Partial wave decomposition of the N3LO equation of state

D Davesne, J Meyer, A Pastore and J Navarro

Abstract

By means of a partial wave decomposition, we separate their contributions to the equation of state (EoS) of symmetric nuclear matter for the N3LO pseudo-potential. In particular, we show that although both the tensor and the spin–orbit terms do not contribute to the EoS, they give a non-vanishing contribution to the separate (JLS) channels.

Keywords: nuclear structure, equation of state, effective theory

1. Introduction

The development of a universal nuclear energy density functional (NEDF) represents an important goal in low-energy nuclear physics research. The NEDF represents the tool of choice for the investigation of static and dynamic properties in the region of medium to heavy mass nuclei from drip-line to drip-line [1]. A very extensive and detailed investigation on the properties of Skyrme functionals has been one the major objectives of the UNEDF-SciDAC collaboration [2, 3]. It has been shown [4] that the standard form of the Skyrme functional [5] is not flexible enough to allow for further improvements of its spectroscopic qualities. Two possibilities are available, following either (i) the density functional theory, where the primary building block is the functional that includes all correlation effects, or (ii) the self-consistent mean-field theory, where the major ingredient is an effective pseudo-potential and correlations are added afterwards using a multi-reference approach [6]. Within the second approach, it is possible to add correlations following a precise hierarchy towards the exact many-body ground state [7].

Several groups have investigated the possibility of extending the standard Skyrme functional by adding extra terms Lesinski et al [8] have studied the inclusion of a tensor term; Sadoudi et al [9] have derived a zero-range three-body term, and Carlsson et al [10] have analyzed the contribution of higher order derivative terms to the functional. In his original article Skyrme [11], suggested the importance of higher order terms into the effective two-body interaction to take into account the importance of the D-wave term in the nucleon–nucleon interaction at energies around 100 MeV. In [12], Carlsson et al by means of density matrix expansion methods have shown that going from 2nd to 4th order in derivative terms reduces the absolute error on the binding energy of medium-heavy nuclei from ≈ 10 MeV to ≈ 1 MeV. In [13], Davesne et al have done an analysis of the impact of higher order terms within the formalism of Landau theory of Fermi liquids. Starting from the Landau parameters obtained from other phenomenological finite range interaction as Nakada [14] or Gogny [15], it is possible to derive a set of parameters of the N3LO pseudo-potential and to calculate some basic properties of the infinite medium, as the equation of state (EoS), which turns out to be rather close to the original ones.

The presence of finite-size instabilities related to the gradient terms of the Skyrme functional [16] has made unpractical the task of fitting higher order terms. Recently, Hellemans et al [17] have presented a simple criterion based on random phase approximation calculations of homogenous symmetric nuclear matter (SNM) [18] to detect and avoid these unphysical pathologies. In [19], Pastore et al have shown that combining the formalism of the linear response (LR) theory in SNM within the optimization procedure of a Skyrme functional, it is possible to obtain a functional free from this kind of pathologies. In [20], we have presented the...
LR formalism for the N2LO Skyrme pseudo-potential [21, 22] and we have also given the relevant expressions in spherical coordinates to solve the Hartree–Fock (HF) equations in spherical symmetry, thus presenting all the required ingredients to perform a fit of the parameters. The FIDIPRO group [23] has published the numerical code HOSPHE [24], which solves Hartree–Fock equations on a harmonic oscillator basis in spherical symmetry for the most general N3LO Skyrme functional [10].

Although all the necessary theoretical and numerical tools are available to perform a fit of the generalized Skyrme pseudo-potential, a crucial element is still missing, namely how to determine the set of observables or pseudo-observables that could optimally constrain the new terms. The study of the optimal merit function to be used into a fitting procedure is now the subject of an important debate within the nuclear structure community [25]. In fact, it would be preferable to identify for each term of the functional to identify the best set of observables which could better constrain it.

