Study of structural and magnetic properties for the magnetic system \(\text{Ba}_{0.2}\text{Sr}_{0.8}\text{Fe}_{12}\text{O}_{19} \) nanoparticle powder via chemical coprecipitation method

Mustafa Ali Abbas\(^1\)\(^,\) Khalid I. Ajeel\(^1\)\(^,\) and Raheem Abed jeber\(^3\)

\(^1\)Department of physics, College of education for pure science, University of Basrah, Basrah, Iraq.
\(^2\)Department of physics, College of education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq.
\(^3\)College of dentistry, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

E-mail: \(^a\) Mustufa.alobaidi@qu.edu.iq
\(^b\) hlo221180@gmail.com

Abstract. The present work is an experimental study and interested in hexaferrite samples preparation of the system \(\text{Ba}_{0.2}\text{Sr}_{0.8}\text{Fe}_{12}\text{O}_{19} \) nanoparticle powder by chemical coprecipitation method used to prepare fine nanoparticles. The structural properties of this system have been investigated using scanning electron microscopy-Energy dispersive X-Ray spectroscopy (SEM-EDS) and were found the average grain size to be (33.685)nm. Magnetic properties were calculated by vibrating sample magnetometry (VSM), it was the results proved that the saturation magnetization reaches to (85.633)emu/gr and the residual magnetization is (39.342)emu/gr. The coercivity of (4665.909)Oe is also observed. The hysteresis loop was studied and shown that, this system of hard ferrite materials.

1. Introduction

The hexagonal ferrites with a magnetic structure It is classified as a semiconductor and a general formula It can be expressed as \(\text{MO.6Fe}_2\text{O}_3 \) where (M= Ba, Sr, pb) are well known permanent magnets. In view of ferrite's excellent magnetic properties and chemical stability, ferrite is commonly used as permanent magnets and in magnetic recording media. For example, glass crystallization, hydrothermal precipitation, sol-gel \([1]\), chemical coprecipitation \([1,2]\), and mechanical alloying \([3,4]\) are some of the techniques for ferrite powder synthesis that have been identified. The traditional method for making barium-strontium ferrite magnets is to sinter stoichiometric mixtures of hematite (\(\text{Fe}_2\text{O}_3 \)) and barium-strontium carbonate after firing at a high temperature of reach to 1200 °C. Noting that it is not easy to obtain a complete and clear concept of the melting point of such compounds that are described as oxide compounds because the surrounding conditions have a clear effect on the composition of these compounds, and this will certainly lead to the inaccuracy of the required measurements, but the approximate melting point of the ferrite compounds is very important to determine. The sintering temperatures, which is usually done at temperatures lower than the melting point. Also due to the high sintering temperature induces an increase in crystal growth and lowers the coercivity below the measured theoretical values. Permanent magnet applications \([5,6]\) and microwave absorption devices in the GHz range \([7,8]\) use magnetic materials with high coercivity magnetization and remnant
magnetization, while data storage magnetic recording applications [9,10] use materials with modest coercivity magnetization and high remnant magnetization. Because of excellent properties for these hexagonal ferrites, such as high saturation magnetization [11], high resistivity, tunable coercivity magnetization [12,13], high temperature [14], and low cost [15,16], these hexagonal ferrites have been widely studied in recent years.

In this work, chemical coprecipitation was used to make barium-strontium ferrite because it is a simple procedure and the mixture of substrates formed during the precipitation can prevent high temperatures, obviating the need for post-firing grinding. When it comes to chemical coprecipitation, to produce ultrafine dispersed barium-strontium ferrite particles, mechanical milling with a dispersing agent has been successfully used. Therefore the method produced barium-strontium ferrite with excellent magnetic properties. Then the structural and magnetic properties of the formed ferrite compound were studied by proportions $\text{Ba}^{1-x}\text{Sr}^x\text{Fe}_{12}\text{O}_{19}$ according to the phase diagram shown in the figure 1.

![Figure 1. (left) Phase diagram of SrO-Fe$_2$O$_3$ and (right) Phase diagram of BaO-Fe$_2$O$_3$.](image)

2. Experimental

2.1 Materials and synthesis
Barium nitrate $[\text{Ba(NO}_3^2]$], strontium nitrate $[\text{Sr(NO}_3^2]$ and iron nitrate $[\text{Fe(NO}_3^3]$ were used as the preliminary materials with the chemical coprecipitation method. The weight ratio between $[\text{Ba(NO}_3^2]$ and $[\text{Fe(NO}_3^3]$ also between $[\text{Sr(NO}_3^2]$ and $[\text{Fe(NO}_3^3]$ was 1:12. So that both barium ferrite and strontium ferrite were prepared and mixed in proportion $(X=0.8)$ let's get $\text{Ba}_{0.2}\text{Sr}_{0.8}\text{Fe}_{12}\text{O}_{19}$ from $\text{Ba}^{1-x}\text{Sr}^x\text{Fe}_{12}\text{O}_{19}$. The nitrate salts were dissolved in deionized water, then ammonium hydroxide solution (NH_4OH) gradually was added to grow the pH degree of the solution to 10 in order to coprecipitate the mixture. The precipitate material was by filtration method and washed more than once with distilled water and then dried process by heating at 120 °C for 4-8 hrs. The dried material is ground into a powder with a ceramic mill and then a sintering process at 1000 °C for 6 hrs which is the final burn. Therefore the ferrite $(\text{MFe}_{12}\text{O}_{19})$ where $(\text{M}= \text{Ba, Sr})$ is obtained with this method.

