Identification and Detection of Prokaryotic Symbionts in the Ciliate *Metopus* from Anaerobic Granular Sludge

YUGA HIRAKATA1,2, **MAMORU OSHIKI**1,2, **KYOHEI KURUDA**3, **MASASHI HATAMOTO**3, **KENGO KUBOTA**1,2, **TAKASHI YAMAGUCHI**2, **HIDEKI HARADA**3, and **NOBUO ARAKI**1

1Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Niigata, Japan; 2Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan; 3Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan; 4Department of Civil and Environmental Engineering, Tohoku University, Sendai, Miyagi, Japan; and 5New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan.

(Received October 4, 2015—Accepted November 2, 2015—Published online December 4, 2015)

The aim of the present study was to investigate the prokaryotic community structure of the anaerobic ciliate, *Metopus* sp., using rRNA sequencing, fluorescence in situ hybridization (FISH), and transmission electron microscopy (TEM). *Metopus* sp. was physically separated from anaerobic granular sludge in a domestic wastewater treatment plant and anoxically cultivated for 7 d. 16S rRNA gene sequences from the prokaryotes Methanoregula boonei and Clostridium aminobutyricum were abundantly detected in *Metopus* ciliates. The FISH analysis using the oligonucleotide probes Mg1200b and Cla568 demonstrated that these prokaryotes were localized within *Metopus* cells. These results identify *M. boonei* and *C. aminobutyricum*-like prokaryotes as novel endosymbionts of *Metopus* ciliates.

Key words: *Metopus* ciliates, endosymbionts, Methanoregula boonei, Clostridium aminobutyricum, anaerobic granular sludge

Anaerobic ciliates are predators of prokaryotes and influence the abundance, structure, and function (e.g., methanogenesis and sulfate reduction) of prokaryotic communities (4). *Metopus* ciliates are affiliated with the family *Metopidae* of the class *Armophorea*, and are frequently found in anoxic man-made and natural ecosystems including freshwater and marine sediments and landfill sites (6).

Ciliates in anoxic ecosystems harbor endo- and ectosymbiotic prokaryotes. *Metopus* ciliates host endosymbiotic methanogens affiliated with the archaeal genera *Methanobacterium*, *Methanoplanus*, *Methanocorpusculum*, and *Methanosaeta* (14). These endosymbiotic methanogens convert hydrogen or acetate produced by *Metopus* to methane gas (13). The elimination of endosymbiotic methanogens using the specific methanogen inhibitor, 2-bromoethanesulfonic acid, was previously reported to result in a 30% reduction in the growth yield of *Metopus contortus* (7). In addition to endosymbiotic methanogens, ectosymbiotic sulphate-reducing bacteria have been detected in *M. contortus*; however, the molecular phylogeny of these bacteria remains unknown (8). No information is currently available on endosymbiotic bacteria in *Metopus* ciliates. Endosymbiotic bacteria have been detected in anaerobic ciliates, including *Trimyema compressum* and *Cyclidium porcatum*, and have been identified as members of the family *Syntrophomonadaceae* using 16S rRNA gene sequencing. These bacteria may have an as yet uncharacterized physiological role because their removal has been shown to result in 30 to 50% reductions in the growth yield of host ciliates (1, 17). In order to obtain a clearer understanding of the symbiosis between prokaryotes and *Metopus* ciliates, the molecular phylogeny of prokaryotic symbionts, particularly endosymbiotic bacteria, needs to be examined in more detail. Therefore, the aim of the present study was to investigate the molecular phylogeny of endosymbiotic bacteria found in *Metopus* ciliates and demonstrate their symbiosis.

