Diagnóstico de Rejeição por Análise de Potenciais Ventriculares Tardios em Doentes Transplantados ao Coração

Diagnosis of Rejection by Analyzing Ventricular Late Potentials in Heart Transplant Patients

Vítor Nogueira Mendes¹, Telmo Santos Pereira², Vítor Azevedo Matos³

Centro de Cirurgia Cardiotorácica – Centro Hospitalar e Universitário de Coimbra¹, Coimbra; Departamento de Cardiopneumologia – Escola Superior de Tecnologia da Saúde de Coimbra², Coimbra; Serviço de Cardiologia – Centro Hospitalar e Universitário de Coimbra³, Coimbra – Portugal

Resumo

Fundamento: A rejeição do transplante cardíaco origina zonas de condução lenta e fragmentada. O eletrocardiograma de alta resolução (ECGAR) é um método potencial de estratificação de risco da rejeição.

Objetivo: Elaborar um escore de risco para rejeição, recorrendo ao ECGAR.

Métodos: Estudaram-se 28 pacientes transplantados. Numa primeira fase, baseando-nos no diagnóstico de rejeição aguda, dividimos a amostra em dois grupos (5 pacientes com rejeição, 23 sem rejeição). Numa segunda fase, a divisão da amostra teve em conta o diagnóstico de rejeição em pelo menos uma biopsia realizada durante o seguimento (rejeição pm1) (18 pacientes com rejeição, 10 sem rejeição).

Resultados: Para rejeição aguda, a única variável a revelar associação foi fibrose, evidenciando um aumento do risco de rejeição quando presente no ECG (OR = 19; IC 95% = 1,65-218,47; p = 0,02). Para rejeição pm1, constatamos que, para cada diminuição de unidade da RMS40, ocorre aumento de 7% do risco de rejeição (OR = 0,97; IC 95% = 0,87-0,99; p = 0,03) e que o aumento da LAS40 aumenta 1,06 vez o risco de rejeição (OR = 1,06; IC 95% = 1,01-1,11; p = 0,03). Formulamos um escore constituído por essas variáveis e aplicamos aos 28 indivíduos da amostra. A associação de fibrose, valores crescentes da LAS40 e valores decrescentes da RMS40 tem uma boa capacidade para distinguir doentes com e sem rejeição (AUC = 0,82; p < 0,01), assumindo um ponto de corte com sensibilidade = 83,3% e especificidade = 60%.

Conclusão: O ECGAR distingue doentes com e sem rejeição. A utilidade do escore proposto deverá ser demonstrada em estudos de seguimento englobando uma amostra de maiores dimensões. (Arq Bras Cardiol. 2016; 106(2):136-144)

Palavras-chave: Transplante de Coração; Rejeição de Enxerto; Fibrose Endomiocárdica; Eletrocardiografia.

Abstract

Background: Heart transplant rejection originates slow and fragmented conduction. Signal-averaged ECG (SAECG) is a stratification method in the risk of rejection.

Objective: To develop a risk score for rejection, using SAECG variables.

Methods: We studied 28 transplant patients. First, we divided the sample into two groups based on the occurrence of acute rejection (5 with rejection and 23 without). In a second phase, we divided the sample considering the existence or not of rejection in at least one biopsy performed on the follow-up period (rejection pm1: 18 with rejection and 10 without).

Results: On conventional ECG, the presence of fibrosis was the only criterion associated with acute rejection (OR = 19; 95% CI = 1.65-218.47; p = 0.02). Considering the rejection pm1, an association was found with the SAECG variables, mainly with RMS40 (OR = 0.97; 95% CI = 0.87-0.99; p = 0.03) and LAS40 (OR = 1.06; 95% IC = 1.01-1.11; p = 0.03). We formulated a risk score including those variables, and evaluated its discriminative performance in our sample. The presence of fibrosis with increasing of LAS40 and decreasing of RMS40 showed a good ability to distinguish between patients with and without rejection (AUC = 0.82; p < 0.01), assuming a cutoff point of sensitivity = 83.3% and specificity = 60%.

Conclusion: The SAECG distinguished between patients with and without rejection. The usefulness of the proposed risk score must be demonstrated in larger follow-up studies. (Arq Bras Cardiol. 2016; 106(2):T36-144)

Keywords: Heart Transplantation; Graft Rejection; Endomyocardial Fibrosis; Electrocardiography.

Correspondência: Vítor José Nogueira Mendes • Rua dos Vales, 44, Lagoa. CEP 5430-404, Valpaços, Vila Real – Portugal
E-mail: vitorcpl5@gmail.com
Arquivo recebido em 21/07/15; revisado em 11/09/15; aceito em 14/09/15.

