Proteomic-Based Identification of CD4-Interacting Proteins in Human Primary Macrophages

Rui André Saraiva Raposo1,2*, Benjamín Thomas1,3, Gabriela Ridlova1,3, William James1

1 Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, 2 Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal, 3 Central Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom

Abstract

Background: Human macrophages (MΦ) express low levels of CD4 glycoprotein, which is constitutively recycled, and 40–50% of its localization is intracellular at steady-state. Although CD4-interacting proteins in lymphoid cells are well characterised, little is known about the CD4 protein interaction-network in human MΦ, which notably lack LCK, a Src family protein tyrosine kinase believed to stabilise CD4 at the surface of T cells. As CD4 is the main cellular receptor used by HIV-1, knowledge of its molecular interactions is important for the understanding of viral infection strategies.

Methodology/Principal Findings: We performed large-scale anti-CD4 immunoprecipitations in human primary MΦ followed by high-resolution mass spectrometry analysis to elucidate the protein interaction-network involved in induced CD4 internalization and degradation. Proteomic analysis of CD4 co-immunoprecipitates in resting MΦ showed CD4 association with a range of proteins found in the cellular cortex, membrane rafts and components of clathrin-adaptor proteins, whereas in induced internalization and degradation CD4 is associated with components of specific signal transduction, transport and the proteasome.

Conclusions/Significance: This is the first time that the anti-CD4 co-immunoprecipitation sub-proteome has been analysed in human primary MΦ. Our data have identified important MΦ cell surface CD4-interacting proteins, as well as regulatory proteins involved in internalization and degradation. The data give valuable insights into the molecular pathways involved in the regulation of CD4 expression in MΦ and provide candidates/targets for further biochemical studies.

Introduction

Mass spectrometry (MS)-based identification of the components of purified protein complexes has become one of the most powerful and routinely used technologies for high-throughput detection of protein interactions [1,2]. The study of protein interactions by MS for identification of components of protein complexes gives powerful insights into protein function, binding partners and cellular pathways [3,4]. In most studies, proteins in a given complex are identified via MS analysis of in-gel tryptic digests of electrophoretically separated proteins of particular subcellular fractions (membranes, nuclei, intracellular compartments) or in co-immunoprecipitated complexes [5,6,7,8].

CD4 is the main cellular receptor used by human immunodeficiency viruses HIV-1, HIV-2 and simian immunodeficiency virus [9,10,11]. It is a type I transmembrane glycoprotein of 35 kDa expressed on the surface of Regulatory and Helper subsets of T lymphocytes and interacts with MHC class-II carrying cells [12]. CD4 increases the avidity of the low affinity interactions between the peptide-MHC complex on antigen presenting cells and the T cell receptor on the lymphocyte, and its association with the intracellular protein tyrosine kinase LCK modulates signal transduction [13]. In humans and rats CD4 is also expressed on cells of the monococyte/MΦ lineage, although its function on these cells is poorly understood, and the protein expression levels are 10- to 20-fold less than in T cells [14,15]. In lymphoid cells expressing LCK, 90% of CD4 is restricted to the cell surface and undergoes limited internalization [16]. Endocytosis of CD4 can occur, through clathrin-coated pits, when the cytoplasmic domain becomes serine phosphorylated, leading to its dissociation from LCK [17,18,19]. In myeloid cells, such as MΦ, which do not express LCK, CD4 is constitutively internalized and 40–50% is intracellular at steady-state [16]. The pathways by which CD4 is removed from the cell surface and the protein-network involved are poorly defined. Cell surface CD4 levels can be down-regulated by exposure to gangliosides [20], soluble HIV-1 gp120 [21], phorbol esters [17,22] and during HIV-1 infection [23,24]. Moreover, down-regulation of viral receptors is a common mechanism used by most retroviruses to avoid superinfection (multiple rounds of infection) and to promote viral release. HIV-1 Nef protein accelerates CD4 internalization and degradation in the lysosomes [25], and at the late stages of HIV-1 infection, CD4
can be targeted for proteasomal degradation by HIV-1 Vpu [26,27,28].

Most reports to date have analysed CD4 interaction complexes in lymphoid cell lines, revealing some of the well-known associating proteins, such as LCK, CD45, transferrin receptor (CD71), CD96, myosins, vimentin, tubulins, actins, annexin II and lymphocyte phosphatase associated phosphoprotein (LPAP) [29,30,31,32]. However, little is known about how CD4 antigen is arranged at the surface of Mϕ, which notably lack LCK expression.

In common with other laboratories we found that the kinetics of HIV-1 replication was modulated by the simultaneous presence of Mϕ and T cells in different ratios and activation states [33,34,35]. Data from our laboratory reported that HIV-1 viral production was typically slower in infected cultures in which Mϕ were co-cultured with activated T cells. More recently, we extended these observations and showed that activated T cells produce soluble factors that selectively induce the internalization and degradation of CD4 in primary Mϕ, thus critically affecting HIV-1 entry in a process sensitive to the vacuolar ATPase inhibitor bafilomycin A1, and the proteasomal inhibitor, MG132 (Saraiva Raposo et al., manuscript under revision).

