Evaluating the role of public health in implementation of genomics-related recommendations: a case study of hereditary cancers using the CDC Science Impact Framework

Ridgely Fisk Green, PhD, MMSc1, Mary Ari, PhD3, Katherine Kolor, PhD, MS2, W. David Dotson, PhD2, Scott Bowen, MPH2, Nancy Habarta, MPH4, Juan L. Rodriguez, MPH, MS5, Lisa C. Richardson, MD, MPH5 and Muin J. Khoury, MD, PhD2

Public health plays an important role in ensuring access to interventions that can prevent disease, including the implementation of evidence-based genomic recommendations. We used the Centers for Disease Control and Prevention (CDC) Science Impact Framework to trace the impact of public health activities and partnerships on the implementation of the 2009 Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Lynch Syndrome screening recommendation and the 2005 and 2013 United States Preventive Services Task Force (USPSTF) BRCA1 and BRCA2 testing recommendations. The EGAPP and USPSTF recommendations have each been cited by >300 peer-reviewed publications. CDC funds selected states to build capacity to integrate these recommendations into public health programs, through education, policy, surveillance, and partnerships. Most state cancer control plans include genomics-related goals, objectives, or strategies. Since the EGAPP recommendation, major public and private payers now provide coverage for Lynch Syndrome screening for all newly diagnosed colorectal cancers. National guidelines and initiatives, including Healthy People 2020, included similar recommendations and cited the EGAPP and USPSTF recommendations. However, disparities in implementation based on race, ethnicity, and rural residence remain challenges. Public health achievements in promoting the evidence-based use of genomics for the prevention of hereditary cancers can inform future applications of genomics in public health.

Keywords: evaluation; hereditary breast and ovarian cancer; Lynch syndrome; public health genomics; Science Impact Framework

Public health approaches to promoting health and preventing disease are population based, but frequently target population subgroups defined by characteristics such as race or ethnicity and rural or urban residential status. These subgroups might not represent the majority of those at risk, but often have a substantially greater risk than the general population. An emerging role for public health is to help find people at highest risk for hereditary cancer syndromes—a subgroup of the population at increased risk for cancer, especially at a younger age. Women with breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) pathogenic variants have a 69–72% risk of breast cancer and a 17–44% risk of ovarian cancer by age 80, compared with lifetime breast and ovarian cancer risks of 12 and 1%, respectively, for women in the general population.1,2 Women and men with Lynch syndrome (LS) have a 35 and 45% risk, respectively, of colorectal cancer by age 70, compared with a 4.5% lifetime risk for the general population.3,4 Women with LS have a 15–60% risk of endometrial cancer, compared with a 2.7% lifetime risk in the general population.4

BRCA pathogenic variants cause about 3% of breast cancers and 10% of ovarian cancers,5 while LS accounts for about 3% of colorectal cancers.3 Although most people diagnosed with breast, ovarian, or colorectal cancer do not have a BRCA or LS-related pathogenic variant, those carrying these pathogenic variants can find out about their cancer risk before any signs of disease, and take preventive measures early, when they are most likely to be effective. For women with BRCA pathogenic variants, prophylactic mastectomy can reduce breast cancer risk by 85–100%, and prophylactic oophorectomy can reduce ovarian cancer risk by 69–100% and breast cancer risk by 37–100%.5 Women with BRCA pathogenic variants can start mammography screenings earlier, as recommended by the United States Preventive Services Task Force (USPSTF).6
along with magnetic resonance imaging, as recommended by the American Cancer Society.\(^7\) For individuals with LS, colorectal cancer screening reduces their lifetime colorectal cancer risk by about 62\%.\(^3\)

Evidence-based recommendations are an important first step in identifying and providing interventions to those at risk for disease, and translating these guidelines into public health practice is crucial for their implementation. The use of genomics in public health, especially in chronic disease prevention, is still emerging, and evaluations of ongoing efforts are important to provide the evidence base to show the impact of incorporating genomics into chronic disease prevention, to encourage and inform future efforts. Here, we use the Centers for Disease Control and Prevention (CDC) Science Impact Framework (SIF)\(^8\) to trace the influence of public health activities on the prevention of hereditary cancers. We focus on LS and BRCA-associated hereditary breast and ovarian cancer (HBOC), starting with the USPSTF 2005 and 2013 recommendation, “BRCA-related cancer: risk assessment, genetic counseling, and genetic testing”\(^2,9\) and the 2009 Evaluation of Genomic Applications in Practice and Prevention (EGAPP) recommendation, “Genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from LS in relatives.”\(^3\) We selected the CDC SIF because it takes a broader approach to evaluation, measuring the impact of science beyond journal citations, and considers short-term indicators that support long-term impact, with an emphasis on contribution rather than attribution. The CDC SIF\(^8\) considers five spheres of influence: disseminating science, creating awareness, catalyzing action, effecting change, and shaping the future (Fig. 1).

