Neofunctionalization of a Noncoding Portion of a DNA Transposon in the Coding Region of the Chimerical Sex-Determining Gene dm-W in Xenopus Frogs

Shun Hayashi,† Kosuke Suda,† Fuga Fujimura,† Makoto Fujikawa,† Kei Tamura,† Daisuke Tsukamoto,† Ben J. Evans ‡, Nobuhiko Takamatsu,† and Michihiko Ito†,*

†Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
‡Department of Biology, McMaster University, Life Sciences Room 328, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1

*Corresponding author: E-mail: ito@sci.kitasato-u.ac.jp.
Associate editor: Aya Takahashi

Abstract

Most vertebrate sex-determining genes (SDGs) emerge as neofunctionalized genes through duplication and/or mutation of ancestral genes that are involved with sexual differentiation. We previously demonstrated dm-W to be the SDG in the African clawed frog Xenopus laevis and found that a portion of this gene emerged from the masculinization gene dmrt1 after allotetraploidization by interspecific hybridization between two ancestral species around 17–18 Ma. dm-W has four exons consisting of a noncoding exon 1, dmrt1-derived exons 2 and 3, and an orphan exon 4 (Ex4) of unknown origin that includes coding sequence (CDS). In this study, we searched for the origin of Ex4 and investigated the function of the CDS of this exon. We found that the Ex4-CDS is derived from a noncoding portion of the hAT-10 family of DNA transposon. Evolutionary analysis of transposons and determination of the Ex4 sequences from three other species indicated that Ex4 was generated before the diversification of most or all extant allotetraploid species in subgenus Xenopus, during which time we hypothesize that transposase activity of this hAT superfamily was active. Using DNA–protein binding and transfection assays, we further demonstrate that the Ex4-encoded amino acid sequence increases the DNA-binding ability and transrepression activity of DM-W. These findings suggest that the conversion of the noncoding transposon sequence to the CDS of dm-W contributed to neofunctionalization of a new chimeric SDG in the ancestor of the allotetraploid Xenopus species, offering new insights into de novo origin and functional evolution of chimerical genes.

Key words: sex determination, transposon, chimeric gene, interspecific hybridization, frog, transcription factor.

Introduction

In vertebrates, sex-determining genes (SDGs) evolved independently many times (Ito and Mawaribuchi 2013; Pan et al. 2016). Most SDGs emerged via neofunctionalization (Mawaribuchi et al. 2012); for example, mammalian Sry (Sex-determining region of Y) evolved through allelic divergence from Sox3 (Sry-box 3) in the ancestor of therian mammals (Foster and Graves 1994), and dmy/dmrt1bY and dm-W independently evolved from duplicates or partial duplicates of dmrt1 (doublesex and mab-3 related transcription factor 1) in ancestors of the teleost fish medaka and the frogs of the subgenus Xenopus, respectively (Matsuda et al. 2002; Nanda et al. 2002; Yoshimoto et al. 2008; Bewick et al. 2011). Sox3 and dmrt1 encode transcription factors with two different DNA-binding domains—HMG (high mobility group) and DM domains, respectively. The SDGs dmy, dm-W, and Sry each have higher substitution rates than their respective paralogous or gametologous genes, dmrt1, dmrt1, and Sox3 (Mawaribuchi et al. 2012). Dmrt1, which probably originated in the most recent common ancestor of vertebrates (Mawaribuchi et al. 2019), functions in testis formation to promote somatic-cell masculinization gene and germ cell development (Smith et al. 2009; Matson et al. 2010, 2011; Yoshimoto et al. 2010; Masuyama et al. 2012; Zarkower 2013; Zhao et al. 2015; Fujitani et al. 2016; Mawaribuchi, Musashijima, et al. 2017; Ge et al. 2018).

Early during evolution of the subgenus Xenopus, an allopolyploidization event between two closely related diploid species generated the tetraploid ancestor of all species with 36 chromosomes; subsequent allopolyploidization events generated octoploid (72 chromosome) and dodecaploid (108 chromosomes) species (reviewed in Evans 2008). The initial allopolyploidization event in subgenus Xenopus is estimated to have occurred around 17–18 Ma (million years ago) and resulted in two “subgenomes”—L and S—that are respectively derived from each diploid ancestor (Session et al. 2016) (see supplementary fig. S1, Supplementary Material online). Although it resides on chromosome 2 of the L subgroupene,
the SDG *dm-W* evolved from the S subgenome homeolog of *dmrt1 (dmrt1.5)* and is carried by several species in subgenus *Xenopus* including highly diverged species pairs such as *Xenopus clivii* and *X. laevis* (Bewick et al. 2011; Cauret et al. 2020). The contrast between the genealogical relationship (closer to *dmrt1.5*) and its genomic context (in subgenome L) coupled with its phylogenetic distribution in many species in subgenus *Xenopus* argues that this gene became established in its current location after allotetraploidization but before the diversification of extant allotetraploids in subgenus *Xenopus* (Bewick et al. 2011; Mawaribuchi, Takahashi, et al. 2017; Cauret et al. 2020; see supplementary fig S1, Supplementary Material online). Analysis of sequence homology suggests that *dm-W* is a chimeric gene with Ex2 and Ex3, which encode the DM domain being derived from *dmrt1.5* and Ex1 and Ex4 being of unknown origin (Yoshimoto et al. 2008; Mawaribuchi, Takahashi, et al. 2017). Thus, *dm-W* has no homology to *dmrt1* exons 4–6, which encodes a transregulation domain (Yoshimoto et al. 2010). Moreover, it remains unclear whether the distinct components of *dm-W* (Ex1, Ex2 + 3, and Ex4) became juxtaposed before allotetraploidization in the diploid ancestor of subgenome S and then later tandemly translocated to subgenome L after allotetraploidization, or whether juxtaposition of these components occurred after translocation of Ex2 + Ex3 to subgenome L in the allotetraploid ancestor of subgenus *Xenopus*.

