β-glucan from mulberry leaves and curcuma can improve growth performance and nutrient digestibility in early weaned pigs

S. I. Leea, J. K. Kima, J. D. Hancockb and I. H. Kima

aDepartment of Animal Resource and Science, Dankook University, Choongnam, Republic of Korea; bDepartment of Animal Sciences and Industry, Kansas State University, Manhattan, NY, USA

ABSTRACT

We investigate the effects of dietary supplementation of β-glucans from mulberry leaves and curcuma on growth performance, nutrient digestibility, blood characteristics, and characteristics of faeces in weaned pigs. A total of 75 crossbred weaned pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 8.48 ± 1.65 kg was used in a 5 wk trial. The pigs were sorted into pens with five pigs per pens and five pens per treatments. Treatments were (1) a corn-soybean meal-based control, (2) 0.1% β-glucans from mulberry leaves, and (3) 0.1% β-glucans from curcuma. Pigs fed β-glucans from mulberry leaves and curcuma had higher average daily gain (ADG) and gain/feed intake ratio (G/F) than control. On digestibility, pigs fed β-glucans from mulberry leaves and curcuma had higher on digestibility of dry matter (DM) and energy than corn-soybean meal-based control during 2 weeks. No significant differences were observed on blood characteristics and faecal microflora, score, moisture, and pH among treatments. Difference of mulberry leaves and curcuma was not observed on growth performance, nutrient digestibility, blood characteristics, and characteristics of faeces. In conclusion, dietary supplementation of β-glucan from mulberry leaves and curcuma can improve ADG, G/F, and dry matter and energy of nutrient digestibility in weaned pigs. Therefore, β-glucans can use as antibiotics alternatives, improving the productivity.

1. Introduction

The mechanism of antibiotics was involved with the fat and protein content of the feed and use of antibiotics in animal feed can moderate carcass quality (Humphrey et al. 2002; Walker et al. 2005; Pedroso et al. 2006; Yan & Kim 2012; Li & Kim 2013; Zhao et al. 2013a; Zhou et al. 2013a). Because of recent limitation of antibiotics addition, new feed additives such as herbs, spices, prebiotics, and probiotics have received increased attention as possible alternatives to antibiotics (Windsch et al. 2008; Chu et al. 2011; Huang et al. 2012; Yan et al. 2012; Zhang et al. 2012; Liu et al. 2013; Wang et al. 2013; Zhang & Kim 2013; Zhao et al. 2013b; Cho & Kim 2014; Park & Kim 2014; Zhang & Kim 2014).

β-glucan, a polysaccharide of D-glucose monomers linked by β-glycosidic bonds, is present in cellulose in plants, the bran of cereal grains, the cell wall of yeast, fungi, and bacteria. β-glucan can activate the immune system and stimulates a cascade of pathways that enhance both innate and adaptive immune responses (Vannucci et al. 2013). It is well studied that dietary supplementation of β-glucan impacted several gastrointestinal events and growth performance in pigs. β-glucans in oat-based diets resulted in lower digestibility of protein and fat in the small intestine of young pigs (Knudsen et al. 1993). In other report, dietary supplementation of β-glucans in young pigs showed a detrimental effect on digestibility, feed efficiency, and subsequent growth in young pigs (Newman et al. 1980; Graham et al. 1989).

β-glucans from different sources such as oat, fungi, and mushrooms result in variable effects on growth and immune parameters (Dritz et al. 1995; Decuyper et al. 1998; Fortin et al. 2003; His & Sauerwein 2003). Thus, the source of dietary β-glucan used in animal nutrition may be an important factor that can influence its efficacy. In the present study, we used water-soluble β-glucan from mulberry leaves and curcuma. It has been reported that mulberry leaves have anti-inflammatory effects (Lim et al. 2013). Additionally, curcuma is an Indian spice derived from the rhizomes of the plant that has pharmacological activities, mainly anti-inflammatory and anti-proliferative (Dulbecco & Savarino 2013). Thus, we used β-glucan from mulberry leaves and curcuma to evaluate and compare the effect of β-glucans from two different sources as prebiotics.

Thus, the objective of the present study was to determine the effect of β-glucans from mulberry leaves and curcuma on growth performance, nutrient digestibility, blood characteristics, and characterization of feces (score, moisture, pH, and microflora) in weaned pigs.

