Transcriptional Differences between Rhesus Embryonic Stem Cells Generated from In Vitro and In Vivo Derived Embryos

Alexandra J. Harvey1,2,*, Shihong Mao2, Claudia Lalancette2,3, Stephen A. Krawetz2,4,5, Carol A. Brenner1,4,6

1 Department of Physiology, Wayne State University, Detroit, Michigan, United States of America, 2 Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America, 3 Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, 4 Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America, 5 Institute for Scientific Computing, Wayne State University, Detroit, Michigan, United States of America

Abstract

Numerous studies have focused on the transcriptional signatures that underlie the maintenance of embryonic stem cell (ESC) pluripotency. However, it remains unclear whether ESC retain transcriptional aberrations seen in in vitro cultured embryos. Here we report the first global transcriptional profile comparison between ESC generated from either in vitro cultured or in vivo derived primate embryos by microarray analysis. Genes involved in pluripotency, oxygen regulation and cell cycle were downregulated in rhesus ESC generated from in vitro cultured embryos (in vitro ESC). Significantly, several gene differences are similarly downregulated in preimplantation embryos cultured in vitro, which have been associated with long term developmental consequences and disease predisposition. This data indicates that prior to derivation, embryo quality may influence the molecular signature of ESC lines, and may differentially impact the physiology of cells prior to or following differentiation.

Citation: Harvey AJ, Mao S, Lalancette C, Krawetz SA, Brenner CA (2012) Transcriptional Differences between Rhesus Embryonic Stem Cells Generated from In Vitro and In Vivo Derived Embryos. PLoS ONE 7(9): e43239. doi:10.1371/journal.pone.0043239

Editor: Jennifer Nichols, Wellcome Trust Centre for Stem Cell Research, United Kingdom

Received April 12, 2012; Accepted July 18, 2012; Published September 18, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This study was supported by the National Institutes of Health grants HD045966, RR015395, RR021881 and HD046553. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aharvey@unimelb.edu.au

† Current address: Department of Zoology, University of Melbourne, Melbourne VIC, Australia

‡ Current address: Department of Molecular and Cellular Physiology, Edward Via College of Osteopathic Medicine, VCOM-Carolinas Campus, Spartanburg, South Carolina, United States of America

Introduction

Embryonic stem cells (ESC) derived from the inner cell mass (ICM) of preimplantation embryos have the potential to differentiate into any cell type of the three embryonic germ layers. ESC retain the ability to proliferate indefinitely, and maintain pluripotency through conserved regulatory networks; however require the provision of various extrinsic factors within the culture environment for continued growth and self-renewal capacity [1,2]. Loss of pluripotency results in changes in gene expression that include down-regulation of key pluripotency and repressive markers and the up-regulation of regulators of differentiation [3]. Recent studies have documented the transcriptional profiles of various embryonic stem cell lines [4–7], establishing a common stem cell regulatory program underlying pluripotency. However, ESC exhibit significant heterogeneity between and within lines, displaying differences in gene expression and differentiation capacity, as well as changes with increasing passage number and culture environment [8–11], largely attributed to adaptation with long term culture [12,13]. Significant differences have also been observed between human ESC lines attributed to differences in derivation techniques [14] and culture conditions [15–17]. Very little attention has been paid to other factors which may contribute to the overall normalcy of these cell lines, particularly the quality of the embryo from which a line is derived.

Preimplantation embryo development in vivo is associated with a number of perturbations in ultrastructure [18,19], gene expression [20–25] and post-transfer development [26–30], when compared with embryos derived in vitro. These differences likely underlie the significant variation between ESC lines. There is also considerable evidence that the environment to which the preimplantation embryo is exposed, particularly the in vivo culture environment, predisposes the resulting fetus to increased risk of adult onset diseases and imprinting disorders [28,31–36]. Recently, Horii et al [37] reported retention of epigenetic differences in mouse ESC dependent on the in vivo or in vitro origin of the embryo from which they were derived. While ESC transcriptional profiles are known to differ from that of the ICM [37,38], these data raise the question as to whether ESC retain transcriptional memory of the embryos from which they were derived. Significantly, it is not clear whether current ESC models are similarly predisposed to developing disease characteristics post-transplantation, or whether they exhibit low levels of perturbation that are not easily distinguishable.
Figure 1. Functional classification and hierarchical clustering of 3881 significantly different transcripts in rhesus ESC. A: Pie charts representing up- and down-regulated biological functions of 3881 differentially expression genes in ESC. Numbers represent percentages of 560 up- and 3321 down-regulated genes in ESC generated from in vitro cultured embryos, compared with ESC generated from in vivo derived embryos. B: Combination Venn diagram of shared and specific genes expressed in ESC originating from in vitro or in vivo derived embryos. The region of overlap between all areas represents the number of genes expressed in ESC from either origin. Regions not overlapping reflect genes expressed specifically in in vitro or in vivo ESC. There are 11521 genes categorized as present (dChip). Of the 3881 genes identified as significant genes from ChipInspector,
To explore the hypothesis that differences exist between ESC derived from in vitro and in vivo embryos, gene expression profiles of rhesus macaque ESC generated from either in vitro cultured (Ormes series [40]) or in vivo derived (R series [41]) embryos were compared.

Results

Expression Profiling of rhesus ESC generated from in vitro or in vivo derived embryos

The transcriptional profiles of undifferentiated ESC generated from either in vivo derived or in vitro produced rhesus embryos were compared using the Affymetrix GeneChip Rhesus Macaque Genome Array, enabling large scale gene expression profiling of 52,865 probe sets, representing over 20,000 genes. Initial data analysis using dChip software identified a total of 2537 transcripts as significantly different between in vitro and in vivo ESC, by a twofold or greater fold change (Table S2). Comparison between groups revealed 592 probe sets upregulated in rhesus ESC of in vivo origin. The reciprocal analysis identified 1945 probe sets upregulated in rhesus ESC of in vivo origin. Of the 2537, 1803 had known Entrez Gene IDs. As dChip is a model-based approach that only allows probe-level analysis, we undertook ChipInspector (Genomatix) analysis to assess differences at the level of each gene. ChipInspector identified a total of 3881 transcripts with differential expression of twofold or greater, of which 2706 were unique to ChipInspector. GenomeArray (Genomatix) HIRF and SMAD2 (Matrix family SMAD)'s were derived from in vivo ESC samples clustered together, separately from in vitro ESC samples (Figure 1C), indicating that gene expression differences observed between in vivo and in vitro ESC were greater than differences within the experimental groups.

To identify functional relationships between transcripts, 3881 differentially expressed rhesus transcripts were uploaded into Bibiliosphere (Genomatix) for literature based gene connection analysis. Bibliosphere identified 1388 transcripts significantly up- or downregulated in rhesus ESC. Further analysis of the 1388 genes, identified 202 transcription factors (Table 1), and 40 significantly enriched pathways (Table 2), involving a total of 544 genes.

Of the 202 transcription factors identified in Bibliosphere four known to be involved in the transcriptional control of pluripotency, POU5F1, Akit, SMAD2 and HIF1A, were further analyzed to establish literature based gene networks. The interactions of HIF1A and SMAD2 with other genes are presented in Figure 2. Regulatory mechanisms of the transcription factors HIF1A (Matrix family HIRF) and SMAD2 (Matrix family SMAD)'s were further studied as shown in Figure 2. The promoter regions of eleven genes were found to have HIF1F binding sites. Likewise, the promoter regions of five genes contained SMAD binding sites.

Common framework, a pattern of transcription factor binding sites defined by a set of physical parameters such as order, distance, and strand orientation on the promoter region, is a promoter module that participates in transcription regulation in a certain context. The common frameworks were mined from the eleven genes' and five genes' promoter regions identified above. Frameworks CTCF-HIF1F, ETSF-HIF1F and SMAD-E2FF were identified in these two gene groups respectively and suggest that transcription factors CTCF and ETSF may work with HIF1F, and E2FF may work with SMAD, to regulate transcription (Table S4).

Expression of markers of pluripotency

Comparison of the 1388 significant differentially expressed genes with previous microarray data examining regulators of pluripotency [4–6,16,42–47] identified 225 significantly different genes documented by at least one publication, with 68 of these genes documented by at least two or more publications (Table 3). Among these genes FGF2 (basic FGF) and FGFR1 were significantly downregulated (2-fold) in in vitro ESC. Similarly, SOD2 expression was decreased more than 3-fold in in vitro ESC, while POU5F1 was reduced by 2-fold. Other genes, including those involved in transcriptional repression and TGFβ signaling, were also identified. In particular TGFβ1, FST, SMAD1, 4 and 5 and ID4 were downregulated in in vitro ES, while SMAD3 was upregulated (Table S3).

Differentially expressed genes correlate with differences observed in preimplantation embryos

Analysis was undertaken to determine whether ESC generated from in vitro cultured rhesus embryos displayed perturbations in gene expression reported in the literature as differentially expressed in in vitro and in vivo preimplantation embryos [19,23,26,20,31,48–52], results of which are summarized in Table 4. These differences included significantly decreased expression of insulin-like growth factor receptor 1 and 2 (IGF1, IGF2), glucose transporters 3 and 5 (SLC2A3, SLC2A5), activating transcription factor 1 (ATF1), cyclin D1, secreted phosphoprotein 1, and the antioxidant enzymes superoxide dismutase 1 (SOD1), peroxiredoxin 2 (PHD2) and glutathione peroxidase 4 (GPX4) was seen in in vitro ESC. Alterations in gene expression observed in mouse embryos as a result of the use of serum during embryo culture [52] were also detected, and included downregulation of platelet derived growth factor receptor (PDGFR), the metabolic genes pyruvate dehydrogenase isoenzyme 1, aldehyde dehydrogenase 2 (ALDH2) and aldehyde dehydrogenase family 6 subfamily A1, and upregulation of solute carrier family 25 (mitochondrial carrier, citrate transporter) member 1.