In *X. laevis*, *dm-W*-expression or *dm-W*-knockdown in ZZ or ZW tadpoles induces ovarian and testicular formation, respectively (Yoshimoto et al. 2008, 2010). The sequence of the DNA-binding domain of DMRT1 is highly conserved across mammals, amphibians, and fish (Murphy et al. 2007; Yoshimoto et al. 2010; Ogita et al. 2020). In vitro assays indicate that DM-W antagonizes the transcriptional activation of downstream genes by DMRT1 (Yoshimoto et al. 2010). This is consistent with a model for sex determination in *X. laevis* wherein DMRT1 activates masculinizing genes in males by binding to their cis-elements in ZZ primordial gonads, whereas DM-W represses the transcriptional activity of DMRT1 in females by competing with DMRT1 for binding to cis-regulatory elements in ZW primordial gonads, leading to feminization (Yoshimoto et al. 2010; Yoshimoto and Ito 2011). In vitro assays indicate that the DNA-binding affinity to a consensus binding sequence is higher for DM-W than DMRT1 (Ogita et al. 2020), which is consistent with this model. These findings suggest that *dm-W* functions as a dominant-negative protein that counteracts the masculinization factor *dmrt1*, and that DM-W is a repressor of primary male sexual differentiation in *X. laevis* (Yoshimoto and Ito 2011).

Transposable elements (TEs) are able to change genomic locations or generate new copies in of themselves, and are generally considered to not benefit the host genome (i.e., “selfish DNA”). However, TEs may also influence genome architecture, gene expression, and gene content in beneficial ways (Anderson and Springer 2018; Ågren and Clark 2018; Bourque et al. 2018). For example, the generations of at least two SDGs might be linked to TE activity that influence transcription: TE-cis-regulatory modules influence expression of the SDG *gsdf* on the Y chromosome of sablefish, and in the fighting fish, *dmrt1* on the X chromosome is subject to TE-induced epigenetic silencing (Herpin et al. 2021; Wang et al. 2022). Several eukaryotic protein-coding genes originated (partially) from TEs, such as Gary (which arose from a transposase genes) or Rag (which arose from retrotransposons and DNA transposons) (Fugmann 2010; Alzohairy et al. 2013). TEs are also the source of various long and functionally important noncoding RNAs (reviewed in Bourque et al. 2018).

However, of ~900 genes that arose de novo in an ancestor of seven closely related *Caenorhabditis* species including *C. elegans*, <1% arose from TEs (Zhang et al. 2019), and this mode of gene origin appears to also be infrequent in insects (Wissler et al. 2013). Not surprisingly, most examples of novel CDSs that arose from TEs involve coding sequence (CDS) of TEs, as opposed to non-CDS. There are very few examples of noncoding portions of TEs becoming exon(s), resulting in the generation of different isoform proteins. Two examples include a retrotransposon-derived non-CDSs that evolved to function through alternative splicing as a CDS in bovine EP3 receptor gene and a novel TE-derived exon in mouse *Sry* (Shimamura et al. 1998; Miyawaki et al. 2020).

As discussed above, *dm-W* is a chimerical SDG that arose in an ancestor of allotetraploid *Xenopus* frogs that triggers female sexual differentiation in some *Xenopus* species; one portion of this gene arose from partial duplication of the masculinizing gene *dmrt1* but the other portion is of unknown origin. The goals of this study are to determine where the orphan exon 4 of *dm-W* came from and what its function may be. To this end, we first deployed a bioinformatic strategy to search for sequences homologous to Ex4 and found that it was derived from a noncoding region of the DNA transposon *hAT-10* family belonging to widespread eukaryotic *hAT* (*hobo, Ac*, and *Tam-3*) superfamily. We then performed in vitro and cotransfection assays that demonstrate that the Ex4-derived amino acid sequences both increase the DNA-binding ability of DM-W and the transrepression activity of DM-W on DMRT1. These findings indicate that the evolutionary origin and neofunctionalization of *dm-W* was achieved by a combination of partial gene duplication of *dmrt1* coupled with the recruitment of a non-CDS transposon sequence into a functionally important component of the CDS of *dm-W*.

Results

dm-W Ex2 and Ex3 and Flanking Regions are Derived from *dmrt1.5*

To clarify the origin of the components of the chimeric gene *dm-W*, we first compared the genomic sequences of *X. laevis* *dm-W, dmrt1.5, dmrt1.1*, and *X. tropicalis* *dmrt1*, which were obtained from the *X. laevis* genome.
The CDS of \(dm-W\) Ex4 Evolved from a Non-CDS of the hAT-10 DNA Transposon Family

We previously reported the accumulation of TEs in W-specific regions of \(X.\) laevis (Mawaribuchi, Takahashi, et al. 2017). We examined the TE density in 80 kb region in and around \(dm-W\) using the CENSOR program (www.girinst.org/censor/index.php) (Kohany et al. 2006). There is a higher proportion of TEs in the \(dm-W\)-containing region (69.1%) than in the \(dmrt1.L\) or \(dmrt1.S\)-containing region (34.0% or 27.9%, respectively) as indicated by the red-blue gradient in supplementary fig. S4, Supplementary Material online. Interestingly, TEs were identified not only within introns 1–3, but also within Ex4 of \(dm-W\) (supplementary fig. S5, Supplementary Material online). We then performed a focused search for TE-like sequences in and around Ex4. Here hAT-10 DNA transposon-like fragments were found to comprise more than half of intron 3, a portion of the 5′ region of Ex4, and about 250 bp of the 3′-flanking region of Ex4 (fig. 1A and supplementary fig. S5, Supplementary Material online). In Ex4, we identified three regions designated as A, B, and C spanning a total of 683 bp with sequence similarity to \(X.\) tropicalis hAT-10: region A (133 bp of the 3′ region on intron 3 and 16 bp of the 5′ region on Ex4), region B (219 bp of the central portion of Ex4), and region C (108 bp of the 3′ portion of Ex4 and 207 bp of the 3′-flanking region downstream of Ex4) (fig. 1 and supplementary fig. S6A, Supplementary Material online). The A and C regions were recognized by CENSOR, and had relatively high nucleotide identity (81.8% and 76.4%, respectively) with the corresponding sequences of \(X.\) tropicalis hAT-10, whereas the region B between A and C had a lower identity (56.9%) with \(X.\) tropicalis hAT-10 (fig. 1B). We then searched for similar nucleotide sequences to these regions containing the CDS of \(dm-W\) Ex4 in the \(X.\) laevis genome using BLAST, and found four sequences on scaffolds 19, 30, chromosome 2L, and chromosome 7L. All included hAT transposon fragments that had higher sequence similarities with the regions A and B of \(dm-W\) (85.7–92.3% and 74.5–85.4%, respectively) than with \(X.\) tropicalis hAT-10 (fig. 1B and supplementary table S1, Supplementary Material online). Using the CENSOR program, we also detected 14 bp of terminal inverted repeats, which are also a feature of DNA transposons, around \(dm-W\) Ex4 and the four hAT-10-like sequences (supplementary figs. S6A and B, Supplementary Material online). Together, these results indicate that these five sequences with high similarity in the \(X.\) laevis genome—including \(dm-W\) Ex4—are derived from the hAT-10 family. The hAT-10 transposon family contains one protein gene encoding a BED zinc-finger transposase consisting of 1033 amino acids (Hellsten et al. 2010). We found the corresponding region to this hAT-10 CDS in intron 3 of \(dm-W\), but not in Ex4 of \(dm-W\) (fig. 1A). Therefore, we conclude that the CDS of \(dm-W\) Ex4 evolved from a non-CDS of a hAT-10 transposon to now encode the C-terminal region of the DM-W protein.

