Notch2 and Proteomic Signatures in Mouse Neointimal Lesion Formation

Sarah M. Peterson, Jacqueline E. Turner, Anne Harrington, Jessica Davis-Knowlton, Volkhard Lindner, Thomas Gridley, Calvin P.H. Vary, Lucy Liaw

Objective—Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response.

Approach and Results—Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling.

Conclusions—We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.

Visual Overview—An online visual overview is available for this article. (Arterioscler Thromb Vasc Biol. 2018;38:1576-1593. DOI: 10.1161/ATVBAHA.118.311092.)

Key Words: carotid arteries ■ mass spectrometry ■ muscle, smooth ■ proteome ■ vascular remodeling

Notch ligands and receptors participate in vascular remodeling in response to injury, and specific roles have been identified using targeted mouse models. Mice heterozygous for a mutant Jagged1 allele in endothelial cells respond with enhanced neointimal lesion formation after carotid artery injury.1 Soluble Jagged1, an inhibitor of Jagged1-mediated Notch activation, inhibits neointima formation after endothelial denudation by balloon injury in rat carotid arteries.2 Notch1 heterozygous deficient mice display a 70% reduction in neointimal lesion formation after carotid artery ligation, but no change was observed in homozygous Notch3 knockout mice in the same study.3 To date, no in vivo studies have been published studying the isolated loss of Notch2 in neointimal lesion formation. Given that global deletion of Notch2 results in embryonic lethality by E11.5 because of cardiovascular defects,4,5 one goal of this study was to characterize the impact of conditional and inducible loss of Notch2 signaling in vascular smooth muscle cells (VSMC) in neointimal lesion formation.

We previously showed that Notch2 activation by Jagged1 mediates a unique function in human VSMC to suppress proliferation.4 Subsequent studies have confirmed the antiproliferative effects of Notch2 by demonstrating Notch2-specific inhibition of PDGF-B (platelet-derived growth factor B)–dependent proliferation in human aortic VSMC and increased ex vivo proliferation of VSMC isolated from mice with targeted smooth muscle deletion of Notch2 compared with wild-type cells.6 We hypothesized that loss of function of smooth muscle Notch2 signaling would result in a hyperproliferative response in vivo with increased neointimal lesion formation after vascular injury.

Vascular occlusive disorders are characterized by extensive biological changes in the vessel wall in addition to the proliferation and abluminal migration of VSMC. Many genes and pathways have been targeted, particularly in mouse models of vascular injury, demonstrating that complex gene network activation is required for vascular remodeling. However, there is limited information on how global protein levels change during specific stages of neointimal lesion formation in comparison to uninjured vessels. Thus, a second goal of this study was to define unique vascular proteomic signatures that distinguish different stages of neointimal lesion formation.
in response to altered blood flow. A recent innovation in protein analysis workflow is sequential window acquisition of all theoretical spectra (SWATH) \(^{11,12}\) ion scanning technique for isotope-free protein analysis. SWATH is innovative because it matches experimental mass spectra with spectral libraries instead of theoretical spectra derived from protein sequence information. It is powerful because it meets the challenge of simultaneous protein identification and quantification.\(^ {10,12}\) Recently, the utility of SWATH was demonstrated in the analysis of proteomic changes in the vascular endothelium following injury. A recent innovation in proteomic analysis has been used to determine the molecular signature of symptomatic carotid plaques.\(^ {13} \) These studies demonstrate the value of proteomics-based approaches in elucidating the elaboration of molecular-level changes occurring in vascular injury and ultimately in spurring the development of novel approaches for treating vascular disease. To our knowledge, our study is the first use of SWATH proteomics analysis to identify injury signatures in the carotid artery remodeling process, as well as Notch-related protein responses.

Materials and Methods

The data that support the findings of this study are available from the corresponding author on reasonable request.

Mouse Models

Experimental protocols using mice were approved by the Maine Medical Center Institutional Animal Care and Use Committee. Mice were housed in our clean barrier facility, which is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International. In the Notch2 conditional null line,loxP sites flank exon 3 of the Notch2 allele.\(^ {5} \) Cre recombinase-mediated recombination of the floxed Notch2 allele was detected by PCR using genomic DNA isolated from carotid arteries with the N2-L3 and N2-L5 primers. These primers flank the 2 loxP sites, yielding a nonrecombined 1.9 kb product from the floxed allele and an 887 bp product after Cre recombinase-mediated excision.

Genotyping and Cre Excision Analysis

Polymerase chain reaction (PCR) primers used for this study are listed below and in the Major Resources Table in the online-only Data Supplement. Standard protocols used 2 pmol/µL primers in MasterMix (4PRIME, Inc.). For genotyping the Notch2 allele, the cycling conditions were 95°C for 3 minutes, followed by 40 cycles of 95°C for 45 seconds, 60°C for 45 seconds, and 72°C for 75 seconds, followed by a final 72°C for 2 minutes. This yielded a 161 bp band from the wild-type allele and a 201 bp product from the floxed allele. For genotyping the SM-MHC-CreER\(^ {2}\) transgene, cycling conditions were 93°C for 3 minutes, and 35 cycles of 93°C for 30 seconds, 58°C for 30 seconds, and 72°C for 1 minute, followed by a final 72°C for 7 minutes. This yielded a 455 bp product corresponding to the transgene. Negative controls of the reaction without template were used for each reaction.

Genotyping and Cre Excision Analysis

Primers used were as follows:

1. **SM-MHC-CreER\(^ {2}\):** TCCAACCTGTGACTGTTG, TCAGAGGCCCTAGGGG
2. **Notch2 floxed:** TAGGAACGACGTCACTACACAG, ATACGCTAACCAGTGACCTGGAG
3. **N2-L3:** GCTCACTAGAGTTGTCTTCTTG
4. **N2-L5:** AGAACATTGGGTTGTTCCTCC

Cre recombination of the floxed Notch2 allele was detected by PCR using genomic DNA isolated from carotid arteries with the N2-L3 and N2-L5 primers. These primers flank the 2 loxP sites, yielding a nonrecombined 1.9 kb product from the floxed allele and an 887 bp product after Cre recombinase-mediated excision.

Tamoxifen Induction

Mice received 5 consecutive days of intraperitoneal injections of 100 µL of a 10 mg/mL solution of tamoxifen (Sigma) dissolved in corn oil (Sigma), a daily dose of 1 mg/mouse. The stock solution was prepared by warming the solution to 55°C to dissolve. Administration of 100 µL corn oil served as the vehicle control. The tamoxifen induction period was followed by a 2 week Cre-mediated recombination period before arterial ligation or sham surgery. Mice receiving tamoxifen were housed separately from mice receiving corn oil.

Ligation of the Mouse Common Carotid Artery and Tissue Collection and Processing

This procedure was performed as described.\(^ {17,18} \) In brief, each mouse was anesthetized, and the left carotid artery was exposed. The left common carotid artery was completely tied off using suture just proximal to the carotid bifurcation. The skin incision was closed, and the mouse was allowed to recover. Mice were maintained for 6 or 14 days after arterial ligation. For sham surgeries, mice were anesthetized, and the left carotid artery was exposed before closing the wound with sutures. To collect vessels for paraffin embedding, arteries were harvested, fixed with 4% paraformaldehyde, dissected, and maintained in fixative overnight at 4°C. Tissues were then processed for paraffin

Nonstandard Abbreviations and Acronyms

Abbreviation	Description
ERH	enhancer of rudimentary homolog
PANTHER	Protein Analysis Through Evolutionary Relationships
PCR	polymerase chain reaction
SWATH	sequential window acquisition of all theoretical spectra
VSMC	vascular smooth muscle cell

Data Supplement. Standard protocols used 2 pmol/µL primers in MasterMix (4PRIME, Inc.). For genotyping the Notch2 allele, the cycling conditions were 95°C for 3 minutes, followed by 40 cycles of 95°C for 45 seconds, 60°C for 45 seconds, and 72°C for 75 seconds, followed by a final 72°C for 2 minutes. This yielded a 161 bp band from the wild-type allele and a 201 bp product from the floxed allele. For genotyping the SM-MHC-CreER\(^ {2}\) transgene, cycling conditions were 93°C for 3 minutes, and 35 cycles of 93°C for 30 seconds, 58°C for 30 seconds, and 72°C for 1 minute, followed by a final 72°C for 7 minutes. This yielded a 455 bp product corresponding to the transgene. Negative controls of the reaction without template were used for each reaction.

Primers used were as follows:

1. **SM-MHC-CreER\(^ {2}\):** TCCAACCTGTGACTGTTG, TCAGAGGCCCTAGGGG
2. **Notch2 floxed:** TAGGAACGACGTCACTACACAG, ATACGCTAACCAGTGACCTGGAG
3. **N2-L3:** GCTCACTAGAGTTGTCTTCTTG
4. **N2-L5:** AGAACATTGGGTTGTTCCTCC

**Cre recombination of the floxed Notch2 allele was detected by PCR using genomic DNA isolated from carotid arteries with the N2-L3 and N2-L5 primers. These primers flank the 2 loxP sites, yielding a nonrecombined 1.9 kb product from the floxed allele and an 887 bp product after Cre recombinase-mediated excision.

TAMOXIFEN INDUCTION

Mice received 5 consecutive days of intraperitoneal injections of 100 µL of a 10 mg/mL solution of tamoxifen (Sigma) dissolved in corn oil (Sigma), a daily dose of 1 mg/mouse. The stock solution was prepared by warming the solution to 55°C to dissolve. Administration of 100 µL corn oil served as the vehicle control. The tamoxifen induction period was followed by a 2 week Cre-mediated recombination period before arterial ligation or sham surgery. Mice receiving tamoxifen were housed separately from mice receiving corn oil.

