Entanglement of a 3D generalization of the Kitaev model on the diamond lattice

Ian Mondragon-Shem and Taylor L Hughes

Department of Physics, University of Illinois, Urbana-Champaign, 1110 West Green St, Urbana, IL 61801, USA
E-mail: mondrag2@illinois.edu

Received 28 June 2014
Accepted for publication 2 September 2014
Published 15 October 2014

Abstract. We study the entanglement properties of a 3D generalization of the Kitaev honeycomb model proposed by Ryu (2009 Phys. Rev. B 79 075124). The entanglement entropy in this model separates into a contribution from a Z_2 gauge field and that of a system of hopping Majorana fermions, similar to what occurs in the Kitaev model. This separation enables the systematic study of the entanglement of this 3D interacting bosonic model by using the tools of non-interacting fermions. In this way, we find that the topological entanglement entropy comes exclusively from the Z_2 gauge field and that it is the same for all of the phases of the system. There are differences, however, in the entanglement spectrum of the Majorana fermions that distinguish between the topologically distinct phases of the model. We further point out that the effect of introducing vortex lines in the Z_2 gauge field will only change the entanglement contribution of the Majorana fermions. We evaluate this contribution to the entanglement which arises due to gapless Majorana modes that are trapped by the vortex lines.

Keywords: quantum phase transitions (theory), entanglement in extended quantum systems (theory)
1. Introduction

Over the past decade, the characterization and classification of topological insulator and superconductor (symmetry protected) phases of matter has played a central role in condensed matter research [1, 2]. These phases cannot be adiabatically connected with a trivial atomic limit, they typically exhibit gapless excitations at the sample boundary. Furthermore, there are topologically ordered phases with long-range entanglement that go beyond the symmetry-breaking classification of states of matter. Topologically ordered states are a particular type of topological phase that arises in two or more dimensions and is characterized by a topology-dependent ground state degeneracy and long-range entanglement [3, 4].

The Kitaev honeycomb lattice model is a paradigm model for the study of topologically ordered states [5]. Its discovery was an important milestone because it is one of the first models that could be solved exactly which exhibits topological order and phase transitions...
between states with abelian and non-abelian excitations. Various extensions have been devised in two and three dimensions [6–9]. In the 3D case, long-range entanglement does not necessarily imply a topologically ordered state, although there can be contributions to long-range entanglement that are of topological origin [10] and point-like excitations always obey bosonic or fermionic statistics. In spite of this, there is nevertheless an interest in understanding generalizations of the Kitaev model to three dimensions because their study can lead to insights into the topological nature of certain interacting bosonic systems.

One fundamental way to characterize topological phases of matter is with spatial entanglement. Entanglement is an important tool used in condensed matter research to study properties of the phases of a system and the phase transitions that separate such phases [11–16]. In particular, it has provided numerous insights related with both non-interacting topological insulators and superconductors [17–21] as well as interacting topological phases [22–26]. Recently, it was shown by Yao and Qi [27] that the entanglement of the 2D Kitaev model can be understood as arising from two contributions: one describing an emergent static \mathbb{Z}_2 gauge field and the second from non-interacting Majorana fermions hopping on a lattice. This insight revealed the origin of the topological entanglement entropy of the Kitaev model and clarified the difference between its abelian and non-abelian phases in terms of its entanglement properties.

In this work we explore the extension of these results to three dimensions. We show that the same property of the entanglement found in the Kitaev model holds for a 3D generalization proposed by Ryu [8]. We explore the entanglement properties of this model in terms of signatures identifying the various phases of the system. We point out that introducing vortex defects in the \mathbb{Z}_2 gauge field does not affect the factorization property of the density matrix, so that the entanglement contribution arising from these defects is determined by gapless Majorana degrees of freedom that are trapped by vortex configurations in the \mathbb{Z}_2 gauge field. We show examples of the effect of such vortex lines on the entanglement of the system.

2. Entanglement properties of the Kitaev model

2.1. Kitaev’s honeycomb model

As a warm-up, we review the 2D Kitaev model and its entanglement properties in this section. Consider a honeycomb lattice with a spin-$1/2$ degree of freedom represented by Pauli matrices σ^a ($a = 1, 2, 3$) at each lattice site. Because of the geometry of the honeycomb lattice, each site has three nearest-neighbors. We label the three possible vectors connecting a lattice site to its nearest-neighbors as x, y, and z-links. The Kitaev model is obtained by assigning anisotropic exchange couplings between nearest neighboring spins according to the type of link that connects them

$$H = -\sum_{x\text{-link}} J_x \sigma^x_i \sigma^x_j - \sum_{y\text{-link}} J_y \sigma^y_i \sigma^y_j - \sum_{z\text{-link}} J_z \sigma^z_i \sigma^z_j.$$ \hfill (1)

This particular form of exchange interaction makes this model exactly soluble. In particular, its eigenstates can be obtained explicitly by writing the spin degrees of
freedom in terms of Majorana fermion operators. This is the method we will follow in this work, although one can also obtain the eigenstates through a Jordan-Wigner type transformation [28].

The main idea is to describe the 2D Hilbert space of a spin-1/2 degree of freedom using a set of four Majorana fermions \(\{ b_i^x, b_i^y, b_i^z, c_i \} \) which are defined in an enlarged 4D Hilbert space. These Majorana operators satisfy \(\{ b_i^\alpha, b_j^\beta \} = 2\delta_{ij}\delta_{\alpha\beta}, \) \(c_i^2 = 1 \) and \(b_i^\alpha c_j = -c_j b_i^\alpha. \) If one defines \(\tilde{\sigma}_i^\alpha = ib_i^\alpha c_i, \) then this operator is a consistent representation of \(\sigma_i^\alpha \) if we impose a constraint that restricts \(\tilde{\sigma}_i^\alpha \) to a 2D Hilbert space. This constraint is found by noting that the \(\tilde{\sigma}_i^\alpha \) operators commute with the product \(D_i = b_i^x b_i^y b_i^z c_i. \) Since \(D_i^2 = 1, \) we can impose the constraint \(D_i = 1 \) to restrict \(\tilde{\sigma}_i^\alpha \) to the desired 2D Hilbert space. One can check that \(\tilde{\sigma}_i^\alpha \) defined with this constraint satisfies the same algebra as the original spin operators. Hence, \(\tilde{\sigma}_i^\alpha \) consistently describes the original spin-1/2 degree of freedom.

In terms of these new operators, the Kitaev model takes the form

\[
\hat{H} = \frac{1}{2} \sum_{(j,k)} J_{\alpha jk} \hat{u}_{jk} c_j c_k, \tag{2}
\]

where \(\hat{u}_{jk} = ib_j^{\alpha_k} b_k^{\alpha_j}, \) are referred to as link operators, with \(\alpha_{jk} = x, y, z \) depending on whether the \(j \) and \(k \) indices form an \(x, y, \) or \(z \)-link. A consistent sign convention is to choose the \(j \) index to label a site in the \(A \) sublattice and correspondingly \(k \) in the \(B \) sublattice. The fundamental advantage that is gained from using the Majorana fermion language is made apparent by noting that the link operators satisfy

\[
[\hat{H}, \hat{u}_{jk}] = 0 \quad \text{and} \quad [\hat{u}_{jk}, \hat{u}_{lm}] = 0. \tag{3}
\]

We can thus diagonalize the Hamiltonian and the \(\hat{u}_{jk} \) operators simultaneously. An eigenstate of the Kitaev model can then be labeled by a fixed configuration of eigenvalues of the link operators. Since \(\hat{u}_{jk}^2 = 1, \) the link operators only have two eigenvalues \(\pm 1. \) Once a configuration of eigenvalues is chosen, what remains is a Hamiltonian of free Majorana fermions \(c_i \) hopping on a lattice, which can be solved straightforwardly. The effect of the link operators will be at most to change the signs of the hopping elements. This means the link operators effectively act like a static \(Z_2 \) gauge field that couples to the \(c_i \) Majorana fermions.

To obtain the ground state, we need to know what configuration of the \(Z_2 \) gauge field leads to the lowest overall energy. Lieb showed that this configuration corresponds to all \(u_{jk} = 1 [29]. \) Using this configuration and solving for the corresponding Majorana fermion ground state \(|\phi(u)\rangle, \) one can then calculate the physical state \(|\Psi\rangle \) by projecting into the sector in which \(D_i = 1 \) for all \(i. \) This amounts to averaging over all possible gauge transformations of the \(Z_2 \) gauge field:

\[
|\Psi\rangle = \frac{1}{\sqrt{2^{N+1}}} \sum_g D_g |u\rangle \otimes |\phi(u)\rangle. \tag{4}
\]

Here, \(N \) is the total number of sites, \(D_g = \prod_{i \in g} D_i \) with \(g \) being a subset of lattice sites, and the sum runs over all possible subsets of sites. Other energy eigenstates can be obtained by the same gauge averaging procedure with some initial configuration of \(Z_2 \) fluxes.
Since the ground state has constant phases on the links, the Hamiltonian in this sector is translationally invariant. A change of basis to momentum space leads to the following two-by-two single-particle Hamiltonian

$$h(k) = -\text{Re} \phi(k) \tau^y - \text{Im} \phi(k) \tau^x,$$

where τ^a ($a = 0, x, y, z$) are Pauli matrices that act on the sublattice index and $\phi(k) = J_x e^{i k \cdot a_1} + J_y e^{i k \cdot a_2} + J_z$ with $a_{1,2}$ the primitive vectors that generate the A hexagonal sublattice. The energy spectrum of this Hamiltonian is $\epsilon_{\pm}(k) = \pm |\phi(k)|$.

