Cross-Talk between cAMP and MAPK Pathways in HSD11B2 Induction by hCG in Placental Trophoblasts

Qun Shu1, Wenjiao Li2, Jianneng Li3, Wangsheng Wang2, Chao Liu3, Kang Sun1*

1 Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 2 Changning Maternity and Infant Health Hospital, Shanghai, China, 3 School of Life Sciences, Fudan University, Shanghai, China

Abstract

Overexposure of the fetus to glucocorticoids in gestation is detrimental to fetal development. The passage of maternal glucocorticoids into the fetal circulation is governed by 11beta-Hydroxysteroid Dehydrogenase Type 2 (HSD11B2) in the placental syncytiotrophoblasts. Human chorionic gonadotropin (hCG) plays an important role in maintaining placental HSD11B2 expression via activation of the cAMP pathway. In this study, we investigated the relationship between the activation of the cAMP pathway by hCG and subsequent phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) or p38 mitogen-activated protein kinase (MAPK) pathways in the regulation of placental HSD11B2 expression in human placental syncytiotrophoblasts. We found that treatment of the placental syncytiotrophoblasts with either hCG or dibutyryl cAMP (dbcAMP) could promote the phosphorylation of p38 and ERK1/2. Inhibition of p38 MAPK with SB203580 not only reduced the basal HSD11B2 mRNA and protein levels but also attenuated HSD11B2 levels induced by either hCG or dbcAMP. By contrast, inhibition of ERK1/2 with PD98059 increased the basal mRNA and protein levels of HSD11B2 and had no effect on HSD11B2 mRNA and protein levels induced by either hCG or dbcAMP. These data suggest that p38 MAPK is involved in both basal and hCG/dbcAMP-induced expression of HSD11B2, and ERK1/2 may play a role opposite to p38 MAPK at least in the basal expression of HSD11B2 in human placental syncytiotrophoblasts and that there is complicated cross-talk between hCG/cAMP and MAPK cascades in the regulation of placental HSD11B2 expression.

Introduction

Appropriate amounts of glucocorticoids are crucial for the normal development and maturation of the fetus [1]. However, inappropriate exposure of the fetus to glucocorticoids during development may not only cause intrauterine growth retardation but also program the development of cardiovascular diseases, diabetes and cognitive disorders in later life [2,3]. Despite the adverse effects of excessive glucocorticoids in fetal development, maternal adrenal glands undergo progressive hyperplasia and secrete increasing amounts of glucocorticoids throughout gestation [4]. By contrast, the fetal adrenal glands are mainly specialized in the production of dehydroepiandrosterone, the precursor for estrogen synthesis in the placenta [5]. Although the production of glucocorticoids by the fetal adrenal glands also tends to increase at late gestation, the maternal plasma concentration of cortisol is 5–10 times higher than that of the fetal plasma [6]. To finely tune the passage of maternal glucocorticoids which are highly lipid-permeable steroids, into the fetal circulation, there exists a glucocorticoid inactivating enzyme, i.e. 11beta-Hydroxysteroid Dehydrogenase Type 2 (HSD11B2) [7–9] which converts biologically active cortisol in maternal circulation into inactive cortisone, in the syncytiotrophoblasts thereby leading to increased expression of HSD11B2 in human placental syncytiotrophoblasts [23].

Cross-talk between cAMP and MAPK pathways may represent a key component in the overall understanding of the molecular mechanisms that govern fetal development. In addition to the expression of HSD11B2, the placental syncytiotrophoblasts also synthesizes and secretes a large amount of human chorionic gonadotropin (hCG) [12–14] from early pregnancy. Human chorionic gonadotropin shares the same receptor with pituitary luteinizing hormone (LH). The hCG/LH receptor is coupled with Gαs protein and uses the cyclic adenosine monophosphate (cAMP) as a second messenger for signal transduction [15]. The role of hCG for the maintenance of pregnancy is best known for maintaining progesterone synthesis, regulating implantation, promoting uterine quiescence and controlling hormone secretion from the trophoblast [14,16–18]. In addition, we have demonstrated that hCG plays an important role in maintaining placental HSD11B2 expression via activation of the cAMP pathway [19,20]. The promoter region of HSD11B2 is rich in CpG islands within which harbor multiple binding sites for the transcription factor SP1 [21,22]. We have demonstrated that activation of the cAMP pathway increases the enrichment of SP1 at the promoter of HSD11B2 thereby leading to increased expression of HSD11B2 in human placental syncytiotrophoblasts [23].
Extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) are the key kinases of MAPK pathways. Activation of the cAMP pathway was reported to be associated with the phosphorylation of ERK1/2, p38 and JNK [27–29]. Of interest, the p38 MAPK and ERK1/2 MAPK were shown to be a positive and negative regulator of placental HSD11B2 respectively, but JNK MAPK was found to have no effect [30,31]. However, the relationship between the activation of the cAMP pathway by hCG and subsequent phosphorylation of ERK1/2 or p38 in the regulation of placental HSD11B2 expression remains largely unknown. Therefore, the present study was designed to address this issue using our established primary human trophoblast cells as an in vitro model system.

