Identified particle production in p+p and d+Au collisions at RHIC

Hongyan Yang (for the BRAHMS Collaboration)
Department of Physics and Technology, University of Bergen, Allegaten 55, 5007 Bergen, Norway
E-mail: hongyan@ift.uib.no

Abstract. The BRAHMS experiment at RHIC has measured the transverse momentum spectra of charged pions, kaons and (anti-)protons over a wide range of rapidity in d+Au and p+p collisions at $\sqrt{s_{NN}} = 200$ GeV. The nuclear modification factor R_{dAu} at forward rapidities shows a clear suppression for π^+. The measured net-proton yields in p+p collisions are compared to PYTHIA and HIJING/B and seem to be better described by the latter.

Submitted to: J. Phys. G: Nucl. Phys.

1. Introduction

Ultra-relativistic p+A collisions are used to understand the initial state effects in heavy-ion collisions, which may have produced deconfined nuclear matter [1]. By the measurement of hadrons produced in relativistic d+Au and p+p collisions over a wide range of rapidity, one can try to disentangle the modification of the parton distributions in nuclei (e.g. shadowing) and the change of p_T spectra of produced particles caused by initial and final state multiple scattering in cold nuclear matter (e.g. Cronin effect [2]) and thus constrain various dynamical evolution scenarios and initial conditions (e.g. Color Glass Condensate [3]).

Experimental data from d+Au collisions at RHIC from the BRAHMS, PHENIX and STAR Collaborations [4][5][6] has verified the prediction of the Cronin effect at mid-rapidity, i.e. the enhancement of intermediate-p_T hadrons in d+Au collisions as compared to p+p, which might be due to the initial state multiple parton scattering. At forward rapidity $\eta \sim 3.2$ the suppression of hadron spectra is consistent with predictions by the CGC model [7]. The Cronin enhancement at mid-rapidity and the high-p_T suppression at forward rapidity are characterized by the nuclear modification factor R_{dAu}, which is defined as a ratio of the invariant particle spectra from d+Au collisions.

† For a full author list and acknowledgments, see the appendix of this volume.
to reference spectra in p+p collisions scaled by the average number of binary nucleon-nucleon collisions in d+Au ($< N_{coll} >$):

$$R_{dAu} = \frac{d^2N_{dAu}/2\pi p_T dp_T}{< N_{coll} > \times d^2N_{pp}/2\pi p_T dp_T}.$$ (1)

2. Analysis

BRAHMS (Broad Range Hadron Magnetic Spectrometers) has two rotatable magnetic spectrometers with particle identification capabilities for charged hadrons, which allow the study of particle production in a broad range of both transverse momenta and rapidities.

BRAHMS uses the Time-of-Flight (TOF) technique in the mid-rapidity spectrometer (MRS) and the Forward Spectrometer (FS) and a Ring Imaging Čerenkov (RICH) detector at the back of the FS for the identification of particles with high momentum. In this analysis pions and kaons are separated up to 1.8 GeV/c in momentum by the TOF in the MRS, and the separation of pions and kaons in the FS has been extended up to 25-30 GeV/c by the RICH. Details on the BRAHMS detector system can be found in [8, 9].

Spectra in both the MRS and the FS spectrometers have been corrected for geometric acceptance, tracking and PID efficiencies, in-flight decay, absorption and multiple scattering. The normalization is done relative to the number of events in minimum bias data triggered by the global detectors, and several settings are combined.
Weak decays and feed-down have not been corrected for the protons and anti-protons. The resulting invariant spectra in p+p collisions at different rapidities are shown in Figure 1. The invariant transverse momentum spectra in d+Au collisions at different centralities have already been shown in [10].

