SYNTHESIS, CHARACTERISATION AND ANTIFUNGAL ACTIVITIES OF SOME NEW COPPER(II) COMPLEXES OF ISOMERIC 3,5,7,7,10,12,14,14-OCTAMETHYL-1,4,8,11-TETRAAZACYCLOTETRADECANES

Saroj K.S. Hazari¹, Tapashi G. Roy*¹, Benu K. Dey¹, Suvash C. Das¹ and Edward R.T. Tiekink²

¹ Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh
² Department of Chemistry, The University of Adelaide, Australia 5005

Abstract

Three isomeric Me₈₁₁₄anes, Lₐ, Lₐ and Lₐ, undergo complexation with copper(II) salts to form a series of [CuLₓ(H₂O)ₓ]X₂(H₂O)z complexes where L = Lₐ, Lₐ and Lₐ; X = Cl, Br, NO₃; n, x, y and z may have values of 0, 1 or 2. The complexes have been characterised on the basis of analytical, spectroscopic, magnetic and conductance data. Further, the X-ray crystal structure of one complex, [CuL_B(OH₂)₂(NO₃)₂], has been determined. The antifungal activity of all three isomeric ligands and their complexes has been investigated against a range of phytopathogenic fungi.

1. Introduction

The importance of synthetic macrocycle complexes is well recognised and hardly needs elaboration. This contribution focuses on the synthesis and characterisation of a series of copper(II) complexes of isomeric octamethyl tetraazatetradecanes. It has been shown that 1,2-propanediamine condenses with acetone stereospecifically to yield only the 3,10-C-meso isomer of the macrocycle 3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, Me₈₁₁₄diene, L₁; this assignment is based on ¹H NMR [1, 2] and has been confirmed by X-ray crystallography [3].

The reduction of L₁ with NaBH₄ yields three isomeric Me₈₁₁₄anes, i.e. Lₐ, Lₐ and Lₐ, as revealed by a ¹H NMR study and, in the case of Lₐ, by an X-ray crystallographic study [4]. The interactions of these ligands with certain metal centers have been investigated previously.

In one study [5], a number of square planar copper(II) complexes were prepared by the reaction, in methanolic solution, of copper perchlorate with Lₐ, Lₐ and Lₐ; in each case two diastereoisomers were isolated. Owing to the steric hindrance of the eight methyl groups in these macrocycles and the non-coordinating tendency of perchlorate, it was expected that the preparation of five- or six-coordinate complexes may be difficult [5]. Subsequently, in another study, Bembi and co-workers [6] reported the preparation of a series of six coordinate cobalt(III) complexes with these isomeric ligands, i.e. [CoLCl₂](ClO₄)₂; N-chiral isomers have been separated. Hence, it seemed likely that
higher coordination number copper(II) salts could also be prepared. In this context, a number of new four- and six-coordinate copper(II) complexes have been isolated and their antifungal activities, as well as those of the ligands, investigated.

2. Experimental

2.1 Synthesis

The parent ligand, 3,10-C-meso-Me8114]-diene.2HClO4, was synthesised according to the literature method [1] and reduction of this ligand with NaBH4 was carried out in a 1:1 water-methanol mixture. The isomers, L_A, L_B and L_C were isolated by fractional crystallisation from xylene [4].

2.1.1 Copper(II) nitrate complexes

[CuL_A(NO3)2].H2O — L_A (0.312 g, 1.0 mmol) and Cu(NO3)2.3H2O (0.241 g, 1.0 mmol) were dissolved separately in hot MeOH (20 ml) and EtOH (20 ml), respectively and mixed while hot. The solution was heated on a steam bath and after ca 30 min a brown precipitate formed. The solution was cooled and the brown product, [CuL_A(NO3)2].H2O, was filtered off, washed with absolute EtOH and then Et2O, dec. pt 256 - 258 °C. Found C, 41.76; H, 8.14; N, 16.25 %. C18H42CuN6O7 requires C, 41.74; H, 8.12; N, 16.24 %.

[CuL_B(H2O)2](NO3)2 — L_B (0.312 g, 1.0 mmol) and Cu(NO3)2.3H2O (0.241 g, 1.0 mmol) were dissolved separately in hot dry EtOH (30 ml) and mixed slowly while hot. The solution was heated on a steam bath and after ca 30 min the solution was filtered. The purple filtrate was concentrated in hot dry EtOH (30 ml) and mixed slowly while hot. The solution was heated on a steam bath and after ca 30 min the volume was reduced to ca 15 ml. On cooling, the purple product, [CuL_B(H2O)2](NO3)2, crystallised. This was filtered off, washed with dry EtOH followed by Et2O, and finally dried in vacuo. M. pt > 360 °C. Found C, 40.34; H, 8.22; N, 15.71 %. C18H44CuN6O8 requires C, 40.33; H, 8.22; N, 15.69 %.

