No smooth Julia sets for polynomial
diffeomorphisms of \mathbb{C}^2 with positive entropy

Eric Bedford and Kyounghee Kim

§0. Introduction. There are several reasons why the polynomial diffeomorphisms of \mathbb{C}^2 form an interesting family of dynamical systems. One of these is the fact that there are connections with two other areas of dynamics: polynomial maps of \mathbb{C} and diffeomorphisms of \mathbb{R}^2, which have each received a great deal of attention. The question arises whether, among the polynomial diffeomorphisms of \mathbb{C}^2, are there maps with the special status of having smooth Julia sets? Here we show that is not the case.

More generally, we consider a holomorphic mapping $f : X \to X$ of a complex manifold X. The Fatou set of f is defined as the set of points $x \in X$ where the iterates $f^n := f \circ \cdots \circ f$ are locally equicontinuous. If X is not compact, then in the definition of equicontinuity, we consider the one point compactification of X; in this case, a sequence which diverges uniformly to infinity is equicontinuous. By the nature of equicontinuity, the dynamics of f is regular on the Fatou set. The Julia set is defined as the complement of the Fatou set, and this is where any chaotic dynamics of f will take place. The first nontrivial case is where $X = \mathbb{P}^1$ is the Riemann sphere, and in this case Fatou (see [M1]) showed that if the Julia set J is a smooth curve, then either J is the unit circle, or J is a real interval. If J is the circle, then f is equivalent to $z \mapsto z^d$, where d is an integer with $|d| \geq 2$; if J is the interval, then f is equivalent to a Chebyshev polynomial. These maps with smooth J play special roles, and this sparked our interest to look for smooth Julia sets in other cases.

Here we address the case where $X = \mathbb{C}^2$, and f is a polynomial automorphism, which means that f is biholomorphic, and the coordinates are polynomials. Since f is invertible, there are two Julia sets: J^+ for iterates in forward time, and J^- for iterates in backward time. Polynomial automorphisms have been classified by Friedland and Milnor [FM]; every such automorphism is conjugate to a map which is either affine or elementary, or it belongs to the family H. The affine and elementary maps have simple dynamics, and J^\pm are (possibly empty) algebraic sets (see [FM]).

Thus we will restrict our attention to the maps in H, which are finite compositions $f := f_k \circ \cdots \circ f_1$, where each f_j is a generalized Hénon map, which by definition has the form $f_j(x, y) = (y, p_j(y) - \delta_j x)$, where $\delta_j \in \mathbb{C}$ is nonzero, and $p_j(y)$ is a monic polynomial of degree $d_j \geq 2$. The degree of f is $d := d_1 \cdots d_k$, and the complex Jacobian of f is $\delta := \delta_1 \cdots \delta_k$. In [FM] and [Sm] it is shown that the topological entropy of f is $\log d > 0$. The dynamics of such maps is complicated and has received much study, starting with the papers [H], [HO1], [BS1] and [FS].

For maps in H, we can ask whether J^+ can be a manifold. For any saddle point q, the stable manifold $W^s(q)$ is a Riemann surface contained in J^+. Thus J^+ would have to have real dimension at least two. However, J^+ is also the support of a positive, closed current μ^+ with continuous potential, and such potentials cannot be supported on a Riemann surface (see [BS1, FS]). On the other hand, since $J^+ = \partial K^+$ is a boundary, it cannot have interior. Thus dimension 3 is the only possibility for J^+ to be a manifold. In fact, there are examples of f for which J^+ has been shown to be a topological 3-manifold (see [FS], [HO2], [Bo], [RT]).
The purpose of this paper is to prove the following:

Theorem. For any polynomial automorphism of \mathbb{C}^2 of positive entropy, neither J^+ nor J^- is smooth of class C^1, in the sense of manifold-with-boundary.

We may interchange the roles of J^+ and J^- by replacing f by f^{-1}, so there is no loss of generality if we consider only J^+.

In an Appendix, we discuss the non-smoothness of the related sets J, J^*, and K.

Acknowledgment. We wish to thank Yutaka Ishii and Paolo Aluffi for helpful conversations on this material.

§1. **No boundary.** Let us start by showing that if J^+ is a C^1 manifold-with-boundary, then the boundary is empty. Recall that if J^+ is C^1, then for each $q_0 \in J^+$ there is a neighborhood $U \ni q_0$ and $r, \rho \in C^1(U)$ with $d r \wedge d \rho \neq 0$ on U, such that $U \cap J^+ = \{ r = 0, \rho \leq 0 \}$. If J^+ has boundary, it is given locally by $\{ r = \rho = 0 \}$. For $q \in J^+$, the tangent space $T_q J^+$ consists of the vectors that annihilate $d r$. This contains the subspace $H_q \subseteq T_q J^+$, consisting of the vectors that annihilate $d r$. H_q is the unique complex subspace inside $T_q J^+$, so if $M \subset J^+$ is a complex submanifold, then $T_q M = H_q$.

We start by showing that if J^+ is C^1, then it carries a Riemann surface lamination.

Lemma 1.1. If J^+ is C^1 smooth, then J^+ carries a Riemann surface foliation \mathcal{R} with the property that if $W^s(q)$ is the stable manifold of a saddle point q, then $W^s(q)$ is a leaf of \mathcal{R}. If J^+ is a C^1 smooth manifold-with-boundary, then \mathcal{R} extends to a Riemann surface lamination of J^+. In particular, any boundary component is a leaf of \mathcal{R}.

