Data Article

Data on heavy metal levels (Cd, Co, and Cu) in wheat grains cultured in Dashtestan County, Iran

Abdolhamid Esmaili, Vahid Noroozi Karbasdehi, Reza Saeedi, Mohammad Javad Mohammadi, Tayebeh Sobhani, Sina Dobaradaran

A R T I C L E I N F O

Article history:
Received 19 June 2017
Received in revised form 19 July 2017
Accepted 3 August 2017
Available online 9 August 2017

Keywords:
Heavy metal
Wheat grains
Dashtestan county
Food sanitary

A B S T R A C T

Due to importance of wheat as the most popular food, in this data article, we determined the accumulation of heavy metal levels including Cd, Co, and Cu in wheat grains in Dashtestan county, Iran. The concentration levels of heavy metals in wheat grains cultured were determined by Flame Atomic Absorption Spectrometry (FAAS).1

1 Flame Atomic Absorption Spectrometry

http://dx.doi.org/10.1016/j.dib.2017.08.012
2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Chemistry
More specific subject area	Food sanitary
Type of data	Table
How data was acquired	Flame Atomic Absorption Spectrometry (Varian AA240 model, Australia)
Data format	Raw, analyzed
Experimental factors	Wheat grain samples were washed with tap water to remove any attached particles, rinsed three times with distilled water, and then dried at 38 °C till constant weight. Dried samples were ground by using a stainless steel grinder (< 0.25 mm) for heavy metal analysis. A portion of the dry wheat grains powder were digested in a mixture of HNO₃–HClO₄–H₂SO₄ acids.
Experimental features	Evaluate the metal contents of Cd, Co, and Cu in wheat grains in Dashtestan county, Iran
Data source location	Bushehr, Dashtestan county, Iran
Data accessibility	Data is with this article.

Value of the data

- Data can be used as a base-line data for metal concentration levels in wheat grains.
- Data shown here can be useful for policy makers, managers, and all related stakeholders, companies, agencies, and institutes working in the fields of food sanitary by imposing proper measures to protect soil from pollutants.
- Data shown here may serve as benchmarks for other groups working or studying in the field of toxicology, soils amended with domestic sewage or irrigated with industrial effluents.

1. Data

The data in Table 1 show that Cd, and Co level were below limit of detection (BLD) in all wheat samples, but the mean concentration levels of Cu was 0.501 with a range of 0.223–0.849 µg/g, and the content level of moisture in wheat samples ranged from 10.15–14.88 (Mean: 11.51%). The measured detection limit values for Cd, Co and Cu were 0.0047, 0.015 and 0.0055 µg/g respectively. Each sample were measured three times and average were reported.

2. Experimental design, materials and methods

2.1. Study area description

Dashtestan County is the biggest county in Bushehr Province, in south west of Iran. This county has the first rank in production of date palm and cereals in Bushehr Province. The capital of the county is Borazjan. In this study, three important regions in wheat production including Shabankareh, Sadabad, and Tang Eram were selected as sampling points (Fig. 1).
Table 1
The content levels of heavy metals (µg/g) and moisture (%) in wheat grain samples.

Region	Number of samples	Samples	Moisture (%)	Cd (µg/g)	Co (µg/g)	Cu (µg/g)
Tang Eram	4	1	10.15	BLD	BLD	0.65
		2	11.31	BLD	BLD	0.509
		3	11.25	BLD	BLD	0.223
		4	14.88	BLD	BLD	0.405
Sadabad	4	1	11.81	BLD	BLD	0.633
		2	11.15	BLD	BLD	0.540
		3	11.07	BLD	BLD	0.499
		4	10.16	BLD	BLD	0.592
Shaban Kareh	4	1	11.57	BLD	BLD	0.849
		2	11.97	BLD	BLD	0.435
		3	11.29	BLD	BLD	0.435
		4	11.45	BLD	BLD	0.245
Mean	12	–	11.51	BLD	BLD	0.501
Maximum	–	–	14.88	BLD	BLD	0.849
Minimum	–	–	10.15	BLD	BLD	0.223
Detection limit	–	–	0.0047	0.015	0.0055	

