Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Shorter infusion time of ocrelizumab: Results from the randomized, double-blind ENSEMBLE PLUS substudy in patients with relapsing-remitting multiple sclerosis

H-P Hartung⁎, T Berger, RA Berme, B Brochet, WM Carroll, T Holmøy, R Karabudak, J Killestein, C Nos, F Patti, A Perrin Ross, L Vanopdenbosch, T Vollmer, R Buffels, M Garas, K Kadner, M Manfrini, Q Wang, MS Freedman

ABSTRACT

Background: Ocrelizumab is an approved intravenously administered anti-CD20 antibody for multiple sclerosis (MS). Shortening the 600 mg infusion to 2 hours reduces the total site stay from 5.5–6 hours (approved infusion duration including mandatory pre-medication and post-infusion observation) to 4 hours. The safety profile of shorter-duration ocrelizumab infusions was investigated using results from ENSEMBLE PLUS.

Methods: ENSEMBLE PLUS is a randomized, double-blind substudy to the single-arm ENSEMBLE study (NCT03085810). In ENSEMBLE, patients with early-stage relapsing-remitting MS received ocrelizumab 600 mg infusions every 24 weeks for 192 weeks. In ENSEMBLE, patients with early-stage relapsing-remitting MS received ocrelizumab 600 mg administered over the approved 3.5-hour infusion duration. In ENSEMBLE PLUS, ocrelizumab 600 mg administered over the approved 3.5-hour infusion duration (conventional duration) is compared with a 2-hour infusion (shorter duration); the durations of the initial infusions (2×300 mg, 14 days apart) were unaffected. The primary endpoint was the proportion of patients with infusion-related reactions (IRRs) following the first Randomized Dose.

Results: From November 1, 2018, to December 13, 2019, 745 patients were randomized 1:1 to the conventional or shorter infusion group. At the first Randomized Dose, 99/373 patients (26.5%) in the conventional and 107/372 patients (28.8%) in the shorter infusion group experienced IRRs. The majority of IRRs were mild or moderate; >99% of all IRRs resolved without sequelae in both groups (conventional infusion group, 99/99; shorter infusion group, 106/107). No IRRs were serious, life-threatening, or fatal. No IRR-related discontinuations occurred. During the first Randomized Dose, 22/373 (5.9%) and 39/372 (10.5%) patients in the conventional and shorter infusion groups, respectively, had IRRs leading to infusion slowing/interruption. Adverse events were consistent with the known safety profile of ocrelizumab.

Conclusion: The rates and severity of IRRs were similar between conventional and shorter infusions. No new safety signals were detected. Shortening the infusion time to 2 hours reduces the total site stay time (including...
1. Introduction

Ocrelizumab is a humanized anti-CD20 monoclonal antibody approved for the treatment of relapsing multiple sclerosis (RMS) and primary progressive multiple sclerosis [1, 2]. Infusion-related reactions (IRRs) were among the most common adverse events (AEs) reported with ocrelizumab in the controlled treatment periods of the pivotal Phase III trials (OPERA I [NCT01247324], OPERA II [NCT01412333], and ORATORIO [NCT01194570]) [3, 4]. In the pooled OPERA population and the ORATORIO population, IRRs were mostly mild to moderate, were more frequent with the first ocrelizumab infusion, and decreased with subsequent dosing [3-5].

Ocrelizumab is currently administered as an initial dose of two 300 mg intravenous infusions 2 weeks apart, each lasting at least 2.5 hours, with subsequent doses administered every 6 months as single 600 mg infusions lasting at least 3.5 hours [1, 2]. The infusion schedule also includes pre-medication 30–60 minutes prior to each infusion of ocrelizumab, with a 1-hour post-infusion observation period. In general, but now also in light of the COVID-19 pandemic, there is an increasing burden on patients and hospital staff. Reducing the infusion time may minimize the treatment burden for patients and reduce the time required at the infusion site, without compromising on patient safety [6-8].

The ENSEMBLE PLUS study is a randomized, double-blind substudy to the single-arm ENSEMBLE study (NCT03085810) evaluating the safety, including IRRs, of a shorter infusion of ocrelizumab versus conventional infusion in a subgroup of eligible patients with relapsing-remitting multiple sclerosis (RRMS) enrolled in the main ENSEMBLE study. Primary results from ENSEMBLE PLUS in a cohort of 580 patients (interim clinical cut-off date [CCOD] September 27, 2019) demonstrated that the frequency and severity of IRRs were comparable between conventional and shorter ocrelizumab infusion periods [9]. Here, we describe the results from the full cohort of patients randomized into ENSEMBLE PLUS (n=745).

2. Materials and methods

2.1. Trial design and patients

The ENSEMBLE PLUS substudy is a prospective, multicenter, randomized, double-blind Phase IIIb study designed to evaluate the safety of a shorter-duration infusion of ocrelizumab in patients with early-stage RRMS enrolled in the main ENSEMBLE study. In ENSEMBLE, treatment-naive patients (age 18–55 years) with a confirmed diagnosis of RRMS (as per 2010 McDonald criteria) [10], disease duration ≤3 years, one or more relapses/signs of MRI activity in the prior 12 months, and an Expanded Disability Status Scale score of 0–3.5 (inclusive), received ocrelizumab 600 mg infusions every 24 weeks for 192 weeks (up to eight doses) with mandatory pre-medication. The target enrollment was 700 patients in the ENSEMBLE PLUS substudy, which included 150 patients already enrolled in the main ENSEMBLE study plus 550 newly enrolled patients; the number of patients recruited was based on the precision of the confidence intervals expected. Patients with a previous serious ocrelizumab-related IRR were excluded from the substudy.

