ON THE HEURISTIC RULE FOR PLANETARY DISTANCE DISTRIBUTION

N. D. Svyazhyn
I.I.Mechnikov Odessa National University
Odessa 65082, Ukraine, swjashin@onu.edu.ua

ABSTRACT. This paper presents a new heuristic rule for the planetary distance distribution in the solar system similar to the Titius-Bode rule of planetary orbit spacing. Application of this universal rule simultaneously for planets and planetary moons has been considered. Natural satellites orbiting around a central body are divided into groups of six satellites in each.

1. Introduction

There is a vast literature on the search of regularities of planetary and moon orbit spacing according to the Titius-Bode type relation [1–8]. The Titius-Bode Law of Planetary Distances: Its History and Theory by Michael M. Nieto from the Niels Bohr Institute at the University of Copenhagen was issued in 1972. Apparently, the Titius-Bode relation expresses, to some extent, Newtonian mechanics in empirical form: each planet in the solar system is about 1.7 times further from the Sun than the next innermost planet. It was also shown that such regularities are realised in exoplanetary systems [2, 7]. The geometric series for distances follows from Newton's law; however, to perform sufficient simulation and deepen understanding of this phenomenon, it is necessary to rely on the methods of celestial mechanics and apply modern computer technologies. This study presents a new heuristic rule for the spacing of systems of different bodies in the solar system.

2. Rule definition

Natural satellites orbiting around a central body are divided into groups of six moons in each:

\[h_{mn} = \alpha_m n \]

(1)

where \(m \) – the group number; \(n \) – the ordinal number of a moon within a group starting with the central body; \(h_{mn} \) – the average distance between the central body and moon which equals to the radius of a sphere which has the same area as the planar figure restricted by the moon’s orbit.

If \(a, b \) – the ellipse semi-axes, then the sought radius equals to \(\sqrt{ab} \). The distances in the group are approximated with the following formulae (see Table 1).

(Here \(\alpha_m \) – the group non-dimensional parameter; \(H_m \) – the average orbital radius of the 6th moon in the group, which is called the upper boundary of the group and \(h_{m1} \) – the lower boundary of a group. The distances \(h_{mn} \) within groups of moons are related as follows:

\[h_{m+k} = \beta^k h_m \]

(2)

where \(m+k \) – the number of a group).

Having the relative values entered, the previous table can be presented as follows (see Table 2). As is evident, here

\[a_{mn} = \frac{h_{mn}}{h_{m6}} \quad \text{and} \quad a_m = \frac{h_{m6}}{h_{m3}} \]

(3)

Table 1

Moon number	1	2	3	4	5	6
Distance notation	\(h_{m1} \)	\(h_{m2} \)	\(h_{m3} \)	\(h_{m4} \)	\(h_{m5} \)	\(h_{m6} \)
Distance formula	\(\frac{H_m}{\alpha_m} - 1 \)	\(\frac{H_m}{\alpha_m + 1} \)	\(\frac{H_m}{\alpha_m} \)	\(\frac{H_m}{\alpha_m - 1} \)	\(\frac{2 \alpha m + 1}{\alpha_m^2} \)	\(H_m \)

Table 2

Moon	\(a_1 \)	\(a_2 \)	\(a_3 \)	\(a_4 \)	\(a_5 \)	\(a_6 \)
Distance formula	\(\frac{1}{\alpha} - 1 \)	\(\frac{1}{\alpha + 1} \)	\(\frac{1}{\alpha} \)	\(\frac{1}{\alpha - 1} \)	\(\frac{2\alpha}{\alpha^2 - 1} \)	1
Besides, it is supposed that the sequencing axiom is realised for planetary distances with any allowed values of the parameter α:

$$0 < a_{mn} = \frac{h_m}{h_6} < a_{mn+1} \leq 1, \ n = 1, 5$$

(4)

from which the left restriction for the parameter α is obtained:

$$1 + \sqrt{2} < a_m$$

(5)

