SGAT: Shuffle and graph attention based Siamese networks for visual tracking

Jun Wang1,2, Limin Zhang1,2, Wenshuang Zhang1,2, Yuanyun Wang1,2*, Chengzhi Deng1,2

1 School of Information Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi, China, 2 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, Nanchang, Jiangxi, China

* wangyy_abc@163.com

Abstract

Siamese-based trackers have achieved excellent performance and attracted extensive attention, which regard the tracking task as a similarity learning between the target template and search regions. However, most Siamese-based trackers do not effectively exploit correlations of the spatial and channel-wise information to represent targets. Meanwhile, the cross-correlation is a linear matching method and neglects the structured and part-level information. In this paper, we propose a novel tracking algorithm for feature extraction of target templates and search region images. Based on convolutional neural networks and shuffle attention, the tracking algorithm computes the similarity between the template and a search region through a graph attention matching. The proposed tracking algorithm exploits the correlations between the spatial and channel-wise information to highlight the target region. Moreover, the graph matching can greatly alleviate the influences of appearance variations such as partial occlusions. Extensive experiments demonstrate that the proposed tracking algorithm achieves excellent tracking results on multiple challenging benchmarks. Compared with other state-of-the-art methods, the proposed tracking algorithm achieves excellent tracking performance.

1 Introduction

Visual tracking [1–3] is a fundamental research topic in computer vision. It aims to estimate target states in subsequent frames by given the initial state in the first frame. It is widely used in various applications, such as video surveillance [4], human–computer interaction [5], augmented reality [6], and so on. Recently, Convolutonal Neural Network (CNN) is successfully used in visual tracking. Deep trackers [7, 8] achieve robust tracking performance and real-time tracking speed. However, due to complicated appearance variations, visual tracking is still a challenging task.

In recent years, Siamese network is widely used in visual tracking. Siamese-based trackers regard tracking problems as a similarity measuring between the template patch and a search patch. SiamFC [1] applies Siamese network to visual tracking for the first time, and achieves...
The contribution of this paper can be summarized as follows:

- We propose an end-to-end deep model based on CNN and shuffle attention unit to enhance the capacity of feature representations. The model effectively exploits the correlations of the spatial and channel-wise information without extra overhead.

- We develop a novel tracking framework based on Siamese network, consisting of the designed deep model, shuffle attention matching and prediction head. Compared with the traditional cross-correlation based trackers, the proposed tracking algorithm exploits excellent tracking performance. Especially, it has a good balance between tracking accuracy and real-time tracking speed. Based on SiamFC, DSiam [9] learns target appearance variations to improve adaptation capabilities. SiamPCF [10] proposes a novel anchor-free visual tracking algorithm, which uses points instead of bounding box to describe a target and achieves excellent tracking performance. FSNet [11] develops a feature selection convolutional neural network to reduce the computational complexity and accelerate offline training.

Inspired by region proposal network (RPN) [12], Li et al. [13] considers visual tracking as two subtasks including the classification and regression. Later works [14, 15], improve SiamRPN in tracking accuracy and reduce redundant parameters. These RPN-based trackers use anchors to obtain candidate boxes. However, these trackers are sensitive to the size, number and aspect ratios of anchor boxes. Also, the tuning of hyper-parameters is time-consuming. To solve the above problems, recently, anchor-free based trackers such as SiamFC++ [16] and SiamCAR [17] are proposed. All these anchors-free trackers discard anchors and proposals, and greatly reduces the time-consuming on tuning of hyper-parameters.

It is worth mentioning that both anchor and anchor-free based trackers use a powerful CNN such as AlexNet [18], ResNet [19] and GoogLeNet [20] to extract features in a Siamese network. However, most Siamese-based trackers use the features of the last convolution layer or cascaded multi-layers as the target representations of the template and the search region, which do not effectively use the structured and part-level information. Motivated by these considerations, attention mechanism is applied in CNN to improve the feature representation, which focuses on essential appearance features while distractors.

Another core component of Siamese-based trackers is the similarity learning. SiamFC introduces the Siamese network as the feature extractor and adopts the cross-correlation operator to compute the similarity between the target template and a search region. In SiamPRN++, a depth-wise correlation is used to reduce the number of model parameters and makes the off-line training model more stable. However, both the cross-correlation and depth cross-correlation take the template features as a whole for linear matching on the search regions, so that the adjacent sliding windows produce a similar response. Guo et al. [21] propose a graph attention module (GAM) to realize a part-to-part matching between the template and a search region.

Different from the previous work [22], we design a novel feature extraction network based on GoogleNet to exploit correlations of the spatial and channel-wise information. Additionally, in order to alleviate the influences of appearance variations, we use a different similarity computing to obtain more accurate score maps. Inspired by above-mentioned works, in this paper, we propose a novel tracking algorithm based on shuffle attention mechanism and graph matching in Siamese network. The shuffle attention mechanism in the backbone network reconstructs the basic features extracted from CNN, and makes the feature representation focusing on the regions of interest through spatial and channel-wise transformations. Different from the cross-correlation based similarity learning, the part-to-part graph attention matching further improves the tracking robustness in complex scenes, such as occlusion.
structured and part-level information, which greatly alleviate the influences of appearance variations such as fast motion and partial occlusions.

