MISO hierarchical inference engine satisfying the law of importation with aggregation functions

Dechao Li1,2 · Qiannan Guo1,2

Published online: 6 March 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract

Fuzzy inference engine, as one of the most important components of fuzzy systems, can obtain some meaningful outputs from fuzzy sets on input space and fuzzy rule base using fuzzy logic inference methods. In multi-input–single-output (MISO) fuzzy systems, in order to enhance the computational efficiency of fuzzy inference engine, this paper aims mainly to investigate three MISO fuzzy hierarchical inference engines employed fuzzy implications satisfying the law of importation with aggregation functions (LIA). We firstly find some aggregation functions for well-known fuzzy implications such that they satisfy LIA. The fuzzy implication satisfying LIA with respect to a given aggregation function is then characterized. Finally, three fuzzy hierarchical inference engines in MISO fuzzy systems are constructed according to aforementioned theoretical developments. Three examples are also provided to illustrate our theoretical arguments.

Keywords Fuzzy implication · Fuzzy inference engine · Aggregation function · Law of importation

1 Introduction

1.1 Motivation

As fuzzy systems can transform human knowledge into a nonlinear mapping, they have been successfully utilized in control, expert system, signal processing, decision making and so on. A fuzzy system mainly consists of fuzzifier, fuzzy rule base, fuzzy inference engine and defuzzifier (Wang 1997). The fuzzy rule base, which constitutes a set of fuzzy IF–THEN rules, is the heart of a fuzzy system. Usually, the fuzzy IF–THEN rules in an multi-input–single-output, MISO [single-input–single-output (SISO)] fuzzy system have the following form

Dechao Li
dch1831@163.com

1 School of Information and Engineering, Zhejiang Ocean University, Zhoushan 316000, China
2 Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, Zhoushan 316022, China
Where \(\mathbf{u}_1 \mathbf{v} = (x_1, x_2, \ldots, x_m) \in \mathbf{U} = \mathbf{U}_1 \times \mathbf{U}_2 \times \cdots \times \mathbf{U}_m \) and \(y \in \mathbf{V} \) are the input and output variables of the fuzzy system, \(D_{ij} (D_j) \) and \(B_j \) are respective fuzzy sets on \(\mathbf{U}_i \) \((i = 1, 2, \ldots, m) \) and \(\mathbf{V} \). From the fuzzy logical point of view, the fuzzy IF–THEN rules can be regarded as a series of fuzzy relations on \(\mathbf{U} \times \mathbf{V} \). And they are often specified by the fuzzy implications. This brings about that more fuzzy implications are studied in order to meet the various needs for fuzzy systems (Baczyński and Jayaram 2008; Baczyński et al. 2009; Fodor and Keresztfalvi 1995; Grzegorzewski 2013; Lima et al. 2020; Massanet et al. 2017; Yager 2004).

As another important component of the fuzzy system, the fuzzy inference engine can transform the fuzzy IF–THEN rules and fuzzy sets on \(\mathbf{U} \) into a fuzzy set on \(\mathbf{V} \) by some fuzzy logical principles (Wang 1997). Especially, the generalized modus ponens (GMP) is often utilized in case where the rule base consists of unique fuzzy IF–THEN rule. The GMP introduced by Zadeh, as an extension of modus ponens (MP) in the classical logic, can be indicated straightforwardly as follows (Zadeh 1973):

\[
\text{Premise 1 : } IF \ x \ is \ D \ THEN \ y \ is \ B \\
\text{Premise 2 : } x \ is \ D' \\
\text{Conclusion : } y \ is \ B',
\]

where \(D \) and \(D' \), \(B \) and \(B' \) are fuzzy sets on \(\mathbf{U} \) and \(\mathbf{V} \), respectively.

To obtain \(B' \), the compositional rule of inference (CRI) method is presented by Zadeh (1973). After, the generalized CRI methods are discussed by many researchers. Unlike the CRI method, Pedrycz proposes another inference method based on the Bandler–Kohout subproduct (BKS) composition denoted by \(B' = D' \circ_{\text{BKS}} R \) (Pedrycz 1985). In Pedrycz’s method, Premise 1 was translated into a fuzzy relation \(R \) using a fuzzy implication, the conclusion of GMP problem is then computed as

\[
B_{\text{BKS}}(y) = \bigwedge_{x \in \mathbf{U}} I(D'(x), I(D(x), B(y))),
\]

where \(I \) is a fuzzy implication.

Notice that there are still some deficiencies in the CRI method (Baldwin 1979; Mizumoto 1985; Turksen and Zhong 1988; Wang 1999). To compensate these deficiencies, the similarity-based approximate reasoning (SBR) method and triple implication principle (TIP) are considered (Mizumoto 1985; Pei 2008; Raha et al. 2002; Turksen and Zhong 1988; Wang 1999). Moreover, some commonly acknowledged axioms (also inferred as GMP rules) are presented by Magrez and Smets in order to measure the availability of these inference methods for the GMP problem (Magrez and Smets 1989).

Similarly, some standards should be required in order to assess the goodness of fuzzy inference engine. Considering the wide applications of fuzzy inference engine, the computational efficiency is one of the important standards for fuzzy inference engine. However, the computational complexity is a main drawback of the CRI method, Pedrycz’s method and TIP method (Cornelis et al. 2004; Stepnicka and Jayaram 2010). In order to overcome this shortcoming, employed the t-norms and fuzzy implications satisfying the law of importation. Jayaram studied a hierarchical CRI fuzzy inference engine (Jayaram 2008). And it is shown that this hierarchical CRI inference engine is equivalent to the classical CRI inference engine. This implies that the MISO fuzzy system using the
hierarchical CRI inference engine can be transformed into an SISO hierarchical fuzzy system. It is worth mentioning that the fuzzy system with the hierarchical CRI inference engine has the advantage of computational efficiency (Jayaram 2008). After, Stepnicka and Jayaram suggested another hierarchical inferencing scheme based on BKS (Stepnicka and Jayaram 2010). Clearly, the law of importation plays an important role in these hierarchical inference engines. This inspires people to investigate the fuzzy implications satisfying the law of importation with t-norms and uninorms, respectively (Baczynski et al. 2020; Mas et al. 2010; Massanet and Ruiz-Aguilera 2018; Massanet and Torrens 2011, 2017).

It is well known that a fuzzy IF–THEN rule is a conditional statement expressed by fuzzy propositions. The words are usually used to describe the fuzzy propositions. These words not only include those for describing attributes, such as “low”, “medium”, “high”, etc., but also include those connectives for connecting multiple propositions, such as “not”, “and” and “or” (Zimmermann and Zysno 1980). The t-norms and t-conorms have been applied to interpret the words “and” and “or”, respectively (Baczynski and Jayaram 2008; Klement et al. 2000; Klir and Yuan 1995; Wang 1997). However, due to the vagueness of natural language and the subtleness of people’s thinking, the connectives cannot be precisely modeled by a single t-norm or t-conorm under all circumstances, and sometimes they even do not correspond to any t-norm or t-conorm (Zimmermann and Zysno 1980). Indeed, the operators extended from t-norms and t-conorms can flexibly effectively handle the uncertainties in connectives that cannot be handled by t-norms or t-conorms (Hudec et al. 2021; Wu and Mendel 2004). For instance, the operators which are not necessarily required the associativity or commutativity have been used to model the words “and” and “or” in decision making and classification problems (Bustince et al. 2012; Fodor and Keresztfalvi 1995). Moreover, as de Soto et al. pointed out, a fuzzy mathematical model does not always have to be symmetric (de Soto et al. 2020). This motivates people to seek some suitable operators describing the connectives. Aggregation functions, as the generalization of t-norms and t-conorms (see Definitions 2.4 and 2.9), have been applied extensively in fuzzy logic, decision making and classification problems (Bustince et al. 2012; Dimuro and Bedregal 2015; Fodor and Keresztfalvi 1995; Helbin et al. 2019; Li and Zeng 2022; Mas et al. 2010, 2016; Ouyang 2012; Pradera et al. 2012, 2016, 2019). Clearly, aggregation functions become increasingly concerned substitute for the t-norms and t-conorms in the actual decision making and classification.

In the case of a singleton MISO fuzzy system, if a t-norm is chosen to interpret the word “and” while the fuzzy implication I is employed to translate the fuzzy IF–THEN rule, the solution of CRI method $B'(y) \equiv 1$ is unless or misleading (Li et al. 2002a, b). The reason for it that $T(a, 0) \equiv 0$ and $I(0, b) \equiv 1$ hold for any t-norm T and fuzzy implication I, respectively. This triggers us to model the word “and” by an operator O meeting the condition $O(a, 0) > 0$ ($O(0, a) > 0$) for any $a \in [0, 1]$. Thus, we will investigate the law of importation with aggregation functions corresponding with the actual needs. And we develop three hierarchical inference engines based on the fuzzy implications satisfying the law of importation. For this purpose the law of importation is firstly extended as follows:

Definition 1.1 (Pradera et al. 2016) Let A be an aggregation function and I a fuzzy implication. I is said to satisfy the law of importation with an aggregation function A if for all $x, y, z \in [0, 1]$,

$$I(A(x, y), z) = I(x, I(y, z)).$$

(LIA)
1.2 Contribution of this paper

As the argument above, the aggregation functions and fuzzy implications satisfying the law of importation play a pivotal role in computational efficiency of a fuzzy inference engine. Moreover, the variety options of aggregation functions and fuzzy implications result in the flexibility of fuzzy inference engines. Therefore, we mainly develop three hierarchical inference engines employed the aggregation functions and fuzzy implications satisfying LIA in this paper. We first investigate some properties of aggregation functions and fuzzy implications which satisfy LIA. And then we seek the aggregation functions for the well-known fuzzy implications such that they satisfy LIA. With such aggregation functions and fuzzy implications, three hierarchical inference engines in MISO fuzzy system are developed. In a word, the contributions of this paper include:

(1) To study the properties of aggregation functions and fuzzy implications satisfying LIA.
(2) To seek the aggregation functions for the well-known fuzzy implications such that they satisfy LIA.
(3) To characterize the fuzzy implications satisfying LIA with a given associative aggregation function.
(4) To construct three fuzzy hierarchical inference engines employed aggregation functions and fuzzy implications satisfying LIA.

This paper is organized as follows. Section 2 recalls some basic concepts utilized in this paper. In Sect. 3, we study the properties of aggregation functions and fuzzy implications when they satisfy LIA. Section 4 shows necessary and sufficient conditions for \((A, N)\)-implication generated by an associative disjunctor and \(R\)-implications generated by an associative and commutative aggregation function satisfying LIA. In Sect. 5, some associative aggregation functions are constructed for \(f\)-implication, \(g\)-implication, QL-implication, probabilistic implication, probabilistic S-implication and \(T\)-power implication satisfying LIA with them, respectively. Section 6 characterizes the fuzzy implication satisfying LIA with a given associative aggregation function. In Sect. 7, three MISO hierarchical inference engines based on fuzzy implications satisfying LIA are developed. Section 8 provides three examples to illustrate our proposed methods.

2 Preliminaries

This section will recall the definitions of fuzzy negation, aggregation function and fuzzy implication and their properties utilized in the remainder of this paper.