In this report we perform high-resolution mass spectrometry analysis of CD4 co-immunoprecipitates in human primary Mϕ, in order to characterise the CD4 containing complexes in steady-state and at different stages of CD4 internalization and degradation. The experimental strategy is shown in Fig. 1.

Results

Conditioned media from activated T cells induces CD4 internalization and degradation in Mϕ

In order to effectively demonstrate the induction of CD4 internalization and degradation, we detected the expression of CD4 in Mϕ before and after treatment with conditioned media from activated T cells by flow cytometry. Eighteen hours post-treatment the expression of CD4 levels at the surface of Mϕ was barely detectable (Fig. 2A), and the percentage of Mϕ expressing surface CD4 was significantly reduced by 4-fold (Fig. 2B). In addition, total CD4 expression (surface + intracellular) was diminished by 2-fold (Fig. 2C). Altogether, these data suggest the internalization and degradation of CD4 after treatment with conditioned supernatants from activated T cells.

Anti-CD4 co-immunoprecipitation sub-proteome in control Mϕ

We performed large-scale CD4 immunoprecipitations in normal resting primary human Mϕ, followed by LC-MS/MS. A representative gel of the resolved proteins after CD4 co-immunoprecipitation is shown in Fig. 3. In control resting Mϕ (condition 1), several cell surface proteins associated with CD4 were identified, including CD9, a tetraspanin-family member involved in cell adhesion, cell motility and IL-16 signalling [36,37,38,39]; CD163, involved in the clearance and endocytosis of hemoglobin/haptoglobin complexes [40,41]; integrin subunit beta (CD18), involved in cell surface adhesion and reported to interact with integrins alpha-M and alpha-X [42]; protein S100, a calcium binding protein known to be involved in phagocyte migration and infiltration at sites of wounding [43]; chemokine receptor 1 (CCR-1), a G protein-coupled receptor [44]; adaptor protein 2 (AP-2), a known adaptor protein which functions in protein transport via transport vesicles in different membrane trafficking pathways [25,45], and HLA class I, involved in antigen presentation [46]. CD4 was also found to be associated with cytoskeleton and actin-modulating proteins, such as gelsolin, tropomyosins and dynecin. An unknown and uncharacterised protein, TPPI was also identified. A summary list of interacting proteins is shown in table 1.

Anti-CD4 co-immunoprecipitation sub-proteome in induced internalization and degradation

Internalization and degradation of CD4 in Mϕ was induced by conditioned media from activated T cells (condition 2) and interacting proteins were identified by CD4 co-immunoprecipitation followed by LC-MS/MS. A representative gel of the resolved proteins after CD4 co-immunoprecipitation is shown in Fig. 3. Proteins identified included Cdc42, a small GTPase family protein involved in signal transduction and endocytosis [47,48]; proteins associated with late endocytic trafficking, such as LAMP1, a component of the lysosomal membrane [49,50]; RhoB, known to be associated with the late endosome membrane; adaptor protein 1 (AP-1), a subunit of clathrin-associated adaptor protein complex 1 [45,51,52]; Sec23B, a component of coatomer protein II (COPII) involved in the transport of vesicles from the Golgi apparatus to the endoplasmic reticulum, and Rab10/Rab11B, important components of vesicle recycling and protein turn-over [45,53]. Several cytoplasmic and cytoskeleton-related proteins were also identified, including fascin, myosin and tensin. Annexin A2, a calcium regulated membrane binding protein and flotillin-1, a scaffolding protein associated with caveolar membranes [54] were also identified with more than 5 unique peptides. A complete list of the uniquely identified proteins is shown in table 2.

Anti-CD4 co-immunoprecipitation sub-proteome in induced internalization and blocked degradation

In condition 3, internalization of CD4 in Mϕ was induced by the same conditioned media from activated T cells, as described for condition 2, and cellular degradation was blocked using the proteasome inhibitor MG132 and the vacuolar ATPase inhibitor bafilomycin A1. CD4-interacting proteins were identified by co-immunoprecipitations followed by LC-MS/MS. A representative gel of the resolved proteins after CD4 co-immunoprecipitation is shown in Fig. 3. CD4 was associated with a large number of proteins related to protein degradation, in particular the proteasome. Proteasome-related proteins such as the 26S regulatory subunit 6B, ubiquitin-like modifier activating enzymes E1 and E3 ubiquitin protein ligase subunit Iech [55,56,57,58] were identified.

Figure 1. Strategy for the identification of CD4-complexes in human primary Mϕ. CD14+ monocytes were isolated from human blood by magnetic cell sorting (MACS) and cultured for 7 days in the presence of M-CSF. One hundred million day 7 fully differentiated Mϕ were left untreated (Condition 1, blue), treated with conditioned media from activated T cells (induced CD4 internalization and degradation, Condition 2 red) or treated with conditioned media from activated T cells in the presence of the proteasomal inhibitor MG132 and the inhibitor of vacuolar ATPases bafilomycin (BafA1) (induced CD4 internalization but blocked degradation, Condition 3 green). Eighteen hours later, cells were detached from tissue culture plates, lysed and large-scale anti-CD4 immunoprecipitations (IP) using monoclonal antibody against CD4 (clone QS4120) or isotype control IP were carried out. IP products were loaded onto SDS-PAGE pre-cast gels and electrophoresis were run. Protein gels were coomassie stained, gel lanes were cut into 10 equal pieces and trypsin-digested. Proteins were identified by LC-MS/MS.

doi:10.1371/journal.pone.0018690.g001

CD4 Interactome in Human Primary Macrophages

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18690
Proteins associated with antigenic presentation and intracellular protein trafficking were also identified, such as MHC-I molecules (HLA-A and HLA-B), ERp29 and ERp1 (endoplasmic reticulum chaperones) [59]. Although identified with one unique peptide, but with high iProphet probability scores, we also detected 7 proteins, including components of vacuolar proton-transporting ATPases, such as V-type proton ATPase subunits D and G1. A complete list of the uniquely identified proteins is shown in table 3.

