CATALOG OF 156 CONFIRMED EXTRASOLAR PLANETS AND THEIR 133 PARENT STARS

J. Espresate 1

Submitted to RevMexAA

RESUMEN

En este artículo presento dos catálogos, el primero contiene los datos observados e inferidos de las estrellas que poseen planetas extrasolares confirmados. Los datos que reporto para estas 133 estrellas son: masa estelar; tipo espectral; clase de luminosidad; periodo de rotación; metalicidad [Fe/H]; luminosidad absoluta; radio estelar; temperatura estelar; edad y número de planetas que posee. El segundo catálogo, contiene los datos de los 156 planetas extrasolares que giran alrededor de las 133 estrellas. Este catálogo reúne todos los datos disponibles de los planetas extrasolares: masa mínima y elementos orbitales; inclinaciones; radio del planeta; distancia promedio a la estrella; signo de la torca de marea (si se conoce el periodo de rotación estelar); la Irradiancia sobre el planeta suponiendo un albedo geométrico de 0. La ventaja de este trabajo es reunir el mayor número de datos observados o inferidos tanto de los planetas extrasolares como de la estrellas a las que orbitan, en un solo catálogo. Se reportan varios planetas cuya órbita está totalmente contenida dentro de la órbita sincrónica de la estrella.

ABSTRACT

I present two catalogs. The first one contains the observed and inferred data of all of 133 stars which harbor confirmed extrasolar planets. For these 133 stars I report the following data: stellar mass; spectral type; luminosity class; stellar rotation period; stellar metallicity, [Fe/H]; absolute luminosity; stellar radius; stellar temperature; age and number of planets host by the star. The second catalogue lists data for 156 confirmed extrasolar planets orbiting around the 133 stars. This catalogue contains the following extrasolar planet data: minimum mass and orbital elements; inclinations; planet radius; average distance to its parent star; tidal torque sign (if the stellar rotation period is reported); total irradiance assuming zero albedo. The usefulness of these catalogs is that they contain in a single paper all of the available data of the extrasolar planets, and their parent stars. Several planets whose orbits are completely contained inside the star’s synchronous orbit, are reported.

Key Words: EXTRASOLAR PLANETS, PLANETARY SYSTEMS

Contents

1. INTRODUCTION

In the last decade 133 stars have been reported to harbor planets, however the total number of confirmed extrasolar planets orbiting these stars is 156, implying that some stars harbor more than one planet. So far the number of multiple exoplanets systems is 17 (Schneider, 2005).

11 Instituto de Astronomía, UNAM, Ciudad Universitaria, México D.F., México

The vast majority of the planets have been discovered through spectroscopic thechniques from which the periodic variation of the star’s radial velocity (component in our line of sight) is detected. This periodic motion results from perturbations on the star’s motion due to one or more planetary companions. Since the inclination of the orbit with respect to the plane of the sky is not known, spectroscopic measurements gives us only a minimum for the star’s velocity around the common center of mass and hence a minimum mass for the perturber or perturbers.
There is a strong bias towards large planets with small semimajor axes, because these are the ones that produce the largest perturbations on their parent star motion. Small planets produce very small perturbations even if they orbit close to the star and may be undetectable with the current precision. Another interesting bias is for large planets on faraway orbits due to their long orbital periods. In this case the star has to be observed for several years in order to obtain a good radial velocity curve that later can be fitted assuming the gravitational interaction with one (or more) large planetary companion.

The unknown quantity is always the inclination of the orbit with respect to the plane of the sky except for the few so called “transiting planets”. The larger the inclination is (towards 90 degrees), the more similar is the measured star’s radial velocity to its total velocity and hence the more accurate is the inferred mass of the planet. When the inclination is unknown, the fitting of the radial velocity curve provides a minimum mass for the planet.

Two observing groups have made most of the extrasolar planets discoveries. The Anglo-Australian group, lead by Geoffrey W. Marcy and R. Paul Butler known as the California & Carnegie Planet Search Team which obtain their measurements using several telescopes mainly, the Keck Observatory, the Lick Observatory and Mac Donald’s observatory. The other group is the Geneva Extrasolar Planet Search Programmes lead by M. Mayor, D. Naef, F.Pepes, D. Queloz, N.C. Santos and S. Udry. Their program includes the Coralie Survey for Southern Extrasolar Planets (La Silla, Chile), the ELODIE Northern Extrasolar Planet Search (OHP-France) and the M-Dwarf Programmes. Users of this catalog are welcome to visit the internet pages and/or papers (see references) to find out more details about the instruments and detection methods of the various quantities reported here. Most of the very basic information about the extrasolar planets can be found in the Internet without much effort. However, when it comes to the characteristics of the parent stars, things become really entangled because the information is spreaded in numerous papers and catalogues, over many years.

All I did was to gather specially the hosts stars data and organize them in a useful form so they can be found immediately. In some cases there are non-negligible differences for the same quantity as reported in different papers or lists. For instance, the spectral type is sometimes controversial or simply not determined. Minor variations that my be considered negligible or not, (depending on the calculation one is trying to make), are the rotation period of the star, the planet’s orbital eccentricity and or minimum mass. On each case I decided to take the data as reported by the discoverers either on the web or on the paper itself. If a star is classified between two spectral types and one of them is main sequence, then I classified it arbitrarily as a main sequence star. When possible, incomplete spectral types reported by discoverers were taken from Simbad if available. Other non-reported quantities are calculated here.

