Abstract. The topology of multispanning membrane proteins in the mammalian endoplasmic reticulum is thought to be dictated primarily by the first hydrophobic sequence. We analyzed the in vivo insertion of a series of chimeric model proteins containing two conflicting signal sequences, i.e., an NH2-terminal and an internal signal, each of which normally directs translocation of its COOH-terminal end. When the signals were separated by more than 60 residues, linear insertion with the second signal acting as a stop-transfer sequence was observed. With shorter spacers, an increasing fraction of proteins inserted with a translocated COOH terminus as dictated by the second signal. Whether this resulted from membrane targeting via the second signal was tested by measuring the targeting efficiency of NH2-terminal signals followed by polypeptides of different lengths. The results show that targeting is mediated predominantly by the first signal in a protein. Most importantly, we discovered that glycosylation within the spacer sequence affects protein orientation. This indicates that the nascent polypeptide can reorient within the translocation machinery, a process that is blocked by glycosylation. Thus, topogenesis of membrane proteins is a dynamic process in which topogenic information of closely spaced signal and transmembrane sequences is integrated.

Key words: endoplasmic reticulum • glycosylation • integral membrane protein • signal recognition particle • signal sequence

In higher eukaryotic cells, most membrane and secretory proteins are targeted by a hydrophobic signal sequence to the ER membrane in a cotranslational process involving the signal recognition particle (SRP)1 and the SRP receptor (for reviews see Walter and Johnson, 1994; High and Laird, 1997). Membrane insertion and translocation of polypeptides is mediated by the Sec61 complex, which forms a gated pore (Görlich and Rapoport, 1993; Hanein et al., 1996; Hamman et al., 1997) and specifically recognizes signal sequences (Mothes et al., 1998). A additional components that contribute to the insertion and translocation process are the ribosome, which binds to the translocation pore and largely seals it towards the cytosol, TRAM (translocating chain-associating membrane protein) (Görlich and Rapoport, 1993; Voigt et al., 1996; H egde et al., 1998), and BiP, a chaperone that binds to the unfolded polypeptide on the lumenal side of the membrane and drives rapid transfer of hydrophilic sequences through the membrane (Brodsky et al., 1995; Matlack et al., 1999). The signal peptidase complex and the oligosaccharyl transferase complex are also closely associated with the translocon, since they are able to cotranslationally modify the translocating polypeptide (Habener et al., 1976; Rothman and Lodish, 1977; M arcer and M cKean, 1978). To what extent, and how these components influence the insertion process and topogenesis is still largely unknown.

A signal sequence may be inserted into the translocon and subsequently the membrane, with either its NH2 or its COOH terminus facing the cytosol (Spiess, 1995). Cleaved signals and signal-anchor sequences of type II membrane proteins assume an Nexo/Ccyt orientation, whereas the reverse signal-anchors of type III membrane proteins insert with an Ncyt/Cexo orientation. Several features determine which end of the signal is translocated across the membrane. The most established feature is the distribution of charged residues flanking the hydrophobic core of the signal. In natural proteins, positive charges are statistically enriched on the side remaining cytosolic (the “positive-inside rule” of von Heijne, 1989; and the “charge differ-
ence rule” of Hartmann et al., 1989). The flanking charges were shown by mutagenesis to be important for orienting the signal sequence; however, the mutant proteins did not strictly follow the charge rules and often inserted with mixed topologies (Beltzer et al., 1991; Parks and Lamb, 1991; A mdrews et al., 1992), indicating that additional features codetermine the insertion process. These features include the length and hydrophobicity of the signal sequence. Long, hydrophobic sequences favor translocation of the NH₂-terminus (Sakaguchi et al., 1992; Wahlberg and Spiess, 1997; Eusebio et al., 1998; H arley et al., 1998). Furthermore, rapid folding of the NH₂-terminal hydrophilic segment preceding the apolar signal sequence has been shown to inhibit NH₂-terminal translocation (D enzer et al., 1995).

