Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies

Abstract
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis, apoptosis and necroptosis act in consort in a multimeric protein complex, PANoptosome. This allows all the components of PANoptosis to be regulated simultaneously. PANoptosis provides a new way to study the regulation of cell death, in that different types of cell death may be regulated at the same time. To test whether PANoptosis exists in diseases other than infectious diseases, we chose cerebral ischemia/reperfusion injury as the research model, collected articles researching cerebral ischemia/reperfusion from three major databases, obtained the original research data from these articles by bibliometrics, data mining and other methods, then integrated and analyzed these data. We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion. In the cell model simulating ischemic brain injury, pyroptosis, apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons. Pyroptosis, apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury. This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.

Key Words: apoptosis; brain; central nervous system; ischemia/reperfusion; middle cerebral artery occlusion; necroptosis; oxygen and glucose deprivation; PANoptosis; pyroptosis; regulated cell death

Introduction
Researchers studying forms of cell death found that the main processes of regulated cell death (RCD) included pyroptosis, apoptosis and regulated necrosis (including necroptosis) (Chen et al., 2021; Hu et al., 2021; Yan et al., 2021). The majority of the research topics on RCD focused on one of these three forms of cell death alone, but a few focused on the simultaneous interaction of these three forms of cell death. Some previous reports into cancer research topics on RCD focused on one of these three forms of cell death alone, but a few focused on the simultaneous interaction of these three forms of cell death. Some previous reports into cancer

1Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China; 2Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; 3Department of Human Resources, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China; 4Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China

*Correspondence to: Kun Xiong, MD, xiongkun2001@163.com; Qi Zhang, MD, zhangqi2014@csu.edu.cn.
https://orcid.org/0000-0002-3103-6028 (Kun Xiong); https://orcid.org/0000-0001-6300-6491 (Qi Zhang);
https://orcid.org/0000-0002-2561-9673 (Wei-Tao Yan)

Funding: The study was supported by the National Natural Science Foundation of China, Nos. 81772134 (to KX), 81971891 (to KX), 82172196 (to KX), 81571939 (to KX); the Fundamental Research Funds for the Central Universities of Central South University, No. 2020zzts218, (to WTY); Hunan Provincial Innovation Foundation For Postgraduate of China, Nos. CX20200116 (to WTY), CX20190139 (to LSL).

How to cite this article: Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q, Xiong K (2022) Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 17(8):1761-1768.
A series of studies on PANoptosis reported by the Kanneganti team (Karki et al., 2020b, 2021; Kesavardhana et al., 2020; Malireddi et al., 2020a; Zheng et al., 2020; Briard et al., 2021) suggest that, in diseases caused by bacterial, fungal or viral infection, pathogens induce an autoimmune response, which broadly expands the scope of cytokines. These inflammatory cytokines activate the promoter proteins of pyroptosis, apoptosis and necroptosis through specific pathways, and drive them to assemble inflammasomes that are specific to different RCD forms (Cain et al., 2000; Chu et al., 2001; Acehan et al., 2002; Martimón et al., 2002; Agostini et al., 2004; Ogura et al., 2006; Kanneganti et al., 2007; Wallach et al., 2011; Lu et al., 2019b), and further assemble a protein complex, PANoptosome (Samir et al., 2020), which can simultaneously drive pyroptosis, apoptosis and necroptosis to aggravate cell death caused by the pathogens. Apart from diseases caused by pathogens, most other diseases or pathological conditions are more or less related to an immune response, which suggests that PANoptosis associated with immune response is highly probable. For example, one study found that interferon regulatory factor 1, as the upstream regulator of PANoptosis, can induce cell death in the process of tumorigenesis in colorectal cancer (Karki et al., 2020a). In addition, in the exploration of the treatment of melanoma, a compound of metformin and doxorubicin initiated pyroptosis, apoptosis and necroptosis (PANoptosis) of melanoma cells, reducing the development of the melanoma (Song et al., 2021).

