Which Kubo formula gives the exact conductance of a mesoscopic disordered system?

Branislav K. Nikolić
Department of Physics, Georgetown University, Washington, DC 20057-0995

In both research and textbook literature one often finds two “different” Kubo formulas for the zero-temperature conductance of a non-interacting Fermi system. They contain a trace of the product of velocity operators and single-particle (retarded and advanced) Green operators: $\text{Tr}(\hat{v}_x G^r \hat{G}^a)$ or $\text{Tr}(\hat{v}_x \text{Im} \hat{G} \hat{v}_x \text{Im} \hat{G})$. The study investigates the relationship between these expressions, as well as the requirements of current conservation, through exact evaluation of such quantum-mechanical traces for a nanoscale (containing 1000 atoms) mesoscopic disordered conductor. The traces are computed in the semiclassical regime (where disorder is weak) and, more importantly, in the nonperturbative transport regime (including the region around localization-delocalization transition) where concept of mean free path ceases to exist. Since quantum interference effects for such strong disorder are not amenable to diagrammatic or nonlinear $\sigma$-model techniques, the evolution of different Green function terms with disorder strength provides novel insight into the development of an Anderson localized phase.

PACS numbers: 72.10.Bg, 73.23.-b, 72.15.Rn, 05.60.Gg

At first sight, the title of this paper might sound perplexing. What else can be said about Kubo formula after almost a half of a (last) century of explorations in practice, as well as through numerous re-derivations in both research and textbook literature? Kubo linear response theory (KLRT) represents the first full quantum-mechanical transport formalism. It connects irreversible processes in nonequilibrium to the thermal fluctuations in equilibrium [fluctuation-dissipation theorem (FDT)]. Therefore, the study of transport is limited to the nonequilibrium states close to equilibrium. Nevertheless, the computation of linear kinetic coefficients is greatly facilitated since final expressions deal with equilibrium expectation values of relevant physical quantities (which are much simpler than the corresponding nonequilibrium ones). It originated from the Einstein relation for the diffusion constant and mobility of a particle performing a random walk.

Until the scaling theory of localization, and ensuing computation of the lowest order quantum correction, weak localization (WL), to the Drude conductivity, it almost appeared that microscopic and complicated Kubo formulation of quantum transport merely served to justify the intuitive Bloch-Boltzmann semiclassical approach to transport in weakly disordered ($k_F l \gg 1$, $k_F$ is the Fermi wave vector and $l$ is the mean free path) conductors. Furthermore, the advent of mesoscopic physics has led to reexamination of major transport ideas—in particular, we learned how to apply properly KLRT to finite-size systems. Thus, the equivalence was established between the rigorous Kubo formalism and heuristically founded Landauer-Büttiker, scattering approach to linear response transport of non-interacting quasiparticles. This has emerged as an important tool in for studying mesoscopic transport phenomena, where system size and interfaces through which electron can enter or leave the conductor play an essential role in determining the conductance.

This study presents an exact evaluation of two different Kubo-type expressions for the linear conductance of a mesoscopic disordered conductor. Both expressions are frequently encountered in research as well as textbook literature, and are displayed below. They consist of a trace (or linear combination of such traces) over the product of velocity operators $\hat{v}_x$ with retarded and advanced single-particle Green operators $\hat{G}^r,a = [E - \hat{H} \pm i0^+]^{-1}$, like $\text{Tr}(\hat{v}_x \hat{G}^r,a \hat{v}_x \hat{G}^r,a)$, where $\hat{H}$ is an equilibrium Hamiltonian (in the spirit of FDT, it contains random and confining potentials, but not the external electric field), and velocity operator is defined by $i\hbar \hat{v} = [\hat{r}, \hat{H}]$. These quantum-mechanical traces are computed here, Figs. 1 and 2, in the site representation (i.e., using real-space Green functions) defined by a lattice model, such as tight-binding Hamiltonian

\begin{equation}
\hat{H} = \sum_m \varepsilon_m |m\rangle \langle m| + \sum_{\langle m,n \rangle} t_{mn} |m\rangle \langle n|.
\end{equation}

on a hypercubic lattice $N^d$ of size $L = Na$ ($a$ being the lattice constant). Here $t_{mn}$ is the nearest-neighbor hopping integral between $s$-orbitals $|\mathbf{r} m\rangle = \psi(\mathbf{r} - \mathbf{m})$ on adjacent atoms located at sites $m$ of the lattice ($t_{mn} = 1$ inside the sample defines the unit of energy). The disorder is simulated by taking random on-site potential such that $\varepsilon_m$ is uniformly distributed over the interval $[-W/2, W/2]$, which is the so-called Anderson model of localization. I emphasize the requirements of current conservation throughout this analysis, which will allow us to understand the features of different trace expressions introduced above.