2. 133 HOST STARS

The first table presents the stars in essentially the same order as found in Schneider Catalog (2005) hereafter (SC). That is, by increasing semimajor axis of the exoplanets. The star’s identification is by their Henry Draper (HD) number unless they do not have one. In this case the identification is the number and letters of the most known catalog in which they appear. No constelation related names are used. I wanted a list as complete as possible for the host stars data, unfortunately for several of them I could not find either, effective temperatures (T_{eff}), Luminosities, (L_*), radius (R_*), or any of the aforementioned quantities. Therefore I decided to proceed as follows: I divided the whole set of 133 stars in 6 groups, depending on which of the three aforementioned quantities was missing in the reported information:

Case 1

If none of the three quantities were found and the star is classified as main sequence, I calculated them through the Kippenhan models using first the mass-radius relation as follows:

$$\frac{R_*}{R_\odot} = \left(\frac{M_*}{M_\odot}\right)^{\eta}$$

(1)

where $\eta = 0.8$ if $M_* \leq 1M_\odot$ and $\eta = 0.57$ otherwise, which are the average exponents I obtained from Kippenhan’s plots of $\log[M_*/M_\odot]$ vs. $\log[R_*/R_\odot]$. Then the luminosity is calculated through the mass-luminosity relationship between $-1 \leq \log[M_*/M_\odot] \leq 1.5$ which gives an exponent $\beta = 3.2$, that is:

$$\frac{L_*}{L_\odot} = \left(\frac{M_*}{M_\odot}\right)^{\beta}$$

(2)

and from there the effective temperature considering the star as a perfect black-body:

$$T_{eff} = \left(\frac{L_*}{4\pi R_*^2 \sigma}\right)^{1/4}$$

(3)
The total number of stars in this case is 12.

Case 2

The star’s radius is reported but no temperature or luminosity. In this case I kept the reported radius, calculated \(L_\star\) using Eq. (2), and obtained \(T_{\text{eff}}\) from Eq. (3). Only 2 stars were in this case.

Case 3

No stars with reported luminosity but no radius and no temperature reported.

Case 4

Effective temperature reported but no luminosity and no radius. I kept the reported value of \(T_{\text{eff}}\) and calculated the radius with Eq. (1), and then obtained the luminosity solving for \(L_\star\) in Eq. (3). There were 4 stars in this case.

Case 5

Luminosity and temperature are reported for the star but not its radius. I kept the values reported and found \(R_\star\) from Eq. (3). There are 23 stars in this case.

Case 6

Temperature and radius are reported, but no Luminosity. I solved Eq. (3) to obtain the luminosity using the reported values of the other two quantities. There are 30 stars found in this case.

For the first 5 cases I used the Kippenhan Models which are exclusively valid for main sequence stars (luminosity class V). Hence I only applied the Kippenhan models to main sequence stars. Recall these models do not take into account the metallicity of the stars. Therefore the calculations are only good approximations to the unfound data.

Depending its case, each star has a superindex right after the identifier (or name) indicating which quantities were calculated and which were found in the literature.

In Table 1, I list the following stellar data:

- **Column (1)** Reference number in this catalog.
- **Column (2)** Star’s identifier.
- **Column (3)** Spectral type and Luminosity class.
- **Column (4)** Stellar mass in \(M_\odot\).
- **Column (5)** Luminosity in \(L_\odot\).
- **Column (6)** Effective Temperature in Kelvin.
- **Column (7)** Metallicity \([\text{Fe/H}]\) dex.
- **Column (8)** Rotation period in days.
- **Column (9)** Stellar Radius in \(R_\odot\).
- **Column (10)** Age in Myr.
- **Column (11)** Number of planets host by this star.

For not main sequence stars which had no luminosity reported, but found estimated stellar radius and effective teperature, I used Eq. (3) to calculate the luminosity. All of the stars whose luminosities were calculated in this way, have a superindex right after their identification name.

For the main sequence star No. 73, HD12661 for which I found no data of its luminosity I took the reported radius and effective temperature given in Fischer et al. (2001) and used Eq. (3) and solved for Luminosity.

For the star "HD219449" (No. 49) I could not find the data of its mass, which is surprising to me since the orbit of its planet is appretely well determined except for its excentricity. Therefore for this star which is a K0III, no calculations were performed, it has no metallicity reported either, or rotation period.

Finally I excluded star OGLE-235/MOA-53 which appears in SC, because I did not find enough data, not only about the planet but also, and specially about the star.

3. EXOPLANETS CATALOG

In Table 2, I report the properties of 156 exoplanets sorted by increasing semimajor axis of the planet as they appear in SC catalogue, except that I took the values directly from the literature.

There are two stars for which the existence of a second planet was controversial until very recently. The star HD 128311 (No. 86) appears with one planet in SC and two planets in Marcy’s catalog. The second planet has been already confirmed (Voght et al. ApJ preprint, 2005), therefore I listed the data they report in this last paper for the two planets around HD 128311.

The system HD 41004 is a close visual binary composed by a K2V star (HD41004A) plus a M4V star (41004B) (see http://obswww.unige.ch/~udry/planet/HD41004A.html). Both stars host one planet each, as reported by the CORALIE team. I put the information as presented by them; the companion of HD 41004B (No. 120 in Table 2) has a minimum mass of 18.37 \(M_J\) and is interpreted as a brown dwarf (Santos et al. 2002). However its host star HD 41004B is not reported in Table 1, because I found no data on this star except its spectral type. On the other hand HD41004A is the star No. 99 in Table 1 and its planet is No. 119 in Table 2.

The 156 exoplanets (including the brown dwarf mentioned above) are listed in the same order as their parent stars in Table 1, that is, by increasing semimajor axis. All of their identification names are the name of its host star followed by a letter \(b, c, d\) etc., according to the number of planets that the star hosts. The order of the letters \(b, c, d\) is not
related to the distance between the planet and the star, it only represents the chronological order of their discovery.

