Abstract

Neural networks trained on datasets such as ImageNet have led to major advances in visual object classification. One obstacle that prevents networks from reasoning more deeply about complex scenes and situations, and from integrating visual knowledge with natural language, like humans do, is their lack of common sense knowledge about the physical world. Videos, unlike still images, contain a wealth of detailed information about the physical world. However, most labelled video datasets represent high-level concepts rather than detailed physical aspects about actions and scenes. In this work, we describe our ongoing collection of the “something-something” database of video prediction tasks whose solutions require a common sense understanding of the depicted situation. The database currently contains more than 100,000 videos across 174 classes, which are defined as caption-templates. We also describe the challenges in crowd-sourcing this data at scale.

1. Introduction

Datasets and challenges like ImageNet [3] have been major contributors to the recent dramatic improvements in neural network based object recognition [13, 31, 8], as well as to improvements on a variety of other vision tasks thanks to transfer learning (eg., [4, 28, 20]).

Despite their representational power, neural networks trained on still image datasets fall short of a variety of visual capabilities, some of which are likely to be resolvable using video instead of still image data. Specifically, networks trained to predict object classes from still images never observe any changes of objects, like changes in pose, position or distance from the observer. However, such changes provide important cues about object properties. Multiple different views of a rigid object or scene, for example, provide
information about 3-D geometry (and it is common practice in computer vision to extract that information from multiple views [7]).

In addition to the 3-D structure of a rigid object, the very fact that an object is rigid itself can be extracted from multiple views of the object in motion, as well as the fact that an object is, say, articulated as opposed to rigid. Similarly, material properties such as various forms of deformability, elasticity, softness, stiffness, etc. express themselves visually through deformation cues encoded in multiple views.

Closely related to material properties is the notion of affordance [36, 9]: An object can, by virtue of its properties, be used to perform certain actions, and often this usability is more important than its “true” inherent object class (which may itself be considered a questionable concept [9]). For example, an object that is soft and deformable, such as a blanket, can be used to cover another object; an object that is sharp and pointy can be used poke a hole into something; etc. It seems unlikely that still image tasks, which encode object properties only indirectly, can provide significant mileage in improving a neural network’s understanding of affordances. The same holds true to other physical concepts that we humans intuitively grasp, like understanding that unsupported objects will fall (gravity) or that hidden objects do not cease to exist (object occlusion/permanence).

Motion patterns extracted from a video are not only capable of revealing object properties but also of revealing actions and activities. Not surprisingly, most of the currently popular labeled video datasets are action recognition datasets [27, 17, 24, 11]. It is important to note, however, that in a fine-grained understanding of visual concepts that goes beyond “one-of-K”-labeling, actions and objects are naturally intertwined, and the tasks of predicting one cannot be treated independently of predicting the other. For example, the phrase “opening NOUN” will have drastically different visual counterparts, depending on whether “NOUN” in this phrase is replaced by “door”, “zipper”, “blinds”, “bag”, or “mouth”. There are also commonalities between these instances of “opening”, like the fact that parts are moved to the sides giving way to what is behind. It is, of course, exactly these commonalities which define the concept of “opening”. So a true understanding of the underlying meaning of the action word “opening” would require the ability to generalize across these different use cases. A proper understanding of such concepts is closely related to affordances. For example, the fact that a door can be opened is much more likely to be taken into consideration, or even learnable by a robot (which is, say, searching for an object), if its feature space is already structured such that it can distinguish between opening and closing doors.

Not only words for objects and actions can be grounded in the visual world, but also many abstract concepts, because these are built by means of analogy on top of the more basic, every-day concepts [14, 9]. The importance of grounding for language understanding is reflected in Winograd schemas [16], which are linguistic puzzles whose solutions require common sense. A Winograd schema is given by two sentences, the second of which refers to the first in a superficially ambiguous way, but where the ambiguity can be resolved by common sense. Consider the following Winograd schema presented in [16]: “The trophy would not fit in the brown suitcase because it was too big. What was too big?” To answer this question, it is necessary to understand basic aspects of spatial relations and properties (like sizes), of objects, as well as the activity of putting an object into another. This makes it clear that text understanding from pure text may have its limitations, and that visual (or possibly tactile) grounding may be an inevitable step in seriously advancing language understanding.

In this work, we describe our efforts in generating the “something something”-database, whose purpose is to provide visual (and partially acoustic) counterparts of simple, everyday aspects of the world. The goal of this data is to encourage networks to develop the features required for making predictions which, by definition, involve certain aspects of common sense information. The database currently contains 108, 499 short video clips (with duration ∈ [2, 6] seconds), that are labeled with simple textual descriptions. The videos show objects and actions performed on them. Labels are in textual form and represent detailed information about the objects and actions as well as other relevant information. Predicting the textual labels from the videos requires features that are capable of representing physical properties of the objects and the world, such as spatial relations or material properties.

2. Related work

There has been an increasing interest recently in learning representations of physical aspects of the world using neural networks. Such representations are commonly referred to as intuitive or naive physics to contrast them with the symbolic/mathematical descriptions of the world developed in physics. Several recent papers address learning intuitive physics by using physical interactions (robotics) [21, 1]. A shortcoming of this line of work is that it is based on using still images, which show, for example, how objects appear before and after performing a certain action. Physical predictions are made using convolutional networks applied to the images. Any sequential information is thus reduced to predicting a causal relationship between action and observations in a single feedforward computation, and any information encoded in the motion itself is lost.

