Microbiological profile and antibiotic sensitivity pattern of post-operative orthopaedic Implant infections in tertiary care hospital

Dr. M Aditya, Dr. KV Ramana Kumar, Dr. T Mounika, Dr. O Ravi Kumar and Dr. Anand Acharya

DOI: https://doi.org/10.22271/ortho.2021.v7.i1b.2467

Abstract

Background: A correct information about the most common causative organism and it sensitivity pattern in that clinical setup is essential for designing empirical therapy. The present study has been designed to study the microbiological profile and antibiotic sensitivity pattern of post-operative orthopaedic Implant infections in a tertiary care teaching hospital.

Material and Method: This prospective observational study. Patients who presented with the signs and symptoms of infections, confirmed by laboratory and other routine investigations, were included in the present study. The demography, microbiological data sensitivity to an antimicrobial agent of organism was recorded.

Result: The most common pathogen isolated was *Pseudomonas aeruginosa* that is 52(43.3 %), followed by *staphylococcus aureus*, that is 50(41.66%). *Pseudomonas aeruginosa* was sensitive to Piperacillin tazobactam 42(80.7%), Imipenem 40(76.9%), Imipenem+cilastatin 42(80.7%) and Meropenem 43(82.7%). Methicillin-resistant staph aureus was sensitive to Cotrimoxazole 6(50%), Clindamycin 9(75%), Vancomycin 11(91.7%) and Linazolid10(83.4%).

Conclusion: The implant of femur was most commonly infected. Staphylococcus Aureus (MSSA) was commonly associated with biofilm formation, followed by *staph aureus* infections were sensitive to Piperacillin+ tazobactam, Imipenem, Imipenem+cilastatin and Meropenem.

Keywords: Orthopaedic implant infections, antibiotic sensitivity, microbiological profile

Introduction

Implants in orthopaedics surgery are mainly used to restore the function of load-bearing joints and decrease the pain so that patients can be mobilised early and the duration of stay in the hospital can be reduced. Implant-related infection is the major problem which leads to implant failure [1, 2]. It is a type of surgical site infections (SSIs) that can double the length of time a patient stays in hospital, significantly increase healthcare expenditure and in severe cases it may lead to amputation and mortality [3]. To treat orthopaedic implant infections is a challenging task. Implant-associated infections are the result of adhesion of bacteria to implant surface and subsequent biofilm formation at the implantation site. Once biofilm is formed it is difficult by host defence and ordinary antimicrobial therapy to remove it [4, 5]. The incidence of implant infection in elective orthopaedic surgery is in the range of 0.7% to 4.2% [6, 7]. Mundhada AS, Tenpe S *et al.* has reported that orthopaedic implant infection in India is 6 % [8]. In spite of availability of good aseptic operation theatre, rational preoperative antibiotic prophylaxis and global guidelines for the prevention of surgical site infection, implant related infections are common [9]. A correct information about most common causative organism and it sensitivity pattern in that clinical setup is essential for designing empirical therapy.

From literature survey we have found that there is diversity in the conclusion of various researchers about causative organism and it susceptibility to anti-microbial agent. Mousa HA *et al.* from Iraq has concluded that *Pseudomonas aeruginosa* and Staphylococcus epidermidis were the most common causative agents [10]. Abulotooh M Eid *et al.* from Egyptian has concluded that Staphylococci, both coagulase positive and coagulase negative (epidermis),...
constitute the majority of the offending organisms [11]. Fernandes A, Dias M from India has concluded that Staphylococcus SPP are the commonest isolates [12]. Present study has been designed to study the microbiological profile and antibiotic sensitivity pattern of post-operative orthopaedic Implant infections in tertiary care teaching hospital.

Material and method

This prospective observational study was carried out in the Department of orthopaedics and department of Microbiology, at Konaseema institute of medical science Amalapuram A.P. India, for a period of three years, from July 2017–June 2020. Ethics: Approval from institutional ethics committee was taken before start of study. A written informed consent was obtained from all patients before enrolling them for study.

Selection of patients

The patients admitted in the department of orthopaedics for implant or prosthesis surgery, who presented with the signs and symptoms of infections, confirmed by laboratory and other routine investigations, were included in present study. The specimens having polymicrobial flora were excluded from study.

Sample size: As per selection criteria 120 patients were enrolled for this study.

