Review Article

Improved COVID-19 Outcomes following Statin Therapy: An Updated Systematic Review and Meta-analysis

Amir Vahedian-Azimi, Seyede Momeneh Mohammadi, Maciej Banach, Farshad Heidari Beni, Paul C. Guest, Khalid Al-Rasadi, Tannaz Jamialahmadi, and Amirhossein Sahebkar

1Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
2Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
3Department of Hypertension, Medical University of Lodz (MUL), Poland
4Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
5Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
6Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
7Medical Research Centre, Sultan Qaboos University, Muscat, Oman
8Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
9Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
10Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
11Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
12School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence should be addressed to Amirhossein Sahebkar; amir_sah2000@yahoo.com

Received 10 June 2021; Accepted 3 September 2021; Published 24 September 2021

Academic Editor: Jane Hanrahan

Copyright © 2021 Amir Vahedian-Azimi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Although vaccine rollout for COVID-19 has been effective in some countries, there is still an urgent need to reduce disease transmission and severity. We recently carried out a meta-analysis and found that pre- and in-hospital use of statins may improve COVID-19 mortality outcomes. Here, we provide an updated meta-analysis in an attempt to validate these results and increase the statistical power of these potentially important findings.

Methods. The meta-analysis investigated the effect of observational and randomized clinical studies on intensive care unit (ICU) admission, tracheal intubation, and death outcomes in COVID-19 cases involving statin treatment, by searching the scientific literature up to April 23, 2021. Statistical analysis and random effect modeling were performed to assess the combined effects of the updated and previous findings on the outcome measures.

Findings. The updated literature search led to the identification of 23 additional studies on statin use in COVID-19 patients. Analysis of the combined studies (n = 47; 3,238,508 subjects) showed no significant effect of statin treatment on ICU admission and all-cause mortality but a significant reduction in tracheal intubation (OR = 0.73, 95% CI: 0.54-0.99, p = 0.04, n = 10 studies). The further analysis showed that death outcomes were significantly reduced in the patients who received statins during hospitalization (OR = 0.54, 95% CI: 0.50-0.58, p < 0.001, n = 7 studies), with no such effect of statin therapy before hospital admission (OR = 1.06, 95% CI = 0.82-1.37, p = 0.670, n = 29 studies).

Conclusion. Taken together, this updated meta-analysis extends and confirms the findings of our previous study, suggesting that in-hospital statin use leads to significant reduction of all-cause mortality in COVID-19 cases. Considering these results, statin therapy during hospitalization, while indicated, should be recommended.
1. Introduction

As of May 1, 2021, 152,038,419 people have been infected by the SARS-CoV-2 virus, the cause of Coronavirus Disease 2019 (COVID-19) [1, 2]. This translates to nearly 2% of the world population and accounts for a doubling in the number of cases over the last 6 months [3]. The number of people who have died in association with a COVID-19 diagnosis has now reached 3,194,337, which translates to a death rate that has held steady over the last 6 months at 2.1% of the cases. However, since December 2020, we have seen the rollout and administration of multiple vaccines against COVID-19 disease, due to an unprecedented and coordinated effort across the world. Although some countries with advanced vaccination programs have seen a reduction in COVID-19 case numbers, there is still an urgency to control disease spread and reduce its severity worldwide.

While waiting for increased vaccinations across the globe, one way of achieving this is through repurposing existing therapeutics. We recently carried out a meta-analysis, which identified significant reductions in intensive care unit (ICU) admission and death outcomes in COVID-19 patients taking statins [4]. Most importantly, this analysis also found that mortality was reduced most profoundly in those patients who were administered statins in-hospital (by 60%), compared to those who were already taking statins prior to hospital admission (by 23%). If confirmed, this would represent an important step forward in the treatment of COVID-19 disease severity. However, this latter finding was accounted for by only three studies with significant heterogeneity between them [4]. In addition, a recent meta-analysis by Hariyanto and Kurniawan [5] indicated that statin use has nothing to do with the composite adverse outcomes of COVID-19, including the risk of mortality. However, the study showed that despite the presence of COVID-19 infection, patients with dyslipidemia should continue to take statins as this is beneficial for cardiovascular outcomes.

Here, we provide an updated meta-analysis to further compare statin use on ICU admission, tracheal intubation, and death outcomes in COVID-19 patients. It was of particular interest to compare in-hospital vs. prehospital statin treatment on these outcomes.

2. Methods

2.1. Search Strategy. This meta-analysis was performed according to PRISMA guidelines. The searches were conducted using Web of Science, PubMed, Scopus, and ProQuest databases for targeted articles up to April 23, 2021 (previous searches had been performed up to November 2, 2020). The population, intervention, comparison, and outcome (PICO) criteria were, respectively, patients infected with qPCR-confirmed SARS-CoV-2, statin therapy, SARS-CoV-2 patients who were not treated with statins, and intensive care unit (ICU) admission, tracheal intubation, and mortality.

The main aim was to further elucidate if statin therapy is associated with the improvement of outcomes in COVID-19 patients. The keywords were chosen as described previously to account for the various names of SARS-CoV-2 and statins [4]. For comprehensive screening of target articles, we first carried out searches without consideration of specific outcomes. Next, we identified three outcomes (ICU admission, tracheal intubation, and mortality) that could be used in a well-powered meta-analysis.

2.2. Eligibility Criteria. The inclusion criteria were (1) observational studies and randomized clinical trials testing the effect of statins on COVID-19 and (2) studies including ICU admission, tracheal intubation, and mortality outcomes. Articles were excluded if they were (1) clinical case reports, literature reviews, and preclinical investigations and (2) studies which did not incorporate statin nonusers as controls.

2.3. Quality Assessment. Assessment of study quality was performed separately by two authors (FHB and AVA), applying the Newcastle-Ottawa Scale (NOS) for cohort studies, and disagreements were resolved as above. The assessment categories were (1) selection of study groups, (2) comparability of groups, and (3) ascertainment of either the exposure (case-control studies) or outcome (cohort studies) of interest. These were rated from 0 to 3 stars as an indication of quality. This translated to a total of 0 to 9 stars per article.

2.4. Statistical Analysis. The analyses were conducted as described previously [4]. Briefly, data extraction for the main outcomes was performed, and random effect meta-analysis was conducted, by applying the restricted maximum likelihood method [6], to account for unknown, unregistered, or unpublished studies. Heterogeneity between studies was determined using the Cochran Q test, tau-squared (τ^2), H-squared (H^2), and I-squared (I^2) statistics. Significant results and I^2 values higher than 75% were considered heterogeneous while $H^2 = 1$ represented perfect homogeneity [7]. Publication biases were displayed using funnel plots, and regression-based Egger’s [8] and nonparametric rank correlation-based Begg’s [9] tests were applied as a measure of small-study effects. A nonparametric “trim and fill” method was used to account for publication bias, and modified effect sizes were estimated. Common effect sizes were displayed using an odds ratio (OR) with 95% confidence interval (CI) for the outcomes, and forest plots were used to illustrate the significance of the results. Subgroup analyses were performed for those studies reporting in- or prehospital use of statins.