In all patients, the first dose of ocrelizumab was administered, per label, as an initial dose of two 300 mg infusions, separated by 14 days (Supplemental Fig. 1). Randomization to either the conventional infusion group or the shorter infusion group occurred at Week 24 for newly enrolled patients. For patients already enrolled in the main ENSEMBLE study, randomization occurred at their next scheduled infusion (Week 48, 72, 96, or 120). Patients eligible to take part in this substudy were randomized (1:1) into a conventional infusion group (infusion duration: 3.5 hours) and a shorter infusion group (infusion duration: 2 hours), stratified by region (Australia, Canada, United States [US] versus rest of the world [RoW]) and dose at which the patient is randomized. An independent voice/web response system (iXRS) provider conducted randomization (with use of blocked randomization) and holds the treatment assignment code. In the conventional infusion group, patients received 600 mg ocrelizumab in 500 mL 0.9% sodium chloride infused over approximately 3.5 hours every 24 weeks for the remainder of the study duration. In the shorter infusion group, patients received an infusion of 600 mg ocrelizumab in 500 mL 0.9% sodium chloride infused over 2 hours, followed by 100 mL 0.9% sodium chloride given as a slow infusion over the remaining 1.5 hours, in order to mimic the conventional infusion duration of 3.5 hours, every 24 weeks for the remainder of the study duration (Supplemental Fig. 2a). Patients, site personnel, and the sponsor study management team remained blinded during the study. Infusions were preloaded and placed into standardized infusion cover bags on an infusion rack; the infusion administration pump was covered and operated only by an unblinded infusion nurse (Supplemental Fig. 2b). Blood samples for pharmacokinetics (PK) were only collected at the first ocrelizumab infusion post-randomization, one sample 5–30 minutes before the intravenous methylprednisolone pre-medication and samples 30 minutes after the completion of the shorter infusion and of the conventional infusion, representing the peak concentration of ocrelizumab. This manuscript reports results from the CCOD of December 13, 2019, when all patients had received the first Randomized Dose.

2.2. Standard protocol approvals, registrations, and patient consent

The relevant institutional review boards/ethics committees approved the trial protocols (NCT03085810). All patients provided written informed consent. The Steering Committee and study investigators gathered the data, and the sponsor performed the data analyses. The authors and Steering Committee agreed to submit the manuscript for publication.

2.3. Study objectives

The primary endpoint was the proportion of patients with IRRs during the infusion or within 24 hours after the infusion of the first Randomized Dose. Secondary endpoints included the severity and symptoms of IRRs, IRRs leading to treatment discontinuation, and the proportion of patients with IRRs overall and by dose after randomization. Additional exploratory endpoints related to IRRs were evaluated, and the overall safety was assessed.

AEs that occurred during or within 24 hours after the infusion and were judged to be related to the infusion were captured as an IRR on the AE electronic Case Report Form (eCRF), and associated IRR symptoms were reported on the dedicated IRR eCRF. In order not to miss any IRRs, investigational sites contacted the patients via phone after 24 hours post-infusion to capture any other IRR that might have occurred during this time period. IRR symptoms were coded by Medical Dictionary for Regulatory Activities (MedDRA) and summarized by system organ class (SOC) and preferred term (PT). IRRs were classified as occurring during the infusion or within 24 hours after the end of the infusion. IRR events occurring in a patient at both time points (during and post-infusion) were reported as two separate IRRs per infusion.
The primary summaries of IRRs were performed using the Intent-to-Treat (ITT) Population. All randomized patients were included in the ITT Population; patients were analyzed according to their randomized treatment, regardless of treatment actually received.

2.4. Safety reporting

Safety was assessed through the monitoring and recording of AEs and serious AEs. AEs were defined as all AEs including IRRs and serious MS relapses, but excluding non-serious MS relapses. AEs were reported from the first Randomized Dose onwards until the CCOD. All AEs with an onset date after the date of the first Randomized Dose were included, even if the onset was after the patient discontinued randomized treatment. AEs and serious AEs were coded by MedDRA Version 22.1 and summarized by SOC and PT.

Safety analyses are based on the Safety Population. This included all randomized patients who received any dose or part of a dose of ocrelizumab treatment and were analyzed according to the treatment actually received.

2.5. Statistical methods

Safety assessments were summarized using descriptive statistics with no formal hypothesis testing. The proportion of patients with IRRs that occurred during the infusion or within 24 hours after the infusion of the first Randomized Dose of ocrelizumab was compared between the shorter and conventional infusion groups, and point estimates of the between-treatment difference and associated symmetric 95% CIs were estimated; these estimates are presented, both unstratified and stratified, by dose at which the patient was randomized and by region (Australia/Canada/US versus RoW). The weighted average of the proportion difference across strata based on Cochran-Mantel-Haenszel weights was estimated. This approach resulted in a stratified estimated difference between the proportions in the two randomized groups, which was presented along with an associated 95% CI.

All summaries of IRRs are based on the ITT Population (all randomized patients), safety analyses are based on the Safety Population (all randomized patients who received any dose or part of a dose of ocrelizumab treatment), and the PK data are based on the PK population (randomized patients receiving any ocrelizumab treatment who had ≥1 measurable concentration value).

3. Results

3.1. Patient disposition and analysis population

A total of 754 patients were enrolled in the ENSEMBLE PLUS study (207 from the main ENSEMBLE study and 547 newly enrolled patients) across 96 investigational sites across 22 countries. Of the 754 patients enrolled, 745 patients were randomized (1:1), stratified by region and dose at which the patient was randomized, to the conventional infusion group (N=373) or shorter infusion group (N=372) (Fig. 1). All patients, ITT Population.

