\[\mathcal{W}_{1+\infty} \text{ algebra, } \mathcal{W}_3 \text{ algebra, and} \\
\text{Friedan-Martinec-Shenker} \\
\text{bosonization} \]

Weiqiang Wang

Max-Planck Institut fur Mathematik, 53225 Bonn, Germany
E-mail: wqwang@mpim-bonn.mpg.de

Abstract

We show that the vertex algebra \(\mathcal{W}_{1+\infty} \) with central charge \(-1\) is isomorphic to a tensor product of the simple \(\mathcal{W}_3 \) algebra with central charge \(-2\) and a Heisenberg vertex algebra generated by a free bosonic field. We construct a family of irreducible modules of the \(\mathcal{W}_3 \) algebra with central charge \(-2\) in terms of free fields and calculate the full character formulas of these modules with respect to the full Cartan subalgebra of the \(\mathcal{W}_3 \) algebra.

0 Introduction

In search of classification of conformal field theories, one is lead to study \(\mathcal{W} \) algebras which are extended chiral algebras (vertex algebras or vertex operator algebras in mathematical terminology) containing Virasoro algebra as a subalgebra. Since the first attempt was made by Zamolodchikov \([Z]\) there has been much further study of \(\mathcal{W} \) algebras (see the review paper \([BS]\) and references therein). A particularly interesting example of \(\mathcal{W} \) algebra, the so-called \(\mathcal{W}_{1+\infty} \) algebra \([PRS]\), appears to be a universal one among various \(\mathcal{W} \) infinite algebras in the \(N \rightarrow \infty \) limit of \(\mathcal{W}(sl_N) \) algebras, see e.g. \([Br, BK, PRS, Q]\). The \(\mathcal{W}(sl_N) \) algebras are often referred to as \(\mathcal{W}_N \) algebras in literature.

\footnote{We note a less-known fact that \(\mathcal{W}_N \) algebras were constructed in \([F2]\) for the particular central charge \(c = N - 1 \)}
In mathematics, $\mathcal{W}_{1+\infty}$ is known as the universal central extension $\hat{\mathcal{D}}$ of the Lie algebra \mathcal{D} of differential operators on the circle. The first systematic study of the representation theory of the Lie algebra \mathcal{D} was undertaken by Kac and Radul in their seminal paper [KR1] and there have been many further development [M, FKRW, AFMO, KR2, W1] since then, just to name some.

In [FKRW], Lie algebra $\hat{\mathcal{D}}$ and its representation theory are studied in the framework of vertex algebras [B, FLM, DL, K2, LZ2]. It turns out that the irreducible vacuum $\hat{\mathcal{D}}$-module with central charge c admits a canonical vertex algebra structure, with infinitely many generating fields of conformal weights $2, 3, 4, \ldots$, which we will denote by $\mathcal{W}_{1+\infty,c}$. The case when the central charge is non-integral is not difficult to understand. The case when the central charge is a positive integer was studied in detail in [FKRW]. The vertex algebra $\mathcal{W}_{1+\infty,N}$ with a positive integral central charge N has redundant symmetries, namely only the first N generating fields are independent. More precisely $\mathcal{W}_{1+\infty,N}$ is shown to be isomorphic to a \mathcal{W}-algebra $\mathcal{W}(gl_N)$ with central charge N and the irreducible modules of $\mathcal{W}_{1+\infty,N}$ are classified [FKRW].

In this paper we will take the first step to clarify the connection between vertex algebra $\mathcal{W}_{1+\infty,-N}$ and some other \mathcal{W}-algebra with finitely many generating fields. We prove that the vertex algebra $\mathcal{W}_{1+\infty,-1}$ is isomorphic to a $\mathcal{W}(gl_3)$ algebra, which is a tensor product of the simple \mathcal{W}_3 algebra with central charge -2 (denoted below by $\mathcal{W}_{3,-2}$) and a Heisenberg vertex algebra generated by a free bosonic field. We will construct explicitly a number of modules of the $\mathcal{W}_{3,-2}$ algebra parametrized by integers in terms of free fields. We prove the irreducibility of these modules. As a by-product, we obtain full character formulas for these representations. To our best knowledge, these seem to be the first known full character formula of any non-trivial module of the \mathcal{W}_3 algebra with any non-generic central charge. We mention a curious fact that a generating function of counting covers of an elliptic curve [Di] appears to be closely related to our character formulas and admits very interesting modular invariance properties [KZ].

The difficulties appearing in the negative integral central charge case in contrast to the positive integral central charge case are roughly the following: In both cases we have free field realizations. In the case of positive integral central charge case we need bc fields which are free fermions while in the negative integral central charge case we need $\beta\gamma$ fields which are free bosonic ghosts. The structure of \mathcal{W}_N algebra in the realization of $\mathcal{W}_{1+\infty,N}$ in terms of bc fields can be identified relatively easily due to the very fact that the structure of the basic representation
of the affine Kac-Moody algebra \hat{sl}_N is well understood \cite{K1}. However structures of representations of affine algebras with negative integral central charges are far from being clear.

One of the main technique we use in relating the $W_{1+\infty}$ algebra with central charge -1 to W_3 algebra with central charge -2 is the bosonization of $\beta\gamma$ fields \cite{FMS}. A similar construction was also given by Kac and van de Leur and used by them for a construction of a super KP hierarchy \cite{KV1, KV2}. More detailed structures in the bosonization of $\beta\gamma$ fields are further worked out in \cite{FF} and used for the computation of semi-infinite cohomology of the Virasoro algebra with coefficient in the module of its adjoint semi-infinite symmetric powers. It is well known that $\beta\gamma$ fields are fundamental ingredients in superstring theory \cite{FMS}, in realizations of level -1 representations of classical affine algebras \cite{Fer} and in the calculation of BRST cohomology of super-Virasoro algebras \cite{LZ1}. They are also closely related to the logarithmic conformal field theories which recently attract much attention from physicists, see e.g. \cite{F, Ka, GK}. We hope our results may shed some lights on these subjects.

Let us explain in more detail. It is well known \cite{M} that the Fock space M_s of the $\beta\gamma$ fields as a module over D can be decomposed into a direct sum of the modules M^l_s parametrized by the $\beta\gamma$–charge number l. Recall \cite{FMS} that the $\beta\gamma$ fields are expressed in terms of two scalar fields $\psi(z)$ and $\phi(z)$. So the space M_s can be identified with some subspace of the Fock space of the Heisenberg algebra of the two scalar fields $\psi(z)$ and $\phi(z)$. Indeed one can identify M^l_s as $F^l \otimes H_{i(s+l)}$, $i = \sqrt{-1}$ (cf. e.g. \cite{FF}), where F^l is a certain subspace of the Fock space of the Heisenberg algebra generated by the Fourier components of field $\psi(z)$ while $H_{i(s+l)}$ is the Fock space of the Heisenberg algebra of the field $\phi(z)$.