3. Results

3.1. Literature Search. Supplementary Figure 1 shows the flowchart of the study selection process. A total of 1,234 records were initially searched from PubMed ($n = 319$), Scopus ($n = 206$), Web of Science ($n = 652$), and ProQuest ($n = 49$), and 8 studies were identified through other sources. The full list of records was reviewed with 144 duplicate studies omitted from the study, leaving 1,090 records. Following this, articles were screened by titles and
Author	Statin User	Statin Nonuser	Sample	Setting	Study design	Result	Conclusion	Reference
Masana et al.	581	1576	Patients admitted to their hospitals because of SARS-CoV-2 infection	Members of the Lipids and Arteriosclerosis Units Net (XULA) of Catalonia (Spain)	Retrospective observational	N/A	Cox model analysis showed statin use associated with lower prevalence ICU admission	[30]
Zhang et al.	1219	12762	Patients with COVID-19	Hubei Province, China	Retrospective	aHR: 0.69, CI: 0.56-0.85, \(p = 0.001 \)	No significant associations between statin use and hospital death or ICU admission	[25]
Song et al.	N/A	N/A	Patients with COVID-19	“Lifespan” healthcare system hospitals	Retrospective cohort	OR: 0.90, CI: 0.49-1.67, \(p = 0.756 \)		[31]
Argenziano et al.	325	525	Patients with laboratory-confirmed COVID-19 infection	New York-Presbyterian/Columbia University Irving Medical Center, a quaternary care academic medical center	Retrospective case series	OR = 1.07, CI: 0.79-1.46		[32]
De Spiegeleer et al.	31	123	Residents at two elderly care homes with COVID-19 diagnosis	One of two Belgian nursing homes	Retrospective multicenter cohort	OR: 0.75, CI: 0.24-1.87	Statin use showed nonsignificant benefits	[33]
Yan et al.	N/A	N/A	Confirmed COVID-19 diagnosis	Hospitals in Zhejiang Province, China	Case-control	OR: 0.98, CI: 0.32-2.99, \(p = 0.973 \)		[34]
Dreher et al.	18	32	COVID-19 patients with and without acute respiratory distress syndrome (ARDS)	Aachen University Hospital	Retrospective cohort	OR: 1.13, CI: 0.36-3.60	Statin use independently associated with lower requirement for ICU admission	[35]
Tan et al.	40	509	717 patients admitted for COVID-19 infection	Tertiary center in Singapore for COVID-19 infection	Retrospective cohort	ATET Coeff: −0.12, CI: −0.23-0.01, \(p = 0.028 \)	Inpatients hospitalized for COVID-19, use of statin medication prior to admission associated with reduced risk of severe disease	[36]
Daniels et al.	20	70	Patients hospitalized for treatment of COVID-19	University of California San Diego Health (UCSDH), ascertained by data capture within system-wide electronic health record (EHR) system (Epic Systems, Verona, WI, USA)	Retrospective cohort	Adjusted OR: 0.29, CI: 0.11-0.71, \(p < 0.01 \)		[37]
Vahedian-Azimi et al.	326	525	Positive for SARS-CoV-2	Baqiyatallah University of Medical Sciences	Prospective observational	OR: 1.00, CI: 0.58-1.74,	Statin use not associated with mortality	[10]
Author	Statin	Sample	Setting	Study design	Result	Conclusion		
--------	--------	--------	---------	-------------	--------	------------		
Butt et al.	204 (24.2%)	Danish citizens had a primary or secondary diagnosis code for COVID-19 infection	A Danish hospital, including inpatient, outpatient, and emergency department visits	Observational cohort study	HR 2.41 (95% CI 2.04 to 2.85)	Statin exposure was associated with a significantly higher risk of severe COVID-19 infection compared with no statin exposure, severe COVID-19 infection, defined as a hospital diagnosis of “COVID-19 severe acute respiratory syndrome” (ICD-10 code: B972A) or admission to an intensive care unit.		
Fan et al.	N/A	Patients with COVID-19	Zhongnan Hospital of Wuhan University and Leishenshan Hospital in Wuhan, China	Retrospective study	Adjusted HR, 0.319; 95% CI, 0.270–0.945; p = 0.032	The risk was lower for intensive care unit (ICU) care in the statin group vs. the nonstatin group.		
Hippisley-Cox et al.	5616	Patients who had COVID-19 disease	General practices in England contributing to the Qatar Research database from which current data were available, England	Prospective cohort study	HR = 1.21 (1.02–1.43) OR = 1.55 (1.38–1.75)	For ICU admission, there was no significant associations with the statin.		
McCarthy et al.	107	Patients hospitalized with confirmed SARS-CoV-2 infection	Three Partners Healthcare hospitals (Massachusetts General Hospital, Brigham and Women’s Hospital, and Newton-Wellesley Hospital)	Retrospective cohort study	Admitted to ICU or died OR: 1.18 (0.71–1.96)	N/A		
Mitacchione et al.	6 (3%)	Patients hospitalized for COVID-19	Hospitals include Luigi Sacco Hospital, Milan; Policlinico Umberto I Hospital, Rome; Spedali Civili Hospital, Brescia; Humanitas Gavazzeni Hospital, Bergamo, Italy	Observational multicenter study	p = 0.162	Our results did not confirm the supposed favorable effects of statin therapy on COVID-19 intensive care unit admission.		
Ahlström et al.	N/A	ICU COVID-19 patients	Sweden	Retrospective cohort study	OR = 0.95 (0.81–1.12); p = 0.53	We did not find a protective effect on ICU admission in statin-treated patients.		
Izzi-Engbeaya et al.	N/A	Patients hospitalized with swab-positive COVID-19	ICHNT, which includes three hospitals admitting patients with COVID-19 (Charing Cross Hospital, Hammersmith Hospital, and St. Mary’s Hospital), London	Retrospective cohort study	Primary outcome of death/ICU admission Estimate: −0.105 SE: 0.504 p = 0.835 OR: 1.49 (1.12–1.98)	N/A		
User	Nonuser	Patients	Location	Study Design	HR (95% CI)	p Value	Findings	
------	---------	----------	----------	-------------	-------------	---------	----------	
Zhang et al.	1219	Patients with COVID-19	Hubei Province, China	Retrospective	aHR: 0.37, CI: 0.26-0.53, p < 0.001	Cox model analysis showed statin use associated with a lower prevalence of using mechanical ventilation		
Song et al.	N/A	Patients with COVID-19	“Lifespan” healthcare system hospitals	Retrospective	Statin use significantly associated with decreased risk for IMV OR: 0.45, CI: 0.20-0.99, p = 0.048	Data support continued use of statins in patients hospitalized with COVID-19 due to decreased risk for IMV		
Gupta et al.	130 (20.1%)	Positive for SARS-CoV-2	Columbia University Irving Medical Center (CUIMC) and Allen Hospital sites of the New York-Presbyterian Hospital (NYPH)	Retrospective	No significant difference in invasive mechanical ventilation	N/A		
Masana et al.	581	Patients admitted to hospitals due to SARS-CoV-2 infection	Members of the Lipids and Arteriosclerosis Units Net (XULA) of Catalonia (Spain)	Retrospective observational	N/A	N/A		
Cariou et al.	19.2%	Patients with diabetes admitted with COVID-19	68 French hospitals	Nationwide observational	OR: 1.13, CI: 0.83-1.53	Routine statin use not significantly associated with increased risk of tracheal intubation/mechanical ventilation		
Tan et al.	40	Patients admitted for COVID-19	Tertiary center in Singapore for COVID-19 infection	Retrospective cohort	ATET Coeff: −0.08, CI: −0.19-0.02, p = 0.114	No significant differences in intubation		
Peymani et al.	75	Hospitalized COVID-19 patients	Single tertiary hospital in Shiraz, Iran	Retrospective	OR: 0.96, CI: 0.61-2.99, p = 0.942	Nonsignificant association between statin use and reduction in mortality in COVID-19 patients		
Fan et al.	250 (10.4%)	Patients with COVID-19	Zhongnan Hospital of Wuhan University and Leishenshan Hospital in Wuhan, China Hospitals include Luigi Sacco Hospital, Milan; Policlinico Umberto I Hospital, Rome; Spedali Civili Hospital, Brescia; Humanitas Gavazzeni Hospital; Bergamo, Italia	Retrospective study	N/A	N/A		
Mitacchione et al.	6 (3%)	Patients hospitalized for COVID-19	36 (5%)	Observational multicenter study	p = 0.258	Our results did not confirm the supposed favorable effects of statin therapy on COVID-19 mechanical ventilation		
Nicholson et al.	511	Adult patients with laboratory-confirmed COVID-19 infection	Five hospitals in the Mass General Brigham healthcare system (Massachusetts)	Retrospective cohort	OR = 0.84 (0.65-1.09), p = 0.182	N/A		
Author	Statin User	Statin Nonuser	Sample Description	Setting	Study design	Result	Conclusion	Statin time
--------------	-------------	----------------	--	---	------------------	--	--	-------------
Gupta et al.	648	648	Positive for SARS-CoV-2	Columbia University Irving Medical Center (CUIMC) and Allen Hospital sites of the New York-Presbyterian Hospital (NYPH)	Retrospective	Univariate OR: 0.69, CI: 0.56-0.85. Multivariate adjusted OR: 0.49, CI: 0.38-0.63	Antecedent statin use associated with significantly lower rates of in-hospital mortality within 30 days	[45]
Masana et al.	581	581	Patients admitted to hospitals due to SARS-CoV-2 infection	Members of the Lipids and Arteriosclerosis Units Net (XULA) of Catalonia (Spain)	Retrospective observational	Significant difference in mortality rate between groups HR: 0.58, CI: 0.39-0.89, p = 0.01	A lower SARS-CoV-2 infection-related mortality observed in patients treated with statin therapy prior to hospitalization	[30]
Zhang et al.	1219	12762	Patients with COVID-19	Hubei Province, China	Retrospective	Individuals with statin therapy had a lower crude 28-day mortality (incidence rate ratios (IRR): 0.78, CI: 0.61-1.00, p = 0.046)	Statin use in hospitalized COVID-19 patients associated with lower risk of all-cause mortality and favorable recovery profile	[25]
Rossi et al.	42	29	Patients with preexisting chronic cardiovascular disease, with COVID-19	N/A	Observational	Mortality rates of patients taking statins were 21.4% (9/42) and 34.5% (10/29) in those not taking statins (p < 0.05)	Statin use significantly reduced risk of mortality in COVID-19 patients	[19]
Cariou et al.	1192	1257	Patients with diabetes admitted with COVID-19	68 French hospitals	Nationwide observational	Mortality rates significantly higher in statin users in 28 days (23.9% vs. 18.2%, p < 0.001). OR: 1.46, CI: 1.08-1.95	Routine statin treatment significantly associated with increased mortality in T2DM patients hospitalized for COVID-19	[46]