2. Materials and methods

The Animal Care and Use Committee of Dankook University approved all experimental protocols used in the current study.
2.1. Preparation of β-glucan

β-glucan products were provided by a commercial company (STR Biotech. Co., Ltd., Chuncheon city, Kangwon-do, South Korea). The β-glucan products were from Morus alba and Curcuma longa, and were guaranteed to contain 86.1% β-1, 3/1, 6-glucan, 4.2% protein, and 1.3% lipids.

2.2. Experimental design, animals, and diets

A total of 75 crossbred weaned pigs ([Yorkshire × Landrace] × Duroc) with an average BW of 8.48 ± 1.65 kg was used in a 5 wk trial. The pigs were sorted into pens with five pigs per pens and five pens per treatments. Treatments were (1) a corn-soybean meal-based control, (2) 0.1% β-glucan from mulberry leaves, and (3) 0.1% β-glucan from curcuma. All diets were formulated to meet or exceed the NRC (2012) nutrition requirement (Table 1). Dietary calcium (Ca), phosphorus (P), and crude protein (CP) were analysed according to the procedures described by the AOAC (2012). Dietary Ca was assayed by atomic absorption spectrophotometry after wet ash procedures and P was determined by colourimetry. Amino acids contents were measured using an amino acid analyzer (Beckman 6300, Beckman Coulter, Inc., Fullerton, California, USA) after 24 h N-HCl hydrolysis at 110°C (AOAC, 2012). Energy was determined by using a Parr 6100 oxygen bomb calorimeter (Parr Instrument Co., Moline, Illinois, USA). All pigs were housed in an environmentally controlled room with a slatted plastic floor. Each pen was equipped with a self-feeder and nipple waterer to allow ad libitum access to feed and water throughout the experimental period. Temperature during 1 week was maintained at 32°C and was lowered to 2.5°C each week thereafter.

2.3. Sampling and measurements

Individual pig BW was recorded at the beginning, d14, and d35 of the experimental period, and feed consumption was recorded on a pen basis during the experiment to calculate average daily gain (ADG), average daily feed intake (ADFI), and G:F. During the experimental period, pigs were fed diets mixed with 2% Cr2O3 (chromic oxide) as an indigestible marker for the determination of apparent total tract digestibility (ATTD) for DM and nitrogen (N). On d14 and d35, faecal samples were collected from at least two pigs in each pen via rectal massage. All feed and fecal samples were stored at −20°C until analysis. Faeces samples were thawed at 57°C for 72 h, ground to pass through a 1-mm screen, and analysed for DM and nitrogen (N). Faecal moisture contents were determined by randomly collecting faeces from each pen at week 2 and the end of the experiment via massaging the rectum. The collected faecal samples were dried at 60°C for 72 h to allow the determination of faecal moisture content. Faecal pH was determined with pH-meter by diluting 10 g of faeces collected at weeks 2 and 5 (Istek, Model 77p).

Faecal samples were collected via rectal massage from two pigs in each pen and pooled, placed on ice transported to the laboratory, and analysed for microfloral counts. Viable counts of bacteria in the faecal samples were determined by plating serial 10-fold dilutions (in 1% peptone solution) onto MacConkey agar plates (Difco Laboratories, Detroit, MI) and Lactobacilli medium III agar plates (Medium 638, DSMZ, Braunschweig, Germany) to isolate Escherichia coli and Lactobacillus, respectively. The lactobacilli medium III agar plates were then incubated for 48 h at 39°C under anaerobic conditions. The MacConkey agar plates were incubated for 24 h at 37°C. The Escherichia coli and Lactobacillus colonies were counted immediately after removal from the incubator.