Differential expression of oxygen-regulated and metabolic genes

Oxygen-regulated gene expression is known to be important for preimplantation embryo development [21]. The oxygen concentration in which the rhesus preimplantation embryo develops in vivo is reduced [53,54] compared with in vitro culture. The HIF1A

![Image](https://example.com/image.png)
Table 1. Transcription factor expression significantly altered by ESC origin.

Gene symbol	Gene name	q-value
PAX8	paired box 8	2.16
NR6A1	nuclear receptor subfamily 6, group A, member 1	2.07
HIVEP3	human immunodeficiency virus type 1 enhancer binding protein 3	2.02
TAF1	TBP-associated factor 1	1.82
NFATC1	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1	1.68
ZNF219	zinc finger protein 219	1.62
ARID2	AT rich interactive domain 2 (ARID, RFX-like)	1.617
SHOX2	short stature homeobox 2	1.56
ETV5	ets variant 5	1.56
FOXJ3	forkhead box J3	1.55
SMAD2	SMAD family member 2	1.5
ZNF292	zinc finger protein 292	1.5
RBPJ	recombination signal binding protein for immunoglobulin kappa J region	1.49
E2F7	E2F transcription factor 7	1.46
ZFX	zinc finger protein, X-linked	1.45
ZNF280B	zinc finger protein 280B	1.39
KLF3	Kruppel-like factor 3 (basic)	1.36
BAZ2B	bromodomain adjacent to zinc finger domain, 2B	1.36
ZNF24	zinc finger protein 24	1.36
TBP	TATA box binding protein	1.34
UBN1	ubiquinuclein 1	1.31
RFX7	regulatory factor X, 7	1.26
TIAM1	T-cell lymphoma invasion and metastasis 1	1.25
MTF2	metal response element binding transcription factor 2	1.242
SLC30A9	solute carrier family 30 (zinc transporter), member 9	1.11
SETDB1	SET domain, bifurcated 1	1.1
CDCA7	cell division cycle associated 7	1.01
ZNF148	zinc finger protein 148	0.41
GTF2H2	general transcription factor IIH, polypeptide 2, 44 kDa	0.27
NCOA3	nuclear receptor coactivator 3	0.259
PYGO2	pygopus homolog 2 (Drosophila)	0.055
RBM4	RNA binding motif protein 4	0.02
CDK8	cyclin-dependent kinase 8	0.005
ATRX	alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, S. cerevisiae)	−0.14
PUF60	poly-U binding splicing factor 60 kDa	−0.175
SP3	Sp3 transcription factor	−0.297
NPAT	nuclear protein, ataxia-telangiectasia locus	−0.56
SMADCA1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1	−0.586
SMAD3	SMAD family member 3	−0.629
ASH2L	ash2 (absent, small, or homeotic)-like	−0.923
ZMYM2	zinc finger, MYM-type 2	−0.94
IRF3	interferon regulatory factor 3	−1.01
MED12	mediator complex subunit 12	−1.01
ZNF215	zinc finger protein 215	−1.01
HIPK3	homeodomain interacting protein kinase 3	−1.02
TAF6L	TAF6-like RNA polymerase II	−1.02
PHF19	PHD finger protein 19	−1.02
ING1	inhibitor of growth family, member 1	−1.02
MLL	myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)	−1.03
Gene symbol	Gene name	q-value
-------------	-----------	---------
ZNF192	zinc finger protein 192	1.03
NCOA2	nuclear receptor coactivator 2	1.04
TPS3	tumor protein p53	1.04
MEF2A	myocyte enhancer factor 2A	1.04
SATB1	SATB homeobox 1	1.04
PHTF2	putative homeodomain transcription factor 2	1.046
HOXB1	homeobox B1	1.05
ZNF76	zinc finger protein 76 (expressed in testis)	1.05
MED1	mediator complex subunit 1	1.05
MYBL1	v-myb myeloblastosis viral oncogene homolog (avian)-like 1	1.05
TRIP11	thyroid hormone receptor interactor 11	1.05
HSF1	heat shock transcription factor 1	1.05
MYCN	v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)	1.06
ZEB1	zinc finger E-box binding homeobox 1	1.06
MAML2	mastermind-like 2 (Drosophila)	1.06
MMYT1	MYST histone acetyltransferase 1	1.06
SCML1	sex comb on midleg-like 1 (Drosophila)	1.06
TLE4	transducin-like enhancer of split 4 (E(sp1) homolog, Drosophila)	1.065
CNOT3	CCR4-NOT transcription complex, subunit 3	1.07
SP1	Sp1 transcription factor	1.07
DEAF1	deformed epidermal autoregulatory factor 1	1.08
TARBP2	TAR (HIV-1) RNA binding protein 2	1.08
SIX4	SIX homeobox 4	1.08
CDK9	cyclin-dependent kinase 9	1.08
CREBL2	cAMP responsive element binding protein-like 2	1.08
TRIM33	tripartite motif-containing 33	1.09
RNF14	ring finger protein 14	1.09
PRIC285	PPAR-alpha interacting complex protein 285	1.1
TMF1	TATA element modulatory factor 1	1.1
PURA	similar to Transcriptional activator protein Pur-alpha (Purine-rich single-stranded DNA-binding protein alpha)	1.1
NCOR2	nuclear receptor co-repressor 2	1.102
YAF2	YY1 associated factor 2	1.103
HESX1	HESX homeobox 1	1.12
ELF2	similar to E74-like factor 2 (ets domain transcription factor) isoform 2	1.12
FOXN3	forkhead box N3	1.13
HSF2	heat shock transcription factor 2	1.14
ZFP36L2	zinc finger protein 36, C3H type-like 2	1.14
ACTR5	ARPS actin-related protein 5 homolog (yeast)	1.15
SMAD4	SMAD family member 4	1.17
DDX54	DEAD (Asp-Glu-Ala-Asp) box polypeptide 54	1.17
POU5F1	POU class 5 homeobox 1	1.17
ZSCAN21	zinc finger and SCAN domain containing 21	1.176
ERCC3	excision repair cross-complementing rodent repair deficiency, complementation group 3	1.18
STAT1	signal transducer and activator of transcription 1	1.185
ZNF81	zinc finger protein 81	1.2
HMGA2	high mobility group AT-hook 2	1.205
INGX	inhibitor of growth family, X-linked, pseudogene	1.21
ZNF140	zinc finger protein 140	1.21
DIDO1	death inducer-obliterator 1	1.22
Table 1. Cont.