As per selection criteria 120 culture-positive patients were enrolled for this study. The mean age of the patients was 41.90 ± 15.94 years and there was male predominance. Most of the patients were between 30 to 60 years of age. (Table 1)

Organism isolated	Number (%)
Pseudomonas aeruginosa	52(44.3%)
Staphylococcus Aureus	38(31.57%)
Staphylococcus Aureus(MRSA)	12(10%)
Klebsiella SPP	10(8.34%)
E. Coli	8(6.67%)
Enterococcus SPP	4(3.3%)
Anaerobes	0

The most common pathogen isolated was *Pseudomonas aeruginosa* that is 52(43.3%), followed by staphylococcus aureus that is 50(41.66%). Among 50 Staphylococcus aureus, n=12 (10%) of the isolates were found to be MRSA (Methicillin resistant Staphylococcus aureus) and 38 isolates were MSSA (Methicillin sensitive Staphylococcus aureus). Klebsiella SPP was isolated in 10 patients and *E.coli* was isolated in 4(3.3%). Enterococcus Spp was isolated in 4(3.3%) patients. (Table 2)

Site of infection	Number (%)
Femur	44(36.67%)
Tibia	25(20.83%)
Foot	13(10.83%)
Humorous	12(10.00%)
Knee	12(10.00%)
Radius	8(6.67%)
Ulna	6(5%)

Femur was the most common site affected 44(36.67%) which was followed by tibia in 25(20.83%). Foot was affected in 10.83% and ulna was least commonly affected.

Result

Table 1: Demography of patients

Age (41.90 ± 15.94 years)	Less than 30	6
31 to 60	84	
More than 60	30	
Sex(m/f)	80/40	

In present study, 24 isolates showed biofilm production by the Tissue Culture Plate Method. They required extensive antimicrobial therapy and in some implant was removed to cure infection. Staphylococcus Aureus (MSSA) was commonly associated with biofilm formation followed by Staphylococcus Aureus (MRSA). Klebsiella SPP was 16.7% of total isolate. Enterococcus SPP was also 8.34% of total isolate.

Table 4: Biofilm producing organism

Organism	Number (%)
Staphylococcus Aureus	12(50%)
Staphylococcus Aureus(MRSA)	6(25%)
Klebsiella SPP	4(16.7%)
Enterococcus SPP	2(8.34%)
Table 5: Antimicrobial susceptibility patterns organism isolated

Antimicrobial Agent	Pseudomonas aeruginosa	Staphylococcus Aureus (MRSA)	Staphylococcus Aureus (SPP)	Klebsiella SPP	E.coli	Enterococcus SPP
Cotrimoxazole	2(3.8%)	-	-	6(50.0%)	4(33.3%)	2(25%)
Amoxicillin+clavulanic acid	-	18(47.3%)	-	2(16.7%)	1(12.5%)	3(75%)
Amoxicillin+ sulbactum	-	-	-	2(16.7%)	2(25%)	2(50%)
Piperacillin tazobactum	42(80.7%)	-	-	10(100%)	7(87.5%)	8(100%)
Imipenem	40(76.9%)	-	-	10(100%)	8(100%)	-
Imipenem+cilastatin	42(80.7%)	-	-	10(100%)	8(100%)	-
Meropenem	43(82.7%)	-	-	10(100%)	-	-
Cefixime	-	5(13.1%)	-	1(10%)	-	-
Ceftriaxone	47(7.7%)	10(26.3%)	2(16.7%)	2(20%)	2(25%)	-
Cefoperazone+sulbactum	14(26.9%)	12(31.5%)	8(80%)	5(62.5%)	-	-
Cefazidime	14(26.9%)	1(2.6%)	-	-	-	-
Cefipime	27(51.9%)	32(84.2%)	10(100%)	8(100%)	-	-
Ciprofloxacin	14(26.9%)	11(28.9%)	2(16.7%)	5(50%)	3(37.5%)	2(50%)
Ofloxacin	20(38.4%)	16(41.1%)	2(16.7%)	6(60%)	5(62.5%)	3(75%)
Tetracycline	-	-	-	-	1(12.5%)	-
Gentamycin	21(40.4%)	-	-	-	4(50%)	3(75%)
Amikacin	24(46.1%)	-	-	-	8(100%)	4(100%)
Tobramycin	26(50.0%)	-	-	-	-	4(100%)
Azithromycin	6(11.6%)	18(47.3%)	4(33.3%)	9(90%)	1(25%)	-
Clarithromycin	-	19(50%)	4(33.3%)	-	7(70%)	1(25%)
Clindamycin	-	28(73.6%)	9(75%)	10(100%)	-	-
Vancomycin	10(19.2%)	32(84.4%)	11(91.7%)	-	-	4(100%)
Linazolid	-	24(63.2%)	10(83.4%)	-	-	4(100%)

