Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ Single Crystals: Growth, Structure and Optical Property

WANG Dong1,2, HE Jiao-Qiao2, LAI Xiao-Fang3,4, HUANG Rong-Tie2, SHI Ying1, HUANG Fu-Qiang2,3

(1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; 2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3. State Key Laboratory of Rare Earth Materials Chemistry and Applications and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 4. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; 5. Material Laboratory of State Grid Corporation of China, State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing 102209, China)

Abstract: Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ single crystals of high quality were successfully synthesized by solid-state reaction method using NaI as flux. Both compounds crystallize in the rocksalt structure type of a cubic Fm-3m space group. The preferred orientation growth of lattice face (111) were observed in both two compounds. The optical absorption measurements show that the band gap of Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ compounds are 1.29 eV and 1.45 eV, respectively. Two compounds were fabricated into devices that exhibit notable photoelectric behavior, suggesting their potential for applications as photoelectric switches.

Key words: single crystal growth; Na$_{1.88}$Bi$_{1.88}$S$_4$; Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$; semiconducting materials

For decades, researchers have shown great interests in exploring group VA chalcogenides, because the compounds of group VA chalcogenides had been found to have various interesting properties and promising applications in the fields including photocatalyst (BiOCl$^{[1]}$), thermoelectric (Bi$_2$Te$_3$$^{[2]}$), superconductivity (LaO$_{1-x}$F$_x$Bi$_2$$^{[3]}$, Bi$_4O_6S_3$$^{[4]}$, and Bi$_2O_2S_2$$^{[5]}$), and topologic physics (SrBi$_2$Se$_2$$^{[6]}$).

Compared with most of other chalcogenides of group VA with common layered structure, the MBiQ_2 (M=Li, Na and K; Q=S and Se) compounds$^{[7-10]}$ have a rare NaCl-type cubic structure, which are isomorphous with AgBiSe$_2$$^{[11]}$, in which alkali metal and bismuth atoms disorderly occupy the 4a sites, and the sulfur or selenium atoms occupy the 4b sites. Structural information of MBiQ_2 compounds were only solved from powder X-ray diffraction data. Kang, et al$^{[12]}$ had prepared the NaBiS$_2$ plates by solvothermal method, but the product is not pure and the yield of the target compound was relatively low.

According to the theoretical calculations of NaBiS$_2$ reported by Gabrel'yan$^{[10]}$, the compound NaBiS$_2$ is a semiconductor with direct energy band of 1.28 eV, which indicates that the series of MBiQ_2 materials are promising candidates for thermoelectric and photoelectric study and application. But so far, the physical properties of MBiQ_2 and their derivatives were rarely investigated. Thus, it is worthy and necessary to seek a new and high-output method to synthesize pure and large single crystals for structural analysis and intrinsic physical properties study.

On the other hand, element doping as means of band engineering is always an effective way to adjust and control the bang gap$^{[13]}$. The selection of element for doping is of much importance, since the introduced atoms may change the energy and electronic structure of the parent compounds$^{[14-16]}$. Obviously, the element chemical valences of parent compounds will be changed to other states according to the kinds of doping atoms. In previous works, many interesting properties were induced by changing the valences of group VA from common states to mix-valences. A famous superconductor Ba$_{1.4}$K$_{0.6}$Bi$_2$O$_3$ with T_c of about 30 K was obtained by bringing Ba$^{2+}$ into KBiO$_3$$^{[18]}$, compound, which made the valence of Bi lower than its common state +5. The same observations happen in the other compounds including BaBi$_{1-x}$Pb$_x$O$_3$$^{[19]}$, AgSnSe$_2$$^{[20]}$ and doped TiO$_2$$^{[21-22]}$.

In this work, we intend to design different NaBiS$_2$-based compounds of chemical valence for Bi element by other elements. It is possible that substituting Na$^+$ or Bi$^{3+}$ ions by partial Ca$^{2+}$ ions may lead to different valence of Bi in the rock salt structure. And the calcium-inducing
method is possible, since the radius of Ca$^{2+}$ ion is just between the radii of Na$^+$ and Bi$^{3+}$ ions in the same chemical environment. Besides, the introduction of Ca$^{2+}$ ions would obviously turn the disorder of cation occupation into higher degree, which may introduce novel physical properties in parent compound NaBiS$_2$.

