The complete chloroplast genome sequence of Catalpa fargesii (Bignoniaceae), a species endemic to China

Songzhi Xu¹, Wenjun Ma² and Guijuan Yang²

¹School of Life Science, Nantong University, Nantong, China; ²State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Tree Breeding and Cultivation of Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China

ABSTRACT
Catalpa fargesii Bur. is endemic to China. Its complete chloroplast genome sequence was firstly reported in this study. The whole chloroplast genome of this species was 157765 bp in length including a pair of inverted repeat (IR, 30252 bp) regions separated by a small single copy (SSC, 12662 bp) and a large single copy (LSC, 84599 bp). The genome consisted of 134 genes, including 89 protein-coding genes, 8 rRNA and 37 tRNA genes. The phylogenetic analysis strongly supported that C. fargesii was closely related to C. fargesii f. duclouxii and C. bungei.

CONTACT Guijuan Yang yangguijuan123@163.com State Key Laboratory of Tree Genetics and Breeding; Key Laboratory of Tree Breeding and Cultivation of Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
four chains of the Markov Chain Monte Carlo (MCMC) were run for 5,000,000 generations starting with a random tree, sampling one tree every 1000 generations. Majority-rule (>50%) consensus trees were generated after removing a 25% burn-in. Phylogenetic analysis results strongly supported that *C. fargesii* was closely related to a clade including *C. fargesii* f. *duclouxii* and *C. bungei* (MP-BS = 100, BI-PP = 1.00) (Figure 1). The phylogenetic relationship of Bignoniaceae recovered from this study is congruent with that of Olmstead et al. (2009).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Nantong Science and Technology Project under Grant number JC2018070 and Fundamental Research Funds of Chinese Academy of Forestry under Grant number CAFYB2018SY008.

Data availability statement

The data that support the finding of this study is available in GenBank at https://www.ncbi.nlm.nih.gov/ with an accession number MW338733. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA715373, SANN18347870, and SRR14027477, respectively.

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol.* 19(5):455–477.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. *Phytochem.* Bull. 19:11–15.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol.* 30(4):772–780.
Ma WJ, Xiao Y, Li Y, Hu P, Wang Z, Yang GJ, Wang JH. 2021. Overexpression of CfPIP1-1, CfPIP1-2, and CfPIP1-4 genes of Catalpa fargesii in transgenic Arabidopsis thaliana under drought stress. J for Res. 32(1):285–296.

Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ. 2009. A molecular phylogeny and classification of Bignoniaceae. Am J Bot. 96(9):1731–1743.

Olsen RT, Kirkbride JH. 2017. Taxonomic revision of the genus Catalpa (Bignoniaceae). Brittonia. 69(3):387–421.

Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics. 14(9):817–818.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19(12):1572–1574.

Swofford D. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sunderland (MA): Sinauer associates.