2.1 Fuzzy negation, aggregation function and fuzzy implication

Definition 2.1 (Lowen 1978) A fuzzy negation \(N\) is a mapping on \([0, 1]\) which satisfies

\(N(0) = 1, N(1) = 0,\)

\(N(x) \geq N(y) \text{ if } x \leq y, \forall x, y \in [0, 1].\)

A strict negation \(N\) fulfills

\(N(x) > N(y) \text{ if } x < y.\)

A fuzzy negation \(N\) is strong if
(N5) \(N(N(x)) = x, \forall x \in [0, 1] \).

Moreover, a fuzzy negation \(N \) is said to be vanishing (non-vanishing) if \(N(x) = 0 \) for some \(x \neq 1 \) (\(N(x) = 0 \iff x = 1 \)), and filling (non-filling) if \(N(x) = 1 \) for some \(x \neq 0 \) (\(N(x) = 1 \iff x = 0 \)).

Example 2.2 (Lowen 1978)

- The standard fuzzy negation \(N_c(x) = 1 - x \).
- The smallest and the greatest fuzzy negations \(N_{\min}(x) = \begin{cases} 1, & x = 0, \\ 0, & \text{otherwise}, \end{cases} \) and \(N_{\max}(x) = \begin{cases} 0, & x = 1, \\ 1, & \text{otherwise}. \end{cases} \)
- The natural negation of a fuzzy implication \(I \) (see Definition 2.11) is defined by \(N_I(x, y) = I(x, 0) \).

Lemma 2.3 (Baczynski and Jayaram 2008) Let the fuzzy negation \(N \) be continuous. The mapping \(\tilde{N} \) defined by

\[
\tilde{N}(x) = \begin{cases} N^{(-1)}(x), & x \in (0, 1], \\ 1, & x = 0, \end{cases}
\]

is a strict fuzzy negation, where \(N^{(-1)} \) is the pseudo-inverse of \(N \) given by \(N^{(-1)}(x) = \sup \{ y \in [0, 1] | N(y) > x \} \) for all \(x \in [0, 1] \). Moreover,

(i) \(\tilde{N}^{(-1)} = N \);

(ii) \(N \circ \tilde{N} = \text{id} \);

(iii) \(\tilde{N} \circ N \mid_{\text{Ran}(\tilde{N})} = \text{id} \mid_{\text{Ran}(\tilde{N})} \), where \(\text{Ran}(\tilde{N}) \) stands for the range of \(\tilde{N} \) and \(N \mid_{\text{Ran}(\tilde{N})} \) denotes the restriction of \(N \) to \(\text{Ran}(\tilde{N}) \).

Definition 2.4 (Grabisch et al. 2009) An aggregation function is a mapping \(A : [0, 1]^2 \to [0, 1] \) which meets

(A1) Boundary conditions: \(A(0, 0) = 0 \) and \(A(1, 1) = 1 \),

(A2) Non-decreasing in two variables, respectively.

Suppose that \(f \) is a binary function on \([0, 1]\) and \(\varphi \) an automorphism on \([0, 1]\) (that is, an increasing bijection on \([0, 1]\)). Defining the function \(f_\varphi(x, y) = \varphi^{-1}(f(\varphi(x), \varphi(y))) \), it is called as the \(\varphi \)-conjugate of \(f \). Obviously, the \(\varphi \)-conjugate of \(A \), denoted by \(A_\varphi \), is again an aggregation function. Especially, \(A_N \) is known as the \(N \)-dual of \(A \) chosen \(\varphi \) as a strict negation \(N \).

Definition 2.5 (Klement et al. 2000) Let \(A_1 \) and \(A_2 \) be two aggregation functions. We say \(A_1 \leq A_2 \) if \(A_1(x, y) \leq A_2(x, y) \) holds for any \(x, y \in [0, 1] \).

Definition 2.6 (Grabisch et al. 2009) \(e \in [0, 1] \) is a left (right) neutral element of the binary aggregation function \(A \) if \(A(e, x) = x \) (\(A(x, e) = x \)) for any \(x \in [0, 1] \). Further, \(e \in [0, 1] \) is a neutral element of \(A \) if \(A(e, x) = A(x, e) = x \).
Definition 2.7 (Pradera et al. 2016) Let A be an aggregation function.

(i) A is a conjunctor if $A(1, 0) = A(0, 1) = 0$,
(ii) A is a disjunctor if $A(1, 0) = A(0, 1) = 1$,
(iii) A has zero divisors if there exist $x, y \in (0, 1]$ such that $A(x, y) = 0$,
(iv) A has one divisors if there exist $x, y \in [0, 1)$ such that $A(x, y) = 1$.

Definition 2.8 (Pradera et al. 2012) Let A be a binary aggregation function and N a fuzzy negation. We say that A satisfies the law of excluded middle principle (LEM) with respect to N if $A(N(x), x) = 1$ holds for any $x \in [0, 1]$. Obviously, A is a disjunctor if it satisfies LEM.

Definition 2.9 (Grabisch et al. 2009) Let A be a binary aggregation function. We say that A is

(i) associative if $A(x, A(y, z)) = A(A(x, y), z)$ for any $x, y, z \in [0, 1]$,
(ii) commutative if $A(x, y) = A(y, x)$ for any $x, y \in [0, 1]$,
(iii) a semi-copula if 1 is its neutral element,
(iv) a t-norm if it is an associative and commutative semi-copula,
(v) a t-conorm if it is the N-dual of a t-norm,
(vi) a uninorm if it is associative, commutative and $e \in (0, 1)$ is its neutral element,
(vii) a copula if it is a semi-copula which $A(x_1, y_1) - A(x_1, y_2) - A(x_2, y_1) + A(x_2, y_2) \geq 0$ holds for all $x_1 \leq x_2$ and $y_1 \leq y_2$.

Example 2.10 (Grabisch et al. 2009; Pradera et al. 2019) The following are some distinguished conjunctors:

- The smallest conjunctor, $C_\bot(x, y) = \begin{cases} 1 & x = y = 1, \\ 0 & \text{otherwise,} \end{cases}$
- The greatest averaging conjunctor, $(C_{avg})_\tau(x, y) = \begin{cases} 0 & x = 0 \text{ or } y = 0, \\ x \lor y & \text{otherwise,} \end{cases}$
- Representable aggregation functions, $A(x, y) = g^{-1}((g(x \land y) - g(N(x \lor y))) \lor 0)$, where $g : [0, 1] \rightarrow [0, +\infty]$ is continuous strictly increasing with $g(0) = 0$ and N is a strong negation,
- Weighted quasi-arithmetic mean (WQAM), $M_{\lambda, f}(x, y) = f^{-1}((1 - \lambda)f(x) + \lambda f(y))$, where $f : [0, 1] \rightarrow [\infty, +\infty]$ is continuous and strictly monotone with $f(0) = +\infty$ and $\lambda \in (0, 1)$,
- TS-functions, $TS_{\lambda, f}(x, y) = f^{-1}((1 - \lambda)f(T(x, y)) + \lambda f(S(x, y)))$, where T is a t-norm, S is a t-conorm, $\lambda \in (0, 1)$ and $f : [0, 1] \rightarrow [\infty, +\infty]$ is continuous and strictly monotone with $f(0) = +\infty$.

Definition 2.11 (Baczynski and Jayaram 2008) A fuzzy implication I is a mapping $I : [0, 1]^2 \rightarrow [0, 1]$ satisfying

(i) Non-increasing in the first variable, i.e., $I(x, z) \geq I(y, z)$ if $x \leq y$,
(ii) Non-decreasing in the second variable, i.e., $I(x, y) \leq I(x, z)$ if $y \leq z$,
(iii) $I(0, 0) = 1$,
(iv) $I(1, 1) = 1$,
(v) $I(1, 0) = 0$.

According to Definition 2.11, for a fuzzy implication the following facts can be directly obtained.
(LB) Left boundary condition, \(I(0, y) = 1, \forall y \in [0, 1] \),
(RB) Right boundary condition, \(I(x, 1) = 1, \forall x \in [0, 1] \).

Definition 2.12 (Baczyński and Jayaram 2008; Massanet and Torrens 2011) We say that
the fuzzy implication \(I \) fulfills

(NP) Left neutrality property, \(I(1, y) = y, \forall y \in [0, 1] \),
(IP) Identity principle, \(I(x, x) = 1, \forall x \in [0, 1] \),
(EP) Exchange principle, \(I(x, I(y, z)) = I(y, I(x, z)), \forall x, y, z \in [0, 1] \),
(CP(N)) Law of contraposition with a fuzzy negation \(N \), \(I(x, y) = I(N(y), N(x)), \forall x, y \in [0, 1] \),
(OP) Ordering property, \(I(x, y) = 1 \iff x \leq y, \forall x, y \in [0, 1] \),
(OP') Counterpart of ordering property for uninorms, \(I(x, y) \geq e \iff x \leq y, \forall x, y \in [0, 1] \) with \(e \in (0, 1) \).

Definition 2.13 (Pradera et al. 2016) An \((A, N)\)-implication \(I_{A,N} \) is a mapping
\(I_{A,N} : [0, 1]^2 \to [0, 1] \) defined by
\[
I_{A,N}(x, y) = A(N(x), y),
\]
where \(A \) is a disjunctor and \(N \) a fuzzy negation. Further, \(I_{A,N} \) is called an \(A \)-implication
if \(N = N_\ast \). Moreover, \(I_{S,N} \) is a strong implication or S-implication if it is generated by a
t-comorm \(S \) and a strong negation \(N \).

Theorem 2.14 (Pradera et al. 2016) \(I \) is a fuzzy implication if and only if \(I \) is an \(A \)-implication,
\textit{i.e.} there exists a disjunctor \(A \) such that \(I(x, y) = I_{A,N}(x, y) = A(1 - x, y) \).

Definition 2.15 (Ouyang 2012) A function \(I_A : [0, 1]^2 \to [0, 1] \) is called an R-implication if
\[
I_A(x, y) = \sup \{ t \in [0, 1] \mid A(x, t) \leq y \}
\]
is a fuzzy implication, where \(A \) is an aggregation function.

Definition 2.16 (Pradera et al. 2016) A function \(I_{A_1,A_2} : [0, 1]^2 \to [0, 1] \) is called a QL-
operation given by
\[
I_{A_1,A_2}(x, y) = A_1(N(x), A_2(x, y)),
\]
where \(A_1, A_2 \) are two aggregation functions and \(N \) a fuzzy negation. Especially, a
QL-operation \(I_{A_1,A_2} \) is called a QL-implication if it satisfies I1 and I3–5.

Definition 2.17 (Yager 2004) An \(f \)-implication \(I_f \) is a mapping \(I_f : [0, 1]^2 \to [0, 1] \) defined
as \(I_f(x, y) = f^{-1}(xf(y)) \) with the understanding \(0 \cdot \infty = 0 \), where \(f : [0, 1] \to [0, +\infty] \) is a
continuous and strict decreasing function with \(f(1) = 0 \).

