FLAT SECTIONS AND NON-NEGATIVE CURVATURE IN PULLBACK BUNDLES

C. DURÁN AND L. D. SPERANÇA

Abstract. We give a geometric obstruction to the non-negativity of the sectional curvature in the total spaces of certain Riemannian submersions with totally geodesic fibers; applications of this obstruction to several examples are given.

1. Introduction

The study of manifolds which admit a metric of positive or non-negative sectional curvature has lead to certain standard constructions and conditions that guarantee that these constructions furnish a metric with the desired properties. The classical example is the following: let $M$ be a manifold of positive sectional curvature, $G$ a compact Lie group and $G\to P\to M$ be a principal bundle-with-connection over $M$. One can then endow $P$ with a “Kaluza-Klein”-type metric, making the vertical and horizontal space orthogonal by definition, and inducing the metric on the horizontal space by the metric of $M$ and on the vertical space by some canonical metric on $G$ (typically biinvariant). This procedure makes the bundle a Riemannian submersion with totally geodesic fibers. O’Neill theory then says that the geometry of the total space if mostly controlled by the O’Neill tensor $A$ and the metric on the base ([12],[16]).

An immediate necessary condition for the positivity of curvature is that for $X$ vertical and $U$ horizontal, the O’Neill tensor $A_XU$ cannot be zero, since the vertizontal (unnormalized) sectional curvatures are given by $|A_XU|^2$ in this case. This condition, called fatness [21], depends only on the connection on the bundle, and imposes upon it strong topological restrictions [5],[11]. Assuming fatness, in [4] conditions are given for the total spaces of these principal bundles to admit such metrics of positive curvature. These conditions take the form of differential inequalities relating the curvatures of $M$ and the bundle connection.

In this paper we are interested in non-negative curvature. The case of non-negative curvature on compact Riemannian manifolds still has many unanswered questions: for example, do all 7-dimensional exotic spheres or any sphere of other dimension admit a metric of non-negative curvature? (it is known to be true for exotic 7-spheres which can be realized as sphere bundles over $S^4$, [13], and to be false for spheres which do not bound spin manifolds, see [10], for example). For non-negative curvature, the fatness condition on the O’Neill tensor can in principle

1991 Mathematics Subject Classification. Primary 53C20.
Key words and phrases. Non-negative curvature, principal bundles.
The second author was financially supported by FAPESP, grant numbers 2009/07953-8 and 2012/25409-6.
be relaxed, but we shall see that there is a lot of rigidity along the degenerate directions.

**Theorem 1.** Let \( \xi : E \to M \) be a principal Riemannian submersion with totally geodesic fibers. Then, the set of vectors

\[
D_b = \{ X \in T_m M \mid A_X = 0, \hat{X} = \text{horizontal lift of } X \}
\]

defines a smooth involution \( D \) in an open and dense subset of \( M \). Furthermore, a necessary condition for the total space \( E \) to have non-negative curvature is that the integral manifolds of \( D \) are totally geodesic.

In the generic case, theorem \( \text{I} \) will give the trivial foliation of \( B \) by points. Therefore this theorem should not be seen as a “structure theorem for manifolds of non-negative curvature”; instead, its value is in the construction of new examples of manifolds with non-negative curvature (which always use highly non-generic set-ups), as a quick way to check if there is any hope in a given metric. Section \( 5 \) will clearly illustrate this point. Of particular interest are pullback bundles; abstractly, because all principal bundles are topologically pullbacks of the universal bundles, and also concretely, we have found that many of the relevant examples in the literature of non-negative curvature are actually modelled as pullbacks, and the natural induced connection and \( A \)-tensor will be degenerate along the fibers of the pullback map. The Gromoll-Meyer construction of an exotic sphere as a quotient of \( \text{Sp}(2) \) falls within the scope of this result, since \( \text{Sp}(2) \) with its canonical biinvariant metric is the pullback of the Hopf bundle (example \( 2 \)). It has been recently realized that by studying other pullback maps many further geometric models of exotic spheres can be constructed (see \( 8, 15 \) and section \( 5 \)).

We can specialize theorem \( \text{I} \) to the case of a pullback connection:

**Definition 1.1.** A Riemannian submersion is non-degenerate if the map \( X \mapsto A_X \) is a one-to-one mapping from the horizontal space into \( \text{Hom} (\text{Horizontal}, \text{Vertical}) \).

Like fatness, non-degeneracy only depends on the connection form of the bundle. Non-degeneracy is a much weaker condition; fatness means that for each horizontal \( X \neq 0 \) the map \( A_X : \text{Horizontal} \to \text{Vertical} \) is onto and, in particular, non-zero.

**Theorem 2.** Let \( \xi : G \to \cdots \to P \to B \) be a non-degenerate principal Riemannian submersion with totally geodesic fibers, \( M \) a Riemannian manifold, and \( f : M \to B \) a differentiable function. Endow the total space \( E \) of the pullback bundle \( f^*\xi \) with the Kaluza-Klein metric relative to the pullback connection. A necessary condition for \( E \) to have non-negative curvature is that for each regular value \( b \in B \), \( f^{-1}(b) \) is totally geodesic in \( M \).

When the bundle \( \xi \) is some canonical construction such as Hopf bundles, the easiest way to represent a particular Kaluza-Klein metric is to consider the total space of \( f^*\xi \) as a Riemannian submanifold of \( M \times P \). This imposes a change on the metric on \( M \), but we will see (lemma \( 2.4 \)) that this is inconsequential.

**Theorem 3.** Let \( \xi : G \to \cdots \to P \to B \) be a non-degenerate principal Riemannian submersion with totally geodesic fibers, \( M \) a Riemannian manifold, and \( f : M \to B \) a differentiable function. A necessary condition for the total space of the pullback \( f^*\xi \) to have non-negative curvature with the pullback metric is that for each regular value \( b \in B \), \( f^{-1}(b) \) is totally geodesic in \( M \).
The condition of each regular fiber of a map $f : M \to B$ being totally geodesic places strong restrictions on the metric of $M$; typically, there will be no metric on $M$ for which the regular leaves are totally geodesic. A key element of this analysis is the study of how the map $f$ behaves near the singular leaves. We offer here a simple stability lemma that is enough to deal with the examples; a finer result will be given in [9].