It has been well known that appropriate molten salt flux using in solid-state reaction could play a key role in the process of crystal growth. Flux became liquid phase at high temperature, helping ions to diffuse faster than that in solid-state and obviously accelerate the growth of single crystal. Herein, by using NaI as flux, large-size, high-quality, stable ternary and quaternary bismuth-chalcogenide single crystals Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ were successfully grown. Their crystal structure and physical properties, including optical and photoelectrical properties, were systematically investigated.

1 Experimental

1.1 Sample preparation

1.1.1 Preparation of polycrystalline samples

Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ polycrystalline powders were synthesized by using conventional solid-state reaction method. Starting materials of Na$_2$S powders, Ca bulk (99%), Bi particles (99.9%), S powders (99.999%) and Bi$_2$S$_3$ powders were used without further purification. Na$_2$S powders was prepared by the liquid ammonia method in lab, and Bi$_2$S$_3$ powders was obtained from the as-prepared samples. Data collections were performed on a Bruker D8 QUEST diffractometer equipped with mirror-monochromated Mo K$_\alpha$ radiation. Data was collected by o- and ω-scan method at room temperature using APEX3 program$^{[23]}$. The structures of the two compounds were solved by direct methods and refined by full-matrix least-squares on F^2 using the SHELXTL program package$^{[24]}$. Multi-scan absorption corrections (SADABS)$^{[25]}$ were performed. The crystal data and refinement details are summarized in Table 1.

Table 1	The crystal data and refinement details for Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$	
Formula	Na$_{1.88}$Bi$_{1.88}$S$_4$	Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$
Formula weight/(g·mol$^{-1}$)	563.42	495.02
Temperature/K	273	273
Wavelength/nm	0.07107	0.07107
Space group	Fm-3m	Fm-3m
Crystal system	cubic	cubic
Unit cell/nm	0.57715(4)	0.5745(4)
V/nm3	0.19225(3)	0.1896(4)
Reflns collected	1428	773
Unique reflns	18	22
Goodness--of--fits on F^2	1.447	1.317
R_1[I > 2σ(I)]	0.0106(2)	0.0154(2)
wR_1[I > 2σ(I)]	0.0236(2)	0.0314(2)
R_1(all)	0.0106(2)	0.0154(2)
wR_1(all)	0.0236(2)	0.0314(2)
1.2.3 UV-Vis light spectroscopy

Optical diffuse-reflectance measurements for two title compounds were carried out using a UV–4100 spectrophotometer operating from 2000 nm to 300 nm at room temperature. The BaSO₄ powders was used as a 100% reflectance standard. These two samples were ground and spread on a compacted base of BaSO₄ powder. The generated reflectance-versus-wavelength data were used to measure the band gap of the two materials. The reflectance data was converted to absorbance data using the Kubelka-Munk equation\(^{26}\) based on the direct band of NaBiS₂.

1.2.4 Photoelectric response tests

The as-synthesized single crystals of Na\(_{1.88}\)Bi\(_{1.88}\)S\(_4\) and Na\(_{1.36}\)Ca\(_{1.28}\)Bi\(_{1.36}\)S\(_4\) were crashed, ground into powders, pressed, and then incised into regular bars. The photoelectric response tests were using two-electrodes method. The tests were performed at room temperature under solar light irradiation with 500 W Xenon lamp on the Model 4200-SCS Semiconductor Characterization System. The inset of Fig. 5 shows the schematic device diagram of the tests.

2 Results and discussion

The single crystal data of Na\(_{1.88}\)Bi\(_{1.88}\)S\(_4\) and Na\(_{1.36}\)Ca\(_{1.28}\)Bi\(_{1.36}\)S\(_4\) were performed on a Bruker D8 QUEST diffractometer equipped with mirror-monochromated Mo Kα radiation. The experimental details are summarized in Table 1. The two title compounds crystallize in NaCl-type structure of a cubic \(Fm-3m\) space group. The Na/Bi/S and Na/Ca/Bi/S ratio of Na\(_{1.88}\)Bi\(_{1.88}\)S\(_4\) and Na\(_{1.36}\)Ca\(_{1.28}\)Bi\(_{1.36}\)S\(_4\) were determined from the refinement results, respectively. \(R_{\text{all}}(all)=0.0106(2), \ wR_{\text{all}}(all)=0.0236(2), \) \(s=1.447\) for Na\(_{1.88}\)Bi\(_{1.88}\)S\(_4\) compound, \(R_{\text{all}}(all)=0.0154(2), \ wR_{\text{all}}(all)=0.0314(2), \) and \(s=1.317\) for Na\(_{1.36}\)Ca\(_{1.28}\)Bi\(_{1.36}\)S\(_4\) compound. While there still exist ‘poor data / parameter ratio’ alerts during the Checkcif\(^{27}\) process due to the high symmetry of the \(Fm-3m\) space group of both these two compounds. The atomic parameters information for these two compounds are listed in Table 2-4.

