Osteoblastoma of the lumbar spine in an adolescent: A case report and review of literature

Bhushan Sagade¹, Sarang Rokade¹, Arjun Dhawale¹, Abhay Nene¹

Abstract

Introduction: Osteoblastomas are primary bone tumors representing 1% of all bone tumors and 10% of all spinal osseous neoplasms with a predilection for posterior elements.

Case report: A 13-year-old boy with insidious backache for six months presented with progressive radiating paraesthesia and claudication, restricted lumbar motion and positive straight leg test bilaterally with weakness of left ankle dorsiflexion. Radiograph showed an subtle expansile lytic lesion in the L3 posterior elements. CT and MRI revealed a space-occupying lesion of the L3 vertebra lamina, involving the left pedicle causing severe spinal canal stenosis. Excision of the posterior elements of the L3 vertebra including the facet and left pedicle and short segment fixation from L2-L4 using autogenous rib was done.

Conclusion: Autogenous structural rib can be used for posterolateral fusion after osteoblastoma excision with potential instability.

Keywords: Osteoblastoma, back pain, rib graft, postero-lateral fusion, en-bloc resection.

Introduction

Osteoid osteoma was first described by Jaffe in 1935 [1], osteoblastomas were described by Jaffe and Lichtenstein in 1956 independently [2]. They are benign bone tumours constituting about 11% of all primary bone tumours [1-3]. The condition is more frequent in males, (male to female ratio of 2:1) and occurs during the second decade of life [1-3]. The most common location for these lesions is the spine with a preponderance for posterior elements of the spine constituting 30-40% of all the cases [1,3,4]. Two types of osteoblastoma have been described in the literature; conventional osteoblastomas and aggressive osteoblastomas, the latter being characterised by high alkaline phosphatase levels and size of more than 1.5 cms with paravertebral or epidural extension and lytic changes on radiographs [4].

Treatment of osteoblastomas of the spine involves en bloc excision of the lesion in Enneking stage 3 lesions and intralesional curettage in Enneking stage 2 lesions [5,6]. Radiotherapy is considered as an adjuvant or an alternative to surgical excision if excision demands unacceptable functional sacrifice or in non-accessible locations [7]. Recurrence can occur if excision is inadequate. Overall recurrence rates reported for osteoblastomas has been around 10 – 15% [2]. Recurrences are typically seen 5-10 years after index procedure [4].

We describe a case of osteoblastoma of posterior elements of L3 vertebra in a 13-year-old boy treated with en bloc excision and posterolateral fusion using rib autograft.

Case report

A 13-year-old boy presented to clinic with complaints of low back pain of six months duration which was insidious in onset, gradually worsening with time. Pain was present during rest, radiated to both lower limbs associated with parasthesia, and claudication symptoms with walking, with relief on lying down with the hips and knees flexed. There was no history of trauma, heavy weightlifting, no unaccustomed activity, no history of fever, weight loss, loss of appetite, tuberculosis, no morning stiffness, or small joint pains. Past medical history was unremarkable. On examination there was restriction of movements of the lumbar spine and focal tenderness over the lumbar region. Power of ankle dorsiflexion on the left side was grade 3. Ankle jerk on the left side was diminished. Rest of the neurological examination was unremarkable.

Radiograph showed a lytic lesion in posterior elements of L3. MRI revealed a space occupying lesion in the posterior

¹Department of Paediatric Orthopaedics, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai 400012

Address of Correspondence
Dr. Dhawale Arjun A,
Department of Paediatric Orthopaedics, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai 400012
E-mail: arjundhawale@hotmail.com
elements of L3 involving the left pedicle and causing severe spinal canal stenosis. CT revealed a heterogeneous expansile bony lesion with lytic and sclerotic component arising from the spinous process of the L3 vertebra extending into the left pedicle (Figure 1-3). A PET-CT scan showed the solitary lumbar lesion with no other lesion elsewhere. Alkaline phosphatase level was 224 IU/L (Normal- 38 – 94 IU/L).

After pre-operative work-up, consent and general anaesthesia, patient was positioned prone; exposure of L2-L4 levels was done after level confirmation. En bloc excision of the L3 lamina including the facet joint and left pedicle was done as these were involved. Posterior stabilisation with pedicle screws at L2 and L4 was done. Posterolateral fusion was performed to prevent iatrogenic instability and autogenous rib graft (left 10th rib) was harvested for fusion (Figure 4). The estimated blood loss was 200 ml. Closure was performed and the patient was extubated, the post-operative period was uneventful. Histopathological examination of the resected specimen confirmed the lesion to be osteoblastoma (Figure 5).