Table 4 lists the proteins commonly identified in all three conditions.

Figure 2. CD4 is internalized and degraded after treatment with conditioned media from activated T cells. Mφ were treated with conditioned media from activated T cells for 18 hours or left untreated, followed by flow cytometry staining with directly conjugated mAb to CD4. A Black histogram represents the appropriate isotype control. Histograms show the intensity of the signal on the X-axis with a log10-scale and the percentage of maximum expression on the Y-axis. Representative staining of more than five donors tested (n>5). B Bars represent the mean percentage of Mφ expressing surface CD4 with SD error bars from ten independent donors (n=10). C Total CD4 expression levels (surface + intracellular) were determined by dividing the geometrical MFI of the antibody staining over the MFI of the isotype control. Bars represent the mean values of five independent donors (n=5) with SD error bars. In B and C, black bar corresponds to untreated Mφ and white bar corresponds to conditioned media treated Mφ (T cell Sup).

doi:10.1371/journal.pone.0018690.g002
GO annotations in Mφ Western Blotting analysis of CD4 co-immunoprecipitates in Mφ. Mφ were left untreated (Condition 1, blue), treated with conditioned media from activated T cells (Condition 2, red) or treated with conditioned media from activated T cells. Eighteen hours later, cells were lysed and anti-CD4 immunoprecipitations were carried out. The final immunoprecipitates were resuspended in Laemmli sample buffer under reducing and denaturing conditions, before loading onto a SDS-PAGE pre-cast gel. Isotype control IgG immunoprecipitations were also performed to show non-specific background binding proteins.

doi:10.1371/journal.pone.0018690.g003

Western Blotting analysis of CD4 co-immunoprecipitates in Mφ

Mass spectrometry identifications of CD9, E3 ubiquitin ligase Itch and clathrin heavy chain in CD4 co-immunoprecipitates were confirmed by western blot analysis. As anticipated, CD4 was identified in all Mφ sample conditions, but at reduced levels in condition 2. Clathrin heavy chain 1 was co-immunoprecipitated with CD4 in all three conditions and the E3 ubiquitin ligase subunit Itch was only co-immunoprecipitated with CD4 when cellular degradation was blocked. CD9 antigen was only co-immunoprecipitated with CD4 in the control Mφ. CCR5, reported to interact with CD4 at the surface of Mφ and T cells [60], was not identified by mass spectrometry in any of the conditions described above and was not detected by western blot analysis of CD4 co-immunoprecipitates (Fig. 4).

GO annotations

Uniquely identified protein identifications in all three conditions were exported to ProteinCenter and GO annotations were carried out. In induced CD4 internalization and degradation (condition 2) there is an over-representation of proteins associated with the endosome, vacuole and Golgi, when compared to control Mφ (condition 1). Moreover, when cellular degradation is blocked (condition 3) the over-represented CD4-associated proteins are related to the proteasome, endoplasmic reticulum, organelle lumen, mitochondrion and cytosol (Fig. 5A). Proteins related to DNA and nucleotide-binding are over-represented in condition 3 and metal binding proteins are over-represented in condition 2. No proteins with structural molecular activities were uniquely identified in condition 3, in contrast to control or condition 2, where 30% and 15%, respectively, of the uniquely identified proteins fall into this category (Fig. 5B). Proteins related to cell organization and biogenesis, cell differentiation, development and transport are greatly over-represented in condition 2 over condition 3. In control Mφ, proteins related to response to stimulus and defence response are over-represented over the other two. Cell motility-related proteins cluster with CD4 in control Mφ and in condition 2 (Fig. 5C).

Discussion

Mass spectrometry analysis of CD4 co-immunoisolates, supplemented with GO annotations provided useful information on the clustering of CD4 molecules in resting Mφ and elucidated the protein-network involved in the internalization and degradation. CD4 in resting Mφ showed association with a range of molecules found in the cellular cortex and membrane rafts. Consistent with earlier reports [19,25,61], we also observed CD4 association, and confirmed by western blotting, with components of clathrin-mediated endocytosis, such as clathrin heavy chain 1 and the adaptor protein AP-2, clearly suggesting that in resting Mφ CD4 undergoes constitutive internalization and recycling [16,18,62]. AP-2 has been reported to be involved in the initial formation of clathrin coated pits at the plasma membrane, and it is an important mediator of receptor internalization and clathrin assembly [63]. We observed CD4 association with the tetraspanin protein CD9, and as both CD4 and CD9 are able to bind HIV-1 in mast cells [36,64], this association might in fact be physiologically relevant in Mφ.

