Prevalence of complications of male circumcision in Anglophone Africa: a systematic review

Adamson S Muula*1,2, Hans W Prozesky3, Ronald H Mataya4 and Joseph I Ikechebelu5

Address: 1Department of Community Health, University of Malawi, College of Medicine, Blantyre, Malawi, 2Department of Epidemiology, Denis and Joan Gillings School of Global Public Health, University of North Carolina at Chapel Hill, USA, 3Department of Medicine, Health Sciences Faculty, University of Stellenbosch, Tygerberg, South Africa, 4Department of Global Health, School of Public Health, Loma Linda University, California, USA and 5Department of Obstetrics and Gynaecology, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria

Email: Adamson S Muula* - muula@email.unc.edu; Hans W Prozesky - hwp@sun.ac.za; Ronald H Mataya - rmataya@llu.edu; Joseph I Ikechebelu - jikechebelu@yahoo.com

* Corresponding author

Abstract

Background: There is growing evidence that male circumcision (MC) prevents heterosexual acquisition of HIV by males in sub-Saharan Africa, the region of the world heavily affected by the HIV pandemic. While there is growing support for wide-spread availability and accessibility of MC in Africa, there is limited discussion about the prevalence of physical complications of male circumcision on the continent.

Methods: A systematic literature search and review of articles in indexed journals and conference abstracts was conducted to collect and analyze prevalence of complications of MC in Anglophone sub-Saharan Africa. Information extracted included: indications for MC, complications reported, age of patients and category of circumcisers.

Results: There were 8 articles and 2 abstracts that were suitable for the analysis. The studies were not strictly comparable as some reported on a wide range of complications while others reported just a limited list of possible complications. Prevalence of reported complications of MC ranged from 0% to 50.1%. Excluding the study with 50.1%, which was on a series of haemophilia patients, the next highest prevalence of complications was 24.1%. Most of the complications were minor. There was no firm evidence to suggest that MCs performed by physician surgeons were associated with lower prevalence of complications when compared with non-physician health professionals.

Conclusion: The available data are inadequate to obtain a reasonable assessment of the prevalence of complications of MC in sub-Saharan Africa. Some of the available studies however report potentially significant prevalence of complications, though of minor clinical significance. This should be considered as public health policy makers consider whether to scale-up MC as an HIV preventative measure. Decision for the scale-up will depend on a careful cost-benefit assessment of which physical complications are certainly an important aspect. There is need for standardized reporting of complications of male circumcision.
Background

The HIV pandemic is among the most critical public health challenges facing the African continent. Observational studies and three randomized controlled trials (RCTs) have reported that male circumcision can prevent HIV acquisition heterosexually by men [1-3]. Williams et al [4] have conducted mathematical models showing that wide-scale implementation of MC has the potential of reducing 2.0 million (1.1–3.8 million) new HIV infections in the first ten years of implementation in sub-Saharan Africa.

Several studies have reported on the acceptability of male circumcision for the prevention of HIV in sub-Saharan Africa [5-7]. In a review, Westercamp and Bailey report that there is sufficient research evidence to suggest that male circumcision is acceptable in sub-Saharan Africa for the prevention of HIV transmission [8]. However, Mills and Siegfried have suggested a "cautious optimism" approach towards male circumcision [9]. There is an ongoing debate as to whether male circumcision should be routinely performed for the purpose of preventing heterosexual transmission of HIV in sub-Saharan Africa [10-15].

While the literature has focused on the role of MC in the prevention of transmission of HIV in sub-Saharan Africa, we argue that there has not been commensurate interest in the estimation of safety and complications potentially associated with any scale-up in MC in Africa. In conducting this review, we were motivated to find out the available evidence regarding the reported prevalence of complications of MC in Africa. We therefore conducted a review of the published literature to attempt to answer the question: What has been the reported prevalence of complications of MC in sub-Saharan Africa? A secondary question is: Who is conducting MC in Africa?

Methods

Search strategy and selection criteria

We searched for all reports in peer-reviewed journals that reported on complications of male circumcision in sub-Saharan Africa and abstracts from the International Conference on AIDS (2004 and 2006). Journal databases searched included: African Journals Online (AJOL), MEDLINE, OVID, Google Scholar and Web of Science. The search period was limited to 1980 and August 2006. We used the key word: "circumcision". Studies were included for analysis if they reported on any series of patients in Anglophone Africa on whom male circumcision had been conducted and complications reported. ASM, RM and JII participated in the data collection. Data abstracted included: author details, location of study, number of patients circumcised in the reported series, ages of patients, inclusion criteria for procedure, prevalence of complications, nature of complications reported, period of follow-up for reporting of complications, indications for circumcision and who performed the circumcisions. Only studies published in English were included, irrespective of study design. Our method used applicable recommendations from the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines as reported by Stroup et al [16].