Materials and Methods

Human placental trophoblast cell culture

Human placentae were obtained from uncomplicated normal and term (38–40 wk) pregnancies after elective cesarean section without labor. Since the placentae were usually discarded after delivery, oral informed consent of using these placentae for this study was obtained from patients and the consent information was recorded in the study record book. Both the consent procedure and the study protocol were approved by the Ethics Committee of School of Life Sciences, Fudan University. Placental trophoblast cells were prepared using a modified Kliman’s method [32] as described previously [33]. In brief, tissue aliquots were removed randomly from the maternal side of the placenta and digested with 0.125% trypsin (Sigma Chemical Co., St. Louis, MO) in DMEM (Life Technologies, Inc., Grand Island, NY). The placental cytotrophoblasts were purified using a 5–75% Percoll (Sigma) gradient at step increments of 5%. The cytotrophoblasts were plated at a density of 1.5 x 10^6 cells per well in six-well plates for culture at 37°C 5% CO₂, 95% air in DMEM containing 10% fetal bovine serum (FBS). The culture medium was replaced with serum-free medium 3 days after plating and the cells were then treated with dbcAMP, an analog of cAMP (Sigma) or hCG (Sigma), for 24 h in the presence and absence of p38 MAPK inhibitor SB203580 (Sigma) or ERK1/2 inhibitor PD98059 (Sigma). The concentrations of these reagents are shown in the Results section and in the corresponding figure legends. Total RNA and cell proteins were then extracted for the measurements of HSD11B2 and SP1 mRNA and protein levels with quantitative real-time PCR (qRT-PCR) and Western blotting. The time course of p38 and ERK1/2 phosphorylation by treatment of the syncytiotrophoblasts with dbcAMP or hCG for 0, 15, 30, and 60 min was studied. Total cell protein was then extracted in the presence of phosphatase inhibitor (Active Motif, Carlsbad, CA) or 1:500 dilution of antibodies recognizing phosphorylated p38 or ERK1/2 were examined following a standard Western blotting protocol.

Extraction of protein and analysis with Western blotting

Total cell protein was extracted from human placental syncytiotrophoblasts using an extraction kit from Active Motif (Carlsbad, CA). The protein levels of HSD11B2, SP1, E-cadherin, p38 and ERK1/2 were examined following a standard Western blotting protocol. Briefly, 50 μg protein of each sample were electrophoresed in 10% SDS-polyacrylamide gel and transferred to the nitrocellulose blot. After blocking, the blot was incubated with 1:5000 dilution of HSD11B2 antibody (Santa Cruz) or 1:500 dilution of SP1 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) or 1:500 dilution of E-cadherin antibody (Santa Cruz) or 1:500 dilution of antibodies recognizing phosphorylated p38 (Santa Cruz) and total p38 (Santa Cruz) or 1:200 dilution of antibodies recognizing phosphorylated ERK1/2 (Santa Cruz) and total ERK1/2 (Santa Cruz) overnight. After washing, the blot was incubated with appropriate secondary antibody conjugated with horseradish peroxidase (Santa Cruz) for 1 h. The enhanced chemiluminescent detection system (Amersham) was used to detect bands with peroxidase activity. The same blot was reprobed for β-actin for loading control. The level of phosphorylated p38 is expressed as the ratio of band densities of phosphorylated p38 and ERK1/2 over total p38 and ERK1/2.