Multispanning membrane proteins are believed to be targeted to the ER membrane by their first hydrophobic signal, which is either a cleaved signal peptide or the first transmembrane segment of the protein. The subsequent transmembrane domains insert with alternating orientations. According to the simplest model, the initial signal defines its own orientation as well as the orientations of all subsequent transmembrane segments. The latter do not require any additional information, but will simply follow the lead of the first signal. Evidence for this “linear insertion model” (initially proposed by Blobel, 1980) has been provided by in vitro studies using chimeric proteins with two to four transmembrane segments separated by ~50-200 residues from each other (Wessels and Spiess, 1988; Lipp et al., 1989). The results showed that signal-anchors insert as stop-transfer sequences depending only on their position relative to the preceding hydrophobic segments.

However, statistics show that internal transmembrane domains of natural multispanning proteins also follow the charge rules, although less stringently than the most NH₂-terminal signal (von Heijne, 1989). This suggests that the subsequent transmembrane segments also possess topological information. In support of this, insertion of clusters of positive charges into short exoplasmic loops of model proteins resulted in individual hydrophobic domains not spanning the membrane at all (“frustrated” topologies; Gravelin et al., 1997). Similarly, inversion of the charge difference of the first signal of the glucose transporter Glu1 did not affect the topology of the rest of the molecule, but prevented insertion of the first signal (Sato et al., 1998). These studies showed that charged residues could also affect the insertion process at internal positions, and suggested that multispanning proteins contain topogenic information throughout their sequence.

Interestingly, the hydrophilic sequences separating transmembrane segments in natural proteins are frequently much shorter than those used in the studies supporting the linear insertion model. Here, we systematically analyzed the topogenic contribution of an internal hydrophobic sequence in relation to its distance from an NH₂-terminal signal sequence. Depending on the characteristics of the signals used, nonlinear insertion was observed only with spacer sequences of ~80 residues. Topogenesis was found to be affected by glycosylation, revealing surprising conformational dynamics of the polypeptide during the orientation process within the translocon.

Materials and Methods

DNA Constructs

All constructs were made by site-directed mutagenesis using PCR with V ent polymerase (New England Biolabs). The final constructs for in vivo expression were subcloned into the vector pECE (Ellis et al., 1986) and verified by sequencing. To construct chimeric proteins with conflicting signals, the coding sequence for the 98 NH₂-terminal residues of influenza hemagglutinin (strain A/An/305/57 [H 2N2]) (Gething and Sambrook, 1981) was fused via a linker sequence (Gly-Ser) in front of codon 4 of the cDNA of the asialoglycoprotein (AGP) receptor subunit H 1 (Spiess et al., 1985). The codon for methionine in position 95 was mutated to one for isoleucine to eliminate potential internal translation initiation. The resulting sequence encoded a chimeric protein with two ER targeting signals separated by a spacer of 128 residues. By PCR with this sequence as a template, 3° truncations were prepared consisting of a 5° Bgl II site, the COOH-terminal 100, 80, 60, 40, or 20 residues of the spacer sequence, and the signal and the COOH-terminal remainder of H. In front of these sequences, the cDNA of the signal sequence of hemagglutinin (H.), human prepro-vasopressin-neurophysin II (V), bovine preprolactin (P), and the AGP receptor H 1 (with the wild-type hydrophilic sequence, A., or with a 30 residue deletion, ΔA.) (Beltzer et al., 1991), as shown in Fig 1A, were ligated by B smal/ Bgl II (Gly-Ser) to produce five series of plasmids. The constructs (schematically shown in Fig 1 A) were named to indicate the origin of the first signal, the length of the hydrophilic spacer sequence, and the origin of the second signal (e.g., V40A.). The series without the second signal (H20 etc.) was generated by deleting the entire coding region of the H 1 signal from the premade constructs harboring two conflicting signals (H20 etc.) by PCR.

To generate potential N-glycosylation sites in the spacer sequence, the codons for IleThrLeu (ITL), M TM, or G5S were inserted into the spacer sequence after the codon for A-n-3 of the H 1 signal sequence of the spacer sequence between the signals. To destroy the glycosylation site NITL, the codon for Thr was mutated to one for Asn. To test a different spacer sequence with a natural glycosylation site (NFT), the residues 26–59 of V40A. were replaced by residues 61–100 of H 1, resulting in V45(NFT)A. The glycosylation site was mutated to QTF in V45(QTF)A.