In addition to CD4, HIV-1 requires CXCR4 or CCR5 to enter target cells. Xiao et al., reported a constitutive cell surface association between CD4 and CCR5 [60] and showed that the presence of gp120, leads to the clustering of CD4 and CCR5. However, they stated that it was difficult to co-immunoisolate CD4 and CCR5 in human primary Mφ and CD4+ T cells in the absence of gp120, arguing that the levels of both receptors were very low and the techniques used were not sensitive enough. Employing high-resolution mass spectrometry analysis on a large sample of primary Mφ, a more sensitive technique than the one used by Xiao et al., we did not detect CCR5 molecules in CD4 co-immunoisolates. Although a constitutive CD4-CCR5 interaction in the absence of gp120 might still exist, our results do not support this notion.

Many reports to date have shown that in CD4+ T cells LCK binds directly to the cytoplasmic tail of CD4 [13,16,18], providing stability at the cell surface. As we did not identify any Snc family protein kinases in CD4 co-immunoisolates in Mφ, it seems unlikely that this kinase family plays a similarly prominent role in the regulation of CD4 in Mφ, as it does in T cells. This could also explain the faster turn-over of CD4 in Mφ compared to T cells.

Data from our laboratory showed that upon treatment with conditioned media from activated T cells, CD4 expression in Mφ is down-regulated due to induced internalization and degradation (Saraiva Raposo et al., manuscript under revision). Under this condition, CD4 was associated with specific components of signal transduction and transport pathways, including plasma membrane-associated small GTPases, such as Cdc42, Ras-related proteins and RhoB. The small GTPases of the Ras superfamily are well known to have roles in endocytosis [65,66]. RhoB regulates endosomal trafficking, in cooperation with mDia1 and Src kinase [67], and Cdc42, which has also been connected to cell migration and cell polarity, has also been linked to the regulation of
endocytosis [68]. We observed an interaction between CD4 and LAMP1, suggesting the intervention of lysosomes in the down-regulation of CD4. This observation correlates with the effect induced by the phorbol ester PMA in the induction of CD4 internalization and degradation [69]. Overall, the over-representation of endosome-related proteins in this condition, clearly clusters CD4 with the endocytic pathways.

When Mφ are treated with conditioned media from activated T cells in the presence of MG132 and bafilomycin A1, CD4 can still be internalized, but it is not degraded (Saraiva Raposo et al. manuscript under revision). Under this condition, CD4 was associated with several components of the proteasome, such as regulatory and activating subunits involved in the cascade of protein ubiquitination, suggesting the involvement of the proteasomal pathway. We identified the member of the E3 ubiquitin (Ub) ligase family, Itch/AIP4 to be associated with CD4 and confirmed it by western blot. Itch is a member of the HECT domain-containing E3 Ub ligases and has been implicated in the post-translational

Table 1. Uniquely identified proteins in anti-CD4 co-immunoprecipitations in control Mφ (Condition 1).

| PROTEIN NAME          | GENE | MOLECULAR WEIGHT | LOCALIZATION       | FUNCTION/STRUCTURE               | UNIPROT ACCESSION | PROBABILITY | UNIQUE PEPTIDES |
|-----------------------|------|------------------|--------------------|----------------------------------|--------------------|-------------|----------------|
| Gelsolin, isoform 2   | GSN  | 80,641           | Cytoskeleton       | Actin-modulating protein         | P06396             | 1           | 14             |
| Tropomyosin alpha 3   | TPM3 | 29,033           | Cytoskeleton       | Actin-modulating protein         | P06753             | 1           | 6              |
| Integrin beta 2       | ITGB2| 84,782           | Membrane           | Cell adhesion                    | P05107             | 1           | 5              |
| Golgi autoantigen (Golgin), subfamily A2 | GOLGA2 | 113,086 | Golgi | cis-Golgi structure | Q08379 | 1 | 4 |
| Tropomyosin alpha 4   | TPM4 | 28,522           | Cytoskeleton       | Actin-modulating protein         | P67936             | 1           | 4              |
| Putative uncharacterized protein TPP1 | TPP1 | 60,369 | Unknown | Unknown | BSMDC1 | 1 | 4 |
| Coatamer, subunit gamma | COPG | 97,718 | Cytoplasm | Protein transport | Q9Y678 | 1 | 3 |
| Cytoplasmic dynemin 1, heavy chain 1 | DYNC1H1 | 532,408 | Microtubules | Motor protein | Q14204 | 1 | 3 |
| Hematopoietic lineage cell-specific protein | HCLS1 | 53,984 | Membrane | Antigen receptor signalling | P14317 | 1 | 3 |
| AP-2 complex subunit beta, isoform 1 | AP2B1 | 104,553 | Membrane | Protein transport | P63010 | 1 | 3 |
| Protein S100A9        | S100A9| 13,242           | Membrane           | Chemotaxis                       | P06702             | 1           | 3              |
| Actin-related protein 2/3 complex, subunit 1B | ARPC1B | 40,950 | Cytoplasm | Actin binding | O15143 | 1 | 2 |
| Actin-related protein 2/3 complex, subunit 4 | ARPC4 | 19,667 | Cytoplasm | Actin binding | P59998 | 1 | 2 |
| F-actin capping protein, subunit beta | CAPZB | 37,482 | Cytoplasm | Actin binding | B4DWA6 | 1 | 2 |
| Scavenger receptor (M130) cysteine-rich | CD163 | 125,437 | Membrane | Scavenger-receptor activity | Q86VB7 | 1 | 2 |
| HLA class I histocompatibility antigen | HLA-C | 36,798 | Membrane | Antigen presentation | Q29960 | 0.9998 | 2 |
| Protein S100A8        | S100A8| 10,835           | Membrane           | Chemotaxis                       | P05109             | 1           | 2              |
| Ras-related C3 botulinum toxin substrate 2 | RAC2 | 21,429 | Cytoplasm | GTP binding | P15153 | 1 | 2 |
| Tropomyosin 1 alpha chain, isoform 2 | TPM1 | 32,678 | Cytoskeleton | Actin-modulating protein | Q9V427 | 0.9996 | 2 |
| C-C chemokine receptor type 1 | CCR1 | 41,173 | Membrane | G-protein coupled receptor protein | P32246 | 0.9888 | 2 |
| CD9 antigen           | CD9  | 25,416           | Membrane           | Signalling                       | P21926             | 0.9952      | 2              |

