FUNDAMENTAL FUNCTION FOR
GRAND LEBESGUE SPACES.

E.Ostrovsky, L.Sirota

Department of Mathematic, Bar-Ilan University, Ramat Gan, 52900, Israel,
e-mails: eugostrovsky@list.ru, sirota3@bezeqint.net

Abstract.

We investigate in this short article the fundamental function for the so-called Grand Lebesgue Spaces (GLS) and show in particular a one-to-one and mutually continuous accordance between its fundamental and generating function.

Key words and phrases: Young-Orlicz function, ordinary and Grand Lebesgue Spaces (GLS); Orlicz, GLS norms, rearrangement invariant spaces, fundamental and generating function, Young-Fenchel, or Legendre transform, theorem of Fenchel-Moraux, inverse function, Exponential Orlicz function (EOF) and Spaces (EOS).

Mathematics Subject Classification (2000): primary 60G17; secondary 60E07; 60G70.

1 Notations. Statement of problem.

A. A triplet (X, \mathcal{B}, μ), where $X = \{x\}$ is arbitrary set, \mathcal{B} is non-trivial certain sigma-algebra of subsets X and μ is probabilistic: $\mu(X) = 1$ diffuse non-negative completely additive measure defined on the \mathcal{B}.

The non-probabilistic case $\mu(X) = \infty$ will be consider further.

Recall that the measure μ is said to be diffuse iff for arbitrary measurable set $A_1 \in \mathcal{B}$ with positive measure: $\mu(A_1) > 0$ there exists it subset $A_2 \subset A_1$ such that $\mu(A_2) = \mu(A_1)/2$.

We denote as usually for any arbitrary measurable function $f : X \to R$

$$|f|_p = \left[\int_X f(x)^p \mu(dx)\right]^{1/p}, \quad p \geq 1;$$

$L_p = \{f, \ |f|_p < \infty\}$.

B. The so-called Grand Lebesgue Space (GLS) $G\psi$ with norm $\|\cdot\|_{G\psi}$ is defined (not only in this article) as follows:

$$G\psi = \{f, \ |f|_{G\psi} < \infty\}, \quad |f|_{G\psi} \overset{def}{=} \sup_{p \geq 1} \left[\frac{|f|_p}{\psi(p)}\right].$$ (1.1)

Here $\psi = \psi(p)$, $1 \leq p < \infty$ is some continuous strictly increasing function such that $\lim_{p \to \infty} \psi(p) = \infty$.

The detail investigation of this spaces (and more general spaces) see in [14], [19]. See also [5], [6], [8], [9], [10] etc.

The case when in (1.1) supremum is calculated over finite interval is investigated in [14], [19], [20]:

\[G_b \psi = \{ f, \| f \| G_b \psi < \infty \}, \quad \| f \| G_b \psi \overset{\text{def}}{=} \sup_{1 \leq p < b} \left[\frac{|f|_p}{\psi(p)} \right], \quad b = \text{const} > 1, \quad (1.2) \]

but in (1.2) \(\psi = \psi(p) \) is continuous function in the semi-open interval \(1 \leq p < b \) such that \(\inf_{p \in (1,b)} \psi(p) > 0 \).

We will denote

\[[1, b) := \text{supp } \psi(\cdot), \]

or simple \(b = b(\psi) := \text{supp } \psi(\cdot) \), including the case \(b = \infty \).

Definition 1.1. The function \(\psi(p) \) which appeared in (1.1) and (1.2), will be named as generating function for the correspondent Banach space \(G \psi \).

An used further example:

\[\psi^{(\beta,b)}(p) = (b - p)^{-\beta}, \quad 1 \leq p < b, \quad \beta = \text{const} > 0; \quad b = \text{const} > 1, \]

\[G_{\beta,b}(p) := G_b \psi^{(\beta,b)}(p). \]

C. We denote as ordinary for any measurable set \(A \), \(A \in \mathcal{B} \) its indicator function by \(I(A) = I_A(\omega) \).

D. The Grand Lebesgue Spaces \(\{ G \psi \} \) are rearrangement invariant in the classical definition, see e.g. [2], chapter 1. Therefore, its fundamental function \(\phi_{G(\psi)}(\delta), \delta \geq 0 \) is correctly defined in the considered case as follows:

\[\phi_{G(\psi)}(\delta) \overset{\text{def}}{=} \sup_{p \in \text{supp } \psi} \left[\frac{\delta^{1/p}}{\psi(p)} \right], \quad (1.3) \]

see [2], chapters 2 and 5.

