THE IMMUNE RESPONSE OF ALLOPHENIC MICE TO THE SYNTHETIC POLYMER L-GLUTAMIC ACID, L-LYSINE, L-PHENYLALANINE*

II. Lack of Gene Complementation in Two Nonresponder Strains

BY CAROL M. WARNER, JUDITH L. MCIVOR, PAUL H. MAURER, AND CARMEN F. MERRYMAN

(From the Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011 and the Department of Biochemistry, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107)

The genetic control of the immune response of inbred strains of mice to certain antigens has been demonstrated to be governed by a set of Ir genes linked to the major histocompatibility complex (H-2) of mice (1, 2). Until recently, the control was thought to be governed by single, dominant genes, located within the I region of the H-2 complex. Merryman et al. (3) originally demonstrated that the immune response to the synthetic terpolymer L-glutamic acid, L-lysine, L-phenylalanine (GLb) is under dominant, H-2-linked Ir gene control. It has now been demonstrated that the response to GLb is at least under dual Ir gene control (4–7). This was shown both by crossing two nonresponder parental strains to produce responder offspring in the F, generation, and by the analysis of appropriate recombinant strains of mice. The two complementing genes have been mapped in the IA and IC regions of the H-2 complex, and have been termed β and α, respectively (5, 6). Thus, any strain of mouse may contain neither, one, or both genes. Only mice containing both genes are capable of responding to GLb. It has been shown using F, hybrid and recombinant strains of mice, that the α- and β-genes can complement each other in either the cis (on the same chromosome) or in the trans (on different chromosomes) position (8).

In this paper we report the results of studies aimed at answering the question of whether or not the α- and β-genes can complement each other when they are present in different lymphoid cells. To this end we have constructed allophenic mice composed of two nonresponder strains (A and C57BL/6), which show gene complementation in the F, generation. Allophenic mice are chimeras containing two cell types coexisting in a “normal” environment. The mice were tested for the specific cellular composition of the two parental cell types and were found to possess a complete range in the relative proportion of the two cell types. This report demonstrates that regardless of the mixture of cell types present in the allophenic mice, none of them were responders to GLb. Thus, no complementation of the α- and β-genes is seen when the two genes are present in different cells.

* Supported by NIH grants AI 11752 and AI 07825, and by American Cancer Society Grant IM-5D.
Materials and Methods

Preparation of Allophenic Mice. The allophenic mice were produced by the fusion of an eight-cell C57BL/6 embryo with an eight-cell A embryo by the method described previously (9). The resulting mice are designated C57BL/6 × A. The inbred strains of mice were purchased from The Jackson Laboratory, Bar Harbor, Maine. The F1 hybrid mice were produced in our laboratory.

Characterization of Allophenic Mice. The composition of the peripheral leukocytes of the allophenic mice was determined as described previously (10). Briefly, the Ficoll-Hypaque-isolated cells were analyzed by a trypan blue dye exclusion cytotoxicity test. The percent C57BL/6 cells was determined by treating the unknown cell mixture from each mouse with the appropriate anti-serum plus complement.

Antigen and Immunization Schedule. Poly(Glu¹⁰Lys¹⁰Phe²⁰) (GLΦ), mol wt 35,000, was polymerized starting with the alpha N carboxyanhydrides of the L amino acids (11). An aqueous solution of the polymer was dialyzed free of HBr for a week against two daily changes of distilled water, lyophlized, and stored at -20°C. Before use, the polymer was dissolved in saline and the concentration determined by micro-Kjeldahl analysis (12).

The mice were immunized with 100 µg of the GLΦ polymer which was emulsified in complete Freund’s adjuvant and injected into the hind foot pads. 3 wk later, an aqueous booster injection of the same polymer concentration was given intraperitoneally. Bleedings from the retro-orbital plexus were obtained on day 10 (1st response) and on day 31 (2nd response). All mice were 6- to 12-mo old at the time of immunization.

