Article

The Chemically Highly Diversified Metabolites from the Red Sea Marine Sponge Spongia sp.

Chi-Jen Tai 1,*, Atallah F. Ahmed 2,3,†, Chih-Hua Chao 4,5, Chia-Hung Yen 6, Tsong-Long Hwang 7,8,9, Fang-Rong Chang 6, Yusheng M. Huang 10,11, and Jyh-Hong Sheu 1,6,12,13,*

1 Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; chijentai@g-mail.nsysu.edu.tw
2 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; afahmed@ksu.edu.sa
3 Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
4 School of Pharmacy, China Medical University, Taichung 406040, Taiwan; chchao@mail.cmu.edu.tw
5 Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 406040, Taiwan
6 Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; chyen@kmu.edu.tw (C.-H.Y.); aaronfrc@kmu.edu.tw (F.-R.C.)
7 Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; hl8@mail.cgu.edu.tw
8 Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
9 Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
10 Department of Marine Recreation, National Penghu University of Science and Technology, Magong 80333, Taiwan
11 Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Magong 80333, Taiwan
12 Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
13 Department of Marine Research, Chang Gung University of Science and Technology, Taichung 404333, Taiwan
* Correspondence: sheu@mail.nsysu.edu.tw; Tel.: +886-7-525-2000 (ext. 5030); Fax: +886-7-525-5020
† These authors contributed equally to this work.

Abstract: A polyoxygenated and halogenated labdane, spongianol (1); a polyoxygenated steroid, 3β,5α,9α-trihydroxy-24S-ethylcholest-5-en-6-one (2); a rare seven-membered lactone, (22S,24S)-ergosta-7,22-dien-3β,5α-diol-6,5-olide (3); and an α,β-unsaturated fatty acid, (23)-3-methyl-9-oxodec-2-enoic acid (4) as well as five known compounds, 10-hydroxykahukuene B (5), pacifenol (6), dysidamide (7), 7,7,7-trichloro-3-hydroxy-2,2,6-trimethyl-1-(4,4,4-trichloro-3-methyl-1-oxobutylamino)-heptanoic acid methyl ester (8), and the primary metabolite 2′-deoxynucleoside thymidine (9), have been isolated from the Red Sea sponge Spongia sp. The stereoisomer of 3 was discovered in Ganoferma resinaeum, and metabolites 5 and 6, isolated previously from red algae, were characterized unprecedentedly in the sponge. Compounds 7 and 8 have not been found before in the genus Spongia. Compounds 1–9 were also assayed for cytotoxicity as well as antibacterial and anti-inflammatory activities.

Keywords: Red Sea sponge; Spongia sp.; halogenated labdane diterpenoid; polyoxygenated steroid; fatty acid; polychlorinated metabolites; cytotoxicity; antibacterial assay; anti-inflammatory assay

1. Introduction

Sponges of the genus Spongia are known to be abundant sources of chemical constituents with diverse structures and bioactivity [1,2]. So far, the 3,4-seco-3,19-dinorditerpenes [3], 5,5,6,6,6-pentacyclic diterpenes [4], furanoterpenes [5,6], spongian diterpenes [7,8], scalarane sesterterpenoids [9,10], sesquiterpene quinones [11,12], diverse terpenes [13,14], sterols [15,16],
and macrolides [14,17], along with fatty acids [18,19] and halides [20,21], have been isolated from the genus Spongia sp. Our preliminary studies on the Red Sea sponge Spongia sp. resulted in the isolation of a series of new compounds, including one 5,5,6,6,5-pentacyclic diterpene, two new furanotrinorsesquiterpenoid acids, and a furanyl trinorsesterpenoid [22]. Our continuous investigation of the chemical constituents of this sponge has again afforded four new compounds, including spongianol (1), 3β,5α,9α-trihydroxy-24S-ethylcholest-7-en-6-one (2), (22E,24S)-ergosta-7,22-dien-3β,5α-diol-6,5-olide (3), and (Z)-3-methyl-9-oxodec-2-enoic acid (4) (Figure 1), along with five known metabolites: 10-hydroxykahukuene B (5) [23], pacifenol (6) [24], dysidamide (7) [25], 7,7,7-trichloro-3-hydroxy-2,2,6-trimethyl-4-(4,4,4-trichloro-3-methyl-1-oxobutylamino)-heptanoic acid methyl ester (8) [25], and the primary metabolite 2′-deoxynucleoside thymidine (9) [26]. The molecular structures of 1–9 were established by MS, IR, and detailed NMR spectroscopic analysis (Supplementary Figures S1–S45) and by comparison with the reported spectral data of related known compounds. The cytotoxicity of hepatocellular carcinoma (HCC) Huh7 cells and the anti-inflammatory and antibacterial activity of 1–9 were also evaluated.

![Figure 1. Structures of metabolites 1–9.](image)

2. Results and Discussion

Compound 1 was obtained as a colorless oil. The HRESIMS (Supplementary Figure S1) of 1 established the molecular formula C_{20}H_{39}^{35}Cl_{2}O_{5}, implying five degrees of unsaturation. The IR spectrum of 1 revealed the presence of the hydroxyl, carbonyl, and olefin from absorptions at 3420, 1698, and 1646 cm⁻¹, respectively. The 13C NMR spectroscopic data of 1 exhibited 20 carbon signals (Table 1), which were designated with the assistance of the DEPT spectrum as five methyls (δC 28.7, 25.9, 24.0, 20.1, and 18.9), three methylenes (including δC 116.7, 45.1, and 27.7), six methines (including four oxymethines, δC 70.9, 75.3, 68.9, and 65.9; one terminal vinyl group methine, δC 139.9; and δC 41.7), and five quaternary carbons (including one ketone carbon, δC 209.2; three oxygenated quaternary carbons, δC 82.1, 77.4, and 76.2; and δC 45.2). The NMR data of 1 (Table 1) showed the appearance of a vinyl group (δC 139.9, CH and 116.7, CH₂; δH 6.78, 1H, dd, J = 17.5 and 11.5 Hz; and δH 5.35, 1H, d, J = 17.5 Hz, and 5.21, 1H, d, J = 11.5 Hz, respectively). The
A 1H–1H COSY experiment revealed the presence of four partial structures (Figure 2). The HMBC correlations of 1 (Figure 2) displayed from H-20 (δ_H 1.71) to C-1, 5, 9, and 10 (δ_C 209.2, 82.1, 41.7, and 58.1); both H-18 and 19 (δ_H 1.24 and 1.21) to C-3, 4 (δ_C 65.9 and 45.2), and 5; H-17 (δ_H 1.66) to C-7, 8 (δ_C 75.3 and 76.2), and 9; H-16 (δ_H 1.49) to C-12, 13, and 14 (δ_C 68.9, 77.4, and 139.9) suggested that the five methyls were positioned at C-4, 8, 10, and 13. Furthermore, the HMBC correlations were observed from both H-20 and H-2 (δ_H 3.34 and 2.64, each 1H) to a ketone carbon (δ_C 209.2); H-3 (δ_H 4.50) to C-4, 5 and 6; H-7 (δ_H 5.72) to C-6 (δ_C 27.7), 8, 9, and 17 (δ_C 25.9); 7-OH (δ_H 5.72) to C-6 and 7; H-9 (δ_H 2.72) to C-7, 8, 10, 11, 12 and 20; H-11 (δ_H 5.32) to C-12 and 13; 11-OH (δ_H 2.25) to C-9 and 11; H-12 (δ_H 4.06) to C-13 and 16 (δ_C 28.7); both H-14 (δ_H 6.78) and H-15 (δ_H 5.35 and 5.21, each 1H) to C-13, suggesting that a ketone, three hydroxyls, and one terminal vinyl functionalities were located on C-1, 5, 7, 11, and 14, respectively. The remaining two chlorines were positioned at C-3 and 12 (δ_C 65.9 and 68.9, respectively). As described above, 1 elucidated a new polyoxygenated chlorinated labdane diterpenoid, spongianol.