For instance,

\[\phi_{G(\psi)}(1) = \frac{1}{\inf_{p \in \text{supp } \psi} \psi(p)}. \quad (1.3a) \]

Note also

\[\phi_{G(C \cdot \psi)} = \phi_{G(\psi)}/C, \quad C = \text{const} > 0. \quad (1.3b) \]

This notion play a very important role in the functional analysis, [2], [22], [23]; in the theory of interpolation of operators, [2], [5], [7], in the theory of probability [13], [15], [16], [17]; in the theory of Partial Differential equations [7], [9]; in the
theory of martingales [20]; in the theory of approximation, in the theory of random processes etc.

E. Let \(g = g(p), \ p \in (a,b), \ 1 \leq a < b \leq \infty \) be some numerical valued continuous strictly increasing (or decreasing) function. The *inverse* function will be denoted by \(g^{-1}(z), \ g(a) \leq z \leq g(b), \) in contradistinction to the usually notation \(g^{-1}(p) = 1/g(p). \)

F. The Young-Fenchel, or Legendre transform \(g^*(q) \) for the function \(g = g(p) \) one can to define
\[
g^*(q) \overset{def}{=} \sup_{p \in \text{supp}g} (p \ |q| - g(p)). \tag{1.4}
\]

Our goal in this short report is to establish a one-to-one and mutually continuous connection between the fundamental and generating functions for the Grand Lebesgue Spaces.

In some previous works: [6], [12], chapter 8; [14], [19], [18], [22] these function was evaluated and applied in many practical cases.

2 Main result.

Problem A. Let the generating function \(\psi \) be a given: \(\psi \in \mathcal{G}(a,b), \ 1 \leq a < b \leq \infty. \) Find the fundamental function for the correspondent Grand Lebesgue Space \(\mathcal{G}_\psi. \)

Suppose the function
\[
p \rightarrow \frac{p}{\psi(p)}, \ p \in (a,b)
\]
is strictly increasing; and define therefore the function
\[
\nu(p) = \nu_\psi(p) = \left[\frac{p}{\psi(p)} \right]^{(-1)}, \ p \in \text{supp}\psi, \tag{2.1}
\]
and \(\nu(p) = +\infty \) otherwise.

Introduce also the following Young-Orlicz function
\[
N(u) = N_\psi(u) := \exp \left(\nu^*_\psi(u) \right) - \exp \left(\nu^*_\psi(0) \right), \tag{2.2}
\]
and define finally
\[
\theta(\delta) = \theta_\psi(\delta) \overset{def}{=} \frac{1}{N^{(-1)}(1/\delta)}, \ \delta > 0. \tag{2.3}
\]

Proposition 2.1. We propose under formulated above conditions, for instance, \(\mu(X) = 1, \) diffuseness of the measure \(\mu, \) and in the case when \(b = \infty \)
$\phi_{G(\psi)}(\delta) = \theta_{\psi}(\delta), \ \delta > 0. \quad (2.4)$

Remark 2.1. The equality (2.4) is more convenient than source definition (1.3). In particular, it allows for a relatively simple inversion.

Proof is very simple; it based on the computation of the fundamental function for Orlicz spaces, see the book of Krasnosel’skii M.A. and Rutickii Ya.B. [11], chapter 3; see also the classical monographs [26], [27].

In detail, it is proved in particular in the articles [14], [18], [19] that under our conditions the Grand Lebesgue Space $G\psi$ coincides with certain Orlicz space over source probability triplet (X, B, μ) relative the Young-Orlicz function $N_{\psi}(u)$.

We deduce reducing considered case to the well-known calculation of fundamental function for Orlicz space, [11], chapter 3

$$\phi_{G(\psi)}(\delta) = \frac{1}{N_{\psi}^{(-1)}(1/\delta)} = \theta_{\psi}(\delta), \ \delta > 0, \quad (2.4)$$

Q.E.D.

An inverse problem B. Let the fundamental function $\phi_{G\psi}(\delta) = \phi(\delta)$ be a given. Find the correspondent generating function $\psi(p)$.

A first restrictions: the function $\phi = \phi(\delta)$ is strictly increasing and continuous; in particular $\phi(0+) = \phi(0) = 0$.

We find from the equality (2.4)

$$N_{\psi}(1/\delta) = \left(\frac{1}{\phi(\delta)}\right)^{(-1)}, \quad (2.5)$$

or equivalently

$$N_{\psi}(z) = \left(\frac{1}{\phi(\delta)}\right)^{(-1)} / \delta = 1/z. \quad (2.5a)$$

A second restriction: the function

$$V^*(z) = \ln(C + N_{\psi}(z)), \ z \geq 0, \quad (2.6)$$

where $V^*(0) = \ln C$, is continuous and upward convex.