Antigen-Binding Assay. The antibody activity against the immunizing polymer was measured as described previously (10). Iodinated glutamic acid₆₆alanine₆₆tyrosine₁₅ (GLT₁₅), which has been found to cross-react very highly with mouse anti-GLΦ sera (5, 7), was used in the antigen-binding assay. The results are reported as the percentage of antigen bound by 25 µl of a 1:2 dilution of the mouse antisera. Controls included normal mouse serum and both rabbit and mouse antisera containing high titer antibody. Binding values of not more than 10% were observed with the nonimmune normal mouse sera. Therefore, for discussion purposes, binding values of less than 15% were considered to reflect “nonresponsiveness” (7).

Results

The results of the immunization of C57BL/6, A, and (C57BL/6 × A)F1 mice with GLΦ is shown in Table I. It is seen that both the α- and the β-genes are necessary for antibody production to GLΦ. The genes complement each other in the trans position, as is demonstrated by the F1 mice. The primary response of the F1 mice (data not shown on Table I) was 36 ± 11% antigen bound at a 1:2 serum dilution. Table II shows the composition and immune response of 17 allophenic mice to GLΦ. It is seen that the mice cover the whole range of possible cellular compositions. It is clear from these results that none of these mice produced antibody to GLΦ at either the primary or the secondary bleedings.

Discussion

The recent findings that the immune response to the synthetic polymer GLΦ is under dual Ir gene control (4–7), has prompted several investigations into the types of cells in which each of the genes is expressed. In addition, other studies performed on the synthetic polymer poly(Tyr,Glut)-polyD,LAla-polyLys[(T,G)-A--L] have also led to the speculation that dual Ir gene control of the response to this polymer is governed by one gene, which is expressed in T cells, and the other gene that is expressed in B cells (13). Thus, the genetic defect in nonresponder strains to (T,G)-A--L has been demonstrated to be in B cells in some strains and in both T and B cells in other strains (14–16).
Table I
Characterization of the Immune Response of Inbred and F₁ Mice to GLφ

Strain	H-2 haplotype	H-2 region*	Ir-G4 gene	Response to GLφ
C57BL/6	b	K IA IB IC	+	5 ± 7
A	a		+	11 ± 9
(C57BL/6 × A)F₁	b × a			64 ± 16

* Based on Shreffler and David (19)
† Based on Dorf et al. (6)
§ The data is the average percent antigen bound by a 1:2 serum dilution, ± standard deviation, at the secondary response. Each group consisted of five mice.

Table II
Characterization of the Immune Response of Allophenic Mice to GLφ

Mouse no	% C57BL/6 peripheral white blood cells at the 2° response*	Response to GLφ
		1° Response 2° Response
170	3	10 6
171	29	11 11
172	41	15 12
162	50	10 7
169	60	12 8
173	72	15 3
167	80	15 3
166	90	10 4
178	92	12 4
158	102	7 8
168	109	8 10
176	119	10 12

* The data are the percent of the control, so that some values are >100%
† The data are the percent antigen bound by a 1:2 serum dilution

A similar hypothesis governing the immune response to GLφ has been tested by Schwartz et al. (17) and by Katz et al. (18). In the first study, it was found that strains of mice bearing responder alleles at only the α- or the β-locus were nonresponders, as assessed by a T-lymphocyte proliferation assay. Thus, the presence of both genes was necessary for T-cell proliferation to occur in response to stimulation with GLφ. Consistent with the data presented by Schwartz et al. (17) is the hypothesis that neither gene is expressed in the B cells, but that either both genes are expressed in the T cells, or else either one or both Ir genes are expressed in macrophages.

In the second study, Katz et al. (18), using an adoptive transfer system, imply, but do not fully prove, that both the α-gene and the β-gene must be expressed in B cells as well as T cells for a full response to GLφ. For one thing, Katz et al. (18) found the surprising result that the two genes in the B cells had to be in the cis configuration (e.g., 5R mice) and not in the trans configuration (e.g., (C57BL/6 × A)F₁ mice) for effective cell cooperation to occur. They state that this result might be explained in terms of a gene dosage effect. In view of this fact, it also seems possible that a gene dosage effect could account for the lack of stimulation of nonresponder parental cells (e.g., B10.A or C57BL/10) by carrier-primed F₁ T cells (e.g., (B10 × A)F₁). Thus, whereas the Schwartz et al. (17) experiments seem to show unequivocally that both the α-gene and β-gene must be
expressed in the T-cell population, the Katz et al. (18) study does not show unequivocally that the genes must be expressed in the B-cell population.

