Updated constraints on sterile neutrino mixing in the OPERA experiment using a new ν_e identification method

OPERA collaboration

N. Agafonova1, A. Alexandrov2, A. Anokhina3, S. Aoki4, A. Ariga5, T. Ariga5,6, A. Bertolin7, C. Bozza8, R. Brugnera7,9, S. Buontempo2, M. Chernyavskiy10, A. Chukanov11, L. Consiglio2, N. D’Ambrosio12, G. De Lellis2,13,14, M. De Serio15,16, P. del Amo Sanchez17, A. Di Crescenzo2,13, D. Di Ferdinando18, N. Di Marco12, S. Dmitrievsky11, M. Dracos19, D. Duchesneau17, S. Dusini7, T. Dzhatdoev3, J. Ebert20, A. Ereditato5, R. A. Fini16, T. Fukuda21, G. Galati12,13, A. Garfagnini7,9, V. Gentile22, J. Goldberg23, S. Gorbunov10, Y. Gornushkin11, G. Grella8, A. M. Guler4, A. Iuliano24, B. D. Park4, T. Hogan20, J. Ishii20, T. Kodama30, M. Komatsu21, U. Kose17, I. Kreso5, F. Laudisi7,9, A. Lauria2,13, A. Longhin7,9, P. Loverre25, A. Malgin1, G. Mandrioli12,13, M. Maru18,32, E. Medina67, A. Meregaglia19, S. Mikado33, M. Miyani21, F. Mizutani4, P. Monacelli25, M. C. Montesi2,13, K. Morishima21, M. T. Muciaccia15,16, N. Naganawa21, T. Naka31, M. Nakamura21, T. Nakano21, K. Niwa21, S. Ogawa31, N. Okateva10, K. Ozaki4, A. Paoloni34, L. Paparella15,16, B. D. Park4,28, L. Pasqualini18,32, A. Pastore16, L. Patrizii18, H. Pessard17, D. Podgrudkov3, N. Polukhina10,35, M. Pozzato18, F. Pupilli7, M. Roda7,9, T. Roganova3, H. Rokoju21, G. Rosa25, O. Ryazhskaya1, O. Sato21, A. Schembri12, I. Shakiryanova1, T. Shchedrina10, E. Shibayama4, H. Shibuya4,31, T. Shiraishi21, S. Simone15,16, C. Sirignano7,9, G. Sirri18, A. Sotnikov11, M. Spinetti34, L. Stanco7, N. Starkov10, S. M. Stellacci8, M. Stipčević29, P. Strolin2,13, S. Takahashi4, M. Tenti18, F. Terranova36, V. Tioukov2, S. Tufanli†††5, S. Vasina11, P. Vilain†††37, E. Voevodina2, L. Votano34, J. L. Vuilleumier5, G. Wilquet37, and C. S. Yoon28

1INR—Institute for Nuclear Research of the Russian Academy of Sciences,
RUS-117312 Moscow, Russia
2INFN Sezione di Napoli, I-80126 Napoli, Italy
3SINP MSU—Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, RUS-119991 Moscow, Russia
4Kobe University, J-657-8501 Kobe, Japan
5Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, CH-3012 Bern, Switzerland
6Faculty of Arts and Science, Kyushu University, J-819-0395 Fukuoka, Japan
7INFN Sezione di Padova, I-35131 Padova, Italy
8Dipartimento di Fisica dell’Università di Salerno and “Gruppo Collegato” INFN, I-84084 Fisciano (Salerno), Italy
9Dipartimento di Fisica e Astronomia dell’Università di Padova, I-35131 Padova, Italy
This paper describes a new ν_e identification method specifically designed to improve the low-energy (< 30 GeV) ν_e identification efficiency attained by enlarging the emulsion film scanning volume with the next generation emulsion readout system. A relative increase of 25-70% in the ν_e low-energy region is expected, leading to improvements in the OPERA sensitivity to neutrino oscillations in the framework of the 3 + 1 model. The method is applied to a subset of data where the detection efficiency increase is expected to be more relevant, and one additional ν_e candidate is found. The analysis combined with the ν_τ appearance results improves the upper limit on $\sin^2 2\theta_{\mu e}$ to 0.016 at 90% C.L. in the MiniBooNE allowed region $\Delta m_{41}^2 \sim 0.3$ eV2.

