The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature, plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.

INTRODUCTION

The mechanical exfoliation of graphite to isolate single layers of graphene has been closely followed by intense experimental efforts to exfoliate other layered bulk crystals to achieve a broad catalog of two-dimensional (2D) materials with complementary properties to those of graphene. The exploration of other 2D materials is motivated not only by the need of finding materials whose properties are optimal for a certain specific application but also by the fact that along with this exploratory process one might often find interesting (and sometimes even unexpected) physical phenomena.

Interestingly, despite the fact that 2D materials research was triggered by the exfoliation of naturally occurring graphite minerals, and that these natural layered minerals proved to be a readily source of high-quality 2D material with extremely high charge mobilities, the amount of naturally occurring layered materials studied so far is still very scarce (mainly limited to molybdenite, tungstenite, muscovite, and clays). On the other hand, the amount of works on exfoliation of synthetic layered materials has kept growing: hBN, MoSe₂, WSe₂, BP, TiS₃, SnS, SnS₂, InSe, In₂Se₃, GaSe, GaTe, ReS₂, ReSe₂, NbSe₂, and TaS₂, among others.

The goal of this manuscript is to present an overview, rather than a comprehensive study, of different families of naturally occurring van der Waals minerals (many of whom are almost unexplored so far), to provide a starting point for future works on these natural 2D materials and to stimulate further studies on other layered minerals. Moreover, from the study of naturally occurring layered minerals, one might get inspired to develop new synthesis approaches to grow synthetic materials whose structure mimics that of a natural layered mineral family.

In the following, we will introduce illustrative examples of natural van der Waals materials belonging to different mineral families: natural elements, sulfides, sulfosalts, oxides, silicates, phosphates, and carbonates.

NATURAL ELEMENTS

Highly crystalline graphite mineral rocks are found in nature and are currently used by many research groups to fabricate single-layer graphene by mechanical or liquid-phase exfoliation routes. For example, natural graphite source has been employed in some of the seminal graphene papers to unravel unexplored physical phenomena like a new type of quantum Hall effect or the fundamental relationship between the transparency of graphene and the fine structure constant. Figure 1a shows a schematic of the crystal structure of graphite where the different layers, which are held together by weak van der Waals interaction, are visible. Each layer is formed by covalently bonded sp² hybridized carbon atoms arranged in a honeycomb lattice. Figure 1b shows a photograph of a natural graphite piece and 1c displays an optical microscopy image of a few-layer graphene flake extracted from the mineral shown in Fig. 1b by mechanical exfoliation and transferred onto a 285 nm SiO₂/Si substrate by all-dry transfer.

Other examples of natural elemental van der Waals materials, although much less abundant than graphite, are native bismuth, antimony, selenium, and tellurium (see Fig. 1d, k). Although bismuth and antimony forms 2D layers (slightly puckered), selenium and tellurium constitute an interesting example of van der Waals material with a quasi one-dimensional structure. In fact, these materials are formed by the van der Wals interaction between neighboring helical wires of Se-‐ot Te-‐atoms forming a crystal. Regarding the electrical properties, bismuth is a metal (becomes a direct band gap semiconductor with 0.2–0.3 eV gap in the single- and bilayer limit), antimony a semi-metal (becomes an indirect band gap semiconductor with 2.28 eV gap in the single-layer limit), and selenium and tellurium are semiconductors with band gaps of 0.31 eV (indirect) and 2 eV (direct). Although there are recent works on atomically thin bismuth, antimony, selenium, and tellurium (and the interest of the community in these systems is rapidly growing), to our knowledge, all these works employ synthetic materials as the starting point for the exfoliation or synthesis of the nanolayer systems that they study. For example, a hydrothermal synthesis method have been used to grow tellurium nanosheets with thickness down to 0.4 nm (one unit cell). These nanosheets were applied in field-effect transistors that show a high p-type mobility of up to 600 cm² V⁻¹ s⁻¹ and a high anisotropic in-plane electrical transport (anisotropy ratio ~1.5) and photodetectors with a responsivity of 8 A W⁻¹ for 2.4 µm and a cutoff wavelength of 3.4 µm.
Selenium nanosheets as thin as 5 nm were also synthesized by vapor transport and they have been applied in phototransistors showing a p-type character with mobilities up to $0.26 \, \text{cm}^2 \, \text{V}^{-1} \, \text{s}^{-1}$ and photoresponsivities reaching $260 \, \text{A W}^{-1}$.

SULFIDES

Molybdenite mineral (with formula MoS$_2$) is very abundant in nature in its 2H polytype, in which the different layers are stacked in ABA manner, and high-quality large crystals are easily available.
Bulk molybdenite is an n-type indirect band gap semiconductor with a band gap of 1.85–1.90 eV when thinned down to a single layer. Figure 2a–c show, respectively, the crystal structure of 2H-molybdenite, a picture of a piece of 2H-molybdenite mineral, and an optical microscopy image of a flake mechanically exfoliated from the mineral and onto a 285 nm SiO2/Si substrate.

