CALLipepla: Stream Centric Instruction Set and Mixed Precision for Accelerating Conjugate Gradient Solver

Linghao Song, Licheng Guo, Suhail Basalama, Yuze Chi, Robert F. Lucas†, and Jason Cong
University of California, Los Angeles †Livermore Software Technology, an ANSYS Company
\{linghaosong,lcguo,basalama,chiyuze,cong\}@cs.ucla.edu, bob.lucas@ansys.com

ABSTRACT
The continued growth in the processing power of FPGAs coupled with high bandwidth memories (HBM), makes systems like the Xilinx U280 credible platforms for linear solvers which often dominate the run time of scientific and engineering applications. In this paper, we present CALLipepla, an accelerator for a preconditioned conjugate gradient linear solver (CG). FPGA acceleration of CG faces three challenges: (1) how to support an arbitrary problem and terminate acceleration processing on the fly, (2) how to coordinate long-vector data flow among processing modules, and (3) how to save off-chip memory bandwidth and maintain double (FP64) precision accuracy. To tackle the three challenges, we present (1) a stream-centric instruction set for efficient streaming processing and control, (2) vector streaming reuse (VSR) and decentralized vector flow scheduling to coordinate vector data flow among modules and further reduce off-chip memory accesses with a double memory channel design, and (3) a mixed precision scheme to save bandwidth yet still achieve effective double precision quality solutions. To the best of our knowledge, this is the first work to introduce the concept of VSR for data reusing between on-chip modules to reduce unnecessary off-chip accesses for FPGA accelerators. We prototype the accelerator on a Xilinx U280 HBM FPGA. Our evaluation shows that compared to the Xilinx HPC product, the XcgSolver, CALLipepla achieves a speedup of 3.94×, 3.36× higher throughput, and 2.94× better energy efficiency. Compared to an NVIDIA A100 GPU which has 4× the memory bandwidth of CALLipepla, we still achieve 77% of its throughput with 3.34× higher energy efficiency. The code is available at https://github.com/UCLA-VAST/CALLipepla.

CCS CONCEPTS
• Hardware → Hardware accelerators; • Computer systems organization → Reconfigurable computing.

KEYWORDS
High Bandwidth Memory, Conjugate Gradient, Accelerator.

1 INTRODUCTION
The need to solve large systems of linear equations is common in scientific and engineering fields including mathematics, physics, chemistry, and other natural sciences subjects [1, 13, 15], and often dominates their runtime. As these linear systems are often sparse, it is not practical to invert them, and the requirements for storage and time grow superlinearly if one tries to factor them. Therefore, for well conditioned problems, practitioners are drawn to iterative algorithms whose storage requirements are minimal, yet still converge to a useful solution in a reasonable period of time.

The Conjugate Gradients method [21] is a well known iterative solver. Coupled with even the simplest Jacobi preconditioner (JPCG) [34], it is very effective for solving linear systems that are symmetric and positive definite. The acceleration of (preconditioned) conjugate gradient on general-purpose platforms CPUs and GPUs suffer from low computational efficiency [20, 28]. The computational efficiency is even worse for distributed and clustered computers [12].

The recent High Bandwidth Memory (HBM) equipped FPGAs [45] enable us to customize accelerator architecture and optimize data flows with high memory bandwidth for the conjugate gradient solver. In this work, we present CALLipepla, an accelerator prototype on Xilinx U280 HBM FPGA for Jacobi preconditioned conjugate gradient linear solver. We resolve three challenges in FPGA CG acceleration with our innovative solutions.

Challenge 1: The support of an arbitrary problem and accelerator termination on the fly. The FPGA synthesis/place/route flow takes hours even days to complete, which prevents the frequent invocation of conjugate gradient solvers on different problems in data centers. Thus, we need to build an accelerator to support an arbitrary problem. However, the JPCG has six dimensions of freedom as illustrated in Algorithm 1, which makes it challenging for the JPCG accelerator to support an arbitrary problem. Furthermore, it is difficult to terminate the accelerator on the fly for a preset threshold (Line 6 of Algorithm 1), because we do not know when to terminate until we run the algorithm/accelerator. To resolve this challenge, we design a stream centric instruction set to control the processing modules and data flows in the accelerators. We encode vector and matrix size and data flow directions in the instruction. A global controller is responsible to issue instructions. Therefore, we are able so support an arbitrary problem for JPCG and terminate the accelerator.

Challenge 2: The coordination of long-vector data flow among processing modules. JPCG involves the processing of multiple long vectors whose size is larger than on-chip memory. The latency cost is high if we always write a produced vector to off-chip memory...
Algorithm 1 illustrates the Jacobi preconditioned conjugate gradient algorithm (JPCG) for solving the linear system $A\mathbf{x} = \mathbf{b}$. JPCG takes as input the matrix A, the Jacobi preconditioner M, i.e., the diagonal of A, a reference vector $\bar{\mathbf{x}}_0$, an initial solution vector \mathbf{x}_0, convergence threshold τ, and a maximum iteration count N_{max}. In the algorithm, \mathbf{r} represents the error of current solution vector \mathbf{x}, the cooperation of vector $\bar{\mathbf{z}}$, and vector $\bar{\mathbf{p}}$ helps the solution vector \mathbf{x} refine to the correct values at each iteration, and vector \mathbf{a}_p is the product of matrix A and vector \mathbf{p}. Line 1 to 3 compute the initial values of the vectors \mathbf{r}, $\bar{\mathbf{z}}$, and $\bar{\mathbf{p}}$ given the initial solution vector \mathbf{x}_0. Lines 4, 5 initialize two scalars, rz and rr. In the main loop body, the JPCG updates the vectors and scalars. Note that for the computation of $\mathbf{z} \leftarrow M^{-1}\mathbf{r}$, because M is a diagonal matrix, the invert and multiply operation becomes an element-wise divide. In summary, the JPCG involves the cooperation of multiple kernels. The sparse matrix vector multiplication \mathbf{SpMV}, dot product, and generalized vector addition \mathbf{axpy} are the core computations. Note, any practical implementation of the JPCG, whether on a GPU or and FPGA, will frequently invoke memory load operations to fetch the matrix and the vectors, as well as stores on the vectors. This is because the size of the linear system dwarfs the on-chip memory capacity.

We accelerate the JPCG in this work because:

- The JPCG is an important solver used in the industry. For example, the JPCG is a solver in Ansys LS-DYNA [40], a finite element program for engineering simulation. In Xilinx Vitis HPC Libraries [46], the JPCG is the only linear system solver.
- The JPCG is hardware efficient. There are more powerful preconditioners one could consider, which generally reduce the number of iterations required to solve the linear system. For example, incomplete Cholesky factorization (ICCG) [24] employs the lower triangular matrix from an incomplete Cholesky factorization as the preconditioner matrix $M = L$. But solving $\mathbf{z} \leftarrow L^{-1}\mathbf{r}$ incurs massive dependency issues, thus, difficult to process in parallel in hardware. We will address that in future work.

2 CG SOLVER ACCELERATION CHALLENGES & CALLIPEPLA SOLUTIONS

2.1 Conjugate Gradient Solver

Algorithm 1: Jacobi preconditioner conjugate gradient solver for solving a linear system $A\mathbf{x} = \mathbf{b}$.