Some recent work has been devoted to the goal of learning about the world using video instead of robotics. For ex-

1We plan to make a version of the dataset available at: www.twentybn.com/datasets/something-something
example, there has been a long-standing endeavor to use future frames of a video as “free” labels for supervised training of neural networks. See, for example, [19, 22] and references therein. The fact that multiple images can reveal qualitatively different information on top of still images has been well-established for many years in both the computer vision and deep learning communities, and it has been exploited in the context of deep learning largely by using bilinear models (see [18] and references therein). Unfortunately, predicting raw pixels is challenging, both for computational and for statistical reasons. There are simply a lot of aspects of the real world that a predictor of raw pixels has to account for. This may be one reason why unsupervised learning through video prediction has hitherto not “taken off”.

One way to address the difficulty of predicting raw pixels is to re-define the task to predict high-level features of future frames. In order to obtain features one can, for example, first train a neural network on still image object-recognition tasks [35]. However, a potential problem with that approach is that the purpose of using video in the first place is the creation of features that capture information beyond the information already contained in still images. Also, predicting ImageNet-features has not shown yet to yield features that add substantially more information about the physical world.

A hybrid between learning from video and learning from interactions is the work by [15] who use a game engine to render block towers that collapse. A convolutional network is then trained to predict, using an image of the tower as input, whether it will collapse or not, as well as the trajectories of parts while the tower collapses. Similar to [21, 1], predictions are based on still images not videos.

A line of work more similar to ours is Yatskar et al. [41], who introduced a dataset of images associated with fine-grained labels by associating roles with actions and objects. In contrast to our work, the labels in that work describe sophisticated, cultural concepts, such as “clipping a sheep’s wool”. Our goal in this work is to capture basic physical concepts expressible in simple phrases, which we hope will provide a stepping stone towards more complex relationships and facts. Consequently, we use natural language instead of a fixed data structure to represent labels. More importantly, our starting point towards fine-grained understanding is videos not images.

3. Learning world models from video

Although images still largely dominate research in visual deep learning, a variety of sizeable labeled video datasets have been introduced in recent years. The dominant application domain so far has been action recognition, where the task is to predict a global action label for a given video (for example, [24, 11, 17, 10, 5]). A drawback of action recognition is that it is targeted at fairly high-level aspects of videos and therefore does not encourage a network to learn about motion primitives that can encode object properties and intuitive physics. For example, the task associated with the datasets described in [24, 11] is recognizing sports, and in [17] they include high-level, human-centered activities, such as “getting out of a car” or “fighting”.

A related problem is that these tasks amount to taking a long video sequence as input and producing one out of a relatively small number of global class-labels as the output. Rather than requiring a detailed understanding of what happens in a video, these datasets require features that can condense a long sequence (usually including many scene and perspective changes) into a single label. In many cases, labels can be predicted fairly accurately even from a single image cropped from the video. As a result, good classification performance can be achieved on these tasks by frame-wise aggregation of features extracted with a convolutional network that was pre-trained on a still image task, such as ImageNet [39]. This is in stark contrast to the goal of using video in order to learn a better world model. One prerequisite for learning more fine-grained information about the world is that labels describe video content that is restricted to a short time interval. Only this way can there be a tight synchronization between video content and the corresponding labels, allowing learned features to correspond to physical aspects of the unfolding scene, and to correlate with the low-level aspects that are reflected, for example, also in everyday language.

Detailed labeling has been addressed also in various video captioning datasets recently, where the goal is to predict an elaborate description, rather than a single label, for a video [32, 25, 40, 12]. However, similar to many of the action recognition datasets mentioned above, they typically contain descriptions that reflect high-level, cultural aspects of human life and commonly require a good knowledge of rare or unusual facts and language. Furthermore, since descriptions summarize fairly long videos, they do not have a high temporal resolution.

A dataset focusing on lower-level, more physical concepts is described in [37]. The dataset contains 17,408 videos of a small set of objects involved in a number of physical experiments. These include, for example, letting the object slide down a slope or dropping it onto a surface. The supervision signal is given by (known) physical properties of the experiment, such as the angle of the slope or the material of the object. In contrast to that work, besides scaling to a much larger size, we use language as labels, similar to captioning datasets. This allows us to generate a much larger and more varied set of actions and labels. It also allows us to go beyond a small and highly specialized set of physical properties and actions prescribed by the experimental setup and by what can easily be measured.

Many shortcomings of existing video datasets may be re-
Table 1: Comparison with other video datasets recorded specifically for training machine learning models (information partially taken from [12]).

Dataset	Domain	# Videos	Avg. duration	Remarks
Physics 101 [38]	intuitive physics	17,408	-	101 objects with 4 different scenarios (ramp, spring, fall, liquid)
MPII cooking [26]	action (cooking)	44	600s	-
TACoS [23]	action (cooking)	127	360s	-
Charades [29]	action (human)	10,000	30s	-
KITTI [6]	action (driving)	21	30s	-
Something-Something (ours)	human-object interaction	108,499	4.03s	174 fine-grained categories of human-object interaction scenarios

4. The “something-something” dataset

In this work, we introduce the “something-something” dataset. It currently contains 108,499 videos across 174 labels, with duration ranging from 2 to 6 seconds. Labels are textual descriptions based on templates, such as “Dropping [something] into [something]” containing slots (“[something]”) that serve as placeholders for objects. Crowd-workers provide videos where they act out the templates. They choose the objects to perform the actions on and enter the noun-phrase describing the objects when uploading the videos.

