Analysis of the typical small watershed of warping dams in the sand properties

LiLi 1,2, *, Ji Shan Yang 2, Wei Ying Sun 2, and Sha Sha Shen 2

1 Xi’an University of technology, Xi’an, Shanxi 710048, China
2 Key Laboratory of Soil and Water Loss Process and Control on the Loess Plateau of Ministry of Water Resources, Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China

Abstract. Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025~0.05mm, and the 0.05mm particle size of Jiuyuangou basin of loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031~0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025~0.1 mm, and fill dam is for particle size between 0.016 ~ 0.1 mm, they all have a certain function in the sediment sorting.

1 Introduction

Nearly 50% of the silt in the river channel of the lower reaches of the Yellow River is coarse sediment with a particle size > 0.05mm, the main channel sediment and coarse sediment particle size greater than 0.05mm over 70%. Coarse sediment is the main source of sediment in the main lower reaches of the Yellow River[1]-[3]. Jiuyuangou basin is a source of one of the coarse sand in the middle reaches of the Yellow River[4]. The warping dam is one of the main maintain soil engineering measures in the basin[2]-[4]. It plays an important role in reducing sediment deposition in the lower reaches [5]-[9]. Sediment in 15 warping dams of Jiuyuangou dam sample through the probe hole method[10]. At the same time, the original soil sampling in the dam control basin, then particle gradation analysis of samples, the difference of different types of silt Engineering Dam in Jiuyuangou dam to clear sediment sorting, in particular, the separation difference between coarse sediment with a particle size greater than 0.05mm. On the transformation of warping dam structure in the future, extend the dam of the deposition period and service life, all have a positive effect.

2 The Study Area and The Sampling Method

2.1 The Study Area

Jiuyuangou watershed’s a ditch that is located middle and downstream area in the middle reaches of the Yellow River’s Wuding River on the left bank. Jiuyuangou watershed is The typical small watershed about first sub region of Loess Hilly Region. Channel section is in a V shape. The main channel length is Eighteen km. Average gradient of the channel is 1.15%, gully density is 5.34 km/km², sea level elevation is 820-1180m, the catchment area is 70.10km². Jiuyuangou watershed is extremely severe erosion area.

2.2 The Sampling Method

Selection twenty dams in Jiuyuangou watershed(refer with: Table 1), along the line of dam in middle thread of channe, upstream, midstream and downstream of the layout of a sampling point, in the upstream, midstream and downstream of the layout of a sampling point, through the adjustable length of Luoyang shovel sampling, common deep 2m, the weight of each sample is about 0.5kg, and control of basin slope sampling sampling dam, sampling once per 0.05m, common deep 0.15m.

* Corresponding author: 47994494@qq.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
The differences of average content of different sizes of Jiuyuangou watershed of loess in great. The average value of the soil mass (\(>0.05\text{mm}\)) percentage of fine sand particle size is 27.6%. The silt (0.05~0.005mm) is 55.5%. The clay (<0.005mm) 17%. In Jiuyuangou watershed of loess in silty soil, followed by sand, clay is again. The average soil mass percentage of 0.05~0.01mm particle in silt is 46.4%. The average soil mass percentage of 0.01 ~ 0.005mm is 9.1%. The coarse silt is more than 5 times that of the fine silt soil, and has the main characteristics of the standard loess.

Table 2. Analysis results of particle gradation of undisturbed soil in Jiuyuangou basin