2.2 Measurements
The structure was sampled using x-ray diffraction (XRD - Cu Ka1 1.54 Å) at room temperature to identify the crystal structure of the powder sample. VSM with an applied magnetic field around 15 kOe at room temperature is used to study the magnetic properties of the saturation magnetization, residual magnetization and coercivity of this sample. The surface morphology of the sample was checked by scanning electron microscope – energy dispersive spectroscopy (SEM-EDS) to photograph and determine the average grain size of the sample.
3. Results and discussion

3.1. Structural properties of hexagonal ferrite

Through measurements, the XRD diffraction for calcined samples of barium ferrite BaFe$_{12}$O$_{19}$ and strontium ferrite SrFe$_{12}$O$_{19}$ prepared by chemical coprecipitation. BaFe$_{12}$O$_{19}$ (00-027-1029) was compared with international standard specifications ASTM-276 [17] and SrFe$_{12}$O$_{19}$ (00-033-1340) is also corresponding to international standard specifications [18] the phases are proved by the X-ray reflections. Distinctly revealing that hexaferrite phases are structured after calcined at 1000 °C, where all the diffraction peaks could be identified in the hexagonal phases from BaFe$_{12}$O$_{19}$ and SrFe$_{12}$O$_{19}$ shown in figure 2. The average crystallite size D (nm) from of width-maximum at the prominent peaks FWHM using the relation of the Scherrer’s and density of dislocations ∂ (Line/Cm2) of crystallite size D (nm) were the calculated and showed in the table 1.

Table 1. Shown the average crystallite size and density of dislocations for prepared compounds of the barium-strontium.

Compound	2 Θ (deg)	d (Å)	hkl	FWHM (deg)	λ (Å)	D (nm)	∂ (Line/Cm2)
BaFe$_{12}$O$_{19}$	33.245	2.692	104	0.219	1.54	38.5	0.0006
SrFe$_{12}$O$_{19}$	32.485	2.753	107	0.291	1.54	28.87	0.0011

XRD measurements showed that the prepared ferrite is a nano-compound and the crystals of the compound possessed the characteristic of sphericity.

![XRD pattern of the powder samples prepared at 1000 °C, (left) barium ferrite and (right) strontium ferrite.](image)

Figure 2. XRD pattern of the powder samples prepared at 1000 °C, (left) barium ferrite and (right) strontium ferrite.

The SEM-EDS measurements for Ba$_{1-x}$Sr$_x$Fe$_{12}$O$_{19}$ show the morphologies of the ferrite high soft and have characterized a homogeneous hexagonal morphology calcined at 1000 °C for 6 hrs. Comparing the sample's surface characteristics the pores gradually become more with the Ba decreasing from (X = 0) to (X = 0.8). Then, with (X = 1), the surface porosity decreases, as shown in figures 3-5.
Figure 3. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when ($X = 0$).

Figure 4. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when ($X = 0.8$).

Figure 5. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when ($X = 1$).

EDS analysis showed that the samples were very high purity and rich in Iron oxide elements and the sample generated was mixed from barium, strontium and Iron oxide, as shown in figures 6-8.
Figure 6. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when ($X = 0$).

Figure 7. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when ($X = 0.8$).

Figure 8. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when ($X = 1$).
3.2. Magnetic properties of hexagonal ferrite

From the VSM, the saturation magnetization (M_s), residual magnetization (M_r) and coercivity field (H_c) values are identified [19,20] for $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when $(X = 0, 0.8, 1)$, as shown in table 2. The hysteresis loops for barium-strontium ferrite, are shown in figures 9-11.

Figure 9. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when $(X = 0)$.

Figure 10. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when $(X = 0.8)$.

Figure 11. $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ when $(X = 1)$.
Table 2. Shown the values are identified by VSM for samples (x =0, 0.8, 1).

	T (°C)	M₀ (emu/gr)	Mᵣ (emu/gr)	Hₑ (Oe)
X = 0	1000	77.7	34.763	4375.049
X = 0.8	1000	85.633	39.342	4665.909
X = 1	1000	83.640	38.469	4953.664

The saturation magnetization, residual magnetization and coercivity field calculated at room temperature, of the barium-strontium ferrite particles are shown in figure 12. However, the high saturation magnetization and residual magnetization when (X = 0.8) of this sample indicated the substitution method of barium with strontium ferrite In a certain percentage. The difference in the values of this sample (X = 0.8), as shown in figures 13,14.

