A fragmentation study on four \(\text{C}_{19} \)-diterpenoid alkaloids by electrospray ionization ion-trap time-of-flight tandem mass spectrometry

Xing-Long Chen, Chang-An Geng & Ji-Jun Chen

To cite this article: Xing-Long Chen, Chang-An Geng & Ji-Jun Chen (2015) A fragmentation study on four \(\text{C}_{19} \)-diterpenoid alkaloids by electrospray ionization ion-trap time-of-flight tandem mass spectrometry, Journal of Asian Natural Products Research, 17:9, 915-929, DOI: 10.1080/10286020.2015.1038524

To link to this article: http://dx.doi.org/10.1080/10286020.2015.1038524

View supplementary material

Published online: 14 Aug 2015.

Submit your article to this journal

Article views: 80

View related articles

View Crossmark data

Citing articles: 1

Download by: [Kunming Institute of Botany] Date: 16 March 2016, At: 01:09
A fragmentation study on four C_{19}-diterpenoid alkaloids by electrospray ionization ion-trap time-of-flight tandem mass spectrometry

Xing-Long Chen^{ab}, Chang-An Genga and Ji-Jun Chena^{a*}

^{a}State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; ^{b}University of Chinese Academy of Sciences, Beijing 100049, China

(Received 9 October 2014; final version received 3 April 2015)

High-resolution electrospray ionization ion-trap time-of-flight tandem mass spectrometry (HR-ESI-IT-TOF-MS) in positive-ion mode was used to determine the accurate masses and fragmentation pathways of four C_{19}-diterpenoid alkaloids, aconitine (1), yunnanconitine (2), crassicauline A (3), and benzoylmesaconine (4). The [M + H]^+ ions of compounds 1–4 were readily observed in conventional single-stage mass spectrometry. Based on the MS{sup 1–6} analyses, detailed fragmentation rules of the four compounds were proposed. The neutral losses of AcOH, MeOH, H_{2}O, CO, C_{2}H_{4}, PhCOOH and p-OMePhCOOH segments were the characteristic eliminations from the precursor ions due to the presence of acetyl, methoxyl, hydroxyl, N-ethyl, benzoyl and p-methoxyl-benzoyl units in the structures. Benefited from the high resolution of the mass analyzer, the loss of 28 Da corresponding to CO or CH_{4} segment in product ions was unambiguously distinguished. The losing sequence of the main substituent groups was summarized as: C(8)-acetyl > C(16)-methotyl > C(15)-hydroxyl > C(6)-methoxyl > C(1)-methoxyl/C(3)-hydroxyl > C(18)-methoxyl > C(13)-hydroxyl. The sequential loss of (16)-methoxyl moiety and CO (generating from enol–ketone tautomerism) groups could be recognized as the characteristic eliminations for the compounds with C(16)-methoxyl and C(15)-hydroxyl groups simultaneously. The application of HR-ESI-IT-TOF-MS technique to investigate the fragmentation of C_{19}-diterpenoid alkaloids provided useful information to understand their fragmentation behaviors.

Keywords: Ranunculaceae; Aconitum; HR-ESI-IT-TOF-MS; Fragmentation rules; C_{19}-diterpenoid alkaloids

1. Introduction

C_{19}-diterpenoid alkaloids as the main substance of plants Aconitum L. (Ranunculaceae) show wide range of bioactivities [1–3], such as anti-inflammatory, cardiotonic, and analgesic effects; however, the obvious toxicity limits their applications in clinic [4]. According to the previous reports [4], diester-diterpenoid alkaloids are the major constituents of the root of Aconitum kusnezoffii Reichb. and cause toxicities and side effects. Therefore, many strategies were attempted to reduce the toxicity or establish a fast and effective method for detecting diester-diterpenoid alkaloids [5–8].

Mass spectrometry (MS) with high sensitivity and resolution has become the routine method in various aspect of analytic chemistry. In particular, the tandem mass spectrometry (MS^n) techniques make it possible to determine the relationship between the precursor and product ions, by which the fragmentation
rules can be resolved. Cui et al. [9] investigated the mass spectrometric behavior of eight phenanthroindolizidine alkaloids by ESI-MSn and established a fast method by the rules to identify the trace-level alkaloids in the crude of Tylophora atrfolliculata. Nagy et al. [10] reported the detailed fragmentation behavior of protonated noscapines under electrospray condition. These studies have demonstrated the advantages of using the MS/MS technique for identifying natural products. Although some papers reported the fragmentation rules of C$_{19}$-diterpenoid alkaloids [11–15], the MSn analyses were performed by low-resolution mass analyzer and the investigation based on high resolution mass analyzer were scarce.

Aconitine (1), yunnaconitine (2), crassicauline A (3), and benzoylmesaconine (4) (as shown in Figure 1) are four aconitine-type alkaloids with a C$_{10}$ skeleton, of which aconitine (1), yunnaconitine (2), and crassicauline A (3) belong to the diester-diterpenoid alkaloids. Compounds 1–4 are appropriate candidates for tandem mass spectrometry (MSn) study due to the suitable molecule masses (>500 Da) and the prolific substituent groups. To our knowledge, there are no systematic reports about the high-resolution MSn fragmentation rules of the four compounds. In this paper, the LC/MS-IT-TOF mass spectrometer equipped with an electrospray ionization source linked to ion-trap and time-of-flight mass analyzers (ESI-IT-TOF) which enables fast acquisition of multistage tandem spectrometry (MS1–10) was used to investigate the fragmentation rules of compounds 1–4. It is important to use HR-ESI-IT-TOF-MSn technique to investigate the fragmentation of C$_{19}$-diterpenoid alkaloids, which will provide useful information to understand their fragmentation behaviors.

2. Results and discussion

Aconitine (1), yunnaconitine (2), crassicauline A (3), and benzoylmesaconine (4) are four natural C$_{19}$-diterpenoid alkaloids with alkalinity so that MSn experiments in positive mode were applied to characterize their fragmentation behaviors. The proposed fragmentation pathways are shown in Figures 2, 3, S2 and S3 and data for accurate masses and elemental compositions from tandem mass spectrometry are shown in Tables 1–4.