Patient followed up every six months and at two years’ post-operatively has had no symptoms or radiological evidence of recurrence of the disease or implant loosening (Figure 6, 7, 8).

Discussion

Clinical presentation: Osteoid osteomas and osteoblastomas of the spine are uncommon tumours which may present with atypical symptoms and normal radiological findings in the initial course of the disease and thus may lead to delays in diagnosis [2]. It may present as persistent, dull back pain. Other presentations may include a painful scoliosis. Scoliosis is usually convex
opposite to the side of the lesion. Radiculopathy and neurological deficit with cauda equina syndrome can occur if the lesion impinges on the nerve roots or the spinal cord [3]. Thus, backache should not be presumed to be postural or inflammatory if long-standing and with red flags.

Investigations: Plain radiographs maybe less sensitive in picking up the lesion in early stages as lytic lesions cannot be identified on radiographs unless there is approximately 50% bone destruction [4]. CT scan and MRI provide detailed information of the extent of the lesion, involvement of adjacent structures, distortion of local anatomy and intra-spinal extent of the lesion. A PET-CT scan detects involvement of other regions and allows staging.

Pathology: Osteoblastomas are known to be more aggressive tumours. Locally aggressive tumours can cause mass symptoms. Malignant transformation of osteoblastomas has also been reported [2].

Literature summary is shown in Table 1.

Treatment: Enneking staging has been used by many authors to guide the method of treatment [4,7]. Intra-lesional excision has been advised for Enneking stage 2 lesions and en-bloc resection for stage 3 [7]. Pre-operative arterial embolization has been shown to reduce intra-operative blood loss [8]. Surgical resection is the conventional treatment of choice for spinal osteoblastomas after meticulous surgical planning. Intraoperative use of navigation provides accurate localisation facilitating complete removal [9]. In this case interbody fusion was avoided as it would violate compartments. Stabilisation is warranted if excision of intervertebral joints or facets is done [5]. Minimally invasive options like CT-guided radiofrequency ablation and image guided cryoablation may avoid need for fusion. Recently fully endoscopic resection has been described for spinal osteoblastoma. Use of denosumab preoperatively has been reported to regress tumour, ossify and facilitate resection [10].

To conclude, Autogenous rib graft can be used as a structural graft for posterolateral fusion after osteoblastoma excision with potential instability.

Clinical relevance

Back pain in adolescents should not be considered as postural or inflammatory especially when associated with red flags. The patient should undergo appropriate investigations to reach a diagnosis. Autogenous rib can be reliably used as a structural graft for posterolateral fusion.

Declaration of patient consent: The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient has given his consent for his images and other clinical information to be reported in the Journal. The patient understands that his name and initials will not be published, and due efforts will be made to conceal his identity, but anonymity cannot be guaranteed.