Table 2 contains the following quantities:

- Column 1: Number of planet in this catalog.
- Column 2: Name of the planet.
- Column 3: Mass of the planet in Jupiter masses (M_J).
- Column 4: Planet radius in Jupiter Radii (R_J).
- Column 5: Semimajor axis in Astronomical Units (AU).
- Column 6: Eccentricity.
- Column 7: Orbital period (days).
- Column 8: Average orbital radius (AU).
- Column 9: Irradiance ($\text{ergs cm}^{-2} \text{s}^{-1}$).
- Column 10: Apoapse distance r_a divided by the radius of the star’s synchronous orbit r_s.
- Column 11: Inclination (degrees).

All of the planet data reported here come from the literature, and although some differences appear between different authors, I chose again the data as reported by the discoverers (see references).

In what follows I explain the calculations made in this work and not found in the literature.

Column 9 is the average amount of energy, I, in units of 10^6 ergs, per square centimeter, per second that reaches the planet’s surface assuming zero albedo, that is:

$$ I = \frac{L_s}{4\pi a^2(1 + e^2/2)^2} ,$$

where $r_a = (1 + e^2/2)$ is the average distance of the planet to the star.

Finally, Column 10 is the planet’s orbit apoapose $r_a = a(1 + e)$ divided by the radius of the star’s synchronous orbit. The radius of the star’s synchronous orbit, r_s, is given by:

$$ r_s = \left(\frac{P_{\text{rot}}^2 G M_*}{4\pi^2} \right)^{1/3} ,$$

where P_{rot} is the star’s rotation period, M_* is its mass, and G is the gravitational constant. This calculation is only possible (of course) if the star has a rotation period reported.

The very basic assumption behind this calculation is that at least, to a first approximation, the orbital angular momentum of the planet is parallel and has the same direction as the spin angular momentum of the star. Based on this assumption one can get from this calculation an approximate idea of which of these extrasolar planets are inside or outside the synchronous orbit.

If this ratio is less than 1 then the planet’s orbit is completely contained inside the synchronous orbit and therefore it is subjected to a negative torque which decreases its orbital angular momentum (and energy). This decrease is due to the lag of the star bulge raised by the planet. Being inside the synchronous orbit, the planet revolves around the star faster than the star rotates. Therefore the tidal bulge raised on the star by the planet points to a certain angle that falls behind the planet angular position at any time in its orbit, causing a decrease in the planet’s angular momentum and energy. If no other forces are considered the unavoidable fate of the planet is to eventually fall onto the star, however slow.

If this ratio is greater than 1, then the planet is “safely” outside the synchronous orbit and the average tidal torque is positive. The star’s bulge is always pointing ahead the planet’s angular position and therefore, the planet is increasing its orbital angular momentum and energy moving outwards however slow, because the bulge that it raises on the star is probably very small.

4. DISCUSSION AND RESULTS

Before I fully enter the discussion of results I present the following few statistics made over this star and planet sample. Table 3 shows the number and percentage over the whole either star or planet sample of the characteristics indicated in the first column.

TABLE 1	STATISTICS	
Property	Number	Percentage
Luminosity class V	98	73.68
Luminosity class III	5	3.76
Luminosity Class IV	15	11.28
No Luminosity Class reported	15	11.27
Stellar rotation reported	81	60.9
Metallicity Reported	131	98.5
Negative Tidal Torque	22	14.1
Planets with a less than 1 AU	59	37.8

From the previous table one can see that there is a serious lack of measurements of stellar rotation periods. Almost $\sim 40\%$ of the star sample does not have a reported rotation period. On the other hand almost all of the stars have a measurement of $[Fe/H]$; however, I must warn the reader that these
reported measurements come from different works, and are not necessarily consistent amongst them in the sense of calibrations, instruments and or methods. Nevertheless these values are useful to make statistics or even approximate theoretical models.

About 10% of the star sample have no determined Luminosity Class which is an important parameter for studies of extrasolar planets around evolved stars.

To me, the most striking result in this paper is the 22 planets whose orbits are completely contained inside the synchronous orbit of the star.

All migration models assume that planets formed relatively far away from the star and migrate inwards. Aside from the main controversies around this process in its several scenarios, they all begin with a flat disk around the star through which the formation and migration of the planets take place. The newly formed planets lose angular momentum by interactions with the inner and outer parts of this Keplerian disk. Hence it is consistent to assume that most probably the majority of planets formed in these disks, have prograde orbits and therefore as in our own Solar System their orbital angular momenta are parallel and in the same direction as the spin angular momentum of their stars. These 22 planets pose a new question: if these planets arrived to their present positions through migration, how did they manage to cross the synchronous orbit? outside which, the torques on their orbital motions are positive. One possibility is of course gas drag. Another possibility is that somehow as the star rotation speed decreases its synchronous orbit moves outwards leaving these planets in a new position inside the synchronous orbit. Last but not least important is to consider the possibility that these planets formed in situ, that is, very close to where they are found now and therefore their chemical composition has to be dominated (by a large quantity) of very refractory elements or compounds. Venus has the largest albedo in the Solar System due to its atmosphere which is mainly composed by carbon dioxide. Hence the chemical composition of these planets can have a large albedo and a large abundance of heavy elements that did not moved far from the star due the high inner temperatures in the disk, and hence may have formed these planets that have large gravitational fields such that they can retain their heavy materials. Nevertheless their unavoidable fate is to fall onto the star because even if gas drag is still present, its effect works in the same direction as the tidal force on the planet caused by the lagging bulge it raises on the star.

