The Effect of Activation Method on the Adsorption Performance of Saw-Dust Activated Carbon

Amina A. Attia¹, Reham M. M. Aboelenin¹, Soheir A. Kheder¹, Ghada M. Mohmed¹ and Shaymaa E. El-Shafey¹

¹Surface Chemistry and Catalysis Laboratory, National Research Center, El-Dokki, Cairo 12622, Egypt.

ABSTRACT

Aims: The present study was conducted to evaluate the ability of modified saw dust to remove para-nitrophenol (PNP) from aqueous solution.

Methodology: Batch adsorption studies were carried out under varying conditions of initial pH, contact time and temperature. The performance of saw dust activated carbon was characterized by BET surface area FTIR and SEM. Three simplified kinetic models including pseudo-first order, pseudo-second order and intra particle diffusion were selected to follow the adsorption process.

Place and Duration of Study: Experiments were carried out in the National Research Center, Department of Physical Chemistry at laboratory of Surface Chemistry and Catalysis.

Study Design: The adsorption abilities of saw dust after thermal and chemical treatment were investigated for its efficiency in removing para-nitrophenol (PNP) from aqueous solution.

Results: The Langmuir, Freundlich and Temkin models were used to describe the adsorption equilibrium studies of saw dust activated carbon. Results showed that the Langmuir isotherm showed better fit than Freundlich and Temkin isotherm. The kinetic data were found to follow the pseudo-second order model. Intraparticle diffusion is not the sole rate controlling factor. The negative values of ΔH˚ and ΔG˚ revealed the feasibility of adsorption, spontaneous and exothermic.
1. INTRODUCTION

Excessive presence of phenol and its derivatives in natural water sources is considered as a serious threat to human health and overall water quality [1]. The fate of phenols in the environment and their removal from the hyposphere is complicated by their low solubility, ability to ionize, low vapour pressure and tendency to undergo oxidation and oxidative polymerization with humic and fulvic acid-type products [2]. Phenols are frequently derived from petrochemicals, plastics, paints, pharmaceutical and steel industries [3]. The US Environmental Protection Agency (EPA) has identified 1777 National Priorities List (NPL) sites, with nitrophenols having been found at 14 of these sites. As EPA evaluates more sites, the numbers at which nitrophenols are found may change. These are manmade chemicals with no evidence of their formation from any natural source. The World Health Organization (WHO) is stricter on phenolic compounds regulation. It sets a 0.001 mg/l as the limit of phenol concentration in potable water [4]. Nitrophenols are known to be toxic to human and vegetal matter [5]. Indeed, nitrophenols are some of the most difficult pollutants to remove from industrial waste water. Nitrophenols and its derivatives result from the production of pesticides, herbicides [6,7]. Various methods were proposed for removal of phenolic compounds from water. Some are destructive such as biological degradation and chemical oxidation. Others are non-destructive such as solvent extraction and adsorption. The adsorption technique using activated carbon is one of the alternative treatment processes currently under consideration for achieving the required level of phenol removal. Accordingly, the adsorption of phenol and its derivatives has been the subject of numerous investigations [8-11]. p-Nitrophenol has been one (or the principle) adsorbate in all of these studies. An optimal adsorbent for the removal of organic compounds in waste water should have the following properties: low cost, ease of handling, environmental neutrality and high affinity for the sorbate at high capacity. Biomass mainly derived from agricultural solid waste is a preferable option for activated carbon precursors.

Numerous successful attempts have been done to develop activated carbons from various range of agricultural solid waste such as apricot stones, palm tree branches; rice husk, saw dust and coir pith [12-16]. Saw dust is considered as an agricultural waste and a by-product of manufacturing industries which can be easily identified to be a hazard especially, because of its flammability. Despite saw dust utilization in the form of saw dust pellets, biomass boiler feed power generation at demonstration stage [17], there is still an estimated 6 million tons/year of sawdust going to actual wastage. It is available in the country side at zero or negligible price i.e: simply open air saw dust going to actual energy capture or otherwise to reduce pile volumes at saw mills. The wasted saw dust provides a practical and sustainable source for development of better quality low-cost activated carbon for efficient abatement of toxic metal ions and organic chemicals from industrial and municipal waste waters at reduced cost.

The paper objective is to evaluate the feasibility of developing low-cost activated carbon obtained from saw dust of textural quality and aqueous phase p-nitophenol removal capacity. The equilibrium and kinetic data of the adsorption were then studied to understand the adsorption.

