Study on coupled shock absorber system using four electromagnetic dampers

Y Fukumori¹, R Hayashi¹, H Okano¹, Y Suda² and K Nakano²

¹Tokyo University of Science 6-3-1 Nijuku, Katsusika-ku, Tokyo 125-8585, Japan
²The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8585, Japan

Abstract. Recently, the electromagnetic damper, which is composed of an electric motor, a ball screw, and a nut, was proposed. The electromagnetic damper has high responsiveness, controllability, and energy saving performance. It has been reported that it improved ride comfort and drivability. In addition, the authors have proposed a coupling method of two electromagnetic dampers. The method enables the characteristics of bouncing and rolling or pitching motion of a vehicle to be tuned independently. In this study, the authors increase the number of coupling of electromagnetic dampers from two to four, and propose a method to couple four electromagnetic dampers. The proposed method enables the characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently. Basic experiments using proposed circuit and motors and numerical simulations of an automobile equipped with the proposed coupling electromagnetic damper are carried out. The results indicate the proposed method is effective.

1. Introduction
Ride comfort and drivability of automobiles depends on suspension systems. In order to improve these performances, various methods for motion control with hydraulic shock absorbers have been developed, such as passive suspension with a non-linear damping force characteristic by structural contrivance and active suspension system [1] using actuator forces based on state quantity. In recent years, with the aim of de-oiling, energy saving and high performance, active suspension systems using an electric motor have been proposed [2] [3]. And then, as a new component of next-generation suspension system, the authors proposed an electromagnetic damper [4] utilizing interconversion to kinetic energy and electric energy by electric motor. Electromagnetic damper is applicable to not only automobiles but also railways [5] and ships [6].

The electromagnetic damper has two remarkable characteristics. One is that the electromagnetic damper has various functions such as a passive damper, an actuator, an energy regenerator, a sensor, and a spring, depending on the electric circuit connected to its electric motor. By designing the electric circuit, the electromagnetic damper can realize non-linear damping characteristic which a practical oil damper has [7], and realize the energy saving active suspension by the function of an actuator and a generator [8].

The other is that coupling of multiple electromagnetic dampers can be constructed more easily than that of hydraulic dampers because electric motors can be connected with conductive wires, which can be installed in the vehicle more easily than hydraulic pipelines. Utilizing these characteristics, the authors have already proposed a coupling methods of two electromagnetic dampers, which enables the damping characteristics of bouncing and rolling or
pitching motion of a vehicle to be tuned independently [9], and can realize anti-rolling suspension without a stabilizer mechanism [10]. In this paper, the authors propose a coupling method of four electromagnetic dampers which enables the damping characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently.

2. Electromagnetic damper

2.1. Principle of electromagnetic damper

Figure 1 shows the basic concept of the electromagnetic damper for automobiles, which is a representative example of the electromagnetic devices. Its basic structure is shown in Figure 2. The electromagnetic damper is composed of an electric motor, a ball screw, and a nut. The stroke of the electromagnetic damper rotates the ball screw and the motor, and the electromagnetic force of the motor produced by the induced voltage generates the damping force in the direction of the damper stroke.

![Figure 1: Electromagnetic damper (2nd prototype)](image1)

![Figure 2: Basic structure of electromagnetic damper](image2)

2.2. Model of electromagnetic damper

In this paper, the authors utilize a DC motor for the electromagnetic damper. The induced voltage e of the motor and the output force of the motor f is expressed as follows:

$$ e = -Gz, \quad (1) $$

$$ f = -Gi, \quad (2) $$

where z is stroke of the electromagnetic damper, and i is current of the motor. G is a specific constant of the electromagnetic damper, which is an equivalent of the torque constant of the motor converted from rotational to translational motion. When the motor is connected to a resistance R_{ex} as shown in Figure 3, the output force f is expressed as follows:

$$ f = \frac{-G^2}{r + R_{ex}} z, \quad (3) $$

where r is the internal resistance of the motor.

