The Prognostic Value of IncRNA SNHG3 in Cancer Patients: A meta-analysis

Jie Wang  
The First People's Hospital of NeiJiang

Pingyong Zhong  
The First People's Hospital of NeiJiang

Hao Hua  (✉️ 529065285@qq.com )  
The First People's Hospital of NeiJiang  https://orcid.org/0000-0003-4560-9656

Research article

Keywords: Cancer, Overall survival, Prognosis, SNHG3

DOI: https://doi.org/10.21203/rs.3.rs-91124/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License
Abstract

Background: Small nucleolar RNA host gene 3 (SNHG3) is a promising long non-coding RNA that may possess prognostic value for different types of tumors. The objective of this meta-analysis is to evaluate the prognostic value of IncRNA SNHG3 in cancer patients.

Methods: A systematic literature search of the PubMed, Cochrane Library, EMBASE, Medline, Web of Science, CNKI, Weipu, and Wanfang electronic databases was carried out in this meta-analysis. The synthetic hazard ratios (HRs) or odd ratios (ORs) with 95% confidence intervals (CIs) were obtained to determine the prognostic and clinicopathological significance of SNHG3 expression in tumors.

Results: The final meta-analysis included 17 studies that contained 2072 patients. The pooled results provided evidence that SNHG3 overexpression predicted reduced overall survival (OS) (HR=2.15, 95%CI: 1.76–2.63, P<0.00001), recurrence-free survival (RFS) (HR=2.22, 95%CI: 1.04–4.76, P=0.04) and disease-free survival (DFS) (HR=2.04, 95%CI: 1.35–3.09, P=0.0007) for various cancers. Additionally, the SNHG3 overexpression was concerned with tumor node metastasis (TNM) stage (III/IV vs. I/II, OR=2.91, 95%CI: 1.60–5.29, P=0.0005), lymph node metastasis (LNM) (positive vs negative, OR=5.00, 95%CI: 2.82–8.87, P<0.00001), distant metastasis (DM) (positive vs negative, OR=2.29, 95%CI: 1.52–3.47, P<0.0001) and tumor size (larger vs smaller, OR=1.80, 95%CI: 1.04–3.11, P=0.04).

Conclusions: Our results indicated that SNHG3 overexpression was closely correlated with shorter OS in multiple cancer types, suggesting that SNHG3 might function as a promising predictor for clinical outcomes in cancer.

Background

Cancer from various systems and organs are one of the disease that poses a great threat to human health globally[1]. A substantial majority of cancers have the characteristics of occult onset, difficult diagnosis, and rapid progression, which are the major causes of the high rate of mortality. Meanwhile, tumors of different origins are not the same in terms of biological features, lesion involvement, clinical manifestations, efficacy, and prognosis[2]. Recently, multi-disciplinary treatment mode, a fixed expert group composed of multi-disciplinary experts, having been proposing appropriate treatment schemes for cancer patients [3]. Despite proper management of their disease, the prognosis for many cancer patients is still dismal, partly due to the lack of prognostic and diagnostic markers. Thus, it is necessary to identify effective prognostic markers that can provide urgently needed treatment strategies.

Non-coding RNA refers to RNA that is not translated into polypeptides [4]. These RNA can be divided into two categories based on length: small non-coding RNAs that are shorter than 200 nucleotides and long non-coding RNAs that are longer than 200 nucleotides [5]. LncRNAs have recently garnered more attention in the medical community for their potential prognostic value in cancer. Additionally, the relationship between IncRNAs, signal pathways in cancer, and cancer phenotypes has become a topical issues [6]. Previous studies identified the pivotal role of IncRNAs in biological processes, such as genomic
imprinting, histone modification, chromatin remodeling, and posttranscriptional regulation [7]. In recent years, lncRNAs have also been shown to be involved in tumor occurrence and progression. Moreover, it was reported that dysregulation of lncRNAs was significantly correlated with clinical characteristics and cancer prognosis. These data suggest that lncRNAs are novel biomarkers and therapeutic targets in cancer [8].

