Fields and forms on ρ-algebras

CĂTĂLIN CIUPALĂ

Department of Differential Equations, Faculty of Mathematics and Informatics, University Transilvania of Braşov, 2200 Braşov, Romania
E-mail: cciupala@yahoo.com

MS received 13 May 2004; revised 21 October 2004

Abstract. In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: ρ-algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on ρ-algebras.

Keywords. Non-commutative geometry; ρ-algebras; Frölicher–Nijenhuis bracket.

1. Introduction

There are some ways to define the Frölicher–Nijenhuis bracket in non-commutative differential geometry. The Frölicher–Nijenhuis bracket on the algebra of universal differential forms of a non-commutative algebra, is presented in [2], the Frölicher–Nijenhuis bracket in several kinds of differential graded algebras are defined in [6] and the Frölicher–Nijenhuis bracket on colour commutative algebras is defined in [7]. But this notion is not defined on ρ-algebras in the context of non-commutative geometry. In this paper we introduce the Frölicher–Nijenhuis bracket on a ρ-algebra A using the algebra of universal differential forms $\Omega(A)$.

A ρ-algebra A over the field k (C or R) is a G-graded algebra (G is a commutative group) together with a twisted cocycle $\rho: G \times G \to k$. These algebras were defined for the first time in the paper [1] and are generalizations of usual algebras (the case when G is trivial) and of Z (Z_2)-superalgebras (the case when G is Z resp. Z_2). Our construction of the Frölicher–Nijenhuis bracket for ρ-algebras, in this paper, is a generalization of this bracket from [2].

In \mathfrak{x} we present a class of non-commutative algebras which are ρ-algebras, derivations and bimodules. In \mathfrak{x} we define the algebra of (non-commutative) universal differential forms $\Omega(A)$ of a ρ-algebra A. In \mathfrak{x} we present the Frölicher–Nijenhuis calculus on A, the Nijenhuis algebra of A, and the Frölicher–Nijenhuis bracket on A. We also show the naturality of the Frölicher–Nijenhuis bracket.

2. ρ-Algebras

In this section we present a class of non-commutative algebras that are ρ-algebras. For more details see [1].

Let G be an abelian group, additively written, and let A be a G-graded algebra. This implies that the vector space A has a G-grading $A = \bigoplus_{a \in G} A_a$, and that $A_a A_b = A_{a+b}$.
(1) The \(\rho \) is a \(\rho \)-algebra with the trivial group \(G \):

\[
\rho (a; b) = \rho (\psi_a) \bigg(a b 2 G; \bigg)
\]

(2) Let \(G = \mathbb{Z} \) (\(\mathbb{Z}_2 \)) be the group and the cocycle \(\rho (a; b) = (a b)^{\epsilon_b} \), for any \(a b 2 G \). In this case any \(\rho \)-algebra is a super(commutative) algebra.

Examples.

1) Any usual (commutative) algebra is a \(\rho \)-algebra with the trivial group \(G \).

2) Let \(G = \mathbb{Z} \) (\(\mathbb{Z}_2 \)) be the group and the cocycle \(\rho (a; b) = (a b)^{\epsilon_b} \), for any \(a b 2 G \). In this case any \(\rho \)-algebra is a super(commutative) algebra.

3) The \(N \)-dimensional quantum hyperplane \(S_N \), is the algebra generated by the unit element and \(N \) linearly independent elements \(x_1, \ldots, x_N \) satisfying the relations:

\[
x_i x_j = qx_j x_i; \quad i < j
\]

for some fixed \(q 2 \mathbb{K}; q \neq 0 \). \(S_N \) is a \(\mathbb{Z}^N \)-graded algebra, i.e.,

\[
S_N = \bigoplus_{n_1, \ldots, n_N} S_{n_1, \ldots, n_N};
\]

with \(S_{n_1, \ldots, n_N} \) the one-dimensional subspace spanned by products \(x^{n_1} \ldots x^{n_N} \). The \(\mathbb{Z}^N \)-degree of these elements is denoted by

\[
x^{n_1} \ldots x^{n_N} = n = n_1 + \ldots + n_N.
\]

Define the function \(\rho : \mathbb{Z}^N \rightarrow \mathbb{Z}^N \) as

\[
\rho (\alpha_1^0) = q^{\sum_{k=1}^{N} n_1 \alpha_{k}^1};
\]

with \(\alpha_{j_k} = 1 \) for \(j < k \), \(0 \) for \(j = k \) and \(1 \) for \(j > k \). It is obvious that \(S_N \) is a \(\rho \)-commutative algebra.

