Systematic review with meta-analysis: the gastrointestinal benefits of COX-2 selective inhibitors with concomitant use of low-dose aspirin

J. Q. Yuan*†**, M. Yang†, D. E. Threapleton*, X. S. Qi‡, D. Q. Ye§, C. Mao†¶, J. L. Tang*†& J. P. T. Higgins**

*School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
†Department of Gastroenterology, Songgang Hospital, Shenzhen, Guangdong, China.
‡Department of Gastroenterology, General Hospital of Shenyang Military Region, Liaoning, China.
§Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
¶Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong, China.
**School of Social and Community Medicine, University of Bristol, Bristol, UK.

Correspondence to:
Profs Chen Mao and Jin-Ling Tang,
School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
E-mails: maochen@cuhk.edu.hk; jltang@cuhk.edu.hk

Publication data
Submitted 2 June 2016
First decision 19 June 2016
Resubmitted 22 July 2016
Resubmitted 1 August 2016
Accepted 1 August 2016
EV Pub Online 17 August 2016

As part of AP&T’s peer-review process, a technical check of this meta-analysis was performed by Dr Y. Yuan. The Handling Editor for this article was Professor Colin Howden, and it was accepted for publication after full peer-review.

SUMMARY

Background
It is uncertain whether concurrent use of low-dose aspirin removes the gastrointestinal benefit displayed by COX-2 selective inhibitors (coxibs) when compared to traditional nonsteroidal anti-inflammatory drugs (NSAIDs).

Aim
To evaluate the gastrointestinal risks associated with coxibs and traditional NSAIDs and the interaction with concurrent use of low-dose aspirin.

Methods
We searched MEDLINE, EMBASE and the Cochrane Library through April 2016 to identify randomised trials comparing the gastrointestinal risk between coxibs and traditional NSAIDs in patients taking or not taking low-dose aspirin. Results were combined using random effects meta-analysis. Subgroup analyses by concurrent use of aspirin were undertaken.

Results
Eleven trials (84 150 participants) were included. The overall relative risk (RR) of coxibs vs. traditional NSAIDs for complicated gastrointestinal events was 0.54 (95% CI, confidence interval 0.32–0.92), with a significant subgroup difference ($P = 0.04$) according to concurrent use of aspirin (used: RR = 0.96, 95% CI 0.66–1.24; not used: RR = 0.33, 95% CI 0.14–0.83). The overall RR for clinical gastrointestinal events was 0.59 (95% CI 0.47–0.75), with a significant subgroup difference according to aspirin usage ($P = 0.008$; used: RR = 0.77, 95% CI 0.62–0.95; not used: RR = 0.50, 95% CI 0.39–0.64). Overall coxibs were associated with significantly lower risk of symptomatic ulcers (RR = 0.60, 95% CI 0.50–0.72) and endoscopic ulcers (RR = 0.29, 95% CI 0.16–0.53) than traditional NSAIDs; a significant subgroup difference was shown for endoscopic ulcers ($P = 0.05$) but not for symptomatic ulcers ($P = 0.27$).

Conclusion
Concomitant use of low-dose aspirin reduces but does not completely eliminate the gastrointestinal benefit of coxibs over traditional NSAIDs.
INTRODUCTION
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most frequently prescribed medicines, commonly used for arthritis and a variety of clinical conditions. Unfortunately, the use of NSAIDs is limited due to gastrointestinal toxicity, ranging in severity from mild dyspepsia to serious ulcer complications like bleeding. It has been reported that clinical gastrointestinal complications may occur in approximately 2–4% of chronic NSAID users every year. In the United States, NSAIDs are thought to cause about 7000–16 500 deaths every year.

It has been recognised that both efficacy and toxicity of NSAIDs result from their inhibition of cyclooxygenase (COX), which primarily has two functionally distinct isoforms, COX-1 and COX-2. The discovery of COX-2 has led to the important development of COX-2 selective inhibitors (coxibs), which are superior in terms of displaying significantly lower gastrointestinal toxicity than traditional NSAIDs. Aspirin is unique among NSAIDs for its anti-thrombotic properties, which are beneficial for patients with high risk of thromboembolic cardiovascular events.

Low-dose aspirin (75–325 mg q.d) is now widely used for primary and secondary prevention of cardiovascular events. Patients with chronic pain and high risk of cardiovascular events often require concurrent administration of NSAIDs and low-dose aspirin. A telephone survey of 325 coxib users indicated that 48.1% of the participants also received aspirin therapy. In large clinical trials of NSAIDs for rheumatoid arthritis or osteoarthritis, approximately 20–35% of the participants received low-dose aspirin in addition to NSAIDs. Although the evidence about the gastrointestinal benefit of coxibs, as compared to traditional NSAIDs, is well established, it remains unclear whether the benefit persists in the setting of low-dose aspirin treatment. The CLASS study compared celecoxib with traditional NSAIDs in 8059 patients, subgroup analyses in 1645 patients taking low-dose aspirin indicated no differences between groups and these results were consistent with another similar study. However, the MEDAL programme demonstrated that coxibs were associated with significantly fewer uncomplicated gastrointestinal events than traditional NSAIDs in patients receiving low-dose aspirin. Many studies examining endoscopically detected ulcers have also shown conflicting results. Owing to the inconsistency in current evidence, clinicians often face a dilemma whether to prescribe coxibs instead of traditional NSAIDs for patients who require low-dose aspirin treatment. The aim of this meta-analysis was to evaluate the gastrointestinal benefit of coxibs compared to traditional NSAIDs and the interaction with low-dose aspirin treatment.