It follows immediately from (2.6) by virtue of theorem of Fenchel-Moraux

$$V(z) = \{\ln(C + N_{\psi}(z))\}^*, \ z \geq 0. \quad (2.7)$$

Since

$$V(p) = \left[\frac{p}{\psi(p)}\right]^{(-1)},$$

we derive finally

Proposition 2.2. We conclude under formulated in this pilcrow conditions
\[\psi(p) = \frac{p}{V(-1)(p)}. \quad (2.8) \]

3 The case of infinite measure.

The case when \(\mu(X) = \infty \) is more complicated.

Recall first of all definition and some facts about the so-called Exponential Orlicz Spaces (EOS), see for example [21].

Let \(N = N(u) \) be an \(N - \) Young-Orlicz’s function, i.e. downward convex, even, continuous function differentiable for all sufficiently great values \(u, u \geq u_0, u_0 = \text{const} > 0 \), strongly increasing along the right semi-axis and such that \(N(u) = 0 \iff u = 0 \); \(u \to \infty \implies dN(u)/du \to \infty \). We can say that \(N(\cdot) \)

\(N(\cdot) \) is an exponential Orlicz function, briefly, \(N(\cdot) \in EOS \), if \(N(u) \) has a form of a continuous differentiable strongly increasing downward convex function \(W = W(u) \)

in the domain \([2, \infty]\) such that \(u \to \infty \implies W'(u) \to \infty \) and

\[N(u) = N(W, u) = \exp(W(\log |u|)), \ |u| \geq e^2. \]

For the values \(u \in [-e^2, e^2] \) we define \(N(W, u) \) arbitrarily, but so that the function \(N(W, u) \) is even, continuous, convex, strictly increasing along the right semi-axis and so that \(N(u) = 0 \iff u = 0 \). We denote the correspondent Orlicz space on \((X, \mu)\) with a measure \(\mu \) and with \(N - \) function of the form \(N(W, u) \) as \(L(N) = EOS(W); EOS = \bigcup W \{EOS(W)\} \) (exponential Orlicz’s space).

For example, let \(m = \text{const} > 0 \), \(r = \text{const} \in \mathbb{R}^1 \),

\[N_{m,r}(u) = \exp\left[|u|^m \left(\log^{-m/r}(C_1(r) + |u|)\right)\right] - 1, \]

\(C_1(r) = e, r \leq 0; C_1(r) = \exp(r), r > 0 \). Then \(N_{m,r}(\cdot) \in EOS \). In the case \(r = 0 \) we can write \(N_m = N_{m,0} \).

Recall that the Orlicz’s norm on the arbitrarily measurable space \((X, A, \mu)\)

\[||f||L(N) = ||f||L(N, X, \mu) \]

can be calculated by the following formula (see, for example, [11], p. 66; [26], p. 73)

\[||f||L(N) = \inf_{v > 0} \left\{ v^{-1} \left(1 + \int_X N(v|f(x)|) \mu(dx)\right) \right\}. \]

Let \(\alpha \) be arbitrary number, \(\alpha = \text{const} \geq 1 \), and \(N(\cdot) \in EOS(W) \) for some \(W = W(\cdot) \). For such a function \(N = N(W, u) \) we denote by \(N^{(\alpha)}(W; u) = N^{(\alpha)}(u) \)

a new Young-Orlicz’s function \(N^{(\alpha)}(u) \) such that

\[N^{(\alpha)}(u) = C_1 |u|^{\alpha}, \ |u| \in [0, C_2]; \]

\[N^{(\alpha)}(u) = C_3 + C_4 |u|, \ |u| \in (C_2, C_5]; \]

\[N^{(\alpha)}(u) = N(u), \ |u| > C_5, \ 0 < C_2 < C_5 < \infty, \]

\[C_{1,2,3,4,5} = C_{1,2,3,4,5}(\alpha, N(\cdot)). \]

5
In the case of $\alpha = m(j+1)$, $m > 0$, $j = 0, 1, 2, \ldots$ the function $N_{m}^{(\alpha)}(u)$ is equivalent to the following Trudinger’s function:

$$N_{m}^{(\alpha)}(u) \sim N_{[m]}^{(\alpha)}(u) = \exp (|u|^m) - \sum_{l=0}^{j} u^{ml}/l!.$$

This method is described in [28], p. 42-47. These Orlicz spaces are applicable to the theory of non-linear partial differential equations.

