On the rainbow antimagic coloring of vertex amalgamation of graphs

J C Joedo1, Dafik1,2,*, A I Kristiana1,2, I H Agustin2,3, R Nisviasari2,3

1Department of Post. Mathematics Education, University of Jember, Indonesia
2CGANT-University of Jember, Indonesia
3Department of Mathematics, University of Jember, Indonesia
*Corresponding Author
E-mail: d.dafik@unej.ac.id

Abstract. The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights $w(x) \neq w(y)$ for any two vertices x and y is the definition of the rainbow antimagic connection number $rac(G)$. In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained $rac(G)$ where G is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.

1. Introduction

Over time, the topics in graph theory are developing and generating new ideas, for example rainbow antimagic coloring. The combination of two notions, namely rainbow connection and antimagic labeling is called rainbow antimagic coloring (RAC).

Hartsfield and Ringel [13] define that graph G is said to be antimagic labeling if every edges are labeled with the integers $\{1, 2, \ldots, k\}$ so that vertex weight of two vertices is different, that is, all vertex on graph G do not have the same vertex weight. The dense graph is proven to be antimagic according to Alon et al [2]. The antimagic labeling of trees has been discovered by Liang et al [20]. More study of antimagic labeling some graphs in [5, 15, 21, 23].

Chartrand, et al. [6] were the first to introduce the concept of rainbow connection. In the rainbow connection concept, there are adjacent edges that may have the same color where the color uses the integers $\{1, 2, \ldots, k\}$. A rainbow path in graph G can be formed if there are no adjacent edges that have the same color. A graph G is said to be rainbow connected if any two of its vertices are connected by a rainbow path. Rainbow connection can be defined as the edge coloring that makes the graph G rainbow connected. Li et al [19] have discovered the exact value of 2-connected graph and chordal graph. The rc and src of fan and sun graph was invented by Sy et al [25]. Yandera et al [27] obtain the rainbow connection of $Amal_1(P_{m,2})$. More study of rainbow connection some graphs in [7, 10, 11, 12, 18].
A graph is said to be rainbow antimagic coloring if every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow connection such that there is a rainbow path with all different edge weight [24]. The minimum number of colors for a rainbow path to exist with the conditional edge weights $w(x) \neq w(y)$ for any two vertices x and y is the definition of the rainbow antimagic connection number and denoted by $\text{rac}(G)$. Dafik et al. [8] obtained $\text{rac}(G)$ where G is simple graph namely path, star, and cycle graph. Intan K et al. [16] found the rainbow antimagic connection number of related wheel graph. Sulistiono et al [24] made a theorem to prove the lower bound of $\text{rac}(G)$. More study on rainbow antimagic coloring can be seen at [1, 4, 9, 22].

We investigated about $\text{rac}(G)$ where G is vertex amalgamation of path, star, broom, paw, fan, and triangular book graph. Lee, et al. [17] define that the graph G is operated by vertex amalgamation if there is $v_0 \in V(G)$ as a fixed center point, then graph G is multiplied by n with v_0 as fixed center point and denoted by $\text{Amal}(G, v_0, n)$ with $n \geq 2$. The study of amalgamation product in [3, 12, 14, 15, 26]. For illustration of vertex amalgamation is provided in Figure 2.

![Figure 1. Vertex amalgamation of fan, Amal(F_n, v, m)](image)

2. Previous Results

Some previous results related to the concept of rainbow antimagic coloring will be presented in this chapter.

Preposition 1 [6] If T is a tree with $|E(T)| = n$, then $rc(T) = n$.

Theorem 1 [24] To proof lower bound of $\text{rac}(H)$ can use $\text{rac}(H) \geq \max\{\Delta(H), rc(H)\}$

Theorem 2 [12] If A is a amalgamation of fan graph, then $rc(A) = 3$.

Theorem 3 [4] If B is a lollipop graph with $m = 3$, then $\text{rac}(B) = n + 2$.

Theorem 4 [1] If C is a triangular book graph, then $\text{rac}(C) = n + 2$.

3. Results and Discussion

In this chapter, several theorems of rainbow antimagic coloring on vertex amalgamation products that have been obtained include:
Theorem 5 If H_1 is Amal(P_n, v, m) graph with $m, n \geq 2$, then $rac(H_1) = mn - m$.

