THE NEW WEDGE-SHAPED HUBBLE DIAGRAM OF 398 SCP SUPERNOVAE
ACCORDING TO THE EXPANSION CENTER MODEL

ECM paper IX by Luciano Lorenzi
54th Annual Meeting of the Italian Astronomical Society - Naples 2010
"L’Astronomia italiana: prospettive per la prossima decade"

ABSTRACT

Following the successful dipole test on 53 SCP SNe Ia presented at SAIt2004 in Milan, this 9th contribution to the ECM series beginning in 1999 in Naples (43th SAIt meeting:"Revolutions in Astronomy") deals with the construction of the new wedge-shaped Hubble diagram obtained with 398 supernovae of the SCP Union Compilation (Kowalski et al. 2008) by applying a calculated correlation between SNe Ia absolute blue magnitude M_B and central redshift z_0, according to the expansion center model. The ECM distance D of the Hubble diagram (cz versus D) is computed as the ratio between the luminosity distance D_L and $1 + z$. Mathematically D results to be a power series of the light-space r run inside the expanding cosmic medium or Hubble flow; thus its expression is independent of the corresponding z. In addition one can have $D = D(z,h)$ from the ECM Hubble law by using the h convention with an anisotropic H_X.

It is proposed to the meeting that the wedge-shape of this new Hubble diagram be confirmed independently as mainly due to the ECM dipole anisotropy of the Hubble ratio cz/D.
1. Introduction

After the successful test of the expansion center model (Lorenzi 2004) carried out on 53 high-redshift Type Ia supernovae from the Supernova Cosmology Project (SCP: Perlmutter et al. 1999 or P99; Knop et al. 2003 or K03), here is presented the ECM construction of the new wedge-shaped Hubble diagram obtained by data from the SCP Union Compilation (Kowalski et al. 2008). In particular this large "Union" sample reports redshifts and blue magnitudes of 398 SNe Ia, or of 307 SNe Ia after selection cuts, including the distant supernovae recently observed with HST.

Let us remark that the cited papers I-II-III-IV-V-VI-VII-VIII are those of the author’s references: Lorenzi 1999→2009.

2. Distances from the ECM equation

The new Hubble law (59) of paper I

\[\dot{r} = r \cdot (H + \Delta H) - R \Delta H \cos \gamma \]

(1)

, after substituting \(H = H_0 + \Delta H \), \(\Delta H, R \) with the formulas (37)(39) from paper I, becomes the ECM \(\dot{r} \) equation (from eq. (3) in paper II) of the nearby Universe, expressed in Hubble units (H.u.) as follows

\[\dot{r} = H_0 \cdot r \left(\frac{1 + x}{1 - x} \right) \left[1 + 3q_0 \frac{(1 - x)^{\frac{1}{2}}}{1 + x} \cos \gamma \right] \]

(2)

with

\[x = \frac{3H_0r}{c} < 1 \quad q_0 = -\frac{H_0R_0}{c} \quad \cos \gamma = \sin \delta_{VC} \sin \delta + \cos \delta_{VC} \cos \delta \cos(\alpha - \alpha_{VC}) \]

being

\[K_0R_0 = a_0 = -3H_0q_0 \]

Specifically \(\gamma \) is the angle between the direction \((\alpha_{VC} \approx 9^h, \delta_{VC} \approx +30^\circ)\) of the huge void center (Bahcall & Soneira 1982), also called the expansion center or Big Bang central point (Lorenzi 1989-91-93), distant \(R_0 \) from the Local Group (LG) at our epoch and that \((\alpha, \delta)\) of the observed outer galaxy/group/cluster/supernova at a distance \(r \) from LG, with the nearby Universe radial velocity \(\dot{r} \) corrected only by the standard vector (Sandage & Tammann 1975a)(Lorenzi: paper I).

Of course \(\Delta H = 0 \) in eq. (1) should give the original Hubble law: \(\dot{r} = H_0r \).
Here it should be noted that the above equation (2) allows us to define at least three different cosmic distances, the following \(r, D \) and \(D_L \), which in practice have approximately the same value only for the very nearby Universe.

2.1 \(r \) : Distance as light-space

First of all the distance \(r \) in eq. (1) and (2) represents the light-space run with constant speed \(c \) inside the expanding "cosmic medium" (CM hereafter) or Hubble flow. In particular such a CM flow refers to the motion of galaxies running away from the Big Bang central point, with radial velocity \(\dot{R} = HR \) (cf. papers I, V and VIII). Let us rewrite the light-space \(r \) formulation.

\[
r = -c(t - t_0) \quad \text{with} \quad -c = \frac{\delta r}{\delta t}
\]

(3)

In eq. (3) \(t_0 \) is a constant representing our epoch, which is also represented by \(r = 0 \); at \(t_0 \) the light emitted at an epoch \(t \) reaches the observer at rest in the local Hubble flow, which now is more rarefied like the CM; \(\delta r \) is the infinitesimal CM space covered by the light during an infinitesimal \(\delta t \) of the light travel-time from the past. To all intents and purposes the source distance \(r \) of eq. (3) may be considered to be equal to that of the source at the emission epoch \(t \). However the cosmic medium is expanding, while light speed \(c \) remains constant with respect to the local cosmic medium, as follows: \(\lambda = cT \Rightarrow d\lambda = cdT \Rightarrow \lambda + \Delta\lambda = c(T + \Delta T) \Rightarrow \lambda_0 = cT_0 \).

