Case report

Brucellosis causing bone marrow aplasia in an 11-year-old patient with complete recovery after treatment

Nour Youssefa,b,c, Yolla Youssefa,b,c, Dolly Nouna, Miguel Abbouda, Ghassan Dbaiboa,b,c,*

a Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
b Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Lebanon
c Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon

ARTICLE INFO

Keywords:
Brucellosis
Zoonotic infections
Aplastic anemia
Pancytopenia

ABSTRACT

Brucellosis is one of the most prevalent zoonotic infections in the Middle East. The disease may present with a range of symptoms from a simple febrile illness to severe invasive infections affecting different organ systems (meningitis, osteomyelitis). In this paper we present an eleven-year-old girl who was diagnosed with “idiopathic bone marrow aplasia” and planned for hematopoietic stem cell transplant (HSCT), when pre-transplant work-up showed high brucella titers. The patient was started on doxycycline, rifampin and gentamicin initially, with discontinuation of the latter 3 weeks into therapy. She recovered completely after 8 months of treatment.

Background

Brucellosis, also known as “Mediterranean fever” or “Malta fever”, is a frequently encountered zoonotic infection in the Middle East. It is usually transmitted to humans from infected animals including cattle, sheep, goats, camels, and pigs via ingestion of food products or by contact with tissue or fluids. It is an important public health concern in many developing countries worldwide [1].

The incidence of brucellosis has been estimated to range from one per 100,000 to 20 per 100,000 in the Middle East and North Africa (MENA) region. This may be an underestimation to actual numbers due to lack of surveillance system among many countries in the region, including Lebanon [2]. A major outbreak was reported in Lebanon in 2017, with the peak of brucellosis cases detected in individuals aged 20–39 years with male predominance. \textit{Brucella melitensis} and \textit{B. abortus} are widespread across the MENA region [3].

Brucella infection can be subclinical, however, when present, signs and symptoms are highly variable in the majority of patients including, but not limited to fever, chills, myalgia, malaise, arthralgias, weight loss, headaches, anorexia, abdominal pain, and depression [4]. Physical examination findings are non-specific and may include hepatosplenomegaly and/or lymphadenopathy [5].

Case presentation

The patient is an 11-year-old Lebanese girl, diagnosed with aplastic anemia. She presented to our center for a second opinion and to discuss treatment with allogeneic hematopoietic stem cell transplant (HSCT). History went back to 1 month prior to presentation when the patient was found to have thrombocytopenia on a routine blood test reaching 60,000/cu.mm. Her platelet count continued to decline, along with her hemoglobin level. She received two doses of intravenous immunoglobulin therapy. Bone marrow aspirate was done and revealed the diagnosis of aplastic anemia. The patient started receiving platelet and packed red blood cell transfusions on a regular basis. Further work up was initiated to plan for a fully matched HSCT from her sister. However, the pre-transplant workup showed positive direct and indirect brucella titers (1/160 each). Therefore, she was referred to the Pediatric Infectious Diseases clinic for further evaluation. Upon further questioning, the patient reported a history of headaches, myalgias and polyarticular pain of lower extremities and mid-back, associated with night-time subjective fevers, with no other complaints. There was no recalled history of ingestion of unpasteurized dairy products. Physical exam was remarkable for bilateral knee swelling. Initial blood investigations showed anemia (Hb 7.5 g/dl), leukopenia (white cell count of 2100/cu.mm with an absolute neutrophil count (ANC) of 504/cu.mm), thrombocytopenia (platelet count of 9000/cu.mm) and a reticulocyte percentage of 0.3%. Her liver enzymes were mildly elevated (alanine aminotransferase 178

