Synthesis of silver orthophosphate under dimethyl sulfoxide solvent and their photocatalytic properties

Dyah Ayu Septiarini¹, Mardiyah Kurniasih¹, Roy Andreas¹, Dadan Hermawan¹, Uyi Sulaeman¹,*
¹ Department of Chemistry, Jenderal Soedirman University, Purwokerto, 53123, Indonesia
* Corresponding author email: uyi_sulaeman@yahoo.com, Tel./Fax.: +62281638793

Abstract. The silver orthophosphate was successfully synthesized using the starting materials of AgNO₃, KH₂PO₄ under water and dimethyl sulfoxide (DMSO) solvents. The variation of DMSO in water was designed at 0, 5, 10, 15, 20 and 100% (v/v). The products were characterized by XRD, DRS, and SEM. The photocatalytic properties were evaluated under the blue light irradiation using the methyl orange degradation. The results showed that the DMSO significantly affected the morphology, particle size and bandgap energy of Ag₃PO₄. The addition of DMSO decreased the particle size of Ag₃PO₄ and changed the tetrahedron into an irregular shape. The bandgap energies of 2.33, 2.28 and 2.42 eV were observed in the sample prepared with the content of DMSO at 0, 15 and 100% respectively. The highest photocatalytic activity was found at 15% DMSO. This excellent photocatalytic activity might be due to the lower bandgap energy and the higher intensity ratio of [222]/[110] facet.

Keywords: Ag₃PO₄, DMSO, facet, methyl orange, photocatalyst.

1. Introduction
The water environment deterioration due to organic pollutants coming from the textile effluent has increased year by year. It needs effective technology to destroy these pollutants to support the health water environment in the future. The photocatalyst technologies of TiO₂, SrTiO₃, ZnO have been developed to answer this problem. However, these materials have high bandgap energy that cannot be used effectively under sunlight. Some modification of them into iodine doped TiO₂ nanoparticles [1], Ta-N co-doped SrTiO₃ [2], Ag/ZnO [3] have been developed and improved the activity under visible light irradiation. However, their activities are still limited due to the low absorption in the visible region.

Currently, the silver orthophosphate (Ag₃PO₄) has been widely used in photocatalysis due to high absorption in the visible region. This photocatalyst could be prepared by coprecipitation method. Design of hybrid, doping of element and defects have been devoted by researchers to improve the catalytic activity. The PVA-Ag₃PO₄ hybrid design was successful to enhance the photocatalytic activity [4], the noble element doping of Pt, Pd and Au could successfully improve the catalytic activity [5]. The defect engineering both theoretically [6] and experimentally [7] has been applied to improve their catalytic activities. However, too complicated preparation and high cost might be an obstacle to an application; therefore, the simple and low cost of preparation should be found.

Many designs have been explored to find a low cost of preparation and excellent activity. The different starting material, concentration, and solvent could be used as the strategy of synthesis to generate the high photocatalytic activity. For instance, the high activity of tetrahedron and short tetrapod could be designed by different concentration of KH₂PO₄ aqueous solution with the AgNO₃ aqueous...
solution [8]. This tetrahedron could also be created using the starting material of AgNO$_3$ and H$_2$PO$_4$ in ethanol [9]. The saddle-like Ag$_4$PO$_4$ with high activity could be synthesized using the starting material of H$_2$PO$_4$ and Ag$_3$PO$_4$ under solvent of ethanol-water [10]. The trisodium citrate and acetic acid could be used to prepare the coral-like Ag$_3$PO$_4$ [11] that improve the catalytic activity. The microcubes of Ag$_3$PO$_4$ created using deposition-precipitation in the presence of ammonia could enhance the photocatalytic activity [12]. It is very interesting that the morphology could be controlled through the strategy of modification of starting material and concentration.

The modification of Ag$_3$PO$_4$ using the different starting material and concentration would affect the facet intensities. The changes of the facet in Ag$_3$PO$_4$ significantly affected the properties of Ag$_3$PO$_4$ and improved the photocatalytic activity. The facet of [111] could be created using the starting material of AgNO$_3$ and H$_2$PO$_4$ in ethanol that might be responsible for the high activity of tetrahedral Ag$_3$PO$_4$ [9]. It is because that the [111] facet has higher surface energy [13]. The facet of [110] could be designed by a facile precipitation through a reaction of silver-amino complex and Na$_2$HPO$_4$ in water that forming the tetrapod Ag$_3$PO$_4$ [14]. It also exhibits high photocatalytic activity. Therefore, it is very challenging to control the facet of Ag$_3$PO$_4$ for improving the photocatalytic activity. Here, the modification of Ag$_3$PO$_4$ properties was carried out by the coprecipitation method under the solvent of water and dimethyl sulfoxide (DMSO) mixture.

