ENERGY-MOMENTUM COMPLEX IN MØLLER’S TETRAD THEORY OF GRAVITATION

F. I. MIKHAIL, M. I. WANAS, AHMED HINDAWI, AND E. I. LASHIN

ABSTRACT. Møller’s Tetrad Theory of Gravitation is examined with regard to the energy-momentum complex. The energy-momentum complex as well as the superpotential associated with Møller’s theory are derived. Møller’s field equations are solved in the case of spherical symmetry. Two different solutions, giving rise to the same metric, are obtained. The energy associated with one solution is found to be twice the energy associated with the other. Some suggestions to get out of this inconsistency are discussed at the end of the paper.

PACS number: 40.50.+h

1. Introduction

The problem of defining an energy-momentum complex describing the energy contents of physical systems in General Relativity (GR) has been tackled by several authors [1-3]. Møller [4-6] pointed out that all expressions proposed previously for this quantity have some defects. He specified some properties to be satisfied. Møller [6] has shown that it is not possible to get an expression with these specifications using Riemannian space. Instead, he suggested using tetrad space. In fact, he was able to derive an expression for the energy-momentum complex, possessing the properties mentioned before, in tetrad space.

The Lagrangian function from which the field equations of GR are derived is invariant under local tetrad rotation. Thus the field equations do not fix the field variables completely, leaving undefined six free functions. As a consequence, many different tetrad structures may give rise to the same metric specifying the gravitational field. And since the energy-momentum complex suggested by Møller is not invariant under local tetrad rotation, a certain metric, which is supposed to represent a single definite physical system, may be associated with more than one quantity expressing its energy and momentum contents. Thus the problem was not solved completely by the proposed expression mentioned above. Møller [6] suggested that the field equations of GR have to be modified in order not to allow such redundancy in solutions.

Møller [7] modified GR by constructing a new field theory in the tetrad space. The field equations in this new theory were derived from a Lagrangian which is not invariant under local tetrad rotation. This theory has gained considerable attention [8-12]. The purpose of the present work is to examine this theory with regard to the energy-momentum

Published in International Journal of Theoretical Physics 32 (1993), 1627–1642.
complex proposed by Møller [6]. In Section 2 we will review briefly Møller’s tetrad theory of gravitation. The energy-momentum complex associated with Møller’s theory is derived in Section 3. The structure of tetrad spaces with spherical symmetry is reviewed in Section 4. Two solutions of Møller’s field equations are obtained in Section 5, using the tetrad of Section 4. A comparison between the two solutions is given in Section 6. In Section 7 the energy contents associated with each solution are evaluated. The results are discussed and concluded in Section 8.

2. Møller’s Tetrad Theory of Gravitation

Møller [7] constructed a gravitational theory using the tetrad space for its structure. His aim was to get a theory free from singularities while retaining the principle merits of GR as far as possible. In his theory the field variables are the 16-tetrad components \(e_m{}^{\mu} \). Hereafter we use Latin indices \((mn\ldots)\) for vector numbers and Greek indices \((\mu\nu\ldots)\) for vector components. All indices run from 0 to 3. The Riemannian metric is a derived quantity given by

\[
g^{\mu\nu} := e_m{}^{\mu} e_m{}^{\nu}. \tag{2.1}\]

We assume imaginary values for the vector \(e_0{}^{\mu} \) in order for the above metric to have a Lorentz signature.

A central role in Møller’s theory is played by the tensor

\[
\gamma_{\mu\nu\sigma} := e_m{}^{\mu} e_m{}^{\nu};\sigma, \tag{2.2}\]

where the semicolon denotes covariant differentiation using the Christoffel symbols. Møller [7] considered the Lagrangian \(L \) to be an invariant constructed from \(\gamma_{\mu\nu\sigma} \) and \(g_{\mu\nu} \). As he pointed out, the most simple possible independent expressions are

\[
L^{(1)} := \Phi_\mu \Phi^\mu, \quad L^{(2)} := \gamma_{\mu\nu\sigma} \gamma^{\mu\nu\sigma}, \quad L^{(3)} := \gamma_{\mu\nu\sigma} \gamma^{\sigma\mu\nu}, \tag{2.3}\]

where \(\Phi_\mu \) is the basic vector defined by

\[
\Phi_\mu := \gamma^\nu_{\mu\nu}. \tag{2.4}\]

These expressions \(L^{(i)} \) in (2.3) are homogeneous quadratic functions in the first order derivatives of the tetrad field components.

