Ethnobotanical assessment of plants used to aid parturition in Abuja, Nigeria

OP Ajagbonna¹*, LA Adeniran² & RI Lawal²

¹. Department of Pharmacology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
². Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Abuja, Nigeria

*Correspondence: Tel.: +2348035074835; E-mail: opajagbonna@yahoo.com

Copyright: © 2019 Ajagbonna et al. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Medicinal plants used to aid parturition in many parts of Nigeria are poorly described, though herbal remedies used to aid parturition in human and animal have long been recognized as one of the oldest form of remedies. The aim of this study was to identify native medicinal plants, their uses, methods of preparation and evaluation of their side effects in Federal Capital Territory (FCT). Data were collected from traditional medical practitioners, herbalists and herb sellers in twelve towns and villages in three local councils of FCT, 41 medicinal plants belonging to twenty one families were identified. The most frequently used families were Asclepiadaceae and Asdepiadaceae. This survey showed that Leptodenia lancifolia and Calotropis procera were among the frequently used plants to manage cases of dystocia, retained placenta and aid parturition in animals. This survey signifies the ethno medicinal value of many plant species found in Federal Capital Territory.

Keywords: Ethnobotanical, Federal Capital Territory, Medicinal plants, Parturition, Survey

Introduction

Parturition is the culmination of pregnancy or gestation period with the expulsion of one or more new born infants from the uterus (Columbia, 2006). A highly complex mechanism is involved in the pregnancy maintenance which includes mother, fetus and placenta. Delivery is composed of inflammatory and endocrine interactive paths that tip the balance in favor of coordinated uterine contractility and cervical dilation (Vannuccini and Silvia 2016). Animals are prone to maximum injuries and infections during parturition. This may affect the life of the fetus and sometimes the productivity of the dam. Dystocia which means difficult birth or inability to expel fetus or fetuses through the birth canal (Linde-Forsberg, 2005; Kim et al., 2017) is characterized by oversized fetuses, abnormal fetal position, uterine torsion and failure of the cervix to dilate (Meyer et al., 2001; Björkman 2018). Increasing cases of dystocia in animals is reported worldwide (Wiesner & Werner, 2017). There was 5% reported cases of dystocia in Holstein-Friesian in Ireland and 18% dystocia rate in Devon rex cat in United Kingdom (Heringstad et al., 2007). Also, 5.7% -10.64% cases of dystocia were reported among the different breeds of goat in West Africa (Osuagwuh et al., 1980). In Nigeria, high cases of dystocia between...
20.7-23.8% sheep and goat were reported in Bauchi, North East, Nigeria, while 15.1% - 61.9% cases of retained placenta in cattle were also documented in the same area (Abdullahi, 1999).

Different approaches to aid parturition have been reported in Federal Capital Territory (FCT). Due to economic reasons and accessibility to health facilities, many of the rural dwellers use herbal remedies (Sofowora, 1982; Rawat and Uniyal, 2004). Many traditional healing herbs and their parts have been shown to have medicinal value which can be used to aid parturition (Dhar et al., 1999; Mandhwani et al., 2017; Wiesner & Werner 2017; Adhikari et al., 2018). Different plants used in traditional medical practice in Nigeria had been documented which shows that variations exist in different areas and the plant used for different purposes (Alfred et al., 2012). It is noteworthy that many herbal remedies used by human were also prescribed for treatment of animals. Based on our literature search on the internet there was no documentation of medicinal plants that are used to aid parturition in domestic animals in the FCT. To the best of our knowledge this is the first documentary evidence of the medicinal plants in the FCT used for veterinary purpose to aid parturition in domestic animals. Knowledge of medicinal plants used in the FCT can be a good source for further scientific studies in search for better drugs with less side effects (Rahmatulla et al., 2010; Jokar et al., 2017).