The combination of high carrier mobility (40–120 cm2 V−1 s−1) at room temperature and up to 105 cm2 V−1 s−1 at 4 K, high photoresponse (up to ~1000 A W−1), and remarkable mechanical resilience of MoS2 (breaking at strains of 6–11%), have spurred the research on this material in the last 10 years. In fact, mechanically exfoliated flakes of natural molybdenite have been extensively used to fabricate several kinds of electronic and optoelectronic devices like field-effect transistors, photodetectors, solar-cells, non-volatile memories, and logic circuits among others.

Although way less abundant than the 2H polytype, molybdenite can also be found in nature in its 3R polytype. In fact, 3R-molybdenite is typically found as a micro-mineral (small pieces inside a matrix of another rock). This mineral differs from the 2H-molybdenite in the way the layers are stack on top of each other, having a ABCA stacking (see a representation of its crystal structure in Fig. 2d). This polytype is interesting because of its particular stacking of the layers that yields to a broken inversion symmetry even in bulk form (while in the case of the 2H polytype only an odd number of monolayers does not present inversion symmetry). The lack of an inversion center symmetry is particularly important for valleytronics because it introduces K-valley dependent optical selection rules. More specifically, the direct interband transitions in the vicinity of the K+ (K−) point of the hexagonal Brillouin zone are coupled to right (left) circular photon polarization states, allowing to control the properties of the material through circular polarized light. Nonetheless the experimental works reported so far on 3R-MoS2 are based on synthetic crystals and not naturally occurring minerals.

Fig. 2 Sulfide van der Waals minerals. a, d, g, j, m, p, s Three-dimensional representation of the crystal structure of molybdenite 2H, molybdenite 3R, tungstenite 2H, orpiment 3R, anorpiment 2H, stibnite 2H, and getchellite 3R, respectively. b, e, h, k, n, q, t Pictures of mineral rocks of molybdenite 2H, molybdenite 3R, tungstenite 2H, orpiment 3R, anorpiment 2H, stibnite 2H, and getchellite 3R, respectively. d, f, i, l, o, r, u Optical microscopy images of few-layer flakes mechanically exfoliated from the bulk crystals shown in b, e, h, k, n, q, t, respectively.
this material, even in the bulk form.77 In this bulk form, orpiment is an indirect wide band gap semiconductor with band gap in the range of 2.4–2.6 eV and a intense yellow color.76,78 Recently, Manjón and colleagues79 studied the vibrations, structure, and electronic properties of orpiment under high pressure, finding that pressure is able to tune its metavalent bonding thus turning orpiment from a semiconductor into an “incipient metal” with promising phase-change, thermoelectric and topological insulating properties. Mortazavi et al.80 have calculated the mechanical properties and the mobility of orpiment nanosheets reporting a strong anisotropy in the mechanical properties: along one crystal direction orpiment is elastic and brittle, whereas along the perpendicular direction it shows superstretchability, similar to rubber. Interestingly, Steeneken and colleagues81 isolated a single layer and few layers of orpiment by mechanical exfoliation and tested their strong vibrational and mechanical anisotropy, arising from its crystal structure, finding a Young’s modulus of $E_{\text{a-anis}} = 79.1 \pm 10.1$ GPa and $E_{\text{c-anis}} = 47.2 \pm 7.9$ GPa along the two main crystalline directions.81 This Young’s modulus anisotropy is amongst the longest reported in the literature so far for 2D materials, only below that of black phosphorus.82 Figure 2k, n show pictures of orpiment and anorpiiment mineral rocks and Fig. 2l, o are optical microscopy images of flakes exfoliated from these minerals.

Sulfosalts are a chemical composition to orpiment and anorpiiment with Sb atoms replacing the As atoms to form the structure Sb_2S_3. Nonetheless, the crystal structure of stibnite with Sb atoms replacing the As atoms to form the minerals.\textsuperscript{2l, o are optical microscopy images of the literature about the direct/indirect nature) with interest in semiconductor with a gap of ~1.6 eV although these works relied on artificial sources rather than in stibnite mineral.83 In bulk stibnite is a semiconductor with ~1.6 eV of direct band gap.93 Recently, stibnite has been mechanically exfoliated and its Raman spectra has been measured as a function of the incident light polarization at different temperatures finding a strong linear dichroism arising from its puckered structure.84 Shu et al.85 tested their strong vibrational and mechanical anisotropy, arising from its crystal structure, finding a Young’s modulus of $E_{\text{a-anis}} = 79.1 \pm 10.1$ GPa and $E_{\text{c-anis}} = 47.2 \pm 7.9$ GPa along the two main crystalline directions.81 This Young’s modulus anisotropy is amongst the longest reported in the literature so far for 2D materials, only below that of black phosphorus.82 Figure 2k, n show pictures of orpiment and anorpiiment mineral rocks and Fig. 2l, o are optical microscopy images of flakes exfoliated from these minerals.

