Pathological transition as the arising mechanism for drug resistance in lung cancer

Yueqing Chen¹,²†, Waiying Yvonne Tang³†, Xinyuan Tong¹,² and Hongbin Ji¹,4*

Abstract
Despite the tremendous efforts for improving therapeutics of lung cancer patients, its prognosis remains disappointing. This can be largely attributed to the lack of comprehensive understanding of drug resistance leading to insufficient development of effective therapeutics in clinic. Based on the current progresses of lung cancer research, we classify drug resistance mechanisms into three different levels: molecular, cellular and pathological level. All these three levels have significantly contributed to the acquisition and evolution of drug resistance in clinic. Our understanding on drug resistance mechanisms has begun to change the way of clinical practice and improve patient prognosis. In this review, we focus on discussing the pathological changes linking to drug resistance as this has been largely overlooked in the past decades.

Keywords: Lung cancer, Drug resistance, Pathological transition

Background
Lung cancer can be classified into two main histological types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). They account for approximately 15% and 85% of all lung cancers, respectively [1]. NSCLC can be further divided into three subtypes, namely lung adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC). These subtypes harbor different features, with distinct gene expression profiles [2] as well as lineage-specific biomarkers [3]. For example, lung ADC commonly express thyroid transcription factor-1 (TTF1, also known as NKX2-1) [4, 5], a p53-homologous nuclear protein mainly involved in basal cell commitment. LCC, as a pathologically heterogeneous entity which might represent solid ADC or non-keratinizing SCC, have no well-established biomarkers, yet [6]. In contrast to NSCLC, SCLC frequently express neuroendocrine markers, such as achaete-scute homologue 1 (ASCL1, also known as ASH1), neural cell adhesion molecule (NCAM) and synaptophysin (SYP) [7]. Lung ADC is frequently found at distal bronchioles [8], whereas SCC is often observed in more proximal airways [8]. Most lung ADC are considered as originating from alveolar type II (AT II) cells, club cells, or bronchi-alveolar stem cells (BASCs) [9], whereas SCC is observed at more proximal airway [6]. Most lung ADC are considered as originating from alveolar type II (AT II) cells, club cells, or bronchio-alveolar stem cells (BASCs) [7], whereas, lung SCC are mainly derived from basal cells located underneath trachea or bronchus epithelia [7]. SCLC arises from pulmonary neuro-endocrine (NE) cells and often spread along bronchi in a submucosal and circumferential fashion [8].

Despite of persistent medical efforts in last decades, lung cancer prognosis still remains disappointing, with a 5-year survival rate of approximately 15% [9]. This is in part attributed to the acquisition of early drug resistance. Understanding of drug resistance mechanisms hopefully improves therapeutic strategies and eventually changes clinical practice. We classify drug resistance mechanisms into three different levels: molecular, cellular and pathological level (Fig. 1). Although these three are closely linked with each other, changes in molecular level might occur in tumor initiation...
and development prior to those in the other two levels, which enable an early diagnosis with the usage of potential biomarkers. Previous studies have paid extensive attentions to the molecular and cellular level. In this review, we mainly focus on the pathological level which is largely unappreciated previously.

**Drug resistance mechanisms at molecular and cellular level**

Molecular changes are frequently detected in relapsed patients after clinical treatment including chemotherapy, targeted therapy and immunotherapy. There are multiple drug resistance mechanisms at molecular level limit the effectiveness of chemotherapy, e.g., the deregulation of the epidermal growth factor receptor (EGFR) and HER2. For example, secondary EGFR T790M and MET amplification after the relapse from EGFR-TKI therapy. Cellular level mechanism mainly involves the transformation of cancer stem cells (CSC) and epithelial-to-mesenchymal transition (EMT). Pathological level mechanism includes the conversion of ADC-to-SCC transition and ADC or SCC-to-SCLC transition. EGFR epidermal growth factor receptor, EGFR-TKI epidermal growth factor receptor-tyrosine kinase inhibitor, BRAF serine/threonine-protein kinase B-raf, HER2 receptor tyrosine-protein kinase erbB-2, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, MET hepatocyte growth factor receptor, EMT epithelial-to-mesenchymal transition, CSC cell stem cell, ADC adenocarcinoma, SCC squamous cell carcinoma, SCLC small cell lung cancer.

![Diagram](image-url)
of genes involved in drug uptake, cell cycle, apoptosis, sphingolipid metabolism as well as intracellular drug sequestration [10]. Gardner et al. [11] recently show that the down-regulation of Schlafen 11 (SLFN 11) mediated by enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) and H3K27me3 modification induces DNA damage repair and thus enables SCLC chemoresistance. Molecular alterations are also observed in relapsed patients after targeted therapy in lung cancers [12]. For example, during epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment, secondary EGFR mutation T790M, MET proto-oncogene, receptor tyrosine kinase (MET, also known as hepatocyte growth factor receptor, HGFR) amplification, receptor tyrosine-protein kinase erbB-2 (ERBB2, also known as HER2) amplification as well as Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are often detectable in relapsed lung cancer patients and known to contribute to drug resistance [13–15]. In the case of anaplastic lymphoma kinase (ALK)-rearranged NSCLC patients, ALK point mutations, KIT proto-oncogene receptor tyrosine kinase amplification, and other driver mutations are implicated for disease relapse [13]. During the immune checkpoint blockade treatment, neo-antigen landscape shows dynamic change which contributes to the resistance to immunotherapy [16]. These data together support an important role of molecular alterations in orchestrating drug resistance.

Drug resistance mechanisms at cellular level is mainly classified into two types: cancer stem cell (CSC)- and epithelial-to-mesenchymal transition (EMT)-mediated drug resistance. CSCs are considered to be highly plastic, resistant to chemotherapy and capable to seed new aggressive and chemo-resistant tumors in distant organs [17]. Great efforts have been paid to investigate the vulnerability of CSC with the purpose to overcome drug resistance. However, the findings of reversible transition between CSC and non-CSC make the specific targeting of CSC extremely difficult [17]. The non-CSC, frequently as the major component of malignant tumors, is also known to harbor strong stemness and plasticity [18]. Such stemness and plasticity allows non-CSC to de-differentiate into CSC under stressful environment [18, 19]. Such de-differentiation together with the reversible transition between CSC and non-CSC creates a huge hurdle for effective targeting either CSC or non-CSC alone [19].