Proof. Let H_1 be a vertex amalgamation product of path with vertex set $V(H_1) = \{y\} \cup \{x_{a,b} : 1 \leq a \leq m \& \ 1 \leq b \leq n - 1\}$ and edge set $E(H_1) = \{yx_{a,1} : 1 \leq a \leq m\} \cup \{x_{a,b}x_{a,b+1} : 1 \leq a \leq m \& \ 1 \leq b \leq n - 2\}$. So, we get $|V(H_1)| = mn - m + 1$ and $|E(H_1)| = mn - m$.

We need to prove the correctness of the formula $rac(H_1)$ is $mn - m$ with $m, n \geq 2$, it is necessary to prove it by using the lower and upper bounds, namely $rac(H_1) \geq mn - m$ and $rac(H_1) \leq mn - m$.

First, we prove the correctness of the lower bound of $rac(H_1)$ is $rac(H_1) \geq mn - m$. We know that H_1 graph is classified as a tree graph. Based on Proposition 1 [6] and Theorem 1 [24], so that:

$$rac(H_1) \geq \max\{\Delta(H_1), rc(H_1)\}$$

$$mn - m \geq \max\{m, mn - m\}$$

$$mn - m \geq mn - m$$

So we got that the lower bound of $rac(H_1)$ is $rac(H_1) \geq mn - m$ with $m, n \geq 2$.

Next, we prove the correctness of the upper bound of $rac(H_1)$ is $rac(H_1) \leq mn - m$. We define the vertex function of H_1 graph with $f : V(I) \rightarrow \{1, 2, \ldots, |V(I)|\}$ are

$$f(y) = 1$$

$$f(x_{a,b}) = a + bm - m + 1, 1 \leq a \leq m \& \ 1 \leq b \leq n - 1$$

Obviously, we get the edge weights from a predefined vertex function where the edge weights will be used as edge coloring. The edge weights of H_1 graph are

$$w(yx_{a,1}) = a + 2, 1 \leq a \leq m$$

$$w(x_{a,b}x_{a,b+1}) = 2a + 2bm - m + 2, 1 \leq a \leq m \& \ 1 \leq b \leq n - 1$$

Based on the edge weight function that has been obtained, a rainbow path can be formed if there are as many colors as $mn - m$. The rainbow path of H_1 graph that is formed can be seen in the Table 1. So we got that the upper bound of $rac(H_1)$ is $rac(H_1) \leq mn - m$.

Table 1. The rainbow path from x to y on H_1 graph.

case	x	y	rainbow path
1	$x_{k,b}$	$x_{l,c}$	$x_{k,b}, \ldots, x_{k,1}, y, x_{l,1}, \ldots, x_{l,c}$

As a result of the explanation above, we have established that the lower and upper bounds of $rac(H_1)$ are $mn - m \leq rac(H_1) \leq mn - m$. So that the correctness of the formula $rac(H_1)$ is $mn - m$ with $m, n \geq 2$ has been proven. □

For illustration of $rac(H_1)$ is provided in Figure 2 and the vertex labels on the graph are black numbers, while the edge weights on the graph are blue numbers.
Figure 2. The RAC of H_1 graph with $n = 5$ and $m = 6$.

Theorem 6 If H_2 is $\text{Amal}(S_n, v, m)$ graph with $m, n \geq 2$, then $\text{rac}(H_2) = mn$.

Proof. Let H_2 be a vertex amalgamation product of star with vertex set $V(H_2) = \{z\} \cup \{x_a : 1 \leq a \leq m\} \cup \{y_{a,b} : 1 \leq a \leq m & 1 \leq b \leq n - 1\}$ and edge set $E(H_2) = \{zx_a : 1 \leq a \leq m\} \cup \{x_ay_{a,b} : 1 \leq a \leq m & 1 \leq b \leq n - 1\}$. So, we get $|V(H_2)| = mn + 1$ and $|E(H_2)| = mn$.

We need to prove the correctness of the formula $\text{rac}(H_2)$ is mn with $m, n \geq 2$, it is necessary to prove it by using the lower and upper bounds, namely $\text{rac}(H_2) \geq mn$ and $\text{rac}(H_2) \leq mn$.