To the memory of Prof. Pierre Vilain
1. Introduction

Oscillations among three neutrino flavours were established by solar, atmospheric, reactor and long-baseline accelerator neutrino experiments [1–7] over the last two decades. On the other hand, the presence of additional sterile neutrinos could explain the excess of ν_e and $\bar{\nu}_e$ charged-current events in short-baseline accelerator experiments—LSND [8] and MiniBooNE [9, 10]—and the deficits of ν_e and $\bar{\nu}_e$ from radioactive-source and reactor experiments [11–13].

The OPERA experiment was operated as a long-baseline neutrino oscillation experiment performed to observe the appearance of ν_τ in a ν_μ beam through the identification of their charged current (CC) interactions in a lead plates target instrumented with high resolution nuclear emulsion films [14]. The OPERA detector was exposed to the CERN Neutrinos to Gran Sasso (CNGS) ν_μ beam [15] with a mean energy of about 17 GeV and was located at the LNGS underground laboratory, 732 km away from the neutrino source. As a result of the data taking and the analysis, the OPERA Collaboration reported the discovery of ν_τ appearance with a significance of 6.1σ [16, 17] and the results of a search for ν_e CC interactions in excess to expectation from the beam contamination [18]. In the combined analysis of these two appearance modes [19], a 90% C.L. upper limit on $\sin^2 2\theta_{\mu e} = 4 |U_{\mu 4}|^2 |U_{e 4}|^2$ was set to 0.019 for $\Delta m_{41}^2 > 0.1 \text{eV}^2$, and the MiniBooNE best fit values, $\Delta m_{41}^2 = 0.043 \text{eV}^2$, $\sin^2 2\theta = 0.807$ [10], were excluded.

Since the ν_μ beam flux drops above 30 GeV, a high ν_e detection efficiency for the low energy ($< 30 \text{ GeV}$) region is crucial for the ν_e appearance search. However, the ν_e detection method used in the previous analysis [18] has efficiencies of 10-40% for this energy region, because of the limited analysis capability due to the speed of emulsion readout systems at that time [20, 21]. Today, a 70 times faster scanning system makes it possible to improve the analysis [22]. In this paper we take advantage of this next generation system, to present a new ν_e identification method, report its performances and update the constraint on the parameters of the 3 + 1 neutrino mixing model.

2. Detector, beam and data sample

The OPERA detector was a hybrid apparatus made of nuclear emulsion trackers and electronic detectors [14]. The target was based on the Emulsion Cloud Chambers (ECCs) technology, consisting of alternating 57 emulsion films and 56 1 mm thick lead plates with a section of $12.7 \times 10.2 \text{ cm}^2$. The total thickness of 7.5 cm was equivalent to about 10 radiation lengths. A pair of 2 films, called Changeable Sheet (CS) [14], was attached externally on the downstream face of each ECC brick. The full detector had 2 identical super modules (SM),

1Now at University of Bari Aldo Moro.
2Now at CERN.
3Now at INAF—OAS Bologna, Italy.
4Now at Samsung Changwon Hospital, SKKU, Changwon, Korea.
5Now at University of Liverpool, Liverpool, United Kingdom.
**Now at Kanagawa University, J-221-8686 Yokohama, Japan.
††Now at Yale University New Haven, CT 06520, USA.
‡‡Deceased.
each of them was segmented into a target section and a muon spectrometer. In the target sections, ECC bricks were arranged in 29 layers of walls interleaved with target trackers (TT), which were planes of horizontal and vertical scintillator strips. A spectrometer, consisting of two iron core magnets instrumented with resistive plate chambers (RPCs) and drift tubes was mounted downstream of each instrumented target. It was aimed at identifying muons and measuring their charge sign and momentum. The two SMs contained about 150,000 ECC bricks corresponding to a total mass of 1.25 kt.

The CNGS beam was an almost pure ν_μ beam with a contamination of 2.0% $\overline{\nu}_\mu$, 0.8% ν_τ and 0.05% ν_μ [23] in terms of CC interactions. The mean energy was 17.9 GeV (ν_μ), 21.8 GeV ($\overline{\nu}_\mu$), 24.5 GeV (ν_τ) and 24.4 GeV ($\overline{\nu}_\tau$). The prompt ν_τ contamination was negligible $O(10^{-7})$.