Definition 2.18 (Yager 2004) Let \(g : [0, 1] \to [0, +\infty] \) be a continuous and strict increasing
function with \(g(0) = 0 \). A \(g \)-implication \(I_g \) generated by \(g \) is a mapping
\(I_g : [0, 1]^2 \to [0, 1] \) defined as \(I_g(x, y) = g^{-1}\left(\frac{g(y)}{x}\right) \) with the understanding \(0 \cdot \infty = \infty \),
where \(g^{-1} \) is pseudoinverse of \(g \) given by \(g^{-1}(x) = \begin{cases} g^{-1}(x) & x \leq g(1), \\ 1 & \text{otherwise.} \end{cases} \)
Definition 2.19 (Grzegorzewski 2013) A probabilistic implication \(I_C \) generated by a copula \(C \) is defined by
\[
I_C(x, y) = \begin{cases}
\frac{C(x, y)}{x} & x > 0, \\
1 & \text{otherwise},
\end{cases}
\]
if it satisfies II.

Definition 2.20 (Grzegorzewski 2013) A probabilistic \(S \)-implication \(\tilde{I}_C \) is defined as
\[
\tilde{I}_C(x, y) = C(x, y) - x + 1, \text{ where } C \text{ be a copula.}
\]

Definition 2.21 (Massanet et al. 2017) Let \(T \) be a t-norm. A \(T \)-power implication is a function \(I^T : [0, 1]^2 \to [0, 1] \) given by
\[
I^T(x, y) = \bigwedge \{ r \in [0, 1] | y^r_T \geq x \}
\]
for all \(x, y \in [0, 1] \), where
\[
y^r_T = \underbrace{T(y, y, \ldots, y)}_{r \text{ times}},
\]

Lemma 2.22 (Massanet et al. 2017) Let \(T \) be a continuous t-norm and \(I^T \) its power implication.

(i) If \(T = T_M \) is the minimum t-norm, then \(I^{TM}(x, y) = \begin{cases}
1 & x \leq y, \\
0 & x > y.
\end{cases} \)

(ii) If \(T \) is an Archimedean t-norm with additive generator \(t \), i.e., there exists a continuous strictly deceasing function \(t : [0, 1] \to [0, +\infty) \) with \(t(1) = 0 \), then
\[
I^T(x, y) = \begin{cases}
1 & x \leq y, \\
\frac{t(x)}{t(y)} & x > y.
\end{cases}
\]

2.2 Similarity based reasoning and triple implication method

Let \(F(U) \) be the set of fuzzy sets on \(U \). To solve the GMP problem, the algorithm for similarity based reasoning presented by Raha et al. as follows (Raha et al. 2002):

Step 1. Combine premise 1 and calculate \(R(D, B) \) by some appropriate translating rules (such as a t-norm).

Step 2. Calculate \(S(D', D) \) combining \(D' \) and \(D \) using a similarity measure.

Step 3. Modify \(R(D, B) \) with \(S(D', D) \) in order to get \(R(D, B|D') \) utilized some schemes.

Step 4. Obtain \(B' \) as
\[
B'(y) = \bigvee_{x \in U} R(D, B|D')(x, y).
\]

To obtain \(R(D, B|D') \), they also proposed the following three axioms:

(AX1) \(R(D, B|D')(x, y) = R(D, B)(x, y) \) if \(S(D', D) = 1 \);

(AX2) \(R(D, B|D')(x, y) = 1 \) if \(S(D', D) = 0 \);

(AX3) \(R(D, B|D') \supseteq R(D, B) \) holds for any \(D' \in F(U) \).

Then \(R(D, B) \) is consider in the following ways:

Case 1. \(R(D, B)(x, y) = T(D(x), B(y)) \), where \(T \) is a t-norm.

Case 2. \(R(D, B)(x, y) = I(D(x), B(y)) \), where \(I \) is a fuzzy implication.

Finally, the conclusions \(B'_SBR \) and \(B''_SBR \) are obtained as

\[... \]
The following TIP for the GMP problem is proposed by Wang (1999).

Triple implication principle for GMP Assume that the maximum of following formula

\[M(x, y) = I(I(D(x), B(y)), I(D'(x), B'(y))) \]

exists for every \(x \in U \) and \(y \in V \), where \(I \) is a fuzzy implication on \([0,1]\). The solution \(B' \) of GMP problem should be the smallest fuzzy set on \(V \) such that Eq. (1) achieves its maximum.

Lemma 2.23 (Pei 2008) (i) If \(I \) fulfills \(I_2 \), then

\[\max_{x \in U, y \in V} M(x, y) = I(I(D(x), B(y)), I(D'(x), 1)) \]

(ii) Moreover, if \(I \) is right-continuous with respect to the second variable, then the TIP solution of GMP problem is unique.

Theorem 2.24 (Pei 2008) Let \(I_T \) be an \(R \)-implication generated by a left-continuous \(t \)-norm \(T \). Then the TIP solution of GMP problem is given by

\[B'_{TIP}(y) = \bigvee_{x \in U} T(D'(x), I_T(D(x), B(y))). \]

3 Satisfaction of LIA with fuzzy implications and aggregation functions

This section will study some properties of fuzzy implications and aggregation functions when they satisfy LIA.

Lemma 3.1 Let \(I \) satisfy LIA with \(A \). If \(A \) is commutative, then \(I \) satisfies EP.

Proof Straightforward. \(\square \)

Lemma 3.2 Let \(I \) satisfy LIA with \(A \). If \(N_I(y_1) = N_I(y_2) \), then \(N_I(A(x, y_1)) = N_I(A(x, y_2)) \) holds for arbitrary and fixed \(x \in [0, 1] \).

Proof Let \(N_I(y_1) = N_I(y_2) \). We then have \(N_I(A(x, y_1)) = I(A(x, y_1), 0) = I(x, I(y_1, 0)) \)

\[= I(x, N_I(y_1)) = I(x, N_I(y_2)) = I(x, I(y_2, 0)) = I(A(x, y_2), 0) = N_I(A(x, y_2)). \] \(\square \)

Lemma 3.3 Let \(I \) satisfy EP and \(N_I \) be injective. If \(I \) fulfills LIA with \(A \), then \(A \) is commutative.

Proof It suffices to take \(z = 0 \) in LIA. \(\square \)
Lemma 3.4 Let I be a fuzzy implication such that $I(x, y) = 1$ iff $x = 0$ or $y = 1$. If I satisfies LIA with A, then A is conjunctor.

Proof By LIA, we have $I(A(0, 1), z) = I(0, I(1, z)) = 1$ for any $z \in [0, 1)$. This implies $A(0, 1) = 0$. We can similarly obtain $A(1, 0) = 0$. Thus, A is a conjunctor.

Lemma 3.5 Let I be a fuzzy implication such that N_I is non-filling. If I satisfies LIA with A, then A is conjunctor.

Proof By LIA, we have $N_I(A(0, 1)) = I(A(0, 1), 0) = I(0, I(1, 0)) = 1$. This implies $A(0, 1) = 0$. We can similarly obtain $A(1, 0) = 0$. Thus, A is a conjunctor.

Lemma 3.6 Let the mapping $h(z) = I(1, z)$ be continuous on $[0, 1)$. If I satisfies LIA with A, then I satisfies NP.

Proof For any $y \in [0, 1)$, there exist some $z \in [0, 1)$ such that $y = I(1, z)$ by the continuity of h. Therefore, $I(1, y) = I(1, I(1, z)) = I(A(1, 1), z) = I(1, z) = y$.

Definition 3.7 (Li and Zeng 2022) Let I be a fuzzy implication and A an aggregation function. The pair (I, A) is called an adjoint pair if they satisfy the residuation property (RP), i.e.

$$A(x, y) \leq z \iff x \leq I(y, z), \quad \forall x, y, z \in [0, 1].$$

Lemma 3.8 Let I satisfy OP and LIA with A. We have

(i) A is conjunctor,

(ii) (I, A) is an adjoint pair.

Proof (i) By LIA, we have $I(A(0, 1), 0) = I(0, I(1, 0)) = 1$. Since I fulfills OP, $A(0, 1) = 0$ holds. We can similarly obtain $A(1, 0) = 0$. Thus, A is a conjunctor.

(ii) Since I satisfies OP, $I(x, I(y, z)) = 1 \iff x \leq I(y, z)$ holds for any $x, y, z \in [0, 1)$. Similarly, $I(A(x, y), z) = 1 \iff A(x, y) \leq z$. By LIA, we have $A(x, y) \leq z \iff x \leq I(y, z)$.

Remark 1 We can similarly obtain that (I, A) forms an adjoint pair if I satisfies OP, and LIA with A.

Lemma 3.9 Let A be associative and commutative. If I fulfills RP with A, then they satisfy LIA.

Proof By RP, $A(I(x, y), x)) = A(x, I(x, y))) \leq y$ holds for any $x, y \in [0, 1)$. We can then assert that $I(x, I(y, z)) \leq I(A(x, y), z)$. Indeed, $A(A(x, y), I(x, I(y, z))) = A(y, A(x, I(x, I(y, z)))) \leq z$. On the other hand, we have $A(A(x, y), I(x, I(y, z))) \leq A(y, I(y, z)) \leq z$. This means $A(x, I(A(x, y), z)) \leq I(y, z)$. And then $I(A(x, y), z) \leq I(x, I(y, z))$.

Lemma 3.10 Let A_φ and I_φ be the φ-conjugate of A and I, respectively. If I fulfills LIA with A, then I_φ satisfies LIA with A_φ.
4 LIA with \((A, N)\)- and R-implications

In this section, we shall seek some aggregation functions such that \((A, N)\)- and R-implications satisfy LIA with them. We firstly consider the case when \((A, N)\)-implications are generated by the smallest and greatest fuzzy negations, respectively.

Lemma 4.1 Let \(I_{A,N}\) be an \((A, N)\)-implication generated by an associative disjunctor \(A\) and the smallest fuzzy negation \(N_\perp\). Then, \(I_{A,N}\) satisfies LIA with any conjunctor \(A'\) without zero divisors.

Proof Let \(A'\) be a conjunctor without zero divisors. We consider the following two cases.

(i) \(A'(x, y) = 0\). This case implies \(x = 0\) or \(y = 0\). Then, we have \(I_{A,N}(A'(x, y), z) = I_{A,N}(0, z) = 1 = I_{A,N}(x, I_{A,N}(y, z)).\)

(ii) \(A'(x, y) \neq 0\). In this case, we have \(xy \neq 0\). This implies \(I_{A,N}(A'(x, y), z) = A(0, z)\). On the other hand, \(I_{A,N}(x, I_{A,N}(y, z)) = A(0, A(0, z)) = A(0, z)\). Therefore, \(I_{A,N}(A'(x, y), z) = I_{A,N}(x, I_{A,N}(y, z)).\)

Lemma 4.2 Let \(I_{A,N}\) be an \((A, N)\)-implication generated by an associative disjunctor \(A\) and the greatest fuzzy negation \(N_\top\). Then, \(I_{A,N}\) satisfies LIA with any conjunctor \(A'\) without one divisors.

Proof This proof is similar to that of Lemma 4.1.

However, it is not easy to seek some aggregation functions such that \((A, N)\)-implications obtained from other non-continuous fuzzy negations satisfy LIA with them. So, we next focus on the \((A, N)\)-implications generated by continuous fuzzy negations.

