A REMARK ON THE GRADIENT MAP

LEONARDO BILIOTTI, ALESSANDRO GHIGI, AND PETER HEINZNER

Abstract. For a Hamiltonian action of a compact group U of isometries on a compact Kähler manifold Z and a compatible subgroup G of $U^\mathbb{C}$, we prove that for any closed G–invariant subset $Y \subset Z$ the image of the gradient map $\mu_p(Y)$ is independent of the choice of the invariant Kähler form ω in its cohomology class $[\omega]$.

1. Introduction

Let (Z, ω) be a compact Kähler manifold and let U be a compact connected semisimple Lie group such that $U^\mathbb{C}$ acts holomorphically on Z, U preserves ω and there is a momentum map $\mu : Z \to \mathfrak{u}^*$. Let $G \subset U^\mathbb{C}$ be a compatible subgroup. By this we mean a subgroup which is compatible with the Cartan involution Θ of $U^\mathbb{C}$ which defines U, i.e. if $\mathfrak{p} = \mathfrak{g} \cap i\mathfrak{u}$ and $K = U \cap G$, then $G = K \cdot \exp \mathfrak{p}$. Let $\mu_p : Z \to \mathfrak{p}$ be the associated gradient map (see [4, 5] or section 2).

In this note we prove the following.

Theorem 1. Let $Y \subset Z$ be a closed G-stable subset. Then up to translation the set $\mu_p(Y)$ is independent of the choice of the invariant Kähler form ω in the cohomology class $[\omega]$.

Since Z is compact and G is compatible there is a stratification of Z analogous to the Kirwan stratification, see [4]. This gives a stratification of any closed G–invariant subset Y of Z, by intersecting the strata in Z with Y. It follows from Theorem 1 that when the momentum map is properly normalized (see Lemma 2) this stratification does not depend on the choice of ω in its cohomology class.

When Z is a projective manifold and ω is the pull-back of a Fubini-Study form via an equivariant embedding of Z in \mathbb{P}^N, Kirwan [6, §12]...

2000 Mathematics Subject Classification. 53D20.

The first two authors were partially supported by a grant of Max-Plank Institute für Mathematik, Bonn, and by FIRB 2012 MIUR “Geometria differenziale e teoria geometrica delle funzioni”. The second author was partially supported also by PRIN 2009 MIUR "Moduli, strutture geometriche e loro applicazioni". The third author was partially supported by DFG-priority program SPP 1388 (Darstellungstheorie).
proved that the stratification in terms of a properly normalized \(\mu \) can be defined purely in terms of algebraic geometry. In the present note we give a proof of this fact for a general compact Kähler manifold \(Z \) in the more general setting of gradient maps for actions of compatible subgroups on closed \(G \)-invariant subsets of \(Z \).

Another consequence of the above is the following. Assume that \(Z \) is a projective manifold and that \([\omega]\) is an integral class. Let \(Y \subset Z \) be a closed \(G \)-invariant real semi-algebraic subset whose real algebraic Zariski closure is irreducible. Let \(a \subset p \) be a maximal subalgebra and let \(a_+ \) be a closed Weyl chamber in \(a \). Then \(A(Y)_+ := \mu_p(Y) \cap a_+ \) is convex (see [2], which deals with the case when \(\omega \) is the restriction of a Fubini-Study metric).

Acknowledgements. The first two authors are grateful to the Fakultät für Mathematik of Ruhr-Universität Bochum for the wonderful hospitality during several visits. They also wish to thank the Max-Planck Institut für Mathematik, Bonn for excellent conditions provided during their visit at this institution, where part of this paper was written.

