NONCOMMUTATIVE MOMENT MAXIMAL INEQUALITIES

TURDEBEK N. BEKJAN, ZEQIAN CHEN, AND ADAM OSEKOWSKI

Abstract. We prove the noncommutative moment Doob inequality, the noncommutative moment Dunford-Schwartz maximal ergodic inequality for positive contractions, and the noncommutative moment Stein maximal ergodic inequality for symmetric positive contractions. As a consequence, we obtain the noncommutative moment Burkholder-Davis-Gundy inequality. The key ingredient in our proofs is a moment form of the Marcinkiewicz type interpolation theorem for maximal functions in the noncommutative setting, which we establish in this paper.

1. Introduction

Due to interactions with several fields of mathematics such as operator spaces (e.g. [16, 36]) and free probability (e.g. [17, 42]), the theory of noncommutative martingale and ergodic inequalities has received considerable progress in recent years since the seminal paper by Pisier and Xu [38]. Many classical martingale and ergodic inequalities have been successfully transferred to the noncommutative setting (cf. e.g. [2, 5, 18, 20, 22, 24, 25, 28, 29, 33, 34, 40, 41]). These inequalities of quantum probabilistic nature have, in return, applications to operator spaces, quantum stochastic analysis and noncommutative harmonic analysis. We refer to [19, 21, 26, 37, 44] for some illustrations of applications to operator space theory.

This paper follows this line of investigation. Our aim here is to establish noncommutative moment maximal inequalities. But the study of maximal inequalities is one of the most delicate and difficult parts in the noncommutative setting. Maximal martingale and ergodic inequalities in noncommutative L_p-spaces have been established respectively by Junge [18] and Junge and Xu [24], with the use of the techniques developed for operator space theory and theory of interpolation of Banach spaces. However, their argument, relying heavily on Banach space properties of noncommutative L_p-spaces such as duality and interpolation, is not applicable directly to the establishment of the corresponding moment inequalities. Indeed, the question of how to obtain the moment forms of Junge’s noncommutative Doob inequality and Junge-Xu’s noncommutative Dunford-Schwartz maximal ergodic inequality was posed by Q. Xu to the first and third named authors in 2005 and 2006 respectively. The present paper solves this problem. Our key ingredient is a noncommutative extension of the moment Marcinkiewicz type interpolation theorem for maximal functions, which we will prove in this paper based on some ideas of [3].

The paper is organized as follows. In Section 2, we present some preliminaries and notations on noncommutative Orlicz spaces, Orlicz-Hardy spaces of noncommutative martingales, and maximal functions in the noncommutative setting. Then, a noncommutative analogue of the moment Marcinkiewicz type interpolation theorem for maximal functions is proved in Section 3, which is the key ingredient for the proofs of our main results. In Section 4, we prove the main results of this paper, including the noncommutative moment Doob inequality, the noncommutative moment Dunford-Schwartz maximal ergodic inequality for positive contractions, and the noncommutative moment Stein maximal ergodic inequality for symmetric positive contractions. As a consequence, we obtain the noncommutative moment Burkholder-Davis-Gundy inequality. Finally, in Section 5, the results obtained in the previous sections are extended to cover weak type moment inequalities, as well as moment maximal inequalities on noncommutative symmetric spaces.

2010 Mathematics Subject Classification: 46L53, 46L51.
Key words: Noncommutative martingale, noncommutative maximal function, moment Doob inequality, moment Dunford-Schwartz maximal ergodic inequality, interpolation.
T. Bekjan is partially supported by NSFC grant No. 11071204.
Z. Chen is partially supported by NSFC grant No. 11171338.
A. Osekowski is supported in part by MNiSW Grant N N201 364436.
In what follows, C always denotes a constant, which may be different in different places. For two nonnegative (possibly infinite) quantities X and Y by $X \lesssim Y$ we mean that there exists a constant $C > 0$ such that $X \leq CY$, and by $X \approx Y$ that $X \lesssim Y$ and $Y \lesssim X$.

2. Preliminaries

2.1. Noncommutative Orlicz spaces. We use standard notions from theory of noncommutative L_p-spaces. Our main references are [39] and [45] (see also [39] for more bibliography). Let \mathcal{N} be a semifinite von Neumann algebra acting on a Hilbert space \mathbb{H} with a normal semifinite faithful trace ν. Let $L_0(\mathcal{N})$ denote the topological $*$-algebra of measurable operators with respect to (\mathcal{N}, ν). The topology of $L_0(\mathcal{N})$ is determined by the convergence in measure. The trace ν can be extended to the positive cone $L_0^+(\mathcal{N})$ of $L_0(\mathcal{N})$:

$$\nu(x) = \int_0^\infty \lambda d\nu(E_\lambda(x)),$$

where $x = \int_0^\infty \lambda dE_\lambda(x)$ is the spectral decomposition of x. Given $0 < p < \infty$, let

$$L_p(\mathcal{N}) = \{ x \in L_0(\mathcal{N}) : \nu(|x|^p)^{\frac{1}{p}} < \infty \}.$$

We define

$$\|x\|_p = \nu(|x|^p)^{\frac{1}{p}}, \quad x \in L_p(\mathcal{N}).$$

Then $(L_p(\mathcal{N}), \|\|_p)$ is a Banach (or quasi-Banach for $p < 1$) space. This is the noncommutative L_p-space associated with (\mathcal{N}, ν), denoted by $L_p(\mathcal{N}, \nu)$ or simply by $L_p(\mathcal{N})$. As usual, we set $L_\infty(\mathcal{N}, \nu) = \mathcal{N}$ equipped with the operator norm.

For $x \in L_0(\mathcal{N})$ we define

$$\lambda_s(x) = \tau(e_{s,\infty}^+(|x|)) \ (s > 0) \quad \text{and} \quad \mu_s(x) = \inf \{ s > 0 : \lambda_s(x) \leq t \} \ (t > 0),$$

where $e_{s,\infty}^+(|x|) = e_{(s,\infty)}(|x|)$ is the spectral projection of $|x|$ associated with the interval (s, ∞). The function $s \mapsto \lambda_s(x)$ is called the distribution function of x and $\mu_s(x)$ is the generalized singular number of x. We will denote simply by $\lambda(x)$ and $\mu(x)$ the functions $s \mapsto \lambda_s(x)$ and $t \mapsto \mu_t(x)$, respectively. It is easy to check that both are decreasing and continuous from the right on $(0, \infty)$. For further information we refer the reader to [15].

For $0 < p < \infty$, we have the Kolmogorov inequality

$$\lambda_s(x) \leq \frac{\|x\|_p}{s^{p-1}}, \quad \forall s > 0,$$

for any $x \in L_p(\mathcal{N})$. If x, y in $L_0(\mathcal{N})$, then

$$\lambda_s(x + y) \leq \lambda_s(x) + \lambda_s(y), \quad \forall s > 0.$$

Let Φ be an Orlicz function on $[0, \infty)$, i.e., a continuous increasing and convex function satisfying $\Phi(0) = 0$ and $\lim_{t \to \infty} \Phi(t) = \infty$. Recall that Φ is said to satisfy the Δ_2-condition if there is a constant C such that $\Phi(2t) \leq C\Phi(t)$ for all $t > 0$. In this case, we write $\Phi \in \Delta_2$. It is easy to check that $\Phi \in \Delta_2$ if and only if for any $a > 0$ there is a constant $C_a > 0$ such that $\Phi(at) \leq C_a \Phi(t)$ for all $t > 0$.

For any $x \in L_0(\mathcal{N})$, by means of functional calculus applied to the spectral decomposition of $|x|$, we have

$$\nu(\Phi(|x|)) = \int_0^\infty \lambda_s(|x|) d\Phi(s) = \int_0^\infty \Phi(\mu_t(x)) dt,$$

(see e.g. [15]). Recall that for any $x, y \in L_0(\mathcal{N})$ there exist two partial isometries $u, v \in \mathcal{N}$ such that

$$|x + y| \leq u^*|x|u + v^*|y|v,$$

(cf. [1]). Then, we have

$$\nu(\Phi(|\alpha x + (1 - \alpha)y|)) \leq \alpha \nu(\Phi(|x|)) + (1 - \alpha)\nu(\Phi(|y|))$$

for any $0 \leq \alpha \leq 1$ and $x, y \in L_0(\mathcal{N})$. In addition, if $\Phi \in \Delta_2$, then

$$\nu(\Phi(|x + y|)) \leq C\Phi[\nu(\Phi(|x|)) + \nu(\Phi(|y|))].$$

We will frequently use these two inequalities in what follows.
We will work with some standard indices associated to an Orlicz function. Given an Orlicz function \(\Phi \), let

\[
M(t, \Phi) = \sup_{s > 0} \frac{\Phi(ts)}{\Phi(s)}, \quad t > 0.
\]

Define

\[
p_\Phi = \lim_{t \to 0^+} \frac{\log M(t, \Phi)}{\log t}, \quad q_\Phi = \lim_{t \to \infty} \frac{\log M(t, \Phi)}{\log t}.
\]

Note the following properties:

1. \(1 \leq p_\Phi \leq q_\Phi \leq \infty \).
2. The following characterizations of \(p_\Phi \) and \(q_\Phi \) hold

\[
p_\Phi = \sup \left\{ p > 0 : \int_0^t s^{-p} \Phi(s) \frac{ds}{s} = O(t^{-p} \Phi(t)), \quad \forall t > 0 \right\};
\]

\[
q_\Phi = \inf \left\{ q > 0 : \int_0^\infty s^{-q} \Phi(s) \frac{ds}{s} = O(t^{-q} \Phi(t)), \quad \forall t > 0 \right\}.
\]

3. \(\Phi \in \Delta_2 \) if and only if \(q_\Phi < \infty \), or equivalently, \(\sup_{t > 0} t \Phi'(t)/\Phi(t) < \infty \). \(\Phi(0) \) is defined for each \(t > 0 \) except for a countable set of points in which we take \(\Phi'(t) \) as the derivative from the right.