Saeed et al.	983	1283	Patients with diabetes mellitus hospitalized with COVID-19	Montefiore Medical Center, Bronx, New York	Observational retrospective	Patient with diabetes on statins had lower cumulative in-hospital mortality (24% vs. 39%, p < 0.01). HR: 0.51, CI: 0.43-0.61, p < 0.001	Statin use associated with reduced in-hospital mortality from COVID-19 in patients with diabetes	[21]
Study	Patients	Statin Use	Setting	Study Design	Main Findings			
---------------------------------------	----------	------------	----------------------------------	--------------	---			
Saeed et al.	372	20%	Patients without diabetes mellitus hospitalized with COVID-19	Observational retrospective	No difference noted in patients without diabetes (20% vs. 21%, p = 0.82) Statin use associated with reduced in-hospital mortality from COVID-19 inpatients with diabetes [21]			
Song et al.	N/A	N/A	Patients with COVID-19	Retrospective cohort	No significant associations between statin use and in-hospital death OR: 0.88, CI: 0.37-2.08, p = 0.781 No significant associations between statin use and hospital death [31]			
De Spiegeleer et al.	31	N/A	Residents at two elderly care homes with COVID-19 diagnosis	Retrospective multicenter cohort	Considering death as serious outcome, the effect sizes, OR: 0.61, CI: 0.15-1.71, p = 0.380 Statins not statistically significantly associated with death from COVID-19 in elderly adults in nursing homes [33]			
Rodriguez-Nava et al.	23 (49%)	25 (63%)	Laboratory-confirmed COVID-19	Retrospective cohort	Multivariable Cox PH regression model showed atorvastatin nonusers had 73% chance of faster progression to death compared with users. HR: 0.38, CI: 0.18-0.77, p = 0.008 Slower progression to death associated with atorvastatin use in patients with COVID-19 admitted to ICU [26]			
Zenga et al.	38	5	COVID-19 inpatients	Retrospective cohort	OR = 0.79, CI = 0.3-2.05 N/A [49]			
Nguyen et al.	90	10	African American population with COVID-19	Retrospective observational	OR = 0.81, CI = 0.39-1.72 N/A [50]			
Wang et al.	24	11	Multiple myeloma patients with COVID-19	Retrospective cohort	Statin use significantly associated with mortality. OR: 6.21, CI: 1.37-39.77, p = 0.012 N/A [49]			
Grasselli et al.	N/A	N/A	Patients admitted to ICUs in Lombardy with suspected SARS-CoV-2 infection	Retrospective, observational study	Statins associated with higher mortality in univariate analysis. HR: 0.98, CI: 0.81-1.2, p = 0.87 Long-term treatment with statins, before ICU admission associated with higher mortality unadjusted analysis only. Multivariate analysis did not confirm association between any home therapies and increased mortality [51]			
Ayed et al.	10	4	Intensive care unit (ICU) admitted COVID-19 patients	Retrospective cohort	OR: 0.49, CI: 0.11-2.08 N/A [52]			
Study (Year)	Number of Participants	Study Design	Setting	Outcome	Results			
-------------	------------------------	--------------	---------	---------	---------			
Tan et al. 2020	717 patients admitted	Retrospective cohort	Tertiary center in Singapore for COVID-19 infection	ATET Coeff: -0.04, CI: -0.16 - 0.08, p = 0.488	No significant differences in mortality [36]			
Peymani et al. 2020	Hospitalized COVID-19 patients	Retrospective	Single tertiary hospital, Shiraz, Iran	HR: 0.76, CI: 0.16 - 3.72, p = 0.735	Nonsignificant association between statin use and reduction in mortality in patients with COVID-19 [47]			
Nicholson et al. 2020	1042 people with COVID-19 symptoms admitted	Retrospective cohort	Mass General Brigham Hospitals	OR: 0.50, CI: 0.27 - 0.93, p = 0.027	Chronic statin use associated with reduced in-hospital mortality [53]			
Lala et al. 2020	Hospitalized COVID-19-positive patients	Multihospital retrospective cohort	1 of 5 Mount Sinai Health System hospitals in New York City	HR: 0.57, CI: 0.47 - 0.69, p < 0.001	Statin use associated with improved survival [54]			
Krishnan et al. 2020	Consecutive patients requiring mechanical ventilation from March 10 to April 15	Retrospective observational	St. Joseph Mercy Oakland Hospital	OR: 2.44, CI: 1.23 - 4.76, p = 0.0080	Statin use associated with increased mortality [55]			
Vahedian-Azimi et al. 2020	Positive for SARS-CoV-2	Prospective observational	Baqiyatallah University of Medical Sciences	OR: 0.18, CI: 0.06 - 0.49, p = 0.0001	Statin use associated with decreased mortality [10]			
Butt et al. 2020	Danish citizens had a primary or secondary diagnosis code for COVID-19 infection	Observational cohort study	A Danish hospital, including inpatient, outpatient, and emergency department visits	HR 2.87 (95% CI 2.39 to 3.46)	Statin exposure was associated with a significantly higher risk of mortality compared with no statin exposure [38]			
Fan et al. 2020	Patients with COVID-19	Retrospective study	Zhongnan Hospital of Wuhan University and Leishenshan Hospital in Wuhan, China	Adjusted HR, 0.428; 95% CI, 0.169 - 0.907; p = 0.029	Statin use was associated with lower mortality [39]			
Israel et al. 2020	Hospitalized COVID-19 patients were assigned to two distinct case-control cohorts. Control patients were taken from the general population	Retrospective cohort	Clalit Health Services (CHS) data warehouse	OR (95% CI) = 0.691 (0.444, 1.037), 0.072	Rosuavastatin has protective effects in this large population analysis [56]			
Israel et al. 2020	Hospitalized COVID-19 patients were assigned to two distinct case-control cohorts. Case patients were nonhospitalized SARS-CoV-2-positive patients	Case-control matched cohort	Clalit Health Services (CHS) data warehouse	OR (95% CI) 0.530 (0.360, 0.766), p < 0.001	Rosuavastatin has protective effects in this large population analysis [56]			
Authors	N/A	N/A	Patients hospitalized with RT-PCR-confirmed SARS-CoV-2 infection	Database of inpatient and hospital-based outpatient detailed claims across more than 300 acute care hospitals in the US	OR 0.54, 95% CI, 0.49–0.60; p < 0.001	Our findings suggest that patients administered statins in the hospital had a 46% lower risk of death than those not receiving statins		
--------------	-----	-----	---	--	--	--		
Muggal et al.	14	(31.8%)	7 (9.2%)	Retrospective cohort	Retrospective cohort	14 (31.8%) 7 (9.2%)		
Mallow et al.	N/A	N/A	COVID-19 patient	14 (31.8%) 7 (9.2%)	Retrospective cohort	Retrospective cohort	14 (31.8%) 7 (9.2%)	
McCarthy et al.	51	61	Patients hospitalized with confirmed SARS-CoV-2 infection	Three Partners Healthcare hospitals (Massachusetts General Hospital, Brigham and Women’s Hospital, and Newton-Wellesley Hospital)	Retrospective cohort study	Retrospective cohort study	14 (31.8%) 7 (9.2%)	
Alamdari et al.	117	342	COVID-19 patients	Patients who were admitted to Shahid Modarres Hospital, which is a 279-bed tertiary referral center in Tehran, Iran	Retrospective cohort	Retrospective cohort	14 (31.8%) 7 (9.2%)	
Soleimani et al.	66	188	Patients with COVID-19	Sina Hospital in Tehran, Iran	Retrospective observational study	Retrospective observational study	14 (31.8%) 7 (9.2%)	
Aych et al.	N/A	N/A	Patients with a diagnosis of SARS-CoV-2 infection	Johns Hopkins Hospital and affiliated hospitals, Johns Hopkins Bayview Medical Center, Howard County General Hospital, Sibley Memorial Hospital, and Suburban Hospital, USA	Retrospective study	Retrospective study	14 (31.8%) 7 (9.2%)	
Ahlström et al.	1074	9160	Patients diagnosed with COVID-19	Sweden	Retrospective cohort study	Retrospective cohort study	14 (31.8%) 7 (9.2%)	
An et al.	69	159	Patients diagnosed with COVID-19	South Korea	Nationwide cohort study	Nationwide cohort study	14 (31.8%) 7 (9.2%)	
Holman et al.	118995	142710	COVID-19 people with type 1 diabetes	The National Diabetes Audit (NDA), UK	Population-based cohort study	Population-based cohort study	14 (31.8%) 7 (9.2%)	
Holman et al.	338	120	COVID-19 people with type 2 diabetes	The National Diabetes Audit (NDA), UK	Population-based cohort study	Population-based cohort study	14 (31.8%) 7 (9.2%)	
Inciardi et al.	7355	3086	Patients hospitalized for COVID-19 pneumonia	Civil Hospitals of Brescia, Lombardy, Italy	Retrospective cohort	Retrospective cohort	14 (31.8%) 7 (9.2%)	
Study Authors	Study Design	Study Population	Setting	Main Findings				
---------------	--------------	------------------	---------	---------------				
Luo et al.	Retrospective	Patients with confirmed COVID-19	Tongji Hospital in Wuhan, China	OR = 2.98 (0.65–13.76) p = 0.16				
Ullah et al.	Retrospective single-center cohort study	Confirmed COVID-19 patients	OR = 2.39 (1.25–4.56)					
Ramachandran et al.	Retrospective cohort study	Patients admitted with a principal diagnosis of COVID-19	Tertiary care academic medical center in Brooklyn, New York	OR = 1.59 (0.84–3.02) p = 0.157				
Izzi-Engbeaya et al.	Retrospective cohort study	Patients hospitalized with swab-positive COVID-19	ICHNT, which includes three hospitals admitting patients with COVID-19 (Charing Cross Hospital, Hammersmith Hospital, and St. Mary’s Hospital), London	Primary outcome of death/ICU admission Estimate: −0.105 SE: 0.504 p = 0.835 OR = 1.49 (1.12-1.98)				
Bifulco et al.	Retrospective cohort study	COVID-19 patients	Patients admitted to Humanitas Clinical and Research Hospital (Rozzano, Milan, Italy)	Adjusted odds ratio (aOR): 0.75; 95% confidence interval (CI): 0.26–2.17; p = 0.593 Deaths were lower, although not significantly, in statin users with respect to nonstatin users				
Oh et al.	Retrospective cohort study	Patients with COVID-19	NHIS-COVID-19 cohort database, South Korean	OR (95% CI) 0.74, (0.52, 1.05), p = 0.094 We found that it did not affect the hospital mortality of patients who were diagnosed with COVID-19				
Maric et al.	Retrospective cohort study	COVID-19 patients	Cerner’s large COVID-19 EHR database, USA	p = 0.0183 We observed a small, but statistically significant, decrease in mortality among patients prescribed statins (16.1%) when compared with matched COVID-19-positive controls (18.0 to 20.6%)				
Mitachionne et al.	Observational multicenter study	Patients hospitalized for COVID-19	Hospitals include Luigi Sacco Hospital, Milan; Policlinico Umberto I Hospital, Rome; Spedali Civili Hospital, Brescia; and Humanitas Gavazzeni Hospital, Bergamo, Italy	p = 0.006 Statin users appeared to show higher mortality rates				

