COMMUTING DIFFERENTIAL AND DIFFERENCE OPERATORS ASSOCIATED TO COMPLEX CURVES, II

B. ENRIQUEZ AND G. FELDER

Introduction. This paper is a sequel to [4]. Our main aim is to construct a commuting family of difference-evaluation operators \((T^\mathit{diff}_z)\), deforming the difference-evaluation operators \(T^\mathit{class}_z\) of [4], and to interpret them as the action of the center of a quantum algebra in the space of intertwiners of a “regular” subalgebra.

Let us recall first some points of [4]. In that paper, we proposed a functional approach to the Knizhnik-Zamolodchikov-Bernard (KZB) connection, relying on the functional picture for conformal blocks of [9]. Recall that conformal blocks are associated to a complex curve \(X\) with a marked point \(P_0\), a simple Lie algebra \(\bar{g}\) and representations \(V\) and \(V^{out}\) of \(g\) and \(g^{out}\) out, where \(g\) is the Kac-Moody algebra \((\bar{g} \otimes K) \oplus C K\), and \(g^{out}\) is the Lie subalgebra of \(g\) formed of the currents regular outside \(P_0\) (we denote by \(K\) is the local field of \(X\) at \(P_0\), and defined as the space of \(g^{out}\)-intertwiners \(\psi\) from \(V\) to \(V\). Twisted conformal blocks are defined in the same way, replacing \(g^{out}\) by the Lie subalgebra \(g^{out}_{\lambda_0}\) of \(g\) formed of the maps \(x\) from the universal cover of \(X\), regular outside the preimage of \(P_0\), with transformation properties \(x(\gamma_{A_z}) = x(z)\) and \(x(\gamma_{B_z}) = e^{\lambda_0(z)} x(z) e^{-\lambda_0(z)}\), where \(\gamma_{A_z}\) and \(\gamma_{B_z}\) are deck transformations corresponding to \(a\)- and \(b\)-cycles; \(\lambda_0 = (\lambda_a^{(0)})\) belongs to \(\bar{h}^\mathit{t}\), where \(h\) is the Cartan subalgebra of \(\bar{g}\) and \(g^{out}_{\lambda_0}\) is the Lie subalgebra of \(g\). We parametrize the space of twisted conformal blocks by associating to \(\psi_{\lambda_0}\) the twisted correlation functions of currents of \(g\) associated to the simple root generators of its nilpotent subalgebra \(\bar{n}_+\). Denote by \(e_i, f_i, h_i\) the Chevalley generators of \(\bar{g}\), so that the \(e_i\) generate \(\bar{n}_+\), and set \(x[f] = x \otimes f\), for \(x\) in \(\bar{g}\), \(f\) in \(K\). To a vector \(v\) of \(V\), annihilated by the \(h_i[z^k], f_i[z^{-1} \cdot g + k], k' > 0, k \geq 0\) (this property is shared by the extremal vectors in integrable modules), and to an intertwiner \(\psi_{\lambda_0}\), we associate the generating series

\[f(\lambda_a^{(i)} | z_j^{(i)}) = \langle \psi_{\lambda} | \prod_{i} \prod_{j=1}^{n_j} e_i(z_j^{(i)}) v | \rangle, \]

where \(\psi_{\lambda} = \psi_{\lambda_0} \circ e^{\sum \lambda_a^{(0)} h [r_a]}\), the \(r_a\) are multivalued functions on \(X\), constant along \(a\)-cycles and with additive constants along \(b\)-cycles, and \(\xi\) is a lowest weight form on \(V\). The \(\lambda_a\) are formal parameters near \((\lambda_a^{(0)})\) and the \(z_i\) are formal parameters near \(P_0\).

Date: December 1998.
Theorem 0.1. (see [4]) Let T_z^{class} be the differential-evaluation operator acting on functions $f(\lambda_1, \ldots, \lambda_g|z_1, \ldots, z_n)$ as

$$T_z^{\text{class}} = \frac{1}{2} \sum_{a} \omega_a(z) \partial_{\lambda_a} + 2 \sum_{i} G^{(I)}(z, z_i) - \sum_{j} \Lambda_j G^{(I)}(z, P_j)^2$$

$$+ \sum_{a} D_z^{(2\lambda)} \omega_a(z) \partial_{\lambda_a} + 2 \sum_{i} D_z^{(2\lambda)} G^{(I)}(z, z_i) - \sum_{j} \Lambda_j D_z^{(2\lambda)} G^{(I)}(z, P_j) + k \omega_{2\lambda}(z)$$

$$+ \sum_{i=1}^{n} \left(-2 G^{(I)}_{2\lambda}(z, z_i) \left[\sum_{a} \omega_a(z_i) \partial_{\lambda_a} + 2 \sum_{j \neq i} G^{(I)}(z_i, z_j) - \sum_{k} \Lambda_k G^{(I)}(z_i, P_k) \right] - 4 G^{(I)}_{2\lambda}(z, z_i) G^{(I)}(z_i, z) + 2kd_z G^{(I)}_{2\lambda}(z, z_i) \right) \circ \text{ev}_z^{(i)},$$

where

$$(\text{ev}_z^{(i)} f)(\lambda|z_1, \ldots, z_n) = f(\lambda|z_1, \ldots, z \setminus z_i, z_n)$$

(z in ith position), we set $\lambda = (\lambda_1, \ldots, \lambda_g)$, $D_z^{(2\lambda)}$ is a connection on the bundle K of differentials on X and has simple pole at P_0, the ω_a are the holomorphic one-forms associated with the a-cycles, $\omega_{2\lambda}$ is a quadratic differential with double poles at P_0, $G^{(I)}$ and $G^{(I)}_{2\lambda}$ are (twisted) Green functions, P_j are some point of $X - \{P_0\}$ and Λ_i are some numbers.

If V is the product $\otimes_i V_{-\Lambda_i}(P_i)$ of evaluation modules ($V_{-\Lambda_i}$ is the \mathfrak{sl}_2-module with lowest weight $-\Lambda_i$), we have the equality

$$\langle \psi_\lambda [T(z) \prod_i e_i(z_i^{(i)}) v], \xi \rangle = (T_z^{\text{class}} f)(\lambda|z_1, \ldots, z_n),$$

if k is the level of \mathcal{V}. The operators T_z^{class} commute when $k = -2$.

When X is \mathbb{CP}^1, the expression of T_z^{class} is similar to the expression for the action of the Hamiltonians on Bethe vectors obtained in the Bethe ansatz approach to the Gaudin system (see [10]).

In the present paper, we repeat these steps of [4] in the quantum case, at the critical level. We replace the Kac-Moody algebra \mathfrak{g} by the quantum group $U_{h,\omega} \mathfrak{g}$ associated to a pair (X, ω) of a curve X and a rational differential ω ([3]). The relations for this algebra depend on the choice of a Lagrangian subspace of K, that we construct in sect. [4]. We recall the presentation of $U_{h,\omega} \mathfrak{g}$ in terms of generating fields $e(z), f(z), k^\pm(z)$ (sect. [4]). The algebra $U_{h,\omega} \mathfrak{g}$ contains a subalgebra $U_h \mathfrak{g}^{\text{out}}$, which is a flat deformation of the enveloping algebra of $\mathfrak{g}^{\text{out}}$ ([4]).

Let $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$ be the Cartan decomposition of \mathfrak{g}. Let \mathfrak{m} be the maximal ideal at P_0 and \mathfrak{b}_{in} be the subalgebra of \mathfrak{g} defined as $\mathfrak{b}_{in} = (\mathfrak{h} \otimes \mathfrak{m}) \oplus (\mathfrak{n}_+ \otimes \mathcal{K})$.

In [4], we expressed the KZB connection in terms of these correlation functions. Let $T(z)$ denote the Sugawara tensor; it is a series in $(U \mathfrak{g})_{\text{loc}}[[z, z^{-1}]]$, where $(U \mathfrak{g})_{\text{loc}}$ is the local completion of the universal enveloping algebra $U \mathfrak{g}$. In the case $\mathfrak{g} = \mathfrak{sl}_2$, we have

$$T_z = \frac{1}{2} \sum_{a} \omega_a(z) \partial_{\lambda_a} + 2 \sum_{i} \Lambda_i G^{(I)}(z, z_i)$$

$$+ \sum_{a} D_z^{(2\lambda)} \omega_a(z) \partial_{\lambda_a} + 2 \sum_{i} D_z^{(2\lambda)} G^{(I)}(z, z_i) - \sum_{j} \Lambda_j D_z^{(2\lambda)} G^{(I)}(z, P_j) + k \omega_{2\lambda}(z)$$

$$+ \sum_{i=1}^{n} \left(-2 G^{(I)}_{2\lambda}(z, z_i) \left[\sum_{a} \omega_a(z_i) \partial_{\lambda_a} + 2 \sum_{j \neq i} G^{(I)}(z_i, z_j) - \sum_{k} \Lambda_k G^{(I)}(z_i, P_k) \right] - 4 G^{(I)}_{2\lambda}(z, z_i) G^{(I)}(z_i, z) + 2kd_z G^{(I)}_{2\lambda}(z, z_i) \right) \circ \text{ev}_z^{(i)},$$

where

$$(\text{ev}_z^{(i)} f)(\lambda|z_1, \ldots, z_n) = f(\lambda|z_1, \ldots, z \setminus z_i, z_n)$$

(z in ith position), we set $\lambda = (\lambda_1, \ldots, \lambda_g)$, $D_z^{(2\lambda)}$ is a connection on the bundle K of differentials on X and has simple pole at P_0, the ω_a are the holomorphic one-forms associated with the a-cycles, $\omega_{2\lambda}$ is a quadratic differential with double poles at P_0, $G^{(I)}$ and $G^{(I)}_{2\lambda}$ are (twisted) Green functions, P_j are some point of $X - \{P_0\}$ and Λ_i are some numbers.
We construct, in $U_{h,\omega}\mathfrak{g}$, a subalgebra isomorphic to $(U_{\mathfrak{h}}[[[h]])$ (sect. 3). This subalgebra is expressed in terms of “new” generating fields $\tilde{e}(z)$, $\tilde{f}(z)$ and $k_{\text{tot}}^\pm(z)$; we study their relations in sect. 4. In the rational case, such generating fields appeared in [15]. We express a generating function for central elements $T(z)$ deforming the Sugawara tensor by the formula (see Thm. 5.1)

$$T(z) = e(z)\tilde{f}(z) + \lambda a_\lambda(z) k_{\text{tot}}^+(z) + \lambda b_\lambda(z) k_{\text{tot}}^-(z),$$

where $a(z)b(z) \lambda$ denotes a normal ordered product, depending on λ and $a_\lambda(z)$ and $b_\lambda(z)$ are formal series of $K[[\lambda_a - \lambda_a^{(0)}]][[h]]$ defined by (18) and (19). We also obtain another expression for $T(z)$ of the type obtained in [12, 14], see (3).

We construct a subalgebra $U_{h,\omega}^{\text{out}}$ of $U_{h,\omega}\mathfrak{g}$ in sect. 3 deforming the enveloping algebra of $\mathfrak{g}_{\text{tot}}^{\text{out}}$ and study a class of its representations (sect. 7). We show that such representations have a lowest weight form ξ, such that

$$\xi \circ f[\tau_{-2\lambda}] = 0, \quad \xi \circ k^+(z) = \pi(z)\xi,$$

for $\tau_{-2\lambda}$ in $R_{\tau_{-2\lambda}}$ and $\pi(z)$ a formal series, which is an analogue of the Drinfeld polynomial.

To a module V over $U_{h,\omega}\mathfrak{g}$, and to a morphism $\psi_{\lambda_0} : V \to V$ of $U_{h,\omega}^{\text{out}}$-modules, where V is a product of evaluation modules, we associate the correlation function

$$f(\lambda_1, ..., \lambda_y, z_1, ..., z_n) = \langle \psi_{\lambda_0} \tilde{e}(u_1) \cdots \tilde{e}(u_n) \rangle,$$

where ξ is a lowest weight form on V and $\psi_{\lambda} = \psi_{\lambda_0} \circ e^{\sum(\lambda_a - \lambda_a^{(0)})\hbar[r_a]}$. We study the functional properties of $f(\lambda_1, ..., \lambda_y, z_1, ..., z_y)$ in sect. 8.

Our main result is then

Theorem 0.2. (see Thm. 10.1) Let for any formal series Π, $(T^\Pi_z)_z$ be the family of operators acting on functions $f(\lambda|u_1, ..., u_n)$, defined as

$$T^\Pi_z = \Pi(z) a'_{\lambda}(z|u_1, ..., u_n) \circ e^{\sum \omega^\Pi(z) \partial / \partial \lambda_a} + \Pi(q^{-\partial} z)^{-1} \Pi(u_1, ..., u_n) \circ e^{\sum \omega^\Pi(z) \partial / \partial \lambda_a} + \sum \Pi(u_i) c_{\lambda}^{\Pi(i)}(z|u_1, ..., u_n) \circ e^{\sum \omega^\Pi(z) \partial / \partial \lambda_a} \circ \text{ev}_z^{(i)}$$

where the multiplication operators are denoted as functions, and we set

$$a'_{\lambda}(z|u_1, ..., u_n) = a_{\lambda}(z) q \prod q_m(z, u_i), \quad a''_{\lambda}(z|u_1, ..., u_n) = b'_{\lambda}(z) \kappa(z) q \prod q_m(q^{-\partial} z, u_i)^{-1},$$

$$c_{\lambda}^{\Pi(i)}(z|u_1, ..., u_n) = -\frac{G_2}{h} G_{2\lambda}(z, u_i) q_m(u_i, z) \prod q_m(u_i, u_j),$$

$$c_{\lambda}^{\Pi(i)}(z|u_1, ..., u_n) = \frac{G_2}{h} G_{2\lambda}(z, q^{-\partial} u_i) \kappa(u_i) q_m(q^{-\partial} u_i, z)^{-1} \prod q_m(q^{-\partial} u_i, u_j)^{-1},$$
\[\omega'_a = \hbar \frac{1}{1 + q^{-2}} (\omega_a / \omega)(z), \quad \omega''_a = -\hbar \frac{1}{1 + q^{-2}} (\omega_a / \omega)(z), \quad G_{2\lambda}(z, w) = G^{(f)}_{2\lambda}(z, w) / \omega(z), \]

where \(\partial \) is the derivation associated with \(\omega \), so that \(\partial f = df / \omega(z) \), \(a, b, c, q \) are defined in (48), (50), (59) and (60), and \(q = e^h \). The operators \(\hat{T}^{(\Pi)}_2 \) commute and normalize first order difference operators \(\hat{f}[^{\rho}] \) defined by (63). Moreover, we have, if the subalgebra \(U_h \mathfrak{b}^{\geq 1 - \gamma} \) of \(U_h \mathfrak{b}_m \) acts on \(\psi \) by the character \(\chi_n \) (see sect. [7]).

\[\langle \psi_{\lambda}(T(z)\bar{c}(u_1) \cdots \bar{c}(u_n)\psi), \xi \rangle = T_z \{ \langle \psi_{\lambda}[\bar{c}(u_1) \cdots \bar{c}(u_n)\psi], \xi \rangle \}, \]

where \(\Pi \) can be expressed in terms of \(\pi \). We also set \(\Pi(q^\beta z) = (q^\beta \Pi)(z) \).

The \(T^{(\Pi)}_2 \) are difference deformations of the \(T^{class}_2 \). In the rational case, we identify the operators \(T^{(\Pi)}_2 \) with the commuting family of operators provided by the Yangian action on the hypergeometric spaces of [8] (see sect. [9]). In the elliptic case, we identify \(T^{(\Pi = 1)}_2 \) with the first \(q \)-Lamé operator (rem. [10]).

Let us say some words about possible prolongations of the present work:

1) noncritical level. One could try to prove analogues of the theta-behavior results of [6] for the twisted correlation functions of integrable modules over \(U_{h, \omega} \mathfrak{g} \).

Another problem is to find analogues of the KZB flows for noncritical level, by extending the approach of [4] for the twisted correlation functions of integrable modules over \(\mathfrak{g} \).

2) versions where \(\hbar \) takes complex values. When \(\omega \) is the pull-back of the form \(dz \) or \(dz/z \) from a morphism \(X \to \mathbb{C}P^1 \) or \(X \to E \), \(E \) some elliptic curve, \(q^\beta \) at least makes sense as some correspondence on \(X \). It could then be possible to find a presentation of \(U_{h, \omega} \mathfrak{g} \) allowing for complex values of \(\hbar \). This was done in [8] in the case \(X = \mathbb{C}P^1 \), \(\omega = z^N dz \).

3) Bethe ansatz for the operators \(T_z \). In [11], Bethe equations for the Gaudin system are shown to be equivalent to the existence of intertwining operators at critical level, and in turn to a trivial monodromy condition for some connection. The similar study should be possible for the systems constructed here, so that they could be viewed as \(q \)-deformations of the differential systems arising in [4].

We would like to express our thanks to B. Feigin, E. Frenkel and V. Tarasov for discussions about this paper; the first author would like to express his gratitude to A.-S. Sznitman for invitation to the FIM, ETHZ, where this work was done.

1. Geometric setting

1.1. Isotropic supplementaries. Let \(X \) be a smooth compact complex curve of genus \(g \), endowed with a nonzero holomorphic form \(\omega \). Let \(\sum_{i=1}^p n_i P_i \) be the divisor of \(\omega \) (we have \(n_i > 0 \), \(\sum_i n_i = 2(g - 1) \)). Let for each \(i \), \(\mathcal{K}_i \) be the local field at \(P_i \), \(\mathcal{O}_i \) the local ring at this point and \(\mathfrak{m}_i \) the maximal ideal of \(\mathcal{O}_i \). Define \(\mathcal{K} \) as \(\bigoplus_{i=1}^p \mathcal{K}_i \) and \(R \) as the space of rational functions on \(X \), regular outside \(\{ P_i \} \); we view it as a subring of \(\mathcal{K} \). For each \(i \), let \(z_i \) be a local coordinate at \(P_i \). Then \(\mathcal{O}_i = \mathbb{C}[[z_i]], \mathfrak{m}_i = z_i \mathcal{O}_i \) and \(\mathcal{K}_i = \mathbb{C}((z_i)) \).
\(\mathcal{K} \) is endowed with a scalar product \(\langle \cdot, \cdot \rangle_{\mathcal{K}} \) defined by
\[
\langle f, g \rangle_{\mathcal{K}} = \sum_{i=1}^{p} \text{res}_{P_i}(fg\omega).
\]

Let us fix on \(X \) a choice of \(a \)- and \(b \)-cycles \((A_a)_{1 \leq a \leq g}\) and \((B_a)_{1 \leq a \leq g}\). Let \(\tilde{X} \) be the universal cover of \(X \) and \(\pi: \tilde{X} \to X \) be the cover map. Denote by \(\gamma_{A_a} \) and \(\gamma_{B_a} \) the deck transformations associated with the cycles \(A_a \) and \(B_a \).

Lemma 1.1. There exists a linearly independent family of \(R \) formed by elements \(f_{(m_i)} \), where \(m_i, i = 1, \ldots, p \) are integers such that \(m_i \geq n_i \) for each \(i \) and \(\sum_i m_i \geq \sum_i n_i + 2 \), with \(\text{val}_{P_i}(f_{(m_i)}) = -m_i \), for each \(i = 1, \ldots, p \).

Proof. Let us first construct the \(f_{(m_i)} \). Assume \(m_j \geq n_j + 1 \), then by the Riemann-Roch theorem,
\[
h^0(O(\sum_i m_i P_i)) - h^0(O(\sum_i m_i P_i - P_j)) = 1 + h^1(O(\sum_i m_i P_i)) - h^1(O(\sum_i m_i P_i - P_j));
\]
by Serre duality this is equal to
\[
1 + h^0(O(\sum_i (n_i - m_i) P_i)) - h^0(O(\sum_i (n_i - m_i) P_i + P_j)).
\]
All the \(n_i - m_i + \delta_{ij} \) are \(\leq 0 \) and their sum is \(< 0 \), so not all of them are zero. Therefore both \(h^0 \) vanish. This proves the existence of the \(f_{(m_i)} \). \(\square \)

Lemma 1.2. We have \(g \) functions \(r_a \) defined on \(\tilde{X} \), regular outside \(\pi^{-1}(\{P_i\}) \), such that
i) \(r_a \circ \gamma_{B_b} = r_a - \delta_{ab} \),
ii) \(\text{val}_{P_i}(r_a) \leq -n_i - \delta_{i1} \) and
iii) \(\int_{A_a} r_a \omega = \frac{1}{2} \int_{A_a} \omega \delta_{ab} \).