Small nucleolar RNA host gene 3 (SNHG3), a component of lncRNAs, has recently been investigated for its involvement in promoting cancer deterioration and progression, and the dysregulation of SNHG3 has been detected in different types of cancer [9, 10]. It has been reported that upregulated SNHG3 expression can induce specific biological phenotypes and poor prognosis [11]. Subsequently, another study demonstrated that increased SNHG3 expression played a vital role in promoting tumor cell proliferation and invasion, which was indicative of poor prognosis for cancer patients [12]. To date, there is no meta-analysis that provides an assessment of the effect of SNHG3 on the prognosis of cancer patients. Therefore, our aim was to evaluate the prognostic value of lncRNA SNHG3 expression in tumors.

**Methods**

**Literature search**

Two independent reviewers searched the PubMed, Cochrane Library, EMBASE, Medline, Web of Science, CNKI, Weipu, and Wanfang until June 4, 2020. The search was conducted irrespective of the region or language. The following keywords and Medical Subject Headings (MeSH) were included: “SNHG3”, “Small nucleolar RNA host gene 3”, “lncRNA”, “long noncoding RNA”, “cancer”, “carcinoma”, “neoplasm”, “prognosis” and “survival”.

The following criteria for inclusion in our meta-analysis to select eligible studies: (1) a definite diagnosis or histopathological diagnosis of cancer patients; (2) information about survival and clinical prognostic parameters of lncRNA SNHG3 in patients with cancer was reported; and (3) enough information were available for calculating the pooled hazard risk (HR) and 95% confidence interval (CI). exclusion criteria for the studies were as follows: (1) studies with absent information of prognostic outcomes; (2) duplicate publications; and (3) non-human studies, letters, case reports, review articles and other studies without original data.

**Data Extraction And Quality Assessment**

Data were extracted from each study by three authors independently and a consensus was reached. The following information was extracted: author, country, publication year, tumor type, cancer size, follow-up time, detection method and cut-off value. Patient number for each group was divided on the basis of the positive or negative lymph node metastasis, distant metastasis, tumor size, TNM stage, and patient number for high or low SNHG3 expression in each group.

When only Kaplan-Meier curves were available, HRs and 95% CIs were extracted from graphical survival plots by using Engauge Digitizer V4.1 (https://sourceforge.net/projects/digitizer/)[13]. If reported directly
in univariate or multivariate analyses, HRs with corresponding 95% CIs were extracted from multivariate analyses.

A quality assessment for all of the included studies depended on The Newcastle–Ottawa Quality Assessment Scale (NOS), which is composed of the following 3 dimensions: selection, comparability and exposure. Each study was scored from 0–9 according to these dimensions. A study with a NOS score ≥ 6 was considered to be of high quality [14].

**Statistical Analyses**

All statistical analyses of the data were calculated using Review Manager (RevMan) 5.3 software and Stata version 12.0 (Stata Corporation, College Station, TX, USA). Sensitivity analysis was performed by omitting literatures one by one to determine whether the results were stable and the publication bias of this meta analysis was evaluated by using the Beggs test according to Stata 12 software. The $Q$ test and $I^2$ statistics were applied to estimate the heterogeneity of results. A fixed-effects model was choiced when $I^2 < 50\%$ was observed. The synthetic estimate was calculated depending on the random-effects model when the heterogeneity was obvious ($I^2 > 50\%$). A two-tailed $p$ value $< 0.05$ was considered as statistically significant.