With the exception of age and duration since RMS diagnosis, all other demographic characteristics were recorded at the screening visit of the ENSEMBLE study. BMI, body mass index; ITT, Intent-to-Treat; MS, multiple sclerosis; RMS, relapsing multiple sclerosis; ROW, rest of the world; US, United States.

Table 1
Baseline patient demographics and disease characteristics.

	Conventional infusion (N = 373)	Shorter infusion (N = 372)
Age at first Randomized Dose, years, mean (SD)	34.2 (8.6)	34.2 (9.0)
Sex, n (%)		
Male	138 (37.0)	133 (35.8)
Female	235 (63.0)	239 (64.2)
Race, n (%)		
African Indian or Alaska native	2 (0.5)	4 (1.1)
Asian	4 (1.1)	5 (1.3)
Black or African American	15 (4.0)	11 (3.0)
Native Hawaiian or other Pacific Islander	0	1 (0.3)
White	312 (83.6)	306 (82.8)
Multiple	16 (4.3)	20 (5.4)
Unknown	24 (6.4)	23 (6.2)
Weight, kg, mean (SD)	76.7 (20.1)	75.5 (21.1)
BMI, kg/m², mean (SD)	26.3 (6.2)	26.1 (6.7)
Time since first symptom, years, mean (SD)	1.8 (1.0)	1.8 (1.2)
Randomization assignment by stratification, n		
US/Canada/Australia	112	112
ROW	261	260

All patients, ITT Population.

With the exception of age and duration since RMS diagnosis, all other demographic characteristics were recorded at the screening visit of the ENSEMBLE study. BMI, body mass index; ITT, Intent-to-Treat; MS, multiple sclerosis; RMS, relapsing multiple sclerosis; ROW, rest of the world; US, United States.

* Calculated as the date of first Randomized Dose minus date of birth (for age) or date of first MS symptom (for time since first symptom), divided by 365.25.

Fig. 1. Patient disposition and analysis population.

* Patients in the conventional infusion arm who received the first Randomized Dose only, n = 233.

 Patients in the conventional infusion group who received the first and second Randomized Doses only, n = 122. Patients in the shorter infusion arm who received the first Randomized Dose only, n = 238. Patients in the shorter infusion group who received the first and second Randomized Doses only, n = 116. CCOD: December 13, 2019. CCOD, clinical cut-off date.
IRR, infusion-related reaction. |
| --- | --- |
| First | Number (%) of patients with an infusion | 373 (100.0) | 372 (100.0) |
| | Number (%) of patients with any IRR (primary endpoint) | 99 (26.5) | 107 (28.8) |
| | Mild (Grade 1) | 69 (60.7) | 67 (62.6) |
| | Moderate (Grade 2) | 30 (30.3)* | 37 (34.6)* |
| | Severe (Grade 3) | 0 | 3 (2.8)* |
| Second | Number (%) of patients with an infusion | 140 (37.5) | 134 (36.0) |
| | Number (%) of patients with any IRR | 26 (18.6) | 36 (26.9) |
| | Mild (Grade 1) | 6 (7.7) | 24 (66.7)* |
| | Moderate (Grade 2) | 5 (3.6)* | 12 (33.3)* |
| | Severe (Grade 3) | 1 (3.8) | 0 |
| Third | Number (%) of patients with an infusion | 18 (4.8) | 18 (4.8) |
| | Number (%) of patients with any IRR | 1 (5.6) | 4 (22.2) |
| | Mild (Grade 1) | 1 (100.0)* | 3 (75.0)* |
| | Moderate (Grade 2) | 0 | 1 (25.0)* |
| | Severe (Grade 3) | 0 | 0 |

IRR, infusion-related reaction.
* Percentages based on the total number of patients with any IRR.
3.4. Adverse events

Overall, 58.8% of patients (n=218/371) in the conventional infusion group and 54.8% of patients (n=205/374) in the shorter infusion group experienced AEs (Table 5). The most common AEs, reported in ≥5% of patients in each treatment arm, were IRRs, nasopharyngitis, and headache. Most AEs were mild or moderate; eight severe (Grade 3) AEs were reported in the conventional infusion arm and six in the shorter infusion arm. There was one life-threatening (Grade 4) AE, which occurred in the conventional infusion arm; this was a case of typhoid fever which recovered and the patient did not discontinue from ocrelizumab. One patient in the conventional infusion group discontinued from ocrelizumab treatment due to an AE (depressive symptom; not considered to be related to ocrelizumab); no patients in the shorter infusion group discontinued due to an AE. Serious AEs were reported by nine patients in total: four in the conventional infusion group and five in the shorter infusion group. One patient in the conventional group withdrew from ocrelizumab treatment due to a serious AE (depressive symptom; not considered to be related to ocrelizumab). There were no fatal AEs.

4. Discussion

Results from the ENSEMBLE PLUS study show that the frequency, severity, and symptoms of IRRs were similar between conventional and shorter ocrelizumab infusions at the first Randomized Dose. The majority of IRRs experienced in the shorter infusion group were mild to moderate in severity, which demonstrates good tolerability of shorter ocrelizumab infusions. Overall, in ENSEMBLE PLUS, 1 out of the 126 IRRs (0.8%) in the conventional group were severe (Grade 3) and 3 out of the 147 IRRs (2.0%) in the shorter infusion group were severe; there were no Grade 4 or Grade 5 IRRs reported and no IRRs resulted in the discontinuation of the infusions up to the CCOD. No IRRs were serious, life-threatening, or fatal.

Interestingly, the most common IRR symptoms that occurred during the infusion of the first Randomized Dose were different from those observed within 24 hours post-infusion. The most common symptoms during the infusion were pruritus, dysphagia, and throat irritation. This was similar to the symptoms observed in pivotal trials [3-5]. The most common symptoms which occurred within 24 hours post-infusion in ENSEMBLE PLUS were fatigue, headache, and nausea.