In the present article, we focus on the role of the constraints arising from infinite nuclear matter on the parameters of the functional. Usually this means adding a constraint on the values of the binding energy per particle, of saturation density and compressibility of SNM and also for pure neutron matter, as done for example for the Saclay–Lyon interactions [26]. These informations are usually extracted from microscopic calculations based on realistic two- and three-body interactions as Brueckner–Hartree–Fock (BHF) [27], self-consistent Green’s functions [28, 29], auxiliary field diffusion Monte Carlo [30], Fermi hypernetted chain [31] or chiral effective field theory, with renormalization group-evolved interactions constrained by nucleon scattering data [32]. It is worth mentioning that some of these calculations gives a more complete set of informations as for example the contribution to the total binding energy of each partial wave. This additional information is usually neglected since the standard Skyrme functional contains only S and P wave terms and thus their structure is not rich enough to properly take into account these data, with the result that the parameters could be over-constrained. In [16], Lesinski et al. have underlined that a standard Skyrme functional cannot simultaneously reproduce the contribution of the four spin/isospin channels of the total (BHF based) SNM, EoS. The authors have also found that including additional density dependent terms does not improve the results. Similar conclusions can be drawn in [33, 34], where a different density dependency and different interactions have been taken into account.

In this article, we determine and analyze the partial wave decomposition of the N3LO Skyrme pseudo-potential [13, 21], and show that the inclusion of extra derivative term could be constrained by using \textit{ab initio} results. The article is organized as follows: in section 2 we briefly present the N3LO Skyrme pseudo-potential in cartesian basis, while in section 3 we illustrate the necessary formalism to derive the EoS in the different partial waves. Finally, in section 4 we present our conclusions and perspectives.

2. N3LO pseudo-potential

We write the N3LO Skyrme pseudo-potential as

\[V_{\text{N3LO}} = V_C + V_{TS} + V_{LS} + V_{3b}. \] (1)

The central term V_C can be written order by order as [13]

\[V_C = v^{(0)} + v^{(2)} + v^{(4)} + v^{(6)} \] (2)

with

\[v^{(0)}(r) = t_0 \left(1 + x_0 P_0 \right), \] (3)

\[v^{(2)}(r) = \frac{1}{2} t_1 \left(1 + x_1 P_0 \right) \left(k^2 + k'^2 \right) \] (4)

\[v^{(4)}(r) = \frac{1}{4} t_4 \left(1 + x_4 P_0 \right) \left(k^2 + k'^2 \right) \] (5)

\[v^{(6)}(r) = \frac{1}{2} t_6 \left(1 + x_6 P_0 \right) \left(k^2 + k'^2 \right) \] (6)

where P_0 is the spin-exchange operator and a $\delta(r)$ is implicit. The definitions of r, R, k, k' are standard and can be found in the review paper of Bender et al. [1]. Due to gauge-invariance, the spin–orbit term $v^{(LS)}$ is not modified by the inclusion of higher order terms [22] and it has the usual form

\[v_{LS}(r) = i W_0 (\sigma_1 + \sigma_2) \cdot \left[k \times \delta(r) \cdot k \right]. \] (7)

The tensor term reads

\[V_T = \frac{1}{2} t_e \mathcal{T}_e(k', k) + \frac{1}{2} t_o \mathcal{T}_o(k', k) \] (8)

\[+ t_4 \left(k^2 + k'^2 \right) \mathcal{T}_s(k', k) + \left(k^2 + k'^2 \right) \mathcal{T}_r(k', k) \]

\[+ t_6 \left(k^2 + k'^2 \right) \mathcal{T}_s(k', k) + \left(k^2 + k'^2 \right) \mathcal{T}_r(k', k) \]

\[+ t_8 \left(k^2 + k'^2 \right) \mathcal{T}_s(k', k) + \left(k^2 + k'^2 \right) \mathcal{T}_r(k', k) \]

where the operators \mathcal{T}_e and \mathcal{T}_o are defined as [13]

\[\mathcal{T}_e(k', k) = 3 (\sigma_1 \cdot k') (\sigma_2 \cdot k') \]

\[+ 3 (\sigma_1 \cdot k) (\sigma_2 \cdot k) - (k^2 + k'^2) (\sigma_1 \cdot \sigma_2), \] (9)
Finally the three-body term is replaced in this paper by the usual density-dependent term [35]

\[v_{3b} \approx \frac{1}{6} \mathcal{P}_{3} (1 + x_{3} P_{3}) \rho (\mathbf{R})^{d} (\mathbf{r}). \]

(11)

This extension to higher order derivative terms can be considered complementary to the analysis done in [9]. In fact, the pseudo-potential given in equation (1) with the density dependent term given in equation (11) will suffer from the same pathologies in multi-reference calculations as standard Skyrme functionals [36]. We thus expect that the next generation of Skyrme functionals should include higher order derivatives and explicit three-body terms (at least for the central part of the potential). This interaction would be free from the drawbacks detected in [36, 37] since it would be a real Hamiltonian. In this case, the process of restoration of broken symmetries through projection techniques [1] does not need ad hoc regularization procedures [38, 39]. Since we limit ourselves to single-reference calculations, we keep in this paper the density-dependent term to simplify our calculations.