4) The algebra of matrix \(M_n (\mathbb{C}) \) \([5] \) is \(\rho \)-commutative as follows:

Let

\[
p = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 & 1
\end{pmatrix}, \quad \text{and} \quad q = \begin{pmatrix}
e^0 & 0 & \cdots & 0
\end{pmatrix}.
\]

Then \(pq = \epsilon qp \) and \(M_n (\mathbb{C}) \) is generated by the set \(B = \{0; 1; \cdots; n\} \).
Fields and forms on \(\rho \)-algebras

It is easy to see that \(p^ap^b = e^{ab}p^ap^b \) and \(q^bp^a = e^{ab}p^a q^b \) for any \(a, b = 0; 1; \ldots; n \). Let \(G := Z_G \) and \(x_{\alpha} = (\alpha; 0\alpha_2) \in G \) and \(x_{\alpha} := p^{0\alpha_2}q_{0\alpha_2} \in M_n(\mathbb{C}) \). If we denote \(\rho(\alpha; \beta) = e^{\alpha\beta_1} \alpha_2 \beta_2 \) then \(x_{\alpha}x_{\beta} = \rho(\alpha; \beta)x_{\beta}x_{\alpha} \), for any \(\alpha; \beta \in G \), \(x_{\alpha}x_{\beta} \in B \).

It is obvious that the map \(\rho: G \rightarrow G \otimes \mathbb{C} \), \(\rho(\alpha; \beta) = e^{\alpha\beta} \alpha_2 \beta_2 \) is a cocycle and that \(M_n(\mathbb{C}) \) is a \(\rho \)-commutative algebra.

Let \(\alpha \) be an element of the group \(G \). A \(\rho \)-derivation \(X \) of \(A \), of degree \(\alpha \) is a bilinear map \(X: A \rightarrow A \) of \(G \)-degree \(\mathbb{K} \) i.e. \(X: A \rightarrow A \otimes A \) such that one has for all elements \(f, g \in A \) and \(g \in A \),

\[
X(fg) = (Xf)g + \rho(\alpha; \beta) f (Xg) \quad (4)
\]

Without any difficulties it can be obtained that if algebra \(A \) is \(\rho \)-commutative, \(f, g \in A \), and \(X \) is a \(\rho \)-derivation of degree \(\alpha \), then \(fX \) is a \(\rho \)-derivation of degree \(\mathbb{K} \) i.e. \(\mathbb{K} \) and the \(G \)-degree \(\mathbb{K} \).

\[
(fX)(gh) = ((fX)g)h + \rho(\alpha; \beta) f (Xg)h
\]

and \(fX: A \rightarrow A \), \(A \rightarrow A \).

We say that \(X: A \rightarrow A \) is a \(\rho \)-derivation if it has degree equal to \(G \)-degree \(\mathbb{K} \) i.e. \(X: A \rightarrow A \) \(A \rightarrow A \).

\[
X(fg) = (Xf)g + \rho(\alpha; \beta) f (Xg) \quad (5)
\]

It is known that the \(\rho \)-commutator of two \(\rho \)-derivations is again a \(\rho \)-derivation and the linear space of all \(\rho \)-derivations is a \(\rho \)-Lie algebra, denoted by \(\rho \)-Der \(A \).

One verifies immediately that for such an algebra \(A \), \(\rho \)-Der \(A \) is not only a \(\rho \)-Lie algebra but also a left \(A \)-module with the action of \(A \) on \(\rho \)-Der \(A \) defined by

\[
(fX)g = f (Xg) \quad (5)
\]

Let \(M \) be a \(\rho \)-bimodule over a \(\rho \)-commutative algebra \(A \), with the usual properties, in particular \(\rho(\alpha; \beta) \rho(\gamma; \delta) \rho(\beta; \gamma) = \rho(\alpha; \gamma) \rho(\gamma; \delta) \rho(\beta; \gamma) \) for any \(f, g, h \in A \), \(\alpha, \beta, \gamma, \delta \in A \). Then \(M \) is also a right \(A \)-module with the right action on \(M \) defined by

\[
\psi f = \rho(\alpha; \beta) \rho(\gamma; \delta) \rho(\beta; \gamma) \psi f
\]