[CuL_C(NO3)(H2O)]NO3 — L_C (0.312 g, 1.0 mmol) and Cu(NO3)2.3H2O (0.241 g, 1.0 mmol) were dissolved in dry EtOH (40 ml). The resulting blue mixture was heated on a steam bath for ca 30 min and then filtered. The purple filtrate was concentrated on a steam bath for a further 25 min until the volume was reduced to 10 ml. After cooling to room temperature, the blue product, [CuL_C(NO3)(H2O)]NO3, was filtered off, washed with 1PrOH and Et2O. The product was recrystallised from an acetonitrile solution of the complex; m. pt > 280 °C. Found C, 41.73; H, 8.13; N, 16.25 %. C18H42CuN6O7 requires C, 41.74; H, 8.12; N, 16.24 %.

2.1.2 Copper(II) chloro complexes

[CuL_ACl2].H2O — L_A (0.312 g, 1.0 mmol) and CuCl2.2H2O (0.171 g, 1.0 mmol) were dissolved separately in hot dry MeOH (20 ml) and EtOH (20 ml), respectively and mixed while hot. The reaction mixture was heated on a water bath for 30 min during which time the solution changed colour from green to blue-violet. On heating for a further 30 min, the volume was reduced to ca 8 ml and a brick-red precipitate formed. The product, [CuL_ACl2].H2O, was filtered off, washed with absolute EtOH followed by dry Et2O and dried in vacuo. Further concentration of the filtrate gave a second crop which was identical with the first, m. pt 270 - 273 °C (dec.). Found C, 46.56; H, 9.02; N, 12.08 %. C18H42CuCl2N4O requires C, 46.54; H, 9.04; N, 12.06 %.

[CuL_B]Cl2.2H2O and [CuL_C]Cl2.2H2O — L_B (0.312 g, 1.0 mmol) and CuCl2.2H2O (0.171 g, 1.0 mmol) were dissolved separately in hot absolute EtOH (20 ml) and mixed. The resulting violet
solution was heated on a steam bath for ca 50 min. when a violet product began to form at high temperature. Excess Et₂O was added to precipitate out the violet product, [CuLB₂Cl₂]₂H₂O; m. pt > 280 °C (dec.). Found C, 44.71; H, 9.14; N, 11.62 %. C₁₈H₄₄CuCl₂N₄O₂ requires C, 44.72; H, 9.12; N, 11.61 %.

After separating the violet product, the violet mother liquor was concentrated to ca 5 ml. On cooling, a brown product precipitated. After 45 min, the product, [CuLB]Cl₂.2H₂O, was filtered off and washed with dry EtOH, followed by Et₂O and dried in vacuo; m. pt > 280 °C. Found C, 44.73; H, 9.11; N, 11.63 %. C₁₈H₄₄CuCl₂N₄O₂ requires C, 44.72; H, 9.12; N, 11.61 %.

The brown product turns violet when heated in an oven at 70°C for ca 5 min. On exposure to air the violet product reverts back to brown.

[CuLC]Cl₂ and [CuLCCl₂]₂H₂O — Lc (0.312 g, 1.0 mmol) and CuCl₂.2H₂O (0.171 g, 1.0 mmol) were dissolved separately in hot absolute EtOH (15 ml) and mixed. The resulting deep blue solution was heated on a steam bath for ca 45 min to reduce the volume to ca 20 ml. After cooling, a brown product [CuLC]Cl₂ was filtered, washed with (CH₃)₂CHOH and then Et₂O; m. pt 272 °C. Found C, 48.39; H, 8.96; N, 12.52 %. C₁₈H₄₀CuCl₂N₄ requires C, 48.38; H, 8.96; N, 12.55 %.

The deep blue filtrate was concentrated to ca 5 ml. Et₂O was added in excess to precipitate the blue product, [CuLCCl₂]₂H₂O, which was filtered off; m. pt 272 °C. Found C, 44.75; H, 9.11; N, 11.59 %. C₁₈H₄₄CuCl₂N₄O₂ requires C, 44.72; H, 9.12; N, 11.61 %.

2.1.3 Copper(II) bromo complexes

[CuLaBr₂]H₂O — La (0.312 g, 1.0 mmol) and CuBr₂ (0.223 g, 1.0 mmol) were dissolved separately in hot MeOH (30 ml) and absolute EtOH (20 ml), respectively and mixed while hot. The resulting blue solution was heated on a water bath for ca 65 min until the volume was reduced to ca 10 ml. After cooling to room temperature, dark violet crystals of [CuLaBr₂]H₂O, were filtered off, washed with dry EtOH followed by Et₂O and dried in vacuo. M. pt > 280 °C. Found C, 39.04; H, 7.60; N, 10.10 %. C₁₈H₄₂Br₂CuN₄O₂ requires C, 39.03; H, 7.59; N, 10.12 %.

[CuLaBr₂]Cl₂.2H₂O and [CuLaBr₂]Cl₂H₂O — A hot ethanolic solution of La (0.312 g, 1.0 mmol, 25 ml) was added to a hot ethanolic solution of CuBr₂ (0.223 g, 1.0 mmol, 25 ml). The resulting purple solution was concentrated to ca 8 ml by heating on a steam bath for 1 h. On cooling to room temperature, a brown product, [CuLaBr₂]Cl₂H₂O, was filtered off, washed with EtOH and then dried in vacuo; m. pt > 280 °C. Found C, 38.91; H, 7.70; N, 9.78 %. C₁₈H₄₄Br₂CuN₄O₂ requires C, 37.80; H, 7.70; N, 9.81 %.