**Theorem 4.** Let $f : M \to B$ be a map such that the regular fibers are totally geodesic. If $S$ is a submanifold contained in a (possibly singular) fiber of $f$ then fibers contained in a small enough neighbourhood of $S$ immerse into $S$.

Therefore, if one suspects that the total space of a pullback bundle admits non-negative curvature, the first test should be to look at the behavior of the fibers of the pullback map on the base spaces, near singular points. We shall see in section 5 how this test discards some examples (in which a direct computation of the curvature would be rather involved), and give hope for others.

**Notation:** Given a Riemannian metric, $\nabla$ denotes its Levi-Civita connection, $R$ the curvature tensor $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - [X,Y]^\nabla Z$, and $K$ the unnormalized sectional curvature associated to $R$. When necessary, left superscripts will be added to identify different spaces, e.g. $M \nabla$.

In a Riemannian submersion, $P \xrightarrow{s} B$, given $Y_x \in T_b B$ we denote its horizontal lift at $p \in \pi^{-1}(y) \subset P$ by a hat, $\hat{Y}_p \in T_p P$. The O’Neill tensor will be denoted by the letter $A$. Anywhere we give a property of a vector $X \in T_b B$ in terms of a horizontal lift $\hat{X}$ in $T_p P$, it will be clear that the property is independent of the point $p \in \pi^{-1}(b)$.

## 2. Geometry of pullback bundles

Consider a principal bundle $G \cdots P \xrightarrow{s} B$. Let $M$ be a Riemannian manifold, $f : M \to B$ a differentiable map and consider the pullback $G \cdots f^* P \to M$.

**Definition 2.1.** The pullback metric on $f^* P$ is the metric induced as a submanifold by the definition of a pullback, i.e., $f^* P = \{(m, p) \in M \times P \mid f(m) = \pi(p)\}$, where we endow $M \times P$ with the product metric.

**Example.** The Lie group $Sp(2)$ can be realized as the total space of the pullback of the Hopf bundle by minus the Hopf map:

\[
\begin{array}{ccc}
S^3 & \to & S^3 \\
\vdots & & \vdots \\
S^3 \cdot Sp(2) & \xrightarrow{s} & S^7 \\
\downarrow f & & \downarrow h \\
S^3 \cdot S^7 & \xrightarrow{a \circ h} & S^4
\end{array}
\]

In the diagram, $h$ denotes the Hopf map corresponding to the right Hopf action of $S^3$ on $S^7$, $a$ the antipodal map of $S^4$, and $f$ and $s$ denote the first and second columns of a matrix in $Sp(2)$. When both $S^7$’s in the diagram have the same constant curvature, then the pullback metric of $Sp(2)$ is biinvariant (see [20] and proposition 2.1 in [22]).
Some more sophisticated examples will be considered in section 5.

Let us establish some geometrical properties of the pullback bundle. First, the submersion \( G \cdots f^*P \to M \), where \( f^*P \) has the pullback metric and \( M \) has its given metric, is not a Riemannian submersion. It is easy to see that in order to make it a Riemannian submersion, we must endow \( M \) with the graph metric induced from the embedding of \( M \) as a subset \( \Gamma_f = \{(m, b) \in M \times B \mid f(m) = b\} \subset M \times B \), the later endowed with the product metric. Indeed,

**Proposition 2.2.** Let \( \pi : P \to B \) be a principal bundle with the Kaluza Klein metric defined by a connection 1-form \( \omega \) and a metric \( g_B \) on \( B \), a Riemannian manifold, and \( f : M \to B \) a smooth map. Then, the pullback metric on \( f^*P \) is the Kaluza-Klein metric defined by the pullback connection \( f^*\omega \) and the graph metric \( g_{\Gamma_f} \).

**Proof.** Let \( W = (X, Y) \) be a vector tangent to \( f^*P \). So, by the definition of \( f^*P \), \( df(X) = d\pi(Y) \). Spelling out the induced metric on \( f^*P \), we have

\[
g_{f^*P}(W, W) = g_{M \times P}((X, Y), (X, Y)) = g_M(X, X) + g_P(Y, Y) \\
= g_M(X, X) + g_B(d\pi Y, d\pi Y) + \beta(\omega(Y), \omega(Y)) \\
= g_M(X, X) + g_B(dfX, dfX) + \beta(\omega(Y), \omega(Y)) \\
= g_{\Gamma_f}(X, X) + \beta(\omega(Y), \omega(Y))
\]

Now the proof follows by observing that \( Y \) is the image of \( W \) by the derivative of the induced pullback map. In particular, \( \omega(Y) \) is the image of \( W \) by the pullback connection, as desired. \( \square \)

**Remark 2.3.** The fact that \( M \) has to change its original metric in order for \( f^*P \to M \) be a Riemannian submersion is already present in the example from the introduction: with a biinvariant metric the submersion \( Sp(2) \to S^7 \) subduces a metric on \( S^7 \) that is not the round one, a fact used in [4].

The vertical space is given by vectors of the form \((0, U), U \in TP \) vertical. Horizontal vectors have the form \((Z, \hat{df}(Z)), Z \in TM \). In particular, if \( Z \) is tangent to a level set of \( f \), then \((Z, 0) \) is horizontal.

The following property will be essential in theorem 3.

**Lemma 2.4.** Let \( M, B \) be Riemannian manifolds, \( f : M \to B \), and \( b \in B \) be a regular value of \( f \). Then \( f^{-1}(b) \) is totally geodesic in \( M \) if and only if it is totally geodesic in the graph \( \Gamma_f \).