Proof. Given $q_0 \in J^+$, let us choose holomorphic coordinates (z, w) such that $d r(q_0) = d w$. We work in a small neighborhood which is a bidisk $\Delta_\eta \times \Delta_\eta$. We may choose η small enough that $|r_z/r_w| < 1$. In the (z, w)-coordinates, the tangent space H_q has slope less than 1 at every point $\{ |z|, |w| < \eta \}$. Now let \hat{q} be a saddle point, and let $W^s(\hat{q})$ be the stable manifold, which is a complex submanifold of \mathbb{C}^2, contained in J^+. Let M denote a connected component of $W^s(\hat{q}) \cap (\Delta_\eta \times \Delta_\eta/2)$. Since the slope is < 1, it follows that there is an analytic function $\varphi : \Delta_\eta \rightarrow \Delta_\eta$ such that $M \subset \Gamma_\varphi := \{(z, \varphi(z)) : z \in \Delta_\eta \}$. Let Φ denote the set of all such functions φ. Since a stable manifold can have no self-intersections, it follows that if $\varphi_1, \varphi_2 \in \Phi$, then either $\Gamma_{\varphi_1} = \Gamma_{\varphi_2}$ or $\Gamma_{\varphi_1} \cap \Gamma_{\varphi_2} = \emptyset$. Now let $\hat{\Phi}$ denote the set of all normal limits (uniform on compact subsets of Δ_η) of elements of Φ. We note that by Hurwitz’s Theorem, the graphs $\Gamma_{\varphi}, \varphi \in \hat{\Phi}$ have the same pairwise disjointness property. Finally, by [BS2], $W^s(q_0)$ is dense in J^+, so the graphs $\Gamma_{\varphi}, \varphi \in \hat{\Phi}$ give the local Riemann surface lamination.

If q_1 is another saddle point, we may follow the same procedure and obtain a Riemann surface lamination whose graphs are given locally by $\varphi \in \hat{\Phi}_1$. However, we have seen that the tangent space to the foliation at a point q is given by H_q. Since these two foliations have the same tangent spaces everywhere, they must coincide.

We have seen that all the graphs are contained in J^+, so if J^+ has boundary, then the boundary must coincide locally with one of the graphs. \hfill \Box

We will use the observation that $K^+ \subset \{(x, y) \in \mathbb{C}^2 : |y| > \max(|x|, R)\}$. Further, we will use the Green function G^- which has many properties, including:
(i) G^- is pluri-harmonic on $\{G^- > 0\}$,
(ii) $\{G^- = 0\} = K^-$,
(iii) $G^- \circ f = d^{-1}G^-$.

Further, the restriction of G^- to $\{|y| \leq \max(|x|, R)\}$ is a proper exhaustion.

Lemma 1.2. Suppose that J^+ is a C^1 smooth manifold-with-boundary, and M is a component of the boundary of J^+. Then M is a closed Riemann surface, and $M \cap K \neq \emptyset$.

Proof. We consider the restriction $g := G^-|_M$. If $M \cap K = \emptyset$, then g is harmonic on M. On the other hand, g is a proper exhaustion of M, which means that $g(z) \to \infty$ as $z \in M$ leaves every compact subset of M. This means that g must assume a minimum value at some point of M, which would violate the minimum principle for harmonic functions. \qed

Lemma 1.3. Suppose that J^+ is a C^1 smooth manifold-with-boundary, then the boundary is empty.

Proof. Let M be a component of the boundary of J^+. By Lemma 1.2, M must intersect Δ_{2}^\pm. Since J^+ is C^1, there can only finitely many boundary components of $J^+ \cap \Delta_{2}^\pm$. Thus there can be only finitely many components M, which must be permuted by f. If we take a sufficiently high iterate f^N, we may assume that M is invariant. Now let $h := f^N|_M$ denote the restriction to M. We see that h is an automorphism of the Riemann surface M, and the iterates of all points of M approach $K \cap M$ in forward time. It follows that M must have a fixed point $q \in M$, and $|h'(q)| < 1$. The other multiplier of Df at q is $\delta/h'(q)$.

We consider three cases. First, if $|\delta/h'(q)| > 1$, then q is a saddle point, and $M = W^s(q)$. On the other hand, by [BS2], the stable manifold of a saddle points is dense in J^+, which makes it impossible for M to be the boundary of J^+. This contradiction means that there can be no boundary component M.

The second case is $|\delta/h'(q)| < 1$. This case cannot occur because the multipliers are less than 1, so q is a sink, which means that q is contained in the interior of K^+ and not in J^+.

The last case is where $|\delta/h'(q)| = 1$. In this case, we know that f preserves J^+, so Df must preserve $T_q(J^+)$. This means that the outward normal to M inside J^+ is preserved, and thus the second multiplier must be $+1$. It follows that q is a semi-parabolic/semi-attracting fixed point. It follows that J^+ must have a cusp at q and cannot be C^1 (see Ueda [U] and Hakim [Ha]). \qed

§2. Maps that do not decrease volume. We note the following topological result (see Samelson [S] for an elegant proof): If M is a smooth 3-manifold (without boundary) of class C^1 in \mathbb{R}^4, then it is orientable. This gives:

Proposition 2.1. For any $q \in M$, there is a neighborhood U about q so that $U - M$ consists of two components \mathcal{O}_1 and \mathcal{O}_2, which belong to different components of $\mathbb{R}^4 - M$.

Proof. Suppose that \mathcal{O}_1 and \mathcal{O}_2 belong to the same component of $\mathbb{R}^4 - M$. Then we can construct a simple closed curve $\gamma \subset \mathbb{R}^4$ which crosses M transversally at q and has no other intersection with M. It follows that the (oriented) intersection is $\gamma \cdot M = 1$ (modulo 2). But the oriented intersection modulo 2 is a homotopy invariant (see [M2]), and γ is contractible in \mathbb{R}^4, so we must have $\gamma \cdot M = 0$ (modulo 2). \qed
Corollary 2.2. If J^+ is C^1 smooth, then f is an orientation preserving map of J^+.

Proof. $U^+ := C^2 - K^+$ is a connected (see [HO1]) and thus it is a component of $C^2 - J^+$. Since f preserves U^+, it also preserves the orientation of J^+, which is $\pm \partial U^+$.

We recall the following result of Friedland and Milnor:

Theorem [FM]. If $|\delta| > 1$, then K^+ has zero Lebesgue volume, and thus $J^+ = K^+$. If $|\delta| = 1$, then $\text{int}(K^+) = \text{int}(K^-) = \text{int}(K)$. In particular, there exists R such that $J^+ = K^+$ outside Δ^2_R.

Proof of Theorem in the case $|\delta| \geq 1$. Let $q \in J^+$ be a point outside Δ^2_R, as in the Theorem above. Then near q there must be a component \mathcal{O}, which is distinct from $U^+ = C^2 - K^+$. Thus \mathcal{O} must belong to the interior of K^+. But by the Theorem above, the interior of K^+ is not near q.