Sampling point of original loess in Dam control basin	The particle size of soil mass less than a particle size (mm)		
	\(>0.05\text{mm}\)	\(0.05-0.005\text{mm}\)	\(<0.005\text{mm}\)
Ge jia gou Dam	27.8	56.6	15.6
Wang mao gou Men hu lu Dam	36.0	47.3	16.7
Wang mao gou Shu jing Dam	25.0	62.2	12.8
He jia yan 3# dam	28.3	50.0	21.7
He jia gou 2# Dam	30.8	54.0	15.2
He jia gou 1# Dam	20.4	61.3	18.3
Xi yan gou dan	24.4	58.5	17.1
Hao jia liang dam	35.4	47.0	17.6
Ma lian gou dam	20.2	56.0	23.8
Lao li mao dam	28.7	58.4	12.9
Ma zhang zui dam	25.3	57.5	17.2
Fan shan dam	32.6	52.9	14.5
Xiang ta gou 2# dam	28.8	55.6	15.6
Xiang ta gou 2# dam	32.3	54.0	13.7
minimum value	17.3	47.0	12.8
Maximum value	36.0	62.2	23.8
Average value	27.6	55.5	17.0

3 Analysis of Grain Size of Original Loess in Jiuyuangou Watershed

The changes of range of the soil mass percentage of fine sand (\(>0.05\text{mm}\)) percentage of the silt size is 17.3 ~ 36%, the change value is 18.7%. The change range of the soil mass (0.05~0.005mm) percentage of the silt particle size is 27.6%, the change value is 11%. The difference between the maximum and the minimum of the content of different particles is close.

4 The Analysis of Different Types of Engineering Dam Sediment Particle

According to the particle size analysis results (refer with: Table 3), the silt dams that the average particle size’s in front of the dam is less than the dam tail in Jiuyuangou Watershed are seventeen,81% of the total number; the silt dams that the average particle size’s in front of the dam is close to the dam tail are three, 15% of the total number; the silt dams that the average particle size’s in
front of the dam staggeres distribution in the dam tail and intermediate are one,5% of the total number. Therefore, the one silt dams will be get rid of the sampling analysis.

Table 3 Particle gradation analysis of sediment from 15 sampling warping dam in Jiuyuangou basin

Dam name	position	The particle size of soil mass less than a particle size (mm)	<0.001~0.025	>0.025~0.050	>0.050
Xi yan gou cun qian dam	The front of the dam	4.71 55.59 25.06 14.64	55.59	25.06	14.64
	Dam tail	3.14 32.46 32.77 31.63	32.46	32.77	31.63
Hao jia liang dam	The front of the dam	3.02 33.01 30.21 33.76	33.01	30.21	33.76
	Dam tail	3.12 29.77 28.28 38.83	29.77	28.28	38.83
Xi yan gou gou kou dam	The front of the dam	3.69 40.88 30.8 24.63	40.88	30.8	24.63
	Dam tail	3.5 36.24 31.92 28.34	36.24	31.92	28.34
Tan yang gou dam	The front of the dam	3.27 33.12 30.23 33.38	33.12	30.23	33.38
	Dam tail	2.92 26.83 30.65 39.61	26.83	30.65	39.61
Lao li mao dam	The front of the dam	3.36 42.91 30.36 23.36	42.91	30.36	23.36
	Dam tail	3.52 39.42 29.44 27.62	39.42	29.44	27.62
Ma zhang zui dam	The front of the dam	4.15 47.41 28.64 19.81	47.41	28.64	19.81
	Dam tail	3.21 35.31 30.5 30.99	35.31	30.5	30.99
Fan shan dam	The front of the dam	4.32 48.75 27.11 19.82	48.75	27.11	19.82
	Dam tail	3.98 43.23 28.61 24.18	43.23	28.61	24.18
Bei ta gou dam	The front of the dam	4.38 57.63 25.64 12.35	57.63	25.64	12.35
	Dam tail	3.17 32.59 33.36 30.88	32.59	33.36	30.88
Guan di gou 3# dam	The front of the dam	4.4 60.25 24.63 10.71	60.25	24.63	10.71
	Dam tail	3.01 30.42 33.43 33.15	30.42	33.43	33.15
Guan di gou 2# dam	The front of the dam	4.5 55.88 23.88 15.74	55.88	23.88	15.74
	Dam tail	3.69 37.03 29.48 29.8	37.03	29.48	29.8
Guan di gou 4# dam	The front of the dam	4.21 56.57 26.55 12.67	56.57	26.55	12.67
	Dam tail	3.67 36.22 28.6 31.51	36.22	28.6	31.51
Wei jia yan 3# dam	The front of the dam	3.31 31.1 28.27 37.33	31.1	28.27	37.33
	Dam tail	4.67 55.02 25.08 15.24	55.02	25.08	15.24
He jia gou 2# Dam	The front of the dam	3.8 40.63 28.3 27.27	40.63	28.3	27.27
	Dam tail	3.89 40.97 27.98 27.15	40.97	27.98	27.15