Møller considered the simplest case, in which the Lagrangian \(L \) is a linear combination of the quantities \(L^{(i)} \), i.e., the Lagrangian density is given by

\[
\mathcal{L}_{\text{Møller}} := (-g)^{1/2} (\alpha_1 L^{(1)} + \alpha_2 L^{(2)} + \alpha_3 L^{(3)}), \tag{2.5}\]

where

\[
g := \det(g_{\mu\nu}). \tag{2.6}\]
Here, Møller chooses the constants α_i such that his theory gives the same results as GR in the linear approximation of weak fields. According to his calculations, one can easily see that if we choose

$$\alpha_1 = -1, \quad \alpha_2 = \lambda, \quad \alpha_3 = 1 - 2\lambda, \quad (2.7)$$

with λ equals to a free dimensionless parameter of order unity, the theory will be in agreement with GR to the first order of approximation. For $\lambda = 0$, Møller’s field equations are identical with Einstein’s equations

$$G_{\mu\nu} = -\kappa T_{\mu\nu}. \quad (2.8)$$

For $\lambda \neq 0$, the field equations are given by

$$G_{\mu\nu} + H_{\mu\nu} = -\kappa T_{\mu\nu}, \quad (2.9)$$

$$F_{\mu\nu} = 0, \quad (2.10)$$

where

$$H_{\mu\nu} := \lambda \left[\gamma_{\alpha\beta\mu} \gamma^{\alpha\beta}_\nu + \gamma_{\alpha\mu\nu} \gamma^{\alpha\beta} + \gamma_{\alpha\beta\nu} \gamma^{\alpha\beta}_\mu + g_{\mu\nu} \left(\gamma_{\sigma\beta\alpha} \gamma^{\sigma\beta\alpha} - \frac{1}{2} \gamma_{\sigma\beta\alpha} \gamma^{\sigma\beta\alpha} \right) \right] \quad (2.11)$$

and

$$F_{\mu\nu} := \lambda \left[\Phi_{\mu,\nu} - \Phi_{\nu,\mu} - \Phi_\alpha \left(\gamma^{\alpha\mu\nu} + \gamma^{\alpha\nu\mu} \right) + \gamma_{\mu\nu}^\alpha \right]. \quad (2.12)$$

Equations (2.10) are independent of the free parameter λ. On the other hand the term $H_{\mu\nu}$ by which equations (2.9) deviate from Einstein’s field equations (2.8) increases with λ, which can be taken of order unity without destroying the first order agreement with Einstein’s theory in case of weak fields.

3. Energy-Momentum Complex for Møller’s Theory

Møller [6] was able to find a general expression for an energy-momentum complex \mathcal{M}_{μ}^{ν} that possesses all the required satisfactory properties, and formed its superpotential $\mathcal{U}_{\mu}^{\nu, \alpha}$ using the method of infinitesimal transformations:

$$\mathcal{M}_{\mu}^{\nu} := (-g)^{1/2} (T_{\mu}^{\nu} + t_{\mu}^{\nu}) = \mathcal{U}_{\mu}^{\nu, \alpha, \alpha}, \quad (3.1)$$

where

$$(-g)^{1/2} t_{\mu}^{\nu} := \frac{1}{2\kappa} \left(\frac{\partial \mathcal{L}}{\partial e_{m, \nu}^\alpha} e_{m, \mu}^\alpha - \delta_{\mu}^{\nu} \mathcal{L} \right) \quad (3.2)$$

and

$$\mathcal{U}_{\mu}^{\nu, \alpha} := \frac{1}{4\kappa} \left(\frac{\partial \mathcal{L}}{\partial e_{m, \nu}^\alpha} e_{m, \mu}^\nu - \frac{\partial \mathcal{L}}{\partial e_{m, \mu}^\nu} e_{m}^\alpha \right), \quad (3.3)$$
where \(\mathcal{L} \) is the Lagrangian of the theory under consideration. For Møller’s Lagrangian, as given by (2.5), the superpotential (3.3) can be written in the form

\[
\mathcal{U}_\mu^{\nu\sigma} = \frac{(-g)^{1/2}}{4\kappa} (\alpha_1 U_{\mu}^{\nu\sigma} + \alpha_2 V_{\mu}^{\nu\sigma} + \alpha_3 W_{\mu}^{\nu\sigma}),
\]

(3.4)

where \(U_{\mu}^{\nu\sigma}, V_{\mu}^{\nu\sigma}, W_{\mu}^{\nu\sigma} \) correspond to \(L^{(1)}, L^{(2)}, L^{(3)} \) respectively.