Materials and Methods

Study area
Abuja is located in the centre of Nigeria and has a land area of 8,000 square kilometers with a population of approximately 2,245,000. (Abuja Demographia, 2012). It is bounded on the North by Kaduna state, on the West by Nigeria, on the East and South-East by Nasarawa state and on the South-West by Kogi state. It falls within latitude 7° 25N and 9° 20° North of the equator and longitude 5° 45’ and 70 39’. Its climate is typically hot during the dry season between November and March and warm/humid during the rainy season from April to October. The cold hamattan season occurs between December and February characterized by dusty cold winds that limit visibility and cause dry skin (World Weather Information, 2012). The study area comprises of twelve towns in three local council areas in Federal Capital Territory. Dobi, Zuba, Giri and Gwagwalada in Gwagwalada area Council. Sheda, Shetsco, Ceceyi, Kuti-Chichi in Kwali Area Council, Mamuba, Damwa, Aduga and Chibiri in Kuje Area Council.

Informed consent
Informed consent was obtained orally from all participants made up of the Traditional Medical Practitioners (TMP), herbalists or herb sellers before inception of the interview.

Administration of questionnaire
Ethno medicinal information on the plants used to aid parturition were obtained by consulting Traditional Medical Practitioners (TMP) and herb sellers. The use of semi-structured questionnaire and oral interview were adopted to obtain the relevant ethno medicinal data. The questionnaires were administered by trained interviewers and in some cases, monetary incentives were given to unwilling respondents. It was divided into 3 sections: Section (A) dealt with demographic information such as: age, sex, religion, marital status, educational background, practice specification, tribe and working experience. Section (B) was on professional experience in the management of conditions associated with parturition. Questions like frequency of treatment, treatment other than herb, source of knowledge of herbal treatment, duration of treatment, availability of plant/plant parts, accompanied side effect(s) and accompanied verbal instruction. Section (C) dealt with opinion on plants and recipes used for parturition/childbirth.

Collection and authentication of plant samples
Fresh plant samples were collected from the traditional medical practitioners (TMPs), herbalists or herb sellers. Herbal remedies were authenticated by comparison with appropriate voucher specimens at the herbaria in Department of Botany, University of Abuja and Federal University of Technology Minna.

Results
In this survey, a total of 60 questionnaires i.e 20 per local council, but a total of 50 responds were received through the use of semi-structured questionnaires administered by trained interviewers within the three LGA’s covered by this survey (namely Gwagwalada, Kwali and Kuje). These respondents were mainly TMPs (26%), herbalists (14%) and herb sellers (60%).
Sixty six percent of the herb sellers were men. The data generated from this survey gave an insight into the age, sex, religion, mode of treatment, duration of treatment and sources of knowledge of the TMP/ herb sellers and herbalists. Majority of these respondents fell within age range 35-80 years. Respondents were mainly Muslims from the Hausa ethnic group in Nigeria.

Most plants identified have no side-effects according to the respondents. Sixty six percent of the respondents confirmed regular supply of their herbal remedies. It was discovered that the knowledge of herbal treatment was mainly by training while duration of treatment varied between 6 to 48 h. Eighty percent of the respondents claimed they use verbal instructions in administering herbal recipes to their clients. This is believed to enhance the understanding of the dosage and methods of application of the remedies. Majority of the recipes documented were for oral administration while a few were for external use.

In this ethno botanical survey, Forty-one plants were identified to be used in aiding parturition in Federal Capital Territory, belonging to 37 genera in 27 families. The plants frequently used to aid parturition in different Area Councils of FCT are as follows, Grewia mollis in Kuje Area Council, Hybanthus enneaspermus, G. mollis in Gwagwalada Area Council and H. enneaspermus in Kwali Area Council. Table 1 showed the demographic survey of respondents while Table 2 documented the professional experiences of the respondents in management of conditions associated with parturition.

List of some recipes used is in Table 3. Tables 4, 5 and 6 listed plants used to aid parturition in Kuje, Gwagwalada and Kwali Area Council. The families of plant species is listed in Table 7, while the plant species commonly mentioned by the respondents in the management of conditions associated with parturition in the FCT is documented in Tables 8 and 9.