To further clarify how the transposon-derived non-CDS evolved into CDS of Ex4, we performed sequence alignment among the sequences around the Ex4-coding region and its corresponding sequences from the four Ex4-like sequences derived from hAT-10 using MUSCLE (fig. 1C and supplementary fig. S6A and B, Supplementary Material online). The comparison identified two point mutations consisting of a deletion and substitution that eliminated a frame-shift mutation and formed a stop codon in the ancestral hAT-10-derived sequences, thereby resulting in the generation of a 71 amino acids CDS in the C-terminal of \(dm-W\) that are encoded by Ex4 (fig. 1C).

The Time of Allotetraploidy in Subgenus Xenopus Coincides with a High Rate of Replicative Transposition of \(dm-W\) Ex4-like hAT Transposons

To clarify the timing of divergence of hAT-10 transposons from \(dm-W\) Ex4-related sequences, we blasted the hAT-10 sequence in 14 vertebrate genomes, including eight amphibian species (fig. 2A). All the vertebrate genomes examined had at least one copy of a \(X.\) tropicalis (Xt) hAT-10 transposase-like sequence. The caecilian and six nonamphibian species contained far fewer copies, including host–transposase fusion genes (Cosby et al. 2021), which might be derived from the hAT superfamily. However, all the amphibians except for the caecilian have hundreds of copies in their genomes. This suggests that hAT-10
transposons expanded in urodeles and anurans and/or their most recent common ancestor after divergence from caecilians. *hAT-10*-derived Ex4-like sequences corresponding to regions A–C were found only in anuran amphibians and appeared to actively expand only in the *Xenopus* genus (fig. 2A). Notably, 9 and 23 copies of the Ex4-CDS-like sequence corresponding to region B were detected in the two allotetraploid species *X. laevis* and *X. borealis*, respectively, whereas no copies were found in the diploid species *X. tropicalis*. As well, ~2–3 times as many...
sequences similar to regions A and C were identified in X. laevis and X. borealis compared with X. tropicalis (Fig. 2A). Moreover, in the other allotetraploid X. borealis, we found six sequences of the hAT-10-derived transposon fragments sharing some sequence similarities with the three regions, A, B, and C of dm-W (80.1–89.7%, 71.4–76.3%, and 74.5–84.0%, respectively) (Supplementary Table S2 and Fig. S7, Supplementary Material online), suggesting the existence of the ancestral hAT-10 transposon with the Ex4-like sequence in the most common ancestor of X. laevis and X. borealis. Overall, this indicates that the rate of replicative transposition of this class of hAT transposons increased in African clawed frogs, and particularly so after divergence of the most common ancestor of X. laevis + X. borealis from the ancestor of X. tropicalis.

To understand evolutionary trends of hAT transposon superfamily in Xenopus, we constructed repeat landscape of the hAT superfamily consisting of hAT-Tp100, hAT-Charlie, hAT-Blackjack, hAT-Ac, and hAT, using X. laevis genome database and RepeatMasker (Fig. 2B). The activation peak of the hAT superfamily was observed around 0.05 substitutions per site. The nucleotide substitution rate in X. laevis was estimated to be 3.0×10^{-9} to 3.2×10^{-9} substitutions per year (Session et al. 2016). Using this rate, we estimated the divergence time of the hAT-10-derived sequence in dm-W by comparing the sequence recognized as hAT-10 by CENSOR and its corresponding one from a consensus X. laevis hAT-10. We calculated a median divergence to consensus of 0.054, which corresponds to an estimated peak transposon activity as 17.0–18.0 Ma. Interestingly, we recently found the activation peak of total DNA transposons in the two allotetraploid Xenopus species, X. laevis and X. borealis to be about 17.0 Ma, which is around the hybridization (Suda et al. 2022). These results suggest that the dm-W-ancestral hAT-10 transposon was inserted into the ancestral chromosome 2L roughly around the time of allotetraploidization during the active peak period of DNA transposons including hAT superfamily, although we cannot definitively determine whether this was before or after this event.

Emergence and Molecular Evolution of the Chimeric Gene dm-W Before Diversification of Most Species in Subgenus Xenopus

To further understand the timing of emergence of Ex4, we tried to identify dm-W Ex4-CDs from three allotetraploid species, X. borealis, X. laevis, and X. petersii, and one allooctoploid species, X. itomwensis. We performed PCR using genomic DNA and primer pairs designed by the conserved sequences of X. laevis dm-W and the four hAT-10-like sequences (Supplementary Fig. S6, Supplementary Material online). Ex4-like sequences were
obtained from X. largeni, X. petersii, and X. itombwensis, but not from X. borealis. Multiple sequence alignment and phylogenetic analysis revealed that the sequences obtained from the three species contained the Ex4-CDSs of dm-W (fig. 3A). The Ex4-CDSs in the three species were highly conserved with that of X. laevis and had two of the same mutations consisting of one nucleotide deletion and substitution as those of X. laevis (figs. 1C and 3A), suggesting that dm-W Ex4 in these species are homologous. Interestingly, the Ex4-CDSs from X. itombwensis and X. largeni or X. petersii encoded 43 or 67 amino acids, whereas X. laevis contained 71 amino acids (fig. 3B). These differences are caused by a single nucleotide mutation that generated a UAG stop codon in the upstream region of an ancestor of X. itombwensis and X. largeni and a frameshift mutation caused by the deletion of 16 nucleotides in the ancestor of X. petersii (fig. 3A). Exons 2 and 3 of dm-W were present in the ancestor of all species in subgenus Xenopus (Cauret et al. 2020). These results demonstrate that dm-W Ex4 was also present at least as early as the most recent common ancestor of X. largeni, X. itombwensis, X. laevis, and X. petersii—this ancestor diversified after divergence from the muelleri species group (X. clivii, X. borealis, X. muelleri, X. fischbergi, and X. fraseri) (Evans et al. 2015, 2019).