The mesoscopic methods (mesoscopic Kubo or, equivalent, Landauer formula) make it possible to get the exact zero-temperature (i.e., quantum) conductance of a finite-size sample attached to semi-infinite disorder-free leads. Although KLRT is a standard formalism for introducing the many-body physics into the computation
FIG. 1. Different terms in the Kubo formula for the two-probe quantum conductance of a single finite-size sample modeled on a simple cubic lattice by an Anderson model with disorder strength $W = 2$ [upper panel—single sample in the semiclassical transport regime] or $W = 7$ [lower panel—disorder-averaged over 50 samples in the nonperturbative transport regime $k_F \ell \lesssim 1$]. The full Kubo conductance ($\text{thick solid line}$) is given by the sum of terms defined in Eq. (6) [$\text{thin solid line}$] and Eq. (7) [$\text{dashed line}$], $G = G_{\text{ra}} + G_{\text{rr}}$. The respective traces in these expressions are performed only over the states residing on the first two planes inside the sample. The dotted line in the upper panel represents $G_{\text{lead}}$ obtained by tracing over the two planes deep inside the left lead (at the distance $10a$ away from the sample).

of transport coefficients here the focus is on the transport properties determined by scattering of non-interacting (quasi)electrons on impurities. The “old” Kubo formula for the macroscopic volume-averaged longitudinal DC conductivity at zero temperature ($E \equiv E_F$ in all formulas below, $E_F$ being the Fermi energy) of a non-interacting Fermi gas described by a single-particle Hamiltonian $\hat{H}$ is given by

$$\sigma_{xx} = \frac{2\pi e^2 h}{\Omega} \text{Tr} \left[ \hat{v}_x \delta(E - \hat{H}) \hat{v}_x \delta(E - \hat{H}) \right],$$

(2)

where factor of two accounts for the spin degeneracy. The Kubo conductivity relates the spatially averaged current

$$j = \int dr j(r)/\Omega$$

to the spatially-averaged electric field $j = \sigma E$, where thermodynamic limit $\Omega = L^d \to \infty$ (while keeping the impurity concentration finite) is implied to get the unambiguous intensive quantity (and well-defined steady state). For electrons in a random potential further averaging should be performed over the disorder to get $\sigma$ as a material constant. On the other hand, quantum corrections to the conductivity are non-local on the scale of the dephasing length $L_\phi \gg \ell$. This invalidates the concept of local quantities, like conductivity, in mesoscopic samples, which are smaller than $L_\phi$ and thereby effectively at $T = 0$. Therefore, mesoscopic transport has to be described in terms of sample-specific quantities, like conductance, which describe a given sample measured in a given manner (i.e., more generally, conductance coefficients $I_p = \sum_q g_{pq} V_q$ in the Ohm’s law for a multi-probe geometry, where several leads are attached to the sample to feed the current $I_p$ or measure the voltages $V_q$), or alternatively, non-local conductivity tensor introduced below. Switching to conductance leads to a following Kubo expression.
\[
G = \frac{4e^2}{h} \frac{1}{L^2} \text{Tr} \left[ \hat{h} \hat{v}_x \text{Im} \hat{G} \hat{h} \hat{v}_x \text{Im} \hat{G} \right], 
\]
\[
\text{Im} \hat{G} = \frac{1}{2i} (\hat{G}^r - \hat{G}^a) = -\pi \delta(E - \tilde{H}).
\]

Here the definition of retarded (r) or advanced (a) single-particle Green operator \(\hat{G}^{r,a} = [E - \tilde{H} \pm i0^+]^{-1}\) requires a numerical trick to handle the small imaginary part \(i0^+\), which then spoils the prospect of obtaining the exact zero-temperature conductance. Once the semi-infinite clean leads are attached to the finite sample (at planes 1 and N along x-axis for a two-probe geometry, Fig. 3, the “self-energy” \(\Sigma^{r,a} = \Sigma_{L}^{r,a} + \Sigma_{R}^{r,a}\), arising from the “interaction” with the leads (L-left, R-right), provides a well-defined imaginary part in the definition of the Green operators:

\[
\hat{G}^{r,a} = [E - \tilde{H} - \Sigma^{r,a}]^{-1}.
\]

