A multi-approach study to reveal eel life-history traits in an obstructed catchment before dam removal

Nils Teichert · Anne Lizé · Hélène Tabouret · Claudia Gérard · Gilles Bareille · Anthony Acou · Alexandre Carpentier · Thomas Trancart · Laure-Sarah Virag · Emma Robin · Morgan Druet · Jordan Prod’Homme · Eric Feunteun

Received: 29 November 2021 / Revised: 9 February 2022 / Accepted: 19 February 2022 / Published online: 9 March 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract River fragmentation is expected to impact not only movement patterns and distribution of eels within catchment, but also their life-history traits. Here, we used otolith multi-elemental signatures to reconstruct life sequences of European silver eels within an obstructed catchment, just before the removal of hydropower dams. Beyond providing an initial state, we hypothesized that otolith signatures can provide crucial information on the way eels use the watershed. Indeed, their spatial distribution is expected to shape life-history traits, including condition coefficient, trophic level, growth rate, or infection by metazoan parasites. While Sr:Ca and Ba:Ca ratios were complementary in tracing fish movements between freshwater and estuary, the Ba:Ca variations allowed to discriminate three freshwater sectors. The eels assigned to the midstream sector were more mobile and exhibited lower growth rates, probably in response to higher competition at the vicinity of dams. While most eels are currently produced by downstream and midstream sectors, eels assigned to upper reaches of connected tributaries generally

Handling editor: Michael Power

N. Teichert (✉) · A. Lizé · T. Trancart · E. Feunteun
UMR 7208 BOREA, MNHN, CNRS, IRD, SU, UCN, UA, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France
e-mail: nils.teichert@mnhn.fr

N. Teichert · A. Lizé · T. Trancart · L.-S. Virag · E. Robin · M. Druet · J. Prod’Homme · E. Feunteun
MNHN, Station Marine de Dinard, CRESCO, Dinard, France

A. Lizé
School of Life Sciences, University of Liverpool, Liverpool, UK

H. Tabouret · G. Bareille
Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France

C. Gérard
UMR 6553 ECObio, CNRS, Ecosystèmes, Biodiversité, Evolution, Université de Rennes 1, Rennes, France

A. Acou
Centre d’Expertise et de Données PatriNat (OFB – CNRS – MNHN), Station Marine de Dinard, CRESCO, Dinard, France

A. Acou
Pôle R&D OFB, INRAE, Institut Agro - UPPA MIAME (Migrateurs Amphihalins dans leur Environnement), Rennes, France

A. Carpentier
Université de Rennes 1, BOREA (Muséum National d’Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles), Campus de Beaulieu, 35000 Rennes, France

M. Druet
INRAE U3E “Experimental Unit on Ecology & Ecotoxicology”, Rennes, France
display higher richness in native parasite and higher body condition and lipid reserve, known to promote the success of migration and reproduction. In the near future, the dam removals will represent an outstanding experimental framework for evaluating impacts of catchment reconnection.

Keywords Phenotypic plasticity · Life-history trait · River barrier · Otolith microchemistry · LA-ICP-MS · Metazoan parasites

Introduction

Fragmentation of aquatic systems is a major threat for biodiversity of continental ecosystems, and thus remains a priority issue for conservation and restoration actions (Nilsson et al., 2005; Reid et al., 2019). In Europe, at least 1.2 million instream barriers were recently recorded (Belletti et al., 2020), and more than 8700 additional hydropower plants are planned or under construction (WWF et al., 2019). For migratory fish, the loss of connectivity, caused by river barriers, heavily restricts access to spawning or growth habitats, and can lead to the confinement of populations in bounded sub-optimal areas (Drouineau et al., 2018; Forget et al., 2018; Verhelst et al., 2021). The decline of available habitats and the fish accumulation downstream of barriers promote over-density conditions, enhancing intra-specific competition and spread of some pathogens, which can ultimately affect growth and survival (Laffaille et al., 2003; Machut et al., 2007; Thielen et al., 2007; Costa et al., 2008). Notwithstanding the growing scientific literature, the impacts of dams on life-history traits of migratory fish remains poorly understood, despite their importance for river basin management (e.g., Pess et al., 2014; Lin and Robinson, 2019; Righton et al., 2021). The decline of available habitats and the fish accumulation downstream of barriers promote over-density conditions, enhancing intra-specific competition and spread of some pathogens, which can ultimately affect growth and survival (Laffaille et al., 2003; Machut et al., 2007; Thielen et al., 2007; Costa et al., 2008). Notwithstanding the growing scientific literature, the impacts of dams on life-history traits of migratory fish remains poorly understood, despite their importance for river basin management (e.g., Pess et al., 2014; Lin and Robinson, 2019; Righton et al., 2021).

The European eel is a facultative catadromous species, widely distributed throughout a range of aquatic ecosystems, including lakes, rivers, brackish waters, or small coastal streams (Daverat et al., 2005; Daverat & Tomas, 2006; Tabouret et al., 2010). Once reaching the continental shelf, glass eels progressively settle in continental habitats (Feunteun et al., 2003) for three to sometimes more than 30 years before initiating their puberty toward the silver stage (Aroua et al., 2005) and starting their migration back to the spawning ground (Tesch, 2003; Righton et al., 2016). In addition to a strong sexual dimorphism, where migrating females are larger and older than males (Tesch, 2003), environmental conditions and thus aquatic habitats encountered during the continental stage critically influence the life-history traits (Vollestad, 1992; Jessop, 2010; Daverat et al., 2012; Boulenger et al., 2016a, b). Such changes in life-history traits are generally driven by multifaceted mechanisms, involving density- and resource-dependent processes (Feunteun et al., 2003), which in turn can impact survival and reproductive success of eels (Mateo et al., 2017).

Silver eel body condition and life-history traits are determinant for their reproductive success, since eels have to travel more than 5000 km before breeding (Belpaire et al., 2009; Cleveastam et al., 2011). For example, the size- and age-at-silvering greatly fluctuate along river catchments, with lower growth rates and older eels observed in upper reaches (Daverat et al., 2012), as opposed to eels residing in brackish waters, with earlier maturation and higher growth rates (Cairns et al., 2009). The condition of eels is also closely related to variation in their diet across different habitats, leading to changes in overall condition between marine, brackish, and freshwater habitats (Parzanini et al. 2021). Additionally, eel life-history traits are affected by contamination and parasitism, which are locally diverse (e.g., Palstra et al., 2007; Belpaire et al., 2009; Geeraerts and Belpaire, 2010; Amilhat et al., 2014). For instance, the overall body condition of silver eels is generally reduced when contaminated by metallic compounds (Maes et al., 2005) as well as when infected by parasites, such as the invasive species of monogenean infecting gills *Pseudodactylogyrus* sp., or the trophically transmitted swimbladder nematode *Anguillicoloides crassus* (Kuwahara, Niimi & Itagaki, 1974) (Palstra et al., 2007; Gérard et al., 2013). The sexual determinism is another peculiarity of eels as environmental conditions play a decisive role in the produced sex-ratio (Geffroy & Bardonnet, 2016). Indeed, low density conditions observed in headwater streams promote the production of female eels, whereas lower reaches or areas located downstream...
barriers tend to produce a majority of males (Feunteun et al., 2003; Costa et al., 2008).

At catchment scale, eel life-history traits such as sex determination, age-at-silvering, fecundity, lipid reserves, or health status are thus expected to be highly sensitive to disruption of river connectivity. The continental phase of eels ends with the silver stage where eels having accumulated enough resources to quit the river and migrate back to their maritime reproductive place (seaward migration). Therefore, focusing on the silver stage appears particularly relevant as the life-history traits of silver eels integrate the various conditions encountered during their continental stage. Beyond direct parameters measured on fish (e.g., size, lipid reserves), analysis of otolith can provide additional information on the past conditions encountered by eels (Campana, 1999). Otolith macrostructures can be investigated to estimate the age of eels, as well as their growth rates during the continental stage (Daverat & Tomas, 2006). Moreover, otolith elemental composition can yield powerful indications to reconstruct the movement patterns, providing there is sufficient heterogeneity in ambient water chemistry to discriminate habitats crossed by fish (Secor et al., 1995). Although a large panel of trace elements can be tracked using LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometry), not all elements provide information on the surrounding habitats and some of them are more influenced by the fish physiology than by its environment (e.g., Mg, Limburg et al., 2018). Strontium:Calcium (Sr:Ca) and Barium:Calcium (Ba:Ca) elemental ratios are known to reflect changes in ambient water while poorly influenced by physiological regulation pathways (Daverat et al., 2005; Hüssy et al., 2021). Modifications in Sr:Ca and Ba:Ca ratios along an otolith transect are thus commonly used to trace fish migration in relation to salinity ambient conditions (Tsukamoto & Nakai, 1998; Daverat et al., 2006; Tabouret et al., 2010), as well as movements along freshwater catchments (Teichert et al., 2018). Accordingly, otolith elemental signatures can provide crucial information on the way in which eels moved in and used a water catchment, and how their spatial distribution shapes their life-history traits. In complement, metazoan parasites of eels may also give information on host (e.g., diet, movements, condition), and more generally on free-living biodiversity and changes in ecosystems (e.g., Marcogliese, 2004; Hudson et al., 2006 for reviews).