The transition from epithelial cells to mesenchymal cells also reflects the strong plasticity of cancer cells, which is frequently implicated in drug resistance. In contrast to epithelial cells, mesenchymal cells tend to harbor strong transforming growth factor beta (TGFβ) and Wnt autocrine signaling [20]. The EMT often associates with down-regulation of multiple apoptotic signaling pathways, while it enhances drug efflux and slows cell proliferation [17]. The EMT activates several processes including of programmed death-ligand 1 (PD-L1) expression elevation and tumor suppressor region 1 (TSP-1) secretion elevation, which induces immune suppression and promotes immune escape [17, 21]. Besides, several transcription factors including snail family transcriptional repressor (SNAIL), twist family bHLH transcription factor (TWIST) and zinc finger E-box binding homeobox 1 (ZEB1) activate classical EMT-associated properties and induce anti-apoptotic and pro-survival phenotype supporting malignant progression [22]. All these EMT-associated features collectively promote cancer cell survival and help them escape from effective drug treatment. However, this doesn’t always turn out to be true. A recent study shows that EMT triggered by EGFR-TKI treatment associates with decreased PD-L1 expression, indicative of the complexity of the link between EMT and immune checkpoint regulation [23].

Drug resistance mechanisms at pathological level
Pathological transition has recently been implicated in clinic. Observation of lung ADC transition to either SCC or SCLC has been reported in relapsed patients [24, 25]. Below we summarized the current progress and discuss their link to drug resistance (Fig. 2).

ADC/SCC-to-SCLC transition promotes drug resistance
Two large cohort studies reveal that approximately 5% human lung cancer display the mixed pathology such as adenosquamous carcinoma (Ad-SCC), combined large cell neuroendocrine carcinoma (LCNEC) and combined SCLC [26, 27]. Combined SCLC accounts for about 2.2% of all lung cancer [28]. Previous studies show that the SCLC and non-SCLC components of combined SCLC often share exactly the same genetic mutations [29, 30], indicating that these two different pathological lesions might share the same cells of origin and/or exist potential pathological transition. Notably, most of these pathologically mixed cancer are observed at advanced stages [26, 27], indicating that the potential pathological transition might occur during late stage of malignancy progression.

The SCLC transition is also observed in clinic after patient relapse from molecular targeted therapy. This is initially found in a woman with lung adenocarcinoma [31]. First biopsy shows that her tumor harbors EGFR exon 19 deletion and erlotinib treatment shows partial response. After 18 months of treatment, the tumor mass progresses. The second biopsy is then performed and shows SCLC pathology with the original EGFR exon 19 deletion, indicative of the potential transition from ADC to SCLC and its link to drug resistance. In
later studies, researchers provided solid evidence showing that the transition of EGFR-mutant ADC to SCLC serves as a drug resistance mechanism. Sequist et al. [32] find that about 14% (5/37 cases) drug-resistant ADC cases transit to SCLC and thereby the standard SCLC therapy overcomes such resistance. We summarized the SCLC transition cases with available clinical details in Table 1. Among the total 33 cases, there are 14 males and 19 females. Despite of those unknown smoking status, about 77% (20/26) of the patients are non-smokers. There seems no preference for gender and smoking status. Except for 8 cases with unknown mutation status, most patients (96%, 24/25) show exactly the same oncogenic EGFR mutations or ALK...
fusions in the first and second biopsies. Additional mutations such as phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation, EGFR T790M are also detectable after relapse in 1 and 2 cases, respectively, indicative of the combined mechanisms at both molecular and pathological levels [13].

Transition from ADC to SCLC is also observed in patients with ALK rearrangement. Two relapsed patients with ALK fusion after receiving alectinib or crizotinib treatment showed ADC-to-SCLC transition [33, 34]. Another patient with wild-type EGFR also showed the transition to SCLC after developing TKI resistance [35]. These data indicate that the transition

| Patient ID | Gender | Age | Smoking status | Therapy | 1st biopsy | Pathological status | Mutation status | 2nd biopsy | Pathological status | Mutation status | References |
|------------|--------|-----|----------------|---------|------------|---------------------|----------------|------------|---------------------|----------------|------------|
| 1          | M      | 54  | NA             | TKI     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [32]       |
| 2          | F      | 56  | NA             | TKI     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [32]       |
| 3          | F      | 61  | NA             | TKI     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [32]       |
| 4          | F      | 72  | N              | Gef     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [91]       |
| 5          | F      | 46  | N              | Erl     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [92]       |
| 6          | F      | 52  | N              | Erl     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [93]       |
| 7          | M      | 80  | N              | Ico     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [94]       |
| 8          | F      | 63  | N              | Erl     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [95]       |
| 9          | M      | 46  | N              | Gef     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [96]       |
| 10         | M      | 49  | Y              | Erl     | ADC        | EGFR 19 del and FGFR3 exon 17 deletion | SCLC |            | EGFR 19 del and FGFR3 exon 17 deletion | [97] |
| 11         | F      | 60  | N              | Gef     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [98]       |
| 12         | M      | 65  | N              | Afa     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del       |                | [99]       |
| 13         | F      | 37  | N              | Gef     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del + T790M | [100] |
| 14         | F      | 42  | N              | Erl     | ADC        | EGFR 19 del       | SCLC           |            | EGFR 19 del + T790M | [101] |
| 15         | F      | 49  | N              | Gef     | ADC        | EGFR 19 del       | SCLC           |            | NA                 |                | [102]      |
| 16         | M      | 41  | Y              | Gef     | ADC        | EGFR 19 del       | SCLC + SCC     | NA         |                    |                | [61]       |
| 17         | M      | 74  | Y              | Gef     | ADC        | EGFR 19 del       | SCLC           |            | WT                 |                | [103]      |
| 18         | F      | 48  | NA             | TKI     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R        |                | [32]       |
| 19         | F      | 67  | NA             | TKI     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R        |                | [32]       |
| 20         | F      | 72  | N              | Gef     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R        |                | [104]      |
| 21         | M      | 46  | N              | Gef     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R        |                | [105]      |
| 22         | M      | 49  | Y              | Gef     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R        |                | [106]      |
| 23         | F      | 65  | N              | Gef     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R        |                | [107]      |
| 24         | M      | 73  | NA             | Gef     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R        |                | [108]      |
| 25         | F      | 40  | NA             | TKI     | ADC        | EGFR L858R        | SCLC           |            | EGFR L858R and PIK3CA | [32] |
| 26         | M      | 38  | N              | Erl     | ADC        | EGFR L858R        | SCLC           |            | NA                 |                | [109]      |
| 27         | M      | 72  | Y              | Crizo   | ADC        | ALK                | SCLC           |            | ALK                |                | [33]       |
| 28         | M      | 67  | N              | Alec    | ADC        | ALK                | SCLC           |            | ALK                |                | [34]       |
| 29         | F      | 72  | N              | Gef     | ADC        | WT                 | SCLC           |            | NA                 |                | [35]       |
| 30         | M      | 61  | N              | TKI     | ADC        | NA                 | SCLC           |            | EGFR 19 del       |                | [110]      |
| 31         | F      | 46  | N              | Gef     | ADC        | NA                 | SCLC           |            | EGFR 19 del       |                | [111]      |
| 32         | F      | 45  | N              | Erl-Gef | ADC        | NA                 | SCLC           |            | EGFR 19 del       |                | [31]       |
| 33         | F      | 73  | N              | Gef     | ADC        | NA                 | SCLC           |            | EGFR L858R        |                | [104]      |