During the CNGS beam exposure of 17.97×10^{19} protons on target, OPERA collected 19505 on-time events in the fiducial volume. The ECC brick where a neutrino interaction has occurred was identified exploiting the pattern of the TT hits on-time with the CNGS beam. The track candidates in the CS are extrapolated to the ECC brick and searched upstream film by film. After location of the interaction vertex, $1 \times 1 \text{ cm}^2$ in 10 films downstream and 5 films upstream of the vertex were scanned and the tracks originated from the vertex were reconstructed. Finally 5868 neutrino interactions have been successfully reconstructed.

3. New ν_e identification method

The events with one reconstructed muon or with a total number of fired TT and RPC planes larger than 19 were tagged as 1μ and excluded from the analysis [16]. The remaining 1185 0μ events were targeted for the ν_e search.

The thickness of an ECC brick is enough to develop the electromagnetic (e.m.) showers produced by electrons originated from the ν_e CC interactions, whereas the scanning volume of 1 cm^2 and 10 films is equivalent to about 1.8 X_0. This scanning volume was limited by the scanning speed of the conventional readout systems [20, 21]. Therefore, in the previous search, identification of ν_e CC interactions was performed by a method using CS tracks, called CS Shower Hint (CSH). A search is performed in the CS for track segments less than 2 mm apart from the extrapolation point of each track originated from the interaction vertex (primary tracks). Moreover, the direction of candidate CS tracks is required to be compatible within 150 mrad with that of the primary track. If at least three such tracks are found, additional scanning along the primary track is performed aiming at the detection of an e.m. shower [24]. However, the identification efficiency of ν_e CC events using the CSH method decreases with the ν_e energy because the probability for the e.m. shower to be absorbed in the ECC brick and not be able to reach the CS increases, especially if the interaction takes place in the most upstream part of the ECC brick. Improving the efficiency of detecting low-energy e.m. showers inside the ECC brick would increase the identification efficiency for low-energy ν_e. To achieve this, a next generation emulsion readout system (Hyper-Track Selector, HTS) [22] with a scanning speed 70 times faster than conventional ones, has been introduced to enable enlargement of the scanning volume.

The new ν_e identification method in ECC, hereafter called ECC Shower Detection (ESD), is defined as shown in Figure 1. A volume of $5 \times 5 \text{ cm}^2$ and 20 films downstream from the vertex are scanned by HTS. After track reconstruction, the cones from the vertex with an apex angle of 0.06 rad which contain at least 10 track segments pointing the vertex within a tolerance of 0.1 rad are tagged as e.m. shower candidates. These parameters have been
optimised to keep a high detection efficiency while reducing noise. Tracks without showers and \(e^+e^-\) pairs arising from at least 2 films downstream of the vertex are removed from the shower candidates by visual scan, while the other background sources are also removed by the selection described below. Remaining candidates are identified as \(\nu_e\).

Fig. 1 The concept of the ECC Shower Detection (ESD) method

The \(\nu_e\) identification efficiency has been evaluated by a detailed Monte Carlo (MC) simulation with the standard OPERA simulation framework [25], based on the CNGS beam fluxes estimated by FLUKA [26, 27] and the neutrino interactions generated by GENIE v2.8.6 [28, 29]. Here we describe the expected \(\nu_e\) identification efficiency and number of \(\nu_e\) CC interactions when analyzing the full data set, i.e. all 0\(\mu\) events located in the ECC bricks. The detection efficiency of track segments, the position and angle accuracy, the track reconstruction and the shower detection process mentioned above with HTS are taken into account. The estimated \(\nu_e\) identification efficiency is shown in Figure 2; the improvement by adding the ESD method is about 25-70\% below 30 GeV. The expected number of \(\nu_e\) CC candidates of the full data set without any other background in the no oscillation hypothesis increases from 31.0 ± 0.9 (stat.) ± 3.0 (syst.) when using the CSH method only to 36.7 ± 1.1 (stat.) ± 3.2 (syst.) when both the CSH and ESD methods are used. The improvement of the sensitivity for \(\sin^2 2\theta_{\mu e}\) in the MiniBooNE allowed region \(\Delta m^2_{41} \sim 0.3\) is expected to be 28\% by applying an energy spectrum analysis with the improved efficiency in the low energy region where it is more sensitive to the oscillations.