We finally remind that the parameters used here to define the N3LO in Cartesian basis can be easily expressed in terms of the notation adopted in [21]. Explicit expressions can be found in [13, 22].

3. Partial wave decomposition

The partial wave decomposition is a very useful tool since it allows us to properly identify the contributions of the different terms to the total EoS. This analysis has been inspired by previous results obtained by Baldo et al [40]. By means of BHF methods, they have calculated the potential energy in different (JLS)-channels, where \(J = L + S \) is the total angular momentum, while \(L, S \) represents the total orbital angular momentum and spin. Although such approach is not strictly related to the N3LO pseudo-potential, it has never been employed systematically to analyze Skyrme functionals.

Within the HF approximation, the potential energy for the central terms can be written with the usual spectroscopic notation as

\[E_\rho (2S + 1L_J) = (2J + 1)(2S + 1) \]
\[\times (2T + 1) V (2S + 1L_J), \]

(12)

where \(T \) is the total isospin quantum number and

\[V (2S + 1L_J) = \frac{1}{2} \sum_{ij} \langle ij | v^{(L)} (1 - P_{L} P_{L}^\dagger) | ij \rangle. \]

(13)

The exchange term is explicitly included through the operator product \(P_{L} P_{L} P_{L} \), of the space exchange (Majorana), spin and isospin operators. For a contact interaction, \(P_{L} \) can be replaced by \((-1)^{L} \) so that a selection rule \(L + S + T = \) odd arises from the product \(P_{L} P_{L} P_{L} \). The value of \(T \) is therefore fixed by the values of \(L \) and \(S \).

As is well-known, the standard Skyrme functional contains contributions only from \(s- \) and \(p- \) waves. The higher order terms introduce also a \(d- \) and \(f- \) wave, thus leaving more flexibility for comparisons with \(\text{ab initio} \) methods. To identify the contributions of a given pseudo-potential term to the different partial waves we simply expand it in spherical harmonics as

\[F (k', k) = \sum_{L M L M L M} F_{L M L M L M} (k', k) Y_{L M L M} (\hat{k}) \]
\[\times Y_{L M L M} (\hat{k}). \]

(14)

with

\[F_{L M L M L M} (k', k) = \int \mathcal{D}k \mathcal{D}k \int Y_{L M L M} (\hat{k}) Y_{L M L M} (\hat{k}) \]
\[\times F (k', k). \]

(15)

To help in the identification, we have associated indices \(L' \) and \(M' \) to momentum \(k' \).

3.1. Central term

For both the central and density-dependent terms, it is simple to show that the only non-vanishing terms are those with \(L = L' \) and \(M = M' \). The decomposition (14) can then be easily performed. However, the contribution for the different channels can also be identified directly by using the relation between Legendre polynomials of argument \((k' \cdot k) \) and spherical harmonics of arguments \(\hat{k}' \) and \(\hat{k} \). We can then rewrite equation (2) as

\[v_c = v^{(S)} + v^{(P)} + v^{(D)} + v^{(F)} \]

(16)

with

\[v^{(S)} = t_{0} (1 + x_{2} P_{2}) \]
\[+ \frac{1}{6} t_{1} (1 + x_{1} P_{1}) \rho \]
\[+ \frac{1}{2} t_{2} (1 + x_{1} P_{1}) \rho \]
\[+ \frac{1}{4} t_{4} (1 + x_{4} P_{4}) \rho \]
\[+ \frac{1}{6} t_{6} (1 + x_{6} P_{6}) \rho \]
\[\times \left[(k^2 + k'2)^2 + \frac{4}{3} k^2 k'2 \right]. \]

