ENPP1 K121Q (rs1044498 C > A) genetic polymorphism confers a high risk of susceptibility to coronary heart disease

A PRISMA-compliant article

Jia-Yin Di, MB¹, Meng-Lu Dai, MM², Zong-Xin Zhang, MM²,*

Abstract

Background: Previous studies suggested an association between K121Q (rs1044498 C > A) in ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) gene and the risk of coronary heart disease (CHD), but the results have been inconsistent. In this study, we performed a meta-analysis of several trials to systematically summarize their potential association.

Methods: Relevant articles were identified by searching electronic databases for studies published prior to March 2018. We carefully reviewed published studies on ENPP1 genetic polymorphism in relation to CHD susceptibility. The data extracted from selected high-quality studies were analyzed using STATA statistical software (StataCorp LP, College Station, TX, USA).

Results: Nine eligible studies which contained a combined total of 1547 CHD cases and 2213 healthy controls were chosen in the present meta-analysis. Our results indicated that K121Q strongly correlated with increased risk of CHD. The subgroup analysis on race, sample source, disease type, sex, age, and genotype showed that in Caucasians, K121Q strongly correlated with increased risk of CHD, but no difference was found in Chinese. Both single factor and multiple factor regression showed that race, sample origin, disease type, sex, age, and genotype were not the source of heterogeneity.

Conclusions: Our meta-analysis revealed that the K121Q (rs1044498C > A) in the ENPP1 gene is a risk factor for CHD.

Abbreviations: CBM = Chinese Biomedical, CHD = coronary heart disease, CI = confidence interval, ENPP1 = ecto-nucleotide pyrophosphatase phosphodiesterase 1, HWE = Hardy-Weinberg Equilibrium, MS-PCR = mutagenically separated polymerase chain reaction, PCR-RFLP = PCR-restriction fragment length polymorphism, RRs = relative risks.

Keywords: coronary heart disease, ENPP1, genetic polymorphism, K121Q, meta-analysis, rs1044498C > A

1. Introduction

Coronary heart disease (CHD), also variously known as atherosclerotic heart disease, coronary artery disease, or ischemic heart disease, is the most common type of heart disease and the leading cause of death worldwide.[1-4] CHD is associated with plaque formation along the inner walls of coronary arteries, leading to narrowing of the arteries and limitation of blood flow to the heart.[5] It is estimated that about 620,000 Americans have a new coronary attack annually and approximately 295,000 have a recurrent attack each year.[6] In Europe, CHD is responsible for approximately 4 million deaths annually. Although the exact mechanisms involved in CHD are not completely understood, the increased incidence of CHD is attributed to a variety of environmental and genetic factors.[7] Other important extrinsic risk factors, such as high blood cholesterol/pressure, smoking, diabetes, physical inactivity, obesity, poor diet, age, and medical history, are also indispensable factors for CHD.[6,8] In the past 2 decades, various genetic factors have been verified as significant contributors to the development of CHD.[9] Recent findings support the view that ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) gene is associated with increased susceptibility to CHD in humans, and the mutations in ENPP1 gene are related to insulin resistance as well as idiopathic infantile arterial calcification.[10,11]

ENPP1 is a type II transmembrane glycoprotein with extracellular pyrophosphatase and phosphodiesterase activities.[12] The human ENPP1 gene is 80 kb in length and is located on chromosome 6q22-q23, consisting of 25 exons and 24 introns, and encoding a 925-amino acid protein with a molecular weight of 104.9kDa.[13] ENPP1 is expressed in multiple tissues, including muscle, capillary endothelium in the brain, fat, salivary duct epithelium, liver, adipose tissue, pancreas, chondrocytes, and kidneys.[14] Elevated ENPP1 expression is found in adipose tissue, cultured skin fibroblasts, and skeletal muscle of insulin-resistant individuals, suggesting that over-expression of ENPP1 may be an early marker of insulin resistance in humans.[13,15] Insulin resistance is a critical risk factor in the development of
type 2 diabetes mellitus, and is also related to obesity, dyslipidemia, hypertension, and coronary atherosclerosis.\(^\text{[16]}\) The underlying mechanisms appear to be related to ENPP1-mediated inhibition of insulin receptor tyrosine kinase activity, and overexpression of ENPP1 decreases the activity and cellular signaling of insulin receptor tyrosine kinase, inducing insulin resistance and contributing to the development of type 2 diabetes mellitus.\(^\text{[17]}\) Further, elevated ENPP1 expression promotes vascular inflammatory responses, inflammatory cytokine secretion, and left ventricular mass through stimulation of insulin like growth factor-1 receptors, which are abundantly expressed in the myocardium and then subsequently increase cardiovascular disease.\(^\text{[19,20]}\)

