Histological and ultrastructural evaluation of the early healing of the lateral collateral ligament epiligament tissue in a rat knee model

Georgi P Georgiev*, Nikolai K Vidinov1 and Plamen S Kinov2

Abstract
Background: In this study, we evaluated the changes which occurred in the epiligament, an enveloping tissue of the ligament, during the ligament healing. We assessed the association of epiligament elements that could be involved in ligament healing.

Methods: Thirty-two 8-month old male Wistar rats were used in this study. In twenty-four of them the lateral collateral ligament of the knee joint was surgically transected and was allowed to heal spontaneously. The evaluation of the epiligament healing included light microscopy and transmission electron microscopy.

Results: At the eight, sixteenth and thirtieth day after injury, the animals were sacrificed and the ligaments were examined. Our results revealed that on the eight and sixteenth day post-injury the epiligament tissue is not completely regenerated. Till the thirtieth day after injury the epiligament is similar to normal, but not fully restored.

Conclusion: Our study offered a more complete description of the epiligament healing process and defined its important role in ligament healing. Thus, we provided a base for new strategies in ligament treatment.
nerves and vessels. The second layer is composed only of cells, mast cells, fibroblasts, fibrocytes, collagen fibers, elgamet tissue (for transmission electron microscopy) and single lysosomes (Fig. 1b). Collagen fibers in the mid-substance of the external surface of the LCL EL had uniformly small diameters and were organized in bundles with different orientations, in contrast to the parallel collagen fibers in the ligament. There were also chaotically orientated small groups of collagen fibers. In the EL both myelinated and unmyelinated nerve fibers were detected.

The histological results demonstrated at the eight day after injury (Fig. 2a; Fig. 3a), a substantial bridge of clearly distinguishable granulation of the EL tissue connecting the transected edges. The transected regions of the EL were characterized with hyper-cellularity, presented mainly from fibroblasts and progenitor cells. These cells had an oval basophilic nucleus and their cytoplasm appeared vitreous and was only lightly stained. The numerous cells localized in the deep part of the EL substance prolonged to the endoligament enveloping the collagen fibres of the ligament. Intensive angiogenesis was observed in the EL scar region. It was a result of a vascular response in the chaotic arborization of capillaries from larger blood vessels within the healing region. As a whole the described two types of layers could not be distinguished.

TEM analysis at the eight day post-injury (Fig. 2b; Fig. 3b) further showed different types of fibroblasts - elongated, spinous-shape and also irregular in forms. They had abundant and irregularly branched cytoplasm with short plasma membrane processes. Their large nucleuses, picnotic in some of the cells displayed a very delicate chromatin structure, clearly visible heterochromatin dominated in the peripheral nuclear area, and an enormous prominent nucleolus. The cytoplasm contained considerable amount of free ribosomes, polysomes, expanded rough endoplasmic reticulum and poorly developed Golgi apparatus. There were also large fibroblasts with well-developed rough endoplasmic reticulum, which filled most of intracellular space. Spherical mitochondria with clearly visible cristae, phagocytic vacuoles and an abundance of lysosomes presented with uniformly granular, electron-dense appearances were observed. Intensive angiogenesis were presented with numerous blood vessels in the EL substance. In the intercellular space, chaotically rare arranged collagen fibres were detected. There was also small amount of collagen fibers, organized in bundles with different orientations. However, some of them included fibers with altered character-

Results

Normal rats’ EL structure has been previously described by us [15]. Histologically there were two types of layers in the EL (Fig. 1a). The first type is composed of packed fat cells, mast cells, fibroblasts, fibrocytes, collagen fibers, nerves and vessels. The second layer is composed only of fibroblasts, fibrocytes, surrounded by collagen fibers and rarely found blood vessels. The EL is relatively abundant of blood vessels and is relatively better vascular than the ligament substance. TEM revealed in the EL different types of fibroblasts: with spindle-shape, spinous-shape, elongated and irregular form. They had large nucleus, well developed granular endoplasmic reticulum, poorly developed Golgi apparatus, single spherical mitochondria and single lysosomes (Fig. 1b). Collagen fibers in the mid-substance of blood vessels in the EL substance. The EL is relatively abundant of blood vessels and is relatively better vascular than the ligament substance. In the intercellular space, chaotically rare arranged collagen fibres were detected. There was also small amount of collagen fibers, organized in bundles with different orientations. However, some of them included fibers with altered character-
istics and their normal striation pattern of lighter and darker bands were disturbed.

