ABSTRACT

In modern days of information security, much attention is drifted towards achieving the major security triad of privacy, authentication and availability. Paillier homomorphic encryption is one of the most widely area of public key encryption schemes researchers are exploring to enhance information security. In this paper, we presented an overview of the Paillier cryptosystem. We further evaluated the security vulnerabilities in the cryptosystem. This was achieved through mathematical theorems and inductions. This is to present some open issues for further research to propose and implement a more robust security system based on the Paillier homomorphic encryption scheme.

Keywords: Homomorphic encryption; RSA; security; cryptography.
1. INTRODUCTION

Recently, much research has been diverted towards information security (cryptography) due to the increasing rate of electronic data. Apparently, diverse form of cryptographic schemes is being applied in order to achieve the essential electronic data properties of privacy, anonymity, accuracy, verifiability, integrity and robustness. The Paillier cryptosystem based on computations over multiplicative subgroup \mathbb{Z}_n^*, where n is an RSA modulus (composite residuosity class problem) has received much of the research interest due to possessing some important properties useful in such areas. This scheme has some very useful properties, due to its homomorphic nature.

Using Paillier cryptosystem, modern aims of cryptography for providing information security such as Data integrity, Data privacy and Data authentication in various computational settings are achieved. Cryptographic systems with additive homomorphisms of which Paillier cryptosystem is based are useful for a lot of cryptological protocols like electronic voting, multi-party computation, Digital signature, Zero-knowledge proofs, Watermarking and fingerprinting schemes and Lottery protocols.

2. RELATED WORKS

In [1], Paillier, proposes a new probabilistic asymmetric algorithm for public key cryptography based on computation over \mathbb{Z}_n^*, n being RSA modulus. The scheme is based on the assumption that computing n-th residue classes is considered to be computational difficult. The scheme can be similarly traced to the earlier cryptographic algorithm proposed by Okamoto and Uchiyama [2], whereby the group \mathbb{Z}_n^* is used, where p and q are large primes. It is also believed that the first threshold scheme proposed by Fouque, et al. [3] was a version of Pascal Paillier’s original scheme. Damgard, et al. [4], in their paper titled “A Generalization of Paillier’s Public-Key System with Applications to Electronic Voting” proposed useful application of the Paillier’s scheme in the area of Electronic Voting. Jurik [5], in his thesis titled “Paillier’s original scheme. Extensions to the Paillier Cryptosystem with Applications to Cryptological Protocols” proposed some useful length flexibility. This is based on the ability to extend the plaintext space at encryption time rather than at key generation time, when the public key is chosen which was only available for symmetric ciphers in literature. Sakurai and Takagi [6,7,8], analyzed M-Pailler cryptosystem proposed by Choi et al and one-wayness of it was proven as intractable as factoring the modulus n.

3. PAILLIER CRYPTOGRAM SYSTEM OVERVIEW

Parameters: prime numbers p, q

\[n = pq \]
\[\lambda = \text{lcm}(p-1, q-1) \]
\[g, \text{ with } g \in \mathbb{Z}_n^* \text{ and the order of } g \text{ is a multiple of } n \]

Public key: n, g

Private key: p, q, λ

Encryption: plaintext $m < n$. Select a random $r < n$ such that $r \in \mathbb{Z}_n$. Cipher text $c = g^m r^n \mod n^2$

Decryption: ciphertext $c < n^2$. Plaintext $m = L(c^\lambda \mod n^2) / L(g^\lambda \mod n^2) \mod n$

3.1 Theoretical Overview Paillier Cryptosystem

Key Generation

1. Pick two large prime numbers p and q, randomly and independently, such that $\text{gcd}(p, (p-1)(q-1))=1$. If not, start again. This property is asserted if both primes are of equal length.
2. Compute $n=pq$, $\lambda = \text{lcm}(p-1, q-1)$, where lcm stands for the least common multiple.
3. Select random integer g where g belong to \mathbb{Z}_n^*.
4. Calculate the modular multiplicative inverse $\mu = (L(g^\lambda \mod n^2))^{-1} \mod n$. If μ does not exist, start again from step 1.
5. The public key is (n, g). For encryption.
6. The private key is λ. For decryption. [9,10,11]

Encryption

Compute ciphertext $c = g^m r^n \mod n^2$. Select a random $r < n$ such that $r \in \mathbb{Z}_n$, $m < n$.