Here, we provide an overview of movement patterns, metazoan parasites, and life-history traits of the European eel, *Anguilla Anguilla* (Linnaeus, 1758), within an obstructed catchment, the Sélune River (Lower-Normandy, western France), to get an initial state before the complete removal of two large hydro-power dams. More precisely, otolith microchemistry signatures (i.e., Sr:Ca and Ba:Ca ratios) were used to reconstruct life sequences of migrating silver eels and investigate their movement patterns, to measure how their spatial distribution impacts the life-history traits in a fragmented catchment.

Materials and methods

Study area and fish sampling

The Sélune River flows over 91 km from the source to the English Channel in the Mont Saint-Michel Bay, Lower-Normandy, France (Fig. 1). While the watershed covers 1106 km², its upper part is disconnected (827 km²) by two large hydropower dams (La Roche-qui-Boit (H = 16 m) in downstream and Vezins (H = 36 m) in upstream) that disrupt the ecological continuity. Accordingly, the distribution of migratory fish, including eels, is currently limited to lower reaches of the Sélune River (279 km²), from the estuary to the La Roche-qui-Boit dam (Forget et al., 2018). Nevertheless, the three tributaries located downstream the dam (i.e., Moulinet, Oir, and Beuvron Rivers) are freely accessible and currently colonized by eels till their upper reaches. Recently, environmental authorities and local operators decided to remove the two dams to restore continuity in compliance with the EU Water Framework Directive. Upper reaches of the Sélune River will thus be reconnected and freely accessible to migratory fish by 2022 (Fig. 1). Although the first dam located upstream of the Sélune (i.e., La Roche-qui-Boit) was teared down in 2019–2020, the removal of the second dam, which constitutes the main barrier, will only be effective in late 2022.

To provide an overview of the life-history traits of eels produced by the whole Sélune catchment, migrating silver stage eels were collected at a fishery
specifically set up for catching migratory eels (site 1), located downstream of the Séline River and its main tributaries (Fig. 1). This site is located in a freshwater estuary but is subjected to tidal influence during spring tides. Silver eels were caught at night during two migration seasons (autumn 2019 and autumn 2020) while upper reaches of the Séline River were still inaccessible for them. A stow net (L = 20 m, W = 6 m, H = 3 m) was used to sample eels during their seaward migration (Durif et al., 2008). In order to optimize sampling efforts and ensure high capture rates, the net was placed in the main stem of the river when night high discharge conditions were met, since major migration runs mostly occur during these flows (Teichert et al., 2020). Silver stage of eels was visually assessed following previously defined criteria (Acou et al., 2005), such as the color of the back and belly, the presence of a well-defined lateral line, and a high Pankhurst ocular index (OI > 6.5) (Pankhurst, 1982). A total of 35 (Total Length, min–max TL: 370—862 mm) and 39 silver eels (TL: 321–946 mm) were collected during first (2019) and second migration seasons (2020), respectively.

Additionally, changes in otolith elemental signatures along the Séline catchment were also assessed in yellow stage eels, collected in six freshwater locations distributed on the Séline catchment (Fig. 1). For each site, 5 yellow eels (N = 30; TL: 199–536 mm) were caught by electrofishing in September 2019. It was assumed that yellow eels were residents (Lafaille et al., 2005), so that otolith signature was used as spatial references to describe the chemical signature of the sites where they were caught (see thereafter for method details).
All collected eels (yellow and silver stage) were anesthetized with a Benzocaine solution (15 mg. L\(^{-1}\)) before being euthanized with an overdosed solution of Benzocaine (400 mg.L\(^{-1}\)), and then frozen (-20 °C) until dissections at the laboratory. This study was approved by the Cuvier Ethic Committee (project n°68–106), the local representative of the French national ethic committee for animal in research.

Description of life-history traits

For each silver eel, a range of life-history traits were investigated. These life-history traits can be pooled in three main categories according to (1) the river life conditions encountered by eels (i.e., trophic level, growth, age-at-silvering), (2) the genitor quality when migrating back to their spawning ground (i.e., size-at-silvering, condition coefficient, lipid reserve, gonads maturation), and (3) the metazoan parasite community associated with eels (Tables 1 and 2).

Eel biometry

Eels were measured (Total Length, TL, mm) and weighed (Total Weight, TW, g) to calculate the Fulton (1904) condition coefficient (K) according to the following formula: \(10^{5} \times \frac{TW}{TL^3}\). Individuals were then dissected to determine their sex through macroscopic observations of the gonads (Colombo et al., 1984), and the gonads (Gonad Weight, GW, g) and the liver (Liver Weight, LW, g) were weighted. The gonadosomatic (GSI, %) and hepatosomatic (HSI, %) indices were calculated as the ratio of organ weight to body weight: GSI = GW/TW×100, and HSI = LW/TW×100, respectively. GSI provides insights on the level of gonad maturation and individual reproductive investment, whereas HSI is a proxy of lipid reserves, which are involved in gonad maturation and sea migration.

Muscle stable isotope

For each eel, one muscle tissue sample was dissected just below the dorsal fin to determine the ratio of carbon relative to nitrogen (C:N ratio). This ratio was then used as a proxy of lipid content stored in silver eels’ muscle (McConnaughey & McRoy, 1979; Post et al., 2007). Nitrogen isotopic signature was used to estimate eel trophic level and was expressed in the delta unit notation as deviation from standard

Table 1 Summary of life-history traits and parasite descriptors of females \((n = 34)\) and males \((n = 40)\) of silver eels collected downstream of the Sélune catchment

Life-history traits	Females	Males	\(p\)-value
River life condition			
Trophic level	11.93 ± 0.29	13.14 ± 0.30	0.008
Growth (mm year\(^{-1}\))	36.23 ± 1.72	37.78 ± 1.77	0.534
Age (year)	15.32 ± 0.76	9.10 ± 0.40	< 0.001
Spawning migration			
Size (mm)	586.18 ± 19.71	380.20 ± 5.60	< 0.001
Condition-K	0.19 ± 0.00	0.18 ± 0.00	0.028
Lipids-C:N	7.65 ± 0.19	7.48 ± 0.24	0.613
Lipids-HSI (%)	1.64 ± 0.04	1.52 ± 0.04	0.046
Gonads-GSI (%)	1.80 ± 0.07	0.39 ± 0.06	< 0.001
Spawning migration			
Total prevalence (%)	70.59 ± 7.81	90.00 ± 4.74	0.032
Total abundance	8.71 ± 2.05	8.05 ± 2.04	0.331
Species richness	1.35 ± 0.21	1.50 ± 0.14	0.598
Anguillicoloides crassus (prev)	58.82 ± 8.44	82.50 ± 6.01	0.024
Anguillicoloides crassus (abd)	3.44 ± 0.72	3.28 ± 0.46	0.697
Pseudodactylogyrus sp. (prev)	29.41 ± 7.81	40.00 ± 7.75	0.34
Pseudodactylogyrus sp. (abd)	1.68 ± 0.75	2.15 ± 0.92	0.142
Acanthocephalus spp. (prev)	14.71 ± 6.07	12.50 ± 5.23	0.782
Acanthocephalus spp. (abd)	2.88 ± 1.66	0.28 ± 0.13	< 0.001

The means ± standard error are presented along with the significance of deviance reduction tests investigating differences between sexes. abd abundance, prev prevalence (%). Significant effects \((p < 0.05)\) are indicated in bold.
Vol: (1234567890)

(1890 Hydrobiologia (2022) 849:1885–1903)

\[
\delta^{15}N = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000,
\]

where \(R \) is the ratio \(^{15}\text{N}:{}^{14}\text{N}\) in the sample and in the standard.

