Probes of the quark-gluon plasma and plasma instabilities

Sigtryggur Hauksson, Sangyong Jeon, Charles Gale
Department of Physics, McGill University, 3600 University Street, Montréal, QC, Canada H3A 2T8
Correspondence: sigtryggur.hauksson@mail.mcgill.ca

Penetrating probes in heavy-ion collisions, like jets and photons, are sensitive to the transport coefficients of the produced quark-gluon plasma, such as shear and bulk viscosity. Quantifying this sensitivity requires a detailed understanding of photon emission and jet-medium interaction in a non-equilibrium plasma. Up to now, such an understanding has been hindered by plasma instabilities which arise out of equilibrium and lead to spurious divergences when evaluating the rate of interaction of hard probes with the plasma. In this paper, we show that taking into account the time evolution of an unstable plasma cures these divergences. We calculate the time evolution of gluon two-point correlators in a setup with small initial momentum anisotropy and show that the gluon occupation density grows exponentially at early times. Based on this calculation, we argue for a phenomenological prescription where instability poles are subtracted. Finally, we show that in the Abelian case instability fields do not affect medium-induced photon emission to our order of approximation.

I. INTRODUCTION

In heavy-ion collisions at ultra-relativistic energies a dense medium of quarks and gluons is formed: the quark-gluon plasma (QGP) [1]. The medium expands and cools until the quarks and gluons coalesce into soft hadrons which rescatter and fly to the detectors. Remarkably, this time evolution of the QGP is captured by hydrodynamics making the QGP a relativistic fluid [2]. A major goal of heavy-ion collision experiments is to characterize this QGP using transport coefficients, such as shear and bulk viscosity, which quantify its response to weak perturbations and are fundamental properties of QCD. Hydrodynamic studies have shown that the ratio of shear viscosity to entropy density of QGP is the lowest of any known material [2], but arguably the precise value is only known within a factor of two or so. Another major goal of these experiments is to understand how the QGP is formed in the first place. Specifically, it needs to be understood how an initial collision of two heavy nuclei at high energies gives rise to a macroscopic fluid within a time frame of a fm/c or even less.

Explain equilibration and transport coefficients in heavy-ion collisions relies on knowledge of the non-equilibrium physics of the quark-gluon plasma. Up until now, transport coefficients of the QGP have mostly been extracted by fitting hydrodynamic studies to experimental results of the yield and angular distribution of soft hadrons [2]. An alternative way is offered by hard probes of the QGP, such as photons, jets and heavy quarks. As an example, jets broaden and lose energy as they interact with the QGP medium [3]. The rate of interaction and its dependence on the energy of a jet particle depends in detail on the makeup of the fluid. Thus the interaction with a thermally equilibrated fluid and a fluid with shear flow will be different, meaning that the energy loss of jets is sensitive to the QGP’s shear viscosity [4]. To use jets or photons to get the QGP’s shear viscosity requires thorough understanding of hard probes in non-equilibrium QGP.

Many issues arise when calculating interaction of hard probes with a non-equilibrium plasma. An important challenge comes from instabilities intrinsic to weakly coupled plasmas. These Weibel instabilities [5, 6] come about when quasiparticles that are anisotropically distributed in momentum space radiate soft gluons, the density of which grows exponentially with time. The system is thus intrinsically time dependent. Microscopic calculations of hard probes in non-equilibrium plasma have so far not taken this time dependence into account leading to spurious divergences, such as in the rate of jet particles splitting while interacting with the QGP [7–10].

This paper is organized as follows: In Sec. II we explain how instabilities in weakly coupled QGP lead to spurious divergences when studying hard probes in a non-equilibrium plasma. In Secs. III and IV we calculate the time evolution of gluon correlators in a non-equilibrium plasma with slight initial momentum anisotropy. We argue that for phenomenological applications the contribution of instabilities should be subtracted. Finally, in Secs. V and VI we show that in the Abelian case instability fields do not affect medium-induced photon emission to our order of approximation. Details of calculations are relocated to appendices.

II. BACKGROUND

Instabilities in a weakly coupled non-equilibrium quark-gluon plasma lead to spurious divergences when calculating e.g. the rate of photon emission from the plasma or the rate of jet-medium interaction. Understanding the origin of these divergences requires some background on weakly coupled plasmas and quantum-field theoretical calculations of photon emission.

The ultimate goal when calculating photon emission in a non-equilibrium plasma, is to learn about the QGP formed in experiments by using photons. This necessitates a flexible approach where rates of photon production can be combined with hydrodynamic simulations of
heavy-ion collisions. Specifically, we have two conditions:

1. The rate of photon production should only depend on the properties of the medium in that instant, and not on the medium’s history. This requires

\[t_{\text{process}} \ll t_{\text{medium}} \quad (1) \]

where \(t_{\text{process}} \) is the time it takes to emit a photon and \(t_{\text{medium}} \) is the time scale over which the medium changes substantially.

2. The rate of photon production should depend solely on macroscopic variables, like pressure and shear flow, that can be obtained from hydrodynamic calculations. This is achieved by describing the medium by a quasiparticle momentum distribution \(f(p) \) that corresponds to the macroscopic variables[1].

These two conditions have immediate consequences for quantum field theory calculations of photon production. The first condition says that the medium is effectively static during the emission of a photon. We thus want to specify a quasiparticle distribution \(f(p) \) at an initial time \(t_0 \to -\infty \) which will appear in bare propagators. Assuming that \(f(p) \) remains the same during photon emission, we can use the same bare propagators at all times. Since time ranges from \(-\infty \) to \(\infty \), we can do Fourier transforms and work in frequency space which provides huge simplification. Naively, we expect the results for the rate of photon production to have the same form as in thermal equilibrium. Unfortunately, this simple picture does not work in general. As explained in greater detail below, one generally gets a non-sensical, infinite rate of photon production when assuming a static medium characterized by a momentum distribution \(f(p) \). The culprit are instabilities in the plasma which give rise to rapid exponential growth in the density of soft gluons, violating the assumption of a static medium. These instabilities arise for any momentum distribution that is anisotropic, i.e. \(f(p) \neq f(p) \). (In the case of thermal equilibrium or other isotropic distributions the instabilities are not present and one can assume a static medium.) In fact, the same problem of divergent rates is present when calculating e.g. the rate of jet-medium interaction[7, 8], heavy-quark potential[9] and even the rate of interaction among the quasiparticles comprising the medium[10].

Understanding this problem better requires a detailed discussion of weakly coupled QCD plasmas that are sufficiently close to equilibrium. Such plasmas are characterized by two energy scales. Firstly, there are quasiparticles – quarks and gluons – which are localized and propagate freely, apart from occasionally interacting with each other. Their phase space behaviour can be described by kinetic theory[10], and their distribution functions obey a Boltzmann equation

\[\nu^\mu \frac{\partial f}{\partial x^\mu} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = C[f, A] \quad (2) \]

where the distribution \(f(t, x; p) \) changes because of external forces \(\mathbf{F} \) and collisions between quasiparticles, as described by \(C \). Here colour indices have been suppressed for simplicity.

The quasiparticles radiate gluon fields with energy \(gA \) where \(g \ll 1 \) is the coupling constant. These long-wavelength, soft gluons have high occupancy and can thus be described using classical field theory. Specifically, they obey the classical equations of motion for a gluon field \(A^\mu \)

\[\mathcal{D}_\mu F^{\mu\nu} = j^\nu, \quad (3) \]

where \(\mathcal{D}_\mu \) is a covariant derivative, \(F^{\mu\nu} \) is the chromo-electromagnetic tensor, and \(j^\mu \) is a current which comes from the quark and gluon quasiparticles.

These two coupled equations, Eqs. (2) and (3), tell us that quasiparticles source gluon fields which deflect the quasiparticles in turn. They can be solved simultaneously, giving rise to an effective field theory for the long-wavelength gluons called Hard Thermal Loops (HTL)[13]. We write the quasiparticle momentum distribution as

\[f(p) = f_0(p) + \delta f(x^\mu; p) \quad (4) \]

where \(\delta f \) is a small fluctuation around the distribution \(f_0 \) specified at the initial time \(t_0 \to -\infty \). Dropping the subleading collision kernel, Eq. (2) then becomes

\[\nu^\mu \frac{\partial \delta f}{\partial x^\mu} = -\mathbf{F} \cdot \frac{\partial f_0}{\partial \mathbf{p}} \quad (5) \]

where an external force \(F[A^\mu] \) due to an applied gauge field \(A^\mu \) sources fluctuation \(\delta f \). Solving for the fluctuation gives a current \(j^\mu[A^\mu] \sim \int d^3p \nu^\mu \delta f \) which linear response theory tells us is related to the applied field \(A^\mu \) through \(j(P) = \Pi_{\text{ret}}(P) A(P) \). We thus get the retarded self-energy for soft gluons[13]

\[\Pi_{\text{ret}}^{\mu\nu}(Q) \sim g^2 \int \frac{d^3p}{2p(2\pi)^3} f_0(p) \left[g^{\mu\nu} - Q \cdot \frac{p^\mu p^\nu}{P \cdot Q - i\epsilon} \right] \bigg|_{p^\mu = p} \quad (6) \]

which depends explicitly on the initial momentum distribution \(f_0 \). Here \(P \) and \(Q \) are four-momenta while \(p = |p| \) is the three-momentum.

