Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells

Koji Shimozaki

Koji Shimozaki, Division of Functional Genomics, Center for Frontier Life Science, Nagasaki University, Nagasaki 852-8523, Japan
Author contributions: Shimozaki K conceived and wrote the manuscript.
Supported by: The Nagasaki ken Medical Association.
Correspondence to: Koji Shimozaki, PhD, Division of Functional Genomics, Center for Frontier Life Science, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan. shimozak@nagasaki-u.ac.jp
Telephone: +81-95-8197191 Fax: +81-95-8197178
Received: July 25, 2014 Revised: August 29, 2014
Accepted: August 30, 2014
Published online: September 26, 2014

Abstract

Neural stem cells (NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors to perform its transcription-related functions. This partner switching presumably serves as an important key to the intrinsic functions of NSCs. A detailed understanding of these molecular mechanisms will advance our understanding of basic neuroscience and increase the feasibility of employing cell reprogramming technology in regenerative medicine.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Neural stem cells; Self-renewal; Multipotency; Sox2; Transcriptional network

INTRODUCTION

Neural stem cells (NSCs) are cells that are capable of both self-renewal and multipotency[1,2]. NSCs differentiate into neurons, astrocytes, and oligodendrocytes. The cellular origin of mouse NSCs dates back to the initial stage of ontogeny. A blastocyst generates the primitive ectoderm, further differentiating into the neuroectoderm, which serves as a source of primitive NSCs[3,4]. The neuroectoderm then develops and differentiates into the neuroepithelium[5]. Primitive NSCs exhibit self-renewal with a rather limited multipotency[6]. On embryonic day 11.5 (E11.5) in the murine fetal period, differentiation into neurons dominates while differentiation into the astrocyte lineage is suppressed by DNA methylation. Then at E14.5, NSCs begin to produce neurons and astrocytes[6,7]. After birth, NSCs manifest their ability to produce oligodendrocytes[8]. NSCs also actively undergo repeated self-renewal in the region of the central nervous system after birth to generate neurons, astrocytes, and oligodendrocytes in a region-dependent manner to build the brain as an organ. It was previously believed that neurons
do not regenerate once the brain organogenesis is complete in an adult organism. However, the study revised this dogma, and it is now known that neurogenesis takes place even in the adult brain. This process has been best studied in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) lining the hippocampal region, where NSCs are located and produce new nerve cells through self-renewal and multipotency is expected to stimulate our exploration of basic neuroscience and lead to practical applications in regenerative medicine, allowing lost neurons to be regenerated as desired. Although some NSCs can be cultured from body tissues as the monolayer, there are technical challenges as well as issues of productivity and quality related to the practical use of such cultured NSCs in regenerative medicine. However, a new technology was recently developed to reprogram somatic cells through the gene transfer. Using this technology, combinational transfection of the Oct4, Sox2, Klf4, and c-Myc genes into various cells can establish a type of multipotent stem cells, called induced pluripotent stem (iPS) cells. By changing the culture conditions under which iPS cells are established, we can artificially induce differentiation into NSCs. This technology has also been utilized to develop induced neuronal (IN) cells, which directly induce differentiation into neurons. IN cells are obtained by transfecting the Ascl1, Brn2, and Myt1l genes into fibroblasts. The gene cluster serving as the switch to precisely regulate cell fate mainly includes transcription factors. One key factor that plays an important role in NSCs is the transcription factor Sox2. Transcription factors bind to response regions in the genome to initiate or terminate the expression of target genes. Concomitantly, they interact with a group of chromatin-regulating factors other than transcription factors to perform various regulatory functions. In this review, I focus on the transcription regulatory network centered around Sox2 to shed light on the molecular biology underlying the capacity of NSCs to perform various regulatory functions. In this manner and suppress differentiation in a dosage-sensitive manner. Sox2 and a POU factor known as Oct4 form a specific partnership to coordinately regulate the mechanism that maintains undifferentiated ES cells. The target genes of this partnership include Nanog, Utf1, and Fgf4. Sox family members form partner complexes with POU factors, but the partnership assumes various forms depending on the cell type. In NSCs, Sox2 interacts with POU factors such as Pax6, Brn1, and Brn2, where Pax6 forms complexes with Sox2 to regulate the differentiation of cells of the optic nerve and lens. Pax6 is coexpressed in Sox2-positive cells and reportedly regulates the self-renewal and neurogenesis of NSCs in the hippocampus in the adult brain. The expression of Nestin, a marker for NSCs, is coordinately regulated by Sox2 and POU factors. Sox2 and the partner code of Brn1 and Brn2 bind to the regulatory region of the Nestin and Sox2 genes to perform an important function in the regulation of gene expression. Furthermore, Sox2 can bind to Prx1 (MHox1/Prrx1) and function as its partner. Because Prx1 and Sox2 are coexpressed in certain cells in the NSC region, they are expected to