Published studies related to PANoptosis mainly focus on diseases induced by bacterial or viral infections plus a few types of tumors (Karki et al., 2020a, b; Malireddi et al., 2020b; Song et al., 2021). It is unknown whether PANoptosis and PANoptosomes exist in other types of diseases but it is worth further investigation. Many central nervous system (CNS) diseases involve the death of nerve cells, including PANoptosis (Yuan and Yankner, 2000; McKenzie et al., 2020; Yuan et al., 2021). All these diseases for pathological conditions are generally associated with inflammatory reactions (Pender and Rist, 2001; Hoffmann et al., 2009; Degterev et al., 2019; Voet et al., 2019; Yuan et al., 2019; Lünenmann et al., 2021). The expression of cell death and the pathophysiological mechanism related to inflammation in these CNS diseases are similar to the phenotype and mechanism in the existing studies of PANoptosis, which provides basic evidence for the possible existence of PANoptosis and PANoptosomes in CNS diseases.

In the Web of Science database, we investigated the experimental research articles about pyroptosis, apoptosis and necroptosis in the field of the nervous system and sorted the related articles according to the citation frequency, from high to low. Selecting the top 2% articles (referring to and expanding Essential Science Indicators standards) for keyword extraction and analysis, it was found that ischemia accounted for the highest proportion among the three death forms of PANoptosis in nervous system. Stroke is the second major cause of disability and death in adults, with ischemic stroke accounting for the majority of all stroke cases (Viran et al., 2020), and the main injury of ischemic stroke is caused by ischemia/reperfusion (I/R) (Meschia and Brott, 2018; Campbell et al., 2019; Yan et al., 2020a). The pathophysiological state of I/R can cause secondary brain damage, and the pathophysiological process frequently involves an inflammatory reaction and immune system activation (Chamorro et al., 2016; Lambertsen et al., 2019; Shi et al., 2019; Yan et al., 2020b). Following the above argument we chose ischemia injury of the CNS as the analysis object.

We use bibliometrics, knowledge discovery and data-mining methods to capture evidence and analyze bibliometrics on the research of RCD related to ischemic injury of the CNS (Yan et al., 2020b) to assess the experimental research evidence on the involvement of PANoptosis in nervous system diseases. The demonstration of PANoptosis in ischemic injury of the CNS broadens the scope of PANoptosis research. This study takes a new approach to RCD research by exploring multiple RCD synchronously, pluralistically and comprehensively in ischemic injury of the CNS, and explores new ways to improve the intervention efficiency of RCD in nervous system diseases.

Materials and Methods

Data source

We chose PubMed, Scopus and Web of Science as the target databases. The key words were divided into three groups: (1) RCD, including pyroptosis, apoptosis and necroptosis; (2) CNS and their MeSH appositive words, hyponyms or hypernyms; and (3) ischemia. The refining function of the database limited the retrieval field to neuroscience or neurosurgery or neurology. The article type was limited to research articles. The retrieval of literature was completed on June 20, 2021. The end time of the publishing time range of the literature collections retrieved, with three cell death forms as the core theme, was June 20, 2021 but their start times differed as follows: (1) PubMed database: pyroptosis was on November 1, 2018; apoptosis was on May 1, 1995; necroptosis was on January 12, 2007. (2) Scopus database: The starting time of pyroptosis was on July 1, 2008; apoptosis on December 24, 1993. necroptosis started on July 1, 2005. (3) Web of Science database: The starting time of pyroptosis was on April 1, 2014; apoptosis on December 24, 1993; necroptosis on July 1, 2005. The retrieval strategy of each database was customized according to the usage standard of the database and the scale of the retrieved documents. Articles retrieved from each database were merged according to the three forms of cell death, and duplicate documents were screened and removed according to the inclusion criteria. The process of literature screening was shown in Figure 1.

Inclusion/exclusion criteria

Studies were potentially included if they met the following criteria: (1) The core content of the paper was to study ischemia or I/R injury or animal or cell models that can represent ischemia or I/R; (2) Rodents or primary cells or subculture cell lines were used as the experimental materials; (3) The target organ damaged in the experiment was either the brain or primary cells and subculture cells that can represent neurons; (4) The experimental results included two or more corresponding detection results that proved the existence of the three kinds of cell death: pyroptosis, apoptosis and necroptosis, one of which must be the key protein detection results of these three kinds of cell death forms; and (5) Damage treatment group and blank control group were included in the experimental design.

Figure 1 | Flow chart of literature screening.
Studies were excluded if they met any of the criteria: (1) Drug-induced animal model or cell model; (2) The target cells of the experimental study were non-neuronal cells (glial cells, endothelial cells, etc.); (3) The process and standard description of establishing the model were not given; and (4) The experimental evidence to prove the existence of any of the three cell death forms was insufficient.