$W_{1+\infty,-1}$ acts on M^l_s by means of fields

$$J^l(z) =: \gamma(z)\partial^l \beta(z) : = + \frac{1}{i + 1}s(s - 1) \cdots (s - i)z^{-i - 1}, i \in \mathbb{Z}_+.$$

For the sake of simplicity, the reader may understand the main results of this paper by taking $s = 0$ throughout this paper. By the celebrated boson-fermion correspondence, we have a pair of fermionic fields $b(z)$ and $c(z)$ expressed in terms of the scalar field $\psi(z)$. Furthermore we can construct two particular fields as some normally ordered polynomials of fields $b(z)$ and $c(z)$ and their derivative fields: a Virasoro field $T(z)$ of conformal weight 2 and a field $W(z)$ of conformal weight 3. These two fields $T(z)$ and $W(z)$ satisfy the operator product expansion of the W_3
algebra with central charge -2. The three fields $J^0(z), T(z)$ and $W(z)$ may be regarded as generating fields of a $\mathcal{W}(gl_3)$ algebra. We will show that all the $J^i(z) = : \gamma(z) \partial^i \beta(z) ;; i = 0, 1, \ldots$, can be expressed (See Lemmas 4.2 and 4.3) as some normally ordered polynomials in terms of $T(z), W(z)$ and $J^0(z)$ and their derivative fields. Since the space $\mathcal{F} \otimes \mathcal{H}_{i(s+l)}$, being isomorphic to \mathcal{M}_{s}, is an irreducible module over the vertex algebra $\mathcal{W}_{1+\infty,-1}$, it is also irreducible as a module over the $\mathcal{W}(gl_3)$ algebra.

One can show that $J^0(z) = i \partial \phi(z)$, by using Friedan-Martinec-Shenker bosonization. Note that when the $\mathcal{W}(gl_3)$ algebra acts on $\mathcal{F} \otimes \mathcal{H}_{i(s+l)}$, the Fourier components of fields $T(z)$ and $W(z)$ act only on the first factor \mathcal{F}, while $J^0(z)$ acts only on the second factor $\mathcal{H}_{i(s+l)}$. This implies that \mathcal{F} is irreducible as a module over the $\mathcal{W}_{3,-2}$ algebra.

We obtain full character formulas of these irreducible modules \mathcal{F} of the $\mathcal{W}_{3,-2}$ algebra as a consequence of our explicit free field realization. As a by-product of our free field realization of \mathcal{F}, we find that there exists non-split short exact sequences of modules over the \mathcal{W}_3 (resp. $\mathcal{W}_{1+\infty,-1}$) algebra with central charge -2 (resp. -1).

The plan of this paper goes as follows. In Section 1, we review the definition of \hat{D} and the construction of vertex algebra $\mathcal{W}_{1+\infty,c}$. We present the free field realization of $\mathcal{W}_{1+\infty,-1}$ in terms of $\beta \gamma$ fields. In Section 2, we recall the bosonization of $\beta \gamma$ fields in detail. In Section 3 we review the \mathcal{W}_3 algebra in the framework of vertex algebras. In Section 4 we prove that vertex algebra $\mathcal{W}_{1+\infty,-1}$ is isomorphic to a tensor product of the simple $\mathcal{W}_{3,-2}$ algebra and a Heisenberg vertex algebra generated by a free bosonic field. We construct a number of irreducible modules of the $\mathcal{W}_{3,-2}$ algebra. In Section 5, we calculate the full character formula for representations of the $\mathcal{W}_{3,-2}$ algebra constructed in Section 4.

We take this opportunity to announce that we classify the irreducible modules of the $\mathcal{W}_{3,-2}$ algebra in our subsequent paper [W2]. It turns out that these irreducible modules are parametrized by points on a certain rational curve. We will also classify all the irreducible modules of $\mathcal{W}_{1+\infty,-1}$ algebra based on the relation between $\mathcal{W}_{3,-2}$ and $\mathcal{W}_{1+\infty,-1}$ algebras found in this paper.
1 Vertex algebra $\mathcal{W}_{1+\infty,c}$ and free fields realization of $\mathcal{W}_{1+\infty,-1}$

Let \mathcal{D} be the Lie algebra of regular differential operators on the circle. The elements

$$J^l_k = -t^{l+k}(\partial_t)^l, \quad l \in \mathbb{Z}_+, k \in \mathbb{Z},$$

form a basis of \mathcal{D}. \mathcal{D} has also another basis

$$L^l_k = -t^k D^l, \quad l \in \mathbb{Z}_+, k \in \mathbb{Z},$$

where $D = t\partial_t$. Denote by $\widehat{\mathcal{D}}$ the central extension of \mathcal{D} by a one-dimensional center with a generator C, with commutation relation (cf. [KRI])

$$[t^r f(D), t^s g(D)] = t^{r+s} (f(D + s)g(D) - f(D)g(D + r)) + \Psi(t^r f(D), t^s g(D))C,$$

where

$$\Psi(t^r f(D), t^s g(D)) = \begin{cases} \sum_{-r \leq j \leq -1} f(j)g(j + r), & r = -s \geq 0 \\ 0, & r + s \neq 0. \end{cases}$$

Letting weight $J^l_k = k$ and weight $C = 0$ defines a principal graduation

$$\widehat{\mathcal{D}} = \bigoplus_{j \in \mathbb{Z}} \widehat{\mathcal{D}}_j.$$ \hfill (1.3)

Then we have the triangular decomposition

$$\widehat{\mathcal{D}} = \widehat{\mathcal{D}}_+ \bigoplus \widehat{\mathcal{D}}_0 \bigoplus \widehat{\mathcal{D}}_-,$$ \hfill (1.4)

where

$$\widehat{\mathcal{D}}_\pm = \bigoplus_{j \in \pm \mathbb{N}} \widehat{\mathcal{D}}_j, \quad \widehat{\mathcal{D}}_0 = \mathcal{D}_0 \bigoplus \mathbb{C}C.$$

Let \mathcal{P} be the distinguished parabolic subalgebra of \mathcal{D}, consisting of the differential operators that extends into the whole interior of the circle. \mathcal{P} has a basis $\{J^l_k, l \geq 0, l+k \geq 0\}$. It is easy to check that the 2-cocycle Ψ defining the central extension of $\widehat{\mathcal{D}}$ vanishes when restricted to the parabolic subalgebra \mathcal{P}. So \mathcal{P} is also a subalgebra of $\widehat{\mathcal{D}}$. Denote $\widehat{\mathcal{P}} = \mathcal{P} \oplus \mathbb{C}C$.

Fix $c \in \mathbb{C}$. Denote by C_c the 1–dimensional \hat{P} module by letting C acts as scalar c and P acts trivially. Fix a non-zero vector v_0 in C_c. The induced \hat{D}–module

$$M_c(\hat{D}) = \mathcal{U}(\hat{D}) \otimes_{\mathcal{U}(P)} C_c$$

is called the vacuum \hat{D}–module with central charge c. Here we denote by $\mathcal{U}(g)$ the universal enveloping algebra of a Lie algebra g. $M_c(\hat{D})$ admits a unique irreducible quotient, denoted by $\mathcal{W}_{1+\infty,c}$. Denote the highest weight vector $1 \otimes v_0$ in $M_c(\hat{D})$ by $|0\rangle$.