Recently, several studies have suggested the possibility that ENPP1 genetic polymorphisms are correlated with significantly elevated risk of CHD.\(^\text{[21,22]}\) However, the results are inconsistent with the results of other studies.\(^\text{[23,24]}\) In this study, we employ a meta-analysis based approach to summarize the relationship between CAD and ENPP1 K121Q (rs1044498 C > A), as a prelude to the development of novel strategies for prevention and treatment of CHD.

2. Materials and methods

2.1. Literature search

The databases such as Web of Science, CINAHL, PubMed, Cochrane Library, EMBASE, and Chinese Biomedical (CBM) were searched to identify case-control studies, which were published prior to March 2018. The combination of keywords and MeSH terms used for search strategy were: (“genetic polymorphism” or “SNP” or “variation” or “single nucleotide polymorphism” or “polymorphism” or “mutation” or “variant”) and (“ectonucleotide pyrophosphatase phosphodiesterase 1” or “ectonucleotide pyrophosphatase phosphodiesterase 1” or “plasma cell membrane glycoprotein PC-1” or “nucleotide pyrophosphatase-alkaline phosphodiesterase I” or “glycoprotein PC-1” or “ENPP1” or “plasma-cell membrane glycoprotein 1” or “PC-1” or “PC-1 glycoprotein”) and (“Myocardial Infarction” or “Coronary Artery Disease” or “CAD” or “MI” or “myocardial infarct” or “myocardiac infarction” or “myocardi- um infarction” or “cardiac infarction” or “myocardia infarction” or “infection myocardium” or “myocardial infected” or “heart infection” or “heart infarction” or “Myocardial Infarction” or “acute myocardial infarction” or “Coronary Heart Disease” or “CHD” or “AMI”). Additionally, a manual cross-reference search of the references of the relevant articles was performed to identify studies beside the computerized search.

2.2. Inclusion and exclusion criteria

All selected studies in this meta-analysis met the following inclusion criteria: studies reporting CHD and ENPP1 K121Q (rs1044498 C > A); studies were case-control design; all patients were confirmed by the diagnostic criteria of CHD; studies supplying sufficient information on ENPP1 K121Q. The following studies were excluded: letters, reviews, case reports, conference abstracts, editorials, or expert opinions; studies in languages other than Chinese or English; studies on polymor-
Figure 1. Flow chart of literature search and study selection. Six case-control studies were included in this meta-analysis.

Table 1
Main characteristics and methodological quality of case-control studies.