2. Background

Let \((Z, \omega)\) be a compact Kähler manifold and let \(U \) be a compact Lie group. Assume that \(U \) acts on \(Z \) by holomorphic Kähler isometries. Since \(Z \) is compact the \(U \)-action extends to a holomorphic action of the complexified group \(U^\mathbb{C} \). Assume also that there is a momentum map \(\mu : Z \to u^* \cong u \), where \(u^* \) is identified with \(u \) using a fixed \(U \)-invariant scalar product on \(u \) that we denote by \(\langle , \rangle \). We also denote by \(\langle , \rangle \) the scalar product on \(iu \) such that multiplication by \(i \) is an isometry of \(u \) onto \(iu \). If \(\xi \in u \) we denote by \(\xi_Z \) the fundamental vector field on \(Z \) and we let \(\mu^\xi \in C^\infty(Z) \) be the function \(\mu^\xi(z) := \langle \mu(z), \xi \rangle \). That \(\mu \) is the moment map means that it is \(U \)-equivariant and that \(d\mu^\xi = i\xi_Z \omega \).

For a closed subgroup \(G \subset U^\mathbb{C} \) let \(K := G \cap U \) and \(p := g \cap iu \). The group \(G \) is called compatible if \(G = K \cdot \exp p \) [4, 5]. In the following we fix a compatible subgroup \(G \subset U^\mathbb{C} \). If \(z \in Z \), let \(\mu_p(z) \in p \) denote \(-i\) times the component of \(\mu(z) \) in the direction of \(ip \). In other words we require that \(\langle \mu_p(z), \beta \rangle = -\langle \mu(z), i\beta \rangle \) for any \(\beta \in p \). The map

\[
\mu_p : Z \to p
\]

is called the gradient map (see [3]) or restricted momentum map. Let \(\mu^\beta_p \in C^\infty(Z) \) be the function \(\mu^\beta_p(z) = \langle \mu_p(z), \beta \rangle = \mu^{-i\beta}(z) \). Let \(\langle , \rangle \) be the Kähler metric associated to \(\omega \), i.e. \(\langle v, w \rangle = \omega(v, Jw) \). Then \(\beta_Z \) is the gradient of \(\mu^\beta_p \) with respect to \(\langle , \rangle \).
Example 1. (1) For any compact subgroup $K \subset U$, both K and its complexification $G = K^\mathbb{C}$ are compatible. In particular $G = U^\mathbb{C}$ is a compatible subgroup. (2) If G is a real form of $U^\mathbb{C}$, then G is compatible. (3) For any $\xi \in iu$, the subgroup $G = \exp(\mathbb{R}\xi)$ is compatible.

Next we recall the Stratification Theorem for actions of compatible subgroups. Given a maximal subalgebra $a \subset p$ and a Weyl chamber $a^+ \subset a$ define

$$\eta_p : X \to \mathbb{R} \quad \eta_p(x) := \frac{1}{2}||\mu_p(x)||^2$$

$$C_p := \text{Crit}(\eta_p) \quad B_p := \mu_p(C_p) \quad B_p^+ := B_p \cap a^+$$

$$X(\mu) = \{x \in X : G \cdot x \cap \mu_p^{-1}(0) \neq \emptyset\}$$

where X is a compact G-invariant subset of Z. Points lying in $X(\mu)$ are called semistable. Using semistability and the function η_p one can define a stratification of X in the following way, see [6] and [4]. For $\beta \in B_p^+$ set

$$X_{||\beta||^2} := \{x \in X : \exp(\mathbb{R}\beta) \cdot x \cap (\mu^\beta)^{-1}(||\beta||^2)\}$$

$$X^\beta := \{x \in X : \beta X(x) = 0\}$$

$$X_{||\beta||^2}^\beta := X^\beta \cap X_{||\beta||^2}$$

$$X_{||\beta||^2}^{\beta+} := \{x \in X_{||\beta||^2} : \lim_{t \to -\infty} \exp(t\beta) \cdot x \text{ exists and it lies in } X_{||\beta||^2}^\beta\}$$

$$G^{\beta+} := \{g \in G : \text{the limit } \lim_{t \to -\infty} \exp(t\beta)g \exp(-t\beta) \text{ exists in } G\}.$$

Set also

$$G^\beta = \{g \in G : \text{Ad} g(\beta) = \beta\} \quad p^\beta := \{\xi \in p : [\xi, \beta] = 0\}.$$