- Extensive experimental results demonstrate that the proposed tracker has excellent performance on multiple benchmarks including OTB-100 [23], GOT-10k [24], UAV123 [25] and LaSOT [26], and outperforms many SOTA trackers. At the same time, the proposed tracking algorithm meets the real-time requirement with an average speed of 60 FPS.

The rest of this paper is arranged as follows. In Section 2, we review the related works. The details of the proposed method are described in Section 3. The experimental results on four benchmarks are presented followed by the ablation study and qualitative evaluations in Section 4. At last, we draw a conclusion in Section 5.

2 Related works

In this section, we mainly review some representative works and techniques that are closely related to the proposed algorithm including Siamese-based tracking algorithms and some attention mechanisms.

2.1 Siamese-based visual tracking

In recent years, trackers based on Siamese network attract incremental attention for their leading performance [27–29]. Tao et al. [30] propose to learn a similarity function to locate a target. However, because the processing of candidate sampling is not efficient enough, SINT [30] cannot meet the real-time tracking speed (about 2FPS). In [1], a fully convolution Siamese network framework is proposed to compute the similarity between the target template and a search region in an embedding space, which achieves beyond real-time tracking. Many later works regard SiamFC as guideline to improve tracking accuracy. Guo et al. [9] propose a dynamic Siamese network that can effectively learn the appearance variations of a target and suppress the background information through a fast transformation learning model.

Fan et al. [31] propose a dual-margin model for accuracy and robust visual tracking, which formulated the target state prediction problem as a dual-margin model including an intra-object margin and an inter-object margin. Li et al. [32] propose a thermal infrared tracker based on a hierarchical spatially-aware twin network that regards the infrared tracking problem as a similarity verification task.

Recently, Li et al. [13] propose to connect the region proposal extraction subnetwork to the Siamese network framework, which distinguishes the target from the surrounding background by classification branch and estimate the bounding box by regression branch. SiamRPN [13] achieves promising tracking accuracy and beyond real-time speed. Many outstanding works such as DaSiamRPN [33], and C-RPN [34] use SiamRPN as a baseline, and improve the tracking accuracy by designing different network models.

However, most of the Siamese network trackers connecting RPN subnetworks are based on anchors, which are sensitive to the size, number and aspect ratios of anchor boxes. Xu et al. [16] analyze the prior tracking methods and propose a set of practical target state estimation criteria. It effectively solves wrong matching problem due to anchor objects. Guo et al. [17] propose a new fully convolution Siamese network framework to solve the end-to-end tracking problem in a per-pixel manner, which framework is both proposal and anchor-free. Zhang et al. [35] propose a novel object-aware and anchor-free networks. Compared with anchor-based trackers, it can regress to the target region in a large spatial range. Under a fully convolution network, Chen et al. [36] propose Siamese Box Adaptive Network for object tracking, and regard the tracking task as a parallel classification and regression problem.
2.2 Attention mechanism

Recent works [37, 38] have made many contributions in improving the performance of convolutional neural networks, and these efforts can be roughly divided into two categories. The first category aims to improve the performance of CNN from the spatial domain. The representative works mainly include dilated convolution [39, 40] and deformation convolution [41, 42]. The above works mainly expand the receptive field of the networks by using the predefined gap, and mainly focuses on the target region adaptively through a series of row and column transformations. The disadvantages of these methods are that they do not make use of the clue information between channels.

The second category joins space transformation and channel attention to enhance the performance of CNN. Representative works include SENet [38], CBAM [43], and so on. These methods usually use additional subnetworks to redistribute the weight of the feature map. These networks highlight the target region and suppress the background interference, and achieve excellent feature representation performance. However, these methods usually have additional parameters and overhead.

By jointing feature extraction network and attention mechanism to represent the template and search region patch, Siamese-based algorithms have achieved significant performance improvement. Zhang et al. [19] propose a residual attentional Siamese network (RASNet) to adaptively reconstruct a model. He et al. [2] build a twofold Siamese network (SA-Siam) to represent the appearance and semantic information, and channel attention is introduced to enhance the capture of semantic information. Hua et al. [44] propose a lightweight UAV algorithm based on attention mechanism and strategy gradient to improve overall tracking accuracy and robustness. Different from these works, we reconstruct the basic features by combining spatial and channel attentions. Finally, a nonlinear graph attention matching is used instead of cross-correlation to capture spatial semantic information.

3 Method

In this section, we firstly introduce the SGAT algorithm in detail. As shown in Fig 1, it includes three main components: 1) feature extraction network with shared weight, which is used for depth feature extraction of the target template and search regions; 2) the shuffle attention mechanism model (SA Unit), which reconstructs the basis features to focus on the target region and suppress the background interference through the spatial and channel-wise transformation; 3) graph attention matching (GM), which computes the similarity between the target template and a search region, and joints classification and regression branches to locate the target position in the current frame.