DISSEMINATING SCIENCE

In 2009, the CDC-sponsored, independent EGAPP Working Group published a landmark evidence-based recommendation that genetic testing for LS should be offered to all individuals newly diagnosed with colorectal cancer,\(^3\) unlike previous guidelines, which recommended targeted screening based on age, family health history, and other factors. Finding those with LS would allow their relatives to be tested for the same pathogenic variant and, if positive, to take steps to prevent cancer or find it early, including colonoscopies at a younger age. If everyone in the United States with newly diagnosed colorectal cancer were tested, about 4,000 people each year would be identified with LS. Testing the blood relatives of these 4,000 people could potentially identify multiple relatives in each family with LS who would benefit from evidence-based interventions.

To assess the evidence base before issuing the recommendation, the EGAPP working group conducted a systematic review on LS testing for all individuals with newly diagnosed colorectal cancer to reduce morbidity and mortality, updating an evidence report from the Agency for Healthcare Research and Quality.\(^10\) The supplementary review\(^10\) focused on clarifying the LS case definition, removing family health history assessment as a requirement for screening, determining the clinical validity of testing, identifying benefits and harms of testing for patients and their relatives, and providing a cost analysis.

The USPSTF published evidence-based recommendations in 2005, revised in 2013, on the use of family health history to identify women at risk for BRCA pathogenic variants (B rating).\(^2,9\) The recommendations focus on women with a family health history of cancer consistent with a BRCA pathogenic variant who have not had breast, ovarian, tubal, or peritoneal cancer themselves, and provide guidance targeted to primary care providers on referral for BRCA genetic counseling and testing. To identify women who should be referred for genetic counseling and, if indicated after counseling, BRCA genetic testing, the 2005 recommendation lists specific family health history criteria, while the 2013 revision states that primary care providers should screen women with one of several screening tools. An estimated 5% of women in the United States—about 6 million women aged ≥18 years—meet the 2005 USPSTF referral criteria (2014 US census estimates).\(^11\)

CREATING AWARENESS

Over 340 peer-reviewed publications have cited the EGAPP LS screening recommendation, including cost-effectiveness...
studies supporting its universal screening approach in the United States,12 and studies describing the implementation of universal LS screening of newly diagnosed colorectal cancers13 (Supplementary Table S1 online). In a 2009 survey, 29% of National Cancer Institute-designated comprehensive cancer centers, 16% of American College of Surgeons-accredited community hospital comprehensive cancer programs, and 0% of community hospital cancer programs reported performing universal LS screening for all patients newly diagnosed with colorectal cancer.14 In a 2013 survey15 of pathology laboratories, about half reported screening all or nearly all colorectal cancers for LS, suggesting that LS screening rates had increased since 2009 (i.e., since the publication of the EGAPP recommendation).15

Over 400 peer-reviewed publications have cited the 2005 and/or 2013 USPSTF recommendations. These include studies on implementing breast cancer risk assessment for women without a personal history of breast cancer, either in primary care settings16 or among women receiving screening mammograms17 (Supplementary Table S1 online). Also included are studies evaluating hereditary cancer risk assessment tools and protocols,18 assessing primary care clinicians’ ability to determine hereditary cancer risk,19 identifying ways to improve cancer risk assessment and access to genetic services for those at-risk,20 and describing the prevalence of (and characteristics associated with) referrals, genetic counseling, and testing for HBOC21 (Supplementary Table S1 online).

To educate clinicians about the recommendations, CDC collaborated with Medscape on expert commentaries22 on LS and the EGAPP recommendation in 2011, and BRCA pathogenic variants and the USPSTF recommendation in 2014. CDC partnered with the Georgia, Michigan, and Oregon Departments of Health and the National Coalition for Health Professional Education in Genomics (now the Jackson Laboratory Clinical and Continuing Education Program) to create an online continuing medical education course on HBOC,23 with >7,000 sessions since its launch in February 2014 (D. Duquette, personal communication). The American Medical Association and the College of American Pathologists developed continuing medical education courses on LS. The 2016 CDC grand rounds, “Cancer and family health history: using genomics for prevention” and summary publication discussed public health approaches to hereditary cancers and focused on LS and HBOC, including the EGAPP and USPSTF recommendations.24 The grand rounds reached >790 participants, and the resulting publication has an Altmetric score of 58 as of September 2017, ranking in the top 5% of all research outputs scored by Altmetric.