![Figure 3: A motor connected to a resistance](image3)
In addition to this, the electromagnetic damper generates inertia force \([1 1]\), which originates in the inertia moment of the rotor of the motor, and friction forces at mechanical contact points. However, this study neglects these forces and assumes that electromagnetic dampers generate only electromagnetic force since these forces are not significant and negligible.

3. Coupling of electromagnetic dampers

3.1. Uncoupled four electromagnetic damper

This paper discusses the performance of the proposed coupled damper on 3 DOF system: bounce, roll and pitch as shown in Figure 4. \(z_f, z_{fl}, z_{rr}, \text{ and } z_{rl}\) indicate the stroke of each electromagnetic damper, \(l_t\) and \(l_w\) indicate a half of the length of the tread and wheel-base of an automobile, \(z\) indicates the bounce displacement, and \(\phi\) and \(\theta\) indicate roll or pitch angle, respectively.

![Figure 4: 3DOF model](image)

Stroke of each dampers \(z_f, z_{fl}, z_{rr}, \text{ and } z_{rl}\) are expressed as follows:

\[
\begin{align*}
z_f &= z - l_t \phi - l_w \theta, \\
z_{fl} &= z + l_t \phi - l_w \theta, \\
z_{rr} &= z - l_t \phi + l_w \theta, \\
z_{rl} &= z + l_t \phi + l_w \theta.
\end{align*}
\]

According to Eqs. (4) - (7), output forces of each of four electromagnetic dampers are derived as shown in Eqs. (8) - (11).

\[
\begin{align*}
F_f &= -\frac{G^2}{r + R_f}(\ddot{z} - l_t \dot{\phi} - l_w \dot{\theta}), \\
F_{fl} &= -\frac{G^2}{r + R_{fl}}(z + l_t \dot{\phi} - l_w \dot{\theta}), \\
F_{rr} &= -\frac{G^2}{r + R_{rr}}(z - l_t \dot{\phi} + l_w \dot{\theta}), \\
F_{rl} &= -\frac{G^2}{r + R_{rl}}(z + l_t \dot{\phi} + l_w \dot{\theta}).
\end{align*}
\]
Therefore, the bounce damping force F_b, roll damping moment M_r, and pitch damping moment M_p are derived as follows:

$$ F_b = F_{fr} + F_{fr} + F_{fr} + F_{fl} = -c_a \dot{z} - c_d l_w \dot{\phi} - c_d l_w \dot{\theta}, \quad (12) $$

$$ M_r = l_w \left((F_{fr} + F_{fr}) - (F_{fr} + F_{fr}) \right) = -c_b l_z z - c_d l_z^2 \dot{\phi} - c_d l_z \dot{\theta}, \quad (13) $$

$$ M_p = l_w \left((F_{fr} + F_{fr}) - (F_{fr} + F_{fr}) \right) = -c_c l_z z - c_d l_z l_w \dot{\phi} - c_d l_z \dot{\theta}, \quad (14) $$

where c_a, c_b, c_c and c_d are constant values expressed by the following Eqs. (15)-(18):

$$ c_a = G^2 \left(\frac{1}{r + R_{fr}} + \frac{1}{r + R_{fr}} + \frac{1}{r + R_{fr}} + \frac{1}{r + R_{fl}} \right), \quad (15) $$

$$ c_b = G^2 \left(-\frac{1}{r + R_{fr}} + \frac{1}{r + R_{fr}} - \frac{1}{r + R_{fr}} + \frac{1}{r + R_{fl}} \right), \quad (16) $$

$$ c_c = G^2 \left(-\frac{1}{r + R_{fr}} - \frac{1}{r + R_{fr}} + \frac{1}{r + R_{fr}} + \frac{1}{r + R_{fl}} \right), \quad (17) $$

$$ c_d = G^2 \left(-\frac{1}{r + R_{fr}} - \frac{1}{r + R_{fr}} - \frac{1}{r + R_{fr}} + \frac{1}{r + R_{fl}} \right). \quad (18) $$