In other terms the travelling light has two speeds, the former being \(c \) inside CM, the latter that of the supporting expanding CM or Hubble flow. The observed velocity of this expanding CM is the derivative of \(r \) to \(t \), with \(dt_0/dt \equiv \lambda_0/\lambda \) assumed, as shown in papers V and VIII, sections 4.7 and 2.1 respectively. That \(dr/dt \) results to be \(c\Delta\lambda/\lambda \), that is \(\dot{r} = cz \). By introducing \(z \) in eq. (2) we obtain the dimensionless **ECM z equation** (eq. (22) of paper V or eq. (13) of paper VI or eq. (6) of paper VII)

\[
z = \frac{x}{3} \left(1 + x \right) \left[1 + 3q_0 \left(1 - x \right) \frac{\sqrt{1 + 3q_0}}{1 + x} \cos \gamma \right]
\]

(4)

where we must specify

\[
r \rightarrow 0 \Rightarrow x \rightarrow 0 \Rightarrow z \rightarrow 0 \Rightarrow t = t_0; H = H_0; R = R_0; K = K_0; a = a_0; q = q_0; r = D = D_L
\]

\[
\cos \gamma = 0 \Rightarrow z = z(x) \equiv z_0 \Rightarrow x = x(z_0) \Rightarrow r = r(z_0)
\]

In fact the value \(\cos \gamma = 0 \) in eq. (4) leads naturally to another important convention, that is the introduction of \(z_0 \) to represent the **central redshift**, which must not be confused with \(z(t_0) = 0 \).
Moreover the previous eq. (4), with the \(H_0 \) and \(q_0 \) values obtained within the nearby Universe (paper II: \(H_0 = 69.8 \pm 2.8 \text{ km s}^{-1}\text{Mpc}^{-1}; q_0 \approx -0.0605 \) from the data of Sandage & Tammann (1975)), allows a numerical calculus of \(x \), that is of the light-space \(r \) as a function of the observed \(z \) and \(\gamma \), as follows

\[
x = x(z, \cos \gamma) = 3H_0r/c \Rightarrow r = \frac{c \cdot x(z, \cos \gamma)}{3H_0} = r(z, \cos \gamma)
\]

Note that \(\cos \gamma = 0 \) gives to \(z_0 = 0.5 \) an \(x_0 = 0.5 \), that is \(r \sim 716 \text{ Mpc} \).

2.2 \(D \): Distance in the Hubble diagram and the \(h \) convention

In 1975 Sandage & Tammann published a paper (S&T: Paper V) in which an accurate data listing of nearby galaxies (mean depth of \(\sim 28 \text{ Mpc} \)) was tabled and reported in a famous wedge-shaped Hubble diagram, where the Hubble ratios appeared scattered between \(\sim 30 \) and \(\sim 150 \text{ km s}^{-1}\text{Mpc}^{-1} \). Another wedge-shaped velocity-distance diagram, with different symbols for different methods and a covered distance depth of about 200 \text{ Mpc}, is that of Rowan-Robinson (1988); here the Hubble constant appears to lie in the range \(50 - 80 \text{ km s}^{-1}\text{Mpc}^{-1} \), with a current best value in the middle of this range.

Such a wedge feature of the original Hubble diagram is well represented by eq. (2) and (4). In fact, after putting

\[
D = r \cdot \left(\frac{1 + x}{1 - x} \right)
\]

we can transform eq. (2) into the ECM Hubble law

\[
ca = [H_0 - a^*(x) \cos \gamma] \cdot D = [H_0 - a_0X(x, \cos \gamma)] \cdot D = H_X \cdot D
\]

being

\[
a^*(x) = a_0 \cdot (1 - x)^{\frac{2}{3}}/(1 + x) \quad X(x, \cos \gamma) = \cos \gamma \cdot (1 - x)^{\frac{2}{3}}/(1 + x)
\]

where both \(x \) and \(X \) are dimensionless variables (cf. paper V and VI); hence the above eq. (7) contains an anisotropic angular coefficient, that is

\[
H_X = H_0(1 - \frac{a_0}{H_0}X)
\]

As in the very nearby Universe in practice \(x \rightarrow 0 \), here eq. (7) gives \(a^* \approx a_0 \), that is \(H_X(\gamma = 0^0) \approx 57 \text{ km s}^{-1}\text{Mpc}^{-1} \) and \(H_X(\gamma = 180^0) \approx 83 \text{ km s}^{-1}\text{Mpc}^{-1} \) with \(a_0 \approx 12.7 \text{ km s}^{-1}\text{Mpc}^{-1} \).
The MacLaurin Series applied to (6) and the ECM Hubble law (7) give \(D\) both in terms of a power series of the light-space \(r\),

\[
D = r + 2 \frac{3H_0}{c} r^2 + 2 \frac{9H_0^2}{c^2} r^3 + ... \tag{9}
\]

and as a function of \(z_0\), that is the ratio between the central velocity \(cz_0\) and the constant \(H_0\):

\[
D = \frac{cz_0}{H_0} = D(z_0) \tag{10}
\]

The eqs. (6)(9)(10) represent the distance \(D\) of the wedge-shaped Hubble diagram of eq. (7).