Data mining and sorting analysis

Data such as cell types, animal species, modeling methods, evaluation of cell death and detection results of representative molecules of different cell death types were extracted from the included literature. The literature items exported from the database were imported into the literature management software, and two researchers with medical and biological knowledge independently read the literature one by one, conducted article selection and data mining, and obtained relevant data from the literature. The data obtained by the two researchers were compared, and the significant results were summarized in a table. When any inconsistent results occurred, the discussion and decision for inclusion involved the participation of the third researcher. The cluster analysis of in vitro experiments was based on the cell type and had to be that used in the study of pyroptosis, apoptosis, and necroptosis. Cluster analysis of in vivo experiments of animals was carried out according to the classification of common rodents, ensuring that the I/R operations performed on animals were of the same class. To summarize, the acquired core data was collated and analyzed using EndNote software (version X7.8, Clarivate Analytics, Boston, MA, USA) and Microsoft Excel software (version 2016, Microsoft Corporation, Redmond, WA, USA).

Results

A total of 57 articles were included in this study (18 articles in pyroptosis, 22 articles in apoptosis, and 17 articles in necroptosis; Figure 1), of which 22 were conducted on rodents only (including rats and mice) and 31 were conducted on primary cultured cells or cell lines only. The results established that 22 were conducted on primary cultured cells or cell lines only. From the included literature, we extracted 62 experiments that assessed pyroptosis or apoptosis or necroptosis. Of these studies, it was necessary to satisfy two conditions that would determine whether I/R injury in the experiment induced the occurrence of pyroptosis or apoptosis or necroptosis. One condition was that commonly used or academically recognized detection methods were used in the experiment, such as propidium iodide staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay, flow cytometry, cell counting kit-8 assay or lactate dehydrogenase assay to evaluate the degree of cell death induced by I/R injury. The other condition was that the key proteins of pyroptosis or apoptosis or necroptosis were detected (Table 1) (Fink and Cookson, 2005; Bergsbaken et al., 2009; Kaczmarek et al., 2013; Nikoletopoulou et al., 2013; Czabotar et al., 2009; Tuttolomondo et al., 2009; McBride and Zhang, 2017; Ryu and Mallet, 2018; Wang et al., 2018; Li et al., 2019; Zhang et al., 2019a), and these two methods have often been used to study the inflammatory reaction related to this kind of injury (Tuttolomondo et al., 2009; Ricó and Leaver, 2010; Mo et al., 2020a; Stanzione et al., 2020; Huang et al., 2021). Therefore, it is pertinent to discuss PANoptosis in MCAO and OGD models.

Kanneganti’s proposal is that PANoptosis is a newly defined form of cell death in diseases related to the immune response and can be regulated by a multimeric protein complex, named PANoptosome (Malireddi et al., 2019). This new form of cell death includes pyroptosis, apoptosis, and necroptosis. He proposes that a PANoptosome can interfere with pyroptosis, apoptosis, and necroptosis, each of which have been studied independently by other investigators. The existing research on PANoptosis suggests cyssteinyl aspartate-specific protease (CASP) 1 and CASP-11 that drive pyroptosis, CASP-8 that drives apoptosis and RIP3 that drives necroptosis can all be assembled into a PANoptosome, together with other components. The process of PANoptosis can be regulated by Z-DNA-binding protein 1 and TAK1 (Christgen et al., 2020; Malireddi et al., 2020). To support the theory that PANoptosis is a major factor in the I/R injury of the CNS first it is necessary to confirm that pyroptosis, apoptosis, and necroptosis have been shown to occur simultaneously from reports in existing literature on I/R injury. Second, a PANoptosome has to have been identified in I/R injury, and have proven to simultaneously initiate the three kinds of RCD. Third, there must be a regulatory system that controls PANoptosome activity.

