Expression of IGF-II in early experimental hepatocellular carcinomas and its significance in early diagnosis

Zheng Wang, You-Bing Ruan, Yang Guan, Sheng-Hong Liu

INTRODUCTION
IGF-II is a 67-amino-acid polypeptide growth factor which is mainly produced by liver cells and is crucial in normal fetal growth[1-2]. The main researches about the relationship between IGF-II and HCC have been focused on: (1) the mechanism of IGF-II in the development of HCC[3-6], (2) to decrease the expression of IGF-II searching the treatment methods for HCC[7-9], and (3) its prognostic significance[10]. Although IGF-II is believed to be implicated in normal and neoplastic liver growth, the mechanism of IGF-II in early hepatocellular carcinomas development and its significance in the early diagnosis of such cancer are unclear. So we used ELISA, immunohistochemistry, electron microscopic immunocytocchemistry and in situ hybridization to search for possible answers to the questions.

MATERIALS AND METHODS
Animal model and tissue preparation
180 male SD rats were given DENA (diethylnitrosamine), once every week for 17 weeks in a dose of 70 mg/kg, to induce early experimental HCC. In the control group, 20 male SD rats were maintained on a standard laboratory diet and tap water. From the 4th week, 2 random experimental rats were sacrificed at the end of every week for pathological study of their livers. The remainder were killed at the 17th week for study. Sera were collected and stored at -70 °C. Liver tissues were fixed in 40 ml·L-1 paraformaldehyde or 40 ml·L-1 paraformaldehyde containing 5 ml·L-1 glutaraldehyde for light and electron microscopic studies.

Cell lines culture
Human hepatoma cell lines HepG2 and SMMC7721, and human embryonic liver cell line L-02 were measured by immunocytochemistry. IGF-II mRNA level was studied by in situ hybridization.

RESULTS: IGF-II was expressed in the cytoplasm of both sinusoidal cells in paracancerous cirrhotic liver tissue and malignant hepatocytes in early experimental HCC tissues. Gold particles were seen on the rough endoplasmic reticulum and the mitochondrion in malignant hepatocytes. IGF-II was expressed in the human hepatoma cell lines. The mRNA level of IGF-II was higher in rat liver tumor tissue than in normal rat liver tissue. The serum IGF-II level of the early experimental HCC group was 34.67±10.53 ng·ml-1 and that of the control group was 11.75±5.84 ng·ml-1. The rank sum test was used for statistical analysis. There was a significant difference between the two groups (P<0.01).

CONCLUSION: During the induction of early experimental HCC by DENA, IGF-II may promote hepatocytic proliferation via a paracrine mechanism in the pre-cancerous stage. When hepatocytes are transformed into malignant cells, they may secrete IGF-II and promote malignant cell proliferation by an autocrine mechanism. IGF-II may be a possible biological marker in the early diagnosis of HCC.

Wang Z, Ruan YB, Guan Y, Liu SH. Expression of IGF-II in early experimental hepatocellular carcinomas and its significance in early diagnosis. World J Gastroenterol 2003; 9(2): 267-270 http://www.wjgnet.com/1007-9327/9/267.htm

Immunohistochemical detection for IGF-II expression in early experimental HCC tissues
Immunohistochemical detection was made using rabbit anti-IGF-II polyclonal antibody (Santa Cruz Co.) by SABC
technique. The experiment was performed following the manufacturer’s recommendation of the SABC kit (Beijing Zhongshan Bioech Co.).

Immunocytochemical detection for IGF-II expression in human cell lines

Human hepatoma cell lines HepG2 and SMMC7721 and human embryonic cell line L-02 were cultivated to let them climb on coverslips, which then fixed in acetone at -20 °C for 10 minutes. The antibody, SABC kit and experimental method were the same as those for the immunohistochemical detection.

Electron microscopic immunocytochemistry for IGF-II ultrastructural location in malignant hepatocytes

Early experimental HCC tissues were cut into 500 nm ultrathin sections, and the sections were etched in 10 % hydrogen peroxide solution for 10 minutes at room temperature. After the grids were drained, the sections were placed into 40 ml·L⁻¹ BSA solution, and then were treated overnight at 4 °C with rabbit anti-IGF-II polyclonal antibody (1:50 dilution). The sections were incubated with colloidal gold (5 nM) conjugated goat anti-rabbit IgG (Wuhan Best Co.) (1:40 dilution), 37 °C, 10 minutes. The sections were examined with a transmission electron microscopy after counter staining. The solution for diluting antibody replacing the rabbit anti-IGF-II polyclonal antibody for those sections served as the negative control.

In situ hybridization detection for IGF-II mRNA level in early experimental HCC tissues

IGF-II in situ hybridization kit was purchased from the Wuhan Best Co. The experiment was conducted according to the manual of the kit.