The 71 Amino Acid Sequence Encoded by the hAT-10 Transposon-derived Ex4 Increases the DNA-binding Affinity of DM-W

As detailed above, the hAT-10-derived Ex4 encodes the C-terminal region of DM-W, which consists of 71 amino acid residues in X. laevis. To clarify the function of this portion of the DM-W peptide, we examined the effect of the region on the DNA-binding ability of the DM domain encoded by Ex2 and Ex3. An in vitro DNA–protein binding assay by Electrophoretic Mobility Shift Assay (EMSA) using 30 bp of DM-W/DMRT1-binding DNA sequence (Yoshimoto et al. 2010) was performed for full-length DM-W and its C-terminal truncated protein DM-W (Δ124–194) carrying no Ex4-encoding 71 amino acid sequence (fig. 4A, left). The amount of each protein, which was produced by in vitro transcription/translation, was quantified using western blot analysis (fig. 4A, right). The assay showed that the full-length DM-W had a stronger binding ability to its binding sequence than the truncated DM-W peptide (Δ124–194) (fig. 4A). These results indicate that the Ex4-encoding 71 amino acid sequence increases the DNA-binding affinity of DM-W to a DM-W/DMRT1-binding DNA sequence, which is consistent with previous assays (Yoshimoto et al. 2010).

We next examined the effects of full-length and C-terminal truncated DM-W proteins on the transcriptional activity of DMRT1 using a luciferase reporter plasmid carrying four copies of the DM-W/DMRT1-binding cis-element, which were used for the in vitro DNA–protein binding assay. HEK 293 T-cells were transiently cotransfected with the reporter plasmid and expression plasmids for DMRT1.S, DM-W (full length), and/or truncated DM-W (Δ124–194). The reporter assay showed that DMRT1-driven transactivation activity was more repressed by DM-W (full length) than the truncated DM-W (Δ124–194) (fig. 4B). In other words, the hAT-10 transposon-derived C-terminal region increases the trans-repression activity of DMRT1.S by DM-W, compared with a truncated version of DM-W that lacks the hAT-10 transposon-derived C-terminal region. Collectively, these findings indicate that the hAT-10 transposon-derived Ex4 may enhance the DNA-binding ability of DM-W to DM-W/DMRT1-binding cis-elements.

Discussion

Only about ten vertebrate SDGs have been identified so far; these encode various types of proteins, including transcription factors, a sex-steroid-synthesizing enzyme, and TGF-β signaling-related ligands and receptors (Mawaribuchi et al. 2012; Nagahama et al. 2021). Most SDGs were generated independently through duplication or allelic mutations in ancestral genes that functioned in gonadal differentiation. As discussed above, Xenopus dm-W and medaka fish dmy independently evolved from a broadly conserved, male-related transcription factor dmrt1 into a male repressor and male inducer, respectively (Yoshimoto and Ito 2011). Parallel amino acid substitutions enhanced DNA-binding activities in ancestral genes of both dm-W and dmy, which suggested a common mechanism for the establishment of these SDGs (Ogita et al. 2020). In this study, we demonstrate that a non-CDS derived from a hAT-10 DNA transposon evolved into the Ex4-CDS in the C-terminal region of DM-W, and that this addition strengthened the DNA-binding activity of the DM domain encoded by Ex2 and Ex3 (figs. 1, 2, and 4). These findings suggest that the molecular evolution from the non-CDS to the CDS was a fundamental event in the emergence of dm-W as a male repressor SDG.

dm-W is a chimeric gene (Yoshimoto et al. 2008), which is an unusual mode of origin among known SDGs. Although most therian orthologs of Sry have a single exon, mouse Sry encode two isoforms, single exon-derived SRY-S, and two exon-derived SRY-T (Miyawaki et al. 2020). The Ex2 gene of Sry-T encodes 15 amino acid sequence derived from a retrotransposon-derived sequence (a long interspersed nuclear element L3), which includes a degron that regulates protein degradation rates (Koren et al. 2018; Miyawaki et al. 2020). The participation of the L3 retrotransposon-derived sequence is hypothesized to maintain Sry function during rodent diversification (Miyawaki et al. 2020). Similarly, the hAT-10 transposon-derived sequence of dm-W appears to influence the DNA-binding affinity of this protein, and is thus also of functional significance. However, there is a key difference between these SDGs in terms of their maintenance and emergence: the degron-SDG of rodent Sry-T might be responsible for the continued functioning of its sex determination’s role in some rodents even though this sequence is not required in other therian mammals. In contrast, the
hAT-10 transposon-derived sequence may have been essential for the ancestral neofunctionalization of dm-W into an SDG.

We previously proposed an evolutionary model for the relationship between SDGs and sex chromosomes, in which undifferentiated (homomorphic) sex chromosomes more frequently undergo sex chromosome turnover via the origin of new SDGs than do differentiated (heteromorphic) sex chromosomes (Mawaribuchi et al. 2012). *Xenopus laevis* has morphologically homomorphic sex chromosomes (Tymowska 1991). Recently, we demonstrated from sequence analysis of the genome that W and Z sex chromosomes, which are gametologous versions of chromosomes 2L, have ~280 kb W-specific sequences containing dm-W and an ~80 kb Z-specific sequence (Session et al. 2016; Mawaribuchi, Musashijima, et al. 2017). We also found that the W- and Z-specific regions have three (including dm-W) and one gametolog-specific genes, respectively, although apart from dm-W we do not know their function (Mawaribuchi, Musashijima, et al. 2017). In this study, we performed a detailed analysis of the molecular evolution of dm-W (fig. 2), indicating that dm-W arose around the time of allotetraploidization in subgenus *Xenopus*. It is possible that dm-W evolved as a new SDG in a newly evolved allotetraploid ancestor with an unstable sex-determining system after hybridization between two ancestral diploid species, both of which had homomorphic sex chromosomes. After the establishment of dm-W as SDG, homologous recombination suppression may have led to the accumulation of mutations and TEs. Although most TEs are often recognized as “junk DNA” in host organisms, some TEs have important functions as long and small noncoding RNAs, and influence gene expression (Ariel and Manavella 2021). TEs can also