1 In general, there might be multiple momentum distributions for the same macroscopic variables but the hope is that the calculation is not sensitive to which distribution is chosen as long as the macroscopic variables remain the same.

2 A detailed argument is needed to show this[11], as the original calculation of leading-order photon production in a plasma assumed the Kubo-Martin-Schwinger condition which is only valid in thermal equilibrium[12].
Eq. (6) contains a wealth of information on how soft gluons propagate in the medium. Continuing with the assumption of a static medium, the retarded propagator \(G_{\text{ret}}^{\mu\nu}(x, y) = \theta(t_x - t_y)(\{A^\mu, A^\nu\}) \) becomes

\[
G_{\text{ret}}(P) = i \left[P^2 - \Pi_{\text{ret}}(P) \right]^{-1} \tag{7}
\]

in momentum space where \(\Pi_{\text{ret}}^{\mu\nu} \) is given by Eq. (6). A pole of the retarded propagator, \(\omega = E(p) - i\Gamma(p) \), contributes

\[
\int \frac{d\omega}{2\pi i} e^{-i\omega t} = e^{-iEt} e^{-\Gamma t} \tag{8}
\]

in the time domain. This shows that \(\omega = E(p) \) is the dispersion relation of the excitation and \(\Gamma(p) \) is the decay width.

Whenever the initial momentum distribution \(f_0 \) is anisotropic, instabilities are present in the system. In [10, 15] it was shown that a new pole, \(\omega = i\gamma \), appears in the retarded gluon propagator in the upper half complex plane. It corresponds to exponential growth \(e^{i\gamma} \) in soft gluon density in the time domain. This happens as energy is transferred from quasiparticles to the soft chromomagnetic field as it deflect the quasiparticles which source an even stronger field [6]. This instability in soft gluon density has been studied extensively numerically, see [6] and references therein.

The presence of instabilities invalidates the assumption of a static medium. This can for instance be seen when evaluating photon production from the medium. At leading order in the strong coupling constant \(g \), photons are produced through two distinct channels. The first channel is two-to-two scattering with a photon in the final stage, Fig. 1(a), which is unaffected by instabilities in gluon density since the mediator is a quark. Its rate has been calculated in a non-equilibrium plasma for various momentum distributions [16–18]. The second channel is medium-induced bremsstrahlung of a collinear photon, see Fig. 1(c). A quark is brought slightly off-shell by kicks from the medium’s soft gluons, which allows it to emit a photon. The probability for a kick to give the quark transverse momentum \(q_\perp \) is

\[
C(q_\perp) = g^2 C_F \int dq d\theta \frac{2\pi\delta(q_0 - q_\perp)}{2\pi} \text{Re} \, G_{rr}(Q) \hat{K}_\mu \hat{K}_\nu. \tag{9}
\]

where \(\hat{K}_\mu = K_\mu / k \) is the direction of the quark [19, 11]. Here the crucial ingredient is the correlator \(G_{rr}^{\mu\nu}(x, y) = \frac{1}{2}\langle \{A^\mu, A^\nu\} \rangle \) which describes the density of soft excitations. In a static medium with initial time \(t_0 = -\infty \) it is given by

\[
G_{rr} = G_{\text{ret}} \Pi_{aa} G_{\text{adv}} \tag{10}
\]

with \(G_{\text{adv}} = G_{\text{ret}}^* \) and \(\Pi_{aa} \) denotes the probability to create the excitation. During emission of a collinear photon, the quark can receive arbitrarily many kicks from the soft gluons. The kicks act coherently and tend to reduce the rate of emission: this is the Landau-Pomeranchuk-Migdal effect [12, 19, 20]. Thus in a static medium the rate of photon production through bremsstrahlung has a complicated dependence on \(C(q_\perp) \) which can be seen in Eqs. [20] and [21] [11].

We can now finally see how instabilities invalidate the assumption of a static medium when calculating photon production through medium-induced bremsstrahlung. Roughly speaking the \(rr \) propagator for the instability mode can be approximated as

\[
G_{rr} \sim \frac{1}{(q^0 - i\gamma)(q^0 + i\gamma)}. \tag{11}
\]

Substituting this into Eq. (9) and ignoring \(q_\perp \) dependence gives

\[
C(q_\perp) \sim \frac{1}{2\gamma(q_\perp)}. \tag{12}
\]

We thus see that for slowly growing modes \(\gamma \to 0 \) at finite \(q_\perp \) the probability for interacting with soft gluons diverges. This is a sign that our handling of instabilities in a static medium is incorrect.

The function \(C(q_\perp) \) in Eq. (9) not only appears in photon production but also when calculating the rate of jet-medium interaction [19, 21], as well as interaction
of quasiparticles [10]. All of these processes thus suffer from the same divergence in a naive calculation in a static medium. Furthermore, a similar problem arises when calculating the imaginary part of the heavy quark potential in a non-equilibrium medium [9].

III. OVERVIEW OF RESULTS AND IMPLICATIONS FOR PHENOMENOLOGY

To calculate photon production through bremsstrahlung in a non-equilibrium QGP we must go beyond the assumption of a static medium. Otherwise, we get non-sensical results because of instabilities in soft gluon density. However, including the time evolution of the medium in general is a complicated task, especially since we can no longer do Fourier transforms which are essential to get simple equations for the LPM effect. To be able to handle this task, we consider the simplest setup imaginable for the medium for the LPM effect. To be able to handle this task, we furthermore only consider the growth of instabilities is slow enough for us to have momentum. We assume that $\langle p \rangle$ in Fig. 2(a). An instability pole momentum p given by a slightly anisotropic quasiparticle distribution $f_0(p)$. The anisotropy is defined by

$$\xi \sim \frac{|\langle p_z \rangle - \langle p_\perp \rangle|}{\langle p_z \rangle}$$ \hspace{1cm} (13)$$

where $\langle p_z \rangle, \langle p_\perp \rangle$ are the momentum distribution’s typical momenta. We assume that $\xi \ll g$. This guarantees that the growth of instabilities is slow enough for us to have handle on the calculation. We furthermore only consider times shortly after the initial time. This ensures that the density of the soft gluons does not become so high that the HTL approximation is invalidated.

In Sec. [IV] we calculate the propagators that describe soft gluons in this setup. The retarded correlator becomes

$$G_{rt}(t_x, t_y; \mathbf{p}) = \int \frac{dp^0}{2\pi} e^{-ip^0(t_x-t_y)}G_{rt}(p^0, \mathbf{p}).$$ \hspace{1cm} (14)$$
The propagator is written in the time domain where $t_x, t_y > 0$ are the times of the two fields. Since we assume an infinite spatial extension we can define a three-momentum \mathbf{p} by Fourier transform. The function

$$G_{rt}(p^0, \mathbf{p}) = \left[(G_{rt}^0(P))^\dagger - \Pi_{rt}(P)\right]^{-1}$$ \hspace{1cm} (15)$$
is the same as in Eq. [7]. It generally has poles in the upper half complex plane which correspond to instabilities [19]. Crucially, we must choose a contour α that goes above all poles in the upper half complex plane, as in Fig. [2a]. An instability pole $p^0 = r\gamma$ then gives $G_{rt} \sim e^{r\gamma(t_x-t_y)}$ for $t_x > t_y$ which grows exponentially, showing that the system is unstable to perturbations. Choosing the contour in this way, also guarantees that $G_{rt}(t_x, t_y; \mathbf{k}) = 0$ for $t_y > t_x$.

The important ingredient when calculating photon emission is the rr correlator of soft gluons which describes the soft gluon density. To find an expression for it we must separate between two scales, namely the soft scale $g\Lambda$ and the instability growth rate $\gamma \sim \xi g\Lambda$. As an example we write the retarded correlator in Eq. [15] as

$$G_{rt}(K) = \hat{G}_{rt}(K) + \sum_i \frac{A_i}{k^0 - i\gamma_i}$$ \hspace{1cm} (16)$$

where \hat{G}_{rt} only has poles and branch cuts of order $g\Lambda$ while γ_i are all poles of order $\xi g\Lambda$, including instability poles. Using a number of controlled approximations, explained in Sec. [V] we then get the rr correlator at early times when the gluon occupation density is not so high that the HTL approximation is invalidated. It is

$$G_{rr}(t_x, t_y; \mathbf{k}) \approx \frac{dk^0}{2\pi} e^{-ik^0(t_x-t_y)}\hat{G}_{rr}(K)$$

$$+ \sum_{i,j} \frac{A_i A_j}{\gamma_i + \gamma_j} \left[e^{\gamma_i t_x}e^{\gamma_j t_y} - 1\right]$$ \hspace{1cm} (17)$$

with

$$\hat{G}_{rr}(K) = \hat{G}_{rt}(K) \Pi_{aa}(K) \hat{G}_{adv}(K)$$ \hspace{1cm} (18)$$

and $\hat{G}_{adv} = \hat{G}_{rt}^\dagger$.

The rr propagator in Eq. [17] has a clear physical interpretation. The first term has no information about the initial time. It is of the same form as the rr correlator in a static medium, Eq. [9], except that all instability poles have been subtracted. The second term shows exponential growth due to instabilities at scale $\gamma \sim \xi g\Lambda$. It vanishes at the initial time $t_x = t_y = 0$ when the instability modes are not occupied. It is furthermore finite for slow growth rate $\gamma \rightarrow 0$.

