Biomonitoring of polyaromatic hydrocarbon accumulation in rural gardens using lettuce plants

Nora Kováts 1 · Katalin Hubai 1 · Tsend-Ayush Sainnokhoi 1,2 · Gábor Teke 3

Received: 25 June 2020 / Accepted: 6 October 2020 / Published online: 16 October 2020
© The Author(s) 2020

Abstract

Purpose Air pollution in settlements is one of the most important factors affecting human health. While urban gardening and the consumption of home-grown vegetables have become more and more popular, several studies establish the risk of consuming vegetables exposed to toxic air pollutants, especially polyaromatic hydrocarbons (PAHs). However, these studies mostly concern the risk in larger cities or in industrial areas while much less information is available in rural environments.

Methods In our study, small settlements were selected for a pot accumulation study. Lettuce (Lactuca sativa) plants were exposed for a 2-month period; PAH concentrations were determined both from the vegetable samples and pot soils.

Results In the lettuce samples, the concentration of total PAHs was in the range of 9.1 (Litér) and 185 μg/kg dry wt (Hajmáskér), in the soil samples in the range of 31.6 (Litér) and 595.1 μg/kg wt (Hárskút). Four ring PAHs showed the highest tendency to accumulate in the majority of soil samples.

Conclusion PAH concentrations in some of the sampled villages were comparable to results reported from relatively polluted regions in the world. Source appointment revealed that biomass burning and fossil fuel usage were the major sources of PAHs in rural environment; in addition, the study highlighted how important it could be to analyze individual pollution sources.

Keywords Polycyclic aromatic hydrocarbons · Kitchen gardens · Lactuca sativa · Bioaccumulation · Soil

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) in settlements are mainly derived from incomplete combustion in motor vehicles; another major source is domestic heating (Szabó Nagy and Szabó 2017). A wide range of PAHs has proven highly carcinogenic or mutagenic: for example, the so-called Car-PAHs (Šrogi 2007), or the more extended list of 16 priority PAHs identified by the US Environmental Protection Agency (EPA) in the 1970s.

In the air, PAHs occur in the gaseous phase (mainly PAHs with higher vapor pressure) and bound to particles (mainly PAHs with lower vapor pressure). Plants are exposed to both phases. Moreover, atmospheric PAHs are easily transported to the soil, providing an additional exposure route for plants. In general, possible uptake mechanisms can be summarized as follows: gas exchange; particle deposition (from air) and uptake (from soil) (Kulhánek et al. 2005).

Vapor phase PAHs might diffuse through the wax and the cuticular membrane into the interior of the leaves but they can also penetrate directly via the stomata (Lehndorff and Schwark 2004). Particle-bound PAHs were also found in the cuticle waxes (Kaupp et al. 2000). Yang et al. (2017a) reported that the transportation of PAHs from foliar deposition to the cuticular wax could be the primary pathway of leaf accumulation. Atmospheric uptake of halogenated PAHs in leafy vegetables was also demonstrated (Wang et al. 2018).

However, comparing uptake from soil and from the atmosphere, atmospheric exposure is considered as the dominant
source of contamination (Phillips 1999). Concentration of PAHs in the aerial parts of plants are generally considerably higher than in the roots (Zhang et al. 2020). Jia et al. (2019) experimentally demonstrated that approximately 90% of total PAH absorption in vegetables came via airshoot absorption. PAHs are easily accumulated in vegetables (e.g., Khillare et al. 2012; Abou-Arab et al. 2014; Xiong et al. 2017). It is assumed that crops cultivated in urban areas are generally exposed to a higher level of pollutants compared to crops from rural sites (Säumel et al. 2012). While there are studies available on PAH accumulation in urban community gardens (Amato-Lourenco et al. 2017), rural gardens have been scarcely investigated, though so-called organically farmed vegetables were frequently found to accumulate organic contaminants, including PAHs (Zohair et al. 2006). Our aim was to assess the level of air pollution via bioaccumulation studies in small-medium-sized villages in Veszprém County, Hungary.

For pot experiments, lettuce (Lactuca sativa L., family Asteraceae) was selected. L. sativa is a widely used test species in bioaccumulation studies, due to high foliar surface and thin cuticula (Schreck et al. 2012, 2013). It generally shows higher bioaccumulation capacity in comparative studies (e.g., Li et al. 2015; Mombo et al. 2016). Also, lettuce is a very popular vegetable in Hungarian kitchen gardens; the amount of home-grown lettuce was 608 tons in 2017 according to the National Statistical Agency (KSH 2018). Several varieties are in use, some of them are so early that the vegetation period might be partially overlapping with the heating season.

2 Material and Methods

2.1 Locations

Seven small/medium-sized villages were selected for the study. All of them are located in Veszpréms County, Transdanubian Region, Hungary (Fig. 1). Number of inhabitants, size, and location are given in Table 1. In Eplény, 2 sampling spots were used. As a main road cuts through this village, gardens being nearby the road might be highly affected. As such, one sampling spot was located very close to the road, and the other in the same property, approximately 80 m away from the road.
2.2 Exposure experiment and sample collection

For the test, the variety “Május királya” (King of May) was used. It was selected as it is one of the most popular varieties cultivated in home gardens in Hungary. Seeds were purchased from Garafarm Ltd. Lettuce seedlings were grown for 40 days in a glasshouse. Five seedlings were placed in a plastic pot (diameter 31 cm). Five replicates (5 pots) were used at each site. Exposure took 2 month, between 29.03 and 31.05. During the study period, neither additional fertilizers nor pesticides were used. After the exposure, pots were collected and taken to the laboratory where the lettuce plants were washed with ionic load-free water and immediately frozen (−20 °C) until analysis.