Input: (1) matrix A, (2) Jacobi preconditioner M, (3) reference vector $\bar{\mathbf{x}}$, (4) initial solution vector \mathbf{x}_0, (5) convergence threshold τ, and (6) maximum iteration number N_{max}.

Output: A solution vector \mathbf{x}.

1. $\mathbf{r} \leftarrow \mathbf{b} - A\mathbf{x}_0$
2. $\bar{\mathbf{z}} \leftarrow M^{-1}\mathbf{r}$
3. $\bar{\mathbf{p}} \leftarrow \bar{\mathbf{z}}$
4. $rz \leftarrow \bar{\mathbf{z}}^\top \cdot \bar{\mathbf{z}}$
5. $rr \leftarrow \bar{\mathbf{r}}^\top \cdot \bar{\mathbf{r}}$
6. for $(0 \leq i < N_{\text{max}}$ and $rr > \tau$) do
7. $\mathbf{a}_p \leftarrow A\bar{\mathbf{p}}$
8. $\mathbf{z} \leftarrow \mathbf{z} + \mathbf{a}_p$
9. $\bar{\mathbf{z}} \leftarrow \bar{\mathbf{z}} + \mathbf{a}_p$
10. $\bar{\mathbf{r}} \leftarrow \bar{\mathbf{r}} - \mathbf{ap}$
11. $\bar{\mathbf{z}} \leftarrow M^{-1}\bar{\mathbf{r}}$
12. $rz_{\text{new}} \leftarrow rz + ((rz_{\text{new}}/rz)\bar{\mathbf{p}})$
13. $\bar{\mathbf{p}} \leftarrow \bar{\mathbf{z}} + rz_{\text{new}}$
14. $rz \leftarrow rz_{\text{new}}$
15. $rr \leftarrow rz_{\text{new}}$
16. end for

For non-trivial problems, it is not practical nor hardware efficient to directly inverse the matrix A to solve the linear system because A can be very large in real-world applications. The conjugate gradient [21] iteratively refines errors and reaches the solution. The Jacobi preconditioner [34] approximates the matrix with its diagonal, which is trivial to invert. Using even this simple Jacobi preconditioner helps reduce the iteration number and accelerate the conjugate gradient method.

2.2 Prior CG Acceleration & Related Works

CG acceleration. [27] implemented the basic CG on FPGAs while the problem dimension supported is less than 1,024, thus, not practical for real-world applications. [26] implemented a floating-point basic CG for dense matrices. The supported matrix dimension is less than 100, and it needed to generate a new hardware accelerator for every new problem instance. [33] explored reducing FP mantissa bits to reduce FP computation latency and resource. [32] implemented CG for Laplacian systems. However, [32, 33] stored vectors all on chip without off-chip memory optimization and was limited to small size problems. Even the minimum throughput achieved by CALLIPEPLA is 1.35× higher than the maximum throughput achieved by [32]. Besides, the reduced bit method of [33] led to considerable iteration gaps compared with default FP64, but our mixed-precision scheme makes the gap negligible. The GMRES leverages low precision in error correction computation and the inner loop [22] to reduce processing time. It is unexplored how to co-optimize mixed precision with memory accessing on the modern HBM FPGAs. All the prior works [26, 27, 32, 33] did not optimize off-chip memory accesses, did not leverage preconditioners to accelerate the convergence, were not able to terminate accelerator on the fly, and were not able to perform large scale CG (where the matrix dimension can
be a few hundred thousands to several millions). XcgSolver [46, 47] by Xilinx is a state-of-the-art FPGA CG solver which can run real-world large-scale CG. So we use XcgSolver as the baseline. **Other related works.** Graphir [39] and GraphLily [23] are accelerators based on non-traditional (other than DDR) memories for graph processing. Sextans [38] and Serpens [37] are SpMM/SpMV accelerators on HBM memories, while Fowers et al. [14] designed an SpMV accelerator on DDR memory. Song et al. [36] explored mixed precision for conjugate gradient solvers in ReRAM. TAPA [6] provides a framework for task-parallel FPGA programming, and AutoBridge [17] optimized the floor planning for high level synthesis and thus boosted the frequency of generated accelerators [16]. Cheng et al. [2, 3] explored the combination of static and dynamic scheduling in high-level synthesis (HLS). Coarse grain reconfigurable architecture (CGRA) accelerators [25, 29, 30, 42–44] utilize instructions to schedule computation and memory accesses.

2.3 Acceleration Challenges & Our Solutions

2.3.1 How to support an arbitrary problem and terminate acceleration processing on the fly? Many previous FPGA accelerators support a fixed-size problem such as deep learning accelerators [10, 41, 49], stencil computation [4, 5], graph convolutional network acceleration [48], and other applications [19]. FPGA accelerators that support fixed-size problems need to re-perform synthesis/place/route flow for a new problem. The synthesis/place/route flow takes hours to days to finish, which is not suitable for the frequent invocation for different problems in data centers. Thus, the accelerator needs to support an arbitrary problem once deployed. However, the JPCG has six dimensions of freedom as Algorithm 1 illustrates, which makes it challenging to support an arbitrary size problem.

Another unique challenge is designing an accelerator that is able to terminate on the fly. Because the JPCG will terminate the main loop once the residual is less than a preset threshold (Line 6 of Algorithm 1), which we do not know until we run the algorithm/accelerator. In contrast, in deep learning acceleration, we know the iteration numbers of all loops before the execution.

Callipepla Solution: Stream Centric Instruction Set. We design a stream centric instruction set to control the processing modules and data flows in the accelerators. We encode vector and matrix size and data flow directions in the instruction. A global controller is responsible to issue instructions. Therefore, we are able to support an arbitrary problem for the JPCG and terminate the accelerator. There are three principles for designing our stream centric instruction set:

(1) **Stream centric.** Every instruction is to process some streams. The JPCG is dealing with vectors and matrices and we transfer those in streams. This principle naturally enables task parallelism.

(2) **Data streamed processing.** We introduce a processing model that will either procure or consume streams in the accelerator. We use an instruction to control the behavior of a processing module.

(3) **Decoupled memory and computing.** We separate the memory load/store from computation. In this way, we can benefit from prefetching and overlapped computing and memory accessing.

Section 3 and Section 4 will discuss details on the designs of Callipepla architecture, instructions, and processing modules.

2.3.2 How to coordinate long-vector data flow among processing modules? The vector length in a real-world JPCG problem could be a few thousand to more than one million as shown in Table 3. Because we process floating-point values, one vector size will be up to tens of megabytes which exceeds the on-chip memory size. One straightforward way is that we always store an output vector from a processing module to the off-chip memory and load an input vector from the off-chip memory to a module. However, there are reuse opportunities to save some off-chip memory load and store in JPCG. For example, the output vector \(\mathbf{ap} \) by Line 7 will be consumed by Line 8 and Line 10. But it is non-trivial to reuse \(\mathbf{ap} \) for Line 10 during streaming because there is a dependence (i.e., \(\mathbf{a} \)) of Line 10 on Line 8, and Line 8 will not produce \(\mathbf{a} \) until it consumes the whole vector \(\mathbf{ap} \). As a result, we need to store the whole \(\mathbf{ap} \) on chip for reusing, which is not practical. Therefore, we have a dilemma: (1) vector \(\mathbf{ap} \) exceeds the on-chip memory size so we need to store it in the off-chip memory, but (2) we need to reuse \(\mathbf{ap} \) to reduce off-chip memory accesses, however, (3) the dependence issue requires us to store the whole vector \(\mathbf{ap} \) on chip or there will be no reuse. Therefore, it is a challenge to coordinate vector flows among processing modules for reusing while resolving the dependence issue at the same time.