Gene symbol	Gene name	q-value
ARNTL	aryl hydrocarbon receptor nuclear translocator-like	1.226
NAB2	NGFI-A binding protein 2	1.228
BAZ1A	bromodomain adjacent to zinc finger domain, 1A	1.23
SSBP1	single-stranded DNA binding protein 1	1.23
CREG1	cellular repressor of E1A-stimulated genes 1	1.24
HCF1C	host cell factor C1 (VP16-accessory protein)	1.25
MYBBP1A	MYB binding protein (P160) 1a	1.25
MLX	MAX-like protein X	1.262
KLF5	similar to Krueppel-like factor 5	1.28
TAF2	TAF2 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 150 kDa	1.285
PIAS2	protein inhibitor of activated STAT, 2	1.285
PHF10	PHD finger protein 10	1.29
SMAD1	SMAD family member 1	1.297
ELL2	elongation factor, RNA polymerase II, 2	1.31
ETV6	ets variant 6	1.313
ETS1	v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)	1.317
TP53BP2	tumor protein p53 binding protein, 2	1.33
ZNF143	zinc finger protein 143	1.33
MED7	mediator complex subunit 7	1.33
BTF3	basic transcription factor 3	1.34
ZNF410	zinc finger protein 410	1.34
FOXO1	forkhead box O1	1.34
STAT3	signal transducer and activator of transcription	1.345
DR1	down-regulator of transcription 1, TBP-binding (negative cofactor 2)	1.35
CTCF	similar to Transcriptional repressor CTCF (CCCTC-binding factor) (CTCFL paralog) (11-zinc finger protein)	1.35
GTF2H4	general transcription factor IIH, polypeptide 4, 52 kDa	1.35
SAP18	Sin3A-associated protein, 18 kDa	1.35
ACTL6A	actin-like 6A	1.36
TFDP2	transcription factor Dp-2 (E2F dimerization partner 2)	1.366
CNOT2	CCR4-NOT transcription complex, subunit 2	1.37
BHLHE40	basic helix-loop-helix family, member e40	1.38
KDM3A	lysine (K)-specific demethylase 3A	1.38
BRD7	bromodomain containing 7	1.38
GTF2F1	general transcription factor IIF, polypeptide 1, 74 kDa	1.39
BCOR	BCL6 co-repressor	1.39
ZNF281	zinc finger protein 281	1.39
TFAP2C	transcription factor AP-2 gamma	1.39
SAP30	Sin3A-associated protein, 30 kDa	1.4
MED17	mediator complex subunit 17	1.4
ZNF451	zinc finger protein 451	1.42
TCF7L2	transcription factor 7-like 2 (T-cell specific, HMG-box)	1.44
SMAD5	SMAD family member 5	1.44
RB1	retinoblastoma 1	1.45
JMJD1C	jumonji domain containing 1C	1.451
ATF1	activating transcription factor 1	1.47
CREB1	cAMP responsive element binding protein 1	1.48
THRAP3	thyroid hormone receptor associated protein 3	1.49
YBX1	Y box binding protein 1	1.5
GTF2H1	general transcription factor IIH, polypeptide 1, 62 kDa	1.508
Gene symbol	Gene name	q-value
-------------	---	---------
MECP2	methyl CpG binding protein 2 (Rett syndrome)	1.51
TAF12	TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 20 kDa	1.51
CBFB	core-binding factor, beta subunit	1.52
MED20	mediator complex subunit 20	1.52
DOX20	DEAD (Asp-Glu-Ala-Asp) box polypeptide 20	1.53
WDR77	WD repeat domain 77	1.545
BTAF1	BTAF1 RNA polymerase II, B-TFIIID transcription factor-associated, 170 kDa	1.55
TAF9	TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32 kDa	1.56
MED19	mediator complex subunit 19	1.578
PIAS1	protein inhibitor of activated STAT, 1	1.587
CNOT8	CCR4-NOT transcription complex, subunit 8	1.59
NRIP1	nuclear receptor interacting protein 1	1.61
TSG101	tumor susceptibility gene 101	1.62
MED10	mediator complex subunit 10	1.62
KAT5	K(lysine) acetyltransferase 5	1.63
SMARCA4	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin a4	1.65
ABT1	activator of basal transcription 1	1.67
SMARCC1	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin c1	1.67
ETS2	v-ets erythroblastosis virus E26 oncogene homolog 2	1.68
ZNF462	zinc finger protein 462	1.7
SOX2	SRY (sex determining region Y)-box 2	1.71
ZNF423	zinc finger protein 423	1.72
CTNNB1	catenin (cadherin-associated protein), beta 1, 88 kDa	1.76
FUBP1	far upstream element (FUSE) binding protein 1	1.77
HBP1	HMG-box transcription factor 1	1.78
CREM	cAMP responsive element modulator	1.8
TFAM	transcription factor A, mitochondrial	1.8
PTTG1	pituitary tumor-transforming 1	1.81
CCND1	cyclin D1	1.81
ATF4	activating transcription factor 4 (tax-responsive enhancer element B67)	1.83
TRRAP	transformation/transcription domain-associated protein	1.885
HIVEP1	human immunodeficiency virus type I enhancer binding protein 1	1.9
CALR	calreticulin	1.92
ADNP	activity-dependent neuroprotector homebox	1.93
MYC	v-my c-myc myelocytomatosis viral oncogene homolog (avian)	1.94
TCEA1	transcription elongation factor A (SII), 1	2.01
CITED2	similar to Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal	2.06
ID4	inhibitor of DNA binding 4, dominant negative helix-loop-helix protein	2.075
TCEB3	transcription elongation factor B (SII), polypeptide 3 (110 kDa, elongin A)	2.08
YWHAH	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide	2.12
DOX5	DEAD (Asp-Glu-Ala-Asp) box polypeptide 5	2.13
ANKRD1	ankyrin repeat domain 1 (cardiac muscle)	2.18
GTF3A	general transcription factor IIIA	2.27
COP55	COP9 constitutive photomorphogenic homolog subunit 5 (Arabidopsis)	2.295
HTATSF1	HIV-1 Tat specific factor 1	2.3
NFI B	nuclear transcription factor Y, beta	2.342
STRAP	serine/threonine kinase receptor associated protein	2.457
HIF1A	hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)	2.462
BCLAF1	BCL2-associated transcription factor 1	2.49
Table 1. Cont.

Gene symbol	Gene name	q-value
GTF2I	general transcription factor II	2.56
MORF4L2	similar to Mortality factor 4-like protein 2 (MORF-related gene X protein) (Transcription factor-like protein MRGX) (MSL3-2 – 2.8	2.72
PFN1	profilin 1	2.82
TARDBP	TAR DNA binding protein	2.89
DDX17	DEAD (Asp-Glu-Ala-Asp) box polypeptide 17	2.96
HELLS	helicase, lymphoid-specific	2.965

Higher ratios represent genes upregulated in in vitro ESC, lower ratios are upregulated in in vivo ESC. As ChipInspector considers one probe as significant if the fold-change is greater than 2, the final FC for each gene represents the average of all probes that overlap the gene. The q-value is calculated as log2 fold change.

doi:10.1371/journal.pone.0043239.t001

Table 2. Canonical signal transduction pathways represented by the 1388 differentially expressed transcripts from ESC generated from either in vivo derived or in vitro cultured embryos.

Canonical pathway	P-value	# Genes (observed)	# Genes (expected)	Total genes in pathway	List of observed genes
Androgen Receptor	1.01E-06	28	10.94444	87	STUB1, CTNNB1, AKT1, HIPK3, CALR, PXN, SVIL, MAPK1, STAT3, SP1, TMF1, NCOA3, CDK9, CDC37, CDC2, RB1, MDM2, SMAD3, PIA51, NNF14, CCNH, NCOA2, GTF2F1, PTEF, NCOA2, CAV1, NRIP1, GTF2F1H
HIV-1 NEF: negative effector of FAS and TNF	1.4E-05	19	6.793103	54	NUMA1, LMNB1, PSEN1, CASP8, GSN, LMNA, MAP3K1, BIRC2, RB1, PK2, MDM2, CFLAR, RASA1, FAS, CHUK, PTK2, CASP3, PSEN2, BAG4
Osteopontin-mediated events	0.000137	12	3.773946	30	PIP3R1, MMP2, VAV3, GSN, SPP1, MAPK1, MAP3K1, CD44, ROCK2, CHUK, PLAU, MAPK3
Integrons in angiogenesis	0.000243	16	6.289911	50	PIP3R1, VEGFA, AKT1, CASP8, VAV3, PXN, TN1, SPP1, MAPK1, FGF2, SDC1, IGF1R, HSF90AA1, PIK4B, PTK2, MAPK3
VEGFR1 specific signals	0.000315	11	3.52235	28	PLAG1, PIP3R1, VEGFA, AKT1, NRIP2, HIF1A, MAPK1, HSF90AA1, RASA1, CAV1, MAPK3
FAS signaling pathway (cd95)	0.000338	9	2.515964	20	CASP8, MAP3K1, FAF1, RB1, PK2, CFLAR, FAS, MAP3K7, CASP3
Mechanism of gene regulation by peroxisome proliferators via ppara	0.00037	14	5.283525	42	DSP1, MYC, CITED2, MED1, MAPK1, SP1, DUT, RB1, HS11784, HSF90AA1, ME1, NCO2R, NRIP1, MAPK3
Rb tumor suppressor/checkpoint signaling in response to dna damage	0.000411	7	1.635377	13	YWHAH, CDK4, TP53, WEE1, CDC2, RB2, CDK2
HIF-1-alpha transcription factor network	0.000469	19	8.554278	68	VEGFA, AKT1, HIF1A, CITED2, SP1, MCL1, HMOX1, BHLHE40, ETS1, PKG1, SMAD3, TFRC, CREB1, NCOA2, EDN1, ADM, COPS5, CCL5
Human cytomegalovirus and map kinase pathways	0.000505	8	2.13857	17	PIP3R1, AKT1, MAPK1, SP1, MAP3K1, RB1, CREB1, MAPK3
TGFBR	0.000593	32	17.98914	143	SNX1, SMAD2, PIK3R1, CTNNB1, CDK4, TP53, STRAP, CUL1, SNX4, MYC, NMYC, UBE2D1, CAMK2D, SP1, TGFB1, CDK6, TGFBR2, CDC16, ETS1, CDC2, CTCF, RB1, SMAD3, CD44, CAMR, SNX2, PIA51, CDK2, MAP3K7, CAV1, MEFA2, COPS5
Angiopoietin receptor Tie2-mediated signaling	0.000648	15	6.164112	49	PLG, PIK3R1, FOXO1, AKT1, ITGAS, MMP2, PXN, MAPK1, ELF2, FGF2, ETS1, RASA1, FYN, PTK2, MAPK3
FAS signaling pathway (CD95)	0.000729	12	4.402937	35	CASP8, GSN, LMNA, MAP3K1, FAF1, RB1, PK2, CFLAR, FAS, CHUK, MAP3K7, CASP3
Canonical pathway	P-value	# Genes (observed)	# Genes (expected)	Total genes in pathway	List of observed genes
--	-----------	-------------------	-------------------	------------------------	--------------------------
Co-regulation of Androgen receptor activity	0.000779	17	7.547893	60	CTNNB1, CDTS2P, AKT1, XRCC5, CASP8, MED1, VAV3, 5VL, GSN, CDK6, TMF1, TCF4, PIAS1, FBKP4, KDM3A, NCOA2, NRP1
EGFR receptor proximal signaling	0.001023	10	3.396552	27	PLCGI, PTPN1, GSN, WAS1, MAPK1, STAT3, GNA3, RASA1, PTK2, MAPK3
Estrogen responsive protein EEF controls cell cycle and breast tumors growth	0.001229	7	1.886973	15	CDK4, TP3S, CDK8, CDK6, CDC2, CCNB1, CDK2
Cell cycle: G1/S check point	0.001415	10	3.52235	28	CDK4, TP3S, SKP2, TGF1B, CDK8, TK1, CD2, RB1, SMAD3, CDK2
Transcription factor CREBb and its extracellular signals	0.001415	10	3.52235	28	PRKAR2B, PIK3R1, AKT1, CAMK2D, PRKAR1A, MAPK1, ASAH1, CAMK2G, CREB1, MAPK3
NOTCH	0.002404	19	9.686462	77	SMAD1, HIVEP3, PIK3R1, JAG1, SKP2, MAML2, RBP1, ADAM10, Cul1, PSEN1, SAP30, MAPK1, STAT3, APP, FHL1, SMAD3, NCOB2, PSEN2, MAPK3
Migration	0.002424	36	22.64368	180	PRKAR2B, PLC1G, MAPKAPK3, PIK3R1, CDK4, VEGFA, ACT1, ZAP70, CAMK2D, PRKAR1A, RYK, PIK3C, MAPK1, CDKB, WE1, CDK6, MAPK12, CDK9, ITPR1, MAPK3, CD2, IGF1R, PKQ2, MAPKAPK2, CN5K1A, CAMK2G, PIK3CB, AKT2, CDK2, CHUK, CCNH, FYN, MAPK3, PTK2, MAPK3
Signaling events mediated by VEGFR1 and VEGFR2	0.002466	17	8.302682	66	PLCGI, HSPB1, PIK3R1, CTNNB1, VEGFA, AKT1, NRP2, HIF1A, PXN, MAPK1, HSP90AA1, IQGAP1, FYN, GRB10, PTK2, CAV1, MAPK3
E-cadherin signaling in keratinocytes	0.002676	8	2.641762	21	PLCGI, PIK3R1, CTNNB1, AKT1, CTNN1A, CTNN1D1, AKT2, FYN
Regulation of glucocorticoid receptor	0.002693	11	4.402937	35	YWHAH, TP3S, AKT1, SMARCC1, SMARC4A4, MAPK1, MDM2, HSP90AA1, FBKP4, NCOA2, MAPK3
Platelet amyloid precursor protein pathway	0.003007	6	1.635377	13	PLG, COL4A6, PLAT, COL4A5, APP, PLAU
p53 signaling pathway	0.003007	6	1.635377	13	CDK4, TP3S, TIP3, RB1, MDM2, CDK2
FOXM1 transcription factor network	0.004236	12	5.283525	42	CDK4, SKP2, MYC, MMP2, CENPA, SP1, NFKB2, CD2, RB1, AURKB, CDK2
ERK and PI-3 kinase necessary for collagen binding in corneal epithelia	0.004374	10	4.025543	32	PLC1G, PIK3R1, PXN, GSN, TNLN1, MAPK1, FN1N, PTN1, DIAPH1, MAPK3
TNF alpha/NF-kB	0.004456	33	21.0083	167	HSFPB1, POLR2L, YWHAH, AKT1, CUL1, ALPL, TRAF6, CASP8, CASP8AP2, SMARCC1, SMARC4A, KNAP3, TNAP1, MCM5, MAPK3, BCL7A, LRRP9CH, FA1, BIRC2, CDC37, KNP6, PSM3D, HSP90AA1, AKT2, CFLAR, COP3, CHUK, CAS3, CAV1, ACTL6A, BAG4, AZZ2, MAPK7IP2
How progesterone initiates oocyte maturation	0.005132	8	2.893359	23	PRKAR2B, PRKAR1A, CAP1, CD2, CDK2C, MAPK1, CD2, CCNB1, MAPK3
Cyclins and cell cycle regulation	0.005132	8	2.893359	23	CDK4, CCND2, CDK6, CDC2, RB1, CCNB1, CDK2, CCNB1, NCOA2, MDM5, PTEN
CTCF: first multivalent nuclear factor	0.005132	8	2.893359	23	SMAD1, PIK3R1, MYC, TGF1B, CTCF, MDM2, MDM5, PTEN
IFN-gamma pathway	0.00523	12	5.409323	43	PIK3R1, AKT1, DAPK1, CAMK2D, MAPK1, STAT3, MAPK3, IFNFR1, CAMK2G, PIAS1, CRK1, MAPK3
Akt signaling pathway	0.006137	7	2.390166	19	GRH, PIK3R1, YWHAH, FOXO1, AKT1, HSP90AA1, CHUK
Overview of telomerase RNA component gene hTERC transcriptional regulation	0.006296	4	0.880587	7	NFYB, SP1, SP3, RB1
pathway was identified as over-represented in the significantly downregulated gene list by Bibliosphere, the 3881 significant gene list was further interrogated for HIF-regulated genes. Significantly, HIF1A transcript levels were 5.5 fold lower in in vitro ESC (q-value 2.462) than in in vivo ESC. In addition to the 18 genes identified in the HIF1A canonical pathway by Bibliosphere (Table 2), a further 17 genes known to be regulated by oxygen, including SLC2A3 (glucose transporter 3), ALDOA (aldehyde dehydrogenase A) and ENO1 (enolase 1), were identified in the 3881 differentially expressed gene list (Table 5). A comparison of the 3881 output with that of Rinaudo et al 2006 [55], examining the effect of oxygen on preimplantation mouse embryos, resulted in the identification of an additional 23 genes that appear to be regulated by oxygen during early development [55] (Table 6).

