t; (b) follows from the fact that conditioning reduces entropy; and (c) follows from the fact that $Pr(G_1[t] = G_2[t] = 0) = q^2$. Therefore, we have

$$\sum_{t=1}^{n} H(Y_2[t]|Y_2^{t-1}, G_t)$$

$$\geq \frac{1}{2-p} \sum_{t=1}^{n} H(Y_1[t], Y_2[t]|Y_2^{t-1}, Y_1^{t-1}, G_t^t),$$

and since the transmit signals at time instant t are independent from the channel realizations in future time instants, we have

$$\sum_{t=1}^{n} H(Y_2[t]|Y_2^{t-1}, G_t)$$

$$\geq \frac{1}{2-p} \sum_{t=1}^{n} H(Y_1[t], Y_2[t]|Y_2^{t-1}, Y_1^{t-1}, G^n),$$

hence, we get

$$H(Y_2^n|G^n) \geq \frac{1}{2-p} H(Y_1^n, Y_2^n|G^n) \geq \frac{1}{2-p} H(Y_1^n|G^n).$$

This completes the proof of the lemma.

We now derive the converse for Theorem [2]. The outer-bound on R_i is the same under no, delayed, and instantaneous CSIT, and we present it in Appendix [B]. In this section, we provide the proof of

$$R_i + (1 + q)R_i \leq p(1 + q)^2; \quad i = 1, 2.$$

By symmetry, it is sufficient to prove it for $i = 1$. Let $\beta = (1 + q)$, and suppose rate tuple (R_1, R_2) is achievable. Then we have

$$n(R_1 + \beta R_2) = H(W_1) + \beta H(W_2)$$

$$(a) = H(W_1|W_2, G^n) + \beta H(W_2|G^n)$$

$$(Fano) \leq I(W_1; Y_1^n|W_2, G^n) + \beta I(W_2; Y_2^n|G^n) + n\epsilon_n$$

$$= H(Y_1^n|W_2, G^n) - H(Y_1^n|W_1, W_2, G^n)$$

$$(\leq 0)$$

This can be done by simply remaining silent whenever $G_2[t] = 1$.

Fig. 24. A transmitter connected to two receivers through binary fading channels. Using Delayed-CSIT, the transmitter can privilege receiver one to receiver two. Lemma 3 formalizes this privilege.
\[+ \beta H(Y_2^n | G^n) - \beta H(Y_2^n | W_2, G^n) + n\epsilon_n \]
\[\leq \beta H(Y_2^n | G^n) + H(Y_2^n | W_2, X_2^n, G^n) \]
\[- \beta H(Y_2^n | W_2, X_2^n, G^n) + n\epsilon_n \]
\[= \beta H(G^n_{12} X_1^n | W_2, X_2^n, G^n) + n\epsilon_n \]
\[\leq \beta H(Y_2^n | G^n) + \beta H(G^n_{12} X_1^n | W_2, G^n) + n\epsilon_n \]
\[\leq \beta \sum_{t=1}^{n} H(Y_2[t] | G^n) + n\epsilon_n \]
\[\leq \beta \sum_{t=1}^{n} H(Y_2[t] | G^n) + n\epsilon_n \]
\[\leq n\beta(1 - q^2) + \epsilon_n = np(1 + q)^2 + n\epsilon_n. \quad (43) \]

where (a) holds since \(W_1, W_2 \) and \(G^n \) are mutually independent; (b) and (c) hold since \(X_2^n \) is a deterministic function of \(W_2 \) and \(G^n \); (d) follows from

\[0 \leq H(G^n_{11} X_1^n | G^n) - H(G^n_{12} X_1^n | W_2, G^n) \]
\[= I(G^n_{11} X_1^n; W_2 | G^n) \leq I(W_1; G^n_{11} X_1^n; W_2 | G^n) \]
\[= I(W_1; W_2 | G^n) + I(G^n_{11} X_1^n; W_2 | W_1, G^n) = 0, \]
\[= 0 \text{ since } W_1 \perp W_2 \perp G^n = 0 \text{ since } X_1^n = i_1(W_1, G^n) \]
\[\leq H(G^n_{12} X_1^n | G^n) = H(G^n_{12} X_1^n | W_2, G^n), \]

which implies \(H(G^n_{11} X_1^n | G^n) = H(G^n_{12} X_1^n | W_2, G^n) \), and similarly \(H(G^n_{12} X_1^n | G^n) = H(G^n_{12} X_1^n | W_2, G^n) \); (e) is true since conditioning reduces entropy; and (f) holds since the probability that at least one of the links connected to \(R_2 \) is equal to 1 at each time instant is \((1 - q^2) \). Dividing both sides by \(n \) and let \(n \to \infty \), we get

\[R_1 + (1 + q)R_2 \leq p(1 + q)^2. \quad (45) \]

This completes the converse proof for Theorem 3.

VII. ACHIEVABILITY PROOF OF THEOREM 3 [DELAYED-CSIT AND OFB]

We now focus on the effect of the output feedback in the presence of Delayed-CSIT. In particular, we demonstrate how output feedback can be utilized to further improve the achievable rates. The capacity region of the two-user BFIC with Delayed-CSIT and OFB is given by

\[C_{\text{DCSIT,OFB}} = \]
\[\{ R_1, R_2 \in \mathbb{R}^+ \text{ s.t. } R_i + (1 + q)R_i \leq p(1 + q)^2, \quad i = 1, 2 \}, \]

and is depicted in Fig. 25.

The achievability strategy of the corner points \((1 - q^2, 0) \) and \((0, 1 - q^2) \), is based on utilizing the additional communication paths created by the means of the output feedback links, e.g.,

\[T_{X_1} \to R_{X_2} \to T_{X_2} \to R_{X_1}, \]

and is presented in Appendix F. Here, we only describe the transmission strategy for the sum-rate point, i.e.

\[R_1 = R_2 = \frac{(1 - q^2)}{1 + (1 - q^2)^{-1} p}. \quad (47) \]

Let the messages of transmitters one and two be denoted by \(W_1 = a_1, a_2, \ldots, a_m \), and \(W_2 = b_1, b_2, \ldots, b_m \), respectively, where data bits \(a_i \)'s and \(b_i \)'s are picked uniformly and independently from \(\{0,1\}, i = 1, \ldots, m \). We show that it is possible to communicate these bits in

\[n = (1 - q^2)^{-1} m + (1 - q^2)^{-2} pm + O\left(m^{2/3}\right) \quad (48) \]

time instants with vanishing error probability (as \(m \to \infty \)). Therefore achieving the rates given in (47) as \(m \to \infty \).

Our transmission strategy consists of two phases as described below.

Phase 1 [uncategorized transmission]: This phase is identical to Phase 1 of Section V. At the beginning of the communication block, we assume that the bits at \(T_{x_i} \) are in queue \(Q_{i-1}, i = 1, 2 \). At each time instant, \(T_{x_i} \) sends out a bit from \(Q_{i-1} \), and this bit will either stay in the initial queue or transition to a new queue that will take place. The transitions are identical to what we have already described in Table I, therefore, we are not going to repeat them here. Phase 1 goes on for

\[(1 - q^2)^{-1} m + m^{2/3} \quad (49) \]

time instants and if at the end of this phase, either of the queues \(Q_{1-1} \) or \(Q_{2-2} \) is not empty, we declare error type-I and halt the transmission.

The transmission strategy will be halted and an error type-II will occur, if any of the following events happens.

\[N_{i, c_i} > E[N_{i, c_i}] + m^{\frac{3}{2}} \triangleq n_{i, c_i}, \quad i = 1, 2; \]
\[N_{i \to j | j} > E[N_{i \to j | j}] + m^{\frac{3}{2}} \triangleq n_{i \to j | j}, \quad i = 1, 2, \quad j = i, \bar{i}; \]
\[N_{i \to \{1,2\}} > E[N_{i \to \{1,2\}}] + m^{\frac{3}{2}} \triangleq n_{i \to \{1,2\}}, \quad i = 1, 2. \quad (50) \]

From basic probability, we know that

\[E[N_{i, c_i}] = \frac{\Pr(\text{Case 1}) m}{1 - \sum_{t=9,10,13,16} \Pr(\text{Case 1})} = (1 - q^2)^{-1} p^4 m, \]
Using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with m.

At the end of Phase 1, we add 0’s (if necessary) in order to make queues Q_{i,c_1}, Q_{i,j_1}, and $Q_{i,(1,2)}$ of size equal to n_{i,c_1}, n_{i,j_1}, and $n_{i,(1,2)}$ respectively as defined in (50). For the rest of this subsection, we assume that Phase 1 is completed and no error has occurred. We now use the ideas described in Section IV for output feedback, to further create bits of common interest.

- Updating the status of bits in Q_{i,c_1} to bits of common interest: A bit in Q_{i,c_1} can be considered as a bit of common interest. Also note that it is sufficient to deliver only one of the two bits transmitted simultaneously during Case 1. Therefore, T_{x_1} creates the XOR of the first half of the bits in Q_{1,c_1} to $Q_{2,(1,2)}$, whereas T_{x_2} updates the status of the second half of the bits in Q_{2,c_1} to $Q_{2,(1,2)}$. Hence, after updating the status of bits in Q_{i,c_1}, we have

$$E[N_{i→i,j}] = \sum_{j=14}^{15} \Pr(\text{Case } j)m = (1 - q^2)^{-1}pq^2m,$$

$$E[N_{i→i,j}] = 1/\sum_{j=9}^{14}\Pr(\text{Case } 2)m = (1 - q^2)^{-1}pq^2,$$

$$E[N_{i→(1,2)}] = \sum_{j=11}^{12} \Pr(\text{Case } j)m = (1 - q^2)^{-1}pq^2q.$$

(51)

bits in $Q_{i→(1,2)}, i = 1, 2$.

- Upgrading ICs with side information to a two-multicast problem using OFB: As described above, there are $E[N_{i→i,j}] + m\frac{1}{2}$ bits in $Q_{i→i,j}$ at the end of Phase 1. Now, T_{x_1} creates the XOR of the first half of the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ and updates the status of the resulting bits to $Q_{1→(1,2)}$. Note that as described in Example 6 of Section IV, the XOR of these bits is a bit of common interest. On the other hand, T_{x_2} creates the XOR of the second half of the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ and updates the status of the resulting bits to $Q_{2→(1,2)}$. Thus, we have

$$E[N_{i→i,j}] = (1 - q^2)^{-1}pq^2q + \frac{1}{2}pq^2m + \frac{3}{2}m\frac{1}{2}.$$

(52)

bits in $Q_{i→(1,2)}, i = 1, 2$.

- Upgrading ICs with side information and swapped receivers to a two-multicast problem using OFB: As described above, there are $E[N_{i→i,j}] + m\frac{1}{2}$ bits in $Q_{i→i,j}$. T_{x_1} creates the XOR of the first half of the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ and updates the status of the resulting bits to $Q_{1→(1,2)}$. Note that as described in Example 7 of Section IV, the XOR of these bits is a bit of common interest. On the other hand, T_{x_2} creates the XOR of the second half of the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ and updates the status of the resulting bits to $Q_{2→(1,2)}$. Hence, we have

$$E[N_{i→i,j}] = (1 - q^2)^{-1}pq^2q + \frac{1}{2}pq^2 + \frac{1}{2}pq^2m + \frac{5}{2}m\frac{1}{2}.$$

(53)

bits in $Q_{i→(1,2)}, i = 1, 2$.

- Upgrading ICs with side information and swapped receivers to a two-multicast problem using OFB: As described above, there are $E[N_{i→i,j}] + m\frac{1}{2}$ bits in $Q_{i→i,j}$. T_{x_1} creates the XOR of the first half of the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ and updates the status of the resulting bits to $Q_{1→(1,2)}$. Note that as described in Example 7 of Section IV, the XOR of these bits is a bit of common interest. On the other hand, T_{x_2} creates the XOR of the second half of the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ and updates the status of the resulting bits to $Q_{2→(1,2)}$. Hence, we have

$$E[N_{i→i,j}] = (1 - q^2)^{-1}pq^2q + \frac{1}{2}pq^2 + \frac{1}{2}pq^2m + \frac{5}{2}m\frac{1}{2}.$$

(54)

bits in $Q_{i→(1,2)}, i = 1, 2$. This completes the description of Phase 1.

Phase 2 (transmitting bits of common interest): In this phase, we deliver the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ using the transmission strategy for the two-multicast problem. More precisely, the bits in $Q_{i→(1,2)}$ will be considered as the message of T_{x_i} and they will be encoded as in the achievability scheme of Lemma 2, $i = 1, 2$. Fix $\epsilon, \delta > 0$, from Lemma 2 we know that the rate tuple

$$(R_1, R_2) = \frac{1}{2}((1 - q^2) - \delta/2, (1 - q^2) - \delta/2)$$

is achievable with decoding error probability less than or equal to ϵ. Therefore, transmission of the bits in $Q_{1→(1,2)}$ and $Q_{2→(1,2)}$ requires

$$t_{\text{total}} = \frac{(1 - q^2)^{-1} pm + 5m^{2/3}}{(1 - q^2) - \delta}.$$

(55)

time instants. Therefore, the total transmission time of our two-phase achievability strategy is equal to

$$t_{\text{total}} = \frac{(1 - q^2)^{-1} m + 5m^{2/3}}{(1 - q^2) - \delta}.$$

(56)

The probability that the transmission strategy halts at any point can be bounded by the summation of error probabilities of types I and II, and the probability that an error occurs in decoding the encoded bits. This probability approaches zero for $\epsilon, \delta \to 0$ and $m \to \infty$.