We denote hereinafter generally by $C_k = C_k(\cdot)$, $k = 1, 2, \ldots$ some positive finite essentially constructive constants, and by C, C_0 non-essentially constants, also constructive. We proved the existence of constants $C_{1,2,3,4,5} = C_{1,2,3,4,5}(\alpha, N(\cdot))$ such that $N^{(\alpha)}$ is a new exponential N Orlicz’s function in [21]. We denote classical absolute constants by the symbols K_j.

Now we introduce some new Grand Lebesgue Spaces. Let $\psi = \psi(p)$, $p \geq \alpha, \alpha = \text{const} \geq 1$ be a continuous positive $\psi(\alpha) > 0$ finite strictly increasing function such that the function $p \rightarrow p \log \psi(p)$ is downward convex, and

$$\lim_{p \rightarrow \infty} \psi(p) = \infty.$$

We denote the set of all these functions by Ψ; $\Psi = \{\psi\}$. A particular case

$$\psi(p) = \psi(W; p) = \exp(W^*(p)/p),$$

where

$$W^*(p) = \sup_{z \geq \alpha}(pz - W(z))$$

is so-called Young-Fenchel, or Legendre transform of $W(\cdot)$. It follows from the theorem of Fenchel-Moraux that in this case

$$W(p) = [p \log \psi(W;p)]^*, \quad p \geq p_0 = \text{const} \geq 2,$$

and, consequently, for all $\psi(\cdot) \in \Psi$ we introduce a correspondent Young-Orlicz N – function by the equality:

$$N([\psi]) = N([\psi], u) = \exp \{[p \log \psi(p)]^* (\log u)\}, \quad u \geq e^2.$$

Definition 3.1. We introduce for such arbitrary function $\psi(\cdot) \in \Psi$ the so-called $G(\alpha; \psi)$ norms and correspondent Banach GLS space $G(\alpha; \psi)$ as a set of all measurable (complex) functions with finite norms:

$$||f||_G(\alpha; \psi) = \sup_{p \geq \alpha}(|f|_p/\psi(p)). \tag{3.2}$$

For instance, $\psi(p)$ may be $\psi(p) = \psi_m(p) = p^{1/m}$, $m = \text{const} > 0$; in this case, we can write $G(\alpha, \psi_m) = G(\alpha, m)$ and

$$||f||_G(\alpha, m) = \sup_{p \geq \alpha} \left(|f|_p \cdot p^{-1/m}\right).$$
Theorem A, see [21]. Let the measure μ be diffuse, $\mu(X) = \infty$, $\alpha = \text{const} \geq 1$ and $\psi \in \Psi$. We assert that the norms Orlicz-Luxemburg norm $\| \cdot \|_{L(N^{(\alpha)}, [\psi])}$ and Grand Lebesgue Space norm $\| \cdot \|_{G(\alpha, \psi)}$, $\alpha \geq 1$ are equivalent.

Arguing similarly to the second section, we obtain the following result.

Proposition 3.1. We propose under conditions of theorem A

$$
\phi_{G(\psi)}(\delta) \asymp \theta_{\psi}(\delta), \; \delta > 0.
$$

Remark 3.1. Note that this case $\delta \in (0, \infty)$, in contradiction to the proposition 2.1, where it in naturally to take $\delta \in (0, 1)$.

4 Concluding remarks. Open problems.

It is interest by our opinion to investigate the notion of fundamental function and also its relation with generating function for the so-called mixed, or equally anisotropic Grand Lebesgue Spaces.

Recall that the definition of mixed, or equivalently anisotropic ordinary Lebesgue Spaces appeared at first in the article [1] and was investigated in detail in the classical books [3], [4].

The anisotropic Grand Lebesgue Spaces as a slight generalization of L_p spaces arises in turn in [23] with the correspondent fundamental function; in the preprint [24] both this notions was applied in the operator’s theory.

References

[1] Benedek A. and Panzone R. The space $L(p)$ with mixed norm. Duke Math.

[2] Bennet C., Sharpley R. Interpolation of operators. Orlando, Academic Press Inc., (1988).

[3] Besov O.V., Il’in V.P., Nikolskii S.M. Integral representation of functions and imbedding theorems. Vol.1; Scripta Series in Math., V.H.Winston and Sons, (1979), New York, Toronto, Ontario, London.

[4] Besov O.V., Il’in V.P., Nikolskii S.M. Integral representation of functions and imbedding theorems. Vol.2; Scripta Series in Math., V.H.Winston and Sons, (1980), New York, Toronto, Ontario, London.

[5] Capone C., Fiorenza A., Krbec M. On the Extrapolation Blowups in the L_p Scale. Collectanea Mathematica, 48, 2, (1998), 71-88.