§3. Volume decreasing maps. Throughout this section, we continue to suppose that J^+ is C^1 smooth, and in addition we suppose that $|\delta| < 1$. For a point $q \in J^+$, we let $T_q := T_q(J^+)$ denote the real tangent space to J^+. We let $H_q := T_q \cap iT_q$ denote the unique (one-dimensional) complex subspace inside T_q. Since J^+ is invariant under f, so is H_q, and we let α_q denote the multiplier of $D_qf|_{H_q}$.

Lemma 3.1. Let $q \in J^+$ be a fixed point. There is a D_qf-invariant subspace $E_q \subset T_q(C^2)$ such that H_q and E_q generate T_q. We denote the multiplier of $D_qf|_{E_q}$ by β_q. Thus D_qf is linearly conjugate to the diagonal matrix with diagonal elements α_q and β_q. Further, $\beta_q \in \mathbb{R}$, and $\beta_q > 0$.

Proof. We have identified an eigenvalue α_q of D_qf. If D_qf is not diagonalizable, then it must have a Jordan canonical form \(\begin{pmatrix} \alpha_q & 1 \\ 0 & \alpha_q \end{pmatrix}\). The determinant is $\alpha_q^2 = \delta$, which has modulus less than 1. Thus $|\alpha_q| < 1$, which means that q is an attracting fixed point and thus in the interior of K^+, not in J^+. Thus D_qf must be diagonalizable, which means that H_q has a complementary invariant subspace E_q. Since E_q and T_q are invariant under D_qf, the real subspace $E_q \cap T_q \subset E_q$ is invariant, too. Thus $\beta_q \in \mathbb{R}$. By Corollary 2.2, D_qf will preserve the orientation of T_q, and so $\beta_q > 0$.

Let us recall the Riemann surface foliation of J^+ which was obtained in Lemma 1.1. For $q \in J^+$, we let R_q denote the leaf of \mathcal{R} containing q. If q is a fixed point, then f defines an automorphism $g := f|_{R_q}$ of the Riemann surface R_q. Since $R_q \subset K^+$, we know that the iterates of g^n are bounded in a complex disk $q \in \Delta_q \subset R_q$. Thus the derivatives $(Dg)^n = D(g^n)$ are bounded at q. We conclude that $|\alpha_q| = |D_qg(q)| \leq 1$. If $|\alpha_q| = 1$, then α_q is not a root of unity. Otherwise g is an automorphism of R_q fixing q, and $Dg^n(q) = 1$ for some n. It follows that g^n must be the identity on R_q. This means that R_q would be a curve of fixed points for f^n, but by [FM] all periodic points of f are isolated, so this cannot happen.

Lemma 3.3. If $q \in J^+$ is a fixed point, then q is a saddle point, and $\alpha_q = \delta/d$, and $\beta_q = d$.
Proof. First we claim that $|\alpha_p| < 1$. Otherwise, we have $|\alpha_q| = 1$, and by the discussion above, this means that α_q is not a root of unity. Thus the restriction $g = f|_{R_q}$ is an irrational rotation. Let $\Delta \subset R_q$ denote a g-invariant disk containing q. Since $|\delta| = |\alpha_q \beta_q| = |\beta_q|$ has modulus less than 1, we conclude that f is normally attracting to Δ, and thus q must be in the interior of K^+, which contradicts the assumption that $q \in J^+$. Now we have $|\alpha_q| < 1$, so if $|\beta_q| = 1$, we have $\beta_q = 1$, since β_q is real and positive. This means that q is a semi-parabolic, semi-attracting fixed point for f. We conclude by Ueda [U] and Hakim [Ha] that J^+ has a cusp at q and thus is not smooth. Thus we conclude that $|\beta_q| > 1$, which means that q is a saddle point.

Now since E_q is transverse to H_q, it follows that $W^u(q)$ intersects J^+ transversally, and thus $J^+ \cap W^u(q)$ is C^1 smooth. Let us consider the uniformization

$$\phi : \mathbb{C} \to W^u(q) \subset \mathbb{C}^2, \quad \phi(0) = q, \quad f \circ \phi(\zeta) = \phi(\lambda^u \zeta)$$

The pre-image $\tau := \phi^{-1}(W^u(q) \cap J^+) \subset \mathbb{C}$ is a C^1 curve passing through the origin and invariant under $\zeta \mapsto \lambda^u \zeta$. It follows that $\lambda^u \in \mathbb{R}$, and τ is a straight line containing the origin. Further, $g^+ := G^+ \circ \phi$ is harmonic on $\mathbb{C} - \tau$, vanishing on τ, and satisfying $g^+(\lambda^u \zeta) = d \cdot g^+(\zeta)$. Since τ is a line, it follows that g^+ is piecewise linear, so we must have $\lambda^u = \pm d$. Finally, since f preserves orientation, we have $\lambda^u = d$.

Lemma 3.4. There can be at most one fixed point in the interior of K^+. There are at least $d - 1$ fixed points are contained in J^+, and at each of these fixed points, the differential Df has multiplier of d.

Proof. Suppose that q is a fixed point in the interior of K^+. Then q is contained in a recurrent Fatou domain Ω, and by [BS2], $\partial \Omega = J^+$. If there is more than one fixed point in the interior of K^+, we would have J^+ simultaneously being the boundary of more than one domain, in addition to being the boundary of $U^+ = \mathbb{C}^2 - K^+$. This is not possible if J^+ is a topological submanifold of \mathbb{C}^2.

By [FM] there are exactly d fixed points, counted with multiplicity. By Lemma 3.3, the fixed points in J^+ are of saddle type, so they have multiplicity 1. Thus there are at least $d - 1$ of them.

