Efficacy and safety of calcitonin gene-related peptide antagonists in migraine treatment: A meta-analysis

Tingting Huang | Yang Xu | Yajie Chen | Jing Bian | Zhaohu Chu | Shoucai Zhao | Lingsong Ma

Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, Anhui, China

Correspondence
Tingting Huang, Department of Neurology, The First Affiliated Hospital of Wannan Medical Collage, Wuhu, 241000 Anhui, China. Email: huangtingting1022@126.com

Funding information
Young Project of National Natural Science Foundation of China, Grant/Award Number: 82171329

Abstract

Introduction: We systematically reviewed the efficacy and safety of Calcitonin Gene-Related Peptide (CGRP) antagonists for migraine treatment.

Methods: Various databases including PubMed, Embase, The Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), WanFang Data were electronically searched for randomized controlled trials (RCTs) on CGRP antagonists for migraine treatment since inception to March 2021. The trials were screened for inclusion, after which the methodological quality of the included trials was assessed. Then meta-analysis was performed using the Revman 5.3 software.

Results: A total of 26 RCTs involving 21,736 patients were included. The CGRP antagonists group included 13,635 patients while the control group included 8101 patients. Meta-analysis showed that compared to the control group, CGRP antagonists were associated with various significant effects, including the following outcome indicators: (1) number of patients with ≥50% reduction from baseline in mean monthly migraine days (RR = 1.50, 95% CI [1.39,1.62], \(p < .00001 \)); (2) number of patients with pain free at 2 h postdose (RR = 1.98, 95% CI [1.77, 2.20], \(p < .00001 \)), and (3) number of patients with 2–24 h sustained pain free postdose (RR = 2.18, 95% CI [1.93, 2.46], \(p < .00001 \)). However, the number of patients with any adverse events was significantly high in the antagonists group, relative to the control group (RR = 1.08, 95% CI [1.04, 1.12], \(p < .0001 \)).

Conclusions: CGRP antagonists are significantly effective for migraine treatment; however, they are associated with various adverse events. Due to limitations with regards to quantity and quality of the included studies, the above conclusions should be verified by more high quality studies.

KEYWORDS
CGRP antagonists, migraine, meta-analysis, randomized controlled trial
INTRODUCTION

A migraine is a chronic disabling disease, that is associated with serious harm to patients' life and work. Chemotherapeutic options for migraine treatment are divided into two types: acute treatment and preventive treatment drugs. Acute treatment drugs include nonsteroidal anti-inflammatory drugs (NSAIDs), triptans, and ergotamines, while preventive treatment drugs include tricyclic antidepressants (TCAs), anticonvulsants, β-receptor blockers and calcium channel antagonists among others. The clinical pathogenesis of migraines has not been clearly established; however, various theories have been proposed to explain their development. These include the classical trigeminal neurovascular theory, in which 5-hydroxytryptamine (5-HT), CGRP, pituitary adenylate cyclase activating peptide all play important roles (Edvinsson et al., 2020). As new migraine treatment drugs, CGRP antagonists have been widely researched. These antagonists can be administered in both acute and interictal stages because they inhibit vasodilation and neuroinflammation (Benemei et al., 2009; Barbanti et al., 2017). CGRPs are widely expressed in multiple sites, including precranial vessels, nerve cells and neurogliocytes in the trigeminal ganglion, central end of trigeminal ganglion, brain stem, cerebellum, as well as cerebral hemisphere among others (Messlinger, 2018). There are two main types of CGRP antagonists: small molecule CGRP receptor antagonists such as telcagepant, atogepant, ubrogepant, rimegepant, olcegepant among others. The other type includes macromolecule CGRP receptor antagonists, which are also known as anti-CGRP monoclonal antibodies (mAbs) and they include erenumab (AMG334), eptinezumab (ALD403), fremanezumab (TEV-48125), galcanezumab (LY2951742) among others. Erenumab is a monoclonal antibody targeting CGRP receptor while the rest are monoclonal antibodies targeting CGRP (Szkutnik-Fiedler, 2020). In this study, we reviewed the efficacies and safety of CGRP antagonists for migraine treatment.

METHODS

2.1 Inclusion and exclusion criteria

2.1.1 Study types

RCTs on the efficacy and safety of CGRP antagonists for migraine treatment.

2.1.2 Research objectives

Studies that conformed to the recommended diagnostic criteria for migraines (ICHD-3), with or without aura, no age, sex, or course limitations.

2.1.3 Intervention measures

Observation group administered with CGRP antagonists with or without conventional drugs for migraine treatment. Control
Included studies	Research type	Follow-up time	Number of cases (intervening measure)	Mean age (mean value ± SD/median)	Sex (F/M)
Dodick et al., 2018	RCT Phase III	12 weeks	286 (Erenumab 70 mg) 291 (Placebo)	42 ± 11 42 ± 12	245/41 247/44
Diener et al., 2010	RCT Phase II	1 week	64 (BI44370TA 50 mg) 65 (BI44370TA 200 mg) 73 (BI44370TA 400 mg) 69 (Epletriptan 40 mg) 70 (Placebo)	428 ± 11.7 412 ± 9.7 411 ± 10.0 379 ± 10.1 382 ± 10.3	54/10 53/12 55/18 61/8 61/9
Marcus et al., 2014	RCT Phase II	11 weeks	85 (BMS-927711 10 mg) 68 (BMS-927711 25 mg) 91 (BMS-927711 75 mg) 90 (BMS-927711 150 mg) 121 (BMS-927711 600 mg) 109 (Sumatriptan 100 mg) 229 (Placebo)	41.1 ± 11.36 36.5 ± 11.92 38.5 ± 11.87 39.2 ± 11.26 41.9 ± 11.46 39.3 ± 13.01 40.6 ± 10.47 37.9 ± 11.36	67/18 61/7 81/10 63/27 101/20 76/16 91/18 196/33
Olesen et al., 2004	RCT	24 h	1 (BIBN4096BS 0.25 mg) 4 (BIBN4096BS 0.5 mg) 20 (BIBN4096BS 1 mg) 32 (BIBN4096BS 2.5 mg) 16 (BIBN4096BS 5 mg) 12 (BIBN4096BS 10 mg) 41 (Placebo)	43 42 49 45 52 47 47	1/0 3/1 18/2 29/3 13/3 7/5 29/12
Goadsby et al., 2017	RCT	6 months	317 (Erenumab 70 mg) 319 (Erenumab 140 mg) 319 (Placebo)	41.1 ± 11.3 40.4 ± 11.1 41.3 ± 11.2	268/49 272/47 274/45
Reuter et al., 2018	RCT Phase IIIb	12 weeks	121 (Erenumab 140 mg) 125 (Placebo)	44.6 ± 10.5 44.2 ± 10.6	97/24 103/22
Dodick, Lipton, Ailani et al., 2019	RCT Phase IIb	49 weeks	130 (Eptinezumab 10 mg) 122 (Eptinezumab 30 mg) 122 (Eptinezumab 100 mg) 121 (Eptinezumab 300 mg) 121 (Placebo)	36.4 ± 10.3 35.7 ± 9.4 36.7 ± 9.4 37.2 ± 10.0 37.2 ± 9.2	113/27 111/9 104/18 98/23 109/12
Tepper et al., 2017	RCT Phase II	12 weeks	191 (Erenumab 70 mg) 190 (Erenumab 140 mg) 286 (Placebo)	41.4 ± 11.3 42.9 ± 11.1 42.1 ± 11.3	166/25 160/30 226/60
Silberstein et al., 2017	RCT Phase II	16 weeks	376 (Fremanezumab quarterly) 379 (Fremanezumab monthly) 375 (Placebo)	42.0 ± 12.4 40.6 ± 12.0 41.4 ± 12.0	331/45 330/49 330/45
Voss et al., 2016	RCT Phase IIb	48 h	107 (Ubrogepant 1 mg) 108 (Ubrogepant 10 mg) 104 (Ubrogepant 25 mg) 106 (Ubrogepant 50 mg) 102 (Ubrogepant 100 mg) 113 (Placebo)	39.2 ± 10.9 41.4 ± 11.5 40.7 ± 12.3 41.9 ± 11.0 40.5 ± 11.7	95/12 92/16 91/13 92/14 90/12 99/14
Hewitt, Aurora et al., 2011	RCT	5 days	145 (Telcagepant + Ibuprofen) 133 (Telcagepant + Acetaminophen) 138 (Telcagepant) 147 (Placebo)	39.2 ± 11.7 42.3 ± 12.7 39.3 ± 11.6 41.9 ± 12.0	123/22 118/15 119/19 130/17
Ho et al., 2008	RCT Phase II	14 days	14 (MK-0974 25 mg) 15 (MK-0974 50 mg) 16 (MK-0974 100 mg) 12 (MK-0974 200 mg) 39 (MK-0974 300 mg) 45 (MK-0974 400 mg) 40 (MK-0974 600 mg) 34 (Rizatrizpritn 10 mg) 115 (Placebo)	43 41.5 40.9 34.3 40.5 40.1 44.5 40.2 42.2	11/3 14/1 14/2 9/3 34/5 42/3 36/4 28/6 104/11

(Continues)
TABLE 1 (Continued)