Overall, <10% of IRRs led to intervention (slowing down or temporary interruption of the infusion). At the first Randomized Dose, there was a lower incidence of IRRs leading to infusion slowing/interruption in the conventional (22 of 373 patients; 5.9%) versus shorter (39 of 372 patients; 10.5%) infusion group. However, these interventions were mild and did not lead to discontinuation of the infusion, nor to a higher rate of IRRs requiring medical treatment in the shorter infusion group. Furthermore, despite interventions, the median infusion time in the shorter infusion group remained at 120 minutes.

In patients receiving the first Randomized Dose at Dose 4, the rate of IRRs at first Randomized Dose was higher in the shorter infusion arm compared with the conventional arm. This was likely due to an imbalance in the number of patients with prior IRRs before the first Randomized Dose. When looking only at patients without any prior IRR, the rate of IRR at first Randomized Dose was similar in both arms. This suggests that having an IRR before the first Randomized Dose was an important identified predictor for experiencing another IRR, and that the speed of the infusion did not appear to affect the rates or severity of IRRs.

Whilst the rates of IRRs at the second and third Randomized Dose at the CCOD appear to be slightly higher in the shorter infusion group compared with the conventional infusion group, the low number of patients precludes drawing meaningful conclusions. As the ENSEMBLE PLUS substudy is ongoing, rates of IRRs over Randomized Doses will be continued to be monitored closely.

Overall, the AEs observed in ENSEMBLE PLUS were consistent with the known safety profile of ocrelizumab [3-5], and no new safety signals were observed. The safety profile of ocrelizumab remains unchanged.

The ENSEMBLE PLUS study was carried out in a very specific RRMS population, with patients who had early disease. In-depth analyses have not been carried out, but overall, there is not expected to be a difference in IRRs based on MS phenotype (RRMS, RMS or primary progressive MS (PPMS)). The CHORDS study (NCT02637856) assessed ocrelizumab in US patients with RRMS who had a suboptimal response to previous...
Table 3
Summary of IRRs at first Randomized Dose by: (i) Symptoms of IRRs during the infusion; (ii) Symptoms of IRRs within 24 hours post-infusion; (iii) Symptomatic treatment of IRRs; (iv) IRRs leading to intervention in ocrelizumab infusion; (v) Outcomes of IRRs.

IRR symptom category	Conventional infusion (N=373)	Shorter infusion (N=372)
(i) Symptoms of IRRs during the infusion		
Respiratory, thoracic and mediastinal disorders	24 (24.2)	40 (37.4)
Throat irritation	19 (19.2)	32 (29.9)
Oropharyngeal	4 (4.0)	6 (5.6)
Throat tightness	2 (2.0)	1 (0.9)
Dyspnea	1 (1.0)	1 (0.9)
Pharyngeal swelling	0	2 (1.9)
Dry throat	1 (1.0)	0
Increased upper airway secretion	0	1 (0.9)
Laryngeal inflammation	1 (1.0)	0
Nasal congestion	0	1 (0.9)
Oropharyngeal edema	0	1 (0.9)
Gastrointestinal disorders	9 (9.1)	11 (10.3)
Dysphagia	7 (7.1)	8 (7.5)
Nausea	0	2 (1.9)
Dyspepsia	1 (1.0)	0
Glossodynia	0	1 (0.9)
Lip pruritus	1 (1.0)	0
Odynophagia	0	1 (0.9)
Oral pain	0	1 (0.9)
Skin and subcutaneous tissue disorders	7 (7.1)	10 (9.3)
Rash	1 (1.0)	7 (6.5)
Pruritus	3 (3.0)	3 (2.8)
Erythema	2 (2.0)	0
Rash pruritic	1 (1.0)	0
Ear and labyrinth disorders	6 (6.1)	7 (6.5)
Ear pruritus	6 (6.1)	6 (5.6)
Ear discomfort	0	1 (0.9)
Nervous system disorders	4 (4.0)	5 (4.7)
Headache	3 (3.0)	3 (2.8)
Burning sensation	0	1 (0.9)
Sensory disturbance	0	1 (0.9)
Somnolence	1 (1.0)	0
General disorders and administration site conditions	6 (6.1)	2 (1.9)
Chest discomfort	4 (4.0)	0
Fatigue	1 (1.0)	1 (0.9)
Feeling hot	0	1 (0.9)
Influenza-like illness	1 (1.0)	0
Vascular disorders	0	4 (3.7)
Hypertension	0	2 (1.9)
Hypotension	0	1 (0.9)
Pallor	0	1 (0.9)
Eye disorders	1 (1.0)	1 (0.9)
Eye pruritus	1 (1.0)	0
Lacrimation increased	0	1 (0.9)
Investigations	1 (1.0)	1 (0.9)
Blood pressure diastolic decreased	1 (1.0)	0
Blood pressure increased	0	1 (0.9)
Cardiac disorders	0	1 (0.9)
Bradycardia	0	1 (0.9)
Musculoskeletal and connective tissue disorders	1 (1.0)	0
Back pain	1 (1.0)	0
(ii) Symptoms of IRRs within 24 hours post-infusion		

Table 3 (continued)