Y yes, N no, NA not available, M male, F female, ADC adenocarcinoma, SCC squamous cell carcinoma, SCLC small cell lung cancer, TKI tyrosine kinase inhibitor, Gef gefitinib, Erl erlotinib, Ico icotinib, Afa afatinib, Crizo crizotinib, Alec alectinib, EGFR epidermal growth factor receptor, EGFR 19 del EGFR exon 19 deletion, ALK anaplastic lymphoma kinase, WT wild-type

a 1st biopsy: the first biopsy

b 2nd biopsy: the second biopsy
Evidence from animal models supporting the ADC-to-SCC transition

Studies of the Genetically Engineered Mouse Models (GEMMs) have provided strong in vivo evidence in supporting the ADC-to-SCC transition [44, 45]. We and others have previously found that liver kinase B1 (LKB1, also named as STK11) is frequently mutated in human lung ADC, SCC as well as Ad-SCC [46, 47]. Inactivating mutations of LKB1 seem to be significantly concurrent with 
Kras mutations and confers lung ADC with strong malignant potential and promotes metastasis [46, 48]. Strikingly, Lkb1 deletion in 
Kras^{G12D} GEMMs could make ADC progressively transition into SCC via metabolic reprogramming and excessive accumulation of reactive oxygen species (ROS) [49]. YAP, the major transcriptional co-factor of the Hippo pathway, functions as the barrier for AST. When Lkb1 is lost in lung ADC, YAP is activated and up-regulates ZEB2 expression, which in turn represses DNp63 transcription. During the malignant progression and when ADC grows big, the deficiency of extracellular matrix (ECM), e.g., decreased collagen deposition, fails to promote YAP activation and thus relieves ZEB2-mediated repression of DNp63 expression and eventually triggers the AST program [50].

The lysyl oxidase (LOX) family are responsible for cross-linking collagen and elastin, and thus importantly maintain the rigidity and structural stability of ECM [51]. The LOX family has five members including LOX, LOXL1, LOXL2, LOXL3 and LOXL4 with similar catalytic activities [51]. Previous study shows that LOX importantly regulates AST through ECM remodeling [44, 49]. During the AST process, LOX decreases with concurrent reduction of collagen disposition [44]. Pharmacological inhibition of LOX significantly accelerates the AST process in 
Kras^{G12D}/Lkb1^{L/L} (KL) model [44]. More importantly, long-term LOX inhibition could trigger AST even in 
Kras^{G12D}/Trp53^{L/L} (KP) mouse model, which is known to produce lung ADC only [52]. This highlights an essential role of LOX and ECM remodeling in AST, which is independent of LKB1 deficiency [52]. The transited SCC show strong resistance to LOX inhibition in contrast to lung ADC, consistent with the association of AST and drug resistance [52].

Chromatin analysis reveals the contribution of epigenetic regulation to AST process in KL model. The transited SCC are featured with the decrease of H3K27me3 level and the increase of H3K27ac and H3K4me3 levels, which might be involved in regulating several key squamous-associated genes such as Sox2, ΔNp63 and Ngrf [45]. EZH2, the methyltransferase responsible for catalyzing H3K27me3 [53], is highly expressed in transited SCC. Similar findings are observed in human lung SCC and the squamous component of human Ad-SCC [45].
Interestingly, Lkb1 loss together with ectopic SOX2 expression promotes the development of SCC, potentially through the progressive transition from ADC to SCC [54]. Simultaneous deletion of FoxA1/2 and Nkx2-1 in KRAS mouse model promotes the transition from ADC to SCC and these tumors are somehow different from those in KL model, and featured with keratinizing squamous cell carcinomas [55]. It remains interesting to see whether LKB1 is inactivated in this model and the squamous transition links to drug resistance.

Previous work has demonstrated that BASCs and club cells are the main cell types for squamous transition [45]. Up to date, most techniques used to isolate BASCs are based on FACS sorting. We recently take advantage of dual recombinant systems including Cre/LoxP and Dre/Rox systems to do the specific lineage-tracing of BASCs in vivo [56]. We found that BASCs are capable of differentiating into multiple cell lineages including club cells, ciliated cells, alveolar type I and type II cells in various lung injury models [56]. Future work will be interesting
to illustrate whether BASC-derived tumors are prone to transdifferentiate into SCC when \( Lkb1 \) is deleted.

**Conclusion**

The drug resistance mechanisms can be classified into three different levels: molecular, cellular and pathological level. The ADC-to-SCLC transition and ADC-to-SCC transition are two major patterns for pathological transition in link to acquired drug resistance. A better understanding of drug resistance mechanisms will hopefully change the way of clinical practice and improve patient prognosis.