METHODS
This systematic review and meta-analysis was performed according to the Cochrane handbook for systematic reviews of interventions and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Inclusion and exclusion criteria
This systematic review included randomised control trials (RCTs) comparing coxibs (celecoxib, etoricoxib, parecoxib, rofecoxib, valdecoxib and lumiracoxib) vs. traditional NSAIDs (naproxen, diclofenac, piroxicam, tenoxicam, ibuprofen, etodolac, nabumetone, flurbiprofen, ketoprofen, tiaprofenic, piroxicam, sulindac, tolmetin, indomethacin, loxoprofen, diflunisal, meloxicam, nimesulide) in patients requiring NSAID treatment. Eligible studies should perform subgroup analysis by concomitant use of low-dose aspirin or have the raw subgroup data.

Data sources and searches
The Cochrane Library, MEDLINE and EMBASE were searched through May 2015 to identify potentially eligible studies. The search strategy included terms for gastrointestinal events, NSAIDs, coxibs and clinical trials. The search strategy included terms for gastrointestinal events, NSAIDs, coxibs and clinical trials using the following combined text and MeSH terms: ‘ulcer’, ‘bleeding’, ‘obstruction’, ‘perforation’, ‘nonsteroidal anti-inflammatory drugs’, ‘cyclooxygenase-2-selective inhibitor’ and ‘randomised controlled trial’ (see full search strategy in Table S1). All searches were restricted to human studies and there was no limitation on publication language. We searched Clinical Trials and WHO International Clinical Trials Registry Platform for ongoing studies. Reference lists of the included studies and related review articles were checked for additional studies. The search of electronic databases was updated in April 2016.

Study selection and data extraction
Duplicate records from different databases were initially removed by reference management software. We then evaluated the eligibility of the remaining citations by examining the titles, abstracts and full articles...
sequentially. If the population in different studies were overlapped, we only included the largest study or the one with the most comprehensive analysis. Two authors (J.Y and M.Y) independently selected studies and extracted data. Disagreements were resolved by discussion with a third author (C.M). The data extracted for this systematic review include study information, patient characteristics, intervention/control, outcomes and study methods. We contacted the authors of original studies by email to collect missing information when necessary.

Quality assessment
Two investigators (J.Y and C.M) independently evaluated the risk of bias of the included studies using the Cochrane Collaboration’s tool. This tool evaluated the risk of bias due to random sequence generation, concealment of allocation, blinding, incomplete outcome data, selective reporting and other sources of bias. The strength of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation system (GRADE). The quality of evidence was graded as ‘High’, ‘Moderate’, ‘Low’ and ‘Very low’ based on the fundamental study design and additional methodological factors.

Outcome measures
The primary outcome for this review was complicated gastrointestinal events (bleeding, perforation or obstruction). Clinical gastrointestinal events (bleeding, perforation, obstruction or symptomatic ulcer), symptomatic ulcer and endoscopic ulcer were considered as the secondary outcomes. Studies define endoscopic ulcer as any lesion ≥3 mm (or 5 mm) with unequivocal depth.

Data synthesis and analysis
Meta-analyses were performed with a random effects model which accounts for both within and between-study variability to provide more conservative estimates. The summary effect size was calculated as a relative risk (RR), together with its 95% confidence intervals (95% CI). Heterogeneity among studies was assessed with the Q-test and the I^2-index statistic. A value for I^2 greater than 50% accompanied by $P < 0.10$ for the Q-test was regarded as being indicative of moderate-to-high heterogeneity. If an outcome of interest achieved statistical significance, then the number needed to treat (NNT) was calculated based on the summary RR and assumed control risk of included studies. To calculate the assumed control risk, we used the annualised incidence in the traditional NSAID group reported in included studies. Two studies reported the annualised incidence in the traditional NSAID group, and we used the data reported by Silverstein et al. because the treatment duration was longer and the time-to-event data for participants taking aspirin was larger.

We evaluated the gastrointestinal effects of coxibs vs. traditional NSAIDs including all participants and the subgroup effect by concurrent use of low-dose aspirin. Because subgroup analyses may suffer bias through confounding by other study-level characteristics, we also pooled the within-trial covariate interaction. The interaction of concurrent low-dose aspirin use was measured as the ratio of relative risk (RRR) with the method reported by Altman and Bland.

We evaluated the presence of small-study effect with funnel plots and Egger’s test if 10 or more studies were included in meta-analyses. Sensitivity analyses were performed according to sample size (excluding the studies with <400 participants) and risk of bias (excluding the studies with high risk of bias on one or more domain, or with unclear risk of bias on three or more domains). All tests were two sided and used a significance level of $P < 0.05$. The results were presented with ‘Summary of Findings’ tables. We presented the results by subgroups to show the estimated effects of individual groups. Data analyses were undertaken using RevMan 5.3 (The Cochrane Collaboration, Copenhagen, Denmark).

RESULTS

Study characteristics
The search strategy identified 592 potentially eligible citations, of which 231 duplicate citations were excluded. A total of 308 records were excluded after screening the titles/abstracts. We screened the full texts of the 53 remaining studies and 14 studies were considered as potentially eligible. Three studies were further excluded as their data were totally covered by another study. Finally, 11 studies with 84 150 participants were included in this systematic review. No raw subgroup data about concurrent use of low-dose aspirin were available in five studies, so six studies contributed to the final quantitative meta-analysis.