2.1. ESI-MSn results

2.1.1. ESI-IT-TOF MSn fragmentations of aconitine (1) in positive mode (as shown in Figure 2 and Table 1)

The full-scan mass spectrometry for aconitine (1) in positive mode was analyzed to afford the [M + H]$^+$ ion (1a) at m/z 646.3220, corresponding to the molecular formula C$_{34}$H$_{48}$NO$_{11}$. Ion 1a was selected as precursor ion to yield versatile product ions (1b–1k) in MS2 experiment, and the [M + H – AcOH]$^+$ ion at m/z 586 (1b) with high intensity (90%) further yielded the fragment at m/z 554 (1c) due to the departure of MeOH at C(16) position. The ketone-enol tautomers (between Δ15,16 and

![Figure 1. Structures of compounds 1–4.](image-url)
C(15)-hydroxyl group] of the unstable ion 1c lost a carbonyl moiety as one molecule of CO to give rise to the ion 1d (90%) at m/z 526 or eliminated C(6)-methoxyl unit directly to produce the ion 1e at m/z 522. Then the ion 1d lost C(6)-methoxyl group to yield the ion at m/z 494 (1f, 100%). After that, 1e and 1f both lost the methoxyl moiety at C(1) position to generate ions 1g (m/z 490) and 1i (m/z 462), respectively. The ion 1h at m/z 476 could be interpreted by the departure of C(3)-hydroxyl group from 1f, and the elimination of a 122 Da (PhCOOH) from 1d and 1g was happened to afford ions 1j (m/z 404) and 1k (m/z 368) due to the presence of C(14)-benzoyl unit.

Ions 1b (m/z 586), 1h (m/z 476), 1j (m/z 404), and 1k (m/z 368) were selected as precursor ions to perform MS³ experiments, which provided ions 1c, 1d, 1f, 1h, 1i, 1j, and 1l–1q. The fragments 1c, 1d, 1f, 1h, 1i, and 1j could be also detected in the MS² analysis. The ion 1l (m/z 354, 100%) was the most abundant product ion due to the loss of PhCOOH from precursor ion 1h. Precursor ion 1j eliminated C(6)-methoxyl.
group to generate the ion Im at m/z 372 due to the formation of a stably conjugated structure. Then Im gave rise to ions Ii (m/z 354) and In (m/z 340) in agreement with the departure of C(3)-hydroxyl and C(1)-methoxyl units, and the ion Io (m/z 340)
Table 1. Data for accurate masses and elemental composition of aconitine (I) observed from tandem mass spectrometry in positive mode.

MS⁺	Precursor ion (m/z)	Product ion (m/z)	Elemental composition	Measured (m/z)	Calculated (m/z)	Error (mDa)	Ion name	Intensity (%)	Assignment
(+)MS 645	646	C₃₄H₄₈N₁₁	646.3220	646.3222	0.2	I_a	100	[M + H]⁺	
MS² 586	554	C₃₂H₄₄N₉	554.2739	554.2748	0.9	I_c	20	I_b - AcOH	
	522	C₃₀H₃₈N₇	522.2435	522.2486	5.1	I_e	15	I_c - MeOH	
	494	C₂₈H₃₄N₆	494.2541	494.2537	0.4	I_f	100	I_d - MeOH	
	490	C₂₆H₃₂N₆	490.2259	490.2224	3.5	I_g	15	I_e - MeOH	
	476	C₂₄H₃₀N₅	476.2433	476.2431	0.2	I_h	45	I_f - H₂O	
	462	C₂₂H₂₈N₅	462.2271	462.2275	0.4	I_i	20	I_f - MeOH	
	404	C₂₃H₂₄N₅	404.2432	404.2431	0.1	I_j	45	I_d - PhCOOH	
	368	C₂₂H₂₆N₄	368.1849	368.1856	0.7	I_k	55	I_g - PhCOOH	
	554	C₃₁H₄₀N₈	554.2719	554.2748	2.9	I_c	15	I_b - MeOH	
	526	C₃₀H₄₀N₇	526.2770	526.2799	2.9	I_d	35	I_c - CO	
	494	C₂₉H₃₄N₆	494.2510	494.2537	2.7	I_f	100	I_d - MeOH	
	476	C₂₈H₃₂N₆	476.2409	476.2431	2.2	I_h	30	I_f - H₂O	
	462	C₂₇H₃₀N₅	462.2263	462.2275	1.2	I_i	20	I_f - MeOH	
	404	C₂₃H₂₄N₄	404.2398	404.2431	3.3	I_j	30	I_d - PhCOOH	
	354	C₂₂H₂₈N₃	354.2048	354.2064	1.6	I_l	100	I_h - PhCOOH	
	354	C₂₂H₂₈N₃	354.2047	354.2064	1.6	I_l	25	I_j - MeOH	
	340	C₂₁H₂₆N₃	340.1901	340.1907	0.6	I_n	25	I_m - H₂O	
	322	C₂₁H₂₈N₃	322.1727	322.1802	7.5	I_o	15	I_n - MeOH or I_n - H₂O	
	218	C₁₉H₂₂N₂	218.1542	218.1539	0.3	I_p	100	I_o - C₇H₄O	
	368	C₂₁H₂₈N₃	360.1890	340.1907	1.7	I_n	30	I_k - CO	
	296	C₁₉H₂₂N₂	296.1639	296.1645	0.6	I_q	100	I_n - C₂H₄O	
MS³ 494	476	C₂₉H₃₄N₅	476.2415	476.2431	1.6	I_h	45	I_f - H₂O	
	462	C₂₈H₃₂N₅	462.2257	462.2275	1.8	I_i	100	I_f - MeOH	
	354	C₂₁H₂₈N₂	322.1781	322.1802	2.1	I_o	25	I_i - MeOH	
Table 2. Data for accurate masses and elemental composition of yunnaconitine (2) observed from tandem mass spectrometry in positive mode.