Proof. The existence of rational functions \(\tilde{r}_a \) defined on \(\tilde{X} \), regular outside \(\pi^{-1}(\{P_i\}) \) and satisfying i) is a consequence of Cor. 1.1. Adding to them suitable combinations of the \(f_{(m_i)} \), one gets functions \(\tilde{r}_a \) satisfying both i) and ii). Let \(\omega_a \) be a basis of the space of holomorphic one-forms on \(X \). The ratios \(\omega_a/\omega \) are elements of \(R \), with valuation at each \(P_i \) less or equal to \(-n_i \). Adding to the \(\tilde{r}_a \) suitable combinations of the \(\omega_a/\omega \), one obtains elements \(r_a \) satisfying i), ii) and iii). \(\square \)

Proposition 1.1. Set \(\Lambda = (\oplus_a C r_a) \oplus (m_1 \oplus O_2 \oplus \cdots \oplus O_p) \). We have a direct sum decomposition
\[
\mathcal{K} = R \oplus \Lambda;
\]
moreover, \(R \) and \(\Lambda \) are both maximal isotropic subspaces of \(\mathcal{K} \).
Proof. The fact that $K = R \oplus \Lambda$ follows from [3], Prop. 1.1. That $\langle r_a, r_b \rangle = 0$ follows from [3], 4.1.1. Let us show that $\langle r_a, m_i \rangle$ vanishes: for $n > 0$, $\text{val}_{P_i}(r_a z_i^n \omega) > (-n_i - 1) + n_i = -1$ so $\text{res}_{P_i}(r_a z_i^n \omega)$ is zero; and for $i > 1$, $\langle r_a, O_i \rangle$ vanishes because for $n \geq 0$, $\text{val}_{P_i}(r_a z_i^n \omega) \geq -n_i + n_i = 0$ so $\text{res}_{P_i}(r_a z_i^n \omega)$ is zero.

Remark 1. In the case where ω has a unique zero of order 2($g - 1$) at some point P_0, R is spanned by $f_0, f_{-a_1}, f_{-a_2}, ..., f_{-a_g}, f_{-g-1}, f_{-g-2}, ...$ with $\text{val}_{P_0}(f_i) = i$: if $\omega_1, ..., \omega_g$ be a basis of the space of holomorphic one-forms $H^0(X, \Omega_X)$, with $\text{val}_{P_0}(\omega_i) = b_i$, so that $0 \leq b_1 < b_2 < ... < b_g = 2(g - 1)$, then $f_0 = 1$, $f_{-a_1} = \omega_g^{-1}/\omega_g$, $f_{-a_2} = \omega_{g-1}/\omega_g$, etc. On the other hand, the r_a may be chosen to have poles of order $b_1, ..., b_g$ at P_0, with $\{a_1, ..., a_g\} \cup \{b_1, ..., b_g\} = \{1, ..., 2g - 1\}$.

If X is a hyperelliptic curve $y^2 = P_{2g+1}(x)$, P_{2g+1} a polynomial of degree $2g + 1$, and $\omega = dx/y$; more generally, if X is a plane curve of equation $P(z) = Q(y)$, and $\omega = dx/Q'(y) = -dy/P'(x)$, with P and Q generic polynomials of coprime degrees p and q, (in that case, $g = \frac{(p-1)(q-1)}{2}$), ω has a zero of order $2(g - 1)$ at the point at infinity.

1.2. (Twisted) Green functions. We will denote by z the n-uple (z_i) of K. We will denote by $\mathbb{C}[[z, z^{-1}]]$ the set of series $\sum_{i=1}^{p} \sum_{n \in \mathbb{Z}} a_{in} z_i^n$, and by $\mathbb{C}[[z, w]]$ the space $\prod_{1 \leq i, j \leq p} \mathbb{C}[[z_i, w_j]]$.

We define $\delta(z, w)$ as the sum $\sum_i e^i(z) e_i(w)$, where (e^i) and (e_i) are dual bases of K for $\langle \cdot, \cdot \rangle_K$.

The space of functions in two variables z and w will be identified with the tensor square of the space of functions in one variable, via the identification $a(z)b(w) \mapsto a \otimes b$.

1.2.1. Green function. Let $(e^i), (e_i)$ be dual bases of R and Λ. We will assume that (e_i) is the union of (r_a) and a basis of $m = m_1 \oplus O_2 \oplus \cdots \oplus O_p$. We set

$$G = \sum_i e^i \otimes e_i.$$ \hfill (1)

We have then $\delta(z, w) = G(z, w) + G(w, z)$. $G(z, w)$ is the collection of expansions, for w near each P_i, of a rational function defined on X^2, antisymmetric in z and w, regular except for poles when z of w meets some P_i and a simple pole at the diagonal.

1.2.2. Twisted Green functions. To $\lambda_0 = (\lambda_a^{(0)})_{1 \leq a \leq g}$ a vector of \mathbb{C}^g is associated the line bundle $L_{2\lambda_0}$ over X. The space $H^0(X - \{P_0\}, L_{2\lambda_0})$ may be identified with the space of functions on X, regular outside $\pi^{-1}(P_0)$, with transformation properties

$$f(\gamma_{B_0} z) = f(z) \quad \text{and} \quad f(\gamma_{B_0} z) = e^{-2\lambda_0} f(z).$$ \hfill (2)

This space of functions will be denoted $R_{-2\lambda_0}$. For λ_0 generic, a complement in K of this space is $z_i^{1-g} O_1 \oplus O_2 \oplus \cdots \oplus O_p$.

Let $\lambda = (\lambda_a)_{1 \leq a \leq g}$ be g formal parameters at the vicinity of λ_0, and define $R_{-2\lambda}$ as the $\mathbb{C}[\lambda_0 - \lambda_0^{(0)}]$-submodule of $\mathcal{K}[[\lambda_0 - \lambda_0^{(0)}]]$ generated by the $e^{2\sum_a (\lambda_a - \lambda_0^{(0)}) r_a \phi}$, $\phi \in R_{-2\lambda_0}$. Define also $\Lambda' = (z^{-q} \mathcal{O}_1 \oplus \mathcal{O}_2 \oplus \cdots \oplus \mathcal{O}_p)[[\lambda_0 - \lambda_0^{(0)}]]$.

Then we have a direct sum decomposition

$$\mathcal{K}[[\lambda_0 - \lambda_0^{(0)}]] = R_{-2\lambda} \oplus \Lambda'.$$

For ϕ in $\mathcal{K}[[\lambda_0 - \lambda_0^{(0)}]]$, we denote by $\phi_{\Lambda'}$ and $\phi_{R_{2\lambda}}$ the projections of ϕ on Λ' parallel to $R_{2\lambda}$, resp. on $R_{2\lambda}$ parallel to Λ'. For $\phi(z)$ a series $\sum_i \phi_i(z)$, we define $\phi(z)_{z \to \Lambda'}$ as $\sum_i \phi_i(\epsilon_i)_{\Lambda'}(z)$ and $\phi(z)_{z \to R_{2\lambda}}$ as $\sum_i \phi_i(\epsilon_i)_{R_{2\lambda}}(z)$.

We have then $f(z) = f(z)_{z \to \Lambda'} + f(z)_{z \to R_{2\lambda}}$.

Let $(e_i^{\Lambda'}), (e_i^{R_{2\lambda}})$ be dual bases of $R_{2\lambda}$ and Λ', and let us set

$$G_{2\lambda}(z, w) = \sum_i e_i^{\Lambda'}(z) e_i^{R_{2\lambda}}(w). \quad (3)$$

We have $\delta(z, w) = G_{2\lambda}(z, w) + G_{-2\lambda}(w, z)$. $G_{-2\lambda}(z, w) - G(z, w)$ belongs to $\mathbb{C}[[z, w]][z^{-1}, w^{-1}]$. The functions

$$g_+^\lambda(z) = (G_{-2\lambda} - G)(q^\theta z, z), \quad g_-^\lambda(z) = (G_{-2\lambda} - G)(q^{-\theta} z, z)$$

then belong to $\mathcal{K}[[h]]$.

Remark 2. Relation with the Green functions of [3]. In [3], we introduced Green function $G(z, w)$ and a twisted Green function $G_{2\lambda}(z, w)$, that we denote here by $G^{(1)}(z, w)$ and $G_{2\lambda}^{(1)}(z, w)$. Let ω_a be the basis of one-forms on X, associated to $(A_a)_{1 \leq a \leq g}$. The relation of these Green functions with $G(z, w)$ and $G_{2\lambda}(z, w)$ defined by (3) (under the assumptions of Prop. [3,1]) and (3) is

$$G(z, w) = \left(G^{(1)}(z, w) + \sum_a \omega_a(z) r_a(w) \right) / \omega(z)$$

and

$$G_{2\lambda}(z, w) = G_{2\lambda}^{(1)}(z, w) / \omega(z).$$

Set

$$\bar{g}_\lambda(z) = \lim_{z \to w} (G_{\lambda}(z, w) - G(z, w)).$$

One can show that

$$\bar{g}_\lambda(z) = \sum_a \partial_{\epsilon_a} \ln \Theta(-\lambda + (g - 1)P_0 - \Delta) \omega_a(z) / \omega(z).$$

where $(\epsilon_a)_{1 \leq a \leq g}$ is the canonical basis of \mathbb{C}^g, Θ is the Riemann theta-function on the Jacobian of X and points of X are identified with their images by the Abel-Jacobi map ([3, 4.4]).
2. THE ALGEBRA $U_{h,\omega}g$

Notation. For E a vector space and E', E'' two subspaces, such that E is the direct sum $E' \oplus E''$, and for ϕ in E, we denote by $\phi_{E'|E''}$ the projection of ϕ on E' parallel to E''. In the case of the decompositions $\mathcal{K} = R \oplus \Lambda$, $\mathcal{K}[[\lambda_a - \lambda_0]] = R_{2\lambda} \oplus \Lambda'$ and $\mathcal{K} = R(a) \oplus m$ below, we will simply denote $\phi_{E'|E''}$ and $\phi_{E''|E'}$ by $\phi_{E'}$ and $\phi_{E''}$ respectively.

For (ϵ_i) a basis of \mathcal{K} and $f(z)$ a series $\sum_i \epsilon_i(z) \otimes v_i$ in some completion of $\mathcal{K} \otimes V$, V some vector space, we define $f(z)_{z \to \Lambda}$ as $\sum_i (\epsilon_i)_\Lambda(z) \otimes v_i$, and $f(z)_{z \to R}$ as $\sum_i (\epsilon_i)_R(z) \otimes v_i$. One define in the same way $f(z)_{z \to R_{2\lambda}}$ and $f(z)_{z \to \Lambda'}$. If $f(z, w)$ is a series $\sum_{i,j} \epsilon_i(z) \epsilon_j(w) v_{ij}$, $f(z, w)_{z \to \Lambda}$ is $\sum_{i,j} (\epsilon_i)_\Lambda(z) \epsilon_j(w) v_{ij}$, etc.

If $f(z, w)$ belongs to $R_z((w))$ (the space of series $\sum_{i \geq 0} r_i(z) w^i$, with r_i in R) and there exists $g(z, w)$ in $R_w((z))$, such that $f + g = (\pi \otimes \text{id}) \delta(z, w)$, where π is some differential operator, then f is the expansion of a rational function on $X - \{P_i\}^2$ with only poles at the diagonal, and g may be viewed as the analytic prolongation of $-f$ in the region $z << w$. We write $g(z, w) = -f(z, w)_{z << w}$.

We write ∂_{z} for $\partial \otimes \text{id}$, ∂_{w} for $\text{id} \otimes \partial$. We set $\phi^{(21)}(z, w) = \phi(w, z)$.

2.1. Results on kernels. (see [6])

We have

$$\partial_{z} G(z, w) = -G(z, w)^2 - \gamma,$$

for some $\gamma \in R \otimes R$.

Let ϕ, ψ belong to $h\mathbb{C}[\gamma_0, \gamma_1, \ldots][[h]]$ such that

$$\partial_h \psi = D\psi - 1 - \gamma_0 \psi^2, \quad \partial_h \phi = D\phi - \gamma_0 \psi.$$

Here $D = \sum_{i \geq 0} \gamma_{i+1} \partial_{h_i}$. We have

$$\psi(h, \partial^i_{h\gamma}) = -h + o(h), \quad \phi(h, \partial^i_{h\gamma}) = \frac{1}{2} h^2 \gamma_0 + o(h^2).$$

Set $G^{(21)}(z, w) = G(w, z)$. From identity (3.11) of [6] (with ∂ transformed to $-\partial$) and by (3.8) of [6], we have

$$\sum_i \frac{1 - q^{-\partial}}{\partial} e_i(z) \otimes e^i(w) = -\phi(-h, \partial^i_{h\gamma}) + \ln(1 + G^{(21)}(\psi(-h, \partial^i_{h\gamma}))).$$

4

Set $T = \frac{\sinh h \partial}{h \partial}$. Let τ in $(R \otimes R)[[h]]$ satisfy

$$\tau + \tau^{(21)} = -\sum_i e^i \otimes (Te_i)_R.$$

Let U be the linear map from Λ to $R[[h]]$ such that $\tau = \sum_i U e_i \otimes e^i$. We have

$$\sum_i (T + U) e_i \otimes e^i + \sum_i e^i \otimes (T + U)e_i = (T \otimes \text{id}) \delta(z, w),$$

which means that after analytic prolongation the sum $\sum_i (T + U) e_i \otimes e^i$ is antisymmetric in z and w.

Set $T_+ = \frac{1 - q^{-\theta}}{2h\theta}$ and define $U_+ : \Lambda \to R[[h]]$ by the formula $U_+ = (1 + q^\theta)^{-1} \circ U$; we have

$$(T_+ + U_+)(\lambda) = \frac{1}{1 + q^\theta((T + U)(\lambda)).}$$

Define q_+ by

$$q_+(z, w) = q^2 \sum_i (T_+ + U_+) e_i(z) \otimes e^i(w),$$

it then follows from (4) that

$$q_+(z, w) = q^2 \sum_i (U_+ e_i)(z) \otimes e^i(w) e^{-\phi(-h, \partial_\gamma)} (1 + G^{(21)}(\psi(-h, \partial_\gamma))). \tag{6}$$

Remark 3. Formulas of this section correct a sign mistake in [3]: in sect. 3 of that paper, ∂ should be changed to $-\partial$.

2.2. The algebra $U_{h, \omega}$ has generators $h^+ [r], h^- [\lambda], e[\epsilon], f[\epsilon]$ and K, with r in R, λ in Λ and ϵ in K; generating series

$$x(z) = \sum_i x[e^i] e_i(z), \quad h^+(z) = \sum_i h^+[e^i] e_i(z), \quad h^-(z) = \sum_i h^-[e_i] e^i(z),$$

$x = e, f$, and relations

$$x[\alpha \epsilon + \epsilon'] = \alpha x[\epsilon] + x[\epsilon'],$$

for α scalar, $x = h^+, \epsilon, \epsilon'$ in R; $x = h^-, \epsilon, \epsilon'$ in Λ; or $x = e, f, \epsilon, \epsilon'$ in K;

$$[h^+[r], h^+[r']] = 0, \tag{7}$$

$$[K, \text{anything}] = 0, \quad [h^+[r], h^-[\lambda]] = \frac{2}{h} \langle (1 - q^{-K}) r, \lambda \rangle, \tag{8}$$

$$[h^-[\lambda], h^-[\lambda']] = \frac{2}{h} \langle (T((q^{K\phi} \lambda)_R), q^{K\phi} \lambda') + \langle U \lambda, \lambda' \rangle - \langle U ((q^{K\phi} \lambda)_\Lambda), q^{K\phi} \lambda' \rangle \rangle \tag{9}$$

$$[h^+[r], e(w)] = 2r(w) e(w), \quad [h^-[\lambda], e(w)] = 2[(T + U)(q^{K\phi} \lambda)_\Lambda](w) e(w), \tag{10}$$

$$[h^+[r], f(w)] = -2r(w) f(w), \quad [h^-[\lambda], f(w)] = -2[(T + U) \lambda](w) f(w), \tag{11}$$

$$(\alpha(z) - \alpha(q^{-\theta} w)) e(z) e(w) = (\alpha(z) - \alpha(q^{-\theta} w)) q^2 \sum_i (T + U) e_i(z) \otimes e^i(w) e(w) e(z) \tag{12}$$

and

$$(\alpha(z) - \alpha(q^\theta w)) f(z) f(w) = (\alpha(z) - \alpha(q^\theta w)) q^{-2} \sum_i (T + U) e_i(z) \otimes e^i(w) f(w) f(z) \tag{13}$$

for any α in K,

$$[e(z), f(w)] = \frac{1}{h} [\delta(z, w) q^{(T + U) h^+}(z) - (q^{-K\phi} \delta(z, w) q^{-h^-}(w)]. \tag{14}$$
\[\phi(z, w) = \phi(h, \partial_v \gamma), r, r' in R, \lambda, \lambda' in \Lambda (see \[3\]). \]

\[U_{h,\omega}g \] is completed with respect to the topology defined by the left ideals generated by the \(x[\epsilon] \), \(\epsilon in \oplus_{i} z_{i} N \mathcal{O} \). The critical case corresponds to \(K = -2 \).

Remark 4. Relations (12) and (13) can be written

2.3. **Cartan currents.** In case we have a relation

\[a(z)b(w)a(z)^{-1} = \mu(z, w)b(w), \]

with \(a(z), b(w) \) currents of \(U_{h,\omega}g \) and \(\mu(z, w) in \mathbb{C}(\{z\})(\{w\})[[\hbar]] \) or \(\mathbb{C}(\{w\})(\{z\})[[\hbar]] \), we will define \((a(z), b(w)) \) as \(\mu(z, w) \).

Set \(K^{+}(z) = q^{(T+U)h^{+}(z)}, K^{-}(z) = q^{-h^{-}(z)} \). Let us also set

\[q(z, w) = q^{2 \sum_{i}(T+U)e_{i}(z) \otimes e^{i}(w)}, \]

we have \(q(z, w) = (q(w, z)^{-1})_{w < z} \). Then the relations involving Cartan generators can be expressed as

\[(K^{+}(z), K^{+}(w)) = 1, \quad (K^{+}(z), K^{-}(w)) = \frac{q(z, q^{-K\theta}(w))}{q(z, w)}, \quad (15) \]

\[(K^{-}(z), K^{-}(w)) = \frac{q(q^{-K\theta}(z), q^{-K\theta}(w))}{q(z, w)} \]

\[(K^{+}(z), e(w)) = q(z, w), \quad (K^{-}(z), e(w)) = q(w, q^{-K\theta}(z))^{-1}, \quad (17) \]

\[(K^{+}(z), f(w)) = q(z, w)^{-1}, \quad (K^{-}(z), f(w)) = q(w, z). \quad (18) \]

Set

\[k^{+}(z) = q^{(T+U)h^{+}(z)}, \quad k^{-}(z) = \lambda(z)q^{\frac{1}{1+q^{\theta}}} h^{-}(z), \]

with \(\lambda(z) \) the function such that

\[\lambda(z)\lambda(q^{-\theta} z)q^{\left[\frac{1}{1+q^{\theta}} h^{-}(z), \frac{1}{1+q^{\theta}} h^{-}(z') \right]} = 1, \]

that is

\[\lambda(z) = \exp \left[-\frac{1}{1 + q^{-\theta}} \left(\frac{1}{1 + q^{-\theta}} \otimes q^{-\theta} \right) [h^{-}(z), h^{-}(z')] \right]_{z'=z}. \]

We have

\[K^{+}(z) = k^{+}(z)k^{+}(q^{\theta} z), \quad K^{-}(z) = k^{-}(z)^{-1}k^{-}(q^{-\theta} z)^{-1}. \]

Set

\[q^{+}(z, w) = q^{2 \sum_{i}(T+U)e_{i}(z) \otimes e^{i}(w)}, q^{-}(z, w) = q^{-2 \sum_{i} \frac{1}{1+q^{\theta}} e^{i}(z) \otimes (T+U)e_{i}(w)}, \]

then we have \(q^{+}(z, w) = q^{-}(z, w) \) (up to analytic continuation). We have

\[q^{+}(z, w)q^{+}(q^{\theta} z, w) = q(z, w), \]
and
\[(k^+(z), e(w)) = q_+(z, w), \quad (k^-(z)^{-1}, e(w)) = q_-(q^{-(K+1)\partial} z, w), \]
\[(k^+(z), f(w)) = q_+(z, w)^{-1}, \quad (k^-(z)^{-1}, f(w)) = q_-(q^\partial z, w)^{-1}. \]
Also when \(K = -2 \), we have
\[(k^+(z), k^+(w)) = 1, \quad (k^+(z), k^-(w)) = \frac{q_+(z, q^\partial w)}{q_+(z, q^{2\partial} w)}, \]
and
\[(k^-(z), k^-(w)) = \frac{q_+(q^{2\partial} z, q^\partial w) q_-(q^\partial w, q^2 z)}{q_+(q^\partial z, q^2 w) q_-(q^2 z, q^\partial w)}. \]