2.4. Statistical analysis

All data were subjected to statistical analyses as a randomized complete block design using the GLM procedure of the SAS software, with the pen as the experimental unit. Orthogonal contrasts used to separate treatments means were (1) control vs. β-glucans from mulberry leaves and curcuma and

Item	Phase I (d1–d14)	Phase II (d15–d35)
Ingredient, %		
Extruded corn	44.49	61.97
Soybean meal (48% CP)	21.20	27.80
Fish meal (66% CP)	3.50	–
Soy oil	2.55	1.05
Lactose	8.30	–
Whey	10.00	5.00
Monocalcium phosphate	–	–
Decalcium phosphate	1.50	1.50
Sugar	3.00	–
Plasma powder (AP 920)	3.00	–
L-Lysine HCl	0.39	0.46
DL-Methionine	0.30	0.24
L-Threonine	0.19	0.20
Choline chloride	0.10	0.10
Vitamina	0.10	0.10
Mineralsb	0.20	0.20
Limestone	0.98	1.13
Salt	0.20	0.25
Total	100	100
Calculated content, %		
ME, kcal/kg	3540	3410
CP	20.00	19.00
Lys	1.50	1.35
Met	0.62	0.53
Met + Cys	0.97	0.84
Ca	0.95	0.90
Total P	0.75	0.70
Avail P	0.55	0.43
Crude fat	5.02	3.98
Crude fibre	1.87	2.45

*aProvided per kg of complete diet: vitamin A, 11,025 IU; vitamin D3, 1103 IU; vitamin E, 44 IU; vitamin K, 4.4 mg; riboflavin, 8.3 mg; niacin, 50 mg; thiamine, 4 mg; pantothenic acid, 29 mg; choline, 166 mg; and vitamin B12, 33 μg.

*bProvided per kg of complete diet: Cu, 12 mg; Zn, 85 mg; Mn, 8 mg; I, 0.28 mg; and Se, 0.15 mg.
Table 2. The effects of β-glucan from mulberry leaves and curcuma on growth performance in weaning pigs.

Items	Control	Mulberry leaves	Curcuma	SEM	Control vs. β-glucans	Mulberry leaves vs. curcuma
Phase 1 (d1–d14)						
ADG, g	267	286	307	10.18	0.041	0.170
ADFI, g	330	334	340	7.81	0.481	0.604
G/F	0.809	0.856	0.903	0.02	0.007	0.057
Phase 2 (d15–d35)						
ADG, g	444	493	510	34.01	0.199	0.730
ADFI, g	865	905	917	48.58	0.457	0.868
G/F	0.513	0.545	0.556	0.03	0.293	0.919
Overall (d1–d35)						
ADG, g	373	410	429	23.01	0.133	0.576
ADFI, g	651	677	686	30.97	0.441	0.834
G/F	0.573	0.606	0.625	0.03	0.176	0.693

Table 3. The effects of mulberry leaves and curcuma on nutrient digestibility in weaning pigs.

Items	Control	Mulberry leaves	Curcuma	SEM	Control vs. β-glucans	Mulberry leaves vs. curcuma
2 weeks						
DM, %	80.5	81.7	83.4	0.65	0.026	0.090
N, %	79.7	80.2	82.9	1.22	0.246	0.145
Energy, %	80.9	81.9	83.2	0.61	0.046	0.183
5 weeks						
DM, %	80.1	81.9	83.0	0.11	0.098	0.493
N, %	79.7	81.7	83.1	1.58	0.174	0.543
Energy, %	80.2	82.3	83.4	1.12	0.071	0.496

No significant differences were observed on lymphocyte content among all treatments during the experimental period. No significant differences were observed on RBS content among all treatments during the experimental period. No significant differences were observed on WBC content among all treatments during the experimental period.

No significant differences of β-glucans effect on lymphocyte, RBC, and WBC in the experimental period were found as compared to mulberry leaves with curcuma (Table 4). Pigs fed β-glucans from mulberry leaves and curcuma had no difference on faecal characteristics (score, moisture, pH, microflora contents compared to control (Table 5)).

4. Discussion

It is increasing limitation for livestock producers to minimize the use of antibiotics. Prebiotics or probiotics have been the subject of much research as potential replacements for antibiotic growth promoters in livestock. Prebiotics, primarily derived from non-digestible oligosaccharides, are non-digestible food substances that selectively stimulate the growth of favourable species of bacteria in the gut, benefitting the host. It is well reported that Oligo-fructose, fructo-oligosaccharide, inulin, and β-glucan have been used as prebiotics (Kaplan & Hutkins 2000; Smiricky-Tjardes et al. 2003; Loh et al. 2006; Arena et al. 2014). It is well known that β-glucan acts as an immunostimulant to activate immune cells by binding to its specific receptor dectin-1, a c-type lectin receptor expressed on the surface of macrophages (Brown et al. 2002; Vos et al. 2007). Yadav and Schorey (2006) demonstrated that the β-glucan/dectin-1 complex activates macrophages in combination with TLR2.
Faecal micro

ora

Table 4. The effects of β-glucan from mulberry leaves and curcuma on blood characteristics in weaning pigs.