**Proof.** On the one hand, a regular level set \( L = f^{-1}(b) \subset M \) is totally geodesic on \( M \) if and only if, given \( X \in TL \) such that \( df(X) = 0 \), \( df(M \nabla X X) = 0 \). On the other hand, via the diffeomorphism between \( M \) and the graph, \( m \mapsto (m, f(m)) \), a vector field tangent to \( L \) is translated to a field \( \hat{X} = (X, 0) \) on \( M \times B \) such that \( df(X) = 0 \). We have

\[
\Gamma_f \nabla \hat{X} \hat{X} = \text{proj}_{TT'} ((M \times B)_\nabla (X, 0)) = \text{proj}_{TT'} (M \nabla X, 0).
\]

Furthermore, \( \psi(L) = L \times \{b\} \) is totally geodesic on \( \Gamma_f \) if and only if the right-hand side of \( (2.1) \) is of the form \((Y, 0)\).
In particular, if $L$ is totally geodesic on $M$, it is totally geodesic on $Γ_f$. On the other hand, decomposing this vector in tangential and normal part we have

$$(^M∇_X X, 0) = (W, df(W)) + (−df^*(Z), Z)$$

with $df(W) = −Z$. So, $\text{proj}_{TΓ_f}(^M∇_X X, 0) = (Y, 0)$ if and only if $Y = W$ and $df(Y) = 0$, in particular, $Z = −df(Y) = 0$ and $(^M∇_X X, 0)$ is already tangent, i.e., $df(^M∇_X X) = 0$.

\[ \square \]

3. Flat vertizontal sections

In this section, $G \cdots E \to M$ will be a Riemannian submersion with totally geodesic fibers such that $E$ has non-negative curvature.

We first need the following elementary lemma on flat sections on non-negatively curved spaces:

**Lemma 3.1.** Let $(Q, g)$ be a non-negatively curved manifold and suppose the plane spanned by $X$ and $U$ has zero sectional curvature. Then $Q_R(X,U)X = 0$.

**Proof.** This follows immediately by the well-known “quadratic trick” (compare [4]): let $Z$ be an arbitrary vector. Consider the sectional curvature of the plane spanned by $X$ and $tU + Z$. Unnormalized, this is

$$g(R(X,tU + Z)tU + Z, X) = t^2 K(X,U) - 2tg(R(X,U)X, Z) + K(Z, U).$$

If $K(X,U) = 0$ then the quadratic term vanishes and the resulting expression is a non-negative linear function. Thus we get that $K \geq 0$ implies that the linear coefficient $g(R(X,U)X, Z) = 0$ for all $Z \in TQ$.

**Remark 3.2.** The condition being symmetric in $X$ and $U$, the conclusion also holds interchanging $X$ and $U$. This means that what really happens is best explained in terms of the curvature operator $R : Λ^2(TQ) \to Λ^2(TQ)$: given $η ∈ Λ^2(TQ)$ we define $φ_η : Λ^2(TQ) \to Λ^4(TQ)$, $φ_η(X) = η ∧ X$. Then if $K(X,U) = 0$, then $R(X ∧ U) ∈ \ker φ_{X ∧ U}$. This gives some rigidity to zero curvature sections, an example of which is the main result of this paper (see also proposition 1 in [17]).

**Remark 3.3.** One may notice that an analogous proof works in the non-positive curvature case. In fact, being here where the non-negativity requirement enters, our main results work replacing non-negatively curved by non-positively curved.

**Definition.** A vector $X ∈ TM$ is said to be $A$-flat if $A_X = 0$. An $A$-flat vector $X$ is called regular if it can be locally extended to a vector field of $A$-flat vectors; we call such fields $A$-flat vector fields.

We abuse notation by also calling $A$-flat, the horizontal, basic vectors $X$ such that $A_X = 0$. O’Neill equations imply that a vector is $A$-flat if and only if the curvature of all vertizontal planes containing $X$ vanish.

**Theorem 3.4.** If $X$ is an $A$-flat vector field, then so is the covariant acceleration $∇_X X$.

**Proof.** Let $Z$ be another vector field on $M$, and $U$ a vertical field on $E$. 


Spelling out the curvature term in (3.1) and using the identities in [12], we have:

\[ 0 = gp(R(\hat{X}, U)\hat{X}, \hat{Z}) = -\left\langle \nabla_X (A_{\hat{X}} \hat{Z}), U \right\rangle + \left\langle A_{\nabla_{\hat{X}} \hat{Z}} U, \hat{Z} \right\rangle + \left\langle A_X \nabla_X \hat{Z}, U \right\rangle \]

and since the equality holds for all $\hat{Z}$ and $U$, $A_{\nabla_{\hat{X}} \hat{Z}} = 0$. The theorem follows from the identity $\nabla_X \hat{X} = \nabla_{\hat{X}} \hat{X}$. \hfill \Box

**Definition.** A submanifold $S$ of $M$ is said to be $A$-flat if vectors tangent to $S$ are $A$-flat. It is maximal if for all $s \in S$ and $X \in T_s M$, $X$ $A$-flat implies that $X \in T_s S$.

Then, it immediately follows from theorem 3.4 that

**Theorem 3.5.** A maximal $A$-flat submanifold $S$ is totally geodesic in $M$.

**Remark 3.6.** Note that the proof of theorem 3.4 relies on a tensorial identity, and theorem 3.5 uses only information of the vector field $X$ along the submanifold $S$. Therefore, theorem 3.5 holds without needing to extend $X$ to an open neighborhood of $S$ in $M$. This will be useful on example 5.2.

Now we see that there are plenty of maximal $A$-flat submanifolds:

**Lemma 3.7.** The set of all $A$-flat vector fields is in involution.

**Proof.** A vector field $X$ on $M$ is $A$-flat if and only if $gp([\hat{X}, \hat{Z}], U) = 0$ for all vector fields $Z$ on $M$ and $U$ vertical vector field on $E$. Now the result follows from Jacobi’s identity and the fact that $[\hat{X}, \hat{Z}] = [X, Z]$ when $A_X = 0$. \hfill \Box

The $A$-flat vectors on the regular part of the distribution are regular. On this set, we can integrate the distribution spanned by the $A$-flat vectors in $M$. We call such integral manifolds $A$-flat leaves. Then by theorem 3.5 we have

**Theorem 3.8.** Assume $E$ has non-negative curvature. Then the $A$-flat leaves are totally geodesic in $M$.

For the conclusion of the proof of theorem 1 what is missing is regularity considerations. Let $D_b$ be as in Theorem 1 i.e., the set of all $A$-flat vectors, then $M$ is partitioned according to $0 \leq \dim D_b \leq \dim M$. It is easy to see that the set of points in $M$ such that $\dim D_b$ is locally minimal is open and dense. Indeed, $D_b$ is the kernel of a continuous family of linear maps parametrized by $m \in M$, and, as such, the function $d : M \to \mathbb{N}$, $d(m) = \dim(D_m)$ is lower semicontinuous. Thus the set of local minima, on which the rank of $D_m$ is locally constant and $D_m$ is a regular foliation, is open and dense (compare [14]).

