High-dose Radiotherapy in Newly Diagnosed Low-grade Gliomas with Nonmethylated O6-methylguanine-DNA Methyltransferase

Yanwei Liu
Beijing Tiantan Hospital

Yanong Li
Beijing Tiantan Hospital

Peng Wang
Beijing Tiantan Hospital

Li Chen
Beijing Tiantan Hospital

Jin Feng
Beijing Tiantan Hospital

Xiaoguang Qiu (✉ qiuxiaoguang@bjtth.org)
Beijing Tiantan Hospital https://orcid.org/0000-0002-6806-9827

Research

Keywords: Low-grade gliomas, Radiation dose, Survival, MGMT

DOI: https://doi.org/10.21203/rs.3.rs-480178/v1

License: ☑️ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Patients with low-grade gliomas (LGGs) harboring \(O6\text{-methylguanine-DNA methyltransferase}\) promoter nonmethylation (\(MGMT\)-non-pM) have a particularly short survival and are greatly resistant to chemotherapy. The objective of this study was to assess the efficacy of high-dose radiotherapy (RT) for LGGs with \(MGMT\)-non-pM.

Methods: 269 patients with newly diagnosed adult supratentorial LGGs from the multicenter Chinese Glioma Cooperative Group (CGCG) received postoperative RT during 2005-2018. \(MGMT\) promoter methylation analysis was conducted by pyrosequencing in all patients. Univariate and multivariable analyses were performed using the cox regression to determine the prognostic factors for overall survival (OS) and progression-free survival (PFS). RT dose-response on \(MGMT\) status defined subtypes was analyzed.

Results: On univariate analysis, the following were statistically significant favorable factors for both PFS and OS: oligodendrogiomas \(p = 0.002\) and \(p = 0.005\), high-dose RT (\(> 54\) Gy) \(p = 0.017\) and \(p = 0.023\), and 1p/19q codeletion \(p < 0.001\) and \(p = 0.001\). On multivariable analyses, RT dose (\(> 54\) Gy vs. \(\leq 54\) Gy) and \(IDH\) mutation were independently prognostic markers for OS (HR, 0.44; 95%CI, 0.21-0.92; \(p = 0.029\); and HR, 0.43; 95%CI, 0.20-0.90; \(p = 0.025\), respectively) and PFS (HR, 0.48; 95%CI, 0.27-0.90; \(p = 0.021\); and HR, 0.52; 95%CI, 0.27-0.98; \(p = 0.044\), respectively). High-dose RT was associated with longer OS (HR, 0.55; 95%CI, 0.32-0.93; \(p = 0.026\)) and PFS (HR, 0.57; 95%CI, 0.35-0.93; \(p = 0.026\)) than low-dose RT in \(MGMT\)-non-pM subtype. In contrast, no significant difference in either OS (\(p = 0.240\)) or PFS (\(p = 0.395\)) was observed with high-dose RT in the \(MGMT\)-pM subtype.

Conclusions: High-dose RT (\(> 54\) Gy) is an independently protective factor for LGGs and associated with improved survival in patients with \(MGMT\)-non-pM.

Background

Low-grade gliomas (LGGs) mainly refer grade II by the WHO grading system and are relatively uncommon, constituting approximately 10% of all primary brain tumors in adults [1-2]. Although often considered as “benign”, over half of these patients will develop tumor progression within 5 years and the rate of progression-free survival (PFS) at 10 years was 21-51% [3-4]. Therefore, postoperative radiotherapy (RT) is frequently utilized after surgical resection. Recently, molecular alterations, especially \(isocitrate dehydrogenase 1/2\) mutation (\(IDH\) mutation) and chromosome arm 1p/19q codeletion (1p/19q codeletion), provide important diagnostic and prognostic information that can greatly improve diagnostic accuracy and management decision-making in patients with LGGs [5]. \(IDH\) mutation and 1p/19q codeletion are required for LGGs classification within the revised 2016 WHO guidelines. However, \(O6\text{-methylguanine-DNA methyltransferase}\) promoter methylation (\(MGMT\)-pM) was rarely reported in patients with LGGs, even though it accounts for about 79-92% in these patients [6-7]. Only one study RTOG (Radiation Therapy Oncology Group) 0424 has so far reported the association of \(MGMT\) status with survival of patients with LGGs [8]. In this study, \(MGMT\) status was an independent prognostic biomarker of high-risk, LGGs treated with radiotherapy combined with concomitant and adjuvant temozolomide (TMZ) chemotherapy. A survival benefit was observed in LGGs contained a methylated \(MGMT\); Similar with glioblastoma [9], \(MGMT\)-non-pM confers a shorter OS (3 years vs. not reached) and PFS (2 years vs. not reached) compared with \(MGMT\)-pM in high-risk LGGs. Unfortunately, most of clinical trials tended to test new drugs as alternatives to TMZ for patients with \(MGMT\)-non-pM have failed. Bevacizumab plus irinotecan, paclitaxel poliglumex with RT, Cilengitide combined with TMZ, temsirolimus and procarbazine et al. have been proved to be not satisfactory in nonmethylated GBM [10-13]. Thus, new therapies for these patients are urgently needed.

