COVID-19-Associated Mucormycosis (CAM): An Updated Evidence Mapping

Salman Hussain 1,*, Harveen Baxi 2, Abanoub Riad 1,3, Jitka Klugarová 1, Andrea Pokorná 1,4, Simona Slezáková 1, Radim Ličeník 1, Abul Kalam Najmi 5 and Miloslav Klugar 1,*

1 Czech National Centre for Evidence-Based Healthcare and Knowledge Translation (Cochrane Czech Republic, Czech EBHC: JBI Centre of Excellence, Masaryk University GRADE Centre), Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; abanoub.riad@med.muni.cz (A.R.); klugarova@med.muni.cz (J.K.); apokorna@med.muni.cz (A.P.); simona.slezakova@med.muni.cz (S.S.); radim.licenik@gmail.com (R.L.)
3 Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
4 Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
5 Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; aknajmi@jamiahamdard.ac.in
* Correspondence: mohammad.hussain@med.muni.cz (S.H.); klugar@med.muni.cz (M.K.)

Abstract: Mucormycosis, a serious and rare fungal infection, has recently been reported in COVID-19 patients worldwide. This study aims to map all the emerging evidence on the COVID-19-associated mucormycosis (CAM) with a special focus on clinical presentation, treatment modalities, and patient outcomes. An extensive literature search was performed in MEDLINE (Ovid), Embase (Ovid), Cochrane COVID-19 Study Register, and WHO COVID-19 database till 9 June 2021. The primary outcome was to summarize the clinical presentation, treatment modalities, and patient outcomes of CAM. Data were summarized using descriptive statistics and presented in tabular form. This evidence mapping was based on a total of 167 CAM patients with a mean age of 51 ± 14.62 years, and 56.28% of them were male. Diabetes mellitus (73.65% (n = 123)), hypertension (22.75% (n = 38)), and renal failure (10.77% (n = 18)) were the most common co-morbidities among CAM patients. The most common symptoms observed in CAM patients were facial pain, ptosis, proptosis, visual acuity, and vision loss. Survival was higher in patients who underwent both medical and surgical management (64.96%). Overall mortality among CAM patients was found to be 38.32%. In conclusion, this study found a high incidence of CAM with a high mortality rate. Optimal glycemic control and early identification of mucormycosis should be the priority to reduce the morbidity and mortality related to CAM.

Keywords: COVID-19; diabetes; epidemiology; evidence; mortality; mucormycosis; mycoses; public health

1. Introduction

The coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 228 million people globally, with about 4.7 million deaths as of 21 September 2021 [1]. The novel COVID-19 strains that have emerged this year are more severe variants of the disease and have resulted in higher intensive care unit (ICU) admissions, need for mechanical ventilation, and mortality [2,3]. This, consequently, has increased the burden on healthcare systems globally [4].

COVID-19 patients often have several comorbidities, including diabetes [5]. Ample evidence has found patients with comorbidities to be at higher risk of ICU admissions and mortality [5–7]. Study findings by Liu et al. from Wuhan Union Hospital found a more intense...
level of lymphocytopenia and cytokine storm in patients with severe COVID-19 compared to that in patients with mild disease [8]. Despite the colossal impact of this pandemic gripping the world, there are limited treatment options for it. COVID-19 patients in severe or critical stages (admitted to ICUs) are prescribed high doses of steroids as a life-saving measure [9]. Steroids suppress the immune system (decrease in CD4 + T and CD8 + T cells) to fight against the inflammation caused by the virus, thereby creating a favorable environment for other opportunistic infections [9,10]. This can make the immunocompromised COVID-19 patients more susceptible to a range of viral, bacterial, fungal, and other microbial co-infections [11]. Multiple studies have confirmed that patients with severe COVID-19 admitted to ICUs have a high occurrence of secondary infections and relatively infrequent bacterial co-infection [12–14].

Mucormycosis, a serious and rare fungal infection, has occurred concurrently in COVID-19 patients globally [15]. COVID-19-associated mucormycosis (CAM) notably created havoc in the second wave of COVID-19 in India. Mucormycosis, also known as black fungus, is an invasive fungal infection most commonly caused by species of the genus Rhizopus [16]. Other species causing this fungal infection include those belonging to the genera Apophysomyces, Absidia, Mucor, and others. Amongst the various types of mucormycosis, rhino-orbital-cerebral is the most common one [17]. Risk factors associated with the development of fungal infection among COVID-19 patients include diabetes, neutropenia, hematological malignancy, stem cell transplant recipients, patients receiving corticosteroid treatment, and individuals in the immunocompromised state [18,19]. Mucormycosis is associated with a high risk of all-cause mortality (54%), with mortality depending on body site infected, fungus type, and the patient’s overall condition [20].

This deadly fungal infection is clinically challenging and expensive to treat and puts a high toll on public health and a humanitarian and economic burden on individuals and healthcare systems [21,22]. Low- and middle-income countries such as India witnessed a massive number of CAM cases in the second wave of COVID-19, leading to a collapse of the health system in the midst of the pandemic. The Indian government (state governments) declared mucormycosis as an outbreak in May 2021 [23]. Evidence from previous published studies was based on fewer cases and limited information [24,25].

Presently, more detailed evidence on the clinical presentation, treatment modalities, and patient outcomes is required. The preliminary search for mapping existing evidence was performed on 25 May 2021, in Epistemonikos, the international prospective register of systematic reviews (PROSPERO), Open Science Framework (OSF), Cochrane Library, and Jonna Briggs Institute (JBI) Evidence Synthesis, and no previous evidence mapping was identified. Therefore, we conducted this study with an objective to map all the emerging evidence on the CAM with a particular focus on each minute detail of clinical presentation, treatment modalities, and patient outcomes.

2. Materials and Methods

The proposed study was developed by adhering to the JBI methodology for evidence mapping and is reported as per the Preferred Reporting Items for Systematic Reviews and Meta-analyses for Scoping Reviews (PRISMA-ScR) [26,27]. Compliance with the PRISMA-ScR is presented in Supplementary Table S1.

Furthermore, this review was conducted by adhering to our protocol registered prospectively at OSF with an identification number (osf.io/438sm) and published as a preprint at the Preprint Server for Health Sciences (medRxiv) [28]. There were slight deviations from the protocol; firstly, the critical appraisal was skipped as it is not mandatory as per the JBI guidelines. The second deviation was the inclusion of suspected COVID-19 cases with confirmed mucormycosis, as patients developed mucormycosis after recovery from COVID-19.
2.1. Eligibility Criteria

2.1.1. PCC Elements

According to the JBI reviewer’s manual, the following PCC (Population, Concept, and Context) elements were used for this review.

(a) Participants: patients with confirmed COVID-19 (RT-PCR) and mucormycosis (either histologically or microbiologically confirmed) based on the definition of Centers for Disease Control and Prevention were included in the study. We also included studies with suspected COVID-19 patients (based on the included studies assessment) who had confirmed mucormycosis.

(b) Concept and context: this review included all studies that described the clinical presentation, treatment modalities, and patient outcomes of CAM.

2.1.2. Types of Sources

We included analytical observational studies (cohort, case–control) and descriptive observational studies (case report, case series, cross-sectional).

2.1.3. Exclusion Criteria

(a) Non-English language studies;
(b) studies with no confirmed mucormycosis; and
(c) systematic reviews, narrative reviews, editorials, opinions, and study protocols were excluded.

2.2. Information Sources and Search Strategy

A three-step search strategy was utilized to identify published, unpublished, or ongoing studies with no language restrictions. An initial limited search was undertaken in MEDLINE (Ovid), followed by analyzing the text words in the title and abstract and the index terms assigned to the articles. Slightly modified Ovid Expert Searches for COVID-19 were combined with keywords and index terms related to mucormycosis to perform the searches in MEDLINE (Ovid) [29] and Embase (Ovid) [30] (Appendix A).