Now let us deduce theorems 2 and 3 from theorem 1.

Recall that if $G \cdots E \to M$ is a principal Riemannian submersion, then, for horizontal fields $X, Z$ and $U$ vertical, the O’Neill tensor $gp(A_X U, Z) = -bg(\Omega(X, Z), \xi_U)$, where $\Omega$ is the curvature form of the bundle connection induced by the horizontal-vertical decomposition, $b$ is a biinvariant metric on $G$ and $\xi_U \in \mathfrak{g}$ is the infinitesimal generator of $U$. Thus, the condition of being $A$-flat can be completely written in terms of the curvature of the connection form of the bundle: it is in the kernel $\{X \in T_m M : \Omega(X, Z) = 0 \forall Z\}$

Consider now a pullback $G \cdots f^*P \to M$ of a non-degenerate principal Riemannian submersion $G \cdots P \to B$, with bundle curvature form $\Omega$. Since the main
Theorem concerns regular values $b \in B$, by restricting to the open set of regular values, we might assume that $f$ is a submersion.

The curvature form of the pullback bundle is just the pullback form $f^*\Omega$. Thus $X \in T_mM$ is $A$-flat if and only if $\Omega(df_m(X), df_m(Z)) = 0$ for all $Z \in T_mM$, and since $f$ is a submersion then for all $Y \in T_{f(b)}B$ there exists $Z \in T_mM$ such that $df_m(Z) = Y$. This means that $\Omega(df_m(X), Y) = 0$ for all $Y \in T_f(m)B$, and since by hypothesis $G \cdots P \rightarrow B$ is non-degenerate, it follows that $df_m(X) = 0$. We have thus concluded that $A$-flat vectors are tangent to level sets of $f$, and maximal $A$-flat submanifolds and $A$-flat leaves are exactly the fibers of $f$. Then theorem 3.5 implies that the fibers of $f$ are totally geodesic on $M$.

For theorem 3.5 put the graph metrics on the total space and on $M$. Then we are in a Kaluza-Klein construction and we can apply theorem 2 with respect to the graph metric of $M$. However, lemma 2.4 then finishes the proof.

4. Stability of Regular Totally Geodesic Fibers

In this section we prove theorem 4.1.

Let $S \subset M$ be a compact submanifold, possibly with boundary, and $v$ its normal bundle, with $\delta$-disk bundle $\nu_0$. For $\delta$ small enough, the exponential map $\exp : \nu_0 \rightarrow M$ is a diffeomorphism onto a tubular neighbourhood $U_\delta \subset M$. There is radial projection $p : U_\delta \rightarrow S$, given by $u \mapsto p(u)$, the (unique) closest point on $S$ to $u$. With this context, we have

**Proposition 4.1.** There exists $\delta > 0$ such that, if $L$ is a complete totally geodesic submanifold contained in $U_\delta$, then $p|_L : L \rightarrow S$ is an immersion.

Note that the kernel of $Dp$ is given by vectors tangent to the fibers $F^\delta_x = \exp_x(\nu_0)$. Since $L$ is totally geodesic and complete, proposition 4.1 is reduced to the following:

**Lemma 4.2.** There exists $\delta > 0$ such that, if $m \in U_\delta$ and $v_m \in \ker Dp_m$, then $\exp_m tv \notin U_\delta$ for some $t$.

**Proof of Lemma 4.2.** The idea is simply to observe that, close enough to $S$, we are essentially in an Euclidean situation illustrated by, say, $S$ being the $z$ axis in $\mathbb{R}^3$ and $v = (v_1, v_2, 0)$ a vector tangent to $\mathbb{R}^2 \times \{z_0\}$ at a point $(x_0, y_0, z_0)$. Let us proceed: denote by $\eta : M \rightarrow \mathbb{R}$ the map defined by half of the square of the distance to $S$, i.e., $\eta(x) = \frac{1}{2}d(x, S)^2$. The following facts are either elementary or well-known: (e.g. [1]): $\eta$ is smooth on $U_\epsilon$, and for $x \in S$, its derivatives satisfy

- The derivative $d\eta_x = 0$.
- The Hessian $d^2\eta_x(v, w) = g(\Pi v, \Pi w)$, where $g$ is the metric on $M$ and $\Pi$ is the orthogonal projection onto the normal bundle of $S$. Note that since $d\eta_x = 0$, at points of $S$ $d^2\eta$ is a true (e.g. independent of the metric) Hessian.
- $d^3\eta_x$ is linearly expressed in terms of the second fundamental form of $S$.

Also, the second fundamental form of the fibers $F^\delta_x$ is zero at $x$. Extend $\Pi$ of the previous bullet to represent the orthogonal projection onto the tangent bundle of the fiber $F_x^\delta$ at any point. Now given $\epsilon > 0$, we can uniformly choose $\delta$ such that, for $d(y, S) < 2\delta$, we have that

- The norm of the second fundamental form of each fiber $F_x^\delta$ is less than $\epsilon$. This implies that by choosing $\epsilon$ wisely, we can assure that for any unit
geodesic $\gamma(t), t \in [0, 1]$ with initial velocity vector tangent to the fiber, then

$$g(\Pi \dot{\gamma}(t), \Pi \dot{\gamma}(t)) > g((1 - \Pi)\dot{\gamma}(t), (1 - \Pi)\dot{\gamma}(t)).$$

(or, equivalently $2g(\Pi \dot{\gamma}(t), \Pi \dot{\gamma}(t)) > g(\dot{\gamma}(t), \dot{\gamma}(t))$) for as long as $\gamma(t) \in U_{2\delta}$. Since

