Performance and analysis of Quadratic Residue Codes of lengths less than 100

Yong Li, Member, IEEE, Qianbin Chen, Senior Member, IEEE, Hongqing Liu, and Trieu-Kien Truong, Life Fellow, IEEE

Abstract

In this paper, the performance of quadratic residue (QR) codes of lengths within 100 is given and analyzed when the hard decoding, soft decoding, and linear programming decoding algorithms are utilized. We develop a simple method to estimate the soft decoding performance, which avoids extensive simulations. Also, a simulation-based algorithm is proposed to obtain the maximum likelihood decoding performance of QR codes of lengths within 100. Moreover, four important theorems are proposed to predict the performance of the hard decoding and the maximum-likelihood decoding in which they can explore some internal properties of QR codes. It is shown that such four theorems can be applied to the QR codes with lengths less than 100 for predicting the decoding performance. In contrast, they can be straightforwardly generalized to longer QR codes. The result is never seen in the literature, to our knowledge. Simulation results show that the estimated hard decoding performance is very accurate in the whole signal-to-noise ratio (SNR) regimes, whereas the derived upper bounds of the maximum likelihood decoding are only tight for moderate to high SNR regions. For each of the considered QR codes, the soft decoding is approximately 1.5 dB better than the hard decoding. By using powerful redundant parity-check cuts, the linear programming-based decoding algorithm, i.e., the ACG-ALP decoding algorithm performs very well for any QR code. Sometimes, it is even superior to the Chase-based soft decoding algorithm significantly, and hence is only a few tenths of dB away from the maximum likelihood decoding.

Yong Li, Qianbin Chen and Hongqin Liu are with the Key Lab of Mobile Communication, Chongqing university of Posts and Telecommunications, Chongqing, 400065 China (e-mail: {yongli, hongqingliu, chenqb}@cqupt.edu.cn).

Trieu-Kien Truong is with the Department of Information Engineering, I-Shou University, Kaohsiung Country 84001, Taiwan (e-mail: truong@isu.edu.tw), and is also with the Department of Computer Science and Engineering, National Sun Yat-sen University, Taiwan.
Index Terms

Berlekamp-Massey algorithm, Gaussian elimination, quadratic residue code, Chase algorithm, linear programming.

I. INTRODUCTION

The well-known binary quadratic residue (QR) codes, first introduced by Prange [1] in 1958, are a nice family of cyclic binary BCH codes which have code rates greater than or equal to $1/2$ and generally have large minimum distances so that most of the known QR codes are the best-known codes. There are 11 binary QR codes in total with code lengths less than 100; that is, 7, 17, 23, 31, 41, 47, 71, 73, 79, 89 and 97. So far the corresponding algebraic decoding algorithms for these QR codes have been proposed by the authors given in [2-11]. Among them, the (89, 45, 17) QR code is the last decoded one.

In the past decades, the most widely used methods for decoding binary QR codes are the Sylvester resultant [4], [5] or Gröbner basis methods [6]. These methods can be utilized to solve the Newton identities that are nonlinear and multivariate equations with high degree. However, the calculations of identities require very high computational complexity especially when the weight of the occurred error pattern becomes large. Moreover, since different QR codes use different sets of conditions to calculate the error locations, a total enumeration of all conditions is impracticable for hardware implementation. Therefore, these methods are only suitable for relatively short QR codes such as codes with lengths 21, 31, and 41. Although the authors in [7] developed an algebraic decoding algorithm for decoding the (73, 37, 13) QR code based on solving Newton identities, the simulation results were not provided due to very complex computations. Later, the authors [12] have decoded QR codes using the well-known Berlekamp-Massey (BM) algorithm. It is very efficient once the needed consecutive syndromes are obtained. More generally, in 2001, He et al. [10] developed an efficient matrix method to determine the unknown syndromes by solving the equation $\det(S(I, J)) = 0$, where $\det(\cdot)$ denotes the determinant of a matrix and can be expressed as a polynomial of some unknown syndrome. In particular, the (47, 24, 11) QR code was successfully decoded by the BM algorithm, and the corresponding algorithm was readily extended to decode the (71, 36, 11), (79, 40, 15) and (97, 49, 15) QR codes [8]. Actually, such an algorithm can be utilized to decode any QR code with an irreducible generator polynomial.
Among the foregoing 11 QR codes, there are two codes whose generator polynomials are reducible, i.e., the (73, 37, 13) and the (89, 45, 17) QR codes. In 2008, Truong et al. decoded the (89, 45, 17) QR code successfully by using a modification of the inverse-free BM algorithm. Subsequently, Lin and Wang et al. \[13\], \[14\] further improved the decoding speed of the QR code of length 89 by determining unknown syndromes quickly. However, the conditions corresponding to error patterns with different weights have still not been found. As a result, one needs to try from \(v = 1\) to \(v = t\) errors before decoding successfully or declaring a failure for any error pattern, where \(t\) represents the error-correcting capacity. As shown in \[14\], the linear programming decoding performance of the (89, 45, 17) QR code is also investigated, and simulation results show that the LP-based decoding performs slightly better than the algebraic soft-decision decoding with comparable complexity. Recently, an efficient algebraic decoding algorithm, i.e., Lee et al.’s algorithm \[9\] was proposed to decode the (73, 37, 13) QR code up to six errors, which only needed to calculate the unknown syndrome \(S_5\) since it handled the six-error case in terms of five-error case by inverting a bit of the received vector. More recently, Li et al. \[15\] proposed an improved algorithm for decoding the (73, 37, 13) QR code. It was based on the hybrid unknown syndrome calculation (HUSC) algorithm developed in \[14\] and the modified inverse-free BM algorithm \[11\]. This further results in a reduction of decoding complexity when compared with Lee et al.’s algorithm.

The maximum likelihood (ML) decoding of a linear block code can be described as an integer programming (IP) problem, which is non-deterministic polynomial-time hard (NP-hard) \[16\]. As an approximation to the ML decoding, the linear programming (LP) decoding was first proposed by Feldman et al. \[17\]. The number of constraints of the original LP decoding problem is exponential in the maximum check node degree. Consequently, the computational complexity may be prohibitively high even for some small check degrees. To overcome this, an adaptive linear programming (ALP) decoder \[18\] was thus developed, which reduced the number of constraints by adding only useful ones with an adaptive and selective method. In addition, the performance of the LP decoding can be further improved by adding more linear constraints generated by redundant parity checks (RPC) \[18\], \[19\], \[20\], \[21\]. Although most of the LP decoding algorithms were utilized to decode LDPC codes, they also worked very well when used to decode BCH codes, Golay codes, the (89, 45, 17), and the (73, 37, 13) QR codes, see \[14\], \[15\], \[19\], \[21\]. One of the interesting experimental results in \[15\] is that the (73, 37,
13) QR code obtained a better performance than the (89, 45, 17) QR code with much fewer multiplications and additions when the LP decoding was utilized despite the fact that the latter has a larger minimum distance.

In this paper, first, we develop a simple algorithm to estimate the SD decoding performance and a simulation-based method to obtain the ML decoding performance for QR codes of lengths less than or equal to 100. Next, we describe some new observations on the performance of the hard-decision (HD) and the ML decoding for QR codes and provide the corresponding proofs. Finally, We compare the performance of the HD, soft-decision (SD), and LP decoding algorithms for all the QR codes of lengths within 100 except the (7, 4, 3) QR code (i.e., the classic Hamming code). The authors in [22] also proposed a mixed-integer LP method to achieve the ML decoding of block codes with sparse parity-check matrices based on the ALP decoding. However, such a method is not suitable for QR codes since these codes have dense parity-check matrices. Actually, the performance of the ALP decoding for QR codes shown in section VI is very poor. Most components in the solution are fractions when the ALP decoding terminates, which results in that the required number of added integer constraints needed in Draper et al.’s method [22] is large and thus difficult to solve.

The rest of this paper is organized as follows: The background of the binary QR codes is introduced in Section II. Section III reviews the algebraic decoding of QR codes based on solving Newton identities and the inverse-free BM algorithm. In Section IV, the LP decoding is briefly described. Some new observations and the corresponding proofs are provided in Section V. Simulation results are presented in Section VI for the HD, SD, and LP decoding of the QR codes. Finally, this paper concludes with a brief summary in Section VII.