First author	Year	Country	Ethnicity	Case	Control	Male percentage	Mean age	Source of control	Type of disease	Genotype method	NOS score
Shaker O	2014	Egypt	Caucasian	60	60	75.0%	57.0	HB	MI	PCR-RFLP	6
Luo L	2011	China	Asians	67	80	65.9%	59.8	HB	CAD	PCR-RFLP	7
Lazarevic G	2008	Serbia	Caucasian	32	71	60.2%	59.4	PB	CAD	MS-PCR	5
He LN	2006	China	Asians	38	50	55.9%	55.6	HB	ACS	PCR-RFLP	6
Bacci, S-a	2005	Italy	Caucasian	228	333	52.6%	61.6	HB	CAD	TaqMan	6
Bacci, S-b	2005	Boston	Caucasian	206	202	75.8%	65.0	HB	CAD	TaqMan	7
Tasic, I	2007	Serbia	Caucasian	80	50	74.6%	55.0	PB	CAD	MS-PCR	8
Bacci, S-c	2011	Italy	Caucasian	35	296	68.8%	64.0	PB	CAD	TaqMan	6
Bacci, S-d	2011	Italy	Caucasian	26	115	83.7%	55.0	PB	CAD	TaqMan	7
Bacci, S-e	2011	Italy	Caucasian	228	333	50.6%	59.9	HB	CAD	MS-PCR	8
Sumi, S-f	2017	India	Asians	284	160	65.9%	57.9	HB	CAD	PCR-RFLP	6
Sumi, S-g	2017	India	Asians	198	271	65.9%	50.4	HB	CAD	PCR-RFLP	7

ACS = acute coronary syndrome, CAD = coronary artery disease, F = female, HB = hospital-based, M = male, MI = myocardial infarction, NA = not available, PB = population-based, RFLP = restricted fragment length polymorphism, RR = relative risk.

Table 2
Meta-analysis of the relationships between ENPP1 genetic polymorphism and the coronary heart disease.

Items	Number of studies	RR 95%CI	P	RR 95%CI	P		
Overall	13	1.13	1.05–1.21	.001	1.21	0.96–1.50	.06
Ethnicity							
Caucasian	9	1.17	1.05–1.29	.001	1.25	1.06–1.47	.01
Asian	4	1.07	0.97–1.19	.20	1.57	0.83–1.81	.81
Source of control							
HB	9	1.09	1.01–1.18	.02	1.16	0.89–1.51	.27
PB	4	1.35	1.10–1.67	.001	1.33	1.06–1.68	.01
Type of disease							
MI	1	1.56	1.11–2.18	.01	1.57	1.23–2.00	.00
CAD	11	1.10	1.02–1.19	.01	1.17	0.92–1.48	.19
ACS	1	1.83	1.64–2.54	.03	1.35	1.01–1.82	.04
Male percentage <65%	6	1.13	1.00–1.28	.01	1.13	0.91–1.41	.27
Male percentage ≥65%	7	1.12	1.03–1.23	.05	1.27	0.90–1.81	.18
Age <60	8	1.10	1.01–1.20	.03	1.20	0.88–1.64	.25
Age ≥60	5	1.18	1.03–1.34	.01	1.17	0.99–1.37	.06
Genotype method							
PCR-RFLP	5	1.11	1.00–1.22	.04	1.15	0.73–1.81	.54
MS-PCR	3	1.08	0.91–1.28	.38	1.37	0.85–1.89	.24
TaqMan	5	1.18	1.03–1.34	.01	1.17	0.99–1.37	.06

95%CI = 95% confidence interval, ACS = acute coronary syndrome, CAD = coronary artery disease, HB = hospital-based, MI = myocardial infarction, PB = population-based, RFLP = restricted fragment length polymorphism, RR = relative risk.
correlation with the CHD risk (dominant model: RR = 1.13, 95% CI = 1.05–1.21, P = .001) (Fig. 2B).

We also conducted the following stratified analyses for ENPP1 K121Q (Table 2). In the allele and dominant model, we found a significant correlation of the ENPP1 K121Q with CHD risk in Caucasian (allele model: RR = 1.25, 95% CI = 1.06–1.47, P = .01; dominant model: RR = 1.17, 95% CI = 1.05–1.29, P = .001; respectively), while no such association was detected among