2. Experimental

2.1. Materials
Silver nitrate (AgNO$_3$), potassium dihydrogen phosphate (KH$_2$PO$_4$), dimethyl sulfoxide (DMSO), methyl orange (MO) are purchased from the Merck. These chemical reagents were used in the experiment without further purification.

2.2. Synthesis
The Ag$_3$PO$_4$ synthesized based on the method developed by Wu et al. [15] with modification in the variation of DMSO. Typically, a 10 mL of 10 mM AgNO$_3$ was added to a 20 mL of DMSO aqueous solution with the percent of 0%, 5%, 10%, 15%, 20% and 100%. After mixing these solutions under the magnetic stirrer with the speed of 600 rpm for 10 minutes, five mL of 1.5 M KH$_2$PO$_4$ aqueous solution was added dropwise. The yellow solids were formed and mixed in the solution for 30 minutes. The precipitates were filtered, washed with water and dried at 60°C. The samples were named as DS-0, DS-5, DS-10, DS-15, DS-20, DS-100, respectively.

2.3. Characterization
The characterization of the samples was investigated by X-Ray Diffractometer (Shimadzu 7000) to identify the structure of Ag$_3$PO$_4$. Scanning Electron Microscope (JEOL JSM 6510LA) was used to identify the size and morphology. The absorption and band gap energy were analyzed using the Diffuse Reflectance Spectroscopy (JASCO V-670). The bandgap energies were determined by direct transition [16] using the formula of $\alpha = A(h\nu - E_g)^n$ where A is a constant, n depends on whether the transition is direct (n=1) or indirect (n=4), α is the optical absorption, hν is the photon energy and E$_g$ is the bandgap energy.

2.4. Photocatalytic Activity
The amount of 0.1 gram photocatalysts was added to 100 mL of 10 mg/L methyl orange solution, mixed with the magnetic stirrer with the speed of 600 rpm for 30 minutes to achieve the equilibrium of adsorption-desorption. The photocatalytic reaction was conducted under visible light (Skyled, 3 Watt). Every 5 minutes, 5 mL of solution was taken out and centrifuged at 2000 RPM to separate it from the catalyst. The decrease of methyl orange was monitored by the UV-Visible spectrophotometer. The decreased photocatalytic activity was studied using the pseudo-first-order kinetic, using the formula of
\[\ln(Co/C) = kt, \] where \(Co \) is the initial concentration (mg/L), \(C \) is concentration at \(t \) time of photodegradation (mg/L), \(k \) is the rate constant \((\text{min}^{-1}) \), and \(t \) is the time of degradation \((\text{min}) \) [17].

3. Results and Discussion
The structures of \(\text{Ag}_3\text{PO}_4 \) in the samples of E-0, E-15, and E-100 were investigated using the XRD, the results are shown in Fig. 1. They have a similar structure of cubic (JCPDS No. 06-0505) without the presence of other secondary phases. The reaction of formation can be expressed as follows:

\[
3\text{AgNO}_3(\text{aq},\text{DMSO}) + \text{KH}_2\text{PO}_4(\text{aq}) \rightarrow \text{Ag}_3\text{PO}_4(s) + \text{KNO}_3(\text{aq}) + 2\text{HNO}_3(\text{aq})
\] (1)

The different ratio of facet was observed among the samples. The addition of DMSO changed the intensity ratio of \([222]/[110]\) and \([222]/[320]\). The highest ratio of \([222]/[110]\) was found in the sample of E-15. The facet of \(\text{Ag}_3\text{PO}_4 \) is very important to identify because the facet of the surface significantly affected the activity of a catalyst. The intensity ratio of \([222]\) to \([110]\) peaks for DS-0, DS-15 and DS-100 are 1.27, 1.38, 1.29, respectively. All these intensity ratios are higher than the standard ratio of 1.00 [14]. The highest ratio of \([222]/[110]\) intensity was found in the sample of DS-15.