Theorem 4.3 Let \(I_{A,N}\) be an \((A, N)\)-implication generated by an associative disjunctor \(A\) and a continuous fuzzy negation \(N\). Then \(I_{A,N}\) satisfies LIA with the aggregation function \(A'\) defined by \(A'(x, y) = \tilde{N}(A(N(x), N(y))).\)

Proof \(I_{A,N}(A'(x, y), z) = A(N(A'(x, y)), z) = A(N(\tilde{N}(A(N(x), N(y)))), z) = A(A(N(x), N(y), z)) = A(N(x), I_{A,N}(y, z)) = I_{A,N}(x, I_{A,N}(y, z)).\)

It is not difficult to see that other aggregation functions can be found such that the \(I_{A,N}\) satisfies LIA with them, because there exists other fuzzy negation \(N\) such that \(N \circ \tilde{N} = id\) holds. However, the following result shows that \(A_N\) is the only one for \(I_{A,N}\) satisfying LIA if \(N_{I_{A,N}}\) is strict.

Theorem 4.4 Let \(I_{A,N}\) be an \((A, N)\)-implication generated by an associative disjunctor \(A\) and a strict negation \(N\). If \(N_{I_{A,N}}\) is an injective mapping, then \(I_{A,N}\) satisfies LIA with \(A'\) if and only if \(A'\) is the \(N\)-dual of \(A\).

Proof \((\Longleftrightarrow)\) This proof is similar to that of Theorem 4.3.
(\iff) Assume that \(I_{A,N} \) satisfies LIA with \(A' \), that is, \(I_{A,N}(A'(x, y), z) = I_{A,N}(x, I_{A,N}(y, z)) \) holds for any \(x, y, z \in [0, 1] \). Setting \(z = 0 \), we have \(N_{I_{A,N}}(A'(x, y)) = A(N(x), A(N(y), 0)) = A(A(N(x), N(y)), 0) = N_{I_{A,N}}(N^{-1}(A(N(x), N(y)))) \) for any \(x, y \in [0, 1] \). Since \(N_{I_{A,N}} \) is injective, \(A'(x, y) = N^{-1}(A(N(x), N(y))) \) holds for any \(x, y \in [0, 1] \). Therefore, \(A' = A_N \). \qEDA

Remark 3 It is easy to see that \(N_{I_{A,N}} = N \) holds if 0 is a right neutral element of \(A \) and \(N \) is strict. In this case, \(I_{A,N} \) satisfies LIA with \(A' \) iff \(A' \) is the \(N \)-dual of \(A \). Especially, an \(S \)-implication satisfies LIA with a \(t \)-norm \(T \) iff \(T \) is the \(N \)-dual of \(S \).

Theorem 4.5 Let \(I_{A,N} \) be an \((A, N)\)-implication generated by a strict negation \(N \). Then \(I_{A,N} \) satisfies LIA with the \(N \)-dual of \(A \) if and only if \(A \) is associative.

Proof It is sufficient to verify that \(A \) is associative. Since \(I_{A,N} \) satisfies LIA with the \(N \)-dual of \(A \), we have
\[I_{A,N}(A_A(x, y), z) = A(A(N(x), N(y)), z) = A(N(x), A(N(y), z)) = I_{A,N}(x, I_{A,N}(y, z)). \]
The continuity of \(N \) implies that \(A \) is associative.

In the rest of this section, we study the law of importation for \(R \)-implications generated by an associative and commutative aggregation functions.

Theorem 4.6 Let \(I_A \) be an \(R \)-implication generated by an associative, commutative and left-continuous aggregation function \(A \). We have

(i) \(I_A \) satisfies LIA with \(A \).

(ii) If \(I_A \) fulfills OP, then \(I_A \) satisfies LIA with \(A' \) if and only if \(A' = A \).

Proof (i) The proof comes from Lemma 3.1 in Li and Zeng (2022) and Lemma 3.9.

(ii) Let \(I_A \) fulfill OP. Obviously, \(I_A(A'(x, y), A'(x, y)) = 1 \) holds for any \(x, y \in [0, 1] \). This implies \(I_A(x, I_A(y, A'(x, y))) = 1 \) by LIA. Again, we obtain \(x \leq I_A(y, A'(x, y)) \). Thus, \(A(x, y) \leq A'(x, y) \).

On the other hand, \(I_A(A'(x, y), A(x, y)) = I_A(x, I_A(y, A(x, y))) \geq I_A(x, x) = 1 \) because \((I_A, A) \) is an adjoint pair. Then, we have \(A'(x, y) \leq A(x, y) \). \qEDA

Remark 4 (i) Indeed, \(A(x, 1) = A(1, x) = x \) holds for any \(x \in [0, 1] \) iff \(I_A \) satisfies OP. This means that \(I_A \) is an \(R \)-implication generated by the \(t \)-norm \(T \). And then \(I_T \) satisfies LIA with \(A' \) iff \(A' = T \). This result can be also found in Jayaram (2008).

(ii) Similarly, we can obtain the fact that \(A \) is a uninorm if \(I_A \) satisfies OP\(_U\). Thus, \(I_A \) is an \(R \)-implication generated by the uninorm \(U \). And then \(I_U \) satisfies LIA with \(A' \) iff \(A' = U \). This result can be also found in Massanet and Torrens (2011).

(iii) By Lemma 3.8, \((I_A, A')\) is an adjoint pair if \(I_A \) satisfies OP (or OP\(_U\)) and LIA with \(A' \). Theorem 4.6 shows that \(A \) is a unique aggregation function such that \(I_A \) satisfies RP with it in this case.

(iv) The \(R \)-implications generated by not left-continuous aggregation functions may not satisfy LIA with any aggregation function \(A' \) or satisfy LIA with many aggregation functions as shown in the following examples.
Example 4.7 Consider the Weber implication I_{WB} defined as $I_{WB}(x, y) = \begin{cases} 1 & x < 1, \\ y & x = 1. \end{cases}$ Similar to the proof of Lemma 4.2, we can verify that I_{WB} satisfies LIA with any conjunctor A' without one divisors.

Example 4.8 Let $A(x, y) = \begin{cases} 0 & xy < 0.5, \\ \frac{xy}{x+y} & otherwise. \end{cases}$ It is obvious to see that A is a not-left-continuous conjunctor. And then the R-implication I_A generated by A can be obtained as:

$I_A(x, y) = \begin{cases} 1 & x < 0.5, \\ \max \left(2y - x, \frac{1}{2x} \right) & otherwise. \end{cases}$

For any aggregation function A', a simple calculation reveals $I_A(1', 1, 0.8) = 0.6$ and $I_A(1, 1, 0.8) = 0.5$. This means that I_A does not satisfy LIA with any aggregation function.

5 Other implications satisfying LIA

In this section, we investigate if the QL-, f-, g-, probabilistic, probabilistic S- and T-power implications satisfy LIA with some aggregation functions. Let $I_{A_1A_2}$ be a QL-operation. Clearly, $I_{A_1A_2}$ satisfies I3 and I5 when A_1 is a disjunctor and A_2 is a conjunctor. Therefore, we only consider the case where $I_{A_1A_2}$ is obtained from a disjunctor, a conjunctor and a fuzzy negation in the rest of this section. Further, if A_2 has a right neutral element 1, then $I_{A_1A_2}$ being a QL-implication implies that A_1 satisfies LEM. And then the following statements hold.

Lemma 5.1 Let $I_{A_1A_2}$ be a QL-implication generated by an associative disjunctor without one divisor A_1, a semi-copula A_2 and a fuzzy negation N. Then $I_{A_1A_2}$ satisfies LIA with any aggregation function A without zero divisors.

Proof Since A_1 has no one divisors, it is not difficult to verify that A_1 satisfies LEM with respect to N if and only if $N = N_T$. This implies that $I_{A_1A_2}$ becomes an (A, N)-implication generated by an associative disjunctor A_1 and the greatest fuzzy negation N_T. By Lemma 4.2, $I_{A_1A_2}$ satisfies LIA with any aggregation function A without zero divisors.

Theorem 5.2 Let $I_{A_1A_2}$ be a QL-implication generated by a disjunctor A_1 such that the mapping $h(x) = A_1(x, 0)$ is continuous on $[0, 1]$, a conjunctor A_2 and a continuous fuzzy negation N. If the aggregation function A is commutative, then $I_{A_1A_2}$ satisfies LIA with A if and only if

$h(x) = \begin{cases} \frac{x}{x+y} & xy < 0.5, \\ \frac{xy}{x+y} & otherwise. \end{cases}$

Proof Since A is commutative, $I_{A_1A_2}$ satisfies EP according to Lemma 3.1. The continuity of $h(x)$ implies that $N_{I_{A_1A_2}}(x) = A_1(N(x), 0)$ is continuous. Therefore, $I_{A_1A_2}$ can be rewritten as an (S, N)-implication generated by a t-conorm S and the natural negation $N_{I_{A_1A_2}}$ according to Theorem 2.4.10 in Baczyński and Jayaram (2008), where $S(x, y) = I_{A_1A_2}(\tilde{N}_{I_{A_1A_2}}(x), y)$.

Springer
By Theorem 4.3, I_{A_1,A_2} satisfies LIA with A if and only if $A(x,y) = \tilde{N}_{I_{A_1,A_2}}(S(N_{I_{A_1,A_2}}(x), N_{I_{A_1,A_2}}(y))) = \tilde{N}_{I_{A_1,A_2}}(I_{A_1,A_2}(\tilde{N}_{I_{A_1,A_2}}(N_{I_{A_1,A_2}}(x)), N_{I_{A_1,A_2}}(y)))$. \hfill \qed

Theorem 5.3 Let I_f be an f-implication. I_f satisfies LIA with an aggregation function A if and only if $A(x,y) = xy$.

Proof \(\iff\) This can be verified directly.

\((\Rightarrow)\) By Theorem 2.14, I_f can be rewritten as an A-implication $I_{A,N}$ generated by the disjunctor $A(x,y) = f^{-1}((1-x)f(y))$. Suppose that I_f satisfies LIA with an aggregation function A'. Then, A is associative according to Corollary 4.5. This means that $f(1-(1-x)(1-y)) = (1-x)f(y)$ holds for any $x, y \in [0,1]$. Therefore, we obtain $A'(x,y) = A_N(x,y) = 1 - A(1-x, 1-y) = xy$. That is, I_f satisfies LIA with an aggregation function A' if and only if $A'(x,y) = xy$. \hfill \qed

Lemma 5.4 Let I_g be a g-implication. If I_g satisfies LIA with an aggregation function A, then A has not zero divisors.

Proof On the contrary, we assume that there exist $x, y \in (0,1]$ such that $A(x,y) = 0$. Since I_g satisfies LIA with A, we have $I_g(A(x,y), 0) = 1$. However, $I_g(x, I_g(y,0)) = I_g(x,0) = 0$ by Proposition 3.2.7 in Baczyński and Jayaram (2008). This is a contradiction. \hfill \qed

Theorem 5.5 Let I_g be a g-implication. I_g satisfies LIA with an aggregation function A' if and only if $A'(x,y) = xy$.

Proof \(\iff\) This can be verified directly.