ID	Q allele vs. K allele	RR (95% CI)	Weight
Shaker OG (2014)		1.57 (1.23, 2.01)	8.06
Luo L (2011)		0.77 (0.60, 1.00)	7.98
Lazarevic G (2008)		2.03 (1.32, 3.11)	6.61
He LN (2006)		1.35 (1.01, 1.82)	7.70
Bacci, S-a (2005)		1.15 (0.96, 1.38)	8.46
Bacci, S-b (2005)		1.02 (0.85, 1.23)	8.46
Tasic, I (2007)		1.24 (0.98, 1.57)	8.14
Bacci, S-c (2011)		1.17 (0.66, 2.05)	5.50
Bacci, S-d (2011)		2.08 (1.22, 3.52)	5.79
Bacci, S-e (2011)		1.16 (0.84, 1.61)	7.43
Moehlecke, M (2010)		0.91 (0.75, 1.11)	8.38
Sumi, S-f (2017)		0.71 (0.63, 0.79)	8.81
Sumi, S-g (2017)		1.77 (1.54, 2.03)	8.68
Overall (I² = 91.5%, p = 0.000)		1.21 (0.98, 1.50)	100.00

NOTE: Weights are from random effects analysis.
Asian ($P > .05$) (Figs. 3 and 4Figs. 3A and 4A). We found an association between the ENPP1 K121Q and CHD risk among the population-based subgroup and hospital-based subgroups (all $P < .05$) (Figs. 3B and 4B). Additionally, we detected that ENPP1 K121Q was related to the risk of MI, CAD, and acute coronary syndrome (ACS) in the dominant model (all $P < .05$) (Figs. 3C and 4C). With regard to the genotype analysis methods, ENPP1 K121Q showed a significant association with CHD risk using PCR-RFLP and TaqMan (PCR-RFLP: RR = 1.11, 95% CI = 1.00–1.22, $P = .04$), but not with MS-PCR (all $P > .05$) (Fig. 4F). With regard to the male percentage, ENPP1 K121Q showed a significant correlation with CHD risk ($<65\%$): RR = 1.13, 95% CI = 1.00–1.28, $P = .01$; $\geq 65\%$: RR = 1.12, 95% CI = 1.03–1.23, $P = .05$) (Fig. 4E). With regard to the age, ENPP1 K121Q showed a significant association with CHD risk ($<60\%$: RR = 1.10, 95% CI = 1.01–1.20, $P = .03$; $\geq 60\%$: RR = 1.18, 95% CI = 1.03–1.34, $P = .01$) (Fig. 4F). We did single factor regression and multiple regression on the number of years of publication, race, sample origin, disease, genotyping, male ratio and average age, and
3. Sensitivity analysis and publication bias

Sensitivity analyses evaluated the effect of each article on the pooled ORs by excluding individual studies. The analysis results indicated no individual article significantly influenced the pooled ORs of ENPP1 K121Q (Fig. 5). Funnel plot as well as Egger test were applied to estimate publication bias of the selected studies. The funnel plots of ENPP1 K121Q revealed no presence of obvious asymmetry. Moreover, Egger test failed to test publication bias (all P > .05) (Fig. 6).

