Random Bias Initialization Improves Quantized Training

A PREPRINT

Xinlin Li & Vahid Partovi Nia
Huawei Montreal Research Center
Montreal, QC H3N 1X9, Canada
{xinlin.li1,vahid.partovinia}@huawei.com

November 24, 2021

ABSTRACT

Binary neural networks improve computationally efficiency of deep models with a large margin. However, there is still a performance gap between a successful full-precision training and binary training. We bring some insights about why this accuracy drop exists and call for a better understanding of binary network geometry. We start with analyzing full-precision neural networks with ReLU activation and compare it with its binarized version. This comparison suggests to initialize networks with random bias, a counter-intuitive remedy.

1 Introduction

It is common to use low-bit quantized networks such as Binary Neural Networks (BNNs) (Courbariaux et al., 2016) to implement deep neural networks on edge devices such as cell phones, smart wearables, etc. BNNs only keep the sign of weights and compute the sign of activations \{-1, +1\} by applying the sign function in the forward pass. In backward propagation, BNN uses Straight-Through-Estimator (STE) to estimate the backward gradient through the sign function and update on full-precision weights. The forward and backward loop of a BNN, therefore, becomes similar to the full-precision neural network with hard hyperbolic tangent \(htanh\) activation. The \(htanh\) function is a piece-wise linear version of the nonlinear hyperbolic tangent \(tanh\), and is known to be inferior in terms of accuracy compared to ReLU-like activation function. Although the analysis is based on \(htanh\) function, this conclusion equally applies to BNNs that use STE, a \(htanh\)-like, back propagation scheme. Other saturating activations like tanh and \(sigmoid\) commonly applied in recurrent neural networks and attention-based models may benefit from this resolution as well. Among others, Sari et al. (2019) recommends an initialization scheme for binary weights but ignores the bias term. Ramachandran et al. (2017a) utilized automatic search techniques on searching different activation functions. Most top novel activation functions found by the searches have an asymmetric saturating regime, which is similar to ReLU.

2 Related Works

Initialization strategy is critical for training deep neural network. A good initialization helps to alleviate the exploding/vanishing gradient problem, as well as reduce training time and achieve lower generalization error. In terms of weight initialization, Glorot & Bengio (2010) proposed a new initialization scheme designed for sigmoid and \(tanh\) activations. He et al. (2015) extended this work and adapt to ReLU activation, which make it the most widely-used initialization scheme for training deep neural network with ReLU activation. However, all these initialization scheme set the bias values to zero.

In terms of bias initialization for ReLU activated neural network, Li et al. (2015) suggested a trick that initializing all bias value with a small constant value, like 0.01, to ensure that all ReLU units fire in the beginning to alleviate "dying ReLU" issue. Besides ReLU-activated model, bias initialization trick also helps recurrent neural network (RNN)
training. For Long short-term memory (LSTM), Gers et al. (1999) proposed initializing the forget gate biases to positive values and Jozelewicz et al. (2015) suggest to initialize the forget gate with a unit constant value. The latter empirically showed that this bias initialization trick significantly improve the performance of the LSTM model and beat all LSTM alternatives, such as Gated Recurrent Units (GRU). Bila (2017) showed that initializing forget gate bias with small random values outperforms the constant initialization. Similarly, the reset gate biases of GRU cell can be initialized with –1 for better performance. The intuition behind these RNN tricks is to ensure the BackProp gradient pass through all time-steps at initialization to better capture the long-term dependency of the data sequence. It’s worth to mentioned that the forget gate of LSTM cell and the reset gate of GRU cell are similar to a linear layer followed by a sigmoid activation function. However, the understanding of relationship between bias initialization and activation function remains unexplored, which is the main contribution of this paper.

There are different ways to look at deep neural network. One is to treat a neural network as an universal function approximator. Cybenko (1989) proved the universal approximation theorem for neural network with sigmoid activation. Later, Hornik et al. (1989) extended it for arbitrary activation functions.

Recently, several works (Long et al. 2017) (Chang et al. 2018) (Chen et al. 2018) proposed a new view that considering the forward propagation of Residual Network (ResNet) architecture as solving the initial value problem of ordinary differential equation with Euler’s method (Griffiths & Higham 2010). These works linked the neural network understanding to the numerical solution of differential equation.