N/A: not available.
Study	OR with 95% CI	Weight (%)
Masana2020	1.24 (0.95, 1.61)	7.32
Zheng2020	0.69 (0.56, 0.85)	7.54
Song2020	0.90 (0.49, 1.66)	5.44
Arenziano2020	1.07 (0.79, 1.45)	7.12
De Spiegeleer2020	0.75 (0.27, 2.09)	3.47
Yan2020	0.98 (0.32, 3.00)	3.4
Dreher2020	1.13 (0.36, 3.57)	3.03
Tan2020	0.92 (0.83, 1.02)	7.84
Daniels2020	0.29 (0.11, 0.74)	3.85
Vahedian-azimi2021	1.00 (0.58, 1.73)	5.80
Butt2020	2.72 (2.25, 3.29)	7.60
Fan2020	0.32 (0.17, 0.60)	5.36
Hippisley-Cox2020	1.55 (1.38, 1.75)	7.81
McCarthy2020	1.18 (0.71, 1.96)	6.04
Mitacchione2021	0.54 (0.20, 1.46)	3.60
Ahlstrom2021	0.95 (0.81, 1.12)	7.70
Izzi-Engbeaya2021	1.49 (1.15, 1.94)	7.33
Overall	0.99 (0.77, 1.27)	

Heterogeneity: $\tau^2 = 0.21$, $I^2 = 92.84\%$, $H^2 = 13.97$

Test of $\theta_i = \theta_j$: $Q(16) = 180.87, p = 0.00$

Test of $\theta = 0$: $z = -0.09, p = 0.93$

Figure 1: (a) Forest plot showing the risk of ICU admission between statin and nonstatin users in patients with COVID-19. (b) Funnel plot showing publication bias on ICU admission risk between statin and nonstatin users in patients with COVID-19.
abstracts, and the full texts of the remaining 323 studies were evaluated for eligibility. This left 71 studies for the final stringent screen. Finally, 47 studies were included, which met the eligibility criteria. Odds ratios (ORs) were extracted to evaluate the effect of statin use in patients with COVID-19 on ICU admission ($n=17$), tracheal intubation ($n=10$), and death ($n=41$). The general characteristics of included studies are given in Table 1. In addition, quality assessment of studies was done by the Newcastle-Ottawa scale (Supplementary Table 1).