The group $G^\beta = K^\beta \cdot \exp(p^\beta)$ is a compatible subgroup of $U^\mathbb{C}$ and the set $X_{||\beta||^2}^{\beta+}$ is $G^{\beta+}$-invariant. Denote by μ_{p^β} the composition of μ_p with the orthogonal projection $p \to p^\beta$. Then μ_{p^β} is a gradient map for the G^β-action on $X_{||\beta||^2}^{\beta+}$. We set $\widehat{\mu_{p^\beta}} := \mu_{p^\beta} - \beta$. Since β lies in the center of g^β and since G^β is a compatible subgroup of $(U^\beta)^\mathbb{C} = (U^\mathbb{C})^\beta$, it is a gradient map too. We let $S^{\beta+}$ denote the set of G^β-semistable points in $X_{||\beta||^2}^{\beta+}$ with respect to $\widehat{\mu_{p^\beta}}$, i.e.

$$S^{\beta+} := \{x \in X_{||\beta||^2}^{\beta+} : G^\beta \cdot x \cap \mu_{p^\beta}^{-1}(\beta) \neq \emptyset\}.$$

The set $S^{\beta+}$ coincides with the set of semistable points of the group G^β in $X_{||\beta||^2}$ after shifting. By definition the β-stratum is given by $S_\beta := G \cdot S^{\beta+}$.

Stratification Theorem. (See [4, Thm. 7.3]) Assume that \(X \) is a compact \(G \)-invariant subset of \(Z \). Then \(\mathcal{B}_p^+ \) is finite and
\[
X = \bigcup_{\beta \in \mathcal{B}_p^+} S_\beta.
\]
Moreover
\[
\overline{S_\beta} \subset S_\beta \cup \bigcup_{||\gamma||>||\beta||} S_\gamma.
\]

3. Proof of Theorem 1

For a \(U \)-invariant function \(f \) on \(Z \) we set
\[
\bar{\omega} := \omega + dd^c f
\]
where \(d^c f := -2J^* df \). Since \(Z \) is compact and \(U \) acts by holomorphic transformations, any \(U \)-invariant Kähler form \(\bar{\omega} \) in the Kähler class \([\omega]\) can be written in this way. Since pluriharmonic functions on \(Z \) are constant, the function \(f \) is unique up to a constant.

Lemma 2. If \(\mu : Z \to \mathfrak{u} \) is a momentum map for the \(U \)-action on \(Z \) with respect to \(\omega \), then the function \(\bar{\mu} : Z \to \mathfrak{u} \) defined by
\[
\bar{\mu}^\xi := \mu^\xi - d^c f(\xi_Z)
\]
is a momentum map for the \(U \)-action on \(Z \) with respect to \(\bar{\omega} \).

Proof. That \(\bar{\mu} \) is a momentum map follows from Cartan formula using that \(L_{\xi_Z} d^c f = d^c L_{\xi_Z} f = 0 \). This in turn follows from the assumption that the action of \(U \) is holomorphic and \(f \) is \(U \)-invariant. \(\square \)

A more precise version of Theorem 1 is the following.

Theorem 4. For any closed \(G \)-stable subset \(Y \subset Z \) we have \(\mu_p(Y) = \bar{\mu}_p(Y) \).

Proof. Let \(\mathfrak{a} \subset \mathfrak{p} \) be a maximal subalgebra and set \(A := \exp \mathfrak{a} \). The group \(A \) is a compatible subgroup. Let \(\mu_a : Z \to \mathfrak{a} \) be the restricted gradient map. Any connected subgroup \(B \subset A \) is compatible. Given such a \(B \), set \(Z^{(B)} := \{ z \in Z : A_z = B \} \). A connected component \(S \) of \(Z^{(B)} \) will be called an \(A \)-stratum of type \(\mathfrak{b} \). For a given \(S \) let \(C \) denote the connected component of \(Z^B \) containing \(S \). Then \(C \) is a complex submanifold of \(Z \) and the Slice Theorem (see Theorem 14.10 and 14.21 in [3] or Theorem 2.2 in [2]) applied to the \(A \)-action on \(C \) shows that \(S \) is open and dense in \(C \).

