THE PROBABILITY OF RECTANGULAR UNIMODULAR MATRICES OVER \(\mathbb{F}_q[x]\)

XIANGQIAN GUO AND GUANGYU YANG

Abstract. In this note, we show that the probability that a uniformly random \(k \times n\) matrix over \(\mathbb{F}_q[x]\) can be extended to an \(n \times n\) invertible matrix is \((1 - q^{k-n})(1 - q^{n-1-k}) \cdots (1 - q^{1-n})\). Connections with Dirichlet’s density theorem on co-prime integers and its various generalizations are also presented.

1. Introduction and Main Results

For any set \(A\) of positive integers, its natural density is defined as

\[
D(A) := \lim_{N \to \infty} \frac{|A \cap \{1, 2, \ldots, N\}|}{N},
\]

provided the limit exists, where \(|\cdot|\) denotes the cardinality of the corresponding set.

Dirichlet [2] discovered an interesting density theorem that asserts the probability that two integers are co-prime is \(6/\pi^2\), that is,

\[
\lim_{N \to \infty} \frac{|\{(m, n) \in \mathbb{N}^2 : 1 \leq m, n \leq N, \gcd(m, n) = 1\}|}{N^2} = \frac{\zeta(2)^{-1}}{\pi^2} = \frac{6}{\pi^2},
\]

where \(\gcd(m, n)\) denotes the greatest common divisor of \(m\) and \(n\), and \(\zeta(s)\) is the Riemann’s zeta function. Moreover, the probability that \(n\) integers are co-prime is

\[
\lim_{N \to \infty} \frac{|\{(m_1, \ldots, m_n) \in \mathbb{N}^n : 1 \leq m_1, \ldots, m_n \leq N, \gcd(m_1, \ldots, m_n) = 1\}|}{N^n} = \zeta(n)^{-1}.
\]

Kubota and Sugita [5] gave a rigorous probabilistic interpretation to Dirichlet’s density theorem. For the deep links between probability theory and number theory, please refer to Tenenbaum [12], Kubilius [4] and Kac [3].

Denote by \(M_{k \times n}(R)\) the set of all \(k \times n\) matrices over a ring \(R\). A matrix \(A \in M_{k \times n}(R)\) is called unimodular if it can be extended to an \(n \times n\) invertible matrix. Note that, for the commutative ring \(R\) with 1, this is equivalent to saying that \(A\) can be extended to an \(n \times n\) matrix with determinant 1 in case \(k < n\).

Using the concept of unimodular, we can give a re-statement of Dirichlet’s density theorem and its generalization: the probability that a random \(1 \times n\) integer matrix is unimodular is \(\zeta(n)^{-1}\). Naturally, we can consider the matrix form of Dirichlet’s density theorem: the probability that a random \(k \times n\) \((1 \leq k \leq n)\) integer matrix is unimodular? The key is to define the analogous natural density for the sets of the integer matrices. Maze, Rosenthal and Wagner [7] studied this problem and obtained that the probability that a random \(k \times n\) matrix is unimodular is \(\prod_{j=n-k+1}^{n} \zeta(j)^{-1}\). Furthermore, [7] also gave some interesting historical remarks for Dirichlet’s density theorem.

It is natural, of course, to ask the similar question for matrices over polynomial rings of fields. As remarked in [7], the concept of natural density does not extend...
naturally to the ring $\mathbb{F}[x]$ for a general field \mathbb{F}. Fortunately, this can be done for the finite fields.

Let \mathbb{F}_q be a finite field consisting of q elements, and $\mathbb{F}_q[x]$ be the polynomial ring over \mathbb{F}_q. To enumerate $\mathbb{F}_q[x]$, let Σ be the set of all vectors $\alpha = (a_0, a_1, \cdots)$ with $a_i \in \{0, 1, \cdots, q-1\}$ and $a_i = 0$ for sufficiently large i. Then there is a one-to-one map $\chi : \Sigma \rightarrow \mathbb{Z}_+$ defined by $\chi(a_0, a_1, \cdots) = \sum_{i=0}^{\infty} a_i q^i$. For convenience, we denote $\alpha_m = \chi^{-1}(m)$ and $m_\alpha = \chi(\alpha)$. Then for all $m \in \mathbb{Z}_+$, we set

$$f_m(x) := \sum_{i=0}^{\infty} a_i x^i, \text{ with } \alpha_m = (a_0, a_1, \cdots).$$