**Results**

**Literature search and selection**

The literature selection process is shown in Fig. 1. Preliminarily, 151 relevant studies in total were yielded from the search of the PubMed, Cochrane Library, EMBASE, CNKI, Weipu, and Wanfang electronic databases. Among these, 89 studies were excluded as duplicate articles. Then we further excluded 34 studies by reviewing the title and abstract. Subsequently, 11 more studies were not able to be included because of insufficient data and being unrelated to our study. Finally, 17 studies containing 1788 patients were eligible for this meta analysis and were highly consistent with the inclusion criteria. All of the included studies were published between 2017 and 2020 and came from China. Multiple forms of cancers were analyzed in the present meta-analysis, including gastric cancer [15], ovarian cancer [16], glioma [17, 18], colorectal cancer [19, 20], hepatocellular carcinoma [21, 22], breast cancer [23], renal cell carcinoma [24], osteosarcoma [11, 12], lung cancer [9, 25], acute myeloid leukemia [26], papillary thyroid carcinoma [27, 28]. The detailed information obtained from the studies is summarized in table 1.

**Table1:** The main characteristics of the included studies in the meta-analysis.
SNHG3 expression highly correlated with OS, RFS and DFS

Overall, 15 of the 17 studies investigated cancer prognosis. A total of 2072 patients were assessed for the HR and 95% CI of OS. The random-effects model was performed to analyze the pooled HR and its 95% CI depended on no obvious heterogeneity (P = 0.01, I^2 = 51%). We further elucidated the relationship between SNHG3 expression and the overall survival, as illustrated in Fig. 2. The pooled results revealed that the high expression of SNHG3 was related to poor prognosis of cancers (HR = 2.15, 95%CI: 1.76–2.63, P < 0.00001, Fig. 2A). In the subgroup analysis stratified by tumor type, we found that elevated SNHG3 could act as a prognostic predictor for patients with digestive system tumors (HR = 2.34, 95%CI: 1.53–3.57, P = 0.003) or patients with non-digestive system tumors (HR = 1.95, 95%CI: 2.43–2.67, P = 0.0002, Fig. 2B). Thus, the prognosis of cancer patients with SNHG3 overexpression was worse than those with low expression of SNHG3. In terms of DFS, only 3 studies were included, and the pooled results indicated that patients with high expression of SNHG3 had poor DFS (HR = 2.04, 95%CI: 1.35–3.09, P = 0.0007, Fig. 3A). Only one focus on the relationship between SNHG3 and tumor recurrence (HR = 2.22, 95%CI: 1.04–4.76, P = 0.004, Fig. 3B).

Independent prognostic value of SNHG3 in cancers

Multivariate analysis and a fixed-effects model were used in 5 studies (P = 0.45, I^2 = 0%) calculate the independent prognostic value of SNHG3 in cancer. The combined HRs showed that the elevated expression of SNHG3 could be an independent prognostic factor for OS in patients with cancer (HR = 1.90, 95%CI: 1.59–2.27, P < 0.00001, Fig. 4).
Relationship between SNHG3 expression and clinicopathological characteristics

The merged results from 11 studies with 1204 patients demonstrated that patients with SNHG3 overexpression have a more advanced stage (III/IV) cancer (III/IV vs. I/II, OR = 2.91, 95%CI: 1.60–5.29, P = 0.0005, Fig. 5A). Here we used a random-effects model because of obvious heterogeneity (P=0.0001, I² = 73%). In addition, these 5 studies contained 726 individuals showed correlation between SNHG3 and LNM in various cancers. A fix-effects model was utilized again because of obvious heterogeneity (P = 0.17, I² = 37%), and the pooled results showed that lymph node metastasis was more susceptible to the upregulated SNHG3 expression group than the downregulated SNHG3 expression group (OR = 5.00, 95%CI:2.82–8.87, P=0.00001, Fig. 5B). Only 4 studies provided information for distant metastasis (DM). The pooled results indicated that patients with high SNHG3 expression have more metastasis to distant organs or tissues (OR = 2.29, 95%CI: 1.52–3.47, P < 0.0001, Fig. 5C). Again, a fixed-effects model was used (P = 0.27,I² = 24%). 9 studies provided information for tumor size, which showed that patients with high SNHG3 expression have larger size (OR = 1.80, 95%CI: 1.04–3.11, P = 0.04, Fig. 5D). Furthermore, we did an investigation on the relationship between SNHG3 expression and age, gender, and differentiation. However, the pooled results suggested that SNHG3 expression was not positively associated with these characteristics (Fig. 6A–C). The details are shown in Table 2.