Table 1 presents the characteristics of included studies. Two trials were performed in the USA and the others were multi-national studies. All studies included patients with chronic musculoskeletal conditions. The average age of participants in included studies ranged
Records identified through database searching (n = 536)
Cochrane Library (101); MEDLINE (103); EMBASE (332)

Additional records identified through other sources (n = 56)
Clinical trials registry platform (32); Reference list (24)

Records after duplicates removed (n = 361)

Records screened (n = 361)

Full-text articles assessed for eligibility (n = 53)

Full-text articles excluded (n = 42)
No data about low-dose aspirin use were reported (29); Publication from same study (5); Non-RCT(2); Intervention ineligible (1); Other (5)

Records excluded (n = 308)

Additional records identified through other sources (n = 56)
Clinical trials registry platform (32); Reference list (24)
Cochrane Library (101); MEDLINE (103); EMBASE (332)

Table 1 | Characteristics of included studies

Author (study name)	Country	Intervention, dosage (number of patients)	Average age, years	Female, n (%)	Previous pepticulcers, n (%)	H. pylori infection, n (%)	Concurrent use of low-dose aspirin, n (%)	Study duration (weeks)
Simon	USA, Canada	Celecoxib 200–800 mg (692); Naproxen 1000 mg (225)	54.2	668 (73.0)	0 (0)	NA	81 (8.82)	12
Silverstein (CLASS)	USA, Canada	Celecoxib 800 mg (3987); Ibuprofen 2400 mg/Diclofenac 150 mg (3981)	59.5	5418 (68)	654 (8.2)	3020 (37.9)	1645 (20.6)	26
Goldstein	USA	Celecoxib 400 mg (270); Naproxen 1000 mg (267)	57.2	360 (67)	41 (7.6)	66 (12.3)	57 (10.6)	12
Sikes	USA, Canada	Valdecoxib 10 mg (204); Valdecoxib 20 mg (219); Ibuprofen 2400 mg (207); Diclofenac 150 mg (212)	60.1	573 (68.1)	118 (14.0)	343 (40.7)	109 (15.1)	12
Hunt	USA, Canada	Etoricoxib 120 mg (221); Ibuprofen 2400 mg (226)	61.6	324 (72.5)	36 (7.5)	257 (57.5)	20 (4.47)	12
Lisse	USA, Sweden	Rofecoxib 25 mg (2799); Naproxen 1000 mg (2787)	63	3948 (71.0)	NA	NA	719 (12.9)	12
Kivitz	USA	Rofecoxib 12.5 mg (424); Nabumetone 1000 mg (410)	63.0	573 (68.7)	NA	NA	124 (11.9)	6
Schnitzer (TARGET)	Multi-national	Lumaricaxib 400 mg (9117); tNSAIDs 1000 mg (9127)	63.4	13933 (76)	NA	8057 (44)	4326 (23.7)	52
Singh (SUCCESS-i)	Multi-national	Celecoxib 200/400 mg (8800); Diclofenac 100 mg or Naproxen 1000 mg (4394)	62.2	10007 (75.8)	535 (4)	NA	937 (7.15)	12
Laine (MEDAL)	Multi-national	Etoricoxib 60 or 90 mg (17 412); Diclofenac 150 mg (17 289)	63.2	20305 (74)	2260 (6.5)	NA	12006 (35)	78
Cheung	Mainland China, Taiwan	Celecoxib 400 mg (440); Diclofenac 100 mg (440)	51	738 (83.9)	22 (2.5)	NA	18 (2)	12

H. pylori, Helicobacter pylori; tNSAID: traditional nonsteroidal anti-inflammatory drug. NA, not available.
from 51.0 to 63.7 years. All studies recruited more females than males (the percentage of female ranged from 67.0% to 83.9%).

Risk of bias
The overall risk of bias of individual trials was low for most included studies. The randomisation was adequate in eight trials\(^5,\ 18–20,\ 22,\ 32,\ 35,\ 37\) and the allocation was adequately concealed in six studies.\(^5,\ 18–20,\ 32,\ 37\) All included studies used double-blinding. The risk of bias due to incomplete outcome data was assessed as low in 11 studies\(^5,\ 18–20,\ 22,\ 32,\ 34–37\) and four studies were considered at low risk of selective outcome reporting bias.\(^5,\ 18,\ 36,\ 37\) A detailed assessment of the risk of bias was presented in the Table S2. The evaluation of the quality of evidence for study outcomes was presented in Table 2.

Complicated gastrointestinal events
Five studies\(^5,\ 18–20,\ 22\) (74 532 participants) contributed to the meta-analysis of complicated gastrointestinal events (Figure 2, Table 2). The RR with coxibs vs. traditional NSAIDs, including all participants, was 0.54 (95% CI 0.32–0.92; Heterogeneity: \(P = 0.001, \ I^2 = 69\%)\). Subgroup analysis according to concurrent use of aspirin showed a significant subgroup difference \(P = 0.04\), which was confirmed by the meta-analysis of the interaction term directly retrieved from trials with subgroup

Outcomes	Illustrative comparative risks* (95% CI)	Relative effect (95% CI)	No of participants (studies)	Quality of the evidence (GRADE)
Concomitant use of low-dose aspirin – Yes				
Complicated GI events	21 per 1000 19 per 1000 (14–26)	RR 0.90 (0.66–1.24)	18 397 (5)	+++O Moderate†
Clinical GI events	60 per 1000 46 per 1000 (37–57)	RR 0.77 (0.62–0.95)	18 397 (5)	+++ High
Symptomatic ulcer	39 per 1000 27 per 1000 (20–35)	RR 0.68 (0.51–0.90)	18 340 (4)	+++ High
Endoscopic ulcer	298 per 1000 137 per 1000 (74–244)	RR 0.46 (0.25–0.82)	164 (2)	+++ High
Concomitant use of low-dose aspirin – No				
Complicated GI events	13 per 1000 4 per 1000 (2–8)	RR 0.33 (0.14–0.83)	56 135 (5)	+++O Moderate†
Clinical GI events	29 per 1000 15 per 1000 (11–19)	RR 0.50 (0.39–0.64)	56 135 (5)	+++ High
Symptomatic ulcer	16 per 1000 9 per 1000 (7–11)	RR 0.55 (0.43–0.69)	55 767 (4)	+++ High
Endoscopic ulcer	251 per 1000 50 per 1000 (28–90)	RR 0.20 (0.11–0.36)	983 (2)	+++ High

