Manuscript Title: Sensorimotor integration within the primary motor cortex by selective nerve fascicle stimulation
Authors: Ranieri F, Pellegrino G, Ciancio AL, Musumeci G, Noce E, Insola A, Diaz Babani LA, Di Lazzaro V, Di Pino G
Animal model used, if applicable: -
Underlying hypothesis: Selective sensory fiber stimulation evokes a detectable activity in the primary somatosensory cortex and it produces a short-latency inhibitory effect on the output of the primary motor cortex

Definitions of 'n':
- Question 1: n = number of tested stimulation sites
- Question 2: n = number of stimulation sites evoking sensory perceptions
- Question 3: n = number of stimulation sites evoking motor responses
- Question 4: n = number of recorded EEG sweeps after peripheral nerve stimulation
- Question 5: n = number of recorded EEG sweeps after peripheral nerve stimulation
- Question 6: n = number of recorded motor evoked potentials
- Question 7: n = number of recorded motor evoked potentials
- Question 8: n = number of recorded motor evoked potentials
- Question 9: n = number of recorded motor evoked potentials

Statistical summary table:

Experimental question number	Finding/conclusion	Experimental location/variable	Measure of central tendency (Median)	Dispersion (IQR)	n	Exact P value	Figure/table in which data are presented	Units	Data comparisons	Statistical test	Any other experimental factors	Comments
1.	To confirm activation of somatosensory and/or motor fibers by intraneural (IN) and perineural (PN) stimulation at different sites (i.e., electrode contacts)	IN sites selectively activate sensory fibers at low stimulation intensity	Left median nerve - Threshold stimulus intensity for evoking sensory perception and CMAP	-	-	30	-	Table 1, Fig. 3A	μA	-	Observation	
2.	To compare efficacy of IN and PN stimulation in activating somatosensory fibers	PN stimulation requires higher charge to recruit somatosensory fibers	BM threshold CM threshold	25.60 80.00	16.00 - 48.00 75.00 - 100.00	15 12	<0.0001	Fig. 2	nC nC	IM vs CM threshold	Mann-Whitney	
3.	To determine efficacy of IN and PN stimulation in activating motor fibers	PN stimulation requires higher charge to recruit motor fibers	CMAP recruitment curve with IN stim. CMAP recruitment curve with CM stim.	-	-	3 12	-	Fig. 3B	mV mV	-	Observation	
4.	To confirm evoked activity in the primary somatosensory cortex (S1) by transcutaneous whole nerve stimulation	Presence of the first cortical potential at ~17 ms	Right central region on the scalp	-	-	>2000	-	Fig. 4A-C	μV	-	Observation	
5.	Detectable evoked activity in S1 by intraneural (IN) stimulation?	Presence of the first cortical potential at ~16 ms	Right central region on the scalp	-	-	>7000	-	Fig. 4D	μV	SEPs by IN vs transcutaneous stimulation	Observation	
6. Short-latency afferent inhibition (SAI) of MEPs by invasive nerve stimulation?

Site: all IN and PN	MEP inhibited by IN/PN afferent stimulation	ISIs and SIs	MEP amplitude (mV)	Ratio vs MEP uncond	P-value
MEP_uncond	0.9480	0.7322 - 1.2463	72	<0.0001	
MEP_ISI15-21	0.7135	0.4823 - 0.9067	246		
MEP_high variable	0.9766	0.6244 - 1.761	12		
MEP_ISI15-16	0.5216	0.3185 - 0.7512	12	0.0056	
MEP_ISI17-19	0.5189	0.2459 - 0.6702	18	0.0005	
MEP_ISI20-21	0.5216	0.3185 - 0.7512	12	<0.0001	
MEP_low variable	0.9766	0.6244 - 1.761	12		
MEP_ISI15-16	0.3409	0.3024 - 0.4847	11	0.0003	
MEP_ISI17-19	0.5608	0.3130 - 1.2687	18	0.6615	
MEP_ISI20-21	0.8623	0.5800 - 1.2833	11	0.7399	
MEP_higher variable	0.9766	0.6244 - 1.761	12		
MEP_ISI15-16	0.5743	0.4302 - 0.7747	10	0.0804	
MEP_ISI17-19	0.8080	0.6734 - 1.2903	18	0.8187	
MEP_ISI20-21	0.7766	0.5497 - 1.0317	11	0.6505	
MEP_lowest variable	0.9238	0.7281 - 1.3236	12		
MEP_ISI15-16	0.4691	0.2912 - 0.8016	12	0.1445	
MEP_ISI17-19	0.8294	0.6155 - 0.8890	18	0.2486	
MEP_ISI20-21	0.7199	0.4266 - 1.3788	12	0.4428	
MEP_lowest variable	0.9238	0.7281 - 1.3236	12		
MEP_ISI15-16	1.0070	0.7925 - 1.1718	12	0.0045	
MEP_ISI17-19	0.5930	0.4705 - 0.8073	12	0.0014	
MEP_ISI20-21	0.7285	0.5830 - 0.8265	18		
MEP_lowest variable	0.8810	0.7476 - 1.2036	12		
MEP_ISI15-16	0.7285	0.5830 - 0.8265	18		
MEP_ISI17-19	0.8294	0.6155 - 0.8890	18		
MEP_ISI20-21	0.7199	0.4266 - 1.3788	12		
MEP_lowest variable	0.8810	0.7476 - 1.2036	12		
MEP_ISI15-16	0.8925	0.8124 - 1.0975	12		
MEP_ISI17-19	0.6819	0.5788 - 0.9856	18		
MEP_ISI20-21	0.8344	0.6683 - 0.9656	12		
MEP_lowest variable	0.8925	0.8124 - 1.0975	12		
MEP_ISI15-16	0.7199	0.4266 - 1.3788	12		
MEP_ISI17-19	0.6819	0.5788 - 0.9856	18		
MEP_ISI20-21	0.8344	0.6683 - 0.9656	12		
MEP_lowest variable	0.8925	0.8124 - 1.0975	12		