Pseudomonas aeruginosa was sensitive to Piperacillin tazobactam 42(80.7%), Imipenem 40(76.9%), Imipenem-cilastatin 42(80.7%) and Meropenem 43(82.7%). Staph aureus was sensitive to Cefipime 32(84.2%), clindamycine 28(73.6%), Vancomycin 32(84.4%) and linazolid 24(63.2%). Methicillin resistant staph aureus were sensitive to Cotrimoxazole 6(50%), Clindamycine 9(75%), Vancomycin 11(91.7%) and Linazolid10 (83.4%). Klebsiella Spp was 100 % sensitive to Imipenem, Imipenem+cilastatin, Meropenem Cefipime and Clindamycine. *E.coli* was 100 % sensitive to Piperacillin tazobactam, Imipenem+cilastatin, Cefipime and amikacin. *E.coli* were less sensitive to Cefoperazone+sulbactam, ofloxacin and Gentamycin. Enterococcus Spp was highly sensitive to Piperacillin tazobactam, Amikacin, Tobramycin, Vancomycin and linazolid. It was sensitive to fluoroquinolones as well.

Discussion

Orthopaedic and trauma device-related infection is a major problem in orthopaedics leading to implant failure. Despite of best sterilisation and infection control practice device-related infection are common [16, 17]. Orthopaedic implant infections continue to be an important patient safety problem and increase the financial and social costs to the patients [18].

In present study mean age of the patients were 41.90 ± 15.94 years and there was male predominance this finding is similar to the study of Benazir et al. and Sarangi Samir K, Padhi Sanghamitra et al. [19, 20].

The most common pathogen isolated was *Pseudomonas aeruginosa* that is 52(43.3 %), followed by staphylococcus aureus that is 50(41.66%). Mousa HA et al. has reported that from his study that *Pseudomonas aeruginosa* and Staphylococcus epidermidis were the most common causative agents which support our study [10]. Sarangi Samir K, Padhi Sanghamitra has reported that Staphylococcus aureus was found to be the most common aerobic isolate (31.1%) followed by *Pseudomonas aeruginosa* which corroborated with our study [20]. A Deny, C. Loiez, V et a.l has reported that patients who had undergone bone fixation had a lower rate of MRSA infections than patients, who had undergone arthroplasty 13% vs. 30% [21]. Muley VA, Ghardage DP et has reported that rate of MRSA isolation in his study was 12% [22]. This two study support our study that is 10 % of total isolate. Latha T, Anil B, Manjunatha H, et al has reported that 57.3% of *Staphylococcus aureus* as MRSA which does not support our study [23]. Klebsiella Spp was isolated in 10 patients and *E.coli* was isolated in 4(3.5%) this finding is supported by the work of Chouhan V, Qivas et al. and Pfang BG, García-Cañete J, García-Lasheras J, et al. [24, 25]. Enterococcus SPP was isolated in 3.3% patient, which is supported by the work of Andreas F. Widmer et al. [26].

Implants in femur and tibia are most commonly infected. Implants in foot, humerus and knee are equally infected which is supported by the work of Fernandes A, Dias M. et al. [12]. Biofilm formation by organism is a complex process. Initially there occur adhesion of organism to implant surface followed by multi-layered bacterial cell proliferation and adhesion of cells in an extracellular polysaccharide matrix. This biofilm is responsible for chronic infection, resistant to treatment with antibiotics and a chronic inflammatory response at the site of the biofilm [1].

In present study *Staphylococcus Aureus* (MRSA) was commonly associated with biofilm formation by organism is a complex process. Initially there occur adhesion of organism to implant surface followed by multi-layered bacterial cell proliferation and adhesion of cells in an extracellular polysaccharide matrix. This biofilm is responsible for chronic infection, resistant to treatment with antibiotics and a chronic inflammatory response at the site of the biofilm [1].