The ESD method has higher detection efficiency for low energy e.m. showers than the previous one, consequently it increases the backgrounds for the \(\nu_e\) CC interaction search. The background sources are classified as follows: (1) \(e^+e^-\) pairs produced by prompt conversion of \(\gamma\)-rays from \(\pi^0\) decays, (2) random coincidence of single hadron tracks and e.m. shower tracks, (3) \(\tau \to e\) decays from \(\nu_\tau\) CC interactions.

To limit/suppress the prompt \(\gamma\) conversion background (1), a single electron track is searched for at the most upstream film in the scanning volume. The single electron classification requires that, in the region within 70\(\mu\)m and 0.3 rad from the primary electron candidate at the most upstream film, only hadron tracks are found or at most an even number of electron-like tracks. All tracks consisting of 8 or more track segments and no e.m.
Fig. 2 The top plot shows the ν_e detection efficiency and its statistical uncertainty as a function of the ν_e energy. The bottom plot shows the fractional gain of the efficiency, that is the ratio of the ESD+CSH efficiency and the CSH efficiency.

showers are classified as hadrons. An e^+e^- pair is misidentified as a single electron when one of the pair electrons is scattered out of the specified range for this criteria. In addition, the energy of the e.m. shower, estimated by a neural-network-based method using shower properties [30], is to be at least 1.1 GeV. These conditions have been determined to maximize the statistical significance of ν_e appearance.

Random coincidences of hadron and shower tracks (2) occur in 10% of all 0μ events. They can be reduced by evaluating the probability that the primary electron candidate is a hadron. Thus a maximum likelihood estimation with the following 4 variables [30] is applied: (a) minimum opening angle between the primary electron candidate and all e^+e^- pairs' direction, (b) ratio of the momentum of the primary electron candidate measured in the 1st-9th plates relative to the 10th-18th plates from the most upstream film, (c) number of films which primary electron candidate penetrates, (d) mean azimuthal opening angle between the primary electron candidate and the hadrons.

The conditions for $\tau \rightarrow e$ decays (3) to be identified as ν_τ CC interactions are given in [17]. Conversely, they are wrongly identified as ν_e when they do not satisfy these conditions. After such selection, the expected numbers of backgrounds (1), (2) and (3) with their systematic uncertainty together with CSH are 2.6 ± 0.9, 1.2 ± 0.5 and 1.5 ± 0.3, respectively.

4. Analysis sample

In this section, we describe the result of the application of the ESD method to a sub-sample of 0μ events. In order to balance the requested additional scanning load and the expected number of additional ν_e candidates, we have selected a sub-sample according to the following criteria: the events have neutrino interactions in the upstream part of the ECC brick.
(film number < 18, that is 7-10 X_0 deep from the downstream side of the ECC brick) and are contained within the volume of ECC brick at least 5 mm away from the film edge, they show at least 2 reconstructed particles at the vertex and have not been identified as ν_e candidates by the CSH method. These criteria selected a sample of 99 events. Figure 3 shows the ν_e identification efficiency as a function of the vertex film number (the number of the film immediately downstream of the vertex) for located events of energy $E_{\nu_e} < 30$ GeV, indicating that the efficiency improvement is higher for ν_e CC interactions located in the upstream part of the ECC brick.

![Graph showing ν_e identification efficiency as a function of vertex film number](image)

Fig. 3 The ν_e identification efficiency as a function of vertex film number, for located events of energy $E_{\nu_e} < 30$ GeV. The beam enters the ECC brick through film #1 and the CS is attached on the opposite side.

The result of the scanning and the analysis is summarized in Table 1. In the target events, 91 events were fully analyzed, while 8 were discarded due to failures in the analysis procedure. Track reconstruction failure is caused by the bad quality of the films and does not introduce biases, thus corresponding cases should be removed in the normalization procedure described below. On the contrary, the failure of vertex confirmation may produce a bias since it is likely associated to a lower track multiplicity at the primary vertex. However, the expected bias is estimated to be less than 1%, smaller than the systematic uncertainty.

Electromagnetic showers were found in the analyzed volume of 48 events, and one of them was identified as a ν_e CC interaction candidate with a reconstructed energy of (80 ± 36) GeV. A total of 14 events were observed in energy above 50 GeV, while the expected numbers of ν_e candidates from each source for this energy range are 0.04 ($\nu_\mu \rightarrow \nu_e$ ESD), 3.14 ($\nu_\mu \rightarrow \nu_e$ CSH), 0.11 ($\nu_e \rightarrow \nu_e$ ESD), 9.16 ($\nu_e \rightarrow \nu_e$ CSH) and 0.15 (other backgrounds) on the assumption of 3 + 1 mixing model with the same parameters as used in Figure 4b. The total number of observed ν_e candidates, including those detected by the CSH method, is 36.