3.1 Siamese-based object tracking

The trackers based on Siamese network have become more popular due to their leading tracking performance [17, 45]. These trackers regard the tracking task as a similarity matching problem between the target template and a search region, and greatly improves the accuracy and robustness.

In Siamese-based trackers, firstly, the initial frame is preprocessed to obtain the template image \(x \) and the search images \(z \) are cropped in the subsequent frames. Then, these image patches are input into the convolution neural network with shared weights for feature extraction. Nextly, the similarity between the template feature and search region features are measured through cross-correlation, and the score maps are obtained. Finally, the target center position offset and scale change are calculated according to the value of the score map. The
The score map is calculated as follows:

\[f(z, x) = \varphi(z) \ast \varphi(x) + bI, \]

where \(\varphi \) represents a convolution embedding function, \(\ast \) represents the cross-correlation calculation layer, and \(bI \) means a signal which takes value \(b \in \mathbb{R} \) in every location.

Although the cross-correlation is a simple and efficient method, it is essentially the operation of vector inner product. This is a linear matching process without using important semantic information, which makes these trackers degrade the localization accuracy in complex scenarios, such as occlusion and motion blur. Later works \cite{17, 46} are devoting to alleviate the negative effects of cross-correlation. Chen et al. \cite{45} propose Transformer-like structural feature fusion network to replace the cross-correlation process and achieve outstanding performance.

In order to alleviate negative effects of cross-correlation, we learn a similarity measuring via a graph attention matching and shuffle attention in Siamese network. Firstly, the basic features of the template and the search region are extracted by convolution neural network. Nextly, the basic features are divided into different groups along the channel dimension, and each group is reconstructed after the channel and spatial-wise transformation. Finally, we compute the similarity between the reconstructed features of the target template and the search region. Especially, the graph attention match method takes full advantages of the structured and part-level information.

Finally, the proposed SGAT algorithm locates the target position of the current frame by classification and regression prediction head. Among them, the cross-entropy loss function and IoU loss function are used to update the model parameters by back-propagation in the classification and regression stages, respectively.

3.2 Shuffle attention module

Due to attention mechanisms improving CNN’s ability in representing a target, they have attracted extensive attention and have been successfully applied to tracking tasks. However, existing attention mechanisms often do not fully exploit the feature dependencies of the spatial and channel dimensions and add additional overhead to the network model. Therefore, we propose an end-to-end deep model for feature extraction by combining convolutional neural
networks and a shuffle attention unit. As shown in Fig 2, the designed deep model effectively exploit the correlations between the spatial and channel-wise to highlight the target region without extra overhead.

Feature grouping. It is assumed that there is a basis feature \(r \in \mathbb{R}^{C \times H \times W} \) obtained by convolutional neural network, where \(C, H \) and \(W \) represent the channel number, height and width, respectively.

In the shuffle attention unit, a basic feature \(r \) is divided into \(D \) groups along the channel dimension, denoted as \(r_k \in \mathbb{R}^{C/D \times H \times W}, k \in \{1, 2, \ldots, D\}, \) where \(r_k \) represents the \(k \) sub-feature. In this way, the feature \(r \) is divided into multiple sub-features \(r_k \), and then the weight coefficient of each sub-feature is learned through off-line training. Meanwhile, each sub-feature is internally divided into two branches, \(a \) and \(b \), \(r_k = [r_{ka}, r_{kb}] \), which uses the information correlations of spatial and channel-wise to learn the weight coefficient and reduce the redundancy of local features.

Channel-wise transformation. Channel transformation focuses on ‘what’ is important in an input image. The typical channel attention is SE block, which can effectively capture the correlation between channels. However, SE blocks usually increase the number of parameters of the model, which is not accord with the principle of lightweight design in tracking tasks. To generate channel weights efficiently, the spatial dimension of an input feature map is usually compressed, and adopt average-pooling to integrate spatial information. Based on prior information, we adopt a novel channel transformation method that resizes the channel-wise block.

Fig 2. The details of the channel and spatial blocks.

https://doi.org/10.1371/journal.pone.0277064.g002
through global average pooling. The channel-wise block is obtained as follows:

\[
 r_{kb}^{'} = \frac{1}{H \times W} \sum_{m=1}^{H} \sum_{n} r_{kb}(m, n),
\]

where \(H\) and \(W\) indicates the height and width of the feature map, \(r_{kb}(m, n)\) means sub-feature \(r_{kb}\) at spatial location \((m, n)\).

In addition, the resized channel block is guided adaptively, and finally the final output of channel attention is obtained as follows:

\[
 r_{kb}^{''} = \sigma(w_1 r_{kb}^{'} + b) \cdot r_{kb},
\]

where \(w_1\) and \(b\) are parameters for feature scaling and shift, respectively, \(\sigma\) is a sigmoid activation function.