See [31, 32] for more information on Orlicz functions and Orlicz spaces.

For an Orlicz function \(\Phi \), the noncommutative Orlicz space \(L_\Phi(\mathcal{N}) \) is defined as the space of all measurable operators \(x \) with respect to \((\mathcal{N}, \nu) \) such that

\[
\nu\left(\int \frac{\Phi\left(\frac{|x|}{c} \right)}{c} \right) < \infty
\]

for some \(c > 0 \). The space \(L_\Phi(\mathcal{N}) \), equipped with the norm

\[
\|x\|_\Phi = \inf \left\{ c > 0 : \nu\left(\Phi\left(\frac{|x|}{c} \right) \right) < 1 \right\},
\]

is a Banach space. If \(\Phi(t) = t^p \) with \(1 \leq p < \infty \) then \(L_\Phi(\mathcal{N}) = L_p(\mathcal{N}) \). Note that if \(\Phi \in \Delta_2 \), then for \(x \in L_0(\mathcal{N}), \nu(\Phi(x)) < \infty \) if and only if \(x \in L_\Phi(\mathcal{N}) \). Noncommutative Orlicz spaces are symmetric spaces of measurable operators as defined in [13, 43].

Let \(a = (a_n) \) be a finite sequence in \(L_\Phi(\mathcal{N}) \). We define

\[
\|a\|_{L_\Phi(\mathcal{N}, \ell_2^2)} = \left\| \left(\sum_n |a_n|^2 \right)^{\frac{1}{2}} \right\|_\Phi \quad \text{and} \quad \|a\|_{L_\Phi(\mathcal{N}, \ell_2^2)} = \left\| \left(\sum_n |a_n|^2 \right)^{\frac{1}{2}} \right\|_\Phi,
\]

respectively. This gives two norms on the family of all finite sequences in \(L_\Phi(\mathcal{N}) \) (see [3] for details). The corresponding completion \(L_\Phi(\mathcal{N}, \ell_2^2) \) is a Banach space. It is clear that a sequence \(a = (a_n)_{n \geq 0} \) in \(L_\Phi(\mathcal{N}) \) belongs to \(L_\Phi(\mathcal{N}, \ell_2^2) \) if and only if

\[
\sup_{n \geq 0} \left(\sum_{k=0}^{\infty} |a_k|^2 \right)^{\frac{1}{2}} < \infty.
\]

If this is the case, \(\left(\sum_{k=0}^{\infty} |a_k|^2 \right)^{\frac{1}{2}} \) can be appropriately defined as an element of \(L_\Phi(\mathcal{N}) \). Similarly, \(\| \cdot \|_{L_\Phi(\mathcal{N}, \ell_2^2)} \) is also a norm on the family of all finite sequence in \(L_\Phi(\mathcal{N}) \), and the corresponding completion \(L_\Phi(\mathcal{N}, \ell_2^2) \) is a Banach space, which is isometric to the row subspace of \(L_\Phi(\mathcal{N} \otimes \mathcal{B}(\ell^2)) \) consisting of matrices whose nonzero entries lie only in the first row. Observe that the column and row subspaces of \(L_\Phi(\mathcal{N} \otimes \mathcal{B}(\ell^2)) \) are 1-complemented by Theorem 3.4 in [14].

In what follows, unless otherwise specified, we always denote by \(\Phi \) an Orlicz function.

2.2 Noncommutative martingales

Let \(\mathcal{M} \) be a finite von Neumann algebra with a normalized normal faithful trace \(\tau \). Let \((\mathcal{M}_n)_{n \geq 0} \) be an increasing sequence of von Neumann subalgebras of \(\mathcal{M} \) such that \(\cup_{n \geq 0} \mathcal{M}_n \) generates \(\mathcal{M} \) (in the \(w^* \)-topology). \((\mathcal{M}_n)_{n \geq 0} \) is called a filtration of \(\mathcal{M} \). The restriction of \(\tau \) to \(\mathcal{M}_n \) is still denoted by \(\tau \). Let \(\mathcal{E}_n = \mathcal{E}(\cdot | \mathcal{M}_n) \) be the conditional expectation of \(\mathcal{M} \) with respect to \(\mathcal{M}_n \). Then \(\mathcal{E}_n \) is a norm 1 projection of \(L_\Phi(\mathcal{M}) \) onto \(L_\Phi(\mathcal{M}_n) \) (cf. [14, Theorem 3.4]) and \(\mathcal{E}_n(x) \geq 0 \) whenever \(x \geq 0 \).
A noncommutative L_{Φ}-martingale with respect to $(\mathcal{M}_n)_{n \geq 0}$ is a sequence $x = (x_n)_{n \geq 0}$ such that $x_n \in L_{\Phi}(\mathcal{M}_n)$ and

$$E_n(x_{n+1}) = x_n$$

for any $n \geq 0$. Let $\|x\|_{\Phi} = \sup_{n \geq 0} \|x_n\|_{\Phi}$. If $\|x\|_{\Phi} < \infty$, then x is said to be a bounded L_{Φ}-martingale.

Remark 2.1. Let \mathcal{M} be a semifinite von Neumann algebra with a semifinite normal faithful trace τ. Let $(\mathcal{M}_n)_{n \geq 0}$ be a filtration of \mathcal{M} such that the restriction of τ to each \mathcal{M}_n is still semifinite. Then we can define noncommutative martingales with respect to $(\mathcal{M}_n)_{n \geq 0}$. All results on noncommutative martingales that will be presented below can be extended to this semifinite setting.

Let x be a noncommutative martingale. The martingale difference sequence of x, denoted by $dx = (dx_n)_{n \geq 0}$, is defined as

$$dx_0 = x_0, \quad dx_n = x_n - x_{n-1}, \quad n \geq 1.$$

Set

$$S_n^C(x) = \left(\sum_{k=0}^{n} |dx_k|^2 \right)^{\frac{1}{2}} \quad \text{and} \quad S_n^R(x) = \left(\sum_{k=0}^{n} |dx^*_k|^2 \right)^{\frac{1}{2}}.$$

By the preceding discussion, dx belongs to $L_{\Phi}(\mathcal{M}, \ell_2^C)$ (resp. $L_{\Phi}(\mathcal{M}, \ell_2^R)$) if and only if $(S_n^C(x))_{n \geq 0}$ (resp. $(S_n^R(x))_{n \geq 0}$) is a bounded sequence in $L_{\Phi}(\mathcal{M})$; in this case,

$$S_n^C(x) = \left(\sum_{k=0}^{\infty} |dx_k|^2 \right)^{\frac{1}{2}} \quad \text{and} \quad S_n^R(x) = \left(\sum_{k=0}^{\infty} |dx^*_k|^2 \right)^{\frac{1}{2}}$$

are elements in $L_{\Phi}(\mathcal{M})$. These are noncommutative analogues of the usual square functions in the commutative martingale theory. It should be pointed out that the two sequences $S_n^C(x)$ and $S_n^R(x)$ may not be bounded in $L_{\Phi}(\mathcal{M})$ at the same time.

We define $\mathcal{H}_{\Phi}^C(\mathcal{M})$ (resp. $\mathcal{H}_{\Phi}^R(\mathcal{M})$) to be the space of all L_{Φ}-martingales such that $dx \in L_{\Phi}(\mathcal{M}, \ell_2^C)$ (resp. $dx \in L_{\Phi}(\mathcal{M}, \ell_2^R)$), equipped with the norm

$$\|x\|_{\mathcal{H}_{\Phi}^C(\mathcal{M})} = \|dx\|_{L_{\Phi}(\mathcal{M}, \ell_2^C)} \quad \text{(resp.} \quad \|x\|_{\mathcal{H}_{\Phi}^R(\mathcal{M})} = \|dx\|_{L_{\Phi}(\mathcal{M}, \ell_2^R)})$$

$\mathcal{H}_{\Phi}^C(\mathcal{M})$ and $\mathcal{H}_{\Phi}^R(\mathcal{M})$ are Banach spaces. Note that if $x \in \mathcal{H}_{\Phi}^C(\mathcal{M})$,

$$\|x\|_{\mathcal{H}_{\Phi}^C(\mathcal{M})} = \sup_{n \geq 0} \|S_n^C(x)\|_{L_{\Phi}(\mathcal{M})} = \|S^C(x)\|_{L_{\Phi}(\mathcal{M})}.$$

Similar equalities hold for $\mathcal{H}_{\Phi}^R(\mathcal{M})$.