Due to the form of this spectrum, one can divide the space of parameters into two regions. Whenever the couplings satisfy the inequalities $|J_x| \leq |J_y| + |J_z|, |J_y| \leq |J_z| + |J_x|$, and $|J_z| \leq |J_x| + |J_y|$, the spectrum is gapless due to the time-reversal invariance of the Majorana fermion Hamiltonian. The spectrum in this parameter regime can thus be gapped out by the addition of three-spin interactions that break time-reversal symmetry. The resulting gapped ground state has quasiparticle excitations that obey non-abelian statistics, and so this phase is referred to as the non-abelian phase of the Kitaev model. By contrast, if the triangular inequalities of the J_α are not satisfied then the system is gapped without the need of any additional terms. In this case the excitations satisfy abelian statistics and so in this case the system realizes an abelian phase.

2.2. Entanglement of quantum states

Let us now briefly review how to quantify the entanglement of a state $|\Omega\rangle$. One starts by choosing a partition of the Hilbert space into two complementary subspaces, say A and B. The entanglement between these two parts of the Hilbert space can be quantified by the so-called von-Neumann entropy, defined as

$$S_A = -\text{Tr}_A (\rho_A \log \rho_A).$$

The reduced density matrix of region A is given by $\rho_A = \text{Tr}_B [\rho |\Omega\rangle \langle\Omega|]$, where Tr_B denotes the trace over the degrees of freedom in B. We will refer to the partitioning of the Hilbert space as an entanglement cut that is performed on the system. A generalization of the entanglement entropy that has also been useful in characterizing condensed matter systems, namely the Renyi entropy, is given by

$$S_A^{(n)} = \frac{1}{1-n} \log \text{Tr}_A [\rho_A^n].$$

We can recover the von Neumann entropy by taking the limit $S_A = \lim_{n \to 1} S_A^{(n)}$. This form of the entanglement entropy in terms of the quantity $\text{Tr}_A [\rho_A^n]$ will be useful for calculating the entanglement of the Kitaev model and its 3D generalization.

As we will discuss in the following sections, the entanglement spectrum of Kitaev-type models can be reduced to the computation of the entanglement of quadratic fermionic Hamiltonians. In such cases, the entanglement entropy is completely determined by the eigenvalues $\{\zeta_i\}$ of the correlation matrix $[C]_{ij} = \langle\Omega| c_i^\dagger c_j |\Omega\rangle$ [30,31], where the i, j indices are restricted to the A subspace. The entanglement entropy S_A in terms of this set of eigenvalues is then given by

$$S = \sum_i \left\{ -\zeta_i \ln \zeta_i - (1 - \zeta_i) \ln(1 - \zeta_i) \right\}.$$
The set \(\{ \zeta_i \} \) is called the single-particle entanglement spectrum and it corresponds to the eigenvalues of the correlation matrix. The entanglement entropy and additionally, all entanglement quantities of a free-fermion ground state \(| \Omega \rangle \) can thus be understood by analyzing the \(\zeta_i \). The \(\zeta \) lie between 0 and 1, and thus the closer the modes are to 1/2, the larger the entanglement of a subsystem. The distribution of the \(\zeta_i \) is what we will keep track of in the discussion that follows.

2.3. Entanglement in Kitaev’s honeycomb model

The phases of the Kitaev model were characterized in [27] using entanglement. In general, computing the entanglement of an interacting spin model can be challenging both analytically and numerically. However, because of the special structure of the Kitaev model, this task is dramatically simplified. The entanglement of an eigenstate \(| \psi \rangle \) of the Kitaev model can be obtained by separately calculating the entanglement of the \(Z_2 \) gauge field and the Majorana fermions. More specifically, Yao and Qi showed that the following relation holds

\[
\text{Tr}_A [\rho_A^n] = \text{Tr}_{A,G} [\rho_{A,G}^n] \cdot \text{Tr}_{A,F} [\rho_{A,F}^n],
\]

where \(\rho_A = \text{Tr}_B [| \psi \rangle \langle \psi |] \), the reduced density matrix \(\rho_{A,F} (\rho_{A,G}) \) describes the Majorana fermions (a pure \(Z_2 \) gauge field) in region \(A \) and the trace \(\text{Tr}_{A,F(G)} \) runs over the fermion (gauge) degrees of freedom in region \(A \). The factorization of \(\text{Tr}_A [\rho_A^n] \) is useful because, by taking the limit \(n \to 1 \), one finds that the entanglement entropy can be written as

\[
S_A = S_{A,G} + S_{A,F},
\]

where \(S_{A,F(G)} \) is the entanglement entropy of the fermions (gauge field).

Using this insight, Yao and Qi found that in both abelian and non-abelian phases the entanglement entropy of the Kitaev model can generically be written as

\[
S_A = (\alpha + \log 2) L - \log 2,
\]

where \(\alpha \) is a non-universal constant and \(L \) is the length of the boundary separating regions \(A \) and \(B \). The term proportional to \(L \) is the well-known area (perimeter in 2D) law for gapped states. The term that is independent of the boundary size is thus identified as the topological entanglement entropy. It is the same for all phases of the Kitaev model and it arises exclusively due to the presence of the \(Z_2 \) gauge field.

It was further argued that, although the topological entanglement entropy is the same for both abelian and non-abelian phases, there is nevertheless a way in which their entanglement properties can distinguish these phases. Specifically, in the non-abelian phase the Majorana fermion ground state acquires a nonzero Chern number that leads to the presence of gapless states at the boundary. The presence of these boundary states leads to spectral flow in the entanglement spectrum and further contributes to the entanglement of the system. Such edge states do not generically arise in the abelian phase, so there are no additional entanglement contributions in this phase. This distinction was argued by Yao and Qi to be related to the nature of the quasiparticles in the non-abelian phase. Hence, they argued, the intrinsic difference between the abelian and non-abelian phases is manifested in their entanglement properties.

Although we will not make connections to the statistics of excitations in Ryu’s 3D model, we will nevertheless find analogous behavior concerning the entanglement properties of its eigenstates. In particular, the entanglement entropy is also separable into
gauge field and Majorana fermion components and this insight allows one to understand and distinguish the topological phases of the system depending on the surface states (or absence thereof) in each phase, as we will see in later sections.

3. Generalization of the Kitaev model to 3D

In this section we discuss Ryu’s model and its entanglement properties [8]; we will refer it as the Ryu-Kitaev diamond (RKD) model. The overall structure of the RKD Hamiltonian is analogous to that of the Kitaev honeycomb model, namely one considers anisotropic exchange couplings between nearest-neighboring spin degrees of freedom. Upon introducing Majorana operators, the Hamiltonian reduces to a problem of free Majorana fermions hopping in the presence of a Z_2 gauge field; in this case in three dimensions. There is, however, a fundamental difference with respect to the Kitaev model, namely the RKD model is designed to preserve time-reversal symmetry for all of its phases. This will have an important impact on the topological classification of the ground state which is manifested in its entanglement properties.

3.1. Hamiltonian and Majorana fermion description

The RKD model is realized on the diamond lattice. The diamond lattice is formed by two fcc sublattices A and B that are shifted by a vector $\mathbf{a}_4 = \frac{\mathbf{a}}{4} (-11-1)^T$ (a is the lattice constant of the fcc conventional cell). We choose the primitive vectors $\mathbf{a}_1 = \frac{\mathbf{a}}{2} (110)^T$, $\mathbf{a}_2 = \frac{\mathbf{a}}{2} (01-1)^T$ and $\mathbf{a}_3 = \frac{\mathbf{a}}{2} (10-1)^T$. Each lattice site in the diamond lattice has four nearest neighbours and the vectors connecting a site in sublattice A to its nearest neighbours are: $s_1 = \frac{\mathbf{a}}{4} (111)^T$, $s_2 = \frac{\mathbf{a}}{4} (-11-1)^T$, $s_3 = \frac{\mathbf{a}}{4} (11-1)^T$, $s_0 = \frac{\mathbf{a}}{4} (-11-1)^T$.

We illustrate the structure of the diamond lattice together with the s_i vectors in figure 1.