In fact \(M \) is a bimodule over \(A \), i.e.

\[
f(\psi g) = (f\psi)g \quad (5)
\]

Let \(M \) and \(N \) be two \(G \)-graded \(\rho \)-bimodules over the \(\rho \)-algebra \(A \). Let \(f: M \rightarrow N \) be an \(A \)-bimodule homomorphism of degree \(\alpha \in G \) if \(f: M_{\beta} \rightarrow N_{\alpha + \beta} \) such that \(f(um) = \rho(\alpha; \beta) f(m) \) for any \(\alpha, \beta \in G \) and \(m \in M \). We denote by \(\text{Hom}_A(M; N) \) the space of \(A \)-bimodule homomorphisms of degree \(\alpha \) and by \(\text{Hom}^A_{\alpha}(M; N) = \text{Hom}_A(M; N) \) the space of all \(A \)-bimodule homomorphisms.

3. Differential forms on a \(\rho \)-algebra

\(A \) is a \(\rho \)-algebra as in the previous section. We denote by \(\Omega^1_A(\mathbb{A}) \) the space generated by the elements: \(x_{\alpha}x_{\beta} = \alpha \) with the usual relations:

\[
d(\alpha + \beta) = d(\alpha) + d(\beta); \quad d(\alpha x_{\beta}) = d(\alpha)x_{\beta} + \alpha d(\beta) \quad \text{and} \quad d1 = 0;
\]

where \(1 \) is the unit of the algebra \(A \).
If we denote by $\Omega^1(A) = \sum_{n} \Omega^n_\alpha(A)$ then $\Omega^1(A)$ is an A-bimodule and satisfies the following theorem of universality.

Theorem 1. For any A-bimodule M and for any derivation $X : A \to M$ of degree \mathfrak{K} there is an A-bimodule homomorphism $f : \Omega^1(A) \to M$ of degree \mathfrak{K} such that $X = f \circ d$. The homomorphism is uniquely determined and the corresponding $X \subseteq f$ establishes an isomorphism between ρ-$\text{Der}_{\mathfrak{K}}(A;M)$ and $\text{Hom}_{\mathfrak{K}}(\Omega^1(A);M)$.

Proof. We define the map $f : \Omega^1(A) \to M$ by $f(\mathfrak{K}aX\phi) = \rho(\mathfrak{K}aX\phi)M$ which transform the usual Leibniz rule for the operator d into the ρ-Leibniz rule for the derivation X.

Starting from the A-bimodule $\Omega^1(A)$ and the ρ-algebra $\Omega^0(A) = A$ we build up the algebra of differential forms over A.

This algebra will be a new $\overline{\rho}$-algebra

$$\Omega(A) = \sum_{n \geq 0, \mu \geq G} \Omega^n_\alpha(A)$$

graded by the group $G = \mathbb{Z}$ and generated by elements $a \otimes A \otimes \Omega^0_{\mathfrak{K}j}(A)$ of degree $0; \mathfrak{K}j$ and their differentials $da \otimes \Omega^1_{\mathfrak{K}j}(A)$ of degree $(1; \mathfrak{K}j)$.

We will also require the universal derivation $d : \Omega^1(A)$ which can be extended to a $\overline{\rho}$-derivation of the algebra $\Omega(A)$ of degree $(1;0)$ in such a way that $d^2 = 0$ and $\overline{\rho} \cdot G = \rho : \Omega^1(A) \otimes \Omega^1(A) \to \Omega^1(A)$ denote by $\omega \wedge \theta \in \Omega^{n+m}(A)$ the product of forms $\omega \in \Omega^n(A)$ and $\theta \in \Omega^m(A)$ in the algebra $\Omega(A)$. Then

$$d(\omega \wedge \theta) = d\omega \wedge \theta + \overline{\rho}((1;0); \psi; \alpha))d\omega \wedge d\theta;$$

and

$$d^2(\omega \wedge \theta) = \overline{\rho}((1;0); \psi + 1; \alpha))d\omega \wedge d\theta + \overline{\rho}((1;0); \psi; \alpha))d\omega \wedge d\theta = 0 : (8)$$