* Corresponding author at: Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
E-mail address: gdbaibo@aub.edu.lb (G. Dbaibo).
right ulna. Accordingly, Brucella involvement of the bone was pre
femoral head, bilateral proximal femur, iliac bones and sacrum, and
administration. Other few scattered lesions were noted in the left
on T1, low signal intensity on T2 and faint enhancement after contrast
started on oral doxycycline 100 mg twice daily and rifampin 600 mg
aspirate came back positive with
negative for any growth, however, RNA 16 S test of bone marrow
cultures were sterile. Similarly bone marrow culture for brucella was
negative for any growth, however, RNA 16 S test of bone marrow
aspirate came back positive with Brucella melitensis. The patient was
started on oral doxycycline 100 mg twice daily and rifampin 600 mg
once daily.
Whole body MRI showed numerous bone lesions involving the lower
cervical, thoracic, and visualized lumbar spine with low signal intensity
on T1, low signal intensity on T2 and faint enhancement after contrast
administration. Other few scattered lesions were noted in the left
femoral head, bilateral proximal femur, iliac bones and sacrum, and
right ulna. Accordingly, Brucella involvement of the bone was pre
sumed, and the patient was admitted to receive intravenous Gentamicin
2.5 mg/kg/dose every 8 h for a total of 3 weeks duration while
continuing doxycycline and rifampin. During this period of time, the
patient had flares of body aches, at points that correlated with lesions
infiltration rate (54 mm/h). C-reactive protein was (1.3 mg/l). The serolog
were within normal range. The inflammatory markers were
elevated including serum ferritin (1040 ng/ml), erythrocyte sedimen
tation rate (54 mm/h), C-reactive protein was (1.3 mg/l). The serolog
tests for HIV, hepatitis C virus, hepatitis B surface antigen, anti
hepatitis B core antigen, and anti-hepatitis B surface antigen were
negative. The cytomegalovirus IgG and Epstein–Barr virus IgG were
positive, but IgM was negative for both. Antinuclear antibody was
negative. Repeated bone marrow aspirate showed a severely aplastic
pattern with less than 5% cellular marrow and no evidence of malign
ancy. The patient was maintained on packed red blood cells (PRBC) and
platelet transfusions at a frequency of every 2–3 days. Egg preser
vation was done as part of HSCT preparation. Blood cultures were
collected for brucella assessment that showed no growth and repeated
cultures were sterile. Similarly bone marrow culture for brucella was
negative for any growth, however, RNA 16 S test of bone marrow
aspirate came back positive with Brucella melitensis. The patient was
started on oral doxycycline 100 mg twice daily and rifampin 600 mg
once daily.

Children with brucellosis often have hematologic abnormalities
including anemia, thrombocytopenia, and pancytopenia [16].
In the literature, a three-year-old boy was reported to have secondary
hemagglutocytic lymphohistiocytosis associated with brucellosis [11].
In another paper by Makis et al., a case of a 5-year-old girl with Brucella
melitensis infection presenting with severe thrombocytopenic purpura
was described. Treatment included intravenous immunoglobulin and a
combination of antibiotics [12]. In Saudi Arabia, a series of 115 children
with brucellosis was reported, four of whom had severe thrombocyto
penia. All four patients were successfully treated with antimicrobial
agents [13]. In Lebanon, Farah et al. reported a case of severe thrombocytopenic purpura as the presenting symptom of brucellosis in an
8-year-old boy [14].
A prospective study was conducted in Iran to study the relative fre
quency of pancytopenia in patients with brucellosis. Results showed that
18.3% of enrolled patients had pancytopenia at diagnosis. Interestingly,
all patients grew Brucella melitensis in their blood cultures [15].
Bone marrow hypoplasia/aplasia secondary to brucellosis has been
rarely described previously [16]. Shayib and Aysha et al. have described
association of brucella with severe bone marrow hypocellularity [17]. In
Turkey, an 11-year-old boy was reported to have bone marrow aplasia
that was attributed to brucellosis. The patient’s pancytopenia recovered
completely after 6 weeks of antimicrobial treatment [18].
In our patient, the bone marrow aplasia was so severe it almost led to
HSCT, had the positive brucella titers not been detected or requested in
the pre-transplant work up. Brucella melitensis infection was confirmed
only by detection with the 16 S RNA assay on the bone marrow sample

To our knowledge, this is the first case of a brucella infection causing
aplastic anemia in Lebanon.