Table 1. 13C and 1H NMR data for compounds 1–3.

	1H	13C
1 a		
2α	2.64, dd (14.0, 6.0)	45.1, CH₂
2β	3.34, t (13.0)	45.1, CH₂
3	4.50, dd (13.0, 6.0)	65.9, CH
4	−	45.2, C
5	−	82.1, C
6α	2.18, tt (15.5, 3.5)	27.7, CH₂
6β	2.05, tt (15.5, 3.5)	27.7, CH₂
7	3.67, t (3.5)	75.3, CH
8	−	76.2, C
9	2.72, br s	41.7, CH
10	−	58.1, C
11	5.32, (2.5)	70.9, CH
12	4.06, d (2.5)	68.9, CH
13	−	77.4, C
14	6.78, dd (17.5, 11.5)	139.9, CH
15	5.21, d (11.5)	116.7, CH₂
16	1.49, s	28.7, CH₃
17	1.66, s	25.9, CH₃
18	1.24, s	24.0, CH₃
19	1.21, s	20.1, CH₃
20	1.71, s	18.9, CH₃

...
Table 1. Cont.

	1^a		2^b		3^b			
#	δ_H	δ_C	#	δ_H	δ_C	#	δ_H	δ_C
5-OH	5.72, br s	20	1.40, m	36.4, CH	23	5.21, dd (15.0, 8.4)	132.7, CH	
7-OH	3.59, d (2.0)	21	0.94, d (6.0)	18.9, CH₃	24	1.85, m	43.1, CH	
11-OH	2.25, d (1.5)	22	1.05, m	33.7, CH₂	25	1.47, m	33.2, CH	
			23	1.39, m	26	0.82, d (6.6)	19.6, CH₃	
			24	0.93, m	46.0, CH	28	0.92, d (7.2)	18.0, CH₃
			25	1.63, m	28.9, CH			
			26	0.81, d (6.6)	19.0, CH₃			
			27	0.84, d (6.6)	19.6, CH₃			
			28	1.14, m	23.0, CH₂			
				1.32, m				
5-OH	3.34 br s							
9-OH	4.12 br s							

^a 13^C and 1^H spectra recorded at 125 and 500 MHz in CDCl₃; ^b 13^C and 1^H spectra recorded at 150 and 600 MHz in CDCl₃; ^c deduced from DEPT; ^d J values (Hz) in parentheses; ^e broad signal.

Figure 2. The selected COSY (→), HMBC (→), and key NOESY (++) correlations of 1.

In the NOESY spectrum of 1, the NOE correlations (Figure 2) of H₃-20 with 11-OH, H₃-17, and H₃-19; 11-OH and H₃-19 with H₅-17; and H-14 with 11-OH and H₃-17 suggested that these protons were positioned at the same orientation. By contrast, the correlations of H-3 with H₅-18, 5-OH with H-9, H₃-18, and 7-OH; and H-12 with H-9 and H₃-16 revealed that these protons were on the same side. Furthermore, the stereochemistry of 1 was evidenced by the experimental CD (circular dichroism) and calculated ECD (electronic circular dichroism) spectra (Figure 3). The theoretical ECD curves of 3R,5R,7S,8R,9R,10S,11S,12S,13S-1 (1a) and its enantiomer 3S,5S,7R,8S,9S,10R,11R,12R,13R-1 (1b) were calculated at the B3LYP/6-311+G(d,p) (including a IEFPCM solvent model for MeOH) level of theory by the Gaussian 9.0 program [27,28]. The CD spectrum of 1 (Figure 3) showed the negative Cotton effect at 293 nm, which was found to be consistent with the calculated ECD of 1a (296 nm, Figure 3), and the absolute configuration of 1 was thus identified as 3R,5R,7S,8R,9R,10S,11S,12S and 13S. Furthermore, the absolute configurations of 1 were consistent with that of the structural analogs (3R,5S,6S,8S,9S,10R,13R)-3-bromo-6-hydroxy-8,13-epoxy-labd-14-one (10), (1S,3R,5S,6S,8S,9S,10R,13R)-1-acetoxy-3-bromo-6-hydroxy-8,13-epoxy-labd-14-ene (11) and paniculatol (12) (Figure 4) isolated from the red alga Laurencia sp. [29,30].
The HRESIMS of metabolite 2 showed a molecular ion peak [M + Na]+ at 483.3446 m/z, which established the molecular formula C29H48O4, implying six degrees of unsaturation. The IR absorption bands at \(\nu_{\text{max}} \) 3458–3291, 1682, and 1654 cm\(^{-1}\) revealed the presence of the hydroxyl, ketone, and olefin, respectively. The NMR spectroscopic data of 2 (Table 1) displayed six methyls (\(\delta_{\text{C}} 20.5, 19.6, 19.0, 18.9, 12.3, \) and 12.0; \(\delta_{\text{H}} 0.81, \) 3H, d, \(J = 6.6 \) Hz; 0.81, 3H, d, \(J = 6.6 \) Hz; 0.94, 3H, d, \(J = 6.0 \) Hz; 0.85, 3H, t, \(J = 7.8 \) Hz and 0.61, 3H, s); six methylenes; five methines (including one oxygenated methane \(\delta_{\text{C}} 67.2 \) and \(\delta_{\text{H}} 4.07, \) m; and one olefinic methane \(\delta_{\text{C}} 119.9 \) and \(\delta_{\text{H}} 5.66, \) br s), and five quaternary carbons (including one ketone carbon \(\delta_{\text{C}} 197.7 \); one olefinic non-protonated carbon \(\delta_{\text{C}} 164.3, \) and two oxygenated quaternary carbons \(\delta_{\text{C}} 79.7 \) and 74.6, respectively). The detailed analyses of \(^1\)H–\(^1\)H COSY and HMBC correlations (Figure 5) established the molecular skeleton of 2. Furthermore, a comparison of the NMR data of 2 with the similar structures \(3\beta,5\alpha,9\alpha\)-trihydroxy-(22E,24R)-23-methylergosta-7,22-dien-6-one (13) and \(3\beta,5\alpha,9\alpha\)-trihydroxy-(24S)-ergost-7-en-6-one (14) [31] (Figure 6, Supplementary Table S1) confirmed that 2 is a new polyoxygenated sterol.