Stibnite has a similar chemical composition to orpiment and anorpiiment with Sb atoms replacing the As atoms to form the structure Sb_2S_3. Nonetheless, the crystal structure of stibnite strongly differs from that of orpiment and anorpiiment. The S atoms are coordinated in a pyramidal fashion around the Sb atoms to form a chain structure with units given by Sb_2S_3 ribbons (see Fig. 2p). Stibnite, similar to native selenium or tellurium, presents layers, which are not fully covalently bonded inside the plane, and thus their structure resembles more to that of molecular solids like rubrene. This peculiar crystal structure has motivated works studying the in-plane anisotropy of the optical and electronic properties of stibnite and related materials, although these works relied on artificially synthesized material sources rather than in stibnite mineral.83 In bulk stibnite is a semiconductor with a gap of ~1.6–1.7 eV (there is no consensus in the literature about the direct/indirect nature) with interest in photocatalysis and photovoltaics.76,78,84–86 Figure 2q, r show a picture of a stibnite mineral rock and an optical microscopy image of flakes exfoliated from the bulk mineral.

Getchellite is a relative of the orpiment and stibnite minerals. It has a formula of AsSbS_3 and it has a complex crystal structure that resembles a mixture between those of orpiment and stibnite. Very recently, Wang et al.87 reported the isolation of getchellite flakes (45 nm thick) by mechanical exfoliation of synthetic getchellite crystals and their characterization by transient absorption spectroscopy. They found that AsSbS_3 has a direct band gap of 1.74 eV and they determined the mobility of the charge carriers of 200 cm2/Vs.88 Gehring et al.88 reported the exfoliation of natural kawazulite mineral (with the approximate composition $\text{Bi}_2(\text{Te},\text{Se})_2(\text{Se},\text{S}))$, a naturally occurring topological insulator. They isolated flakes by mechanical exfoliation with thickness down to few tens of nanometers and fabricated electronic devices with carrier mobility exceeding 1000 cm2/Vs.89 Moreover, angle-resolved photoelectron spectroscopy show a surface state with the typical Dirac-like conical dispersion, which verifies the topological insulator behavior of natural kawazulite. Although tin sulfide minerals such as herzenbergite (with formula SnS, a puckered honeycomb structure, and a band gap of ~1.0–1.1 eV) and berndtite (formula Sn_2S_3, a structure similar to that of Te_2S_3) are found in nature, we have not found works reported on exfoliation of these natural minerals but on the exfoliation of their synthetic counterparts.89–92 SULFOSALTS

The sulfosalts are a mineral family with a general formula $\text{A}_x\text{B}_y\text{S}_z$ with A being commonly copper, lead, silver or iron, B being semimetal like arsenic, antimony or bismuth, or metals like tin, and S being sulfur. Among the layered sulfosalts, teallite is probably the simplest one. It has a formula of PbSn_2S_4 and its crystal structure largely resembles that of the compound SnS_2 (a puckered honeycomb lattice very similar to that of black phosphorus but with different atomic species in the unit cell). Figure 3a shows a three-dimensional (3D) representation of the crystal structure of teallite. This particular crystal structure might result interesting for applications looking for semiconducting materials with strongly anisotropic in-plane properties. In bulk, teallite is a semiconductor with ~1.6 eV of direct band gap.93 Recently, teallite has been mechanically exfoliated and its Raman spectra has been measured as a function of the incident light polarization at different temperatures finding a strong linear dichroism arising from its puckered structure.94 Shu et al.85 reported the growth of ultrathin synthetic tellellite, as thin as 2.4 nm, by chemical vapor deposition finding a large anisotropy ratio in the electrical, optical and mechanical properties (1.8 and photoresponse (1.25)), and photoresponsivity up to 20 A/W and response times of milliseconds. Also, shear force based liquid-phase exfoliation of teallite has been demonstrated achieving suspensions with 11–22 layers in thickness and the exfoliated material has been subsequently employed in electrocatalytic reactions.96 Figure 3b, c shows a picture of a teallite mineral rock and an optical microscopy image of a teallite flake mechanically exfoliated from the bulk mineral.

Some members of the sulfosalts family are composed of attenuating layers with dissimilar chemical composition (i.e., they constitute naturally occurring van der Waals superlattices).97 Some illustrative examples of this sub-family are the franckeite, the cylindrite and the cannizzarite.