Discussion
Brucellosis is an endemic zoonotic disease in most countries of the
MENA region. For example, in Saudi Arabia, the incidence of brucellos
is estimated to be 70 per 100,000 people/year [6]. Up to 30% of the
reported cases are children [7]. Although the incidence rate of brucel
losis has been trending down in developed countries, it remains to be a
major health problem in developing ones. Other countries have variable
prevalence rates ranging from 5% in Lebanon to 8% and 12%
in Jordan and Kuwait, respectively [8]. Brucellosis may present with a range of symptoms that may involve
one or multiple organ systems [9]. The most common symptom is fever.

Fig. 1. Trends of WBC count and ANC with time (WBC: white blood cell; ANC: absolute neutrophil count).
whereas blood and bone marrow cultures were negative. It is unknown what the outcome of transplantation of this patient would have been, but it is likely that it would have failed without treatment for brucellosis. Our patient fully recovered after 8 months of treatment.

The most focal form of brucellosis is osteoarticular disease, involving peripheral arthritis, sacroiliitis and spondylitis, occurring in 70% of infected patients [19]. Our patient had numerous bone lesions involving the lower cervical, thoracic, and lumbar spine most likely due to osteoarticular involvement with brucella infection. The patient reported worsening of her joints and thoracic region pain few weeks into treatment likely related to the inflammatory response to killed Brucella organisms.

Complications of brucellosis can involve multiple organ systems and occur more frequently in adults than in children [4].

Treatment of human brucellosis has been well described being optimally a dual or triple antimicrobial regimen for a prolonged period of time [20]. The optimal combination includes rifampicin combined with either doxycycline or a fluoroquinolone (in adults) or trimethoprim-sulfamethoxazole (in children younger than 8 years of age) [21]. Several reports in the literature advocate for adding an aminoglycoside being streptomycin or gentamicin for the first 2–3 weeks of treatment, particularly in complicated brucellosis [21]. The total duration and choice of therapy are usually related to the patient’s characteristics, extent and severity of the disease, where the duration is usually longer in aggressive disease with either CNS or bone involvement. Treatment courses below 1 month have been associated with an increased rate of treatment failure. Our patient received a long course of treatment, particularly in complicated brucellosis [21]. The total duration and choice of therapy are usually related to the patient’s characteristics, extent and severity of the disease, where the duration is usually longer in aggressive disease with either CNS or bone involvement. Treatment courses below 1 month have been associated with an increased rate of treatment failure. Our patient received a long course of treatment, particularly in complicated brucellosis [21].

Conclusion

Brucellosis may present with a wide range of symptoms with serious morbidities such as bone marrow suppression in immunocompetent patients living in or visiting countries endemic for the infection. Pre-transplant work up for aplastic anemia or bone marrow failure should include screening for brucellosis in endemic countries. A high index of suspicion, early diagnosis, and appropriate therapy are of paramount importance in proper recovery and improved outcome.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