**Perspectives**

It’s well established that the pathology of lung cancer serves as an important factor for clinical management, e.g., lung ADC, SCC and SCLC are therapeutically treated differently. The link between pathological transition and drug resistance indicates that even in the era of targeted therapy, the importance of pathology should not be neglected. For example, in \( EGFR \)-mutant lung ADC, the median progression-free survival (PFS) after TKI treatment is about 10–13 months [57]. In contrast, the PFS for lung SCC with similar EGFR mutations is only 2.4 months [57]. Even more dramatic finding is that transited SCLC from \( EGFR \)-mutant ADC have almost no response to TKI, potentially due to the shut-down of \( EGFR \) transcription [36]. This could be explained by the ‘missing target’ theory, in which the therapeutic target disappears after long-term treatment and drug resistance development. It will be interesting to test how \( EGFR \) mutants are epigenetically regulated and how we could transcriptionally re-activate \( EGFR \) mutants, which might help develop novel therapeutic strategies to overcome drug resistance in these transited SCLC.

Recent studies have also indicated that therapeutic targets could “face off” between different pathologies, e.g., \( YAP \) works as proto-oncogene in lung ADC but tumor suppressor in SCC. In human lung ADC, \( YAP \) is highly expressed and associated with poor prognosis [58]. Consistently, ectopic \( YAP \) expression accelerates lung ADC progression in \( Kras^{G12D} \) mouse model [59]. In contrast, \( YAP \) suppresses lung SCC progression potentially through down-regulation of the lineage-survival gene DNP63 [60]. We find that digitoxin is highly potent in suppressing SCC growth through \( YAP \) activation [60]. Understanding of the double faces of \( YAP \) in lung ADC and SCC will certainly help gain novel insights into the process of AST and pathological transition.

Interrestingly, pathological transition is not limited to AST or ADC/SCC-to-SCLC transition. Although rare, one case report shows the transition of \( EGFR \)-mutated ADC to both SCC and SCLC [61]. Pathological transition is also observed when comparing the primary tumor with brain metastases [62]. For example, two patients with primary lung ADC show SCC or SCLC in brain metastasis whereas another patient with primary lung SCC shows ADC in brain metastasis. Transitions from ADC to LCNEC, or Ad-SCC to SCLC have also been reported [63, 64]. Obviously, our understanding of pathological transition is still very limited. Most case reports are from the \( EGFR \)-mutant lung cancer patients who are ethically treated with multiple biopsies. With the improvement of treatment strategies, multiple biopsies specimens will hopefully provide more insightful information about pathological transition.

Besides lung cancer, mixed pathologies are also observed in other types of cancer (Fig. 3), e.g., Ad-SCC are detectable in human colon cancer [65], prostate cancer [66–76] and pancreatic cancer [77]. The AST or

---

**Fig. 3** Pathological transition of different types of cancers. Pathological transition in lung cancer includes AST and ADC or SCC-to-SCLC transition. The AST or AST-like process is previously reported in thyroid gland carcinoma, pancreatic cancer as well as gastric cancer. Moreover, neuroendocrine differentiation in ADC has also been reported in prostate cancer. T thyroid gland, L lung, S stomach, Pa pancreas, Pr prostate, P0 proliferation, SCLC small cell lung cancer, ADC adenosocarcinoma, SCC squamous cell carcinoma, AST ADC to SCC transition, CPRC castration-resistant prostate cancer, NE neuroendocrine.
AST-like process has been previously reported in pancreatic cancer [78], thyroid gland carcinoma [79–81] as well as gastric cancer [82]. Moreover, neuroendocrine differentiation in ADC has been reported in prostate cancer. After androgen receptor (AR) treatment in castration-resistant prostate cancer (CPRC), certain patients develop neuroendocrine small cell cell cancer (CRPC-NE) [83–85]. It is understandable that the malignant transformation of benign tumors induce drug resistance [86]. Interestingly, malignant tumors may sometimes become less aggressive or even benign after chemotherapy, such as neuroblastoma to ganglioneuroma transition [87] and malignant germ cell tumors to teratoma transition [88–90]. These transformed tumors are still growing but show the resistance to chemotherapy.

Together, these findings suggest that pathological transition might be more common than we previously thought. No doubt, the better understanding of pathological transition and the link with drug resistance will be beneficial for future clinic practice and eventually help cancer patients.

### Abbreviations

| Abbreviation | Definition |
|--------------|------------|
| SCLC | small cell lung cancer |
| NSCLC | non-small cell lung cancer |
| ADC | adenosquamous carcinoma |
| SCC | squamous cell carcinoma |
| LCC | large cell carcinoma |
| TTF1 | thyroid transcription factor-1 |
| DNP63 | delta N tumor protein 63 |
| ASC1 | achaete-scute homologue 1 |
| NACAM | neural cell adhesion molecule |
| SYP | synaptophysin |
| AT II | alveolar type II |
| BASC | broncho-alveolar stem cell |
| NE | neuro-endocrine |
| SFN11 | schlafl1 |
| EZH2 | enhancer of zeste 2 polycomb repressive complex 2 subunit |
| EGFR | epidermal growth factor receptor |
| MET | MET proto-oncogene, receptor tyrosine kinase |
| HGF | hepatocyte growth factor receptor |
| ERBB2 | receptor tyrosine-protein kinase erbB-2 |
| KRAS | Kirsten rat sarcoma viral oncogene homolog |
| ALK | anaplastic lymphoma kinase |
| PITK | PITK proto-oncogene receptor tyrosine kinase |
| TGFα | transforming growth factor beta |
| EMT | epithelial-to-mesenchymal transition |
| PD-L1 | programmed death-ligand 1 |
| TSP-1 | tumor suppressor region 1 |
| SNAIL | snail family transcriptional repressor |
| TWIST | Twist family bHLH transcription factor |
| ZEB1 | zinc finger E-box binding homeobox 1 |
| Ad-SCC | adenosquamous carcinoma |
| LCNEC | large cell neuroendocrine carcinoma |
| RT | retinoblastoma |
| GEMM | Genetically Engineered Mouse Model |
| LKB1 | liver kinase B1 |
| ROS | reactive oxygen species |
| ECM | extracellular matrix |
| LOX | lysyl oxidase |
| KL | krasG12D/Lkb1L/L |
| KP | krasG12D/Trp53L/L |
| Trp53L/L | tyrosine kinase |
| TGFβ | transforming growth factor beta |
| EMT | epithelial-to-mesenchymal transition |
| ALK | anaplastic lymphoma kinase |
| KIT | KIT proto-oncogene receptor kinase erbB-2 (also known as HER2) |
| KRAS | kirsten rat sarcoma viral oncogene homolog |
| EGFR | epidermal growth factor receptor |
| EZH2 | enhancer of zeste 2 polycomb repressive complex 2 |
| ALK | anaplastic lymphoma kinase |
| SYP | neural cell adhesion molecule |
| SLFN11 | schlafen 11 |
| NCAM | neural cell adhesion molecule |
| SYP | synaptophysin |
| AST-like | adenocarcinoma-tosquamous cell carcinoma transition |
| CPRC | castration-resistant prostate cancer |
| CRPC-NE | neuroendocrine small cell carcinoma |