Statistical analysis

SAS software and Rank Sum Test were used for statistical analysis.

RESULTS

Microscopic observation and histopathological examination

In the DENA group, the liver surfaces were covered with scattered small white nodules in the 4th week. In the 17th week, the diameter of the largest nodule was 8 mm. These rats were diagnosed as having early experimental hepatocellular carcinomas. The rat livers in the control group showed no pathological changes.

IGF-II serum level of early experimental HCC

The mean ± standard deviation of IGF-II serum level was 34.67±10.53 ng·ml⁻¹ in the DENA group and 11.75±5.84 ng·ml⁻¹ in the control group. There was significant difference between the two groups (P<0.01).

Expression of IGF-II in early experimental HCC tissues

Strong immunostaining of IGF-II was seen in the cytoplasm of sinusoidal cell in paracancerous cirrhotic tissues (Figure 1) and the malignant hepatocytes in HCC tissues. Only a few hepatocytes in paracancerous tissues had weakly positive expression. In the control group, however, the liver tissues showed no positive results.

Expression of IGF-II in human cell lines

Human hepatoma cell lines HepG2 and SMMC7721 and human embryonic liver cell line L-02 all expressed IGF-II. The positive immunolocalization of the three cell lines was in the cytoplasm. SMMC7721 cell line showed the most strongly positive immunostaining (Figure 2).
Ultrastructural localization of IGF-II in malignant hepatocytes of early experimental HCC tissues

Electron microscopic immunocytochemistry confirmed the light microscopic findings. Gold particles were seen in the rough endoplasmic reticulum, mitochondrion and the paranuclear region of malignant hepatocytes. A few gold particles were found in the nuclei of malignant hepatocytes (Figure 3). The negative control sections did not show positive results.

IGF-II mRNA level in early experimental HCC tissues

IGF-II mRNA was distributed in the cytoplasm of hepatocytes in the tissues of early experimental HCC, and IGF-II mRNA was overexpressed in HCC tissues (Figure 4).

DISCUSSION

Among the many growth factors, the insulin-like growth factor, transformation growth factor-α and hepatocyte growth factor are mostly strongly implicated in normal and neoplastic liver growth[11-17]. IGF-I exerts its effect via two specific high affinity receptors, IGF1R and M6P/IGF2R, in paracrine and autocrine manner[18-22]. IGF1R is a transmembrane glycoprotein which exists on the surface of hepatocytes with an intracellular tyrosine kinase domain. M6P/IGF2R is a single chain polypeptide associated with a G-protein signal pathway. In the present study, it has clearly been shown that: (1) the sinusoidal cells in paracarcinotic cirrhotic nodule tissues expressed IGF-II; (2) the malignant hepatocytes in rat early experimental HCC tissues expressed IGF-II. As we know that liver cirrhotic nodules are the pre-cancerous condition of HCC[23], so it is clearly suggested that, in the pre-cancerous condition, IGF-II mediated hepatocyte proliferation mainly via IGF1R by a paracrine mechanism. However, after the hepatocytes were transformed into malignant cells, they could secrete IGF-II themselves, suggesting that IGF-II mediated malignant hepatocytes proliferation in an autocrine manner at that time and that M6P/IGF2R might be involved. Although several reports have shown that M6P/IGF2R protein and mRNA level were reduced and that the M6P/IGF2R gene had loss of heterozygosity in HCC[23-25], Gomez-Angelats and Wada reported that no mutation was found in the M6P/IGF2R gene in the model of rat hepatocarcinogenesis and human HCC[26-27]. By electron microscopic immunocytochemistry, we found that IGF-II existed in the mitochondria of malignant hepatocytes. M6P/IGF2R is a G-protein receptor which is closely related to mitochondrion. So we favor Gomez-Angelats’ view that M6P/IGF-II was in an activated condition in the process of rat hepatocarcinogenesis.

Human hepatoma cell lines HepG2 and SMMC7721 expressed IGF-II strongly. This fact confirms the above postulate in another aspect, i.e., IGF-II could be secreted by malignant hepatocytes themselves and stimulate their proliferation via an autocrine mechanism. Human embryonic liver cell line L-02 expressed IGF-II too, suggesting that hepatoma cells may regain some embryonic development characteristics, like α-FP secretion.