II. TERMINOLOGY AND BACKGROUND OF THE QR CODES

Let n be a prime number of the form $n = 8l \pm 1$, where l is a positive integer. The set Q_n of quadratic residues modulo n is the set of nonzero squares modulo n. That is,

$$Q_n = \{i | i \equiv j^2 \mod n \quad \text{for} \quad 1 \leq j \leq n-1\}. \quad (1)$$

Let m be the smallest positive integer such that n divides $2^m - 1$ and α is chosen a primitive element of the finite field $GF(2^m)$ such that each nonzero element of $GF(2^m)$ can be expressed as a power of α. Then the element $\beta = \alpha^u$, where $u = (2^m - 1)/n$, is a primitive nth root of
unity in $GF(2^m)$. An (n, k, d) QR code which has the minimum distance d is a cyclic code with the generator polynomial $g(x)$ of the form $g(x) = \prod_{i \in Q_n} (x - \beta^i)$.

For an (n, k, d) QR code, an error pattern is said to be correctable if its weight is less than or equal to the error-correcting capacity $t = \lfloor (d - 1)/2 \rfloor$, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x. Now, let the codeword $c(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ be transmitted through a noisy channel. Also, let $e(x) = e_0 + e_1 x + \cdots + e_{n-1} x^{n-1}$ and $r(x) = r_0 + r_1 x + \cdots + r_{n-1} x^{n-1}$ be the error pattern occurred and the received vector, respectively. Then, the received word has the form $r(x) = c(x) + e(x)$. The set of known syndromes computed by evaluating $r(x)$ at the roots of $g(x)$ is given by

$$S_i = r(\beta^i) = e(\beta^i), \quad i \in Q_n.$$ \hspace{1cm} (2)

Assume that there are v errors occurred in the received word $r(x)$. Then, the error pattern has v nonzero terms, namely $e(x) = x^{l_1} + x^{l_2} + \cdots + x^{l_v}$, where $0 \leq l_1 < l_2 < \cdots < l_v \leq n - 1$. The syndrome S_i can be written as $S_i = X_1^i + X_2^i + \cdots + X_v^i$, where $X_j = \beta^{l_j}$ for $1 \leq j \leq v$, are said to be the error locators. If i is not found in the set Q_n, the syndrome S_i is called an unknown syndrome.

Suppose that v errors occur in the received word. The error-locator polynomial is defined to be a polynomial of degree v; that is, $\sigma(x) = \prod_{j=1}^v (1 + X_j x) = 1 + \sum_{j=1}^v \sigma_j x^j$ where $\sigma_1 = X_1 + \cdots + X_v$, $\sigma_2 = X_1 X_2 + \cdots + X_{v-1} X_v$, \ldots, and $\sigma_v = X_1 \cdots X_v$. One way to decode a QR code is to determine the error-locator polynomial $\sigma(x)$ and the Chien search is then applied to find the roots of $\sigma(x)$. The inverse-free BM algorithm is known to be the most efficient method for determining the error-locator polynomial. The error locations are given by the inverse of the roots of $\sigma(x)$ provided they are no more than the error-correcting capacity t. In order to use the inverse-free BM algorithm to decode a QR code up to t errors, one needs to find, in sequence, the first $2t$ consecutive syndromes S_1, S_2, \ldots, S_{2t}. However, only the syndromes whose indices are in Q_n can be calculated directly from $r(x)$; the others not determined directly from $r(x)$ are unknown syndromes. Obviously, these known syndromes (resp., unknown syndromes) can be expressed as some powers of one or several known syndromes (resp., unknown syndromes) that are the so-called primary known syndromes (resp., unknown syndromes) of a QR code.

Using a technique similar to that given in [8], a strategy in [11] was developed to obtain each
of the needed primary unknown syndromes. It is based on solving the roots of the equation in a primary unknown syndrome with the coefficients that can be expressed in terms of certain primary known syndromes. Therefore, all of the unknown syndromes can be calculated once the values of the primary unknown syndromes are determined. The following is a brief review of the technique mentioned in [8].

Assume that \(v \) errors occur in the received word. Let \(I = \{i_1, i_2, \ldots, i_{v+1}\} \) and \(J = \{j_1, j_2, \ldots, j_{v+1}\} \) denote two subsets of \(\{0, 1, 2, \ldots, n\} \), respectively. These index subsets can be found by an explicit use of the fast algorithm in [12]. Next, consider the matrix \(S(I, J) \) of size \((v+1) \times (v+1)\), given by

\[
S(I, J) = \begin{bmatrix} S_{i_1+j_1} & S_{i_1+j_2} & \ldots & S_{i_1+j_{v+1}} \\ S_{i_2+j_1} & S_{i_2+j_2} & \ldots & S_{i_2+j_{v+1}} \\ \vdots & \vdots & \ddots & \vdots \\ S_{i_{v+1}+j_1} & S_{i_{v+1}+j_2} & \ldots & S_{i_{v+1}+j_{v+1}} \end{bmatrix},
\]

where the summation of the indices of \(S_i \)’s is modulo \(n \) and the rank of \(S(I, J) \) is at most \(v \), which, in turn, implies

\[
\det S(I, J) = 0. \tag{4}
\]

If all of the unknown syndromes among the entries of \(S(I, J) \) given in (3) can be expressed as some powers of one of the primary unknown syndromes, say \(S_r \), and if \(\det(S(I, J)) \) is a nonzero polynomial in \(S_r \), then the actual value of \(S_r \) is one of the roots of (4). In other words, during the decoding process, one is able to calculate the value of \(S_r \) from the known syndromes.

III. Algebraic decoding of QR codes

Algebraic decoding of QR codes often includes three steps: 1) Compute the unknown syndromes if needed. 2) Determine the error-locator polynomial. 3) Apply the Chien search [23] to find the roots of the error-locator polynomial.

A. Calculation of the error-locator polynomial based on solving Newton identities

As mentioned in section II, one needs to compute the coefficients \(\{\sigma_j\} \) of the error-locator polynomial \(\sigma(x) \) where \(1 \leq j \leq t \). Here, \(\{\sigma_j\}, 1 \leq j \leq t \) and syndromes satisfy a series of
Newton identities as follows:

\begin{align*}
S_1 + \sigma_1 &= 0 \\
S_2 + S_1 \sigma_1 &= 0 \\
S_3 + S_2 \sigma_1 + S_1 \sigma_2 + \sigma_3 &= 0 \\
S_4 + S_3 \sigma_1 + S_2 \sigma_2 + S_1 \sigma_3 &= 0 \\
S_5 + S_4 \sigma_1 + S_3 \sigma_2 + S_2 \sigma_3 + S_1 \sigma_4 + \sigma_5 &= 0 \\
S_6 + S_5 \sigma_1 + S_4 \sigma_2 + S_3 \sigma_3 + S_2 \sigma_4 + S_1 \sigma_5 &= 0 \\
S_7 + S_6 \sigma_1 + S_5 \sigma_2 + S_4 \sigma_3 + S_3 \sigma_4 + S_2 \sigma_5 + S_1 \sigma_6 + \sigma_7 &= 0 \\
S_8 + S_7 \sigma_1 + S_6 \sigma_2 + S_5 \sigma_3 + S_4 \sigma_4 + S_3 \sigma_5 + S_2 \sigma_6 + S_1 \sigma_7 &= 0 \\
S_9 + S_8 \sigma_1 + S_7 \sigma_2 + S_6 \sigma_3 + S_5 \sigma_4 + S_4 \sigma_5 + S_3 \sigma_6 + S_2 \sigma_7 + S_1 \sigma_8 + \sigma_9 &= 0 \\
S_{10} + S_9 \sigma_1 + S_8 \sigma_2 + S_7 \sigma_3 + S_6 \sigma_4 + S_5 \sigma_5 + S_4 \sigma_6 + S_3 \sigma_7 + S_2 \sigma_8 + S_1 \sigma_9 &= 0 \\
&\vdots \\
S_{95} + S_{94} \sigma_1 + S_{93} \sigma_2 + S_{92} \sigma_3 + S_{91} \sigma_4 + S_{90} \sigma_5 + S_{89} \sigma_6 + S_{88} \sigma_7 + S_{87} \sigma_8 + S_{86} \sigma_9 &= 0 \\
S_{96} + S_{95} \sigma_1 + S_{94} \sigma_2 + S_{93} \sigma_3 + S_{92} \sigma_4 + S_{91} \sigma_5 + S_{90} \sigma_6 + S_{89} \sigma_7 + S_{88} \sigma_8 + S_{87} \sigma_9 &= 0 \quad (5)
\end{align*}