The data we mined from the literature showed that in the study of cerebral I/R, under the same model condition, the three forms of cell death could occur simultaneously. According to our integrated data, after MCAO induced I/R injury in rat or mouse brain tissue and OGD induced ischemia-hypoxia injury in neurons or cell lines derived from nerve cells, pyroptosis, apoptosis, and necroptosis coexisted. This phenomenon accords with the first condition of the PANoptosis definition, and suggests that it is very possible that PANoptosis exists in nervous system diseases from the phenomenon level or the phenotype level of cerebral ischemia injury. We can see from the related studies of the three kinds of RCD—pyroptosis, apoptosis, and necroptosis—that the molecular mechanisms of these three kinds of cell death involve inflammation-related parts (Linkermann et al., 2013; Lu et al., 2019a; Guo et al., 2020; Wang et al., 2020c, 2021b; Chen et al., 2021; Liu et al., 2021b). There are also reports that glial cells can interfere with these three forms of cell death after being stimulated by injury (Zhao et al., 2017; Xu et al., 2019; Naito et al., 2020; Wang et al., 2020a; Li et al., 2021a; Liu et al., 2021b; Lu et al., 2021) and these overlap with the inflammation-related and immune-related reports of existing studies of PANoptosis. This suggests the possibility of PANoptosis in CNS diseases at the pathological mechanism level.

Table 1	The key proteins of three forms of cell death in PANoptosis
Cell death type	Key proteins
Pyroptosis	NLRP1, NLRP3, ASC, CASP-1, 4, 5, 11, C-CASP-1, GSDMD, IL-1β, IL-18
Apoptosis	CASP-3, 7, 8, 9, C-CASP-3, Bcl-2, Bax
Necroptosis	RIP1, p-RIP1, RIP3, p-RIP3, MLKL, p-MLKL

ASC: Apoptosis-associated speck-like protein containing a caspase recruit domain; Bax: B-cell lymphoma 2-associated X; Bcl-2: B-cell lymphoma 2; CASP: cysteinyl aspartate-specific protease; C-CASP: cleaved CASP; GSDMD: gama-interleukin; IL: interleukin; MLKL: mixed lineage kinase domain-like pseudokinase; NLRP: nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein; p-MLKL: phosphorylation of MLKL; p-RIP: phosphorylation of RIP; RIP: receptor-interacting protein kinase.

In the 36 cell-model-based experiments, oxygen and glucose deprivation (OGD) or OGD/recovery was used in most cell experiments to simulate ischemia or I/R injury. The researchers used primary hippocampal cells, primary cortical cells, PC12 cells (rat adrenal pheochromocytoma cells) and SH-SYSY (human neuroblastoma cells) cells for the experiments. We show the results according to the cell types used in the experiments (Tables 2–5). In the included studies, most were based on rodent models, middle cerebral artery occlusion (MCAO) or modified MCAO to simulate ischemia or I/R injury but some used the method of electric shock cardiac arrest and resuscitation. These modeling methods simulate cerebral I/R injury in experimental animals and are recognized in the research field. The studies used Sprague-Dawley rats or C57 mice, and we tabulated the results according to animal type and modeling method used in the experiment (Tables 6 and 7). In the process of data mining, we found that experimental models, apart from MCAO and OGD models, did not meet the condition that pyroptosis, apoptosis and necroptosis were studied simultaneously. We extracted 62 experiments from the 57 included papers. According to the experimental results included in our analysis it appears that in the same cell model or animal disease model three kinds of RCD, i.e., pyroptosis, apoptosis, necroptosis, were likely to occur simultaneously, which would mean that PANoptosis occurs in these experiments.

Discussion

In this study we selected MCAO and OGD as in vivo and in vitro experimental models, respectively, that can simulate I/R injury and its pathophysiology in the CNS. These two methods are the most widely used and generally recognized by researchers (Ryou and Mallet, 2018; Salvador et al., 2018). Many have studied RCD induced by I/R injury in the CNS using MCAO and OGD models (Czabotar et al., 2009; Tuttolomondo et al., 2009; McBride and Zhang, 2017; Ryu and Mallet, 2018; Wang et al., 2018; Li et al., 2019; Zhang et al., 2019a), and these two methods have often been used to study the inflammatory reaction related to this kind of injury (Tuttolomondo et al., 2009; Ricó and Leaver, 2010; Mo et al., 2020a; Stanzione et al., 2020; Huang et al., 2021). Therefore, it is pertinent to discuss PANoptosis in MCAO and OGD models.