DOI: 10.5935/abc.20160011
Introdução

A rejeição é uma das principais causas de morte nos doentes transplantados ao coração. Segundo a International Society for Heart and Lung Transplantation (ISHLT), 21% a 30% dos doentes transplantados ao coração desenvolvem pelo menos um processo de rejeição durante o primeiro ano após transplante. No Centro de Cirurgia Cardiotorácica do Centro Hospitalar Universitário de Coimbra (CCT-CHUC), a prevalência de rejeição é de 10% em 8,5 anos de seguimento clínico.Embora estudos comprovem a eficácia da terapia imunossupressora na prevenção da rejeição, o diagnóstico deste quadro permanece um desafio. A biopsia endomiocárdica do ventrículo direito (VD) é o método padrão para o diagnóstico da rejeição, todavia é um método invasivo com morbilidades inerentes. Para colmatar as limitações desta metodologia, tem havido um esforço no sentido de desenvolver métodos alternativos de diagnóstico da rejeição, envolvendo a utilização de biomarcadores, avaliação ecocardiográfica, entre outros.

Uma vez que a rejeição acarreta alterações morfofuncionais, nomeadamente zonas de fibrose miocárdica caracterizadas por condução elétrica lenta e fragmentada, é presumível que a presença de Potenciais Ventriculares Tardios (PVT) no ECG de alta resolução (ECGAR) destes doentes seja um preditor clinicamente relevante.

Num estudo realizado a 20 indivíduos transplantados submetidos a biopsia endomiocárdica, verificou-se uma diminuição dos valores da RMS40 (voltage terminal do QRS) nos últimos 40 ms e do QRSF nos indivíduos com rejeição, comparativamente com os indivíduos sem rejeição. Noutro estudo, onde se realizou ECGAR a 20 doentes transplantados tratados com ciclosporina, verificou-se no pós-operatório tardio uma boa reprodutibilidade (r = 0,83) e boa precisão deste exame na detecção da rejeição. Para Morocutti et al, num estudo em que pretendeu encontrar a relação entre os PVT e a rejeição aguda, a sensibilidade e a especificidade para a presença de PVT nos casos de rejeição aguda foram de 69% e 71% respectivamente.

O estudo dos PVT em doentes transplantados constitui assim um objetivo de interesse, o que motivou a realização deste trabalho, tendo como objetivo fundamental a avaliação da utilidade desta técnica não invasiva no diagnóstico de rejeição em doentes transplantados, a partir da qual se pretende construir um escore de risco preditor de episódios de rejeição, recorrendo a parâmetros clínicos e eletrofisiológicos.

Métodos

Amostra

A definição do tamanho da amostra foi feita por conveniência, considerando a população disponível de doentes transplantados, e a reunião das condições técnicas necessárias à realização das avaliações clínicas pretendidas, no prazo definido para a recolha dos dados.

A amostra foi constituída por 28 indivíduos, 23 do sexo masculino e 5 do sexo feminino, transplantados ao coração pelo CCT-CHUC, apresentando idades entre os 19 e os 76 anos e uma idade média de 54 ± 12,22 anos. O tipo de estudo usado foi observacional, de coorte fixa.

Procedimento

Todos os doentes começaram por realizar cateterismo com biopsia endomiocárdica do VD, seguido de ECG, ECGAR e ecocardiograma, tendo sido possível, numa primeira fase, obter dados referentes a estes exames, bem como dados referentes à dosagem e ao tipo de terapêutica imunossupressora de cada doente e análises clínicas.

A realização do cateterismo direito com biopsia endomiocárdica do VD teve como base a técnica de Seldinger modificada, via veia femoral direita (25 indivíduos) e esquerda (3 indivíduos). Todos os procedimentos foram realizados utilizando uma agulha de punção (18G), um introdutor 7F (9F nos casos de fibrose inguinal importante), guia 150 cm ponta em J, Bainha 7F, cateter pigtail 7F e Biotomo 7F. Em cada procedimento recolheram-se dois fragmentos do septo interventricular direito, sendo posteriormente analisados, via microscópio, pelo serviço de Anatomia Patológica do CHUC, recorrendo aos critérios formulados pela ISHLT 2004 para o diagnóstico de rejeição.

No período de repouso, pós cateterismo, procedeu-se à realização do ECG convencional de 12 derivações e do ECGAR utilizando o software “NORAV-ECG Monitoring Version 5.0.2”, da Norav Medical Ltd, num ambiente calmo e livre de ruído.