I would like to thank the Instituto de Astronomía UNAM where this project started and The Facultad de Ciencias UNAM for their great support and encouragement. Also I am very grateful to Dr. Edmundo Moreno for his insightful comments and questions and to Dr. Arcadio Poveda and Dr. Ramón Peralta y Fabi for our very enlighting discussions.
Star Identifier	Host Type	Spectral Type	Mass M_{\odot}	Luminosity L_{\odot}	T_{eff} K	$[\text{Fe/H}]$	P_{rot} days	R_* \(\text{R}_\odot\)	Age \(\text{Gyr}\)	Number of planets
OGLETR56	G - -	1.04	-	-	-	-	-	-	-	1
OGLETR113	K - -	0.77	-	-	0.14	-	-	-	0.765	1
OGLETR132	F - -	1.35	-	-	0.43	-	-	-	1.4	1
HD732565	K 0 V	1.05	0.69	5570	0.29	13.9	1.03	0.83	1	1
GJ436	M 2.5V	0.41	0.025	-	0.25	-	0.43	-	-	1
HD757325	G 8 V	0.95	0.61	5250	0.16	38.5	0.96	5.0	4	
HD634545	K 4 V	0.8	0.26	4841	0.11	-	0.84	-	-	1
HD834435	K 0 V	0.9	0.88	5454	0.35	35.3	0.92	3.2	1	
HD463755	K 1 V	1.0	1.0	5770	0.34	-	1.0	-	-	1
TeES-166	K 0 V	0.87	0.5	5250	0.001	-	0.85	-	-	1
HD1799492	F 8 V	1.24	1.99	6155	0.02	9.1	1.24	-	-	1
HD187123	G 3 V	1.06	1.35	5830	0.16	25.4	1.18	-	-	1
OGLE-TR-10	G - -	1.22	-	-	0.12	-	-	-	-	1
HD1201362	F 8 V	1.3	2.31	6498	0.28	3.3	1.2	2.0	-	1
HD330075	K 1 -	0.7	0.47	5017	0.08	48	-	6.2	-	1
HD88133$^+$	G 5 IV	1.2	3.06	5494	0.34	48	1.93	-	-	1
HD2638	G 5 -	0.93	0.47	5192	0.16	37	-	-	-	1
BD1031666	K 0 V	1.1	0.62	5400	0.50	-	0.9	-	-	1
HD752895	G 0 V	1.15	1.99	6000	0.29	15.95	1.08	5.6	-	1
HD2094585	G 0 V	1.03	1.61	6025	0.04	14.4	1.02	5	-	1
HD767004	G 8 V	1	1	5423	0.14	-	1	-	-	1
OGLETR111$^+$	G - -	0.82	0.43	5070	0.12	-	0.85	-	-	1
HD2170141	G 5 V	1.06	1.2	5946	0.20	28	0.03	-	-	1
HD9826	F 8 V	1.3	3.4	6210	0.1	10.2	1.4	-	3	
HD496744	G 5 V	1	1.0	5770	0.25	27.2	1	-	-	1
HD689883	G 2 V	1.2	1.79	6338	0.24	26.7	1.1	6	-	1
HD168746	G 5 -	0.88	1.1	5610	-0.06	-	-	-	-	1
HD2171074	G 7 V	0.98	0.94	5700	0.32	39	0.98	7.76	-	1
HD1620205	K 2 V	0.75	0.25	4830	0.01	-	0.79	-	-	1
HD1606915	G 5 V	1.1	1.77	5813	0.32	31	1.05	2	-	3
HD1303225	K 0 V	0.79	0.5	5330	-0.02	8.7	0.83	0.35	-	1
HD1081475	G 0 V	1.27	1.93	6265	0.20	8.7	1.15	2.17	-	1
HD38529$^+$	G 4IV	1.39	5.96	5370	0.35	34.5	2.82	-	2	
HD134455	K 0 V	0.8	0.4	5350	-0.24	31	0.84	-	-	1
HD994926	K 2 V	0.88	0.33	4954	0.36	-	0.79	-	-	1
HD278945	K 2 V	0.75	0.36	4875	0.3	-	0.79	-	-	1
HD1950194	G 3 V	1.02	1.06	5600	0.0	24.3	1.01	3.16	-	1
HD64345	G 3 V	0.79	1.12	5835	-0.52	18.6	0.83	3.8	-	1
HD1922635	K 2 V	0.75	0.34	4840	-0.14	9.5	0.79	-	-	1
Gl8765	M 4 V	0.3	0.014	3200	0.0	-	0.38	-	2	
HD1021175	G 6 V	1.03	1.57	5672	0.3	34	1.02	-	1	
Star No.	Identifier	Spectral Type	Mass M_\odot	Luminosity L_\odot	T_{eff} K	$[\text{Fe/H}]$	P_{rot} days	R_* R_\odot	Age Gyr	Number of planets
---------	------------	---------------	----------------	---------------------	-------------	--------------	---------------	-------------	---------	------------------
42	HD11964	G 5 -	1.125	-	-	-	-	-	-	2
43	HD143761	G 0 V	0.95	1.94	5860	-0.19	20	1.35	10.1	1
44	HD71456	G 0 -	1.27	3.06	6105	0.15	-	-	-	2
45	HD117618	G 2 V	1.05	1.8	5860	0.04	-	1.3	-	1
46	HD37605	K 0 V	0.8	0.74	5475	0.39	-	0.96	-	1
47	HD168443	G 5 IV	1.01	1.93	5555	0.03	26.8	1.5	2.7	2
48	HD3651	K 0 V	0.79	0.47	5251	0.05	44.5	0.83	-	1
49	HD219449	K0III	-	-	-	-	0.05	-	-	1
50	HD101930	K 1 V	0.74	0.49	5079	0.17	46	0.93	-	1
51	HD121504	G 2 V	1.18	1.55	6075	0.16	8.6	1.27	1.2	1
52	HD178911B	G 5 V	0.87	1.3	5650	0.28	-	1.14	-	1
53	HD16141	G 5 IV	1.01	2.46	5770	0.22	-	1.57	-	1
54	HD114762	F 9 V	0.82	1.75	6110	-0.7	-	1.18	-	1
55	HD80606	G 5 V	1.1	0.75	5645	0.43	-	0.86	-	1
56	HD216770	K 0 V	0.9	0.79	5229	0.23	35.6	1.1	3.1	1
57	HD93083	K 3 V	0.7	0.41	4995	0.15	48	1.03	-	1