By a probabilistic method, Sugita and Takanobu [10] determined the probability that two polynomials over \mathbb{F}_q are co-prime when q is a prime, that is,

$$\lim_{N \rightarrow \infty} \frac{|\{(m, n) \in \{0, 1, \cdots, N-1\}^2 : \gcd(f_m, f_n) = 1\}|}{N^2} = 1 - \frac{1}{q}.$$ \hspace{1cm} (4)

Recently, several authors considered the question of the probability of n polynomials to be co-prime in $\mathbb{F}_q[x]$. Morrison [8] introduced a concept of natural density

$$\hat{D}(S) := \lim_{d \rightarrow \infty} \frac{|S \cap \mathcal{F}_d|}{|\mathcal{F}_d|}, \quad S \subseteq \mathbb{F}_q[x],$$ \hspace{1cm} (5)

where \mathcal{F}_d is the set of all the polynomials in $\mathbb{F}[x]$ with degree at most d. He first treated this problem in a heuristic way. Then through an elegant as well as rigorous formula, he deduced the following formula,

$$\lim_{d \rightarrow \infty} \frac{|\{(f_1, \cdots, f_n) \in \mathbb{F}_q^n[x] : \gcd(f_1, \cdots, f_n) = 1, \deg(f_i) \leq d, 1 \leq i \leq n\}|}{|\{f \in \mathbb{F}_q[x] : \deg(f) \leq d\}|^n} = 1 - \frac{1}{q^{n-1}}.$$ \hspace{1cm} (6)

Benjamin and Bennett [11] also studied this problem; their methods are very interesting, using the Euclidean algorithm which is one of the oldest algorithms. Essentially, they also got the same conclusion.

Our object in this paper is to extend the main results in [7] to the polynomial ring $\mathbb{F}_q[x]$ for any prime power q, that is, the matrix form of Morrison’s theorem [8]. Denote $\mathbb{F} := \mathbb{F}_q$ and $\mathbb{F}[x] = \mathbb{F}_q[x]$ for short. Let $\mathcal{M} := M_{k \times n}(\mathbb{F}[x])$ be the set of all $k \times n$ matrices over $\mathbb{F}[x]$ and \mathcal{M}_N be the subset of \mathcal{M} consisting of all matrices with entries in $\{f_0(x), f_1(x), \cdots, f_N(x)\}$. For any subset $S \subseteq \mathcal{M}$, we define the natural density of S in \mathcal{M} to be

$$D(S) := \lim_{N \rightarrow \infty} \frac{|S \cap \mathcal{M}_N|}{|\mathcal{M}_N|},$$ \hspace{1cm} (7)

if the above limit exists. Note that, in the special case $k = 1$, the limit in (6) is just the limit of a subsequence in (7) with $N = q^d$.

To describe our result, i.e., to determine the natural density of $k \times n$ unimodular matrices over $\mathbb{F}[x]$, we introduce the following q-zeta function

$$\zeta_q(j) := \prod_{f} (1 - \frac{1}{q^{j \deg(f)}})^{-1} = \prod_{m=1}^{\infty} (1 - \frac{1}{q^{jm}})^{-\varphi_m},$$ \hspace{1cm} (8)

where f goes through all irreducible polynomials in $\mathbb{F}[x]$ and φ_m is the number of irreducible polynomials in $\mathbb{F}[x]$ with degree m. In the above statements and what follows, by irreducible polynomials we always mean monic irreducible polynomials (the constant polynomial 1 is excluded as usual). Note that the q-zeta function is analogous with the Riemann zeta function. For more information, one can see Morrison [8]. Now we are in the position to give our main result.
Theorem 1. Let E be the set of all $k \times n$ unimodular matrices over $\mathbb{F}_q[x]$, then the natural density of E is

$$D(E) = \prod_{j=n-k+1}^{n} \prod_{f}(1 - \frac{1}{q^{\deg(f)}}) = \prod_{j=n-k+1}^{n} \prod_{m=1}^{\infty} (1 - \frac{1}{q^{jm}})^{\varphi_m} = \prod_{j=n-k+1}^{n} \zeta_q(j)^{-1}.$$