### Authors' contributions

YC and HJ conceived the idea and wrote the manuscript. WYT revised the part about lung adenocarcinoma to squamous cell carcinoma transdifferentiation. All authors read and approved the final manuscript.

### Funding

This work was supported by the National Basic Research Program of China (Grant No. 2017YFA0505501), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB19002001), National Natural Science Foundation of China (Grant Nos. 81430066, 91731314, 31621003, 81872312, 81871875, 81802279).

### Availability of data and materials

The datasets generated and/or analyzed during the current study are available in the Pubmed repository. For Table 1, we used one or a combination of the following terms in PubMed and selected articles on the basis of relevance to transition from ADC to SCC: 'non-small cell lung cancer', 'transformation', 'transdifferentiation', 'adenocarcinoma', 'small cell carcinoma' and 'small cell lung cancer'. All dates and languages are included in the search. We only collect case reports with detailed clinical information. For Table 2, we used one or a combination of the following terms in PubMed and selected articles on the basis of relevance to transformation from ADC to SCC: 'transition', 'transformation', 'transdifferentiation', 'adenocarcinoma' and 'squamous cell carcinoma'. All dates and languages are included in the search. We only collect case reports with detailed clinical information.

### Ethics approval and consent to participate

Not applicable.

### Consent for publication

Not applicable.

### Competing interests

The authors declare that they have no competing interests.

### Author details

1. State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China. 2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China. 3 Sunway Medical Centre, 47500 Bandar Sunway, Selangor, Malaysia. 4 School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, P. R. China.

### Received: 4 July 2019   Accepted: 21 September 2019

### Published online: 01 October 2019

### References

1. Testa U, Castelli G, Pelosi E. Lung cancers: molecular characterization, clonal heterogeneity and evolution, and cancer stem cells. Cancers. 2018. https://doi.org/10.3390/cancers10080248.
2. Fujii T, Dracheva T, Player A, Chacko S, Clifford R, Strausberg RL, et al. A preliminary transcriptome map of non-small cell lung cancer. Can Res. 2002;62(12):3340.
3. Rekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol. 2011;24:1348. https://doi.org/10.1038/modpathol.2011.92.
4. Righi L, Graziano P, Fornari A, Rossi G, Barbareschi M, Cavazza A, et al. Immunohistochemical subtyping of non-small cell lung cancer not otherwise specified in fine-needle aspiration cytology: a retrospective study of 103 cases with surgical correlation. Cancer. 2011;117(15):3416–23. https://doi.org/10.1002/cncr.25830.
5. Barlesi F, Pinot D, Legoffic A, Doddi C, Chetaillie B, Torre JP, et al. Positive thyroid transcription factor 1 staining strongly correlates with survival of patients with adenocarcinoma of the lung. Br J Cancer. 2005;93(4):450–2. https://doi.org/10.1038/sj.bjc.6602717.
6. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KW. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14(8):535–46. https://doi.org/10.1038/nrc3775.
7. Hanna JM, Onaitis MW. Cell of origin of lung cancer. J Carcinog. 2014;13:126. https://doi.org/10.4103/1477-3163.140033.
8. Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer. 2017;17(12):725–37. https://doi.org/10.1038/nrc.2017.87.
9. Edwards BK, Noone A-M, Mariotto AB, Simard EP, Boscoe FP, Henley SJ, et al. Annual report to the nation on the status of cancer, 1975–2015, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer. 2014;120(9):1290–314. https://doi.org/10.1002/cncr.28509.
10. Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol. 2016;36(4):716–26. https://doi.org/10.1080/07388551.2015.1015957.
11. Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell. 2017;31(2):286–99. https://doi.org/10.1016/j.ccell.2017.01.006.

12. Zhang J, Tian C, Lv F, Wang J, Han W, Nie J, et al. Molecular analysis of cell-free DNA identifies distinct molecular features in patients with chemosensitive and chemoresistant small cell lung cancer. Cancer Commun (London, England). 2019;39(1):20. https://doi.org/10.1186/s40880-019-0363-y.

13. Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol. 2014;11(8):473–81. https://doi.org/10.1038/nrclinonc.2014.104.

14. Zhang S, Zhu L, Xia B, Chen E, Zhao Q, Zhang X, et al. Epidermal growth factor receptor (EGFR) T790M mutation identified in plasma indicates failure sites and predicts clinical prognosis in non-small cell lung cancer progression during first-generation tyrosine kinase inhibitor therapy: a prospective observational study. Cancer Commun (London, England). 2018;38(1):28. https://doi.org/10.1186/s40880-018-0303-2.

15. Wang F, Diao XY, Zhang X, Shao Q, Feng YF, An X, et al. Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancers patients with EGFR sensitive mutations. Cancer Commun (London, England). 2019;39(1):7. https://doi.org/10.1186/s40880-019-0354-z.

16. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264–76. https://doi.org/10.1158/2159-8290.CD-16-0828.

17. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2014;11(10):611–29. https://doi.org/10.1038/nrclinonc.2014.44.

18. Battle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

19. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov. 2014;13(7):497–512. https://doi.org/10.1038/nrd4253.

20. Schef C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kal JH, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145(6):926–40. https://doi.org/10.1016/j.cell.2011.04.029.

21. Larsen TV, Hussmann D, Nielsen AL. PD-L1 and PD-L2 expression and cells of origin. Lancet Oncol. 2015;16(4):e165–72. https://doi.org/10.1016/s1470-2045(14)71180-5.

22. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2006;6(6):584–92. https://doi.org/10.1038/nrc1874.

23. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara J, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. https://doi.org/10.1038/nature14664.

24. Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362(6410):91. https://doi.org/10.1126/science.aat5749.

25. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: International Agency for Research on Cancer; 2015. p. 7.

26. Niederst MJ, Sequist LV, Engelmann JA. Transformation from non-small-cell lung cancer to small lung cancer: molecular drivers and cells of origin. Lancet Oncol. 2015;16(4):e165–72. https://doi.org/10.1016/s1470-2045(14)71180-5.

27. George J, Lim JS, Jang SJ, Cun Y, Otztzct L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. https://doi.org/10.1038/nature14664.

28. Ahmed T, Vial MR, Poirier JT, Mermel CH, Lockerman EL, Garcia AB, et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell. 2017;31(2):286–99. https://doi.org/10.1016/j.ccell.2017.01.006.

29. Wagner PL, Kitabayashi N, Chen YT, Saqi A. Combined small cell lung carcinomas: genotypic and immunophenotypic analysis of the separate morphologic components. Am J Clin Pathol. 2009;131(3):376–82. https://doi.org/10.1093/ajcp/ppp565pzooy.
49. Li F, Han X, Li F, Wang R, Wang H, Gao Y, et al. LKB1 inactivation elicits a redox imbalance to modulate non-small cell lung cancer plasticity and therapeutic response. Cancer Cell. 2015;27(5):698–711. https://doi.org/10.1016/j.ccell.2015.04.001.

50. Gao Y, Zhang W, Han X, Li F, Wang X, Wang R, et al. YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent Dnpen repression. Nat Commun. 2016;7:10186. https://doi.org/10.1038/ncomms10186.

51. Yao Y, Zhu Z, Han X, Tong X, Li F, Qin Z, Huang H-Y, et al. Lysyl oxidase inhibition drives the transdifferentiation from lung adenocarcinoma to squamous cell carcinoma in mice. bioRxiv. 2018. https://doi.org/10.1101/314393.

52. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell. 2008;32(4):491–502. https://doi.org/10.1016/j.molcel.2008.10.016.

53. Mukhopadhyay A, Berrett KC, Kc U, Clair PM, Pop SM, Carr SR, et al. Sox2 cooperates with Lkb1 loss in a mouse model of squamous cell lung cancer. Cell Rep. 2014;8(1):40–9. https://doi.org/10.1016/j.celrep.2014.05.036.

54. Camollotto SA, Pattabiraman S, Mosbruger TL, Jones A, Belova VK, Onstad G, et al. FoxA1 and FoxA2 drive gastric differentiation and suppress squamous identity in Nkx2-1-negative lung cancer. elife. 2018. https://doi.org/10.7554/elifesc.38579.

55. Liu Q, Liu K, Cui G, Huang X, Yao S, Guo W, et al. Lung regeneration by multipotent stem cells residing at the bronchoalveolar-duct junction. Nat Genet. 2019;51(4):728–38. https://doi.org/10.1038/s41588-019-0393-5.

56. Wang Y, Dong Q, Zhang Q, Liu Z, Wang E, Qiu X. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Proc Natl Acad Sci USA. 2010;107(44):18892–7. https://doi.org/10.1073/pnas.1003106107.

57. Humphrey PA. Histological variants of prostatic carcinoma and their significance. Histopathology. 2012;60(1):59–74. https://doi.org/10.1111/j.1365-2559.2011.04039.x.

58. Ishigooka M, Yaguchi H, Tomaru M, Sasagawa I, Nakata T, Mitobe K. Mixed prostatic carcinoma containing malignant squamous element. Reports of two cases. Surg. Urol. Nephrol. 1994;28(4):425–7.

59. Mishra S, Goel H, Avasthi N, Puri A, Mahapatra R, Pall D. Primary adenocarcinoma of the prostate: a rare aggressive tumor. Clin Genitourin Cancer. 2014;12(1):9–31. https://doi.org/10.1016/j.clgc.2013.08.006.

60. Moyana TN. Adenocarcinoma of the prostate. Am J Surg Pathol. 1987;11(5):403–7.

61. Ohran D, Sak SD, Yaman O, Tulinay O, Gogus O. Adenocarcinoma of the prostate. Br J Urol. 1996;78(4):646–7.

62. Regi P, Butturini G, Mal LEGO, Pedica F, O'Donnell M, Bassi C. Clinicopathological features of adenocarcinomatous pancreatic cancer. Langenbeck's Arch Surg. 2011;396(2):217–22. https://doi.org/10.1007/s00464-010-0677-3.

63. Somerville TDD, Xu Y, Miyabayashi K, Tzirakis H, Cleary CR, Maia-Silva D, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma. Cell Rep. 2018;25(7):1741–55. https://doi.org/10.1016/j.celrep.2018.10.051.

64. Harada T, Shimaoka K, Yakumura K, Ito K. Squamous cell carcinoma of the thyroid gland—transition from adenocarcinoma. J Surg Oncol. 1982;19(1):36–43.

65. Rausch T, Bennhatter J, Sutter M, Andrejevic-Blant S. Thyroid carcinoma with papillary and squamous features: report of a case with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.

66. Gorini K, Kitagawa N, Usui Y, Tanaka M, Yoshida M, Hirata Y, et al. Papillary carcinoma with papillary and squamous features: a case report with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.

67. Somerville T, Xu Y, Miyabayashi K, Tzirakis H, Cleary CR, Maia-Silva D, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma. Cell Rep. 2018;25(7):1741–55. https://doi.org/10.1016/j.celrep.2018.10.051.

68. Harada T, Shimaoka K, Yakumura K, Ito K. Squamous cell carcinoma of the thyroid gland—transition from adenocarcinoma. J Surg Oncol. 1982;19(1):36–43.

69. Rausch T, Bennhatter J, Sutter M, Andrejevic-Blant S. Thyroid carcinoma with papillary and squamous features: report of a case with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.

70. Gorini K, Kitagawa N, Usui Y, Tanaka M, Yoshida M, Hirata Y, et al. Papillary carcinoma with papillary and squamous features: a case report with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.