* The basis for the assumed risk is the annualised incidence in the traditional NSAID group from Silverstein 2000. Annualised incidence data were not available for endoscopic ulcer; we used the median control group risk across studies as the assumed risk. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

† Downgrade one level for imprecision.
‡ Downgrade one level for inconsistent results (Heterogeneity: \(P = 0.002, \ I^2 = 69\%)\).

CI, Confidence interval; RR, Risk ratio; NSAID, nonsteroidal anti-inflammatory drug; GI, Gastrointestinal.

GRADE Working Group grades of evidence
High quality: Further research is very unlikely to change our confidence in the estimate of effect.
Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
Very low quality: We are very uncertain about the estimate.
J. Yuan et al.

Study or Subgroup	Coxibs Events	Traditional NSAIDs Events	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
1.1.1 Concomitant use of low-dose aspirin: YES				
Goldstein 2001	0	29	0.20 [0.01, 4.23]	
Laine 2007	50	5968	0.93 [0.56, 1.55]	
Schnitzer 2004	15	1499	0.22 [0.12, 0.39]	
Silverstein 2000	6	631	0.36 [0.13, 1.00]	
Singh 2006	1	968	0.08 [0.01, 0.69]	
Subtotal (95% CI)	9403	8994	0.90 [0.66, 1.24]	
Total events	72	78		

Heterogeneity: Tau² = 0.00; Chi² = 3 (P = 0.94); I² = 0%
Test for overall effect: Z = 0.62 (P = 0.54)

1.1.2 Concomitant use of low-dose aspirin: NO				
Goldstein 2001	0	182	0.20 [0.01, 4.23]	
Laine 2007	28	11660	0.93 [0.56, 1.55]	
Schnitzer 2004	14	6950	0.22 [0.12, 0.39]	
Silverstein 2000	5	3154	0.36 [0.13, 1.00]	
Singh 2006	1	8178	0.08 [0.01, 0.69]	
Subtotal (95% CI)	30124	26011	0.93 [0.14, 0.83]	
Total events	48	116		

Heterogeneity: Tau² = 0.65; Chi² = 16.73 (P = 0.002); I² = 76%
Test for overall effect: Z = 2.38 (P = 0.02)

Total (95% CI) | 39527 | 35005 | 100.0% | 0.54 [0.32, 0.92] |

Favours Coxibs Favours traditional NSAIDs

![Figure 2](image-url) | Meta-analysis of complicated gastrointestinal events stratified by concurrent use of low-dose aspirin. Coxibs, COX-2 selective inhibitors; NSAID, nonsteroidal anti-inflammatory drug; CI, confidence interval.

Five studies including 74 532 participants contributed to the meta-analysis of clinical gastrointestinal events (Figure 3, Table 2). When all results were combined, the RR with coxibs vs. traditional NSAIDs was 0.59 (95% CI 0.47–0.75; Heterogeneity: P = 0.06, I² = 47%). Subgroup analysis by concurrent use of aspirin showed a significant subgroup difference (P = 0.008), which was consistent with the meta-analysis of the interaction term (RRR = 1.63, 95% CI 1.22–2.17, Figure S1). The RR with coxibs vs. traditional NSAIDs was 0.77 (95% CI 0.62–0.95; Heterogeneity: P = 0.80, I² = 0%) in the participants taking low-dose aspirin, compared with 0.50 (95% CI 0.39–0.64; Heterogeneity: P = 0.26, I² = 25%) in those who did not take low-dose aspirin. The reported annualised incidence of clinical gastrointestinal events with traditional NSAID use was 6–6.6% in patients taking low-dose aspirin and 1.7–2.9% in patients not taking low-dose aspirin. The NNT with coxibs in place of traditional NSAIDs to prevent one clinical gastrointestinal event was estimated as 72 (95% CI 44–333) for patients taking low-dose aspirin and 69 (95% CI 57–96) for those who are not taking low-dose aspirin.

Clinical gastrointestinal events

Five studies including 74 532 participants contributed to the meta-analysis of clinical gastrointestinal events (Figure 3, Table 2). Coxibs were associated with significantly lower risk of symptomatic ulcer than traditional NSAIDs when all data were combined (RR = 0.60, 95% CI = 0.50–0.72; Heterogeneity: P = 0.87, I² = 0%). Subgroup analysis by concurrent use of aspirin did not show significant between-group difference (P = 0.27), which was consistent with the meta-analyses of the interaction term (RRR = 1.25, 95% CI 0.86–1.82, Figure S1). The RR of symptomatic ulcer for coxibs vs. traditional NSAIDs in patients taking, and not taking aspirin were 0.68 (95% CI 0.47–0.95) and 0.90 (95% CI 0.66–1.24) respectively.