Hence, if we let $\epsilon, \delta \to 0$ and $m \to \infty$, the decoding error probability goes to zero, and we achieve a symmetric sum-rate of

$$R_1 = R_2 = \lim_{m, \epsilon, \delta \to 0} \frac{m}{t_{\text{total}}} = \frac{(1 - q^2)^{-1}}{1 + (1 - q^2)^{-1} - p}.$$

(57)

VIII. CONVERSE PROOF OF THEOREM 3 [DELAYED-CSIT AND OFB]

In this section, we prove the converse for Theorem 3. Suppose rate tuple (R_1, R_2) is achievable, then by letting $\beta = 1 + q$, we have

$$n(R_1 + \beta R_2) = H(W_1) + \beta H(W_2)$$

$$\leq \beta H(W_1 | W_2, G^n) + \beta H(W_2 | G^n)$$

$$\leq I(W_1; Y^n | W_2, G^n) + I(W_2; Y^n | G^n) + n\epsilon_n$$

$$\leq I(W_1; Y^n_1 | W_2, G^n) + I(W_2; Y^n_2 | G^n) + n\epsilon_n$$

$$= H(Y^n_1, Y^n_2 | W_2, G^n) - H(Y^n_1, Y^n_2 | W_1, W_2, G^n)$$

$$= 0$$

$$+ \beta H(Y^n_2 | G^n) - \beta H(Y^n_2 | W_2, G^n) + n\epsilon_n$$

$$= 0$$
\[= \beta H(Y^n_2|G^n) + H(Y^n_1, Y^n_2|W_2, G^n) \]
\[- \beta H(Y^n_2|W_2, G^n) + n\epsilon_n \]
\[= \beta H(Y^n_2|G^n) + \sum_{t=1}^{n} H(Y_1[t], Y_2[t]|W_2, Y'_1[t-1], Y'_2[t-1], G^n) \]
\[- \beta \sum_{t=1}^{n} H(Y_2[t]|W_2, Y'_2[t-1], G^n) + n\epsilon_n \]
\[\leq \beta H(Y^n_2|G^n) \]
\[+ \sum_{t=1}^{n} H(Y_1[t], Y_2[t]|W_2, Y'_1[t-1], Y'_2[t-1], X^n_2, G^n) \]
\[- \beta \sum_{t=1}^{n} H(Y_2[t]|W_2, Y'_2[t-1], X^n_2, G^n) + n\epsilon_n \]
\[= \beta H(Y^n_2|G^n) + \sum_{t=1}^{n} H(G_{12}[t]|X_1[t], G_{12}[t]X_1[t]|W_2, \]
\[G'^{t-1}_1 X'^{t-1}_1, G'^{t-1}_2 X'^{t-1}_2, X'^n_2, G^n) \]
\[- \beta \sum_{t=1}^{n} H(G_{12}[t]|X_1[t]|W_2, G'^{t-1}_2 X'^{t-1}_2, X'^n_2, G^n) + n\epsilon_n \]
\[\leq \beta H(Y^n_2|G^n) + p(1+q)^2 + n\epsilon_n, \] (58)

where (a) holds since the channel gains and the messages are mutually independent; (b) follows from the fact that \(X'^n_2 \) is a deterministic function of \(\{W_2, Y'^{t-1}_2\} \) and the fact that conditioning reduces entropy; (c) follows from the fact that condition on \(W_2, X'^{t-1}_1, X'^n_2, X_1[t] \) is independent of the channel realization at future time instants, hence, we can replace \(G^n \) by \(G^t \); and (d) follows from Lemma 4 below. Dividing both sides by \(n \) and let \(n \rightarrow \infty \), we get
\[R_1 + (1+q)R_2 \leq p(1+q)^2. \] (59)

Similarly, we can get \((1+q)R_1 + R_2 \leq p(1+q)^2\).

Lemma 4.
\[\sum_{t=1}^{n} H(G_{12}[t]|X_1[t]|W_2, G'^{t-1}_2 X'^{t-1}_1, X'_2, G^n) \]
\[\geq \frac{1}{2-p} \sum_{t=1}^{n} H(G_{11}[t]|X_1[t], G_{12}[t]X_1[t]|W_2, \]
\[G'^{t-1}_1 X'^{t-1}_1, G'^{t-1}_2 X'^{t-1}_2, X'_2, G^n). \] (60)

Remark 15. **Lemma 4** is the counterpart of **Lemma 3** when Output Feedback is available. Note that in the condition we have \(X'_2 \) and due to the presence of output feedback the proof is different than that of Lemma 3.

Proof: We have
\[H(G_{12}[t]|X_1[t]|W_2, G'^{t-1}_2 X'^{t-1}_1, X'_2, G^n) \]
\[= pH(X_1[t]|G_{12}[t] = 1, W_2, G'^{t-1}_2 X'^{t-1}_1, X'_2, G^n) \]
\[(a) = pH(X_1[t]|W_2, G'^{t-1}_2 X'^{t-1}_1, X'_2, G^n) \]
\[(b) = pH(X_1[t]|W_2, G_{12}[t]X_1[t]|W_2, \]
\[G'^{t-1}_2 X'^{t-1}_1, X'_2, G^n) \]
\[\geq \frac{1}{2-p} H(G_{11}[t]|X_1[t], G_{12}[t]X_1[t]|W_2, \]
\[G'^{t-1}_2 X'^{t-1}_1, G'^{t-1}_2 X'^{t-1}_2, X'_2, G^n) \], (61)

where (a) and (b) follow from the fact that condition on \(W_2, G'^{t-1}_2 X'^{t-1}_1, X'_2 \) and \(G^n \), \(X_1[t] \) is independent of the channel realization at time \(t \); and (c) holds since conditioning reduces entropy.

Therefore, we have
\[\sum_{t=1}^{n} H(G_{12}[t]|X_1[t]|W_2, G'^{t-1}_2 X'^{t-1}_1, X'_2, G^n) \]
\[\geq \frac{1}{2-p} \sum_{t=1}^{n} H(G_{11}[t]|X_1[t], G_{12}[t]X_1[t]|W_2, \]
\[G'^{t-1}_2 X'^{t-1}_1, G'^{t-1}_2 X'^{t-1}_2, X'_2, G^n) \].

In the following two sections, we consider the last scenario we are interested in, i.e. Instantaneous-CSIT and OFB, and we provide the proof of **Theorem 4**. First, we present the achievability strategy, and we demonstrate how OFB can enhance our achievable rate region. We then present the converse proof.

IX. Achievability Proof of Theorem 4 [Instantaneous-CSIT and OFB]

In this section, we describe our achievability strategy for the case of Instantaneous-CSIT and output feedback. Note that in this scenario, although transmitters have instantaneous knowledge of the channel state information, the output signals are available at the transmitters with unit delay. We first provide a brief overview of our scheme.

A. Overview

By symmetry, it suffices to describe the achievability scheme for corner point
\[(R_1, R_2) = (1-q^2, p q) \]
as depicted in Fig. [26] Similarly, we can achieve corner point \((R_1, R_2) = (p q, 1-q^2)\), and therefore by time sharing, we can achieve the region.

Our achievability strategy is carried on over \(b+1 \) communication blocks, each block with \(n \) time instants. Transmitters communicate fresh data bits in the first \(b \) blocks and the final block is to help the receivers decode their corresponding bits. At the end, using our scheme, we achieve a rate tuple arbitrary close to \(\frac{b}{b+1} (1-q^2, p q) \) as \(n \rightarrow \infty \). Finally letting \(b \rightarrow \infty \), we achieve the desired rate tuple.
B. Achievability Strategy

Let W_i^j be the message of transmitter i in block j, $i = 1, 2,$ and $j = 1, 2, \ldots, b$. Moreover, let $W_1^1 = a_1^1, a_2^1, \ldots, a_m^1$, and $W_2^2 = b_1^2, b_2^2, \ldots, b_{m^2}^2$, for $j = 1, 2, \ldots, b$, where data bits a_i^j's and b_j^2's are picked uniformly and independently from $\{0, 1\}$, $i = 1, 2, \ldots, m$, and

$$m_2 = \frac{q}{1+q} m. \quad (62)$$

We also set $n = m/(1-q^2) + m^{2/3}$, where n is the length of each block.

Achievability strategy for block 1: In the first communication block, at each time instant t, if at least one of the outgoing links from Tx_1 is on, then it sends one of its initial m bits that has not been transmitted before (note that this happens with probability $(1-q^2)$). On the other hand, Tx_2 communicates a new bit (a bit that has not been transmitted before) if the link to its receiver is on and it does not interfere with receiver one (i.e., $G_2[t] = 1$ and $G_1[t] = 0$). In other words, Tx_2 communicates a new bit if either one of Cases 2, 4, 9, or 11 in Table [I] occurs (note that this happens with probability pq).

The first block goes on for n time instants. If at the end of the first block, there exists a bit at either of the transmitters that has not yet been transmitted, we consider it as error type-I and halt the transmission.

Assuming that the transmission in not halted, using output feedback links, transmitter two has access to the bits of transmitter one communicated in the first block. In particular, Tx_2 has access to the bits of Tx_1 transmitted in Cases 2, 11, 12, 14, and 15 during block 1. Note that the bits communicated in Cases 11, 12, 14, and 15 from Tx_2 have to be provided to Rx_1. However, the bits communicated in Case 2 from Tx_1 are already available at Rx_1 but needed at Rx_2, see Fig. 27.

Transmitter two will provide such bits to Rx_2 in the following communication block.

Now, Tx_2 transfers the bits of Tx_1 communicated in Cases 2, 11, 12, 14, and 15, during the first communication block to queues $Q_1^{1,c_{22}}, Q_1^{1,c_{11}}, Q_1^{1,c_{12}}, Q_1^{1,c_{14}}$, and $Q_1^{1,c_{15}}$ respectively.

Let random variable $N_{1,c_{1}}^j$ denote the number of bits in $Q_1^{1,c_{1}}, \ell = 2, 11, 12, 14, 15$. Since transition of a bit to this state is distributed as independent Bernoulli RV, upon completion of block 1, we have

$$\mathbb{E}[N_{1,c_{1}}^1] = \frac{\Pr (\text{Case } \ell)}{1 - \sum_{i=9,10,13,16} \Pr (\text{Case } i)} m \quad (63)$$

$$= \left(1 - q^2\right)^{-1} \sum_{\ell = 2, 11, 12, 14, 15} \Pr (\text{Case } \ell) m,$$

If the event $\left[N_{1,c_{1}}^1 \geq \mathbb{E}[N_{1,c_{1}}^1] + m^2\right]$ occurs, we consider it as error type-II and we halt the transmission. At the end of block 1, we add 0’s (if necessary) to $Q_1^{1,c_{1}}$ so that the total number of bits is equal to $\mathbb{E}[N_{1,c_{1}}^1] + m^2$. Furthermore, using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with m.

Achievability strategy for block j, $j = 2, 3, \ldots, b$: The transmission strategy for Tx_1 is the same as block 1 for the first b blocks (all but the last block). In other words, at time instant t, Tx_1 transmits one of its initial m bits (that has not been transmitted before) if at least one of its outgoing links is on. On the other hand, Tx_2 communicates W_2^2 using similar strategy as the first block, i.e., Tx_2 communicates a new bit if either one of Cases 2, 4, 9, or 11 occurs.

Transmitter two transfers the bits communicated in Cases 2, 11, 12, 14, and 15, during communication block j to queues $Q_1^{1,c_{22}}$, $Q_1^{1,c_{11}}, Q_1^{1,c_{12}}, Q_1^{1,c_{14}}$, and $Q_1^{1,c_{15}}$ respectively.

Moreover, at time instant t,

- if Case 3 occurs, Tx_2 sends one of the bits from $Q_1^{j-1,c_{22}}$ and removes it from this queue since it has been delivered successfully to Rx_2, see Fig. 28.
- If Case 3 occurs and $Q_1^{j-1,c_{22}}$ is empty, Tx_2 remains silent;

- if Case 10 occurs, Tx_2 sends one of the bits from $Q_1^{j-1,c_{11}}$ and removes it from this queue, see Fig. 29. If Case 10 occurs and $Q_1^{j-1,c_{11}}$ is empty, Tx_2 remains silent;
The probability that the transmission strategy halts at the end of each block can be bounded by the summation of error probabilities of types I and II. Using Chernoff-Hoeffding bound, we can show that the probability that the transmission strategy halts at any point approaches zero as $m \to \infty$.

C. Decoding

At the end of block $j + 1$, Rx$_1$ has access to W_j^b with no interference, $j = 1, 2, \ldots, b$. At the end of block $b + 1$, Rx$_2$ uses the bits communicated in Cases 3 and 10 from Tx$_2$ to cancel out the interference it has received from Tx$_1$ during the previous block in Cases 2 and 11. Therefore, at the end of block $b + 1$, Rx$_1$ has access to W_2^b with no interference. Then, Rx$_2$ follows the same strategy for blocks b and $b - 1$. Therefore, using similar idea, Rx$_2$ uses backward decoding to cancel out interference in the previous blocks to decode all messages.

Now, since each block has $n = m/(1 - q^2) + m^{2/3}$ time instants and the probability that the transmission strategy halts at any point approaches zero for $m \to \infty$, we achieve a rate tuple

$$\frac{b}{b + 1} (1 - q^2, pq),$$

as $m \to \infty$. Finally letting $b \to \infty$, we achieve the desired rate tuple.

X. Converse Proof of Theorem 4 (Instantaneous-CSIT and OFB)

To derive the outer-bound on individual rates, we have

$$nR_1 = H(W_1) \leq H(W_1 | G^n)$$

(Fano)

$$\leq I(W_1; Y^n | G^n) + n\epsilon_n$$

$$= H(Y^n | G^n) - H(Y^n | W_1, G^n) + n\epsilon_n$$

$$\leq H(Y^n | G^n) + n\epsilon_n$$

$$\leq (1 - q^2)n + n\epsilon_n,$$

where $\epsilon_n \to 0$ as $n \to \infty$; (a) holds since message W_1 is independent of G^n. Similarly, we have

$$nR_2 \leq (1 - q^2)n + n\epsilon_n,$$

dividing both sides by n and let $n \to \infty$, we have

$$\begin{cases} R_1 \leq 1 - q^2, \\ R_2 \leq 1 - q^2. \end{cases}$$

The outer-bound on $R_1 + R_2$, i.e.

$$R_1 + R_2 \leq 1 - q^2 + pq,$$

can be obtained as follows.

$$n(R_1 + R_2 - 2\epsilon_n) \leq$$

(a) $H(W_1 | W_2, G^n) + H(W_2 | G^n)

Fano $I(W_1; Y^n_1 | W_2, G^n) + I(W_2; Y^n_2 | G^n)

= H(Y^n_1 | W_2, G^n) - H(Y^n_1 | W_1, W_2, G^n) + I(W_2; Y^n_2 | G^n)

= H(Y^n_1 | W_2, G^n) + H(Y^n_2 | W_2, G^n) - H(Y^n_1 | W_2, W_2, G^n)

= H(Y^n_1 | W_2, G^n) + H(Y^n_2 | G^n)

(b) $H(Y^n_2 | G^n)

+ \sum_{t=1}^{n} H(Y_1[t] | W_2, Y^n_2, Y_1^{t-1}, X^n_2, G^n_1, X^n_1, G^n)
\[
\begin{align*}
&(c) \quad H(Y_2^n|G^n) + H(Y_1^n|G_{12}^n X_1^n, G_{21}^n X_2^n, G^n) \\
&\leq \sum_{t=1}^{n} H(Y_2[t]|G^n) + \sum_{t=1}^{n} H(Y_1[t]|G_{12}[t]X_1[t], G_{21}[t]X_2[t], G^n) \\
&\leq (1 - q^2) n + pqn,
\end{align*}
\]

where \(\epsilon_n \to 0 \) as \(n \to \infty \); and (a) follows from the fact that the messages and \(G^n \) are mutually independent; (b) holds since \(X_i^t \) is a function of \(W_2, Y_i^{t-1}, Y_i^{-1} \), and \(G^t \); (c) and (d) follow from the fact that conditioning reduces entropy; and (e) holds since

\[
\begin{align*}
H(Y_2^n|G^n) &\leq 1 - q^2, \\
H(Y_1^n|G_{12}^n X_1^n, G_{21}^n X_2^n, G^n) &\leq pq.
\end{align*}
\]

Dividing both sides by \(n \) and let \(n \to \infty \), we get

\[R_1 + R_2 \leq 1 - q^2 + pq. \] (72)

We also note this outer-bound on \(R_1 + R_2 \) can be also applied to the case of Instantaneous-CSIT and no output feedback (i.e. Theorem I).