For each muscle sample, nitrogen and carbon total quantities, and the \(^{15}\text{N}:{}^{14}\text{N}\) ratios were measured by continuous flow isotope mass spectrometry (CF-IRMS) using a Thermo Scientific Delta V Advantage mass spectrometer coupled to a Thermo Scientific Flash 2000 elemental analyzer. Analytical precision (standard deviation) was < ±0.15‰ of reference material.

Age estimate

Sagittal otoliths of eels were extracted and embedded in epoxy resin (Araldite 2020, Huntsman Corporation), then grounded along the longitudinal plane and polished until the primordium was reached (Acou et al., 2013). The age-at-silvering of eels (AGE, \(y \)) was estimated from a visual count of annuli (rings) on the otolith section, beginning from the first growth check outside the elver mark, which reflects the beginning of continental phase (Davérat & Tomas, 2006). Readings were conducted independently by two operators to avoid bias, and when age estimates differed, a simultaneous reading was performed to define a consensual age estimate. The age reading was carried out along the longest transect of otolith, between the nucleus and the outer edge. The distance separating each annuli was then measured (µm) on a micrograph picture using the ImageJ software v. 1.53e (Rueden et al., 2017). Finally, the mean annual growth rate (\(GR = (TL-65)/AGE \)) of eel during their continental phase was calculated following the formula: \(GR = (TL-65)/AGE \), where 65 mm is the mean size at recruitment (Durif et al. 2020).

Table 2 Community of the ten metazoan parasite taxa found in 74 European silver eels collected in the Sélune catchment

Parasite taxa	Habitat	Sector	Diet	Prevalence	Abundance	Infection pathway
MYXOZOA						
Myxidium giardii (Cepede, 1906)	G	DMU	–	9.46 ± 3.40	0.96 ± 0.53	Ingestion of spores released by oligochaete HI
MONOGENA						
Pseudodactylogyrus sp. Gusev, 1965	G	EDMU	Surface browser	35.14 ± 5.55	1.93 ± 0.60	Active attachment on gill lamellae
CESTODA						
Bothriocephalus claviceps (Goeze, 1782)	I	M	Osmotrophic	1.35 ± 1.34	0.01 ± 0.03	HI or HP ingestion (copepods, fish)
NEMATODA						
Anguillulicoides crassus (Kuwahara et al., 1974)	S	DMU	Hematophagous	71.62 ± 5.24	3.35 ± 0.41	HI or HP ingestion (copepods, ostracods, gastropods, fish)
Paraguipimperia tenerrima (Linstow, 1878)	I	DU	Chyle feeder	4.05 ± 2.29	0.15 ± 0.09	HI ingestion (unknown)
Raphidascaris acus (Bloch, 1779)	I	D	Chyle feeder	1.35 ± 1.34	0.01 ± 0.01	HI or HP ingestion (Gammarus, fish)
Spinincterus inermis (Zeder, 1800)	I	U	Chyle feeder	2.70 ± 1.89	0.46 ± 0.45	HI or HP ingestion (mayflies, fish)
ACANTHOCEPHALA						
Acanthocephalus anguillae (Müller, 1780)	I	MU	Osmotrophic	2.70 ± 1.89	0.07 ± 0.05	HI or HP ingestion (Asellus, fish)
Acanthocephalus clavula Dujardin, 1845	I	DMU	Osmotrophic	9.46 ± 3.40	0.89 ± 0.50	HI or HP ingestion (Asellus, fish)
Acanthocephalus lucii (Müller, I 1776)	I	MU	Osmotrophic	5.41 ± 2.63	0.51 ± 0.33	HI or HP ingestion (Asellus, fish)

Species are listed along with their microhabitat (\(G \) Gills, \(I \) Intestine, \(S \) Swimbladder), main sector (\(E \) estuary, \(D \) downstream, \(M \) midstream, \(U \) upstream), diet prevalence (% ± se), abundance (mean abundance ± se), and infection pathway (\(HI \) intermediate host, \(HP \): paratenic host) (Kennedy et al., 1992; Benajiba & Marques, 1993; Moravec & Scholz, 2015).
Metazoan parasites

The presence of metazoan parasites was meticulously checked in each silver eel to determine the parasite constraint and provides information on host and environment (Gérard et al., 2013). The gills, the heart, the digestive tract, the liver, and the swimbladder were dissected using a binocular stereomicroscope. All the metazoan parasites were counted per organ and per fish and morphologically identified based on Fomena and Bouix (1997) for Myxozoa, Ogawa and Egusa (1976) for Monogena, Khalil et al. (1994) for Cestoda, Golvan (1969) and Brown et al. (1986) for Acanthocephala, and Moravec (1994) for Nematoda. The parasitological parameters used to describe the parasite community were the prevalence (i.e., number of fish infected with a particular taxon / number of fish examined), the taxa richness (i.e., number of parasite taxa infecting eels), and the abundance (i.e., number of individuals of a particular parasite taxon in/on a single fish) (Bush et al., 1997).

Analysis of otolith microchemistry

The elemental composition of otoliths (Sr and Ba) was quantified using femtosecond laser ablation (LA, IR 1030 nm; Alfamet-Novalase, France) coupled to an ICP-MS (DRCII; Perkin Elmer, Shelton). The ablation was performed with a raster scanning strategy along the longest transect of each otolith with a laser beam of 15 μm of diameter, at a frequency of 20 Hz, moving forward at 5 μm s⁻¹ as previously described (Tabouret et al., 2011). The resulting elemental profile consists of successive measures taken every 5 μm along the otolith. The external calibration was done by using the international reference materials NIST614, NIST612, and NIST610 (National Institute of Standards and Technology, USA). Calcium was used as an internal standard to account for variations in the amount of ablation material and laser energy in ablation efficiency. Analytical precision was measured using the otolith certified reference materials: fish NIES22 (National Institute for Environmental Studies, Japan; Yoshinaga, Nakama, Morita, & Edmonds, 2000) and FEBS-1 (National Research Council Canada, Canada). Elementary compositions were expressed in elementary mass ratios, so that lifetime movements of eel were inferred from Sr:Ca and Ba:Ca elemental ratios.

Reconstruction of life sequences

Habitat changes during the eel continental life were inferred from otolith elementary profiles by considering only elemental values recorded outside the glass eel mark (Daverat & Tomas, 2006). Firstly, bivariate time series based on Sr:Ca and Ba:Ca ratios were screened to identify change points, and then partitioned to produce segments (Lavielle, 1999; Patin et al., 2020), each homogeneous in their elemental concentration, and therefore assumed to represent sedentary phases in distinct habitats. A minimum segment length of four measurements (i.e., length of 20 μm on the otolith) has been specified for the segmentation process to avoid over-segmentation. A segment of 20 μm of the otolith approximately represents one month of an eel life at the beginning of its continental phase but may reflect nearly three months of its life when older due to slower growth.

Then, means of elemental ratios were calculated for each otolith segment, and a k-means clustering method was applied to determine clusters of segments with similar Sr:Ca and Ba:Ca signatures, representing eel residing in the same environment. By contrast, variations in Sr:Ca and Ba:Ca signatures correspond to eel that moved from one habitat to a distinct one. The optimal number of clusters was selected based on the total within sum of squares (TWSS). The ecological interpretation of clusters was supported by the projection of marginal signatures (recorded on terminal otolith segments) of resident eels (yellow stage) on the bivariate plan. This approach assumes that the signature at the otolith edge, which is the last period of a fish life, indicates the chemical signature of the last living habitat before being caught. To improve the interpretation of elemental signatures, relationships between marginal signatures of resident eels and the distance from the river mouth were investigated using Pearson correlation tests. Significant relationships suggest gradual changes in elemental ratios along the Sélune catchment. Based on these indications and the knowledge on Sr:Ca and Ba:Ca responses to salinity variations (e.g., Tsukamoto and Nakai, 1998; Daverat et al., 2005; Tabouret et al., 2010), elemental signatures of clusters were used to assign the otolith segments to broad sectors of the Sélune catchment.