Franckeite bulk mineral (with an approximate formula $\text{Pb}_n\text{Sn}_m\text{Sb}_p\text{S}_q\text{As}_r$) has been recently exfoliated down to a single unit cell.96–98 The crystal structure is composed of segregated Sn-rich, pseudo-hexagonal layers (with SnS$_2$-like structure) alternated to Pb-rich, pseudo-tetragonal layers (with PbS-like structure) with a van der Waals gap between them (see Fig. 3d). Molina-Mendoza et al.98 Velický et al.99 and Ray et al.100 demonstrated field-effect devices, photodetectors, and solar-cells with mechanically exfoliated flakes. These first works demonstrated that this exfoliated material is a p-type semiconductor with a band gap value of ~0.6 eV98 similarly to what has been reported for bulk franckeite.98 Liquid-phase exfoliation with different solvents have been used to produce colloidal suspensions of flakes with thickness down to four unit cells.96,98,99,103 Field-effect devices with performances very similar to that of mechanically exfoliated based devices, that show a strong p-type doping and a field-effect modulation up to a factor of 10, have been demonstrated from the liquid-phase exfoliation franckeite suspensions through dielectrophoresis-based assembly.103 More recent works characterized the optical properties of exfoliated franckeite nanosheets and it has been shown how covalent thiol-ene-like “click” chemistry can be used to decorate franckeite.105 Also, Friensda et al.106 have recently studied the spontaneous symmetry breakdown in franckeite resulting from a spatial modulation of the van der Waals interaction between layers due to the Sn$_2$S$_3$-like and PbS-like lattices incommensurability. In fact, although franckeite superlattice is composed of a sequence of isotropic 2D layers, it exhibits a spontaneous rippling that makes the material structurally anisotropic leading to an inhomogeneous in-plane strain profile and anisotropic electrical, vibrational, and optical properties.96 Figure 3e, f show a picture of a franckeite mineral rock and an optical microscopy image of a franckeite flake mechanically exfoliated from the bulk crystal.
Cylindrite (with an approximate formula Pb$_3$Sn$_4$FeSb$_2$S$_{14}$) is a mineral closely related to franckeite. It received its name because it often occurs as cylindrical crystals made up of rolled sheets. The structure, similar to franckeite, presents alternating segregated Sn-rich and Pb-rich layers (see Fig. 3g). In bulk cylindrite is a semiconductor with a band gap of 0.65 eV, very similar to that of franckeite78. Interestingly, bulk cylindrite presents intrinsic magnetic interactions, compatible with a spin glass-like system, which are assumed to be originated by its iron content107,108. Recently, Niu et al. reported the isolation of thin flakes of cylindrite (down to nine to ten layers) by mechanical and liquid-phase exfoliation, finding that the flakes of this material are heavily doped p-type semiconductors with a narrow gap (<0.85 eV). They also found intrinsic magnetic interactions (the magnetization shows an anomaly at ~5 K that can be attributed to a slowing down of the spin dynamics in magnetically disordered systems, the hallmark of spin glass-like behavior) that are preserved even in the exfoliated nanosheets. Figure 3h, i show a picture of a cylindrite mineral rock and an optical microscopy image of cylindrite flakes exfoliated from the bulk rock.

Cannizzarite (with an approximate formula Pb$_4$Bi$_6$S$_{13}$) is a rare micro-mineral formed by alternating stacks of tetragonal PbS-like and hexagonal layers Bi$_2$S$_3$ like (see the 3D representation of the crystal structure in Fig. 3j)107,108. Very little has been reported so far on this mineral, even in its bulk form. Figure 3k is a picture of a quartz rock covered by small micro-crystallites of cannizzarite, these crystals can be lifted up from the surface using a viscoelastic Gel-Film (by Gel-Pak) stamp. Figure 3l shows a cannizzarite flake after picking it up from the bulk rock and transfer it to a SiO$_2$/Si substrate by an all-dry deterministic transfer method.
OXIDES

The oxides are minerals in which the oxide anion (O²⁻) is bonded to one or more metal ions. Complex oxides such as silicates, carbonates and phosphates are traditionally classified separately. Figure 4a, b shows an example of one naturally occurring oxide: valentinite (with formula Sb₂O₃ and orthorhombic structure) occurs as a weathering product of stibnite and other antimony-based minerals. It is a semiconductor with a wide band gap of ~3.3 eV (no consensus about the direct/indirect nature of the gap) and dielectric constant of ~3 that has recently been used in energy storage applications. Other example of oxide mineral is the birnessite (see Fig. 4c, d), with approximate formula (Na, Ca, K)₀.₆(Mn⁴⁺, Mn³⁺)₂O₄ · 1.5H₂O, which has been exfoliated by liquid-phase exfoliation technique. In bulk, birnessite is a wide band gap semiconductor with an indirect gap at ~2.1 eV, a direct gap at ~2.7 eV, a dielectric constant of ~5, and interesting for supercapacitors and photoelectrochemistry applications. Moreover, there are theoretical predictions that exfoliated monolayer birnessite should exhibit intrinsic ferromagnetism with a Curie temperature of 140 K. We are not aware of other experimental works reporting the exfoliation of other naturally occurring oxide minerals.