LIGATION OF THE MOUSE COMMON CAROTID ARTERY AND TISSUE COLLECTION AND PROCESSING

This procedure was performed as described.\(^ {17,18} \) In brief, each mouse was anesthetized, and the left carotid artery was exposed. The left common carotid artery was completely tied off using suture just proximal to the carotid bifurcation. The skin incision was closed, and the mouse was allowed to recover. Mice were maintained for 6 or 14 days after arterial ligation. For sham surgeries, mice were anesthetized, and the left carotid artery was exposed before closing the wound with sutures. To collect vessels for paraffin embedding, arteries were harvested, fixed with 4% paraformaldehyde, dissected, and maintained in fixative overnight at 4°C. Tissues were then processed for paraffin...
embedding. Each ligated carotid artery was sectioned using the ligation as a reference point, and sections at specific distances (200 μm, 350 μm, 500 μm, 1 mm, 1.5 mm, and 2 mm) from the ligation were collected for quantification and additional immunostaining. To collect vessels for SWATH proteomic analysis, vessels were perfused with PBS, dissected, and immediately frozen and stored at ~80°C until protein extraction.

Detection of β-Galactosidase Activity
For detection of β-galactosidase activity, carotid vessels were perfusion fixed with 4% paraformaldehyde, harvested, and kept in 4% paraformaldehyde for 2 hours at 4°C. Vessels were washed in PBS and were given two 30-minute incubations with detergent rinse (1 mol/L magnesium chloride, 1% sodium deoxycholate, and Nonidet P-40 in PBS). The specimens were then wrapped in foil overnight in a 37°C incubator in staining solution, which contained detergent rinse ingredients plus 1 mol/L potassium ferricyanide, 0.5 mol/L potassium ferrocyanide, 1 mol/L Tris, and 1 mg/mL of x-gal staining solution (Biotime). The next morning, specimens were washed 3× in PBS before fixation in 4% paraformaldehyde overnight. Specimens were then processed, sectioned at 5 μm, and counter stained with nuclear fast red.

Morphometric Analysis
The importance of location in morphometric analysis of vascular lesion formation is established.13,19,20 Strain differences in neointimal lesion formation should also be taken into consideration.21 Multiple valid models of quantification have been used, from intermittent sections along the length of the injured artery,22 to sections across a 500 μm to 3 mm segment proximal to the ligation,22 to sections from a single point 3 mm from the ligation.23 Some groups have chosen to obtain measurements from the apex of the lesion as determined by serial sections at 150 μm intervals across the entire length of the artery.24 Alternatively, some groups have performed longitudinal sectioning,25 with quantification by lesion length or area,26 or as a percentage of total vessel area.27,28 We chose to analyze morphometric data in aggregate for 6 distances along the vessel (200 μm, 350 μm, 500 μm, 1 mm, 1.5 mm, and 2 mm from the ligation) to capture changes observed across the region of highest remodeling.20 The widest variation in neointimal area is typically observed at the closest distance of 200 μm because of the increased likelihood of clotting near the ligation site.20 Morphometric analysis was performed by tracing of anatomic features of cross-sections of the carotid artery at known distances from the ligation. Measurements were made for the lumen circumference (defining lumen area), the internal elastic lamina circumference, the circumference of the external elastic lamina, and the outermost adventitial circumference using a pen tablet (Intuos 4 Professional, Wacom). Measurements were quantified using National Institutes of Health ImageJ software.28 A stage micrometer was used to determine the linear conversion rate of number of pixels per mm. The neointimal area was determined by subtracting the luminal area from the area bound by the internal elastic lamina. The medial area was determined by subtracting the area bound by the internal elastic lamina from the area bound by the external elastic lamina. The adventitial area was determined by subtracting the area bound by the external elastic lamina from the outermost adventitial area. Measurements were performed with the observer blinded to experimental group. For the morphometric analysis, 13 Notch2VEH-CTL mice (Notch2wt;SM-MHC-CreERT2 mice treated with corn oil) were compared with 13 Notch2Smo-null mice (Notch2HET;SM-MHC-CreERT2 mice treated with tamoxifen) and 13 Notch2Smo-null mice (Notch2HET;SM-MHC-CreERT2 mice treated with tamoxifen) at the 14-day time point after carotid artery ligation.

Histology and Immunostaining of Paraffin-Embedded Tissue Sections
Formalin-fixed paraffin-embedded slides containing 5 cross-sections of 5 μm each were baked for 45 minutes at 60°C. The sections were then rehydrated in a rundown of AmeriClear (Cardinal Health) followed by decreasing percentages of ethanol (100%, 95%, and 70%). Once rehydrated, some sections were stained with hematoxylin/eosin or Verhoeff stain. Some sections underwent antigen retrieval by steaming in 0.01 mol/L sodium citrate buffer pH=6.0 for 30 minutes. After cooling, the slides were washed in water and then transferred to Tris-buffered saline with Tween (TBS-T) before quenching endogenous peroxidases in a 3% solution of hydrogen peroxide in PBS for 30 minutes. Slides were then washed twice in TBS-T before the sections were permeabilized in a solution of 0.5% Triton X-100 in PBS for 45 minutes on an orbital shaker. The slides were then washed once in distilled water and once in TBS-T before blocking in 2% BSA with 2% goat serum in PBS overnight at 4°C. The next day, primary antibodies or primary antibody IgG controls (please see the Major Resources Table in the online-only Data Supplement) were diluted in blocking solution and incubated on the sections overnight at 4°C. Secondary only controls were incubated with blocking solution for the duration of the primary antibody step. After 3 washes in TBS-T, the sections were incubated with SignalStain Boost HIC Detection Reagent (Cell Signaling) for 30 minutes at room temperature. Slides were then washed 3 more times in TBS-T before reacting with SignalStain diaminobenzidine substrate kit (Cell Signaling). The reaction was quenched with tap water before counterstaining with hematoxylin. Finally, the sections were dehydrated through increasing ethanol (95% and 100%) and 3 AmeriClear baths before coverslipping. Primary antibody IgG controls and secondary only control sections were examined for all antibodies (except for the Ki-67 antibody) to confirm lack of staining in the absence of primary antibody incubation. The Ki-67 staining was performed using Avidin/Biotin Blocking Kit (Vector Laboratories, Cat #SP-2001), Biotin-SP AffiniPure goat anti-rabbit IgG (Jackson ImmunoResearch Laboratories, Cat #111-065-144), and the VECTASTAIN Elite ABC-HRP Kit (Vector Laboratories, Cat #PK-6100). Ki-67 quantification was performed with National Institutes of Health ImageJ software,28 and a control slide containing a section of mouse spleen was analyzed to confirm staining specificity. For staining of mouse tissue with mouse monoclonal antibodies, the Vector M.O.M. Immunodetection Kit (Vector Laboratories Cat #PK-2200) and protocol were used with the following modifications. Antigen retrieval was performed using 0.01 mol/L sodium citrate buffer (pH=6.0) with 0.05% tween for 27 minutes, and endogenous peroxidases were blocked with a solution of 3% hydrogen peroxide in PBS for 15 minutes. M.O.M Block (5 drops in 2.5 mLs of PBS) was incubated overnight at 4°C with an additional 30 minutes the next morning at room temperature. The biotinylated anti-mouse IgG reagent was used at one quarter of the recommended dilution (1 μL per 1 mL.).

Proteomic Analysis of Carotid Arteries Using SWATH
Carotid arteries were weighed and proteins extracted using the Qproteome kit (Qiagen). On ice, 10 μL protease inhibitor plus 0.04 μL benzonase nuclease was added to 1 mL of lysis buffer. A total of 180μL of lysis solution was then added to each tube containing 1 artery, along with 2 small magnetic beads per sample. Samples were then homogenized at maximum speed for 60 seconds using an Autodisruptor. The tubes were then rechilled on ice, and the process was repeated until the samples were sufficiently homogenized. The tubes were then centrifuged at 14000 rpm for 10 minutes in a precooled microcentrifuge at 4°C. The supernatant was transferred into a new tube, and 4 volumes (720 μL) of ice cold acetone were added. The tubes were then frozen at ~70°C before mass spectrometry.

For this study, SWATH was used as a comprehensive strategy for analysis of all detectable analytes in samples via a data-independent acquisition method29 using nanospray infusion of tryptic peptides, after separation on a ThermoFisher/Dionex U3000 nanoscale liquid chromatograph as described.30,31 On a Sciex 5600 TripleTOF mass spectrometer. A mouse blood vessel ion library comprised 4091 proteins was constructed using ProteinPilot software. For identification of peptides generated by SWATH, multiple fragment ion chromatograms were retrieved from the spectral library for each peptide of interest. These spectra were compared with the extracted fragment
ion traces for the corresponding isolation window to identify the transitions that best identify and quantify the target peptide. SWATH protein responses were determined using PeakView software, and this information was extracted for principle component analysis and t test comparisons using MarkerView software.32

For the Protein Analysis Through Evolutionary Relationships (PANTHER) gene ontology classification analyses, lists of significantly regulated proteins generated by SWATH proteomics were analyzed using PANTHER version 13.0 (released November 12, 2017).13 For the molecular function categorization (Figures 2B and 5D), differentially expressed proteins after injury were classified based on molecular function and displayed by the percent of proteins in each category. The PANTHER Overrepresentation Tests (released December 5, 2017; Table 2) were generated with an input text file with all Notch2-regulated genes as determined by the 6- and 14-day Notch2SMC-NULL versus Notch2SMC-WT SWATH proteomic comparisons with their respective fold changes and the Mus musculus Reference Gene List. Annotation Data Sets used included PANTHER Pathways, PANTHER GO-Slim Molecular Function, and REACTOME pathways. Unclassified data were not included in Table 2, and only a selected portion (14 of 55, or ≈25%) of significantly overrepresented pathways was included because of space constraints.