§4. **Fixed points with given multipliers.** If $q = (x, y)$ is a fixed point for $f = f_n \circ \cdots \circ f_1$, then we may represent it as a finite sequence (x_j, y_j) with $j \in \mathbb{Z}/n\mathbb{Z}$, subject to the conditions $(x, y) = (x_1, y_1) = (x_{n+1}, y_{n+1})$ and $f_j(x_j, y_j) = (x_{j+1}, y_{j+1})$. Given the form of f_j, we have $x_{j+1} = y_j$, so we may drop the x_j’s from our notation and write $q = (y_n, y_1)$. We identify this point with the sequence $\hat{q} = (y_1, \ldots, y_n) \in \mathbb{C}^n$, and we define the polynomials

$$\varphi_1 := p_1(y_1) - \delta_1 y_n - y_2$$
$$\varphi_2 := p_2(y_2) - \delta_2 y_1 - y_3$$
$$\ldots \ldots$$
$$\varphi_n := p_n(y_n) - \delta_n y_{n-1} - y_1$$

The condition to be a fixed point is that $\hat{q} = (y_1, \ldots, y_n)$ belongs to the zero locus $Z(\varphi_1, \ldots, \varphi_n)$ of the φ_i’s. We define $q_i(y_i) := p_i(y_i) - y_i^{d_i}$ and $Q_i := q_i(y_i) - y_{i+1} - \delta_i y_{i-1}$,
The formula for the determinant gives

\[\Phi = y_i^{d_i} + q_i(y_i) - y_{i+1} - \delta_i y_{i-1} = y_i^{d_i} + Q_i \]

(\star)

Since \(p_j \) is monic, the degrees of \(q_i \) and \(Q_i \) are \(\leq d_i - 1 \).

By the Chain Rule, the differential of \(f \) at \(q = (y_n, y_1) \) is given by

\[Df(q) = \begin{pmatrix} 0 & 1 \\ -\delta_n & p_n'(y_n) \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ -\delta_1 & p_1'(y_1) \end{pmatrix} \]

We will denote this by \(M_n = M_n(y_1, \ldots, y_n) := \begin{pmatrix} m^{(n)}_{11} & m^{(n)}_{12} \\ m^{(n)}_{21} & m^{(n)}_{22} \end{pmatrix} \).

We consider special monomials in \(p_j' = p_j'(y_j) \) which have the form \((p')^L := p_{\ell_1}' \cdots p_{\ell_s}' \), with \(L = \{\ell_1, \ldots, \ell_s\} \subset \{1, \ldots, n\} \). Note that the factors \(p_{\ell_i}' \) in \((p')^L \) are distinct. Let us use the notation \(|L| \) for the number of elements in \(L \), and \(H_{m} \) for the linear span of \(\{(p')^L : |L| = m - 2k, 0 \leq k \leq n/2\} \). With this notation, \(m \) indicates the maximum number of factors of \(p_j' \) in any monomial, and in every case the number of factors differs from \(m \) by an even number.

Lemma 4.1. The entries of \(M_n \):

1. \(m^{(n)}_{11} \) and \(m^{(n)}_{22} - p_1'(y_1) \cdots p_n'(y_n) \) both belong to \(H_{n-2} \).
2. \(m^{(n)}_{12}, m^{(n)}_{21} \in H_{n-1} \).

Proof. We proceed by induction. The case \(n = 1 \) is clear. If \(n = 2 \),

\[M_2 = \begin{pmatrix} 0 & 1 \\ -\delta_2 & p_2' \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -\delta_1 & p_1' \end{pmatrix} = \begin{pmatrix} -\delta_1 & p_1' \\ -\delta_1 p_2' & p_1' p_2' - \delta_2 \end{pmatrix} \]

which satisfies (1) and (2). For \(n > 2 \), we have

\[M_n = \begin{pmatrix} 0 & 1 \\ -\delta_n & p_n' \end{pmatrix} M_{n-1} = \begin{pmatrix} m^{(n-1)}_{22} & m^{(n-1)}_{21} \\ -\delta_n m^{(n-1)}_{11} & m^{(n-1)}_{12} \end{pmatrix} \begin{pmatrix} m^{(n-1)}_{21} & m^{(n-1)}_{22} \\ -\delta_n m^{(n-1)}_{11} + m^{(n-1)}_{21} p_n' & -\delta_n m^{(n-1)}_{12} + p_n' m^{(n-1)}_{22} \end{pmatrix} \]

which gives (1) and (2) for all \(n \). \(\square \)

The condition for \(Df \) to have a multiplier \(\lambda \) at \(q \) is \(\Phi(\tilde{q}) = 0 \), where

\[\Phi = \det \left(M_n - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) \]

Lemma 4.2. \(\Phi - p_1'(y_1) \cdots p_n'(y_n) \in H_{n-2} \).

Proof. The formula for the determinant gives

\[\Phi = \lambda^2 - \lambda \text{Tr}(M_n) + \det(M_n) = \lambda^2 - \lambda (m^{(n)}_{11} + m^{(n)}_{22}) + \delta \]

since \(\delta \) is the Jacobian determinant of \(Df \). The Lemma now follows from Lemma 4.1. \(\square \)
The degree of the monomial \(y^a := y_1^{a_1} \cdots y_n^{a_n} \) is \(\deg(y^a) = a_1 + \cdots + a_n \). We will use the graded lexicographical order on the monomials in \(\{y_1, \ldots, y_n\} \). That is, \(y^a > y^b \) if either \(\deg(y^a) > \deg(y^b) \), or if \(\deg(y^a) = \deg(y^b) \) and \(a_i > b_i \), where \(i = \min\{1 \leq j \leq n : a_j \neq b_j\} \). If \(f \in \mathbb{C}[y_1, \ldots, y_n] \), we denote \(\text{LT}(f) \) for the leading term of \(f \), \(\text{LC}(f) \) for the leading coefficient, and \(\text{LM}(f) \) for the leading monomial.

Lemma 4.3. With the graded lexicographical order, \(G := \{\varphi_1, \ldots, \varphi_n\} \) is a Gröbner basis.