SOX2 AND ITS PARTNERS

Sox2 collaborates with other transcription factors. In ES cells and NSCs, Sox2 regulates the self-renewal mechanism and suppresses differentiation in a dosage-sensitive manner. Sox2 and a POU factor known as Oct4 form a specific partnership to coordinately regulate the mechanism that maintains undifferentiated ES cells. The target genes of this partnership include Nanog, Utf1, and Fgf4. Sox family members form partner complexes with POU factors, but the partnership assumes various forms depending on the cell type. In NSCs, Sox2 interacts with POU factors such as Pax6, Brn1, and Brn2, where Pax6 forms complexes with Sox2 to regulate the differentiation of cells of the optic nerve and lens. Pax6 is coexpressed in Sox2-positive cells and reportedly regulates the self-renewal and neurogenesis of NSCs in the hippocampus in the adult brain. The expression of Nestin, a marker for NSCs, is coordinately regulated by Sox2 and POU factors. Sox2 and the partner code of Brn1 and Brn2 bind to the regulatory region of the Nestin and Sox2 genes to perform an important function in the regulation of gene expression. Furthermore, Sox2 can bind to Prx1 (MHox1/Prrx1) and function as its partner. Because Prx1 and Sox2 are coexpressed in certain cells in the NSC region, they are expected to

NEURAL STEM CELLS AND SOX2

Sox2 belongs to the Sry gene family and contains a DNA-binding domain referred to as a high-mobility group (HMG) domain, which is highly conserved across the family. To date, more than 20 genes have been identified in the Sox gene family. Sox2 is a maternal factor that is specifically expressed in the inner cell mass (ICM) and primitive ectoderm. Sox2 expression is widely observed among the cells within the neural tube at early stages of neurodevelopment. Its expression is subsequently localized to the ventricular layer in the neuronal cortex, where NSCs and their precursor cells are present after the mid-fetal period. During this period, Sox2 is not expressed in layers where terminally differentiated neurons are present. In the adult brain, NSCs are localized to the SVZ of the lateral ventricle and the SGZ lining the hippocampal region, where they undergo self-renewal and perform neurogenesis. All of such self-renewing cells express Sox2. Sox2 plays an important role in maintaining the functions of NSCs. It has been reported that Sox1 family members, Sox1 and Sox3, which show high sequence homology to Sox2, exhibit similar functions. Sox2 functions as a maternal factor in pre-implantation embryos. Zygotic knock-down of Sox2 using a specific siRNA resulted in an incomplete trophoblast stem cells (TE) in fertilized embryos, which failed to progress beyond the morula stage. Sox2 expression is detected in both the ICM and TE, and its expression becomes restricted to the ICM. During embryogenesis, the ICM becomes the embryo, and the TE forms the placenta. A high level of Sox2 gene expression has been confirmed in the neuroectoderm that gives rise to NSCs. During embryogenesis, Sox2 promotes neuroectoderm cell fate by suppressing the mesodermal cell fate. Moreover, Sox2 plays important roles in the differentiation of the central nervous system and peripheral nervous system during embryogenesis by controlling the proliferation and differentiation of neural stem/progenitor cells. Sox2 deficiency is embryonically lethal in mice because the fetus fails to form embryonic stem (ES) cells from the ICM or produce trophoblast stem cells. Sox2 conditional knock out (KO) mice have been reported to undergo neurodegeneration leading to dysfunctional neuronal differentiation in the adult brain. Various research approaches have been employed to demonstrate that Sox2 expression is localized to NSCs and that its function is essential for these cells.
SOX2 TARGET GENES AND STEM CELL FUNCTION

Sox2 is a transcription factor, and many reports have been published describing analyses of its target genes. Sox2 regulates the expression of its target gene called Sonic hedgehog (Shh) to regulate NSCs in the hippocampus. Shh is a humoral factor that transmits outside signals from outside into the cell via its receptor Patched, and induces Smo/Gli signal activation. Another transcription factor, Gli2, is a downstream target of Shh and activates Sox2 transcription. Sox2 also activates Shh transcription, and the Shh signaling downstream factor Gli2 activates Sox2 transcription. Sox2 activates the Nestin and Tlx/Nr2e1 genes but represses NeuroD1 transcription; Sox2 and POU factors are assumed to function as a core-partner unit in gene-induced cell reprogramming. IPS: Induced pluripotent stem; iN: Induced neuronal.