Symptomatic ulcer

Four studies including 74 107 participants contributed to the meta-analysis of symptomatic ulcer (Figure 4, Table 2). Coxibs were associated with significantly lower risk of symptomatic ulcer than traditional NSAIDs when all data were combined (RR = 0.60, 95% CI = 0.50–0.72; Heterogeneity: P = 0.87, I² = 0%). Subgroup analysis by concurrent use of aspirin did not show significant between-group difference (P = 0.27), which was consistent with the meta-analyses of the interaction term (RRR = 1.25, 95% CI 0.86–1.82, Figure S1). The RR of symptomatic ulcer for coxibs vs. traditional NSAIDs in patients taking, and not taking aspirin were 0.68 (95% CI 0.47–0.95) and 0.90 (95% CI 0.66–1.24) respectively.

The RR with coxibs vs. traditional NSAIDs was 0.90 (95% CI 0.66–1.24; Heterogeneity: P = 0.94, I² = 0%) in the participants taking low-dose aspirin, and 0.33 (95% CI 0.14–0.83; Heterogeneity: P = 0.002, I² = 76%) in those who did not take low-dose aspirin. The reported annualised incidence of complicated gastrointestinal events in the traditional NSAID group was 0.7–1.3% for those who did not take low-dose aspirin. We estimate 115 (95% CI 89–452) non-aspirin users would need to be treated with coxibs rather than traditional NSAIDs to prevent one complicated gastrointestinal event.

The RR with coxibs vs. traditional NSAIDs was 0.90 (95% CI 0.66–1.24; Heterogeneity: P = 0.94, I² = 0%) in the participants taking low-dose aspirin, and 0.33 (95% CI 0.14–0.83; Heterogeneity: P = 0.002, I² = 76%) in those who did not take low-dose aspirin. The reported annualised incidence of clinical gastrointestinal events with traditional NSAID use was 6–6.6% in patients taking low-dose aspirin and 1.7–2.9% in patients not taking low-dose aspirin. The NNT with coxibs in place of traditional NSAIDs to prevent one clinical gastrointestinal event was estimated as 72 (95% CI 44–333) for patients taking low-dose aspirin and 69 (95% CI 57–96) for those who are not taking low-dose aspirin.

Figure 2 | Meta-analysis of complicated gastrointestinal events stratified by concurrent use of low-dose aspirin. Coxibs, COX-2 selective inhibitors; NSAID, nonsteroidal anti-inflammatory drug; CI, confidence interval.

Analysis data (RRR = 2.19, 95% CI 1.02–4.70, Figure S1). The RR with coxibs vs. traditional NSAIDs was 0.90 (95% CI 0.66–1.24; Heterogeneity: P = 0.94, I² = 0%) in the participants taking low-dose aspirin, and 0.33 (95% CI 0.14–0.83; Heterogeneity: P = 0.002, I² = 76%) in those who did not take low-dose aspirin. The reported annualised incidence of clinical gastrointestinal events with traditional NSAID use was 6–6.6% in patients taking low-dose aspirin and 1.7–2.9% in patients not taking low-dose aspirin. The NNT with coxibs in place of traditional NSAIDs to prevent one clinical gastrointestinal event was estimated as 72 (95% CI 44–333) for patients taking low-dose aspirin and 69 (95% CI 57–96) for those who are not taking low-dose aspirin.
respectively. The NNT with coxibs in place of traditional NSAIDs to prevent one symptomatic ulcer is 80 (95% CI 52–256) in patients taking low-dose aspirin, compared with 139 (95% CI = 110–202) in those not taking aspirin.
Endoscopic ulcer

Two studies\(^2\) with 1147 participants contributed to the meta-analysis of endoscopic ulcer (Figure 5, Table 2). Both studies defined endoscopic gastric ulcer as any lesion \(\geq 3\) mm with unequivocal depth. Meta-analysis of all participants indicated that coxibs were associated with significantly lower risk of endoscopic ulcers (RR = 0.29, 95% CI 0.16–0.53; Heterogeneity: \(P = 0.05\), \(I^2 = 61\%\)). Subgroup analysis suggested that the effect was different according to concurrent use of low-dose aspirin (\(P = 0.05\)), which was confirmed by meta-analyses of the interaction term (RRR = 2.94, 95% CI 1.18–7.29, Figure S1). The RR of endoscopic ulcer was 0.46 (95% CI 0.25–0.82; Heterogeneity: \(P = 0.41\), \(I^2 = 0\%\)) in low-dose aspirin users and 0.20 (95% CI 0.11–0.36; Heterogeneity: \(P = 0.19\), \(I^2 = 41\%\)) in non-aspirin users. The NNT with coxibs in place of traditional NSAIDs to prevent one endoscopic ulcer was 6 (95% CI 4–19) for low-dose aspirin users and 5 (95% CI 4–6) for non-aspirin users.

Reporting bias and sensitivity analysis

We did not undertake funnel plot and Egger’s test to evaluate reporting bias as the numbers of included studies in meta-analyses were less than 10. Sensitivity analyses according to sample size and risk of bias did not indicate any major influence on the main results (Table S3).

DISCUSSION

Based on 11 RCTs including a total of 84 150 participants, this study demonstrated that concurrent use of low-dose aspirin reduced but did not completely eliminate the gastrointestinal benefit of coxibs over traditional NSAIDs. There was insufficient evidence that the risk of complicated gastrointestinal events was significantly different between coxibs and traditional NSAIDs in patients taking low-dose aspirin; However, coxibs were associated with significantly lower risk of clinical gastrointestinal events (reduced by 23%), symptomatic ulcer (reduced by 32%) and endoscopic ulcer (reduced by 54%) than traditional NSAIDs. As the gastrointestinal risk in patients taking NSAIDs and low-dose aspirin is high, the absolute benefits of coxibs are modest to large, 72, 80 and 6 aspirin users would need to be treated with coxibs rather than traditional NSAIDs to prevent one additional clinical gastrointestinal event, symptomatic ulcer and endoscopic ulcer respectively.