MSⁿ	Precursor ion (m/z)	Product ion (m/z)	Elemental composition	Measured (m/z)	Calculated (m/z)	Error (mDa)	Ion name	Intensity (%)	Assignment
(+)MS 659	660	C₃₅H₄₀N₁₁	660.3405	660.3378	+2.7	2a	100	[M + H]⁺	
MS² 660	600	C₃₃H₃₆N₉	600.3196	600.3167	+2.9	2b	100	2a – AcOH	
568	C₃₂H₄₂N₈	568.2925	568.2905	+2.0	2c	70	2b – MeOH		
550	C₃₂H₄₀N₇	550.2841	550.2799	+4.2	2d	100	2c – H₂O		
536	C₃₁H₃₈N₇	536.2647	536.2643	+0.4	2e	50	2c – MeOH		
518	C₃₁H₃₆N₆	518.2539	518.2537	+0.2	2f	30	2d – MeOH or 2e – H₂O		
486	C₃₀H₃₂N₆	486.2264	486.2275	-1.1	2g	20	2f – MeOH		
366	C₂₉H₃₂N₅	366.2047	366.2064	-1.7	2h	20	2f – p-OMePhCOOH		
334	C₂₉H₃₂N₂	334.1787	334.1802	-1.5	2i	50	2g – p-OMePhCOOH or 2h – MeOH		
500	600	C₃₅H₄₀N₁₁	600.3196	600.3167	+2.9	2b	100	2a – MeOH	
MS³ 600	550	C₃₃H₃₆N₉	550.2807	550.2799	+0.8	2d	100	2b – H₂O	
536	C₃₁H₃₈N₇	536.2652	536.2643	+0.9	2e	20	2c – MeOH		
518	C₃₁H₃₆N₆	518.2550	518.2537	+1.3	2f	20	2d – MeOH or 2e – H₂O		
486	C₃₀H₃₂N₅	486.2287	486.2275	+1.2	2g	15	2f – MeOH		
447	C₂₉H₂₇O₂	447.1840	447.1802	+3.8	2j	10	2d – C₆H₁₀N₂NO		
366	C₂₃H₃₈N₃	366.2060	366.2064	-0.4	2h	15	2f – p-OMePhCOOH		
334	C₂₂H₃₂N₂	334.1789	334.1802	-1.3	2i	40	2g – p-OMePhCOOH or 2h – MeOH		
366	334	C₂₂H₃₂N₂	334.1792	334.1802	-1.0	2i	100	2h – MeOH	
MS⁴ 350	550	C₃₁H₃₆N₆	518.2541	518.2537	+0.4	2f	65	2d – MeOH	
518	C₃₀H₃₂N₅	486.2280	486.2275	+0.5	2g	30	2f – MeOH		
486	C₂₉H₃₀N₄	472.2111	472.2118	-0.7	2k	15	2f – C₂H₅O		
472	C₂₉H₂₇O₂	447.1759	447.1802	-4.3	2j	20	2d – C₆H₁₀N₂NO		
366	C₂₃H₃₈N₃	366.2046	366.2064	-1.8	2h	30	2f – p-OMePhCOOH		
334	C₂₂H₃₂N₂	334.1782	334.1802	-2.0	2i	65	2g – p-OMePhCOOH or 2h – MeOH		
518	486	C₂₀H₃₂N₄	486.2266	486.2275	-0.9	2g	100	2f – MeOH	
MS⁵ 486	454	C₂₀H₃₂N₄	454.2005	454.2013	-0.8	2i	56	2g – MeOH	
334	302	C₂₁H₃₂N₄	302.1587	302.1539	+4.8	2m	100	2i – MeOH	
290	C₂₀H₂₈N₄	290.1588	290.1539	+4.9	2n	66	2i – C₂H₅O		
288	C₂₀H₁₈N₄	288.1329	288.1383	-5.4	2o	66	2i – C₂H₆O		
Precursor ion (m/z)	Product ion (m/z)	Elemental composition	Measured (m/z)	Calculated (m/z)	Error (mDa)	Ion name	Intensity (%)	Assignment	
---------------------	-------------------	-----------------------	----------------	----------------	-------------	----------	--------------	------------	
(+)MS 643	644	C_{35}H_{50}NO_{10}	644.3476	644.3429	+4.7	3a	100	[M + H]^+	
MS^2 644	584	C_{33}H_{46}NO_{8}	584.3251	584.3218	+3.3	3b	76	3a – AcOH	
552	524	C_{32}H_{42}NO_{7}	524.2643	524.2643	0.0	3c	100	3b – MeOH	
520	492	C_{29}H_{34}NO_{6}	492.2380	492.2381	-0.1	3f	15	3d – MeOH or 3e – C_2H_4	
488	458	C_{30}H_{34}NO_{6}	488.2447	488.2431	+1.6	3g	30	3e – MeOH	
400	368	C_{29}H_{33}NO_{6}	368.2218	368.2220	-0.2	3j	30	3e – p-OMePhCOOH or 3h – MeOH	
336	304	C_{21}H_{25}NO_{3}	304.1680	304.1696	-1.6	3k	15	3j – MeOH	
MS^3 584	552	C_{29}H_{33}NO_{7}	552.2970	552.2961	+1.4	3e	100	3b – MeOH	
524	492	C_{29}H_{33}NO_{6}	492.2340	492.2381	+2.5	3f	23	3d – MeOH or 3e – C_2H_4	
488	428	C_{30}H_{34}NO_{3}	428.2340	428.2341	+1.9	3g	16	3e – MeOH	
400	368	C_{29}H_{33}NO_{6}	368.2218	368.2220	+0.3	3h	10	3e – p-OMePhCOOH	
336	304	C_{21}H_{25}NO_{3}	304.1680	304.1696	-1.6	3k	15	3j – MeOH	
304	214	C_{21}H_{25}NO_{2}	214.1530	214.1531	-1.0	3l	15	3i – MeOH	
520	492	C_{29}H_{33}NO_{6}	492.2356	492.2381	-2.5	3f	18	3e – C_2H_4	
488	428	C_{30}H_{34}NO_{3}	428.2340	428.2341	+1.9	3g	100	3e – MeOH	
368	336	C_{22}H_{26}NO_{2}	336.1947	336.1958	-0.1	3j	54	3g – p-OMePhCOOH or 3i – MeOH	
336	304	C_{21}H_{25}NO_{3}	304.1680	304.1696	-1.6	3k	15	3j – MeOH	
400	372	C_{22}H_{26}NO_{2}	372.2158	372.2169	-1.1	3l	15	3i – MeOH	
354	324	C_{21}H_{26}NO_{2}	324.1956	324.1958	-0.2	3o	25	3i – C_2H_4O	