On 9 June 2021, we conducted a second search in MEDLINE (Ovid), Embase (Ovid), Cochrane COVID-19 Study Register, and the World Health Organization (WHO) COVID-19 database.

Complete search strategies are presented in Supplementary Table S2 for each database with their respective hits. Third, the manual search of reference lists of all included studies and relevant systematic reviews was screened for any potentially eligible studies. Citation tracking was also performed for all the included articles.

2.3. Selection Process

Two independent reviewers (S.H. and H.B.) screened all the retrieved articles against the eligibility criteria. We included all those articles describing the mucormycosis case (diagnosed either based on histopathology, culture, or stain) in COVID-19-positive patients.

In the initial screening phase, articles were selected based on the title and abstract scanning. In the second phase, full-text screening was performed for the final inclusion of articles. Any confusion regarding study inclusion was resolved by discussion with the third reviewer (M.K.). A detailed description of the study selection process is shown using the PRISMA flow diagram in Figure 1.
2.4. Data Extraction

Two reviewers (S.H. and H.B.) independently extracted the data in a pre-designed data extraction template. The following information was extracted from all the eligible studies qualified for inclusion: study author, year of publication, country, study design, demographic characteristics of the population (age and sex), sample size, comorbidities, treatment for COVID-19, symptoms of mucormycosis, diagnosis of mucormycosis, identification of fungal species, treatment for mucormycosis, and patient outcomes. The included studies are described using descriptive statistics and presented in a tabular form.

3. Results

A total of 209 articles were identified by searching the selected sources. After removing duplicates, only 92 articles were found to be unique. After the full-text screening, 37 studies [31–67] qualified for inclusion in this evidence mapping study. Four additional articles [68–71] were identified by hand search during bibliography screening and citation tracking. Finally, a total of 41 articles were included in this review [31–71]. Refer to Supplementary Table S3 for the list of articles excluded during full-text screening with reason.
3.1. Studies Characteristics

Out of 41 studies, the majority of studies (n = 15) were from India with 82 mucormycosis cases, 9 studies with 9 cases of mucormycosis were from the USA, while only 3 studies were from Iran but with 17 mucormycosis cases. Most of the included studies were case reports (n = 27) followed by case series (n = 9), and the rest were of other study designs. Diabetes mellitus (73.65% (n = 123)), hypertension (22.75% (n = 38)), and renal failure (10.77% (n = 18)) were the most common co-morbidities among CAM patients. Diabetic ketoacidosis was observed in one-tenth of the diabetic patients.

3.2. Clinical Presentation

This evidence mapping was based on a total of 167 CAM patients with a mean age of 51 ± 14.62 years, of which 56.28% of them were male. COVID-19 was confirmed through the RT-PCR test in approximately three-fourth (74%) of the included studies.

The majority of the patients (76.04%) were treated using steroids, while only 11.64% of patients were treated with remdesivir to manage COVID-19. Most patients who developed mucormycosis had severe (based on included studies’ categorization) or critical COVID-19 (defined based on ICU status/mechanical ventilation).

Twenty-nine (17.57%) patients had concurrent CAM, while the remaining patients were diagnosed with CAM after an average of 19.24 days. Mucormycosis was diagnosed using stain (24 studies), culture (26 studies), or histopathology (30 studies), and nine studies diagnosed mucormycosis using all three diagnostic techniques. The Rhizopus species were the most common fungal species infecting CAM patients (13.77%).

Facial pain, ptosis, proptosis, visual acuity, and vision loss were the most common symptoms observed in CAM patients. Rhino-orbital (16%) followed by rhino-orbital-cerebral (11.3%) mucormycosis was the most common form of mucormycosis found in CAM patients (Table 1).

3.3. Treatment Modalities and Outcomes

Liposomal amphotericin B in various doses (5 mg/kg/day) was the most commonly used drug for managing mucormycosis infection in 158 patients (35 studies). Adjunct surgery was performed on 142 patients, and surgical debridement was the most common surgical procedure performed. Only 23 CAM patients were managed without surgery, and most of them (18 CAM patients) died between 7 to 62 days after the diagnosis of mucormycosis.

Survival was higher in patients who underwent both medical and surgical management (64.96%) than in CAM patients who underwent medical management only (21.73%). Overall mortality among CAM patients in the included studies was 38.32% (n = 64). The patients died between 6 to 90 days after mucormycosis diagnosis (Table 2).
Table 1. Summary of study characteristics and anamnestic, diagnostic, and treatment features of COVID-19-associated mucormycosis (CAM) cases.

Study	Country	Design	n	Age (years)	COVID-19 Confirm.	COVID-19 Severity	Onset (days)	Comorbidities	COVID-19 Treatment	Clinical Features	Region	Diagnosis	Stain	Cult.	Cultiv.	Histo.	Species			
Alekseyev et al. 2021 [31]	USA	Case report	1	M	RT-PCR	NR	NR	Yes	No	No	No	DKA	Yes (name NS)	HCQ	NS	No	No	Yes	NS	
Arana et al. 2021 [32]	Spain	Case report	1	M	RT-PCR	Severe (requiring non-invasive mechanical ventilation)	7	Yes	Yes	No	Yes	ESKD	Dexame-thasone 6 mg daily for 10 days	Ceftriaxone, azithro-mycin, Fever, headache and left malar region swelling	Rhinosi-nus	No	Yes	No	Rhizopus/Rhizopus oryzae	
Ashour et al. 2021 [33]	Egypt	Case series 6	M/F: 3/3	54.66	RT-PCR (2); NR (4)	Critical (n = 1) on ventilation, NR (n = 5)	Not clear	Yes (100%)	No	No	No	CKD (12.5%)	NR	Ophthalmoplegia (66%), conjunctival che-mosis (33%), eyelid edema (33%), facial edema (33%)	Rhino-or-bital-cerebral (100%)	No	Yes	Yes	NS	
Bayram et al. 2021 [34]	Turkey/Case series 11	M/F: 9/2	73.1 ± 7.7 years (range: 61–88 years)	Moderate (FiO2: 28%)	21	Yes	Yes	No	No	No	ESKD	Prednisone 20 mg	HCQ, azithromycin, lopinavir/ritonavir, tocilizumab	Pain and increase in right limb diameter	Musculo-skeletal	No	Yes	No	Lichtheimia ramosa	
Bellanger et al. 2021 [35]	France	Case report	1	M	RT-PCR	Severe (ICU)	21	No	No	No	No	No	Remdesivir (200 mg × 1, then 100 mg daily), supportive care	Cavitary pneumonia with pleural effusion	Pulmonary mucormyco-sis/cavitary	Yes	No	Yes	Rhizopus/Rhizopus species	
Dallalzadeh et al. 2021 [36]	USA	Case report	1	M	RT-PCR	Severe (ICU, ventilation)	6	Yes	No	No	No	Ketosisis	Dexame-thasone	CCP (COVID-19 convalescent plasma)	NR	No	Yes	Yes	Rhizopus/Rhizopus species	
El-Kohly et al. 2021 [37]	Egypt	Cross-sectional	28	M/F: 19/17	52.92 ± 11.30	RT-PCR	Mixed (n = 11), moderate (n = 13), severe (n = 12)	17.82 ± 2.97	Yes (27.8%)	Yes (17%)	Yes (8%)	No	CKD (8%)	Yes (name NS) lant, and vitamins (name NS)	Anterior, anticoagu-lant, and vitamins (name NS)	Sinusosal (100%), orbital (93%), cerebral (29%), and palatine (33%)	Yes	Yes	Yes	Mucor species
Everett et al. 2020 [70]	Germany	Case series 2	F	52.5	RT-PCR	Critical (n = 2 on ventilation)	NR	No	No	No	Obesity, liver cirrhosis	Yes	NR	NR	NR	No	No	Yes	Yes	Mucor species
Garg et al. 2021 [39]	India	Case report	1	M	RT-PCR	Severe (84% SpO2)	21	Yes	Yes	No	No	ESEf, Is-chemic cardiac- myopathy, venous thrombosis	Dexame-thasone (6 mg, on day 1 and 100 mg on days 2–5), suppor-tive care	Cavitary pneumonia with pleural effusion	Pulmonary mucormyco-sis/cavitary	Yes	No	Yes	Rhizopus/Rhizopus species	
Hanley et al. 2020 (Autopsy) [40]	UK	Case series 1	M	22	RT-PCR	Critical (mechanical ventilation, vaso-pressor, ICU)	Concurrent	NR	NR	NR	NR	Frank necrotic-hem-orrhagic pan-creatitis, renal failure	NR	NR	NR	Yes	No	Yes	NR	
Johnsons et al. 2021 [41]	USA	Case report	1	M	RT-PCR	Critical (ICU, ventilation)	19	Yes	Yes	No	No	IV dexame-thasone (6 mg daily for 10 days)	IV remdesivir (200 mg 1, then 100 mg daily)	Pain	NR	No	Yes	Rhizopus/Rhizopus oryzae		