To generate the truncated constructs H55, H 75, H 95, and H 115, the 5° sequences of constructs H40(NIT)A, H60(NIT)A, H80(NIT)A, and H100(NIT)A encoding the hemagglutinin signal and the spacer sequences were fused via two methionine codons and a Kpn I site encoding Gly-Thr to the NH₂-terminal residues of H 1, which are recognized by the antibody anti-H 1C. Constructs V55, V 75, V 95, and V 115 were constructed accordingly.

In Vivo Expression and Analysis of Receptor Constructs

Cell culture reagents were from Life Technologies, Inc. COS-1 cells were grown in modified MEM supplemented with 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin at 37°C with 7.5% CO₂. Transient transfection was performed with lipofectin (Life Technologies, Inc.) according to the manufacturer’s instructions in 6-well clusters, and the cells were processed the second day after transfection. For in vivo labeling, transfected cells were incubated for 40 min in methionine-free medium, labeled for 30 min at 37°C with 100 μC/ml [35S]methionine in starvation medium, transferred to 4°C, washed twice with PBS, lysed, and immunoprecipitated using a rabbit antiserum directed against a synthetic peptide corresponding to residues 277–287 near the COOH terminus of the AGP receptor H 1 (anti-H 1C). The immune complexes were isolated with protein A–Sepharose (Amersham Pharmacia Biotech) and analyzed by SDS-PAGE and fluorography. For deglycosylation, the immune complexes were released from protein A-Sepharose by boiling in 50 mM Na citrate, pH 6, 1% SDS, and incubated with 1 μl endo-β-D-N-acetyl glucosaminidase H (endo H) for 5 h at 37°C, before gel electrophoresis. Quantitation was performed using a PhosphorImager (M olcular Dynamics, Inc.). For constructs with the vasopressin signal, the results were corrected for the loss of a methionine within the signal peptide upon signal cleavage.

A lkaline extraction was performed as described previously (Gilm or and Blobel, 1985; Wessels et al., 1991). In brief, cells were homogenized and incubated in Hepes buffer, pH 11.5, for 15 min on ice. O ne half of each sample was centrifuged through a sucrose cushion, and the membrane pellet and the supernatant were immunoprecipitated separately and

The Journal of Cell Biology, Volume 147, 1999 258
compared with the immunoprecipitate of the untreated second half of the sample (total). In vitro translation was performed with standard procedures using rabbit reticulocyte lysate and dog pancreas microsomes (Wessels et al., 1991). Protease protection assay was performed as described by Wahlberg and Spiess (1997), except that the scraped cells were homogenized in a cell cracker (from EMBL) as described by Leitinger et al. (1995).

Results

Insertion of Polypeptides with Conflicting Signals

To characterize the in vivo topogenesis of membrane proteins and to test the linear insertion model, we constructed a series of chimeric polypeptides containing an NH$_2$-terminal cleaved signal sequence and an internal type II signal-anchor sequence. An NH$_2$-terminal portion of influenza virus hemagglutinin with its cleavable signal sequence was fused to the NH$_2$ terminus of subunit H1 of the A SG P receptor, a type II membrane protein. By successive truncation of the hydrophilic sequence separating the two hydrophobic signals, a series of constructs with spacers of ~20, 40, 60, 80, and 100 residues was created (H20A, H40A, etc.) (Fig. 1A). In the wild-type context, each of the two signals efficiently directs translocation of its COOH-terminal end across the membrane. A according to the linear insertion model, the NH$_2$-terminal hemagglutinin signal will target the polypeptide to the ER membrane and induce translocation of the spacer sequence. The internal H1 signal will then enter the translocon as a stop-transfer sequence and halt further translocation, leaving the COOH terminus of the polypeptide, including the only two potential sites for N-glycosylation, in the cytosol (Fig. 1B, left). If, in contrast, the topogenic information of the internal signal was dominant, the COOH-terminal portion of H1 would be translocated and glycosylated, whereas the NH$_2$-terminal signal would be forced to insert with the opposite N$_{exo}$/C$_{cyt}$ orientation or would fail to insert at all (Fig. 1B, right).