(Continued)
MS\(^n\)	Precursor ion (m/z)	Product ion (m/z)	Elemental composition	Measured (m/z)	Calculated (m/z)	Error (mDa)	Ion name	Intensity (%)	Assignment
322	C\(_{21}\)H\(_{24}\)NO\(_2\)	322.1755	322.1802	−4.7	3p	42	3m – MeOH		
308	C\(_{20}\)H\(_{22}\)NO\(_2\)	308.1656	308.1645	+1.1	3q	25	3j – C\(_2\)H\(_4\)		
304	C\(_{19}\)H\(_{18}\)NO	276.1372	276.1383	−1.1	3r	100	3k – C\(_2\)H\(_4\)		
520	C\(_{30}\)H\(_{38}\)NO\(_7\)	524.2642	524.2643	−0.1	3d	100	3e – C\(_2\)H\(_4\)		
492	C\(_{29}\)H\(_{34}\)NO\(_6\)	492.2399	492.2381	+1.8	3f	37	3d – MeOH or 3e – C\(_2\)H\(_4\)		
488	C\(_{22}\)H\(_{26}\)NO\(_2\)	336.1969	336.1958	+1.1	3j	100	3g – p-OMePhCOOH		
368	C\(_{22}\)H\(_{26}\)NO\(_2\)	336.1955	336.1988	+0.3	3j	64	3i – MeOH		
336	C\(_{22}\)H\(_{22}\)NO\(_2\)	308.1646	308.1645	+0.1	3q	43	3j – C\(_2\)H\(_4\)		
304	C\(_{21}\)H\(_{22}\)NO	304.1662	304.1696	−3.4	3k	60	3j – MeOH		
290	C\(_{20}\)H\(_{20}\)NO	290.1542	290.1539	+0.3	3s	100	3k – CH\(_2\)		
276	C\(_{19}\)H\(_{18}\)NO	276.1398	276.1383	+1.5	3r	87	3q – MeOH or 3k – C\(_2\)H\(_4\)		
262	C\(_{18}\)H\(_{16}\)NO	262.1221	262.1268	−0.5	3t	65	3s – C\(_2\)H\(_4\) or 3r – CH\(_2\)		
524	C\(_{28}\)H\(_{34}\)NO\(_6\)	492.2362	492.2381	−1.9	3f	46	3d – MeOH		
460	C\(_{28}\)H\(_{30}\)NO\(_5\)	460.2131	460.2118	+1.3	3u	20	3f – MeOH		
492	C\(_{28}\)H\(_{30}\)NO\(_5\)	460.2117	460.2118	−0.1	3u	40	3f – MeOH		
Table 4. Data for accurate masses and elemental composition of benzoylmesaconine (4) observed from tandem mass spectrometry in positive mode.

MSⁿ	Precursor ion (m/z)	Product ion (m/z)	Elemental composition	Measured (m/z)	Calculated (m/z)	Error (mDa)	Ion name	Intensity (%)	Assignment
(+)MS	589	590	C₃₁H₄₄N₁₀O₁₀	590.2966	590.2960	+0.6	4a	100	[M + H]⁺
MS³	590	572	C₃₁H₄₃N₉O₉	572.2894	572.2854	+4.0	4b	19	4a – H₂O
	558	C₃₀H₄₆N₉O₉	558.2674	558.2698	-2.4	4c	19	4a – MeOH	
	540	540	C₃₀H₃₈N₉O₉	540.2591	540.2592	-0.1	4d	100	4b – MeOH or 4c – H₂O
	526	526	C₂₉H₃₆N₉O₉	526.2425	526.2435	-1.0	4e	52	4c – MeOH
	522	522	C₃₀H₃₆N₉O₇	522.2505	522.2486	+1.9	4f	10	4d – H₂O
	508	508	C₂₉H₃₆N₉O₇	508.2330	508.2330	0	4g	90	4d – MeOH or 4e – H₂O
	494	494	C₂₈H₃₆N₉O₇	494.2193	494.2173	+2.0	4h	74	4e – MeOH
	490	490	C₂₉H₃₆N₉O₆	490.2231	490.2224	+0.7	4i	37	4f – MeOH or 4g – H₂O
	476	476	C₂₈H₃₆N₉O₆	476.2060	476.2068	-0.8	4j	74	4g – MeOH or 4h – H₂O
MS³	558	540	C₃₀H₃₆N₉O₈	540.2581	540.2592	-1.1	4d	25	4c – H₂O
	526	526	C₂₉H₃₆N₉O₈	526.2432	526.2435	-0.3	4e	90	4c – MeOH
	508	508	C₂₉H₃₆N₉O₈	508.2312	508.2330	-1.8	4g	15	4d – MeOH or 4e – H₂O
	494	494	C₂₈H₃₆N₉O₈	494.2160	494.2173	-1.3	4h	55	4e – MeOH
	476	476	C₂₈H₃₆N₉O₈	476.2050	476.2068	-1.8	4j	15	4g – MeOH or 4h – H₂O
	466	466	C₂₇H₃₆N₉O₈	466.2208	466.2224	-1.6	4k	15	4h – CO
540	522	522	C₃₀H₃₆N₉O₇	522.2471	522.2486	-1.5	4f	10	4d – H₂O
	508	508	C₂₉H₃₆N₉O₇	508.2326	508.2330	-0.4	4g	100	4d – MeOH
	490	490	C₂₉H₃₆N₉O₇	490.2209	490.2224	-1.5	4i	20	4f – MeOH or 4g – H₂O
	476	476	C₂₈H₃₆N₉O₇	476.2075	476.2068	+0.7	4h	66	4g – MeOH
	526	526	C₂₈H₃₆N₉O₇	526.2425	526.2435	-3.4	4j	10	4h – H₂O
	508	508	C₂₉H₃₆N₉O₇	508.2326	508.2330	-0.4	4g	100	4d – MeOH
	476	476	C₂₈H₃₆N₉O₇	476.2075	476.2068	+1.4	4j	100	4g – MeOH
	476	476	C₂₈H₃₆N₉O₇	458.1934	458.1962	-2.8	4l	25	4j – H₂O
	444	444	C₂₇H₃₆N₉O₇	444.1799	444.1805	-0.6	4m	58	4j – MeOH
	354	354	C₂₁H₃₆N₉O₇	354.1691	354.1690	-0.9	4n	60	4j – PhCOOH
MS³	494	476	C₂₈H₃₆N₉O₆	476.2057	476.2068	-1.1	4j	60	4h – H₂O
	490	458	C₂₈H₃₆N₉O₅	458.1926	458.1962	-3.6	4l	80	4i – MeOH

