Effect of inositol 1, 4, 5-trisphosphate receptor dependent Ca2+ release in atrial fibrillation

Lu Han, Zi-Rong Xia, Ju-Xiang Li

Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.

To the Editor: Myocardial electrical and structural remodeling are closely related to the pathogenic mechanisms of atrial fibrillation (AF), which mainly result from disordered Ca2+ homeostasis in the atrium. Recent evidence showed that altered inositol 1,4,5-trisphosphate receptors (IP\textsubscript{3}R) activity can affect conduction velocity and rhythm in the sinoatrial nodes. The disruption of Ca2+ homeostasis can be regulated by the sodium-calcium exchanger (NCX) activity, which implies that IP\textsubscript{3}R-mediated Ca2+ release in atrium. Post-operative AF can be predicted, based on the detection of circulating C-reactive protein, interleukin (IL)-2, and IL-6 levels in plasma.1,3 Atrial inflammation and fibrosis are closely interrelated and associated with similar signaling pathways which have a synergic effect in triggering heterogeneity in conduction. Transforming growth factor-\textbeta\textsubscript{1} (TGFB), as a fibrotic protein, could positively support the release of inflammatory cytokines, pre-disposing individuals to AF. In addition, IP\textsubscript{3}R-mediated signaling could promote the secretion of inflammatory factors, such as IL-6, IL-8, macrophage inflammatory protein-1\textbeta.3,8 Interestingly, 2-aminoethoxydiphenyl borate inhibits the secretion of pro-inflammatory cytokines.9 Taken together, these findings suggest that inhibition of IP\textsubscript{3}Rs may abolish the proarrhythmic effect of inflammatory cytokines under potential stimulation.

OS occurs due to the imbalance of oxidants and antioxidants, resulting in the opening of mitochondrial permeability transition pores (mPTPs), and subsequently produce reactive oxygen species (ROS).10 ROS is easier to activate IP\textsubscript{3}R-mediated Ca2+ signaling in atria than in ventricles.11 In most cases, the opening of mPTPs is also controlled by IP\textsubscript{3}R-mediated Ca2+ release, which triggers the electrical remodeling in atrium. Thus, OS is detrimental to proper diastolic function and also promotes the development of AF. Pre-treatment with N-acetylcysteine, as IP\textsubscript{3}R inhibitor, can abolish the effects of IP\textsubscript{3}R-mediated Ca2+ overload.12 ROS triggers the activation of protein kinase A, C, G (PKA/PKC/PKG), leading to phosphorylation of IP\textsubscript{3}Rs. For example, PKA promotes Ca2+ influx into the SR, which enhances its activity by mediating the phosphorylation of IP\textsubscript{3}R1 and IP\textsubscript{3}R2. However, the role of PKA in the regulation of IP\textsubscript{3}R3 remains unclear. Generally, IP\textsubscript{3}R1 must be phosphorylated by PKA at S1589 and S1755 to enhance Ca2+ release. For PKC, neferine promoted increased intracellular Ca2+ concentration through the PLC-PKC-IP\textsubscript{3}R pathway.13 However, PKG can selectively phosphorylate IP\textsubscript{3}R1 and prevent Ca2+ release in the...
initiating phase.[14] Moreover, the PKG activator decreases the amplitude and frequency of Ca2+ oscillations in a time-dependent manner. These findings demonstrate that the various protein kinase isoforms may perform different functions in modulating IP\textsubscript{3}R-mediated Ca2+ signaling.

It is well known that atrial remodeling, inflammation, and OS are closely associated with the physiological process of cell apoptosis, which finally cause the abnormal of conduction velocity and rhythm in atrial tissues. For instance, Bax and Bak, as members of the anti-apoptotic Bcl-2 family, both decrease Ca2+ leakage by regulating the phosphorylation of IP\textsubscript{3}R1. Additionally Bcl-2 and BAX/BAM can interact with IP\textsubscript{3}Rs, assembling in a macromolecular complex, which stimulates mitochondrial Ca2+ uptake and controls cell apoptosis by modulating Ca2+ elevation and ATP metabolism.[15] Therefore, these evidence implies that IP\textsubscript{3}Rs play a pivotal role in the development and maintenance of AF.