![Image](https://example.com/image.png)
participate in the formation of new protein-coding genes. For example, retrotransposon-derived elements play a role in signal transduction and mammalian evolution (Shimamura et al. 1998; Kaneko-Ishino and Ishino 2015). A recent comparative genomics approach identified ∼100 fusion genes with DNA transposon-derived transposase-CDSs, many of which might have evolved under functional constraints (Cosby et al. 2021). However, to our knowledge, no examples are known where DNA transposon-derived non-CDSs evolved into CDSs. In dm-W, it is possible that the conversion of a noncoding to coding region consisting of 40–70 amino acids was favored by natural selection because this sequence increased the DNA-binding affinity of DM-W.

Based on these findings, we propose further investigation to elucidate the sequence of mutation events preceding the emergence and molecular evolution of SDG dm-W (fig. 5). The mixture of two subgenomes L and S by interspecific hybridization and allotetraploidization between two closely related Xenopus species about 17–18 Ma (Session et al. 2016) may have destabilized the existing two sex-determination systems that were present in the ancestral frog species, which also may have had homomorphic sex chromosomes. In some populations, the sex

Fig. 4. Effects of the transposon-derived Ex4 coding region in in vitro DNA binding and transrepression activities of DM-W. (A) In vitro DNA binding of DM-W (full length) and its C-terminal truncated protein, DM-W (Δ124–194), to the DMRT1-binding sequence. Flag-DM-W(full) and Flag-DM-W(Δ124–194) were produced by in vitro transcription–translation system and analyzed by Western blot analysis with an anti-FLAG antibody followed by an HRP-conjugated antimouse antibody (left). The relative intensity values were shown below. EMSA was performed using in vitro synthesized Flag-DM-W(full) (0.5, 1.0, 2.0, or 3.0 μl) or Flag-DM-W(Δ124–194) (2.0, 4.0, or 5.5 μl) and 32P-labeled double-stranded oligonucleotides containing the DMRT1-binding sequence. The relative intensity values to the protein amounts, binding strength, and ratio of strength/protein amount were shown below. (B) The luciferase reporter assay for the DM-W transrepression activity on DMRT1-driven transcription. The DMRT1-driven luciferase reporter and an expression plasmid for DMRT1.S and DM-W(full) or DM-W(Δ124–194) were transfected into HEK293T cells and posttransfection (24 h) luciferase activity was measured. Letters (a–d) indicate significant differences based on a one-way ANOVA, followed by the Tukey–Kramer HSD test (P < 0.01).

Fig. 5. Proposed model for the emergence of the chimeric gene dm-W as SDG. The two closely related Xenopus species having two distinct genomes named as L and S were hybridized about 17–18 Ma (Session et al. 2016). After the interspecific hybridization, at least three independent insertion events into chromosome 2L led to the establishment of dm-W as a female SDG. The three events lead to the generations of noncoding to coding region consisting of 40–70 amino acids was favored by natural selection because this sequence increased the DNA-binding affinity of DM-W.
ratio could have been biased, which could have favored the establishment of \(dm^−W \) as the sole SDG. In the case of \(dm^−W \), the most parsimonious scenario is that at least three independent insertion events into the ancestral chromosome 2L established \(dm^−W \) as a female SDG. These three events lead to the generations of noncoding Ex1, Ex2-Ex3, and Ex4 of \(dm^−W \) (this study). A less parsimonious possibility is that some or all of these three components were assembled in the diploid ancestor of subgenome S (or in subgenome S after allotetraploidization) and then translocated as a unit to subgenome L, with additional components being added there if the transferred gene was partial. The noncoding Ex1 were generated for promoter/enhancer for \(dm^−W \)-expression in gonadal somatic cells during sex determination. Ex1 may have arisen from an insertion DNA containing a repeated sequence, and then the promoter appeared to have evolved de novo. Ex2 and Ex3 evolved from the replicate of the region covering Ex2, intron 3, and Ex3 of the S subgenome-derived ancestral \(dmrt1.S \), which had been inserted into the ancestral chromosome 2L of the L subgenome probably through TEs (supplementary fig. S1, Supplementary Material online) (Bewick et al. 2011; Mawaribuchi, Takahashi, et al. 2017). Ex4 was generated from the \(hAT−10 \)-derived sequence, which had inserted downstream of the predicted insertion position of the partial duplicate of \(dmrt1.S \). Our analyses were unable to determine which insertion occurred first, or whether they occurred concurrently. However, divergence times of Ex4 (fig. 2) and phylogenetic relationships among species that carry Ex2 and Ex3 (Cauret et al. 2020) suggest both were in place either around the time of allotetraploidization or relatively soon thereafter (fig. 2). \(Xenopus \) borealis, which is more diverged from \(X. laevis \) than the three other species examined in this study (\(X. itambwensis \), \(X. largeti \), and \(X. petersii \)) has independently evolved sex chromosomes (Furman and Evans 2016), and efforts to identify \(dm^−W \) in this species were unsuccessful (Furman and Evans 2016; Cauret et al. 2020). We also did not detect the Ex4-like sequences in the whole genome sequence of \(X. borealis \) or isolate it by PCR. \(dm^−W \) Ex2 and Ex3 were present in the ancestor of \(X. clivii \), which is more closely related to \(X. borealis \) than to \(X. laevis \), which suggests that Ex2, Ex3 and Ex4 of \(dm^−W \) were lost in an ancestor of \(X. borealis \) after divergence from \(X. clivii \) (this study; Cauret et al. 2020). This loss may have been associated with the origin of new extant sex chromosomes in \(X. borealis \), occurred independently in an ancestor with the same or different sex chromosomes, or the loss could have occurred after the new sex chromosomes of \(X. borealis \) evolved.

