Non-equilibrium quantum fluctuations of work

A.E. Allahverdyan
Yerevan Physics Institute, Alikhanian Brothers street 2, Yerevan 375036, Armenia

The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a non-equilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to non-commutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of non-equilibrium initial states. It allows to deduce a generalized work-fluctuation theorem that applies for an arbitrary (out of equilibrium) initial state.

PACS numbers: PACS: 05.30.-d, 05.70.Ln

I. INTRODUCTION

The first and second laws of statistical thermodynamics are formulated using the concept of work, i.e. the (average) energy exchanged by a system driven via a time-dependent Hamiltonian \[1,2\]. In this sense the work is a basic quantity for thermodynamics. It is well-defined both in and out of equilibrium for any (quantum or classical) system interacting with external macroscopic work sources \[2\].

However, the work as it appears in the first and second law is an averaged quantity. There are at least two reasons why it is useful to “de-average” it, i.e. to present it as a random quantity. First, its features are understood better in this way. Recall in this context that the conservation of average energy for an isolated quantum system is just a consequence of conserving energy eigenvalues and their probabilities. Second, the current understanding of the second law is that it has a statistical character and emerges out of averaging over fluctuations \[3,4\]. Hence it is necessary to define fluctuations of work for understanding e.g. the Thomson's formulation of the second law \[4\]. Both these points are illustrated by fluctuation theorems; see \[7–11\] for reviews.

The existing definitions of quantum fluctuations of work can be divided into 2 groups. Time-global definitions look for the work done between two moments of time, as usual for any transfer quantity \[10–21\]. Time-local approaches adapt the global definitions infinitesimally along an effective quantum trajectory \[22–32\].

Here I focus on the time-global approaches (admittedly they are more fundamental in the quantum case) for a thermally isolated dynamics and note that they do not apply whenever the initial density matrix does not commute with the (initial) Hamiltonian. This limitation is essential, since work-extraction from non-equilibrium (e.g. non-diagonal) states is important both conceptually \[3\] and practically \[32\].

The aim of this paper is to present a definition of quantum fluctuations of work that is free of the previous drawbacks. It is based on the Terletsky-Margenau-Hill distribution \[36–41\]. The definition applies for a class of initial density matrices that do not commute with the (time-dependent) Hamiltonian. It leads to a generalized fluctuation theorem.

However, this definition is neither unique (otherwise there would not be the issue with non-commutativity), nor it applies for an arbitrary initial state, because there it leads to negative probabilities whose physical meaning is not clear. In this context, I formulate 2 conditions for fluctuating work that are closely linked to its physical meaning as the amount of energy exchanged with the source of work. They need to be satisfied for any definition of the fluctuating work and they hold for the presented one. It remains to be seen whether this is indeed the most convenient definition or there are even better ones to be uncovered in future. \[1\]

This paper is organized as follows. Section \[II\] defines the system to be studied. The next section reviews previous approaches and explains why specifically they are not applicable out of equilibrium. Section \[IV\] proposes two general conditions to be satisfied for any definition of quantum fluctuating work. Section discusses a new definition of fluctuating work that is free of previous drawbacks. A generalized fluctuation theorem is derived and interpreted in section \[VI\]. Section \[VII\] discusses certain

1 To explain why I decided to focus on the concept of work, I shall compare its features to those of entropy production (EP). For a system coupled to thermal baths, EP amounts to entropy increase of baths \[1,2\]. This definition does not apply more generally—for non-equilibrium baths or thermally isolated case—since the very definition of entropy is ambiguous there. For those cases, EP is defined as an effective measure of irreversibility that has to be positive and share the heuristics of entropy increase \[53–55\]. There is some consensus on how to define EP for classical \[54,56\] and semi-classical systems \[11\]. But the quantum situation is ambiguous in this respect \[55,58\]. e.g. Ref. \[58\] shows that there is a family of EPs associated with different notions of effective phase-space. They lead to different expressions of the (average) EP even for the initially equilibrium (Gibbsian) initial state \[59\]. These features differ from those of the (average) work, which is well-defined for arbitrary (initial) states.
limitations of the proposed approach. I summarize in
the last section. There are two Appendices.

II. SET-UP

Consider a quantum system with an initial state de-
scribed by a density matrix ρ. The system is thermally
isolated: its dynamics is described by a time-dependent,
Schroedinger representation Hamiltonian $H(t)$ that ge-
nerates a unitary evolution operator:

$$U_\tau = \exp \left[-\frac{i}{\hbar} \int_0^\tau H(t) dt \right],$$

between the initial time 0 and the final time τ. Here \exp
denotes time-ordered exponent. The (average) work W
done on the system reads [1, 2]

$$W = \text{tr}[\rho(H_F - H_I)],$$

$$H_I \equiv H(0), \quad H_F = U_\tau^\dagger H(\tau) U_\tau,$$

where H_F (H_I) is the final (initial) Hamiltonian in the
Heisenberg representation. The definition of work ap-
plies to any initial state: it is the average energy given
up by the source of work [1, 2]. Due to conservation
of energy during the system-work-source interaction, W
is the average energy transferred to the source of work
[1, 2]. This is seen explicitly in approaches that deal with
system-work-source interaction from the first principles;
see, e.g. [3, 4]. The intuitive meaning of W is that it is
a “high-graded”, mechanical energy that can be wholly
transferred from one work-source to another and dissi-
pated into heat.

W can be observed in several ways, e.g. via the energy
of the work-source or by measuring the Heisenberg oper-
ator $H_F - H_I$ at the final time. Another (more usual)
way of observing W is to consider an ensemble of identically
prepared systems (described by ρ) and divide it into 2
(equal) parts. Measuring H_I (H_F) on the first (second)
part one recovers $\text{tr}(\rho H_I)$ ($\text{tr}(\rho H_F)$); see [2]. Thus, W
is directly observable and manifests the energy conserva-
tion (first law) for the present problem.

Thus, I take the above definition of the average work
W as the basic entity from which the fluctuating work is
to be deduced under certain additional assumptions.