Protein and gene names, molecular weight in Daltons, cellular localization, function/structure, Uniprot accession number, protein identification probability from iProphet and unique number of identified peptides for each individual protein are shown.

doi:10.1371/journal.pone.0018690.t001
In the early stages of HIV-1 infection, the viral protein HIV-1 Nef, reported to accelerate CD4 down-regulation, avoiding viral superinfection and promoting efficient viral spread and optimal viral particle production [25], also alters the intracellular trafficking of MHC-I and MHC-II molecules [71]. HIV-1 Nef-dependent reduction of surface MHC-I protects HIV-infected primary T cells from recognition and killing by HIV-specific cytotoxic T cells in vitro [72]. Schaefer et al. reported that HIV-1 Nef targets MHC-I molecules and CD4 for degradation in the lysosomes, by showing co-localization of CD4 and a subset of HLA-A2 proteins in late endosomes and multi-vesicular bodies (MVB) [73]. We showed an interaction between CD4 and components of MHC-I (HLA-A and HLA-B). Although, our system is an HIV-1 Nef-independent system, both induced pathways seem to have some degree of similarity.

Overall in resting macrophages CD4 shows association with a range of proteins found in the cellular cortex, clathrin coated pits and membrane rafts. In induced internalization the spectrum of proteins clustered with the receptor changes and CD4 becomes associated with components of signal transduction and transport. Finally, under conditions where protein degradation pathways are chemically blocked, CD4 associates with components of the proteasome and ubiquitin-modifying proteins.

This is the first co-immunoisolation LC-MS/MS-based identification of CD4 complexes in human primary Mφ elucidating CD4-interacting proteins and the protein-network involved in its induced internalization and degradation. Due to its importance in the context of HIV-1 infection, revealing the CD4 "interactome" can lead to the discovery of important proteins in the pathogenesis of the virus. In conclusion, our mass spectrometry data contribute to a better understanding of the fate of CD4 molecules in resting Mφ and in induced internalization and degradation.

### Table 2. Uniquely identified proteins in anti-CD4 co-immunoprecipitations in induced CD4 internalization and degradation in Mφ (Condition 2).

| PROTEIN NAME | GENE | MOLECULAR WEIGHT | LOCALIZATION | FUNCTION/STRUCTURE | UNIPROT ACCESSION | PROBABILITY | UNIQUE PEPTIDES |
|--------------|------|-----------------|--------------|--------------------|--------------------|-------------|----------------|
| Actin, cytoplasmic 2 | ACTG1 | 41,793 | Cytoskeleton | Actin binding | P63261 | 0.9993 | 11 |
| Annexin A2, isoform 1 | ANXA2 | 38,604 | Membrane | Calcium binding | P07355 | 1 | 9 |
| Alpha actinin 4 | ACTN4 | 104,854 | Cytoplasm | Transport | O43707 | 1 | 6 |
| Flotillin 1 | FLOT1 | 47,355 | Membrane | Protein transport | Q15437 | 1 | 5 |
| Protein transport protein, Sec23B | SEC23B | 86,479 | COPII Vesicle | Protein transport | Q15437 | 1 | 5 |
| Integrin beta | ITGB2 | 78,345 | Membrane | Cell adhesion | A8ME65 | 0.99825 | 3 |
| Fascin | FSCN1 | 54,530 | Cytoplasm | Actin binding | Q16265 | 1 | 2 |
| Myosin-Va, isoform 1 | MYOSA | 215,405 | Cytoplasm | Actin binding | Q9Y4I1 | 1 | 2 |
| Tensin 3, isoform 1 | TNS3 | 155,260 | Cytoplasm | Protein binding | Q68C22 | 0.9955 | 2 |
| Cytosolic non-specific dipeptidase, isoform 2 | CNDP2 | 43,833 | Cytoplasm | Proteolysis | Q96KP4 | 1 | 2 |
| Reticulon 4, isoform 2 | RTN4 | 40,318 | Membrane | Protein binding | Q9NQC3 | 1 | 2 |
| Ras-related protein, Rab-10 | RAB10 | 22,541 | Membrane | Protein transport | P61026 | 0.99775 | 2 |
| Ribonuclease inhibitor | RNHI | 49,973 | Cytoplasm | Protein binding | P13489 | 1 | 2 |
| Cell division control protein 42, isoform 1 | CDC42 | 21,311 | Cytoplasm/Membrane | GTP binding | P60953 | 0.9955 | 2 |
| AP-1 complex subunit beta 1, isoform A | AP1B1 | 104,637 | Clathrin Coated Pits | Endocytosis | Q10567 | 0.9955 | 2 |
| Lysosome associated membrane glycoprotein 1 | LAMP1 | 44,882 | Lysosome | Protein degradation | P11279 | 0.9955 | 2 |
| Ras-related protein, Rab-11B | RAB11B | 24,489 | Membrane | Protein transport | Q15907 | 0.9965 | 2 |
| Rho-related GTP-binding protein, Rhob | RHOB | 22,123 | Membrane | Protein transport | P62745 | 0.9876 | 2 |