The relative configuration of 2 was deduced by the analysis of NOE correlations (Figure 5). The observation of the NOE correlations of 5-OH (\(\delta_{\text{H}} 3.34 \)) with H-3 and 9-OH (\(\delta_{\text{H}} 4.07 \) and 4.12, respectively); 9-OH with H-12\(\alpha \) (\(\delta_{\text{H}} 1.72 \)); H-14 (\(\delta_{\text{H}} 2.72 \)) with H-12\(\alpha \) and H-17 (\(\delta_{\text{H}} 1.39 \)); H-17 with H\(_7 \)21 (\(\delta_{\text{H}} 0.94 \)); and H\(_7 \)21 with H\(_2 \)-12 elucidated that these protons were cofacial. Furthermore, a comparison of the NMR data of 2 with those of similar analogs, 13 and 14 (Figure 6), confirmed the configuration of the steroidal nucleus ([31], Supplementary Table S1). The chemical shift differences of C-26 and C-27 (\(\Delta\delta_{\text{C}} 26,27 \), useful for assignment of the absolute configuration of C-24 of this side chain [32–34]).
for compound 2 and the related known 24S and 24R analogs are summarized in Supplementary Table S2. In 24S analogues 15 (CDCl₃) and 17 (C₅D₅N), the ΔδĊ₂₆,₂₇ values were found to be 0.55 and 0.62, respectively, while those for 24R analogues 16 (CDCl₃) and 18 (C₅D₅N) were 0.77 and 0.73, respectively (Figure 6) [32,35]. The ΔδĊ₂₆,₂₇ values for 2 were found to be 0.59 and 0.62 in CDCl₃ and C₅D₅N, respectively, indicating that C-24 of 2 had an S-configuration (Figure 7a). In addition, the δC values for C-20, C-24, to C-27 were shown to be much more similar to those of compound 15 than those of 16. Thus, the 24S configuration of 2 was established. Furthermore, the stereochemistry of 2 was evidenced by the experimental CD and calculated ECD spectra (Figure 7b). The theoretical ECD curves of 3S,5R,9R,10R,13R,14R,17R,20R,24S-2 (2a) and its enantiomer 3R,5S,9S,10S,13S,14S,17S,20S,24R-2 (2b) were calculated at the CAM-B3LYP/6-311+G(d,p) (including a IEFPCM solvent model for MeOH) level of theory by the Gaussian 9.0 program [27,28]. The tendency of the experimental CD spectrum of 2 (Figure 7b) was similar to that of the calculated ECD of 2a (Figure 7b); furthermore, the absolute configuration of 2 was identified. On the basis of the above observations, the molecular structure of 2 was determined as 3β,5α,9α-tri hydroxy-24S-ethylcholest-7-en-6-one.

For compound 3, the IR absorption bands at νmax 3393 and 1670 cm⁻¹ revealed the presence of the hydroxy and α,β-unsaturated ester groups, respectively, and the HRESIMS m/z 445.3316 [M + H]⁺ established the molecular formula of 3 to be C₂₈H₄₄O₄. The structure of 3 was established by analyses of ¹H−¹H COSY and HMBC experiments (Figure 8), and the planar structure of 3 was found to be as same as that of (22E,24R)-ergosta-7, 22-dien-
3β,5α-diol-6,5-olide (19) (Figure 9) [36]. Compound 3 exhibited almost the same NMR data as those of 19 except for the chemical shifts of C-16 and C-26 to C-28 (Supplementary Table S3). The chemical shifts of C-16 and C-24 to C-28 for 3 and the related known 24S and 24R analogs 19–21 [32,36] are summarized in Table 2. It was found that C-16 of 3 resonated at a higher chemical shift (δC 28.0) than that of 19 (δC 27.7). The 0.3 ppm difference for carbon shifts of C-16 between both 3 and 19 was similar to those of 20 (δC 28.86) and 21 (δC 28.58). In addition, the chemical shifts of C-24 and C-26–28 of 3 showed closer chemical shift values to compound 20 than to 21. On the basis of the above analysis, compound 3 was determined as (22E,24S)-ergosta-7,22-dien-3β,5α-diol-6,5-olide. Compound 3 is the fourth member of the group of steroids with a rare seven-membered lactone B ring, and the other three members, astersterol A, fortisterol, and (22E,24R)-ergosta-7,22-dien-3β,5α-diol-6,5-olide, were isolated previously from the starfish [37], the marine sponge [38], and the fungus Ganoderma resinaceum [36], respectively.

![Figure 8](image)

Figure 8. The selected COSY (→), HMBC (→), and key NOESY (++) correlations of 3.

![Figure 9](image)

Figure 9. Structures of compounds 19–21.

Position	3 (22E,24S)	19 (22E,24R)	20 (22E,24S)	21 (22E,24R)
C-16	28.0	27.7	28.86	28.58
C-24	43.1	42.8	43.12	42.90
C-25	33.2	33.0	33.28	33.16
C-26	19.6	19.9	19.69	20.02
C-27	20.1	19.6	20.19	19.69
C-28	18.0	17.6	18.08	17.68

Table 2. The 13C NMR data at C-16 and C-24–C-28 of 3 and related compounds 19–21.

Metabolite 4 was isolated as a colorless oil. Its molecular formula was determined to be C11H15O3 from the HRESIMS (m/z 221.1149 [M + Na]+), indicating three degrees of unsaturation. The IR spectrum displayed the absorptions of the hydroxyl, ketone, and carboxylic acid groups (3445, 1700, and 1683 cm⁻¹, respectively). The NMR data (Table 3) showed the presence of two methyls (δC 29.9 and 25.4; δH 2.14 and 1.91, each 3H, s); five methylenes; one alkene methane (δC 115.3 and δH 5.69, br s); and three quaternary carbons (included one ketone carbon δC 209.4, one carbonyl carbon δC 169.5, and one alkane quaternary carbon δC 163.5). The detailed analysis of 1H–1H COSY and HMBC correlations
of 4 (Figure 10) assigned the positions of a carboxylic acid group, an olefinic double bond, and ketone functionalities to be at C-1, C-2, and C-9, respectively. Moreover, the NOE correlation observed for H-2 (δH 5.69) with H3-11 (δH 1.91) in 4 suggested the Z geometry of this double bond and consequently established the structure of 4 to be (Z)-3-methyl-9-oxodec-2-enioic acid.

Table 3. 13C and 1H NMR data for compound 4.

Position	δH	δC
1	-	169.5, C^a
2	5.69, br s^b	115.3, CH
3	-	163.5, C
4	2.62, t (7.5)^c	33.1, CH₂
5	1.48, quin (7.5)	27.8, CH₂
6	1.33, quin (7.5)	29.0, CH₂
7	1.60, quin (7.5)	23.5, CH₂
8	2.43, t (7.5)	43.6, CH₂
9	-	209.4, C
10	2.14, s	29.9, CH₃
11	1.91, s	25.4, CH₃

¹³C and ¹H spectra recorded at 125 and 500 MHz in CDCl₃. ^a Deduced from DEPT; ^b broad signal; ^c J values (Hz) in parentheses.

