Clinical utility of RASSF1A methylation in human malignancies

A M Grawenda¹ and E O'Neill*.*¹

¹CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK

The high frequency of RASSF1A methylation has been noted in a vast number of patients in a broad spectrum of malignancies, suggesting that RASSF1A inactivation is associated with cancer pathogenesis. However, whether this recurrent incidence of RASSF1A hypermethylation in human malignancies and its association with more aggressive tumour phenotype is a frequent event across different cancer types has not yet been discussed. In this review, we interrogated existing evidence for association of RASSF1A hypermethylation with clinicopathological characteristics that can indicate more invasive lesions.

One of the greatest challenges facing modern oncology is the development of biomarkers that will improve prognostication as well as prediction for the use of targeted therapies. Adequate biomarkers that define the molecular complexity of cancer could improve both diagnosis and treatment, leading to significant advances in cancer patient care. It has long been envisioned that such biomarkers will help distinguish between indolent and aggressive cancers which, in an advent of improved cancer screening, will become increasingly important with greater success in identification of earlier low-grade tumours. Molecular biomarkers that enable the sensing of malignant transformation and cancer progression will undoubtedly have strong potential as prognostic biomarkers and could lead to improvements in cancer screening and management strategies for cancer patients. However, surprisingly few such biomarkers are currently available or are in development following solid clinical confirmation. Here we review the clinical evidence for one strong emerging candidate biomarker, RASSF1A, that has been implicated across all major solid tumours as a prognostic marker for poor survival and is showing signs of predictive power to certain treatments (Hesson et al, 2007). Interestingly, given the current concentration on screening of patients for genomic mutations, this is an epigenetic event indicating the potential for more comprehensive analysis of patient material in providing biomarker delivery.

RASSF1A is one of the most frequently epigenetically inactivated tumour-suppressor genes in sporadic human malignancies (Donninger et al, 2007; Hesson et al, 2007; Van der Weyden and Adams, 2007). As a component of key cancer pathways, namely Ras/P13K/AKT, Ras/RAF/MEK/ERK and Hippo pathways, inactivation of RASSF1A is an important factor contributing to pathogenesis and progression of solid tumours (Guo et al, 2007; Van der Weyden and Adams, 2007). Originally discovered in the search for a tumour suppressor on chromosome 3p21, subsequent analysis found that epigenetic inactivation of the RASSF1 promoter region by DNA methylation was more widespread in lung cancer than loss of heterozygosity (Kok et al, 1987; Dammann et al, 2000). Methylation of the RASSF1A gene is rare in normal tissues, whereas the frequency of methyl-cytosine in the promoter spanning CpG island increases in tumour tissue and is one of the highest described, leading to multiple correlations of the biomarker with increased risk of lung cancer (Donninger et al, 2007).

High frequencies of RASSF1A promoter ‘hypermethylation’ have subsequently been reported in a number of different malignancies. RASSF1A hypermethylation frequency ranges up to 99% in tumours compared with 0% in normal surrounding tissue, with the highest frequencies of up to 88, 95 and 99% being reported in lung, breast and prostate cancers, respectively (reviewed in Donninger et al, 2007). The high frequency of RASSF1A promoter methylation has also been associated with cancer pathogenesis and more aggressive clinical phenotype. Additionally, a number of studies have successfully demonstrated that RASSF1A methylation status can be derived from cell-free circulating tumour DNA (ctDNA; Wang et al, 2007; Chan et al, 2008; Göbel et al, 2011; Ponomaryova et al, 2013). ctDNA offers an alternative diagnostic material for clinical use as it is more readily accessible for analysis than tumour material. Together, RASSF1A methylation status holds a strong potential for clinical utility as an attractive biomarker for cancer risk and prognosis.

For the purpose of this review, we selected studies with cohort sizes of ≥ 50 patients which reported any clinicopathological

Keywords: RASSF1A; hippo pathway; gene methylation; cancer; biomarker
features associated with RASSF1A methylation. We categorised different clinicopathological features such as (i) cancer risk (assessed in case–control studies only), (ii) advanced stage and/or grade, (iii) local recurrence or distal metastasis, (iv) poor overall survival and (v) poor disease-free survival. Up until December 2014, 76 studies in 11 different cancer types, inclusive of 8 meta-analyses, reported clinical significance of RASSF1A promoter hypermethylation (Table 1).

BREAST CANCER

A total of 8 individual reports and 1 meta-analysis of 1759 breast cancer patients lend strong support to RASSF1A promoter hypermethylation involvement in the tumourogenesis of breast cancer (Shinozaki et al, 2005; Bagadi et al, 2008; Euhus et al, 2008; Karray-Chouayekh et al, 2010; Buhmeida et al, 2011; Göbel et al, 2011; Jiang et al, 2012; Wang et al, 2012; Xu et al, 2012; Stuopelytę et al, 2013; Hagrass et al, 2014). The study of tumour-suppressor gene methylation frequency, including RASSF1A, in benign and malignant tissues of 69 breast cancer patients and breast tissues of 95 unaffected women by Euhus et al (2008), demonstrated that promoter methylation of RASSF1A is the most frequent among all tumour-suppressor genes tested and correlates with increased breast cancer risk (odds ratio (OR) 5.28), indicating that assessment of RASSF1A promoter methylation in benign tissues could improve breast cancer risk stratification.

Metastasis is a primary cause of death in around 90% of cancer patients (Mehlen and Puisieux, 2006), therefore it is of great importance to identify clinically relevant biomarkers that can identify groups of patients with high risk of metastatic disease. Strikingly, RASSF1A hypermethylation is strongly associated with poor prognosis and adverse cancer outcome in 7 individual studies and one meta-analysis of 1795 cases. Specifically, breast tumours with inactivated RASSF1A associated with advanced stage (Karray-Chouayekh et al, 2010; Hagrass et al, 2014), lymph node metastasis (Bagadi et al, 2008; Hagrass et al, 2014), higher risk of recurrence (Jiang et al, 2012), shorter progression-free survival (Buhmeida et al, 2011; Göbel et al, 2011; Xu et al, 2012) and poor overall survival (Karray-Chouayekh et al, 2010; Göbel et al, 2011; Jiang et al, 2012; Wang et al, 2012; Xu et al, 2012). Together, this evidence strongly suggests that epigenetic inactivation of the RASSF1A gene is a critical event in progression of breast cancer and that RASSF1A promoter methylation could serve as a biomarker for more aggressive breast tumours with high risk of metastasis. Additionally, evidence exists suggesting that RASSF1A methylation could be utilised in the clinic for monitoring response to adjuvant therapy, whereby depletion of RASSF1A methylation in ctDNA has been associated with good response to adjuvant regimens (Fiegé et al, 2005; Avraham et al, 2012).

