The Kato square root problem on irregular open sets

Sebastian Bechtel
TU Darmstadt

Parabolic Evolution Equations, Harmonic Analysis and Spectral Theory
Bad Herrenalb, 8 May 2019
What is the Kato square root problem?
What is the Kato square root problem?

- $O \subseteq \mathbb{R}^d$ open
- $H_0^{1,2}(O) \subseteq \mathcal{V} \subseteq H^{1,2}(O)$ closed subspace
What is the Kato square root problem?

- $O \subseteq \mathbb{R}^d$ open
- $H_0^{1,2}(O) \subseteq V \subseteq H^{1,2}(O)$ closed subspace
- $A \in L^\infty(O; \mathbb{C}^{d \times d})$
- define sesquilinear form

\[a(u, v) := \int_O A \nabla u \cdot \overline{\nabla v} \, dx \quad (u, v \in V) \]

- A coercive in Gårding’s sense

\[\Re a(u, u) \gtrsim \| \nabla u \|_{L^2(O)}^2 \quad (u \in V) \]
What is the Kato square root problem?

- \(O \subseteq \mathbb{R}^d \) open
- \(H_0^{1,2}(O) \subseteq \mathcal{V} \subseteq H^{1,2}(O) \) closed subspace
- \(A \in L^\infty(O; \mathbb{C}^{d \times d}) \)
- define sesquilinear form
 \[
a(u, v) := \int_O A\nabla u \cdot \overline{\nabla v} \, dx \quad (u, v \in \mathcal{V})
\]
- A coercive in Gårding's sense
 \[
 \Re a(u, u) \gtrsim \|\nabla u\|^2_{L^2(O)} \quad (u \in \mathcal{V})
 \]
- \(L \) realization of \(a \) in \(L^2(O) \).
What is the Kato square root problem?

- \(O \subseteq \mathbb{R}^d \) open
- \(H_{0}^{1,2}(O) \subseteq \mathcal{V} \subseteq H^{1,2}(O) \) closed subspace
- \(A \in L^{\infty}(O; \mathbb{C}^{d \times d}) \)
- define sesquilinear form
 \[
 a(u, v) := \int_{O} A \nabla u \cdot \overline{\nabla v} \, dx \quad (u, v \in \mathcal{V})
 \]
- \(A \) coercive in Gårding’s sense
 \[
 \text{Re} \, a(u, u) \gtrsim \| \nabla u \|_{L^{2}(O)}^2 \quad (u \in \mathcal{V})
 \]
- \(L \) realization of \(a \) in \(L^{2}(O) \).

Problem

For which spaces \(\mathcal{V} \) do we have \(\text{D}(L^{1/2}) = \mathcal{V} \) with equivalent norms?
Theorem (Egert, Haller-Dintelmann, Tolksdorf ’14 & ’16)

Suppose:
- O bounded domain
- O is d-regular
- ∂O is $(d - 1)$-regular.
- $D \subseteq \partial O$ is $d - 1$-regular
- $\overline{\partial O \setminus D}$ admits bi-Lipschitz charts

Then the Kato property holds for $\mathcal{V} = H^{1,2}_D(O)$.
What is known for mixed boundary conditions?

Theorem (Egert, Haller-Dintelmann, Tolksdorf '14 & '16)

Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d - 1)$-regular.
- $D \subseteq \partial O$ is $(d - 1)$-regular
- $\overline{\partial O \setminus D}$ admits bi-Lipschitz charts

Then the Kato property holds for $\mathcal{V} = H^{1,2}_D(O)$.
What is known for mixed boundary conditions?

Theorem (Egert, Haller-Dintelmann, Tolksdorf ’14 & ’16)

Suppose:
- O bounded domain
- O is d-regular
- ∂O is $(d - 1)$-regular.
- $D \subseteq \partial O$ is $(d - 1)$-regular
- $\overline{\partial O \setminus D}$ admits bi-Lipschitz charts

Then the Kato property holds for $\mathcal{V} = H^{1,2}_D(O)$.

Aim: only demand for boundary regularity!
What is known for mixed boundary conditions?

Theorem (Egert, Haller-Dintelmann, Tolksdorf ’14 & ’16)

Suppose:
- O bounded domain
- O is d-regular
- ∂O is $(d-1)$-regular.
- $D \subseteq \partial O$ is $(d-1)$-regular
- $\overline{\partial O \setminus D}$ admits bi-Lipschitz charts

Then the Kato property holds for $\nu = H^{1,2}_D(O)$.