Among the listed plants, G. mollis, Leptadenia lancifolia, Calotropis procera, H. enneaspermus and Abelmoschus esculentus were frequently used to aid parturition in the Federal Capital Territory. This survey further showed that L. lancifolia and C. procera were found to be used in all the local councils in FCT to aid parturition.

Parameters	%
Frequency of treatment	
Regular	78
Irregular	22
Other treatment other than herbs	
Animal parts	22
Divination/oracle/incantation	0
None	78
Source of knowledge of herbal	
treatment	
Ancestral	50
Training	40
Training/ancestral	10
Duration of treatment	
1-3 h	34
3-6 h	12
6 h and above	54
Plants availability	
Forest alone	20
Garden	66
Not always available	14
Accompanied side effect(s)	
None	88
Bleeding	10
Others	2
Accompanied verbal instruction	
Yes	80
No	10
None	10

Table 3: List of some recipes

Salt and lime orange	Water	Concoction
Catfish and locust	Water	Decoction
beans		
Guinea corn powder	Water	Decoction
beans		
Salt and locust	Concoction	
Table 4. List of the commonly mentioned plants used in the management of conditions associated with parturition in Kuje Area council, FCT

Family	Botanical name	Common name	Local name	Part(s) used	Frequency
Malvaceae	Grewia mollis	-	Dargaza (H)	Roots	10
Sterculaceae	Sterculia setigera	Gum tree	Kukuki (H)	Leaves	5
Fabaceae	Pilostigma thonningii	Monkey bread	Kalgo (H)	Leaves	3
Malvaceae	Abelmoschus esculentus	Okro	Kubewa (H)	Leaves	7
Asclepiadaceae	Calotropis procera	Sodom apple	Tumfafiya (H)	Leaves	10
Poaceae	Sorghum bicolor	Guinea corn	Karan dafi (H)	Leaves	1
Asclepiadaceae	Leptotenia lancifolia	Schmach	Yadiya (H)	Leaves	9
Bignoniaceae	Stereospermum kunthianum	-	-	Leaves	5
Sterculaceae	Sterculia setigera	Gum tree	Kukuki (H)	Leaves	5
Malvaceae	Abelmoschus esculentus	Okro	Kubewa (H)	Leaves	7
Asclepiadaceae	Calotropis procera	Sodom apple	Tumfafiya (H)	Leaves	10
Poaceae	Sorghum bicolor	Guinea corn	Karan dafi (H)	Leaves	1
Asclepiadaceae	Leptotenia lancifolia	Schmach	Yadiya (H)	Leaves	9
Bignoniaceae	Stereospermum kunthianum	-	-	Leaves	5
Malvaceae	Celosia argentea	Celosia	Celo (H)	Leaves	3
Moringaceae	Moringa oleifera	Drumstick	Zogale (H)	Leaves	1
Annonaceae	Asimina triloba	Pawpaw leaf	-	Leaves	1
Sapindaceae	Bighia sapida	Akee fruit	-	Leaves	7
Asteraceae	Microglossa pyrifolia	-	-	Leaves	1
Euphorbiaceae	Euphorbia hirta	Asthma plant	-	Whole plant	5
Caesalpinioideae	Isoberlina doka	Doka	Farar doka (H)	Seeds	1
Malvaceae	Sida corymbosa	Broom-weed	Karkarshin kwado (H)	Leaves	1
Anacardiaceae	Spondias mombi	Hog-plum	Isada (H)	Leaves	2
Fabaceae	Tamrindus indica	Tamarind	Tsamia (H)	Seeds	5
Lamiaceae	Ocimum tenuiflorum	Holy-basil	-	Bulb	10
Combretaceae	Guiera senegalensis	Moshi medicine	Sabara (H)	Leaves	5
Euphorbiaceae	Euphorbia lateriflora	-	Oji (H)	Seeds	1
Lamiaceae	Hyptis suaveolens	Pig nut	-	Leaves	1
Caesalpinioideae	Cassia sanguinea	-	Lomfu (H)	Leaves	1