Now, we define the Orlicz-Hardy spaces of noncommutative martingales as follows: If $q_{\Phi} < 2$, then

$$\mathcal{H}_{\Phi}(\mathcal{M}) = \mathcal{H}_{\Phi}^C(\mathcal{M}) + \mathcal{H}_{\Phi}^R(\mathcal{M}),$$

equipped with the norm

$$\|x\| = \inf \left\{ \|y\|_{\mathcal{H}_{\Phi}^C(\mathcal{M})} + \|z\|_{\mathcal{H}_{\Phi}^R(\mathcal{M})} : x = y + z, \quad y \in \mathcal{H}_{\Phi}^C(\mathcal{M}), \quad z \in \mathcal{H}_{\Phi}^R(\mathcal{M}) \right\}.$$

If $2 \leq p_{\Phi}$,

$$\mathcal{H}_{\Phi}(\mathcal{M}) = \mathcal{H}_{\Phi}^C(\mathcal{M}) \cap \mathcal{H}_{\Phi}^R(\mathcal{M}),$$

equipped with the norm

$$\|x\| = \max \left\{ \|x\|_{\mathcal{H}_{\Phi}^C(\mathcal{M})}, \quad \|x\|_{\mathcal{H}_{\Phi}^R(\mathcal{M})} \right\}.$$

We refer to [3] for more information on $\mathcal{H}_{\Phi}(\mathcal{M})$.
2.3. The space \(L_p(\mathcal{M}; \ell^\infty) \). Given \(1 \leq p < \infty \), recall that \(L_p(\mathcal{M}; \ell^\infty) \) is defined as the space of all sequences \((x_n)_{n \geq 1}\) in \(L_p(\mathcal{M})\) for which there exist \(a, b \in L_{2p}(\mathcal{M})\) and a bounded sequence \((y_n)_{n \geq 1}\) in \(\mathcal{M} \) such that \(x_n = ay_n b \) for all \(n \geq 1 \). For such a sequence, set

\[
\| (x_n)_{n \geq 1} \|_{L_p(\mathcal{M}; \ell^\infty)} := \inf \left\{ \|a\|_{2p} \sup_n \|y_n\|_\infty \|b\|_{2p} \right\},
\]

where the infimum runs over all possible factorizations of \((x_n)_{n \geq 1}\) as above. This is a norm and \(L_p(\mathcal{M}; \ell^\infty) \) is a Banach space. These spaces were first introduced by Pisier [35] in the case when \(\mathcal{M} \) is hyperfinite and by Junge [18] in the general case. It is easy to check that

\[
\| (x_n)_{n \geq 1} \|_{L_p(\mathcal{M}; \ell^\infty)} = \inf \left\{ \frac{1}{2} \left(\|a\|_{2p}^2 + \|b\|_{2p}^2 \right) \sup_n \|y_n\|_\infty \right\},
\]

the infimum taken over the same parameters as above.

As in [24], we usually write

\[
\| \sup_n^+ x_n \|_p = \| (x_n)_{n \geq 1} \|_{L_p(\mathcal{M}; \ell^\infty)}.
\]

We warn the reader that this suggestive notation should be treated with care. It is used for possibly nonpositive operators and

\[
\| \sup_n^+ x_n \|_p \neq \| \sup_n^+ |x_n| \|_p
\]

in general. However it has an intuitive description in the positive case, as observed in [24, p.329]: A positive sequence \((x_n)_{n \geq 1}\) of \(L_p(\mathcal{M})\) belongs to \(L_p(\mathcal{M}; \ell^\infty)\) if and only if there exists a positive \(a \in L_p(\mathcal{M})\) such that \(x_n \leq a \) for any \(n \geq 1 \) and in this case,

\[
\| \sup_n^+ x_n \|_p = \inf \left\{ \|a\|_p : a \in L_p(\mathcal{M}), x_n \leq a, \forall n \geq 1 \right\}.
\]

In particular, it was proved in [24] that the spaces \(L_p(\mathcal{M}; \ell^\infty)\) for all \(1 \leq p \leq \infty \) form interpolation scales with respect to complex interpolation. However, this result is no longer true for the real interpolation. This is one of the difficulties one will encounter for dealing with Marcinkiewicz type theorems on maximal functions in the noncommutative setting.

3. NONCOMMUTATIVE MOMENT INTERPOLATION

In this section, we will establish a noncommutative moment Marcinkiewicz-type interpolation theorem, which plays a crucial role in the proofs of our main results in the next section.

To this end, we introduce the following definition.

Definition 3.1. Let \(1 \leq p_0 < p_1 \leq \infty \). Let \(S = (S_n)_{n \geq 1} \) be a sequence of maps from \(L_{p_0}^+(\mathcal{M}) + L_{p_1}^+(\mathcal{M}) \to L_{0}^+(\mathcal{M}) \).

1. \(S \) is said to be subadditive, if for any \(n \geq 1 \),

\[
S_n(x + y) \leq S_n(x) + S_n(y), \quad \forall x, y \in L_{p_0}^+(\mathcal{M}) + L_{p_1}^+(\mathcal{M}).
\]

2. \(S \) is said to be of weak type \((p, p)\) \((p_0 \leq p < p_1)\) if there is a positive constant \(C \) such that for any \(x \in L_p^+(\mathcal{M}) \) and any \(\lambda > 0 \) there exists a projection \(e \in \mathcal{M} \) such that

\[
\tau(e^\perp) \leq \left(\frac{C \| x \|_p}{\lambda} \right)^p \quad \text{and} \quad eS_n(x)e \leq \lambda, \forall n \geq 1.
\]

3. \(S \) is said to be of type \((p, p)\) \((p_0 \leq p \leq p_1)\) if there is a positive constant \(C \) such that for any \(x \in L_p^+(\mathcal{M}) \) there exists \(a \in L_p^+(\mathcal{M}) \) satisfying

\[
\|a\|_p \leq C \| x \|_p \quad \text{and} \quad S_n(x) \leq a, \forall n \geq 1.
\]

In other words, \(S \) is of type \((p, p)\) if and only if \(\|S(x)\|_{L_p(\mathcal{M}; \ell^\infty)} \leq C \| x \|_p \) for all \(x \in L_p^+(\mathcal{M}) \).

This definition of subadditive operators in the noncommutative setting is due to Junge and Xu [24], who proved a noncommutative analogue of the classical Marcinkiewicz interpolation theorem as follows.
Theorem 3.1. (cf. [24, Theorem 3.1]) Let $1 \leq p_0 < p_1 \leq \infty$. Let $S = (S_n)_{n \geq 1}$ be a sequence of maps from $L^{p_0}_{\theta} (\mathcal{M}) + L^{p_1}_{\theta} (\mathcal{M}) \rightarrow L^0_{\theta} (\mathcal{M})$. Assume that S is subadditive. If S is of weak type (p_0, p_0) with constant C_0 and of type (p_1, p_1) with constant C_1, then for any $p_0 < p < p_1$, S is of type (p, p) with constant C_p satisfying

$$C_p \leq C C_0^{1-\theta} C_1^\theta \left(\frac{1}{p_0} - \frac{1}{p} \right)^{-2}$$

where θ is determined by $1/p = (1 - \theta)/p_0 + \theta/p_1$ and C is an absolute constant.

To state our result on noncommutative integral inequalities, we need more notations.

Definition 3.2. Let Φ be an Orlicz function. Let (x_n) be a sequence in $L^p_{\Phi} (\mathcal{M})$. We define

$$\tau \Phi (\sup_n x_n) = \inf \left\{ \frac{1}{2} \left(\tau [\Phi (|a|^2)] + \tau [\Phi (|b|^2)] \right) \sup_n \|y_n\|_\infty \right\}$$

where the infimum is taken over all decompositions $x_n = ay_n, b$ for $a, b \in L^0_{\Phi} (\mathcal{M})$ and $(y_n) \subset L^\infty_{\Phi} (\mathcal{M})$ with $|a|^2, |b|^2 \in L^p_{\Phi} (\mathcal{M})$, and $\|y_n\|_\infty \leq 1$ for all n.

Remark 3.1. This definition is motivated by (2.5), which is a key point of this paper. A direct generalization of the original form (2.4) seems to be invalid for the moment form of maximal functions in the noncommutative setting.