![Figure 1. XRD profile of \(\text{Ag}_3\text{PO}_4 \) synthesized using starting material of \(\text{AgNO}_3 \) in water (DS-0), 15% of DMSO (DS-15) and 100% of DMSO (DS-100) reacted with the \(\text{KH}_2\text{PO}_4 \) in water.](image)

![Figure 2. DRS of \(\text{Ag}_3\text{PO}_4 \) of the sample DS-0, DS-15 and DS-100 (a) with the calculation of bandgap energy using the plot of \(hv \) vs \((ahv)^2 \) (b).](image)
Fig. 2 showed the absorption of DS-0, DS-15, and DS-100. The addition of DMSO clearly influenced the optical properties. The broad absorption at visible region (above ~530 nm) decreases by increasing the content of DMSO, indicating that the DMSO might reduce the defect in the surface of Ag₃PO₄. The most decreasing of this absorption could be found in the sample of DS-15. The high broad absorption in the visible region reflected that the high defect was created in the surface which suppresses the photocatalytic activity. The bandgap energy was also calculated using the direct transition and the results showed that the bandgaps of 2.33 eV, 2.28 eV, and 2.42 eV were observed in the samples of DS-0, DS-15, and DS-100 respectively. The lower of bandgap energy was found in the sample of DS-15.

![SEM images of the samples of DS-0 (a), DS-15 (b) and DS-100 (c).](image)

The morphology of DS-0, DS-15, and DS-100 was investigated using Scanning Electron Microscope. The results were shown in Fig. 3. The tetrahedron with the particle size of 2.5-6.0 μm was observed in the sample of DS-0. These morphologies changed under synthesis using DMSO as found in the sample of DS-15. It showed that the part of the tetrahedron particle changed into irregular shape with the particle size of 2.0-4.0 μm. There is no tetrahedron found in the sample of DS-100 which has the diameter of 0.5-1.0 μm. It was interesting that the addition of DMSO significantly decreases the particle size of Ag₃PO₄ (table 1). The DMSO might have a significant role to control crystal growth. The smaller particle size could be found in the sample of DS-100.

Samples	[222]/[110]	[222]/[320]	Band gap (eV)	Particle size (μm)
DS-0	1.27	0.61	2.33	2.5-6.0
DS-15	1.38	0.68	2.28	2.0-4.0
DS-100	1.29	0.76	2.42	0.5-1.0

Table 1. Intensity ratio of facet, bandgap energy and particle size of Ag₃PO₄.

Sample	Rate Constant (min⁻¹)	R²
DS-0	0.0897	0.9736
DS-5	0.0925	0.9825
DS-10	0.1156	0.9700
DS-15	0.1730	0.9342
DS-20	0.1358	0.9514
DS-100	0.0091	0.9989

Table 2. Pseudo first order kinetic of photocatalytic reaction.
Figure 4. Photocatalytic activity of Ag$_3$PO$_4$ for the samples of DS-0, DS-0, DS-5, DS-10, DS-15, DS-20, DS-100 analysed using the pseudo-first-order kinetics.

The photocatalytic activities of DS-0, DS-5, DS-10, DS-15, DS-20, DS-100 were evaluated using the methyl orange degradation under blue light irradiation. The results can be seen in Fig. 4. These photocatalytic activities followed the pseudo-first-order kinetics (table 2). The activity increases by the increasing of DMSO up to the sample of DS-15 where the highest activity achieved. However, by adding more of DMSO, the activity decreases, and the lowest activity was found in the sample of DS-100. The different photocatalytic activity might be due to the different morphology, facet, particle size, and band gap energy. The highest of photocatalytic activity was observed in DS-15. Around 1.9 times higher of photocatalytic activity was observed at DS-15, compared to the sample of DS-0. The higher ratio of [222]/[110] could have higher surface energy that enhances activity in the surface. The lower band gap energy of the sample of DS-15 might also increase the photocatalytic activity. With the lower bandgap energy, more energy at visible light could be used for the excitation leading to enhanced photocatalytic activity. It is well known that the smaller particle size the higher activity could be obtained. However, the smallest particle size of DS-100 did not show high photocatalytic activity. It might be due to the changes of morphology from tetrahedron to irregular form.

It is also well known that the high photocatalytic activity of silver phosphate was generated by visible light irradiation. Under irradiation, the photocatalyst would generate the holes in valence band and electron in conduction band in the surface. The hole would react with hydroxide ion resulting in hydroxyl radical whereas the electron could react with oxygen resulting in the superoxide radical. These species are responsible for the photocatalytic activity. This mechanism is highly affected by defect sites on the surface. The high defect would increase the recombination of electron and holes pair leading to low catalytic activity. In this experiment, DMSO has a significant role to decrease the broad absorption in the visible region indicating the high defect might be suppressed.