(17)

\[v^{(P)} = t_{0} (1 + x_{2} P_{2}) (k' \cdot k) \]
\[+ t_{2} (1 + x_{2} P_{2}) (k' \cdot k) (k^2 + k'2)^2 \]
\[+ t_{2} (1 + x_{2} P_{2}) (k' \cdot k) \]
\[\times \left[3 (k^2 + k'2)^2 + \frac{12}{5} k^2 k'2 \right]. \]

(18)
\[v^{(P)} = \frac{1}{4} t_4^{(4)} \left(1 + x_4^{(4)} p \right) \frac{4}{3} \left[3 (k' \cdot k)^2 - k^2 k'^2 \right] \]
\[+ \frac{1}{2} t_6^{(6)} \left(1 + x_6^{(6)} p \right) 4 \left(k^2 + k'^2 \right) \]
\[\times \left[3 (k' \cdot k)^2 - k^2 k'^2 \right], \tag{19} \]
and
\[v^{(F)} = t_6^{(6)} \left(1 + x_6^{(6)} p \right) \frac{4}{5} (k' \cdot k) \]
\[\times \left[5 (k' \cdot k)^2 - 3 k^2 k'^2 \right]. \tag{20} \]

By inserting the equations (16)–(20) in equations (12)–(13), we obtain the following explicit expressions
\[\frac{1}{A} E_p \left(S_0 \right) = \frac{3}{16} t_0 (1 - x_0) \rho + \frac{1}{32} t_1 (1 - x_1) \rho^{e+1} \]
\[+ \frac{9}{160} t_1 (1 - x_1) \rho k_F^2 + \frac{9}{280} t_4^{(4)} \left(1 + x_4^{(4)} \right) \rho k_F^4 \]
\[+ \frac{1}{10} t_6^{(6)} \left(1 - x_6^{(6)} \right) \rho k_F^6, \tag{21} \]
\[\frac{1}{A} E_p \left(S_1 \right) = \frac{3}{16} t_0 (1 + x_0) \rho + \frac{1}{32} t_3 (1 + x_3) \rho^{e+1} \]
\[+ \frac{9}{160} t_1 (1 + x_1) \rho k_F^2 + \frac{9}{280} t_4^{(4)} \left(1 + x_4^{(4)} \right) \rho k_F^4 \]
\[+ \frac{1}{10} t_6^{(6)} \left(1 + x_6^{(6)} \right) \rho k_F^6, \tag{22} \]
\[\frac{1}{A} E_p \left(\eta_1 \right) = \frac{3}{160} t_5 (1 - x_5) \rho k_F^2 \]
\[+ \frac{9}{560} t_5^{(5)} \left(1 - x_5^{(5)} \right) \rho k_F^4 \]
\[+ \frac{3}{50} t_6^{(6)} \left(1 - x_6^{(6)} \right) \rho k_F^6, \tag{23} \]
\[\frac{1}{A} E_p \left(\eta_2 \right) = \frac{3}{160} t_5 (1 + x_5) \rho k_F^2 \]
\[+ \frac{9}{560} t_5^{(5)} \left(1 + x_5^{(5)} \right) \rho k_F^4 \]
\[+ \frac{3}{50} t_6^{(6)} \left(1 + x_6^{(6)} \right) \rho k_F^6, \tag{24} \]
\[\frac{1}{A} E_p \left(\eta_3 \right) = \frac{9}{160} t_7 (1 + x_7) \rho k_F^2 \]
\[+ \frac{27}{560} t_7^{(7)} \left(1 + x_7^{(7)} \right) \rho k_F^4 \]
\[+ \frac{9}{50} t_8^{(8)} \left(1 + x_8^{(8)} \right) \rho k_F^6, \tag{25} \]
\[\frac{1}{A} E_p \left(\eta_4 \right) = \frac{3}{32} t_7 (1 + x_7) \rho k_F^2 \]
\[+ \frac{9}{112} t_7^{(7)} \left(1 + x_7^{(7)} \right) \rho k_F^4 \]
\[+ \frac{3}{10} t_8^{(8)} \left(1 + x_8^{(8)} \right) \rho k_F^6, \tag{26} \]
\[\frac{1}{A} E_p \left(|D_2 \right) = \frac{9}{560} t_4^{(4)} \left(1 - x_4^{(4)} \right) \rho k_F^4 \]
\[+ \frac{1}{10} t_6^{(6)} \left(1 - x_6^{(6)} \right) \rho k_F^6, \tag{27} \]
\[\frac{1}{A} E_p \left(|D_1 \right) = \frac{9}{2800} t_4^{(4)} \left(1 + x_4^{(4)} \right) \rho k_F^4 \]
\[+ \frac{1}{50} t_6^{(6)} \left(1 + x_6^{(6)} \right) \rho k_F^6, \tag{28} \]
\[\frac{1}{A} E_p \left(|D_2 \right) = \frac{3}{560} t_4^{(4)} \left(1 + x_4^{(4)} \right) \rho k_F^4 \]
\[+ \frac{1}{30} t_6^{(6)} \left(1 + x_6^{(6)} \right) \rho k_F^6, \tag{29} \]
\[\frac{1}{A} E_p \left(|D_3 \right) = \frac{3}{400} t_4^{(4)} \left(1 + x_4^{(4)} \right) \rho k_F^4 \]
\[+ \frac{7}{150} t_6^{(6)} \left(1 + x_6^{(6)} \right) \rho k_F^6, \tag{30} \]
\[\frac{1}{A} E_p \left(|F_3 \right) = \frac{1}{150} t_5^{(5)} \left(1 - x_5^{(5)} \right) \rho k_F^5, \tag{31} \]
\[\frac{1}{A} E_p \left(|F_2 \right) = \frac{1}{70} t_5^{(5)} \left(1 + x_5^{(5)} \right) \rho k_F^5, \tag{32} \]
\[\frac{1}{A} E_p \left(|F_3 \right) = \frac{1}{50} t_6^{(6)} \left(1 + x_6^{(6)} \right) \rho k_F^6, \tag{33} \]
\[\frac{1}{A} E_p \left(|F_4 \right) = \frac{9}{350} t_6^{(6)} \left(1 + x_6^{(6)} \right) \rho k_F^6. \tag{34} \]