Table 2: Summary of the relationship between SNHG3 over-expressed and clinicopathological parameters.

| Clinicopathological parameters                  | Studies | Patients | OR (95% CI)  | P-value | I² | Heterogeneity  | P-value | Model |
|-----------------------------------------------|---------|----------|--------------|---------|----|----------------|---------|-------|
| Age (older vs. younger)                        | 12      | 1266     | 0.99 (0.79, 1.24) | 0.92     | 10%| 0.35           | Fixed   |       |
| Gender (male vs. female)                       | 10      | 1106     | 1.14 (0.89, 1.46) | 0.31     | 0% | 0.87           | Fixed   |       |
| Tumor size (larger vs. smaller)                | 9       | 546      | 1.80 (1.04, 3.11) | **0.04** | 51%| 0.05           | Random  |       |
| Differentiation (poor vs. well)                | 5       | 858      | 1.19 (0.73, 1.93) | 0.49     | 51%| 0.09           | Random  |       |
| TNM stage (III+IV vs. I+II)                    | 11      | 1204     | 2.91 (1.60, 5.29) | **0.0005** | 73%| <0.0001        | Random  |       |
| LNM (Positive vs. Negative)                    | 5       | 726      | 5.00 (2.82, 8.87) | <0.0001  | 37%| 0.17           | Fixed   |       |
| DM (Positive vs. Negative)                     | 4       | 780      | 2.29 (1.52, 3.47) | **<0.0001** | 24%| 0.27           | Fixed   |       |

TNM, Tumor node metastasis; LNM, Lymph node metastasis; DM, Distant metastasis

Publication Bias And Sensitivity Analysis

The begg’s test was used to evaluate the publication bias in this meta-analysis. No significant publication bias for OS and independent factor for OS was found in this meta-analysis (Fig. 7A–B). As illustrated in Fig. 8A–B, we performed the sensitivity analysis to prove that the results were robust, and the summary HRs were not affected after removal of study one by one.

Discussion
While only 2% of human genomic sequences are found to encode proteins, most of the genome is transcribed into non-coding RNA that has no known biological function [29]. LncRNAs, a class of non-coding RNAs with more than 200 nucleotides in length but by no means encode protein [30], have been shown to be significantly involved in various essential cellular processes including cell cycle regulation, immune regulation, stem cells differentiation [4], insensitivity to radiation and drugs [31], and energy metabolism [32, 33] through interacting with DNA, RNA, or proteins. A growing number of studies have shown that the abnormal expression of IncRNAs plays an important role in the clinicopathological features and prognosis of cancers [34]. Furthermore, IncRNAs, which are easily detected in body fluids, have the potential to be accurate prognosis for cancer patients [35].