Para aquisição do traçado de ECGAR, utilizaram-se derivações ortogonais de Frank, constituindo eixos cartesianos X, Y, Z.

A obtenção do traçado consistiu numa média aritmética do somatório de 200 complexos QRS idênticos (95% de correspondência) colhidos em cerca de 4 minutos, que após um processo de filtragem, aumentou a razão sinal-ruído dos complexos colhidos, permitindo evidenciar sinais de baixa amplitude e de longa duração, conhecidos como PVT.

Após o período de recuperação pós cateterismo, os doentes realizaram ecocardiograma bidimensional.

Numa segunda fase de recolha de dados, através da consulta de processos clínicos obtivemos informação relativa a: dados demográficos; motivo para realização do transplante cardíaco; classe funcional da NYHA relativamente à gravidade da sintomatologia de cada doente; antecedentes e fatores de risco cardiovasculares; comorbidades; função ventricular esquerda por ecocardiograma, ventriculografia e angiografia de radionuclídeos previamente ao transplante; capacidade respiratória previamente ao transplante; pressões intracavitárias e coronariografia previamente ao transplante.

Ainda obtivemos dados demográficos referentes aos doadores de coração, bem como a causa de morte e histocompatibilidade com o receptor. Dados referentes aos tempos cirúrgicos também foram obtidos.

O diagnóstico de rejeição na biopsia endomiocárdica, no dia do registo eletrocardiográfico, indicou o critério de divisão da nossa amostra. Assim numa primeira etapa da nossa investigação e com base no diagnóstico da biopsia endomiocárdica no dia do registo eletrocardiográfico, a...
nossa amostra foi dividida em dois grupos: um grupo que apresentou como resultado da biopsia ausência de rejeição, e outro grupo que apresentou presença de rejeição.

Numa segunda etapa a divisão dos grupos manteve-se, no entanto, tendo em conta o diagnóstico de rejeição em pelo menos uma biopsia realizada até ao dia do registo.

A técnica de amostragem baseou-se no reconhecimento de certas características dos indivíduos, tais como a realização de biopsia endomiocárdica, para assim assegurar a melhor representatividade possível, sendo deste modo uma amostragem não-probabilística, recolhida por conveniência.

Pelo fato dos critérios de seleção limitarem por vezes o caráter probabilístico da amostra, procuraram-se estabelecer critérios de inclusão e exclusão. Foram incluídos todos os indivíduos com idades superiores a 18 anos, submetidos a transplante cardíaco, que realizaram biopsia endomiocárdica há menos de 24 horas.

Foram excluídos todos os doentes portadores de marca-passo, bem como todos os que não cumpriram os critérios de inclusão.

Quanto a questões éticas inerentes a esta investigação, é de salientar que os dados recolhidos tiveram como único objetivo a realização de um trabalho científico, sendo mantido o anonimato relativamente a todos os indivíduos, não existindo quaisquer interesses comerciais.

Tratamento Estatístico

Depois de recolhidos e sumariados os dados, procedeu-se à sua análise estatística através do programa de tratamento estatístico “Statistical Package for the Social Sciences” (SPSS) versão 13.

Nuna fase inicial realizou-se uma análise estatística descritiva simples, com cálculo dos valores médios ± desvio padrão, frequências relativas e absolutas, para a caracterização de variáveis da amostra.

Para aferir a normalidade da distribuição das variáveis contínuas, procedeu-se ao teste de Shapiro-Wilk. A verificação de uma distribuição normal indicou a realização de testes estatísticos paramétricos, e perante a sua ausência a opção foram testes estatísticos não paramétricos. Para comparação de variáveis contínuas entre os dois grupos, recorreu-se ao teste t Student para amostras independentes ou ao teste U de Mann-Whitney.

Para as comparações de variáveis categóricas recorreu-se ao teste do χ2, optando-se em alternativa pelo teste exato de Fisher sempre que o número de casos em alguma célula da tabela de contingência fosse inferior a 5.

No que diz respeito ao ensaio de hipóteses aplicaram-se testes estatísticos de comparação entre os grupos com e sem rejeição aguda.

Numa fase inicial realizou-se uma análise estatística descritiva simples, com cálculo dos valores médios ± desvio padrão, frequências relativas e absolutas, para a caracterização de variáveis da amostra.

Para aferir a normalidade da distribuição das variáveis contínuas, procedeu-se ao teste de Shapiro-Wilk. A verificação de uma distribuição normal indicou a realização de testes estatísticos paramétricos, e perante a sua ausência a opção foram testes estatísticos não paramétricos. Para comparação de variáveis contínuas entre os dois grupos, recorreu-se ao teste t Student para amostras independentes ou ao teste U de Mann-Whitney.

