1. Introduction

Convex stochastic processes are introduced by Nikodem [1] in 1980. Skowroński [2] generalized certain well-known properties of convex functions to convex stochastic processes. In [3], Kotrys investigated the Hermite–Hadamard inequality involving convex stochastic processes. In recent works on convex stochastic processes, many authors studied different integral inequalities, see [3–9].

Motivated from the above works, we study the Hermite–Hadamard type inequalities for \(r \)-convex stochastic processes. We also consider the case of the product of an \(r \)-convex and \(s \)-convex stochastic process.

2. Preliminaries

Let \((\Omega, \mathcal{F}, P)\) be an arbitrary probability space. A \(\mathcal{F}\)-measurable function \(X : \Omega \rightarrow \mathbb{R}\) is said to be a random variable. Let \(I \subset \mathbb{R}\) be an interval. Then a function \(X : I \times \Omega \rightarrow \mathbb{R}\) is said to be the stochastic process if the function \(X(t,.)\) is a random variable for all \(t\) in \(I\).

Let \(P\) and \(E[X]\) denote the limit in probability and the expected value of \(X\), respectively. A stochastic process \(X : I \times \Omega \rightarrow \mathbb{R}\) is said to be continuous in probability if \(P\)–lim \(X(t,.) = X(t_0,.)\) for all \(t_0 \in I\) while it is said to mean-square continuous in \(I\) if

\[
\lim_{t \to t_0} E[(X(t) - X(t_0))^2] = 0, \quad \forall t_0 \in I.
\]

It is worthy to note that if \(X : I \times \Omega \rightarrow \mathbb{R}\) is mean-square continuous, then it is continuous in \(I\) but the converse does not hold.

The mean-square integral is defined as: A random variable \(Y : \Omega \rightarrow \mathbb{R}\) is said to be the mean-square integral of the stochastic process \(X : I \times \Omega \rightarrow \mathbb{R}\) on \([a, b] \subset I\) with \(E[(X(t))^2] < \infty\) \(\forall t \in I\), if for every normal sequence of partitions of \([a, b]\), the following relation holds

\[
\lim_{n \to \infty} E\left[\left(\sum_{k=1}^{n} X(\Theta_k)(t_k - t_{k-1}) - Y\right)^2\right] = 0,
\]

where \(\Theta_k \in [t_{k-1}, t_k], \ k = 1, 2, 3, \ldots, n\) and \(a = t_0 < t_1 < t_2 < \ldots < t_n = b\) is the partition of \([a, b]\). Thus, we can write

\[
Y(.) = \int_a^b X(t,.) \, dt \quad (a.e).
\]

The assumption of the mean-square continuity of the stochastic process is enough for the mean-square integral to exist.

From the definition of mean-square integral, we immediately have the following relation.

\[
X(t,.) \leq Y(t,.) \quad (a.e), \text{for} \ t \in [a, b] \implies \int_a^b X(t,.) \, dt \leq \int_a^b Y(t,.) \, dt \quad (a.e).
\]
That is a mean-square integral is monotonic. Throughout the entire paper, the monotonicity of mean-square integral and positivity of the stochastic process will be frequently used. Now, we define the following.

Definition 2.1: A stochastic process $X : l \times \Omega \to [0, \infty)$ is said to be r-convex, if for each $u, v \in l$ and $\lambda \in [0, 1]$

$$X(\lambda u + (1 - \lambda)v, \cdot) \leq \begin{cases} (\lambda X(u, \cdot) + (1 - \lambda)X(v, \cdot))^{1/r}, & r \neq 0 \\ (X(u, \cdot)^{1/r^2}(X(v, \cdot))^{1 - 1/r}, & r = 0 \end{cases} \text{ (a.e.)},$$

(1)

Note that 0-convex stochastic processes are logarithmic convex (see [9]) and 1-convex stochastic processes are the classical convex functions. Note that if X is r-convex, then X^r is convex stochastic process ($r > 0$).

The above definition is analogue of the r-convex functions in the classical convex functions, see [10, 11].

Kotrys [3] studied the following well-known Hermite–Hadamard type inequality

$$X\left(\frac{u + v}{2}\right) \leq \frac{1}{v - u} \int_u^v X(t, \cdot)dt \leq \frac{X(u, \cdot) + X(v, \cdot)}{2} \text{ (a.e.)},$$

where $X : l \times \Omega \to \mathbb{R}$ is Jensen convex and mean-square continuous stochastic process. Hermite–Hadamard type inequalities for log-convex functions was investigated by Dragomir and Mond [12].