Note that formally the above thermally isolated set-up
applies also for an open quantum system interacting with
an environment (e.g. thermal baths). Since the work is
the energy transferred to the source, one just needs to
include the whole environment into a single system in-
teracting with the source. This is however a formal pro-
cedure, because the environment is normally large and
out of control. Thus further research is needed to ex-
tend this set-up to open systems. In this paper I focus
on the thermally isolated set-up, also because this is the
first step towards understanding the more general (open-
system) situation.

III. TWO APPROACHES FOR DEFINING
FLUCTUATIONS OF WORK

I now concentrate on two major (and different [18, 19])
approaches for defining quantum fluctuations of work. My
aim is to compare these definitions to each other and to [2]
and understand where specifically they fail in

describing the fluctuating work.

A. Operator of work

The spirit of the Heisenberg representation is that
time-dependent operators are analogues of classical,
time-dependent random variables. Then the Heisenberg
operator $H_F - H_I$ is postulated to be the “observable of
work” in the standard sense: [2, 5, 12, 17, 18, 20, 25, 27]
[64] its eigenvalues are realizations of work and its eigenvectors define the respective probabilities. I stress that
(at least formally) only one measurement (that of $H_F - H_I$) is needed to obtain the statistics of work according
to this definition.

Now assume that the Schroedinger representation
Hamiltonian changes cyclically:

$$H_I = H(0) = H(\tau).$$

One interpretation of (4) is that the system interacts with
the source of work only for $0 \leq t \leq \tau$, i.e. it is strictly
isolated for $t < 0$ and $t > \tau$: $H(t < 0) = H(t > \tau) = H_I$.

Now since H_I and H_F have the same eigenvalues, $H_F - H_I$ has eigenvalues of both signs. Since the approach
should apply for non-equilibrium initial states, we choose H_I and H_F such that $H_F - H_I$ has an eigenvalue equal
to zero. The corresponding eigenvector $|0\rangle$,

$$|H_F - H_I|0\rangle = 0,$$

is taken as the initial state $|0\rangle$. Due to

$$[H_F, H_I] \equiv H_F H_I - H_I H_F \neq 0,$$

$|0\rangle$ is neither an eigenstate of H_F nor an eigenstate of
H_I. Eq. (5) implies that $H_F - H_I$ has on the state $|0\rangle$ a
definite value equal to zero: for all single systems from
the ensemble described by $|0\rangle$ no work is done and
hence no energy is supposed to be exchanged. But there
are examples [18], showing that [5, 6] are compatible with

$$\langle 0|H_F^m|0\rangle = \langle 0|U_\tau^m H_I^m U_{-\tau}|0\rangle \neq \langle 0|H_F^m|0\rangle \quad \text{for } m > 2. (7)$$

For a system that is strictly isolated for $t < 0$ and $t > \tau$
[recall (4)], the inequality (7) implies that the probabili-
ties of some energies (i.e. the eigenvalues of H_I) do
change due to the interaction with the source of work.

Thus, according to this definition it is possible to have
energy exchange with strictly zero fluctuations of work.
In other words, the link between energy exchange and
the work done on a thermally isolated system is generally absent.

Though I tuned \(H_F - H_1 \) to have a zero eigenvalue, it is clear that the problem is more general, e.g. it persists for \(H_F - H_1 \) having an eigenvalue close to zero \([51]\).

I opine that due to this problem \(H_F - H_1 \) cannot be interpreted as the work operator of for all initial states. Such an interpretation can be perhaps kept for initial states \(\rho \) that commute with \(H_F \) or with \(H_1 \) \([18]\), but it is not clear how to generalize this class of initial states.

B. Two-time measurements of energy

We turn to the second approach \([10, 11, 13, 16]\). Let the eigenresolvent of the Schroedinger-representation Hamiltonian \(H(t) \) be

\[
H(t) = \sum_k \epsilon_k(t) \mathcal{E}_k(t),
\]

\[
\mathcal{E}_k(t) \mathcal{E}_l(t) = \delta_{kl} \mathcal{E}_k(t), \quad \text{tr} \mathcal{E}_k(t) = \text{const},
\]

where \(\epsilon_k(t) \) are the eigenvalues of \(H(t) \), \(\delta_{kl} \) is the Kronecker symbol, and \(\mathcal{E}_k(t) \) are the projector to the corresponding eigen-space, whose dimension \(\text{tr} \mathcal{E}_k(t) \) is taken time-independent for simplicity.

Measuring \(H(0) \) at \(t = 0 \) produces \(\epsilon_k(0) \) with probability \(\text{tr}(\rho \mathcal{E}_k(0)) \) \([13, 14]\). The post-measurement state has the von Neumann-Luders form \(\rho_k \equiv \mathcal{E}_k(0) \rho \mathcal{E}_k(0) / \text{tr}(\rho \mathcal{E}_k(0)) \); it is then evolved via \((1) \). At the final moment \(\tau \) one measures \(H(\tau) \) and gets \(\epsilon_l(\tau) \) with probability \(\text{tr}(U_\tau \rho_k U_\tau^\dagger \mathcal{E}_l(\tau)) \), which is conditional over the result \(k \) of the first measurement.

The fluctuating work is presented as a classical random variable with, respectively, realizations and probabilities \(^2 \)

\[
e_l(\tau) - \epsilon_k(0),
\]

\[
\bar{\rho}_{kl} = \text{tr}(\rho \mathcal{E}_k(0)) \text{tr}(U_\tau \rho_k U_\tau^\dagger \mathcal{E}_l(\tau)) \equiv \text{tr}(\mathcal{E}_k(0) \rho \mathcal{E}_k(0) U_\tau^\dagger \mathcal{E}_l(\tau) U_\tau).
\]

The problem of this definition is that it does not apply to initial states that do not commute with \(H(0) \): the average “work” \(\bar{W} \) reads from \([10, 12]\):

\[
\bar{W} = \sum_{kl} \bar{\rho}_{kl}(\epsilon_l(\tau) - \epsilon_k(0)) = \text{tr}(\bar{\rho}(H_F - H_1)), \tag{13}
\]

where

\[
\bar{\rho} \equiv \sum_k \mathcal{E}_k(0) \rho \mathcal{E}_k(0).
\]