Of all included studies, five studies were not included quantitative meta-analyses. These studies tested the interaction with concurrent use of low-dose aspirin and they generally suggested that low-dose aspirin usage had no effect on the gastrointestinal benefit of coxibs over traditional NSAIDs.\(^3\) However, these tests were generally not powered to be conclusive. In addition to these trails, many other studies have also evaluated the effect of coxibs in aspirin users. In a previous meta-analysis,
celecoxib was associated with significantly lower risk of endoscopic ulcer than traditional NSAIDs in patients taking low-dose aspirin (RR = 0.48, NNT = 7.2) 41; however, clinical outcomes were not evaluated in this study. The findings were consistent with two RCTs in healthy adults.21, 42 A previous literature review, which included an analysis of coxib vs. traditional NSAID for complicated and clinical events related to low-dose aspirin use, showed similar results as our study43; however, comparison of results is not possible as no details of their review methods were provided. In a retrospective cohort study of 332 491 patients, Rahme \textit{et al.} suggested that the estimated risk of hospitalisation for gastrointestinal bleeding was 6.2/1000 patient-years in celecoxib + aspirin group compared with 8.9/1000 patient-years in nonselective NSAIDs + aspirin group, indicating a significant 38% hazard rate reduction.44 In a hospital-based case–control study including 8309 participants, combining aspirin with traditional NSAIDs or coxibs potentiated the risk of bleeding beyond that expected from a simple additive effect of these agents, the authors concluded that the differences between nonselective NSAIDs and coxibs tend to disappear with concurrent use of low-dose aspirin.45 However, traditional NSAIDs and coxibs were not directly compared and the quality of evidence was low.26

The prescription of NSAIDs should be based on both gastrointestinal and cardiovascular safety in clinical practice. Extensive data suggested that both coxibs and traditional NSAIDs (except for naproxen) were associated with an increased risk of cardiovascular events.46, 47 To date, there are still very few trials showing whether low-dose aspirin remains cardioprotective with concurrent use of other NSAIDs. In a large cohort study, concomitant low-dose aspirin use reversed the increased myocardial infarction risk with coxibs and some nonselective NSAIDs (meloxicam and sulindac), but the risk was not significantly reversed with indomethacin and ibuprofen.48 Because the likelihood and severity of gastrointestinal and cardiovascular events differ between patients and agents, quantitative comparison of the harms and benefits would be difficult14 but warrants further investigation.

Aside from the aforementioned meta-analysis which evaluated the risk of endoscopic ulcer,41 this is the first systematic review to investigate clinical outcomes and the interaction of concomitant use of low-dose aspirin. The sample size was increased, allowing us to get a more precise estimation of clinical outcomes than the previous studies. Additionally, the methodological quality of included studies and the quality of evidence for the estimated effects was moderate or high, suggesting no major risk of bias in the study results. Our confidence in results is further strengthened by large effects (symptomatic ulcer, endoscopic ulcer), stable sensitivity analyses, low heterogeneity in the subgroup analyses and consistency with other study results.

A limitation of this study is that most data about coxibs and concurrent use of aspirin were obtained from subgroup data and additional characteristics were often not reported, thus, we were unable to undertake further analysis to investigate the potential influence. The numbers of studies in meta-analyses were generally small so we cannot investigate the potential influence of treatment duration, comorbidities and other risk factors. In addition, subgroup analyses should be interpreted with caution as they may suffer bias through confounding by other study-level characteristics.49 However, the credibility of subgroup analyses is high because (i) concurrent use of aspirin was a pre-specified and the only characteristic to explore in analyses, (ii) the subgroup results were consistent with the meta-analyses of the within-trial covariate interaction, (iii) statistical tests suggest that the significant subgroup differences are unlikely caused by chance (iv) the direction of subgroup effect is correctly pre-specified and consistent across all outcomes and (v) the subgroup effect is consistent with evidence from other resources.41, 44, 50 Moreover, although our meta-analysis greatly increased the sample size, it was still too small to detect a clinically meaningful difference in complicated ulcer events between coxib and traditional NSAID in patients taking low-dose aspirin. However, the large and significant effect on symptomatic and endoscopic ulcers does suggest a real decrease in gastrointestinal harms with coxib use. Lastly, we are unsure if the study results are influenced by publication bias because the number of studies included meta-analyses were less than 10, so the funnel plot and Egger’s test were not undertaken. However, when small studies were excluded in sensitivity analyses, the results were not influenced.

Overall, this study demonstrated consistent evidence that concomitant use of low-dose aspirin reduces but does not completely eliminate the gastrointestinal benefit of coxibs over traditional NSAIDs. The risk of clinical gastrointestinal events, symptomatic ulcers and endoscopic ulcers associated with coxibs was significantly lower than it was with traditional NSAIDs in patients taking low-dose aspirin. As the selection of NSAIDs should not only be based on the gastrointestinal safety but also the cardiovascular safety, the benefits and harms need to be assessed on a case-by-case basis. Because the
gastrointestinal risk is high in patients taking both aspirin and NSAIDs, use of gastroprotectants, particularly proton pump inhibitors, is important to provide sufficient gastroprotection.\(^{13}\) Further trials are needed to clarify whether coxibs are associated with lower risk of complicated gastrointestinal event in patients taking low-dose aspirin and whether the gastrointestinal benefit of coxibs outweighs potential cardiovascular benefits seen with some traditional NSAIDs, such as naproxen.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table S1. Search strategy (Medline, Ovid).