Metopus ciliates were anoxically cultivated for 7 d in glucose media. The prokaryotic community structure of *Metopus* cells was subsequently examined in order to screen candidate endosymbionts. *Metopus* ciliates were obtained from anaerobic granular sludge in a domestic wastewater treatment plant (19) using MM-89 and IM-9B micromanipulators (Narishige, Tokyo, Japan), and cultured anoxically at 20°C in ciliate mineral medium containing the following per L of solution: 0.1 g glucose, 0.01 g K2HPO4, 0.4 g NaHCO3, 0.025 g NH4Cl, 0.4 g NaCl, 0.2 g MgCl2·6H2O, 0.15 g KCl, 0.25 g CaCl2·2H2O, 0.5 g Na2S·9H2O, 0.5 g L-cysteine hydrochloride monohydrate, 1 mg resazurin sodium salt, 1 mL vitamin solution (16), and 1 mL trace element solution (22). The pH of the media was adjusted to 7.0 with 1N HCl or NaOH. Culture bottles were flushed with nitrogen gas and closed with a butyl rubber stopper. Streptomycin and vancomycin (50 mg L−1 each) were also included in the culture medium in order to suppress the growth of free-living and ectosymbiotic bacteria. After 3, 5, and 7 d of cultivation, ten *Metopus* ciliate cells were transferred to 5 μL of sterile distilled water in a sterile PCR tube. After freezing at −80°C and thawing to 60°C three times, the eukaryotic 18S rRNA or prokaryotic 16S rRNA gene sequence was amplified by PCR using the oligonucleotide primers Euk-82F and MedlinB (10, 12) or 515F and 806R (2), respectively. All data were analyzed using QIIME software (version 1.8.0). Sequence reads with low quality scores (Phred quality score <30) were eliminated using the fastx_trimmer tool, and paired-end sequence reads were assembled in the paired-end...
Nucleic acid sequences with ≥97% similarity were grouped into an operational taxonomic unit (OTU) by the UCLUST algorithm (5). Phylogenetic affiliations of the OTUs were identified using the BLASTN search against reference sequences (NCBI database). In the phylogenetic analysis, partial 18S or 16S rRNA gene sequences were aligned in the ClustalW software and the phylogenetic tree was constructed in MEGA 6.06 software (20) using maximum likelihood (ML; Jones-Taylor-Thornton model), neighbor joining (NJ; Poisson model), maximum parsimony (MP; close neighbor interchange in the random-tree search algorithm), and unweighted pair group methods with the arithmetic mean (UPGMA; a maximal composite likelihood model).

The ciliates cultured in the present study were identified as Metopus sp. based on their morphological features as reported previously by Esteban et al. (6). The molecular phylogeny of Metopus sp. was further examined using PCR-amplified 18S rRNA gene sequences by the Sanger method using a 3730xl DNA Analyzer (Life Technologies). The 18S rRNA gene sequences determined were affiliated with the family Metopidae, and sequence similarity between the Metopus sp. and M. contortus was 97% (Fig. 1a).

The prokaryotic community structure of Metopus sp. cells was examined by determining the amplified 16S rRNA gene sequence using the MiSeq sequencer (Illumina, San Diego, CA, USA). A total of 25,683, 30,461, and 29,786 valid prokaryotic sequences were recovered from samples collected after 3, 5, and 7 d of cultivation, respectively (Fig. S1). The most common prokaryotes identified were related to the hydrogenotrophic methanogen Methanoregula boonei (16S rRNA gene sequence similarity; 99%) (Fig. 1a) or to the anaerobic bacterium Clostridium aminobutyricum (98%) (Fig. 1b), and accounted for 66.1% and 18.7% of total reads at the end of cultivation, respectively. On the other hand, the abundance of the 16S rRNA gene sequence of the sulphate-reducing bacterium, Desulfovibrio desulfuricans (16S rRNA gene sequence similarity; 100%) decreased from 7.4% to less than 0.1%. This outcome suggests that D. desulfuricans is a free-living or ectosymbiotic bacterium because its growth was compromised by antibiotics.

16S rRNA gene sequences related to M. boonei or C. aminobutyricum were abundant even after 7 d of cultivation, which suggests that these prokaryotes are endosymbionts of Metopus sp. In order to demonstrate endosymbiosis between M. boonei- and C. aminobutyricum-like prokaryotes, a fluorescence in situ hybridization analysis was performed as described previously (15). Metopus sp. cells (Fig. 2a) collected after 7 d of cultivation were fixed with 4% paraformaldehyde for 8 h and hybridized with the oligonucleotide probes Mg1200b (3) and Cla568 (this study) for M. boonei and C. aminobutyricum, respectively. Samples were then examined using a fluorescence microscope (BX51, Olympus, Tokyo, Japan). The Cla568 probe (5′-ACCTACCAGCTTCTTAGG-3′) was constructed using the tool Design probes in ARB software.