Pachpatte [13, 14] also gave some other refinements of these inequalities related with differentiable log-convex functions.

Tomar et al. [9] proved the following inequalities:

Theorem 3.1: Let $X : l \times \Omega \to [0, \infty)$ be a r-convex stochastic process with mean-square continuity in l. Then for $u, v \in l$ with $u < v$, the below inequality holds

$$\frac{1}{v - u} \int_u^v X(t, \cdot)dt \leq \left[\frac{X(u, \cdot) + X(v, \cdot)}{2}\right]^{1/r} \text{ (a.e.)},$$

(2)

Proof: From Jensen inequality, we obtain

$$\left(\frac{1}{v - u} \int_u^v X(t, \cdot)dt\right)^r \leq \frac{1}{v - u} \int_u^v X^r(t, \cdot)dt \text{ (a.e.)}.$$

Since X^r is convex, then Hermite–Hadamard type inequality for convex stochastic processes yields us (see [3])

$$\frac{1}{v - u} \int_u^v X^r(t, \cdot)dt \leq \left[\frac{X(u, \cdot) + X(v, \cdot)}{2}\right] \text{ (a.e.)}.$$

Hence,

$$\frac{1}{v - u} \int_u^v X(t, \cdot)dt \leq \left[\frac{X(u, \cdot) + X(v, \cdot)}{2}\right]^{1/r} \text{ (a.e.)}.$$

This completes the proof.

Corollary 3.1: Let $X : l \times \Omega \to [0, \infty)$ be 1-convex stochastic process with mean-square continuity in l. Then for $u, v \in l$ with $u < v$, the following inequality holds.

$$\frac{1}{v - u} \int_u^v X(t, \cdot)dt \leq \frac{X(u, \cdot) + X(v, \cdot)}{2}.$$

Theorem 3.2: Let $X : l \times \Omega \to (0, \infty)$ be r-convex stochastic process ($r \geq 0$) with mean-square continuity in l. Then for $u, v \in l$ with $u < v$, the following inequalities hold

$$\frac{1}{v - u} \int_u^v X(t, \cdot)dt \leq \begin{cases} \frac{r}{r + 1} \left[\frac{X^{r+1}(v, \cdot) - X^{r+1}(u, \cdot)}{X(v, \cdot) - X(u, \cdot)}\right], & r \neq 0 \\ \frac{X(v, \cdot) - X(u, \cdot)}{\log X(v, \cdot) - \log X(u, \cdot)}, & r = 0 \end{cases} \text{ (a.e.)}.$$

(3)

Proof: For $r = 0$, Tomar et al. [9] proved this result. We proceed for the case $r > 0$. Since X is r-convex stochastic...
process, for all \(\lambda \in [0, 1] \), we have
\[
X(\lambda u + (1 - \lambda)v,)
\leq (\lambda X'(u,.) + (1 - \lambda)X'(v,))^{1/r}
\quad ('a.e.').
\]

Therefore by using the same method as of [3], we have
\[
\frac{1}{v - u} \int_u^v X(t,.)dt
\leq \int_0^1 \left(X'(v,.) + \lambda(X'(u,.) - X'(v,)) \right)^{1/r} d\lambda
\quad ('a.e.').
\]

Putting \(\tau = X'(v,.) + \lambda(X'(u,.) - X'(v,)) \), we have
\[
\frac{1}{v - u} \int_u^v X(t,.)dt \leq \frac{1}{X'(v,.) - X'(u,.)} \int_{X'(u,.)}^{X'(v,.)} (\tau)^{1/r} d\tau
\]
\[
= \frac{r}{r + 1} \left[\frac{X'(v,.) - X'(u,.)}{X'(v,.) - X'(u,.)} \right],
\quad ('a.e.').
\]

which completes the proof. \(\square \)

Note that for \(r = 1 \), in the above theorem, we have the same inequality again as in Corollary 3.1.

\begin{theorem}
Let \(X : I \times \Omega \to (0, \infty) \) be \(r \)-convex \((0 \leq r \leq s)\) stochastic process with mean-square continuity in \(I \). Then \(X \) is \(s \)-convex stochastic process.
\end{theorem}

\begin{proof}
To prove this, we need the following inequality for non-negative real numbers \(x, y \)
\[
x^{1 - \lambda}y^{\lambda} \leq ((1 - \lambda)x + \lambda y)^{1/r}
\]
\[
\leq ((1 - \lambda)x + \lambda y)^{1/s},
\quad ('a.e.').
\]