Decryption

Compute plaintext $m = L(c^\lambda \mod n^2) / L(g^\lambda \mod n^2) \mod n$. Ciphertext $c < n^2$.

4. EVALUATION OF THE PAILLIER SCHEME

The security of the paillier scheme is based on
Problem 1: Factorization of \(n \), that's multiplication of two large prime numbers (equivalent to RSA modulus)

Problem 2: Deciding \(n \)-th composite residuosity. That is: \(z = y^r \mod n^2 \)

Our focus here is how we can recover the original message \((m) \) without solving Problem 1 and Problem 2 above.

4.1 Choice of the Least and the Highest Value/Number of \(R \in \mathbb{Z}_n^* \)

The first attack is on the choice of the least and the highest value/number of \(r \in \mathbb{Z}_n^* \) as random number for semantic security \((r)\).

Example 1:

Let \(p=3 \), \(q=5 \) then \(n=15, n^2 = 225 \)

The generator \(g \), in most general form is given by

\[
g = (1 + \alpha.n) \beta^n, \quad \alpha, \beta \in \mathbb{Z}_n^*
\]

If \(\alpha=1 \) and \(\beta=1 \) then \(g=16 \)

Random number \(r < n \) such that \(r \in \mathbb{Z}_n^* \).

If we consider the Table 1 above, we have the message we will be transmitting on the first row starting from 0 to 14.

We have all the possible values of \(r \in \mathbb{Z}_n^* \) on the first column, starting from 1, 2, 4 ……, 14 in that order.

The gray area of Table 1 indicates the resulting cipher text.

Analysis One: when we choose the least value of \(r \in \mathbb{Z}_n^* \) (which is 1) as our random number for semantic security.

There is something unique (pattern) about the cipher text generated for all the messages, \(0 – 14, m < n \) when analysis one is true. Careful examination of the Table 1 above when \(r=1 \) shows that the cipher text has a constant increasing growth (addition) by the value of \(n \) \((n=15)\) for all \(m < n \) (all the possible cipher text). This is because the least value of \(r \in \mathbb{Z}_n^* \) is chosen as the random number for semantic security.

How to recover the original message when analysis one is asserted:

Firstly, take the least and the highest message value that belongs to \(m < n \). That is 0 and 14 considering the example \((Table 1)\) above.

Secondly, encrypt them \((0 \) and \(14)\), which gives 1 and 211 as the cipher text respectively. It means that 1 is the first valid cipher text if we are to transmit all the messages \((0 – 14)\) and also 211 is the last valid cipher text if we are to transmit all the messages \((0 – 14)\).

Once we get the first and the last valid ciphers, the remaining cipher text which will occur between them is just adding the value of \(n \) \((15)\) to the remaining ciphers starting from the first valid cipher text. That is if we are to transmit the next message which is 1 in the Table above, we simply add \(n \) \((15)\) to the value of the first valid cipher text which is one \((1)\) resulting 16 as the next cipher text in that order.

Table 1. The results of computing example 1 with its valid cipher text

\(r \)	\(r^n \)	\(m \)	\(g^m \)
0	0	1	\(1^0 = 1 \)
1	1	16	\(1^1 = 1 \)
2	143	163	\(1^2 = 1 \)
3	199	163	\(1^3 = 1 \)
4	118	163	\(1^4 = 1 \)
5	107	163	\(1^5 = 1 \)
6	26	163	\(1^6 = 1 \)
7	82	163	\(1^7 = 1 \)
8	224	163	\(1^8 = 1 \)
9	224	163	\(1^9 = 1 \)
10	224	163	\(1^{10} = 1 \)
11	224	163	\(1^{11} = 1 \)
12	224	163	\(1^{12} = 1 \)
13	224	163	\(1^{13} = 1 \)
14	224	163	\(1^{14} = 1 \)

Results of random values of \(r<n \)
Lastly, in recovering the message, subtract the first valid cipher text (1) from the cipher text you want to recover the original message and divide the result by n (15).

Example: let’s say we want to transmit 7, 8, and 10. You will get 106, 121 and 151 respectively as cipher text (note that r=1).

Taking 106,

\[106 - 1 = 105\]
\[105/n = 105/15 = 7\] (which is the original message)

Taking 121,

\[121 - 1 = 120\]
\[120/n = 120/15 = 8\] (which is the original message)

Taking 151,

\[151 - 1 = 150\]
\[150/n = 150/15 = 10\] (which is the original message)

Note: one (1) here is the first valid cipher text indicated above.