SNHG3 is a member of a cancer-associated IncRNA family, and is located in band 6 and region 3 of the short arm of chromosome 1. The upregulation of SNHG3 expression is detected in numerous cancer types and promotes the progression of cancers [18]. Recently, accumulating evidence demonstrated that SNHG3 overexpression was highly related to the poor prognosis of colorectal cancer patients and strongly promoted cell proliferation[19]. It has been confirmed that the up-regulation of SNHG3 could cause the apoptosis of lung adenocarcinoma cells and inhibited cells, implicating the link between high SNHG3 expression and the progression of cancer cells invasion [9]. In papillary thyroid carcinoma, Sui et al determined that PSMD10 had a significant connection with the cellular growth, proliferation, and invasion, this was attributed to the regulation of the miR–214–3p/PSMD10 axis by SNHG3 [27]. A study by Li et al demonstrated that the knockdown of SNHG3 prevented proliferation and metabolism of breast cancer cells by upregulating miR-330 and downregulating PKM [36]. In another study, SNHG3 was up-regulated in hepatocellular cancer (HCC) compared with normal tissue and regulated miR-139-5p expression, which was important for the development of hepatocellular cancer including proliferation, migration, and invasion[37]. Furthermore, Zhao et al proposed that SNHG3 overexpression significantly enhanced HCC proliferation and migration by activating SMAD3/ZEB1 signaling, providing potential targets for the diagnosis and treatment of HCC[38]. SNHG3 was also shown to be a crucial IncRNA expressed during the migration and invasion of laryngeal cancer cells through its regulation WEE1 by sponging miR-384, suggesting SNHG3 could help to identify effective treatment strategies for laryngeal carcinoma [39]. Meanwhile, Li et al also found a similar function for SNHG3 in facilitating AML cell growth via the regulation of the miR--758--3p/SRGN axis, indicating that SNHG3 had the high possibility of being a novel prognostic and therapeutic biomarker for AML [26]. Additionlly, Liu et al determined that SNHG3 could function as a novel biomarker for oral squamous cell carcinoma, as SNHG3 overexpression results in acceleration of SNHG3 on proliferation and migration in oral squamous cell carcinoma by targeting nuclear transcription factor Y subunit gamma [18, 40, 41]. A research group also found that upregulation of SNHG3 could be suggested as an independent predictor to evaluate the prognostic of ovarian cancer patients and enhanced malignant progression of ovarian cancer[16]. Target drug therapy is an effective strategy to treat advance tumors, and there is evidence that SNHG3 is involved in drug resistance. The latest research found that knockdown of SNHG3 sensitize hepatocellular carcinoma cells to sorafenib by regulating epithelial-mesenchymal transition(EMT) via miR-128/CD51/Akt/PI3K feedback loop signaling, which imply that designing drugs to lower the SNHG3 expression could boost the value of
target drug therapy in the treatment of hepatocellular carcinoma[42]. Despite the well-identified link between SNHG3 and cancer, further studies are needed to validate the function of SNHG3 in cancer.

To further define the role of SNHG3 in different cancers, we conducted the first meta-analysis to elucidate the impact of abnormal SNHG3 expression levels on the prognostic value and clinicopathological characteristic of cancer patients. From merged results, we found that the patients with a high level of expression of SNHG3 had worse outcomes in terms of OS, RFS and DFS when in contrast to those with low SNHG3 expression, suggesting that elevated SNHG3 expression was highly related to poor prognosis and could act as an unfavorable prognostic predictor for patients with cancers. Also, the merged results suggest that the SNHG3 expression could be investigated as an independent predictive factor for OS in cancers. Moreover, the inferiority of high SNHG3 expression on LNM, DM, tumor size and advanced TNM stage was also exhibited, clearly indicating that the overexpression of SNHG3 had a connection with worse clinicopathological characteristics. However, no relationship was found between SNHG3 and age, gender, and differentiation.

Some limitations should be clearly delineated. The shortcomings of this meta-analysis are as follows: First, most studies were from China, which might be potentially suitable for China or Asia. Second, the included studies were only from China, consequently the results might only capture the clinical characteristics of Asian populations. Third, the tumor types and number of patients and other prognostic indicators, such as RFS, were insufficient for a more comprehensive analysis. Therefore larger sample studies should be conducted to sustain the results. Fourth, the HRs were determined indirectly from survival curves by using available software, which might contribute to a calculation bias. Thus, more relevant high-quality studies that contain a large number of samples are needed to verify the findings.

**Conclusion**

In conclusion, our results provided novel insights into the correlation between SNHG3 expression, prognosis, and clinical outcomes in cancer patients. In the present meta-analysis, the results indicated that cancer patients with a high expression level of SNHG3 were at higher risk for poor OS compared with those with low SNHG3 expression. Our data strongly suggest that lncRNA SNHG3 might be capable of predicting poor prognosis of cancer patients as a novel biomarker. Taking the limitations of this study into account, more high-quality researches are needed to confirm the prognostic value of SNHG3 in tumors.