Items	Control	Mulberry leaves	Curcuma	SEM	Control vs. β-glucans	Mulberry leaves vs. curcuma
Lymphocyte, %						
0 week	46.8	45.8	46.1	4.34	0.875	0.972
2 weeks	58.0	58.6	55.4	3.46	0.819	0.524
5 week	60.8	62.6	60.0	2.54	0.633	0.866
RBC, 10^6/ul						
0 week	6.3	6.2	6.2	0.13	0.747	0.873
2 weeks	6.0	5.9	6.1	0.13	0.964	0.490
5 weeks	6.2	6.2	6.2	0.12	0.878	0.701
WBC, 10^3/ul						
0 week	12.7	12.6	12.2	0.90	0.810	0.765
2 weeks	16.0	14.1	14.4	1.52	0.380	0.896
5 weeks	18.5	20.6	20.2	0.91	0.129	0.762

Table 5. The effects of β-glucan from mulberry leaves and curcuma on characterization of feces (score, moisture, pH, and microflora) in weaning pigs.

Items	Control	Mulberry leaves	Curcuma	SEM	Control vs. β-glucans	Mulberry leaves vs. curcuma	
Faecal score a	3.2	3.1	3.1	0.04	0.351	0.216	
Moisture, %							
2 weeks	69.7	69.7	70.3	1.47	0.882	0.810	
5 weeks	68.6	68.1	70.0	1.02	0.738	0.229	
pH							
2 weeks	6.1	6.1	6.1	0.03	0.751	0.312	
5 weeks	5.9	5.8	5.8	0.05	0.312	0.218	
Faecal microflora							
2 weeks	Lactobacillus	7.5	7.6	7.5	0.06	0.290	0.375
	E. coli	6.7	6.9	6.8	0.05	0.107	0.755
5 weeks	Lactobacillus	7.6	7.7	7.6	0.05	0.272	0.386
	E. coli	6.7	6.8	6.8	0.05	0.106	0.769

* Faecal score ranges from 1 to 5, with 1 = hard and dry pellet but small mass, 2 = hard and formed stool, 3 = soft and formed stool but moist, 4 = soft and unformed stool, and 5 = watery and liquid stool.

and its signaling pathway, which causes a pro-inflammatory response by secreting TNF-α. In pig diets, β-glucan could benefit growth performance and immune function. Zhou et al. (2013b) demonstrated that dietary supplementation with β-glucan increased plasma leucocytes counts, increased lymphocyte proliferation activity and decreased TNF-α concentration and faecal E. coli numbers, whereas the growth performance and faecal Lactobacillus spp. counts were unaffected in weaned pigs.

In the present study, pigs fed the β-glucans had higher growth performance than the control. Many studies reported that β-glucan supplementation enhanced growth performance in pigs (Dritz et al. 1995; Li et al. 2006). Dritz et al. (1995) reported that supplementing nursery-pig diets with 0.025% β-glucan increases growth performance. They suggested that a complex interaction exists between growth performance and disease susceptibility in pigs fed β-glucan. Li et al. (2006) indicated that the addition of β-glucan to weaned pig diets is able to offer some benefits on growth performance and immune response to a lipopolysaccharide challenge. However, Hahn et al. (2006) reported that increasing the dietary concentrations of β-glucan did not improve ADG without antibiotic in weaning pigs. β-glucans produced by different production methods may have different effects on growth performance and immune function in weaned piglets. Source of β-glucan produced by different methods may vary in their structure, chemical composition, or both, which may influence its activity and the amount that should be added to get a growth response (Dritz et al. 1995; Fortin et al. 2003; Hiss & Sauerwein 2003; Li et al. 2006; Dulbecco & Savarino 2013).