Results

Characterization of the SM-MHC-CreER² Strain in Vascular Injury and VSMC Loss of Notch2

In the original SM-MHC-CreER² mouse model characterization,15 no significant Cre recombinase activity was noted in the absence of tamoxifen when crossed with the Rosa26LacZ Cre reporter strain (B6.129S4-^{Kim67}Sor1(Cg)J).16 We repeated this cross to assess Cre-mediated recombination in carotid artery VSMC and to determine the contribution of SM-MHC–expressing medial VSMC to the neointimal layer after injury. In this cross, Cre-mediated recombination to induce β-galactosidase activity is a permanent mark of differentiated VSMC within the vessel. First, Cre expression was validated in mature carotid VSMC in uninjured carotid arteries and increased expression of Notch2 after vascular injury,15 no significant Cre recombinase activity was noted. In Notch2VEH-CTL mice, evidence of the 887 bp product resulting from Cre recombination was noted. In Notch2VEH-CTL mice, evidence of the 887 bp product resulting from Cre recombination was also analyzed in GraphPad Prism 7.0 using multiple t test comparisons with P<0.05 considered significant. Statistical analysis in PANTHER was performed by Fisher exact test with false discovery rate multiple test correction in each case.

Protein Profiling of Remodeling Vessels in Notch2^{SMC-WT} Mice

To characterize the overall proteomic signature of the vessel wall to understand molecular changes during neointimal lesion formation, we performed protein profiling to compare uninjured carotid arteries with injured carotid arteries at 6 and 14 days after ligation using a SWATH proteomics approach in Notch2^{SMC-WT} mice. SWATH analysis of injured Notch2^{SMC-WT} vessels showed a protein profile response that included 2 distinct waves of protein regulation, as well as sustained changes characteristic of injury (Figure 2A). In comparison to uninjured carotid arteries, Notch2^{SMC-WT} remodeling arteries had 341 distinct proteins upregulated at day 6, with 35...
downregulated (Figure 2A, first wave; Table I in the online-only Data Supplement) and 116 proteins uniquely upregulated at day 14 with 13 downregulated (second wave; Table II in the online-only Data Supplement). In addition, we found 157 proteins that remained elevated and sustained throughout the 2 weeks of remodeling, and 9 that remained at lower levels (Figure 2A, sustained; Table III in the online-only Data Supplement). The numbers displayed for the first and second waves include 5 proteins that were downregulated at 6 days and upregulated at 14 days, and 3 proteins that were upregulated at 6 days and downregulated at 14 days (Table IV in the online-only Data Supplement). We additionally used the PANTHER ontology classification system to provide a more detailed molecular analysis of these protein profiles. The PANTHER GeneOntology tool showed that in Notch2SMC-WT carotid arteries, 45% of the regulated proteins at 6 and 14 days after injury fall into the catalytic activity category and 33% correspond to binding activity (Figure 2B). These data are consistent with a model where active changes in proteins involved in enzymatic biochemical reactions and binding (including transcription factors and receptor binding) are regulated strongly during the remodeling response. From the Notch2SMC-WT injury-related proteomics analysis, several of the proteins identified already have established functions in vascular injury and remodeling, and these are summarized in Table 1.

Figure 1. Validation of inducible Notch2 targeting in vascular smooth muscle cell (VSMC). A–C, The SM-MHC (smooth muscle myosin heavy chain)-CreERT2 Cre strain was crossed to the ROSA26LacZ Cre reporter strain, and uninjured double transgenic mice (A) were treated with corn oil vehicle (left) or tamoxifen (right). Whole-mount tissue detection of β-galactosidase activity was performed and sections prepared to examine cellular distribution of Cre recombination. After tamoxifen induction, VSMC were highly stained. B, Ligated carotid arteries from double transgenic mice treated with corn oil vehicle (left) or tamoxifen (right) were collected 14 d after ligation, and staining of both neointimal (double arrow) and medial VSMC was observed in vessels from tamoxifen-induced mice. Occasional low levels of recombination were noted in ligated vessel cross-sections from double transgenic mice treated with corn oil vehicle (arrow in C; higher magnification in inset). D, Analysis of the efficiency of Cre recombination was performed by polymerase chain reaction (PCR) of genomic DNA isolated from corn oil vehicle–treated Notch2fl/fl; SM-MHC-CreERT2 (Notch2VEH-CTL), tamoxifen-treated Notch2fl/fl; SM-MHC-CreERT2 (Notch2SMC-NULL), and tamoxifen-treated Notch2fl/fl; SM-MHC-CreERT2 (Notch2SMC-WT) carotid arteries 14 d after ligation. PCR was performed with the N2-L3: N2-L5 primer pair, which amplifies a 1.9 kb fragment from the nonrecombined floxed allele, an 887 bp product from the Cre-recombined locus, and an ≈1450 bp fragment from the wild-type allele. Some 887 bp product was detected in the Notch2VEH-CTL ligated carotid genomic DNA samples (white box). Immunostaining to detect Notch2 protein in uninjured carotid arteries (E) from Notch2VEH-CTL (left) and Notch2SMC-NULL (right) mice and from injured carotid arteries (F) collected 14 d after ligation in Notch2VEH-CTL (left) and Notch2SMC-WT (right) mice. Scale bar, 50 μm in A and B and E and F, and 25 μm in C.
Analysis of the Remodeling Response in the Presence or Absence of Notch2

To quantify effects of the loss of VSMC Notch2 on neointimal lesion formation, we analyzed morphometric data in aggregate for 6 distances along the vessel (200 μm, 350 μm, 500 μm, 1 mm, 1.5 mm, and 2 mm from the ligature) at 14 days after ligation. Representative sections used for quantification at the 2 mm distance are shown in Figure 3A. A sham-operated Notch2SMC-NULL vessel section is included for comparison. There was no significant difference between Notch2VEH-CTL, Notch2SMC-NULL, or Notch2SMC-WT vessels in neointimal area, medial area, or neointimal/medial ratio (Figure 3B). Likewise, no significant difference in proliferation was noted in Notch2SMC-NULL vessels (Figure 3C and 3D). Although this finding was surprising because of prior work by our group and others in demonstrating the role of Notch2 in mediating VSMC growth arrest,6,7 the overarching complexity of regulators of the neointimal lesion formation response17,18 suggests that several different pathways could be compensating for the loss of VSMC Notch2 in this model. For example, Notch3 is the predominant Notch receptor in carotid VSMCs and is highly expressed in the vessel wall throughout the remodeling process both in the presence and absence of Notch2 (data not shown).

Further characterization of lesion formation in Notch2SMC-NULL vessels was performed by immunohistochemical staining. Consistent with previous observations,17 the carotid artery ligation model demonstrates low levels of infiltrating immune cells in the vessel wall, as determined by CD45 staining (Figure 4A). No qualitative difference was observed in level of macrophage infiltration in Notch2SMC-NULL vessels compared with Notch2VEH-CTL and Notch2SMC-WT vessels as measured by CD68 staining (Figure 4B). Likewise, staining patterns for VSMC markers SMA (smooth muscle actin; Figure 4C) and SM-MHC (Figure 4D) were similar across experimental groups. No change in apoptosis, as measured by caspase-3 staining, was noted across experimental groups after injury (data not shown). No qualitative difference in collagen deposition was observed by Masson trichrome (Figure 4E) nor was there any significant difference in quantification of the collagen-rich adventitial area surrounding the vessel (data not shown).

To learn more about global proteomic changes during the loss of Notch2 in neointimal lesion formation, we performed SWATH analysis of single vessels at the 6- and 14-day time points after carotid artery ligation.

Protein Profiling of Remodeling Vessels in Notch2SMC-NULL Mice

For primary identification of proteins differentially regulated after carotid ligation injury in the absence of VSMC Notch2, we highlight the SWATH comparison of Notch2SMC-NULL vessels with Notch2SMC-WT vessels because both of these experimental groups are SM-MHC-CreER27 positive and have undergone tamoxifen induction, which specifically controls for any changes directly resulting from tamoxifen administration or the presence of Cre recombinase. Modified Venn diagrams summarizing this comparison at day 6 (Figure 5A) correspond to 66 proteins that are higher in Notch2SMC-WT vessels (Table V in the online-only Data Supplement), 1493 proteins that are not significantly changed, and 53 proteins that are higher in Notch2SMC-NULL vessels (Table VI in the online-only Data Supplement). For a secondary goal of identifying proteins directly related to vascular ligation injury in the context of loss of VSMC Notch2, we compared Notch2SMC-NULL vessels with sham Notch2SMC-NULL vessels (Figure 5A). Both groups are SM-MHC-CreER27 positive, tamoxifen induced, and have undergone surgical isolation of the carotid artery. The difference in this comparison is that sham Notch2SMC-NULL carotid vessels have not undergone ligation before wound closure, which provides a highly controlled view of differences resulting specifically from carotid vessel injury. This comparison identified 561 proteins higher in Notch2SMC-NULL vessels (Table VII in the online-only Data Supplement), 1030 proteins that are not significantly changed, and 21 proteins higher in sham Notch2SMC-NULL vessels (Table VIII in the online-only Data Supplement). The summary of the corresponding day 14 analysis is presented in Figure 5B (Tables IX–XII in the online-only Data Supplement).
Table 1. Related In Vivo Vascular Functions of Selected Proteomic Hits