2. MATERIALS AND METHODS

2.1 Preparation of Activated Carbon

The raw saw dust was collected from a local furniture manufacturing industry and sieved in the size ranges (0.85-1.15) mm. saw dust was washed with distilled water to remove muddy materials and impurities, then dried in an oven at 100-110°C and thus used as a starting raw material for preparation of activated carbons denoted as SDR. A common horizontal furnace was used for the different activation process, defined as follows:

Series A: Direct carbonization 300 gm of saw dust was subjected to carbonization at 700°C under the influence of nitrogen flow (150 ml/min) for 2 hrs, the carbonized product was repeatedly washed with distilled water. The sample was

Conclusion: It is thus concluded, high quality carbon can easily be produced from saw dust through chemical and thermal activation.

Keywords: Saw dust; active carbon; adsorption; thermodynamic parameters; intra-particle diffusion.
then oven-dried at 110°C for 24 hrs and designed as SDC.

Series B: An accurate weight of produced char (50 gram) was impregnated with the equivalent weight of potassium hydroxide (KOH) at impregnation ratio of 1:1. The mixture then was dehydrated in a drying oven at 100°C for overnight. The dried solid mixture then was employed to carbonized at 600°C for 2 hrs under its own atmosphere. The material was thoroughly washed with distilled water and soaked in dilute HNO₃ overnight to eliminate the residual alkali content from the pores of the carbon and designates as SDK.

Series C: 50 gm of produced char was impregnated with 50% (v/v) phosphoric acid and left overnight at room temperature. The impregnated sample was carbonized at 600°C for 2 hrs. The carbons thus produced were then repetitively washed with distilled water to recover the acid and further washed with 1% NaHCO₃ solution to remove the traces of residual acid and designates as SDP.

2.2 Characterization of Activated Carbon

Surface morphology of the produced saw dust activated carbon was investigated using scanning electron microscope (SEM) with a Joel instrument, Japan Probe Micro-Analyzer, JXA 840 A electron. Textural characterization of the produced saw dust activated carbon was carried out by N₂ adsorption at 77 K using (NOVA version 2.1 Quantachrome Corporation, USA). The samples were degassed under vacuum at 523 K for 2 hrs before measurements were made. Specific surface area (S_INFO m²/g) was calculated by applying the BET equation, total pore volume (V_INFO cm³/g) is obtained from the volume of nitrogen adsorbed at P/PO = 0.95, and average pore radius estimated by r = 2 V_INFO / S_INFO. Fourier transfer infera-red (FTIR) analyzer was used to investigate the presence of active carbon surface functional group (6100-JASCO). The spectrum was recorded from 4000 to 400 cm⁻¹ adopting the KBr pellet method of sample handling.

2.3 Adsorbate

Para nitrophenol was high grade chemical produced by Merck Co. Germany. The concentration of p-nitrophenol in the aqueous solution was determined using a double beam UV spectrophotometer (Shimadzu PC 2401) at wavelength 317 nm.

Table 1 listed the chemical structure, molecular weight, pKa solubility in water of PNP.

Table 1. Properties and chemical structure of p-nitrophenol

Symbol	PNP
Molecular formula	C₆H₅O₃N
Chemical structure	![Chemical Structure](image)
PKₐ at 25°C	7.15
Solubility at 25°C	17

2.4 Adsorption Studies

Adsorption tests were performed in a set of Erlenmeyer flasks (250 ml) were 100 ml of (PNP) solutions with initial concentrations of (20-120 mg/L) were placed in these flasks. Equal mass of (0.1g) of the prepared saw dust activated carbon samples were added to each flask and kept in an isothermal shaker of 120 rpm at [298, 313 and 323K] for 24 hr to reach equilibrium. The pH of the solution was 6. Aqueous samples were taken from the solution and the concentrations were analyzed. The amount of PNP taken by the tested carbon at equilibrium qₑ (mg/g) was calculated by

\[q_e = \frac{(C_0 - C_e)}{W} \times V \] \hspace{1cm} (1)

where C₀ and Cₑ (mg/L) are, the liquid-phase concentrations of PNP at initial and equilibrium respectively. V (L) is the volume of the solution and W (g) is the mass of activated adsorbent used. For kinetic studies, 1(g) of saw dust activated carbon was introduce into 100ml of PNP solution of 500 mg/L at room temperature and pH= 6 and kept in a laboratory shaker for various mixing time. At predetermined intervals of time solutions were analyzed for the final concentrations of PNP. The amount of adsorption qₜ (mg/g) at time t (min) was calculated by

\[q_t = \frac{(C_0 - C_t)}{W} \times V \] \hspace{1cm} (2)

where C₀ (mg/L) is the concentrations of PNP at time t. The effect of pH on PNP removal on the saw dust activated carbon was examined by varying the pH of the solutions from 2 to 12 with initial PNP concentration of 100 mg/L, activated carbon dosage of 0.1g/100 ml and at room...
temperature. 0.1N HCl and 0.1N NaOH solutions are used for pH adjustments.