Finally, eel successions of movements during their continental phase were defined from sector-assigned segments. Age-related changes in eel habitat were
investigated through a linear interpolation of annual rings (i.e., otolith macrostructures) along the ablation transect to infer time series to the eel life sequence (Fablet et al., 2007). As we focused on the continental phase, the elver mark was defined as the origin of time series, so that eel age thereafter refers to eel ‘continental age’.

Life transitions and spatial changes in life-history traits

Life sequences were used to determine the sector where each eel spent the maximum of time (thereafter referred as ‘main resident sector’) and the number of different sectors crossed during the continental phase, which was thereafter used as an indicator of eel mobility. A transition matrix, detailing when transitions from one sector to another occurred, was calculated to estimate the proportion of moving eels for each continental age-class. Proportions of both transitions between sectors, and directional movements toward upstream or downstream were calculated to summarize the overall movement patterns of eels in the Sélune catchment.

Spatial changes of life-history traits were quantified using linear mixed models (LMMs). LMMs were independently adjusted for 14 individual traits as response variables (i.e., mobility, trophic level, continental growth, age-at-silvering, size-at-silvering, K, C:N, RHS, RGS, parasite taxa richness, total parasite abundance, Anguillicoloides crassus, Pseudodactylogyrus sp. and Acanthocephalus spp. abundances), while the main residence sector inferred from otolith microchemistry was used as explanatory categorical variable. Models were adjusted using an identity link function and a Gaussian error distribution. The abundance variables were log(x + 1)-transformed to meet normality assumptions. Response variables were standardized to have a mean of 0 and a variance of 1 to obtain standardized regression coefficients, which were interpreted as effect sizes. This approach allows to directly compare model outcomes as they are expressed in a similar range of magnitude. Eel sex and sampling season were included as random effects to account, respectively, for the influence of sexual dimorphism and the two-year sampling procedure on the variable response. Accordingly, effect sizes reveal consensual trends among sex and seasons when the other sources of variability are considered by a random intercept. The statistical significance of main residence sector in models was assessed based on deviance reduction tests (F-tests). The direction and magnitude of spatial changes in life-history traits were then assessed from the sign and value of the effect sizes. Finally, changes in the prevalence of parasites (i.e., total parasite prevalence, A. crassus, Pseudodactylogyrus sp. and Acanthocephalus spp. prevalences) were investigated using binomial Generalized Linear Mixed Models (GLMMs). Eel sex and sampling season were included as random effects and the significance of main residence sector was assessed based on deviance reduction tests (Chi-square tests).

All statistical analyses were performed in the R environment v. 4.0.5 (R Core Team, 2018), using the base package for standard analysis (i.e., mean comparisons and proportion tests) and “segclust2d” for elemental profile segmentation (Patin et al., 2019). LMMs and GLMMs were fitted using the “lme4” package (Bates et al., 2014) and parameters standardized with the “effectsize” package (Ben-Shachar et al., 2020). The statistical significance of changes in the proportions between groups (i.e., sex-ratio, age-class) was tested using either binomial or Chi-square tests. Differences in life-history traits between males and females were tested using Generalized Linear Models (GLMs). GLMs were adjusted using an identity link function and a Gaussian error distribution for the life-history traits, while binomial or poisson distributions were used for, respectively, testing changes in prevalence and abundance of metazoan parasites. The statistical significance of sex in models was then assessed based on deviance reduction tests (Chi-square tests).

Results

Life-history traits and metazoan parasites

For the 74 silver eels collected in autumn 2019 (n = 35) and 2020 (n = 39), the sex-ratio did not significantly differ from 0.5 (54% males; binomial test, n = 74, P = 0.561). As expected, the age- and size-at-silvering were higher for females than males, as well as the body condition, the liver lipid reserves and the gonadosomatic index (Table 1). Contrastingly, male trophic levels were significantly higher than female ones. The mean annual growth over the continental
phase and the lipid content in muscle did not significantly differ between sexes (Table 1).

In total, 81.08 ± 4.55% of the 74 silver eels were infected by one to four metazoan parasite species among the ten identified (i.e., nine helminths and one myxozoan, Table 2), with an average richness of 1.43 ± 0.12 parasite species per eel and a mean abundance of 8.35 ± 1.43 parasites per eel (range: 0–69). Except the monogenean *Pseudodactylogyrus* sp., all the parasite species found were heteroxenous, involving various invertebrate and fish species as intermediate and paratenic hosts (Table 2). The total prevalence was significantly higher in males than in females, even if species richness and total abundance of metazoan parasites were unaffected by sex (Table 1). Three taxa dominated the parasite community whatever the sex (in decreasing order): the non-native swimbladder *Anguillicoloides crassus*, the non-native gill *Pseudodactylogyrus* sp., and the native intestinal *Acanthocephalus* spp. (Table 2), but the prevalence of *A. crassus* and the abundance of *Acanthocephalus* spp. significantly differed between sexes (Table 1).

Reconstruction of life sequences

The number of segments identified from otolith elementary profiles for silver eels (*n* = 74) and resident eels (*n* = 30) ranged from 2 to 8 depending on individuals (on average 3.6 ± 0.11 segments). In resident eels, the Ba:Ca signatures recorded in the marginal segments were significantly correlated with the distance to the sea (Fig. 2a; *n* = 6, *r* = 0.98, *t* = 11.8, *P* < 0.001), which highlights the relevance of the Ba:Ca ratio to indicate habitat changes along the downstream-upstream gradient. On the contrary, Sr:Ca signatures did not vary significantly with the distance to the sea (Fig. 2b; *n* = 6, *r* = 0.40, *t* = −0.88, *P* = 0.42), but ratio values typically fit with range recorded for eels living in freshwater environment (Sr:Ca signatures between 1.05 × 10⁻³ and 2.74 × 10⁻³ for resident eels; Daverat et al., 2005; Tabouret et al., 2010).

The k-means method applied to otolith segments of silver eels resulted in four clusters with distinct ranges in Sr:Ca and Ba:Ca signatures (Fig. 3a). One cluster contrasted from others because of its high Sr:Ca signatures (Sr:Ca > 3.15 × 10⁻³), hereafter assigned to the ‘estuary sector’ because such signatures are similar to the ones retrieved in eels involving in brackish water. For the three other clusters, the observed ranges of Sr:Ca ratio were comparable to freshwater signatures (0.97 × 10⁻³ < Sr:Ca < 3.21 × 10⁻³), but clusters differed in their Ba:Ca signatures. The first freshwater cluster showed the lowest Ba:Ca ratios (Ba:Ca < 2.12 × 10⁻⁵) and gathered the resident eel signatures from sites 1, 4, and 5, located less than 15 km from the river mouth, hereafter assigned to the ‘downstream sector’. The second freshwater cluster featured intermediate Ba:Ca ratios (2.14 × 10⁻⁵ < Ba:Ca < 3.72 × 10⁻⁵) and included sites 2 and 3 located downstream from the first dam, between 15 and 23 km from the river mouth, hereafter assigned to the ‘midstream sector’. The third freshwater cluster showed...
the highest Ba:Ca ratios (Ba:Ca > 3.76 × 10^{-5}) and included the site 6, which was located over 38 km from the river mouth, hereafter assigned to the ‘upstream sector’. As the upper reaches of the Sélune River were inaccessible for eels, this sector only refers to upstream areas of the connected tributaries with confluences located downstream of the Sélune dams (i.e., the Beuvron and the Oir). Finally, the assigned segments were then used to reconstruct life sequences of the 74 silver eels and to estimate the amount of time spent in each sector of the Sélune catchment (Fig. 3b).

db Individual life sequences of silver eels inferred from the otolith elemental signatures (n = 74). Eels were grouped according to the main resident sector during their continental phase: upstream-dominated (n = 11), midstream-dominated (n = 27), downstream-dominated (n = 34), and estuary-dominated (n = 2) life sequences

Residence sectors and life transitions

Over the continental phase, 34 eels predominantly resided in the downstream sector (46%), 27 in the midstream sector (36%), 11 in the upstream sector (15%), and 2 in the estuary sector (3%). Once in the catchment, the number of sectors crossed by eels ranged between 1 and 5 depending on individuals. Whereas 24.3% of individuals were briefly assigned to the estuary sector once entering the catchment, the others were directly assigned to...
Spatial changes in life-history traits

The main residence sector of eels in the Sélune catchment was not significantly related to the sex-ratio of eels (i.e., 50, 53, 55, and 54% of males in estuary, down-, mid-, and up-streams sectors, respectively; $X^2 = 0.05, df = 3, P = 0.99$), but it significantly shaped some life-history traits related to the river life condition, the spawning migration, and the metazoan parasite community (Fig. 5, Table 3). The two eels that mainly resided in estuaries exhibited a sedentary lifestyle associated with the highest levels of trophic status and somatic growth. However, their body condition and lipid storage were lower than those of freshwater eels. Eels from the estuarine sector were also poorly infected with only four *Pseudodactylogyrus* sp. parasites retrieved on the gills of one eel.