Protein and gene names, molecular weight in Daltons, cellular localization, function/structure, Uniprot accession number, protein identification probability from iProphet and unique number of identified peptides for each individual protein are shown.

doi:10.1371/journal.pone.0018690.t002
**Table 3.** Uniquely identified proteins in anti-CD4 co-immunoprecipitations in induced CD4 internalization and blocked degradation in Mφ (Condition 3).

| PROTEIN NAME | GENE   | MOLECULAR WEIGHT | LOCALIZATION | FUNCTION/STRUCTURE | UNIPROT ACCESSION | PROBABILITY | UNIQUE PEPTIDES |
|--------------|--------|------------------|--------------|--------------------|-------------------|-------------|----------------|}
| Heat shock 70 kDa protein 1/2 | HSPA1B | 70,052           | Cytoplasm     | Chaperone, protein folding | P08107          | 1           | 19             |
| Coronin 1C   | CORO1C | 49,379           | Cytoskeleton  | Signal transduction | B4DMH3           | 1           | 3              |
| Heme oxygenase 1 | HMOX1 | 32,819           | ER           | Metal-binding       | P09601           | 1           | 3              |
| Guanine nucleotide-binding protein G isoform 2 | GNAI2 | 38,473           | Membrane     | GTP Binding, signal Transduction | P04899          | 1           | 3              |
| Annexin IV   | ANXA4  | 36,085           | Cytoplasm     | Calcium binding     | Q6LES2           | 1           | 2              |
| Annexin VI   | ANXA6  | 75,277           | Cytoplasm     | Calcium binding     | A6NN80           | 0.7873      | 2              |
| Endoplasmic reticulum protein, Elp29 | ERP29 | 28,993           | ER lumen     | Intracellular protein transport | P30040          | 1           | 2              |
| Guanine nucleotide-binding protein protein subunit beta 4 | GNB4  | 37,567           | Cytoplasm     | Transmembrane signalling | Q9HAV0          | 0.9989      | 2              |
| HLA class I histocompatibility antigen | HLA-A | 40,892           | Membrane     | Antigen processing and presentation | P16190          | 1           | 2              |
| Hypoxia up-regulated protein 1 | HYOU1 | 111,335          | ER lumen     | Chaperone, protein folding | Q9Y4L1           | 1           | 2              |
| E3 ubiquitin-protein ligase Itch, isoform 1 | ITCH  | 102,803          | Cytoplasm     | Protein ubiquitination | Q96J02          | 1           | 2              |
| Heterogeneous nuclear ribonucleoprotein R | HRNRPR | 70,943          | Cytoplasm     | mRNA processing     | Q43390           | 0.9931      | 2              |
| Ras-related protein Rab-1A | RAB1A | 22,678           | Membrane     | Protein transport   | P62820           | 0.9898      | 2              |
| Endoplasmic reticulum aminopeptidase 1, isoform 2 | ERAP1 | 107,841          | ER lumen     | Antigen processing and presentation | Q9N2O8          | 1           | 2              |
| Ras-related protein, Rab-1B | RAB1B | 22,171           | Membrane     | Protein transport   | Q9H0U4           | 0.9898      | 2              |
| 265 protease regulatory subunit 6B | PSMC4 | 47,366           | Proteasome Complex | Protein degradation | P43686          | 0.9971      | 2              |
| Proteasome activator complex, subunit 1 | PSME1 | 28,723           | Proteasome Complex | Protein degradation | Q06323          | 0.9971      | 2              |
| Proteasome subunit alpha type 4 | PSMA4 | 29,484           | Proteasome Complex | Protein degradation | P25789          | 0.9971      | 2              |
| Ubiquitin-like modifier-activating enzyme 1 | UBA1  | 117,849          | Cytosol      | Ubiquitin conjugation pathway | P22314          | 0.9971      | 2              |
| Antigen peptide transporter 1 | TAP1  | 87,218           | ER lumen     | Protein transport   | Q03518           | 0.9971      | 1              |
| HLA class I histocompatibility antigen | HLA-B | 40,481           | Membrane     | Antigen processing and presentation | P30481          | 0.9971      | 1              |
| Tyrosine-protein phosphatase non-receptor | PTPN6 | 67,561           | Cytoplasm     | Signal transduction | P29350          | 0.9778      | 1              |
| Ras-related protein, Rab-14 | RAB14 | 23,897           | Membrane     | Protein transport   | P61106           | 0.9971      | 1              |
| Transmembrane emp24 domain-containing protein | TMED10 | 24,976   | Golgi apparatus membrane | Vesicular protein trafficking | P49755          | 0.9971      | 1              |
| V-type proton ATPase subunit D | ATP6VD | 28,263          | Vacuole      | Proton-transporting ATPase | Q9YSK8          | 0.9971      | 1              |
| V-type proton ATPase subunit G1 | ATP6VG1 | 13,758           | Vacuole      | Proton-transporting ATPase | Q75348          | 0.9969      | 1              |

