On the linear processes of a stationary time series $AR(2)$

Mouloud Goubi

Abstract. Our aim in this work is to give explicit formula of the linear processes solution of autoregressive time series $AR(2)$ with hint of generating functions theory by using the Horadam numbers and polynomials.

1. Introduction

The time series (see [1]) we observe are the realizations of Random variables Y_1, \cdots, Y_t which are a part of a larger stochastic process $\{Y_t; t \in \mathbb{Z}\}$. Let $\{Y_t; t \in \mathbb{Z}\}$ a zero-mean time series. Consider \mathcal{H} the Hilbert space spanned by the Random variables Y_t with inner product

$$\langle X, Y \rangle = E(X, Y)$$

and the norm

$$\|X\| = \sqrt{E(X^2)}.$$

The mean function of a time series is defined by $\mu(t) = E(Y_t)$ and the autocovariance function is given by $\gamma(s, t) = cov(Y_s, Y_t)$. The mean and the autocovariance functions are fundamental parameters and it would be useful to obtain sample estimates of them. For general time series there are $2t + \frac{(t-1)}{2}$ parameters associated with Y_1, \cdots, Y_t and it is not possible to estimate all these parameters from t data values. To make any progress we consider the times series is stationary.

On general a times series Y_t is strictly stationary if for $k > 0$ and any t_1, \cdots, t_k of \mathbb{Z}, the distribution of $(Y_{t_1}, \cdots, Y_{t_k})$ is the same as that for $(Y_{t_1+u}, \cdots, Y_{t_k+u})$ for every u. If Y_t is stationary then $\mu(t) = \mu$ and $\gamma(s, t) = \gamma(s-t, 0)$. We say Y_t is weakly stationary if $E(Y_t^2) < \infty$, $\mu(t) = 0$ and $\gamma(t+u, t) = \gamma(u, 0)$. When time series are stationary it is possible to simplify the parameterizations of the mean and auto-covariance functions. In this case we can define the mean of the series to be $\mu = E(Y_t)$ and the autocovariance function to be $\gamma(u) = cov(Y_{t+u}, Y_t)$.

If the random variables which make up Y_t are uncorrelated, have means 0 and

\textit{Mathematics Subject Classification.} Primary 62M10 Secondary 05A15.

\textit{Key words and phrases.} Linear processes; time series; generating functions; Horadam numbers; Horadam polynomials.
2. MOULOUDE GOUBI

variance \(\sigma^2 \) (are so called white-noise series). Then \(Y_t \) is stationary with auto-

(1.1) \[\gamma(u) = \begin{cases} \sigma^2 & \text{if } u = 0, \\ 0 & \text{otherwise.} \end{cases} \]

covariance function

2. Autoregressive series

If the time series \(Y_t \) satisfies the identity

\[
(2.1) \quad Y_t = \phi_1 Y_{t-1} + \cdots + \phi_p Y_{t-p} + \epsilon_t
\]

where \(\epsilon_t \) is white noise and \(\phi_i \) are constants, then \(Y_t \) is called an autoregressive

series of order \(p \) and denoted by \(AR(p) \). These series are important, it explain how

the next value observed is a slight perturbation of a simple function of the most

recent observations. The solution; if exist in the form

\[
Y_t = \sum_{u=0}^{\infty} \phi_u \epsilon_{t-u}
\]

is called a linear processes with the condition \(\sum_{u=0}^{\infty} |\phi_u|^2 < \infty \) to assure the con-

vergence of the last series in \(\mathcal{H} \). The lag operator \(L \) for a time series \(Y_t \) is defined

by

\[
L(Y_t) = Y_{t-1}
\]

and is linear. The last relation (2.2) can be written in the form

\[
(2.2) \quad Y_t = \phi_1 L(Y_t) + \cdots + \phi_p L^p(Y_t) + \epsilon_t.
\]

To found \(Y_t \), we write

\[
(1 + \phi_1 L + \cdots + \phi_p L^p)Y_t = \epsilon_t.
\]