\((\Rightarrow)\) By Theorem 2.14, I_g can be rewritten as an A-implication $I_{A,N}$ generated by the disjunctor $A(x,y) = g^{-1}\left(\frac{g(y)}{1-x} \wedge g(1)\right)$. Assume that I_g satisfies LIA with an aggregation function A'. Then, A is associative and has not zero-divisors by Corollary 4.5 and Lemma 5.5. This implies that $A(x,A(y,z)) = 1$ iff $A(x,A(y,z)) = 1$. And then

$$\frac{g(z)}{(1-x)(1-y)} = \frac{g(2)}{1-x g^{-1}\left(\frac{g(z)}{1-y}\right)}$$

holds for any $x, y, z \in [0,1)$. Thus, $A'(x,y) = A_N(x,y) = 1 - A(1-x, 1-y) = xy$. That is, I_g satisfies LIA with an aggregation function A' if and only if $A'(x,y) = xy$. \hfill \qed

Remark 5 Theorems 5.3 and 5.5 also appeared in Jayaram (2008) and Baczyński and Jayaram (2008), respectively. However, we provide two distinct proofs. And our proofs can help to understand them from another perspective.

Theorem 5.6 Let I_C be a probabilistic implication. If the equation

$$x^2 C\left(1 - \frac{C(x,y)}{x}, z\right) = x C\left(x, \frac{C(1-y,z)}{1-y}\right)$$

holds for any $x, y, z \in [0,1]$ with understanding $\frac{0}{0} = 1$, then I_C satisfies LIA with an aggregation function A' if and only if

$$A'(x,y) = \begin{cases} 1 - \frac{C(x,1-y)}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

Proof By Theorem 2.14, I_C can be rewritten as an A-implication $I_{A,N}$ generated by the disjunctor $A(x,y) = \begin{cases} \frac{C(1-x)}{1-x} & x \neq 1, \\ 1 & x = 1. \end{cases}$ The equation

$$x^2 C\left(1 - \frac{C(x,y)}{x}, z\right) = x C\left(x, \frac{C(1-y,z)}{1-y}\right)$$

satisfaction of LIA with A if and only if $A(x,y) = xy$.\hfill \qed

\(\square\) Springer
satisfies LIA with an aggregation function A' if and only if A' is the N-dual of A. That is, $A'(x, y) = \begin{cases}
1 - \frac{C(x, 1-y)}{x} & x \neq 0, \\
0 & x = 0.
\end{cases}$ \hfill \square

Remark 6 Notice that there exist some probabilistic implications which satisfy LIA with an aggregation function A' without the condition of Theorem 5.6 (see Example 5.2 in Helbin et al. 2019).

Theorem 5.7 Let \widetilde{I}_C be a probabilistic S-implication. If the equation $C(x, C(1 - y, z) + y) = C(x, y) + C(x - C(x, y), z)$ holds for any $x, y, z \in [0, 1]$, then \widetilde{I}_C satisfies LIA with an aggregation function A' if and only if $A'(x, y) = x - C(x, 1 - y)$.

Proof By Theorem 2.14, \widetilde{I}_C can be rewritten as an A-implication $I_{A,N}$ generated by the disjunctor $A(x, y) = x + C(1 - x, y)$. The equation $C(x, C(1 - y, z) + y) = C(x, y) + C(x - C(x, y), z)$ implies that the disjunctor A is associative. According to Theorem 4.4, \widetilde{I}_C satisfies LIA with an aggregation function A' if and only if $A'(x, y) = x - C(x, 1 - y)$.

Theorem 5.8 Let T be a nilpotent t-norm with additive generator t. Then, its power implication I^T does not satisfy LIA with any aggregation function.

Proof Suppose that I^T satisfies LIA with an aggregation function A, that is, $I^T(A(x, y), z) = I^T(x, I^T(y, z))$. Taking $z = 0$, we have $\frac{n(A(x, y))}{n(0)} = \frac{r(x)}{r(0)} \land 1$. This means that A is formed as $A(x, y) = t^{-1}\left(\frac{r(0)\frac{r(x)}{r(0)}}{I(\frac{r(x)}{r(0)})} \land I(0)\right)$. This case implies that 1 is a right neutral element of A. And then $I^T(A(1, z)) = \frac{r(z)}{r(1)}$ holds if $1 > x > z$. However, $I^T(x, I^T(1, z)) = I^T(x, 0) = \frac{r(x)}{r(0)}$. Thus, I^T does not satisfy LIA with any aggregation function.

Theorem 5.9 Let T be the minimum t-norm and a strict t-norm, respectively. Then, their power implications does not satisfy LIA with any aggregation function having zero divisors or being commutative.

Proof We only consider the case where T is minimum t-norm. Another case can be similarly proved. Suppose that the aggregation function A has zero divisors and $A(x, y) = 0$. Then, we have $I^T(x, y, 0) = 1$. However, $I^T(x, I^T(y, 0)) = 0$.

Moreover, we assume that I^T satisfies LIA with a commutative aggregation function A. By Lemma 3.1, I^T satisfies EP. However, I^T does not satisfy EP (see Proposition 13 in Massanet et al. 2017).

Remark 7 We can similarly verify that the T-power implications do not satisfy LIA with any aggregation function having a neutral element e, too. However, we cannot ensure whether they do not satisfy LIA with any aggregation function.
6 LIA with a given associative aggregation function

For a fixed associative aggregation function A, this section aims to characterize the fuzzy implications satisfying LIA with A. We firstly extend Definition 6 in Massanet and Torrens (2017) as follows.

Definition 6.1 Let A be an aggregation function and N a fuzzy negation. We say that N is A-compatible if $N(y_1) = N(y_2)$ implies $N(A(x, y_1)) = N(A(x, y_2))$ for any $x \in [0, 1]$.

Lemma 6.2 Let I be a fuzzy implication and N_I a continuous fuzzy negation. If I satisfies LIA with a given conjunctor A, then I has the form of $I(x, y) = N_I(A(x, \tilde{N}(y)))$.

Proof Since I satisfies LIA with a given conjunctor A, $I(A(x, y), z) = I(x, I(y, z))$ holds for any $x, y, z \in [0, 1]$. Taking $z = 0$, we have $N_I(A(x, y)) = I(x, N_I(y))$. Let us consider the following two options.

(i) $y \in \text{Ran}(\tilde{N})$. In this case, we have $\tilde{N}(N_I(y)) = y$. This implies that $I(x, N_I(y)) = N_I(A(x, \tilde{N}(N_I(y))))$. Since N_I is continuous, we have $I(x, y) = N_I(A(x, \tilde{N}(y)))$.

(ii) $y \notin \text{Ran}(\tilde{N})$. This case means that there exists $y' \in \text{Ran}(\tilde{N})$ such that $N_I(y) = N_I(y')$. By Lemma 3.2, we have $N_I(A(x, y)) = N_I(A(x, y'))$. Therefore, $I(x, N_I(y)) = I(x, N_I(y')) = N_I(A(x, N_I(N_I(y')))) = N_I(A(x, N_I(N_I(y))))$ holds. Since N_I is continuous, we obtain $I(x, y) = N_I(A(x, \tilde{N}(y)))$.

Further, considering A is a conjunctor, it can be verified that $I(x, y) = N_I(A(x, \tilde{N}(y)))$ is a fuzzy implication. □

Lemma 6.3 Let A be an associative conjunctor and N an A-compatible continuous fuzzy negation. Then $I(x, y) = N(A(x, \tilde{N}(y)))$ satisfies LIA with A.

Proof $I(A(x, y), z) = N(A(A(x, y), \tilde{N}(z))) = N(A(x, A(y, \tilde{N}(z))))$. Let us consider the following two cases.

(i) $A(y, \tilde{N}(z)) \in \text{Ran}(\tilde{N})$. In this case, $N(A(x, A(y, \tilde{N}(z)))) = N(A(x, \tilde{N}(N(A(y, \tilde{N}(z)))))) = N(A(x, \tilde{N}(N(A(y, z)))) = I(x, I(y, z))$.

(ii) $A(y, \tilde{N}(z)) \notin \text{Ran}(\tilde{N})$. This case implies that there exists $y' \in \text{Ran}(\tilde{N})$ such that $N(A(y, \tilde{N}(z))) = N(y')$. Since N is A-compatible, $N(A(x, A(y, \tilde{N}(z)))) = N(A(x, y'))$ holds for any $x \in [0, 1]$. Therefore, $I(x, I(y, z)) = N(A(x, \tilde{N}(N(A(x, \tilde{N}(z)))))) = N(A(x, \tilde{N}(N(y')))) = N(A(x, y')) = I(A(x, y), z)$. □

Theorem 6.4 Let I be a fuzzy implication and A a conjunctor. If A is associative and N_I is continuous, then I satisfies LIA with A if and only if N_I is A-compatible and $I(x, y) = N_I(A(x, \tilde{N}(y)))$.

Proof (\Leftarrow) The proof comes from Lemma 6.3.

(\Rightarrow) Assume that I satisfies LIA with A. By Lemma 3.2, N_I is A-compatible. And then $I(x, y) = N_I(A(x, \tilde{N}(y)))$ according to Lemma 6.2.

In the rest of this section, we will characterize fuzzy implications for some distinguished conjunctors such that they satisfy LIA. □
Lemma 6.5 Let I be a fuzzy implication. Then I satisfies LIA with C_\bot if and only if I is the greatest fuzzy implication, that is, $I(x, y) = \begin{cases} 0 & x = 1, y = 0, \\ 1 & \text{otherwise}. \end{cases}$

Proof (\implies) Assume that I satisfies LIA with C_\bot. Then, $I(C_\bot(x, y), z) = I(x, I(y, z))$ holds for any $x, y, z \in [0, 1]$. For any $x \neq 1$, we have $I(x, 0) = I(x, I(1, 0)) = I(C_\bot(x, 1), 0) = I(1, 1) = 1$. This implies that I can be written as $I(x, y) = \begin{cases} 0 & x = 1, y = 0, \\ 1 & \text{otherwise}. \end{cases}$ (\impliedby) It is easy to verify that I satisfies LIA with C_\bot.

Lemma 6.6 Let I be a fuzzy implication and N_I a continuous fuzzy negation. Then I satisfies LIA with $(C_{avg})_\top$ if and only if N_I is non-filling and $I(x, y) = \begin{cases} 1 & x = 0 \text{ or } y = 1, \\ N_I(x) & y = 0, \\ N_I(x) \land y & \text{otherwise}. \end{cases}$

Proof (\implies) Suppose that I satisfies LIA with $(C_{avg})_\top$. It can firstly be asserted that N_I is a non-filling fuzzy negation. Otherwise, there exists $y_0 \neq 0$ such that $N_I(y_0) = 1$. Notice that $N_I(0) = N_I(y_0) = 1$. This implies that $N_I((C_{avg})_\top(1, 0)) = N_I(0) = 1 > N_I((C_{avg})_\top(1, y_0)) = N_I(1) = 0$.

According to Lemma 6.2, we have $I(x, y) = \begin{cases} 1 & x = 0 \text{ or } y = 1, \\ N_I(x) & y = 0, \\ N_I(x) \land y & \text{otherwise}. \end{cases}$ (\impliedby) Obviously, $(C_{avg})_\top$ is associative. Further, we can ensure that N_I is $(C_{avg})_\top$-compatible. Without loss of generality, we suppose that $N_I(y_1) = N_I(y_2) < 1$ holds for $0 < y_1 < y_2$.