From the sequencing axiom, which states that the upper boundary of the group is less than the lower boundary of the next group,

$$h_{m-6} < h_{mn}, \ n = 1, 2, 3, ..., 6$$

(6)

the right restriction is obtained:

$$\alpha < \sqrt{\beta + 1}$$

(7)

Let us suppose that there are two Phaetons rather than one hidden in the asteroid belt at the distances of 2.26 and 2.94 AU from the Sun, and that asteroid Chiron ($a = 13.65$ AU, $e = 0.382$) is a minor planet (or its remainder). According to the above – formulated rule we receive the following (see Table 3).

Asteroid 538P – L with the average orbital radius of 2.261763 AU, asteroid 1992DT2 with the average radius of 2.9403035 AU and asteroid 1999W140 with the average radius 2.9399417 AU (or the members of the Flora and Eos families) were selected as the fragments of the 5th and 6th planets within the first group.

Thus, the values $a_m \approx 2.94, m = 1, 2, 3; \ \beta = 13$ rather accurately approximate the relative distances $h_{mk}/h_{m6}, k = 1, 6, m = 1, 3$, obtained on the basis of actual data.

The majority of the Kuiper belt asteroids are in the region extending between the orbits of the last planet of the second group and the second planet of the third group. The 3rd, 4th, 5th, and 6th planets of the third group among trans-Neptunian objects do not belong to families.

Table 3

PLANET	$h_3 = \beta h_2$	AVERAGE RADIUS	RELATION WITHIN A GROUP	THEORETICAL RELATION	β
1 Mercury	538	.38294034	.130	.130	13.1
2 Venus	552332359	.722332359	.246	.254	13.601882
3 Earth	99993022	.99993022	.340	.340	13.175292
4 Mars	1.5203275	.5171	.516		
5 The Flora family	(2.2616567)	.77	.77		
6 The Eos family	(2.94)	1	1		
1 Jupiter	5.208709	.134	.13	13.601882	
2 Saturn	9.5300711	.245	.25	13.175292	
3 Chiron	13.208832	.34	.34	13.209754	
4 Uranus	19.18058	.494	.52	12.610684	
5 Neptunue	30.068409	.77	.77	13.258811	
6 Pluto	38.855936	1	1		13.352555
1 (29762) 2007 UK	68.234088	.139	.13	13.2	
2 (181902) 1999 RD, (82158) 2001 FP	124.84393	105.564	.21	.25	11.08
3 (148209) 2009 CR	173.0357	169.644	.34	.34	12.85
4 2004 VN	251.2656	243.365	.493	.52	12.69
5 (90377) Sedna	393.89616	374.634	.76	.77	12.46
6 2006 SQ	509.01276	493.24	1	1	12.69

3. Description of moon systems

To make it more illustrative, it is more convenient to examine the Neptunian moon system first (see Table 4).

As is seen from Table 4, the first four moons make up a family of the first object within the first group. Positions for the 4th and 5th objects within the first group are empty. The second group is completely empty.

The existence of positions in the second group is determined by the values β, which should meet some additional requirements (see Formula 8). Besides, a definite rule, such as density axiom, can be set: in accordance with this axiom parameters α and β should take on the least values given that conditions (2) and (6) are fulfilled.

In other words, when distributing moons within the first and third groups, the existence of the second group which fulfils condition (6) follows from condition (2).
Table 4: The Neptunian moon system (Neptune’s radius 24,764 km).