71. Somerville T, Xu Y, Miyabayashi K, Tzirakis H, Cleary CR, Maia-Silva D, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma. Cell Rep. 2018;25(7):1741–55. https://doi.org/10.1016/j.celrep.2018.10.051.

72. Harada T, Shimaoka K, Yakumura K, Ito K. Squamous cell carcinoma of the thyroid gland—transition from adenocarcinoma. J Surg Oncol. 1982;19(1):36–43.

73. Rausch T, Bennhatter J, Sutter M, Andrejevic-Blant S. Thyroid carcinoma with papillary and squamous features: report of a case with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.

74. Gorini K, Kitagawa N, Usui Y, Tanaka M, Yoshida M, Hirata Y, et al. Papillary carcinoma with papillary and squamous features: a case report with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.

75. Somerville T, Xu Y, Miyabayashi K, Tzirakis H, Cleary CR, Maia-Silva D, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma. Cell Rep. 2018;25(7):1741–55. https://doi.org/10.1016/j.celrep.2018.10.051.

76. Harada T, Shimaoka K, Yakumura K, Ito K. Squamous cell carcinoma of the thyroid gland—transition from adenocarcinoma. J Surg Oncol. 1982;19(1):36–43.

77. Rausch T, Bennhatter J, Sutter M, Andrejevic-Blant S. Thyroid carcinoma with papillary and squamous features: report of a case with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.

78. Gorini K, Kitagawa N, Usui Y, Tanaka M, Yoshida M, Hirata Y, et al. Papillary carcinoma with papillary and squamous features: a case report with histogenetic considerations. Pathol Res Pract. 2010;206(4):263–9. https://doi.org/10.1016/j.prp.2009.05.003.
87. Miura K, Mineta H, Yokota N, Tsutsui Y. Olfactory neuroblastoma with epithelial and endocrine differentiation transformed into ganglioneuroma after chemoradiotherapy. Pathol Int. 2001;51(12):942–7.

88. Ghaouti M, Roquet L, Fazzalari L, Sibert L, Sabourin JC. "Growing teratoma syndrome": an unrecognized complication of treated germ cell tumors: criteria based on current practice. J Thorac Cardiovasc Surg. 2012;144(2):438–43. https://doi.org/10.1016/j.jtcvs.2012.05.053.

89. Okamoto I, Araki J, Suto R, Shimada M, Nakagawa K, Fukuoka M. EGFR mutation in gefitinib-responsive small-cell lung cancer. Ann Oncol. 2006;17(6):1028–9. https://doi.org/10.1093/annonc/mdj114.

90. Santoni-Rugiu E, Grauslund M, Melchior LC, Costa JC, Sorensen JB, van Riel S, Thunnissen E, Heideman D, Smit EF, Biesma B. A patient with simultaneously appearing adenocarcinoma and small-cell lung cancer of the lung with identical epidermal growth factor receptor tyrosine kinase inhibitor. Thorac Cancer. 2015;6(6):800–4. https://doi.org/10.1111/1759-7714.12217.

91. Liu Y. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: a case report and review of literature. Medicine. 2016;95(6):e2752. https://doi.org/10.1097/md.0000000000002752.

92. Lin Q, Cai GR, Yang KY, Yang L, Chen CS, Li YP. Case report: small cell transformation and metastasis to the breast in a patient with lung adenocarcinoma following maintenance treatment with epidermal growth factor receptor tyrosine kinase inhibitors. BMC Cancer. 2016;16:593. https://doi.org/10.1186/s12885-016-2623-4.

93. Le T, Sailors J, Oliver DH, Mayer M, Hoskin S, Gerber DE. Histologic transformation following treatment with epidermal growth factor receptor tyrosine kinase inhibitor. Thorac Cancer. 2015;6(6):934–8. https://doi.org/10.1111/1759-7714.12218.

94. Le T, Sailors J, Oliver DH, Mayer M, Hoskin S, Gerber DE. Histologic transformation to small-cell lung cancer following treatment with EGFR tyrosine kinase inhibitors. BMC Cancer. 2016;16:593. https://doi.org/10.1186/s12885-016-2623-4.

95. Jiang SY, Zhao J, Wang MZ, Hsu Z, Zhang J, Zhong W, et al. Small cell lung cancer transformation in patients with pulmonary adenocarcinoma: a case report and review of literature. Medicine. 2016;95(6):e2752. https://doi.org/10.1097/md.0000000000002752.

96. Lin Q, Cai GR, Yang KY, Yang L, Chen CS, Li YP. Case report: small cell transformation and metastasis to the breast in a patient with lung adenocarcinoma following maintenance treatment with epidermal growth factor receptor tyrosine kinase inhibitors. BMC Cancer. 2016;16:593. https://doi.org/10.1186/s12885-016-2623-4.

97. Ma AT, Chan WK, Ma ES, Cheng T, Cheng PN. Small cell lung cancer with an epidermal growth factor receptor mutation in primary gefitinib-resistant adenocarcinoma of the lung. Acta Oncol (Stockholm, Sweden). 2012;51(4):557–9. https://doi.org/10.3284/AON100816.2011.03.019.

98. Liu Y. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: a case report and literature review. Cancer Biol Ther. 2018. https://doi.org/10.1080/15384047.2018.1435222.

99. Hwang KE, Jung JW, Oh SJ, Park MJ, Shin HY, Choi KH, et al. Transformation to small cell lung cancer as a rare mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors: report of a case with review of literature. Lung India. 2018;35(2):160–3. https://doi.org/10.4103/lungindia.lungindia_347_17.

100. Santoni-Rugiu E, Grauslund M, Melchior LC, Costa JC, Sorensen JB, Urban ska EM. Heterogeneous resistance mechanisms in an EGFR exon 19-mutated non-small cell lung cancer patient treated with erlotinib: persistent FGFR3-mutation, localized transformation to EGFR-mutated SCLC, and acquired T790M EGFR-mutation. Lung Cancer (Amsterdam, Netherlands). 2017;113:14–7. https://doi.org/10.1016/j.lungcancer.2017.08.024.

101. Xue Z, Li Y, Jiang J, Zhao W, Ouyang X, Li Y, et al. Sequential occurrence of non-small and small cell lung cancer with the same EGFR mutation. Lung Cancer (Amsterdam, Netherlands). 2007;58(3):411–3. https://doi.org/10.1016/j.lungcan.2007.05.014.