3.2 ICU Admission. As shown in Figure 1(a), the risk of ICU admission between statin and nonstatin users in patients with COVID-19 was not significant. The OR from 17 studies was 0.99 (95% CI: 0.77-1.27, $p = 0.930$) with significant heterogeneity between studies ($\tau^2 = 0.21$, $I^2 = 92.84\%$, $H^2 = 13.97$, $Q_{(df=16)} = 180.87$, $p < 0.001$). Assessment for bias by Egger’s ($p = 0.066$) and Begg’s ($p = 0.295$) tests did not find significant small-study effects, and visual analysis of the funnel plot showed some publication bias effects (Figure 1(b)).

3.3 Tracheal Intubation. As shown in Figure 2(a), the risk of tracheal intubation between statin and nonstatin users in patients with COVID-19 was significantly different. The risk of tracheal intubation in patients with COVID-19 who used
Study	OR with 95% CI	Weight (%)
Gupta2020	0.49 (0.38, 0.63)	2.82
Mesana2020	0.72 (0.54, 0.96)	2.79
Zhang2020	0.53 (0.41, 0.69)	2.81
Rossi2020	0.52 (0.16, 1.70)	1.52
Cariou2020	1.46 (1.09, 1.96)	2.78
Saeed2020	0.49 (0.41, 0.59)	2.87
Saeed2020	0.93 (0.69, 1.25)	2.78
Song2020	0.88 (0.37, 2.09)	1.96
De spiegeler 2020	0.61 (0.18, 2.06)	1.48
Rodriguez-nava 2020	0.58 (0.22, 1.50)	1.84
Zeng2020	0.79 (0.30, 2.07)	1.82
Nguyen2020	0.81 (0.39, 1.70)	2.15
Wang2020	6.21 (1.15, 33.46)	1.02
Grasselli2020	0.98 (0.81, 1.19)	2.87
Ayed2020	0.49 (0.11, 2.13)	1.20
Tan2020	0.43 (0.15, 1.23)	1.70
Peymani2020	0.76 (0.16, 3.66)	1.11
Nicholson2020	0.50 (0.50, 0.92)	2.35
Lala2020	0.57 (0.47, 0.69)	2.87
Krishnan2020	2.44 (1.24, 4.81)	2.25
Vachedian-azimi 2021	0.18 (0.06, 0.51)	1.69
Butt2020	3.15 (2.56, 3.87)	2.86
Fan2020	0.44 (0.25, 1.67)	1.83
Israel2020	0.69 (0.45, 1.06)	2.62
Israel-2-2020	0.53 (0.36, 0.77)	2.68
Mughal2020	4.60 (1.48, 14.27)	1.58
Mallow2020	0.54 (0.49, 0.60)	2.92
McCarthy2020	1.18 (0.71, 1.96)	2.51
Alamdari2020	0.27 (0.11, 0.65)	1.94
Soleimani2020	0.93 (0.49, 1.76)	2.31
Ayeh2020	0.92 (0.53, 1.59)	2.45
Ahlsrom2020	0.72 (0.53, 0.98)	2.77
An2020	4.11 (3.07, 5.51)	2.78
Holman2020	3.38 (2.73, 4.18)	2.85
Holman2020	0.85 (0.82, 0.89)	2.94
Inciardi2020	1.89 (0.71, 5.03)	1.79
Luo2020	2.98 (0.65, 13.71)	1.15
Ullah2020	2.39 (1.25, 4.56)	2.30
Ramachandran2020	1.59 (0.84, 3.01)	2.31
Izzi-Engbeya2021	1.49 (1.12, 1.98)	2.79
Bifulco2021	0.75 (0.36, 2.17)	1.68
Oh2021	0.74 (0.52, 1.05)	2.72
Maric2021	0.85 (0.74, 0.97)	2.90
Mitacchione2021	1.68 (1.13, 2.49)	2.66
Overall	0.96 (0.77, 1.18)	

Heterogeneity: $\tau^2 = 0.39$, $I^2 = 95.93\%$, $H^2 = 24.56$

Test of $\theta_i = \theta_j$: Q (43) = 699.49, $p = 0.00$

Test of $\theta = 0$: $z = -0.43$, $p = 0.67$

(a)

Figure 3: Continued.
statins was significantly reduced by 27% compared with those who did not take statins. The OR from 10 studies was 0.73 (95% CI: 0.54-0.99, \(p = 0.04 \)), with significant heterogeneity between studies (\(r^2 = 0.18, I^2 = 88.99\% \), \(H^2 = 9.09, Q_{(df=9)} = 118.87, p < 0.001 \)). Small-study effects were not significant as shown by Egger’s (\(p = 0.993 \)) and Begg’s (\(p = 0.236 \)) tests, and the funnel plot suggested no publication bias (Figure 2(b)). Thus, the results were not extended to account for publication bias.

3.4. Death. As shown in Figure 3(a), the risk of mortality between statin and nonstatin users in patients with COVID-19 was not significant. The OR from the 41 studies which determined the effect of statins on mortality was 0.96 (95% CI: 0.77-1.18, \(p = 0.67 \)), with significant heterogeneity between studies (\(r^2 = 0.39, I^2 = 95.93\% \), \(H^2 = 24.56, Q_{(df=45)} = 699.49, p < 0.001 \)). Assessment for bias by Egger’s (\(p = 0.953 \)) and Begg’s (\(p = 0.551 \)) tests showed no significant small-study effects, and visual inspection of the funnel plot suggested no publication bias (Figure 3(b)). When the analysis was restricted to studies in populations with cardiovascular disease \((n = 3) \) and diabetes \((n = 4) \), total death was found to be reduced in the former \((OR = 0.62 \text{ (95\% CI: 0.45-0.85, } p < 0.001) \) but not the latter \((OR = 1.06 \text{ (95\% CI: 0.46-2.41, } p = 0.890) \).

The risk of mortality in patients with COVID-19 who used statins before hospital admission was not significantly different from those who did not take statins \((OR = 1.06, 95\% CI = 0.82-1.37, p = 0.670, 29 \text{ studies}) \) but with significant heterogeneity between studies \((r^2 = 0.41, I^2 = 93.32\%, \ H^2 = 14.97, Q_{(df=30)} = 485.28, p < 0.001) \) (Figure 4(a)). Analysis using Egger’s \(p = 0.167 \) and Begg’s \(p = 0.316 \) tests found no significant small-study effects, and the funnel plot showed no publication bias (Figure 4(b)). In the subgroup of studies conducted in populations with cardiovascular disease \((n = 2) \) \(\text{OR} = 0.66, 95\% \text{ CI} = 0.43-1.02, p = 0.060 \) or diabetes \((n = 3) \) \(\text{OR} = 1.12, 95\% \text{ CI} = 0.36-3.44, p = 0.840 \), there was no significant effect of prehospital statin use on mortality.