**Abbreviations**

LncRNA, long non-coding RNA; SNHG3, Small nucleolar RNA host gene 3; NA, not available; DFS, disease-free survival; OS, overall survival; GC, gastric cancer; KIRP, Kidney renal papillary cell carcinoma; OC, ovarian cancer; CRC, colorectal carcinoma; HCC, hepatocellular carcinoma; BRCA, breast cancer; LC: lung cancer; OS: osteosarcoma; TNM, Tumor node metastasis; LNM, lymph node metastasis; DM, distant metastasis; NOS, Newcastle–Ottawa Quality Assessment Scale
Declarations

Ethics approval and consent to participate

The study was approved by the Human Research Ethics Committees of the First People's Hospital of Neijiang, Neijiang, Sichuan

Consent for publication

All authors agree to publish.

Availability of data and materials

All data used to support the findings of this study are included within the article.

Competing interests

All authors have no conflict of interest in this meta-analysis.

Funding

This meta-analysis was supported by the Key Discipline Construction Fund of the first people's hospital of Neijiang. The funding body was not involved in the design of the study, collection, analysis, and interpretation of data, nor in writing the manuscript. The content is solely the responsibility of the authors.

Author's contributions

Conceptualization: HH

Data curation: HH, PYZ.

Formal analysis: HH, JW

Funding acquisition: HH

Investigation: HH

Project administration: JW

Software: HH, PYZ

Supervision: HH

Writing – original draft: JW.

Writing – review & editing: HH
All authors have read and approved the final manuscript

Acknowledgments

We would like to thank Dr. Hua for his guidance on this article and for his editing and proofreading of this English manuscript

References

1. Zadeh HG, Haddadnia J, Ahmadinejad N, Baghdadi MR: Assessing the Potential of Thermal Imaging in Recognition of Breast Cancer. *Asian Pacific journal of cancer prevention : APJCP* 2015, 16(18):8619-8623.

2. Chen W, Zhang W, Wu R, Cai Y, Xue X, Cheng J: Identification of biomarkers associated with histological grade and prognosis of gastric cancer by co-expression network analysis. *Oncology letters* 2019, 18(5):5499-5507.

3. Yan Y, Wu Q, Li ZY, Bu ZD, Ji JF: Endoscopic ultrasonography for pretreatment T-staging of gastric cancer: An in vitro accuracy and discrepancy analysis. *Oncology letters* 2019, 17(3):2849-2855.

4. Mercer TR, Dinger ME, Mattick JS: Long non-coding RNAs: insights into functions. *Nature reviews Genetics* 2009, 10(3):155-159.

5. Schmitt AM, Chang HY: Long Noncoding RNAs in Cancer Pathways. *Cancer cell* 2016, 29(4):452-463.

6. Yamashita A, Shichino Y, Yamamoto M: The long non-coding RNA world in yeasts. *Biochimica et biophysica acta* 2016, 1859(1):147-154.

7. Marchese FP, Raimondi I, Huarte M: The multidimensional mechanisms of long noncoding RNA function. *Genome biology* 2017, 18(1):206.

8. Xu YC, Liang CJ, Zhang DX et al: LncSHRG promotes hepatocellular carcinoma progression by activating HES6. *Oncotarget* 2017, 8(41):70630-70641.

9. Liu L, Ni J, He X: Upregulation of the Long Noncoding RNA SNHG3 Promotes Lung Adenocarcinoma Proliferation. *Disease markers* 2018, 2018:5736716.

10. Wan Q, Liu M, Y., Xia J et al: Effects of long-chain non coding RNA SNHG3 on proliferation,migration and invasion of human breast cancer cell line MCF-7. *Chinese journal of Bioengineering* 2019, 39(01):13-20.

11. Zheng S, Jiang F, Ge D et al: LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. *Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie* 2019, 112:108695.

12. Chen J, Wu Z, Zhang Y: LncRNA SNHG3 promotes cell growth by sponging miR-196a-5p and indicates the poor survival in osteosarcoma. *International journal of immunopathology and pharmacology* 2019, 33:2058738418820743.

13. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR: Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* 2007, 8:16.
14. Oremus M, Oremus C, Hall GB, McKinnon MC: Inter-rater and test-retest reliability of quality assessments by novice student raters using the Jadad and Newcastle-Ottawa Scales. BMJ open 2012, 2(4).

15. Xuan Y, Wang Y: Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell death & disease 2019, 10(10):694.

16. Hong L, Chen W, Wu D, Wang Y: Upregulation of SNHG3 expression associated with poor prognosis and enhances malignant progression of ovarian cancer. Cancer biomarkers : section A of Disease markers 2018, 22(3):367-374.

17. Luo T, Peng X, J., Yang Y, L.: Expression and clinical significance of SNHG3 in glioma. Journal of liberation army medical college 2018, 39(12):1093-1096.

18. Fei F, He Y, He S et al: LncRNA SNHG3 enhances the malignant progress of glioma through silencing KLF2 and p21. Bioscience reports 2018, 38(5).

19. Huang W, Tian Y, Dong S et al: The long non-coding RNA SNHG3 functions as a competing endogenous RNA to promote malignant development of colorectal cancer. Oncology reports 2017, 38(3):1402-1410.

20. Dacheng W, Songhe L, Weidong J, Shutao Z, Jingjing L, Jiaming Z: LncRNA SNHG3 promotes the growth and metastasis of colorectal cancer by regulating miR-539/RUNX2 axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2020, 125:110039.

21. Tian D, Wei X, Zhu H, Zhu L, Li T, Li W: LncRNA-SNHG3 is an independent prognostic biomarker of intrahepatic cholangiocarcinoma. International journal of clinical and experimental pathology 2019, 12(7):2706-2712.

22. Zhang T, Cao C, Wu D, Liu L: SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2016, 37(2):2379-2385.

23. Wang L, L., Zeng H, J., Wang J, J. et al: EXpression and clinical significance of SNHG3 in breast cancer. Journal of Medical Postgraduates 2018, 31(11):1180-1183.

24. Zhang C, Qu Y, Xiao H et al: LncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Experimental cell research 2019, 384(1):111595.

25. Shi J, Li J, Yang S et al: LncRNA SNHG3 is activated by E2F1 and promotes proliferation and migration of non-small-cell lung cancer cells through activating TGF-beta pathway and IL-6/JAK2/STAT3 pathway. Journal of cellular physiology 2020, 235(3):2891-2900.

26. Peng L, Zhang Y, Xin H: IncRNA SNHG3 facilitates acute myeloid leukemia cell growth via the regulation of miR-758-3p/SRGN axis. Journal of cellular biochemistry 2020, 121(2):1023-1031.

27. Sui G, Zhang B, Fei D, Wang H, Guo F, Luo Q: The IncRNA SNHG3 accelerates papillary thyroid carcinoma progression via the miR-214-3p/PSMD10 axis. Journal of cellular physiology 2020.

28. Duan Y, Wang Z, Xu L et al: IncRNA SNHG3 acts as a novel Tumor Suppressor and regulates Tumor Proliferation and Metastasis via AKT/mTOR/ERK pathway in Papillary Thyroid Carcinoma. Journal of Cancer 2020, 11(12):3492-3501.
29. Santer BD, Wigley TM, Mears C et al: Amplification of surface temperature trends and variability in the tropical atmosphere. Science (New York, NY) 2005, 309(5740):1551-1556.

30. Rinn JL, Chang HY: Genome regulation by long noncoding RNAs. Annual review of biochemistry 2012, 81:145-166.

31. Zheng R, Yao Q, Ren C et al: Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A. International journal of radiation oncology, biology, physics 2016, 96(4):877-887.

32. Li CH, Chen Y: Targeting long non-coding RNAs in cancers: progress and prospects. The international journal of biochemistry & cell biology 2013, 45(8):1895-1910.

33. Dey BK, Mueller AC, Dutta A: Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 2014, 5(4):e944014.

34. Zhang J, Feng S, Su W et al: Overexpression of FAM83H-AS1 indicates poor patient survival and knockdown impairs cell proliferation and invasion via MET/EGFR signaling in lung cancer. Scientific reports 2017, 7:42819.