Figure 10. The selected COSY (→) and HMBC (→) correlations of 4.

10-Hydroxykahakuene B (5) [23] is a brominated diterpene with a rare prenylated chamigrane skeleton. To the best of our knowledge, two examples of this skeleton have been reported in the marine red alga Laurencia sp. [23,39,40], and 5 represent the first example of a metabolite with a prenylated chamigrane skeleton that has been isolated from the sponge. Pacifenol (6), the first trihalogenated compound with a chamigrane skeleton, was isolated by Sims and associates from the Californian red alga Laurencia pacifica [41]. After that, pacifenol was also isolated from other marine red algae, including L. caduciflora [42] and L. marianensis [24], among others. Mollusks of the genus Aplysia are known to be animals that do not biosynthesize the halogenated sesquiterpenes by themselves but obtain and accumulate these metabolites by ingesting alga and, in some cases, transform the alga metabolites into other compounds in the digestive gland [43,44]. Our present study is the first report to discover pacifenol in the sponge. Metabolites 7 and 8 have also been isolated from the Red Sea sponges Dysidea herbacea [45] and Lamellodysidea herbacea [25], but they were discovered for the first time in sponges of the genus Spongia in the present study.

It was previously known that sponges could take in and accumulate organohalides from environmental seawater and that these compounds might be transformed into chemical defense substances [46]. Macroalgae are important primary producers in coral reefs, and many species inhabit areas near sponges [47,48]. Algae synthesize secondary metabolites for competition and survival [49–51], and the red alga Laurencia sp. is known for producing diverse halides, many of which have been shown to have antibacterial activity [52,53]. The sponges could inhale these halides or even transform them chemically into compounds such as 1, 5, and 6 for their own use [46].
Compounds 1–9 were tested for cytotoxicity using a resazurin assay in the HCC Huh7 cell line. Among them, compounds 5 and 8 showed weak cytotoxicity against the Huh7 cell line, with 17% and 32% inhibition toward the proliferation of Huh7 cells at 50 µM, respectively. Furthermore, 5 and 8 could inhibit the 43% and 53% proliferation of Huh7 cells at 200 µM, respectively. The growth inhibition assay of Staphylococcus aureus (S. aureus) was subsequently applied for compounds 1–9. The results showed that 9 displayed 31%, 37%, and 89% inhibition on the growth of S. aureus at 50, 100, and 200 µM, respectively.

The anti-inflammatory activities of compounds 1–9 inhibiting superoxide anion (O2–) generation and elastase release in fMLF/CB-stimulated human neutrophils [54–56] were also evaluated (Table 4). Compounds 7 and 8 exhibited medium inhibitory activity against elastase release (55.96 ± 3.88 and 60.80 ± 6.49%, respectively) at 20 µM, with IC50 values of 17.23 ± 2.45 and 14.60 ± 2.24 µM, respectively. However, compounds 7 and 8 showed weak inhibition of superoxide anion generation (25.24 ± 4.68% and 22.38 ± 3.95%, respectively) at 20 µM. Furthermore, compounds 6 and 9 were found to display inhibitory activity to some extent (20.00 ± 4.87% and 21.22 ± 4.71%, respectively) against elastase release at 20 µM.

Table 4. Effects of compounds on superoxide anion generation and elastase release in fMLF/CB-induced human neutrophils.

Compound	Superoxide Anion	Elastase Release		
	IC50 (µM)	Inh% (20 µM)	IC50 (µM)	Inh% (20 µM)
1	>20	15.65 ± 7.56	>20	16.31 ± 4.66
2	>20	−0.04 ± 3.90	>20	6.28 ± 3.04
3	>20	18.10 ± 2.29 **	>20	13.08 ± 2.01 **
4	>20	7.81 ± 3.87	>20	18.53 ± 3.57 **
5	>20	3.25 ± 4.06	>20	13.27 ± 3.81 *
6	>20	15.51 ± 7.55	>20	20.00 ± 4.87 *
7	>20	25.24 ± 4.68 ***	17.23 ± 2.45	55.96 ± 3.88 ***
8	>20	22.38 ± 3.95 ***	14.60 ± 2.24	60.80 ± 6.49 ***
9	>20	15.58 ± 0.58 ***	>20	21.22 ± 4.71 ***
LY294002	1.91 ± 0.79	88.71 ± 1.50 ***	2.94 ± 0.13	79.50 ± 1.95 ***

Results are presented as mean ± S.E.M. (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the control value (DMSO). a Concentration necessary for 50% inhibition.

3. Materials and Methods

3.1. General Experimental Procedures

Measurements of circular dichroisms, optical rotations, and IR spectra were carried out on a Jasco J-715 CD spectrometer, JASCO P-1020 polarimeter, and FT/IR-4100 infrared spectrophotometer (JASCO Corporation, Tokyo, Japan), respectively. ESIMS was performed on a Bruker APEX II (Bruker, Bremen, Germany) mass spectrometer, and HRESIMS was performed on a Bruker APEX II and Impact HD Q-TOF mass spectrometers (Bruker, Bremen, Germany). The NMR spectra were recorded on a Varian 400MR FT-NMR at 400 and 100 MHz for 1H and 13C, respectively; a Varian Unity INOVA500 FT-NMR (both Varian Inc., Palo Alto, CA, USA) at 500 and 125 MHz for 1H and 13C, respectively; or a JEOL ECZ600R FT-NMR (Japan) at 600 and 150 MHz for 1H and 13C, respectively. Silica gel and reversed-phase (RP-18, 230–400 mesh) silica gel were used for column chromatography and analytical thin-layer chromatography (TLC) analysis (Kieselgel 60 F-254, 0.2 mm, Merck, Darmstadt, Germany), respectively. The isolation and purification of compounds by high-performance liquid chromatography (HPLC) were achieved using a Hitachi L-2455 HPLC apparatus (Hitachi, Tokyo, Japan) equipped with a Supelco C18 column (250 × 21.2 mm, 5 µm, Supelco, Bellefonte, PA, USA).

3.2. Animal Material

The sponge Spongia sp. was collected in March 2016 off the Red Sea coast of Jeddah, Saudi Arabia (21°22′11.08′′ N, 39°06′56.62′′ E). A voucher sample (RSS-1) was deposited at the Department of Pharmacognosy, College of Pharmacy, King Saud University, Saudi Arabia.
3.3. Extraction and Separation

The freeze-dried material *Spongia* sp. (550 g dry wt) was minced and extracted exhaustively with EtOAc/MeOH/CH₂Cl₂ (1:1:0.5). The solvent-free extract was suspended in water and partitioned with CH₂Cl₂, EtOAc, and then n-ButOH saturated with water to obtain CH₂Cl₂ (18.47 g), EtOAc (0.78 g), and n-ButOH (1.0 g) fractions. The CH₂Cl₂ fraction was chromatographed over a silica gel column using EtOAc in n-hexane (0% to 100%, stepwise) and then MeOH in EtOAc (0% to 100%, stepwise) to yield 12 fractions (F1–F12).