Individuals from the downstream sector showed the lowest trophic level in comparison with the other freshwater sectors (Fig. 5; Table 3), which suggests a low proportion of fish in the eel diet. The highest degree of mobility was observed for the eels predominantly residing in the midstream sector and was associated with the lowest grow rates. Although differences in age-at-silvering was not significant between sectors, eels of the midstream sector tended to be older than those residing in the other sectors (Fig. 5). Overall, eels...
living upstream displayed highest values of life-history traits related to the migration and reproduction success (Fig. 5; Table 3), whereas eel body condition was lower in downstream, as well as muscle lipid contents in both downstream and midstream sectors. On the contrary, the size-at-silvering and the GSI did not differ significantly between the residence sectors (Table 3).

The mean species richness and abundance of eel parasites significantly changed along the Sélune catchment (Fig. 5; Table 3), with the highest values recorded for eels living in the upstream sector. Interestingly, the eel parasitic community observed in the upstream sector differed from the rest of the catchment, mainly because of both higher abundance and prevalence of *Acanthocephalus* spp. (Table 3). By contrast, no significant differences occurred for the two non-native species except the abundance of *Anguillicoloides crassus* lower in upstream compared to the other freshwater sectors (Table 3).

Discussion

Lifetime movements in the Sélune catchment

In this study, eel life sequences were reconstructed based on the segmentation of otolith elementary profiles following the method proposed by Patin et al. (2020). While this method was initially developed to identify transition phases in record time series from telemetry studies, our results demonstrate that it can successfully integrate otolith microchemistry records. Compared to classic visual interpretations of otolith elemental composition, taking into account the temporal dimension of otolith not only provides new insights on but also allows non-subjective and quantitative reconstruction of fish movements (Fablet et al., 2007; Vignon, 2015). Fluctuations of elemental ratios (Sr:Ca and Ba:Ca) in otoliths have been previously used to trace eel migration between marine, estuarine, and freshwater environments.
and freshwater habitats (e.g., Tsukamoto and Nakai, 1998; Daverat et al., 2006; Tabouret et al., 2010). While Sr:Ca and Ba:Ca ratios simultaneously changes in eel otoliths along the salinity gradient (e.g., Tabouret et al., 2010), our results also demonstrated a longitudinal gradient of the Ba:Ca ratio in the Sélune catchment, which can be used to infer habitat shifts within the freshwater environment. Such variation of Ba:Ca ratios in fish otolith can be related to different ambient water chemistry influenced by the substratum composition and physical erosion process (Elsdon and Gillanders, 2005).

Table 3 Changes in life-history traits and parasite descriptors of silver eels (n=74) depending on the main sectors of the Sélune catchment

Life-history traits	Catchment sectors			P value	
	Estuary	Downstream	Midstream	Upstream	
River life condition					
Mobility (nb sectors)	1.50±0.50	2.12±0.18	2.56±0.19	2.18±0.33	<0.001
Trophic level	13.96±0.36	11.80±0.28	13.64±0.34	12.94±0.65	<0.001
Growth (mm year⁻¹)	39.25±3.53	38.51±2.11	34.39±1.82	38.75±2.33	<0.001
Age (year)	11.50±2.50	11.53±0.71	12.81±1.04	11.27±1.43	0.182
Spawning migration					
Size (mm)	502.5±57.5	471.71±19.68	465.81±22.32	501.64±64.79	0.15
Condition-K	0.15±0.00	0.18±0.00	0.19±0.00	0.19±0.01	<0.001
Lipids-C:N	6.56±1.16	7.49±0.24	7.36±0.24	8.57±0.38	<0.001
Lipids-HSI (%)	1.28±0.13	1.59±0.04	1.59±0.05	1.57±0.08	<0.001
Gonads-GSI (%)	0.90±0.75	1.05±0.14	1.02±0.15	1.09±0.23	0.426
Metazoan parasites					
Total prevalence (%)	50.00±35.36	76.47±7.27	81.48±7.48	100.00±0.00	0.09
Total abundance	2.00±2.00	8.18±1.83	5.44±1.00	17.18±7.11	0.025
Species richness	0.50±0.50	1.29±0.18	1.41±0.18	2.09±0.37	<0.002
Anguillicoloides crassus (prev)	0.00±0.00	70.59±7.81	77.78±8.00	72.73±13.43	0.220
Anguillicoloides crassus (abd)	0.00±0.00	3.85±0.71	3.26±0.59	2.64±0.77	0.033
Pseudodactylogyrus sp. (prev)	50.00±35.36	35.29±8.20	33.33±9.07	36.36±14.50	0.162
Pseudodactylogyrus sp. (abd)	2.00±2.00	2.56±1.22	1.74±0.57	0.45±0.21	0.297
Acanthocephalus spp. (prev)	0.00±0.00	2.94±2.90	18.52±7.48	36.36±14.50	<0.001
Acanthocephalus spp. (abd)	0.00±0.00	0.47±0.47	0.33±0.17	7.64±4.76	0.042

The mean ± standard error are presented, along with the significance of mixed models investigating differences between catchment sectors

abundance, prev prevalence (%)

Significant effects (p < 0.05) are indicated in bold

Although our clustering approach was conducted with no a priori knowledge regarding salinity or geographical gradients, the threshold value identified for segregating freshwater from estuarine habitats (Sr:Ca > 3.15×10⁻³) is congruent with those reported in other water catchments (e.g., Daverat et al., 2005; Tabouret et al., 2010). Moreover, otolith marginal signatures of resident eels reveal a decreasing gradient of Ba:Ca ratios along the longitudinal profile of the Sélune catchment (i.e., Ba:Ca signatures ranged between 1×10⁻⁵ and 7×10⁻⁵). Even though such gradual changes do not allow strict assignations to specific tributaries (Teichert et al., 2018), the clustering method we used properly segregates three broad freshwater sectors. Our method, based on a higher spatial resolution than a classic discrimination of saline areas, allows to both reconstruct consistent life sequences along the upstream–downstream gradient, and assesses the contribution of the main catchment sectors. In the Sélune catchment, silver eel production is essentially supported by the downstream (46%) and midstream (36%) sectors, whereas the upper sector...
connected reaches appear less productive (15%). This result underlines the impact of connectivity loss, as only the upstream areas of the two main tributaries with confluences located downstream of the Sélune dams (i.e., the Beuvron and the Oir) are currently colonized by eels.

Our results also clearly emphasize the temporal dynamic of eel catchment colonization, as featured by an active upstream migration during the first three years following the glass eel stage. Similar observations have been reported in the Gironde watershed (France), where the number of transitions between different habitats decreasing as eels aged (Fablet et al., 2007). After the settlement phase, eels of the Sélune catchment become more sedentary and upstream movements are rarer, as previously reported for yellow eels > 300 mm TL (Daverat & Tomas, 2006). Although the proportion of eels moving downstream is low, it remains constant between age-classes (6.1% on average), which indicates that a substantial proportion of individuals reaching upstream finally returns downstream. Similar behavior, named “downstream nomad”, has been reported for eels of the Gironde watershed, where migration from freshwater to the estuary occurred during the second and third years of continental life (Daverat & Tomas, 2006). Such downstream movements have been attributed to an optimization tactic aiming to maximize the size-at-age, which is advantageous for eels settling in lower habitats, where strong intra-specific competition occurs (Daverat & Tomas, 2006). In the Sélune catchment, downstream movements occurred independently of eel age, and they predominantly involved eels leaving the midstream sector to the downstream one. This could be due to dams in the midstream sector that restrict access of young eels to upper reaches and artificially increase the density of migratory fish downstream to the barriers (Feunteun et al., 2003; Hitt et al., 2012). In this midstream sector, we observed greater mobility of eels compared to other sectors, which could be explained by inter- and intra-specific competition for habitat and resources induced by barriers.