Here, we only list the syndromes from S_1 to S_{96} since the longest one among QR codes of lengths within 100 is 97. There exist the known and unknown syndromes in the above Newton identities such that one wishes to eliminate the unknown syndromes when determining the coefficients $\{\sigma_j\}$. For example, Elia’s algorithm for decoding the (23, 12, 7) Golay code avoids computing the unknown syndrome S_5 by utilizing the first four, the seventh and the ninth identities \[24\]. However, it is very difficult to eliminate all the unknown syndromes in solving Newton identities when code length is large, say $n \geq 47$. Consequently, one needs to determine several or all unknown syndromes before obtaining the coefficients $\{\sigma_j\}$ by solving Newton identities.

B. Computation of unknown syndromes

Define a special sum of two subsets I and J to be a multi-set as $I \oplus J = \{(i + j) \mod n | i \in I, j \in J\}$, where the star-sign “∗” indicates that the set is a multi-set. Its corresponding subsets I and J can be found by using a fast algorithm in \[12\]. After obtaining the subsets I and
J, one can compute the unknown syndrome by solving the Eq. (4). Sometimes, the degree of the resulting nonzero determinant polynomial of an unknown syndrome is so high that it is difficult to find the roots by using Chien’s search. In this case, another determinant polynomial needs to be constructed. Euclid’s method is then utilized to find the greatest common divisor (GCD) of two determinant polynomials \(F(S_r) \) (with very low degree, e.g., degree is one) and thus one determines the unknown syndromes by solving the equation \(F(S_r) = 0 \). Furthermore, the subsets \(I \) and \(J \) provided by the algorithm in [12] may generate a zero polynomial, i.e., \(\det(S(I, J)) \equiv 0 \), thereby leading to a decoding failure. For instance, when decoding the (73, 37, 13) QR code, the subsets obtained from the algorithm in [12] \(I = \{0, 1, 3, 4, 72\} \) and \(J = \{0, 2, 72, 71, 70\} \) will result in zero polynomials if \(e(x) = 1 + x + x^2 + x^{68}, 1 + x + x^3 + x^{32} \) and \(1 + x + x^{16} + x^{48} \), respectively. Towards this end, additional subsets \(I \) and \(J \) are chosen so that nonzero determinant polynomials can be constructed. Based on solving Newton identities, the decoding method doesn’t guarantee that the error patterns can always be determined theoretically even if all the unknown syndromes are obtained. Therefore all the possible error patterns need to be verified before declaring whether the decoding algorithm is correct or not. As a consequence, one needs to check \(\sum_{i=1}^{t} C^n_i^m \) error patterns to validate the correctness of decoding algorithms. Obviously, it is impractical for those long QR codes. For example, \(\sum_{i=1}^{8} C^{89}_{i} = 78140695260 \) error patterns in total needs to be checked for the (89, 45, 17) QR code. As shown in [15], an improved algorithm was developed to search \(I \) and \(J \) which guarantees that the unknown syndromes can always be determined by solving Eq. (4). It is summarized in Algorithm 1 as follows:

Algorithm 1:

Step 1: Initially, Let \(Q = Q_n \cup \{0\} \cup T_r, \) where \(T_r = \{t_r | t_r \equiv r \cdot 2^i \mod n\} \).

Step 2: Choose a subset \(I = \{i_1, i_2, \ldots, i_{v+1}\} \subset Q \).

Step 3: Check the number of elements in the intersection \((Q - i_1) \cap (Q - i_2) \cap \cdots \cap (Q - i_{v+1}) \).

If the cardinality of this intersection is less than \(v + 1 \), return to Step 2.

Step 4: Choose a subset \(J \) containing \(v + 1 \) elements from the intersection in Step 3. If all the possible sets \(J \) have been chosen, return to Step 2.

Step 5: If the intersection of the multi-set \(I \oplus J \) and \(T_r \) is empty, return to Step 4.

Step 6: Expand the polynomial \(\det(S(I, J)) \) by using Laplace’s method and check each monomial.

If there exists one monomial of the unknown syndrome whose coefficient is 1 and whose
power isn’t different from that of other monomials, then stop; otherwise, return Step 4.

Since the degrees of determinant polynomials derived from Algorithm 1 may be high for large-weight error patterns, it is too difficult to obtain the GCD of determinant polynomials with very low degree. To overcome this, Gaussian elimination was utilized to determine the unknown syndromes efficiently [14]. Its complexity is $O(q \cdot (v + 1)!)$ for the v-error case, where q denotes the number of elements in the finite field. Clearly, it may be still difficult or inefficient to find the coefficients $\{\sigma_j\}$ by solving the Newton identities for long QR codes even if all the unknown syndromes are determined. For this reason, the inverse-free BM algorithm was introduced to find the error-locator polynomials.

C. Inverse-free BM decoding algorithm

In fact, if the unknown syndromes are determined, the inverse-free BM algorithm is more suitable for computing the error-locator polynomial compared with solving Newton identities, especially when v is large. It only requires $O(3t)$ operations and is summarized as follows:

Step 1: Initially, Let $r^{(0)} = 1, C^{(0)}(x) = 1, A^{(0)}(x) = 1$, and $\ell^{(0)} = 1$.

Step 2: Compute the discrepancy

$$\Delta^{(k)} = \sum_{j=1}^{\ell^{(k-1)}} e^{(k-1)}_j S_{k-j} + 1.$$

Step 3: Determine the error-locator polynomial

$$C^{(k)}(x) = r^{(k-1)} C^{(k-1)}(x) - \Delta^{(k)} A^{(k-1)}(x) \cdot x.$$

Step 4: Calculate the auxiliary variables

$$A^{(k)}(x) = \begin{cases} x \cdot A^{(k-1)}(x), & \text{if } \Delta^{(k)} = 0 \text{ or if } 2\ell^{(k-1)} > k - 1 \\ C^{(k-1)}(x), & \text{if } \Delta^{(k)} \neq 0 \text{ and if } 2\ell^{(k-1)} \leq k - 1. \end{cases}$$

$$\ell^{(k)} = \begin{cases} \ell^{(k-1)}, & \text{if } \Delta^{(k)} = 0 \text{ or if } 2\ell^{(k-1)} > k - 1 \\ k - \ell^{(k-1)}, & \text{if } \Delta^{(k)} \neq 0 \text{ and if } 2\ell^{(k-1)} \leq k - 1. \end{cases}$$

$$r^{(k)} = \begin{cases} r^{(k-1)}, & \text{if } \Delta^{(k)} = 0 \text{ or if } 2\ell^{(k-1)} > k - 1 \\ \Delta^{(k)}, & \text{if } \Delta^{(k)} \neq 0 \text{ and if } 2\ell^{(k-1)} \leq k - 1. \end{cases}$$

Step 5: Update index $k = k + 1$ if $k \leq 2t$, then return to Step 2; otherwise, stop.
Herein, the symbol $C^{(k)}(x)$ is the error-locator polynomial in the stage k and the syndromes $S_k, 1 \leq k \leq 2t$, which can be used to compute the discrepancy $\Delta^{(k)}$, are known. The symbols $A^{(k)}(x), \ell^{(k)}$, and $r^{(k)}$ denote auxiliary variables for determining the error-locator polynomial at the same stage.

It should be noted that $2t$ consecutive syndromes S_1, \ldots, S_{2t} need to be calculated in the inverse-free BM algorithm, whereas the needed syndromes may not be successive when determining the error-locator polynomial by solving Newton identities.

