New Analysis of Cumulant Moments in e^+e^- Collisions by SLD Collaboration by Truncated Multiplicity Distributions

Naomichi Suzuki, Minoru Biyajima1 and Noriaki Nakajima1
Matsusho Gakuen Junior College, Matsumoto 390-12, Japan
1Department of Physics, Shinshu University, Matsumoto 390, Japan

Abstract

Newly reported normalized cumulant moments of charged particles in e^+e^- collisions by the SLD collaboration are analyzed by the truncated modified negative binomial distribution (MNBD) and the negative binomial distribution (NBD). Calculated result by the MNBD describes the oscillatory behavior of the data much better than that by the NBD.

PACS number(s): 13.65.+i, 34.10.+x

Normalized cumulant moments of negatively charged particles and charged particles obtained from the data in e^+e^- collisions were analyzed by the truncated modified negative binomial distribution (MNBD) in [1]. Those moments show oscillatory behaviors as the rank of the moment increases, and are well described by the MNBD.

The preliminary data of cumulant moments normalized by factorial moments, H_j ($j = 1, 2, \cdots$) of charged particles reported by the SLD Collaboration at $\sqrt{s} = 91$ GeV were also analyzed in [1]. The SLD did not explicitly show us the multiplicity distribution. Therefore, we calculated H_j moments using the observed values of the average charged multiplicity, C_2 moment, and the maximum of the negatively charged particles $n_{\text{max}} = 27$. The data were only qualitatively explained by our calculation.

Recently, the new data for the H_j moments are reported by the SLD [2] and [3]. In this brief report, they are re-analyzed by the MNBD.

The MNBD is given by

$$
P(0) = \frac{(1 + r_1)^N}{(1 + r_2)^N},
$$

$$
P(n) = \frac{1}{n!} \left(\frac{r_1}{r_2}\right)^N \sum_{j=1}^{N} \frac{C_j \Gamma(n+j)}{\Gamma(j)} \left(\frac{r_2 - r_1}{r_1}\right)^j \frac{r_2^n}{(1 + r_2)^{n+j}}, \quad n = 1, 2, \cdots, \quad (1)
$$
where N is a positive integer, r_1 is real, and $r_2 > 0$.

At first, Eq.(1) is applied to the multiplicity distribution of negatively charged particles. In order to calculate cumulant moments, factorial moments of charged particles are calculated as

$$f_{ch}^j = \frac{\langle n_{ch}(n_{ch} - 1) \cdots (n_{ch} - j + 1) \rangle}{n_{max}} = \sum_{n}^{n_{max}} 2n(2n - 1) \cdots (2n - j + 1) P(n), \quad j = 1, 2, \cdots,$$

where n_{max} denotes the maximum of the observed negatively charged multiplicity.

The j-th order normalized cumulant K_j of charged particles is expressed by the normalized factorial moments F_l ($l = 1, 2, \cdots$) of the charged particles as;

$$K_1 = F_1,$$
$$K_j = F_j + \sum_{m=1}^{j-1} j-1 C_{m-1} F_{j-m} K_m, \quad j = 2, 3, \cdots,$$

where

$$F_j = \frac{f_{ch}^j}{\langle n_{ch} \rangle^j}.$$

The H_j moment is defined by

$$H_j = K_j / F_j.$$

The parameters in Eq.(1) are determined by the minimum chi-square (χ^2_{min}) fit to the observed multiplicity distribution [3] of negatively charged particles with $n_{max} = 25$. The result is shown in Table 1.

The H_j moment is calculated from Eqs.(1), (2), (3) and (4). The result is shown in Fig.1. Calculation with the MNBD denoted by the solid line well reproduces the oscillatory behavior of the data.

For comparison, we try to fit the new observed multiplicity distribution using the negative binomial distribution (NBD);

$$P(n) = \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \left(\frac{<n>_k}{k} \right)^n \left(1 + \frac{<n>_k}{k} \right)^{-n-k}, \quad n = 0, 1, 2, \cdots.$$

However, the reasonable χ^2_{min} value cannot be found in the region with $k > 0$ [4]. See Table 1.

We also analyze the data applying Eq.(1) to the charged particles; only the even terms in Eq.(1) are used with a normalization factor C [3];

$$f_{ch}^j = \sum_{n}^{n_{max}} 2n(2n - 1) \cdots (2n - j + 1) C P(2n), \quad j = 1, 2, \cdots,$$

\footnote{The data are analyzed by a weighted superposition of two NBD’s [4]}
The factor C is determined by the following equation,

$$C \sum_{n}^{n_{\text{max}}} P(2n) = 1.$$

Then, the H_j moment is calculated from Eqs. (3), (4) and (5).

The parameters determined by the χ^2_{min} fit to the multiplicity distribution are also shown in Table 1. The results are depicted in Fig. 2. The result obtained from the MNBD, expressed by the solid line, well describes the behavior of the data. However, the result from the NBD, expressed by the dashed line, cannot explain the data.

Acknowledgements

The authors thank Jingchen Zhou and H. Masuda for their kind correspondences. M. B. is partially supported by the Grant-in Aid for Scientific Research from the Ministry of Education, Science and Culture (No. 06640383). N. S. thanks for the financial support by Matsusho Gakuen Junior College.

References

[1] N. Suzuki, M. Biyajima and N. Nakajima, Phys. Rev. D268, 3582(1996).

[2] SLD Collab., K. Abe et al., Phys. Lett. B371, 149(1996)

[3] J. Zhou, Private communication. The latest data of the SLD Collaboration are informed in March, 1996. There are small discrepancies between data in [2] and the latest ones.

[4] A. Giovannini, S. Lupia and R. Ugoccini, ”Common Origin of the Shoulder in Multiplicity Distributions and of Oscillations in the Factorial Cumulants to Factorial Moments Ratio”, Preprint DFTT 9/96, February 1996

[5] R. Ugoccini, A. Giovannini and S. Lupia, Phys. Lett. B342, 387(1995)
Table caption

Table 1 The parameters of the MNBD and the NBD used in the analysis of the cumulant moments. The sign ”−” and ”±” denote negatively charged particles and charged particles, respectively.

Figure captions

Fig. 1 The normalized cumulant moments $H_j \ (j = 1, 2, \cdots)$ of charged particles in e^+e^- collisions\cite{3}. The full circles are obtained from the data. The solid line is obtained from the MNBD, which is applied to the negatively charged multiplicity distribution. The calculation based on the NBD is not shown here, because χ^2_{min} value is fairly large and $k < 0$.

Fig. 2 The normalized cumulant moments $H_j \ (j = 1, 2, \cdots)$ of charged particles in e^+e^- collisions\cite{3}. The full circles are obtained from the data. The solid line is obtained from the MNBD, and the dashed line from the NBD. They are applied to the charged multiplicity distribution. The value of $\chi^2_{\text{min}} = 119.3$ is attributed to the latest data \cite{3}.
MNBD	N	r_1	r_2	χ^2_{min}
8		-0.6873 ± 0.0027	0.6162 ± 0.0029	54.1 ± 0.0027
13		-0.3580 ± 0.0054	1.249 ± 0.006	26.8 ± 0.006

NBD	$<n>$	k	χ^2_{min}
	10.64 ± 0.02	-70.00 ± 2.57	1066 ± 2.57
	21.01 ± 0.03	24.43 ± 0.30	119.3 ± 0.30

Table 1
Fig. 1
Fig. 2

\[H_j \times 10^{-4} \]

- \(\bullet \) Exp.
- \(\ldots \circ \ldots \) NBD
- \(\ldots \square \ldots \) MNBD