In Vitro Activity of Tedizolid Against Gram-Positive Bacteria in Patients With Skin and Skin Structure Infections and Hospital-Acquired Pneumonia: A Korean Multicenter Study

Yangsoon Lee, M.D.¹, Sung Kuk Hong, M.D.², SungHak Choi, Ph.D.³, Weonbin Im, Ph.D.³, Dongeun Yong, M.D.², and Kyungwon Lee, M.D.²

Department of Laboratory Medicine¹, Hanyang University College of Medicine, Seoul; Department of Laboratory Medicine², Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul; Dong-A ST Research Institute³, Yongin, Korea

We compared the activities of tedizolid to those of linezolid and other commonly used antimicrobial agents against gram-positive cocci recovered from patients with skin and skin structure infections (SSSIs) and hospital-acquired pneumonia (HAP) in Korean hospitals. Gram-positive isolates were collected from 356 patients with SSSIs and 144 patients with HAP at eight hospitals in Korea from 2011 to 2014. SSSIs included impetigo, cellulitis, erysipelas, furuncles, abscesses, and infected burns. Antimicrobial susceptibility was tested by using the CLSI agar dilution method. All of the gram-positive isolates were inhibited by ≤1 μg/mL tedizolid. The minimum inhibitory concentration [MIC]₉₀ of tedizolid was 0.5 μg/mL for methicillin-resistant Staphylococcus aureus, which was 4-fold lower than that of linezolid. Tedizolid may become a useful option for the treatment of SSSIs and HAP caused by gram-positive bacteria.

Key Words: Tedizolid, Skin, Soft tissue, Infection, Pneumonia, Gram-positive bacteria

Skin and skin structure infections (SSSIs) are common problems in both inpatients and outpatients. The vast majority of SSSIs are caused by gram-positive organisms that are normal flora on the skin of human beings. Staphylococci and streptococci cause majority of gram-positive infections [1]. A recent increase in staphylococcal infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has resulted in a significant increase of cases of MRSA pneumonia in the health care setting, especially in the chronically ill population [2]. Vancomycin has been the cornerstone of treatment for MRSA infections. However, recently, vancomycin-resistant S. aureus and linezolid-resistant Staphylococcus strains have emerged [3-5]. These strains pose significant challenges to the clinical treatment of infections caused by these organisms. Tedizolid offers broad in vitro activity against gram-positive pathogens, including MRSA and strains resistant to vancomycin or linezolid, and has greater potency than other drugs of its class [6, 7]. It was specifically designed to be active against linezolid-resistant S. aureus, including strains containing the multidrug-resistant cfr gene [8].

Tedizolid phosphate was recently approved by the U.S. Food and Drug Administration to treat patients with acute bacterial SSSI caused by S. aureus, various Streptococcus species, and...
Enterococcus. In addition, planned studies will investigate the potential role of tedizolid in the treatment of community-acquired bacterial pneumonia and hospital-acquired pneumonia (HAP) [9]. We published a previous report focusing on the activity of tedizolid against collections of clinical isolates in a single institution, but it was not characterized by infection type [10]. Therefore, the present study aimed to compare the activities of tedizolid to those of linezolid and other commonly used antimicrobial agents against gram-positive cocci recovered from patients with SSSIs and HAP in Korean hospitals.

Non-duplicated aerobic and anaerobic gram-positive isolates were collected from clinical specimens of 356 patients with SSSIs and 144 patients with HAP at eight hospitals in Seoul and Gyeonggi province, Korea from 2011 to 2014. SSSIs included impetigo, cellulitis, erysipelas, furuncles, abscesses, and infected burns [1, 11]. HAP was defined as pneumonia that occurred 48 hr or more after admission. Species were identified by using conventional methods or the Vitek 2 system (bioMérieux, Marcy l’Etoile, France). Antimicrobial susceptibility was tested by using the CLSI agar dilution method [12, 13]. Mueller-Hinton agar was used as a growth medium (Becton Dickinson, Cockeysville, MD, USA) for testing Staphylococcus spp. and Enterococcus spp.; Mueller-Hinton agar supplemented with 5% sheep blood for Streptococcus spp.; Brucella agar (Becton Dickinson) supplemented with 5 μg/mL hemin, 1 μg/mL vitamin K1; and 5% laked sheep blood for anaerobic bacteria. Tedizolid and linezolid (Dong-A ST, Seoul, Korea); erythromycin, tetracycline, oxacillin and penicillin G; vancomycin (Daewoong, Seoul, Korea); and teicoplanin (Sanofi Aventis, Bridgewater, NJ, USA) were used as antimicrobial agents against gram-positive cocci recovered from patients with SSSIs and HAP [14].