The P1059L mutation in the IP\textsubscript{3}Rs regulatory domain could increase binding affinity to IP\textsubscript{3}, which contributes to IP\textsubscript{3}Rs-mediated Ca2+ signals. Interestingly, IP\textsubscript{3}R1/IP\textsubscript{3}R2 double-knockout models died in utero at the embryonic stage owing to structural abnormalities in cardiac tissues, such as thin myocardial walls, poor trabeculation, and the absence of the atrioventricular canal.[16] Mutation of lysine 17 within Bcl-2 abolishes the inhibitory effect of Bcl-2 on IP\textsubscript{3}Rs, thereby preventing excessive Ca2+ leakage from apoptosis.[17] Mutations (D1790G) in sodium channels (Nav1.5) can affect the function of IP\textsubscript{3}R1 via co-localization with calcium/calcmodulin-dependent protein kinase II, which can subsequently cause Na+ and Ca2+ overload, resulting in arrhythmic disease.[15] There are many potential mechanisms by which IP\textsubscript{3}R1 may alter relative protein and trigger the downstream signaling cascade, including ryanodine receptor 2 (RyR2), transient receptor potential canonical 3 (TRPC3), stromal interaction molecule (STIM), and Orai calcium release-activated calcium modulator 1 (ORAI1). Functional cross-talk between IP\textsubscript{3}Rs and RyRs has been previously observed in human atrial myocytes.[18] Although the expression of IP\textsubscript{3}Rs is lower than that of RyRs in cardiomyocytes, IP\textsubscript{3}Rs

Figure 1: Ligand binding to G-protein coupled receptors (GPCRs) and glutamate metabotropic receptor 1 (mGluR1) leads to IP\textsubscript{3} production through the hydrolysis of PIP\textsubscript{2}. IP\textsubscript{3} binds to IP\textsubscript{3}Rs, which mediates Ca2+ leakage from the SR. Phospholipase C (PLC) also generates diacylglycerol (DAG), and subsequently activates PKC/IP\textsubscript{3}Rs signaling. On the other hand, carbonic anhydrase-related protein (CARP) controls the activity of IP\textsubscript{3}R1 through binding to modulatory receptors, including IP\textsubscript{3}Rs, IRBIT, and endoplasmic reticulum protein (ERp44). In addition, CARP can suppress affinity for IP\textsubscript{3}, and different stimuli can enhance the activity of IP\textsubscript{3}Rs and mediate Ca2+-induced Ca2+ release (CICR), which triggers OS. Endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO), which stimulates soluble guanylyl cyclase (sGC) to catalyze cyclic guanine monophosphate (cGMP) synthesis from guanosine triphosphate (GTP). This process also leads to PKG activation, which suppresses IP\textsubscript{3}R3-mediated Ca2+ signaling. Conversely, cAMP is generated by adenylyl cyclase (AC) and promotes IP\textsubscript{3}R3-enhanced Ca2+ oscillations. Increased PKB activity can protect cells from a Ca2+-dependent apoptotic stimulus. In the absence or accumulation of Ca2+ and IP\textsubscript{3}, the IP\textsubscript{3}R is in a closed state and can only be activated at appropriate IP\textsubscript{3} and Ca2+ concentrations. Enhanced IP\textsubscript{3}Rs expressions can suppress the activity of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), promoting Ca2+ oscillations, ROS accumulation, and cell apoptosis. Inflammation, ROS production, cell apoptosis, and atrial remodeling are related to the underlying pathology of AF. AF: Atrial fibrillation; IP\textsubscript{3}R: Inositol 1,4,5-trisphosphate receptors; PKB: Protein kinase B; PKG: Protein kinase G; ROS: Reactive oxygen species.
are more abundant in atrial myocytes and RyR2 is more frequently expressed in ventricular myocytes. This might explain why IP$_R$-mediated Ca$^{2+}$ influx plays a significant role in manipulating the automaticity of atrial myocytes. Previous study showed that IP$_R$s and RyRs co-localize in the microspace of atrial myocytes, providing a substrate for the modulation of channel gating. However, the mechanisms of channel gating are distinct for IP$_R$s and RyRs; therefore, RyR2 and IP$_R$s may be associated with independently downstream signaling pathways. For TRPC3, it plays a significant role in mediating cardiac fibrosis, which serves as the etiological basis for AF. In TRPC3 knockout mice, the effect of angiotensin II-induced AF was inhibited. Interestingly, it was confirmed that a complex involving TRPC3, NCX, and IP$_R$R1 contributes to the modulation of Ca$^{2+}$ homeostasis during the inflammatory response. Moreover, IP$_R$s can interact with TRPC3 and together mediate Ca$^{2+}$ overload which leads to cardiac contractility and arrhythmogenesis. On the other hand, when STIM co-localizes with ORAI1, IP$_R$s are activated which leads to Ca$^{2+}$ leakage from the SR. However, IP$_R$-mediated Ca$^{2+}$ release can also activate STIM, leading to the generation of STIM-ORAI1 clusters, which initiates store operated calcium entry (SOCE). Importantly, the activity of SOCE is reversely controlled by STIM/ORA1 signaling cascades. Therefore, combining with these results, we conclude that IP$_R$s interact with STIM and ORAI1, both of which have a synergistic effect in modulating Ca$^{2+}$ depletion.