102. Le T, Sailors J, Oliver DH, Mayer M, Hoskin S, Gerber DE. Histologic transformation of EGFR-mutant lung adenocarcinoma without exposure to EGFR inhibition. Lung Cancer (Amsterdam, Netherlands). 2017;105:14–6. https://doi.org/10.1016/j.lungcan.2017.01.005.

103. Burkert J, Shilo K, Zhao W, Ozkan E, Ajam A, Ottersten GA. Metastatic squamous cell carcinoma component from an adenosquamous carcinoma of the lung with identical epidermal growth factor receptor mutations. Case Rep Pulmonol. 2015;2015:4. https://doi.org/10.1155/2015/283875.

104. Haratani K, Hayashi H, Watanabe S, Kaneda H, Yoshida T, Takeda M, et al. Two cases of EGFR mutation-positive lung adenocarcinoma that transformed into squamous cell carcinoma: successful treatment of one case with rilotinib. Ann Oncol. 2016;27(1):200–2. https://doi.org/10.1093/annonc/mdw495.

105. Hisheh M-S, Huang J-Y, Hua S-F, Chou Y-H. Histologic evolution from adenocarcinoma to squamous cell carcinoma after gefitinib treatment. Ann Thorac Surg. 2015;99(1):316–9. https://doi.org/10.1016/j.athoracsur.2014.02.075.

106. Schier KS, Saldivar J-S, Fishbein M, Marchevsky A, Reckamp KL. EGFR-mutated lung cancer with T790M-acquired resistance in the brain and histologic transformation in the lung. J Natl Compr Cancer Netw. 2013;11(9):1040–4. https://doi.org/10.6004/jnccn.2013.0126.

107. Levin PA, Mayer M, Hoskin S, Sailors J, Oliver DH, Gerber DE. Histologic transformation from adenocarcinoma to squamous cell carcinoma as a mechanism of resistance to EGFR inhibition. J Thorac Oncol. 2012;7(9):868–8. https://doi.org/10.1097/TOC.0b013e31825fb2ca.

108. Clery E, Pisapia F, Feliciano S, Violarg E, Marano A, De Luca C, et al. There is still a role for cytology in the 'liquid biopsy' era. A lesson
from a TKI-treated patient showing adenocarcinoma to squamous cell carcinoma transition during disease progression. J Clin Pathol. 2017;70(9):798.

119. Park HK, Seo Y, Choi YL, Ahn MJ, Han J. Metastatic squamous cell carcinoma from lung adenocarcinoma after epidermal growth factor receptor tyrosine kinase inhibitor therapy. J Pathol Transl Med. 2017;51(4):441–3. https://doi.org/10.4132/jptm.2016.10.18.

120. Jukna A, Montanari G, Mengoli MC, Cavazza A, Covi M, Barbieri F, et al. Squamous cell carcinoma “transformation” concurrent with secondary T790M mutation in resistant EGFR-mutated adenocarcinomas. J Thorac Oncol. 2016;11(4):e49–51. https://doi.org/10.1016/j.jto.2015.12.096.

121. Sato M, Matsui A, Shimojyama Y, Omote N, Morise M, Hase T, et al. An EGFR-mutated lung adenocarcinoma undergoing squamous cell carcinoma transformation exhibited a durable response to afatinib. Intern Med. 2018;57(23):3429–32. https://doi.org/10.2169/internalmedicine.0999-18.

122. Shinohara S, Ichiki Y, Fukuchi Y, Honda Y, Kanayama M, Taira A, et al. Squamous cell carcinoma transformation from adenocarcinoma as an acquired resistance after the EGFR TKI therapy in EGFR-mutated non-small cell lung cancer. J Thorac Dis. 2018;10(7):E526–31. https://doi.org/10.21037/jtd.2018.06.83.

123. Kuiper JL, Ronden MI, Becker A, Heideman DAM, van Hengel P, Ylstra B, et al. Transformation to a squamous cell carcinoma phenotype of an EGFR-mutated NSCLC patient after treatment with an EGFR-tyrosine kinase inhibitor. J Clin Pathol. 2015;68(4):320–1.

124. Izumi H, Yamasaki A, Ueda Y, Sumikawa T, Maeta H, Nakamoto S, et al. Squamous cell carcinoma transformation from EGFR-mutated lung adenocarcinoma: a case report and literature review. Clin Lung Cancer. 2018;19(1):e63–6. https://doi.org/10.1016/j.clc.2017.10.005.

125. Longo L, Mengoli MC, Bertolini F, Bettielli S, Manfredini S, Rossi G. Synchronous occurrence of squamous-cell carcinoma “transformation” and EGFR exon 20 S768I mutation as a novel mechanism of resistance in EGFR-mutated lung adenocarcinoma. Lung Cancer (Amsterdam, Netherlands). 2017;103:24–6. https://doi.org/10.1016/j.lungcan.2016.11.012.

126. Jay G, Jeffrey PG, Weiye M, Ken Y, Elizabeth HM, Megan ED, et al. Squamous cell transformation of primary lung adenocarcinoma in a patient with EML4-ALK fusion variant 5 refractory to ALK inhibitors. J Natl Compr Cancer Netw. 2019;17(4):297–301. https://doi.org/10.6004/jnccn.2019.7291.

127. Park S, Han J, Sun J-M. Histologic transformation of ALK-rearranged adenocarcinoma to squamous cell carcinoma after treatment with ALK inhibitor. Lung Cancer (Amsterdam, Netherlands). 2019;127:66–8. https://doi.org/10.1016/j.lungcan.2018.11.027.

128. Bugano DDG, Kalhor N, Zhang J, Neskey M, William WN. Squamous-cell transformation in a patient with lung adenocarcinoma receiving erlotinib co-occurrence with T790M mutation. Cancer Treat Commun. 2015;4(Supplement C):34–6. https://doi.org/10.1016/j.ctcc.2015.03.007.

129. Hsu C-L, Chen K-Y, Kuo S-W, Chang Y-L. Histologic transformation in a patient with lung cancer treated with chemotherapy and pembrolizumab. J Thorac Oncol. 2017;12(6):e75–6. https://doi.org/10.1016/j.jto.2017.02.006.