SILICATES

Silicates is a family of largely abundant minerals made out of silicate groups. These materials are wide band gap insulators and some of them are typically used as dielectrics for capacitors in the semiconductor industry.

Nesosilicates

Nesosilicates are silicates that have SiO₄ tetrahedra that are isolated and connected by interstitial cations. Kyanite is an illustrative example of nesosilicate mineral with formula Al₂SiO₅ and intense blue color. Its structure is composed of “staircases” of Al octahedra linked by Si tetrahedra (see Fig. 5a). It is a wide band gap insulator with a direct band gap of ~5–6 eV and a dielectric constant of ~9. High-resolution frictional AFM images of the surface of bulk kyanite has been recently reported. These friction measurements performed along the [001] and [010] directions on the kyanite (100) face provide similar friction coefficients µ ≈ 0.10. Figure 5b shows a picture of a kyanite mineral rock and Fig. 5c is an optical microscopy image of a kyanite flake exfoliated from the bulk mineral.
Phyllosilicates: clays, micas, and chlorites

These materials are silicates with a 2 : 5 Si : O ratio. This large family of silicates includes the clays, micas, and chlorites, and all the members of this family are hydrated with either water or hydroxyl groups attached.

Clays are hydrous aluminum or magnesium phyllosilicates. From clays, one can obtain organoclays, in which the original interlayer cations (such as Na+) are exchanged with organocations (e.g., quaternary alkylammonium ions) leading to a different layer separation. Previous works showed that clay minerals can be exfoliated in liquid phase with the help of large polymers that intercalate in the crystal structure separating the layers. Talc (with formula Mg3Si4O10(OH)2) is an illustrative example of the clays family. It is a wide band gap insulator (direct gap of 5.2 eV) with a high dielectric constant (~10) in its bulk form131,132. The isolation of talc nanosheets with thickness down to one single-layer has been obtained by liquid-phase exfoliation and by weakening its layer interlayer forces has rarely been reported and mica is one of these few cases. In fact, muscovite mica has been successfully exfoliated down to a single-layer by mechanical exfoliation and their optical properties10,12, as well as their mechanical properties have been studied finding an optical method to determine its thickness and a Young’s modulus of ~200 GPa, higher than that of bulk muscovite (~175 GPa)13. Monolayer muscovite mica nanosheets can also be obtained by liquid-phase exfoliation and by weakening its layer attractions (enlarging the basal spacing by intercalation) prior to sonication133. Mechanically exfoliated muscovite mica flakes have been used as dielectric to fabricate graphene transistors with improved performance due to the high dielectric constant of mica and the atomically flat surface achieved after mechanical exfoliation134. Interestingly, the hydrophilic nature of muscovite mica in combination with the impermeability of graphene has opened up the possibility of studying the structure and the electronic properties of water confined a the mica/graphene interface135–137.

Fig. 6 Phyllosilicate clay van der Waals minerals. a, d Three-dimensional representation of the crystal structure of talc168 and vermiculite169. b, e Pictures of mineral rocks of talc and vermiculite13, respectively. c Optical microscopy image of a talc flake, mechanically exfoliated from the bulk crystal shown in b. f Picture of thermally expanded vermiculite13. e, f Reproduced from ref. 13, with permission.
PHOSPHATES

Phosphates are minerals that contain the tetrahedrally coordinated phosphate (PO$_4^{3-}$) anion. Vivianite is a hydrated iron phosphate with an approximate formula Fe$^{2+}$Fe$^{2+}$(PO_4)$_2$·8H$_2$O. Vivianite is known to be sensitive to visible light exposure which leads to a marked change in its color from colorless/pale green to dark green/brown. Bulk vivianite has been used as natural electron donor to effectively dechlorinate a variety of chlorinated organics, the principal and most frequently found contaminants in soil and groundwater that generates significant environmental problems. We also are not aware of any works in the literature reporting the exfoliation of vivianite in atomically thin flakes. Moreover, we could not find experimental reports on the band gap of vivianite but a recent theoretical calculation suggest that vivianite would present an indirect band gap in the range of ~3.3–4.6 eV and a paramagnetic ground state. Figure 9 summarizes the crystal structure sketch, the picture of the vivianite rock and an optical microscopy image of a mechanically exfoliated vivianite flake.