At very early times the instability part in Eq. [17] can be neglected. The probability of a quark to get a transverse kick q_\perp is then

$$\hat{C}(q_\perp) = g^2 C_F \int \frac{dq_0 dq_z}{(2\pi)^2} 2\pi \delta(q_0-q_z) \Re \hat{G}_{rr}(Q)^{\mu\nu}\hat{K}_\mu \hat{K}_\nu.$$ \hspace{1cm} (19)$$

Here all instability poles have been subtracted in \hat{G}_{rr} so the probability is finite. As time goes on the occupation density of the soft gluons increases due to instabilities and the second term of Eq. [17] must be included. This complicated task is discussed in Sec. [V]. As even further time passes the HTL approximation used to derive Eq.

4 Strictly speaking, $\gamma \sim \xi^{1/2}$ but we won’t need these more precise estimates in our work [22].
breaks down and numerical calculations are needed to evaluate the evolution of instability modes.

Instability modes have the potential of violating our assumptions for photon production in heavy-ion collisions. The fluctuating soft gluon cloud in Eq. (19) is sourced by the hard quasiparticles at each instant so that its effect on photon production only depends on the instantaneous, macroscopic properties of the medium. Conversely, the instability contribution depends on the whole history of the medium and can only be included in phenomenological calculations with great difficulty.

Fortunately, detailed classical-statistical simulations suggest that plasma instabilities only play a role in the very early stages of heavy-ion collisions. These calculations describe a weakly coupled, highly occupied classical system with fluctuating initial conditions coming from the color-glass condensate. There the instabilities are important in the approach to a universal, nonequilibrium attractor but once the attractor is reached, detailed information on the initial stages is forgotten and the dynamics is dominated by a turbulent cascade towards higher energies until thermalization is reached.

For the phenomenology of photon production in a nonequilibrium QGP, it is therefore reasonable to neglect the instability contribution when the photon is emitted in the hard quasiparticles at each instant so that its effect

\[\hat{f} \]

when the photon is emitted in the z direction. Here Re \(f(\mathbf{p}) \) can be thought of as the probability for the quark to gain transverse momentum \(\mathbf{p} \) because of medium kicks. It is solved by the Boltzmann-like equation

\[\mathbf{p}_\perp = i\delta E \ e^{-\frac{\mathbf{p} \cdot \mathbf{k}}{\alpha}} \mathcal{C}(\mathbf{q}_\perp) \left[f(\mathbf{p}_\perp) - f(\mathbf{p}_\perp + \mathbf{q}_\perp) \right]. \]

where \(\mathcal{C} \) comes from Eq. (19).

IV. CORRELATORS FOR UNSTABLE FIELDS

We now turn to derive the correlators in Eqs. (14) and (17) for a weakly anisotropic plasma shortly into its evolution. The retarded propagator is defined by

\[
G_{\text{ret}}(x, y) = G_{\text{ret}}^0(x, y) + \int d^4z \int d^4w \ G_{\text{ret}}^0(z, w) \Pi_{\text{ret}}(z - w) G_{\text{ret}}(w, y) \quad (22)
\]

where \(\Pi_{\text{ret}} \) is the retarded self-energy and \(G_{\text{ret}}^0 \) is the bare retarded propagator (see e.g. [27] and Sec. 3 of [28]). In a static system, such as thermal equilibrium, this equation can be solved by Fourier transforming to the frequency domain, thanks to translational invariance which guarantees that \(G_{\text{ret}}(x, y) = G_{\text{ret}}(x - y) \). We must take a different route to solve Eq. (22) since time translational invariance is broken by instabilities. We assume that our system has infinite spatial extension so that the spatial dependence can be described in Fourier space.

We start our system at initial time \(t_0 = 0 \). The time integrals in Eq. (22) range over all times greater than the initial time. Using the properties of retarded functions, we write

\[
G_{\text{ret}}(x, y) = G_{\text{ret}}^0(x - y) + \int_y^x dz \int_y^z dw \ G_{\text{ret}}^0(z - w) \Pi_{\text{ret}}(z - w) G_{\text{ret}}(w, y). \]

where the dependence on three-momentum is omitted.

We have \(\Pi_{\text{ret}}(z, w) = \Pi_{\text{ret}}(z - w) \) in the HTL approximation, valid at the early times we consider when the soft gluon density is not too high. This equation has the same form as in equilibrium because the initial time does not appear explicitly. Furthermore, \(G_{\text{ret}}(x + \tau, y + \tau) \) is a solution of Eq. (23) for any \(\tau \). This suggests that we can write \(G_{\text{ret}}(x, y) = G_{\text{ret}}(x - y) \). We will therefore try to find a solution for some function \(G_{\text{ret}}(k) \). It’s enough to find one such solution because the solution of Eq. (23) is unique. The contour \(\alpha \) goes along the real line and above all instability poles that \(G_{\text{ret}}(k) \) might have in the upper half complex plane, see Fig. 2(a). This ensures that \(G_{\text{ret}}(x, y) = 0 \) for \(y > x \).

We will now evaluate the last term in Eq. (23) in detail. Substituting Eq. (24) and the Fourier transforms of \(G_{\text{ret}}(k) \) and \(G_{\text{ret}}^0(k) \). To avoid clutter we denote time coordinates with \(x, y, z, w \) instead of \(x^0, y^0, z^0, w^0 \).

5 To avoid clutter we denote time coordinates with \(x, y, z, w \) instead of \(x^0, y^0, z^0, w^0 \).

6 Here \(k \) can be seen as a frequency coordinate. We will write \(k \) instead of \(k_0 \).

7 Since \(\Pi_{\text{ret}}(x + y) = \Pi_{\text{ret}}(y) \), we can define a Fourier transform in the usual way which justifies integrating \(k_0 \) over the real line in Eq. (25). For the full retarded function, a Fourier transform \(G_{\text{ret}}(k) = \int d(x - y) e^{i(k - k_0)} G_{\text{ret}}(x - y) \) is ill-defined since \(G_{\text{ret}}(x - y) \) has an exponentially growing instability part. Formally, we could define a Laplace transform with the inverse
and Π_{ret} we write that term as
\[\int_{y}^{x} \int_{z}^{w} e^{-ik_{1}(x-z)} e^{-ik_{2}(z-w)} e^{-ik_{3}(w-y)} G_{\text{ret}}^{0}(k_{1}) \Pi_{\text{ret}}(k_{2}) G_{\text{ret}}^{0}(k_{3}) f(k_{1}, k_{2}, k_{3}) \] (25)
The time integrals can be done explicitly. This would not be possible if the time integrals were written for all \(k \) since the integral with \(e^{-ik_{3}(w-y)} \) would not converge with \(k_{3} \) in the upper half complex plane. In the end we get
\[\int \frac{dk_{1}}{2\pi} \int \frac{dk_{2}}{2\pi} \int \frac{dk_{3}}{2\pi} G_{\text{ret}}^{0}(k_{1}) \Pi_{\text{ret}}(k_{2}) G_{\text{ret}}^{0}(k_{3}) f(k_{1}, k_{2}, k_{3}) \] (26)
where
\[f(k_{1}, k_{2}, k_{3}) = -\frac{e^{-ik_{1}(x-y)}}{(k_{1} - k_{2})(k_{1} - k_{3})} - \frac{e^{-ik_{2}(x-y)}}{(k_{2} - k_{1})(k_{2} - k_{3})} - \frac{e^{-ik_{3}(x-y)}}{(k_{3} - k_{1})(k_{3} - k_{2})} \] (27)

Some tricks are needed to evaluate Eq. (26). We notice that the function \(f(k_{1}, k_{2}, k_{3}) \) has no poles in its variables. Thus, we can include a principal value for each term in the function by substituting
\[f(k_{1}, k_{2}, k_{3}) \rightarrow \frac{1}{8} \sum_{\{k_{1} \to k_{1} + ic_{1}\}} \sum_{\{k_{2} \to k_{2} + ic_{2}\}} \sum_{\{k_{3} \to k_{3} + ic_{3}\}} f(k_{1}, k_{2}, k_{3}) \] (28)
Here \(c_{1}, c_{2}, c_{3} > 0 \) are set to zero in the end. The result must be independent of the order in which they are set to zero. As is shown in App. A we can then evaluate the momentum integrals in Eq. (26) using the residue theorem. Doing so requires continuing the integration contours to the correct half plane which only contains poles of the function \(f \). The final result is
\[\int_{\alpha} \frac{dk}{2\pi} e^{-ik(x-y)} [G_{\text{ret}}(k) - G_{\text{ret}}^{0}(k) - G_{\text{ret}}^{0}(k)\Pi_{\text{ret}}(k)G_{\text{ret}}^{0}(k)] = 0. \] (29)
From this we immediately see that
\[G_{\text{ret}}(k^{0}, k) = \left[(G_{\text{ret}}^{0}(k))^{-1} - \Pi_{\text{ret}}(k) \right]^{-1}, \] (30)
confirming our expression for \(G_{\text{ret}} \) in Eq. (14). We note that the advanced correlator can easily be shown to be
\[G_{\text{adv}}(x, y) = \int \frac{dk}{2\pi} e^{-ik(x-y)} G_{\text{adv}}(k). \] (31)
where \(G_{\text{adv}}(k) = G_{\text{ret}}(k)^{*} \) and the integration contour is \(\tilde{\alpha} = \alpha^{*} \) which goes below all poles of \(G_{\text{adv}}(k) \).