Para as comparações de variáveis categóricas recorreu-se ao teste do χ2, optando-se em alternativa pelo teste exato de Fisher sempre que o número de casos em alguma célula da tabela de contingência fosse inferior a 5.

No que diz respeito ao ensaio de hipóteses aplicaram-se testes estatísticos de comparação entre os grupos com e sem rejeição aguda.

A interpretação dos testes estatísticos foi realizada com base no nível de significância de α = 0,05 com IC de 95%; no entanto, para a elaboração do escore de risco, utilizou-se um nível de significância α = 0,1 com IC de 95%.

Resultados

Estudaram-se 28 pacientes transplantados ao coração, dos quais 5 apresentavam um quadro de rejeição aguda na biopsia.

Várias variáveis, clínicas, demográficas, ecocardiográficas, eletrocardiográficas e hemodinâmicas foram sujeitas a comparação entre os grupos com e sem rejeição aguda.

A rejeição aguda somente evidenciou associação com a presença de sinais de fibrose no ECG. Por regressão logística verificamos que a presença de fibrose no ECG aumenta 19 vezes mais o risco de rejeição aguda (OR = 19; IC 95% = 1,65-218,47; p = 0,02).

Através de uma curva ROC avaliou-se a robustez da associação da fibrose com a rejeição aguda. Identificou-se um ponto de corte com sensibilidade = 80%, uma especificidade = 82,6% e uma AUC = 0,81, traduzindo deste modo uma boa capacidade para discriminar os doentes transplantados com e sem rejeição (p = 0,03) (Figura 1).

Uma vez que a variável fibrose foi a única a demonstrar associação com o diagnóstico de rejeição aguda, tornou-se impossível a realização de um escore de risco. Deste modo, foi realizada uma análise comparada entre as várias variáveis em estudo tendo em conta o diagnóstico positivo de rejeição, em pelo menos um procedimento, com base na totalidade das biopsias (rejeição pm1).

A prevalência de rejeição pm1 foi de 64,2% e encontraram-se diferenças significativas entre os doentes com e sem rejeição pm1 relativamente a algumas variáveis.

Foram seleccionadas todas as variáveis, com um nível de significância menor que 10% (excluindo aquelas que continham a unidade no IC 95%).

Tendo em conta as variáveis contínuas, somente a RMS40 e a LAS40 (duração terminal do QRSf < 40 µV) demonstraram associação com a rejeição pm1.

Para cada diminuição de unidade da RMS40, ocorre aumento de 7% do risco de rejeição (OR = 0,93; IC 95% = 0,87-0,99; p = 0,03).

O aumento da LAS40 revelou também que aumenta 1,06 vez mais o risco de rejeição (OR = 1,06; IC 95% = 1,01-1,11; p = 0,03).

Tendo em conta as variáveis categóricas, mais precisamente os critérios gerais de diagnóstico dos PVT, verificamos que só os critérios formulados pela American College of Cardiology (ACC) é que evidenciavam associação com o diagnóstico de rejeição pm1. Na presença de PVT, utilizando os critérios da ACC, o risco de rejeição aumenta 7,5 vezes mais (OR = 7,5; IC 95% = 1,27-44,09; p = 0,03).

Quanto aos critérios individuais, os que evidenciaram as associações mais fortes com a rejeição pm1 foram a RMS40 (segundo Narayanaswamy et al) e a LAS40 (segundo Catzoulis et al), observando-se um aumento
de 7,5 vezes mais do risco de rejeição quando a RMS40 é inferior ou igual a 20 µV (OR = 7,5; IC 95% = 1,28-44,09; p = 0,03) e um aumento do risco 14,14 vezes quando a LAS40 é superior ou igual a 50 ms (OR = 14,14; IC 95% = 1,46-137,30; p = 0,02).

Elaboração do escore de risco

Tendo em conta os dados da regressão logística, uma vez que mais do que uma variável demonstrou associação com o diagnóstico de rejeição, propusemo-nos elaborar um escore de risco para a rejeição pm1.

Segundo os critérios da ACC, quando o RMS40 ≤ 20 µV e a LAS40 ≥ 38 ms, há um diagnóstico positivo para a presença de PVT.

Deste modo, elaboramos inicialmente um escore que englobasse os critérios gerais da ACC para a presença de PVT juntamente com os valores crescentes da LAS40. A atribuição da pontuação teve em conta o valor aproximado do OR para cada variável (Tabela 1).