Included studies	Research type	Follow-up time	Number of cases (intervening measure)	Mean age (mean value ± SD/median)	Sex (F/M)
Hewitt, Martin et al., 2011	RCT Phase II NCT00712725	14 days	33 (MK-3207 2.5 mg)	43.3 ± 10.5	27/6
			47 (MK-3207 5 mg)	43.4 ± 11.1	40/7
			67 (MK-3207 10 mg)	44.1 ± 10.9	62/5
			67 (MK-3207 20 mg)	44.1 ± 11.3	54/13
			68 (MK-3207 50 mg)	42.2 ± 10.8	62/6
			62 (MK-3207 100 mg)	42.4 ± 10.9	52/10
			63 (MK-3207 200 mg)	40.6 ± 10.7	54/9
			140 (Placebo)	42.1 ± 11.2	125/15
Ho et al., 2010	RCT Phase III NCT00483704	14 days	573 (Telcagepant 140 mg)	43.4 ± 11.7	490/83
			549 (Telcagepant 280 mg)	42.4 ± 11.5	471/78
			555 (Placebo)	42.5 ± 11.6	463/92
Connor et al., 2009	RCT Phase III NCT00432237	14 days	177 (Telcagepant 50 mg)	41.4 ± 11.3	156/21
			381 (Telcagepant 150 mg)	41.6 ± 11.0	329/52
			371 (Telcagepant 300 mg)	41.8 ± 11.6	320/51
			365 (placebo)	41.9 ± 11.9	318/47
Sun et al., 2016	RCT Phase II NCT01952574	256 weeks	108 (AMG 334 7 mg)	40.3 ± 10.9	88/20
			108 (AMG 334 21 mg)	39.9 ± 12.3	87/21
			107 (AMG 334 70 mg)	42.6 ± 9.9	82/25
			160 (placebo)	41.4 ± 10.0	132/28
Dodick, Lipton, Silberstein et al., 2019	RCT NCT02828020	24 h	466 (Ubrogepant 50 mg)	40.1 ± 11.7	418/48
			485 (Ubrogepant 50 mg)	40.9 ± 11.7	418/67
Lipton, Croop et al., 2019	RCT NCT03235479	8 h	582 (Rimegepant)	N/A	N/A
			580 (Placebo)	N/A	N/A
Lipton, Dodick et al., 2019	RCT Phase III NCT03237845	7 days	537 (Rimegepant)	40.2 ± 11.9	479/58
			535 (Placebo)	40.9 ± 12.1	472/63
Lipton et al., 2018	RCT Phase III NCT02867709	48 h	478 (Ubrogepant 25 mg)	41.6 ± 12.4	431/47
			488 (Ubrogepant 50 mg)	41.2 ± 12.5	444/44
			499 (Placebo)	41.7 ± 12.1	442/57
Croop et al., 2019	RCT Phase III NCT03461757	80 days	669 (Rimegepant 75 mg)	40.3 ± 12.1	568/101
			682 (Placebo)	40.0 ± 11.9	579/103
Goadsby et al., 2019	RCT Phase IIb/III NCT02848326	12 weeks	93 (Atogepant 10 mg QD)	39.4 ± 12.4	82/11
			183 (Atogepant 30 mg QD)	41.0 ± 13.6	166/17
			86 (Atogepant 50 mg BIQD)	38.5 ± 11.2	73/13
			186 (Atogepant 60 mg BIQD)	40.4 ± 11.7	156/30
			91 (Atogepant 60 mg BIQD)	39.7 ± 11.9	83/8
			186 (Placebo)	40.5 ± 11.7	154/32
Skjarevski et al., 2018	RCT Phase III NCT02614196	6 months	231 (Galcanezumab120 mg)	40.9 ± 11.2	197/34
			223 (Galcanezumab240 mg)	41.9 ± 10.8	191/32
			461 (Placebo)	42.3 ± 11.3	393/68
Detke et al., 2018	RCT Phase III NCT02614261	3 months	278 (Galcanezumab120 mg)	39.7 ± 11.9	237/41
			277 (Galcanezumab240 mg)	41.1 ± 12.4	226/51
			558 (Placebo)	41.6 ± 12.1	483/75
Stauffer et al., 2018	RCT Phase III NCT02614183	6 months	213 (Galcanezumab120 mg)	40.9 ± 11.9	181/97
			212 (Galcanezumab240 mg)	39.1 ± 11.5	175/102
			433 (Placebo)	41.3 ± 11.4	362/196
Mulleners et al., 2020	RCT Phase IIIb NCT03559257	3 months	232 (Galcanezumab120 mg)	45.9 ± 11.3	195/37
			230 (Placebo)	45.7 ± 12.3	202/28

Group administered with conventional drugs or placebo for migraine treatment. Conventional drugs included NSAIDS, triptans, or ergotamines. There were no dosage or treatment course limitations.

2.1.4 Outcome indicators

Outcome indicators are as follows: (1) number of patients with ≥50% reduction from baseline in mean monthly migraine days; (2) number
Included studies	Random method	Blind method	Distribution of hidden	Data integrity	Selective report data
Dodick et al., 2018	Computer randomness	Double blind	Interactive voice response system	Integrity	No
Diener et al., 2010	Computer randomness	Double blind	Unclear	Integrity	No
Marcus et al., 2014	Interactive voice response system	Double blind	Unclear	Integrity	No
Olesen et al., 2004	Unclear	Double blind	Unclear	Integrity	No
Goadsby et al., 2017	Interactive voice/web response system	Double blind	Unclear	Integrity	No
Reuter et al., 2018	Interactive voice response system	Double blind	Unclear, unclear	Integrity	No
Dodick, Lipton, Ailani et al., 2019	Interactive web response system	Double blind	Unclear	Integrity	No
Tepper et al., 2017	Interactive voice/web response system	Double blind	Unclear	Integrity	No
Silberstein et al., 2017	Electronic interactive response system	Double blind	Unclear	Integrity	No
Voss et al., 2016	Computer randomness	Double blind	Unclear	Integrity	No
Hewitt, Aurora et al., 2011	Computer randomness	Double blind	Unclear	Integrity	No
Ho et al., 2008	Computer randomness	Double blind	Unclear	Integrity	No
Hewitt, Martin et al., 2011	Computer randomness	Double blind	Interactive voice response system	Integrity	No
Ho et al., 2010	Computer randomness	Double blind	Central interactive voice system	Integrity	No
Connor et al., 2009	Computer randomness	Double blind	Central interactive voice system	Integrity	No
Sun et al., 2016	Interactive voice/web response system	Double blind	Central distribution	Integrity	No
Dodick, Lipton, Silberstein et al., 2019	Automated network response system	Double blind	Unclear	Integrity	No
Lipton, Croop et al., 2019	unclear	Double blind	Unclear	Integrity	No
Lipton, Dodick et al., 2019	Interactive web response system	Double blind	Unclear	Integrity	No
Lipton et al., 2018	Computer randomness	Double blind	Interactive web response system	Integrity	No
Croop et al., 2019	Interactive web response system	Double blind	Interactive web response system	Integrity	No
Goadsby et al., 2019	Interactive web response system	Double blind	Unclear	Integrity	No
Skljarevski et al., 2018	Computer randomness	Double blind	Interactive web response system	Integrity	No
Detke et al., 2018	Interactive web response system	Double blind	Unclear	Integrity	No
Stauffer et al., 2018	Computer randomness	Double blind	Interactive web response system	Integrity	No
Mulleners et al., 2020	Computer randomness	Double blind	Interactive web response system	Integrity	No

Table 3: Jadad Scale

Included studies	Randomized	Double blinded	Description of withdrawals and drop outs	Randomization Method described and appropriate	Blinding method described and appropriate	Total
Dodick et al., 2018	1	1	1	1	1	5
Diener et al., 2010	1	1	1	1	1	5
Marcus et al., 2014	1	1	1	1	1	5
Olesen et al., 2004	1	1	1	1	0	4
Goadsby et al., 2017	1	1	1	1	1	5
Reuter et al., 2018	1	1	1	1	1	5
Dodick, Lipton, Ailani et al., 2019	1	1	1	1	0	4
Tepper et al., 2017	1	1	1	1	1	5
Silberstein et al., 2017	1	1	1	1	0	4
Voss et al., 2016	1	1	1	1	1	5
Hewitt, Aurora et al., 2011	1	1	1	1	1	5
Ho et al., 2008	1	1	1	1	1	5
Hewitt, Martin et al., 2011	1	1	1	1	0	4
Ho et al., 2010	1	1	1	1	1	5
Connor et al., 2009	1	1	1	1	1	5
Sun et al., 2016	1	1	1	1	1	5
Dodick, Lipton, Silberstein et al., 2019	1	1	1	1	1	5
Lipton, Croop et al., 2019	1	1	0	0	0	2
Lipton, Dodick et al., 2019	1	1	1	1	0	4
Lipton et al., 2018	1	1	1	1	1	5
Croop et al., 2019	1	1	1	1	1	5
Goadsby et al., 2019	1	1	1	1	1	5
Skljarevski et al., 2018	1	1	1	1	1	5
Detke et al., 2018	1	1	1	1	1	5
Stauffer et al., 2018	1	1	1	1	0	4
Mulleners et al., 2020	1	1	1	1	1	5

of pain free patients at 2 h postdose; (3) number of patients with sustained pain free 2–24 h postdose; and (4) incidences of adverse events.

2.1.5 Exclusion criteria

Exclusion criteria are as follows: (1) studies reported in non-English language; (2) studies whose main outcome indicators were not included; (3) duplicate published studies; (4) studies limited to specific populations; and (5) unfinished research.

2.2 Literature retrieval strategy

Various databases including PubMed, Embase, The Cochrane Library, CNKI, WanFang Data were electronically searched from inception to March 2021 for RCTs involving CGRP antagonists for migraine treatment.

Chinese search items included migraine and CGRP antagonists, while English search items included CGRP antagonist, Calcitonin gene-related peptide antagonist, CGRP receptor antagonist, Calcitonin gene-related peptide receptor antagonist, eptinezumab, ALD403, fremanezumab, TEV-48125, erenumab, AMG334, galcanezumab, LY2951742, BI 44370TA, BMS 927711, olcegepant, telcagepant, MK-3207, rimegepant, atogepant, migraine, and randomized controlled trials.

2.3 Literature screening and data extraction

Two valuators (Tingting Huang and Yang Xu) independently screened the literature, extracted the data and cross-checked it. In case of differences, an investigator (Zhaohu Chu) was consulted. Corresponding authors of the literatures were contacted when key data could not be directly obtained. Irrelevant literatures were excluded by screening the titles and summaries while valuable literatures were included.
TABLE 4 The outcome indicators of the included studies

Outcome indicator	Intervening measure	Study numbers included	Case numbers (T/C)	Heterogeneity	Meta-analysis		
				p	I²	RR(95%CI)	p
Number of patients with ≥50% reduction from baseline in mean monthly migraine day	Erenumab 7 mg vs. Placebo	1 (Sun et al., 2016)	104/144	-	-	0.97(0.65,1.43)	.86
	Erenumab 21 mg vs. Placebo	1 (Sun et al., 2016)	93/144	-	-	1.15(0.79,1.68)	.46
	Erenumab 70 mg vs. Placebo	3 (Dodick et al., 2018; Goadsby et al., 2017; Sun et al., 2016)	693/748	.49	0%	1.50(1.30,1.73)	<.00001
	Erenumab 140 mg vs. Placebo	2 (Goadsby et al., 2017; Reuter et al., 2018)	437/440	.58	0%	1.92(1.58,2.35)	<.00001
	Atogepant 10 mgQd vs. Placebo	1 (Goadsby et al., 2019)	92/178	-	-	1.42(1.11,1.83)	.006
	Atogepant 30 mgQd vs. Placebo	1 (Goadsby et al., 2019)	182/178	-	-	1.32(1.05,1.65)	.02
	Atogepant 60 mgQd vs. Placebo	1 (Goadsby et al., 2019)	177/178	-	-	1.28(1.02,1.61)	.03
	Atogepant 30 mgBid vs. Placebo	1 (Goadsby et al., 2019)	79/178	-	-	1.44(1.11,1.86)	.006
	Atogepant 60 mgBid vs. Placebo	1 (Goadsby et al., 2019)	87/178	-	-	1.53(1.20,1.96)	.0005
	Eptinezumab 10 mg vs. Placebo	1 (Dodick, Lipton, Ailani et al., 2019)	123/116	-	-	1.08(0.80,1.46)	.60
	Eptinezumab 30 mg vs. Placebo	1 (Dodick, Lipton, Ailani et al., 2019)	117/116	-	-	1.37(1.04,1.80)	.02
	Eptinezumab 100 mg vs. Placebo	1 (Dodick, Lipton, Ailani et al., 2019)	118/116	-	-	1.36(1.03,1.79)	.03
	Eptinezumab 300 mg vs. Placebo	1 (Dodick, Lipton, Ailani et al., 2019)	114/116	-	-	1.41(1.07,1.85)	.01
	Galcanezumab 120 mg vs. Placebo	3 (Detke et al., 2018; Mulleners et al., 2020; Skljarevski et al., 2018)	736/1229	.03	71%	1.94(1.47,2.56)	<.00001
	Galcanezumab 240 mg vs. Placebo	2 (Detke et al., 2018; Skljarevski et al., 2018)	497/999	.45	0%	1.62(1.41,1.87)	<.00001
	Total	9 (Detke et al., 2018; Dodick et al., 2018; Dodick, Lipton, Ailani et al., 2019; Goadsby et al., 2017; Goadsby et al., 2019; Mulleners et al., 2020; Reuter et al., 2018; Skljarevski et al., 2018; Sun et al., 2016)	3649/5058	.008	46%	1.50(1.39,1.62)	<.00001
Number of pain free patients at 2 h postdose	BI44370TA 50 mg vs. Placebo	1 (Diener et al., 2010)	64/70	-	-	0.91(0.29,2.84)	.87
	BI44370TA 200 mg vs. Placebo	1 (Diener et al., 2010)	65/70	-	-	2.51(1.03,6.15)	.04
	BI44370TA 400 mg vs. Placebo	1 (Diener et al., 2010)	73/70	-	-	3.20(1.36,7.49)	.007