We have found the retarded and advanced correlators. The other two-point correlator is \(G_{rr} = \frac{1}{2} \langle \{ A^{\mu}(x), A^{\nu}(y) \} \rangle \) which gives the occupation density of gluonic modes in the medium. It is
\[G_{rr}(x, y) = \int_{0}^{g} \int_{0}^{\gamma} \int_{zz}^{w} G_{\text{ret}}(x-z) \Pi_{aa}(z-w) G_{\text{adv}}(w-y) \] (32)
where the integration limits have been rewritten using properties of the retarded and advanced functions, as well as the initial time \(t_{0} = 0 \). In general there is an additional term corresponding to correlation with the initial state. Assuming that there are no soft gluons in the initial state, we can omit that term but it could easily be included in our calculations. The integrals depend explicitly on the initial time so we expect that \(G_{rr}(x, y) \neq G_{rr}(x - y) \). Substituting the Fourier transform of the HTL \(\Pi_{aa} \) as well as Eqs. (24) and (31) gives
\[G_{rr}(x, y) = \int \frac{dk_{1}}{2\pi} \int \frac{dk_{2}}{2\pi} \int \frac{dk_{3}}{2\pi} \left[-e^{-ik_{2}x}e^{ik_{2}y} + e^{-ik_{1}x}e^{ik_{1}y} + e^{-ik_{3}x}e^{ik_{3}y} - e^{-ik_{1}x}e^{ik_{3}y} \right] \] \times \left(\frac{1}{(k_{1} - k_{2})(k_{2} - k_{3})} \right) G_{\text{ret}}(k_{1}) \Pi_{aa}(k_{2}) G_{\text{adv}}(k_{3}) \] (33)
after doing the time integrals.

In order to evaluate the remaining integrals in Eq. (33) we must think about the scales of the problem. The retarded correlator is at two momentum scales:
\[G_{\text{ret}}(k) = \tilde{G}_{\text{ret}}(k) + \sum_{i} \frac{A_{i}}{k - i\gamma_{i}} \] (34)
Here, \(\tilde{G}_{\text{ret}} \) only has poles and branch cuts of order \(g\Lambda \) which are all in the lower half complex plane while \(\gamma_{i} \) are all poles of order \(\xi \gamma \Lambda \), with \(\xi \ll g \) the initial anisotropy.
This allows us to drop any term with \(x \) correlations with the initial condition are damped when the system was initialized. This allows us to drop any \(G_0 \) correlator in Eq. (33). Firstly, we assume that where it is independent of the branch cut we choose. The retarded propagator only exists in the time domain ing modes on the second Riemann sheet [29]. Ultimately, the scale \(\zeta g \Lambda \) region, see Fig. 4. This results in new decay-ing modes on the second Riemann sheet [29]. Ultimately, the retarded propagator only exists in the time domain where it is independent of the branch cut we choose.

We will use controlled approximations to evaluate the \(r r \) correlator in Eq. (33). Firstly, we assume that \(x, y \gg 1/g^2 \Lambda \) so that sufficient time has passed since the system was initialized. This allows us to drop any term with \(e^{-ix} \) where \(\text{Im} \, a < 0 \) and \(\text{Im} \, a \sim g \Lambda \), as correlations with the initial condition are damped when sufficient time has passed. Secondly, we can assume that \(x-y \sim 1/g^2 \Lambda \) since this is the time that medium-induced emission takes. This allows us to drop any term with \(e^{-iax} \) where \(\text{Re} \, a \sim g \Lambda \), as it oscillates very rapidly during emission and cancels out. The terms we drop would also be present in a thermally equilibrated system started at an initial time \(t_0 = 0 \). They tell us little about the non-equilibrium physics we are interested in.

These approximations allow us to to evaluate the \(r r \) propagator at early times. Using the same calculational tricks as before, a lengthy calculation given in App. A shows that

\[
G_{rr}(x, y) \approx \int \frac{dk}{2\pi} \hat{G}_\text{ret}(k) \Pi_{aa}(k) \hat{G}_\text{adv}(k) \ e^{-ik(x-y)}
+ \sum_i \int \frac{dk}{2\pi} A_i \frac{\Pi_{aa}(k) \hat{G}_\text{adv}(k) \left(e^{-ikx} - e^{i\gamma x} \right) e^{iky}}{k - i\gamma_i}
+ \sum_j \int \frac{dk}{2\pi} \hat{G}_\text{ret}(k) \Pi_{aa}(k) \frac{A_j^*}{k + i\gamma_j} \ e^{-ikx} \left(e^{iky} - e^{i\gamma y} \right)
+ \sum_{i,j} \int \frac{dk}{2\pi} A_i \frac{\Pi_{aa}(k) A_j^*}{k + i\gamma_j} \left. \times \left(e^{-ikx} - e^{i\gamma x} \right) \left(e^{iky} - e^{i\gamma y} \right) \right) .
\]

where the terms correspond to fluctuating contributions \(k \sim g \Lambda \), instability contributions \(k \sim \zeta g \Lambda \) or their cross terms.

Eq. (36) has a simple interpretation. Schematically, a mode \(e^{i(k^0 - E + i\gamma)x} \) of the retarded function contributes

\[
\int_{-\infty}^{x} dt \ e^{ik^0 t} e^{-iE_t - \gamma t} = \frac{-i}{k^0 - E + i\gamma} e^{i(k^0 - E + i\gamma)x} \tag{37}
\]

to the \(r r \) correlator in a system in thermal equilibrium with initial condition at \(t \to -\infty \). This expression has a pole at \(k^0 = E - i\gamma \). However, in a non-equilibrium system with initial time at \(t = 0 \) the corresponding integral is

\[
\int_{0}^{x} dt \ e^{ik^0 t} e^{-iE_t - \gamma t} = \frac{-i}{k^0 - E + i\gamma} \left[e^{i(k^0 - E + i\gamma)x} - 1 \right] .
\]

which has no pole. In a similar fashion, there should strictly speaking be no poles in Eq. (36): for a pole \(b \sim g \Lambda \) of \(\hat{G}_\text{ret} \) we should have

\[
\frac{1}{k - b} \left(e^{-ikx} - e^{-ibx} \right)
\]

Nevertheless, in using our approximations we have dropped all terms \(e^{-ibx} \) since sufficient time has passed to eliminate all traces of an initial time \(t_0 = 0 \). Conversely, we must retain the analogous factors \(e^{ix} \) for instability modes since they grow exponentially in time.

It is instructive to rewrite Eq. (36). We can drop cross-terms between instability and fluctuating modes since the decay or oscillations of fluctuating modes dominates over the slow growth rate of instability terms. The last term

\[
\text{This can be seen in a simple way. Let’s consider a term } e^{(id+c)t}
\]
where we can ignore poles of \(\Pi \) in the \(\gamma \) plane, see Fig. 3. Doing the contour integrals then gives

\[
\sum_{i,j} \frac{d k}{2 \pi} \frac{A_i}{k - \gamma_i} \Pi_{a a}(k) \frac{A_j^*}{k + \gamma_j} \left[e^{-ikx} e^{-iy} - \theta(x - y) e^{\gamma_i(x - y)} - \theta(y - x) e^{\gamma_j(y - x)} \right] .
\]

Here \(\beta \) is a contour that goes along the real line and above all instability poles of \(G_{\text{ret}} \) in the upper half plane and below all instability poles of \(G_{\text{adv}} \) in the lower half plane, see Fig. 3. Doing the contour integrals then gives

\[
\sum_{i,j} \frac{d k}{2 \pi} \frac{A_i}{k - \gamma_i} \Pi_{a a}(k) \frac{A_j^*}{k + \gamma_j} \left[e^{-ikx} e^{-iy} - \theta(x - y) e^{\gamma_i(x - y)} - \theta(y - x) e^{\gamma_j(y - x)} \right] .
\]

where we can ignore poles of \(\Pi_{a a}(k) \) and write \(\Pi_{a a}(a_i) \approx \Pi_{a a}(a_i^*) \approx \Pi_{a a}(0) \). Using that \(a(x - y) \sim \xi/g \ll 1 \) gives our final expression for the full \(\gamma \gamma \) correlator which reproduces Eq. (17):

\[
G_{\gamma \gamma}(t_x, t_y; \mathbf{k}) \approx \int \frac{d k^0}{2 \pi} e^{-ik^0(t_x - t_y)} \hat{G}_{\text{ret}}(k^0; \mathbf{k}) \Pi_{a a}(k^0; \mathbf{k}) \hat{G}_{\text{adv}}(k^0; \mathbf{k}) + \sum_{i,j} \frac{A_i \Pi_{a a}(0) A_j^*}{\gamma_i + \gamma_j} \left[e^{\gamma_i t_x} e^{\gamma_j t_y} - 1 \right]
\]

where \(\gamma_i \) and \(A_i \) are functions of the three-momentum \(\mathbf{k} \).

FIG. 5: An example of diagrams that are summed up to evaluate photon production in an Abelian background field. The thin lines joining quark propagators are background field insertions.