A portion of the brown product obtained above was converted to a violet product, [CuLaBr₂]H₂O, by heating it in an oven at 70°C for 5 min; m. pt > 280 °C. Found C, 39.02; H, 7.58; N, 10.11 %. C₁₈H₄₂Br₂CuN₄O₂ requires C, 39.03; H, 7.59; N, 10.12 %. On exposure to air, the violet complex reverts back to the brown species.

[CuLCBr₂]H₂O — Lc (0.312 g, 1.0 mmol) and CuBr₂ (0.223 g, 1.0 mmol) were dissolved separately in hot absolute EtOH (15 ml) and mixed. A blue-violet color appeared immediately. The mixture was evaporated to dryness on a steam bath. The crude, dried product was extracted with chloroform. Some red product remained undissolved but there was insufficient for characterisation. The chloroform extract was taken to dryness on a steam bath to yield a blue product, [CuLCBr₂]H₂O; m. pt > 280°C. Found C, 37.82; H, 7.71; N, 9.79 %. C₁₈H₄₄Br₂CuN₄O₂ requires C, 37.80; H, 7.70; N, 9.81 %.

2.2 Structure determination of [CuLa(H₂O)₂](NO₃)₂

Crystals of [CuLa(H₂O)₂](NO₃)₂ were grown by the slow evaporation of an acetonitrile solution of the complex. Intensity data for a red crystal (0.40 x 0.44 x 0.44 mm) were measured at 200 K on a Rigaku AFC6R diffractometer fitted with MoKα radiation (graphite monochromator, λ = 0.71073 Å) using the θ/2θ scan technique so that θmax was 27.5°. No decomposition of the crystal occurred during the data collection and the data set was corrected for Lorentz and polarization effects [7], and for absorption employing an empirical procedure (range of transmission factors: 0.882 - 1) [8]. A total of 3183 data (2988 unique) were collected and of these, 2219 that satisfied the I ≥ 3.0σ(I) criterion were used in the subsequent analysis.

Crystal data: C₁₈H₄₄CuN₆O₈, M = 536.1, monoclinic, space group P2₁/c, a = 8.100(3) Å, b = 15.331(2) Å, c = 10.427(3) Å, β = 106.97(2)°, V = 1238.5(6) Å³, Z = 2, Dcalc = 1.438 g cm⁻³, F(000) = 574, μ = 19.35 cm⁻¹.
The structure was solved by placing copper at a centre of inversion and refined by a full-matrix least-squares procedure based on F. The non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms were included in the model in their calculated positions (C-H 0.97 Å); the O-H atoms were located from a difference map and included in the model. The refinement was continued until convergence with sigma weights when $R = 0.039$ and $R_w = 0.046$. The maximum residual in the final difference map was 0.44 e Å$^{-3}$. The numbering scheme employed is shown in Fig. 1 which was drawn with ORTEP [9] at 50% probability ellipsoids. Data manipulation were performed with the teXsan program [7] installed on an Iris Indigo work station. Other crystallographic details, comprising fractional atomic coordinates for all atoms, thermal parameters, all bond distances and angles (in CIF format), and tables of observed and calculated structure factors are available on request (ERTT).

2.3 Physical measurements

Visible spectra were recorded on a Shimadzu UV-visible spectrophotometer. Conductance measurements were carried out on a conductivity bridge model PW 9501 with a Phillips PW 9515/10 conductivity cell at 25 ± 0.1 °C. Magnetic measurements were made on a Sherwood Scientific magnetic susceptibility balance which was calibrated using [HgCo(SCN)$_4$]. IR spectra were recorded on a Perkin-Elmer model-883 infrared spectrophotometer as KBr disks. C, H, N analysis were carried out at the Chemistry Department, University of Stirling, Stirling, U.K.

2.4 Antifungal activities

The antifungal activity of the isomeric ligands and their copper complexes (in vitro) against some selected phytopathogenic fungi was assessed by the poisoned food technique. Potato Dextrose Agar (PDA) was used as a growth medium. DMF was used as solvent, initially to prepare solutions of the compounds. The solutions were then mixed with the sterilised PDA to maintain the concentration of the compounds at 0.01%; 20 ml of these were each poured into a petri dish. After the medium had solidified, a 5 mm mycelial disc for each fungus was placed in the centre of each assay plate against the control. Linear growth of the fungus was measured in mm after five days of incubation at 25 ± 2°C.