After obtaining the error-locator polynomial, the decoding can be achieved straightforward by finding the roots of the error-locator polynomial, which indicate the error locations. The inverse-free BM-based algebraic decoding algorithm is suitable for any QR code and its procedure can be seen in [8], [11], [14]. It is worth notice that the number of roots may not be equal to the degree of the error-polynomial for QR codes with reducible generator polynomials such as the (73, 37, 13) and the (89, 45, 17) QR codes. In this case, error-locator polynomials are correct when v errors occur if and only if $\deg(\sigma(x)) = v$ and the number of roots of $\sigma(x) = 0$ equal to v are satisfied simultaneously.

Combining the HD decoding and Chase-II algorithm, a complete soft decoding of QR codes can be achieved. However, the Chase-II decoding algorithm is much more time-consuming for a long QR code because the HD decoder is repeated recursively for $2^{\lfloor d/2 \rfloor}$ times when decoding a received sequence. Towards this end, a sufficient optimality condition [14], [32] was introduced to terminate the Chase decoding process more rapidly. In order to further reduce the simulation time, a simple method, called Algorithm 2, is proposed to estimate the performance of the SD decoding in this paper.

Algorithm 2:

Step 1: Initially, Let $c = [c_0, c_1, \ldots, c_{n-1}]$ and $r = [r_0, r_1, \ldots, r_{n-1}]$ denote a transmitted codeword and the corresponding received vector, respectively.

Step 2: After BPSK modulation, the information bit becomes $(-1)^x$, where the input signal x represents a binary 0 or 1 bit waveform for a communication system. Then the receiver decides the transmitted bit was 0 if $r_j > 0$ or it decides the transmitted bit was 1 if $r_j < 0$. That is,

$$\hat{c}_j = \begin{cases}
0, & \text{if } r_j > 0 \\
1, & \text{if } r_j < 0.
\end{cases}$$
Step 3: Rearrange $|r|$ in the reliability ascending order, where $|r_i|$ denotes the reliability of i-th element, and store the arranged indices in θ.

Step 4: Calculate the number of wrong bits in \hat{c}, i.e., γ_1 and the maximum number of inverted wrong bits in the Chase decoding process, i.e., γ_2 as follows:

$$\gamma_1 = 0, \gamma_2 = 0;$$

for $i = 1 : n$
 if ($c_i \neq \hat{c}_i$)
 $\gamma_1 = \gamma_1 + 1$;
 end
end

for $j = 1 : \lfloor d/2 \rfloor$
 if ($c_{\theta[j]} \neq \hat{c}_{\theta[j]}$)
 $\gamma_2 = \gamma_2 + 1$;
 end
end

Step 5: If $\gamma_1 \leq \gamma_2 + t$, assume that the decoder decodes the received vector correctly; otherwise, declare a decoding failure.

Actually, such an algorithm provides a lower bound of the Chase-based SD decoding algorithm by assuming that the transmitted codeword can always be decoded once the new error pattern after inverting one or a few bits of the received vector is within the error correcting radius.

IV. LINEAR PROGRAMMING DECODING

As one of linear block codes, QR codes can also be represented by the corresponding parity check matrices. There always exists a direct relationship between the parity check matrix H and the so-called parity check polynomial $h(x)$. According to the background of cyclic codes, $h(x)$ can be determined by solving the following equation:

$$g(x)h(x) = x^n + 1. \quad (6)$$

Since $h(x) = h_kx^k + \cdots + h_1x + h_0$, then we have
As is well known, the ML decoding process for any binary linear code, denoted by an $m \times n$ check matrix H, can be written as an optimization problem. That is,

$$
\min \gamma^T u \quad \text{s.t.} \quad u \in \text{conv}(C)
$$

(7)

Here, γ is the cost vector obtained by the log-likelihood ratios $\gamma_j = \log(P(y_j|u_j = 0)/P(y_j|u_j = 1))$ for a given channel output y_j, $1 \leq j \leq n$ and $\text{conv}(C)$ is the so-called codeword polytope.

As an approximation to the ML decoding process, Feldman et al. [17] relaxed the codeword polytope onto the fundamental polytope so as to convert (7) into a linear programming problem. This polytope consists of both integral and nonintegral vertices in which the former corresponds exactly to the codewords of C. Thus, the LP relaxation yields the ML certificate property; that is, if the LP decoder obtains an integral solution, it is guaranteed to be an ML codeword.

In Feldman’s original linear programming problem, the total number of constraints, and hence the computational complexity is exponential in terms of the maximum check degree d_{max}, $1 \leq i \leq m$. This results in that the explicit description of the fundamental polytope via parity inequalities is inapplicable for high-density codes. To overcome this, Feldman et al. proposed an equivalent formulation, which requires $O(N^3)$ constraints [17]. Chertkov et al. [25] and Yang et al. [26] then proposed an alternative polytope, which has size linear in the code length and the maximum check node degree.

Taghavi and Siegel [18] introduced an adaptive approach to reduce the computational complexity, called an adaptive linear programming (ALP) decoding approach, which can be applicable to high density codes instead of the direct implementation of the original LP decoding algorithm. It should be noted that the ALP decoder doesn’t yield an improvement in terms of the frame error rate (FER). In contrast, it has a very positive effect on the decoding time because of converging with fewer constraints than the original LP decoder.

Recently, Tanatmis et al. [19] proposed a separation algorithm (SA) in order to improve the error-correcting performance of the LP decoding, which is abbreviated as the SALP algorithm.
henceforward. More recently, Zhang and Siegel [20] developed a novel decoder that combines the new adaptive cut-generating (ACG) algorithm with the ALP algorithm, called ACG-ALP decoder. Here the details of the SALP and the ACG-ALP decoders are omitted due to limited space.

Based on the ACG-ALP decoding, a simulation-based method to obtain the ML decoding performance for QR codes of lengths within 100 is developed. It can be summarized by the following steps:

1) Initially, decode the received vector by utilizing the ACG-ALP decoder.
2) If an ML codeword is output, then stop; otherwise, use all the constraints of the ACG-ALP decoder as the cut cool to construct an integral programming decoder and solve it.

Such an idea is based on a conjecture that the solution of the ACG-ALP decoder is not far away from the ML codeword when a decoding failure is declared. Our simulations verify this conjecture and it can be much more time-consuming if the ACG-ALP decoder is replaced by other LP-based ones, say the SALP and the ALP decoders.

V. Some new observations

Based on analyzing the error-rate performance of the HD and ML decoding of QR codes, the following theorems are obtained.

Theorem 1: Let an \((n, k, d)\) QR code be transmitted over AWGN channels, the frame error rate (sometimes called the codeword error rate) of the HD decoding can be computed by

\[
p_E = 1 - [(1 - \bar{p})^n + C_n^1 \cdot \bar{p} \cdot (1 - \bar{p})^{n-1} + \cdots + C_n^t \cdot \bar{p}^t \cdot (1 - \bar{p})^{n-t}],
\]

where \(\bar{p}\) indicates the average bit error probability.

Proof: Without loss of generality, assume that all-zero codewords are transmitted. Then the channel model can be written as

\[
y_k = 1 + n_k, \quad k = 1, \ldots, n,
\]

where \(y_k\) represents the channel received value and \(n_k\) is a Gaussian random variable with zero mean and \(\sigma^2\) variance.

Given \(y_k\), the bit error probability of the \(k\)-th coded bit \(p_k\), see [27], is given by the following formula:

\[
p_k = \frac{1}{1 + e^{2|y_k|/\sigma^2}}, -\infty < y_k < +\infty.
\]
Since \(p_k \) is a function of the received information \(y_k \) which is a discrete-time conditional Gaussian random sequence, the mean of the error probability is given as follows:

\[
\bar{p} = E(p_k) = \int_{-\infty}^{+\infty} p_k f(y_k) dy_k = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} \frac{1}{1 + e^{2|x|/\sigma^2}} e^{-\frac{(x-1)^2}{2\sigma^2}} dx
\] (9)

The explicit value of such an integration cannot be obtained, whereas its numerical solution can be calculated by Simpson quadrature. Obviously, it is a monotonically increasing function on \(\sigma^2 \).