The constructs were transiently expressed in COS-1 cells, labeled for 30 min with [35S]methionine, immunoprecipitated, and analyzed by SDS-gel electrophoresis and fluorography (Fig. 2 A). Consistent with the linear insertion model, the constructs H100A and H80A yielded single products which were not glycosylated, as revealed by their resistance to deglycosylation by endo H. However, the constructs with shorter spacers between the signals, H60A, H40A, and H20A, produced an increasing fraction of an additional species of lower electrophoretic mobility. The shift in mobility was due to glycosylation, as shown by endo H digestion. Both the glycosylated and the unglycosylated products were stably integrated into the ER membrane, since they were recovered in the membrane pellet after alkaline extraction (Fig. 2 B). Under the same conditions, a control protein lacking a membrane anchor (H20–), was completely extracted into the soluble fraction. The results demonstrate that the internal signal, when separated by <80 residues from the NH$_2$-terminal signal, did not always function as a stop-transfer sequence, but was able to direct translocation of its COOH terminus across the membrane and to anchor the protein in a N$_{cyt}$/C$_{exo}$ orientation.

Whereas the sequence context of the internal H1 signal is the same in all constructs, that of the hemagglutinin signal is always different. As a result, the flanking charges, which are known to influence the topological preference of signal sequences, are not constant. The charge difference between the 15 COOH-terminal and the 15 NH$_2$-terminal flanking residues, Δ(C–N), as defined by Hartmann et al. (1989), is -0.5 for the hemagglutinin signal in its wild-type context. Δ(C–N) is more negative in H40A (-1.5), H60A (-1), and H80A (-1). Thus, the observed insertion pattern cannot be explained simply by an effect of the flanking charges on the orientation of the NH$_2$-terminal signal. Only in H20A, the construct with the shortest spacer, in which the flanking segments of the two signals largely overlap, is Δ(C–N) positive for the hemagglutinin signal (+2) and might favor translocation of the NH$_2$ terminus. To test experimentally the insertion behavior of the hemagglutinin signal in the different chimeras without the potential interference by a second signal, a series of
constructs was made lacking the hydrophobic part of the internal signal (H20−, H40−, etc.). In all cases, the COOH-terminal sequence was completely translocated and glycosylated (Fig. 2 C), demonstrating that different flanking sequences did not affect the functionality of the hemagglutinin signal as a secretory signal. It required the competition by the second signal to cause insertion of H20−, H40−, and H60− with a translocated COOH terminus.

The Ratio of Topologies Depends on the Characteristics of the First Signal

To determine the contribution of the NH\textsubscript{2}-terminal signal on topogenesis, the hemagglutinin signal in the H#A constructs was replaced by the cleavable signals from preprolactin (P#A) or the vasopressin precursor protein (V#A), or by the signal-anchor sequence of the ASGP receptor H1, either with (A#A) or without the complete 40-residue NH\textsubscript{2}-terminal, hydrophilic domain (ΔA#A) (Fig. 1 C). The constructs were expressed in COS cells and analyzed by gel electrophoresis and fluorography (Fig. 3). The fraction of glycosylated products corresponding to the topology with a translocated COOH terminus was quantified (Fig. 4). The constructs with the preprolactin signal yielded

Figure 2. ER insertion of chimeric proteins containing the NH\textsubscript{2}-terminal signal of hemagglutinin and the internal signal of the ASGP receptor H1. (A) Transfected COS cells were labeled with [35S]methionine for 30 min. The chimeric proteins were immunoprecipitated and analyzed by SDS-gel electrophoresis and fluorography after deglycosylation with endo H (+) or without treatment (−). (B) Membrane integration tested by alkaline extraction. Transfected COS cells were metabolically labeled and scraped. One half was subjected to alkaline extraction. The resulting supernatant (S) and pellet fractions (P), as well as the other half (the total, T) were then subjected to immunoprecipitation and analyzed by gel electrophoresis and fluorography. As a soluble control, H20−, which lacks a second, internal signal and is secreted into the ER lumen, was analyzed. (C) Translocation efficiency of the hemagglutinin signal in the absence of a second signal sequence. From the constructs H#A, the segment encoding the internal signal of the ASGP receptor H1 was deleted. The resulting H# constructs were expressed in COS cells, metabolically labeled, and analyzed by immunoprecipitation, gel electrophoresis, and fluorography. The position of molecular weight markers of 35 and 40 kD are indicated.