Spatial changes in life-history traits

The areas currently colonized by eels are restricted within the Sélune catchment, but our results highlight significant variations in eel movement patterns as well as in their life-history traits according to their growth sectors. Although we observe high growth rate and trophic level for estuarine eels, the condition coefficient and lipid store contents are lower than for freshwater eels. Similar results were reported for eels in Norway (Parzanini et al., 2021), but diverge from other watersheds where eels caught in brackish areas exhibited better body condition (Cairns et al., 2009; Daferat et al., 2012; Kaifu et al., 2013). One potential explanation is that sandy areas covering most of the Sélune estuary are poorly suitable for eel settlement, which is traduced by low body condition of eels living there. Estuarine silver eels also appear less parasitized than freshwater eels, with both smaller parasite abundance and richness, a single parasite species (Pseudodactylogyrus sp.) being recorded, versus 6 to 8 species in freshwater sectors. It may be due to the higher salinity which is known to influence prevalence and abundance of metazoan parasite species in A. anguilla (e.g., Køie, 1988; Jakob et al., 2008). However, as most parasite species found in the Sélune catchment [i.e., Anguillicoloides crassus, Pseudodactylogyrus sp., Acanthocephalus spp., Myxidium giardia, Cépède, 1906, Bothriocephalus claviceps Goze, 1782, Raphidascaris acus (Boch, 1779)] have already been recorded in both fresh and brackish waters (Køie, 1988; Jakob et al., 2008), the occurrence of a single parasite species in the two estuarine eels may be related to low sampling size. To conclude, although our results show that life-history traits of the two estuarine eels are highly dissimilar from the ones observed in freshwater eels, sampling effort in the estuarine area should be increased to confirm this trend.

In the Sélune catchment, our results indicate that the eel trophic level is influenced by their spatial distribution. As previously reported for eel, the trophic level appears higher in saline water (Parzanini et al., 2021), but a gradient in δ15N was also observed between freshwater sectors, with a higher propensity to piscivory in the midstream and upstream sectors than in the downstream. This gradient probably reflects a specialization of eels in relation to prey availability (Cuchereousset et al., 2011). Additionally, silver eels living in the upstream reaches of connected tributaries had greater body condition and lipid reserve than eels living in other freshwater sectors. As previously indicated, the midstream sector located just downstream of the dam appears...
to be less suitable for growth even though eels had been feeding in higher tropic level compared to other freshwater sectors. In midstream, eels were generally highly mobile and the lipid reserves in muscles were relatively low compared to the upstream sector. This might be due to high density and related intraspecific competition for resources that have been reported in fragmented rivers (Feunteun et al., 1998; Costa et al., 2008), which promote increased nomadism in eels (Feunteun et al. 2003). Accordingly, the connected headwaters of the Sélune catchment appear more beneficial for eel growth and should produce genitors with higher fitness than downstream areas. Indeed, energy reserves and the health state of individuals play a crucial role in gonad maturation and in the success of migration to spawning grounds (Van den Thillart et al., 2007; Belpaire et al., 2009; Clevestam et al., 2011). Although the richness and abundance of metazoan parasites were higher in eels living upstream of the Sélune catchment, abundances of pathogenic non-native species were lower compared to other sites. Most upstream metazoan parasites were heteroxenous (i.e., life cycle involving various intermediate or paratenic hosts) and trophically transmitted. The high diversity of upstream parasitofauna suggests a greater free-living biodiversity and thus healthier environmental conditions (Marcogliese, 2004; Hudson et al., 2006). Native parasites, such as Acanthocephalus spp., which are more prevalent and abundant in upper reaches, share a common evolutionary history with A. anguilla and have generally less negative impact on host fitness (Gérard et al., 2013).

Our results indicate that eel sex-ratio does not vary over the Sélune catchment, which contrasts with studies usually reporting increased female proportion with the distance to the sea (Vollestad et al., 1986; Acou et al., 2009; Geoffroy & Bardonnet, 2016). Downstream reaches typically produce a majority of males, while females grow slowly in upstream reaches where they reach larger size (Tesch, 2003). Moreover, previous studies conducted in the Oir tributary reported a female biased sex-ratio as expected in low-density conditions (Acou et al., 2009). These inconsistencies can be explained by the spatial heterogeneity of eel densities between the main river course of the Sélune and its tributaries (Druet et al., 2021). Water flow attraction is crucial for young eel orientation during their freshwater migration (Harrison et al., 2014), so eel density is much higher in the main river course currently impaired by dams than in the river tributaries. However, our overview of the longitudinal gradient of the whole Sélune catchment does not allow to conclude on the spatial distribution of male and female eels over the catchment tributaries.

Conclusion

In this study, we demonstrate that eel life sequence reconstruction based on otolith elemental signatures provides valuable information on eel ecology within an obstructed catchment context. Despite a restricted network of connected rivers, the heterogeneity in elemental ratios was sufficiently contrasted to trace fish movements across four catchment sectors. Life-history traits and movement patterns of eels, constrained by the dams, significantly varied along the upstream–downstream gradient. Eels assigned to the midstream sector were more mobile and exhibited low growth rates, probably in response to higher density-dependent competition at the vicinity of the dams. While most eels are currently produced by the downstream and midstream sectors, eels assigned to upper connected reaches generally displayed a superior richness in native parasites, higher body condition, and lipid reserve, which are known to promote the success of migration and reproduction. In the near future, the complete dam removals, leading to the reconnection of upper reaches, will represent an outstanding experimental framework for evaluating impacts of reconnection of an entire catchment on the life-history traits of catadromous species such as eels. We can expect that the upper reach reconnection will strongly modify eel spatial distribution within the catchment while reducing intra-specific competition, with corollary effects on growth, age and size at silvery, and sex-ratio of eels migrating to the sea to reproduce (e.g., Hitt et al., 2012; Watson et al., 2018). Hence, medium- and long-term monitoring of silver eels in this catchment appears essential after dam removal to fully assess dam effects on eel life-history traits and distribution and accurately highlight ecological benefits.

Acknowledgements This study was conducted with the financial support of the Agence de l’Eau Seine Normandie and the Office Français pour la Biodiversité. We like to thank...
the two anonymous referees for their comments and suggestions that have contributed to improve the relevance of our manuscript. We are very thankful to colleagues who assisted us during the field survey, especially Christophe Boinet, Sarah Lejosne, and Corentin Gouzien. The experiment was approved by the Cuvier Ethical Committee for Animal Research (DAECC 68-0106) and comply with current laws in France.

Author contributions NT Conceptualization, Project administration, Funding acquisition, Data curation, Methodology, Formal analysis, Writing—original draft. AL, HT, CG, AC: Methodology, Data curation, Writing—review & editing. GB: Data curation, Writing—review & editing. AA: Project administration, Funding acquisition, Data curation, Writing—review & editing. TT: Writing—review & editing. LV, ER: Methodology, Data curation. MD, JP: Data curation. EF: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing—review & editing.

Funding Funding was provide by Agence de l’Eau Seine-Normandie (Nils Teichert and Eric Feunteun).

Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Acou, A., P. Boury, P. Laffaille, A. J. Crivelli & E. Feunteun, 2005. Towards a standardized characterization of the potentially migrating silver European eel (Anguilla anguilla, L.). Archiv Für Hydrobiologie 164: 237–255.

Acou, A., G. Gaele, P. Laffaille, E. Feunteun, J. M. Casselman & D. K. Cairns, 2009. Differential production and condition indices of premigrant eels in two small Atlantic coastal catchments of France. American Fisheries Society Symposium 58: 157–174.

Acou, A., L. Virag, E. Reveillac, C. Boulenger, & E. Feunteun, 2013. Comment, à partir d’un seul otolith, ã ger une anguille sans exclure d’autres analyses? Colloque national de Scélérochronologie, Rennes, 2au 4 juillet 2013.