Aim: only demand for boundary regularity!

- inspection of proof: no connectedness
What is known for mixed boundary conditions?

Theorem (Egert, Haller-Dintelmann, Tolksdorf '14 & '16)

Suppose:

- O is bounded domain
- O is d-regular
- ∂O is $(d - 1)$-regular.
- $D \subseteq \partial O$ is uniformly $(d - 1)$-regular
- $\overline{\partial O \setminus D}$ uniformly admits bi-Lipschitz charts

Then the Kato property holds for $\mathcal{V} = H^{1,2}_D(O)$.

Aim: only demand for boundary regularity!

- inspection of proof: no connectedness
- better interpolation theory (joint work with M. Egert): no boundedness
What is known for mixed boundary conditions?

Theorem (B., Egert, Haller-Dintelmann, Tolksdorf ’14, ’16 & ’19)

Suppose:
- O is bounded domain
- O is d-regular
- ∂O is $(d-1)$-regular.
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
- $\overline{\partial O \setminus D}$ uniformly admits bi-Lipschitz charts

Then the Kato property holds for $\mathcal{V} = H^{1,2}_D(O)$.

Aim: only demand for boundary regularity!

- inspection of proof: no connectedness
- better interpolation theory (joint work with M. Egert): no boundedness
- localization and thickening of O: no d-regularity
Thickening of O

For simplicity: pure Dirichlet boundary conditions

- For example: O is an unbounded cusp domain \rightsquigarrow not d-regular
Thickening of O

For simplicity: pure Dirichlet boundary conditions

- For example: O is an unbounded cusp domain \rightsquigarrow not d-regular
- $O := \mathbb{R}^d \setminus \partial O$ is d-regular and contains O
Thickening of O

For simplicity: pure Dirichlet boundary conditions

- For example: O is an unbounded cusp domain \rightsquigarrow not d-regular
- $O := \mathbb{R}^d \setminus \partial O$ is d-regular and contains O

Question

How do the Kato problems on O and O relate?

Idea: relate functional calculi of L and L
“Localization” of the functional calculus

Idea: relate functional calculi of L and L^1

1. $QL \subseteq LQ$ for good projection Q

Calculate with good projection Q and $u \in D(QL) = D(L)$:

$$a(Qu, v)$$
"Localization" of the functional calculus

Idea: relate functional calculi of L and L

1. $QL \subseteq LQ$ for good projection Q

Calculate with good projection Q and $u \in D(QL) = D(L)$:

$$a(Qu, v) = \int\nabla Qu \cdot \nabla v$$
“Localization” of the functional calculus

Idea: relate functional calculi of L and L

1. $QL \subseteq LQ$ for *good* projection Q

Calculate with *good* projection Q and $u \in D(QL) = D(L)$:

$$a(Qu, v) = \int O A \nabla Qu \cdot \nabla v = \int O A \nabla u \cdot \nabla Qv$$
“Localization” of the functional calculus

Idea: relate functional calculi of L and L for good projection Q

1. $QL \subseteq LQ$ for good projection Q

Calculate with good projection Q and $u \in D(QL) = D(L)$:

$$a(Qu, v) = \int_{\Omega} A \nabla Q u \cdot \nabla v = \int_{\Omega} A \nabla u \cdot \nabla Q v$$

$$= (Lu | Qv)_{L^2}$$
“Localization” of the functional calculus

Idea: relate functional calculi of \(L \) and \(\mathcal{L} \)

1. \(\mathcal{Q}L \subseteq \mathcal{L}Q \) for \textit{good} projection \(Q \)

Calculate with \textit{good} projection \(Q \) and \(u \in D(\mathcal{Q}L) = D(L) \):

\[
\mathbf{a}(Qu, v) = \int_{\Omega} A \nabla Qu \cdot \nabla v = \int_{\Omega} A \nabl u \cdot \nabla Qv \\
= (Lu | Qv)_{L^2} = (QLu | v)_{L^2}
\]
“Localization” of the functional calculus