Protein and gene names, molecular weight in Daltons, cellular localization, function/structure, Uniprot accession number, protein identification probability from iProphet and unique number of identified peptides for each individual protein are shown.

doi:10.1371/journal.pone.0018690.t003

**Materials and Methods**

**Ethics statement**

Adult human blood was obtained from anonymous donors through the UK National Blood Service and tested negative for HIV-1, hepatitis B/C, and syphilis. Local IRB approval was sought for this work from Oxford University’s Central University Research Ethics Committee (CUREC), and we were informed that specific ethical approval was unnecessary for this study, in accordance with their guidelines on the use of human blood (http://www.admin.ox.ac.uk/curec/resrchapp/faqethapp.shm).

“CUREC does not require an ethics form for laboratory research using buffy coats. However there are occasions when the
National Blood Service donating the buffy coats may require ethical approval from the University. In this instance a checklist completion will suffice. Applicants should answer Question C (8) as a 'NO'. A covering note should be sent to the Secretary of the MSD IDREC with the checklist explaining that the research uses buffy coats and the NBS requires University ethical approval.

Although not required by NBS, we completed a checklist as indicated and received exemption from MSD IREC.

**Cells and reagents**

PBMC were isolated using Ficoll-Plaque Plus (GE Healthcare Life Sciences, Europe) density gradient centrifugation from...
and used at final non-toxic concentrations of 5 mM BafA1 (Sigma, UK) were resuspended in DMSO (Sigma, UK). M-CSF (R&D Systems) for 7 days. MG132 and bafilomycin A1 (Sigma, UK), supplemented with 50 ng/mL recombinant streptomycin (PAA)), were incubated with 5% FCS and 0.01% NaN3) were incubated with 0.2% saponin (Sigma, UK) and stained. The percentage of positive cells and the mean fluorescence intensity (MFI) were analyzed by FACS Calibur (Becton Dickinson) with 15,000–20,000-gated events collected. The data was processed using FlowJo (version 7.2.4). Protein expression levels were determined by dividing the geometrical MFI of the Ab staining over the MFI of the isotype control.

Western blotting

Adherent Mφ were washed free of media, detached using ice-cold 10 mM EDTA/PBS and cell pellets were lysed in ice-cold lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 1% (v/v) n-Dodecyl β-D-maltoside (Sigma), 1x protease inhibitor cocktail (Roche), phosphatase inhibitor cocktail 2 (Sigma)). n-Dodecyl β-D-maltoside is a water-soluble non-ionic detergent, shown to be a rather gentle detergent able to preserve protein activity and structure better than many commonly used agents, such as Triton X-100, NP-40, CHAPS and octyl-β-glucoside [74,75,76,77]. Lysates were centrifuged for 10 min at 4°C, 13,000 x g to separate insoluble material and cleared lysate was resuspended in 1x Laemmli sample buffer (Invitrogen, UK) under reducing conditions and heated for 10 min at 90°C. Lysates were electrophoresed through SDS-PAGE gels and proteins were electroblotted to PVDF transfer membranes. Blocked membranes were incubated with one of the following primary antibodies diluted in 3% (w/v) BSA (Sigma) in 1× PBS-T (1× PBS, 0.1% (v/v) Tween-20) for 2 hours at room temperature or overnight at 4°C: rabbit polyclonal antibody anti-CD4 (clone H-370), rabbit polyclonal antibody anti-CD9 (clone H-110), rabbit polyclonal antibody anti-CD28 (clone H-300), rabbit polyclonal antibody anti-E3 Ubiquitin ligase (clone CTC5, R&D Systems). Primary antibodies were detected using the matching LI-COR secondary antibodies and membranes were scanned using the quantitative western blotting imaging system Odyssey (LI-COR).

Immunosolation analysis

Anti-CD4 immunosolation reactions consisted of 10 μL of protein G-Sepharose bead slurry (4B Fast Flow, Sigma, UK) per 1 x 10^7 lysed cells and 5–10 μg mouse monoclonal antibody anti-CD4 (clone QS4120, Santa Cruz) was incubated for 2 hours at room temperature to allow binding of the antibody to the beads. Beads were gently spun, cell lysate was added to the mixture of beads/antibody and the reactions were incubated by inversion for 3 h at 4°C. The immunoisolates were collected by centrifugation for 5 min at 4°C, before loading them onto a gel. Isotype control immunosolvent reactions were also performed to identify background binding proteins.