First, we prove the correctness of the lower bound of $\text{rac}(H_2)$ is $\text{rac}(H_2) \geq mn$ with $m, n \geq 2$.

Next, we prove the correctness of the upper bound of $\text{rac}(H_2)$ is $\text{rac}(H_2) \leq mn$. We define the vertex function of H_2 graph with $f : V(H_2) \rightarrow \{1, 2, ..., |V(H_2)|\}$ are

$$
\begin{align*}
f(z) & = 1 \\
f(x_a) & = a + 1 , 1 \leq a \leq m \\
f(y_{a,b}) & = m + an - n - a + b + 2 , 1 \leq a \leq m & 1 \leq b \leq n - 1
\end{align*}
$$

Obviously, we get the edge weights from a predefined vertex function where the edge weights will be used as edge coloring. The edge weights of H_2 graph are

$$
\begin{align*}
w(zx_a) & = a + 2 , 1 \leq a \leq m \\
w(x_ay_{a,b}) & = m + an - n + b + 3 , 1 \leq a \leq m & 1 \leq b \leq n - 1
\end{align*}
$$

Based on the edge weight function that has been obtained, a rainbow path can be formed if there are as many colors as mn. The rainbow path of H_2 graph that is formed can be seen in the Table 2. So we got that the upper bound of $\text{rac}(H_2)$ is $\text{rac}(H_2) \leq mn$.
Table 2. The rainbow path from x to y on H_2 graph.

case	x	y	rainbow path
1	y_k,b	y_l,c	y_k,b, x_k,z, x_l, y_l,c

As a result of the explanation above, we have established that the lower and upper bounds of $rac(H_2)$ are $mn \leq rac(H_2) \leq mn$. So that the correctness of the formula $rac(H_2)$ is mn with $m,n \geq 2$ has been proven. □

For illustration of $rac(H_2)$ is provided in Figure 3 and the vertex labels on the graph are black numbers, while the edge weights on the graph are blue numbers.

![Figure 3](image_url)

Figure 3. The RAC of H_2 graph with $n = 4$ and $m = 6$.

Theorem 7 If H_3 is $Amal(Br_d^n,v,m)$ graph with $n = 2d - 1$ and every integer $d,m \geq 2$, then $rac(H_3) = 2dm - 2m$.

Proof. Let H_3 be a vertex amalgamation product of broom with vertex set $V(H_3) = \{z\} \cup \{x_{a,b} : 1 \leq a \leq m, 1 \leq b \leq d - 1\} \cup \{y_{a,c} : 1 \leq a \leq m \& 1 \leq c \leq d - 1\}$ and edge set $E(H_3) = \{zx_{a,1} : 1 \leq a \leq m\} \cup \{x_{a,b}x_{a,b+1} : 1 \leq a \leq m, 1 \leq b \leq d - 2\} \cup \{x_{a,d-1}y_{a,c} : 1 \leq a \leq m \& 1 \leq c \leq d - 1\}$. So, we get $|V(H_3)| = 2dm - 2m + 1$ and $|E(H_3)| = 2dm - 2m$.

We need to prove the correctness of the formula $rac(H_3)$ is $2dm - 2m$ with $d,m \geq 2$, it is necessary to prove it by using the lower and upper bounds, namely $rac(H_3) \geq 2dm - 2m$ and $rac(H_3) \leq 2dm - 2m$.

First, we prove the correctness of the lower bound of $rac(H_3)$ is $rac(H_3) \geq 2dm - 2m$. We know that H_3 graph is classified as a tree graph. Based on Proposition 1 [6] and Theorem 1 [24], so that:

$$rac(H_3) \geq \max \{\Delta(H_3), rc(H_3)\}$$

$$2dm - 2m \geq \max \{m, 2dm - 2m\}$$

$$2dm - 2m \geq 2dm - 2m$$

So we got that the lower bound of $rac(H_3)$ is $rac(H_3) \geq 2dm - 2m$ with $d,m \geq 2$.