To evaluate the superpotential we have first (see Appendix A in [6])

\[
\partial e_{m\mu,\sigma} = -\frac{1}{2} e_{m}^{\alpha} P_{\alpha\mu\nu\rho} e_{n\sigma},
\]

(3.5)

where \(P_{\alpha\mu\nu\rho} \) is a tensor of the form

\[
P_{\alpha\mu\nu\rho} := \delta_{\alpha\rho} g_{\mu\nu} + \delta_{\mu\rho} g_{\nu\alpha} - \delta_{\nu\rho} g_{\alpha\mu},
\]

(3.6)

and \(g_{\mu\nu} \) is the tensor

\[
g_{\mu\nu} := \delta_{\mu\nu} - \delta_{\mu\rho} \delta_{\nu\rho}. \tag{3.7}
\]

Thus we can get

\[
\frac{\partial L^{(1)}}{\partial e_{m\mu,\sigma}} = g^{\alpha\beta} \frac{\partial}{\partial e_{m\mu,\sigma}} \Phi_{\alpha} \Phi_{\beta}
\]

\[
= 2\Phi^{\alpha} \frac{\partial}{\partial e_{m\mu,\sigma}} \Phi_{\alpha}
\]

\[
= 2\Phi^{\alpha} e_{n\beta} \frac{\partial}{\partial e_{m\mu,\sigma}} e_{n\alpha;\beta}
\]

\[
= -\Phi^{\alpha} g^{\beta\gamma} P_{\alpha\beta\mu\nu\rho} e_{m\rho},
\]

(3.8)

At last we get

\[
U_{\mu}^{\nu\sigma} := \frac{\partial L^{(1)}}{\partial e_{m\mu,\sigma}} e_{m}^{\nu} - \frac{\partial L^{(1)}}{\partial e_{m\mu,\nu}} e_{m}^{\sigma}
\]

\[
= -2\Phi^{\alpha} g^{\beta\gamma} g_{\mu\tau} P_{\alpha\beta\mu\nu\rho} e_{m\rho}.
\]

(3.9)

Similarly we can write

\[
V_{\mu}^{\nu\sigma} = -2\gamma^{\alpha\beta} g_{\mu\tau} P_{\alpha\beta\tau\nu\sigma},
\]

\[
W_{\mu}^{\nu\sigma} = -2\gamma^{\alpha\beta} g_{\mu\tau} P_{\alpha\beta\tau\nu\sigma}.
\]

(3.10)

The final expression for the superpotential for Møller’s Theory can be obtained by substituting from (3.9) and (3.10) and using the values of the parameters \(\alpha_1, \alpha_2, \alpha_3 \) given in Section 2 in (3.4), to get

\[
\mathcal{U}_\mu^{\nu\sigma} = \frac{(-g)^{1/2}}{2\kappa} P_{\alpha\beta}^{\tau\nu\sigma} (\Phi^{\alpha} g^{\beta\gamma} g_{\mu\tau} - \lambda g_{\tau\mu} \gamma^{\epsilon\alpha\beta} - (1 - 2\lambda) g_{\tau\mu} \gamma^{\beta\alpha} \gamma^{\alpha\beta}).
\]

(3.11)
4. Spherically Symmetric Tetrad Spaces

The structure of tetrad spaces with spherical symmetry has been studied by Robertson [13]. The four tetrad vectors defining such structure, as given by Robertson, can be written as

\[\begin{align*}
e^0_0 &= A, & e^a_0 &= DX^a, & e^0_a &= EX^a, \\
e^b_a &= FX^aX^b + \delta^b_a B + \epsilon_{abc} SX^c,
\end{align*}\]

(4.1)

where \(A, B, D, E, F, S\) are functions of \(r = (\sum_{a=1}^3 X^a X^a)^{1/2}\) and \(a, b, c\) run from 1 to 3. Robertson has shown that:

1. Improper rotations are admitted if and only if \(S = 0\). In this case the tetrad (4.1) takes the form

\[\begin{align*}
e^0_0 &= A, & e^a_0 &= DX^a, & e^0_a &= EX^a, \\
e^b_a &= FX^aX^b + \delta^b_a B.
\end{align*}\]

(4.2)

2. The functions \(E\) and \(F\) can be eliminated by mere coordinate transformations, leaving the tetrad in the simpler form

\[\begin{align*}
e^0_0 &= A, & e^a_0 &= DX^a, & e^b_a &= \delta^b_a B.
\end{align*}\]

(4.3)

Three important remarks are reported here:

1. The tetrad used by Møller [7] in application of his theory, is a special case of the above tetrad (4.3), in which the function \(D\) is taken to be zero. Thus one may expect to obtain more solutions when using the more general tetrad (4.3).