Inflammation has been suggested to be involved in the pathogenesis and development of CNS diseases. The disturbances of CNS function are accompanied by pathological immune responses and inflammation. Studies have shown that pyroptosis, apoptosis, and necroptosis coexist in the CNS, which involves the PANoptosome. We found that pyroptosis, apoptosis, and necroptosis were coexisted in CNS diseases with the occurrence of inflammation, and the PANoptosome is involved in the phenomenon of inflammation in the CNS, which is consistent with the results obtained by Xin et al. (2017) and the current reports. This suggests that there could be a regulatory mechanism for PANoptosis, which could be a new type of cell death in diseases related to the immune response.
Oxygen-glucose deprivation/reperfusion (OGD/R) induces death of primary hippocampal cells

Sources	Treatments	Injury duration	Reperfusion duration	Death type	Assessment	Critical protein	Reference
SD rats	OGD/R	1.5 h	20 h	Pyroptosis	Hoechst 33342, PI, CCK-8	NLRP3, ASC, CASP-1, C-CASP-1, GSDMD-N, IL-17, IL-18	Zhang et al., 2021
SD rats	H/R	12 h	24 h	Pyroptosis	CCK-8	NLRP3, ASC, CASP-1, C-CASP-1, CASP-11, Diao et al., 2020	C-CASP-1, GSDMD-N, IL-17, IL-18
Mongolian gerbils	H/R	4 h	24 h	Pyroptosis	Hoechst 33342, MTT	NLRP1, NLRP3, pro-CASP-1, CASP-1, Zhu et al., 2019	CASP-3, C-CASP-3, Bcl-2, Bax
CS7BL/6 mice	OGD/R	3 h	24 h	Necroptosis	TUNEL, LDH	RIP1, RIP3, CASP-8	Yu et al., 2018
CS7BL/6 mice	OGD/R	2 h	48 h	Necroptosis	PI, LDH	RIP1, MLKL, p-MLKL	Yang et al., 2017
SD rats	OGD/R	2 h	24 h	Necroptosis	PI (Nec-1), LDH	RIP1, RIP3, CASP-8	Vieria et al., 2014

Oxygen-glucose deprivation/reperfusion (OGD/R) induces death of primary cortical cells

Sources	Treatments	Injury duration	Reperfusion duration	Death type	Assessment	Critical protein	Reference
CS7BL/6 mice	OGD/R	2 h	24 h	Pyroptosis	Hoechst 33342, PI, CCK-8	NLRP3, ASC, CASP-1, C-CASP-1, GSDMD-N, IL-17, IL-18	Sun et al., 2020
CS7BL/6 mice	H/R	1.5 h	4 h	Pyroptosis	PI, Flow cytometry	CASP-1, GSDMD, C-GSDMD, IL-17, IL-18	Tang et al., 2018
Wistar Rats	OGD/R	4 h	24 h	Necroptosis	Apoptosis	C-CASP-3	Wu et al., 2020
SD Rats	OGD/R	2 h	24 h	Necroptosis	PI, LDH, TUNEL	C-CASP-3, IL-17	Mo et al., 2020
SD Rats	OGD/R	2 h	48 h	Necroptosis	Apoptosis, TUNEL, MTT, Flow cytometry	Bcl-2, Bax	Zhou et al., 2019
SD Rats	OGD/R	3 h	24 h	Necroptosis	Apoptosis, TUNEL	C-CASP-3, Bcl-2, Bax	He et al., 2019
SD Rats	OGD/R	3 h	6, 24, 48, 72 h	Necroptosis	Apoptosis, LDH, TUNEL	C-CASP-3, Bcl-2, Bax	He et al., 2016
Balb/C mice	OGD/R	3 h	21 h	Necroptosis	Apoptosis, Flow cytometry	C-CASP-3, Bcl-2, Bax	Huang et al., 2014
CS7BL/6 mice	OGD/R	1 h	24 h	Necroptosis	PI, LDH, TUNEL	RIPI, RIP3, MLKL	Yuan et al., 2020
CS7BL/6 mice	OGD/R	1 h	24 h	Necroptosis	PI (Nec-1), LDH	RIPI, RIP3, MLKL	Li et al., 2019
SD Rats	OGD/R	2 h	0	Necroptosis	PI (Nec-1), LDH	RIPI, RIP3, p-RIP3, MLKL, p-MLKL	Wang et al., 2018
SD Rats	OGD/R	6 h	0	Necroptosis	LDH	RIPI, RIP3	Ni et al., 2018
SD Rats	OGD/R	6 h	24 h	Necroptosis	PI	RIPI, RIP3	Li et al., 2018
SD Rats	OGD/R	2 h	48 h	Necroptosis	PI (Nec-1), LDH	RIPI, RIP3	Kong et al., 2017