3. RESULTS AND DISCUSSION

3.1 Identification of Surface Functional Groups by FTIR

Oxygen-containing surface functional groups play an important role in influencing the surface properties and adsorption behavior of activated carbons. These groups can be formed during activation process or can be introduced by oxidation after preparation of activated carbon [18]. Saw dust mainly consists of lignin, cellulose, hemicellulose and some proteins which make them effective adsorbents. Although saw dust activated carbon was prepared via various activation methods, there is a slight similarity in the adsorption patterns (Fig. 1).

The spectra show that the surface functional groups of the tested samples do not exhibit significant difference independently of the activating agent used. Only slight difference on the intensity of the bands and some functional groups shifted to different frequency level. The major peaks recorded for tested samples are listed in Table (2).

The strong band around 3430-3420 cm\(^{-1}\) refers to the –OH stretching vibration due to inter and intra-molecular hydrogen bonding of polymeric compounds such as phenols, alcohols and carboxylic acids. Only SDC and SDK showed intense bands between 3900-3762 cm\(^{-1}\) corresponding to free–OH group [19].

In these spectra we can observe band around 1700-1600cm\(^{-1}\) refers to the stretching vibration of C=O of lactone or C=C (i.e: phenyl), [20]. Similarly, the strong peak seen at 1450-1480 cm\(^{-1}\) has been assigned to stretching vibrations of C—C bonds. A peak at 1592 cm\(^{-1}\) refers to C=O stretch of carbonyl group in quinone as well as representing γ-pyrene structure with strong vibrations from a combination of C=O and C=C, minor peak at 2920-2930 cm\(^{-1}\) which characterize symmetric and asymmetric vibrations of —CH\(_2\)— groups. The intensity of absorption band around 1300-1000cm\(^{-1}\) indicates the existence of C—O in carboxylic acids, alcohols and esters, or a P=O bond in phosphate esters and P=OOH [21]. Finally, the peaks in the region 870-500 cm\(^{-1}\) in FTIR spectra indicate aromatic C—H bending. From the spectra of the saw dust activated carbons, it can be noted that all the samples contain oxygenated surface functional groups of phenolic character causes acidic surface properties where as carbonyl, quinone and pyranose-like groups bring about surface basicity [22].

The morphological studies by SEM micrographs of tested samples are shown in (Fig. 2).

It is clear from Fig. (2A) that the surface morphology was characterized by a highly oriented structure in the form of filaments filled with material, conferring an anisotropic character. The micrograph of pyrolyzed char SDC (Fig. 2A) shows that the surface barely consists of pores. Among all the morphology surface of the activated carbon prepared by KOH and H\(_3\)PO\(_4\) processes Figs. (2B, 2C) shows the presence of pores. However, saw dust activated carbon impregnated with KOH Figs. (2B) shows highly defined pores and cavities. The mechanism by which potassium hydroxide activates an existing carbon are more complex and involves the disintegration (almost explosively) of structure following intercalation as well as some gasification by oxygen molecules of hydroxide.

Based on the data in Table (3), activation by H\(_3\)PO\(_4\) produced activated carbon with a higher surface area, total pore volume and possessed a texture with higher microprosity and mesoprosity characteristics. This character could be reflected in the removal capacity of this adsorbent towards large organic molecules from aqueous media [23].

3.2 Effect of Solution pH

The pH of the solution affects the surface charge of the adsorbents as well as the degree of ionization and speciation of different pollutants. Change in pH affects the adsorptive process through dissociation of functional groups on the adsorbent surface active sites. This subsequently leads to a shift in reaction kinetics, equilibrium characteristics and adsorption process. The corresponding results illustrated in (Fig. 3).
Fig. 1. FTIR-spectra of saw dust activated carbon A) SDC b) SDK c) SDP

Table 2. The appearances of functional groups on surface of saw dust activated carbon a) SDC b) SDK C) SDP

Wave number cm⁻¹	Vibrational mode	Functional group
3900-3800	OH- Stretching	In phenol, alcohol → free
3400	OH- Stretching	H₂O, phenol, alcohol (intra and intermolecular hydrogen bonded)
2900	C-H Stretching	CH₂-CH₃ [in vinyl and methyl group]
1700	C=O Stretching	Carboxyl in carboxylic acid
1600	C=O Stretching	Carbonyl in ketone
1500	C=C Stretching	Aromatic compound
1400	O-H bending	Alcohol, carboxylic acid
1300	C-H bending	-CH₃ group
1200	C-O Stretching	Carboxylic acid
1100	C-O Stretching	Alcohol
800-700	C- H deformation	C-H out of plane deformation
600-500	C-H out of plane	C-H out of plane of benzene derivatives