Oestrogen receptor (ER) status is one of the most important prognostic factors in breast cancer, whereby ER-positive tumours are considered less aggressive (Reis-Filho and Pusztai, 2011). Interestingly, a study of 193 breast cancer patients by Xu et al (2012), which reported association of RASSF1A methylation with poor progression-free and overall survival, demonstrated that higher median RASSF1A methylation was observed in ER- and progesterone receptor (PR)-positive tumours. Similarly, in a study of 72 breast cancer patients Stuopelytę et al (2013) reported that RASSF1A methylation is more frequent in less aggressive, ER-positive tumours of low grade and with low proliferative potential. The prevalence of RASSF1A hypermethylation in hormone receptor-positive tumours was also reported in relatively larger breast cancer studies of 151 and 765 patients (Shinozaki et al, 2005; Cho et al, 2012); however, no clinical associations that would indicate more aggressive phenotype in tumours with hypermethylated RASSF1A were found in these patient cohorts. Inactivation of RASSF1A and its association with more aggressive phenotype is not restricted to hormone receptor-positive breast tumours. In a study of 120 patients, Hagrass et al (2014) reported that RASSF1A methylation associates with invasive carcinoma, advanced stage and lymph node metastasis in ER-, PR- and HER2-negative breast tumours. Therefore, further investigation in much larger patient cohorts is needed to better understand the possible interaction of RASSF1A inactivation with hormone receptor status and prognosis. Taken together, the body of evidence gives strong support to the hypothesis that inactivation of RASSF1A in breast tumours leads to more aggressive phenotype, likely independent of hormone receptor status, and it can be speculated that RASSF1A hypermethylation could identify a subgroup of ER-positive breast cancer patients with more aggressive tumours with a high risk of metastasis.

LUNG CANCER

Apparent correlation of RASSF1A methylation with clinical characteristics of invasive tumours is also evident in lung cancer (Table 1). Association of high levels of RASSF1A promoter methylation with cancer risk has been demonstrated in two independent clinical studies (Hsu et al, 2007; Li et al, 2012) and one meta-analysis of 2008 cases (Huang et al, 2014). RASSF1A methylation associates with elevated risk of lung cancer with reported OR ranging from 7.5, in a study of 56 lung cancer cases and 52 healthy controls, through OR 9.9 in a study of 63 non-small cell lung cancer patients and 36 controls, to OR 16.2 reported in a meta-analysis of 2008 cases and 1239 controls (Hsu et al, 2007; Li et al, 2012; Huang et al, 2014).

Lung tumours with hypermethylated RASSF1A methylation are poorly differentiated (Tomizawa et al, 2002; Wang et al, 2007) and associate with advanced stage (Wang et al, 2007; Lee et al, 2012) and local recurrence (Tomizawa et al, 2002; Endoh et al, 2003; Kubo et al, 2009; Buckingham et al, 2010). Similarly to breast cancer, a strong body of evidence supports an association of RASSF1A hypermethylation with adverse outcome of lung cancer, whereby 8 independent studies (Burbee et al, 2001; Kim et al, 2003a, 2003b; Wang et al, 2004; Fischer et al, 2007; Yanagawa et al, 2007; De Fraipont et al, 2012) and a meta-analysis of a total of 2802 lung cancer patients (Wang et al, 2011) demonstrate significantly shorter overall survival in those patients whose tumours had inactivated RASSF1A by promoter methylation. Additionally, poor progression-free survival of patients with hypermethylated RASSF1A was demonstrated in two independent studies of non-small cell lung cancer patients (De Fraipont et al, 2012; Ko et al, 2013).

Although some studies included more aggressive small cell lung carcinomas (Wang et al, 2007; Kubo et al, 2009), the majority of reports were wholly conducted in non-small cell lung carcinoma (NSCLC) specimens (Burbee et al, 2001; Tomizawa et al, 2002; Endoh et al, 2003; Kim et al, 2003a, 2003b; Wang et al, 2004, 2011; Yanagawa et al, 2007; Buckingham et al, 2010; Ko et al, 2013). Therefore, it could be speculated that RASSF1A methylation may be a good predictor of non-small cell lung cancer outcome as it could contribute to identification of a subset of more aggressive tumours that progress to metastatic disease. Intriguingly, RASSF1A methylation has been reported as a good predictor of response to chemotherapy, whereby Fischer et al (2007) reported in the study of 92 NSCLC patients treated with gemcitabine that RASSF1A hypermethylation is a good predictor of overall survival, as those patients who demonstrated partial response to the administered chemotherapy and had tumours with hypermethylated RASSF1A...
Cancer type	Cohort size	Risk	Advanced stage and/or high grade	Local recurrence or distal metastasis	Poor overall survival	Poor disease-free survival	Other	Reference	
Bladder cancer	55	•	•	•	•			Lee et al, 2001	
	98	•	•	•	•			Maruyama et al, 2001	
	58	•	•	•	•			Jamalaite et al, 2008	
	543*	•	•	•	•			Gao et al, 2012	
	101	•	•	•	•			Ha et al, 2012	
	115	•	•	•	•			Kim et al, 2012	
	64	•	•	•	•			Meng et al, 2012	
Brain cancer	63	•	•	•	•			Hesson et al, 2004	
	56	•	•	•	•			Yang et al, 2004	
	52	•	•	•	•			Qian et al, 2005	
	71	•	•	•	•			Stutterheim et al, 2012	
Breast cancer	69	•	•	•	•			Euhus et al, 2008	
	54	•	•	•	•			Bagadi et al, 2008	
	78	•	•	•	•			Karray-Chouayekh et al, 2010	
	100	•	•	•	•			Buhmeida et al, 2011	
	428	•	•	•	•			Göbel et al, 2011	
	1795*	•	•	•	•			Jiang et al, 2012	
	65	•	•	•	•			Wang et al, 2012	
	193	•	•	•	•			ER/PR + ve tumours	Xu et al, 2012
	120	•	•	•	•			ER/PR/HER2 – ve tumours	Hagrass et al, 2014
Gastrointestinal cancer	63	•	•	•	•			Chan et al, 2008	
	97	•	•	•	•			Honda et al, 2008	
	92	•	•	•	•			Guo et al, 2009	
	56	•	•	•	•			Ara et al, 2010	
	124	•	•	•	•			Mao et al, 2011	
	141	•	•	•	•			Yao et al, 2012	
	62	•	•	•	•			Sinha et al, 2013	
	228	•	•	•	•			Zhou et al, 2013	
	74	•	•	•	•			Honda et al, 2013	
	1205*	•	•	•	•			Li et al, 2014	
	1215*	•	•	•	•			Shi et al, 2014	
	630*	•	•	•	•			Wang et al, 2014a	
	1505*	•	•	•	•			Wang et al, 2014b	
Gynecological cancer	70	•	•	•	•			Jo et al, 2006	
Table 1. (Continued)

