Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga *Euglena gracilis*

Mohammed Aldholmi,* Rizwan Ahmad, Daniel Carretero-Molina, Ignacio Pérez-Victoria, Jesús Martín, Fernando Reyes, Olga Genilloud, Léa Gourbeyre, Thierry Gefflaut, Hanne Carlsson, Alexei Maklakov, Ellis O’Neill, Robert A. Field, Barrie Wilkinson, Maria O’Connell, and A. Ganesan*

Abstract: By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from *Euglena gracilis* containing asparagine and non-proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.g., euglenatide B exhibiting IC\(_{50}\) values of 4.3 μM in *Aspergillus fumigatus* and 0.29 μM in MCF-7 breast cancer cells. In an unprecedented convergence of non-ribosomal peptide synthetase and polyketide synthase assembly-line biosynthesis between unicellular species and the metazoan kingdom, euglenatides bear resemblance to nemamides from *Caenorhabditis elegans* and inhibited both producing organisms *E. gracilis* and *C. elegans*. By molecular network analysis, we detected over forty euglenatide-like metabolites in *E. gracilis*, *E. sanguinea* and *E. mutabilis*, suggesting an important biological role for these natural products.

Introduction

Microorganisms are a bountiful source of biologically active secondary metabolites, especially those with antimicrobial or cytotoxic properties.\(^1,2\) Indeed, the treatment of infectious disease and cancer relies heavily on natural products or their semisynthetic or fully synthetic analogues.\(^3\) Nevertheless, we have only scratched the surface of microbial metabolite diversity, as a tiny fraction of species are successfully isolated and cultured.\(^4,3\) Furthermore, even within this minority, the vast number of secondary metabolite biosynthetic gene clusters (BGCs) remain silent under artificial laboratory conditions.\(^6\) Many approaches are being studied for the activation of BGCs including the alteration of fermentation parameters, addition of small molecule elicitors, expression or deletion of transcriptional modulators and reconstitution in a heterologous host.\(^7,4\)

As a case in point, the common freshwater unicellular microalga *Euglena gracilis* is capable of plant-like photoautotrophic growth with light as an energy source and carbon dioxide as the carbon source, animal-like heterotrophic feeding with an external carbon source, or mixotrophically combining the two modes. *E. gracilis* is produced commercially as a food supplement,\(^9\) investigated as a potential biofuel source of lipids, carbohydrates and vitamins,\(^10\) and even grown with complete replacement of hydrogen by deuterium,\(^11\) or in outer space as a potential bioregenerative life support system.\(^12\) Despite such inten-

[1] Dr. M. Aldholmi, Dr. R. Ahmad
Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University
Dammam, 31441 (Saudi Arabia)
E-mail: mjaldholmi@iau.edu.sa

[2] Dr. D. Carretero-Molina, Dr. I. Pérez-Victoria, Dr. J. Martín, Dr. F. Reyes, Dr. O. Genilloud
Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía
Avenida del Conocimiento 34, 18016 Armilla (Granada) (Spain)

[3] Dr. L. Gourbeyre, Prof. T. Gefflaut
Université Clermont Auvergne,
Clermont Auvergne INP, CNRS, Institut Pascal
63000 Clermont-Ferrand (France)

[4] Dr. H. Carlsson, Prof. A. Maklakov
School of Biological Sciences, University of East Anglia,
Norwich Research Park
Norwich NR4 7J (UK)

[5] Dr. E. O’Neill
School of Chemistry, University of Nottingham
Nottingham NG7 2RD (UK)
Prof. R. A. Field
Manchester Institute of Biotechnology, University of Manchester
Manchester M1 7DN (UK)

[6] Prof. B. Wilkinson
John Innes Centre, Norwich Research Park
Norwich NR4 7UH (UK)

[7] Prof. M. O’Connell, Prof. A. Ganesan
School of Pharmacy, University of East Anglia,
Norwich Research Park,
Norwich NR4 7J (UK)
E-mail: a.ganesan@uea.ac.uk