The Green function \(\hat{G}^{r,a} (\mathbf{n}, \mathbf{m}) = \langle \mathbf{n} | \hat{G}^{r,a} | \mathbf{m} \rangle\) describes the propagation of electron between two sites inside an open conductor \((L_o = L)\) in the two-probe geometry. The self-energy terms are given by \(\Sigma_{L,R}^{r,a}(\mathbf{n}, \mathbf{m}) = (t_{L,R}^2/2\epsilon_{L,R})(\mathbf{n}_S, \mathbf{m}_S)\) with \(\tilde{g}_{L,R}(\mathbf{n}_S, \mathbf{m}_S)\) being the surface Green function of the bare semi-infinite lead between the sites \(\mathbf{n}_S\) and \(\mathbf{m}_S\) located on the end atomic layer of the lead (and adjacent to the corresponding sites \(\mathbf{n}\) and \(\mathbf{m}\) inside the conductor). It has an imaginary part only for \(|E| \leq 6t_{L}\), which means that \(G(E_F)\) goes to zero at band edge of a clean lead \(|E_F| = 6t_L\) because there are no states in the leads beyond this energy which can carry the current. Here the leads will be described by the TBH with \(\epsilon_m = 0\) and \(t_{mn} = t_L\); the hopping between the sites in the lead and the sample is \(t_{mn} = t_C\), as illustrated in Fig. 3.

I use the term “mesoscopic Kubo formula” for Eq. (3) with the Green operators plugged in. This formula is exactly equivalent to a two-probe Landauer formula \([\text{25}]\) for the conductance measured between two points deep inside macroscopic reservoirs to which the leads are attached at infinity. Thus, it is conceptually different from the “plain” Kubo formula \([\text{25}]\) which follows from combining the conductance of smaller parts \(G = \sigma L^{d-1}/L\), thereby implying local description of transport which becomes applicable only at sufficiently high temperatures. Such mesoscopic formulas provide means to compute the quantum conductance—a sample specific quantity which takes into account the finite system size, measuring geometry, arrangement of impurities, non-local features of quantum transport, and can describe ballistic transport (where local relation \(j = \sigma E\) does not hold). Attempts to use the original Kubo formulas on finite samples, throughout premesoscopic history \([\text{25}]\) of the Anderson localization theory, were thwarted with ambiguities, which can be traced back to the general questions on the origin of dissipation \([\text{25}]\). This stems from the fact that stationary regime cannot be reached unless the system is infinite or coupled to a thermostat. From the practical point of view, leads make the system infinite by opening the sample, and therefore eliminating the technical obstacles in handling of the discrete spectrum of finite samples \([\text{25}]\). Furthermore, the usage of semi-infinite leads allows us to bypass explicit modeling of reservoirs in the computation of conductance since “hot” electrons which escape into the leads (due to the broadening of energy levels) do not come back in a phase-coherent fashion. The concept of reservoirs was always essential part of Landauer’s subtle arguments \([\text{25}]\). They provide dissipation and therefore the steady state. However, the computation of conductance, as a measure the dissipation, involves only a conservative Hamiltonian of noninteracting electrons scattered on impurities (i.e., when computing linear conductance of a mesoscopic system one usually does not deal explicitly with electron-electron and electron-phonon interactions \([\text{25}]\).

The conductance computed from the mesoscopic quantum expression is exact, but characterizes the whole sample + leads system in the spirit of quantum measurement theory since leads can also be considered as the “macroscopic measuring apparatus” \([\text{25}]\). However, for disordered enough sample (and not too narrow leads or too small \(t_C\)) the conductance is determined mostly by the disordered region itself \([\text{25}]\). This exactness makes it possible to compute the transport properties in both semiclassical regime (where Boltzmann theory and perturbative quantum corrections are applicable since \(k_F \ell \gg 1\)), as well as in the nonperturbative transport regime, where semiclassical concepts, like \(\ell\), lose their meaning. Although the distinction between \(k_F \ell \sim 1\) (where semiclassical theory, including the perturbative quantum
corrections, breaks down) and the criterion \( G \sim 2e^2/h \) for the localization-delocalization (LD) critical point has been known since the scaling theory of localization \[ [\text{it is not uncommon practice to find these two different boundaries of transport regimes confused. As the disorder is increased, a sample goes from the semiclassical transport regime, through a vast region between } k_F\ell \sim 1 \text{ and } \text{LD transition} \] \[ \text{(e.g., } 6 \lesssim W \lesssim 16.5 \text{ at } E_F = 0 \text{ in the Anderson model} \) \[ \text{), and finally enters into a localized phase. Since the nonperturbative transport regime lacks small parameter required by present analytical schemes, the numerical techniques employed here are the only way to gain insight into the quantum effects beyond the lowest order corrections, like WL, or resummation of all such perturbative quantum correction within the nonlinear } \sigma \text{-model formalism} \[ \text{.} \]