Because of the requirements for long-term follow-up for patients with LGGs, most of studies on RT dose were conducted early, before the year 1990, and have many limitations in both diagnostic (computed tomography, CT) and treatment modalities (2D planning). However, modern technology (intensity-modulated radiation therapy, IMRT and magnetic resonance imaging, MRI) can greatly improve dose distribution of targeted field and reduce dose of adjacent structure. Therefore, we hypothesize that RT dose escalation might be effective in LGGs with \(MGMT\)-non-pM based on modern technology. In this study, we analyzed retrospectively the potential survival benefits of high-dose RT (\(> 54\) Gy) in 269 patients with LGGs containing the information of \(MGMT\) promoter methylation. These data provide evidence for making treatment decisions and designing clinical trials for LGGs based on \(MGMT\) status.

Materials And Methods

Patient Population
269 patients with newly diagnosed adult supratentorial LGGs (WHO II) were obtained from the multicenter Chinese Glioma Cooperative Group (CGCG) and the Chinese Glioma Genome Atlas (CGGA) in China during 2005–2018 (www.cgga.org.cn). Tumor histology was confirmed independently by two neuropathologists based on the 2007 WHO classification and the 2016 updated edition. The study protocol was approved by the Ethics Review Board of Tiantan Hospital in Beijing, China. Written informed consent was obtained from all participants. The patients had to be in good general condition as indicated by performance score after surgery: Karnofsky Performance Scores ≥ 60. Patient characteristics (stratified by the MGMT status) are summarized in Table 1.

Table 1

Clinical features of patients with LGGs stratified by MGMT status

characteristics	MGMT-pM n (%)	MGMT-non-pM n (%)
Total	115 (42.8)	154 (57.2)
Sex		
Male	62 (53.9)	91 (59.1)
Female	53 (46.1)	63 (40.9)
Age (years)		
≤ 40	55 (47.8)	99 (64.3)
> 40	60 (52.2)	55 (35.7)
Histopathology		
A*	83 (72.2)	138 (89.6)
O	32 (27.8)	16 (10.4)
Seizure		
Yes	33 (56.9)	89 (60.5)
No	25 (43.1)	58 (39.5)
Resection		
Total	57 (54.3)	59 (41.0)
Subtotal	48 (45.7)	85 (59.0)
RT dose		
High	64 (55.7)	91 (59.1)
Low	51 (44.3)	63 (40.9)
Chemotherapy		
Yes	42 (38.9)	46 (30.1)
No	66 (61.1)	107 (69.9)
IDH mutation		
Yes	93 (92.1)	113 (75.3)
No	8 (7.9)	37 (24.7)
1p/19q codeletion		
Yes	43 (50.0)	20 (26.3)
No	43 (50.0)	56 (73.7)

L: including astrocytoma and oligoastrocytoma which was eliminated from the 2016 WHO classification.
All patients underwent surgical excision and postoperative three-dimensional conformal radiotherapy (3DCRT) or IMRT. The radiation fields were based on the postoperative T2 or FLAIR MRI-defined residual tumor and/or surgical cavity plus a 2 cm margin. The median dose was 55.8 Gy (range, 40–66 Gy) (1.8-2.0 Gy daily, 5 days per week). The distribution of doses in LGG patients was shown in Supplementary Fig. 1. All patients received RT at 4–8 weeks after surgery. The extent of resection was evaluated using preoperative and postoperative MRI. A total of 33.7% (88/261) of patients received RT followed by chemotherapy using carmustine, nimustine, or TMZ. In the first 2 years, follow-up and MRI were performed after RT every 6 months, and every 9–12 months thereafter until tumor progression.