(Continues)
Outcome indicator	Intervening measure	Study numbers included	Case numbers (T/C)	Heterogeneity	Meta-analysis
BIBN4096BS 1 mg vs. Placebo	1 (Olesen et al., 2004)	20/41	-	-	8.2(0.98,68.66) .05
BIBN4096BS 2.5 mg vs. Placebo	1 (Olesen et al., 2004)	32/41	-	-	17.94(2.49,129.3) .004
BIBN4096BS 5 mg vs. Placebo	1 (Olesen et al., 2004)	16/41	-	-	10.25(1.24,84.86) .03
BIBN4096BS 10 mg vs. Placebo	1 (Olesen et al., 2004)	12/41	-	-	10.25(1.17,89.76) .04
Ubrogepant 1 mg vs. Placebo	1 (Voss et al., 2016)	107/112	-	.05	.63(0.24,1.67) .35
Ubrogepant 10 mg vs. Placebo	1 (Voss et al., 2016)	108/112	-	-	1.66(0.79,3.49) .18
Ubrogepant 25 mg vs. Placebo	2 (Lipton et al., 2018; Voss et al., 2016)	538/568	.19	41%	1.68(1.08,2.62) .02
Ubrogepant 50 mg vs. Placebo	3 (Dodick, Lipton, Silberstein et al., 2019; Lipton, 2018; Voss, 2016)	991/1024	.54	0%	1.62(1.32,1.99) <.00001
Ubrogepant 100 mg vs. Placebo	2 (Dodick, Lipton, Silberstein et al., 2019; Voss et al., 2016)	550/568	.22	34%	2.04(1.35,3.08) .0007
Telcagepant 25 mg vs. Placebo	1 (Ho et al., 2008)	14/115	-	-	1.54(0.51,4.63) .44
Telcagepant 50 mg vs. Placebo	2 (Connor et al., 2009; Ho et al., 2008)	192/480	.06	72%	2.16(0.99,4.73) .05
Telcagepant 100 mg vs. Placebo	1 (Ho et al., 2008)	16/115	-	-	1.35(0.44,4.12) .60
Telcagepant 140 mg vs. Placebo	1 (Ho et al., 2010)	556/539	-	-	2.15(1.60,2.89) <.00001
Telcagepant 150 mg vs. Placebo	1 (Connor et al., 2009)	381/365	-	-	2.16(1.53,3.06) <.0001
Telcagepant 200 mg vs. Placebo	1 (Ho et al., 2008)	12/115	-	-	1.20(0.31,4.59) .79
Telcagepant 280 mg vs. Placebo	2 (Hewitt, Aurora et al., 2011; Ho et al., 2010)	704/710	.64	0%	2.55(1.99,3.27) <.00001
Telcagepant 300 mg vs. Placebo	2 (Connor et al., 2009; Ho et al., 2008)	409/480	.27	16%	2.49(1.77,3.49) <.00001
Telcagepant 400 mg vs. Placebo	1 (Ho et al., 2008)	45/115	-	-	1.76(0.88,3.49) .11
Telcagepant 600 mg vs. Placebo	1 (Ho et al., 2008)	40/115	-	-	2.34(1.24,4.42) .009
Rimegepant 75 mg vs. Placebo	3 (Croop et al., 2019; Lipton, Croop et al., 2019; Lipton, Dodick et al., 2019)	1749/1758	.15	48%	1.63(1.31,2.03) <.0001
MK-3207 2.5 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	32/133	-	-	1.28(0.45,3.66) .65
MK-3207 7.5 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	44/133	-	-	1.16(0.44,3.08) .76
MK-3207 10 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	63/133	-	-	2.60(1.33,5.07) .005
MK-3207 20 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	63/133	-	-	1.95(0.94,4.02) .07

(Continues)
Table 4 (Continued)

Outcome indicator	Intervening measure	Study numbers included	Case numbers (T/C)	Heterogeneity	Meta-analysis		
				p	RR (95% CI)	p	
	MK-3207 50 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	65/133	-	2.20 (1.10, 4.41)	.03	
	MK-3207 100 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	59/133	-	2.43 (1.22, 4.84)	.01	
	MK-3207 200 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	58/133	-	3.70 (1.99, 6.88)	<.0001	
	Total	13 (Diener et al., 2010; Olesen et al., 2004; Voss et al., 2016; Lipton et al., 2018; Dodick, Lipton, Silberstein et al., 2019; Ho et al., 2008; Connor et al., 2009; Ho et al., 2010; Croop et al., 2019; Lipton, Croop et al., 2019; Lipton, Dodick et al., 2019; Hewitt, Aurora et al., 2011; Hewitt, Martin et al., 2011)	7078/8596	.02	36%	1.98 (1.77, 2.20)	<.00001
	Number of patients with 2-24 h sustained pain free postdose	BI44370TA 50 mg vs. Placebo 1 (Diener et al., 2010)	64/70	-	0.66 (0.16, 2.64)	.55	
		BI44370TA 200 mg vs. Placebo 1 (Diener et al., 2010)	65/70	-	2.80 (1.06, 7.42)	.04	
		BI44370TA 400 mg vs. Placebo 1 (Diener et al., 2010)	73/70	-	2.88 (1.10, 7.49)	.03	
		BMS-927711 10 mg vs. Placebo 1 (Marcus et al., 2014)	71/203	-	1.72 (0.79, 3.75)	.18	
		BMS-927711 25 mg vs. Placebo 1 (Marcus et al., 2014)	61/203	-	2.22 (1.05, 4.68)	.04	
		BMS-927711 75 mg vs. Placebo 1 (Marcus et al., 2014)	86/203	-	3.78 (2.09, 6.84)	<.0001	
		BMS-927711 150 mg vs. Placebo 1 (Marcus et al., 2014)	85/203	-	3.82 (2.11, 6.92)	<.00001	
		BMS-927711 300 mg vs. Placebo 1 (Marcus et al., 2014)	111/203	-	3.54 (1.98, 6.31)	<.0001	
		BMS-927711 600 mg vs. Placebo 1 (Marcus et al., 2014)	82/203	-	2.81 (1.47, 5.35)	.002	
		Ubrogepant 1 mg vs. Placebo 1 (Voss et al., 2016)	107/113	-	0.75 (0.25, 2.30)	.62	
		Ubrogepant 10 mg vs. Placebo 1 (Voss et al., 2016)	108/113	-	1.49 (0.59, 3.79)	.40	
		Ubrogepant 25 mg vs. Placebo 2 (Lipton et al., 2018; Voss et al., 2016)	538/569	.39	0%	1.68 (1.17, 2.40)	.004
		Ubrogepant 50 mg vs. Placebo 3 (Voss et al., 2016; Lipton et al., 2018; Dodick, Lipton, Silberstein et al., 2019)	988/1021	.61	0%	1.66 (1.28, 2.16)	.0001
		Ubrogepant 100 mg vs. Placebo 2 (Voss et al., 2016; Dodick, Lipton, Silberstein et al., 2019)	543/565	.17	46%	2.18 (1.24, 3.86)	.007

(Continues)
Outcome indicator	Intervening measure	Study numbers included	Case numbers (T/C)	Heterogeneity	Meta-analysis		
				p	I^2	RR(95%CI)	p
Telcagepant 25 mg vs. Placebo	1 (Ho et al., 2008)	14/115	-	-	0.63(0.09,4.47)	.65	
Telcagepant 50 mg vs. Placebo	2 (Ho et al., 2008; Connor et al., 2009)	192/480	.10	63%	2.73(1.31,5.70)	.008	
Telcagepant 100 mg vs. Placebo	1 (Ho et al., 2008)	16/115	-	-	1.66(0.53,5.19)	.38	
Telcagepant 140 mg vs. Placebo	1 (Ho et al., 2010)	553/537	-	-	2.11(1.44,3.09)	.0001	
Telcagepant 150 mg vs. Placebo	1 (Connor et al., 2009)	381/365	-	-	2.28(1.48,3.53)	.0002	
Telcagepant 200 mg vs. Placebo	1 (Ho et al., 2008)	12/115	-	-	0.74(0.11,5.16)	.76	
Telcagepant 280 mg vs. Placebo	1 (Ho et al., 2010)	531/537	-	-	2.63(1.81,3.81)	<.00001	
Telcagepant 300 mg vs. Placebo	2 (Ho et al., 2008; Connor et al., 2009)	409/480	.35	0%	2.71(1.89,3.88)	<.00001	
Telcagepant 400 mg vs. Placebo	1 (Ho et al., 2008)	45/115	-	-	1.97(0.93,4.16)	.08	
Telcagepant 600 mg vs. Placebo	1 (Ho et al., 2008)	40/115	-	-	2.88(1.46,5.67)	.002	
Rimegepant 75 mg vs. Placebo	1 (Croop et al., 2019)	669/682	-	-	1.52(1.24,1.87)	<.0001	
MK-3207 2.5 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	32/133	-	-	1.66(0.56,4.96)	.36	
MK-3207 5 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	44/133	-	-	0.60(0.14,2.65)	.50	
MK-3207 10 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	63/133	-	-	2.74(1.27,5.92)	.010	
MK-3207 20 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	63/133	-	-	2.11(0.93,4.81)	.08	
MK-3207 50 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	65/133	-	-	2.46(1.12,5.38)	.02	
MK-3207 100 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	59/133	-	-	2.71(1.24,5.91)	.01	
MK-3207 200 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	58/133	-	-	3.90(1.90,7.99)	.0002	
Total	10 (Diener et al., 2010; Marcus et al., 2014; Voss et al., 2016; Lipton et al., 2018; Dodick, Lipton, Silberstein et al., 2019; Ho et al., 2008; Ho et al., 2010; Connor et al., 2009; Croop et al., 2019; Hewitt, Martin et al., 2011)	6228/8396	.03	32%	2.18(1.93,2.46)	<.00001	
Adverse events	Erenumab 7 mg vs. Placebo	1 (Sun et al., 2016)	108/153	-	-	0.93(0.73,1.19)	.57
Erenumab 21 mg vs. Placebo	1 (Sun et al., 2016)	105/153	-	-	0.96(0.76,1.22)	.73	
Erenumab 70 mg vs. Placebo	3 (Dodick et al., 2018; Goadsby et al., 2017; Sun et al., 2016)	703/761	.65	0%	0.91(0.83,1.00)	.05	