We obtain from \((2, 13, 14)\):

\[
W - \bar{W} = \text{tr}(\rho - \bar{\rho}) H_F \]

\[
= \sum_{k \neq l} \text{tr}(\mathcal{E}_k(0) \rho \mathcal{E}_l(0) H_F). \tag{15}
\]

Hence for

\[
[\rho, H_1] \neq 0 \quad \text{and} \quad [H_F, H_1] \neq 0, \tag{16}
\]

\([10, 12]\) cannot be related to the work done on the system with initial state \(\rho \) by the external source, because \(\bar{W} \neq W \). The physical reason for this conclusion is that under \([\rho, H_1] = 0 \) the first energy measurement (at \(t = 0 \)) can be said to reveal the pre-existing (but unknown) value of energy. In particular, the post-measurement density matrix does not change: \(\rho = \bar{\rho} \) \([see (14)]\). In contrast, for \([\rho, H_1] \neq 0 \) already the first measurement is invasive: it leads to an irreversible change \(\rho \rightarrow \bar{\rho} \) of the density matrix that alters its subsequent interaction with the source of work provided that \([H_F, H_1] \neq 0 \); see Appendix A for a physical example. But differently, the reason for inapplicability of the two-time measurement approach is that it essentially alters the (non-equilibrium) initial state \(^3\).

C. Comparing two definitions with each other

We saw that the definition based on the operator of work does always reproduce the average work \((2)\), but it does not account properly the notion of “work = exchanged energy” at least for some initial states. I stress that this definition implies a one-time approach, since one needs to measure the Heisenberg operator \(H_F - H_1 \) at the final time \(\tau \).

The definition based on the two-time measurements of energy does not reproduce the average work \((2)\) if \((10)\) holds.

It is to be stressed that the drawbacks of both approaches do not show up for \([\rho, H_1] = 0 \). Hence if one is restricted by such initial states, both approaches perform well, and it is a matter of taste which one to prefer \(^4\).

\(^2\) While this approach is standardly presented via two sharp measurements of energy, one can naturally wonder whether the same statistics of work can be approached via more feasible measurements; see \([52]\) for a recent review of this issue.

\(^3\) This point of altering the pre-measured state also appears in Ref. \([53]\), where the authors study the energy changes for a system that couples to an external measuring apparatus and is thereby subject to projective measurements of a quantity that does not commute with energy (no work-source is supposed to be present). It is expected that in this situation the energy changes of the system will consist of both work and heat; no analysis of this problem is carried out in Ref. \([53]\).

\(^4\) When discussing this issue with people I met several times a viewpoint that Ref. \([12]\) has shown that the quantum fluctuating work is not an operator, i.e. this reference ruled out the first definition. This is not correct: Ref. \([12]\) shows that the work obtained via two-time measurements of energy cannot be (in general) represented as an outcome of an operator. But it does not point out any drawback of the Heisenberg-operator based definition, far from ruling out all possible definitions of the fluctuating work as an operator.
Even then the operator definition has an advantage of being time-symmetric: in contrast to the two-time energy measurement approach, it applies not only for \([\rho, H_1] = 0\), but also for \([\rho, H_F] = 0\) (and \([\rho, H_F] = 0\)); see \([3, 5, 7]\).

IV. GENERAL CONDITIONS

The above analysis of the two approaches leads to the following general conditions demanded for the proper definition of fluctuations of work.

(i) For cyclic changes of the Hamiltonian (cf. the discussion above \([5, 7]\)), the zero fluctuations of work should mean no energy exchange:

\[
\text{tr}(\rho H_1^m) = \text{tr}(\rho H_F^m) \equiv \text{tr}(U\tau U^\dagger H_1^m) \quad \text{for} \quad m \geq 1. \tag{17}
\]

(ii) The definition should apply for a possibly wide class of initial states (including initial states that do not commute with the initial Hamiltonian \(H_1\)) and it should reproduce the average work \([2]\) for all initial states, where it applies.

As seen above, the first (second) condition does not hold for the first (second) definition of fluctuations.

V. ANOTHER DEFINITION FOR FLUCTUATING WORK

A. Estimation of energies via one measurement

Below I work out a definition that satisfies the above two conditions, and, similarly to \([10]\), it presents the work as a classical random quantity. When discussing the approach based on two measurements, we noted that its drawback stems from the invasive character of the first measurement. It is then natural to illustrate a more general approach by avoiding the explicit introduction of the first measurement. Hence at the final time \(\tau\) we measure \([cf. \ [3, 8]\]

\[
H_F = \sum_k \epsilon_k(\tau) \Pi_l, \quad \Pi_l \Pi_{l'} = \Pi_l \delta_{l,l'}. \quad \tag{18}
\]

Given the outcomes of this measurement, and provided that we know \(\rho\) and \(H_1\), we follow the ideas of \([42, 43]\) and introduce an approximation \(f(H_F)\) of \(H_1\). The unknown function \(f(.)\) is sought from minimizing the mean-squared difference (the simplest measure of magnitude):

\[
\text{tr} (. (f(H_F) - H_1)^2). \tag{19}
\]

The minimization is straightforward \([cf. \ [18, 22]\] \quad \text{and} \quad \sum_l f_l \Pi_l, \quad f_l \equiv \frac{\text{Re tr}(\Pi_l \rho H_1)}{\text{tr}(\Pi_l \rho)}. \quad \tag{20}
\]

Now \(f_l\) is represented via eigenvalues \(\epsilon_k(0)\) of \(H_1\):

\[
f_l = \sum_k \epsilon_k(0) p_{k|l}, \quad p_{k|l} \equiv \frac{\text{Re tr}(\Pi_l \epsilon_k \rho)}{\text{tr}(\Pi_l \rho)}, \quad \tag{21}
\]

where \(\epsilon_k \equiv \epsilon_k(0)\). Provided that \(p_{k|l} \geq 0\), it can interpreted as a conditional probability for the initial energy to be \(\epsilon_k(0)\). This condition does not hold automatically, but rather defines the class of states and Hamiltonians for which it is legitimate to interpret \(p_{k|l}\) as probabilities; see section \([7]\).