Pyrosequencing of MGMT promoter

DNA was extracted in formalin-fixed paraffin-embedded samples with a QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). Then 100 ng DNA was bisulfite converted with an Epitect Bisulfite kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The bisulfite-treated DNA was amplified and then sequenced by pyrosequencing. The amplification forward primer 5'-GTTYGGATGTGGG ATAGTT-3' and the biotinylated reverse primer 5'-biotin-ACRACCCAAACACTCA CCAA-3'. The methylation levels of CpG sites 75–78 were obtained with the sequencing primers 5'-GATATGTTGGGATAGT − 3' or 5'-GTTTTTAGAAYGTTTT G-3'. The methylation levels of CpG sites 76–79 were detected with a commercial MGMT pyrosequencing kit (Qiagen, Hilden, Germany) with a PyroMark Q24 System (Qiagen, Hilden, Germany). Standardized positive and negative controls were included in all routine pyrosequencing testing, and every test was performed by 2 experienced molecular neuropathologists together (Supplementary Fig. 2).

Statistical Analyses

The clinical features of the different groups were compared using the χ2 test with SPSS v22.0 (IBM, Armonk, NY, USA). OS and PFS curves were estimated by the Kaplan–Meier method and compared with use of the two-sided log-rank test. OS was calculated from the day of surgery to the date of the first event. The date of progression was defined as the date of the CT or MRI examination that confirmed progression or related neurologic symptoms. Cox proportional hazards regression was used to identify independent risk factors for OS and PFS. \(P < 0.05 \) (two-sided) was considered to indicate statistical significance.

Results

Patient Characteristics

Among all patients enrolled in this study, the median age was 38 years (range, 11–69 years), and the male-to-female ratio was 1.32:1 (153:116). Median follow-up time was 9.12 (7.93–10.30) years. There have been 79 deaths (29.4%) and 101 recurrences (37.5%) to date. Of the 269 samples, 221 (82.2%) were astrocytoma or oligoastrocytoma (oligoastrocytoma was essentially eliminated based on the molecular pathology on the updated WHO classification in 2016) and 48 (17.8%) were oligodendrogliomas. The 5-year OS and PFS rates were 80.6% and 73.3% in all patients. Median PFS was 11.4 years, and median OS was not yet reached. The baseline characteristics of patients, stratified by MGMT status, are reported in Table 1.

Analyses with the Cox Proportional-Hazards Models

A dose of 54 Gy was extensively used in clinical decisions and trials of LGGs [1, 3, 8, 14]. Depending on the dose of 54 Gy, we divided patients into 2 groups: high dose (> 54 Gy) and low dose (≤ 54 Gy). On univariate analysis, the following were statistically significantly favorable factors for both PFS and OS: oligodendrogliomas (\(p = 0.002 \) and \(p = 0.005 \)), high-dose RT (\(p = 0.017 \) and \(p = 0.023 \)) and 1p/19q codeletion (\(p < 0.001 \) and \(p = 0.001 \)). \(IDH \) mutation (\(p = 0.076 \)) and seizure symptom (\(p = 0.074 \)) indicate a favorable prognosis, although the difference was not significant in analysis of OS and PFS, respectively. Multivariate analysis showed that high-dose RT (HR, 0.44; 95% CI, 0.21–0.92; \(p = 0.029 \); HR, 0.48; 95% CI, 0.27–0.90; \(p = 0.021 \), respectively) and \(IDH \) mutation (HR, 0.43; 95% CI, 0.20–0.90; \(p = 0.025 \); HR, 0.52; 95% CI, 0.27–0.98; \(p = 0.044 \), respectively) were significantly prognostic factors of both OS and PFS. 1p/19q codeletion (\(p = 0.072 \)) indicates a favorable prognosis, although the difference was not significant in analysis of OS (Table 2).
Table 2

Univariate and multivariate analyses for PFS and OS based on clinical and molecular variables