Note: RT-PCR = Reverse Transcription Polymerase Chain Reaction; NR = Not Reported; NS = Not Specified; DM = Diabetes Mellitus; HTN = Hypertension; Asthma = Asthma; CAD = Coronary Artery Disease; DKA = Diabetic Ketoacidosis; ESKD = End Stage Kidney Disease; CCPR = COVID-19 convalescent plasma; IV = Intravenous; BAL = Bronchoalveolar Lavage.
Authors	Year	Country	Study Type	Sex	Age	Sample Size	Test	Disease Severity	Concurrent Infections	Mortality	Treatment 1	Treatment 2	Treatment 3	Other Findings	Comments		
Karimi et al.	2021	Iran	Case report	F	61	1	RT-PCR	Severe	No	No	NR	Yes	NR	Remdesivir, interferon alpha	Rhino-orbital		
Kanwar et al.	2021	USA	Case report	M	56	1	RT-PCR	Severe	No	No	No	NR	Methylprednisolone	Tocilizumab	Necrotizing pneumonia with empyema	Pulmonary mucormycosis	
Karimi-Galougah et al.	2021	Iran	Case report	M	86	1	Throat swab	Severe (ICU)	No	No	No	NR	Methylprednisolone	Oseltamivir	Remdesivir, interferon alpha	Hemifacial pain, proptosis, frozen eye, complete loss of vision, and fixed mydriasis	Rhino-orbital
Khatri et al.	2021	USA	Case report	M	68	1	Suspected	Critical	No	No	NR	Methylprednisolone	Predisone (for gout)	CCP	Purplish skin discoloration with fluctuant swelling	Mucorales/NS	
Khan et al.	2021	USA	Case report	F	44	1	RT-PCR	Critical (ICU, ventilation)	Yes	No	NR	Remdesivir 100 mg IV daily	NR	NR	Pneumonia and empyema	No	
Krishna et al.	2021	India	Case report	M	34	1	RT-PCR	Severe	Yes	No	No	NR	Methylprednisolone (30 mg IV twice a day)	Tocilizumab	Necrotizing pneumonia with empyema	No	
Krishna et al.	2021	UK	Case report (autopsy)	M	22	1	RT-PCR	Severe (mechanical ventilation)	No	No	No	NR	NR	NR	Swelling pain over the first quadrant teeth	NR	
Maiti et al.	2021	India	Case report	M	38	1	RT-PCR	Severe (ICU)	No	No	NR	Methylprednisolone (80 mg/day)	Oseltamivir (75 mg twice daily), interferon alpha (4 mg twice daily)	NR	NR	Swelling and pain in the left eye	Mucorales/NS
Mehta et al.	2020	India	Case report	M	60	1	RT-PCR	Critical (ICU, ventilation)	No	No	NR	Methylprednisolone (40 mg twice daily) and dexamethasone (4 mg twice daily)	Oseltamivir (75 mg twice daily), interferon alpha (4 mg twice daily)	Bilateral lid edema with right eye prominence, febrile, breathless, and hypoxic	Mucorales/un-specified		
Mekonnen et al.	2021	USA	Case report	M	60	1	Suspected	Severe (mechanical ventilation, ICU)	Yes	Yes	No	NR	Methylprednisolone (40 mg twice daily) and dexamethasone (40 mg twice daily)	Oseltamivir (75 mg twice daily), interferon alpha (4 mg twice daily)	Bilateral lid edema with right eye prominence, febrile, breathless, and hypoxic	Mucorales/un-specified	
Meshram et al.	2021	India	Case report (renal transplant recipients)	M	47; 25	2	Suspected	Mild	No	No	NR	NR	NR	NR	Swelling over the face and black nasal discharge (50%), fever, cough, and black expectoration (50%)	Mucorales/un-specified	
Mishra et al.	2020	India	Case series	M/F: 9/1	55.8	10	MIF: 9/1	Suspected	Mixed (n = 3); moderate (n = 6); severe (n = 1)	Yes	Yes	No	AKI	Dexamethasone	CCP	Proptosis, erythema and edema of the eye, orbital cellulitis, facial swelling, headache, proptosis, oedema of the extraocular muscles, orbital cellulitis and conjunctival chemosis	Yes
Moorothy et al.	2021	India	Case series	M/F: 1/4	54.6, 35–73 (mean, range)	17	M/F: 1/4	Suspected	62.2 Average age	Yes	Yes	No	CKD (20%)	Remdesivir (50%)	Eye pain, facial pain and nasal block	Sinusitis alone (n = 3), rhino-orbital (n = 6), rhino-orbital-cerebral (n = 5), rhino-cerebral (n = 3)	
Nehara et al.	2021	India	Case series	M/F: 1/4	62.2 Average age	5	M/F: 1/4	Suspected	62.2 Average age	Yes	Yes	No	Yes (20%)	Dexamethasone	Oxygen supplementation, intravenous meropenem, remdesivir (40%), subcutaneous enoxaparin, tablet azithromycin, severe headache, diminished vision, chemical, mild proptosis, complete ophthalmoplegia, blackish discharge from the nasal cavity, and black crust on the hard palate	Yes	