B. Definition of fluctuating work

Hence fluctuating work is defined as a classical random quantity with, respectively, realizations and probabilities:

\[
\epsilon_l(\tau) - \epsilon_k(0), \quad p_{kl} \equiv \text{Re tr}(\rho \epsilon_k \Pi_l) \geq 0. \tag{22}
\]

Now \(p_{kl} \geq 0\) is interpreted as the joint probability for the eigenvalues of \(H_1\) and \(H_F\). We could avoid the reasoning of \([19, 21]\) and just introduce \([22]\) as a postulate.

Note that \(p_{kl}\) has correct marginal probabilities

\[
\sum_k p_{kl} = \text{tr}(\rho \Pi_l), \quad \sum_l p_{kl} = \text{tr}(\rho \epsilon_k). \quad \tag{23}
\]

For \([\rho, H_1] = 0\) we revert from \([22]\) to \([10, 12]\) using \(\epsilon_k \rho = \epsilon_k \epsilon_k \rho\).

The Cauchy-Schwarz inequality implies \(p_{kl}^2 \leq 1:\)

\[
|\text{Re tr}(\rho \epsilon_k \Pi_l)|^2 \leq |\text{tr}(\sqrt{\rho} \epsilon_k \Pi_l \sqrt{\rho})|^2 \leq \text{tr}(\rho \Pi_l) \text{tr}(\rho \epsilon_k) \leq 1.
\]

But for specific choices of \(\rho\), \(p_{kl}\) can turn negative for given \(\epsilon_k\) and \(\Pi_l\), and then its interpretation as a joint probability is lost; see section \([7]\) from now on and till \([33]\) we assume that \(p_{kl} \geq 0\).

Condition (ii) holds, since the first and the second moment calculated from \([22]\) are equal, respectively, to the first and second moments of the operator \(H_F - H_1\):

\[
\text{tr}(\rho(H_F - H_1)^m) = \sum_k p_{kl}(\epsilon_l(\tau) - \epsilon_k(0))^m, \quad m = 1, 2. \tag{24}
\]

However, already the third moments generally differ, the difference involving a double-commutator \([cf. \ [18, 22]\] \quad \text{and} \quad \sum_{k,l} f_l p_{kl}(\epsilon_l(\tau) - \epsilon_k(0))^3 = \text{tr}(\rho(\frac{H_F + H_1}{2}) \{ H_F, H_1 \}). \quad \tag{25}
\]

Let us check that condition (i) holds. For cyclic, \(H(t) = H(0), \) change of the Hamiltonian, the zero fluctuations of work mean

\[
p_{kl} = \text{Re tr}(\rho \epsilon_k \Pi_l) = 0 \quad \text{for} \quad k \neq l. \tag{26}
\]

Employing \(0 = \text{Re tr}(\rho \epsilon_k \Pi_l) = \text{Re tr}(\rho(1 - \sum_{k'} \epsilon_{k'} \Pi_l))\) and re-arranging the terms we get

\[
\text{tr}(\rho \epsilon_l) = \text{tr}(\rho \Pi_l) = \text{Re tr}(\rho \epsilon_l \Pi_l) \quad \text{for} \quad l. \tag{27}
\]

The first equality here suffices to establish \([17]\). If \(\rho\) does not have zero eigenvalues one can find from \([20]\) stronger conditions, but we shall not dwell on that.
In section [7] we noted that the two-time energy measurement approach does not apply when $[\rho, H_F] = 0$ but holds. It is now seen that the present definition does not have this drawback: for $[\rho, H_F] = 0$ we obtain

$$p_{kl} = \text{tr}(\mathcal{E}_k \Pi_l \rho \Pi_l) \geq 0.$$ \hfill (28)

This expression is intuitive, but (for $[\rho, H] \neq 0$) it cannot be obtained from the two-time approach, where one first measures energy at $t = 0$ and then at $t = \tau > 0$.

C. Discussion

The joint probability p_{kl} for non-commuting variables was introduced in [34–38] (Terletsky-Margenau-Hill distribution). Though it is one of many possible definitions of joint probabilities for non-commuting variables, it is very convenient in the context of quantum statistical mechanics. This point was made in [37, 38] and we shall confirm it below when deriving the generalized fluctuation theorem. As many other joint probabilities (e.g. the Wigner function), p_{kl} can be measured experimentally [15]. Note that $f\text{t}_1$ in (20–21) corresponds to the generalized weak value [47], which is alternatively known as the locally averaged value of energy [44]; this interpretation was employed in (19–21). The relation between $f\text{t}_1$ and p_{kl} was noted in [48–50]. Also, the form of p_{kl} leads to the most general consistency condition in the history approach to quantum mechanics [39–41, 64]. p_{kl} behaves expectedly under coarse-graining: when two orthogonal subspaces (e.g. described, respectively, by projectors Π_1 and Π_2) are joined into one space (described by $\Pi_1 + \Pi_2$), the probabilities are added:

$$p_{k1} + p_{k2} = \text{Re tr} ((\Pi_1 + \Pi_2) \mathcal{E}_k \rho).$$ \hfill (29)

Ref. [46] derives p_{kl} axiomatically and underlines another deep feature of p_{kl}: it is time-symmetric, i.e. invariant with respect to interchanging Π_l with \mathcal{E}_k. We already noted this feature around (28).

D. Summary

Let us briefly summarize recalling why p_{kl} defined in [22] can be regarded as a joint distribution for initial and final energies:

- It emerges out of estimating two non-commuting observables via one measurement; see (18–21).
- Whenever any two among three operators $\Pi_l, \mathcal{E}_k, \rho$ commute, p_{kl} reduces to the expected form $\text{tr}(\Pi_l \mathcal{E}_k \rho)$. p_{kl} has correct marginals; see (23).
- It is time-symmetric and linear with respect to projectors Π_l and \mathcal{E}_k. Hence p_{kl} is additive, much in the same way as the ordinary probability $\text{tr}[\rho \mathcal{E}_k]$.