(9)

Remark 2. In other words, the probability that a $k \times n$ polynomial matrix can be completed by an $(n-k) \times n$ matrix into an $n \times n$ invertible matrix over $\mathbb{F}_q[x]$ is $\prod_{j=n-k+1}^{n} \zeta_q(j)^{-1}$. And via introducing the q-zeta function $\zeta_q(s)$, we obtain a similar formula to the one in [7] for integer matrices

$$D(\tilde{E}) = \prod_{j=n-k+1}^{n} \zeta(j)^{-1},$$

where \tilde{E} denotes the set of all $k \times n$ unimodular matrices over \mathbb{Z}.

Remark 3. There is an interesting equation

$$\prod_{f} (1 - \ell^{\deg(f)})^{-1} = \sum_{l=0}^{\infty} q^{l}t^{l} = \frac{1}{1 - qt},$$

where f is over all irreducible polynomials. For an interpretation of this equation, one can see [8]. Putting $t = q^{-j}, j \in \mathbb{N}$ in [10], we get

$$\zeta_q(j)^{-1} = 1 - \frac{1}{q^{j-1}}.$$

(11)

Hence, we obtain an explicit formula for the natural density of E,

$$D(E) = (1 - \frac{1}{q^{n-k}})(1 - \frac{1}{q^{n-k+1}}) \cdots (1 - \frac{1}{q^{n-1}}),$$

(12)

and an interesting identity concerning φ_m,

$$\prod_{m=1}^{\infty} (1 - \frac{1}{q^{jm}})^{\varphi_m} = 1 - \frac{1}{q^{j-1}}, \quad \forall j \in \mathbb{N}.$$

(13)

Remark 4. In particular, if we put $k = 1$, Theorem 1 shows that the probability that n polynomials over the finite field \mathbb{F}_q to be co-prime is

$$\zeta_q(n)^{-1} = \prod_{m=1}^{\infty} (1 - \frac{1}{q^{jm}})^{\varphi_m} = 1 - \frac{1}{q^{n-1}}.$$

This extends Dirichlet’s density theorem [2] and yields the same conclusion as Morrison [8] and Benjamin and Bennett [1].

Remark 5. As an application, our work suggests that there may be a simple probabilistic algorithm for writing a projective $\mathbb{F}_q[x]$-module as a free module, please refer to [14] for more details.

We end this section with some remarks on the square case $k = n$. One may notice that our proof of Theorem 1 in [1] does not apply to this case (also, $\zeta_q(1)$ is not well defined in this case). However, we have the following result,

Proposition 6. The natural density of $n \times n$ unimodular matrices over $\mathbb{F}_q[x]$ is 0.

Remark 7. The proof of Proposition 6 is quite simple and similar to the proof of Lemma 5 in [7], so we omit the details. If we make the convention that $\zeta_q(1)^{-1} = 0$, Theorem 1 also holds for $k = n$.

2. Proof of Main Result

In this section, we shall give the proof of Theorem 1. Before this, we need some preparations.

Let \mathcal{P} be a finite set of irreducible polynomials in $\mathbb{F}[x]$ and $\hat{\mathcal{P}}$ be the set of all irreducible polynomials in $\mathbb{F}[x]$. Denote by $E_{\mathcal{P}}$ the set of all matrices $A \in M = M_{k \times n}(\mathbb{F}[x])$ such that the gcd of all full rank minors (i.e., minors of rank k) is co-prime to all elements in $\hat{\mathcal{P}}$. Recall that E is the set of all unimodular matrices in M, that is, each matrix in E can be extended to an $n \times n$ invertible matrix. It is well known that $A \in M$ is unimodular if and only if the gcd of all full rank minors is 1 (See [9], [11] and [13] for more details). Thus we have $E = \bigcap_{\mathcal{P}} E_{\mathcal{P}}$.