Another way is looking at neural network from the hyper-plane point of view. This view generalizes the hyper-plane concept from support vector machine to neural network (Gulcehre et al. 2016) (van den Berg 2016), (Montufar et al. 2014). We take this approach.

Activation function brings non-linearity into neural network and sigmoid function and tanh function were the popular choices before ReLU. Glorot et al. (2011) proposed training deep neural network with ReLU activation, and argued that ReLU activation alleviates the vanishing gradient problem and encourages sparsity in the model. Since AlexNet (Krizhevsky et al. 2012), almost every successful neural network architectures use ReLU activation or its variants, such as leaky ReLU (Maas et al. 2013), parametric ReLU (He et al. 2015), ELU (Clevert et al. 2015), etc. Although many works reported that ReLU activation outperforms the traditional saturating activation functions, the reason for its superior performance remains an open question. In this paper, we argue why ReLU performs better than other activations.

Ramachandran et al. (2017b) utilized automatic search on different activation functions. Most top novel activation functions found by the searches have an asymmetric saturating regime, which is similar to ReLU. Farhadi et al. (2020) adapts ReLU and sigmoid while training. To improve the performance of saturating activations, Xu et al. (2016) proposed penalized tanh activation, which introduces asymmetric saturating regime to tanh by inserting leaky ReLU before tanh. The penalized tanh achieves the same level of performance as ReLU-activated CNN.

3 Full-Precision Networks

A typical full-precision neural network block can be described by

\[
x^{i+1} = \text{ReLU}(W^i x^i + b^i)
\]

\[
W^i \in \mathbb{R}^{m \times n}, b^i \in \mathbb{R}^n, x^i \in \mathbb{R}^n, x^{i+1} \in \mathbb{R}^m.
\]

(1)

Neural networks are trained using the back-propagation algorithm. Back propagation is composed of two components i) forward pass and ii) backward propagation. In the forward pass, the loss function (\(\cdot \)) is evaluated on the current weights, and in backward propagation, gradients and then weights are updated sequentially.

Assume weight vectors \(W^j_i \) have unit norm. It is a reasonable assumption when the network has batch normalization layers in which all neuron responses are normalized, as the magnitude of the weight vectors does not affect the layer output. The \(j^{th} \) neuron response in the \((i+1)^{th} \) layer are computed as

\[
x^{j+1}_{j} = \begin{cases} W^j_i x^i + b^j_i & W^j_i x^i + b^j_i > 0 \\ 0 & W^j_i x^i + b^j_i \leq 0 \end{cases}
\]

(2)

First, the input data points \(x^i \) are projected to the \(j^{th} \) row vector of the weight matrix. The dot product of \(W^j_i \) and \(x^i \) are cut by the corresponding bias term \(b^j_i \), i.e. the output \(x^{j+1}_j \) is set to zero if the dot product is smaller than the threshold, see Figure 2 (left panel). A hyper-plane whose normal direction defined by \(W^j_i \) divides the input space into two parts: i) activated region (non-saturated regime) and ii) non-activated region (saturated regime), see Figure 1. If the data point \(x^i \)
falls on the positive side of a hyper-plane (activated region), the hyper-plane is activated by x^i. Consequently, x_j^{i+1} is positive. Otherwise, x_j^{i+1} equals zero and remains inactive.

The weight matrix W of size $m \times n$ and the bias vector b of size $m \times 1$ define m hyper-planes in the n-dimensional input space, see Figure 2 (right panel).

During backward propagation, the backward gradient update on W_j and x^i are computed using

$$
\begin{align*}
\frac{d}{dW_j} &= \frac{dx_j^{i+1}}{dx} \ast \frac{dx_j^{i+1}}{dW_j} \\
\frac{d}{db_j} &= \frac{dx_j^{i+1}}{dx} \ast \frac{dx_j^{i+1}}{db_j} \\
\frac{d}{dx} &= \frac{dx_j^{i+1}}{dx} \ast \frac{dx_j^{i+1}}{dx}
\end{align*}
$$