VI. GENERALIZED FLUCTUATION THEOREM

A. Derivation and interpretation

Following the logic of the equilibrium fluctuation theorem we take a parameter β and work out using (22):

$$\sum_{kl} p_{kl} e^{-\beta (\epsilon_l (\tau) - \epsilon_k (0))} = \text{Re} \sum_{kl} \text{tr}(\rho \Pi_l e^{-\beta \epsilon_l (\tau)} \mathcal{E}_k e^{\beta \epsilon_k (0)}).$$

We get from this the following fluctuation theorem

$$\langle e^{-\beta (w - \Delta F)} \rangle = \text{Re} \text{tr} (\sigma \rho_{eq}^{-1} (0) \rho) \equiv \Upsilon, \hfill (30)$$

where $w = \epsilon_l (\tau) - \epsilon_k (0)$ are realizations of the random work, $\langle \ldots \rangle$ means averaging over p_{kl}, and where

$$\rho_{eq}(t) \equiv e^{-\beta H(t)} \text{tr}(e^{-\beta H(t)}) / \text{tr}(e^{-\beta H(t)}), \quad 0 \leq t \leq \tau, \hfill (31)$$

$$\beta \Delta F \equiv - \ln \text{tr}[e^{-\beta H(t)}] + \ln \text{tr}[e^{-\beta H(0)}], \hfill (32)$$

$$\sigma \equiv U_t^\dagger \rho_{eq}(\tau) U_t. \hfill (33)$$

Eq. (30) relates to each other 3 processes; see Fig. 1. The first of them is the thermally isolated process we focused on: the system starts from the density matrix ρ and Hamiltonian $H(0)$ and (in the Schröedinger representation) ends at density matrix $\rho (\tau) = U_\tau \rho U_\tau^\dagger$ and Hamiltonian $H(\tau)$. The work w and averaging $\langle \ldots \rangle$ in (30) refer to this process.

For the second process we imagine that the system (at some pre-initial time) is attached to a thermal bath at temperature $1/\beta$, and relaxes to the Gibbsian equilibrium density matrix $\rho_{eq}(0)$; cf. (31). Then it follows an isothermal quasi-equilibrium process, where the Hamiltonian slowly changes from $H(0)$ to $H(\tau)$, under a weak
but fixed coupling with the bath. Since the change is slow, the density matrix during the process equals \(\rho_{eq}(t) \), \(0 < t \leq \tau \). The work done in this process is given the equilibrium free energy difference \(\Delta F \) in [30] [32] [12].

During the third process the system at the end of the previous isothermal process is decoupled from the bath and undergoes the reversal of the first thermally isolated process. The final density matrix \(\sigma \) of this process appears in [30] [34].

In the (initially) equilibrium situation \(\rho_{eq}(0) = \rho \), we revert to the usual (equilibrium) fluctuation theorem

\[
\left\langle e^{-\beta(w-\Delta F)}\right\rangle = 1. \tag{34}
\]

This theorem relates together characteristics of the first (thermally isolated) and second (isothermal) process. Note that the approach based on two-time measurements of certain observables (not necessarily energy) can also generate fluctuation theorems whose r.h.s. is not equal to 1 [an analogue of \(\Upsilon \), cf. [30] [60] [62]]. There, however, the initial (post-measurement) state always commutes with the first observable, in contrast to (30), which holds for an arbitrary initial state.

For the equilibrium fluctuation theorem [31], we note that the existence of the bath is necessary for defining the second process (at least when the system is finite, as we assume here). Without the bath, i.e. when the second process is also thermally isolated, the work during the slowest, reversible process is generally not given by the free energy difference [63]. There is a simple way to see this fact explicitly: any unitary time-evolution conserves eigenvalues of the density matrix:

\[
\text{Spectrum}[U_T \rho_{eq}(0) U_T^\dagger] = \text{Spectrum}[\rho_{eq}(0)]. \tag{35}
\]

Hence \(\rho_{eq}(\tau) \) in [31] cannot be obtained from \(\rho_{eq}(0) \) via a unitary process. Put differently, the equilibrium fluctuation theorem [31] does not generally characterize the amount of irreversibility (slow versus fast realization) of the thermally isolated process. Instead it compares two different processes.

Finally, let us again look at (30) and compare it with [32]: the equilibrium fluctuation theorem [31] has precisely the same form as the corresponding classical fluctuation relation. This is related to the fact that the equilibrium initial state \(\rho_{eq}(0) \) has classical features with respect to the (initial) energy distribution [5]. In contrast, [30] retains quantum features, since its right-hand-side contains non-commutative quantities.

B. Work-free-energy relation

Using convexity, \(\langle e^x \rangle \geq e^\langle x \rangle \), we deduce from [22] [30] a generalization of the usual work-free-energy relation:

\[
-\beta(W - \Delta F) \geq \ln \Upsilon \equiv \ln \left(\sum_{kl} \frac{\mu_l}{\nu_k} p_{kl} \right), \tag{36}
\]

where \(\mu_l \) and \(\nu_k \) are the eigenvalues of \(\sigma \) and \(\rho_{eq}(0) \), respectively. They directly relate to eigenvalues of \(H(\tau) \) and \(H(0) \). Now \(\ln \Upsilon \) can be arbitrary large, e.g. when one of \(\nu_k \) is close to zero. Then the equilibrium relation

\[
-\beta(W - \Delta F) \geq 0, \tag{37}
\]

carries out to non-equilibrium. Note that \(\ln \Upsilon \geq 0 \) (which guarantees (37)) is not always true; see Appendix B.