4. Discussion

The relationship between ENPP1 gene and CHD risk has been investigated previously in multiple studies, while at the moment found that these were not heterogeneous factors in the study (Table 3).
there is a heated debate, but no consensus of that issue. We performed this meta-analysis to provide a comprehensive evaluation of the relationship between ENPP1 K121Q and the risk of CHD by combining the data from previous studies and deriving reliable conclusions based on our statistical analysis. In the present meta-analysis, our results demonstrated that ENPP1 K121Q was responsible for a significantly increased risk of CHD, suggesting that the genetic polymorphism of ENPP1 could be helpful in predicting the pathogenesis of CHD. It was established that ENPP1 gene inhibited insulin receptor tyrosine kinase activity, and promoted insulin resistance. [32] Insulin resistance was widely accepted as largely contributed by genetic factors, and from this study, we also regarded ENPP1 genetic variant as one of the genetic factors, which might contribute to impaired sensitivity to insulin and then resulted in predisposition of individuals to CHD. [22] The current meta-analysis mainly described the ENPP1 K121Q, which resulted in amino acid substitution to glutamine from lysine at codon 121. The ENPP1 Q variant had a stronger binding affinity to insulin receptor as well as decreased its auto-phosphorylation, compared with the K variant. It could be speculated that the ENPP1 K121Q variant might increase cardiovascular risk for causing systemic insulin resistance as well as proatherogenic phenotypes. [33] On the other hand, a direct mechanism related to CHD could also be involved due to the influence of the polymorphism on insulin-dependent endothelial function. [34] From the above discussion, stronger binding of the K121Q variant to the insulin receptor at the cell membrane inhibited insulin signaling. [35] In human endothelial cells harboring the K121Q variant, the consequences were serious because suppression of insulin receptor signaling potentially impacted synthesis and release of nitric oxide, and a powerful vasodilator whose decreased levels contributed to the development of atherosclerosis. [36] Therefore, we hypothesized that the K121Q variants in the ENPP1 gene significantly might increase the susceptibility to CHD through its systemic effects and endothelial-specific effects, leading to insulin resistance and contributing to rapid progression of CHD. Consistent with our results, Shaker and Ismail [22] showed in 60 unrelated patients suffering from their first MI and 60 unrelated controls, that the K121Q variant conferred a higher risk of early development of insulin resistance and patients showed significantly faster progression of acute myocardial infarction compared with the K121Q allele. The present study clearly revealed that the occurrence of the ENPP1 K121Q polymorphism was significantly higher in CHD patients and the ENPP1 K121Q variant could be a clinically useful biomarker for population-based screening to identify high-risk individuals for their susceptibility to major cardiovascular events. Subgroup analysis by country showed a significant relation of K121Q polymorphism with CHD risk in Caucasian, but not in Asian. The results can be explained that individuals in different countries may have different genetic backgrounds and life-styles.

Limitations of the present study should be considered. Publication bias may result from the fact that unpublished data, as well as papers published in languages other than English and Chinese, were not included. Further, our meta-analysis division criteria of ethnic groups into “Caucasian,” or “Asian” may bias the results, without the detailed knowledge of the patients. Another limitation in our meta-analysis is the small sample size. Despite these limitations, we quantified and analyzed previous inconsistent results from previous studies in our meta-analysis. Besides, the number of years of publication, race, sample origin, disease, genotyping, male ratio, and average age were not heterogeneous factors in this study, which indicates a more credible conclusion of the relationship between ENPP1 genetic polymorphism and CHD in our results.

In conclusion, our results revealed that ENPP1 K121Q confers a high risk of susceptibility to CHD and may be useful in early

Table 3
Univariate and multivariate meta-regression analyses of potential source of heterogeneity.

Heterogeneity factors	Coefficient	SE	t	P	95%CI	
Publication year	-0.01	0.03	-0.34	.74	-0.07	0.05
Multivariate	-0.02	0.04	-0.40	.71	-0.12	0.08
Ethnicity						
Univariate	0.14	0.23	0.60	.56	-0.37	0.65
Multivariate	0.20	0.39	0.50	.64	-0.82	1.21
Source of controls						
Univariate	-0.17	0.24	-0.69	.50	-0.69	0.36
Multivariate	-0.09	0.34	-0.27	.80	-0.95	0.77
Disease						
Univariate	-0.26	0.30	-0.89	.39	-0.92	0.39
Multivariate	-0.24	0.40	-0.61	.57	-1.27	0.79
Genotyping method						
Univariate	-0.02	0.23	-0.09	.93	-0.52	0.48
Multivariate	-0.29	0.41	-0.71	.51	-1.35	0.77
Male percentage						
Univariate	0.90	1.16	0.77	.46	-1.66	3.45
Multivariate	0.81	1.42	0.57	.59	-2.84	4.47
Mean age						
Univariate	-0.03	0.03	-0.96	.36	-0.08	0.03
Multivariate	-0.07	0.05	-1.26	.26	-0.21	0.07

95%CI = 95% confidence interval, LL = lower limit, SE = standard error, UL = upper limit.
identification of at-risk CHD population, especially in Caucasian. These results indicated that ENPP1 genetic variation might be crucial in the occurrence of CHD and the genetic variant might be helpful in understanding the basic biology leading to insulin resistance. However, future studies including larger sample size and different ethnicities are also needed to confirm our findings and begin to develop therapeutic intervention strategies focused on ENPP1 K121Q.
Acknowledgments
The authors would like to give our appreciation to the reviewers for their helpful comments.