All of the aerobic and anaerobic gram-positive isolates in patients with SSSIs were inhibited by ≤1 μg/mL tedizolid (Table 1). The most potent drugs against MRSA were tedizolid (minimum inhibitory concentration \(\text{MIC}_{90} = 0.5 \mu g/mL\)), linezolid \(\text{MIC}_{90} = 2 \mu g/mL\), and vancomycin \(\text{MIC}_{90} = 2 \mu g/mL\). The MIC range of tedizolid was 0.125 to 0.5 μg/mL for MRSA, while that of linezolid was 0.25 to 4 μg/mL. The \(\text{MIC}_{90}\) s of tedizolid were 0.5 μg/mL for both MRSA and vancomycin-resistant Staphylococcus aureus (MSSA) and ≤0.125 μg/mL for coagulase-negative staphylococci, which were 2- to 4-fold lower than those of linezolid. These MIC values were similar to those described in previous reports [10, 15]. The \(\text{MIC}\) s of tedizolid were 0.25 μg/mL for all three vancomycin-intermediate S. aureus isolates.

The MIC ranges of tedizolid were 0.25 to 0.5 μg/mL for Enterococcus, while those of linezolid were 0.5 to 2 μg/mL. Tedizolid inhibited all vancomycin-resistant Enterococcus at 0.5 μg/mL. When the meningeal breakpoint was applied, most of the pneumococcal isolates tested were not susceptible to penicillin G or cefotaxime. However, the MIC range of tedizolid was 0.25 to 1 μg/mL, and the \(\text{MIC}_{90}\) (0.5 μg/mL) was 4-fold lower than that of linezolid. Tedizolid inhibited all the isolates of viridans Streptococcus spp. and β-hemolytic streptococci such as S. pyogenes and S. agalactiae at 0.5 μg/mL. Tedizolid had excellent activity against gram-positive anaerobes recovered from SSSIs (Table 1). The MIC ranges of tedizolid were 0.06 to 1 μg/mL for Finegolda magna and ≤0.06 to 0.25 μg/mL for the other Peptostreptococcus spp. The \(\text{MIC}_{90}\) values for these organisms were 0.5 and 0.25 μg/mL, respectively, which were 4-8 fold lower than those of linezolid. All the Clostridium spp. isolates were inhibited by tedizolid at 0.5 μg/mL. All the gram-positive isolates in patients with HAP were inhibited by ≤0.5 μg/mL tedizolid (Table 2). The MIC ranges of tedizolid were 0.125 to 0.5 μg/mL for MRSA and 0.25 μg/mL for MSSA. The \(\text{MIC}_{90}\) values of tedizolid were 0.25, 0.5, and 0.5 μg/mL for MRSA, MSSA, and pneumococci, respectively, which were 4- to 8-fold lower than those of linezolid.