Figure 3. Insertion of chimeric proteins with different NH\textsubscript{2}-terminal signals. Chimeric proteins P#A, V#A, A#A, and ΔA#A, which contain the NH\textsubscript{2}-terminal signals of preprolactin, preprovasopressin-neurophysin II, and the full-size or truncated ASGP receptor H1, respectively, were expressed in COS cells and analyzed as described in Fig. 2 A. A asterisks indicate the uncleaved population of P20A. The position of molecular weight markers of 35 and 40 kD are indicated.
fewer COOH-terminally translocated proteins than those with the hemagglutinin signal: a maximum of 35% for P20A and none for P60A. Since the presequence of preprolactin is relatively long, signal cleavage could be observed for P20A. The unglycosylated, cleaved products displayed a slightly higher electrophoretic mobility than the glycosylated, uncleaved products (indicated by an asterisk in Fig. 3, panel P) after endo H digestion, consistent with their expected topologies (Fig. 1 B).

The constructs with the signal of vasopressin generated more glycosylated products than the other series: ~90% for V20A and ~50% with a spacer of 60 residues (V60A). However, with spacers of 80 or 100 residues, no glycosylated products were generated for any of the constructs. Based on these results, the strength of the different secretory signals, i.e., the ability to dominate the insertion process, can be ranked

\[P > H > V. \]

In the construct series A#A and ΔA#A, the first copy of the internal signal-anchor of the ASGP receptor H1 within the polypeptide appeared to dictate the topology, since glycosylated products were only generated with the shortest spacer length. In A20A and ΔA20A, the positive flanking charges at the NH₂ terminus of the second signal are also part of the COOH-terminal flanking region of the first, and are thus likely to weaken the first signal. Deletion of most of the 40-amino acid hydrophilic NH₂ terminus in ΔA20A increased the fraction of glycosylated products from ~55% to ~90%. Thus, the larger NH₂ terminus of A20A inhibits the topology with a translocated COOH terminus.

Figure 4. Quantitation of transmembrane topologies. Multiple experiments like those shown in Fig. 2 A and Fig. 3 were quantified using a PhosphorImager. The fraction of polypeptides with a glycosylated and thus translocated COOH terminus are plotted versus the length of the spacer separating the two signals. The curves are labeled with the abbreviation for the first signal sequence: H, hemagglutinin (filled circles); P, preprolactin (filled triangles); V, prepro-vasopressin-neurophysin II (filled squares); A, ASGP receptor H1 including the NH₂-terminal hydrophilic sequence (open squares); ΔA, ASGP receptor H1 with a truncated NH₂-terminal domain (open circles). The means and SDs of three to six determinations are shown.

Figure 5. Two mechanisms for topogenic competition. Competition between the signals for SRP in the cytosol (A) or for the preferred orientation in the translocon (B). See text for details.

Signal Competition for SRP?

Two mechanisms could explain the observed behavior of conflicting signals in the insertion process: competition between the signals for the recruitment of SRP in the cytosol (Fig. 5 A), and/or competition for the preferred topology within the translocon (Fig. 5 B). According to the first model, the kinetics of SRP binding to the first signal are slow enough that the second signal may emerge from the ribosome before SRP was recruited to the first. The two signals then compete directly for SRP binding. If the first signal binds SRP, it will initiate translocation of the spacer sequence. If the second signal does, it will induce translocation of the COOH terminus, whereas the first signal will remain in the cytosol or will subsequently insert into the membrane with an N⁰/Cyt orientation. This model predicts, in agreement with our results, that the ability of the second signal to compete for SRP decreases with the length of the spacer, and depends on the relative affinities of the two signals for SRP.

This model requires that at the time when the second...
signal emerges from the ribosome, there are still polypeptides that have not been targeted to the ER. To test this condition, we generated the constructs consisting of the signal of vasopressin or hemagglutinin, followed by 55, 75, 95, or 115 residues, including a diagnostic glycosylation site (Fig. 6 A) (V55, H55, etc.). Since at least 35 residues of a nascent polypeptide are hidden within the ribosome and inaccessible to SRP, translation will reach the stop codon and trigger disassembly of the ribosome when the first 20, 40, 60, or 80 residues following the signal sequence have emerged from the ribosome. This corresponds to a moment in the translation of the constructs V20A, V40A, V60A, and V80A (or of the corresponding constructs H5A) when the second hydrophobic sequence is just beginning to emerge from the ribosome (Fig. 6 A). When the stop codon is reached, only polypeptides that have already been targeted to the ER membrane will produce glycosylated products; all others will be released into the cytosol and remain unglycosylated. In vitro translation in reticulocyte lysate with dog pancreas microsomes added either during or after translation confirmed that these constructs could not be posttranslationally translocated (data not shown).