Variables	n	Univariate analyses	Multivariate analyses						
		PFS	OS						
		HR 95% CI	p						
Age	269	1.08 0.72–1.61	0.73	1.03 0.65–1.62	0.907	1.09 0.60–1.97	0.78	1.32 0.68–2.57	0.417
≤ 40 vs. >40	115/154								
Sex	269	1.19 0.80–1.78	0.395	1.03 0.66–1.60	0.907	1.83 1.00–3.35	0.050	1.26 0.64–2.48	0.498
Male vs. female	153/116								
Histopathology	269	3.20 1.55–6.59	0.002	3.32 1.44–7.64	0.005	2.20 0.78–6.18	0.135	1.88 0.58–6.05	0.290
A* vs. O	221/48								
Seizure	205	0.69 0.46–1.04	0.074	0.63 0.40–0.99	0.045	0.86 0.47–1.58	0.625	0.86 0.43–1.70	0.657
Yes vs. no	122/83								
Resection	249	0.61 0.40–0.94	0.024	0.77 0.48–1.24	0.280	0.83 0.45–1.53	0.826	0.94 0.47–1.87	0.849
Total vs. subtotal	116/133								
Chemotherapy	261	1.56 1.04–2.34	0.030	1.00 0.62–1.61	0.991	1.46 0.81–2.63	0.204	1.00 0.49–1.99	0.972
Yes vs. no	88/173								
Dose	269	0.62 0.42–0.92	0.017	0.60 0.38–0.93	0.023	0.48 0.27–0.90	0.021	0.44 0.21–0.92	0.029
>54 Gy vs. ≤54 Gy	155/114								
IDH mutation	251	0.59 0.36–0.96	0.033	0.61 0.36–1.05	0.076	0.52 0.27–0.98	0.044	0.43 0.20–0.90	0.025
Yes vs. no	206/45								
1p/19q deletion	162	0.31 0.16–0.58	0.000	0.27 0.12–0.57	0.001	0.43 0.19–0.97	0.042	0.41 0.15–1.08	0.072
Yes vs. no	63/99								
MGMT pM	269	0.82 0.53–1.28	0.389	0.65 0.38–1.12	0.119	0.79 0.43–1.44	0.436	0.63 0.30–1.31	0.217
Yes vs. no	115/154								

* A including astrocytoma and oligoastrocytoma which was eliminated in the 2016 WHO classification

Dose-Response in patients with MGMT-non-pM

MGMT promoter methylation was profiled in all patients. A significant protective effect on PFS and OS with a RT dose ≥ 54 Gy was observed in patients with *MGMT*-non-pM (HR, 0.57; 95% CI, 0.35–0.93; *p* = 0.026; and HR, 0.55; 95% CI, 0.32–0.93; *p* = 0.026, respectively) (Fig. 1A and B), but this was not the case in patients with *MGMT*-pM (*p* = 0.40 in PFS and *p* = 0.240 in OS) (Fig. 1C and D). Most clinical characteristics were comparable between groups (Supplementary Table 1). Among 261 patients, 88 received RT followed by chemotherapy (carmustine, nimustine, or TMZ). But patients with *MGMT*-pM did not receive benefit from the addition of chemotherapy (*p* = 0.058 in PFS and *p* = 0.195 in OS) (Supplementary Fig. 3A and B). Chemotherapy did also not improved the OS (*p* = 0.826) and PFS (*p* = 0.109) in patients with *MGMT*-non-pM (Supplementary Fig. 3C and D).
Discussion

Gliomas with MGMT-non-pM are striking resistance to chemotherapy or targeted therapy. In our study, high-dose RT (> 54 Gy) was an independently protective factor of patients with LGGs. More importantly, patients with MGMT-non-pM can benefit from high-dose RT, but no benefit was observed with high-dose RT in patients with MGMT-pM. The results showed that replacement of TMZ chemotherapy by high-dose RT might be feasible for these patients with MGMT-non-pM. To the best of our knowledge, this is the first report on the relationship between RT dose and MGMT status. MGMT status could serve as the primary predictor of response to RT in LGGs. MGMT is a DNA repair protein and a marker of resistance to the first line chemotherapeutic drug (TMZ). Methylated MGMT resulted in reduced protein and is a strong prognostic and predictive biomarker for benefit from TMZ chemotherapy in patients with GBM, especially in elderly patients [15–16]. Even in patients with treatment by only radiotherapy, MGMT-pM also confers a survival advantage [9, 17]. However, patients with MGMT-non-pM derive less benefit from TMZ or other alkylating agents and have a shorter median survival compared to those whose tumors are methylated (15.3 months vs. 21.7 months). Though many trials have tried to test new drugs as alternatives to TMZ, none of these was effective against unmethylated GBM. LGGs have relatively higher rates (75-92.5%) of MGMT-pM than GBM, but the association of MGMT status with survival of LGGs rarely reported. In RTOG 0424, MGMT-pM was found in 76% (57/75) of high-risk LGGs and was an independent prognostic biomarker based on RT and adjuvant TMZ chemotherapy. MGMT-non-pM was significantly associated with worse OS and PFS than MGMT-pM in high-risk LGGs [8]. However, the implication of MGMT status with respect to radio-chemotherapy sensitivity in patients with LGGs is not further studied.

