Eric C. Hosten and Richard Betz*

The crystal structure of 3-ammonio-4-aminobenzoate, C$_7$H$_8$N$_2$O$_2$ – a second polymorph

https://doi.org/10.1515/ncrs-2020-0510
Received October 3, 2020; accepted October 30, 2020; published online November 13, 2020

Abstract

C$_7$H$_8$N$_2$O$_2$, monoclinic, $P2_1/n$ (no. 14), $a = 8.9884(6)$ Å, $b = 6.0490(4)$ Å, $c = 12.1290(8)$ Å, $\beta = 95.400(2)$°, $V = 656.54(8)$ Å3, $Z = 4$, $R_{\text{gt}}(F) = 0.0340$, $wR_{\text{ref}}(F^2) = 0.0978$, $T = 200$ K.

CCDC no.: 2041507

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

The compound was obtained commercially (Aldrich). Crystals suitable for the diffraction study were obtained upon recrystallization of the compound from methanol.

Table 1: Data collection and handling.

Crystal:	Colourless platelet
Size:	0.53 × 0.35 × 0.11 mm
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	0.12 mm$^{-1}$
Diffractometer, scan mode:	Bruker APEX-II, φ and ω
R_{max}, completeness:	28.1°, >99%
$N(hkl)_{\text{measured}}, N(hkl)_{\text{unique}}, R_{\text{int}}$:	5578, 1571, 0.019
Criterion for I_{ob}, $I(hkl)_{\text{cl}}$:	$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 1295
N_{param}refined$:	120
Programs:	Bruker [1, 2], SHELX [3], WinGX/ORTEP [4], Mercury [5], PLATON [6]

Experimental details

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U_{eq}(C).

All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Comment

Chelate ligands have found widespread use in coordination chemistry due to the increased stability of coordination compounds they can form in comparison to monodentate ligands. The stability of these compounds is enhanced further if the denticity of the ligand is increased upon incorporation of more and more potential donor sites [7]. Especially derivatives of benzoic acids offering the possibility to act as a chelate ligand are interesting in this aspect as chemical factors such as pH values could influence the protonation/deprotonation of acidic functional groups and fine-tune the denticity of the resulting ligand species. Examples would be benzoic acid derivatives bearing multiple hydroxy or amino groups. In continuation of our interest in the structures of polyfunctional carboxylic acids [8–14] the title compound seemed intriguing. Although the molecular and crystal structure of the latter have been reported earlier in a C centred space group [15],

*Corresponding author: Richard Betz, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South) University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa, E-mail: Richard.Betz@mandela.ac.za. https://orcid.org/0000-0002-5730-2152

Eric C. Hosten, Department of Chemistry, Nelson Mandela University, Summerstrand Campus (South) University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa. https://orcid.org/0000-0003-4173-2550

Open Access. © 2020 Eric C. Hosten and Richard Betz, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	y	z	Ueq*	Ueq*
O1	0.85407 (10)	0.41707 (15)	−0.11063 (7)	0.0237 (2)	
O2	0.77074 (10)	0.08228 (15)	−0.07068 (8)	0.0261 (2)	
N1	0.37216 (11)	0.25979 (18)	0.18943 (9)	0.0199 (2)	
H1	0.3488 (18)	0.140 (3)	0.1459 (14)	0.032 (4)*	
C1	0.291 (2)	0.361 (3)	0.1745 (14)	0.039 (5)*	
C2	0.374 (2)	0.210 (3)	0.2691 (16)	0.047 (5)*	
N2	0.47055 (12)	0.66069 (19)	0.29016 (9)	0.0236 (3)	
C1	0.4261 (19)	0.567 (3)	0.3337 (14)	0.035 (5)*	
C2	0.5114 (19)	0.781 (3)	0.3234 (14)	0.035 (4)*	
C3	0.58797 (12)	0.27305 (19)	0.08042 (10)	0.0173 (3)	
H3	0.5600296	0.131288	0.051671	0.021*	
C4	0.50862 (12)	0.36681 (19)	0.16011 (9)	0.0169 (3)	
C5	0.55061 (13)	0.56941 (19)	0.20983 (10)	0.0173 (3)	
C6	0.67177 (13)	0.6802 (2)	0.16978 (10)	0.0191 (3)	
H6	0.702408	0.819034	0.200751	0.023*	
C7	0.74743 (13)	0.5910 (2)	0.08603 (10)	0.0189 (3)	
H7	0.826778	0.671634	0.058525	0.023*	

an initial unit cell determination of the compound available to us after recrystallization from methanol unambiguously showed the presence of a compound presenting itself in a primitive space group. To clarify the situation the structure was determined.