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
sive scrutiny, the heterocycle euglenapterin (Figure 1) is the only secondary metabolite reported from *E. gracilis*. In fact, the only natural product of note from the entire *Euglena* genus (>250 species) is the cytotoxic alkaloid euglenophycin, isolated from *E. sanguinea* and detected in several other species but absent in *E. gracilis*. Nonetheless, partial genome sequencing of *E. gracilis* and transcriptome analysis identified a large number of enzymes involved in secondary metabolism. This included 19 non-ribosomal peptide synthetases (NRPSs) and 14 polypeptide synthases (PKSs), multidomain enzymes involved in assembly-line biosynthesis, suggesting that *E. gracilis* is a potential source of hitherto undiscovered natural products.

Results and Discussion

Discovery of Euglenatides

We cultured *Euglena gracilis* var. *saccharophila* Klebs (strain 1224/7A) under photosynthetic and heterotrophic conditions (media composition in Table S1, S2). Disappointingly, only common chlorophyll and xanthophyll photosynthetic pigments were perceived in extracts of either the supernatant or the algal biomass. The addition of small synthetic pigments were perceived in extracts of either the algae grown photosynthetically and heterotrophically. We cultured *Euglena* under photosynthetic and heterotrophic conditions (media composition supplemented by glutamic acid. Gratifyingly, only common chlorophyll and xanthophyll photosynthetic pigments were perceived in extracts of either the supernatant or the algal biomass. The addition of small synthetic pigments were perceived in extracts of either the algae grown photosynthetically and heterotrophically.

Isolation and Structure Elucidation

We cultured *Euglena* in larger 18 L scale, with minimal medium + 30 mM Glu, at ambient temperature under photosynthetic conditions (irradiation by daylight lamps, 2000 lumens). Following cell lysis and extraction, the residue of the medium was initially purified by silica flash chromatography to give 187 mg of a mixture of euglenatides. Repeated cycles of semi-preparative HPLC finally afforded 2.8 mg of pure euglenatide A, 5.7 mg of euglenatide B, 2.8 mg of euglenatide D, 0.3 ppm); euglenatide C (calcd. for C20H21N2O2, 822.4618, Δ = −0.4 ppm); euglenatide D (calcd. for C20H21N2O2, 809.4659, Δ = 0 ppm); euglenatide E (calcd. for C20H21N2O2, 809.4666, Δ = 0 ppm). In positive mode ESI-MS (Figure S4), in addition to the molecular ion, all euglenatides produced prominent fragment signals of [M−32]− and [M−50]− that we attributed to the loss of methanol (32 Da) or methanol + water (50 Da).

Figure 1. Previous secondary metabolites isolated from *Euglena*.

![Euglenapterin and Euglenophycin](Image)

![HPLC overlay](Image)
revealed the presence of amide carbonyl groups while the broad peak at 2873 cm\(^{-1}\) (CH) was characteristic of an aliphatic chain.