In the pots, commercial soil (pH, 6.8 ± 0.5; N (m/m%), min 0.3; P2O5 (m/m%), min 0.1; K2O (m/m%), min 0.3) was used. The soil was analyzed prior to the experiment and concentration of PAHs was under the detection limit. In general, PAHs tend to accumulate in soils due to their strong hydrophobicity and resistance to degradation; it was found that approximately 90% of total PAHs retain in surface soils (Wild and Jones 1995). As such, at the end of exposure, the upper 5 cm layer of the soil was collected from each pot and the composite sample was frozen (−20 °C) until analysis.

2.3 Analytical measurements

Ten grams of plant sample was ground with 10-g anhydrous sodium sulfate in a ceramic mortar. The extraction was repeated 3 times with 20-ml n-hexane in ultrasonic extractor for 20 min. Prior to extraction, 10-ml acetone was added and the samples were spiked with 100 μl of 0.01 μg/ml deuterated PAH surrogate mixture (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, benzo(a)pyrene-d12, and perylene-d12). The extract was concentrated with dry nitrogen stream to a 1 ml, and an additional solid-phase silica gel and alumina oxide sample clean-up was performed. The sample was passed through a 30-cm long, 0.5-cm width glass column containing 3 g of silica gel on the bottom of the column, and 3 g of aluminum oxide on the top, and it was eluted with 20-ml methylene chloride. The column was washed with 20-ml n-hexane. The clean sample was concentrated with dry nitrogen stream to 1 ml. Before the measurement 100 μl of 0.01 μg/ml, internal standard mixture (2-floro-biphenyl, and p-terphenyl-d14) was added (final concentration was 100 μg/kg plant dry wt). The plant samples were analyzed by Agilent 6890GC 5973E MSD GC-MS based on MSZ (Hungarian Standard) EN 15527:2009. Under the conditions specified in the standard, limit of detection of 0.1 μg/kg for each individual PAH can be achieved.

For measuring PAH content of the soil samples, the MSZ (Hungarian Standard) 21470-84:2002: Environmental protection, Testing of soils. Part 84: Determination of polycyclic aromatic hydrocarbons (PAH) content was followed. Under the conditions specified in the standard, typical limit of detection is 0.1 μg/kg soil sample. Gas chromatographic-mass spectrometric method Hungarian standard was followed. Ten grams of soil sample was ground and extracted with 10-ml acetone and10-ml n-hexane; the extraction was repeated two times; in the second and the third extraction, only 10 ml of hexane was used. Prior to extraction, the samples were spiked with 50-μl PAH surrogate mixture (deuterated, naphthalene D8, acenaphthene D10, phenanthrene D10, chrysene D12, benzpyrene D12, perylene D12) the final concentration was 100 μg/kg soil. The plant samples were analyzed with sodium-sulfate and concentrated with dry nitrogen stream at 40 °C to a 1 ml; an additional solid-phase silica gel and alumina oxide sample clean-up was performed. The column was washed with 20-ml hexane and the extract was eluted with 20-ml dichloromethane. This extract was concentrated with dry nitrogen stream at 40 °C to a 1-ml, and the dissolve was change to hexane. 100 μl of 0.01 μg/ml Internal standard mixture (2-floro-biphenyl, and p-terphenyl-d14) was added (final concentration was 100 μg/kg soil dry wt).

The GC-MS analysis was performed with an HP-6890 gas chromatograph; it was coupled to an HP-5973 (Agilent Technologies, Palo-Alto, USA) quadrupole mass spectrometer (low-resolution single MS). Injector and transfer-line temperatures were 320 °C and 250 °C.

Table 1 Description of the selected villages

Site no.	Name of the village	No. of inhabitants	GPS	Area (km²)
1	Nagyvázsony	1820	46° 58' 39.9" N 17° 41' 44.3" E	76.29
2	Pécsely	588	46° 57' 13.2" N 17° 46′ 53.2" E	20.01
3	Tihany	1346	47° 14′ 06.9" E	27.33
4	Hárskút	674	47° 11′ 16.4" N 17° 48′ 24.9" E	34.46
5–6	Eplény, Hagymásperény	514, 3090	47° 12′ 36.3" N 17° 54′ 49.6" E	8.28, 16.3
7	Hajmásperény	3090	47° 08′ 40.4" N 18° 01′ 12.6" E	38.14
8	Litér	2241	47° 05′ 48.0" N 18° 00′ 24.8" E	12.83
respectively, and source and analyzer temperatures were 280 °C and 150 °C, respectively. A glass insert, 4 mm i.d., loosely filled with silanized glass wool was used in the split/splitless GC injector (320 °C, purge splitless 1.5 min). The GC column was 30 m × 0.25 mm i.d., film thickness 0.25 μm, ZB-Semivolatiles (Phenomenex). The GC oven temperature was maintained at 40 °C for 3 min after injection then programmed at 40 °C min−1, 40 to 80 °C for 0.5 min, and then at 15 °C min−1 to 240 °C which was maintained for 8 min and then at 15 °C min−1 to 310 °C and which was maintained for 8 min. Helium (N55) was used as carrier gas at 1.2 mL min−1.

The acquisition mode was SIM (single ion monitoring). Electron ionization was used with energy of 70 eV.

Analytical determinations were performed in the testing laboratory at the Laboratory of the ELGOSCAR-2000 Environmental Technology and Water Management Ltd. accredited by the National Accreditation Authority, registration number NAH-1-1278/2015.

For quality control, the glassware was thoroughly cleaned before use, washing with non-ionic detergent and rinsing with ultrapure water. Deuterated PAH surrogate mixture containing Naphthalene-d8, Acenaphthene-d10, Phenanthrene-d10, Chryzene-d12 Benzo(a)pyrene-d12, and Perylene-d12 was obtained from Restek Corporation (110 Benner Circle, Bellefonte, PA 16823, USA). Linearity of the calibration curve was checked in accordance with the accreditation standard.