Another expression is often encountered in the literature \[ \text{for both conductance of finite-size systems and conductivity of infinite systems. It gives the conductance through an apparently different trace, } G \propto \text{Tr} \left[ \hat{h}\hat{\nu}_z \hat{G}^r \hat{h}\hat{\nu}_z \hat{G}^a \right]. \] \[ \text{While some textbooks quote this only as a convenient approximation to the disorder-averaged full formula, sometimes the claim goes further to say that such trace is equivalent to the Landauer formula, and moreover it can be evaluated at any cross section inside the disordered region, thus relaxing the requirement of perfect leads “as the weakest point of the Landauer formalism”} \[ \text{Namely, } \hat{G}^r \hat{G}^a \text{ or } \hat{G}^a \hat{G}^a \text{ terms can be reduced to a single Green function via a Ward identity in weakly disordered conductors} \] \[ \text{and are therefore related to the density of states. They are “abandoned” in the limit } k_F\ell \gg 1 \text{ since they do not generate interesting contributions to WL or mesoscopic fluctuations} \[ \text{. In fact, both the diffusion modes of the Diffuson-Cooperon diagrammatic perturbation theory and different versions of the nonlinear } \sigma \text{-model (NLSM) are derived by considering only the term containing the product } \hat{G}^r \hat{G}^a \text{. The NLSM is a quantum field theory of weakly disordered mesoscopic conductors where diffusion modes of the diagrammatic perturbation theory play the role of soft modes responsible for long-range spatial correlations of local density of states, mesoscopic fluctuations of global quantities, and nonlocal corrections to conductivity} \[ \text{. It makes it possible to handle the breakdown of perturbation theory due to the proliferation of such modes by summarizing all WL-type corrections to conductivity} \] \[ \text{. This then justifies the phenomenological one-parameter scaling theory} \] \[ \text{(if not rigorously, then at least qualitatively), and explains the LD transition in } 2 + \epsilon \text{ dimensions where Anderson localization occurs at weak disorder } k_F\ell \gg 1. \]

To remove possible confusion \[ \text{it should be emphasized that conductance coefficients } g_{pq} \text{, obtained by integrating Kubo non-local conductivity tensor } \sigma(r, r') \text{ over the cross sections in the leads } p, q \]

\[ g_{pq} = - \int_{S_p} dS_p \cdot \sigma(r, r') \cdot dS_q, \]

also contain \( \text{Im} \hat{G} \) for \( p = q \), while for \( p \neq q \) only the terms involving \( \hat{G}^r \hat{G}^a \) are non-zero. The cross sections \( S_p \text{ and } S_q \) are to be chosen far enough from the sample, where all evanescent modes have died out. This not only provides the rigorous foundation for the Landauer formalism, but also clarifies some subtle points in the Kubo formalism (like disorder averaging and independence of linear transport properties from the nonequilibrium charge redistribution) \[ \text{). By writing the full Kubo formula} \]

\[ G_{ra} = \frac{2e^2}{h} \left( \frac{1}{L^2} \right) \text{Tr} \left[ \hat{h}\hat{\nu}_z \hat{G}^r \hat{h}\hat{\nu}_z \hat{G}^a \right], \]

\[ G_{rr} = \frac{2e^2}{h} \left( \frac{1}{L^2} \right) \text{Tr} \left[ \hat{h}\hat{\nu}_z \hat{G}^r \hat{h}\hat{\nu}_z \hat{G}^r \right]. \]

Obviously, if in some transport regime conductance can be obtained from the trace in \( G_{ra} \), the other term \( G_{rr} \) has to vanish, at least approximately.