The dataset is split into train, validation and test-sets in the ratio of 8:1:1. The splits were created so as to ensure that all videos provided by the same worker occur only in one split (train, validation, or test). See Table 2 for some summary information about the dataset.

Including differences in case, stemming, use of determiners, etc., 23,137 distinct object names have been submitted in the current version of the dataset. We estimate the number of actually distinct objects to be at least a few thousand. Figure 3b shows the frequency of objects for the most common objects.

In its current version, the dataset was generated by 1133 crowd workers with an average of 127.32 workers per class.

Table 2: Dataset summary

Feature	Value
Number of videos	108,499
Number of class labels	174
Average duration of videos (in seconds)	4.03
Average number of videos per class	620

Figure 2 shows a truncated distribution of the number of videos per class, with an average of roughly 620 videos per class, a minimum of 77 for “Poking a hole into [some substance]” and a maximum of 986 for “Holding [something]”. Figure 3a shows a histogram of the duration of videos (in seconds). A few examples of frame samples from the collected videos is shown in Figure 4.

4.1. Crowdsourced video recording

The currently pre-dominant way of creating large, labeled datasets is to start by gathering a large collection of input items, such as images or videos. Usually, these are found using online resources, such as Google image search or Youtube. Subsequently, the gathered input examples are labeled using crowdsourcing services like Amazon Mechanical Turk (AMT) (see, for example, [3]).

As outlined in Section 3 videos available online are largely unsuitable for the goal of learning simple (but fine-grained) visual concepts. We therefore ask crowd-workers to provide videos given labels instead of the other way around (a similar approach was recently described in [29]).

4.2. Natural language labels and curriculum learning

The number of “everyday concepts” that we want to capture with this dataset is gigantic, and it cannot be captured within a fixed set of one-hot labels. Natural language descriptions are a natural and obvious solution to this problem: natural language is capable of representing an extremely large number of “classes” and it is compositional and thereby able to express this number highly economi-
Unfortunately, natural language provides a much weaker learning signal than a one-hot label. This is one reason why image and video captioning systems are currently trained using an ImageNet pre-trained network as the vision component.

To obtain useful natural-language labels, but also be able to train, and potentially bootstrap, networks to learn from the data, we generate natural language descriptions automatically by appropriately combining partly pre-defined, and partly human-generated, parts of speech. Natural language descriptions take the form of templates that AMT workers provide along with videos, as we shall describe in the next section. Analogous to how probabilistic graphical
models impose independence assumptions on a multivariate distribution, these “structured captions”, can be viewed as approximations to full natural language descriptions, that allow us to control the complexity of learning by imposing a rich (but restricted) structure on the labels.

In the current version of the dataset, we emphasize short and simple descriptions, most of which contain only the most important parts of speech, such as verbs, nouns and prepositions. This choice was made, because common neural networks are not yet able to represent elaborate captions and high-level concepts.

However, it is possible to increase the degree of complexity as well as the sophistication of language over time as the dataset grows. This approach can be viewed as “curriculum learning” [2], where simple concepts are taught first, and more complicated concepts are added progressively over time. From this perspective, the level of complexity of the current version of the dataset may be viewed approximately as “teaching a one-year-old child”. Unlike labels that are encoded using a fixed datatype, as described, for example, in [41], natural language labels allow us to represent a spectrum of complexity, from simple objects and actions encoded as one-hot labels, to full-fledged captions. The use of natural language encodings for classes furthermore allows us to dynamically adjust the label structure in response to how learning progresses. In other words, the complexity of videos and natural language descriptions can be increased as a function of the validation-accuracy achievable by networks trained on the data so far.

4.3. Non-uniform sampling of the Cartesian product of actions and objects

Although it is more restricted than captions, the cross product of actions and objects constitutes a space that is so large that there is no hope to sample it sufficiently densely as needed for practical applications. But the empirical prob-
ability density of real-world cases in the space of permissible actions and objects is far from uniform. Many actions, such as “Moving an elephant on the table” or “Pouring paper from a cup”, for example, have almost zero density. And more reasonable combinations can still have highly variable probabilities. Consider, for example, “drinking from a plastic bag” (highly rare) vs. “dropping a piece of paper” (highly common).

It is possible to exploit the low entropy of this distribution, by using the following sampling scheme: Each crowdworker is presented with an action in the form of a template that contains one or several placeholders for objects. Workers then get to decide which objects to perform the action on and generate a video clip. When uploading the video, workers are required to enter their object choice(s) into a provided mask.

4.4. Grouping and contrastive examples

The goal of the “something-something” collection effort is to provide fine-grained discrimination tasks, whose solution will require a fairly deep understanding of the physical world. However, especially in the early stage, where simple descriptions focussed on verbs and nouns dominate, networks can learn to “cheat”, for example, by extracting the object type from one or several individual frames, and by extracting the action using indirect cues, such as hand position, overall velocity, camera shake, etc. This is an example of dataset bias [33].

As a way to reduce bias, by forcing networks to classify the actual actions and the underlying physics, we provide action groups for most action types. An action group contains multiple similar actions with minor visual differences, so that fine-grained understanding of the activity is required to distinguish the actions within a group. Providing action groups to the AMT workers also encourages these to perform the multiple different actions with the same object, such that a close attention to detail is required to correctly identify the action within the group. We found that action groups also serve the communication with crowdworkers in clarifying to them the kinds of fine-grained distinctions in the uploaded videos we expect.

