Draft genome sequence of *Caminibacter mediatlanticus* strain TB-2\(^T\), an epsilonproteobacterium isolated from a deep-sea hydrothermal vent

Donato Giovannelli\(^1\)\(^,\)\(^2\)\(^,\)\(^3\), Steven Ferriera\(^4\), Justin Johnson\(^4\), Saul Kravitz\(^4\), Ileana Pérez-Rodríguez\(^1\)\(^,\)\(^2\), Jessica Ricci\(^1\)\(^,\)\(^2\), Charles O’Brien\(^1\)\(^,\)\(^2\), James W. Voordeckers\(^5\), Elisabetta Bini\(^1\) and Costantino Vetriani\(^1\)\(^,\)\(^2\)

\(^1\)Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
\(^2\)Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
\(^3\)Institute for Marine Science - ISMAR, National Research Council of Italy, Ancona, ITALY
\(^4\)J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
\(^5\)Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA

Corresponding author: Costantino Vetriani, vetriani@marine.rutgers.edu

Keywords: Epsilonproteobacteria, thermophiles, free-living, anaerobes, chemolithoautotrophy, *Nautiliales*, deep-sea hydrothermal vent

Caminibacter mediatlanticus strain TB-2\(^T\) [1], is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge and the type strain of the species. *C. mediatlanticus* is a Gram-negative member of the *Epsilonproteobacteria* (order *Nautiliales*) that grows chemolithoautotrophically with H\(_2\) as the energy source and CO\(_2\) as the carbon source. Nitrate or sulfur is used as the terminal electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. In view of the widespread distribution, importance and physiological characteristics of thermophilic *Epsilonproteobacteria* in deep-sea geothermal environments, it is likely that these organisms provide a relevant contribution to both primary productivity and the biogeochemical cycling of carbon, nitrogen and sulfur at hydrothermal vents. Here we report the main features of the genome of *C. mediatlanticus* strain TB-2\(^T\).

Introduction

Caminibacter mediatlanticus type strain TB-2\(^T\) (=DSM 16658\(^T\)=JCM 12641\(^T\)) is an epsilonproteobacterium isolated from the walls of an active deep-sea hydrothermal vent on the Mid-Atlantic Ridge [1]. *C. mediatlanticus* is part of the recently proposed order *Nautiliales* [2], which comprises three genera: *Nautilia*, *Caminibacter* and *Lebetimonas*. All *Nautiliales* cultured are thermophilic chemolithoautotrophs and have been isolated from deep-sea hydrothermal vents. The genus *Caminibacter* includes three described species: *C. hydrogenophilus*, the type strain for this genus [3], *C. profundus* [2], and *C. mediatlanticus* [1]. All three *Caminibacter* species are thermophilic (55-60 °C) and conserve energy by coupling the oxidation of hydrogen to the reduction of nitrate and sulfur. *C. profundus* can also grow microaerobically (0.5% O\(_2\)) [2]. The genus *Nautilia* includes four species: *N. lithotrophica* [4], *N. profundicola*, whose genome was recently sequenced [5,6], *N. abyssi* [7] and *N. nitratireducens* [8]. While all *Nautilia* spp. couple hydrogen oxidation to sulfur reduction, *N. nitratireducens* can also use nitrate, thiosulfate and selenate as terminal electron acceptors [8]. The genus *Lebetimonas* includes a single species, *L. acidiphila*, a sulfur-respiring chemolithoautotroph [9]. Here we present a summary of the features of the genome of *C. mediatlanticus* strain TB-2\(^T\) and a description of its genome.
Caminibacter mediatlanticus strain TB-2T

Classification and features

C. mediatlanticus strain TB-2T was isolated from the Rainbow vent field on the Mid-Atlantic Ridge (36° 14’ N, 33° 54’ W). *Caminibacter* sp. strain TB-1 [1], *C. profundus* and *C. hydrogeniphilus* are the closest relatives to *C. mediatlanticus*, with a 16S rRNA gene similarity of 99%, 96.3% and 95.9%, respectively. The phylogenetic position of *C. mediatlanticus* relative to all the known type strains of *Epsilonproteobacteria* isolated from deep-sea hydrothermal vents is shown in Figure 1.