Assim, para os critérios da ACC, uma vez que o valor do OR foi de 7,5, atribuímos uma pontuação de 8 para a presença de PVT. Na ausência de PVT, atribuímos uma pontuação de 0.

Para a LAS40, recorrendo aos valores do OR, a atribuição de pontos rege-se pelo mesmo princípio.

Com base nesses pontos foi atribuída uma pontuação a cada doente, elaborando um escore de risco: ESCORE1 = ACC + LAS40.

De forma a avaliar a capacidade preditiva deste ESCORE1, procedemos à realização de uma curva ROC que, para um ponto de corte de sensibilidade de 83,3% e uma especificidade de 60%, demonstrou uma boa capacidade para discriminar os doentes com e sem rejeição pm1 (AUC = 0,79; p = 0,01) (Figura 2).

Apesar de esse resultado ter-se revelado satisfatório, pensamos em elaborar um novo escore onde adicionámos ao ESCORE1 os valores da RMS40. Contudo, percebemos que intrinsecamente os valores adicionados já estariam implicados nos pontos atribuídos para os critérios gerais da ACC.

Uma vez que a presença ou ausência dos critérios da ACC só possibilitariam a atribuição de dois valores pontuais, decidimos, portanto, elaborar o ESCORE 2 recorrendo aos valores da RMS40. Assim o ESCORE2 = RMS40 + LAS40.

Apesar da RMS40 ≤ 20µV ter sido a única variável ligada à amplitude do sinal a revelar associação com o diagnóstico de rejeição pm1, adicionámos a esse ESCORE2 os valores de RMS40 ≤ 17,5 (OR = 3,9; IC 95% = 0,76-19,95; p = 0,10) e o RMS40 ≤ 15

Critérios	Pontos
ACC	
Sim	8
Não	0
≥ 50	14
[45-50]	8
[40-45]	8
[38-40]	8
[30-38]	5

ACC: American College of Cardiology; LAS40: Duração terminal do QRSf inferior a 40µV.
A atribuição de pontos só teve em conta os valores de OR para a RMS40 ≤ 20 µV. Para as outras duas condições, em função do decréscimo da RMS40, atribuímos mais um ponto, tal como se verifica na Tabela 2.

Após a atribuição da respetiva pontuação a cada doente atendendo ao ESCORE2, avaliamos sua capacidade preditiva através da realização de uma curva ROC (Figura 3).

Verificamos que o ESCORE 2 tem uma boa capacidade para discriminar os doentes com e sem rejeição pm1, utilizando um ponto de corte com uma sensibilidade de 83,3% e uma especificidade de 60% (AUC = 0,79; p = 0,01).

Após termos realizado o ESCORE 2, elaboramos um novo escore adicionando-lhe variáveis que, pela nossa análise, poderiam melhorar o caráter discriminatório da curva ROC.

Em relação à variável ‘fibrose’, verificamos que por regressão logística não existia qualquer tipo de associação com o diagnóstico de rejeição pm1.

Contudo, uma vez que tínhamos verificado pela análise do teste de Fisher ($\chi^2 = 6,22; p = 0,03$) complementado pela análise da correlação de Spearman (Rho = 0,47; p = 0,01) a existência de uma relação moderada e positiva entre esta variável e a rejeição pm1, decidimos adicionar a variável ‘fibrose’ ao novo escor formulado.

Aos doentes com sinais de fibrose no ECG convencional atribuíu-se 1 ponto e aos doentes sem sinais de fibrose no ECG convencional, 0 ponto.

Assim, o ESCORE3 = ESCORE2 + Fibrose.

Para avaliar a capacidade discriminatória entre os doentes com e sem rejeição pm1, procedeu-se na mesma à realização de uma curva ROC (Figura 4). Assumindo um ponto de corte de sensibilidade de 83,3% e especificidade de 60% (AUC = 0,82; p < 0,01), demonstrou-se uma boa capacidade em distinguir os dois grupos em estudo.

Verificamos assim que a curva ROC para o ESCORE3 é a que apresenta maior poder discriminatório para o diagnóstico de rejeição pm1.

Com base nos vários pontos de corte pudemos aferir diferentes níveis de probabilidade para a ocorrência de rejeição pm1 (Tabela 3).

Pela análise da Tabela 3 verificamos que todos os doentes com uma pontuação superior a 23 pontos têm uma probabilidade muito forte de rejeição pelo ESCORE proposto. Em contrapartida, quando inferior a 11, esse diagnóstico passa a apresentar-se pouco provável.
Discussão

Como objetivo desta investigação pretendeu-se avaliar a utilidade do ECGAR como método de diagnóstico de rejeição do enxerto cardíaco através da elaboração de um escore de risco.