Hence

$$\overline{\rho}((1;0); \psi + 1; \alpha)) + \overline{\rho}((1;0); \psi; \alpha)) = 0: (9)$$

From these relations it follows that

$$\overline{\rho}((1;0); \psi; \alpha)) = (1)^n \varphi(\alpha);$$

where $\varphi : G \to U(\mathfrak{k})$ is the group homomorphism $\varphi(\alpha) = \overline{\rho}((1;0); \theta; \alpha))$. From the properties of the cocycle ρ,

$$\overline{\rho}(\psi; \alpha); \psi; \beta)) = (1)^m \varphi^m(\alpha) \varphi^n(\beta) \rho(\alpha; \beta)$$

for any $n; m \in \mathbb{Z}$ and $\alpha; \beta \in G$.

PROPOSITION 1.

Let A be a ρ-algebra with the cocycle ρ. Then any cocycle $\overline{\rho}$ on the group G with the conditions $\overline{\rho} \cdot G = \rho$ and $\overline{\rho}$ are given by φ for some homomorphism $\varphi : G \to U(\mathfrak{k})$.

We will denote below \(\Omega^\bullet(\mathfrak{g};\varphi) \) or simply \(\Omega^\bullet(\mathfrak{g}) \) the \(G \)-graded algebra of forms with the cocycle \(\varphi \) and the derivation \(d = d_\varphi \) of degree \((1,0) \).

Therefore for any \(\rho \)-algebra \(A \), a group homomorphism \(\varphi : G \rightarrow U(\mathbb{k}) \) and an element \(\alpha \in G \), we have the complex:

\[
0 \to A_\alpha^0 \to \Omega_\alpha^1(\mathfrak{g};\varphi) \to \Omega_\alpha^2(\mathfrak{g};\varphi) \to \cdots
\]

The cohomology of this complex term \(\Omega_\alpha^n(\mathfrak{g};\varphi) \) is denoted by \(H^\alpha_\varphi(\mathfrak{g};\varphi) \) and will be called as the de Rham cohomology of the \(\rho \)-algebra \(A \).

PROPOSITION 2.

Let \(f : A \to B \) be a homomorphism of degree \(\alpha \in G \) between the \(G \)-graded \(\rho \)-algebras. There is a natural homomorphism \(\Omega(f) : \Omega^\bullet(A) \to \Omega^\bullet(B) \) which in degree \(n \) is \(\Omega(f)_n : \Omega^n(A) \to \Omega^n(B) \) and has the \(G^\alpha \)-degree \(\alpha \cdot (n+1) \alpha \) given by

\[

\Omega(f)_n(\theta) = f(\theta)
\]

4. Frölicher–Nijenhuis bracket of \(\rho \)-algebras

4.1 Derivations

Here we present the Frölicher–Nijenhuis calculus over the algebra of forms defined in the previous section.

Denote by \(\Der_{\mathfrak{g};\alpha}(\mathfrak{g};\varphi)(\mathfrak{g}) \) the space of derivations of degree \(\mathfrak{g} \cdot \alpha \) i.e. an element \(D \in \Der_{\mathfrak{g};\alpha}(\mathfrak{g};\varphi)(\mathfrak{g}) \) satisfies the relations:

1. \(D \) is linear,
2. the \(G^\alpha \)-degree of \(D \) is \(\mathfrak{g} \cdot \alpha = \mathfrak{g} \cdot \alpha \), and
3. \(D(\rho \cdot \theta) = D \rho \cdot \theta + [D, \rho](\mathfrak{g} \cdot \alpha) \cdot \theta \) for any \(\rho \in \mathfrak{g} \), \(\theta \in \Omega^n(\mathfrak{g};\varphi) \).

Theorem 2. The space \(\mathfrak{g} \)-Lie algebra with \(\mathfrak{g} \)-bracket \([\mathfrak{g} \cdot \alpha, \mathfrak{g} \cdot \alpha] = \mathfrak{g} \cdot \alpha \)

4.2 Fields

Let us denote by \(L : \Hom_{\mathfrak{g};\alpha}(\mathfrak{g};\varphi)(\mathfrak{g};\alpha) \to \mathfrak{g} \)-Lie algebra with \(\mathfrak{g} \)-bracket \([\mathfrak{g} \cdot \alpha, \mathfrak{g} \cdot \alpha] = \mathfrak{g} \cdot \alpha \) which is given by

\[
L([X,Y]) = [L_X, L_Y] = L_X L_Y - \rho([X,Y]) L_Y L_X
\]

and will be referred to as the \(\mathfrak{g} \)-Lie bracket of fields.