On each lattice site we place two spin-1/2 degrees of freedom σ and τ ($a = 0, 1, 2, 3$). For convenience, we define $\alpha_{1,2,3}^\mu = \sigma_{1,2,3}^\mu \tau_x^\mu$, $\alpha_0^\mu = \sigma_0^\mu \tau_z^\mu$, $\zeta_{1,2,3}^\mu = \sigma_{1,2,3}^\mu \tau_z^\mu$, and $\zeta_0^\mu = \sigma_0^\mu \tau_x^\mu$. We then couple nearest-neighboring pairs of spins in the following anisotropic way

$$H = -\sum_{\mu=0}^3 \sum_{\mu\text{-links}} J_\mu \left(\alpha_\mu^j \alpha_\mu^k + \zeta_\mu^j \zeta_\mu^k \right). \quad (11)$$

Here, the values $\mu = 0, \ldots, 4$ label the four possible nearest neighbors determined by the s_μ. The key feature of this model is again the anisotropic nature of the exchange interactions. Similar to the Kitaev model, the eigenstates of the Hamiltonian are obtained by introducing Majorana degrees of freedom at each site. In the present case, since there is a 4D Hilbert space at each site, we can consider an enlarged 8D Hilbert space with six Majorana fermions $\lambda_p^\mu (p = 0, \ldots, 5)$. The eigenstates are constrained to be in the subspace where $D_i = i \prod_{p=0}^5 \lambda_p^\mu = 1$. By making the identification $\alpha_\mu^\mu = i \lambda_\mu^\mu \lambda_\mu^\mu$ and $\zeta_\mu^\mu = i \lambda_\mu^\mu \lambda_\mu^\mu$, the Hamiltonian becomes

$$H = i \sum_{\mu=0}^3 \sum_{\mu\text{-links}} J_\mu \left(\lambda_\mu^j \lambda_\mu^k + \lambda_\mu^0 \lambda_\mu^0 \right). \quad (12)$$
Entanglement of a 3D generalization of the Kitaev model on the diamond lattice

Figure 1. Conventional cell of the fcc lattice. The yellow large (red small) spheres correspond to the A (B) sublattice. The green arrows emanating from one of the B sites correspond to the s_i vectors. Corresponding to each of the bars connecting an A and B site there is a link operator $\hat{u}_{r_A r_B}$ with a specific value of the Z_2 gauge field.

where the link operators are given by $\hat{u}_{jk} = i\lambda_{jk}^{\mu} \lambda_{ik}^{\mu}$. Here, the link operators are again defined to go from sublattice A to sublattice B. These link operators commute with the Hamiltonian, so we can replace them by a specific choice of eigenvalues. What remains is then a hopping model of two flavors of Majorana fermions that feel the same Z_2 field.

The RKD model includes additional interactions between spins on three neighboring sites which are introduced in order to remove non-generic degeneracies in the energy spectrum. This effectively leads to the following second-nearest neighbor hoppings in the Majorana fermion language:

$$H_z = \sum_{r_A} [iK^z (\hat{u}_{r_A r_A - s_1} \hat{u}_{r_A r_A - s_3}) \lambda_{r_A - s_1}^T s_x \lambda_{r_A - s_3}]$$

$$+ \sum_{r_B} [iK^z (\hat{u}_{r_B + s_1 r_B} \hat{u}_{r_B + s_3 r_B}) \lambda_{r_B + s_1}^T s_x \lambda_{r_B + s_3}],$$

$$H_x = \sum_{(i,j) \in \Lambda} \left\{ \sum_{r_A} [iK^x (\hat{u}_{r_A r_A - s_i} \hat{u}_{r_A r_A - s_j}) \lambda_{r_A - s_i}^T s^x \lambda_{r_A - s_j}]$$

$$+ \sum_{r_B} [iK^x (\hat{u}_{r_B + s_i r_B} \hat{u}_{r_B + s_j r_B}) \lambda_{r_B + s_i}^T s^x \lambda_{r_B + s_j} \right\},$$

where the Pauli matrices $s^a (a = 0, x, y, z)$ act on the 4, 5 indices and $\lambda^T = (\lambda^4, \lambda^5)$. Note the distinction of indices for the lattice vectors s_a and the Pauli matrices s^a. The pair of indices (i, j) runs over the set $\Lambda = \{(0, 2), (2, 3), (3, 0)\}$.

Since the plaquettes of the diamond lattice are also hexagons, the ground state continues to occur when $\hat{u}_{jk} = 1$ for all j, k, so the ground state is translationally invariant. With periodic boundary conditions, the single-particle momentum space Bloch
Entanglement of a 3D generalization of the Kitaev model on the diamond lattice

Hamiltonian is

$$h(\mathbf{k}) = \Theta^x(\mathbf{k})c^x s^x + \Theta^z(\mathbf{k})c^z s^z - \text{Re} \Phi(\mathbf{k})c^y s^0 - \text{Im} \Phi(\mathbf{k})c^z s^0,$$

where c^a ($a = 0, x, y, z$) are additional Pauli matrices acting on the sublattice degree of freedom and we defined the functions

$$\Phi(\mathbf{k}) = J_0 e^{i \mathbf{k} \cdot \mathbf{a}_0} + J_1 e^{i \mathbf{k} \cdot \mathbf{a}_1} + J_2 + J_3 e^{i \mathbf{k} \cdot \mathbf{a}_3},$$

$$\Theta^x(\mathbf{k}) = K^x \sum_{(i,j) \in \Lambda} \sin \mathbf{k} \cdot (\mathbf{s}_i - \mathbf{s}_j),$$

$$\Theta^z(\mathbf{k}) = K^z \sin \mathbf{k} \cdot (\mathbf{s}_1 - \mathbf{s}_3).$$

The energy spectrum of the single-particle Hamiltonian is given by $\epsilon_{\pm}(\mathbf{k}) = \pm \sqrt{|\Phi|^2 + \Theta^x^2 + \Theta^z^2}$, where $|\Phi|^2 = (\text{Re} \Phi)^2 + (\text{Im} \Phi)^2$. By evaluating this spectrum for various values of the parameters, one finds that there are several distinct gapped phases separated by gapless critical points. These gapless points correspond to phase transitions between topologically distinct phases. In [8], Ryu identified two main phases, namely a strong and weak topological phase. We will discuss these phases and their entanglement in the following sections.

3.2. Symmetries and topological phases

Similar to the Kitaev model, the RKD has topologically distinct phases depending on the relative strengths of the hopping parameters. Let us consider the single-particle Majorana fermion Hamiltonian in momentum space. The Hamiltonian $h(\mathbf{k})$ satisfies particle-hole symmetry $Ch(-\mathbf{k})C^{-1} = -h(\mathbf{k})$ ($C = K$) and time-reversal symmetry $Th(-\mathbf{k})T^{-1} = h(\mathbf{k})$ ($T = i c^z s^y K$), where K represents complex conjugation. Note that the time-reversal symmetry operator satisfies $T^2 = -1$. Hence, the model we are considering belongs to the symmetry class DIII of the Altland-Zirnbauer classification of non-interacting fermions [32]. Similar to 3D time-reversal invariant topological insulators [33], there are strong and weak topological states that can be obtained in this model as discussed in [8].

The strong topological phase has robust gapless states on any surface that separates the bulk from the vacuum. It can be characterized by a \mathbb{Z} topological invariant defined for 3D systems that satisfy chiral symmetry $SH + HS = 0$, where S is the chiral operator. In the present case, this operator corresponds to $S = c^z s^y$. In the basis in which S is diagonal, the operator $Q(\mathbf{k}) = 2P(\mathbf{k}) - 1$ can be written in block off-diagonal form (where $P(\mathbf{k})$ is the projection operator into the occupied states). Let us then define the matrix in the block-off diagonal of $Q(\mathbf{k})$ as $q(\mathbf{k})$. Then the integer-valued topological invariant is given by [34]

$$\nu_{3D} = \int_{BZ} \frac{d^3k}{24\pi^2} \epsilon^{\mu\nu\rho} \text{tr} \left[(q^{-1} \partial_\mu q) (q^{-1} \partial_\nu q) (q^{-1} \partial_\rho q) \right],$$

where for the RKD model the $q(\mathbf{k})$ matrix is

$$q(\mathbf{k}) = \frac{1}{\epsilon_{\pm}(\mathbf{k})} \begin{pmatrix} i \Theta_x + \Theta_z & -\text{Im} \Phi - i \text{Re} \Phi \\ -\text{Im} \Phi + i \text{Re} \Phi & -i \Theta_x - \Theta_z \end{pmatrix}. \tag{18}$$

doi:10.1088/1742-5468/2014/10/P10022
As was verified in [8], there is a parameter regime for which \(\nu_{3D} \neq 0 \), signaling a nontrivial 3D topological ground state. We will discuss in the next section particular realizations of the parameters for which \(\nu_{3D} = \pm 1 \), and analyze the corresponding entanglement properties.

As to the weak topological states, these arise when some of the hopping parameters are reduced sufficiently so that the ground state is adiabatically connected to either decoupled topological layers or decoupled topological wires. In these phases, the system has boundary modes only on certain surfaces of the system depending on the direction of the layers or wires that realize the topological state. These boundary states are protected by translation symmetry and can be gapped out by introducing disorder that respects the symmetries of class DIII. As such, this phase is not robust, at least not in the same sense that the strong topological phase is robust. It has been argued, however, that if the disorder is respected on average, such boundary states can still survive [35,36].