α-FP is a diagnostic marker of HCC, but its significance in the early diagnosis of HCC is unclear. Additionally, the positive rate is not high[28-30]. In our research, the serum IGF-II level in the rat early experimental HCC group was significantly higher than that of the control group. IGF-II is a polypeptide hormone secreted by many organs of the fetus. After birth, however, it is mainly produced by liver cells[31-32]. We may postulate that, in rat early experimental HCC, extrahaepatic organs may regain the ability to secrete IGF-II and that their intrahepatic cells express IGF-II more strongly than those in normal condition[33-35]. These might be the main reasons for the increase in serum IGF-II level. Hayakawa reported that the serum level of IGF-II was significantly lower in primary hepatocellular carcinomas than in control[36], but we haven’t found any report on the serum IGF-II level in early HCC. So it is possible that serum IGF-II level increases temporarily in early HCC and then decreases gradually in the process of HCC development, IGF-II maybe a biological marker in the early diagnosis of HCC.

REFERENCES

1. Kawamoto K, Onodera H, Kan S, Kondo S, Imamura M. Possible paracrine mechanism of insulin-like growth factor-2 in the development of liver metastases from colorectal carcinomas. Cancer 1999; 85: 18-25
2. Hartmann W, Waha A, Koch A, Albrecht S, Gray SG, Ekstrom TJ, von Schweinitz D, Pietsch T. Promoter-specific transcription of the IGF-2 gene: a novel rapid, non-radioactive and highly sensitive protofor mRNA analysis. Vircchows Arch 2001; 439: 803-807
3. Eriksson T, Frist T, Gray SG, von Schweinitz D, Pietsch T, Larsson C, Sandsteld B, Ekstrom T. Methylation changes in the human IGF-2 p3 promoter parallell IGF-2 expression in the primary tumor, established cell line, and xenograft to a human hepatoblastoma. Exp Cell Res 2003: 270: 88-95
4. Vernucci M, Cerrato F, Besnard N, Casola S, Pedone PV, Bruni CB, Riccio A. The H19 endoreceptor enhancer is required for IGF-2 activation and tumor formation in experimental liver carcinogenesis. Oncogene 2000; 19: 6376-6385
5. Song BC, Chung YH, Kim JA, Lee HC, Yoon HK, Sung KB, Yang SH, Yoo K, Lee YS, Suh DJ. Association between insulin-like growth factor-II and metastases after transcatheter arterial chemoembolization in patient with hepatocellular carcinomas: a prospective study. Cancer 2001; 91: 2386-2393
6. Bae SK, Bae MH, Ahn MY, Son MJ, Lee YM, Bae MK, Lee OH, Park BC, Kim KW. Egr-1 mediates transcriptional activation of IGF-2 gene in response to hypoxia. Cancer Res 1999; 59: 5999-5994
7. Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis. Moi Pathol 2001; 54: 138-144
8. Huynh H, Chow PK, Ooi LL, Soo KC. A possible role for insulin-like growth factor-binding protein-3 autocrine/paracrine loops in controlling hepatocellular carcinoma cell proliferation. Cell Growth Differ 2002; 13: 115-122
9. Zhang JY, Zhu W, Imai H, Kiyosawa K, Chan EK, Tan EM. De novo humoral immune responses to cancer-associated autotigens during transition from chronic liver disease to hepatocellular carcinoma. Clin Exp Immunol 2001; 125: 3-9
10. Barozzi C, Ravaola M, D’Errico A, Grazi GL, Poggioli G, Cavrini G, Mazzotti A, Grigioni WF. Relevance of biologic markers in colorectal carcinoma: a comparative study of a broad panel. Cancer 2002; 94: 647-657
11. Zhang N, Siegel K, Odenthal M, Becker R, Oesch F, Dienes HP, Schirmacher P, Steinberg P. The role of insulin-like growth factor II in the malignant transformation of rat liver oval cells. Hepatology 1997; 25: 900-905
12. Chung YH, Kim JA, Song BC, Lee GC, Koh MS, Lee YS, Lee SG, Suh DJ. Expression of transforming growth factor-a mRNA in liver of patients with chronic viral hepatitis and hepatocellular carcinoma. Cancer 2000; 89: 977-982
13. Nagata K, Hirono S, Ido A, Kataoka H, Moriiuchi A, Shimomura T, Hori T, Hayashi K, Komono M, Kitamura N, Tsuohchu H. Expression of hepatocyte growth factor activator and hepatocyte growth factor activator inhibitor type 1 in human hepatocellular carcinoma. Biochem Biophys Res Comm 2001; 299: 205-211
14. Tavian D, Petro GD, Benetti A, Portolani N, Giuliati SM, Barlati S, u-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int J Cancer 2002; 87: 644-658
15. Schweinitz DV, Faustmez A, Téichmann B, Birnbaum T, Koch A, Hecker H, Gluer S, Fuchs J, Pietsch T. Hepatocyte growth-factor scatter factor can stimulate post-operative tumor-cell proliferation in childhood hepatoblastomas. Int J Cancer 2000; 85: 151-159
16. Xie Q, Liu KD, Huang Y, Zhou K, SF IGF-C/Met autocrine and paracrine promote metastasis of hepatocellular carcinoma. World J Gastroenterol 2001; 7: 816-820
17. Qin LX, Tang ZY. The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol 2002; 8: 385-392
Su Q, Liu YF, Zhang JF, Zhang SX, Li DF, Yang JJ. Expression of insulin-like growth factor II in hepatitis B, Cirrhosis and hepatocellular Carcinoma: its relationship with hepatitis B virus antigen expression. Hepatology 1994; 19: 788-799