3. **Subalgebra \(\mathbb{U}_h \mathfrak{b}_m \)**

The quantity
\[(q^{\partial_z + \partial_w} - 1) \sum_i ((T + U)e_i)(z)e^i(w) \]
belongs to \((R \otimes R)[[h]] \), since \(Ue_i \) belongs to \(R \), \(T \) commutes with \(\partial_z + \partial_w \) and \((\partial_z + \partial_w)G(w, z) = - \sum_i e^i(z)(\partial e_i)_R(w)\) belongs to \(R \otimes R \). Moreover
\[F(z, w) = 2h \frac{q^{\partial_z + \partial_w} - 1}{(1 + q^{-\partial_z})(1 + q^{-\partial_w})} \sum_i (T + U)e_i(z)e^i(w) \]
is symmetric in \(z \) and \(w \). Let \(\alpha(z, w) \) be an element of \(\mathbb{h}(R \otimes R)[[h]] \) such that
\[\frac{\exp(2\alpha(q^{\partial w} z, z))}{\exp(2\alpha(q^{\partial z} w, w))} = \exp[2h \frac{q^{\partial_z + \partial_w} - 1}{(1 + q^{-\partial_z})(1 + q^{-\partial_w})} \sum_i (T + U)e_i(z)e^i(w)]; \]
we may choose
\[\alpha(z, w) = \frac{1}{2} F(w, q^{-\partial} z). \]

Let us set
\[\alpha(z, w) = \sum_{i,j} a_{ij} e^i(z)e^j(w), \]
and
\[k_R(z) = \exp(\sum_{i,j} a_{ij} h[e^i(z)]e^j). \]

Define \(R_{(a)} \) as \(\oplus_a \mathfrak{c} r_a \oplus R \). Recall that we defined \(\mathfrak{m} \) as \(\mathfrak{m}_1 \oplus \mathfrak{O}_2 \oplus \cdots \oplus \mathfrak{O}_p \), so that \(\mathcal{K} = R_{(a)} \oplus \mathfrak{m} \). Let \(\mathcal{A} \) be the \(\mathbb{C}[[h]] \)-module automorphism of \(R_{(a)}[[h]] \) defined by
\[\mathcal{A}(r) = r \text{ for } r \text{ in } R \text{, and } \mathcal{A}(r_a) = (T + U)r_a \text{ for } a = 1, \ldots, g. \]
Define $\beta(z, w)$ in $(R \otimes R_{(a)})[[h]]$ by

$$-2 (1 \otimes q^0 A) \beta(z, w)$$

$$= 2(\alpha(q^{2\beta} z, w) - \alpha(q^0 z, w)) - 2\hbar \sum_i \frac{1}{1 + q^\beta} e^i(z) \otimes (\beta(z + U) e_i)_{R_{(a)}}(w)$$

$$+ 2\hbar (q^{3\beta} \otimes q^0 - q^0 \otimes q^{-\beta}) (\frac{1}{1 + q^\beta} \otimes \frac{1}{1 + q^{-\beta}}) \sum_i (\beta(z + U) e_i)(z) \otimes e^i(w).$$

Set

$$\beta(z, w) = \sum_{a,i} b_{ai} e^i(z) r_a(w) + \sum_{i,j} c_{ij} e^i(z) e^j(w)$$

and

$$k_a(z) = \exp(\sum_{a,i} b_{ai} h[r_a] e^i(z) + \sum_{i,j} c_{ij} h[e^i] e^j(z)). \quad (23)$$

Set finally

$$k_m(z) = k_a(z)^{-1} k^-(z).$$

The currents $k_R(z), k_a(z)$ and $k_m(z)$ all belong to $U_h h \otimes R[[h]].$

Proposition 3.1. i) Set $\tilde{f}(z) = f(z) k_R(z) k^-(q^{-\beta} z)$. we have $\tilde{f}(z) \tilde{f}(w) = \tilde{f}(w) \tilde{f}(z)$.

ii) We have

$$(k_m(z), \tilde{f}(w)) \in \exp(h(R \otimes m)[[h]]).$$

iii) We have $k_m(z) k_m(w) = k_m(w) k_m(z)$.

Proof. Let us show that $\tilde{f}(z)$ commutes with itself. We have

$$[h[r], f(z) k^-(q^{-\beta} z)] = -2(q^0 r)(z) f(z) k^-(q^{-\beta} z),$$

therefore

$$\frac{(k_R(w), f(z) k^-(q^{-\beta} z))}{(k_R(z), f(w) k^-(q^{-\beta} w))} = \frac{\exp(2\alpha(q^0 z, w))}{\exp(2\alpha(q^0 w, z))}.$$
We have then
\[(w - z)f(z)k^-(q^{-\partial}z)f(w)k^-(q^{-\partial}w)\]
\[= i_-(z, w)(w - q^{-\partial}z)f(z)f(w)k^-(q^{-\partial}z)k^-(q^{-\partial}w)\]
\[= (k^-(q^{-\partial}z), k^-(q^{-\partial}w))i_-(q^\partial z, w)^{-1}(w - q^\partial z)f(z)f(z)k^-(q^{-\partial}w)k^-(q^{-\partial}z)\]
\[= (k^-(q^{-\partial}z), k^-(q^{-\partial}w))i_-(q^\partial z, w)^{-1}(w - z)\frac{w - q^\partial z}{q^{-\partial}w - z}f(z)k^-(q^{-\partial}w)f(z)k^-(q^{-\partial}z),\]
therefore
\[(w - z) \left[(f(z)k^-(q^{-\partial}z)) (f(w)k^-(q^{-\partial}w)) \right.\]
\[= \frac{(k^-(q^{-\partial}z), k^-(q^{-\partial}w))}{j(z, w)} \left(f(w)k^-(q^{-\partial}w) \right) f(z)k^-(q^{-\partial}z) \right] = 0;\]

let \(B(z, w)\) be the term in brackets. It is equal to \(A(z)\delta(z, w)\), for some generating series \(A(z)\). Since \(B(z, w)\) also satisfies \(B(w, z) = -\frac{(k^-(q^{-\partial}w), k^-(q^{-\partial}z))}{j(w, z)} B(z, w)\), and \(\frac{(k^-(q^{-\partial}w), k^-(q^{-\partial}z))}{j(w, z)} = 1 + o(h)\), we obtain that \(B(z, w)\) vanishes so
\[\frac{(f(z)k^-(q^{-\partial}z)) (f(w)k^-(q^{-\partial}w))}{j(z, w)} \left(f(w)k^-(q^{-\partial}w) \right) f(z)k^-(q^{-\partial}z) \right) = 0;\]

We have
\[(k^-(z), k^-(w)) = \exp[2h(q^{2(\partial_z + \partial_w)} - 1)] \frac{1}{1 + q^{-\partial_z}} \frac{1}{1 + q^{-\partial_w}} \sum_i (T + U) e_i(z) e^i(w)],\]
\[j(z, w) = \exp[2h(1 - q^{-\partial_z - \partial_w})] \frac{1}{1 + q^{-\partial_z}} \frac{1}{1 + q^{-\partial_w}} \sum_i (T + U) e_i(z) e^i(w)],\]
so
\[\frac{(k^-(q^{-\partial}z), k^-(q^{-\partial}w))}{j(z, w)} = \exp[2h] \frac{q^{\partial_z + \partial_w} - 1}{(1 + q^{-\partial_z})(1 + q^{-\partial_w})} \sum_i (T + U) e_i(z) e^i(w)];\]
since \(k_R(z)\) commutes with \(k_R(w)\), and by (25), \(i)\) follows.

Let us prove \(ii)\). We have
\[(k^-(z), \tilde{f}(w)) = \exp[2(\alpha(q^{2\partial} z, w) - \alpha(q^\partial z, w))] q^-(q^\partial z, w)(k^-(z), k^-(q^{-\partial}w));\]
moreover,
\[q^-(q^\partial z, w) = \exp[-2h] \sum_i \frac{1}{1 + q^{-\theta}} e^i(z) \otimes (T + U) e_i(w)],\]
From (23) follows that
\[(k_a(z), \tilde{f}(w)) = \exp\left[2(\alpha(q^\alpha z, w) - \alpha(q^\alpha z, w))\right] \cdot \exp[-2\hbar \sum_i \frac{1}{1+q^{-\theta_i}} e^i(z) \otimes ((T + U)e_i)_{R(a)}(w)](k^{-}(z), k^{-}(q^{-\theta} w)). \]

Therefore,
\[(k_m(z), \tilde{f}(w)) = \exp[-2\hbar \sum_i \frac{1}{1+q^{-\theta_i}} e^i(z) \otimes ((T + U)e_i)m(w)], \quad (27) \]

which implies \(ii\).

Set for \(\phi = \sum \lambda_a r_a + r\), with \(\lambda_a\) in \(\mathbb{C}\) and \(r\) in \(R\), \(h[\phi] = \sum \lambda_a h^{-}[r_a] + h^{+}[r]\).

Then we have for \(\phi\) in \(R(a)\),
\[[h[\phi], f(z)] = -2(\mathcal{A}\phi)(z)f(z) \]
and
\[[h[\phi], k^{-}(z)] = 2[q^\theta (1 - q^\theta)\mathcal{A}\phi](z)k^{-}(z), \]
where \(\mathcal{A}\) is defined by (22), so that
\[[h[\phi], \tilde{f}(z)] = -2[q^\theta \mathcal{A}\phi](z)\tilde{f}(z). \]

Therefore we get
\[(k_a(z), k^{-}(w)) = \frac{(k_a(z), \tilde{f}(q^\theta w))}{(k_a(z), \tilde{f}(w))} = \exp[2(q^{2\theta_2 + \theta_w} - q^{\theta_2 + \theta_w} - q^{2\theta_2} + q^{\theta_2})\alpha(z, w)] \cdot \exp[-2\hbar \sum_i \frac{1}{1+q^{-\theta_i}} e^i(z) \otimes (q^\theta - 1)((T + U)e_i)_{R(a)}(w)] \cdot \frac{(k^{-}(z), k^{-}(w))}{(k^{-}(z), k^{-}(q^{-\theta} w))}. \]

On the other hand, \(iii\) is translated as
\[(k_a(z)^{-1}, k^{-}(w))(k^{-}(z), k^{-}(w)) = 1, \]
that is
\[\exp[(q^{\theta_2} - 1)(q^{\theta_w} - 1) (2\alpha(q^\theta z, w) - 2\alpha(q^\theta w, z))] \]
\[\exp[-2\hbar \sum_i \frac{1}{1+q^{-\theta_i}} e^i(z) \otimes (q^\theta - 1)((T + U)e_i)_{R(a)}(w)]: (z \leftrightarrow w) \]
\[\frac{(k^{-}(z), k^{-}(w))^2}{(k^{-}(z), k^{-}(q^{-\theta} w))(k^{-}(q^{-\theta} z), k^{-}(w))} = (k^{-}(z), k^{-}(w)), \]
in other terms

$$\exp[(q^\partial z - 1)(q^\partial w - 1) \log \left(\frac{(k^-(q^\partial z), k^-(q^\partial w))}{j(z, w)} \right)^{-1}]$$

$$\exp[-2\hbar \sum_i \frac{1}{1 + q^{-\partial}} e^i(z) \otimes (q^\partial - 1)((T + U)e_i)_{R(a)}(w)] : (z \leftrightarrow w)$$

$$\frac{(k^-(z), k^-(w))}{(k^-(z), k^-(q^\partial w))(k^-(q^\partial z), k^-(w))} = 1,$$

or

$$\exp[-2\hbar \sum_i \frac{1}{1 + q^{-\partial}} e^i(z) \otimes (q^\partial - 1)((T + U)e_i)_{R(a)}] : (z \leftrightarrow w) \tag{28}$$

$$\exp[(q^\partial z - 1)(q^\partial w - 1) \log j(z, w)]$$

$$= (k^-(q^\partial z), k^-(q^\partial w)).$$

The terms containing U in the logarithm of (28) are

$$- 2\hbar \left(\frac{1}{1 + q^{-\partial}} \otimes (q^\partial - 1) \right) \sum_i e^i \otimes U e_i$$

$$+ 2\hbar ((q^\partial - 1) \otimes \frac{1}{1 + q^{-\partial}}) \sum_i U e_i \otimes e^i + 2\hbar (\frac{q^\partial - 1}{1 + q^{-\partial}} \otimes (q^\partial - 1)) \sum_i U e_i \otimes e^i$$

$$- 2\hbar ((q^\partial - 1) \otimes \frac{q^\partial - 1}{q^\partial + 1}) \sum_i U e_i \otimes e^i$$

$$- 2\hbar (q^\partial \otimes q^\partial - q^{-\partial} \otimes q^{-\partial})(\frac{1}{1 + q^{-\partial}} \otimes \frac{1}{1 + q^{-\partial}}) \sum_i U e_i \otimes e^i$$

which is equal to

$$2\hbar \left(\frac{1}{1 + q^{-\partial}} \otimes (q^\partial - 1) \right) \sum_i e^i \otimes (T e_i)_{R},$$

in view of (3).
Therefore \(iii) \) is written as

\[
\exp[-2\hbar\left(\frac{1}{1+q^{-\partial}} \otimes (q^\partial - 1)\right) \sum_i e^i \otimes (Te_i)_{R(a)}] : (z \leftrightarrow w)
\]

\[
\exp[2\hbar\left(\frac{1}{1+q^{-\partial}} \otimes (q^\partial - 1)\right) \sum_i e^i \otimes (Te_i)_{R(a)}] \sum_i e^i \otimes (Te_i)_{R(a)}] \exp[-2\hbar((q^\partial - 1) \otimes \frac{1}{1+q^\partial}) \sum_i Te_i \otimes e^i]
\]

\[
= \exp[2\hbar(q^\partial - 1 \otimes q^{-\partial})\left(\frac{1}{1+q^{-\partial}} \otimes \frac{1}{1+q^\partial}\right) \sum_i Te_i \otimes e^i]
\]

or

\[
\exp[2\hbar\left(\frac{1}{1+q^{-\partial}} \otimes (1-q^\partial)\right)\left(\sum_i Te_i \otimes e^i + e^i \otimes (Te_i)_{R(a)} - e^i \otimes (Te_i)_{R}\right)]
\]

\[
\exp[2\hbar((1-q^\partial) \otimes \frac{1}{1+q^{-\partial}})\left(\sum_i Te_i \otimes e^i - (Te_i)_{R(a)} \otimes e^i\right)] = 1. \quad (29)
\]

Since

\[
\sum_i Te_i \otimes e^i + e^i \otimes (Te_i)_{R(a)} - e^i \otimes (Te_i)_{R}
\]

is

\[
(T \otimes id)\delta(z, w) - \left(\sum_i Te_i \otimes e^i - (Te_i)_{R(a)} \otimes e^i\right) \quad (21), \quad (30)
\]

(29) is equivalent to the statement that

\[
((1-q^\partial) \otimes \frac{1}{1+q^{-\partial}})\left(\sum_i Te_i \otimes e^i - (Te_i)_{R(a)} \otimes e^i\right) - (z \leftrightarrow w) \quad (31)
\]

\[
+ (q^\partial - 1)(1-q^{-\partial}) \otimes id)\delta(z, w) = 0
\]

(whose interpretation is that after analytic prolongation,

\[
((1-q^\partial) \otimes \frac{1}{1+q^{-\partial}})\left(\sum_i Te_i \otimes e^i - (Te_i)_{R(a)} \otimes e^i\right)
\]

is symmetric in \(z \) and \(w \).

To prove this, we first show that

Lemma 3.1. One can choose the dual bases \((e_i)_{i \geq 0}, (e^i)_{i \geq 0}\) as \((r_a; e'_i)_{a=1,\ldots,g,i \geq 0}\)
and \((\omega_a; \omega; e^i)_{a=1,\ldots,g,i \geq 0}\) with \((e'_i)_{i \geq 0}\) be a basis of \(m \) and \((e^i)_{i \geq 0}\) the dual basis of
the subspace K_a of R defined as \(\{ r \in R | \int_{A_i} r \omega = 0 \} \). We have
\[
\sum_{i \geq 0} (Te_i)_m \otimes e^i = \sum_{i \geq 0} e'_i \otimes Te^i. \tag{32}
\]

Proof of Lemma. The first statement follows from the fact that K_a is the annihilator of $\oplus_a Cr_a$ in R for \(\langle , \rangle_K \). Let us show the second statement. Both sides of the equality belong to $m \otimes K$. On the other hand, the annihilator of K_a for \(\langle , \rangle_K \) is $R(a)$ and has therefore zero intersection with m. It follows that to show (32), it is enough to show that the pairing of both sides with $\rho \otimes \text{id}$ coincide, for ρ in K_a. But \(\langle \text{left side}, \rho \otimes \text{id} \rangle = \sum_i (Te_i)_m, \rho \rangle e^i = \sum_i (Te_i, \rho) e^i \), because K_a and $R(a)$ are orthogonal; this is equal to \(\sum_i \langle e^i, T\rho \rangle e^i \) because T is self-adjoint and therefore to $T\rho$. On the other hand, \(\langle \text{right side}, \rho \otimes \text{id} \rangle = \sum_i \langle e'_i, \rho \rangle Te^i = T\rho \).

This proves (32).

(31) is equal to
\[
((1 - q^\partial) \otimes \frac{1}{1 + q^{-\partial}}) \sum_i (Te_i)_m \otimes e^i;
\]
by Lemma 3.1, this is
\[
((1 - q^\partial) \otimes \frac{1}{1 + q^{-\partial}}) \sum_i e'_i \otimes Te^i;
\]
which is
\[
(1 - q^\partial) \otimes \frac{q^\partial - 1}{2\partial} \sum_i e'_i \otimes e^i
\]
or
\[
- \frac{1}{2\partial} \left(\frac{q^\partial - 1}{\partial} \otimes \frac{q^\partial - 1}{\partial} \right) \sum_i \partial e'_i \otimes e^i.
\]

(31) now follows from
\[
\sum_i \partial e'_i \otimes e^i - \sum_i e''_i \otimes \partial e'_i = (\partial \otimes \text{id})\delta(z, w)
\]
(which means that after analytic continuation, $\sum_i \partial e'_i \otimes e^i$ is symmetric). This equality can be proved either by expressing $\sum_i e'_i \otimes e^i$ explicitly using theta-functions (see [4]), or as follows: $\sum_i \partial e'_i \otimes e^i - e''_i \otimes \partial e'_i - (\partial \otimes \text{id})\delta(z, w)$ is equal to
\[
\sum_i \partial e'_i \otimes e^i + e'_i \otimes \partial e^i + \sum_a \omega_a / \omega \otimes \partial r_a, \tag{33}
\]
which belongs to $K \otimes R$. To show that (33) is zero, let us pair in with $\text{id} \otimes \lambda$, λ in $m \oplus \oplus_a Cr_a$. For o in m, (33), $\text{id} \otimes o$ is equal to
\[
(\partial o)_{R(a)}|_m - \sum_a \omega_a / \omega \langle o, \partial r_a \rangle;
but \(\partial o \) belongs to \(m \oplus (\oplus a Cr_a) \oplus (\oplus a C \omega_a/\omega) \), therefore this vanishes. On the other hand, \(\langle [33], id \otimes r_a \rangle \) is equal to zero, because \(\langle \partial r_a, r_b \rangle = 0 \) for any \(a, b \). \(\square \)

From the proof of Prop. 3.1 follows that \((k_m(z), \tilde{f}(w)) \) is of the form \(\exp(-2\hbar \sum_{i \geq 0} \varphi^i \otimes e'_i) \), so that we have

\[
(k_m(z), \tilde{f}(w)) = \exp(-2\hbar \sum_{i \geq 0} \varphi^i \otimes e'_i),
\]

with \((\varphi^i)_{i \geq 0} \) a free family of \(R[[\hbar]] \). Set \(h_m(z) = \frac{1}{\hbar} \ln k_m(z) \); (34) implies that

\[
h_m(z) = \sum_{i \geq 0} \tilde{h}[e'_i] \varphi^i(z),
\]

with \(\tilde{h}[e'_i] \) linear combinations of the \(h^+[r] \) and \(h^-[\lambda] \). Define \(\tilde{h}[o] \) for \(o \) in \(m \) by linear extension.

Corollary 3.1. Define in \(U_{h,\omega} g \), \(\tilde{f}[\epsilon] = \sum_i \text{res}_P(\tilde{f}(z)\epsilon(z)\omega(z)) \). Let \(b_{in} \) be the Lie algebra

\[
b_{in} = (\hat{h} \otimes m) \oplus (\hat{n}_+ \otimes \mathcal{K}).
\]

Then there is an algebra injection \(U b_{in}[[\hbar]] \to U_{h,\omega} g \) defined by \(h \otimes o \to \tilde{h}[o], f \otimes \epsilon \mapsto \tilde{f}[\epsilon] \). We define \(U_{h} b_{in} \) as the image of this injection.

Proof. From the construction of \(\tilde{h}[o] \) follows that we have

\[
[\tilde{h}[o], \tilde{f}(z)] = -2o(z) \tilde{f}(z);
\]

Prop. 3.1, i) and iii) then imply the statement. \(\square \)

Define \(U_{h} b_- \) as the subalgebra of \(U_{h,\omega} g \) generated by the \(h^+[r], h^-[\lambda] \) and the \(f[\epsilon], r \) in \(R, \lambda \) in \(\Lambda, \epsilon \) in \(\mathcal{K} \); \(U_{h} b_{in} \) is then a subalgebra of \(U_{h} b_- \). Define \(U_{h} b_{out}^{out} \) as the subalgebra of \(U_{h} b_- \) generated by the \(h^+[r] \) and the \(\tilde{f}[r_{-2\lambda_0}], r \) in \(R, r_{-2\lambda_0} \) in \(R_{-2\lambda_0} \).