Before embarking on the direct evaluation of these expressions for a conductor described by TBH \[ \text{, the crucial point is to understand the way (i.e., space of states } |m\rangle \text{) in which the traces should be performed, } \text{Tr}(|\ldots\rangle \langle\ldots|) = \sum_m \langle m|\ldots\rangle\langle\ldots|m \rangle. \] \[ \text{Naïvely, in the site representation it would appear that trace in formula} \]

\[ \text{should include site states inside the whole sample. However, once the current conservation } \nabla \cdot \mathbf{j}(r) = 0 \text{ is invoked this becomes extraneous. All Kubo conductivity or conductance formulas stem from the more fundamental quantity in KLRT, the non-local conductivity tensor relating local current density to the local electric field,} \]

\[ \mathbf{j}(r) = \int_{\Omega} d\mathbf{r}' \hat{\sigma}(r, r') \cdot \mathbf{E}(r'). \]

This tensor is obtained as a response to an external field only since corrections to the current due to the field \[ \text{induced charges go beyond the linear transport regime (i.e., one does not have to engage in a much more cumbersome task of finding the response to a full electric field inside the conductor)} \[ \text{. In application of KLRT to mesoscopic systems, } \hat{\sigma}(r, r') \text{ is a sample-specific quantity, i.e., defined for each impurity configuration and arrangement of the leads, and is in fact non-local even after disorder averaging} \] \[ \text{. Because it is not directly measurable, some volume averaging is needed to get the quantities that can be related to experiments} \]

\[ G = \frac{1}{V^2} \int_{\Omega} d\mathbf{r} d\mathbf{r}' \mathbf{E}(r) \cdot \hat{\sigma}(r, r') \cdot \mathbf{E}(r'). \]
macroscopic reservoirs characterized by a constant chemical potentials \( \mu_L \) and \( \mu_R \) (Fig. 3). Although this expression contains the local electric field \( \mathbf{E}(r) = \nabla \mu(r)/e \) inside the conductor, because of current conservation entailing \( \nabla \cdot \mathbf{E}(r, r') = \mathbf{E}(r, r') \cdot \nabla' = 0 \) (which is a special case, in the absence of magnetic field, of a more general theorem),\(^{44}\) the conductance will not depend on this field factor.\(^{46}\) In the case of TBH (3) with nearest-neighbor hopping the expectation value of the velocity operator in the site representation \( \langle m| \mathbf{v}_x | n \rangle = (i/\hbar) t_{mn} (m_x - n_x) \) is non-zero only between the states residing on adjacent planes (technical details of a route from Eq. (9) to the trace involving velocity operator are meticulously cov-

ered in Ref. 2). Thus, the minimal space choice here is defined by taking \( \mathbf{E}(r) \) to be non-zero on two adjacent planes, while the standard textbook assumption of a homoge-
nous field \( \mathbf{E} = V/L \) throughout the sample leads to Eqs. (6), (7). Blind tracing over the whole sample would give simply the conductance multiplied by the square of the number of pairs of adjacent planes, meaning that such trace should be divided by \( (N - 1) \) \( e^2/\hbar \) to get \( G \) when trace is performed only over the arbitrary two adjacent planes, \( L^2 \) in Eq. (3) is replaced by \( a^2 \).

The physical content of this statement is simple: current \( I = GV \) is the same on each cross section. Therefore, the conductance depends only on the total voltage drop over the sample, and not on the local current density and electric-field distributions.

At this point, it is worth mentioning that another expression is frequently employed in the real-space computational practice. It stems from the linear response limit of a formula derived by the Keldysh technique (for non-interacting\(^{45}\) or interacting systems\(^{46}\))

\[
G = \frac{4e^2}{\pi \hbar} \text{Tr} \left( \text{Im} \, \Sigma_L \, G_{1N}^r \, \text{Im} \, \Sigma_R \, G_{N1}^a \right).
\] (10)