Amlhat, E., G. Fazio, G. Simon, M. Manetti, S. Paris, L. Delahaut, H. Farrugio, R. Lecomte-Finiger, P. Sasal & E. Faliex, 2014. Silver European eels health in Mediterranean habitats. Ecology of Freshwater Fish 23: 49–64.

Aroua, S., M. Schmitz, S. Balanche, B. Vidal, K. Rousseau & S. Dufour, 2005. Endocrine evidence that silverying, a secondary metamorphosis in the eel, is a pubertal rather than a metamorphic event. Neuroendocrinology 82: 221–232.

Bates, D., M. Mächler, B. Bolker, & S. Walker, 2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

Belletti, B., C. G. de Leaniz, J. Jones, S. Bizz, L. Börger, G. Segura, A. Castelletti, W. Van de Bund, K. Aarestrup & J. Barry, 2020. More than one million barriers fragment Europe’s rivers. Nature 588: 436–441.

Belpaire, C. G. J., G. Goemans, C. Geeraerts, P. Quataert, K. Parmentier, P. Hagel & J. De Boer, 2009. Decreasing eel stocks: survival of the fattest? Ecology of Freshwater Fish 18: 197–214.

Benajiba, M. H., & A. Marques, 1993. The alternation of actinomyxidian and myxosporidian sporal forms in the development of Myxidium giardi (parasite of Anguilla anguilla) through oligochaetes. Bulletin of the European Association of Fish Pathologists 13:100–103.

Ben-Shachar, M. S., D. Lüdecke & D. Makowski, 2020. effectsize: estimation of effect size indices and standardized parameters. Journal of Open Source Software 5: 2815.

Boulenger, C., A. Acou, O. Gimenez, F. Charrier, J. Tremblay & E. Feunteun, 2016a. Factors determining survival of European eels in two unexploited sub-populations. Freshwater Biology 61: 947–962.

Boulenger, C., A. J. Crivelli, F. Charrier, J. Rousset, E. Feunteun & A. Acou, 2016b. Difference in factors explaining growth rate variability in European eel subpopulations: the possible role of habitat carrying capacity. Ecology of Freshwater Fish 25: 281–294.

Brown, A. F., J. C. Chubb & J. C. Veltkamp, 1986. A key to the species of Acanthocephala parasitic in British freshwater fishes. Journal of Fish Biology 28: 327–334.

Bush, A. O., K. D. Lafferty, J. M. Lotz & A. M. Shostak, 1997. Parasitology meets ecology on its own terms: Margolis et al. The Journal of Parasitology 83: 575–583.

Cairns, D. K., D. A. Secor, W. E. Morrison & J. A. Hallett, 2009. Salinity-linked growth in anguillid eels and the paradox of temperate-zone catadromy. Journal of Fish Biology 74: 2094–2114.

Campagna, S. E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297.

Clevestam, P. D., M. Ogonowski, N. B. Sjöberg & H. Wickström, 2011. Too short to spawn? Implications of small body size and swimming distance on successful migration and maturation of the European eel Anguilla anguilla. Journal of Fish Biology 78: 1073–1089.

Colombo, G., G. Grandi & R. Rossi, 1984. Gonad differentiation and body growth in Anguilla anguilla L. Journal of Fish Biology 24: 215–228.

Costa, J. L., I. Domingos, C. A. Assis, P. R. Almeida, F. Moreira, E. Feunteun & M. J. Costa, 2008. Comparative ecology of the European eel, Anguilla anguilla (L., 1758), in a large Iberian river. Environmental Biology of Fishes 81: 421.

Cucherousset, J., A. Acou, S. Blanchet, J. R. Britton, W. R. C. Beaumont & R. E. Gozlan, 2011. Fitness consequences of individual specialisation in resource use and trophic morphology in European eels. Oecologia 167: 75–84.

Daverat, F. & J. Tomas, 2006. Tactics and demographic attributes in the European eel Anguilla anguilla in the Gironde
watershed, SW France. Marine Ecology Progress Series 307: 247–257.

Daverat, F., J. Tomas, M. Lahaye, M. Palmer & P. Elie, 2005. Tracking continental habitat shifts of eels using otolith Sr/ Ca ratios: validation and application to the coastal, estuarine and riverine eels of the Gironde–Garonne–Dordogne watershed. Marine and Freshwater Research 56: 619–627.

Daverat, F., K. E. Limburg, I. Thibault, J.-C. Shiao, J. J. Dodson, F. Caron, W.-N. Tzen, Y. Izuoka & H. Wickström, 2006. Phenotypic plasticity of habitat use by three temperate eel species, Anguilla anguilla, A. japonica and A. rostrata. Marine Ecology Progress Series 308: 231–241.

Daverat, F., L. Beaulaton, R. Poole, P. Lambert, H. Wickström, J. Andersson, M. Aprahamian, B. Hizem, P. Elie, S. Yalçın-Ozdi̇lek, et al., 2012. One century of eel growth: changes and implications. Ecology of Freshwater Fish 21: 325–336.

Drouineau, H., C. Carter, M. Rambonilaza, G. Beauvaron, G. Bouleau, A. Gassiat, P. Lambert, S. le Floch, S. Tétard & E. de Oliveira, 2018. River continuity restoration and diadromous fishes: much more than an ecological issue. Environmental Management 61: 671–686.

Druet M., P. Rault, A. Acou, D. Azam, A. Bardonnet, G. Evanno, E. Feunteun, E. Lasne, S. Launey, A. Lizé et al. 2021. Dispersion et (re)colonisation du cours de la Sélune et de ses affluents: terminer un état de référence pour les poissons migrateurs amphihalins et anticiper l’expansion spatiale de l’écrevisse de Californie. Rapport final des travaux liés à la convention 1078068. Agence de l’Eau Seine-Normandie: 30 p.

Durif, C. M. F., F. Travade, J. Rives, P. Elie & C. Gosset, 2008. Relationship between locomotor activity, environmental factors, and timing of the spawning migration in the European eel, Anguilla anguilla. Aquatic Living Resources 21: 163–170.

Durif, C. M., O. H. Diserud, O. T. Sandlund, E. B. Thorstad, R. Poole, K. Bergesen, R. H. Escobar-Lux, S. Shema & L. A. Vøllestad, 2020. Age of European silver eels during a period of declining abundance in Norway. Ecology and Evolution 10(11): 4801–4815.

Elords, T. S. & B. M. Gillanders, 2005. Alternative life-history patterns of estuarine fish: barium in otoliths elicits dates freshwater residency. Canadian Journal of Fisheries and Aquatic Sciences 62(5): 1143–1152.

Fablet, R., F. Daverat & H. De. . Pontual, 2007. Unsupervised Bayesian reconstruction of individual life histories from otolith signatures: case study of Sr: Ca transects of European eel (Anguilla anguilla) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 64: 152–165.

Feunteun, E., A. Acou, J. Guillouët, P. Laffaille & A. Legault, 1998. Spatial distribution of an eel population (Anguilla anguilla L.) in a small coastal catchment of Northern Brittany (France). Consequences of hydraulic works. Bulletin Français De La Pêche Et De La Pisciculture 349: 129–139.

Feunteun E., P. Laffaille, T. Robinet, C. Briand, A. Baisez, J.-M. Olivier, & A. Acou 2003. A review of upstream migration and movements in inland waters by anguillid eels: toward a general theory. In Eel biology ed. Springer; 191–213.

Forget, G., J.-L. Baglinière, F. Marchand, A. Richard & M. Nevoux, 2018. A new method to estimate habitat potential for Atlantic salmon (Salmo salar): predicting the influence of dam removal on the Sélune River (France) as a case study. ICES Journal of Marine Science 75: 2172–2181.

Fomena, A. & G. Bouix, 1997. Myxosporea (Protozoa: Myxozoa) of freshwater fishes in Africa: keys to genera and species. Systematic Parasitology 37: 161–178.

Fulton T. W. 1904. The rate of growth of fishes. In Twenty-second Annual Report of the fishery board of Scotland. ed. Fishery Board for Scotland, Glasgow. pp. 141–241.

Geernaerts, C. & C. Belpaire, 2010. The effects of contaminants in European eel: a review. Ecotoxicology 19: 239–266.

Geffroy, B. & A. Bardonnet, 2016. Sex differentiation and sex determination in eels: consequences for management. Fish and Fisheries 17: 375–398.