In conclusion, we found that the \(hAT−10 \) transposon contributed to the birth of the chimeric SDG \(dm^−W \) in the ancestor of the allotetraploid \(Xenopus \) frogs. This adds to a small number of examples where noncoding portions of TEs become CDS, and is the only known example to our knowledge of this process being a prelude to the de novo origin of an SDG. Recently, a retrotransposon-derived sequence was discovered to influence the sex-determining function of \(Sry−T \) as a splicing variant of \(Sry \) in the ancestor of mice (Miyawaki et al. 2020). However, this retrotransposon-derived sequence was not involved in the original emergence of \(Sry \) in the ancestor of therian mammals. \(dm^−W \) is distinguished from this example because the \(hAT−10 \) transposon-derived sequence was involved in \(dm^−W \) birth in the ancestor of allotetraploid \(Xenopus \) frogs. In this way, this study provides new insights into de novo origin of SDGs.

Materials and Methods

Bioinformatic Analyses

Genomes analyzed in this study were obtained from Xenbase (www.xenbase.org/entry/; \(X. laevis \) v9.2 and \(X. tropicalis \) v10.0). Comparative analysis of the \(dmrt1 \) subfamily was performed using mVISTA (http://genome.lbl.gov/vista) using the LAGAN alignment program (Frazer et al. 2004). Accession numbers of \(X. laevis \) \(dmrt1.L \), \(dmrt1.S \), \(dm^−W \), and \(X. tropicalis \) \(dmrt1 \) used in the study are NM_001096500, NM_001085483, NM_001114842, and XM_031890717, respectively.

Phylogenetic analysis was performed using the software MEAGX (www.megasoftware.net/). Nucleotide sequences were aligned using MUSCLE (Edgar 2004) and gaps (insertions/deletions) were removed. Phylogenetic trees were constructed using neighbor-joining (NJ) and maximum likelihood (ML) methods. In NJ and ML analyses, the best-fit model of nucleotide substitution was selected by model selection using a likelihood ratio test. The Tamura three-parameter (T92) + G and Kimura 2-parater (K2) + G was selected for analysis of DM domain sequences (supplementary fig. S3, Supplementary Material online) and \(hAT−10 \) sequences (fig. 3), respectively. Phylogenetic support for each node was assessed using nonparametric bootstrapping (Felsenstein 1983) with 1,000 replicates.

TEs were detected using CENSOR software (www.girinst.org/censor/index.php) (Kohany et al. 2006) and RepeatMasker (www.repeatmasker.org/) with default parameters and the \(Xenopus \) TE dataset obtained from Repbase (www.girinst.org/rebase/). DNA transposon \(hAT−10 \)-derived sequences, including \(Xt \) \(hAT−10 \) transposase-like, Ex4-like, and \(Ex4−CDS \)-like sequences (supplementary table S3, Supplementary Material online), were identified using TBlastN (<1e−6 of E-value), BLASTN (<1e−6 of E-value, >65% sequence identity), and BLASTN (<1e−6 of E-value, >65% sequence identity over >60% of query length), respectively. The values were obtained after removing duplicate fragments of 10 kb (\(Xt \) \(hAT−10 \) transposase-like), 1 kb (Ex4-like), and 150 bp (Ex4-CDS-like).

The repeat landscapes of the TEs were plotted using RepeatMasker and Python scripts (supplementary files S1–S3, Supplementary Material online). Pairwise genetic distances were estimated between all sequences within each TE subfamily using MAFFT (Katoh et al. 2002), and phylogenies were constructed using FastTree (Price et al. 2010) based on the default Jukes-Cantor + CAT model.
Consensus sequences of the TE subfamily were obtained from Repbase (Jurka et al. 2005) except for that of \(Xl\ hAT-10\), which was determined by collecting \(hAT-10\)-like sequences among the existing transposons in the \(X. laevis\) genome sequence and constructing them using a simple majority rule based on a multiple alignment by BlastViewer. The age of TE families can be roughly estimated from the distances between each sequence and the consensus (Kapitonov and Jurkal 1996). The divergence time between the homologous regions of the most closely related \(hAT-10\) DNA transposon and \(dm-W\) Ex4 was estimated using a Jukes-Cantor-corrected substitution rate of 3.0 or 3.2 \(\times\) \(10^{-9}\) substitutions per year, which was calculated from synonymous substitution levels between \(X. tropicalis\) and \(X. laevis\) orthologs, and between \(X. laevis\) L and S homeologs, respectively (Session et al. 2016).

For contig assembly and scaffolding of the genome of \(Xenopus borealis\), contigs were assembled using ABYSS (http://github.com/bvgsc/abyss) under the conditions of \((k = 83, B = 30G, H = 3, kc = 3, v = -v)\) and female or male whole genome sequence, SRR6357672 or SRR6357673, respectively. The two resulting assemblies were merged, and reference-guided scaffolding was performed with RaGOO (Alonge et al. 2019) -T sr using \(X. laevis\) v9.2 genome assembly as described (Suda et al. 2022).

Isolation of \(dm-W\) Ex4 from Several \(Xenopus\) Species

Genomic DNA was purified from adult livers of three \(Xenopus\) species, \(X. largeni\) (MCZ-A cryogenic 333), \(X. itombwensis\) (MCZ-A A136197), and \(X. petersii\) using the phenol–chloroform extraction method. PCR was performed using KOD FX DNA Polymerase (TOYOBO, Japan). A pair of primers, 5′-AGTTACATTACACCTCAT CCTG-3′ and 5′-AGACGAGGAGTGTATCCCTC-3′, were used for amplification of Ex4. The obtained DNA fragments were inserted into EcoRV site of pBluescript KS (+). DNA sequencing was performed using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Bioscience, Waltham, USA). Gene bank accession numbers for the Ex4 sequences from \(X. largeni\), \(X. itombwensis\), and \(X. petersii\) are LC699248/LC699249, LC699247, and LC699250, respectively.

Construction of an Expression Plasmid for the C-terminal Truncated DM-W

The CDS for \(dm-W\) from 1 to 123 amino acids was amplified from cDNA by PCR using pcDNA3-FLAG-DM-W (Yoshimoto et al. 2008) as template and a pair of primers, 5′-GGGTGTCGTCGATGGGAGATTTGATACATTGGATCAATGCAGACGAGGAGTGTATCCCTC-3′ and 5′-GGGTGTCGTCGATGGGAGATTTGATACATTGGATCAATGCAGACGAGGAGTGTATCCCTC-3′. The amplified DNA fragment was inserted into pcDNA3-FLAG vector (Itō et al. 1999) in frame with FLAG-tag, resulting in the construction of pcDNA3-FLAG-DM-W Δ124−194.