XI. EXTENSION TO THE NON-HOMOGENEOUS SETTING

In this section, we discuss the extension of our results to the non-homogeneous case. More precisely, we consider the two-user Binary Fading Interference Channel of Section II where

\[G_{ai}[t] \overset{d}{=} B(p_d), \quad G_{ii}[t] \overset{d}{=} B(p_c), \] (73)

for \(0 \leq p_d, p_c \leq 1, \ i = 3 - i, \) and \(i = 1, 2 \). We define \(q_d = 1 - p_d \) and \(q_c = 1 - p_c \). We study the non-homogeneous BFIC in two settings: (1) Delayed-CSIT and output feedback; and (2) Delayed-CSIT (and no output feedback). For the case of Delayed-CSIT and output feedback, we fully characterize the capacity region as follows.

Theorem 5. [Capacity Region with Delayed-CSIT, OBF, and Non-Homogeneous Channel Gains] The capacity region of the two-user Binary Fading IC with Delayed-CSIT and output feedback, \(C_{D\text{CSIT,OBF}}^{\text{D}} \) is given by

\[
C_{D\text{CSIT,OBF}}^{\text{D}}(p_d, p_c) = \left\{ R_1, R_2 \in \mathbb{R}^+ \mid s.t. \right. \\
p_c R_i + (1 - q_d p_c) R_i \leq (1 - q_d q_c)^2, \ i = 1, 2 \right\}. \] (74)

Proof: We first prove the converse. The converse proof follows similar steps as the case of the homogeneous setting described in Section VIII for Theorem III Sec.\(^{\text{VIII}} \). We have

\[n (R_1 + \beta R_2) = H(W_1) + \beta H(W_2) \]

\[
\leq H(W_1|W_2, G^n) + \beta H(W_2|G^n)
\]

\[
\leq I(W_1; Y_1^n|W_2, G^n) + \beta I(W_2; Y_2^n|G^n) + \epsilon_n
\]

\[
= H(Y_1^n, Y_2^n|W_2, G^n) - H(Y_1^n, Y_2^n|W_1, W_2, G^n)
\]

\[
= \beta H(Y_2^n|G^n) + H(Y_1^n, Y_2^n|W_2, G^n)
\]

\[
- \beta H(Y_2^n|W_2, G^n) + \epsilon_n
\]

\[
= \beta H(Y_2^n|G^n) + \sum_{t=1}^{n} H(Y_1[t], Y_2[t]|W_2, Y_1^{t-1}, Y_2^{t-1}, G^n)
\]

\[
- \beta \sum_{t=1}^{n} H(Y_2[t]|W_2, Y_2^{t-1}, G^n) + \epsilon_n
\]

\[
= \beta H(Y_2^n|G^n) + \sum_{t=1}^{n} H(G(t)|X_1[t], G_{12}^t, X_1^t, G^n)
\]

\[
- \beta \sum_{t=1}^{n} H(G(t)|X_1[t], G_{12}^t, X_1^t, X_2^t, G^n) + \epsilon_n
\]

\[
= \beta H(Y_2^n|G^n) + \sum_{t=1}^{n} H(G(t)|X_1[t], G_{12}^t, X_1^t, G^n)
\]

\[
- \beta \sum_{t=1}^{n} H(G(t)|X_1[t], G_{12}^t, X_1^t, X_2^t, G^n) + \epsilon_n
\]

\[
\leq \beta H(Y_2^n|G^n) + \epsilon_n
\]

\[
\leq \left(\frac{1 - q_d q_c}{p_c} \right)^2 + \epsilon_n,
\] (76)

where (a) holds since the channel gains and the messages are mutually independent; (b) follows from the fact that \(X_i^t \) is a deterministic function of \((W_2, Y_i^{t-1}) \) and the fact that conditioning reduces entropy; (c) follows from the fact that condition on \(W_2, X_i^{t-1}, X_i^{-1}, X_i[t] \) is independent of the channel realization at future time instants, hence, we can replace \(G^n \) by \(G^t \); and (d) follows from Lemma 3 below. Dividing both sides by \(n \) and let \(n \to \infty \), we get

\[p_c R_i + (1 - q_d p_c) R_i \leq (1 - q_d q_c)^2, \] (77)

and the derivation of the other bound would be similar.

\(^8 \)We have also added \(Y_i^{t-1} \) in the condition for the scenario in which output feedback links are available from each receiver to both transmitters.
Lemma 5. [Non-Homogeneous Entropy Leakage with Output Feedback] For the broadcast channel described in Fig. 24 with parameters p_d and p_c, and with Delayed-CSIT and output feedback, for any input distribution, we have

$$
(1 - q_d q_c) \sum_{i=1}^{n} H(G_{12}[t]X_1[t]|W_2, G_{12}^{-1}X_1^{-1}, X_2, G^t) \\
\geq p_c \sum_{i=1}^{n} H(G_{11}[t]X_1[t], G_{12}[t]X_1[t]|W_2, G_{11}^{-1}X_1^{-1}, G_{12}^{-1}X_1^{-1}, X_2, G^t).
$$

(78)

The proof of Lemma 5 follows the same steps as the proof of Lemma 4. We note that this lemma, is the generalization of the Entropy Leakage Lemma to the case where $G_{12}[t] \sim B(p_d)$ and $G_{2}[t] \sim B(p_c)$ and where the output feedback is present.

We now describe the achievability proof. The achievability proof is also similar to that of the homogeneous setting described in Section VII. Hence, we provide an outline of the achievability strategy here. The achievability strategy of corner points $(1 - q_d q_c, 0)$ and $(0, 1 - q_d q_c)$, is based on utilizing the additional communication paths created by the means of the output feedback links, e.g.,

$$
\text{Tx}_1 \rightarrow \text{Rx}_2 \rightarrow \text{Tx}_2 \rightarrow \text{Rx}_1.
$$

In the rest of the proof, we provide the outline for the achievability of corner point

$$
R_1 = R_2 = \frac{(1 - q_d q_c)}{1 + (1 - q_d q_c)^{-1}p_c}.
$$

(79)

The strategy is carried on over two phases similar to Phase 1 and Phase 2 of Section VII. We assume that at the beginning of the communication block, there are m bits in $Q_{i \rightarrow i}$, $i = 1, 2$. Phase 1 is the uncategorized transmission, and it goes on for

$$
(1 - q_d q_c)^{-1} m + m^\frac{2}{3}
$$

(80)
time instants and if at the end of this phase, either of the queues $Q_{1 \rightarrow 1}$ or $Q_{2 \rightarrow 2}$ is not empty, we declare an error and halt the transmission. Upon completion of Phase 1, using the ideas described in Section IV for output feedback, we further create bits of common interest. More precisely, we use the following ideas: we update the status of bits in $Q_{i \rightarrow i}$ to bits of common interest; as described in Example 6 of Section IV using output feedback, we combine bits in $Q_{1 \rightarrow 1}$ and $Q_{2 \rightarrow 2}$ to create bits of common interest; as described in Example 7 of Section IV using output feedback, we combine bits in $Q_{1 \rightarrow 2}$ and $Q_{2 \rightarrow 1}$ to create bits of common interest.

In the second phase, we deliver the bits in $Q_{1 \rightarrow (1,2)}$ and $Q_{2 \rightarrow (1,2)}$ using the transmission strategy for the two-multicast problem. For

$$
0 \leq p_c \leq \frac{p_d}{1 + p_d},
$$

(81)

the cross links become the bottleneck for the two-multicast network depicted in Fig. 24 and as a result, using the two-multicast problem as discussed in Lemma 2, is sub-optimal. However, using the output feedback link, Tx_i learns the interfering bit of Tx_i, $i = 1, 2$; and considering this side information available at the transmitters, we can show that a sum-rate of $(1 - q_d q_c)$ for the two-multicast problem is in fact achievable. At the end of Phase 2, all bits are delivered. It takes

$$
(1 - q_d q_c)^{-2} p_c m + O (m^\frac{2}{3})
$$

(82)
time instants to complete Phase 2. Therefore, we achieve a symmetric sum-rate of

$$
R_1 = R_2 = \frac{(1 - q_d q_c)}{1 + (1 - q_d q_c)^{-1}p_c},
$$

(83)
as $m \rightarrow \infty$.

For the case of Delayed-CSIT (and no output feedback), we partially solve the problem as described below.

Theorem 6. [Capacity Region with Delayed-CSIT and Non-Homogeneous Channel Gains] The capacity region of the two-user Binary Fading IC with Delayed-CSIT (and no output feedback), $C_{DCSIT}(p_d, p_c)$ for

$$
\frac{p_d}{1 + p_d} \leq p_c \leq 1,
$$

(84)
is the set of all rate tuples (R_1, R_2) satisfying

$$
C_{DCSIT}(p_d, p_c) = \left\{ \begin{array}{ll}
0 \leq R_i \leq p_d, \\
p_c R_i + (1 - q_d q_c) R_i \leq (1 - q_d q_c)^2 n
\end{array} \right\},
$$

(85)
for $i = 1, 2$.

Proof: The proof of converse follows from the previous theorem since the outer-bound of Theorem 5 also serves as an outer-bound for Theorem 6. Here, we discuss the achievability strategy. The achievability proof is similar to that of the homogeneous setting as described in Section V for Theorem 2.

The corner points are as follows.

$$
(R_3, R_2) = \left(\min \left\{ p_d, \frac{(1 - q_d q_c)}{1 + (1 - q_d q_c)^{-1}p_c} \right\}, \right)
$$

$$
\left(\min \left\{ p_d, \frac{(1 - q_d q_c)}{1 + (1 - q_d q_c)^{-1}p_c} \right\} \right),
$$

(86)

$$(R_1, R_2) = (p_d, \min \left\{ p_d, (1 - q_d q_c) q_d \right\}),
$$

(87)

Here, we provide the outline for the achievability of the first corner point, i.e.,

$$
R_1 = R_2 = \min \left\{ p_d, \frac{(1 - q_d q_c)}{1 + (1 - q_d q_c)^{-1}p_c} \right\}.
$$

We assume that at the beginning of the communication block, there are m bits in $Q_{i \rightarrow i}$, $i = 1, 2$. Phase 1 is the uncategorized transmission. Upon completion of Phase 1, using the ideas described in Section IV-A we upgrade the status of the bits to bits of common interest. We use the following coding opportunities.

- **Type I** Combining bits in $Q_{i \rightarrow i}^{(1)}$ and $Q_{i \rightarrow i}^{(2)}$ to create bits of common interest, $i = 1, 2$;
- **Type II** Combining the bits in $Q_{i \rightarrow c_i}$ and $Q_{i \rightarrow i}$ to create bits of common interest, $i = 1, 2$;
- **Type III** Combining the bits in $Q_{i \rightarrow c_i}$ and $Q_{i \rightarrow i}$ to create bits of common interest, $i = 1, 2$.
Then, in the final phase, we deliver the bits in $Q_{1\to\{1,2\}}$ and $Q_{2\to\{1,2\}}$ using the transmission strategy for the two-multicast problem.

Remark 16. We note that in Theorem 6, we partially characterized the capacity region. In fact, for
\[
0 \leq p_c \leq \frac{p_d}{1 + p_d},
\]
our achievability region does not match the outer-bounds. Closing the gap in this regime could be an interesting future direction. The reason one might think the achievability could be improved is that in this regime the cross links become the bottleneck for the two-multicast network depicted in Fig. 23 and as a result, using the two-multicast problem might be sub-optimal. On the other hand, as we demonstrated in [29], [30], even under No-CSIT assumption, this regime requires a different outer-bound compared to other regimes.

XII. Conclusion and Future Directions

We studied the effect of delayed knowledge of the channel state information at the transmitters, on the capacity region of the two-user binary fading interference channels. We introduced various coding opportunities, created by Delayed-CSIT, and presented an achievability strategy that systematically exploits the coding opportunities. We derived an achievable rate region that matches the outer-bounds for this problem, hence, characterizing the capacity region. We have also derived the capacity region of this problem with Delayed-CSIT and output feedback.

A future direction would be to extend our results to the case of two-user Gaussian fading interference channel with Delayed-CSIT. As discussed in the introduction, one can view our binary fading model as a fading interpretation of the linear deterministic model where the non-negative integer associated to each link is at most 1. Therefore, one approach is to extend the current results to the case of fading linear deterministic interference channel and then, further extend that result to the case of Gaussian fading interference channel, in order to obtain approximate capacity characterization. This approach has been taken for the No-CSIT assumption in [31], in the context of fading broadcast channels, and in [32] in the context of one-sided fading interference channels. In fact, one can view our Binary Fading model as the model introduced in [31], [32] with only one layer.