3. Results and discussion

On the basis of their 1H and 13C NMR spectra [4], L_A, L_B and L_C have been assigned structures as shown in the Introduction; and the structure of L_B confirmed by X-ray crystallography [4]. On reaction with copper(II) salts, the isomeric ligands yield both four- and six-coordinate complexes of the general formula: $[CuL_X^n(H_2O)_x]Y_y.$, where $L = L_A$, L_B and L_C; $X = Cl, Br, NO_3$; n, x, y and z may have values of 0, 1 or 2. As 1H NMR could not be measured for these paramagnetic salts, exact stereochemistries could not be determined except for that of $[CuL_B(H_2O)2(NO_3)2$ for which a single crystal structure analysis could be undertaken. Characterisation of the complexes could be achieved using IR and UV/vis spectroscopies as well as by magnetochemical and conductance measurements. Physical and spectroscopic data are collected in Tables 1 and 2.

In principle [6, 10], owing to the presence of four chiral N-centers in L_A, L_B and L_C, each isomer $L_8[14]ane$ can yield 16 diastereoisomeric complexes of the same geometry. Out of these possibilities, only a few are stable and sufficiently abundant to permit their isolation in the solid state. In this study, only one diastereoisomer of each complex was isolated.

3.1 Copper(II) nitrate complexes

Reaction of an ethanolic solution of copper(II) nitrate with L_A, L_B and L_C produce brown $[CuL_A(NO_3)2].H_2O$, purple $[CuL_B(H_2O)2(NO_3)2$, and blue $[CuL_C(NO_3)(H_2O)]NO_3$, respectively.

The IR spectrum of $[CuL_A(NO_3)2].H_2O$ exhibits a band at 1380 cm$^{-1}$, similar to that found in the spectrum of the free ligand [11], which can be assigned to absorptions due to CH$_3$ groups. Two bands, at 1435 cm$^{-1}$ and 1325 cm$^{-1}$, are attributed to coordinated NO$_3$ groups. The separation of 110 cm$^{-1}$ between the two bands indicates a unidentate mode of coordination. Moreover, a band at 250 cm$^{-1}$ can be assigned to M-O stretching of a unidentate NO$_3$ group [12]. The presence of lattice water is indicated by the presence of bands at 3440 cm$^{-1}$ and 1626 cm$^{-1}$. Selected IR bands for all complexes are collected in Table 1. The conductance value at 9 ohm$^{-1}$ cm2 mol$^{-1}$ (see Table
TABLE 1. Selected IR bands (KBr optics, cm⁻¹)

Complex	\(\nu_{\text{NH}}\)	\(\nu_{\text{CH}}\)	\(\nu_{\text{CH}_3}\)	\(\nu_{\text{CC}}\)	\(\nu_{\text{MN}}\)	\(\nu_{\text{OH}}\)	\(\nu_{\text{HOH}}\)	Other bands
\([\text{CuLa(NO}_3)_2]_2\text{H}_2\text{O}\)	3150 w	2975 m	1380 vs	1180 s	530 w	3440 br	1625 vs	1440 ms, 1325 m, \(\nu(\text{NO}_3)\) 265 s, \(\nu_{\text{MO}}\) 1380 s, \(\nu(\text{NO}_3)\), 445 m, \(\nu_{\text{MO}}\) 1440 sh, 1320 m, \(\nu(\text{NO}_3)\) 245 s, 440 w, \(\nu_{\text{MO}}\) 275 m, \(\nu_{\text{MCl}}\)
\([\text{CuLb(H}_2\text{O})_2]_2(\text{NO}_3)_2\)	3195 br	2970 m	1380 vs	1185 w	540 br	3430 br		
\([\text{CuLc(NO}_3)(\text{H}_2\text{O})]_2\text{NO}_3\)	3200 br	2965 m	1380 vs	1180 m	520 sh	3400 br		
\([\text{CuLaCl}_2]_2\text{H}_2\text{O}\)	3135 m	2970 s	1360 s	1160 s	556 w	3330 m	1650 v	240 s, \(\nu_{\text{MCl}}\) 250 s, \(\nu_{\text{MCl}}\) 245 s, \(\nu_{\text{MBr}}\)
\([\text{CuLbCl}_2]_2\text{H}_2\text{O}\)	3165 br	2980 s	1380 s	1180 br	570 sh	3440 br	1620 s	
\([\text{CuLbCl}_2]_2\text{H}_2\text{O}\)	3160 br	2975 s	1370 m	1180 w	540 w	3460 br	1620 s	
\([\text{CuLcCl}_2]_2\text{H}_2\text{O}\)	3125 s	2970 s	1380 s	1180 s	530 w			
\([\text{CuLcCl}_2]_2\text{H}_2\text{O}\)	3180 s	2965 s	1380 s	1180 s	540 sh	3450 br	1625 s	
\([\text{CuLaBr}_2]_2\text{H}_2\text{O}\)	3160 w	2965 m	1380 s	1180 s	535 w	3375 br	1620 br	
\([\text{CuLbBr}_2]_2\text{H}_2\text{O}\)	3163 s	2970 s	1380 s	1183 s	530 sh	3460 br	1615 s	
\([\text{CuLbBr}_2]_2\text{H}_2\text{O}\)	3120 s	2960 s	1375 s	1180 s	530 w	3460 br	1620 w	260 s, \(\nu_{\text{MBr}}\) 530 sh, \(\nu_{\text{MBr}}\)
\([\text{CuLcBr}_2]_2\text{H}_2\text{O}\)	3185 m	2965 s	1380 s	1180 s	530 sh	3360 br	1625 br	
Complex	Color in solid state	solvent	λ_{max} (nm) (log ε_{max})	color in DMF	molar conductivity	magnetic moment μ_{eff} in BM		
-------------------------	----------------------	---------	---------------------------	--------------	-------------------	-----------------------------		
[CuL_{A}(NO_{3})_{2}]H_{2}O	brown	DMF	558 (1.86)	brown-yellow	9	180		
		water	516 (2.07)	pink	154	1.76		
[CuL_{B}(H_{2}O)_{2}]2(NO_{3})_{2}	purple	Nujol	536	pink	80	175		
		DMF	518 (2.10)	pink	178	1.64		
		water	511 (2.04)	pink	178	1.64		
[CuL_{C}(NO_{3})(H_{2}O)]NO_{3}	blue	Nujol	536	blue	93	175		
		DMF	531 (2.28)	brown-violet	175	1.84		
		water	523 (2.22)	brown-violet	175	1.84		
[CuL_{A}Cl_{2}]H_{2}O	brick-red	DMF	546 (2.08)	brick-red	9	180		
		water	515 (1.98)	pink	168	1.97		
[CuL_{B}Cl_{2}2H_{2}O	brown	DMF	561 (2.08)	brown-violet	14	178		
		water	509 (2.07)	pink	178	1.64		
[CuL_{B}Br_{2}2H_{2}O	violet	Nujol	536	brown-violet	9	169		
		DMF	551 (2.08)	pink	169	1.86		
		water	509 (2.07)	brown-violet	169	1.86		
[CuL_{C}]Cl_{2}	brown	DMF	580 (2.18)	brown-violet	32	163		
		water	519 (1.98)	violet	163	1.72		
[CuL_{C}Cl_{2}2H_{2}O	blue	DMF	581 (2.30)	blue	17	176		
		water	628 (2.20)	violet	176	1.91		
[CuL_{A}Br_{2}]H_{2}O	dark-violet	DMF	537 (1.94)	violet	23	144		
		water	520 (1.08)	pink	144	1.88		
[CuL_{B}Br_{2}2H_{2}O	brown	DMF	527 (2.09)	brown-violet	36	163		
		water	500 (2.09)	pink	163	1.67		
[CuL_{B}Br_{2}]H_{2}O	violet	Nujol	536	brown-violet	9	155		
		DMF	529 (2.14)	violet	155	2.04		
		water	498 (1.93)	violet	155	2.04		
[CuL_{C}Br_{2}]2H_{2}O	violet	Nujol	536	brown-violet	31	176		
		DMF	570 (2.24)	violet	176	2.06		
		water	529 (2.24)	brown-violet	176	2.06		