The molecular connectivity of euglenatides was established by extensive 1D and 2D-NMR experiments (Figures S5–S40). For euglenatide B (Table S3), the presence of nine amide protons at \(\delta_H 6.88\) (1 H, s), 6.90 (1 H, d), 7.06 (1 H, s), 7.29 (1 H, s), 7.36 (1 H, s), 7.65 (1 H, d), 7.77 (1 H, d), 7.78 (1 H, s) and 9.02 (1 H, d) in the \(^1\)H NMR spectrum, and seven carbonyl carbon signals at \(\delta_C 190.85\) (3 H, t) and \(\delta_C 28.5–31.2\) in the HSQC spectrum, and a methyl group at \(\delta_C 0.85\) (3H, t) and \(\delta_C 28.5–31.2\) indicated the presence of a long aliphatic chain. The signals at \(\delta_H 4.31, 4.38, 4.44\) and 5.13 were diagnostic of four hydroxyls while the singlet at \(\delta_C 5.51\) (1 H, dd), 5.72 (1 H, dt), 6.07 (1 H, dd), 6.15 (1 H, dd), 6.20 (1 H, dd), 6.24 (1 H, dd), and six carbon signals at \(\delta_C 135.1, 133.9, 132.8, 131.3, 130.3, 130.0\) Analysis of \(^1\)H, \(^13\)C, and HSQC data, in addition to key COSY and HMBC correlations, unveiled the presence of two asparagine residues (Asn I and Asn II) and three non-proteinogenic amino acids: \(\alpha\)-aminoisobutyric acid (\(\alpha\)-Aib), 4,5-dihydroxynorvaline (Dnv) and the novel \(\beta\)-amino-2,5-dihydroxy-7-methoxy-8,10,12-eicosatrienoic acid. The sequence of amino acid residues was established by extensive 1D and 2D-NMR experiments (Figure S41, Tables S4–S7), euglenatide A contained the same amino acids as euglenatide B, except that Asn II was replaced by a second Dnv residue. Euglenatides D and E were deoxy analogues of euglenatide A and B, respectively, without the C2-hydroxyl group of the graciline residue. The NMR spectrum of euglenatide C was unique to the others, as it contained an extra methyl group relative to the others, as it contained an extra methyl group (\(\delta_H 1.02\) ppm; \(\delta_C 19.5\) ppm), and COSY/HMBC correlations assigned this to the replacement of Dnv by 4,5-dihydroxynorleucine (Dnl).

Numerous attempts to obtain diffraction quality X-ray crystals of euglenatide B were unsuccessful. The stereochemistry of Asn residues was instead determined through their relationship to aspartic acid by microscale acidic degradation. The hydrolysate was subjected to Marfey’s analysis by chemical derivatization with N\(_2\)- (2,4-dinitro-5-fluorophenyl)-L-valinamide (L-FDVA). Both L-FDVA-L-Asp (RT = 20.66 min) and L-FDVA-D-Asp (RT = 25.52 min) were found, indicating one each of L-Asn and D-Asn in euglenatide B, whereas only the D amino acid was detected from euglenatide A (Figure S42).

![Figure 3. Key COSY and HMBC correlations used to establish the molecular connectivity of euglenatide B.](image3.png)

![Figure 4. The structures of nemamides A and B.](image4.png)
Previously, the configurational assignment of βAib by Marfey analysis was complicated by difficult HPLC separation of the two diastereomers and required mathematical peak fitting by Gaussian deconvolution.[31] By careful optimization of conditions including mobile and stationary phase, temperature, flow rate and isotropic solvent system, we devised a new protocol with sufficient chromatographic phase, temperature, flow rate and isocratic solvent system, optimization of conditions including mobile and stationary resolution: L-FDVA-L-βAib, RT = 59.47 min and L-FDVA-D-βAib, RT = 56.98 min (Figure S43). This confirmed that both euglenatides A and B contain the (R)-enantiomer, identical in stereochemistry to naturally occurring βAib isolated from bacterial, fungal or plant sources. On the other hand, in humans, βAib is a catabolite of thymine and valine metabolism and both enantiomers are detected in plasma.[32]

Determination of the Dnv stereochemistry was challenging due to the lack of commercial standards and we employed a bi-enzymatic recursive cascade synthesis from Ala involving pyruvate-aldolase and L- or D-α-transaminase.[33] This resulted in two scalemic samples: the L-series contained L-Ala (70 %) + L-syn-Dnv (26 %) + L-anti-Dnv (4 %) while the D-series contained D-Ala (25 %) + D-syn-Dnv (9 %) + D-anti-Dnv (66 %). Marfey analysis with these samples resulted in clear separation of the four Dnv diastereomers: L-FDVA-L-anti-Dnv, RT = 17.03 min; L-FDVA-L-syn-Dnv, RT = 32.38 min; L-FDVA-D-anti-Dnv, RT = 24.92 min; L-FDVA-D-syn-Dnv, RT = 29.90 min (Figure S44). Our hydrolysates were found to produce L-FDVA-L-anti-Dnv, and further confirmation came from enantiopure Boc-L-anti-Dnv(4-TBDMS)-OEt, an intermediate in GE81112A total synthesis kindly provided by Dr. Armin Bauer at Sanofi-Aventis.[34] Global deprotection of this material to Dnv followed by Marfey’s analysis gave an identical result to our sample. We note that of the four diastereomers of Dnv, only L-anti-Dnv or its O-carbamoyl derivative are currently observed in natural products.