Oxygen-glucose deprivation/reperfusion (OGD/R) induces death of PC12 cells

Treatments	Injury duration	Reperfusion duration	Death type	Assessment	Critical protein	Reference
OGD/R	12 h	1 h	Pyroptosis	Hoechst 33342, PI, CCK-8	NLRP3, C-CASP-1, GSDMD-N	Zeng et al., 2020
OGD/R	2 h	2 h	Pyroptosis	MTT, LDH, TUNEL	C-CASP-1, 1p20, GSDMD	Li et al., 2021
OGD/R	12 h	4 h	Pyroptosis	MTT, TEM	NLRP3, ASC, C-CASP-1, GSDMD, GSDMD-N	Liu et al., 2021a
OGD	2, 4, 8, 12, 24 h	0	Apoptosis	MTT	C-CASP-3, Bcl-2, Bax	Lin et al., 2015
OGD	12 h	0	Apoptosis	Hoechst 33342, MTT, Flow cytometry	C-CASP-3, C-CASP-12, Bcl-2	Cao et al., 2016
OGD	0, 2, 4, 8, 24 h	24 h	Necroptosis	TUNEL, CCK-8	Bcl-2, Bax	Ren et al., 2019
OGD	8 h	0	Necroptosis	PI (Nec-1)	RIP1, RIP3, MLKL	Wang et al., 2018
H/R	8 h	24 h	Necroptosis	LDH, Flow cytometry	RIP1, RIP3, MLKL	Zhang et al., 2019b
The latest research suggests that a PANoptosome includes three kinds of protein: (1) Z-DNA-binding protein 1, a nucleotide-binding domain and a leucine-rich repeat pyrin domain containing protein 3 that play the role of sensor, (2) an apoptosis-associated speck-like protein containing a caspase recruitment domain, and a Fas-associated protein with death domain that are composite adapters and (3) a receptor-interacting protein kinase. These studies on the PANoptosome are related to infectious diseases and cancer, but there has been no study on PANoptosomes in the study of I/R injury of CNS. It can be seen from the data mined by us that nucleotide-binding domain and pyrin-domain containing protein; ASC: Apoptosis-associated speck-like protein containing a caspase recruit domain; Bax: B-cell lymphoma 2-associated X; Bcl-2: B cell lymphoma 2; CaMKII: Calcium/calmodulin-dependent kinase II; CASP: cysteinyl aspartate-specific protease; C-CASP: cleaved CASP; C-CASP-1: cleaved CASP-1; C-GSDMD: cleaved GSDMD; GSDMD: gasdermin D; GSDMD-N: N-terminal domain of gasdermin D; HE: hematoxylin-eosin staining; IF: immunofluorescence; IHC: immunohistochemistry; IL: interleukin; LDH: Lactate dehydrogenase; MLKL: mixed lineage kinase domain-like pseudokinase; NLRP3, ASC, CASP-1, C-CASP-1, GSDMD, GSDMD-N: N-terminal domain of gasdermin D; HE: hematoxylin-eosin staining; IF: immunofluorescence; IHC: immunohistochemistry; IL: interleukin; LDH: Lactate dehydrogenase; MCAO: middle cerebral artery occlusion; MCAO/R: MCAO/reperfusion; MLKL: mixed lineage kinase domain-like pseudokinase; MLKL: mixed lineage kinase domain-like pseudokinase; MTT: mitophagy; PARP: poly ADP-ribose polymerase; p-CaMKII: phosphorylation of CaMKII; PI: propidium iodide staining; PI (Nec-1): Nec-1 inhibited necroptosis, and after the addition of Nec-1, PI staining was performed to verify the occurrence of necroptosis by comparing with the control group; p-MLKL: phosphorylation of MLKL; RIP: receptor-interacting protein kinase; SD rats: Sprague-Dawley rats; TEM: transmission electron microscope; TUNEL: Tdt-mediated dUTP nick-end labeling.