![Figure 12](image1.png)

Figure 12. Ba₁₋ₓSrₓFe₁₂O₁₉ when (X = 0, 0.8, 1).

![Figure 13](image2.png)

Figure 13. The sample (X = 0.8) shows a different behavior from the rest of the samples.
Figure 14. The sample ($X = 0.8$) shows a different behavior from the rest of the samples.

Figure 15. This is an illustration of what's inside the circles.

4. Conclusion

The barium-strontium ferrite in the form $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ ($X = 0, 0.8, 1$) has been successfully prepared via method chemical coprecipitation. The $\text{Ba}_{1-x}\text{Sr}_x\text{Fe}_{12}\text{O}_{19}$ ferrites are of powder with the semimagnetization structure formed. The barium-strontium ferrite particles, have a hexagonal morphology and especially with the calcination temperature high. The magnetic properties are clearly influenced by chemical composition and the average grain size. The M_s and M_r values of the barium-
strontium ferrite increase at (X = 0.8) more than at (X = 0, 1) respectively because of the arrangement and distribution of dipoles in the barium with strontium substitution in certain proportions.

5. References

[1] Ng W K, Ding J, Chow Y Y, Wang S, and Shi Y 2000 A study on barium ferrite particles prepared by chemical coprecipitation 15(10), 2151-2156.
[2] Khorashadizade E, Arabi H and Yousefi A 2012 Doping Effect on Crystal Structure and Magnetic Properties of Highly Al-Substituted Strontium Hexaferrite Nanoparticles. In Applied Mechanics and Materials Vol. 229, pp. 210-214.
[3] Ding J, Maurice D, Miao W F, McCormick P G and Street R 1995 Hexaferrite magnetic materials prepared by mechanical alloying 150(3), 417-420.
[4] Ding J, Street R, and Nishio H 1996 Magnetic properties of Ba-and Sr-hexaferrite prepared by mechanical alloying 164(3), 385-389.
[5] Mahmood S H, and Abu-Aljarayesh I 2016 Hexaferrite permanent magnetic materials. Materials Research Forum LLC.
[6] Gershov I Y 1964 Barium ferrite permanent magnets. Soviet Powder Metallurgy and Metal Ceramics 1(5), 386-393.
[7] Dursun S, Topkaya R, Akdoğan N and Alkoy S 2012 Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcination routes 38(5), 3801-3806.
[8] Mahmood S H 2016 Ferrites with high magnetic parameters. Hexaferrite permanent magnetic materials 111-152.
[9] Mahmood S H and Abu-Aljarayesh I 2016 Hexaferrite permanent magnetic materials Materials Research Forum LLC.
[10] Speliotis D 1987 Barium ferrite magnetic recording media 23(1), 25-28.
[11] Kang Y M 2015 High saturation magnetization in La–Ce–Zn–doped M-type Sr-hexaferrites 41(3), 4354-4359.
[12] Mahmood S H 2014 Magnetic properties and hyperfine interactions in M-type BaFe12-2xMoxZnxO19 hexaferrites 2(05), 77.
[13] Mahmood S H, Ghanem A A, Bsoul I, Awadallah A and Maswadeh Y 2017 Structural and magnetic properties of BaFe12−2xCuxMnxO19 hexaferrites 4(3), 036105.
[14] Li Y, Wang Q and Yang H 2009 Synthesis, characterization and magnetic properties on nanocrystalline BaFe12O19 ferrite 9(6), 1375-1380.
[15] Soman V V, Nanoti V M and Kulkarni D K 2013 Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite 39(5), 5713-5723.
[16] Mahmood S H and Abu-Aljarayesh I 2016 Hexaferrite permanent magnetic materials Materials Research Forum LLC. ADTM Card-276.
[17] Mudhafar A, Salim et al 2020 J. Phys.: Conf. Ser. 1664 012105.
[18] Salam Hussein Ewaid et al 2020 J. Phys.: Conf. Ser. 1664 012143.
[19] Ahmed Sabah Al-Jasime et al 2020 J. Phys.: Conf. Ser. 1664 012141.
[20] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 722 012008.
[21] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012075.
[22] Braun P B 1957 The crystal structures of a new group of ferromagnetic compounds 12, 491-548.
[23] Zhao H, Du Y, Kang L, Xu P, Du L, Sun Z and Han X 2013 Precursor-directed synthesis of quasi-spherical barium ferrite particles with good dispersion and magnetic properties 15(4), 808-815.
[24] Vinuthna C H, Ravinder D, Madhusudan R and Ravinder D 2013 Characterization of Co1−AZnxFe2O4 nano spinal ferrites prepared by citrate precursor method 3(6), 654-660.
[25] Hameed Hamzah, S. (2019). Generalized Limit Sets. Al-Qadisiyah Journal Of Pure Science, 24(1), 7 - 12.
[26] K. Abass, A., & A. Abd Al-Hassan, S. (2019). Effect the Composition Ratio of Cobalt Oxide on the Structural and Optical Properties of Tin Oxide. Al-Qadisiyah Journal Of Pure Science, 24(3).