Fraction F3 (0.986 g) eluted with n-hexane/EtOAc (9:1) was re-chromatographed over a RP-18 column using H₂O in MeOH (100% to 0%, stepwise) to give six subfractions (F3-1 to F3-6). F3-5 (54.6 mg, eluted with MeOH/H₂O 8:2) was isolated using RP-18 HPLC (MeOH/H₂O 9:1) to give six subfractions (F3-5-1 to F3-5-6); F3-5-2 (32.5 mg) was further purified on RP-18 HPLC (MeOH/H₂O 7:5:2:5) to afford 6 (1.6 mg).

F5 (1.706 g) eluted with n-hexane/EtOAc (6:5:3:5) was re-chromatographed over a RP-18 column using H₂O in MeOH (100% to 0%, stepwise) to give eight subfractions (F5-1 to F5-8). F5-4 (32.4 mg, eluted with MeOH/H₂O 6:4) was isolated using RP-18 HPLC (MeOH/H₂O 7:3) to give eight subfractions (F5-4-1 to F5-4-8). F5-4-1 (29.5 mg) was further purified on RP-18 HPLC (CH₃CN/H₂O 4:6) to afford 7 (5.8 mg) and 8 (1.7 mg). F5-6 (48.2 mg, eluted with MeOH/H₂O 1:0) was separated on RP-18 HPLC (IPA/MeOH 1:19) to give six subfractions (F5-6-1 to F5-6-6); F5-6-1 (27.6 mg) was purified on RP-18 HPLC (MeOH/H₂O 8:2) to afford 1 (2.9 mg) and 5 (4.6 mg).

F7 (1.505 g) eluted with n-hexane/EtOAc (2.5:7.5) was re-chromatographed over a RP-18 column using H₂O in MeOH (100% to 0%, stepwise) to give eight subfractions (F7-1 to F7-8). F7-3 (146.3 mg, eluted with MeOH/H₂O 4:6) was isolated using RP-18 HPLC (MeOH/H₂O 1:1) to give 10 subfractions (F7-3-1 to F7-3-10). F7-3-7 (13.2 mg) was purified on RP-18 HPLC (CH₃CN/H₂O 2.8:7.2) to afford 4 (4.5 mg). F7-6 (67.0 mg, eluted with MeOH/H₂O 1:0) was isolated using RP-18 HPLC (isopropanol/MeOH 1:19) to give nine subfractions (F7-6-1 to F7-6-9); F7-6-5 (16.1 mg) was further separated on RP-18 HPLC (IPA/MeOH 1:19) to afford 6 (1.0 mg); F7-6-5 (25.7 mg) was purified on RP-18 HPLC (MeOH/H₂O 93:7) to afford 3 (1.0 mg); F7-6-7 (25.7 mg) was purified on RP-18 HPLC (MeOH/H₂O 9:1) to afford 2 (4.9 mg).

3.3.1. Spongianol (1)

Colorless oil; [α]D25 ± 14.5 (c 0.29, CH₃OH); IR (neat) νmax 3420, 2979, 2919, 1698, and 1646 cm⁻¹; 1H and 13C NMR data, see Table 1; ESIMS m/z 443 and 445 [M + Na]⁺; HRESIMS m/z 443.1364 and [M + Na]⁺ (calcd for C20H3035Cl2O5Na, 443.1363).

3.3.2. 3β,5α,9α-Trihydroxy-24S-ethylcholest-7-en-6-one (2)

White powder; [α]D25 ± 12.7 (c 0.49, CH₃OH); IR (neat) νmax 3291, 2959, 2872, 1682 and 1654 cm⁻¹; 1H and 13C NMR data, see Table 1; ESIMS m/z 483 [M + Na]⁺; HRESIMS m/z 483.3446 [M + Na]⁺ (calcd for C20H48O4Na, 483.3445).

3.3.3. (22E,24S)-Ergosta-7,22-dien-3β,5α-diol-6,5-olide (3)

Colorless crystal; [α]D25 ± 38.5 (c 0.28, CH₃OH); IR (neat) νmax 3393, 2954, 2917, 2849, and 1670 cm⁻¹; 1H and 13C NMR data, see Table 1; HRESIMS m/z 445.3316 [M + H]⁺ (calcd for C29H48O4, 445.3312).

3.3.4. (Z)-3-Methyl-9-oxodec-2-enoic Acid (4)

Colorless oil; IR (neat) νmax 3445, 2923, 2859, 1700, 1683, and 1647 cm⁻¹; 1H and 13C NMR data, see Table 3; HRESIMS m/z 221.1149 [M + Na]⁺ (calcd for C11H18O3Na, 221.1148).

3.4. DFT and TD-DFT Calculations

The preliminary geometry optimization of conformers was simulated using the DFT approach at the B3LYP/6-31G(d) level of theory [27]. The ECD spectra were simulated by using the time-dependent DFT (TD-DFT) approach at the B3LYP/6-311+G(d,p) or
CAM-B3LYP/6-311+G(d,p) level of theory. The range-separated functional CAM-B3LYP is recommended for ECD calculations [27]. The bulk solvent effect of methanol was taken into account with the integral equation formalism polarizable continuum model (IEFPCM solvent model for MeOH). All calculations were performed by the Gaussian 09 program [28]. The calculated ECD curves were converted using GaussSum 2.2.5 and illustrated using Microsoft Excel.

3.5. Cytotoxicity Assay

The cytotoxicity assay was performed using the methods described in a previous paper [57,58]. Huh7 cells were cultured in a 96-well plate containing 100 µL of culture medium in triplicate and treated with indicated concentrations of compounds for 72 h. At the assay time point, resazurin (Cayman Chemical) was added and incubated for 4 h at 37 °C. The DMSO wells was defined as the control and assigned a relative cell viability of 100%. Sorafenib, the positive control, inhibited the 52% proliferation of Huh7 cells at 12.5 µM.

3.6. Antibacterial Assay

The antibacterial assay was performed using the methods described in a previous paper [59]. S. aureus was cultured in Lysogeny broth (LB) in a shaker–incubator at 37 °C for 24 h. The cultures were then diluted to an absorbance at 600 nm of 0.04 using sterile LB. The diluted bacteria aliquots were placed (100 µL per well) into 96-well flat-bottom plates. Tested compounds (cpd) were then added to the final concentration at 50 µM, 100 µM, and 200 µM, respectively. Background controls (1% DMSO in LB solution), positive controls (1% DMSO in the diluted bacteria solution), and known drug controls (tetracyclin; inhibited the 99% growth of bacteria at 50 µM) were run on the same plate. The absorbance at 600 nm (A) was measured right after the testing compounds were added for the basal absorbance and after 16 h incubation at 37 °C. The percentage bacterial growth was calculated as follows: \((\text{Acpd} - \text{Acpd}_\text{basal}) - \text{Abackground control})/(\text{Apositive control} - \text{Apositive control}_\text{basal}) - \text{Abackground control}) \times 100.

3.7. Anti-inflammatory Activity

Human neutrophils were isolated from the blood of healthy adult volunteers and enriched by using dextran sedimentation, Ficoll–Hypaque gradient centrifugation, and hypotonic lysis, as described previously [56]. Then, neutrophils were incubated in Ca\(^{2+}\)-free HBSS buffer (pH 7.4, ice-cold).