To be concrete, suppose \(J_3, K_z \) are sufficiently smaller than the other couplings so that the ground state is adiabatically connected to the \(K_z = J_3 = 0 \) limit. In this case, the system can be viewed as a set of weakly coupled layers that are perpendicular to \(s_1 \). When the layers are completely decoupled, each layer realizes a 2D system in class DIII, which means that the ground state is classified by a \(\mathbb{Z}_2 \) invariant. Because of this, the topology of the ground state of these layers is different from that of the Kitaev model, although similar to the square lattice model studied in [7].

The \(\mathbb{Z}_2 \) invariant in class DIII is given by the Fu-Kane formula [7,37]

\[
\nu_{2D} = \prod_{q \in \text{TRIM}} \frac{\sqrt{\det(w(q))}}{\text{Pf}(w(q))},
\]

where TRIM stands for the set of four time-reversal invariant momenta in the first Brillouin zone (FBZ) of the hexagonal lattice, \(w_{nm}(k) = \langle u_n(-k)|T|u_m(k) \rangle \) and \(\text{Pf}[w] \) is the Pfaffian of the matrix \(w(k) \). In appendix A, we show the derivation for obtaining the following expression of this topological invariant

\[
\nu_{2D} = \text{sign}(J_0 + J_2 + J_3)\text{sign}(-J_0 + J_2 - J_3)\text{sign}(-J_0 + J_2 + J_3)\text{sign}(J_0 + J_2 - J_3).
\]

Using this expression, we find that there are parameter regimes for which \(\nu_{2D} = -1 \), indicating the presence of a nontrivial phase for each layer.

If we now consider the case when another coupling, say \(J_0 \) is sufficiently small, then the system will be adiabatically connected to decoupled wires in class DIII. This class also has a \(\mathbb{Z}_2 \) classification. Following [7], we again characterize the topological state by the Fu-Kane formula equation (19). The main difference with the previous calculation is that now there are only two time-reversal invariant momenta. The calculation leads to

\[
\nu_{1D} = \text{sign}(J_2 + J_3)\text{sign}(J_2 - J_3).
\]

When \(J_3 \) is greater than \(J_2 \), this expression gives \(\nu_{1D} = -1 \). This leads to localized boundary modes for each wire. Upon coupling the wires to form the 3D bulk system, these boundary modes become dispersive and are generically susceptible to being gapped by disorder. The main difference with the case of weakly-coupled layers is that here there will be no spectral flow between the positive and negative energy bands, whereas in the layer case there is. This difference will manifest itself in the entanglement spectrum as we will see when we discuss the entanglement of the RKD model.
4. Entanglement of the RKD model

4.1. Factorization of the trace of the density matrix

In order to calculate the entanglement of the RKD model, we first show that the factorization found in two dimensions for the Kitaev model also holds for the RKD model. The derivation we present here is essentially an extension of the derivation by Yao and Qi, the main difference being that there are more Majorana operators per lattice site in the RKD model. In this section we provide a general description of how the derivation works and we leave the details for appendix B.

We start by writing the explicit form of an eigenstate of the RKD model. This eigenstate will be a product of the state of the Z_2 gauge field $|u\rangle$ and the corresponding Majorana fermion state $|\phi(u)\rangle$. By projecting into the $D_j = 1$ subspace we obtain the physical state:

$$|\psi\rangle = \sqrt{\frac{1}{2^{1-N}}} \prod_j \left(\frac{1 + D_j}{2} \right) |u\rangle \otimes |\phi(u)\rangle,$$ \hspace{1cm} (21)

where the product runs over all of the N lattice sites of the system. The objective will be to calculate $\text{Tr}_A[\rho^n_A]$ in terms of the reduced density matrix of a pure Z_2 gauge field $\rho_{A,G}$ and the reduced density matrix of the free Majorana fermions $\rho_{A,F} = \text{Tr}_B [|\phi(u)\rangle\langle\phi(u)|]$. The main complication for achieving this is that the state $|u\rangle \otimes |\phi(u)\rangle$ is multiplied by the D_j operators. Thus, it would seem that the D_j operators will inevitably appear in the final expression upon taking the trace of powers of the density matrix.

This can be resolved by explicitly performing the traces of the Z_2 gauge field over region B. This is achieved by rewriting the link operators that cross the entanglement cut in terms of new link operators that exist exclusively on either the A or B region. Upon taking the trace over region B, and for each power ρ^n_A that is computed, there will appear matrix elements of the operators $\{\lambda^0_i, \lambda^1_i, \lambda^2_i, \lambda^3_i\}$ which can be simplified explicitly. After carrying out this procedure, the $\{\lambda^0_i, \lambda^1_i, \lambda^2_i, \lambda^3_i\}$ operators drop out of the expression. What remains at this stage are the $\{\lambda^4_i, \lambda^5_i\}$ operators which act on the fermion state $|\phi(u)\rangle$.

Because of the manner in which matrix elements of the Z_2 gauge field are traced out, it turns out that all of the $\{\lambda^4_i, \lambda^5_i\}$ can be arranged into operators that project into definite sectors of fixed fermion parity. By using the fact that the fermion parity of the fermion ground state is fixed, these fermion parity projectors can be simplified appropriately, to the point where there will no longer be any of the $\{\lambda^4_i, \lambda^5_i\}$ operators in the expression. The resulting expression turns out to be (see appendix B)

$$\text{Tr}_A[\rho^n_A] = \frac{1}{2^{(n-1)(L-1)}} \text{Tr}_A[\rho^n_{A,F}],$$ \hspace{1cm} (22)

where L is the number of links crossing the entanglement cut. By further noting that

$$\text{Tr}_{A,G}[\rho^n_{A,G}] = \frac{1}{2^{(n-1)(L-1)}},$$ \hspace{1cm} (23)

for a pure Z_2 gauge field, one then obtains the desired result

$$\text{Tr}_A[\rho^n_A] = \text{Tr}_{A,G}[\rho^n_{A,G}] \text{Tr}_{A,F}[\rho^n_{A,F}].$$ \hspace{1cm} (24)
Using this property of the density matrix of the RKD model, one can then proceed to calculate the entanglement of the system in the same way that it was done for the Kitaev model on the honeycomb lattice.

4.2. Entanglement properties

An immediate consequence of the factorization property of $\text{Tr}_A [\rho^A_n]$ is that there is a contribution to the entanglement entropy which does not scale with system size. This contribution arises exclusively from the \mathbb{Z}_2 gauge field part and it is given by

$$S_{A,G} = (\log 2) L - \gamma_{\text{top}},$$

(25)

where $\gamma_{\text{top}} = \log 2$ is the topological contribution to the entanglement entropy. In fact, this value of the topological entanglement entropy is the same as that of the 2D \mathbb{Z}_2 gauge field of the Kitaev model. This is consistent with the discussion in [10], where it was shown that the entanglement entropy of a discrete gauge theory of symmetry group G would have a topological entanglement entropy $\gamma_{\text{top}} = \log |G|$ in both two and three dimensions, where $|G|$ is the number of elements in the group.

Let us now evaluate the entanglement of the Majorana fermion part of the ground state. Throughout, we will consider an entanglement cut that partitions the system along the plane generated by a_1 and a_2. We will maintain periodic boundary conditions along these two directions. Since the ground state is translationally invariant, we can Fourier transform both directions and consider Hamiltonians that are dependent on the momenta (k_1, k_2). The corresponding FBZ is depicted in the inset at the center of figure 2. This figure of the Brillouin zone also shows the path along which we will evaluate the energy and entanglement spectrum. The path includes the time-reversal momenta which are the momenta where the gap closing points occur in this model.

Even though the parameter space is significantly large, it will be sufficient to restrict ourselves to a specific set of parameters that will allow us to explore the relevant phases of the model. We thus fix the parameters $J_0 = 1$, $J_1 = 0.3$, $J_2 = K_x = K_z = 0.5$ and vary J_3. In figures 2(a), (c), (e) and (g), we show the energy spectrum with open boundary conditions in the a_3 direction. Each subfigure corresponds to four values of the parameter $J_3 = 0.5, 1.0, 1.5, 2.5$, respectively. The corresponding entanglement spectrum is shown in figures 2(b), (d), (f) and (h) with periodic boundary conditions in the a_3 direction.

The gap of the model closes as we continuously change between these values of J_3. Each time the gap closes, the system undergoes a topological phase transition. The four cases we show here thus correspond to four topologically distinct phases. For all four phases there are energy modes in the gap that cross zero energy. These are the surface states, which signal the nontrivial nature of the ground state. Correspondingly, the entanglement spectrum shows entanglement modes between 0 and 1 that behave in a similar way as the surface states. This is due to the fact that the correlation matrix is directly related with the spectrally flattened version of the single-particle Hamiltonian. Thus, the topological surface states will be manifest in the entanglement spectrum as entanglement modes that cross $1/2$ [17].