Spatial-wise transformation. As a supplement to channel-wise transformation, spatial transformation aims to locate ‘where’ is an important region. To effectively carry out spatial transformation, the max-pooling and average-pooling are usually used to deal with input feature along channel dimension. In this paper, the specific implementation steps are as follows: firstly, group normalization (GN) is used to preprocess the spatial features. Then, linear transformation and activation function are combined to enhance the ability of feature representation and suppress the interference of background region. The transformed spatial features are as follows:

\[
 r_{ka}^{''} = \sigma(w_2 \text{GN}(r_{ka}) + b) \cdot r_{ka},
\]

where \(w_2\) and \(b\) are parameters for feature scaling and shift, respectively, \(\text{GN}\) means a group normalization.

Reconstruction features. After the spatial transformation, the sub-features of each group includes the spatial and channel-wise context information. Then, the sub-features are reorganized in shuffle attention unit along the channel dimension, i.e., \(r = [r_1, r_2^{''}, \cdots, r_k^{''}]\), and \(r_k^{''} = [r_{ka}^{''}, r_{kb}^{''}]\). Among them, we use \text{concatenate} function for sub-features reconstruction.

3.3 Similarity measuring

In the past, Siamese-based trackers usually use cross-correlation as similarity matching [1, 12], which is the method to match the template as a whole in the search region. However, this method is a linear matching process, which does not take advantage of nonlinear semantic information. The template block is usually represented by rectangular box as a unit, which introduces background noise into the template representation. These reasons lead to the performance bottleneck of Siamese-based tracker. To take full advantages of capture the structured and part-level information, we learn a graph attention matching based similarity measuring instead of cross-correlation. By decomposing the target template and search region features into multiple grids, and then computing the similarity of different template and search region grids, which greatly alleviate the challenging of pose variations of target. After obtaining the reconstructed features of the template and search region by a deep end-to-end model, we assume \(1 \times 1 \times C\) grid of the feature map as a node. For node \(i\) on the template and node \(j\) in the search region, the correlation scores are:

\[
 e_{ij} = f(g_i^{'}(\phi(x)), g_j^{'}(\phi(z))),
\]

where \(g_i^{'}\) and \(g_j^{'}\) are the reconstruct feature vetor of node \(i\) and node \(j\).
In order to improve the information propagate between different nodes, we adopt softmax function to normalize e_{ij} as follow:

$$x_{ij} = \frac{\exp(e_{ij})}{\sum_{\beta \in \eta_i} \exp(e_{i\beta})},$$

(6)

where η_i is a node set that include all template nodes.

Therefore, we obtain the discriminative feature representation as follow:

$$\hat{g}_i(\phi(z)) = F\left(\sum_{\beta \in \eta_i} x_{ij} W_v g_i(\phi(x)) \| (W_v g_i(\phi(z)))\right),$$

(7)

where W_v is a linear matrix transformation, $F(\cdot)$ is the ReLU activation function.

Since the more similar the local features between the search region and the target template, the more like it is to be considered as a foreground. Therefore, we choose the inner product to measure the similarity, which is suitable to represent this relationship. The final score map is shown as:

$$f(g_i(\phi(x)), g_j(\phi(z))) = (w_s g_i(\phi(z)))^T (w_z g_j(\phi(x))),$$

(8)

where w_s and w_z are the linear transformation matrices, g represents the corresponding feature vector node of the template and the search region, and $(\cdot)^T$ means the matrix transpose.

4 Experiments results

4.1 Implementation details

The proposed SGAT is implemented in Python using Pytorch on one NVIDIA Quadro P4000 GPU, Intel Xeon E5-2600 v4 CPU (2.00GHz) and 32GB RAM. Due to the limitation of insufficient computer hardware resources in the laboratory, we reduce batch size to 24. We train deep model on the training splits of GOT-10k and COCO datasets, and cut to 511\times12 size through preprocessing. The sizes of search region patches and the template patch are 287\times287 and 127\times127, respectively. The backbone parameters are initialized with the weights that pretrained on ImageNet.

The SGAT algorithm uses GoogLeNet as the backbone network. Compared with the traditional feature extraction network, GoogLeNet can extract more richness features and use max-pooling to reduce the parameter redundancy of the upper layers.

Evaluation metric. We adopt the one-pass evaluation (OPE) metric of accuracy and success rate to evaluate the performance of the trackers. The precision is evaluated by the center location error (CLE) between the predicted location and the ground truth location. The precision plots are drawn in according to the frame percentages of CLE under the specified thresholds. Besides, the success rate is defined as the intersection over union (IoU) between the predicted bounding boxes and the ground truth. Meanwhile, when the IoU exceeds a certain threshold, it is considered to track the target accurately, and the success plot is drawn by the frame percentage.