In addition to perturbed expression of metabolic genes previously reported in preimplantation embryos, including SLC2A1, SLC2A3, ALD2 and PDK1, regulatory genes controlling mitochondrial biogenesis were also identified as being downregulated in in vitro ESC, including mtSSB, POLG and TFAM, along with genes regulating mitochondrial dynamics (MFN1, KIF3C and OPA1; Table S3).

Confirmation of gene expression by RT-PCR

To confirm the fidelity of our results, we assessed the expression of 13 genes identified in the data analyses. Genes involved in metabolism and mitochondrial function (ATP5B, KIF5C, MFN1, PKM2, SLC2A3, UCP2), pluripotency (FGF2, POU5F1, SOX2, NANOG), transcriptional repression (PCGF2), aging (LMNA) and embryo development (FGF1R, IGF1R, IGFBP2) were examined in pooled ESC RNA from available cultures (Ormes 7 and R466) grown under the same conditions as the samples used for transcriptional profiling. Expression of these genes was confirmed

Table 2. Cont.

Canonical pathway	P-value	# Genes (observed)	# Genes (expected)	Total genes in pathway	List of observed genes
AKT(PKB)-Bad signaling	0.006818	34	22.39208	178	PRKAR2B, MAPKAPK3, PIK3R1, CDK4, AKT1, ZAP70, CAMK2D, PRKAR1A, RYK, PRKCI, MAPK1, STAT3, CDK8, WEE1, CDK6, MAP3K12, CDK9, MAP3K1, CD2, IGFR1, PIK2, MAPKAPK2, CSNK1A1, CAMK2G, PIK3CB, AKT2, CDK2, CHUK, CCNH, FYN, MAP3K7, PTQ2, NGFR, MAPK3
Generation of amyloid b-peptide by ps1	0.006922	3	0.503193	4	ADAM10, PSEN1, APP
Influence of ras and rho proteins on g1 to s transition	0.007125	9	3.648148	29	PIK3R1, CDK4, AKT1, MAPK1, CDK6, RB1, CDK2, CHUK, MAPK3
p75(INTR0)-mediated signaling	0.007285	16	8.42848	67	PLG, PIK3R1, TPS3, AKT1, PSEN1, BCL2L11, TRAF6, PRKCI, APP, BIRC2, CHUK, RTN4, CASP3, NGFR, ARHGDIA, SORT1
VEGF hypoxia and angiogenesis	0.009077	9	3.773946	30	PLCG1, PIK3R1, VEGFA, AKT1, HIF1A, PXN, HSP90AA1, PTK2, CAV1
TNF receptor signaling pathway	0.009336	12	5.786718	46	MAP4K5, CASP8, PRKCI, SMAD1, MAP3K1, BIRC2, CHUK, MAP3K7, CAV1, BAG4, MAP3K1, TNK

doi:10.1371/journal.pone.0043239.t002

Figure 2. Bibliosphere analysis of transcripts where two genes are co-cited and restricted to sentences with gene+function word+gene. sentences with expert curated information. Each rectangle depicts a single gene. Red indicates the gene is unregulated, blue downregulated. Arrows between two genes shows regulatory mechanisms: green indicates a transcription factor binding site match in the target promoter; open arrowhead indicates regulation; filled arrowhead indicates activation; blocked arrowhead indicates inhibition; blue dot on the edge indicates that the connection has been annotated by experts; **A:** Associations present between HIF1A and other genes at the expert level; **B:** Associations present between SMAD2 and other genes at the expert level. IN: gene is an input gene; TF: gene's product is a transcription factor; ST: gene product is part of signal transduction pathway.
doi:10.1371/journal.pone.0043239.g002
Gene Symbol	Gene Name	q-value	References
ADSL	adenylosuccinate lyase	1.56	[4,6,47]
ALDH3A2	aldehyde dehydrogenase 3 family, member A2	1.402	[6,45]
ALPL	alkaline phosphatase, liver/bone/kidney	1.25	[6,47]
ASPM	asp (abnormal spindle) homolog, microcephaly associated (Drosophila)	1.1	[16,45]
BST2	bone marrow stromal cell antigen 2	2.215	[16,45]
CBR1	carbonyl reductase 1	1.3	[6,45]
CCNB1	cyclin B1	1.582	[4,6,47]
CCNC	cyclin C	2.17	[4,44,47]
CCND1	cyclin D1	2.215	[16,45]
CCNF	cyclin F	2.17	[6,44,45]
CDC2	cell division cycle 2, G1 to S and G2 to M	1.77	[4,6,43,44,47]
CDK3	cyclin-dependent kinase inhibitor 3	1.1	[6,45]
COMMMD3	COMM domain containing 3	2.12	[5,42]
CRABP1	cellular retinoic acid binding protein 1	2.43	[4,44,47]
CTSC	cathepsin C	2.135	[6,45]
CUL1	cullin 1	1.775	[16,44]
DKC1	dyskeratosis congenita 1, dyskerin	0.09	[6,47]
DSG2	desmoglein 2	1.87	[4,47]
ECT2	epithelial cell transforming sequence 2 oncogene	1.82	[6,43]
EEF1B2	eukaryotic translation elongation factor 1 beta 2	1.35	[6,47]
EPRS	glutamyl-prolyl-tRNA synthetase	1.71	[4,43,47]
FABP5	fatty acid binding protein 5 (psoriasis-associated)	2.28	[4,6,47]
FGFR1	fibroblast growth factor receptor 1	1.024	[5,6]
FKBP4	FK506 binding protein 4, 59 kDa	1.26	[6,44]
Gabbr3	gamma-aminoacylauric acid (GABA) A receptor, beta 3	1.643	[16,42,45]
GART	phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminomimidazole synthetase	1.5	[6,16,47]
GPC4	glypican 4	2.04	[6,43,47]
GPM6B	glycoprotein M6B	1.03	[6,45]
HELLS	helicase, lymphoid-specific	2.965	[6,16,44,45]
HNRNPA2B1	heterogeneous nuclear ribonucleoprotein A2/B1	3.238	[6,44]
HNRNPA8	heterogeneous nuclear ribonucleoprotein A/B	2.91	[43,47]
IDH1	isocitrate dehydrogenase 1 (NADP+), soluble	2.32	[4,6,47]
IMPDH2	IMP (inosine monophosphate) dehydrogenase 2	1.85	[4,47]
KIF5C	kinesin family member 5C	1.25	[6,45]
LTA4H	leukotriene A4 hydrolase	1.46	[6,45]
MAD2L2	MAD2 mitotic arrest deficient-like 2 (yeast)	1.52	[4,47]
MCM7	minichromosome maintenance complex component 7	1.705	[6,47]
MGST1	microsomal glutathione S-transferase 1	2.38	[4,47]
MRN1	makorin ring finger protein 1	1.38	[6,44]
MPHOSPH9	M-phase phosphoprotein 9	1.15	[6,16]
MSH2	mutS homolog 2	1.94	[6,44,46]
NEK2	NIMA (never in mitosis gene a)-related kinase 2	1.822	[6,44]
NPYB	nuclear transcription factor Y, beta	2.342	[6,44,45]
PGK1	phosphoglycerate kinase 1	1.462	[6,47]
PIM1	pim-1 oncogene	1.63	[6,47]
Pou5f1	POU class 5 homeobox 1	1.17	[4–6,16,44–47]
PPAT	phosphoribosyl pyrophosphate amidotransferase	1.345	[4,6,43,45,47]
PSMA2	proteasome (prosome, macropain) subunit, alpha, type 2	2.03	[4,6,44,47]
Table 3. Cont.