Sediment’s size in front of the dam about Jiuyuangou Watershed’s the 20 silt dams > 0.05mm and > 0.10mm, particle size volume arithmetic average percent respectively 22.41% and 3.07%, Sediment’s size in the dam tail > 0.05mm and > 0.10mm, particle size volume arithmetic average percent respectively 32.07% and 4.89%. Jiuyuangou Watershed’s the average particle size distribution curve about in front of the dam and the dam tail is Figure 1. According to the particle size analysis results, the coarse sediment size of Jiuyuangou Watershed’s silt dam concentrates mainly in 0.05mm.

Figure 1 Average sediment grading curve in front of the dam and the dam tail about Jiuyuangou Watershed

According to the particle size analysis results (refer with: Table 3), in addition to tanyanggu que kou dam and xiyangou goukou dam, the average grain size distribution curve of the remaining 17 warping dams in the sediment of the display in front of the dam is located below the dam end curve curve shows that the average grain size of sediment in front of the dam is less than the tail dam (refer with: Figure 2). The proportion of sediment particle size at 0.031mm~0.001mm, the drainage dam is greater than no drainage dam. The proportion of sediment with a sediment particle size larger than 0.05mm, the drainage dam is less than no drainage dam. The proportion of sediment particle size at 0.05mm~0.031mm, no drainage dam and drainage dam is basically the same. Thus it can be seen, in front of the dam, the drainage dam is greater than no drainage dam in separation of coarse sediment with a particle size larger than 0.05mm (refer with: Figure 3).

At the front of the dam, the difference of sediment sorting is mainly because there is no drainage engineering dam for the upstream flood carrying sediment basically is retaining, the sediment concentration flood after the dam can not be discharged in time, the fine sediment carried by the flood is fully deposited, the drainage dam project is through the shaft or horizontal pipe part of the late deposition of fine sediment transported downstream. Therefore, sand in front of the drainage dam is crude than the no drainage dam.
The proportion of grain size of mud and sand in front of the tanyangou dam from 0.025mm to 0.001mm, lower than the original soil in front of the dam. The proportion of particle size in 0.1mm ~ 0.025mm, the front of the dam is larger than the original soil. The proportion of sediment particle size from 0.25mm to 0.1mm, lower than the original soil in front of the dam. So, in front of the tanyanggou dam, on the particle size in 0.1mm ~ 0.025mm has a certain role in the sediment sorting.

The proportion of sediment in the mud and sand grains in the front of the xiyangou goukou dam from 0.1mm to 0.016mm, the front of the dam is larger than the original soil. The proportion of sediment particle size from 0.016mm to 0.001mm and 0.25mm to 0.1mm, Lower than the original soil in front of the dam. So, the silt filled dam has a certain sorting effect on the 0.1mm ~ 0.016mm sediment in the upper reaches.

Table 4 shows that the particle size is greater than 0.05mm of sediment, horizontal pipe dam drainage optimal separation effect.

Table 4 Proportion sorting of sediment in different types of warping dam

The type of dam engineering	d_{90} (%)	d_{50} (%)	d_{90}/d_{50} (%)			
	d>0.05 mm	d>0.1 mm	d>0.05 mm	d>0.1 mm	d>0.05 mm	d>0.1 mm
Drainage pipe drainage	26.0	4.4	21.9	3.5	118.7	125.7
Shaft drainage	20.7	3.5	21.2	3.5	97.6	100.0
No drainage	23.0	4.2	24.8	5.5	92.7	76.4

Explain:
- d_{90} is the arithmetic mean of the percentage of the sediment particle size greater than 0.05mm and 0.1mm in dam
- d_{50} is the arithmetic mean of the percentage of the sediment particle size greater than 0.05mm and 0.1mm in basin of Original loess.