(Continued)
322) could be interpreted by eliminating C(1)-methoxyl group from 1l or C(3)-hydroxyl moiety from 1n. Besides 1l, 1n, and 1o, the ion 1p (m/z 218) was detected with high abundance, which could be interpreted by the loss of C7H4O segment from 1o. In another route, the precursor ion 1k produced the ion 1n (m/z 340) by losing one molecule of CO and further gave rise to the ion 1q (m/z 296), which was attributed to the departure of C2H4O segment at C(4) position.

In MS4 scan of 1f at m/z 494, two product ions, 1h at m/z 476 and 1i at m/z 462 (100%), were observed. At the same time ion, 1l at m/z 354 was selected as precursor ion to generate a fragment at m/z 322 (1o), which was assigned to the elimination of C(1)-methoxyl moiety on 1l.

Besides, we found that the losses of moieties at C(8), C(15), C(6), C(1), and C(14) positions generated ions 1b, 1d, 1f, 1i, and 1l with high intensity which suggested these positions were active in mass spectrometry.

2.1.2. ESI-IT-TOF MSn fragmentations of yunnaconitine (2) in positive mode (as shown in Figure S2 and Table 2)

Unlike aconitine (1), yunnaconitine (2) showed simple fragmentation characteristics relatively. In the single-stage mass spectrometry of yunnaconitine (2) in positive mode, the [M + H]+ ion at m/z 660.3405 (2a) was found and its molecular formula was C38H50NO11. In MS3 analysis, 2a produced ions 2b–2i in which 2b (m/z 600, 100%) and 2c (m/z 568, 70%) with high abundance were assigned to the elimination of C(8)-acetyl and C(16)-methoxyl units just as the fragmentation rules of 1b and 1c in aconitine (1). Then 2c lost C(3)-hydroxyl or C(6)-methoxyl group to generate ions 2d (m/z 550, 100%) and 2e (m/z 536). The ion 2f (m/z 518) arose from two originations, 2d losing C(6)-methoxyl group and 2e losing C(3)-hydroxyl unit. Fragments 2g at m/z 486 and 2h at m/z 366.
both derived from the ion $2f$ by losing C(6)-methoxyl unit for the former and eliminating C(14)-p-methoxyl-benzoyl group for the latter. Then $2g$ lost C(14)-p-methoxyl-benzoyl unit and $2h$ split C(1)-methoxyl group to generate the same product ion $2i$ at m/z 334.

Precursor ion $2b$ (m/z 600) was analyzed in MS3 experiment to afford product ions $2c-2i$ in which ion $2j$ at m/z 447 had a non-nitrogen molecular formula as C$_{27}$H$_{27}$O$_6$ that predicted the nitrogen heterocyclic ring on $2d$ split to lose a C$_5$H$_{13}$NO segment. The ion $2i$ was also observed when $2h$ (m/z 366) acted as precursor ion due to the departure of C(1)-methoxyl group.

In MS4 analysis, the product ions $2f-2j$ were detected from precursor ion $2d$ (m/z 550) just as above-mentioned interpretations. Another precursor ion $2f$ (m/z 518) afforded four fragments, $2g$ at m/z 486 (100%), $2k$ at m/z 472, $2h$ at m/z 366, and $2i$ at m/z 334, in which $2k$ was arose from the elimination of C(4)-methoxymethyl unit as a C$_2$H$_4$O segment from $2f$.

Via MS5 analysis, the ion $2l$ at m/z 454 was observed from precursor ion $2g$ (m/z 486) attributed to the loss of C(18)-methoxyl group. Precursor ion $2i$ (m/z 334) gave rise to three fragments, the ion $2m$ at m/z 302, $2n$ at m/z 290, and $2o$ at m/z 288, based on losing C(18)-methoxyl group or directly eliminating C(4)-methoxymethyl unit as C$_2$H$_4$O or C$_2$H$_2$O segment, respectively.

In the MSn analyses of yunnanconitine (2), the losses of C(8), C(16), C(3), C(1)-moieties gave rise to a series of ions with high intensity such as $2b$, $2c$, $2d$, and $2g$ which were similar as aconitine (1).

2.1.3. ESI-IT-TOF MSn fragmentations of crassicauline A (3) in positive mode (as shown in Figure S3 and Table 3)

The first-stage mass spectrometry of crassicauline A (3) generated the [M + H]$^+$ ion at m/z 644.3476 (3a), corresponding to the molecular formula C$_{33}$H$_{50}$NO$_{10}$. For MS2 analysis of 3a (m/z 644), ions 3b at m/z 584 (76%), and 3c at m/z 552 (100%) with high intensity were observed and assigned with the losses of C(8)-acetyl and C(16)-methoxyl groups sequentially from 3a. Because of the absence of C(3)-hydroxyl group, the ion 3c lost N-ethyl unit easily to produce the ion 3d (m/z 524) and then 3d lost C(6)-methoxyl group to yield the ion 3f at m/z 492. Besides, the ion 3e afforded the ion 3e at m/z 520 with high abundance (76%) relatively by eliminating C(6)-methoxyl unit to form a stable conjugated structure. The ion 3h at m/z 400 was detected readily corresponding to the elimination of C(14)-p-methoxyl-benzoyl group from 3c, too, and 3h further lost C(6)-methoxyl unit to afford the ion 3i at m/z 368. Certainly, the loss of N-ethyl or C(14)-p-methoxyl-benzoyl unit from 3e was the pathway to generate the fragments 3f and 3i as well. 3e also gave rise to the ion 3g at m/z 488 by eliminating C(1)-methoxyl group. Thus the ion 3j (m/z 336) could be explained by the loss of C(14)-p-methoxyl-benzoyl unit from 3g or the loss of C(1)-methoxyl group from 3i, and then 3j eliminated one molecule of MeOH at C(18) position to produce the ion 3k at m/z 304.

