In-medium effects on the K^-/K^+ ratio at GSI

L. Tolós a b $^* $ †, A. Pollsb, A. Ramosb and J. Schaffner-Bielicha

aInstitut für Theoretische Physik, J. W. Goethe-Universität
D-60054 Frankfurt am Main, Germany

b Departament d’Estructura i Constituents de la Matèria,
Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

The in-medium modifications on the K^-/K^+ ratio produced at GSI are studied. Particular attention is paid to the properties of antikaons, which determine the chemical potential and temperature at freeze-out conditions. Different approaches have been considered: non-interacting K^-, on-shell self-energy and single-particle spectral density. We observe that the full off-shell approach to the spectral density reproduces the Brown et al. ‘broad-band equilibration’ which is crucial to explain an enhanced K^-/K^+ ratio.

1. Introduction

The medium modifications of mesons with strangeness such as kaons and antikaons can be studied in connection to heavy-ion experiments for energies around 1-2 AGeV [1]. One surprising observation in C+C and Ni+Ni collisions [2] is that the K^- multiplicity and that of K^+ are of the same order of magnitude although in pp collisions the K^+ multiplicity exceeds the K^- one by 1-2 orders of magnitude at the same energy above threshold. Another interesting observation is that the K^-/K^+ ratio stays almost constant for C+C, Ni+Ni and Au+Au collisions for 1.5 AGeV [2]. Both observations could be interpreted to be a manifestation of an attractive K^- optical potential. On the other hand, equal centrality dependence for the K^+ and K^- mesons has also been observed in Au+Au and Pb+Pb reactions at 1.5 AGeV [2]. Actually, the independence of centrality of the K^-/K^+ ratio was claimed to indicate that no in-medium effects were needed in order to explain the experimental ratio [3]. However, the concept of “broad-band equilibration” was introduced by Brown et al. [4] in order to explain the centrality independence but including medium modifications of antikaons.

In this work we study the implications of introducing the K^- spectral density for the K^-/K^+ ratio in order to address the above mentioned issues.

2. In-medium modifications on the K^-/K^+ ratio

We present a brief description of the statistical models which are applied for the calculation of the K^-/K^+ ratio. Statistical models are based on the assumption that the

*e-mail:tolos@th.physik.uni-frankfurt.de
†AvH Fellow
particle ratios in relativistic heavy-ion collisions can be described by two parameters, the baryonic chemical potential μ_B and the temperature T [3].

Therefore, by using canonical strangeness conservation and taking into account the most relevant contributions in the $S = 0, \pm 1$ sectors, the inverse ratio K^+/K^- is given by [3,5]

$$\frac{K^+}{K^-} = \frac{Z_{K^+}^1(Z_{K^-}^1 + Z_{\Lambda}^1 + Z_{\Sigma}^1 + Z_{\Sigma^*}^1)}{Z_{K^-}^1 Z_{K^+}^1} = 1 + \frac{Z_{\Lambda}^1 + Z_{\Sigma}^1 + Z_{\Sigma^*}^1}{Z_{K^-}^1},$$

where Zs indicate the different one-particle partition functions for $K^+, K^-, \Sigma, \Lambda, \Sigma^*$. In order to balance the number of K^+, the main contribution in the $S = -1$ sector comes from Λ and Σ hyperons and, in a smaller proportion, from K^- mesons and $\Sigma^*(1385)$ resonances. On the other hand, the number of K^- is balanced by the presence of K^+ mesons. We finally observe that the ratio is determined by the relative abundance of $\Lambda, \Sigma, \Sigma^*$ baryons with respect to that of K^- mesons.

In order to introduce in-medium and temperature effects, the particles involved in the calculation should be dressed accordingly. For Λ and Σ, the partition function reads

$$Z_{\Lambda, \Sigma} = g_{\Lambda, \Sigma} V \int \frac{d^3p}{(2\pi)^3} e^{-\frac{m_{\Lambda, \Sigma}^2 + p^2 - U_{\Lambda, \Sigma}(\rho) + \mu_B}{T}},$$

which is built using a mean-field dispersion relation for the single-particle energies (see Refs. [5,6]), while the resonance $\Sigma^*(1385)$ is described by a Breit-Wigner shape.

With regards to the K^- meson, two different prescriptions for the K^- single-particle energy have been used. First, we use the mean-field approximation for the K^- potential

$$Z_{K^-} = g_{K^-} V \int \frac{d^3p}{(2\pi)^3} e^{-\frac{m_{K^-}^2 + p^2 - U_{K^-}(T, \rho, E_{K^-}, p)}{T}},$$

where $U_{K^-}(T, \rho, E_{K^-}, p)$ is the K^- single-particle potential in the Brueckner-Hartree-Fock approach [7]. The second approach incorporates the K^- spectral density (see Ref. [5])

$$Z_{K^-} = g_{K^-} V \int \frac{d^3p}{(2\pi)^3} \int ds S_{K^-}(p, \sqrt{s}) \ e^{-\frac{\sqrt{s}}{T}}.$$

3. Results

In Fig. 1 the inverse ratio K^+/K^- is shown for two temperatures using different approaches for the dressing of the K^- meson: free gas (dot-dashed lines), the on-shell approach (dotted lines) and using the K^- spectral density including s-waves (long-dashed lines) or both s- and p-waves (solid lines). The ratio grows with $e^{\mu_B/T}$ as we increase the density although it tends to bend down after the initial increase when the in-medium K^- properties are considered. Actually, when the full spectral density is used (solid lines), a flat region as a function of the density is observed. This is due to the increased attraction produced by the YN excitations present in the low-energy region of the K^- spectral density. This result is in qualitative agreement with the “broad-band equilibration” advocated by Brown et al.[4]. However, this behaviour was found in Ref. [4] using a mean-field model through a compensation of the increased attractive mean-field K^- potential with
the increase in the baryonic chemical potential as density grows, which is not observed in our mean-field approach.

In the framework of statistical models, one obtains the relation between the temperature and the chemical potential by fixing the $K^+/K^−$ ratio. In the l.h.s. of Fig. 2 we show, for the previous approaches, the values of temperature and chemical potential compatible with a value of $K^+/K^− = 30$, close to the experimental one for Ni+Ni collisions at 1.93 AGeV. Similar to the calculations of Refs. [3], the dot-dashed lines gives the free gas case. While the on-shell approach (dotted line) does not show the broad-band effect, a band of chemical potentials μ_B up to 850 MeV for $T \approx 35$ MeV appears to be in accordance with the given ratio when both s- and p-wave contributions are taken into account (solid line). However, in this case, the temperature is too low to be compatible with the experimental one and the corresponding freeze-out densities are too small. We can hardly speak of a “broad band” feature in the sense of that of Brown et al. In the r.h.s. of Fig. 2 we display the temperature and chemical potential for different values of the ratio when the full $K^−$ spectral density is used. A ratio of the order of 15 seems to be the solution for a more plausible experimental temperature of $T \approx 70$ MeV. We therefore conclude that the strength of the low-energy region of the $K^−$ spectral density gives an enhanced production of $K^−$ compared to the experimental results.

4. Concluding remarks

We have analyzed the $K^−/K^+$ ratio in the framework of statistical models considering the medium properties of antikaons. It is found that the determination of the temperature and baryonic chemical potential for a given ratio is very delicate depending on the approximation adopted for the $K^−$ self-energy. On the other hand, the “broad-band equilibration” advocated by Brown, Rho and Song is not accomplished in the on-shell
approach. Only when K^- is described by the full spectral density we observe this broadband. This is due to the coupling of the K^- meson to YN^{-1} states. However, the K^-/K^+ ratio is in excess by a factor of 2 with respect to the experimental value. Only further studies on non-equilibrium evolution of K^- in the medium could give some indications about the reduced number of K^- that are observed experimentally.

Acknowledgments

This work is partially supported by DGICYT project BFM2001-01868, by the Generalitat de Catalunya project 2001SGR00064 and by NSF grant PHY-03-11859. L. T. acknowledges support from the AvH Foundation.

REFERENCES

1. H. Oeschler, J. Phys. G **28** (2002) 1787; P. Senger, Nucl. Phys. A **685** (2001) 312; C. Sturm et al., J. Phys. G **28** (2002) 1895.
2. R. Barth et al., Phys. Rev. Lett. **78** (1997) 4007; F. Laue et al., Phys. Rev. Lett. **82** (1999) 1640; M. Menzel et al., Phys. Lett. B **495** (2000) 26.
3. J. Cleymans, D. Elliot, A. Keränen, and E. Suhonen, Phys. Rev. C **57** (1998) 3319; J. Cleymans, H. Oeschler, and K. Redlich, Phys. Rev. C **59** (1999) 1663; J. Cleymans, and K. Redlich, Phys. Rev. C **60** (1999) 054908.
4. G. E. Brown, M. Rho and C. Song, Nucl. Phys. A **690** (2001) 184c; G. E. Brown, M. Rho and C. Song, Nucl. Phys. A **698** (2002) 483c.
5. L. Tolós, A. Polls, A. Ramos, and J. Schaffner-Bielich, Phys. Rev. C **68** (2003) 024903.
6. S. Balberg, and A. Gal, Nucl. Phys. A **625** (1997) 435; J. Mares, E. Friedman, A. Gal, and B. K. Jennings, Nucl. Phys. A **594** (1995) 311; J. Dabrowski, Phys. Rev. C **60** (1999) 025205.
7. L. Tolós, A. Ramos, and A. Polls, Phys. Rev. C **65** (2002) 054907; L. Tolós, A. Ramos, A. Polls, and T. T. S. Kuo, Nucl. Phys. A **690** (2001) 547.