Lemma 8. Let $E_{\mathcal{P}}$ be defined as above, then we have

$$D(E_{\mathcal{P}}) = \prod_{j=0}^{k-1} \prod_{f \in \mathcal{P}} (1 - q^{j-n} \deg(f)) = \prod_{j=n-k+1}^{n} \prod_{f \in \mathcal{P}} (1 - q^{-j} \deg(f)).$$

Proof. Denote $f_{\mathcal{P}} := \prod_{f \in \mathcal{P}} f$ and $d_{\mathcal{P}} = \deg(f_{\mathcal{P}})$. For any positive integer N, consider the maps,

$$\pi : \mathcal{M}_N \longrightarrow M_{k \times n}(\mathbb{F}[x]/(f_{\mathcal{P}}))$$

and

$$\psi : M_{k \times n}(\mathbb{F}[x]/(f_{\mathcal{P}})) \longrightarrow M_{k \times n} \left(\prod_{f \in \mathcal{P}} \mathbb{F}[x]/(f) \right) \longrightarrow \prod_{f \in \mathcal{P}} M_{k \times n}(\mathbb{F}[x]/(f)),$$

where $(f_{\mathcal{P}})$ and (f) denote the ideals generated by $f_{\mathcal{P}}$ and f respectively. Note that π is the canonical projection via modulo $f_{\mathcal{P}}$ and ψ is a composition of two canonical isomorphisms as \mathbb{F} vector spaces.

Taken any $A \in \mathcal{M}_N$. It is easy to see that $A \in E_{\mathcal{P}}$ if and only if the component of $\psi \circ \pi(A)$ in $M_{k \times n}(\mathbb{F}[x]/(f))$ is full rank for each $f \in \mathcal{P}$. Since $f \in \mathcal{P}$ is irreducible, we know that $\mathbb{F}[x]/(f) \simeq \mathbb{F}_{q^{\deg(f)}}$. Let $F_{q^{\deg(f)}}$ denote the set of all full rank $k \times n$ matrices over the finite field $\mathbb{F}_{q^{\deg(f)}}$. It is well known that $|F_{q^{\deg(f)}}| = \prod_{j=0}^{k-1} (q^n \deg(f) - q^j \deg(f))$ (See [9] page 455, for example).

First suppose that $N = mq^{d_{\mathcal{P}}}$ for some $m \in \mathbb{N}$. Then it is easy to see

$$\{f_l(x) : 0 \leq l \leq N\} = \{f_s(x) x^{d_{\mathcal{P}}} + f_t(x) : 0 \leq s \leq m - 1, 0 \leq t \leq q^{d_{\mathcal{P}}} - 1\}.$$

For any fixed $0 \leq s \leq m - 1$, the following projection is one-to-one:

$$\{f_s(x) x^{d_{\mathcal{P}}} + f_t(x) : 0 \leq t \leq q^{d_{\mathcal{P}}} - 1\} \longrightarrow \mathbb{F}[x]/(f_{\mathcal{P}})$$

and the canonical projection

$$\{f_l(x) : 0 \leq l \leq N\} \longrightarrow \mathbb{F}[x]/(f_{\mathcal{P}})$$

is m-to-one. As a result, the projection map π in (15) is m^{kn}-to-one. Thus we obtain that

$$|E_{\mathcal{P}} \cap \mathcal{M}_N| = m^{kn} \cdot \prod_{f \in \mathcal{P}} |F_{q^{\deg(f)}}|$$

$$= m^{kn} \cdot \prod_{f \in \mathcal{P}} \prod_{j=0}^{k-1} q^n \deg(f) (1 - q^{j-n} \deg(f))$$

$$= (mq^{d_{\mathcal{P}}})^{kn} \cdot \prod_{f \in \mathcal{P}} \prod_{j=0}^{k-1} (1 - q^{j-n} \deg(f))$$

(17)
Now suppose that N is any positive integer. There exists some $m, r \in \mathbb{Z}_+$ such that $N + 1 = mq^d + r$ with $0 \leq r < q^d$. For convenience, set $\tilde{N} := mq^d - 1$. Then by the definition of the natural density, we have

$$D(E_P) = \lim_{N \to \infty} \frac{|E_P \cap \mathcal{M}_N|}{|\mathcal{M}_N|}$$

(18)

$$= \lim_{N \to \infty} \frac{|E_P \cap \mathcal{M}_{\tilde{N}}| + |E_P \cap (\mathcal{M}_N - \mathcal{M}_{\tilde{N}})|}{(N + 1)^{kn}}$$