35. Xie Y, Zhang Y, Du L et al: Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer. Molecular oncology 2018, 12(5):648-658.

36. Li Y, Zhao Z, Liu W, Li X: SNHG3 Functions as miRNA Sponge to Promote Breast Cancer Cells Growth Through the Metabolic Reprogramming. Applied biochemistry and biotechnology 2020.

37. Wu J, Liu L, Jin H, Li Q, Wang S, Peng B: LncSNHG3/miR-139-5p/BMI1 axis regulates proliferation, migration, and invasion in hepatocellular carcinoma. OncoTargets and therapy 2019, 12:6623-6638.

38. Zhao Q, Wu C, Wang J et al: LncRNA SNHG3 Promotes Hepatocellular Tumorigenesis by Targeting miR-326. The Tohoku journal of experimental medicine 2019, 249(1):43-56.

39. Wang L, Su K, Wu H, Li J, Song D: LncRNA SNHG3 regulates laryngeal carcinoma proliferation and migration by modulating the miR-384/WEE1 axis. Life sciences 2019, 232:116597.

40. Liu Z, Tao H: Small nucleolar RNA host gene 3 facilitates cell proliferation and migration in oral squamous cell carcinoma via targeting nuclear transcription factor Y subunit gamma. Journal of cellular biochemistry 2020, 121(3):2150-2158.

41. Li N, Zhan X, Zhan X: The IncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecologic oncology 2018, 150(2):343-354.

42. Zhang PF, Wang F, Wu J et al: LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma. Journal of cellular physiology 2019, 234(3):2788-2794.

Figures
Figure 1

Flow diagram of the study selection procedure in this meta-analysis.
Figure 2

Forest plots for the association between SNHG3 expression with overall survival (OS) (A) and subgroup analysis stratified by the cancer type (B).
Figure 3

Forest plots for the correlation between SNHG3 expression and DFS(A) and RFS(B).

| Study or Subgroup | log(Hazard Ratio) | SE  | Weight | Hazard Ratio IV, Random, 95% CI |
|-------------------|-------------------|-----|--------|--------------------------------|
| Zhang, et al 2019 | 0.4121            | 0.1046 | 43.6% | 1.51 [1.23, 1.85] |
| Zhang, et al 2016 | 0.9594            | 0.2465 | 29.4% | 2.61 [1.61, 4.23] |
| Luo, et al 2018   | 0.9345            | 0.2713 | 27.1% | 2.55 [1.50, 4.33] |
| **Total (95% CI)**| **100.0%**        |       |        | **2.04 [1.35, 3.09]** |

Heterogeneity: Tau² = 0.09; Chi² = 6.50, df = 2 (P = 0.04); I² = 69%
Test for overall effect: Z = 3.37 (P = 0.0007)

Figure 4

Forest plots for the correlation between SNHG3 expression and independent predictive factor for OS.

| Study or Subgroup | log(Hazard Ratio) | SE  | Weight | Hazard Ratio IV, Fixed, 95% CI |
|-------------------|-------------------|-----|--------|--------------------------------|
| Duan, et al 2020  | 0.7985            | 0.3889 | 100.0% | 2.22 [1.04, 4.76] |
| **Total (95% CI)**| **100.0%**        |       |        | **2.22 [1.04, 4.76]** |

Heterogeneity: Not applicable
Test for overall effect: Z = 2.05 (P = 0.04)
Figure 5

Forest plots for the correlation between SNHG3 expression and clinicopathological characteristics. A: TNM stage; B: lymph node metastasis; C: distant metastasis; D: Tumor size.
Figure 6

Forest plots for the correlation between SNHG3 expression and clinicopathological characteristics. A: Age; B: Differentiation; C: Gender.
Figure 7

Begg's funnel plot of publication bias on the correlation between SNHG3 expression and OS(A), independent factor for OS(B).
Figure 8

Sensitivity analysis for OS(A) and independent factor for OS(B) in this meta-analysis.