For the case of ReLU activation

$$
\begin{align*}
\frac{dx_j^{i+1}}{dW_j} &= \begin{cases}
 x^i & W_j^ix^i + b_j > 0 \\
 0 & W_j^ix^i + b_j \leq 0
\end{cases} \\
\frac{dx_j^{i+1}}{db_j} &= \begin{cases}
 1 & W_j^ix^i + b_j > 0 \\
 0 & W_j^ix^i + b_j \leq 0
\end{cases} \\
\frac{dx_j^{i+1}}{dx} &= \begin{cases}
 W_j^ix^i & W_j^ix^i + b_j > 0 \\
 0 & W_j^ix^i + b_j \leq 0
\end{cases}
\end{align*}
$$
The activation function only allows the gradients from data point on the activated region to backward propagate and update the hyper-plane \(4 \).

From the hyper-plane analysis, we realize that ReLU activation has three ideal properties i) The diversity of activated regions at initialization, ii) The equality of data points at initialization, iii) The equality of hyper-planes at initialization which we discuss each property in more details later. These may explain why ReLU activation outperforms the traditional tanh or sigmoid activations. To argue each property, let us suppose that the distribution of the dot products is zero-centered. This assumption is automatically preserved in neural networks with batch normalization layer.

i) Region diversity: the activated regions of hyper-planes solely depend on the direction of the weight vector, which is randomly initialized. This allows different hyper-planes to learn from a different subset of data points, and ultimately diversifies the backward gradient signal. ii) Data equality: an arbitrary data point \(x_i \), is located on activated regions of approximately half of the total hyper-planes in a layer. In other words, the backward gradients from all data points can pass through the approximately same amount of activation function, update hyper-planes, and propagate the gradient. iii) Hyperplane equality: an arbitrary hyper-plane \(W_j^i \), is affected by the backward gradients from approximately 50% of the total data points. All hyper-planes on average receive the same amount of backward gradients. Hyper-plane equality speeds up the convergence and facilitates model optimization, see Figure 1 (right panel).

The performance gap between ReLU activation and htanh activation is caused by their different activated region distribution, see Figure 3. Clearly, htanh activation is not as good as ReLU in defining balanced and fair activated regions. However, we analyze each property for htanh as well.

i) Region diversity: activated regions of htanh are not as diverse as ReLU. Activated regions of htanh cover only the area close to the origin. Assuming Gaussian data, this is a dense area that the majority of data points are located in.

ii) Data equality: data points are not treated fairly htanh activation function. Data points that closer to the origin can activate more hyper-planes than the data points far from the origin. If the magnitude of a data point \(x \) is small enough, it can activate all hyper-planes in the same layer, see the deep-red region of Figure 3 (right panel). As a consequence, in backward gradients, few data instances affect all hyper-planes. In other words, the backward gradients from a part of the training data have a larger impact on model than others. This imbalance ultimately affects model generalization problem since the model training focuses only on a subset of the training data points close to the origin.

iii) Hyperplane equality: The initial activated regions should cover a similar-sized subset of the training data points overall, and this property is shared in both ReLU and htanh activations. Similar analysis also applies to other activation functions with the zero-centered activated region, like sigmoid or tanh.

4 Training Acceleration

Here we proposed a simple initialization strategy to alleviate the data inequality issue and improve activated region diversity for the htanh activation relying on our geometric insight described earlier. We argue bias initialization with a uniform distribution between \([-\lambda, \lambda]\), where \(\lambda \) is a hyper-parameter. With random bias initialization, the data points that far from the origin can activate more hyper-planes. If \(\lambda > \max(\|x\|) + 1 \), all data points activate approximately the
same number of hyper-planes during backward propagation, so data equality can be achieved. Also, with the diverse initial activated region, different hyper-planes learn from different subset of training data points.

However, this initialization strategy comes with a drawback. Hyper-plane equality no longer holds when the biases are not set to zero. Hyper-planes with larger initial bias have less activated data. Therefore, choosing the optimal value of λ is a trade-off between the hyper-plane equality and the data equality. Experiments below shows that the validation curve becomes unsteady if λ value set to too high. Empirically, with a batch normalization layer, $\lambda \approx 2$ provide a good initial estimate. In this case, the activated regions covering from -3 to $+3$, so it allows the gradients from almost all data points to propagate. Our experiments shows small λ also helps to improve the performance of ResNet architecture.