The expected number of prompt ν_e CC events in the absence of oscillation has been estimated using the CNGS flux, the neutrino cross section and the detection efficiency evaluated
Table 1 Breakdown of the analysis result in terms of number of events.

Analysis completed	e.m. shower found ν_e candidate γ conversion no e.m. showers	1	47	43
Discarded	track reconstruction failure	5		
	vertex confirmation failure	3		
Total		99		

by the MC simulation incorporating the above-mentioned sub-sample selection. The normalization for the CSH method is described in [18], and for the ESD method the same normalization as CSH is applied with the fully analyzed 91 events. The systematic uncertainty on the expected number of events results from the combination of different uncertainties, part of which are common to both the CSH and ESD methods (CNGS flux, neutrino cross section and vertex location procedure), and the rest are specific (scanning and track reconstruction procedures including the visual scan by a human, MC sample statistics) and weighted by the ratio of the selected samples and the detection efficiencies between the two methods. The breakdown of them is shown in Table 2. The contribution to the systematic error specific for the ESD method has been estimated to be 25%/14% for energies below/above 10 GeV, dominated by the limited size of the MC sample and the HTS track reconstruction efficiency. The overall systematic uncertainty is 19%/10% [30].

Table 2 Breakdown of the systematic uncertainties for the ν_e detection efficiencies of the CSH and ESD methods.

Flux, cross section and location	$< 10 \text{ GeV}$	$\geq 10 \text{ GeV}$
CSH identification	14%	6%
ESD identification		
Track detection efficiency with HTS	15%	9%
Difference of actual process with MC	4%	3%
Statistical uncertainty in MC	20%	10%
Overall in ESD identification	25%	14%
Overall	19%	10%

Other background sources such as prompt γ conversions, random coincidences between hadron and e.m. shower tracks and $\tau \rightarrow e$ decays have been estimated by the same MC simulation, using the same normalization as for the ν_e CC events (Table 3). The combined systematic uncertainty of these background sources is dominated by the limited MC sample statistics and estimated to be 36% [30].

The expected numbers of ν_e candidates from the beam incorporating the sub-sample selection are summarized in Table 4. It should be noted that the total number of expected ν_e candidates by the ESD method with energy $< 30 \text{ GeV}$ is 1.0 ± 0.2. The decreases in the expectations of the γ and hadron + γ from the numbers with the full data set are greater than that of the beam ν_e. One of the major reasons is that the vertex film distributions of
the γ-ray backgrounds are quite different from the beam νe because of the small e.m. shower energies, and another is that the γ-ray backgrounds have large statistical errors in the MC simulation.

	beam νe	hadron + γ	γ	τ → e
CSH	31.0 ± 3.0	negligible	0.5 ± 0.5	0.7 ± 0.2
ESD	1.1 ± 0.1	0.1 ± 0.1	0.3 ± 0.2	0.05 ± 0.01

Table 3 The expected number of νe candidates from each source under the assumption of no oscillations and with the CSH and ESD methods applied to the sub-samples.

The reconstructed energy distribution of expected and observed νe candidates are shown in Figure 4. The oscillation parameters from [31] are used for the 3 flavour mixing model. For the 3 + 1 mixing model, parameters on the intersection between the MiniBooNE allowed region [10] and the OPERA exclusion border [19], i.e. Δm241 = 0.269 eV2, sin2 2θµe = 0.019, and P(νe(ν̄e) → νe(ν̄e)) ≃ 1 are assumed. The total expected number of νe candidates from prompt νe, ν̄e and all other backgrounds is 34.0 ± 3.3.

![Fig. 4](image-url)

Fig. 4 Reconstructed energy distribution of expected and observed νe candidates on the assumption of (a) the 3 flavour mixing and (b) 3 + 1 flavour mixing with Δm241 = 0.269 eV2, sin2 2θµe = 0.019 and P(νe(ν̄e) → νe(ν̄e)) ≃ 1.