In agreement with MS2 analysis, the ions 3e-3k and 3f, 3g, 3i, 3j were all found when 3b (m/z 584), 3e (m/z 520), and 3h (m/z 400) were selected as precursor ions in MS3 experiments. Ions 3i, 3j, and 3l-3q were obtained in the MS3 analysis of 3h in which 3l-3q were interpreted as follows: the ion 3h (m/z 400) eliminated N-Et or C(4)-methoxymethyl group to generate the ions 3i (m/z 372) and 3m (m/z 354), and then 3i and 3m deducted C(6)-methoxyl unit relatively to yield the ions 3n (m/z 340) and 3p (m/z 322); the ion 3o (m/z 324) derived from 3i due to the loss of C(4)-methoxymethyl group as C$_2$H$_2$O segment; the base peak ion 3q (m/z 308) was formed by losing N-ethyl unit from 3j directly. Whilst, 3r
(m/z 276) was the base peak ion in the MS³ analysis of precursor ion 3k which was owed to the elimination of N-ethyl group as CH₃N unit. The MS⁴ analysis of four precursor ions, 3c (m/z 552), 3g (m/z 488), 3i (m/z 368), and 3j (m/z 336), yield nine product ions, 3d–3j, 3k, 3q, and 3r–3t, in which the fragmentation pathways of 3d–3j, 3q, and 3k had been elucidated in MS² and MS³ experiments. The ion 3r at m/z 276 could be explained by the loss of MeOH from 3q at C(18) position or the elimination of C₂H₄ segment from 3k on nitrogen-atoms. The ion 3s was attributed to the loss of tertiary carbon as CH₂ group at C(4) position from 3k. Then 3s gave rise to the ion 3t by eliminating N-ethyl group as CH₃N unit. Another origination of 3t was the ion 3r, which lost the tertiary carbon moiety as CH₂ segment at C(4) position to generate fragment 3i.

In MS⁵ analysis of precursor ion 3d (m/z 524), the ion 3f (m/z 492) was detected due to the elimination of C(6)-methoxyl unit and then 3f generated the ion 3u (m/z 460) owing to the loss of C(1)-methoxyl group.

To study the fragmentation route of the ion 3f (m/z 492) in depth, the MS⁶ analysis of ion 3f was carried out from which product ion 3u at m/z 460 was detected and attributed to the loss of C(1)-methoxyl unit.

We could find that ions 3b, 3c, 3e, and 3g with high abundance, mentioned in Table 3 were generated by the elimination of moieties at C(8), C(16), C(6), and C(1) positions.

2.1.4. ESI-IT-TOF MSⁿ fragmentation of benzoylmesaconine (4) in positive mode (as shown in Figure 3 and Table 4)

It was easy to detect the [M + H]⁺ ion (4a) at m/z 590.2966 of benzoylmesaconine (4) in the positive full-scan mass spectrometry concurring with the molecular formula C₃₁H₄₄NO₁₀. A series of ions (4b–4j) were found when 4a acted as precursor ion in MS² experiment. The loss of C(8)-hydroxyl or C(16)-methoxyl unit from 4a leaded to the appearance of the ions 4b at m/z 572 and 4c at m/z 558 relatively. The ion 4d (m/z 540, 100%) could be explained by the elimination of C(16)-methoxyl group on 4b or C(8)-hydroxyl unit on 4c and then 4d generated the ion 4f at m/z 522 by losing C(3)-hydroxyl. Ions 4c, 4d, and 4f all eliminated one molecule of MeOH to produce the [P-MeOH]⁺ (P: product ion) ions, 4e at m/z 526, 4g at m/z 508 (90%), and 4i at m/z 490 due to the existence of C(6)-methoxyl group, respectively. The ions 4e and 4g gave rise to the ions 4h (m/z 494) and 4j (m/z 476) relatively due to the further splitting of C(1)-methoxyl unit. Furthermore, the ion 4e generated the ion 4g by eliminating C(8)-hydroxyl group, as well as 4h to 4j. Similarly, 4j could be interpreted by the loss of C(3)-hydroxyl unit from 4g, too.

In MS³ analysis, ions 4d–4j were detected when 4c (m/z 558), 4d (m/z 540), 4e (m/z 526), and 4g (m/z 508) acted as precursor ions, in which the ion 4k at m/z 466 was caused by the loss of CO from 4h. The MS³ experiment of the ion 4j at m/z 476 was carried out to yield fragments 4l–4n, in which 4l at m/z 458 arose from the scission of C(3)-hydroxyl group, 4m at m/z 444 originated from the elimination of C(18)-methoxyl unit, and 4n at m/z 354 derived from the loss of C(14)-benzoyl group.

Based on MS⁴ experiment, the precursor ion 4h at m/z 494 eliminated C(8)-hydroxyl moiety to produce the ion 4j at m/z 476. Precursor ion 4i at m/z 490 afforded ions 4l at m/z 458 and 4o at m/z 368 by losing C(6)-methoxyl or C(14)-benzoyl group. From precursor ion 4m at m/z 444, ions 4p at m/z 426 and 4r at m/z 322 were easily explained by the eliminations of H₂O at C(3) position and PhCOOH at C(14) position, and the ion 4q at m/z 394 derived from 4p by losing C(4)-tertiary carbon and C(13)-hydroxy groups consecutively.
According to MS5 analysis, the ion 4j (m/z 476) was selected as precursor ion to give rise to the ions 4m at m/z 444, 4p at m/z 426, and 4q at m/z 394. All of them had been explained in MS3 and MS4 experiments.