Clinicopathological associations of RASSF1A hypermethylation

Cancer type	Cohort size	Risk	Advanced stage and/or high grade	Local recurrence or distal metastasis	Poor overall survival	Poor disease-free survival	Other	Reference
Head and neck cancer	60	•	•	•	•			Liao et al, 2008
	60	•	•	•	•			Neyaz et al, 2008
	62	•	•	•	•			Pallarés et al, 2008
	110	•	•	•	•			Mita et al, 2012
	60	•	•	•	•			Li et al, 2005
	50	•	•	•	•			Ghosh et al, 2008
	69	•	•	•	•	Early age of onset		Lee et al, 2008
	68	•	•	•	•			Huang et al, 2009
	482	•	•	•	•			Yang et al, 2014
	189	•	•	•	•			Zhang et al, 2014
Lung cancer	107	•	•	•	•			Burbee et al, 2001
	110	•	•	•	•	Poor differentiation		Tomizawa et al, 2002
	100	•	•	•	•			Endoh et al, 2003
	242	•	•	•	•			Kim et al, 2003a
	204	•	•	•	•			Kim et al, 2003b
	119	•	•	•	•			Wang et al, 2004
	92	•	•	•	•			Fischer et al, 2007
	63	•	•	•	•			Hsu et al, 2007
	70	•	•	•	•	Poor differentiation		Wang et al, 2007
	101	•	•	•	•			Yanagawa et al, 2007
	100	•	•	•	•			Kubo et al, 2009
	132	•	•	•	•			Buckingham et al, 2010
	2802*	•	•	•	•			Wang et al, 2011
	528	•	•	•	•			De Fraipont et al, 2012
	206	•	•	•	•			Lee et al, 2012
	56	•	•	•	•			Li et al, 2012
	328	•	•	•	•			Ko et al, 2013
	2008*	•	•	•	•			Huang et al, 2014
Melanoma	122	•	•	•	•			Tanemura et al, 2009
Prostate cancer	52	•	•	•	•			Liu et al, 2002
	101	•	•	•	•			Maruyama et al, 2002
	118	•	•	•	•			Jerónimo et al, 2004
	131	•	•	•	•			Kawamoto et al, 2007
Table 1. Continued

Clinicopathological associations of RASSF1A promoter hypermethylation	Reference	Cohort size	Risk of cancer	Other information
Other				
Local recurrence or distant metastasis			Poor overall survival	
Advanced stage and/or high grade			Poor disease-free survival	
Cancer type				
Renal cancer	Liu et al., 2011	219		
Renal cancer	Danusone et al., 2014	253		
Renal cancer	Ge et al., 2014	1123		
Renal cancer	Li et al., 2014	71		
Renal cancer	Kawai et al., 2010	105		
Renal cancer	Kawai et al., 2012	84		
Renal cancer	Ohshima et al., 2012	84		
Renal cancer	Danielsen et al., 2014	105		
Renal cancer	Ge et al., 2014	253		
Renal cancer	Liu et al., 2011	219		
Renal cancer	Danusone et al., 2014	253		
Renal cancer	Ge et al., 2014	1123		
Renal cancer	Li et al., 2014	71		
Renal cancer	Kawai et al., 2010	105		
Renal cancer	Kawai et al., 2012	84		
Renal cancer	Ohshima et al., 2012	84		
Renal cancer	Danielsen et al., 2014	105		

Abbreviations: ER = oestrogen receptor; HER = progesterone receptor.

Meta-analysis.

Correlation of RASSF1A methylation with cancer risk is best validated in gastrointestinal (GI) cancer. Zhou et al (2013) in a study of 112 oesophageal squamous cell carcinomas (ESCC), 116 gastric cardia adenocarcinomas (GCA) and 235 normal controls reported that RASSF1A promoter methylation associates with 5.9 OR of development of ESCC and 7.5 OR for GCA. This association has been recently corroborated in three different meta-analyses in 1205 liver (Li et al., 2014), 1215 gastric (Shi et al., 2014) and 630 colorectal (Wang et al., 2014a) tumours, indicating that RASSF1A methylation is strongly associated with the pathogenesis of GI cancer (Li et al., 2014; Shi et al., 2014; Wang et al., 2014a). Nonetheless, the role of epigenetic inactivation of RASSF1A does not restrict to the onset of GI malignancies. Honda et al (2008) in a study of 97 hepatoblastoma patients demonstrated that RASSF1A methylation is an independent predictor of outcome in both early- and advanced-stage patients, suggesting that RASSF1A inactivation associates with a more aggressive tumour phenotype. Altogether, four independent studies in liver cancer and one in gastric cancer demonstrated that RASSF1A hypermethylation is linked with poor disease-free (Chan et al., 2008; Honda et al., 2013) and overall survival (Honda et al., 2008; Arai et al., 2010; Yao et al., 2012). Furthermore, the liver and gastric malignancies with inactivated RASSF1A appear to have more clinicopathological characteristics that indicate more aggressive phenotype, such as advanced stage (Honda et al., 2008; Guo et al., 2009), lymph node involvement (Yao et al., 2012) and metastasis (Honda et al., 2008, 2013). There are no reports to date on the correlation of RASSF1A promoter methylation with the outcome of colorectal and oesophageal cancer; however, the body of evidence suggests that inactivation of RASSF1A, similar to liver and gastric lesions, is an adequate clinical marker of more invasive colorectal and oesophageal tumours with advanced stage, high grade, regional lymph involvement and distant metastases (Mao et al., 2011; Sinha et al., 2013; Wang et al., 2014b).