Proteins in first wave (6 d)	Link to In Vivo Vascular Remodeling/Injury
Heat shock protein HSP 90-1c	Candidate marker of hypertension-induced endothelial injury in humans
Troponin T	Associated with myocardial injury and vascular surgery in humans
Glutaredoxin-1	Null mutation improves revascularization after hindlimb ischemia in mice
Annexin A1	Involved in mouse neointimal formation
NEDD8	Inhibitor of NEDD8 in mouse inhibits neointimal lesion formation
Protein disulfide isomerase	Secretion after vascular injury promotes thrombus formation
78 kDa glucose-regulated protein	Regulates vascular permeability in endothelial cells; involved in endoplasmic reticulum stress pathway related to neointimal lesion formation
Sphingosine kinase 2	Pharmacological inhibition in a pig vascular injury model enhances endothelial regeneration and reduces neointima
Glutathione peroxidase 1	Promotes microvascular perfusion postischemia in mice
CD44	Early induction after arterial injury in rats; involved in neointimal lesion formation in mice
Matrix gla protein	Human polymorphism associated with vascular calcification and atherosclerosis; elevated serum levels in coronary artery disease
Serpin H1	Increased in carotid arteries after clamping and balloon injury
Basigin	Activates matrix metalloproteinases in human carotid atherosclerotic lesions
Cthrc1	Secreted protein in injured arteries that increases VSMC migration and reduces collagen expression
Vitronectin	Liver-derived factor immobilized within vessel wall after vascular injury and during atherosclerosis
Profilin-1	Actin-binding protein with enhanced expression in human atherosclerotic plaques

Proteins in second wave (14 d)

Coronin-1B	Actin-binding protein increased after vascular injury
Synemin	Decreased in human atherosclerotic lesions, transiently decreased in rat vascular injury, corresponding to VSMC markers
NFκB p105 subunit	Involved in neointimal lesion formation in mice
Dynamin-2	Involved in developmental angiogenesis
Prostacyclin synthase	Gene transfer suppresses neointimal lesion formation in a rat model
Biglycan	Extracellular matrix protein with increased expression in human atherosclerotic plaques
Fibulin-1	Circulating levels increased in diabetic patients with advanced coronary artery disease

Differentially regulated proteins from the SWATH proteomic comparison of uninjured and injured carotid arteries at 6 days, 14 days, or 6 and 14 days (sustained) after carotid artery ligation in Notch2SMC-WT mice. Cthrc1 indicates collagen triple helix repeat containing 1; NEDD8, neural precursor cell expressed, developmentally down-regulated gene 8; SWATH, sequential window acquisition of all theoretical spectra; and VSMC, vascular smooth muscle cell.

An alternative schematic overview of changes specific to loss of Notch2 is provided in Figure 5C. Of additional interest, glutaredoxin-1 was the only protein identified as upregulated at both the 6- and 14-day time points in Notch2SMC-NULL vessels compared with Notch2SMC-WT vessels. Glutaredoxin-1 is a regulator of redox signaling that has previously been linked to ischemic limb revascularization but not to Notch signaling. Analysis of the molecular function of all proteins differentially expressed in Notch2SMC-NULL vessels compared with Notch2SMC-WT vessels reveals a similar profile to that generated from the Notch2SMC-WT analysis with the majority of proteins in the catalytic or binding activity categories (Figure 5D).

Protein Analysis of Remodeling Vessels in Notch2SMC-NULL Mice

To further characterize the proteomic profiling changes observed in Notch2SMC-NULL vessels as compared with Notch2SMC-WT vessels, additional PANTHER overrepresentation and enrichment analyses were performed to determine significantly altered pathways and molecular functions as determined by fold changes of proteins identified by SWATH proteomic analysis (Table 2). PANTHER pathway analysis identified 2 significantly overrepresented pathways, glycolysis and the cholecystokinin receptor signaling pathway, which include several matrix metalloproteinases, phosphoinositide 3-kinase signaling mediators, and other regulators of migration, adhesion, cell growth and proliferation, and inflammation. Of the significantly overrepresented molecular functions, protein disulfide isomerase activity had the highest fold enrichment in Notch2SMC-NULL vessels as compared with Notch2SMC-WT vessels. Protein disulfide isomerase, a known endoplasmic reticulum protein that assists with protein folding, has already been identified as a downstream target of the Notch signaling pathway in Notch intracellular domain-transfected K562 cells. PANTHER supports enrichment analysis.
using pathway classifications from the REACTOME resource, and thus significantly enriched metabolic, smooth muscle contraction, transport and mitosis-related pathways identified by the REACTOME resource are also included in Table 2. The PANTHER and REACTOME analyses for significant differences in Notch2SMC-NULL vessels as compared with Notch2SMC-WT vessels are largely consistent with the types of changes expected during vascular remodeling and suggest that metabolic changes are an important feature resulting from loss of Notch2 in VSMC. Differentially regulated proteins in Notch2SMC-NULL vessels compared with Notch2SMC-WT vessels were then searched in PubMed to identify known links to the Notch signaling pathway, and selected links to Notch signaling are summarized in Table 3.

Protein Expression Changes With Loss of VSMC Notch2 During Early Remodeling and Correlation With Human Atherosclerotic Lesions

Validation of selected early protein-level changes identified by the SWATH comparison of Notch2SMC-NULL (Figure 6A) and Notch2SMC-WT (Figure 6B) vessels at 6 days after injury was performed by immunohistochemical staining. Notch signaling culminates in activation of gene expression. Thus, we postulate that proteins decreased in the absence of Notch2 may be normally activated by Notch signaling, and we chose 3 proteins for validation that fit this pattern. From the SWATH analysis, protein expression of ERH is higher in Notch2SMC-WT vessels compared with Notch2SMC-NULL vessels (Table V in the online-only Data Supplement; fold change, 5.71; \(P < 0.01 \)). Corresponding with this analysis, more staining is observed in Notch2SMC-WT vessel sections compared with Notch2SMC-NULL vessels sections. ERH is highly conserved in eukaryotes and contributes to cell cycle regulation through its mRNA splicing activity. At 6 days after injury, plectin protein expression was also detected at higher levels in Notch2SMC-WT vessel sections compared with Notch2SMC-NULL vessels sections (Table V in the online-only Data Supplement; fold change, 2.87; \(P < 0.05 \)). Similarly, plectin staining was higher in Notch2SMC-WT vessel sections.
than in Notch2^{SMC-NULL} vessels sections. Plectin is a scaffolding protein that interacts with vimentin and actin filaments to promote vascular integrity.\(^\text{109}\) Of note, there is suggestive evidence that short stop, the Drosophila homolog of plectin, may be transcriptionally regulated by Notch signaling (also referenced in Table 3).\(^\text{105}\) The third protein selected for immunohistochemical staining validation was annexin A2. The SWATH analysis demonstrated higher expression in Notch2^{SMC-WT} vessels compared with Notch2^{SMC-NULL} vessels (Table V in the online-only Data Supplement; fold change, 2.58; \(P<0.05\)). Immunohistochemical staining also revealed higher protein expression in Notch2^{SMC-WT} vessel sections compared with Notch2^{SMC-NULL} vessels. Like plectin, annexin A2 is linked to vascular homeostasis.\(^\text{110}\)

We also selected abundant injury-related proteins from our mouse proteomic screen to evaluate correspondence to human diseased vessels. To confirm that some of the targets identified by SWATH proteomics were present in detectable levels in human atherosclerotic lesions, plaque was collected from consented human donors at the time of carotid endarterectomy surgery. Representative staining for ERH, serpin H1, and vitronectin validates that these proteins are expressed in human atherosclerotic lesions (Figure 6C). Because of lack of an appropriate control specimen for atherosclerotic plaque, nonspecific IgG-treated control sections are included (Figure 6D). From the SWATH analysis, Serpin H1 was upregulated in both Notch2^{SMC-WT} vessel sections after injury (Table I in the online-only Data Supplement; fold change, 5.36; \(P<0.01\)) and in injured Notch2^{SMC-NULL} vessels compared with sham Notch2^{SMC-NULL} vessels (Table VII in the online-only Data Supplement; fold change, \(18.80; P<0.01\times 10^{-12}\)). Vitronectin was upregulated after injury in Notch2^{SMC-WT} vessels (Table I in the online-only Data Supplement; fold change, 3.42; \(P<0.01\)).
Discussion

Our study provides a detailed and comprehensive comparison of protein signatures associated with vascular injury in the mouse. In addition, we evaluated a specific hypothesis that loss of VSMC Notch2 would result in increased neointimal lesion formation after vascular injury. We previously found that Notch2 signaling in human VSMC activates a quiescence pathway, suggesting that loss of VSMC Notch2 signaling would yield a hyperproliferative response in vivo. Contrary to our hypothesis, loss of VSMC Notch2 does not alter overall lesion size nor does it alter proliferation rates in the carotid ligation injury model, either at 6 or 14 days after injury. Although strain differences contribute to some variation in overall lesion size,14 days are sufficient for neointimal lesion formation as previously published17 and as demonstrated by our morphometric analysis. Because VSMC proliferation is a relatively early feature of this model,17 we would have expected to capture any significant proliferation changes at the 6- or 14-day time points and thus did not design our study to examine lesion formation beyond this time. The SM-MHC-CreERT2 driver strain is commonly used to study inducible gene expression in VSMC because of its high lineage specificity relative to other smooth muscle Cre drivers. A known limitation of this model is that insertion of the Cre transgene into the Y chromosome excludes the incorporation of female mice into the study design. Fortunately, translocation of the Cre transgene to the X chromosome has recently been published,11 opening up this field for future studies in female mice to address the issue of sex as a biological variable in vascular disease pathogenesis. An additional consideration in carotid ligation model study design is the wide variety of approaches for measuring and reporting lesion size in this model. Details of different common approaches are outlined in the methods section along with our rationale for performing morphometric assessments at 6 set distances across the largest area of the lesion. One distinct advantage of
the carotid ligation model is that it triggers less of an inflammatory response than other arterial injury models, such as endothelial denudation,112 which simplifies the analysis and characterization of VSMC phenotypic changes. As expected, loss of Notch2 did not alter VSMC apoptosis as determined by caspase-3 staining. This is supported by in vitro observations that there are no significant differences in ultraviolet-mediated apoptosis with overexpression or knockdown of Notch2 in VSMC as determined by caspase-3 activity or by expression of prosurvival genes.7