Neither the intact Gra residue nor simpler fragments were recognized from our acid hydrolysis, due to the lability of this complex amino acid under these conditions. The 1H and 13C NMR chemical shifts, coupling constants and NOESY correlations (Tables S8–S11) of 2-deoxyGra in euglenatides D and E closely matched the data for nemamide A, as did the CD spectra (Figure S45). We conclude that 2-deoxyGra is identical in relative and absolute stereochemistry with the nemamide side chain. The chirality of the additional C2 hydroxyl group in graciline was deduced from comparison of J values with nemamide A. Combining all the above information completed the structure elucidation of euglenatides A–E (Figure 5).

Antiproliferative Activity of Euglenatides

The euglenatides were tested for antibacterial activity with methicillin-sensitive *Staphylococcus aureus* (MSSA ATCC 29213), methicillin-resistant *S. aureus* (MRSA MB5393) and *Escherichia coli* ATCC 25922 but were inactive at the highest tested concentration of 128 μg mL⁻¹ (Figure S46). On the other hand, antifungal activity was observed against the yeast *Candida albicans* ATCC 64124. Euglenatides B, C and E had IC₅₀ values of 13–14 μM, whereas euglenatide A (27 μM) and D (40 μM) were less active (Figure S47). Since this strain is ketoconazole resistant, it signifies the euglenatides are not cross-resistant with the clinically important azole class of antifungal agents. All five euglenatides had a higher activity against the mold *Aspergillus fumigatus* ATCC 46645, with similar IC₅₀ values of 4–9 μM. The lack of activity against bacteria suggested a specific target in eukaryotic cells absent in prokaryotes, and we screened the most abundant member, euglenatide B, in several human cancer cell lines. Potent antiproliferative activity was noted with respective IC₅₀ values of 533, 773 and 292 nM against the THP-1 acute monocytic leukemia, A-549 lung adenocarcinoma and MCF-7 breast cancer cell lines (Figure S48).

The Butcher group did not report bioassays with the worm nemamides, perhaps due to the paucity of material as only 0.07 mg of nemamide A and even less of nemamide B was isolated from 50 L of nematode culture. Instead, *C. elegans* mutants that do not produce nemamides were discerned to be defective in recovery from arrest of the L1 larval stage under starvation conditions. Based on the similarity of the lipopholic side chain between nemamides and euglenatides, we predict the former would possess antiproliferative properties against fungal and mammalian cancer cells.

Effects on Producing Organisms

Given the biological activity against eukaryotes, we were curious if euglenatides would influence the producer *E. gracilis* itself. After four days of algal incubation with euglenatide B, growth was significantly inhibited (Figure 6). The effect appears to be cytostatic rather than cytotoxic, as the algae recovered after a longer period of seven days. The
question then arises whether the nemamides have similar bioactivity against their nematode producer *C. elegans*. Although the worm nemamides are unavailable for testing, we indirectly addressed this issue by using our euglenatides. At concentrations of 10 and 25 μM, euglenatide B was strongly inhibitory to starvation recovery of the L1 larval stage of *C. elegans* (Figure 7).