3.7.1. Superoxide Anion Generation

Neutrophils (6 × 10\(^5\) cells/mL) incubated (with 0.6 mg/mL ferricytochrome c and 1 mM Ca\(^{2+}\)) in HBSS at 37 °C were treated with DMSO (as a control) or the tested compound for 5 min. Neutrophils were primed with 1 µg/mL cytochalasin B (CB) for 3 min before being activated by 100 nM fMLF for 10 min. The change in superoxide anion generation was spectrophotometrically measured at 550 nm (U-3010, Hitachi, Tokyo, Japan) [54,55]. LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one] was used as a positive control.

3.7.2. Elastase Release

Neutrophils (6 × 10\(^5\) cells/mL) incubated (with 100 µM MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide and 1 mM Ca\(^{2+}\)) in HBSS at 37 °C were treated with DMSO or the tested compound for 5 min. Neutrophils were, then, activated with fMLF (100 nM)/CB (0.5 µg/mL) for 10 min. The change in elastase release was spectrophotometrically measured at 405 nm (U-3010, Hitachi, Tokyo, Japan) [55].

4. Conclusions

New metabolites (1–4) along with five known compounds (5–9) were isolated from a Red Sea sponge, Spongia sp. Compounds 5 and 8 showed weak cytotoxicity to HCC Huh7 cells, while 9 displayed significant inhibition against S. aureus. Furthermore, compounds 7
and 8 exhibited notable activity to inhibit elastase release and weaker inhibitory activity toward superoxide anion generation. Both compounds 6 and 9 also showed inhibition against elastase release. Although compound 5 was found to be inactive in the present study, its antibacterial activity against S. aureus and E. coli has been reported [23]. It is noteworthy that some of the isolates from this sponge were also found in red algae, which suggests that the specific metabolites of sponges could have originated from alga and would be accumulated and/or transformed into metabolites in sponges.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/md20040241/s1, Table S1: Selected 1H and 13C NMR data of 2 and similar compounds 13 and 14 in CDCl3 and C6D6N, Table S2: Selected 13C NMR data at C20–C29 of 2 and related compounds 15–18, Table S3: 13C and 1H NMR data of 3 and related compound 19, Table S4: Cytotoxicity of compounds 1–9, Table S5: The cartesian coordinates of conformer of compound 1 at the B3LYP/6-311+G(d,p) level of theory, Table S6: The cartesian coordinates of conformer of compound 2 at the CAM-B3LYP/6-311+G(d,p) level of theory, Figures S1–S30: 1D and 2D NMR spectra and HRESIMS spectra of compounds 1–4, Figures S31–S45: 1H and 13C NMR spectra and LR- or HR-ESIMS of compounds 5–9.

Author Contributions: Conceptualization and guiding the experiment, J.-H.S.; investigation, C.-J.T., A.F.A. and J.-H.S.; analysis, C.-J.T., A.F.A., C.-H.C. and F.-R.C.; writing—original draft C.-J.T., A.F.A. and J.-H.S.; writing—review and editing, C.-J.T., C.-H.C. and J.-H.S.; biological activity analyses, C.-H.Y. and T.-L.H.; collection of the sponge, A.F.A.; species identification of the sponge, Y.M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This study was mainly supported by grants from the Ministry of Science and Technology (MOST 108-2320-B-110-003-MY2 and 110-2320-B-110-001) and the NSYSU-KMU Joint Research Project, grant numbers NSYSUKMU 109-1002 and 110-P016, awarded to J.-H.S.

Institutional Review Board Statement: The research protocol was approved by the Institutional Review Board of Chang Gung Medical Hospital (IRB No: 99-3848B, 26 January 2011). The study was conducted in accordance with the Declaration of Helsinki. Blood samples were provided by healthy volunteers who signed written informed consent.

Informed Consent Statement: All subjects gave their informed consent for inclusion before the blood donation.

Data Availability Statement: Data of the present study are available in the article and supplementary materials.

Acknowledgments: We thank the Instrumentation Center at National Sun Yat-sen University, Kaohsiung, Taiwan for the measurement of NMR and MS data; the Center for Advanced Instrumentation and Department of Applied Chemistry at National Yang Ming Chiao Tung University, Hsinchu, Taiwan for measurement of MS data; and the Natural Product Libraries and High-Throughput Screening (NPS) Core at Kaohsiung Medical University, Kaohsiung, Taiwan, for high-throughput screening and technical support. The NPS Core is funded by the National Core Facility for Biopharmaceuticals (NCFB) (grant numbers MOST 110-2740-B-037-001).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [CrossRef] [PubMed]
2. Maximo, P.; Ferreira, L.M.; Branco, P.; Lima, P.; Lourenco, A. The role of Spongia sp. in the discovery of marine lead compounds. Mar. Drugs 2016, 14, 139. [CrossRef] [PubMed]
3. Liang, Y.-Q.; Liao, X.-J.; Zhao, B.-X.; Xu, S.-H. Novel 3,4-seco-3,19-dinorspongian and 5,17-epoxy-19-norspongian diterpenes from the marine sponge Spongia sp. Org. Chem. Front. 2020, 7, 3253–3261. [CrossRef]
4. Liang, Y.-Q.; Liao, X.-J.; Lin, J.-L.; Xu, W.; Chen, G.-D.; Zhao, B.-X.; Xu, S.-H. Spongians A–C: Three new spongian diterpenes with ring A rearrangement from the marine sponge Spongia sp. Tetrahedron 2019, 75, 3802–3808. [CrossRef]
5. Abdjul, D.B.; Yamazaki, H.; Kanno, S.I.; Wewengkang, D.S.; Rotinsulu, H.; Sumilat, D.A.; Ukai, K.; Kapojoes, M.M.; Namikoshi, M. Furanoterpenes, new types of protein tyrosine phosphatase 1B inhibitors, from two Indonesian marine sponges, Ircinia and Spongia spp. Bioorg. Med. Chem. Lett. 2017, 27, 1159–1161. [CrossRef]
6. Bauvais, C.; Bonneau, N.; Blond, A.; Perez, T.; Bourguet-Kondracki, M.L.; Zirah, S. Furanoterpene diversity and variability in the marine sponge *Spongia officinalis*, from untargeted LC-MS/MS metabolomic profiling to furanolacont derivatives. *Metabolites* 2017, 7, 27. [CrossRef]

7. El-Desoky, A.H.; Kato, H.; Tsukamoto, S. Ceylonins G–I: Spongian diterpenes from the marine sponge *Spongia ceylonensis*. *J. Nat. Prod.* 2017, 81, 765–769. [CrossRef]

8. Chen, Q.; Mao, Q.; Bao, M.; Mou, Y.; Fang, C.; Zhao, M.; Jiang, W.; Yu, X.; Wang, C.; Dai, L.; et al. Spongian diterpenes including one with a rearranged skeleton from the marine sponge *Spongia officinalis*. *J. Nat. Prod.* 2019, 82, 1714–1718. [CrossRef]