Electrophoretic Mobility Shift Assay

The two oligonucleotides, 5′-CCATCGAGCAACAATGTATCACATTGTGGAACAGAACGAGTCTTTGATACATTGGATCAATGCAGACGAGGAGTGTATCCCTC-3′ and 5′-GGGTGTCGTCGATGGGAGATTTGATACATTGGATCAATGCAGACGAGGAGTGTATCCCTC-3′, were annealed and labeled with 32P, using the Klenow fragment. Proteins were produced using the TNT Quick Coupled Transcription/Translation System (Promega), using pcDNA3-FLAG-DVRT1, pcDNA3-FLAG-DM-W (Yoshimoto et al. 2008), and pcDNA3-FLAG-DM-W Δ124−194. The resultant labeled DNA and each protein were mixed in a reaction buffer (10 mM Tris–HCl [pH 8.0], 100 mM KCl, 10% glycerol, 5 mM MgCl2, 0.075% Triton X-100, 1 mM diethiothreitol, 1% bovine serum albumin, 1 µg/µl poly (dl/dc), 1 mM spermidine) and incubated on ice for 30 min. The samples were subjected to electrophoresis through a nondenaturing 5% polyacrylamide gel containing Tris/glycerine/EDTA (50 mM Tris, 380 mM glycine, 2 mM EDTA) and 2.5% glycerol in Tris/glycerine/EDTA at room temperature. The dried gel was autoradiographed with a Fuji super RX film (Fujifilm) at −70°C.

Western Blot Analysis

Immunoblotting of in vitro synthesized proteins was performed using an anti-FLAG antibody, M5 (Sigma), followed by an HRP-conjugated antimouse antibody (Sigma). The reaction was developed by enhanced chemiluminescent staining using SuperSignal West Femto Maximum Sensitivity Substrate (Pierce), and the signal intensity was measured using ImageJ (NCBI, MD).

Luciferase Reporter Assay

HEK293T cells were cultured in DMEM containing 10% fetal calf serum. Twenty-four hours before transfection, cells were plated at 1 \(\times\) \(10^{5}\) cells per well in a 24-well plate. The cells were transfected with the firefly luciferase reporter plasmid p4xDMRT1-luc (100 ng) (Yoshimoto et al. 2010), effector plasmids, and Renilla luciferase vector pRL-SV40 (20 ng) (Promega) using TransIT™-LT1 (Mirus). Total DNA was maintained at 500 ng per transfection with the pcDNA3-FLAG empty vector. After 24 h, activities from the two luciferases, which have dissimilar enzyme structures and substrate requirements, were measured in a Luminocounter 700 (NITI-ON) using the dual luciferase assay system (Promega). Firefly luciferase activity was normalized to Renilla luciferase activity.

Supplementary Material

Supplementary data are available at Molecular Biology and Evolution online.

Acknowledgements

We would like to thank Dr. Breda Zimkus, the Cryogenic Collection, Museum of Comparative Zoology, Harvard University, for providing the \(Xenopus\) samples. The \(Xenopus tropicalis\) and \(laevis\) genome browser (viewer.shigen.info/xenopus/index.php) was in part supported by Hiroshima University Amphibian Research Center through NBRP. This work was partially supported by Grant-in-Aid for
References

Ågren JA, Clark AG. 2018. Selfish genetic elements. PLoS Genet. 14(1):e1007700. doi:10.1371/journal.pgen.1007700

Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlacek FJ, Liptman ZB, Schatz MC. 2019. ReGaCO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20:224. doi:10.1186/s13059-019-1829-6

Alzhohairy AM, Gyulai G, Jansen RK, Bahleldin A. 2013. Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 69(1):1–15. doi:10.1016/j.plasmid.2012.08.001

Anderson SN, Springer NM. 2018. Potential roles for transposable elements in creating imprinted expression. Curr Opin Genet Dev. 49:8–14. doi:10.1016/j.gde.2018.01.008

Ariel FD, Manavella PA. 2021. When junk DNA turns functional: transposon-derived non-coding RNAs in Plants. FEBS Open Bio. 6(4):276–284. doi:10.1111/1758-0815.13035

for Scientific Research, Japan Society for the Promotion of Science (18K06389) to MI.

Furman BLS, Evans BJ. 2016. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3 (Bethesda) 6(11):3625–3633. doi:10.1534/g3.116.033423

Ge C, Ye J, Weber C, Sun W, Zhang H, Zhou Y, Cai C, Qian G, Capel B. 2018. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science 360(6389):665–648. doi:10.1126/science.aap382

Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapatonov VP, Ovcharenko I, Putnam NH, Shu S, Taher L, et al. 2010. The genome of the western clawed frog Xenopus tropicalis. Science 328(5978):633–636. doi:10.1126/science.1183670

Herpin A, Schartl M, Depinac E, Guignon Y, Bobe J, Huax-A van A, Hayman ES, Octavea A, Yoshizaki G, Nichols KM, et al. 2021. Allelic diversification after transposable element exaptation promoted GSDF as the master sex determining gene of sailfish. Genome Res. 31(8):1366–1380. doi:10.1101/gr.274266.120

Ito M, Mawaribuchi S. 2013. Molecular evolution of genes involved in vertebrate sex determination. In: eLS. Chichester: John Wiley & Sons, Ltd. p. 1–7. doi:10.1002/9780470015902.a002494.

Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K, Hibi M, Nakabeppu Y, Shibata T, Yamamoto KI. 1999. SAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a scaffolding factor in the JNK signaling pathway. Mol Cell Biol. 19(11):7539–7548. doi:10.1128/MCB.19.11.7539

Jurka J, Kapatonov VV, Pavlichev A, Klonowski P, Kohny O, Waichiewicz J. 2005. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110(1-4):462–470. doi:10.1515/000084979

Kaneko-Ishino T, Ishino F. 2015. Mammalian-specific genomic functions: newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals. Proc Jpn Acad Ser B Phys Biol Sci. 91(10):511–538. doi:10.2183/pjab.91.511

Kapatonov V, Jurkal J. 1996. The age of alu subfamilies. J Mol Evol. 42(1):59–65. doi:10.1007/BF00163212

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14):3059–3066. doi:10.1093/nar/gkf436

Kohany O, Gentles AJ, Hankus L, Jurka J. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform. 7:474. doi:10.1186/1471-2105-7-474

Lippman ZB, Schatz MC. 2019. RaGOO: fast and accurate reference-guided scaffolding of draft genomes.