No	Group number	Object number within a group	Number within a family	Moon names	R, km	R/R	R/R theoretical	β	M, kg	
1	I	1		Naiad	48 227	0.1359272	1.9·10^{-11}			
2	I	2		Thalassa	50 075	0.1411358	3.5·10^{-11}			
3	I	3		Despina	52 526	0.1480439	2.1·10^{-11}			
4	I	4		Galatea	61 953	0.1746380	2.1·10^{-11}			
5	II	1		Larissa	73 548	0.2072942	4.9·10^{-11}			
6	II	2		S/2004 N 1	105 200	0.296505				
7	II	3		Proteus	117 647	0.3315858	5.0·10^{-11}			
8	II	4		163.5		0.46				
	II	5		248.6		0.70				
9	III	1		Nereid	4 479 360.7	0.0992068	9.6401649	3.1·10^{-11}		
10	III	2		11277.8		0.25				
11	III	3		Halimede	14 249 954	0.315886	0.3(3)	11.007844	9.0·10^{-11}	
12	III	4		Sao	21 924 105	0.4850029	0.5		6.7·10^{-11}	
13	III	5		Laomedea	22 433 384	0.4979224	0.75		5.8·10^{-11}	
14	III	6		Psamoth	37 243 465	0.8255951	0.75		1.5·10^{-11}	
				Neso	45 111 053	1.0000000	1.		1.1275853	1.7·10^{-11}

Now let us examine the Saturnian moon system:

Drawing an analogy between macrocosm and microcosm, in accordance with the planetary model of the atom in which an electron strives to occupy the lowest orbit from the allowed ones, it can be assumed that a similar phenomenon can be observed in macrocosm as it was in the case of the \(\beta \) parameter selection during assignment of the second group of the Neptunian moons. It means that the allowed orbits of a central body’s moons are determined on the same ground.

As can be seen, the moons of the Saturnian system are divided into three groups.

The moons from the 0\(^{th}\) to the 13\(^{th}\) form a sub – group located between the orbits of the first and second moons within the first group. This group can be called a family or a sub – group of the first moon of the first group.

One of the criteria by which the moons were assigned to this group, is the moons’ sizes given in the last column of the table as it is not feasible to perform any other assignment.

It should be noted that the 9\(^{th}\) moon of the first family within the third group of the Saturnian system satisfies the following condition: \(h_{3,1,9} = \beta h_{2,1} = 16938 \) (see Table 5).

Further let us consider the moon system of Jupiter. Using the same principles as before, we obtain data presented in Table 6. The distance for the first moon of the first group of the Jupiter system is determined by relation \(h_{1} = \alpha h_{6} \), although it is less than the central body’s radius (see Table 6).

The Uranian moon system can be described with four groups (see Table 7).

In different sources, the solar and planetary parameters vary significantly. Table 8 presents some variations of those parameters, as well as the obtained values of parameters \(\alpha \) and \(\beta \).
Table 5: The Saturnian moon system (Saturn’s radius 60,268 km).

No	Group number	Object number within a group	Number within a family	Moon name	R, thsd. km	R/R	R/R theoretical	β	D	
1		0	2009 S 1	117	0.0957726			0.3		
2	I	1	Pan	133	0.1088697			20		
3		2	Daphnis	136.5	0.1117347	0.1011		7		
5		4	Prometheus	139.4				100		
14		13	Enceladus	238.1	0.1949014			499		
15		2	Tethys	294.7				1060		
16		2	Telesto	294.7	0.2412325	0.2326		24		
17		3	Calypso	294.7				19		
18		3	Dione	377.4	0.3089282	0.3(3)		32		
19		1	Helene	377.4				3		
20		1	Iapetus	377.4	0.3012325	0.2326		1528		
21		1	Rhea	527.1	0.4314681	0.4348		815		
22		1	Titan	1221.643				150		
23		1	Hyperion	1463.9814	0.1138775	0.1161	11.007	266		
24		2	Iapetus	3560.1019	0.2769198	0.2439	12.08	1436		
25		1	Kiviuq	10787.248	0.8390780	0.72	13.23	16		
26		2	Ijiraq	10835.251	0.8428118			12		
27		1	Phoebe	12856.073			1.0	10.524	240	
28		1	Paaliaq	14669.37	0.5906256	1 : 10.02	22			
29		2	Albiorix	15165.908		1 : 10.36	32			
31		4	Bebhionn	16088.201		1 : 10.99	6			
35		8	Skoll	16626.089	0.6694005	1 : 11.36	6			
36		9	Sirstaq	17136.472	0.6899495			40		
39		12	S/2004 S 7	17870.709	0.7195114	1 : 12.2	6			
42		27	Farbauti	20710.152	0.8120917	1 : 13.78	5			
57		30	Kari	20729.178	0.8345992	1 : 14.16	7			
61		34	Loge	22860.661	0.9204171	1 : 15.6	6			
62		35	Fornjot	24837.282	1.0	1 : 16.97; 2 : 6.98	6			