À semelhança do que existe em alguns estudos para o diagnóstico de canalopatias, tentou-se elaborar um teste de diagnóstico, com base num escore de probabilidades para a ocorrência de rejeição.

Tendo em conta o resultado da biopsia endomiocárdica no dia do registo eletrocardiográfico, constatamos que a prevalência de rejeição aguda foi de 17,9%.

Inicialmente, encontraram-se diferenças significativas entre os grupos definidos em diversas variáveis bioquímicas e eletrofisiológicas. Contudo, e provavelmente como consequência de uma baixa potência estatística do estudo, consequente à reduzida amostra, somente a variável ‘fibrose’
se associou, na regressão logística, ao diagnóstico de rejeição aguda, revelando um aumento do risco 19 vezes maior quando presente nos traçados eletrocardiográficos (OR = 19; IC 95% = 1,65-218,47; p = 0,02). Este dado está em linha com outros estudos, que indicam que surgimento de fibrose miocárdica se relaciona fortemente com a rejeição aguda.4 Estão descritos que o processo de rejeição aguda pode ocorrer mal aconteça o restabelecimento do fluxo sanguíneo nas coronárias (e no próprio coração transplantado).14 Segundo Chassot et al,4 a reação provocada pela atração dos linfócitos T aloreativos contra os antígenos do enxerto, associada às lesões de isquemia-reperfusão instituídas com o restabelecimento do fluxo dentro das artérias coronárias, vai provocar alterações celulares que culminam em zonas de fibrose. Com periodos alargados de isquemia, o ATP e o glicogênio esgotam-se devido à falta de oxigênio, levando à “edematização” das mitocôndrias. Há ruptura das cristas mitocondriais e o ciclo de Krebs é interrompido. Começa a haver catalização dos compostos ricos em energia, tais como os ácidos graxos, aumentando a osmolalidade celular. O Ca²⁺ que até então tinha saído do retículo sarcoplasmático para intervir na síntese de estímulos, que origina radicais livres responsáveis pela acidose do meio intracelular, condiciona alterações na normalidade para os PVT formulados pelos diversos autores, condicionando a ocorrência de zonas de fibrose. Com períodos alargados de isquemia, o ATP e o glicogênio esgotam-se devido à falta de oxigênio, levando à “edematização” das mitocôndrias. Há ruptura das cristas mitocondriais e o ciclo de Krebs é interrompido. Começa a haver catalização dos compostos ricos em energia, tais como os ácidos graxos, aumentando a osmolalidade celular. O Ca²⁺ que até então tinha saído do retículo sarcoplasmático para intervir na síntese de estímulos, que origina radicais livres responsáveis pela acidose do meio intracelular, condicionando alterações na normalidade para os PVT formulados pelos diversos autores, condicionando a ocorrência de zonas de fibrose.

O excesso de radicais livres, associados à acumulação de Ca²⁺ e H⁺ no citoplasma do miócito, condiciona alterações na organização e funcionalidade celular. Também tem sido descrita a ocorrência de degradação das conexinas 43 prejudicando a condução do estímulo elétrico entre miócitos.5 O tecido cardíaco transforma-se assim em tecido conjuntivo, levando ao surgimento de zonas de fibrose de condução lenta, que se manifestam por PVT no ECGAR. Com o aumento de zonas de fibrose, a contratilidade miocárdica fica comprometida e a perda do enxerto torna-se inevitável.

No nosso estudo, tentamos verificar a relação entre os PVT e o diagnóstico de rejeição aguda. A falta de significância estatística (possivelmente devido ao reduzido tamanho da amostra) impossibilitou-nos de demonstrar cabalmente esta afirmação. Contudo foi possível observar uma diminuição tendencialmente significativa dos valores absolutos da RMS40 nos indivíduos com rejeição comparativamente aos indivíduos sem rejeição.

Tais resultados demonstram-se concordantes com os do estudo elaborado por Graceffo & O’Rourke em 1996 que, numa população de 20 indivíduos transplantados ao coração, também verificaram uma diminuição da RMS40 nos indivíduos com rejeição.7

Verificou-se ainda um aumento do QRSf e da LAS40 bem como no número de entalhes do QRSf no grupo de doentes com rejeição, indo assim ao encontro do diagnóstico positivo de PVT, segundo os critérios formulados pela ACC.

Pelo fraco valor estatístico do maior número de variáveis, volveu-se difícil elaborar um teste de diagnóstico para a rejeição aguda.