Statistical analysis

All data are reported as mean ± S.E.M. of repeated experiments on the placental syncytiotrophoblasts prepared from different placentae. After examination of normal distribution, paired Student’s t-test or one-way ANOVA test followed by the Student–Newman–Keuls test was used where appropriate to assess significant differences. Significance was set at P<0.05.

Results

Effects of dbcAMP and hCG on the phosphorylation of p38 and ERK1/2 MAPKs in human placental syncytiotrophoblasts

Treatment of the syncytiotrophoblasts with dibutyl cyclic AMP (dbcAMP, 100 μM; 0, 15, 30, and 60 min) significantly increased the phosphorylation of p38 and ERK1/2 MAPKs in a time-dependent manner with the maximal effect observed at 30 min (Fig. 1A and Fig. 1B). Treatment of the syncytiotrophoblasts with hCG (10 IU/ml) significantly increased the phosphorylation of p38 and ERK1/2 at 30 min, but not at other time points used in this study (Fig. 1C and Fig. 1D). Treatment with either dbcAMP or hCG did not affect LDH level in the culture medium and cellular E-cadherin level (data not shown), suggesting the treatments did not change the cell viability and cause further syncytialization.
Table 1. Primer sequences used for PCR.

Genes	Primer sequences (5’-3’)	Genbank accession no.	Products (bp)
HSD11B2	GACATGCCATATCGGTGCTTF(F)	NM_000196	118
	GCTGGATGATGCTGACCTTG(R)		
SP1	GTTTCCCTGGGGGACGACAG(F)	NM_138473	288
	TCCTTCCCTCCACCTGCTG(R)		
ACTB	GGGAAATCGTGACATTAAG(F)	NM_001101	275
	TGTGGGCTACAGGTCTTTG(R)		

doi:10.1371/journal.pone.0107938.t001

Figure 1. Phosphorylation of p38 MAPK (P-p38) and ERK1/2 induced by dbcAMP (100 μM) and hCG (10 IU/ml) in human placental syncytiotrophoblasts. Upper panels of each bar graph are the representative blots. The bar graphs are the average data of three experiments. *P < 0.05, **P < 0.01, ***P < 0.001 versus 0 min.
doi:10.1371/journal.pone.0107938.g001
Role of p38 MAPK in the induction of HSD11B2 and SP1 by hCG dbcAMP in human placental syncytiotrophoblasts

SB203580 (10 μM), an inhibitor of p38 MAPK, decreased not only the basal levels of HSD11B2, SP1 mRNA (Fig. 2A and Fig. 2B) and protein (Fig. 3A and Fig. 3B), but also the levels of HSD11B2, SP1 mRNA and protein induced by either hCG (10 IU/ml) or dbcAMP (100 μM) significantly (Fig. 2 and Fig. 3), suggesting that the induction of HSD11B2 and SP1 expression by hCG/cAMP is, at least in part, mediated via p38 MAPK in human placental syncytiotrophoblasts.

Figure 2. (A) Effect of SB203580 (p38 MAPK inhibitor, 10 μM) on the basal and dbcAMP (100 μM) and hCG (10 IU/ml)-induced HSD11B2 mRNA expression in human placental syncytiotrophoblasts. *p<0.05, **p<0.01, ***p<0.001 versus control; ## p<0.01 ### p<0.001 versus treatment with dbcAMP and hCG (n = 4). (B) Effect of SB203580 (p38 MAPK inhibitor, 10 μM) on the basal and dbcAMP (100 μM) and hCG (10 IU/ml)-induced SP1 mRNA expression in human placental syncytiotrophoblasts. *p<0.05, **p<0.01, ***p<0.001 versus control;# p<0.05, ## p<0.01 versus treatment with dbcAMP and hCG (n = 4).

doi:10.1371/journal.pone.0107938.g002

Figure 3. (A) Effect of SB203580 (p38 MAPK inhibitor, 10 μM) on the basal and dbcAMP (100 μM) and hCG (10 IU/ml)-induced HSD11B2 protein level in human placental syncytiotrophoblasts. *p<0.05, **p<0.01, ***p<0.001 versus control; ## p<0.01 ### p<0.001 versus treatment with dbcAMP and hCG, n = 4. (B) Effect of SB203580 (p38 MAPK inhibitor, 10 μM) on the basal and dbcAMP, 100 μM) and hCG (10 IU/ml)-induced SP1 protein level in human placental syncytiotrophoblasts. ***p<0.001 vs control; ### p<0.001 versus treatment with dbcAMP and hCG (n = 4).