FIG. 6: A diagram for medium-induced photon production in the presence of a background field. The red gluons denote medium kicks at energy \(gA \) which are time ordered. The blue lines denote kicks from the background field at energy \(\xi g \Lambda \). They are not time ordered.

V. QUARK PROPAGATORS IN LONG-WAVELENGTH ABELIAN BACKGROUND FIELDS

We have argued that for phenomenological applications the time-dependent instability field in Eq. (17) should simply be subtracted, leaving a simple expression for photon production in a non-equilibrium plasma. It is nevertheless interesting to explore the effect of the long-wavelength instability field, both from a theoretical point of view, as well as as a first step towards including classical fields at the early stages of heavy-ion collisions.

We will now calculate how the long-wavelength background fields modify photon emission, focusing on the case of an Abelian plasma. In particular we consider how the background fields modify bremsstrahlung as seen in Fig. 1 which suffers from spurious divergences when one assumes a static, non-equilibrium plasma. Our setup is fairly general: The medium can be described by the \(\gamma \gamma \) correlator in Eq. (17) but also by any other \(\gamma \gamma \) correlator which has two different scales, fluctuating time-independent excitations with energy \(gA \) and a time-dependent background field with energy \(\xi g \Lambda \), \(\xi \ll g \). This calculation also extends easily to jet-medium interaction and quasiparticle splitting as seen in Fig. 1. Our goal is to sum up non-perturbative effects of the background field at a given order in \(\Delta t \ll 1 \) where \(l \sim \xi g \Lambda \) is the small momentum of the background field and \(\Delta t \sim 1/g^2 \Lambda \) is the time photon emission takes.

The two energy scales, i.e. the fluctuating field at \(g \Lambda \) and the background field at \(\xi g \Lambda \), affect photon emission in very different ways. The time for collinear bremsstrahlung of photons is \(\sim 1/g^2 \Lambda \) which is very long compared to the time \(1/g \Lambda \) for a typical medium kick. Thus the medium-kicks are ordered in time and diagrams with crossed rungs like in Fig. 6 are suppressed. On the other hand the long-wavelength background field has wavelength \(\sim 1/\xi g \Lambda \) which is much longer than the time for photon emission. Thus we must evaluate diagrams like in Fig. 5 for the background field. These diagrams are complicated because of the color factors and can only realistically be summed up in the case of an Abelian background field or a non-Abelian background field in the large \(N_c \) limit where only planar diagrams...
contribute. We focus on the Abelian case here. Our goal is to do a calculation that includes both medium kicks and the background field as can be seen in Fig. 6.

We make a few assumptions about the scales of the problem. Firstly, we assume that the momentum l of the long-wavelength background field satisfies

$$l\Delta t \ll 1$$

(43)

where Δt is the time the emission of a photon takes. In our case $\Delta t \sim 1/g^2 \Lambda$ so for instability fields $\xi \ll g$. Furthermore, we assume that $\gamma \Delta t \ll 1$ where $1/\gamma$ is the time over which the background fields change appreciably. We also assume

$$1 \ll \Lambda \Delta t$$

(44)

where Λ is the hard scale of the medium and Δt is the time an emission takes. Medium-induced emission of photons or gluons takes time $\sim 1/g^2 \Lambda$ which is long enough to fulfill the condition. In general Eq. (44) is satisfied for off-shell photon emission with virtuality $Q^2 \ll \Lambda^2$.

We finally assume that the wavelength of the background fields cannot be so long that it correlates two subsequent gluon emissions. In other words

$$\frac{1}{\Lambda (\Delta t)^2} \ll l$$

(45)

where $1/\Lambda (\Delta t)^2 \sim \Lambda/g^4$, the mean free path for photon emission.

Quark propagators are modified in the presence of background fields. The bare retarded propagator is

$$S^{(0)}_{\text{ret}}(t_x, t_y; \mathbf{p}) = \frac{1}{2} \theta(\Delta t) \left[e^{-ip\Delta t} \hat{P} - e^{ip\Delta t} \hat{P} \right]$$

(46)

where $\Delta t = t_x - t_y$ and $\hat{P} = (1, \hat{\mathbf{p}})$ and $\tilde{P} = (-1, \hat{\mathbf{p}})$ denote different polarizations. Adding one background field insertion, Fig. 7 gives

$$S^{(1)}_{\text{ret}}(t_x, t_y; \mathbf{p}; l) = igA_\mu \int dt S^{(0)}_{\text{ret}}(t_x, t; \mathbf{p}) \gamma^\mu S^{(0)}_{\text{ret}}(t, t_y; \mathbf{p} + l)$$

(47)

We can take the background field A^μ out of the time integral since it changes slowly. This gives

$$S^{(1)}_{\text{ret}}(t_x, t_y; \mathbf{p}; l) \approx \frac{1}{2} \theta(\Delta t) e^{ip\Delta t} \left[(igA_\mu \hat{P}^\mu) \hat{P} \left(\Delta t - \frac{1}{2} il_||(\Delta t)^2 \right) \right.$$

(48)

$$+ (igA_\mu \hat{P}^\mu) \hat{P} \left(\Delta t + \frac{1}{2} il_||(\Delta t)^2 \right) \right]$$

Here we have expanded in $\Delta t l_|| \ll 1$ with $l_|| = \hat{\mathbf{p}} \cdot \mathbf{l}$. Terms with Δt in Eq. (48) denote a potential phase rotation in the background field. The subleading term with $l_||(\Delta t)^2$, gives the first derivative of the background field A^μ and thus denotes the effect of electromagnetic fields on photon emission. Higher order terms are not amenable to evaluation using our methods.\(^\text{10}\)

The retarded quark propagator with an arbitrary number of background field insertions is

$$S_{\text{ret}}^{(n)}(t_x, t_y; \mathbf{p}; \{l_1, \ldots, l_n\}) \approx$$

$$\frac{1}{2^n \theta(\Delta t)} \left[(igA_\mu \tilde{P}^\mu) \tilde{P} \prod_{i=1}^{n} e^{-i l_|| i(\Delta t)} - \frac{1}{i l_||} \right]$$

(49)

This simple form is achieved by summing over all the different permutations of attaching n background field insertions. The analogous expression for the advanced propagator has an overall minus sign and $\theta(-\Delta t)$ instead of $\theta(\Delta t)$.

Eq. (49) can be derived by noting that the dependence on background field momentum is

$$\int \frac{d\omega}{2\pi} e^{-i\omega \Delta t} \frac{i}{\omega - p + i\epsilon} \frac{i}{\omega - |l_1 + l_|| + i\epsilon} \cdots \frac{i}{\omega - |p + l_1 + \ldots + l_n| + i\epsilon}$$

(50)

for n ordered instability insertions. Performing the integral and expanding in $l_|| = \hat{\mathbf{p}} \cdot \mathbf{l}$ gives a complicated expression. It is hugely simplified by summing over all permutations of attaching n background field insertions, and using that

$$\sum_{\text{permute } \{l_1, \ldots, l_j\}} \frac{1}{(l_1 + \cdots + l_j)(l_2 + \cdots + l_j) \ldots l_j} = \frac{1}{l_1 \ldots l_j}$$

(51)

\(^\text{10}\) The omitted terms in Eqs. (48) and (49) are in fact subleading. Cross terms like $\tilde{P}^\mu \tilde{P}^\nu$ which denote spin flip in the background field give $\frac{1}{2} \ll l(||(\Delta t)^2$ after doing the time integral and can thus be ignored. Furthermore, we can ignore spin precession in the background fields. It will give spinor factors with $\tilde{P}^\nu L^\mu \approx P^\nu + O(1/\Lambda)$. After doing the time integral the spin precession correction gives a term $O(1/\Delta t/\Lambda)$ which is subleading to the terms in Eq. (49).
Finally, we must evaluate how the \(rr \) propagator is modified in the presence of a long-wavelength background field. The bare \(rr \) propagator in the time domain is

\[
S^{(0)}_{rr}(t_x, t_y; k) = \left[\frac{1}{2} - F_q(k) \right] \left(S^{(0)}_{\text{ret}}(t_x, t_y; k) - S^{(0)}_{\text{adv}}(t_x, t_y; k) \right),
\]

where

\[
F(k) = \begin{cases}
 f_q(k), & \text{for } K \\
 1 - f_q(-k), & \text{for } \bar{K}
\end{cases}
\]

(53)

describes the momentum distribution for incoming quarks and outgoing antiquarks, respectively. There are many ways to add background field insertions in the \(ra \) basis. As an example Fig. 9 shows the three possible ways of including two background field insertions. To find them we have used that a background field insertion has index \(r \), that each vertex has an odd number of \(a \) indices and that bare \(aa \) propagators vanish \[12\]. Assuming that the momentum distributions in each propagator are the same to our order of approximation, \(f_q(k) \approx f_q(k + l) \approx f_q(k + l_1 + l_2) \) \[11\] and using Eq. \(52\), most of the terms cancel \[11\]. We end up with

\[
S^{(2)}_{rr} = \left[\frac{1}{2} - F_q(k) \right] \left(S^{(2)}_{\text{ret}} - S^{(2)}_{\text{adv}} \right).
\]

(54)

A similar cancellation takes place for any number of background field insertions so that in the end

\[
S^{(n)}_{rr}(t_x, t_y; p; \{l_1, \ldots, l_n\}) = \left[\frac{1}{2} - F(k) \right] \left(S^{(n)}_{\text{ret}}(t_x, t_y; p; \{l_1, \ldots, l_n\}) - S^{(n)}_{\text{adv}}(t_x, t_y; p; \{l_1, \ldots, l_n\}) \right).
\]

(55)

VI. MEDIUM-INDUCED PHOTON EMISSION IN ABELIAN BACKGROUND FIELDS

We turn to evaluating photon emission in an Abelian background field. For simplicity, we begin by only considering the long wavelength background field with momentum \(\xi g \Lambda \), considering medium kicks with momentum \(g \Lambda \) below.