We have:

Proposition 3.2. \(U_{h} b_- \) is the direct sum of \(\mathbb{C}[h[r_a]] U_{h} b_{in} \) and of its right ideal generated by its right ideal \(\sum_{r \in R} h^+[r] U_{h} b_{in}^{out} + \sum_{r_{-2\lambda_0} \in R_{-2\lambda_0}} \tilde{f}[r_{-2\lambda_0}] U_{h} b_{out}^{out} \).

Proof. For \(\rho \) in \(R_{(a)} \), set \(\tilde{h}[\rho] = h[(q^a \mathcal{A})^{-1} \rho] \). Extend \(\tilde{h} \) to \(\mathcal{K} \) by linearity. A system of relations for \(U_{h} b_- \) is then

\[
[\tilde{f}[\epsilon], \tilde{f}[\epsilon']] = 0, \quad [\tilde{h}[\epsilon], \tilde{f}[\eta]] = -2\tilde{f}[\epsilon \eta],
\]

\[
[\tilde{h}[\epsilon], \tilde{h}[\epsilon']] = f(\epsilon, \epsilon'),
\]

with \(f(\epsilon, \epsilon') \) scalar, for \(\epsilon, \epsilon', \eta \) in \(\mathcal{K} \). Denote by \(\mathbb{C}(\phi, \phi \in F) \) the subalgebra of \(U_{h} b_- \) generated by the family \(F \) of elements of \(U_{h} b_- \). The product map from \(\mathbb{C}(\tilde{h}[o], \tilde{f}[\lambda], o \in m, \lambda' \in \Lambda') \otimes \mathbb{C}[h[r_a]] \otimes \mathbb{C}(\tilde{h}[r], \tilde{f}[r_{-2\lambda_0}], r \in R, r_{-2\lambda_0} \in R_{-2\lambda_0}) \)
to $U_{h\mathfrak{b}}$ then defines an isomorphism. Therefore $U_{h\mathfrak{b}}$ is the direct sum of $\mathbb{C}[h][r_a]U_{h\mathfrak{b}}^{\text{out}}$ and the left ideal I generated by the $\tilde{h}[r], \tilde{f}[r_{-2\lambda_0}], r$ in R, $r_{-2\lambda_0}$ in $R_{-2\lambda_0}$. $\mathbb{C}[h][r_a]U_{h\mathfrak{b}}^{\text{out}}$ is equal to $\mathbb{C}[h][r_a]U_{h\mathfrak{b}}^{\text{out}}$, on the other hand, $\tilde{f}[r_{-2\lambda_0}] = \sum_i \text{res}_P(f(z)k^-(q^{-\theta}z)r_{-2\lambda_0}(z)\omega_z)$, and $k^-(q^{-\theta}z)$ belongs to $U_{h\omega}\mathfrak{g} \otimes R_z$, so that since $R_{-2\lambda_0}$ is a R-module, $\tilde{f}[r_{-2\lambda_0}]$ belongs to $f[r_{-2\lambda_0}] + h$(right ideal generated by the $f[\rho_{-2\lambda_0}], \rho_{-2\lambda_0}$ in $R_{-2\lambda_0}$). Therefore, I coincides with the left ideal generated by the $h[r], f[r_{-2\lambda_0}], r$ in R, $r_{-2\lambda_0}$ in $R_{-2\lambda_0}$, which is the augmentation ideal of $U_{h\mathfrak{b}}^{\text{out}}$. The Lemma follows.

\[\text{Proposition 4.1. The following relations}

\[\tilde{e}(z) = k^+(q^\theta z)^{-1}k_R(z)^{-1}e(q^\theta z),\]

an

\[k^{+\text{tot}}(z) = k^+(q^{2\theta}z)k_R(q^\theta z)k_R(z)^{-1}k^-(z),\] \hspace{1cm} (35)

\[k^{-\text{tot}}(z) = k^+(q^\theta z)^{-1}k_R(z)^{-1}k_R(q^{-\theta}z)k^-(q^{-\theta}z)^{-1}.\] \hspace{1cm} (36)

are satisfied in $U_{h\omega}\mathfrak{g}$.

\[\text{Proof. The proof of } [\tilde{e}(z), \tilde{e}(w)] = [\tilde{f}(z), \tilde{f}(w)] = 0, \hspace{1cm} (37)\]

\[\tilde{e}(z), \tilde{f}(w) = \frac{1}{h} \delta(q^\theta z, w)k^{+\text{tot}}(z) - \frac{1}{h} \delta(z, q^\theta w)k^{-\text{tot}}(z) \frac{\exp(2\alpha(q^{-\theta}z, q^{-\theta}w))}{\exp(2\alpha(q^\theta z, q^{-\theta}w))}, \hspace{1cm} (38)\]

are satisfied in $U_{h\omega}\mathfrak{g}$.

Then we have

\[\tilde{f}(w)\tilde{e}(z) = (k_R(w)k^-(q^{-\theta}w), k^+(q^\theta z)^{-1}k_R(z)^{-1})

\[(f(w), k^+(q^\theta z)^{-1}k_R(z)^{-1})(k_R(w)k^-(q^{-\theta}w), e(z))

\[k^+(q^\theta z)^{-1}k_R(z)^{-1}f(w)e(q^\theta z)k_R(w)k^-(q^{-\theta}w);\]

this equation may be written as

\[\tilde{f}_n\tilde{e}_m = \sum_{p \geq 0} h^p \sum_{i \geq N(p), j \geq M(p)} A_{ij}^{(p)} k_{-i}^+ f_{n-j} e_{m+i} k_{-j}^-;\]
where we set \(x(z) = \sum_n x_n z^{-n} \), \(x = e, f, \vec{c}, \vec{f}, k^\pm \); the right side belongs to the completion \(U_{h,\omega}\mathfrak{g} \). Equation \([38] \) then follows from the identity
\[
(K^-(q^{-\theta} z), k_R(q^{-\theta} z)) = \frac{\exp(2\alpha(q^{-\theta} z, q^{-\theta} \bar{z}))}{\exp(2\alpha(q^\theta z, q^{-\theta} z))},
\]

\(\square \)

Theorem 4.1. \(U_{h,\omega}\mathfrak{g}/(K+2) \) has a presentation with generating series \(\tilde{c}(z), \tilde{f}(z), k^\pm(z) \) and relations (19), (20), (35), (36), (37), (38), and

\[
(k^+(z), \tilde{c}(w)) = q_+(z, q^\theta w),
\]

(40)

\[
(k^-(z), \tilde{c}(w)) = \exp[2\alpha(q^\theta z, w) - 2\alpha(q^{2\theta} z, w)] \frac{q_+(q^\theta w, q^\theta z)}{q_+(q^\theta w, q^{2\theta} z)q_-(q^{3\theta} z, q^\theta w)}
\]

(41)

and

\[
(k^+(z), \tilde{f}(w)) = q_+(z, q^\theta w)^{-1}, \quad (k^-(z), \tilde{f}(w)) = (k^-(z), \tilde{c}(w))^{-1}.
\]

(42)

5. Central current \(T(z) \)

Recall that

\[
g^+_\lambda(z) = (G_{-\lambda} - G)(q^\theta z, z), \quad g^-_\lambda(z) = (G_{-\lambda} - G)(q^{-\theta} z, z).
\]

Define \(\sigma, \alpha, \beta \) in \(R[[h]] \) and \(A_\lambda, B_\lambda \) in \(\mathcal{K}[[h]] \) by

\[
\sigma(q^\theta z) = \left[-e^{-2\sum_i (q^\theta u_{+} e_i)(z) \otimes e^i(w) e^{-\phi(h, \partial^i_z) \psi(h, \partial^i_z \gamma)} \right]_{z=w};
\]

(43)

\[
\alpha(q^\theta z) = \left[-e^{-2\sum_i (q^\theta u_{+} e_i)(z) \otimes e^i(w) \partial_h \{ e^{-\phi(h, \partial^i_z) \psi(h, \partial^i_z \gamma)} \} \right]_{w=z},
\]

(44)

\[
\beta(q^\theta z) = \alpha(q^\theta z) - 2\partial_h [\tau_{w=z}] \sigma(q^\theta z),
\]

(45)

\[
A_\lambda(z) = \alpha(q^{2\theta} z) + \sigma(q^{2\theta} z) [g^+_\lambda(z) - \sum_i e^i(z)(q^{2\theta}(q^{-\theta} e_i)_R)(z)],
\]

(46)

\[
B_\lambda(z) = \beta(q^{2\theta} z) - \sigma(q^{2\theta} z) [g^-_\lambda(z) - \sum_i e^i(z)((q^{-\theta} e_i)_R)(z)],
\]

(47)

we have \(\sigma(z) = h + O(h^2), \alpha(z) = 1 + O(h), \beta(z) = 1 + O(h), A_\lambda = 1 + O(h), B_\lambda = 1 + O(h). \)

Let us set

\[
T(z) = \tilde{c}(z) \tilde{f}(z) z \rightarrow_{R_{2\lambda}} + \tilde{f}(z) z \rightarrow_{\Lambda} \tilde{c}(z) + a_\lambda(z) k^{+\alpha}_\text{tot}(z) + b_\lambda(z) k^{-\alpha}_\text{tot}(z),
\]

where

\[
a_\lambda(z) = \frac{1}{h} \frac{A_\lambda(z)}{\sigma(q^{2\theta} z)}.
\]

(48)
and

\[b_\lambda(z) = \frac{1}{\hbar} \exp(2\alpha(q^{-\alpha}z, q^{-\alpha}z)) \frac{B_\lambda(z)}{\sigma(q^{2\alpha}z)}, \]

we will also set

\[b'_\lambda(z) = \frac{1}{\hbar} \frac{B_\lambda(z)}{\sigma(q^{2\alpha}z)}. \tag{50} \]

Theorem 5.1. The Laurent coefficients of \(T(z) \) are central elements of \(U_{\hbar,\omega}g \).

The proof is contained in the next sections.

5.1. Commutation of \(T(z) \) with \(\bar{e}(w) \). Set

\[k_{\text{tot}}^+(z)\bar{e}(w) := k^+(q^{2\alpha}z)k^+(q^{\alpha}w)^{-1}k_R(q^{\alpha}z)k_R(z)^{-1}k_R(w)^{-1}\bar{e}(q^{\alpha}w)k^-(z), \]

and

\[k_{\text{tot}}^+(z)\bar{e}(w) := k^+(q^{\alpha}z)^{-1}k_R(z)^{-1}k_R(q^{-\alpha}z)k^+(q^{\alpha}w)^{-1}k_R(w)^{-1}\bar{e}(q^{\alpha}w)k^-(q^{-\alpha}z)^{-1}. \]

Lemma 5.1. We have

\[k_{\text{tot}}^+(z)\bar{e}(w) = \exp(2\alpha(q^{\alpha}w, z) - 2\alpha(q^{\alpha}w, q^{\alpha}z)q_-(q^{2\alpha}z, q^{\alpha}w)^{-1}: k_{\text{tot}}^+(z)\bar{e}(w) :. \]

and

\[\bar{e}(w)k_{\text{tot}}^+(z) = \exp(2\alpha(q^{\alpha}w, z) - 2\alpha(q^{\alpha}w, q^{\alpha}z))q_+(q^{2\alpha}z, q^{\alpha}w)^{-1} : k_{\text{tot}}^+(z)\bar{e}(w) :. \]

Proof. Let us prove the first identity. The factor in the right side is

\[(k^-(z), k^+(q^{\alpha}w)^{-1})(k^-(z), k_R(w)^{-1})(k^-(z), e(q^{\alpha}w)). \tag{51} \]

we have

\[(k^-(z), k_R(w)^{-1}) = \exp(2\alpha(q^{\alpha}w, z) - 2\alpha(q^{2\alpha}z, w)), \]

therefore (51) is equal to

\[\frac{q_+(q^{\alpha}w, q^{\alpha}z)}{q_+(q^{\alpha}w, q^{2\alpha}z)} \exp(2\alpha(q^{\alpha}w, z) - 2\alpha(q^{2\alpha}z, w))q_-(q^{2\alpha}z, q^{\alpha}w)^{-1}. \tag{52} \]

Identity (51) can be formulated as

\[\frac{\exp(2\alpha(q^{\alpha}w, z))}{\exp(2\alpha(q^{2\alpha}z, w))} = q_+(q^{\alpha}w, q^{\alpha}z)q_-(q^{2\alpha}z, q^{\alpha}w), \]

because the right side is \(j(q^{\alpha}z, q^{\alpha}w) \) (see (24)). Applying to this identity \(\exp \circ (1 - q^{\alpha}t) \circ \log \), we transform (52) into

\[\exp(2\alpha(q^{\alpha}w, z) - 2\alpha(q^{\alpha}w, q^{\alpha}z))q_-(q^{2\alpha}z, q^{\alpha}w)^{-1}; \]

this implies the first equality.

The factor in the right side of the second identity is

\[(e(q^{\alpha}w), k^+(q^{2\alpha}z)k_R(q^{\alpha}z)k_R(z)^{-1}). \]
Proposition 5.1.

which is equal to

\[\exp(2\alpha(q^\theta w, z) - 2\alpha(q^\theta w, q^\theta z))q_+(q^{2\theta} z, q^\theta w)^{-1}. \]

\[\]

In the same way, one proves

Lemma 5.2. We have

\[k_{i\text{tot}}^-(z)\tilde{e}(w) = \exp(2\alpha(q^\theta w, z) - 2\alpha(q^\theta w, q^{-\theta} z))q_- (q^\theta z, q^\theta w) : k_{i\text{tot}}^-(z)\tilde{e}(w) ; \]

and

\[\tilde{e}(w)k_{i\text{tot}}^-(z) = \exp(2\alpha(q^\theta w, z) - 2\alpha(q^\theta w, q^{-\theta} z))q_+ (q^\theta z, q^\theta w) : k_{i\text{tot}}^-(z)\tilde{e}(w) ; \]

Then we have

Proposition 5.1. \(T(z) \) commutes with \(\tilde{e}(w) \).

Proof. We have

\[[T(z), \tilde{e}(w)] = \tilde{e}(z)[\tilde{f}(z), \tilde{e}(w)]_{z \rightarrow R_{2\lambda}} + [\tilde{f}(z), \tilde{e}(w)]_{z \rightarrow \Lambda'}\tilde{e}(z) + a_{\lambda}(z)[k_{i\text{tot}}^+(z), \tilde{e}(w)] + b_{\lambda}(z)[k_{i\text{tot}}^-(z), \tilde{e}(w)] \]

\[= -\tilde{e}(z) \left(\frac{1}{\hbar} \delta(w, q^\theta z)k_{i\text{tot}}^+(w) - \frac{1}{\hbar} \delta(w, q^\theta z)k_{i\text{tot}}^-(w) \exp(2\alpha(q^\theta z, q^{-\theta} w)) \exp(2\alpha(q^\theta w, q^{-\theta} w)) \right)_{z \rightarrow R_{2\lambda}} \]

\[- \left(\frac{1}{\hbar} \delta(w, q^\theta z)k_{i\text{tot}}^+(w) - \frac{1}{\hbar} \delta(w, q^\theta z)k_{i\text{tot}}^-(w) \exp(2\alpha(q^\theta w, q^{-\theta} w)) \exp(2\alpha(q^\theta w, q^{-\theta} w)) \right)_{z \rightarrow \Lambda'} \tilde{e}(z) \]

\[+ a_{\lambda}(z)[k_{i\text{tot}}^+(z), \tilde{e}(w)] + b_{\lambda}(z)[k_{i\text{tot}}^-(z), \tilde{e}(w)] \]

\[= -\frac{1}{\hbar} \left((G_{-2\lambda}(q^\theta w, z)k_{i\text{tot}}^+(w)\tilde{e}(z) + G_{2\lambda}(z, q^\theta w)\tilde{e}(z)k_{i\text{tot}}^+(w)) \exp(2\alpha(q^{-\theta} z, q^{-\theta} w)) \exp(2\alpha(q^\theta w, q^{-\theta} w)) \right) \]

\[+ \frac{1}{\hbar} \left((G_{-2\lambda}(q^{-\theta} w, z)k_{i\text{tot}}^-(w)\tilde{e}(z) + G_{2\lambda}(z, q^{-\theta} w)\tilde{e}(z)k_{i\text{tot}}^-(w)) \exp(2\alpha(q^{-\theta} z, q^{-\theta} w)) \exp(2\alpha(q^\theta w, q^{-\theta} w)) \right) \]

\[+ a_{\lambda}(z)[k_{i\text{tot}}^+(z), \tilde{e}(w)] + b_{\lambda}(z)[k_{i\text{tot}}^-(z), \tilde{e}(w)]; \]

the last equality follows from the identities

\[\delta(w, z)_{z \rightarrow R_{2\lambda}} = G_{2\lambda}(z, w), \quad \delta(w, z)_{z \rightarrow \Lambda'} = G_{-2\lambda}(w, z). \]

We have

\[G_{-2\lambda}(q^\theta w, z)k_{i\text{tot}}^+(w)\tilde{e}(z) + G_{2\lambda}(z, q^\theta w)\tilde{e}(z)k_{i\text{tot}}^+(w) \]

\[= \exp(2\alpha(q^\theta z, w) - 2\alpha(q^\theta z, q^\theta w)) \]

\[(G_{-2\lambda}(q^\theta w, z)q_- (q^{2\theta} w, q^\theta z)^{-1} + G_{2\lambda}(z, q^\theta w)q_+ (q^{2\theta} w, q^\theta z)^{-1}) : k_{i\text{tot}}^+(w)\tilde{e}(z) : \]

\[= \exp(2\alpha(q^\theta z, w) - 2\alpha(q^\theta z, q^\theta w))A_{\lambda}(z)\delta(z, w) : k_{i\text{tot}}^+(w)\tilde{e}(z) ; \]

where the first equality follows from Lemma 5.1, and the second from Lemma A.3.
In the same way, we have

\[G_{-2\lambda}(q^{-\vartheta}w, z)k_{tot}^-(w)\tilde{e}(z) + G_{2\lambda}(z, q^{-\vartheta}w)\tilde{e}(z)k_{tot}^-(w) \]
\[= \exp(2\alpha(q^{\vartheta}z, w) - 2\alpha(q^{\vartheta}z, q^{-\vartheta}w)) \]
\[(G_{-2\lambda}(q^{-\vartheta}w, z)q_-(q^{\vartheta}w, q^{\vartheta}z) + G_{2\lambda}(z, q^{-\vartheta}w)q_+(q^{\vartheta}w, q^{\vartheta}z)) : k_{tot}^-(z)\tilde{e}(w) : \]
\[= \exp(2\alpha(q^{\vartheta}z, w) - 2\alpha(q^{\vartheta}z, q^{-\vartheta}w))B_\lambda(z, w) : k_{tot}^-(z)\tilde{e}(w) : \]

where the first equality follows from Lemma 5.2, and the second from Lemma A.3.

On the other hand, we have

\[[k_{tot}^-(z), \tilde{e}(w)] \]
\[= \exp(2\alpha(q^{\vartheta}w, z) - 2\alpha(q^{\vartheta}w, q^{\vartheta}z))[q_-(q^{2\vartheta}z, q^{\vartheta}w)^{-1} - q_+(q^{2\vartheta}z, q^{\vartheta}w)^{-1}] \]
\[: k_{tot}^+(z)\tilde{e}(w) : \]
\[= \exp(2\alpha(q^{\vartheta}w, z) - 2\alpha(q^{\vartheta}w, q^{\vartheta}z))\sigma(q^{2\vartheta}z)\tilde{e}(z, w) : k_{tot}^+(z)\tilde{e}(w) : \]

and

\[[k_{tot}^-(z), \tilde{e}(w)] \]
\[= \exp(2\alpha(q^{\vartheta}w, z) - 2\alpha(q^{\vartheta}w, q^{-\vartheta}z))[q_-(q^{\vartheta}w, q^{\vartheta}z) - q_+(q^{\vartheta}w, q^{\vartheta}z)] \]
\[: k_{tot}^-(z)\tilde{e}(w) : \]
\[= \exp(2\alpha(q^{\vartheta}w, z) - 2\alpha(q^{\vartheta}w, q^{-\vartheta}z))[-\sigma(q^{2\vartheta}w)\tilde{e}(z, w)] : k_{tot}^-(z)\tilde{e}(w) : .\]

The equalities \(\delta(z, w) : k_{tot}^\pm(z)\tilde{e}(w) := \delta(z, w) : k_{tot}^\pm(w)\tilde{e}(z) : \) then imply that (53) vanishes.