If the operator \(1 + \phi_1 L + \cdots + \phi_p L^p \) is bijective we then write

\[
Y_t = (1 - \phi_1 L - \cdots - \phi_p L^p)^{-1} \epsilon_t.
\]

The linear processes of \(AR(1) \) is completely known. We have \(Y_t = (1 - L)^{-1} \epsilon_t \),

then \(Y_t = \sum_{u=0}^{\infty} \phi_1^u \epsilon_{t-u} \) with the condition \(\sum_{u=0}^{\infty} |\phi_1|^2 u < \infty \), which means that

\(|\phi_1| < 1 \). An equivalent condition is that the root of the equation \(1 - \phi_1 z = 0 \) lies

outside the unit circle in the complex plane \(\mathbb{C} \).

The \(AR(2) \) model is defined by \(Y_t = \phi_1 L(Y_t) + \phi_2 L^2(Y_t) + \epsilon_t \). Then we write

\[
Y_t = (1 - \phi_1 L - \phi_2 L^2)^{-1} \epsilon_t.
\]

The decomposition gives

\[
1 - \phi_1 L - \phi_2 L^2 = (1 - c_1 L)(1 - c_2 L).
\]

We can invert the operator if we can invert each factor separately. This is possible

if and only if \(|c_1| < 1 \) and \(|c_2| < 1 \), or equivalently, if the roots of the polynomial

\(1 - \phi_1 z - \phi_2 z^2 \) lie outside the unit circle. But from the symmetric relations of the

roots we have \(c_1 + c_2 = \phi_1 \) and \(c_1 c_2 = \phi_2 \). The strong conditions of convergence

are \(|\phi_1| < 2 \) and \(|\phi_2| < 1 \).
In this work we are interested by times series belong to AR(2) respecting the conditions \(|\phi_1| < 2 \) and \(|\phi_2| < 1 \). The linear processes \(Y_t \) can be computed by two different methods. The first expression; well-known by the statisticians which consist to compute each AR(1) separately and take the product. We reproduce it directly by the following theorem.

Theorem 2.1.

\[
Y_t = \sum_{u=0}^{\infty} \sum_{k=0}^{u} \phi_1^u (\phi_2 / \phi_1)^k \epsilon_{t+k-u} \epsilon_{t-k}.
\]

The identity (2.3) is interesting, but the second member of the equality contains the product of two white noise \(\epsilon_t \). Then it is not as the standard form of linear processes. To escape this problem the second way is given by the following theorem.

Theorem 2.2.

\[
Y_t = \sum_{u=0}^{\infty} \left(\sum_{k=0}^{\lfloor u \rfloor} \binom{u-k}{k} (\phi_2 / \phi_1^2)^k \phi_1^u \right) \phi_1^u \epsilon_{t-u}.
\]

The condition \(|\phi_1| < 2 \) and \(|\phi_2| < 1 \) for the convergence of the linear processes \(Y_t \) on \(\mathcal{H} \) can be replaced by the condition

\[
\sum_{u \geq 0} \left(\sum_{k=0}^{\lfloor u \rfloor} \binom{u-k}{k} (\phi_2 / \phi_1^2)^k \phi_1^u \right)^2 < \infty.
\]

Letting \(\phi_2 = \phi_1^2 \) in the expression (2.4) Theorem 2.2; the following corollary is immediate.

Corollary 2.1.

\[
Y_t = \sum_{u=0}^{\infty} \left(\sum_{k=0}^{\lfloor u \rfloor} \binom{u-k}{k} \phi_1^u \epsilon_{t-u} \right) \phi_1^u \epsilon_{t-u}.
\]

The symbol \(\binom{u-k}{k} \) (see [2]) occurs an important place in combinatorics. It is a particular case of \(\binom{u-k-l}{k-l} \) which is the number of \(k \)-blocks \(P \subset [u] = \{1, 2, \ldots, u\} \) with the following property; between two arbitrary points of \(P \) are at least \(l \) points of \([n] \) which do not belong to \(P \).