Gérard, C., T. Trancart, E. Aimlihat, E. Faliex, L. Virag, E. Feunteun & A. Acou, 2013. Influence of introduced vs native parasites on the body condition of migrant silver eels. Parasite 20: 38.

Golvan Y. J. 1969. Systématique des Acanthocéphales (Acanthocephala Rudolphi 1801). Mémoires du Museum National d’Histoire Naturelle 57, Paris

Harrison, A. J., A. M. Walker, A. C. Pinder, C. Briand & M. W. Aprahamian, 2014. A review of glass eel migratory behaviour, sampling techniques and abundance estimates in estuaries: implications for assessing recruitment, local production and exploitation. Reviews in Fish Biology and Fisheries 24: 967–983.

Hitt, N. P., S. Eyler & J. E. B. Wofford, 2012. Dam removal increases American eel abundance in distant headwater streams. Transactions of the American Fisheries Society 141: 1171–1179.

Hudson, P. J., A. P. Dobson & K. D. Lafferty, 2006. Is a healthy ecosystem one that is rich in parasites? Trends in Ecology & Evolution 21: 381–385.

Hüssy, K., K. E. Limburg, H. de Pontual, O. R. B. Thomas, P. K. Cook, Y. Heimbrand, M. Blass & A. M. Sturrock, 2020. Trace element patterns in otoliths: the role of biomineralization. Reviews in Fisheries Science & Aquaculture 29: 1–33.

Jakob, E., R. Hanel, S. Klømpe & K. Zumholz, 2008. Salinity dependence of parasite infestation in the European eel Anguilla anguilla in northern Germany. ICES Journal of Marine Science 65: 358–366.

Jessop, B. M., 2010. Geographic effects on American eel (Anguilla rostrata) life history characteristics and strategies. Canadian Journal of Fisheries and Aquatic Sciences 67: 326–346.

Kaifu, K., M. J. Miller, T. Yada, J. Aoyama, I. Washitani & K. Tsukamoto, 2013. Growth differences of Japanese eels Anguilla japonica between fresh and brackish water habitats in relation to annual food consumption in the Kojima Bay-Asahi River system, Japan. Ecology of Freshwater Fish 22: 127–136.

Kennedy, C. R., P. Nie, J. Kaspers, & J. Paulisse, 1992. Are otoliths from parasite communities. Journal of Fish Biology 41(4):567–580. https://doi.org/10.1111/j.1095-8649.1992.tb02684.x

http://link.springer.com/article/10.1007/s10261-009-0152-4
Khalil, L. F., A. Jones & R. A. Bray, 1994. Keys to the Cestode parasites of vertebrates, CAB International, Wallingford; 235.

Köie, M., 1988. Parasites in European eel Anguilla Anguilla (L.) from Danish freshwater brackish marine localities. Ophelia 29: 93–118.

Laffaille, P., E. Feunteun, A. Baisez, T. Robinet, A. Acou, A. Legault & S. Lek, 2003. Spatial organisation of European eel (Anguilla anguilla L.) in a small catchment. Ecology of Freshwater Fish 12: 254–264.

Laffaille, P., A. Acou & J. Guillouët, 2005. The yellow European eel (Anguilla anguilla L.) may adopt a sedentary lifestyle in inland freshwaters. Ecology of Freshwater Fish 14(2): 191–196.

Lavielle, M., 1999. Detection of multiple changes in a sequence of dependent variables. Stochastic Processes and Their Applications 83: 79–102.

Limburg, K. E., M. J. Wuenschel, K. Häusy, Y. Heimbrand & M. Samson, 2018. Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence. Reviews in Fisheries Science & Aquaculture 26: 479–493.

Lin, H.-Y. & K. F. Robinson, 2019. How do migratory fish populations respond to barrier removal in spawning and nursery grounds? Theoretical Ecology 12: 379–390.

Machut, L. S., K. E. Limburg, R. E. Schmidt & D. Dittman, 2007. Anthropogenic impacts on American eel demographics in Hudson River Tributaries, New York. Transactions of the American Fisheries Society 136: 1699–1713.

Maes, G. E., J. A. M. Raeymaekers, C. Pampoulie, A. Seynaeve, G. Goemans, C. Belpaire & F. A. M. Volckaert, 2005. The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotaxiology: relationship between heavy metal bioaccumulation, condition and genetic variability. Aquatic Toxicology 73: 99–114.

Marcogliese, D. J., 2004. Parasites: small players with crucial roles in the ecological theater. EcoHealth 1: 151–164.

Mateo, M., P. Lambert, S. Tétard & H. Drouineau, 2017. Impacts that cause the highest direct mortality of individuals do not necessarily have the greatest influence on temperate eel escapement. Fisheries Research 193: 51–59.

McCleave, J. D., 2001. Simulation of the impact of dams and fishing weirs on reproductive potential of silver-phase American eels in the Kennebec River basin, Maine. North American Journal of Fisheries Management 21: 592–605.

McConnaughey, T. & C. P. McCroy, 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. American Journal of Fisheries Management 21: 592–605.

P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Simon, et al., 2016. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Science Advances 2: e1501694.

P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Simon, et al., 2016. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Science Advances 2: e1501694.

P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Simon, et al., 2016. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Science Advances 2: e1501694.

P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Simon, et al., 2016. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Science Advances 2: e1501694.
and habitat utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology 192: 15–33.
Tabouret, H., G. Bareille, F. Claverie, C. Pécheyran, P. Prouzet & O. F. X. Donard, 2010. Simultaneous use of strontium: calcium and barium: calcium ratios in otoliths as markers of habitat: application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Marine Environmental Research 70: 35–45.
Tabouret, H., C. Lord, G. Bareille, C. Pécheyran, D. Monti & P. Keith, 2011. Otolith microchemistry in Sicydium punctatum: indices of environmental condition changes after recruitment. Aquatic Living Resources 24: 369–378.
Teichert, N., H. Tabouret, R. Lagarde, H. Grondin, D. Ponton, C. Pécheyran & G. Bareille, 2018. Site fidelity and movements of an amphidromous goby revealed by otolith multi-elemental signatures along a tropical watershed. Ecology of Freshwater Fish 27: 834–846.
Teichert, N., S. Tétard, T. Trançart, E. de Oliveira, A. Acou, A. Carpentier, B. Bourillon & E. Feunteun, 2020. Towards transferability in fish migration models: A generic operational tool for predicting silver eel migration in rivers. Science of the Total Environment 739: 140069.
Tesch F. W. 2003. The Eel. Oxford
Thielen, F., M. Münderle, H. Taraschewski & B. Sures, 2007. Do eel parasites reflect the local crustacean community? A case study from the Rhine river system. Journal of Helminthology 81: 179–189.
Tsukamoto, K. & I. Nakai, 1998. Do all freshwater eels migrate? Nature 396: 635–636.
Van den Thillart, G., A. Palstra & V. Van Ginneken, 2007. Simulated migration of European silver eel; swim capacity and cost of transport. Journal of Marine Science and Technology 15: 1–16.
Verhelst, P., J. Reubens, D. Buysse, P. Goethals, J. Van Wichelen & T. Moens, 2021. Toward a roadmap for diadromous fish conservation: the Big Five considerations. Frontiers in Ecology and the Environment 19: 396–403.
Vignon, M., 2015. Extracting environmental histories from sclerochronological structures—recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecological Informatics 30: 159–169.
Vollestad, L. A., B. Jonsson, N. A. Hvidsten, T. F. Naesje, O. Haraldstad & J. Ruud-Hansen, 1986. Environmental factors regulating the seaward migration of European silver eels (Anguilla anguilla). Canadian Journal of Fisheries and Aquatic Sciences 43: 1909–1916.
Vollestad, L. A., 1992. Geographic variation in age and length at metamorphosis of maturing European eel: environmental effects and phenotypic plasticity. Journal of Animal Ecology 61: 41–48.
Watson, J. M., S. M. Coghlan, J. Zydlewski, D. B. Hayes & I. A. Kiraly, 2018. Dam removal and fish passage improvement influence fish assemblages in the Penobscot River, Maine. Transactions of the American Fisheries Society 147: 525–540.
WWF, RiverWatch, GEOTA, & EuroNatur. (2019). Hydro-power pressure on European rivers: The story in numbers.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.