5.2. **Commutation of** \(T(z) \) **with** \(k^\pm(w) \). Let us denote by \(U_h^+ \) and \(U_h^- \) the subalgebras of \(U_{h,\omega}g \) generated respectively by the \(e[e] \), by the \(h^+[r] \), \(h^-[\lambda] \) and \(K \), and by the \(f[e] \). If we assign degree 1 to the \(e[e] \) and \(f[e] \), \(U_h^\pm \) are graded algebras. We denote by \(U_h^{\pm[i]} \) their homogeneous components of degree \(i \).

We will prove

Lemma 5.3. \(k^+(w)T(z)k^+(w)^{-1} - T(z) \) and \(k^-(w)T(z)k^-(w)^{-1} - T(z) \) both belong to \(U_h^\pm \).

Proof. It suffices to prove the same statements with \(T(z) \) replaced by \(T_0(z) \) defined by

\[T_0(z) = \tilde{e}(z)\tilde{f}(z)_{z \to R_{2\lambda}} + \tilde{f}(z)_{z \to \lambda'}\tilde{e}(z). \]
Then from (44) and (12) follows that
\[q_+(z, q^0 w)^{-1}k^+(w)T_0(z)k^+(w)^{-1} - T_0(z) \]
\[= \tilde{c}(w)[q_+(z, q^0 w)^{-1}\tilde{f}(w)]_{w \to R_{2\lambda}} + [q_+(z, q^0 w)^{-1}\tilde{f}(w)]_{w \to \Lambda}\tilde{c}(w) \]
\[- q_+(z, q^0 w)^{-1}[\tilde{c}(w)\tilde{f}(w)]_{w \to R_{2\lambda}} + \tilde{f}(w)_{w \to \Lambda}\tilde{c}(w) \]
\[= [\tilde{c}(w), [q_+(z, q^0 w)^{-1}\tilde{f}(w)]_{w \to \Lambda'} - q_+(z, q^0 w)^{-1}\tilde{f}(w)_{w \to \Lambda'}] \]
because of the identity
\[[q_+(z, q^0 w)^{-1}\tilde{f}(w)]_{w \to \Lambda'} - q_+(z, q^0 w)^{-1}\tilde{f}(w)_{w \to \Lambda'} \]
\[= q_+(z, q^0 w)^{-1}\tilde{f}(w)_{w \to R_{2\lambda}} - [q_+(z, q^0 w)^{-1}\tilde{f}(w)]_{w \to R_{2\lambda}}. \]

For any \(\epsilon \) in \(\mathcal{K} \), \([\tilde{c}[\epsilon], \tilde{f}(z)]\) belongs to \(U_h\mathfrak{h} \), which proves the first part of the statement. The second part is proved in the same way, using (44) and (12). \(\square \)

Let us now prove

Proposition 5.2. \(T(z) \) commutes with \(U_h\mathfrak{h} \).

Proof. Set for \(r \) in \(R \) and \(\lambda \) in \(\Lambda \),
\[x^+_\eta(r) = [h^+[r], T[\eta]], \quad x^-_\eta(\lambda) = [h^-[\lambda], T[\eta]]. \]

From Lemma 5.3 follows that \(x^+_\eta \) are linear maps from \(R \) and \(\Lambda \) to \(U_h\mathfrak{h} \). Moreover, we have \([x^+_\eta(r), \tilde{f}[\epsilon]] = [[h^+[r], T[\eta]], \tilde{f}[\epsilon]] = -[[T[\eta], \tilde{f}[\epsilon]], h^+[r]] - [[\tilde{f}[\epsilon], h^+[r]], T[\eta]]; \)
both terms are zero by Prop. 5.3, so that we have
\[[x^+_\eta(r), \tilde{f}[\epsilon]] = 0; \]
in the same way, one shows that
\[[x^-_\eta(\lambda), \tilde{f}[\epsilon]] = 0. \]

But any element \(x \) of \(U_h\mathfrak{h} \), such that \([x, \tilde{f}[\epsilon]] = 0 \) for any \(\epsilon \), is zero. To show this, one may divide \(x \) by the greatest possible power of \(\hbar \) and check that the same statement is true in the classical affine Kac-Moody algebra. \(\square \)

5.3. Commutation of \(T(z) \) with \(f(w) \).

Lemma 5.4. \(T(z) \) may be written
\[T(z) = \tilde{f}(z)\tilde{c}(z)_{z \to R} + \tilde{c}(z)_{z \to \Lambda}\tilde{f}(z) + \kappa(z), \]
where \(\kappa(z) \) belongs to \(U_h\mathfrak{h}[[z, z^{-1}]] \).

Proof. We have
\[\tilde{f}(z)\tilde{c}(z)_{z \to R} + \tilde{c}(z)_{z \to \Lambda}\tilde{f}(z) - T_0(z) \]
is equal to
\[[\tilde{c}(z)_{z \to \Lambda'}, \tilde{f}(z)_{z \to \Lambda'}] - [\tilde{c}(z)_{z \to R_{2\lambda}}, \tilde{f}(z)_{z \to R_{2\lambda}}] \]
and therefore belongs to \(U_h\mathfrak{h}[[z, z^{-1}]]. \) \(\square \)
We first show:

Lemma 5.5. The commutator \([T(z), \tilde{f}(w)]\) belongs to \(U_h \mathfrak{h} U_h \mathfrak{n}_w^{[1]}\); in other words, there are formal series \(K_i(z, w)\) in \(U_h \mathfrak{h}[[z, z^{-1}, w, w^{-1}]]\), such that
\[
[T(z), \tilde{f}(w)] = \sum_i K_i(z, w) \tilde{f}[\epsilon_i].
\] (54)

Proof. It suffices to show this with \(T_0(z)\) instead of \(T(z)\). This follows from a reasoning analogous to the first part of the proof of Prop. 5.1.

From there follows:

Proposition 5.3. \(T(z)\) commutes with \(\tilde{f}(w)\).

Proof. Let \(\epsilon\) belong to \(\mathcal{K}\). \(\tilde{e}[\epsilon]\) commutes with the left side of (54), by Props. 5.3 and 5.1. Let us write that it commutes with the right side of this equality. We get \(\sum_i [\tilde{e}[\epsilon], K_i(z, w)] \tilde{f}[\epsilon_i] + \text{element of } U_h \mathfrak{h} = 0\). From there follows that \([\tilde{e}[\epsilon], K_i(z, w)] = 0\). The reasoning of the end of the proof of Prop. 5.2 applies to show that \(K_i(z, w)\) vanishes.

Props. 5.1, 5.2 and 5.3 imply Thm. 5.1.

Remark 5. Classical limit. Let us show that \(T(z)\) is, up to a scalar, a deformation of the Sugawara tensor. Let us denote by \(e_{cl}(z), h_{cl}(z)\) and \(f_{cl}(z)\) the generating currents of \(\mathfrak{g}\). Then we have
\[
e(z) = e_{cl}(z) + O(h), \quad f(z) = f_{cl}(z) + O(h),
\]
\[
k^+(z) = 1 + \frac{h}{2} h_{cl}(z)_{z \to \Lambda} + o(h), \quad k^-(z) = 1 + \frac{h}{2} h_{cl}(z)_{z \to R} + o(h),
\]
\[
k_R(z) = 1 + O(h^2), \text{ so that}
\]
\[
k^+_{tot}(z) = [1 + \frac{h}{2} q^\partial_{\mathfrak{s}}(h_{cl}(z)_{z \to \Lambda}) + h^2 s(z)] [1 + \frac{h}{2} h_{cl}(z)_{z \to R} + h^2 t(z)] + O(h^3)
\]
\[
k^-_{tot}(z) = [1 - \frac{h}{2} q^{-\partial_{\mathfrak{s}}}(h_{cl}(z)_{z \to \Lambda}) - h^2 s(z) + \frac{h^2}{4} (h_{cl}(z)_{z \to \Lambda})^2]
\]
\[
[1 - \frac{h}{2} q^{-\partial_{\mathfrak{s}}}(h_{cl}(z)_{z \to \Lambda}) - h^2 t(z) + \frac{h^2}{4} (h_{cl}(z)_{z \to R})^2] + O(h^3),
\]
where \(s(z)\) and \(t(z)\) are some currents. Then
\[
T(z) = e_{cl}(z)_{z \to \Lambda} f_{cl}(z) + f_{cl}(z) e_{cl}(z)_{z \to R} + \frac{1}{h^2} (k^+_{tot}(z) + k^-_{tot}(z)) + O(h)
\]
\[
= \frac{1}{h^2} + e_{cl}(z)_{z \to \Lambda} f_{cl}(z) + f_{cl}(z) e_{cl}(z)_{z \to R} + \frac{1}{2} \partial h_{cl}(z)
\]
\[
+ \frac{1}{4} (h_{cl}(z)_{z \to \Lambda} h_{cl}(z) + h_{cl}(z) h_{cl}(z)_{z \to R}) + O(h);
\]
so \(T(z) - h^{-2}\) coincides with the classical Sugawara tensor to order \(h\). \(\square\)
Remark 6. Other expressions of $T(z)$. One may show that up to an additive scalar constant, $T(z)$ coincides with

$$T'(z) = k^+(q^\vartheta z)^{-1} \left(f(z)_{z \rightarrow \Lambda} e(q^\vartheta z) + e(q^\vartheta z) f(z)_{z \rightarrow R_{2\alpha}} \right) k^-(q^{-\vartheta} z)$$

$$+ \frac{\gamma'(z)}{\hbar \sigma(z)} k^+(q^\vartheta z)^{-1} k^-(q^{-\vartheta} z)^{-1} + \frac{\delta_2 \lambda(z)}{\hbar \sigma(q^{2\vartheta} z)} k^+(q^{2\vartheta} z) k^-(q^{-\vartheta} z),$$

with

$$\gamma'(z) = \alpha(q^{2\vartheta} z) - \sigma(q^{2\vartheta} z) g^{-}(z) + \sum_i e^i(z)(q^\vartheta(q^{-\vartheta} e_i)_R(z))$$

and

$$\delta_\lambda(z) = \beta(q^{2\vartheta} z) + \sigma(q^{2\vartheta} z) g^+(z).$$

It also coincides with $T''(z)$ defined by

$$T''(z) = k^+(z)^{-1} \left(e(z)_{z \rightarrow \Lambda} f(q^{-\vartheta} z) + f(q^{-\vartheta} z) e(z)_{z \rightarrow R} \right) k^-(q^{-2\vartheta} z)$$

$$+ \frac{1}{\hbar} \frac{\alpha(z)}{\sigma(z)} k^+(q^{-\vartheta} z) k^-(q^{-2\vartheta} z) + \frac{1}{\hbar} \frac{\beta'(z)}{\sigma(z)} (q^{-1} k^+ - (q^{-2} k^+))^{-1} k^-(q^{-\vartheta} z)^{-1},$$

up to an additive constant, with $\beta'(z) = \beta(q^\vartheta z) - \sigma(q^\vartheta z) \sum_i q^\vartheta((q^{-2\vartheta} e_i)_R(z)) e^i(z)$.

This formula is a generalization of the formula given in [12], which uses [14] and the new realizations isomorphism. To see the correspondence between this formula and ours, let us modify the notation in [12], so that the quantum parameter of that paper is denoted by q. The level in [12] is denoted by k and the currents generating the algebra $U_q \mathfrak{g}$ are $k^\pm(z)$, $E(z)$ and $F(z)$.

Set $X = \mathbb{C}P^1$ and $\partial = z \frac{d}{dz}$. The algebra $U_{h, \omega} \mathfrak{g}$ is isomorphic to $U_q \mathfrak{g}$, the isomorphism i being given by the formulas

$$i(K) = k, \quad i(k^+(z)) = k^+(z q^{\frac{\vartheta}{2} + 2}), \quad i(k^-(z)) = k^-(z q^{\frac{\vartheta}{2}}),$$

$$i(e(z)) = -\frac{1}{\hbar(q - q^{-1})} E(z), \quad i(f(z)) = F(q^k z),$$

with

$$q = q^{-2}, \quad q(z, w) = \frac{q^{-1} z - w}{z - q^{-1} w}, \quad q^+ (z, w) = \frac{q^{-1/2} z - q^{1/2} w}{z - w}.$$

Formula (6.10) of [12] then gives

$$i^{-1}(\ell(z)) = \frac{1}{\hbar(q - q^{-1})} k^+(z)^{-1} : e(z) f(q^{-1} z) : k^-(z q^{-2})$$

$$+ q^{-1/2} k^+(z)^{-1} k^-(z q^{-2}) + q^{1/2} k^+(z)^{-1} k^-(z q^{-1})^{-1},$$

so $i^{-1}(\ell(z))$ is equal to $T(z)$ given by (56).
Remark 7. Genus 1 case. Assume X is an elliptic curve \mathbb{C}/L, $L = \mathbb{Z} + \tau \mathbb{Z}$, and $\omega = dz$. Let θ be the Jacobi theta-function, equal to

$$\theta(z) = \frac{\sin(\pi z)}{\pi} \prod_{j=1}^{\infty} \frac{(1 - e^{2i\pi(j\tau+z)})(1 - e^{2i\pi(j\tau-z)})}{(1 - e^{2i\pi j\tau})^2}$$

The Weierstrass function is $\wp = -(d/dz)^2 \ln \theta(z)$. According to Prop. [14], we have $R = \mathbb{C}1 \oplus (\oplus_{i \geq 0} \mathbb{C}(d/dz)^i \wp)$ and $\Lambda = \mathbb{C}^\theta / \theta \oplus z \mathbb{C}[[z]]$. We have also $R_\lambda = \oplus_{i \geq 0} \mathbb{C}(d/dz)^i (\wp(z - \lambda))$ and $\Lambda' = \mathbb{C}[[z]]$. We have

$$G(z, w) = d/dz \ln \theta(z - w) - d/dz \ln \theta(z) + d/dz \ln \theta(w),$$

$$G_{2\lambda}(z, w) = \frac{\theta(-2\lambda + z - w)}{\theta(z - w)\theta(-2\lambda)},$$

$$q_-(z, w) = \frac{\theta(z - w - \hbar)}{\theta(z - w)},$$

viewed as a series in $\mathbb{C}((z))((w))[[\hbar]],$

$$\sigma(z) = \theta(h), \quad \gamma_\lambda(z) = \frac{\theta(2\lambda - \hbar)}{\theta(2\lambda)}, \quad \delta_\lambda(z) = \frac{\theta(2\lambda + \hbar)}{\theta(2\lambda)}.$$

The expression of $T'(z)$ is then

$$T'(z) = k^+(z + \hbar)^{-1} (f(z)_{z \to \lambda'} e(z + \hbar) + e(z + \hbar) f(z)_{z \to R_{2\lambda}}) k^-(z - \hbar)$$

$$+ \frac{\theta(2\lambda - \hbar)}{\hbar \theta(h) \theta(2\lambda)} k^+ (z + \hbar)^{-1} k^- (z - 2\hbar)^{-1} + \frac{\theta(2\lambda + \hbar)}{\hbar \theta(2\lambda) \theta(h)} k^+(z + 2\hbar) k^-(z - \hbar);$$

we have also

$$T(z) = \tilde{c}(z)_{z \to R_{2\lambda}} + \tilde{f}(z)_{z \to \lambda'} \tilde{c}(z) + \frac{1}{\hbar} \frac{\theta(2\lambda + \hbar)}{\hbar \theta(2\lambda) \theta(h)} k^+_\text{tot}(z) + \frac{1}{\hbar} \frac{\theta(2\lambda - \hbar)}{\hbar \theta(2\lambda) \theta(h)} k^-_{\text{tot}}(z).$$

□

6. Subalgebras $U_h\mathfrak{g}_{\lambda_0}^{\text{out}}$ and $U_h\mathfrak{g}_{\lambda_0}^{\text{out}}$ of $U_{h,\omega}\mathfrak{g}$ and coproducts

6.1. Subalgebras $U_h\mathfrak{g}^{\text{out}}$ and $U_h\mathfrak{g}_{\lambda_0}^{\text{out}}$. In [14], we showed that $U_{h,\omega}\mathfrak{g}$ contains a “regular” subalgebra $U_h\mathfrak{g}^{\text{out}}$, generated by the $h^+[r], e[r]$ and $f[r]$, for r in R. The inclusion $U_h\mathfrak{g}^{\text{out}} \subset U_{h,\omega}\mathfrak{g}$ is a deformation of the inclusion of the classical enveloping algebra of $\mathfrak{g} \otimes R$ in that of $\mathfrak{g} = (\mathfrak{g} \otimes \mathcal{K}) \oplus \mathbb{C}K$.

For any λ_0 in \mathbb{C}^g, define $U_h\mathfrak{g}_{\lambda_0}^{\text{out}}$ as the subalgebra of $U_{h,\omega}\mathfrak{g}^{\text{out}}$, generated by the $h^+[r], e[r_{2\lambda_0}]$ and $f[r_{-2\lambda_0}]$, for r in R, $r_{\pm 2\lambda_0}$ in $R_{\pm 2\lambda_0}$.

Proposition 6.1. Define $\mathfrak{g}_{\lambda_0}^{\text{out}}$ to be the Lie algebra $(\mathfrak{n}_+ \otimes R_{2\lambda_0}) \oplus (\mathfrak{k} \otimes R) \oplus (\mathfrak{n}_- \otimes R_{-2\lambda_0})$. The inclusion $U_h\mathfrak{g}_{\lambda_0}^{\text{out}} \subset U_{h,\omega}\mathfrak{g}$ is a deformation of the inclusion of the classical enveloping algebra of $\mathfrak{g}_{\lambda_0}^{\text{out}}$ in that of \mathfrak{g}.

Proof. [12] implies that the $e[\epsilon]$ satisfy the relations given by the pairing of

$$(1 + \psi(-\hbar, \partial_z \gamma)G(z, w) e(z) e(w) = e^{2(r-\phi)} (1 + \psi(\hbar, \partial_z \gamma)G(z, w)) e(w) e(z)$$

with any ν in $\mathcal{K} \otimes \mathcal{K}$, such that $m(\nu) = 0$, where m is the multiplication map.
Taking for \(v \) any \(\alpha \otimes \beta - \beta \otimes \alpha \), with \(\alpha, \beta \) in \(R_{2\lambda_0} \), and using the fact that \(R_{2\lambda_0} \) is an \(R \)-module, we get relations of the form

\[
[e[\alpha], e[\beta]] = \sum_{i \geq 1, j} h^i e[\alpha_j^{(i)}] e[\beta_j^{(i)}],
\]

with \(\alpha_j^{(i)}, \beta_j^{(i)} \) in \(R_{2\lambda_0} \). Therefore, if \(e_{2\lambda_0;i} \) is a basis of \(R_{2\lambda_0} \), the family

\[
(e[e_{2\lambda_0;1}; \cdots ; e_{2\lambda_0;ip}])_{i_1 \leq \cdots \leq i_p}
\]

spans the subalgebra of \(U_{h,\omega}\mathfrak{g} \) generated by the \(e[r] \), \(r \) in \(R_{2\lambda_0} \). Since by [7], Lemma 3.3, this is also a free family, it forms a basis of this subalgebra. To finish the proof, one proves the similar basis result for the subalgebra generated by the \(f[r] \), \(r \) in \(R_{-2\lambda_0} \) and a triangular decomposition result (see [7], Prop. 3.2 and Prop. 3.5).

6.2. **Coproducts.** Set \(A = U_{h,\omega}\mathfrak{g}, B = U_{h}\mathfrak{g}^{\text{out}}, B_{\lambda_0} = U_{h}\mathfrak{g}^{\text{out}}_{\lambda_0} \).

Define for \(\mathfrak{n} = (n_i)_{1 \leq i \leq p}, I_n \) as the left ideal of \(A \) generated by the \(x[\epsilon], \epsilon \in \prod_i z_i^i \mathbb{C}[z_i] \). Define \(A \otimes_{\succ} A, A \otimes_{\prec} A \) and \(A \otimes A \) as the completions of \(A \otimes A \) with respect to the topologies defined by \(A \otimes I_n, I_n \otimes A \) and \(I_n \otimes A + A \otimes I_n \) (\(\otimes \) denotes the \(h \)-adically completed tensor product). We have the inclusions \(A \otimes_{\succ} A \subset A \otimes A, A \otimes_{\prec} A \subset A \otimes A \) and \(A \otimes A = (A \otimes_{\succ} A) \cap (A \otimes_{\prec} A) \).

We define also for any space \(V, V \otimes_{\succ} A \) as the completion of \(V \otimes A \) w.r.t. the topology defined by the \(V \otimes I_n, A^{\otimes>n} \) as \(A^{\otimes>n-1} \otimes_{\succ} A \), and \(A^{\otimes<n} \) in the same way.