2. Since one has to take the vector \(e^\mu_0\) to be imaginary, in order to ensure the Lorentz signature of the metric, the functions \(A\) and \(D\) have to be taken to be imaginary.

3. It is more convenient, for the sake of computations, to use the tetrad (4.3) in spherical polar coordinates where it takes the form

\[
e^\mu_m = \begin{pmatrix}
A & Dr & 0 & 0 \\
0 & B \sin \theta \cos \phi & \frac{B}{r} \cos \theta \cos \phi & -\frac{B \sin \phi}{r \sin \theta} \\
0 & B \sin \theta \sin \phi & \frac{B}{r} \cos \theta \sin \phi & \frac{B \cos \phi}{r \sin \theta} \\
0 & B \cos \theta & -\frac{B}{r} \sin \theta & 0
\end{pmatrix}.
\]

(4.4)

5. Solutions of Møller’s Field Equations

Using the tetrad (4.4) to solve Møller’s field equations (2.9) and (2.10) we find that equation (2.10) is satisfied identically, and also that \(H_{\mu\nu}\) as given by (2.11) vanishes identically.
Thus for spherically symmetric exterior solutions, Møller’s field equations are reduced to Einstein’s field equations of GR, namely

$$G_{\mu\nu} = 0.$$ \hspace{1cm} (5.1)

Einstein tensor $G_{\mu\nu}$ may be evaluated using the Riemannian metric derived from (4.4) via the relation (2.1). It is easy to get

$$g_{00} = \frac{D^2 r^2 + B^2}{A^2 B^2}, \quad g_{01} = g_{10} = -\frac{D r}{A B^2}, \quad g_{11} = \frac{1}{B^2}, \quad g_{22} = \frac{r^2}{B^2}, \quad g_{33} = \frac{r^2 \sin^2 \theta}{B^2}. \hspace{1cm} (5.2)$$

The corresponding field equations (5.1) give rise to the following set of differential equations:

$$2r^3 B DB' D' - 2r^2 B^2 DD' + 8r^2 BD^2 B' - 5r^3 D^2 B^2 + 2r B^3 B''$$

$$+ 2r^3 BD^2 B'' - 3r B^2 D^2 + 4B^3 B' - 3r B^2 B' = 0, \hspace{1cm} (5.3)$$

$$5r^3 D^2 B^2 - 2r^3 BD^2 B'' - 2r^3 BDB' D' + 2r^2 B^2 DD' - 8r^2 BD^2 B'$$

$$- 2r B^3 B'' + 3r B^2 D^2 + 3r B^2 B' - 4B^3 B' = 0, \hspace{1cm} (5.4)$$

$$2r^2 AB^2 DD' - 2r^3 ABDB' D' - 2r^3 ABDB' D' - 2AB^3 B' + 5r^3 AD^2 B'$$

$$+ 3r AB^2 D^2 - 8r^2 AB^2 B' + r AB^2 B' + 2r B^3 A'B' - 2B^4 A' = 0, \hspace{1cm} (5.5)$$

$$r^3 A^2 B^2 DD'' - 2r^3 A^2 BD^2 B'' + r^3 A^2 B^2 D'' - 5r^3 A^2 BD^2 B' - AB^4 A'$$

$$+ 5r^3 A^2 D^2 B^2 - r^3 AB^2 D^2 A'' - 3r^3 AB^2 DA'D' - A^2 B^3 B' - r AB^4 A''$$

$$+ r A^2 B^2 B' + 3r A^2 B^2 D^2 + 2r B^4 A' - r A^2 B^3 B'' + 3r^3 ABD^2 A'B'$$

$$- 8r^2 A^2 BD^2 B' + 2r^3 B^2 D^2 A^2 + 6r^2 A^2 B^2 D'D' - 4r^2 AB^2 D^2 A' = 0, \hspace{1cm} (5.6)$$

where the primes refer to differentiation with respect to r.

The trivial flat space-time solution for such equations is obtained by taking

$$A = i, \quad B = 1, \quad D = 0. \hspace{1cm} (5.7)$$

A first non-trivial solution can be obtained by taking $D = 0$ and solving for A and B. In fact, this is the case studied by Møller [7], where he obtained the solution

$$A = i \frac{(1 + m/2r)}{(1 - m/2r)}, \quad B = (1 + m/2r)^{-2}. \hspace{1cm} (5.8)$$
Hence, we get from (4.3) directly the tetrad (in cartesian coordinates):

\[e_0^0 = i \frac{(1 + m/2r)}{(1 - m/2r)}, \quad e_a^a = (1 + m/2r)^{-2}, \]

(5.9)

with the associated Riemannian metric

\[ds^2 = \frac{(1 - m/2r)^2}{(1 + m/2r)^2} dt^2 + (1 + m/2r)^4 (dX^2 + dY^2 + dZ^2), \]

(5.10)

i.e., Schwarzschild metric in its isotropic form.