For $J_3 = 0.5, 1.0, 1.5$ there is spectral flow in both the energy and entanglement spectrum. Both the $J_3 = 0.5$ and $J_3 = 1.5$ phases correspond to strong topological states characterized by $\nu_{3D} = -1$ and $\nu_{3D} = 1$ respectively, which we verified numerically.
Figure 2. Energy and entanglement spectrum in momentum space for $J_0 = 1$, $J_1 = 0.3$, $J_2 = K_x = K_z = 0.5$ and varying J_3. We have $J_3 = 0.5$ (a, b), $J_3 = 1.0$ (c, d), $J_3 = 1.5$ (e, f) and $J_3 = 2.5$ (g, h). The center figure shows the Brillouin zone and the corresponding path in momentum space over which we evaluate both the energy and entanglement spectrum. The vectors b_1 and b_2 are reciprocal lattice vectors satisfying $b_i \cdot a_j = 2\pi \delta_{ij}$, with $i, j = 1, 2$. The points Γ, M_1, M_2 and M_3 label the time-reversal invariant momenta of the hexagonal lattice generated by a_1 and a_2.

Using equation (17). There is a single crossing in the $J_3 = 0.5$ case, whereas there are three crossings for $J_3 = 1.5$. In the intermediate case, namely $J_3 = 1.0$, we find that $\nu_{3D} = 0$. By varying continuously the couplings J_1 and K_z to zero, we have found no additional gap closings at the time-reversal invariant momenta, which means that this phase is adiabatically connected with the system of decoupled layers perpendicular to s_1 we discussed earlier. By using equation (19), we obtain $\nu_{2D} = -1$ in this phase, which
Entanglement of a 3D generalization of the Kitaev model on the diamond lattice

confirms that the phase at $J_3 = 1.0$ corresponds to a weak topological phase of coupled 2D topological states in class DIII.

In contrast with these three cases, the $J_3 = 2.5$ phase presents energy modes in the gap that do not connect the negative and positive energy bands. By increasing the value of J_3 further, one does not find any additional closings in the energy spectrum and furthermore $\nu_{5D} = 0$ and $\nu_{2D} = 1$ (for $J_1 = K_z = 0$). However, by using equation (20), we find that $\nu_{4D} = -1$ when we set $J_1 = K_z = J_0 = 0$. Hence, the system is essentially in a state of weak topological phase of coupled topological wires. The fact that there is no spectral flow in the energy is because, in the limit of weak coupling, the boundary states of the 1D wires do not have spectral flow anyway. Thus, when coupled the boundary states will not generically disperse sufficiently strong to reach the bulk energy bands and even if they did they would not spectrally connect the lower band to the upper band. This behavior of course has its counterpart in the entanglement spectrum where the entanglement modes cross 1/2 but do not flow between 0 and 1.

As we mentioned earlier, the abelian and non-abelian phases of the Kitaev model can be distinguished in their entanglement properties by additional contributions that appear in the non-abelian phases when the system has edge states. In the present case of the RKD model, if we were to compute the entanglement using open boundary conditions in the a_3 direction, the degenerate zero modes from the two surfaces will contribute additional entanglement to the system, similar to what happens in the 2D Kitaev model. However, whereas in the Kitaev model such additional contribution to the entanglement was linked to the types of excitations in the system by Yao and Qi, in the RKD model the connection to excitations is not clear. We leave this question for future work.

4.3. Entanglement arising from vortices in the Z_2 gauge field

We now discuss the entanglement that arises from introducing vortex configurations in the Z_2 gauge field. To generate a vortex, one changes the signs of the links in such a way that the product of the links around a hexagon yields $\prod_{ij \in \text{hex}} u_{ij} = -1$. We have found that the derivation of the factorization of the density matrix continues to hold, regardless of whether the Z_2 field has vortex configurations. Furthermore, the Z_2 gauge field will continue to contribute the same amount of entanglement entropy as it did for the ground state. Consequently, any change to the entanglement of the system will arise from the Majorana modes that are trapped by the Z_2 vortices. This allows us to easily study the entanglement in the presence of the Z_2 flux excitations of the gauge field.

Consider a system of dimensions $N_{1,2,3}$ along the $a_{1,2,3}$ directions respectively. The configuration we choose here of the Z_2 gauge field corresponds to assigning a minus sign to the link operators of the form $\hat{u}_{r_A,r_{A-s}},$ such that $r_A = n_1 a_1 + (N_2/2)a_2 + n_3 a_3,$ with $n_1 = 1, \ldots, N_1$ and $n_3 = N_3/4, \ldots, 3N_3/4$. To illustrate this Z_2 configuration, we show the pattern of signs in figure 3, for one of the layers with normal vector [1 1 1]. Because of this choice of Z_2 gauge field, the vortex lines are threaded through the shaded hexagons and extend along the a_1 direction. Once this choice of link values is set, both the nearest and next-nearest neighbor tunneling terms have to be changed accordingly because both types of tunneling are written in terms of link operators. The dashed red line in figure 3, which is parallel to a_2, denotes the entanglement cut we perform on the system, which effectively separates the two vortex lines.

doi:10.1088/1742-5468/2014/10/P10022
Figure 3. Density profile of the zero modes at $k_1 = 0$ when $J_3 = 1.5$ in one of the layers perpendicular to the s_1 direction. The magnitude of the density is represented by the color and size of the circles at each lattice, with the warmer colors and larger size denoting higher density. The green lines are the links for which the sign is flipped with respect to the ground state configuration of the Z_2 gauge field. The shaded hexagons show where the vortices are realized. The vortex lines extend into the plane along the a_1 direction. The a_2 and a_3 directions are shown by the black vectors and the red dashed line shows the entanglement cut that was performed.

The vortex lines can induce states in the gap of the system when the bulk is topologically nontrivial. Even though such states will be localized to either region A or B, they can contribute to the entanglement of the system. For simplicity, we consider two of the cases of the previous section, namely the strong topological state at $J_3 = 1.5$ and the weak topological state at $J_3 = 1.0$. As we now discuss, there is a clear distinction between the entanglement modes of both cases when vortices are introduced.

In figures 4(a) and (b) we show the energy spectrum with and without the vortex lines when $J_3 = 1.0$. The presence of the vortex lines induces doubly degenerate Majorana branches that cross at $k_1 = 0$ and $k_1 = \pi$. The corresponding entanglement spectrum is shown in figures 4(c) and (d). Similarly, in figures 5(a) and (b) we show the energy spectrum with and without the vortex lines when $J_3 = 1.5$. In this case, the doubly degenerate Majorana branches cross at the single point $k_1 = 0$. The corresponding entanglement spectrum is shown in figures 5(c) and (d). The double degeneracy in each case is due to the presence of two vortex lines.

The behavior we observe here can be understood from the arguments presented in [38]. Vortex lines can be seen as 1D defects in 3D systems that belong, in this case, to class DIII. It was shown in [38] that, under these circumstances, there is a Z_2 classification of such defect states. The invariant associated with this classification determines the stability of gapless Majorana modes that propagate along the vortex line.

We can establish the Z_2 classification of the vortex states in the present example by determining the parity of the number of crossings in the energy and entanglement spectra. In the energy spectrum, it is clear from figure 4(b) (figure 5(b)) that the weak (strong) topological state has an even (odd) number of crossings at zero energy. Correspondingly, in the entanglement spectrum we expect that the vortex lines will induce an even and odd number of 1/2 entanglement modes in the weak and strong topological states, respectively.
Figure 4. Energy (a, b) and entanglement (c, d) spectra for $J_3 = 1.0$ weak topological phase before and after adding the vortex lines, respectively. Part (e) shows the difference in entanglement entropy between both cases, illustrating the additional entanglement obtained by the single crossing of the Majorana modes trapped in the vortex lines.

However, it is difficult to see by eye such additional crossings in figure 4(d) and figure 5(d) because there are 1/2 entanglement modes even without vortex lines in figure 4(c) and figure 5(c). As we discussed in the previous section, these entanglement modes occur because the system is in a topological state. In order to clearly determine how many additional crossings in the entanglement are generated from introducing the vortex lines, we computed the difference $S_v - S_{nv}$, where $S_v(S_{nv})$ is the entanglement entropy of region A when the vortex lines are present (absent). We show $S_v - S_{nv}$ as a function of k_1 in figure 4(e) (weak case) and figure 5(e) (strong case). From these figures, it becomes clear that there are additional entanglement entropy contributions of approximately $2 \log 2$ for each of the crossings obtained in the energy spectrum. In the weak topological state this
Figure 5. Energy \((a, b)\) and entanglement \((c, d)\) spectra for \(J_3 = 1.5\) strong topological phase before and after adding the vortex lines, respectively. Part \((e)\) shows the difference in entanglement entropy between both cases, illustrating the additional entanglement obtained by the crossings of the Majorana modes trapped in the vortex lines.

contribution comes from the two crossings \(k_1 = 0, \pi\), whereas in the strong topological state this occurs only at \(k_1 = 0\), as expected.