9. Yang, I.; Lee, J.; Lee, J.; Hahn, D.; Chin, J.; Won, D.H.; Ko, J.; Choi, H.; Hong, A.; Nam, S.-J.; et al. Scalactams A–D—scalarane sesterterpenes with a γ-lactam moiety from a Korean *Spongia* sp. marine sponge. *Molecules* 2018, 23, 3187. [CrossRef]

10. Nam, S.-J.; Ko, H.; Ju, M.-K.; Hwang, H.; Chi, J.; Ham, J.; Lee, B.; Lee, J.; Won, D.-H.; Choi, H.; et al. Scalarane sesterterpenes from a marine sponges of the genus *Spongia* and their FXR antagonistic activity. *J. Nat. Prod.* 2007, 70, 1691–1695. [CrossRef]

11. Li, J.; Gu, B.-B.; Sun, F.; Xu, J.-R.; Jiao, W.-H.; Han, B.-N.; Yang, F.; Zhang, X.-C.; Lin, H.-W. Sesquiterpene quinones/hydroquinones from the marine sponge *Spongia pertusa* Esper. *J. Nat. Prod.* 2017, 80, 1436–1445. [PubMed]

12. Ito, T.; Nguyen, H.M.; Win, N.N.; Vo, H.Q.; Nguyen, H.T.; Morita, H. Three new sesquiterpene aminoquinones from a Vietnamese *Spongilla sp.* and their biological activities. *J. Nat. Prod.* 2018, 81, 298–303. [CrossRef] [PubMed]

13. Liang, Y.-Q.; Liao, X.-J.; Zhao, B.-X.; Xu, S.-H. (+)- and (−)-Spongiterpene, a pair of new valerenane sesquiterpene enantiomers from the marine sponge *Spongilla sp.* *Nat. Prod. Res.* 2019, 35, 1–6. [CrossRef]

14. Grassia, A.; Bruno, I.; Debitus, C.; Marzocco, S.; Pinto, A.; Gomez-Paloma, L.; Riccio, R. Spongidepsin, a new cytotoxic macrolide from *Spongilla sp.* *Tetrahedron* 2001, 57, 6257–6260. [CrossRef]

15. Migliuolo, A.; Piccilli, V.; Sica, D. Two new 9,11-secoestradiol-5α,11-trihydroxy-5α-chol-7-ene-9-β-olides from the marine sponge *Spongia officinalis*. *Steroids* 1992, 57, 344–347. [CrossRef]

16. Migliuolo, A.; Piccilli, V.; Sica, D.; Giordano, F. New Δ8- and Δ8(14)-5α,6α-epoxyesters from the marine sponge *Spongia officinalis*. *Steroids* 1993, 58, 134–140. [CrossRef]

17. Pettit, G.R.; Chiczacz, Z.A.; Gao, F.; Herald, C.L.; Boyd, M.R.; Schmidt, J.M.; Hooper, J.N.A. Antineoplastic agents. 257. Isolation and structure of spongistatin 1. *J. Org. Chem.* 1993, 58, 1302–1304. [CrossRef]

18. Salim, A.A.; Rae, J.; Fontaine, F.; Conte, M.M.; Khalil, Z.; Martin, S.; Parton, R.G.; Capon, R.J. Heterofibrins: Inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, *Spongia (Heterofibria)* sp. *Org. Biomol. Chem.* 2010, 8, 3188–3194. [CrossRef]

19. Manzo, E.; Ciavatta, M.L.; Villani, G.; Varacamenti, M.; Sayem, S.M.A.; van Soest, R.; Gavagnin, M. Bioactive terpenes from *Spongia officinalis*. *J. Nat. Prod.* 2011, 74, 1241–1247. [CrossRef]

20. Guella, G.; Mancini, I.; Pietra, F. C-15 acetogenins and terpenes of the dictyoceratid sponge *Heterofibria* sp. *Aust. J. Chem.* 241, 1993, 933–937. [CrossRef] [PubMed]

21. Xu, S.-H.; Cen, Y.-Z.; Zeng, L.-M.; Su, J.-Y. Isolation and structural determination of heterocyclic alkaloid compounds. *Chin. J. Org. Chem.* 2000, 20, 248–250.

22. Tai, C.-J.; Huang, C.-Y.; Ahmed, A.-F.; Orfali, R.-S.; Alarif, W.-M.; Huang, Y.M.; Wang, Y.-H.; Hwang, T.-L.; Sheu, J.-H. An anti-inflammatory 2,4-cyclo epoxy-3,4-seco spongipoliterpenoid from the marine sponge *Spongia officinalis*. *Tetrahedron* 2021, 77, 1–9. [CrossRef]

23. Ji, N.-Y.; Li, X.-M.; Li, K.; Ding, L.-P.; Groer, J.B.; Wang, B.-G. Diterpenes, sesquiterpenes, and a C15-acetogenin from the marine red alga *Laurencia marianensis*. *J. Nat. Prod.* 2007, 70, 1901–1905. [CrossRef] [PubMed]

24. Denys, R.; Coll, J.C.; Bowden, B.F. Tropical marine algae. IX. A new sesquiterpenoid metabolite from the red alga *Laurencia marianensis*. *Aust. J. Chem.* 1993, 46, 933–937. [CrossRef]

25. Sauleau, P.; Retailleau, P.; Vacelet, J.; Bourguet-Kondracki, M.L. New polychlorinated pyrrolidinones from the Red Sea marine sponge *Lanellus dysidea herbacea*. *Tetrahedron* 2005, 61, 955–963. [CrossRef]

26. Youssef, D.T.A.; Badr, J.M.; Shaala, L.A.; Mohamed, G.A.; Bamanie, F.H. Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge *Biemna ehrenbergi* from the Red Sea. *Phytochem. Lett.* 2015, 12, 296–301. [CrossRef]

27. Pescitelli, G.; Bruhn, T. Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra. *Chirality* 2016, 28, 466–474. [CrossRef]

28. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford, CT, USA, 2013.

29. Briand, A.; Kornprobst, J.-M.; Al-Easa, H.S.; Rizk, A.F.M.; Toupet, L. (−)-Panulicolat, a new ent-labdane bromoditerpene from *Laurencea panulicolor*. *Tetrahedron Lett.* 1997, 38, 3399–3400. [CrossRef]

30. Suzuki, M.; Nakano, S.; Takahashi, Y.; Abe, T.; Masuda, M.; Takahashi, H.; Kobayashi, K. Brominated labdane-type diterpenoids from an Okinawan *Laurencia* sp. *J. Nat. Prod.* 2002, 65, 801–804. [CrossRef]

31. Yaoita, Y.; Amemiya, K.; Ohnuma, H.; Furumura, K.; Masaki, A.; Matsuki, T.; Kikuchi, M. Sterol constituents from five edible mushrooms. *Chem. Pharm. Bull.* 1998, 46, 944–950. [CrossRef]

32. Sright, J.L.C.; McInnes, A.G.; Shimizu, S.; Smith, D.G.; Walter, J.A.; Idler, D.; Khalil, W. Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectrometry. *Can. J. Chem.* 1978, 56, 1898–1903. [CrossRef]