3 Results and discussion

3.1 Accumulation in test plants

The 19 PAHs analyzed in this study included the following: naphthalene (Nap), 2-methyl-naphthalene (Methy-Nap), 1-methyl-naphthalene (Me-Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flo), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flt), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Cry), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), indeno[1,2,3-cd]pyrene (Ind), dibenz[a,h]anthracene (DahA), and benzo[g,h,i]perylene (BghiP). Their basic physico-chemical characteristic parameters are given in Table 2.

Table 3 summarizes the detect rate of analytically measured PAHs in both the lettuce and soil samples. In lettuce leaves, detect rate of only 4 PAHs was 100%: Nap, Methy-Nap, Phe, Flt while Acy, Ace, Ant, and DahA had a detection rate of 0.

Concentrations of all PAHs in the lettuce leaves are given in Table 4. Figure 2 shows the total amount of different molecular weight PAHs on the sampling spots, while Fig. 3 shows their percentage contribution. In all sites, the low molecular weight (LMW) PAH compounds were predominant in exposed lettuce plants (Fig. 2), which is in consistency with other studies (Lei et al. 2011; Wang et al. 2017;
Table 3. Detect rates of individual PAHs in lettuce and soil samples

PAH compounds	Total soil sample \((n = 8)\)	Total lettuce sample \((n = 8)\)		
	Mean (range)	Detect rate	Mean (range)	Detect rate
Naphthalene	29.9 (0–154)	87.5	34.3 (3.1–155)	100
2-methyl-naphthalene	2.29 (1.2–5)	100	3.2 (1.5–6)	100
1-methyl-naphthalene	0.9 (0–3.1)	50	1.3 (0–2.8)	62.5
Acenaphthylene	0 (0)	0	0	0
Acenaphthene	0.6 (0–4.8)	12.5	0 (0)	0
Fluorene	0.8 (0–4)	37.5	1.0 (0–1.9)	75
Phenanthrene	12.3 (2.3–56.5)	100	6.8 (2.2–11.6)	100
Anthracene	2.7 (0–21.8)	12.5	0 (0)	0
Fluoranthene	20.3 (4.7–107)	100	3.7 (1.2–11.2)	100
Pyrene	15.6 (3.3–86.2)	100	2.4 (0–7.3)	87.5
Benzoanthracene	10.4 (1.4–68.2)	100	1.2 (0–3.9)	62.5
Chrysene	7.9 (1.5–43.3)	100	1.5 (0–4)	75
Benzo(b)fluoranthene	11.5 (4.2–57.9)	100	1.9 (0–5.1)	75
Benzo(k)fluoranthene	4.3 (1.1–24.3)	100	0.4 (0–1.6)	25
Benzo(c)pyrene	5.9 (0–38.7)	100	0.8 (0–1.9)	62.5
Benzo(a)pyrene	5.1 (1.5–24.4)	100	0.8 (0–2.3)	50
Dibenz[a,h]anthracene	0.7 (0–5.3)	12.5	0 (0)	0
Indeno1.2.3CD-Pyrene	3.7 (1.1–17.7)	100	0.4 (0–1.6)	25
Benzo(g,h,i)perylene	3.2 (1.2–12.7)	100	0.4 (0–1.9)	25

Table 4. Concentration of PAHs in lettuce samples. Priority PAHs are given in bold

PAH compounds	PAHs concentration \((\mu g/kg\ dry\ wt)\) in lettuce leaves							
	Pécsely	Nagyvázsony	Eplény2	Eplény1	Tihany	Litér	Hárskút	Hajmáskér
Naphthalene	15.4	9.76	3.94	41.9	12.7	3.1	32.7	155
2-methyl-naphthalene	1.6	5.6	1.5	2	2.5	1.5	5.2	6
1-methyl-naphthalene	1.6	2.2	< 0.01	< 0.01	1.3	< 0.01	2.8	2.5
Acenaphthylene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	< 0.01	1.1	< 0.01	1.3	1.1	1.1	1.6	1.9
Phenanthrene	11.6	3.4	4.9	5.4	5.5	2.2	11.1	9.9
Anthracene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	2.1	2.9	11.2	3.4	1.7	1.2	4.3	3.1
Pyrene	1.8	1.7	7.3	1.9	1.1	< 0.01	3.4	2.5
Benzoanthracene	1.2	< 0.01	1.6	< 0.01	1.3	< 0.01	3.9	1.6
Chrysene	1.5	1.2	4	1.2	1	< 0.01	2.8	< 0.01
Benzo(b)fluoranthene	1.7	< 0.01	5.1	1.1	1.6	< 0.01	4.2	1.1
Benzo(k)fluoranthene	< 0.01	< 0.01	1.2	< 0.01	< 0.01	< 0.01	1.6	< 0.01
Benzo(c)pyrene	1.1	< 0.01	1.1	< 0.01	1	< 0.01	1.9	1.4
Benzo(a)pyrene	1.2	< 0.01	2.3	< 0.01	1	< 0.01	2	< 0.01
Dibenz[a,h]anthracene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno1.2.3CD-Pyrene	< 0.01	< 0.01	1.6	< 0.01	< 0.01	< 0.01	1.4	< 0.01
Benzo(g,h,i)perylene	< 0.01	< 0.01	1.9	< 0.01	< 0.01	< 0.01	1.1	< 0.01
Total PAHs	40.8	27.9	47.6	58.2	31.8	9.10	80.0	186
Jia et al. 2018). Concentration of Nap was in the range 3.1 (Litér) and 155 μg/kg (Hajmáskér), with relatively high concentrations also in Hárskút (32.7 μg/kg) and Épény1 (41.9 μg/kg). Nap is generally one of the dominant PAHs in bioaccumulation studies (Waqas et al. 2014; Busso et al. 2018).