A second non-trivial solution can be obtained by taking \(A = 1, B = 1, D \neq 0 \) and solving for \(D \). In this case the resulting field equations can be integrated directly to give

\[D = i \left(\frac{2m}{r^3} \right)^{1/2}. \]

(5.11)

Hence, we get from (4.3) the following tetrad (in cartesian coordinates):

\[e_0^0 = i, \quad e_0^a = i \left(\frac{2m}{r^3} \right)^{1/2} X^a, \quad e_a^b = \delta_a^b. \]

(5.12)

The metric associated with the above tetrad is

\[ds^2 = -(1 - 2m/r) dt^2 + \sum_{a=1}^3 dX^a dX^a - 2 \left(\frac{2m}{r^3} \right)^{1/2} X^a dt dX^a. \]

(5.13)

A simpler form for the above metric can be obtained if it is written in polar coordinates. Substituting directly in (4.4) for the value of \(D \) as given by (5.11), we get the tetrad (in polar coordinates)

\[e_m^\mu = \begin{pmatrix} i & i \left(\frac{2m}{r} \right)^{1/2} & 0 & 0 \\ 0 & \sin \theta \cos \phi & \cos \theta \cos \phi \frac{r}{\sin \theta} & -\sin \phi \frac{r}{\sin \theta} \\ 0 & \sin \theta \sin \phi & \cos \theta \sin \phi \frac{r}{\sin \theta} & \cos \phi \frac{r}{\sin \theta} \\ 0 & \cos \theta & -\sin \theta \frac{r}{\sin \theta} & 0 \end{pmatrix}, \]

(5.14)

with the associated Riemannian metric

\[ds^2 = -(1 - 2m/r) dt^2 - 2 \left(\frac{2m}{r} \right)^{1/2} dt dr + dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2. \]

(5.15)

It is to be noted here that \(m \), in the above metric (5.15), is a mere constant of integration. It will be shown in the next section that \(m \), indeed plays the role of the mass producing the field, and thus justifies the use of its name.
6. Comparison of the Two Solutions

Our aim in this section is to compare the two different solutions obtained in Section 5, for Møller’s field equations. The first step is to eliminate the cross term appearing in the metric (5.15) of the second solution. This can be easily done by performing the coordinate transformation

\[t \to t + \int \frac{-iDr}{(1 - D^2r^2)}dr \] \hspace{1cm} (6.1)

and keeping the spatial coordinates unchanged. One can get the transformed tetrad in the form

\[e_0^0 = i \frac{1}{(1 - 2m/r)}, \quad e_0^1 = i \left(\frac{2m}{r} \right)^{1/2}, \]

\[e_1^0 = \left(\frac{2m}{r} \right)^{1/2} \frac{\cos \phi \sin \theta}{1 - 2m/r}, \quad e_1^1 = \cos \phi \sin \theta, \]

\[e_1^2 = \cos \phi \cos \theta, \quad e_1^3 = \frac{\sin \phi}{r \sin \theta}, \]

\[e_2^0 = \left(\frac{2m}{r} \right)^{1/2} \frac{\sin \phi \sin \theta}{1 - 2m/r}, \quad e_2^1 = \sin \phi \sin \theta, \]

\[e_2^2 = \cos \theta, \quad e_2^3 = \left(\frac{2m}{r} \right)^{1/2} \frac{\cos \theta}{1 - 2m/r}, \]

\[e_3^1 = \cos \theta, \quad e_3^2 = -\frac{\sin \theta}{r}. \] \hspace{1cm} (6.2)

The metric associated with the above tetrad can be computed either directly from the tetrad, or by applying the same coordinate transformation (6.1) to the metric (5.15). In both cases we get

\[ds^2 = -(1 - 2m/r)dt^2 + (1 - 2m/r)^{-1}dr^2 + r^2d\theta^2 + r^2 \sin^2 \theta d\phi^2, \] \hspace{1cm} (6.3)

i.e., Schwarzschild metric in its standard form, in which \(m \), the constant of integration, plays the role of the mass of the source of the field.