Table S2. The risk of bias for included studies.

Table S3. Sensitivity analysis by sample size and risk of bias.

Figure S1. Meta-analysis evaluating the interaction of low-dose aspirin use and the gastrointestinal benefit of coxibs over traditional NSAIDs.

REFERENCES

1. Day RO, Graham GG. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ 2013; 346: i3195.

2. Lazzaroni M, Bianchi Porro G. Gastrointestinal side-effects of traditional non-steroidal anti-inflammatory drugs and new formulations. *Aliment Pharmacol Ther* 2004; 20:48–58.

3. Laine L. Nonsteroidal anti-inflammatory drug gastropathy. *Gastrointest Endosc Clin N Am* 1996; 6: 489–504.

4. Silverstein FE, Graham DY, Senior JR, *et al.* Misoprostol reduces serious gastrointestinal complications in patients with rheumatoid arthritis receiving nonsteroidal anti-inflammatory drugs. A randomized, double-blind, placebo-controlled trial. *Ann Intern Med* 1995; 123: 241–9.

5. Singh G, Fort JG, Goldstein JL, *et al.* Celecoxib versus naproxen and diclofenac in osteoarthritis patients: SUCCESS-I Study. *Am J Med* 2006; 119: 255–66.

6. Lanza FL, Chan FK, Quigley EM. Guidelines for prevention of NSAID-related ulcer complications. *Am J Gastroenterol* 2009; 104: 728–38.

7. Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. *N Engl J Med* 1999; 340: 1888–99.

8. Cryer B. NSAID-associated deaths: the rise and fall of NSAID-associated GI mortality. *Am J Gastroenterol* 2005; 100: 1694–5.

9. Marnett LJ. Structure, function and inhibition of cyclo-oxygenases. Ernst Schering Res Found Workshop 2000, 65–83.

10. Hawkey CJ. COX-1 and COX-2 inhibitors. *Best Pract Res Clin Gastroenterol* 2001; 15: 801–20.

11. Brown TJ, Hooper L, Elliott RA, *et al.* A comparison of the cost-effectiveness of five strategies for the prevention of non-steroidal anti-inflammatory drug-induced gastrointestinal toxicity: a systematic review with economic modelling. *Health Technol Assess* 2006; 10: iii-iv, xi-xiii, 1–183.

12. Hooper L, Brown TJ, Elliott RA, Payne K, Roberts C, Symmons D. The effectiveness of five strategies for the prevention of gastrointestinal toxicity induced lay non-steroidal anti-inflammatory drugs: systematic review. *BMJ* 2004; 329: 498–52.

13. Yuan JQ, Tsoi KK, Yang M, *et al.* Systematic review with network meta-analysis: comparative effectiveness and safety of strategies for preventing NSAID-associated gastrointestinal toxicity. *Aliment Pharmacol Ther* 2016; 43: 1262–75.

14. Strand V. Are COX-2 inhibitors preferable to non-selective non-steroidal anti-inflammatory drugs in patients with risk of cardiovascular events taking low-dose aspirin? *Lancet* 2007; 370: 2138–51.

15. Antithrombotic Trialists Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. *BMJ* 2002; 324: 71–86.

16. Patrono C, Garcia Rodriguez LA, Landolfi R, Baignent C. Low-dose aspirin for the prevention of atherothrombosis. *N Engl J Med* 2005; 353: 2373–83.

17. Cox ER, Frise M, Behm A, Fairman KA. Over-the-counter pain reliever and aspirin use within a sample of long-term cyclooxygenase 2 users. *Arch Intern Med* 2004; 164: 1243–6.

18. Laine L, Curtis SP, Cryer B, Kaur A, Cannon CP. Assessment of upper gastrointestinal safety of etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison. *Lancet* 2007; 369: 465–73.

19. Schnitzer TJ, Burmester GR, Mysler E, *et al.* Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and

AUTHORSHIP

Guarantor of the article: Jinling Tang, MD (PKU), MSc (LSHTM), PhD (Lond.), FACE, FFPH (UK).

Author contributions: JY and CM contributed to the conception and design of the study. JY, MY and CM contributed to the acquisition of data; JY and CM contributed to the quality assessment; JY, JH and CM undertook the statistical analysis; JY, DT and MY drafted the report; XQ, DY, JT and JH contributed to the critical revision of the manuscript for important intellectual content. All authors commented on drafts of the paper and have approved the final draft of the manuscript.

ACKNOWLEDGEMENT

We thank Prof. Jay L Goldstein (Northshore University Health System Evanston, IL, USA) and Dr Lee S Simon (SDG, Inc. MA, UAS) for providing additional data of original trials included in this systematic review. We also thank Prof. Kelvin K.F. Tsoi and Prof. Francis K.L. Chan (Department of Medicine and Therapeutics, Faculty of Medicine, CUHK, Hong Kong) for their comments on this study.