N.Y and Y.Y wrote the initial draft of the manuscript. All authors read, edited, and approved the final version of the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Corbel MJ. Food and Agriculture Organization of the United Nations, World Health Organization & World Organisation for Animal Health. (2006). Brucellosis in humans and animals. World Health Organization; 2006.
[2] Mohamed AA, Chehab MA, Al-Dahshan A, Al-Romaihi HE, Farag EA. An evaluation of the national brucellosis surveillance system in Qatar, 2018. Cureus 2019;11(3): e4169.
[3] Musallam II, Abo-Shehada MN, Hegazy YM, Holt HR, Guitian FJ. Systematic review of brucellosis in the Middle East: disease frequency in ruminants and humans and risk factors for human infection. Epidemiol Infect 2016;144(4):671–85.
[4] Bosilkovski M, Krtiça L, Dimzos M, Vidić I, Spasovska P, Skala O. Human brucellosis in Macedonia - 10 years of clinical experience in endemic region. Croat Med J 2010;51(4):327–36.
[5] Pappas G, Akritidis N, Bosilkovski M, Tsianos E. Brucellosis. N Engl J Med 2005;352(22):2325–36.
[6] Qasim SS, Alshuwaier K, Alsalmi MQ, Alhafees MA, Alarasheed A, Layyah I, et al. Brucellosis in Saudi Children: presentation, complications, and treatment outcome. Cureus 2020;12(11):e11289.
[7] Alshashaan MA, Alkola SA, Almuneef MA, Albayan EA, Bakhy BH, Alshahran DA, et al. Brucellosis in children: prevention, diagnosis and management guidelines for general pediatricians endorsed by the Saudi Pediatric Infectious Diseases Society (SPIDS). Int J Pediatr Adolesc Med 2014;1(1):40–6.
[8] Anazi MA, Isamme A, AlOtaibi R, Abu-Shaheen A. Epidemiology of Brucellosis in Saudi Arabia. Saudi Med J 2019;40(10):981–8.
[9] Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis 2007;7(12):775–86.
[10] Aypak A, Aypak C, Bayram Y. Hematological findings in children with brucellosis. Pediatr Int: J Jpn Pediatr Soc 2015;57(6):1108–11.
[11] Pekpak E, Sirvan Cetin B. Secondary hemophagocytic lymphohistiocytosis in a child with brucellosis. J Pediatr Hematol/Oncol 2017;39(8):e201–3.
[12] Makis A, Perogiannaki A, Chaliasos N. Severe thrombocytopenic purpura in a child with brucellosis: case presentation and review of the literature. Case Rep Infect Dis 2017;2017:6416857.

[13] Al-Eissa Y, Al-Nasser M. Haematological manifestations of childhood brucellosis. Infection 1993;21(1):23–6.

[14] Farah RA, Hage P, Al Rifai A, Afif C. Immune thrombocytopenic purpura associated with brucellosis. Case report and review of the literature. Le J Med Liban Med J 2010;58(4):241–3.

[15] El-Koumi MAM, Afify MM, Al-Zahrani SHM. A prospective study of brucellosis in children: relative frequency of pancytopenia. Iran J Pediatr 2014;24(2):155–60.

[16] Li JJ, Sheng ZK, Tu S, Bi S, Shen XM, Sheng JP. Acute brucellosis with myelodysplastic syndrome presenting as pancytopenia and fever of unknown origin. Med Princ Pr: Int J Kuwait Univ, Health Sci Cent 2012;21(2):183–5.

[17] Aysha MH, Shayib MA. Pancytopenia and other haematological findings in brucellosis. Scand J Haematol 1986;36(4):335–8.

[18] Yildirim Y, Palanduz A, Telhan I, Arapoglu M, Kayaalp N. Bone marrow hypoplasia during brucella infection. J Pediatr Hematol/Oncol 2003;25(1).

[19] Bostilkovski M, Kirova-Urosevic V, Cekovska Z, Labacevski N, Cvitanovska M, Rangelov G, et al. Osteosarticular involvement in childhood brucellosis: experience with 133 cases in an endemic region. Pediatr Infect Dis J 2013;32(8):815–9.

[20] Hasanjani Roushan MR, Mohraz M, Hajiahmadi M, Ramazani A, Valayati AA. Efficacy of gentamicin plus doxycycline versus streptomycin plus doxycycline in the treatment of brucellosis in humans. Clin Infect Dis: Publ Infect Dis Soc Am 2006;42(8):1075–80.

[21] Al-Tawfiq JA, Memish ZA. Antibiotic susceptibility and treatment of brucellosis. Recent Pat anti-Infect Drug Discov 2013;8(1):51–4.