A's shown in Fig. 6 B, even the shortest construct with a vasopressin signal, V55, was >90% glycosylated (lanes 1 and 2), indicating that the binding of SRP to the vasopressin signal and its targeting to the ER membrane was fast. Only few polypeptides of the constructs V#A thus had the opportunity to be targeted by the second signal. In contrast, the polypeptides with a hemagglutinin signal produced significant fractions of unglycosylated products: ~40% of H55, ~25% of H75, and still ~10% of H95. Therefore, SRP recruitment is considerably slower than with a vasopressin signal. This suggests that the second signal in the H#A constructs might be able to compete for SRP binding. However, the numbers of untargeted polypeptides cannot account for the observed populations of H20A, H40A, and H60A with a translocated COOH terminus (Fig. 4). Most importantly, a larger fraction of the V#A than of the H#A constructs inserted with a translocated COOH terminus, even though targeting by the vasopressin signal is faster. Therefore, the different topologies are more likely the result of competition between the signals within the translocon (Fig. 5 B) than of the kinetics of SRP binding and targeting by the first signal.

Glycosylation in the Spacer Sequence Affects Topogenesis

According to the second model (Fig. 5 B), the spacer sequence of all polypeptides is exposed to the ER lumen, at least transiently. To probe the lumenal exposure of the spacer, a diagnostic N-glycosylation site was introduced. In the construct V40(NIT)A, a potential glycosylation site NIT was generated by insertion of three additional codons at asparagine 13 of the spacer segment. A's shown in Fig. 7 A, lanes 3 and 4, the site was efficiently modified, since all polypeptides were now glycosylated either once or twice, demonstrating that they had translocated either the spacer sequence (one glycosylation) or the COOH-terminal domain (two glycosylations). However, in comparison to V40A (Fig. 7 A, lanes 1 and 2), the fraction of twice glycosylated proteins dropped significantly. In a protease protection assay, it was confirmed that the efficiency of glycosylation in the translocated COOH terminus was not reduced (data not shown). Therefore, the ratio between the two topologies was significantly altered by addition of the glycosylation site in favor of polypeptides with a translocated spacer sequence. The fraction of products with a translocated COOH terminus decreased from ~75 to ~30% (Fig. 7 B). A similar effect was seen for the longer spacer of 60 residues, where insertion of the glycosylation site reduced this fraction from ~50% in V60A to ~20% in V60(NIT)A (Fig. 7 A, lanes 9–12, and Fig. 7 B). This showed that topogenesis is affected by glycosylation, a lu-

Figure 6. Kinetics of SRP recruitment and targeting by the vasopressin and hemagglutinin signals. Polypeptides consisting of the signal sequence of hemagglutinin or vasopressin followed by 55, 75, 95, or 115 residues, including a glycosylation site (H55, H75, etc. and V55, V75, etc.; schematically shown in A) were expressed in COS cells, metabolically labeled for 40 min, immuno-precipitated, incubated with (+) or without endo H (−), and analyzed by SDS-gel electrophoresis and fluorography (B and C). The unglycosylated fraction corresponds to polypeptides that had not been targeted to the ER, yet when the ribosome reached the stop codon and disassembled. The position of molecular weight markers of 9, 14, and 20 kD are indicated.
menal modification, which clearly takes place after targeting.