Table 3. Physico-chemical characteristics of prepared activated carbon

Phsico-chemical characteristics	SDC	SDK	SDP
S_BET (m²/g)	392	494	831
V_p (cm³/g)	0.106	0.212	0.39
Average pore diameter (Å)	10.88	17.25	19.2
pH_{ZPC}	6	7	6
It can be observed that the removal of PNP increases with increasing pH from their minimum at lower pH of 2 (85% for SDC, 44% for SDK and 68% for SDP) to their maximum at pH of 6, where the removal of 95% of SDC, 84% of SDK, while for SDP maximum pH obtained at 4. An increase in pH above 6 shows a decreasing trend in adsorption. This can be explained by solubility dissociation equilibrium and Benzene ring. Introduction of NO$_2^-$ group to phenols resulted in increasing adsorption due to decrease water solubility [24]. The pH$_zpc$ of SDC, SDK, and SDP was found to be 7, 7 and 6 respectively. Above this pH carbon surface is negative. The protonation of the adsorbed surface and phenol molecules at lower pH leads to extensive repulsion. The pKa of PNP was found to be 7.1 and thus, at optimum conditions of pH the protonated species appear to be more readily adsorbed on the negative surface of the carbon. A donor-acceptor complex mechanism was reported earlier [24,25] for the adsorption of PNP on activated carbon. In this mechanism carbonyl oxygen group on the carbon surface acts as an electron donor whereas the aromatic ring of the phenol acted as the acceptor. As the presence of NO$_2$ group leads to the formation of bond between the surface carboxylic groups and the electron-poor aromatic ring of PNP. Reduction in the adsorption at higher pH is possibly due to the increased solubility of phenols and the abundance of OH$^-$ ions thereby increasing hindrance to diffusion of phenolate ions [26].

3.3 Adsorption Dynamics

Available adsorption studies in literature reveal that the uptake of adsorbate species is fast at the initial stages of the contact period, and thereafter, it becomes slower near the equilibrium. In between these two stages of the uptake, the rate of adsorption is found to be nearly constant. This is obvious from the fact that a large number of vacant surface sites are available for adsorption during the initial stage, and after a lapse of time, the remaining vacant surface sites are difficult to be occupied due to repulsive for a between the solute molecules on the solid and bulk phases.

The effect of the contact time on the adsorption capacity of the saw dust activated carbons is given in Fig. (4).

PNP solution was kept in contact with prepared samples for 24h, although, no significant variation in residual PNP concentration was detected after 2h of contact time. Thus, after 2h of contact, a steady-state approximation was assumed and a quasi-equilibrium situation was accepted .The contact time varied in the range 0-135 min. (Fig. 4), illustrates, the time required to achieve the equilibrium was about 75 min for SDK and SDP while for SDC attains equilibrium earlier within 30 min. We can observe that the adsorption is rapid in the first minutes of contact time [27]. The nature of the samples had a market effect in PNP removal, leading to the SDP having higher adsorption capacity than the SDK and SDC. The selectivity of the saw dust activated carbons based on q_t values followed the order SDC < SDK < SDP.

It is important to be able to predict the rate at which contamination is removed from aqueous solutions in order to design an adsorption treatment plant. In order to investigate the mechanism of adsorption and potential rate controlling steps such as mass transfer and chemical reaction. The kinetics of PNP adsorption onto the saw dust activated carbons was investigated using three different models: the pseudo-first-order (Lagergen model), the pseudo-second-order and intra particle diffusion. A relatively high R^2 value indicates that the
The pseudo-first order equation (3) is one of the most widely [29] being the first rate equation developed for sorption in solid/liquid systems.

The integral form of this model is:

\[\log(q_e - q_t) = \log q_e - \left(\frac{k_1}{2.303}\right)t \]

where \(q_e \) and \(q_t \) are the amounts of PNP adsorbed at equilibrium and time \(t \) respectively (mg/g) and \(k_1 \) is the pseudo first-order rate (min\(^{-1}\)). The slopes and intercepts of plots \(\log(q_e - q_t) \) vs \(t \) figure not shown, were used to determine the rate constant \(k_1 \). The values obtained being presented in Table (4).

The adsorption data were also be described by a pseudo-second order kinetic reaction [30] using the equation:

\[\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \left(\frac{1}{q_e}\right)t \]

where \(k_2 \) (g mg\(^{-1}\)min\(^{-1}\)) is the second-order rate constant of adsorption. This model assumes that the adsorption rate is proportional to the number of unoccupied sites on the adsorbent surface. The values of \(q_e \) and \(k_2 \) can be estimated experimentally from the slope and intercept of the plot \(t/q_t \) versus \(t \), as shown in Table (4).

It could be noted that adsorption of PNP on the saw dust activated carbons satisfactorily followed the pseudo-second order rate equation. This was reflected by the high \(R^2 \) values (>0.99). This reflect on the hypothesis that the rate limiting step may be chemisorption relating valency forces through sharing or exchange of electrons between adsorbent and adsorbate. The similar phenomenon have also been observed in the adsorption of 4-chlorophenol onto activated carbon from rattan saw dust.