3.2. Tensor term

Due to its spin structure, the tensor does not contribute to the global EoS. However, as we can see below, it should be realized that this vanishing contribution actually results from the sum of individual non-vanishing contributions in different channels (JLST). In presence of the tensor term, L is not a good quantum number, and we have to couple it to S (which is always equal to 1, as it is explicitly written below) and write our expressions in terms of the total angular momentum J.

Both operators T_\alpha and T_\nu are second-order rank tensors in the spin space. Consequently, they can only contribute to the triplet partial waves. In appendix A, we show that all contributions proportional to T_\alpha are identically zero, so that we are left with the contributions coming from the T_\nu operator only. Moreover, we show in appendix B, that the contributions from T_\nu are non zero only between bra-kets with the same orbital momentum L = 1. After some tedious calculations, we find
\[\frac{1}{A} E_p \left(\eta_0 \right) = - \frac{3}{80} t_{5, \rho} \rho k_F^2 - \frac{9}{140} t_{4, \rho} \rho k_F^4 \]
\[- \frac{17}{750} t_{6, \rho} \rho k_F^6, \tag{35} \]
\[\frac{1}{A} E_p \left(\eta_1 \right) = \frac{9}{160} t_{6, \rho} \rho k_F^2 + \frac{27}{280} t_{4, \rho} \rho k_F^4 \]
\[+ \frac{17}{500} t_{6, \rho} \rho k_F^6, \tag{36} \]
The tensor operator \(T_e \) can be easily written in the spherical
basis as

\[
T_e(k', k) = 8\pi \sqrt{\frac{2\pi}{15}} \sum_{\mu_1, \mu_2} \left(1, 1, 2; \mu_1, \mu_2, \mu_1 + \mu_2 \right)
\times [\sigma_{i_1 \mu_1} \sigma_{j_2 \mu_2}] [k^2 Y_{j_2 \mu_1 + \mu_2}(\hat{k'})
+ k^2 Y_{j_2 \mu_1 + \mu_2}(\hat{k})].
\]

(A.1)

where \((j_1, j_2, J; m_1, m_2, M) \) stands for a Clebsch–Gordan
coefficient. This term can give only non-zero contributions
between bra-kets with \(|L - L'| = 2 \). Moreover, by performing
the angular integral, one can immediately observe that the
\(T_e \) contribution vanishes.