In present study *Staphylococcus Aureus* (MRSA) was commonly associated with biofilm formation by organism is a complex process. Initially there occur adhesion of organism to implant surface followed by multi-layered bacterial cell proliferation and adhesion of cells in an extracellular polysaccharide matrix. This biofilm is responsible for chronic infection, resistant to treatment with antibiotics and a chronic inflammatory response at the site of the biofilm [1].
less. This finding corroborates with the study of Perumal A, Kumar CA, and Doris TS et al. [29]. Staphylococcus aureus was sensitive to Cefpieme, clindamycin, Vancomycin and linazolid. Sensitivity staphylococcus aureus to Amoxicillin+clavulanic acid, Azithromycin and clarithromycin was around 50 % which is supported by the work of Shekhar Pal, Ashutosh Sayana, Anil Joshi, Deepak Juyal et al. [30]. In our study staphylococcus aureus (MRSA) are sensitive to clindamycin, Vancomycin and linazolid. We have also observed that 50 % staphylococcus aureus (MRSRA) isolated from implant infection were sensitive to Cotrimoxazole. This finding corroborates with the study of Latha T, Anil B, Manjunatha H, et al. and Tandra Chadha, Syeda Nazia Kulsum et al. [23, 31]. Study of Gitau, W., Masika, M., Musyoki, M. et a and Jain S, Chowdhury R, Datta M, Chowdhury G, Mukhopadhyay AK et al. supports our finding [32, 33]. Klebsiella Spp was 100% sensitive to Imipenem, Imipenem+cilastatin, Meropenem Cefpieme and Clindamycine. Klebsiella SPP were sensitive to fluoroquinolones. This is supported by the work of Raquel Silva, MD, Mauro Costa Salles et al. [34]. E.coli was sensitive to Piperacillin tazobactam, Imipenem+cilastatin, Cefpieme and amikacin but they were less sensitive to Cefoperazone+sublactam, ofloxacin and Gentamycin. Study of Benazir et al. corroborates with our finding [35]. Enterococcus Spp was highly sensitive to Piperacillin tazobactam, Amikacin, Tobramycin, Vancomycin and linazolid but biofilm forming Enterococcus Spp was difficult to treat. Rasouli MR, Tripathi MS et al. has concluded that Management of Enterococcus PJI is challenging and multiple operations may need to be performed to control the infection [36]. Holmberg A, Mørgelin M et al. has concluded that ciprofloxacin or linazolid with rifampicin have a good effect on Enterococcus Spp which support our study [37]. E.Tornero, E.Senneville et al. has reported that failure of treatment was less with linazolid and Vancomycin which again support our study [38].

Conclusion
From this study we can conclude that the most common pathogen isolated from post-operative orthopaedic Implant infections was Pseudomonas aeruginosa. Implant of femur was most commonly infected. Staphylococcus Aureus (MSSA) was commonly associated with biofilm formation followed by Staphylococcus Aureus (MRSA). Pseudomonas aeruginosa isolated from implant infections were sensitive to Piperacillin+ tazobactam, Imipenem, Imipenem+cilastatin and Meropenem. Staphylococcus aureus was sensitive to Cefpieme, clindamycin, Vancomycin and linazolid. Staphylococcus aureus (MRSA) are sensitive to clindamycin, Vancomycin and linazolid. We have also observed that 50 % staphylococcus aureus (MRSRA) isolated from implant infection were sensitive to Cotrimoxazole. Klebsiella Spp was sensitive to Imipenem, Imipenem+cilastatin, Meropenem Cefpieme and Clindamycine. E.coli was sensitive to Piperacillin tazobactam, Imipenem+cilastatin, Cefpieme and amikacin. Enterococcus Spp was highly sensitive to Piperacillin tazobactam, Amikacin, Tobramycin, Vancomycin and linazolid.

Reference
1. Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2012;2(4):176-194.
doi:10.4161/biom.22905.
2. Moriarty TF, Kuehl R, Coenye T et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2017;1(4):89-99. Published. doi:10.1302/2058-5241.1.1000037
3. National Collaborating Centre for Women's and Children's Health (UK). Surgical Site Infection: Prevention and Treatment of Surgical Site Infection. London: RCOG Press 2008. (NICE Clinical Guidelines, No. 74.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK53731/
4. Campoccia D, Montanaro L, Arclota CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006;27:2331-9. doi: 10.1016/j.biomaterials.2005.11.044.
5. Trampuz A, Osmon DR, Hanssen AD, Steckelberg JM, Patel R. Molecular and biofilm approaches to prosthetic joint infection. Clin Orthop Relat Res 2003;414:69-88. doi:
6. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004;351:1645-54.
7. Kurtz SM, Lau E, Schmier J et al. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 2008;23:984-91.
8. Mundhada AS, Tenpe S. A study of organisms causing surgical site infections and their antimicrobial susceptibility in a tertiary care government hospital, Indian J Pathol Microbiol 2015;58:195-200.
9. Global guidelines for the prevention of surgical site infection, World health organisation https://apps.who.int/iris/bitstream/handle/10665/250680/9789241549882-eng.pdf?sequence=8
10. Mousa HA. Infection following orthopaedic implants and bone surgery, East Mediterr Health J 2001;7(4-5):738-743.
11. Abulfotooh M. Eid the Egyptian orthopaedics Journal. Infected orthopedic implants. 2016;51(3):187-198.
12. Fernandes A, Dias M. The Microbiological Profiles of Infected Prosthetic Implants with an Emphasis on the Organisms which Form Biofilms. J Clin Diagn Res 2013;7(2):219-223. doi:10.7860/JCDR/2013/4533.2732.
13. Humphries RM, Ambler J, Mitchell SL et al. CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. J Clin Microbiol 2018;56(4):e01934-17. Published.
doi:10.1128/JCM.01934-17.
14. Manandhar S, Singh A, Varma A et al. Evaluation of methods to detect in vitro biofilm formation by staphylococcal clinical isolates. BMC Res Notes 2018;11:714. https://doi.org/10.1186/s13104-018-3820-9.
15. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. Indian J Med Microbiol 2006;24:25-29.
16. Moriarty TF, Kuehl R, Coenye T et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2017;1(4):89-99. Published. doi:10.1302/2058-5241.1.1000037
17. Tsaras G, Osmun DR, Mahr T et al. Incidence, secular trends, and outcomes of prosthetic joint infection: a population-based study, olmsted county, Minnesota,
Identification, Antibiotic Susceptibility Patterns and Biofilm Detection of Isolates in Orthopaedic Implant Infections; JAMMR 2018;25(5):1-12. Article no.JAMMR.38988.