Overall, the study summarizes the mechanisms underlying IP$_R$-mediated Ca$^{2+}$ leakage and how these correlates with AF pathogenesis, including atrial remodeling, OS, and inflammation (Figure 1). Both factors can initiate heterogeneity in conduction as a substrate of re-entry. Additionally, IP$_R$s trigger a variety of downstream signaling pathways in the modulation of Ca$^{2+}$ homeostasis. Further research into IP$_R$s and related signaling cascades will inform new, targeted strategies for alleviating the morbidity and mortality of AF.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81200132), the Natural Science Foundation of Jiangxi (No. 20152ACB20025), and the Project of Science and Technology of Jiangxi (No. 20152ACB20025).

Conflicts of interest

None.

References

1. Piegari E, Villaruel C, Ponce DS. Changes in Ca$^{2+}$ removal can mask the effects of geometry during IP$_R$-mediated Ca$^{2+}$ signals. Front Physiol 2019;10:1–31. doi: 10.3389/fphys.2019.000964.

2. Navid P, Pickard KH. Structural basis for the regulation of inositol trisphosphate receptors by Ca$^{2+}$ and IP$_3$. Nat Struct Mol Biol 2018;25:660–668. doi: 10.1038/s41594-018-0089-6.

3. Li X, Zima AV, Sheikh F, Blatter LA, Chen J. Endothelin-1-induced arrhythmogenic Ca$^{2+}$ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res 2005;96:1274–1281. doi: 10.1161/01.RES.0000172536.03576.4c.

4. Xie A, Zhou A, Liu H, Shi G, Liu M, Bohler KR, et al. Mitochondrial Ca$^{2+}$ flux modulates spontaneous electrical activity in ventricular cardiacomyocytes. PLoS One 2018;13:3–17. doi: 10.1371/journal.pone.0200448.

5. Han L, Tang Y, Li S, Wu Y, Chen X, Wu Q, et al. Protective mechanism of SIRT1 on Hcy-induced atrial fibrosis mediated by TRPC3. J Cell Mol Med 2020;24:488–510. doi: 10.1111/jcmn.14737.

6. Zhang B, Li M, Yang W, Loor JJ, Wang S, Zhao Y, et al. Oral calcium release-activated calcium modulator 1 (ORAI1) plays a role in endoplasmic reticulum stress in bovine mammary epithelial cells challenged with physiological levels of ketone bodies. J Dairy Sci 2020;103:3019–3031. doi: 10.3168/jds.2019-17422.

