Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis

Daisuke Kawahara Yuta Hayashibe*1
Hajime Morita*2 Sadao Kurohashi*

Kyoto University
*JST CREST
1 Current affiliation is Fairy Devices Inc.
2 Current affiliation is Fujitsu Laboratories Ltd.

IWPT 2017 (September 21, 2017)
Knowledge Acquisition and Knowledge-based NLP

Mary ate the salad.

Mary ate the salad.

クロールで泳いでいる女の子を見た

crawl swim girl saw

望遠鏡で泳いでいる女の子を見た

telescope swim girl saw
We Need to Segment a Sentence!

クロールで泳いでいる女の子を見た

crawl swim girl saw

クロールで泳いでいる女の子を見た

crawl swim girl saw
We Need to Segment a Sentence!

• Word segmentation is necessary before applying dependency parsing for unsegmented languages, such as Chinese and Japanese
• Such pipeline framework causes the problem of error propagation
• Several supervised joint models have achieved some success for Chinese but not for Japanese

Question: Can lexical knowledge improve Japanese joint morphological and dependency analysis?
可能性があるかないか分からない

I don’t know whether there is a possibility
or
I don’t know that a possibility doesn’t walk
Related work (1/2)

• Joint transition-based parsing
 – POS tagging and parsing [Bohnet+, 2013] [Wang+, 2014]
 – Chinese word segmentation, POS tagging and dependency parsing [Hatori+, 2012] [Zhang+, 2014] [Kurita+, 2017]

• Lattice parsing [Goldberg+, 2009] [Green+, 2010] [Goldberg+, 2011]
Related work (2/2)

• Dependency parsing models using lexical knowledge [van Noord, 2007] [Koo+, 2008] [Chen+, 2009] [Bansal+, 2011]

• Japanese dependency parsing models
 – Transition-based (supervised) models [Kudo+, 2002] [Sassano, 2004] [Yoshinaga+, 2014]
 – Probabilistic model based on case frames [Kawahara+, 2006]
Lexical Knowledge

• Case frames
• Cooccurrence probabilities of noun-noun / predicate-predicate dependencies
• Word embeddings

Case Frame	ある (exist):3
が (NOM)	**possibility**: 121867
に (DAT)	price: 23, myself: 20, you: 18, ...
で (LOC)	step: 4, influence: 4, ...

Case Frame	ある (walk):1
が (NOM)	person: 57, I: 13, ...
を (ACC)	road: 24236, trail: 4066, ...
から (ABL)	parking: 175, station: 88, ...
Case Frame Compilation

Web

10G sentences (3G pages)

Predic和平-Argument structures (PAS)

Clustering

Case frames for 120K predicates

89.0% for all
98.3% for 20.7% P-As

[Kawahara+, 2006] [Kawahara+, 2014]
Case frame examples for *tsumu* (積む)

Case frame examples for *tsumu* (積む)	CS	instances (translated into English)
tsumu (1) (accumulate experience)	*ga*	player: 21, all: 20, person: 142, …
	wo	experience: 100127, achievement: 10350, …
	de	site: 240, area: 209, …
tsumu (2) (pursue/devote)	*ga*	person: 27, player: 13, all: 12, …
	wo	exercise: 15579, study: 13222, …
	de	basis: 694, under: 384, university: 99, …
tsumu (3) (load)	*ga*	man: 33, person: 20, child: 11, …
	wo	baggage: 11294, luggage: 2989, …
	ni	car: 920, truck: 160, bike: 114, …

ga: nominative, *wo*: accusative, *ni*: dative, *de*: instrument
Robust Case Frame Compilation

10G Japanese web sentences

Conventional Case Frames

Enlarge

New Case Frames

Transitive usages

Intransitive usages w/ inanimate nominatives

Intransitive usages w/o inanimate nominatives

Case	Arguments
NOM | company, ...
ACC | scale, ...
DAT | Japan, ...

Case	Arguments
NOM | scale, ...
DAT | Japan, ...

Case	Arguments
NOM | member, ...
DAT | double, ...

Case	Arguments
NOM | company, scale...
ACC | scale, area, ...
DAT | Japan, ...