[6] Fiorenza A. Duality and reflexivity in grand Lebesgue spaces. Collectanea Mathematica (electronic version), 51, 2, (2000), 131-148.
[7] Fiorenza A., and Karadzhov G.E. *Grand and small Lebesgue spaces and their analogs*. Consiglio Nationale Delle Ricerche, Instituto per le Applicazioni del Calcoto Mauro Picine, Sezione di Napoli, Rapporto tecnico n. 272/03, (2005).

[8] Iwaniec T., and Sbordone C. *On the integrability of the Jacobian under minimal hypotheses*. Arch. Rat.Mech. Anal., 119, (1992), 129-143.

[9] Iwaniec T., P. Koskela P., and Onninen J. *Mapping of finite distortion: Monotonicity and Continuity*. Invent. Math. 144 (2001), 507-531.

[10] Kozachenko Yu. V., Ostrovsky E.I. (1985). *The Banach Spaces of random Variables of subgaussian type*. Theory of Probab. and Math. Stat. (in Russian). Kiev, KSU, 32, 43-57.

[11] Krasnosel’skii, M.A.; Rutickii, Ya.B. (1961). *Convex Functions and Orlicz Spaces*. Groningen: P.Noordhoff Ltd

[12] A. Kufner, O. John and S. Fucik. *Function Spaces*. Noordhoff International Publishingr, Leyden, 1977.

[13] Ledoux M., Talagrand M. (1991) *Probability in Banach Spaces*. Springer, Berlin, MR 1102015.

[14] Liflyand E., Ostrovsky E., Sirota L. *Structural Properties of Bilateral Grand Lebesgue Spaces*. Turk. Journal of Math., 34, (2010), 207-219.

[15] Ostrovsky E., Rogover E. *Exact exponential Bounds for the random field Maximum Distribution via the majorizing Measures (Generic Chaining)*. arXiv:0802.0349v1 [math.PR] 4 Feb 2008.

[16] Ostrovsky E.I. (1999). *Exponential estimations for random Fields and its applications*. (in Russian). Moscow-Obninsk, OINPE.

[17] Ostrovsky E.I. (1994.) *Exponential Bounds in the Law of Iterated Logarithm in Banach Space*. Math. Notes, 56, 5, p. 98-107.

[18] Ostrovsky E., Sirota L. *Fourier Transforms in exponential rearrangement invariant Spaces*. arXiv:040639v1 [math.FA], 20 Jun 2004.

[19] Ostrovsky E. and Sirota L. *Moment Banach spaces: theory and applications*. HIAT Journal of Science and Engineering, C, Volume 4, Issues 1-2, pp. 233-262, (2007).

[20] Ostrovsky E. and Sirota L. *Moment and Tail Inequalities for polynomial Martingales. The case of heavy tails*. arXiv: 1112.2768v1 [math.PR] 13 Dez 2011.

[21] Ostrovsky E. and Sirota L. *Fourier transforms in exponential rearrangement invariant spaces*. arXiv:math/0406391v1 [math.FA] 20 Jun 2004
[22] Ostrovsky E. *Exponential Orlicz Spaces: New Norms and Applications.* arXiv:math/0406534v1 [math.FA] 25 Jul 2004

[23] Ostrovsky E. and Sirota L. *Exact norm estimates for multivariate dilation operators between two Bilateral Weight Grand Lebesgue Spaces.* arXiv:1503.05235v1 [math.FA] 17 Mar 2015

[24] Ostrovsky E. and Sirota L. *Central Limit Theorem and exponential tail estimation in mixed (anisotropic) Grand Lebesgue Spaces.* arXiv:1308.5606v1 [math.PR] 26 Aug 2013

[25] Pizier G. *Condition d’entropic assupant la continuite de certains processus et applications a lanalyse harmonique.* Seminaire d’analyse fonctionelle. (1980), Exp.13, p. 23-34.

[26] Rao M.M., Ren Z.D. *Theory of Orlicz Spaces.* Marcel Dekker Inc., 1991. New York, Basel, Hong Kong.

[27] Rao M.M., Ren Z.D. *Applications of Orlicz Spaces.* Marcel Dekker Inc., 2002. New York, Basel, Hong Kong.

[28] Taylor M.E. *Partial Differential Equations.* v.3, Nonlinear Equations. Springer Verlag, 1991. Berlin, Heidelberg, New York.

[29] Talagrand M. (1996). *Majorizing measure: The generic chaining.* Ann. Probab., 24 1049-1103. MR1825156