Proof. We will use Buchberger’s Algorithm (see [CLO, Chapter 2]). For each \(i = 1, \ldots, n \), \(\text{LT}(\varphi_i) = \text{LM}(\varphi_i) = y_i^{d_i} \), so for \(i \neq j \), the least common multiple of the leading terms is \(\text{L.C.M.} = y_i^{d_i} y_j^{d_j} \). The \(S \)-polynomial is

\[
S(\varphi_i, \varphi_j) := \frac{\text{L.C.M.}}{\text{LM}(\varphi_j)} \varphi_i - \frac{\text{L.C.M.}}{\text{LM}(\varphi_i)} \varphi_j = y_j^{d_j} Q_i - y_i^{d_i} Q_j = \varphi_j Q_i - Q_j \varphi_i
\]

where we use the \(Q_j \) from (4.1) and cancel terms. Now let \(\mu_i := \deg(Q_i) \). Since \(\mu_i < d_i \) for all \(i \), the monomials \(\text{LM}(\varphi_j Q_i) = y_j^{d_j} y_i^{d_i} \) and \(\text{LM}(\varphi_i Q_j) = y_i^{d_i} y_j^{d_j} \) are not equal in our monomial ordering. Thus \(\text{LM}(S(\varphi_i, \varphi_j)) \geq \max(\text{LM}(\varphi_j Q_i), \text{LM}(\varphi_i Q_j)) \). It follows from Buchberger’s Algorithm that \(\{\varphi_1, \ldots, \varphi_n\} \) is a Gröbner basis.

We will use the Multivariable Division Algorithm, by which any polynomial \(g \in \mathbb{C}[y_1, \ldots, y_n] \) may be written \(g = A_1 \varphi_1 + \cdots + A_n \varphi_n + R \) where \(\text{LM}(g) \geq \text{LM}(A_j \varphi_j) \) for all \(1 \leq j \leq n \), and \(R \) contains no terms divisible by any \(\text{LM}(\varphi_j) \). An important property of a Gröbner basis, is that \(g \) belongs to the ideal \(\langle \varphi_1, \ldots, \varphi_n \rangle \) if and only if \(R = 0 \) (see, for instance, [CLO] or [BW]).

If all fixed points have the same value of \(\lambda \) as multiplier, then it follows that \(\Phi \) must vanish on the whole zero set \(Z(\varphi_1, \ldots, \varphi_n) \). Since we have a Gröbner basis, we easily determine the following:

Corollary 4.4. \(\Phi \notin \langle \varphi_1, \ldots, \varphi_n \rangle \).

Proof. The leading monomial of \(\Phi \) is \(y_1^{d_1-1} \cdots y_n^{d_n-1} \), but this is not divisible by any of the leading monomials \(\text{LM}(\varphi_j) = y_j^{d_j} \). Since \(\{\varphi_1, \ldots, \varphi_n\} \) is a Gröbner basis, it follows that \(\Phi \) does not belong to the ideal \(\langle \varphi_1, \ldots, \varphi_n \rangle \).

§5. **Proof of the Theorem.** In this section we prove the Theorem, which will follow from Lemma 3.4, in combination with:

Proposition 5.1. Suppose \(F = f_n \circ \cdots \circ f_1, \ n \geq 3, \) is a composition of generalized Hénon maps with \(|\delta| < 1 \). Suppose that \(F \) has \(d = d_1 \cdots d_n \) distinct fixed points. It is not possible that \(d - 1 \) of these points have the same multipliers.

Proof that Proposition 5.1 implies the Theorem. To prove the Theorem, it remains to deal with the case \(|\delta| < 1 \). If \(f = f_1 \) is a single generalized Hénon map, we consider \(F = f_1 \circ f_1 \circ f_1 \) with \(n = 3 \) and the same Julia set. Lemma 3.4 asserts that if \(J^+ \) is \(C^1 \), there are \(d - 1 \) saddle points with unstable multiplier \(\lambda = d \). So by Proposition 4.1 we conclude that \(J^+ \) cannot be \(C^1 \) smooth.
We give the proof of Proposition 5.1 at the end of this Section. For \(J \subset \{1, \ldots, n\} \), we write
\[
\Lambda_J := \{(p')^L : L \subset J, |L| = |J| - 2k, \text{ for some } 1 \leq k \leq |J|/2\},
\]
We let \(H_J \) denote the linear span of \(\Lambda_J \). To compare with our earlier notation, we note that \(H_J \subset H_{|J|-2} \) and that \((p')^j \notin H_J \). The elements of \(H_J \) depend only on the variables \(y_j \) for \(j \in J \). Now we formulate a result for dividing certain terms by \(\varphi_j \):

Lemma 5.2. Suppose that \(J \subset \{1, \ldots, n\} \) and \(h \in H_J \). Then for each \(j \in J \) and \(\alpha \in \mathbb{C} \), we have
\[
(y_j - \alpha) \left((p')^j + h\right) = A(y)\varphi_j + B(y) \left((p')^{j-\{j\}} + \rho_1\right) + (y_j - \alpha) \cdot \rho_2, \tag{†}
\]
where \(\rho_1, \rho_2 \in H_{J - \{j\}} \), and \(B = \eta_j(y_j) + d_j y_{j+1} + d_j \delta_j y_{j-1} \) with
\[
\eta_j(y_j) = y_j q_j'(y_j) - \alpha p_j'(y_j) - d_j q_j(y_j). \tag{‡}
\]

The leading monomials satisfy:
\[
LM \left(\left((y_j - \alpha) \left((p')^j + h\right)\right)\right) = LM(A(y)\varphi_j)
\]

Proof. Let us start with the case \(J = \{1, \ldots, m\}, m \leq n, \) and \(j = 1 \), so \(J - \{j\} = J_1 = \{2, \ldots, n\} \). We divide by \(p'_1 \) and remove any factor of \(p'_1 \) in \(h \). This gives
\[
(p')^j + h = p'_1(y_1)\mu_1 + \rho_2
\]
where \(\mu_1 = (p')^{j_1} + \rho_1 \), and \(\rho_1, \rho_2 \in H_{\{2, \ldots, m\}} \), and \(\mu_1, \rho_1, \rho_2 \) are independent of the variable \(y_1 \). Thus
\[
(y_1 - \alpha) \left((p')^j + h\right) = (y_1 - \alpha)(d_1 y_1^{d_1-1} + q'_1(y_1))\mu_1 + (y_1 - \alpha)\rho_2
\]
\[
= d_1 y_1^{d_1-1} \mu_1 + (y_1 q'_1(y_1) - \alpha p'_1(y_1))\mu_1 + (y_1 - \alpha)\rho_2
\]
\[
= (d_1 \mu_1)\varphi_1 + (\eta_1(y_1) + d_1 y_2 + d_1 \delta_1 y_1)\mu_1 + (y_1 - \alpha)\rho_2
\]
where in the last line we substitute \(\eta_1 \) defined by (‡). Using (§), we see that this gives (†).