Figure 1. Phylogenetic position of *Caminibacter mediatlanticus* strain TB-2T relative to type strains of *Epsilonproteobacteria* isolated from deep-sea hydrothermal vents. Sequences were aligned automatically using CLUSTAL X and the alignment was manually refined using SEAVIEW [10,11]. Neighbor-joining trees were constructed with Phylo_Win, using the Jukes-Cantor correction [12]. Bootstrap values (>50%) based on 500 replications. Bar, 0.02 substitutions per nucleotide position.
The cells of *C. mediatlanticus* are Gram-negative rods of approximately 1.5 × 0.75 µm, motile by mean of one to three polar flagella (Figure 2 and Table 1). On solid media, the cells form small brownish colonies. Growth occurs between 45 and 70°C, 10 and 40 g NaCl L⁻¹ and pH 4.5 and 7.5. Optimal growth conditions are 55°C, 30 g NaCl L⁻¹ and pH 5.5 (generation time 50 min). Growth occurs under strictly anaerobic, chemolithoautotrophic conditions in the presence of H₂ and CO₂ with nitrate or sulfur as electron acceptors and the formation of ammonia or hydrogen sulfide, respectively. Oxygen, selenate, arsenate, thiosulfate and sulfite are not used as terminal electron acceptors. No chemoorganoheterotrophic growth has been reported. Evidence that *C. mediatlanticus* fixes CO₂ via the reductive tricarboxylic acid (rTCA) cycle was obtained by the detection, by PCR, of the gene encoding for the ATP citrate lyase, a key enzyme of the cycle, and by the determination of the specific activities of the rTCA enzymes [19]. The genomic G + C content of *C. mediatlanticus* is 27.13 mol%.

Genome sequencing information

Genome project history
The genome of *C. mediatlanticus* strain TB-2ᵀ was selected for sequencing in 2005, during phase two of the Microbial Genome Sequencing Project of the Gordon and Betty Moore Foundation, and it was sequenced at the J. Craig Venter Institute. It was the first genome of an *Epsilonproteobacterium* from deep-sea hydrothermal vents to be sequenced. *C. mediatlanticus* was selected because it is a thermophilic member of the *Epsilonproteobacteria*, which, as a group, represent a significant fraction of the chemosynthetic communities inhabiting the deep-sea hydrothermal vents [20, 21] and because of its ability to fix CO₂ under strictly anaerobic conditions [1]. The draft genome sequence was completed in November 2006 and presented for public access on June 19, 2007. The NCBI accession number is ABCJ0000000.1 and consists of 35 contigs (ABCJ0100001-ABCJ0100035). Table 2 shows the project information and its association with MIGS version 2.0 compliance [22].

Chemotaxonomy
None of the classical chemotaxonomic features (peptidoglycan structure, cell wall sugars, cellular fatty acid profile, respiratory quinones, or polar lipids) are known for *C. mediatlanticus* strain TB-2ᵀ.

![Figure 2. Electron micrograph of a platinum shadowed cell of Caminibacter mediatlanticus strain TB-2ᵀ showing multiple flagella. Bar, 0.5 µm.](http://standardsingenomics.org)
Table 1. Classification and general features of \textit{C. mediatlanticus} strain TB-2T according to the MIGS recommendations [13]

MIGS ID	Property	Term	Evidence code
	Current classification	Domain \textit{Bacteria}	TAS [14]
		Phylum \textit{Proteobacteria}	TAS [15]
		Class \textit{Epsilonproteobacteria}	TAS [16,17]
		Order \textit{Nautiliales}	TAS [2]
		Family \textit{Nautiliaceae}	TAS [2]
		Genus \textit{Caminibacter}	TAS [3]
		Species \textit{Caminibacter mediatlanticus}	TAS [1]
		Type strain TB-2	TAS [1]
	Gram stain	negative	TAS [1]
	Cell shape	short rod	TAS [1]
	Motility	motile	TAS [1]
	Sporulation	non-sporulating	TAS [1]
	Temperature range	45°C - 70°C	TAS [1]
	Optimum temperature	55°C	TAS [1]
MIGS-6.3	Salinity	opt.: 30 g NaCl l⁻¹ (range 10-40 g NaCl l⁻¹)	TAS [1]
MIGS-22	Oxygen	obligate anaerobe	TAS [1]
	Carbon source	CO₂	TAS [1]
	Energy source	H₂	TAS [1]
	Terminal electron acceptor	NO₃, S₀	TAS [1]
MIGS-6	Habitat	marine, deep-sea hydrothermal vents	TAS [1]
MIGS 14	Pathogenicity	not reported	NAS
	Biosafety level	1	NAS
MIGS-15	Biotic relationship	free living	TAS [1]
MIGS-4	Geographic location	Mid-Atlantic Ridge, Rainbow vent field	TAS [1]
MIGS-5	Sample collection time	July 2001	TAS [1]
MIGS-4.1	Latitude	36° 14’ N	TAS [1]
MIGS-4.2	Longitude	33° 54’ W	TAS [1]
MIGS-4.3	Depth	2305 m	TAS [1]
MIGS-4.4	Altitude	not applicable	

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [18]. If the evidence code is IDA, then the property was directly observed, for the purpose of this specific publication, for a live isolate by one of the authors, or an expert or reputable institution mentioned in the acknowledgements.

Growth conditions and DNA isolation
\textit{C. mediatlanticus} was grown in modified SME medium at 55°C under a H₂/CO₂ gas phase (80:20; 200 kPa) with CO₂ as the carbon source and nitrate as the electron acceptor, as described by Voordeckers et al. [1]. Genomic DNA was isolated from 1–1.5 g of pelleted cells using an extraction protocol that involved a phenol:chloroform:isoamyl alcohol (50:49:1) step followed by isopropanol precipitation, as described by Vetriani et al. [23].

Genome sequencing and assembly
Two genomic libraries with insert sizes of 4 and 40 kbp were constructed from the genomic DNA of \textit{C. mediatlanticus} as described in Goldberg et al. [24]. The resulting plasmid and fosmid clones were sequenced at the J. Craig Venter Institute from both ends to provide paired-end reads and an 8× coverage. The Celera assembler was used to generate contigs and reconstruct the draft genome [25].
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Draft
MIGS-28	Libraries used	Plasmids and cosmids
MIGS-29	Sequencing platforms	Sanger/pyrosequencing hybrid
MIGS-31.2	Fold coverage	8x
MIGS-30	Assemblers	Celera
MIGS-32	Gene calling method	GeneMark and Glimmer
Genome Database release	J. Craig Venter Institute	
Genbank ID		ABCJ00000000.1
Genbank Date of Release		June 19, 2007
GOLD ID		Gi01407
Project relevance		Chemosynthetic ecosystems, CO₂ fixation, Thermophiles

Genome annotation

The genome sequence was analyzed using the Joint Genome Institute IMG system [26], the RAST (Rapid Annotation using Subsystem Technology) server [27], the GenDB annotation program [28] at the Center for Genome Research and Biocomputing at Oregon State University, and the NCBI Prokaryotic Genomes Automatic Annotation Pipeline.

The annotation of the draft genome was done using the Prokaryotic Genomes Automatic Annotation Pipeline of the National Center for Biotechnology Information [29]. The PGAAP combines HMM-based gene prediction methods with a sequence similarity-based approach, and compares the predicted gene products to the non-redundant protein database, Entrez Protein Clusters, the Conserved Domain Database, and the COGs (Clusters of Orthologous Groups).

Gene predictions were obtained using a combination of GeneMark and Glimmer [30-32]. Ribosomal RNAs were predicted by sequence similarity, using BLAST against the non-redundant nucleotide database and/or using Infernal and Rfam models. The tRNAscan-SE [33] was used to find tRNA genes. The predicted CDS were then searched using the NCBI nonredundant protein database. The predicted protein set and major metabolic pathways of TB-2ᵀ were searched using the KEGG, SwissProt, COG, Pfam, and InterPro protein databases implemented in the IMG and GenDB systems. Additional gene prediction analysis and manual functional annotation was performed within the IMG and using the Artemis software (release 13.0, Sanger Institute).

Genome properties

The genome consists of a 1,663,618 bp long circular chromosome with a 27.13 mol% G+C content (Table 3). Of the 1,894 genes predicted, 1,826 were protein-coding genes. Of these, 1,180 were assigned to a putative function, while the remaining genes were annotated as coding for hypothetical proteins. In the genome of *C. mediatlanticus*, 84 protein-coding genes belong to 38 paralogous families, corresponding to a gene content redundancy of 4.44%. The properties and the statistics of the genome are summarized in Table 3. The distribution of genes into Clusters of Orthologous Groups (COGs) functional categories is shown in Table 4.

Reconstruction of the rTCA cycle for CO₂ fixation from the genome sequence of *C. mediatlanticus* strain TB-2ᵀ

C. mediatlanticus strain TB-2ᵀ is an obligate anaerobic, hydrogen-dependent chemolithoautotroph. In this bacterium, CO₂ fixation occurs via the reductive tricarboxylic acid (rTCA) cycle [19]. By fixing CO₂ in the absence of oxygen, *C. mediatlanticus* is completely independent from photosynthetic processes, and therefore this bacterium is a true primary producer in the deep ocean (in contrast to aerobic chemosynthetic bacteria, which ultimately depend on photosynthesis-derived oxygen for their energy metabolism). In Figure 3 we show a reconstruction of the rTCA cycle and the organization of the rTCA cycle-related genes in the genome of *C. mediatlanticus*.
Table 3. Genome statistics

Attribute	Value	% of total^a
Size (bp)	1,663,618	
G+C content (bp)	451,320	27.13
Coding region (bp)	1,583,997	95.21
Total genes^b	1,894	
RNA genes	68	3.59
Protein-coding genes	1,826	96.41
Genes in paralog clusters	84	4.44
Genes assigned to COGs	1,461	77.14
Genes assigned in Pfam domain	1,371	72.39
Genes connected to KEGG pathways	630	33.26
Genes with signal peptides	214	11.30
Genes with transmembrane helices	400	21.12
Paralogous groups	38	2.01

^a The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

^b no pseudogenes found.

Table 4. Number of genes associated with the 25 general COG functional categories

Code	Value	%age^a	Description
J	130	7.12	Translation
K	53	2.9	Transcription
L	84	4.6	Replication, recombination and repair
D	21	1.15	Cell cycle control, mitosis and meiosis
V	14	0.77	Defense mechanisms
T	79	4.33	Signal transduction mechanisms
M	108	5.91	Cell wall/membrane biogenesis
N	58	3.18	Cell motility
U	52	2.85	Intracellular trafficking and secretion
O	73	4	Posttranslational modification, protein turnover, chaperones
C	116	6.35	Energy production and conversion
G	50	2.74	Carbohydrate transport and metabolism
E	128	7.01	Amino acid transport and metabolism
F	52	2.85	Nucleotide transport and metabolism
H	87	4.76	Coenzyme transport and metabolism
I	34	1.86	Lipid transport and metabolism
P	66	3.61	Inorganic ion transport and metabolism
Q	14	0.77	Secondary metabolites biosynthesis, transport and catabolism
R	153	8.38	General function prediction only
S	89	4.87	Function unknown
-	365	19.99	Not in COGs

^a The total is based on the total number of protein coding genes in the annotated genome.
Figure 3. Reconstruction of the rTCA cycle and related gene clusters in *C. mediatlanticus* strain TB-2T. A) rTCA cycle. Enzymes are identified by the corresponding gene locus in the *C. mediatlanticus* genome (CMTB2_gene number). B) Structure of the gene clusters encoding for enzymes involved in rTCA cycle. ORF present within the same clusters are shown in light gray. The distance between clusters is reported in thousands of base pairs (kbp). Genes are oriented according to their direction and drawn to scale. *frdBA*: fumarate reductase; *citE*: citril-CoA lyase; *pyk*: pyruvate kinase; *idh1*: monomeric isocitrate dehydrogenase; *mdh2*: malate dehydrogenase; *fumAB*: fumarate hydratase; *sucCD*: succinyl-CoA synthetase; *oorDABC*: 2-oxoglutarate ferredoxin synthase; *pycAB*: pyruvate carboxylase; *ppsA*: pyruvate water dikinase; *acb*: bifunctional aconitate hydratase/methyl isocitrate dehydratase; *acnB*: aconitate hydratase; *pckA*: phosphoenol pyruvate carboxy kinase; *porGDAB*: pyruvate ferredoxinoxido reductase/synthase; *aclBA*: ATP-citrate lyase.

Acknowledgements

We thank the Gordon and Betty Moore Foundation for supporting the *C. mediatlanticus* genome sequencing project, and the technical team at the J. Craig Venter Institute. Work on *C. mediatlanticus* was supported, entirely or in part, by NSF Grants MCB 04-56676, OCE 03-27353, MCB 08-43678 and OCE 09-37371 to CV, and by the New Jersey Agricultural Experiment Station.
References

1. Voordeckers JW, Starovoytov V, Vetriani C. Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 2005; 55:773-779. PubMed doi:10.1099/ijs.0.63430-0

2. Miroshnichenko ML, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya E, Jeanthon C, Stackebrandt E. Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class Epsilonproteobacteria, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2004; 54:41-45. PubMed doi:10.1099/ijs.0.02753-0

3. Alain K, Querellou J, Lesongeur F, Pignet P, Cras-5. Smith JL, Campbell BJ, Hanson TE, Zhang CL, Miroshnichenko ML, Kostrikina NA, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya E, Jeanthon C, Stackebrandt E. Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 2002; 52:1317-1323. PubMed doi:10.1099/ijs.0.02195-0

4. Miroshnichenko ML, Kostrikina NA, L’Haridon S, Jeanthon C, Hippe H, Stackebrandt E, Bonch-Osmolovskaya EA. Nautilia aphitrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ep-55ilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2002; 52:1299-1304. PubMed doi:10.1099/ijs.0.02139-0

5. Smith JL, Campbell BJ, Hanson TE, Zhang CL, Cary SC. Nautilia profundicola sp. nov., a ther-55mophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 2008; 58:1598-1602. PubMed doi:10.1099/ijs.0.05545-0

6. Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu D, Robinson JM, Khouri HM, Eisen JA, et al. Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genet 2009; 5:e1000362. PubMed doi:10.1371/journal.pgen.1000362

7. Alain K, Callac N, Guegan M, Lesongeur F, Cras-55sous P, Cambon-Bonavita MA, Querellou J, Prieur D. Nautilia abyssi sp. nov., a thermophilic, che-55molithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 2009; 59:1310-1315. PubMed doi:10.1099/ijs.0.005454-0

8. Pérez-Rodríguez I, Ricci J, Voordeckers JW, Starovoytov V, Vetriani C. Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosyn-55thetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2010; 60:1182-1186. PubMed doi:10.1099/ijs.0.013904-0

9. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K. Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidopho-55lic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 2005; 55:183-189. PubMed doi:10.1099/ijs.0.63330-0

10. Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Computer applications in the biosciences. CABIOS 1996; 12:543-548. PubMed

11. Thompson JD, Gibson TJ, Plewniak F, Jeanmou-55gin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876-4882. PubMed doi:10.1093/nar/25.24.4876

12. Perrière G, Gouy M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 1996; 78:364-369. PubMed doi:10.1016/0300-9084(96)84768-7

13. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Anguoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt1360

14. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domain Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

15. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phy1. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.

16. Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56:1-6. PubMed doi:10.1099/ijs.0.64188-0
17. Garrity GM, Bell JA, Lilburn T. Class V. Epsilon-proteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, New York, 2005, p. 1145.

18. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556

19. Voordeckers JW, Do MH, Hugler M, Ko V, Sievert SM, Vetriani C. Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. Extremophiles 2008; 12:627-640. PubMed doi:10.1007/s00792-008-0167-5

20. Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 2005; 7:1619-1632. PubMed doi:10.1111/j.1462-2920.2005.00856.x

21. López-García P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 2003; 5:961-976. PubMed doi:10.1046/j.1462-2920.2003.00495.x

22. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angioli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt.1360

23. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 1999; 65:4375-4384. PubMed

24. Goldberg SM, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R, Halpern A, Khouri H, Kravitz SA, Lauro FM, et al. A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 2006; 103:11240-11245. PubMed doi:10.1073/pnas.0604351103

25. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarzy CM, Reinitert KH, Remington KA, et al. A whole-genome assembly of Drosophila. Science 2000; 287:2196-2204. PubMed doi:10.1126/science.287.5461.2196

26. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Anderson I, Lykidis A, Mavromatis K, et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 2010; 38:D382-D390. PubMed doi:10.1093/nar/gkp887

27. Aziz RK, Bartels D, Best AA, DeLong M, Disz T, Edwards RA, Formas MA, Gerdes S, Glass EM, Kubal M, et al. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75. PubMed doi:10.1186/1471-2164-9-75

28. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Pühler A. GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 2003; 31:2187-2195. PubMed doi:10.1093/nar/gkg312

29. NCBI. http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html.

30. Borodovsky M, McIninch J. GENMARK: parallel gene recognition for both DNA strands. Comput Chem 1993; 17:123-133. doi:10.1016/0097-8485(93)85004-V

31. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999; 27:4636-4641. PubMed doi:10.1093/nar/27.23.4636

32. Lukashin AV, Borodovsky M. GeneMark. hmm: new solutions for gene finding. Nucleic Acids Res 1998; 26:1107-1115. PubMed doi:10.1093/nar/26.4.1107

33. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955-964. PubMed doi:10.1093/nar/25.5.955

http://standardsingenomics.org