Comparison of hepatic and renal parameters between Diabetic and Non Diabetic Individuals of Dakshina Kannada: A cross sectional study

Mahalaxmi S Petimani1, Greeshma B Kotian1,*, Prabhakar Adake2

1Dept. of Biochemistry, Yenepoya Medical College, Mangalore, Karnataka, India
2Dept. of Pharmacology, Yenepoya Medical College, Mangalore, Karnataka, India

ABSTRACT

Objectives: To compare fasting plasma glucose levels, HbA1c, hepatic and renal parameters in diabetes mellitus (DM) subjects and compare the values with healthy controls.

Materials and Methods: A total of 67 (n=67) reports were collected from Central laboratory, Yenepoya Medical College Hospital, Mangaluru from January 2018 to June 2018. Patients with FBS values more than 126mg/dl or HbA1c more than 6.5% who have been advised LFT and RFT by the physician were included in diabetic group (34) and other 33 reports of LFT & RFT with normal FBS & HbA1c levels included in non-diabetic group. All the data viz. FBS, HbA1c, Total Bilirubin, Direct Bilirubin, Indirect Bilirubin, SGOT, SGPT, Blood urea and S. creatinine values were entered in excel sheet and subjected for statistical analysis.

Results: Intergroup comparison of biochemical parameters was done by Non-Parametric test (Mann-Whitney) and Pearsons Chi square tests. The values of FBS, HbA1c, Total Bilirubin, Direct Bilirubin, Indirect Bilirubin, SGOT, SGPT, Blood urea and S. creatinine in diabetic group are 184.5mg (171-274.5), 8.9% (7.2-10.5), 0.7mg (0.5-0.8), 0.3mg(0.2-0.4), 0.4mg (0.3-0.4), 28U (21.5-33), 25.5U(20-32.25), 30.5mg (21.75-38) and 0.9mg (0.8-1) respectively obtained in Mann-Whitney test. Similarly, values of 96mg (78-103), 5.8% (5.3-5.9), 0.5 mg (0.4-0.7), 0.2mg (0.2-0.2), 0.3mg(0.2-0.45), 23U (20-28), 24U (19-36), 18mg(16-21), and 0.7mg(0.6-0.8) were respectively noted in non-diabetic group. The Mann-Whitney test showed significant difference in all the parameters except in Indirect Bilirubin, SGOT, and SGPT levels between two groups (p <0.05). However, Pearson Chi square test revealed there is no significant difference in these parameters between diabetic and non-diabetic group with p >0.05.

Conclusion: The present study suggests that there is no statistical significant difference in hepatic and renal parameters between diabetic and non-diabetic groups with respect to Chi-square test. Many previous studies have shown significant organ dysfunction in diabetic individuals, but our study result revealed there is no difference in the biochemical parameters of diabetic and non-diabetic individuals.

1. Introduction

Diabetes mellitus (DM), commonly referred to as diabetes, is a group of metabolic diseases associated with elevated blood sugar levels over a prolonged period.1 The symptoms of high blood sugar include frequent urination, increased thirst and increased hunger.2 Diabetes can cause many complications like diabetic ketoacidosis and nonketotic hyperosmolar coma and also serious long-term complications like cardiovascular diseases, stroke, kidney failure, foot ulcers and damage to the eyes.3

Around 381 million people in the world are suffering from diabetes mellitus and incidence of DM is on rise.4 India has more number of diabetics than any other country in the world.5 It is estimated that, more than 62 million Indians, which is more than 7.1% of India’s adult population
are diabetics. Moreover, 1 million Indians die due to Diabetes every year. The average age of onset is 42.5 years. The high incidence is due to genetic susceptibility and adoption of a high-calorie, sedentary lifestyle by Indians.

Type 2 DM (T2DM) is directly linked to dyslipidemia due to the lack of effect of insulin. Altered lipoprotein pattern and elevated liver enzymes have been identified as independent risk factors for the development of cardiovascular complications in DM. The prevalence of altered liver enzymes ranges from 7.2 to 22.9% in Type 2 DM patients.

Diabetes disrupts metabolic functions of the body hence electrolyte homeostasis is disturbed. In diabetic patients, acid – base and electrolyte disorders are commonly seen even if the renal function is normal. Metabolic alkalosis and metabolic acidosis, in addition to hypernatremia and hypokalemia are seen in type 2 DM patients.

2. Objectives
To compare fasting plasma glucose levels, HbA1c, Total Bilirubin, Direct Bilirubin, Indirect Bilirubin, SGOT, SGPT, Blood urea and S. Creatinine in diabetes mellitus (DM) subjects and compare the values with healthy controls.