Lemma 1. Each field \(\alpha \in \mathfrak{g} \cdot \alpha \) is by definition an \(\alpha \)-bimodule homomorphism \(\Omega^\bullet(\mathfrak{g};\varphi)(\mathfrak{g}) \) and it prolongs uniquely to a graded \(\mathfrak{g} \)-derivation \(f(X) = f_X : \Omega^\bullet(\mathfrak{g};\varphi)(\mathfrak{g}) \) of degree \(\mathfrak{g} \cdot \alpha \) by

\[
f_X(\theta) = f(\theta)
\]
\[j_x (a) = 0 \quad \text{for} \quad a \in A = \Omega^0 (A); \]
\[j_x (\omega) = X (\omega) \quad \text{for} \quad \omega \in \Omega^1 (A) \]

and

\[j_x (\omega_1 \wedge \omega_2 \wedge \xi) = \sum_{i=1}^{k-1} \pi (1; \xi) \; i \; \sum_{j=1}^{k-1} \varphi_0 (j) \omega_1 \wedge \omega_2 \wedge \xi \]

for any \(\omega_1 \in \Omega^1 (A_{\alpha \beta}) \). The \(\pi \)-derivation \(j_x \) is called the contraction operator of the field \(X \).

Proof. This is an easy computation.

With some abuse of notation we also write \(\omega (X) = X (\omega) = j_x (\omega) \) for \(\omega \in \Omega^1 (A) \) and \(X \times X (A) = \text{Hom}_A^1 \Omega^1 (A) \).

4.2.1 **Algebraic derivations:** A \(\pi \)-derivation \(D : \text{Der}_{\#_{\pi}} \Omega (A) \) is called algebraic if \(D_{\Omega^0 (A)} = 0 \). Then \(D (a \omega) = \pi (\#_{\pi} \alpha) \; a \Omega (\omega) \) and \(D (\omega a) = D (\omega) a \) for any \(a \in A \), \(\#_{\pi} \) and \(\omega \in \Omega (A) \). It results that \(D \) is an \(A \)-bimodule homomorphism. We denote by \(\text{Hom}_{\text{alg}} \Omega (A) \) the space of \(A \)-bimodule homomorphisms from \(\Omega (\#_{\pi} \alpha) \) to \(\Omega (\#_{\pi} \alpha) \) of degree \(\#_{\pi} \alpha \). Then an algebraic derivation \(D \) of degree \(\#_{\pi} \alpha \) is from \(\text{Hom}_{\alpha} \Omega (A) \). We denote by \(\text{Der}_{\#_{\pi}}^{\text{alg}} \Omega (A) \) the space of all \(\pi \)-algebraic derivations of degree \(\#_{\pi} \alpha \) from \(\Omega (A) \). Since \(D \) is a \(\pi \)-derivation, \(D \) has the following expression on the product of 1-forms \(\omega_1 \in \Omega^1 (A) \) and \(\omega_2 \in \Omega^1 (A) \):

\[D (\omega_1 \wedge \omega_2 \wedge \xi) = \sum_{i=1}^{k-1} \pi (1; \xi) \; i \; \sum_{j=1}^{k-1} \varphi_0 (j) \omega_1 \wedge \omega_2 \wedge \xi \]

and the derivation \(D \) is uniquely determined by its restriction on \(\Omega^1 (A) \),

\[K := D_{\Omega^1 (A)} \cdot \text{Hom}_A (\Omega^1 (A) \cdot \Omega^1 (A)) \] \hspace{1cm} (13)

We write \(D = j (K) = j_K \) to express this dependence. Note that \(j_K (\omega) = K (\omega) \) for \(\omega \in \Omega^1 (A) \). Next we will use the following notations:

\[\Omega^1_{\#_{\pi} \alpha} (A) := \text{Hom}_A (A; \Omega^1 (A)) \]
\[\Omega^1_{\#_{\pi} \alpha} (A) := \text{Hom}_A (A; \Omega^1 (A)) \]

Elements of the space \(\Omega^1_{\#_{\pi} \alpha} (A) \) will be called field-valued \(\#_{\pi} \alpha \)-forms.
4.2.2 Nijenhuis bracket:

Theorem 3. The map \(j : \Omega^1_{k+1;\mathfrak{K}} (A) \rightarrow \mathcal{D}\text{-Der}^{\text{alg}}_{k;\mathfrak{K}} \Omega (A) \), \(K \ni j_K \) defined by

\[
j_K (\omega_1 \wedge \omega_2 \wedge \ldots \wedge \ell) = \sum_{i=1}^k \mathfrak{K} (k + 1; \alpha_i) \cdot i \sum_{j=1}^1 \mathfrak{D}_j \omega_j
\]

is an isomorphism and satisfies the following properties:

1) \(j_K : \Omega^1_{k;\mathfrak{K}} (A) \rightarrow \Omega^1_{k+1;\mathfrak{K}} (A) \).
2) \(j_K (\omega \wedge \theta) = j_K \omega \wedge \theta + \mathcal{D} (k; \alpha \cdot \mathfrak{K} (1; \beta)) \omega \wedge j_K \theta \) for any \(\theta \in \Omega^1_{\mathfrak{K}} (A) \).
3) \(j_K (\omega) = 0 \) and \(j_K (\omega) = K (\omega) \) for any \(\omega \in \Omega^1_{2;\mathfrak{K}} (A) \).

The module of \(\mathcal{D}\text{-Der}^{\text{alg}}_{k;\mathfrak{K}} \Omega (A) \) is isomorphic to the Frölicher–Nijenhuis bracket. By definition, the Nijenhuis bracket of the elements \(K \in \text{Hom}_\mathfrak{K} (\Omega^1 (A); \Omega^1_{k+1;\mathfrak{K}} (A)) \) and \(\mathcal{D} \in \text{Hom}_\mathfrak{K} (\Omega^1 (A); \Omega^1_{k;\mathfrak{K}} (A)) \) is given by the formula

\[
[K;L]^A = j_K \left(\mathcal{D} (k; \alpha \cdot \mathfrak{K} (1; \beta)) \right) j_L \quad K
\]

or

\[
[K;L]^A (\omega) = j_K (\mathcal{L} (\omega)) \quad (1)^i \phi^j (\alpha) \phi^k (\alpha) \mathfrak{D} (\alpha; \beta) j_L K (\omega)
\]

for all \(\omega \in \Omega^1 (A) \):

4.2.3 The Frölicher–Nijenhuis bracket:

The exterior derivative \(d \) is an element of \(\mathcal{D}\text{-Der}^{\text{alg}}_{k;\mathfrak{K}} \Omega (A) \). In the view of the formula \(L_X = [j_X \mu d] \) for fields \(X \) we define \(K \in \Omega^1_{k;\mathfrak{K}} (A) \) and \(\mathcal{D} \in \mathcal{D}\text{-Der}^{\text{alg}}_{k;\mathfrak{K}} \Omega (A) \) by \(L_K := \{ j_K \mu d \} \). Then the mapping \(L : \Omega^1_{\mathfrak{K}} \rightarrow \mathcal{D}\text{-Der}^{\text{alg}}_{k;\mathfrak{K}} \Omega (A) \) is injective by the universal property of \(\Omega^1_{\mathfrak{K}} (A) \), since \(L_K (\omega) = j_K (\mu d) = K (\mu d) \) for all \(\omega \in \Omega^1_{\mathfrak{K}} (A) \).

Theorem 4. For any \(\mathcal{D}\text{-Der}^{\text{alg}}_{k;\mathfrak{K}} \Omega (A) \), there are unique homomorphisms \(\Omega^1_{k;\mathfrak{K}} (A) \) and \(L \in \Omega^1_{k+1;\mathfrak{K}} (A) \) such that

\[
D = L_K + j_L
\]

We have \(L = 0 \) if and only if \(\mathcal{D} \mu d \) = 0. \(D \) is algebraic if and only if \(K = 0 \).
Proof. The map $D : a \mapsto D (a)$ is a ρ-derivation of degree α so $D \cdot : A ! \Omega (A) \Omega (A)$ has the form $K \cdot d$ for an unique $K \in \Omega (A)$. The defining equation for K is $D (a) = j_k d a = L (K (a))$ for $a \in A$. Thus $D \cdot L (K)$ is an algebraic derivation, so $D \cdot L = j_L$ for an unique $L \in \Omega (A)$.