| Table 2 Atomic coordinates of Na\(_{1.88}\)Bi\(_{1.88}\)S\(_4\) and Na\(_{1.36}\)Ca\(_{1.28}\)Bi\(_{1.36}\)S\(_4\) |
|-----------------|-----------------|--------|-----------------|--------|
| Atom | Symmetry | \(x\) | \(y\) | \(z\) | \(U_{eq}^*\) | Occupancy |
| Na | 4a | 0.5 | 1.0 | 0.5 | 0.0222(1) | 0.47(2) |
| Bi | 4a | 0.5 | 1.0 | 0.5 | 0.0222(1) | 0.47(2) |
| S | 4b | 1.0 | 0.5 | 0.5 | 0.0210(2) | 1.00 |
| Na | 4b | 0.5 | 0.5 | 0.5 | 0.0600(1) | 0.34(2) |
| Ca | 4b | 0.5 | 0.5 | 0.5 | 0.0500(9) | 0.32(3) |
| Bi | 4b | 0.5 | 0.5 | 0.5 | 0.0170(3) | 0.34(2) |
| S | 4a | 1.0 | 0.5 | 0.5 | 0.0210(3) | 1.00 |

\(^*U_{eq}\) is defined as one-third of the trace of the orthogonalized \(U_{ij}\) tensor

| Table 3 Anisotropic displacement parameters (\(\times10^{-6}, \text{nm}^2\)) of Na\(_{1.88}\)Bi\(_{1.88}\)S\(_4\) and Na\(_{1.36}\)Ca\(_{1.28}\)Bi\(_{1.36}\)S\(_4\)* |
|-----------------|-----------------|--------|--------|--------|--------|--------|--------|
| Atom | \(U_{11}\) | \(U_{22}\) | \(U_{33}\) | \(U_{12}\) | \(U_{13}\) | \(U_{23}\) |
| Na | 0.0222(3) | 0.0222(3) | 0.0222(3) | 0 | 0 | 0 |
| Bi | 0.0222(3) | 0.0222(3) | 0.0222(3) | 0 | 0 | 0 |
| S | 0.0213(5) | 0.0213(5) | 0.0213(5) | 0 | 0 | 0 |
| Na | 0.0588(2) | 0.0588(2) | 0.0588(2) | 0 | 0 | 0 |
| Ca | 0.0511(8) | 0.0511(8) | 0.0511(8) | 0 | 0 | 0 |
| Bi | 0.0171(6) | 0.0171(6) | 0.0171(6) | 0 | 0 | 0 |
| S | 0.0206(9) | 0.0206(9) | 0.0206(9) | 0 | 0 | 0 |

\(^*The \text{anisotropic displacement factor exponent takes the form} -2\pi^2[\hbar^2a^2U_{11} + ... + 2\hbar k a^b U_{12}]\)
Table 4 Representative bond lengths (nm) and bond angles (°) of Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$

Atom–atom bond	Bond length (nm)	Atom–atom–atom bond	Bond angle (°)
Na(1)–S(1)	0.28857(5)	S(1)–Na(1)–S(1)	90
Bi(1)–S(1)	0.28857(5)	S(1)–Bi(1)–S(1)	90
Na(1)–S(1)	0.2872(2)	S(1)–Na(1)–S(1)	90
Ca(1)–S(1)	0.2872(2)	S(1)–Ca(1)–S(1)	90
Bi(1)–S(1)	0.2872(2)	S(1)–Bi(1)–S(1)	90