It is shown in [FKRW] that $\mathcal{W}_{1+\infty,c}$ carries a canonical vertex algebra structure, with vacuum vector $|0\rangle$ and generating fields

$$J^l(z) = \sum_{k \in \mathbb{Z}} J^l_k z^{-k-l-1},$$

of conformal weight $l+1, l = 0, 1, \cdots$. The fields $J^l(z)$ corresponds to the vector $J^l_{l-1}|0\rangle$ in $\mathcal{W}_{1+\infty,c}$. Below we will concentrate on the particular case $\mathcal{W}_{1+\infty,-1}$.

Recall that the bosonic $\beta \gamma$ fields are

$$\beta(z) = \sum_{n \in \mathbb{Z}} \beta(n) z^{-n+s}, \quad \gamma(z) = \sum_{n \in \mathbb{Z}} \gamma(n) z^{-n-s-1} \quad (s \in \mathbb{C}) \quad (1.5)$$

with the operator product expansions (OPEs)

$$\beta(z) \gamma(w) \sim -\frac{1}{z-w} (\frac{z}{w})^s, \quad \beta(z) \beta(w) \sim 0, \quad \gamma(z) \gamma(w) \sim 0. \quad (1.6)$$

In other words, we have the following commutation relations

$$[\gamma(m), \beta(n)] = \delta_{m,-n}, \quad [\beta(m), \beta(n)] = 0, \quad [\gamma(m), \gamma(n)] = 0. \quad (1.7)$$

Let us denote by \mathcal{M}_s the Fock space of the $\beta \gamma$ fields, with the vacuum vector $|s\rangle$, and

$$\beta(n+1)|s\rangle = 0, \quad \gamma(n)|s\rangle = 0, \quad n \geq 0. \quad (1.7)$$

One can realize a representation of $\mathcal{W}_{1+\infty,-1}$ on \mathcal{M}_s by letting (cf. [KR2, M], our convention here is a little different):

$$J^N(z) =: \gamma(z) \partial^N \beta(z) : + \frac{1}{N+1} s(s-1) \cdots (s-N) z^{-N-1}, N \in \mathbb{Z}_+.$$

(1.8)
The normal ordering $::$ is understood as moving the operators annihilating $|s\rangle$ to the right.

Note that $J^0(z) = \sum_{k \in \mathbb{Z}} J_k z^{-k-1}$ is a free bosonic field of conformal weight 1 with commutation relations

$$[J^0_m, J^0_n] = -m \delta_{m-n}, \quad m, n \in \mathbb{Z}.$$

We also have the following commutation relations:

$$[J^0_m, \beta(n)] = \beta(m+n), \quad [J^0_m, \gamma(n)] = -\gamma(m+n), \quad m, n \in \mathbb{Z}.$$

Then we have the $\beta \gamma$-charge decomposition of \mathcal{M}_s according to the eigenvalues of the operator $-J^0_0$: $\mathcal{M}_s = \bigoplus_{l \in \mathbb{Z}} \mathcal{M}_s^l$. It is known \[\text{M, KR2}\] that \mathcal{M}_0^0 is isomorphic to $\mathcal{W}_{1+\infty,-1}$ as vertex algebras.

2 Bosonizations

In Section 2.1 we recall the well-known boson-fermion correspondence (cf. \[\text{F1}\]). In Section 2.2 we review the Friedan-Martinec-Shenker bosonization of the $\beta \gamma$ fields and some more detailed structures \[\text{FMS, FF}\].

2.1 Bosonization of fermions

Let $j(z)$ be a free bosonic field of conformal weight 1, namely

$$j(z)j(w) \sim \frac{1}{(z-w)^2},$$

or equivalently, by introducing $j(z) = \sum_{n \in \mathbb{Z}} j(n) z^{-n-1}$, we have

$$[j(m), j(n)] = m \delta_{m-n}.$$

Let us also introduce the free scalar field

$$\phi(z) = q + j(0) \ln z - \sum_{n \neq 0} \frac{j(n)}{n} z^{-n},$$

where the operator q satisfies $[q, j(n)] = \delta_{n,0}$. Clearly $j(z) = \partial \phi(z)$.

Given $\alpha \in \mathbb{C}$, we denote by \mathcal{H}_α the Fock space of the free field $j(z)$ generated by the vacuum vector $|\alpha\rangle$ satisfying

$$j(n)|\alpha\rangle = \alpha \delta_{n,0} |\alpha\rangle, \quad n \geq 0.$$
It is well known that \mathcal{H}_0 is a vertex algebra, which we refer to as a Heisenberg vertex algebra. Easy to see that $\exp(\eta q)|\alpha\rangle = |\alpha + \eta\rangle$.

Introduce the vertex operator $X_\eta(z) = \sum_{n \in \mathbb{Z}} \exp(\eta q) z^n X_\eta(n) z^{-n}$ as follows. Let

$$X_\eta(z) = \exp(\eta \phi(z)) : = \exp(\eta \sum_{n > 0} j(-n) z^n / n) \exp(\eta \sum_{n < 0} j(-n) z^n / n).$$

The Fourier components of $X_\eta(z)$ act from \mathcal{H}_α to $\mathcal{H}_{\alpha + \eta}$. Furthermore we have the following OPE

$$j(z)X_\eta(w) \sim \frac{\eta X_\eta(w)}{z - w} + \frac{1}{\eta} \partial X_\eta(w),$$

or equivalently we have

$$[j(m), X_\eta(n)] = \eta X_\eta(m + n),$$

$$: j(z)X_\eta(z) : = \frac{1}{\eta} \partial X_\eta(z).$$

Also we have

$$X_\xi(z)X_\eta(w) \sim (z - w)^{\xi \eta} : X_\xi(z)X_\eta(w) :$$

In particular we have a pair of fermionic fields $X_\pm(z)$ with OPEs:

$$X_1(z)X_{-1}(w) \sim \frac{1}{z - w}, \quad X_{\pm 1}(z)X_{\pm 1}(w) \sim 0.$$

This is the well-known boson-fermion correspondence.