CARBONATES

Carbonates are the minerals containing the carbonate ion (CO$_3^{2-}$). Malachite is a copper carbonate hydroxide with a formula Cu$_2$CO$_3$(OH)$_2$. It has a dielectric constant on ~7 but we could not find information about its band structure. Figure 10 summarizes the crystal structure sketch, the picture of the malachite rock, and an optical microscopy image of a mechanically exfoliated malachite flake. Unfortunately, little can be found in the literature, apart from its crystal structure, even for the properties of bulk malachite.
It is noteworthy that although this overview of natural van der Waals minerals is most likely far from being complete, as we expect that there are many other layered mineral families not discussed in this perspective, we believe that it will constitute a good starting point to motivate the scientific community working on 2D materials to study these natural materials. Table 1 summarizes the main information highlighted over this perspective for the different minerals discussed here.

CONCLUSIONS AND DISCUSSION

In summary, we provided an overview over different mineral families containing members with layered structure that can be exfoliated by mechanical exfoliation. We discussed about the basic electronic and structural characteristics of these materials and we illustrate how thin flakes can be prepared by mechanical exfoliation of the bulk minerals. Most of the minerals discussed in this Perspective are easily available in specialized mineral shops or online auction sites at reasonable price (typically <50$ per mineral) making it easier the access to exotic van der Waals materials whose synthetic counterparts might be much more expensive (typically ~500$ per crystal) or even not available for purchase (e.g., some sulfosalts). The study of naturally occurring layered materials, however, can present some challenges. One of the most important ones is the purity/quality of the natural van der Waals mineral as compared to the synthetic counterpart. One might naively think that natural minerals are more prone to have impurities than synthetic ones. However, in the literature we can find two clear counterexamples: plenty of high-quality results for graphene and MoS2 are obtained with mechanically exfoliated graphite and molybdenite. In the case of MoS2, e.g., the highest mobility reported to date has been obtained with MoS2 flakes extracted from natural molybdenite (SPI source). We believe, however, that minerals with a complex structure and chemical composition (e.g., the sulfosalts) will suffer more from uncontrolled impurities than their synthetic counterparts. Another important issue will be to systematically study the optical and electrical properties of mineral coming from different mines to...
assess the impact of the parenting mineral source on the properties of the exfoliated 2D materials. We would like to note that this is a general important issue, not specific of naturally occurring van der Waals materials but of 2D materials research as a whole. Indeed, one would expect that the source of the parenting bulk layered material (even synthetic ones) might have a strong impact in the properties of the exfoliated flakes produced from it. Systematic studies trying to correlate the properties of exfoliated materials produced from different sources are still scarce. Many of these layered minerals are almost unexplored so far and we believe that this overview can constitute a necessary first step to trigger further works on exfoliation of naturally occurring layered minerals to produce 2D materials.

METHODS

Materials
The minerals used in this work come from the private collection of A.C.-G. Unfortunately, we cannot track back the original supplier for all the materials, as these pieces have been gathered along more than 10 years, in mineral shops around the world and online mineral auctions (e.g., eBay or e-Rocks).

Exfoliation of the minerals

Mineral bulks were mechanically exfoliated with Nitto tape (Nitto SPV 224) and then transferred onto Gel-Film (Gel-Pak, WF 4×6.0 mill), which is a commercially available polydimethylsiloxane substrate. The resulting flakes on the surface of the Gel-Film were transferred onto a SiO2/Si substrate (with 285 nm of SiO2 capping layer) by means of an all-dry deterministic placement method. Optical microscopy imaging of exfoliated flakes

Optical microscopy images have been acquired with two upright metallurgical microscopes a Motic BA MET310-T and a Nikon Eclipse CI equipped with an AM Scope mu1803 and a Canon EOS 1200D camera, respectively.

3D representation of the crystal structures

The 3D representations on the crystal structures included in the figures along the manuscript were produced with VESTA software using the crystallographic data from the cited references in the figure captions. It is noteworthy that most of the crystallographic data of those references can be directly found in form of CIF files in the American Mineralogist Crystal Structure Database, making straightforward its 3D representation.

DATA AVAILABILITY

Data are available on request from the authors.

