1H, 13C and 15N resonance assignments of TbBDF5-bromo1 domain from *Trypanosoma brucei*

Li Yang1 · Xiaole Zhang1 · Jiahai Zhang1 · Xiaoming Tu1

Received: 16 March 2022 / Accepted: 5 May 2022 / Published online: 2 June 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

1H, 13C and 15N resonance assignments are presented for the first bromo domain of TbBDF5 (TbBDF5-bromo1) from *Trypanosoma brucei*. TbBDF5 is localized in the nucleus and plays a potential role in transcription regulation. Bromo domains can recognize acetylated histone through a conserved binding pocket. Here we report the NMR resonance assignments of TbBDF5-bromo1 domain for further studies of the relationship between its structure and function.

Keywords *Trypanosoma brucei* · Bromo domain · TbBDF5 · Resonance assignment

Biological context

Bromo domain has been identified to play an essential role in gene expression in all kinds of eukaryotes including protozoan parasites. Bromodomain-containing proteins, which can exist alone or as part of a larger protein complex, have a variety of physiological functions. These proteins participate in histone modifications, act as components of chromatin remodeling complexes and serve as scaffolds that control the recruitment of other transcriptional regulators to chromatin (Fujisawa and Filippakopoulos 2017). Bromo domain is a kind of motif recognizing acetylated lysine of histones that occur in the N-terminal regions of proteins (Zeng and Zhou 2002). It is well known that histone lysine acetylation can neutralize the positive charge of histone, increase hydrophobicity and bind to the conserved amino acid residues in the hydrophobic pocket of bromo domain. The bromo domain is evolutionarily conserved, consists of about 110 amino acids and shares a globular fold that comprises a left-handed bundle of four α-helices (αZ, αA, αB, αC) linked by two variable-loop regions (ZA-loop, BC-loop), which is conserved across all bromo domains (Filippakopoulos et al. 2012). In many typical bromo domains, ZA-loop contains a short single-turn helix (called the ZA helix) (Marmorstein and Berger 2001). A number of studies have provided evidence that bromodomain-containing protein can be used as targets for the treatment of cancer and other diseases (Schulz et al. 2015; Alonso et al. 2019).

*Trypanosoma brucei* (*T. brucei*) is a single-cell eukaryote, which is different from other eukaryotic cells and has unique characteristics in gene transcription. There are seven bromodomain-containing proteins in the *T. brucei* (Fleck et al. 2021), but only TbBDF5 contains a tandem bromo domain, which happens mostly in the BET (bromodomain and extra-terminal) protein family. TbBDF1–6 are enriched at transcription start sites to promote RNAPII-mediated transcription and TbBDF7 is enriched at the transcription termination (Staneva et al. 2021). TbBDF5 interacts with other uncharacterized proteins to form a complex at transcription initiation sites. The bromo domain of TbBDF5 may guide HAT2 (histone acetyltransferase 2) to acetylation modification at the transcription initiation site to maintain the acetylation state required for effective transcription.

To gain critical insights into the structure and function of TbBDF5-bromo1 domain, we analyzed the NMR data of TbBDF5-bromo1 domain to establish its structural information. In this article, the backbone and side-chain 1H, 13C and 15N resonance assignments of TbBDF5-bromo1 domain from *T. brucei* are determined.
Methods and experiments

The DNA fragment encoding the first bromo domain (residue 1-122) of TbBD5 (Tb927.11.13400) from T. brucei was amplified by polymerase chain reaction (PCR) from T. brucei genomic DNA. The forward and reverse primers were 5'-GGA GAT ATA CAT ATG AGT CAA AAC CGG CAG -3' and 5'-GTG GTG GTG CTC GAG GCC ACC CAC TTT CTG -3', respectively. PCR products were then cloned into the vector pET-22(b) (Novagen) cleaved with NdeI/XhoI by infusion method. The recombinant vectors were transformed into Escherichia coli strain BL21 (DE3). The recombinant TbBD5-bromo1 domain possesses 130 amino acids with a His-tag in the C-terminus (LEHHHHHHH). To obtain isotopically labeled TbBD5-bromo1 domain, the domain was overproduced in Escherichia coli BL21 (DE3) using minimal medium containing 2.5 g/L 99% 13C-glucose and 0.5 g/L 99% 15NH4Cl as the sole carbon and nitrogen source, respectively. Cells were cultured at 37°C until OD600 = 0.8, then induced with 0.5 mM IPTG at 16 °C for 20 h. The induced cells were harvested and resuspended in 35 mL lysis buffer (20 mM Tris, 500 mM NaCl, pH 7.8), then lysed by sonication on ice. The lysate was centrifuged at 11,000×g and 4 °C for 30 min to remove precipitate. The protein was purified by Ni2+-NTA column. The labeled protein was eluted with 15 mL Tris NaCl buffer containing 500 mM imidazole. The eluted protein was further purified using a Superdex 75 column on an AKTA purification system. The purified proteins were dialyzed with buffer containing 25 mM NaH2PO4, 100 mM NaCl, 1 mM EDTA and 1 mM DL-Dithiothreitol (DTT) (pH 6.8) for 4 times and then concentrated to 500 μL with a concentration of 0.8 mM. The final NMR buffer contains 25 mM phosphate (pH 6.8), 100 mM NaCl, 1 mM EDTA, 1 mM DTT in 10:90% D2O: H2O.

