RESEARCH ARTICLE

INFLUENCE OF WATER CONTENT ON SHEAR STRENGTH OF FINE SOILS AT HOÛÉYOGBÉ IN BENIN

Koffi Judicaël. Agbelele¹,², Valéry Doko¹, Sena Peace Hounkpé³ and Gérard Degan²

1. Laboratory of Applied Energetics and Mechanics (LEMA), EPAC, UAC, 01 BP 2009 Cotonou, Benin.
2. National University of Science Technology Engineering and Mathematics, Abomey, Benin.
3. Laboratory of Water Technical Sciences, University of Abomey-Calavi, Benin.

Abstract

The phenomenon of shrinkage and swelling of fine soils is the cause of several disorders on the structures. Researchers are mainly interested in designing economical foundations that can cope with settlement and swelling movements in these soils. The objective of this study is to study the variation in the permissible stress of fine soils in the locality of Houéyogbé in south-western Benin as a function of moisture content. To accomplish this, we conducted several physical and direct shear tests on fine soil samples collected in the study area, the results of which were used to assess the influence of moisture content. The study of the variation in shear strength of these soils shows that the allowable stress decreases with increasing moisture content. It is therefore imperative to take this parameter into account when dimensioning infrastructures built on these soils.

Introduction:

Shrinkage and swelling in fine soils is manifested by a large variation in moisture content. These large variations weaken the shear strength of these Z.-S. HONG and al. soils (2013). In Benin, according to Judicaël AGBELELE Kofï and al. (2016), these soils are found in the Lama region. The examples of disorders related to the presence of swelling clays are numerous and varied (Y. KIKI (2004), V. GBAGUIDI and al. 2010). Because they are saturated or not, their shear strength varies. Z.-S. HONG and al. (2013) noted a decrease in the internal angle of friction. In addition, Renonet Karka BOZABE (2017), Matsushi and Matsukura (2006), indicated that the increase in water content leads to a decrease in cohesion. Incorrect estimation of this strength results in excessive settlement and/or soil failure during construction. It is important to be able to assess the variation in soil shear strength as a function of soil wetting for a given mesh size. The objective of this study is therefore to evaluate the variations in the breaking stress of the same soil as a function of the water content. Understanding these variations will make it possible to apprehend the particularities of these soils and to be able to easily indicate the ideal admissible stress for the dimensioning of structures for their good performance.

Materials and Method:

Presentation of the Study Area:

Benin is a sub-Saharan country located in West Africa. It is subdivided into 12 departments and has 77 communes. Several of these communes located in the southern median zone have swelling soils. The samples were taken in the...
comme de Houéyogbé in the western depression of the Lama. We proceeded to the geotechnical analysis of forty-eight (48) intact samples taken by coring on the sites of our study area at a rate of twenty-four (24) per sampling point and six (6) per depth (0.50m to 1.00m; 1.00m to 2.00m and 2.00m to 3.00m from the soil surface).

**Soil characterization:**
Soil characterization was carried out using geotechnical tests for physical and mechanical identification. The granulometric analysis test by sieving and sedimentation (NF P 94-056), the granulometric analysis by sedimentation (NF P 94-057), the Atterberg limit determination test (NF P94-051) and the specific weight determination test (NF P 94-054) enabled us to identify the nature of the soils in place.

**Moisture Content Variation and Direct Shear Test Protocols:**
The humidification of the samples was simulated in the laboratory using the free swelling test with an oedometer (Standard XP P94.091) without loading.

**Test description:**
It was decided for the different tests to vary the water content 6 times by 5%. It will allow to go from 20% of initial water content to 50% of theoretical water content for the different soil samples. Thanks to the dry density (NF P 94-054) and the NF P 94-050 standard, the quantities of water necessary for the adaptation of the desired hydrous state have been estimated.

For each target moisture content several test specimens were wetted in accordance with Standard XP P94.091. Each specimen was installed in the oedometer and humidified with the quantity of water previously determined and increased by 5% to compensate for losses due to the absorption of the various constituent elements of the cell.

The evolution of the one-dimensional swelling is measured with displacement sensors at 1/1000 of a mm. The measurements are recorded manually at increasing time intervals until the process is stabilized.

Once the process was completed, the water content of the moistened material was determined using a test tube. The other specimens were used to carry out direct shear tests according to standard NF P 94-071-1.

Each sample after moistening is prepared for direct shearing at the Casagrande box.

Extraction of the sample from the oedometer cell
Study materials:
The material used is that of geotechnical tests essentially, we note the oedometric cell and the non-drained shear apparatus.

Results and Discussions: -
Results of physical characterization tests:
The results of the identification tests allowed us to characterize the soils of the study sites, to assess their nature and their behavior.