In order to obtain $N_I((C_{avg})_\top(x, y_1)) = N_I((C_{avg})_\top(x, y_2))$ for any $x \in [0, 1]$, let us consider the following three options:

(i) $x \leq y_1 < y_2$. In this case, we have $N_I((C_{avg})_\top(x, y_1)) = N_I(y_1) = N_I((C_{avg})_\top(x, y_2)) = N_I(y_2)$. (ii) $y_1 < x \leq y_2$. This case implies $N_I(x) = N_I(y_1) = N_I((C_{avg})_\top(x, y_2)) = N_I(y_2)$. Therefore, we obtain $N_I((C_{avg})_\top(x, y_1)) = N_I(x) = N_I((C_{avg})_\top(x, y_2)) = N_I(y_2)$.

(iii) $y_1 < y_2 < x$. In this case, we have $N_I((C_{avg})_\top(x, y_1)) = N_I(x) = N_I((C_{avg})_\top(x, y_2))$. Based on the argument above, I satisfies LIA with $(C_{avg})_\top$ according to Lemma 6.3.

By Theorem 3.7 in Klir and Yuan (1995), N is a fuzzy negation if and only if there exists a continuous strictly increasing function $g : [0, 1] \to [0, +\infty]$ with $g(0) = 0$ such that $N(x) = g^{-1}(g(1) - g(x))$ for any $x \in [0, 1]$. In this case, the representable aggregation function can be rewritten as $A(x, y) = g^{-1}((g(x) + g(y) - g(1)) \lor 0)$. Then, we have the following result.

Lemma 6.7 Let I be a fuzzy implication and N_I a strict fuzzy negation. I satisfies LIA with the representable aggregation function defined as $A(x, y) = g^{-1}((g(x) + g(y) - g(1)) \lor 0)$ if and only if $I(x, y) = \begin{cases} f(N_I(x)) + f(y) \leq f(0), \\ f^{-1}(f(N_I(x)) + f(y)) & \text{otherwise}, \end{cases}$ with $f = g \circ N_I^{-1}$.

Proof (\implies) Suppose that I satisfies LIA with A. By Lemma 6.2, we have $I(x, y) = N_I(A(x, N_I^{-1}(y))) = N_I(g^{-1}((g(x) + g(N_I^{-1}(y)) - g(1)) \lor 0)) = f^{-1}((f(N_I(x)) + f(y) - f(0)) \lor 0) = \begin{cases} f(N_I(x)) + f(y) \leq f(0), \\ f^{-1}(f(N_I(x)) + f(y)) & \text{otherwise}. \end{cases}$ (\impliedby) This proof comes from Lemma 6.3.
However, Lemma 6.2 cannot be used to characterize the fuzzy implications for \(M_{\lambda,f} \) and \(TS_{\lambda,f} \) by the aforementioned method because they are not associative.

\[\square \]

7 Fuzzy hierarchical inference engine with fuzzy implications satisfying LIA

In this section, we will present three fuzzy hierarchical inference engines in MISO fuzzy systems based on the fuzzy implications satisfying LIA. Therefore, we assume that the fuzzy implication \(I \) satisfies LIA with an aggregation function \(A \) in this section. Firstly, let us study the solution of GMP problem in Pedrycz’s, Raha’s and TIP methods, respectively.

7.1 Three fuzzy hierarchical inference engines with fuzzy implication satisfying LIA

Lemma 7.1 The solution of GMP problem in Pedrycz’s method can be rewritten as

\[
B'_{BKS}(y) = I \left(\bigvee_{x \in U} A(D'(x), D(x)), B(y) \right).
\]

Proof \(B'_{BKS}(y) = \bigwedge_{x \in U} I(D'(x), I(D(x), B(y))) = \bigwedge_{x \in U} I(A(D'(x), D(x)), B(y)) = I(\bigvee_{x \in U} A(D'(x), D(x)), B(y)) \).

Lemma 7.2 The conclusion \(B''_{SBR} \) of GMP problem in Raha’s method is

\[
B''_{SBR}(y) = \bigvee_{x \in U} I(A(S(D', D), D(x)), B(y)).
\]

Proof Obvious.

Lemma 7.3 Let \(I \) be a fuzzy implication which is right continuous with respect to the second variable and satisfies OP. Then the TIP solution of GMP problem is

\[
B'_{TIP}(y) = \bigvee_{x \in U} A(I(D(x), B(y)), D'(x)).
\]

Proof Since \(I \) is right-continuous with respect to the second variable, the TIP solution of GMP problem is unique and Eq. (1) takes its maximum 1 by Lemma 2.23. It is not difficult to verify that \(I(I(D(x), B(y)), I(D'(x), C(y))) = I(A(I(D(x), B(y)), D'(x)), C(y)) \equiv 1 \) holds for any \(x \in V \) and \(y \in U \) according to Lemma 3.8.

On the other hand, assume that \(C \) is an arbitrary fuzzy set on \(V \) such that \(I(I(D(x), B(y)), I(D'(x), C(y))) \equiv 1 \) holds for any \(x \in V \) and \(y \in U \). Since \(I \) satisfies LIA with the aggregation function \(A \), we have \(I(A(I(D(x), B(y)), D'(x)), C(y)) \equiv 1 \) for any \(x \in V \) and \(y \in U \). The ordering property of \(I \) implies that \(C(y) \geq \bigwedge_{x \in U} A(I(D(x), B(y)), D'(x)) \). Therefore, \(B'_{TIP}(y) = \bigwedge_{x \in U} A(I(D(x), B(y)), D'(x)) \).

In order to construct the fuzzy hierarchical inference engine in MISO fuzzy system, we combine the input and IF–THEN rules into the output by the above three methods. For convenience to show three fuzzy hierarchical inference engines, we only consider this case when \(m = 2 \) and \(n = 1 \) (that is, two-input–one-output fuzzy system and the fuzzy rule base
including only one rule). Assume that the fuzzifier is the singleton fuzzifier (Wang 1997) and that the aggregation function \(A \) is employed to combine the antecedent of fuzzy IF–THEN rule in fuzzy inference engine. For an arbitrary input \(x_0 = (x_{01}, x_{02}) \in U_1 \times U_2 \), we have the following results.

Theorem 7.4 Let \(I \) satisfy NP and \(A \) be a conjunctor having a left neutral element 1. If the conjunctor \(A \) is employed to combine the antecedent of IF–THEN rule and \(I \) satisfies LIA, then the BKS inference engine is \(B'_{\text{BKS}} = (D'_1, D'_2) \circ_{\text{BKS}} I((D_1, D_2), B) = D'_1 \circ_{\text{BKS}} I(D_1, D'_2) \circ_{\text{BKS}} I(D_2, B)) \).

Proof By Lemma 7.1, \(B'_{\text{BKS}}(y) = I(\bigvee_{(x_1, x_2) \in U_1 \times U_2} A(D'_1(x_1), D'_2(x_2)), A(D_1(x_1), D_2(x_2))) \).

\[B(y) = I(A(D_1(x_0)), D_2(x_0)), B(y)) = I(D_1(x_0), I(D_2(x_0)), B(y)) = I(\bigvee_{x_1 \in U_1} A(D'_1(x_1), D_1(x_1)), I(\bigvee_{x_2 \in U_2} A(D'_2(x_2), D_2(x_2)), B(y)) \]

This can be shortened as \(B'_{\text{BKS}} = (D'_1, D'_2) \circ_{\text{BKS}} I((D_1, D_2), B) = D'_1 \circ_{\text{BKS}} I(D_1, D'_2) \circ_{\text{BKS}} I(D_2, B)) \)

For convenience, we shorten the conclusions \(B'_{\text{SBR}} \) and \(B'_{\text{TIP}} \) in Lemmas 7.2 and 7.3 as \(B'_{\text{SBR}} = D' \circ_{\text{SBR}} I(D, B) \) and \(B'_{\text{TIP}} = D' \circ_{\text{TIP}} I(D, B) \), respectively. Similar to Theorem 7.4, we obtain the following results. \(\square \)

Theorem 7.5 Let \(A \) be an associative and commutative conjunctor and \(S(A(D'_1, D'_2), A(D_1, D_2)) = S(S(D'_1, D_1), S(D'_2, D_2)) \). If \(A \) is employed to combine the antecedent of IF–THEN rule and \(I \) satisfies LIA with \(A \), then the SBR inference engine is \(B'_{\text{SBR}} = (D'_1, D'_2) \circ_{\text{SBR}} I((D_1, D_2), B) = D'_1 \circ_{\text{SBR}} I(D_1, D'_2) \circ_{\text{SBR}} I(D_2, B)) \).

Proof By Lemma 7.2, \(B'_{\text{SBR}}(y) = \bigvee_{(x_1, x_2) \in U_1 \times U_2} I(A(S(A(D'_1, D'_2), A(D_1, D_2)), A(D_1(x_1), D_2(x_2)), (D'_1, D'_2)), B(y)) = I(A(A(S(D'_1, D_1)), S(D'_2, D_2)), A(D_1(x_0), D_2(x_0))), B(y)) = I(A(A(S(D'_1, D_1)), S(D'_2, D_2)), A(D_1(x_0)), D_2(x_0))), B(y)) = I(A(S(D'_1, D_1)), D_2(x_0))), B(y))) \)

This can be shortened as \(B'_{\text{BKS}} = (D'_1, D'_2) \circ_{\text{BKS}} I((D_1, D_2), B) = D'_1 \circ_{\text{BKS}} I(D_1, D'_2) \circ_{\text{BKS}} I(D_2, B)) \).

Remark 8 Since \(D'_1 \) and \(D'_2 \) are singleton fuzzy sets, the condition \(S(A(D'_1, D'_2), A(D_1, D_2)) = S(S(D'_1, D_1), S(D'_2, D_2)) \) can be meet by some measures of similarity. For example, the several measures of similarity mentioned in Raha et al. (2002) satisfy this condition for any conjunctor.

Theorem 7.6 Let the conjunctor \(A \) be employed to combine the antecedent of IF–THEN rule and \(I \) satisfies LIA. If \(I \) is right-continuous with respect to the second variable and fulfills OP, then the TIP inference engine is \(B'_{\text{TIP}} = (D'_1, D'_2) \circ_{\text{TIP}} I((D_1, D_2), B) = D'_1 \circ_{\text{TIP}} I(D_1, D'_2) \circ_{\text{TIP}} I(D_2, B)) \).

