Analysis of Artificial Neural Network in Predicting the Fuel Consumption by Type of Power Plant

Widodo Saputra¹, P Poningsih¹, Muhammad Ridwan Lubis¹, Sundari Retno Andani¹, Irfan Sudahri Damanik², Anjar Wanto²

¹ AMIK Tunas Bangsa, Sudirman Street Pematangsiantar, Medan - Indonesia
² STIKOM Tunas Bangsa, Sudirman Street Pematangsiantar, Medan - Indonesia

Abstract. The electric is one of the needs for human, the growth of the electric power in Indonesia is very increased. There are 13 types of power plants in Indonesia, including to require the fuel in its operational. Fuel consumption needs to be recorded at regular intervals so that the needs of fuel for the power plant remain fulfilled. This research discusses about the predictions fuel consumption based on the type of power plants. The method used is the Artificial Neural Network with the back propagation algorithm. This method is good enough to use in predicting the data. The data used is fuel consumption data based on the type of power plant of the year 2014-2016. The best architecture is 8-23-1 that gets results accuracy of 88%, epoch 6016 iteration and MSE 0.0005509801. From these results then predict using the 8-23-1 architecture is the best architecture.

1. Introduction

The growth of electricity demand in Indonesia is increasing. This is due to the increasing the growth of buildings needs the electricity on every operation. Indonesia has 13 types of power plants. The Power plants are part of industrial equipment used to produced and generate electricity from various sources of energy, include the need for fuel to produce electricity. The fuel is the one important factor in supporting the performance of power plants. Indonesia is one of the countries that has a natural resources incude the fuel, but currently the Director of corporate planning of PLN said the use of fuel for electricity activities keep on descreasing [1]. Therefore the reason that data collection on fuel is use a barometre to saee the future needs. And one of the method that can be used to see the future needs is Artificial Neural Network (ANN) [2]–[4].

The Artificial Neural Network (ANN) are a very popular way to predict in a number of fields incude the finances, the power of generation, medicine, water resources and the science environment [5]. ANN learn to problem solving by the develop memory capable to corelate the large numbers of input patterns with a set will be producted [6]. ANN is processing information systems that have specific performance characteristics as the neural network of the human brain, with the learning process at the change of weights [7].

This research will discuss about the use of fuel based on the type of generator to see the needs of the type of power plant of the year. Based on the data that has been obtained from PT.PLN (Persero) and Directorate general of electricity, while other supporting data regarding Energy comes from the Directorate general of Oil and Gas, and the Directorate general of Mineral and Coal, and Directorate general of Renewable Energy and Energy Conservation, which are processed by using material data.
fuel per type of plant from 2014-2016. This research will used the backpropagation algorithm and look for the best architecture. Many research have shown that artificial neural networks outperform the traditional method in time series Forecasting [5]. Back propagation neural network devided three-layered feed forward architecture. There are input layer, hidden layer and output layer [8]. To get a best architecture in back propagation will be used as the output value for the prediction in the next year.

2. Methodology

2.1. Data Used
The data used in this research is Fuel Consumption by Type of Power Plant since 2014-2016 (table 1). The data been has obtained from Electricity data sources were gathered from the Directorate General of Electricity and PT. PLN (Persero), while supporting data regarding to other primary/secondary energy were gathered from the Directorate General of Oil and Gas, Directorate General Mineral and Coal, and also Directorate General of New and Renewable Energy, and Energy Conservation in Indonesia.

Fuel	Unit	2014	2015	2016
Steam Oil	(kilo liters)	316931	182204,8	324131,5
Steam Coal	(tons)	43862412	48995169	50556446
Steam Natural Gas	(mmScf)	51347	52166,27	48502,37
Oil Gas Turbine	(kilo liters)	590588	456626,6	386117,5
Natural Gas Turbine	(mmScf)	82073	57088,04	65059,19
Oil Combined Cycle	(kilo liters)	1034466	237960,5	67788,94
Gas combined cycle	(mmScf)	293011	316505,1	347951,4
Oil diesel	(kilo liters)	5463831	4602071	3888994

Source: Directorate General of Electricity and PT. PLN (Persero)

2.2. Flowchart Research
Here's a flowchart that was used in this study, can be seen in the figure below:

The figure above shows that flow diagram started from a group of data. In the normalization data used normalization formula [9]–[13]:

\[
x' = \frac{0.8(x-a)}{b-a} + 0.1
\]

Explanation:
x': Transformed data, x : The data will be normalized, a : Minimum data, b : Maximum data

after normalization data will be divided in 2 part there are training data and testing data. The training data will be trained by using back propagation algorithm and the testing data will be tested by using back propagation algorithm to get result of the best architecture. The best architecture is used to analyze the result of prediction.