- The Hessian satisfies

$$d^2 \eta(v, v) \geq \frac{9}{10}g(\Pi v, \Pi v) - \frac{1}{10}g((1 - \Pi)v, (1 - \Pi)v).$$

Consider now the function $h(t) = \eta(\gamma(t))$, for a unit geodesic $\gamma$ tangent to the normal fiber and such that $0 \leq d(\gamma(0), S) < \delta$, which translates to $0 \leq h(0) < \frac{\delta^2}{2}$. By reversing the orientation of $\gamma$ if necessary, we can assume that $h'(0) \geq 0$. Now

$$h''(t) = d^2 \eta(\gamma(t))(\dot{\gamma}(t), \dot{\gamma}(t))$$

$$\geq \frac{9}{10}g(\Pi \dot{\gamma}(t), \Pi \dot{\gamma}(t)) - \frac{1}{10}g((1 - \Pi)\dot{\gamma}(t), (1 - \Pi)\dot{\gamma}(t))$$

$$\geq \frac{4}{5}g(\Pi \dot{\gamma}(t), \Pi \dot{\gamma}(t))$$

$$\geq \frac{2}{5}g(\dot{\gamma}(t), \dot{\gamma}(t)) = 2/5,$$

for $t \in [0, 1]$ and for as long as $\gamma(t)$ lies in $U_{2\delta}$. Thus we have a function $h$ such $h(0) \geq 0, h'(0) \geq 0$ and $h''(t) > 2/5$. Thus $h(t) \geq \frac{2}{5}t^2$, which means that for $\delta^2 < 1/5$ in addition of the previous conditions, the geodesic $\gamma(t)$ leaves $U_{\delta}$. □ □

Now theorem 4 is just stating proposition 4.1 in the situation we are interested in, that is, when $S$ is a subset of a fiber of $f : M \to N$.

5. Examples

In this section we provide several examples where the obstruction applies in different ways.

- In the first two examples, the main obstruction (theorem 3) vanishes for the canonical metrics. However, in the second example the “secondary” obstruction furnished by proposition 3.5 does not vanish for the canonical round metric on the base sphere; a deformation is necessary to make all obstructions vanish.

- In the third and fourth examples, the obstruction is absolute: we show that for the pullback maps presented, for any given metric the fibers cannot be totally geodesic. These examples arise as pullbacks of the Gromoll-Meyer construction, which we think in the context of the pullback of the Hopf map $h : S^7 \to S^4$ as in example 2, that is, we pullback the fibration $S^3 \cdot S^4 \to S^7$ by appropriate maps $f : X \to S^7$. However, since the canonical connection of $S^3 \cdot S^4 \to S^7$ is degenerate (being zero along the Hopf fibers), we go all the way to the Hopf bundle and pull back $S^3 \cdot S^7 \to S^4$ by maps $f : X \to S^7$ of the form $f = a \circ h \circ \phi$, where \( \phi : X \to S^7 \) and \( a \) is the antipodal map of $S^4$. All actions in sight will be isometric with respect to the induced connections and metrics. In both examples, our results implies that one cannot put non-negative curvature in the total space of these bundles via the pullback construction.
Finally, we describe the pullback structure of Kervaire spheres. Here, in contrast with the previous examples, there is no topological obstruction to the presence of the totally geodesic foliation, however the authors have not been able to describe a metric with totally geodesic fibers in that case.

5.1. Wilhelm bundles. Consider the bundles constructed on [22]: let $Sp(2, m)$ be the subset of $m$ copies of $S^7$ defined by the following condition

$$Sp(2, m) = \{(u_1, \ldots, u_m) \in (S^7)^m \mid h(u_1) = ah(u_2), \ h(u_i) = ah(u_{i+1}) \text{ for } i > 1\}$$

where $a$ and $h$ are as in example [2] and $h$ is the dual Hopf map corresponding to the left $S^3$-action on $S^7$. Quotients of these bundles by free $S^3 \times \cdots \times S^3$-actions give models of some 3-sphere bundles over $S^4$, and, in particular, exotic spheres.

As we observed earlier, the pull-back diagram of $Sp(2)$ endowed with its canonical metric does not have the obstruction given by Theorem 3. We also observe that $Sp(2, m + 1)$ fits in the following diagram

$$\begin{array}{ccc}
Sp(2, m + 1) & \overset{pr_{m+1}}{\longrightarrow} & S^7 \\
\downarrow & & \downarrow ah \\
Sp(2, m) & \overset{\hat{h} \circ pr_m}{\longrightarrow} & S^4
\end{array}$$

where $pr_m : Sp(2, m) \to S^7$ is the projection in the last coordinate and the unnamed down arrow is the projection in the first $m$ coordinates. Now, induction on $m$ easily proves that $\hat{h} \circ pr_m$ has totally geodesic fibers, as required from Theorem 3.

5.2. Rigas bundles. Let $\phi : S^4 \to S^4$ be a degree $k$ map, and $r_k = \phi \circ h : S^7 \to S^4$. Then the bundles $\tilde{P}_k$ constructed in [20] are defined as the pullback of Hopf by $r_k$ (for example, if $\phi = -1$ is represented by the antipodal map of $S^3$, then $\tilde{P}_{-1}$ is $S^3 \cdots S^3 \to S^7$ as in example [2].

$$\begin{array}{ccc}
\tilde{P}_k & \longrightarrow & P_k \longrightarrow S^7 \\
\downarrow & \downarrow & \downarrow h \\
S^7 & \overset{h}{\longrightarrow} & S^4 \longrightarrow S^4
\end{array}$$

We choose $\phi_k : S^4 \to S^4$ to be the suspension of $p_k$, the quaternion $k$-th power map $S^3 \to S^3$ (note that, for $k = -1$, this is different from the antipodal map). We suspend this map in the simplest way,

$$S^4 \supset \mathbb{R} \times \mathbb{H} \ni \left(\begin{array}{c} x \\ y \end{array} \right) \mapsto \left(\begin{array}{c} \phi_k \left(\begin{array}{c} x \\ y \end{array} \right) \\ \frac{1}{\sqrt{x^2 + |y|^2k}} \left(\begin{array}{c} x \\ y \end{array} \right) \end{array} \right).$$