5. Conclusions

In this work, we have explored the entanglement properties of a 3D generalization of the Kitaev model proposed by Ryu. We have shown that the entanglement entropy separates into a contribution from the \(Z_2\) gauge field and the Majorana degrees of

doi:10.1088/1742-5468/2014/10/P10022
freedom, in the same way that it occurs for the Kitaev model. We took advantage of these properties to explore the behavior of the entanglement spectrum of both weak and strong topological phases of the model proposed by Ryu. Finally, we considered the effect of introducing vortex lines in the Z_2 gauge field, which lead to additional contributions to the entanglement entropy arising from gapless Majorana modes trapped in the vortices.

Acknowledgments

This work was supported by ONR award N0014-12-1-0935. We acknowledge a useful conversation with S Ryu and the support of the UIUC ICMT.

Appendix A. Z_2 topological invariant for 2D and 1D systems in class DIII

Here we obtain the topological invariant of the layers perpendicular to the s_1 direction when $K_z = 0$ and $J_1 = 0$. We follow the line of reasoning in [7]. In this limit, the 3D model is effectively a set of 2D systems in class DIII, each of which is classified by a Z_2 invariant. We can thus use the Fu-Kane formula

$$\nu_{2D} = \prod_{k \in \text{TRIM}} \frac{\sqrt{\det \langle w(k) \rangle}}{\text{Pf}[w(k)]}, \quad (A.1)$$

where $w_{nm}(k) = \langle u_n(-k)|T|u_m(k) \rangle$ and $\text{Pf}[w]$ is the Pfaffian of the matrix w.

The calculation of this invariant can be simplified by exploiting the chiral symmetry of the model, with the chiral operator given by $S = s^y e^z$. In the basis in which S is diagonal, the operator $Q(k) = 2P(k) - 1$ can be written in block off-diagonal form (where $P(k)$ is the projection operator into the occupied states). Let us then define the block in the block-off diagonal as $q(k)$. Then through the unitary transformation that diagonalizes S, namely

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i & 0 & -i \\ 0 & 1 & 0 & 1 \\ -i & 0 & i & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \quad (A.2)$$

the $q(k)$ matrix is given by

$$q(k) = \frac{1}{\epsilon(k)} \begin{pmatrix} i\Theta_x + \Theta_z & -\text{Im} \Phi - i\text{Re} \Phi \\ -\text{Im} \Phi + i\text{Re} \Phi & -i\Theta_x - \Theta_z \end{pmatrix}, \quad (A.3)$$

where $\epsilon(k) = \sqrt{|\Phi|^2 + \Theta^{2x} + \Theta^{2z}}$, with $|\Phi|^2 = (\text{Re} \Phi)^2 + (\text{Im} \Phi)^2$. In this form, we can write the single-particle eigenstates as $|u(k)\rangle = \frac{1}{\sqrt{2}} (n_{a1} q^\dagger(k)n_a)^T$, where $n_1 = (1, 0)^T$ and $n_2 = (0, 1)^T$. From this we then obtain

$$w_{ab} = iq_{ab}^\dagger(k). \quad (A.4)$$

doi:10.1088/1742-5468/2014/10/P10022
The TRIM are given by \(k = \frac{1}{2} (m_2 b_2 + m_3 b_3) \), where \(b_i \cdot a_j = 2\pi \delta_{ij} \) and \((m_2, m_3) = (0,0), (0,1), (1,0), (1,1)\). By setting \(K_2 = J_1 = 0 \) (the limit of decoupled layers), we get \(w_{11} = w_{22} = 0 \) and \(w_{12} = -w_{21} = J_2 + J_0 \cos \pi m_2 + J_3 \cos \pi m_3 \), which implies

\[\nu_{2D} = \text{sign}(J_0 + J_2 + J_3)\text{sign}(J_0 - J_2 + J_3)\text{sign}(-J_0 + J_2 + J_3)\text{sign}(J_0 + J_2 - J_3). \] (A.5)

The corresponding expression for the 1D invariant can be computed in the same way, except that now there are only two time-reversal invariant momenta to consider and we set \(J_0 = 0 \). In this case \(w_{11} = w_{22} = 0 \) and \(w_{12} = -w_{21} = J_2 + J_3 \cos \pi m_3 \) with \(m_3 = 0, \pi \). This then leads to

\[\nu_{1D} = \text{sign}(J_2 + J_3)\text{sign}(J_2 - J_3). \] (A.6)

Appendix B. Derivation of the factorization of the density matrix in the RKD model

In this appendix, we will derive the factorization of \(\text{Tr}_A [\rho_A^2] \) in terms of gauge field and Majorana parts, where \(\rho_A \) is the reduced density matrix of region \(A \). In order to do this, we will first obtain a simplified expression for \(\rho_A = \text{Tr}_B [\langle \psi | \psi \rangle] \). We start by writing the explicit eigenstate of the system as

\[|\psi\rangle = \sqrt{\frac{1}{2^{1-N}}} \prod_{j} \left(\frac{1 + D_j}{2} \right) |u\rangle \otimes |\phi(u)\rangle, \] (B.1)

where \(N \) is the number of sites in the lattice. This state represents a possible eigenstate for a given configuration of the flux through each hexagon of the diamond lattice.

To simplify the trace over the \(Z_2 \) gauge field, we rewrite the links that cross the entanglement cut in terms of new states of links that exist exclusively in either region \(A \) or \(B \). Let us assume that there are \(2L \) links that cut through the entanglement cut (the odd case can also be considered with some modifications). We write the gauge field configuration in the factorized form

\[|u\rangle = |u_A\rangle |u_p\rangle |u_B\rangle, \]

where \(|u_A\rangle \) and \(|u_B\rangle \) describe all the links in regions \(A \) and \(B \), respectively and the state \(|u_p\rangle \) describes the links that cross the entanglement cut. We denote the link operators that cross the entanglement cut by \(u_{a_i b_i} \), where \(a(b) \) label region \(A(B) \) and \(n, m = 1 \ldots 2L \). We seek a basis transformation between the set of link operators \(\{ u_{a_i b_i} = i \lambda^\alpha_{a_i} \lambda^\alpha_{b_i}, u_{a_m b_m} = i \lambda^\beta_{a_m} \lambda^\beta_{b_m} \} \) and \(\{ w_{a_i a_m} = i \lambda^\alpha_{a_i} \lambda^\beta_{a_m}, w_{b_m b_n} = i \lambda^\beta_{b_m} \lambda^\alpha_{b_n} \} \). This new set of link operators does not pierce through the entanglement cut.

One finds that this basis transformation leads to

\[|u_p\rangle = \frac{1}{\sqrt{2^L}} \sum_{w_{A,B}} c_{w_{A,B}} |w_{A}, w_{B}\rangle, \] (B.2)

where \(|u_p\rangle \) and \(|w_{A}, w_{B}\rangle \) denote collectively all the \(2L \) links that are involved in the basis transformation. The sum runs over all possible configurations of the \(w_{A} \) links. For each of these configurations, the basis transformation dictates a corresponding configuration of

\[\text{doi:10.1088/1742-5468/2014/10/P10022} \] 19
the \(w_B \) links. The coefficients of the expansion take the values \(c_{wAB} = \pm 1 \), depending on
the particular configuration of the original \(Z_2 \) gauge field.

We can now write the physical state as

\[
|\psi\rangle = \frac{1}{\sqrt{2^{N+L+1}}} \sum_{w_{AB},g} \prod_{i \in g} D_i c_{w_{AB}} |u_A w_A; u_B, w_B\rangle |\phi(u)\rangle.
\]

The product \(\prod_{i \in g} D_i \) can be factorized as

\[
\prod_{i \in g} D_i = \prod_{i \in g} (i\lambda_i^0 \lambda_i^1 \lambda_i^2 \lambda_i^3 \lambda_i^g) = X_{gA} X_{gb} Y_{ga} Y_{gb}
\]

Here, we defined the operators \(X_g = \prod_{i \in g} \lambda_i^0 \lambda_i^1 \lambda_i^2 \lambda_i^3 \) and \(Y_g = \prod_{i \in g} i\lambda_i^4 \lambda_i^g \). These operators can now be distributed to act on the \(Z_2 \) field and Majorana parts respectively

\[
|\psi\rangle = \frac{1}{\sqrt{2^{N+L+1}}} \sum_{g,w_{AB}} c_{w_{AB}} X_{gb} |u_B w_B\rangle X_{ga} |u_A w_A\rangle Y_{ga} Y_{gb} |\phi(u)\rangle,
\]

which leads to the following form of the reduced density matrix of region \(A \):

\[
\rho_A = \frac{1}{2^{N+L+1}} \sum_{g,w_{AB}} c_{w_{AB}} c_{w'_{AB}}^* \left(X_{ga} |u_A w_A\rangle \langle u_A w'_A| X_{g'_A}^\dagger \right)
\]

\[
\times \text{Tr}_B \left[(X_{ga} |u_B w_B\rangle \langle u_B w'_B| X_{g'_B}^\dagger) (Y_{ga} Y_{gb} |\phi(u)\rangle \langle \phi(u)| Y_{g'_B}^\dagger Y_{g'_A}^\dagger) \right]
\]

\[
= \frac{1}{2^{N+L+1}} \sum_{g,w_{AB}} c_{w_{AB}} c_{w'_{AB}}^* \left(X_{ga} |u_A w_A\rangle \langle u_A w'_A| X_{g'_A}^\dagger \right)
\]

\[
\times \text{Tr}_{B,G} \left[(X_{gb} |u_B w_B\rangle \langle u_B w'_B| X_{g'_B}^\dagger) Y_{ga} \text{Tr}_{B,F} \left[(Y_{gb} |\phi(u)\rangle \langle \phi(u)| Y_{g'_B} Y_{g'_A}^\dagger \right) \right]
\]

\[
= \frac{1}{2^{N+L+1}} \sum_{g,w_{AB}} c_{w_{AB}} c_{w'_{AB}}^* \left(X_{ga} |u_A w_A\rangle \langle u_A w'_A| X_{g'_A}^\dagger \right)
\]

\[
\times \text{Tr}_{B,F} \left[(Y_{gb} |\phi(u)\rangle \langle \phi(u)| Y_{g'_B}) \right) Y_{g'_A}^\dagger \right]
\]

where the subindices \(G \) and \(F \) stand for tracing over gauge and fermion degrees of freedom.