Some groups contain pretending actions in addition to the actual action to be performed. This will require any system training on this data to closely observe the object instead of secondary cues such as hand positions. It will also require the networks to learn and represent indirect visual cues, such as the fact that an object is present or not present in a particular region in the image. Preventing a network from “cheating” by distinguishing between actual and pretended actions is reminiscent of teaching a child by asking it to tell the difference between genuine and false actions. Examples of action groups we use include:

- Putting something on top of something / Putting something behind something
- Putting something behind something / Pretending to put something behind something (but not actually leaving it there)
- Poking something so lightly that it does not or almost does not move / Poking something so it slightly moves / Poking something so that it falls over.
- Poking something / Pretending to poke something

A more comprehensive list of action groups and descriptions examples are provided in the supplementary materials.

4.5. Data collection platform

Besides the requirements outlined above, crowdsourcing the recording of video data according to a pre-defined label structure poses a variety of technical challenges:

- **Batch submission:** Crowd workers need to be able to initiate a job, and come back to it later potentially multiple times until it is completed, so that they can record videos outside or at other places or times of the day, or after having gathered the objects needed for the task.
- **Worker-conditional choice of labels:** To generate data with sufficient variability, it is important that each label is represented by videos from as many different crowdworkers as possible. To this end, it is necessary to keep track of the set of labels recorded by each individual crowdworker. The list of labels or action groups (as defined below) to choose from can be generated dynamically once the crowdworker logs on to the platform.
- **Feedback on completed or partially completed submissions:** In the case of submissions that are fully or partially rejected it is important that the crowd sourcing operators can quickly provide feedback to the crowd workers regarding what was wrong with the submission.
- **Convenience:** To reduce cost, crowd workers need to face a convenient, easy-to-use and highly responsive interface.

To address these challenges, we created a data collection platform, with which both crowd workers and our operators overseeing the crowdsourcing efforts interact during the ongoing crowdsourcing operation.

When an AMT crowdworker accepts a task on the AMT interface he/she gets re-directed to our platform, where the task is then completed and reviewed. After completion of a task, our platform communicates with AMT to communicate the result (accept/reject) and allow for payments for the accepted tasks.

On the platform, workers get presented with a list of action-templates to choose from (with action-templates
grouped as described in the previous section). By selecting action-templates, the platform creates video upload-boxes where workers can upload the videos as required, along with label-templates with variable-roles to be filled by workers. After uploading a video, all variable-roles in the label template (represented by the word “something” in most of our label templates) turn into input masks, and the worker is asked to fill in the correct word (such as the noun describing the object used). Each uploaded video is displayed (as screenshot) in a video playback-box and it can be played back for easy inspection by the workers (as well as by the operators as we describe below). After the worker reaches the number of requested videos, a button “Submit Hit” gets released, that allows the worker to submit the assignment and get paid.

A submission is accepted automatically, if it passes a number of quality control checks, which verify aspects such as length and uniqueness of the videos. Every submission is subsequently verified for correctness by a human operator. For more details on the crowd acting platform and screenshots we refer to the supplementary materials.

5. Baseline experiments

We performed a few baseline experiments to assess the difficulty of the task of predicting label templates from the videos. In this work, we discuss classification tasks on the label templates. Full captioning and performance on the expanded labels will be discussed elsewhere. On the classification tasks, we found 3d-convolutional networks to generally outperform 2d-convolutional networks and their combination to work best. But we also found that many of the subtle classes that were chosen explicitly to make the task harder (Section 4.4), are hardly distinguishable using these fairly standard architectures. More sophisticated architectures are necessary to obtain better performance on this data. A difficulty for both training and interpreting results is the presence of ambiguities in the labels. For reporting, these can be dealt with to some degree by resorting to top-K error rate. Both ambiguities and the overall difficulty of the prediction tasks can be alleviated by choosing label subsets and by combining labels into groups, which can allow fairly simple architectures to achieve reasonable performance. We shall discuss several such simplified subsets of classes below. We also found that this grouping can help as an initialization for networks that are subsequently fine-tuned on more complex class-choices.

5.1. Pre-processing

For the baseline runs, we sample frames from the videos using a frame rate of 24 fps and resize them to a resolution of 84 × 84 pixels, except for those runs where we use a pre-trained model (in which case we use the resolution is determined by that model). We lowpass-filter the resulting videos in time using a Gaussian kernel with zero mean and variance of 48 pixels, which was chosen to largely eliminate frequencies above the Nyquist-frequency, taking into consideration the target frame-rate of 6 frames per second (as discussed below).

We also perform temporal augmentation by choosing a random offset between 0 and the downsampling factor (4) during training. We use a fixed offset of 0 for validation and testing. We have also experimented with other types of data augmentation including flipping frames for invariant classes and random rotation by a small angle, but we did not find any significant performance gains for these.

5.2. Model specifications

Here we report results on the task of predicting action templates using multiple different encoding methods. We found dropout on the first fully-connected layer and batch-normalization on the last layer to significantly improve training. The encoding methods we used are:

- **2D-CNN + Avg:** Using the VGG-16 net architecture [30] to represent individual frames and averaging the obtained features for each frame in the video to form the final encoding. The weights of the network were trained from scratch.