It remains to look at the leading terms of \(T_1 := (y_1 - \alpha) \left((p')^j + h\right) \) and \(T_2 := d_1 \mu_1 \varphi_1 \). We see that \(T_1 \) and \(T_2 \) both contain nonzero multiples of \(y_j \prod_{i=1}^m y_i^{d_i-1} \), and all other monomials in \(T_1 \) and \(T_2 \) have lower degree. Thus we have \(LM(T_1) = LM(T_2) \) for the graded ordering, independent of any ordering on the variables \(y_1, \ldots, y_n \). The choices of \(J = \{1, \ldots, m\} \) and \(j = 1 \) just correspond to a permutation of variables, and this does not affect the conclusion that \(LM(T_1) = LM(T_2) \).

Lemma 5.3. For any \(\alpha \in \mathbb{C} \), \((y_1 - \alpha)\Phi \notin \langle \varphi_1, \ldots, \varphi_n \rangle \).

Proof. By [FM], we may assume that \(p_j(y_j) = y_j^{d_j} + q_j(y_j) \), and \(\deg(q_j) \leq d_j - 2 \). We consider two cases. The first case is that there is at least one \(j \) such that \(\eta_j \) is not the zero polynomial. If we conjugate by \(f_{j-1} \circ \cdots \circ f_1 \), we may “rotate” the maps in \(f \) so that the
factor f_j becomes the first factor. If there exists a j for which $\eta_j(y_j)$ is non constant, we choose this for f_1. Otherwise, if all the η_j are constant, we choose f_1 to be any factor such that $\eta_1 \neq 0$.

We will apply the Multivariate Division Algorithm on $(y_1 - \alpha)\Phi$ with respect to the set $\{\varphi_1, \ldots, \varphi_n\}$. We will find that there is a nonzero remainder, and since $\{\varphi_1, \ldots, \varphi_n\}$ is a Gröbner basis, it will follow that $(y_1 - \alpha)\Phi$ does not belong to the ideal $\langle \varphi_1, \ldots, \varphi_n \rangle$.

We start with Lemma 4.2, according to which $\Phi = p_1 y_1 \cdots y_n + h$, where $h \in H_{n - 2} = H_{\{1, \ldots, n\}}$. The leading monomial of $(y_1 - \alpha)\Phi$ is $y_1^{d_1} \prod_{i=2}^{n} y_i^{d_i - 1}$, and φ_1 is the only element of the basis whose leading monomial divides this. Thus we apply Lemma 5.2, with $J = \{1, \ldots, n\}$, $j = 1$, and $J_1 := J \setminus \{j\} = \{2, \ldots, n\}$. This gives

$$(y_1 - \alpha)\Phi = A_1 \varphi_1 + (\eta_1(y_1) + d_1 y_2 + d_1 \delta_1 y_n) \left(\prod_{i=2}^{n} p_i'(y_i) + \rho_1 \right) + (y_1 - \alpha)\rho_2$$

$$= A_1 \varphi_1 + [d_1 y_2 ((p')^{J_1} + \rho_1)] + [d_1 \delta_1 y_n ((p')^{J_1} + \rho_1)] + [\eta_1 ((p')^{J_1} + \rho_1)] + \ell.o.t$$

$$= A_1 \varphi_1 + T_2 + T_n + R_1 + \ell.o.t$$

where $\rho_1, \rho_2 \in H_{\{2, \ldots, n\}}$. In particular, T_2 and T_n depend on y_2, \ldots, y_n but not on y_1. We note that T_2 (respectively, T_n) contains a term divisible by $LM(\varphi_2)$ (respectively, $LM(\varphi_n)$). We view R_1 as a remainder term, and note that $LM(R_1)$ is divisible by $y_2^{d_2} \cdots y_n^{d_n - 1}$, as well as the largest power of y_1 in $\eta_1(y_1)$. By “$\ell.o.t.$” we mean that none of its monomials is divisible by $LM(R_1)$ or by any of the $LM(\varphi_i)$.

Now we apply Lemma 5.2 to T_2, this time with $J = \{2, \ldots, n\}$ and $j = 2$, with $J \setminus \{2\} = J_{12} = \{3, \ldots, n\}$. We have

$$T_2 = A_2 \varphi_2 + d_2 y_3 ((p')^{J_{12}} + \rho_2^{(2)}) + d_2 \delta_2 y_1 ((p')^{J_{12}} + \rho_2^{(2)}) + \eta_2(y_2)(p')^{J_{12}} + \ell.o.t.$$

$$= A_2 \varphi_2 + T_2^{(2)} + R_2^{(2)} + \ell.o.t.$$

We see that $T_2^{(2)}$ contains terms that are divisible by $LM(\varphi_3)$, but the monomials in $R_1^{(2)}$ and $R_2^{(2)}$ are not divisible by $LM(\varphi_i)$ for any i. The remainder term here is $R_1^{(2)} + R_2^{(2)}$, and we observe that this cannot cancel the largest term in R_1. This is because $LM(R_1^{(2)})$ lacks a factor of y_2, and $LM(R_2^{(2)})$ is equal to $y_3^{d_3 - 1} \cdots y_n^{d_n - 1}$ times the largest power of y_2 in $\eta_2(y_2)$, and by (†), this power is no bigger than $d_2 - 1$. If η_1 is not constant, then we see that $LM(R_1) > LM(R_2^{(2)})$. If η_1 is constant, then η_2 must be constant, too, and again we have $LM(R_1) > LM(R_2^{(2)})$. Thus, with our earlier notation, $R_1^{(2)} + R_2^{(2)} = \ell.o.t.$

We do a similar procedure with $T_n, T_2^{(2)}$, etc., and again find that the remainder term does not contain a multiple of the leading monomial of R_1. We see that each time we do this process, the size of the exponent L decreases in the term $(p')^L$. When we have $L = 0$, there are no terms that can be divided by any $LM(\varphi_j)$. Thus we end up with

$$(y_1 - \alpha)\Phi = A_1 \varphi_1 + \cdots + A_n \varphi_n + R_1 + \ell.o.t.$$

and $LT((y_1 - \alpha)\Phi) \geq LT(A_j \varphi_j)$ for all $1 \leq j \leq n$, and none of the remaining terms is divisible by any of the leading monomials of φ_j. Thus we have now finished the Multivariate
Division Algorithm, and we have a nonzero remainder. Thus \((y_1 - \alpha)\Phi\) does not belong to the ideal of the \(\varphi_j\)’s.