Let \(A^c \) be the Zariski closure of \(A \) in \(U^C \). The group \(A^c \) is a compatible subgroup of \(U^C \), \(A^c \cap U = T \) is a torus and \(A^c = T \exp(it) \), where
t denotes the Lie algebra of T. Moreover \overline{S} is A^c-stable [2, Lemma 3.3 (1)]. Denote by $\mu_t : Z \rightarrow t$ the momentum map obtained by projecting $\mu : Z \rightarrow u$ to t, and denote by $\Pi : it \rightarrow a$ the orthogonal projection. Then $\mu_a = \Pi \circ i\mu_t$ and $\mu_a(S) = \Pi(i\mu_t(S))$. By the convexity theorem of Atiyah-Guillemin-Sternberg $\mu_t(S)$ is a convex polytope and its vertices are images of points fixed by A^c. It follows that $\mu_a(S)$ is a convex polytope as well. Since Π is linear, any vertex of $\mu_a(S)$ is the projection of at least one vertex of $i\mu_t(S)$. Therefore $\mu_a(S)$ is the convex hull of $\mu_a(S^A)$. Now we use Lemma [2] if $x \in \overline{S^A}$, then $\xi_Z(x) = 0$, so $\tilde{\mu}\xi(x) = \mu\xi(x)$, for any $\xi \in a$. Therefore $\tilde{\mu}_a(x) = \mu_a(x)$ for every A-fixed point x. It follows that both $\mu_a(S)$ and the affine subspace spanned by $\mu_a(S)$ do not depend on the choice of the Kähler form ω.

Let Σ be the collection of affine hyperplanes of a that are affine hulls of $\mu_a(S)$ for some A-stratum S. Set $P := \mu_a(Z)$ and $P_0 := P - \bigcup_{H \in \Sigma} P \cap H.$ (See [2]). The set P_0 is an open subset of a. Let $C(P_0)$ denote the set of its connected components. This is a finite set. For $\gamma \in C(P_0)$ let $P(\gamma)$ be the closure of the connected component γ. Then $P(\gamma)$ is a convex polytope. Since both P and the hyperplanes H are independent of ω, also the polytopes $P(\gamma)$ do not depend on ω. By [2, Corollary 5.8]

$$\mu_p(Y) \cap a = \bigcup_{\gamma \in F(\omega)} P(\gamma),$$

where $F(\omega) \subset \Gamma$ is some subset of $C(P_0)$. One can join ω to $\tilde{\omega}$ continuously, e.g. by $\omega_t := \omega + tdd^c f$. Then $\tilde{\mu}_t := \mu - tdd^c f(\cdot , z)$ also depends continuously on t. So $P(\gamma) \subset \mu_p(Y) \cap a$ if and only if $P(\gamma) \subset \mu_{t,p}(Y) \cap a$. Therefore $F(\omega_t)$ is constant and the same is true of $\mu_p(Y) \cap a$. This implies $\mu_p(Y) = K(\mu_p(Y) \cap a).$ Hence $\tilde{\mu}(Y) = \tilde{\mu}_p(Y).$ □

Corollary 5. Assume that Z is connected and let ω and $\tilde{\omega}$ be two cohomologous Kähler forms with momentum maps μ and $\tilde{\mu}$ respectively as in Lemma [2]. Then $\tilde{\mu}$ is the unique momentum map such that $\mu(Z) = \tilde{\mu}(Z)$.

Proof. Since two momentum maps with respect to $\tilde{\omega}$ differ by addition of an element of the center of u, it is clear that there is at most one such map with the image equal to $\mu(Z)$. To complete the proof it is therefore enough to check that $\tilde{\mu}(Z) = \mu(Z)$. This is a special case of the previous theorem. □
Theorem 6. Let ω and $\tilde{\omega}$ be two cohomologous Kähler forms on Z, with momentum maps μ and $\tilde{\mu}$ respectively as in Lemma 2. Then the set B^+_0 is the same for both momentum maps and the two stratifications of X coincide.