General disorders and administration site conditions	Conventional infusion (N=373)	Shorter infusion (N=372)
Fatigue	31 (31.3)	22 (20.6)
Pyrexia	22 (5.9)	20 (18.7)
Chest discomfort	1 (1.0)	0
Chest pain	1 (1.0)	0
Feeling hot	1 (1.0)	0
Feeling jittery	1 (1.0)	0
Injection site bruising	1 (1.0)	0
Pain	1 (1.0)	0
Peripheral swelling	0	1 (0.9)
Swelling face	0	1 (0.9)
Thirst	1 (1.0)	0
Nervous system disorders	32 (22.3)	21 (19.6)
Headache	24 (24.2)	18 (16.8)
Dizziness	4 (4.0)	1 (0.9)
Tremor	2 (2.0)	1 (0.9)
Paresthesia	2 (2.0)	0
Tension headache	1 (1.0)	1 (0.9)
Disturbance in attention	1 (1.0)	0
Migraine	1 (1.0)	0
Gastrointestinal disorders	9 (9.1)	11 (10.3)
Nausea	8 (8.1)	7 (6.5)
Diarrhea	2 (2.0)	2 (1.9)
Abdominal discomfort	0	1 (0.9)
Feces soft	0	1 (0.9)
Flatus	1 (1.0)	0
Respiratory, thoracic and mediastinal disorders	11 (11.1)	5 (4.7)
Oropharyngeal pain	3 (3.0)	2 (1.9)
Throat irritation	4 (4.0)	1 (0.9)
Dyspnea	3 (3.0)	0
Dry throat	1 (1.0)	0
Dyspepsia	0	1 (0.9)
Nasal congestion	0	1 (0.9)
Sneeze	0	1 (0.9)
Vascular disorders	13 (13.1)	3 (2.8)
Flushing	9 (9.1)	3 (2.8)
Hot flash	3 (3.0)	0
Pallor	1 (1.0)	0
Muscle fatigue	1 (1.0)	0
Skin and subcutaneous tissue disorders	5 (5.1)	3 (2.8)
Pruritus	3 (3.0)	1 (0.9)
Rash	3 (3.0)	0
Erythema	0	2 (1.9)
Arthralgia	1 (1.0)	1 (0.9)
Back pain	0	1 (0.9)
Myalgia	2 (2.0)	0
Limb discomfort	0	1 (0.9)
Chest discomfort	1 (1.0)	0
(iii) Number (%) of patients with any symptomatic treatment for any IRR	42 (42.4)b	45 (42.1)b
Paracetamol	8 (19.0)c	5 (11.1)c
Diphenhydramine hydrochloride	9 (21.4)c	13 (28.9)c
Chlorphenamine	8 (19.0)c	9 (20.0)c
(iv) Number (%) of patients with any IRR leading to intervention in ocrelizumab infusion	22 (5.9)	39 (10.5)
Infusion discontinued	0	0

(continued on next page)
IRR symptoms are displayed in descending order of frequency of SOC and by preferred term within SOC. If a patient experienced more than one episode of an IRR symptom, then the patient was counted only once for that symptom. If a patient had more than one symptom in an SOC, then the patient was counted only once in that SOC. SOC and preferred terms were defined using MedDRA Version 22.1 thesaurus terms.

IRR, infusion-related reaction; MedDRA, Medical Dictionary for Regulatory Activities; SOC, system organ class.

a The combined number of patients with IRRs during the infusion and within 24h post-infusion add up to more than the total number of patients with any IRR, as IRR events occurring in a patient at both time points (during and post-infusion) were reported as two separate IRRs per infusion.

b Percentages based on the total number of patients with any IRR.

c Percentages based on number of patients with any symptomatic treatment for any IRR.

d Percentages based on the total number of patients with any IRR leading to intervention of ocrelizumab infusion.

5. Conclusions

Overall, results from the ENSEMBLE PLUS substudy provide evidence that ocrelizumab may be infused over a shorter infusion time of 2 hours reduces the total site stay time, which may minimize this burden. Furthermore, shorter infusions may help improve convenience and adherence without changing the overall safety profile of ocrelizumab. The convenience of shorter infusions may have a beneficial impact on patients, and a positive impact on health-care resources due to time and cost savings [6-8].

6. Data sharing statement

Qualified researchers may request access to individual patient-level data through the clinical study data request platform (https://vivli.org/). Further details on Roche’s criteria for eligible studies are available here: https://vivli.org/members/ourmembers/. For further details on Roche’s Global Policy on the Sharing of Clinical Information and how to request access to related clinical study documents, see here: https://www.roche.com/research_and_development/who_we_are_how_we_work/clinical_trials/our_commitment_to_data_sharing.htm.

Table 3 (continued)	Conventional infusion (N = 373)	Shorter infusion (N = 372)
Infusion interrupted	14 (63.6)d	22 (56.4)d
Infusion slowed down	8 (36.4)d	17 (43.6)d
(v) IRR outcome, n (%)b	99 (100)	106 (99.1)
Recovered/resolved with sequelae	0	0
Recovering/resolving	0	1 (0.9)

Table 4	IRRs by pre-randomization IRR at the first Randomized Dose (by dose at randomization).	Overall	Conventional Infusion (N = 107)	Shorter infusion (N = 114)	Conventional Infusion (N = 266)	Shorter infusion (N = 258)			
Dose 1	Number of patients with an infusion, n (%)a	107 (100.0)	58 (50.9)	82 (76.6)	76 (64.7)	4 (5.1)	7 (6.1)	12 (4.6)	4 (1.6)
Dose 2	Number of patients with any IRR, n (%)a	47 (43.9)	58 (50.9)	52 (19.5)	49 (19.0)	4 (4.3)	5 (4.3)	3 (1.1)	4 (1.6)
Dose 3	Number of patients with an infusion, n (%)a	82 (76.6)	82 (76.6)	82 (76.6)	82 (76.6)	4 (4.8)	4 (3.5)	8 (2.9)	8 (3.1)
Dose 4	Number of patients with any IRR, n (%)a	42 (51.2)	43 (56.6)	42 (22.5)	40 (20.6)	2 (2.4)	2 (1.8)	3 (1.1)	3 (1.2)
Dose 5	Number of patients with an infusion, n (%)a	2 (1.9)	4 (3.5)	22 (8.3)	18 (7.0)	1 (1.0)	1 (0.9)	5 (1.9)	5 (2.0)
Dose 6	Number of patients with any IRR, n (%)a	1 (50.0)	2 (50.0)	2 (9.1)	0	0	1 (20.0)	1 (20.0)	0

Table 4

IRRs by pre-randomization IRR at the first Randomized Dose (by dose at randomization).

a Percentages for number of patients with any IRR are based on number of patients with an infusion.

b Percentages for number of patients with any IRR leading to intervention of ocrelizumab infusion.

c Percentages based on number of patients with any symptomatic treatment for any IRR.

d Percentages based on the total number of patients with any IRR leading to intervention of ocrelizumab infusion.