4. Conclusions
The silver orthophosphate was successfully synthesized using the starting materials of AgNO$_3$, KH$_2$PO$_4$ under water and dimethyl sulfoxide (DMSO) solvents. The DMSO significantly affected the morphology, particle size and band gap energy of Ag$_3$PO$_4$. The highest photocatalytic activity was found in DMSO at the sample of 15% DMSO. The high of photocatalytic activity might be due to the low band gap energy and the high ratio of [222]/[110] intensities.

Acknowledgments
This research was financially supported by Directorate of Research and Community Services, Directorate General of Development and Research Enhancement, Ministry of Research, Technology
and Higher Education of the Republic of Indonesia in the Scheme of Competency Grant, Contract Number: 059/SP2H/LT/DRPM/2018.

References

[1] Barkul R P, Patil M K, Patil S M, Shevale V B and Delek S D 2017 Sunlight-assisted photocatalytic degradation of textile effluent and rhodamine b by using iodine doped TiO2 nanoparticles J. Photochem. Photobiol. A. Chem. 349 138-47

[2] Liu Y, Zhou W and Wu P 2017 Electronic structure and optical properties of Ta-doped and (Ta, N)-codoped SrTiO3 from hybrid functional calculations Journal of Applied Physics 121 7 075102

[3] Vaiano V, Matarangolo M, Murcia J J, Rojas H, Navío J A and Hidalgo M C 2018 Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag Appl. Catal. B. 225 197-206

[4] Sulaemun U, Liu B, Yin S and Sato T 2017 Synthesis of Ag3PO4 using Hydrophilyc Polymer and Their Photocatalytic Activities under Visible Light Irradiation Bull. Chem. React. Eng. Catal. 12 2 206-11

[5] Yan T, Zhang H, Liu Y, Guan W, Long J, Li W and You J 2014 Fabrication of robust M/Ag3PO4(M = Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis RSC Adv. 4 70 37220

[6] Reunchan P and Umezawa N 2013 Native defects and hydrogen impurities in Ag3PO4 Phys. Rev. B 87 24 245205-55209

[7] Sulaemun U, Hermawan D, Andreas R, Abdullah A Z and Yin S 2018 Native defects in silver orthophosphate and their effects on photocatalytic activity under visible light irradiation Appl. Surf. Sci. 428 1029-35

[8] Dong L, Wang P, Wang S, Lei P and Wang Y 2014 A simple way for Ag3PO4 tetrahedron and tetrapod microcrystals with high visible-light-responsive activity Mater. Lett. 134 158-61

[9] Zheng B, Wang X, Liu C, Tan K, Xie Z and Zheng L 2013 High-efficient visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy J. Mater. Chem. A 1 40 12635-40

[10] Sulaemun U, Febiyanto F, Yin S and Sato T 2016 The highly active saddle-like Ag3PO4 photocatalyst under visible light irradiation Catal. Commun. 85 22-5

[11] Zheng C, Yang H and Yang Y 2017 Synthesis of novel coral-like Ag3PO4 microspheres under the aid of trisodium citrate and acetic acid J. Ceram. Soc. Jpn. 125 3 141-4

[12] Yan X, Gao Q, Qin J, Yang X, Li Y and Tang H 2013 Morphology-controlled synthesis of Ag3PO4 microcubes with enhanced visible-light-driven photocatalytic activity Ceram. Int. 39 8 9715-20

[13] Martin D J, Umezawa N, Chen X, Ye J and Tang J 2013 Facet engineered Ag3PO4 for efficient water photooxidation Energy Environ. Sci. 6 11 3380-6

[14] Wang H, He L, Wang L, Hu P, Guo L, Han X and Li J 2012 Facile synthesis of Ag3PO4 tetrapod microcrystals with an increased percentage of exposed {110} facets and highly efficient photocatalytic properties CrystEngComm 14 24 8342-4

[15] Wu A, Tian C, Chang W, Hong Y, Zhang Q, Qu Y and Fu H 2013 Morphology-controlled synthesis of Ag3PO4 nano/microcrystals and their antibacterial properties Mater. Res. Bull. 48 9 3043-8

[16] Butler M A 1977 Photoelectrolysis and physical properties of the semiconducting electrode WO2 J. Appl. Phys. 48 5 1914-20

[17] Yan Y, Guan H, Liu S and Jiang R 2014 Ag3PO4/Fe2O3 composite photocatalysts with an n–n heterojunction semiconductor structure under visible-light irradiation Ceram. Int. 40 7 9095-100