(Continues)
Heterogeneity Meta-analysis	Outcome indicator	Case numbers	Intervening measure	Study numbers included	RR(95%CI)	P	
		438/443					
		17/47					
		116/413					
		27/47					
		573/561					
		381/366					
		18/47					
		713/732					
		413/413					
		51/47					
		49/47					
		38/38					
		713/732					
		438/443					
		116/413					
		27/47					
		573/561					
		381/366					
		18/47					
		713/732					
		413/413					
		51/47					
		49/47					
		38/38					
		713/732					
		438/443					
		116/413					
		27/47					
		573/561					
		381/366					
		18/47					
		713/732					
		413/413					
		51/47					
		49/47					
		38/38					
		713/732					
		438/443					
		116/413					
		27/47					
		573/561					
		381/366					
		18/47					
		713/732					
		413/413					
		51/47					
		49/47					
		38/38					
		713/732					
		438/443					
		116/413					
		27/47					
		573/561					
		381/366					
		18/47					
		713/732					
		413/413					
Outcome indicator	Intervening measure	Study numbers included	Case numbers (T/C)	Heterogeneity	Meta-analysis		
-------------------	---------------------	------------------------	-------------------	---------------	---------------		
				p	I²	RR (95%CI)	p
Ubrogepant 25 mg vs. Placebo	1 (Voss et al., 2016)	103/113	-	-	0.82 (0.50, 1.36)	.44	
Ubrogepant 50 mg vs. Placebo	2 (Voss et al., 2016; Dodick, Lipton, Silberstein et al., 2019)	573/598	.60	0%	0.78 (0.59, 1.05)	.10	
Ubrogepant 100 mg vs. Placebo	2 (Voss et al., 2016; Dodick, Lipton, Silberstein et al., 2019)	587/598	.80	0%	1.24 (0.97, 1.60)	.09	
Fremanezumab quarterly vs. Placebo	1 (Silberstein et al., 2017)	376/375	-	-	1.10 (1.00, 1.22)	.06	
Fremanezumab monthly vs. Placebo	1 (Silberstein et al., 2017)	379/375	-	-	1.11 (1.01, 1.23)	.03	
MK-3207 2.5 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	32/142	-	-	1.53 (0.83, 2.81)	.17	
MK-3207 5 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	47/142	-	-	1.88 (1.15, 3.05)	.01	
MK-3207 10 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	66/142	-	-	1.26 (0.75, 2.13)	.38	
MK-3207 20 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	67/142	-	-	1.32 (0.79, 2.19)	.29	
MK-3207 50 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	68/142	-	-	1.30 (0.78, 2.16)	.32	
MK-3207 100 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	62/142	-	-	1.50 (0.91, 2.46)	.11	
MK-3207 200 mg vs. Placebo	1 (Hewitt, Martin et al., 2011)	63/142	-	-	1.32 (0.79, 2.22)	.29	
Rimegepant 75 mg vs. Placebo	2 (Croop et al., 2019; Lipton, Dodick et al., 2019)	1225/1236	.86	0%	1.23 (1.01, 1.50)	.04	
Galcanezumab 120 mg vs. Placebo	4 (Detke et al., 2018; Mulleners et al., 2020; Skljarevski et al., 2018; Stauffer et al., 2018)	937/1681	.38	4%	1.07 (1.00, 1.15)	.04	
Galcanezumab 240 mg vs. Placebo	3 (Detke et al., 2018; Skljarevski et al., 2018; Stauffer et al., 2018)	730/1451	.96	0%	1.14 (1.06, 1.22)	.0003	
Total	21 (Sun et al., 2016; Dodick et al., 2018; Goadsby et al., 2017; Reuter et al., 2018; Ho et al., 2008; Connor et al., 2009; Ho et al., 2010; Hewitt, Aurora et al., 2011; Goadsby et al., 2019; Dodick, Lipton, Ailani et al., 2019; Diener et al., 2010; Voss et al., 2016; Dodick, Lipton, Silberstein et al., 2019; Silberstein et al., 2017; Hewitt, Martin et al., 2011; Croop et al., 2019; Lipton, Dodick et al., 2019; Detke et al., 2018; Mulleners et al., 2020; Skljarevski et al., 2018; Stauffer et al., 2018)	10667/13501	.005	39.8%	1.08 (1.04, 1.12)	<.0001	
FIGURE 2 Forest of number of patients with ≥50% reduction from baseline in mean monthly migraine days in all groups

by screening full articles based on inclusion and exclusion criteria. Data types that were extracted included (1) basic information of the included studies, which consisted of titles, first author name, publication journal and time; (2) basic information regarding research participants, including sample sizes, age and sex; (3) details regarding intervention drugs such as dose and course; (4) key elements to assess bias risk; and (5) outcome indicators.

2.4 Risk bias evaluation of the included studies

Two evaluators (Tingting Huang and Yang Xu) evaluated risk bias of the included studies according to the Cochrane handbook. In case of differences, an investigator (Zhaohu Chu) was consulted.

2.5 Statistics analyses

Meta analyses were performed by Revman 5.3 software. Outcome indicator were enumeration data while relative risk (RR) was the effect indicator. Effect sizes are presented as point estimated value and 95% confidence interval. Heterogeneity test was performed using the chi-square test (inspection level $\alpha = .1$) as well as I^2 value. Fixed effect model was used when there were no heterogeneities among the statistical data, while the random effects model was used in case of heterogeneities.

3 RESULTS

3.1 Acquired studies

A total of 2297 studies were acquired in the initial screening process, out of which 26 RCTs were included in the final meta-analysis after the final screening. Fifteen RCTs evaluated small molecule CGRP receptor antagonists including BI 44370TA, BMS 927711, olcegepant (BIBN4096BS), ubrogepant (MK-1602), telcagepant (MK-0974), MK-3207, rimegepant, and atogepant. Eleven RCTs evaluated anti-CGRP monoclonal antibodies including eptinezumab (ALD403), fremanezumab (TEV-48125), erenumab (AMG334), and galcanezumab (LY2951742). Quality evaluation of the included literatures was performed by using a flowchart based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher et al., 2009) (Figure 1). The Jadad scale (Jadad et al., 1996) was performed to evaluate the methodological quality of the included studies in the meta-analysis. Each study was scored from 0 to 5 (0 represents “pool” quality and 5 represents “good” quality) according to the following judgment criteria: (1) the study was described as randomized or not, (2) the study was described as double blind or not, (3) there was a description of withdrawals and dropouts or not, (4) the method of randomization was described and appropriate or not, (5) the blinding was described and appropriate or not. A single point was given if the answer to one of the above five questions was “yes” and zero point was given if the answer was “no.” Among the included 26 RCTs, only 7 RCTs (Dodick, Lipton, Ailani et al., 2019; Hewitt, Martin et al., 2011; Lipton, Croop et al., 2019; Olesen et al., 2004; Silberstein et al., 2017; Stauffer et al., 2018) didn’t get “5” scores. Besides, most RCTs got scores “≥4” scores except 1 RCT (“2” scores, Lipton, Croop et al., 2019).
FIGURE 3 Funnel plot of number of patients with ≥50% reduction from baseline in mean monthly migraine days in all groups

FIGURE 4 Forest of number of patients with ≥50% reduction from baseline in mean monthly migraine days in Erenumab group
Figure 5
Forest of number of patients with ≥50% reduction from baseline in mean monthly migraine days in Atogepant group

Study or Subgroup	Events	Control	Total	Weight	Risk Ratio M-H, Random. 95% CI	Risk Ratio M-H, Random. 95% CI
1.2.1 Atogepant 10mgQd vs Placebo						
Goodday 2019	53	92	72	170	18.3%	1.42 [1.11, 1.83]
Subtotal (95%)	92		178	18.3%	1.42 [1.11, 1.83]	
Total events	53		72			
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.77 (P = 0.006)						
1.2.2 Atogepant 30mgQd vs Placebo						
Goodday 2019	97	182	279	22.8%	1.32 [1.08, 1.61]	1.32 [1.05, 1.65]
Subtotal (95%)	182		364	22.8%	1.32 [1.08, 1.61]	
Total events	97		279			
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.41 (P = 0.02)						
1.2.3 Atogepant 60mgQd vs Placebo						
Goodday 2019	92	177	269	22.1%	1.28 [1.02, 1.61]	1.28 [1.02, 1.61]
Subtotal (95%)	177		346	22.1%	1.28 [1.02, 1.61]	
Total events	92		269			
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.16 (P = 0.03)						
1.2.4 Atogepant 30mgBID vs Placebo						
Goodday 2019	46	79	125	17.2%	1.44 [1.11, 1.86]	1.44 [1.11, 1.86]
Subtotal (95%)	79		204	17.2%	1.44 [1.11, 1.86]	
Total events	46		125			
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.77 (P = 0.006)						
1.2.5 Atogepant 60mgBID vs Placebo						
Goodday 2019	54	87	141	19.5%	1.53 [1.20, 1.96]	1.53 [1.20, 1.96]
Subtotal (95%)	87		228	19.5%	1.53 [1.20, 1.96]	
Total events	54		141			
Heterogeneity: Not applicable						
Test for overall effect: Z = 3.46 (P = 0.0005)						
Total (95%)	617	903	1520	100.0%	1.39 [1.25, 1.55]	
Total events	617		1520			
Heterogeneity: Tau² = 0.00; CHI² = 1.43, df = 4 (P = 0.64); I² = 0%						
Test for overall effect: Z = 6.03 (P = 0.00001)						
Test for subsequence differences: CHI² = 1.42, df = 4 (P = 0.84); I² = 0%						

Figure 6
Forest of number of patients with ≥50% reduction from baseline in mean monthly migraine days in Eptinezumab group

Figure 7
Forest of number of patients with ≥50% reduction from baseline in mean monthly migraine days in Galcanezumab group
et al., 2019), which illustrated that the quality of the included RCTs was relatively high.

3.2 Basic characteristics of the included studies and risk of bias evaluation result

The basic characteristics of the included studies are shown in Table 1 and risk of bias evaluation results are shown in Table 2. The Jadad Scale was shown in Table 3. The outcome indicators of the included studies are shown in Table 4.

3.3 Meta-analysis results

3.3.1 Efficacy

In terms of the three indicators, CGRP antagonists were found to be more effective when compared to controls. Outcome indicator for the number of patients with ≥50% reduction from baseline in mean monthly migraine days was reported in 9 RCTs and the random effects model showed that CGRP antagonists exerted better effects, relative to controls (RR = 1.50, 95% CI [1.39, 1.62], p < .00001) (Figures 2 and 3) and the meta-analysis of each CGRP antagonist for the outcome indicator of “the number of patients with ≥50% reduction from baseline in mean monthly migraine days” were also performed (Figures 4–7). Outcome indicator for the number of pain free patients at 2 h postdose was reported in 13 RCTs and the random effects model showed that CGRP antagonists exerted better effects relative to the controls (RR = 1.98, 95% CI [1.77, 2.20], p < .00001) (Figures 8 and 9) and the meta-analysis of each CGRP antagonist for the outcome indicator of “number of pain free patients at 2 h postdose” were also performed (Figures 10–15). Outcome indicator for the number of patients with pain-free patients at 2–24 h postdose was reported in 10 RCTs and the random effects model showed that CGRP antagonists exerted better effects, relative to controls (RR = 2.18, 95% CI [1.93, 2.46], p < .00001) (Figures 16 and 17) and the meta-analysis of each CGRP antagonist for the outcome indicator of “number of patients with pain-free patients at 2–24 h postdose” were also performed (Figures 18–23).