Results

Clinical characteristics of cases

Eight articles and two conference abstracts were considered suitable for the review. The papers reported on studies conducted in Kenya, Nigeria, South Africa and Tanzania. Table 1 reports on indications reported for MC, exclusion criteria of cases, length of period of follow-up and the range of complications reported, which included zero reporting. Zero reporting means type of complication was reported as having never occurred.

Studies included randomized controlled clinical trials and reports of routine clinical work. The inclusion and exclusion criteria in the series of cases were diverse with the RCTs reporting stringent inclusion criteria of cases while the routine series of patients were generally less restrictive. The lists of complications reported in studies were different. The period of follow-up to document complications were variable ranging from just immediate post-operative up to a year. 4 of the 10 studies did not report follow-up time.

Complications of male circumcision

Table 2 reports on the total number of cases in a series group, age of patients, categories of circumciser and prevalence of complications reported. The prevalence of complication reported ranged from 0% to 50.1% in a series of hemophiliacs. Different professional categories performed circumcision. There were equivocal reports on the comparison of complications between circumcisions performed by nurses versus those performed by physicians.

Association between category of circumciser and complications

Several studies reported high prevalence of complications when circumcision was conducted by untrained personnel. Osuigwe et al [23] reported that midwives were associated with 30.6% complications compared to physicians at 14.5%. However, physicians at a university teaching hospital were associated with fewer complications compared to private and mission hospital physicians. The series of cases by Magoha [26] and Manji [25] were operated on by one physician in each case and no comparisons could be made about the skill of the circumciser. Auvert et al study [20] used general physicians for all their subjects. Okeke et al [19] reported more complications with nurses
| Author(s)          | Reasons for circumcision | Exclusion Criteria | Period of follow-up | Complications reported                                                                 |
|-------------------|--------------------------|--------------------|---------------------|----------------------------------------------------------------------------------------|
| Bailey et al [17] | Randomized controlled trial | HIV infection       | 8 days              | bleeding, infection                                                                     |
| Kiwanuka et al [18]| Randomized controlled trial | Not reported        | 6 weeks             | Not reported                                                                            |
| Okeke et al [19]  | Non medical reasons      | Not reported        | Not reported        | redundant foreskin, excessive skin, skin bridges, amputation of glans, buried penis, hemorrhage |
| Auvert et al [20] | Randomized controlled trial | Any contraindication to MC and HIV infection | 1 month            | pain, excessive bleeding, infection, damage to penis, anesthetic complications, excessive skin removal, insufficient skin removal, delayed healing, cosmetic concerns, problems with urination |
| Krieger et al [21]| Randomized controlled trial | Any medical contraindications to MC e.g. paraphimosis, Significant phimosis, recurrent balanitis, history of bleeding, keloid formation | 30 days            | infections, bleeding, delayed healing, disrupted wound, swelling, anesthetic, erectile dysfunction |
| Okafor et al [22] | Feasibility study of MC  | Lack of parental consent, preterm birth, congenital anomalies, low APGAR score, history of neonatal jaundice in a sibling, jaundice at birth | 1 year             | None                                                                                   |
| Osuigwe et al [23]| Parental request         | None reported       | 6 weeks             | bleeding, incomplete circumcision, meatal stenosis, urethral laceration                  |
| Shittu and Shokunbi [24]| socio-cultural         | None               | not reported        | bleeding                                                                                 |
| Manji [25]        | socio-cultural, religious| none               | not specified       | infection, bleeding, haematoma                                                            |
| Magoha [26]       | cultural, religious, phimosis, paraphimosis, urinary infection, acute infection, hygienic reasons, enhanced sexual sensation, preputial cyst | None reported       | Not reported | wound infection, hemorrhage, retention of urine, penile edema, haematoma, scrotal laceration, wound dehiscence, glans injury, meatal stenosis |
compared to physicians. However, the difference was not statistically significant.

Discussion
There is limited published literature on the complications of male circumcision in sub-Saharan Africa. The available evidence regarding the prevalence of complications in male circumcision is conflicting, with some studies reporting significantly high complications prevalence and at least one study reporting no complications. It is plausible to consider that a study that may not have reported a single complication may indeed have none to report or that complications may have been considered so minor as to be 'worth' reporting. In case of complications that may be experienced at home and there are significant barriers to access medical care, it is conceivable to expect that many patients will not present to health facilities for care following minor to moderate complications. Another explanation for no report of complications may be that the patients may have presented for management of complications at a different facility from where they obtained circumcision.