Key: F: Fulani; H: Hausa and Y: Yoruba

Table 5. List of the commonly mentioned plants used in the management of conditions associated with parturition in Gwagwalada Area council, FCT

Family	Botanical name	Common name	Local name	Part(s) used	Frequency
Tiliaceae	Grewia mollis	-	Dargaza (H)	Roots	10
Sterculaceae	Sterculia setigera	Gum tree	Kukuki (H)	Leaves	5
Fabaceae	Pilostigma thonningii	Monkey bread	Kalgo (H)	Leaves	3
Malvaceae	Abelmoschus esculentus	Okro	Kubewa (H)	Leaves	7
Asclepiadaceae	Calotropis procera	Sodom apple	Tumfafiya (H)	Leaves	10
Rubiaceae	Nauclea latifolia	African peach	Epo-egbesi (Y)	Leaves	2
Asclepiadaceae	Leptotenia lancifolia	Schmach	Yadiya (H)	Leaves	15
Verbenaceae	Duranta repens	Yellow garden	-	Leaves	7
Moringaceae	Moringa oleifera	Drumstick	Gawara (F)	Leaves	5
Annonaceae	Asimina triloba	Common pawpaw	-	Leaves	7
Labiatae	Ocimum gratissimum	Clove basil	Daidoya (H)	Leaves	5
Euphorbiaceae	Euphorbia hirta	Asthma plant	-	Whole plant	10
Apocynaceae	Saba comorensis	Rubber vine	Orombo (Y)	Leaves	15
Asteraceae	Vernonia amygdalina	Bitter-leaf	Ewuro (Y)	leaves	4
Asteraceae	Bidens pilosa	Spanish needle	-	Leaves	1
Violaceae	Hybanthus ennepermuers	Spade flower	Abinwere (Y)	leaves	10
Malvaceae	Hibiscus sabdariffia	Hibiscus	Zoboroto (H)	Leaves	4
Cyperaceae	Scleria depressa	Sword-grass	-	Leaves	1
Rutaceae	Limonia acidissima	Wood apple	-	Root	5
Commelinaceae	Commelina africana	Comelina	Balaasaana (H)	Leaves	1
Lamiaceae	Ocimum basilicum	Sweet basil	Efirin (Y)	Leaves	7

Key: F: Fulani; H: Hausa and Y: Yoruba

Table 6. List of the commonly mentioned plants used in the management of conditions associated with parturition in Kwali Area council, FCT

Family	Botanical name	Common name	Local name	Part(s) used	Frequency
Tiliaceae	Grewia mollis	-	Dargaza (H)	Roots	14
Sterculiaceae	Sterculia setigera	Gum tree	Kukuki (H)	Leaves	7
Fabaceae	Pilostigma thonningii	Monkey bread	Kalgo (H)	Leaves	2
Malvaceae	Abelmoschus esculentus	Okro	Kubewa (H)	Leaves	7
Asclepiadaceae	Calotropis procera	Sodom apple	Tumfafiya (H)	Leaves	7
Asclepiadaceae	Leptodenia lancifolia	Schmach	Yadiya (H)	Leaves	5
Tilieae	Corchorus olitorius	Jute	Ayoyo (Y)	Leaves	5
Moringaceae	Morina oleifera	Drumstick tree	-	Leaves	4
Annonaceae	Asimina triloba	Common Pawpaw	-	Leaves	4
Labiaceae	Ocimum gratissimum	Clove basil	Daidoya (H)	Leaves	5
Cucubitaee	Momordica charantia	Bitter lemon	Dadadag (H)	Leaves	1
Apocynaceae	Strophanthus sarmentosus	Spider tresses	-	Leaves	5
Euphorbiaceae	Euphorbia balsamifera	Balsam spurge	Aguwa (H)	Leaves	10
Anacardiaceae	Sclerocarya birrea	Tree of life	Ludu (H)	Bark	4
Violacea	Hybanthus enneaspermus	Spade flower	Abinwere (Y)	leaves	8
Amplidaceae	Cissus populnea	Food gum	Dafara (H)	Stem	6
Cynomorici ace	Cynomorium songaricum	-	-	Leaves	2
Lamieae	Ocimum basilicum	Sweet basil	Efirin (Y)	Leaves	6