Our results suggest that other pathways and mediators are able to compensate for the loss of Notch2 during vascular remodeling. One possibility is that VSMC Notch3 is partially compensating for the loss of Notch2 in this context. Indeed, functional redundancy between Notch2 and Notch3 has been demonstrated during embryonic development of the vasculature.113,114 Studies in mouse models of patent ductus arteriosus, which results from failure of the ductus arteriosus to close in the transition between embryonic and postnatal circulation, demonstrate that VSMC Notch signaling via lateral induction through the vessel wall is required for closure.115 Patent ductus arteriosus can result from VSMC deletion of Jagged1115 and by disruption of all canonical Notch signal reception in smooth muscle via deletion of the Rbpj gene in VSMC.116 Patent ductus arteriosus occurs in 40% of mice with VSMC deletion of Notch2 and in 100% of mice with VSMC deletion of Notch2 combined with global heterozygous deletion of Notch3.114 Taken together, these results indicate a compelling role for Notch2 in the contractile VSMC differentiation required for ductus arteriosus closure and provide a developmental model for functional overlap between Notch2 and Notch3. The extent of the functional overlap in neointimal lesion formation could be elucidated using a similar approach to Baeten et al114 by performing carotid ligation studies in mice with different combinations of conditional mutant and wild-type Notch2 and Notch3 alleles in VSMC. Even so, neointimal lesion formation after arterial injury is a complex process governed by many different regulators that control the extent of the neointimal lesion response. We have previously reviewed genes that contribute to neointimal lesion formation after complete ligation of the common carotid artery.18 These include adhesion molecules, growth factors, cytokines, hormones, cytoskeletal components, blood components, reactive oxygen pathways, secreted proteins, transcriptional regulators, extracellular matrix proteins, transmembrane signaling molecules, intracellular enzymes, and microRNAs.18 Within each of these categories, multiple mouse models have identified numerous specific regulators of the neointimal lesion response. These regulators significantly alter lesion size or morphology when targeted by genetic ablation, transgenic expression, or by administration of inhibitors, antibodies, mimics, adenoviral vectors, or other recombinant proteins. Although single-gene studies have made important contributions to the canon of neointimal lesion response literature, many studies have focused on quantification of lesion size as the primary or exclusive outcome measure. Because of the number of genes regulating neointimal lesion size, more complex outcome analyses are needed to grasp resultant protein-level changes in an unbiased and comprehensive manner.

Table 2. PANTHER Overrepresentation and Enrichment Analyses of Notch2-Regulated Proteins After Injury

PANTHER Analysis	P Value	
Overrepresented pathways (pathway ID)		
Glycolysis (P00024)	0.0211	
Cholecystokinin receptor signaling (P06959)	0.0200	
Overrepresented molecular function analysis (gene ontology ID)	fold enrichment	
Protein disulfide isomerase activity (GO:0003756)	30.41 0.0049	
Antioxidant activity (GO:0016209)	10.73 <0.0001	
Peroxidase activity (GO:0004601)	10.53 0.00473	
Actin binding (GO:0003779)	7.38 <0.0001	
Hydrogen ion transmembrane transporter activity (GO:0015078)	6.34 0.0220	
Structural constituent of ribosome (GO:0003735)	6.12 0.0003	
Structural molecule activity (GO:0005198)	3.99 <0.0001	
Cytoskeletal protein binding (GO:0008092)	3.95 0.0034	
Oxidoreductase activity (GO:0016491)	3.84 <0.0001	
Catalytic activity (GO:0003824)	2.01 <0.0001	
Hydrolase activity (GO:0016787)	1.88 0.0050	
Protein binding (GO:0005515)	1.6 0.0289	
Signal transducer activity (GO:0004871)	0.22 0.0035	
Receptor activity (GO:0004872)	0.05 <0.0001	
Selected significantly enriched pathways identified by REACTOME database analysis (REACTOME ID)	fold enrichment	
Citric acid cycle (R-MMU-71403)	19.21 0.0048	
Gluconeogenesis (R-MMU-70263)	16.59 0.0003	
Glycolysis (R-MMU-70171)	14.72 0.0023	
Smooth muscle contraction (R-MMU-445355)	12.17 0.0163	
Glucose metabolism (R-MMU-70326)	9.26 0.0011	
Golgi-to-ER retrograde transport (R-MMU-8856688)	6.93 0.0137	
Intra-Golgi and retrograde Golgi-to-ER traffic (R-MMU-6811442)	4.59 0.0318	
G2/M transition (R-MMU-69275)	4.51 0.0178	
Mitotic G2-G2/M phases (R-MMU-453274)	4.45 0.0184	
Vesicle-mediated transport (R-MMU-5653656)	4.27 <0.0001	
Metabolism of carbohydrates (R-MMU-71387)	4.23 0.0023	
Extracellular matrix organization (R-MMU-1474244)	4.21 0.0023	
Membrane trafficking (R-MMU-199991)	3.94 0.0001	

The analysis was performed on the combined list of differentially regulated proteins in Notch2-Wt:Vil vessels compared with Notch2-Mut:Vil vessels at 6 and 14 days after injury, as determined by the SWATH proteomic analysis described in Figure 5; P value determined by Fisher exact test with false discovery rate multiple test correction. ER indicates endoplasmic reticulum; PANTHER, Protein Analysis Through Evolutionary Relationships; and SWATH, sequential window acquisition of all theoretical spectra.
Table 3. Differentially Regulated Proteins in Notch2^{MIC-WT} Vessels Compared With Notch2^{MIC-WT} Vessels With Links to Notch Signaling

Proteins in first wave (6 d)	Direct or Indirect Link to Notch Signaling
Eukaryotic translation initiation factor 6	Transcriptionally regulated by Notch1 in lymphoblastoid and ovarian cancer cell lines in an RBP-Jκ-dependent manner⁷⁴
SPARC (secreted acidic cysteine-rich glycoprotein)	Conditioned medium from SPARC-overexpressed neuroblastoma cells inhibits Notch signaling⁷⁵
Adiponectin	Notch signaling reduces adiponectin precursor gene expression in primary human bone marrow stromal cells⁷⁶
Mitogen-activated protein kinase 3 (p44-MAPK, ERK1)	MAPK-dependent regulation of the Jagged/Notch gene expression in angiogenesis⁷⁷; and Notch regulation of ERK1 in angiogenesis⁷⁸ in vascular remodeling associated with closure of the ductus arteriosus, and in hemangioblastoma⁷⁹
14-3-3 protein γ	14-3-3 regulates shutting of Notch4-ICD into the nucleus⁸⁰
j-Hexosaminidase subunit α	Delta-like1 Notch signaling increased j-hexosaminidase release in histamine-releasing RBL-2H3 cells⁸¹
Zyxin	TRIP6, a member of the zyxin family, activates Notch signaling in neural stem cell self-renewal and proliferation⁸²
Rab14	Rab14 is involved in membrane trafficking between the Golgi complex and endosomes, and disruptions in endosomal trafficking can impair Notch plasma membrane localization⁸³
Biglycan	A small proteoglycan that regulates collagen fibril size and accumulates in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a small vessel disease caused by mutations in Notch3⁸⁴
S100A8	A structure-based docking study for the kinase inhibitor anticaner drug Midostaurin identified S100A8 as a kidney cancer target and Notch as a disrupted signaling pathway⁸⁵

Table 3. Continued

Proteins in second wave (14 d)	Direct or Indirect Link to Notch Signaling
Heterogeneous nuclear ribonucleoprotein A/B (ABBP-1)	Mutations in p63, a known binding partner of ABBP-1, modulate Notch signaling in keratinocytes⁸⁶
Calretinin	Notch3 knockout mice have increased calretinin expression in spinal cord laminae I-II⁸⁷
Fascin	Actin-bundling protein fascin activates the Notch self-renewal pathway in breast cancer stem cells⁸⁸
Integrin β-1	Notch1 activates β-1 integrins via the small GTPase R-Ras⁸⁹
Clusterin	Knockdown of Notch signaling increased clusterin mRNA expression in the developing choroid plexus of zebrafish⁹⁰; proteomic analysis of human brain vessels identified clusterin accumulation in the granular osmiophic material in vessels of patients with CADASIL, caused by Notch3 receptor mutations⁹¹