The results of the particle size analysis tests by sieving and by sedimentation according to the standards (NF P 94-056) (NF P 94-057) are presented in the graph below.
These results allowed us to classify the soil according to the US Department of Agriculture (USDA) soil-texture triangle classification.

Table 1: Soil classification of study sites using the US Department of Agriculture (USDA) soil-texture triangle abacus.

| Depths     | Localities              |
|------------|-------------------------|
| 0,00-0,50  | Tohonou                 |
| 0,50-1,00  | Gbahossoué              |
| 1,00-2,00  | Clay                    |
| 2,00-3,00  | Sandy-clay silt         |

This classification of these soils has been confirmed by the results of additional identification tests, namely Atterberg limits and percentage of organic matter, which are shown in the graph 2.
Table 2 below summarizes the classification of the soils of Tohonou and Gbahossoué according to the classification of Snethen (1980).

**Table 2:** Soil classification of study sites based on Snethen (1980) classification.

| Sites      | Depths       | IP      | Snethen classification (1980) |
|------------|--------------|---------|-------------------------------|
| Tohonou    | 0,00 – 0,50m | 47,85   | High swelling                 |
|            | 0,50 – 1,00m | 47,92   |                               |
|            | 1,00 – 2,00m | 36,69   |                               |
|            | 2,00 – 3,00m | 37,91   |                               |
| Gbahossoué | 0,00 – 0,50m | 73      | Very high swelling            |
|            | 0,50 – 1,00m | 73      |                               |
|            | 1,00 – 2,00m | 80,4    |                               |
|            | 2,00 – 3,00m | 57      |                               |

The soils at the two locations studied are therefore fine clay or silt soils with high swelling potential according to Snethen’s (1980) classification.

**Results of direct shear tests:-**
The results of the unconsolidated and undrained shear tests of the soil samples before, during and after the swelling are shown in the following figures:

**Graph 3:** Cohesion variation during the swelling of the Tohonou soils.
Graph 4: Variation of cohesion during the swelling of the Gbahossoué soils.

As the suction increases within the same sample (decrease in moisture content through the drying path), the material becomes more and more resistant for clay soils and has a higher cohesion and angle of friction. Khaled Boussaid (2005), F.L. Pellet (2013), Tatsuya Ishikawa (2016), think that this decrease in cohesion by increasing the amount of water in the soil can be explained by the fact that as the water content increases, the distance between clay particles becomes greater and the electrostatic and electromagnetic attractions decrease. Muawia Dafalla (2013) and Dr. Thillai Backiam (2019) reached the same conclusions.

The other parameter from the shear test that changes during wetting is the internal angle of friction.

Graph 4: Variation of the angle of friction during the swelling of the Tohonou soils.
Graph 5: Variation of the angle of friction during the swelling of the Gbahossoué soils. The decrease in the angle of friction with the increase in water content reflects the increase in the lubricity of the clay particles. Such results of variations in intrinsic soil parameters are confirmed by the work of Brendan C. O’Kelly (2013) and Badee Alshameri (2017).

Effect of moisture content on the shear strength of Houéyogbé clay soils:
By applying the method of calculation of the bearing capacity of Terzaghi (1943) on the results of previous shearing’s, we notice a variation in the resistance of the Houéyogbé soils.

Graph 6: Evolution of the permissible stress during the swelling of the Tohonou soils.
Graph 7: Evolution of the permissible stress during the swelling of Gbahossoué soils.

Through graphs 6 and 7 we can see that the allowable stress drops with increasing water content for all our sites and at all depths. Similar results were obliterated by, Yujie Wei and al. (2019), Kristýna Bláhová (2013), Rohit Ghosh (2013). When designing a structure, an engineer is always on the side of safety and will have to take into account the worst-case scenario. In today’s context, the worst case is the final swollen state of the ground with the lowest permissible stress.

Conclusion:
The study of the variation in allowable stress in the soils of Tohonou and Gbahossoué reveals that the allowable stress decreases with increasing moisture content. This decrease in allowable stress is due to the variation in the angle of internal friction and cohesion. It can be explained by the fact that during swelling, water penetrates into the interfoliar space of the clay structural units. The various tetrahedral and octahedral layers move away from each other, thus reducing internal friction. Together, this vertical movement of the various tetrahedral and octahedral layers causes the soil to swell and reduces the cohesive forces of the particles and, by analogy, those of the soil.