4.2 Ablation study

To verify the effectiveness of the core components of the designed network framework, we choose OTB-100 benchmark to verify different schemes. In shuffle attention module, we divide the basis features into multiple sub-features along the channel dimensions. The shuffle unit reconstructs each sub-feature by spatial and channel-wise transformations. Finally, the
sub-features are combined by using the dependence along channel dimensions. We analyze the advantages and disadvantages of different types of backbone networks, and prove the performance gain brought by different types of backbone networks through experiments in Table 1. Meanwhile, we compare with the traditional similarity computation methods, and verify the effectiveness of graph attention matching method.

Backbone architecture. Reviewing the object tracking algorithms based on Siamese network, backbone networks can be mainly summarized into two kinds: 1) Shallow feature extraction networks, such as AlexNet and VggNet. The advantages of these networks are prone to converge and have small numbers of parameters. The disadvantage is that the generalization ability of the model is not enough; 2) Deep feature extraction networks, such as ResNet-152. Obviously, the deep networks can improve model ability in fitting and generalization to the data. However, the disadvantage is that there are too many parameters and the model is not lightweight enough.

In view of the above analysis, the feature extraction network we selected is GoogLeNet (Inception.V3). Compared with traditional backbone networks, such as AlexNet and ResNet, it can provide multi-scale feature fusion to increase the scale adaptability of the network, and use some tricks to reduce the feature redundancy of each layer. At the same time, we train a total of 20 epochs models to achieve convergence.

Comparison correlation. Existing tracking algorithms based on Siamese network use cross correlation to compute the similarity between the template patch and a search region patch, and has achieved great performance improvement. However, cross correlation is a linear matching process that neglects the structured and part-level information, which may be the bottleneck of Siamese-based trackers.

Therefore, instead of cross correlation, we use a novel graph matching to compute the similarity between the template patch and the search region patch. In this way, the similarity is calculated from part to part, which exploits the structured and part-level information. Meanwhile, we use the above shuffle attention mechanism to redistribute the weights of the features extracted from the backbone network, and highlight the target region of interest.

4.3 Comparison with state-of-the-art trackers

We compare the proposed SGAT with other state-of-the-art trackers, including Ocean [35], SiamFC++ [16], SiamRPN++ [14], SiamBAN [36], SiamCAR [17], ATOM [47], SPM [48], CLNet [49] on OTB-100, GOT-10k, LaSOT and UAV123. Nextly, we will analyze the tracking performance on these tracking benchmarks.

OTB-100. OTB-100 benchmark consists of 98 challenging video sequences, in which Jogging and Skating2 video sequences have two different initialization tracking objects, respectively. All video sequences correspond to one or more different attributes, including illumination variation (IV), occlusion (OCC), deformation (DEF), out-of-view (OV), low resolution (LR), out-of-plane rotation (OPR), in-plane rotation (IPR), fast motion (FM), background clutter (BC), motion blur (MB) and scale variation (SV), and a total of 11 attributes. As
shown in Fig 3, since similarity learning based on graph matching effectively exploits the structured information, the SGAT algorithm achieves the best results in the success rate and different attributes. In Fig 4, the proposed SGAT achieves an appropriate compromise between real-time speed and success rate. The results demonstrate the effectiveness of the appearance model designed by combining CNN and shuffle attention mechanism.

GOT-10k. GOT-10k is a recently released large-scale tracking benchmark, which includes a total of 10,000 video sequences, 563 object classes and 87 motion forms (e.g. running, swimming, skiing, crawling, cycling), and including 180 challenging video sequences in the test set. In particular, all tracking results must be evaluated in the specified server, which increases the fair contrast of the algorithm. It is worth mentioning that compared with other benchmarks, GOT-10k restricts the use of training sets for training. As shown in Table 2, we list comparisons with other the state-of-the-art trackers in terms of average overlap (AO) and success rates (SR) of thresholds 0.5 and 0.75. Success rates (SR)0.5 indicates the rate of successful tracking frames with an overlap of more than 0.5, while success rates (SR)0.75 indicates the rate of successful tracking frames with an overlap of more than 0.75. The SGAT achieves the best performance. In Fig 5, we present the AO and compared with the SOTA trackers. Benefit from the part to part similarity computation between target template and searching region, the designed algorithm achieves best performance in term of AO and success rates(SR)0.5.

LaSOT. LaSOT is another large-scale single object tracking dataset, which includes 1,400 video sequences and 180 test sets, with an average of more than 2,500 frames per video. LaSOT is very suitable for further evaluation of the robustness of the trackers, because long-term tracking will verify the degradation of the model and deal with some challenging factors, including occlusion, out of field of view, etc. As shown in Figs 6 and 7, the proposed SGAT achieves the best performance in terms of success rate, precision and normalized precision. In Table 3, comparing with twelve state-of-the-art trackers, the SGAT algorithm outperforms other algorithms in success rate, precision and normalized precision.
UAV123. UAV123 is a benchmark dataset designed for UAV tracker evaluation, including 123 challenging video sequences, with an average of 935 frames per video sequence. Due to the characteristics of UAV, the main challenge factors of the test set are occlusion and small targets, and most images have low resolution attributes. In Table 4, the average overlap of the developed SGAT has reached 0.807 and the precision rate has reached 0.616, which outperform some exist mainstream tracking algorithms.