Declaration of personal and funding interests: None.
Systematic review with meta-analysis: coxib gastrointestinal benefits with aspirin use

Gastrointestinal Event Trial (TARGET), reduction in ulcer complications: randomised controlled trial. Lancet 2004; 364: 665–74.
20. Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 2000; 284: 1247–55.
21. Goldstein JL, Aisenberg J, Zakko SF, Berger MF, Dodge WE. Endoscopic ulcer rates in healthy subjects associated with use of aspirin (81 mg q.d.) alone or coadministered with celecoxib or naproxen: a randomized, 1-week trial. Dig Dis Sci 2008; 53: 647–56.
22. Goldstein JL, Correa P, Zhao WW, et al. Reduced incidence of gastroduodenal ulcers with celecoxib, a novel cyclooxygenase-2 inhibitor, compared to naproxen in patients with arthritis. Am J Gastroenterol 2001; 96: 1019–27.
23. Laine L, Maller ES, Yu C, Quan H, Simon T. Ulcer formation with low-dose enteric-coated aspirin and the effect of COX-2 selective inhibition: a double-blind trial. Gastroenterology 2004; 127: 395–402.
24. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.hanbook.cochrane.org. Accessed 9 Aug. 2016.
25. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700.
26. Puhan MA, Schunemann HJ, Murad MH, et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 2014; 349: g5630.
27. DerSimonian R, Laird N. Meta-analysis: the inverse variance method. Control Clin Trials 1986; 7: 177–88.
28. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.
29. Fisher DJ, Copas AJ, Tierney JF, Parmar MK. A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners. J Clin Epidemiol 2011; 64: 949–67.
30. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ 2003; 326: 219.
31. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–34.
32. Cheung R, Cheng TT, Dong Y, et al. Incidence of gastroduodenal ulcers during treatment with celecoxib or diclofenac: pooled results from three 12-week trials in Chinese patients with osteoarthritis or rheumatoid arthritis. Int J Rheum Dis 2010; 13: 151–7.
33. Hunt RH, Harper S, Watson DJ, et al. The gastrointestinal safety of the COX-2 selective inhibitor etoricoxib assessed by both endoscopy and analysis of upper gastrointestinal events. Am J Gastroenterol 2003; 98: 1723–33.
34. Kivitz AJ, Greenwald MW, Cohen SB, et al. Efficacy and safety of rofecoxib 12.5 mg versus nabumetone 1,000 mg in patients with osteoarthritis of the knee: a randomized controlled trial. J Am Geriatr Soc 2004; 52: 666–74.
35. Lisse JR, Perlman M, Johansson G, et al. Gastrointestinal tolerability and effectiveness of diclofenac sodium gastrointestinal toxicology with aspirin (81 mg q.d.) alone or coadministered with aspirin (81 mg q.d.) alone or coadministered with celecoxib or naproxen: a randomized, 1-week trial. Dig Dis Sci 2008; 53: 647–56.
36. Berger MF, Dodge WE. Endoscopic ulcer rates in healthy subjects associated with use of aspirin (81 mg q.d.) alone or coadministered with celecoxib or naproxen: a randomized, 1-week trial. Dig Dis Sci 2008; 53: 647–56.
37. Simon LS, Weaver AL, Graham DY, et al. Anti-inflammatory and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of randomised trials. BMJ 2004; 329: 1101–11.
38. Sikes DH, Agrawal NM, Zhao WW, Kent JD, Recker DP, Verburg KM. Incidence of gastroduodenal ulcers associated with valdecoxib compared with that of ibuprofen and diclofenac in patients with osteoarthritis. Eur J Gastroenterol Hepatol 2002; 14: 539–46.
39. Trelle S, Reichenbach S, Waldel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ 2011; 342: c7086.
40. Moore RA, Derry S, Makinson GT, McQuay HJ. Tolerability and adverse events in clinical trials of coxib in osteoarthritis and rheumatoid arthritis: systematic review and meta-analysis of information from company clinical trial reports. Arthritis Res Ther 2005; 7: R64–65.
41. Moore RA, Derry S, Makinson GT, McQuay HJ. Tolerability and adverse events in clinical trials of coxib in osteoarthritis and rheumatoid arthritis: systematic review and meta-analysis of information from company clinical trial reports. Arthritis Res Ther 2005; 7: R64–65.
42. Goldstein JL, Lowry SC, Lanza FL, Schwartz HJ, Dodge WE. The impact of low-dose aspirin on endoscopic gastric and duodenal ulcer rates in users of a non-selective non-steroidal anti-inflammatory drug or a cyclooxygenase-2 selective inhibitor. Aliment Pharmacol Ther 2006; 23: 1498–99.
43. Laine L, White WB, Rostom A, Hochberg M. COX-2 selective inhibitors in the treatment of osteoarthritis. Semin Arthritis Rheum 2008; 38: 165–87.
44. Rahme E, Bardou M, Dasgupta K, Toubouti Y, Ghosn J, Barkun AN. Hospitalization for gastrointestinal bleeding associated with non-steroidal anti-inflammatory drugs among elderly patients using low-dose aspirin: a retrospective cohort study. Rheumatology (Oxford) 2007; 46: 265–72.
45. Lanas A, Garcia-Rodriguez LA, Arroyo MT, et al. Risk of upper gastrointestinal ulcer bleeding associated with selective cyclo-oxygenase-2 inhibitors, traditional non-aspirin non-steroidal anti-inflammatory drugs, aspirin and combinations. Gut 2006; 55: 1731–8.
46. Bhala N, Emberson J, Merhi A, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 2013; 382: 769–79.
47. Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ 2011; 342: c7086.
48. Singh G, Graham D, Wang H, Mithal A, Triadalflapologus G. Concomitant aspirin use reduces the risk of acute myocardial infarction in users of cyclo-oxygenase-2 selective and some non-selective nonsteroidal anti-inflammatory drugs. Ann Rheum Dis 2006; 65: S61.
49. Sun X, Briel M, Busse JW, et al. The credibility of claims of subgroup effects in randomised controlled trials: systematic review. BMJ 2012; 344: e1553.
50. Singh G, Vadharvar, S, Mithal A, Triadalflapologus G. Concomitant low-dose aspirin use reduces but does not abolish the gastrointestinal safety benefits of celecoxib in patients with arthritis. Arthritis Rheumatol 2008; 58: S484.