We also analyzed mortality risk in COVID-19 patients who received statins only after hospital admission. This allowed analysis of a new total of 7 studies which found a significant reduction in mortality compared with those who did not take statins \((OR = 0.54, 95\% \text{ CI} = 0.5-0.58, p < 0.001) \), with no significant heterogeneity between studies \((r^2 = 0.00, I^2 = 0.00\%, \ H^2 = 1, Q_{(df=30)} = 15.67, p = 0.03) \) (Figure 5(a)). Egger’s \(p = 0.167 \) and Begg’s \(p = 0.316 \) testing showed no significant small-study effects, and the funnel plot suggested no publication bias (Figure 5(b)).

4. Discussion

Our updated meta-analysis found no significant reductions in ICU admission and mortality outcomes in COVID-19 patients who used statins, compared to those who were not on these drugs. Interestingly, a significant reduction of all-cause mortality with statins was observed in patients with cardiovascular disease; however, due to the limited number of studies included, this still needs to be confirmed. The subgroup analysis also showed that administration of statins during hospitalization was associated with a significant 46% reduction in mortality, in line with the findings of our previous study [10]. Conversely, we found that use of statins prior to admission had no significant effect on the mortality outcomes. What is additionally important, statin therapy also reduced tracheal intubation by 27%.
Study	OR with 95% CI	Weight (%)
Guptha et al 2020	0.49 (0.38, 0.63)	4.01
Masana et al 2020	0.72 (0.48, 1.08)	3.77
Cariou et al 2020	1.46 (1.09, 1.96)	3.95
Song et al 2020	0.88 (0.37, 2.09)	2.84
De Spiegeleer et al 2020	0.61 (0.18, 2.06)	2.16
Zeng et al 2020	0.79 (0.30, 2.07)	2.64
Nguyen et al 2020	0.81 (0.39, 1.70)	3.10
Wang et al 2020	6.21 (1.15, 33.46)	1.50
Grasselli et al 2020	1.22 (1.00, 1.48)	4.07
Ayed et al 2020	0.49 (0.11, 2.13)	1.77
Peymani et al 2020	0.95 (0.20, 4.57)	1.63
Tan et al 2020	0.43 (0.15, 1.22)	2.47
Nicholson et al 2020	0.50 (0.27, 0.93)	3.36
Lala et al 2020	0.71 (0.59, 0.86)	4.08
Krishnan et al 2020	2.44 (1.24, 4.80)	3.24
Butt et al 2020	3.57 (2.97, 4.29)	4.08
Israel et al 2020	0.69 (0.45, 1.06)	3.73
Israel et al 2020	0.53 (0.36, 0.78)	3.82
Mughal et al 2020	0.29 (0.09, 0.89)	2.34
McCarthy et al 2020	1.18 (0.71, 1.96)	3.59
Alamaddari et al 2020	0.27 (0.11, 0.65)	2.80
Soleimani et al 2020	0.93 (0.49, 1.76)	3.32
Ayed et al 2020	1.15 (0.66, 1.99)	3.50
An et al 2020	4.11 (3.07, 5.51)	3.95
Holman et al 2020	3.38 (2.68, 4.26)	4.03
Holman et al 2020	0.85 (0.77, 0.94)	4.14
Inciardi et al 2020	1.89 (0.71, 5.03)	2.60
Ramchandran et al 2020	1.59 (0.84, 3.01)	3.31
Izza-Engbeaya et al 2021	1.49 (1.12, 1.98)	3.96
Bifulco et al 2021	0.75 (0.26, 2.17)	2.44
Mitacchione et al 2021	1.74 (1.17, 2.58)	3.80
Overall	1.06 (0.82, 1.37)	

Heterogeneity: $\tau^2 = 0.41, I^2 = 93.32\%$, $H^2 = 14.97$
Test of $\theta = 0$: $Q (30) = 485.28, p < 0.001$
Test of $\theta = 0$: $z = 0.43, p = 0.67$

(a)

Figure 4: Continued.
One possibility for these differences in mortality outcomes could be associated with the type of statin used across different studies. As the characteristic of the included studies were varied, this gives rise to bias which makes it difficult to draw firm conclusions. Expectedly, differential physiochemical characteristics of statins can affect the potency of their well-known pleiotropic actions [11–18]. For example, one study found that treatment with simvastatin or atorvastatin led to a reduction in mortality of COVID-19 patients, compared to cases given pravastatin or rosuvastatin [19]. In addition, the CORONADO study showed that treatment with statins was associated with increased mortality in COVID-19 patients with preexisting diabetes [20], although another study found that statin use reduced mortality in a similar patient group [21]. Again, this might have been due to the use of different statins as information regarding the statin type was not listed in the CORONADO study. Another possibility for the lack of effect of prehospital use of statins on mortality outcomes in COVID-19 patients could be due to the preexistence of diseases such as obesity, hypertension, cardiovascular disorders, and metabolic diseases, which are significant risk factors for severe outcomes [22–24]. This could be explained by the possibility that any potential benefit of statins could be nullified by the presence of comorbidities. Finally, the observed benefit in terms of reducing the incidence of tracheal intubation deserves further investigation. This benefit might imply that statin therapy is particularly beneficial in reducing the serious complications of COVID-19 like intubation which is closely related to death. This notion is in line with the observed mortality benefit in patients receiving statins during hospitalization.

The currently updated meta-analysis had several limitations. First and foremost, only associations are given since it was not possible to investigate a cause-and-effect relationship involving statin use. Secondly, we do not have data from the included studies on the preparations of statins that were used in COVID-19 patients, which is a reason we cannot make any conclusions whether there are differences in the outcomes between hydrophilic and lipophilic ones. Thirdly, potential effects of preexisting or postdiagnosis development of comorbidities such as acute respiratory distress, coagulation disorders, or insulin resistance cannot be excluded. Fourthly, the findings were not adjusted for other medication use, which may also have affected outcomes. Finally, although the number of studies that we identified which investigated in-hospital use of statins was more than doubled in this updated meta-analysis [10, 21, 25–29], this was still likely to have been statistically underpowered.

In conclusion, this updated meta-analysis further supports our previous finding that administration of statins during hospitalization is associated with reduced mortality of patients diagnosed with COVID-19 disease. Thus, further clinical studies are warranted to determine the timing of statin administration, recommended preparations, and doses, as well as potential effects of preexisting medical conditions and prescribed medications on clinical outcomes in COVID-19 patients. Most importantly, such studies will provide critical insights and outline strategic measures and patient-specific treatment approaches to successfully control the current devastating COVID-19 outbreak. It is hoped that such studies will help to pave the way for better preparedness in the likely event of future pandemics. However, more randomized clinical trial studies are needed to confirm these results.
Overall Heterogeneity: $\theta^2 = 0.00, I^2 = 0.00\%, H^2 = 1.00$

Test of $\theta_i = \theta_j$: $Q (7) = 15.67, P = 0.03$

Test of $\theta = 0$: $z = -15.07, P < 0.001$

Figure 5: (a) Forest plot showing the risk of mortality in patients with COVID-19 who used statins in-hospital compared with those who did not take statins. (b) Funnel plot showing publication bias on mortality risk in patients with COVID-19 who used statins in-hospital compared with those who did not take statins.
Data Availability

No original (raw) data was produced for this systematic review.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary Materials

Supplementary Table 1: quality assessment of studies by Newcastle-Ottawa scale (NOS). Supplementary Figure 1: flow chart of the study selection process. (Supplementary Materials)