Qualitative evaluation. In Fig 8, we show the results compared with other trackers on four challenging sequences. At the 110th frame in the sequence *blurbody*, compared with SiamFC++ and SiamDW, due to the shuffle attention model reconstructs the basis features, the proposed SGAT can accurately regress the boundary box of the target. In the *box* and *coke* sequences, the target appears partial occlusion, accompanied by fast motion and illumination change. Compared with the tracking results of SiamFC++ and SiamDW, the SGAT algorithm can accurately regress the target bounding box. The same situation occurs in the sequence *woman*. When the target is occluded for a short time, the SGAT can locate the target again effectively. At the 488th frame, the woman is occluded by cars and trees for a short time during
the movement. The proposed SGAT achieves the best result on this sequence by combining the deep model and a similarity learning based on graph attention matching. Each sub-feature is reconstructed by spatial and channel transformations to highlight the target region of interest and suppress background information. In addition, a similarity learning based on graph matching can alleviate the inference of appearance variation.

Limitations. As shown in Fig 9, in complex tracking environment, trackers may occur tracking drift and tracking failure. In some extreme scenarios, the SGAT cannot complete the target tracking task well. For example, after the 106th frame in the sequence soccer and the 143rd frame in the sequence bird1, when there are many similar target interferences and long-
Fig 6. Comparison with state-of-the-art trackers on LaSOT in terms of the precision rate, success rate and normalized precision plots.

https://doi.org/10.1371/journal.pone.0277064.g006
Fig 7. Comparison with different trackers on each attribute of LaSOT. SiamFC_pp and SiamRPN_pp represent trackers SiamFC++ and SiamRPN++, respectively.

https://doi.org/10.1371/journal.pone.0277064.g007

Table 3. A performance comparison with other competitive methods on the test split of LaSOT, where Suc., Pre. and Norm.Pre. represent the success rate, precision, normalized precision, respectively.

Trackers	Suc.	Pre.	Norm.Pre.
StructSiam [54]	33.5	33.3	41.8
SiamFC [1]	33.6	33.9	42.0
VITAL [55]	39.0	36.0	48.4
MDNet [8]	39.7	37.3	46.0
SPLIT [56]	42.6	39.6	49.4
C-RPN [34]	45.5	44.3	54.2
SiamMask [57]	46.7	46.9	55.2
SiamFC++ [16]	50.0	47.4	57.1
SiamRPN++ [14]	49.5	49.3	57.0
CLNet [49]	49.9	49.4	57.4
ATOM [47]	49.9	49.7	57.0
SiamBAN [36]	51.4	52.1	59.8
SGAT(Our)	52.1	52.1	60.9

https://doi.org/10.1371/journal.pone.0277064.t003

Table 4. Comparison with other competitive methods on the test split of UAV123 in terms of success rate and precision rates.

	Our	SiamRPN++	DaSiamRPN	UPDT	SiamRPN	ECO	SiamFC
Success	0.616	0.610	0.569	0.547	0.557	0.524	0.485
Precision rate	0.807	0.803	0.781	0.780	0.768	0.741	0.693

https://doi.org/10.1371/journal.pone.0277064.t004
term occlusion in the scene, the SGAT will lose the target and lead to tracking failure, which is also an urgent problem faced by the existing trackers. Next, we will focus on the following two aspects: 1) modeling the target using spatial-temporal context information to ensure that the target can be located when occlusion occurs; 2) Adding a learnable memory unit to alleviate the problem that the target often disappears in long-term tracking.
5 Conclusion
In this paper, we propose a simple and efficient visual tracking algorithm based on Siamese networks, which achieves more tracking performance in balancing between accuracy and real-time speed. In the designed deep model, the multiple sub-features are divided along the channel dimension and are processed in parallel, and take full advantage of the feature dependence of spatial and channel dimension. Sub-features are aggregated to exploit of the correlation between spatial and channel-wise information. In addition, we compute similarity between the template and a search region to obtain score map by a novel graph attention matching method, and this way effectively exploits the target structure and part-level information. Extensive experiments demonstrate that the proposed tracker achieves excellent tracking performance on multiple benchmarks and outperforming many state-of-the-art trackers.

Acknowledgments
The authors thank the dataset providers for providing the datasets.

Author Contributions
Conceptualization: Jun Wang, Yuanyun Wang.
Data curation: Jun Wang.
Funding acquisition: Yuanyun Wang, Chengzhi Deng.
Methodology: Yuanyun Wang, Chengzhi Deng.
Software: Chengzhi Deng.
Validation: Wenshuang Zhang.
Visualization: Limin Zhang.
Writing – original draft: Limin Zhang.
Writing – review & editing: Wenshuang Zhang.