Control condition: no MEP inhibition at an ISI shorter than the physiological range

Site: IN and PN	MEP inhibited at IN and PN	ISIs and SIs	MEP amplitude (mV)	Ratio vs MEP uncond	P-value
MEP_uncond	0.9360	0.5368 - 1.2820	14	0.4940	
MEP_ISI8	1.1450	0.6937 - 1.4997	12		

7. SAI magnitude at different IN and PN stimulation sites?

SAI	SAIs between sites	Ratio vs SAI_increasing range	P-value		
SAI_IM12	SAI_IM10	0.3830	0.2506 - 0.6523	42	<0.0001
SAI_IM16	SAI_IM10	0.7019	0.3640 - 1.2173	40	
SAI_CM5	SAI_CM5+14	0.7441	0.5377 - 1.0230	39	
SAI_CM5+14	SAI_CM5	0.7277	0.4155 - 1.0525	42	
SAI_CUS	SAI_CUS+14	0.7110	0.5440 - 0.9090	41	
SAI_CUS+14	SAI_CUS	0.8406	0.6296 - 0.9917	42	

SAI	Ratio vs SAI_increasing range	P-value								
SAI_IM12>SAI_IM16	SAI.IM12	0.0010								
SAI_CM5>SAI_CM5+14	SAI.IM12	<0.0001								
SAI_CM5+14>SAI_CM5	SAI.IM12	0.0007								
SAI_CUS>SAI_CUS+14	SAI.IM12	<0.0001								
SAI_CUS+14>SAI_CUS	SAI.IM12	<0.0001								
SAI magnitude at different ISIs by invasive (IN and PN) different stimulation?	SAI depends on ISI	SAI_ISI15-16	SAI_ISI15-17	SAI_ISI15-19	SAI_ISI15-20	SAI_ISI15-16 vs SAI_ISI17-19 vs SAI_ISI20-21	P value	Fig. 6B	ratio	Kruskal-Wallis
---	---	---	---	---	---	---	---	---	---	---
	SAI_ISI16-17 > SAI_ISI15-16	0.6388	0.3591 - 0.8373	0.7766	0.4960 - 0.9639	0.4276 - 0.8263	0.0374			
	SAI_ISI16-18 > SAI_ISI15-18	0.8258	0.5900 - 0.9639	0.7766	0.4960 - 0.9639	0.4276 - 0.8263	0.0472			

SAI magnitude at different muscle targets by transcutaneous whole-nerve stimulation?	SAI is lower in the amputated side	SAI_BB.R>MFM.R	SAI_BB.L+MFM.L	0.4341	0.3189 - 0.5359	0.6724	0.6100 - 0.7288	0.0001	Fig. 7	ratio	Sr.I vs Sr.L	Kruskal-Wallis
	SAI_BB.R > SAI_BB.L	0.4837	0.4238 - 0.6526	0.6517	0.6039 - 0.7106	0.3056	0.2638 - 0.3474	0.0005		ratio	SAI_BB.R vs SAI_BB.L	Mann-Whitney
	SAI_MFM.R > SAI_MFM.L	0.3893	0.2955 - 0.4854	0.6860	0.6238 - 0.7386	0.3056	0.2638 - 0.3474	0.0001		ratio	SAI_MFM.R vs SAI_MFM.L	Mann-Whitney

SAI not significantly different between arm and forearm muscles	SAI_BB.R+L	SAI_MFM.R+L	0.5697	0.8474 - 0.9053	0.5697	0.3940 - 0.6997	0.3611			

| SAI not significantly different between arm, forearm, and hand muscles of the intact side | SAI_BB.R | SAI_MFM.R | SAI_OP.R | 0.4637 | 0.4238 - 0.6526 | 0.3893 | 0.2955 - 0.4854 | 0.4460 | 0.2835 - 0.5934 | 0.0818 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|

3/3