3.3.2 Safety outcomes

Twenty-one RCTs reported on treatment-associated adverse outcomes. The random effects model showed that CGRP antagonists were associated with more adverse reactions than controls (RR = 1.08, 95% CI [1.04, 1.12], p < .0001) (Figures 24 and 25) and the meta-analysis of each CGRP antagonist for the adverse outcomes were also performed (Figures 26–35). The adverse reactions included upper respiratory
Figure 9 Funnel plot of number of pain free patients at 2 h postdose in all groups

Figure 10 Forest of number of pain free patients at 2 h postdose in BI44370TA group
tract infections, pain at injection sites (dose dependent), nasopharyngitis, influenza, fatigue, somnolence, nausea, and constipation among others.

3.3.3 Sensitivity analysis

To check the stability of the results obtained from this meta-analysis, a leave-one-out method was used by analyzing the results when deleting one single trial each time. We first excluded the lowest quality RCT (Lipton, Croop et al., 2019), which got “2” scores by Jadad Scale and then performed the meta-analysis again. It showed that the outcome indicator “number of pain free patients at 2 h postdose” was still in line with the original result (RR = 1.93, 95% CI [1.75, 2.13], p < .00001, Figure 37). Then we excluded the RCT (Olesen et al., 2004) for the reason of small sample size. And we also found the consistency with the original result on the outcome indicator of “number of pain free patients at 2 h postdose” (RR = 1.93, 95% CI [1.75, 2.13], p < .00001, Figure 37).

4 DISCUSSION

The trigeminal neurovascular theory states that the trigeminal ganglion is a trigeminal nerve vascular reflex center that once activated, it can cause pain perception in migraine patients. CGRP is expressed in C fibers of the trigeminal ganglion, while CGRP receptors are expressed in the Aδ fiber. These fibers play different roles in pain induction. Since the trigeminal ganglion does not have a blood-brain barrier with endocanium, it is a potential drug target. CGRP antagonists have been shown to relieve pain in migraine patients (Edvinsson et al., 2018). This meta-analysis is presented based on the types and doses

FIGURE 11 Forest of number of pain free patients at 2 h postdose in Ubrogepant group
of CGRP antagonists. We found that CGRP antagonists exerted better effects relative to the controlled group in which conventional drugs, such as NSAIDS, triptans, or placebo were administered to migraine patients. These outcomes indicators included (1) number of patients with ≥50% reduction from baseline in mean monthly migraine days (RR = 1.50, 95% CI [1.39, 1.62], \(p < .00001 \)); (2) number of pain free patients at 2 h post-dosing (RR = 1.98, 95% CI [1.77, 2.20], \(p < .00001 \)); (3) number of sustained pain-free patients at 2–24 h sustained post-dosing (RR = 2.18, 95% CI [1.93, 2.46], \(p < .00001 \)). And though sub-group analysis, all CGRP antagonist groups showed better outcomes than controls. BI44370TA, ubrogepant, telcagepant, MK-3207, and rimegepant showed better outcomes both on outcomes including number of patients with pain free at 2 h postdose and number of patients with 2–24 h sustained pain free postdose. However, CGRP antagonists were associated with more adverse reactions than controls (RR = 1.08, 95% CI [1.04, 1.12], \(p < .0001 \), which was not consistent with previous studies; the reasons may be that (1) previous meta-analyses that evaluated the efficacy and safety of calcitonin gene-related peptide antagonists for migraine treatment focused on only one type of CGRP antagonists, such as small molecule CGRP receptor antagonists or anti-CGRP monoclonal antibodies, while this meta-analysis focused on both small molecule CGRP receptor antagonists and anti-CGRP monoclonal antibodies. (2) Anti-CGRP monoclonal antibodies are mostly administered via injections, which can easily lead to injection related adverse reactions, such as localized redness and swelling of the skin. (3) RCTs on CGRP antagonists always classified drugs based on dose gradients, which can lead to dose-dependent adverse reactions, such as somnolence, nausea and vomiting among others. However, the above adverse reactions are mild and transient and do not cause much harm to patients' health. Only one death was reported in the fremanezumab quarterly group set by silberstein and the cause of death was determined to be chronic obstructive pulmonary disease (COPD) (Silberstein et al., 2017). Compared to small molecule CGRP receptor antagonists (gepants), anti-CGRP monoclonal antibodies (mAbs) are not associated with hepatotoxic effects because they are not metabolized in the liver. Moreover, mAbs have long half-lives, high affinity as well as selectivity and they do not exert adverse effects on the cardiovascular system, which is a common adverse reaction site for triptan. By the way, through meta-analysis of each drug, erenumab showed less adverse reaction than control and eptinezumab showed much the same adverse reaction with control, and these two CGRP antagonists also showed greater effect on outcome of “number of patients with ≥50% reduction from baseline in mean monthly migraine days” compared with controls, which can provide guidance to clinical work.
FIGURE 13

Forest of number of pain free patients at 2 h postdose in Telcagepant group

Study or Subgroup	Experimental Events	Control Events	Risk Ratio	Risk Ratio
	Total	Total	M-H, Random, 95% CI	M-H, Random, 95% CI
2.4.1 Telcagepant 25mg vs. Placebo	Ho 2008: 3 (14) 16 115 1.4%	1.54 [0.51, 4.63]	1.54 [0.51, 4.63]	
	Subtotal (95% CI)	14 16 115 1.4%		
	Total events	3 16		
	Heterogeneity: Not applicable			
	Test for overall effect: Z = 0.77 (P = 0.44)			
	2.4.2 Telcagepant 50mg vs. Placebo	Connor 2009: 29 (177) 39 365 8.3%	1.53 [0.98, 2.39]	
	Ho 2008: 7 (15) 16 115 3.3%	3.39 [1.65, 8.80]		
	Subtotal (95% CI)	192 480 11.6%	2.16 [0.98, 4.73]	
	Total events	36 55		
	Heterogeneity: Tau^2 = 0.23; Chi^2 = 3.56, df = 1 (P = 0.06); I^2 = 72%			
	Test for overall effect: Z = 1.93 (P = 0.05)			
	2.4.3 Telcagepant 100mg vs. Placebo	Ho 2008: 3 (16) 16 115 1.3%	1.35 [0.44, 4.12]	
	Subtotal (95% CI)	16 115 1.3%	1.35 [0.44, 4.12]	
	Total events	3 16		
	Heterogeneity: Not applicable			
	Test for overall effect: Z = 0.52 (P = 0.60)			
	2.4.4 Telcagepant 140mg vs. Placebo	Ho 2010: 122 (556) 55 539 19.9%	2.15 [1.60, 2.89]	
	Subtotal (95% CI)	556 539 19.9%	2.15 [1.60, 2.89]	
	Total events	122 55		
	Heterogeneity: Not applicable			
	Test for overall effect: Z = 5.08 (P < 0.00001)			
	2.4.5 Telcagepant 150mg vs. Placebo	Connor 2009: 88 (381) 39 365 13.6%	2.16 [1.53, 3.08]	
	Subtotal (95% CI)	381 365 13.6%	2.16 [1.53, 3.08]	
	Total events	88 39		
	Heterogeneity: Not applicable			
	Test for overall effect: Z = 4.33 (P < 0.00001)			
	2.4.6 Telcagepant 200mg vs. Placebo	Ho 2008: 2 (12) 16 115 0.9%	1.20 [0.31, 4.59]	
	Subtotal (95% CI)	12 115 0.9%	1.20 [0.31, 4.59]	
	Total events	2 16		
	Heterogeneity: Not applicable			
	Test for overall effect: Z = 0.26 (P = 0.79)			
	2.4.7 Telcagepant 260mg vs. Placebo	Hewitt 2011: 53 (170) 19 171 7.2%	2.81 [1.74, 4.53]	
	Ho 2010: 134 (534) 65 539 19.6%	2.48 [1.84, 3.39]		
	Subtotal (95% CI)	704 710 28.5%	2.55 [1.99, 3.27]	
	Total events	187 74		
	Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.21, df = 1 (P = 0.64); I^2 = 0%			
	Test for overall effect: Z = 7.39 (P < 0.00001)			
	2.4.8 Telcagepant 300mg vs. Placebo	Connor 2009: 88 (371) 39 365 13.6%	2.22 [1.57, 3.14]	
	Ho 2008: 17 (38) 16 115 5.0%	3.22 [1.81, 5.72]		
	Subtotal (95% CI)	409 480 18.6%	2.46 [1.77, 3.49]	
	Total events	105 55		
	Heterogeneity: Tau^2 = 0.01; Chi^2 = 1.19, df = 1 (P = 0.27); I^2 = 16%			
	Test for overall effect: Z = 6.27 (P < 0.00001)			
	2.4.9 Telcagepant 400mg vs. Placebo	Ho 2008: 11 (45) 16 115 3.5%	1.76 [0.88, 3.49]	
	Subtotal (95% CI)	45 115 3.5%	1.76 [0.88, 3.49]	
	Total events	11 16		
	Heterogeneity: Not applicable			
	Test for overall effect: Z = 1.81 (P = 0.11)			
	2.4.10 Telcagepant 600mg vs. Placebo	Ho 2008: 11 (45) 16 115 3.5%	1.76 [0.88, 3.49]	
	Subtotal (95% CI)	45 115 3.5%	1.76 [0.88, 3.49]	
	Total events	11 16		
	Heterogeneity: Not applicable			
	Test for overall effect: Z = 1.81 (P = 0.11)			

Total (95% CI) 2374 3148 100.0% 2.21 [1.94, 2.51]

Total events 568 358 | Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.90, df = 12 (P = 0.62); I^2 = 0% | Test for overall effect: Z = 12.10 (P < 0.00001)