Gene Symbol	Gene Name	q-value	References
PSMD14	proteasome (prosome, macropain) 26S subunit, non-ATPase, 14	-1.42	[46,47]
PTRPZ1	protein tyrosine phosphatase, receptor-type, Z polypeptide 1	-2.602	[46,45]
PTG1	pitiituary tumor-transforming 1	-1.81	[6,47]
SCG3	secretogranin III	-1.115	[7,18]
SERPINH1	serpin peptidase inhibitor, clade H (heat protein 47), member 1, (collagen −4.02 binding protein 1)		
SLC16A1	solute carrier family 16, member 1	-2.693	[4,47]
SLC29A1	solute carrier family 29 (nucleoside transporters), member 1	-1.53	[6,45]
SNRP1A	small nuclear ribonucleoprotein polypeptide A’	-1.52	[6,47]
SNX5	sorting nexin 5	-1.416	[6,16]
SOD1	superoxide dismutase 1, soluble	-1.57	[6,44]
SOX2	SRY (sex determining region Y)-box 2	-1.71	[5,45]
TCEA1	transcription elongation factor A (SII), 1	-2.01	[43,46]
TFAP2C	transcription factor AP-2 gamma	-1.39	[5,43,44]
THY1	Thy-1 cell surface antigen	-1.815	[6,45]
TKI	thymidine kinase 1, soluble	-1.2	[4,43,47]
TKT	similar to Transketolase (TK)	-1.947	[6,43,47]
UGP2	UDP-glucose pyrophosphorylase 2	-1.25	[6,16,43,47]
USP9X	ubiquitin specific peptidase 9, X-linked	-2.178	[6,43,44]
XRPC5	X-ray repair complementing defective repair in Chinese hamster cells 5 (double−strand-break rejoining)	-2.527	[6,47]

Comparison of results of differentially expressed genes between rhesus ESC generated from in vitro or in vivo derived embryos, with previously documented microarray results of human ESC, identified 68 genes reported by at least two publications as markers of pluripotency. The q-value is calculated as log2 fold change.

doi:10.1371/journal.pone.0043239.t003

by RT-PCR, with all transcripts detected in both in vitro and in vivo ESC (Figure S1).

Discussion

It is often overlooked that human ESC are generated from in vitro cultured, often surplus/‘discard’, embryos considered unsuitable for transfer in infertility clinics. While the classification of a good quality embryo is based largely on subjective criteria, it is well known that in vitro culture significantly perturbs embryo development, particularly in terms of gene expression, metabolism and subsequent development. With this in mind, we hypothesized that in vitro culture conditions would compromise gene expression in resulting ESC. To achieve this, we examined the transcriptional profiles of four different lines generated from in vivo derived embryos (R series) with that of four lines generated from in vitro derived embryos (Ormes series). Multiple passage numbers were analyzed to minimize passage related cell culture adaptation, with cells maintained under equivalent conditions known to support high quality ESC [56]. The data reported here represent selected passages between 8 and 37 for both in vitro and in vivo ESC. Transcriptional profiling of in vitro ESC and in vivo ESC identified a total of 3881 transcripts with twofold or greater differential expression, of which the majority were downregulated in in vitro ESC. Hierarchical clustering of ESC according to origin, irrespective of passage number, suggests that the differences in gene expression detected are stably maintained during long-term culture. It is important to consider that derivation of the R series (in vivo), and Ormes series (in vitro) carried out by different laboratories may contribute to some of the differences observed in the present study. However, as transcriptional profiles were compared over a range of early passage numbers, with all cell lines maintained under the same conditions by the same laboratory for each passage assessed, this contribution is likely to be minimal.

In vitro ESC and in vivo ESC differ in the expression of imprinted and cell cycle genes, a potential legacy of embryo culture

Aberrant imprinting has been reported in a number of species following preimplantation embryo culture in vitro [57,58], including the rhesus macaque [59], with long-term consequences for fetal growth and adult health [29,33]. Bertolini et al [26] and Yaseen et al [60] have reported significantly decreased expression of IGF1R and IGF2R following in vitro culture of bovine embryos, conditions also associated with altered fetal and placental development and large offspring syndrome [27]. The expression of these genes was significantly lower in in vitro ESC when compared with in vivo ESC, suggesting that the altered expression of these genes in cultured embryos is preserved during ESC isolation. In support of this, a number of other genes involved in epigenetic regulation, including histones, histone deacetylases and lysine-specific demethylase 3A were identified as differentially expressed between in vitro ESC and in vivo ESC (Table S3). Studies have also reported aberrations in imprinted genes in mouse [61], monkey [62,63] and human ESC [64–67], particularly that of IGF2 and IGF2R. Frost et al [68] reported genomic instability in human ESC, and suggested that derivation and ESC culture contributed to atypical methylation patterns, however it is possible that aberrant imprinting was inherent to the embryo from which the line was derived, in addition to any derivation and culture.
Table 4. Differentially expressed transcripts that display altered expression patterns following *in vitro* embryo culture.

Gene ID	Gene Symbol	Gene Name	UnigeneID	Gene Bank Accession	q-value
693644	ATF1	activating transcription factor 1	Mmu.12123	XM_001083228	-1.47
713451	ALDH2	mitochondrial aldehyde dehydrogenase 2	Mmu.9621	XR_012809	-2.25
698755	ALDH6A1	aldehyde dehydrogenase 6 family, member A1	Mmu.11793	XM_001093055	-1.50
717809	ALPL	alkaline phosphatase, liver/bone/kidney	#/N/A	XM_001109717	-1.25
574320	CCND1	cyclin D1	Mmu.3863	AY950561	-1.81
707479	F2RL1	coagulation factor II (thrombin) receptor-like 1	#/N/A	XM_001106263	-2.78
574136	FGF2	fibroblast growth factor 2 (basic)	Mmu.3766	XM_001099284	-1.47
697986	GHR	growth hormone receptor	Mmu.3595	XM_001088963	-1.16
705333	GPX4	glutathione peroxidase 4	Mmu.9752	AANU01110880	-2.07
697321	HEBP1	heme binding protein 1	Mmu.11875	XM_001086941	-1.29
708227	IGF1R	insulin-like growth factor 1 receptor	#/N/A	XM_001100407	-1.07
703220	IGF2R	insulin-like growth factor 2 receptor	Mmu.7995	XR_012149	-1.11
708601	LOC708601	similar to GULP, engulfment adaptor PTB domain containing 1	Mmu.11298	XM_001105327	-2.15
Gene ID	Gene Symbol	Gene Name	UnigeneID	Gene Bank Accession	q-value
----------	-------------	---	-----------	---------------------	---------
AANU01249506					
XM_001105193					
AANU01249509					
AANU01249508					
AANU01249503					
AANU01249502					
AANU01249505					
XM_001105407					
AANU01249504					
AANU01249510					
AANU01249501					
AANU01249500					
721477	OAZ1	ornithine decarboxylase antizyme 1	Mmu.3213	CO644742	−1.06
693317	PAIP2	poly(A) binding protein interacting protein 2	Mmu.2927	XM_001082025	−2.77
707725	PDGFA	platelet-derived growth factor alpha polypeptide	#/N/A	XM_001096150	−1.46
XM_00106316					
XM_001100787					
XM_001100332					
XM_001100617					
XM_001100701					
DQ14960					
716665	PRDX2	peroxiredoxin 2	Mmu.2032	XM_001108992	−2.34
696171	SERPINH1	serpin peptidase inhibitor, clade H (heat shock protein 47), member 1, (collagen binding protein 1)	Mmu.3117	XM_001084827	−4.02
706593	SLC16A1	solute carrier family 16, member 1	Mmu.10117	XM_001108968	−2.69
DQ149727					
715915	SLC2A3	solute carrier family 2 (facilitated glucose/fructose transporter), member 3	Mmu.2873	XM_001113093	−3.13
XM_001113033					
XM_001113127					
XM_001113085					
XM_00113218					
XM_001112912					
XM_001112821					
722154	SLC2A5	solute carrier family 2 (facilitated glucose/fructose transporter), member 5	Mmu.11703	XM_001118341	−1.4
Table 4. Cont.