3. Materials and Methods
The present descriptive cross sectional study was conducted in Yenepoya Medical College Hospital, Yenepoya University, Mangalore from January 2018 to June 2018. Institutional Ethics Committee approval was obtained before starting the study.

3.1. Study participants
T2DM patients and non diabetic individuals attending outpatient department of Yenepoya Medical College Hospital, Deralakatte, Mangalore.

3.2. Study sample
Considering mean serum creatinine difference of 0.19 (SD: 0.27) with an alpha (\(\alpha\)) error of 0.05, power of 80% and 1:1 allocation in study groups, a minimum sample size of 33 in each group was estimated.

3.3. Methodology
Patients diagnosed as T2DM and non-diabetic individuals who have been advised liver function test and renal function tests by the treating physician/surgeon as routine investigations attending outpatient departments of Yenepoya Medical College Hospital were included in this study. Informed consent was obtained from the participants. Renal function and liver function test reports were collected from central laboratory and relevant information was entered in case report forms when the patient is collecting reports from central laboratory of Yenepoya Medical College Hospital.

3.4. Inclusion criteria
1. Known diabetic patients of either sex aged between 35-70 years of age, FBS >126mg/dl or HbA1c > 6.5 %
2. Healthy non diabetic individuals of either sex aged between 35 -70 years of age.

3.5. Exclusion criteria
1. Individuals not willing to participate or to give consent.
2. Individuals suffering from hepatic or renal diseases, chronic alcoholics and past history of liver and renal diseases.
3. Patients who are already taking hypolipidemic agents.
4. Patients suffering from thyroid disorders.
5. Patients who are on oral contraceptive pills and corticosteroids.

3.6. Analysis
The values are expressed in Median ± IQR (Inter Quartile Range).Intergroup comparison of biochemical parameters was done by Non-Parametric test (Mann-Whitney) and Pearsons Chi square tests.

4. Results and Discussion
Management of Diabetes mellitus has become a great challenge to the medical field. Long term Diabetic vascular complication is a leading cause of end stage renal failure, blindness, neuropathies and atherosclerosis. These complications are the major cause of morbidity and mortality in diabetic patients.

Many previous studies have shown significant increase in the liver and renal parameters in diabetic patients when compared to healthy individuals. The main cause for organ dysfunction in Diabetes Mellitus could be the angiopathy. Chronic hyperglycemic state damages blood vessels by causing atherosclerosis due to the deposition of glycoproteins to basement membrane of blood vessels. This results in microvascular and macrovascular diseases.

In this study effort was put to compare the renal and hepatic parameters in diabetic and healthy individuals. A total of 67 reports were collected from the central laboratory. The statistical analysis was done by Mann-Whitney (for continuous variables) and Chi-square tests (for categorical variables). The Mann-Whitney test showed significant difference in all the parameters except in Indirect Bilirubin, SGOT and SGPT levels between two groups (p<0.05). Pearson Chi square test (for categorical variables) revealed there is no significant difference in
Table 1: Comparison of parameters in diabetic & Non-diabetic group (By Mann-Whitney test)

Parameters	Diabetic Group (Median ± IQR)	Healthy Individuals	P value
Age	45.5 (41.75-57.25)	48 (41.5-61)	0.633*
Sex	Male 17	Female 17	
FBS	184.5 (171-274.5)	96 (78-103)	<0.001***
HbA1c	8.9 (7.2-10.5)	5.8 (5.3-5.9)	<0.001***
Total Bilirubin	0.7 (0.5-0.8)	0.5 (0.4-0.7)	0.016**
Direct Bilirubin	0.3 (0.2-0.4)	0.2 (0.2-0.2)	0.003**
Indirect Bilirubin	0.4 (0.3-0.4)	0.3 (0.2-0.5)	0.461*
SGOT	28 (21.5-33)	23 (20-28)	0.283*
SGPT	25.5 (20-32.25)	24 (19-36)	0.875*
Blood Urea	30.5 (21.75-38)	18 (16-21)	<0.001***
Serum Creatitine	0.9 (0.8-1)	0.7 (0.6-0.8)	<0.001***

*Non Significant (p>0.05), **Significant (p<0.05), *** Highly Significant (p<0.001)

Table 2: Comparison of parameters in diabetic & Non-diabetic group (By Pearson Chi-Square test)

Parameters	Diabetic Group	Healthy Individuals	P value	
FBS Normal	00	32	<0.001***	
Abnormal	34	01		
HbA1c Normal	00	33	<0.001***	
Abnormal	34	00		
Total Bilirubin	Abnormal	33	0.537*	
Normal	01	31		
Direct Bilirubin	Abnormal	25	0.138*	
Normal	09	04		
Indirect Bilirubin	Abnormal	34	33	a
Normal	00	00		
Normal	33	30		
Abnormal	01	03	0.288*	
SGPT Normal	33	32	0.983*	
Abnormal	01	01		
Blood Urea	Abnormal	32	33	0.157*
Normal	02	00		
Serum Creatitine	Abnormal	29	30	0.479*
Normal	05	03		

*Non Significant (p>0.05), a: No statistics are computed because I.Bilirubin is a constant.