58	HD117176	G 5 V	1.1	3.1	5770	-0.03	34.8	1.76	8.2	1
59	HD52265	G 0 V	1.18	1.98	6060	0.21	14.6	1.35	4	1
60	HD208487	G 2 V	1.3	1.82	5860	-0.06	-	1.31	-	1
61	HD1237	G 6 V	0.9	0.66	5540	0.1	12.6	0.92	0.8	1
62	HD34445	G 0 -	1.1	-	-	-	0.14	-	-	1
63	HD37124	G 4 V	0.91	0.74	5556	-0.42	25	0.93	3.9	3
64	HD73526	G 6 V	1.02	2.2	5700	0.28	-	1.52	-	1
65	HD104985	G 9 3	1.5	-	5410	-0.35	-	8.73	-	1
66	HD82943	G 0 -	1.15	1.63	6028	0.29	18	1.17	2.9	2
67	HD169830	F 8 V	1.4	4.59	6299	0.21	8.3	1.95	2.8	2
68	HD8574	F 8 V	1.17	2.25	6080	0.05	-	1.35	-	1
69	HD202206	G 6 V	1.15	1.07	5765	0.37	9.5	1.13	5.6	2
70	HD89744	F 7 V	1.4	6	6166	0.18	9	2.14	2.04	1
71	HD134987	G 5 V	1.05	1.17	5917	0.23	30.34	1.02	-	1
72	HD40979	F 8 V	1.1	1.97	6095	0.194	7	1.26	1.5	1
73	HD12661	G 6 V	1.07	1.19	5754	0.29	36	1.096	1.47	2
74	HD150706	G 0 V	0.98	0.98	5886	-0.13	-	0.93	-	1
75	HD59686	K2III	1.1	-	4871	0.28	-	-	-	1
76	HD17051	G 0 V	1.03	1.52	6125	0.11	8	1.097	1.556	1
77	HD142	G1 IV	1.15	3.24	6302	0.14	-	1.7	-	1
78	HD92788	G 5 -	1.1	1.18	5821	0.34	21.3	1.07	2.1	1
79	HD28185	G 5V	0.99	1.02	5705	0.24	30	1.05	2.9	1
80	HD196885	F 8IV	1.27	-	-	0.2	-	-	-	1
81	HD142415	G 1 V	1.03	1.14	6045	0.21	9.6	1.06	1.1	1
82	HD177830	K 0IV	1.15	-	-	0.0	70.94	-	-	1
Star No.	Identifier	Spectral Type	Mass M_\odot	Luminosity L_\odot	T_{eff} K	[Fe/H]	P_{rot} days	R_* R_\odot	Age Gyr	Number of planets
---------	------------	---------------	---------------	----------------------	------------	--------	--------------	---------	--------	-----------------
83	HD154857	G 5 V	1.17	4.95	5628	-0.23	-	2.34	5.	1
84	HD108874	G 5 V	1	1.34	5770	0.23	38	1.16	-	2*
85	HD4203	G 5 V	1.06	1.2	5946	0.22	43.1	1.03	-	1
86	HD128311	K 0 V	0.8	0.28	5250	0.03	14	0.64	1.99	2
87	HD27442	K 2 IV	1.2	-	-	0.22	-	-	1.0	10.
88	HD210277	G 7 V	0.92	0.93	5570	0.24	40.8	0.91	8.5	1
89	HD19994	F 8 V	1.34	3.81	6121	0.19	12.2	1.18	2.4	1
90	HD188015	G 5 IV	1.08	1.44	5745	0.29	36	1.21	9.82	1
91	HD20367	G 0	1.17	1.88	6100	0.14	-	1.23	-	1
92	HD114783	K 2 V	0.92	0.4	5250	0.33	45.2	0.76	-	1
93	HD147513	G 5 V	1.11	0.98	5883	0.06	4.7	1.06	0.3	1
94	HD137759	K 2 3	1.05	-	4900	0.03	-	11.01	-	1
95	HD222582	G 5 V	1	1.14	5770	-0.01	-	1.07	-	1
96	HD65216	G 5 V	0.92	0.71	5666	-0.12	-	0.87	-	1
97	HD183263	G 2IV	1.17	2.04	5936	0.3	32	1.35	9.91	1
98	HD141937	G 2 V	1.1	1.17	5925	0.11	13.25	1.1	1.6	1
99	HD41004A	K 2 V	0.7	0.65	5010	0.16	27	0.75	1.6	1
100	HD47536	K 0 3	2.05	-	4554	-0.54	-	-	-	1
101	HD23079	G 0 V	1.1	1.5	6200	-0.11	-	1.06	-	1
102	HD186427	G 5 V	1	1	5760	0.05	29.1	1	-	1
103	HD4208	G 5 V	0.93	0.79	5010	-0.24	25.3	0.94	-	1
104	HD114386	K 3 V	0.68	0.29	4804	0.09	-	0.73	-	1
105	HD45350	G 5 V	1.02	1.38	5616	0.29	39	1.24	9.9	1
106	HD222404	K 11V	1.59	-	4888	0.0	-	4.66	-	1
107	HD213240	G 4IV	1.22	3.6	5975	0.16	15	1.77	2.7	1
108	HD10647	F 8 V	1.07	1.51	6143	-0.03	7.2	1.11	1.75	1
109	HD10697	G 5IV	1.1	3.42	5770	0.15	32.6	1.85	-	1
110	HD95128	G 0 V	1.03	1.11	5780	0.01	24	1.05	7.	2
111	HD190228	G 5IV	0.83	3.6	5360	-0.24	-	2.2	-	1
112	HD114729	G 0 V	0.93	2.16	5915	-0.22	21.58	1.4	6.	1
113	HD111232	G 0 V	0.78	0.69	5494	-0.36	30.6	0.84	5.2	1
114	HD2039	G 2.5V	0.98	1.73	5675	0.1	-	1.36	-	1
115	HD136118	F 9 V	1.24	2.92	6003	-0.065	12.2	1.58	3.	1
116	HD50554	F 8 V	1.11	1.45	6050	0.02	16.1	1.08	4.5	1
117	HD196050	G 3 V	1.1	1.83	5918	0.22	16	1.39	1.6	1
118	HD216437	G 4 V	1.06	2.25	5887	0.25	26.7	1.03	5.8	1
119	HD216435	G 0 V	1.25	4.25	5830	0.15	-	2.02	5.	1
120	HD106252	G 0 V	1.02	1.27	5890	-0.01	22.8	1.07	5.	1
121	HD23596	F 8 -	1.3	2.86	6125	0.32	-	1.5	-	1
122	HD145675	K 0 V	0.9	0.71	5255	0.51	41	0.92	3.9	1
123	HD142022	K 0 V	0.99	1.01	5500	0.19	38	1.25	11.5	1
TABLE 5
HOSTS STAR DATA CONTINUES