As already mentioned, the ESD method has a high sensitivity for low energy e.m. showers, therefore the comparison of the observed γ-ray properties to the expectation is useful for the validation of this method. In Figure 5, the distribution of the γ-rays multiplicity—the number of γ-rays detected per event—and their free path before conversion obtained from the MC simulation are compared to those of the observed γ-rays. The number of events in the MC simulation is normalized with the number of fully analyzed events. Both MC distributions are well consistent with experimental data, and the expected number of γ-rays, 69 ± 11, is in agreement with the observed one, 71.
5. Oscillation analysis in the 3 + 1 mixing model

In order to check the presence of a light sterile neutrino as suggested by the LSND and MiniBooNE experimental results, the 3 + 1 flavour mixing model is assumed. Not only ν_e but also ν_τ appearance searches were conducted by the OPERA collaboration \[17\]. Since the ν_τ flux with the parameters used in Figure 4b is expected to vary from almost 0 to 10 times larger than the 3 flavour mixing, and some parameter space allowed by only ν_e appearance analysis can be excluded, both appearance channels have been jointly used. The statistical analysis is based on the profile likelihood ratio by comparing the observed energy spectrum to the expectation under the 3 + 1 flavour mixing model. Δm^2_{41} and $\sin^2 2\theta_{\mu e}$ are the parameters of interest. The value of Δm^2_{41} is fixed to the PDG value \[31\], while a gaussian constraint on Δm^2_{31} is assumed with mean and sigma also found in \[31\]. The dependencies on the other parameters are removed by treating them as nuisance parameters. More details are described in \[19\].

As the result of this test statistic, the 90% C.L. exclusion region obtained by using both the CSH and ESD methods is shown in Figure 6. The upper limit around the MiniBooNE allowed region $\Delta m^2_{41} \sim 0.3 \text{eV}^2$ has been lowered to $\sin^2 2\theta_{\mu e} < 0.016$.

6. Conclusions

A new ν_e identification method, called ESD, was introduced to improve the detection efficiency for low energy ν_e events that are crucial to investigate the MiniBooNE allowed region in the 3 + 1 mixing model. The shower detection method was optimised to detect electron-induced showers, and the ν_e identification efficiency increased by up to 70% below 30 GeV.

We applied the method to a subsample of 99 0μ events with a vertex in the most upstream part of the ECC brick. We have found 1 new ν_e candidate with a reconstructed neutrino energy of $(80 \pm 36) \text{GeV}$. The expected additional number of ν_e candidates is 1.5 ± 0.2, in particular 1.0 ± 0.2 for energies below 30 GeV. It is worth noting that the observed γ-rays from π^0 decays are in agreement in number and properties with the expectation.
Fig. 6 The 90% C.L. exclusion region in the Δm_{41}^2 and $\sin^2 2\theta_{\mu e}$ plane for the normal (NH, solid) and inverted (IH, dashed) hierarchies. The allowed region at 90% C.L. by LSND [5] and MiniBooNE [10], the excluded region by the previous OPERA analysis [19] and KARMEN [32] are also shown. The region drawn above is completely excluded by the combined result of MINOS, MINOS+, Daya Bay and Bugey-3 [33], which conducted ν_μ and ν_e disappearance analyses.

The 3 + 1 flavour mixing model has been tested and the 90% C.L. constraints have been improved to $\sin^2 2\theta_{\mu e} < 0.016$ around the MiniBooNE allowed region $\Delta m_{41}^2 \sim 0.3 \text{eV}^2$.

Acknowledgment
We warmly thank CERN for the successful operation of the CNGS facility and INFN for the continuous support given by hosting the experiment in its LNGS laboratory. Funding is gratefully acknowledged from national agencies and Institutions supporting us, namely: Fonds de la Recherche Scientifique-FNRS and Institut Interuniversitaire des Sciences Nucléaires for Belgium; MZO for Croatia; CNRS and IN2P3 for France; BMBF for Germany; INFN for Italy; JSPS, MEXT, the QFPUGlobal COE program of Nagoya University, and Promotion and Mutual Aid Corporation for Private Schools of Japan for Japan; SNF, the University of Bern and ETH Zurich for Switzerland; the Programs of the Presidium of the Russian Academy of Sciences (Neutrino Physics and Experimental and Theoretical Researches of Fundamental Interactions), and the Ministry of Education and Science of the Russian Federation for Russia; the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2011003) for Korea; and TUBITAK, the Scientific and Technological Research Council of Turkey for Turkey (Grant No. 108T324).

References
(2020).
https://doi.org/10.1103/PhysRevLett.125.071801