GASTROINTESTINAL CANCER

Association of RASSF1A hypermethylation with cancer risk, beyond breast, GI and lung malignancies, as discussed above, has been also described in bladder cancer (Gao et al., 2012). Gao et al (2012) in a meta-analysis of 543 cases and 217 controls pooled from 10 different studies reported an increased risk of bladder cancer with OR of 7.29 in tumours with hypermethylated RASSF1A. Further evidence to support RASSF1A hypermethylation as a marker of accelerated tumourogenesis comes from a study of 68 nasopharyngeal carcinomas by Fendri et al (2009), whereby the authors reported an early age of onset of those patients whose tumours had hypermethylated RASSF1A.

A strong association of RASSF1A with more invasive characteristics of tumours has been noted in prostate cancer, whereby tumours with RASSF1A promoter methylation associate with high Gleason and PSA scores, advanced stage in five independent studies (Liu et al., 2002, 2011; Maruyama et al., 2002; Jerónimo et al., 2004; De Fraipont et al., 2012) in a study of 528 NSCLC patients treated with either gemcitabine or paclitaxel demonstrated significant differences in disease-free survival of patients whose tumours had methylated RASSF1A, whereby those patients who received paclitaxel chemotherapy had longer survival than those patients who were treated with gemcitabine. Altogether, the vast clinical evidence presented in lung cancer studies lends strong support to the clinical utility of RASSF1A methylation.

OTHER CANCERS

Association of RASSF1A hypermethylation with cancer risk, beyond breast, GI and lung malignancies, as discussed above, has been also described in bladder cancer (Gao et al., 2012). Gao et al (2012) in a meta-analysis of 543 cases and 217 controls pooled from 10 different studies reported an increased risk of bladder cancer with OR of 7.29 in tumours with hypermethylated RASSF1A. Further evidence to support RASSF1A hypermethylation as a marker of accelerated tumourogenesis comes from a study of 68 nasopharyngeal carcinomas by Fendri et al (2009), whereby the authors reported an early age of onset of those patients whose tumours had hypermethylated RASSF1A.

A strong association of RASSF1A with more invasive characteristics of tumours has been noted in prostate cancer, whereby tumours with RASSF1A promoter methylation associate with high Gleason and PSA scores, advanced stage in five independent studies (Liu et al., 2002, 2011; Maruyama et al., 2002; Jerónimo et al., 2004;
Kawamoto *et al*, 2007) and in a meta-analysis of 1123 cases (Ge *et al*, 2014). Recently, higher risk of biochemical recurrence has also been described in association with RASSF1A hypermethylation in prostate cancer (Danjumaite *et al*, 2014; Litovkin *et al*, 2014). RASSF1A methylation has been linked to advanced stage and high grade tumours of bladder (Lee *et al*, 2001; Maruyama *et al*, 2001; Jarmalaite *et al*, 2008; Gao *et al*, 2012; Kim *et al*, 2012), endometrium (Jo *et al*, 2006; Liao *et al*, 2008; Pallarés *et al*, 2008), cervix (Neyaz *et al*, 2008), head and neck (Li *et al*, 2005; Fendri *et al*, 2009; Yang *et al*, 2014; Zhang *et al*, 2014), melanoma (Tanemura *et al*, 2009), kidney (Kawai *et al*, 2010) and brain tumours, such as glioma (Hesson *et al*, 2004), neuroblastoma (Stutterheim *et al*, 2012) and pituitary adenomas (Qian *et al*, 2005). Some of these tumours with advanced stage or high grade and hypermethylated RASSF1A, such as bladder (Maruyama *et al*, 2001; Jarmalaite *et al*, 2008; Meng *et al*, 2012), endometrium (Jo *et al*, 2006) and head and neck (Li *et al*, 2005; Fendri *et al*, 2009) are also associated with local and distal metastases, whereas neuroblastomas (Yang *et al*, 2004; Stutterheim *et al*, 2012), bladder (Kim *et al*, 2012), head and neck (Ghosh *et al*, 2008; Lee *et al*, 2008; Zhang *et al*, 2014), kidney (Kawai *et al*, 2010; Ohshima *et al*, 2012) and cervical tumours (Mitra *et al*, 2012) associate with shorter overall survival. Additionally, RASSF1A hypermethylation as a prognostic marker of poor outcome has been also reported in sarcomas (Seidel *et al*, 2005; Danielsen *et al*, 2014). Together, these studies lend strong support to the use of RASSF1A hypermethylation as a prognostic biomarker of poor outcome and indicate that inactivation of RASSF1A has a key role in cancer progression. Indeed, studies in head and neck and renal cancers demonstrate that those tumours with high levels of RASSF1A methylation not only have poor outcome but progress to metastatic disease significantly faster than other tumours (Huang *et al*, 2009; Ohshima *et al*, 2012; Zhang *et al*, 2014).

RASSF1A POLYMORPHIC VARIANT A133S

Germ-line biomarkers, such as single-nucleotide polymorphisms (SNPs), similar to biomarkers derived from ctDNA are derived from stable and more readily accessible material and offer a promising clinical utility. Genetic screening using phenotype-specific SNP panels for retinal degradation has already been clinically validated and offers low-cost, high-quality molecular diagnoses (Katsanis and Katsanis, 2013). SNP of RASSF1A A133S alters the activity of RASSF1A and has been associated with increased risk of gastric cardia adenocarcinoma (Zhou *et al*, 2013), hepatocellular carcinoma (Bayram, 2012) lung adenocarcinoma (Kanzaki *et al*, 2006) early age of onset of breast cancer (Gao *et al*, 2008) and soft tissue sarcomas (Yee *et al*, 2012). Additionally, the polymorphic variant of RASSF1A negatively affects overall survival of soft tissue sarcomas (Yee *et al*, 2012) and accelerates progression of clear cell renal cell carcinoma (Kawai *et al*, 2012). Thus it is likely that inherited polymorphisms of RASSF1A could be used in combination with epigenetic inactivation of RASSF1A to better define patient populations at different risk of particular cancers.