- **Pre-2D-CNN + Avg:** Using an Imagenet-trained VGG-16 architecture to represent individual frames and averaging the obtained features for each frame in the video to form the final encoding.

- **Pre-2D-CNN + LSTM:** Using the above pre-trained VGG network to represent individual frames and passing the extracted features to an LSTM layer with a hidden state size of 256. The last hidden state of the LSTM is then taken as the video encoding.

- **3D-CNN + Stack:** Using a 3D-CNN model trained from scratch with specifications following [34], but with a size of 1024 units for the fully-connected layers and a clip size of 9 frames. We extract these features from non-overlapping clips of size 9 frames (after padding all videos to a maximal length of 36 frames), and stack the obtained features

10 selected classes
Dropping [something]
Moving [something] from right to left
Moving [something] from left to right
Picking [something] up
Putting [something]
Poking [something]
Tearing [something]
Pouring [something]
Holding [something]
Showing [something] (almost no hand)

Table 3: Subset of 10 hand-chosen “easy” classes.
Table 4: Error rates on different subsets of the data.

Method	Error rate (%)							
	10 classes 40 classes 174 classes	top-1	top-2	top-1	top-2	top-1	top-2	top-5
2D CNN + Avg	76.5 58.9 88.0 78.5	-	-	-	-	-		
Pre-2D CNN + Avg	54.7 39.0 79.2 70.0	-	-	-	-	-		
Pre-2D CNN + LSTM	52.3 34.1 77.8 68.0	-	-	-	-	-		
3D CNN + Stack	58.1 38.7 70.3 57.3	-	-	-	-	-		
Pre-3D CNN + Avg	47.5 29.2 66.2 52.7 88.5 81.5 70.0	-	-	-	-	-		
2D+3D-CNN	**44.9** 27.1 **63.8** 50.7	-	-	-	-	-		

Method

- **Pre-3D-CNN + Avg**: Using a 3D-CNN model initialized on the sports-1m dataset [34] and finetuned on our dataset. In this case, we use the framerate 8 fps for training and extract columns of size 16 frames with 8 frames overlap between columns, such that the total number of columns is 5. We average the features across the clips.

- **2D+3D-CNN**: A combination of the best performing 2D-CNN and 3D-CNN trained models, obtained by concatenating the two resulting video-encodings.

5.3. Results

We compared these networks mainly on two subsets of the dataset with classes hand-picked to simplify the task and benchmark the complexity of the dataset (we refer to the supplementary materials for more details on selection of classes): **10 selected classes**: We first pre-select 41 “easy” classes. We then generate 10 classes to train the networks (shown in Table 3), where each class is formed by grouping together one or more of the original 41 classes with similar semantics. The mapping from 41 to 10 classes is shown in Table 7 in the appendix. The total number of videos in this case is 28198. **40 selected classes**: Keeping the above 10 groups, we select 30 additional common classes. The total number of samples in this case is 53267. Some example predictions from the 10-class model are shown in Figure 5.

We show the error rates for these subsets using the baselines described above in Table 4. It shows that the difficulty of the task grows significantly as the number of classes are increased (despite the corresponding growth of the training-set). Similar to datasets like Imagenet, ambiguities in the labels make the naive classification performance look deceptively weak. However, even the top-2 performance shows that there the dataset poses a significant challenge for these architectures.

We also experimented on all **174 classes** using a 3D CNN model pre-trained on the 40 selected classes, and obtained error rates of top-1: 88.5%, top-5: 70.3%.

Overall, our results demonstrate that the presence of subtle distinctions (using grouping, contrastive examples and other design choices) makes this an extraordinarily difficult problem for standard architectures.

6. Discussion

Advances in common sense reasoning can come mainly from two sources: through learning from interactions with the world, and through learning from observing the world. The first, interactions, rely crucially on advances in robotics. Unlike human interactions, however, robotic interactions lack the sophisticated tactile sensing that allows, for example, blind humans to learn about the world without any vision. It seems likely that even a robotics-based approach to learning common sense will rely on highly capable visual perception and on visuomotor policies that can deal with video input.

The dataset and learning methods that we describe in this work fall into the second category: learning about the world through vision. In contrast to unsupervised approaches, based on video-prediction, we propose approaching the problem through supervised learning on fine-grained labeling tasks.

The database introduced in this paper is an ongoing collection effort. We will continue to grow and extend the dataset over time in response to, and as a function of, the ability of networks to learn from this data.

References

[1] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential learning of intuitive physics. *arXiv preprint arXiv:1606.07419*, 2016. 2, 3

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In *ICML 2009*, pages 41–48. ACM, 2009. 6

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In *CVPR 2009*, 2009. 1, 4

[4] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-
Figure 5: Some example predictions from the best performing baseline model on 10 selected classes experiment
viation feature for generic visual recognition. arXiv preprint arXiv:1310.1531, 2013. 1

[5] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In CVPR 2015, pages 961–970, 2015. 3

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013. 4

[7] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge university press, 2003. 2

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015. 1

[9] D. Hofstadter, D. R. Hofstadter, and E. Sander. Surfaces and Essences. Basic Books, 2013. 2

[10] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang. Going deeper with convolutions. In CVPR 2016, pages 1725–1732, 2014. 2, 3

[11] V. Michalski, R. Memisevic, and K. Konda. Modeling deep temporal dependencies with recurrent grammar cells”. In Advances in neural information processing systems, pages 1925–1933, 2014. 3