To understand $\tau \Phi (\sup_n x_n)$, let us consider a positive sequence $x = (x_n)$ in $L^p_{\Phi} (\mathcal{M})$. We then note that

$$\tau \Phi (\sup_n x_n) \leq \tau \Phi (a),$$

if $a \in L^p_{\Phi} (\mathcal{M})$ such that $x_n \leq a$ for all n. Indeed, for every n there exists a contraction u_n such that $x_n \leq u_n a$ and hence $x_n = a \|u_n^{-1} a\|^2$. This concludes (3.2). Moreover, the converse to (3.2) also holds true provided $\Phi \in \Delta_2$ (see Proposition 3.1 below).

We collect some basic properties of the quantity $\tau \Phi (\sup_n x_n)$.

Proposition 3.1. Let Φ be an Orlicz function satisfying the Δ_2-condition.

1. If $x = (x_n)$ is a positive sequence in $L^p_{\Phi} (\mathcal{M})$, then

$$\tau \Phi (\sup_n x_n) \approx \inf \left\{ \tau \Phi (a) : a \in L^p_{\Phi} (\mathcal{M}) \text{ such that } x_n \leq a, \forall n \geq 1 \right\}.$$

2. For any two sequences $x = (x_n), y = (y_n)$ in $L^p_{\Phi} (\mathcal{M})$ one has

$$\tau \Phi (\sup_n x_n + y_n) \leq \tau \Phi (\sup_n x_n) + \tau \Phi (\sup_n y_n).$$

Proof. (1). Let (x_n) be a sequence of positive elements in $L^p_{\Phi} (\mathcal{M})$. Suppose $x_n = ay_n b$ with $|a|^2, |b|^2 \in L^p_{\Phi} (\mathcal{M})$ and $\sup_n \|y_n\|_\infty \leq 1$. Without loss of generality, we can assume $a, b \geq 0$. Set $c = (a^2 + b^2)^{1/2}$. Then there exist two partial isometries $u, v \in \mathcal{M}$ such that

$$a = cu \quad \text{and} \quad b = vc,$$

i.e., $x_n = cu_n vc$ for all n, and $\sup_n \|y_n v\|_\infty \leq 1$. Thus, $x_k \leq c^2 \sup_n \|y_n\|_\infty$ for all k. By the Δ_2-condition, one has

$$\tau [\Phi (c^2 \sup_n \|y_n\|_\infty)] \leq \sup \|y_n\|_\infty \tau [\Phi (c^2)]$$

$$\leq C \sup_n \|y_n\|_\infty \frac{1}{2} \left(\tau [\Phi (|a|^2)] + \tau [\Phi (|b|^2)] \right).$$

Combining this with (3.2) completes the proof of (1).

(2). We have the following useful description of $\tau \Phi (\sup_n x_n)$:

$$\tau \Phi (\sup_n x_n) = \inf \left\{ \frac{1}{2} \left(\tau [\Phi (|a|^2)] + \tau [\Phi (|b|^2)] \right) \right\},$$

where the infimum is taken over all decompositions $x_n = ay_n b$ for $a, b \in L^0_{\Phi} (\mathcal{M})$ and $(y_n) \subset L^\infty_{\Phi} (\mathcal{M})$ with $|a|^2, |b|^2 \in L^p_{\Phi} (\mathcal{M})$, and $\sup_n \|y_n\|_\infty = 1$. Indeed, for a decomposition $x_n = ay_n b$
with \(\sup_n \|y_n\|_\infty \leq 1 \), we set \(\tilde{a} = \lambda^{1/2}a \), \(\tilde{b} = \lambda^{1/2}b \), and \(\tilde{y}_n = y_n/\lambda \) with \(\lambda = \sup_n \|y_n\|_\infty \). Then
\(x_n = \tilde{a}\tilde{y}_n\tilde{b} \) for all \(n \) and \(\sup_n \|\tilde{y}_n\|_\infty = 1 \), so that

\[
\tau[\Phi(|a|^2)] + \tau[\Phi(|b|^2)] \leq \lambda \left(\tau[\Phi(|\tilde{a}|^2)] + \tau[\Phi(|\tilde{b}|^2)] \right).
\]

This concludes (3.3).

Now, to obtain the required inequality, it suffices to repeat the proof of the first part of Theorem 3.2 in [10] through using (3.3). We omit the details. \(\square \)

Remark 3.2. For a sequences \(x = (x_n) \) in \(L_\Phi(M) \), set

\[
\|\sup_n^+ x_n\|_\Phi := \inf \left\{ \lambda > 0 : \tau[\Phi(\sup_n^+ x_n/\lambda)] \leq 1 \right\}.
\]

One can check that \(\|\sup_n^+ x_n\|_\Phi \) is a norm in \(x = (x_n) \). Define

\[
L_\Phi(M; \ell^\infty) := \left\{ (x_n) \subset L_\Phi(M) : \tau[\Phi(\sup_n^+ x_n/\lambda)] < \infty \text{ for some } \lambda > 0 \right\},
\]

equipped with \(\|(x_n)\|_{L_\Phi(M; \ell^\infty)} = \|\sup_n^+ x_n\|_\Phi \). Then \(L_\Phi(M; \ell^\infty) \) is a Banach space. For \(1 \leq p < \infty \), if \(\Phi(t) = t^p \) then \(L_\Phi(M; \ell^\infty) = L_p(M; \ell^\infty) \), which was studied extensively in [24]. The details are left to the interested readers.

We are ready to state and prove the main result of this section.

Theorem 3.2. Let \(S = (S_n)_{n \geq 0} \) be a sequence of maps from \(L_1^+(M) + L_\infty^+(M) \mapsto L_0^+(M) \). Let \(1 \leq p < \infty \). Assume that \(S \) is subadditive. If \(S \) is simultaneously of weak type \((p, p)\) with constant \(C_p \) and of type \((\infty, \infty)\) with constant \(C_\infty \), then for an Orlicz function \(\Phi \) with \(p < p_\Phi \leq q_\Phi < \infty \), there exists a positive constant \(C \) depending only on \(C_p, C_\infty, p_\Phi \) and \(q_\Phi \), such that

\[
\tau[\Phi(\sup_n^+ S_n(x))] \leq C \tau[\Phi(x)],
\]

for all \(x \in L_\Phi^+(M) \).

Proof. Since \(S \) is of weak type \((p, p)\) with constant \(C_p \), for any \(x \in L_p^+(M) \) and each \(\lambda > 0 \) there is a projection \(q^{(\lambda)} \in M \) such that

\[
\tau(1 - q^{(\lambda)}) \leq \frac{C_p^p \tau(|x|^p)}{\lambda^p} \quad \text{and} \quad q^{(\lambda)} S_n(x)q^{(\lambda)} \leq \lambda q^{(\lambda)}, \quad \forall n \geq 1.
\]

For any \(k \in \mathbb{Z} \) we set

\[
q_k = \bigwedge_{j \geq k} q^{(2^j)} \quad \text{and} \quad p_k = q_k - q_{k-1}.
\]

We claim the following two facts.

(i) \(q_k S_n(x)q_k \leq 2^k q_k \) and

\[
\tau(1 - q_k) \leq \frac{C_p^p}{1 - 2^{-p}} \frac{\tau(x^p)}{2^{kp}}, \quad \forall k \in \mathbb{Z}.
\]

(ii) Suppose in addition, that \(x \in M \). Fix an integer \(N \) and a sequence \((\alpha_k)_{k=-\infty}^N \) of positive numbers for which \(\sum_{k=0}^{2^k} \alpha_k < \infty \). Then the operator

\[
a = 2C_\infty \|x\|(1 - q_N) + 2 \left(\sum_{k \leq N} \frac{2^k}{\alpha_k} \right) \sum_{k \leq N} \alpha_k p_k.
\]

is a majorant of \(S(x) \), i.e., \(S_n(x) \leq a \) for all \(n \geq 1 \).

To prove these two statements, note that

\[
\tau(1 - q_k) \leq \sum_{j \geq k} \tau(1 - q^{(2^j)}) \leq \frac{C_p^p \tau(x^p)}{1 - 2^{-p}} \sum_{j \geq k} 2^{-jp} = \frac{C_p^p}{1 - 2^{-p}} \frac{\tau(x^p)}{2^{kp}},
\]

for all \(k \geq 1 \).
which proves (3.5). On the other hand, for a fixed \(\xi \in \mathbb{H} \) we have

\[
(q_N S_n(x)q_N \xi, \xi) = \left(\sum_{k,m \leq N} p_k S_n(x) p_m \xi, \xi \right)
\]

\[
\leq \sum_{k,m \leq N} \|p_k S_n(x) p_m\| \|p_k \xi\| \|p_m \xi\|
\]

\[
\leq \sum_{k,m \leq N} \|p_k S_n(x) p_k\| \|p_m S_n(x) p_m\| \|p_k \xi\| \|p_m \xi\|
\]

\[
= \left(\sum_{k \leq N} \|p_k S_n(x) p_k\| \|p_k \xi\| \right)^2.
\]

Since \(p_k S_n(x) p_k \leq 2^k p_k \) and so \(\|p_k S_n(x) p_k\| \leq 2^k \), one concludes that

\[
(q_N S_n(x)q_N \xi, \xi) \leq \left(\sum_{k \leq N} \frac{2^k}{\alpha_k} \right) \sum_{k \leq N} \alpha_k \|p_k \xi\|^2 = (a_N \xi, \xi),
\]

where \(a_N = \left(\sum_{k \leq N} \frac{2^k}{\alpha_k} \right) \sum_{k \leq N} \alpha_k p_k \). Note that

\[
S_n(x) \leq 2q_N S_n(x)q_N + 2(1 - q_N)S_n(x)(1 - q_N).
\]

Thus, \(a \) is a majorant of \(S(x) \).