Now to be able to compare the two solutions (5.9) and (6.2), we transform the second one (6.2) to a coordinate system such that its Riemannian metric takes the isotropic form in cartesian coordinates, i.e., the same coordinates of the first solution (6.2). The first coordinate transformation (cf. [14] p. 93) is

\[r \to r \left(1 + \frac{m}{2r} \right)^2. \] \hspace{1cm} (6.4)
Applying this coordinate transformation yields the following tetrad

\[e_0^0 = \frac{i(1 + m/2r)^2}{(1 - m/2r)^2}, \quad e_1^0 = \frac{2(m/2r)^{1/2}}{(1 - m/2r)(1 + m/2r)^2}, \quad e_2^0 = 2 \left(\frac{m}{2r} \right)^{1/2} \frac{(1 + m/2r) \cos \phi \sin \theta}{(1 - m/2r)^2}, \quad e_3^0 = \frac{\sin \theta}{r(1 + m/2r)^2}. \]

\[e_0^1 = \frac{2(m/2r)^{1/2}}{(1 - m/2r)(1 + m/2r)^2}, \quad e_1^1 = \frac{\cos \phi \sin \theta}{(1 - m/2r)(1 + m/2r)}, \quad e_2^1 = \frac{\sin \phi}{r \sin \theta(1 - m/2r)^2}, \quad e_3^1 = \frac{\cos \theta}{(1 + m/2r)(1 - m/2r)^2}. \]

The metric associated with the above tetrad (6.5) is

\[ds^2 = -\frac{(1 - m/2r)^2}{(1 + m/2r)^2} dt^2 + (1 + m/2r)^4 (dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2). \]

The last step is to transform the tetrad (6.5), along with its metric (6.6), into cartesian coordinates,

\[e_0^0 = \frac{i(1 + m/2r)^2}{(1 - m/2r)^2}, \quad e_1^0 = \frac{2(m/2r)^{1/2} X}{r(1 - m/2r)(1 + m/2r)^2}, \quad e_2^0 = \frac{2(2m/r)^{1/2} (1 + m/2r) X}{(1 - m/2r)^2 r}, \quad e_3^0 = \frac{2 XY(m/2r)}{(1 + m/2r)^2(1 - m/2r)r^2}, \]

\[e_0^1 = \frac{2(m/2r)^{1/2}}{(1 - m/2r)(1 + m/2r)^2}, \quad e_1^1 = \frac{2(m/2r)^{1/2} Z}{r(1 - m/2r)(1 + m/2r)^2}, \quad e_2^1 = \frac{(1 - m/2r)r^2 + 2X^2(m/2r)}{(1 + m/2r)^2(1 - m/2r)r^2}, \quad e_3^1 = \frac{2XZ(m/2r)}{(1 + m/2r)^2(1 - m/2r)r^2}, \]

\[e_0^2 = \frac{2(2m/r)^{1/2} (1 + m/2r) Y}{(1 - m/2r)^2 r}, \quad e_1^2 = \frac{2 XY(m/2r)}{(1 + m/2r)^2(1 - m/2r)r^2}, \quad e_2^2 = \frac{(1 - m/2r)r^2 + 2Y^2(m/2r)}{(1 + m/2r)^2(1 - m/2r)r^2}, \quad e_3^2 = \frac{2Y Z(m/2r)}{(1 + m/2r)^2(1 - m/2r)r^2}. \]
\[e_3^0 = \frac{2 (2m/r)^{1/2} (1 + m/2r) Z}{(1 - m/2r)^2 r}, \quad e_3^1 = \frac{2XZ(m/2r)}{(1 + m/2r)^2 (1 - m/2r)r^2}, \]
\[e_3^2 = \frac{2YZ(m/2r)}{(1 + m/2r)^2 (1 - m/2r)r^2}, \quad e_3^3 = \frac{(1 - m/2r)r^2 + 2Z^2(m/2r)}{(1 + m/2r)^2 (1 - m/2r)r^2}. \]

The metric derived from the above tetrad (6.7) is now identical with the metric derived from the first solution (5.10), namely

\[ds^2 = -\frac{(1 - m/2r)^2}{(1 + m/2r)^2} dt^2 + (1 + m/2r)^4 (dX^2 + dY^2 + dZ^2). \quad (6.8) \]

Thus we have two exact solutions of Möller field equations, each of which leads to the same metric, the Schwarzschild metric in its isotropic form in cartesian coordinates. We notice that the second solution (6.7) is of the form of the original Robertson tetrad (4.2). This should be expected, since the coordinate transformations we have performed on the second solution reproduce the functions \(E \) and \(F \), eliminated before by coordinate transformation. Hence, we can put these two solutions into a concise form, as shown in Table I.