The critical values of maps $\phi_k$, and a fortiori $f_k$, since the Hopf map is a submersion, are given by $(\pm 1, 0)^T$ and the suspensions of the meridians $(x, \cos(\ell \pi / k) + \sin(\ell \pi / k)\bar{\alpha})$, $\alpha$ a purely imaginary quaternion and $1 < \ell < k$. Restricted to the inverse images of the complement of such points, $\phi_k$ is a local diffeomorphism. Therefore, the regular fibers of $r_k$ will be given by sets of $k$ disjoint standard Hopf fibers, and the obstruction given by theorem 3 also vanishes in this case for the canonical round metric on $S^7$. However, if $|k| \geq 2$ the secondary obstruction given by theorem 3.5 does not vanish for the round metric on $S^7$ which projects by the Hopf map to the round metric on $S^4$, since the pullback by Hopf of the suspensions of the meridians $(x, \cos(\ell \pi / k) + \sin(\ell \pi / k)\bar{\alpha})$ will not be totally geodesic. Note that,
by continuity, the singular fibers detect negative curvature in the regular set that was invisible by just using theorem 3.

Therefore, if one wants to construct a pullback metric of non-negative curvature on the Riga bundles, the metric on $S^4$ must be changed so that this suspended meridians are totally geodesic, (by making $S^3$ to be a cylinder $S^2 \times I$, in a set that contains the meridians), and then the metric on $S^7$ is defined by a Kaluza-Klein procedure over the Hopf map.

5.3. Exotic 7-spheres. Consider the map $\phi_n : S^7 \to S^7$ given by the $n$-th power of the Cayley octonions $O$. If we write a unit octonion $q = \cos(t) + \alpha \sin(t)$ where $\alpha$ is purely imaginary, then $\phi_n(t) = \cos(nt) + \alpha \sin(nt)$. Pulling back the bundle $S^3 \cdot \cdots \cdot S^3 \cdot Sp(2) \to S^7$ by $\phi_n$ we obtain principal $S^3$-bundles $S^3 \cdot \cdots \cdot E^{10}_n \to S^7$. Now writing octonion as pairs $(a, b)^\top$ of (column) quaternions, then the total space is given by

$$E_n \cong \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} \mid \begin{pmatrix} \phi_n(a) & c \\ b & d \end{pmatrix} \in Sp(2) \right\}.$$

With the projection onto $S^7$ given by the projection onto the first column $(a, b)^\top$. The unit quaternions act on $E_n$, by

$$q \ast \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} qa\bar{q} & qc \\ qb\bar{q} & qd \end{pmatrix}.$$

The following is proven in [8]: the quotient of $E^{10}_n$ by this action is diffeomorphic to $\Sigma^7_n$, $n$-times the Gromoll-Meyer sphere in the group of 7-dimensional homotopy spheres. Going all the way to the Hopf bundle, consider $E^{10}_n$ as the pullback of the Hopf bundle by $f_n = a \circ h \circ \phi_n$, where $a$ and $h$ are as in examples 2 and 5.1.

Remak 5.1. It is instructive to compare these spaces to Rigas’ bundles on the previous section; here the power map is on the Cayley numbers as the last map of the composition giving the pullback, and there the power map (of the quaternions) is the first step in the composition. Both cases are pullbacks of the Hopf bundle over $S^4$ by functions $S^7 \to S^4$, and the total spaces $\tilde{P}_k$ of and $E_n$ are diffeomorphically related by the formula $E_n \cong \tilde{P}_k$, where $n = k(k + 1)/2 \mod 12$ [2]. However, for the presentation given by the pullback by $r_k$ the main obstruction vanishes, and by modifying the metric all obstructions can be eliminated, whereas we will presently see that this is impossible for the pullbacks by $f_n$: no metric on $S^7$ makes the regular fibers totally geodesic, and thus any pullback metric on $E_n = f_n^*\text{Hopf}$ has some negative curvature. In principle, the O’Neill tensor of the exotic actions could push the curvature in the base exotic sphere to be non-negative, although recent results suggests that the odds are not good [17]; this comment also applies to the exotic 8-spheres of next section.

We have

Lemma 5.2. The only singular value of $f$ is the south pole $(-1, 0) \in S^4 \subset \mathbb{R} \times \mathbb{H}$. 
Proof of lemma. Observe that the only singular values of $\phi_n$ are $\pm 1 \in S^7 \subset \mathbb{O}$, on the preimage of which the derivative of $\phi_n$ has a kernel of dimension at least 6 ($\phi$ being constant on the distance spheres $\cos(\frac{k\pi}{n}) + \alpha \sin(\frac{k\pi}{n})$). Thus the only singular value of $h \circ \phi_n$ is the class of the Hopf fiber through 1, which maps to $(1,0) \in S^4 \subset \mathbb{R} \times \mathbb{H}$. The lemma now follows by composing with the antipodal map.

Restricted to the set $\phi_n^{-1}(\pm 1)$, the map $\phi_n$ is a (trivial) $n$-fold covering. Thus, the inverse image of regular values in $S^4$ consists the inverse image of Hopf fibers by $\phi_n$, which are $n$ disjoint 3-spheres, each one contained in a “belt” $\{\cos(t) + \alpha \sin(t) \mid \frac{k\pi}{n} < t < \frac{(k+1)\pi}{n}\}$.

The singular set $\phi^{-1}(-1,0)$ is the union of the exponential 3-sphere $(x,0), x$ a unit quaternion, with the distance spheres $\cos(\frac{k\pi}{n}) + \alpha \sin(\frac{k\pi}{n})$.

We have now

Proposition 5.3. if $n > 1$, there is no metric on $S^7$ such that the inverse images of the regular values of $f_n$ are totally geodesic.

The remaining of this example is devoted to the proof of proposition 5.3: the idea is to find a one parameter family of regular fibers of $f_n$ whose convergence to the singular fiber contradicts proposition 4.