Proof. By \[4, Corollary 7.6\]

$$B_p = \{ \beta \in \mathfrak{p} : \text{there exists } x \in X : \frac{||\beta||^2}{2} = \inf_{G \cdot x} \eta_{p} \text{ and } \beta \in \mu_p(G \cdot x) \}. \tag{7}$$

Moreover for $\beta \in B_p$

$$S_\beta = \{ x \in X : \frac{||\beta||^2}{2} = \inf_{G \cdot x} \eta_{p} \text{ and } \beta \in \mu_p(G \cdot x) \}. \tag{8}$$

For any point $x \in X$, the set $G \cdot x$ is closed and G-invariant. Hence by Theorem 4 $\mu_p(G \cdot x) = \tilde{\mu}_p(G \cdot x)$. From this it follows that $\inf_{G \cdot x} \eta_{p} = \inf_{G \cdot x} \tilde{\eta}_p$, where $\tilde{\eta}_p := ||\mu_p||^2/2$. The result follows from (7) and (8). □

From the above we obtain the following generalization.

Corollary 9. If Z is a complex projective manifold, U is a compact connected semisimple Lie group acting on Z, ω is a U-invariant Hodge metric and $Y \subset Z$ is a closed G-invariant real semi-algebraic subset whose real algebraic Zariski closure is irreducible, then $A(Y)_+$ is convex. Moreover if G is semisimple, then $X(\mu)$ is dense (if it is nonempty).

Proof. By assumption there is a very ample line bundle $L \to Z$ such that $[\omega] = 2\pi c_1(L)/m$ for an integer $m > 0$. Let ω_{FS} be a U-invariant Fubini-Study metric on $\mathbb{P}(H^0(Z, L)^*)$. Let μ_{FS} be the moment map with respect to $\omega_{FS}|_Z$. In [2] the convexity theorem has been proved for μ_{FS}. A rescaling in the symplectic form yields a corresponding rescaling in the momentum map. Therefore the convexity theorem also holds for the momentum map $\tilde{\mu}$ relative to the symplectic form $\tilde{\omega} := \omega_{FS}/m$. So it holds also for μ, since $\mu_p(Y) = \tilde{\mu}_p(Y)$ by Theorem 4. The proof of the last statement is similar: see [2] and Corollary 5. □

Corollary 10. Under the same assumptions, any local minimum of $|\mu_p|^2$ is a global minimum.

Proof. This follows since $|\mu_p|^2$ is K-invariant and $\mu(Z)_+$ is a convex subset of a_+. □

Corollary 11. If ω and ω' are cohomologous Kähler forms on Z with momentum maps μ and $\tilde{\mu}$ as in Lemma 2 then $X(\mu) = X(\tilde{\mu})$.
Proof. It is enough to observe that $X(\mu) = S_0$.

References

[1] P. Heinzner and A. Huckleberry. Kählerian potentials and convexity properties of the moment map. *Invent. Math.*, 126(1):65–84, 1996.

[2] P. Heinzner and P. Schützdeller. Convexity properties of gradient maps. *Adv. Math.*, 225(3):1119–1133, 2010.

[3] P. Heinzner and G. W. Schwarz. Cartan decomposition of the moment map. *Math. Ann.*, 337(1):197–232, 2007.

[4] P. Heinzner, G. W. Schwarz, and H. Stötzel. Stratifications with respect to actions of real reductive groups. *Compos. Math.*, 144(1):163–185, 2008.

[5] P. Heinzner and H. Stötzel. Critical points of the square of the momentum map. In *Global aspects of complex geometry*, pages 211–226. Springer, Berlin, 2006.

[6] F. C. Kirwan. *Cohomology of quotients in symplectic and algebraic geometry*, volume 31 of *Mathematical Notes*. Princeton University Press, Princeton, NJ, 1984.

Università di Parma
E-mail address: leonardo.biliotti@unipr.it

Università di Milano Bicocca
E-mail address: alessandro.ghigi@unimib.it

Ruhr Universität Bochum
E-mail address: peter.heinzner@rub.de