\(a \) \(\varepsilon_{\text{max}} \) = maximum molar extinction coefficient in \(\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1} \)
2) in DMF solution shows that the complex is essentially a non-electrolyte, however, in water a 1:2 electrolyte is indicated as \(H_2O \) replaces \(NO_3^- \) in the coordination sphere.

It has been shown that copper(II) centres in macrocycles generally have square planar or tetragonally distorted octahedral geometries and that these give rise to broad bands in the visible region due to overlap of \(A_{1g} \rightarrow B_{1g} \), \(B_{2g} \rightarrow B_{1g} \) and \(E_g \rightarrow B_{1g} \) transitions [13]. The \([CuL_A(NO_3)_2].H_2O\) complex shows a broad \(d-d\) band at 558 nm in DMF and 516 nm in water (Table 2) consistent with the above. The magnetic moment is 1.80 BM (Table 2), i.e. consistent with the copper(II) complex having one unpaired electron.

The IR spectrum of \([CuL_B(H_2O)_2](NO_3)_2\) exhibits an intense, sharp band at 1380 cm\(^{-1}\) which is attributed to ionic, non-coordinating \(NO_3^- \) and methyl groups. A sharp \(\nu_{OH} \) band at 3430 cm\(^{-1}\) is due to coordinated water and further evidence for this assignment is found in a band at 445 cm\(^{-1}\) which is attributed to M-O stretching. The conductance in water shows a 1:2 electrolyte, however, in DMF, where the colour changes to pink-violet, the conductance value is indicative of an 1:1 electrolyte. This result is accounted for by \(NO_3^- \) coordinating the copper center in DMF solution as has been seen in similar systems [14]. The magnetic moment and electronic data are consistent with an octahedral structure. Unambiguous structure determination has been afforded by a crystallographic analysis.

The molecular structure of the cation in \([CuL_B(H_2O)_2](NO_3)_2\) is shown in Fig. 1 and selected geometric parameters are listed in Table 3.