Since neither the pseudo-first order nor the second order model can identify the diffusion mechanism, the kinetic results were analyzed by the intra-particle diffusion model to elucidate the diffusion mechanism, which is expressed as [31],

\[q_t = k_{id} t^{0.5} + C \]

where \(k_{id} \) is the intra-particle diffusion rate constant and intercept \(C \) represents the value of the thickness of the boundary layer. Fig. 5 illustrates the plots of \(q_t \) versus \(t^{0.5} \) for different saw dust activated carbons at room temperature. The plots are not linear over the whole time range, indicating that more than one step affecting the PNP adsorption. For example, the first step is might due to the boundary layer diffusion at the initial stage of the adsorption and the intra-particle diffusion which gives the other
two linear parts. The intra-particle diffusion starts with a rapid transport of adsorbate molecules. The second portion of linear curve attributes to the gradual adsorption, where intra-particle diffusion is a rate limiting. The third portion refers to the final equilibrium stage signified by a formation of plateau, indicating a weak activity of the intra-particle diffusion due to low adsorbate concentration left in the solution [32]. On the other hand, most of the adsorption sites have been occupied after lapse of time thus limited free sites for the adsorbate molecules to attach on. If the intra-particle diffusion is the only rate controlling step then the plot passes through the origin, else the boundary layer diffusion affects the adsorption to some degree. The linear curve is deviated from the origin or near saturation because of the differences in the mass transfer rate in the initial and final stages of adsorption [33,34]. Plots of \(q_t \) versus \(t^{0.5} \) are shown in (Fig. 5) and the values of \(k_{id} \) and \(C \) were presented in Table (4).

3.4 Adsorption Isotherm

An important feature of modern engineering is the ability to adequately model the behavior of the system before committing to large-scale investment. Basic theoretical understanding, experimental observations and measurements of a system are required to develop a good model. Proper analysis and design of adsorption need relevant adsorption equilibrium as one of the vital information. Equilibrium concentrations of adsorbate and adsorbent are functions of temperature. Thus, the adsorption equilibrium relationship at a given temperature is referred as an adsorption isotherm. Several adsorption isotherms are available and readily adopted to correlate adsorption equilibrium. In the present study, Langmuir, Freundlich and Temkin were used to explain the phenomenon.

![Fig. 4. Effect of contact time on the removal of PNP](image)

Table 4. Kinetic model parameters of PNP onto saw dust activated carbons

Sample	First order model	Second order model	Intraparticle diffusion
	\(k_1 (\text{min}^{-1}) = 5.77 \times 10^{-3} \)	\(K_2 (\text{g/mg min}^{-1}) = 0.073 \)	\(K_f (\text{mg/g min}^{-3/2}) = 0.09 \)
	\(q_1 (\text{mg/g}) = 0.85 \)	\(q_2 (\text{mg/g}) = 1.11 \)	\(C_1 (\text{mg/g}) = 0.16 \)
	\(R^2 = 0.75 \)	\(R^2 = 0.989 \)	\(R^2 = 0.98 \)
SDC			
	\(k_1 (\text{min}^{-1}) = 0.0063 \)	\(K_2 (\text{g/mg min}^{-1}) = 3 \times 10^{-3} \)	\(K_f (\text{mg/g min}^{-3/2}) = 4.8 \)
	\(q_1 (\text{mg/g}) = 58 \)	\(q_2 (\text{mg/g}) = 116 \)	\(C_1 (\text{mg/g}) = 26 \)
	\(R^2 = 0.76 \)	\(R^2 = 0.99 \)	\(R^2 = 0.98 \)
SDK			
	\(k_1 (\text{min}^{-1}) = 0.009 \)	\(K_2 (\text{g/mg min}^{-1}) = 5.5 \times 10^{-3} \)	\(K_f (\text{mg/g min}^{-3/2}) = 12.8 \)
	\(q_1 (\text{mg/g}) = 30 \)	\(q_2 (\text{mg/g}) = 114 \)	\(C_1 (\text{mg/g}) = 71 \)
	\(R^2 = 0.80 \)	\(R^2 = 0.99 \)	\(R^2 = 0.99 \)
SDP			
The Langmuir model presumes uniform energies of adsorption onto the surface and no transmigration of adsorbate in the plane of the surface [35]. This model can be represented by the following equation:

$$\frac{C_e}{q_e} = 1/K_L q_{\text{max}} + \frac{C_e}{q_{\text{max}}}$$

where q_{max} and K_L are Langmuir constants related to adsorption capacity and rate of adsorption, respectively. When C_e/q_e was plotted against C_e, a straight line was obtained. q_{max} was calculated from the slope whereas K_L was found from the intercept (figure not shown).