Figure 1 Diagrams of the Sox2 transcription network and reprogramming. A: Examples from the Sox2 transcription network. Sox2 activates Egfr transcription, and EGFR signaling activates Sox2 transcription. Sox2 also activates Shh transcription, and the Shh signaling downstream factor Gli2 activates Sox2 transcription. Sox2 activates the Nestin and Tlx/Nr2e1 genes but represses NeuroD1 transcription; B: Sox2 and POU factors are assumed to function as a core-partner unit in gene-induced cell reprogramming. IPS: Induced pluripotent stem; iN: Induced neuronal.

Sox2-centered feedback loop mechanism involving Sox2 target genes serves as an important system for the self-renewal mechanisms of NSCs. It was recently reported that the crosstalk between Sox2 and Wnt signaling regulates the switching during the differentiation of NSCs to neurons. Sox2 and Tcf act as molecular switches thus interacting with the overlap sequence, and this process, in turn, regulates NeuroD1 expression. Although the mechanisms underlying the molecular switching of numerous genes are being increasingly revealed, it remains unknown how such mechanisms activate differentiation switches at the appropriate times and locations in response to intracellular and extracellular changes, while suppressing the expression of genes other than those involved in neuronal differentiation.

STEM CELL REPROGRAMMING AND THE SOX2 GENE NETWORK

Combined transfection of the Oct4, Sox2, Klf4, and c-Myc genes transforms somatic cells into pluripotent stem cells. In this process, the transcriptional network is switched on to generate multipotent stem cells. It is likely that the partnership between Sox2 and Oct4 functions as the core switch. The addition of Klf4 to the partner complexes presumably allows for multidimensional regulation of various modes of switching. In the multipotency induction process, the use of serum-free culture medium with EGF actively induces the formation of NSCs.

Conversely, induction of the iN cell phenotype is conducted using a cell engineering technology that directly transdifferentiates somatic cells into neurons. Forced expression of the Ascl1, Brn2, and Myt11 genes can induce neuronal differentiation. However, this method is not intended for the maintenance of NSCs. Brn2 is a partner factor of Sox2. When Sox2 is added to the group of iN-factors and cells are cultured in EGF or bFGF-containing medium, combinations other than Oct4, Klf4, and c-Myc may be able to produce artificial NSCs. Moreover, based on the concept of the Sox2 partner code, the establishment of neuronal subtype-specific NSCs also seems possible, using combinations of Pax6 and Prx1 or other POU factors (Figure 1B).

CONCLUSION

I have reviewed the link between the molecular mechanisms at work in NSCs and properties of stem cells, with a focus on the network involving the Sox2-centered partner code and its target genes. The localized expression of Sox2 in NSCs/neural progenitors enhances its molecular specificity. By forming complexes with its partner factors, Sox2 exerts its transcriptional-regulation function. The partner factors involved vary depending on the molecular context of the stem cell lineage. Sox2 target genes include molecular switches controlling the NeuroD1 gene (which is capable of inducing neuronal differentiation) as well as the feedback loop with the factors involved in self-renewal.
al such as members of the EGFR signaling pathway. By manipulating Sox2 and its partner factors, researchers can now artificially induce differentiation into pluripotent, or multipotent stem cells and into neurons. Nevertheless, many questions remain unanswered regarding the Sox2-based self-renewal mechanism and the regulatory mechanism underlying multipotency. Further research using conditional KO mice is needed to explore functions of Sox2, its partner factors, and chromatin-regulating factors that interact with Sox2 and its partner factors as well as to identify the entire panel of Sox2 target genes.

ACKNOWLEDGEMENTS

I thank the members of the Center for Frontier Life Science for helpful discussions. Crimson Interactive Pvt. Ltd. (Ulatus) and NPG Language Editing are acknowledged for their assistance in translating and editing the manuscript.