BLD: Below limit of detection
2.2. Sample collection and preparation

Twelve samples were collected in three agricultural areas in Dashtestan county (each site 4 times) just before wheat harvest. Nitrogen fertilizers were used on these grounds. Wheat plants at grain maturity (just before harvest) were randomly chosen within a 5 m × 5 m square, were cut with scissors at a height above 10 cm from the soil surface. The wheat samples were air dried for 8 days, and then put into labeled bags and transported to the lab. In the laboratory, grain samples were washed with tap water for 60 min to remove any attached particles, and rinsed three times with distilled water, and oven dried at 38 °C till constant weight. Dried samples were ground using a stainless steel grinder (< 0.25 mm) for heavy metal analysis.

2.3. Reagents

All the employed oxidants and mineral acids including HNO₃, H₂SO₄, and HClO₄ were of suprapure quality (Merck, Darmstadt, Germany).

2.4. Digestion and analytical procedures

A 2 g dried samples were crushed in a mortar and ashed in a muffle furnace at 450 °C for 6 h [1]. If the ashes were not completely white, 2 mL of concentrated HNO₃ were added and the mixture was heated to boiling point on an electric plate heater until the formation of nitrous fumes had stopped [2]. Then, the ashes were returned to the muffle at 450 °C for a further 2 h. Finally, the white ashes were digested in a mixture of HNO₃–HClO₄–H₂SO₄ acids (10 ml 70% HClO₄, 32 ml 10% HNO₃, and 5 ml 90% H₂SO₄) according to standard analytical procedures [3,4]. A Flame Atomic Absorption Spectrometry (FAAS, Varian AA240, Australia) [5–8] was used to determine the content levels of Cd, Co, and Cu.

Acknowledgements

The authors are grateful to the Bushehr University of Medical Sciences (Grant no 20/71/1875) for their financial support and the laboratory staff of the Environmental Health Engineering Department for their cooperation. The funder had no role in study design, data collection and analysis, or preparation of the manuscript.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.08.012.

References

[1] R. Chandra, R.N. Bharagava, S. Yadav, D. Mohan, Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents, J. Hazard. Mater. 162 (2009) 1514–1521.
[2] Z. Nan, C. Zhao, J. Li, F. Chen, W. Sun, Relations between soil properties and selected heavy metal concentrations in spring wheat (Triticum aestivum L.) grown in contaminated soils, Water Air Soil Pollut. 133 (2002) 205–213.
[3] ASTM, Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis. Pennsylvania: American Society of Testing and Material, 1999.
[4] WHO, WHO Food Additives Series, World Health Organization, Geneva, 1989.
[5] M. Keshtkar, S. Dobaradaran, F. Soleimani, V. Noroozi Karbasdehi, M.J. Mohammadi, R. Mirahmadi, F. Faraji Ghasemi, Data on heavy metals and selected anions in the Persian popular herbal distillates, Data Brief 8 (2016) 21–25.
[6] F. Faraji Ghasemi, S. Dobaradaran, M. Keshtkar, M.J. Mohammadi, H. Ghaedi, F. Soleimani, Biosorption of Mn (II) from aqueous solution by Sargassum hystrix algae obtained from the Persian Gulf: biosorption isotherm and kinetic, Int. J. Pharm. Technol. 8 (3) (2016) 18227–18238.

[7] M. Keshtkar, S. Dobaradaran, S. Akbarzadeh, M. Bahreini, D.R. Abadi, S.G. Nasab, F. Soleimani, N. Khajeahmadi, M. M. Baghmolaee, Iron biosorption from aqueous solution by Padina sanctae crucis algae: isotherm, kinetic and modeling, Int. J. Pharm. Technol. 8 (1) (2016) 10459–10471.

[8] M. Keshtkar, S. Dobaradaran, I. Nabipour, S. Tajbakhsh, F. Soleimani, H. Darabi, H. Ghaedi, Removal of manganese from aqueous phase using padina sanctae crucis obtained from Persian Gulf, J. Mazandaran Univ. Med. Sci. 25 (134) (2016) 167–177.