For the \((n, k, d)\) QR code, the probability that the HD decoding makes the correct decision is given by

\[
p_s = (1 - \bar{p})^n + C_n^1 \bar{p} \cdot (1 - \bar{p})^{n-1} + \cdots + C_n^t \bar{p}^t \cdot (1 - \bar{p})^{n-t}
\] (10)

\(p_E \) in (8) immediately follows from Eq. (10). This complete the proof of Theorem 1.

\[\blacklozenge\]

Theorem 2: Consider the \((n_1, k_1, d_1)\) and the \((n_2, k_2, d_2)\) two QR codes of lengths within 100 transmitted over AWGN channels. If \(d_1 = d_2 \), then the QR code with the shorter length has a better performance under the HD decoding.

Proof: There are three pairs of QR codes with the same correcting capacities; that is, the (23, 12, 7) and the (31, 16, 7) QR codes, the (47, 24, 11) and the (71, 36, 11) QR codes, the (79, 40, 15) and the (97, 49, 15) QR codes. In the following, we first prove the case of the (23, 12, 7) and the (31, 16, 7) QR codes as an example.

Let \(p_{s,23} \) and \(p_{s,31} \) be the successful probabilities of HD decoding of the (23, 12, 7) and the (31, 16, 7) QR codes respectively. Then according to Eq. (10), we have

\[
p_{s,23} = (1 - \bar{p})^{23} + C_{23}^1 \bar{p} \cdot (1 - \bar{p})^{22} + C_{23}^2 \bar{p}^2 \cdot (1 - \bar{p})^{21} + C_{23}^3 \bar{p}^3 \cdot (1 - \bar{p})^{20},
\]

\[
p_{s,31} = (1 - \bar{p})^{31} + C_{31}^1 \bar{p} \cdot (1 - \bar{p})^{30} + C_{31}^2 \bar{p}^2 \cdot (1 - \bar{p})^{29} + C_{31}^3 \bar{p}^3 \cdot (1 - \bar{p})^{28}
\]

Let \(\gamma = 1 - \bar{p} \). Then \(p_{s,23} \) and \(p_{s,31} \) are two functions of \(\gamma \) as shown in Fig. 1 Both of which have only two intersection points on the closed interval \([0, 1]\), i.e., \(\gamma = 0 \) and \(\gamma = 1.0 \), and the former is always larger than the latter on the open interval \((0, 1)\). Hence, the (23, 12, 7) QR code performs better than the (31, 16, 7) QR code under the HD decoding.
In a similar manner as the proof of the first pair of QR codes, another two pairs of QR codes are thus proved.

Theorem 3: Consider an \((n, k, d)\) QR code with a weight numerator \(A(z) = \sum_{i} \lambda_i z^{\omega_i}\). An upper bound of the FER of the ML decoding can be expressed as

\[
p_E(ML) \leq 1 - \prod_{i, \omega_i \neq 0} \left(\frac{1}{2} \text{erfc} \left(\frac{-\sqrt{\omega_i}}{\sqrt{2\sigma}} \right) \right)^{\lambda_i}
\]

(11)

Here, the ‘=’ is approximately valid and thus the FER performance of the ML decoding can be estimated by the right hand side of (11) in high SNR regimes.

Proof: Now and in the sequel, we use the same symbol definitions of Theorem 1 and assume that all-zero codewords are always transmitted. According to (7), the probability that the ML decoding makes the correct decision is given by

\[
p_{ML} = \Pr\{\forall u \in C \text{ satisfies } y^T \cdot u > 0, u \neq 0\}
\]

\[
\geq \prod_{i, \omega_i \neq 0} \Pr\{y^T \cdot u > 0, \text{ the weight of } u \text{ is } \omega_i\}
\]

\[
= \prod_{i, \omega_i \neq 0} (\Pr(y^T \cdot u_i > 0))^{\lambda_i}
\]

\[
= \prod_{i, \omega_i \neq 0} (\Pr(\sum_{j=1}^{\omega_i} y_j > 0))^{\lambda_i},
\]

(12)

where \(\lambda_i\) indicates the number of codewords with weight \(\omega_i\), and \(u_i\) is a codeword whose weight is \(\omega_i\). The ‘\(\geq\)’ in (12) results from the formula \(\Pr(A, B) = \Pr(A) \cdot \Pr(B|A) \geq \Pr(A) \cdot \Pr(B)\) where \(A\) and \(B\) denote two events, respectively, and the first ‘\(=\)’ is valid because the weight of \(u_i\) is \(\omega_i\).

In general, assume that \(\{y_j, j = 1, \ldots, n\}\) is an i.i.d sequence. Then \(\sum_{j=1}^{\omega_i} y_j\) satisfies a Gaussian distribution with mean = \(\omega_i\) and variance = \(\omega_i\sigma^2\), where \(\sigma^2\) is the variance of a noise variable in AWGN channel. As a result, we have

\[
\Pr(\sum_{j=1}^{\omega_i} y_j > 0) = \int_{0}^{+\infty} \frac{1}{\sqrt{2\pi\omega_i\sigma}} e^{-\frac{(x-\omega_i)^2}{2\omega_i\sigma^2}} dx = \frac{1}{2} \text{erfc} \left(\frac{-\sqrt{\omega_i}}{\sqrt{2\sigma}} \right),
\]

(13)

where \(\text{erfc}(x)\) is the error discrepancy function. A substitution of Eq. (13) into (12) yields

\[
p_{ML} \geq \prod_{i, \omega_i \neq 0} \left(\frac{1}{2} \text{erfc} \left(\frac{-\sqrt{\omega_i}}{\sqrt{2\sigma}} \right) \right)^{\lambda_i}
\]

(14)
 Accordingly, $p_E(ML)$ given in (11) can be directly deduced from (14).

In fact, Eq. (11) is very useful and efficient when predicting the performance of the ML decoding. As shown in the next section, it is very tight in high SNR regimes and can thus be utilized to calculate the ML decoding performance of any block code once the corresponding weight numerator is known.

Theorem 4: Consider the (n_1, k_1, d_1) and the (n_2, k_2, d_2) QR codes of lengths within 100 transmitted over AWGN channels. If $d_1 = d_2$, then the QR code with the longer length has a better performance under the ML decoding in high SNR regimes.

Proof: Again, we first use the $(23, 12, 7)$ and the $(31, 16, 7)$ QR codes as example to complete the proof. According to the results in [28], the weight numerators of two QR codes of lengths 23 and 31, namely $A_{23}(z)$ and $A_{31}(z)$, can be written as follows:

$$A_{23}(z) = 1 + 253z^7 + 506z^8 + 1288z^{11} + 1288z^{12} + 506z^{15} + 253z^{16} + z^{23}.$$

$$A_{31}(z) = 1 + 155z^7 + 465z^8 + 5208z^{11} + 8680z^{12} + 18259z^{15} + 18259z^{16} + 8680z^{19} + 5208z^{20} + 465z^{23} + 155z^{24} + z^{31}.$$

With the aid of Eq. (14), the probability that the ML decoder makes the correct decision for the $(23, 12, 7)$ and the $(31, 16, 7)$ QR codes can be obtained by

$$p_{23-ML} = \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{7}}{\sqrt{2}\sigma_1}\right)^{253} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{8}}{\sqrt{2}\sigma_1}\right)^{506} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{11}}{\sqrt{2}\sigma_1}\right)^{1288} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{12}}{\sqrt{2}\sigma_1}\right)^{1288}$$

$$p_{31-ML} = \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{7}}{\sqrt{2}\sigma_2}\right)^{155} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{8}}{\sqrt{2}\sigma_2}\right)^{465} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{11}}{\sqrt{2}\sigma_2}\right)^{5208} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{12}}{\sqrt{2}\sigma_2}\right)^{8680}$$

$$\cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{15}}{\sqrt{2}\sigma_2}\right)^{18259} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{16}}{\sqrt{2}\sigma_2}\right)^{18259} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{19}}{\sqrt{2}\sigma_2}\right)^{8680}$$

$$\cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{20}}{\sqrt{2}\sigma_2}\right)^{5208} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{23}}{\sqrt{2}\sigma_2}\right)^{465} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{24}}{\sqrt{2}\sigma_2}\right)^{155} \cdot \frac{1}{2}\text{erfc}\left(\frac{-\sqrt{31}}{\sqrt{2}\sigma_2}\right).$$