Key: F: Fulani; H: Hausa and Y: Yoruba

Discussion

In this study, 41 medicinal plants used to aid parturition were reported. The most frequently used species (Table 8) are G. mollis (n=34), L. lancifolia (n=29) and C. procera (n=27). These plants are used for treatment of different ailments and are found everywhere in the surveyed areas. The plant species belong to Malvaceae, Asclepiadaceae and Apocynaceae families respectively. Our findings are in agreement with the general rule, most people in the rural villages use the plants that are in their surrounding for food and medicinal purposes (Johns et al., 1990; Raihan et al., 2010). Our results further showed that the following plants are used by the respondents across the three local area councils, G. mollis, Sterculia setigera, Pilistigma thonningii, Abelmoschus esculentus, Asimina triloba. Moringa olfera, C. procera and L. lancifolia. Other plants that have been frequently used in management of cases dealing with parturition which are not recorded here include Commelina africana, Duranta repens, Hyptis suaveolens, Ocimum gratissimum, Saba comorensis, Sclerocarya birrea, Sida corymbosa and Vernonia amygdalina (Singh et al., 1984, Zumsteg et al., 2007, Alfred et al., 2012).

The leaves are the most commonly used plant parts but the stems, bulbs and seeds are also used for preparation of remedies. All treatments are concoctions and decoctions in 75% and 25% cases respectively (Table 3). The plant parts are usually extracted in water by maceration which is the practice with many traditional medicine (Idensi et al., 2016). Some recipes used in herbal preparations includes salt, lime, locust beans, Guinea corn powder and in few cases animal parts like catfish may be added.

Table 7: List of families of plants frequently use in aid parturition in FCT

S/n	Family	Frequency
1.	Fabaceae	13
2.	Amplitidae	6
3.	Lamiaceae	24
4.	Comertaceae	5
5.	Rutaceae	5
6.	Euphorbiaceae	26
7.	Asclepiadaceae	56
8.	Caesalpiniodaceae	1
9.	Cynomoriciaceae	2
10.	Commelinae	1
11.	Apocynaceae	20
12.	Verbenaceae	7
13.	Malvaceae	26
14.	Caesalpinioiaceae	1
15.	Labiaceae	10
16.	Anacardiaceae	6
17.	Cyperaceae	1
18.	Tiliaceae	39
19.	Stercuieae	17
20.	Poaceae	1
21.	Bignoniaceae	5
22.	Annonaceae	12
23.	Violaceae	18
24.	Moringaceae	10
25.	Rubiaceae	2
26.	Asteraceae	6
27.	Sapindaceae	7
28.	Cucubitaee	1

Total 328
Table 8: List of the commonly mentioned plants used in the management of conditions associated with parturition in the FCT