Notes:
- M: Male, F: Female
- NR: Not reported
- AKI: Acute kidney injury
- CCP: Convalescent plasma
- CKD: Chronic kidney disease
- NS: Not specified
| Pakdel et al. 2021 [53] | Iran | Cross-sectional | 15 | M: 8, F: 7 | Median age: 52 (14-71) | RT-PCR | Severe (34%) | Median: 7 (1-37) | Yes (87%) | Yes (46%) | Yes (13%) | No | Ketaocidosis (6%) | Dexamethasone (46%) | Yes (7%) | Unilateral periorbital pain and edema (73%), eyelid ptosis (73%), acute vision loss (73%), proptosis (73%), unilateral facial edema (60%), cranial nerve palsy (60%), headache (33%), fever (27%), nasal blockage (13%), and ear pain (7%) | Mixed (rhinobortal (47%); sino-orbital (33%), isolated orbital movement (13%) and others) | Yes | No | Yes | NS | |
|---|
| Pasero et al. 2020 [54] | Italy (renal transplant) | Case report | 1 | M 66 | RT-PCR | Critical (ICU) | 14 | No | Yes | No | No | Renal failure No | HCQ5, lopinavir, ritonavir | NS | NS | Yes | Yes | No | Rhizopus/Rhizopus species |
| Paudi et al. 2021 [55] | Brazil | Case report | 1 | F 50 | Suspected | Mild | 8 | Yes | No | No | No | No | Hydrocortisone/NS | Deep ulcerated lesion located at the center of the hard palate | Yes | No | Yes | Yes | Yes | Mucorales/unspecified |
| Placki et al. 2020 [56] | USA | Case report | 1 | M 49 | RT-PCR | Critical | 14 | No | No | No | No | No | Dexamethasone | Remdesivir, tocilizumab | No | No | Yes | No | Yes | Rhizopus/Rhizopus species |
| Rabagliati et al. 2021 [57] | Chile | Retrospective cohort | 1 | M 55 | Suspected | Critical (ICU) | Not specified | Yes | Yes | No | Yes | No | Atrial fibrillation | 812 mg prednisone equivalent | No | NS | No | No | No | Rhizopus/Rhizopus microsporum |
| Rao et al. 2021 [58] | India | Case report | 1 | M 66 | Suspected | NR | No | No | No | No | No | No | Systematic steroids | NS | NS | No | Yes | No | Fungal hyphae |
| Ravani et al. 2021 [59] | India | Retrospective cohort | 8 | NR | NR | RT-PCR | NR | 60 | Yes (100%) | NR | NR | NR | Dexamethasone | NR | Deminination of vision (46/60 in 91% of patients) and ophthalmoplegia (77%), orbital NR cellulitis (67%), pansinusitis (77%) | No | No | No | Yes | NS | Rhinoro-orbito-cerebral |
| Revanavar et al. 2021 [60] | India | Case report | 1 | F | NR | RT-PCR | Mild | Not specified | Yes | No | No | No | No | NR | NR | Left-sided facial pain, complete ptosis and fever, tenderness of all sinuses on left side, ophthalmoplegia (left eye), left eye visual acuity | NS | No | Yes | Yes | Rhizopus/Rhizopus species |
| Saldanha et al. 2021 [61] | India | Case report | 1 | F | 32 | RT-PCR | Not specified | Concurrent | Yes | No | No | No | No | NR | NR | Left eye complete ptosis and left facial pain, visual acuity (left eye) | NS | No | Yes | Yes | NS | Rhinoro-orbito-cerebral (n = 4), Mucorales (n = 2) |
| Sarkar et al. 2021 [62] | India | Case series | 6 | M: 4, F: 2 | 44 | RT-PCR | Critical (n = 6) | Concurrent | Yes | No | No | No | No | Ketaocidosis | Dexamethasone | Remdesivir (84%) | Visual acuity (100%) | Rhinoro-orbito-cerebral (n = 1) | Yes | Yes | No | NS |
| Satish et al. 2021 [63] | India | Case series | 11 | NR | NR | RT-PCR | Mixed (mild (n = 2); moderate (n = 3); severe (n = 4); asymptomatic (n = 2) | NR | Yes (100%) | Yes (50%) | No | Yes (16.6%) | Diabetic ketoacidosis (50%) | Intravenous methylprednisolone/dexamethasone/oral prednisolone (84%) | No | Pain, redness, and periocular swelling, drooping of eyelids, limitation of ocular movements, and painful loss of vision | Rhinoro-orbito-cerebral | Yes | No | Yes | NS |
| Sen et al. 2021 [64] | India | Retrospective cohort | 19 | M 65 ± 12 (range 46 to 73) years | RT-PCR | Severe | NR | Yes (100%) | Yes (50%) | No | Yes (16.6%) | Diabetic ketoacidosis (50%) | Intravenous methylprednisolone/dexamethasone/oral prednisolone (84%) | No | Pain, redness, and periocular swelling, drooping of eyelids, limitation of ocular movements, and painful loss of vision | Rhinoro-orbito-cerebral | Yes | No | Yes | NS | Mucorales/unspecified |
| | Gender | Age | Test | Disease Severity | Concomitant Conditions | Treatment | Neurological Signs | Infectious Agent |
|----|--------|-----|------|------------------|------------------------|-----------|-------------------|-----------------|
| 1 | F | 40 | RT-PCR | Mild | No | No | No | No | 8 mg/day | Remdesivir 200 mg on day 1 followed by 100 mg daily for 4 days, and IV levofloxacin (500 mg/day) | Bilateral visual loss, periorbital pain, and visual acuity | Rhinocerebral | No | No | No |
| 2 | M | 54 | RT-PCR | NR | Yes | No | No | No | 8 mg/day | Remdesivir 200 mg on day 1 followed by 100 mg daily for 4 days, IV levofloxacin (500 mg/day) | Left orbital pain and periorbital swelling together with progressive vision loss | Rhinocerebral | No | No | No |
| 3 | F | 24 | RT-PCR | Critical (ICU) | Concurrent | Yes | No | No | NA | Ketoacidosis, renal failure | Left lid swelling and maxillary hypoesthesia, left hypereemic conjunctiva, and an opaque cornea | Rhinocerebral | Yes | No | No | Lasiobacter (Abigailia) species |
| 4 | F | 33 | Suspected | Critical (ICU) | Concurrent | Yes | Yes | No | No | Ketoacidosis, renal failure | Remdesivir, CCP | Eye ptosis | Yes | No | No |
| 5 | M | 53 | RT-PCR | Critical (ICU) | Concurrent | No | No | No | Prednisolone Tocilizumab | Fungal pneumonia with effusion | Rhinocerebral | No | No | Yes | Rhizopus/Rhizopus microsporus |

CAD: coronary artery disease; DM: diabetes mellitus; ESRD: end-stage renal disease; F: female; HCQs: hydroxychloroquine; HTN: hypertension; ICU: intensive care unit; IV: intravenous; M: male; NR: not reported; NS: not specified; RT-PCR: reverse-transcriptase polymerase chain reaction; USA: United States of America. * No separate outcomes reported for mucormycosis (n = 28).
Table 2. Treatment details and patient outcomes.