Group	Mineral	Formula	Electronical behavior	Band gap (eV)	
Elemental	Graphite	C	Semi-metal	0	
	Bismuth	Bi	Metal	0	
	Antimony	Sb	Semi-metal	0	
	Selenium	Se	Semiconductor	2 (d)	
	Tellurium	Te	Semiconductor	0.31 (i)	
Sulfides	2H- Molybdenite	MoS2	Semiconductor	1.3 (i)	
	3R- Molybdenite	MoS2	Semiconductor	1.3 (i)	
	2H- Tungstenite	WSS	Semiconductor	1.3 (i)	
	Orpiment	As2S3	Semiconductor	~2.4–2.6 (i)	
	Anorpiment	As2S3	Semiconductor	NA	
	Stibnite	Sb2S3	Semiconductor	~1.6–1.7 (?)	
	Getchellite	AsSbS3	Semiconductor	1.74 (d)	
	Teallite	PbSnS2	Semiconductor	~1.6 (d)	
	Franckeite	Pb2Sn5Sb2S14	Semiconductor	~0.7 (d)	
	Cylindrite	Pb2SnFeSb2S14	Semiconductor	0.65 (d)	
	Cannizarite	Pb2Bi2S13	NA	NA	
Sulfosalts	Teallite	PbS2O3	Insulator	~3.3 (d)	
	Birnessite	(Na,Ca,K)2(Mn4+1,Mn3+2)2O4 ·1.5H2O	Insulator	~2.1 (i) and ~2.7 (d)	
Oxides	Valentinite	Sb2O3	Insulator	~5–6 (d)	
Silicates	Kyanite	Al2SiO4	Insulator	~5–6 (d)	
	Muscovite	KAl2(SiAl)2O10(OH)2	Insulator	5.1 (d)	
Phyllosilicates	Biotite	K(Mg,Fe)3(SiAl)2O10(OH)2	Insulator	NA	
	Lepidolite	K(Li,Al)2(SiAl)2O10(OH)2	Insulator	NA	
	Phlogopite	KMg3(SiAl)2O10(OH)2	Insulator	NA	
Chloride	Clinoclore	(Mg.Fe)2.5Al(SiAl)2O10(OH)2	Insulator	NA	
	Clay	Talc	Mg2SiO3(OH)2	Insulator	5.2 (d)
	Vermiculite	Mg2(Fe,Al)3(Si,Al)2O10(OH)2	Insulator	NA	
	Carbonates	Malachite	Cu2CO3(OH)2	NA	NA
	Phosphates	Vivianite	Fe3+Fe2+2+3+(PO4)2-8H2O	Insulator	~3.3–4.6 (d)
133. Jia, F. & Song, S. Preparation of monolayer muscovite through exfoliation of natural muscovite. *RSC Adv.*, 5, 52882–52887 (2015).

134. Low, C. G., Zhang, Q., Hao, Y. & Ruoff, R. S. Graphene field effect transistors with mica as gate dielectric layers. *Small*, 10, 4213–4218 (2014).

135. Shim, J. et al. Water-gated charge doping of graphene induced by mica substrates. *Nano Lett.*, 12, 648–654 (2012).

136. He, K. T., Wood, J. D., Donohue, G. P., Posp, E. & Lyding, J. W. Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica. *Nano Lett.*, 12, 2665–2672 (2012).

137. Xu, K., Cao, P. & Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. *Science*, 329, 1188–1191 (2010).

138. Li, S. et al. Few-layer Fe3(PO4)2·H2O: novel H-bonded 2D material and its electronic properties. *J. Phys. Chem. C.*, 120, 26278–26283 (2016).

139. Pinto, H. P., Michalkova, A. & Leszczynski, J. First-principles studies of para-magnetic vivianite Fe3(PO4)2·H2O surfaces. *J. Phys. Chem. C.*, 118, 6110–6121 (2014).

140. Süse, P. Verfeinerung der kristallstruktur des malachits, Cu2(OH)CO3. *Acta Crystallogr.*, 22, 146–151 (1967).

141. Ott, S. et al. Impact of the MoS2 starting material on the dispersion quality and nanomanipulation of graphene-coated water on mica. *Nano Lett.*, 16, 103–104 (2015).

142. Çelik, Y., Flahaut, E. & Suvac, İ. Structural reinvestigation of getchellite As0.98Sb1.02S3.00. *Cryst. Struct. Commun.*, 29, 1272–1276 (2001).

143. Guillermo, T. R. & Wuensch, B. J. The crystal structure of getchellite AsSbS3. *Am. Mineral.* 83, 332–336 (1998).

144. Schutte, W. J., De Boer, J. L. & Jellinek, F. Crystal structures of tungsten disulfide and orpiment, As2S3. *Acta Crystallogr.* 11, 151–154 (1958).

145. American Mineralogist Crystal Structure Database webpage (http://rruff.geo.arizona.edu/AMCSrcd.php).

146. Lukesh, J. S. & Pauling, L. The problem of the graphite structure. *Acta Crystallogr.*, 6, 71–75 (1953).

147. Adenis, C., Langer, V. & Lindqvist, O. Reinvestigation of the structure of tellurium. *Acta Crystallogr.*, Sect. C. Cryst. Struct. Commun., 45, 941–942 (1989).

148. Native antimony picture. Available at: https://commons.wikimedia.org/wiki/File:Antimony-119743.jpg. Accessed 20 Oct 2020.

149. Wyckoff, R. W. G. Antimony. *Cryst. Struct. J.*, 1, 73–76 (1963).

150. Marshall, R. E., Pauling, L. & McCullough, J. D. The crystal structure of β selenium. *Acta Crystallogr.*, 6, 71–75 (1953).