In [7], we defined Drinfeld-type coproducts \(\Delta \) and \(\Delta \) on \(U_{h,\omega}\mathfrak{g} \) by formulas similar to those of [7]. \(\Delta \) and \(\Delta \) map \(A \) to \(A \otimes_{\prec} A \) and to \(A \otimes_{\succ} A \). Moreover, \(\Delta \) and \(\Delta \) are conjugated by an element \(F \) of \(A \otimes A \). \(F \) is decomposed as a product \(F_2 F_1 \), with \(F_1 \) in \(A \otimes_{\prec} B \) and \(F_2 \) in \(B \otimes_{\succ} A \), which are defined as \(\lim_{\leftarrow} A \otimes B/I_n \otimes B \) and \(\lim_{\rightarrow} B \otimes A/B \otimes I_n \).

\(\Delta_R \) is defined as \(\text{Ad}(F_1) \circ \Delta \). It maps therefore \(A \) to \(A \otimes_{\prec} A \). Since \(\Delta_R \) is equal to \(\text{Ad}(F_2^{-1}) \circ \Delta \), it also maps \(A \) to \(A \otimes_{\succ} A \) and therefore to \(A \otimes A \). Also we have \(\Delta_R(B) \subset B \otimes B \).

Theorem 6.1. We have \(\Delta(B_{\lambda_0}) \subset A \otimes_{\prec} B_{\lambda_0} \) and \(\Delta(B_{\lambda_0}) \subset B_{\lambda_0} \otimes_{\succ} A \). We have a decomposition

\[
F = F_{2;\lambda_0} F_{1;\lambda_0}, \text{ with } F_{1;\lambda_0} \in A \otimes_{\prec} B_{\lambda_0} \text{ and } F_{2;\lambda_0} \in B_{\lambda_0} \otimes_{\succ} A.
\]

Set \(\Delta_{\lambda_0} = \text{Ad}(F_{1;\lambda_0}) \circ \Delta \), then \(\Delta_{\lambda_0} \) defines a quasi-Hopf algebra structure on \(A \), for which \(B \) is a sub-quasi-Hopf algebra.

Sketch of proof. The first statement is proved like Prop. 4.4 of [7], using the fact that \(R_{\pm 2\lambda_0} \) are \(R \)-modules. The decomposition of \(F \) is proved using the same duality arguments, e.g. the annihilator of \(U_h \mathfrak{n}_+ \cap B_{2\lambda_0} \) in \(U_h \mathfrak{n}_- \) is equal to \(\sum_{r \in R_{-2\lambda_0}} U_h \mathfrak{n}_- f[r] \). The proof of the next statements follows [7].

\[\square\]
7. Finite dimensional representations of $U_{\hbar, \omega} g$.

In [3], we constructed a family π_ζ of 2-dimensional representations of $U_{\hbar, \omega} g$ at level zero, indexed by ζ in the infinitesimal neighborhood $\text{Spec}(K)$ of the P_i. We have

$$\pi_\zeta(K^+(z)) = \begin{pmatrix} q_-(z, \zeta) & 0 \\ 0 & q_-(q^\theta z, \zeta)^{-1} \end{pmatrix}, \quad \pi_\zeta(K^-(z)) = \begin{pmatrix} q_+(z, \zeta) & 0 \\ 0 & q_+(q^\theta z, \zeta)^{-1} \end{pmatrix},$$

$$\pi_\zeta(e(z)) = \begin{pmatrix} 0 & -h\sigma(z)\delta(z, \zeta) \\ 0 & 0 \end{pmatrix}, \quad \pi_\zeta(f(z)) = \begin{pmatrix} 0 & 0 \\ \delta(z, \zeta) & 0 \end{pmatrix}.$$

This family extends to a family of representations of $U_{\hbar} g^{\text{out}}$, indexed by ζ in $X - \{P_i\}$. Formulas are

$$\pi_\zeta(K^+(z)) = \begin{pmatrix} q_-(z, \zeta) & 0 \\ 0 & q_-(q^\theta z, \zeta)^{-1} \end{pmatrix},$$

$$\pi_\zeta(e[r]) = \begin{pmatrix} 0 & -h\sigma(\zeta)\sigma(\zeta) \xi \zeta \\ 0 & 0 \end{pmatrix}, \quad \pi_\zeta(f[r]) = \begin{pmatrix} 0 & 0 \\ \delta(\zeta) & 0 \end{pmatrix}.$$

It also extends to a family of representations of $U_{\hbar} g^{\text{out}}$ by the same formulas, where we fix a preimage of ζ in $\tilde{X} - \pi^{-1}(P_0)$. Changing the preimage of ζ amounts to conjugating the representation by a diagonal matrix.

Define a parenthesis order on n objects as a binary tree with extremal vertices labelled $1, \ldots, n$. To each such order, and to n points ζ_i of $X - \{P_i\}$, we associate some B_{λ_0}-module. In the case of the representation $V = (V(\zeta_1) \otimes V(\zeta_2)) \otimes (V(\zeta_3) \otimes V(\zeta_4))$, the space of the representation is $V = \bigotimes_{i=1}^{n} V(\zeta_i)$ and the morphism from B_{λ_0} to $\text{End}(V)$ is $(\bigotimes_{i=1}^{n} \pi_{\zeta_i}) \circ (\Delta \otimes \Delta) \circ \Delta$.

In case the ζ_i are formal and $\zeta_1 << \zeta_2 << \cdots << \zeta_n$, the morphism $\rho_V^{(P)}$ is the restriction of a morphism from A to $\text{End}(V)$, which is $\bigotimes_{i=1}^{n} \pi_{\zeta_i} \circ \text{Ad}(\Delta^{(P)}(F_{1;\lambda_0})$. For example for $V = (V(\zeta_1) \otimes V(\zeta_2)) \otimes (V(\zeta_3) \otimes V(\zeta_4)))$, $\Delta^{(P)}(F_1)$ is equal to $\Delta^{(P)}(F_{1;\lambda_0}) = F_{1;\lambda_0}^{(12)} F_{1;\lambda_0}^{(34)} (\Delta \otimes \Delta)(F_{1;\lambda_0})$.

Let (z_1, z_2) be the canonical basis of \mathbb{C}^2, ξ_1, ξ_2 its dual basis.

Proposition 7.1. Let ζ_1, \ldots, ζ_n be points of $X - \{P_i\}$; let P be a parenthesis order, and define V as the B_{λ_0}-module $\bigotimes_{i=1}^{n} V(\zeta_i)$ is then a B_{λ_0}-module; we denote by $\rho_V^{(P)}$ the corresponding morphism from B_{λ_0} to $\text{End}(V)$. It has the following properties:

1) $e[r]$ and $f[r]$ act on V as $\sum_i A_i(\zeta_1, \ldots, \zeta_n) r(\zeta_i)$, A_i in $\text{End}(V) \otimes R^{\otimes n}$;

2) define the linear form ξ on V to be $\bigotimes_{i=1}^{n} \xi_i$. Then we have $\xi, \rho_V^{(P)}(f[r]) v = 0$ for any r of $R_{2;\lambda_0}$ and $\langle \xi, \rho_V^{(P)}(K^+(z)) v \rangle = \prod \frac{1}{q_+(z, \zeta_i) \xi(\zeta_i, \zeta_i_1, \ldots, \zeta_n)}$.

Proof. Let us first show 1) when ζ_i are formal and $\zeta_1 << \zeta_2 << \cdots$. In that case, $\rho_V^{(P)}(e(z))$ is conjugate to $\Delta^{(n)}(e(z))$, which has the form

$$\sum_i A_i(\zeta, \zeta_1, \ldots, \zeta_n).$$
with A'_i some endomorphisms of V and q_i in $\mathbb{C}((\zeta_1)) \cdots ((\zeta_n))$. Therefore $\Delta^{(n)}(e[r])$ is equal some $\sum_i A'_i r(\zeta_i) q_i(\zeta_1, \ldots, \zeta_n)$. On the other hand, $\rho^{(P)}(e[r])$ is equal to the conjugation of $\Delta^{(n)}(e[r])$ by $(\otimes_{i=1}^n \pi_{\zeta_i})(\Delta^{(P)}(F_{1;\lambda_0}))$. $\Delta^{(n)}(e[r])$ belongs to

$$\text{End}(V)((\zeta_1)) \cdots ((\zeta_n)),$$

so that $\rho^{(P)}(e[r])$ has the form

$$\sum_i B_i(\zeta_1, \ldots, \zeta_n) r(\zeta_i),$$

where $B_i(\zeta_1, \ldots, \zeta_n)$ belongs to $\text{End}(V)((\zeta_1)) \cdots ((\zeta_n))$. r being fixed, $\rho^{(P)}(e[r])$ is an algebraic function in the ζ_i, so the $B_i(\zeta_1, \ldots, \zeta_n)$ are algebraic functions and $\rho^{(P)}(e[r])$ has the form (57) for any ζ_i in $X - \{P_i\}$. This proves 1).

Let us prove 2). Since $\Delta^{(P)} F_{1;\lambda_0}$ has total weight zero (i.e. it commutes with $\Delta h[1] = \sum_i h[1]^{(i)}$), $\rho^{(P)}(f[r])$ has weight -1, which implies the first statement.

Let us prove the second statement. We can show by induction that

$$\langle \xi, \Delta^{(P)}(F_{1;\lambda_0}) \rangle = \langle \xi, v \rangle,$$

for any v in V. For example, in the case of a representation $V = ((V(\zeta_1) \otimes V(\zeta_2)) \otimes (V(\zeta_3) \otimes V(\zeta_4)))$, we have

$$\langle \xi, (\otimes_{i=1}^4 \pi_{\zeta_i})(F_{1;\lambda_0}^{(12)} \otimes (\Delta \otimes \Delta)(F_{1;\lambda_0})) \rangle = \langle \xi, (\otimes_{i=1}^4 \pi_{\zeta_i})((\Delta \otimes \Delta)(F_{1;\lambda_0})) \rangle$$

because $F_{1;\lambda_0}$ belongs to $1 + U h_n^{[\geq 1]} \otimes U h_n^{[\geq 1]}$; as $(\Delta \otimes \Delta)(F_{1;\lambda_0})$ belongs to

$$1 + (U h_n^{[\geq 1]} \otimes A^{\otimes 3})[0] + (A \otimes U h_n^{[\geq 1]} \otimes A^{\otimes 2})[0]$$

(where [0] means the zero weight component w.r.t. the adjoint action of $\sum_i h[1]^{(i)}$), we have

$$\langle \xi, (\Delta \otimes \Delta)(F_{1;\lambda_0}) v \rangle = \langle \xi, v \rangle.$$

On the other hand, we have

$$\langle \xi, (\otimes_{i=1}^4 \pi_{\zeta_i})(\Delta^{(P)}(\Delta^+(z)))(v) \rangle = \prod_i q_+(z, \zeta_i) \langle \xi, v \rangle.$$

Together with (58), this shows the statement for $\Delta^+(z)$.

Remark 8. Prop. [7, 1, 2] means that the “Drinfeld polynomial” of $\otimes_i^{(P)} V(\zeta_i)$ is

$$\prod_i q_+(q^\partial z, \zeta_i)$$

(see [3]).

Define $k_{a \rightarrow R}(z)$ as $\exp(\sum_{i,j} c_{ij} h[e^i] e^j(z))$, where c_{ij} are as in (23).

Corollary 7.1. There are formal series $\pi_{\alpha,\zeta}(z)$ such that

$$\langle \rho^{(P)}(k^+(q^\partial z)k_R(q^\partial z)k_R(z)^{-1}k_{a \rightarrow R}(z)v), \xi \rangle = \prod_i \pi_{\alpha,\zeta_i}(z) \langle v, \xi \rangle,$$

for any v in V.
8. Twisted correlation functions

Let \mathcal{V} be a module over $U_{\mathbf{h},\omega}\mathfrak{g}/(K+2)$. Let ψ_{λ_0} be a $U_{\mathbf{h},\omega}\mathfrak{g}_{\lambda_0}^\text{out}$-module map from \mathcal{V} to \mathcal{V} and set $\psi_\lambda = \psi_{\lambda_0} \circ e^{\sum(a_\lambda - \lambda_0^{(0)})^{h[r_\lambda]}}$. Fix v in \mathcal{V} and let us set

$$f_\lambda(u_1, \ldots, u_n) = \langle \psi_\lambda [\tilde{e}(u_1) \cdots \tilde{e}(u_n)]v, \xi \rangle,$$

where ξ is the linear form defined in Prop. 7.1.

Proposition 8.1. $f_\lambda(u_1, \ldots, u_n)$ is a symmetric function in (u_i), such that

$$\prod_{i=1}^n \prod_j \pi_{\zeta_j}(q^\alpha u_i)f_\lambda(u_1, \ldots, u_n)$$

is regular on \tilde{X}^n except for poles for u_i at $\pi^{-1}(P_i)$, and simple poles for u_i at $\pi^{-1}(q^{-\theta}\zeta_j)$, and satisfy transformation properties (2), with $\lambda_0^{(0)}$ replaced by λ_n.

When \mathcal{V} is the trivial representation, $f_\lambda(u_1, \ldots, u_n)$ is regular on $(\tilde{X}-\pi^{-1}(P_0))^n$.

Proof. From the commutation relations of $\tilde{e}(z)$ follows that $f_\lambda(u_1, \ldots, u_n)$ is symmetric in the u_i. We have

$$\prod_j \pi_{\zeta_j}(q^\alpha u_1)f_\lambda(u_1, \ldots, u_n) = \langle \psi_\lambda [e(q^\alpha u_1)w(u_1, \ldots, u_n)], \xi \rangle.$$

The fact that $\langle \psi_\lambda [e[r]w], \xi \rangle = 0$ for r in $R_{2\lambda}$ vanishing at ζ_i implies that

$$\prod_j \pi_{\zeta_j}(q^\alpha u_1)f_\lambda(u_1, \ldots, u_n)$$

belongs to $[(\text{annihilator for } \langle , \rangle_\mathcal{K} \text{ of } \{r \in R_{2\lambda}|r(\zeta_i) = 0\}) \otimes \mathcal{K}^{n-1}[[\mathbf{h}]]$. This annihilator is the space of functions on \tilde{X} with simple poles at ζ_i and a pole at the P_i, satisfying (2). \qed

9. Action of $T(z)$ on correlation functions

Let us set

$$q_m(z, w) = (k_m(z), \tilde{e}(w)), \quad \kappa(z) = \frac{\exp(2\alpha(q^{-\theta}z, q^{-\theta}z))}{\exp(2\alpha(q^\theta z, q^\theta z))}(k_\alpha(q^{-\theta}z), k^{-}(q^{-\theta}z))^{-1}.$$

Lemma 9.1. We have

$$q_m(z, w) = \exp[2\mathbf{h} \sum_i \left(\frac{1}{1 + q^{-\theta}e^i(z)}((T + U)e_i)m(w) \right)], \quad (59)$$

$$\kappa(z) = \exp[2\alpha(z, z) + 2\alpha(q^{-\theta}z, q^{-\theta}z) - 2\alpha(q^\theta z, z) - 2\alpha(q^{-\theta}z, z)] - \exp[2\mathbf{h} \sum_i \left(\frac{1}{1 + q^{-\theta}e^i(z)}((q^\theta - 1)(T + U)e_i)_{R(\alpha)}(z))(k^{-}(z), k^{-}(q^{-\theta}z))].$$

$$\cdots$$
$q_m(z, w)$ has the expansion

$$q_m(z, w) = i_m(z, w) \frac{q^d z - w}{z - w},$$

with $i_m(z, w)$ in $\mathbb{C}[[z, w]][z^{-1}, w^{-1}][[h]] \times$.

Proof. $(k_m(z), \tilde{e}(w))$ is equal to $(k_a(z), \tilde{e}(w))^{-1}(k^-(z), \tilde{e}(w))$. We have already seen that $(k_a(z), \tilde{e}(w)) = (k_a(z), \tilde{f}(w))^{-1}$. Then

$$(k_a(z), \tilde{e}(w)) = (k_a(z), e(q^d w)) = (k_a(z), f(q^d w))^{-1}$$

$$= (k_a(z), \tilde{f}(q^d w)k^-(w)^{-1})^{-1} = (k_a(z), \tilde{f}(w))^{-1}.$$

Therefore $q_m(z, w) = (k_m(z), \tilde{f}(w))^{-1}$ and by (27), we get the statement on $q_m(z, w)$. \(\square\)

Fix Π in $K[[h]]$. Let U be an open subset of \mathbb{C}^g and define \mathcal{F}_U as the space of functions $f(\lambda u_1, \ldots, u_n)$ on $U \times (\bar{X} - \pi^{-1}(P))$, symmetric in (u_1, \ldots, u_n) and with transformation properties (2), with $(\lambda^{(0)})$ replaced by λ_a. For f in \mathcal{F}_U, set

$$(T_z^{(\Pi)}f)(\lambda u_1, \ldots, u_n)$$

$$= \Pi(z)a_\lambda(z) \prod_{i=1}^n q_m(z, u_i) f(\lambda_a + h(\frac{1}{1 + q^d \omega_a/\omega}))(z)|u_1, \ldots, u_n)$$

$$+ \Pi(q^{-\theta} z)^{-1} b'_a(z) \kappa(z) \prod_{i=1}^n q_m(q^{-\theta} z, u_i)^{-1} f(\lambda_a + h(\frac{1}{1 + q^d \omega_a/\omega}))(z)|u_1, \ldots, u_n)$$

$$+ \sum_i -\frac{1}{h}\Pi(u_i)G_{2\lambda}(z, q^\theta u_i)q_m(u_i, z) \prod_{j \neq i} q_m(u_i, u_j)$$

$$f(\lambda_a + h(1 + q^\theta \omega_a/\omega))(u_j)|u_1, \ldots, z, \ldots, u_n)$$

$$+ \sum_i \frac{1}{h}\Pi(q^{-\theta} u_i)^{-1} G_{2\lambda}(z, q^{-\theta} u_i) \kappa(u_i)q_m(q^{-\theta} u_i, z)^{-1} \prod_{j \neq i} q_m(q^{-\theta} u_i, u_j)^{-1} \cdot f(\lambda_a + h(1 + q^\theta \omega_a/\omega))(u_i)|u_1, \ldots, z, \ldots, u_n)$$

where $b'_a(z)$ is defined by (30) and in the two last sums, $q_m(u_i, z)$, $q_m(q^{-\theta} u_i, z)$, $q_m(u_i, u_j)$ and $q_m(q^{-\theta} u_i, u_j)$, $j < i$ are continued to the domains $u_i \ll z$ and $u_i \ll u_j$.

Proposition 9.1. Assume that K acts by -2 on \mathbb{V} and v is such that $h[1]v = -2nv$, $h[\varepsilon]v = 0$ for ε in \mathfrak{m}, and $\tilde{f}^{(1-g+k)}v = 0$ for $k \geq 0$. We have

$$\langle \psi_\lambda[z] \tilde{e}(u_1) \cdots \tilde{e}(u_n)v, \xi \rangle = T_z^{(\Pi)}(\langle \psi_\lambda[\tilde{e}(u_1) \cdots \tilde{e}(u_n)v, \xi \rangle),$$

with $T_z^{(\Pi)}$ defined by (61), and $\Pi(z) = \prod_i \pi_{\alpha_i}(z)$.
Proof. We have
\[
\langle \psi_\lambda | T(z) \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
= \sum_i \langle \psi_\lambda | \bar{e}(u_1) \cdots [\bar{f}(z), \bar{e}(u_i)] | z \rightarrow R_{2\lambda} \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
+ a_\lambda(z) \langle \psi_\lambda | k_\text{tot}^+(z) \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle + b_\lambda(z) \langle \psi_\lambda | k_\text{tot}^-(z) \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle,
\]
by the invariance of \(\psi_\lambda \).
The sum is equal to
\[
\sum_i - \frac{1}{\hbar} G_{2\lambda}(z, q^\beta u_i) \langle \psi_\lambda | \bar{e}(u_1) \cdots k_\text{tot}^+(u_i) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
+ \frac{1}{\hbar} G_{2\lambda}(z, q^{-\beta} u_i) \exp(2\alpha(q^{-\beta} u_i, q^{-\beta} u_i)) \exp(2\alpha(q^\beta u_i, q^{-\beta} u_i)) \langle \psi_\lambda | \bar{e}(u_1) \cdots k_\text{tot}^-(u_i) \cdots \bar{e}(u_n) v \rangle, \xi \rangle.
\]
Then
\[
\langle \psi_\lambda | k_\text{tot}^+(z) \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
= \Pi(z) \langle \psi_\lambda + \sum_i b_i e^i(z) | k_m(z) \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
= \Pi(z) \prod_{i=1}^n (k_m(z), \bar{e}(u_i)) \langle \psi_\lambda + \sum_i b_i e^i(z) | \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
= \Pi(z) \prod_{i=1}^n q_m(z, u_i) \langle \psi_\lambda + \sum_i b_i e^i(z) | \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle;
\]
the second equality follows from the covariance of \(\psi_\lambda \), the next follows from the fact that \(v \) is \(U_\beta b^{2-\beta} \)-invariant; in the same way
\[
\langle \psi_\lambda | k_\text{tot}^-(z) \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
= \Pi(q^{-\beta} z)^{-1}(k_a(q^{-\beta} z), k_m(q^{-\beta} z))^{-1} \langle \psi_\lambda - \sum_i b_i e^i(z) q^{-\beta} z | k_m(q^{-\beta} z)^{-1} \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
= \Pi(q^{-\beta} z)^{-1}(k_a(q^{-\beta} z), k^- q^{-\beta} z)^{-1} \prod_{i=1}^n (k_m(q^{-\beta} z)^{-1} \bar{e}(u_i))^{-1}
\]
\[
\langle \psi_\lambda - \sum_i b_i e^i(z) q^{-\beta} z | \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle
\]
\[
= \Pi(q^{-\beta} z)^{-1}(k_a(q^{-\beta} z), k^- q^{-\beta} z)^{-1} \prod_{i=1}^n q_m(q^{-\beta} z, u_i)^{-1}
\]
\[
\langle \psi_\lambda - \sum_i b_i e^i(z) q^{-\beta} z | \bar{e}(u_1) \cdots \bar{e}(u_n) v \rangle, \xi \rangle.
\]
We have
\[
-2(1 \otimes q^\beta \mathcal{A}) \beta(z, w) \in (R \otimes R)[[\hbar]] - 2\hbar \sum_a \left(\frac{1}{1 + q^{-\beta} \omega_a / \omega} \right) (z) r_a(w)
\]
so
\[
\beta(z, w) \in \hbar \sum_a \left(\frac{1}{1 + q^{-\beta} \omega_a / \omega} \right) (z) r_a(w) + (R \otimes R)[[\hbar]],
\]
therefore
\[\sum_i b_{ii} e^i(z) = h\left(\frac{1}{1 + q^{-\ell}(\omega_a/\omega)}\right)(z) \]
and the Proposition follows. \hfill \Box

Remark 9. Dependence on \(\alpha \). The operators \(T_z \) depend on the choice of \(\alpha \) through their coefficients \(\kappa(z) \) and \(q_m(z, w) \). Operators \(T_z \) corresponding to different choices \(\alpha \) and \(\alpha' \) are conjugated. When \(\Pi(z) = 1 \), the conjugation is
\[T_z^{(\alpha)} = M_{\alpha\alpha'} T_z^{(\alpha')} M_{\alpha\alpha}^{-1}, \]
where
\[(M_{\alpha\alpha'}f)(\lambda_a|u_1, \ldots, u_n) = \prod_{i<j} \exp\{2(\alpha - \alpha')(q^0 u_i, u_j)\} f(\lambda_a|u_1, \ldots, u_n). \]

10. Commuting difference operators

Define \(U_{h,\omega} \mathfrak{g}_{\mathfrak{m}}^{>1-g} \) as the subalgebra of \(U_{h,\omega} \mathfrak{g} \) generated by \(h[1] \), the \(\tilde{h} \), \(\epsilon \in \mathfrak{m} \), and the \(\tilde{f}[z^{1-g+k}], k \geq 0 \).