At the same time the ECM Hubble law (7) is able to substantiate the powerful h convention (Zeilik & Smith 1988) for large-scale surveys of radial distance \(D\) in H.u., by using a variable \(h = h(X)\) tied to the ECM apparent anisotropy (cf. paper II, section 1.2) and the correct \(z\), obtained after subtracting from the observed heliocentric redshift the kinematic component due to the entire motion of the Sun with respect to the Hubble flow traced by the CMB (Lorenzi 1993, 1999a, 2008, 2009). So we confirm the following useful formula:

\[
D = \frac{cz}{100 \text{ km s}^{-1} \text{Mpc}^{-1}} h^{-1} \quad \text{with} \quad h = \frac{H_X}{100 \text{ km s}^{-1} \text{Mpc}^{-1}} \tag{11}
\]

2.3 \(D_L\): Luminosity distance and correlated absolute magnitude \(M\)

Papers V and VI have empirically confirmed the ECM even for Abell clusters of Richness 3 and Type Ia supernovae from SCP, up to a light-space distance \(r\) of \(\sim 1000\) Mpc. Here the luminosity distance \(D_L\) has been successfully represented by the following ECM \(D_C\) multiple formula

\[
D_C = D(1+z) = \frac{zc}{3H_0} \left(\frac{1+x}{1-x} \right) (1+z) = \frac{cz(1+z)}{H_0} (1 - \frac{a_0}{H_0} X)^{-1} \tag{12}
\]

Consequently, with \(D_C \equiv D_L\) assumed, the distance \(D\) of the Hubble diagram can be simply inferred from the position

\[
D = \frac{D_L}{1+z} \tag{13}
\]

when one knows the absolute magnitude \(M\), that is

\[
M = m - 5 \log D_L - 25 \tag{14}
\]

By combining the canonic eq. (14) in H.u. with (12) and (13), we can obtain the ECM \(M\) equation, written in a double form:

\[
M = m - 5 \log \left[\frac{xc}{3H_0} \left(\frac{1+x}{1-x} \right) (1+z) \right] - 25 \tag{15}
\]
\[M = m - 5 \log [cz(1+z)] + 5 \log H_0 + \Delta - 25 \] (16)

In (14)(15)(16) \(m \) and \(z \) are the observed magnitude and redshift within the Hubble flow; in (15) \(x = x(z, \cos \gamma) \) from eq. (4); \(\Delta \) of eq. (16) results to be a power series of \(X(z, \cos \gamma) \), as follows

\[
\Delta = 5 \log(1 - a_0 \frac{H_0}{X}) = -\frac{5a_0}{H_0} \log e \cdot (X + \frac{a_0}{H_0} \frac{X^2}{2} + \frac{a_0^2}{H_0^2} \frac{X^3}{3} + \ldots) \] (17)

Eq. (16) can be simplified by introducing the central redshift \(z_0 \) corresponding to \(z \) of eq. (4) with \(\cos \gamma = 0 \), that is \(H_X = H_0 \). In this case, being

\[X \equiv 0 \Rightarrow \Delta = 0 \Rightarrow z = z_0 \Rightarrow m = m_0(z_0) \Rightarrow D_L = D_L(m_0) \] (18)

we also obtain the ECM \(M(z_0) \) equation, in the form

\[M = m_0 - 5 \log [cz_0(1+z_0)] + 5 \log H_0 - 25 \] (19)

3. Construction of the ECM Hubble diagram of 398 SCP supernovae

The main aim of the present work is the application of the above formulae to the largest available sample of homogeneous datasets. The SCP "Union" SNe Ia compilation holds such a sample, bringing together data from 414 SNe (Kowalski et al 2008: Table 11) drawn from 13 independent datasets, of which 398 SNe have both the required redshifts \(z \) and blue magnitudes \(m_{\text{max}}^B \) listed, while a wide subsample of 307 SNe Ia pass usability cuts. Note that here the redshifts \(z \) are referred to the CMB; hence they include the correction due to the standard motion of the Local Group, without taking into account the ECM 3K dipole able to generate a fictitious vector \(v_f \) (Lorenzi 1993, 1999a, 2008). As the involved correction to \(z \) is about 0.001 on average, the \(z \) of the distant supernovae in effect do not suffer an imprecise correction; it is different for the very nearby SNe, whose redshifts in the Hubble diagram should be corrected only for the Sun’s velocity inside the Local Group (by the standard vector of S&T (1975)), because our LG belongs to a large local cosmic flow also running almost in the same direction (cf. p. 19 of paper I).

On the whole the present analysis aims directly to construct the ECM Hubble diagram, of course without using \(\cos \gamma \), but showing in any case that the diagram’s wedge-shape is due to the ECM dipole anisotropy. A further and crucial confirmation of the model is expected by introducing the supernova astronomical coordinates, that is to say \(\cos \gamma \), into the ECM analysis both for SCP Union (Kowalski et al. 2008) and the SCP "Union2" shown at 2010 AAS (Rubin et al. 2010).
3.1 Search for a correlation between M_B and central redshift z_0

Initially the ECM Hubble law (7) was tested over the 398 SCP supernovae (Kowalski et al. 2008: Table 11), by assuming H_0 as the average Hubble ratio, that is

$$H_0 = \langle H_X \rangle = \langle \frac{cz}{D} \rangle$$

(20)

The procedure, based on the mean eq. (20) in H.u. with D derived from (13) and $D_L = 10^{0.2(m_{B,\text{max}}-M_B)^{-5}}$, was applied to five large z bins of the Hubble flow, precautionally excluding the nearby SNe with $z < 0.05$; hence, once M_B or a resulting $H_0 \approx 70$ H.u. are fixed, the value of H_0 or M_B follow. Conditions and results of that first check are listed below, in Table 1.

z bins	N	$\langle z \rangle$	$H_0 = H_0(M_B = -19.5)$	$M_B = M_B(H_0 \approx 70)$
$0.05 \leq z \leq 0.5$	145	0.334	62	-19.25
$0.25 \leq z \leq 0.75$	197	0.492	67	-19.41
$0.5 \leq z \leq 1.0$	142	0.706	74	-19.63
$0.75 \leq z \leq 1.25$	67	0.916	81	-19.81

The strong variation of the H_0 value in the 4th column, corresponding to the assumed $M_B = -19.5$ (cf. paper VI), clearly rules out the possibility of a constant value of the SNe Ia absolute blue magnitude M_B. On the other hand the constant value of H_0 gives to SNe Ia a variable intrinsic luminosity, which clearly increases with depth or central redshift, according to the ECM.