In order to further simplify the expression for the reduced density matrix we must calculate the matrix element \(\langle u_B w'_B| X_{g'_B} X_{gb} |u_B w_B\rangle \). Note that the \(\lambda_i^g \) operators that compose \(X_g \) will switch the signs of whatever configuration \(|u_B w_B\rangle \) has for each of the four links associated to the sites in the set \(g'_B \cup g_B \). Hence, in general the re-configured ket \(X_{gb} |u_B w_B\rangle \) will not match the bra \(\langle u_B w'_B| X_{g'_B} \), unless either the set \(g'_B \cup g_B \) covers all the sites in \(B \) i.e. \(g'_B \cup g_B = B \), or unless both products cover exactly the same sites i.e. \(g'_B = g_B \). These two possibilities then lead to

\[
\langle u_B w'_B| X_{g'_B} X_{gb} |u_B w_B\rangle = \delta_{w_B w'_B} \left(\delta_{g'_B g_B} + \langle u_B w_B| X_B| u_B w_B\rangle \delta_{g'_B + g_B, B} \right)
\]

\[
= \delta_{w_B w'_B} \left(\delta_{g'_B g_B} + \prod_{ij} u_{ij} \prod_n w_{Bn} \delta_{g'_B + g_B, B} \right)
\]

\[
= \delta_{w_B w'_B} \left(\delta_{g'_B g_B} + x_B(w_B) \delta_{g'_B + g_B, B} \right),
\]

(B.3)
where we defined the fact that X_B can be rearranged as a product of link operators in B and we defined $x_B(w_B) = \prod_{i \in B} u_j \prod_{n} w_{B_{n}}$. Although there can be an overall minus sign in $x_B(w_B)$ due to the rearrangement done to form the link operators (depending on the number of sites), as we will see below this sign would not affect the end result. We thus obtain the simplified expression

$$
\rho_A = \sum_{g_A g_B w_A, g'_A g'_B w'_A} \frac{c_{w_A B} c_{w'_A B}}{2N + L + 1} X_{g_A} |u_A w_A \rangle \langle u_A w'_A | X_{g'_A} \delta_{w_B w'_B} \left(\delta_{g'_B g_B} + x_B(w_B) \delta_{g'_B + g_B, B} \right) Y_{g_A}
$$

$$
\times \text{Tr}_{B,F} \left[Y_{g_B} |\phi(u) \rangle \langle \phi(u)| Y_{g'_B} \right] Y_{g'_A}
$$

$$
= \sum_{g_A g_B w_A, g'_A g'_B w'_A} \frac{|c_{w_A B}|^2}{2N + L + 1} X_{g_A} |u_A w_A \rangle \langle u_A w'_A | X_{g'_A} \text{Tr}_{B,F}
$$

$$
\times \left[|\phi(u) \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) \right] Y_{g'_A}
$$

$$
= \frac{1}{2N + L} \sum_{g_A g'_B w_A} X_{g_A} |u_A w_A \rangle \langle u_A w'_A | X_{g'_A} \rho_{A,F} X_{g'_A} \phi(u) |Y_{g'_A} \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) Y_{g'_A}
$$

(B.4)

where we defined $\eta_B = Y_{B-g_B} Y_{g_B} = \prod_{i \in B} (i \lambda_i^4 \lambda_i^8)$ and $\rho_{A,F} = \frac{x_B(w_B)}{2} \text{Tr} \left[|\phi(u) \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) \right]$. We can calculate the second power of the reduced density matrix

$$
\rho_A^2 = \frac{1}{2^{2(N_A + L)}} \sum_{g_A g'_A w_A, h_A h'_A \psi_A} X_{g_A} |u_A w_A \rangle \langle u_A w_A | X_{h_A} \rho_{A,F} X_{h_A} \phi(u) \rangle \langle \phi(u)| \frac{x_B(w_B)}{2} \text{Tr} \left[|\phi(u) \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) \right] Y_{h'_A}
$$

$$
= \frac{1}{2^{2(N_A + L)}} \sum_{g_A g'_A w_A, h_A h'_A \psi_A} X_{g_A} |u_A w_A \rangle \langle u_A w_A | X_{h_A} \delta_{w_A, w_A} \left(\delta_{g'_A h_A} + x_A(w_A) \delta_{g'_A + h_A, A} \right)
$$

$$
\times Y_{g_A} \rho_{A,F} Y_{h_A} \text{Tr}_{A,F} \left[|\phi(u) \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) \right] Y_{h'_A}
$$

$$
= \frac{1}{2^{2(N_A + L)}} \sum_{g_A g'_A w_A, h_A h'_A \psi_A} X_{g_A} |u_A w_A \rangle \langle u_A w_A | X_{h_A} \delta_{w_A, w_A} \left(\delta_{g'_A h_A} + x_A(w_A) \delta_{g'_A + h_A, A} \right)
$$

$$
\times Y_{g_A} \rho_{A,F} Y_{h_A} \text{Tr}_{A,F} \left[|\phi(u) \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) \right] Y_{h'_A}
$$

$$
= \frac{1}{2^{2(N_A + L)}} \sum_{g_A g'_A w_A, h_A h'_A \psi_A} X_{g_A} |u_A w_A \rangle \langle u_A w_A | X_{h_A} \delta_{w_A, w_A} \left(\delta_{g'_A h_A} + x_A(w_A) \delta_{g'_A + h_A, A} \right)
$$

$$
\times \left(1 + x_A(w_A) Y_{A-h_A} Y_{h_A} \right) \rho_{A,F} \phi(u) \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) Y_{h'_A}
$$

$$
= \frac{1}{2^{2(N_A + L)-1}} \sum_{g_A g'_A w_A, h_A h'_A} X_{g_A} |u_A w_A \rangle \langle u_A w_A | X_{h_A} \rho_{A,F} \phi(u) \rangle \langle \phi(u)| \left(\frac{1 + x_B(w_B) \eta_B}{2} \right) Y_{h'_A}
$$
Here, we use the fact that
\[\frac{1 + x_A(w_A)\eta_A}{2} x_B(w_B)Y_{h_A}^r \]
\[= \frac{1}{2^{N_A+2L-1}} \sum_{g_a w_A h_A'} X_{g_A} |u_A w_A\rangle \langle u_A w_A| X_{h_A'} Y_{g_A} x_B(w_B) P_{A,F}^r x_B(w_B) \rho_{A,F}^r x_B(w_B) Y_{h_A'}^r \]
where we defined \(P_{A,F}^r x_B(w_B) = \frac{1 + x_A(w_A)\eta_A}{2} \). By computing \(\rho_A^3 \) and successive powers, the same matrix elements that we have used so far appear iteratively and through the same type of simplification we have employed one can thus infer the \(n \)-th power of the reduced density matrix to be:
\[\rho_A^n = \frac{1}{2^{N_A+nL-(n-1)}} \sum_{g_a w_A h_A'} X_{g_A} |u_A w_A\rangle \langle u_A w_A| X_{h_A'} Y_{g_A} x_B(w_B) \left(P_{A,F}^r \rho_{A,F}^r \right)^{n-1} Y_{h_A'}^r. \]

With this general form in hand, we can finally obtain an expression for the trace of \(\rho_A^n \) in region \(A \):
\[\text{Tr}_A[\rho_A^n] = \frac{1}{2^{nL-n}} \sum_{w_A} \text{Tr}_{A,F} \left[\left(P_{A,F}^r \right)^n \right]. \]