Let \(\chi_n \) be the character of \(U_{h,\omega} \mathfrak{g}_{\mathfrak{m}}^{>1-g} \) defined by \(\chi_n(h[1]) = -2n \), \(\chi_n(\tilde{h}) = \chi_n(\tilde{f}[z^{1+g+k}]) = 0 \), \(\epsilon \in \mathfrak{m} \), \(k \geq 0 \).

Define \(\mathcal{V}_n \) as the \(U_{h,\omega} \mathfrak{g} \otimes U_{\mathfrak{g}_{\mathfrak{m}}^{>1-g}} \mathbb{C}_{\chi_n} \).

Proposition 10.1. The map \(\iota \) from \((\mathcal{V}_n)_{U_{h,\omega} \mathfrak{g}^{\text{out}}_{\mathfrak{g}}}_{n} \) to the subspace \(\mathcal{F} \) of \(S^n \mathbb{K}[[\lambda_a - \lambda_a^{(0)}]][[h]] \) formed of the formal functions near \(\lambda_0 \), which can be continued in variables \(u_i \) to functions on \(\tilde{X} - \pi^{-1}(\{P_i\}) \) with transformation properties \(\mathcal{F} \) (with \(\lambda_a^{(0)} \) replaced by \(\lambda_a \)), defined by
\[\psi_{\lambda_0} \mapsto \langle \psi_{\lambda}, \tilde{e}(u_1) \cdots \tilde{e}(u_n) \rangle, \]
is an isomorphism.

Proof. \((\mathcal{V}_n)_{U_{h,\omega} \mathfrak{g}^{\text{out}}_{\mathfrak{g}}}_{n} \) is isomorphic to the space of forms \(\phi \) on \(U_{h,\omega} \mathfrak{g} \) such that
\[\phi(x^{\text{out}} x) = \varepsilon x^{\text{out}} x \phi(x), \]
x \(U_{h,\omega} \mathfrak{g}^{\text{out}}_{\mathfrak{g}} \) and \(\phi(x x^{\text{in}}) = \phi(x) \chi_n(x^{\text{in}}), x^{\text{in}} \in U_{\mathfrak{g}_{\mathfrak{m}}^{>1-g}} \).

From Prop. \(\mathfrak{F} \) follows that the kernel of the product map
\[\tilde{\pi} : U_{h,\omega} \mathfrak{g}_{\mathfrak{m}}^{\text{out}} \otimes \mathbb{C} \langle h[r_a], \tilde{e}[\epsilon], \epsilon \in \mathcal{K} \rangle \otimes U_{\mathfrak{g}_{\mathfrak{m}}^{>1-g}} \rightarrow U_{h,\omega} \mathfrak{g} \]
is spanned by the \(x \tilde{e}[r_{-2\lambda_0}] \otimes y \otimes z - x \otimes \tilde{e}[r_{-2\lambda_0}] y \otimes z, r_{-2\lambda_0} \in R_{-2\lambda_0}, x \) in \(U_{h,\omega} \mathfrak{g}_{\mathfrak{m}}^{\text{out}} \), \(y \) in \(\mathbb{C} \langle h[r_a], \tilde{e}[\epsilon], \epsilon \in \mathcal{K} \rangle \), \(z \) in \(U_{\mathfrak{g}_{\mathfrak{m}}^{>1-g}} \). An element of \(\mathcal{F} \) induces a form \(\phi \) on \(\mathbb{C} \langle h[r_a], \tilde{e}[\epsilon], \epsilon \in \mathcal{K} \rangle \), that we extend to the left side of \(\mathfrak{F} \) by the rule
\[\phi(x \otimes y \otimes z) = \varepsilon(x) \phi(y) \chi_n(z). \]
The properties of the elements of \(\mathcal{F} \) imply that \(\phi \) maps \(\ker \tilde{\pi} \) to zero. It follows that \(\iota \) is surjective.

In the same way, if \(\iota(\psi_{\lambda_0}) = 0 \), then the restriction of \(\iota(\psi_{\lambda_0}) \) to \(\mathbb{C} \langle h[r_a], \tilde{e}[\epsilon], \epsilon \in \mathcal{K} \rangle \) is zero, so that \(\psi_{\lambda_0} \) is zero. \hfill \Box
Theorem 10.1. For any $\Pi(z)$ in $\mathcal{K}[[\hbar]]$ and z in $\Spec(\mathcal{K})$, the operators $T_\pi^{(\Pi)}$ defined by (61) form a commuting family of evaluation-difference operators, acting on $S^n(\mathcal{K})[[\lambda_n - \lambda_n^{(0)}]][[\hbar]]$.

When $\Pi(z) = 1$, they form a commuting family of endomorphisms of $\mathcal{F}_U[[\hbar]]$, where \mathcal{F}_U is defined in sect. 9, for z in $X - \{P_0\}$. Set for $\rho = (\rho_\lambda)_{\lambda \in \Spec \mathbb{C}[[\lambda_n - \lambda_n^{(0)}]]}$ a family of elements of $R_{-2\lambda} \cap z^{-N} \mathcal{O}$,

$$ (\hat{f}[\rho]) (\lambda_a | u_1, \ldots, u_{n+1}) $$

$$ = \sum_{i=1}^{n+1} \frac{1}{h} \rho_\lambda (u_i) \Pi(u_i) \prod_{j \neq i} q_m(u_i, u_j) f(\lambda_a + \frac{h}{1 + q^{-\delta} / \omega_a / \omega(u_i)} | u_1, \ldots, u_{n+1}) $$

$$ - \sum_{i=1}^{n+1} \frac{1}{h} \rho_\lambda (q^{-\delta} u_i) \Pi(q^{-\delta} u_i)^{-1} \kappa(u_i) \prod_{j \neq i} q_m(q^{-\delta} u_i, u_j)^{-1} f(\lambda_a - \frac{h}{1 + q^\delta / \omega_a / \omega(u_i)} | u_1, \ldots, u_{n+1}). $$

Then the operators $T_\pi^{(\Pi=1)}$ normalize the $\hat{f}[\rho]$, which means that they preserve the intersection $\cap_{\rho_\lambda \in R_{-2\lambda} \cap z^{-N} \mathcal{O}} \Ker \hat{f}[\rho]$ for any integer N.

Proof. When $\Pi = 1$, the operators $T_\pi^{(\Pi)}$ can be identified with the action of $T(z)$ on the space of invariant forms $(\mathcal{V}_n^*) \otimes \mathcal{O}_{\mathbb{C}^n}^\ast$, by Prop. 10.1. Therefore, they preserve this space and commute with each other.

It follows that we have the cancellations of poles

$$ \text{res}_{z=w}[\alpha_\lambda(z)q_m(z, w)dz] = \text{res}_{z=w}[\frac{1}{h} G_{2\lambda}(z, q^\delta w)q_m(w, z)dz], $$

and

$$ \text{res}_{z=w}[\beta_\lambda(z)\kappa(z)q_m(q^{-\delta} z, w)^{-1}dz] + \text{res}_{z=w}[\frac{1}{h} G_{2\lambda}(z, q^{-\delta} w)q_m(q^{-\delta} w, z)^{-1}dz] = 0. $$

These relations imply that when Π is arbitrary, $T_\pi^{(\Pi)}$ is a well-defined endomorphism of $S^n(\mathcal{K})[[\hbar]]$.

Set then $\Pi^+(z) = \Pi(z)$, $\Pi^-(z) = \Pi(q^{-\delta} z)^{-1}$, and

$$ [m(\varphi(u_i))f](\lambda_a | u_1, \ldots, u_n) = \varphi(u_i) f(\lambda_a | u_1, \ldots, u_n), $$

for any φ in $\mathcal{K}[[\hbar]]$, and

$$ T_\pi^{(\Pi)} = \sum_{\epsilon=+, -} \Pi^\epsilon(z) A_\epsilon^\pi + \sum_{\epsilon=+, -} \sum_{i=1}^{n} m(\Pi^\epsilon(u_i)) \circ C_z^\epsilon(i). $$

Comparison of arguments in (λ_a) in the relation $[T_\pi^{(\Pi=1)}, T_\pi^{(\Pi=1)}] = 0$ yields

$$ [A_\epsilon^\pi, A_\epsilon^\pi] = 0, \quad [C_z^\epsilon(i), C_z^\epsilon(j)] = 0 $$

for any ϵ, ϵ' and if $i \neq j$ and

$$ [A_\epsilon^\pi, C_w^{\epsilon',(j)}] + C_w^{\epsilon',(j)} C_w^{\epsilon,(j)} = 0. $$
On the other hand, we have
\[[m(\Pi^\epsilon(u_i)) \circ C_{w}^{\epsilon,(i)}, m(\Pi^{\epsilon'}(u_j)) \circ C_{w}^{\epsilon',(j)}] = m(\Pi^\epsilon(u_i)) \circ m(\Pi^{\epsilon'}(u_j)) \circ [C_{w}^{\epsilon,(i)}, C_{w}^{\epsilon',(j)}] = 0 \]
for any \(\epsilon, \epsilon', i \neq j \), and
\[
[\Pi^\epsilon(z)A_{z}, m(\Pi^{\epsilon'}(u_j)) \circ C_{w}^{\epsilon,(j)}] + m(\Pi^{\epsilon'}(u_j)) \circ C_{w}^{\epsilon',(j)} \circ m(\Pi^\epsilon(u_i)) \circ C_{w}^{\epsilon,(j)} = 0.
\]

Therefore \([T_{z}^{(\Pi)}, T_{w}^{(\Pi)}] = 0 \).

The statement on \(\hat{f}[\rho] \) follows from the fact that \(\cap_{\rho \lambda \in R_{\lambda \in \mathbb{R}^+}} \mathrm{Ker} \hat{f}[\rho] \) is equal to \((\mathbb{V}_{n,N})^{u_{\mathfrak{g}}} \), where \(\mathbb{V}_{n,N} \) is the \(U_{h_{\mathfrak{g}}\mathfrak{g}} \)-module \(U_{h_{\mathfrak{g}}\mathfrak{g}} \otimes U_{\mathfrak{g}_{\mathfrak{m}}}^{\geq N} \mathbb{C}_{\chi_{n}} \), \(U_{\mathfrak{g}_{\mathfrak{m}}}^{\geq N} \) is the subalgebra of \(U_{h_{\mathfrak{g}}\mathfrak{g}} \) generated by \(\hat{h}[\epsilon], \epsilon \in \mathfrak{m}, h[1] \) and the \(\hat{f}[z^{k}], k \geq -N \), and \(\chi_{n} \) is the character of this algebra defined by \(\chi_{n}(h[1]) = -2n \), \(\chi_{n}(\hat{h}[\epsilon]) = \chi_{n}(\hat{f}[z^{k}]) = 0 \) for \(k \geq -N \) and \(\epsilon \) in \(\mathfrak{m} \).

Remark 10. Write \(k^{+}(q_{20}z)k_{R}(q_{0}z)k_{R}(z)^{-1}k_{a \rightarrow R}(z) = \exp(\sum_{i} h[e_{i}] \rho_{i}(z)) \), with \(\rho_{i}(z) \) in \(\mathcal{K}[[h]] \). If \(\Pi(z) \) has the form \(\exp(\sum_{i} \lambda_{i} \rho_{i}(z)) \), for some \(\lambda_{i} \in \mathbb{C}[[h]] \), then \(T_{z}^{(\Pi)} \) may be interpreted as the action of \(T(z) \) on some space of intertwiners.

11. Connection with hypergeometric spaces

In \cite{16}, V. Tarasov and A. Varchenko proved the following result. Let \(W \) be a representation of the Yangian \(Y(\mathfrak{g}_{2}) \) and let \(\xi \) be a vector of \(W \) such that \(l_{21}^{+}(z)\xi = 0 \), and \(l_{ii}^{+}(z)\xi = \pi_{i}(z)\xi, i = 1, 2 \), for \(\pi_{i}(z) \) some formal series.

Proposition 11.1. (see \cite{10}). We can express \((l_{11}^{+}(z) + l_{22}^{+}(z))l_{12}^{+}(u_{1}) \cdots l_{12}^{+}(u_{n})\xi \) in the form
\[
A(z|u_{1}, ..., u_{n})l_{12}^{+}(u_{1}) \cdots l_{12}^{+}(u_{n})\xi + \sum_{i=1}^{n} C^{(i)}(z|u_{1}, ..., u_{n})l_{12}^{+}(u_{1}) \cdots l_{12}^{+}(u_{n})l_{12}^{+}(z) \cdots l_{12}^{+}(u_{n})\xi;
\]
the family of operators acting on symmetric functions of \((u_{1}, ..., u_{n}) \) defined by
\[
\hat{T}_{z} = A(z|u_{1}, ..., u_{n}) + \sum_{i=1}^{n} C^{(i)}(z|u_{1}, ..., u_{n}) \circ \text{ev}_{z}^{(i)}
\]
is commutative.

In this section, we will show that the operators \(\hat{T}_{z} \) are examples of the operators \(T_{z}^{(\Pi)} \) constructed above.

Let us consider now the case \(X = \mathbb{CP}^{1}, \omega = d\omega \). We have \(\sum_{i} n_{i}P_{i} = 2(\infty) \).
\(U_{h_{\mathfrak{g}}\mathfrak{g}} \) is then a completion of the central extension \(\overline{DY}(\mathfrak{g}_{2}) \) of the double of the Yangian \(Y(\mathfrak{g}_{2}) \) of \(\mathfrak{g}_{2} \). Let \(x[t^{n}], x \in \{e, f, h\}, n \in \mathbb{Z} \) be the “new realizations”
generators of $\mathcal{D}Y(\mathfrak{sl}_2)$ and $l_{ij}[n]$, $1 \leq i, j \leq 2$ and $n \in \mathbb{Z}$ its “matrix elements” generators.

Generators $x[t^n]$ are organized in generating series $e(z), f(z)$ and $k^\pm(z)$, as above; we further split $x(z)$ as the sum $x^+(z) + x^-(z)$, with $x^+(z) = \sum_{n \geq 0} x[t^n] z^{-n-1}$, $x^-(z) = \sum_{n < 0} x[t^n] z^{-n-1}$. Generating series for the $l_{ij}[n]$ are $l^+(z) = \sum_{n \geq 0} l_{ij}[n] z^{-n-1}$, $l^-(z) = \sum_{n < 0} l_{ij}[n] z^{-n-1}$.

We have the relations

$$(z - w + h)e(z)e(w) = (z - w - h)e(w)e(z),$$

$k^+(z)e(w)k^+(z)^{-1} = \frac{z - w + h}{z - w}e(w), \quad k^-(z)e(w)k^-(z)^{-1} = \frac{w - z + hK}{w - z + h(K + 1)}e(w)$,

and

$l^+_{12}(z) = -hk^+(z)^{-1}e^+(z), \quad l^-_{12}(z) = -he^-(z - hK)k^-(z - h)$

(see e.g. [3]). Moreover, we have

$$\bar{e}(z) = k^+(z + h)^{-1}e(z + h). \quad (64)$$

Define $Y^{\geq 0}$ and $Y^{< 0}$ as the subalgebras of $\overline{\mathcal{D}Y}(\mathfrak{sl}_2)$ generated the $x[t^n], n \geq 0$ (resp. by the $x[t^n], n < 0$). Let $\hat{Y}^{< 0}$ be the subalgebra generated by K and $Y^{< 0}$. Then $U_h \mathfrak{g}^{aut}$ is equal to $Y^{\geq 0}$. Define \mathcal{V} as the Weyl module $\overline{\mathcal{D}Y}(\mathfrak{sl}_2) \otimes_{\hat{Y}^{< 0}} \mathbb{C}_{-2}$, where \mathbb{C}_{-2} is one-dimensional module over $\hat{Y}^{< 0}$ where all the generators act by zero, except for K, which acts by -2.

Let ζ_i be points of \mathbb{C} and $V_i(\zeta_i)$ be evaluation modules over $Y^{\geq 0}$ associated with these points; V_i is $(2\Lambda_i + 1)$-dimensional. Define V as the tensor product (for the usual comultiplication of $Y^{\geq 0}$) of the $V_i(\zeta_i)$. Let ψ be some $Y^{\geq 0}$-module map from \mathcal{V} to V. We will view V^* as a $Y^{\geq 0}$-module by the rule

$$\langle a\alpha, v \rangle = \langle \alpha, S(a)v \rangle$$

for a in $Y^{\geq 0}$, v in V and α in V^*, where S is the antipode of $Y^{\geq 0}$.

Let ξ be a highest weight linear form as in Prop. 7.1 and let Ω be any vector of \mathcal{V} annihilated by the $e^-(z)$ (for example, Ω could be the vector $1 \otimes 1$ of \mathcal{V}). We have

$$\langle \xi, k^+(z)v \rangle = \pi_V(z)\langle \xi, v \rangle,$$

with

$$\pi_V(z)\pi_V(z + h) = \prod_i \frac{\zeta_i - z + h(2\Lambda_i + 1)}{\zeta_i - z}$$

(see [3]).