5
Next, we prove the correctness of the upper bound of $\text{rac}(H_3)$ is $\text{rac}(H_3) \leq 2dm - 2m$. We define the vertex function of H_3 graph with $f : V(H_3) \rightarrow \{1, 2, \ldots, |V(H_3)|\}$ are

$$f(z) = 1$$
$$f(x_{a,b}) = bm - m + a + 1, 1 \leq a \leq m, 1 \leq b \leq d - 1$$
$$f(y_{a,c}) = dm - m + (a - 1)(d - 1) + c + 1, 1 \leq a \leq m \& 1 \leq c \leq d - 1$$

Obviously, we get the edge weights from a predefined vertex function where the edge weights will be used as edge coloring. The edge weights of H_3 graph are

$$w(zx_{a,1}) = a + 2, 1 \leq a \leq m$$
$$w(x_{a,b}x_{a,b+1}) = 2bm - m + 2a + 2, 1 \leq a \leq m, 1 \leq b \leq d - 1$$
$$w(x_{a,d-1}y_{a,c}) = 2dm - 3m + (a - 1)(d - 1) + a + c + 2, 1 \leq a \leq m \& 1 \leq c \leq d - 1$$

Based on the edge weight function that has been obtained, a rainbow path can be formed if there are as many colors as $2dm - 2m$. The rainbow path of H_3 graph that is formed can be seen in the Table 3. So we got that the upper bound of $\text{rac}(H_3)$ is $\text{rac}(H_3) \leq 2dm - 2m$.

Table 3. The rainbow path from x to y on H_3 graph.

case	x	y	rainbow path
1	$y_{p,c}$	$y_{q,d}$	$y_{p,c}, y_{p,d}, x_{p,b}, \ldots, x_{p,1}, z, x_{q,1}, \ldots, x_{q,b}, y_{q,d}$

As a result of the explanation above, we have established that the lower and upper bounds of $\text{rac}(H_3)$ are $2dm - 2m \leq \text{rac}(H_3) \leq 2dm - 2m$. So that the correctness of the formula $\text{rac}(H_3)$ is $2dm - 2m$ with $d, m \geq 2$ has been proven. □

For illustration of $\text{rac}(H_3)$ is provided in Figure 4 and the vertex labels on the graph are black numbers, while the edge weights on the graph are blue numbers.

Figure 4. The RAC of H_3 graph with $d = 4$ and $m = 6$.
Theorem 8 If H_4 is Amal$(P_{(3,n)}, v, m)$ graph with $m, n \geq 2$, then $rac(H_4) = mn + 2$.

Proof. Let H_4 be a vertex amalgamation product of paw with vertex set $V(H_4) = \{z\} \cup \{x_{a,b} : 1 \leq a \leq m \& 1 \leq b \leq n - 1\} \cup \{y_{a,c} : 1 \leq a \leq m, 1 \leq c \leq 2\}$ and edge set $E(H_4) = \{zx_{a,1} : 1 \leq a \leq m\} \cup \{x_{a,b}x_{a,b+1} : 1 \leq a \leq m \& 1 \leq b \leq n - 2\} \cup \{x_{a,n-1}y_{a,c} : 1 \leq a \leq m, 1 \leq c \leq 2\} \cup \{y_{a,1}y_{a,2} : 1 \leq a \leq m\}$. So, we get $|V(H_4)| = mn + m + 1$ and $|E(H_4)| = mn + 2m$.

We need to prove the correctness of the formula $rac(H_4)$ is $mn + 2$ with $m, n \geq 2$, it is necessary to prove it by using the lower and upper bounds, namely $rac(H_4) \geq mn + 2$ and $rac(H_4) \leq mn + 2$.

First, we prove the correctness of the lower bound of $rac(H_4)$ is $rac(H_4) \geq mn + 2$. We know that H_4 graph is $P_{(3,n)}$ graph which is copied as many as m. Based on Theorem 3 [4], so that H_4 graph requires as many colors as $mn + 2$. So we got that the lower bound of $rac(H_4)$ is $rac(H_4) \geq mn + 2$ with $m, n \geq 2$.