2.1. Proof of main results. From the decomposition \(1 - \phi_1 L - \phi_2 L^2 = (1 - c_1 L) (1 - c_2 L) \) we conclude that

\[
Y_t = \left(\sum_{u \geq 0} \phi_1^u \epsilon_{t-u} \right) \left(\sum_{u \geq 0} \phi_2^u \epsilon_{t-u} \right)
\]

Use Cauchy product of series to get the desired result (2.3) Theorem 2.1. For more details about this technique we refer to [4].
MOULOUD GOUBI

The proof of second theorem needs use techniques from generating functions theory (see [3]). We consider

$$\frac{1}{1 - \phi_1 xz - \phi_2 z^2} = \sum_{u \geq 0} A_u(x)t^u.$$

where $A_u(x)$ is a polynomial of degree u to compute. Write $f(x, z) = \frac{1}{1 - \phi_1 xz - \phi_2 z^2}$ then

$$(1 - \phi_1 xz - \phi_2 z^2) f(x, z) = 1$$

and

$$\sum_{u \geq 0} A_u(x)z^n - \phi_1 x \sum_{u \geq 0} A_u(x)z^{n+1} - \phi_2 \sum_{u \geq 0} A_u(x)z^{n+2} = 1$$

Thus

$$\sum_{u \geq 0} A_u(x)z^n - \phi_1 x \sum_{u \geq 1} A_{u-1}(x)z^u - \phi_2 \sum_{u \geq 2} A_{u-2}(x)z^u = 1$$

and

$$A_0(x) + (A_1(x) - \phi_1 x A_0(x)) z + \sum_{u \geq 2} (A_u(x) - \phi_1 x A_{u-1}(x) - \phi_2 A_{u-2}(x)) z^u = 1$$

Since this entire series is constant we deduce that $A_0(x) = 1$, $A_1(x) = \phi_1 x$ and others are given by the recursion relation

$$A_u(x) = \phi_1 x A_{u-1}(x) + \phi_2 A_{u-2}(x).$$

These polynomials are well-known and so called Horadam polynomials. G. B. Djordjević and G. V. Milovanović (see [3]) provide the following explicit representation

$$A_u(x) = \sum_{k=0}^{\left\lfloor u/2 \right\rfloor} \frac{\phi_2^k (u-k)!}{k!(u-2k)!} (\phi_1 x)^{u-2k}.$$

Letting $x = 1$ we obtain Horadam numbers A_n these are written by the form

$$A_u = \phi_1^u \sum_{k=0}^{\left\lfloor u/2 \right\rfloor} \frac{(u-k)!}{k!(u-2k)!} (\phi_2/\phi_1)^k.$$

and admit for generating function

$$\frac{1}{1 - \phi_1 t - \phi_2 t^2} = \sum_{u \geq 0} A_u t^u.$$

Numbers A_n can be defined from the following recursion relation

$$A_u = \phi_1 A_{u-1} + \phi_2 A_{u-2}, \quad n \geq 2$$

with $A_0 = 1$ and $A_1 = \phi_1$. Instead of z we take the operator L and it is obvious to obtain the identity (2.4) Theorem 2.2.
References

[1] P. J. Brockwell and R.A. Davis, *Introduction to Time Series and Forecasting*, Springer 2002.
[2] L. Comtet, *Advanced Combinatorics*, D. Riedel Publishing Company Boston USA 1974.
[3] G. B. Djordjevic and G. V. Milovanovic, *Special Classes of Polynomials*, University of Ni,
Faculty of Technology, Leskovac, 2014.
[4] M. Goubi, *Successive derivatives of Fibonacci type polynomials of higher order in two vari-
ables*, Filomat 32(4) (2018), pp. 5149–5159.

Mouloud Goubi, Department of Mathematics, University of UMMTO RP. 15000,
Tizi-ouzou, Algeria, Laboratoire d’Algèbre et Théorie des Nombres, USTHB Alger

E-mail address: mouloud.goubi@ummto.dz