doi:10.1371/journal.pone.0107938.g003
Role of ERK1/2 MAPK in the induction of HSD11B2 and SP1 by hCG dbcAMP in human placental syncytiotrophoblasts

PD98059 (50 μM), an inhibitor of ERK1/2 MAPK, increased the basal levels of HSD11B2, SP1 mRNA (Fig. 4A and Fig. 4B) and protein (Fig. 5A and Fig. 5B), but had no effect on the levels of HSD11B2 and SP1 mRNA protein induced by either hCG (10 IU/ml) or dbcAMP (100 μM) (Figs. 4 and 5).

Discussion

The placental barrier is not merely a physical structure that separates the maternal and fetal circulations, but also a molecular fence that prevents unwanted maternal materials entering the fetal environment, and vice versa. Expression of HSD11B2 enzyme in the placental syncytiotrophoblasts forms such a molecular barrier.

Figure 4. (A) Effect of PD98059 (ERK1/2 MAPK inhibitor, 50 μM) on the basal and dbcAMP (100 μM) and hCG (10 IU/ml)-induced HSD11B2 mRNA expression in human placental syncytiotrophoblasts. *p<0.05, **p<0.01, ***p<0.001 versus control (n = 4). (B) Effect of PD98059 (ERK1/2 MAPK inhibitor, 50 μM) on the basal and dbcAMP (100 μM) and hCG (10 IU/ml)-induced SP1 mRNA expression in human placental syncytiotrophoblasts. *p<0.05, **p<0.01, ***p<0.001 versus control (n = 4).

doi:10.1371/journal.pone.0107938.g004

Figure 5. (A) Effect of SB203580 (p38 MAPK inhibitor, 10 μM) on the basal and dbcAMP (100 μM) and hCG (10 IU/ml)-induced HSD11B2 protein level in human placental syncytiotrophoblasts. *p<0.05 versus control (n = 4). (B) Effect of SB203580 (p38 MAPK inhibitor, 10 μM) on the basal and dbcAMP (100 μM) and hCG (10 IU/ml)-induced SP1 protein level in human placental syncytiotrophoblasts. ***p<0.001 versus control (n = 4).

doi:10.1371/journal.pone.0107938.g005
for the protection of the fetus from excessive glucocorticoids of maternal origin [7–9,34]. Accumulating evidence indicates that high concentration of glucocorticoids is a risk factor for low birth weight and developmental origin of diseases [2,3]. It has been reported that HSD11B2 deficiency caused by point mutation is associated with intrauterine growth retardation (IUGR) in human pregnancies [35] and that HSD11B2+/−/− mice exhibit IUGR phenotype [36]. Appropriate expression level of HSD11B2 in the placenta is thus of pivotal importance for the normal development of the fetus. As such, continuous efforts have been directed to the understanding of the regulation of HSD11B2 in human placenta. Studies have shown that estrogen [37], hCG [20] and glucocorticoids [38] can increase HSD11B2 expression, while prostaglandins [39], progesterone [19], hypoxia [40] and cadmium [41] can decrease HSD11B2 expression in human placenta. Of interest, IUGR is characterized by a significant decrease in hCG concentration in the circulation, and this has previously been used as an indicator of IUGR [42]. Our previous study has demonstrated that hCG plays an important role in maintaining HSD11B2 expression in human placenta. In this study we demonstrated that activation of hCG/cAMP pathway phosphorylated both ERK1/2 and p38 MAPKs in human placental syncytiotrophoblasts. Activation of p38 pathway might account for maintaining the basal as well as hCG/dbcAMP-induced expression of HSD11B2, whereas ERK1/2 MAPK might play a role opposite to p38 MAPK in the basal expression of HSD11B2, and moreover ERK1/2 MAPK appears not to be associated with the regulation of HSD11B2 by hCG/dbcAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.