On the sixteenth day after injury (Fig. 4a; Fig. 5a) the granulation margins in the EL were less distinguishable due to intermingling of new collagen fibers with uninjured fibers. The EL tissue was also hyper-cellular, but less than in previous period. The fibroblasts and progenitor cells in the deep part of the EL also migrated in the endoligament, but they were better organized and compacted. In the regenerative zone of the EL clusters of adipocytes with irregular forms and variable sizes were observed. The angiogenesis in the EL tissue began to diminish. As in previous period the two types of layer in the EL could not be discovered.

Ultrastructurally, at the sixteenth day post-injury (Fig. 4b; Fig. 5b) fibroblasts in the scar region had large, lobulated, picnotic in some cells nuclei, but their nucleoli were smaller in diameter and decreased in number, than in previous period. The organelles, such as the granular endoplasmic reticulum and Golgi apparatus did not changed their characteristics. However, the lysosomes and spherical mitochondria decreased in numbers and size. Phagocytic vacuoles in the cytoplasm were detected. There were also fibroblasts with normal characteristics as in controls. The adipocytes had a large vacuole and eccentric, flatten nuclei surrounded by a basal lamina. The number of blood vessels in the EL tissue decreased. Their intima consisted of rough layers of endothelial cells lining the vessels interior surface and had fine processes orientated to the lumen of the vessel. These cells rested on a well-distinct basal lamina. The number of collagen fibers increased in this period. There was collagen fibers with transverse striation organized in bundles with different orientations. However, there were collagens fibers with altered characteristics between the separate bundles as well as included within them. Chaotically orientated
small groups of collagen fibers between bundles were also detected.

On the thirtieth day after injury (Fig. 6a; Fig. 7a) the healing process advanced and cells of the EL infiltrated most of the LCL scar, while collagen disorganization subsided. The EL tissue was similar to controls and was composed of fibroblasts, fibrocytes, adipocytes, mast cells and reduced number of vascular network, than in previous period.

TEM at this period (Fig. 6b) revealed different types of fibroblasts with large nucleuses: elongated fibroblasts, spindle-shaped, spinous-shaped and fibroblasts with irregular form. Some of them had well-formed short cytoplasmic processes. In the nucleus of the fibroblasts there was fine granular chromatin, denser near the inner nuclear membrane structures and one nucleolus. The electron-dense, finely granulated cytoplasm consisted of free ribosomes, well-developed granular endoplasmic reticulum, mitochondria, phagocytic vacuoles, poorly developed Golgi apparatus and one or rarely two lysosomes were observed. Extremely rare fibroblasts with numerous lysosomes were also found (Fig. 7b). Collagen fibers in the intercellular space increased in number. They have uniformly small diameters and were organized in bundles with different orientations. Occasionally, fibers with abnormal striation pattern were discovered. There were also small groups of collagen fibers chaotically orientated.

Discussion and Conclusion

Ligaments' healing involves a complex, coordinated series of events that form a neo-ligament which is more scar-like in character than the native tissue [8]. Numerous studies have investigated the healing process of the collateral ligaments of the knee in animal models [1,2,5,6,10,16,17]. However, very little is known about
changes which occurred in the EL after ligament injury [6,8]. We presented the results from the first detailed ultrastructural study of the early events in EL healing. We presented the modification of the EL scar throughout the initial 30 days after injury of the ligament and described different types of fibroblasts within the EL healing.

The EL structure is quite different from the ligament substance [6,15,18]. The ligaments are described as poorly vascularized connective tissue, composed of fascicles [6]. These fascicles are formed by longitudinal groups of collagen fibers [7]. Each fascicle appears hypocellular and the cells are aligned interspersed between bundles of collagenous fibers [6,7]. In contrast the EL is more cellular than the ligament and is composed of different types of cells, and contains abundant blood vessels and nerves [6,15,18]. Interestingly, when cells are grown in vitro, they do not orientate themselves parallel to the long axis of the tension, but away from it [6]. This orientation is strikingly similar to that found in the EL in vivo, where the cells are orientated perpendicular to the longitudinal axis of the ligament [6]. This suggests that the EL might also be tensile bearing [6].