The analysis of the data proves the presence of the 3,4-diaminobenzoic acid. The molecule is present in a zwitterionic tautomer with protonation observed on the amino group in meta position to the carboxylate substituent. Very similar C–O bond lengths of 1.254(15) Å and 1.273(14)* confirm the deprotonation of the carboxyl group; moreover, these values are in good agreement with values found for other benzoate salts whose metrical parameters have been deposited with the Cambridge Structural Database [16]. Intracyclic C–C–C angles span a range of 117.05(10)–121.74(10)* with the smallest angle on the carbon atom bearing the amino group and the largest angle on the carbon atom bearing the ammonium group. The molecule is approaching planarity with an O–C–C–C dihedral angle of −22.16(17)* for the carboxylic group.

In the crystal, classical hydrogen bonds of the N–H–O type are observed that employ every nitrogen-bound hydrogen atom as donor as well as both carboxylate oxygen atoms as acceptor. In terms of graph-set analysis [17, 18], the descriptor for these hydrogen bonds is C(7)C(8)C(8)R(14)R(14) at the unary level with both cyclic patterns being supported by hydrogen atoms of the ammonium group. In addition, C–H…π contact stems from the CH group in meta position to the carboxylate substituent. In total, the molecules are connected to undulated double sheets along [1 0 1]. π-Stacking is observed with the shortest distance measured between two centers of gravity at just 3.644(2) Å.

Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: National Research Foundation.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.
2. Bruker. SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
3. Sheldrick G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.
4. Farrugia L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854.
5. Macrae C. F., Bruno I. J., Chisholm J. A., Edgington P. R., McCabe P., Pidcock E., Rodriguez–Monge L., Taylor R., van de Streek J., Wood P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470.
6. Spek A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155.
7. Gade L. H. Koordinationschemie; Wiley VCH: Weinheim, 1998.
8. Betz R., Gerber T. I. A., Schalekamp H. 2–Hydroxy-6-isopropyl-3-methylbenzoic acid. Acta Crystallogr. 2011, E67, o1063.
9. Betz R., Klüfers P., Mangstl M. M. tert–Butylglycolic acid. Acta Crystallogr. 2007, E63, o4144.
10. Betz R., Klüfers P. 1–Hydroxycyclopropane-1-carboxylic acid. Acta Crystallogr. 2007, E63, o3891.
11. Betz R., Klüfers P. 1–Hydroxycyclobutane-1-carboxylic acid. Acta Crystallogr. 2007, E63, o4032.
12. Betz R., Klüfers P. 1–Hydroxycyclopentane-1-carboxylic acid. Acta Crystallogr. 2007, E63, o3932.
13. Betz R., Gerber T. I. A. 2-(Trifluoromethyl)benzoic acid. Acta Crystallogr. 2011, E67, o907.
14. Betz R., Betzler F., Klüfers P. rac–2–Hydroxy-2-(2-nitrophenyl) acetic acid. Acta Crystallogr. 2007, E63, o4184.
15. Rzaczynska Z., Mrozek R., Lenik J., Sikorska M., Glowiak T. The crystal structures and vibrational spectra of 3,4-diaminobenzoic and 3,5-diaminobenzoic acids. J. Chem. Crystallogr. 2000, 30, 519–524.
16. Allen F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380–388.
17. Bernstein J., Davis R. E., Shimoni L., Chang N.-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem. Int. Ed. Engl. 1995, 34, 1555–1573.
18. Etter M. C., MacDonald J. C., Bernstein J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. 1990, B46, 256–262.