In the present study, pigs fed the β-glucans had higher digestibility of DM. The effects of the β-glucan diets on nutrient digestibility in pigs were inconsistent with previous studies. Hahn et al. (2006) reported that increasing the dietary concentrations of β-glucan did not improve nutrient digestibility without antibiotic, and in weaned pigs antibiotics seem to be more effective in improving nutrient digestibility and growth performance than β-glucan (Hahn et al. 2006). Brennan and Cleary (2005) demonstrated that cereal mixed-linked β-(1,3)–(1,4)-d-glucan is regarded as potentially detrimental in pig production because of their negative effects on nutrient digestibility and pig performance. Metzler-Zebeli et al. (2011) reported that dietary inclusion of oat β-glucan can benefit the composition and metabolic activity of gastric microbiota, caecal, and colonic microbiota. In other studies, mixed-linked β-glucan, supplemented either in the form of cereals or as a concentrate, was readily fermented, reduced the intestinal number of enterobacteria and increased intestinal butyrate concentrations in growing pigs (Lynch et al. 2007; Metzler-Zebeli et al. 2010).

5. Conclusion

The present study indicated that dietary supplementation of β-glucans from mulberry leaves and curcuma can improve growth performance and nutrient digestibility in weaned pigs.
Therefore, we can expect that β-glucans have antibiotic alternative effects, also improve the productivity.

Acknowledgement

The present research was conducted by the research fund of Dankook University in 2015.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

AOAC. 2012. Official methods of analysis. 19th ed. Gaithersburg, MD: Association of Official Analytical Chemists.

Arena MP, Caggianiello G, Ficcoo D, Russo P, Torelli M, Sppano G, Capozzi V. 2014. Barley beta-glucans-containing feed enhances probiotic performance of beneficial bacteria. Int J Mol Sci. 15:3025–3039.

Brennan CS, Cleary LJ. 2005. The potential use of cereal (1→3,1→4)-β-D-glucans as functional food ingredients. J Cereal Sci. 42:1–13.

Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SYC, Gordon S. 2002. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med. 196:407–412.

Cho JH, Kim IH. 2014. Effects of lactulose supplementation on performance, blood profiles, excreta microbial shedding of Lactobacillus and Escherichia coli, relative organ weight, and excreta noxious gas contents in broilers. J Anim Physiol Anim Nutr. 98:424–430.

Chu GM, Lee SJ, Jeong HS, Lee SS. 2011. Effects of lactulose supplementation on performance, nutrient digestibility, nitrogen excretion, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions in finishing pigs. Animal 1:812–819.

Ditz SS, Shi J, Kielian TL, Goodband RD, Nelssen JL, Tokach MD, Chengappa S, Sauerwein H. 2003. Influence of dietary ss-glucan on growth performance, blood characteristics, relative organ weight, and excreta noxious gas contents in weanling pigs. J Anim Sci. 81:3341–3350.

Dulbecco P, Savarino V. 2013. Therapeutic potential of curcumin in digestive diseases. World J Gastroenterol. 19:9256–9270.

Fortin A, Robertson WM, Khibie S, Landry SJ. 2003. Growth performance, carcass and pork quality of finisher pigs fed oat-based diets containing different levels of beta-glucans. J Anim Sci. 81:449–456.

Graham H, Fadel JG, Newman CW, Newman RK. 1989. Effect of pelleting and β-glucanase supplementation on the ileal and fecal digestibility of barley-based diet in the pig. J Anim Sci. 67:1293–1298.

Hahn TW, Lohakare JD, Lee SL, Moon WK, Chae BJ. 2006. Effects of supplementation of beta-glucans on growth performance, nutrient digestibility, and immunity in weanling pigs. J Anim Sci. 84:1422–1428.

Li J, Kim IH. 2013. Effects of levan-type fructans supplementation on performance, nutrient digestibility, blood profile, fecal microflora and immune responses after lipopolysaccharide challenge in growing pigs. J Anim Sci. 91:5336–5343.

Liu Y, Che TM, Song M, Lee JJ, Almeida JAS, Bravo D, Van Alstine WG, Pettigrew JE. 2013. Dietary plant extracts improve immune responses and growth efficiency of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci. 91:5668–5679.

Loh G, Eberhard M, Brunner RM, Hennig U, Kuhla S, Kleessen B, Metges C. 2006. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet(1–3). J Nutr. 136:1198–1202.