Figure 1 depicts the crystal structure of Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ compounds, both of which crystallize in the rock salt structure of a cubic Fm-3m space group, with the Na, Ca and Bi atoms occupying 4b sites and S atoms occupying 4a sites, respectively. The Bi valence is +3.25 for Na$_{1.88}$Bi$_{1.88}$S$_4$ compound and +3 for Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ compound. The structure and configuration of Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ compound has not been changed by Calcium-doping determined by single crystal diffraction method. From Table 4, the bond distance of Na(Bi)–S is 0.28857(5) nm in Na$_{1.88}$Bi$_{1.88}$S$_4$, and the bond distance of Na(Ca/Bi)–S is 0.2872(2) nm in Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ compound, comparable to that in the structure of Na$_2$S (0.2831 nm)\(^{28}\), CaS (0.2842 nm)\(^{29}\), and Bi$_2$S$_3$ (average: 0.2901 nm)\(^{30}\). The strengthened bond of metal–sulfur in calcium-induced compound Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ are leading to the shortened bond distance compared to Na$_{1.88}$Bi$_{1.88}$S$_4$.

Figure 2(a) depicts the powder X-ray diffraction patterns of fine powders of Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ samples. As shown in Figure 2(a), all the peaks matched well with NaBiS$_2$ phase (PDF 75-0065) with the rock salt structure and no extra peaks were observed, indicating high degree of phase purity. The yield of these two compounds are over 90% by this method. The diffraction peaks of these two powders are consistent with the simulated single crystal X-ray diffraction results from their crystal information files. Figure 2(b) shows the magnified pattern of the (111) lattice plane, with the peak at about 26.8° of Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ phase, which is shifting to right compared with Na$_{1.88}$Bi$_{1.88}$S$_4$. In the structure of Na$_{1.88}$Bi$_{1.88}$S$_4$ phase, sulfur atoms occupy the chlorine sites, Na and Bi atoms disorderly occupy the sodium sites with nearly the same occupancy, while replacing partial Na and Bi atoms with some amounts of Ca atoms leads to the decrease of the lattice parameter a from 0.28857(5) nm to 0.2872(2) nm. The lattice parameter difference is due to their different effective ion size and elements proportion of the Na, Ca and Bi atoms.

Figure 3(a) and 3(c) are the scanning electron microscopic (SEM) images of the Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ single crystals. Both of the two title compounds present...
smooth double cone-like appearance of high crystallinity, indicating the preferred orientation growth of lattice face (111) using NaI as flux. The average size of Na$_{1.88}$Bi$_{1.88}$S$_4$ crystals is 65 μm, and the average size of Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ crystals is 40 μm. The two title compounds were prepared under the same procedure, while the Na$_{1.88}$Bi$_{1.88}$S$_4$ crystals are generally larger in size than the Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ crystals, indicating that the Na$_{1.88}$Bi$_{1.88}$S$_4$ crystal grows much easier than Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ crystal. This difference may be derived from the ion diffusion velocity and crystal symmetry of element-doping compounds$^{[31]}$. Figure 3(b) and 3(d) show the energy dispersive spectroscopy (EDS) spectra of the two compounds. The obvious characteristic energy peaks of elements can be detected, which located in the correspondent energy positions for each element. The Na/Bi/S ratio is 26.74/23.68/49.58, and the Na/Ca/Bi/S ratio is 17.26/14.82/17.48/50.44, determined from the EDS results, which are nearly the same as the single crystal diffraction refinement conclusions.

The two compounds were directly exposed in air for more than two months, and the phases remained unchanged, which were checked by powder X-ray diffraction and EDS, indicating the high stability of these two compounds. Unlike some alkali-containing compounds, for example, Na$_x$TaS$_2$$^{[32]}$, and Li$_xMoS_2$$^{[33]}$, the high stability of Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ compounds under normal air conditions enables potential applications.

In order to investigate the optical properties of the two compounds, UV-Visible (UV-Vis) diffuse-reflectance spectrum were measured. NaBiS$_2$ is a direct band gap semiconductor, the band gap can be inferred from the $(\alpha h\nu)^2$-$h\nu$ curves, as shown in Figure 4. The forbidden band gaps of the two compounds can be estimated from the energy value corresponding to the intersection point of the two tangent lines. From Figure 4, the energy gaps of Na$_{1.88}$Bi$_{1.88}$S$_4$ and Na$_{1.36}$Ca$_{1.28}$Bi$_{1.36}$S$_4$ compounds were found to be about 1.29 eV and 1.45 eV, respectively. Gadrel’yan reported that the calculated band gaps of NaBiS$_2$ to be 1.28 eV which is very close to our experimental results of Na$_{1.88}$Bi$_{1.88}$S$_4$. Thus, it can be seen that substituting partial Bi and Na atoms with Ca atoms leads to the enlargement of the band gap to 1.45 eV.