Another future direction is to consider the k-user setting of the problem. In [33], authors have shown that for the k-user fading interference channel with instantaneous knowledge of the channel state information, sum degrees of freedom (DoF) of $k/2$ is achievable. However, in the absence of the CSIT, the achievable sum DoF collapses to 1. As a result a large degradation in network capacity, due to lack of the CSIT, is observed. It has been recently shown that, with Delayed-CSIT, it is possible to achieve more than one sum DoF [9], [14], however, the achievable sum DoFs are less than 1.5 for any number of users. This together with lack of nontrivial DoF upper bounds leaves the problem of sum DoF characterization of interference channels with Delayed-CSIT still open and challenging, to the extent that it is even unknown whether the sum DoF of such networks scales with the number of users or not. A promising direction may be to study this problem in the context of our simpler binary fading model, to understand whether the sum capacity of such network with Delayed-CSIT scales with the number of users or it will saturate.

Finally, motivated by recent results that demonstrate that, with Instantaneous-CSIT, multi-hopping can significantly increase the capacity of interference networks (e.g., [34], [35] for two-unicast networks and [36] for multi-unicast networks), an interesting future direction would be explore the effect of Delayed-CSIT on the capacity of multi-hop binary interference networks.

Appendix A

Achievability Proof of Theorem 1 [Instantaneous-CSIT]

In this appendix, we provide the achievability proof of Theorem 1. Below, we have stated the capacity region of the two-user BFIC with Instantaneous-CSIT (and no OFB).

\[
C^{ICSIT} = \left\{ R_1, R_2 \in \mathbb{R}^+ \text{ s.t. } R_i \leq p, \ 0 \leq R_1 + R_2 \leq 1 - q^2 + pq \right\},
\]

Remark 17. For $0 \leq p \leq 0.5$, the capacity region is given by
\[
C^{ICSIT} = \{ R_1, R_2 \in \mathbb{R}^+ \text{ s.t. } R_i \leq p, \ i = 1, 2 \},
\]
while for $0.5 < p \leq 1$, the outer-bound on $R_1 + R_2$ is also active, see Fig. 30.

With Instantaneous-CSIT, each transmitter knows what channel realization occurs at the time of transmission. Transmitters can take advantage of such knowledge and by pairing...
different realizations, the optimal rate region as given in Theorem 1 can be achieved. We will first describe the achievability strategy for $0 \leq p \leq 0.5$, since it is easier to follow. We then complete the proof by describing the achievability strategy for $0.5 < p \leq 1$.

A. Achievability Strategy for $0 \leq p \leq 0.5$

Note that the result for $p = 0$ is trivial, so we assume $0 < p \leq 0.5$. Below, we describe the possible pairing opportunities that are useful in this regime and then, we describe the achievability scheme. The possible pairing opportunities are as follows.

- **Type A [Cases 1 and 15]:** In Case 15, only the cross links are equal to 1, therefore, by pairing bits in Case 1 with bits in Case 15, we can cancel out interference in Case 1, see Fig. 31. In other words by pairing the two cases, we can communicate 2 bits interference-free.

![Fig. 31. Pairing opportunity Type A: By pairing Cases 1 and 15, we can communicate two bits interference-free.](image)

- **Type B [Cases 2 and 14]:** We can pair up Cases 2 and 14 to cancel out interference in Case 2 as depicted in Fig. 32.

![Fig. 32. Pairing opportunity Type B: By pairing Cases 2 and 14, we can communicate two bits interference-free.](image)

- **Type C [Cases 3 and 13]:** Similar to Type B with swapping user IDs.

We are now ready to provide the achievability scheme for the Instantaneous-CSIT model and for $0 \leq p \leq 0.5$. We first provide an overview of our scheme.

1) **Overview:** Our achievability strategy is carried on over $b+1$ communication blocks, each block with n time instants. We describe the achievability strategy for rate tuple $(R_1, R_2) = (p, p)$.

Transmitters communicate fresh data bits in the first b blocks and the final block is to help the receivers decode their corresponding bits. At the end, using our scheme, we achieve rate tuple $\frac{b}{b+1}(p, p)$ as $n \to \infty$. Finally, letting $b \to \infty$, we achieve the desired rate tuple. In our scheme the messages transmitted in block j, $j = 1, 2, \ldots, b$, will be decoded at the end of block $j + 1$.

2) **Achievability strategy:** Let W_j be the message of transmitter i in block j, $i = 1, 2, j = 1, 2, \ldots, b$. Moreover, let $W_1 = a_1^1, a_2^1, \ldots, a_n^1$, and $W_2 = b_1^1, b_2^1, \ldots, b_n^1$, where a_i^1’s and b_i^1’s are picked uniformly and independently from $\{0, 1\}$, $i = 1, 2, \ldots, m$, $j = 1, 2, \ldots, b$, and some positive integer m.

We set

$$n = m/p + (2/p^4)m^{2/3}. \quad (92)$$

Achievability strategy for block 1: In the first communication block, at each time instant t, Tx_1 sends a new data bit (from its initial m bits) if $G_{i[t]} = 1$, $i = 1, 2$. In other words, Tx_1 sends a new data bit either of the following channel realizations occurs: see Table 1.

Cases 1, 2, 3, 4, 5, 6, 7, and 8: while Tx_2 sends a new data bit if either of the following channel realizations occurs: Cases 1, 2, 3, 4, 9, 10, 11, and 12.

If not specified, the transmitters remain silent. Tx_1 transfers its transmitted bits in Cases 1 and 2 to queues Q_1^1, C_1 and Q_1^2, C_2 respectively; and Tx_2 transfers its transmitted bits in Cases 1 and 3 to queues Q_2^1, C_1 and Q_2^2, C_3 respectively.

If at the end of block 1, there exists a bit at either of the transmitters that has not yet been transmitted, we consider it as error type-I and halt the transmission.

Remark 18. Note that the transmitted bits in Cases 4, 5, 6, 7, 8, 9, 10, 11, and 12 are available at their corresponding receivers without any interference. In other words, they are communicated successfully and no retransmission is required.

Assuming that the transmission is not halted, let random variable $N_{i, \ell}^1$ denote the number of bits in $Q_{i, \ell}^1$ $(i, \ell) = (1, 1), (1, 2), (2, 1), (2, 3)$. Since transition of a bit to this queue is distributed as independent Bernoulli RV, upon completion of block 1, we have

$$E[N_{i,\ell}^1] = \frac{Pr(Case \ell)}{1 - \sum_{i=9,10,11,16} Pr(Case 1)} m. \quad (93)$$

If the event $\left\lceil N_{i,\ell}^1 \geq E[N_{i,\ell}^1] + m^{2/3} \right\rceil$ occurs, we consider it as error type-II and we halt the transmission. At the end of block 1, we add 0’s (if necessary) to $Q_{i,\ell}^1$ so that the total number of bits is equal to $E[N_{i,\ell}^1] + m^{2/3}$. Furthermore, using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with m.

Achievability strategy for block j, $j = 2, 3, \ldots, b$:

In communication block j, $j = 2, 3, \ldots, b$, at each time instant t, Tx_1 sends a new data bit (from its initial m bits) if $G_{i[t]} = 1$, $i = 1, 2$. Transmitter one transfers its transmitted bit in Cases 1 and 2 to queues Q_1^j, C_1 and Q_1^j, C_2 respectively; and Tx_2 transfers its transmitted bit in Cases 1 and 3 to queues Q_2^j, C_1 and Q_2^j, C_3 respectively. Note that so far the transmission scheme is similar to the first communication block.

Now if at a given time instant Case 15 occurs, Tx_i sends a bit from queue Q_{i, C_1}^j and removes it from the this queue. If
at time instant t Case 15 occurs and Q_{i,C_1}^j is empty, then Tx_i remains silent. This way, similar to pairing Type A described previously, the transmitted bits in Case 1 of the previous block can be decoded at the corresponding receiver.

Furthermore, if at a given time instant Case 14 (13) occurs, Tx_1 (Tx_2) sends a bit from queue Q_{i,C_2}^{j-1} (Q_{2,C_1}^{j-1}) and removes it from the this queue. This is motivated by pairing Type B (C) described previously.

If at the end of block j, there exists a bit at either of the transmitters that has not yet been transmitted, or any of the queues Q_{i,C_1}^{j-1}, Q_{i,C_2}^{j-1}, Q_{2,C_1}^{j-1}, or Q_{2,C_2}^{j-1} is not empty, we consider this event as error type-I and we halt the transmission.

Assuming that the transmission is not halted, let random variable N_{i,C_1}^j denote the number of bits in Q_{i,C_1}^j, $(i, \ell) = (1, 1), (1, 2), (2, 1), (2, 3)$. Since transition of a bit to this state is distributed as independent Bernoulli RV, upon completion of block j, we have

$$E[N_{i,C_1}^j] = \frac{\Pr(\text{Case } \ell)}{1 - \sum_{i=9, 10, \ldots, 16} \Pr(\text{Case } i) m} = \frac{1}{p} \Pr(\text{Case } \ell).$$

If the event $N_{i,C_1}^j \geq E[N_{i,C_1}^j] + m^{3/2}$ occurs, we consider it as error type-II and we halt the transmission. At the end of block 1, we add 0’s (if necessary) to Q_{i,C_1}^j so that the total number of bits is equal to $E[N_{i,C_1}^j] + m^{3/2}$. Using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with m.

Achievability strategy for block $b+1$: In the final communication block, transmitters do not communicate any new data bit.

If at time instant t Case 15 occurs, Tx_i sends a bit from queue Q_{i,C_1}^j and removes it from the this queue. If at time instant t Case 15 occurs and Q_{i,C_1}^j is empty, then Tx_i remains silent. If at time instant t Case 14 (13) occurs, Tx_1 (Tx_2) sends a bit from queue Q_{i,C_2}^j (Q_{2,C_3}^j) and removes it from the this queue.

If at the end of block $b+1$, any of the states Q_{1,C_1}^b, Q_{1,C_2}^b, Q_{2,C_1}^b, or Q_{2,C_2}^b is not empty, we consider this event as error type-I and we halt the transmission.

Note that if the transmission is not halted, any bit is either available at its intended receiver interference-free, or the interfering bit is provided to the receiver in the following block. The probability that the transmission strategy halts at the end of each block can be bounded by the summation of error probabilities of types I and II. Using Chernoff-Hoeffding bound, we can show that the probability that the transmission strategy halts at any point approaches zero as $m \to \infty$.

Now, since each block has $n = m/p + (2/p^4) m^{2/3}$ time instants and the probability that the transmission strategy halts at any point approaches zero as $m \to \infty$, we achieve a rate tuple

$$\frac{b}{b+1} (p, p),$$

as $m \to \infty$. Finally letting $b \to \infty$, we achieve the desired rate tuple.

B. Achievability Strategy for $0.5 < p \leq 1$

For $p = 1$, the capacity region is the same with no, delayed, or instantaneous CSIT. So in this section, we assume $0.5 < p < 1$. By symmetry, it suffices to describe the strategy for point $A = (p, 2pq)$. In this regime, we will take advantage of another pairing opportunity as described below.

- **Type D [Cases 2, 3, and 12]:** This type of pairing is different from what we have described so far. In all previous types, we paired up cases that had zero capacity to cancel out interference in other cases. However, here all three cases have capacity 1. By pairing all three cases together, we can communicate 4 bits as depicted in Fig. 33.

Remark 19. This coding opportunity can be applicable to DoF analysis of wireless networks with linear schemes in the context of $2 \times 2 \times 2$ layered networks (Section III.A of [20]).

1) **Overview:** The achievability is again carried on over $b+1$ communication blocks, each block with n time instants. We describe the achievability strategy for rate tuple

$$(R_1, R_2) = (p, 2pq),$$

see Fig. 30(b).

Transmitters communicate fresh data bits in the first b blocks and the final block is to help receivers decode their corresponding bits. At the end, using our scheme, we achieve rate tuple $\frac{b}{b+1} (p, 2pq)$ as $n \to \infty$. Finally, letting $b \to \infty$, we achieve the desired corner point. In our scheme, the transmitted bits in block j, $j = 1, 2, \ldots, b$, will be decoded by the end of block $j+1$.

![Fig. 33. Pairing opportunity Type D: Cases 2, 3, and 12. Tx1 uses c to recover b and then it decodes a, similar argument holds for Tx2. All three cases have capacity 1, and by pairing them, we can communicate 4 bits.](image-url)
2) Achievability strategy: Let \(W^j_i \) be the message of transmitter \(i \) in block \(j \). We assume \(W^j_i = a^j_i, a^j_2, \ldots, a^j_m \), and \(W^j_2 = b^j_1, b^j_2, \ldots, b^j_{m_2} \) for \(j = 1, 2, \ldots, b \), where \(a^j_i \)'s and \(b^j_i \)'s are picked uniformly and independently from \(\{0, 1\} \), for some positive value of \(m \) and \(m_2 = 2qm \) (note that \(2q < 1 \)). We set

\[
\begin{align*}
n &= m/p + (2/q^4) m^{2/3}. \quad (97)
\end{align*}
\]

Achievability strategy for block 1: In the first communication block, at each time instant \(t \), transmitter one sends a new data bit if \(G_{11}[t] = 1 \) except Case 1. In other words, \(\text{Tx}_1 \) sends a new data bit if either of the following channel realizations occurs (see Table [I]): Cases 2, 3, 4, 5, 6, 7, and 8. Transmitter two sends a new data bit if \(G_{22}[t] = 1 \) except Cases 1 and 12. In other words, \(\text{Tx}_2 \) sends a new data bit if either of the following channel realizations occurs: Cases 2, 3, 4, 9, 10, and 11.

If at time instant \(t \) where \(t \leq \frac{q^2}{p^2} n \), Case 1 occurs, then each transmitter sends out a new data bit. Then, \(\text{Tx}_1 \) transfers its transmitted bit in Case 1 to queue \(Q^1_{1, C_1} \) for \(t \leq \frac{q^2}{p^2} n \). If \(t > \frac{q^2}{p^2} n \) and Case 1 occurs, then \(\text{Tx}_1 \) sends out a new data bit while \(\text{Tx}_2 \) remains silent, see Fig. 34 Note that these bits are delivered to \(\text{Rx}_1 \) interference-free.

![Communication block 1](image)

If \(t \leq \frac{q^2}{p^2} n \), and Case 12 occurs, then \(\text{Tx}_2 \) sends out a new data bit while \(\text{Tx}_1 \) remains silent. Note that these bits are delivered to \(\text{Rx}_2 \) interference-free.