In summary, the MIC values of tedizolid in this study were not significantly different according to type of infection. All organisms tested were susceptible to tedizolid, nevertheless the breakpoint of tedizolid is 4- or 8-fold lower than that of linezolid. Tedizolid is a potent agent with high in vitro activity against common aerobic and anaerobic gram-positive pathogens in SSSIs and HAP. Tedizolid may become a useful option for the treatment of SSSIs and HAP.
Organism (N of isolates) and antimicrobial agents	Breakpoint (µg/mL)	MIC (µg/mL)	Susceptibility (%)						
	S	I	R	Range	50%	90%	S	I	R
Methicillin-resistant Staphylococcus aureus (90)									
Tedizolid*	≤0.5	1	≥2	≥0.125	0.5	0.5	100	0	0
Linezolid	≤2	-	≥2	≥0.25	1	1	100	0	0
Erythromycin	≤0.5	1-4	≥8	≥0.25	>128	>128	78	0	72
Clindamycin	≤0.5	1-2	≥4	≤0.06	>128	>128	44	0	56
Cotrimoxazole	≤2	-	≥4	≤0.06	0.125	0.125	98	NA	2
Gentamicin	≤4	8	≥16	≤0.125	0.125	0.125	99	1	1
Levofloxacin	≤1	2	≥4	≤0.125	0.125	0.125	98	0	1
Tetrazycline	≤4	2	≥16	≤0.125	0.125	0.125	98	0	1
Oxacillin	≤2	-	≥4	≤0.06	≤0.125	≤0.125	100	0	100
Vancomycin	≤2	4-8	≥16	1-4	1	2	94	6	0
Methicillin-susceptible S. aureus (90)									
Tedizolid	≤0.5	1	≥2	≤0.06	0.25	0.5	100	0	0
Linezolid	≤4	-	≥8	≤0.25	2	2	100	NA	0
Erythromycin	≤0.5	1-4	≥8	≤0.25	>128	>128	74	1	24
Clindamycin	≤0.5	1-2	≥4	≤0.06	>128	>128	99	0	1
Cotrimoxazole	≤2	-	≥4	≤0.06	0.125	0.125	100	NA	0
Gentamicin	≤4	8	≥16	≤0.125	0.125	0.125	99	1	17
Levofloxacin	≤1	2	≥16	≤0.125	0.125	0.125	98	0	3
Tetrazycline	≤4	2	≥16	≤0.125	0.125	0.125	98	0	3
Oxacillin	≤2	-	≥4	≤0.06	≤0.125	≤0.125	100	0	0
Vancomycin	≤2	4-8	≥16	1-4	1	1	100	0	0
Coagulase-negative Staphylococcus (24)³									
Tedizolid	NA	NA	NA	≤0.06	0.125	0.125	NA	NA	NA
Linezolid	≤4	-	≥8	≤0.25	0.25	0.25	100	NA	0
Erythromycin	≤0.5	1-4	≥8	≤0.06	>128	>128	71	0	29
Clindamycin	≤0.5	1-2	≥4	≤0.06	>128	>128	96	0	4
Cotrimoxazole	≤2	-	≥4	≤0.06	≤0.06	4	79	NA	21
Gentamicin	≤4	8	≥16	≤0.06	0.125	0.125	50	21	29
Levofloxacin	≤1	2	≥4	≤0.06	≤0.125	≤0.125	74	0	21
Tetrazycline	≤4	8	≥16	≤0.125	0.125	0.125	74	0	21
Oxacillin	≤0.25	-	≥0.5	≤0.125	0.5	0.5	100	NA	63
Vancomycin	≤4	8-16	≥32	1-2	2	2	100	0	0
Streptococcus pneumoniae (30)									
Tedizolid	NA	NA	NA	0.25	0.25	0.5	NA	NA	NA
Linezolid	≤2	-	-	≤0.25	1	1	100	NA	NA
Penicillin G	≤2	4	≥8	≤0.06	0.06	0.06	27	73	0
Cefotaxime	≤1	2	≥4	≤0.06	0.25	0.25	27	73	0