Ultimately, the ion 4q at m/z 394 was the only precursor ion in MS6 analysis to afford the ion 4s at m/z 366 by losing one molecule of CO.

For benzoylmesaconine (4), ions with high intensity also arose from the losses of moieties at C(16), C(6), C(1) and C(8) positions such as 4d, 4e, 4g, 4h, and 4j whose abundance was more than 90%.

2.2. Discussion

2.2.1. The losses of C(8), C(15), and C(16) substituent groups

Aconitine (1), yunnaconitine (2), crassicauline A (3), and benzoylmesaconine (4) with C(8)-acetyl or C(8)-hydroxyl group first generate the product ion as [M + H-AcOH]+ (1b, 2b, and 3b) or [M + H-H\textsubscript{2}O]+ (4b) in MS2 spectrometry. It suggested that C(8) position was the active location at which moieties were easily to be lost. However, the position for proton leaving when C(8)-moiety was eliminated as neutral loss was disputed. Many articles tended to the positions at C(15) or C(7) [18,19]. In this paper, the position C(7) was proposed so that the fragments could lose its C(16)-methoxyl moiety to form a double bond between C(15) and C(16) positions and after that ketone–enol tautomerism occurred to form a carbonyl at C(15) position. In MS2 analysis, the [M + H-AcOH-MeOH-CO]+ (1d) ion from aconitine (1) was obtained that could demonstrate the above-mentioned conjecture. The high intensity ions 1b, 1d, 2b, 3b, 3c, and 4d were all come from the loss of C(8) or C(16)-moiety. The discussions indicated that C(8) was the most active position and the activity of C(16) is slightly inferior in MSn experiments, the eliminations of moieties at C(8) and C(16) positions were the originations to generate base peak ions.

2.2.2. The losses of C(6)-methoxyl, C(1)-methoxyl, C(3)-hydroxyl units, and C(14) substituent groups

The fragmentation routes of losing C(6)-methoxyl group after losing the C(8) and C(16) moieties were proposed in MS5 analyses of the candidates. It was benefited from forming more stable ions with high conjugated structures such as 1e, 1f, 2e, 2f, 3e, 3f, 3i, 4e, 4g, and 4i, in which the ions 1f at m/z 494 and 4g at m/z 508 in MS2 analysis were base peak ions simultaneously. After that, the eliminations of C(1)-methoxyl and C(3)-hydroxyl units occurred to yield fragments with longer conjugated structures. The loss of C(1)-methoxyl moiety generated a series of ions as base peaks, for example, the ion 1i at m/z 462 from aconitine (1), the ion 2i at m/z 334 from yunnaconitine (2), the ion 3g at m/z 488 from crassicauline A (3) and the ion 4j at m/z 476 from benzoylmesaconine (4) in MS3 experiments. In addition, the ions originated from the elimination of C(14) substituent groups as PhCOOH or p-OMePhCOOH segment were also base peak ions, for instance, the ion 1l at m/z 354 from aconitine (1) in MS3 analysis and the ion 3j at m/z 336 from crassicauline A (3) in MS4 experiments. The discussions showed that the losses of C(6)-methoxyl, C(1)-methoxyl moieties and C(14) substituent groups were easily obtained and generated base peak ions readily following with C(8), C(15), and C(16) substituent groups.

2.2.3. The losses of N-ethyl/methyl

The loss of N-ethyl/methyl moiety was unfavorable on aconitine (1), yunnaconitine (2), and benzoylmesaconine (4). For crassicauline A (3), N-ethyl unit displayed as an active group to be eliminated easily which gave rise to the ions 3d at m/z 524
and 3r at m/z 276 in MS3 experiments with high abundance. It could be explained that the absence of C(3)-hydroxyl influenced the activity of N-ethyl moiety and drove N-ethyl group much more active in mass spectrometry. Meanwhile, the types of substituent groups at nitrogen atom impacted on the activity of moieties as well. For example, it was hard to detect the [$P-CH_4]^+$ (P: product ion) ion in MSn analyses of benzoylmesaconine (4) with N-methyl moiety. It suggested that N-ethyl was more active than N-methyl in MSn analyses of C$_{19}$-diterpenoid alkaloids. Thus, N-ethyl moiety of C$_{19}$-diterpenoid alkaloids without C(3)-hydroxyl group was more active than the same moiety on the compounds with C(3)-hydroxyl unit or more active than N-methyl group.

3. Experimental

3.1. Chemicals and samples

Acetonitrile of HPLC grade was purchased from Merck Co. Ltd. (Darmstadt, Germany). Formic acid was purchased from Aladdin Chemistry Co. Ltd. (Shanghai, China). Deionized water was purified using a MingChe$^\text{TM}$-D 24UV Merck Millipore system (Shanghai, China).

Compounds 1–4 were isolated from the root of A. kusnezoffii Reichb. in our laboratory, whose structures were unambiguously determined by MS and NMR data. Sample solutions were prepared by dissolving each sample in a solution of 85% CH$_3$CN/H$_2$O containing 0.05% formic acid to a final concentration of 0.2 mg ml$^{-1}$. The samples were introduced into the source via a syringe pump at a flow rate of 2 µl min$^{-1}$.

3.2. Apparatus and analytical conditions

MSn analyses were applied on the LC–MS-IT-TOF mass spectrometer (Shimadzu, Kyoto, Japan). Accurate masses were corrected by calibration using the sodium trifluoroacetate (CF$_3$CO$_2$Na) clusters. The mass resolution was about 10 000 full width at half maximum (FWHM). The Shimadzu Composition Formula Predictor was used to speculate the molecular formula. MS experiments were achieved in automatic pattern, and MS2–6 experiments were performed in manual mode. The ESI-MS analytical conditions were as follows: drying gas pressure, 100.0 kPa; nebulizing gas (N$_2$) flow, 0.5 L min$^{-1}$; spray voltage, +4.5 KV; detector voltage, 1.60 kV; equipment temperature, 40.0°C; heat block temperature, 200.0°C; curved desolvation line temperature, 200.0°C; precursor ion selected width, m/z ± 3.0 Da, and selected time, 20 ms; collision induced dissociation collision time, 30 ms; ion accumulation time, 10 ms; collision energy, 50%; collision gas, 50%; and $q = 0.251$; scan range, m/z 100–1000 for MS.