To exclude the possibility that the mutation exerted its effect by altering the conformational properties of the spacer sequence rather than by glycosylation itself, the sequence NIT was mutated to NIN, which is not modified by oligosaccharyl transferase (V40[NIN]A; Fig. 7 A, lanes 5 and 6, and Fig. 7 B): the effect on the topology was largely reverted. A different consensus sequence, NMT, which was also efficiently glycosylated, showed the same increase of polypeptides with translocated spacer sequences as NIT (Fig. 7 B). The sequence NGS, in contrast, did not affect topology, but also produced hardly any polypeptides with a single glycan (Fig. 7 A, lanes 7 and 8, and Fig. 7 B). This confirms that a consensus sequence N-X-S/T is not sufficient for the topogenic effect, but that efficient glycosylation is required. (Interestingly, NGS was reported to be the most efficient N-X-S consensus sequence for N-glycosylation in an in vitro study [Shakin-Eshleman et al., 1996]. Apparently, the sequence context dramatically affects the relative efficiencies of potential glycosylation sites). The effect of glycosylation on topology was also reproduced with an entirely different spacer sequence of 45 amino acids corresponding to a segment of the exoplasmic portion of H1 with a natural glycosylation site NFT. Mutation to QFT caused the fraction of COOH-terminally translocated polypeptides to increase from ~30% (V45[NFT]A) to ~50% (V45[QFT]A) (Fig. 7 B). As expected, the topogenic influence of glycosylation was also observed with hemagglutinin as the NH2-terminal signal sequence (H40[NIT]A vs. H40A) (Fig. 7 B). Glycosylation affects topogenesis and thus takes place before the topology of the polypeptides is determined, most likely by trapping the spacer sequence on the luminal side, preventing its return to the cytosolic side of the membrane (as illustrated in Fig. 8).

Discussion

The insertion of multispansing membrane proteins is a complex process that is still poorly understood. To test how successive topogenic determinants in a polypeptide chain are decoded by the targeting and translocation machinery of the mammalian ER, we expressed a series of chimeric proteins containing two conflicting signal sequences in COS cells. Only when the two signals are sufficiently separated from each other can the results be explained by a simple linear insertion process, in which the most NH2-terminal signal sequence determines its own orientation as well as that of a subsequent transmembrane domain. The required spacer length depends on the characteristics (the strength) of the two signals. The weakest NH2-terminal signal tested, that of vasopressin, completely forced the internal signal-anchor of the ASGP receptor H1 into a stop-transfer orientation with a spacer of 80 residues or longer, whereas the H1 signal-anchor itself could do so with a spacer of only 40 amino acids. With shorter spacers, mixed topologies were observed, indicating that topogenic information in the second signal of the polypeptide codetermined the insertion process. Hence, insertion did not occur in a strictly linear manner from the NH2 to the COOH terminus.

The situation is thus comparable to that found in bacteria by Coleman et al. (1985) using proteins with two copies of the prolipoprotein signal separated by either 13 or 27 residues. The spacer was predominantly translocated with the longer spacer, and the COOH terminus with the shorter one. However, a point mutation that shifted the first signal from a cotranslational to a posttranslational mode of action caused COOH-terminal translocation also with the longer spacer, suggesting that targeting and insertion was now directed by the second signal. Similarly, if in

![Figure 8](image-url)
of the chains with a hemagglutinin signal and translation) than in all the examples tested in yeast. 60% vasopressin signals followed by reporter polypeptides of dent targeting in COS cells using the hemagglutinin and open.

In this study, we analyzed the kinetics of SRP-dependent targeting in mammalian cells, where only few proteins are known to be targeted independently of SRP (Zimmermann et al., 1990; K utay et al., 1995), was still open.

In summary, topologenesis of membrane proteins appears to be a dynamic process in which topogenic information of closely spaced signal and transmembrane sequences throughout the polypeptide is integrated. Enzymes associated with the translocation machinery and acting on the protein to be inserted, such as oligosaccharyl transferase and potentially signal peptidase and chaperones, can affect the process and thereby contribute to the efficient and uniform insertion of natural membrane proteins.

We thank Nicole Beuret for technical assistance, and D r. N. K rall and our colleagues in the laboratory for critical reading of the manuscript.

This work was supported by Grant 31-4384.95 from the Swiss National Science Foundation.

Submitted: 21 j une 1999
Revised: 8 September 1999
Accepted: 14 September 1999

References

A ndrews, D.W., J.C. Y oung, L.F. M irels, and G.J. Czarnota. 1992. The role of the N-region in signal sequence and signal-anchor function. J. Biol. Chem. 267:7761–7769.

B eitz, J.P., K. Fieder, C. Fuhrer, I. G effen, C. Handschin, H.P. W essels, and M. Spiess. 1991. Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence. J. Biol. Chem. 266:973–978.

B lobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA. 77:1496–1500.

The Journal of Cell Biology, Volume 147, 1999