VII. NEGATIVITY OF \(p_{kl} \)

The above theory for fluctuations of work was developed under assumption \(p_{kl} \geq 0 \) (cf. [22]) (though we shall see that formally not all results demand this assumption). However, for given projectors \(\mathcal{E}_k \) and \(\Pi_l \) with \([\mathcal{E}_k, \Pi_l] \neq 0, \) there are \(\rho \)’s such that

\[
p_{kl} = \text{tr}(\rho X_{kl}) < 0, \quad X_{kl} = \frac{1}{2}(\mathcal{E}_k \Pi_l + \Pi_l \mathcal{E}_k). \tag{38}
\]

This is because for \([\mathcal{E}_k, \Pi_l] \neq 0, \) \(X_{kl} \) has at least one negative eigenvalue [41], e.g. for one-dimensional projectors \(\mathcal{E}_k \) and \(\Pi_l \) the non-zero eigenvalues of \(X_{kl} \) are

\[
\frac{1}{2} \text{tr}(\mathcal{E}_k \Pi_l) \pm \sqrt{\text{tr}(\mathcal{E}_k \Pi_l)}). \tag{39}
\]

More generally, for \([\mathcal{E}_k, \Pi_l] \neq 0 \) there is a vector \(|\psi\rangle \) so that \(\mathcal{E}_k |\psi\rangle = 0, \) but \(\mathcal{E}_k \Pi_l |\psi\rangle \neq 0 \). Let now \(X_{kl} = \sum_a x_a |x_a\rangle\langle x_a| \) be the eigen-resolution of \(X_{kl} \), and \(x_1 \) be the smallest eigen-value of \(X_{kl} \). We have

\[
x_1 \leq \sum_a x_a |\langle x_a|\psi\rangle|^2 = \text{Re} \langle \psi | \mathcal{E}_k \Pi_l | \psi \rangle = 0. \tag{40}
\]

This proves that at least the smallest eigenvalue of \(X_{kl} \) is negative, since for \([\mathcal{E}_k, \Pi_l] \neq 0 \) the inequality in (40) is strict. (It turns into equality for \([\mathcal{E}_k, \Pi_l] = 0, \) in which case \(x_1 = 0 \).) The magnitude of this negativity can be estimated from [6]

\[
-\frac{1}{8} \leq X_{kl} \leq 1, \tag{41}
\]

5 Quantum effects are carefully hidden under [34]; see e.g. [62].

6 Inequalities in [41] were derived in [68] for a slightly more general case of two non-negative operators (not necessarily projections). The first [second] inequality follows from \((\mathcal{E}_k + \Pi_l - \frac{1}{2})^2 \leq 1 \) \([|\mathcal{E}_k - \Pi_l|^2 \geq 0] \) using \(\mathcal{E}_k = \mathcal{E}_k^2 \leq 1 \) and \(\Pi_l = \Pi_l^2 \leq 1 \).
where 1 is the unit operator, and e.g. $X_{kl} \leq 1$ means that the eigenvalues of $1 - X_{kl}$ are non-negative. Thus the smallest eigenvalue of X_{kl} is not smaller than $-\frac{1}{2}$ (this is consistent with (50)).

Whenever $p_{kl} < 0$, the usual probability interpretation for p_{kl} and hence the presented definition of fluctuations of work—do not apply. Nevertheless, the expression (24) for the first and second moments of work, as well as the fluctuation theorem (50), still apply formally, i.e. their derivations do not require the validity of $p_{kl} \geq 0$. This condition is demanded, e.g. for (50).

However, the positive eigenvalues of X_{kl} are larger than negative one(s), e.g. due to $\text{tr}[X_{kl}] = \text{tr}[\Pi E_k \Pi] \geq 0$. Also, in certain cases of $p_{kl} < 0$ we can follow the reasoning of (20) and still define positive probabilities by coarse-graining p_{kl}.

VIII. SUMMARY

This paper is started by studying the applicability of the existing definitions of fluctuating work to non-equilibrium initial states of a quantum system subject to a thermally isolated process. The approach based on two-time energy measurements do not apply for initial states that do not commute with the initial Hamiltonian, because it does not properly reproduce the average work; see section III A The applicability domain of the operator definition of work is wider, but it is still limited, because this definition does not support (for non-equilibrium initial states) the relation between the work and energy change; see section III A.

The route to defining quantum fluctuating work goes via formulating necessary physical conditions which possible definition should hold. I propose in section IV that there are (at least) two such restrictions: the fluctuating work should relate to energy change and it should respect the definition (2) of the average work.

I worked out in section V (what seems to me) the simplest definition of the fluctuating work that holds the above two features. This definition does apply to class of non-equilibrium initial states. Its applicability domain is clearly defined by the non-negativity $p_{kl} \geq 0$ of joint probabilities; see (22) and section VII.

This definition employs only one measurement (by analogy to the definition of work based on the Heisenberg operator (3); see section III A). For initial states that commute with the initial Hamiltonian this definition reduces to what is obtained with the two-time energy measurements.

I believe that this definition of fluctuating work does advance our understanding of non-equilibrium statistical mechanics, e.g. it allows to derive a generalized fluctuation theorem, which connects together 3 related processes; see section VI.

Acknowledgements

I acknowledge discussions with K. Hovhannisyan, E. Sherman, D. Sokolovskii, M. Campisi and M. Perernau-Llobet. I was supported by COST network MP1209.