Study (Author, Year)	Country	Treatment	Surgical Management	Patient Outcome *
Alekseyev et al. 2021 [31]	USA	Amphotericin B (LAmB 5 mg/kg/day), isavuconazole, and subsequently posaconazole	Yes	Lived
Arana et al. 2021 [32]	Spain	Amphotericin B (LAmB 5 mg/kg/day) together with isavuconazole 200 mg/8 h for 24 days	Yes (surgical debridement)	Lived
Ashour et al. 2021 [33]	Egypt	Amphotericin B	Yes (surgical debridement (n = 4))	Lived (67%), Died (33%)
Bayram et al. 2021 [34]	Turkey	Amphotericin B, voriconazole	Yes (all patients: endoscopic sinus surgery with extensive debridement)	Lived (36%), Died (64%)
Bellanger et al. 2021 [35]	France	Amphotericin B (LAmB 5 mg/kg/day)	No	Died
El-Kohly et al. 2021 * [38]	Egypt	Amphotericin B; voriconazole; posaconazole	Yes (endoscopic debridement (n = 27))	Lived (64%), Died (36%), Died (100%)
Evert et al. 2020 [70]	Germany	LAmB/isavuconazole	No	Died
Garg et al. 2021 [39]	India	Amphotericin B (LAmB 5 mg/kg/day)	No	Died
Hanley et al. 2020 [40]	UK	Amphotericin B (LAmB 400 mg/day)	Yes (no tracheostomy, and percutaneous endoscopic gastrostomy)	Lived
Junior et al. 2020 [37]	Brazil	Amphotericin B (LAmB 5 mg/kg/day)	No	Died
Kanwar et al. 2021 [42]	USA	Amphotericin B (LAmB 5 mg/kg/day)	No	Died
Kartini-Galough et al. 2021 [43]	Iran	Amphotericin B + posaconazole	Yes (endonasal endoscopic debridement of necrotic tissue, right eye exenteration)	Lived
Khan et al. 2021 [44]	USA	Amphotericin B (LAmB 5 mg/kg/day)	No	Died
Khan et al. 2020 [71]	India	Amphotericin B (LAmB 5 mg/kg/day)	No	Died
Krishna et al. 2021 [45]	UK	Caspofungin	No	Died
Krishna et al. 2021 [46]	India	Amphotericin B 300 mg/day, tobramycin and fluconazole	Yes (debridement)	Lived
Mehta et al. 2020 [48]	India	Amphotericin B	No	Died
Mekonnen et al. 2021. [49]	USA	Amphotericin B + caspofungin/posaconazole	Yes (sinus debridement)	Died
Meshram et al. 2021 [50]	India	Amphotericin B	Yes (maxillectomy)	Died
Mishra et al. 2021 [68]	India	Amphotericin B	Yes (all patients (mixed or any single surgery): functional endoscopic sinus surgery, endoscopic maxillectomy, local debridement)	Lived (50%), Died (40%), Lost to follow-up (10%)
Moorthy et al. 2021 [51]	India	Amphotericin B (5 mg/kg/day)	Yes (FESS (n = 17), maxillectomy(n = 11), exenteration (n = 11))	Died (35.29%)
Metha et al. 2021 [52]	India	Amphotericin B (LAmB 5 mg/kg/day), posaconazole	No	Lived (60%), Died (40%), Died (47%)
Pakdel et al. 2021 [53]	Iran	Amphotericin B (LAmB 5 mg/kg/day), oral posaconazole	Yes (sinus debridement (n = 12); orbital exenteration (n = 5); palatal debridement (n = 2))	Died
Pasero et al. 2020 [54]	Italy	Amphotericin B/posaconazole	No	Died
Pauli et al. 2021 [55]	Brazil	Amphotericin B	Yes (debridement)	Died
Placik et al. 2020 [56]	USA	Amphotericin B	Yes (resection)	Died
Rabagliati et al. 2021 [57]	Chile	Amphotericin B (LAmB)	No	Died
Rao et al. 2021 [58]	India	Amphotericin B (LAmB)	Yes (endoscopic sinus surgery)	NR
Authors	Country	Treatment	Surgery	Outcome
------------------	---------	-----------	--------------------------	---------
Ravani et al. 2021 [59]	India	Amphotericin B (LAmB 5 mg/kg/day)	Yes (sinus debridement; n = 18)	Lived (94%), Died (6%)
Revannavar et al. 2021 [60]	India	Amphotericin B	Yes (endoscopic sinus surgery)	Lived
Saldanha et al. 2021 [61]	India	Amphotericin B (25 mg/day)	Yes (endoscopic sinus surgery)	Lived
Sarkar et al. 2021 [62]	India	Amphotericin B	Yes (maxillectomy (n = 3), debridement (n = 1))	Died
Satish et al. 2021 [69]	India	Amphotericin B	Yes (all patients: surgical debridement)	No data
Sen et al. 2021 [63]	India	Amphotericin B (LAmB)+ voriconazole/posaconazole	Yes (exenteration (n = 2), sinus debridement (n = 3))	Lived
Vessi et al. 2021 [64]	Iran	Amphotericin B (4 mg/kg/day)	Yes (surgical debridement)	Died
Waizel-Haiat et al. 2021 [65]	Mexico	Amphotericin B	No	Died
Werthman-Ehrenreich et al. 2021 [66]	USA	Amphotericin B	Yes (sinus debridement)	Died
Zurl et al. 2021 [67]	Austria	No	No	Died

AMB: amphotericin B; IV: intravenous; LAmB: liposomal amphotericin B; NR: not reported; UK: United Kingdom; USA: United States of America. * No separate outcomes were reported for mucormycosis (n = 28).
4. Discussion

To the best of our knowledge, this is the most comprehensive and up-to-date evidence mapping aimed to explore the published and unpublished evidence on the clinical presentation, treatment modalities, and patient outcomes of CAM. The current body of evidence was based on the 41 studies that met our inclusion criteria and discussed the association of COVID-19 with mucormycosis.

Mucormycosis is a rare opportunistic infection, and COVID-19 patients are at risk of developing mucormycosis because of pre-compromised immune systems. A growing body of evidence supports that comorbidities (diabetes, transplantation, malignancies) and medications (steroids) make the patients more vulnerable to CAM [5–7]. A recent case report found an invasive pulmonary mucormycosis case in a patient after a short course of steroids [72]. Likewise, Pan et al. found mucormycosis in a patient with AIDS receiving short-term systemic steroids [73]. In our study, we found that COVID-19 patients with comorbidities had a higher occurrence of mucormycosis.

Around 50% of CAM cases in our study were reported from India. A possible reason for this could be the deadly COVID-19 delta variant wave infecting around half a million people every day in recent months and a high prevalence of diabetes mellitus in CAM patients [74]. Diabetes mellitus is a predisposing factor for the development of mucormycosis [75,76]. The potential mechanism behind this could be the aggravation of the inflammatory state due to hyperglycemia and activation of antiviral immunity [77]. The risk of developing CAM increases significantly in patients with diabetic ketoacidosis, where Mucorales use free iron levels in the serum for pathogenesis [78].

In our study, the number of male mucormycosis patients was twice the number of female patients. These findings are aligned with a previously published study by Roden et al. [79] that found mucormycosis in 65% of male patients.

Rhino-orbital and rhino-orbital-cerebral were the most common forms of mucormycosis observed in this study. In both forms of infection, the fungus invades the nasal mucosa and orbital wall and leads to the occurrence of symptoms such as facial pain, vision loss, proptosis, apoptosis, and ophthalmoplegia [80,81]. CAM patients who underwent both surgical and medical management had a better survival rate than those with medical management alone. Published studies from different parts of the world have also found better outcomes in mucormycosis patients who underwent combined surgical and medical management [82,83]. However, despite the best management of CAM patients, the overall mortality was high, suggesting the need for the early identification of cases.

Our study findings suggest that clinical practitioners (intensivists and their teams) should be alerted about the increased possibility of CAM in critically ill COVID-19 patients; therefore, they should act proactively and monitor for potential fungal and bacterial co-infections and secondary infections among the COVID-19 cohorts, especially the immunocompromised and diabetic patients [84]. Moreover, these findings call drug regulators and health systems, especially in low- and lower-middle-income countries, to implement strict policies for steroid stewardship.

4.1. Limitations

Like every study, this evidence mapping has few limitations. Firstly, we could not differentiate the outcome based on glycemic-controlled status due to the lack of information on the glycosylated hemoglobin value of the CAM patients with diabetes in the included studies. Secondly, there was variability in the definition of severity of COVID-19 in the included studies. Lastly, limited information (fungal species identified, RT-PCR result) in a few included studies was also a drawback.

4.2. Strengths

The major strength of this review was a large number of exhaustive literature searches in major databases, a protocol-oriented approach, most up-to-date evidence with sound
methodology, and the capture of each minute detail of 167 CAM patients to make this review a one-stop source of information for CAM.

5. Conclusions

This evidence mapping found a high incidence of CAM with a high mortality rate. Therefore, clinicians should cautiously use the steroids using the risk–benefit analysis approach. Optimal glycemic control and early identification of mucormycosis should be the priority to reduce the morbidity and mortality related to CAM.

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/ijerph181910340/s1, Table S1: PRISMA-ScR checklist, Table S2: Search strategy, Table S3: List of excluded articles.

Author Contributions: Conceptualization, S.H. and M.K.; methodology, S.H. and M.K.; formal analysis, S.H.; investigation, S.H. and H.B.; resources, M.K.; data curation, S.H. and H.B.; writing—original draft preparation, S.H.; writing—review and editing, S.H., H.B., A.R., J.K., A.P., S.S., R.L., A.K.N., M.K.; supervision, S.H. and M.K.; funding acquisition, M.K. All authors have read and agreed to the published version of the manuscript.