Table 3. Continued

Proteins in second wave (14 d)	Direct or Indirect Link to Notch Signaling
Aspartyl/asparaginyl β-hydroxylase (ASPH)	ASPH regulates Notch signaling in ethanol-induced white matter atrophy in rats⁹²; ASPH regulates and directly interacts with Notch in hepatocellular carcinomas⁹³; inhibition of ASPH in pregnant rats impairs Notch signaling in trophoblastic cells and fetal growth⁹⁴
Prdx1 (peroxiredoxin1)	Notch regulates Prdx1 in vascular development in zebrafish⁹⁵
PCNA (proliferating cell nuclear antigen)	Acetaldehyde treatment stimulates Notch and increases PCNA expression in human VSMCs⁹⁶; Notch2 colocalizes to the nonproliferative zone of injured arteries as determined by PCNA staining⁹⁷
ADP-ribosylation factor 1 (Arf1)	Knockdown of ARF1 disrupts Notch trafficking in drosophila blood cells by entrapping Notch intracellular domain in sorting endosomes⁹⁸
Numa1 (nuclear mitotic apparatus protein 1)	Numa and Notch are both involved in asymmetrical cell divisions in epidermal differentiation⁹⁹
HFABP (Heart-type fatty acid binding protein)	HFABP activates Notch signaling in human VSMCs¹⁰⁰
Emerin	An inner nuclear membrane protein that suppresses Notch signaling by retaining the Notch intracellular domain at the nuclear membrane in HeLa cells¹⁰¹; emerin-null myogenic progenitors have altered expression of Notch signaling components¹⁰²
Plectin	Short stop, the Drosophila plectin homolog, is transcriptionally activated by Notch signaling in forcut development in Drosophila¹⁰³
Rap1a	rap1a activates Notch signaling and epithelial-mesenchymal transition in ovarian cancer¹⁰⁴
STRAP (serine-threonine kinase receptor-associated protein)	STRAP promotes stemness in human colorectal cancer cells by epigenetic regulation of the Notch pathway¹⁰⁵

Because of the complexity of the Notch signaling pathway, which includes feedback loops and tightly-controlled time and context-dependent Notch activity, both upstream and downstream signaling links are included here. No Notch-linked proteins were identified as significantly regulated at both 6 and 14 days.

ERK1 indicates extracellular signal-regulated kinase 1; ICD, intracellular domain; RBP-Jκ, recombination signal binding protein for immunoglobulin kappa J region; TRIP6, thyroid hormone receptor interactor 6; and VSMC, vascular smooth muscle cells.

In this study, we have described methodology for proteomics analysis by SWATH to characterize neointimal lesion changes both in the presence and absence of Notch2. This comprehensive approach was validated by the identification of several known regulators of neointima formation and opens up new opportunities for further exploration with the identification of proteins previously not known to be involved in vascular remodeling or responses to Notch signaling.

Proteomic comparison of remodeling Notch2^{MIC-WT} vessels to uninjured Notch2^{MIC-WT} vessels identifies proteins...
responsive to vascular injury. We observed 2 distinct waves of protein regulation, 376 in the first wave and 129 in the second wave, that occur in the setting of 166 additional sustained changes in protein expression. In total, this injury-related analysis yielded 671 protein-level changes. In contrast, comparison of remodeling Notch2SMC-NULL vessels to remodeling Notch2SMC-WT vessels identifies changes specific to the loss of Notch2 and includes 118 protein changes in the first wave, 131 in the second wave, and only 1 sustained change for a total of 250 protein-level changes. This indicates that more protein-level changes can be attributed to vascular injury than to the loss of VSMC Notch2. This conclusion holds true for the comparison of remodeling Notch2SMC-NULL vessels with sham Notch2SMC-NULL vessels which highlights injury-related changes, with the loss of VSMC Notch2 and surgical isolation of the carotid artery held as constants. This analysis identified 582 protein-level changes at 6 days and 389 changes at 14 days for a total of 971 protein-level changes. Of additional interest, the injury response proteomes of both Notch2SMC-WT and Notch2SMC-NULL vessels demonstrate higher numbers of proteins that are upregulated in injury compared with numbers of proteins that are downregulated in injury. The comparison of remodeling Notch2SMC-NULL vessels to remodeling Notch2SMC-WT vessels, however, demonstrates waves of protein regulation that are roughly equivalent in amplitude for both upregulated and downregulated proteins at both 6 and 14 days after injury. These observations are consistent with one role of Notch as a component of a transcriptional activation complex. PANTHER and REACTOME pathway analysis of differentially regulated genes in the absence of Notch2 highlighted several significantly enriched pathways connected to cell metabolism. This suggests that Notch regulation of cell metabolism may prove to be an interesting area for future

Figure 6. Protein expression during the early phase of vascular remodeling in murine vessels and in atherosclerotic plaque isolated from human vessels. Evaluation of changes in protein expression of enhancer of rudimentary homolog (ERH), plectin, and annexin A2 at 6 d after carotid ligation in Notch2SMC-WT (A) and Notch2SMC-NULL (B) vessel sections. C, Protein expression of ERH, serpin H1, and vitronectin in atherosclerotic plaque collected from human vessels during carotid artery endarterectomy. D, Nonspecific IgG-treated adjacent sections of human atherosclerotic plaque. Scale bar, 50 µm.
exploration. Notch signaling has already been linked to regulation of glucose metabolism in hepatocytes and in activated hepatic macrophages, and associated with suppression of the browning of adipocytes, a transition involving significant cellular metabolic changes.

Novel candidates uncovered in our discovery approach will be useful for future continued analysis and comparison with human vascular disease. In moving toward this goal, we validated protein expression in human atherosclerotic plaque of ERH, serpin H1, and vitronectin, 3 injury-associated proteins identified in this analysis. Recently, a 4-biomarker signature of carotid atherosclerotic plaque correlating with predictive risk for rupture was identified by proteomic comparison of symptomatic and asymptomatic human carotid plaques. This predictive panel includes matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein. The study is a prominent example of the trend toward using unbiased and comprehensive proteomic approaches to characterize vascular changes in human atherosclerotic lesion formation. In relating these recent findings to our study, we noted that cathepsin D was identified as differentially regulated in Notch22SMC-WT vessels after injury (Table I in the online-only Data Supplement), and S100A8/S100A9 were differentially regulated in Notch22SMC-Null vessels (Tables V and VII in the online-only Data Supplement). This overlap highlights the timeliness of this study in identifying mediators of neointimal lesion formation with established therapeutic relevance both in the presence and absence of Notch2.

The concept that Notch signaling may be of therapeutic benefit for patients with cardiovascular disease has been supported by studies addressing inflammation, particularly monocyte/macrophage activation. Both in vivo and in vitro studies (reviewed in) suggest that the Notch ligand Dll4, potentially important to consider. Studies focused on VSMC have shown that Jagged1/Notch3 signaling is required for development and maintenance of the mature, contractile phenotype, and we showed that Jagged1/Notch2 signaling in human smooth muscle cells supports cellular quiescence. We also found that Jagged1 stimulation of primary human smooth muscle cells derived from diseased atherosclerotic arteries decreased cell proliferation. Based on these collective observations, signaling via Notch2 and Notch3 in smooth muscle cells is predicted to be beneficial in pathologies that initiate hyperproliferation of smooth muscle cells. Thus, therapeutic approaches involving targeting Notch pathways in cardiovascular disease are likely to be most successful under conditions where specific Notch ligands or receptors can be selectively targeted in discrete cell populations.

Acknowledgments

We are grateful for the expert technical assistance of Grazina Mangoba and Mayasah Al Hashimi for tissue processing and histopathology, and Barbara Conley and Eric Tweedie for preparation of samples for mass spectrometry.

Sources of Funding

Research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Numbers 1R01HL109652 and R01HL070865 (L. Liaw, Principal Investigator [PI]) and F32HL136076 (S. Peterson, PI). Early research support was also provided by American Heart Association predoctoral fellowship 14PRE17820000 (S. Peterson, PI). Core facilities that assisted with mouse strains (Mouse Transgenic Core Facility), mass spectrometry (Proteomics and Lipidomics Core Facility), and tissue processing, and sectioning (Histopathology and Histomorphometry Core Facility) were supported by National Institutes of Health (NIH) P30GM103392 (R. Friesel, D. St. Germain Pls) and NIH U54GM115516, (C. Rosen and G. Stein, Pls). The Proteomics and Lipidomics and Histopathology and Histomorphometry Core Facility are funded by NIH P20GM121301 (L. Liaw, PI). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the American Heart Association.

Disclosures

None.