Com base na premissa de que as zonas de fibrose permanecem, mesmo com o aumento da imunossupressão, após um diagnóstico positivo de rejeição numa biopsia endomiocárdica, numa segunda fase da investigação procedeu-se à divisão da nossa amostra em dois grupos tendo em conta a presença ou ausência de rejeição em pelo menos uma biopsia, desde a realização do transplantante até ao dia do registo eletrocardiográfico (rejeição pm1). A proporção de doentes com pelo menos um diagnóstico de rejeição até à data da avaliação foi de 64,2%. Várias variáveis demonstraram diferenças significativas entre os grupos com e sem rejeição pm1. Para avaliar a força da relação entre as diversas variáveis consideradas e a probabilidade de rejeição pm1, realizou-se uma regressão logística simples. Verificamos que os critérios formulados pela ACC tinham uma capacidade moderada para discriminar os indivíduos transplantados com e sem rejeição pm1 (AUC = 0,72; p = 0,06). Foi ainda possível verificar que, tal como a diminuição da RMS40 (OR = 7,5; IC 95% = 0,87-0,99; p = 0,03), o aumento da LAS40 aumentava o risco de rejeição pm1 (OR = 1,06; IC 95% = 1,0-1,11; p = 0,03).

Com base nesta informação, adicionado aos valores de normalidade para os PVT formulados pelos diversos autores da literatura, foi possível através de uma curva ROC identificar diversos pontos de corte que possibilitaram a elaboração de um escore de probabilidades para a ocorrência de rejeição pm1. Com a atribuição da pontuação é possível estratificar o grau de probabilidade de rejeição, enquanto indicador de risco para a ocorrência deste evento clínico tão importante nesta população. Com este instrumento de decisão clínica, acreditamos ser possível discriminar os doentes que necessitariam fazer biopsia endomiocárdica para confirmação do processo de rejeição (quando o escore indica probabilidade significativa de rejeição). Por outro lado, os doentes com um escore revelador de baixa probabilidade de rejeição poderão ser poupados a este procedimento invasivo, com todos os benefícios inerentes em termos de complicações possíveis e qualidade de vida em geral. Com esta forma de otimizar a decisão para estes
doentes, poderá ser possível reduzir fortemente a carga de procedimentos percutâneos a que estes doentes terão de ser submetidos no decorrer do seguimento clínico, com vantagens significativas, não só nos aspectos previamente citados (redução das complicações potenciais e do sofrimento associado), mas também em termos de custos, diretos e indiretos.

Este trabalho constitui-se assim como uma primeira tentativa de elaboração de um instrumento de decisão clínica que permita rastrear de forma adequada e precisa a rejeição em doentes transplantados ao coração. No entanto, identificam-se limitações importantes que, não obstante a sua relevância, adequam estes resultados a um processo ainda preliminar de desenvolvimento do escore proposto.

A primeira grande limitação encontrada refere-se à não uniformização dos critérios de normalidade para o diagnóstico dos PVT com base no ECGAR. Apesar dos critérios da ACC serem os que reúnem mais consenso junto da comunidade científica, têm uma validade condicionada pela duração do complexo QRS (inferior a 120 ms). Assim, considerando os vários estudos publicados que revelaram a presença de bloqueio de ramo direito em cerca de 80-90% dos doentes transplantados ao coração, foram incorporados na presente investigação outros critérios que permitissem validar os registos de ECGAR em doentes com bloqueio de ramo.

O número reduzido da amostra, associado aos reduzidos processos de rejeição aguda, revelou-se também uma limitação importante, condicionando uma potência estatística global reduzida do estudo. Dessa forma, os resultados deverão ser lidos com a necessária cautela, tornando-se fundamental a replicação do estudo, e a verificação da precisão e fiabilidade do escore proposto num estudo de maiores dimensões.

A ausência de tecnologia para o estudo dos Potenciais Auriculares Tardios constitui também uma limitação, na medida em que a incorporação deste componente de análise poderia acrescentar capacidade discriminativa ao escore, aspecto que permanece por demonstrar. Por outro lado, a incorporação de outras variáveis laboratoriais poderá contribuir para uma maior solidez do escore proposto, aspecto que se assume como um desafio futuro a considerar, atendendo ao benefício clínico inequívoco para os doentes transplantados da existência de um instrumento não invasivo capaz de identificar os doentes que necessitam efetivamente de realização de biópsia endomiocárdica, poupando-se assim procedimentos percutâneos desnecessários e todas as complicações e custos que lhe são inerentes.