Figure 1. The molecular structure of the cation in \([CuL_B(H_2O)_2](NO_3)_2\) showing the numbering scheme employed.
The copper(II) cation is located on a crystallographic center of inversion and exists in a tetragonally distorted octahedral geometry defined by a N₄O₂ donor set. The Cu-N(1) and Cu-N(4) separations of 2.039(2) Å and 2.029(2) Å, respectively are equal to each other and the independent Cu-O(1) separation is 2.853(2) Å. The four N-chiral centers of 14-membered ring are in the 1RS, 4RS, 8SR, 11SR configuration with two NH₃ groups above the N₄ equatorial plane and the other two below. The methyl groups of the five-membered rings occupy axial positions and those in the six-membered rings, i.e. bound to C(5), occupy equatorial positions. The geometry reported here resembles closely that found in [CuLB(H₂O)₂](ClO₄)₂ where the Cu-N distances were 2.035(3) Å and 2.031(4) Å, and Cu-O is 2.815(5) Å; the configuration of the four N-chiral centers was 1SR, 4RS, 8SR, 11SR with a similar disposition of the NH₃ groups [15]. Trans configurations as shown in Fig. 1 have been shown to be the more stable in related systems [6, 16, 17].

TABLE 3. Selected interatomic parameters (Å, deg.) for [CuLB(H₂O)₂](NO₃)₂. Primed atoms are related by a crystallographic center of inversion

Bond	Cu-O(1)	Cu-N(1)	Cu-N(4)	N(1)-C(2)	N(1)-C(7)	N(4)-C(3)	N(4)-C(5)	C(3)-C(5)	C(5)-C(6')	C(5)-C(7)	C(7)-C(7')	N(5)-O(2)	N(5)-O(3)	N(5)-O(4)
Cu-O(1)	2.853(2)													
Cu-N(1)		2.039(2)												
Cu-N(4)	2.029(2)		1.488(3)											
N(1)-C(7)	1.508(3)			1.512(4)										
N(4)-C(5)	1.496(3)				1.526(4)									
C(3)-C(5)						1.531(4)								
C(5)-C(6)	1.520(4)						1.534(4)							
C(7)-C(7')	1.525(4)							1.552(3)						
N(5)-O(2)	1.232(3)								1.257(3)					
N(5)-O(3)		1.213(3)								1.257(3)				
O(1)-Cu-N(1)'	101.10(7)													
O(1)-Cu-N(4)'	73.79(7)													
N(1)-Cu-N(4)'	94.58(8)													
Cu-N(1)-C(2)	119.4(1)													
Cu-N(1)-C(7)	108.2(2)													
Cu-N(4)-C(5)	114.6(2)													
Cu-N(4)-C(3)	108.2(2)													
O(2)-N(5)-O(3)	119.5(3)													
O(3)-N(5)-O(4)	120.5(3)													

As expected there are significant hydrogen bonding interactions in the lattice of [CuLB(H₂O)₂](NO₃)₂. The primary contacts involve the coordinated water molecules and the nitrate anions; weaker interactions involving the NH₃ groups are also evident, however, such contacts are restricted owing to steric crowding. The O-H(1a) atom forms a contact to O(2) such that H(1a)...O(2) is 1.89 Å, O(1)...O(2) is 2.853(4) Å and O(1)-H(1a)...O(2) is 170" (symmetry operation i: x, 0.5 + y, 0.5 - z) and a weaker contact to O(4), i.e. H(1a)...O(4) is 2.87 Å, O(1)...O(4) is 3.109(4) Å and O(1)-H(1a)...O(4) is 132°. The O-H(2a) atom is separated by 1.95 Å from O(3) with O(1)...O(3) is 2.811(3) Å and O(1)-H(2a)...O(3) is 152° (symmetry operation ii: x, - y, 1 - z). The O(4) atom of the nitrate that only forms a relatively weak interaction with the water molecule forms an additional contact to the N(4)-H(4) atom such that O(4)...H(4) is 2.40 Å, O(4)...N(4) is 3.203(3) Å and O(4)...H(4)...N(4) is 142° (symmetry operation iii: x, 0.5 - y, 0.5 + z).

In the IR spectrum of the blue [CuLB(NO₃)(H₂O)](NO₃) complex, a distinct peak at 1380 cm⁻¹ is found which has been assigned to overlapping ionic nitrate and methyl absorptions. Further, a medium band at 1325 cm⁻¹ and a shoulder at 1440 cm⁻¹ are indicative of coordinated NO₃. The separation of these bands by 115 cm⁻¹ and the appearance of a single sharp M-O band at 250 cm⁻¹ is indicative of unidentate NO₃⁻. A band at 3400 cm⁻¹ shows the presence of coordinated water. The conductance at 83 ohm cm⁻¹ cm² mol⁻¹ in DMF solution fully supports the above assignment. By contrast, in water, where the colour changed to violet, the conductance (175 ohm⁻¹ cm² mol⁻¹) clearly suggests that NO₃⁻ has been forced out of the coordination sphere by a H₂O water. The electronic spectral and magnetic data are in good agreement with the tetragonally distorted octahedral structure, Table 2.