References

[1] Worldometer: coronavirus casesDecember 2020, https://www.worldometers.info/coronavirus/countries.
[2] Johns Hopkins University and Medicine: Coronavirus Resource CenterDecember 2020, https://coronavirus.jhu.edu/.
[3] Worldometer: Current World PopulationDecember 2020, https://www.worldometers.info/world-population/.
[4] A. Vahedian-Azimi, S. M. Mohammadi, F. H. Beni et al., “Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis,” *Archives of Medical Science*, vol. 17, no. 3, pp. 579–595, 2021.
[5] T. I. Hariyanto and A. Kurniawan, “Statin and outcomes of coronavirus disease 2019 (COVID-19): a systematic review, meta-analysis, and meta-regression,” *Nutrition, metabolism, and cardiovascular diseases: NMCD*, vol. 31, no. 6, pp. 1662–1670, 2021.
[6] R. J. Hardy and S. G. Thompson, “A likelihood approach to meta-analysis with random effects,” *Statistics in medicine*, vol. 15, no. 6, pp. 619–629, 1996.
[7] J. P. Higgins and S. G. Thompson, “Quantifying heterogeneity in a meta-analysis,” *Statistics in medicine*, vol. 21, no. 11, pp. 1539–1558, 2002.
[8] M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in meta-analysis detected by a simple, graphical test,” *BMJ*, vol. 315, no. 7109, pp. 629–634, 1997.
[9] C. B. Begg and M. Mazumdar, “Operating characteristics of a rank correlation test for publication bias,” *Biometrics*, vol. 50, pp. 1088–1101, 1994.
[10] A. Vahedian-Azimi, F. Rahimibashar, A. Najafi et al., “Association of in-hospital use of statins, aspirin and renin-angiotensin-aldosterone inhibitors with mortality and ICU admission due to COVID-19,” in *Identification of Biomarkers, New Treatments, and Vaccines for COVID-19*, pp. 205–214, Springer, Cham, 2020.
[11] A. R. Afshari, H. Mollazadeh, N. C. Henney, T. Jamialahmad, and A. Sahebkar, “Effects of statins on brain tumors: a review,” *Seminars in Cancer Biology*, 2020.
[12] H. Mollazadeh, E. Tavana, G. Fanni et al., “Effects of Statins on Mitochondrial Pathways,” *Journal of Cachexia, Sarcopenia and Muscle*, vol. 12, no. 2, pp. 237–251, 2021.
[13] Z. Reiner, M. Hatamipour, M. Banach et al., “Statins and the Covid-19 main protease: in silico evidence on direct interaction,” *Archives of Medical Science*, vol. 16, no. 3, pp. 490–496, 2020.
[14] A. Sahebkar, C. Serban, S. Uroniu et al., “The impact of statin therapy on plasma levels of von Willebrand factor antigen,” *Thrombosis and Haemostasis*, vol. 115, no. 3, pp. 520–532, 2016.
[15] D. Radenkovic, S. Chawla, M. Pirro, A. Sahebkar, and M. Banach, “Cholesterol in relation to COVID-19: should we care about it?,” *Journal of Clinical Medicine*, vol. 9, no. 6, p. 1909, 2020.
[16] C. Serban, A. Sahebkar, S. Uroniu et al., “A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations,” *Scientific Reports*, vol. 5, no. 1, 2015.
[17] A. Bahrami, S. Bo, T. Jamialahmadi, and A. Sahebkar, “Effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on ageing: molecular mechanisms,” *Ageing Research Reviews*, vol. 58, p. 101024, 2020.
[18] A. M. Gorabi, N. Kiaie, M. Pirro, V. Bianconi, T. Jamialahmadi, and A. Sahebkar, “Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications,” *Heart Failure Reviews*, vol. 26, no. 5, pp. 1259–1272, 2021.
[19] R. Rossi, M. Talarico, F. Coppi, and G. Boriani, “Protective role of statins in COVID-19 patients: importance of pharmacokinetic characteristics rather than intensity of action,” *Internal and Emergency Medicine*, vol. 15, no. 8, pp. 1573–1576, 2020.
[20] B. Cariou, T. Goronliot, A. Rimbert et al., “Routine use of statins and increased COVID-19 related mortality in inpatients with type 2 diabetes: results from the CORONADO study,” *Diabetes & Metabolism*, vol. 47, no. 2, p. 101202, 2021.
[21] O. Saed, F. Castagna, I. Agalliu, X. Xue, and U. P. Jorde, “Statin use and in-hospital mortality in diabetics with COVID-19,” *Journal of the American Heart Association*, vol. 9, article e018475, 2020.
[22] F. M. Noor and M. M. Islam, “Prevalence and associated risk factors of mortality among COVID-19 patients: a meta-analysis,” *Journal of Community Health*, vol. 45, no. 6, pp. 1270–1282, 2020.
[23] M. Biswas, S. Rahaman, T. K. Biswas, Z. Haque, and B. Ibrahim, “Association of sex, age, and comorbidities with mortality in COVID-19 patients: a systematic review and meta-analysis,” *Intervirology*, vol. 64, pp. 36–47, 2021.
[24] B. Moazzami, S. Chaichian, A. Kasaeei et al., “Metabolic risk factors and risk of Covid-19: a systematic review and meta-analysis,” *PLoS One*, vol. 15, no. 12, article e0243600, 2020.
[25] X.-J. Zhang, J.-J. Qin, X. Cheng et al., “In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19,” *Cell metabolism*, vol. 32, no. 2, pp. 176–187.e4, 2020.
[26] G. Rodríguez-Nava, D. P. Trelles-Garcia, M. A. Yanez-Bello, C. W. Chung, V. P. Trelles-Garcia, and H. J. Friedman, “Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: a retrospective cohort study,” *Critical Care*, vol. 24, no. 1, pp. 1–2, 2020.
[27] P. Luo, L. Qiu, Y. Liu et al., “Metformin treatment was associated with decreased mortality in COVID-19 patients with diabetes in a retrospective analysis,” *The American Journal of Tropical Medicine and Hygiene*, vol. 103, no. 1, pp. 69–72, 2020.
[28] P. J. Mallow, K. W. Belk, M. Topmiller, and E. A. Hooker, “Outcomes of hospitalized COVID-19 patients by risk factors:}
results from a United States hospital claims database,” *Journal of health economics and outcomes research*, vol. 7, no. 2, pp. 165–175, 2020.

[29] T. K. Oh, I.-A. Song, and Y.-T. Jeon, “Statin therapy and the risk of COVID-19: a cohort study of the National Health Insurance Service in South Korea,” *Journal of personalized medicine*, vol. 11, no. 2, p. 116, 2021.

[30] L. Masana, E. Correig, C. Rodríguez-Borjabad et al., “Effect of statin therapy on SARS-CoV-2 infection-related mortality in hospitalized patients,” *European Heart Journal - Cardiovascular Pharmacotherapy*, 2020.

[31] S. L. Song, S. B. Hays, C. E. Panton et al., “Statin use is associated with decreased risk of invasive mechanical ventilation in COVID-19 patients: a preliminary study,” *Pathogens*, vol. 9, no. 9, p. 759, 2020.

[32] M. G. Argenziano, S. L. Bruce, C. L. Slater et al., “Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series,” *bmj*, vol. 369, 2020.

[33] A. De Spiegeleer, A. Bronselaer, J. T. Teo et al., “The effects of ARBs, ACEIs and statins on clinical outcomes of COVID-19 infection among nursing home residents,” *Journal of the American Medical Directors Association*, vol. 21, no. 7, pp. 909–914, 2020.

[34] H. Yan, A. M. Valdes, A. Vijay et al., “Role of drugs affecting the renin-angiotensin-aldosterone system on susceptibility and severity of COVID-19: a large case-control study from Zhejiang Province, China,” *medRxiv*, 2020.

[35] M. Dreher, A. Kersten, J. Bickenbach et al., “The characteristics of 50 hospitalized COVID-19 patients with and without ARDS,” *Deutsches Ärzteblatt International*, vol. 117, no. 10, p. 271, 2020.