Family	Botanical name	Common name (English)	Local name	Part(s) used	Frequency
Fabaceae	*Tamrindus indica*	Tamarind	Tsamiya (H)	Seeds	5
Amplidaceae	*Cissus populnea*	Holy-basil	Dafara (H)	Stem	6
Lamiaceae	*Ocimum tenuiflorum*			Bulb	10
Combretaceae	*Guiera senegalensis*	Oshi	Sabara (H)	Leaves	5
Caesalpininaceae	*Cassia sanguinea*		Runfu (H)	Leaves	1
Euphorbiaceae	*Euphorbia lateriflora*	-	Oji (H)	Leaves	1
Asclepiadaceae	*Leptotes lancifolia*	Schmauch	Yadiya (H)	Leaves	29
Verbenaceae	*Duranta repens*	Yellow garden	-	Leaves	7
Lamiaceae	*Ocimum basilicum*	Sweet basil	Efirin (Y)	Leaves	13
Cynomorionaceae	*Cynomorium songaricum*			Leaves	2
Asdepiadaceae	*Calotropis procera*	Sodom apple	Tumfafiya (H)	Leaves	27
Euphorbiaceae	*Euphorbia hirta*	Garden spurge		Whole plant	15
Apocynaceae	*Saba comorensis*	Rubber vine	Orombo (Y)	Leaves	15
Lamiaceae	*Hyptis suaveolens*	Pignut	-	Leaves	1
Caesalpiniodaceae	*Isoberlina doka*	Doka	Farar dooka (H)	Seed	1
Anacardiaceae	*Sclerocarya birrea*	Tree of life	Ludu (H)	Bark	4
Malvaceae	*Hibiscus sabdariffa*	Roselle	Zoborodo (H)	Leaves	4
Malvaceae	*Sida corymbos*	Broom-weed	Miar tsanya (H)	Leaves	1
Rutaceae	*Limonia acidissima*	Wood apple	Hannu (H)	Root	5
Commelinae	*Commelina africana*	Comelina	Balasasaanaa (H)	Leaves	1
Labiatae	*Ocimum gratissimum*	Clove basil	Daidoya (H)	Leaves	10
Anacardiaceae	*Spondias mombi*	Hog-plum	Isada (H)	Leaves	2
Tiliaceae	*Grewia mollis*	-	Dargaza (H)	Roots	34
Sterculaceae	*Sterculia setigera*	Gum tree	Kukuki (H)	Leaves	17
Fabaceae	*Pilostigma thonningii*	Monkey bread	Kalgo (H)	Leaves	8
Malvaceae	*Abelmoschus esculentus*	Okro	Kubewa (H)	Leaves	21
Cyperaceae	*Scleria depression*	Sword-grass	-	Leaves	1
Poaceae	*Sorghum bicolor*	Guinea corn	Karan dafi (H)	Leaves	1
Tiliaceae	*Gorchorus olitorius*	Jute	Rama (H)	Leaves	5
Moringaceae	*Moringa oleifera*	Drumstick	Zogale (H)	Leaves	10
Annonaceae	*Asimina trifolia*	Pawpaw leaf	-	Leaves	12
Cucubitaceae	*Momordica charantia*	Bitter lemon	Ejirin (Y)	Leaves	1
Apocynaceae	*Strophanthus samentosus*			Leaves	5
Euphorbiaceae	*Euphorbia balsamifera*	Balsam purge	-	Leaves	10
Violaceae	*Hybanthus enneaspernum*	Spade flower	Abinwere (Y)	leaves	18
Bignonaceae	*Sterospermum kunthianum*			Leaves	5
Rubiaceae	*Nauclea latifolia*	African peach	-	Leaves	2
Asteraceae	*Vernonia*	Amygdalina	Ewuro (Y)	Leaves	4
Sapindaceae	*Blighia sapida*	Akee fruit	-	Leaves	7
Asteraceae	*Bidens pilosa*	Spanish needle	-	Leaves	1
Asteraceae	*Macroglissa pyrifolia*	-	-	Leaves	1

Key: F: Fulani; H: Hausa and Y: Yoruba
Table 9: List of the commonly mentioned plants used in the management of conditions associated with parturition in the FCT with comparison to different local council areas