(Continued to the next page)
Table 1. Continued

Organism (N of isolates) and antimicrobial agents	Breakpoint (µg/mL)	MIC (µg/mL)	Susceptibility (%)						
	S	I	R	Range	50%	90%	S	I	R
Clindamycin	≤0.25	0.5	≥1	0.125- >128	>128	>128	10	0	90
Erythromycin	≤0.25	0.5	≥1	8- >128	>128	>128	0	0	100
Cotrimoxazole	≤0.5	1-2	≥4	0.5- >128	32	64	13	0	87
Levofloxacin	≤2	4	≥8	2-8	2	4	87	10	3
Tetracycline	≤1	2	≥4	0.25-64	32	32	3	3	93
S. agalactiae (22)									
Tedizolid	≤0.5	-	-	0.25-0.5	0.5	0.5	100	NA	NA
Linezolid	≤2	-	-	2-4	2	2	96	NA	NA
Penicillin G	≤0.12	-	-	0.015-0.06	0.06	0.06	100	NA	NA
Cefotaxime	≤0.5	-	-	0.015-0.06	0.06	0.06	100	NA	NA
Clindamycin	≤0.25	0.5	≥1	0.125- >128	0.125	>128	82	0	18
Erythromycin	≤0.25	0.5	≥1	0.125- >128	0.25	>128	77	0	23
Levofloxacin	≤2	4	≥8	1-64	2	64	59	9	32
Tetracycline	≤2	4	≥8	0.25-32	1	32	59	0	41
S. pyogenes (8)									
Tedizolid	≤0.5	-	-	0.125-0.5	NA	NA	NA	NA	NA
Linezolid	≤2	-	-	1-2	NA	NA	NA	NA	NA
Penicillin G	≤0.12	-	-	0.015	NA	NA	NA	NA	NA
Cefotaxime	≤0.5	-	-	0.015-0.06	NA	NA	NA	NA	NA
Clindamycin	≤0.25	0.5	≥1	0.125- >128	NA	NA	NA	NA	NA
Erythromycin	≤0.25	0.5	≥1	0.25-32	NA	NA	NA	NA	NA
Levofloxacin	≤2	4	≥8	0.5-8	NA	NA	NA	NA	NA
Tetracycline	≤2	4	≥8	0.25-8	NA	NA	NA	NA	NA
Enterococcus faecalis (14)									
Tedizolid	≤0.5	-	-	0.25-0.5	0.5	0.5	100	NA	NA
Linezolid	≤2	4	≥8	1-2	2	2	100	0	0
Ampicillin	≤8	-	≥16	0.5-4	1	4	100	NA	0
Erythromycin	≤0.5	1-4	≥8	0.5- >128	>128	>128	0	36	64
Levofloxacin	≤2	4	≥8	1- >128	1	128	64	0	36
Tetracycline	≤4	8	≥16	0.5- >128	64	128	14	0	86
Teicoplanin	≤8	16	≥32	≤0.06-1	0.5	1	100	0	0
Vancomycin	≤4	8-16	≥32	0.5-4	1	2	100	0	0
E. faecium (16)									
Tedizolid	NA	NA	NA	0.25-0.5	0.25	0.25	NA	NA	NA
Linezolid	≤2	4	≥8	0.5-2	2	2	100	0	0
Ampicillin	≤8	-	≥16	16- >128	64	128	0	NA	100
Erythromycin	≤0.5	1-4	≥8	≤0.06- >128	>128	>128	6	0	94
Levofloxacin	≤2	4	≥8	32-128	128	128	0	0	100