2.2 Bosonization of bosons

First let us introduce the bc fermionic fields

$$b(z) = \sum_{n \in \mathbb{Z}} b(n) z^{-n}, \quad c(z) = \sum_{n \in \mathbb{Z}} c(n) z^{-n-1}$$

with OPEs

$$b(z)c(w) \sim \frac{1}{z - w}, \quad b(z)b(w) \sim 0, \quad c(z)c(w) \sim 0.$$

$$b(z)b(w) \sim 0, \quad c(z)c(w) \sim 0.$$

$$2.12$$
In other words, we have
\[[b(m), c(n)]_+ = \delta_{m,-n}, \quad [b(m), b(n)]_+ = 0, \quad [c(m), c(n)]_+ = 0. \]

We denote by \(\mathcal{F} \) the Fock space of the \(bc \) fields, generated by \(|bc\rangle \), satisfying
\[b(n+1)|bc\rangle = 0, \quad c(n)|bc\rangle = 0, \quad n \geq 0. \]

Then
\[j^{bc}(z) =: c(z)b(z) := \sum_{n \in \mathbb{Z}} j^{bc}_n z^{-n-1}, \]
is a free boson of conformal weight 1 with commutation relations
\[[j^{bc}_m, j^{bc}_n] = m \delta_{m,-n}, \quad m, n \in \mathbb{Z}. \]

We further have the following commutation relations:
\[[j^{bc}_m, b(n)] = -b(m+n), \quad [j^{bc}_m, c(n)] = c(m+n), \quad m, n \in \mathbb{Z}. \]

Then we have the \(bc \)-charge decomposition of \(\mathcal{F} \) according to the eigenvalues of \(j^{bc}_0 \):
\[\mathcal{F} = \bigoplus_{l \in \mathbb{Z}} \mathcal{F}^l. \]

Following [FF], we consider the vector space
\[N(s) = \sum_{l \in \mathbb{Z}} \mathcal{F}^l \otimes \mathcal{H}_{i(s+l)}, \]
and we define the actions of \(\beta(n), \gamma(n), n \in \mathbb{Z} \) on \(N(s) \) by letting [FMS]
\[\beta(z) = \sum_{n \in \mathbb{Z}} \beta(n) z^{-n+s} = \partial b(z) X_{-i}(z), \quad (2.13) \]
\[\gamma(z) = \sum_{n \in \mathbb{Z}} \gamma(n) z^{-n-s-1} = c(z) X_i(z). \quad (2.14) \]

It can be easily shown that the bosonic fields \(\beta(z), \gamma(z) \) defined above indeed satisfy the OPEs (1.6). The vector \(|bc\rangle \otimes |is\rangle \) satisfies the vacuum condition (1.7) by means of (2.13) and (2.14). Then we have a homomorphism \(\epsilon : \mathcal{M}_s \rightarrow N(s) \) as modules of the Heisenberg algebra spanned by \(\beta(n), \gamma(n), n \in \mathbb{Z} \), by letting
\[\epsilon(|s\rangle) = |bc\rangle \otimes |is\rangle. \]

This homomorphism is obviously an embedding since \(\mathcal{M}_s \) is an irreducible module of the above Heisenberg algebra. The following proposition (cf. [FF]) tells us the precise image of this embedding, we reproduce the proof here since some crucial misprints in their proof in [FF] need to be corrected.
Proposition 2.1 The image of the homomorphism ϵ coincides with the kernel of $c(0)$, acting from $N(s)$ to $N(s-1)$.

Proof. The operators $\beta(n), \gamma(n), n \in \mathbb{Z}$, given by (2.13) and (2.14) do not depend on $b(0)$ and therefore commute with $c(0)$. So we have $\text{Im} \epsilon \subset \ker c(0)$ since the operator $c(0)$ kills the vacuum vector $|bc\rangle$.

It is easy to see that the kernel of $c(0)$ is obtained by applying to $|bc\rangle \otimes |is\rangle$ the operators $j(n), c(n), n \in \mathbb{Z}$, and $b(m), m \in \mathbb{Z} - \{0\}$. So it remains to show that fields $j(z), c(z)$ and $\partial b(z)$ can be expressed in terms of fields $\beta(z), \gamma(z), X_{\pm i}(z)$ and their derivative fields. Indeed it is easy to show that

$$
\begin{align*}
\partial b(z) & = \partial \beta(z) X_i(z), \\
c(z) & = \partial \gamma(z) X_{-i}(z).
\end{align*}
$$

Recall that $J^0(z) =: \gamma(z) \beta(z) :$. Easy to check by (2.13) and (2.14) that $j(z) \equiv \partial_z \phi(z) = -i J^0(z)$. \blacksquare

Denote by F^i the kernel of the operator $c(0)$ acting from F^i to F^{i+1}. We now have a natural isomorphism:

$$
\mathcal{M}^i_k \cong F^i \otimes \mathcal{H}_{i(s+i)}.
$$

(2.15)

Remark 2.1 F^0 is a vertex subalgebra of F^0. This is an example of the following well-known fact in the theory of vertex algebras: Given a vertex algebra V and let $Y(a, z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}$ be the field corresponding to some vector $a \in V$, then the kernel of the operator $a(0)$ acting on V is always a vertex subalgebra of V.

3 \mathcal{W}_3 algebra

Denote by $U(\mathcal{W}_{3,c})$ ($c \in \mathbb{C}$ is the central charge) the quotient of the free associative algebra generated by $L_m, W_m, m \in \mathbb{Z}$ by the two-sided ideal generated by the following commutation relations (cf. e.g. [BMP]):

$$
\begin{align*}
[L_m, L_n] & = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m,-n}, \\
[L_m, W_n] & = (2m-n)W_{m+n}, \\
[W_m, W_n] & = (m-n)(\frac{1}{15}(m+n+3)(m+n+2) \\
& - \frac{1}{6}(m+2)(n+2))L_{m+n} \\
& + \beta(m-n)\Lambda_{m+n} + \frac{c}{360}m(m^2-1)(m^2-4)\delta_{m,-n},
\end{align*}
\quad (3.16)
$$

\[3\]
with $\beta = 16/(22 + 5c)$ and

$$\Lambda_m = \sum_{k \leq -2} L_k L_{m-k} + \sum_{k > -2} L_{m-k} L_k - \frac{3}{10} (m + 2)(m + 3)L_m.$$

Denote

$$\mathcal{W}_{3,+} = \{L_n, W_n, \pm n \geq 0\}, \quad \mathcal{W}_{3,0} = \{L_0, W_0\}.$$

A Verma module $\mathcal{M}_c(t,w)$ of $\mathcal{U}(\mathcal{W}_{3,c})$ is the induced module

$$\mathcal{M}_c(t,w) = \mathcal{U}(\mathcal{W}_{3,c}) \otimes_{\mathcal{U}(\mathcal{W}_{3,+} \oplus \mathcal{W}_{3,0})} \mathbb{C}_{t,w}$$

where $\mathbb{C}_{t,w}$ is the 1-dimensional module of $\mathcal{U}(\mathcal{W}_{3,+} \oplus \mathcal{W}_{3,0})$ such that

$$\mathcal{W}_{3,+} | t, w \rangle = 0, \quad L_0 | t, w \rangle = t| t, w \rangle, \quad W_0 | t, w \rangle = w| t, w \rangle. \quad (3.17)$$