In virtually all the studies reviewed, the majority of complications reported were of minor clinical consequence. The exception was the study by Shittu and Shokunbi [24] which reported on a special group of patients i.e. hemophiliacs, with extremely high risk of bleeding from minimal trauma. The interpretation of prevalence of complications in this study must be made within these special circumstances. Other than the report of bleeding, no other complication was reported. It is unlikely though that bleeding was the only complication experienced; rather it would seem that this was the main focus of the study.

Reports on complications of male circumcision also differ in so far as the time after the circumcision that complications were reported i.e. early versus late complications. Yegane et al [27] for instance have reported on possible late complications of MC which include granuloma formation, penile rotation and secondary chordee [27]. In some of the studies that were reviewed in our study like that of Bailey et al [17] where patients were followed up for complications for 8 days, long term complications such as keloid formation may have been missed. Bailey et al’s randomized controlled study however was of much longer duration and the assessment of long term complications was possible, but not reported. In general, most of the studies we reviewed reported on bleeding and infections only. Auvert’s et al study however had reported an extensive list of possible complications and included zero reporting. Of the complications reported by Auvert et al, 13 (31.7%) reported pain, excessive bleeding (15%), infection (5%), damage to penis (5%), 1 anesthetic complications and 9 complaints of problems with appearance.

The prevalence of complications of MC in North America has been reported in the range of 0.2% to 0.5% [28]. However, the true prevalence of complications is not known as ways of ascertaining these will always underestimate the true prevalence [28]. Ben Chaim et al [29] have

| Author                  | Location                           | Total number of patients | Ages of Patients | Circumcisers                                      | Number of complications | Prevalence of Complications |
|-------------------------|------------------------------------|--------------------------|------------------|--------------------------------------------------|-------------------------|-----------------------------|
| Bailey et al [17]       | Kisumu, Kenya                      | 1334                     | 18–24 yrs        | Not indicated                                    | 23                      | 1.7%                        |
| Kiwanuka et al [18]     | Rakai, Uganda                      | 136                      | 15–49 years      | Not indicated                                    | 5                       | 3.7%                        |
| Okeke et al [19]        | Ibadan, Nigeria                    | 322                      | < 1 yr           | Nurses, physicians and traditional circumcisers  | 65                      | 20.2%                       |
| Auvert et al [20]       | Orange Farm, South Africa          | 1568                     | 18–24 yrs        | Generalist physicians                            | 60                      | 3.8%                        |
| Krieger et al [21]      | Kisumu, Kenya                      | 479                      | 18–24 yrs        | Physicians and clinical officers                 | 17                      | 3.5%                        |
| Okafor et al [22]       | Nigeria                            | 102                      | < 1 yr           | Physicians                                        | 0                       | 0                           |
| Osuigwe et al [23]      | Nigeria                            | 138                      | Neonates         | Physicians and nurses                             | 33                      | 24.1%                       |
| Shittu and Shokunbi [24] | Ibadan, Nigeria                    | 70 hemophiliacs          | Birth to 35 yrs  | Nurses, physicians, community health workers and traditional circumcisers | 35                      | 50.1%                       |
| Manji [25]              | Tanzania                           | 386                      | < 1 yr           | Pediatricians                                     | 11                      | 2.8%                        |
| Magoha [26]             | Lagos, Nigeria and Nairobi, Kenya  | 249                      | Birth to 54 yrs  | Specialist Surgeon physicians                    | 28                      | 11.2%                       |

Table 2: Prevalence of Complications of Male Circumcision Reported From sub-Saharan Africa
reported on series of 19,478 male infant circumcision conducted in Israel, of which only 66 (1.3%) recorded complications. This study reported fewer complications than most of the studies we reviewed but prevalence was higher than the single study that reported no complications.

The study by Okafor et al [22] which reported no complications, had potentially 119 neonates but 17 were excluded for a variety of reasons. This could suggest that proper selected of MC candidates will be necessary to minimize complications. However, such conclusion may not be justified in the absence of data on the criteria for exclusion i.e. the selection may have or may have not influenced the prevalence of complications.