REFERENCES

1. Gage FH. Mammalian neural stem cells. Science 2000; 287: 1433-1438. [PMID: 10688783 DOI: 10.1126/science.287.5457.1433]
2. Yao J, Mu Y, Gage FH. Neural stem cells: mechanisms and modeling. Protein Cell 2012; 3: 251-261. [PMID: 22549585 DOI: 10.1007/s13238-012-0203-6]
3. Schoenwolf GC, Smith JL. Mechanisms of neurulation: traditional viewpoint and recent advances. Development 1990; 109: 243-270. [PMID: 2205465]
4. Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 2001; 26: 137-148. [PMID: 11565806 DOI: 10.1247/csf.26.137]
5. Hitoshi S, Ishino Y, Kumar A, Jasmine S, Tanaka KF, Kondo T, Kato S, Hosoya T, Hotta Y, Ikenaka K. Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nat Neurosci 2011; 14: 957-964. [PMID: 21765425 DOI: 10.1038/nn.2875]
6. Takizawa T, Naka shima K, Namihira M, Ochiai W, Uemura T, Kato S, Nakamura M, Okano H, Akamatsu W. Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competence. Stem Cells Dev 2012; 21: 108-115. [PMID: 2205465 DOI: 10.1016/j.devcel.2008.04.014]
7. Nomura A, Hara T, Sakato Y. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676. [PMID: 16904174 DOI: 10.1016/j.cell.2006.07.024]
8. Matsui T, Takano M, Yoshida K, Ono S, Fujisaki C, Mat suzaki Y, Toyama Y, Nakamura M, Okano H, Akamatsu W. Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competence. Stem Cells 2012; 30: 1109-1119. [PMID: 22467474 DOI: 10.1002/stem.1091]
9. Vierbuchten T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035-1041. [PMID: 20107439 DOI: 10.1038/nature08797]
10. Miyagi S, Hara T, Okuda A. Role of Sox2 in neural commitment factors in development. Cell Mol Life Sci 2009; 66: 3675-3684. [PMID: 19575663 DOI: 10.1007/s00018-009-0097-0]
11. Sarkar A, Hochkedlinger K. The sox family of transcription factors: versatile regulators of stem cells and progenitor cell fate. Stem Cell Rev 2012; 8: 15-30. [PMID: 22309134 DOI: 10.1007/s12015-012-0007-4]
12. Keramani M, Razavi J, Ingman KA, Patsch C, Edenhof er F, Ward CM, Kimber SJ. Sox2 is essential for formation of trophoderm in the preimplantation embryo. PLoS One 2010; 5: e13952. [PMID: 21103067 DOI: 10.1371/journal. pone.0013952]
cell lineages for CNS stem/progenitor cells. J Neurosci 2004; 24: 104-454 [PMID: 15228508 DOI: 10.1016/j.neurosci.2002.02.016]

40 Kiefer JC. Back to basics: Sox genes. Dev Dyn 2007; 236: 2356-2366 [PMID: 17584862 DOI: 10.1002/dvdy.21218]

41 Kondoh H, Kamachi Y. SOX-partner code for cell specification: Regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol 2010; 42: 391-399 [PMID: 20977511 DOI: 10.1016/j.biocel.2009.09.003]

42 Kopp JL, Ormsbee BD, Desler M, Rizzino A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 2002; 20: 903-911 [PMID: 12838855 DOI: 10.1634/stemcells.2007-0051]

43 Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 2006; 20: 1187-1202 [PMID: 16651659 DOI: 10.1101/gad.1407906]

44 Yuan H, Corbi N, Basilico C, Dailey L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 1995; 9: 2635-2645 [PMID: 7590241 DOI: 10.1101/gad.9.21.2635]

45 Tomioka M, Nishimoto M, Miyagi S, Katayangi T, Fukui N, Niwa H, Muramatsu M, Okuda A. Identification of Sox2-regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 2002; 30: 3202-3213 [PMID: 12136102 DOI: 10.1093/nar/gkf435]

46 Inoue K, Kamachi Y, Matsunami H, Imada K, Uchikawa T, Kato M, Kondoh H. Pax6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells 2007; 12: 1049-1061 [PMID: 17825048 DOI: 10.1111/j.1365-2443.2007.01114.x]

47 Josephson R, Muller T, Pickel J, Okabe S, Reynolds K, Turn- er PA, Zimmer A, McKay RD. FOU transcription factors control expression of CNS stem cell-specific genes. Development 1998; 125: 3087-3100 [PMID: 9671582]

48 Kamachi Y, Sockanathan S, Liu Q, Breitbart M, Lovell-Badge R, Kondoh H. Involvement of SOX proteins in lens-specific activation of crystallin genes. EMBO J 1995; 14: 3510-3519 [PMID: 7628452]