On-shell photon emission from on-shell quarks is kinematically suppressed in the absence of kicks from a background field or a medium. The rate of on-shell photon emission is given by \(\Pi^{12} \) which goes like the four-point quark correlator \(S_{1122} \), see Fig. 10. We show in Appendix \[23\] that

\[
S_{1122} = 2F(P + K) (1 - F(P)) \text{Re } S_{rraa}
\]

(56)

where we have gone to the \(ra \) basis in the closed-time path formalism \[27\] defined by

\[
\psi_r = \psi_1 + \psi_2; \quad \psi_a = \psi_1 - \psi_2.
\]

(57)

The momentum factors in Eq. \(56\) describe different channels. As an example with \(p^0 > 0 \) we get \(f_q(p + k) (1 - f_q(p)) \) which denotes a quark with momentum \(p + k \) emitting a photon with momentum \(k \) through bremsstrahlung. The rate of emitting an on-shell photon with momentum \(k \) through quark bremsstrahlung then goes like

\[
i \Pi^{12}_{\mu \nu}(k) = \frac{e^2}{4} \text{Tr} \left[\gamma_\mu \hat{K} \gamma_\nu \hat{K} \right] 2 f_q(p + k) (1 - f_q(p)) \times \text{Re } \int d(t_x - t_y) e^{ik(t_x - t_y)} \theta(t_x - t_y) e^{-i|p + k - p|(t_x - t_y)}
\]

(58)

as can be seen in Fig. 11. The frequency integral gives \(\delta(k - |p + k| + p) \) which vanishes under integration over \(p \) for an on-shell photon. This is simply because the emission is kinematically suppressed.

We now turn on the background field and see whether on-shell photon emission becomes possible. Since we have assumed that \(\langle A \rangle = 0 \) but \(G_{rr} = \frac{1}{2} \langle \{A, A\} \rangle \neq 0 \) we must pair up the background field insertions into \(rr \) two-point functions to account for fluctuations in the background field. An example of a contributing can be seen in Fig. 12.

The upper quark rail with momentum \(p + k \) becomes

\[
S^{(1)}_{\text{ret}}(t_x, t_y; p + k; \{l_1, \ldots, l_n\}) = S^{(0)}_{\text{ret}}(t_x, t_y; p + k) \times (igA_{\mu} \hat{K}^\mu)^{n_1} \prod_{j=1}^{n_1} \frac{e^{-ik\cdot l_j(t_x - t_y)} - 1}{-ik \cdot l_j}
\]

(59)

after summing over all possible permutations of \(n_1 \) background field insertions. Similarly, the lower quark rail with momentum \(k \) becomes

\[
S^{(n_2)}_{\text{adv}}(t_y, t_x; p + k + \sum l_j; \{l_1, \ldots, l_n\}) = S^{(0)}_{\text{ret}}(t_y, t_x; p + k) e^{-i \sum l_j(t_y - t_x)} \times (igA_{\mu} \hat{K}^\mu)^{n_2} \prod_{j=1}^{n_2} \frac{e^{-ik\cdot l_j(t_y - t_x)} - 1}{-ik \cdot l_j}
\]

(60)

with \(n_2 \) instability insertions. The extra factor of \(e^{-i \sum l_j(t_y - t_x)} \) arises because he momentum flow into

\[11\] By making the approximation \(f_q(k + l) \approx f_q(k) \) we ignore how quarks are rotated in the background field during emission. This correction is of order \(1 \cdot \nabla f/p \sim \frac{1}{2} f/p \). Such terms have a combination of retarded and advanced propagator with no simple time ordering. The time integral at the vertex with momentum contribution \(l \) will thus give \(T \), the time that has passed since the initial conditions that specified the momentum distribution \(f(p) \). Choosing \(T \geq \Delta t \) so that the momentum distribution describes the quarks just before they emit the photon, it is easy to see that the correction is subleading to Eq. \(59\).
the advanced propagator is \(p + k + \sum l_i \), where \(l_i \) come from the retarded propagator.

When pairing up background insertions we must integrate over the momenta in \(rr \) propagators, \(l \) and \(\bar{l} \). Pairing up two background fields insertions on the upper quark rail gives a factor

\[
D = -g^2 \tilde{K}_\mu \tilde{K}_\nu \int \frac{d^3l}{(2\pi)^3} G_{rr}^{\mu\nu}(T;1) \\
\quad \times \frac{e^{-ikl(t_x-t_y)} - 1}{i\mathbf{k} \cdot \mathbf{l}} \frac{e^{-ikl(t_x-t_y)} - 1}{i\mathbf{k} \cdot \mathbf{l}}
\]

\[
\approx -g^2 \tilde{K}_\mu \tilde{K}_\nu \int \frac{d^3l}{(2\pi)^3} G_{rr}^{\mu\nu}(T;1) \left[(\Delta t)^2 - \frac{1}{12} l^2 (\Delta t)^4 \right]
\]

where we used that the momentum flow is \(l \) in one insertion, and \(-l \) in the other insertion. The first term, \((\Delta t)^2\), describes a phase shift and the second term describes how the dispersion relation changes because of fluctuating background fields. Pairing up two background field insertions on the lower quark rail gives the same factor \(D \). Finally, pairing up an insertion from the upper rail and an insertion from the lower rail gives

\[
-2g^2 \tilde{K}_\mu \tilde{K}_\nu \int \frac{d^3l}{(2\pi)^3} G_{rr}^{\mu\nu}(T;1) \frac{e^{-ikl(t_x-t_y)} - 1}{i\mathbf{k} \cdot \mathbf{l}} \frac{e^{-ikl(t_x-t_y)} - 1}{i\mathbf{k} \cdot \mathbf{l}}
\]

which has the value \(-D\).
ground field. With a medium kick at time t and k background field insertions before the kick and $n-k$ insertions after the kick, see Fig. [12] the quark propagator becomes

$$S_{\text{ret}}^{(k)}(t_x, t; p; \{l_1, \ldots, l_k\}) \mathcal{I}(t; q)$$

$$\times S_{\text{ret}}^{(n-k)}(t, t_y; p + q + l_1 + \cdots + l_k; \{l_{k+1}, \ldots, l_n\})$$

$$= S_{\text{ret}}^{(0)}(t_x, t; p) \mathcal{I}(t; q) S_{\text{ret}}^{(0)}(t, t_y; p + q)$$

$$\times (igA_{\mu} \check{P}^\mu)^n \prod_{i=1}^{k} X(l_i) \prod_{j=k+1}^{n} Y(l_j)$$

(65)

where \mathcal{I} is the vertex factor for the medium kick and q is the momentum flow in the kick. We have defined

$$X(l_i) = \frac{e^{-i \check{p} \cdot l_i(t_x-t_y)} - 1}{-i \check{p} \cdot l_i}$$

(66)

for background field insertions left of the kick and

$$Y(l_j) = \frac{e^{-i \check{p} \cdot l_j(t_y-t)} - 1}{-i \check{p} \cdot l_j}$$

(67)

for insertions right of the kick. We have furthermore used that $\check{p} + \check{q} \approx \check{p}$ to avoid corrections of order $gl/(\Delta t)^2$ to Eq. (65).

We now sum over all ways of attaching the n background field insertions, either before or after the medium kick. This gives

$$S_{\text{ret}}^{(0)}(t_x, t; p) \mathcal{I}(t) S_{\text{ret}}^{(0)}(t, t_y; p + q)$$

$$\times (igA_{\mu} \check{P}^\mu)^n \prod [X(l_i) + Y(l_j)]$$

$$= S_{\text{ret}}^{(0)}(t_x, t; p) \mathcal{I}(t) S_{\text{ret}}^{(0)}(t, t_y; p + q)$$

$$\times (igA_{\mu} \check{P}^\mu)^n \prod_{i=1}^{n} \frac{e^{-i \check{p} \cdot l_i(t_x-t_y)} - 1}{-i \check{p} \cdot l_i}$$

(68)

The effect of the instabilities is in a factor which does not depend on the time of the medium kick. This argument can clearly be extended for any number of medium kicks. Thus, the effect of medium kicks and n background field insertions factorizes and the dependence on the background field strength is exactly the same as in the case without a medium. The same argument that lead to Eq. [64] then shows that the background field does not affect photon emission at leading and next-to-leading order in Δt and the rate is given by Eq. [20].

VII. CONCLUSIONS

Non-equilibrium QCD plasmas at weak coupling contain instabilities which lead to exponential growth in soft gluon density with time. This makes the plasma inherently time-dependent. We thus argue that quantum field theory calculations that assume a static non-equilibrium plasma do not work. In particular, the rate of medium-induced jet splitting or photon production cannot be evaluated in a static plasma out of equilibrium.