There are always concerns about the safety of MC in sub-Saharan African health systems. Mattson et al reported on the feasibility of performing MC in health facilities in Kenya. The lack of basic instruments and inadequate supplies were identified as crucial limitations in facilitating provision of safe MC in that country [30]. Ahmed [31] studied circumcision practices in Anjouan, Comoros and reported that circumcisions by trained lay people were as safe as those carried out by physicians in hospitals. Training and supervision was emphasized in this series.

The special cases of complications in haemophiliacs deserve special mention. It has been reported that the use of fibrin glue or the "diathermic knife" may prevent bleeding and transfusion with blood factors [32,33]. These supplies will need to be considered if MC is to be scaled-up, but will increase the cost of the procedure.

It is reasonable to expect that prevalence of complications from MC in Africa is likely to be higher than in countries with well-resourced health systems. While that expectation is reasonable and perhaps will be realized, a recent publication by Archibald et al is also informative [34]. Archibald et al compared contamination of blood culture specimens at Duke Medical Center (Durham, North Carolina, United States), Kamuzu Central Hospital (Malawi) and Muhimbili National Hospital (Tanzania). Contamination of specimens at both African centers was less than 2% while it was 28% at Duke Medical Center. The expectation that developing country health systems will always perform poorly when compared to developed nation health systems may therefore not be justified.

Conclusion
The literature on prevalence of complications following male circumcision in sub-Saharan Africa is limited. Most of the complications reported have been of minor clinical consequence. Reporting practices also have been varied such that comparisons among studies with regard to age of patients, indications for circumcision, duration of follow-up of complications and categories of circumcisers are difficult. There is need to develop and encourage standardized reporting of complications of male circumcisions. We believe that the finding that there is not enough data to suggest that MC is associated with more than the 'average' risk in Africa is important as public policy discussions gain momentum as whether to scale-up provision and accessibility of the procedure to prevent HIV transmission.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
ASM conceived the idea of the study, participated in identifying papers for review and drafting of manuscript. ASM is guarantor of manuscript.

HWP participated in identifying papers for review, analysis and drafting of manuscript. RM participated in identifying papers for review and drafting of manuscript.

JII participated in identifying papers for review, analysis and drafting of manuscript. All authors approved the manuscript submitted.

Acknowledgements
ASM is supported by a Fogarty International Center training grant to the University of North-Carolina at Chapel Hill. We thank African Journals Online for making available electronic copies of articles indexed in their database.