Callipepla Solution: Decentralized Vector Scheduling. In Section 5 we will introduce the concept of vector streaming reuse and analyze the dependency in the JPCG and partition the main loop in three phases so that we will reuse vectors within the same phase via on-chip streaming while store/load vectors to/from memory across phases. Based on the vector reusing/loading/storing, we will form a decentralized vector scheduling to dissolve the global control to vector control and computation modules to coordinate vector flows among modules.

2.3.3 How to save off-chip memory bandwidth and maintain double (FP64) precision? To represent a double-precision (FP64) non-zero, we need 32 bits for the row index, 32 bits for the column index, and 64 bits for the FP64 value. So we need 128 bits to represent an FP64 non-zero. Similarly, we need 96 (=32+32+32) bits to represent an FP32 non-zero. The memory port has a limited bit width. For example, the AXI bus width is up to 512 bits [7, 8]. Therefore, lower precision (less bits per data element) provides higher parallelism. However, the default JPCG requires the FP64 precision for convergence. There are many vectors and one sparse matrix in the JPCG. How can we configure the precision (FP32 or FP64) for the vectors and matrix in the JPCG to save memory bandwidth but also converge as effective as the default FP64 precision?

Callipepla Solution: Mixed-precision SpMV. Because the JPCG refines vectors in the main loop, we must maintain all vectors in FP64 at the end of each iteration. The SpMV takes as input one vector \(\mathbf{x} \) and one sparse matrix \(\mathbf{A} \) and output a vector \(\mathbf{y} \). Among the two vectors and one matrix, the sparse matrix dominates the memory footprint. Thus, we consider using FP32 for the sparse matrix. For the SpMV input/output vectors, we have two precision options – FP32 or FP64. Thus, we have three mix-precision schemes, illustrated in Table 1. Noted the mixed precision only applies to the SpMV, and we always maintain the the vectors in the main loop in FP64. We will discuss

| Table 1: Three mixed-precision schemes for SpMV \(\mathbf{y} = \mathbf{Ax} \). |
|---|---|---|
| | \(A \) | \(x \) | \(y \) |
| Default FP64 | FP64 | FP64 | FP64 |
| Mixed-V1 | FP32 | FP32 | FP64 |
| Mixed-V2 | FP32 | FP32 | FP64 |
| Mixed-V3 | FP32 | FP64 | FP64 |
the mixed precision in Callipepla and the hardware design for supporting mixed-precision SpMV in Section 6.

3 Callipepla Architecture

Figure 1 shows the top architecture of Callipepla accelerator which is a modular architecture. There are four categories of modules – (1) computation units, (2) read/write modules, (3) vector control modules, and (4) a global controller. All modules are connected via FIFOs.

Computation modules perform the vector/matrix computations. We have eight computation modules – (1) M1: SpMV, performing the computation of Line 7 in Algorithm 1, (2) M2: dot product alpha, performing the computation of Line 8, (3) M3: update x, performing the computation of Line 9, (4) M4: update r, performing the computation of Line 10, (5) M5: left divide, performing the computation of Line 11, (6) M6: dot product rz, performing the computation of Line 12, (7) M7: update p, performing the computation of Line 13, and (8) M8: dot product rr performing the computation of Line 15. For Line 1 to Line 5, we reuse the eight computation modules to perform the computation. We leverage the open-sourced Serpens [37] accelerator for SpMV computation and design the modules M2 to M8 for Callipepla.

Memory read/write modules move data from off-chip memory to on-chip modules or vice versa. We use the high bandwidth memory on Xilinx U280 FPGA as our off-chip memory. We have sixteen Read A modules (RdA0 to RdA15) to read non-zeros to the SpMV module M1 and a Rd M to read the Jacobi matrix. There are five Rd/Wr (read-and-write) modules for vectors ap, p, x, r, and z, because the five vectors need both read and write operations. We connect each read/write module to one HBM channel.

Vector control modules VecCtrl ap, p, x, r, and z coordinate vector flows between one corresponding read/write module to multiple computation units. For example, according to Algorithm 1, M1 (SpMV) produces vector ap and M2 (dot product alpha) and M4 (update r) consume ap. So the module VecCtrl ap coordinates ap vector flows among Rd/Wr ap and three computation modules M1, M2, and M4.

4 Stream Centric Instruction Set

4.1 Three Instruction Types

We define the instruction types as illustrated in Figure 2 for Callipepla. They are (1) Type-I: vector control instructions, (2) Type-II: computation instructions, (3) Type-III: memory instructions.

4.1.1 Type-I: vector control instructions. We use vector control instructions to tell a vector control module where and how to deliver a vector. Type-I instructions have five components – (1) int rd and (2) int wr encode whether to read or write or simultaneously read and write a vector, (3) int base_addr encodes the base address of a vector in the memory, (4) int len encodes the vector length, and (5) ap_uint<3> q_id encodes the index of a destination module where to send the vector.

4.1.2 Type-II: computation instructions. We use computation instructions to trigger the execution of a computation module and where to send the output vector. Type-II instructions have three components – (1) int len encodes the vector length, (2) double alpha a double-precision constant scalar involved in the computation, and (3) ap_uint<3> q_id encodes the index of a destination module where to send the vector. Note that the computation instructions do not have operation code because a computation module in the accelerator only has one function.

4.1.3 Type-III: memory instructions. We use memory instructions to read a vector from off-chip memory to a vector control module or write a vector from a vector control module to off-chip memory. Type-III instructions have three components – (1) int rd and (2) int wr encodes whether to read or write or simultaneously read and write a vector, (3) int base_addr encodes the base address of a vector in the memory, and (4) int len encodes the vector length.

4.2 Processing Model

Figure 3 displays an example where we process two vectors with two computation modules. A global controller issues vector control instructions to the two vector control modules VecCtrl-1 and VecCtrl-2. \textbf{v1} and \textbf{v2} are two vectors, \textbf{rr} is a scalar, and \textbf{resp} is a memory response.

Vector flow. Instructions control vector flow among modules in a streaming fashion. For example, if we are reading vector \textbf{v1} with a length 100 from memory to Comp M-2, the controller will issue an instruction InstVCtrl1(rd=1, wr=0, base_addr=0, len=100, q_id=1) to VecCtrl-1. Here, q_id=1 indicates the destination module is M-2 rather than M-1. Then VecCtrl-1 will issue a memory instruction InstRdWr1(rd=1, wr=0, base_addr=0, len=100) to the memory module. Next, vector \textbf{v1} flows from the memory to...
Comp M-2. Another example is that the controller issues a computation instruction InstCmp(1em=100, alpha=2.0, q.id=1) to Comp M-2. We assume M-2 performs v2 = v2 + αv1. Then M-2 will consume the input v1 and v2 vectors and deliver the result vector v2(=v2 + 2.0v1) to M-1.