References
1. Bertinetto, L, Valmadre J, Henriques JF, Vedaldi A, Torr P. Fully-convolutional siamese networks for object tracking. European conference on computer vision. 2016;850–865.
2. He A, Luo C, Tian X, Zeng W. A twofold siamese network for real-time object tracking. IEEE conference on computer vision and pattern recognition. 2018;4834–4843.
3. Liu Q, Yuan D, Fan N, et al. Learning dual-level deep representation for thermal infrared tracking. IEEE Transactions on Multimedia. 2022;1–8. https://doi.org/10.1109/TMM.2022.3215547
4. Siebel N T, Maybank S. The advisor visual surveillance system. ECCV 2004 workshop applications of computer vision. 2004;1–8.
5. Bonin-Font F, Ortiz A, Oliver G. Visual navigation for mobile robots: A survey. Journal of intelligent and robotic systems. 2008;263–296. https://doi.org/10.1007/s10846-008-9235-4
6. Wei J, Ye G, Mullen T, Grundmann M, Ahmadyan A, Hou T. Instant motion tracking and its applications to augmented reality. arXiv preprint arXiv:1907.06796. 2019;1–8.
7. Zhang Z, Peng H. Deeper and wider siamese networks for real-time visual tracking. IEEE conference on computer vision and pattern recognition. 2019;4591–4600.
8. Nam H, Han B. Learning Multi-domain Convolutional Neural Networks for Visual Tracking. IEEE conference on computer vision and pattern recognition. 2016;4293–4302.
9. Qing G, Wei F, et al. Learning dynamic siamese network for visual object tracking. IEEE international conference on computer vision. 2017;1763–1771.
10. Zeng Y, Zeng B, Yin X, Chen G. SiamPCF: siamese point regression with coarse-fine classification network for visual tracking. Applied Intelligence. 2022;4973–4986. https://doi.org/10.1007/s10489-021-02651-5

11. Cui Z, Lu N. Feature selection accelerated convolutional neural networks for visual tracking. Applied Intelligence. 2021;8230–8244. https://doi.org/10.1007/s10489-021-02234-4

12. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems. 2015;1–8.

13. Li B, Yan J, Wu W, Zhu Z, Hu X. High performance visual tracking with siamese region proposal network. IEEE conference on computer vision and pattern recognition. 2018;8971–8980.

14. Li B, Wu W, Wang Q, Zhang F, Xing J, Yan J. Siamrpn++: Evolution of siamese visual tracking with very deep networks. IEEE Conference on Computer Vision and Pattern Recognition. 2019;4282–4291.

15. Wang J, Meng C, Deng C, Wang Y. Learning attention modules for visual tracking. Signal, Image and Video Processing. 2022;1–8. https://doi.org/10.1007/s11760-022-02233-z PMID: 35505902

16. Xu Y, Wang Z, Li Z, Yuan Y, Yu G. Siamfc++: Towards robust and accurate visual tracking with target estimation guidelines. AAAI Conference on Artificial Intelligence. 2020;12549–12556.

17. Guo D, Wang J, Cui Y, Wang Z, Chen S. SiamCAR: Siamese fully convolutional classification and regression for visual tracking. IEEE conference on computer vision and pattern recognition. 2020;6269–6277.

18. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Communications of the ACM. 2017;84–90. https://doi.org/10.1145/3065386

19. He, K, Zhang, X, Ren S and Sun, J. Deep residual learning for image recognition. IEEE conference on computer vision and pattern recognition. 2016;770–778.

20. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. IEEE conference on computer vision and pattern recognition. 2016;2818–2826.

21. Guo D, Shao Y, Cui Y, Wang Z, Zhang L, Shen C. Graph attention tracking. IEEE conference on computer vision and pattern recognition. 2021;9543–9552.

22. Yuanyun W, Wenshuang Z, Limin Z, Jun W. Siamese network with a depthwise over-parameterized convolutional layer for visual tracking. PLOS ONE. 2022;1–21.

23. Wu Y, Lim J, Yang MH. Object Tracking Benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015;1834–1848. https://doi.org/10.1109/TPAMI.2014.2388226 PMID: 26353130

24. Huang L, Zhao X, Huang K. Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019;1562–1577.

25. Mueller M, Smith N, Ghanem B. A benchmark and simulator for uav tracking. European conference on computer vision. 2016;445–461.

26. Fan H, Lin L, Yang F, Chu P, Deng G, Yu S, et al. Lasot: A high-quality benchmark for large-scale single object tracking. IEEE conference on computer vision and pattern recognition. 2019;5374–5383.

27. Hui, Le, et al. 3D Siamese Transformer Network for Single Object Tracking on Point Clouds. arXiv preprint arXiv:2207.11995. 2022.

28. Tang F, Ling Q. Ranking-Based Siamese Visual Tracking. IEEE Conference on Computer Vision and Pattern Recognition. 2022;8741–8750.

29. Liu Q, Li X, He Z, et al. Learning deep multi-level similarity for thermal infrared object tracking. IEEE Transactions on Multimedia. 2020;2114–2126.