Next, we prove the correctness of the upper bound of $rac(H_4)$ is $rac(H_4) \leq mn + 2$. We define the vertex function of H_4 graph with $f : V(H_4) \rightarrow \{1, 2,..., |V(H_4)|\}$ are

$$
\begin{align*}
\text{f}(z) & = 1 \\
\text{f}(x_{a,b}) & = a + 1 + bm - m , 1 \leq a \leq m \& 1 \leq b \leq n - 1 \\
\text{f}(y_{a,1}) & = mn - m + a + 1 , 1 \leq a \leq m \\
\text{f}(y_{a,2}) & = mn + m - a + 2 , 1 \leq a \leq m
\end{align*}
$$

Obviously, we get the edge weights from a predefined vertex function where the edge weights will be used as edge coloring. The edge weights of H_4 graph are

$$
\begin{align*}
w(zx_{a,1}) & = a + 2 , 1 \leq a \leq m \\
w(x_{a,b}x_{a,b+1}) & = 2bm - m + 2a + 2 , 1 \leq a \leq m \& 1 \leq b \leq n - 2 \\
w(x_{a,n-1}y_{a,1}) & = 2mn - 3m + 2a + 2 , 1 \leq a \leq m \& 1 \leq b \leq n - 2 \\
w(x_{a,n-1}y_{a,2}) & = 2mn - m + 3 , 1 \leq a \leq m \& 1 \leq b \leq n - 2 \\
w(y_{a,1}y_{a,2}) & = 2mn + 3 , 1 \leq a \leq m \& 1 \leq b \leq n - 2
\end{align*}
$$

Based on the edge weight function that has been obtained, a rainbow path can be formed if there are as many colors as $mn + 2$. The rainbow path of H_4 graph that is formed can be seen in the Table 4. So we got that the upper bound of $rac(H_4)$ is $rac(H_4) \leq mn + 2$.

Table 4. The rainbow path from x to y on H_4 graph.

case	x	y	rainbow path	condition
1	$y_{k,1}$	$y_{l,c}$	$y_{k,1}, x_{k,a}, \ldots, x_{k,1}, z, x_{l,1}, \ldots, x_{l,b}, y_{l,c}$	$1 \leq c \leq 2$
2	$y_{k,2}$	$y_{l,c}$	$y_{k,2}, x_{k,a}, \ldots, x_{k,1}, z, x_{l,1}, \ldots, x_{l,b}, y_{l,c}$	$c = 1$
3	$y_{k,2}$	$y_{l,c}$	$y_{k,1}, x_{k,a}, \ldots, x_{k,1}, z, x_{l,1}, \ldots, x_{l,b}, y_{l,c-1}, y_{l,c}$	$c = 2$

As a result of the explanation above, we have established that the lower and upper bounds of $rac(H_4)$ are $mn + 2 \leq rac(H_4) \leq mn + 2$. So that the correctness of the formula $rac(H_4)$ is $mn + 2$ with $m, n \geq 2$ has been proven. \(\square\)

For illustration of $rac(H_4)$ is provided in Figure 5 and the vertex labels on the graph are black numbers, while the edge weights on the graph are blue numbers.
Figure 5. The RAC of H_4 graph with $n = 4$ and $m = 6$.

Theorem 9 If H_5 is Amal(F_n, v, m) graph with $m, n \geq 2$, then $\text{rac}(H_5) = mn + 1$.

Proof. Let H_5 be a vertex amalgamation product of star with vertex set $V(H_5) = \{y\} \cup \{x_{a,b} : 1 \leq a \leq m & 1 \leq b \leq n\}$ and edge set $E(H_5) = \{yx_{a,b} : 1 \leq a \leq m & 1 \leq b \leq n\} \cup \{x_{a,b}x_{a,b+1} : 1 \leq a \leq m & 1 \leq b \leq n - 1\}$. So, we get $|V(H_5)| = mn + 1$ and $|E(H_5)| = 2mn - m$.

We need to prove the correctness of the formula $\text{rac}(H_5)$ is $mn + 1$ with $m, n \geq 2$, it is necessary to prove it by using the lower and upper bounds, namely $\text{rac}(H_5) \geq mn + 1$ and $\text{rac}(H_5) \leq mn + 1$.