Gene ID	Gene Symbol	Gene Name	UnigeneID	Gene Bank Accession	q-value
719075	SLC25A1	solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1	Mmu.10146	XM_001112697	1.59
574096	SOD1	superoxide dismutase 1, soluble	Mmu.882	NM_001032804	–1.57
704930	SP1	secreted phosphoprotein 1	Mmu.225	XM_001093307	–2.9

The q-value is calculated as log2 fold change.
doi:10.1371/journal.pone.0043239.t004

Table 5. Oxygen-regulated genes displaying differential expression between rhesus ESC generated from in vivo derived or in vitro cultured embryos compared with published data.

Gene Symbol	Gene Name	UniGene ID	Accession Number(s)	q-value
ADM	Adrenomedullin	Mmu.1495	XM_001100827	–2.23
			XM_001100373	
			XM_001100748	
AKT1	v-akt murine thymoma viral oncogene homolog 1	Mmu.1599	XM_001085746	1.70
			XM_001085495	
			XM_001085265	
			XM_001085623	
			XM_001085152	
ALDOC	aldolase C, fructose-bisphosphate	Mmu.2882	XM_001107579	–1.10
			XM_001107637	
BHLHE40	basic helix-loop-helix family, member Mmu.2936 e40	Mmu.1599	XM_001085746	1.70
			XM_001085495	
			XM_001085265	
			XM_001085623	
			XM_001085152	
CITED2	similar to Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal	Mmu.12809	XM_001096152	–2.06
			AANU01207265	
			AANU01207264	
COP55	COP9 constitutive photomorphogenetic homolog subunit 5 (Arabidopsis)	Mmu.4188	XM_001097450	–2.30
			XM_001097856	
			XM_001097650	
			XM_001097549	
			XM_001097759	
			XM_001098042	
CREB1	cAMP responsive element binding protein 1	Mmu.13784	XM_001107192	–1.48
CTGF	connective tissue growth factor	Mmu.3969	XM_001094316	–2.11
CTSD	cathepsin D	Mmu.2920	XM_001091374	–1.18
			XM_001091495	
			XM_001091601	
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	Mmu.3714	AF449283	–2.44
			NM_001032934	
EDN1	endothelin 1	Mmu.13776	XM_001089874	–1.88
ENO1	enolase 1	Mmu.4213	XM_001098675	–1.13
			XM_001098378	
			XM_001098480	
Gene Symbol	Gene Name	UniGene ID	Accession Number(s)	q-value
-------------	-----------	------------	---------------------	---------
XM_001098286	v-ets erythroblastosis virus	Mmu.13289	XM_001113071	−1.32
XM_001098939	hypoxia inducible factor 1	Mmu.4843	XM_001098939	−2.46
XM_001099043	heme oxygenase (decycling)	Mmu.10024	XM_001113241	−1.56
XM_001095189	tumor rejection antigen	Mmu.1931	XM_001095189	−2.50
DQ147987	(pp96)			
XM_001087070	insulin-like growth factor binding	Mmu.10509	XM_001087070	−3.25
XR_011513	similar to Keratin, type I	Mmu.7989	AAN001283678	−1.77
IGFBP2	lectin, galactoside-binding, soluble, 1	Mmu.3924	EU152916	−2.28
NM_001168627	low density lipoprotein-related protein	Mmu.14648	XM_001099776	−1.19
MMP2	matrix metallopeptidase	Mmu.1027	XM_001087696	−1.50
NCOA2	nuclear receptor coactivator	Mmu.14283	XM_001082161	−1.04
PGK1	phosphoglycerate kinase	Mmu.4126	XM_001090817	−3.33
induced alterations. Significantly, epigenetic differences have been observed between mouse ESC generated from in vitro versus in vivo embryos [37], although these differences were lost by passage 5. Bioinformatic analysis of significantly different transcripts between in vitro and in vivo ESC also highlighted dysregulation of canonical pathways, particularly those regulating cyclins, cell cycle checkpoints and chromosomal stability (Table 2), including genes involved in the G1 to S phase known to be important in ESC [69,70]. Mtango and Latham [71] have reported altered expression of cell cycle machinery in in vitro cultured rhesus embryos, suggesting that cell cycle control mechanisms may also be heritable from the embryo to resulting ESC. Misregulation of imprinted and cell cycle genes, previously documented following in vitro embryo culture, may therefore be preserved in resulting ESC, and may compromise the cells functionality during and/or following differentiation.

Table 5. Cont.

Gene Symbol	Gene Name	UniGene ID	Accession Number(s)	q-value
PPP5C	protein phosphatase 5, catalytic subunit	Mmu.11271	XM_001111636	−1.79
SLC2A3	solute carrier family 2 (facilitated glucose transporter), member 3	Mmu.2873	XM_001113093	−3.13
SMAD2	SMAD family member 2	Mmu.2352	XM_001086377	1.50
SMAD3	SMAD family member 3	Mmu.14537	XM_00111078	−0.63
SP1	Sp1 transcription factor	Mmu.3203	XM_00104877	−1.07
TFRC	transferrin receptor	Mmu.861	XM_00101412	−1.56
TXNIP	thioredoxin interacting protein	Mmu.3252	XM_001092636	−1.83
VEGFA	vascular endothelial growth factor A	Mmu.3550	AF339737	−1.14
VIM	vimentin	Mmu.2647	XM_001093658	−2.22

The q-value is calculated as log2 fold change. doi:10.1371/journal.pone.0043239.t005
Table 6. Genes displaying differential expression between rhesus ESC generated from in vivo derived or in vitro cultured embryos and altered by oxygen in in vitro cultured preimplantation mouse embryos [55].

Gene Symbol	Gene Name	UniGene ID	Accession Number(s)	q-value
ARHGDIA	Rho GDP dissociation inhibitor (GDI) alpha	Mmu.11137	XM_001112043	−1.29
CALR	calreticulin	Mmu.4315	XM_001110217	−1.92
DHCR7	7-dehydrocholesterol reductase	Mmu.15814	XM_001099101	−1.70
DHX9	DEAH (Asp-Glu-Ala-His) box polypeptide 9	Mmu.11214	XM_001114405	−2.75
GCDH	glutaryl-Coenzyme A dehydrogenase	Mmu.15435	XM_00110430	1.340
GORASP2	golgi reassembly stacking protein 2, 55 kDa	Mmu.1213	XM_001083589	−1.37
HELL5	helicase, lymphoid-specific	Mmu.13556	XM_001094687	−2.97
HNRNPA2B1	heterogeneous nuclear ribonucleoprotein A2/B1	Mmu.2765	AANU01289359	−3.24
IDH1	isocitrate dehydrogenase 1 (NADP+), soluble	Mmu.2453	XM_001107875	−2.32
INPP5B	inositol polyphosphate-5-phosphatase, 75 kDa	Mmu.5966	AANU01008828	1.35
KIF22	kinesin family member 22	Mmu.14637	XM_001104522	−2.02

Altered ESC mRNA Profiles with Embryo Origin
Gene Symbol	Gene Name	UniGene ID	Accession Number(s)	q-value
LOC694662	similar to Histone deacetylase 2 (HD2)	Mmu.9710	XR_009889	-1.72
LOC695512	similar to RAB10, member	Mmu.9734	AANU01117583	-1.87
LOC700557	similar to elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 1	Mmu.14382	AANU01266409	-1.19
LOC709018	similar to radixin	Mmu.12960	AANU01119660	-1.37
LOC711873	similar to eukaryotic translation initiation factor 2C, 2	#/N/A	AANU01107246	-1.69
LOC713958	similar to splicing factor, arginine/serine-rich 1 (ASF/SF2)	Mmu.16625	XM_001103473	-1.72
LOC714627	similar to basic leucine zipper and W2 domains 2	Mmu.4082	AANU01288919	-2.01
LOC715977	similar to coactivator-associated arginine methyltransferase 1	Mmu.4947	AANU01122653	-1.20
In vitro culture perturbs the expression of key pluripotency regulators

Among the genes identified as significantly altered between ESC of different origin were known pluripotency markers, including POU5F1 (OCT4), basic FGF and SOX2. Basic FGF (FGF2) is an important component of primate ESC culture media required for propagation and colony maintenance. FGFs play several roles in vivo during early development [72] and are known to mediate IGF expression [73], representing a positive feedback loop. Sato et al [6] reported that FGF2 and FGFR1 were important genes enriched in the undifferentiated state, regulated by OCT4, SOX2 and NANOG. Activation of SMAD2/3 signaling is required for human ESC pluripotency [74] as both SMAD2/3 and FGF2 regulate NANOG gene expression. While NANOG is not significantly different between in vivo and in vitro ESC, in vitro ESC displayed a significantly increased SMAD2 expression. Upregulation of SMAD2 may support ongoing culture in reduced levels of other pluripotency regulators. A reduction in the expression of OCT4 and SOX2, in addition to a reduction in FGF2 and FGF receptor expression, suggests that in vitro ESC may be more prone to spontaneous differentiation. Indeed, Byrne et al [55] reported significant variability in OCT4 expression across the same Ormes lines examined in the present study. Less than a two-fold difference in the level of OCT4 expression has been shown to have significant effects on ESC maintenance [75]. In support of this, Munro et al [76] documented changes in pluripotency and differentiation marker expression during the early stages of rhesus macaque blastocyst outgrowth, and in Ormes 6 ESC, when compared with gene expression profiles of rhesus inner cell mass cells. Data therefore suggests that ESC derived from in vitro cultured embryos display alterations in pluripotency markers, however cells have potentially compensated by modulating other pathways to maintain self-renewal.