[36] W. Y. Tan, B. E. Young, D. C. Lye, D. E. Chew, and R. Dalan, “Statin use is associated with lower disease severity in COVID-19 infection,” *Scientific Reports*, vol. 10, no. 1, pp. 1–7, 2020.

[37] L. B. Daniels, A. M. Sitapati, J. Zhang et al., “Relation of statin use prior to admission to severity and recovery among COVID-19 inpatients,” *The American journal of cardiology*, vol. 136, pp. 149–155, 2020.

[38] J. H. Butt, T. A. Gerds, M. Schou et al., “Association between statin use and outcomes in patients with coronavirus disease 2019 (COVID-19): a nationwide cohort study,” *Bmj Open*, vol. 10, no. 12, e044421, 2020.

[39] Y. Fan, T. Guo, F. Yan et al., “Association of statin use with the in-hospital outcomes of 2019-coronavirus disease patients: a retrospective study,” *Frontiers in medicine*, vol. 7, article 584870, 2020.

[40] J. Hippisley-Cox, D. Young, C. Coupland et al., “Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people,” *Heart*, vol. 106, no. 19, pp. 1503–1511, 2020.

[41] C. P. McCarthy, S. Murphy, M. Jones-O’Connor et al., “Early clinical and sociodemographic experience with patients hospitalized with COVID-19 at a large American healthcare system,” *EClinicalMedicine*, vol. 26, article 100504, 2020.

[42] G. Mitacchione, M. Schiavone, A. Curnis et al., “Impact of prior statin use on clinical outcomes in COVID-19 patients: data from tertiary referral hospitals during COVID-19 pandemic in Italy,” *Journal of clinical lipidology*, vol. 15, no. 1, pp. 68–78, 2021.

[43] B. Ahlström, R. Frithiof, M. Hultström, I.-M. Larsson, G. Strandberg, and M. Lipseye, “The Swedish covid-19 intensive care cohort: risk factors of ICU admission and ICU mortality,” *Acta Anaesthesiologica Scandinavica*, vol. 65, no. 4, pp. 525–533, 2021.

[44] C. Izzi-Engbeaya, W. Distaso, A. Amin et al., “Adverse outcomes in COVID-19 and diabetes: a retrospective cohort study from three London teaching hospitals,” *BMJ Open Diabetes Research & Care*, vol. 9, no. 1, article e001858, 2021.

[45] A. Gupta, M. V. Madhavan, T. J. Poterucha et al., “Association between antecedent statin use and decreased mortality in hospitalized patients with COVID-19, 2020.”

[46] B. Cariou, T. Goronfot, A. Rimbert et al., “Routine use of statins and increased mortality related to COVID-19 in inpatients with type 2 diabetes: results from the CORONADO study,” *Diabetes & Metabolism*, vol. 47, no. 2, article 101202, 2021.

[47] P. Peymani, T. Dehesh, F. Aligolighasemabadi et al., “Statins in patients with COVID-19: a retrospective cohort study in Iranian COVID-19 patients,” *Translational medicine communications*, vol. 6, no. 1, pp. 1–4, 2020.

[48] C. J. Nicholson, L. Wooster, H. H. Sigursl id et al., “Estimating risk of mechanical ventilation and in-hospital mortality among adult COVID-19 patients admitted to Mass General Brigham: the VICE and DICE scores,” *EClinicalMedicine*, vol. 33, article 100765, 2021.

[49] H. Zenga, T. Zhang, X. He et al., “Impact of hypertension on progression and prognosis in patients with COVID-19,” *medRxiv*, 2020.

[50] A. B. Nguyen, G. A. Upadhyay, B. Chung et al., “Outcomes and cardiovascular comorbidities in a predominantly African-American population with COVID-19,” *medRxiv*, 2020.

[51] G. Grasselli, M. Greco, A. Zanella et al., “Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy,” *JAMA internal medicine*, vol. 180, no. 10, pp. 1345–1355, 2020.

[52] M. Ayed, A. A. Borahmah, A. Yazdani, A. Sultan, A. Mossad, and H. Rawdhan, “Assessment of clinical characteristics and mortality-associated factors in COVID-19 critical cases in Kuwait,” *Medical Principles and Practice*, vol. 30, no. 2, pp. 185–192, 2021.

[53] C. J. Nicholson, L. Wooster, H. H. Sigurslid et al., “Estimating risk of mechanical ventilation and mortality among adult COVID-19 patients admitted to Mass General Brigham: the VICE and DICE scores,” *medRxiv*, 2020.

[54] A. Lala, K. W. Johnson, J. L. Januzzi et al., “Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection,” *Journal of the American College of Cardiology*, vol. 76, no. 5, pp. 533–546, 2020.

[55] S. Krishnan, K. Patel, R. Desai et al., “Clinical comorbidities, characteristics, and outcomes of mechanically ventilated patients in the state of Michigan with SARS-CoV-2 pneumonia,” *Journal of clinical anesthesiology*, vol. 67, article 110005, 2020.

[56] A. Israel, A. A. Schäffer, A. Cicurel et al., “Large population study identifies drugs associated with reduced COVID-19 severity,” *medRxiv*, 2020.

[57] M. S. Mughal, A. R. Jaffery, I. P. Kaur et al., “Abstract 16396: The anti-inflammatory role of chronic maintenance statin therapy in hospitalized coronavirus disease 2019 (covid-19) patients: an exploratory assessment,” *Circulation*, vol. 142, Suppl_3, 2020.
[58] N. M. Alamdari, S. Afaghi, F. S. Rahimi et al., "Mortality risk factors among hospitalized COVID-19 patients in a major referral center in Iran," *The Tohoku Journal of Experimental Medicine*, vol. 252, no. 1, pp. 73–84, 2020.

[59] A. Soleimani, S. Kazemian, S. Karbalai Saleh et al., "Effects of angiotensin receptor blockers (ARBs) on in-hospital outcomes of patients with hypertension and confirmed or clinically suspected COVID-19," *American Journal of Hypertension*, vol. 33, no. 12, pp. 1102–1111, 2020.

[60] S. K. Ayeh, E. J. Abbey, B. A. Khalifa et al., *Statin use is associated with more severe COVID-19 disease in hospitalized patients*, 2021.

[61] C. An, H. Lim, D.-W. Kim, J. H. Chang, Y. J. Choi, and S. W. Kim, "Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study," *Scientific reports*, vol. 10, no. 1, article 18716, 2020.

[62] N. Holman, P. Knighton, P. Kar et al., "Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study," *The Lancet Diabetes and Endocrinology*, vol. 8, no. 10, pp. 823–833, 2020.

[63] R. M. Inciardi, M. Adamo, L. Lupi et al., "Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in northern Italy," *European Heart Journal*, vol. 41, no. 19, pp. 1821–1829, 2020.

[64] A. Z. M. D. Ullah, L. Sivapalan, C. Chelala, and H. M. Kocher, "COVID-19 in patients with hepatobiliary and pancreatic diseases in East London: a single-centre cohort study," *medRxiv*, 2020.

[65] P. Ramachandran, A. Perisetti, M. Gajendran, F. Jean-Louise, A. K. Dwivedi, and H. Goyal, "Pre-hospitalization proton pump inhibitor use and clinical outcomes in COVID-19," *European Journal of Gastroenterology & Hepatology*, vol. - Publish Ahead of Print, 2020.

[66] M. Bifulco, M. Ciccarelli, D. Bruzzese et al., "The benefit of statins in SARS-CoV-2 patients: further metabolic and prospective clinical studies are needed," *Endocrine*, vol. 71, no. 2, pp. 270–272, 2021.

[67] I. Marić, T. Oskotsky, I. Kosti et al., "Decreased mortality rate among COVID-19 patients prescribed statins: data from electronic health records in the US," *Frontiers in medicine*, vol. 8, article 639804, 2021.