4. Conclusions

Using HR-ESI-IT-TOT-MSn (MS1–6) to investigate the fragmentation pathways of aconitine (1), yunnaconitine (2), crassicauline A (3), and benzoylmesaconine (4) provided useful information and the finding rules were concluded: the [M $+$ H]$^+$ ion was readily detected under the acidic analytical conditions. The neutral losses of AcOH (−60 Da), MeOH (−32 Da), H$_2$O (−18 Da), CO (−28 Da), C$_2$H$_4$ (−28 Da) and PhCOOH (−122 Da) or p-OMePhCOOH (−152 Da) due to the presence of acetyl, methoxyl, hydroxyl, N-ethyl and benzoyl or p-methoxyl-benzoyl groups are the characteristic eliminations from the precursor ions. The losing sequence of the main substituent groups was: C(8)-acetyl $>$ C(16)-methoxyl $>$ C(15)-hydroxyl $>$ C(6)-methoxyl $>$ C(1)-methoxyl/C(3)-hydroxyl $>$ C(18)-methoxyl $>$ C(13)-hydroxyl. The absence of C(3)-hydroxyl made N-ethyl group much more active on the compounds. The eliminations of moieties at C(8), C(16), C(6), C(1) and...
C(14) positions were the originations to generate ions with high intensity.

Supplementary material

Supplementary material related to this article is available online.

Acknowledgments

This study was financed by the National Science Foundation of China for Distinguished Young Scholars (81025023), the National Natural Science Foundation of China (81202436), and the Youth Innovation Promotion Association, CAS.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] A. Ameri, *Eur. J. Pharmacol.* **342**, 183 (1998). doi:10.1016/S0014-2999(97)01498-2.

[2] H.K. Desai, B.P. Hart, R.W. Caldwell, J.Z. Huang, and S.W. Pelletier, *J. Nat. Prod.* **61**, 743 (1998). doi:10.1021/np970499j.

[3] Y. Suzuki, T. Oyama, A. Ishige, T. Isono, A. Asami, Y. Ikeda, M. Noguchi, and Y. Omiya, *Planta Med.* **60**, 391 (1994). doi:10.1055/s-2006-959516.

[4] F. Gao, Y.Y Li, D. Wang, X. Huang, and Q. Liu, *Molecules* **17**, 5187 (2012). doi:10.3390/molecules17055187.

[5] J.J. Liu, Q. Li, Y.D. Yin, R. Liu, H.R. Xu, and K.S. Bi, *J. Sep. Sci.* **37**, 171 (2014). doi:10.1002/jssc.201300775.

[6] W.W. Peng, W. Li, J.S. Li, X.B. Cui, Y.X. Zhang, G.M. Yang, H.M. Wen, and B.C. Cai, *J. Ethnopharmacol.* **148**, 579 (2013). doi:10.1016/j.ejep.2013.04.056.

[7] L. Song, H. Zhang, X. Liu, Z.L. Zhao, S.L. Chen, Z.T. Wang, and H.X. Xu, *Biomed. Chromatogr.* **26**, 1567 (2012). doi:10.1002/bmc.2733.

[8] H. Hattori, Y. Hirata, M. Hamajima, R. Kaneko, K. Ito, A. Ishii, O. Suzuki, and H. Seno, *Forensic Toxicol.* **27**, 7 (2009). doi:10.1007/s11419-008-0060-z.

[9] L.J. Cui, A. Zeper, M. Xia, L.Y. Zhao, S. Gao, W.Y. He, Y. Xiang, F. Liang, and S.S. Yu, *Rapid Commun. Mass Spectrom.* **18**, 184 (2004). doi:10.1002/rcm.1297.

[10] Lajos Nagy, Ákos Kuki, Katalin Szabó, Attila Sipos, Miklós Zsuga, and Sándor Kéki, *Rapid Commun. Mass Spectrom.* **28**, 822 (2014). doi:10.1002/rcm.6847.

[11] G.L. Yan, H. Sun, W.J. Sun, L. Zhao, X.C. Meng, and X.J. Wang, *J. Pharmaceut. Biomed.* **53**, 421 (2010). doi:10.1016/j.jpba.2010.05.004.

[12] H. Yue, Z.F. Pi, F.R. Song, Z.Q. Liu, Z.W. Cai, and S.Y. Liu, *Talanta* **77**, 1800 (2009). doi:10.1016/j.talanta.2008.10.022.

[13] Y. Wang, F.R. Song, Q.X. Xu, Z.Q. Liu, and S.Y. Liu, *J. Mass Spectrom.* **38**, 962 (2003). doi:10.1002/jms.510.

[14] Y. Wang, Z.Q. Liu, F.R. Song, and S.Y. Liu, *Rapid Commun. Mass Spectrom.* **16**, 2075 (2002). doi:10.1002/rcm.828.

[15] Y. Chen, S. koelliker, M. Oehme, and A. Katz, *J. Nat. Prod.* **62**, 701 (1999). doi:10.1021/np980442c.

[16] Q.R. Li, G.Q. Yan, and T.F. Ge, *Rapid Commun. Mass Spectrom.* **22**, 373 (2008). doi:10.1002/rcm.3366.

[17] Q.R. Li, G.Q. Yan, and T.F. Ge, *Rapid Commun. Mass Spectrom.* **21**, 2843 (2007). doi:10.1002/rcm.3156.

[18] R. Hu, J. Zhao, L.W. Qi, P. Li, S.L. Jing, and H.J. Li, *Rapid Commun. Mass Spectrom.* **23** 1619 (2009). doi:10.1002/rcm.4038.

[19] R. Li, Z.J. Wu, F. Zhang, and L.S. Ding, *Rapid Commun. Mass Spectrom.* **20**, 157 (2006). doi:10.1002/rcm.2283.