Other dominant compound was Phe in concentration varying from 2.2 to 11.6 μg/kg. Phe was found one of the dominant PAHs in vegetables in a Chinese study (Li et al. 2008). Interestingly, detection rate of anthracene was 0, though this PAHs showed high levels in all vegetable samples (including spinach and cabbage) procured from local wholesale markets in Punjab (Pakistan) (Ashraf et al. 2013).

Of 4-ring PAHs, Pyr and the carcinogenic Cry had the highest concentration in Épény2 (7.3 and 4.0 μg/kg, respectively), followed by Hárskút (3.4 and 2.8 μg/kg).

Relative abundance of five-ring PAHs was rather high in 4 samples (Pécsely, Épény2, Tihany, Hárskút) showing peaks in Épény2 and in Hárskút. Of five-ring PAHs, BkF, BbF, and BaP are considered typical tracers for fossil fuel combustion and are associated with vehicular emissions (Ravindra et al. 2008). These PAHs contributed to 88% and 80% of this group in Épény2 and in Hárskút, respectively. Six-ring PAHs, namely Ind and BghiP, appeared only in Épény2 and Hárskút. Their total concentration amounted to 3.5 μg/kg in Épény2 and 2.5 μg/kg in Hárskút. BghiP is considered a marker of gasoline exhaust emissions (Eiguren-Fernandez et al. 2004). Analysis of individual land-use patterns might give some explanation: Hárskút is situated in a mountainous area and is a Natura 2000 site. However, there is a farm in the neighborhood of the sampling site and high pollution can be explained by the inputs of fossil fuel from farm vehicles which generally pose high environmental load (Ene et al. 2012). Épény2 is in the proximity of the railway; thus, diesel-powered engines might provide the pollution source.
The concentration of total PAHs was the in the range of 9.1 μg/kg dry wt (Nagyvázsony) and 185 μg/kg dry wt (Hajmáskér) (Table 2). Comparing these values with those reported in the literature, Abou-Arab et al. (2014), e.g., measured 8.9 μg/kg total PAH in spinach (Spinacia oleracea var.) collected in the urban region of Cairo (Egypt). Similarly, low accumulation was found in spinach in urban gardens of Sao Paulo (Brasil) (Amato-Lourenco et al. 2017). In this study, no PAH accumulation was found in the majority of the gardens; PAH concentration of 7.4 μg/kg was detected only in one garden. Similar values were reported by Ashraf and Salam (2012) in a case study from Saudi Arabia (10.2 μg/kg) and by Ashraf et al. (2013) in a case study from Pakistan (11.5 μg/kg).

However, much higher values were detected in the study of Jia et al. (2018). In this case, the total concentrations of 16 PAHs in spinach collected from near industrial areas of Shanghai ranged from 223.3 to 458.0 μg/kg.

In addition to spinach, Brassicaceae species are also widely used in bioaccumulation studies as they are generally considered good accumulators of PAHs (Franzaring 1997; Xiong et al. 2017; Zhang et al. 2018). Mo et al. (2009) used different Brassica species to assess the concentration of 16 PAHs in vegetable samples collected from nine farms of the Pearl River Delta, South China. The concentration of accumulated PAHs were as follows (mean values are given): Brassica parachinensis (flowering Chinese cabbage) 438 μg/kg, Brassica chinensis (paitsai) 950 μg/kg, and Brassica juncea (mustard) 1790 μg/kg. Li et al. (2008) used leafy vegetables including lettuce and Brassicaceae species such as cabbage, mustard, and Chinese flowering cabbage in a case study from Shunde (China). Concentration of accumulated PAHs was in the range of 128–1258 μg/kg in these vegetables altogether (not specified by species). Even much higher values were detected in another Chinese study (Zhang et al. 2004) where the levels of 16 EPA PAHs were determined in vegetable samples from Minjiang River Estuary, China. Vegetable samples included Chinese cabbage. Total PAH concentrations varied from 8600 to 111 000 μg/kg dry wt in vegetable samples (not specified by species).

While these studies sometimes report extremely high values, the data reported by Jánská et al. (2006) make regional comparison possible. In their work, the accumulation of total PAHs ranged between 12.34 and 78.09 μg/kg in cabbage samples collected from Southern Moravia (Czech Republic). Even lower accumulation was reported in a Romanian study (Soceanu et al. 2014), where maximum concentration of total PAHs amounted to 8.216 μg/kg in cabbage and 8.131 μg/kg in spinach collected from rural areas.

Bearing in mind, however, that different vegetables will have different accumulation potential (Franzaring and van der Eerden 2000), comparison of our results with other leafy vegetables has only indicative value. Focusing on studies where lettuce was used as passive monitor, PAH accumulation in lettuce showed a very wide range. In a pot experiment of Gelman (2014), practically no accumulation was detected in experimental rooftop gardens in Helsinki. On the other hand, in the abovementioned study of Jia et al. (2018), the total concentrations of 16 PAHs in lettuce collected from near industrial areas of Shanghai ranged between 132.0 and 319.2 μg/kg. The highest value in our study (Hajmáskér, 185 μg/kg dry wt) is in fact in this range, indicating significant contamination.

3.2 PAH concentrations in soil samples

Similarly to vegetable samples, concentration of 19 PAHs, including the 16 EPA PAHs, was determined in all soil samples. Detect date of individual PAHs (Table 3) was higher than in lettuce samples: 12 PAHs occurred in all soil samples (Methy-Nap, Phe, Flt, Pyr, BaA, Cry, BbF, BkF, BaP, BeP, Ind, BghiP). Only one PAHs (Acy) had a detection rate of 0.