(Continued to the next page)
Table 1. Continued

Organism (N of isolates) and antimicrobial agents	Breakpoint (µg/mL)	MIC (µg/mL)	Susceptibility (%)						
	S	I	R	Range	50%	90%	S	I	R
Tetracycline	≤4	8	≥16	0.25-128	0.5	128	56	0	44
Vancomycin	≤4	8-16	≥32	1- >128	1	>128	56	0	44
Teicoplanin	≤8	16	≥32	0.25-128	1	32	56	19	25
Viridans group Streptococcus spp. (10)†									
Tedizolid	NA	NA	NA	0.25-0.5	0.25	0.25	NA	NA	NA
Linezolid	≤2	-	-	1-2	1	2	100	NA	NA
Penicillin G	≤0.12	0.25-2	≥4	0.03-2	0.06	0.5	70	10	0
Cefotaxime	≤1	2	≥4	0.06-2	0.25	1	90	10	0
Clindamycin	≤0.25	0.5	≥1	≤0.06- >128	0.125	>128	60	0	40
Erythromycin	≤0.25	0.5	≥1	≤0.06- >128	0.125	128	50	10	40
Levofloxacin	≤2	4	≥8	0.5-2	1	2	100	0	0
Tetracycline	≤2	4	≥8	0.25-64	16	64	40	0	60
Finegoldia magna (21)									
Tedizolid	NA	NA	NA	0.06-1	0.25	0.5	NA	NA	NA
Linezolid	NA	NA	NA	0.5-2	2	2	NA	NA	NA
Piperacillin	≤32	64	≥128	≤0.06-0.25	0.125	0.25	100	0	0
Pip/tazobactam	≤32	64	≥128	≤0.06-0.25	≤0.06	0.125	100	0	0
Cefotaxin	≤16	32	≥64	0.125-2	1	1	100	0	0
Cefotetan	≤16	32	≥64	0.25-2	1	2	100	0	0
Imipenem	≤4	8	≥16	≤0.06-0.125	≤0.06	0.125	100	0	0
Clindamycin	≤2	4	≥8	≤0.06- >128	2	>128	55	9	36
Metronidazole	≤8	16	≥32	0.25-4	1	2	100	0	0
Vancomycin	NA	NA	NA	0.25-1	0.25	0.5	NA	NA	NA
Peptostreptococcus spp. (27)§									
Tedizolid	NA	NA	NA	≤0.06-0.25	0.125	0.25	NA	NA	NA
Linezolid	NA	NA	NA	0.5-2	1	2	NA	NA	NA
Piperacillin	≤32	64	≥128	≤0.06-1	≤0.06	1	100	0	0
Pip/tazobactam	≤32	64	≥128	≤0.06-1	≤0.06	0.25	100	0	0
Cefotaxin	≤16	32	≥64	≤0.06-8	0.5	4	100	0	0
Cefotetan	≤16	32	≥64	0.125-8	0.5	2	100	0	0
Imipenem	≤4	8	≥16	≤0.06-0.5	≤0.06	0.125	100	0	0
Clindamycin	≤2	4	≥8	≤0.06-128	0.25	128	74	4	22
Metronidazole	≤8	16	≥32	0.5-2	1	2	100	0	0
Vancomycin	NA	NA	NA	0.125-1	0.25	1	NA	NA	NA
Clostridium spp. (4)§									
Tedizolid	NA	NA	NA	0.25-0.5	NA	NA	NA	NA	NA
Linezolid	NA	NA	NA	2-4	NA	NA	NA	NA	NA
Piperacillin	≤32	64	≥128	0.25-2	NA	NA	NA	NA	NA

(Continued to the next page)
Table 1. Continued

Organism (N of isolates) and antimicrobial agents	Breakpoint (µg/mL)	MIC (µg/mL)	Susceptibility (%)						
	S	I	R	Range	50%	90%	S	I	R
Pip/tazobactam	≤ 32	64	≥128	0.125-2	NA	NA	NA	NA	NA
Cefoxitin	≤ 16	32	≥64	0.25-2	NA	NA	NA	NA	NA
Cefotetan	≤ 16	32	≥64	0.25-2	NA	NA	NA	NA	NA
Imipenem	≤ 4	8	≥16	0.25-2	NA	NA	NA	NA	NA
Clindamycin	≤ 2	4	≥8	0.125-2	NA	NA	NA	NA	NA
Metronidazole	≤ 8	16	≥32	0.5-8	NA	NA	NA	NA	NA
Vancomycin	NA	NA	NA	0.5-4	NA	NA	NA	NA	NA

*FDA breakpoints were used for tedizolid; †Staphylococcus epidermidis (N=22), S. caprae (N=1), S. warneri (N=1); ²Streptococcus mitis (N=6), S. anginosus (N=2), S. constellatus (N=2); ³P. asaccharolyticus (N=11), P. micros (N=7), Anaerococcus prevetti (N=8), P. anaerobius (N=1); ⁴C. perfringens (N=2), C. ramosum (N=2).

Abbreviations: MIC, minimum inhibitory concentration; S, susceptible; I, intermediate; R, resistant; NA, not available/applicable; Pip/tazobactam, piperacillin/tazobactam.