All NMR data were collected at 293 K on a Bruker DMX 600 spectrometer. The following spectra were recorded to obtain backbone and side chain resonance assignments: 1H-15N HSQC, CBCA(CO)NH, CBCANH, HC(CO)NH, HBHA(CO)NH, C(CO)NH, 3D 15N-edited and 13C-edited NOESY. NMR data was processed using NMRpipe and NMRDraw software (Delaglio et al. 1995), and then analyzed with Sparky 3 (Goddard and Kneller 1993).

Assignment and data deposition

The 1H-15N-HSQC spectrum of TbBD5-bromo1 is shown in Fig. 1. Except three non-proline residues (Ser2, Gly68 and Thr75), 1H and 15N backbone chemical shifts were assigned for almost all residues (97%). In addition, 95% of NH and 15N, 97% of 13C, and 90% of 1H chemical shifts were assigned. 90% of side-chain resonance assignments were completed. The data sets from spectra CBCANH, CBCA(CO)NH and HC(CO)NH contained the 13C signals for the proline residues.

The consensus chemical shift index (CSI) derived from 1Hα, 13Cα and 13Cβ chemical shifts (Wishart and Sykes 1994) is shown in Fig. 2. This data indicates the TbBD5-bromo1 domain contains five α-helices without β-sheet. A variable-loop (ZA-loop) is located between the first and third
α-helices. The second small α-helix is located in the long ZA-loop region. Another variable-loop (BC-loop) is located between the fourth and fifth α-helices.

Acknowledgements We thank F. Delaglio and A. Bax for providing NMRPipe and NMRDraw and also thank Goddard and Kneller for providing SPARKY software. This work was supported by the Chinese National Natural Science Foundation (Grant Numbers 32071220 and 31500601).

Author contributions Not applicable.

Funding The Funder was funded by the Chinese National Science Foundation (Grant Numbers 32071220 and 31500601).

Data availability The chemical shift data have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu) with Accession Number 51357.

Declarations

Conflict of interest The authors declare that they have no conflict of interest. The authors declare no competing interests.

References

Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra E (2019) Aim for the readers’ bromodomains as new targets against Chagas’ disease. Curr Med Chem 26:6544–6563

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277293

Filippakopoulos P, Picca S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras A, Arrowsmith CH, Knapp S (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149:214–231

Fleck K, Nitz M, Jeffers V (2021) “Reading” a new chapter in protozoan parasite transcriptional regulation. PLoS Pathog 17:e1010056

Fujisawa T, Filippakopoulos P (2017) Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 18:246–262

Goddard TD, Kneller DG (1993) SPARKY3. University of California, San Francisco

Marmorstein R, Berger SL (2001) Structure and function of bromodomain proteins in chromatin-regulating complexes. Gene 272:1–9

Schulz D, Mugnier MR, Paulsen EM, Kim HS, Chung CW, Tough DF, Rioja I, Prinjha RK, Papavasiliou FN, Debler EW (2015) Bromodomain proteins contribute to maintenance of bloodstream form stage identity in the african trypanosome. PLoS Biol 13:e1002316

Staneva DP, Carloni R, Aychynnikava T, Tong P, Rappsilber J, Jeyaprakash AA, Matthews KR, Allshire RC (2021) A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Res 31:2138–2154

Wishart DS, Sykes BD (1994) The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180

Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513:124–128

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.