Take \(x \in L^+_c(\mathcal{M}) \) and introduce

\[
\tilde{x} = \sum_{i \in \mathbb{Z}} 2^{i+1} E_{(2^i, 2^{i+1})}(x) = \sum_{i \in \mathbb{Z}} 2^i e_i,
\]

where \(e_i = E_{(q^i, \infty)}(x) \). For a fixed \(e_i \), we will construct a suitable majorant of the sequence \(S(e_i) = (S_n(e_i))_{n \geq 1} \). To this end, we take \(p < q < p_N \) and set

\[
\delta = \frac{1}{2} \left(\frac{1}{p} + \frac{1}{q} \right) \quad \text{and} \quad \alpha_k = h(2^{(N-k)p}),
\]

where \(h(t) = \min\{t^{-\delta}, 1\} \) and \(N \) is the largest integer satisfying

\[
\int_0^1 \frac{1}{h(t^{-\delta})} dt \leq \frac{C_\infty}{2^{N+1}}.
\]

By (3.6) we obtain the corresponding majorant of the sequence \(S(e_i) = (S_n(e_i))_{n \geq 1} \), denoted by \(a_i \).

We claim that there exists a constant \(C > 0 \) depending only on \(C_p, C_\infty, p \) and \(q \) such that

\[
\mu(t) \leq \frac{C h \left(\frac{t}{\tau(e_i)} \right)}{t} \quad \text{and} \quad \tilde{\mu}(t) \leq \frac{C}{1 - \delta} h \left(\frac{t}{\tau(e_i)} \right), \quad \forall t > 0,
\]

where \(\tilde{\mu}(x) = \frac{1}{I_0^t} \mu_s(x) ds \) for any \(x \in L_0(\mathcal{M}) \) and all \(t > 0 \).

Indeed, an immediate computation yields that

\[
\mu(t) \leq 2C_\infty \left(\chi_{[0, \tau(1 - q N)]} + \sum_{k \leq N} 2^{-\delta(N-k)p} \chi_{(\tau(1 - q k), \tau(1 - q k - 1))} \right).
\]

By (3.5) one has

\[
\mu(t) \leq 2C_\infty \left(\chi_{[0, \tau(1 - q N)]} + \sum_{k \leq N} 2^{-\delta(N-k)p} \chi_{(\tau(1 - q k), \tau(1 - q k + 1))} \right),
\]

where \(C'_p = C_p^p/(1 - 2^{-p}) \). Since for any \(t \in (C'_p 2^{-kp} \tau(e_i), C'_p 2^{-(k+1)p} \tau(e_i)) \),

\[
h(2^{(N-k)p}) \leq h \left(\frac{2^{(N-k)p}t}{C'_p \tau(e_i)} \right),
\]
we follow that
\[
\mu_t(a_i) \leq 2C_\infty \left(\chi_{[0,C'_0]}(2^{-pN_t} \tau(\epsilon_i)) (t) + h \left(2^{-p} \frac{2pN_t}{C'_0 \tau(\epsilon_i)} \chi_{(C'_0,2^{-pN_t} \tau(\epsilon_i))} (t) \right) \right) \\
= 2C_\infty \left[\chi_{[0,1]} \left(\frac{2pN_t}{C'_0 \tau(\epsilon_i)} \right) + h \left(2^{-p} \frac{2pN_t}{C'_0 \tau(\epsilon_i)} \chi_{(1,\infty)} \left(\frac{2pN_t}{C'_0 \tau(\epsilon_i)} \right) \right) \right] \\
= 2C_\infty \left(2^{-p} \frac{2pN_t}{C'_0 \tau(\epsilon_i)} \right) \\
\leq Ch \left(\frac{t}{\tau(\epsilon_i)} \right).
\]

This proves the first inequality in (3.7), from which the second one follows.

Since \(x \mapsto \tilde{\mu}(x) \) is sublinear, we have
\[
\tau \left[\Phi \left(\sum_{i \in \mathbb{Z}} 2^i a_i \right) \right] \leq \int_0^\infty \tilde{\mu}_t \left(\sum_{i \in \mathbb{Z}} 2^i a_i \right) dt \\
\leq \int_0^\infty \Phi \left(\sum_{i \in \mathbb{Z}} 2^i \tilde{\mu}_t(a_i) \right) dt \\
\leq \int_0^\infty \Phi \left(\sum_{i \in \mathbb{Z}} 2^i h \left(\frac{t}{\tau(\epsilon_i)} \right) \right) dt \\
= \int_0^\infty \Phi \left[\int_0^\infty \sum_{i \in \mathbb{Z}} 2^i \chi_{(0,\tau(\epsilon_i))} \left(\frac{t}{s} \right) (-h'(s)) ds \right] dt.
\]

Note that \(\mu_t(x) = \sum_{i \in \mathbb{Z}} \tilde{\mu}_t(2^i \chi_{(0,\tau(\epsilon_i))}(t)) \) and hence we have
\[
\tau \left[\Phi \left(\sum_{i \in \mathbb{Z}} 2^i a_i \right) \right] \leq \int_0^\infty \tilde{\mu}_t(x)(-h'(s)) ds \right] dt \\
\leq \int_0^\infty \Phi \left[\int_0^\infty \tilde{\mu}_t(x)(-h'(s)) ds \right] dt.
\]

Define \(T : L_1(M) + L_\infty(M) \mapsto L_1(0,\infty) + L_\infty(0,\infty) \) by
\[
(Tx)(t) = \int_0^\infty \tilde{\mu}_t(x)(-h'(s)) ds, \quad \forall t > 0.
\]

Then
\[
\|Tx\|_q \leq \int_0^\infty \|\tilde{\mu}_t(x)(-h'(s)) ds = C_{p,q} \|\tilde{\mu}(x)\|_q \leq C_{p,q} \|x\|_{L_q(M)},
\]
where the last inequality is obtained by the classical Hardy-Littlewood inequality: the mapping \(f \mapsto \frac{1}{t} \int_0^t |f(s)| ds \) is bounded in \(L_q(0,\infty) \) provided \(1 < q \leq \infty \). Also, it is easy to check that \(T \) is of type \((\infty, \infty) \). Thus, by Theorem 2.1 in [3] we conclude that
\[
\tau \left[\Phi \left(\sum_{i \in \mathbb{Z}} 2^i a_i \right) \right] \leq \int_0^\infty \Phi \left[\int_0^\infty \tilde{\mu}_t(x)(-h'(s)) ds \right] dt \lesssim \tau \left[\Phi(x) \right].
\]

Since \(\hat{x} \leq 2x \) and
\[
S_n(x) \leq S_n(\hat{x}) \leq \sum_{i \in \mathbb{Z}} 2^i a_i, \quad \forall n \geq 1,
\]
we conclude (3.4). \(\square \)

Remark 3.3. (1) The classical Marcinkiewicz interpolation theorem has been extended to include Orlicz spaces as interpolation classes by A. Zygmund, A. P. Calderón et al. (cf. e.g. [32]).

The noncommutative moment analogue of this was recently obtained in [3]. Theorem 3.2 can be considered as a noncommutative moment form of the Marcinkiewicz type interpolation theorem for maximal functions.
(2) One could expect that Theorem 3.2 should be valid under the assumption that S is simultaneously of weak type (p_0, p_0) and of type (p_1, p_1) and Φ an Orlicz function with $1 \leq p_0 < p_0 \leq q_0 < p_1 \leq \infty$ (i.e., the case $p_1 < \infty$ is included). At the time of this writing, this question remains open. However, this is indeed the case for the weak type moment of maximal functions (see Theorem 5.1 below).

4. MAIN RESULTS

Let Φ be an Orlicz function. As noted in [3, Remark 1.1], if $1 < p_0 \leq q_0 < \infty$, then for any noncommutative L_Φ-martingale $x = (x_n)$, there exists a unique $x_\infty \in L_\Phi(M)$ such that $x_n = E_n(x_\infty)$ for all n. We simply write $x_\infty = x$ in this case.