Proof According to Lemma 7.3, \(B'_{\text{TIP}}(y) = \bigvee_{(x_1, x_2) \in U_1 \times U_2} A(I(A(D_1(x_1), D_2(x_2)), B(y)), A(D'_1(x_1), D'_2(x_2)))) = I(A(D_1(x_0), D_2(x_0)), B(y)) = I(D_1(x_0), I(D_2(x_0)), B(y)) = \bigvee_{x_1 \in U_1} A(D'_1(x_1), \bigvee_{x_2 \in U_2} I(I(D_2(x_2)))) \)

This means \(B'_{\text{TIP}} = (D'_1, D'_2) \circ_{\text{TIP}} I((D_1, D_2), B) = D'_1 \circ_{\text{TIP}} I(D_1, D'_2) \circ_{\text{TIP}} I(D_2, B)) \). \(\square \)
7.2 Discussion

It is not difficult to see that these three hierarchical inference engines can be extended to any MISO fuzzy system. This implies that the MISO fuzzy system with these three inference engines can be converted into an SISO hierarchical fuzzy system with these three inference engines. Similar to that mentioned in Jayaram (2008), it is sufficient to calculate the two-dimensional matrices at each stage and to store the antecedent of fuzzy IF–THEN rules in the SISO hierarchical fuzzy system. This means that the MISO fuzzy systems with these three inference engines have the advantages in storing and computing. However, in an \(m\)-input-one-output single fuzzy system using the classical CRI method, Pedrycz’s method and TIP method, when \(U_i = n_i (i = 1, 2, \ldots, m)\), the complexity of a single inference system amounts to \(O(n \prod_{i=1}^{m} n_i)\). Moreover, we have to calculate an \(m\)-dimensional matrix having entries \(\prod_{i=1}^{m} n_i\) if \(U_i = n_i (i = 1, 2, \ldots, m)\). Therefore, we need to store \(m\)-dimensional matrices for each fuzzy IF–THEN rule (Cornelis et al. 2004; Stepnicka and Jayaram 2010).

Indeed, it owes to the law of importation that the MISO fuzzy system with these three inference engines is converted into a SISO hierarchical fuzzy system. In the MISO fuzzy system, chosen the fuzzy implications [such as R-implication, \((A, N)\)-implication, QL-implication and so on] to interpret the fuzzy IF–THEN rules in rule base, we can construct the aggregation functions such that they satisfy LIA by which obtained in Sect. 4. To enhance the storage and computational efficiency, people ought to accordingly employ these aggregation functions to combine the antecedent of fuzzy IF–THEN rules in rule base.

By the results in Sect. 5, if a given aggregation function is employed to translate the antecedent of fuzzy IF–THEN rules in rule base, we can also construct a fuzzy implication satisfying LIA. Similarly, people should utilize the fuzzy implication to translate the fuzzy IF–THEN rules in rule base in order to advance the computational and storage efficiency.

8 Numerical examples

In this section, we will present three examples to illustrate the methods developed in the previous sections.

Example 8.1 Let \(D_1 = [0.9, 0.7, 0.9, 0.6, 0.8]\), \(D_2 = [1, 0.7, 0.8, 0.9]\) and \(B = [0.2, 0.1, 0.3]\) are fuzzy sets defined on \(U_1 = \{x_{11}, x_{12}, x_{13}, x_{14}\}\), \(U_2 = \{x_{21}, x_{22}, x_{23}, x_{24}\}\) and

Stage	Process	Times
1	\(T_{st}(D_1(x_1), D_2(x_2))\)	5 \(\times\) 4 = 20
2	\(T_{st}(D_1(x_1), D_2(x_2))\)	5 \(\times\) 4 = 20
3	\(T_{st}(T_{st}(D_1(x_1), D_2(x_2)), T_{st}(D_1(x_1), D_2(x_2)))\)	20
4	\(V_{x, x_j} T_{st}(D_1(x_1), D_2(x_2)), T_{st}(D_1(x_1), D_2(x_2)))\)	19
5	\(B^{\text{BKS}}\)	3
Total		82

Table 1 The computational complexity of the classical BKS method
V = {y1, y2, y3, y4, y5}, respectively. We consider the two-input–one-output fuzzy system including the following single fuzzy IF–THEN rule

\[
\text{IF } x_1 \text{ is } D_1 \text{ and } x_2 \text{ is } D_2 \text{ THEN } y \text{ is } B.
\]

Suppose that I is the Kleene-Dienes implication \(I_k(x, y) = (1 - x) \lor y \). By Theorem 4.5, the Kleene-Dienes implication satisfies LIA with the minimum t-norm \(T_M \).

Now, we employ \(T_M \) to combine the antecedent of IF–THEN rule. Let \(D'_1 = [0, 1, 0, 0, 0] \) and \(D'_2 = [0, 0, 1, 0, 0] \) be the fuzzy single input. In classical BKS inference method, we firstly compute \(T_M(D'_1, D'_2) \) and \(T_M(D_1, D_2) \) as

\[
T_M(D'_1, D'_2) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \\
T_M(D_1, D_2) = \begin{pmatrix}
0.9 & 0.7 & 0.8 & 0.9 \\
0.7 & 0.7 & 0.7 & 0.7 \\
0.9 & 0.7 & 0.8 & 0.9 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.8 & 0.7 & 0.8 & 0.8
\end{pmatrix}.
\]

Further, we have \(\bigvee_{(x_1, x_2) \in U_1 \times U_2} T_M(D'_1(x_1), D'_2(x_2), D_1(x_1), D_2(x_2)) = 0.7 \). Therefore, the output is \(B'_{BKS} = [0.3, 0.3, 0.3] \) according to Lemma 7.1. The computational complexity to calculate the output \(B'_{BKS} \) using the classical BKS method in this example can be considered as shown in Table 1.

Moreover, some \(5 \times 4 \)-dimensional matrices are required to store for every fuzzy IF–THEN rule in order to compute the output.

Next, we use the hierarchical BKS method proposed by Theorem 7.4 to compute the output \(B'_{BKS} \). We have \(T_M(D'_1, D_2) = [1, 0.7, 0.8, 0.9] \). Then, \(I_K \left(\bigvee_{x_2 \in U_2} T_M(D'_2(x_2), D_2(x_2), B(y)) \right) = [0.2, 0.1, 0.3] \).

Further, we obtain \(B'_{BKS} = I_K \left(\bigvee_{x_2 \in U_2} T_M(D'_2(x_2), D_2(x_2), B(y)) \right) = [0.3, 0.3, 0.3] \). Indeed, the result of the hierarchical BKS method proposed by Theorem 7.4 is equal to that of the classical BKS inference method. Let us consider the computational complexity to calculate the output \(B'_{BKS} \) using the hierarchical BKS method in this example. It is shown in Table 2.

Moreover, we only need to store the different antecedent fuzzy sets (that is, some 3-dimensional vectors) for every fuzzy IF–THEN rule when the output is computed. Compared Table 1 with Table 2, it is obvious to see that the hierarchical BKS method helps to enhance the computational efficiency of the fuzzy inference engine.

Table 2 The computational complexity of the hierarchical BKS method

Stage	Process	Times
1	\(T_M(D'_1(x_1), D_1(x_1)) \)	4
2	\(\bigvee_{x_1} T_M(D'_1(x_1), D_2(x_2)) \)	3
3	\(I_K \left(\bigvee_{x_1 \in U_1} T_M(D'_1(x_1), D_2(x_2), B(y)) \right) \)	3
4	\(T_M(D'_1(x_1), D_1(x_1)) \)	4
5	\(\bigvee_{x_1} T_M(D'_1(x_1), D_1(x_1)) \)	3
6	\(B'_{BKS} \)	3
Total		20
Example 8.2 Let the fuzzy sets D_1, D_2 and B be as defined in Example 8.1. We consider the same two-input–one-output fuzzy system.

Assume that the aggregation function is the greatest averaging conjunctor (C_{avg})τ. We can find that the fuzzy implication $I(x, y) = \begin{cases} 1 & x = 0 \text{ or } y = 1, \\ 1 - x & y = 0, \\ (1 - x) \land y & \text{otherwise}, \end{cases}$ satisfies LIA with (C_{avg})τ by Lemma 6.6. Thus, we utilize (C_{avg})τ to combine the antecedent of fuzzy IF-THEN rule. And $S(A, B) = 1 - \max_{x \in \mathcal{U}} |A(x) - B(x)|$ is used to measure the similarity between two fuzzy sets A and B. Let $D'_1 = [0, 1, 0, 0, 0]$ and $D'_2 = [0, 0, 1, 0]$ be the fuzzy single input. In classical SBR inference method, we firstly compute (C_{avg})τ(D'$_1$, D'$_2$) and (C_{avg})τ(D$_1$, D$_2$) as follows

$$(C_{avg})\tau(D'_1, D'_2) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad (C_{avg})\tau(D_1, D_2) = \begin{pmatrix} 1 & 0.9 & 0.9 \\ 1 & 0.7 & 0.8 \\ 1 & 0.9 & 0.9 \\ 1 & 0.7 & 0.8 \\ 1 & 0.8 & 0.9 \end{pmatrix}.$$

Further, we have $S((C_{avg})\tau(D'_1, D'_2), (C_{avg})\tau(D_1, D_2)) = 0.8$. Then, ($C_{avg}$)$\tau$(S($C_{avg}$)$\tau$(D'$_1$, D'$_2$), (C$_{avg}$)$\tau$(D$_1$, D$_2$)), (C$_{avg}$)$\tau$(D$_1$, D$_2$)) can be obtained as

$$(C_{avg})\tau(S((C_{avg})\tau(D'_1, D'_2), (C_{avg})\tau(D_1, D_2)), (C_{avg})\tau(D_1, D_2)) = \begin{pmatrix} 1 & 0.9 & 0.9 \\ 1 & 0.8 & 0.9 \\ 1 & 0.9 & 0.9 \\ 1 & 0.8 & 0.9 \\ 1 & 0.8 & 0.9 \end{pmatrix}.$$

Finally, we obtain the output $B''_{SBR} = [0.2, 0.1, 0.2]$ by Lemma 7.2.

Next, we calculate the output B'_{BKS} with the hierarchical SBR method proposed by Theorem 7.5. Obviously, $S(D'_2, D_2) = 0.8$. Therefore, we have $D'_2 \circ_{SBR} I(D_2, B) = [0.2, 0.1, 0.2]$. After some tedious computations, we obtain $B''_{SBR} = D'_1 \circ_{SBR} I(D'_1 \circ_{SBR} I(D_2, B)) = [0.2, 0.1, 0.2]$. Obviously, the result of hierarchical SBR method is equal to that of the classical SBR inference method. Indeed, we only need to calculate a 5×4-dimensional matrix at every stage involved in the hierarchical SBR method. This improves the computational efficiency of fuzzy inference engine.

Example 8.3 Let the fuzzy sets D_1, D_2 and B be as in Example 8.1, with the same structure for the given fuzzy IF–THEN rule.