It is tempting to speculate that the nemamides in *C. elegans* and the euglenatides in *E. gracilis* perform similar biological functions. While low concentrations might serve regulatory purposes and facilitate recovery from starvation conditions without negative effects on the producing organism, the external addition of higher amounts is apparently deleterious and overcomes mechanisms of self-resistance. In our *Euglena* cultures, we did not detect euglenatides in the supernatant, implying that they are not secreted into the external environment. It is possible the natural products are sequestered in a specific cellular compartment to reduce self-exposure and serve as antifeedants that discourage predators.

A Common Biosynthetic Pathway in Euglena

We cultivated *E. sanguinea* and *E. mutabilis* strains under a variety of conditions and subjected extracts from cultures with good or excellent growth to metabolomic profiling by LC-MS. The UV/Vis profile of the *E. sanguinea* extract was similar to that of *E. gracilis*, while the *E. mutabilis* extract did not have significant UV/Vis absorptions in the 200–600 nM range (Figures S49, S50). This suggests that both *E. gracilis* and *E. sanguinea* produce euglenatides with conjugated trienes, while they are either absent or in very low amounts in *E. mutabilis*.

MS/MS spectra of *E. gracilis*, *E. sanguinea* and *E. mutabilis* extracts were obtained in negative ion mode and used to construct a molecular network of related metabolites (Figure 8). Each node in the molecular network is labelled with the precursor mass of the molecule deduced from the corresponding MS/MS spectrum. The constructed molecular network groups the structurally similar metabolites from three *Euglena* species in a cluster. The higher the similarity, the closer they are in the cluster. For example, precursor masses 808 and 822 represent the MS/MS spectra of euglenatides B and C which differ only by the addition of a methyl group, while precursor masses of 809 and 825 represent euglenatides A and D that differ by an additional hydroxyl group. Our network analysis indicates the presence of over 40 euglenatide-like metabolites within these three species, including ubiquitous examples such as 845 and 847 and others such as 849 and 1006, detected only in *E. mutabilis* and *E. sanguinea*, respectively. The broad distribution, and the multitude of family members, point to an important function for euglenatides and we searched the available genomic *Euglena gracilis* data for homology with the nemamide BGC. However, due to the incomplete assembly, and the likely absence of gene clustering in *Euglena*, we did not identify a candidate BGC for euglenatide biosynthesis.

Conclusion

We demonstrate that even a species like *Euglena gracilis*, subject to scientific study for centuries, harbors unusual and novel secondary metabolites. Ultimately, our successful unmasking of the euglenatides relied on the traditional “one strain, many compounds (OSMAC)” approach of altering fermentation conditions. Specifically, culture in minimal media with glutamic acid as the sole nitrogen source served
Each node represents the precursor mass of a single metabolite. The isolated euglenatides are represented by A, B, C, D and E respectively.

E. gracilis inhibited the growth of both producing organisms known metazoan natural product of NRPS-PKS origin and molecular network analysis, we detected over 40 euglenatide-like metabolites in three Euglena genera, and a panel of human cancer cells. By nophycin (Figure 1) also contains 20 carbons, and it is side chain. Interestingly, the conjugated triene and two oxygenated stereocenters in the dihydroxynorvaline, 4,5-dihdroxynorleucine and the novel peptide natural products disclosed to incorporate 4,5-natural products. In addition, the euglenatides are the first resulting euglenatides contain L- and D-asparagine, as well to activate a normally quiescent biosynthetic pathway. The isolated euglenatides are represented by A, B, C, D and E respectively.

Euglenatides exhibited significant antiproliferative activity against Candida and Aspergillus, the two major pathogenic fungal genera, and a panel of human cancer cells. By molecular network analysis, we detected over 40 euglenatide-like metabolites in three Euglena species, implying a widespread occurrence within the genus. The euglenatides share a structural similarity to the nemamides, the only known metazoan natural product of NRPS-PKS origin and inhibited the growth of both producing organisms E. gracilis and C. elegans. The astonishing structural congruence between protist and animal kingdom secondary metabolites is unique in chemical ecology. The ability to harvest multing quantities of euglenatides from E. gracilis will expedite further research into the biological ramifications of these cyclic peptides.