Ma L, Wang G, Cui J, Wei H, Li L, Ren J, Liu J. 2019. Independent evolution for sex determination and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform. 7:474. doi:10.1186/s12859-019-0264-4

Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kato A, Moriyama K, Tsurumi T, Ito M. 2016. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3 (Bethesda) 6(11):3625–3633. doi:10.1534/g3.116.033423
Mawaribuchi S, Musashijima M, Wada M, Izutsu Y, Kurakata E, Park MK, Takamatsu N, Ito M. 2017. Molecular evolution of two distinct dmr1 promoters for germ and somatic cells in vertebrate gonads. *Mol Biol Evol.* **34**(3):724–733.

Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, Fuku A, Takamatsu N, Ito M. 2017. Sex chromosome differentiation and the W- and Z-specific loci in *Xenopus laevis.* *Dev Biol.* **426**(2):393–400. doi:10.1016/j.ydbio.2016.06.015

Mawaribuchi S, Yoshimoto S, Ohashi S, Takamatsu N, Ito M. 2012. Molecular evolution of vertebrate sex-determining genes. *Chromosomes Res.* **20**(1):139–151. doi:10.1007/s10577-011-9265-9

Miyawaki S, Kuroki S, Maeda R, Okashita N, Koopman P, Tachibana M. 2020. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. *Science* **370**(6512):121–124. doi:10.1126/science.abb6430

Murphy MW, Zarkower D, Bardwell VJ. 2007. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. *BMC Mol Biol.* **8**:58. doi:10.1186/1471-2199-8-58

Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. 2021. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. *Physiol Rev.* **101**(3):1237–1308. doi:10.1152/physrev.00044.2019

Nanda I, Kondo M, Hornung S, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, et al. 2020. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, *Oryzias latipes.* *Proc Natl Acad Sci U S A.* **19**(18):11778–11783. doi:10.1073/pnas.182314699

Ogita Y, Mawaribuchi S, Nakasako K, Tamura K, Matsuda M, Katsumura T, Oota H, Watanabe G, Yoneda S, Takamatsu N, Ito M, et al. 2020. Parallel evolution of two dmr1-derived genes, *dmn* and *dmy*, for vertebrate sex determination. *iScience* **23**(1):100757. doi:10.1016/j.isci.2019.100757

Pan Q, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait JH, Scharlt M, Guiguenc Y. 2016. Vertebrate sex-determining genes play musical chairs. *C R Biol.* **339**(7–8):258–262. doi:10.1016/j.crvi.2016.05.010

Price Morgan N, Dehal Paramvir S, Arkin Adam P, Poon Art FY. 2010. FastTree 2 – approximately maximum-likelihood trees for large alignments. *PLoS ONE* **5**(3):e9490. doi:10.1371/journal.pone.0009490.

Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fuku A, Hikosaka A, Suzuki A, Kondo M, et al. 2016. Genome evolution in the allotetraploid frog *Xenopus laevis.* *Nature* **538**(7625):336–343. doi:10.1038/nature19840

Shimamura M, Nokaido M, Ohshima K, Okada N. 1998. A SINE that acquired a role in signal transduction during evolution. *Mol Biol Evol.* **15**(7):923–925. doi:10.1093/oxfordjournals.molbev.a025997

Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH. 2009. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. *Nature* **461**(7261):267–271. doi:10.1038/nature08298

Suda K, Hayashi SR, Tamura K, Takamatsu N, Ito M. 2022. Activation of DNA transposons and evolution of piRNA genes through interspecific hybridization in *Xenopus* Frogs. *Front Genet.* **13**:766424. doi:10.3389/fgene.2022.766424

Tymowska J. 1991. Polyploidy and cytogenetic variation in frogs of the genus *Xenopus.* In: Green DM and Sessions SK, editors. *Amphibian cytogenetics and evolution.* San Diego: Academic Press. p. 259–297.

Wang L, Sun F, Wan ZY, Yang Z, Tay YX, Lee M, Ye B, Wen Y, Meng Z, Fan B, et al. 2022. Transposon-induced epigenetic silencing in The X Chromosome as a novel form of Dmrt1 expression regulation during sex determination in the fighting fish. *BMC Biol.* **20**(1):5. doi:10.1186/s12915-021-01205-y

Wissler L, Gadau J, Simola DF, Helmkkamp M, Bornberg-Bauer E. 2013. Mechanisms and dynamics of orphan gene emergence in insect genomes. *Genome Biol Evol.* **5**(2):439–455. doi:10.1093/gbe/evt009

Yoshimoto S, Ickeda N, Izutsu Y, Shiba T, Takamatsu N, Ito M. 2010. Opposite roles of DMRT1 and its W-linked parologue, DM-W, in sexual dimorphism of *Xenopus Laevis*: implications of a ZZ/ZW-type sex-determining system. *Development* **137**(15):2519–2526. doi:10.1242/dev.048751

Yoshimoto S, Ito M. 2011. A ZZ/ZW-type sex determination in *Xenopus laevis.* *FEBS J.* **278**(7):1020–1026. doi:10.1111/j.1742-4658.2011.08031.x

Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M. 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in *Xenopus Laevis*. *Proc Natl Acad Sci U S A.* **105**(7):2469–2474. doi:10.1073/pnas.0712244105

Zarkower D. 2013. DMRT genes in vertebrate gametogenesis. *Curr Top Dev Biol.* **102**:327–356. doi:10.1016/B978-0-12-416024-8.00012-X

Zhang W, Gao Y, Long M, Shen B. 2019. Origination and evolution of orphan genes and de novo genes in the genome of *Caenorhabditis elegans.* *Sci China Life Sci.* **62**(4):579–593. doi:10.1007/s11427-019-9482-0

Zhao L, Svingen T, Ng ET, Koopman P. 2015. Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. *Development* **142**(6):1083–1088.