Volume 4, No. 5, 1997 Synthesis, Characterisation and Antifungal Activities of Some New Copper(II) Complexes of Isomeric 3,5,7,10,12,14, 14-Octamethyl-1,4,8,11-Tetraazacyclotetradecanes

262
3.2 Copper(II) chloro complexes
The interaction of copper(II) chloride with LA in ethanolic solution yielded brick red \([\text{CuL}_A \text{Cl}_2]\cdot \text{H}_2\text{O}\) during the course of the synthesis. A blue solution yielded this product and this suggested that a different diastereoisomer or geometric isomer was abundant in solution but only the brick-red product was stable in the solid state.

The IR spectrum of \([\text{CuL}_A \text{Cl}_2]\cdot \text{H}_2\text{O}\) displays νOH and δOH bands corresponding to lattice water. A band at 275 cm\(^{-1}\) is assigned to Cu-Cl stretching. The molar conductivity in DMF (6 ohm\(^{-1}\) cm\(^2\) mol\(^{-1}\)) shows that the complex is a non-electrolyte. Based on the above evidence, a distorted octahedral geometry is proposed for \([\text{CuL}_A \text{Cl}_2]\cdot \text{H}_2\text{O}\).

The interaction of LB with copper(II) chloride gives brown \([\text{CuL}_B \text{Cl}_2]\cdot \text{H}_2\text{O}\) and violet \([\text{CuL}_B \text{Cl}_2]\cdot \text{H}_2\text{O}\). The brown product is obtained at room temperature and the violet product can be isolated in the absence of water or by heating the brown product to 70 - 80°C. Moreover, the violet complex reverts to the brown one on exposure to moisture.

The IR spectrum of brown \([\text{CuL}_B \text{Cl}_2]\cdot \text{H}_2\text{O}\) reveals a sharp νOH and δOH bands indicating lattice water; the absence of any M-O band around 450 cm\(^{-1}\) confirms that water is not coordinated in this complex. Further, no bands are seen around 250 cm\(^{-1}\) indicating that the chloride is not coordinating. The electronic spectrum was not well resolved.

The IR spectrum of violet \([\text{CuL}_B \text{Cl}_2]\cdot \text{H}_2\text{O}\) shows a similar pattern to that found for \([\text{CuL}_B \text{Cl}_2]\cdot \text{H}_2\text{O}\) except for the appearance of an additional band at 240 cm\(^{-1}\) which is assigned to a M-Cl stretching frequency. The non-electrolytic nature of this complex in DMF solution strongly supports a tetragonally distorted octahedral complex.

An almost violet colour is observed when the brown complex is dissolved in DMF solution and the conductance (14 ohm\(^{-1}\) cm\(^2\) mol\(^{-1}\)) corresponds to a non-electrolyte. This observation suggests that in DMF solution, the non-coordinating chloride ions of \([\text{CuL}_B \text{Cl}_2]\cdot \text{H}_2\text{O}\) are forced into the coordination sphere. No suitable solvent was found in which the brown product remained unchanged.

Similar behaviour to that described above for LB was found for reactions involving LC where brown \([\text{CuL}_C \text{Cl}_2]\cdot \text{H}_2\text{O}\) and blue \([\text{CuL}_C \text{Cl}_2]\cdot \text{H}_2\text{O}\) were characterised.

3.3 Copper(II) bromo complexes
The ligand LA reacts with copper(II) bromide to yield the dark violet complex, \([\text{CuL}_A \text{Br}_2]\cdot \text{H}_2\text{O}\). With the same salt, LB produces brown \([\text{CuL}_B \text{Br}_2]\cdot \text{H}_2\text{O}\) which, on heating at 70°C, is converted to violet \([\text{CuL}_B \text{Br}_2]\cdot \text{H}_2\text{O}\). The two products were found to be interconvertible as found for the related chloro complexes. Blue \([\text{CuL}_C \text{Br}_2]\cdot \text{H}_2\text{O}\) was isolated from the reaction of CuBr\(_2\) with LC; a small amount of red product was not characterised.

3.4 Synthetic overview
Generally, stable complexes of the formula \([\text{CuL}_x(\text{H}_2\text{O})_y]_x[X_y(\text{H}_2\text{O})_z]\), where \(L = \text{L}_A, \text{L}_B\) and \(\text{L}_C\); \(X = \text{Cl}, \text{Br}, \text{NO}_3\); \(n, x, y\) and \(z\) may have values of 0, 1 or 2, have been isolated; some of these were found to be interconvertible by the rearrangement of the ligand donor set. The conductance of all complexes determined in aqueous solution indicated the presence of 1:2 electrolytes. This behaviour may be accounted for by the formation of diaquo, octahedral \([\text{CuL}(\text{H}_2\text{O})_2]^{2+}\) cations or square planar \([\text{CuL}]^{2+}\) cations, i.e. with no axial ligands and the non-coordinating anions providing the charge balance. Structure assignment, in terms of coordination of the anions, was achieved primarily on the balance of IR spectroscopy. Magnetic moments (Table 2) indicate normal behaviour for these \(d^9\) systems. This study demonstrates that it is possible to form tetragonally distorted octahedral copper(II) complexes with the sterically congested \(\text{L}_A, \text{L}_B\) and \(\text{L}_C\) isomeric macrocycles with eight peripheral methyl groups, in particular with smaller anions. Thus, complexes with \(\text{L}_A\), having four equatorial methyl groups, allowed axial coordination of all anions investigated in this study. The diaxial-diequatorial arrangement of the methyl substituents in \(\text{L}_B\) precluded coordination of nitrate. By contrast, \(\text{L}_C\), having three equatorial methyl groups allowed the coordination of one nitrate anion only.
3.5 Fungitoxicity study
The antifungal activities of the isomeric macrocycles and some of their complexes are summarised in Table 4.