Here \( \hat{G}_{1N}^r \), \( \hat{G}_{N1}^a \) are the submatrices of the full Green function \( \hat{G}_{\mathbf{r}, a}(\mathbf{m}, \mathbf{n}) \) whose elements connect the layer 1 to layer \( N \) of the sample. Therefore, only a block \( N^2 \times N^2 \) of the whole \( N^3 \times N^3 \) matrix \( \hat{G}(\mathbf{m}, \mathbf{n}) \) is needed to compute the conductance. Although such “partial” knowledge of the whole Green function and the trace over matrices of size \( N^2 \) in Eq. (10) are different from the corresponding counterparts required in application of the mesoscopic Kubo formula (where minimal trace goes over \( 2N^2 \times 2N^2 \) matrices), the final result for the conductance is the same. Positive definiteness of the operators \(-2 \text{Im} \, \Sigma_L, R \) makes it possible to find their square root and recast the expression under the trace of Eq. (11), as a Hermitian operator. The expression (11) then looks like the two-probe Landauer formula involving a transmission matrix \( t \)

\[
G = \frac{e^2}{\pi \hbar} \text{Tr} (tt^\dagger) = \frac{e^2}{\pi \hbar} \sum_{n=1}^{N^2} T_n, \quad (11)
\]

or transmission eigenvalues \( T_n \) when the trace is evaluated in a basis which diagonalizes \( tt^\dagger \). Moreover, it is more efficient from a practical point of view since Green function techniques used to evaluate Eq. (11) do not require to know exact asymptotic eigenstates in the leads (as is the case with “original” Landauer formulation relying on the knowledge of the scattering basis of wave functions defined within the asymptotic regions of the leads). This becomes \textit{sine qua non} when computing the
conductance of systems with complicated “leads”, e.g., like in the case of atomic-size point contacts.\footnote{1}

The trace expressions like $\langle r \rangle$ and $\langle r \rangle$ do not conserve the current. Therefore, the suggested strategy is to evaluate $G_{rr}$ and $G_{ra}$ by tracing over the states located on two planes inside the sample (or inside the leads), as well as over the whole sample (and see how close $G_{rr}$ can get to $G$). Different types of conductors are chosen for this evaluation: weakly disordered with $W = 2$ (for which unwarranted use of the Drude-Boltzmann formulation would give $\langle r \rangle \sim 9a$ at $E_F = 0$), and strongly disordered conductors with $W = 7$ (for which required approximation known as the Drude-Boltzmann formula would give $\langle r \rangle < a$). The exact computation of these traces is shown in the upper panels of Figs. 1 and 2 for a single impurity configuration of $W = 2$ (here $G_{rr}$ is also computed by tracing over two planes deep inside the leads, which corresponds to integrating $\sigma(r, r')$ over such cross section, as discussed above). The lower panels of Figs. 1 and 2 plot disorder-averaged quantities over an ensemble of impurity configurations for disorder strength $W = 7$. In both ways of tracing, the sum of two terms $G_{rr}$ and $G_{ra}$ gives the full expression for conductance $G(E_F)$, which have to cancel each other for $|E_F| > 6t$ in order to ensure vanishing of $G(E_F)$ when $t_L = t$ is chosen.

The result for $W = 7$ disorder belongs to the non-perturbative transport regime. It is interesting, therefore, to follow the behavior of $G_{rr}$ and $G_{ra}$ further throughout this regime, eventually reaching $W_c \approx 16.5$ where the whole band becomes localized.\footnote{4} The generic LD transition point in three-dimensions (3D) is beyond NLSM treatment inasmuch as it corresponds to a strong coupling limit in the field theoretical language. Furthermore, recent descriptions\footnote{3} of Anderson localization in terms of an order parameter, obtained from a theory based on local approximation, suggest that probing the instability of the delocalized phase through WL-type corrections might be a daunting road to reach the LD transition in 3D. Figure 4 shows that around $W_c$ the conductance $G \sim 2e^2/h$ is mostly defined by the $G_{rr}$ term—a situation completely opposite to the weak disorder finding ($W = 2$ in Figs. 1 and 2). Therefore, at some intermediate disorder $7 < W < 10$, within the non-perturbative transport regime, a transition occurs from $G_{rr} > G_{ra}$ to $G_{ra} > G_{rr}$, ending up eventually with a case $G_{rr} < 0 < G_{ra}$ around the LD critical point.