$\mathcal{M}_c(t,w)$ has a unique irreducible quotient which is denoted by $\mathcal{L}_c(t,w)$. A singular vector in a $\mathcal{U}(\mathcal{W}_{3,c})$-module means a vector killed by $\mathcal{W}_{3,+}$. It is easy to see that $L_{-1}|0,0\rangle, W_{-1}|0,0\rangle$, and $W_{-2}|0,0\rangle$ are singular vectors in $\mathcal{M}(0,0)$. We denote by $\mathcal{VW}_{3,c}$ the vacuum module which is by definition the quotient of the Verma module $\mathcal{M}(0,0)$ by the $\mathcal{U}(\mathcal{W}_{3,c})$-submodule generated by the singular vectors $L_{-1}|0,0\rangle, W_{-1}|0,0\rangle$, and $W_{-2}|0,0\rangle$. We call $\mathcal{L}_c(0,0)$ the irreducible vacuum module. Let I be the maximal proper submodule of the vacuum module $\mathcal{VW}_{3,c}$. Clearly $\mathcal{L}_c(0,0)$ is the irreducible quotient $\mathcal{VW}_{3,c}/I$ of $\mathcal{VW}_{3,c}$. It is easy to see that $\mathcal{VW}_{3,c}$ has a linear basis

$$L_{-i_1-2} \cdots L_{-i_m-2} W_{-j_1-3} \cdots W_{-j_n-3}|0,0\rangle,$$

$$0 \leq i_1 \leq \cdots \leq i_m, \quad 0 \leq j_1 \leq \cdots \leq j_n, \quad m, n \geq 0. \quad (3.18)$$

Introduce the following fields

$$T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}, \quad W(z) = \sum_{n \in \mathbb{Z}} W_n z^{-n-3}. \quad (3.19)$$

It is well known that the vacuum module $\mathcal{VW}_{3,c}$ (resp. irreducible vacuum module $\mathcal{L}_c(0,0)$) carries a vertex algebra structure with generating fields $T(z)$ and $W(z)$. The \mathcal{W}_3 algebra with central charge -2 we have been referring to is the vertex algebra $\mathcal{L}_{-2}(0,0)$, which we denote by $\mathcal{W}_{3,-2}$ throughout our paper. Fields $T(z)$ and $W(z)$ correspond to the vectors $L_{-2}|0,0\rangle$ and $W_{-3}|0,0\rangle$ respectively. The field corresponding to the vector $L_{-i_1-2} \cdots L_{-i_m-2} W_{-j_1-3} \cdots W_{-j_n-3}|0,0\rangle$ is

$$\partial^{(i_1)} T(z) \cdots \partial^{(i_m)} T(z) \partial^{(j_1)} W(z) \cdots \partial^{(j_n)} W(z),$$
where $\partial^{(i)}$ denotes $\frac{1}{i!} \partial_z^i$. We can rewrite (3.16) in terms of the following OPEs in our central charge -2 case:

\begin{align}
T(z)T(w) &\sim \frac{-1}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{\partial T(w)}{z-w} \\
T(z)W(w) &\sim \frac{3W(w)}{(z-w)^2} + \frac{\partial W(w)}{z-w} \\
W(z)W(w) &\sim \frac{-2/3}{(z-w)^6} + \frac{2T(w)}{(z-w)^4} + \frac{\partial T(w)}{(z-w)^3} \\
&\quad + \frac{1}{(z-w)^2} \left(\frac{8}{3} : T(w)T(w) : - \frac{1}{2} \partial^2 T(w) \right) \\
&\quad + \frac{1}{z-w} \left(\frac{4}{3} \partial : T(w)T(w) : - \frac{1}{3} \partial^3 T(w) \right).
\end{align}

Represention theory of the vertex algebra $\mathcal{VW}_{3,c}$ is just the same as that of $\mathcal{U}(W_3)$. However note that $c = -2$ is not a generic central charge $[W2]$, namely the vacuum module $\mathcal{VW}_{3,c}$ with $c = -2$ is reducible, or in other word, the maximal proper submodule I of $\mathcal{VW}_{3,c}$ is not zero. Thus representation theory of $W_{3,-2}$ becomes highly non-trivial due to the following constraints: a module M of the vertex algebra $\mathcal{VW}_{3,c}$ can be a module of the vertex algebra $W_{3,-2}$ if and only if M is annihilated by all the Fourier components of all fields corresponding to vectors in the maximal proper submodule $I \subset \mathcal{VW}_{3,c}$.

4 Relations between W_3 algebra and vertex algebra $W_{1+\infty,-1}$

Define

\begin{equation}
T(z) \equiv \sum_{n \in \mathbb{Z}} L_n z^{-n-2} = : \partial b(z)c(z) :.
\end{equation}

Easy to check that $T(z)$ is a Virasoro field with central charge -2. We also define another field of conformal weight 3:

\begin{equation}
W(z) \equiv \sum_{n \in \mathbb{Z}} W_n z^{-n-3} = \frac{1}{\sqrt{6}} \left(: \partial^2 b(z)c(z) : - : \partial b(z)\partial c(z) : \right).
\end{equation}

We have the following proposition whose proof is straightforward however tedious by using Wick’s theorem.

Proposition 4.1 Fields $T(z)$ and $W(z)$ satisfy the OPEs (3.20) of W_3 algebra with central charge -2.

We note that this \mathcal{W}_3 algebra structure in bc fields was also observed in [BCMN]. We rescale $W(z)$ to be $\tilde{W}(z) = \frac{1}{2} \sqrt{6} W(z)$, namely

$$\tilde{W}(z) = \sum_{n \in \mathbb{Z}} \tilde{W}_n z^{-n-3} = \frac{1}{2} \left(\partial^2 b(z)c(z) : - : \partial b(z) \partial c(z) : \right). \quad (4.23)$$

We will see later that it is more convenient to work with the rescaled field $\tilde{W}(z)$. Now we can state our first main results of this paper.

Theorem 4.1

1) The vertex algebra \mathcal{F}_0 is isomorphic to the simple vertex algebra $\mathcal{W}_{3,-2}$, with generating fields $T(z)$ and $W(z)$. \mathcal{F}_l ($l \in \mathbb{Z}$) are irreducible modules of the $\mathcal{W}_{3,-2}$ algebra.

2) The vertex algebra $\mathcal{W}_{1+\infty,-1}$ is isomorphic to a tensor product of the vertex algebra $\mathcal{W}_{3,-2}$, and the Heisenberg vertex algebra \mathcal{H}_0 with $J^0(z)$ as a generating field.

Proof of the above theorem reply on the following three lemmas:

Lemma 4.1 The vector space \mathcal{M}_s is irreducible regarded as a module of the vertex algebra $\mathcal{W}_{1+\infty,-1}$ via the free field realization [L3].

Lemma 4.2 The fields $J^a(w) =: \gamma(w) \partial^a \beta(w) :$, $n \geq 0$ acting on the Fock space \mathcal{M}_0 can be expressed as a normally ordered polynomial in terms of fields $\partial^i b(w) \partial^j c(w) :$, $i + j \leq n$, $i > 0$, and $\partial^k j(w)$, $k = 0, 1, \ldots, n$.