TABLE 4. In vitro antifungal activities of the macrocyclic ligands and their complexes

	Alternaria alternata	Curvalaria lunata	Macrophomina phaseolina
L_A	27.8	11.4	14.6
[CuL_A(NO_3)_2].H_2O	15.6	3.9	11.5
[CuL_ACl_2].H_2O	15.8	2.8	13.3
[CuL_ABr_2].H_2O	17.6	5.0	10.0
L_B	25.9	9.9	13.5
[CuL_B(H_2O)_2](NO_3)_2	3.7	2.8	11.1
[CuL_B]Cl_2.2H_2O	6.5	2.2	10.0
[CuL_B]Cl_2.H_2O	6.5	2.8	10.0
[CuL_BBr_2.2H_2O	6.6	2.8	4.4
[CuL_B]Br_2.H_2O	6.6	2.1	3.3
L_C	25.0	12.8	16.7
[CuL_C(H_2O)(NO_3)]NO_3	6.5	9.9	15.6
[CuL_C]Cl_2	12.0	14.6	13.5
[CuL_CCl_2.2H_2O	11.1	14.2	13.3
[CuL_CBr_2.2H_2O	10.2	5.0	12.2

Screens have been conducted against three selective phytopathogenic fungi: i) *Alternaria alternata*, ii) *Curvalaria lunata*, and iii) *Macrophomina phaseolina*. The activities of the three ligands and their complexes against *Alternaria alternata* are greater than those against the other two fungi. The activities of the three macrocycles were similar and were found to decrease upon coordination to copper(II).

The fungitoxicities are generally lower that those of related sulfur-containing Schiff bases and their complexes [18], however, it is noteworthy that the decrease in activity upon coordination of the respective ligands is less in the present study.

Acknowledgments

Financial support from the Third World Academy of Sciences (TWAS), Trieste, Italy under grant No. 93-183 RG-183 RG/CHE/AS is gratefully acknowledged. The Australian Research Council is thanked for support of the X-ray facility.

References

1. N.F. Curtis, D.A. Swann, T.N. Waters and I.E. Maxwell, *J. Am. Chem. Soc.*, 91 (1969) 4588.
2. T. Ito and D.H. Busch, *Inorg. Chem.*, 13 (1974) 1770.
3. D.A. Swann, T.N. Waters and N.F. Curtis, *J. Chem. Soc.*, *Dalton Trans* (1972) 1115.
4. R. Bembi, S.M. Sondhi, A.K. Singh, A.K. Jhanjii, T.G. Roy, J.W. Lown and R.G. Ball, *Bull. Chem. Soc. Jpn.*, 62 (1989) 3701.
5. T.G. Roy, Ph.D. Thesis, University of Roorkee, Roorkee, U.P., India, 1987.
6. R. Bembi, M.G.B. Drew, R. Singh and T.G. Roy, *Inorg. Chem.*, 30 (1991) 1403.
7. *teXsan*, *Single Crystal structure analysis software*, Version 1.6 (1993), Molecular Structure Corporation, The Woodlands, TX, USA.
8. N. Walker and D. Stuart, *Acta Crystallogr.*, A39 (1983) 158.
9 C.K. Johnson, ORTEP. Report ORNL-5138 (1976), Oak Ridge National Laboratory, TN, USA.
10 R.W. Hay, D.A. House and R. Bembi, J. Chem. Soc., Dalton Trans (1984) 1927.
11 R.T. Conley, Infrared Spectroscopy (1966), Allen and Beacon Inc., Boston MA, USA, Ch 5.
12 K. Nakamoto, Infrared spectra of inorganic and coordination compounds (1963), John Wiley, New York, NY, USA.
13 C. Bianchini, L. Fabbrizzi, P. Paoletti and A.B.P. Lever, Inorg. Chem. 14 (1975) 197.
14 R. Bembi, R. Singh, S. Aftab, T.G. Roy and A.K. Jhanjii, J. Coord. Chem. 14 (1985) 119.
15 T.-J. Lee, T.-Y. Lee, W.-B. Juang and C.-S. Chung, Acta Crystallogr. C41 (1985) 1596.
16 B. Bosnich, C.K. Poon and M.L. Tobe, Inorg. Chem. 4 (1965) 1102.
17 T.W. Hambley, J. Chem. Soc., Dalton Trans (1986) 565.
18 S.K.S. Hazari, B.K. Dey and B. Ganguli, unpublished results.

Received: June 16, 1997 - Accepted: June 30, 1997 -
Received in revised camera-ready format: July 1, 1997