Sarangi Samir K, Padhi Sanghamitra Bacteriological profile of post-operative orthopedic implant infections and their antibiotic sensitivity pattern in a tertiary care hospital of southern Odisha,J NTR univ health sci 2019;8(2):114-117.

Deny A, Loiez C, Deken V, Putman S, Duhamel A, Girard J et al. Migaud Différences épidémiologiques entre les patients infectés sur matériel orthopédique par Staphylococcus aureus résistant ou non à la méticilline. Étude rétrospective sur une série continue de 115 patients,Revue de Chirurgie Orthopédique et Traumatologique 2016;102(7):663-667.

Muley VA, Ghadge DP, Bhore AV. Bacteriological Profile of Neonatal Septicemia in a Tertiary Care Hospital of southern Odisha,J NTR univ health sci 2019;8(2):114-117.

Gitau, W., Masika, M., Musyoki, M. et al. Antimicrobial susceptibility pattern of Staphylococcus aureus isolates from clinical specimens at Kenyatta National Hospital. BMC Res Notes 2018;11:226. https://doi.org/10.1186/s13104-018-3337-2.

Jain S, Chowdhury R, Datta M, Chowdhury G, Mukhopadhyay AK. Characterization of the clonal profile of methicillin resistant Staphylococcus aureus isolated from patients with early post-operative orthopedic implant based infections. Ann Clin Microbiol Antimicrob 2019;18(1):8. Published. doi:10.1186/s12941-019-0307-z.

Raquel Silva, MD, Mauro Costa Salles, MD, Roberta Matosa, Nurse, Bernardo Ayres, MD, Viviane Dias, MD, Luciana M Caetano, MD, Orthopedic-Implant Associated Infection due to Gram-Negative Bacilli: The Worrisome Impact of Acinetobacter baumannii Multidrug Resistance in a Brazilian Center, Open Forum Infectious Diseases 2017;4(1):S111-S112.

Shazia Benazir, Dalip Kakru K, Syed Khurshid, Asifa Bhat, Umar Nazir, Shaista Nazir, Naseer A. Mir and Lenah Bashir, Identification, Antibiotic Susceptibility Patterns and Biofilm Detection of Isolates in Orthopaedic Implant Infections, Journal of Advances in Medicine and Medical Research 2018;25(5):1-12. Article no.JAMMR.38988.

Rasouli MR, Tripathi MS, Kenyon R, Weters N, Della Valle CJ, Parvizi J. Low rate of infection control in enterococcal periprosthetic joint infections. Clin Orthop Relat Res 2012;470(10):2708-2716. doi:10.1007/s11999-012-3748-4.

Holmberg A, Mörgelin M, Rasmussen M. Effectiveness of ciprofloxacin or linezolid in combination with rifampicin against Enterococcus faecalis in biofilms. J Antimicrob Chemother 2012;67(2):433-439. doi:10.1093/jac/dkr477.

Tornero E, Senneville E, Euba G, Petersdorf S, Rodriguez Pardo D, Lakatos B et al. Characteristics of prosthetic joint infections due to Enterococcus sp. and predictors of failure: a multi-national study, Clinical Microbiology and Infection 2014;20(11):1219-1224.