If not specified, the transmitters remain silent. Note that \(\text{Tx}_1 \) sends a bit if \(G_{11}[t] = 1 \) (i.e. with probability \(p \)). On the other hand, \(\text{Tx}_2 \) sends a bit with probability

\[
\sum_{j=2,3,4,9,10,11} \Pr(\text{Case } j) + \frac{q^2}{p^2} \sum_{j=1,12} \Pr(\text{Case } j) = 2pq. \quad (98)
\]

Transmitter one transfers its transmitted bit in Case 2 to queue \(Q^1_{1, C_2} \); and \(\text{Tx}_2 \) transfers its transmitted bit in Case 3 to queue \(Q^2_{2, C_3} \). If at the end of block 1, there exists a bit at either of the transmitters that has not yet been transmitted, we consider it as error type-I and halt the transmission.

Remark 20. Note that the transmitted bits in Cases 4, 5, 6, 7, 8, 9, 10, and 11 are available at their corresponding receivers without any interference.

Assuming that the transmission is not halted, let random variable \(N^i_{1,C_i} \) denote the number of bits in \(Q^i_{1,C_i} \) (\(i, \ell \) = (1, 1), (1, 2), (2, 1), (2, 3)). Since transition of a bit to this state is distributed as independent Bernoulli RV, upon completion of block 1, we have

\[
\begin{align*}
\mathbb{E}[N^1_{1,C_1}] &= \frac{(q^2/p^2) \Pr(\text{Case } 1)}{1 - \sum_{j=9,10,\ldots,16} \Pr(\text{Case } j)} = m p q^2 m, \\
\mathbb{E}[N^1_{1,C_2}] &= \frac{\Pr(\text{Case } 2)}{1 - \sum_{j=9,10,\ldots,16} \Pr(\text{Case } j)} = m p^2 q m, \\
\mathbb{E}[N^1_{2,C_3}] &= \frac{(q^2/p^2) \Pr(\text{Case } 1) \times 2qm}{\sum_{j=2,3,4,9,10,11} \Pr(\text{Case } j) + \frac{q^2}{p^2} \sum_{j=1,12} \Pr(\text{Case } j)} = p q^2 m, \\
\mathbb{E}[N^2_{2,C_3}] &= \frac{\Pr(\text{Case } 3) \times 2qm}{\sum_{j=2,3,4,9,10,11} \Pr(\text{Case } j) + \frac{q^2}{p^2} \sum_{j=1,12} \Pr(\text{Case } j)} = p^2 q m. \quad (99)
\end{align*}
\]

If the event \(\left[N^i_{1,C_i} \geq \mathbb{E}[N^i_{1,C_i}] + m \frac{q^2}{p^2} \right] \) occurs, we consider it as error type-II and we halt the transmission. At the end of block 1, we add 0’s (if necessary) to \(Q^i_{1,C_i} \) so that the total number of bits is equal to \(\mathbb{E}[N^i_{1,C_i}] + m \frac{q^2}{p^2} \). Using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with \(m \).

Achievability strategy for block \(j, j = 2, 3, \ldots, b \): In communication block \(j \), \(j = 2, 3, \ldots, b \), at each time instant \(t \), transmitter one sends a new data bit if \(G_{11}[t] = 1 \) except Case 1, while transmitter two sends a new data bit if \(G_{22}[t] = 1 \) except Cases 1 and 12.

If \(t \leq \frac{q^2}{p^2} n \) and Case 1 occurs, then each transmitter sends out a new data bit. Then, \(\text{Tx}_1 \) transfers its transmitted bit in Case 1 to queue \(Q^1_{1, C_1} \) for \(t \leq \frac{q^2}{p^2} n \). If \(t > \frac{q^2}{p^2} n \) and Case 1 occurs, then \(\text{Tx}_1 \) sends out a new data bit while \(\text{Tx}_2 \) remains silent. Note that these bits are delivered to \(\text{Rx}_1 \) interference-free.

If \(t \leq \frac{q^2}{p^2} n \) and Case 12 occurs, then \(\text{Tx}_2 \) sends out a new data bit while \(\text{Tx}_1 \) remains silent. We will exploit channel realization 12 for \(t > \frac{q^2}{p^2} n \), to perform pairing Type D.

Transmitter one transfers its transmitted bit in Case 2 to queue \(Q^1_{1, C_2} \); and \(\text{Tx}_2 \) transfers its transmitted bit in Case 3 to queue \(Q^2_{2, C_3} \). Note that so far the transmission scheme is similar to the first communication block.

Now, if at time instant \(t \) Case 15 occurs, \(\text{Tx}_4 \) sends a bit from queue \(Q^{15}_{1, C_1} \) and removes it from the this queue. If at time instant \(t \) Case 15 occurs and \(Q^{15}_{1, C_1} \) is empty, then \(\text{Tx}_4 \) sends a bit from queue \(Q^{15}_{2, C_2} \) and removes it from the this queue. This is motivated by pairing Type B (C) described previously.

Furthermore, if at time instant \(t \) Case 14 (13) occurs, \(\text{Tx}_1 \) (\(\text{Tx}_2 \)) sends a bit from queue \(Q^{14}_{1, C_1} \) (\(Q^{14}_{2, C_2} \)) and removes it from the this queue. Each
transmitter removes the transmitted bit from the corresponding queue. This is motivated by pairing Type D described above.

If at the end of block \(j\), there exists a bit at either of the transmitters that has not yet been transmitted, or any of the states \(Q_{1,1}^j, Q_{1,2}^j, Q_{2,1}^j,\) or \(Q_{2,3}^j\) is not empty, we consider it as error type-I and halt the transmission.

Assuming that the transmission is not halted, let random variable \(N_{i,C_i}^j\) denote the number of bits in \(Q_{i,C_i}^j\) \((i, \ell) = (1, 1), (1, 2), (2, 1), (2, 3)\). Since transition of a bit to this state is distributed as independent Bernoulli RV, upon completion of block \(j\), we have

\[
\begin{align*}
\mathbb{E}[N_{1,C_1}^j] &= \frac{(q^2/p^2) \Pr(\text{Case 1})}{1 - \sum_{j=9,10,11} \Pr(\text{Case j})}m = pq^2m, \\
\mathbb{E}[N_{1,C_2}^j] &= \frac{(q^2/p^2) \Pr(\text{Case 2})}{1 - \sum_{j=9,10,11} \Pr(\text{Case j})}m = pq^2m, \\
\mathbb{E}[N_{2,C_1}^j] &= \frac{(q^2/p^2) \Pr(\text{Case 1}) \times 2qm}{1 - \sum_{j=2,3,4,9,10,11} \Pr(\text{Case j}) + \frac{q^2}{p^2} \sum_{j=1,12} \Pr(\text{Case j})} = pq^2m, \\
\mathbb{E}[N_{2,C_3}^j] &= \frac{\Pr(\text{Case 3}) \times 2qm}{1 - \sum_{j=2,3,4,9,10,11} \Pr(\text{Case j}) + \frac{q^2}{p^2} \sum_{j=1,12} \Pr(\text{Case j})} = pq^2m.
\end{align*}
\]

If the event \(N_{i,C_i}^j \geq \mathbb{E}[N_{i,C_i}^j] + m^2\) occurs, we consider it as error type-II and we halt the transmission. At the end of block 1, we add 0’s (if necessary) to \(Q_{i,C_i}^1\), so that the total number of bits is equal to \(\mathbb{E}[N_{i,C_i}^j] + m^2\). Using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with \(m\).

Achievability strategy for block \(b + 1\): In the final communication block, transmitters do not communicate any new data bit.

If at time instant \(t\) Case 15 occurs, \(Tx_i \) sends a bit from queue \(Q_{i,C_1}^b\) and removes it from the this queue. If at time instant \(t\) Case 15 occurs and \(Q_{i,C_1}^b\) is empty, then \(Tx_i \) remains silent. If at time instant \(t\) Case 14 (13) or 12 occurs, \(Tx_1 (Tx_2) \) sends a bit from queue \(Q_{1,C_2}^b (Q_{2,C_3}^b)\) and removes it from the this queue.

If at the end of block \(j\) any of the states \(Q_{1,1}^j, Q_{1,2}^j, Q_{2,1}^j, Q_{2,3}^j\) is not empty, we consider it as error type-I and halt the transmission.

Note that if the transmission is not halted, any bit is either available at its intended receiver interference-free, or the interfering bits is provided to the receiver in the following block. The probability that the transmission strategy halts at the end of each block can be bounded by the summation of error probabilities of types I and II. Using Chernoff-Hoeffding bound, we can show that the probability that the transmission strategy halts at any point approaches zero for \(m \to \infty\).

Now, since each block has \(n = m/p + (2/q')^{m^{2/3}}\) time instants and the probability that the transmission strategy halts at any point approaches zero for \(m \to \infty\), we achieve a rate tuple

\[
\frac{b}{b + 1} (p, 2pq),
\]

as \(m \to \infty\). Finally letting \(b \to \infty\), we achieve the desired rate tuple.

APPENDIX B

Converse Proof of Theorem 1

The derivation of the outer-bound on individual rates is simple, however for the completeness of the results, we include the proof here. This outer-bound can be used for other theorems as needed. To derive the outer-bound on \(R_1\), we have

\[
nR_1 = H(W_1) = H(W_1 | G^n)
\]

\[
(\text{Fano}) \quad \leq I(W_1; \{Y^n_1, X^n_2\}) + n\epsilon_n
\]

\[
(\text{data proc.}) \quad \leq I(X^n_1; Y^n_1 | X^n_2, G^n) + n\epsilon_n
\]

\[
= H(Y^n_1 | X^n_2, G^n) - H(Y^n_1; X^n_2, X^n_2, G^n) + n\epsilon_n
\]

\[
= H(G^n_1, X^n_1; X^n_2) - n\epsilon_n,
\]

where \(\epsilon_n \to 0\) as \(n \to \infty\); \((a)\) holds since message \(W_1\) is independent of \(G^n\); and \((b)\) holds since given \(G^n\), \(W_1\) is independent of \(X^n_2\), see (44). Similarly, we have

\[
nR_2 \leq pn + n\epsilon_n,
\]

dividing both sides by \(n\) and let \(n \to \infty\), we have

\[
\begin{cases}
R_1 \leq p \\
R_2 \leq p
\end{cases}
\]

The outer-bound on \(R_1 + R_2\) follows from the proof of Theorem 3 in Section X.

APPENDIX C

Achievability Proof of Theorem 2

Sum-rate for \(0 \leq p < 0.5\)

In this appendix, we provide the achievability proof of Theorem 2 with Delayed-CSIT and for \(0 \leq p < 0.5\). We provide an achievable strategy for rate tuple

\[
R_1 = R_2 = \min \left\{ p, \frac{(1 - q^2)}{1 + (1 - q^2)^{-1}} \right\}
\]

Let the messages of transmitters one and two be denoted by \(W_1 = a_1, a_2, \ldots, a_m\), and \(W_2 = b_1, b_2, \ldots, b_m\), respectively, where \(a_i\)’s and \(b_i\)’s are picked uniformly and independently from \(\{0, 1\}\), \(i = 1, \ldots, m\). We show that it is possible to communicate these bits in

\[
n = \max \left\{ m/p, (1 - q^2)^{-1} m + (1 - q^2)^{-2} m, O \left(m^{2/3} \right) \right\}
\]

time instants with vanishing error probability (as \(m \to \infty\)). Therefore achieving the rates given in (105) as \(m \to \infty\).
Phase 1 [uncategorized transmission]: At the beginning of the communication block, we assume that the bits at Tx are in queue $Q_{i,\rightarrow i}$, $i = 1, 2$. At each time instant, Tx sends out a bit from $Q_{i,\rightarrow i}$ and this bit will either stay in the initial queue or a transition to a new queue will take place. Table III summarizes the transitions for each channel realization. The arguments are very similar to our discussion in Section IV and the only difference is the way we handle Cases 7, 8, 11, and 12. We provide some details about these cases.

For Cases 7 (\textcircled{7}) and 8 (\textcircled{8}), in Section IV, we updated the status of the transmitted bit of Tx to $Q_{2,\rightarrow (1,2)}$. However, this scheme is suboptimal for $0 < p < 0.5$, and instead we update the status of the transmitted bit of Tx to an intermediate queue $Q_{2,INT}$. Then in Phase 2, we retransmit these bits and upgrade their status once more. Similar story holds for Cases 11 and 12. The main reason for doing this is as follows. As we discussed in Section IV there are many opportunities to combine bits in order to increase the achievable rates. However, we could never combine the bits that were transmitted in Cases 7, 8, 11, or 12 with other bits. This was not an issue for $0.5 < p < 1$, however for $0 < p < 0.5$, we need to find a way to combine these bits with other bits in future time instants. To do so, the only way is to keep them in an intermediate queue and retransmit them again in Phase 2.