Scalar and memory response. We update all scalars in the global controller. For instance, Comp M-1 delivers a scalar rr to the controller and the controller will decide whether to terminate the accelerator or not. At the memory modules, we always send out a response to the controller if we are processing a memory write operation. The response message will help the controller to maintain memory consistency when multiple modules read and write the same vectors.

Overlapped execution and prefetching. The models involved are working in parallel, i.e., task parallelism, because we never cache a whole vector on chip. One element in an input stream will be consumed by a module and sent to an output vector flow at each cycle. So the modules in Callipepla accelerators work with an II=1 pipeline. We always prefetch vectors in the processing. We enable prefetching by issuing multiple instructions. For example, if Comp M-1 needs input vector v1 from memory and input vector v2 from Comp M-2, along with the computation instruction to M-2, we also issue the vector control instruction to the vector control module to read v1 to M-1 for prefetching.

Processing rate matching. Prior work [9] processing rate matching of modules in streaming applications. In this work, because we do not cache any vector on chip and we overlap the execution, we match the vector input and output streaming rate. Therefore, the bottleneck becomes the connections between a memory module and a memory channel. Although there are modules that use multiple channels, we can simplify the connection as one-module-one-channel because we can view a multi-channel module as multiple one-channel modules and they are connected via on-chip connections. Thus, we can derive the accelerator frequency that matches the memory bandwidth as

\[f = \frac{BW}{r}, \]

where \(BW \) is per channel memory bandwidth and \(r \) is the maximum memory data width. For a Xilinx U280 HBM FPGA [45] which has 32 HBM channels and 460 GB/s memory bandwidth and supports a 512-bit (64-byte) memory width [7, 8], the matching frequency is \(f = (460GB/s/32) / 64B = 225 \text{ MHz} \).

4.3 The Global Controller Code

Figure 4 shows the instruction code in the global controller. We only show the main loop control code and the intrusions for vector control and computation for module M3 and M8. The code in Figure 4 is quite similar to Algorithm 1 because Callipepla’s instructions make it easy for users to control the accelerators. In the controller code, we have two optimizations – (1) We merge Line 1 to 5 of Algorithm 1 into the main for loop to reuse the modules. The if clause (Line 5 to 13) in Figure 4 skips some modules in iteration (rp=1) so that we can perform the computation of Line 1 to 5 of Algorithm 1 using the main for loop. (2) We move the last module M8 which is the computation of residual before M5 to skip the computations of M5 to M7 once the solver converges.

5 VECTOR STREAMING REUSE & DECENTRALIZED VECTOR SCHEDULING

5.1 Vector Streaming Reuse

The accelerator has to store long vectors to off-chip memory because of limited on-chip memory size. However, there are reusing opportunities so that we can avoid unnecessary load/store. Vector streaming reuse (VSR) means vectors are reused in a streaming fashion by processing modules via on-chip streams/FIFOs.

- **What is VSR?** A processing module (PM) consumes an element of a vector from an input stream/FIFO and produce an element (for a processed vector) or duplicate an element (for the input vector) to an output stream/FIFO to another PM. The PMs consume/produce vector elements in pipeline and there may be multiple input/output streams/FIFOs connected to one PM.
- **When can VSR?** (1) Multiple PMs consume the same input vector(s), (2) a PM consumes vector(s) that are produced by some other PMs, and (3) the difference of accessing indices of two input vectors is within the on-chip (or stream/FIFO) memory budget.
- **When can not VSR?** (1) The computation of a scalar requires a whole vector and PMs has dependency on the scalar cannot re-use the vector and (2) the difference of accessing indices of two input vectors is out of the on-chip (or stream/FIFO) memory budget.

5.2 Three Computation Phases

We analyze the scalar dependency and then divide the eight computation modules into three phases as shown in Figure 5. The scalar dependency is the critical issue that prevents us from reusing vectors across computation modules. For example, we cannot reuse the input vector \(\tilde{ap} \) of M2 to M4 (which also takes \(\tilde{ap} \) as input) because M4 depends on alpha and alpha depends on the whole vector ap. So we move M4 to Phase-2. Because M5/6/8 depends on vector F from M4 so we direct M5/6/8 to Phase-2. Similarly, we organize the computations in Phase-3 according to the dependency on scalar rz.

5.3 Recomputing to Save Off-Chip Memory

Among all vectors, vector \(\tilde{z} \) is a special one because \(\tilde{z} \) is an intermediate vector in the main loop and it is not reused between two iterations. Thus, we reduce the off-chip memory allocation for \(\tilde{z} \) by recomputing in Phase-3. In this way, we save memory channels. Shown in Figure 5, at Phase-2 after computation module M5 produces \(\tilde{z} \), we do not write \(\tilde{z} \) to memory. At Phase-3, because M7
We divide computation modules into three phases because of the scalar dependency. Two key properties are – (1) a scalar dependency separates two phases and (2) vectors within a phase can be reused by modules in that phase.

After forming the three computation phases, we determine the VSR

- a scalar dependency separates two phases and (2) vectors.

Vector scheduling in vector control modules. We use the FSM for the vector control modules (a) – (e) and computation modules (f) – (m). For vector control modules, Rd->Mx means to read a vector from memory to computation module Mx, and RdWr<->Mx means to read and write a vector to/from Mx from/to memory. For computation modules, the left half block records input vectors and the right half block records output vectors and destination modules for VSR.

Figure 6: FSMs for decentralized vector scheduling in vector control modules (a) – (e) and computation modules (f) – (m). For vector control modules, Rd->Mx means to read a vector from memory to computation module Mx, and RdWr<->Mx means to read and write a vector to/from Mx from/to memory. For computation modules, the left half block records input vectors and the right half block records output vectors and destination modules for VSR.

5.4 VSR and Memory Accessing

After forming the three computation phases, we determine the VSR and the memory accessing for vectors that we have to do. • Phase 1: In Phase-1.1 we perform M1 and in Phase-1.2 we perform M2. We reuse the ap produced by M1 to M7 to avoid reading the ap from off-chip memory. We cannot reuse vector p from M1 for M2 because M1 outputs ap only after consuming the whole vector p. We write vector ap to memory. • Phase 2: We reuse vector r by all the four modules M4/5/6/8. M4 consumes one entry from the input stream of vector r from memory and immediately M4 sends the r entry to the next module M5. M5 and M6 perform the same consume-and-send on vector r so that we only need to read vector r from memory once. In this phase, we also have to read vector M and vector ap from memory once. • Phase 3: Similar to Phase 2, M4 and M5 reuse vector r and M7 and M3 reuse vector p. We have to read vector r, M, p, and x from memory and write vector r, p, and x to memory.

5.5 Decentralized Vector Scheduling

The VSR makes the control complicated because we must handle both on-chip and off-chip vector flows among all computation and vector control modules. We present decentralized vector scheduling to relieve the pressure faced by a centralized controller. Another benefit is that decentralized vector scheduling is better for the controller routing because there are 23 FIFOs for a centralized controller. We decentralize all vector scheduling into each individual vector control module (vector p, r, M, x, and ap) and into the computation modules (M1 to M8) show in Figure 6. We use a finite state machine (FSM) to control the vector flow at each module. Note that decentralized vector scheduling maintains all dependencies.