Conflict of Interest: NIL; Source of Support: NIL.
Table 1: Review of Literature

NAME	AUTHOR/ JOURNAL/YEAR	SAMPLE	SEX	MEAN AGE (yr)	LEVEL	INVOLVED AREAS OF THE VERTEBRA	SYMPTOMS	ABLATION THERAPY	TECHNIQUE	BEDPSY	IMPLANTS	COMPLICATIONS	CONCLUSION
Osteoblastoma A 31 year study of 93 cases	Sagade BS et al/ Journal of Surgical Oncology/2006	93	43M 30F 20	24	24 in the vertebral, rest in the extremities	NA	NA	NA	NA	NA	Recurrence	OBL frequently affects the long bones and the spine. Recurrence rates following en-bloc excision are relatively high and can be minimized by en-bloc resection.	
Management of osteoblastoma and osteoid osteoma of the spine in childhood	Sharma BN et al/ Journal of Neuroradiology/2009	15	20M 12F	12	11 C, 17 L, 1 Cerv	Body and posterior elements, pain, radiculopathy, radiculopathy, about 3 months	NA	En-bloc excision	NA	NA	NA	Analytic rise in 1 surgical site infection in 3.	
Staging and treatment of osteoblastoma and osteoid osteoma of the spine: a review of 33 cases	Srinivas Bhatia et al/ East Spine J/2010	31	34M 17F	24	11 C, 17 L, 1 Cerv	Par, radiculopathy	NA	Pre-operative embolisation, Postoperative radiotherapy	Intrallesional excision + en-bloc excision	NA	NA	Death, progressive kyphosis in 2, lumbar resection in 3, lumbar resection in 3.	
Osteoblastoma of the spine: 20 years clinical and radiological review	Phyo Bhaigat et al/Spine/2014	19	16M 2F	36	IS 54	Anterior and posterior	Radiofrequency ablation + chemotherapy. Radiotherapy in 1, chemoradiation in 1	Intrallesional excision + en-bloc excision	Needle core biopsy - en-bloc resection or metastatic lesion resection	NA	NA	Neurodeficit, wound, kyphosis, infection, radiotherapy	
Surgical excision of vertebral tumors and complications of surgery	Bhagat Bhandari et al/ J Pediatr Orthop B/2012	17	6M 4F	115	SC, LC, OL, LC, SC/OL, SC/OL	Osteoid osteoma, primary element and adjacent elements	Pain, radiculopathy, radiculopathy, tendinitis	NA	Intralesional excision, wide excision	NA	None, viable bone, Halo	Persistent pain, recurrence, indolent	
Surgical management of osteoblastoma of the spine: a case report and review of literature	Reponen Eider et al/ Turkish Journal of Orthopedics/2016	5	3M 2F	28	SC, LC, SC	Precocious elements of extra spinal	Pain, neurodeficit	Pre-operative embolisation in 1	CT guided biopsy	Pedicle screws, Allograft, OBL	Recurrence		
CT guided radiofrequency ablation of spinal osteoid osteoma: treatment and long term follow up	Fuccillo Antiga et al/ International Journal of Hyperthermia/2006	11	7M 4F	26	TT, 4L, 2S	NA	Pain	CT guided radiofrequency ablation	CT guided biopsy	Pedicle screws, Allograft, OBL	CT guided radiofrequency ablation, in safe and effective for spinal OBL, the advantage of being minimally invasive.		
Percutaneous image guided cryoablation of osteoblastomas	Roberto Canizer et al/ American Journal of Neuroradiology/2013	10	7M 3F	13 (median)	SC, LT, 2L, 2S	NA	Pain	Pre-operative embolisation in 2 cases	Cryoablation	In 7 patients	Permanent sensory deficit in the area, recurrent bone sarcoma, treatment rate following curretage is relatively high and can be minimized by en-bloc resection.		
Osteoid osteoma enucleation: a challenge in the extremities: a case report	Addame Mustaf et al/ World Neuroradiology/2015	2	M	25, 34	L3, T10	Body, lumbar and pedicle	Pain, radiculopathy	Postoperative radiofrequency ablation	CT guided biopsy	Pedicle screws, cage	Recurrence and death.		
References													

References

1. Healey JH, Ghezlan B. Osteoid osteoma and osteoblastoma. Current concepts and recent advances. Clin Orthop Relat Res. 1986 Mar;(204):76-85.
2. Kan P, Schmidt MH. Osteoid osteoma and osteoblastoma of the spine. Neurosurg Clin N Am. 2008 Jan;19(1):65-70.
3. Chi JH, Bydon A, Hsieh P, Witham T, Wolinsky JP, Gokaslan ZL. Osteoid osteoma and osteoblastoma of the spine. Neurosurg Clin N Am. 2008 Jan;19(1):1-14.
4. Galgano MA, Goualt CR, Iwenfo H, Chin LS, Lavelle W, Mendel E. Osteoblastomas of the spine: a comprehensive review. Neurosurg Focus. 2016 Aug;41(2):E4.
5. Elder BD, Goodwin CR, Kosztowski TA, Lo SF, Bydon A, Wolinsky JP, Jallo GI, Gokaslan ZL, Witham TF, Sciuibba DM. Surgical Management of Osteoblastoma of the Spine: Case Series and Review of the Literature. Turk Neurosurg. 2016;26(4):601-7.
6. Harrop JS, Schmidt MH, Boriani S, Shaffrey CI. Aggressive "benign" primary spine neoplasms: osteoblastoma, aneurysmal bone cyst, and giant cell tumor. Spine (Phila Pa 1976). 2009 Oct 15;34(22 Suppl):S39-47.
7. Boriani S, Amendola L, Bandiera S, Simoes CE, Alberghi M, Di Fiore M, Gasparim A. Staging and treatment of osteoblastoma in the mobile spine: a review of 51 cases. Eur Spine J. 2012 Oct;21(10):2003-10.
8. Ruggieri P, Huch K, Mavrogenis AF, Merlino B, Angelini A. Osteoblastoma of the sacrum: report of 18 cases and analysis of the literature. Spine (Phila Pa 1976). 2014 Jan 15;39(2):E97-E103.
9. Kadhmi M, Binitie O, O'Toole P, Grigoriou E, De Mattos CB, Dornans JP. Surgical resection of osteoid osteoma and osteoblastoma of the spine. J Pediatr Orthop B. 2017 Jul;26(4):362-369.
10. Reynolds JJ, Rothenfluh DA, Athanasou N, Wilson S, Kieser DC. Neuroadjuvant denosumab for the treatment of a sacral osteoblastoma. Eur Spine J. 2018 Jul;27(Suppl 3):446-452.