49 Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 2001; 15: 1272-1286 [PMID: 11358870 DOI: 10.1101/gad.887101]

50 Maekawa M, Takashima N, Aray I, Nomura T, Inokuchi K, Yuasa S, Osumi N. Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 2005; 10: 1001-1014 [PMID: 16166400 DOI: 10.1111/j.1365-2443.2005.00893.x]

51 Tanaka S, Kamachi Y, Tanouchi A, Hamada H, Jing N, Kondoh H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol Cell Biol 2004; 24: 8834-8846 [PMID: 15456859 DOI: 10.1128/MCB.24.20.8834-8846.200424/20.8834]

52 Zappone MV, Galli R, Catena R, Meani N, de Baisi S, Mat- tei E, Tiveron C, Vescovi AL, Lovell-Badge R, Otsolenghi S, Nicolis SK. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 2000; 127: 2367-2382 [PMID: 10804179]

53 Catena R, Tiveron C, Ronchi A, Porta S, Ferré A, Tatlango L, Cavallaro M, Favaro R, Otsolenghi S, Reinbold R, Scholer H, Nicolis SK. Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem 2004; 279: 41846-41857 [PMID: 15262984 DOI: 10.1074/jbc.M405514200M405514200]

54 Shimozaki K, Clementson GD, Gage FH. Paired related homeobox protein 1 is a regulator of stemness in adult neural stem/progenitor cells. J Neurosci 2013; 33: 4066-4075 [PMID: 23447615 DOI: 10.1523/JNEUROSCI.4386-12.2013]

55 Palma V, Lim DA, Dahmann N, Sanchez B, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 2005; 132: 335-344 [PMID: 15604099 DOI: 10.1242/dev.01567]

56 Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 2008; 11: 277-284 [PMID: 18297065 DOI: 10.1038/nn2059]

57 Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002; 16: 2743-2748 [PMID: 12414725 DOI: 10.1101/gad.102502]

58 Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of Smoothened. Nature 2002; 418: 892-897 [PMID: 12192414 DOI: 10.1038/nature00989]

59 Rahnama F, Shimokawa T, Lauth M, Finta C, Kogerman P, Teglund S, Toftgaard R, Zaphiropoulos PG. Inhibition of GLI1 gene activation by Patched1. Biochem J 2006; 394: 19-26 [PMID: 16229683 DOI: 10.1042/BJ20050491]

60 Takanaga H, Tsuchida-Straeten N, Nishide K, Watanabe A, Aburatani H, Kondo T. GLI2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells 2009; 27: 165-174 [PMID: 18927467 DOI: 10.1634/stemcells.2008-0580]

61 Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 2010; 467: 323-327 [PMID: 20844536 DOI: 10.1038/nature09347]

62 Doetsch F, Peineau L, Caille I, Garcia-Verdugo JM, Alva-
Shimozaki K. Sox2 molecular switch in NSCs

rez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36: 1021-1034 [PMID: 12495619 DOI: 10.1016/S0896-6273(02)01133-9]

63 Hu Q, Zhang L, Wen J, Wang S, Li M, Feng R, Yang X, Li L. The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells 2010; 28: 279-286 [PMID: 19882665 DOI: 10.1002/stem.246]

64 Zhang CL, Zou Y, He W, Gage FH, Evans RM. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 2008; 451: 1004-1007 [PMID: 18235445 DOI: 10.1038/nature06562]

65 Shi Y, Chichung Lie D, Taupin P, Nakashima K, Ray J, Yu RT, Gage FH, Evans RM. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 2004; 427: 78-83 [PMID: 14702088 DOI: 10.1038/nature02211]

66 Yu RT, McKeown M, Evans RM, Umesono K. Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 1994; 370: 375-379 [PMID: 8047143 DOI: 10.1038/370375a0]

67 Shimozaki K, Zhang CL, Suh H, Denli AM, Evans RM, Gage FH. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells. J Biol Chem 2012; 287: 5969-5978 [PMID: 22194602 DOI: 10.1074/jbc.M111.290403]

68 Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, Moore L, Nakashima K, Asashima M, Gage FH. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 2009; 12: 1097-1105 [PMID: 19701198 DOI: 10.1038/nn.2360]

P- Reviewer: Abdelalim EM, Fukuda T, Lu F
S- Editor: Song XX L- Editor: A E- Editor: Lu YJ