References

1. Wu X, Zou Y, Zhou Q, Huang L, Gong H, Sun A, Tateno K, Katsube K, Radtke F, Ge J, Minamino T, Komuro I. Role of Jagged1 in arterial lesions after vascular injury. Arterioscler Thromb Vasc Biol. 2011;31:2000–2006. doi: 10.1161/ATVBAHA.111.225144.
2. Calvo V, Schulten HM, Zhang ZW, Murakami M, Wajenaa A, Verbruggen S, Molin DG, Post MJ. Soluble Jagged-1 inhibits neointima formation by attenuating Notch-Herp2 signaling. Arterioscler Thromb Vasc Biol. 2011;31:1059–1065. doi: 10.1161/ATVBAHA.110.217935.
3. Li Y, Takeshita K, Liu PY, Satoh M, Oyama N, Mukai Y, Chin MT, Krebs L, Kotlikoff MI, Radtke F, Gridley T, Liao JK. Smooth muscle Notch1 mediates neointimal formation after vascular injury. Circulation. 2009;119:2686–2692. doi: 10.1161/CIRCULATIONAHA.108.790485.
4. McCright B, Lozier J, Gridley T. Generation of new Notch2 mutant alleles. Genesis. 2006;44:29–33. doi: 10.1002/gene.20181.
5. Hamada Y, Kodakawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development. 1999;126:3415–3424.
6. Boucher JM, Harrington A, Rostama B, Lindner V, Liaw L. A receptor-specific function for Notch2 in mediating vascular smooth muscle cell growth arrest through cyclooxygenase inhibitor 1B. Circ. Res. 2013;113:975–985. doi: 10.1161/CIRCRESAHA.113.301272.
7. Baeten JT, Lilly B. Differential regulation of Notch2 and Notch3 contribute to their unique functions in vascular smooth muscle cells. J Biol Chem. 2015;290:16226–16237. doi: 10.1074/jbc.M115.655548.
8. Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE, Lam H, Amodei D, Mallick P, MacLean B, Aebersold R. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc. 2015;10:426–441. doi: 10.1038/nprot.2015.015.
9. Korwar AM, Vanmunsuvathy G, Jagadeeshaprasad MG, Jayaramaiah RH, Bhat S, Regin BS, Ramaswamy S, Giri AP, Mohan V, Balasubramanyam M, Kulkarni MJ. Development of diagnostic fragment ion library for glycated peptides of human serum albumin: targeted quantification in prediabetic, diabetic, and microalbuminuria plasma by parallel reaction monitoring, SWATH, and MSE. Mol Cell Proteomics. 2015;14:2150–2159. doi: 10.1074/mcp.M115.050518.
10. Huang Q, Yang L, Luo J, Guo L, Wang Z, Yang X, Jin W, Fang Y, Ye J, Shan B, Zhang Y. SWATH enables precise label-free quantification on proteome scale. Proteomics. 2015;15:1215–1223. doi: 10.1002/pmic.201400270.
11. Collins BC, Gillet LC, Rosenberger G, Rost HL, Vichalkovski A, Gstaiger M, Aebersold R. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14–3–3 system. Nat Methods. 2013;10:1246–1253. doi: 10.1038/nmeth.2703.
12. Faktor J, Michalova E, Bouchal P. [p SRM, SW ATH and HRM - targeted proteomics approaches on TripleTOF 5600+ mass spectrometer]
and their applications in oncology research. Klin Onkol. 2014;27(suppl 1):S110–S115.

13. McRobb LS, Lee VS, Simonian M, Zhao Z, Thomas SG, Wiedmann M, Raj JV, Grace M, Moutrie V, McKay MJ, Molloy MP, Stoodley MA. Radiosurgery alters the endothelial surface proteome: externalizing intracellular molecules as potential vascular targets in irradiated brain arteriovenous malformations. Radiat Res. 2017;187:66–78. doi: 10.1667/RR14518.1.

14. Langley SR, Willett K, Didangelos A, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546–1560. doi: 10.1172/JCI86924.

15. Wirth A, Benyó Z, Lukasova M, Leutgeb B, Wetschureck N, Gorkey S, Orsy P, Horváth B, Maser-Gluth C, Greiner E, Lemmer B, Schütz G, Gurtkis JS, Offermanns S. G12-G13-LAR-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med. 2008;14:64–68. doi: 10.1038/nm1666.

16. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21:70–71. doi: 10.1038/45007.

17. Kumar A, Lindner V. Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol. 1997;17:2238–2244.

18. Peterson SM, Liaw L, Lindner V. Ligation of the mouse common carotid artery. In: Sata M, ed. Mouse Models of Vascular Diseases. Tokyo: Springer Japan; 2016:43–68.

19. Kumar A, Hoover JL, Simmons CA, Lindner V, Shebbski RJ. Remodeling and neointimal formation in the carotid artery of normal and β-selectin-deficient mice. Circulation. 1997;96:4333–4342.

20. Myers DL, Liaw L. Improved analysis of the vascular response to arterial ligation using a multivariate approach. Am J Pathol. 2004;164:43–48. doi: 10.1016/S0002-9440(04)63094-5.

21. Harmon KJ, Couper LL, Lindner V. Strain-dependent vascular remodeling of phenotypes in inbred mice. Am J Pathol. 2000;156:1741–1748. doi: 10.1016/S0002-9440(10)60545-6.

22. Kawashima S, Yamashita T, Ozaki M, Ohashi Y, Azumi N, Hirata K, Hayashi Y, Itoh H, Yokoyama M. Endothelial NO synthase overexpression inhibits lesion formation in mouse model of vascular remodeling. Arterioscler Thromb Vasc Biol. 2001;21:201–207.

23. da Cunha V, Martin-McNulty B, Vincelette J, Zhang L, Rutledge JC, Wilson DW, Vergona R, Sullivan ME, Wang YX. Interaction between mild hypercholesterolemia, HDL-cholesterol levels, and angiotensin II in intimal hyperplasia in mice. J Lipid Res. 2006;47:475–483. doi: 10.1194/jlr.M503411-JLR200.

24. Ivan E, Khatri JJ, Johnson C, Magid R, Godin D, Nandi S, Lessner S, Galis ZS. Expansive arterial remodeling is associated with increased neo-intimal macrophage foam cell content: the marine model of macrophage-rich carotid artery lesions. Circulation. 2002;105:2686–2691.

25. Johnson JL, Dzwiołk, A, Somerville M, George SJ, Newby AC. Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc Biol. 2011;31:e35–e44. doi: 10.1161/ATVBAHA.111.225623.

26. Tsaousi A, Williams H, Lyon CA, Taylor V, Swain J, Johnson JL, George SJ. Wnt/β-catenin signaling induces VSMC proliferation and is associated with internal thickening. Cire Res. 2011;108:427–436. doi: 10.1007/CIRCRESAHA.2011.233999.

27. Williams H, Mill CA, Monak BA, Hulin-Curtis S, Johnson JL, George SJ. Wnt2 and WISP-1(CNN4) induce internal thickening via promotion of smooth muscle cell migration. Arterioscler Thromb Vasc Biol. 2016;36:1417–1424. doi: 10.1161/ATVBAHA.116.307626.

28. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675.

29. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O11.016717. doi: 10.1074/mcp.O11.016717.

30. Young K, Conley B, Romero D, Tweedie E, O’Neill C, Pinz I, Brogan L, Lindner V, Liaw L, Vary CP. BMP9 regulates endoglin-dependent chemokine responses in endothelial cells. Blood. 2012;120:4263–4273. doi: 10.1182/blood-2012-07-440784.

31. Young K, Tweedie E, Conley B, Ames J, FitzSimons M, Brooks P, Liaw L, Vary CP. BMP9 engages the Wnt pathway to regulate the endothelial cell matricellular and chemokine responses. PLoS One. 2015;10:e0122892. doi: 10.1371/journal.pone.0122892.
51. Rinaldi B, Romagnoli P, Bacci S, Carnuccio R, Mauri MC, Donnaiuco M, Capuano A, Rossi F, Filippelli A. Inflammatory events in a vascular remodeling model induced by surgical injury to the rat carotid artery. Br J Pharmacol. 2006;147:175–182. doi: 10.1038/jjip.0706472.

52. Sluiter JP, Seasme MB, Velema E, Pasterkamp G, de Kleijn DP. Increased collagen turnover is only partly associated with collagen fiber deposition in the arterial response to injury. Cardiovasc Res. 2004;61:186–195.

53. Jabs A, Krämer S, Skowasch D, Welsch U, Kuhn A, Kandolf R, Lüderitz B, Bauriedel G. [Neointimal hyperplasia by luminal cell recruitment and not be transmural migration. The role of Bcl-2 and HSP47 after balloon angioplasty]. Z Kardiol. 2002;91:626–636.

54. YoonYW, Kwon HM, Hwang KC, Choi KY, Hong BK, Kim D, Kim HS, Cho SH, Song KS, Sangiorgi G. Upstream regulation of matrix metalloproteinase by EMMPRIN; extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque. Atherosclerosis. 2005;180:37–44. doi: 10.1016/j.atherosclerosis.2004.11.021.

55. Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, Friesel RE, Sebring NP, Johnson RL, Datla SR, Lassègue B, Bear JE, Griendling K. Role of coronin 1B in PDGF-induced migration of vascular smooth muscle cells. J Cell Physiol. 2010;224:883–891. doi: 10.1002/jcp.22462.

56. Preissner KT, Reuning U. Vitronection in vascular context: facets of a multifaceted matricellular protein. Semin Thromb Hemost. 2011;37:408–424. doi: 10.1055/s-0031-1276590.

57. Caglayan E, Romeo GR, Kappert K, Odenthal M, Südkamp M, Body SC, Sheman SR, Chrestia D, Kubisch D, Vantler M, Klaßmann R, Tischendorf S. Profilin-1 is expressed in human atherosclerotic plaques and induces atherogenic effects on vascular smooth muscle cells. PLoS One. 2010;5:e13608. doi: 10.1371/journal.pone.0013608.

58. Williams HC, San Martín A, Adamo CM, Seidel-Rogol B, Pounkova L, Datla SR, Lasségue B, Bear JE, Griending K. Role of coronin 1B in PDGF-induced migration of vascular smooth muscle cells. Circ Res. 2012;111:56–65. doi: 10.1161/CIRCRESAHA.111.255745.

59. Perissi Matiò L, Kyakczewski U, Razavaei et al. Phenotypic modulation of smooth muscle cells in atherosclerosis is associated with downregulation of LMOD1, SYNO2, PDLIM7, PLN, and SYNM. Basic Clin Pharmacol Toxicol. 2005;97:322–332. doi: 10.1111/j.1742-7861.2005.00001.x.

60. Hensmeier N, Buttigieg J, Kumar P, Pelle S, Choi KY, Kopriva D, Chao Z, Kardiol. 2017;119:289–302. doi: 10.1016/j.phrs.2017.02.016.

61. Matsui R, Watanabe Y, Murdoche CE. Redox regulation of ischemic limb neovascularization—what we have learned from animal studies. Redox Biol. 2017;12:1011–1019. doi: 10.1016/j.redox.2017.04.040.