Table 3

IRRs by pre-randomization IRR at the first Randomized Dose (by dose at randomization).
Switzerland. The Sponsor was responsible for the overall study
management (monitoring), drug supply, data management, statistical
analysis, PK, MRI image analysis, Drug Safety process and medical
writing of clinical study reports.

Conflict of interest disclosures

Sponsored by F. Hoffmann-La Roche Ltd; writing and editorial as-
sistance was provided by Articulate Science, UK.

H-P Hartung has received honoraria for serving on steering and
data monitoring committees from Bayer, Biogen, GeNeuro, Merck,
Novartis, Roche, Sanofi Genzyme, and TG Therapeutics, with approval
by the Rector of HHU.

T Berger has participated in meetings sponsored by and received
honoraria (lectures, advisory boards, consultations) from pharmaceu-
tical companies marketing treatments for multiple sclerosis: Almirall,
Bayer, Biogen, Biologix, Bionorica, Genzyme, MedDay, Merck,
Novartis, Octapharma, Roche, Sanofi/Genzyme, TG Pharmaceuticals,
TEVA ratiopharm, and UCB. His institution has received financial
support in the last 12 months by unrestricted research grants (Biogen,
Bayer, Merck, Novartis, Sanofi/Genzyme, and TEVA ratiopharm) and
for participation in clinical trials in multiple sclerosis sponsored by
Alexion, Bayer, Biogen, Merck, Novartis, Octapharma, Roche, Sanofi/
Genzyme, and TEVA.

R Bermel has received consulting fees from Biogen, EMD Serono, F.
Hoffmann-La Roche Ltd and Genentech, Inc., Genzyme, Novartis, and
Viela Bio and receives institutional research support from Biogen,
Genentech/Roche, and Novartis.

B Brochet or his institution has received honoraria for consulting,
-speaking at scientific symposia, serving on advisory boards or research
support from Actelion, Biogen Idec, Merck Serono, Sanofi-Genzyme,
Bayer, MedDay, Roche, Teva, Celgene, and Novartis, and institutional
support from ARN, ARSEP, and LFSEP (all with approval by general
director CHU de Bordeaux).

WM Carroll has received honoraria for serving on steering com-
nittees, advisory boards and for speaking at scientific meetings from
Bayer, Biogen Idec, Merck, Novartis, Roche and Sanofi Genzyme.

T Holmøy has received honoraria/consultation fees from Biogen Idec,
Sanofi Genzyme, Merck, and Roche.

R Karabudak has received honoraria for consulting, lectures, advisory
boards from Sanofi Genzyme, Roche, Novartis, Merck-Serono, Gen Ilac
TR, and Teva.

J Killestein has carried out contracted research for F. Hoffmann-La
Roche Ltd, Biogen, Teva, Merck, Novartis, and Sanofi/Genzyme.

C Nos has received honoraria/consultation fees from Roche.

F Patti received personal compensation for speaking activities and
serving on the advisory board by Almirall, Bayer, Biogen, Celgene,
Merck, Novartis, Roche, Sanofi Genzyme, and TEVA. He also received
research grants by Biogen, Merck, FISM (Fondazione Italiana Sclerosi
Multipla), RELOAD Onlus Association, and University of Catania.

A Perrin Ross has received honoraria/consultation fees from Alexion,
Biogen Idec, EMD Serono, Merck, Mallinckrodt, Novartis, Roche,
Sanofi Genzyme, Genentech, Viela Bio.

I Vanopdenbosch has received compensation for lectures and consultan-
cy from Biogen, F. Hoffmann-La Roche, Novartis, Merck-Serono, and
Sanofi Genzyme.

T Vollmer has received compensation for lectures and consultan-
cy from Biogen, Genentech/Roche, Siranax, Celgene, EMD Serono,
and Novartis, and has received research support from Rocky Mountain
Multiple Sclerosis Center, Biogen, Actelion, Roche/GeneNtech, F.
Hoffmann-La Roche Ltd, and TG Therapeutics, Inc.

RBuffels is an employee of F. Hoffmann-La Roche Ltd.

M Garas is an employee and shareholder of F. Hoffmann-La
Roche Ltd.

K Kadner is an employee of F. Hoffmann-La Roche Ltd.

M Manfrini is an employee and shareholder of F. Hoffmann-La
Roche Ltd.

Table 5
Summary of adverse events.