Table 5 summarizes the concentration of individual PAHs and their total concentration. Figure 4 shows the total amount of different molecular weight PAHs in the sampling spots, while Fig. 5 shows their percentage contribution. Flu (in the range of 4.7–107 μg/kg), BbF (4.2–57.9 μg/kg), and Pyr (3.3–86.2 μg/kg) are the major PAH congeners. Similar pattern was reported by Zheng et al. (2014), who detected the dominance of Nap, Flu, Phe, and BbF in the rural soils of Dongjiang River Basin (China). BbF and Pyr were found to be amongst the most abundant PAHs in the study of Wang et al. (2016).

Concentration of total PAHs was in the range of 31.6 (Litér) and 595.1 μg/kg (Hárskút). Four-ring PAHs showed the highest tendency to accumulate in the majority of samples; their concentration was in the range of 14.9 μg/kg (Litér) and 304.7 μg/kg (Hárskút). Of five ring PAHs, BbF, BkF, BeP, and BaP occurred in all of the samples while the detection rate of DahA was much lower, it occurred only in Hárskút, in concentration of 5.3 μg/kg. Maliszewska-Kordybach et al. (2009) analyzed the spatial distribution of individual PAHs in agricultural soils in over 200 localities in Poland and found that the high molecular weight (HMW) hydrocarbons (groups of 4 + 5 + 6 rings PAHs) represented 72.6% of the total PAH content. Dominance of HMW PAHs in contaminated soils was reported in, e.g., some Chinese studies as well (Wang et al. 2016; Wang et al. 2017). Analysis of dry deposition and soil samples indicated that soil acts as a sink of HMW PAHs throughout the year (Bozlaker et al. 2008). Wet deposition also resulted in the accumulation of HMW PAHs (Zavgorodnyaya et al. 2019).

Comparing the individual villages, Hárskút showed outstandingly high concentrations. Concentration of 3-ring PAHs amounted to 87.1 μg/kg, 4-ring PAHs to 304.7 μg/kg, 5-ring PAHs to 150.6 μg/kg, and 6-ring PAHs to 30.4 μg/kg. Roughly, amount of individual PAHs was one
magnitude higher than in the other samples (Table 5). For rhizosphere soils, Maliszewska-Kordybach (1996) suggested a contamination classification system, defining the following categories: weakly contaminated (> 200 μg/kg), contaminated (600–1000 μg/kg), and heavy contamination (> 1000 μg/kg). Of our samples, Eplény1 and Hárskút fall into the contaminated category; the others are classified as weakly contaminated. This classification system, however, cannot be fully used in this study as soil PAH concentrations refer only to a 2-month exposure time. However, the 50/2001. (IV. 3.) Decree of the (Hungarian) Government defines a 1 mg/kg limit value for the PAH content of wastewater sludges intended for agricultural use.

3.3 Source appointment

For identifying possible sources of different PAHs, traditionally established PAH isomer ratios were used which

Table 5 Concentration of PAHs in soil samples. Priority PAHs are given in italics

PAH compounds	Pécsely/T	Nagyvázsony/T	Eplény2/T	Eplény1/T	Tihany/T	Litér/T	Hárskút/T	Hajmáskút/T
Naphthalene	13.3	33.1	5.1	154	< 0.01	1.1	17.3	15.7
2-methyl-naphthalene	1.5	2.6	1.5	5	1.9	1.2	3.1	1.5
1-methyl-naphthalene	< 0.01	1.2	< 0.01	3.1	1	< 0.01	1.9	< 0.01
Acenaphthylene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	4.8	< 0.01
Fluorene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1	< 0.01	4
Phenanthrene	5	6	5.4	13.1	4	2.3	56.5	5.8
Anthracene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	21.8	< 0.01
Fluoranthene	7.4	8.6	10.8	4.7	8.6	6.9	107	8.4
Pyrene	5.5	6	7.2	3.3	5.8	5	86.2	6.1
Benzo[a]pyrene	1.8	1.6	2.4	4.5	1.4	1.5	68.2	2.1
Chrysene	1.5	1.6	4	4.4	3.3	1.5	43.3	3.4
Benzo(b)fluoranthene	4.3	4.8	5.9	6	4.2	4.3	57.9	4.7
Benzo(k)fluoranthene	1.3	1.5	1.6	2.1	1.3	1.4	24.3	1.1
Benzo(c)pyrene	1.1	1.1	1.6	2.4	< 0.01	1.1	38.7	1.2
Benzo(g)pyrene	2	2	3.3	3.2	1.8	1.5	24.4	2.8
Dibenzo[a.h]anthracene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	5.3	< 0.01
Indeno1.2.3CD-Pyrene	1.3	1.4	2.3	2.2	1.2	1.1	17.7	2
Benzo[g.h.i]perylene	1.2	1.9	2.2	1.7	1.4	2.7	12.7	2.00
Total PAHs	36.9	73.4	53.3	211	36.9	31.6	595	56.8

Fig. 4 Total amount of different molecular weight PAHs in soil samples
have also been applied to allocate sources of these compounds in vegetables (e.g., Li et al. 2008) and in soils (e.g., Yang et al. 2017b). Fluoranthene to fluoranthene plus pyrene (Flt/Flt+Pyr) ratio > 0.5 indicates grass, wood, or coal combustion as the potential source (Yunker et al. 2002). This value was exceeded in all of the lettuce samples, showing the contribution of household heating and biomass combustion. Burning agricultural waste in gardens is a common practice, providing additional input.

While Flt/(Flt+Pyr) ratio could be calculated for all vegetable samples, the other ratios provided much less information. Benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/BaA+Cry) ratio over 0.35 has been defined to indicate combustion of vegetation and fossil fuel (Yunker et al. 2002). In our study, this ratio could be calculated for only four lettuce samples: Pécsely, Tihany, Eplény2, and Hárskút. In these cases, BaA/(BaA+Cry) ratio was in the range of 0.37 (Eplény2) and 0.5 (Tihany), showing the contribution of pyrogenic sources.

Indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[g,h,i]perylene (Ind/Ind+BghiP) ratios between 0.20 and 0.50 likely imply liquid fossil fuel combustion while ratios > 0.50 imply grass, wood, and coal combustion (Yunker et al. 2002). As these 6-ring PAHs occurred only in lettuce samples exposed in Eplény2 and Hárskút sites, ratios could be calculated only for these samples. In Eplény2, this ratio was 0.46, indicating fossil fuel combustion as the potential source, while in Hárskút, it amounted to 0.56, indicating biomass combustion. Considering individual, characteristic PAHs, DbaA had a detection rate of 0. This compound is typically associated with coal combustion (Pant et al. 2017).

In the soil samples, similarly to lettuce samples, Flt/(Flt+Pyr) ratio exceeded 0.50, indicating the input from biomass burning, regardless of the size or location of the village. Ind/Ind+BghiP ratios could be calculated for all of the soil samples; values were between 0.20 and 0.50 in case of Nagyvázsony, Tihany, and Litér (which indicates liquid fossil fuel usage), at the transition point of 0.5 in Hajmáskér and > 0.50 in Eplény1, Eplény2, Hárskút, and Pécsely (which indicates biomass burning, most possibly grass and wood) (Yunker et al. 2002).

BaA/(BaA+Cry) ratio was < 0.35 in case of only 1 village, Tihany (0.30) which implies either petroleum or combustion. In the other sampling sites, it was in the range of 0.38–0.61 which implies combustion of vegetation and fossil fuel (Yunker et al. 2002).

For soil samples, BaA/(BaA+Cry) ratio against Flt/(Flt+Pyr) ratio as well as Ind/Ind+BghiP) ratio against Flt/(Flt+Pyr) ratio was plotted (Figs. 6, 7). Plotting BaA/(BaA+Cry) ratio against Flt/(Flt+Pyr) ratio indicates the high input from combustion in general for the majority of the villages.
PAHs was relatively high (211.3 μg/kg) at the site close to the road. In this soil sample, concentration of total PAHs was higher than 50 μg/kg. Eplény1, though the pots were placed approximately 5 m from the road, showed extra burden from liquid fossil fuel combustion in case of Őllény1 and 2, Pécsey, Hajmáskér, and Hárskút, the main input is biomass combustion while in case of Litér, Tihany, and Nagyvázasony, petroleum combustion might provide the main source.

Considering the two samples collected in Eplény, it is interesting to note that they are having very different composition, though the two sampling spots are situated approximately 80 m from each other. Eplény1 sampling site was especially chosen to represent roadside conditions: approximate load is 8000 vehicles per day, of which 6500 are light-duty and 1500 are heavy-duty vehicles (https://internet.kozut.hu/kozerdeku-adatok/orszagos-kozuti-adatbank/forgalomszamlalas/). In an early study of Larsson and Sahlberg (1981) accumulation of PAHs in lettuce was assessed. Samples were grown at 12- and 50-m distance from a Swedish highway. Significantly higher accumulation was found at the vicinity of the highway, with the concentration of BghiP 0.5 μg/kg vs. 10.8 μg/kg. Dan-Badjo et al. (2007) placed ryegrass (Lolium perenne) pots in the vicinity of a highway and found that the high molecular weight PAHs (5 and 6 rings) represented almost 23% of the total PAH concentrations. In a following study, however, spatial distribution of accumulation was depicted (Dan-Badjo et al. 2008). It was recorded that concentration of accumulated PAHs was the highest between 0 and 10 m on both sides of the road than it started to decrease rapidly. However, source appointment did not show extra burden from liquid fossil fuel combustion in Eplény1, though the pots were placed approximately 5 m from the road. In this soil sample, concentration of total PAHs was relatively high (211.3 μg/kg), but prevelancy of two-ring PAHs was experienced; concentration of naphthalene was 154 μg/kg. Nap was also a dominant PAHs in the vegetable sample, with the concentration of 41.9 μg/kg.

4 Conclusion

A pot study was conducted using lettuce plants as passive monitors in small- and medium-sized villages. Although concentration of accumulated PAHs in lettuce plants moved in a rather wide range, higher values were comparable to results reported from relatively polluted regions in the world. Source appointment revealed that biomass burning provided important source of PAHs, involving household heating and burning of agricultural waste in the gardens as well. In addition, traffic-related emissions also had high contribution in some of the sites assessed. The fact that both the lettuce and soil samples showed the highest pollution in the Natura 2000 site Hárskút draws our attention to how important it is to analyze individual pollution sources.

Acknowledgments The authors thank the ELGOSCAR-2000 Environmental Technology and Water Management Ltd. (Head Office: 164 Soroksari u. H-1095 Budapest, Laboratory: H-8184 Balatonfuzfó) for analytical measurements. Special thanks go to those (anonymous) amateur gardeners who helped us looking after our test plants.

Funding Open access funding provided by University of Pannonia. Financial support was provided by the BIONANO_GINOP-2.3.2-15-2016-00017 project (co-financed by the European Regional Development Fund).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abou-Arab AAK, Abou-Donia MAM, El-Dars FMSE, Ali OIM, Hossam AG (2014) Levels of polycyclic aromatic hydrocarbons (PAHs) in some Egyptian vegetables and fruits and their influences by some treatments. Int J Curr Microbiol App Sci 3(7):277–293

Amato-Lourenco LF, Saiki M, Saldiva PHN, Maaud T (2017) Influence of air pollution and soil contamination on the contents of polycyclic aromatic hydrocarbons (PAHs) in vegetables grown in urban gardens of Sao Paulo, Brazil. Front Environ Sci 5:77. https://doi.org/10.3389/fenvs.2017.00077