References
1. Auvert B, Buve A, Lagarde E, Kahindo M, Chege J, Retenberg N, Musonda R, Laourou M, Akam E, Weiss HA, Study Group on the heterogeneity of HIV Epidemics in African Cities: Male circumcision and HIV infection in four cities in sub-Saharan Africa. AIDS 2001, 15(Suppl 4):S31-40.
2. National Institutes of Allergy and Infectious Diseases: Adult male circumcision significantly reduces risk of acquiring HIV: trials in Kenya and Uganda stopped early. Press release. [http://www3.niaid.nih.gov/news/newsrelease/2006/AMC1206.htm].
3. Roehr B: Dramatic drop in HIV infection halts circumcision trials. BMJ 2007, 335:11.
4. Williams BG, Lloyd-Smith JO, Gouws E, Hankins C, Getz WM, Hargrove J, de Zoya I, Dye C, Auvert B: The potential impact of male circumcision on HIV in sub-Saharan Africa. PLoS Med 2006, 3:e262. Published online 2006 July 11. doi: 10.1371/journal.pmed.0030262.
5. Scott BE, Weiss HA, Vlasek J]: The acceptability of male circumcision as an HIV intervention among a rural Zulu population, KwaZulu, Natal, South Africa. AIDS Care 2005, 17:304-13.
6. Ngalande RC, Levy J, Kapondo CF, Bailey RC: Acceptability of male circumcision for the prevention of HIV infection in Malawi. AIDS Behav 2006, 10:377-85.
7. Bailey RC, Muga R, Poulussen R, Abicht H: The acceptability of male circumcision to reduce HIV infections in Nyanza province, Kenya. AIDS Care 2002, 14:27-40.
8. Westercamp N, Bailey RC: Acceptability of male circumcision for the prevention of HIV/AIDS in sub-Saharan Africa: a review. AIDS Behav. doi: 10.1007/s10461-006-9169-4.
9. Mills E, Siegfried N: Cautious optimism for new HIV/AIDS prevention strategies. Lancet 2006, 368:1-23.
10. Selengeo M: The money issue. PLoS Med 2006, 3:e73.
11. Glass M: Rubber figures. PLoS Med 2006, 3:e70.
12. Siegfried N: Does male circumcision prevent HIV infection? PLoS Med 2006, 3:e393.
13. Vines J: Major potential confounder not addressed. PLoS Med 2006, 3:e63.
14. Potterat JJ, Brewer DD, Much SQ, Brody S: The protective effect of male circumcision as a faith lift for the troubled paradigm of HIV epidemiology in sub-Saharan Africa. PLoS Med 2006, 3:e64.
15. Kahn JK, Marselle E, Auvert B: Cost effectiveness of male circumcision for HIV prevention in a South African setting. PLoS Med 2006, 3:e517.
16. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB: Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA 2000, 283:2008-12.
17. Bailey RC, Moses S, Agot K, Parker CB, Maclean I, Ndinya-Achola JO: A randomized controlled trial of male circumcision to reduce HIV incidence in Kisumu, Kenya: progress to date. XV International AIDS Conference 2006. Abstract no. TUAC0201.
18. Kiwanuka N, Gray R, Serwadda D, Kigozi G, Watya S, Wawer M: Circumcision for HIV of a pilot study in Rakai, Uganda. XV International AIDS Conference 2004. Abstract no. TuPe c4771.
19. Okeke LI, Asinobi AA, Ikerurowo OS: Epidemiology of complications of male circumcision in Ibadan, Nigeria. BMC Uro 2006, 6:21. Published online 2006 August 25. doi: 10.1186/1471-2490-6-21
20. Auvert B, Taljaard D, Lagarde L, Sobngwi-Tambekou J, Sitta R, Puren A: Randomized, Controlled Intervention Trial of Male Circumcision for Reduction of HIV Infection Risk: The ANRS 1265 Trial. PLoS Med 2005, 2(11):e298. Published online 2005 October 25. doi: 10.1371/journal.pmed.0020298.
21. Krieger JN, Bailey RC, Opeya J, Ayieko B, Opiyo F, Agot K, Parker C, Ndinya-Achola JO, Magoha GA, Moses S: Adult male circumcision: results of a standardized procedure in Kisumu district, Kenya. BJU International 2005, 96:1109-1113.
22. Okafor PLS, Orakwe JC, Osuigwe AN, Chianakwana GU: Experience with immediate post-partum circumcision. Nigerian Medical Practitioner 2005, 47:9-11.
23. Obigwe AN, Ikehchefebulji JI, Okafor PLS: Circumcision-related complications in the male: experience among the Igbos of Southeast Nigeria. African Journal of Urology 2004, 10:246-51.
24. Shitu OB, Shokunbi WA: Circumcision in hemophilics: the Nigerian experience. Hemophilia 2001, 7:534-6.
25. Manji KP: Circumcision of the young infant in a developing country using the Pastibell™. Annals of Trop Paediatr 2000, 20:101-04.
26. Magoha GAO: Circumcision in various Nigerian and Kenyan Hospitals. East Afr Med J 1999, 76:583-86.
27. Kinye RA, Kheirollahi AR, Salehi NA, Bashashati M, Koshdel JA, Ahmadi M: Late complications of circumcision in Iran. Pediatr Surg Int 2006, 22:442-5.
28. Rose VL: AAP updates its recommendations on circumcision. American Academy of Pediatrics. Am Fam Physician 1999, 59:2918, 2923.
29. Ben Chaim J, Levin PM, Binyamin J, Hardak B, Ben-Meir D, Mor Y: Complications of circumcision in Israel: a year multi-center survey. Isr Med Assoc J 2005, 7:368-70.
30. Mattson CL, Muga R, Poullussen R, Onyango T, Bailey RC: Feasibility of medical male circumcision in Nyanza Province, Kenya. East Afr Med J 2004, 81:320-35.
31. Ahmed A: Circumcision practice in Anjouan. Trop Doct 2000, 30:52-53.
32. Kararam MI, Zulfikar B, Caskurlu T, Ergenekon E: Circumcision in haemophiliacs: a cost effective method using a novel device. J Pediatr Surg 2004, 39:1562-4.
33. Avanoglu A, Çelik A, Ullman O, Ozcan C, Kavakli K, Nisli G, Gokdemir A: Safer circumcision in patients with haemophilia: the use of fibrin glue for local haemostasis. BJU Int 1999, 83:91-4.
34. Archibald LK, Pallangyo K, Kazembe P, Barth Reller LB: Blood culture contamination in Tanzania, Malawi, and the United States: a microbiological tale of three cities. J Clin Microbiol 2006, 44:4425-29.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2490/7/4/prepub