Due to the characteristics of the EL tissue Lo et al. [6] supposed that the EL may be the major source of cells that made up the ligament scars during ligament healing. According to Chowdhury et al. [19] the EL cells closely resemble the fibroblastic cells which compose ligament scar tissue. Chamberlain et al. [8] also stated that ligament injury stimulates in the EL the release of variety of cell types, including neutrophils and mitotic cells till the 5 days post-injury. Circulating macrophages, resident macrophages, T lymphocytes, hematopoietic cells, vascular endothelial growth factor with crest between 5 to 9 days post injury were also established in the EL. These cells and blood vessels in the EL once localized in the ligament body proliferate and migrate. According to Chamberlain...
et al. [8] the process of creeping substitution by the developing granulation tissue results in cells localizing from the healing region and into the healing edges. The presence of EL cells within the ligament had a number of other implications [6]. As with the epitenon, the EL cells may be involved in differentiation, phagocytosis and collagen synthesis, and thus take part in ligament healing [6].

Our light microscopic study on the eighth day after injury revealed that the scar regions were characterized with hyper-cellularity and intensive angiogenesis. Numerous cells in the deep part of the EL substance migrated in the endoligament enveloping the collagen fibres of the ligament. This was in contrast to relatively small number of cells in the EL presented near the ligament substance in unoperated animals. TEM observations revealed active fibroblasts with short plasma membrane processes. Their large nucleuses had an enormous prominent nucleolus, typical characteristic of cells that were actively synthesizing proteins. The cytoplasm contained considerable amount of free ribosomes, polyosomes, expanded rough endoplasmic reticulum also a sigh for active protein synthesis. High incidence of lysosomes in fibroblasts of injured animals, in contrast to controls exhibited their higher phagocytic activity. The detected high amounts of spherical mitochondria opposed to uninjured animals were a characteristic of a more intense metabolic activity. Intensive angiogenesis was presented with increasing number of blood vessels in the EL substance indicating late inflammation and early proliferative phase. Chaotically arranged single or rarely small groups of collagen fibres did not reveal a well-presented restoration of the EL. On the sixteenth day after injury the light microscopy research presented similar characteristics as in previous period, but the granulation margins in the EL were less distinct and the scar region appeared to be more organized. Deep part of the EL was also hypercellular, differently to controls and these cells also migrated in the endoligament enveloping the collagen fibres of the ligament. The fibroblasts in the scar region also had large nuclei and abundant rough endoplasmic reticulum as in previous period. The number of lysosomes and mitochondria decreased, but was higher than controls. All these characteristics indicated less phagocytic activity and less activation of fibroblasts. In the regenerative zone of the EL there was single or clusters of adipocytes representing a new packing material for EL tissue. However, they had irregular form and varied in size compared to unoperated animals consisted single adipose cells with spherical or polyhedral form when they are closely packed. The number of blood vessels in the EL tissue decreased presenting the remodeling phase. The collagen fibers in this period were also organized in bundles with different orientations and damaged collagen fibers, between and included in them, but more regular than in the previous period. On the thirtieth day after injury the healing process advanced and cells of the EL infiltrate most of the LCL scar, while collagen disorganization subsided. The EL tissue was similar to controls and was composed of fibroblasts, adipocytes, mast cells and reduced number of vascular network, but not fully restored. The cells in the deep part of the EL decreased in numbers as in controls. TEM presented mostly single lysosomes in the EL’s fibroblasts, similar to controls. However, incidentally fibroblast with numerous lysosomes and single fibers with damaged characteristics were discovered, presented not completely restoration of the EL tissue.

Light microscopic investigations revealed that the general cellular morphology of EL was similar to that seen in synovium [19]. This is consistent with the hypothesis that the EL is a specialized form of synovium [6].

Limitations of the current animal model existed and should be noted. First, all injuries were induced by scalpel...
transaction, a method that is not an ideal simulation of common clinical injuries [8,11]. Second, the dehydra-
tion processes during sample preparation of ligaments can induce a shrinkage artifact. Because this study was not
quantitative, shrinkage errors were less important and probably had little effect on our observations. Third, we
studied only the midsubstance of the EL of the LCL. There were studies, which revealed that injury location
affects ligament healing [10].