Freundlich [36] isotherm in the other hand assumes a heterogeneous surface with a non-uniform distribution of heat of adsorption over the surface, the well-known linear form of Freundlich model is given by the following equation:

$$\ln q_e = \ln k_F + \frac{1}{n} \ln C_e$$

where C_e is the equilibrium concentration of the adsorbate (mg/L), q_e is the amount of adsorbate adsorbed per unit mass of adsorbent (mg/g). K_F [(mg/g) (L/mg)$^{1/n}$] is the adsorption capacity of the adsorbent and n is a measure of adsorption intensity or surface heterogeneity. The plot of $\ln q_e$ versus $\ln C_e$ (Figure not shown) gave a straight line with slope of $1/n$ whereas k_F was calculated from the intercept value.

Another popular equation for the analysis of isotherms is Temkin and Pyzhev [37] which is based on the supposition that the decline of the heat of adsorption as a function of temperature is linear rather than logarithmic

$$q_e = (RT/b) \ln(K_T C_e)$$

Eq.(8) can be linearized as:

$$q_e = B_1 \ln K_T + B_1 \ln C_e$$

where $B_1 = RT/b$ and K_T are constants. K_T is the equilibrium binding constant (L/mg) corresponding to the maximum binding energy and constant B_1 is related to the heat of adsorption. A plot of q_e versus $\ln C_e$ (not shown) enables the determination of the isotherm constant K_T and B_1. Their values are shown in Table (5) along with the value of the correlation coefficient.

As given in Table (5), the value of q_{max} is significantly higher for SDK and SDP system than SDC. In adsorption mechanism of aromatic compounds in liquid phase on activated carbon, there are mainly two types of interactions electrostatic and dispersive [38]. Different authors have reported that the order of adsorption affinity may be interpreted on the basis of the chemical and physical characteristics of molecules, the nature of the different groups located on the aromatic ring and also on the type
of functional groups presented on the surface of the activated carbon.

The presences of carboxylic or lactonic groups, these groups are acidic which suppresses the adsorption of PNP. In addition, the water molecules cluster around the polar acidic surface groups again reducing the adsorption capacity. The adsorption of PNP is the highest when the carbonyl groups (quinonic) are the dominating surface groups. This increase in adsorption of PNP can be attributed to the theory of the formation of \(\pi-\pi \) bonds where activated carbon act as an electron donar and the solute benzene ring has an electron withdrawing character [39, 40]. The nitro-group of nitrophenol is electron withdrawing, thereby causing a decrease in electron density of the \(\pi \) electrons of the benzene ring. Therefore, dispersion forces between the carbon surface and PNP are expected to be the strongest according to the following order SDP > SDK > SDC.

3.5 Thermodynamic Study

As temperature is one of the parameters that can exercise greater influence on the adsorption process, the thermodynamic characterization of the solid liquid interface is important to the understanding of the adsorption mechanism [41]. Therefore, the effect of temperature on adsorption of PNP on SDC, SDK and SDP was studied at temperatures of (298, 313 and 333 K).

The Gibb’s free energy \(\Delta G^\circ \) can be calculated from equation (10) and (11).

\[
\Delta G^\circ = RT \ln K_L
\]

\[
\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ
\]

It can be seen in Table (6) that the amount of PNP adsorbed onto the three saw dust activated carbons \((q_e) \) and \(K_L \) decreases with the increase of adsorption temperature.

As depicted from Fig. (6) the decrease in the uptake of PNP with the increase in temperature may be explained as a result of the increase in the average kinetic energy of the PNP phenolate anions and negatively charged activated saw dust surface. This could lead to desorption or cause the PNP to bounce of the surface of the activated saw dust instead of colliding and combining with it. Therefore, the increase in temperature may be associated with the decrease in the stability of PNP phenolate anion-adsorbent complex [42].

Based on the data in Table (7), that the values obtained for \(\Delta G^\circ \) are negative indicating the spontaneity of the process especially at lower temperature. The values of \(\Delta H \) for different saw dust activated carbons are negative, involved libration of energy, characterizing an exothermic process. The negative value of \(\Delta S \) (entropy) represents that the motion of molecules restricted towards the surface of saw dust activated carbons and their disordered decreased resulting in the decrease in entropy.