Star No.	Identifier	Spectral Type	Mass M_\odot	Luminosity L_\odot	T_{eff} K	[Fe/H]	P_{rot} days	R_* R_\odot	Age Gyr	Number of planets
124	HD390911	G 1 V	1.1	1.36	6060	0.09	-	1.05	-	1
125	HD726596	G 0 V	0.95	2.44	6030	-0.14	20.3	1.43	-	1
126	HD706426	G 5 V	1.0	1.34	5670	0.16	-	1.2	4	1
127	HD33636	G 0 V	1.12	1.07	5990	-0.05	14.3	0.99	2.8	1
128	HD220496	K 2 V	0.8	0.47	5180	-0.1	12	0.85	0.7	1
129	HD1172076	G 8 V	1.04	1.68	5723	0.27	36	1.32	9.84	1
130	HD301776	G 8 V	0.95	1.18	5320	0.2	-	1.28	-	1
131	HD504991	G 1 V	1.27	2.15	6526	0.3	21	1.15	-	1
132	HD190360$^+$	G 6 IV	0.96	1.27	5590	0.24	40	1.2	6.7	2
133	HD893071	G 0 V	1.27	2.15	6526	-0.16	-	1.15	-	1
TABLE 6

Planet Identifier	Mass M_J	R_p AU	a AU	e	P_{orb} days	r_{av} UA	$I_{10^6\text{erg/cm}^2\text{s}}$	r_{ap}/r_s	i deg
OGLETR56b	1.45	1.23	0.0225	0.	1.212	0.0225	-	-	81.0
OGLETR113b	1.35	1.08	0.0228	0.	1.43	0.0228	-	-	-
OGLETR132b	1.01	1.15	0.0306	0.	1.69	0.0306	-	-	-
HD73256b	1.87	-	0.037	0.029	2.55	0.0370	5.3	-	331.1
HD75732d	1.05	5.9	0.16	536.0	5.9752	0.023	31.21	-	-
HD63454b	0.38	-	0.036	0.	2.818	0.036	272.9	-	-
HD83433b	0.38	-	0.039	0.013	2.985	0.0390	787.2	0.194	
HD46375b	0.25	-	0.041	0.04	3.024	0.0410	480.8	-	-
TrES-1b	0.75	1.08	0.0393	0.135	3.03	0.0396	428.3	-	88.2
HD179949b	0.98	-	0.04	0.	3.093	0.04	1692.8	0.439	
HD187123b	0.52	-	0.042	0.03	3.097	0.0420	1040.5	0.251	
OGLE-TR-10b	0.57	1.24	0.0416	0.	3.101	0.0416	-	-	98.2
HD120136b	4.13	-	0.05	0.01	3.312	0.050	1260.1	1.067	
HD330075b	0.62	-	0.039	0.	3.388	0.039	420.5	0.170	
HD88133b	0.29	-	0.046	0.11	3.41	0.046	1944.6	0.186	
HD2638b	0.48	-	0.044	0.	3.444	0.044	330.3	0.207	
BD103166b	0.48	-	0.046	0.05	3.487	0.046	1515.8	-	84.3
HD75289b	0.42	-	0.046	0.	3.509	0.046	1279.7	0.354	
HD209458b	0.67	1.43	0.05	0.11	3.525	0.050	865.8	0.474	86.1
HD76700b	0.19	-	0.05	0.13	3.971	0.0504	417.5	-	-
OGLETR111b	0.53	1.	0.047	0.	4.0161	0.047	265.2	-	86.5
HD217014b	0.45	-	0.05	0.01	4.231	0.050	655.8	0.274	
HD9826b	0.69	-	0.059	0.012	4.617	0.059	1330.0	0.594	
HD9826c	1.89	-	0.829	0.28	241.5	0.861	6.2	10.565	
HD9826d	3.75	-	2.53	0.27	1284	2.622	0.673	31.992	
HD49674b	0.11	-	0.06	0.16	4.95	0.061	368.5	0.393	
HD69888b	1.92	-	0.07	0.15	6.276	0.071	486.7	0.433	
HD168746b	0.23	-	0.065	0.081	6.403	0.0652	351.9	-	-
HD217107b	1.37	-	0.074	0.13	7.126	0.0746	245.9	0.366	
HD162020b	14.4	-	0.074	0.277	8.428	0.0768	57.6	-	-
HD160691d	0.044	-	0.09	0.	9.55	0.09	297.3	0.451	
HD160691b	1.67	-	1.5	0.2	654.5	1.53	1.0	9.031	
HD160691c	3.1	-	4.17	0.57	2986.4	4.85	0.1	32.847	
HD130322b	1.02	-	0.088	0.044	10.72	0.09	87.7	1.201	
HD108147b	0.4	-	0.104	0.498	10.90	0.12	192.2	1.738	
HD38529b	0.78	-	0.129	0.28	14.31	0.134	451.6	0.713	
HD38529c	12.8	-	3.71	0.33	2207.4	3.912	0.53	21.322	
Table 7