We have approached the question of cellular expression of the two GLcb genes from a different point of view. It is suggested from the fact that the α-gene and β-gene can interact in the *cis* position as well as in the *trans* position, that at least one of these genes may produce a soluble gene product. The question we sought to answer is whether this product (or factor) is an intracellular product or an extracellular product. Thus, if two cell types, each possessing one of the two *Ir-Glcb* genes, were allowed to interact, the successful interaction would be strong evidence for an extracellular product. If, on the other hand, no such interaction was observed, the evidence would be in favor of an intracellular product. An extracellular product could either be membrane bound or secreted into the fluid surrounding the cell.

A unique way in which to allow histoincompatible cells to interact without any apparent allogeneic effect is to produce allophenic (tetraparental) mice between two different parental strains. Only in this way is it possible to allow two nonresponder strains, with complementing α- and β-genes, to coexist in a normal environment. As is seen in Table II, the complementing nonresponder ↔ nonresponder allophenic mice produced in this experiment cover a complete range of parental cell mixtures. It is apparent from Table II that none of the mice, regardless of their cellular composition, were able to respond to GLcb. This finding may be interpreted in several ways. First, it may be necessary to have both the α- and β-genes in a single cell to get an immune response to GLcb. Second, cell cooperation may not be able to occur between the histoincompatible cells in the allophenic mice, thus precluding an immune response. However, in a previous study from our laboratories, we showed that allophenic mice produced from the combination of a responder and a nonresponder strain do exhibit a normal GLcb response in direct proportion to the percentage of responder cells present in a given mouse (10). Thus, it seems highly unlikely that it is the allophenic mouse environment itself that leads to the lack of response seen in the present study.

We would like to propose a tentative model, amenable to experimentation, to account for our results and the other reported results on the immune response of mice to GLcb. We propose that the product of the β-gene may be a T-cell extracellular product, which allows the T cell to recognize antigen. The product could be loosely bound to the T-cell surface and could dissociate from the membrane upon interaction with antigen. The antigen-T-cell product complex could then stimulate the appropriate B cell to produce antibody directly, or else indirectly via a secondary product secreted by the T cell upon removal of the β-gene product by antigen.

The unique feature of this model is the postulate that the α-gene product is a molecule that allows the β-gene product to be externalized. The α-gene product itself may or may not also be externalized when β-gene product secretion occurs. Without the α-gene product, the β-gene product would remain inside the cell in a nonfunctional state. The main features of this model as applied to the C57BL/6 ↔ A allophenic mice, are shown in Fig. 1

This model predicts several points. First, it predicts that in the GLcb system both the α- and β-genes are necessarily expressed in T cells (or macrophages), but not necessarily in B cells at all. Second, it predicts that two α-genes could never complement each other in the absence of a functional β-gene. On the other hand, two β-genes might complement each other by a gene dosage effect, which could lead to leakage of the β-gene product out of the T cells in the absence of a functional α-gene. These predictions are completely consistent with the lack of response of the allophenic mice studied herein. They are also consistent with many other observed experimental facts (4–8, 17). The model is especially appealing since it could explain how C57BL/6 and SJL mice, each with a functional β-
FIG 1 The four cell types of C57BL/6 ↔ A allophenic mice. △, β-gene product; ▲, absence of β-gene product; ↓, α-gene product; ↑, absence of α-gene product.

gene, but no functional α-gene, complement each other in the F1 generation (5, 7). This model is currently being further tested in our laboratories.

We thank Dr Allen Zeiger for preparing the tyrosylated polymers and Dr. David Ganfield for the iodination of the polymers. The competent technical assistance of Ms. Jeanette Jones, Ms. Rajani Rayachoti, and Ms. Ruth Graves, is gratefully acknowledged.

Received for publication 22 November 1976.