Table 5. Isotherms constants for adsorption of PNP onto saw dust activated carbons at room temperature 298K

Isotherm	SDC	SDK	SDP
Langmuir			
\(q_e \) (mg/g)	29.5	60.2	62
\(K_L \) (L/mg)	0.084	0.16	0.40
\(R^2 \)	0.99	0.989	0.99
Freundlich			
\(K_F \) (mg/g(L/mg)) \(^{1/n} \)	15.13	17.37	15.84
\(N \)	3.1	3.6	7.5
\(R^2 \)	0.80	0.78	0.81
Temkin			
\(B_1 \) (kJ/mol)	658	366.8	728
\(K_T \) (L/mg)	5.9	54.5	109
\(R^2 \)	0.68	0.80	0.86
Fig. 6. Thermodynamic parameters of saw dust activated carbons 1) SDC (2) SDP (3) SDK

Table 6. Influence of adsorption temperature on the parameters of the Langmuir isotherm for different saw dust activated carbons

Temperature	SDC		SDK		SDP		
	K	q_o (mg/g)	K_L (L/mg)	q_o (mg/g)	K_L (L/mg)	q_o (mg/g)	K_L (L/mg)
298	29.5	0.084	60.2	0.16	62	0.4	
313	17	0.05	43	0.14	43	0.2	
333	14	0.04	6	0.02	31	0.19	

Table 7. The thermodynamic parameter for saw dust activated carbons

Adsorbent	Temperature K	ΔG°	ΔH°	ΔS°
SDC	298	-23.18		
	313	-22.97	-2.5	-27.42
	333	-23.83		
SDK	298	-27.04	-5	-31.5
	313	-25.67		
	333	-21.9		
SDP	298	-27.04	-2	-14.12
	313	-26.59		
	333	-28.15		

In general, the enthalpy change due to chemical adsorption is considerably larger than that due to physical adsorption (< 40 kJ/mol). Hence, the adsorption of PNP on the prepared carbons is due to physical adsorption for the described temperature ranges [43,44].

4. CONCLUSION

The ability of modified saw dust to remove PNP from aqueous solution was investigated in equilibrium, kinetics and thermodynamics. Equilibrium data agreed well with Langmuir
isotherm models. The kinetic data were found to follow the pseudo-second order model. Intraparticle diffusion is not the sole rate controlling factor. The negative values of ΔH° and ΔG° revealed the feasibility of adsorption. Solution pH has great effect on the uptake of PNP.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Bhatnagar A. Removal of bromphenols from water using industrial waste as low cost adsorbents. J. Hazardous Materials. 2007;13:93-102.
2. Frimmel FH, Huler L. Influence of humic substances on the aquatic sorption of heavy metals on defined minerals phases. Environmental International. 1996;22:507-517.
3. Canizares P, Carmana M, Baraga O, Delgado A, Rodrigo MA. Adsorption equilibrium of phenol onto chemically modified activated carbon F400. J. Hazardous Materials. 2006;131:243-248.
4. WHO. International standards for Drinking Water. WHO, Geneva. 1963;40-42.
5. Sing BK, Nayak PS. Sorption Equilibrium Studies of Toxic Nitro-substituted phenols on Fly Ash. Adsorption Science & Technology. 2004;22:295-309.
6. Salman JM, Njoku VO, Hameed BH. Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chemical Engineering Journal. 2011;174:41-48.
7. Foo KY, Hameed BH. Detoxification of pesticide waste via activated carbon adsorption process. J. Hazardous Materials. 2010;175:1-11.
8. Attia AA, Girgis BS, Khedr SA. Capacity of activated carbon derived from pistachio shells by H3PO4 in the removal of dyes and phenols. J. Chemical Technology and Biotechnology. 2003;78:611-619.
9. Azan T, Mohd D, Hameed BH. Abdul I Ahmed. Bach adsorption of phenol onto physicochemical-activated coconut shell. J. Hazardous Materials. 2009;161:1522-1529.
10. Haydar S, Ferro MA, Carica JR, Utrilla JPJ. Adsorption of p-nitro-phenol on an activated carbon with different oxidations. Carbon. 2003;41:387-395.
11. Tang D, Zheng Z, Lin K, Luan J, Zhang J. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon Fiber. J. Hazardous Materials. 2010;143:49-65.
12. Girgis BS, Attia AA, Fathy NA. Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases. J. Colloidal Chemical Enginerring, Aspects. 2007; 299:79-87.
13. Khedr SA, Shoman M, Fathy NA, Attia AA. Effect of physical and chemical activation on the removal of Hexavalent chromium ions using Palm Tree Branches. ISRN Environmental Chemistry; 2014. Available: http://dx.doi.org/10.1155/2014/705069.
14. Guo Y, Yu K, Wang Z, Xu H. Adsorption of Cr(VI) on micro- and mesoporous rice husk based activated carbon. J. Mater. Chem. Phys. 2002;78:132-137.
15. Jadhav DN, Vanjara AK. Removal of phenol from waste water using saw dust, polymerized saw dust and saw dust carbon. Indian J. Chem. Tech. 2004;11:35-41.
16. Namasivayam C, Sangeetha D. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solide waste. Chemosphere 2005;60:1616-1623.
17. Mamphwell NS, Mayer EL. Implementation of the biomass gasification project for community emprovement at Melan village, Eastern Cape, South Africa. Renewable Energy. 2009;34:2923-2927.
18. Singh Nalwa Hair. Handbook of surface and Interfaces of Materials. 2001;5.
19. Martins AF, et al. Low temperature conversion of rice husks, eucalyptus saw dust and peach stones for the production of carbon like adsorbent. Bioresource Technology. 2007;5:1095-1100.
20. Petrov N, Budinova T, Razvigorova M, Ekini E, Yardin F, Minkova V. Preparation and characterization of carbon adsorbents from furfural. Carbon. 2000;38:2069-2075.
21. Guo Y, Rockstraw DA. Activated carbons prepared from rice hull by one-step
phosphoric acid activation. Micropore Mesopore Materials. 2007;100:12-19.