(α ≈ 3.2, β ≈ 11.57, αβ ≈ 37.024)
Table 6: The moon system of Jupiter (Jupiter’s radius 71,492 km).

No	Diameter	Group number	Object number within a group	Number within a family	Moon name	Average radius, thsd. km	R/R	R/R theoretical	β
1	~40	I	1	1	Metis	127.69	0.7040459	0.709	
2	~16	I	5	1	Adrastea	128.69	0.7955960		
3	~146	I	6	1	Amalthea	181.366	1.0	1.0	
4	~98	II	1	1	Thebe	221.872	0.1178490	0.15	10.83
5	~3630	II	2	1	Io	421.7	0.2239892	0.26	9.6
6	~3121.6	II	3	1	Europa	671.02	0.3564174	0.36	11.64
7	~5262.4	II	4	1	Ganymede	1070.412	0.5685575	0.56	12.64
8	~4820.6	II	5	1	Callisto	1882.68	1.0	1.0	10.38
9	~170	III	1	1	Leda	11108.66			
10	~86	III	2	2	Himalia	11385.86	0.5008128	0.4739336	10.63
11	~36	III	3	3	Elara	11664.67			
12	~146	III	4	4	Lysithea	11688.92			
13	~3121.6	IV	1	1	S/2000 J10	12435.16			
14	~86	IV	2	2	S/2003 J12	16787.83	0.7172426	10.87	
15	~36	IV	3	3	Carpo	16814.85	0.7396097	10.89	
16	~170	IV	4	4	Euporie	19044.30	10.11		
17	~86	IV	5	5	Thelxinoe	20074.99	10.66		
18	~36	IV	6	6	Ananke	20787.92	11.0		
19	~170	IV	7	7	Thyonoe	20898.75	11.10		
20	~86	IV	8	8	Sinope	23589.52	12.53		
21	~36	IV	9	9	Isonoe	23610.92	12.54		
22	~170	IV	10	10	Megaclite	24080.92	10.418		
23	~86	IV	11	11	S/2003 J2	30018.99	11.6318		

(α ≈ 3.04, β ≈ 11.2, αβ ≈ 34.05)
Table 7: The Uranian moon system (the radius of Uranus is 24,800 km).

No	R thsd. km	Group number	Number within a group	Object number within a group	Number within a family	Moon name	r/r	β	β Theoretical r/r
1	13.83			1	Cordelia	0.18445			
2	21.22			2	Ophelia	0.28295			
3	29.6			3	Portia	0.3946			
4	49.751000	I	1						
5	53.762629			2					
6	66.097000			3					
7	69.927000			4					
8	74.800000			5					
9	75.255000			6					
10	76.420000			7					
11									
12	86.004000	II	1					6.25	0.126
13	97.734000			2					
14	129.389950			3					
15	191.019930			4					
16	266.298930			5					
17	435.909790			6					
18	583.519630								
19	4254.116700	III	1				618–656	6.39	0.26
20	7218.710300			2			819–1113		
21	7961.082700			3			1209–1228		
22	8410.678200			4			1685–1743		
23	11297.873000			5			2438–2758		
24	11316.714000			6			3067–3692		
25	15801.542000	IV	1						
26	16239.657000			2					
27	19879.088000			3					

(α ≈ 2.65, β ≈ 6.32, αβ ≈ 16.75)

Table 8: Dynamic parameters of the Sun and solar system planets.