[1] R. Balian, *From Microphysics to Macrophysics*, volume I (Springer, 1992).
[2] G. Lindblad, *Non-Equilibrium Entropy and Irreversibility* (D. Reidel, Dordrecht, 1983).
[3] H.S. Leff and A.F. Rex, *Maxwell’s Demon: Entropy, Information, Computing* (Princeton: Princeton University Press, 1990).
[4] I.M. Bassett, Phys. Rev. A 18, 2356 (1978).
[5] A. Lenard, J. Stat. Phys., 19, 575 (1978).
[6] W. Thirring, *A Course in Mathematical Physics 4: Quantum mechanics of large systems* (Springer, Vienna, 1983).
[7] G.N. Bochkov and Yu.E. Kuzovlev, Physica A 106, 443 (1981); *ibid*, 480 (1981).
[8] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[9] C. Maes, Séminaire Poincaré, 2, 29 (2003).
[10] M. Campisi, P. Hanggi and P. Talkner, Rev. Mod. Phys. 83, 771 (2011).
[11] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009).
[12] S. Yukawa, J. Phys. Soc. Jpn. 69, 2370 (2000).
[13] J. Kurchan, *cond-mat/0007360*.
[14] H. Tasaki, *cond-mat/0009244*.
[15] S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003).
[16] P. Talkner, E. Lutz and P. Hanggi, Phys. Rev. E 75, 050102 R (2007).
[17] T. Monnai and S. Tasaki, cond-mat/0308337.
[18] A.E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. E 71, 066102 (2005).
[19] A. Engel and R. Nolte, EPL 79, 10003 (2007).
[20] M.F. Gelin and D.S. Kosov, Phys. Rev. E, 78, 011116 (2008).
[21] M. Campisi, New Journal of Physics 15, 115008 (2013).
[22] F. W. J. Hekking and J. P. Pekola, Phys. Rev. Lett. 111, 093602 (2013).
[23] J. P. Pekola, P. Solinas, A. Shnirman and D.V. Averin, New Journal of Physics, 15, 115006 (2013).
[24] W. De Roeck and C. Maes, Phys. Rev. E 69, 026115 (2004).
[25] V. Chernyak and S. Mukamel, Phys. Rev. Lett. 93, 048302 (2004).
[26] V. Chernyak, F. Sandra, and S. Mukamel, Phys. Rev. E 73, 036119 (2006).
[27] Y. Subasi and B.L. Hu, Phys. Rev. E 85, 011112 (2012).
[28] H. Li and J.-S. Wang, arXiv:1304.6286.
[29] B. Leggio, A. Napoli, A. Messina and H.-P. Breuer, Phys. Rev. A 88, 042111 (2013).
[30] B. Leggio, A. Napoli, H.-P. Breuer and A. Messina, Phys. Rev. E 87, 032113 (2013).
[31] J.M. HOROWITZ, Phys. Rev. E 85, 031110 (2012).
Appendix A: Fluctuations of work for the Rabi’s model

1. The Rabi’s model

The purpose of this section is to illustrate the definition of work fluctuations (proposed in the main text) for the Rabi’s model: a two-level system driven by an oscillating external field \[^69, 70\]. I also contrast with each other different definitions of fluctuating work.

There are several reasons why I choose to illustrate the theory of fluctuating work with this specific model.

– The model is basic for several fields (quantum optics, NMR/ESr physics etc).

– It is exactly solvable.

– The non-equilibrium initial states for this model are theoretically natural and experimentally realizable.

The time-dependent Hamiltonian of the model reads

\[
H(t) = \frac{\omega}{2} \sigma_z + g \left[\sigma_x \cos(\omega t) + \sigma_y \sin(\omega t) \right],
\]

(A1)

where \(\omega > 0\) is the (free) frequency of the two-level system, while \(g\) quantifies the coupling with the external field.

Here \(\sigma_x,\sigma_y,\sigma_z\) are Pauli matrices. We shall write them in the representation of up \(\uparrow\) and down \(\downarrow\) spin states:

\[
\sigma_z = |\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow|, \quad \sigma_x = |\uparrow\rangle\langle\downarrow| + |\downarrow\rangle\langle\uparrow|, \quad \sigma_y = -i(|\uparrow\rangle\langle\downarrow| - |\downarrow\rangle\langle\uparrow|).
\]

(A2)

(A3)

Eq. \(^{(A1)}\) assumes the resonant case, where the frequencies of the two-level system and external are both equal \(\omega\) (we take \(\hbar = 1\) \[^69, 70\].)

The eigenvalues

\[
\epsilon_1 = \frac{1}{2} \sqrt{g^2 + \omega^2}, \quad \epsilon_2 = -\frac{1}{2} \sqrt{g^2 + \omega^2},
\]

(A4)

of \(H(t)\) do not depend on time. The orthogonal and normalized eigenvectors of \(H(t)\) read \(|\epsilon_1,2(t)\rangle\) are row-vectors:

\[
\langle\epsilon_1(t)| = \left(\frac{\omega + \sqrt{\omega^2 + g^2}}{\sqrt{g^2 + (\omega + \sqrt{\omega^2 + g^2})^2}} e^{i\omega t}, \frac{g}{\sqrt{g^2 + (\omega + \sqrt{\omega^2 + g^2})^2}} \right),
\]

\[
\langle\epsilon_2(t)| = \left(\frac{\omega - \sqrt{\omega^2 + g^2}}{\sqrt{g^2 + (\omega - \sqrt{\omega^2 + g^2})^2}} e^{i\omega t}, \frac{g}{\sqrt{g^2 + (\omega - \sqrt{\omega^2 + g^2})^2}} \right).
\]

(A5)

(A6)

The unitary operator generated by \(^{(A1)}\) is

\[
U_t = \exp \left[\frac{-i\omega t}{2} \sigma_z \right] \exp \left[-\frac{igt}{2} \sigma_x \right].
\]

(A7)

It satisfies the evolution equation \(i\partial_t U_t = H(t)U_t\), as verified by direct substitution.
2. Fluctuations of work

The advantage of this situation is that the up and down initial states and their mixtures are natural initial states \(69, 70\). We thus take the initial state as

\[\rho = \frac{1 - \delta}{2} \left| \uparrow \right\rangle \left\langle \uparrow \right| + \frac{1 + \delta}{2} \left| \downarrow \right\rangle \left\langle \downarrow \right|, \]

(A8)

where \(|\delta| \leq 1\) is a parameter. For applications in NMR/ESR physics, \(|\delta|\) is a small dimensionless number, e.g. \(|\delta| \sim 10^{-2} \) \(69\); it can be significantly larger in quantum optics \(70\).

Clearly, the initial state \(\rho\) does not commute with the initial Hamiltonian \(H(0)\) (excluding the case \(\delta = 0\) [cf. \(A1, A5, A6\)], so we are in the situation described in the main text.

According to (16) of the main text, we get from \(A4\) three values of the fluctuating work \(A9, A11, A13\) with their respective probabilities \(A10, A12, A14\) (with an obvious adaptation of notations):

\[p_+ = \text{Re} \left\{ \langle \epsilon_2(0)|U_t^\dagger |\epsilon_1(t)\rangle \langle \epsilon_1(t)U_t|\epsilon_2(0)\rangle \right\}, \]

(A10)

\[p_- = \text{Re} \left\{ \langle \epsilon_1(0)|U_t^\dagger |\epsilon_2(t)\rangle \langle \epsilon_2(t)U_t|\epsilon_1(0)\rangle \right\}, \]

(A12)

\[p_0 = 1 - p_+ - p_- \]

(A13)

Eqs. \(A6, A7, A10, A12, A14\) imply

\[p_+ = \frac{\omega^2 \sin^2[gt/2]}{2(g^2 + \omega^2)} \left(1 + \delta \sqrt{\frac{g^2}{\omega^2} + 1} \right), \]

(A15)

\[p_- = \frac{\omega^2 \sin^2[gt/2]}{2(g^2 + \omega^2)} \left(1 - \delta \sqrt{\frac{g^2}{\omega^2} + 1} \right), \]

(A16)

\[p_0 = \frac{g^2 + \omega^2 \cos^2[gt/2]}{g^2 + \omega^2}. \]

(A17)

Note that \(p_+ - p_-\) and \(\delta\) have the same sign, and this agrees with the logics of the second law (even though the initial state is not in equilibrium): \(\delta > 0\) means the lower (down) initial state is more populated [cf. \(A8\)] and hence the probability of energy increase is larger:

\(p_+ > p_-\).

The average work agrees with \(A15, A16\):

\[W = \text{tr} \left(U_t^\dagger H(t) - \rho H(0) \right) = \sqrt{g^2 + \omega^2}(p_+ - p_-) = \delta \omega \sin^2[gt/2]. \]

(A18)

Eqs. \(A15, A16\) are non-negative—and hence qualify as probabilities—for

\[1 \geq |\delta| \sqrt{\frac{g^2}{\omega^2} + 1}, \]

(A19)

i.e. for a sufficiently mixed initial state (\(|\delta|\) is not close to 1), and/or for a sufficiently small \(\frac{g^2}{\omega^2}\) (relatively weak influence on the two-level system). Condition \(A19\) does not hold, and hence either \(p_{12}\) or \(p_{21}\) is negative for \(|\delta| = 1\) (initially pure state).

3. Two-time measurements of energy

Now the two-time measurement approach produces the same 3 realizations \((\pm \sqrt{g^2 + \omega^2}, 0)\), but their probabilities are different:

\[\sqrt{g^2 + \omega^2}, \]

(A20)

\[\tilde{p}_+ = \langle \epsilon_2(0)|\rho|\epsilon_2(0)\rangle \langle \epsilon_2(0)U_t^\dagger |\epsilon_1(t)\rangle \langle \epsilon_1(t)U_t|\epsilon_2(0)\rangle \]

(A21)

\[-\sqrt{g^2 + \omega^2}, \]

(A22)

\[\tilde{p}_- = \langle \epsilon_1(0)|\rho|\epsilon_1(0)\rangle \langle \epsilon_1(0)U_t^\dagger |\epsilon_2(t)\rangle \langle \epsilon_2(t)U_t|\epsilon_1(0)\rangle \]

(A23)

\[0, \]

(A24)

\[1 - \tilde{p}_- - \tilde{p}_+. \]

(A25)

The difference between \(A10, A12\) and \(A21, A23\) is best visible without working out \(A21, A23\) but looking directly to the average produced by \(A21, A23\):

\[\sqrt{g^2 + \omega^2} (\tilde{p}_+ - \tilde{p}_-) = \frac{\delta \omega \sin^2[gt/2]}{g^2 + \omega^2}. \]

(A26)

It is seen that \(A26\) does differ from the average work \(A18\), and hence the approach based on the two-time measurements of energy does not apply.

4. Operator of work

Let us now turn to the operator of work approach. This operator is given as

\[\Delta H(t) = U_t^\dagger H(t)U_t - H(0). \]

(A27)

As follows from \(A1, A7\), \(\Delta H(t)\) has eigenvalues and (respective) eigenvectors:

\[\Delta_1 = w \sin[gt/2], \]

(A28)

\[\langle \Delta_1 | = \frac{(-i(\sin[gt/2] - 1), \cos[gt/2])}{\sqrt{2(1 - \sin^2[gt/2])}}, \]

(A29)

\[\Delta_2 = -w \sin[gt/2], \]

(A30)

\[\langle \Delta_2 | = \frac{(-i(\sin[gt/2] + 1), \cos[gt/2])}{\sqrt{2(1 + \sin^2[gt/2])}}. \]

(A31)
On the initial state ρ each of these eigenvalues is realized with probabilities

$$\langle \Delta_1 | \rho | \Delta_1 \rangle = \frac{1 + \delta \sin[gt/2]}{2}, \quad (A32)$$

$$\langle \Delta_2 | \rho | \Delta_2 \rangle = \frac{1 - \delta \sin[gt/2]}{2}. \quad (A33)$$

Now the average work (A18) is expectedly reproduced from (A27–A33):

$$W = \sum_{k=1,2} \Delta_k \langle \Delta_k | \rho | \Delta_k \rangle \quad (A34)$$

We compare predictions of the operator of work approach with (A9–A14). According to (A9, A11, A13) there are 3 time-independent realizations of work, while in (A28, A30) there are 2 time-dependent realizations $\pm \omega \sin[gt/2]$. Note that the eigenvalues of the operator of work $\pm \omega \sin[gt/2]$ nullify simultaneously with probabilities (A10, A12) for non-zero values. Also, p_- in (A12) can be zero due to $1 = \delta \sqrt{1 + g^2/\omega^2}$—indicating that the fluctuations of work are strictly non-negative—while $\pm \omega \sin[gt/2]$ can still assume negative values with non-zero probability.

Appendix B: A lower bound for Υ

The factor Υ is defined by (26) of the main text.

To derive a lower bound for Υ we minimize it over ν_k under the constraint $\sum_k \nu_k = 1$ using Lagrange multipliers (recall that ν_k and μ_l are probabilities). This produces:

$$\Upsilon \geq \left[\sum_k p_k^{1/2} \left(\sum_l p_k | \mu_l \rangle \langle \mu_l | \right)^{1/2} \right]^2. \quad (B1)$$

This lower bound is achievable and its RHS is smaller than 1, because it is a squared overlap of two probability vectors: p_k and $\sum_l p_k | \mu_l \rangle \langle \mu_l |$. Hence $\ln \Upsilon$ in (26) [of the main text] can be negative.