Our first main result is the following noncommutative moment Doob inequality, generalizing Junge’s noncommutative Doob inequality [18].

Theorem 4.1. Let \mathcal{M} be a finite von Neumann algebra with a normalized normal faithful trace τ, equipped with a filtration $(\mathcal{M}_n)_{n \geq 0}$ of von Neumann subalgebras of \mathcal{M}. Let Φ be an Orlicz function and $x = (x_n)$ be a noncommutative L_Φ-martingale with respect to (\mathcal{M}_n). If $1 < p_0 \leq q_0 < \infty$, then

$$\tau \left[\Phi \left(\sup_n x_n \right) \right] \leq \tau \left[\Phi \left(|x| \right) \right].$$

Proof. Decomposing an operator into a linear combination of four positive ones, we can assume that $x = (x_n)$ is a positive martingale in $L_\Phi(M)$. Let $S = (\mathcal{E}_n)$. By Cuculescu’s weak type (1, 1) maximal martingale inequality [8], we see that S is of weak type (1, 1). Also, by Junge’s noncommutative Doob inequality in $p = \infty$ we have that S is of type (∞, ∞). Thus, by Theorem 3.2 we conclude that

$$\tau \left[\Phi \left(\sup_n x_n \right) \right] \leq \tau \left[\Phi \left(|x| \right) \right].$$

To prove the converse inequality, consider a decomposition $x_n = ay_n b$ for all n and $\sup_n \|y_n\|_\infty \leq 1$. One has

$$\tau \left[\Phi \left(|x| \right) \right] \leq \int_0^\infty \Phi(\mu_t(x)) dt \leq \sup_n \|y_n\| \int_0^\infty \Phi(\mu_t(|a|b)) dt$$

$$\leq 2 \sup_n \|y_n\| \int_0^\infty \Phi(\mu_t(|a|)\mu_t(|b|)) dt$$

$$\leq 2 \sup_n \|y_n\| \int_0^\infty \frac{1}{2} \left(\mu_t(|a|)^2 + \mu_t(|b|)^2 \right) dt$$

$$\leq 2 \sup_n \|y_n\| \frac{1}{2} \left(\tau \left[\Phi(|a|^2) \right] + \tau \left[\Phi(|b|^2) \right] \right).$$

Thus,

$$\tau \left[\Phi \left(|x| \right) \right] \leq 2\tau \left[\Phi \left(\sup_n x_n \right) \right].$$

This completes the proof. □

Remark 4.1. Let Φ be an Orlicz function. We define the Orlicz maximal space of noncommutative martingales as

$$L_\Phi^{\max}(\mathcal{M}) := \{ x \in L_\Phi(\mathcal{M}) : \|x\|_{L_\Phi^{\max}} = \|\sup_n \mathcal{E}_n(x)\|_{\Phi} < \infty \}.$$

Then, Theorem 4.1 implies that $L_\Phi^{\max}(\mathcal{M}) = L_\Phi(\mathcal{M})$ with equivalent norms provided $1 < p_0 \leq q_0 < \infty$.

As a consequence of Theorem 4.1, we obtain the following noncommutative moment Burkholder-Davis-Gundy inequality.

Theorem 4.2. Let \mathcal{M} be a finite von Neumann algebra with a normalized normal faithful trace τ, equipped with a filtration $(\mathcal{M}_n)_{n \geq 0}$ of von Neumann subalgebras of \mathcal{M}. Let Φ be an Orlicz function, and
let \(x = (x_n)_{n \geq 0} \) be a noncommutative \(L_{\Phi} \)-martingale with respect to \((\mathcal{M}_n)_{n \geq 0} \). If \(1 < p_{\Phi} \leq q_{\Phi} < 2 \), then

\[
\tau \left(\Phi \left[\sup_n^+ x_n \right] \right) \\
\approx \inf \left\{ \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dy_k|^2 \right)^{\frac{1}{2}} \right] \right) + \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dz_k^*|^2 \right)^{\frac{1}{2}} \right] \right) \right\}
\]

(4.2)

where the infimum runs over all decomposition \(x_n = y_n + z_n \) with \(y_n \) in \(\mathcal{H}_{\Phi}^+(\mathcal{M}) \) and \(z_n \) in \(\mathcal{H}_{\Phi}^-(\mathcal{M}) \); and if \(2 < p_{\Phi} \leq q_{\Phi} < \infty \), then

\[
\tau \left(\Phi \left[\sup_n^+ x_n \right] \right) \\
\approx \max \left\{ \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dx_k|^2 \right)^{\frac{1}{2}} \right] \right), \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dx_k^*|^2 \right)^{\frac{1}{2}} \right] \right) \right\}
\]

(4.3)

Remark 4.2. The associated classical case of Theorem 4.2 was originally proved by Burkholder, Davis, and Gundy in [7] (see also [6]). Note that, the classical case holds even if \(p_{\Phi} = 1 \) (e.g. [9]). However, the noncommutative case is surprisingly different. Indeed, it was shown in [23, Corollary 14] that (4.2) does not hold for \(\Phi(t) = t \) in general.

Proof. It is proved in [3] that if \(1 < p_{\Phi} \leq q_{\Phi} < 2 \), then

\[
\tau \left[\Phi(|x|) \right] \approx \inf \left\{ \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dy_k|^2 \right)^{\frac{1}{2}} \right] \right) + \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dz_k^*|^2 \right)^{\frac{1}{2}} \right] \right) \right\}
\]

(4.4)

where the infimum runs over all decomposition \(x_n = y_n + z_n \) with \(y_n \) in \(\mathcal{H}_{\Phi}^+(\mathcal{M}) \) and \(z_n \) in \(\mathcal{H}_{\Phi}^-(\mathcal{M}) \); and if \(2 < p_{\Phi} \leq q_{\Phi} < \infty \), then

\[
\tau \left[\Phi(|x|) \right] \approx \max \left\{ \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dx_k|^2 \right)^{\frac{1}{2}} \right] \right), \tau \left(\Phi \left[\left(\sum_{k=0}^{\infty} |dx_k^*|^2 \right)^{\frac{1}{2}} \right] \right) \right\}
\]

(4.5)

An appeal to (4.1) yields the required inequalities (4.2) and (4.3).

Remark 4.3. We note that there is a gap in the proof of (4.5) in [3], as pointed out to the first two named authors by Q. Xu. This was recently resolved in [12].

Now we turn to the maximal ergodic inequalities. To state the corresponding result, we need some notation.

Let \(\mathcal{M} \) be a semifinite von Neumann algebra with a normal semifinite faithful trace \(\tau \), and let \(L_p(\mathcal{M}) \) be the associated noncommutative \(L_p \)-space. Consider a linear map \(T : \mathcal{M} \mapsto \mathcal{M} \) which may satisfy the following conditions:

I. \(T \) is a contraction on \(\mathcal{M} \), that is, \(\|Tx\| \leq \|x\| \) for all \(x \in \mathcal{M} \).

II. \(T \) is positive, i.e., \(Tx \geq 0 \) if \(x \geq 0 \).

III. \(\tau \circ T \leq \tau \), that is, \(\tau(Tx) \leq \tau(x) \) for all \(x \in L_1(\mathcal{M}) \cap \mathcal{M}_+ \).

IV. \(T \) is symmetric relative to \(\tau \), i.e., \(\tau(Ty^*x) = \tau(y^*Tx) \) for all \(x, y \in L_2(\mathcal{M}) \cap \mathcal{M} \).

Under conditions (I)-(III), \(T \) naturally extends to a contraction on \(L_p(\mathcal{M}) \) for every \(1 \leq p < \infty \). The extension will be still denoted by \(T \).

Theorem 4.3. Let \(\Phi \) be an Orlicz function with \(1 < p_{\Phi} \leq q_{\Phi} < \infty \). If \(T : \mathcal{M} \mapsto \mathcal{M} \) is a linear map satisfying (I) – (III), then

\[
\tau \left(\Phi \left[\sup_n^+ M_n(x) \right] \right) \lesssim \tau(\Phi(|x|)), \quad \forall x \in L_{\Phi}(\mathcal{M}),
\]

(4.6)

where \(M_n := \frac{1}{n+1} \sum_{k=0}^{n} T^k \) for any \(n \geq 1 \). If, in addition, \(T \) satisfies (IV), then

\[
\tau \left(\Phi \left[\sup_n^+ T^n(x) \right] \right) \lesssim \tau(\Phi(|x|)), \quad \forall x \in L_{\Phi}(\mathcal{M}).
\]

(4.7)
The inequality (4.6) is the noncommutative analogue of the classical moment Dunford-Schwartz maximal ergodic inequality for positive contractions, while (4.7) is the noncommutative form of the classical moment Stein maximal inequality for symmetric positive contractions. These results are the generalization of Junge/Xu’s noncommutative Dunford-Schwartz and Stein maximal ergodic inequalities [24]. The proofs of (4.6) and (4.7) are again based on Theorem 3.2.