Author contributions
Conceptualization: Jia-Yin Di.
Data curation: Jia-Yin Di.
Formal analysis: Jia-Yin Di, Meng-Lu Dai.
Funding acquisition: Meng-Lu Dai.
Investigation: Meng-Lu Dai, Zong-Xin Zhang.
Methodology: Zong-Xin Zhang.
Project administration: Zong-Xin Zhang.

References
[1] Mehta NN. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Circ Cardiovasc Genet 2011;4:327–9.
[2] Sattelmair J, Pertman J, Ding EL, et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 2011;124:789–95.
[3] Writing Group M, Lloyd-Jones D, Adams RJ, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 2010;121:e46–215.
[4] Chen CY, Chuang SY, Fang CC, et al. Gender disparities in optimal lipid control among patients with coronary artery disease. J Atheroscler Thromb 2014;21(Suppl):S20–8.
[5] He Y, Zhang Z, Dai Q, et al. Accuracy of MRI to identify the coronary artery plaque: a comparative study with intravascular ultrasound. J Magn Reson Imaging 2012;35:72–8.
[6] Co AS, Mozaffarian D, Roger VL, et al. Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 2014;129:399–410.
[7] Consortium CAD, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013;45:25–33.
[8] Barraj L, Tran N, Mink P. A comparison of egg consumption with other modifiable coronary heart disease lifestyle risk factors: a relative risk apportionment study. Risk Anal 2009;29:401–15.
[9] Lettre G, Palmer CD, Young T, et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARE Project. PLoS Genet 2011;7:e1001300.
[10] Nguyen PL, Chen MH, Goldhaber SZ, et al. Coronary revascularization and mortality in men with congestive heart failure or prior myocardial infarction who receive androgen deprivation. Cancer 2011;117:406–13.
[11] Ripatti S, Tikkanen E, Orho-Melander M, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 2010;376:1393–400.
[12] Baba T, Endo T, Sata F, et al. Polycystic ovary syndrome is associated with genetic polymorphism in the insulin signaling gene IRS-1 but not ENPP1 in a Japanese population. Life Sci 2007;81:850–4.
[13] Abate N, Chandalia M, Di Paolo R, et al. Mechanisms of disease: ectonucleotide pyrophosphatase phosphodiesterase 1 as a ‘gatekeeper’ of insulin receptors. Nat Clin Pract Endocrinol Metab 2006;2:694–701.
[14] Gonzalez-Sanchez JL, Zabena C, Martinez-Larrad MT, et al. Association of ENPP1 (PC-1) K121Q polymorphism with obesity-related parameters in subjects with metabolic syndrome. Clin Endocrinol (Oxf) 2008;68:724–9.
[15] Pan W, Ciccoli A, Saraf M, et al. Metabolic consequences of ENPP1 overexpression in adipose tissue. Am J Physiol Endocrinol Metab 2011;301:E901–11.
[16] Wang R, Zhou D, Xi B, et al. ENPP1/PC-1 gene K121Q polymorphism is associated with obesity in European adult populations: evidence from a meta-analysis involving 24,324 subjects. Biomed Environ Sci 2011;24:290–6.
[17] Dimatteo C, Marucci A, Palazzo A, et al. Role of somatomedin-B-like domains on ENPP1 inhibition of insulin signaling. Biochim Biophys Acta 2013;1833:552–8.
[18] Bacci S, Rizza S, Prudente S, et al. The ENPP1 Q121 variant predicts major cardiovascular events in high-risk individuals: evidence for interaction with obesity in diabetic patients. Diabetes 2011;60:1000–7.
[19] Wang CH, Ke WS, Lin E. Evaluation of the ENPP1 and PLIN single nucleotide polymorphisms with type 2 diabetes in a Taiwanese population: evidence for replication and gene-gene interaction. J Investig Med 2012;60:1169–73.
[20] Lazarevic G, Milojkovic M, Tasic I, et al. PC-1 (ENPP1) Q121 variant predicts myocardial infarction who receive androgen deprivation. Cancer 2011;117:406–13.
[21] Luo L, Huang LN, Xu CS, et al. Correlation of plasma cell glycoprotein-1 with genetic polymorphism in the patients of type 2 diabetes mellitus with coronary atherosclerotic heart disease. Chin J Hypertension 2011;19:61–4.
[22] Shaker OG, Ismail MF. Association of genetic variants of MTHFR, ENPP1, and ADIPOQ with myocardial infarction in Egyptian patients. Cell Biochem Physiol 2014;69:265–74.
[23] Chen MP, Chung FM, Chang DM, et al. ENPP1 K121Q polymorphism is not related to type 2 diabetes mellitus, features of metabolic syndrome, and diabetic cardiovascular complications in a Chinese population. Rev Diabet Stud 2006;3:21–30.
[24] He LN, Wang MH, Yan Q. The association between Pc-1k121q polymorphism and the age of patients with CHD. Acta Acad Med Jiangxi 2008;13:135–8.
[25] He Y, Zhang Z, Dai Q, et al. Accuracy of MRI to identify the coronary artery plaque: a comparative study with intravascular ultrasound. J Magn Reson Imaging 2012;35:72–8.
[26] Chen MP, Chung FM, Chang DM, et al. ENPP1 K121Q polymorphism is not related to type 2 diabetes mellitus, features of metabolic syndrome, and diabetic cardiovascular complications in a Chinese population. Rev Diabet Stud 2006;3:21–30.
[27] He LN, Wang MH, Yan Q. The association between Pc-1k121q polymorphism and the age of patients with CHD. Acta Acad Med Jiangxi 2008;13:135–8.
[28] Skager J, Jorgensen JS, Petersen OA, et al. The K121Q polymorphism of the ADIPOQ gene is associated with insulin resistance/atherogenic
phenotypes, including earlier onset of type 2 diabetes and myocardial infarction. Diabetes 2005;54:3021–5.