The band gap of these two compounds are potential for solar light utilization, for example, solar cell$^{[34]}$ and photoelectric switch$^{[35]}$, as the suitable band gap is about 1.6 eV$^{[36]}$. Photoelectric response tests for two compounds were performed on a 4200 semiconductor characterization system. The schematic graph of test device is shown in the inset of Figure 5(a). From Figure 5(a), the light
current density of $Na_{1.88}Bi_{1.88}S_4$ sample can reach 0.153 A/m² at the voltage of 1 V which is 13 times larger than dark current density, indicating the strong response of the light. Figure 5(b) shows the on-off curve at the bias voltage of 5 V, the current density is increased, when the light is on. Both Figure 5(a) and 5(b) demonstrate that $Na_{1.36}Bi_{1.36}S_4$ compound is a favorable and promising photoelectric response material. The photoelectric performance patterns of $Na_{1.36}Ca_{1.28}Bi_{1.36}S_4$ sample are depicted in Figure 5(c) and 5(d), and obvious response phenomenon can be also observed, with the light current density being 5.5 A/m² which is 5.7 times larger compared to the dark current density. The obvious photoelectric response is observed from the on-off curve in Figure 5(d). Besides, the light current density of $Na_{1.88}Ca_{1.28}Bi_{1.36}S_4$ is about 3.6 times larger than that in $Na_{1.88}Bi_{1.88}S_4$ compound. The enhanced photoelectric performance for $Na_{1.36}Ca_{1.28}Bi_{1.36}S_4$ compound is resulted from calcium-introducing.

3 Conclusions

In summary, $Na_{1.88}Bi_{1.88}S_4$ and $Na_{1.36}Ca_{1.28}Bi_{1.36}S_4$ single crystals of high purity crystallizing in the rock salt structure were successfully synthesized by solid state reaction using NaI as flux. The structures of these two compounds were solved by single crystal diffraction. The valence state of Bi element can be adjusted from 3.25 to 3 by Ca-doping along with the enlargement of band gap from 1.29 eV to 1.45 eV, accordingly. Besides, both of them perform obvious photoelectric response which can serve as favorable photoelectric response materials.

References:

[1] CHEN JIAN-CHAI, YU CHANG-LIN, LI JIA-DE, et al. Preparation by grinding-calcination and photocatalytic performance of La$_2$O$_3$/BiOCl composite photocatalysts. J. Inorg. Mater., 2015, 30(9): 943–949.
[2] WANG W, JIA F L, HUANG Q H, et al. Electrochemical assembled p-type Bi$_2$Te$_3$ thermoelectric materials with nanowire array structure. J. Inorg. Mater., 2004, 19(3): 517–522.
[3] LEE J, STONE M B, HUQ A, et al. Crystal structure, lattice vibrations, and superconductivity of LaO$_3$. J. Physical Review B, 2013, 87(20): 205134.
[4] SHRUTI, SRIVASTAVA P, PATNAIK S. Evidence for fully gapped strong coupling s-wave superconductivity in Bi$_2$O$_3$. Journal of Physics: Condensed Matter, 2013, 25(31): 312202.
[5] SHAO JIFENG, LIU ZHONGHENG, YAO XIANG, et al. Bulk superconductivity in single-phase Bi$_2$O$_3$. Physica Status Solidi (RRL) – Rapid Research Letters, 2014, 8(10): 845–848.
[6] SHRUTI, MAURYA V K, NEHA P, et al. Superconductivity by Sr intercalation in the layered topological insulator. Physical Review B, 2015, 92(2): 020506.
[7] BOON J W. The crystal structure of NaBiS$_2$ and KBiS$_2$. Recueil des Travaux Chimiques des Pays-Bas, 1944, 63(2): 32–34.
[8] LAVRENT’EV A A, MIGAL’ YU F, NIKIFOROV I YA. Two types of shape resonances in the compounds AlBiS$_2$ (AlF–Li, Na). Journal of Structural Chemistry, 1992, 33(2): 207–213.
[9] PARK YOUNBONG, MCCARTHY TIMOTHY J, SUTORLK ANTHONY C, et al. Synthesis of Ternary Chalcogenides in Molten Polyhalogenide Solts: α-KCuQ$_6$, KAuS$_5$, KFeO$_2$ (Q = S, Se). Inorg. Synth., John Wiley & Sons, Inc., 2007: 88–95.
[10] GABREL’YAN B V, LAVRENT’EV A A, NIKIFOROV I YA, et al. Electronic energy structure of MBiS$_2$ (M = Li, Na, K) calculated with allowance for the difference between the M-S and Bi-S bond lengths. Journal of Structural Chemistry, 2008, 49(5): 788–794.
[11] PAN LIN, B RARDAN DAVID, DRAGOJE NITA. High thermoelectric properties of n-type AgBiSe$_2$. Journal of Physics: Condensed Matter, 2013, 15(13): 4914–4917.
[12] KANG SUMIN, HONG YONGHOON, JEON YOUNGJIN. A facile synthesis and characterization of sodium bismuth sulfide (NaBiS$_2$) under hydrothermal condition. Bulletin of the Korean Chemical Society, 2014, 45(38): 279–287.
[13] CHEN XIAOBO, CLEMENS BURDA. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO$_2$ nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019.
[14] ABDUKADER ABDUKAYUM, AILIJHANG TIERDI, RENAGUL ABDURAHMAN, et al. Synthesis and luminescence properties of Dy$_2$Cr co-doped ZnGa$_2$O$_4$ persistent luminescence nanoparticles. J. Inorg. Mater., 2016, 31(12): 1363–1369.
[15] ZHANG ZHI-XIONG, OU YANG SHAO-YE, ZHANG Yue-Pin, et al. Enhanced luminescent properties of Pr$^{3+}$ doped Ba$_2$La$_2$F$_7$ glass ceramics for white light-emitting diodes. J. Inorg. Mater., 2016, 31(10): 1046–1050.
[16] KAMIHARA YOICHI, WATANABE TAKUMI, HIROANO YASUSHI, et al. Iron-based layered superconductor La$_{1-x}$Fe$_x$As ($x = 0.05–0.12$) with $T_c = 26$ K. Journal of the American Chemical Society, 2008, 130(11): 3296–3297.
[17] NAZIA U S, ISLAM A K M A. Model spectral function and superconductivity in Ba$_{1-x}$K$_x$BiO$_3$ ($x = 0.5–0.7$). Solid State Communications, 2003, 125(1): 37–40.
[18] NGUYEN T N, GIAQUINTA D M, DAVIS W M, et al. Electrosynthesis of KBiO$_3$: a potassium ion conductor with the KSO$_3$ tunnel structure. Chemistry of Materials, 1993, 5: 1273–1276.
[19] SHIRAI M, SUZUKI N, MOTOZUKI K. Superconductivity in BaPb$_1$–xBi$_x$O$_3$ and Ba$_{1-x}$K$_x$BiO$_3$. Journal of Physics: Condensed Matter, 1989, 1(7): 2939.
[20] CHEN CHENG-LUNG, WANG HENG, CHEN YANG-YUAN, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. Journal of Materials Chemistry A, 2014, 2(29): 11171–11176.
[21] LI L, XIAO J Y, CUI M D, et al. Boron and sulfur co-doped TiO$_2$ nanofilm as high efficiency CdS quantum-dot-sensitized solar cells. J. Inorg. Mater., 2016, 31(6): 627–633.
[22] SUN TONG, CHEN YANG, MA XIAO-QING, et al. Facile synthesis of visible light activated carbon-incorporated Mn doped TiO$_2$ microspheres via flame thermal method. J. Inorg. Mater., 2015, 30(9): 1002–1008.
[23] FRANCART TOM, VAN WIERINGEN ANTON, et al. APEX 3: a multi-purpose test platform for auditory psychophysical experiments. Journal of Neuroscience Methods, 2008, 172(2): 283–293.
[24] SHELDRICK GEORGE. Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 2015, 71(1): 3–8.
[25] SHELDRICK G M, SADABS. Program for Empirical Absorption
Correction of Area Detector Data. University of Göttingen, Germany, 1996.