5 Numerical Results

The proposed bias initialization method is evaluated on the CIFAR-10. We use the same random seed for all experiments, so they have identical weight initialization. The network architectures are based on the original implementation of the BNN Courbariaux et al. (2016). We choose the VGG-7 architecture and the ResNet architecture.

The VGG-7 architecture, is a simple and over-parameterized model for CIFAR 10. This is an ideal architecture to compare the performance between different activations.

Figure 4 confirms that the random bias initialization strategy helps to reduce the performance gap between tanh and ReLU activation. A similar effect is observed for ResNet type architectures.

We also tested the proposed bias initialization on the ResNet-like architecture. The results are depicted in Figure 4 re-asserts that bias initialization improves tanh and pushes it toward ReLU accuracy, see Table I.

Binary training that use STE is similar to tanh activation. We expect to observe a similar effect in BNN training with STE gradient approximator. The validation error rate is summarized in Table I. In the Binary VGG-7 experiments,
we reduced the accuracy gap between full-precision network with ReLU activation and BNN from 4% to 1.5%. The bias initialization strategy is effective to close the gap on binary ResNet architecture by almost 1%, even while the full-precision model even under-fits on CIFAR10 data.

References

Jayadev Billa. Improving lstm-ctc based asr performance in domains with limited training data. *arXiv preprint arXiv:1707.00722*, 2017.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible architectures for arbitrarily deep residual neural networks. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In *Advances in neural information processing systems*, pp. 6571–6583, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). *arXiv preprint arXiv:1511.07289*, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1. 2016.

George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems*, 2(4):303–314, 1989.

Farnoush Farhadi, Vahid Partovi Nia, and Andrea Lodi. Activation adaptation in neural networks. Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM), to appear, 2020.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm. 1999.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics*, pp. 249–256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp. 315–323, 2011.

David F. Griffiths and Desmond J. Higham. *Euler’s Method*, pp. 19–31. Springer London, London, 2010. ISBN 978-0-85729-148-6. doi: 10.1007/978-0-85729-148-6_2. URL https://doi.org/10.1007/978-0-85729-148-6_2

Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy activation functions. In *International conference on machine learning*, pp. 3059–3068, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *Proceedings of the IEEE international conference on computer vision*, pp. 1026–1034, 2015.

Activations	VGG-7	ResNet
ReLU (Baseline)	6.98	9.45
htan	10.91	10.63
htan (λ=0.5)	9.99	9.87
htan (λ=1.0)	9.15	10.47
htan (λ=1.5)	8.36	10.13
htan (λ=2.0)	7.98	10.23
htan (λ=2.5)	7.83	9.84

Table 1: Validation error rate % for full-precision training, λ = 0 coincides with common deterministic initialization.

λ	Binary VGG-7	Binary ResNet
0	10.77	23.11
0.5	9.57	22.31
1	9.17	22.83
1.5	8.57	22.56
2	8.56	22.47
2.5	8.53	**22.19**
3	**8.48**	22.30

Table 2: Validation error rate % for Binary training, λ = 0 coincides with common deterministic initialization.
Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are universal approximators. *Neural networks*, 2(5):359–366, 1989.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent network architectures. In *International conference on machine learning*, pp. 2342–2350, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pp. 1097–1105, 2012.

Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Cs231n: Convolutional neural networks for visual recognition. *University Lecture*, 2015.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. *arXiv preprint arXiv:1710.09668*, 2017.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network acoustic models. In *Proc. icml*, volume 30, pp. 3, 2013.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions of deep neural networks. In *Advances in neural information processing systems*, pp. 2924–2932, 2014.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv preprint arXiv:1710.05941*, 2017a.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv preprint arXiv:1710.05941*, 2017b.

Eyyüb Sari, Mouloud Belbahri, and Vahid Partovi Nia. How does batch normalization help binary training? *arXiv preprint arXiv:1909.09139v2*, 2019.

Ewout van den Berg. Some insights into the geometry and training of neural networks. *arXiv preprint arXiv:1605.00329*, 2016.

Bing Xu, Ruitong Huang, and Mu Li. Revise saturated activation functions. *arXiv preprint arXiv:1602.05980*, 2016.