(4)
\end{proof}

where \(0 \leq \lambda \leq 1, \ 0 \leq r \leq s \). Since \(X \) is \(r \)-convex stochastic process, by inequality (4) for all \(u, v \in I, \lambda \in [0, 1] \), we obtain
\[
X(\lambda u + (1 - \lambda)v,)
\leq \begin{cases}
(\lambda X'(u,.) + (1 - \lambda)X'(v,))^{1/r} \leq \lambda X'(u,.) \\
(1 - \lambda)X'(v,.)^{1/r}, \quad 0 < r \leq s \\
\lambda X'(u,.)^{1/s} \leq (\lambda X'(u,.) \\
(1 - \lambda)X'(v,.)^{1/s}, \quad 0 = r \leq s.
\end{cases}
\]

Hence, \(X \) is a \(s \)-convex stochastic process. \(\square \)

As a special case of the above theorem, we deduce the following results.

\begin{corollary}
Let \(X : I \times \Omega \to (0, \infty) \) be \(r \)-convex \((0 \leq r \leq 1)\) stochastic process with mean-square continuity in the interval \(I \). Then \(X \) is a convex stochastic process.
\end{corollary}

\begin{corollary}
Let \(X : I \times \Omega \to (0, \infty) \) be \(r \)-convex \((0 \leq r \leq s)\) stochastic process with mean-square continuity in the interval \(I \). Then the following inequalities holds:
\[
\frac{1}{v - u} \int_u^v X(t,.)dt
\leq \begin{cases}
\frac{r}{r + 1} \left[\frac{X'(v,.) - X'(u,.)}{X'(v,.) - X'(u,.)} \right], \quad 0 < r \leq s \\
\frac{s}{s + 1} \left[\frac{X'(v,.) - X'(u,.)}{X'(v,.) - X'(u,.)} \right], \quad 0 = r \leq s.
\end{cases}
\quad ('a.e.').
\]

\begin{proof}
The proof follows at once by using Theorem 3.3 and proceeding on similar lines as Theorem 3.1. \(\square \)
\end{proof}

\begin{theorem}
Let \(X, Y : I \times \Omega \to (0, \infty) \) be \(r \)-convex and \(s \)-convex stochastic process with mean-square continuity respectively. Then for \(u, v \in I \) with \(u < v \), the following inequalities hold:
\[
\frac{1}{v - u} \int_u^v X(t,.)Y(t,.)dt
\leq \begin{cases}
\frac{r}{r + 2} \left[\frac{X'(v,.) - X'(u,.)}{X'(v,.) - X'(u,.)} \right] \\
\frac{s}{s + 2} \left[\frac{Y'(v,.) - Y'(u,.)}{Y'(v,.) - Y'(u,.)} \right]
\end{cases}
\quad (X(u,.) \neq X(v,.), \ Y(u,.) \neq Y(v,.),)
\quad ('a.e.').
\]

\begin{proof}
Since \(X \) is \(r \)-convex stochastic process and \(Y \) is \(s \)-convex stochastic convex, for all \(\lambda \in [0, 1] \), we have
\[
X(\lambda u + (1 - \lambda)v,.) \leq (\lambda X'(u,.) \\
+ (1 - \lambda)X'(v,.)^{1/r}
\quad ('a.e.),
\]
\[
Y(\lambda u + (1 - \lambda)v,.) \leq (\lambda Y'(u,.) \\
+ (1 - \lambda)Y'(v,.)^{1/s}
\quad ('a.e.).
\]

Therefore,
\[
\frac{1}{v - u} \int_u^v X(t,.)Y(t,.)dt
\leq \begin{cases}
\int_0^1 X(\lambda u + (1 - \lambda)v,.)Y(\lambda u + (1 - \lambda)v,.)d\lambda \\
\int_0^1 (\lambda X'(u,.) + (1 - \lambda)X'(v,.)^{1/r}(\lambda Y'(u,.) \\
+ (1 - \lambda)Y'(v,.)^{1/s}d\lambda.
\end{cases}
\quad ('a.e.).
\]
\end{proof}

\]
Now applying Cauchy’s inequality, we obtain
\[
\int_0^1 \left(X'(v, \lambda) + \lambda (X'(u, \lambda) - X'(v, \lambda)) \right)^{1/\tau} \times (Y^2(v, \lambda) + \lambda (Y^2(u, \lambda) - Y^2(v, \lambda)))^{1/\tau} \, d\lambda \\
\leq \frac{1}{2} \int_0^1 \left[X'(v, \lambda) + \lambda (X'(u, \lambda) - X'(v, \lambda)) \right]^{2/\tau} \, d\lambda \\
+ \frac{1}{2} \int_0^1 \left[Y^2(v, \lambda) + \lambda (Y^2(u, \lambda) - Y^2(v, \lambda)) \right]^{2/\tau} \, d\lambda
\] (a.e.)