An inquisitive reader might come up by now with the question as to what happens in the clean case. A mesoscopic ballistic sample attached to two leads has non-zero point contact conductance\footnote{4} of a purely geometrical origin since leads are widening into macroscopic reservoirs at infinity, where reflection occurs when the large number of conducting channels in the macroscopic reservoir matches the small number of channels in the lead.\footnote{4} Such point contact conductance is quantized\footnote{4} as a function of sample width or Fermi energy, which becomes conspicuous when the number of quantized transverse propagating modes (i.e., the sample cross section) is small enough. A clean ($\epsilon_m = 0$) toy sample $3 \times 3 \times 3$ illu-

What can be learned from these numbers is that $G_{rr}$\footnote{4} can serve as a decent approximation to the exact Kubo formula for the quantum conductance $G$ only in very weakly disordered conductors. However, because of not conserving the current, the trace in $G_{rr}$ has to be performed over the whole disordered region (which is an enormous computational effort, and is therefore useless in the real-space computational practice). The essential outcome of this exercise is the explicit quantification of the difference between $G$ and $G_{ra}$. This, together with current conservations, are important points to bear in mind when using simplified expression $G_{rr}$ in analytical derivations and arguments of the quantum transport theory.\footnote{4}

Finally, the strong disorder (nonperturbative) behavior of two different Green function terms, comprising the Kubo formula for quantum conductance, might provide a clue for the inadequacy of attempts to analyze genuine Anderson transition in 3D by probing instability of metallic phase to weak localization (perturbative) corrections.

I am grateful to P. B. Allen for initiating my interest into intricacies of the Kubo formalism, and to I. L. Aleiner, S. Datta, J. K. Freericks, A. Maassen van den Brink, and J. A. Vergés for valuable discussions. Special thanks goes to three unknown Physical Review referees for their interest into improving the manuscript. Financial support from ONR grant N00014-99-1-0328 is acknowledged.

References:

1. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); D.A. Greenwood, Proc. Phys. Soc. London 71, 585 (1958).
2. H. Baranger and A.D. Stone, Phys. Rev. B 40, 8169 (1989).
3. J. Rammer, Quantum Transport Theory (Perseus Books, Reading, 1998).
4. G.D. Mahan, Many-Particle Physics (3rd ed., Kluwer, Boston, 2000).
5. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin-Heidelberg, 1996).
6. R. Kubo, Science 233, 330 (1986).
7. E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979).
8. V.I. Yudson, E. Kanzieper, V.E. Kravtsov, Phys. Rev. B 12, 570 (1957); D.A. Greenwood, Proc. Phys. Soc. London 71, 585 (1958).
9. Mesoscopic Quantum Physics, edited by E. Akkermans, J.-L. Pichard, and J. Zinn-Justin, Les Houches, Session LXI, 1994 (North-Holland, Amsterdam, 1995).
10. R. Landauer, Phil. Mag. 21, 863 (1970); M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
Note that derivation of Landauer or Kubo formulas proceeds from the conceptually different grounds: Landauer conductance measures a response to the difference in chemical potentials between two different reservoirs, while Kubo conductance gives linear DC current as a response to perturbing the Hamiltonian by a constant electric field. For a physical situations when this distinction becomes important see Ref. 11.

23 R. Landauer, Z. Phys. B 68, 217 (1987).
24 Here we are interested in the mesoscopic (i.e., finite-size phase-coherent) samples which are open to an infinitely conducting surrounding environment. For linear response approach to dissipation in closed mesoscopic systems see: Y. Noat, B. Reulet, H. Bouchiat, and D. Mailly, Superlattices Microstruct. 23, 621 (1998); A. Barnet, D. Cohen, and E.J. Heller, J. Phys. A 34, 413 (2001); and Ref. 11.
25 K.B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge, 1997).
26 H.A. Weidenmüller, Physica A 167, 28 (1990).
27 For an alternative viewpoint on the role of leads in the Kubo formalism see: X.-G. Zhang and W.H. Butler, Phys. Rev. B 55, 10 308 (1997).
28 D. Braun, E. Hofstetter, A. MacKinnon, and G. Montambaux, Phys. Rev. B 55, 7557 (1997).
29 B.K. Nikolić and P.B. Allen, Phys. Rev. B 63, R020201 (2001).
30 F. Wegner, Z. Phys. B 35, 207 (1979).
31 B.L. Altschuler, V.E. Kravtsov, and I.V. Lerner, in Mesoscopic phenomena in solids, edited by B.L. Altschuler, P.A. Lee, and R.A. Webb (North-Holland, Amsterdam, 1991).
32 Yu.V. Nazarov, Phys. Rev. Lett. 73, 134 (1994).
33 A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, New Jersey, 1963).
34 B.D. Simons and A. Altland, in Theoretical Physics at the End of the XXth Century: Lecture Notes of the CRM Summer School, Banff, Alberta, edited by Y. Saint-Aubin and L. Vinet (Springer-Verlag, Berlin, 2001).