Note that $|\mathcal{M}_N - \mathcal{M}_{\tilde{N}}| \leq rkn(N + 1)^{kn-1}$, which gives that

(19)

$$\lim_{N \to \infty} \frac{|E_P \cap (\mathcal{M}_N - \mathcal{M}_{\tilde{N}})|}{(N + 1)^{kn}} = 0.$$

Thus, from (18), (19) and (17), we obtain

$$D(E_P) = \lim_{N \to \infty} \frac{|E_P \cap \mathcal{M}_{\tilde{N}}|}{(N + 1)^{kn}}$$

$$= \lim_{N \to \infty} \frac{(N + 1 - r)^{kn} \prod_{f \in \mathcal{P}} \prod_{j=0}^{k-1} (1 - q^{(j-n)\deg(f)})}{(N + 1)^{kn}}$$

$$= \prod_{f \in \mathcal{P}} \prod_{j=0}^{k-1} (1 - q^{-(n-j)\deg(f)})$$

$$= \prod_{j=n-k+1}^{n} \prod_{f \in \mathcal{P}} (1 - q^{-j \deg(f)}).$$

This completes the proof of Lemma 8.

Proof of Theorem 1. Suppose that $k < n$. For any irreducible polynomial $f \in \mathbb{F}_q[x]$, let $H_f \subseteq \mathcal{M}$ be the set of all matrices whose gcd of all full rank minors is divisible by f. Denote $q_f := q_{\deg(f)}$, then by Lemma 8

$$D(H_f) = 1 - D(E_{f})$$

$$= 1 - \prod_{j=n-k+1}^{n} (1 - q^{-j \deg(f)})$$

$$< 1 - \left(1 - \sum_{j=n-k+1}^{n} q_f^{-j}\right)$$

$$< \sum_{j=n-k+1}^{\infty} q_f^{-j} = \frac{\frac{1}{q_f^{n-k}(q_f - 1)}}{q_f^{n-k}} \leq \frac{2}{q_f^2}.$$

Let \mathcal{P}_t be the set of all irreducible polynomials with degree no more than t and denote $E_t = E_{\mathcal{P}_t}$. Since

$$(E_t \setminus E) \subseteq \bigcup_{f \in \mathcal{P} \setminus \mathcal{P}_t} H_f,$$
we have

\[
\limsup_{N \to \infty} \frac{|(E_t \setminus E) \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \leq \limsup_{N \to \infty} \frac{|\bigcup_{f \in \mathcal{P} \setminus \mathcal{P}_t} H_f \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \\
\leq \limsup_{N \to \infty} \sum_{f \in \mathcal{P} \setminus \mathcal{P}_t} \frac{|H_f \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \\
= \sum_{f \in \mathcal{P} \setminus \mathcal{P}_t} D(H_f) \leq \sum_{f \in \mathcal{P} \setminus \mathcal{P}_t} \frac{2}{q^j} \\
= \sum_{f \in \mathcal{P} \setminus \mathcal{P}_t} \frac{2}{q^{\deg(f)}} = \sum_{m=t+1}^{\infty} \frac{2\varphi_m}{q^m}.
\]

It is well known that all irreducible polynomials with degree \(m \) can divide \(x^m - x \), which has no multiple roots. Thus \(m\varphi_m \leq q^m \) and

\[
\limsup_{N \to \infty} \frac{|(E_t \setminus E) \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \leq \sum_{m=t+1}^{\infty} \frac{2}{mq^m} \\
\leq \sum_{m=t+1}^{\infty} \frac{2}{q^m} = \frac{2}{q^t(q-1)}.
\]

Now note that \(E \cap \mathcal{M}_N \subseteq E_t \cap \mathcal{M}_N \) and \(E \cap \mathcal{M}_N = E_t \cap \mathcal{M}_N - (E_t \setminus E) \cap \mathcal{M}_N \), which imply that

\[
\liminf_{N \to \infty} \frac{|E \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \geq \liminf_{N \to \infty} \frac{|E_t \cap \mathcal{M}_N|}{|\mathcal{M}_N|} - \limsup_{N \to \infty} \frac{|(E_t \setminus E) \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \\
\geq D(E_t) - \frac{2}{q^t(q-1)},
\]