We can next divide the sum over the \(2^{L-1} \) sets of \(w_A \)'s that yield \(\prod_{n=1}^L w_{A_n} = +1 \) and the \(2^{L-1} \) sets that yield \(\prod_{n=1}^L w_{A_n} = -1 \). For each of these two cases, we get \(\prod_{n=1}^L w_{B_n} = \sigma \) and \(\prod_{n=1}^L w_{B_n} = -\sigma \) respectively, with \(\sigma = \pm 1 \) depending on the particular configuration \(|u\rangle \) chosen initially for the \(Z_2 \) gauge field. By defining \(p_{A(B)} = \prod_{ij \in A(B)} u_{ij} \), we then obtain
\[\text{Tr}_A[\rho_A^n] = \frac{1}{2^{(n-1)(L-1)}-1} \text{Tr}_{A,F} \left[\left(P_{A,F}^r \rho_{A,F}^r \right)^n \right]. \]

Here, we use the fact that
\[D|u\rangle \otimes |\phi(u)\rangle = \prod_{ij} u_{ij} |u\rangle \otimes \eta_A \eta_B |\phi(u)\rangle = |u\rangle \otimes |\phi(u)\rangle, \]
so that \(\eta_A \eta_B |\phi(u)\rangle = \prod_{ij} u_{ij} |\phi(u)\rangle \). This means the fermion parity of the state \(|\phi(u)\rangle \) is \(\prod_{ij} u_{ij} \). Furthermore, note that since \(u_{a_n b_n} u_{a_m b_m} = u_{a_n a_m} u_{b_n b_m} \), then \(\prod_{ij} u_{ij} = \prod_{ij \in A} u_{ij} \prod_n w_{A_n} \prod_n w_{B_n} \prod_{ij \in B} u_{ij} = \sigma p_{A,B}. \) This implies that the fermion parity of \(|\phi(u)\rangle \) is \(\sigma p_{A,B}. \) It follows from this that
\[\rho_{A,F}^r P_{A,F}^r = \text{Tr}_{B,F} \left[|\phi(u)\rangle \langle \phi(u)| P_{B,F}^{\sigma_{PB}} \right] P_{B,F}^{\sigma_{PA}} = 0. \]

because \(P_{B,F}^{\sigma_{PB}} P_{B,F}^{\sigma_{PA}} \) projects \(|\phi(u)\rangle \) into a state of fermion parity \(-\sigma p_{A,B} \), which is of opposite sign to the parity we found for \(|\phi(u)\rangle \). It thus follows that we can write
\[\text{Tr}_A[\rho_A^n] = \frac{1}{2^{(n-1)(L-1)}} \text{Tr}_A \left[\left(P_{A,F}^{\sigma_{PB}} \rho_{A,F}^r P_{A,F}^{\sigma_{PB}} + \left(P_{A,F}^{\sigma_{PA}} \right)^n \rho_{A,F}^r \right) \right]. \]

(3.5)
Finally, one notes that the state of a pure Z_2 gauge field $|G(u)\rangle$ is written as a gauge average of a given configuration $|u\rangle$ over all gauge-equivalent configurations $|\tilde{u}\rangle$, so that $|G(u)\rangle = \frac{1}{2^{N+1/2}} \sum_{\tilde{u} \sim u} |\tilde{u}\rangle$. If we compute $\text{Tr}_{A,G} \left[\rho^n_{A,G} \right]$ we then get

$$\text{Tr}_{A,G} \left[\rho^n_{A,G} \right] = \frac{1}{2^{(n-1)(L-1)}}, \quad (B.8)$$

which thus means that

$$\text{Tr}_A \left[\rho^n_{A} \right] = \text{Tr}_{A,G} \left[\rho^n_{A,G} \right] \text{Tr}_{A,F} \left[\rho^n_{A,F} \right]. \quad (B.9)$$

which is the desired result.

References

[1] Hasan M Z and Kane C L 2010 Colloquium Rev. Mod. Phys. 82 3045–67
[2] Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057–110
[3] X-G Wen 2007 Quantum Field Theory of Many-Body Systems: from the Origin of Sound to an Origin of Light and Electrons (Oxford: Oxford University Press)
[4] Wen X G 1990 Topological orders in rigid states Int. J. Mod. Phys. B 04 239–71
[5] Kitaev A 2006 Anyons in an exactly solved model and beyond Ann. Phys. 321 2–111
[6] Wu C, Arovas D and Hung H-H 2009 A Γ-matrix generalization of the Kitaev model Phys. Rev. B 79 134427
[7] Nakai R, Ryu S and Furusaki A 2012 Time-reversal symmetric Kitaev model and topological superconductor in 2D Phys. Rev. B 85 155119
[8] Ryu S 2009 3D topological phase on the diamond lattice Phys. Rev. B 79 075124
[9] Chern G-W 2010 3D topological phases in a layered honeycomb spin–orbital model Phys. Rev. B 81 125134
[10] Grover T, Turner A M and Vishwanath A 2011 Entanglement entropy of gapped phases and topological order in 3D Phys. Rev. B 84 195120
[11] Amico L, Fazio R, Osterloh A and Vedral V 2008 Bipartite fluctuations as a probe of many-body entanglement Rev. Mod. Phys. 80 517
[12] Vidal G, Latore J I, Rico E and Kitaev A 2003 Entanglement in quantum critical phenomena Phys. Rev. Lett. 90 227902
[13] Francis Song H, Rachel S, Flindt C, Klich I, Laflorencie N and Hur K L 2012 Bipartite fluctuations as a probe of many-body entanglement Phys. Rev. B 85 035409
[14] De Chiara G, Lepori L, Lewenstein M and Sanpera A 2012 Entanglement spectrum, critical exponents and order parameters in quantum spin chains Phys. Rev. Lett. 109 237208
[15] Hsu B, Mulligan M, Fradkin E and E-A Kim 2009 Universal entanglement entropy in 2D conformal quantum critical points Phys. Rev. B 79 115124
[16] Li H and Haldane F D M 2008 Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum Hall effect states Phys. Rev. Lett. 101 010504
[17] Turner A M, Zhang Y and Vishwanath A 2010 Entanglement and inversion symmetry in topological insulators Phys. Rev. B 82 241102
[18] Fidkowski L 2010 Entanglement spectrum of topological insulators and superconductors Phys. Rev. Lett. 104 130502
[19] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Entanglement spectrum of a topological phase in 1D Phys. Rev. B 81 064439
[20] Prodan E, Hughes T L and Bernevig B A 2010 Entanglement spectrum of a disordered topological Chern insulator Phys. Rev. Lett. 105 115501
[21] Hughes T L, Prodan E and Bernevig B A 2011 Inversion-symmetric topological insulators Phys. Rev. B 83 245132
[22] Kitaev A and Preskill J 2006 Topological entanglement entropy Phys. Rev. Lett. 96 110404
[23] Thomale R, Sterdyniak A, Regnault N and Bernevig B A 2010 Entanglement gap and a new principle of adiabatic continuity Phys. Rev. Lett. 104 180502

doi:10.1088/1742-5468/2014/10/P10022
Entanglement of a 3D generalization of the Kitaev model on the diamond lattice

[24] Qi X-L, Katsura H and Ludwig A W W 2012 General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states Phys. Rev. Lett. 108 196402
[25] Regnault N, Bernevig B A and Haldane F D M 2009 Topological entanglement and clustering of jain hierarchy states Phys. Rev. Lett. 103 016801
[26] Flammia S T, Hamma A, Hughes T L and Wen X-G 2009 Topological entanglement řenyi entropy and reduced density matrix structure Phys. Rev. Lett. 103 261601
[27] Yao H and Qi X-L 2010 Entanglement entropy and entanglement spectrum of the Kitaev model Phys. Rev. Lett. 105 080501
[28] Feng X-Y, Zhang G-M and Xiang T 2007 Topological characterization of quantum phase transitions in a spin-1/2 model Phys. Rev. Lett. 98 087204
[29] Lieb E H 1994 Flux phase of the half-filled band Phys. Rev. Lett. 73 2158–61
[30] Peschel I 2003 Calculation of reduced density matrices from correlation functions J. Phys. A: Math. Gen. 36 L205
[31] Peschel I and Eisler V 2009 Reduced density matrices and entanglement entropy in free lattice models J. Phys. A: Math. Theor. 42 504003
[32] Altland A and Zirnbauer M R 1997 Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures Phys. Rev. B 55 1142–61
[33] Fu L, Kane C L and Mele E J 2007 Topological insulators in 3D Phys. Rev. Lett. 98 106803
[34] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Classification of topological insulators and superconductors in three spatial dimensions Phys. Rev. B 78 195125
[35] Fu L and Kane C L 2012 Topology, delocalization via average symmetry and the symplectic anderson transition Phys. Rev. Lett. 109 246605
[36] Fulga I C, van Heck B, Edge J M and Akhmerov A R 2014 Statistical topological insulators Phys. Rev. B 89 155424
[37] Fu L and Kane C L 2006 Time reversal polarization and a Z_2 adiabatic spin pump Phys. Rev. B 74 195312
[38] Teo J C Y and Kane C L 2010 Topological defects and gapless modes in insulators and superconductors Phys. Rev. B 82 115120

doi:10.1088/1742-5468/2014/10/P10022