SUMMARY AND CONCLUSIONS

Evidence for some of the noted clinical associations of RASSF1A methylation comes only from single cohort studies, and further investigation in large cohort studies is needed for validation. Additionally, clinical evidence on the impact of RASSF1A inactivation on risk and outcome of tumours with high frequency of RASSF1A methylation, such as pancreatic tumours, is lacking. Nonetheless, association of RASSF1A promoter methylation with one or more clinicopathological characteristics has been validated in at least two independent studies for as many as 10 types of malignancies out of a total of 11 different cancer types that had been linked with RASSF1A promoter methylation (Table 2).

RASSF1A hypermethylation has been associated with cancer risk in a number of malignancies, suggesting its utility in monitoring premalignant tissues. However, existing evidence demonstrates that RASSF1A methylation status as a marker for cancer susceptibility is most likely to find its use in detection of early-stage GI and lung cancers (Table 2).

To explore the potential of RASSF1A hypermethylation as a candidate biomarker for aggressive tumours with poor outcome, we explored existing literature for any associations of RASSF1A epigenetic inactivation with clinical indicators of such phenotype, including poor overall survival and poor disease-free survival as well as advanced stage and/or grade and local recurrence and/or distal metastasis. Association of RASSF1A hypermethylation with adverse outcome has been substantiated in seven different types of malignancies, namely, brain, breast, GI, head and neck, lung and renal cancers and sarcomas (Table 2). The evidence is particularly strong in breast and lung cancers where as many as five independent reports in breast cancer cohorts and nine in lung cancer cohorts described RASSF1A hypermethylation as an independent predictor of cancer outcome. Additionally, high levels of RASSF1A methylation in breast, lung, GI and head and neck lesions has been also associated with shorter progression-free survival, suggesting that inactivation of RASSF1A has an important role in progression to the metastatic disease.

Advanced stage or high tumour grade, and particularly the presence of local and distant metastases at the time of diagnosis, are good indicators of the invasive potential of primary tumours. Indeed, associations with these indicators and inactivation of RASSF1A were reported in five out of the seven cancers where RASSF1A hypermethylation associated with adverse prognosis, with only three cancers lacking clear significant associations of RASSF1A hypermethylation with poor survival (Table 2).

The evidence discussed in this review gives strong support to the utility of RASSF1A promoter methylation as a biomarker for cancer risk as well as more invasive malignancies with poor outcome. Nonetheless, a number of reports in breast (Shimozaki *et al*, 2005; Cho *et al*, 2012), gynaecological (Pan *et al*, 2009; Montavon *et al*, 2012), GI (Kim *et al*, 2009; Okamoto *et al*, 2009) and lung (Safar *et al*, 2005; Chen *et al*, 2006; Brock *et al*, 2008; Niklinska, 2009) malignancies fail to identify any significant clinical association with RASSF1A promoter methylation. For instance, Niklinska *et al* (2009), in a study of 70 NSCLC patients did not find any associations of RASSF1A hypermethylation with overall survival. Similarly, advanced stage and lymph node metastases have been reported in GI malignancies (Table 1), including oesophageal cancer (Mao *et al*, 2011); however, Kim *et al* (2009) did not detect any significant association with RASSF1A hypermethylation in 50 oesophageal patients. Epigenetic inactivation of tumour-suppressor genes is a frequent event in human malignancies (Jones and Baylin, 2002). Indeed, methylation status of a number of other classic tumour-suppressor genes has been also extensively investigated, often in conjunction with RASSF1A gene methylation. Interestingly, in the above-mentioned study by Kim *et al* (2009), RASSF1A methylation was relatively low at 14%, whereas the APC gene, with observed methylation frequency of 46%, was identified as an independent predictor of outcome in the investigated cohort. Intriguingly, Safar *et al* (2005) in a study of clinical association with methylation status of a panel of 8 genes in the 105 NSCLC patients revealed that, although methylation of individual genes, including RASSF1A, cannot be used as independent predictors of outcome, combined methylation status of RASSF1A, APC and ATM stratifies patients into groups with...
Table 2. Summary of clinical associations of RASSF1A promoter methylation

Cancer type	Gynecological cancer	Head and neck cancer	Lung cancer	Renal cancer	Prostate cancer	Bladder cancer	Brain cancer	Gastrointestinal cancer	Sarcoma
Risk	++	++	++	++	++	++	++	++	++
Advanced stage	++	++	++	++	++	++	++	++	++
Local recurrence/ol	++	++	++	++	++	++	++	++	++
Poor overall survival	++	++	++	++	++	++	++	++	++

Association reported in: ++, 2 studies; +++, 3 studies; ++++, 4 studies.

Although it is possible that underlying differences in molecular composition and origin of malignancies might determine whether inactivation of RASSF1A can be a suitable predictor of clinical outcome, substantial variability exists in the definition of ‘methylated’ vs ‘non-methylated’ calls, which may also affect the power and consistency. Variable methylation positivity of individual CpG sites within relatively large CpG island locus of RASSF1A promoter and different methods used in many studies to assess DNA methylation status pose a significant hurdle that is likely to contribute to some inconsistency in the reported results.

In order to validate RASSF1A hypermethylation as an effective biomarker for cancer diagnostics, it is vital to clarify those CpG sites that contribute to the clinical phenotype across all tumour types. Given the substantial evidence outlined above, a definitive understanding of the true epigenetic signal at the RASSF1A promoter will undoubtedly improve the associations and be of great clinical benefit, potentially as the first broad pan-cancer biomarker of advanced disease. Altogether, the body of evidence suggests that epigenetic inactivation of the RASSF1A gene strongly associates with tumorigenesis and cancer risk and is a good candidate biomarker that could be utilised for diagnostic and therapeutic purposes.