To resolve this affair, we have calculated the time dependence of soft gluon correlators in a simple setup with a slightly anisotropic initial momentum distribution of quasiparticles. Using tools of non-equilibrium quantum field theory, we have derived the retarded correlator, Eq. [14], and rr correlator, Eq. [17], at early times. As expected, the rr correlator shows exponential growth in the soft gluon density with time because of instabilities. Using this correct correlator leads to finite and well-behaved rates for medium-induced photon production and jet splitting. The rates depend on the density of gluons in a fluctuating cloud that is sourced at each instant by quasiparticles, as well as the density in instability modes which changes with time. Including the effect of the time-dependent instability modes is difficult in general, but we show that in an Abelian plasma the instabilities’ effect on photon production vanishes up to next-to-leading order in $\Delta t \ll 1$ where l is the energy scale of the instabilities and Δt is the time needed to emit a photon.

In phenomenological applications, numerical work using classical-statistical field theory suggests that instability modes are no longer highly occupied once the hydrodynamical stage is reached [23, 24]. Thus we suggest that one can simply subtract the instability contribution, when calculating photon production or jet-medium interaction in the non-equilibrium plasma produced in heavy-ion collisions. This gives well-behaved rates that only depend on the instantaneous properties of the medium, see Eq. [20]. They contain both non-equilibrium momentum distributions and the non-equilibrium, fluctuating soft gluon cloud. The rate equations can then be solved numerically whenever a momentum distributions of quarks and gluons is specified, see [25, 26]. Thus it becomes possible to calculate the effect of shear viscous flow on jet evolution in the plasma, as well as photon production, through all leading-order channels. Combined with a hydrodynamical model of the QGP fluid, this might make it possible to constrain the viscosity of the QGP using jet physics and photons.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada. S. H. gratefully acknowledges a scholarship from the Fonds de recherche du Québec - Nature et technologies.
We begin by deriving the retarded propagator in Eq. (14) in full detail. We start from Eq. (26) and evaluate it term by term by inserting principal values as in Eq.
The first term becomes
\[
- \int \frac{dk_1}{2\pi} \int \frac{dk_2}{2\pi} \int \frac{dk_3}{2\pi} G_{0\text{ret}}^0(k_1) \Pi_{\text{ret}}(k_2) G_{\text{ret}}(k_3) e^{-ik_1(x-y)}
\]
\[
\times \frac{1}{8} \left[\left(i \frac{k_1 - k_2 + i\epsilon_1 - i\epsilon_2}{k_1 - k_2 + i\epsilon_1 + i\epsilon_2} \right) + \left(i \frac{k_1 - k_3 + i\epsilon_1 - i\epsilon_3}{k_1 - k_3 + i\epsilon_1 + i\epsilon_3} \right) + \left(i \frac{k_1 - k_2 - i\epsilon_1 - i\epsilon_2}{k_1 - k_2 - i\epsilon_1 + i\epsilon_2} \right) \right]
\]
\[\times \left(i \frac{k_1 - k_3 - i\epsilon_1 - i\epsilon_3}{k_1 - k_3 - i\epsilon_1 + i\epsilon_3} \right) \right]
\]
\[\] (A1)

We can continue the \(k_3 \) integral by adding a semicircle in the upper half plane with a large radius, see Fig. 2b. Using the residue theorem we avoid all poles of \(G_{\text{ret}} \), so only the poles in the square bracket contribute. We similarly continue the \(k_2 \) to the upper half plane. This gives
\[
\int \frac{dk_1}{2\pi} G_{0\text{ret}}^0(k_1) \Pi_{\text{ret}}(k_1) G_{\text{ret}}(k_1) e^{-ik_1(x-y)}
\]
\[
\times \frac{1}{8} \left[\theta(\epsilon_2 - \epsilon_1)\theta(\epsilon_3 - \epsilon_1) + (1 + \theta(\epsilon_1 - \epsilon_2))(1 + \theta(\epsilon_1 - \epsilon_3)) \right].
\] (A2)

where the integration contour is simply the real line. In a similar fashion, the second term in Eq. (26) becomes
\[
\int \frac{dk}{2\pi} G_{0\text{ret}}^0(k) \Pi_{\text{ret}}(k) G_{\text{ret}}(k) e^{-ik(x-y)}
\]
\[
\times \frac{1}{8} \left[\theta(\epsilon_1 - \epsilon_2)\theta(\epsilon_3 - \epsilon_2) + (1 + \theta(\epsilon_2 - \epsilon_1))(1 + \theta(\epsilon_2 - \epsilon_3)) \right].
\] (A3)

The third term in Eq. (26) is slightly trickier to evaluate. We write the \(k_3 \) integration contour as \(\int_{\gamma_i} + \sum_i \int_{\gamma_i} \) where \(\gamma_i \) go around the instability poles in the upper half complex plane, see Fig. 2b. The part with the real line integration gives
\[
\int \frac{dk_3}{2\pi} G_{0\text{ret}}^0(k_3) \Pi_{\text{ret}}(k_3) G_{\text{ret}}(k_3) e^{-ik_3(x-y)}
\]
\[
\times \frac{1}{8} \left[(1 + \theta(\epsilon_3 - \epsilon_1))(1 + \theta(\epsilon_3 - \epsilon_2)) + \theta(\epsilon_1 - \epsilon_3)\theta(\epsilon_2 - \epsilon_3) \right] \] (A4)

after doing the \(k_1 \) and \(k_2 \) integrals. The part with integration over the \(\gamma_i \) contour can be done explicitly giving
\[
\sum_i \int \frac{dk_3}{2\pi} G_{0\text{ret}}^0(k_3) \Pi_{\text{ret}}(k_3) G_{\text{ret}}(k_3) e^{-ik_3(x-y)}.
\] (A5)

We are finally in a position to find the retarded propagator. Adding up the contributions of Eqs. (A2), (A3), (A4) and (A5) and using identities of \(\theta \)-functions we get
\[
\int \frac{dk}{2\pi} G_{0\text{ret}}^0(k) \Pi_{\text{ret}}(k) G_{\text{ret}}(k) e^{-ik(x-y)}
\]
\[\text{which leads directly to Eq. (29) and thus to Eq. (14) as we wanted to show.}\]

We next evaluate the \(rr \) correlator. Specifically, we will show how Eq. (36) follows from Eq. (33) using the approximations described in Chapter IV. Just like for the evaluation of \(G_{\text{ret}} \), there are no poles when \(k_1 = k_2 \) or \(k_2 = k_3 \) which allows us to insert principal values. This gives that
\[
G_{rr}(x, y) = \int \frac{dk_1}{2\pi} \int \frac{dk_2}{2\pi} \int \frac{dk_3}{2\pi} \left[e^{-ik_2(x-y)} - e^{-ik_1x} e^{-ik_2y} - e^{-ik_2x} e^{-ik_3y} + e^{-ik_1x} e^{-ik_3y} \right]
\]
\[
\times \frac{1}{8} \left[\left(i \frac{k_2 - k_1 + i\epsilon_2 - i\epsilon_1}{k_2 - k_1 + i\epsilon_2 + i\epsilon_1} \right) + \left(i \frac{k_2 - k_3 + i\epsilon_2 - i\epsilon_3}{k_2 - k_3 + i\epsilon_2 + i\epsilon_3} \right) \right]
\]
\[\times \left(i \frac{k_2 - k_3 - i\epsilon_2 - i\epsilon_3}{k_2 - k_3 - i\epsilon_2 + i\epsilon_3} \right) \right]
\]
\[\] (A6)

where we have substituted the scale separation of Eqs. (34) and (35).

The evaluation of Eq. (A7) depends on the scale one is working at. We begin by evaluating terms at the scale \(g\Lambda \), i.e. terms with \(\hat{G}_{\text{ret}} \) and \(\hat{G}_{\text{adv}} \). We do this one exponential at a time. The first exponential term (i.e. all terms with \(e^{-ik_2(x-y)} \)) can be evaluated exactly by con-
avoided and one gets
\[\int \frac{dk_2}{2\pi} \hat{G}_{ret}(k_2) \Pi_{aa}(k_2) \hat{G}_{adv}(k_3) \ e^{-ik_2(x-y)} \]
\[\times \frac{1}{8} \left[\theta(\epsilon_3 - \epsilon_2) (1 + \theta(\epsilon_2 - \epsilon_1)) + \theta(\epsilon_1 - \epsilon_2) (1 + \theta(\epsilon_2 - \epsilon_3)) \right], \]
(A8)