Conclusão

O ECGAR é uma ferramenta eficaz para distinguir os doentes com e sem rejeição.

Verificamos que a presença de sinais de fibrose miocárdica no ECG está associada fortemente ao aumento do risco de rejeição aguda e que a diminuição da RMS40 no ECGAR se relaciona tendencialmente com esse diagnóstico.

Verificamos ainda que os critérios formulados pela ACC têm uma capacidade moderada para discriminar os indivíduos transplantados com e sem rejeição pm1 e que, tal como a diminuição da RMS40, o aumento da LAS40 aumenta o risco de rejeição pm1.

Com base nesta informação elaboramos um escore de probabilidades para a ocorrência de rejeição pm1, que possibilita estratificar o grau de probabilidade de rejeição.

Apesar de a utilidade do ECGAR estar camuflada para a rejeição aguda, provavelmente como consequência de uma baixa potência estatística, apresenta grande valor na previsão da rejeição pm1. A utilidade potencial deste escore deverá ser demonstrada em estudos de seguimento englobando uma amostra de maiores dimensões.

Contribuição dos autores

Concepção e desenho da pesquisa, Obtenção de dados e Redação do manuscrito: Mendes VN; Análise e interpretação dos dados e Análise estatística: Mendes VN, Pereira TS; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Pereira TS, Matos VA.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação académica

Este artigo é parte de Dissertação de Mestrado de Vítor Nogueira Mendes pela Escola Superior de Tecnologia da Saúde de Coimbra.
Referências

1. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. International Society of Heart and Lung Transplantation Guidelines. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914-56.

2. Batista M, Antunes M, Prieto D, Antunes P, Sola E, Costa S, et al. Transplantação cardíaca: experiência de oito anos num Centro Português. In: 34 Congresso Português de Cardiologia; Vilamoura (PT); 2013. p. 34-5. Resumos. Centro de Cirurgia Cardioráraca: Coimbra: Centro Hospitalar e Universitário de Coimbra; 2013.

3. Eisen HJ. Heart transplantation: graft rejection basics. Adv Stud Med. 2008;8(6):174-81.

4. Chassot P, Betx D, Delabays A, Ferrari E, Marcucci C, Ruchat P, et al. Précis d’anesthese cardiaque. Lausanne: Centre Hospitalier Universitaire Vaudois (CHUV); 2012. Chap. 17.

5. Girão H, Catarino S, Pereira P. Eps15 interacts with ubiquitinated Cx43 and mediates its internalization. Exp Cell Res. 2009;315(20):3587-97.

6. Bejarano E, Girão H, Yuste A, Patel B, Marques C, Spray D, et al. Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol Biol Cell. 2012;23(11):2156-69.

7. Graceffo MA, O’Rourke RA. Cardiac transplant rejection is associated with a decrease in the high-frequency components of the high-resolution, signal-averaged electrocardiogram. Am Heart J. 1996;132(4):820-6.

8. Keren A, Gillis AM, Freedman RA, Baldwin JC, Bingham ME, Stinson EB, et al. Heart transplant rejection monitored by signal-averaged electrocardiography in patients receiving cyclosporine. Circulation. 1984;70(3 Pt 2):124-9.

9. Morocutti G, Di Chiana A, Proclemer A, Fontanelli A, Bernardi G, Morocutti A, et al. Signal-averaged electrocardiography and Doppler echocardiographic study in predicting acute rejection in heart transplantation. J Heart Lung Transplant. 1995;14(6 Pt 1):1065-72.

10. Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kabashigawa J, Abrams J, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24(11):1710-20.

11. Narayanaswamy S. High-resolution electrocardiography. Indian Pacing Electrophysiol J. 2002;2(2):50-6.

12. Brembilla-Perrot B, Beurrier B, Terrier De la Chaise A, Djahallah K, Jacquemin L, Danchin, N. [Can signal-averaged electrocardiograms be interpreted in cases of complete bundle branch block?]. Arch Mal Coeur Vaiss. 1996;89(3):299-304.

13. Gatzoulis KA, Carlson MD, Biblo LA, Rizos I, Galafos J, Toutouzas P, et al. Time domain analysis of the signal-averaged electrocardiogram in patients with a conduction defect or a bundle branch block. Eur Heart J. 1995;16(12):1912-9.

14. Eisen HJ, Kusmirek LS. Arrhythmias following cardiac transplantation [on line]. Uptodate; 2015. [Cited in 2012 May 10]. Available from: http://www.uptodate.com/contents/arrhythmias_following_cardiac_transplantation

Arq Bras Cardiol. 2016; 106(2):136-144