Function	First Solution (5.9)	Second Solution (6.7)
\(A \)	\((1 + m/2r)(1 - m/2r)^{-1}\)	\((1 + m/2r)^2(1 - m/2r)^{-2}\)
\(B \)	\((1 + m/2r)^{-2}\)	\((1 + m/2r)^{-2}\)
\(D \)	0	\(\frac{2}{7}\left(\frac{m}{2r}\right)^{1/2}(1 + m/2r)^{-2}(1 - m/2r)^{-2}\)
\(E \)	0	\(\frac{2}{7}\left(\frac{m}{2r}\right)^{1/2}(1 + m/2r)(1 - m/2r)^{-2}\)
\(F \)	0	\(\frac{2}{7}\left(\frac{m}{2r}\right)(1 + m/2r)^{-2}(1 - m/2r)^{-1}\)

The important result obtained in this section is that we have been able to derive two different solutions for Möller’s field equations, the Riemannian metrics associated with these two solutions are identical, namely the Schwarzschild metric in its isotropic form. Since Möller’s theory is a pure gravitational theory, the above two solutions have to be equivalent in the sense that they describe the same physical situation, viz a static spherically symmetric gravitational field with a source of mass \(m \). In what follows we examine the equivalence of these solutions by calculating the energy associated with each of them, using the superpotential derived for Möller’s theory in Section 3.
7. The Energy Associated with each Solution

Now we use the superpotential of Møller’s theory derived in Section 3 to evaluate the energy associated with each of the two solutions given in the previous table. The components of the superpotential that contribute to the total energy are \mathcal{U}_0^{σ} only. Thus substituting from the first solution (5.9) into (3.11), we get the following non-vanishing values:

$$\mathcal{U}_0^{0a} = \frac{4X^a m}{\kappa r^2 2r}(1 - m/2r). \quad (7.1)$$

The total energy is given by (cf. [4])

$$E = \lim_{r \to \infty} \int_{r = \text{const}} \mathcal{U}_0^{0a} n_a dS, \quad (7.2)$$

where n_a is a unit 3-vector normal to the surface element dS. Substituting from (7.1) into (7.2), we get

$$E = \frac{8\pi m}{\kappa} = m. \quad (7.3)$$

In non-relativistic units, the above result appears as the mass of the source times the square of the speed of light. This is a very satisfactory result, and it should be expected.

Now let us turn our attention to the second tetrad (6.7). Computing the required components of the superpotential, we get

$$\mathcal{U}_0^{0a} = \frac{8X^a m}{\kappa r^2 2r}. \quad (7.4)$$

These lead to a total energy

$$E = 2m. \quad (7.5)$$

That is twice the gravitational mass!

8. Discussion and Conclusion

The energy-momentum complex for Møller’s tetrad theory of gravitation is derived, using Møller’s Lagrangian. Two different exact solutions of Møller’s field equations are obtained for the case of spherical symmetry. The energy content of each solution is evaluated using the derived superpotential. It is shown that, although the two solutions give rise to the same Riemannian metric (the Schwarzschild metric), they give two different values for the energy content. This shows a certain type of inconsistency in Møller’s theory.

The following suggestions may be considered to get out of this inconsistency:

1. The energy-momentum complex suggested by Møller [6] is not quite adequate, though it has the most satisfactory properties.
2. Many authors believe that a tetrad theory should describe more than a pure gravitational field. In fact, Møller himself [6] considered this possibility in his earlier trials to modify GR. In these theories, the most successful candidates for the description of the other physical phenomenon are the skew-symmetric tensors of the tetrad space, e.g., $\Phi_{\mu\nu} - \Phi_{\nu\mu}$. The most striking remark here is that: All the skew-symmetric tensors vanish for the first solution, but not all of them do so for the second one. Some authors, e.g., [15, 16], believe that these tensors are related to the presence of an electromagnetic field. Others, e.g., [17], believe that these tensors are closely connected to the spin phenomenon. There are a lot of difficulties to claim that Møller’s theory deserves such wider interpretation. This needs a lot of investigations before arriving at a concrete conclusion.