More precisely, we have

$$\gamma(w) \partial^n \beta(w) : = \sum_{1 \leq k \leq n} \left[k \binom{n}{k} \partial^{n-k+1} b(w)c(w) : P_{k-1}(j) \right] + C_n P_{n+1}(j), \quad (4.24)$$

where $C_n = (n + 2) \sum_{m=0}^{n} (-1)^{m+1} \frac{1}{m+2}$ is some constant depending on n, and the normally ordered polynomial $P_m(j)$ (or denoted by $P_m(j(w))$ when it is necessary to specify the variable in $j(w)$) in terms of the field $j(w)$ and its derivative fields is defined as (recall that $j(w) = \partial \phi(w)$)

$$P_m(j) = \frac{\partial^m_w : e^{-i\phi(w)} :}{: e^{-i\phi(w)} :}, \quad m \geq 0. \quad (4.25)$$
Proof of Lemma 4.2.
We will calculate the normally ordered product : $\partial^n \beta(w)\gamma(w) :$ instead of : $\gamma(w)\partial^n \beta(w) :$. These two normally ordered products coincide since both $\beta(w)$ and $\gamma(w)$ are free fields.

By formulas (2.13) and (2.14), we have

\[
: \partial^n \beta(w)\gamma(w) : = : \partial^n (\partial b(w)X_{-i}(w)) (c(w)X_i(w)) : = \sum_{0 \leq k \leq n} \binom{n}{k} [: \partial^{n-k+1}b(w)\partial^k X_{-i}(w)c(w)X_i(w) :].
\] (4.26)

It follows from the OPEs (2.12) that

\[
\partial_z^{n-k+1}b(z)c(w) = \frac{(-1)^{n-k+1}(n-k+1)!}{(z-w)^{n-k+2}} + : \partial^{n-k+1}b(w)c(w) : + \text{higher terms},
\] (4.27)

It follows from the OPEs (2.11) that

\[
\partial_z^{k}X_{-i}(z)X_i(w) = \partial_z^k \left(\sum_{m \geq 0} \frac{(z-w)^{m+1}}{m!} P_m(j(w)) \right).
\] (4.28)

Since : $\partial^n \beta(w)\gamma(w) :$ is the constant term in the expansion of power series of $z - w$ in the operator product expansion of $\partial^n \beta(z)\gamma(w)$, we see from equations (4.26), (4.27) and (4.28) that the only terms in equation (4.28) which will contribute to : $\partial^n \beta(w)\gamma(w) :$ non-trivially is the two terms $m = k - 1$ and $m = n + 1$. Namely we have

\[
: \partial^n \beta(w)\gamma(w) : = \sum_{0 \leq k \leq n} \binom{n}{k} \left[k : \partial^{n-k+1}b(w)c(w) : P_{k-1}(j) \right] + \sum_{1 \leq k \leq n} \binom{n}{k} \left[: \partial^{n-k+1}b(w)c(w) : P_{k-1}(j) : \right] + C_n P_{n+1}(j),
\] (4.29)

where

\[
C_n = (n+2) \sum_{m=0}^{n} (-1)^{m+1} \frac{1}{m+2}.
\]
Remark 4.1 1) $P_m(j)$ defined in equation (4.25) reads as follows for small m:

\[
\begin{align*}
P_1(j) &= -ij(w), \\
P_0(j) &= 1, \\
P_2(j) &= -i\partial j(w) - j(w)^2, \\
P_3(j) &= -i\partial^2 j(w) - 3 : j(w)\partial j(w) : + i : j(w)^3 :.
\end{align*}
\]

2) The formula (4.24) reads as follows for small n:

\[
\begin{align*}
: \gamma(w)\beta(w) &\equiv J^0(w) = ij(w), \\
: \gamma(w)\partial\beta(w) &= : \partial b(w)c(w) : - \frac{1}{2} : J^0(w)^2 : + \frac{1}{2} \partial J^0(w), \\
: \gamma(w)\partial^2\beta(w) &= 2 : \partial^2 b(w)c(w) : - 2 : \partial b(w)c(w) : J^0(w) \\
&\quad+ \frac{5}{3} \partial^2 J^0(w) + \frac{5}{3} : J^0(w)^3 : \\
&\quad- 5 : J^0(w)\partial J^0(w) :.
\end{align*}
\]

Lemma 4.3 Each field $: \partial^i b(z)\partial^j c(z) :$, $i > 0, j \geq 0$ can be expressed as a normally ordered polynomial in terms of $T(z)$ and $W(z)$ defined in (4.21) and (4.22) and their derivative fields.

Proof of Lemma 4.3. We first prove the following statement:

Claim A_n: Any field $: \partial^i b(z)\partial^{n-i+1} c(z) :$, $1 \leq i \leq n + 1$ can be written as a linear combination of the following $n + 1$ fields

\[
\partial \left(: \partial^i b(z)\partial^{n-k} c(z) : \right), 1 \leq k \leq n \text{ and } : T(z)\partial^{n-1} b(z)c(z) :.
\]

Indeed one can calculate directly by using (4.21) and Wick’s Theorem that

\[
: T(z) \left(\partial^{n-1} b(z)c(z) \right) := \frac{1}{2} : \partial^{n-1} b(z)\partial^2 c(z) : + \frac{1}{n} : \partial^{n+1} b(z)c(z) :.
\]

(4.30)

Also since the derivation of a normally ordered product satisfies the Leibniz rule we have

\[
\partial \left(: \partial^i b(z)\partial^{n-k} c(z) : \right) = : \partial^{k+1} b(z)\partial^{n-k} c(z) : + : \partial^k b(z)\partial^{n-k+1} c(z) :.
\]

(4.31)

The $n + 1$ fields

\[
\partial \left(: \partial^i b(z)\partial^{n-k} c(z) : \right), 1 \leq k \leq n \text{ and } : T(z)\partial^{n-1} b(z)c(z) :
\]
can be obtained from the \(n + 1 \) fields \(\partial^i b(z) \partial^{n-i+1} c(z) \), \(1 \leq i \leq n + 1 \) through a linear transformation given by the following \((n+1) \times (n+1)\) matrix

\[
\begin{array}{cccccc}
1 & 1 & & & & \\
0 & 1 & & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & 1 & 1 & 0 \\
& & & 0 & 1 & 1 \\
& & & & \frac{1}{2} & 0 & \frac{1}{n+1}
\end{array}
\]

It is easy to see this matrix has determinant \(\frac{n+3}{2(n+1)} \), so it is invertible. By inverting the matrix we prove the Claim \(A_n \).

Now we are ready to prove the following claim by induction on \(n \) which is a reformulation of Lemma \(\ref{L3} \). Claim \(B_n \): Any field \(\partial^i b(z) \partial^{n-i} c(z), 1 \leq i \leq n \) can be written as a normally ordered polynomial in terms of \(T(z), W(z) \) and their derivative fields.

When \(n = 1 \), \(\partial b(z)c(z) \) is just \(T(z) \) itself.

When \(n = 2 \), \(\partial^2 b(z)c(z) \) and \(\partial b(z)\partial c(z) \) are clearly linear combinations of the fields

\[
\partial T(z) = \partial (\partial (b(z)c(z) :)) = : \partial^2 b(z)c(z) : + : \partial b(z)\partial c(z) : \\
W(z) = \frac{1}{\sqrt{6}} \left(: \partial^2 b(z)c(z) : - : \partial b(z)\partial c(z) : \right).
\]

So Claim \(B_2 \) is true.