In the second exponential term (i.e., all terms with \(-e^{-ik_1x}e^{ik_2y}\) in Eq. (A7) we continue the \(k_3\) integral to the lower half plane giving

\[\int \frac{dk_3}{2\pi} \hat{G}_{ret}(k_3) \Pi_{aa}(k_3) \hat{G}_{adv}(k_2) \ e^{-ik_1x} e^{ik_2y} \]
\[\times \left[\frac{1}{8} \left[\theta(\epsilon_3 - \epsilon_2) \left(\frac{1}{k_3 - k_1 + i\epsilon_2 - i\epsilon_1} + \frac{1}{k_3 - k_1 + i\epsilon_2 + i\epsilon_1} \right) \right. \right. \]
\[+ (1 + \theta(\epsilon_2 - \epsilon_3)) \left. \left(\frac{1}{k_3 - k_1 - i\epsilon_2 - i\epsilon_1} + \frac{1}{k_3 - k_1 - i\epsilon_2 + i\epsilon_1} \right) \right] \]
(A9)

exactly. In order to evaluate the \(k_1\) integral we need to use our approximations. Because of the exponential we must continue the contour to the lower half complex plane. Applying the residue theorem we get a contribution from all poles and branch cuts of \(\hat{G}_{ret}\) but they all contain a factor \(e^{-ikx}\) with \(b \sim g\Lambda\) and can thus be dropped according to our approximations. Thus only poles with \(k_2 = k_1\) contribute, giving

\[\int \frac{dk_2}{2\pi} \hat{G}_{ret}(k_2) \Pi_{aa}(k_2) \hat{G}_{adv}(k_2) \ e^{-ik_2(x-y)} \]
\[\times \left[\frac{1}{8} \left[\theta(\epsilon_1 - \epsilon_2) \theta(\epsilon_3 - \epsilon_2) \right. \right. \]
\[+ (1 + \theta(\epsilon_2 - \epsilon_3)) (1 + \theta(\epsilon_2 - \epsilon_1)) \left. \right], \]
(A10)

In the same way, the third exponential term in Eq. (A7) is

\[\int \frac{dk_2}{2\pi} \hat{G}_{ret}(k_2) \Pi_{aa}(k_2) \hat{G}_{adv}(k_2) \ e^{-ik_2(x-y)} \]
\[\times \left[\frac{1}{8} \left[\theta(\epsilon_1 - \epsilon_2) \theta(\epsilon_3 - \epsilon_2) \right. \right. \]
\[+ (1 + \theta(\epsilon_2 - \epsilon_3)) (1 + \theta(\epsilon_2 - \epsilon_1)) \left. \right] \]
\[+ \theta(\epsilon_3 - \epsilon_2) (1 + \theta(\epsilon_2 - \epsilon_1)) \left. \right] \]
\[\approx \int \frac{dk}{2\pi} \hat{G}_{ret}(k) \Pi_{aa}(k) \hat{G}_{adv}(k) \ e^{-ik(x-y)}. \]
(A13)

We next turn to evaluating terms in Eq. (A7) at the scale \(\xi g\Lambda\), i.e. the contribution of instability poles in the retarded and advanced propagators. As before the contribution of the first exponential is

\[\sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ik_2(x-y)} \]
\[\times \frac{1}{8} \left[\theta(\epsilon_3 - \epsilon_2) (1 + \theta(\epsilon_2 - \epsilon_1)) \right. \]
\[+ \theta(\epsilon_3 - \epsilon_2) (1 + \theta(\epsilon_2 - \epsilon_3)) \left. \right]. \]
(A14)

In the second exponential in Eq. (A7) we continue the \(k_3\) integral to the lower half plane to get

\[\sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ik_2(x-y)} \]
\[\times \left[\frac{1}{8} \left[\theta(\epsilon_3 - \epsilon_2) \left(\frac{1}{k_2 - k_1 + i\epsilon_2 - i\epsilon_1} + \frac{1}{k_2 - k_1 + i\epsilon_2 + i\epsilon_1} \right) \right. \right. \]
\[+ (1 + \theta(\epsilon_2 - \epsilon_3)) \left. \left(\frac{1}{k_2 - k_1 - i\epsilon_2 - i\epsilon_1} + \frac{1}{k_2 - k_1 - i\epsilon_2 + i\epsilon_1} \right) \right] \]
\[- \frac{1}{2} \sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ia \cdot x} e^{ik_2y} \]
(A16)
Similarly, the third exponential in Eq. (A7) is
\[
\sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ik_2(x-y)}
\times \frac{1}{8} [\theta(\epsilon_1 - \epsilon_2)\theta(\epsilon_3 - \epsilon_2) + (1 + \theta(\epsilon_2 - \epsilon_1))(1 + \theta(\epsilon_2 - \epsilon_3))]
- \frac{1}{2} \sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ik_2x} e^{ia_j^*y}
\]
and the fourth one is
\[
\sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ik_2(x-y)}
\times \frac{1}{8} [\theta(\epsilon_1 - \epsilon_2)(1 + \theta(\epsilon_2 - \epsilon_3))
+ \theta(\epsilon_3 - \epsilon_2)(1 + \theta(\epsilon_2 - \epsilon_1))]
- \frac{1}{2} \sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ik_2x} e^{ia_j^*y}
\]
\[- \frac{1}{2} \sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ia_2x} e^{ik_2y}
\]
\[+ \sum_{i,j} \int \frac{dk_2}{2\pi} \frac{A_i}{k_2 - a_i} \Pi_{aa}(k_2) \frac{A_j^*}{k_2 - a_j^*} e^{-ia_2x} e^{ia_j^*y}.
\]
Adding up the contributions in Eqs. (A14), (A16), (A17), and (A18) then gives that the contribution to \(G_{rr}\) at the scale \(\xi g\Lambda\) is
\[
\sum_{i,j} \int \frac{dk}{2\pi} \frac{A_i}{k - a_i} \Pi_{aa}(k) \frac{A_j^*}{k - a_j^*} \left(e^{-ikx} - e^{-ia_2x}\right) \left(e^{iky} - e^{ia_j^*y}\right)
\]
\[(A19)\]

The calculation for mixed terms with, say, contribution at scale \(g\Lambda\) from the retarded correlator and contribution at scale \(\xi g\Lambda\) from the advanced correlator proceeds analogously. The final results is precisely Eq. (36).

Appendix B: Evaluation of factors with momentum distributions

We begin by showing Eq. (56), namely that
\[
S_{1122} = 2F(P + K)(1 - F(P)) Re S_{rraa}
\]
in the presence of instabilities. Using that
\[
\phi_1 = \phi_r + \frac{1}{2} \phi_a, \quad \phi_2 = \phi_r - \frac{1}{2} \phi_a
\]
it is easy to see that
\[
S_{1122} = S_{rrrr} + \frac{1}{2} \left(S_{arr} + S_{rar} - S_{rar} - S_{rrr}\right)
\]
\[+ \frac{1}{4} \left(S_{aarr} - S_{arar} - S_{rara} + S_{rraa} + S_{rraa} + S_{raaa}\right)
\]
\[+ \frac{1}{16} S_{aaa}.
\]

The different four-point functions are defined in Fig. 10. Using that \(aa\) propagators vanish we see that \(S_{naam} = S_{ann}\) = 0 for any \(n, m \in \{a, r\}\) so we’re then left with
\[
S_{1122} = S_{rrrr} + \frac{1}{2} \left(S_{arr} + S_{rar} - S_{rar} - S_{rrr}\right)
\]
\[+ \frac{1}{4} \left(S_{aarr} - S_{arar} - S_{rara} + S_{rraa} + S_{raaa}\right)
\]

Using Eq. (55) we furthermore see that \(S_{nmr} = \left[\frac{1}{2} - F(P)\right] \left(S_{narma} - S_{nmra}\right)\) and \(S_{nrma} = \left[\frac{1}{2} - F(P + K)\right] \left(S_{nram} - S_{narm}\right)\) so
\[
\]

\[\theta(t_x - t_y)\theta(t_y - t_x) = 0.\] We’re then left with
\[
S_{1122} = F(P + K)(1 - F(P)) \left(S_{rra} + S_{rrr}\right)
\]
\[= 2F(P + K)(1 - F(P)) Re S_{rraa}
\]

(B6)
We finally note how the momentum factors work out when there is a medium as well as background fields. Adding \(n \) background field insertions to the bare \(rr \) propagator gives

\[
S^{(n)}_{rr}(t_x, t_y; p; \{l_1, \ldots, l_n\}) = \left[\frac{1}{2} - F(k) \right] \left(S^{(n)}_{ret}(t_x, t_y; p; \{l_1, \ldots, l_n\}) - S^{(n)}_{adv}(t_x, t_y; p; \{l_1, \ldots, l_n\}) \right). \tag{B7}
\]

as in Eq. (55). We can factor out the instability insertions to get

\[
S^{(n)}_{rr}(t_x, t_y; p; \{l_1, \ldots, l_n\}) = \left[\frac{1}{2} - F(k) \right] \left(S^{(0)}_{ret}(t_x, t_y; p) - S^{(0)}_{adv}(t_x, t_y; p) \right)
\times (igA_\mu \hat{K}^\mu)^n \prod_{j=1}^n \frac{e^{-i \hat{k} \cdot l_j (t_x - t_y)} - 1}{-i \hat{k} \cdot l_j} \tag{B8}
\]

or in other words

\[
S^{(n)}_{rr}(t_x, t_y; p; \{l_1, \ldots, l_n\}) = \left(S^{(0)}_{rr}(t_x, t_y; p) \right) (igA_\mu \hat{K}^\mu)^n \prod_{j=1}^n \frac{e^{-i \hat{k} \cdot l_j (t_x - t_y)} - 1}{-i \hat{k} \cdot l_j} \tag{B9}
\]

for the \(\hat{P} \) part and similarly for the \(\tilde{P} \) part. The same argument as in Chapter VI then allows us to factor out the effect of background fields for any combination of \(rr \), retarded and advanced propagator and shows that the effect of the background field vanishes.