References

1. McDevitt, H. O., and A. Chinitz. 1969. Genetic control of the antibody response: relationship between immune response and histocompatibility (H-2) type. Science (Wash. D. C.). 163:1207.

2. Benacerraf, B., and H. O. McDevitt. 1972. Histocompatibility-linked immune response genes. Science (Wash. D. C.) 175:273.

3. Merryman, C. F., P. H. Maurer, and D. W. Bailey. 1972. Genetic control of immune response in mice to a glutamic acid, lysine, phenylalanine copolymer. J. Immunol. 108:237.

4. Merryman, C. F., and P. H. Maurer. 1975. Characterization of a new Ir-GLT gene and its location in the I-region of the H-2 complex. Immunogenetics 1:459.

5. Dorf, M. E., and B. Benacerraf. 1975. Complementation of H-2-linked Ir genes in the mouse. Proc. Natl. Acad. Sci. U. S. A. 72:3671.

6. Dorf, M. E., J. H. Stimpfling, and B. Benacerraf. 1975. Requirement for two H-2 complex Ir genes for the immune response to the L-Glu, L-Lys, L-Phe terpolymer. J. Exp. Med. 141:1459.

7. Merryman, C. F., P. H. Maurer, and J. H. Stimpfling. 1975. Unigenic and multigenic I region control of the immune responses of mice to the GAT and GLb-GLT terpolymers. Immunogenetics. 2:441.

8. Dorf, M. E., P. H. Maurer, C. F. Merryman, and B. Benacerraf. 1976. Inclusion group systems and cis-trans effects in responses controlled by the two complementing Ir-GLc genes. J Exp Med 143:889.
9. Warner, C. M., M. Fitzmaurice, P. H. Maurer, C. F. Merryman, and M. J. F. Schmerr. 1973. The immune response of tetraparental mice to two synthetic amino acid polymers: "high-conjugation" 2,4 dinitrophenyl-glutamic acid³⁶-lysine³⁸-alanine³⁸ (DNP-GLA³) and glutamic acid³⁶ alanine³⁸tyrosine³⁸ (GAT³). J. Immunol. 111:1887.

10. Warner, C. M., R. M. Graves, C. M. Tollefson, M. J. F. Schmerr, T. J. Stephens, C. F. Merryman, and P. H. Maurer. 1976. The immune response of allotrophic mice to the synthetic polymer GL_φ. Immunogenetics. 3:337.

11. Katohalski, E., and M. Sela. 1958. Synthesis and chemical properties of poly α amino acids. Adv. Protein Chem. 13:243.

12. Markham, R. 1942. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem J. 36:790.

13. Munro, A. J., and M. J. Taussig. 1975. Two genes in the major histocompatibility complex control immune response. Nature. (Lond.). 256:103.

14. Mozes, E., R. Isaac, and M. J. Taussig. 1975. Antigen-specific T-cell factors in the genetic control of the immune response to poly (Tyr,Glu)-polyd,LAla--polyLys. Evidence for T- and B-cell defects in SJL mice. J. Exp. Med. 141:703.

15. Taussig, M. J., and A. J. Munro. 1974. Antigen-specific T-cell factor in cell cooperation and genetic control of the immune response. In Immune Recognition. A. S. Rosenthal, editor. Academic Press, Inc., New York. 791.

16. Taussig, M. J., and A. J. Munro. 1976. Antigen-specific T cell factor in cell cooperation and genetic control of the immune response. Fed. Proc. 35:2061.

17. Schwartz, R. H., M. E. Dorf, B. Benacerraf, and W. E. Paul. 1976. The requirement for two complementing Ir-GLφ immune response genes in the T-lymphocyte proliferative response to poly-(Glu³⁶Lys³⁸Phe³⁸). J. Exp. Med. 143:897.

18. Katz, D. H., M. E. Dorf, and B. Benacerraf. 1976. Control of T-lymphocyte and B-lymphocyte activation by two complementing Ir-GLφ immune response genes. J. Exp. Med. 143:906.

19. Shreffler, D. C., and C. S. David. 1975. The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol. 20:125.