Total number of AEs	Conventional infusion (N=371)	Shorter infusion (N=374)
Total no. of patients with ≥1 AE, n (%)	218 (58.8)	205 (54.8)
Grade 1	191 (49.5)	183 (49.2)
Grade 2	27 (7.3)	22 (5.9)
Grade 3	8 (2.1)	6 (2.9)
Grade 4	1 (0.3)	0
Total no. of patients with ≥1: AE leading to withdrawal from OCR, n (%)	1 (0.3)	0
AE leading to OCR temporary dose interruption, n (%)	5 (1.3)	5 (1.3)
Total number of SAEs	5	5
Typhoid fever	1 (20.0)	0
Fibula fracture	1 (20.0)	0
Benign intraductal papilloma of breast	1 (20.0)	0
Depressive symptom	2 (40.0)	0
Appendicitis	0	1 (20.0)
UTI	0	1 (20.0)
Edema peripheral	0	1 (20.0)
Neutropenia	0	1 (20.0)
Hypotension	0	1 (20.0)
Total no. of patients with ≥1 SAE, n (%)	4 (1.1)	5 (1.3)
Grade 1	0	0
Grade 2	0	3 (60.0)
Grade 3	3 (75.0)	2 (40.0)
Grade 4	1 (25.0)	0
Total no. of patients with ≥1: SAE leading to withdrawal from OCR, n (%)	1 (0.3)	0
SAE leading to OCR temporary dose interruption, n (%)	1 (0.3)	1 (0.3)
Total no. of patients with infections, n (%)	75 (20.2)	67 (17.9)
Total no. of patients with serious infections, n (%)	1 (0.3)	2 (0.5)
Typhoid fever	1 (0.3)	0
Appendicitis	0	1 (0.3)
UTI	0	1 (0.3)
Total no. of deaths, n	0	0

Investigator text for AEs is coded using MedDRA Version 22.1. Percentages are based on N in the column headings. Multiple occurrences of the same AE in one individual are counted only once except for “Total number of AEs” row in which multiple occurrences of the same AE are counted separately. Treatment-emergent AEs (i.e. “1st Randomized Dose—emergent AEs”) are defined as either: a) AEs with an observed or imputed date of AE onset which is before the date of first Randomized Dose and which later worsens in intensity. Grade 4 1 (25.0)d 0

Funding

This research was funded by F. Hoffmann-La Roche Ltd, Basel,
Switzerland. The Sponsor was responsible for the overall study

...
Q Wang is an employee of F. Hoffmann-La Roche Ltd. MS Freedman has received a research grant from Genzyme Canada, honoraria/consultation fees from Actelion, Bayer Healthcare, Biogen Idec, Celgene, Chugai, Clene Nanomedicine, EMD Canada, Genzyme, Merck Serono, Novartis, F. Hoffmann-La Roche Ltd, Pendopharm, Sanofi-Aventis, and Teva Canada Innovation; is a member of a company advisory board, board of directors or other similar group for Actelion, Bayer Healthcare, Biogen Idec, Clene Nanomedicine, F. Hoffmann-La Roche Ltd, Merck Serono, MedDay, Novartis, and Sanofi-Aventis; and has served on a speaker's bureau for Sanofi Genzyme.

CRediT authorship contribution statement

H-P Hartung: Conceptualization, Methodology, Writing - original draft, Writing - review & editing. T Berger: Conceptualization, Methodology, Writing - review & editing. RA Bermeil: Conceptualization, Methodology, Writing - review & editing. B Brochet: Investigation, Resources, Writing - review & editing. WM Carroll: Conceptualization, Methodology, Writing - review & editing. T Holmy: Conceptualization, Methodology, Writing - review & editing. R Karabudak: Conceptualization, Methodology, Writing - review & editing. C Nos: Conceptualization, Methodology, Writing - review & editing. F Patti: Conceptualization, Methodology, Writing - review & editing. F Patti: Conceptualization, Methodology, Writing - review & editing. T Vollmer: Conceptualization, Investigation, Writing - review & editing. R Buffels: Conceptualization, Methodology, Supervision, Visualization, Writing - review & editing. M Garas: Conceptualization, Methodology, Writing - review & editing. M Manfrini: Conceptualization, Methodology, Writing - review & editing. Q Wang: Conceptualization, Methodology, Writing - review & editing.

Acknowledgments

We thank all patients, their families, and the investigators who participated in this trial (including the ENSEMBLE PLUS study Steering Committee, which provided study oversight). We also thank the independent data monitoring committee for performing data analysis and safety monitoring. We are grateful to Jad Abdul Samad (of F. Hoffmann-La Roche Ltd) for additional critical review of this manuscript and technical advice. Eleanor Foy, PhD, of Articulate Science, UK, wrote the first draft of the manuscript based on input from the authors; her work was funded by F. Hoffmann-La Roche Ltd. The authors had full editorial control of the manuscript and provided their final approval of all content.

We would also like to thank all of the participating sites and investigators who took part in the study, listed below.