Lemma 11.1. Let $\tilde{\zeta}$ be any linear form of \mathcal{V} such that

$$\langle \tilde{\zeta}, k^+(z)v \rangle = \pi(z)\langle \tilde{\zeta}, v \rangle, \quad (65)$$
for any \(v\) in \(\mathbb{V}\) and some \(\pi(z)\) in \(\mathbb{C}[[z^{-1}]]\). Then we have

\[
\langle \tilde{\xi}, e(z_1) \cdots e(z_n) \rangle = \frac{1}{(-h)^n} \prod_{i<j} \frac{z_j - z_i}{z_j - z_i - h} \pi(z_1) \cdots \pi(z_n) \langle \tilde{\xi}, l_{12}^+(z_1) \cdots l_{12}^+(z_n) \rangle \tag{66}
\]

(identity in \(\mathbb{C}((z_1)) \cdots ((z_n))\)). In particular, we have

\[
\langle \psi(e(z_1) \cdots e(z_n)) \rangle = \frac{1}{h^n} \prod_{i<j} \frac{z_j - z_i}{z_j - z_i - h} \pi_V(z_1) \cdots \pi_V(z_n) \langle \psi(\Omega), l_{12}^+(z_1 - h) \cdots l_{12}^+(z_n - h) \rangle \tag{67}
\]

Proof. We proceed by induction. For \(n = 0\), the statement is trivial. Assume we have proved it at step \(n\) and let us try to prove it at step \(n + 1\). Apply the statement of step \(n\) for \(\tilde{\xi}' = \tilde{\xi} \circ e(z_0)\). \(\tilde{\xi}'\) satisfies (65) with \(\pi(z)\) replaced by \(\pi(z) = \frac{z - z_0}{z - z_0 - h}\). Therefore, we have

\[
\langle \tilde{\xi}, e(z_0) \cdots e(z_n) \rangle = \langle \tilde{\xi}', e(z_1) \cdots e(z_n) \rangle
\]

\[
= \frac{1}{(-h)^n} \prod_{0 \leq i < j \leq n} \frac{z_j - z_i}{z_j - z_i - h} \pi(z_1) \cdots \pi(z_n) \langle \tilde{\xi}', l_{12}^+(z_1) \cdots l_{12}^+(z_n) \rangle
\]

\[
= \frac{1}{h^n} \prod_{0 \leq i < j \leq n} \frac{z_j - z_i}{z_j - z_i - h} \langle \tilde{\xi}, e(z_0) l_{12}^+(z_1) \cdots l_{12}^+(z_n) \rangle.
\]

Now

\[
\langle \tilde{\xi}, e(z_0) l_{12}^+(z_1) \cdots l_{12}^+(z_n) \rangle
\]

\[
= -\frac{1}{h} \langle \tilde{\xi}, (k^+(z_0) l_{12}^+(z_0)) l_{12}^+(z_1) \cdots l_{12}^+(z_n) \rangle
\]

\[
= -\frac{1}{h} \pi(z_0) \langle \tilde{\xi}, l_{12}^+(z_0) \cdots l_{12}^+(z_n) \rangle + \langle \tilde{\xi}, k^-(z_0) l_{12}^+(z_1) \cdots l_{12}^+(z_n) l_{12}^+(z_0) \rangle.
\]

because \(l_{12}^+(z_0)\) commutes with the \(l_{12}^+(z_i)\). Since \(e^-(z_0) \Omega = 0\), we have \(l_{12}^+(z_0) \Omega = 0\), which proves (66) at step \(n + 1\). This shows (67).

Let us now show how (67) can be derived from (66). Let us set \(\tilde{\xi}(v) = \langle \xi, \psi(v) \rangle\). Then we have (66) with \(\pi(z) = \pi_V(z)\). Then

\[
\langle \psi(e(z_1) \cdots e(z_n)) \rangle = \frac{1}{(-h)^n} \prod_{i<j} \frac{z_j - z_i}{z_j - z_i - h} \pi_V(z_1) \cdots \pi_V(z_n) \langle \psi(l_{12}^+(z_1) \cdots l_{12}^+(z_n) \rangle, \xi
\]

\[
= \frac{1}{(-h)^n} \prod_{i<j} \frac{z_j - z_i}{z_j - z_i - h} \pi_V(z_1) \cdots \pi_V(z_n) \langle l_{12}^+(z_1) \cdots l_{12}^+(z_n) \psi(\Omega) \rangle, \xi
\]

\[
= \frac{1}{h^n} \prod_{i<j} \frac{z_j - z_i}{z_j - z_i - h} \pi_V(z_1) \cdots \pi_V(z_n) \langle \psi(\Omega), l_{12}^+(z_1 - h) \cdots l_{12}^+(z_n - h) \rangle, \xi.
\]
Corollary 11.1. We have

\[\langle \psi[\bar{e}(z_1) \cdots \bar{e}(z_n)\Omega], \xi \rangle = \frac{1}{\hbar^n} \langle \psi(\Omega), l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle. \]

Proof. We have

\[
\begin{align*}
\langle \psi[\bar{e}(z_1) \cdots \bar{e}(z_n)\Omega], \xi \rangle & = \langle \psi[k^+(z_1 + \hbar)^{-1}e(z_1 + \hbar) \cdots k^+(z_n + \hbar)^{-1}e(z_n + \hbar)\Omega], \xi \rangle \\
& = \prod_{i<j} \langle e(z_i), k^+(z_j)^{-1} \rangle \prod_i \pi_1(\hbar(z_i + \hbar)^{-1} e(z_i + \hbar)\Omega), \xi \rangle \\
& = \frac{1}{\hbar^n} \prod_{i<j} (\hbar(z_i), k^+(z_j)^{-1}) \prod_{i<j} \frac{z_j - z_i}{z_j - z_i - \hbar} \langle \psi(\Omega), l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle \\
& = \frac{1}{\hbar^n} \langle \psi(\Omega), l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle,
\end{align*}
\]

where the first equality follows from (64), the second from the commutation rules, and because of (68) is equal to

\[\langle \psi[\bar{e}(z_1) \cdots \bar{e}(z_n)\Omega], \xi \rangle \]

(see [14].)

On the other hand, we have

\[\langle \psi(T(z)\bar{e}(z_1) \cdots \bar{e}(z_n)v), \xi \rangle = \langle \psi(\bar{e}(z_1) \cdots \bar{e}(z_n)T(z)v), \xi \rangle \] (by centrality of \(T(z) \))

\[= \frac{1}{\hbar^n} \langle \psi(T(z)\Omega), l_{12}^+(z_1 + \hbar) \cdots l_{12}^+(z_n + \hbar)\xi \rangle \]

(by Lemma [11.1] above and because \(T(z)\Omega \) is killed by \(e^{-i} \)).

Set \(L^\pm(z) = (l_{12}^\pm(z))_{1 \leq i,j \leq 2} \), then we have \(T(z) = \text{tr} L^+(z) L^-(z - 2\hbar)(\text{see [14]}) \). But since \(l_{12}^\pm(z)v = \delta_{ij}v \), we get \(T(z)v = (l_{11}^+(z) + l_{22}^+(z))v \); therefore the right side of (68) is equal to

\[\frac{1}{\hbar^n} \langle \psi[(l_{11}^+(z) + l_{22}^+(z))\Omega], l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle \]

\[= \frac{1}{\hbar^n} \langle \psi(\Omega), (l_{11}^+(z) + l_{22}^+(z))l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle \]

\[= \frac{1}{\hbar^n} \hat{T}_z \{ \langle \psi(\Omega), l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle \} \]

by Prop. [11.1] On the other hand, \(\langle \psi[T(z)\bar{e}(z_1) \cdots \bar{e}(z_n)\Omega], \xi \rangle \) is equal to

\[T_z^{(H)} \{ \langle \psi(\Omega), l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle \} = \frac{1}{\hbar^n} T_z^{(H)} \{ \langle \psi(\Omega), l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle \} \]

by Thm. [10.1]. Since any symmetric polynomial can be realized as a correlation function \(\langle \psi(\Omega), l_{12}^+(z_1) \cdots l_{12}^+(z_n)\xi \rangle \), we have shown:
Proposition 11.2. The operators T_z^{Π} and \hat{T}_z are equal.

This fact can also be verified by direct computation.

Remark 11. Elliptic case. In the elliptic case, and when there is no z_i, $T_z^{\Pi=1}$ is independent on z and coincides with the q-Lamé operator:

$$h\theta(h)(T_z \varphi)(\lambda) = \frac{\theta(2\lambda - h)}{\theta(2\lambda)} \varphi(\lambda - \frac{h}{2}) + \frac{\theta(2\lambda + h)}{\theta(2\lambda)} \varphi(\lambda + \frac{h}{2}).$$

It should be possible to obtain the q-Lamé operator for $m > 1$ with other Π.

Appendix A. Delta-function identities

Lemma A.1. We have

$$q_-(z, w)^{-1} - q_+(z, w)^{-1} = \sigma(z) \delta(q^{-\partial} z, w)$$

and

$$q_-(q^{-\partial} z, w) - q_+(q^{-\partial} z, w) = -\sigma(z) \delta(q^{-\partial} z, w),$$

with σ defined by (43).

σ has also the expression

$$\sigma(q^\partial z) = \left[e^{2 \sum_i (U_i e_i)(z) \otimes e^i(w)} e^{-\phi(-h, \partial^i_\lambda \gamma)} \delta(-h, \partial^i_\lambda \gamma) \right]_{w=z},$$

Proof. From (3) follows that

$$q_-(q^\partial z, w)^{-1} - q_+(q^\partial z, w)^{-1} = -e^{-2 \sum_i (q^\partial U_i e_i)(z) \otimes e^i(w)} e^{-\phi(h, \partial^i_\lambda \gamma)} \delta(h, \partial^i_\lambda \gamma) \delta(z, w),$$

so that (69) follows, with σ given by (43).

Recall that we have

$$q(z, w) = i(z, w) \frac{q^{-\partial} z - w}{z - q^{-\partial} w},$$

with $i(z, w)$ in $\mathbb{C}[[z, w]][z^{-1}, w^{-1}][[h]]^\times$ such that $i(z, w) i(w, z) = 1$ (8, Prop. 3.1). We have seen that

$$q_-(z, w) = i_+(z, w) \frac{q^{-\partial} z - w}{z - q^{-\partial} w},$$

with $i_+(z, w)$ in $\mathbb{C}[[z, w]][z^{-1}, w^{-1}][[h]]^\times$. Moreover, $i_+(z, w)$ satisfies

$$i_+(z, w) i_+(q^\partial z, w) = \frac{q^\partial z - w}{z - q^{-\partial} w} i(z, w).$$

On the other hand, we have

$$q_+(z, w) = i_+(z, w) \frac{w - q^{-\partial} z}{w - z},$$

so that

$$q_-(q^\partial z, w)^{-1} - q_+(q^\partial z, w)^{-1} = i_+(q^\partial z, z)(q^\partial z - z) \delta(z - w),$$
and
\[q_-(z, w) - q_+(z, w) = i_+(z, z)(q^{-\partial}z - z)\delta(z - w), \]
with \(\delta(z - w) = \sum_{i \in \mathbb{Z}} z^i w^{-i-1} \). From \(i(z, z) = 1 \) and (72) follows that the prefactors of \(\delta(z - w) \) in both equations are opposite to each other. (70) follows.

On the other hand, we have
\[q_+(z, w) = q^2 \sum_i (U_i e_i(z) \otimes e^i(w)) e^{-\phi(h, \partial_z^i \gamma)} (1 + G^{(21)}(z, w)\psi(-h, \partial_z^i \gamma)), \]
so that
\[q_-(z, w) - q_+(z, w) = \rho(q^\partial z)\delta(z, w). \]
with \(\rho \) given by
\[\rho(q^\partial z) = \left[-e^{2 \sum_i (U_i e_i(z) \otimes e^i(w)) e^{-\phi(h, \partial_z^i \gamma)} \psi(-h, \partial_z^i \gamma)} \right]_{w=z}; \]
since \(\rho(q^\partial z) \) is equal to \(-\sigma(q^\partial z)\), we get expression (71) for \(\sigma \).

Lemma A.2. We have
\[q_+(z, w)^{-1}G(w, z) + q_-(z, w)^{-1}G(z, w) = \alpha(z)\delta(q^{-\partial}z, w), \]
(73)
\[q_+(z, w)G(w, q^{-\partial}z) + q_-(z, w)G(q^{-\partial}z, w) = \beta(q^\partial z)\delta(z, w), \]
(74)
with \(\alpha \) and \(\beta \) defined by (72) and (73). \(\beta \) has also the expression
\[\beta(q^\partial z) = \left[\partial_h [e^{-\phi(-h, \partial_z^i \gamma)} \psi(-h, \partial_z^i \gamma)] e^{2 \sum_i (U_i e_i(z) \otimes e^i(w))} \right]_{w=z}. \]
(75)

Proof. Let us prove (73). Applying \(q^\partial \otimes 1 \) to this equation, we write it as
\[q_+(q^\partial z, w)^{-1}G(w, q^\partial z) + q_-(q^\partial z, w)^{-1}G(q^\partial z, w) = \alpha(q^\partial z)\delta(z, w). \]

We have
\[q_+(q^\partial z, w)^{-1} = e^{-q^\partial U_i e_i(z) \otimes e^i(w)} e^{\sum_i \frac{1 - e^{q^\partial e_i(z) \otimes e^i(w)}}{q}}. \]
From sect. 2.1 follows that
\[e^{\sum_i \frac{1 - e^{q^\partial e_i(z) \otimes e^i(w)}}{q}} = e^{-\phi(-h, (-\partial_z^i \gamma)) (1 - G^{(21)} \psi(-h, (-\partial_z^i \gamma))) (1 + G^{(21)} \psi(h, \partial_z^i \gamma))}. \]
(76)
\[q_+(q^\partial z, w)^{-1}G^{(21)}(q^\partial z, w) \] is equal to
\[q^{2q^\partial (T_r + U_i e_i(z) \otimes e^i(w))} G^{(21)}(q^\partial z, w) \]
\[= e^{\sum_i \frac{1 - e^{q^\partial U_i e_i(z) \otimes e^i(w)}}{q}} G^{(21)}(q^\partial z, w) \]
\[= -e^{-2 \sum_i e^{q^\partial U_i e_i(z) \otimes e^i(w)} \partial_h (e^{\sum_i \frac{1 - e^{q^\partial e_i(z) \otimes e^i(w)}}{q}}) \]
\[= -e^{-2 \sum_i e^{q^\partial U_i e_i(z) \otimes e^i(w)} \partial_h [e^{-\phi(h, \partial_z^i \gamma)} (1 + G^{(21)} \psi(h, \partial_z^i \gamma))]}. \]
Differentiating \((77)\) with respect to \(\hbar\)

We have

\[
q_+(q^\theta z, w)^{-1} G^{(21)}(q^\theta z, w) - q_-(q^{-\theta} z, w)^{-1} G(q^\theta z, w) = -e^{-2 \sum_i q^\theta U_+ e_i(z) \otimes e^i(w)} \partial_\hbar [e^{-\phi(h, \partial^i z \gamma)} \psi(h, \partial^i z \gamma)] \delta(z, w).
\]

Therefore

\[
\alpha(q^\theta z) = \left[-e^{-\sum_i q^\theta U_+ e_i(z) \otimes e^i(w)} \partial_\hbar [e^{-\phi(h, \partial^i z \gamma)} \psi(h, \partial^i z \gamma)] \right] \bigg|_{z=w}.
\]

Let us now prove \((74)\). From sect. \(2.1\) follows that

Using Lemmas \(A.2\) and \(A.1\), we find

\[
\text{Proof.}
\]

Differentiating \((77)\) with respect to \(\hbar\), we find

\[
G^{(21)}(q^{-\theta} z, w) e^{\sum_i \left(\frac{1 - e^{-\theta}}{\theta} - e^{-\theta} \right) e_i(z) \otimes e^i(w)} = \partial_\hbar [e^{-\phi(h, (-\partial_z)^i \gamma)} (1 - G^{(21)}(\psi(h, (-\partial_z)^i \gamma))].
\]

Therefore, we have also

\[
G(q^{-\theta} z, w) [e^{\sum_i \left(\frac{1 - e^{-\theta}}{\theta} - e^{-\theta} \right) e_i(z) \otimes e^i(w)}]_{w=\gamma} = \partial_\hbar [e^{-\phi(h, (-\partial_z)^i \gamma)} (1 - G^{(21)}(\psi(h, (-\partial_z)^i \gamma))].
\]

so that

\[
G^{(21)}(q^{-\theta} z, w) e^{\sum_i \left(\frac{1 - e^{-\theta}}{\theta} - e^{-\theta} \right) e_i(z) \otimes e^i(w)} = \partial_\hbar [e^{-\phi(h, (-\partial_z)^i \gamma)} (1 - G^{(21)}(\psi(h, (-\partial_z)^i \gamma))].
\]

and

\[
G^{(21)}(q^{-\theta} z, w) q_+(z, w) + G(q^{-\theta} z, w) q_-(z, w) = -\partial_\hbar [e^{-\phi(h, (-\partial_z)^i \gamma)} \psi(h, (-\partial_z)^i \gamma)] e^{2 \sum_i (U_+ e_i(z) \otimes e^i(w))} \delta(z, w),
\]

that is \((74)\) with \(\beta\) given by \((74)\). Identity \((74)\) allows then to write \(\beta\) in the form \((74)\). \(\square\)

Lemma A.3. We have

\[
G_{-2\lambda}(q^\theta w, z) q_-(q^{2\theta} w, q^\theta z)^{-1} + G_{2\lambda}(z, q^\theta w) q_+(q^{2\theta} w, q^\theta z)^{-1} = A_\lambda(z) \delta(z, w),
\]

and

\[
G_{-2\lambda}(q^{-\theta} w, z) q_-(q^{\theta} w, q^\theta z)^{-1} + G_{2\lambda}(z, q^{\theta} w) q_+(q^{\theta} w, q^\theta z)^{-1} = B_\lambda(z) \delta(z, w),
\]

where \(A_\lambda(z)\) and \(B_\lambda(z)\) are defined by \((44)\) and \((44)\).

Proof. Using Lemmas \(A.2\) and \(A.1\), we find

\[
A_\lambda(z) = \alpha(q^{2\lambda} z) + [G_{-2\lambda}(q^\theta w, z) - G(q^{2\theta} w, q^\theta z)]_{w=z} \sigma(q^{2\theta} z).
\]

Then \(G(q^\theta w, z) - G(q^{2\theta} w, q^\theta z)\) is equal to

\[
\sum_i e_i \otimes q^i e^i - \sum_i q^\theta e_i \otimes q^{2\theta} e^i;
\]

\[
(78)
\]
the pairing of R with the first component of this tensor gives zero, so that it belongs to $(R \otimes R)[[h]]$ and its pairing with λ in Λ gives $-q^{2\partial}(q^{-\partial}\lambda)_R$; therefore (78) is equal to

$$-\sum_i e^i \otimes q^{2\partial}(q^{-\partial}e_i)_R.$$

so that $A_\lambda(z)$ is given by (16).

In the same way, we find

$$B_\lambda(z) = \beta(q^{2\partial}z) - \sigma(q^{2\partial}z)[G_{-2\lambda}(q^{-\partial}w,z) - G(w,q^\partial z)]_{w=z}.$$

Since

$$G(q^{-\partial}w,z) - G(w,q^\partial z)$$

is equal to $-\sum_i e^i(z)((q^{-\partial}e_i)_R)(z)$, it follows that $B_\lambda(z)$ is given by (17). \qed

References

[1] A. Beilinson, V. Drinfeld, Quantization of Hitchin’s fibration and Langlands’ program. Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), 3–7, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996.
[2] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press, 1991.
[3] V. Drinfeld, A new realization of Yangians and quantized affine algebras, Sov. Math. Dokl. 36:2, 212-6 (1988).
[4] B. Enriquez, G. Felder, Commuting differential and difference operators associated with complex curves, I, math.QA/9807145.
[5] B. Enriquez, G. Felder, A construction of Hopf algebra cocycles for the Yangian double $DY(\mathfrak{sl}_2)$, J. Phys. A: Math. Gen. 31 (1998), 2401-13.
[6] B. Enriquez, V. Rubtsov, Quantum groups in higher genus and Drinfeld’s new realizations method (sl$_2$ case), Ann. Sci. Ec. Norm. Sup. 30, sér. 4 (1997), 821-46, q-alg/9601022.
[7] B. Enriquez, V. Rubtsov, Quasi-Hopf algebras associated with \mathfrak{sl}_2 and complex curves, q-alg/9608005, to appear in Israel Jour. of Math.
[8] B. Enriquez, V. Rubtsov, Some examples of quantum groups in higher genus, preprint math.QA/9801037, to appear in AMS Transl., Adv. in Math. Sci.
[9] B. Feigin, A. Stoyanovsky, A realization of the modular functor in the space of the differentials and geometric approximation of the moduli space of G-bundles, Funct. An. Appl. 28:1 (1994), 68-90.
[10] B. Feigin, E. Frenkel, N. Reshetikhin, Gaudin model, Bethe Ansatz and correlation functions at the critical level, Comm. Math. Phys. 166:1 (1995), 27-62.
[11] G. Felder, V. Tarasov, A. Varchenko, Monodromy of solutions of the elliptic quantum Knizhnik-Zamolodchikov-Bernard difference equations, q-alg/9705017.
[12] E. Frenkel, N. Reshetikhin, Quantum affine algebras and deformations of the Virasoro and W-algebras, q-alg/9505025, Commun. Math. Phys. 178:1, 237-64 (1996).
[13] D. Kazhdan, Y. Soibelman, Representations of quantum affine algebras, Sel. Math., New Series, 1:3 (1995), 537-95.
[14] N. Reshetikhin, M. Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19:2, 133-42 (1990).
[15] A. Sevostyanov, Drinfeld-Sokolov reduction for quantum groups, [math/9805133].
[16] V. Tarasov, A. Varchenko, Geometry of q-hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math. 128:3 (1997), 501-88.

B.E.: Centre de Mathématiques, Ecole Polytechnique, UMR 7640 du CNRS, 91128 Palaiseau, France
FIM, ETH-Zentrum, HG G46, CH-8092 Zurich, Switzerland
G.F.: D-Math, ETH-Zentrum, HG G44, CH-8092 Zurich, Switzerland