Lynch MB, Sweeney T, Callan JJ, O’Doherty JV. 2007. Effects of increasing the intake of dietary beta-glucans by exchanging wheat for barley on nutrient digestibility, nitrogen excretion, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions in finishing pigs. Animal 1:812–819.

Metzler-Zebeli BU, Hooda S, Pieper R, Zijlstra RT, van Kessel AG, Moserhink U, Ganzle MG. 2010. Nonstarch polysaccharides modulate bacterial microflora, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract. Appl Environ Microbiol. 76:3692–3701.

Newman RK, Essick RF, Peppar JW, El-Negoumy AM. 1980. Performance of pigs fed hulled and covered barleys supplemented with or without bacterial diastase. Nutr Reports Int. 22:833–837.

NRC. 2012. Nutrient requirements of swine. 11th ed. Washington, DC: Natl Acad. Press.

Park JH, Kim IH. 2014. Supplemental effect of probiotic Baci culus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poultry Sci. 93:2054–2059.

Pedroso AA, Menten JFM, Lambais MR, Racinaci AMC, Longo FA, Sorbara JOB. 2006. Intestinal bacterial community and growth performance of chickens fed diets containing antibiotics. Poultry Sci. 85:747–752.

Smiricky-Tjardes MR, Flickinger EA, Grieshop CM, Bauer LL, Murphy MR, Fahey GC. 2003. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J Anim Sci. 81:2505–2514.

Vannucci L, Krizan J, Sima P, Stakheev D, Rajsiglova L, Horak V, Saieh V. 2013. Immunostimulatory properties and antitumor activities of glucans (Review). Int J Oncol. 43:357–364.

Van der M Mark, Stahl B, Boesheim G, Garssen J. 2007. Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev Immun. 27:97–140.

Walker P, Rhubart-Berg P, McKenzie S, Kelling K, Lawrence RS. 2005. Public health implications of meat production and consumption. Public Health Nutr. 8:348–356.

Wang JP, Yan L, Lee JH, Kim IH. 2013. Evaluation of bacteriophage supplementation on growth performance, blood characteristics, relative organ weight, breast muscle characteristics and excreta microbial shedding in broilers. Asian-J Aust J Anim Sci. 26:573–578.

Windisch W, Schedle K, Pitzner C, Kromsraya A. 2008. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci. 86:E140–E148.

Yadav M, Schorey JS. 2006. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. 108:3168–3175.

Yan L, Chang DF, Xing JJ, Cheng ZB, Lai CH. 2006. Effects of beta-glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J Anim Sci. 84:2374–2381.
Zhang S, Jung JH, Kim HS, Kim BY, Kim IH. 2012. Influences of phytoncide supplementation on growth performance, nutrient digestibility, blood profiles, diarrhea scores and fecal microflora shedding in weaning pigs. Asian-Aust J Anim Sci. 25:1309–1315.
Zhang ZF, Kim IH. 2013. Effects of probiotic supplementation in different energy and nutrient density diets on performance, egg quality, excreta microflora, excreta noxious gas emission, and serum cholesterol levels in laying hens. J Anim Sci. 91:4781–4787.
Zhang ZF, Kim IH. 2014. Effects of levan supplementation on growth performance, nutrient digestibility and dry matter content of faeces in comparison to apramycin (antibacterial growth promoter) in weanling pigs. Livestock Sci. 159:71–74.
Zhao PY, Wang JP, Kim IH. 2013a. Effect of dietary levan fructan supplementation on growth performance, meat quality, relative organ weight, cecal microflora, and excreta noxious gas emission in broilers. J Anim Sci. 91:5287–5293.
Zhao PY, Wang JP, Kim IH. 2013b. Evaluation of dietary fructan supplementation on growth performance, nutrient digestibility, meat quality, fecal microbial flora, and fecal noxious gas emission in finishing pigs. J Anim Sci. 91:5280–5286.
Zhou TX, Jung JH, Zhang ZF, Kim IH. 2013b. Effect of dietary beta-glucan on growth performance, fecal microbial shedding and immunological responses after lipopolysaccharide challenge in weaned pigs. Anim Feed Sci Technol. 179:85–92.
Zhou TX, Zhang ZF, Kim IH. 2013a. Effects of dietary Coptis Chinensis herb extract on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finish pigs. Asian-Aust J Anim Sci. 26:108–115.