Country	Site ID	Investigator
Argentina	298898	Ballario, Carlos
Argentina	299464	Povedano, Guillermo
Argentina	303340	Duri, Norma
Australia	297476	Butzkueven, Helmut
Australia	297477	Nguyen, Ali-Lan
Australia	297478	Parratt, John
Australia	297479	Barnett, Michael
Australia	297482	Macdonell, Richard
Australia	297483	Blum, Stefan
Belgium	295259	Popeska, Veronica
Belgium	295264	Deryck, Olivier
Belgium	295550	Van Pesch, Vincent
Belgium	298872	Wilkeens, Barbara
Bulgaria	298076	Milanov, Ivan
Bulgaria	298078	Haralambov, Lyubomir
Canada	299584	Rush, Carolina
Canada	299585	GrandMaison, Francois
Canada	299589	Carruthers, Robert
Canada	299675	Casserly, Courtney
Canada	299582	Iacomi, Paul
Croatia	297415	Habek, Mario
France	295159	Lebrun Frenay, Christine
Germany	295199	Brochet, Bruno
Germany	295321	Laplaud, David
Germany	294739	Hartung, Hans-Peter
Germany	294745	Ziemen, Ulf
Germany	294746	Ziensens, Tjalf
Germany	294748	Menth, Sven
Germany	294753	Sturzen, Klairissa
Germany	294755	Oberrmann, Mark
Germany	294756	Bergmann, Arnfin
Germany	294759	Pul, Reifik
Germany	295674	Seipelt, Maria
Italy	295676	Marfia, Girolama
Italy	295678	Trucco, Francesco
Lebanon	304251	Yamout, Bassem
Mexico	296193	Lopez Meza, Elmer Guillermo
Mexico	296196	Lopez-Ruiz, Minerva
Mexico	296901	Trevino-Frenk, Irene
Netherlands	299292	Killestein, Joep
Netherlands	299991	Huppers, Raymond
Netherlands	301238	Nieuwkamp, Dennis
Poland	295008	Fryze, Waldemar
Poland	295017	Rejda, Konrad
Poland	295018	Nowak, Ryszard
Poland	295019	Krzyzanek, Ewa
Poland	295020	Kostera-Puszczczyk, Anna
Poland	295027	Kukrowska-Jastrzebska, Iwona
Poland	295247	Selmi, Krzysztof
Poland	295257	Beneck, Robert
Portugal	298153	Martins, Ana
Portugal	298155	Cerqueira, João
Portugal	298156	Timoteo, Angelo
Romania	305833	Roman-Filip, Corina
Romania	305834	Bujeranu, Ovidiu
Romania	305836	Balasa, Rodica
Slovakia	297618	Beneti, Jan
Slovakia	297779	Kravst, Georgi
Slovakia	297844	Turcu, Peter
Slovenia	298891	Hojs Fabjan, Tanja
Spain	296031	Montalban Gairin, Xavier
Spain	297981	Rodriguez Antiguadidad, Alfredo
Switzerland	295003	Zecca, Chiara
Switzerland	295756	Derfla, Tobias
Switzerland	318094	Hoeber, Robert
Turkey	294550	Siva, Aksel
Turkey	294586	Kurtuncu, Murat
Turkey	294588	Karabudak, Rana
Turkey	294609	Bus, Cavit
Turkey	294713	Kocer, Belgin
Turkey	294714	Duman, Taska ≤ n
Turkey	298357	Ozturk, SEREFNUR
Turkey	302182	Terzi, Murat
United Kingdom	294381	Duddy, Martin
United Kingdom	294383	Sharaf, Nazar
United Kingdom	294386	Nicholas, Richard
United Kingdom	298365	Pearson, Owen
United States of America	299027	Katz, Joshua
United States of America	299275	Callwood, Jonathan
United States of America	299276	Honeycutt, William
United States of America	299276	Miller, Tamara
United States of America	299281	Robertson, Derrick
United States of America	299382	Alvarez, Enrique
United States of America	299409	Riley, Claire
United States of America	299410	Goldstick, Lawrence
United States of America	299414	Pawate, Siddharama
United States of America	300181	Thrower, Ben
United States of America	300182	Amjad, Faria
United States of America	300234	Herd, Carrie
United States of America	300495	Courtenay, Ardith
United States of America	300649	Beretich, Biljana
United States of America	300692	Khatri, Bhupendra
United States of America	300693	Erwin, April
United States of America	301127	Pharr, Emily
Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.msard.2020.102492.

References

European Medicines Agency. Ocrevus [Summary of Product Characteristics] (2020). https://www.ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf. Accessed 24 July, 2020.

Genentech. Ocrevus (Ocrelizumab) [Full Prescribing Information] https://www.gene.com/download/pdf/ocrevus_prescribing.pdf. Accessed 24 July, 2020.

Hauser, S.L., Bar-Or, A., Comi, G., Giovannoni, G., Hartung, H.P., Hemmer, B., et al., 2017. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376 (3), 221–234.

Hauser, S.L., Bar-Or, A., Comi, G., Giovannoni, G., Hartung, H.P., Hemmer, B., et al., 2017. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376 (3), 221–234.

Sehn, L.H., Donaldson, J., Filewisch, A., Fitzgerald, C., Gill, K.K., Runzer, N., et al., 2007. Rapid infusion rituximab in combination with corticosteroid-containing chemotherapy or as maintenance therapy is well tolerated and can safely be delivered in the community setting. Blood 109 (10), 4171–4173.

Tuthill, M., Crook, T., Corbet, T., King, J., Webb, A., 2009. Rapid infusion of rituximab over 60 min. Eur. J. Haematol. 82 (4), 322–325.

Pritchard, C.H., Greenwald, M.W., Kremer, J.M., Gaylis, N.B., Rigby, W., Zlonick, Z., et al., 2014. Safety of infusing rituximab at a more rapid rate in patients with rheumatoid arthritis: results from the RATE-RA study. B.M.C. Musculoskelet. Disord. 15, 177.

Hartung, H.P., 2020. Ocrelizumab shorter infusion: primary results from the ENSEMBLE PLUS substudy in patients with MS. Neurol. Neuroimmunol. Neuroinflamm. 7 (5), e807.

Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., et al., 2011. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69 (2), 292–302.

Bermel, R., Waubant, E., Pardo, G., Bas, A., Repovic, P., Newsome, S., et al., 2019. Evaluation of shorter infusion times for Ocrelizumab treatment in an extension substudy of the phase IIIb CHORDS trial. ECTRIMS 2019; P1408. Mult. Scler. J. 25 (S2), 779–780.

Vollmer, T.L., Cohen, J.A., Alvarez, E., Nair, K.V., Boster, A., Katz, J., et al., 2020. Safety Results of Administering Ocrelizumab per a Shorter Infusion Protocol in Patients With Primary Progressive and Relapsing Multiple Sclerosis. Mult. Scler. Relat. Disord. https://doi.org/10.1016/j.msard.2020.102454. Accepted: In Press.