Consider the one-dimensional manifold $T \subset S^4 \subset \mathbb{R} \times \mathbb{H}$ given by points having the second coordinate real, The inverse image of $T$ by the Hopf map (and also by $a \circ h$, since $T$ is invariant under the antipodal map) is the elements of $S^7 \subset \mathbb{H} \times \mathbb{H}$ which have both coordinates linearly dependent over the reals. This condition is invariant by the Cayley power map, and thus the inverse image of $T$ by $f_n = a \circ h \circ \phi_n$ is also described by the real dependence of the first and second coordinates.

Consider now the curve $\sigma(\theta)$ in $T \subset S^4 \sigma(t) = (\cos(\theta), \sin(\theta)), \theta \in [\pi - \epsilon, \pi)$, the interval being chosen so that the trace of the curve curve is lies inside of the regular set, but approaches the critical value $(-1,0)$ as $\theta \to \pi$.

The inverse image $(a \circ h \circ \phi_n)^{-1}(\sigma(\theta))$ is made of $n$ disjoint 3-spheres, which we do not need to characterize precisely. In order to apply proposition 4 we need to describe the evolution of these spheres as $\theta \to \pi$; we will also consider just the connected component of the preimage contained in the north polar cap $N = \{\cos(t) + \alpha \sin(t) \in S^7, \mid t \in [0, \pi/n]\}$

Let then $q$ be a unit Cayley number written as a pair of quaternions, $q = (a, b)^T$, where $a = \cos(t) + \sin(t)p$ and $b = \sin(t)w, \mid p\mid^2 + \mid w\mid^2 = 1, t \in [0, \pi/n]$. We have

$$f_n(a, b)^T = (2 \sin^2(nt)|w|^2 - 1, *)$$

where the * in the second coordinate is determined by the first when we are close to $(-1,0) \in S^4$ and both coordinates are real. Given $\theta \in [\pi - \epsilon, \pi)$, the formula for $f_n(a, b)^T = \cos(\theta), \sin(\theta)$ implies that neither $w, \sin(nt)$ nor $\sin(t)$ are zero. Then

$$2 \sin^2(nt)|w|^2 - 1 = 2 \frac{\sin^2(nt)}{\sin^2(t)}(\sin^2(t)|w|^2) - 1 = \eta(t)|b|^2 - 1,$$

where $\eta(t) = \frac{2 \sin^2(nt)}{\sin^2(t)}$ is bounded away from zero in the interval $[0, \pi/n]$. Then as $\theta \to \pi, \mid b\mid \to 0$. This means that the 3-spheres $f_n^{-1}(\cos(\theta), \sin(\theta)) \cap N$ converge to a set $S$ contained in the meridian $(a, 0), \mid a\mid = 1, and being contained in the north polar cap we can also say that $S \subset \{(a, 0) \in S^7 \mid \Re(a) < \frac{\pi}{2n}\}$. This set is diffeomorphic to
an open ball in $\mathbb{R}^3$. Thus, proposition \[2\] would furnish an embedding of a 3-sphere into a 3-ball in $\mathbb{R}^3$, which is impossible.  

\[\square\]

5.4. **Exotic 8-sphere.** Consider the map $\phi : S^8 \to S^7$ given by suspending the Hopf map $\eta : S^3 \to S^2$ in a smooth way. We write the Hopf map $S^3 \to S^2$ using the quaternions, $\eta(y) = yi\bar{y}$, where $y$ is a unit quaternion and the image of $\eta$ is contained in the unit purely imaginary quaternions. We also extend $\eta$ to all quaternions in the obvious way.

We write $S^8$ as the unit sphere of $\mathbb{H} \times \mathbb{R} \times \mathbb{H}$, and let $\psi : S^8 \to \mathbb{R}^8 \cong \mathbb{H} \times \mathbb{H}$ be given by

$$\psi \begin{pmatrix} x \\ \lambda \\ y \end{pmatrix} = \begin{pmatrix} x \\ \lambda + \eta(y) \end{pmatrix}$$

The image does not fall in the Euclidean sphere $S^7$. However since $|\psi(x)|^2 = |x|^2 + \lambda^2 + |y|^4 \neq 0$, we can normalize and $\phi = \frac{\psi}{|\psi|} : S^8 \to S^7$ clearly suspends the Hopf map.

**Remark 5.4.** There are other ways of building smooth suspensions of the Hopf map, which in principle would furnish different examples of the application of theorem \[3\] We present the simplest one.

Then, the total space of the pull-back of $S^3 \cdots Sp(2) \to S^7$ by $\phi$ is readily identified with the set

$$E^{11} = \left\{ \begin{pmatrix} x \\ \lambda \\ c \\ y \\ d \end{pmatrix} \in S^8 \times S^7 \mid (x,y) \in S^7 \right\}$$

The unit quaternions act on $E^{11}$ as follows:

$$q \ast \begin{pmatrix} qx \bar{q} \\ \lambda \\ y \\ d \end{pmatrix} = \begin{pmatrix} qx \bar{q} \\ \lambda \\ y \\ qd \end{pmatrix} \in E^{11} \text{ if } \begin{pmatrix} x \\ \lambda \\ c \\ y \end{pmatrix} \in E^{11}$$

On one hand, the projection in the first column $pr_1 : E^{11} \to S^8$ define it as the pull-back bundle of $Sp(2) \to S^7$, on the other hand $\ast$ in \[5.4\] defines a new free action on $E^{11}$. The quotient of this action is diffeomorphic to the only exotic sphere in dimension 8, \[18\]. Again, pulling back all the way from the Hopf map, we have that $E^{11}$ is the pullback of the Hopf bundle $S^3 \cdots S^1 \to S^4$ by $f = a \circ h \circ \phi$.