Learning from the failed clinical trials in GBM with MGMT-non-pM, we hypothesize that RT dose escalation might be effective in these refractory tumors. Earlier retrospective studies have observed a dose-response relationship in LGGs. Although these studies were retrospective and had limited sample sizes (< 150 patients), they found that high-dose RT (> 52 Gy, > 53 Gy, or even > 55 Gy) confers a survival advantage compared with those who received low-dose RT (< 52 Gy, < 53 Gy, or even < 55 Gy) [18–20]. However, two randomized trials (the European Organisation for Research and Treatment of Cancer 22844 and the North Central Cancer Treatment Group 86-72-51) did not show an OS or PFS benefit to high-dose RT (59.4 Gy and 64.8 Gy) over low-dose RT (45 Gy and 50.4 Gy) [21–22]. The point to emphasize here is that these studies were activated in 1985 and 1986, respectively, and have many limitations in diagnostic and treatment modalities. Patients were treated in an era with older surgical, diagnostic instrument (CT scan) and radiation techniques (2D planning). Currently, IMRT and MRI are routinely used in clinical practice that has been a significant improvement in dose distribution of targeted field and dose limitation of adjacent structure [23]. More importantly, molecular pathology provides additional diagnostic and prognostic information that can greatly improve diagnostic accuracy and management decision-making. Therefore, it is needed to be reconsidered based on modern technology whether high-dose RT can obtained improved survival in some molecular subtypes. In our study, 269 patients with newly diagnosed LGGs received postoperative 3DCRT or IMRT. The results that RT dose is an independent prognostic factor for both OS and PFS indicated that the survival of patients with LGGs might be further improved by increasing RT dose in modern technology. High-dose RT was associated with longer PFS and OS in MGMT-non-pM subtype. In contrast, no significant difference in survival was observed with high-dose RT in the MGMT-pM subtype. The data showed that high-dose RT as alternatives to TMZ or other drugs might be effective in LGGs with MGMT-non-pM. The associations of MGMT status with RT dose were first reported in present study, our data is helpful in choice of therapeutic strategy for these refractory molecular subtypes. Although confirmation by prospective trials is needed, this study is also helpful in designing clinical trials for LGG based on MGMT status.

Conclusion

High-dose RT (> 54 Gy) was an independently protective factor for patients with LGGs. Patients with MGMT-non-pM may have improved survival upon administration of high-dose RT. Our findings will help to define the standard of care and assist decision-making as well as the design of prospective clinical trials for LGGs. However, the limitations of our retrospective study should be acknowledged. No information on quality of life was available. The adverse effects of high-dose RT must be assessed in further studies.

Declarations

Ethics approval

This study was reviewed and approved by the Institutional Review Board of Beijing Tiantan Hospital (Grant number: KY2013-017-01). Informed written consent from patients was waived by the Institutional Review Board of Beijing Tiantan Hospital due to the retrospective study design.
Consent to participate
Not applicable

Consent for publication
Not applicable.

Availability of data and material:
All data were presented in the manuscript and supplementary materials.

Competing interests
The authors declare that they have no competing interests.

Fundings
This work was supported by Beijing Natural Science Foundation (7192057), the Capital Health Development Research Project (2020-2-1072), and Beijing Hospitals Authority Youth Programme (QML20190506). The funding sources had no influence on the design, performance, or reporting of this study.

Authors’ contributions
Study concept and design: Xiaoguang Qiu and Yanwei Liu; Data acquisition and analysis: Yanong Li, Peng Wang, Li Chen and Jin Feng; Statistics analysis: Yanwei Liu; Writing the first draft: Yanwei Liu, Yanong Li; Supervision study: Xiaoguang Qiu; Read and approved final version: All authors.

Acknowledgements
Thanks to the following members of Chinese Glioma Cooperative Group (CGCG) for providing gliomas patients data: Shouwei Li and Chenxing Wu (Sanbo Brain Hospital), Xuejun Yang (Tianjin Medical University General Hospital), Wei Yan (The First Affiliated Hospital of Nanjing Medical University), Hongjun Wang and Jinquan Cai (the Second Affiliated Hospital of Harbin Medical University), Wen Cheng (the First Affiliated Hospital of China Medical University)

Author details
1Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; 2Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; 3National Clinical Research Center for Neurological Diseases, Beijing 100070, China.