Vector scheduling in vector control modules. We use the FSM for the p in Figure 6 (a) to illustrate vector scheduling. According to Figure 5, there are three memory operations for p: (1) Rd to M1 at Phase-1.1, (2) Rd to M2 at Phase-1.2, and (3) Rd and Wr to/from M7 at Phase-3. Thus, we have the FSM in Figure 6 (a) for p scheduling.

Vector scheduling in computation modules. We use Figure 6 (j) the FSM for M5 to illustrate the scheduling. According to Figure 5, at Phase-2, M5 takes as inputs the flows of the vectors M and r, and outputs p and r to M6, resulting in the first scheduling state. At Phase-2, M5 uses the flows of vector M and r as inputs, but outputs p to M7 and r to memory, completing the second scheduling state.

Without the decentralized vector scheduling, the accelerator accesses vectors 19 times (14 reads and 5 writes). With the decentralized vector scheduling, the accelerator accesses vectors 14 times (10 reads and 4 writes).

5.6 Avoiding Deadlock

A deadlock may occur when we reuse more than one vector to a destination module. In Figure 7 (a), the default FIFO depth is 2 and the M5 (left divide) pipeline depth is L = 33. Thus, when the fast side r FIFO is full but the slow r FIFO is still empty, a deadlock occurs because M5 cannot write to r FIFO and M6 cannot consume r FIFO entries (because r FIFO is empty). To resolve the deadlock, we increase the fast FIFO depth to >= L + 1 as shown in Figure 7 (b). As a result, during cycle 0 to L, M5 can write FIFO r despite FIFO r is empty, but after cycle L + 1, M5 can write both FIFO r and r and M6 can read both FIFOs.

5.7 Double Channel Design

By default a memory module reads and writes to the same memory channel as shown in Figure 7 (c), which doubles the memory latency when we perform both read and write on a vector. Inspired by the widely used on-chip double buffer design in FPGA accelerators [35, 41, 49, 50], we present a double off-chip channel design. In Figure 7 (d) and (e), we connect two channels to a memory module and at the iteration t we read vector v_t from channel 0 and write the updated v_{t+1} to channel 1. At the iteration t + 1 we read v_{t+1} from.
channel 1 and write the updated v_{x+2} to channel 0. Therefore, we reduce the memory latency by half and maintain the inter-loop vector dependency.

6 MIXED-PRECISION SPMV

Table 1 presents three mixed precision schemes and the default FP64 precision. Overall, a scheme with more data in FP64 is less hardware efficient because it requires larger memory capacity and higher memory bandwidth but the accuracy is higher. Mixed-V1 uses FP32 for all values in the matrix and vectors. Although Mixed-V1 is the most memory saving scheme, it is also the most inaccurate scheme. Because the JPCG is sensitive to vector precision, Mixed-V2 utilizes FP64 for the SpMV output vector. Mixed-V3 utilizes FP64 for both SpMV input and output vectors. Among the three mixed-precision schemes, Mixed-V3 does not sacrifice vector precision and at the same time saves memory for the sparse matrix. Note that in SpMV the sparse matrix dominates the memory footprint. Therefore, we use Mixed-V3 for the CALLipepla accelerator for both memory efficiency and computation accuracy.

Figure 8 illustrates the mixed-precision SpMV module architecture in CALLipepla. We leverage the Serpens [37] architecture. Each SpMV module is connected to one memory channel and has eight parallel processing engines. The input to a processing engine is a 64-bit element which contains a 14-bit column index, an 18-bit row index, and an FP32 value. For the mixed-precision SpMV, we (1) store the input FP64 vector in an on-chip X memory implemented by BRAMs, and (2) buffer the output FP64 vector in an on-chip Y Memory implemented by URAMs. The depths of the X and Y memories are 4K and 24K respectively. In the processing pipeline, we (1) cast the FP32 sparse value into a FP64 value, (2) use the column index to fetch the corresponding input element from the X memory, (3) then multiply the two FP64 scalars, and (4) accumulate the result to the Y memory entry indexed by row.

7 EVALUATION

7.1 Evaluation Setup

7.1.1 Benchmark Matrices. We evaluate on 36 real-word sparse matrices from SuiteSparse [11]. Table 3 lists the name, row/ column number, number of non-zeros (NNZ), and the ID used in this paper of each matrix. Matrix M1 to M18 are the benchmarking matrices that the Xilinx Vitis HPC [46, 47] XcgSolver used. Their row/column numbers range from 3,920 to 23,052 and NNZ is up to 6.90 M. To comprehensively evaluate the accelerators, we select 18 more large-scale matrices from SuiteSparse. The row/column numbers of Matrix M19 to M36 span from 123 K to 1.56 M and the NNZ is up to 114 M. The 36 sparse matrices cover a wide range of applications including structural problems, thermal problems, model reduction problems, electromagnetics problems, 2D/3D problems, and other engineering and modeling problems.

We evaluate the Jacobi Preconditioner Conjugate Gradient (JPCG) Solver. We set the reference vector b to an all-one vector and the initial x to an all-zero vector. We set the stop criteria as the residual $\|r\|_2 < 10^{-12}$. We also set a 20K maximum iteration number no matter if the solver converges or not.

7.1.2 Accelerators/Platforms. We evaluate three FPGA JPCG accelerators – XcgSolver, SerpensCG, and CALLipepla and a GPU JPCG. We prototype all three FPGA JPCG accelerators on a Xilinx Alveo U280 FPGA [45]. The GPU used is an NVIDIA A100. Table 2 shows the specifications of the four evaluated accelerators/platforms. A100 GPU used more advanced process node than that of U280 FPGA.

FPGAs. The design details of the three FPGA accelerators are:

• **XcgSolver:** XcgSolver is a JPCG solver from Xilinx Vitis HPC [46, 47]. XcgSolver utilizes Vitis BLAS and SPARSE implementations for the SpMV and vector processing. We obtain the source code from the Xilinx Vitis Libraries git repo. XcgSolver uses the FP64 precision for all floating-point values. We use XcgSolver as a baseline in the evaluation.

• **SerpensCG:** We employ the Serpens [37] for SpMV processing and modify Serpens to support the FP64 processing. The precision of all floating-point processing in SerpensCG is FP64. Although Serpens [37] is a powerful SpMV(FP32) accelerator, it does not support the JPCG. So we build SerpensCG as a strong baseline to study the performance gap of a JPCG accelerator based on Serpens SpMV accelerator with minimum effort between Xilinx XcgSolver and a fully optimized JPCG accelerator; i.e., CALLipepla. Therefore, SerpensCG only leverages the stream based instruction set (presented in Section 4) for the JPCG without mixed precision or the vector related optimizations.

• **CALLipepla:** CALLipepla is a fully optimized JPCG accelerator plus mixed precision (presented in Section 6) and the vector related optimizations (introduced in Section 5). We use Mix-V3 mixed precision where only the SpMV non-zero values are in FP32 and all other processing is in FP64 for CALLipepla.

All three accelerators allocate 16 HBM channels for SpMV non-zero processing. We build SerpensCG and CALLipepla with TAPA framework [6, 16] and leverage AutoBridge [17] for frequency boosting [18]. We use Xilinx Vitis 2021.2 for back-end FPGA implementation for all three accelerators. We utilize TAPA runtime to measure the FPGA accelerator execution latency and Xilinx Board Utility xbufit11 to report the power information.

NVIDIA A100 GPU. We build a GPU JPCG with CUDA version 11 on an NVIDIA A100 GPU. We use cuSparse routine cusparseSpMV to compute SpMV and cuBLAS routines cublasDaxpy, cublasDscal, cublasDdot, and cublasDcopy for vector processing. We measure the GPU execution time with cudaEventElapsedTime and the GPU power with NVIDIA System Management Interface nvidia-smi.

The NVIDIA A100 GPU is much more powerful than the FPGA accelerators as the specifications in Table 2 show. All four accelerators/platforms use HBM2 for memory, but the A100 GPU memory
Table 3: Matrix name, row/column number, and number of non-zeros (NNZ) of the evaluated matrices.

ID	Matrix	#Row	NNZ	ID	Matrix	#Row	NNZ	ID	Matrix	#Row	NNZ
M1	ex9	3,363	99,471	M2	bcscstk15	3,948	117,816	M3	bodyy4	17,546	121,350
M4	ted_b	10,685	144,579	M5	ted_b_unscaled	10,685	144,579	M6	bcscstk24	3,562	159,910
M7	nasa298	2,910	174,296	M8	nasa363	5,357	207,123	M9	bcscstk28	4,410	219,024
M10	s2rmq4m1	5,489	263,351	M11	chuckle	15,681	676,515	M12	olafu	16,146	1,915,156
M13	gyro_k	17,361	1,021,159	M14	bcscstk36	23,052	1,143,140	M15	msc10848	10,848	1,229,776
	ran_1x4y	9,168	1,316,789		mdl_k	9,000	3,379,690				
M19	2cubes_sphere	101,492	1,647,264	M20	cfd2	123,440	3,095,406	M21	cubovea3	146,689	3,636,643
M22	ship_003	121,728	3,777,036	M23	offshore	259,789	4,242,673	M24	shipsec5	179,860	4,598,604
M25	ecology2	999,999	4,995,991	M26	tnt_syn	726,713	5,080,961	M27	bone501	127,224	5,516,602
M28	hood	220,542	9,859,422	M29	bmwca_1	148,770	10,641,602	M30	af_she113	504,855	17,362,051
M31	Fault_639	638,802	27,245,944	M32	Emilia_523	923,136	40,373,538	M33	Geo_A138	1,437,960	60,236,322
M34	Seren	1,391,349	64,131,971	M35	audit_k	945,695	77,651,847	M36	Flan_1555	1,564,794	114,165,372

Table 4: Solver time (in seconds) of the four accelerators: XcgSolver, SerpensCG, CALLipepla, and A100 GPU. The speedup is the solver time of an accelerator/platform normalized to the XcgSolver solver time. We highlight an evaluation datum when it is the fastest among all four accelerators or an evaluation datum when it is slower than the baseline XcgSolver.

ID	Matrix	#Row	NNZ	XcgSolver	SerpensCG	CALLipepla	A100	GeoMean
M1	x8_1E-2	3,634	2,198	1.545E+1	3.396	3.932	1.956E+1	9.053
M2	ex9	3,363	99,471	1.545E+1	3.932	3.932	1.956E+1	9.053
M3	ex9	3,363	99,471	1.545E+1	3.932	3.932	1.956E+1	9.053
M4	ted_b	10,685	144,579	1.545E+1	3.932	3.932	1.956E+1	9.053
M5	ted_b_unscaled	10,685	144,579	1.545E+1	3.932	3.932	1.956E+1	9.053
M6	bcscstk24	3,562	159,910	1.545E+1	3.932	3.932	1.956E+1	9.053
M7	bcscstk28	4,410	219,024	1.545E+1	3.932	3.932	1.956E+1	9.053
M8	bcscstk36	9,000	3,379,690	1.545E+1	3.932	3.932	1.956E+1	9.053
M9	bcscstk42	13,758	57,192,028	1.545E+1	3.932	3.932	1.956E+1	9.053

is 4× in terms of capacity and > 4× in terms of bandwidth compared with the three FPGA accelerators. Meanwhile, the A100 GPU frequency is 5 – 6× of the FPGA accelerator frequency. However, in the following section we will show that the PGA accelerators are able to outperform the GPU in many aspects of the JPCG.

7.2 Solver Performance

We compare the solver time of the 36 evaluated matrices on the four accelerators/platforms in Table 4. The solver time is the measured kernel time that a kernel reaches the convergence criteria or the maximum iteration number. We also report the speedup which is defined as (the execution time of an accelerator/platform) / (the execution time of XcgSolver).

7.2.1 Matrix M1 to M18, the 18 medium-scale sparse matrices used by Xilinx Vitis. Overall, SerpensCG, CALLipepla, and A100 GPU achieve 1.94×, 3.24×, and 3.95× geomean speedup compared with XcgSolver. CALLipepla is up to 5.52× faster compared with XcgSolver and outperforms XcgSolver on all 18 matrices. Among the 18 matrices, CALLipepla is the fastest and outperforms A100 GPU in 16 matrices (M1 to M16). SerpensCG achieves 1.19× speedup compared with XcgSolver, which indicates that one can leverage the Serpens [37] to support the FP64 JPCG with minimum efforts and realize a better performance than Xilinx’s XcgSolver. If we compare CALLipepla with SerpensCG, CALLipepla is 2.71× faster than SerpensCG. The performance gain illustrates that there is still speedup potential although SerpensCG is faster than XcgSolver, and the mixed precision and the vector related optimizations leads to an even higher performance. Meanwhile, CALLipepla is 2.32× compared with the A100 GPU performance.

7.2.2 Matrix M19 to M36, 18 large-scale sparse matrices. Overall, SerpensCG, CALLipepla, and A100 GPU achieve 1.49×, 4.78×, and 15.72× geomean speedup compared with XcgSolver. For the 18
large-scale matrices, we notice that (1) XcgSolver failed on eight matrices because memory allocation exceeds available memory space while the other three accelerators/platforms support all the 18 large-scale matrices, and (2) Callipepla achieved a higher speedup than the speedup on Matrix M1 to M18 compared with XcgSolver, i.e., 4.787× v.s. 3.241×. The superior speedup indicates that Callipepla has better scalability and supports larger problem size than Xilinx’s XcgSolver. The highest speedup Callipepla achieves is 11.11×. However, A100 GPU performs better on Matrix M19 to M36 for the following reason. The SpMV in CG is memory bound. The arithmetic intensity of an FP64 SpMV is 0.125 FP/B (in comparison, the arithmetic intensity of an FP64 dense 128×128 matrix-matrix multiplication is 10.7 FP/B). Thus, CG has low data reuse and demands high memory bandwidth for high performance. GPUs are good at high throughput processing. Thus, for smaller problems, it is difficult to utilize all computing resources and especially off-chip memory bandwidth for CG. So GPUs such as A100 which has a extremely high memory bandwidth (1.56TB/s) perform better on large-scale problems. Because of the stream based instructions and decentralized vector scheduling, Callipepla is efficient in controlling the processing modules. However, for GPU, the kernel launching control signal is issued from the host CPU, which leads to the inefficiency of the GPU when processing small-size problems. So Callipepla achieves a higher minimum throughput than the A100 GPU. The FoP of A100 GPU, XcgSolver, SerpensCG, and Callipepla are 0.616%, 4.74%, 5.06%, and 10.7%, respectively. In fact, the HPCG Benchmark [12] uses the conjugate gradient solver to benchmark computer clusters’ performance. In the June 2022 Results of HPCG Benchmark, the FoP ranges from 0.2% – 5.6%. The 10.7% FoP achieved by Callipepla is significant.