We now have to study the inverse images by $f$ of its regular values. We have:

**Lemma 5.5.** The only singular value of $f$ is the south pole $(-1,0) \in S^4 \subset \mathbb{R} \times \mathbb{H}$.

**Proof of lemma** One can first note that the derivative of $\phi$ at $p = (1,0,0)^T$ is $D\phi_p(X,\Lambda,Y) = (X,\Lambda)$ which spans only one dimension transversal to the fiber $(z,0) \subset S^7$ making the point $(-1,0) \in S^4$ singular for $ah\phi$. On the other hand if $y \neq 0$, $\phi$ is a submersion and therefore so is $f$, and the last case in hand is $p = (x,\lambda,0)$ which goes to a fiber different from $(z,0)$. In this last case, the differential of $\phi$ is again $D\phi_p(X,\Lambda,Y) = (X,\Lambda)$ however, now the space spanned by this differential is completely transversal to the fiber of $\phi(p)$ since the tangent space to the last is of the form $(x\xi,\lambda\xi)$, for purely imaginary quaternions $\xi$, in particular, it has no real part in the second coordinate.  

\[\square\]
Then we see that the inverse image of the singular point is $S^3 \subset S^8$ given by points $(x,0,0) \in S^8$. The inverse images of regular points are 4-dimensional submanifolds of $S^3$. In this case proposition 3 applies immediately, since there can be no embedding of a 4-dimensional manifold into a 3-dimensional one.

5.5. Kervaire spheres. Consider the principal bundle of special orthonormal frames over the round $S^{2n+1}$, i.e., consider the principal bundle $SO(2n+1) \cdots SO(2n+2) \xrightarrow{p} S^{2n+1}$ given by projection on the first column. Consider also $\tau: S^{2n} \to SO(2n+1)$ where $\tau(x)$ is defined as the reflection by the hyperplane orthogonal to $x$. As a map from $S^{4n+1}$ to $S^{2n+1}$ we can consider $J\tau$, defined as

$$J\tau(x,y) = \exp \tau \left( \frac{y}{|y|} \right)x$$

where $(x,y) \in \mathbb{R}^{2n+1} \times \mathbb{R}^{2n+1}$. This map extends continuously to $y = 0$ and has an appropriate equivariant smoothing with same fibers (this situation is quite common in this kind of construction, see e.g. section 2.3 of [7]). Its homotopy type is the image of $\tau$ by the Hopf-Whitehead $J$-homomorphism.

The bundle $P = (J\tau)^* \pi \to S^{4n+1}$ admits a free $SO(2n+1)$ action (which is isometric with respect to natural metrics) with quotient that can be identified (using the techniques from [18]) with $\Sigma^{4n+1}$, the Kervaire sphere of dimension $4n+1$ as presented in Chapter I, section 7 of [3]. These examples are known to be exotic [10] for infinitely many $n$'s.

The fibers of the map $J\tau$ are the spheres $y = 0$ and

$$\{ (\tau(y)^{-1} x, \lambda y) \mid y \in S^{2n}, \lambda \in [-1,0] \}$$

The information given by the dimensions and topology of the fibers is not sufficient to perceive an obstruction to Theorems 3 and 3.5, making $(J\tau)^* \pi$ a candidate to induce nonnegative curvature on $\Sigma^{4n+1}$.

References

[1] L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold, J. Geom. Anal. 8 (1998), 723-748.
[2] T.E. Barros and A. Rigas, The role of commutators in a non-cancellation phenomenon, Math. J. Okayama Univ. 43 (2001), 73-93.
[3] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
[4] L. Chaves, A. Derdzinski, and A. Rigas, A condition for positivity of curvature, Boletim Soc. Bras. Matemtica 23 (1992), 153-165.
[5] A. Derdzinski and A. Rigas, Unflat Connections on 3-Sphere bundles over $S^4$, Transactions Of The American Mathematical Society 265 (1981), 485-493.
[6] C. Durán, Pointed Wiedersehen Metrics on Exotic Spheres and Diffeomorphisms of $S^8$, Geometriae Dedicata 88 (2001), 199-210.
[7] C. Durán, A. Mendoza, and A. Rigas, Blakers-Massey elements and exotic diffeomorphisms of $S^8$ and $S^{14}$ via geodesics, Trans. Am. Math. Soc. 356 (2004), 5025-5043.
[8] C. Durán, T. Pützmann, and A. Rigas, An infinite family of Gromoll Meyer spheres, Archiv der Mathematik 95 (2010), 269-282.
[9] C. Durán and L. D. Sperança, Totally geodesic foliations near singular leaves, In preparation.
[10] A. Michael, M. Hopkins, and D. Ravenel, *On the non-existence of Kervaire invariant one*, available at arXiv:0908.3724.

[11] L. Florit and W. Ziller, *Topological obstructions to fatness*, Geometry & Topology 15 (2011), 891-925.

[12] D. Gromoll and G. Walschap, *Metric Foliations and Curvature*, Birkhäuser Verlag, Basel, 2009.

[13] K. Grove and W. Ziller, *Curvature and Symmetry of Milnor Spheres*, Annals of Mathematics 152 (2000), 331-367.

[14] A. Lewis, *Semicontinuity of rank and nullity and some consequences*, available at http://www.mast.queensu.ca/~andrew/notes/abstracts/2009a.html.

[15] A. Lichnerowicz, *Spineurs harmoniques*, C. R. Acad. Sci. Paris Sér. 257 (1963), 7-9.

[16] B. O’Neill, *The fundamental equations of a submersion*, Michigan Math. J. 13 (1966), 459-469.

[17] C. Pro and F. Wilhelm, *Flats and submersions in non-negative curvature*, Geom. Dedicata 161 (2012), 109-118.

[18] L. D. Sperança, *On Explicit Constructions of Exotic Spheres*, available at http://arxiv.org/abs/1010.6039.

[19] M. Strake and G. Walschap, *Connection metrics of nonnegative curvature on vector bundles*, Manuscripta Math 36 (1990), 309-318.

[20] A. Rigas, *$S^3$-bundles and exotic actions*, Bull. Soc. Math. France 112 (1984), 69-92.

[21] A. Weinstein, *Fat bundles and symplectic manifolds*, Advances in Mathematics 37 (1980), 239-250.

[22] F. Wilhelm, *Exotic spheres with lots of positive curvatures*, J. Geometric Anal. 11 (2001), 161-186.

C. Durán, Departamento de Matemática, UFPR, Setor de Ciências Exatas, Centro Politécnico, Caixa Postal 019081, CEP 81531-990, Curitiba, PR, Brazil

E-mail address: cduran@ufpr.br

L. D. Sperança, IMECC - UNICAMP, Rua Sérgio Buarque de Holanda, 13083-859, Cidade Universitária, Campinas, Brazil

E-mail address: llohann@ime.unicamp.br