Table 2. Comparative in vitro activities of tedizolid and other antimicrobial agents against bacteria recovered from patients with hospital-acquired pneumonia

Organism (N of isolates) and antimicrobial agents	Breakpoint (µg/mL)	MIC (µg/mL)	Susceptibility (%)						
	S	I	R	Range	50%	90%	S	I	R
Methicillin-resistant Staphylococcus aureus (61)									
Tedizolid*	≤ 0.5	1	≥2	0.125-0.5	0.25	0.5	100	0	0
Linezolid	≤ 4	-	≥8	1-2	2	2	100	0	0
Erythromycin	≤ 0.5	1-4	≥8	0.25- >128	>128	>128	10	0	90
Clindamycin	≤ 0.5	1-2	≥4	≤0.06- >128	>128	>128	23	0	77
Cotrimoxazole	≤ 2	-	≥4	≤0.06-4	≤0.06	0.125	98	NA	2
Gentamicin	≤ 4	8	≥16	0.125-128	32	64	38	0	62
Levofoxacin	≤ 1	2	≥4	0.25- >128	128	128	16	0	84
Tetracycline	≤ 4	8	≥16	0.25-128	128	128	18	0	82
Oxacillin	≤ 2	-	≥4	32- >128	>128	>128	0	NA	100
Vancomycin	≤ 2	4-8	≥16	0.5-2	1	2	100	0	0

Methicillin-susceptible S. aureus (28)									
Tedizolid	≤ 0.5	1	≥2	0.25-0.25	0.25	0.25	100	0	0
Linezolid	≤ 4	-	≥8	1-2	2	2	100	0	0
Erythromycin	≤ 0.5	1-4	≥8	0.25- >128	0.25	0.25	93	4	4
Clindamycin	≤ 0.5	1-2	≥4	≤0.06- >128	≤0.06	≤0.06	93	4	4
Cotrimoxazole	≤ 2	-	≥4	≤0.06-0.25	≤0.06	≤0.06	100	NA	0
Gentamicin	≤ 4	8	≥16	0.125-16	0.25	0.25	96	0	4
Levofoxacin	≤ 1	2	≥4	0.125-8	0.25	1	93	0	7
Tetracycline	≤ 4	8	≥16	0.25-0.25	0.25	0.25	100	0	0
Oxacillin	≤ 2	-	≥4	0.125-0.5	0.25	0.5	100	NA	0
Vancomycin	≤ 2	4-8	≥16	1-2	1	1	100	0	0

(Continued to the next page)
Table 2. Continued

Organism (N of isolates) and antimicrobial agents	Breakpoint (µg/mL)	MIC (µg/mL)	Susceptibility (%)							
	S	I	R	Range	50%	90%				
	S	I	R							
S. epidermidis (8)										
Tedizolid	NA	NA	NA	≤ 0.06	NA	NA	NA	NA	NA	NA
Linezolid	≤ 4	-	≥ 8	0.25	NA	NA	NA	NA	NA	NA
Erythromycin	≤ 0.5	1-4	≥ 8	≤ 0.06-128	NA	NA	NA	NA	NA	NA
Clindamycin	≤ 0.5	1-2	≥ 4	≤ 0.06->128	NA	NA	NA	NA	NA	NA
Cotrimoxazole	≤ 2	-	≥ 4	≤ 0.06-4	NA	NA	NA	NA	NA	NA
Gentamicin	≤ 4	8	≥ 16	≤ 0.06-128	NA	NA	NA	NA	NA	NA
Levofloxacin	≤ 1	2	≥ 4	4-128	NA	NA	NA	NA	NA	NA
Tetracycline	≤ 4	8	≥ 16	0.125-32	NA	NA	NA	NA	NA	NA
Oxacillin	≤ 0.25	-	≥ 0.5	0.5-32	NA	NA	NA	NA	NA	NA
Vancomycin	≤ 4	8-16	≥ 32	1-2	NA	NA	NA	NA	NA	NA
Streptococcus pneumoniae (47)										
Tedizolid	NA	NA	NA	0.25-0.5	0.25	0.5	NA	NA	NA	NA
Linezolid	≤ 2	-	-	1-2	1	2	100	NA	NA	NA
Penicillin G	≤ 2	4	≥ 8	0.015-8	2	8	49	28	23	
Cefotaxime	≤ 1	2	≥ 4	0.015-32	1	32	55	26	19	
Clindamycin	≤ 0.25	0.5	≥ 1	0.125->128	> 128	> 128	15	0	85	
Erythromycin	≤ 0.25	0.5	≥ 1	0.25->128	> 128	> 128	6	0	94	
Cotrimoxazole	≤ 0.5	1-2	≥ 4	1-32	8	32	23	15	62	
Levofloxacin	≤ 2	4	≥ 8	2-128	2	32	72	2	26	
Tetracycline	≤ 1	2	≥ 4	0.25-128	32	64	13	0	87	