Acknowledgements

This work was funded through a scholarship to MA from Imam Abdulrahman Bin Faisal University, Saudi Arabia. We are incredibly grateful to Dr Armin Bauer (Sanofi-Aventis, Germany) for the kind gift of Boc-L-anti-4,5-dihydroxynorvaline(4-TBDMS)-OEt. We thank Dr Mercedes de la Cruz and Dr Caridad Diaz (Fundación MEDINA, Spain) for their assistance with the antimicrobial assays.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: Antiproliferative · Cyclic Peptides · Microalgae · Natural Products · Nematodes

[1] F. Ntie-Kang, D. Svozil, Phys. Sci. Rev. 2020, 5, 20180121.
[2] A. S. Abdel-Razek, M. E. El-Naggar, A. Allam, O. M. Morsy, S. I. Othman, Processes 2020, 8, 470.
[3] D. J. Newman, G. M. Cragg, J. Nat. Prod. 2020, 83, 770–803.
[4] L. C. Vitorino, L. A. Bessa, Diversity 2018, 10, 46.
[5] W. H. Lewis, G. Tahon, P. Geesink, D. Z. Sousa, T. J. G. Ettema, Nat. Rev. Microbiol. 2021, 19, 225–240.
[6] P. N. Tran, M. R. Yen, C. Y. Chiang, H. C. Lin, P. Y. Chen, Appl. Microbiol. Biotechnol. 2019, 103, 3277–3287.
[7] H. A. Tomm, L. Ucciferri, A. C. Ross, J. Ind. Microbiol. Biotechnol. 2019, 46, 1381–1400.
[8] B. C. Covington, F. Xu, M. R. Seyedsayamdost, Annu. Rev. Biochem. 2021, 90, 763–788.
[9] K. Suzuki, Adv. Exp. Med. Biol. 2017, 979, 285–293.
[10] A. Gissibl, A. Sun, A. Care, H. Nevalainen, A. Sunna, Front. Bioeng. Biotechnol. 2019, 7, 108.
[11] S. E. Mandeville, H. L. Crespi, J. J. Katz, Science 1964, 146, 769–770.
[12] D. Hader, Front. Plant Sci. 2020, 10, 1621.
[13] M. Bohme, W. Pfleiderer, E. F. Elstner, W. J. Richter, Angew. Chem. Int. Ed. Engl. 1980, 19, 473–474; Angew. Chem. 1980, 92, 474–475.
[14] S. Sasso, G. Pohnert, M. Lohr, M. Mittag, C. Hertweck, FEMS Microbiol. Rev. 2012, 36, 761–785.
[15] P. V. Zimba, P. D. Moeller, K. Beauchesne, H. E. Lane, R. E. Triemer, Toxicon 2010, 55, 100–104.
[16] P. V. Zimba, I. S. Huang, D. Gutierrez, W. Shin, M. S. Bennett, R. E. Triemer, Harmful Algae 2017, 63, 79–84.
[17] E. C. O’Neill, M. Trick, L. Hill, M. Rejzek, R. G. Dusi, C. J. Hamilton, P. V. Zimba, B. Henrisrat, R. A. Field, Mol. BioSyst. 2015, 11, 2808–2820.
[18] T. E. Ebenezer, M. Zoltner, A. Burrell, A. Nenarokova, A. M. G. Novák Vanclová, B. Prasad, P. Soukal, C. Santana.
Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga *Euglena gracilis*

Light and glutamic acid induced *E. gracilis* to produce euglenatides with antifungal and anticancer activity. Euglenatides were also detected in *E. sanguinea* and *E. mutabilis*. They resemble the nemamides isolated from *C. elegans*, inhibited both producing species, and represent uniquely convergent assembly-line biosynthesis between unicellular organisms and metazoans.