Here, σ_1 and σ_2 represent the channel standard deviation when the $(23, 12, 7)$ and the $(31, 16, 7)$ QR codes are transmitted over a channel that is corrupted by additive noise. In the high SNR region, each term of p_{23-ML} and p_{31-ML} approaches 1 and the value of the term with a larger weight is also often larger. Thus, the values of both of which are mainly dominated by first two
monomials, i.e.,
\[p_{23} - ML \approx \left(\frac{1}{2} \text{erfc}\left(\frac{-\sqrt{7}}{\sqrt{2}\sigma_1}\right) \right)^{253} \cdot \left(\frac{1}{2} \text{erfc}\left(\frac{-\sqrt{8}}{\sqrt{2}\sigma_1}\right) \right)^{506} \]
\[= (1 - \frac{1}{2} \text{erfc}\left(\frac{-\sqrt{7}}{\sqrt{2}\sigma_1}\right))^{253} \cdot (1 - \frac{1}{2} \text{erfc}\left(\frac{-\sqrt{8}}{\sqrt{2}\sigma_1}\right))^{506} \]
\[\approx (1 - \frac{253}{2} \text{erfc}\left(\frac{\sqrt{7}}{\sqrt{2}\sigma_1}\right)) \cdot (1 - \frac{506}{2} \text{erfc}\left(\frac{\sqrt{8}}{\sqrt{2}\sigma_1}\right)). \]
\[p_{31} - ML \approx \left(\frac{1}{2} \text{erfc}\left(\frac{-\sqrt{7}}{\sqrt{2}\sigma_2}\right) \right)^{155} \cdot \left(\frac{1}{2} \text{erfc}\left(\frac{-\sqrt{8}}{\sqrt{2}\sigma_2}\right) \right)^{465} \]
\[= (1 - \frac{1}{2} \text{erfc}\left(\frac{-\sqrt{7}}{\sqrt{2}\sigma_2}\right))^{155} \cdot (1 - \frac{1}{2} \text{erfc}\left(\frac{-\sqrt{8}}{\sqrt{2}\sigma_2}\right))^{465} \]
\[\approx (1 - \frac{155}{2} \text{erfc}\left(\frac{\sqrt{7}}{\sqrt{2}\sigma_2}\right)) \cdot (1 - \frac{465}{2} \text{erfc}\left(\frac{\sqrt{8}}{\sqrt{2}\sigma_2}\right)). \]

Here, the second ‘\(\approx\)’ for \(p_{23} - ML\) or \(p_{31} - ML\) is valid according to the Taylor approximation.

Now, let \(R_1 = k_1/n_1\) and \(R_2 = k_2/n_2\) denote the rates of the \((n_1, k_1, d_1)\) and the \((n_2, k_2, d_2)\) QR codes, respectively. If \(R_1 = R_2 \approx 0.5\), then \(\sigma_1 \approx \sigma_2 = \sigma\) at the same SNR level. As a consequence, we have
\[p_{23} - ML - p_{31} - ML \approx (1 - \frac{253}{2} \text{erfc}\left(\frac{\sqrt{7}}{\sqrt{2}\sigma}\right)) \cdot (1 - \frac{506}{2} \text{erfc}\left(\frac{\sqrt{8}}{\sqrt{2}\sigma}\right)) \]
\[- (1 - \frac{155}{2} \text{erfc}\left(\frac{\sqrt{7}}{\sqrt{2}\sigma}\right)) \cdot (1 - \frac{465}{2} \text{erfc}\left(\frac{\sqrt{8}}{\sqrt{2}\sigma}\right)) \]
\[< (1 - \frac{253}{2} \text{erfc}\left(\frac{\sqrt{7}}{\sqrt{2}\sigma}\right)) \cdot (1 - \frac{465}{2} \text{erfc}\left(\frac{\sqrt{8}}{\sqrt{2}\sigma}\right)) \]
\[- (1 - \frac{155}{2} \text{erfc}\left(\frac{\sqrt{7}}{\sqrt{2}\sigma}\right)) \cdot (1 - \frac{465}{2} \text{erfc}\left(\frac{\sqrt{8}}{\sqrt{2}\sigma}\right)) \]
\[= (-49\text{erfc}\left(\frac{\sqrt{7}}{\sqrt{2}\sigma}\right)) \cdot (1 - \frac{465}{2} \text{erfc}\left(\frac{\sqrt{8}}{\sqrt{2}\sigma}\right)) < 0. \]

We must highlight that the proof is not very strict because \(R_2\) is slightly higher than \(R_1\). However, it is more rigorous for the \((n_1 + 1, k_1, d_1 + 1)\) and the \((n_2 + 1, k_2, d_2 + 1)\) extended QR codes because both rates \(R_1\) and \(R_2\) are equal to 0.5.

The above four theorems will be helpful in the following simulations.

VI. Simulation results

Simulations of different decoding algorithms for QR codes in AWGN with BPSK modulation are conducted using the C++ programming language. The Simplex method is used as our LP
solver and CPLEX 11.0 [29] is utilized as an IP solver. In this paper, only 10 QR codes except the Hamming code are considered since it is a well-known code and is used extensively in communication systems. A frame error rate (FER) is declared for each simulation when collecting 100 erroneous codewords including incorrect codewords and pseudo-codewords. The simulation-based method described in section IV is utilized to obtain the performance curve of the ML decoding. It should be noted that only a lower bound of the SD decoding obtained from Algorithm 2 is given for each QR code whose length belongs to the set \{17, 31, 41, 47, 71, 79, 97\}.

In comparison to the frame error rate (FER) performance of the (23, 12, 7) QR code with the (31, 16, 7) QR code when different decoding algorithms are used, as illustrated in Fig. 2, the curves of the decoding of the both QR codes by using the Chase-II based SD decoding algorithm [30] are approximate 1.5 dB away from that by using the HD decoding algorithm at a FER of 10^{-5}. The SD decoding performance for the (23, 12, 7) code is obtained by simulations, whereas a lower bound of SD decoding of the (31, 16, 7) QR code is provided according to the method described in section III. One observes from the figure that the HD decoding of the (23, 12, 7) QR code performs better than that of the (31, 16, 7) QR code, which is consistent with Theorem 2. It is also the case for the SD decoding since the kernel of the Chase-II based SD decoding is the HD decoding. As presented in Theorem 4, the latter is slightly superior to the former under the ML decoding since the former has more codewords with lower weights. Both the HD and the ML decoding performance curves of both codes calculated by Theorems 1 and 3 are also plotted in Fig. 2. It can also be readily seen that Theorem 3 matches the simulation results very well for moderate to high SNR regimes, whereas Theorem 1 is nearly in agreement with the simulation in the whole simulated SNR regions.

A comparison of the FER performance of HD, SD and ML decoders for the (47, 24, 11) and the (71, 36, 11) QR codes is made in Fig. 3 and similar results can be drawn. The (47, 24, 11) QR code significantly outperforms the (71, 36, 11) QR code when the HD decoding algorithms are utilized, In contrast, the latter is approximately 0.3 dB better than the former under the ML decoding. It is believable that the SD decoding of the (47, 24, 11) QR code is also superior to that of the (71, 36, 11) QR code even if lower bounds of SD decoding rather than simulation results for two QR codes are given.

Performance comparison for the (79, 40, 15) and the (97, 49, 15) QR codes are shown in Fig. 4. As illustrated in Fig. 4, the HD decoding of the (79, 40, 15) QR code is about 0.4 dB
better than that of the (97, 49, 15) QR code at FER = 1 × 10^{-4}. One can expect that the SD decoding of the former provides a better performance even if only lower bounds of performance rather than real performance are given. One also observes that the SD decoding is more than 1.0 dB away from the ML decoding for both codes, and *Theorem 3* predicts the ML decoding performance in high SNR regimes very accurately.