[12] M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR 2009, pages 2929–2936. IEEE, 2009. 2, 3

[13] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1521–1528. IEEE, 2011. 7

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012. 1

[15] G. Lakoff and M. Johnson. Metaphors we live by. University of Chicago Press, 1981. 2

[16] A. Lerer, S. Gross, and R. Fergus. Learning physical intuition of block towers by example. arXiv preprint arXiv:1603.01312, 2016. 3

[17] H. J. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In AAAI Spring Symposium: Logi
cal Formalizations of Commonsense Reasoning, volume 46, page 47, 2011. 2

[18] M. Memisevic. Learning to relate images. IEEE transactions on pattern analysis and machine intelligence, 35(8):1829–1846, 2013. 3

[19] V. Michalski, R. Memisevic, and K. Konda. Modeling deep temporal dependencies with recurrent grammar cells”. In Advances in neural information processing systems, pages 1925–1933, 2014. 3

[20] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. arXiv preprint arXiv:1605.09304, 2016. 1

[21] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The curious robot: Learning visual representations via physical interactions. arXiv preprint arXiv:1604.01360, 2016. 2, 3

[22] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra. Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604, 2014. 3

[23] M. Regneri, M. Rohrbach, D. Wetzel, S. Thater, B. Schiele, and M. Pinkal. Grounding action descriptions in videos. Transactions of the Association for Computational Linguistics, 1:25–36, 2013. 4

[24] M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In CVPR 2008, pages 1–8. IEEE, 2008. 2, 3

[25] A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele. A dataset for movie description. In CVPR 2015, pages 3202–3212, 2015. 3

[26] M. Ranzato, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained action activity detection of cooking activities. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1194–1201. IEEE, 2012. 4

[27] M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In CVPR 2008, pages 1–8. IEEE, 2008. 2, 3

[28] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an astounding baseline for recognition. In CVPR Workshops, pages 806–813, 2014. 1

[29] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. arXiv preprint arXiv:1604.01753, 2016. 4

[30] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 8

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR 2015, pages 1–9, 2015. 1

[32] A. Torabi, C. Pal, H. Larochelle, and A. Courville. Using descriptive video services to create a large data source for video annotation research. arXiv preprint arXiv:1503.01070, 2015. 3

[33] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1521–1528. IEEE, 2011. 7

[34] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV 2015, pages 4489–4497, 2015. 8, 9

[35] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating the future by watching unlabeled video. arXiv preprint arXiv:1504.08023, 2015. 3

[36] Wikipedia. Affordance — wikipedia, the free encyclopedia, 2016. [Online; accessed 9-September-2016]. 2

[37] J. Wu. Computational perception of physical object properties. Master’s thesis, Massachusetts Institute of Technology, 2016. 3

[38] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Freeman. Physics 101: Learning physical object properties from unlabeled videos. In British Machine Vision Conference, 2016. 4
[39] Z. Wu, Y. Fu, Y.-G. Jiang, and L. Sigal. Harnessing object and scene semantics for large-scale video understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3112–3121, 2016.

[40] J. Xu, T. Mei, T. Yao, and Y. Rui. Msr-vtt: A large video description dataset for bridging video and language.

[41] M. Yatskar, L. Zettlemoyer, and A. Farhadi. Situation recognition: Visual semantic role labeling for image understanding. In CVPR, 2016.
A. Dataset

A.1. 10-selected classes

The mapping used for generating the classes used in the 10-class experiments is shown in Table 7. The 10 classes were defined by first selecting 41 classes by hand (based on class-definitions and on visual inspection of the videos) and subsequently remapping these into 10 groups.

Class names	Index
Dropping [something]	0
Holding [something]	1
Moving [something] from left to right	2
Moving [something] from right to left	3
Picking [something] up	4
Poking [something]	5
Pouring [something]	6
Putting [something]	7
Showing [something] (almost no hand):	8
Tearing [something]	9

Table 5: Subset of 10 selected classes used in some of the experiments.

A.2. 40-selected classes

We took the above 10 selected classes and select 30 additional common classes to form this subset of data. The list of classes used is shown in the Table 6.

Class names	Index
Approaching [something] with your camera	0
Closing [something]	1
Dropping [something]	2
Folding [something]	3
Holding [something]	4
Holding [something] next to [something]	5
Moving [something] away from [something]	6
Moving [something] away from the camera	7
Moving [something] closer to [something]	8
Moving [something] down	9
Moving [something] from left to right	10
Moving [something] from right to left	11
Moving [something] towards the camera	12
Moving away from [something] with your camera	13
Opening [something]	14
Picking [something] up	15
Plugging [something] into [something]	16
Poking [something]	17
Pouring [something]	18
Pretending to pick [something] up	19
Pretending to put [something] next to [something]	20
Pretending to put [something] on a surface	21
Pretending to take [something] from [somewhere]	22
Pushing [something] so that it slightly moves	23
Pushing [something] with [something]	24
Putting [something]	25
Putting [something] into [something]	26
Showing [something] (almost no hand)	27
Showing a photo of [something] to the camera	28
Showing that [something] is empty	29
Stacking [number of] [something]	30
Tearing [something]	31
Throwing [something] against [something]	32
Turning [something] upside down	33
Turning the camera downwards while filming [something]	34
Turning the camera left while filming [something]	35
Turning the camera right while filming [something]	36
Turning the camera upwards while filming [something]	37
Uncovering [something]	38
Unfolding [something]	39

Table 6: Subset of 40 selected classes used in some of the experiments.