PLANET DATA

Planet Identifier	Mass M_J	R_p/R_J	a (AU)	e	P_{orb} (days)	r_{av} (UA)	$I_{10^6 erg/cm^2 s}$	r_a/r_s	i (deg)
HD13445b	4.0	0.11	0.046	15.78	0.1101	44.9	0.64	-	-
HD99492b	0.12	0.124	0.05	17.00	0.1241	29.9	-	-	-
HD27894b	0.62	0.122	0.049	17.99	0.1221	32.8	-	-	-
HD195019b	3.57	0.14	0.02	18.20	0.1400	62.9	0.86	-	-
HD6434b	0.39	0.14	0.17	21.99	0.1420	75.5	1.29	-	-
HD192263b	0.73	0.15	0.0	24.13	0.15	20.6	1.88	-	-
GJ876b	0.56	0.13	0.27	30.12	0.1347	1.05	-	-	-
GJ876c	1.98	0.21	0.12	61.02	0.2115	0.426	-	84	-
HD102117b	0.14	0.15	0.0	20.67	0.15	94.9	0.72	-	-
HD11964b	0.11	0.229	0.15	37.82	0.2316	-	-	-	-
HD11964c	0.7	3.167	0.0	1940.	3.3095	-	-	-	-
HD143761b	1.04	0.22	0.04	39.945	0.2202	54.4	1.61	-	-
HD74156b	1.86	0.294	0.636	51.643	0.3535	33.3	-	-	-
HD74156c	6.17	3.4	0.583	2025.	3.9778	0.3	-	-	-
HD117618b	0.22	0.28	0.29	52.16	0.2918	28.7	-	-	-
HD37605b	2.85	0.26	0.736	54.2	0.3304	9.3	-	-	-
HD168443b	7.73	0.295	0.53	58.1	0.3364	23.2	2.57	-	-
HD168443c	17.2	2.87	0.2	1739.5	2.9274	0.3	19.59	-	-
HD3651b	0.2	0.284	0.63	62.23	0.3403	5.5	2.04	-	-
HD219449b	2.9	0.3	0.0	182.	-	-	-	-	-
HD101930b	0.3	0.302	0.11	70.46	0.3038	7.2	1.47	-	-
HD121504b	1.22	0.33	0.03	63.33	0.3301	19.3	3.91	-	-
HD178911Bb	6.292	0.32	0.1243	71.487	0.3225	17.0	-	-	-
HD161441b	0.23	0.35	0.28	75.82	0.3637	25.3	-	-	-
HD114762b	11.03	0.35	0.34	83.895	0.3702	17.4	-	-	-
HD80606b	3.9	0.469	0.927	111.81	0.6705	2.3	-	-	-
HD216770b	0.65	0.46	0.37	118.45	0.4914	4.4	3.08	-	-
HD93083b	0.37	0.477	0.14	143.58	0.4817	2.4	2.37	-	-
HD117176b	7.44	0.48	0.4	116.689	0.5184	15.7	3.12	-	-
HD52265b	1.0	0.49	0.35	119.1	0.5200	9.9	5.36	-	-
HD208487b	0.45	0.49	0.32	130.	0.5151	9.4	-	-	-
HD1237b	3.37	0.49	0.511	133.71	0.5540	2.9	7.24	-	-
HD34445b	0.58	0.51	0.4	126.	0.5508	-	-	-	-
HD37124b	0.61	0.53	0.055	154.46	0.5308	2.2	3.58	-	-
HD37124c	0.6	1.64	0.14	843.6	1.6572	0.2	11.96	-	-
HD37124d	0.66	3.19	0.2	2295.	3.2538	0.06	24.48	-	-
HD73526b	2.98	0.65	0.44	184.108	0.7129	5.89	-	-	-
HD104985b	6.3	0.78	0.03	198.2	0.7803	-	-	-	-
HD82943c	1.85	0.75	0.38	219.	0.80415	3.43	7.35	-	-
HD82943b	1.84	1.18	0.18	435.	1.1991	1.54	9.89	-	-
HD169830b	2.88	0.81	0.31	225.62	0.8489	8.67	11.82	-	-
TABLE 8