Owing to the clear result in Table 1 and in order to construct a correlation between M_B and the central redshift z_0 according to (19), the same ”z bins” procedure has been applied to a normal ECM M equation, that is eq. (16) with $H_0 = 70$ H.u. and $\langle \Delta \rangle = 0$ assumed, as follows

$$\langle M_B \rangle = \langle m_{B,\text{max}} \rangle - 5\langle \log [cz(1+z)] \rangle + 5\log H_0 - 25$$

(21)

In this case the check is more useful than the previous one, first of all because eq. (21) gives directly $\langle M_B \rangle$ with its standard deviation; furthermore the ECM eq. (21) seems to be statistically powerful, if the z scattering due to unsuitable corrections of Sun kinematics in the CMB is assumed to be neutralized like Δ by the normal point, apart from any anisotropies of SNe Ia distribution in the sky plus a H_0 imprecision of about ± 0.1 magnitudes. In other words eq. (21) seems able to produce M_B values correlated to the central redshift z_0 of eq. (19). Thus all the available SCP
SNe Ia of the Union 2008, 91 nearby SNe with \(z \leq 0.05 \) included, have been taken into account. Table 2 in the Appendix lists the results of the mean; it reports 30 normal points, including all the 398 SNe listed in Table 11 of the 2008 SCP paper (Kowalski et al. 2008) and corresponding to 30 "\(z \) bins". In particular the first 5 columns of Table 2 hold numerical values derived from the observed \(z \) and \(\max M_B \) listed within the above SCP Union 2008; the values referring to each \(z \) bin are in the order: \(z \) range, number \(N \) of the SNe included in the normal point; unweighed mathematical mean \(\langle \max M_B \rangle \) of the observed SN blue magnitudes \(\max M_B \); absolute magnitude \(\langle M_B \rangle \) resulting from the normal ECM \(M \) equation (21) applied to the bin, with \(H_0 = 70 \) H.u. assumed; standard deviation \(s \) of the least square fitting carried out on the bin. The 6\(^{th} \) column of Table 2 reports the mathematical mean \(\langle z \rangle \) of the observed redshifts of the \(z \) bin, while the last columns, 7\(^{th} \), 8\(^{th} \), 9\(^{th} \), include three different distance values, corresponding to an assumed central redshift \(z_0 \equiv \langle z \rangle \) with \(H_0 = 70 \) H.u. These are in the order: value of the dimensionless variable \(x = x(z_0) \), inferred as in (5) from the ECM \(z \) equation (4); value in Mpc of the light-space distance \(r = r(z_0) \) connected to the \(x \) value by \(x = 3H_0r/c \) according to procedure (5) applied to eq. (2) or (4); value in Mpc of the distance \(D \) of the wedge-shaped Hubble diagram, obtained with eq. (6) or (10), that is as the function \(D = D(z_0) \) of the central redshift through \(x(z_0) \).

The resulting normal points, plotted in Figure 1 as \(\langle M_B \rangle \) versus \(\langle z \rangle \), clearly point to a fitted trend line, whose equation formally should give for any \(z \) its \(M_B \) as a function of the central redshift \(z_0 \), or the corresponding distance \(D = cz_0/H_0 \) as in Figure 2, if \(z_0 \) is assumed to refer to the line fitting the \(\langle z \rangle \) points. The line equation below,

\[
M_B(z_0) = A_0 + A_1z_0 + A_2z_0^2 = d_0 + d_1D + d_2D^2 = M_B(D) \tag{22}
\]

, with \(A_0 \cong -18.77; A_1 \cong -1.421; A_2 \cong +0.3589 \) and \(d_0 = A_0; d_1 = A_1H_0/c; d_2 = A_2H_0^2/c^2 \), follows from the automatic fitting.

In the same way, according to procedure (5) applied to eq. (2) or (4) with \(\cos \gamma = 0 \), that is with \(z = z_0 \), an alternative plot of normal points \(\langle M_B \rangle \) versus \(x = x(z_0) \) or \(r = r(z_0) \) can be constructed; it appears in Figure 3 and Figure 4, where the fitted trend line appears better represented by a third degree equation, that is

\[
M_B(x) = B_0 + B_1x + B_2x^2 + B_3x^3 = C_0 + C_1r + C_2r^2 + C_3r^3 = M_B(r) \tag{23}
\]

, with \(B_0 \cong -18.78; B_1 \cong -0.4523; B_2 \cong -0.5338; B_3 \cong -2.006 \) and \(C_0 = B_0; C_1 = 3B_1H_0/c; C_2 = 9B_2H_0^2/c^2; C_3 = 27B_3H_0^3/c^3 \), again obtained from the automatic fitting. Here the curve
agrees with that found in paper VI for 33 SNe Ia of K03 (cf. paper VI-integral version: Fig. 5), however with a systematic shift of about 0.3 magnitudes limited to the nearby Universe.

3.2 Construction of the Hubble diagram

The above equation (22), that expresses $M_B(D)$, has a crucial role in the construction of the SNe Ia Hubble diagram, which requires the distance D to combine with the observed redshift as cz. In fact it is now possible to extract numerically just the distance D from the canonic eq. (14), that becomes the following:

$$d_2D^2 + d_1D + d_0 = m_B^{\text{max}} - 5 \log [D(1+z)] - 25$$

(24)

The numerical solution point by point of eq. (24), here applied to 398 SNe Ia with z and m_B^{max} listed in Table 11 of the SCP Union Compilation (Kowalski et al. 2008), gives the value of D. Once found, one can infer numerically also the corresponding values of the distance indicator x and the light-space distance r.

Finally, two resulting wedge-shaped Hubble diagrams in H.u. are obtained by plotting cz versus D for the 398 SNe, in Figure 5, and the 307 SNe passing usability cuts, in Figure 6. Here we look at the Hubble diagram of the Deep Universe. Table 3abcdefghi in the Appendix lists the values in H.u. of D (3rd column) and cz (2nd column) of 249 SNe Ia (1st column: Name), lying in the distance range $800 \text{ Mpc} < D < 8000 \text{ Mpc}$, from the 307 SNe selected by the SCP Union.

4. ECM analysis of the wedge-shaped Hubble diagram

The diagrams in Fig. 5 and Fig. 6 have a wedge shape, whose amplitude with increasing depth is very large, indeed. In order to verify the accordance with the model, it is necessary to compare the observed wedge shape to the calculated one. In practice we should carry out an (O-C) procedure. That has been done by calculating the wedge amplitude foreseen by the ECM Hubble law (7) through a numerical simulation of the maximum scattering of cz around the central value cz_0.

To this end, let us analyse the observed Hubble flow or CM as follows:

$$z_0 = \frac{\lambda_0 - \lambda_e}{\lambda_e} = \frac{T_e}{T_0} - 1$$

(25)

$$cz = cz_0 + c\Delta z_0$$

(26)

$$\Delta z_0 = -\frac{T_e}{T_0}\left(\frac{\Delta T_0}{T_0 + \Delta T_0}\right)$$

(27)
As the ECM gives

\[cz_0 = H_0 D \quad c \Delta z_0 = -a_0 DX \]

(28)

, after fixing \(x \), then \(r \) and \(D \), solely the dimensionless \(X \) varies owing to the variation of \(\cos \gamma \) between 1 and \(-1\). In this case:

\[-(1 - x)^{1/3}/(1 + x) \leq X \leq (1 - x)^{1/3}/(1 + x)\]

(29)

\[c \Delta z = c \Delta(\Delta z_0) = -a_0 D \Delta X \]

(30)

\[r = \frac{cx}{3H_0} \quad cz_0 = \frac{cx}{3} \left(\frac{1 + x}{1 - x} \right) \quad D = \frac{cx}{3H_0} \left(\frac{1 + x}{1 - x} \right) \]

(31)

\[(\Delta X)^{\text{max}} = 2(1 - x)^{1/3}/(1 + x) \]

(32)

\[c |\Delta z|^{\text{max}} = a_0 D(\Delta X)^{\text{max}} \]

(33)

Now we add to the above formulae the following ones, which practically, being based solely on the eqs. (25)(26)(27), are unaffected by the ECM (cf. section 6 of paper VII).

\[\Delta T_0 = \Delta T_D \cos \gamma \]

(34)

\[\frac{\Delta z_0}{1 + z_0} = -\frac{\Delta T_0}{T_0 + \Delta T_0} \]

(35)

\[\gamma = 0 \Rightarrow \frac{\Delta z_0}{1 + z} = -\frac{\Delta T_0}{T_0} \equiv \frac{v_f}{c} \Rightarrow v_f = \frac{c \Delta z_0}{1 + z} \]

(36)

The last equation of (36) gives the value of the fictitious velocity \(v_f \) observed towards the expansion center. Its value in H.u., obtained within the ECM, is listed in the 7th column of Table 4, while the previous 5 columns present the other simulated values in H.u. of \(r, cz_0, D, (\Delta X)^{\text{max}}, c |\Delta z|^{\text{max}} \) from the above eqs. (31)(32)(33) corresponding to the \(x \) value of the first column. The last row of Table 4, where \(x = 0.999999225 \), reports the ECM values extrapolated to the CMB, whose fictitious velocity results to be only of the order \(-250 \text{ km s}^{-1}\). Curiously this value, that is in accordance with the observed 3K anisotropy and a local cosmic flow of about \(530 \text{ km s}^{-1} \) (cf. Lorenzi 1993, 1999a, 2008), is the same of the nearby Universe at \(D \approx 20 \text{ Mpc} \), while at \(D \approx 10000 \text{ Mpc} \) the corresponding value of \(v_f \) reaches a maximum of about \(-13000 \text{ km s}^{-1}\).

On the whole, the ECM simulation is able to reproduce the variable wedge-shape of the Hubble diagram at different depths, as summarized in the table below.
Table 4

| x | r | cz_0 | D | $(\Delta X)^{\text{max}}$ | $c|\Delta z|^{\text{max}}$ | v_f |
|-------|-------|--------|------|---------------------------|----------------------------|-------|
| 0.00070 | 0.9993 | 70 | 1 | 1.998 | 25 | −13 |
| 0.00691 | 9.865 | 700 | 10 | 1.982 | 252 | −126 |
| 0.013633 | 19.46 | 1400 | 20 | 1.964 | 499 | −248 |
| 0.026569 | 37.93 | 2800 | 40 | 1.931 | 981 | −487 |
| 0.038883 | 55.51 | 4200 | 60 | 1.900 | 1448 | −716 |
| 0.050637 | 72.29 | 5600 | 80 | 1.871 | 1901 | −936 |
| 0.061884 | 88.34 | 7000 | 100 | 1.844 | 2342 | −1148 |
| 0.342820 | 489.4 | 70000 | 1000 | 1.295 | 16445 | −6818 |
| 0.485378 | 692.9 | 140000 | 2000 | 1.079 | 27407 | −9642 |
| 0.631939 | 902.1 | 280000 | 4000 | 0.8783 | 44617 | −11997|
| 0.710716 | 1015 | 420000 | 6000 | 0.7732 | 58918 | −12793|
| 0.760902 | 1086 | 560000 | 8000 | 0.7049 | 71622 | −13029|
| 0.7959346 | 1136 | 700000 | 10000| 0.6556 | 83266 | −13026|
| 0.9 | 1285 | 1708817| 24412| 0.4886 | 151476 | −11747|
| 0.99 | 1413 | 1968737| 281248| 0.2165 | 773401 | −5915 |
| 0.999999225 | 1427.582 | $\simeq 2.6 \times 10^{11}$ | $\simeq 3.7 \times 10^{9}$ | 0.0092 | $\simeq 4.3 \times 10^8$ | −250 |