7.3 Computational & Energy Efficiency

Table 5 shows the throughput, fraction of peak (FoP), and energy efficiency of the four accelerators/platforms.

Throughput – GFLOP/s	Peak	Min	Max	GeoMean
A100	29.20	2.69	179.8	29.23 \((4.379\times) \)
XcgSolver	410	2.96	19.43	6.743 \((1.000\times) \)
SerpensCG	410	2.73	20.76	7.846 \((1.164\times) \)
Callipepla	410	10.36	43.71	22.69 \((3.366\times) \)

Fraction of Peak	A100	XcgSolver	SerpensCG	Callipepla
0.616%	4.74%	5.06%	10.7\%	

Energy Efficiency – GFLOP/J	Min	Max	GeoMean
A100	1.10E-2	7.39E-1	1.21E-1 \((0.883\times) \)
XcgSolver	4.21E-2	3.96E-1	3.75E-1 \((1.000\times) \)
SerpensCG	6.35E-2	4.87E-1	1.82E-1 \((1.326\times) \)
Callipepla	1.85E-1	7.86E-1	4.03E-1 \((2.945\times) \)

Table 6: FPGA resource utilization of XcgSolver, SerpensCG, and Callipepla, all on the Xilinx U280 FPGA.

LUT	FF	DSP	
XcgSolver	5036 (38.6%)	877K (33.7%)	1196 (13.3%)
SerpensCG	3995 (30.6%)	445K (17.1%)	1256 (13.7%)
Callipepla	5089 (38.9%)	557K (21.4%)	1940 (21.5%)

BRAM	URAM	
XcgSolver	595 (29.5%)	128 (13.3%)
SerpensCG	460 (22.8%)	384 (40.0%)
Callipepla	716 (35.5%)	384 (40.0%)

7.4 Resource Utilization

Table 6 compares the utilization of the FPGA resources including LUT, FF, DSP, BRAM, and URAM of the three FPGA accelerators. Compared with XcgSolver, Callipepla consumes almost the same LUT \((\sim 39\%) \) and less FF \((21.4\% \text{ v.s. } 33.7\%) \). Callipepla consumes more DSPs \((1940 \text{ v.s. } 1196) \) than XcgSolver, which indicates that Callipepla has a higher computation capacity. Callipepla uses more BRAMs \((716 \text{ v.s. } 595) \) and URAMs \((384 \text{ v.s. } 128) \). In the Callipepla accelerator, the SpMV requires 512 BRAMs and all URAMs, the other 206 BRAMs are consumed by Xilinx’s add-on modules.

7.5 Iteration Number & Residual Trace

7.5.1 Iteration Number. Table 7 reports the iteration numbers of the evaluated matrices on the CPU, Xilinx’s XcgSolver, Callipepla, and NVIDIA A100. We use the CPU as a golden reference. For most matrices, the iteration numbers of Callipepla and the A100 are within a 10 iteration difference compared to the CPU. However, XcgSolver shows significant iteration increases on many matrices. For example, on Matrix M20 cf2, XcgSolver takes 2,914 more iterations to reach convergence. XcgSolver pads zeros between dependent elements in floating-point accumulation to resolve the dependency issue. XcgSolver uses floating-point accumulation latency as the dependency distance. However, the HLS may insert extra latency when scheduling the processing pipeline. Therefore, the true dependency distance may become larger than the floating-point accumulation latency. So we observe the unstable numerical behaviors of XcgSolver. On the contrary, the SpMV in Callipepla is based on the Serpens [37] accelerator which uses the load-store dependency length instead of the floating-point accumulation latency. So the numerical accuracy of Callipepla is higher than XcgSolver. Meanwhile, Serpens [37] uses an out-of-order scheme.
V1/V2/V3, and Callipepla (where the SpMV input sparse matrix and input vector are in FP32, colored in green) do not converge within 20K iterations. All three residual traces show the Mix-V3 (where only the SpMV input sparse matrix are in FP32, colored in magenta) are closely following the traces of the default CPU FP64 (colored in black). We see that XcgSolver exceeds available memory space and fails on eight accelerator use DSPs to implement FP64 multiplication and addition, which we suspect that there is a numerical difference to some degree in the high-precision FP64 operation in the Xilinx HLS DSP implementation.

7.5.2 Residual Trace
Figure 9 illustrates the residual traces of three matrices nasa2910, gyro_k, and msc10848 with five precision settings: default FP64, Mix-V1/V2/V3, and Callipepla on-board execution. Y-axis: solver residuals; X-axis: iteration number.

7.6 Bottleneck and Possible Improvement
In the design of Callipepla accelerator, we match the processing rate with the HBM bandwidth as discussed in Section 4. Therefore, the bottleneck of Callipepla is the HBM bandwidth. Exhibited in Table 2 the bandwidth of the NVIDIA A100 GPU is 4.17x of Callipepla (1.56 TB/s v.s. 374 GB/s). There are two HBM stacks on a Xilinx U280 FPGA for a total bandwidth of 460 GB/s. If Xilinx deploys 8 (4×) HBM stacks on a next generation HBM FPGA, we are able to achieve 3.07× throughput advantage compared to an A100 GPU. However, the current HBM controllers is area-hungry. In our evaluation, the HBM controllers consume almost one SLR and a U280 FPGA only has 3 SLRs. It is not practical to scale up 4× bandwidth with the current HBM controllers because that will consume 4 SLRs. We would like Xilinx to optimize the HBM controller IP or deploy it as an ASIC unit.

8 CONCLUSION
In the design of FPGA JPCG accelerator we overcome three challenges – (1) the support an arbitrary problem and accelerator termination on the fly, (2) the coordination of long-vector data flow among processing modules, and (3) saving off-chip memory bandwidth and maintaining FP64 precision convergence. To resolve the challenges, we present Callipepla, an CG accelerator on Xilinx U280 HBM FPGAs with our innovative solutions – (1) the support an arbitrary problem and accelerator termination on the fly, (2) the coordination of long-vector data flow among processing modules, and (3) saving off-chip memory bandwidth and maintaining FP64 precision convergence. To resolve the challenges, we present Callipepla, an CG accelerator on Xilinx U280 HBM FPGAs with our innovative solutions – (1) a stream centric instruction set, (2) vector streaming reuse and decentralized vector scheduling, and (3) mixed FP32/FP64 precision SpMV. The evaluation shows that compared to the Xilinx HPC product XcgSolver, Callipepla achieves a speedup of 3.94x, 3.36x higher throughput, and 2.94x better energy efficiency. We also achieve 77% of the throughput with 3.34x higher energy efficiency compared with an NVIDIA A100 GPU.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers of FPGA 2023 for their constructive comments and Jiming Zhang for helping with the artifact evaluation. This work is supported in part by the NSF RTML Program (CCF-1937599), CDSC industrial partners (https://cdsc.ucla.edu/partners), the Xilinx XACC Program, and the AMD2 HACC Program.