Funding: S.H. was supported by the Operational Program Research, Development and Education Project, Postdoc2MUNI (Nno. CZ.02.2.69/0.0/0.0/18_053/0016952). A.R., J.K., A.P., R.L. and M.K. were supported by the INTER-EXCELLENCE grant number LTC20031 toward an International Network for Evidence-based Research in Clinical Health Research in the Czech Republic. The work of A.R. was also supported by Masaryk University grants MUNI/IGA/1543/2020 and MUNI/A/1608/2020.

Institutional Review Board Statement: The study was exempted from ethical approval due to its observational nature and the use of publicly accessible data.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author (S.H. or M.K.) upon reasonable request.

Acknowledgments: This work is dedicated to the more than 3 million worldwide fatalities and their families who have fallen victim to COVID-19.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. MEDLINE® ALL <1946 to 8 June 2021> (Ovid).

#	Search String	No. of Results
1	exp Coronavirus/	77,269
2	exp Coronavirus Infections/	94,303
	(coronavirus* or corona virus* or OC43 or NL63 or 229E or HKU1 or HCoV* or ncov* or covid* or sars-cov* or sarscov* or Sars-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus* or “Kawasaki like paediatric inflammatory multisystem syndrome” or “Kawasaki like pediatric inflammatory multisystem syndrome” or “PIMS-TS” or “Kawa-COVID-19” or “MIS-C” or “multisystem inflammatory syndrome in children” or pediatric multisystem inflammatory disease).mp.	159,987
4	(or/1–3) and ((20191* or 202*).dp. or 20190101:20301231.(ep.).) (147001)	147,001
5	4 not (SARS or SARS-CoV or MERS or MERS-CoV or Middle East respiratory syndrome or camel * or dromedary* or equine or corona or coronal or covedence* or coveden or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCoV or zoonotic or avian influenza or H1N1 or H5N1 or IBV or H7N7 or coccidiosis*).mp.	54,231
6	(or pneumonia or covid* or coronavirus* or corona virus* or ncov* or 2019-ncov* or sars*).mp. or exp pneumonia/) and Wuhan.mp.	5278
	(2019-ncov or ncv or ncov19 or ncov 2019 or 2019-novel CoV or sars-cov2 or sars-cov-2 or sarscov2 or sars-cov-2 or SARS-2-nCoV or SARS-2-Cov or Sars-COV-19 or Sars-coronavirus2 or Sars 2 coronavirus* or Severe Acute Respiratory Syndrome-CoV-2 or SARS-like coronavirus* or coronavirus or 2019-nCoV or covid-19 or covid 2019 or ((nvel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus* or corona virus or Pandemic*2)) or ((covid or covid19 or covid 19 or SARS-CoV-2) and pandemic*2) or (coronavirus* and pneumonia*).mp.	144,923
	(COVID-19 or SARS-CoV-2).rx,px,ox,zn. or (COVID-19 or COVID-19 serotherapy or ORF7b protein, SARS-CoV-2 or ORF6 protein, SARS-CoV-2 or ORF8 protein, SARS-CoV-2 or pediatric multisystem inflammatory disease, COVID-19 related or envelope protein, SARS-CoV-2 or SARS-like coronavirus* or coronavirus or 2019-nCoV or covid-19 or covid 2019 or ((nvel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus* or corona virus or Pandemic*2)) or ((covid or covid19 or covid 19 or SARS-CoV-2) and pandemic*2) or (coronavirus* and pneumonia*).mp.	8460
8	SARS-CoV-2 or ORF7a protein, SARS-CoV-2 or spike protein, SARS-CoV-2 or ORF3a protein, SARS-CoV-2 or COVID-19 drug treatment or severe acute respiratory syndrome coronavirus 2 or membrane protein, SARS-CoV-2 or ORF1ab polyprotein, SARS-CoV-2 or nucleocapsid protein, Coronavirus or COVID-19 vaccine or COVID-19 diagnostic testing).os,ps,rs,rs.	3407
10. Ritchie, A.I.; Singanayagam, A. Immunosuppression for hyperinflammation in COVID-19: A double-edged sword? *Lancet* 2020, 395, 1111.

11. Chen, X.; Liao, B.; Cheng, L.; Peng, X.; Xu, X.; Li, Y.; Hu, T.; Li, J.; Zhou, X.; Ren, B. The microbial co-infection in COVID-19. *Appl. Microbiol. Biotechnol.* 2020, 1–9, doi:10.1007/s00253-020-10814-6.

12. Feldman, C.; Anderson, R. The role of co-infections and secondary infections in patients with COVID-19. *Pneumonia* 2021, 13, 1–15.

13. Abdoli, A. Helminths and COVID Co-Infections: A Neglected Critical Challenge. *ACS Pharmacol. Transl. Sci.* 2020, 3, 1039–1041.

14. Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. *J. Infect.* 2020, 81, 266–275.

15. El-Herte, R.I.; Baban, T.A.; Kanji, S.S. Mucormycosis: A review on environmental fungal spores and seasonal variation of human disease. *Adv. Infect. Dis.* 2012, 2, 76–81.

16. Ibrahim, A.S.; Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P. Pathogenesis of mucormycosis. *Clin. Infect. Dis.* 2012, 54, S16–S22.

17. Wali, U.; Balkhair, A.; Al-Mujaini, A. Cerebro-rhino orbital mucormycosis: An update. *J. Infect. Public Health* 2012, 5, 116–126.

18. Jeong, W.; Keigley, C.; Wolfe, R.; Lee, W.L.; Slavin, M.; Kong, D.C.; Chen, S.C.-A. The epidemiology and clinical manifestations of Mucormycosis: A systematic review and meta-analysis of case reports. *Clin. Microbiol. Infect.* 2019, 25, 26–34.

19. Petrikkos, G.; Skiai, A.; Lortholary, O.; Roilides, E.; Walsh, T.J.; Kontoyiannis, D.P. Epidemiology and clinical manifestations of mucormycosis. *Clin. Infect. Dis.* 2012, 54, S23–S34.

20. Centers for Disease Control and Prevention. Mucormycosis Statistics. Available online: https://www.cdc.gov/fungal/diseases/mucormycosis/statistics.html (accessed on 10 June 2021).

21. Kontoyiannis, D.P.; Yang, H.; Song, J.; Kelkar, S.S.; Yang, X.; Azie, N.; Harrington, R.; Fan, A.; Lee, E.; Spalding, J.R. Prevalence, clinical and economic burden of mucormycosis-related hospitalizations in the United States: A retrospective study. *BMC Infect. Dis.* 2016, 16, 1–6.

22. Heimann, S.M.; Vehreschild, M.J.; Cornely, O.A.; Heinz, W.J.; Grüner, B.; Silling, G.; Kessel, J.; Seidel, D.; Vehreschild, J.J. Healthcare burden of probable and proven invasive mucormycosis: A multi-centre cost-of-illness analysis of patients treated in tertiary care hospitals between 2003 and 2016. *J. Hosp. Infect.* 2019, 101, 339–346.

23. ‘Black Fungus’ Declared an Epidemic in 4 States, 1 UT. Available online: http://timesofindia.indiatimes.com/articleshow/82804720.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst (accessed on 10 June 2021).

24. Singh, A.K.; Singh, R.; Joshi, S.R.; Misra, A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. *Diabetes Metab. Syndr. Clin. Res. Rev.* 2021, 15, 102146–102146.

25. Pal, R.; Singh, B.; Bhadada, S.K.; Banerjee, M.; Bhogal, R.S.; Hage, N.; Kumar, A. COVID-19-associated mucormycosis: An updated systematic review of literature. *Mycoses* 2021, doi:10.1111/myc.13338.

26. Peters, M.; Godfrey, C.; McInerney, P.; Soares, C.B.; Khalil, H.; Parker, D. Methodology for JBI scoping reviews. In *The Joanna Briggs Institute Reviewers Manual* 2015; Joanna Briggs Institute: Adelaide, South Australia, 2015; pp. 3–24.

27. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Perters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. *Ann. Intern. Med.* 2018, 169, 467–473.

28. Hussain, S.; Baxi, H.; Riad, A.; Kulgarova, J.; Licenik, R.; Klugar, M. COVID-19 Associated Mucormycosis: Scoping Review Protocol. *medRxiv* 2020, doi:10.1101/2020.05.30.21258068.

29. Expert Search Coronavirus (Covid-19) 2019-nCoV on MEDLINE. 2020. Available online: https://tools.ovid.com/ovidtools/expertsearches.html (accessed on 9 June 2021).

30. Expert Search COVID-19 Embase 1974 to Present. 2020. Available online: https://tools.ovid.com/coronavirus/ (accessed on 9 June 2021).

31. Alekseyev, K.; Didenko, L.; Chaudhry, B. Rhinocerebral mucormycosis and COVID-19 pneumonia. *J. Med. Cases* 2021, 12, 85.

32. Arana, C.; Ramirez, R.E.C.; Xipell, M.; Casals, J.; Moreno, A.; Herrera, S.; Bodro, M.; Cofan, F.; Diekmann, F.; Esforzado, N. Mucormycosis associated with covid19 in two kidney transplant patients. *Transpl. Infect. Dis.* 2021, 23, e13652.

33. Ashour, M.M.; Abdelaziz, T.T.; Ashour, D.M.; Askoura, A.; Saleh, M.I.; Mahmoud, M.S. Imaging spectrum of acute invasive fungal rhino-orbital-cerebral sinusiitis in COVID-19 patients: A case series and a review of literature. *J. Neurol. Radiol.* 2021, 48, 319–324.

34. Bayram, N.; Oszaygili, C.; Sav, H.; Tekin, Y.; Gundogan, M.; Pangal, E.; Cieek, A.; Özcan, I. Susceptibility of severe COVID-19 patients to rhino-orbital-mucormycosis fungal infection in different clinical manifestations. *Ipn. J. Ophthalmonol.* 2021, 65, 515–525.

35. Bellanger, A.-P.; Navellou, J.-C.; Lepiller, Q.; Brion, A.; Brunel, A.-S.; Million, L.; Berceau, A. Mixed mold infection with Aspergillus fumigatus and Rhizopus microsporus in a severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) patient. *Infect. Dis. Nov.* 2021, 51, 633–635.

36. Dallalzadeh, L.O.; Ozzello, D.J.; Liu, C.Y.; Kikkawa, D.O.; Korn, B.S. Secondary infection with rhino-orbital cerebral mucormycosis associated with COVID-19. *Orbit* 2021, 1–4, doi:10.1080/01676830.2021.1903044.

37. Do Monte Junior, E.S.; Dos Santos, M.E.L.; Ribeiro, I.B.; de Oliveira Luz, G.; Baba, E.R.; Hirsch, B.S.; Funari, M.P.; de Moura, E.G.H. Rare and Fatal Gastrointestinal Mucormycosis (Zygomyces) in a COVID-19 Patient: A Case Report. *Clin. Endosc.* 2020, 53, 746–749.

38. El-Kholy, N.A.; Abd El-Fattah, A.M.; Khafagy, Y.W. Invasive fungal sinusiitis in post COVID-19 patients: A new clinical entity. *Laryngoscope* 2021, doi:10.1002/lary.29632.
47. Garg, D.; Muthu, V.; Sehgal, I.S.; Ramachandran, R.; Kaur, H.; Bhatta, A.; Puri, G.D.; Chakrabarti, A.; Agarwal, R. Coronavirus disease (COVID-19) associated mucormycosis (CAM): Case report and systematic review of literature. Mycopathologia 2021, 186, 289–298.

48. Hanley, B.; Naresh, K.; Roufossie, C.; Nicholson, A.G.; Weir, J.; Cooke, G.S.; Thursz, M.; Manousou, P.; Corbett, R.; Goldin, R.; et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: A post-mortem study. Lancet Microbe 2020, 1, e245–e53.

49. Johnson, A.K.; Ghazarian, Z.; Cendrowski, K.D.; Persichino, J.G. Pulmonary aspergillosis and mucormycosis in a patient with COVID-19. Med. Mycol. Case Rep. 2021, 32, 64–67.

50. Kanwar, A.; Jordan, A.; Olewiler, S.; Webberg, K.; Cortes, M.; Jackson, B.R. A fatal case of Rhizopus aszygosporus pneumonia following COVID-19. J. Fungi 2021, 7, 174.

51. Karimi-Galoughi, M.; Arastou, S.; Haseli, S. Fulminant mucormycosis complicating coronavirus disease 2019 (COVID-19). Int. Forum Allergy Rhinol. 2021, 11, 1029–1030.

52. Khatri, A.; Chang, K.-M.; Berlinrut, I.; Wallach, F. Mucormycosis after Coronavirus disease 2019 infection in a heart transplant recipient—Case report and review of literature. J. Med. Mycol. 2021, 31, 101125–101125.

53. Krishna, D.S.; Raj, H.; Kurup, P.; Juneja, M. Maxillofacial Infections in Covid-19 Era—Actuality or the Unforeseen: 2 Case Reports. Indian J. Otolaryngol. Head Neck Surg. 2021, 1–4, doi: 10.1007/s12070-021-02618-5

54. Krishna, V.; Morjaria, J.; Jalandari, R.; Omar, F.; Kaul, S. Autopic identification of disseminated mucormycosis in a young male presenting with cerebrovascular event, multi-organ dysfunction and COVID-19 infection. IDCases 2021, 25, e01172.

55. Maini, A.; Tomar, G.; Khanna, D.; Kini, V.; Mehta, H.; Bhagyasree, V. Sino-orbital mucormycosis in a COVID-19 patient: A case report. Int. J. Surg. Case Rep. 2021, 82, 105957.

56. Mehta, S.; Pandey, A. Rhino-orbital mucormycosis associated with COVID-19. Cureus 2020, 12, e10726.

57. Mekonnen, Z.K.; Ashraf, D.C.; Jankowski, T.; Grob, S.R.; Vagefi, M.R.; Kersten, R.C.; Simko, J.P.; Winn, B.J. Acute invasive rhino-orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthalmic Plast. Reconstr. Surg. 2021, 37, e40.

58. Meshram, H.S.; Kute, V.B.; Chauhan, S.; Desai, S. Mucormycosis in post-COVID-19 renal transplant patients: A lethal complication in follow-up. Transpl. Infect. Dis. 2021, 23, e13663.

59. Moorthy, A.; Gaikwad, R.; Krishna, S.; Hegde, R.; Kale, P.G.; Rao, P.S.; Haldipur, D.; Bonanthaya, K. SARS-CoV-2, Uncontrolled Diabetes and Corticosteroids—An Unholy Trinity in Invasive Fungal Infections of the Maxillofacial Region? A Retrospective, Multi-centric Analysis. J. Maxillofac. Oral Surg. 2021, 20, 418–425.

60. Nehara, H.R.; Puri, I.; Singh, V.; Ib, S.; Bishnoi, B.R.; Sirohi, P. Rhinocerebral mucormycosis in COVID-19 patient with diabetes a deadly trio: Case series from the north-western part of India. Indian J. Med Microbiol. 2021, 39, 380–383.

61. Pakdel, F.; Ahmadikia, K.; Salehi, M.; Tabari, A.; Jafari, R.; Mehrparvar, G.; Rezaei, Y.; Mehrparvar, G.; Rezaie, Y.; Mehrparvar, G.; et al. Mucormycosis in patients with COVID-19: A cross-sectional descriptive multicenter study from Iran. Mycoses 2021, 64, 1238–1252.