Costello M, Baxter RC, Scott CD. Regulation of soluble insulin-like growth factor II/mannose 6-phosphate receptor in human serum: measurement by enzyme-linked immunosorbent assay. J Clin Endocrinol Metab 1999; 84: 611-617

Fan ZR, Yang DH, Cui J, Qin HR, Huang CC. Expression of insulin like growth factor II and its receptor in hepatocellular carcinogenesis. World J Gastroenterol 2001; 7: 285-288

Scharf JG, Ramadori G, Dombrowski F. Analysis of the IGF axis in preneoplastic hepatic foci and hepatocellular neoplasms developing after low-number pancreatic islet transplantation into the livers of streptozotocin diabetic rats. Lab Invest 2000; 80: 1399-1411

Fan ZR, Yang DH, Qin HR, Huang CZ, Xu Z, Qu QL. Significance and expression of insulin-like growth factor II and its receptor in hepatocellular carcinogenesis. Zhonghua Ganzangbing Zazhi 2000; 8: 84-86

Mei MH, Xu J, Shi QF, Yang JH, Chen Q, Qin LL. Clinical significance of serum intercellular adhesion molecule-1 detection in patients with hepatocellular carcinoma. World J Gastroenterol 2000; 6: 408-410

DeSouza AT, Hankins GR, Washington MK, Orton TC, Jirtle RL. M6P/IGF-2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat Genet 1995; 11: 447-449

Yamada T, De Souza AT, Finkelstein S, Jirtle RL. Loss of the gene encoding mannose-6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc Natl Acad Sci 1997; 94: 10351-10355

Gomez-Angelats M, Teeguarden JG, Dragan YP, Pitot HC. Mutational analysis of three tumor suppressor genes in two models of rat hepatocarcinogenesis. Mol Carcinog 1999; 25: 157-163

Wada I, Kanada H, Nomura K, Kato Y, Machinami R, Kitagawa T. Failure to detect genetic alternation of the mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) gene in hepatocellular carcinomas in Japan. Hepatology 1999; 29: 1718-1721

Zhai SH, Liu JB, Liu YM, Zhang LL, Du ZP. Expression of HBsAg, HCV-Ag and AFP in liver cirrhosis and hepatocarcinoma. Shijie Huaren Xiaohua Zazhi 2000; 8: 524-527

Zhang L, Li SN, Wang KN. CEA and AFP expression in human hepatoma cells transfected with antisense IGF-I gene. World J Gastroenterol 1998; 4: 30-32

Liu Y, Zhang BH, Qian GX, Chen H, Wu MC. Detection of blood AFP mRNA in nude mice bearing human HCC using nested RT-PCR and its significance. World J Gastroenterol 1998; 4: 268-270

Kim KW, Bae SK, Lee OH, Bae MH, Lee MJ, Park BC. Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinomas. Cancer Res 1998; 58: 348-351

Lin SB, Hsieh SH, Hsu HL, Lai M, Kan LS, Au LC. Antisense oligodeoxynucleotides of IGF-II selectively inhibit growth of human hepatoma cells overproducing IGF-II. J Biochem 1997; 8: 717-722

Fan ZR, Yang DH, Tian HR. The expression and mutation of IGF-II gene in hepatocarcinoma and para-cancerous tissues. Shijie Huaren Xiaohua Zazhi 2000; 8: 704-705

Liang QM, Zhou ZM, Yang DH, Xu Z. The expression of IGF-II and its receptor for proliferation of hepatocytes in liver tissue. Shijie Huaren Xiaohua Zazhi 2000; 8: 545

Ling CO, Qian Y, Zhao JA, Jin Y. The genes of C-myc, IGF-II and the expression of CyclinD1 in experimental liver carcinogenesis. Shijie Huaren Xiaohua Zazhi 2001; 9: 1452-1453

Hayakawa H, Kondo T, Shibata T, Kitagawa M, Sakai Y, Kato K, Katada N, Sugimoto Y, Takeuchi M, Yamamoto R, Kodaira N. Serum insulin-like growth factor II in chronic liver disease. Dig Dis Sci 1989; 34: 339-342