Table 5 | Oxygen-glucose deprivation/reperfusion (OGD/R) induces death of SH-SYSY cells

Treatment	Injury duration	Reperfusion duration	Death type	Critical protein	Reference
OGD/R	2 h	3 h	Pyroptosis	NLRP3, ASC	An et al., 2019
OGD/R	2 h	6 h	Pyroptosis	NLRP3, ASC, CASP-1	Wang et al., 2020
MCAO/R	2 h	1 h, 3, 6, 24 h	Pyroptosis	NLRP3, AS, CASP-1, CASP-1, IL-1β	Liu et al., 2021
MCAO/R	2 h	24 h	Pyroptosis	NLRP3, ASC, CASP-1, CASP-1, IL-1β	Liu et al., 2021
CA/CPR/R	2 h	24 h	Pyroptosis	NLRP3, ASC, CASP-1, CASP-1, IL-1β	Liu et al., 2021
MCAO/R	2 h	0 h	Pyroptosis	NLRP3, ASC, CASP-1, CASP-1, IL-1β	Liu et al., 2021
MCAO/R	2 h	14 d	Apoptosis	C- CASP-3, C-CASP-3, IL-1β	Chen et al., 2017
MCAO/R	2 h	24 h	Apoptosis	C- CASP-3, C-CASP-3, IL-1β	Yang et al., 2021
MCAO/R	2 h	0 h	Necroptosis	C- CASP-3, C-CASP-3, IL-1β	Wang et al., 2021

The reference list includes a variety of studies on the relationship between PANoptosomes and ischemic brain injury, highlighting the potential of PANoptosomes as therapeutic targets for ischemic diseases. The review covers recent findings on the assembly and functions of PANoptosomes in ischemia-induced brain injury, providing insights into the potential of these complexes as therapeutic targets for ischemic diseases.
Summary and future directions

Analysis of existing research highlights how important PANoptosis is and shows how its interaction network of processes is associated with RCD. The concept of PANoptosis improves our understanding of RCD, suggesting that we should treat and understand RCD systematically, partially, and as a network. Although the current research focuses mainly on infectious diseases, this review proposes expanding investigations of PANoptosis to other diseases. In the pathophysiological mechanism of CNS diseases the inflammatory response and immune response play important roles that are similar to their effects in infectious diseases. Moreover, there are interactions between regulatory proteins that regulate the disease response and immune response of CNS diseases. However, systematic and comprehensive research on these interactions still needs further study. In future, the research on PANoptosis in CNS diseases should examine the interaction network of key regulatory proteins, identify a PANoptosome linked to CNS diseases, find the target of PANoptosis that can intervene in neurons and find new treatment strategies for diseases related to RCD.

Author contributions: All authors contributed equally to the manuscript, read and approved the final version of the paper for publication.

Conflict of Interest: The authors declare that there is no potential conflict of interest.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNon-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

©Article author(s) (unless otherwise stated in the text of the article) 2022. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

References

Ahcelin D, Jiang X, Morgan DG, Housser JE, Wang X, Akey CW (2002) Three-dimensional structural implications for assembly, protease binding, and activation. Mol Cell 9:423-432.

Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β- and IL-18-processing inflammasome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423-432.

Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β- and IL-18-processing inflammasome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423-432.

Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β- and IL-18-processing inflammasome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423-432.

Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β- and IL-18-processing inflammasome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423-432.

Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β- and IL-18-processing inflammasome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423-432.

Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β- and IL-18-processing inflammasome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423-432.
Karki R, Bratton SB, Langlais C, Walker G, Brown DG, Sun XM, Cohen GM (2000) Apaf-1 oligomerizes into biologically active approximately 700 kDa and inactivate approximately 1.4-MDa apoptosome complexes. J Biol Chem 275:6070-6077.

Campbell BEV, De Silva DA, Macleod MR, Coutts SWB, Schwarm LH, Davis SM, Donnan GA (1999) Ischemic stroke. Nat Rev Dis Primers 5:70.

Cao G, Wang Y, Hao LG, Sun XM, Guo Y, Li Y, Qiu Y, Liu Y (2018) YuFumai powder injection alleviates cerebral ischemia by inhibiting endoplasmic reticulum stress-mediated neuronal apoptosis. Oxid Med Cell Longev 2018:5493279.

Chamorro A, Drummond HA, Martyn SM (2016) Neuroprotection in acute stroke: targeting excitototoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15:869-881.

Chen S, Zuo Y, Huang L, Zhang S, Liu D, Yu S, Wang Y, Chen D, Yang J, Zhang Y, Jiang B, Liu F, Diao T, Huang T, Gao D, Jiang X, Hu S, Zhang L, Fei Z (2014) Resveratrol inhibits oxygen-glucose deprivation/recovery-induced cell death in ttl-like receptor-expressing microglia from developing rat brain. Cell Death Dis 5:1078.