Mass spectrometry and protein identification

Anti-CD4 or isotype control immunosolated pellets were reduced in NuPAGE sample reducing agent (Invitrogen, UK), separated on a NuPAGE Novex 4–12% Bis-Tris gel (Invitrogen, UK) and coomassie stained. Gel lanes were excised, cut into 10 equal portions and in-gel digested with trypsin [78]. Briefly, gel bands were diced into cubes and destained in 25 mM ammonium bicarbonate in 50:50 water/acetonitrile. Proteins were reduced with 10 mM DTT and alkylated with 55 mM iodoacetamide. Gel bands were then incubated with 3 μg of trypsin (Promega, UK) in 25 mM ammonium bicarbonate over-night at 37°C. Peptides were extracted and desalted using home-made C18 tips. Mass spectrometry data were acquired on an Orbitrap mass spectrom-
Figure 5. Gene Ontology (GO) annotations of the uniquely identified proteins in anti-CD4 immunoprecipitations in M. Protein identifications from the different conditions were exported from the in-house developed Central Proteomics Facilities data analysis pipeline (CPFP) and uploaded to ProteinCenter software. A illustrates the percentage of protein identifications versus protein molecular functions (GO molecular annotations); B illustrates the percentage of protein identifications versus protein cellular localizations (GO cellular annotations); C illustrates the percentage of protein identifications versus protein biological functions (GO biological annotations). Blue bars represent the percentage of unique proteins identified in condition 1 (Resting macrophages); Red bars represent the percentage of unique proteins identified in condition 2 (Induced CD4 internalization and degradation); Green bars represent the percentage of unique proteins identified in condition 3 (Induced CD4 internalization and blocked degradation).

doi:10.1371/journal.pone.0018690.g005

References

1. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437–473.
2. Lin Z, Crockett DK, Lim MS, Elinstorff-Johnson KS (2003) High-throughput analysis of protein/peptide complexes by immunoprecipitation and automated LC-MS/MS. J Biomed Tech 14: 149–155.
3. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33 Suppl: 311–323.
4. Ranih JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, et al. (2005) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33: 349–355.
5. Husi H, Grant SG (2001) Isolation of 2000Da complexes of N-methyl-D-aspartate receptor and postsynaptic density 95 from mouse brain. J Neurochem 77: 281–289.
6. Grant SG, Husi H (2001) Proteinomics of multiprotein complexes: answering fundamental questions in neuroscience. Trends Biotechnol 19: 549–554.
7. Walsh EP, Lamont DJ, Beattie KA, Stark MJ (2002) Novel interactions of Saccharomyces cerevisiae type 1 protein phosphatase identified by single-step affinity purification and mass spectrometry. Biochemistry 41: 2409–2420.
8. Patterson MD, Caruso S, Bachs O, Abian J (2002) Identification of p21Cip1 565 kinase in cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56kck. Cell 55: 301–308.
9. Lynch GW, Turville S, Carter B, Sinale AJ, Chan A, et al. (2006) Marked differences in the structures and protein associations of lymphocyte and monocyte CD4: a novel CD4 isoform. Immunol Cell Biol 84: 154–165.
10. Colman R, Godfrey B, Cistulli J, Rhodes A, Hassan NF, et al. (1990) Macrophage-tropic strains of human immunodeficiency virus type 1 utilize the CD4 receptor. J Virol 64: 4468–4476.
11. Pelchen-Matthews A, Rosangela P, da Silva Marie-Jose, Bijlmaekers Nathalie Signoret Sharon Gordon Mark Marsh (1998) Lack of p36 kck expression correlates with CD4 endocytosis in primary lymphoid and myeloid cells. Eur J Immunol 28: 3639–3647.
12. Pelchen Matthews A, Parsons IF, Marsh M (1993) Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p56kck, increased association with clathrin-coated pits, and altered endosomal sorting. J Exp Med 178: 1209–1222.
13. Pelchen-Matthews A, Boulet I, Littman DR, Fagard R, Marsh M (1992) The protein tyrosine kinase p56kck inhibits CD4 endocytosis by preventing entry of CD4 into coated pits. J Cell Biol 117: 279–290.
14. Pitcher C, Honing S, Fingerhut A, Bowers K, Marsh M (1999) Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding: an essential step in the CD4 endocytosis signal by serine phosphorylation. Mol Cell Biol 19: 677–691.
15. Garafalo T, Sorice M, Misasi R, Ciric B, Giammatteo M, et al. (1998) A Novel Mechanism of CD4 Down-modulation Induced by Monosialoganglioside.
CD4 Interactome in Human Primary Macrophages
76. Harder T (2004) Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr Opin Immunol 16: 353–359.
77. Thomas S, Preda-Pais A, Casares S, Brummeau TD (2004) Analysis of lipid rafts in T cells. Mol Immunol 41: 399–409.
78. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858.
79. Trudgian DC, Thomas B, McGowan SJ, Kessler BM, Salek M, et al. (2010) CPFP: a central proteomics facilities pipeline. Bioinformatics 26: 1131–1132.
80. Keller A, Eng J, Zhang N, Li XJ, Aebersold R (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1: 2005 0017.
81. MacLean B, Eng JK, Beavis RC, McIntosh M (2006) General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 22: 2830–2832.
82. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, et al. (2004) Open mass spectrometry search algorithm. J Proteome Res 3: 950–964.
83. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74: 5383–5392.
84. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75: 4646–4656.