Idea: relate functional calculi of L and L

1. $QL \subseteq LQ$ for *good* projection Q

Calculate with *good* projection Q and $u \in D(QL) = D(L)$:

$$a(Qu, v) = \int_{\Omega} A \nabla Qu \cdot \nabla v = \int_{\Omega} A \nabla u \cdot \nabla Qv$$

$$= (Lu | Qv)_{L^2} = (QLu | v)_{L^2}$$

hence: $Qu \in D(L)$ and $LQu = QLu$
“Localization” of the functional calculus

Idea: relate functional calculi of L and L

1. $QL \subseteq LQ$ for good projection Q
2. decomposition of functional calculus and operator domains

- Q_1 good projection
- L_1 and L_2 the restrictions of L to $Q_1L^2(O)$ and $(1 - Q_1)L^2(O)$

Then

$$u \in D(f(L)) \iff Q_1u \in D(f(L_1)) \text{ and } Q_2u \in D(f(L_2))$$

with

$$f(L)u = f(L_1)Q_1u + f(L_2)Q_2u.$$
“Localization” of the functional calculus
Idea: relate functional calculi of L and L

1. $QL \subseteq LQ$ for *good* projection Q ✓
2. decomposition of functional calculus and operator domains ✓
3. $Q_1 = 1_O$ is a *good* projection

- multiplication operators commute with each other
“Localization” of the functional calculus

Idea: relate functional calculi of \(L \) and \(L_1 \)

1. \(QL \subseteq LQ \) for good projection \(Q \)
2. Decomposition of functional calculus and operator domains
3. \(Q_1 = 1_O \) is a good projection

- Multiplication operators commute with each other
- \(\nabla Q \varphi = Q \nabla \varphi \) for \(\varphi \in C_0^\infty (O) \)
“Localization” of the functional calculus

Idea: relate functional calculi of L and L^1

1. $QL \subseteq LQ$ for good projection Q ✓
2. Decomposition of functional calculus and operator domains ✓
3. $Q_1 = 1_O$ is a good projection

- Multiplication operators commute with each other
- $\nabla Q \varphi = Q \nabla \varphi$ for $\varphi \in C^\infty_0(O)$
- $\nabla Q = Q \nabla$ on $H^{1,2}_0(O)$ by density
“Localization” of the functional calculus

Idea: relate functional calculi of L and L

1. $QL \subseteq LQ$ for good projection Q ✓
2. decomposition of functional calculus and operator domains ✓
3. $Q_1 = 1_O$ is a good projection ✓
4. putting it all together

Kato for L implies

$$Q_1 H_0^{1.2}(O) = Q_1 D(L^{1/2}) = D(L^{1/2}_1)$$
“Localization” of the functional calculus

Idea: relate functional calculi of L and L^1

1. $QL \subseteq LQ$ for good projection Q
2. decomposition of functional calculus and operator domains
3. $Q_1 = 1_O$ is a good projection
4. putting it all together

Kato for L implies

$$Q_1 H^1,2_0(\mathcal{O}) = Q_1 D(L^{1,2}) = D(L^{1,2})$$

and for $u \in D(L^{1,2})$ we get

$$\|L^{1,2}_1 u\|_{L^2} = \|L^{1,2} u\|_{L^2} \approx \|u\|_{H^1,2_0}$$
“Localization” of the functional calculus

Idea: relate functional calculi of L and L_1

1. $QL \subseteq LQ$ for good projection Q ✓
2. decomposition of functional calculus and operator domains ✓
3. $Q_1 = 1_O$ is a good projection ✓
4. putting it all together

Kato for L implies

$$Q_1H_0^{1,2}(O) = Q_1D(L^{\frac{1}{2}}) = D(L^{\frac{1}{2}})$$

and for $u \in D(L^{\frac{1}{2}})$ we get

$$\|L_1^{\frac{1}{2}}u\|_{L^2} = \|L^{\frac{1}{2}}u\|_{L^2} \approx \|u\|_{H_0^{1,2}}$$

identify: $L^2(O) \sim Q_1L^2(O)$ and $H_0^{1,2}(O) \sim Q_1H_0^{1,2}(O)$

$\leadsto L = L_1$
“Localization” of the functional calculus

Idea: relate functional calculi of \(L \) and \(L \)

1. \(QL \subseteq LQ \) for good projection \(Q \)
2. decomposition of functional calculus and operator domains
3. \(Q_1 = 1_O \) is a good projection
4. putting it all together
Now, it’s time for conference dinner!

S. Bechtel, R. Haller-Dintelmann. *The Kato square root problem on irregular open sets*. Available on arXiv.