30. Tao R, Gavves E, Smeulders AWM. Siamese instance search for tracking. IEEE conference on computer vision and pattern recognition. 2016;1420–1429.

31. Fan N, Li X, Zhou Z, Liu Q, He Z. Learning dual-margin model for visual tracking. Neural Networks. 2021;344–354. https://doi.org/10.1016/j.neunet.2021.04.004 PMID: 33930720

32. Li X, Liu Q, Fan N, He Z, Wang H. Hierarchical Spatial-aware Siamese Network for Thermal Infrared Object Tracking. Knowledge-Based Systems. 2019;71–81. https://doi.org/10.1016/j.knosys.2018.12.011

33. Zhu Z, Wang Q, Li B, Wu W, Yan J, Hu W. Distractor-aware siamese networks for visual object tracking. European conference on computer vision. 2018;101–117.

34. Fan H, Ling H. Siamese cascaded region proposal networks for real-time visual tracking. IEEE conference on computer vision and pattern recognition. 2019;7952–7961.

35. Zhang Z, Peng H, Fu J, Li B, Hu W. Ocean: Object-aware anchor-free tracking. European Conference on Computer Vision. 2020;771–787.
36. Chen Z, Zhong B, Li G, Zhang S, Ji R. Siamese box adaptive network for visual tracking. IEEE conference on computer vision and pattern recognition. 2020;6668–6677.

37. Li L, Wang K, Li S, Feng X, Zhang L. Lst-net: Learning a convolutional neural network with a learnable sparse transform. European Conference on Computer Vision. 2020;562–579.

38. Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely connected convolutional networks. IEEE conference on computer vision and pattern recognition. 2017;4700–4708.

39. Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.

40. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence. 2017;834–848. PMID: 28463186

41. Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y. Deformable convolutional networks. IEEE international conference on computer vision. 2017;764–773.

42. Zhu X, Hu H, Lin Stephe, Dai J. Deformable convnets v2: More deformable, better results. IEEE conference on computer vision and pattern recognition. 2019;9308–9316.

43. Woo S, Park J, Lee J, Kweon I. Cbam: Convolutional block attention module. European conference on computer vision. 2018;3–19.

44. Hua X, Wang X, Rui T, Shao F, Wang D. Light-weight UAV object tracking network based on strategy gradient and attention mechanism. Knowledge-Based Systems. 2021;1–8.

45. Chen X, Yan B, Zhu J, Wang D, Yang X, Lu H. Transformer tracking. IEEE Conference on Computer Vision and Pattern Recognition. 2021;8126–8135.

46. Wang N, Zhou W, Wang J, Li H. Transformer meets tracker: Exploiting temporal context for robust visual tracking. IEEE Conference on Computer Vision and Pattern Recognition. 2021;1571–1580.

47. Danelljan M, Bhat G, Khan F, Felsberg M. Atom: Accurate tracking by overlap maximization. IEEE Conference on Computer Vision and Pattern Recognition. 2019;4660–4669.

48. Wang G, Luo C, Xiong Z, Zeng W. Spm-tracker: Series-parallel matching for real-time visual object tracking. IEEE conference on computer vision and pattern recognition. 2019;3643–3652.

49. Dong X, Shen J, Shao L, Porikli F. CLNet: A compact latent network for fast adjusting Siamese trackers. European Conference on Computer Vision. 2020;378–395.

50. Danelljan M, Bhat G, Shahbaz K F, Felsberg M. Eco: Efficient convolution operators for tracking. IEEE conference on computer vision and pattern recognition. 2017;6638–6646.

51. Danelljan M, Robinson A, Shahbaz K F, Felsberg M. Beyond correlation filters: Learning continuous convolution operators for visual tracking. European conference on computer vision. 2016;472–488.

52. Sauer A, Aljalbout E, Haddadin S. Tracking Holistic Object Representations. arXiv preprint arXiv:1907.12920, 2019.

53. Bhat G, Danelljan M, Gool L V, Timofte R. Learning discriminative model prediction for tracking. IEEE international conference on computer vision. 2019;6182–6191.

54. Zhang Yunhua, Wang L, Qi J, Wang D, Feng M, Lu H. Structured siamese network for real-time visual tracking. European conference on computer vision. 2018;351–366.

55. Song Y, Ma C, Wu X, Gong L, Bao L, Zuo W, et al. Vital: Visual tracking via adversarial learning. IEEE conference on computer vision and pattern recognition. 2018;8990–8999.

56. Yan B, Zhao H, Wang D, Lu Hu, Yang X. Skimming-Perusal Tracking: A Framework for Real-Time and Robust Long-Term Tracking. IEEE International Conference on Computer Vision. 2019;2385–2393.

57. Wang Q, Zhang L, Bertinetto L, Hu W, Torr P HS. Fast online object tracking and segmentation: A unifying approach. IEEE conference on Computer Vision and Pattern Recognition. 2019;1328–1338.