Proof. Decomposing an operator into a linear combination of four positive ones, we can assume $x \in L^w_p(M)$. Let $S = (M_n)$. Each M_n is considered to be a map on $L^+_1(M) + L^+_0(M)$, positive and additive (and so subadditive too). Yeadon’s weak type $(1,1)$ maximal ergodic inequality in [46] says that S is of weak type $(1,1)$. Also, S is evidently of type (∞, ∞). Then, we deduce (4.6) from Theorem 3.2.

On the other hand, let $S = (T^n)$. Then S is additive and so subadditive. By Theorem 5.1 in [24], S is of type (p,p) for every $1 < p \leq \infty$. An appeal to Theorem 3.2 immediately yields (4.7). □

Let us present two examples illustrating applications of the inequalities obtained above.

Example 4.1. Let $\Phi(t) = t^a \ln(1+t^b)$ with $a > 1$ and $b > 0$. It is easy to check that Φ is an Orlicz function and

$$p_\Phi = a \quad \text{and} \quad q_\Phi = a + b.$$

Thus, both Theorems 4.1 and 4.3 can be applied to this function. Furthermore, if $1 < a < a + b < 2$, then (4.2) holds true; if $a > 2$, then (4.3) is valid. Unfortunately, when $1 < a \leq 2 \leq a + b$, then Theorem 4.2 gives no information.

Example 4.2. Let $\Phi(t) = t^p(1 + c \sin(p \ln t))$ with $p > 1/(1-2c)$ and $0 < c < 1/2$. Then Φ is an Orlicz function and

$$p_\Phi = q_\Phi = p.$$

Therefore, Theorems 4.1 and 4.3 can be applied to this function, and so does Theorem 4.2 except the case $p = 2$.

5. Weak type inequalities

All the results continue to hold if we replace the noncommutative maximal function $\tau[\Phi(\sup_n x_n)]$ by a certain weak maximal function, as considered in [4]. The required modifications are not difficult and left to the interested reader. However, for the sake of convenience, we write the corresponding definitions and results, and some main points of Theorem 5.1. We refer to [4] for noncommutative weak Orlicz spaces and for the terminology used here.

Let Φ be an Orlicz function. For $x \in L^w_p(M)$, we set

$$\|x\|_{\Phi, \infty} = \sup_{t>0} t \Phi [\mu_t(x)].$$

When $\Phi(t) = t^p$, $\|x\|_{\Phi, \infty}$ is just the usual weak L_p-norm $\|x\|_{p, \infty}$.

Definition 5.1. Let (x_n) be a sequence in $L^w_p(M)$. We define $\sup_n x_n \|_{\Phi, \infty}$ by

$$\sup_n x_n \|_{\Phi, \infty} := \inf \left\{ \frac{1}{2} \left(\|a\|^2 \|\Phi, \infty\| + \|b\|^2 \|\Phi, \infty\| \right) \sup_n \|y_n\| \right\}$$

where the infimum is taken over all decompositions $x_n = ay_n b$ for $a, b \in L_0(M)$ and $(y_n) \subset L_\infty(M)$ with $|a|^2, |b|^2 \in L^w_0(M)$, and $\|y_n\|_{\Phi, \infty} \leq 1$ for all n.

Theorem 5.1. Suppose $1 \leq p_0 < p_1 \leq \infty$. Let $S = (S_n)_{n \geq 0}$ be a sequence of maps from $L^+_0(M) + L^+_p(M) \mapsto L^+_0(M)$. Assume that S is subadditive. If S is of weak type (p_0, p_0) with constant C_0 and of type (p_1, p_1) with constant C_1, then for an Orlicz function Φ with $p_0 < a_\Phi \leq b_\Phi < p_1$, there exists a positive constant C depending only on p_0, p_1, C_0, C_1 and Φ, such that

$$\sup_n S_n(x) \|_{\Phi, \infty} \leq C \|x\|_{\Phi, \infty},$$

for all $x \in L^w_\Phi(M)_+$.

Proof. We give the main point of the proof. Indeed, modifying slightly the proof of Theorem 3.1 in [24] we conclude that for \(p_0 < p'_0 < a_\Phi \leq b_\Phi < p'_1 < p_1 \leq \infty \),

\[
\| \sup_n S_n(x) \|_{p'_i, \infty} \leq C_{p'_i} \| x \|_{p'_i, \infty}, \quad i = 0, 1,
\]

that is, for each \(x_i \in L^+_{p'_i}(\mathcal{M}) \) there exists \(a_i \in L^+_{p'_i}(\mathcal{M}) \) such that

\[
(5.3) \quad \| a_i \|_{p'_i, \infty} \leq C \| x_i \|_{p'_i, \infty} \quad \text{and} \quad S_n(x_i) \leq a_i, \quad \forall n \geq 1.
\]

(This can be also obtained by Theorem 5.4 below.)

Now, take \(x \in L^+_w(\mathcal{M}) \). For any \(\alpha > 0 \) let \(x = x_0^n + x_1^n \), where \(x_0^n = xe(\alpha, \infty) \). By (5.3), for \(x_i^n \) there exists a corresponding \(a_i \) (\(i = 0, 1 \)). The remainder of the proof is the same as that of Theorem 4.2 in [4].

\[\Box\]

The following is the weak type moment Doob inequality for noncommutative martingales.

Theorem 5.2. Let \(\mathcal{M} \) be a finite von Neumann algebra with a normalized normal faithful trace \(\tau \), equipped with a filtration \((\mathcal{M}_n) \) of von Neumann subalgebras of \(\mathcal{M} \). Let \(\Phi \) be an Orlicz function and let \(x = (x_n) \) be a noncommutative \(L^\Phi \)-martingale with respect to \((\mathcal{M}_n) \). If \(1 < a_\Phi \leq b_\Phi < \infty \), then

\[
\| \sup_n x_n \|_{\Phi, \infty} \approx \| x \|_{\Phi, \infty}.
\]

Combining this with Theorem 5.8 in [4] and the corresponding result in [12] we have the following weak type moment Burkholder-Davis-Gundy inequality for noncommutative martingales.

Theorem 5.3. Let \(\mathcal{M} \) be a finite von Neumann algebra with a normalized normal faithful trace \(\tau \), equipped with a filtration \((\mathcal{M}_n) \) of von Neumann subalgebras of \(\mathcal{M} \). Let \(\Phi \) be an Orlicz function and let \(x = (x_n)_{n \geq 0} \) be a noncommutative \(L^\Phi \)-martingale with respect to \((\mathcal{M}_n)_{n \geq 0} \). If \(1 < a_\Phi \leq b_\Phi < 2 \), then

\[
\| \sup_n x_n \|_{\Phi, \infty} \approx \inf \left\{ \left(\sum_{k=0}^\infty |dy_k|^2 \right)^{\frac{1}{2}} \| \Phi \|_{\Phi, \infty} \right\} + \left(\sum_{k=0}^\infty |dz_k|^2 \right)^{\frac{1}{2}} \| \Phi \|_{\Phi, \infty},
\]

where the infimum runs over all decomposition \(x_n = y_n + z_n \) with \((y_n) \) in \(L^\Phi_w(\mathcal{M}; \ell^2_\mathbb{C}) \) and \((z_n) \) in \(L^\Phi_w(\mathcal{M}; \ell^2_k) \); and if \(2 < a_\Phi \leq b_\Phi < \infty \), then

\[
\| \sup_n x_n \|_{\Phi, \infty} \approx \left(\sum_{k=0}^\infty |dy_k|^2 \right)^{\frac{1}{2}} \| \Phi \|_{\Phi, \infty} + \left(\sum_{k=0}^\infty |dz_k|^2 \right)^{\frac{1}{2}} \| \Phi \|_{\Phi, \infty}.
\]

The weak type moment analogue of Theorem 4.3 concerning maximal ergodic inequalities is similar and omitted.

Moreover, we can obtain the associated maximal inequalities on noncommutative symmetric spaces. Let \(E \) be a rearrangement invariant (r.i., in short) Banach space and \(E(\mathcal{M}, \tau) \) the associated noncommutative symmetric space. For details on r.i. spaces we refer to [30] and for the theory of noncommutative symmetric spaces to [13, 14, 27, 43].