Finally, Figure 7 and Figure 8 present two plots of the results in Table 4: the former refers to the nearby cosmic region with $D \leq 80$ Mpc and the latter to the Deep Universe with $D \leq 8000$ Mpc. We obtain two simulated ECM Hubble diagrams in H.u., where the plotted points corresponding to each tabled D are the central cz_0, the upper $cz_0 + \frac{c|\Delta z|^{\text{max}}}{2}$ and the lower $cz_0 - \frac{c|\Delta z|^{\text{max}}}{2}$. From their comparison, it results clearly that the wedge amplitude has to decrease with depth, until $H_X \rightarrow H_0$ for $x \rightarrow 1$.

5. Conclusions

This paper validates the wedge-shaped Hubble diagram predicted by the expansion center model. In fact the diagrams of the Deep Universe in Fig. 5 and Fig. 6 are in good accordance with that simulated in Fig. 8, as the observed amplification is certainly due to various sources of background noise. Therefore this 9th ECM contribution, based above all on a large sample of SCP
data obtained in space with HST, is further confirmation of the cosmic expansion center, following the ground-based astronomical proof collected in about half a century.

At this point one cannot desist from pressing the international astronomical community to pronounce itself once and for all on the subject. In conclusion the author extends an invitation to all astronomers to analyse independently the presented new wedge-shaped Hubble diagram, in order to confirm, or confute, the dipole anisotropy of the Hubble ratio cz/D at any cosmic depth.
Fig. 1: SNe Ia absolute B magnitudes versus central redshift based on the ECM from SCP Union data
Fig. 2: SNe Ia absolute B magnitudes versus distance D based on the ECM from SCP Union data.
Fig. 3: SNe Ia absolute B magnitudes versus the distance indicator x based on the ECM from SCP Union data.
Fig. 4: SNe Ia absolute B magnitudes versus light-space distance r based on the ECM from SCP Union data.
Fig. 5: New Hubble diagram of 398 SCP supernovae
Fig. 7: ECM Hubble diagram of the Nearby Universe by a simulation
Fig. 8: ECM Hubble diagram of the Deep Universe by a simulation
Acknowledgements

This work was made possible thanks to the SCP Union Compilation. The author would like to thank all the members of the SCP team, in particular for making the SNe data available online in "arXiv:0804.4142v1 [astro-ph] 25 Apr 2008".

Special acknowledgements are reserved for the Local Organizing Committee of SAIt2010 at Capodimonte Astronomical Observatory in Naples, both for the successful meeting and all the kind attention and support given to the present contribution.

A final word of gratitude goes to a dear friend Francesco Chiapello for all his encouragement.
REFERENCES

Bahcall, N.A. and Soneira, R.M. 1982, ApJ 262, 419
Knop, R.A. et al. 2003, ApJ 598, 102 (K03)
Kowalski, M. et al. 2008, arXiv:0804.4142v1 [astro-ph] 25 Apr 2008→ApJ 686, 749
Lorenzi, L. 1989, Contributo N. 0, CSA-Mondovì, Italy (unpublished)
 1991, Contributo N. 1, CSA-Mondovì, Italy
 1993, in 1995 MemSAIt, 66, 249
 1999a, arXiv:astro-ph/9906290v1 17 Jun 1999,
in 2000 MemSAIt, 71, 1163 (paper I: reprinted in 2003, MemSAIt, 74)
 1999b, arXiv:astro-ph/9906292v1 17 Jun 1999,
in 2000 MemSAIt, 71, 1183 (paper II: reprinted in 2003, MemSAIt, 74)
 2002, in 2003 MemSAIt, 74, 480 (paper III-partial version),
http://sait.oat.ts.astro.it/MSAIt740203/PDF/poster/39_lorenzil_01_long.pdf
(paper III-integral version)
 2003a, MemSAIt Suppl. 3, 277 (paper IV)
 2003b, MemSAIt Suppl. 3,
http://sait.oat.ts.astro.it/MSAIS/3/POST/Lorenzi_poster.pdf (paper V)
 2004, MemSAIt Suppl. 5, 347 (paper VI)
 2008, www.sait.it, Archivio Eventi, 2008-LII Congresso Nazionale della SAIt,
http://terri1.oa-teramo.inaf.it/sait08/slides/I/ecmcm9b.pdf (paper VII)
 2009, www.sait.it, Archivio Eventi, 2009-LIII Congresso Nazionale della SAIt,
http://astro.df.unipi.it/sait09/presentazioni/AulaMagna/08AM/lorenzi.pdf
(paper VIII)
Perlmutter, S., et al. 1999, ApJ 517, 565 (P99)
Rowan-Robinson, M. 1988, Space Science Review 48, 1
Rubin, D. et al. 2010, SCP "Union 2" Shown at 2010 AAS
Sandage, A., Tammann G.A. 1975, ApJ 196, 313 (S&T: Paper V)
Zeilik, M., Smith, E.v.P. 1987, Introductory Astronomy and Astrophysics,
CBS College Publishing
APPENDIX