If $R_{fr}=R_{fr}=R_{fr}=R_{fl}=R_{ex}$, $c_a=4G^2/(r+R_{ex})$, $c_b=c_c=c_d=0$. In this case, Eqs. (12) - (14) are derived as follows:

$$ F_b = -4 \frac{G^2}{r + R_{ex}} \dot{z}, \quad (19) $$

$$ M_r = -4 \frac{G^2 l_w^2}{r + R_{ex}} \dot{\phi}, \quad (20) $$

$$ M_p = -4 \frac{G^2 l_w^2}{r + R_{ex}} \dot{\theta}. \quad (21) $$

These equations indicate that the resistance R_{ex} connected to each motor of electromagnetic dampers decides the damping characteristic of bouncing, rolling, and pitching motion simultaneously.

3.2. Independent tuning of damping characteristics for bouncing, rolling and pitching

In order to tune damping characteristics of bouncing, rolling and pitching motion independently, the authors propose a circuit as shown in Figure 5.
In Figure 5, the R_b, R_r, and R_p indicate resistances to tune damping characteristics of bouncing, rolling, and pitching motion, respectively. When four electromagnetic dampers are coupled by this circuit and induced voltages of each motor are $G\ddot{z}_f$, $G\ddot{z}_l$, $G\ddot{z}_r$, and $G\ddot{z}_l$, current of each motor i_f, i_l, i_r, and i_l are expressed as follows by Kirchhoff's law:

$$i_f = -\frac{G}{r + R_b} \ddot{z} + \frac{Gl}{r + R_r} \phi + \frac{Gl_w}{r + R_p} \dot{\theta},$$ \hspace{1cm} (22)

$$i_l = -\frac{G}{r + R_b} \ddot{z} - \frac{Gl}{r + R_r} \phi + \frac{Gl_w}{r + R_p} \dot{\theta},$$ \hspace{1cm} (23)

$$i_r = -\frac{G}{r + R_b} \ddot{z} + \frac{Gl}{r + R_r} \phi - \frac{Gl_w}{r + R_p} \dot{\theta},$$ \hspace{1cm} (24)

$$i_l = -\frac{G}{r + R_b} \ddot{z} - \frac{Gl}{r + R_r} \phi - \frac{Gl_w}{r + R_p} \dot{\theta}.$$ \hspace{1cm} (25)

From Eqs. (22) - (25), the bounce damping force F_b, roll damping moment M_r, and pitch damping moment M_p are expressed as follows:

$$F_b = -4 \frac{G^2}{r + R_b} \ddot{z},$$ \hspace{1cm} (26)

$$M_r = -4 \frac{G^2 l^2}{r + R_r} \dot{\phi},$$ \hspace{1cm} (27)

$$M_p = -4 \frac{G^2 l_w^2}{r + R_p} \dot{\theta}.$$ \hspace{1cm} (28)

These equations indicate that R_b, R_r, and R_p determine the damping characteristics with relation to bounce, roll and pitch independently.

4. Experiment

4.1. Experimental setup

As basic experiments of independent damping tuning of 3 DOF, torque characteristics measurement was carried out using four pairs of the motors and the proposed electric circuit. The experimental setup...
is shown in Figure 6. The tested motors are loaded by the other electric motors, and the output torques of the motors are measured. The tested motors are DC motors whose rating output, torque constant and internal resistance are 150W, 60mN·m/A, and 1.3Ω.

4.2. Independent damping tuning experiment

The damping torque of each motor was measured under the situation where four motors were coupled electrically by the proposed circuit, and the revolution speed of the each motor is controlled so that the body in Figure 4 makes bouncing, rolling, and pitching motion in the form of sine wave. The condition of resistances in proposed circuit is that resistance R_t and R_r are kept at 1.0Ω, and the resistance R_p is varied as 0(shorted), 0.47, 1.0, 2.0, and 4.7Ω.