First, we prove the correctness of the lower bound of $\text{rac}(H_5)$ is $\text{rac}(H_5) \geq mn + 1$. We know that H_5 graph is F_n graph which is copied as many as m. Based on Theorem 1 [24] and Theorem 2 [12], so that:

$$\text{rac}(H_5) \geq \max\{\Delta(H_5), \text{rc}(H_5)\}$$

$$mn + 1 \geq \max\{mn, 3\}$$

$$mn + 1 \geq mn$$

So we got that the lower bound of $\text{rac}(H_5)$ is $\text{rac}(H_5) \geq mn + 1$ with $m, n \geq 2$.

Next, we prove the correctness of the upper bound of $\text{rac}(H_5)$ is $\text{rac}(H_5) \leq mn + 1$. We define the vertex function of H_5 graph with $f : V(H_5) \rightarrow \{1, 2, ..., |V(H_5)|\}$ are

$$f(y) = \begin{cases}
\frac{mn+m+2}{2}, & \text{if } n = \text{odd} \\
\frac{mn+n-2}{2}, & \text{if } n = \text{even}
\end{cases}$$

$$f(x_{a,b}) = \begin{cases}
\frac{6a+b-5}{2}, & \text{if } n = \text{odd and } b = \text{odd} \\
\frac{2mn-4a-b+8}{2}, & \text{if } n = \text{odd and } b = \text{even} \\
\frac{8a+2b-6}{4}, & \text{if } n = \text{even and } b = \text{odd} \\
\frac{6mn-8a-2b+16}{4}, & \text{if } n = \text{even and } b = \text{even}
\end{cases}$$

Obviously, we get the edge weights from a predefined vertex function where the edge weights
will be used as edge coloring. The edge weights of H_5 graph are

$$w(yx_{a,b}) = \begin{cases}
\frac{mn+m+6a+b-3}{2}, & \text{if } n = \text{odd and } b = \text{odd} \\
\frac{3mn+m-4a-b+10}{2}, & \text{if } n = \text{odd and } b = \text{even} \\
\frac{2mn+2n+8a+2b-10}{4}, & \text{if } n = \text{even and } b = \text{odd} \\
\frac{8mn-2n-8a-2b-4}{4}, & \text{if } n = \text{even and } b = \text{even}
\end{cases}$$

$$w(x_{a,b}x_{a,b+1}) = \begin{cases}
\frac{2mn+2a+2}{2}, & \text{if } n = \text{odd and } b = \text{odd} \\
\frac{2mn+2a+3}{2}, & \text{if } n = \text{odd and } b = \text{even} \\
\frac{mn+2}{2}, & \text{if } n = \text{even and } b = \text{odd} \\
\frac{mn+3}{2}, & \text{if } n = \text{even and } b = \text{even}
\end{cases}$$

Based on the edge weight function that has been obtained, a rainbow path can be formed if there are as many colors as $mn + 1$. The rainbow path of H_5 graph that is formed can be seen in the Table 5. So we got that the upper bound of $\text{rac}(H_5)$ is $\text{rac}(H_5) \leq mn + 1$.

Table 5. The rainbow path from x to y on H_5 graph.

case	x	y	rainbow path
1	$x_{k,b}$	$x_{l,c}$	$x_{k,b}, y, x_{l,c}$

As a result of the explanation above, we have established that the lower and upper bounds of $\text{rac}(H_5)$ are $mn + 1 \leq \text{rac}(H_5) \leq mn + 1$. So that the correctness of the formula $\text{rac}(H_5)$ is $mn + 1$ with $m, n \geq 2$ has been proven. □

For illustration of $\text{rac}(H_5)$ is provided in Figure 6 and the vertex labels on the graph are black numbers, while the edge weights on the graph are blue numbers.

![Figure 6. The RAC of H_5 graph with $n = 5$ and $m = 4$.](image-url)
Theorem 10 If H_6 is Amal(Tb_n, v, m) graph with $m, n \geq 2$, then $rac(H_6) = mn + 2m$.

Proof. Let H_6 be a vertex amalgamation product of star with vertex set $V(H_6) = \{z\} \cup \{x_a : 1 \leq a \leq m\} \cup \{y_{a,b} : 1 \leq a \leq m \& 1 \leq b \leq n\}$ and edge set $E(H_6) = \{zx_a : 1 \leq a \leq m\} \cup \{zy_{a,b} : 1 \leq a \leq m \& 1 \leq b \leq n\}$. So, we get $|V(H_6)| = mn + m + 1$ and $|E(H_6)| = 2mn + m$.

We need to prove the correctness of the formula $rac(H_6)$ is $mn + 2m$ with $m, n \geq 2$, it is necessary to prove it by using the lower and upper bounds, namely $rac(H_6) \geq mn + 2m$ and $rac(H_6) \leq mn + 2m$.

First, we prove the correctness of the lower bound of $rac(H_6)$ is $mn + 2m$. We know that H_6 graph is Tb_n graph which is copied as many as m. Based on Theorem 4 [1], so that H_6 graph requires as many colors as $mn + 2m$. So we got that the lower bound of $rac(H_6)$ is $rac(H_6) \geq mn + 2m$ with $m, n \geq 2$.

Next, we prove the correctness of the upper bound of $rac(H_6)$ is $rac(H_6) \leq mn + 2m$. We define the vertex function of H_6 graph with $f : V(H_6) \rightarrow \{1, 2, \ldots, |V(H_6)|\}$ are

\[
\begin{align*}
 f(z) & = 1 \\
 f(x_a) & = a + 1, 1 \leq a \leq m \\
 f(y_{a,b}) & = m + (n - 1)(a - 1) + b + 1, 1 \leq a \leq m \& 1 \leq b \leq n
\end{align*}
\]

Obviously, we get the edge weights from a predefined vertex function where the edge weights will be used as edge coloring. The edge weights of H_6 graph are

\[
\begin{align*}
 w(zx_a) & = a + 2, 1 \leq a \leq m \\
 w(zy_{a,b}) & = m + (n - 1)(a - 1) + b + 2, 1 \leq a \leq m \& 1 \leq b \leq n \\
 w(x_{i}y_{a,b}) & = m + (n - 1)(a - 1) + a + b + 2, 1 \leq a \leq m \& 1 \leq b \leq n
\end{align*}
\]

Based on the edge weight function that has been obtained, a rainbow path can be formed if there are as many colors as $mn + 2m$. The rainbow path of H_6 graph that is formed can be seen in the Table 6. So we got that the upper bound of $rac(H_6)$ is $rac(H_6) \leq mn + 2m$.

Table 6. The rainbow path from x to y on H_6 graph.

case	x	y	rainbow path
1	x_k	x_l	x_k, z, x_l
2	$y_{k,b}$	$x_{l,c}$	$y_{k,b}, z, x_{l,c}$
3	x_k	$x_{l,c}$	$x_k, z, x_{l,c}$

As a result of the explanation above, we have established that the lower and upper bounds of $rac(H_6)$ are $mn + 2m \leq rac(H_6) \leq mn + 2m$. So that the correctness of the formula $rac(H_6)$ is $mn + 2m$ with $m, n \geq 2$ has been proven. \square

For illustration of $rac(H_6)$ is provided in Figure 7 and the vertex labels on the graph are black numbers, while the edge weights on the graph are blue numbers.
Figure 7. The RAC of H_6 graph with $n = 4$ and $m = 4$.

4. Conclusion

In this paper, we learned about the rainbow antimagic coloring of vertex amalgamation of graphs. We have concluded the exact value of $\text{rac}(G)$ where G is vertex amalgamation of graphs namely path, star, broom, paw, fan, and triangular book graph. The open problems in this paper include.

Open Problem

(i) Determine $\text{rac}(G)$ where G is graph with another operations in graph such as comb, corona, edge corona, etc.

(ii) Determine $\text{rac}(G)$ where G is another special graph or another graph family.

Acknowledgement

We gratefully acknowledge the support from CGANT Research Group and LP2M University of Jember of the year 2022.

References

[1] Al Jabbar Z L, Dafik, Adawiyah R, Albirri E R and Agustin I H 2020 On Rainbow Antimagic Coloring of Some Special Graphs Journal of Physics: Conference Series ICOPAMBS 2019 1465 1-8

[2] Alon N, Kaplan G, Lev A, Roditty Y, Yuster R 2004 Dense graphs are antimagic Journal of Graph Theory 47 4 297-309

[3] Asmiati A, Assiyatun H, Baskoro E T 2011 Locating-chromatic number of amalgamation of stars ITB J. Sci. 43 1 1-8

[4] Budi H S, Tirta I M, Agustin I H, Kristiana A I 2021 On rainbow antimagic coloring of graphs Journal of Physics: Conference Series ICOPAMBS 2020 1832 1-10

[5] Chang F, Liang Y C, Pan Z, Zhu X 2015 Antimagic labeling of regular graphs Journal of Graph Theory 82 4 339-349

[6] Chartrand G, Johns G L, Mc Keon K A and Zhang P 2008 Rainbow connection in graphs Mathematica Bohemica 133 85-98

[7] Dafik, Agustin I H, Fajariyato A, and Alfarisi R 2016 On the rainbow coloring for some graph operations AIP Conference Proceedings 1707 1 1-6

[8] Dafik, Alfarisi R and Agustin I H 2019 On Rainbow Edge Antimagic Connection Number of Graphs Preprint
[9] Dafik, Susanto F, Alfarisi R, Septory B J, Agustin I H and Venkatachalam M 2020 On rainbow antimagic coloring of graphs submitted
[10] Dudek A, Frieze A M, and Tsourakakis C E 2015 Rainbow connection of random regular graphs SIAM Journal on Discrete Mathematics 29 4 2255-2266
[11] Estetikasari D and Sy S 2013 On the rainbow connection for some corona graphs Applied Mathematical Sciences 7 11 4975-4980
[12] Fitriani D and Salman A N M 2016 Rainbow connection number of amalgamation of some graphs AKCE International Journal of Graphs and Combinatorics 13 90-99
[13] Hartsfield N and Rigel G 1994 Pearls in graph theory Academic Press
[14] Iswadi H, Baskoro E T, Salman A N, Simanjuntak R 2010 The resolving graph of amalgamation of cycles Utilitas Mathematica 83 121-32
[15] Kurniawati E Y, Agustin I H, Dafik, Marsidi 2021 On the local antimagic labeling of graphs amalgamation Journal of Physics: Conference Series ICCGANT 2020 1836 1-12
[16] Kusumawardani I, Kristiana A I, Dafik and Alfarisi R 2019 On The Rainbow Antimagic Connection Number of Some Wheel Related Graphs International Journal of Academic and Applied Research (IJAAR) 12 3 60-64
[17] Lee S M, Schmeichel E dan Shee S C 1991 On Felicitous Graphs Discrete Mathematics 93 201-209
[18] Li X, Liu M, Schiermeyer I 2012 Rainbow connection number of dense graphs the electronic journal of combinatorics 19 1-11
[19] Li X, Liu S, Chandran L S, Mathew R, and Rajendraprasad D 2012 Rainbow connection number and connectivity The electronic journal of combinatorics 19 1-11
[20] Liang Y C, Wong T L, Zhu X 2014 Anti-magic labeling of trees Discrete Mathematics 28 331 9-14
[21] Nisviasari R, Dafik, Agustin I H, Prihandini R M, and Maylisa I N 2021 Local super anti-magic total face coloring on shackles graphs Journal of Physics: Conference Series ICCGANT 2020 1836 1-7
[22] Septory B J, Utoyo M I, Dafik, Sulistiyono B, Agustin I H 2021 On rainbow antimagic coloring of special graphs Journal of Physics: Conference Series ICOPAMBS 2020 1836 1-12
[23] Sugeng KA 2005 Magic and antimagic labeling of graphs Doctoral dissertation, University of Ballarat
[24] Sulistiyono B, Slamin, Dafik, Agustin I H and Alfarisi R 2020 On Rainbow Antimagic Coloring of Some Graphs Journal of Physics: Conference Series ICOPAMBS 2019 1465 1-8
[25] Sy S, Medika G H, Yulianti L 2013 The rainbow connection of fan and sun Applied Mathematical Sciences 7 64 3155-3159
[26] Wardani D A R, Dafik, Agustin I H, Kurniawati E Y 2017 On locating independent domination number of amalgamation graphs Journal of Physics: Conference Series 2017 AD INTERCOMME 943 1-7
[27] Yandera R H, Irene Y, and Aribowo W 2019 Rainbow connection number on amalgamation of general prism graph Indonesian Journal of Pure and Applied Mathematics 1 1 40-47