Test for subgroups differences: Chi^2 = 4.55, df = 9 (P = 0.87); I^2 = 0%
FIGURE 14 Forest of number of pain free patients at 2 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total	Weight	Risk Ratio M-H Random 95% CI	Risk Ratio M-H Random 95% CI
2.5.1 MK-3207 2.5mg vs. Placebo	Hewitt 2011(2) 4 32	10 133	8.7%	1.66 [0.56, 4.96]		
	Subtotal (95% CI) 32	133	8.7%	1.66 [0.56, 4.96]		
	Total events 4	10				
Heterogeneity: Not applicable	Test for overall effect: Z = 0.91 (P = 0.36)					
2.5.2 MK-3207 5mg vs. Placebo	Hewitt 2011(2) 2 44	10 133	4.7%	0.60 [0.14, 2.65]		
	Subtotal (95% CI) 44	133	4.7%	0.60 [0.14, 2.65]		
	Total events 2	10				
Heterogeneity: Not applicable	Test for overall effect: Z = 0.67 (P = 0.50)					
2.5.3 MK-3207 10mg vs. Placebo	Hewitt 2011(2) 13 63	10 133	17.5%	2.74 [1.27, 5.92]		
	Subtotal (95% CI) 63	133	17.8%	2.74 [1.27, 5.92]		
	Total events 13	10				
Heterogeneity: Not applicable	Test for overall effect: Z = 2.58 (P = 0.010)					
2.5.4 MK-3207 20mg vs. Placebo	Hewitt 2011(2) 10 63	10 133	15.2%	2.11 [0.93, 4.81]		
	Subtotal (95% CI) 63	133	15.2%	2.11 [0.93, 4.81]		
	Total events 10	10				
Heterogeneity: Not applicable	Test for overall effect: Z = 1.78 (P = 0.08)					
2.5.5 MK-3207 50mg vs. Placebo	Hewitt 2011(2) 12 65	10 133	16.8%	2.46 [1.12, 5.38]		
	Subtotal (95% CI) 65	133	16.8%	2.46 [1.12, 5.38]		
	Total events 12	10				
Heterogeneity: Not applicable	Test for overall effect: Z = 2.24 (P = 0.02)					
2.5.6 MK-3207 100mg vs. Placebo	Hewitt 2011(2) 12 59	10 133	17.0%	2.71 [1.24, 5.91]		
	Subtotal (95% CI) 59	133	17.0%	2.71 [1.24, 5.91]		
	Total events 12	10				
Heterogeneity: Not applicable	Test for overall effect: Z = 2.50 (P = 0.01)					
2.5.7 MK-3207 200mg vs. Placebo	Hewitt 2011(2) 17 58	10 133	20.1%	3.90 [1.90, 7.99]		
	Subtotal (95% CI) 58	133	20.1%	3.90 [1.90, 7.99]		
	Total events 17	10				
Heterogeneity: Not applicable	Test for overall effect: Z = 3.72 (P = 0.0002)					
Total (95% CI)	384	931	100.0%	2.47 [1.79, 3.41]		
Total events	70	70				
Heterogeneity: Tau² = 0.00; Chi² = 5.83, df = 6 (P = 0.44); I² = 0%	Test for overall effect: Z = 5.51 (P < 0.00001)					
Test for subgroup differences: Chan² = 5.80, df = 6 (P = 0.45); I² = 0%						

FIGURE 15 Forest of number of pain free patients at 2 h postdose in Rimegepant group

Study or Subgroup	Experimental Events	Control Events	Total	Weight	Risk Ratio M-H Random 95% CI	Risk Ratio M-H Random 95% CI	
2.6.1 Rimegepant 75mg vs. Placebo	Group 2019	142 669	74 682	34.9%	1.96 [1.51, 2.54]		
	Lipton 2019	104 543	77 541	33.6%	1.35 [1.03, 1.76]		
	Lipton 2019(2)	105 537	64 535	31.5%	1.63 [1.23, 2.18]		
	Subtotal (95% CI)	1749	1758	100.0%	1.63 [1.31, 2.03]		
	Total events 351	215					
Heterogeneity: Tau² = 0.02; Chi² = 3.84, df = 2 (P = 0.15); I² = 46%	Test for overall effect: Z = 4.41 (P < 0.0001)						
Total (95% CI)	1749	1758	100.0%	1.63 [1.31, 2.03]			
Total events	351	215					
Heterogeneity: Tau² = 0.02; Chi² = 3.84, df = 2 (P = 0.15); I² = 46%	Test for overall effect: Z = 4.41 (P < 0.0001)						
Test for subgroup differences: Not applicable							
LIMITATIONS

This meta-analysis has some limitations: (1) the included participants in most studies were almost middle-aged and young, with a majority of them being women and (2) the maximum follow-up time was 256 weeks, which is comparatively short to explore the long-term efficacies and safety of the CGRP antagonists on migraine treatment. Based on the above limitations, future studies should evaluate the efficacies of CGRP antagonists among different age groups combined with other diseases, the benefits and safety of long-term drug use, withdrawal reactions on the vascular system, and the stability of drug responses with multiple migraine attacks.

CONCLUSION

This meta-analysis reveals that CGRP antagonists can be effective drug for migraine treatment. However, their safety need more high-quality RCT researches to be proved.

ACKNOWLEDGMENTS

This study was supported by the Young Project of National Natural Science Foundation of China under Grant No.82171329.

AUTHOR CONTRIBUTIONS

Tingting Huang, Yang Xu, Jing Bian, and Yajie Chen performed the literature search, data collection and statistical analysis. Tingting Huang drafted the manuscript. Zhaohu Chu, Shoucai Zhao, and Lingsong Ma modified the manuscript.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/brb3.2542

ORCID

Tingting Huang https://orcid.org/0000-0002-3104-9910
Yang Xu https://orcid.org/0000-0001-8778-3885
Jing Bian https://orcid.org/0000-0002-7521-640X
Shoucai Zhao https://orcid.org/0000-0001-8555-4835
FIGURE 17 Funnel plot of number of patients with sustained pain free 2–24 h postdose in all groups

FIGURE 18 Forest of number of patients with sustained pain pain free 2–24 h postdose in BI44370TA group
FIGURE 19
Forest of number of patients with sustained pain free 2–24 h postdose in BMS-927711 group
FIGURE 20

Forest of number of patients with sustained pain free 2–24 h postdose in Telcagepant group
FIGURE 21
Forest of number of patients with sustained pain free 2–24 h postdose in Rimegepant group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.4.1 Rimegepant 75mg vs. Placebo						
Groop 2019	181	669	121	682	100.0%	1.52 [1.24, 1.87]
Subtotal (95% CI)	669	682		121	100.0%	1.52 [1.24, 1.87]
Total events	181			121		
Heterogeneity: Not applicable						
Test for overall effect: Z = 4.05 (P < 0.0001)						
Total (95% CI)	669	682		121	100.0%	1.52 [1.24, 1.87]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.5.1 MK-3207 2.5mg vs. Placebo						
Hewitt 2011(2)	4	32	10	133	8.5%	1.66 [0.56, 4.96]
Subtotal (95% CI)	32	133		10	8.5%	1.66 [0.56, 4.96]
Total events	4			10		
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.91 (P = 0.36)						
Total (95% CI)	63	133		10	17.1%	2.74 [1.27, 5.92]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.5.2 MK-3207 5mg vs. Placebo						
Hewitt 2011(2)	2	44	10	133	4.6%	0.60 [0.14, 2.65]
Subtotal (95% CI)	44	133		10	4.6%	0.60 [0.14, 2.65]
Total events	2			10		
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.67 (P = 0.50)						
Total (95% CI)	63	133		10	17.1%	2.74 [1.27, 5.92]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.5.3 MK-3207 10mg vs. Placebo						
Hewitt 2011(2)	13	63	10	133	17.1%	2.74 [1.27, 5.92]
Subtotal (95% CI)	63	133		10	17.1%	2.74 [1.27, 5.92]
Total events	13			10		
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.58 (P = 0.010)						
Total (95% CI)	63	133		10	17.1%	2.74 [1.27, 5.92]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.5.4 MK-3207 20mg vs. Placebo						
Hewitt 2011(2)	13	63	10	133	17.1%	2.74 [1.27, 5.92]
Subtotal (95% CI)	63	133		10	17.1%	2.74 [1.27, 5.92]
Total events	13			10		
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.58 (P = 0.010)						
Total (95% CI)	63	133		10	17.1%	2.74 [1.27, 5.92]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.5.5 MK-3207 50mg vs. Placebo						
Hewitt 2011(2)	12	65	10	133	16.4%	2.46 [1.12, 5.38]
Subtotal (95% CI)	65	133		10	16.4%	2.46 [1.12, 5.38]
Total events	12			10		
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.24 (P = 0.02)						
Total (95% CI)	12	133		10	16.8%	2.71 [1.24, 5.91]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.5.6 MK-3207 100mg vs. Placebo						
Hewitt 2011(2)	12	59	10	133	16.8%	2.71 [1.24, 5.91]
Subtotal (95% CI)	59	133		10	16.8%	2.71 [1.24, 5.91]
Total events	12			10		
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.50 (P = 0.01)						
Total (95% CI)	12	133		10	16.8%	2.71 [1.24, 5.91]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group

Study or Subgroup	Experimental Events	Control Events	Total Events	Weight	Risk Ratio M.H.	Random 95% CI
3.5.7 MK-3207 200mg vs. Placebo						
Hewitt 2011(2)	17	58	10	133	19.6%	3.90 [1.90, 7.99]
Subtotal (95% CI)	58	133		10	19.6%	3.90 [1.90, 7.99]
Total events	17			10		
Heterogeneity: Not applicable						
Test for overall effect: Z = 3.72 (P = 0.0002)						
Total (95% CI)	384	931		70	100.0%	2.57 [1.87, 3.54]

FIGURE 22
Forest of number of patients with sustained pain free 2–24 h postdose in MK-3207 group
Figure 23
Forest of number of patients with sustained pain free 2–24 h postdose in Ubrogepant group

Study or Subgroup	Experimental	Control	Risk Ratio M-H, Random, 95% CI
3.6.1 Ubrogepant 1mg vs. Placebo			
Voss 2016	5	107	0.75 [0.25, 2.30]
Subtotal (95% CI)	107	113	0.75 [0.25, 2.30]
Total events	5	7	
Heterogeneity: Not applicable			
Test for overall effect: Z = 0.49 (P = 0.62)			
3.6.2 Ubrogepant 10mg vs. Placebo			
Voss 2016	10	108	1.49 [0.59, 3.79]
Subtotal (95% CI)	108	113	1.49 [0.59, 3.79]
Total events	10	7	
Heterogeneity: Not applicable			
Test for overall effect: Z = 0.85 (P = 0.40)			
3.6.3 Ubrogepant 25mg vs. Placebo			
Lipton 2018	55	435	1.56 [1.06, 2.31]
Voss 2016	15	103	2.35 [1.00, 5.54]
Subtotal (95% CI)	538	569	1.88 [1.17, 2.40]
Total events	70	44	
Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.73, df = 1 (P = 0.39); I^2 = 0%			
Test for overall effect: Z = 2.62 (P = 0.005)			
3.6.4 Ubrogepant 50mg vs. Placebo			
Dodick 2019(2)	48	418	1.47 [0.99, 2.17]
Lipton 2018	66	464	1.75 [1.20, 2.57]
Voss 2016	15	106	2.28 [0.97, 5.36]
Subtotal (95% CI)	988	1021	1.86 [1.28, 2.16]
Total events	134	83	
Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.98, df = 2 (P = 0.61); I^2 = 0%			
Test for overall effect: Z = 3.62 (P = 0.0001)			
3.6.5 Ubrogepant 100mg vs. Placebo			
Dodick 2019(2)	68	441	1.79 [1.23, 2.59]
Voss 2016	21	102	Not estimable
Subtotal (95% CI)	543	452	1.79 [1.23, 2.59]
Total events	89	46	
Heterogeneity: Not applicable			
Test for overall effect: Z = 3.07 (P = 0.002)			

Total (95% CI) 2284 2268 100.0% 1.65 [1.38, 1.97]

Total events 308 187

Heterogeneity: Tau^2 = 0.00; Chi^2 = 3.83, df = 7 (P = 0.80); I^2 = 0%

Test for overall effect: Z = 5.55 (P < 0.00001)

Test for subarachnoid differences: Chi^2 = 2.12, df = 4 (P = 0.711), I^2 = 0%
Forest of AEs in all groups