Appendix A. Contribution of the \(T_e \) operator

The work of J N has been supported by grant FIS2011-28617-C02-2, Mineco (Spain).

Acknowledgments

We have calculated for the first time the contributions to the
EoS of the N3LO Skyrme pseudo-potential in the different
(JLST) channels. Although both the tensor and the spin–orbit
terms do not contribute to the total EoS, we have show that they give a non-vanishing
contribution to the separate (JLST) channels. To our knowledge, there are no studies
on the impact of the tensor and spin–orbit terms on the EoS for
phenomenological functionals (not necessary zero-range one).

It is thus mandatory to make a sensitivity analysis for the
different partial waves obtained from different \(ab \) \initio
methods and different realistic two- and three-body nuclear
interactions. The goal of such an analysis would be not to
improve the quality of the global EoS for the Skyrme
functional, but to use several pseudo-observables (saturation
properties, effective mass or symmetry energy by instance)
derived from microscopic calculations to introduce additional
constraints to the parameters of the pseudo-potential.
Furthermore, compared to previous attempts of determining the
parameters of the tensor using finite nuclei observables
[8, 43, 44], our equations have the advantage of not being
polluted by finite size and shell effects. All these aspects are
left for a forthcoming publication.

3.3. Spin–orbit term

The spin–orbit term is not modified by the inclusion of higher
order derivative terms. Contrary to the original intuition of
Skyrme [41], the term given in equation (7) is the only one
which preserves gauge invariance [42]. Possible contributions
to the spin–orbit could however arise from higher order tensor
terms [6].

The particular structure of the Pauli matrices \((\sigma_1 + \sigma_2) \)
implies that this term gives no contribution to the global EoS.
However, like the tensor, it gives a non-vanishing contribution
to the different \(P \)-waves. Explicitly, we have

\[
\frac{1}{A} E_p(3R_i) = \frac{3}{160} W_0 \rho \beta \gamma^2, \quad \frac{1}{A} E_p(3D_1) = \frac{9}{1000} W_0 \rho \gamma^2, \quad \frac{1}{A} E_p(3D_2) = \frac{1}{200} W_0 \gamma^2, \quad \frac{1}{A} E_p(3D_3) = \frac{7}{1000} W_0 \gamma^2, \quad \frac{1}{A} E_p(3F_2) = \frac{1}{875} W_0 \gamma^2, \quad \frac{1}{A} E_p(3F_3) = \frac{3}{500} W_0 \gamma^2, \quad \frac{1}{A} E_p(3F_4) = \frac{9}{3500} W_0 \gamma^2.
\]

where \(\beta \gamma^2 \) is a generic tensor operator. By using properties
of Pauli matrices, it is possible to show that \(Q_T P_{\rho}^{(6\beta\gamma^2)} = 0 \) and
\(Q_T R_{\rho}^{(5\alpha\beta)} = Q_T \), where \(Q_T \) stands for a generic tensor operator
(\(T_e \) or \(T_o \)).

The above formula constitute the first noticeable result of this
paper. They show that we can have some constraints on the
tensor parameters coming from the partial wave contributions
to the EoS by using \(ab \) \initio results. It is worth noticing that
the tensor term lifts the degeneracy between the different
partial waves, but for a given value of \(L \) the sum of the
different \(J \) terms gives zero, as expected.

4. Conclusions and perspectives

We have calculated for the first time the contributions to the
EoS of the N3LO Skyrme pseudo-potential in the different
(JLST) channels. Although both the tensor and the spin–orbit
channels. Although both the tensor and the spin–orbit

\[
\frac{1}{A} E_p(3R_i) = \frac{3}{160} W_0 \rho \beta \gamma^2 - \frac{9}{280} W_0 \rho \gamma^2, \quad \frac{1}{A} E_p(3D_1) = \frac{9}{1000} W_0 \rho \gamma^2 - \frac{7}{1500} W_0 \gamma^2, \quad \frac{1}{A} E_p(3D_2) = \frac{1}{200} W_0 \gamma^2 + \frac{7}{900} W_0 \gamma^2, \quad \frac{1}{A} E_p(3D_3) = \frac{3}{500} W_0 \gamma^2 - \frac{7}{2250} W_0 \gamma^2, \quad \frac{1}{A} E_p(3F_2) = \frac{3}{875} W_0 \gamma^2, \quad \frac{1}{A} E_p(3F_3) = \frac{3}{500} W_0 \gamma^2, \quad \frac{1}{A} E_p(3F_4) = \frac{9}{3500} W_0 \gamma^2.
\]

The above formula constitute the first noticeable result of this
paper. They show that we can have some constraints on the
tensor parameters coming from the partial wave contributions
to the EoS by using \(ab \) \initio results. It is worth noticing that
the tensor term lifts the degeneracy between the different
partial waves, but for a given value of \(L \) the sum of the
different \(J \) terms gives zero, as expected.