References:
1. Afnor (1996) NF P 94-054, Determination of the density of solid grains. 17p.
2. Afnor (1996) NF P 94-056. Particle size analysis of a soil - Dry sieving method afterwards. 15p. Afnor (1996) NF P 94-057. Granulometric analysis of a soil - Sedimentation method. 17p.
3. Afnor (1996) NF P94-05, Determination of Atterberg limits - Liquidity limit at the cup - Plasticity limit at the roll.
4. Afnor (1998) NF P 94-068. Measurement of the methylene blue adsorption capacity of a soil or rocky material. 8p
5. Anor (1996) XP P94.091 Oedometer swelling test - Determination of deformations by loading several specimens.
6. Badee Alshameri, Aziman Madun, Ismail BinHj.Bakar(2017), Assessment on the Effect of Fine Content and Moisture Content Towards Shear Strength, Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 48 No. 4, December2017
7. Brendan C. O'Kelly, (2013), Undrained shear strength–water content relationship for sewage sludge, ICE Proceedings Geotechnical Engineering 166(6):576-588, DOI: 10.13140/2.1.4489.1849
8. F.L. Pellet, M. Keshavarz, M. Boulon (2013), Influence of humidity conditions on shear strength of clay rock discontinuities, Engineering Geology Volume 157, 8 May 2013, Pages 33-38 https://doi.org/10.1016/j.enggeo.2013.02.002.
9. Gbaguidi,VS Zevounou, C Tankpinou, KY Hendrix, K Bolle,A.(2011).Studyofthephenomenon of swelling of clay soils in the coastal sedimentary basin in Benin. Journal de la Recherche Scientifique de l'Universite de Lome. 12.10.4314/jrsul.v12i2.68048.
10. Khaled Boussaid (2005), Sol intermédiaire pour la modélisation physique: application aux fondations superficielles, PhD thesis, Ecole centrale de Nantes, 299p.
11. Koffi Judicaël AGBELELE, Gérard Léopold GBAGUIDI ALSSE, Abalo P’KLA and Gérard DEGAN. "Physico-mechanical characterization of the clay soils of the Issaba depression in South-East Benin". Afrique Science, Vol.12, N°2 (2016), 1 March 2016, http://www.afriquescience.info/document.php?id=6079.ISSN 1813-548X.
12. Kristýna Bláhová, Lenka Ševelová, Pavla Pilařová, (2013), Influence of water content on the shear strength parameters of clayey soil in relation to stability analysis of a hillside in Brno region, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61(6):1583-1588 · DOI: 10.11118/actaun201361061583
13. M. Thillai Backiam et B. Jeyanth, (2019), Effect of Moisture Content on Shear Strength of the Stabilized Soil, International Journal of Engineering Research & Technology, December 2019
14. Matsushi, Yuki & Hattanji, Tsuyoshi & Matsukura, Yukinori. (2006). Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology. 76. 92-108. 10.1016/j.geomorph.2005.10.003.
15. Muawia Dafalla (2013), Effects of Clay and Moisture Content on Direct Shear Tests for Clay-Sand Mixtures, Research Article | Open Access Volume, 2013, Article ID 562726, 8 pages, https://doi.org/10.1155/2013/562726
16. Renonet Karka BOZABE, Bruno BASSA, Adoum WAIBAYE, koïna RODOUMTA (2017) Measurement of shearstrengthparametersfortheevaluationofthebearingcapacityoffractureofsaturatedclaysoils. Applied and Engineering Sciences Cames 2017 - Published Online 2017 - http://publication.lecam.es/ Vol. 2(1), pp. 22-28, Online July 2017
17. Rohit Ghosh (2012), Effect of soil moisture in the analysis of undrained shear strength of compacted clayey soil. Journal of Civil Engineering and Construction Technology Vol.4(1), pp.23-31, January 2013
18. Snethen D.R., (1980), Characterization of expansive soils using soil suction data. Proceeding 4 th I.C.E.S. Denver. p.54-75.
19. Tatsuya Ishikawa, Shinji Fuku, Takahisa Nakamura, Yoshitsugu Momoya, and Tetsuya Tokoro (2016), Influence of Water Content on Shear Behavior of Unsaturated Fouled Ballast, Procedia Engineering Volume 143, 2016, Pages 268–275 Advances in Transportation Geotechnics 3. The 3rd International Conference on Transportation Geotechnics. Doi: 10.1016/j.proeng.2016.06.034
20. Terzaghi, K. (1943), Theoretical Soil Mechanics. Wiley, New York. http://dx.doi.org/10.1002/9780470172766
21. Yujie Wei, Xinliang Wu, Jinwen Xia, et all, (2019), The effect of water content on the shear strength characteristics of granitic soils in South China, Soil and Tillage Research Volume 187, April 2019, Pages 50-59
22. Yvette S. T. KIKI, (2004) - Contribution to the development of Soil Stabilization Methods: application to lama clay soils (Onigbolo, Benin). Doctoral thesis of 3rd cycle of the Ecole Supérieure Polytechnique de THIES.
23. Z.-S. HONG, X. BIAN, Y.-J. CUI, Y.-F. GAO, and L.-L. ZENG (2013), Effect of initial water content on undrained shear behaviour of reconstituted clays, Géotechnique ISSN 0016-8505 E-ISSN 1751-7656 Volume 63 Issue 6, May 2013, pp. 441-450.