FIGURE 24
FIGURE 25 Funnel plot of AEs in all groups
Figure 26

Forest of AEs in Erenumab group

Study or Subgroup	Experimental Events	Total Events	Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI	
1.1.1 Erenumab 7mg vs. Placebo						
Sun 2016	54	108	82	153	7.5%	0.93 [0.73, 1.19]
Subtotal (95% CI)	108	153			7.5%	0.93 [0.73, 1.19]
Total events	54	82				
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.57 (P = 0.57)						
1.1.2 Erenumab 21mg vs. Placebo						
Sun 2016	54	105	82	153	7.6%	0.96 [0.76, 1.22]
Subtotal (95% CI)	105	153			7.6%	0.96 [0.76, 1.22]
Total events	54	82				
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.34 (P = 0.73)						
1.1.3 Erenumab 70mg vs. Placebo						
Dodick 2018	136	283	158	289	16.7%	0.88 [0.75, 1.03]
Goadsby 2017	180	314	201	319	26.5%	0.91 [0.80, 1.03]
Sun 2016	57	106	82	153	8.1%	1.00 [0.80, 1.26]
Subtotal (95% CI)	703	761			51.3%	0.91 [0.83, 1.00]
Total events	373	441				
Heterogeneity: Tau² = 0.00; Chi² = 0.86, df = 2 (P = 0.65); I² = 0%						
Test for overall effect: Z = 1.94 (P = 0.05)						
1.1.4 Erenumab 140mg vs. Placebo						
Goadsby 2017	177	319	201	319	25.6%	0.88 [0.77, 1.00]
Reuter 2018	65	119	67	124	8.1%	1.01 [0.80, 1.27]
Subtotal (95% CI)	438	443			33.7%	0.91 [0.81, 1.03]
Total events	242	268				
Heterogeneity: Tau² = 0.00; Chi² = 1.05, df = 1 (P = 0.31); I² = 5%						
Test for overall effect: Z = 1.54 (P = 0.12)						
Total (95% CI)	1354	1510	100.0%	0.92 [0.86, 0.98]		
Total events	723	873				
Heterogeneity: Tau² = 0.00; Chi² = 2.10, df = 6 (P = 0.91); I² = 0%						
Test for overall effect: Z = 2.58 (P = 0.010)						
Test for subarous differences: Chi² = 0.17. df = 3 (P = 0.98). I² = 0%						

Figure 27

Forest of AEs in Fremanezumab group

Study or Subgroup	Experimental Events	Total Events	Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI	
1.1.1 Fremanezumab Quarterly vs. Placebo						
Silberstein 2017	265	376	240	375	49.5%	1.10 [1.00, 1.22]
Subtotal (95% CI)	376	375			49.5%	1.10 [1.00, 1.22]
Total events	265	240				
Heterogeneity: Not applicable						
Test for overall effect: Z = 1.89 (P = 0.06)						
1.1.2 Fremanezumab Monthly vs. Placebo						
Silberstein 2017	270	379	240	375	50.5%	1.11 [1.01, 1.23]
Subtotal (95% CI)	379	375			50.5%	1.11 [1.01, 1.23]
Total events	270	240				
Heterogeneity: Not applicable						
Test for overall effect: Z = 2.12 (P = 0.03)						
Total (95% CI)	755	750	100.0%	1.11 [1.03, 1.19]		
Total events	535	480				
Heterogeneity: Tau² = 0.00; Chi² = 0.02, df = 1 (P = 0.88); I² = 0%						
Test for overall effect: Z = 2.63 (P = 0.005)						
Test for subarous differences: Chi² = 0.02. df = 1 (P = 0.88). I² = 0%						
FIGURE 28 Forest of AEs in Telcagepant group
FIGURE 29

Forest of AEs in MK-3207 group

Study or Subgroup	Experimental	Control	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
3.1.1 MK-3207 2.5mg vs. Placebo				
Hewitt 2011(2)	10	32	29 142 10.4%	1.53 [0.83, 2.81]
Hewitt 2011(2)	0	0	0 0 Not estimable	
Subtotal (95% CI)	32	142	10.4%	1.53 [0.83, 2.81]
Total events	10	29		
Heterogeneity: Not applicable	Test for overall effect: Z = 1.37 (P = 0.17)			

| **3.1.2 MK-3207 5mg vs. Placebo** |
Hewitt 2011(2)	18	47	29 142 16.2%	1.88 [1.15, 3.05]
Subtotal (95% CI)	47	142	16.2%	1.88 [1.15, 3.05]
Total events	18	29		
Heterogeneity: Not applicable	Test for overall effect: Z = 2.53 (P = 0.01)			

| **3.1.3 MK-3207 10mg vs. Placebo** |
Hewitt 2011(2)	17	66	29 142 14.1%	1.26 [0.75, 2.13]
Subtotal (95% CI)	66	142	14.1%	1.26 [0.75, 2.13]
Total events	17	29		
Heterogeneity: Not applicable	Test for overall effect: Z = 0.87 (P = 0.38)			

| **3.1.4 MK-3207 20mg vs. Placebo** |
Hewitt 2011(2)	18	67	29 142 14.7%	1.32 [0.79, 2.19]
Subtotal (95% CI)	67	142	14.7%	1.32 [0.79, 2.19]
Total events	18	29		
Heterogeneity: Not applicable	Test for overall effect: Z = 1.05 (P = 0.29)			

| **3.1.5 MK-3207 50mg vs. Placebo** |
Hewitt 2011(2)	18	68	29 142 14.7%	1.30 [0.78, 2.16]
Subtotal (95% CI)	68	142	14.7%	1.30 [0.78, 2.16]
Total events	18	29		
Heterogeneity: Not applicable	Test for overall effect: Z = 0.99 (P = 0.32)			

| **3.1.6 MK-3207 100mg vs. Placebo** |
Hewitt 2011(2)	19	62	29 142 15.7%	1.50 [0.91, 2.46]
Subtotal (95% CI)	62	142	15.7%	1.50 [0.91, 2.46]
Total events	19	29		
Heterogeneity: Not applicable	Test for overall effect: Z = 1.60 (P = 0.11)			

| **3.1.7 MK-3207 200mg vs. Placebo** |
Hewitt 2011(2)	17	63	29 142 14.2%	1.32 [0.79, 2.22]
Subtotal (95% CI)	63	142	14.2%	1.32 [0.79, 2.22]
Total events	17	29		
Heterogeneity: Not applicable	Test for overall effect: Z = 1.05 (P = 0.29)			

| Total (95% CI) | 405 994 100.0% | 1.43 [1.18, 1.75] |
| Total events | 117 203 | |
| Heterogeneity: Tau² = 0.00; Chi² = 1.84, df = 6 (P = 0.53); I² = 0% |
| Test for overall effect: Z = 3.60 (P = 0.0003) |
| Test for subarous differences: Chi² = 1.83, df = 6 (P = 0.93); I² = 0% |
FIGURE 30 Forest of AEs in Eptinezumab group

Study or Subgroup	Experimental Events	Total Events	Control Events	Total Weight	Risk Ratio	Risk Ratio M-H, Random, 95% CI
4.1.1 Eptinezumab 10mg vs. Placebo						
Dodick 2019	74	130	68	121	25.9%	1.01 [0.82, 1.26]
Subtotal (95% CI)	130		121		25.9%	1.01 [0.82, 1.26]
Total events	74		68			
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.12 (P = 0.91)						
4.1.2 Eptinezumab 30mg vs. Placebo						
Dodick 2019	56	122	68	121	21.0%	0.82 [0.64, 1.05]
Subtotal (95% CI)	122		121		21.0%	0.82 [0.64, 1.05]
Total events	56		68			
Heterogeneity: Not applicable						
Test for overall effect: Z = 1.59 (P = 0.11)						
4.1.3 Eptinezumab 100mg vs. Placebo						
Dodick 2019	70	122	68	121	25.4%	1.02 [0.82, 1.27]
Subtotal (95% CI)	122		121		25.4%	1.02 [0.82, 1.27]
Total events	70		68			
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.19 (P = 0.85)						
4.1.4 Eptinezumab 300mg vs. Placebo						
Dodick 2019	77	121	68	121	27.7%	1.13 [0.92, 1.39]
Subtotal (95% CI)	121		121		27.7%	1.13 [0.92, 1.39]
Total events	77		68			
Heterogeneity: Not applicable						
Test for overall effect: Z = 1.18 (P = 0.24)						
Total (95% CI)	495	484	100.0%		1.00 [0.88, 1.14]	
Total events	277	272				
Heterogeneity: Tau2 = 0.00; Chi2 = 3.99, df = 3 (P = 0.26); I2 = 25%						
Test for overall effect: Z = 0.01 (P = 0.99)						
Test for subarous differences: Chi2 = 3.97, df = 3 (P = 0.26); I2 = 24.4%						

FIGURE 31 Forest of AEs in BI44370TA group

Study or Subgroup	Experimental Events	Total Events	Control Events	Total Weight	Risk Ratio	Risk Ratio M-H, Random, 95% CI
5.1.1 BI44370TA 50mg vs. Placebo						
Diener 2010	12	64	7	70	41.6%	1.88 [0.79, 4.47]
Subtotal (95% CI)	64		70		41.6%	1.88 [0.79, 4.47]
Total events	12		7			
Heterogeneity: Not applicable						
Test for overall effect: Z = 1.42 (P = 0.16)						
5.1.2 BI44370TA 200mg vs. Placebo						
Diener 2010	4	65	7	70	25.0%	0.62 [0.19, 2.01]
Subtotal (95% CI)	65		70		25.0%	0.62 [0.19, 2.01]
Total events	4		7			
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.81 (P = 0.42)						
5.1.3 BI44370TA 400mg vs. Placebo						
Diener 2010	7	73	7	70	33.4%	0.96 [0.35, 2.59]
Subtotal (95% CI)	73		70		33.4%	0.96 [0.35, 2.59]
Total events	7		7			
Heterogeneity: Not applicable						
Test for overall effect: Z = 0.08 (P = 0.93)						
Total (95% CI)	202	210	100.0%		1.13 [0.60, 2.14]	
Total events	23	21				
Heterogeneity: Tau2 = 0.06; Chi2 = 2.42, df = 2 (P = 0.30); I2 = 17%						
Test for overall effect: Z = 0.39 (P = 0.70)						
Test for subarous differences: Chi2 = 2.42, df = 2 (P = 0.30); I2 = 17.4%						

FIGURE 30 Forest of AEs in Eptinezumab group

FIGURE 31 Forest of AEs in BI44370TA group
FIGURE 32 Forest of AEs in Rimgepant group

FIGURE 33 Forest of AEs in Ubrogepant group
FIGURE 34 Forest of AEs in Atogepant group