The performance of remainder four QR codes, i.e., QR codes with lengths of 17, 41, 73, and 89, are shown in Fig. 5 and Fig. 6. It can be known that there only exists a small gap between the lower bound of performance of the Chase decoder and the ML decoder for the (17, 9, 5) QR code, whereas such a gap widens to about 0.8 dB for the (41, 21, 9) QR code. Also, one observes that the estimated method of the Chase decoder has the same performance as the simulated method for the (73, 37, 13) and (89, 45, 17) QR codes. It is believable that the lower bounds of the Chase decoding derived from the simple method described in section III are very tight for the above considered QR codes except the (23, 12, 7) QR code. Actually, the lower bound for the (23, 12, 7) QR code is loose because it is a perfect code and thus the probability of a received vector being decoded to a valid but incorrect codeword increases when compared with other imperfect codes. Moreover, the (89, 45, 17) QR code exhibits the best HD and SD decoding performance since its minimum distance is largest among tested 10 QR codes.

In a word, one observes from the above five figures that the SD decoding is approximately 1.5 dB superior to the HD decoding for each QR code of length within 100. Furthermore, one also observes that the gap between the SD decoder and the ML decoder gradually widens as the code length increases. *Theorem 3* is reliable for calculating the ML decoding performance in the high SNR regimes for tested 10 QR codes, and thus can be used to predict the performance of more longer QR codes under the ML decoding without simulations. Additionally, the HD decoding performance can also be estimated rapidly according to *Theorem 2* and the estimated curves matches the simulation results very well in the whole simulated SNR regions. As a result, Theorems 2 and 3 provide a simple and efficient method to predict and analyze the performance of QR codes with lengths beyond 100.

We also investigate the performance of the aforementioned 11 QR codes except for the (7,4,3) QR code when using different LP-based decoding algorithms. Herein, the ALP decoder [18] provides the same error-correcting performance as the standard LP decoder proposed by Feldman et al. [17] with reduced computational complexity, while the ACG-ALP decoder has
best performance among the known LP-based decoders \cite{20,14}. Upon inspection of Fig. 7, the ALP decoder has very poor performance for each QR code especially for long codes. It seems to be confused that the performance of the ALP decoder becomes worse when the code length increases. We guess it is because the ALP decoder converges to a pseudo-codeword more likely on a larger polytope and thus deteriorates the performance. Whereas, the ACG-ALP decoder always performs very well by using redundant parity-check constraints. For the (17, 9, 5), (23, 12, 7), (31, 16, 7), and (41, 21, 9) four QR codes, the ACG-ALP decoder performs as well as the ML decoder. But there more or less exists a gap between the ACG-ALP and ML decoders for anyone of the remainder six codes, and the ACG-ALP decoder is farther away from the ML decoder when the code length increases. Among the tested 10 QR codes, the (71, 36, 11) rather than the (89, 45, 17) QR code is the best one under the ACG-ALP decoding although the latter has the largest minimum distance. In fact, the (73, 37, 13) also outperforms the (89, 45, 17) QR code when decoding by the ACG-ALP algorithm. Such a phenomenon was partly explained by pseudo-codeword frequency spectrum analysis in \cite{15}, where the pseudo-codeword frequency spectrum of the (73, 37, 13) and the (89, 45, 19) QR codes are compared. However, further research needs to be investigated in order to reveal the internal reasons.

It is well-known that both the ACG-ALP and the algebraic SD decoders are based on soft information. Consider the simulated 10 QR codes, A conclusion can be drawn by comparing the above simulation figures that the ACG-ALP decoder performs at least as well as the SD decoder. For some QR codes such as the (73, 37, 13) QR code, the former significantly outperforms the latter. However, it is difficult to compare the detailed arithmetic operations between the ACG-ALP decoder and the algebraic SD decoder. The computational complexity of the ACG-ALP decoder is mainly decided by two factors: the number of iterations (i.e., the number of LP problems) of decoding a codeword, and the complexity of the LP problem in each iteration. In our simulations, the simplex algorithm is utilized as the LP solver. Such an algorithm often converges rather rapidly although it has an exponential worst-case complexity. The simplex method needs $2n \sim 3n$ pivot steps typically \cite{31} and requires $O(n^3)$ operations in each pivot step, where n denotes the number of primal variables, i.e., the code length. Thus the ACG-ALP decoder requires $O(c \cdot n^4)$ operations to decode a codeword, where c is the average number of iterations. As described in Section III, when v errors occur and Gaussian elimination is used, the HD decoding has a complexity of $O(q \cdot (v+1)^3 + 3t + v\rho)$, where q, v, ρ indicate the number
of elements in the finite field on which a QR code is defined, the number of occurred errors and the code length, respectively. In low SNR region, the weights of most of error patterns are larger than t, which contradicts the condition (13) in [14]. Therefore, the SD decoding cannot be terminated until it exhausts all the 2^t possible error patterns, i.e., the HD decoding is repeated recursively for 2^t times. The complexity of the SD decoder requires $O((q \cdot (t+1)^3 + 3t + t\rho) \cdot 2^t)$. However, in the high SNR regime, fewer errors occur in the received vector and the algebraic SD decoding algorithm can often be terminated quickly by the sufficient optimality condition in [32], [14] because of obtaining an ML codeword. Thus, its computational complexity can be reduced to $O(((v+1)! + 3t + v\rho) \cdot k)$, where $k \ll 2^t$. It should be noted that we use the real field to compute the ACG-ALP decoder and the finite field to compute the algebraic SD decoder. In the finite field, the arithmetic operations refer to look-up tables and modular operations additionally.

Recall that the complexity comparison mentioned previously is not based on hard-and-fast complexity estimates since it seems to be very difficult to measure the algorithm complexity of the ACG-ALP decoder in terms of Big-Oh estimates. In our previous simulations [14], [15], the ACG-ALP decoder runs faster than the algebraic SD decoder in the low SNR regions, but in the high SNR regimes, the former is slower than the latter. Hence, we can simply draw a conclusion that the total computational complexity of both decoders are comparable. Actually, the speed of the ACG-ALP decoder can be further improved once other powerful LP solver such as interior-point solver is utilized.

VII. Conclusion

In this paper, three algorithms consisting of HD, SD and LP decoders for decoding QR codes of lengths within 100 are investigated. For short QR codes, the error-locator polynomials can be found by solving Newton identities. In contrast, the inverse-free BM algorithm is more efficient for long QR codes since determining the coefficients of the error-locator polynomial by solving Newton identities is very difficult in this case. The SD decoding can be achieved by combining the HD decoding together with the Chase-II algorithm. The LP decoding, however, can be easily conducted by representing a QR code with a parity-check matrix. Using an excellent LP-based decoder, namely ACG-ALP decoder, an efficient algorithm is developed to obtain the performance of the ML decoding for QR codes with lengths less than or equal to 100.
Under the all-zero codeword assumption, an equation is derived to estimate the FER performance of the HD decoding. It is in agreement with the simulation results in the whole simulated SNR regimes for all the tested QR codes. A simple simulation-based method is proposed to estimate the SD decoding performance, which provides a lower bound actually by assuming that there exists no undetected error. Also, a mathematical formula is proposed to calculate the ML decoding performance of QR codes. Such a formula coincides with simulation results for moderate to high SNR regimes and can usually employ any cyclic code once its weight numerator is given.

In this paper, two important theorems are proposed to explore some internal properties of QR codes. In other words, given two QR codes with the same minimum distances, the shorter code performs better than the longer one under the HD decoding, whereas the latter is more excellent when the ML decoding is used. It is expected that such two theorems together with the above methods of estimating performance of different decoding algorithms can be efficiently utilized to analyze and predict the decoding performance of QR codes whose lengths are beyond 100.

ACKNOWLEDGMENT

The authors would like to thank Dr. H.-C. Chang for helpful discussions on the Newton identities.