The effects of oxygen on in vitro cultured embryos are sustained in ESCs

A significant difference between in vivo derived embryos and in vitro cultured embryos is the oxygen environment in which they develop. In vivo the oxygen concentration approximates 2–7% [52,53], with an oxygen concentration of 2% reported in rhesus macaque uteri, considerably lower than the atmospheric conditions commonly used for in vitro embryo culture, and lower than the 5% oxygen concentration used to generate the embryos from which the in vitro ESC were derived. The oxygen environment is known to alter blastocyst gene expression and embryo development [21,77]. Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors that mediate cellular adaptation to reduced oxygen conditions. HIF1 protein levels increase exponentially at oxygen concentrations lower than 6% [78]. The response to hypoxia leads to the activation of signaling pathways involved in the regulation of mitochondrial function, glycolytic metabolism and cell survival. In the present study, HIF1 alpha was significantly reduced in in vitro ESC (Table 1). Further analysis demonstrated enrichment (P = 0.0004) of HIF1 alpha regulated genes (Table 5). Physiological oxygen concentrations also regulate human ESC pluripotency, proliferation, karyotypic stability and differentiation [15,79–82], mediated by HIFs [83]. Consistent with our findings, significant differences in OCT4 levels [83,84] and SOX2 mRNA expression [83] have been reported in human ESC lines derived under 5% and 20% oxygen, or following transfer to reduced oxygen culture conditions. Significantly reduced expression of FGFR1

Gene Symbol	Gene Name	UniGene ID	Accession Number(s)	q-value
NDUFS4	NADH dehydrogenase	Mmu.2486	XM_001096222	−1.50
SCARB2	scavenger receptor class B, member 2	Mmu.2325	XM_001096458	−1.25
STK3	serine/threonine kinase 3 (STE20 homolog, yeast)	Mmu.976	XM_001095834	−1.22
UGP2	UDP-glucose pyrophosphorylase 2	Mmu.466	XM_001085803	−1.25
			XM_001086473	
			XM_001086132	
			XM_001086361	
			XM_001086598	
			XM_001086015	

The q-value is calculated as log2 fold change.

do[10.1371/journal.pone.0043239.t006

Altered ESC mRNA Profiles with Embryo Origin
and FGFR2 [80] and SLC2A3, PKM2, ALDOC, and LGALS1 [17] have also been reported in human ESC in response to atmospheric oxygen conditions, and differences in SLC2A4, SLC2A5 and PGK1 have been reported between in vivo derived and in vitro produced rhesus macaque blastocysts [85]. These results suggest that underlying alterations in metabolism may exist. This is further supported by downregulation of regulatory genes controlling mitochondrial biogenesis and dynamics in *in vitro* ESC, including mtSSB, POLG and TEAM, as well as MEF1, KIF5C and OPAT [Table S3]. Differences in the expression of genes regulating mitochondrial biogenesis has also been reported between *in vivo* and *in vitro* rhesus blastocysts [86]. Significantly, Wale and Gardner [87] demonstrated that developmental perturbations observed following culture of preimplantation mouse embryo under atmospheric conditions were not restored by transferring cultures to a low oxygen environment, suggesting that adaptation of ESC will likewise not resolve underlying differences in ESC physiology. ESC properties may therefore be dependent on reduced oxygen conditions not only during derivation and subsequent expansion, but also during embryo culture prior to derivation.

Conclusions

Results of the present study document significant differences at the transcriptional level between embryonic stem cells derived from *in vitro* cultured embryos, and those derived from *in vivo* derived embryos. Data suggests that embryonic stem cells may retain a transcriptional memory representative of the environment of the preimplantation embryo from which the cells were derived. *In vitro* ESC exhibit transcriptional perturbations seen in *in vitro* cultured embryos, including alterations in markers of pluripotency and differences impacted by oxygen concentration. These differences may impact cell physiology, although it is unclear whether these differences will contribute to long-term functionality following ESC differentiation and transplantation. Further investigation into the differences between *in vitro* and *in vivo* ESCs, particularly in terms of imprinting, metabolism and functionality following differentiation, is warranted to ensure their therapeutic potential. Attention needs to be directed towards physiological measures of functionality, coupled with transcriptional, epigenetic and proteomic characterizations of pluripotency, to assess the impact the culture environment has throughout stem cell isolation, maintenance and differentiation. As methods become more refined and more efficient, and xeno-free isolation becomes routine, the examination of not only embryonic stem cells, but also induced pluripotent stem cells will be pivotal in establishing fundamental properties necessary to supply normal, safe and efficient cells for therapeutic translation.

Materials and Methods

Embryonic Stem Cell culture

Four rhesus (*Macaca mulatta*) ESC lines generated from *in vitro* cultured embryos cultured up to day 9 (Ormes 6, 7, 10 and 13, [40]; referred to as *in vitro* ESC) and four lines generated from *in vivo* derived embryos flushed from uteri 6 days post ovulation (R-series 278, 366, 394 and 511, [41]; referred to as *in vivo* ESC) were cultured as previously described [36] and were generously provided by Dr Shoukhra Mitalipov. Briefly, ESC were grown on mitotically inactivated mouse embryonic fibroblast feeder cells (MEF; cell line isolation was approved by the Oregon Health and Sciences University's Institutional Animal Care and Use Committee issued to S. Mitalipov) in Dulbecco's Modified Eagle Medium (DMEM/F12) (Invitrogen, Grand Island, NY) supplemented with 15% fetal bovine serum (FBS) (HyClone, Logan, UT), 0.1 mM β-mercaptoethanol, 1% nonessential amino acids (Invitrogen), 2 mM L-glutamine (Invitrogen), and 4 ng/ml FGF2 (Sigma), at 37°C under a 3% CO2-balance air atmosphere, and were passaged by manual scraping. To account for variability between derivation conditions, cultures were sampled from varying passage numbers (range 6–37) and cultures characterized to ensure that pluripotent ESC morphology, marker expression and karyotype were maintained.

RNA extraction, microarray probe preparation and hybridisation

ESC colonies were collected following manual removal of MEFs and careful dissection to ensure no feeder cell transfer prior to lysis. Total RNA was isolated from cultures for each respective ESC line using TRIZOL reagent (Invitrogen), followed by further purification with a RNeasy MinElute Cleanup Kit (Qiagen). The RNA samples were quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) and the quality of the RNA was assessed using Lab-on-a-Chip RNA Pico Chips and a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Samples with electropherograms showing a size distribution pattern predictive of acceptable microarray assay performance were considered to be of good quality. Twenty nanograms of total RNA from each line was amplified and labeled using a two-cycle cDNA synthesis and an *in vitro* transcription cRNA-RNA labeling system (GeneChip One-Cycle Target Labeling and Control Reagents; Affymetrix, Inc., Santa Clara, CA). Following successful cRNA amplification, 10 µg of labeled target cRNA was hybridized to Rhesus Macaque Genome Arrays (Affymetrix, Santa Clara, CA) using standard protocols, as described in the Affymetrix GeneChip Expression Analysis manual. Arrays were scanned using the GeneChip laser scanner (Affymetrix).

Bioinformatic analysis

All microarray data complies with MIAME guidelines, and all microarray information and individual cell intensity (CEL) files are available online at the Gene Expression Omnibus (GEO; GSE25198). Analysis of Affymetrix output files was performed with DNA-Chip Analyzer (dChip; Harvard School of Public Health, Boston, MA) and Genomatix (www.genomatix.de) software. *In vivo* ESC samples were used as the baseline for comparison. For dChip analysis, data normalization and model expression was undertaken using default dChip settings, with analysis of the False Discovery Rate (FDR) also performed. A gene was defined as significantly up- or down-regulated if the signal fold-change between the target samples was greater than 2, at a significance level of alpha = 0.05. For Genomatix data analysis, statistical significance of differential gene expression was assessed by computing a q-value (logarithm) for each gene. Genes were considered to be up- or down-regulated when the logarithm of the gene expression ratio was more than 1 or less than -1, that is, a 2-fold or greater difference in expression, where alpha<0.05. Biblioscape Pathway Edition (Genomatix), which combines literature analysis with genome annotation and promoter analysis, was used to create a directed regulatory network from transcripts identified by ChipInspector. To establish pathway and common framework information for significantly different transcripts, data was uploaded into GePS (www.genomatix.de). To further classify differentially expressed genes, Entrez gene IDs from the Genomatix analyses were used to search for over-represented biological processes against the rhesus and human genomes. Gene Ontology was performed using NetAffx (www.genomatix.com).
RT-PCR validation
To validate the microarray results, RT-PCR was carried out on representative rhesus ESC samples (Ormes 7 in vitro and R475 in vivo) for 13 genes identified as significantly altered by the microarray analyses. RNA was extracted using an Absolutely RNA Nanoprep Kit (Stratagene, La Jolla, CA, USA) from which 1 μg was reverse transcribed into cDNA using SuperScript III reverse transcriptase (Invitrogen) and random primers (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's instructions. Resulting cDNA was amplified with 1 U Taq polymerase (Qiagen, Valencia, CA) in a final volume of 50 μl containing 1× buffer, 1.5 mM MgSO4, 10 pmol of each sequence-specific primer and 10 mM of each dNTP. The mixture was amplified for 40 cycles in a BioRad DNA Engine thermal cycler (BioRad, Hercules, CA), where each cycle included denaturation at 94°C for 1 min, reannealing for 30 sec at 60°C, and primer extension at 72°C for 30 sec, followed by a final extension at 72°C for 7 min. PCR products were analyzed by electrophoresis through 2% agarose gels containing 0.5 mg/ml ethidium bromide and were photographed using a Kodak GL100 Imaging System equipped with Kodak Molecular Imaging software (Eastman Kodak Co., Rochester, NY). Primers designed using Primer Express software (Applied Biosystems, Foster City, CA) and are listed in Table S1.