Phase 1 goes on for

$$(1 - q^{2})^{-1} m + m^2$$

(107)
time instants and if at the end of this phase either of the queues $Q_{i,\rightarrow i}$ is not empty, we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, upon completion of Phase 1, we have

$${\mathbb{E}}[N_{1,\rightarrow i}] = \frac{\Pr \left(\text{Case 1} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p^{4} m,$$

(108)

$${\mathbb{E}}[N_{1\rightarrow 2\rightarrow 1}] = \frac{\Pr \left(\text{Case 2} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p^{3} q m,$$

$${\mathbb{E}}[N_{1\rightarrow 1\rightarrow 2}] = \frac{\sum_{i=14,15} \Pr \left(\text{Case j} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p q^{2} m,$$

$${\mathbb{E}}[N_{1,INT}] = \frac{\sum_{i=11,12} \Pr \left(\text{Case j} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p q m. $$

Similarly, we have

$${\mathbb{E}}[N_{2,\rightarrow i}] = \frac{\Pr \left(\text{Case 1} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p^{4} m,$$

(109)

$${\mathbb{E}}[N_{2\rightarrow 2\rightarrow 1}] = \frac{\Pr \left(\text{Case 2} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p^{3} q m,$$

$${\mathbb{E}}[N_{2\rightarrow 1\rightarrow 2}] = \frac{\sum_{j=13,15} \Pr \left(\text{Case j} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p q^{2} m,$$

$${\mathbb{E}}[N_{2,INT}] = \frac{\sum_{j=7,8} \Pr \left(\text{Case j} \right) m}{1 - \sum_{i=9,10,13,16} \Pr \left(\text{Case i} \right)} = (1 - q^{2})^{-1} p^{2} q m. $$

If the event $\left\lfloor N \geq N_{i,\rightarrow i}, N_{i\rightarrow j\rightarrow i}, N_{i\rightarrow i\rightarrow j}, N_{i,\rightarrow i\rightarrow j}, N_{i,\rightarrow i\rightarrow j}, N_{i,\rightarrow i\rightarrow j} \right\rfloor$, for $N = N_{i,\rightarrow i}, N_{i\rightarrow j\rightarrow i}, N_{i\rightarrow i\rightarrow j}, N_{i,\rightarrow i\rightarrow j}, N_{i,\rightarrow i\rightarrow j}$, $i = 1, 2$, occurs, we consider it as error type-II and we halt the transmission strategy. At the end of Phase 1, we add 0’s (if necessary) in order to make queues $Q_{i,\rightarrow i}, Q_{i\rightarrow j\rightarrow i},$ and $Q_{i,\rightarrow i\rightarrow j}$ of size equal to $\mathbb{E}[N_{i,\rightarrow i}] + m^{2}, \mathbb{E}[N_{i\rightarrow j\rightarrow i}] + m^{2},$ and $\mathbb{E}[N_{i,\rightarrow i\rightarrow j}] + m^{2}$ respectively, $i = 1, 2$, and $j = i, \bar{i}$. Furthermore, using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with m.

Phase 2 [upgrading status of interfering bits in $Q_{1,\rightarrow i}$]: In this phase, we focus on the bits in $Q_{1,\rightarrow i}$ and $Q_{2,\rightarrow i}$. At each time instant, Tx picks a bit from $Q_{1,\rightarrow i}$ and sends it. This bit will either stay in $Q_{1,\rightarrow i}$ or a transition to a new queue will take place. Table IV describes what happens to the status of the bits if either of the 16 possible cases occurs. Due to symmetry, we only describe the transitions for bits in $Q_{1,\rightarrow i}$.

Consider bit “a” in $Q_{1,\rightarrow i}$.

- Cases 1, 2, 3, 4, and 5: The transitions for these cases are consistent with our previous discussions.
- Cases 9, 10, 11, 12, 13, and 16: In these cases, it is easy to see that no change occurs in the status of bit a.
- Case 6: In this case, bit a is delivered to both receivers and hence, no further transmission is required. Therefore, it joins $Q_{1,F}$.
- Case 7: Here with slight abuse of, $Q_{1,\rightarrow i}$ represents the bit of Tx that are received at both receivers with interference but not necessarily in Case 1, $i = 1, 2$. For instance if at a given time, Tx1 sends a bit from $Q_{1,\rightarrow 1}$ and Case 7 occurs, then this bit joins $Q_{1,\rightarrow i}$ since now both receivers have received this bit with interference.
- Case 8: In this case, bit a is available at Rx2 but it is interfered at Rx1 by bit b. However, in Case 8 no change occurs for the bits in $Q_{2,INT}$. Therefore, since bit b will be retransmitted until it is provided to Rx1, no retransmission is required for bit a and it joins $Q_{1,F}$.
- Cases 14 and 15: If either of these cases occur, bit a becomes available at Rx2 and is needed at Rx1. Thus, we update the status of such bits to $Q_{1\rightarrow 1\rightarrow 2}$.

Phase 2 goes on for

$$\left(1 - \sum_{i=9,10,11,12,13,16} \Pr \left(\text{Case i} \right) \right)^{-1} (1 - q^{2})^{-1} p^{2} q m + 2 m^{2}$$

(110)
time instants and if at the end of this phase either of the states $Q_{1,\rightarrow i\rightarrow j}$ is not empty, we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, upon completion of Phase 2, the states $Q_{1,\rightarrow i\rightarrow j}$ and $Q_{2,\rightarrow i\rightarrow j}$ are empty and we have

$$\mathbb{E}[N_{1,\rightarrow i}] = (1 - q^{2})^{-1} p^{4} m$$

(111)

$$\sum_{j=1,2} \Pr \left(\text{Case j} \right) (p^{2} q m + m^{2/3})$$

$$= (1 - q^{2})^{-1} p^{4} m$$

$$+ \left(1 - p^{2} q + p^{2} q^{2}\right)^{-1} \left(p^{4} + p^{2} q^{2}\right) \left(p^{2} q m + m^{2/3}\right)$$

(112)

similarly, we have

$$\mathbb{E}[N_{1\rightarrow i\rightarrow j}] = (1 - q^{2})^{-1} p^{3} q m$$

(113)
Phase 3 [encoding and retransmission]: In this phase, Tx$_i$ communicates the bits in $Q_{i\rightarrow j}[i]$ to Rx$_i$, $i = 1, 2$. However, it is possible to create XOR of these bits with the bits in $Q_{i\rightarrow j}[i]$ and the bits in Q_{i,C_j} to create bits of common interest. To do so, we first encode the bits in these states using the results of [37], and then we create the XOR of the encoded bits.

In other words, given $\epsilon, \delta > 0$, Tx$_i$ encodes all the bits in $Q_{i\rightarrow j}[i]$ at rate $p - \delta$ using random coding scheme of [37]. Similarly, Tx$_i$ encodes $q \left(E[N_{i\rightarrow j}[i]] + m_2 \right)$ bits from $Q_{i\rightarrow j}[i]$ and Q_{i,C_j} at rate $pq - \delta$ (if there are less bits in $Q_{i\rightarrow j}[i]$ and Q_{i,C_j}, then encode all of the bits in these queues). More precisely, first Tx$_i$ encodes bits from $Q_{i\rightarrow j}[i]$, and if the number of bits in $Q_{i\rightarrow j}[i]$ is less than $q \left(E[N_{i\rightarrow j}[i]] + m_2 \right)$, then Tx$_i$ uses bits in Q_{i,C_j}. Tx$_i$ will then communicate the XOR of these encoded bits.

Note that since Rx$_i$ already knows the bits in $Q_{i\rightarrow j}[i]$, it can remove the corresponding part of the received signal. Then since the channel from Tx$_i$ to Rx$_i$ can be viewed as a binary erasure channel with success probability of pq, from [37], we know that Rx$_i$ can decode Q_{i,C_j} with decoding error probability less than or equal to ϵ. Thus, Rx$_i$ can decode the transmitted bits from Q_{i,C_j} and use them to decode the bits in

TABLE III
Summary of Phase 1 for the Achievability Scheme of Corner Point B. Bit “a” represents a bit in $Q_{1\rightarrow 1}$ while bit “b” represents a bit in $Q_{2\rightarrow 2}$.
TABLE IV
SUMMARY OF PHASE 2 FOR THE ACHIEVABILITY SCHEME OF CORNER POINT B. Bit “a” represents a bit in $Q_{1, INT}$ while bit “b” represents a bit in $Q_{2, INT}$.

case ID	channel realization at time instant n	state transition	case ID	channel realization at time instant n	state transition
1	$\{a \rightarrow Q_{1, C_1}$				
 $b \rightarrow Q_{2, C_1}\}$ | $\{a \rightarrow Q_{1, INT}$
 $b \rightarrow Q_{2, \rightarrow 1/2}\}$ |
| 2 | $\{a \rightarrow Q_{1, \rightarrow 2/1}$
 $b \rightarrow Q_{2, F}\}$ | $\{a \rightarrow Q_{1, INT}$
 $b \rightarrow Q_{2, F}\}$ |
| 3 | $\{a \rightarrow Q_{1, F}$
 $b \rightarrow Q_{2, \rightarrow 1/2}\}$ | $\{a \rightarrow Q_{1, INT}$
 $b \rightarrow Q_{2, C_1}\}$ |
| 4 | $\{a \rightarrow Q_{1, \rightarrow 2/1}$
 $b \rightarrow Q_{2, INT}\}$ | $\{a \rightarrow Q_{1, INT}$
 $b \rightarrow Q_{2, \rightarrow 1/2}\}$ |
| 5 | $\{a \rightarrow Q_{1, \rightarrow 2/1}$
 $b \rightarrow Q_{2, INT}\}$ | $\{a \rightarrow Q_{1, INT}$
 $b \rightarrow Q_{2, F}\}$ |
| 6 | $\{a \rightarrow Q_{1, F}$
 $b \rightarrow Q_{2, INT}\}$ | $\{a \rightarrow Q_{1, \rightarrow 1/2}$
 $b \rightarrow Q_{2, INT}\}$ |
| 7 | $\{a \rightarrow Q_{1, C_1}$
 $b \rightarrow Q_{2, INT}\}$ | $\{a \rightarrow Q_{1, \rightarrow 1/2}$
 $b \rightarrow Q_{2, \rightarrow 1/2}\}$ |
| 8 | $\{a \rightarrow Q_{1, F}$
 $b \rightarrow Q_{2, INT}\}$ | $\{a \rightarrow Q_{1, INT}$
 $b \rightarrow Q_{2, \rightarrow 1/2}\}$ |

Q_{i, C_1}. Then, R_{i_1} removes the contribution of the bits in Q_{i, C_1} to the received signal. Finally, since the channel from T_{x_1} to R_x can be viewed as a binary erasure channel with success probability of p, from [37], we know that R_{x_1} can decode $Q_{i \rightarrow i_1}$ with decoding error probability less than or equal to ϵ.

If an error occurs in decoding of the encoded bits, we halt the transmission. Assuming that the transmission is not halted, at the end of Phase 3, $Q_{i \rightarrow i_1}$ becomes empty and there are

$$
\left(E[N_{s \rightarrow i_1}] + E[N_{i_i, C_i}] + 2m^2 - q \left(E[N_{s \rightarrow i_1}] + m^2 \right) \right) +
$$

bits left in $Q_{i \rightarrow i_1}$ and Q_{i, C_1}.

If $Q_{i \rightarrow i_1}$ and Q_{i, C_1} are also empty, the transmission strategy ends here. Otherwise, we merge the remaining bits in $Q_{i \rightarrow i_1}$ (if any) with the bits in Q_{i, C_1} as Type-III (see Section IV) and put the XOR of them in $Q_{s \rightarrow i_1}$, $i = 1, 2$. Finally, we need to describe what happens to the remaining bits in Q_{i, C_1}. As mentioned before, a bit in Q_{i, C_1} can be viewed as a bit of common interest by itself. For the remaining bits in Q_{i, C_1}, we put the first half in $Q_{s \rightarrow \{1, 2\}}$ (suppose m is picked such that the remaining number of bits is even). Note that if these bits are delivered to R_{x_2}, then R_{x_2} can decode the first half of the bits in Q_{s, C_1}. Therefore, the first half of the bits in Q_{s, C_1} join $Q_{s, F}$.

Phase 4 [communicating bits of common interest]: During Phase 4, we deliver the bits in $Q_{s \rightarrow \{1, 2\}}$ and $Q_{s \rightarrow (1, 2)}$ using the transmission strategy for the two-source multicast problem. More precisely, the bits in $Q_{s \rightarrow \{1, 2\}}$ will be considered as the message of transmitter T_{x_2} and they will be encoded as in the achievability scheme of Lemma 2. Fix $\epsilon, \delta > 0$, from Lemma 2 we know that the rate tuple

$$(R_1, R_2) = \frac{1}{2} \left(\left(1 - q^2 \right) - \delta, \left(1 - q^2 \right) - \delta \right)$$

is achievable with decoding error probability less than or equal to ϵ. Thus, using Lemma 2, we can communicate the remaining bits at rate $\left(1 - q^2 \right) - \delta$ with decoding error probability less than or equal to ϵ. If an error occurs in decoding of the encoded bits, we halt the transmission.

Using Chernoff-Hoeffding bound and the results of [37], we can show that the probability that the transmission strategy halts at any point approaches zero for $\epsilon, \delta \rightarrow 0$ and $m \rightarrow \infty$. Moreover, it is easy to verify that for $0 \leq p \leq \left(3 - \sqrt{5} \right) / 2$, at the end of Phase 3, $Q_{i \rightarrow i_1}$ and Q_{i, C_1} are empty and the transmission strategy ends there. However, for $\left(3 - \sqrt{5} \right) / 2 < p < $
0.5, the transmission strategy continues to Phase 4. Therefore, we can show that if no error occurs, the transmission strategy end in
\[
n = \max \left\{ \frac{m}{p}, \left(1 - q^2\right)^{-1} m + \left(1 - q^2\right)^{-2} pm \right\} + O\left(m^{2/3}\right) \tag{115}\]
time instants. Therefore achieving the rates given in (105).

APPENDIX D

Achievability Proof of Theorem 2: Corner Point C

In this appendix, we describe the achievability strategy for corner point C depicted in Fig. [17]b, i.e.
\[
(R_1, R_2) = (pq(1 + q), p) \tag{116}.
\]

Let the messages of transmitters one and two be denoted by \(W_1 = a_1, a_2, \ldots, a_{m_1}\), and \(W_2 = b_1, b_2, \ldots, b_{m_2}\), respectively, where data bits \(a_i\)’s and \(b_i\)’s are picked uniformly and independently from \(\{0,1\}\), and \(m_1 = q(1 + q)m\) (suppose the parameters are such that \(m, m_1 \in \mathbb{Z}\)). Note that for \((3 - \sqrt{5})/2 < p \leq 1\), we have \(q(1 + q) < 1\). We show that it is possible to communicate these bits in
\[
n = \frac{1}{p}m + O\left(m^{2/3}\right) \tag{117}\]
time instants with vanishing error probability (as \(m \to \infty\)). Therefore, achieving corner point C as \(m \to \infty\). Our transmission strategy consists of five phases as described before.

Phase 1 [uncategorized transmission]: This phase is similar to Phase 1 of the achievability strategy for the optimal sum-rate point A. The main difference is due to the fact that the transmitters start with unequal number of bits. At the beginning of the communication block, we assume that the bits \(a_1, a_2, \ldots, a_{m_1}\) at Tx1 and the bits \(b_1, b_2, \ldots, b_{m_2}\) at Tx2 are in queues \(Q_{1 \to 1}\) and \(Q_{2 \to 2}\) respectively.

Remark 21. Note that Tx2 has \(m\) initial bits, however, only \(m_1\) of them are in \(Q_{2 \to 2}\) at the beginning of the communication block.