REFERENCES

Arai Y, Honda S, Haruta M, Kasai F, Fujitani Y, Ohshima J, Sasaki F, Nakagawa A, Horie H, Yamaoka H, Hiyama E, Kaneko Y (2010). Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. *Genes Chromosomes Cancer* 49: 596–609.

Avraham A, Uhlmann R, Shperber A, Birnbaum M, Sandbank J, Sella A, Sukumar S, Evron E (2012). Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. *Int J Cancer* 131: E1166–E1172.

Bagadi SAR, Prasad CP, Kaur J, Srivastava A, Prashad R, Gupta SD, Ralhan R (2008). Clinical significance of promoter hypermethylation of RASSF1A, RARbeta2, BRCA1 and HOXA5 in breast cancers of Indian patients. *Life Sci* 82: 1288–1292.

Bayram S (2012). RASSF1A Ala133Ser polymorphism is associated with increased susceptibility to hepatocellular carcinoma in a Turkish population. *Gene* 498: 264–269.

Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, Ames S, Gleckner S, Piantadosi S, Gabrielson E, Pridham G, Pelosky K, Belinsky SA, Yang SC, Baylin SB, Herman JG (2008). DNA methylation markers and early recurrence in stage I lung cancer. *N Engl J Med* 358: 1118–1128.

Buckingham L, Penfield Faber L, Kim A, Liptay M, Barger C, Basu S, Fidler M, Walters K, Bonomi P, Coon J (2010). PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients. *Int J Cancer* 126: 1630–1639.

Buhmeida A, Merdad A, El-Maghrabi J, Al-Thobaiti F, Ata M, Bugis A, Syrijanen K, Abuzeenadah A, Chaudhary A, Gari M, Al-Qahtani M, Dallal A (2011). RASSF1A methylation is predictive of poor prognosis in female breast cancer in a background of overall low methylation frequency. *Anticancer Res* 31: 2975–2981.

Burbee DG, Forgas E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD
(2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691–699.

Cao D, Chen Y, Tang Y, Peng XC, Dong H, Li LH, Cheng K, Ge J, Liu JY (2013) Loss of RASSF1A expression in colorectal cancer and its association with k-ras status. Biomed Res Int 2013: 1–8.

Chan K, Lai P, Mok T, Chan HL, Ding C, Yeung SW, Lo YM (2008) Methylation status and protein expression of RASSF1A in human non-small cell lung cancer. Oncol Rep 15: 1281–1285.

Cho YH, Shen J, Gammon MD, Zhang Y-J, Wang Q, Gonzalez K, Xu L-W, Jia R-P, Xu Z, Feng Y-M, Wu R, Yu P, Zhao Y, Gui Z-L, Chan K, Lai P, Mok T, Chan HL, Ding C, Yeung SW, Lo YM (2008) RASSF1A promoter methylation and breast cancer patients. Breast Cancer Res Treat 131: 197–205.

Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25: 315–319.

Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimion O, Drolle H, Boehm BO, Pfeifer GP, Hoang-Vu C (2003) Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene 22: 3806–3812.

Danielsen SA, Lind GE, Kolberg M, Høland M, Bjerkehagen B, Sundby Hall K, Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP (2000) Epigenetic methylation states and bladder cancer risk: a systematic review and meta-analysis. J Natl Cancer Inst 92: 1417–1425.

Donninger H, Gross M, Clark G (2007) The RASSF1A tumor suppressor. J Cell Sci 120(Pt 18): 3163–3172.

Endoh H, Yatabe Y, Shimizu S, Tajima K, Kusano H, Takahashi T, Mitsudomi T (2003) RASSF1A gene inactivation in non-small cell lung cancer and its clinical implication. Int J Cancer 106: 45–51.

Euhus DM, Bu D, Ghorbel A, Gargouri A, Mokdad-Gargouri R (2010) Inactivation of RASSF1A, RAR b and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol 8: 444–451.

Fiegl H, Müllinger S, Müller-holzner E, Marth C, Ensinger C, Berger A, Klocker H, Goebel G, Widschwendter M (2005) Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res 2005 65(4): 1141–1145.

Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Manegold C, Lahn H (2007) Prognostic significance of RASSF1A promoter methylation on survival of non-small cell lung cancer patients treated with gemcitabine. Lung Cancer 56: 115–123.

Gao B, Xie X, Huang C, Shames D, Chen T, Lewis C, Bian A, Leitch AM, Lewis CM (2008) Aberrant methylation of RASSF1A in gastric cardia adenocarcinoma. Cancer Invest 27: 459–465.

Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP (2007) RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats Tumor-Suppressor Network. Curr Biol 17: 700–705.

Guo W, Dong Z, Chen Z, Yang Z, Wen D, Kuang G, Guo Y, Shan B (2009) Aberrant CpG island hypermethylation of RASSF1A in gastric cardio adenocarcinoma. Cancer Invest 27: 459–465.

Ha YS, Jeong P, Kim JS, Kwon WA, Kim FY, Yun SJ, Kim GH, Choi YH, Moon SK, Kim W (2012) Tumorigenic and prognostic significance of RASSF1A expression in low-grade (WHO grade 1 and grade 2) non-muscle-invasive bladder cancer. Urology 79: 1411.e1–e6.

Hagras Ha, Pasha HF, Shaheen MA, Abdel Bary EH, Kassem R (2014) Methylation status and protein expression of RASSF1A in breast cancer patients. Mol Biol Rep 41: 57–65.

Hessov L, Bieche I, Krex D, Griniere E, Hoang-Xuan K, Maier ER, Latif F (2004) Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas. Oncogene 23: 2408–2419.

Hessov LB, Cooper WN, Latif F (2007) The role of RASSF1A methylation in cancer. Dis Markers 23: 73–87.

Honda S, Haruta M, Sugawara W, Sasaki F, Ohira M, Matsunaga T, Yamaoka H, Horie H, Ohumana N, Nakagawara A, Hiyama E, Todo S, Kaneko Y (2008) The methylation status of RASSF1A promoter predicts responsiveness to chemotherapy and eventual cure in hepatoblastoma patients. Int J Cancer 123: 1117–1123.