A.3. All data - 175 classes

The complete list of 175 classes and their corresponding action-groups is shown in Table 8.
Figure 6: Confusion matrix for the best model trained on the 40 selected classes. Corresponding class-names are listed in Table 6.
Table 7: Mapping used for 10 selected classes

Actual class	Mapped class
[Something] falling like a rock	Dropping [something]
[Something] falling like a feather or paper	
Throwing [something]	
Throwing [something] onto a surface	
Throwing [something] in the air and letting it fall	
Pushing [something] from right to left	Moving [something] from right to left
Pulling [something] from right to left	Moving [something] from left to right
Pulling [something] from left to right	
Pushing [something] from left to right	
Picking [something] up	Picking [something] up
Lifting [something] up completely without letting it drop down	
Moving [something] up	
Lifting [something] with [something] on it	
Taking [something] from [somewhere]	
Taking [one of many similar things on the table]	
Taking [something] out of [something]	
Putting [something] next to [something]	
Putting [something] onto [something]	
Putting [something] on a surface	
Putting [something] similar to other things that are already on the table	
Putting [something] behind [something]	
Putting [something], [something] and [something] on the table	
Putting [something] and [something] on the table	
Putting [something] on a flat surface without letting it roll	
Putting [something] that can’t roll onto a slanted surface, so it stays where it is	
Poking [something] so that it falls over	Poking [something]
Poking [something] so lightly that it doesn’t or almost doesn’t move	
Poking a stack of [something] so the stack collapses	
Poking a stack of [something] without the stack collapsing	
Tearing [something] into two pieces	Tearing [something]
Tearing [something] just a little bit	
Pouring [something] into [something]	Pouring [something]
Pouring [something] onto [something]	
Pouring [something] out of [something]	
Pouring [something] into [something] until it overflows	
Trying to pour [something] into [something], but missing so it spills next to it	
Holding [something]	Holding [something]
Holding [something] in front of [something]	
Showing [something] on top of [something]	Showing [something] (almost no hand)
Showing [something] behind [something]	
Showing [something] next to [something]	
Class Labels	Action Groups
---	---
Trying but failing to attach [something] to [something] because it doesn't stick	Attaching/Trying to attach
Attaching [something] to [something]	
Bending [something] until it breaks	Bending something
Trying to bend [something unbendable] so nothing happens	
Bending [something] so that it deforms	
Digging [something] out of [something]	Burying or digging something
Burying [something] in [something]	
Moving away from [something] with your camera	Camera motions
Turning the camera right while filming [something]	
Approaching [something] with your camera	
Turning the camera left while filming [something]	
Turning the camera upwards while filming [something]	
Moving [something] away from the camera	
Moving [something] towards the camera	
Turning the camera downwards while filming [something]	
[Something] colliding with [something] and both are being deflected	Collisions of objects
[Something] being deflected from [something]	
[Something] colliding with [something] and both come to a halt	
Uncovering [something]	Covering
Covering [something] with [something]	
Putting [something similar to other things that are already on the table]	Crowd of things
Taking [one of many similar things on the table]	
Dropping [something] into [something]	Dropping something
Dropping [something] onto [something]	
Dropping [something] next to [something]	
Dropping [something] in front of [something]	
Dropping [something] behind [something]	
Showing [something] next to [something]	Filming objects, without any actions
Showing [something] on top of [something]	
Showing [something] behind [something]	
Folding [something]	Folding something
Unfolding [something]	
Hitting [something] with [something]	Hitting something with something
Holding [something] in front of [something]	Holding something
Holding [something] behind [something]	
Holding [something] next to [something]	
Holding [something]	
Holding [something] over [something]	
Lifting up one end of [something], then letting it drop down	Lifting and (not) dropping something
Lifting up one end of [something] without letting it drop down	
Lifting [something] up completely, then letting it drop down	
Lifting [something] up completely without letting it drop down	
Tilting [something] with [something] on it until it falls off	Lifting/Tilting objects with other objects on them
Lifting [something] with [something] on it	
Tilting [something] with [something] on it slightly so it doesn't fall down	
Moving [something] up	Moving something
Moving [something] down	
Action Description	Interpretation
---	------------------------------------
Moving [something] and [something] away from each other	Moving two objects relative to each other
Moving [something] and [something] closer to each other	
Moving [something] closer to [something]	
Moving [something] away from [something]	
Moving [part] of [something]	Moving/Touching a part of something
Touching (without moving) [part] of [something]	
Opening [something]	Opening or closing something
Pretending to close [something] without actually closing it	
Pretending to open [something] without actually opening it	
Closing [something]	
Picking [something] up	Picking something up
Pretending to pick [something] up	
Piling [something] up	Piles of stuff
Plugging [something] into [something] but pulling it right out as you remove your hand	Plugging something into something
Plugging [something] into [something]	
Poking [something] so it slightly moves	Poking something
Poking [something] so lightly that it doesn’t or almost doesn’t move	
Poking a stack of [something] without the stack collapsing	
Poking a hole into [something soft]	
Pretending to poke [something]	
Poking [something] so that it falls over	
Poking a stack of [something] so the stack collapses	
Poking a hole into [some substance]	
Poking [something] so that it spins around	
Trying to pour [something] into [something], but missing so it spills next to it	Pouring something