It is well known that hCG is one of the earliest hormone secreted by the placenta and there is sophisticated cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG is the result of cross-talk between the cAMP and MAPK pathways [24–27]. As an example, the regulation of leptin production by hCG/cAMP despite the observation that the phosphorylation of ERK1/2 MAPK was increased by hCG/dbcAMP. Alternatively the cells may also be maximally stimulated by inhibition of ERK1/2 MAPK at the basal state in terms of HSD11B2 expression and could not be further stimulated by exogenous hCG/dbcAMP.
21. Agarwal AK, White PC (1996) Analysis of the promoter of the NAD dehydrogenase type II enzyme in human kidney and placenta. J Clin Endocrinol Metab 80: 2203–2209.

20. Ni XT, Duan T, Yang Z, Guo CM, Li JN, et al. (2009) Role of human chorionic gonadotropin in human placental trophoblasts. Placenta 30: 339–343.

19. Shi QJ, Lei ZM, Rao CV, Lin J (1993) Novel role of human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-gamma. Endocrinology 148: 5011–5019.

18. Cole LA (2009) New discoveries on the biology and detection of human chorionic gonadotropin. Reprod Biol Endocrinol 7: 8.

17. Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, et al. (2007) Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor gamma. Endocrinology 148: 5011–5019.

16. Kurtzman JT, Wilson H, Rao CV (2001) A proposed role for hCG in clinical obstetrics. Semin Reprod Med 19: 63–68.

15. Strauss JF 3rd, Kido S, Sanyog R, Sakuragi N, Gafvels ME (1992) The cAMP signalling system and human trophoblast function. Placenta 13: 309–309.

14. Shi QJ, Lei ZM, Rao CV, Lin J (1993) Novel role of human chorionic gonadotropin in human placental trophoblasts. Biol Reprod 50: 1379–1384.

13. Cronier L, Bastide B, Herve JC, Deleze J, Malassine A (1994) Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin. Endocrinology 133: 420–420.

12. Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, et al. (2007) Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-gamma. Endocrinology 148: 5011–5019.

11. Pepe GJ, Burch MG, Albrecht ED (2001) Estrogen regulates 11 beta-hydroxysteroid dehydrogenase-1 and -2 localization in placental syncytiotrophoblast in the second half of pregnancy. Endocrinology 142: 4496–4503.

10. Krozowski Z, MaGuire JA, Stein-Oakley AN, Dowling J, Smith RE, et al. (1995) Human chorionic gonadotropin stimulates thyroid hormone secretion, iodide uptake, organification, and adenine 3’-5’-monophosphate formation in cultured human chorionic villi. J Clin Endocrinol Metab 79: 595–599.

9. Sun K, Yang K, Challis JR (1998) Regulation of 11beta-hydroxysteroid dehydrogenase type 2 by progestrone, estrogen, and the cyclic adenine 5’-monophosphate pathway in cultured human placental and chorionic trophoblasts. Biol Reprod 59: 1379–1384.

8. Ni XT, Duang T, Yang Z, Guo CM, Li JN, et al. (2009) Role of human chorionic gonadotropin in maintaining 11beta-hydroxysteroid dehydrogenase type 2 expression in human placental syncytiotrophoblasts. Placenta 30: 1023–1029.

7. Aparal AK, White PC (1996) Analysis of the promoter of the NAD-dependent 11beta-hydroxysteroid dehydrogenase (HSD11K) gene in JEG-3 human chorionicarcinoma cells. Mol Cell Endocrinol 121: 95–99.

6. Nawrocki AR, Goldring CE, Kostadina RM, Fery FJ, Frey BM (2002) In vivo footprinting of the human 11beta-hydroxysteroid dehydrogenase type 2 promoter: evidence for species-specific regulation by Sp1 and Sp3. J Biol Chem 277: 14647–14656.

5. Li JN, Ge YC, Yang Z, Guo CM, Duang T, et al. (2011) The Sp1 transcription factor is crucial for the expression of 11beta-hydroxysteroid dehydrogenase type 2 in human placental trophoblasts. J Clin Endocrinol Metab 96: E999–907.

4. Bhat NR, Zhang P, Mohanty SB (2007) p38 MAP kinase regulation of oligodendrocyte differentiation with CREB as a potential target. Neurochem Res 32: 293–302.