Theorem 5.4. Let \(S = (S_n)_{n \geq 0} \) be a sequence of maps from \(L^+_1(\mathcal{M}) + L^\infty_w(\mathcal{M}) \mapsto L^+_0(\mathcal{M}) \). Assume that \(S \) is subadditive. Let \(1 \leq p < \infty \). Let \(E \) be a rearrangement invariant space with the upper Boyd index \(p_E > p \). If \(S \) is simultaneously of weak type \((p, p) \) with constant \(C_p \) and of type \((\infty, \infty) \) with constant \(C_\infty \), then there exists a positive constant \(C_E \) depending only on \(C_p, C_\infty, p \) and \(p_E \), such that for any \(x \in E^+(\mathcal{M}, \tau) \) there exists \(a \in E^+(\mathcal{M}, \tau) \) satisfying

\[
\| a \|_{E(\mathcal{M}, \tau)} \leq C_E \| x \|_{E(\mathcal{M}, \tau)} \quad \text{and} \quad S_n(x) \leq a, \quad \forall n \geq 0.
\]
Proof. Indeed, the construction of the majorant of \(S = (S_n(\tilde{x})) \) in the proof for Theorem 3.2 is clearly valid. Hence, we have

\[
\left\| \sum_{i \in \mathbb{Z}} 2^i a_i \right\|_{E(M, \tau)} \lesssim \int_0^\infty \mu_\cdot(\tilde{x})(-h'(s)) ds \lesssim \int_0^\infty \left\| D_s \mu(\tilde{x}) \right\|_{E(-h'(s))} ds \lesssim \int_0^\infty \left\| D_s \right\|_{E(-h'(s))} ds \lesssim \int_0^\infty \left\| D_s \right\|_{E(\mu, \tau)} ds.
\]

Here \(D_s \) \((0 < s < \infty)\) are linear operators acting on measurable functions \(f \) on \((0, \infty)\) defined by

\[
(D_s f)(t) = f(t/s), \quad 0 < t < \infty.
\]

It is known that for \(1 < q < p_E \) there is a constant \(C_{E,q} > 0 \) such that

\[
\left\| D_s \right\|_E \leq C_{E,q} s^{\frac{1}{q}}, \quad \forall 1 < s < \infty.
\]

Thus

\[
\int_0^\infty \left\| D_s \right\|_{E(-h'(s))} ds \leq C_{E,q} \int_1^\infty \frac{s^{\frac{1}{q}}}{s^{\frac{1}{q} - 1}} ds = C_{p_E,q,p} < \infty.
\]

This completes the proof. \(\square \)

Now, the expected results on noncommutative symmetric spaces are in order, including Doob’s inequality, Dunford-Schwartz and Stein maximal ergodic inequalities, as well as the corresponding pointwise convergence theorems (see [24] for detailed information). We omit the details. (Note: After the preliminary version of our manuscript was completed, we are aware of that these maximal inequalities on noncommutative symmetric spaces have been obtained independently by Dirksen [11] using a different argument).

References

[1] C. A. Akemann, J. Anderson and G. K. Pedersen, Triangle inequalities in operator algebras, Linear Multilinear Algebra 11 (1982), 167-178.

[2] T. N. Bekjan, Noncommutative maximal ergodic theorems for positive contractions, J. Funct. Anal. 254 (2008), 2401-2418.

[3] T. N. Bekjan and Z. Chen, Interpolation and \(\Phi \)-moment inequalities of noncommutative martingales, Probab. Theory Relat. Fields 152 (2012), 179-206.

[4] T. N. Bekjan, Z. Chen, P. Liu, and Y. Jiao, Noncommutative weak Orlicz spaces and martingale inequalities, Studia Math. 204(3) (2011), 195-212.

[5] T. N. Bekjan, Z. Chen, M. Perrin, and Z. Yin, Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales, J. Funct. Anal. 258 (2010), 2483-2505.

[6] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1(1) (1973), 19-42.

[7] D. L. Burkholder, B. Davis, and R. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. 6th Berkeley Symp. 11 (1972), 223-240.

[8] I. Cuculescu, Martingales on von Neumann algebras, J. Multivariate Anal. 1 (1971), 17-27.

[9] B. J. Davis, On the integrability of the martingale square function, Israel J. Math. 8 (1970), 187-190.

[10] A. Defant and M. Junge, Maximal theorems of Menchoff-Rademacher type in non-commutative \(L_q \)-spaces, J. Funct. Anal. 206 (2004), 322-355.

[11] S. Dirksen, Noncommutative and vector-valued Boyd interpolation theorems, arXiv:1203.1653.

[12] S. Dirksen and E. Ricard, Some remarks on noncommutative Khintchine inequalities, arXiv: 1108.5332.

[13] P. G. Dodds, T. K. Dodds, and B. de Pagter, Noncommutative Banach function spaces, Math. Z. 201 1989, 583-587.

[14] P. G. Dodds, T. K. Dodds, and B. de Pagter, Fully symmetric operator spaces, Integr. Equ. Oper. Theory 15 (1992), 942-972.

[15] T. Fack and H. Kosaki, Generalized \(s \)-numbers of \(\tau \)-measure operators, Pacific J. Math. 123 (1986), 269-300.

[16] E. Effros and Z. J. Ruan, Operator Spaces, Oxford University Press, Oxford, 2000.

[17] F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy, Amer. Math. Soc., Providence, RI, 2000.

[18] M. Junge, Doob’s inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002), 149-190.

[19] M. Junge, Embedding of the operator space \(\mathcal{O} \) and the logarithmic ‘little Grothendieck inequality’, Invent. Math. 161 (2005), 225-286.

[20] M. Junge, C. Le Merdy, and Q. Xu, \(H^\infty \) functional calculus and square functions on noncommutative \(L_p \)-spaces, Astérisque 305 (2006), vi + 138.
[21] M. Junge and J. Parcet, Operator space embedding of Schatten p-classes into von Neumann algebra preduals, *Geom. Funct. Anal.* **18** (2008), 522-551.
[22] M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities, *Ann. Probab.* **31** (2003), 948-995.
[23] M. Junge and Q. Xu, On the best constants in some noncommutative martingale inequalities, *Bull. London Math. Soc.* **37** (2005), 243-253.
[24] M. Junge and Q. Xu, Noncommutative maximal ergodic inequalities, *J. Amer. Math. Soc.* **20**(2) (2007), 385-439.
[25] M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities II: Applications, *Israel J. Math.* **167** (2008), 227-282.
[26] M. Junge and Q. Xu, Representation of certain homogeneous Hilbertian operator spaces and applications, *Invent. Math.* **175** (2010), 75-118.
[27] N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators, *J. Reine Angew. Math.* **621** (2008), 81-121.
[28] C. Le Merdy and Q. Xu, Maximal theorems and square functions for analytic operators on L^p-spaces, arXiv:1011.1360.
[29] C. Le Merdy and Q. Xu, Strong q-variation inequalities for analytic semigroups, arXiv:1103.2874.
[30] J. Lindenstrauss and L. Tzafriri, *Classical Banach Space II*, Springer-Verlag, Berlin, 1979.
[31] L. Maligranda, Indices and interpolation, *Dissert. Math.* **234**, Polska Akademia Nauk, Inst. Mat., 1985.
[32] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics, Departamento de Matemática, Universidade Estadual de Campinas, Brasil, 1989.
[33] J. Parcet and N. Randrianantoanina, Gundy’s decomposition for noncommutative martingales and applications, *Proc. London Math. Soc.* **93**(3) (2006), 227-252.
[34] M. Perrin, A noncommutative Davis’ decomposition for martingales, *J. London Math. Soc.* (2)**80**(3) (2009), 627-648.
[35] G. Pisier, Non-commutative vector valued L^p-spaces and completely p-summing maps, *Astérisque* **247** (1998), v + 131.
[36] G. Pisier, *Introduction to Operator Space Theory*, Cambridge University Press, Cambridge, 2003.
[37] G. Pisier and D. Shlyakhtenko, Grothendieck’s theorem for operator spaces, *Invent. Math.* **150** (2002), 185-217.
[38] G. Pisier and Q. Xu, Non-commutative martingale inequalities, *Commun. Math. Phys.* **189** (1997), 667-698.
[39] G. Pisier and Q. Xu, Noncommutative L^p-spaces, *Handbook of the Geometry of Banach Spaces*, vol.2: 1459-1517, 2003.
[40] N. Randrianantoanina, Non-commutative martingale transforms, *J. Funct. Anal.* **194** (2002), 181-212.
[41] N. Randrianantoanina, Conditional square functions for noncommutative martingales, *Ann. Probab.* **35** (2007), 1039-1070.
[42] D. V. Voiculescu, K. J. Dykema, and A. Nica, *Free Random Variables*, Amer. Math. Soc., Providence, RI, 1992.
[43] Q. Xu, Analytic functions with values in lattices and symmetric spaces of measurable operators, *Math. Proc. Cambridge Phil. Soc.* **109** (1991), 541-563.
[44] Q. Xu, Operator space Grothendieck inequalities for noncommutative L^p-spaces, *Duke Math. J.* **131** (2006), 525-574.
[45] Q. Xu, Noncommutative L_p-Spaces and Martingale Inequalities, book manuscript, 2007.
[46] F. J. Yeadon, Ergodic theorems for semifinite von Neumann algebras, *J. London Math. Soc.* **16**(2) (1977), 326-332.

College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China

E-mail address: bek@xju.edu.cn

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, West District 30, Xiao-Hong-Shan, Wuhan 430071, China

E-mail address: zqchen@wipm.ac.cn

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl