Effect of intestinal ischemia-reperfusion injury on protein levels of leptin and orexin-A in peripheral blood and central secretory tissues

Ji Lin, Guang-Tao Yan, Xiu-Hua Hao, Lu-Huan Wang, Kai Zhang, Hui Xue

INTRODUCTION

Leptin is an active protein specifically secreted by adipose tissue in mice, rats, and humans, which consists of 167 amino acids and has a molecular weight of 16 ku. It is a product of ob gene and has a feedback regulation by neuroendocrine system. Recent studies have found that leptin plays a role in food-consuming behavior, energy metabolism and weight balance, primarily reducing food-intake and promoting energy expenditure through binding to its receptor in hypothalamus[1]. Moreover, leptin also participates in hematopoiesis[2], thermogenesis[3], reproduction, angiogenesis, and immune homeostasis[4-7].

Orexin-A, also known as hypocretin-1, is a novel neuropeptide secreted by specific neurons in lateral hypothalamus. It consists of 33 amino acids and has a molecular weight of 3 562 u[8]. Orexin-A is C-terminally amidated and contains 2 intra-molecular disulfide bonds, that connect cysteine residues from positions 6-12 and 7-14, respectively. The structure of orexin-A is conserved among human, rat, mouse and cow[9]. Recent findings suggest that orexin-A provides a critical link between the peripheral energy balance and central nervous system mechanisms that coordinate sleep-wakefulness and motivated behaviors such as food seeking, especially in physiological state of fasting stress[10,11].

Intestinal ischemia-reperfusion (I/R) injury is a classical traumatic model well-reflecting acute stress and inflammatory responses, when the body suffers severe energy metabolic impediment and out-of-control inflammation[12]. As leptin and orexin-A are a couple of active mediators closely-related with energy metabolism and their concentrations change inversely in previous experiments[13,14], we hypothesize that leptin and orexin-A might undergo an inverse fluctuation during severe metabolic impediment of acute inflammation as I/R injury, and play a role as inflammatory cytokines.

We established highly-sensitive and simple radioimmunoassays for murine leptin and human/rat/mouse orexin-A (as the structure of human orexin-A is almost the same as that of rat or mouse)[9] respectively, and used these assays to detect the changes of leptin and orexin-A levels in peripheral tissues of leptin and orexin-A in peripheral blood and central secretory tissues.

RESULTS: Compared with the serum leptin level before injury, it decreased significantly in I60‘R30’ group and increased significantly in I60‘R360’ group; compared to sham-operation group after injury, serum leptin level increased significantly in I60‘R360’ group; compared to sham-operation group after injury, adipose leptin levels decreased significantly in I60‘R30’ and I60‘R90’ groups, while increased significantly in I60‘R360’ group. There was no significant difference between the expression levels of orexin-A before and after I/R injury.

CONCLUSION: Leptin has a time-dependent response and orexin-A has a delayed response to acute inflammatory stimuli such as intestinal I/R injury and they may participate in metabolic disorders in injury as inflammatory cytokines.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Ischemia-reperfusion; Intestinal; Leptin; Orexin-A; Radioimmunoassay; Inflammation; Acute; Cytokine
blood (serum and plasma) and central secretory tissues (adipose tissue and hypothalamus) in rat intestinal I/R injury.

MATERIALS AND METHODS

Animals and reagents

Three male New Zealand white rabbits (weighing 1.2 kg) and 54 male Sprague-Dawley rats (weighing 250 g) were supplied by the Experimental Animal Center of our hospital. Animals were maintained at 22-25 °C under a constant day/night rhythm and given food and water ad libitum. All animal experiments were carried out in accordance with the NIH Guide for Care and Use of Laboratory Animals and approved by the Animal Care and Use Committee at our hospital.

Recombinant murine leptin was purchased from PeproTech Inc. (London, UK). Complete and incomplete Freund's adjuvant were purchased from Gibco/BRL® (Gaithersburg, USA). Human orexin-A, rabbit-anti-human orexin-A antibody, Sephadex G-25 and bovine serum albumin (BSA) were purchased from Sigma® (St. Louis, USA). Sodium iodide (Na125I) was purchased from Amersham® Biosciences (Piscataway, USA). PR reagent was supplied by Northern Biotech Company (Beijing, China). Other reagents purchased were of analytically pure grade.

Preparation of antibody

New Zealand white rabbits were immunized subcutaneously with an emulsion of 120 μg leptin in 3 mL complete Freund’s adjuvant, each rabbit was given 1 mL solution. Two weeks later, rabbits were intensively immunized 4 times using incomplete Freund’s adjuvant at intervals of 4 wk. One week after the last injection, blood was withdrawn via the right internal carotid artery under conscious condition. Serum containing rabbit anti-rat leptin antibody was separated by centrifugation at 3 000 r/min for 15 min, and stored in -80 °C.

Iodination of antigen

Antigen was iodinated as previously described[16,17]. The eluate of Sephadex G-25 chromatography column was collected at the rate of one tube per minute, and the tubes containing the first elution peak were reserved. After reaction with anti-body, iodinized leptin and orexin-A antibody, Sephadex G-25 and bovine serum albumin (BSA) were purchased from Sigma® (St. Louis, USA). Sodium iodide (Na125I) was purchased from Amersham® Biosciences (Piscataway, USA). PR reagent was supplied by Northern Biotech Company (Beijing, China). Other reagents purchased were of analytically pure grade.

Intestinal I/R injury model

Fifty-four rats were divided randomly into six groups, nine rats each group. Group 1 served as sham-operation group, group 2 as 60 min ischemia/30 min reperfusion group (160°R30°), groups 3-6 as 160°R90°, 160°R150°, 160°R240° and 160°R360° groups, respectively. The abdominal cavity of rats anesthetized with pentobarbital sodium (60 mg/kg, IP) was opened, the superior mesenteric artery was separated and clipped with a microvessel clip for 60 min ischemia, then released for reperfusion[18].

Blood sample collection

Two milliliter blood was taken from tail vein of each rat, three days before I/R injury. During experiment, blood was drawn from the heart of rats. Rat serum was separated from whole blood by incubating blood samples in 37 °C water for 20 min and centrifuging at 3 000 g for 10 min at 4 °C. Rat plasma was separated from whole blood as previously described[10]. Serum and plasma samples were used for detecting leptin and orexin-A levels in peripheral blood by radioimmunoassay.

Tissue sample collection

Epidymal fat pads (a kind of white adipose tissue) on the left side[20] and hypothalamus tissue[21] of each rat were separated, tissue samples were snap-frozen in liquid nitrogen and stored at -80 °C. One milliliter cold normal saline was added to each 200 mg tissue sample, samples were homogenized by centrifugation at 20 000 r/min for 30 s at 4 °C, and repeated twice at intervals of 10 s. Then the homogenized fluid was centrifuged at 12 000 r/min for 20 min at 4 °C, the supernatant was collected and stored at -20 °C. Homogenized fluid samples were used for detecting leptin and orexin-A levels in central secretory tissue by radioimmunoassay.

Radioimmunoassay

The standard points set for serum samples were 1.1, 3.3, 11, 33, 100 and 300 μg/L, while those for adipose samples were 0.55, 1.65, 5.5, 16.5, 50 and 150 μg/L. The standard points set for plasma and hypothalamus samples were 21, 62.5, 125, 250, 500, 1 000, and 2 000 ng/L. One hundred microliter serum sample, 200 μL adipose sample, 200 μL plasma sample or hypothalamus sample were added for testing. Radioimmunoassay was carried out as previously described[16,17]. Before testing, 50 μL of each adipose sample or 10 μL of each hypothalamus sample was taken and diluted to 500 μL in ddH2O. Then Coomassie Brilliant Blue G-250 method[22] was used to check the total protein concentration in this diluted fluid, and adipose leptin levels (ng) or hypothalamus orexin-A levels (pg) were compared in 100 μg total protein of each tissue sample.

Statistical analysis

We used Stata 7.0 software to process our data. For the data, which accorded with normal distribution and showed no difference in standard deviation, we used parametric statistic analysis (Student’s t test or one-way analysis of variance); for the data that did not accord with normal distribution or showed difference in standard deviation, we used non-parametric statistic analysis (Wilcoxon signed-rank test). P value less than 0.05 was considered statistically significant. All data were expressed as mean±SE.

RESULTS

Standard curve and antibody dilution

The best curve shape was achieved at 4 °C after 24 h incubation with a suitable binding rate of 36-40% and a non-specific binding rate of 2.3-2.6%. The final antibody dilutions were 1:3 000 (serum), 1:4 000 (adipose) and 1:6 000 (plasma and hypothalamus). Good binding curves were obtained in the standard field of 1.1-300 μg/L for serum samples, 0.55-150 μg/L for adipose samples (which paralleled well
with the former), and 21-2 000 ng/L for plasma and hypothalamus samples (Figure 1).

Leptin levels before and after intestinal I/R injury

Serum levels vs self-control Compared to self-control (before injury), serum leptin level decreased significantly in I60'R30' group \((t = 2.3891, P<0.05)\), expressed a trend to increase in I60'R150' group \((t = -0.7176, P = 0.4834)\) and increased significantly in I60'R360' group \((t = -2.3437, P<0.05)\), as shown in Figure 2A.

Serum and adipose levels vs sham-operation group Compared to sham-operation group after injury, serum leptin level expressed a trend to increase in I60'R240' group \((t = -2.0327, P = 0.0590)\) and increased significantly in I60'R360' group \((t = -2.8085, P<0.05)\); while adipose leptin levels decreased significantly in I60'R30' and I60'R90' groups \((t = 2.2804 and 2.5170, P<0.05)\), and increased significantly in I60'R360' group \((t = -2.8401, P<0.05)\), as shown in Figure 2B.

Orexin-A levels before and after intestinal I/R injury

Compared to self-control (before injury), plasma orexin-A expression level in each group after injury had no significant difference \((P>0.05)\). Compared to sham-operation group after injury, plasma orexin-A expression level or hypothalamus orexin-A expression level in each group had no significant difference \((P>0.05)\), as shown in Table 1.

DISCUSSION

Association of intestinal I/R injury with leptin and orexin-A

Intestinal I/R injury causes intestinal bleeding and necrosis. Large amounts of endotoxin and oxygenic free radicals are released into blood circulation while monocytes, phagocytes and neutrophils are activated, leading to severe systemic inflammatory responses and metabolic disorders. At the same time, sympathetic and parasympathetic nervous systems are activated, causing sharp increases of catecholamines, adrenocorticoids and glucose in blood circulation \([23,24]\). It has been reported that leptin and orexin-A have a certain relationship with catecholamine \([25,26]\), glucocorticoids \([27,28]\), glucose \([29,30]\) and sympathetic nervous system \([31,32]\). Moreover, leptin can activate monocytes and T lymphocytes \([33,34]\), and interact with inflammatory mediators such as IL-1\(\beta\), TNF-\(\alpha\) and C-reactive protein \([35-37]\). All these results present a possible link between leptin and orexin-A and systemic metabolic disorders, suggesting that they play a potential role as inflammatory cytokines in I/R injury.

Highly sensitive and simple radioimmunoassay

Our methods for detecting leptin and orexin-A are highly sensitive and simple, and can achieve good experimental results.

Table 1 Plasma and hypothalamus orexin-A levels of each group before and after I/R injury (mean±SE)

Groups	Plasma level (ng/L)	Hypothalamus level (pg/L)		
	Before injury	After injury	Before injury	After injury
Sham	587.17±99.63	834.33±156.3	419.08±27.94	
I60'R30'	648.82±40.53	720.39±39.39	562.08±75.76	
I60'R90'	703.62±50.81	719.99±60.61	504.29±66.38	
I60'R150'	720.42±33.07	742.09±53.71	517.36±92.16	
I60'R240'	675.23±100.1	808.98±168.4	486.76±31.54	
I60'R360'	678.38±72.08	570.18±80.43	480.16±29.30	

\(^{a}\)Calculated in 100 \(\mu\)g total protein of hypothalamic tissue homogenized fluids.
results. 125I-labeled leptin or orexin-A can be stored for 2 mo at -20 °C after lyophilization. Standard leptin or orexin-A and their antibody can be stored for 6 mo at room temperature or for 2 years at -20 °C after lyophilization. Moreover, during the storage, the modality of standard curve is good and other indexes such as intra/inter-assay variances, recovery rate or specificity also meet the request of radioimmunoassay. Although our assays are not the first radioimmunoassay for leptin and orexin-A, they are more simple and feasible than others. The methods we used to extract leptin or orexin-A from homogenized tissues and prepare buffer for radioimmunoassay are more simple. In addition, we need not use organic reagents such as acid-acetone, acetonitrile, methanol or trifluoroacetic acid in iodination or measurement of orexin-A, and can also achieve good results.

Leptin fluctuates as inflammatory cytokines

In the early stage of I/R injury, the high metabolic status can change the body into a situation similar to hunger. As leptin decreases significantly during hungry status through the action of neuroendocrine system, plasma orexin-A level changes the body into a situation like hunger. As plasma orexin-A early and median stages of I/R injury (from 160'R30' to 160'R90'), serum leptin level begins to increase, and the high metabolic status recovers, thus increasing the serum leptin level step-by-step (from 160'R90' to 160'R240') which is finally higher (160'R360') than self-control. In adipose tissue, as serum leptin level declines significantly in the early stage (160'R30'), adipose tissue expresses more leptin for compensation due to a negative feedback mechanism. Since the trans-membrane secretion of leptin from intra-adipocytes to extra-adipocytes and blood circulation is quite active, leptin level in adipose tissue declines significantly than that in sham-operation group (from 160'R30' to 160'R90'). Then, serum leptin level begins to increase and the activity of trans-membrane secretion of leptin is inhibited due to less concentration difference between two sides of adipocyte membrane. Therefore, leptin level in adipose tissue begins to increase step-by-step. When reperfusion is prolonged (from 160'R240' to 160'R360'), serum leptin level remains slightly higher than in sham-operation group. Due to a potentially positive feedback mechanism protecting the body, adipose tissue expresses more leptin, causing a significant increase of leptin level.

Orexin-A has a delayed response to inflammatory stimuli

Results showed that there was no significant difference between plasma orexin-A levels of each group before and after injury. The results may be attributed to two counteractive factors (one increased orexin-A level and the other suppressed it) and the limited number of experimental animals, which caused the delayed response of orexin-A to inflammatory stimuli. In the early stage of I/R injury, the high metabolic level changes the body into a situation like hunger. As plasma orexin-A increases during hungry status through the action of neuroendocrine system, plasma orexin-A levels in the early and median stages of I/R injury (from 160'R30' to 160'R150') should be higher than self-control. But as orexin-A is secreted by hypothalamus and its level may be greatly influenced by inhibition of central nervous system (e.g., anesthesia), the increasing trend of orexin-A level caused by hungry status is suppressed by anesthesia. When reperfusion is prolonged (from 160'R240' to 160'R360'), the high metabolic status recovers step-by-step and the anesthetized inhibition decreases, the trend of orexin-A to decrease is counteracted. In hypothalamus tissue, the change of orexin-A level is also affected by the two counteractive factors. Therefore, during the whole process of our experiment, no significant change was found in expression of orexin-A. If we increase the number of animals and/or prolong reperfusion time, we would find new positive results.

In conclusion, leptin and orexin-A undergo a certain change in intestinal I/R injury. When reperfusion is prolonged, protein levels of leptin in central secretory tissue and peripheral blood fluctuates correspondingly, while protein levels of orexin-A in central secretory tissue and peripheral blood showed no significant change. Leptin has a time-dependent response and orexin-A has a delayed response to acute inflammatory stimuli such as intestinal I/R injury, and they may participate in metabolic disorders as inflammatory cytokines.

ACKNOWLEDGEMENTS

The authors thank Miss Xiao-Ning Gao, Mrs Na-Qing Zhang and Miss He-Dan Lu for their generous assistance during the experiment.

REFERENCES

1. Imagawa K, Numata Y, Katsurag U, Sakaguchi J, Morita A, Kikwuko S, Matumoto Y, Tsuji T, Tamaki M, Sasakura K, Teraoka H, Hosoda K, Ogawa Y, Nakao K. Structure-function studies of human leptin. J Biol Chem 1998; 273: 35245–35249
2. Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol 2000; 68: 437–446
3. Hausberg M, Morgan DA, Mitchell JL, Sivitz WI, Mark AL, Haynes WG. Leptin potentiates thermogenic sympathetic responses to hypothermia: a receptor-mediated effect. Diabetes 2002; 51: 2434–2440
4. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengan ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM. Leptin regulates proinflammatory immune responses. FASEB J 1998; 12: 57–65
5. Marti A, Berraondo B, Martinez JA. Leptin: physiological actions. J Physiol Biochem 1999; 55: 43–49
6. Palacio A, Lopez M, Perez-Bravo F, Monkeberg F, Schlesinger L. Leptin levels are associated with immune response in malnourished infants. J Clin Endocrinol Metab 2002; 87: 3040–3046
7. Siegmund B, Lehr HA, Fantuzzi G. Leptin: a pivotal mediator of intestinal inflammation in mice. Gastroenterology 2002; 122: 2011–2025
8. Wolf G. Orexins: a newly discovered family of hypothalamic regulators of food intake. Nutr Rev 1998; 56: 172–173
9. Wieland HA, Soll RM, Doeds HW, Stenkamp D, Hurnaus R, Lammle B, Beck-Sickinger AG. The SK-N-MC cell line expresses an orexin binding site different from recombinant orexin 1-type receptor. Eur J Biochem 2002; 269: 1128–1135
10. Sakurai T. Orexin: a link between energy homeostasis and adaptative behaviour. Curr Opin Clin Nutr Metab Care 2003; 6: 353–360
11. Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S. Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem Biophys Res Commun 1999; 256: 495–499
12. Zhou JL, Jin GH, Yi YL, Zhang JL, Huang XL. Role of nitric...
oxide and peroxynitrite anion in lung injury induced by intestinal ischemia-reperfusion in rats. World J Gastroenterol 2003; 9: 1318–1322

13 Komaki G, Matsumoto Y, Nishikata H, Kawai K, Nozaki T, Takii M, Sogawa H, Kubo C. Orexin-A and leptin change inversely in fasting non-obese subjects. Eur J Endocrinol 2001; 144: 645–651

14 Beck B, Richy S, Dimitrov T, Stricker-Krongrad A. Opposite regulation of hypothalamic orexin and neuropeptide Y receptors and peptide expressions in obese Zucker rats. Biochem Biophys Res Commun 2001; 286: 518–523

15 Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T, Shibahara M, Kuramochi M, Takigawa M, Yanagisawa M, Sakurai T, Shiioda S, Yada T. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 2004; 19: 1524–1534

16 Yan GT, Hao XH, Xue H, Lu YP. Establishment of a highly sensitive leptin radioimmunoassay and detection of increased leptin levels in hyperlipidemia and pregnancy. J Immunoassay Immunochem 2002; 23: 317–326

17 Lin J, Yan GT, Hao XH, Zhang K, Wang LH, Xue H. Establishment and primary application of a highly-sensitive orexin-A radioimmunoassay. J Immunoassay Immunochem 2004; 25: 45–55

18 Turnage RH, Kadesky KM, Bartula LT, Guice KS, Oldham KT, Myers SL. Splanchnic PGI2 release and "no reflow" following intestinal reperfusion. J Surg Res 1995; 58: 558–564

19 Arihara Z, Takahashi K, Murakami O, Totsune K, Sone M, Satoh F, Ito S, Mouri T. Immunoreactive orexin-A in human plasma. Peptides 2001; 22: 139–142

20 Kawamura T, Yoshida K, Sugawara A, Nagasaka M, Mori N, Takeuchi K, Kohzuki M. Impact of exercise and angiotensin converting enzyme inhibition on tumor necrosis factor-alpha and leptin in fructose-fed hypertensive rats. J Hypertens 2002; 20: 919–926

21 Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terretta J, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92: 573–585

22 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254

23 Zhang JF, Zhang YM, Yan CD, Zhou XP, Qi YJ. Protective effects of paraventricular nucleus stimulation and vasopressin on gastric ischemia-reperfusion injury in rats. Sheng Wu Xue Bao 2002; 54: 133–138

24 Kawada T, Yamanaka T, Akiyama T, Mori H, Inagaki M, Shishido T, Takaki H, Sugimachi M, Sunagawa K. Effects of brief ischaemia on myocardial acetylcholine and noradrenaline levels in anaesthetized cats. Auton Neurosci 2002; 95: 37–42

25 Shibuya I, Utsunomiya K, Toyohira Y, Ueno S, Tsutsui M, Cheah TB, Ueta Y, Izumi F, Yanagihara N. Regulation of catecholamine synthesis by leptin. Ann N Y Acad Sci 2002; 971: 522–527

26 Kawada Y, Ueno S, Asayama K, Tsutsui M, Utsunomiya K, Toyohira Y, Morisada N, Tanaka K, Shirahata A, Yanagihara N. Stimulation of catecholamine synthesis by orexin-A in bovine adrenal medullary cells through orexin receptor-1. Biochem Pharmacol 2003; 66: 141–147

27 Wallace AM, Tucker P, Williams DM, Hughes IA, Ahmed SF. Short-term effects of prednisolone and dexamethasone on circulating concentrations of leptin and sex hormone-binding globulin in children being treated for acute lymphoblastic leukaemia. Clin Endocrinol (Oxf) 2003; 58: 770–776

28 Stricker-Krongrad A, Beck B. Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. Biochem Biophys Res Commun 2002; 296: 129–133

29 Leininger MT, Portacarrero CP, Bidwell CA, Spurlock ME, Houseknecht KL. Leptin expression is reduced with acute endotoxemia in the pig: correlation with glucose, insulin, and insulin-like growth factor-1 (IGF-1). J Interferon Cytokine Res 2000; 20: 99–106

30 Ouedraogo R, Naslund E, Kirchgesner AL. Glucose regulates the release of orexin-a from the endocrine pancreas. Diabetes 2003; 52: 111–117

31 Eikelis N, Schlach M, Aggarwal A, Kaya D, Esler M. Interactions between leptin and the human sympathetic nervous system. Hypertension 2003; 41: 1072–1079

32 van den Top M, Nolan MF, Lee K, Richardson PJ, Buiks RM, Davies CH, Spanswick D. Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J Physiol 2003; 549: 809–821

33 Najib S, Sanchez-Margalet V. Human leptin promotes survival of human circulating blood monocytes prone to apoptosis by activation of p42/44 MAPK pathway. Cell Immunol 2002; 220: 143–149

34 Martin-Romero C, Santos-Alvarez J, Goberna R, Sanchez-Margalet V. Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell Immunol 2000; 199: 15–24

35 Hosoi T, Okuma Y, Wada S, Nomura Y. Inhibition of leptin-induced IL-1beta expression by glucocorticoids in the brain. Brain Res 2003; 969: 95–101

36 Kazumi T, Kawaguchi A, Hirano T, Yoshino G. C-reactive protein in young, apparently healthy men: associations with serum leptin, QTc interval, and high-density lipoprotein-cholesterol. Metabolism 2003; 52: 1113–1116

37 Madike AM, Mitchell TD, Harris RB. Hyperleptinemia and reduced TNF-alpha secretion cause resistance of db/db mice to endotoxin. Am J Physiol Regul Integr Comp Physiol 2003; 284: R763–R770

38 Landt M, Gingerich RL, Havel PJ, Mueller WM, Schoner B, Hale JE, Heiman ML. Radioimmunoassay of rat leptin: sexual dimorphism reversed from humans. Clin Chem 1998; 44: 565–570

39 Faggioni R, Moser A, Feingold KR, Grunfeld C. Reduced leptin levels in starvation increase susceptibility to endotoxemia. Am J Pathol 2000; 156: 1781–1787

40 Jaworek J, Bonior J, Pierczalski P, Tomaszewska R, Stachura J, Sendur R, Leja A, Jachmizał K, Konturek PC, Bielanski W, Pawlik W, Konturek SJ. Leptin protects the pancreas from damage induced by caerulein overstimulation by modulating cytokine production. Pancreatology 2002; 2: 89–99