3. The last possibility is that Møller’s theory is in need to be generalized rather than to be reinterpreted. There are already some generalizations of Møller’s theory. Møller himself considered this possibility at the end of his 1978 paper [7], by including terms in the Lagrangian other than the simple quadratic terms $L^{(i)}$’s. Sáez [9] has generalized Møller’s theory in a very elegant and natural way into scalar tetradic theories of gravitation. In these theories the question is: Do the field equations fix the tetradic geometry in the case of spherical symmetry? This question was discussed in length by Sáez [18]. The results of the present paper can be considered as a first step to get a satisfactory answer to this question. In 1982, Meyer [8] has shown that Møller’s theory is a special case of Poincaré Gauge Theory constructed by Hehl et al. [19]. Thus Poincaré Gauge Theory can be considered as another satisfactory generalization of Møller’s theory.

Acknowledgments

The authors would like to express their gratitude to Dr. M. Melek, Cairo University, for his stimulating discussions. They would also like to thank Professor M. M. Shalaby, Ain Shams University, for providing REDUCE 3.3 that has been used during carrying out this work. One of the authors (A. H.) is extremely grateful to Professor Adnan Hamoui, ICTP, for his comments and suggestions. He would also like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

References

[1] A. Einstein, Der Energiesatz in der allgemeinen Relativitätstheorie, Preuss. Akad. Wiss. Berlin, Sitzber. (1918), 448–459.
[2] P. G. Bergmann and R. Thomson, Spin and Angular Momentum in General Relativity, Phys. Rev. (2) 89 (1953), 400–407.
[3] J. N. Goldberg, Conservation Laws in General Relativity, Phys. Rev. (2) 111 (1958), 315–320.
[4] C. Møller, *On the Localization of the Energy of a Physical System in the General Theory of Relativity*, Ann. Physics 4 (1958), 347–371.
[5] ———, *Further Remarks on the Localization of the Energy in the General Theory of Relativity*, Ann. Physics 12 (1961), 118–133.
[6] ———, *Conservation Laws and Absolute Parallelism in General Relativity*, Mat. Fys. Skr. Danske. Vid. Selsk. 1 (1961), no. 10, 1–50.
[7] ———, *On the Crisis in the Theory of Gravitation and a Possible Solution*, Mat. Fys. Skr. Danske. Vid. Selsk. 39 (1978), no. 13, 1–31.
[8] H. Meyer, *Møller’s Tetrad Theory of Gravitation as a Special Case of Poincaré Gauge Theory—A Coincidence?*, Gen. Relativity Gravitation 14 (1982), 531–547.
[9] D. Sáez, *Variational Formulation of Two Scalar-Tetradic Theories of Gravitation*, Phys. Rev. D (3) 27 (1983), 2839–2847.
[10] ———, *Stationary Axisymmetric Fields in a Teleparallel Theory of Gravitation*, Phys. Lett. A 106 (1984), 293–295.
[11] ———, *On Møller’s Tetrad Theory of Gravitation. Gravitational Radiation*, Gen. Relativity Gravitation 17 (1985), 39–53.
[12] D. Sáez and T. de Juan, *On Møller’s Tetrad Theory of Gravitation Cosmology*, Gen. Relativity Gravitation 16 (1984), 501–512.
[13] H. P. Robertson, *Groups of Motion in Spaces Admitting Absolute Parallelism*, Ann. of Math. (2) 33 (1932), 496–520.
[14] A. S. Eddington, *The Mathematical Theory of Relativity*, Cambridge University Press, Cambridge, 1921.
[15] A. Einstein, *Die Kompatibilität der Feldgleichungen in der einheitlichen Feldtheorie*, Preuss. Akad. Wiss. Berlin, Phys. Math. Klasse, Sitzber. (1930), 18–23.
[16] F. I. Mikhail and M. I. Wanas, *A Generalized Field Theory. I. Field Equations*, Proc. Roy. Soc. London Ser. A 356 (1977), 471–481.
[17] F. Müller-Hoissen and J. Nitsch, *Teleparallelism—A Viable Theory of Gravity?*, Phys. Rev. D (3) 28 (1983), 718–728.
[18] D. Sáez, *Static Spherically Symmetric Fields in the Scalar-Tetradic Theory A*, Gen. Relativity Gravitation 18 (1986), 479–496.
[19] F. W. Hehl, J. Nitsch, and P. von der Heyde, *Gravitation and Poincaré Gauge Field Theory with Quadratic Lagrangian*, General Relativity and Gravitation (A. Held, ed.), Plenum Press, New York-London, 1980.

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Department of Astronomy, Faculty of Science, Cairo University, Cairo, Egypt

International Centre for Theoretical Physics, Trieste, Italy

Current address: Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
E-mail address: hindawi@frcu.eun.eg

Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt

Current address: International Centre for Theoretical Physics, Trieste, Italy
E-mail address: lashin@frcu.eun.eg