S/n	Botanical name	Kuje	Gwagwalada	Kwali	Frequency
1	Isoberlinia doka	1	-	-	1
2	Ocimum gratissimum	-	5	5	10
3	Scleracarya birrei	-	-	4	4
4	Sida corymbosa	-	-	1	1
5	Spodiadions mombi	2	-	-	2
6	Scleria depressa	-	1	-	1
7	Grewia mollis	10	10	14	34
8	Sterculia setigera	5	5	7	17
9	Pilistigma thonningii	3	3	2	8
10	Abelmosschus escuientus	7	7	7	21
11	Sorghum bicolor	1	-	-	1
12	Stereospermum kunthianum	5	-	-	5
13	Asimina triloba	1	7	4	12
14	Hybanthus enneapermus	10	8	18	36
15	Moringa olefera	1	5	4	10
16	Nauclea latifolia	-	2	-	2
17	Vernonia amygdalina	-	4	-	4
18	strophanthus samentosus	-	-	5	5
19	Euphorbia balsamifera	-	-	10	10
20	Blighia sapida	7	-	-	7
21	bidens spilosa	-	1	-	1
22	Microglossa pyriflora	1	-	-	1
23	Gorchorus olitiorus	5	-	5	5
24	Momordia charantia	-	-	1	1
25	Hibiscus sabdariffa	-	4	-	4
26	Hyptis suaveolens	1	-	-	1
27	Duranta repens	-	7	-	7
28	Sada comorensis	-	15	-	15
29	calotropis procera	10	10	7	27
30	Commelina Africana	-	1	-	1
31	Cynomorium songaricu	-	-	2	2
32	Ocimum sarcificum	-	7	6	13
33	Euphorbia lateriflora	1	-	-	1
34	Cassia singueana	1	-	-	1
35	Leptadenia lancifolia	9	15	5	29
36	Euphorbia hirta	5	10	-	15
37	Limonia acidissima	-	5	-	5
38	guiera senegalensis	-	5	-	5
39	Ocimum tenuiflorum	10	-	-	10
40	Cissus populnea	-	-	6	6
41	Tamrindus indica	5	-	-	5
	TOTAL	86	139	103	328

Due to the short shelve life of most herbal remedies (Idensi et al., 2016), in other to have freshly prepared remedies, it requires regular visit to TMPs, herb sellers or herbalists as was highlighted in our results (Table 2). There were 78% regular visit for treatment by clients which indicates the availability of the plants in the environment.

Analysis of the demographic data (Table 1) confirmed that majority of the respondent were married, males and Muslims, this supported their belief that men should fend for the family. This is incorporated in the traditional belief system of the people living in the surveyed areas. The literacy level of the studied population is high which gives hope of them adapting to new innovation techniques.
However, the low percent (6%) graduate population shows that many graduates are not interested in this vocation maybe due to the source of knowledge which is mainly through ancestral training or it is not bringing in so much monetary benefit. Between 1 and 10 years of working experience was recorded indicating moderate to good knowledge of the use of herbal remedies. Majority of the respondents were oblivious of any side effect, this may be due to the short duration of treatments which may last for just few hours but bleeding and increased blood pressure were being reported by the users of remedies.

In conclusion, the survey allowed us to list and document 41 medicinal plants used to aid parturition in FCT. Plants that have variety of medicinal use and are commonly found around the FCT were used in the management of cases of parturition in animals and humans.

Conflicts of Interest
The authors declare no conflicts of interest.