[29] Moehlecke M, Kramer CK, Leitao CB, et al. ENPP1 K121Q polymorphism and ischemic heart disease in diabetic patients. Arq Bras Cardiol 2010;94:157–61, 168–173, 159–163.

[30] Sumi S, Ramachandran S, RamanKutty V, et al. ENPP1 121Q functional variant enhances susceptibility to coronary artery disease in South Indian patients with type 2 diabetes mellitus. Mol Cell Biochem 2017;435:67–72.

[31] Tasic I, Milojkovic M, Sunder-Plassmann R, et al. The association of PC-1 (ENPP1) K121Q polymorphism with metabolic syndrome in patients with coronary heart disease. Clin Chim Acta 2007;377:237–42.

[32] Zhou HH, Chin CN, Wu M, et al. Suppression of PC-1/ENPP-1 expression improves insulin sensitivity in vitro and in vivo. Eur J Pharmacol 2009;616:346–52.

[33] Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem 2009;42:1331–46.

[34] Blackett PR, Sanghera DK. Genetic determinants of cardiometabolic risk: a proposed model for phenotype association and interaction. J Clin Lipidol 2013;7:65–81.

[35] Moore AF, Jablonski KA, Mason CC, et al. The association of ENPP1 K121Q with diabetes incidence is abolished by lifestyle modification in the diabetes prevention program. J Clin Endocrinol Metab 2009;94:449–55.

[36] Bacci S, Di Paola R, Menzaghi C, et al. ENPP1 Q121 variant, increased pulse pressure and reduced insulin signaling, and nitric oxide synthase activity in endothelial cells. Arterioscler Thromb Vasc Biol 2009;29:1678–83.