Honda S, Miyagi H, Suzuki H, Minato M, Haruta M, Kaneko Y, Hatanaka KC, Hiyama E, Kamiio T, Okada T, Taketomi A (2013) RASSF1A methylation indicates a poor prognosis in hepatoblastoma patients. Pediatr Surg Int 29: 1147–1152.

Hsu H-S, Chen T-P, Hung C-H, Wen K-C, Lin R-K, Lee H-C, Wang Y-C (2007) Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 110: 2019–2026.

Huang K, Huang S, Chen I, Liao C, Wang H, Hsieh L (2009) Methylation of RASSF1A, RASSF2A, and HIN-1 is associated with poor outcome after radiotherapy, but not surgery, in oral squamous cell carcinoma. Clin Cancer Res 15: 4174–4180.

Huang Y, Wu W, Ku X, Xu T, Wang W (2014) Association of RASSF1A promoter methylation with lung cancer risk: a meta-analysis. Asian Pac J Cancer Prev 15: 10325–10328.

Jarmalaite S, Jankevicius F, Kurgonaite K, Mutanen P, Husgafvel-Pursiainen K (2008) Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer. Oncology 75: 145–151.

Jeronimo C, Henrique R, Hoque M, Mambo E, Ribeiro FR, Varzim G, Oliveira I, Teixeira MR, Lopes C, Sidransky D (2004) A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 10: 8472–8478.

Jiang Y, Cui L, Chen W, Shen S, Ding L (2012) The prognostic role of RASSF1A promoter methylation in breast cancer: a meta-analysis of published data. PLoS One 7: e36780.

Jo H, Kim J, Kang G, Park N, Song Y, Kang S, Lee H (2006) Association of promoter hypermethylation of the RASSF1A gene with prognostic parameters in endometrial cancer. Clin Cancer Res 12: 205–209.

Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

Kanzaki H, Hanafusa H, Yamamoto H (2006) Single nucleotide polymorphism at codon 133 of the RASSF1 gene is preferentially associated with human lung adenocarcinoma risk. Cancer Lett 238: 128–134.

Karrays-Chouayekh S, Trifa F, Khabir A, Boujelbane N, Sellami-Boudawara T, Daoud J, Frika M, Mokdad-Gargouri R (2010) Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients. J Cancer Res Clin Oncol 136: 203–210.

Katsanis SH, Katsanis N (2013) Molecular genetic testing and the future of clinical genomics. Nat Rev Genet 14: 415–426.

Kawai Y, Sakano S, Okayama N, Suehiro Y, Matsuyma H, Hinoda Y (2012) Association of RASSF1A genotype and haplotype with the progression of clear cell renal cell carcinoma in Japanese patients. BJU Int 110: 1070–1074.

Kawai Y, Sakano S, Suehiro Y, Okada T, Korenaga Y, Hara T, Naito K, Matsuyma H, Hinoda Y (2010) Methylation level of the RASSF1A squamous cell carcinoma: correlation with progression and prognosis. Int J Cancer 129: 2584–2584.

Kobel G, Auer D, Gaug G, Schrenk A, Lesche R, Müller-Holzner E, Marth C, Daxenbichler G (2011) Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res Treat 130: 109–117.

Ko Y, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP (2007) RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats Tumor-Suppressor Network. Curr Biol 17: 700–705.

www.bjcan.com | DOI:10.1038/bjc.2015.221

379
promoter is an independent prognostic factor for clear-cell renal cell carcinoma. Ann Oncol 21: 1612–1617.

Kawamoto K, Okino ST, Place RF, Urakami S, Hirata H, Kikuno N, Kawakami T, Tanaka Y, Pookot D, Chen Z, Majid S, Enokida H, Nakagawa M, Dahlia R (2007) Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer. Clin Cancer Res 13: 2541–2548.

Kim D, Kim J, Yi Y, Shim Y, Kim H, Han J, Park J (2003a) Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 63: 3743–3747.

Kim D, Kim J, Park J, Lee S, Ji Y, Kwon Y, Shim Y, Han J, Park J (2003b) Relationship of Ras association domain family 1 methylation and K-ras mutation in primary non-small cell lung cancer. Cancer Res 63: 6206–6211.

Kim JS, Chae Y, Ha Y-S, Kim IY, Byun SS, Yun S-J, Kim W-J (2012) Ras association domain family 1A: a promising prognostic marker in recurrent nonmuscle invasive bladder cancer. Clin Genitourin Cancer 10: 114–120.

Kim YT, Park J-Y, Jeon YK, Park SJ, Song YJ, Kang CH, Sung SW, Kim JH (2009) Aberrant promoter CpG island hypermethylation of the adenomatosis polyposis coli gene can serve as a good prognostic factor by affecting lymph node metastasis in squamous cell carcinoma of the esophagus. Dis Esophagus 22: 143–150.

Ko E, Lee B, Bin, Kim Y, Lee EJ, Cho EY, Han J, Shim YM, Park J, Kim D-H (2013) Association of RASSF1A and p63 with poor recurrence-free survival in node-negative stage I-II non-small cell lung cancer. Clin Cancer Res 19: 1204–1212.

Kok K, Osinga J, Carritti B, Davis MB, van der Hout AH, van der Veen AY, Kok K, Osinga J, Carritti B, Davis MB, van der Hout AH, van der Veen AY, Franchi G, Morenghi E, Laghi L, Gennari L, Roncalli M (2006) Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer 95: 1101–1107.

Mehlen P, Puiseux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6: 449–458.

Meng W, Hubeiner A, Shabsigh A, Chakravarti A, Lautenschlaeger T (2012) Combined RASSF1A and RASSF2A promoter methylation analysis as diagnostic biomarker for bladder cancer. Mol Biol Int 2012: 701814.

Miranda E, Destro A, Malesci A, Balladore E, Bianchi P, Bartyshnikova E, Franchi G, Morenghi E, Laghi L, Gennari L, Roncalli M (2006) Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer 95: 1101–1107.

Mitra S, Mazumder Indra D, Basu PS, Mondal RK, Roy A, Roychoudhury S, Panda CK (2012) Alterations of RASSF1A in premalignant cervical lesions: clinical and prognostic significance. Mol Carcinog 51: 723–733.