If we choose \(\tau = X'(v, \lambda) + \lambda (X'(u, \lambda) - X'(v, \lambda)), \) \(\eta = Y^2(v, \lambda) + \lambda (Y^2(u, \lambda) - Y^2(v, \lambda)), \) then we obtain the following inequality
\[
\int_0^1 \left[X'(v, \lambda) + \lambda (X'(u, \lambda) - X'(v, \lambda)) \right]^{1/\tau} \times (Y^2(v, \lambda) + \lambda (Y^2(u, \lambda) - Y^2(v, \lambda)))^{1/\tau} \, d\lambda \\
\leq \frac{1}{2} \int_0^1 \left[X'(v, \lambda) - X'(u, \lambda) \right]^{2/\tau} \, d\tau \\
+ \frac{1}{2} \int_0^1 \left[Y^2(v, \lambda) - Y^2(u, \lambda) \right]^{2/\tau} \, d\eta
\] (a.e.),

which leads us to the required result.

Acknowledgments

The authors would like to thank the referees of this article for their insightful comments which greatly improves the entire presentation of the paper. W. Ul-Haq and Z. Al-Hussain thank Deanship of Scientific Research (DSR) for providing excellent research facilities.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Wasim Ul-Haq http://orcid.org/0000-0001-9210-7953
Ziyad Ali Alhussain http://orcid.org/0000-0001-8593-0239

References

[1] Nikodem K. On convex stochastic processes. Aequat Math. 1980;20:184–197.
[2] Skowroński A. On some properties of J-convex stochastic processes. Aequat Math. 1992;44:249–258.
[3] Kotrys D. Hermite–Hadamard inequality for convex stochastic processes. Aequat Math. 2012;83:143–151.
[4] Kotrys D. Remarks on strongly convex stochastic processes. Aequat Math. 2013;86:91–98.
[5] Agahi H, Babakhani A. On fractional stochastic inequalities related to Hermite–Hadamard and Jensen types for convex stochastic processes. Aequat Math. 2016;90:1035–1043.
[6] Li L, Hao Z. On Hermite–Hadamard inequality for h-convex stochastic processes. Aequat Math. 2017;91:909–920.
[7] Sarikaya MZ, Yaldiz H, Budak H. Some integral inequalities for convex stochastic processes. Acta Math Univ Comenianae. 2016;LXXV:155–164.
[8] Shaked M, Shanthikumar JG. Stochastic convexity and its applications. Adv Appl Prob. 1988;20:427–446.
[9] Tomar M, Set E, Maden S. Hermite–Hadamard type inequalities for log convex stochastic processes. J New Theory. 2015;2:23–32.
[10] Bessenyei M. Hermite–Hadamard-type inequalities for generalized 3-convex functions. Publ Math Debrecen. 2004;65(1-2):223–232.
[11] Zabandan G, Bodaghi A, Kilicman A. The hermite–Hadamard inequality for r-convex functions. J Inequal Appl. 2012;2012:215. doi:10.1186/1029-242X-2012-215.
[12] Dragomir SS, Mond B. Integral inequalities of Hadamard type for log-convex functions. Demonstr Math. 1988;31:354–364.
[13] Pachpatte BG. A note on integral inequalities involving two log-convex functions. Math Inequal Appl. 2004;7:511–515.
[14] Pachpatte BG. Mathematical inequalities. Amsterdam: North-Holland Library Elsevier Science; 2005.
[15] Kuczma M. An introduction to the theory of functional equations and inequalities, cauchy’s equation and Jensen’s inequality. Warszawa-Kraków-Katowice: PWN-Uniwersytet Śląski; 1985.
[16] Ngoc NPN, Vinh NV, Hien PT. Integral Inequalities of Hadamard type for r-convex functions. Int Math Forum. 2009;4(35):1723–1728.
[17] Niculescu CP, Persson LE. Convex functions and their applications. Berlin: Springer; 2005.
[18] Pearce CEM, Pečarić JE, Šimić V. Stolarsky means and Hadamard’s inequality. J Math Anal Appl. 1998;220:99–109.
[19] Pečarić JE, Proschan F, Tong YL. Convex functions, partial orderings and statistical applications. New York (NY): Academic Press; 1992.
[20] Sobezyk K. Stochastic differential equations with applications to physics and engineering. Dordrecht: Kluwer; 1991.