22. Boehm HP. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002;40:145-149.

23. Kalil BL, Girgis BS. Adsorption of p-nitrophenol on activated carbon prepared from phosphoric acid-treated Apricot stone shells. Adsorption science and Technology. 1995;12(1).

24. Aksu Z, Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents Waste Management. 2001;21:695-702.

25. Goud VV, Mohanty K, Rao MS, Jayakmar NS. Phenol removal from aqueous solution using tamarind nut shell activated carbon: batch and column study. Chemical Engineering Technology. 2005;28:814-821.

26. Banat F, Al-Ashek S, Al-Makhadmeh L. Utilization of raw and activated date pits for the removal of phenol from aqueous solutions. Chemical Engineering Technology. 2004;27:80.

27. Ahmaruzzaman M, Gayalri SI. Bach adsorption of 4-nitrophenol by acid activated jute stick char: Equilibrium kinetic, thermodynamic studies. J. Chem. Engin. 2010;158:173-180.

28. Fathy NA, Sayed Ahmed SA, Abo El-Enin RMM. Effect of activation temperature on textural and adsorptive properties for activated carbon derived from local reed biomass: removal of p-Nitrophenol. Environmental Research, Engineering and management. 2012;159:10-22.

29. Lagergren S. Zur theorie der sogenannten adsorption geliester stoffe. Kungliga svenska vetenska skpsakad. Handlingar. 1898;24:1-39.

30. Hameed BH, Chin LH, Rengaraj S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan saw dust. Desalination. 2008;225:185-198.

31. Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J. Sanitary Engineering Division. 1963;89:31-39.

32. El-Sheikh AH, Newman AP, Said AJ, Alzawahreh AM, Abo-Helal MM. Improving the adsorption efficiency of phenolic compounds into olive wood bisorption by pre-washing with organic solvents: Equilibrium, kinetic and thermodynamic aspects. Journal of Environmental Management. 2013;118:1-10.

33. Aravindhan R, Rao JR, Nair BU. Application of a chemically modified green macro algae as a biosorbent for phenol removal. J. Environmental Management. 2009;90:1877-1883.

34. Hall KR, Eagleton LC, Acrivos A, Vermeulen T. Pore and solid diffusion kinetic in fixed bed adsorption under constant pattern conditions. Industrial Engineering Chemical fundemental. 1996; 5:212-223.

35. Langmuir I. The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society. 1916;38.

36. Freundlich HMF. Over the adsorption in solution. J. Physical. Chem. 1906;57:385-470.

37. Temkin MJ, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physiochem. USSR. 1940;12:217-222.

38. Moreno C. Castilla. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon. 2004;42:83-94.

39. Bansal RC, Goyal M. Activated carbon adsorption. CRC Press, New York. 2005;168-178.

40. El-Sheikh AH, Alzawahreh AM, Sweileh JA. Preparation of an efficient sorbent by washing then pyrolysis of olive wood for simultaneous solid phase extraction of chloro-phenols and nitro-phenols from water. Talanta. 2011;85:1034-1042.

41. Hsisheng T, Chien TH. Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbon prepared from bituminous coal. Industrial Engineering Chemical Research. 1998;37:3618-3624.

42. Varghese S, Vinod VP, Anirudhan TS. Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment. Indian Journal of Chemical Technology. 2004;11:825-833.

43. Al-aooh HA, Maah MJ, Yahya R, Abas MR. Isotherms, Kinetics and Thermodynamics of 4-Nitrophenol Adsorption on Fiber-Based Activated Carbon from Coconut Husks Prepared Under Optimized
Conditions. Asian Journal of Chemistry. 2013;25:9573-9581.

44. Priscila FDS, Zuy MM, Marco ALS, Rossi Ricardo F, Resende Cleition A, Nunes. Optimization by response surface methodology of the adsorption of Coomassie Blue dye on natural and acid-treated clays. J. Environmental Management. 2013;130:417-428.

© 2015 Attia et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history.php?id=772&id=5&aid=8097