Table 2

\(z\) range	N	\(\langle m_{\beta}^{\text{max}} \rangle\)	\(\langle M_\beta \rangle\)	\(s\)	\(\langle z \rangle\)	\(x\)	\(r\)	\(D\)
\(z \leq 0.05\)	91	15.69	\(-18.76 \pm 0.09\)	0.848	0.0210	0.0563	80.4	90.0
\(z \leq 0.10\)	103	15.97	\(-18.81 \pm 0.09\)	0.817	0.0262	0.0685	97.8	112.2
\(z \leq 0.15\)	108	16.15	\(-18.83 \pm 0.08\)	0.802	0.0308	0.0789	112.6	131.9
\(z \leq 0.20\)	115	16.41	\(-18.85 \pm 0.08\)	0.785	0.0392	0.0968	138.2	167.8
\(z \leq 0.25\)	126	16.85	\(-18.86 \pm 0.07\)	0.763	0.0556	0.1287	183.8	238.1
\(z \leq 0.30\)	137	17.25	\(-18.88 \pm 0.07\)	0.741	0.0738	0.1602	228.7	316.0
\(z \leq 0.35\)	156	17.85	\(-18.92 \pm 0.06\)	0.727	0.1052	0.2072	295.8	450.4
\(z \leq 0.40\)	177	18.41	\(-18.95 \pm 0.06\)	0.712	0.1369	0.2477	353.6	586.5
\(z \leq 0.45\)	208	19.06	\(-19.00 \pm 0.05\)	0.684	0.1800	0.2944	420.3	771.0
\(z \leq 0.50\)	235	19.52	\(-19.03 \pm 0.05\)	0.662	0.2141	0.3263	465.8	917.1
\(0.05 \leq z \leq 0.55\)	167	22.10	\(-19.23 \pm 0.04\)	0.420	0.3595	0.4300	613.8	1540
\(0.10 \leq z \leq 0.60\)	174	22.54	\(-19.27 \pm 0.04\)	0.436	0.4062	0.4557	650.5	1740
\(0.15 \leq z \leq 0.65\)	191	22.74	\(-19.31 \pm 0.04\)	0.438	0.4380	0.4717	673.4	1876
\(0.20 \leq z \leq 0.70\)	199	22.90	\(-19.34 \pm 0.04\)	0.447	0.4663	0.4846	691.8	1993
\(0.25 \leq z \leq 0.75\)	197	23.03	\(-19.38 \pm 0.03\)	0.426	0.4919	0.4965	708.8	2107
\(0.30 \leq z \leq 0.80\)	197	23.14	\(-19.40 \pm 0.03\)	0.420	0.5144	0.5061	722.5	2203
\(0.35 \leq z \leq 0.85\)	191	23.35	\(-19.43 \pm 0.03\)	0.405	0.5592	0.5240	748.1	2394
\(0.40 \leq z \leq 0.90\)	180	23.50	\(-19.48 \pm 0.03\)	0.362	0.5958	0.5376	767.5	2552
\(0.45 \leq z \leq 0.95\)	162	23.71	\(-19.54 \pm 0.03\)	0.352	0.6498	0.5561	793.9	2783
\(0.50 \leq z \leq 1\)	142	23.90	\(-19.61 \pm 0.03\)	0.330	0.7059	0.5737	819.0	3023
\(0.55 \leq z \leq 1.05\)	125	24.05	\(-19.66 \pm 0.03\)	0.316	0.7505	0.5866	837.4	3214
\(0.60 \leq z \leq 1.10\)	105	24.19	\(-19.68 \pm 0.03\)	0.306	0.7889	0.5971	852.4	3379
\(0.65 \leq z \leq 1.15\)	86	24.36	\(-19.72 \pm 0.04\)	0.303	0.8425	0.6108	872.0	3609
\(0.70 \leq z \leq 1.20\)	73	24.49	\(-19.76 \pm 0.04\)	0.343	0.8860	0.6212	886.8	3795
\(0.75 \leq z \leq 1.25\)	67	24.58	\(-19.78 \pm 0.05\)	0.362	0.9156	0.6279	896.4	3922
\(0.80 \leq z \leq 1.30\)	60	24.68	\(-19.79 \pm 0.05\)	0.369	0.9494	0.6353	906.9	4067
\(0.85 \leq z \leq 1.35\)	47	24.84	\(-19.85 \pm 0.06\)	0.379	1.0161	0.6489	926.4	4351
\(z \geq 0.85\)	51	24.95	\(-19.84 \pm 0.06\)	0.378	1.0484	0.6552	935.4	4490
\(z \geq 0.9\)	43	25.01	\(-19.88 \pm 0.06\)	0.380	1.0817	0.6614	944.2	4633
\(z \geq 0.95\)	34	25.13	\(-19.89 \pm 0.07\)	0.407	1.1228	0.6687	954.6	4809
Name	cz	D	Name	cz	D	Name	cz	D
-------	-------	------	-------	-------	------	-------	-------	------
1996h	185871	2407	1996cf	170882	2232	2001iw	101809	1347
1996i	17082	2360	1995ba	116319	1664	2001iv	118868	1577
1996j	89938	1343	1995az	134907	1631	2001hy	243431	5357
1996k	113921	1766	1995ay	143900	2072	2001hx	239534	4832
1996u	128911	1659	1995ax	184372	2035	2001hu	264417	4938
1995ao	71950	1122	1995aw	119917	1335	2001hs	249727	3307
1995ap	89938	1023	1995at	196364	1971	2001fs	262019	5706
1996t	71950	813	1995as	149297	2972	2001fo	231440	2492
1997ce	131909	1838	1995ar	139404	2545	2000fr	162787	1927
1997cj	149896	2137	1995aq	135806	2313	1998bi	224844	2808
1997ck	290799	4058	1994g	127412	1429	1998bc	191867	2865
1997k	143601	1695	1999fw	83342	1156	1998ba	128911	1933
1997ap	248828	3497	1999fn	143001	1698	1998ay	191867	2721
1997am	124714	1541	1999fm	284803	3107	1998ax	148997	2156
1997aj	174179	2018	1999fk	316881	3039	1998aw	131909	2342
1997ai	134907	1956	1999fj	244631	3264	1998as	106426	1840
1997af	137580	2606	1999ff	136406	2324	1997ez	233838	3451
1997ac	95334	1221	2002ad	154093	2011	1997eq	161888	2089