The bounce, roll, and pitch damping torque characteristics against bounce, roll and pitch revolution speed of the motor are shown in Figure7. The revolution speed is equivalent to suspension stroke speed.

Figure 7 indicates that the change of resistance R_p varies only the pitch damping characteristic without any effect on bounce and roll damping characteristics. In a similar way, the other experimental results show that the resistance R_b, and R_r changes the damping characteristics of bouncing and rolling independently.

5. The dynamics of a vehicle with coupled electromagnetic dampers

5.1. Full vehicle model and the specifications

A numerical simulations is executed using a full vehicle model considering bouncing, rolling and pitching motion as shown in Figure 8. The vehicle is assumed as a commonly used ordinary vehicle, and its specifications are shown in Table 1. The specifications of the electromagnetic damper is shown in Table 2. The electromagnetic dampers are installed in place of the normal oil dampers.
Table 1 Values of the parameters

Description	Symbol	Value
Unsprung mass	m_1	50[kg]
Sprung mass	m_2	1600[kg]
Roll moment of inertia	I_{xx}	1000[kg・m²]
Pitch moment of inertia	I_{yy}	2400[kg・m²]
Tire stiffness	k_1	240000[N/m]
Front spring stiffness	k_{2f}	18000[N/m]
Rear spring stiffness	k_{2r}	22500[N/m]
Distance between gravity center of spung mass and front suspension	l_f	1.2[m]
Distance between gravity center of spung mass and rear suspension	l_r	1.5[m]
Tread	$2l_f$	1.5[m]
Wheel base	l_f+l_r	2.7[m]

Table 2 Specifications of the electromagnetic damper

Description	Symbol	Unit	Value
Motor constant	G	N/A=V(m・sec)	124.96
Internal resistance	r	Ω	1.16

5.2. Frequency characteristics

Frequency responses of the full vehicle model are calculated in the case of normal (uncoupled) dampers. The condition of damping coefficients of each damper is that c_{fl}, c_{rr} and c_{rl} are kept at 2400 N/m/s, and c_{fr} is varied as 1200, 1600, 2400, 4000 and 8000 N/m/s. Frequency responses of bounce acceleration, roll angular acceleration and pitch angular acceleration to road displacement are shown in Figure 9.

Figure 9 indicates that the changing of the value c_{fr} influences damping characteristics of bouncing, rolling and pitching motion of a car body simultaneously.
Then, frequency responses in the case of coupled electromagnetic dampers are calculated. The condition of resistances of the proposed circuit is that one of R_b, R_r, or R_p is varied as 11.9, 8.60, 5.34, 2.74 and 0.79Ω, and the others are kept at 5.34Ω. Frequency responses of bounce acceleration, roll angular acceleration and pitch angular acceleration to road displacement are shown in Figure 10, 11 and 12.

Figure 10 Frequency response of accelerations to road displacement by varying the resistance R_b.

Figure 11 Frequency response of accelerations to road displacement by varying the resistance R_r.

Figure 12 Frequency response of accelerations to road displacement by varying the resistance R_p.

Figure 10, 11 and 12 indicate that the resistance value R_b influences only the damping characteristic of bouncing motion. In the same way, R_r influences only rolling motion and R_p influences only pitching motion. Thus, it is indicated that the proposed coupling method enables the damping characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently.

5.3. **Anti-rolling and anti-pitching suspension system with the proposed coupling method**
The behavior of the vehicle is calculated with vertical disturbances to the wheels from the road displacement, roll moment acting on the car body generated by steering and pitch moment generated by accelerating and braking. The time history of road disturbances input to the right and left wheels are shown in Figure 13.

In the case where a rolling moment acts on the car body by a lateral acceleration, it is effective to use the proposed circuit and temporarily harden the damping against the rolling motion. In this paper, it is assumed that a vehicle is driving a winding road, and the forced roll and pitch moments are shown in Figure 14.