5 Conclusion

First, Jiuyuangou undisturbed soil particle size was mainly distributed in 0.025 ~ 0.05mm, the coarse silt is more than 5 times the fine silt, with standard features of loess; warping dams in sediment particle size mainly distributed in 0.031 ~ 0.05mm.

Second, At the end of the dam, there is little difference in the average particle size of silt in the dam drainage project dam and no drainage project dam. In front of the dam, dam separation effect is better than coarse sand dam drainage engineering for particles of size greater than 0.05mm without drainage engineering. The dam dam is better than vertical drainage drainage sorting horizontal coarse sediment particle size is greater than 0.05mm of the tube.

Third, the tanyanggou dam has certain sorting effect on the sediment with particle size ranging from 0.1mm to 0.025mm. The silted xiyangou goukou dam has certain sorting effect on the sediment with particle size from 0.1mm to 0.016mm.

Acknowledgments

This paper is based on work supported by the Central Nonprofit Research Institutions Basic Scientific Research Special Fund (HKY-JBYW-2018-08).

References

1. HUI Bo, LI Peng, ZHANG Wei, et al. Distribution characteristics of soil particles and organic carbon on check-dam system in Wangmaogou watershed[J] Research of Soil and Water Conservation, 2015, 22(4): 1-5.
2. ZUO Zhongguo, CHEN Hong, WANG Xiaobing, XU Jianhua, et al. Effect of warping dam in silt-laden and coarse sand region of the middle yellow river to sediment grading[J]. Yellow River, 2007, 29(2): 64-66.
3. LI Mian, YANG Jianfeng, HOU Jiancai, SHEN Zhongyuan. Sediment deposition process for a silt dam in a small watershed in Loess Hilly Region [J]. Transactions of the CSAE, 2008,24(2): 64-69.
4. XU Jianhua, LIN Yinping, WU Chengji, YU Quangang, et al. Research on boundary division of coarse sand concentrated source region of the middle Yellow River[M]. The Yellow River Water Conservancy Press, 2006.
5. QIAN Yunping, LIN Yinping, DONG Xuena, et al. Analysis of coarse sediment modulus change and sediment yield in the coarse sediment area in the
Yellow River from 1855 to 1995[J]. Yellow River, 1998, 20(40): 15-18.

6. HAN Peng, NI Jinren. Grain size variation of suspended sediment due to soil conservation in the middle reach of Yellow River[J]. SHUILI XUEBAO, 2001(8): 69-74.

7. RAN Dachuan, ZUO Zhongguo, SHANGGUAN Zhouping. Effect of check dam on retaining and reducing coarse grain sediment in middle reaches of Yellow River [J]. SHUILI XUEBAO, 2006, 37(4): 443-450.

8. ZHANG Wei, YANG Mingyi, ZHANG Fengbao, ZHANG Jiaqiong, ZHAO Tianyin et al. Profile distribution of particle size of sediment at a check dam in a small watershed of the Loess Plateau[J] Research of Soil and Water Conservation, 2015, 22(2): 17-21.

9. LIU Huifang, CAO Wenhong, QIN Wei, ZHANG Xiaoming. The Contribution of Silt Dam for Soil and Water Conservation Measures [J] China Rural Water and Hydropower, 2011(1): 55-59.

10. LI Li, SUN Weiyong, SHI Xuejian. Analysis of sediment grain size of warping dams in Jiuyuangou and Tuwei river watersheds [J]. Yellow River, 2014, 36(5): 79-81. Luigi T. De Luca, Propulsion physics (EDP Sciences, Les Ulis, 2009)