PLANET DATA

Planet Identifier	Mass M_J	R_p R_J	a AU	e	P_{orb} days	r_{av} UA	$I_{10^6\text{erg/cm}^2s}$	r_a/r_s i deg
HD169830c	4.04	- 3.6	0.33		2102.	3.7960	0.4334	53.4
HD8574b	2.11	- 0.77	0.288		227.55	0.8019	4.76	-
HD202206b	17.5	- 0.83	0.433		256.2	0.9078	1.77	12.9
HD202206c	2.41	- 2.44	0.284		1296.8	2.5384	0.23	34.
HD89744b	7.99	- 0.89	0.67		256.6	1.0898	6.84	15.7
HD134987b	1.58	- 0.81	0.24		259.0	0.8333	2.29	5.2
HD40979b	3.32	- 0.81	0.23		267.2	0.8324	3.88	13.4
HD12661b	2.3	- 0.82	0.33		263	0.8646	3.89	5.0
HD12661c	1.5	- 2.6	0.2		1530	2.652	0.41	14.3
HD150706b	1	- 0.82	0.38		264.9	0.8792	-	-
HD59686b	5.25	- 0.91	-		303	0.91	-	-
HD17051b	1.94	- 0.91	0.24		311.288	0.9362	2.36	14.3
HD142b	1.07	- 0.97	0.37		331.872	1.03639	3.17	-
HD92788b	3.58	- 0.96	0.35		325	1.0188	1.55	8.3
HD28185b	5.7	- 1.03	0.07		383	1.0325	1.30	5.8
HD196885	1.84	- 1.122	0.3		386	1.17249	-	-
HD142415b	1.62	- 1.05	0.5		386.3	1.18125	1.11	17.6
HD177830b	1.52	- 1.14	0.1		408.377	1.1457	-	3.6
HD154857b	1.8	- 1.11	0.51		398	1.2543	4.28	-
HD108874b	1.36	- 1.051	0.07		395.4	1.0535	1.65	5.1
HD108874c	1.02	- 2.68	0.25		1605.8	2.7637	0.24	15.2
HD4203b	3.35	- 1.09	0.51		404.224	1.2317	1.08	6.7
HD128311b	2.57	- 1.02	0.31		422	1.0690	0.27	12.4
HD128311c	2.18	- 1.1	0.25		458.6	1.1344	0.24	12.8
HD27442b	1.28	- 1.16	0.058		415.2	1.1619	-	-
HD210277b	1.3	- 1.12	0.46		434.289	1.2385	0.82	7.2
HD19994b	1.68	- 1.42	0.3		535.7	1.4839	2.35	16.1
HD188015b	1.26	- 1.19	0.15		456.5	1.2034	1.35	6.2
HD20367b	1.17	- 1.25	0.32		469.5	1.314	1.49	-
HD114783b	1	- 1.2	0.1		501	1.206	0.37	5.46
HD147513b	1.21	- 1.32	0.26		528.4	1.3646	0.71	29.2
HD137759b	8.47	- 1.28	0.72		510.833	1.6117	-	-
HD22582b	5.11	- 1.35	0.76		572.0	1.7399	0.51	-
HD65216b	1.21	- 1.37	0.41		613.1	1.4851	0.44	-
HD183263b	3.69	- 1.52	0.38		634.23	1.6297	1.04	10.0
HD141937b	9.7	- 1.52	0.41		653.22	1.6477	0.59	19.0
HD41004Ab	2.436	- 1.64	0.5		924.1	1.845	0.26	15.7
HD41004Bb	18.37	- 0.02	0.81		1.33	0.0201	2196.8	0.1
HD47536b	7.315	- 1.93	0.2		712.13	1.9686	-	-
HD23079b	2.5	- 1.5	0.04		738.46	1.5012	0.90	-
HD186427b	1.69	- 1.67	0.67		798.94	2.0448	0.32	15.1
Table 9
PLANET DATA

Planet Identifier	Mass \(M_J\)	\(R_p\) \(R_J\)	\(a\) AU	\(e\)	\(P_{orb}\) days	\(r_{av}\) UA	\(I \times 10^{6}\) erg/cm²s	\(r_a/r_s\)	\(i\) deg
HD4208b	0.8	-	1.67	0.05	812.197	1.6721	0.38	10.6	-
HD114386b	1.24	-	1.65	0.23	937.7	1.6936	0.13	-	-
HD45350b	0.98	-	1.77	0.78	890.76	2.3084	0.35	13.9	-
HD222404b	1.7	-	2.13	0.12	905	2.1453	-	-	-
HD213240b	4.5	-	2.03	0.45	951	2.2355	0.98	23.1	-
HD106477b	0.91	-	2.1	0.18	1040	2.1340	0.45	33.2	-
HD106977b	6.35	-	2.12	0.12	1072.3	2.1353	1.02	11.5	-
HD95128b	2.54	-	2.09	0.06	1089	2.0938	0.34	3.5	-
HD95128c	0.76	-	3.73	0.1	2594	3.7486	0.11	24.9	-
HD190228b	3.58	-	2.02	0.499	1146	2.2715	0.95	-	-
HD114729b	0.84	-	2.08	0.32	1135	2.1865	0.62	18.5	-
HD111232b	6.8	-	1.97	0.2	1143	2.0094	0.23	13.4	-
HD2039b	5.1	-	2.2	0.69	1190	2.7237	0.32	-	-
HD136118	12.08	-	2.4	0.36	1208.724	2.5555	0.61	29.3	-
HD50554b	5.16	-	2.41	0.501	1293	2.7125	0.27	28.0	-
HD196050b	3.02	-	2.43	0.3	1321	2.5393	0.39	24.6	-
HD216437b	1.82	-	2.32	0.29	1256	2.4175	0.52	16.8	-
HD216435b	1.49	-	2.7	0.34	1442.919	2.8561	0.71	-	-
HD106252b	7.56	-	2.7	0.471	1600	2.9995	0.19	25.1	-
HD23596b	8.1	-	2.88	0.292	1565	3.0028	0.43	-	-
HD145675b	4.74	-	2.8	0.338	1796.4	2.9599	0.11	16.7	-
HD142022b	4.4	-	2.8	0.57	1923	3.2549	0.13	19.9	-
HD39091b	10.3	-	3.28	0.61	2049	3.8902	0.12	-	-
HD72659b	2.55	-	3.24	0.18	2185	3.2925	0.31	26.7	-
HD70642b	2	-	3.3	0.1	2231	3.3165	0.17	-	-
HD33636b	10.58	-	4.08	0.55	2928	4.6971	0.07	52.8	-
HD22049b	0.92	-	3.4	0.43	2548.667	3.7143	0.05	51.1	-
HD117207b	2.06	-	3.78	0.16	2627	3.8284	0.16	20.3	-
HD30177b	9.17	-	3.86	0.3	2819.654	4.0337	0.1	-	-
HD50499b	1.71	-	3.86	0.23	2482.7	3.9621	0.17	29.7	-
HD190360b	1.502	-	3.92	0.36	2891	4.1740	0.09	23.6	-
HD190360c	0.057	-	0.128	0.01	17.1	0.1280	101.7	0.57	-
HD89307b	2.73	-	4.149	0.27	3090	4.3002	0.16	-	-