Ashraf MW, Salam A (2012) Polycyclic aromatic hydrocarbons (PAHs) in vegetables and fruits produced in Saudi Arabia. Bull Environ Contam Toxicol 88:543–547. https://doi.org/10.1007/s00128-012-0528-8

Ashraf MW, Iqleem S, Taqvi H, Solangi AR, Qureshi UA (2013) Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in some Egyptian vegetables and fruits and their influences by some treatments. Int J Curr Microbiol App Sci 3(7):277–293

Fig. 7 Cross-plot of Ind/(Ind+BghiP) ratio against Flt/(Flt+Pyr) for soil samples.
hydrocarbons in vegetables grown in Pakistan. Journal of Chemistry 2013;873959. https://doi.org/10.1155/2013/873959
Bozlaker A, Muezzinoglu A, Odabasi M (2008) Atmospheric concentrations, dry deposition and air–soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. J Hazard Mater 153:1093–1102. https://doi.org/10.1016/j.jhazmat.2007.09.064
Busso IT, Tames F, Silva JA, Ramos S, Homem V, Ratola N, Carreras H (2018) Biomonitoring levels and trends of PAHs and synthetic musks associated with land use in urban environments. Sci Total Environ 618:93–100. https://doi.org/10.1016/j.scitotenv.2017.10.295
Dan-Badjo AT, Ducoublomier-Crépineau C, Soligot C, Feidt C, Rychen G (2007) Deposition of platinum group elements and polycyclic aromatic hydrocarbons on ryegrass exposed to vehicular traffic. Agron Sustain Dev 27:261–266. https://doi.org/10.1051/agro:2007015
Dan-Badjo AT, Rychen G, Ducoublomier C (2008) Pollution maps of grass contamination by platinum group elements and polycyclic aromatic hydrocarbons from road traffic. Agron Sustain Dev 28:457–464. https://doi.org/10.1051/agro:2008032
Eiguren-Fernandez A, Miguel AH, Froines JR, Thurairatnam S, Avol EA (2004) Seasonal and spatial variation of polycyclic aromatic hydrocarbons in vapor-phase and PM2.5 in Southern California urban and rural communities. Aerosol Sci Technol 38(5):447–455. https://doi.org/10.1080/02786820490449511
Ene A, Bogdevich O, Sion A, Spanos T (2012) Determination of polycyclic aromatic hydrocarbons by gas chromatography–mass spectrometry in soils from Southeastern Romania. Microchem J 100:36–41. https://doi.org/10.1016/j.microc.2011.08.006
Franzaring J (1997) Temperature and concentration effects in biomonitoring of organic air pollutants. Environ Monit Assess 46:209–220. https://doi.org/10.1023/A:1005719901961
Franzaring J, van der Eerden LJM (2000) Accumulation of airborne persistent organic pollutants (POPs) in plants. Basic Appl Ecol 1:25–30. https://doi.org/10.1016/S1439-1791(99)00003-3
Gelman VL (2014) Rooftop vegetables and urban contamination: trace elements and polycyclic aromatic hydrocarbons in crops from Helsinki rooftops. Dissertation, University of Helsinki
Jánská M, Hajšlová J, Tomaniová M, Kocourek V, Vávrová M (2006) Polycyclic aromatic hydrocarbons in fruits and vegetables grown in the Czech Republic. Bull Environ Contam Toxicol 77:492–499. https://doi.org/10.1007/s00128-006-1091-y
Jia J, Bi C, Zhang J, Jin X, Chen Z (2018) Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: sources, exposure, and cancer risk. Environ Pollut 241:750–758. https://doi.org/10.1016/j.envpol.2018.06.002
Jia J, Bi C, Zhang J, Chen Z (2019) Atmospheric deposition and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) based on experimental and computational simulations. Atmos Environ 204:135–141. https://doi.org/10.1016/j.atmosenv.2019.02.030
Kaupp H, Blumenstock M, McLachlan MS (2000) Retention and mobility of atmospheric particle-associated organic pollutant PCDD/Fs and PAHs in maize leaves. New Phyto 148:473–480. https://doi.org/10.1046/j.1469-8137.2000.00770.x
Kihlare LS, Jyethi DS, Sarkar S (2012) Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food Chem Toxicol 50:1642–1652. https://doi.org/10.1016/j.fct.2012.01.032
KSH (2018) Production and consumption of important vegetables (2013-) (A fontosabb zöldségfélék termesztése és felhasználása (2013-), in Hungarian. http://www.ksh.hu/docs/hun/xstadat/xstadat_eyes/vomm04m.html. Accessed 17 Sept 2019
Kulhánek A, Trapp S, Sismilich M, Jankl J, Zimová M (2005) Crop-specific human exposure assessment for polycyclic aromatic hydrocarbons in Czech soils. Sci Total Environ 339:71–80. https://doi.org/10.1016/j.scitotenv.2004.08.003
Larsson BK, Sahlgren G (1981) Polycyclic aromatic hydrocarbons in lettuce. Influence of a highway and an aluminium smelter. In: Cooke M, Dennis AJ and Fisher GL (Eds) Polynuclear Aromatic Hydrocarbons: Sixth International Symposium on Physical and Biological Chemistry Springer, New York, pp 417–426
Lehndorf E, Schwark L (2004) Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—part II: polycyclic aromatic hydrocarbons (PAH). Atmos Environ 38:3793–3808. https://doi.org/10.1016/j.atmosenv.2004.03.065
Lei F-F, Huang J-Y, Zhang X-N, Liu X-J, Li X-J, Lei F-F et al (2011) Determination of polycyclic aromatic hydrocarbons in vegetables by headspace SPME-GC. Chromatographia 74(1-2):99–107. https://doi.org/10.1007/s10337-011-2024-4
Li YT, Li FB, Chen JJ, Yang GY, Wan HF, Zhang TB, Zeng XD, Liu JM (2008) The concentrations, distribution and sources of PAHs in agricultural soils and vegetables from Shunde, Guangdong, China. Environ Monit Assess 139:61–76. https://doi.org/10.1007/s10661-007-9816-x
Li N, Kang Y, Pan W, Zeng L, Zhang Q, Luo J (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci Total Environ 521–522:144–151. https://doi.org/10.1016/j.scitotenv.2015.03.081
Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11:121–127. https://doi.org/10.1016/0883-2927(95)00076-3
Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A (2009) Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci Total Environ 407:3746–3753. https://doi.org/10.1016/j.scitotenv.2009.01.010
Mo C-H, Cai Q-Y, Tang S-R, Zeng Q-Y, Wu Q-T (2009) Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Arch Environ Contam Toxicol 56:181–189. https://doi.org/10.1007/s00244-008-9177-7
Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C (2016) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sediments 16:1214–1224. https://doi.org/10.1007/s11368-015-1069-7
Pant P, Shi Z, Pope FD, Harrison RM (2017) Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham, UK: trace metals and organic molecular markers. Aerosol Air Qual Res 17:117–130. https://doi.org/10.4209/aaqr.2016.01.0040
Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res-Gen Tox En 443(1):139–147. https://doi.org/10.1016/S1383-5742(99)00016-2
Ravindra K, Solchi R, Vangrieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
Säumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F, Kowarik I (2007) Deposition of platinum group elements and polycyclic aromatic hydrocarbons from road traffic. Agron Sustain Dev 28:1246–1256. https://doi.org/10.1051/agro:2007015
Säumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F, Kowarik I (2007) Deposition of platinum group elements and polycyclic aromatic hydrocarbons from road traffic. Agron Sustain Dev 28:1246–1256. https://doi.org/10.1051/agro:2007015
Schreck E, Laplanche C, Le Guédard M, Bessoule J-J, Austruy A, Xiong T et al (2013) Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure. Environ Pollut 179:242–249. https://doi.org/10.1016/j.envpol.2013.04.024