62. Pasero, D.; Sanna, S.; Liperi, C.; Piredda, D.; Branca, G.P.; Casadio, L.; Simeo, R.S.; Buselli, A.; Rizzo, D.; Bussu, F.; et al. A challenging complication following SARS-CoV-2 infection: A case of pulmonary mucormycosis. Infection 2020, 1–6, doi: 10.1007/s15010-020-01361-x

63. Pauli, M.A.; de Melo Pereira, L.; Monteiro, M.L.; de Camargo, A.R.; Rabelo, G.D. Painful palatal lesion in a COVID-19 patient. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 620–625.

64. Placik, D.A.; Taylor, W.L.; Wnuk, N.M. Bronchopleural fistula development in the setting of novel therapies for acute respiratory distress syndrome in SARS-CoV-2 pneumonia. Radiol. Case Rep. 2020, 15, 2378–2381.

65. Rabagliati, R.; Rodriguez, N.; Nuñez, C.; Huete, A.; Bravo, S.; Garcia, P. COVID-19–Associated Mold Infection in Critically Ill Patients, Chile. Emerg. Infect. Dis. 2021, 27, 1453.

66. Rao, R.; Shetty, A.; Nagesh, C. Orbital infarction syndrome secondary to rhino-orbital mucormycosis in a case of COVID-19: Clinico-radiological features. Indian J. Ophthalmol. 2021, 69, 1627–1630.

67. Ravanvi, S.A.; Agrawal, G.A.; Leuva, P.A.; Modi, P.H.; Amin, K.D. Rise of the phoenix: Mucormycosis in COVID-19 times. Indian J. Ophthalmol. 2021, 69, 1563–1568.

68. Revannavar, S.M.; Supriya, P.; Samaga, L.; Vineeth, V. COVID-19 triggering mucormycosis in a susceptible patient: A new phenomenon in the developing world? BMJ Case Rep. 2021, 14, e241663.

69. Saldanha, M.; Reddy, R.; Vincent, M.J. Of the article: Paranasal mucormycosis in COVID-19 patient. Indian J. Otolaryngol. Head Neck Surg. 2021, 1–4, doi: 10.1007/s10147-021-02574-0

70. Sarkar, S.; Gokhale, T.; Choudhury, S.S.; Deb, A.K. COVID-19 and orbital mucormycosis. Indian J. Ophthalmol. 2021, 69, 1002.

71. Sen, M.; Lahane, S.; Lahane, T.P.; Farekhi, R.; Honavar, S.G. Mucor in a viral land: A tale of two pathogens. Indian J. Ophthalmol. 2021, 69, 244.

72. Veisi, A.; Bagheri, A.; Eshghai, M.; Rikhtehgar, M.H.; Kanavi, M.R.; Farjad, R. Rhino-orbital mucormycosis during steroid therapy in COVID-19 patients: A case report. Eur. J. Ophthalmol. 2021, 11206721211009450, doi:10.1177/11206721211009450.

73. Waizel-Haiat, S.; Guerrero-Paz, J.A.; Sanchez-Hurtado, L.; Calleja-Alarcon, S.; Romero-Gutierrez, L. A case of fatal rhino-orbital mucormycosis associated with new onset diabetic ketoacidosis and COVID-19. Cureus 2021, 13, e13163.

74. Werthman-Ehrenreich, A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am. J. Emerg Med. 2021, 42, 264.e5–264.e8.
67. Zurl, C.; Hoenigl, M.; Schulz, E.; Hatzl, S.; Gorkiewicz, G.; Krause, R.; Eller, P.; Prattees, J. Autopsy Proven Pulmonary Mucormycosis Due to Rhizopus microsporus in a Critically Ill COVID-19 Patient with Underlying Hematological Malignancy. *J. Fungi* 2021, 7, 88.

68. Mishra, N.; Mutya, V.S.S.; Thomas, A.; Rai, G.; Reddy, B.; Mohanan, A.A. A case series of invasive mucormycosis in patients with COVID-19 infection. *Int. J. Otorhinolaryngol. Head Neck Surg*. 2021, 7, 867–870.

69. Satish, D.; Joy, D.; Ross, A. Basalubramanya. Mucormycosis co-infection associated with global COVID-19: A case series from India. *Int. J. Otorhinolaryngol. Head Neck Surg*. 2021, 7, 815–820.

70. Evert, K.; Dienenmann, T.; Brochhausen, C.; Lunz, D.; Lubnow, M.; Ritzka, M.; Keil, F.; Trummer, M.; Scheiter, A.; Salzberger, B.; et al. Autopsy findings after long-term treatment of COVID-19 patients with microbiological correlation. *Virchows Arch.* 2021, 479, 97–108.

71. Khan, N.; Gutierrez, C.G.; Martinez, D.V.; Proud, K.C. A case report of COVID-19 associated pulmonary mucormycosis. *Arch. Clin. Cases* 2021, 7, 46–51.

72. Hoang, K.; Abdo, T.; Reinersman, J.M.; Lu, R.; Higuita, N.I.A. A case of invasive pulmonary mucormycosis resulting from short courses of corticosteroids in a well-controlled diabetic patient. *Med. Mycol. Case Rep.* 2020, 29, 22–24.

73. Pan, A.S.; Shrith, L. Mucormycosis in a patient with AIDS receiving systemic steroids. *J. Am. Osteopath. Assoc.* 2013, 113, 708–711.

74. India Accounts for 1 in 3 New Covid Cases Being Recorded. Available online: https://www.cnbc.com/2021/05/03/india-covid-crisis-charts-show-the-severity-of-the-second-wave.html (accessed on 10 June 2021).

75. Corzo-León, D.E.; Chora-Hernández, L.D.; Rodríguez-Zulueta, A.P.; Walsh, T.J. Diabetes mellitus as the major risk factor for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases. *Med. Mycol.* 2018, 56, 29–43.

76. Erenner S. Diabetes, infection risk and COVID-19. *Mol. Metabolism.* 2020, 39, 101044.

77. Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. *Cytokine* 2016, 86, 100–109.

78. Morales-Franco, B.; Nava-Villalba, M.; Medina-Guerrero, E.O.; Sánchez-Nuño, Y.A.; Davila-Villa, P.; Anaya-Ambriz, E.J.; Charles-Niño, C.L. Host-Pathogen Molecular Factors Contribute to the Pathogenesis of Rhizopus spp. in Diabetes Mellitus. *Curr. Trop. Med. Rep.* 2021, 8, 6–17.

79. Roden, M.M.; Zaatous, T.E.; Buchanan, W.L.; Knudsen, T.A.; Sarkisova, T.A.; Schaufele, R.L.; Sein, M.; Sein, T.; Chiu, C.C.; Chu, J.H.; et al. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. *Clin. Infect. Dis.* 2005, 41, 634–653.

80. Üğürli, K.; Selim, S.; Kopar, A.; Songu, M. Rhino-orbital mucormycosis: Clinical findings and treatment outcomes of four cases. *Turk. J. Ophthalmol.* 2015, 45, 169.

81. Rhino-Orbital-Cerebral Mucormycosis. Available online: https://eyewiki.aao.org/Rhino-Orbital-Cerebral_Mucormycosis (accessed on 10 June 2021).

82. Patel, A.; Kaur, H.; Xess, I.; Michael, J.; Savio, J.; Rudramurthy, S.; Singh, R.; Shastri, P.; Umabala, P.; Sardana, R.; et al. A multi-centre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India. *Clin. Microbiol. Infect.* 2020, 26, 944.e9–944.e15.

83. Skiaa, A.; Lass-Floerl, C.; Klimko, N.; Ibrahim, A.; Roilides, E.; Petrikkos, G. Challenges in the diagnosis and treatment of mucormycosis. *Med. Mycol.* 2018, 56, 593–5101.

84. Characterization of Fungal Infections in COVID-19 Infected and Mechanically Ventilated Patients in ICU (MY-CO-VID). Available online: https://clinicaltrials.gov/ct2/show/NCT04368221 (accessed on 25 June 2021).