Now we turn to the second case, in which \(\eta_j = 0\) for all \(j\). By [FM], we may assume that \(\deg(q_j) \leq d_j - 2\). It follows that \(\alpha = 0\) and \(q_j = 0\). Thus \(p_j = y_j^{d_j}\) for all \(1 \leq j \leq n\), so \(p_j' = d_j y_j^{d_j-1}\), and \(H_j\) consists of linear combinations of products \((p')^I = y_i_1^{d_1-1} \cdots y_i_k^{d_k-1}\) for \(I = \{i_1, \ldots, i_k\} \subseteq J\), for even \(k \leq |J| - 2\). We will go through the multivariate division algorithm again. The principle is the same as before, but the details are different; in the first case we needed \(n \geq 2\), and now we will need \(n \geq 3\).

Again, it is only \(\varphi_1\) which has a leading monomial which can divide some terms in \((y_1 - \alpha)\Phi\). As before, we apply Lemma 5.2 with \(J = \{1, \ldots, n\}\), \(j = 1\), and \(J - \{1\} = J_1 = \{2, \ldots, n\}\). The polynomial in \((\hat{\varphi})\) becomes \(B = d_j y_{j+1} + d_j \delta_j y_{j-1}\), and we have:

\[
y_1 \Phi = A_1 \varphi_1 + d_1 y_2 ((p')^{J_1} + \rho_1) + d_1 \delta_1 y_n ((p')^{J_1} + \rho_1) + y_1 \rho_2
\]

\[
= A_1 \varphi_1 + T_2 + T_n + \ell.o.t.
\]

where \(\rho_1, \rho_2 \in H_{\{2, \ldots, n\}}\). Now we apply Lemma 5.2 to divide \(T_2\) (respectively \(T_n\)) by \(\varphi_2\) (respectively \(\varphi_n\)). This yields:

\[
y_1 \Phi = A_1 \varphi_1 + A_2 \varphi_2 + A_n \varphi_n + T_3 + T_n + R + \ell.o.t.
\]

where

\[
T_3 = d_1 d_2 y_3 ((p')^{J_2} + \tilde{\rho}_3), \quad T_n = d_1 d_n \delta_1 \delta_n y_{n-1} ((p')^{J_1} + \tilde{\rho}_n)
\]

with \(\tilde{\rho}_3 \in H_{\{3, \ldots, n\}}\) and \(\tilde{\rho}_n \in H_{\{2, \ldots, n-1\}}\), and

\[
R = \left(d_1 d_2 \delta_2 y_1 y_n^{d_n-1} + d_1 d_n \delta_1 y_1 y_2^{d_2-1}\right) \prod_{i=3}^{n-1} y_i^{d_i-1}
\]

Since \(n > 2\), \(R\) is not the zero polynomial. We will continue the Multivariate Division Algorithm by dividing \(T_3\) by \(\varphi_3\) and \(T_n\) by \(\varphi_n\), but we see that any terms created cannot cancel \(R\). Thus when we finish the Division Algorithm, we will have a nonzero remainder. As in the previous case, we conclude that \(y_1 \Phi\) is not in the ideal \(\langle \varphi_1, \ldots, \varphi_n \rangle\). \[\square\]

Proof of Proposition 5.1. The fixed points of \(f\) coincide with the elements of \(Z(\varphi_1, \ldots, \varphi_n)\), which is a variety of pure dimension zero. Saddle points have multiplicity 1, and since there are \(d - 1\) of these, and since the total multiplicity is \(d\), there must be one more fixed point, also of multiplicity 1. It follows that the ideal \(I := \langle \varphi_1, \ldots, \varphi_n \rangle\) is equal to its radical (see [BW]). Since the saddle points all have multiplier \(\lambda\), \(\Phi\) must vanish at all the saddle points. If \((\alpha, \beta)\) is the other fixed point, we conclude that \((y_1 - \alpha)\Phi\) vanishes at all the fixed points. Thus \((y_1 - \alpha)\Phi\) belongs to the radical of \(I\), and thus \(I\) itself. This contradicts Lemma 5.3, which completes the proof of Proposition 5.1. \[\square\]

Appendix: Non-smoothness of \(J\), \(J^*\), and \(K\)

Let us turn our attention to other dynamical sets for polynomial diffeomorphisms of positive entropy. These are \(J := J^+ \cap J^-\), \(K := K^+ \cap K^-\), and the set \(J^*\), which coincides
with the closure of the set of periodic points of saddle type. (See [BS1], [BS3], and [BLS] for other characterizations of J^\ast.) We have $J^* \subset J \subset K$. We note that none of these sets can be a smooth 3-manifold: otherwise, for any saddle point p, it would be a bounded set containing $W^s(p)$ or $W^u(p)$, which is the holomorphic image of \mathbb{C}. The following was suggested by Remark 5.9 of Cantat in [C]; we sketch his proof:

Proposition A.1. If $J = J^*$, then it is not a smooth 2-manifold.

Proof. Let p be a saddle point, and let $W^u(p)$ be the unstable manifold. The slice $J \cap W^u(p)$ is smooth and invariant under multiplication by the multiplier of Df. This means that in fact, the multiplier must be real, and the restriction of G^+ to the slice must be linear on each (half-space) component of $W^u(p) - J$.

The identity $G^+ \circ f = d \cdot G^+$ means that the canonical metric (defined in [BS8]) is multiplied by d. Thus f is quasi-expanding on J^*. Now, applying this argument to f^{-1} we get that f is quasi-hyperbolic. Further, $J^* = J$, so it is quasi-hyperbolic on J. If f fails to be hyperbolic, then by [BSm] there will be a one-sided saddle point, which can not happen since J is smooth.