Let I be the Łukasiewicz implication $I_L(x, y) = (1 - x + y) \land 1$. According to Remark 4, the Łukasiewicz implication satisfies LIA with Łukasiewicz t-norm T_L, that is, $T_L(x, y) = (x + y - 1) \lor 0$. Thus, I_L is used to combine the antecedent of fuzzy IF–THEN rule. In classical TIP inference method, we firstly compute the Cartesian product of D_1 and D_2 with respect to T_L as follows

\[
\text{Example 8.3 Let the fuzzy sets D_1, D_2 and B be as in Example 8.1, with the same structure for the given fuzzy IF–THEN rule.}

\text{Let I be the Łukasiewicz implication $I_L(x, y) = (1 - x + y) \land 1$. According to Remark 4, the Łukasiewicz implication satisfies LIA with Łukasiewicz t-norm T_L, that is, $T_L(x, y) = (x + y - 1) \lor 0$. Thus, I_L is used to combine the antecedent of fuzzy IF–THEN rule. In classical TIP inference method, we firstly compute the Cartesian product of D_1 and D_2 with respect to T_L as follows.}
\]
Further, we have $I_L(T_L(D_1, D_2), B) = I_L(T_L(D_1, D_2), [0.2, 0.1, 0.3])$. Concretely,

$$I_L(T_L(D_1, D_2), B(y_1)) = \begin{pmatrix} 0.3 & 0.6 & 0.5 & 0.4 \\ 0.5 & 0.8 & 0.7 & 0.6 \\ 0.3 & 0.6 & 0.5 & 0.4 \\ 0.6 & 0.9 & 0.7 & 0.7 \\ 0.4 & 0.6 & 0.6 & 0.5 \end{pmatrix},$$

$$I_L(T_L(D_1, D_2), B(y_2)) = \begin{pmatrix} 0.2 & 0.5 & 0.4 & 0.3 \\ 0.4 & 0.7 & 0.6 & 0.5 \\ 0.2 & 0.5 & 0.4 & 0.3 \\ 0.5 & 0.8 & 0.6 & 0.6 \\ 0.3 & 0.5 & 0.5 & 0.4 \end{pmatrix},$$

$$I_L(T_L(D_1, D_2), B(y_3)) = \begin{pmatrix} 0.4 & 0.7 & 0.6 & 0.5 \\ 0.6 & 0.9 & 0.8 & 0.7 \\ 0.4 & 0.7 & 0.6 & 0.5 \\ 0.7 & 1 & 0.8 & 0.8 \\ 0.5 & 0.7 & 0.7 & 0.6 \end{pmatrix}.$$

Let $D'_1 = [0, 1, 0, 0, 0]$ and $D'_2 = [0, 0, 1, 0]$ be the fuzzy single input. Then

$$T_L(D'_1, D'_2) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

By Lemma 7.3, we obtain the output $B'_{TIP} = T_L(D'_1, D'_2) \circ_{TIP} I_L(T_L(D'_1, D'_2), B) = [0.7, 0.6, 0.8]$.

Next, we apply the hierarchical TIP method proposed by Theorem 7.6 to compute the output B'_{TIP}. Given the input (D'_1, D'_2), we have

$$I_L(D_2, B) = \begin{pmatrix} 0.2 & 0.1 & 0.3 \\ 0.5 & 0.4 & 0.6 \\ 0.4 & 0.3 & 0.5 \\ 0.3 & 0.2 & 0.4 \end{pmatrix}.$$

And then $D'_2 \circ_{TIP} I_L(D_2, B) = [0.4, 0.3, 0.5]$. Further, $I_L(D_1, D'_2 \circ_{TIP} I_L(D_2, B))$ can be calculated as follows

$$I_L(D_1, D'_2 \circ_{TIP} I_L(D_2, B)) = \begin{pmatrix} 0.5 & 0.4 & 0.6 \\ 0.7 & 0.6 & 0.8 \\ 0.5 & 0.4 & 0.6 \\ 0.8 & 0.7 & 0.9 \\ 0.6 & 0.5 & 0.7 \end{pmatrix}.$$
Finally, we obtain the output $B'_{\text{TIP}} = D'_2 \circ_{\text{TIP}} I_L (D_1, D'_2 \circ_{\text{TIP}} I_L (D_2, B)) = [0.7, 0.6, 0.8]$. Clearly, the result of the hierarchical TIP method proposed Theorem 7.6 is equal to that of the classical TIP inference method.

9 Conclusions

We firstly have studied the fuzzy implications satisfying LIA. And then three hierarchical inference engines employed aggregation functions and fuzzy implications such that they satisfy LIA have been investigated. Specifically, we have

1. Analyzed the properties of aggregation functions and fuzzy implications when they satisfy LIA;
2. Given the necessary and sufficient conditions for (A, N)-implications generated by an associative disjunct and R-implications generated by an associative and commutative aggregation function satisfying LIA with some aggregation functions;
3. Found some associative aggregation functions for f-implication, g-implication, QL-implication, probabilistic implication, probabilistic S-implication and T-power implications such that they satisfy LIA;
4. Characterized the fuzzy implications satisfying LIA with a given associative aggregation function;
5. Constructed three fuzzy hierarchical inference engines in MISO fuzzy system utilized the aggregation functions and fuzzy implications satisfying LIA.
6. Demonstrated that our proposed methods are efficient.

Our results can help to improve the effectiveness of fuzzy inference engine in MISO fuzzy systems. In the future, we wish to study the capability of fuzzy systems with these hierarchical inference engines. We also will apply them in real-life control problems and decision making.

Acknowledgements The authors would like to thank the anonymous referees and the Editor-in-Chief for their valuable comments. This work was supported by the National Natural Science Foundation of China (Grant No. 61673352).

Author contributions DL: Conceptualization, Methodology, Writing-Original Draft Preparation. QG: Validation, Writing-Reviewing and Editing

Declarations

Conflict of interest Authors declare that they have no conflict of interest.

Human and animal rights statement This article does not contain any studies with human participants or animals performed by the authors.

References

Baczyński M, Jayaram B (2008) Fuzzy implications. Springer, Berlin
Baczyński M, Jayaram B, Mesiar R (2009) On special fuzzy implications. Fuzzy Sets Syst 160:2063–2085
Baczyński M, Jayaram B, Mesiar R (2020) Fuzzy implications: alpha migrativity and generalised laws of importation. Inf Sci 531:87–96
Baldwin J (1979) A new approach to approximate reasoning using a fuzzy logic. Fuzzy Sets Syst 2:309–325
Bustince H, Pagola M, Mesiar R, H"ullermeier E, Herrera F (2012) Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans Fuzzy Syst 20:405–415
Cornelis C, Cock MD, Kerre E (2004) Efficient approximate reasoning with positive and negative information. In: KES, LNAI, 2004, vol 3214. Springer, Heidelberg, pp 779–785
de Soto AR, Sobrino A, Trillas E, Alsina C (2020) Reflections on an old problem: that of preserving the logical forms and symmetry. Fuzzy Sets Syst 401:150–162
Dimuro GP, Bedregal B (2015) On residual implications derived from overlap functions. Inf Sci 312:78–88
Fodor JC, Keresztfalvi T (1995) Nonstandard conjunctions and implications in fuzzy logic. Int J Approx Reason 12(2):69–84
Grabisch M, Marichal JL, Mesiar R, Pap E (2009) Aggregation functions. Cambridge University Press, New York
Grzegorzewski P (2013) Probabilistic implications. Fuzzy Sets Syst 226:53–66
Helbin P, Baczyński M, Grzegorzewski P, Niemyska W (2019) Some properties of fuzzy implications based on copulas. Inf Sci 502:1–17
Hudec M, Mináríková E, Mesiar R, Saranti A (2021) Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions. Knowl Based Syst 220:106916
Jayaram B (2008) On the law of importation \((x \land y) \rightarrow z \equiv (x \rightarrow (y \rightarrow z))\) in fuzzy logic. IEEE Trans Fuzzy Syst 16:130–144
Klement EP, Mesiar R, Pap E (2000) Triangular norms. Kluwer Academic Publishers, Dordrecht
Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle River
Li DC, Zeng QX (2022) Approximate reasoning with aggregation functions satisfying GMP rules. Artif Intell Rev 55:5575–5595
Li YM, Shi ZK, Li ZH (2002a) Approximation theory of fuzzy systems based upon genuine many-valued implications: SISO cases. Fuzzy Sets Syst 130:147–157
Li YM, Shi ZK, Li ZH (2002b) Approximation theory of fuzzy systems based upon genuine many-valued implications: MIMO cases. Fuzzy Sets Syst 130:159–174
Lima AA, Bedregal B, Mezzomo L (2020) Ordinal sums of the main classes of fuzzy conjunctions and the natural negations of t-norms and t-conorms and fuzzy implications. Int J Approx Reason 116:19–32
Lowen R (1978) On fuzzy complements. Inf Sci 14(2):107–113
Magrez P, Smets P (1989) Fuzzy modus ponens: a new model suitable for applications in knowledge-based systems. Int J Intell Syst 4:181–200
Mas M, Monserrat M, Torrens J (2010) A characterization of \((U, N), RU, QL\) and D-implications derived from uninorms satisfying the law of importation. Fuzzy Sets Syst 161:1369–1387
Mas M, Monserrat M, Torrens J, Ruiz-Aguilera D (2016) RU and \((U, N)\)-implications satisfying Modus Ponens. Int J Approx Reason 73:123–137
Massanet S, Torrens J (2011) The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets Syst 168:47–69
Massanet S, Torrens J (2017) Characterization of fuzzy implication functions with a continuous natural negation satisfying the law of importation with a fixed t-norm. IEEE Trans Fuzzy Syst 25:100–113
Massanet S, Recasens J, Torrens J (2017) Fuzzy implication functions based on powers of continuous t-norms. Int J Approx Reason 83:265–279
Massanet S, Ruiz-Aguilera D, Torrens J (2018) Characterization of a class of fuzzy implication functions satisfying the law of importation with respect to a fixed uninorm (Part I). IEEE Trans Fuzzy Syst 26:1983–1994
Mizumoto M (1985) Fuzzy reasoning under new compositional rules of inference. Kybernetes 12:107–117
Ouyang Y (2012) On fuzzy implications determined by aggregation operators. Inf Sci 193:153–162
Pedrycz W (1985) Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data. Fuzzy Sets Syst 16(2):163–175
Pei DW (2008) Unified full implication algorithms of fuzzy reasoning. Inf Sci 178(2):520–530
Pradera A, Beliakov G, Bustince H (2012) Aggregation functions and contradictory information. Fuzzy Sets Syst 191:41–61
Pradera A, Beliakov G, Bustince H, Baets BD (2016) A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inf Sci 329:357–380
Pradera A, Massanet S, Ruiz-Aguilera D, Torrens J (2019) The non-contradiction principle related to natural negations of fuzzy implication functions. Fuzzy Sets Syst 359:3–21
Raha S, Pal NR, Ray KS (2002) Similarity-based approximate reasoning: methodology and application. IEEE Trans Syst Man Cybern A 32(4):541–547
Stepnicka M, Jayaram B (2010) On the suitability of the Bandler–Kohout subproduct as an inference mechanism. IEEE Trans Fuzzy Syst 18(2):285–298
Turksen IB, Zhong Z (1988) An approximate analogical reasoning approach based on similarity measures. IEEE Trans Syst Man Cybern 18:1049–1056
Wang LX (1997) A course in fuzzy systems and control. Prentice Hall PTR, Upper Saddle River
Wang GJ (1999) On the logic foundation of fuzzy reasoning. Inf Sci 117:47–88
Wu HW, Mendel JM (2004) On choosing models for linguistic connector words for Mamdani fuzzy logic systems. IEEE Trans Fuzzy Syst 12:29–44
Yager R (2004) On some new classes of implication operators and their role in approximate reasoning. Inf Sci 167:193–216
Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3(1):28–44
Zimmermann HJ, Zysno P (1980) Latent connectives in human decision making. Fuzzy Sets Syst 4:37–41

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.