...
Lexical Knowledge

- Case frames
- Cooccurrence probabilities of noun-noun / predicate-predicate dependencies
 - Calculate $P(\text{predicate}_1|\text{predicate}_2)$ and $P(\text{noun}_1|\text{noun}_2)$ from automatic parses
- Word embeddings [Mikolov+, 2013]
 - Clues for coordinate structures
Parsing Model

• Using the well-known CKY algorithm

• Procedure
 1. Project candidate words onto the CKY table
 2. Generate base phrases
 • a base phrase = a content word + 0 or more function words
 3. Generate dependencies and calculate their scores based on lexical knowledge
Input: 可能性があるかないか
(whether a possibility exists)
or
(a possibility doesn’t walk)
Input: 可能性があるかないか

1. Project candidate words onto the CKY table
1. Project candidate words onto the CKY table
2. Generate base phrases
 - a base phrase = a content word + 0 or more function words
1. Project candidate words onto the CKY table
2. Generate base phrases
 - a base phrase = a content word + 0 or more function words
3. Generate dependencies and calculate their scores based on lexical knowledge
Features (1/2)

- **Word feature**
 - Marginal score of morphological analysis

- **Base phrase features**
 - Word 2,3-grams in a base phrase
 - # of base phrases in a sentence
 - Words at a base phrase boundary
 - # of predicates in a sentence
 - A predicate representation

- **Dependency features**
 - A dependency label
 - Content/function words and punctuations of a modifier
 - Content/function words and punctuations of a head
 - Distance between a modifier and its heads
Features (2/2)

• Features derived from lexical knowledge
 – # of predicates that do not have case frames
 – Probabilities calculated based on case frames
 • e.g., case frame.slot generating probability
 – A cooccurrence probability between nouns
 – A cooccurrence probability between predicates
 – Content word similarity between a modifier and its head
 – Similarity of word sequences for coordination
Experimental Settings (1/2)

• Dependency treebank
 – Kyoto Univ. Text Corpus (NEWS)
 – Kyoto Univ. Web Document Leads Corpus (WEB)

• Dependency unit
 – Base phrase dependencies

• Input of the parser
 – N-best output of the Japanese morphological analyzer JUMAN++ [Morita+, 2015]
JUMAN++:
RNN-based Japanese Morphological Analyzer

• Recurrent Neural Network Language Model [Mikolov+, 2010]
 – A neural network based language model, with a hidden context layer
 – The model can calculate \(p(w|\text{context}) \) based on **semantically generalized** vector representation

![Diagram of RNN model](image)

- 外国/人参/政権 (foreign – carrot - regime)
- 人参: carrot (じゃがいも, キャベツ)
- 政権: regime (野党, 官僚, 与党)
- 外国: foreign (オランダ, 英国, ヨーロッパ)
- 女性/參政/權 (Women suffrage right) (聖職)/者/叙任/權 (Right of investiture)
Experimental Settings (1/2)

• Dependency treebank
 – Kyoto Univ. Text Corpus (NEWS)
 – Kyoto Univ. Web Document Leads Corpus (WEB)
• Dependency unit
 – Base phrase dependencies
• Input of the parser
 – N-best output of the Japanese morphological analyzer JUMAN++ [Morita+, 2015]
 – Apply 10-way jackknifffing to the training set
• Training of the parser
 – L-BFGS with L1 regularization
• Using beam search
 – Beam width = 10
Experimental Settings (2/2)

• Baseline for word segmentation and POS tagging
 – JUMAN++ [Morita+, 2015] (1-best)

• Baselines for dependency parsing
 – KNP [Kawahara+, 2006]
 – CaboCha (using the transition-based algorithm of [Sassano, 2004])
 – KNP+CaboCha
 • Base phrase chunking by KNP and dependency parsing by CaboCha
 – Our model without lexical knowledge (LK)
Results

- **NEWS**
 - Seg
 - Seg+POS
 - JUMAN++ (1-best)
 - KNP++ (N-best)

- **WEB**
 - Seg
 - Seg+POS
 - KNP++ (1-best)
 - KNP++ (N-best)

Dep UAS
- KNP+CaboCha
- KNP++ (1-best)
- KNP++ (N-best) wo/LK
- KNP++ (N-best)

F1 Scores
- NEWS: 99.6, 99.4, 99.2, 99, 98.8, 98.6, 98.4, 98.2, 98
- WEB: 98.6, 98.4, 98.2, 98.0, 97.8, 97.6
- Dep UAS: 92.1, 91.6, 91.1, 90.6, 90.1, 89.6, 89.1, 88.6, 88.1, 87.6
Improved Examples

- Improved Examples

- Improved Examples

- Improved Examples
Discussion

• The 1-best accuracy of segmentation and POS tagging is already very high, especially for NEWS
 – However, we can improve it by reranking N-best outputs based on lexical knowledge, especially for WEB

• The gold does not distinguish some ambiguous cases
Summary

• Automatically acquired lexical knowledge actually improved Japanese joint morphological and dependency analysis!

• We will release lexical resources and analyzers
 – RNN-based Japanese morphological analyzer (JUMAN++)
 – Case frames compiled from 10G Japanese sentences
 – Joint Japanese morphological and syntactic analyzer based on lexical knowledge (KNP++)
Future Work

• Neuralize it!
• Integrate PAS analysis (including zero anaphora resolution) into our joint morphological and syntactic analysis