Assume that the statement \(B_n \) is true. Then particularly the field \(\partial^{n-1} b(z)c(z) : \) can be written as a normally ordered polynomial of \(T(z) \) and \(W(z) \). And so is \(T(z) \partial^{n-1} b(z)c(z) : \). Then the Claim \(B_{n+1} \) follows from Claim \(A_n \) (cf. equation \(\ref{4.30} \)). \(\square \)

Proof of Theorem \(\ref{4.1} \). Lemmas \(\ref{1.1} \) and \(\ref{1.2} \) imply immediately that \(\mathcal{F} \) is irreducible under the actions of the Fourier components of fields \(\partial^i b(z) \partial^j c(z) :, i > 0, j \geq 0 \). Together with Lemma \(\ref{L3} \), this implies that \(\mathcal{F} \) is irreducible under the actions of \(L_n, W_n, n \in \mathbb{Z} \). So the vertex algebra \(\mathcal{F}^0 \) is isomorphic to \(\mathcal{W}_{3,-2} \) by Proposition \(\ref{1.1} \). The free field construction of \(\mathcal{F} \) guarantees that \(\mathcal{F} \) is a module of the vertex algebra \(\mathcal{W}_{3,-2} \). The second statement of Theorem \(\ref{4.1} \) now follows from the isomorphism of vertex algebras \(M^0_0 \cong \mathcal{F}^0 \otimes \mathcal{H}_0 \) given by \(\ref{2.13} \). \(\square \)
We have the following proposition from the explicit free field realization of modules F^l of the $W_{3,-2}$ algebra. Also see Remark 4.3 in [W1] for some further implication.

Proposition 4.2

1) There exists a non-split short exact sequence of modules over the vertex algebra $W_{3,-2}$:

$$0 \rightarrow F^l \rightarrow F^l \rightarrow F^l/ F^l \rightarrow 0. \quad (4.32)$$

2) There exists a non-split short exact sequence of modules over the vertex algebra $W_{1+\infty,-1}$:

$$0 \rightarrow M^l_{s-l} \rightarrow M \rightarrow M^l_{s-l+1} \rightarrow 0. \quad (4.33)$$

Here M is isomorphic to $F^l \otimes H_{is}$ as vector spaces.

Proof. As a vector space we have a direct sum $F^l = F^l \oplus b(0)\bar{F}^{-1}$. Then it is not hard to see that as a $W_{3,-2}$-module, F^l/ F^l is isomorphic to the irreducible module F^l/ F^l. So the following non-split short exact sequence of modules over the $W_{3,-2}$ algebra

$$0 \rightarrow \bar{F} \rightarrow F^l \rightarrow F^l/ F^l \rightarrow 0$$

is isomorphic to the one in (4.32).

Note that M^l_j is isomorphic to $F^l \otimes H_{is+j}$ as modules over the vertex algebra $W_{1+\infty,-1}$ by Theorem 4.1. Then the non-split short exact sequence (4.33) can be obtained by tensoring the one in (4.32) with H_{is}.

\[\square\]

5 Character formulas of modules over W_3 algebra with central charge -2

Denote by

$$\Psi(z, q, p) \equiv \sum_{l \in \mathbb{Z}} z^l \psi_l(q, p) = \text{Tr} |_{\bigoplus_{l \in \mathbb{Z}} F^l} z^{-j_0} q^{L_0} p \tilde{W}_0$$

the full character of $\bigoplus_{l \in \mathbb{Z}} F^l$, a direct sum of irreducible modules F^l over the $W_{3,-2}$ algebra. Here $\psi_l(q, p)$ is the full character of F^l, $l \in \mathbb{Z}$. Then the full character formula $\psi_l(q, p)$ of the irreducible $W_{3,-2}$-module F^l can be recovered from $\Psi(z, q, p)$ by taking residue

$$\psi_l(q, p) = \text{Res}_{z=0} z^{l+1} \Psi(z, q, p).$$

We will need the following lemma.
Lemma 5.1 We have the following OPEs:

\[
T(z)b(w) \sim \frac{\partial b(w)}{z - w}, \\
T(z)c(w) \sim \frac{c(w)}{(z - w)^2} + \frac{\partial c(w)}{z - w}, \\
\tilde{W}(z)b(w) \sim \frac{\frac{1}{2}\partial b(w)}{(z - w)^2} + \frac{\partial^2 b(w)}{z - w}, \\
\tilde{W}(z)c(w) \sim \frac{-c(w)}{(z - w)^3} + \frac{-\frac{3}{2}\partial c(w)}{(z - w)^2} + \frac{-\partial^2 c(w)}{z - w}. \tag{5.34}
\]

Proof. We will prove the OPE (5.34) only and the other OPEs can be proved similarly by using Wick’s Theorem.

Since

\[
b(z)c(w) \sim \frac{1}{z - w},
\]

we have

\[
\left(\partial^2_z b(z)\right)c(w) \sim \frac{2}{(z - w)^3}.
\]

Since \(c(z)c(w) \sim 0\) and \(b(z), c(z)\) are fermionic fields, we have by Wick’s Theorem

\[
\left(\partial^2_z b(z)c(z)\right)c(w) \sim -\frac{2c(z)}{(z - w)^3}.
\]

We also have by Wick’s Theorem

\[
\left(\partial_z b(z)\partial_z c(z)\right)c(w) \sim \frac{\partial_z c(z)}{(z - w)^2} \sim \frac{\partial_w c(w)}{(z - w)^2} + \frac{\partial^2_w c(w)}{z - w}. \tag{5.37}
\]

Now the OPE (5.34) follows from (5.36), (5.37) and the definition of \(\tilde{W}(z)\) in (4.23).

In particular Lemma 5.1 implies

Corollary 5.1 We have the following commutation relations \((n \in \mathbb{Z})\):

\[
[L_0, b(n)] = -nb(n), \quad [L_0, c(n)] = -nc(n), \\
[W_0, b(n)] = n^2 b(n), \quad [W_0, c(n)] = -n^2 c(n).
\]
Proof. By comparing the coefficients of the z^{-3} terms in both sides of the OPE (5.34), we get

$$[W_0, b(w)] = w \partial b(w) + w^2 \partial^2 b(w).$$

(5.38)

Comparing the coefficients of the w^n terms in both sides of (5.38), we get $[W_0, b(n)] = n^2 b(n)$. Proofs of the other commutation relations in Corollary 5.1 are similar.

The following full character formula follows now from Corollary 5.1 and the characterization of \mathcal{F} as the subspace of \mathcal{F}^I consisting of vectors which do not involve $b(0)$, the zero-th Fourier component of the field $b(z)$.

Theorem 5.1 The full character formula $\Psi(z, q, p)$ is given by

$$\Psi(z, q, p) = \prod_{n \geq 1} \left(1 + zq^np^n \right) \left(1 + z^{-1}q^np^{-n} \right).$$

Remark 5.1

1) By using the Jacobi triple identity, one can easily show that

$$\psi_1(q, 0) = \frac{1}{\Pi_{n \geq 1}(1 - q^n)} \sum_{k \geq |l|} (-1)^{k+l} q^{k(k+1)/2}. $$

This is consistent with the explicit decomposition of \mathcal{F} with respect to the Virasoro algebra generated by the Fourier components of the field $T(z) [FF]$.