151. Mori, H. & Ito, T. The structure of vivianite and symplesite. *Acta Crystallogr.*, Sect. C. Cryst. Struct. Commun., 45, 941–942 (1989).

152. Native bismuth picture. Available at: https://commons.wikimedia.org/wiki/File:Bismuth-mrz348a.jpg. Accessed 20 Oct 2020.

153. Native tellurium picture. Available at: https://commons.wikimedia.org/wiki/ File:Tellurium-trmu07C.jpg. Accessed 20 Oct 2020.

154. Schönfeld, B., Huang, J. J. & Moss, S. C. Anisotropic mean-square displacements and orpiment, As2S3. *Am. Mineral.* 70, 6278–6283 (1985).

155. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.*, 44, 1272–1276 (2011).

156. Native selenium picture. Available at: https://commons.wikimedia.org/wiki/File:Selenium_in_sandstone_Westwater_Canyon_Section_23_Mine_Grants,_New_Mexico.jpg. Accessed 20 Oct 2020.

157. Native tellurium picture. Available at: https://commons.wikimedia.org/wiki/File:Tellurium-trmu07C.jpg. Accessed 20 Oct 2020.

158. Schönfeld, B., Huang, J. J. & Moss, S. C. Anisotropic mean-square displacements (MSD) in single-crystals of 2H-and 3R-MoS2. *Acta Crystallogr.*, Sect. B. Struct. Sci., 39, 404–407 (1983).

159. Schütte, W. J., De Boer, J. L. & Jellinek, F. Crystal structures of tungsten disulfide and orpiment, As2S3. *J. Solid State Chem.*, 70, 207–209 (1987).

160. Pinto, H. P., Michalkova, A. & Leszczynski, J. First-principles studies of para-magnetic vivianite Fe3(PO4)2·H2O surfaces. *J. Phys. Chem. C.*, 118, 6110–6121 (2014).

161. Mori, H. & Ito, T. The structure of vivianite and symplesite. *Acta Crystallogr.*, 3, 1–6 (1950).

162. Valentinite picture. Available at: https://commons.wikimedia.org/wiki/File: Valentinite-60669.jpg. Accessed 20 Oct 2020.

163. Naray-Szabo, S., Taylor, W. H. & Jackson, W. W. VIII. The structure of cyanite. *Z. Krist. Mater.*, 71, 117–130 (1929).

164. Gruner, J. W. The crystal structures of talc and pyrophyllite. *Z. Krist.*, 88, 412–419 (1934).

165. Gruner, J. W. The structures of vermiculites and their collapse by dehydration. *Am. Mineral.* J. Earth Planet. Mater., 19, 557–573 (1934).

166. Liang, J.-J. & Hawthorne, F. C. Rietveld refinement of micaceous minerals; muscovite-2M 1, a comparison with single-crystal structure refinement. *Can. Mineral.*, 34, 115–122 (1996).

167. Takeda, H. & Ross, M. Mica polytypism: dissimilarities in the crystal structures of coexisting 1 M and 2 M 1 boiote. *Am. Mineral.* J. Earth Planet. Mater., 60, 1030–1040 (1975).

168. Brown, B. E. The crystal structure of a 3poleidite. *Am. Mineral.*, 63, 332–336 (1978).

169. Steinfink, H. Crystal structure of a trichalcedotic mica: philogopite. *Am. Mineral.* J. Earth Planet. Mater., 47, 886–896 (1962).

170. Brown, B. E. & Bailey, S. W. Chlorite polytypism: I. Crystal structure of a one-layer Cr-chlorite. *Am. Mineral.* J. Earth Planet. Mater., 48, 42–61 (1963).

171. Mori, H. & Ito, T. The structure of vivianite and symplesite. *Acta Crystallogr.*, 3, 1–6 (1950).

ACKNOWLEDGEMENTS

We thank Nikos Papadopoulos for interesting discussions about minerals and for pointing out the existence of getchellite to us. We also thank the staff of IGE Minerales shop (Madrid, Spain) and Museo Geominero of Madrid (Spain). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement number 755655, ERC-StG 2017 project 2D-TOPOSENSE) and the European Union’s Horizon 2020 research and innovation programme under the Flagship Flagship (grant agreement number 782519, GrapheneCore2 project and grant agreement number 881603, GrapheneCore3 project). R.F. acknowledges the support from the Spanish Ministry of Economy, Industry and Competitiveness through a Juan de la Cierva-formacion fellowship 2017 FJI-2017-32919 and the grant MAT2017-87072-C4-4-P.

AUTHOR CONTRIBUTIONS

A.C.-G. designed and supervised the work, and drafted the first version of the manuscript. R.F., Y.N., P.G., and M.M. exfoliated the minerals and characterized the resulting flakes, and contributed to the elaboration of the last version of the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to A.C.-G. Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

Published in partnership with FCT NOVA with the support of E-MRS