References
Abdullahi US (1991). Incidence of reproduction problems in sedentary cattle in Bauchi State, MSc Thesis, Animal Production Programme, Abubakar Tafawa Balewa University, Bauchi, Nigeria. Pp 56.
Abuja Demographia (2012). Demographia Observation https://demographia.wordpress.com/2012/10/, retrieved from 10-10-2012.
Adhikari, Partha P, Simi T & Ananta B (2018). Ethnomedicobotanical study of indigenous knowledge on medicinal plants used for the treatment of reproductive problems in Nalbari District, Assam, India. Journal of Ethnopharmacology, doi: 10.1016/j.jep.2017.07.024.
Alfred FA, Magret O, Johannes K, Mubo AS, Jones OM, Terry JS & Christian WG (2012). Uterine contractility of plants used to facilitate childbirth in Nigerian ethnomedicine. Journal of Ethnopharmacology, 143(1): 377-382.
Björkman S (2018). Prolonged parturition and impaired placenta expulsion increase the risk of postpartum metritis and delay uterine involution in Sows. Theriogenology, doi:10.1016/j.theriogenology.2017.10.003.
Colombia (2006). Parturition. https://newcourseworks.columbia.edu/access/content/group/BIOLC2006-001-2013-1misc2013/main-menu.html. retrieved 05-12-2013.
Dhar U, Rawal RS, Samant SS, Aciri S & Upreti J (1999). People’s participation in Himalayan biodiversity conservation, a practical approach to Current Science, 76: 36–40.
Heringstad B, Chang YM, Svenson M & Gianola D (2007). Genetic analysis of calving difficulty and stillbirth in Norwegian Red cows. Journal of Dairy Sciences, 90(7):3500-3507.
Idensi BN, Line EM, Henri-Pau BB, Yvon LB & Francis B (2016). Ethnobotanical survey of medicinal plants used as anthelmintic remedies in Gabon. Journal of Ethnopharmacology, doi: 10.1016/j.jep.2016.06.026.
Johns TJ, Kokwaro O & Kimanani EK (1990). Herbal remedies of the Luo of Siaya district, Kenya, establishing quantitative criteria for consensus. Economic Botany, 44 (3): 69-381.
Jokar A, Narges K, Seyyed AN, Mohammad SA & Christos AD (2017). Consumers’ Acceptance of Medicinal Herbs: An Application of the Technology Acceptance Model (TAM). Journal of Ethnopharmacology, doi: 10.1016/j.jep.2017.06.017.
Kim SH, Phillip RB & Vasso T (2017). Advances in the Role of Oxytocin Receptors in Human Parturition.” Molecular and Cellular Endocrinology 449: 56–63.
Linde-Forsberg C (2005). Abnormalities in Pregnancy, Parturition and the Periparturient Period. In: Ettinger, Textbook of Veterinary Internal Medicine, Philadelphia, Saunders. Pp 1655-1667.
Mandhwani J, Ritika E (2017). Insights into bovine endometritis with special reference to phytotherapy. Veterinary World, 10(12): 1529–32.
Meyer CL, Berger PJ, Koehler KJ, Thompson JR & Sattler CG (2001). Phenotypic trends in incidence of stillbirth for Holsteins in the United States. Journal of Dairy Science. doi: 10.3168/jds.S0022-0302(01)74502-X.
Osuagwu AIA, Taiwo BBA & Ngere LO (1980). Cross breeding in tropical sheep. Incidence of dystocitonia and parturition crosses.
Tropical health and Animal production. 12(2): 85-89.

Rawat RBS, Uniyal RC (2004). National Medicinal
Plants Board, Committed for overall
development of the sector. Agrobios:1(5):
12–17.

Rahmatullah M, Khatun MA, Morshed N, Neogi PK,
Khan SUA, Hossan MS, Mahal MJ & Jahan R
(2010). A randomized survey of medicinal
plants used by folk medicinal healers of
Sylhet Division, Bangladesh. Advance
Natural Applied Science, 4(1): 52–62.

Raihan DSM, Rehman NU, Ahmad N & Iqbal A.
(2010). Documentation of Ethnoveterinary
Practices for Mastitis in Dairy Animals in
Pakistan. Pakistan Veterinary Journal, 30(3):
167-171.

Singh YN, Ikahihifo T, Panuve M & Slatter C (1984).
Folk medicine in Tonga. A study on the use
of herbal medicines for obstetric and
gynaecological conditions and disorders.

Journal of Ethnopharmacology, 12(3): 305-329.

Sofowora A (1982). Medicinal Plants and Traditional
Medicine in Africa. John Wiley and Sons Ltd,
Chichester UK, Pp 1-256.

Vannuccini & Silvia (2016). Endocrinology of human
parturition. Annales d’Endocrinologie 77(2):
105–113.

Wiesner J & Werner K (2017). Herbal medicinal
products in pregnancy – Which data are
available? Reproductive Toxicology,
doi:10.1016/j.reprotox.2017.06.046.

World Weather information source Abuja. World
Meteorological Organization, retrieved, 01-
10-2012.

Zumsteg IS, Weckerle C & Bakera S (2007). An herbal
steam bath for postnatal care in Minahasa
(Indonesia), Documentation of the plants
used and assessment of the method.
Journal of Ethnopharmacology, 111, 641-650.