and

\[
\limsup_{N \to \infty} \frac{|E \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \leq \limsup_{N \to \infty} \frac{|E_t \cap \mathcal{M}_N|}{|\mathcal{M}_N|} - \liminf_{N \to \infty} \frac{|(E_t \setminus E) \cap \mathcal{M}_N|}{|\mathcal{M}_N|} \\
\leq D(E_t),
\]

for all \(t \in \mathbb{N} \). Let \(t \) tend to \(\infty \), and recall that the number of monic irreducible polynomials with degree \(m \) in \(\mathbb{F}[x] \) is \(\varphi_m \). From Lemma \(\lim_{n \to \infty} \frac{n}{\varphi(n)} = \infty \) and the definition of \(q \)-zeta function, we can conclude that

\[
\lim_{N \to \infty} \frac{|E \cap \mathcal{M}_N|}{|\mathcal{M}_N|} = \lim_{t \to \infty} D(E_t) \\
\leq \lim_{t \to \infty} \prod_{j=n-k+1}^{n} \prod_{f \in \mathcal{P}_t} (1 - q^{-j \deg(f)}) \\
= \lim_{t \to \infty} \prod_{j=n-k+1}^{n} \prod_{m=1}^{t} (1 - q^{-jm})^{\varphi_m} \\
= \prod_{j=n-k+1}^{+\infty} \prod_{m=1}^{\infty} (1 - q^{-jm})^{\varphi_m} = \prod_{j=n-k+1}^{\infty} \zeta_q(j)^{-1}.
\]

This completes the proof of Theorem \(\Box \)
Acknowledgments The authors are very grateful to the anonymous referee for his/her careful comments. The work of X. G. was partially supported by NSFC (No. 11026155 and No. 11101380) and that of G. Y. was partially supported by NSFC (No. 11201431) and Foundations of Zhengzhou University.

REFERENCES

[1] A. T. Benjamin and C. D. Bennett, The Probability of Relatively Prime Polynomials. Mathematics Magazine, 80 (3), 2007, 196-202.
[2] G. L. Dirichlet, Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen Königlich Preuss. Akad. Wiss., 1849, 69-83; G. Lejeune Dirichlet’s Werke. II, Chelsea, 1969, 49-66.
[3] M. Kac, Statistical independence in probability, analysis and number theory. The Carus Mathematical Monographs, No. 12. Published by Mathematical Association of America. Distributed by John Wiley and Sons, Inc., New York, 1959.
[4] J. Kubilius, Probabilistic methods in the theory of numbers. Translations of Mathematical Monographs, Vol. 11, American Mathematical Society, 1964.
[5] H. Kubota and H. Sugita, Probabilistic proof of limit theorems in number theory by means of adeles, Kyushu J. Math., 56, 2002, 391-404.
[6] R. Lidl and H. Niederreiter, Finite fields. Cambridge University Press, Cambridge, 1997.
[7] G. Maze, J. Rosenthal and U. Wagner, Natural density of rectangular unimodular integer matrices. Linear Algebra and its Applications, 434 (5), 2011, 1319-1324.
[8] K. E. Morrison, Random Polynomials over Finite Fields. [http://www.calpoly.edu/~kmorriso/Research/RPFF.pdf] 1999.
[9] D. Quillen, Projective modules over polynomial rings. Invent. Math., 36, 1976, 167-171.
[10] H. Sugita and S. Takanobu, The probability of two F_q-polynomials to be coprime. Advanced Studies in Pure Mathematics, 49, 2007, 455-478.
[11] A. A. Suslin, Projective modules over polynomial rings are free. Soviet Math., 17 (4), 1976, 1160-1164.
[12] G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics, Vol. 46, Cambridge University Press, Cambridge, 1995.
[13] D. C. Youla and P. F. Pickel, The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices. IEEE Trans. Circuits Systems, 31 (6), 1984, 513-518.
[14] http://wwwb.math.rwth-aachen.de/QuillenSuslin

(X. Guo) Department of Mathematics, Zhengzhou University, Henan Province, 450001, China.
E-mail address: guoxq@zzu.edu.cn

(G. Yang) Department of Mathematics, Zhengzhou University, Henan Province, 450001, China.
E-mail address: study.yang@yahoo.com.cn