Soceanu A, Dobrinas S, Stanciu G, Popescu V (2014) Polycyclic aromatic hydrocarbons in vegetables grown in urban and rural areas. Environ Eng Manag J 13(9):2311–2315

Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195. https://doi.org/10.1007/s10311-007-0095-0

Szabó Nagy A, Szabó J (2017) Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in the ambient air of Győr, Hungary. Polycycl Aromat Compd 39(4):332–345. https://doi.org/10.1008/10406638.2017.1326950

Wang L, Xu X, Lu X (2016) Composition, source and potential risk of polycyclic aromatic hydrocarbons (PAHs) in vegetable soil from the suburbs of Xianyang City, Northwest China: a case study. Environ Earth Sci 75:56. https://doi.org/10.1007/s12633-015-3853-5

Wang J, Zhang X, Ling W, Liu R, Liu J, Kang F, Gao Y (2017) Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere 168:976–987. https://doi.org/10.1016/j.chemosphere.2016.10.113

Wang L, Li C, Jiao B, Li Q, Su H, Wang J, Jin F (2018) Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: levels, dietary intakes, and health risk assessments. Sci Total Environ 616–617:288–295. https://doi.org/10.1016/j.scitotenv.2017.10.336

Waqas M, Khan S, Chao C, Shamshad I, Qamar Z, Khan K (2014) Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Sci Total Environ 497–498:448–458. https://doi.org/10.1016/j.scitotenv.2014.07.128

Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source in inventory and budget. Environ Pollut 88:91–108

Xiong GN, Zhang YH, Duan YH, Cai CY, Wang X, Li JY, Tao S, Liu WX (2017a) Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core. Environ Sci Pollut Res 24:18953–18965. https://doi.org/10.1007/s11356-017-9548-6

Yang B, Liu S, Liu Y, Li X, Lin X, Liu M, Liu X (2017a) PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China. Sci Total Environ 574:358–368. https://doi.org/10.1016/j.scitotenv.2016.09.058

Yan J, Yu F, Yu Y, Zhang J, Wang R, Srinivasulu M, Vasenev VI (2017b) Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons in urban soil of Nanjing, China. J Soils Sediments 17:1116–1125. https://doi.org/10.1007/s11368-016-1585-0

Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

Zavgorodnuyya YA, Chikidova AL, Bíryukov MV, Demin VV (2019) Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow, Russia. J Soils Sediments 19:3155–3165. https://doi.org/10.1007/s11368-018-2067-3

Zhang ZL, Hong HS, Zhou JL, Yu G (2004) Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Sci Total Environ 323:71–86. https://doi.org/10.1016/j.scitotenv.2003.09.026

Zhang YH, Hou DY, Xiong GN, Duan YH, Cai CY, Wang X, Li JY, Tao S, Liu WX (2018) Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of Northern China. Environ Pollut 239:13–20. https://doi.org/10.1016/j.envpol.2018.03.084

Zhang YH, Huang HJ, Xiong GN, Duan YH, Cai CY, Wang X, Li JY, Tao S, Liu WX (2020) Structural equation modeling of PAHs in surrounding environmental media and field yellow carrot in vegetable bases from Northern China: In comparison with field cabbage. Sci Total Environ 717:137261. https://doi.org/10.1016/j.scitotenv.2020.137261

Zheng T, Ran Y, Chen L (2014) Polycyclic aromatic hydrocarbons (PAHs) in rural soils of Dongjiang River Basin: occurrence, source apportionment, and potential human health risk. J Soils Sediments 14:110–120. https://doi.org/10.1007/s11368-013-0753-8

Zohair A, Salim AB, Soyibo AA, Beck AJ (2006) Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organo-chlorine pesticides in organically-farmed vegetables. Chemosphere 63:541–553. https://doi.org/10.1016/j.chemosphere.2005.09.012

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.