3. Results and Discussion
The data can be seen at table 1 will be normalization. There is the result of the normalization data

Year	Steam Oil	Steam Coal	Steam Oil	Natural Gas Turbine	Oil Gas Turbine	Natural Gas Turbine	Oil Combined Cycle	Gas Combined Cycle	Oil Diesel
2014	0.10425	0.79397	0.10005	0.10859	0.10053	0.11562	0.10387	0.18577	
2015	0.10212	0.87527	0.10006	0.10646	0.10014	0.10300	0.10424	0.17212	
2016	0.10437	0.90000	0.10000	0.10535	0.10026	0.10031	0.10474	0.16083	

This research used matlab for get the best architecture. To look for the best architecture it has been several attempt of experiments there are 8-20-1, 8-22-1, 8-23-1, 8-24-1, 8-25-1 and 8-30-1. From 6 experiments obtained 1 the best architecture is 8-23-1 with 88% accuracy. The process of training data and testing data can be seen below :

![Figure 2. Training, Performance and Regression with architecture 8-23-1](image)

It can be seen from figure above, that used architecture 8-23-1 to get the maximum epoch 6016 iteration with 23 second duration.
Table 3. Best Architecture Results with Architecture 8-23-1

Pattern	Data Training	Data Testing								
	Pattern	Target	Output	Error	SSE	Pattern	Target	Output	Error	SSE
1	0.10212	0.0767327	0.02539	0.0006443989	0.01394	0.0001944334				
2	0.87527	0.8615399	0.01373	0.0001885385	0.00947	0.0000895945				
3	0.10006	0.0742835	0.02577	0.000643270	0.02175	0.0004729697				
4	0.10646	0.0763089	0.03016	0.0009093499	0.02516	0.0006328262				
5	0.10014	0.1263301	-0.02619	0.0006861340	-0.03160	0.0009984851				
6	0.10300	0.0396762	0.06332	0.0040100120	0.06367	0.0040536066				
7	0.10424	0.1244474	-0.02020	0.0004081387	-0.01770	0.0003132428				
8	0.17212	0.1942323	-0.02211	0.0004887600	-0.02019	0.0004075825				
	Sum	0.0079996589	Sum	0.006153584	MSE	0.0006153584				
	MSE	0.0006153584	MSE	0.0005509801						

Table 4. Architectural Results In Backpropagation

Architecture	MSE	Epoch	Accuracy (%)
8-20-1	0.0007651948	13448 Iteration	75
8-22-1	0.0007149371	4374 Iteration	75
8-23-1	0.0005509801	6016 Iteration	88
8-24-1	0.00111811473	18156 Iteration	75
8-25-1	0.0006157852	10869 Iteration	88
8-30-1	0.0012280491	8583 Iteration	63

Figure 3. Graph results in Back propagation

From the chart above that from 6 experiments the best architecture is 8-23-1 with 88% accuracy, epoch 6016 iteration and MSE 0.0005509801.
4. Conclusion
The conclusion that can be taken from the discussions above with the title Artificial Neural Network to predict the fuel consumption by type of power plant is:

a. Architecture 8-23-1 is the best architect used, resulting accuracy in prediction is 88%.

b. Fuel consumption by type of plants can be predict used Artificial Neural Network with back propagation algorithm.

c. This research can helps Directorate General of Electricity and PT. PLN (Persero) to get the needs of the fuel consumption by type power plant.

References
[1] ESDM, “Statistika Ketenagalistrikan 2016,” Indonesian Directorate General of Electricity, vol. 30, pp. 1–44, 2017.
[2] A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,” Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–7, 2017.
[3] B. Febriadi, Z. Zamzami, Y. Yuneffi, and A. Wanto, “Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.
[4] N. Nasution, A. Zamsuri, L. Lisnawita, and A. Wanto, “Polak-Ribiere updates analysis with binary and linear function in determining coffee exports in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.
[5] H. R. Maier and G. C. Dandy, “Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications,” Environmental Modelling and Software, vol. 15, no. 1, pp. 101–124, 2000.
[6] S. S. Panda, D. Chakraborty, and S. K. Pal, “Flank wear prediction in drilling using back propagation neural network and radial basis function network,” Applied Soft Computing Journal, vol. 8, no. 2, pp. 858–871, 2008.
[7] W. Saputra, T. Tulus, M. Zarlis, R. W. Sembiring, and D. Hartama, “Analysis Resilient Algorithm on Artificial Neural Network Backpropagation,” Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–6, 2017.
[8] E. Olyaie, H. Zare Abyaneh, and A. Danandeh Mehr, “A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River,” Geoscience Frontiers, vol. 8, no. 3, pp. 517–527, 2017.
[9] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 43–54, 2017.
[10] A. Wanto et al., “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,” 2018, pp. 1–7.
[11] A. Wanto et al., “Analysis of Standard Gradient Descent with GD Momentum And Adaptive LR for SPR Prediction,” 2018, pp. 1–9.
[12] S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 34–42, 2017.
[13] M. Fauzan et al., “Epoch Analysis and Accuracy 3 ANN Algorithm Using Consumer Price Index Data in Indonesia,” 2018, pp. 1–7.