1997r	196964	3053	2002ab	126812	1660	1997ek	257822	3752
1997p	141502	2178	2002aa	283604	3808	04Eag	305788	4635
1997o	112122	2693	2002x	257522	4451	04Gre	341764	3617
1997h	157691	2140	2002w	300986	3279	04Man	256023	3900
1997g	228742	3768	2001kd	280606	4000	04Mcg	410716	6080
1997f	173880	2354	2001jp	158290	1796	04Omb	292298	4507
1996cn	128911	2393	2001jn	193366	4717	04Pat	290799	4973
1996cm	134907	2393	2001jm	293197	3476	04Rak	221846	2706
1996cl	248228	4037	2001jh	265316	3283	04Sas	416712	6355
1996ck	196664	2772	2001jf	244331	6230	04Yow	137905	2945
1996ci	148397	1773	2001iy	170282	1933	05Fer	305788	4214
1996cg	146898	2066	2001ix	213152	2700	05Gab	335768	4620
Name	cz	D	Name	cz	D	Name	cz	D
-------	------	-----	-------	------	-----	-------	------	-----
05Lan	368745	7739	03D3af	159490	2582	04D1ak	157691	2840
05Red	356753	6863	03D1fc	99231	1151	03D4gg	177477	2316
05Spo	251526	3163	03D1bp	103728	1632	03D4di	271312	3191
05Str	302791	4862	04D4dw	288101	3690	03D4cx	284503	3552
05Zwi	156192	2011	04D4an	183773	3391	03D3cd	138114	1570
2002dc	142401	2119	04D3nh	101989	1376	03D3ay	111193	1385
2002dd	284803	3955	04D3lp	294696	4635	03D1fq	239834	4047
2002fw	389730	6024	04D3is	212853	3659	03D1co	203559	3375
2002hp	391229	5139	04D3fq	218849	3297	03D1aw	174389	2633
2002hr	157691	3727	04D3df	140903	2699	04D4bq	164886	2342
2002kd	220347	3053	04D3co	185871	2877	04D3ny	242832	3390
2002ki	341764	5495	04D2gc	156192	2343	04D3ml	284803	3671
2003az	379237	6265	04D2cf	110623	1501	04D3kr	101120	1256
2003dy	401722	6339	03D4gl	171182	2163	04D3gx	272811	4219
2003eq	251826	3492	03D4dy	181075	2182	04D3ez	78845	1147
03D4au	140303	3494	03D4cy	277938	4192	04D3cy	192767	2857
04D4bk	251826	3400	03D4ag	85441	875	04D2iu	207157	3719
04D3nr	287801	3619	03D3ba	87300	1369	04D2fs	107026	1588
04D3lu	246370	3520	03D1gt	164286	3852	04D1aj	216150	2856
04D3ki	278807	4632	03D1ew	260220	3463	03D4gf	174179	2266
04D3gt	135206	2361	03D1ax	148697	1924	03D4dh	187910	2236
04D3do	182873	2537	04D4dm	243132	3672	03D4cn	245230	4356
04D3cp	248828	3271	04D3oe	226643	3122	03D3aw	134607	1577
04D2gp	211953	3407	04D3mc	244930	3371	03D1fl	206257	2469
04D2fp	124414	1606	04D3ks	225444	2750	03D1cm	260820	3673
04D1ag	166984	1871	04D3hn	165366	2505	03D1au	151185	1933
03D4fd	237136	3308	04D3fk	107266	1691	b010	177177	2318
03D4ez	208356	3178	04D3dd	302791	5164	b013	127712	1734
03D4at	189769	2772	04D2ja	222146	3203	b016	98632	1707
03D3bh	74528	867	04D2gb	128911	1855	d033	159190	2197
Name	cz	D	Name	cz	D	Name	cz	D
-------	------	------	-------	------	------	-------	------	------
d058	174779	2630	f231	185572	2335	k411	169083	1744
d084	155592	2877	f235	126512	1525	k425	82143	1309
d085	120217	1580	f244	161888	2276	k430	174479	3034
d087	101930	1212	f308	120217	2242	k441	203859	2648
d089	130710	1550	g005	65355	986	k448	120217	2655
d093	108825	1175	g050	189769	1959	k485	124714	3861
d097	130710	1550	g052	114821	1474	m007	85741	1801
d117	92636	1605	g055	90537	2830	m062	94135	1297
d149	102529	1413	g097	101930	1481	m138	174179	2171
e029	99531	1722	g120	152894	1720	m158	138804	2142
e108	140603	1550	g133	126213	2340	m193	102229	1058
e132	71650	1186	g142	119617	2874	m226	201161	2520
e136	105527	1994	g160	147798	1884	n256	189169	2256
e138	183473	3463	g240	205957	2143	n258	156492	2298
e140	189169	2228	h283	150496	2587	n263	110324	1270
e147	193366	2189	h300	205957	2307	n278	92636	1219
e148	128611	1700	h319	148397	1858	n285	158290	2258
e149	148997	1855	h323	180775	2411	n326	80344	1448
f011	161588	2264	h342	126213	1517	p454	208356	2976
f041	168184	1968	h359	104328	1831	p455	85141	1113
f076	122915	1472	h363	63856	1445	p524	152295	1849
f096	123515	2205	h364	103129	1084	p528	234138	3141
f216	179576	2874	k396	81244	1242	p534	183773	2275