3. Rey A, Manen D, Rizzoli R, Ferrari SL, Caverzasio J (2007) Evidence for a role of p38 MAP kinase in the stimulation of alkaline phosphatase and matrix mineralization induced by parathyroid hormone in osteoblastic cells. Bone 41: 9–67.

2. Sengupta N, Vinod PK, Venkatesh KV (2007) Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory strategy necessary to regulate FLO11 expression. Biophys Chem 125: 39–71.

1. Maymo JL, Perez Perez A, Sanchez-Margalet V, Sanchez-Margalet V, Duenas JL, Calvo JC, et al. (2003) Human chorionic gonadotropin stimulates thyroid hormone secretion, iodide uptake, organification, and adenine 3’-5’-monophosphate formation in cultured human chorionic villi. J Clin Endocrinol Metab 79: 595–599.

P38 MAPK Mediates HSD11B2 Expression in Placenta

32. Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF 3rd (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentas. Endocrinology 118: 1567–1582.

31. Guan H, Sun K, Yang K (2009) Opposing effects of ERK and p38 MAPK on cAMP and p38 MAP kinases in Vero cells. Mol Cells 25: 40–45.

30. Homan A, Guan H, Hardy DB, Grattan RJ, Yang K (2006) Hypoxia blocks 11beta-hydroxysteroid dehydrogenase type 2 induction in human trophoblast cells during differentiation by a time-dependent mechanism that involves both transcription and translation. Placenta 27: 832–840.

29. Yang K, Julan L, Rubio F, Sharma A, Guan H (2006) Hypoxia blocks 11beta-hydroxysteroid dehydrogenase type 2 induction in human trophoblast cells during differentiation by a time-dependent mechanism that involves both transcription and translation. Placenta 27: 832–840.

28. Kimurah I, Henriksson M, Uddin N (2011) Early fetal growth, PAPP-A and free beta-hCG in relation to risk of delivering a small-for-gestational age infant. Ultrasound Obstet Gynecol 37: 341–347.

27. Maymo JL, Perez Perez A, Sanchez-Margalet V, Duenas JL, Calvo JC, et al. (2009) Upregulation of placental leptin by human chorionic gonadotropin. Endocrinology 150: 304–313.

26. Fitzgerald JS, Busch S, Wengenmayer T, Foerster K, de la Motte T, et al. (2005) Signal transduction in trophoblast invasion. Chem Immunol Allergy 88: 101–108.

25. Wagener J, Yang W, Kaszusche K, Winterhager E, Gellhaus A (2013) CCN3 regulates proliferation and migration properties in JEG-3 trophoblast cells via ERK1/2, Akt and Notch signalling. Mol Hum Reprod 19: 257–249.

24. Daoud G, Amiot M, Rassart E, Masse A, Simonneau L, et al. (2006) ERK1/2 and p38 regulate trophoblasts differentiation in human term placenta. J Physiol 566: 409–423.

23. Perez-Pereira A, Maymo J, Duenas JL, Goberna R, Calvo JC, et al. (2008) Leptin prevents apoptosis of trophoblastic cells by activation of MAPK pathway. Arch Biochem Biophys 476: 390–395.

22. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and p38 MAP kinases on apoptosis. Science 270: 1326–1331.

21. Ki MR, Lee HR, Goo MJ, Hong HH, Do SH, et al. (2008) Differential regulation of ERK1/2 and p38 MAP kinases in Vaco-induced apoptosis of gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 294: G635–G647.

20. Fun Y, Chen H, Guo B, Luo Li, Ma H, et al. (2007) Opposing effects of ERK and p38 MAP kinases on HeLa cell apoptosis induced by dipeptidyl peptidase IV. Mol Cells 23: 30–38.

19. Dhamra S, Sharma AK, Singla DK, Singal PK (2007) p38 and ERK1/2 MAPKs mediate the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293: H5324–H5331.

18. Nordstrom E, Fosne G, Kristensson K (2009) Opposing effects of ERK and p38/JNK MAP kinase pathways on formation of prions in GT1-1 cells. FASEB J 23: 613–622.

17. Liu MG, Wang RR, Chen XF, Zhang FK, Cui XY, et al. (2011) Differential roles of ERK, JNK and p38 MAPK in pain-related spatial and temporal enhancement of synaptic responses in the hippocampal formation of rats: multi-electrode array recordings. Brain Res 1382: 57–69.