At each time instant \(t\), Tx\(_i\) sends out a bit from \(Q_{i \to i}\), and this bit will either stay in the initial queues or a transition will take place. Based on the channel realizations, a total of 16 possible configurations may occur at any time instant. Table [V] summarizes the transition from the initial queue for each channel realization.

In comparison to the achievability strategy of the sum-rate point A, we have new queues for the bits:
1) \(Q_{1,OP}\) denotes the bits that have caused interference at the unintended receiver and this interference has to get resolved.
2) \(Q_{1,INT}\) denotes an intermediate queue of the bits at Tx1 that were transmitted when channel realizations 11 or 12 occurred.
3) \(Q_{1,INT}\) denotes an intermediate queue of the bits at Tx2 that were transmitted when channel realizations 7 or 8 occurred.

Phase 1 goes on for
\[
(1/p - 1) m + m^2 \tag{118}\]
time instants and if at the end of this phase, either of queues \(Q_{i \to i}\) is not empty, we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, let random variable \(N_{1,C_1}, N_{1,OP}, N_{i \to i[i]}\), and \(N_{i,INT}\) denote the number of bits in \(Q_{1,C_1}, Q_{1,OP}, Q_{i \to i[i]}\), and \(Q_{i,INT}\) respectively \(i = 1,2\). The transmission strategy will be halted and an error (that we refer to as error type-II) will occur, if any of the following events happens.

\[
\begin{align*}
N_{1,C_1} &> \mathbb{E}[N_{1,C_1}] + m^2 \triangleq n_{1,c_1}; \\
N_{i,OP} &> \mathbb{E}[N_{i,OP}] + m^2 \triangleq n_{i,op}, \quad i = 1, 2; \\
N_{i \to i[i]} &> \mathbb{E}[N_{i \to i[i]}] + m^2 \triangleq n_{i \to i[i]}, \quad i = 1, 2; \\
N_{i,INT} &> \mathbb{E}[N_{i,INT}] + m^2 \triangleq n_{i,INT}, \quad i = 1, 2. \tag{119}
\end{align*}
\]

From basic probability, and we have
\[
\begin{align*}
\mathbb{E}[N_{1,C_1}] &= \frac{\text{Pr (Case 1)}}{1 - \sum_{i=9,10,13,16} \text{Pr (Case i)}} m_1 \\
&= (1 - q^2)^{-1} p^3 m_1 = p^q m, \\
\mathbb{E}[N_{1,OP}] &= \frac{\text{Pr (Case 2)}}{1 - \sum_{i=9,10,13,16} \text{Pr (Case i)}} m_1 \\
&= (1 - q^2)^{-1} p^3 q m_1 = p^q q^2 m, \\
\mathbb{E}[N_{2,OP}] &= \frac{\text{Pr (Case 3)}}{1 - \sum_{i=5,6,14,16} \text{Pr (Case i)}} m_1 \\
&= (1 - q^2)^{-1} p^3 q m_1 = p^q q^2 m, \\
\mathbb{E}[N_{i \to i[i]}] &= \frac{\sum_{j=14,15} \text{Pr (Case j)}}{1 - \sum_{i=9,10,13,16} \text{Pr (Case i)}} m_1 \\
&= (1 - q^2)^{-1} (pq^3 + p^2 q^2) m_1 = q^3 m_1, \quad i = 1, 2, \\
\mathbb{E}[N_{i,INT}] &= \frac{\sum_{j=11,12} \text{Pr (Case j)}}{1 - \sum_{i=9,10,13,16} \text{Pr (Case i)}} m_1 \\
&= (1 - q^2)^{-1} (p^3 q + pq^3) m_1 = pq^2 m, \quad i = 1, 2. \tag{120}
\end{align*}
\]

Furthermore, using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with \(m\).

At the end of Phase 1, we add 0’s (if necessary) in order to make queues \(Q_{1,C_1}, Q_{1,OP}, Q_{i \to i[i]}\), and \(Q_{1,INT}\) of size equal to \(n_{1,c_1}, n_{i,op}, n_{i \to i[i]}\), and \(n_{i,INT}\) respectively as defined in (119), \(i = 1, 2\). For the rest of this appendix, we assume that Phase 1 is completed and no error has occurred.

Phase 2 [updating status of the bits in \(Q_{1,INT}\)]: In this phase, we focus on the bits in \(Q_{1,INT}, i = 1, 2\). The ultimate goal is to deliver the bits in \(Q_{1,INT}\) to both receivers. At each time instant, Tx\(_i\) picks a bit from \(Q_{1,INT}\) and sends it. This bit will either stay in \(Q_{1,INT}\) or a transition to a new queue will take place. Table [V] describes what happens to the status of the bits if either of the 16 cases occurs.

Here, we describe what happens to the status of a bit in \(Q_{1,INT}\) if either of the 16 channel realizations occur. The description for a bit in \(Q_{2,INT}\) is very similar and is summarized in Table [V]. Consider a bit “a” in \(Q_{1,INT}\). At each time instant, 16 possible cases may occur:

TABLE V

Summary of Phase 1 for the Achievability Scheme of Corner Point C. Bit "a" represents a bit in $Q_{1 \rightarrow 1}$ while bit "b" represents a bit in $Q_{2 \rightarrow 2}$.

case ID	channel realization at time instant n	state transition	case ID	channel realization at time instant n	state transition
1	$a \rightarrow Q_{1,c_1}$, $b \rightarrow Q_{2,F}$		9	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,F}$	
2	$a \rightarrow Q_{1,OP}$, $b \rightarrow Q_{2,F}$		10	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,F}$	
3	$a \rightarrow Q_{1,F}$, $b \rightarrow Q_{2,INT}$		11	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,INT}$	
4	$a \rightarrow Q_{1,F}$, $b \rightarrow Q_{2,F}$		12	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,F}$	
5	$a \rightarrow Q_{1,F}$, $b \rightarrow Q_{2,INT}$		13	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,INT}$	
6	$a \rightarrow Q_{1,F}$, $b \rightarrow Q_{2,INT}$		14	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,INT}$	
7	$a \rightarrow Q_{1,F}$, $b \rightarrow Q_{2,INT}$		15	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,INT}$	
8	$a \rightarrow Q_{1,F}$, $b \rightarrow Q_{2,INT}$		16	$a \rightarrow Q_{1,a_1}$, $b \rightarrow Q_{2,INT}$	

- Cases 9,10,11,12,13, and 16: In these cases, it is easy to see that no change occurs in the status of bit a.
- Case 6: In this case, bit a is delivered to both receivers and hence, no further transmission is required. Therefore, it joins $Q_{1,F}$.
- Case 8: In this case, bit a is available at Rx2 but it is interfered at Rx1 by bit b. However, in Case 8 no change occurs for the bits in $Q_{2,INT}$. Therefore, since bit b will be retransmitted until it is provided to Rx1, no retransmission is required for bit a and it joins $Q_{1,F}$.
- Cases 14 and 15: If either of these cases occur, bit a becomes available at Rx2 and is needed at Rx1. Thus, we update the status of such bits to $Q_{1 \rightarrow 1 \rightarrow 2}$.
- Cases 1,2,3,4,5, and 7: If either of these cases occur, we upgrade the status of bit a to the opportunistic state $Q_{1,OP}$, meaning that from now on bit a has to be provided to either Rx2 or both receivers such that it causes no further interference. For instance, if Case 2 occurs, providing bit a to both receivers is sufficient to decode the simultaneously transmitted bits.

Phase 2 goes on for

\[
(1 - [p^3 q + 2pq^2 + q^4])^{-1} pq^2 m + 2m^2 \]

(121)

time instants, and if at the end of this phase either of the states $Q_{1,INT}$ is not empty, we declare error type-I and halt the transmission.

Assuming that the transmission is not halted, since transition of a bit to this state is distributed as independent Bernoulli RV, upon completion of Phase 2, we have

\[
E[N_{1,c_1}] = p^3 q m + \frac{\sum_{j=1,3} \Pr(\text{Case } j)(pq^2 m + m^{2/3})}{1 - \sum_{i=9,10,11,12,13,16} \Pr(\text{Case } i)(pq^2 m + m^{2/3})} = p^3 q m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} p^3 (pq^2 m + m^{2/3}),
\]

\[
E[N_{1,OP}] = p^2 q^2 m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} pq(pq^2 m + m^{2/3}),
\]

\[
E[N_{1,OP}] = p^2 q^2 m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} pq(1 + p^2)(pq^2 m + m^{2/3}),
\]

\[
E[N_{i+i[i]}] = q^3 m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} pq^2 \left(pq^2 m + m^{2/3} \right), \ i = 1, 2.
\]

The transmission strategy will halt and an error (that we refer to as error type-II) will occur, if any of the following
TABLE VI
SUMMARY OF PHASE 2 FOR THE ACHIEVABLE SCHEME OF CORNER POINT B. BIT “a” REPRESENTS A BIT IN Q₁,INT WHILE BIT “b” REPRESENTS A BIT IN Q₂,INT.

Case ID	Channel Realization at Time Instant n	State Transition	Case ID	Channel Realization at Time Instant n	State Transition
1	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	9	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,OP \)	No transition
2	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	10	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,Ć₁ \)	No transition
3	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	11	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,Ć₁ \)	No transition
4	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	12	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,Ć₁ \)	No transition
5	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	13	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,Ć₁ \)	No transition
6	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	14	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,Ć₁ \)	No transition
7	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	15	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,Ć₁ \)	No transition
8	\(a \rightarrow Q₁,Ć₁ \) \(b \rightarrow Q₂,Ć₁ \)	No transition	16	\(a \rightarrow Q₁,INT \) \(b \rightarrow Q₂,Ć₁ \)	No transition

Events happen:

\[
\begin{align*}
N₁,Ć₁ &> E[N₁,Ć₁] + m^\frac{q}{2} \triangleq n₁,Ć₁; \\
\end{align*}
\]

Using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with \(m\).

Again, at the end of Phase 2, we add 0’s (if necessary) in order to make queues \(Q₁,Ć₁, Q₁,Ć₂,\) and \(Q₁,Ć₁, Q₁,Ć₂,\) of size equal to \(n₁,Ć₁, n₁,Ć₂,\) and \(n₁,Ć₁, n₁,Ć₂,\) respectively as defined in (123), \(i = 1, 2\). For the rest of this appendix, we assume that Phase 2 is completed and no error has occurred.

Note that \(Tx₂\) initially had \(m\) fresh data bits but during Phase 1 it only communicated \(m₁\) of them. The rest of those bits will be transmitted during Phase 3 as described below.

Phase 3 [uncategorized transmission vs interference management]: During Phase 3, \(Tx₁\) (the secondary user) communicates \(\frac{4}{3}q(p - q^2)m\) bits from states \(Q₁,Ć₁, Q₁,Ć₂,\) at a rate such that both receivers can decode them at the end of Phase 3, regardless of the transmitted signal of \(Tx₂\). In fact, at \(Rx₁\), we have

\[
Pr \{G₁₁[t] = 1, G₂₁[t] = 0\} = pq,
\]

and at \(Rx₂\), we have

\[
Pr \{G₂₂[t] = 0, G₁₂[t] = 1\} = pq.
\]

Hence, using the results of [37], we know that given any \(ε, δ > 0\), \(Tx₁\) can use a random code of rate \(p(q - δ)\) to encode \(\frac{4}{3}q(p - q^2)m\) bits from states \(Q₁,Ć₁, Q₁,Ć₂,\) and transmits them such that both receivers can decode the transmitted message with error probability less than or equal to \(ε\) for sufficiently large block length (\(Tx₁\) picks bits from \(Q₁,Ć₁, Q₁,Ć₂,\) and if this state becomes empty it starts picking from the other state \(Q₁,Ć₂,\)) since \(Rx₂\) can decode the transmitted signal of \(Tx₁\) in this phase, we can assume that the encoded bits of \(Tx₁\), do not create any new interference during Phase 3.

We now describe what \(Tx₂\) does during Phase 3. At the beginning of Phase 3, we assume that the bits \(b_m, b_{m+1}, b_{m+2}, \ldots, b_{m}\) at \(Tx₂\) are in state \(Q₂,Ć₂,\). At each time instant, \(Tx₂\) picks a bit from \(Q₂,Ć₂\) and sends it. This bit will either stay in \(Q₂,Ć₂\) or a transition occurs as described below.

- Cases 1, 2, 3, 4, 9, 10, 11, and 12: In these cases the direct link from \(Tx₂\) to \(Rx₂\) is on. Therefore, since at the end
of block (assuming large enough block length), we can decode and remove the transmitted signal of T_{X_1}, the transmitted bit of T_{X_2} leaves $Q_{2\rightarrow 2}$ and joins $Q_{2,F}$.

- Cases 7, 8, 13, and 15: In these cases (assuming the transmitted signal of T_{X_1} can be removed), the transmitted bit of T_{X_2} becomes available at R_{X_1} while it is required at R_{X_2}. Thus, the transmitted bit of T_{X_2} leaves $Q_{2\rightarrow 2}$ and joins $Q_{2\rightarrow 2|1}$.

- Cases 5, 6, 14, and 16: In these cases, no change happens in the status of the transmitted bit from T_{X_2}.

Phase 3 goes on for

$$\frac{(p-q^2)}{1-q^2} m + m^2 \quad \text{(126)}$$

time instants and if at the end of this phase there is a bit left in $Q_{2\rightarrow 2}$ or an error occurs in decoding the transmitted signal of T_{X_1}, we declare error type-I and halt the transmission. Note that during Phase 3, the number of bits in $Q_{1\rightarrow 1|2}$ and $Q_{2,OP}$ remain unchanged.

Assuming that the transmission is not halted, since transition of a bit to this state is distributed as independent Bernoulli RV, upon completion of Phase 2, we have

$$E[N_{1,C_1}] = \left[p^3 q m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} \times p^3 (pq^2 m + m^{2/3} - \frac{q}{1+q} (p-q^2)m) \right] +$$

$$E[N_{1,OP}] = p^3 q^2 m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} \times pq(pq^2 m + m^{2/3} - \left[\frac{q}{1+q} (p-q^2)m - p^3 qm \right] - (1 - [p^3 q + 2pq^2 + q^4])^{-1} p^3 (pq^2 m + m^{2/3})^+) \quad \text{(127)}$$

For $(3-\sqrt{5})/2 \leq p \leq 1$, $E[N_{1,OP}]$ is non-negative. The transmission strategy will halt and an error (that we refer to as error type-II) will occur, if any of the following events happens.