In order to obtain the same performance as normal dampers in terms of bouncing motion, the resistance R_b is kept at 5.34Ω, which realizes the same performance as the normal damper. Resistances R_r and R_p are changed from 5.34 to 0Ω while roll and pitch moment acts. The time history of resistance values are shown in Figure 15.

The bouncing acceleration, roll angle and pitch angle are shown in Figure 16, 17 and 18. For comparison, those in the case of normal (uncoupled) dampers are also shown.
As can be noticed from these results, the coupled electromagnetic damper reduces the rolling and pitching motion more than normal damper without leaving an effect on the bouncing motion. Therefore, these results indicate that the proposed method potentially improves the stability of the vehicle without sacrificing ride comfort.

6. Conclusion
In this paper, the authors proposed a coupling method of four electromagnetic dampers which enables the damping characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently. The validity of the proposed coupling method is verified by basic experiments using four motors and proposed circuit and. The results of numerical simulations of the tuning automobile indicate the proposed system is effective.

7. Acknowledgement
This work is financially supported in part by Charitable Trust TATSUJIRO KATO Memorial Construction Machine Research Promotion Fund.

8. References
[1] Buma, S., Satou, H., Yonekawa, T., Ohnuma, T., Hattori, K. and Sugihara, M., Synthesis and Development of Active Control Suspension, Transaction of the Japan Society of Mechanical Engineers, Series C, Vol. 57, No. 534 (1991), pp.257-263.
[2] Simon, T, Matthew, C. B and Jiabin, W, Design and Control of a Linear Electromagnetic Actuator System for Active Vehicle Suspension, Proceedings of the International Symposium on Advanced Vehicle Control 2008, (2008), pp.373.378.
[3] K Yoshioka, S Buma, J S Cho, R Kanda and T Yahagi, Study of Preview Control for Electric Active Suspension, Transaction of the Japan Society of Mechanical Engineers, Series C, Vol. 76, No. 770 (2010), pp.2372-2379.
[4] Suda, Y., Suematsu, K., Nakano, K., and Shiiba, T,: Study on Electromagnetic Suspension for Automobiles –Simulation and Experiments of Performance, Proc. of the 5th AVEC, pp.699-704.
[5] Nakano, K., Suda, Y., Nakadai, S., Koike, Y., Self-Powered Active Control Anti-Rolling System for Ships with Self-Powered Active Control, Transaction of the Japan Society of Mechanical Engineers, Series C, 65-640, (1999), 4685-6-4691.
[6] Hayashi, R., Sakai, Y., Suda, Y.,Michitsuji, Y., Komine, H., Study on Active Lateral Oscillation Control for Railway Vehicle Considering Energy Saving, Proceedings of JSME J-Rail2004, pp.509-512.
[7] Koji Hio, et al, A Study on Nonlinear Damping Force Characteristics of Electromagnetic Damper for Automobiles, JSAE Transaction, vol.35, no.1, (2004), pp.167-172
[8] Kawamoto, Y., Suda, Y., Inoue, H., Kondo, T., Velocity Feedback Control of Electromagnetic Suspension Considering Energy Consumption, Proceedings of JSME Mechanical Engineering Congress 2006, Vol.7, No.06-1, pp.111-112
[9] Hayashi, R., Sakai, Y., Suda, Y.,Michitsuji, Y., Komine, H., Study on Active Lateral Oscillation Control for Railway Vehicle Considering Energy Saving, Proceedings of JSME J-Rail2004, pp.509-512.
[10] Ryozo Hayashi, Yoshihiro Suda and Kimihiko Nakano, Anti-Rolling Suspension for an Automobile by Coupled Electromagnetic Devices, Journal of Mechanical Systems for Transportation and Logistics, vol.1, No.1, 2008, pp.43-54
[11] Ryuzo Hayashi and Yoshihiro Suda, Study on Control of Acceleration Characteristic of Electromagnetic Device, CD-ROM Proceedings of JSME Dynamics and Design Conference 2006, 519