Analysis Two: when we choose the highest value of \(r \in Z_n^{*}\) (which is 14) as our random number for semantic security.

There is also something unique (pattern) about the cipher text generated for all the messages, 0 – 14, \(m < n\) when analysis two is true. Careful examination of the Table 1 when \(r=14\) shows that the cipher text has a constant decreased (subtraction) by the value of n \((n=15)\) for all \(m < n\) (all the possible cipher text). This is because the highest value of \(r \in Z_n^{*}\) is chosen as the random number for semantic security.

How to recover the original message when analysis two is asserted:

Firstly, take the least and the highest message value that belongs to \(m < n\) likewise. That is 0 and 14 considering the example (Table 1) above.

Secondly, encrypt them (0 and 14), which gives 224 and 14 as the cipher text respectively. It means that 224 is the first valid cipher text if we are to transmit all the messages (0 – 14) and also 14 is the last valid cipher text if we are to transmit all the messages (0 – 14).

Once we get the first and last possible cipher’s, the remaining cipher text which will occur between them is just subtracting the value of n \((n=15)\) from the remaining ciphers starting from the first valid cipher text. That is if we are to transmit the next message which is 1 in the Table 1, we simply subtract n \((n=15)\) from the value of the first valid cipher text which is 224 resulting 209 as the next cipher text in that order.

Lastly, in recovering the message, subtract the cipher text you want to recover the original message from the first valid cipher text \(224\) and divide the result by n \((n=15)\).

Example: let’s say we want to transmit 7, 8, and 10. You will get 119, 104 and 74 respectively as cipher text (note that \(r=14\)).

Taking 119,

\[224 – 119 = 105\]
\[105/n = 105/15 = 7\] (which is the original message)

Taking 104,

\[224 – 104 = 120\]
\[120/n = 120/15 = 8\] (which is the original message)

Taking 151,

\[224 – 74 = 150\]
\[150/n = 150/15 = 10\] (which is the original message)

Note: 224 here is the first valid cipher text indicated above.

4.2 Mathematics of the Encryption Scheme

The second attack is on the mathematics of the encryption scheme, \(g^m \cdot r^n \mod n^2\).

When we consider the Table 1 for multiplicative subgroup \(Z_{15}^{*} \cdot (Z_n^{*})\), the \(g^m \mod n^2\) part of the cipher text is a matter of increasing the cipher text by the value of n starting from the least cipher text which is one \((1)\) up to the highest which is 211 for all the message space \(m < n\). What makes the difference is the value of random semantic security append to \(g^m\), that is \(g^m \cdot r^n\).
Any cipher text you pick from the multiplicative subgroup \mathbb{Z}_{15^2}, apart from cipher text resulting from $r=1$ and $r=14$ (the least and the highest value of r) can be traced to the original message by solving the equation below:

$$g^m r^n \equiv c \mod n^2$$ \hspace{1cm} (1)

Where:

- g^m is the cipher text without random semantic security value r^n
- r^n is the random semantic security value
- c is the cipher text you trying to recover the original message.

From Eq.1, we can have:

$$r^n \equiv (g^m)^{-1} \cdot c \mod n^2$$ \hspace{1cm} (2)

Where $r^n \in r < \mathbb{Z}_{n^2}$

By solving Eq.2, you can extract the random semantic security part of the cipher text (c).

This idea is based on the fact that any cipher text you pick from the multiplicative subgroup is just a combination of g^m and $r^n \mod n^2$.

Illustration:

Let consider all the g^m ($g^m \mod n^2$) values in the Table 1. That is, 1, 16, 31, 46, 61, 76, ..., 211. Note also that all the cipher text generated within the multiplicative subgroup are coprime to 225 (\mathbb{Z}_{15^2}).

Let also consider all the r^n ($r^n \mod n^2$) values in the Table 1. That is, 1, 143, 199, 118, 107, ..., 224.

We will now pick a random cipher text from the multiplicative subgroup \mathbb{Z}_{15^2}, which is 94. This cipher text (94) we have selected consist of g^m part and r^n part.

We will now test the cipher we selected (94) against the values of g^m ($g^m \mod n^2$) using Eq.2 until we get the first valid result belonging to r^n ($r^n \mod n^2$).