62. Roy A, Basak NP, Banerjee S. Notch1 intracellular domain increases cytoplasmic E2H2 levels during early megakaryopoiesis. Cell Death Dis. 2012;3:e380. doi: 10.1038/cddis.2012.119.

63. Benelli D, Ciufli S, Finazzigil M, Talora C, Landei P. The translation factor eIF5B as a Notch-dependent regulator of cell migration and invasion. PLoS One. 2012;7:e32047. doi: 10.1371/journal.pone.0032047.

64. Gorantla B, Bhoopathi P, Chetty C, Gogineni VR, Sailaja GS, Gondi CS, Rao JS. Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma. Angiogenesis. 2013;16:85–100. doi: 10.1007/s12015-012-9301-1.

65. Ugarte F, Ryser M, Thieme S, Fierro FA, Navratil K, Bornhäuser M, Brenner S. Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp Hematol. 2009;37:867–875.e1. doi: 10.1016/j.exphem.2009.03.007.

66. Kiec-Wilb M, Grzybowska-Galuszka J, Polus A, Pryjma J, Knapp A, Kristiansen K. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, IFGF or PPAR gamma mediated angiogenesis in HUVEC. J Physiol Pharmacol. 2010;61:217–225.

67. You C, Zhao K, Dammann P, Keyvani K, Kreitschmann-Andermahr I, Sure U, Zhi Y. EphB4 forward signalling mediates angiogenesis caused by CCM1/PCDC10-ablation. J Cell Mol Med. 2017;21:1848–1858. doi: 10.1111/jcmm.13105.

68. Junutula JR, De Maziére AM, Peden AA, Ervin KE, Advani RJ, van der Weerden WM, Carrel T, Frey BM. Keller-Hausmüller S. Profilin-1 is expressed in human atherosclerotic plaques and induces atherogenic effects on vascular smooth muscle cells. Circ Res. 2014;114:1465–1472. doi: 10.1161/CIRCRESAHA.113.308344.

69. Jourd’hui FL, Xu H, Reilly T, et al. The hemoglobin homolog cyto- globin in smooth muscle inhibits apoptosis and regulates vascular remodeling. Arterioscler Thromb Vasc Biol. 2017;37:1994–1955. doi: 10.1161/ATVBAHA.117.309410.

70. Faria A, Shawky NM, Osman I, Pichavaram P, Sagar L, Adiporón, An adhesion receptor agonist attenuates PDGF-induced VSMC proliferation through inhibition of mTOR signaling independent of AMPK. Implications toward suppression of neointimal hyperplasia. Pharmacol Res. 2017;119:298–302. doi: 10.1016/j.phrs.2017.02.016.

71. Peterson et al. Molecular Signatures of Neointimal Lesion Formation.
87. Mirza Z, Schulten HJ, Farsi HM, Al-Maghраbi JA, Gari MA, Chaudhary AB, Azubenadah AM, Al-Qtanla MH, Karim S. Molecular interaction of a kinase inhibitor midostaurin with anticancer drug targets, S100A8 and EGFR: transcriptional profiling and molecular docking study for kidney cancer therapeutics. PLoS One. 2015;10.1074/jbc.2014101975. doi: 10.1074/jbc.M114.575245.

88. Fomenkov A, Huang YP, Topalouglu O, Brechman A, Osada M, Fomenkov T, Yuriditsky E, Trinh B, Sidransky D, Raitovitski E. Pε3 alpha mutations lead to aberrant splicing of keratinocyte growth factor receptor in the Hay-Wells syndrome. J Biol Chem. 2003;278:23960–23964. doi: 10.1074/jbc.M307046200.

89. Huang YP, Kim Y, Li Z, Fomenkov T, Fomenkov A, Raitovitski EA. AEC-associated p63 mutations lead to alternative splicing/protein stabilization of p63 and modulation of notch signaling. Cell Cycle. 2005;4:1440–1447. doi: 10.4161/cc.4.10.2086.

90. Rusanescu G, Mao J. Notch3 is necessary for neuronal differentiation and maturation in the adult spinal cord. J Mol Cell Med. 2014;18:2103–2116. doi: 10.1111/jcm.12562.

91. Barnawi R, Al-Khaldi S, Majed Sleiman G, Sarkar A, Al-Dhfyan A, Al-Mohanna F, Ghebeh H, Al-Alwan M. Fascin is critical for the maintenance of breast cancer stem cell population predominantly via the activation of the notch self-renewal pathway. Stem Cells. 2016;34:2799–2813. doi: 10.1002/stem.2473.

92. Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C, Sethi T. Mammalian NOTCH1 activates betal integrins via the small GTPase Rac. J Biol Chem. 2007;282:28991–29001. doi: 10.1074/jbc.T703601200.

93. Jiao S, Dai W, Lu L, Liu Y, Zhou J, Li Y, Kozh V, Duan C. The conserved clusterin gene is expressed in the developing choroid plexus under the regulation of notch but not IGF signaling in zebrafish. Endocrinology. 2011;152:1860–1871. doi: 10.1210/en.2010-1183.

94. Arboleda-Velasquez FJ, Manent J, Lee JH, et al. Hypomorphic JAGGED 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci USA. 2010;108:E128–E135. doi: 10.1073/pnas.1109461108.

95. Tong M, Gonzalez-Navarrete H, Kirchberg T, Gotama B, Yalcin EB, Kay J, de la Monte SM. Ethanol-induced white matter atrophy is associated with impaired expression of aspartyl-asparaginyl-beta-hydroxylase (ASPH) and notch signaling in an experimental rat model. J Drug Alcohol Res. 2017;6:236033. doi: 10.4336/jdar.236033.

96. Cantarini MC, de la Monte SM, Pang M, Tong M, D’Errico A, Trevisani F, Wands JR. Aspartyl-asparagyl beta-hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology. 2006;44:446–457. doi: 10.1002/hep.21272.

97. Sardanelli F, Bedard A, Gilligan J, Lai E, Mark P, De Paepke ME, de la Monte SM. siRNA inhibition of aspartyl-asparagyl-β-hydroxylase expression impairs cell motility, Notch signaling, and fetal growth. Pathol Res Pract. 2011;207:545–553. doi: 10.1016/j.prp.2011.06.001.

98. Huang PC, Chiu CC, Chang HW, Wang YS, Syue HH, Song YC, Weng ZH, Tai MH, Wu CY. Prdx1-encoded peroxiredoxin is important for apoptosis impairs cell motility, Notch signaling, and fetal growth. Pathol Res Pract. 2011;207:545–553. doi: 10.1016/j.prp.2011.06.001.

99. Hatch E, Morrow D, Liu W, Cahill PA, Redmond EM. Differential effects of alcohol and its metabolite acetadethyde on vascular smooth muscle cell notch signaling and growth. Am J Physiol Heart Circ Physiol. 2018;314:H131–H137. doi: 10.1152/ajpheart.00586.2017.

100. Khaldikar RJ, Rodrigues D, Mote RD, Sinha AR, Kulkarni V, Magadi SS, Inamdar MS. ARF1-GTP regulates Asg1 to provide endocytic control of Drosophila blood cell homeostasis. Proc Natl Acad Sci USA. 2014;111:4899–4903. doi: 10.1073/pnas.1303559111.

101. Williams SE, Beronja S, Passilli HA, Fuchs E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature. 2011;470:353–358. doi: 10.1038/nature09793.

102. Chen K, Chen QF, Wang LJ, Liu ZH, Zhang Q, Yang K, Wang HB, Yan XZ, Zhu ZB, Du R, Zhang RY, Shen WF, Lu L. Increment of HFABP level in coronary artery in-stent restenosis segments in diabetic and nondiabetic mipipins: HFABP overexpression promotes multiple pathway-related inflammation, growth and migration in human vascular smooth muscle cells. J Vasc Res. 2016;53:27–38. doi: 10.1007/s00425-016-06652.

103. Lee B, Lee TH, Shim J. Emerin suppresses Notch signaling by restricting the Notch intracellular domain to the nuclear membrane. Roczim Biophysics Acta. 2017;1864:303–313. doi: 10.1016/j.bbamcr.2016.11.013.
Peterson et al. Molecular Signatures of Neointimal Lesion Formation

1593

Highlights

• Neointimal lesion formation corresponds to unique proteomic signatures that define distinct waves of remodeling; our study identifies these unique signatures.

• Loss of Notch2 in vascular smooth muscle cells alters the proteomic signatures defining the vascular remodeling response.

• Despite these changes in protein profiles with loss of Notch2, the overall morphological remodeling response was not altered in the vascular smooth muscle–specific Notch2 knockout.

• Our proteomics analysis uncovered many proteins not previously identified in vascular remodeling and identified potential novel targets of Notch signaling.

127. Davis-Knowlton J, Turner JE, Turner A, Damian-Loring S, Hagler N, Henderson T, Emery IF, Bond K, Duarte CW, Vary CPH, Eldrup-Jorgensen J, Liaw L. Characterization of smooth muscle cells from human atherosclerotic lesions and their responses to Notch signaling [published online ahead of print May 23, 2018]. Lab Invest. doi: 10.1038/s41374-018-0072-1. https://www.nature.com/articles/s41374-018-0072-1.

128. Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464:1052–1057. doi: 10.1038/nature08878.

129. Braune EB, Lendahl U. Notch—a goldilocks signaling pathway in disease and cancer therapy. Discov Med. 2016;21:189–196.

130. Rizzo P, Mele D, Caliceti C, Pannella M, Fortini C, Clementz AG, Morelli MB, Aquila G, Ameri P, Ferrari R. The role of notch in the cardiovascular system: potential adverse effects of investigational notch inhibitors. Front Oncol. 2014;4:384. doi: 10.3389/fonc.2014.00384.