Montavon C, Gloss BS, Warthon K, Barton CA, Statham AL, Scurry JP, Tabor B, Nguyen TV, Qu W, Samimi G, Hacker NF, Sutherland RL, Clark SJ, O’Brien PM (2012) Prognostic and diagnostic significance of DNA methylation patterns in high grade serous ovarian cancer. Gynecol Oncol 124: 582–588.

Neyaz MK, Kumar RS, Hussain S, Naqi SH, Kohaar I, Thakur N, Kashyap V, Das BC, Hussain SA, Bhadrawaj M (2008) Effect of aberrant promoter methylation of FHT and RASSF1A genes on susceptibility to cervical cancer in a North Indian population. Biomarkers 13: 597–606.

Niikinisa W (2009) Prognostic significance of DAPK and RASSF1A promoter hypermethylation in non-small cell lung cancer (NSCLC). Folia Histochem Cytobol 47: 47–48.

Ohshima J, Haruta M, Fujiyara W, Watanabe N, Ariai Y, Ariga T, Okita H, Koshinaga T, Oue T, Hinotsu S, Nakadate H, Horige H, Fukuwaz M, Kaneko Y (2012) Methylation of the RASSF1A promoter is predictive of poor outcome among patients with Wilms tumor. Pediatr Blood Cancer 59: 499–505.

Okamoto Y, Sawaki A, Ito S, Nishida T, Takahashi T, Toyota M, Suzuki H, Shimomura Y, Takeuchi I, Shinjo K, An B, Ito H, Yamao K, Fujii M, Murakami H, Osada H, Katoaka H, Joth T, Sekido Y, Kondo Y (2011) Aberrant DNA methylation associated with aggressiveness of gastrointestinal stromal tumour. Gut 61: 392–401.

Pallares J, Velasco A, Eritja N, Santacana M, Dolcet X, Cuatrecasas M, Ohshima J, Haruta M, Fujiyara W, Watanabe N, Arai Y, Ariga T, Okita H, Koshinaga T, Oue T, Hinotsu S, Nakadate H, Horige H, Fukuwaz M, Kaneko Y (2012) Methylation of the RASSF1A promoter is predictive of poor outcome among patients with Wilms tumor. Pediatr Blood Cancer 59: 499–505.

Pan Z, Li J, Pan X, Chen S, Wang Z, Li F, Qu S, Shao R (2009) Methylation of the RASSF1A gene promoter in Uighur women with cervical squamous cell carcinoma. Tumori 95: 76–80.

Pijnenborg JM, Dam-de Veen GC, Pijnenborg JMa, Delvoux B, van Engeland M, Hartman CA, Timmermans L, Pijnenborg JM, Dam-de Veen GC, Pijnenborg JMa, Delvoux B, van Engeland M, Hartman CA, Timmermans L.

Pijnenborg JMa, Delvoux B, van Engeland M, Hartman CA, Timmermans L.

Pijnenborg JMa, Delvoux B, van Engeland M, Hartman CA, Timmermans L.

Pijnenborg JMa, Delvoux B, van Engeland M, Hartman CA, Timmermans L.
hypermethylation of RASSF1A is frequently detected in leiomyosarcoma and associated with poor prognosis in sarcoma. Int J Cancer 114: 442–447.

Shi D-T, Han M, Gao N, Tian W, Chen W (2014) Association of RASSF1A promoter methylation with gastric cancer risk: a meta-analysis. Tumour Biol 35: 943–948.

Shinouziki M, Hoon D, Giuliano A, Hansen N, Wang H, Turner R, Taback B (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11: 2156–2162.

Simha R, Hussain S, Mehrotra R, Kumar RS, Kumar K, Pande P, Doyal DC, Basir SF, Bharadwaj M (2013) Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population. PLoS One 8: e60142.

Stuopelyt.e K, Daninait.e K, Laurinavichien.e A, Ostapenko V, Jarmalait .e S (2013) High-resolution melting-based quantitative analysis of RASSF1 methylation in breast cancer. Medicina (Kaunas) 49: 78–83.

Stutterheim J, Ichou F, van der Oudenhoven F, Versteeg R, Caron HN, Tytgat G, Motoroyma T (2007) Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer 58: 131–138.

Yang Q, Zhao P, Kagan T, Yen S, Seshadri R, Salwen H, Liu S, Chlenski A, Cohn S (2004) Association of epigenetic inactivation of RASSF1A with poor outcome in human neuroblastoma. Clin Cancer Res 10: 8493–8500.

Yang X, Dai W, Kwong DL-W, Szeto CYY, Wong EH-W, Ng WT, Lee AWM, Njan RK, Xue C, Tung SY, Lung ML (2014) Epigenetic markers for noninvasive early detection of nasopharyngeal carcinoma by methylation-sensitive high resolution melting. Int J Cancer 136(4): E127–E135.

Yao D, Shi J, Shi B, Wang N, Liu W, Zhang G, Li J, Xu L, He N, Hou P (2012) Quantitative assessment of gene methylation and their impact on clinical outcome in gastric cancer. Clin Chim Acta 413: 787–794.

Yee KS, Grochola L, Hamilton G, Grawenda A, Bond EE, Wurtz H, Wurl P, Bond GL, O'Neill E (2012) A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. Cancer Res 72: 2206–2217.

Zhang C-Y, Zhao Y-X, Xia R-H, Han J, Wang B-S, Tian Z, Wang L-Z, Hu Y-H, Li J (2014) RASSF1A promoter hypermethylation is a strong biomarker of poor survival in patients with salivary adenoid cystic carcinoma in a Chinese population. PLoS One 9: e10159.

Zhou SL, Cui J, Fan ZM, Li XM, Li JI, Liu BC, Zhang DY, Liu HY, Zhao XK, Song X, Wang R, Yan ZC, Yi HX, Wang LD (2013) Polymorphism of A133S and promoter hypermethylation in Ras association domain family 1A gene (RASSF1A) is associated with risk of esophageal and gastric cardia cancers in Chinese population from high incidence area in northern China. BMC Cancer 13: 259.