2Cong has a financial interest in AMD.
REFERENCES

[1] Athanasios C Antoulas. 2005. Approximation of Large-Scale Dynamical Systems. Vol. 6. SIAM.

[2] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Irzene, and John Wickerson. 2020. Combining Dynamic & Static Scheduling in High-level Synthesis. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 288–298.

[3] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Irzene, and John Wickerson. 2021. DASS: Combining Dynamic & Static Scheduling in High-Level Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 3 (2021), 628–641.

[4] Yuze Chi and Jason Cong. 2020. Exploiting Computation Reuse for Stencil Accelerators. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[5] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with Optimized Dataflow Architecture. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 1–8.

[6] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and Jason Cong. 2021. Extending High-Level Synthesis for Task-Parallel Programs. In 2021 IEEE 29th Annual Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 204–213.

[7] Young-kyu Choi, Yuze Chi, Wei Kang Qiao, Nikola Samardzic, and Jason Cong. 2021. TBHM Connect: High-Performance HLS Interconnect for FPGA HBM. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 116–126.

[8] Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Codi Hao Yu, Chen Zhang, and Peipei Zhou. 2018. Best-Effort FPGA Programming: A Few Steps Can Go a Long Way. arXiv preprint arXiv:1807.01340 (2018).

[9] Jason Cong, Muhuan Huang, and Peng Zhang. 2014. Combining Computation and Communication Optimizations in System Synthesis for Streaming Applications. In Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays. 213–222.

[10] Jason Cong and Jie Wang. 2018. PolySA: Polyalgebraic-Based Systolic Array Auto-Compilation. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 1–8.

[11] Timothy A. Davis and Yidan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1–25.

[12] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. 2015. HPCG Benchmark: A Code for Solving Linear Systems. ACM Transactions on Mathematical Software (TOMS) 42, 5 (2016), 59–69.

[13] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Irzene, and John Wickerson. 2020. AutoBridge: Coupling Coarse-Grained Gate Arrays in FPGA/HBM. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–8.

[14] Mohammad Tourkaboni, Amr Elmasry, and Neo Li. 2020. DASS: Combining Dynamic & Static Scheduling in High-Level Synthesis. IEEE Transactions on Computer-Aided Design. 703–716.

[15] Antonio Roldao-Lopes, Amar Shahzad, George A Constantinides, and Eric C Krigman. 2012. FPGA accelerators for the Iterative Solution of Systems of Linear Equations. J. Comput. Appl. Math. 236, 15 (2012), 3584–3590.

[16] Magnus R Hestenes and Eduard Stiefel. 1952. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. Bur. Standards 49, 6 (1952), 409.

[17] Nicholas J Higham. 2002. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics.

[18] Athanasios C Antoulas. 2005. Approximation of Large-Scale Dynamical Systems. Vol. 6. SIAM.

[19] Xilinx. 2022. Alveo U280 Data Center Accelerator Card Data Sheet. https://www.xilinx.com/content/dam/en-zz/Solutions/Data-Center/alu280/pdf/u280-80gb-datasheet-update-avd20210501-c2-eb.pdf.

[20] Sahithi Rampalli, Natasha Sehgal, Ishita Bindlith, Tanya Tyagi, and Pawan Kumar. 2018. Efficient FPGA Implementation of Conjugate Gradient Methods for LAPACK System using HLS. arXiv preprint arXiv:1803.03979 (2018).

[21] Jianyi Cheng, Lana Josipovic, George A Constantinides, and Eric C Krigman. 2012. FPGA accelerators for the Iterative Solution of Systems of Linear Equations. J. Comput. Appl. Math. 236, 15 (2012), 3584–3590.

[22] Hanqing Zeng and Viktor Prasanna. 2020. GraphACT: Accelerating GCN training on Field-Programmable Gate Arrays. In 2020 IEEE/ACM 48th Annual International Symposium on Microarchitecture (MICRO). IEEE, 35–56.

[23] Tony Nowatzki, Nawsha Ardalani, Karthikeyan Sankaranarayanan, and Jian Weng. 2018. Hybrid Optimization/Heuristic Instruction Scheduling for Programmable Accelerator Codegen. In Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques. 1–15.

[24] Tony Nowatzki, Vinay Gangadhar, Nawsha Ardalani, and Karthikeyan Sankaranarayanan. 2017. Stream-Dataflow Acceleration. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). IEEE, 416–429.

[25] NVIDIA. 2021. NVIDIA A100 TENSOR CORE GPU. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/ala100/pdf/ala100-80gb-datasheet-upgrade-ala100-0922021.pdf.

[26] Sihao Liu, Jian Weng, Dylan Kupsh, Atefah Sobrabazadeh, Zhengrong Wang, Licheng Guo, Jiyuan Liu, Maxim Zulfin, Rishabh Mani, Licheng Zhang, et al. 2022. OverGen: Improving FPGA Usability through Domain-specific Overlay Generation. In 2022 57th ACM/IEEE International Symposium on Microarchitecture (MICRO). IEEE, 35–56.

[27] Tony Nowatzki, Vinay Gangadhar, Nawsha Ardalani, and Karthikeyan Sankaranarayanan. 2017. Stream-Dataflow Acceleration. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). IEEE, 416–429.

[28] Hanqing Zeng and Viktor Prasanna. 2020. GraphACT: Accelerating GCN training on Field-Programmable Gate Arrays. In 2020 IEEE/ACM 48th Annual International Symposium on Microarchitecture (MICRO). IEEE, 35–56.

[29] Jian Weng, Sihao Liu, Zhengrong Wang, Preyas Shah, and Tony Nowatzki. 2020. DSAGEN: Synthesizing Programmable Spatial Accelerators. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 269–281.

[30] Jian Weng, Sihao Liu, Dylan Kupsh, and Tony Nowatzki. 2022. Unifying Spatial Accelerator Compilation with Diagonal and Modular Transformations. IEEE Micro 42, 5 (2022), 59–69.

[31] Antonio Roldao-Lopes, Amar Shahzad, George A Constantinides, and Eric C Krigman. 2012. FPGA accelerators for the Iterative Solution of Systems of Linear Equations. J. Res. Nat. Bur. Standards 49, 6 (1952), 409.

[32] Nicholas J Higham. 2002. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics.

[33] Xilinx. 2022. Vitis HPC Library. https://xilinx.github.io/Vitis_Libraries/hpc/.

[34] Xilinx. 2022. Alveo U280 Data Center Accelerator Card Data Sheet. https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds663-u280.pdf.

[35] Xilinx. 2022. Vitis HPC Library. https://xilinx.github.io/Vitis_Libraries/hpc/.

[36] Xilinx. 2022. Vitis Libraries. https://github.com/Xilinx/Vitis_Libraries.

[37] Hanqing Zeng and Viktor Prasanna. 2020. GraphACT: Accelerating GCN training on Field-Programmable Gate Arrays. In 2020 ACM/IEEE International Symposium on Field-Programmable Gate Arrays. 255–265.
[49] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 161–170.

[50] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 15–24.