7. Nomani H, Saei S, Johnston TP, Sahbekar A, Mohammadpour AH. The efficacy of anti-inflammatory agents in the prevention of atrial fibrillation recurrences. Curr Med Chem 2020;5:1–23. doi: 10.2174/138945021205805101.

8. Zhu X, Niu Z, Ye Y, Xia L, Chen Q, Feng Y. Endometrium cytokine profiles are altered following ovarian stimulation but almost not in subsequent hormone replacement cycles. Cytokine 2019;114:6–10. doi: 10.1016/j.cyto.2018.10.002.

9. Purvi M, Michael S, Javier AN, David PB. Calcium channel Orai 1 promotes lymphocyte IL-17 expression and progressive kidney injury. J Clin Invest 2019;129:4951–4961. doi: 10.1172/JCI126108.

10. Qiu J, Peng ZZ, Li Q, Wen R, Tao LJ. Renal fibrosis and mitochondrial damage. Chin Med J 2018;131:2769–2772. doi: 10.4103/0366-6999.245272.

11. Taylor CW. Regulation of IP3 receptors by cyclic AMP. Cell Calcium 2017;63:49–52. doi: 10.1016/j.ceca.2016.10.005.

12. Atabek P, van Marrewijk LM, Apta-Smith M, Chakraborty S, Taylor CW. GPN does not release lysosomal Ca$_2^+$, but evokes ER Ca$_2^+$ release by increasing cytosolic pH independent of cathepsin C. J Cell Sci 2019;132:1–45. doi: 10.1242/jcs.223883.

13. Zhao P, Tian D, Song G, Ming Q, Liu J, Shen J, et al. Nefirine promotes GLUT4 expression and fusion with the plasma membrane to induce glucose uptake in l6 cells. Front Pharmacol 2019;10:1–22. doi: 10.3389/fphar.2019.00999.

14. Murthy KS, Zhou H. Selective phosphorylation of the IP$_R$3-I in vivo by cGMP-dependent protein kinase in smooth muscle. Physiol Gastrointest Liver Physiol 2003;284:221–230. doi: 10.1152/ajpgi.00401.2002.

15. Ando H, Kawari K, Bonneau B, Mikoshiba K. Remodeling of Ca$^{2+}$ release channels in cancer: regulation of inositol 1,4,5-trisphosphate receptors through oncoproteins and tumor suppressors. Adv Biol Regul 2018;68:64–76. doi: 10.1016/j.bior.2017.12.001.

16. Cui G, Li Y, Ding K, Hao S, Wang J, Zhang Z. Contribution of Bax and mitochondrial damage. Chin Med J 2018;131:2769–2772. doi: 10.4103/0366-6999.245272.

17. Lopez JR, Kolster J, Uryash A, Estève E, Altamirano F, Adams JA. Dysregulation of intracellular Ca$^{2+}$ in dystrophic cortical and hippocampal neurons. Mol Neurobiol 2018;55:603–618. doi: 10.1007/s12035-016-0311-7.

18. Fuping Z, Wuping L, Linhua W, Chengxi P, Fuqiang Z, Yi Z, et al. Neferine promotes glucose uptake in L6 cells. Front Pharmacol 2019;10:1–22. doi: 10.3389/fphar.2019.00999.

19. Joseph SK, Booth DM, Young MP, Hajnóczky G. Redox regulation of ER and mitochondrial Ca$^{2+}$ signaling in cell survival and death. Cell Calcium 2019;79:89–97. doi: 10.1016/j.ceca.2019.02.006.

20. Yu Y, Zhou CH, Yao YT, Li LH. Downregulation of Na$^+$/Ca$^{2+}$ exchanger isoform 1 protects isolated hearts by sevoflurane postconditioning but not by delayed remote ischemic preconditioning in rats. Chin Med J 2018;131:756–761. doi: 10.4103/0366-6999.226907.

21. Taylor CW, Machaca K. IP$_R$s receptors and store-operated Ca$^{2+}$ entry: a license to kill. Curr Opin Cell Biol 2019;57:14–21. doi: 10.1016/jceb.2018.10.011.