[26] CHRISTY ALFRED A, KVALHEIM OLAV M, VELAPOLDI RANCE A. Quantitative analysis in diffuse reflectance spectrometry: a modified Kubelka-Munk equation. *Vib. Spectrosc.*, 1995, 9(1): 19–27.

[27] SPEK A. Single-crystal structure validation with the program PLATON. *J. Appl. Crystallogr.*, 2003, 36(1): 7–13.

[28] WEST C D. The crystal structures of some alkali hydrosulfides and monosulfides. *Zeitschrift für Kristallographie-Crystalline Materials*, 1934, 88: 97.

[29] PRIMAK W, KAUFMAN H, WARD R. X-ray diffraction studies of systems involved in the preparation of alkaline earth sulfide and selenide phosphors. *Journal of the American Chemical Society*, 1948, 70: 2043–2046.

[30] KUPČ K V, VESEL-NOV KOV LUDMILA. Zur Kristallstruktur des Bismuthinite, Bi₅S₇. *Tschermaks Mineralogische und Petrographische Mitteilungen*, 1970, 14(1): 55–59.

[31] KUDO AKIHIKO, NIISHIRO RYO, IWASE AKIHIDE, et al. Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. *Chem. Phys.*, 2007, 339(1/2/3): 104–110.

[32] FANG L, WANG Y, ZOU P Y, et al. Fabrication and superconductivity of Na₅Ta₂S₇ crystals. *Physical Review B*, 2005, 72(1): 014534.

[33] CHRISSAFIS K, ZAMANI M, KAMBAS K, et al. Structural studies of MoS₂ intercalated by lithium. *Materials Science and Engineering: B*, 1989, 3(1): 145–151.

[34] YANG Y, GAO J, CUI J R, et al. Research progress of perovskite solar cells. *J. Inorg. Mater.*, 2015, 30(11): 1131–1138.

[35] MATSUO YUTAKA, ICHIKI TAKAHIKO, NAKAMURA EIICHI. Molecular photoelectric switch using a mixed SAM of organic [60]Fullerene and [70]Fullerene doped with a single iron atom. *Journal of the American Chemical Society*, 2011, 133(25): 9932–9937.

[36] WANG W Q, ZHENG H F, LU G H, et al. Recent progress on applications of nano metal oxides in perovskite solar cells. *J. Inorg. Mater.*, 2016, 31(9): 897–907.

Na₁₈₈Bi₁₈₈S₄ 和 **Na₁₃₆Ca₁₂₈Bi₁₃₆S₄** 单晶制备与结构及其光学性能表征

王东¹,², 贺剑桥², 赖晓芳³,⁴, 黄荣铁², 施鹰¹, 徐丽⁵, 黄富强²,³

(1. 上海大学 材料科学与工程学院, 上海 200444; 2. 中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050; 3. 北京大学 化学与分子工程学院, 北京分子科学国家实验室, 北京 100871; 4. 广东工业大学 物理与光电工程学院, 广州 510006; 5. 全球能源互联网研究院, 先进输电技术国家重点实验室, 全球能源互联网联合实验室, 北京 102209)

摘 要: 采用碘化钠为助熔剂, 通过固相反应法制备了两种晶体质量较好的 **Na₁₈₈Bi₁₈₈S₄** 和 **Na₁₃₆Ca₁₂₈Bi₁₃₆S₄** 单晶。测试结果表明，它们属于氯化钠结构，面心立方，空间群为 Fm-3m。形貌表征和物性测试结果表明，在碘化钠的作用下，化合物 **Na₁₈₈Bi₁₈₈S₄** 和 **Na₁₃₆Ca₁₂₈Bi₁₃₆S₄** 呈现双锥状形貌，沿(111)晶面择优取向生长，带隙分别为 1.29 和 1.45 eV。通过光电器件性能测试，发现两种化合物均表现出良好的光电响应特性，说明它们可以作为一种潜在的、性能优良的光电开关材料。

关 键 词: 单晶生长; **Na₁₈₈Bi₁₈₈S₄**; **Na₁₃₆Ca₁₂₈Bi₁₃₆S₄**; 半导体材料

中图分类号: O782 文献标识码: A