In conclusion, this study illustrates for the first time the ultrastructural changes of the early reparation of the EL
tissue during first month of ligament healing. As described, the EL is the main source of fibroblasts, pro-
genitor cells and blood vessels that proliferated and infiltrated within the ligament body via the endoligament
during ligament healing. Therefore, detailed knowledge of the EL as well as its normal morphology and its resto-
dration during ligament healing is essential to get a better understanding of the normal healing process and thus
propose optimal treatment regimes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GPG and NKV conceived the study. GPG wrote the manuscript, design the
study, prepared the light and transmission microscopy and analyzed the
results. NKV and PSK helped in analyzing the result section and preparing the
study, prepared the light and transmission microscopy and analyzed the
GPG and NKV conceived the study. GPG wrote the manuscript, design the

References
1. Abramowitch SD, Papageorgiou CD, Debtski RE, Clineff TD, Woo SL: A
biomechanical and histological evaluation of the structure and
function of the healing medial collateral ligament in a goat model.
Knee Surg Sports Traumatol Arthrosc 2003, 11:155-162.
2. Chen J, Josifidis M, Zhu J, Tatarnistevi W, Wang JH: Vanadate ingestion
enhances the organization and collagen fibril diameters of rat healing
medical collateral ligaments. Knee Surg Sports Traumatol Arthrosc 2006,
14:780-785.
3. Liang R, Woo SL, Takakura Y, Moon DK, Jia F, Abramowitch SD: Long-term
effects of porcine small intestine submucosa on the healing of medial
collateral ligament: a functional tissue engineering study. J Orthop Res
2006, 24:811-819.
4. Woo SL, Takakura Y, Liang R, Jia F, Moon DK: Treatment with bioscaffold
enhances the fibril morphology and the collagen composition of
healing medial collateral ligament in rabbits. Tissue Eng 2006,
12:159-166.
5. Creighton RA, Spang JT, Dahners LE: Basic science of ligament healing:
medial collateral ligament healing with and without treatment. Sports Med Arthrosc Rev 2005, 13:145-150.
6. Lo IK, Ou Y, Rattner JP, Hart DA, Marchuk LL, Frank CB, Rattner JB: The
cellular networks of normal ovine medial collateral and anterior
cruciate ligaments are not accurately recapitulated in scar tissue. J
Anat 2002, 200:283-296.
7. Junqueira LC, Carneiro J, Kelley RE: Basic Histology. In Connective tissue
9th edition. New York - Toronto: Lange Medical Books/McGraw-Hill;
1998:89-117.
8. Chamberlain CS, Crowley E, Vanderby R: The spatio-temporal dynamics of
ligament healing. Wound Repair Regen 2009, 17:206-215.
9. Ng GF, Fung DT, Leung MC, Guo X: Comparison of single and multiple
applications of GaAlAs laser on rat medial collateral ligament repair.
Lasers Surg Med 2004, 34:285-289.
10. Frank CB, Lotitz BJ, Shrive NG: Injury location affects ligament healing. A
morphologic and mechanical study of the healing rabbit medial
collateral ligament. Acta Orthop Scand 1995, 66:453-462.
11. Provenzano PP, Hunschter C, Vanderby R Jr: Microstructural morphology
in the transition region between scar and intact residual segments of a
healing rat medial collateral ligament. Connect Tissue Res 2001,
42:123-133.
12. Majima T, Lo IK, Marchuk LL, Shrive NG, Frank CB: Effects of ligament
repair on laxity and creep behavior of an early healing ligament scar. J
Orthop Sci 2006, 11:272-277.
13. Takeyama N, Sakai H, Ohtake H, Mashitoh I, Tamai K, Saotome K: Effects
of hyperbaric oxygen on gene expressions of procollagen, matrix
metalloproteinase and tissue inhibitor of metalloproteinase in injured
medial collateral ligament and anterior cruciate ligament. Knee Surg
Sports Traumatol Arthrosoc 2007, 15:443-452.
14. Tashiro T, Hiraoka H, Ikeda Y, Ohnuki T, Suzuki R, Ochi T, Nakamura K, Fukui
M: Effect of GDF-5 on ligament healing. J Orthop Res 2006, 24:71-79.
15. Georgiev GP, Vidinov N: Investigation of the morphology of the
epiligament of the lateral collateral ligament during postnatal
development in a rat knee model. CR Acad Sci 2009, 2014:173-1478.
16. Frank CB: Ligament Healing: Current Knowledge and Clinical
Applications. J Am Acad Orthop Surg 1996, 4:74-83.
17. Frank CB, Hart DA, Shrive NG: Molecular biology and biomechanics of
normal and healing ligaments - a review. Osteoarthritis Cartilage 1999,
7:30-140.
18. Chowdhury P, Matyas JR, Frank CB: The “epiligament” of the rabbit
medial collateral ligament: a quantitative morphological study.
Connect Tissue Res 1991, 27:33-50.
19. Key JA: The reformation of synovial membrane in the knees of rabbits
after synovectomy. J Bone Joint Surg 1925, 7:793-813.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2474/11/117/peepub