Supporting Information

Figure S1 RT-PCR analysis of undifferentiated rhesus ESC generated from in vitro (A) or in vivo (B) derived embryos. (TIFF)

References
1. Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, et al. (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23: 409–455.
2. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, et al. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2: 185–190.
3. Bhattacharya B, Puri S, Puri RK (2009) A review of gene expression profiling of human embryonic stem cell lines and their differentiated progeny. Curr Stem Cell Res Ther 4: 98–106.
4. Bhattacharya B, Maira T, Brandenberger R, Mejido J, Liao Y, et al. (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103: 3965–2964.
5. Player A, Wang Y, Bhattacharya B, Rao M, Puri RK, et al. (2006) Comparisons between transcriptional regulation and mRNA expression in human embryonic stem cell lines. Stem Cells Dev 15: 315–323.
6. Satoh N, Sanjuan IM, Heke M, Usuda M, Naf F, et al. (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260: 404–413.
7. Skottman H, Mikko M, Lundin C, Olson C, Stromberg AM, et al. (2005) Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 23: 1345–1356.
8. International Stem Cell Initiative Consortium, Akopian V, Andrews PW, Beil S, Benvenisty N, et al. (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46: 247–258.
9. Allegrucci C, Young LE (2007) Differences between human embryonic stem cell lines. Hum Reprod Update 13: 103–120.
10. Skottman H, Hovatta O (2006) Culture conditions for human embryonic stem cell reproduction. J Reprod Dev 52: 691–698.
11. Tavakoli T, Xu X, Derby E, Serebryakova Y, Reid Y, et al. (2009) Self-renewal and differentiation capabilities are variable between human embryonic stem cell lines 13, 16 and BG01V. BMC Cell Biol 10: 44.
12. Enver T, Soneri S, Joshi C, Brown J, Iborra F, et al. (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14: 3129–3140.
13. Grandea C, Wolfetang E (2007) hESC adaptation, selection and stability. Stem Cell Rev 3: 183–191.
14. Chen HF, Kuo HC, Chien CL, Shun CT, Yao YL, et al. (2007) Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod 22: 567–577.
15. Forsyth MR, Musio A, Vezzoni P, Simpson AH, Noble BS, et al. (2006) Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8: 16–23.

Table S1 PCR primer sequences used for validation of microarray results. (DOCX)

Table S2 dChip output generated from CEL files (GEO: GSE25198; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25198). (XLSX)

Table S3 Genomax output generated from CEL files (GEO: GSE25198; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25198). (XLSX)

Table S4 Transcripts identified within common frameworks CTCF-HIFF, ETSF-HIFF and SMAD-E2FF. (XLSX)

Acknowledgments
We gratefully acknowledge Dr. Shoukhrat Mitalipov and Dr. James A. Byrne for the provision and preparation of samples used in this study. The authors also wish to thank Dr. Joy Rathjen for valuable discussion regarding the manuscript.

Author Contributions
Conceived and designed the experiments: AJH CAB. Performed the experiments: AJH SM CL. Analyzed the data: AJH SM CL SAK CAB. Contributed reagents/materials/analysis tools: SM CL SAK. Wrote the paper: AJH SM CL SAK CAB.
55. Rinaudo PF, Wenzyczki C, Herrmann D, Duchê R, Knip T, et al. (2002) Cell culture and molecular deviations in bovine embryo culture. Nature Genetics 27: 153–154.

38. Brink TC, Sudheer S, Janke D, Jagodzinska J, Jung M, et al. (2008) The origins of human embryonic stem cell lines: a biological and clinical challenge. Cells Tissues Organs 188: 9–22.

29. Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, et al. (2000) In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men. Hum Fertil (Camb) 13: 65–73.

56. Byrne JA, Mitalipov SM, Clepper I, Wolf DP (2006) Transcriptional profiling of rhesus monkey embryonic stem cells. Biol Reprod 75: 908–915.

57. Parmerter M, Feil R (2007) Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 25: 556–562.

48. Gutierrez-Adan A, Rizos D, Fair T, Moreira PN, Pintado B, et al. (2004) Effects of oxygen tension on gene expression in preimplantation mouse embryos. J Reprod Fertil 133: 102–107.

58. Panneter M, Feil R (2007) Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 25: 556–562.

49. Li X, Kato Y, Tsunoda Y (2006) Comparative studies on the mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A 103: 7508–7513.

59. Vassena R, Dee Schramm R, Latham KE (2005) Species-dependent expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol Reprod Dev 41: 232–238.

47. Zeng X, Miura T, Luo Y, Bhattacharya B, Condie B, et al. (2004) Properties of human inner cell mass cells and embryonic stem cells. Differentiation 78: 18–25.

50. Lonergan P, Rizos D, Gutierrez-Adan A, Moreira PM, Pintado B, et al. (2003) Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biology of Reproduction 69: 1424–1431.

51. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM (1995) Preimplantation development of mouse embryos in KSO medium: augmentation by amino acids and expression of gene activity. Mol Reprod Dev 41: 232–238.

52. Fernandez-Gonzalez R, de Dios Hurecste J, Lopez-Vidriero I, Benguria A, De Fonseca FR, et al. (2009) Analysis of gene expression alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice. Reproduction 137: 271–283.

53. Fischer B, Kunzendorf W, Kleinlein J, Gips H (1993) Oxygen tension in follicular fluid falls with follicle maturation. European Journal of Obstetrics & Gynecology and Reproductive Biology 43: 39–43.

54. Mastroianni I, Jones R (1965) Oxygen tension within the rabbit follicular tube. J Reprod Fertil 8: 109–112.

55. Byrne JA, Mitalipov SM, Clepper I, Wolf DP (2006) Transcriptional profiling of rhesus monkey embryonic stem cells. Biol Reprod 75: 908–915.

56. Byrne JA, Mitalipov SM, Clepper I, Wolf DP (2006) Transcriptional profiling of rhesus monkey embryonic stem cells. Biol Reprod 75: 908–915.

57. Parmerter M, Feil R (2007) Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 25: 556–562.

49. Li X, Kato Y, Tsunoda Y (2006) Comparative studies on the mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A 103: 7508–7513.

58. Panneter M, Feil R (2007) Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 25: 556–562.

47. Zeng X, Miura T, Luo Y, Bhattacharya B, Condie B, et al. (2004) Properties of human inner cell mass cells and embryonic stem cells. Differentiation 78: 18–25.

59. Vassena R, Dee Schramm R, Latham KE (2005) Species-dependent expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol Reprod Dev 41: 232–238.

47. Zeng X, Miura T, Luo Y, Bhattacharya B, Condie B, et al. (2004) Properties of human inner cell mass cells and embryonic stem cells. Differentiation 78: 18–25.

50. Lonergan P, Rizos D, Gutierrez-Adan A, Moreira PM, Pintado B, et al. (2003) Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biology of Reproduction 69: 1424–1431.

51. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM (1995) Preimplantation development of mouse embryos in KSO medium: augmentation by amino acids and expression of gene activity. Mol Reprod Dev 41: 232–238.

52. Fernandez-Gonzalez R, de Dios Hurecste J, Lopez-Vidriero I, Benguria A, De Fonseca FR, et al. (2009) Analysis of gene expression alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice. Reproduction 137: 271–283.

53. Fischer B, Kunzendorf W, Kleinlein J, Gips H (1993) Oxygen tension in follicular fluid falls with follicle maturation. European Journal of Obstetrics & Gynecology and Reproductive Biology 43: 39–43.

54. Mastroianni I, Jones R (1965) Oxygen tension within the rabbit follicular tube. J Reprod Fertil 8: 109–112.

55. Byrne JA, Mitalipov SM, Clepper I, Wolf DP (2006) Transcriptional profiling of rhesus monkey embryonic stem cells. Biol Reprod 75: 908–915.

56. Byrne JA, Mitalipov SM, Clepper I, Wolf DP (2006) Transcriptional profiling of rhesus monkey embryonic stem cells. Biol Reprod 75: 908–915.
84. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, et al. (2010) Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141: 872–883.
85. Zheng P, Vassena R, Latham KE (2007) Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos. Mol Hum Reprod 13: 361–371.
86. Mtango NR, Harvey AJ, Latham KE, Brenner CA (2008) Molecular control of mitochondrial function in developing rhesus monkey oocytes and preimplantation-stage embryos. Reprod Fertil Dev 20: 846–859.
87. Wale PL, Gardner DK (2010) Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod Biomed Online 21: 402–410.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s: Harvey, AJ; Mao, S; Lalancette, C; Krawetz, SA; Brenner, CA

Title: Transcriptional Differences between Rhesus Embryonic Stem Cells Generated from In Vitro and In Vivo Derived Embryos

Date: 2012-09-18

Citation: Harvey, AJ; Mao, S; Lalancette, C; Krawetz, SA; Brenner, CA, Transcriptional Differences between Rhesus Embryonic Stem Cells Generated from In Vitro and In Vivo Derived Embryos, PLOS ONE, 2012, 7 (9)

Persistent Link: http://hdl.handle.net/11343/217339

File Description: Published version