Chen Y, Li Y, Guo L, Zuo Y, Wu J, Hu C, Chang C, Liu W, Xiong K (2011) Biomedical implications of the inflammasome and amyloidosis in brain. Front Pharmacol 2:76.

Chen Y, Li Y, Guo L, Zuo Y, Wu J, Hu C, Chang C, Liu W, Xiong K (2011) Biomedical implications of the inflammasome and amyloidosis in brain. Front Pharmacol 2:76.

Chen Y, Li Y, Guo L, Zuo Y, Wu J, Hu C, Chang C, Liu W, Xiong K (2011) Biomedical implications of the inflammasome and amyloidosis in brain. Front Pharmacol 2:76.

Chen Y, Li Y, Guo L, Zuo Y, Wu J, Hu C, Chang C, Liu W, Xiong K (2011) Biomedical implications of the inflammasome and amyloidosis in brain. Front Pharmacol 2:76.

Chen Y, Li Y, Guo L, Zuo Y, Wu J, Hu C, Chang C, Liu W, Xiong K (2011) Biomedical implications of the inflammasome and amyloidosis in brain. Front Pharmacol 2:76.
Wang W, Ge X, Liu X, Li N, Yang YG, Wu Z, Tian XY, Zhao CY, Chen MH (2021b) Inhibition of extracellular signal-regulated kinase/calcium-2 pathway reduces neuroinflammation and neuroprotection after cerebral ischemia-reperfusion injury in a rat model of cardiac arrest. Int Immunopharmacol 103377.

Wang Y, Guan XQ, Cao R, Wu Y, Zhao S, Qiu G, Li L, Pang T (2021) Medroxyprogesterone Acetate Inhibits LPS-Induced IL-6 and TNF-α Expression in Human Microglial Cells. Neuroimmune Pharmacol 16:100049.

Wang Z, Guo LM, Wang ZH, Wu SC, Chen DC, Deng HF, Kong XF (2018) Inhibition of HSP90α and HSP70 from cultured neurons from optic disc degeneration induced inhibition by decreasing RAP expression. J Cell Physiol 233:488-494.

Wu W, Wang TF, Yu QJ (2015) Lucbanian polygalaccharide pretreatment attenuates cerebral ischemic reperfusion injury by inhibiting apoptosis in mice. Zhong Yao Cai 38:3545-3549.

Wu J, Wang R, Feng Q, Cheng H, Xue J, Li (2020a) (1-C)-Clausenamide alleviates ER stress and apoptosis induced by OGD/R in primary neuron cultures. Neurosci Res 42:730-738.

Wu N, Wang JH, Wang L, Zhu YX, Zhu ZF, Wang YL, Wu YS, Zhang L, Xing Z, Li ZH, Liu H, Zhang R, Yu ZH, Yu CY (2019) Microglial TLR1 receptor mediates neuroinflammatory injury via interaction with SKY in experimental ischemic stroke. Cell Death Dis 10:697.

Xiong YJ, Li Y, Liu LX, Zhan FY, Man D, Liang Y, Lu ZR, Wang CY, Huang HJ (2020) Additional factors related to progression and death of fish bile poisoning in China: a retrospective study. Basic Clin Pharmacol Toxicol 127:419-428.

Yan WT, Li S, Yang YD, Nie WY, Cai YH, Xu MX, Zhang Q, Xiong K (2021) Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Front Neurol 12:6186-1637.

Yanamoto H, Nagata I, Niitsu Y, Xue JH, Zhang Z, Kikuchi H (2013) Evaluation of MCAO stroke models in normotensive rats: standardized neurochemical intoxication by the 3VO technique. Exp Neurol 245:261-30.

Yang Y, Gao H, Liu W, Liu X, Jiang X, Li X, Wu Q, Xu Z, Zhao Q (2021) Arctium lappa L. roots ameliorates cerebral ischemia-reperfusion injury by modifying the proliferation, apoptosis, and necrosis of hippocampal neuronal cells. Neurosci Res 121:105-20.

Yang M, Lv Y, Tian X, Lou J, An R, Zhang Q, Li M, Xu L, Dong Z (2017) Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury regulation of necroptotic neuronal cell death: in vivo and in vitro. Frontiers in Neurosci 11:347.

Yan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802-809.

Yuan J, Amin F, Offenegg D (2019) Necroptosis and RIP1-mediated neuroinflammation in CNS diseases. Neuroscience 418:189-204.

Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802-809.