Pretending to pour [something] out of [something], but [something] is empty	
Pouring [something] out of [something]	
Pouring [something] onto [something]	
Pouring [something] into [something] until it overflows	
Pulling [something] from behind of [something]	Pulling something
Pulling [something] from right to left	
Pulling [something] out of [something]	
Pulling [something] onto [something]	
Pulling [something] from left to right	
Pulling two ends of [something] but nothing happens	Pulling two ends of something
Pulling two ends of [something] so that it separates into two pieces	
Pulling two ends of [something] so that it gets stretched	
Pushing [something] onto [something]	Pushing something
Pushing [something] from right to left	
Pushing [something] with [something]	
Pushing [something] so that it falls off the table	
Pushing [something] so that it almost falls off	
Pushing [something] off of [something]	
Pushing [something] so that it slightly moves	
Pushing [something] from left to right	
Pretending to put [something] on a surface	Putting something somewhere
Putting [something] on a surface	
Laying [something] on the table on its side, not upright	Putting something upright/on its side
Putting [something that cannot actually stand upright] upright on the table, so it falls on its side	
Putting [something] upright on the table	
Action	Description
--	---
Putting [something] underneath [something]	
Putting [something] onto [something else that cannot support it]	so it falls down
Failing to put [something] into [something] because [something] does not fit	
Putting [something], [something] and [something] on the table	
Pretending to put [something] behind [something]	
Putting [something] in front of [something]	
Taking [something] out of [something]	
Pretending to put [something] onto [something]	
Pretending to take [something] out of [something]	
Putting [something] onto [something]	
Pretending to put [something] into [something]	
Pretending to put [something] underneath [something]	
Putting [something] next to [something]	
Pretending to put [something] behind [something]	
Putting [something] on the edge of [something] so it is not supported and falls down	
Removing [something], revealing [something] behind	
Pretending to put [something] next to [something]	
Putting [something] into [something]	
Letting [something] roll along a flat surface	
Rolling [something] on a flat surface	
Putting [something] that can’t roll onto a slanted surface, so it slides down	
Lifting a surface with [something] on it until it starts sliding down	
Letting [something] roll down a slanted surface	
Lifting a surface with [something] on it but not enough for it to slide down	
Letting [something] roll up a slanted surface, so it rolls back down	
Putting [something] onto a slanted surface but it doesn’t glide down	
Putting [something] that can’t roll onto a slanted surface, so it stays where it is	
Putting [something] on a flat surface without letting it roll	
Pretending to scoop [something] up with [something]	
Scooping [something] up with [something]	
Showing [something] to the camera	
Showing a photo of [something] to the camera	
Showing that [something] is empty	
Showing that [something] is inside [something]	
Moving [something] across a surface without it falling down	
Moving [something] across a surface until it falls down	
[Something] falling like a feather or paper	
[Something] falling like a rock	
Moving [something] and [something] so they collide with each other	
Moving [something] and [something] so they pass each other	
Spilling [something] next to [something]	
Spilling [something] onto [something]	
Spilling [something] behind [something]	
Spinning [something] so it continues spinning	
Spinning [something] that quickly stops spinning	
Pushing [something] so it spins	
Spreading [something] onto [something]	
Pretending to spread ’air’ onto [something]	
Pretending to sprinkle ’air’ onto [something]	
Sprinkling [something] onto [something]	
Squeezing [something]	
Pretending to squeeze [something]	
Scooping something up	
Showing objects and photos of objects	
Showing that something is full/empty	
Something (not) falling over an edge	
Something falling	
Something passing/hitting another thing	
Spilling something	
Spinning something	
Spreading something onto something	
Sprinkling something onto something	
Squeezing something	
Description	Relevant Description
---	---
Stacking [number of] [something]	Stacking or placing N things
Putting [number of] [something] onto [something]	Stuffing/Taking out
Stuffing [something] into [something]	Taking something
Taking [something] from [somewhere]	Tearing something
Pretending to take [something] from [somewhere]	Tearing something
Tearing [something] just a little bit	Tearing something
Pretending to be tearing [something that is not tearable]	Tearing something
Tearing [something] into two pieces	Tearing something
Throwing [something] against [something]	Throwing something
Throwing [something]	Throwing something
Throwing [something] in the air and catching it	Throwing something
Pretending to throw [something]	Throwing something
Throwing [something] in the air and letting it fall	Throwing something
Throwing [something] onto a surface	Throwing something
Tipping [something] with [something in it] over, so [something in it] falls out	Tipping something over
Pretending to turn [something] upside down	Turning something upside down
Turning [something] upside down	Turning something upside down
Twisting (wringing) [something] wet until water comes out	Twisting something
Pretending or trying and failing to twist [something]	Twisting something
Twisting [something]	Twisting something
Pretending or failing to wipe [something] off of [something]	Wiping something off of something
Wiping [something] off of [something]	Wiping something off of something

A.4. Data Collection Platform

We show some snapshots of our data collection platform in Figures 7 and 8. They demonstrate the platform used by the crowd-workers to select classes and to upload corresponding videos.
Figure 7: Left Column: Crowd-workers can choose the classes they want to generate videos for (often the available classes are controlled so as to maintain class balance as much as possible). Right Column: An interface to upload videos and enter input-text.
Figure 8: An example of the upload interface after uploading videos and entering input-text.