References
1. Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021; 499:60-72.
2. Ostrom QT, Patil N, Cioffi G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro Oncol. 2020; 22:iv1-iv96.
3. Bell EH, Zhang P, Shaw EG, et al. Comprehensive Genomic Analysis in NRG Oncology/RTOG 9802: A Phase III Trial of Radiation Versus Radiation Plus Procarbazine, Lomustine (CCNU), and Vincristine in High-Risk Low-Grade Glioma. J Clin Oncol. 2020;
38:3407-3417

4. Tom MC, Park DYJ, Yang K, et al. Malignant Transformation of Molecularly Classified Adult Low-Grade Glioma. Int J Radiat Oncol Biol Phys. 2019; 105:1106-1112.

5. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131:803-820.

6. Everhardt S, Kaloshi G, Criniere E, et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol. 2006; 60:740-743.

7. Jha P, Suri V, Jain A, et al. O6-methylguanine DNA methyltransferase gene promoter methylation status in gliomas and its correlation with other molecular alterations: first Indian report with review of challenges for use in customized treatment. Neurosurgery. 2010; 67:1681-1691.

8. Bell EH, Zhang P, Fisher BJ, et al. Association of MGMT Promoter Methylation Status With Survival Outcomes in Patients With High-Risk Glioma Treated With Radiotherapy and Temozolomide: An Analysis From the NRG Oncology/RTOG 0424 Trial. JAMA Oncol. 2018; 4:1405-1409.

9. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352:997-1003.

10. Herrlinger U, Schafer N, Steinbach JP, et al. Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. J Clin Oncol. 2016; 34:1611-1619.

11. Khasraw M, Lee A, McCowatt S, et al. Cilengitide with metronomic temozolomide, procarbazine, and standard radiotherapy in patients with glioblastoma and unmethylated MGMT gene promoter in ExCentric, an open-label phase II trial. J Neurooncol. 2016; 128:163-171.

12. Wick W, Gorlia T, Bady P, et al. Phase II Study of Radiotherapy and Tensirolimus versus Radiochemotherapy with Temozolomide in Patients with Newly Diagnosed Glioblastoma without MGMT Promoter Hypermethylation (EORTC 26082). Clin Cancer Res. 2016; 22:4797-4806.

13. Elinzano H, Glantz M, Mrugala M, et al. PPX and Concurrent Radiation for Newly Diagnosed Glioblastoma Without MGMT Methylation: A Randomized Phase II Study: BrUOG 244. Am J Clin Oncol. 2018; 41:159-162.

14. Nabors LB, Portnow J, Ahluwalia M, et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020; 18:1537-1570.

15. Wick W, Platten M, Meisner C, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012; 13:707-715.

16. Malmstrom A, Gronberg BH, Marosi C, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012; 13:916-926.

17. Rivera AL, Pelloksi CE, Gilbert MR, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010; 12:116-121.

18. Medbery CA, 3rd, Straus KL, Steinberg SM, et al. Low-grade astrocytomas: treatment results and prognostic variables. Int J Radiat Oncol Biol Phys. 1988; 15:837-841.

19. Shaw EG, Daumas-Duport C, Scheithauer BW, et al. Radiation therapy in the management of low-grade supratentorial astrocytomas. J Neurosurg. 1989; 70:853-861.

20. Whitten AC, Bloom HJ. Low grade glioma of the cerebral hemispheres in adults: a retrospective analysis of 88 cases. Int J Radiat Oncol Biol Phys. 1990; 18:783-786.

21. Breen WG, Anderson SK, Carrero XW, et al. Final report from Intergroup NCCTG 86-72-51 (Alliance): a phase III randomized clinical trial of high-dose versus low-dose radiation for adult low-grade glioma. Neuro Oncol. 2020; 22:830-837.

22. Karim AB, Maat B, Hatlevoll R, et al. A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys. 1996; 36:549-556.

23. Paulsson AK, McMullen KP, Peiffer AM, et al. Limited margins using modern radiotherapy techniques does not increase marginal failure rate of glioblastoma. Am J Clin Oncol. 2014; 37:177-181.
Figures

Fig. 1

RT dose effects on MGMT status defined subtypes. Patients with MGMT-non-pM (A and B) could benefit from high-dose radiotherapy (> 54 Gy); Patients with MGMT-pM did not benefit from high-dose RT (C and D).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryFigure1.jpg
- SupplementaryFigure2.tif
- SupplementaryFigure3.tif
- SupplementaryTable1.docx