Supplemental material

The effects of phenolic glycosides from *Betula platyphylla var. japonica* on adipocyte differentiation and mature adipocyte metabolism

Joo Young Huh\(^a,1\), Seulah Lee\(^b,1\), Eun-Bi Ma\(^a\), Hee Jeong Eom\(^b\), Jiwon Baek\(^b\), Yoon-Joo Ko\(^c\), Ki Hyun Kim\(^b,\)*

\(^a\)College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea

\(^b\)School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea

\(^c\)Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea

\(^1\)These authors contributed equally to this work.

* Corresponding author: Ki Hyun Kim, Tel: +82-31-290-7700; Fax: +82-31-290-7730; E-mail: khkim83@skku.edu
LC/MS analysis of compounds 1-4

Stock solutions of compounds 1-4 were prepared by dissolving 1 mg of each compound in 1 mL methanol. Each solution was further diluted with methanol to provide a solution of 100 μg/mL. The solutions were filtered through a 0.45 mm hydrophobic PTFE filter and analyzed by LC/MS (Agilent Technologies, Santa Clara, CA, USA) using a LC-MS Agilent 1200 Series analytical system equipped with a photodiode array (PDA) detector combined with a 6130 Series ESI mass spectrometer. Analysis was performed by the injection of 15 μL of the sample using a Kinetex C18 column (2.1 × 100 mm, 5 μm; Phenomenex, Torrance, CA, USA) set at 25°C. The mobile phase consisting of formic acid in H₂O [0.1% (v/v)] (A) and methanol (B) was delivered at a flow rate of 0.3 mL/min by applying the following programmed gradient elution: 10%-90% (B) for 30 min, 100% (B) for 1 min, 100% (B) isocratic for 10 min, and then 10% (B) isocratic for 10 min, to perform post-run reconditioning of the column.
Figure S1. The LC/MS analysis of compound 1. (A) UV chromatogram of LC/MS (detection wavelength was set at 220 nm) of 1. (B) UV spectrum of 1 in LC/MS analysis. (C) Negative ion-mode ESI MS data of 1 in LC/MS analysis.
Figure S2. The LC/MS analysis of compound 2. (A) UV chromatogram of LC/MS (detection wavelength was set at 220 nm) of 2. (B) UV spectrum of 2 in LC/MS analysis. (C) Negative ion-mode ESI MS data of 2 in LC/MS analysis.
Figure S3. The LC/MS analysis of compound 3. (A) UV chromatogram of LC/MS (detection wavelength was set at 220 nm) of 3. (B) UV spectrum of 3 in LC/MS analysis. (C) Negative ion-mode ESI MS data of 3 in LC/MS analysis.
Figure S4. The LC/MS analysis of compound 4. (A) UV chromatogram of LC/MS (detection wavelength was set at 220 nm) of 4. (B) UV spectrum of 4 in LC/MS analysis. (C) Negative ion-mode ESI MS data of 4 in LC/MS analysis.
LC/MS analysis of the EtOH extract and the n-BuOH-soluble fraction

The EtOH extract of *B. platyphylla* var. *japonica* bark and the *n*-BuOH-soluble fraction were analyzed by LC/MS. Stock solutions of the EtOH extract and the fraction were prepared by dissolving 1 mg of sample in 1 mL methanol, to provide a solution of 1000 μg/mL. The solutions were filtered through a 0.45 mm hydrophobic PTFE filter and analyzed by LC/MS (Agilent Technologies, Santa Clara, CA, USA) using a LC-MS Agilent 1200 Series analytical system equipped with a photodiode array (PDA) detector combined with a 6130 Series ESI mass spectrometer. Analysis was performed by the injection of 15 μL of each sample using a Kinetex C18 column (2.1 × 100 mm, 5 μm; Phenomenex, Torrance, CA, USA) set at 25°C. The mobile phase consisting of formic acid in H₂O [0.1% (v/v)] (A) and methanol (B) was delivered at a flow rate of 0.3 mL/min by applying the following programmed gradient elution: 10%-90% (B) for 30 min, 100% (B) for 1 min, 100% (B) isocratic for 10 min, and then 10% (B) isocratic for 10 min, to perform post-run reconditioning of the column.
Figure S5. The LC/MS analysis of the EtOH extract and the n-BuOH soluble fraction for compounds 1-4. UV chromatogram of LC/MS (detection wavelength was set at 220 nm) of (A) the EtOH extract, and (B) the n-BuOH soluble fraction.