Now that f is hyperbolic on J, there is a splitting $E^s \oplus E^u$ of the tangent bundle, so we conclude that J is a 2-torus. The dynamical degree must be the spectral radius of an invertible 2-by-2 integer matrix, but this means it is not an integer, which contradicts the fact the the dynamical degree of a Hénon map is its algebraic degree. □

Proposition A.2. Suppose that the complex jacobian is not equal to ± 1. Then for each saddle (periodic) point p and each neighborhood U of p, neither $J \cap U$ nor $J^* \cap U$ nor $K \cap U$ is a C^1 smooth 2-manifold.

Proof. Let us write $M := J \cap U$ and $g := f|_M$. (The following argument works, too, if we take $M = J^* \cap U$ or $M = K \cap U$.) The tangent space T_pM is invariant under Df. The stable/unstable spaces $E^{s/u} \subset T_p\mathbb{C}^2$ are invariant under $D_p f$. The space E^s (or E^u) cannot coincide with $T_p M$, for otherwise the complex stable manifold $W^s(p)$ (or $W^u(p)$) would be locally contained in M, and thus globally contained in J. But the $W^{s/u}$ are uniformized by \mathbb{C}, whereas J is bounded. We conclude that p is a saddle point for g, and thus the local stable manifold $W^{s}_{loc}(p; g)$ is a C^1-curve inside the complex stable manifold $W^s(p)$. As in Lemma 3.3, we conclude that the multiplier for $D_p f|_{E^s_p}$ is $\pm d$ and the multiplier for $D_p f|_{E^u_p}$ is $\pm 1/d$. Thus the complex Jacobian is $\delta = \pm 1$. □

Solenoids. The two results above concern smoothness, but no example is known where J, J^* or K is even a topological 2-manifold. In the cases where J^+ has been shown to be a topological 3-manifold (see [FS], [HO2], [Bo] and [RT]) it also happens that J is a (topological) real solenoid, and in these cases it is also the case that $J = J^*$. Further, for every saddle (periodic) point p, there is a real arc $\gamma_p = W^u_{loc}(p) \cap J$. If we apply the argument of Proposition A.2 to this case, we conclude that γ_p is not C^1 smooth.
References

[BW] T. Becker and V. Weispfenning, Gröbner Bases, A computational Approach to Commutative Algebra, Springer-Verlag, Berlin and New York, 1993, xxii + 574 pp.

[BLS] E. Bedford, M. Lyubich, and J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^2. IV. The measure of maximal entropy and laminar currents. Invent. Math. 112 (1993), no. 1, 77–125.

[BS1] E. Bedford and J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^2: currents, equilibrium measure and hyperbolicity. Invent. Math. 103 (1991), no. 1, 69–99.

[BS2] E. Bedford and J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^2. II. Stable manifolds and recurrence. J. Amer. Math. Soc. 4 (1991), no. 4, 657–679.

[BS3] E. Bedford and J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^2. III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. 294 (1992), no. 3, 395–420.

[BS8] E. Bedford and J. Smillie, Polynomial diffeomorphisms of \mathbb{C}^2. VIII. Quasi-expansion. Amer. J. Math. 124 (2002), no. 2, 221–271.

[BSm] E. Bedford and J. Smillie, Real polynomial diffeomorphisms with maximal entropy: Tangencies. Ann. of Math. (2) 160 (2004), no. 1, 1–26.

[Bo] S. Bonnot, Topological model for a class of complex Hénon mappings, Comment. Math. Helv. 81 (2006), no. 4, 827–857.

[C] S. Cantat, Bers and Hénon, Painlevé and Schrödinger. Duke Math. Journal, vol 149 (2009), no. 3, 411–460

[CLO] D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms. Springer, New York, 2007. xvi+551 pp.

[FS] J.E. Fornæss and N. Sibony, Complex Hénon mappings in \mathbb{C}^2 and Fatou-Bieberbach domains. Duke Math. J. 65 (1992), no. 2, 345–380.

[FM] S. Friedland and J. Milnor, Dynamical properties of plane polynomial automorphisms. Ergodic Theory Dynam. Systems 9 (1989), no. 1, 67–99.

[Ha] M. Hakim, Attracting domains for semi-attractive transformations of \mathbb{C}^p. Publ. Mat. 38 (1994), no. 2, 479–499.

[H] J.H. Hubbard, The Hénon mapping in the complex domain. Chaotic dynamics and fractals (Atlanta, Ga., 1985), 101–111, Notes Rep. Math. Sci. Engrg., 2, Academic Press, Orlando, FL, 1986.

[HO1] J.H. Hubbard and R. Oberste-Vorth, Hénon mappings in the complex domain. I. The global topology of dynamical space. Inst. Hautes Études Sci. Publ. Math. No. 79 (1994), 5–46.

[HO2] J.H. Hubbard and R. Oberste-Vorth, Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials. Real and complex dynamical systems (Hillerød, 1993), 89–132, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, 1995.

[M1] J. Milnor, Dynamics in one complex variable. Third edition. Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006.

[M2] J. Milnor, Topology from the differentiable viewpoint. Based on notes by David W. Weaver. The University Press of Virginia, Charlottesville, Va. 1965 ix+65 pp.

[RT] R. Radu and R. Tanase, A structure theorem for semi-parabolic Hénon maps,
arXiv:1411.3824

[Sa] H. Samelson, Orientability of hypersurfaces in \mathbb{R}^n. Proc. Amer. Math. Soc. 22 (1969) 301–302.

[Sm] J. Smillie, The entropy of polynomial diffeomorphisms of \mathbb{C}^2. Ergodic Theory Dynam. Systems 10 (1990), no. 4, 823–827.

[U] T. Ueda, Local structure of analytic transformations of two complex variables. I. J. Math. Kyoto Univ. 26 (1986), no. 2, 233–261.

Eric Bedford
Stony Brook University
Stony Brook, NY 11794
ebedford@math.sunysb.edu

Kyounghee Kim
Florida State University
Tallahassee, FL 32306
kim@math.fsu.edu