REFERENCES

[1] E. Prange, “Some cyclic error-correcting codes with simple decoding algorithms,” Air Force Cambridge Research Center-TN-156, 1958.
[2] S. B. Wicker, Error control systems for digital communication and storage. (Prentice-Hall, Englewood Cliffs, NJ, 1995)
[3] B. Honary, B. Hunt and M. Maundrell, “Improving automatic link establishment through a new soft decision trellis decoder for the (24, 12) Golay code,” Proc. IEE sixth international conference on HF radio systems and techniques, pp: 182-185, York, 1994.
[4] I. S. Reed, X. Yin, and T. K. Truong, “Algebraic decoding of the (32, 16, 8) quadratic residue code,” IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 876-880, Jul. 1990.
[5] I. S. Reed, T. K. Truong, X. Chen, and X. Yin, “The algebraic decoding of the (41, 21, 9) quadratic residue code,” IEEE Trans. Inf. Theory, vol. 38, no. 3, pp. 974-985, May 1992.
[6] X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, “Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance,” IEEE Trans. Commun., vol. 40, no. 9, pp. 1654-1661, Sep. 1994.
[7] X. Chen, I. S. Reed, T. K. Truong, “Decoding the (73, 37, 13) quadratic residue code,” IEE Proc. Comput. Dig. Tech., vol. 141, iss. 5, 1994, pp. 253-258.
[8] Y. Chang, T. K. Truong, I. S. Reed, H. Y. Cheng, and C. D. Lee, "Algebraic decoding of (71, 36, 11), (79, 36, 11), and (97, 49, 15) quadratic residue codes," IEEE Trans. Commun., vol. 51, no. 9, pp. 1463-1473, Sep. 2003.
[9] H.-P. Lee, H.-C. Chang, and T.-K. Truong, "Algebraic decoding of the (73, 37, 13) quadratic residue code," IET Commun., vol. 6, iss. 10, 2012, pp. 1326-1333.
[10] R. He, I. S. Reed, T. K. Truong, and X. Chen, "Decoding of the (47, 24, 11) quadratic residue code," IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 1181-1186, Mar. 2001.
[11] T. K. Truong, P. Y. Shih, W. K. Su, C. D. Lee, and Yaotsu Chang, "Algebraic decoding of the (89, 45, 17) quadratic residue code", IEEE Trans. Inform. Theory, vol. 54, no. 11, pp. 5005-5011, Nov. 2008.
[12] Y. H. Chen, T. K. Truong, Y. Chang, C. D. Lee, and S. H. Chen, "Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm," J. Inf. Sci. Eng., vol. 23, no. 2, pp. 127-145, Jan. 2007.
[13] T. C. Lin, W. K. Su, P. Y. Shih, and T. K. Truong, "Fast algebraic decoding of the (89, 45, 17) quadratic residue code," IEEE Communication Letters, vol. 15, no. 2, pp. 226-228, Feb 2011.
[14] L. Wang, Y. Li, T.K. Truong, and T.C. Lin, "On decoding of the (89, 45, 17) quadratic residue code," IEEE Trans. Commun., vol. 61, no. 3, pp. 832-841, March 2013.
[15] Yong Li, Hongqing Liu, Qianbin Chen and Trieu-Kien Truong, "On decoding of the (73, 37, 13) quadratic residue Code," to be published in IEEE Trans. Commun., 2014.
[16] E. Berlekamp, R. J. McEliece, and H. van Tilborg, “On the inherent intractability of certain coding problems,” IEEE Trans. Inf. Theory, vol. IT-24, no. 3, pp. 384-386, May 1978.
[17] J. Feldman, M. Wainwright, and D. Karger, “Using linear programming to decode binary linear codes,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp. 954-972, Mar. 2005.
[18] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear programming decoding,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5396-5410, Dec. 2008.
[19] A. Tanatmis, S. Ruzika, H. W. Hamacher, M. Punekar, F. Kienle, and N. Wehn, “A separation algorithm for improved LP-decoding of linear block codes,” IEEE Trans. Inform. Theory, vol. 56, no. 7, pp. 3277-3289, Jul. 2010.
[20] Xiaojie Zhang and Paul H. Siegel, “Adaptive Cut Generation Algorithm for Improved Linear Programming Decoding of Binary Linear Codes,” IEEE Trans. Inform. Theory, vol. 58, no. 10, pp. 6581-6594, Oct. 2012.
[21] M. Miwa, T.Wadayama, and I. Takumi, “A cutting-plane method based on redundant rows for improving fractional distance,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 1005-1012, Aug. 2009.
[22] S. C. Draper, J. S. Yedidia, and Y. Wang, “ML decoding via mixedinteger adaptive linear programming,” Proc. Int. Symp. Information Theory, Nice, France, Jun. 2007, pp. 1656C1660.
[23] R. T. Chien, “Cyclic decoding Procedure for the Bose-Chaudhuri-Hocquenghem codes,” IEEE Trans. Inf. Theory, vol. 10, no. 4, pp. 357-363, Oct. 1964.
[24] M. Elia, “Algebraic decoding of the (23, 12, 7) Golay code,” IEEE Trans. Inf. Theory, vol. IT-33, no. 1, pp. 150-151, Jan. 1987.
[25] M. Chertkov and M. Stepanov, “Pseudo-codeword landscape,” in Proc. IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 2007, pp. 1546-1550.
[26] K. Yang, X. Wang, and J. Feldman, “A new linear programming approach to decoding linear block codes,” IEEE Trans. Inf. Theory , vol. 54, no. 3, pp. 1061-1072, Mar. 2008.
[27] Lin, T.-C., Truong, T.-K., Su, W.-K., Shih, P.-Y., Dubney, G., “Decoding of the (24, 12, 8) extended Golay-code up to four errors,” IET Commun., vol. 3, iss. 2, pp. 232C238, 2009.
[28] Trieu-Kien Truong, Yaotsu Chang, and Chong-Dao Lee, “The Weight Distributions of Some Binary Quadratic Residue Codes,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp. 1776-1782, May 2005.

[29] ILOG CPLEX 9.0 Users Manual ILOG SA, France, 2003.

[30] D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 170-182, Jan. 1972.

[31] Zsuzsanna Szabo, and Marta Kovacs, “On interior-point Methods and simplex method in linear programming”, An. St. Univ. Ovidius Constanta, Vol. 11, No. 2, 2003, pp. 155-162.

[32] Shu Lin, and Daniel J. Costello, Error Control Coding, Prentice Hall, June, 2004.
Fig. 1. The curves of $p_{s,23}$ (p_{23} in the legend) and $p_{s,31}$ (p_{31} in the legend).
Fig. 2. FER performance comparison of the (23, 12, 7) and the (31, 16, 7) QR codes in AWGN channel. Estimated Chase (LB): the lower bound of the Chase decoding obtained from Algorithm 2; Estimated ML (UB): the upper bound of the ML decoding obtained from Theorem 3. The integers in the legend denote the code lengths of QR codes.
Fig. 3. FER performance comparison of the (47, 24, 11) and the (71, 36, 11) QR codes in AWGN channel. Estimated Chase (LB): the lower bound of the Chase decoding obtained from Algorithm 2; Estimated ML (UB): the upper bound of the ML decoding obtained from Theorem 3. The integers in the legend denote the code lengths of QR codes.
Fig. 4. FER performance comparison of the (79, 40, 15) and the (97, 49, 15) QR codes in AWGN channel. Estimated Chase (LB): the lower bound of the Chase decoding obtained from Algorithm 2; Estimated ML (UB): the upper bound of the ML decoding obtained from Theorem 3. The integers in the legend denote the code lengths of QR codes.
Fig. 5. FER performance comparison of the (17, 9, 5) and the (41, 21, 9) QR codes in AWGN channel. Estimated Chase (LB): the lower bound of the Chase decoding obtained from Algorithm 2; Estimated ML (UB): the upper bound of the ML decoding obtained from Theorem 3. The integers in the legend denote the code lengths of QR codes.
Fig. 6. FER performance comparison of the (73, 37, 13) and the (89, 45, 17) QR codes in AWGN channel. Estimated Chase (LB): the lower bound of the Chase decoding obtained from Algorithm 2; Estimated ML (UB): the upper bound of the ML decoding obtained from Theorem 3. The integers in the legend denote the code lengths of QR codes.
Fig. 7. FER performance of 10 QR codes mentioned previously, where ALP-\(n\) (dot-dashed lines), ACG-ALP-\(n\) (solid lines), and ML-\(n\) (dotted lines) represent the ALP decoding, the ACG-ALP decoding and the ML decoding, respectively, for the QR code of length \(n\).