1. $N_{1,C_1} > E[N_{1,C_1}] + m^{\frac{1}{3}}$;
2. $N_{1,OP} > E[N_{1,OP}] + m^{\frac{1}{3}}$;
3. $N_{2\rightarrow 2|1} > E[N_{2\rightarrow 2|1}] + m^{\frac{1}{3}}$.

Using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II decreases exponentially with m.

Phase 4 [delivering interference-free bits and interference management]: In Phase 4, T_{X_1} will communicate all the bits in $Q_{1\rightarrow 1|2}$. However, it is possible to create XOR of these bits with bits in $Q_{1,OP}$ in order to create bits of common interest. To do so, we first encode the bits in these states using the results of \cite{37}, and then we create the XOR of the encoded bits. On the other hand, T_{X_2} will do the same to part of the bits in $Q_{2\rightarrow 2|1}$ and $Q_{2,OP}$.

More precisely, for any $\epsilon, \delta > 0$, T_{X_1} encodes all the bits in $Q_{1\rightarrow 1|2}$ at rate $p-\delta$ using random coding scheme of \cite{37}. Similarly, T_{X_2} encodes

$$q^4 + (1 - [p^3 q + 2pq^2 + q^4])^{-1} p^2 q^5 \quad \text{(128)}$$

bits from $Q_{1,OP}$ at rate $pq - \delta$. Then T_{X_1} will communicate the XOR of these encoded bits.

During Phase 3, T_{X_2} encodes same number of the bits as in $Q_{1\rightarrow 1|2}$ from $Q_{2\rightarrow 2|1}$ at rate $p-\delta$ and

$$q^4 + (1 - [pq^2 + 2pq^2 + q^4])^{-1} p^2 q^5$$

time instants. If an error occurs in decoding any of the encoded signals in Phase 4, we consider it as error and we halt the transmission strategy.

At the end of Phase 4, $Q_{1\rightarrow 1|2}$ becomes empty. Define

$$\beta = \frac{(pq-\delta) \left[q^3 m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} pq^2 (pq^2 + m^{2/3}) \right]}{(p-\delta)} \quad \text{(129)}$$

note that as $\epsilon, \delta \to 0$, β agrees with the expression given in \cite{128}.

Upon completion of Phase 4, we have

$$E[N_{1,OP}] = p^2 q^2 m + (1 - [p^3 q + 2pq^2 + q^4])^{-1} pq(pq^2 m + m^{2/3})$$

$$- \left[\frac{q}{1+q} (p-q^2)m - p^3 qm \right]$$

$$+ \frac{q}{1+q} (p-q^2)m - \beta,$$

$$E[N_{2\rightarrow 2|1}] = \frac{pq}{(1-q^2)} (p-q^2) m. \quad \text{(131)}$$

The transmission strategy will halt and an error of type-II will occur, if any of the following events happens.

1. $N_{1,OP} > E[N_{1,OP}] + m^{\frac{1}{3}}, i = 1, 2$;
2. $N_{2\rightarrow 2|1} > E[N_{2\rightarrow 2|1}] + m^{\frac{1}{3}}$.

Using Chernoff-Hoeffding bound, we can show that the probability of errors of type II decreases exponentially with \(m\). Furthermore, the probability that an error occurs in decoding any of the encoded signals in Phase 4 can be made arbitrary small as \(m \to \infty\).

Phase 5 [delivering interference-free bits and interference management]: In Phase 5, the transmitters will communicate the remaining bits in \(Q_{1,OP}, Q_{1,c_1}, Q_{2 \to 2|1}\), and \(Q_{2,OP}\). Tx1 will communicate all the bits in \(Q_{1,OP}\) and \(Q_{1,c_1}\) such that for sufficiently large block length, both receivers can decode them with arbitrary small error. On the other hand, Tx2 will communicate the bits in \(Q_{2 \to 2|1}\) and \(Q_{2,OP}\) similar to Phase 4 with one main difference. Since both receivers can completely remove the contribution of Tx1 at the end of the block, Tx2 can send the bits in \(Q_{2,OP}\) at a higher rate of \(p\) as opposed to \(pq\) during Phase 4.

More precisely, for any \(\epsilon, \delta > 0\), Tx1 using random coding scheme of [37], encodes all the bits in \(Q_{1,OP}\) and \(Q_{1,c_1}\) at rate \(pq - \delta\) and communicates them. On the other hand, Tx2 using random coding, encodes all the bits in \(Q_{2 \to 2|1}\) and all bits in \(Q_{2,OP}\) at rate \(p - \delta\). Then, Tx2 communicates the XOR of its encoded bits.

Since Rx1 already has access to the bits in \(Q_{2 \to 2|1}\) and \(Q_{1,OP}\), it can remove the corresponding parts of the transmitted signals. Then for sufficiently large block length, Rx1 can decode the transmitted bits from \(Q_{1,c_1}\) and \(Q_{2,OP}\) with decoding error probability less than or equal to \(\epsilon\).

Finally, since Rx2 already has access to the bits in \(Q_{2,OP}\), it can remove the corresponding part of the transmitted signal. Then for sufficiently large block length, Rx2 can decode the transmitted bits from \(Q_{1,OP}\) and \(Q_{1,c_1}\) with decoding error probability less than or equal to \(\epsilon\). After decoding and removing this part, Rx2 can decode the encoded bits from \(Q_{2 \to 2|1}\) with decoding error probability less than or equal to \(\epsilon\).

Phase 5 goes on for

\[
\left[\frac{pq}{(1-q^2)} \left(p - q^2 \right) m + 2m^2/3 \right] / (p - \delta)
\]

(132) time instants. If an error occurs in decoding any of the encoded signals in Phase 5, we consider it as an error and halt the transmission strategy. It is straightforward to verify that at the end of Phase 5, if the transmission is not halted, all states are empty and all bits are successfully delivered.

The probability that the transmission strategy halts at any point can be bounded by the summation of error probabilities of types 1-II and the probability that an error occurs in decoding the encoded bits. Using Chernoff-Hoeffding bound and the results of [37], we can show that the probability that the transmission strategy halts at any point approaches zero for \(\epsilon, \delta \to 0\) and \(m \to \infty\). Moreover, the total transmission requires

\[
\frac{1}{p} m + 6m^{2/3}
\]

(133) time instants. Thus, Tx1 achieves a rate of \(pq(1+q)\) while Tx2 achieves a rate of \(p\).

This completes the achievability proof of Theorem 2.

APPENDIX E

Proof of Lemma 2

In this appendix, we provide the proof of Lemma 2. We first derive the outer-bound and then we describe the achievability. The outer-bound on \(R_i\) is the same as in Section 3.

Suppose there are encoders and decoders at the transmitters and receivers respectively, such that each receiver can decode both messages with arbitrary small decoding error probability as the block length goes to infinity. We have

\[
n(R_1 + R_2 - \epsilon_n)
\leq I(W_1, W_2; Y^n_t|G^n)
= H(Y^n_t|G^n) - H(Y^n_t|W_1, W_2, G^n)
\]

(134)

\[
\leq \sum_{t=1}^{n} H(Y_1[t]|G^n) \leq (1 - q^2) n,
\]

where \(\epsilon_n \to 0\) as \(n \to \infty\); and (a) follows from the fact that the messages and \(G^n\) are mutually independent, Fano’s inequality, and the fact that \(R_1\) should be able to decode both messages; (b) holds since the received signal \(Y^n_t\) is a deterministic function of \(W_1\), \(W_2\), and \(G^n\); and (c) follows from the fact that conditioning reduces entropy. Dividing both sides by \(n\) and let \(n \to \infty\), we get

\[
R_1 + R_2 \leq 1 - q^2.
\]

(135)

Below, we provide the achievability proof of Lemma 2. Let \(W_i \in \{1, 2, \ldots, 2^{nR_i}\}\) denote the message of user \(i\).

In [37], it has been shown that for a binary erasure channel with success probability \(p\), and for any \(\epsilon, \delta > 0\), as long as the communication rate is less than or equal to \(p - \delta\), we can have decoding error probability less than or equal to \(\epsilon\).

Codebook generation is as follows. Transmitter \(i\) creates \(2^{nR_i}\) \((R_1 = p - \delta \text{ and } R_2 = pq - \delta)\) independent codewords where each entry of the codewords is an i.i.d. Bernoulli 0.5 RV. For message index \(j\), transmitter \(i\) will send the \(j^{th}\) codeword. Note that we can view the channel from Tx2 to Rx1 as a binary erasure channel with success probability \(pq\) whenever \(G_{11}[t] = 0\) and \(G_{21}[t] = 1\), we get a clean observation of \(X_2[t]\). Therefore, since \(R_2 = pq - \delta\), Rx1 can decode \(W_2\) with arbitrary small decoding error probability as \(n \to \infty\) and remove \(X_2^n\) from its received signal. After removing \(X_2^n\), we can view the channel from Tx1 to Rx1 as a binary erasure channel with success probability \(p\) whenever \(G_{11}[t] = 1\), we get a clean observation of \(X_1[t]\). Therefore, since \(R_1 = p - \delta\), Rx1 can decode \(W_1\) with arbitrary small decoding error probability as \(n \to \infty\). Similar argument holds for Rx2. This completes the achievability proof of corner point

\[
(R_1, R_2) = (p, pq).
\]

(136)

Similarly, we can achieve corner point

\[
(R_1, R_2) = (pq, p).
\]

(137)

Therefore with time sharing, we can achieve the entire region as described in Lemma 2.
Appendix F
Achievability Proof of Theorem 3 Corner Point
$(1 - q^2, 0)$

By symmetry, it suffices to describe the achievability strategy for corner point

$$ (R_1, R_2) = (1 - q^2, 0), \quad (138) $$

when transmitters have delayed knowledge of channel state information and noiseless output feedback links are available from the receivers to the transmitters.

Our achievability strategy is carried on over $b + 1$ communication blocks each with n time instants. Transmitter one communicates fresh data bits in the first b blocks and the final block is to help receiver one decode its corresponding bits. Transmitter and receiver two act as a relay to facilitate the communication between transmitter and receiver one. At the end, using our scheme we achieve rate tuple

$$ \left(\frac{b}{b+1} (1 - q^2), 0 \right) $$

as $n \to \infty$. Finally, letting $b \to \infty$, we achieve the desired corner point.

Let W_j^1 be the message of Tx_1 in block j, $j = 1, 2, \ldots, b$. We assume $W_j^1 = a_1^j, a_2^j, \ldots, a_m^j$. We set

$$ n = (1 - q^2)^{-1} m + m^{2/3}, \quad (139) $$

Achievability strategy for block 1: At the beginning of the communication block, we assume that the bits at Tx_1 are in queue (or state) $Q_{1|1}^1$. At each time instant t, Tx_1 sends out a bit from $Q_{1|1}^1$, and this bit will leave this queue if at least one of the outgoing links from Tx_1 was equal to 1 at the time of transmission. On the other hand, Tx_2 remains silent during the first communication block. If at the end of the communication block, queue $Q_{1|1}^1$ is not empty, we declare error type-I and halt the transmission.

At the end of first block, using output feedback links, transmitter two has access to the bits of Tx_1 communicated in the first block. More precisely, Tx_2 has access to the bits of Tx_1 communicated in Cases 11, 12, 14, and 15 during the first communication block. Note that the bits communicated in these cases are available at Rx_2 and have to be provided to Rx_1. Transmitter two transfers these bits to $Q_{2|1|2}^1$. The transmission strategy will be halted and an error type-II will occur, if $N_{2|1|2}^1 > E[N_{2|1|2}^1] + pqm^2$. From basic probability, we know that

$$ E[N_{2|1|2}^1] = \sum_{j=11,12,14,15} \Pr (Case \ j) \Pr (Case \ i) \frac{m}{1 - \sum_{i=9,10,13,16} \Pr (Case \ i)} m
= (1 - q^2)^{-1} pqm. \quad (140) $$

Using Chernoff-Hoeffding bound, we can show that the probability of errors of types I and II and decreases exponentially with m.

Achievability strategy for block $b + 1$: Finally in block $b + 1$, no new data bit is transmitted and Tx_2 only communicates the bits of Tx_1 communicated in the previous block in Cases 11, 12, 14, and 15 as described before.

We can show that the probability that the transmission strategy halts at any point approaches zero as $m \to \infty$.

Decoding: At the end of block $j + 1$, Rx_1 decodes the transmitted message of Tx_2 in block $j + 1$ and removes it from the received signal. Together with the bits it has obtained during block j, it can decode message W_j^1. Using similar idea, Rx_2 uses backward decoding to cancel out interference in the previous blocks to decode all messages.

This completes the achievability proof for corner point

$$ (R_1, R_2) = (1 - q^2, 0). $$

References
[1] A. Vahid, M. Maddah-Ali, and A. Avestimehr, “Interference channel with binary fading: Effect of delayed network state information,” in 49th Annual Allerton Conference on Communication, Control, and Computing, pp. 894–901, 2011.
[2] A. Vahid, M. Maddah-Ali, and A. Avestimehr, “Binary fading interference channel with delayed feedback,” in Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 1882–1886, 2012.
[3] C. E. Shannon,”The zero error capacity of a noisy channel,” IRE Transactions on Information Theory, Sept. 1956.
[4] M. A. Maddah-Ali and D. N. Tse, “Completely state transmitter channel state information is still very useful,” in Forty-Eighth Annual Allerton Conference on Communication, Control, and Computing, Sept. 2010.
Dr. Avestimehr has received a number of awards for research and teaching, including the Communications Society and Information Theory Society Joint Paper Award in 2013, the Presidential Early Career Award for Scientists and Engineers (PECASE) in 2011, the Michael Tien 72 Excellence in Teaching Award in 2012, the Young Investigator Program (YIP) award from the U. S. Air Force Office of Scientific Research in 2011, the National Science Foundation CAREER award in 2010, and the David J. Sakrison Memorial Prize in 2008. He is currently an Associate Editor for the IEEE Transactions on Information Theory. He has also been a Guest Associate Editor for the IEEE Transactions on Information Theory Special Issue on Interference Networks and General Co-Chair of the 2012 North America Information Theory Summer School and the 2012 Workshop on Interference Networks.