*FDA breakpoints were used for tedizolid.

Abbreviations: MIC, minimum inhibitory concentration; S, susceptible; I, intermediate; R, resistant; NA, not available/applicable; Pip/tazobactam, piperacillin/tazobactam.

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

Acknowledgments

This study was supported by the 2014 Dong-A ST research grant.

REFERENCES

1. Rajan S. Skin and soft-tissue infections: classifying and treating a spectrum. Cleve Clin J Med 2012;79:57-66.
2. Rubinstein E, Kollef MH, Nathwani D. Pneumonia caused by methicillin-resistant *Staphylococcus aureus*. Clin Infect Dis 2008;46(S5): S378-85.
3. Mendes RE, Flamm RK, Hogan PA, Ross JE, Jones RN. Summary of linezolid activity and resistance mechanisms detected during the 2012 LEADER surveillance program for the United States. Antimicrob Agents Chemother 2014;58:1243-7.
4. Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant *Staphylococcus*. J Antimicrob Chemother 2013:68:4-11.
5. Moravej Z, Estaji F, Askari E, Solhjou K, Naderi Nasab M, Saadat S. Update on the global number of vancomycin-resistant *Staphylococcus aureus* (VRSA) strains. Int J Antimicrob Agents 2013;42:370-1.
6. Rodriguez-Avil I, Culebras E, Betriu C, Morales G, Pena I, Picazo JJ. In vitro activity of tedizolid (TR-700) against linezolid-resistant staphylococci. J Antimicrob Chemother 2012;67:167-9.
7. Shaw KJ, Poppe S, Schaadt R, Brown-Driver V, Finn J, Pillar CM, et al. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob Agents Chemother 2008:52:4442-7.
8. Moellering RC Jr. Tedizolid: a novel oxazolidinone for Gram-positive infections. Clin Infect Dis 2014;58(S1):S1-3.
9. Kigsen JJ, Mansour H, Unger NR, Childs LM. Tedizolid: a new oxazolidinone antimicrobial. Am J Health Syst Pharm 2014;71:621-33.
10. Yum JH, Choi SH, Yong D, Chong Y, Im WB, Rhee DK, et al. Comparative in vitro activities of torezolid (DA-7157) against clinical isolates of...
aerobic and anaerobic bacteria in South Korea. Antimicrob Agents Chemother 2010;54:5381-6.
11. US Food and Drug Administration. Guidance for industry: acute bacterial skin and skin structure infections: developing drugs for treatment. US Food and Drug Administration, 2010.
12. Goldstein EJ, Solomkin JS, Citron DM, Alder JD. Clinical efficacy and correlation of clinical outcomes with in vitro susceptibility for anaerobic bacteria in patients with complicated intra-abdominal infections treated with moxifloxacin. Clin Infect Dis 2011;53:1074-80.
13. Brook I, Wexler HM, Goldstein EJ. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev 2013;26:526-46.
14. Sivextro (tedizolid) Prescribing information. Lexington, MA: Cubist Pharmaceuticals, 2014.
15. Thomson KS and Goering RV. Activity of tedizolid (TR-700) against well-characterized methicillin-resistant Staphylococcus aureus strains of diverse epidemiological origins. Antimicrob Agents Chemother 2013;57:2892-5.