The above formula constitute the first noticeable result of this
paper. They show that we can have some constraints on the
tensor parameters coming from the partial wave contributions
to the EoS by using \(ab \) \initio results. It is worth noticing that
the tensor term lifts the degeneracy between the different
partial waves, but for a given value of \(L \) the sum of the
different \(J \) terms gives zero, as expected.

The above formula constitute the first noticeable result of this
paper. They show that we can have some constraints on the
tensor parameters coming from the partial wave contributions
to the EoS by using \(ab \) \initio results. It is worth noticing that
the tensor term lifts the degeneracy between the different
partial waves, but for a given value of \(L \) the sum of the
different \(J \) terms gives zero, as expected.

The above formula constitute the first noticeable result of this
paper. They show that we can have some constraints on the
tensor parameters coming from the partial wave contributions
to the EoS by using \(ab \) \initio results. It is worth noticing that
the tensor term lifts the degeneracy between the different
partial waves, but for a given value of \(L \) the sum of the
different \(J \) terms gives zero, as expected.
Appendix B. Contribution of the T_6

Similarly, the tensor operator T_6 can be written as

$$T_6 = 4z_{\kappa \kappa} \sum_{\mu \neq \mu'} \left(\left(- \right)^{\kappa} Y_{\mu}(\kappa) Y_{\mu}(\kappa) \right) \times \left\{ \begin{array}{c} [\sigma_1 h_{\mu}, \sigma_2 h_{-\mu}, + \left[\sigma_1 h_{-\mu}, \sigma_2 h_{\mu} \right] \\ - \frac{8\pi}{3} (\sigma_1 \cdot \sigma_2) \kappa \kappa \sum_{\mu} Y_{\mu}(\kappa) Y_{\mu}(\kappa) \end{array} \right\} (B.1)$$

from which we find that the only non-vanishing matrix elements have $L = L' = 1$. We moreover notice the useful following property

$$T_6 \left(1 - P_1 P_2 P_3 \right) = 2T_6 \delta_{S_1} \delta_{S_2} \delta_{L_1}. \quad (B.2)$$

At fourth order, the remaining tensor contributions have the form $f(\kappa', \kappa) T_6$, where $f(\kappa', \kappa) = \kappa' \cdot \kappa$ or $(\kappa^2 + k^2)$. The term $(\kappa^2 + k^2)$ does not change the angular structure so it will contribute to the same channel as the second order term, while for the $\kappa' \cdot \kappa$ term, one can show that the non-vanishing matrix elements have $L = 2$ and thus $T = 0$. The same applies to the sixth order: $f(\kappa', \kappa) = (\kappa^2 + k^2)^2$ contributes in the $L = 1$, $T = 1$ channel, the term $f(\kappa', \kappa) = (\kappa^2 + k^2)(\kappa' \cdot \kappa)$ contributes to the $L = 2$, $T = 0$ channel and finally the $f(\kappa', \kappa) = (\kappa' \cdot \kappa)^2$ contributes to the $L = 3$, $T = 1$ and $L = 1$, $T = 1$ channels.