33. Rubinstein, I.; Goad, L.J.; C lague, A.D.H.; Mulheirn, L.J. The 220 MHz NMR spectra of phytosterols. *Phytochemistry* 1976, 15, 195–200. [CrossRef]
34. Ioannou, E.; Abdel-Razik, A.F.; Zervou, M.; Christofidis, D.; Alexi, X.; Vagias, C.; Alexis, M.N.; Roussis, V. 5α,8α-Epidoxyosterols from the gorgonian *Eunicella cavolini* and the ascidian *Tridenedium inarum*: Isolation and evaluation of their antiproliferative activity. *Steroids* 2009, 74, 73–80. [CrossRef] [PubMed]

35. Migliuolo, A.; Notaro, G.; Piccili, V.; Sica, D. New tetrahydroxylated sterols from the marine sponge *Spongia officinalis*. *J. Nat. Prod.* 1990, 53, 1414–1424. [CrossRef]

36. Shi, Q.; Huang, Y.; Su, H.; Gao, Y.; Feng, X.; Zhou, L.; Li, X.; Qiu, M. C26 steroids from the fruiting bodies of *Ganoderma resinaceum* with potential anti-inflammatory activity. *Phytochemistry* 2019, 168, 112109. [CrossRef]

37. De Marino, S.; Palagiano, E.; Zollo, F.; Minale, L.; Iorizzi, M. A novel sulphated steroid with a 7-membered 5-oxalactone B-ring from an Antarctic starfish of the family *Asteridiidae*. *Tetrahedron* 1997, 53, 8625–8628. [CrossRef]

38. Huang, X.-C.; Guo, Y.-W.; Song, G.-Q. Fortisterol, a novel steroid with an unusual seven-membered lactone ring B from the Chinese marine sponge *Bienna fortis* Topsent. *J. Asian Nat. Prod. Res.* 2006, 8, 485–489. [CrossRef]

39. Angawi, R.F.; Alarif, W.M.; Hamza, R.I.; Badria, F.A.; Ayyad, S.E.N. New cytotoxic laurene-, cuparene-, and laurokamurene-type sesquiterpenes from the red alga *Laurencia obtusa*. *Helv. Chim. Acta* 2014, 97, 1388–1395. [CrossRef]

40. Brennan, M.R.; Kim, I.K.; Erickson, K.L. Kahukuenes, new diterpenoids from the marine alga *Laurencia pacifica*. *Phytochemistry* 1993, 36, 56–64. [CrossRef]

41. Cassano, V.; De-Paula, J.C.; Fujii, M.; Gama, B.A.P.; Teixeira, V. Sesquiterpenes from the introduced red seaweed *Laurencia majuscula*. *J. Nat. Prod.* 2011, 74, 1085–1089. [CrossRef]

42. Sims, J.J.; Fenical, W.; Wing, R.M. Radlick, P. Marine natural products. I. Pacifenol, a rare sesquiterpene containing bromine and chlorine from the red alga, *Laurencia pacifica*. *J. Am. Chem. Soc.* 1971, 93, 3774–3775. [CrossRef]

43. Cassano, V.; De-Paula, J.C.; Fujii, M.; Gama, B.A.P.; Teixeira, V. Sesquiterpenes from the introduced red seaweed *Laurencia caldicularis* (Rhodomecelaeae, *Laurencia*). *Biochem. Syst. Ecol.* 2008, 36, 223–226. [CrossRef]

44. Olinger, L.K.; Strangman, W.K.; McMurray, S.E.; Pawlik, J.R. Sponges with microbial symbionts transform dissolved organic matter and take up organohalides. *Front. Mar. Sci.* 2021, 8, 665789. [CrossRef]

45. Berumen, M.L.; Hoey, A.S.; Bass, W.H.; Bouwmeester, J.; Catania, D.; Cochran, J.E.M.; Khalil, M.T.; Miyake, S.; Mughal, M.R.; Spaet, J.L.Y.; et al. The status of coral reef ecology research in the Red Sea. *Coral Reefs* 2013, 32, 737–748. [CrossRef]

46. Carmely, S.; Gebreyesus, T.; Kashman, Y.; Skelton, B.W.; White, A.H.; Yosief, T. Dysidamide, a novel metabolite from a Red Sea sponge *Dysidea herbacea*. *Aust. J. Chem.* 1990, 43, 1881–1888. [CrossRef]

47. Yang, S.-C.; Chung, P.-J.; Ho, C.-M.; Kuo, C.-Y.; Hung, M.-F.; Huang, Y.-T.; Chang, W.-Y.; Chang, Y.-W.; Chan, K.-H.; Hwang, T.-L. 2-(2-Fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. *J. Immunol.* 2013, 190, 6173–6180. [CrossRef]

48. Berumen, M.L.; Hoey, A.S.; Bass, W.H.; Bouwmeester, J.; Catania, D.; Cochran, J.E.M.; Khalil, M.T.; Miyake, S.; Mughal, M.R.; Spaet, J.L.Y.; et al. The status of coral reef ecology research in the Red Sea. *Coral Reefs* 2013, 32, 737–748. [CrossRef]

49. Vairappan, C.S. Potent antibacterial activity of halogenated metabolites from Malaysian red algae, *Laurencia majuscula*. *Phytochemistry* 2001, 58, 517–523. [CrossRef]

50. Vairappan, C.S. Potent antibacterial activity of halogenated metabolites from Malaysian red algae, *Laurencia majuscula*. *Biomol. Eng.* 2003, 20, 255–259. [CrossRef] [PubMed]

51. Yu, H.-P.; Hsieh, P.-W.; Chang, Y.-J.; Chung, P.-J.; Kuo, L.-M.; Hwang, T.-L. 2-(2-Fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats. *Free Radic. Biol. Med.* 2011, 50, 1737–1748. [CrossRef] [PubMed]

52. Yang, S.-C.; Chung, P.-J.; Ho, C.-M.; Kuo, C.-Y.; Hung, M.-F.; Huang, Y.-T.; Chang, W.-Y.; Chang, Y.-W.; Chan, K.-H.; Hwang, T.-L. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. *J. Immunol.* 2013, 190, 6511–6519. [CrossRef] [PubMed]

53. Wang, T.-L.; Su, Y.-C.; Chang, H.-L.; Leu, Y.-L.; Chung, P.-J.; Kuo, L.-M.; Chang, Y.-J. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. *J. Lipid Res.* 2009, 50, 1395–1408. [CrossRef]

54. Chen, Y.-S.; Chang, H.-S.; Hsiao, H.-H.; Chen, Y.-F.; Kuo, Y.-P.; Yen, F.-L.; Yen, C.-H. Identification of beiischmidia tsangii root extract as a liver cancer cell–normal keratinocyte dual-selective NRF2 regulator. *Antioxidants* 2021, 10, 544. [CrossRef]

55. Kao, Y.-T.; Chen, Y.-S.; Tseng, C.-H.; Tseng, C.-C.; Yen, C.-H.; Chen, Y.-L. Discovery of 4-anilinoquinolinyl-l-hexanoic acid derivatives as potential NRF2 activators. *Molecules* 2020, 25, 3133. [CrossRef]