Study or Subgroup	Experimental	Control	Risk Ratio	Risk Ratio							
	Events	Total	Events	Total	Weight	M-H	Random	95% CI	M-H	Random	95% CI
8.1.1 Atogepant 10mg Qd vs. Placebo											
Goadsby 2019	61	93	92	186	19.5%	1.33	[1.08, 1.63]				
Subtotal (95% CI)	93	186	19.5%	1.33	[1.08, 1.63]						
Total events	61	92									
Heterogeneity: Not applicable											
Test for overall effect: $Z = 2.67$ ($P = 0.007$)											
8.1.2 Atogepant 30mg Qd vs. Placebo											
Goadsby 2019	115	183	92	186	24.8%	1.27	[1.06, 1.53]				
Subtotal (95% CI)	183	186	24.8%	1.27	[1.06, 1.53]						
Total events	115	92									
Heterogeneity: Not applicable											
Test for overall effect: $Z = 2.56$ ($P = 0.01$)											
8.1.3 Atogepant 60mg Qd vs. Placebo											
Goadsby 2019	107	186	92	186	22.9%	1.16	[0.96, 1.41]				
Subtotal (95% CI)	186	186	22.9%	1.16	[0.96, 1.41]						
Total events	107	92									
Heterogeneity: Not applicable											
Test for overall effect: $Z = 1.55$ ($P = 0.12$)											
8.1.4 Atogepant 30mg BID vs. Placebo											
Goadsby 2019	52	86	92	186	16.6%	1.22	[0.98, 1.53]				
Subtotal (95% CI)	86	186	16.6%	1.22	[0.98, 1.53]						
Total events	52	92									
Heterogeneity: Not applicable											
Test for overall effect: $Z = 1.76$ ($P = 0.08$)											
8.1.5 Atogepant 60mg BID vs. Placebo											
Goadsby 2019	53	91	92	186	16.2%	1.18	[0.94, 1.48]				
Subtotal (95% CI)	91	186	16.2%	1.18	[0.94, 1.48]						
Total events	53	92									
Heterogeneity: Not applicable											
Test for overall effect: $Z = 1.41$ ($P = 0.16$)											
FIGURE 35 Forest of AEs in Galcanezumab group

Study or Subgroup	Experimental	Control	Risk Ratio	Risk Ratio							
	Events	Total	Events	Total	Weight	M-H	Random	95% CI	M-H	Random	95% CI
9.1.1 Galcanezumab 120mg vs. Placebo											
Detke 2018	159	273	279	558	13.4%	1.16	[1.02, 1.33]				
Mullensief 2020	119	232	122	230	7.5%	0.97	[0.81, 1.15]				
Skljarovski 2018	147	226	287	461	16.0%	1.04	[0.93, 1.18]				
Stauffer 2018	135	206	261	432	14.5%	1.08	[0.96, 1.23]				
Subtotal (95% CI)	937	1681	51.4%	1.07	[1.00, 1.15]						
Total events	560	949									
Heterogeneity: Tau$^2 = 0.00$; Chi$^2 = 3.11$, df = 3 ($P = 0.38$); $I^2 = 4%$											
Test for overall effect: $Z = 2.06$ ($P = 0.04$)											
9.1.2 Galcanezumab 240mg vs. Placebo											
Detke 2018	160	282	279	558	13.2%	1.13	[1.00, 1.29]				
Skljarovski 2018	163	228	287	461	19.3%	1.15	[1.03, 1.28]				
Stauffer 2018	149	220	261	432	16.1%	1.12	[1.00, 1.26]				
Subtotal (95% CI)	730	1451	48.6%	1.14	[1.06, 1.22]						
Total events	472	827									
Heterogeneity: Tau$^2 = 0.00$; Chi$^2 = 0.09$, df = 2 ($P = 0.96$); $I^2 = 0%$											
Test for overall effect: $Z = 3.64$ ($P = 0.0003$)											
Total (95% CI)	1667	3132	100.0%	1.10	[1.05, 1.16]						
Total events	1032	1776									
Heterogeneity: Tau$^2 = 0.00$; Chi$^2 = 4.50$, df = 6 ($P = 0.61$); $I^2 = 0%$											
Test for overall effect: $Z = 4.05$ ($P < 0.0001$)											
Test for subhazard differences: Chi$^2 = 1.29$, df = 1 ($P = 0.26$); $I^2 = 22.4%$											
FIGURE 36 Forest of number of pain free patients at 2 h postdose in all groups excluding one RCT (Lipton, Croop et al., 2019)

FIGURE 37 Forest of number of pain free patients at 2 h postdose in all groups excluding one RCT (Olesen et al., 2004)
REFERENCES

Barbanti, P., Aurila, C., Fofi, L., Egeo, G., & Ferroni, P. (2017). The role of anti-
CGRP antibodies in the pathophysiology of primary headaches. Neurological
Sciences, 38(1), 31–35. https://doi.org/10.1007/s10072-017-2907-8

Benemsi, S., Nicoletti, P., Capone, J. G., & Geppetti, P. (2009). CGRP recep-
tors in the control of pain and inflammation. Current Opinion in Pharma-
cology, 9(1), 9–14. https://doi.org/10.1016/j.cophys.2008.12.007

Connor, K. M., Shapiro, R. E., Diener, H. C., Lucas, S., Kost, J., Fan, X., Fei, K.,
Assaid, C., Lines, C., & Ho, T. W. (2009). Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology, 73(12), 970–977.
https://doi.org/10.1212/01.WNL.0b013e3181b87942

Croop, R., Goadsby, P. J., Stock, D. A., Conway, C. M., Forshaw, M., Stock,
E. G., Coric, V., & Lipton, R. B. (2011). Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974 protocol 004 study group (2008). Randomized controlled trial of an oral CGRP receptor antagonist, MK-
0974, in acute treatment of migraine. Neurology, 70(16), 1304–1312.
https://doi.org/10.1212/01.WNL.0000286940.29755.61

Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J.,
Gavaghan, D. J., & McQuay, H. J. (1996). Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Controlled Clinical Tri-
als, 17(1), 1–12. https://doi.org/10.1016/0197-2456(95)00134-4

Lipton, R. B., Croop, R., Stock, E. G., Stock, D. A., Morris, B. A., Frost, M.,
Dubowchik, G. M., Conway, C. M., Coric, V., & Goadsby, P. J. (2019). Rimegepant, an oral calcitonin gene-related peptide receptor antago-
nist, for migraine. The New England Journal of Medicine, 381(2), 142–149.
https://doi.org/10.1056/NEJMoa1811090

Lipton, R. B., Dodick, D. W., Ailani, J., Lu, K., Lakkis, H., Finnegan M., Szegedi
A., Trugman J.M. (2018). Efficacy, safety, and tolerability of ubrogepant for the acute treatment of migraine: Results from a single attack phase iii study, ACHIEVE II. Headache, 58(8), 1315–1316. https://doi.org/10.
1111/head.13411

Lipton, R. B., Dodick, D. W., Ailani, J., Lu, K., Finnegan, M., Szegedi, A., &
Trugman, J. M. (2019). Effect of ubrogepant vs placebo on pain and the most bothersome associated symptom in the acute treatment of migraine: The ACHIEVE II randomized clinical trial. JAMA, 322(19), 1887–1898. https://doi.org/10.1001/jama.2019.16711

Marcus, R., Goadsby, P. J., Dodick, D., Stock, D., Manos, G., & Fischer, T. Z.
(2014). BMS-927711 for the acute treatment of migraine: A double-
blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia: An
International Journal of Headache, 34(2), 114–125. https://doi.org/10.
1177/0333102413500727

Messlinger K. (2018). The big CGRP flood—Sources, sinks and signalling sites in the trigeminovascular system. The Journal of Headache and Pain, 19(1), 22. https://doi.org/10.1186/s10194-018-0848-0

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.
1371/journal.pmed.1000097

Mulleners, W. M., Kim, B. K., Láinez, M., Lanteri-Minet, M., Pozo-Rosich, P.,
Wang, S., Tockhorn-Heidenreich, A., Aurora, S., K. Nichols, R. M., Yunes-
Medina, L. & Detke, H. C. (2020). Safety and efficacy of galcanezumab in patients for whom previous migraine preventive medication from two to four categories had failed (CONQUER): A multicentre, randomised, double-blind, placebo-controlled, phase 3b trial. The Lancet. Neurology, 19(10), 814–825. https://doi.org/10.1016/S1474-4422(20)30279-9

Olesen, J., Diener, H. C., Husstedt, I. W., Goadsby, P. J., Hall, D., Meier, U.,
Pollentier, S., Lesko, L. M., & BIBN 4096 BS Clinical Proof of Concept Study Group (2004). Calcitonin gene-related peptide receptor antago-
nist BIBN 4096 BS for the acute treatment of migraine. The New England Journal of Medicine, 350(11), 1104–1110. https://doi.org/10.1056/
NEJMoa030505

Reuter, U., Goadsby, P. J., Lanteri-Minet, M., Wen, S., Hours-Zesiger, P.,
Ferrari, M. D., & Klatt, J. (2018). Efficacy and tolerability of erenumab in patients with episodic migraine in whom two-to-four previous preventive treatments were unsuccessful: A randomised, double-blind, placebo-controlled, phase 3b study. Lancet (London, England), 392(10161), 2280–2287. https://doi.org/10.1016/S0140-
6736(18)32534-0
Silberstein, S. D., Dodick, D. W., Bigal, M. E., Yeung, P. P., Goadsby, P. J., Blankenbiller, T., Grozinski-Wolff, M., Yang, R., Ma, Y., & Aycardi, E. (2017). Fremanezumab for the preventive treatment of chronic migraine. The New England Journal of Medicine, 377(22), 2113–2122. https://doi.org/10.1056/NEJMoa1709038

Skljarevski, V., Matharu, M., Millen, B. A., Ossipov, M. H., Kim, B. K., & Yang, J. Y. (2018). Efficacy and safety of galcanezumab for the prevention of episodic migraine: Results of the EVOLVE-2 Phase 3 randomized controlled clinical trial. Cephalalgia: An International Journal of Headache, 38(8), 1442–1454. https://doi.org/10.1177/0333102418779543

Stauffer, V. L., Dodick, D. W., Zhang, Q., Carter, J. N., Ailani, J., & Conley, R. R. (2018). Evaluation of galcanezumab for the prevention of episodic migraine: The EVOLVE-1 randomized clinical trial. JAMA Neurology, 75(9), 1080–1088. https://doi.org/10.1001/jamaneurol.2018.1212

Sun, H., Dodick, D. W., Silberstein, S., Goadsby, P. J., Reuter, U., Ashina, M., Saper, J., Cady, R., Chon, Y., Dietrich, J., & Lenz, R. (2016). Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet. Neurology, 15(4), 382–390. https://doi.org/10.1016/S1474-4422(16)00019-3. https://doi.org/10.1212/WNL.0b013e3181b87942.

Szkutnik-Fiedler D. (2020). Pharmacokinetics, pharmacodynamics and drug-drug interactions of new anti-migraine drugs: lasmiditan, gepants, and calcitonin-gene-related peptide (CGRP) receptor monoclonal antibodies. Pharmaceutics, 12(12), 1180. https://doi.org/10.3390/pharmaceutics12121180

Tepper, S., Ashina, M., Reuter, U., Brandes, J. L., Doležil, D., Silberstein, S., Winner, P., Leonardi, D., Mikol, D., & Lenz, R. (2017). Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. The Lancet. Neurology, 16(6), 425–434. https://doi.org/10.1016/S1474-4422(17)30083-2

Voss, T., Lipton, R. B., Dodick, D. W., Dupre, N., Ge, J. Y., Bachman, R., Assaid, C., Aurora, S. K., & Michelson, D. (2016). A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia: An International Journal of Headache, 36(9), 887–898. https://doi.org/10.1177/0333102416653233

How to cite this article: Huang, T., Xu, Y., Chen, Y., Bian, J., Chu, Z., Zhao, S., & Ma, L. (2022). Efficacy and safety of calcitonin gene-related peptide antagonists in migraine treatment: A meta-analysis. Brain and Behavior, 12, e2542. https://doi.org/10.1002/brb3.2542