3. Nuclear modification factor

The nuclear modification factor (Figure 2) for identified particles at forward rapidity in minimum bias d+Au collisions was constructed using \(< N_{\text{coll}} > = 7.2\). A clear suppression for \(\pi^+\) is observed and \(R_{dAu}\) reaches \(\sim 0.7\) at \(p_T \sim 2.5\) GeV/c. The suppression of \(\pi^+\) is comparable to that for negative hadrons \(h^-\) where negative pions are the main contribution [4]. Kaons show a similar suppression while protons cross \(R_{dAu} = 1\) (no suppression) at \(p_T \sim 2.5\) GeV/c.

4. Stopping

The rapidity dependence of the net-proton yield in d+Au and p+p collisions may shed light on the stopping and baryon number transport process in nuclear collisions. The net-proton transverse momentum spectra are constructed by subtracting the anti-proton spectra from the proton spectra \(p_T\)-bin-by-\(p_T\)-bin. Due to our limited acceptance at low transverse momenta (see Fig. 1), the yields at low \(p_T\) have to be determined by fitting to the data a fit-function and extrapolating the function to low \(p_T\). Within our acceptance both a Boltzmann function and an exponential in \(p_T\) describe the data equally well. Therefore, both function were used for the extrapolation which results in a lower (Boltzmann) and upper (exponential in \(p_T\)) limit for the integrated yield. The functions were extrapolated to the low \(p_T\) region to calculate the integrated yield at low \(p_T\), which was then combined with the yield calculated from data by summing up the \(p_T\)-bins in order to obtain the total net-proton rapidity density over the full \(p_T\) range.

Figure 3 shows the net-proton rapidity distribution in p+p collisions at 200 GeV and a comparison to PYTHIA [11] and the HIJING model with baryon junction [12].
Identified particle production in $p+p$ and $d+Au$ collisions at RHIC including single diffractive processes. The squares are the results of a Boltzmann extrapolation, while the dots represent those from an exponential function in p_T.

![Figure 3](image.png)

Figure 3. Net-proton rapidity density in $p+p$ collisions. The squares are the net-proton yields obtained by using a Boltzmann function, and the dots are those obtained using an exponential function in p_T. The gray boxes between the two sets of extrapolations indicate the range of solutions which cannot be distinguished by our data.

The region around mid-rapidity (between 0 and 1) is almost baryon-free, while a large net-proton density is observed at forward rapidity (around 3). Even though we have an uncertainty of about 50% due to the extrapolation procedure HIJING/B’s estimate is closer to our data, while PYTHIA’s is systematically lower at mid-rapidity and higher at forward.

References

[1] Heinz U 2003 *Nucl. Phys. A* **721** 30
[2] Cronin J W, Frisch H J, Schochet M J et al 1975 *Phys. Rev. D* **11** 3105; Antreasyan D, Cronin J W, Frisch H J et al 1979 *Phys. Rev. D* **19** 764
[3] McLerran L, Venugopalan R 1994 *Phys. Rev. D* **49** 233; 1999 *Phys. Rev. D* **59** 094002
[4] Arsene I et al (the BRAHMS Collaboration) 2004 *Phys. Rev. Lett.* **93** 242303
[5] Adler S et al (the PHENIX Collaboration) 2003 *Phys. Rev. Lett.* **91** 072303
[6] Adams J et al (the STAR Collaboration) 2003 *Phys. Rev. Lett.* **91** 072304
[7] Kharzeev D, Kovchegov Y, and Tuchin K 2003 *Phys. Rev. D* **68** 094013
[8] Adamczyk M et al (the BRAHMS Collaboration) 2003 *Nucl. Instrum. Methods A* **499** 437
[9] Debbe R, Jorgensen C E, Olness J, Yin Z 2007 *Nucl. Instrum. Methods A* **570** 216
[10] Yang H (BRAHMS Collaboration) 2006 *Proc. (Poster Session) 18th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Budapest, Hungary, 4-9 August 2005)* *Rom. Rep. Phys.* **58-1** 5
[11] Sjostrand T, Eden P, Friberg C et al 2001 *Comput. Phys. Commun.* **135** 238
[12] Vance S E, Gyulassy M, Wang X N 1998 *Phys. Lett. B* **443** 45