From Eq.2

When $g^m = 1$,

$$r^n \equiv (1)^{-1} \cdot 94 \mod 225$$

$94 \notin r^n$

When $g^m = 16$,

$$r^n \equiv (16)^{-1} \cdot 94 \mod 225$$

$199 \in r^n$

When $g^m = 31$,

$$r^n \equiv (31)^{-1} \cdot 94 \mod 225$$

$199 \in r^n$

4.3 The Third Attack is on the Repetition of the Message (M)

The third attack is on the repetition of the message (m) value as the cipher text for transmission.

The system does not have any unique cipher representation for the highest message belonging to $m < n$ for transmission when highest random semantic security value $r \in \mathbb{Z}_{n^2}$ is chosen other than the message itself. In other words, it would always produce a cipher text equal to the original message.

Illustration:

Let's consider the Table 1, if we decide to transmit 14, which is the highest message of $m < n$ and r (highest random semantic security value) = 14, it will produce the cipher text: $16^{14} \cdot 15 \mod 225 = 14$ which is the same as the message we are transmitting.

Another example:

Let $p=7$, $q=11$, $n=77$, $n^2=5929$, $g=78$, $r=76$

Here the message m for transmission is 76 (highest in $m < n$) and the highest value of $r \in \mathbb{Z}_{n^2}$ is 76. The cipher text (c) then will be:

$$C = 78^{76} \cdot 76^{77} \mod 5929$$

$C = 76$ equal to the message we are transmitting.

It must be noted here that, this findings are valid for all g (generator) = $n + 1$.
5. CONCLUSION

The overview of Paillier homomorphic encryption scheme is presented. The security vulnerabilities of the scheme are shown using mathematical theorems and inductions. The results shows that the paillier homomorphic encryption is not robust and vulnerable to various attacks.

Based on this problem, future work will pivot on finding a new secured cryptosystem that can enhance the security of Paillier homomorphic encryption.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Paillier P. Public-Key Cryptosystems based on Composite Degree Residue Classes, Advances in Cryptology - EUROCRYPT '99, LNCS. Springer Verlag. 1999;1592:223-238.
2. Okamoto T, Uchiyama S. A New Public-Key Cryptosystem as Secure as Factoring, Advances in Cryptology - EUROCRYPT '98, LNCS. Springer Verlag. 1998;1403:308-318.
3. Fouque P-A, Poupart G, Stern J. Sharing Decryption in the Context of Voting or Lotteries, Financial Cryptography (2000), LNCS. Springer Verla. 2001;1962:90-104.
4. Damgard I, Jurik M, Nielsen JB. A Generalization of Pailler's Public-Key System with Applications to Electronic Voting, to appear in special issue on Financial Cryptography, International Journal on Information Security (IJIS). Springer Verlag. 2001;1592:223-238.
5. Mads J. Jurik. Extensions to the Paillier Cryptosystem with Applications to Cryptological Protocols. PhD thesis. 2003:xii+117.
6. Sakurai K, Takagi T. (2002) On the Security of a Modified Paillier Public-Key Primitive. In: Batten L, Seberry J. (eds) Information Security and Privacy. ACISP. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg. 2002;2384. Available:https://doi.org/10.1007/3-540-45450-0_33
7. Catalano D, Gennaro R, Howgaw-Graham N. The bit security of Paillier's encryption scheme and its applications. Eurocrypt 2001, LNCS 2045. 2001;229-243.
8. Shukla V, Chaturvedi A, Srivastava N. Nanotechnology and cryptographic protocols: Issues and possible solutions, Nanomaterials and Energy. 2019;8(1):1-6. DOI:https://doi.org/10.1680/jnaen.18.0000 6
9. Acar A, Aksu H, Uluagac AS, Conti M. A survey on homomorphic encryption schemes: Theory and implementation. ACM Comput. Surv. 2018;51:1–35.
10. Dowlin N, Gilad-Bachrach R, Laine K, Lauter K, Naehrig M, Wernsing J. Manual for using homomorphic encryption for bioinformatics. Proc. IEEE. 2017;105:552–567.
11. El Makkaoui K, Ezzati A, Beni-Hssane A, et al. Fast Cloud–Paillier homomorphic schemes for protecting confidentiality of sensitive data in cloud computing. J Ambient Intell Human Comput. 2020;11: 2205–2214. Available:https://doi.org/10.1007/s12652-019-01366-3

© 2020 Asiedu and Salifu; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/61783