Planetary names	The core temperature, T	Volume (V), cub. m	I_O	I_O*	α	β	αβ
Sun	1.35 – 1.5•10^7	1.41•10^{-27}	0.171	0.34	2.94	13.1	38.514
Jupiter	20 – 25•10^3	14.3 – 15.2•10^{23}	0.20	0.262	3.04	11.2	34.05
Saturn	11.7 – 20•10^3	8.27 – 9.23•10^{23}	0.22	0.227	3.2	11.57	37.024
Uranus	4.737 – 12•10^3	6.39 – 6.83•10^{22}	0.23	0.212	2.65	6.32	16.75
Neptune	7 – 14•10^3	6.254 – 6.58•10^{22}	0.26	0.2	3.1	10.64	32.984

Here I_O is the reduced moment of inertia.
Table 9: The S parameter values for the solar system giants and the Sun.

Planetary names	The core temperature, T	Volume (V) cub. m	I₀	αβ	S	S~
Sun	1.35•10⁷	1.41•10²⁷	0.34	38.514	0.07977•10⁻²⁰	0.08•10⁻²⁰
Jupiter	25•10³	1.43•10²⁴	0.2	34.05	0.08399•10⁻²⁰	0.08•10⁻²⁰
Saturn	12.15•10³	8.27•10²³	0.22	37.024	0.08356•10⁻²⁰	0.08•10⁻²⁰
Uranus	2.45•10²	6.833•10²²	0.2	16.75	0.08325•10⁻²⁰	0.08•10⁻²⁰
Neptune	1.2•10³	6.254•10²²	0.2	32.984	0.08302•10⁻²⁰	0.08•10⁻²⁰

The given values of the parameter S indirectly sustain the planetary spacing rule.

Having the values T, V and I₀ selected (from Table 8), we see that the parameter S, determined by the following formula:

\[S = \frac{V}{I₀} \sqrt{\frac{1}{T₀ \alpha\beta}}, \tag{8} \]

takes on close values for planet – giants and the Sun.

4. Conclusions

Formally, α, in the units of the 3rd moon, is the upper boundary of the first group or the distance to the 6th moon. Then, αβ is the distance to the 6th moon within the next group or the upper boundary of the second group.

Thus, a set of values α and β can be determined from formulae (1) – (7) using two radii of the orbits of moons assigned to the given positions. Comparing these values with the values of T, V and I₀, in formula (8), the fittest parameter values can be found.

References

1. Bakulev V.M. The Titius-Bode law of planetary distances: new approach (arXiv:astro-ph/0601369 2006astro-ph..1369B).
2. Cuntz Manfred: 2012, Publications of the Astronomical Society of Japan, 64, No.4, Article No.73, 10 pp.
3. Griv E.: 2006, European Planetary Science Congress. Berlin, Germany, 18–22 September 2006, p.22.
4. Hayes Wayne, Tremaine Scott: 1998, Icarus, 135, Issue 2, pp. 549-557.
5. Kotliarov I. The Titius-Bode Law Revisited But Not Revived (arXiv:0806.3532 2008arXiv0806.3532K).
6. Pankovic Vladan, Radakovic Aleksandar-Meda. A Close Correlation between Third Kepler Law and Titius-Bode Rule (arXiv:0903.1732 2009arXiv0903.1732P).
7. Poveda A., Lara P.: 2008, Revista Mexicana de Astronomía y Astrofísica, 44, 243-246 (http://www.astroscu.unam.mx/~rmua/).
8. Zawisawski Z., Kosek W., Leliwa-Kopystynski J.: 2000, A&A, 19, Issue 2, 177-190.