5. Conclusion
The present study suggests that there is no statistical significant difference in hepatic and renal parameters between diabetic and non-diabetic groups with respect to Chi-square test. Many previous studies have shown significant organ dysfunction in diabetic individuals, but our study result revealed there is no difference in the biochemical parameters of diabetic and non-diabetic individuals.

6. Acknowledgements
The authors are grateful to the all the participants without them the study would not have taken place.

these parameters between diabetic and non-diabetic group with respect to abnormality of parameters is concerned (p >0.05). Hence, with respect to Chi-square test, even though the hepatic parameters are increased in diabetic individuals, they are within the normal range. The limitation of present study is that we have not categorized the diabetic patients depending upon the duration of disease, may be this could be the reason for statistically non significant result in Chi square test.

The efforts will be made by authors to continue this research with more sample size and to address the limitation of the present study.
7. Source of funding

None.

8. Conflict of interest

None.

References

1. About diabetes”. World Health Organization ; 2014,. Available from: Available from: http://www.who.int/diabetes/action_online/basics/en/.

2. Diabetes Fact sheet N°312. WHO. October 2013. ; 2013,. Available from: Available from: http://www.who.int/mediacentre/factsheets/fs312/en/.

3. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32(7):1335–1343.

4. Simple treatment to curb diabetes ; 2014,. Available from: Available from: http://www.thebalidaily.com/2014-01-20/simple-treatment-curb-diabetes.html.

5. Gale, Jason. India’s Diabetes Epidemic Cuts Down Millions Who Escape Poverty. Bloomberg. 2010; Available from: Available from: http://www.bloomberg.com/news/articles/2010-11-07/india-s-deadly-diabetes-scourge-cuts-down-millions-rising-to-middle-class.

6. Diabetes can be controlled in 80 percent of Cases in India. IANS news. . 2014;Available from: Available from: http://news.biharprabha.com/2014/02/diabetes-can-be-controlled-in-80-percent-of-cases-in-india/.

7. Modern Ways Open Indias Doors to Diabetes. New York Times. . 2006;8. Available from: Available from: http://www.nytimes.com/2006/09/13/world/asia/13diabetes.html?pagewanted=all&_r=0.

8. Marco RD, Lacatelli F, Zappini G, Verlato G, Bonora E, Muggeo M. Cause specific Mortality in type 2 Diabetes-the Verona Diabetes study. Diabetes Care. 2000;22:756–761.

9. Elizabeth HH. Elevated liver function tests in type 2 Diabetes. Clinical Diabetes. 2005;23:115–119.

10. Al-Jameil, Farah A, Khan S, Arjumand, Mohammad F, et al. Associated liver enzymes with hyperlipidemic profile in type 2 diabetes patients. Int J Clin Exp Pathol. 2014;7(7):4345–4349.

11. Sotirakopoulou N, Kaloqianidou I, Tersi M, Armentziou I, Kivridis D, Pavromatidis K. Acid-base and electrolyte disorders in patients with diabetes mellitus. Saudi J Kidney Disease Transplant. 2012;23(1):58–62.

12. Srivatsan R, Das S, Gadde R, Manoj-Kumar K, Taduri S, et al. Antioxidants and lipid peroxidation status in diabetic patients with and without complications. Arch Iranian Med. 2009;12(2):121–127.

13. Al-Jameil, Khan AF, Sadia A, Khan FM, Tabassum H. Associated liver enzymes with hyperlipidemic profile in type 2 diabetes patients. Int J Clin Exp Pathol. 2014;7(7):4345–4349.

14. Atiba AS, Oparinde DP, Babatunde OA, ‘Niran-Atiba TA, Jimoh AK, Adepaju AA. Liver Enzymes and Lipid Profile Among Type 2 Diabetic Patients in Osogbo. Nigeria Greener J Med Sci. 2013;3:174–178.

Author biography

Mahalaxmi S Petimani Assistant Professor

Greeshma B Kotian Assistant Professor

Prabhakar Adake Associate Professor

Cite this article: S Petimani, B Kotian and Adake P. Comparison of hepatic and renal parameters between Diabetic and Non Diabetic Individuals of Dakshina Kannada: A cross sectional study. Int J Clin Biochem Res. 2019;6(3):344-347.