![Fig. 1. Neighbor-joining tree showing the phylogenetic affiliation of Metopus sp., endosymbiotic methanogens (panel a; left and right, respectively), and endosymbiotic bacteria (panel b). Solid lines in the panel represent relationships between endosymbiotic methanogens and host ciliates. Branching points that support a probability of >75% in the bootstrap analyses (based on 1,000 replications, estimated using the NJ method for the upper left sector, the MP method for the upper right sector, the ML method for bottom left sector, and the UPGMA method for the bottom right sector) are shown as black squares. The scale bars represent sequence divergence. The right parenthesis indicates the coverage of the oligonucleotide Cla568 probe designed in the present study.](image-url)
The present study elucidated the prokaryotic community structure of *Metopus* ciliates, and identified *M. boonei*- and *C. aminobutyricum*-like prokaryotes as endosymbionts. Specific interactions between these endosymbionts and the host are important for obtaining a better understanding of the ecophysiology of *Metopus* ciliates because their removal in anaerobic ciliates resulted in 30 to 50% reductions in the growth yield (1, 17). Although the physiological role of endosymbiotic methanogens as hydrogen scavengers has been elucidated previously, future research is required in order to investigate direct and/or indirect interactions between endosymbiotic bacteria and host ciliates.

Accession numbers. The 18S rRNA gene sequences of *Metopus* sp. and prokaryotic 16S rRNA gene sequences were deposited in the GenBank/EMBL/DDBJ databases under accession numbers LC062508 to LC062510 and LC062148 to LC062381, respectively.

Acknowledgements

This research was supported by the grants from the Japan Society for the Promotion of Science (JSPS) to T.Y. and N.A.. K.T. was supported by a Grant-in-Aid for JSPS Fellows. M.O. was supported by grants from the Steel Foundation for Environmental Protection Technology and Yamaguchi Scholarship Foundation.
References

1. Broers, C.A., C.K. Stumm, and G.D. Vogels. 1991. Axenic cultivation of the anaerobic free-living ciliate Trimyema compressum. J. Protozool. 38:507–511.

2. Caporaso, J.G., C.L. Lauber, W.A. Walters, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6:1621–1624.

3. Crocetti, G., M. Murto, and L. Björnsson. 2006. An update and optimisation of oligonucleotide probes targeting methanogenic archaea for use in fluorescence in situ hybridisation (FISH). J. Microbiol. Methods 65:194–201.

4. Dziallas, C., M. Allgaier, M.T. Monaghan, and H.P. Grossart. 2012. Act together-implications of symbioses in aquatic ciliates. Front. Microbiol. 3:A288.

5. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.

6. Esteban, G., T. Fenchel, and B. Finlay. 1994. Diversity of free-living morphospecies in the ciliate genus Metopus. Arch. Protistenkunde 146:137–164.

7. Fenchel, T., and B.J. Finlay. 1991. Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for growth efficiency of the host. J. Protozool. 38:18–22.

8. Fenchel, T., and N.B. Ramsing. 1992. Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Arch. Microbiol. 158:394–397.

9. Goosen, N.K., C. van der Drift, C.K. Stumm, and G.D. Vogels. 1990. End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiol. Lett. 69:171–175.

10. López-Garcia, P., H. Philippe, F. Gail, and D. Moreira. 2003. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. U. S. A. 100:697–702.

11. Ludwig, W., O. Strunk, R. Westram, et al. 2004. ARB: a Software environment for sequence data. Nucleic Acids Res. 32:1363–1371.

12. Medlin, L., H.J. Elwood, S. Stickel, and M.L. Sogin. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499.

13. Müller, M. 1993. The hydogenosome. J. Gen. Microbiol. 139:437–451.

14. Narayanan, N., B. Krishnakumar, V.N. Anupama, and V.B. Manilal. 2009. Methanosaeta sp., the major archaeal endosymbiont of Metopus. Res. Microbiol. 160:606–607.

15. Oshiki, M., M. Onuki, H. Satoh, and T. Mino. 2012. Microbial community composition of polyhydroxyalkanoate-accumulating organisms in full-scale wastewater treatment plants operated in fully aerobic mode. Microbes Environ. 28:96–104.

16. Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28:283–288.

17. Shinzato, N., I. Watanabe, X.-Y. Meng, Y. Sekiguchi, H. Tamaki, T. Matsui, and Y. Kamagata. 2007. Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb. Ecol. 54:627–636.

18. Stieb, M., and B. Schink. 1985. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch. Microbiol. 140:387–390.

19. Takahashi, M., A. Ohya, S. Kawakami, et al. 2011. Evaluation of treatment characteristics and sludge properties in a UASB reactor treating municipal sewage at ambient temperature. Int. J. Environ. Res. 5:821–826.

20. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725–2729.

21. Tashiro, Y., H. Shinto, M. Hayashi, S.I. Baba, G. Kobayashi, and K. Sonomoto. 2007. Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylicum N1-4 (ATCC 13564) with methyl viologen. J. Biosci. Bioeng. 104:238–240.

22. Widdel, F., and N. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch. Microbiol. 129:395–400.