2) If we consider instead

$$\tilde{\Psi}(z, q, p) \equiv \text{Tr} \left| \bigoplus_{l \in \mathbb{Z}} \mathcal{F} \right| z^{-j_0} q^{-L_0} p^{W_0},$$

then we can show similarly that

$$\tilde{\Psi}(z, q, p) = (1 + z) \prod_{n \geq 1} \left(1 + zq^np^n \right) \left(1 + z^{-1}q^np^{-n} \right).$$

(5.39)

Essentially the same formula as in (5.37) up to some simple changes of variables appears in [Di] as some generating function of counting covers of an elliptic curve. Modular invariance and some other interesting properties of the function $\tilde{\Psi}(z, q, p)$ were discussed in detail in [KZ]. It is suggested that $\tilde{\Psi}(z, q, p)$ may
be an indication of the existence of generalized Jacobi forms involving several (possibly infinitely many) variables. We hope that full character formulas of representations of \(\mathcal{W} \)-algebras in general may provide further natural examples of generalized Jacobi forms.

Acknowledgement The results of this paper were presented in the Seminar of Geometry, Symmetry and Physics at Yale University and in the 1997 AMS Meeting at Detroit. I thank the organizers of the meeting, Chongying Dong and Bob Griess for invitation. I thank Edward Frenkel, Igor Frenkel, Victor Kac, and Gregg Zuckerman for their interests and comments, and especially Edward Frenkel for stimulating discussions. I also thank Gerd Mersmann for pointing out to me the references [Di, KZ].

References

[AFMO] H. Awata, M. Fukuma, Y. Matsuo and S. Odake, Character and determinant formulae of quasifinite representations of the \(\mathcal{W}_{1+\infty} \) algebra, Comm. Math. Phys. 172 (1995) 377–400.

[Ba] I. Bakas, The large-\(N \) limit of extended conformal symmetries, Phys. Lett. B228 (1989) 57–63.

[BK] I. Bakas and E. Kiritsis, Bosonic realization of a universal \(\mathcal{W} \)-algebra and \(\mathbb{Z}_\infty \) parafermions, Nucl. Phys. B343 (1990) 185–204.

[B] R. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci, USA 83 (1986) 3068–3071.

[BCMN] P. Bouwknegt, A. Ceresole, P. van Nieuwenhuizen and J. McCarthy, Extended Sugawara construction for the super-algebras \(SU(M+1 \mid N+1) \).II. The third-order Casimir algebra. Phys. Rev. D 40 (1989) 415–421.

[BMP] P. Bouwknegt, J. McCarthy and K. Pilch, The \(\mathcal{W}_3 \) algebra: modules, semi-infinite cohomology and \(BV \)-algebras, hep-th/9509119.
$W_{1+\infty}$ algebra, W_3 algebra

[BS] P. Bouwknegt and K. Schoutens, W-symmetry in conformal field theory, Phys. Rep. 223 (1993) 183-276.

[Di] R. Dijkgraaf, Mirror symmetry and elliptic curves, in “The moduli space of curves”, R. Dijkgraaf et al (eds.), Prog. Math. 129, Birkhauser, Boston, 1995.

[DL] C. Dong and J. Lepowsky, Generalized vertex algebras and relative vertex operators, Prog. Math. 112, Birkhauser, Boston, 1993.

[FF] B. Feigin and E. Frenkel, Semi-infinite Weil complex and the Virasoro algebra, Comm. Math. Phys. 137 (1991) 617–639; Erratum: Comm. Math. Phys. 147 (1992) 647–8.

[FeF] A. Feingold and I. Frenkel, Classical affine algebras, Adv. Math. 56 (1985) 117–172.

[F] M. Flohr, On modular invariant partition functions of conformal field theories with logarithmic operators, hep-th/9509166.

[FKRW] E. Frenkel, V. Kac, A. Radul and W. Wang, $W_{1+\infty}$ and $W(gl_N)$ with central charge N, Comm. Math. Phys. 170 (1995) 337–357.

[F1] I. Frenkel, Two constructions of affine Lie algebras and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981) 259–327.

[F2] I. Frenkel, Representations of Kac-Moody algebras and dual resonance models, in Applications of Group Theory in Physics and Mathematical Physics, eds. M. Flato, P. Sally, G. Zuckerman, Lect. Applied Math, AMS, 21 (1985) 325–353.

[FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Academic Press, New York 1988.

[FMS] D. Friedan, E. Martinec and S. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93–165.

[GK] M. Gaberdiel and H. Kausch, A rational logarithmic conformal field theory, hep-th/9606050.
Infinite dimensional Lie algebras, Third edition, Cambridge University Press, 1990.

V. Kac, *Vertex algebras for beginners*, Univ. Lect. Series, 10, AMS, 1996.

V. Kac and W. van de Leur, *Super boson-fermion correspondence*, Ann. Inst. Fourier 37 (1987) 99–137.

V. Kac and W. van de Leur, *Super boson-fermion correspondence of type B*, Infinite-dimensional Lie algebras and groups, V. Kac (ed.), Singapore, World Scientific (1989) 369–416.

V. Kac and A. Radul, *Quasi-finite highest weight modules over the Lie algebra of differential operators on the circle*, Comm. Math. Phys. 157 (1993) 429–457.

V. Kac and A. Radul, *Representation theory of the vertex algebra $\mathcal{W}_{1+\infty}$*, Transf. Groups, Vol. 1 (1996) 41–70.

M. Kaneko and D. Zagier, *A Generalized Jacobi theta function and quasimodular forms*, in “The moduli space of curves”, R. Dijkgraaf et al (eds.), Prog. Math. 129, Birkhauser, Boston, 1995.

H. Kausch, *Curiosity at $c = -2$*, hep-th/9510149.

B. Lian and G. Zuckerman, *BRST cohomology of the super-Virasoro algebras*, Comm. Math. Phys. 1253 (1989) 301–335.

B. Lian and G. Zuckerman, *Commutative quantum operator algebras*, J. Pure Appl. Alg. 100 (1995) 117–139.

Y. Matsuo, *Free fields and quasi-finite representations of $\mathcal{W}_{1+\infty}$*, Phys. Lett. B 326 (1994) 95–100.

S. Odake, *Unitary representations of \mathcal{W} infinity algebras*, Inter. J. Mod. Phys. A7 (1992) 6339–9355.

C. Pope, L. Romans and X. Shen, *A new higher-spin algebra and the lone-star product*, Phys. Lett. B 242 (1990) 401–406.
Ref.	Author	Title
[W1]	W. Wang	Dual pairs and tensor categories of modules over Lie algebras \hat{gl}_∞ and $\mathcal{W}_{1+\infty}$, preprint.
[W2]	W. Wang	Classification of irreducible modules of \mathcal{W}_3 algebra with central charge -2, preprint.
[Z]	A.B. Zamolodchikov	Infinite additional symmetries in two dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205–1213.