By the Jacobi identity, we have

$$0 = [j_K ; [L d]] = [[j_K ; L d] + [L (j_k) d]) ; (l (j_0)) ; [l ; [j_K ; L d]]$$

so $L = 0$. It follows that $D (L) = [j_L ; L d] = L (L)$ and using the injectivity of L results that $L = 0$.

Let $K \in \Omega (A)$ and $L \in \Omega (A)$. Definition of the ρ-Lie derivation results in $[L (K) ; [L_2 ; d]] = 0$ and using the previous theorem results that is a unique element which is denoted by $K \cdot L \in \Omega (A)$ such that

$$[L (K) ; [L_2 ; d]] = L (K (L)) \tag{16}$$

and this element will be the denoted by the abstract Frölicher–Nijenhuis of K and L.

Theorem 5. The space $\Omega (A) = \Omega (A)$ with the usual grading and the Frölicher–Nijenhuis is a ρ-graded Lie algebra. $L : \Omega (A) ; \rho ; \rho$ ρ-Der $\Omega (A)$ is an injective homomorphism of ρ-graded Lie algebras. For fields in $\text{Hom} (A, \Omega (A) ; A)$ the Frölicher–Nijenhuis coincides with the bracket defined in [2].

4.3 Naturality of the Frölicher–Nijenhuis bracket

Let $f : A \mapsto B$ be an homomorphism of degree 0 between the ρ-graded ρ-algebras A and B. Two forms $K \in \Omega (A)$ and $L \in \Omega (A)$ are f-related if we have

$$K \cdot L (f) = L (K (f))$$

where $\Omega (f) : \Omega (A) \mapsto \Omega (B)$ is the homomorphism from $\Omega (A)$ induced by f.

Theorem 6.

1. If K and K^0 are f-related as above then $j_k \cdot K^0 \Omega (f) = \Omega (f) ; [j_k \cdot K^0 \Omega (A)]$.
2. If $j_k \cdot K (f) = \Omega (f) ; j_k \cdot K (A)$, then K and K^0 are f-related, where $d (A) \Omega (A)$ is the space of exact 1-forms.
3. If K_j and K_j^0 are f-related for $j = 1 ; 2$ then $j_k \cdot K_j$ and $j_k \cdot K_j^0$ are f-related and also $\Omega (K_j ; K_j^0)$ and $\Omega (K_j ; K_j^0)$ are f-related.
4. If K and K^0 are f-related then $L \cdot K^0 \Omega (f) = \Omega (f) ; L (K (A)) = \Omega (B)$.
5. If $L \cdot K^0 \Omega (f) ; [L \cdot K (A)] = \Omega (f)$, then $K \cdot K^0$ and $K \cdot K^0$ are f-related.
6. If K_j and K_j^0 are f-related for $j = 1 ; 2$ then their Frölicher–Nijenhuis brackets $[K_j ; K_j^0]$ and $[K_j^0 ; K_j^0]$ are f-related.

Acknowledgement

The author wishes to express his thanks to Prof. Gh. Pitis for many valuable remarks and for a very fruitful and exciting collaboration.

References

[1] Bongaarts P J M and Pijls H G J, Almost commutative algebra and differential calculus on the quantum hyperplane, *J. Math. Phys.* 35(2) (1994) 959–970
[2] Cap A, Kriegl A, Michor P W and Vanzura J, The Frölicher–Nijenhuis bracket in non-commutative differential geometry, *Acta Math. Univ. Comenianae* 62(1) (1993) 17–49
[3] Ciupală C, Linear connections on almost commutative algebras, *Acta Math. Univ. Comenianae* 72(2) (2003) 197–207
[4] Ciupală C, Connections and distributions on quantum hyperplane, *Czech. J. Phys.* 54(8) (2004) 821–832
[5] Ciupală C, ρ-Differential calculi and linear connections on matrix algebra, to appear in *Int. J. Geom. Methods Mod. Phys.* 1(6) (2004) 847–861
[6] Dubois-Violette M and Michor P, More on the Frölicher–Nijenhuis bracket in non-commutative differential geometry. *J. Pure Appl. Algebra*. 121 (1997) 107–135
[7] Lychagin V, Colour calculus and colour quantizations, *Acta Appl. Math.* 41 (1995) 193–226