References

[1] Bender M, Heenen P H and Reinhard P G 2003 Rev. Mod. Phys. 75 121–80
[2] Furnstahl R 2011 Nucl. Phys. News 21 18–24
[3] Bogner S et al 2013 Comput. Phys. Commun. 184 2235–50
[4] Kortelainen M et al 2014 Phys. Rev. C 89 054314
[5] Perlińska E, Roboziński S G, Dobaczewski J and Nazarewicz W 2004 Phys. Rev. C 69 014316
[6] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (Berlin: Springer)
[7] Yannouleas C and Landman U 2007 Rep. Prog. Phys. 70 2067
[8] Lesinski T, Bender M, Bennacure K, Duguet T and Meyer J 2007 Phys. Rev. C 76 014312
[9] Sadoudi J, Duguet T, Meyer J and Bender M 2013 Phys. Rev. C 88 064326
[10] Carlsson B G, Dobaczewski J and Kortelainen M 2008 Phys. Rev. C 79 054326
[11] Skyrme T H R 1959 Nucl. Phys. 9 615
[12] Carlsson B G and Dobaczewski J 2010 Phys. Rev. Lett. 105 122501
[13] Davesne D, Pastore A and Navarro J 2014 J. Phys. G: Nucl. Part. Phys. 41 065104
[14] Nakada H 2003 Phys. Rev. C 68 014316
[15] Dechargé J and Gogny D 1980 Phys. Rev. C 21 1568–93
[16] Lesinski T, Bennacure K, Duguet T and Meyer J 2006 Phys. Rev. C 74 044315
[17] Hellemans V, Pastore A, Duguet T, Bennacure K, Davesne D, Meyer J, Bender M and Heenen P H 2013 Phys. Rev. C 88 064323
[18] Pastore A, Davesne D, Lallouet Y, Martini M, Bennacure K and Meyer J 2012 Phys. Rev. C 85 054317
[19] Pastore A, Davesne D, Bennacure K, Meyer J and Hellemans V 2013 Phys. Scr. T 154 014014
[20] Becker P, Davesne D, Meyer J, Pastore A and Navarro J 2015 J. Phys. G: Nucl. Part. Phys. 42 034001
[21] Raimondi F, Carlsson B G and Dobaczewski J 2011 Phys. Rev. C 83 054311
[22] Davesne D, Pastore A and Navarro J 2013 J. Phys. G: Nucl. Part. Phys. 40 095104
[23] https://jyu.fi/fysiikka/en/research/accelerator/fidiipro
[24] Carlsson B, Dobaczewski J, Toivanen J and Vesely P 2010 Comput. Phys. Commun. 181 1641–57
[25] Dobaczewski J, Nazarewicz W and Reinhard P 2014 J. Phys. G: Nucl. Part. Phys. 41 074001
[26] Chabanat E, Bonche P, Haensel P, Meyer J and Schaeffer R 1997 Nucl. Phys. A 627 710
[27] Schulze H J, Cugnon J, Jeanner A, Baldo M and Lombardo U 1995 Phys. Rev. C 52 2785–8
[28] Rios A, Polls A and Vidaña I 2009 Phys. Rev. C 79 025802
[29] Dickhoff W and Barbieri C 2004 Prog. Part. Nucl. Phys. 52 377–496
[30] Gandolfi S, Pederiva F, Fantoni S and Schmidt K E 2007 Phys. Rev. Lett. 98 102503
[31] Pandharipande V and Wiringa R 1979 Nucl. Phys. B 180 1–45
[32] Bogner S, Furnstahl R and Schwenk A 2010 Prog. Part. Nucl. Phys. 65 447–67
[33] Gambacurta D, Li L, Colò G, Lombardo U, van Giai N and Zuo W 2011 Phys. Rev. C 84 024301
[34] Goriely S, Chamel N and Pearson J M 2013 Phys. Rev. C 88 024308
[35] Vautherin D and Brink D M 1972 Phys. Rev. C 5 626–47
[36] Bender M, Duguet T and Lacroix D 2009 Phys. Rev. C 79 044319
[37] Dobaczewski J, Stoitsov M, Nazarewicz W and Reinhard P G 2007 Phys. Rev. C 76 054315
[38] Lacroix D, Duguet T and Bender M 2009 Phys. Rev. C 79 044318
[39] Satula W and Dobaczewski J 2014 Phys. Rev. C 90 054303
[40] Baldo M, Bombaci I and Burgio G 1997 Astron. Astrophys. 328 274–82
[41] Bell J and Skyrme T 1956 Phil. Mag. 1 1055–68
[42] Dobaczewski J and Dudek J 1995 Phys. Rev. C 52 1827–39
[43] Cao L G, Sagawa H and Colò G 2011 Phys. Rev. C 83 034324
[44] Bai C L, Zhang H Q, Sagawa H, Zhang X Z, Colò G and Xu F R 2011 Phys. Rev. C 83 054316