CDC developed the Know:BRCA risk assessment tool,25 launched in 2014, to help women and their health-care providers assess their risk for BRCA pathogenic variants. CDC launched the “Bring Your Brave” campaign26 in 2015 to increase young women’s knowledge about breast health and risk factors for early-onset breast cancer, including BRCA pathogenic variants.

CDC funding helped establish selected state health departments’ capacity to integrate HBOC into public health programs, starting in 2008 and continuing in 2011. The most recent funding in 2014 included LS and focused on education, policy, and surveillance. Trivers et al.27 used CDC’s SIF to evaluate funded states’ HBOC activities.

Educational activities

Educational activities of CDC-funded state health departments include small media targeting providers and the public, online and in-person presentations and training, websites, publications, promotion of educational programs through provider incentives, creation of screening tools, development of genomics competencies and curriculum, technical assistance, national and state health observances, outreach events, and health education campaigns. For example, the Connecticut Department of Public Health developed an educational booklet for providers, Cancer Genomics Best Practices for Connecticut Healthcare Providers, and the Michigan Department of Health and Human Services (MDHHS) developed a handheld provider tool, the Cancer Family Health History Guide and a form and patient education booklet for providers to use to obtain written informed consent before presymptomatic or predictive genetic testing as mandated by Michigan law. Several states issued proclamations for LS Awareness Day on 22 March 2018, indicating that increasing LS awareness is a state priority. Michigan issued proclamations for HBOC Awareness Week from 25 September to 1 October 2016.

Policy and systems change activities

Policy and systems change activities conducted by CDC-funded states include developing cancer genomics program infrastructure, forming advisory committees, including genomics in state cancer plans, developing policy guidance documents for institutions and policymakers, working with state cancer registries to include data elements on cancer family health history and other genetic data, working with payers to promote coverage according to EGAPP and USPSTF recommendations, working with community clinics serving low-income populations to include family health history risk assessment, implementing a process in which laboratory reports on new colorectal cancer diagnoses are immediately forwarded to the local hospital cancer registrar and board-certified genetic counselor, encouraging compliance with the American College of Surgeons’ “Commission on Cancer Genetics Standard: Risk Assessment and Genetic Counseling”, and educating stakeholders about state licensure for genetic counselors.

We assessed state cancer plans currently available online for genomics terms similar to those used by Laufman et al.,28 gene, genetic, genomics, heredity, hereditary, heritability, family health history, DNA, high risk, risk assessment, and first-degree relative (Table 1). The majority of states (71% (36/51), including Washington, DC; Table 1) include genomics-related goals, objectives, or strategies in their state
Table 1 Genomics, HBOC, and LS in state cancer plans

State	Period covered	Genetics-related term	Genomics-related goal/objective/strategy	HBOC-specific goal/objective/strategy	LS-specific goal/objective/strategy	Screening all newly diagnosed colorectal cancers for LS goal/objective/strategy
Alabama	2011–2015	Yes	Yes	Yes	Yes	No
Alaska	2016–2020	Yes	Yes	Yes	Yes	No
Arizona	2014–2018	Yes	Yes	Yes	No	No
Arkansas	NS	Yes	Yes	Yes	No	No
California	2011–2015	Yes	Yes	Yes	No	No
Colorado	2016–2020	Yes	Yes	Yes	Yes	Yes
Connecticut	2014–2017	Yes	Yes	Yes	Yes	Yes
Delaware	2012–2016	No	No	No	No	No
Florida	2015	Yes	Yes	Yes	Yes	No
Georgia	2014–2019	Yes	Yes	Yes	Yes	No
Hawaii	2016–2020	Yes	Yes	Yes	No	No
Idaho	2016–2020	Yes	Yes	No	No	No
Illinois	2012–2015	Yes	No	No	No	No
Indiana	2010–2014	Yes	No	No	No	No
Iowa	2018–2022	Yes	Yes	Yes	Yes	No
Kansas	2017–2021	Yes	Yes	Yes	No	No
Kentucky	2016	Yes	No	No	No	No
Louisiana	2017–2021	Yes	Yes	Yes	Yes	No
Maine	2016–2020	Yes	No	No	No	No
Maryland	2016–2020	Yes	Yes	Yes	Yes	Yes
Massachusetts	2012–2016	Yes	No	No	No	No
Michigan	2016–2020	Yes	Yes	Yes	Yes	Yes
Minnesota	2025	Yes	Yes	Yes	Yes	Yes
Mississippi	2006–2011	Yes	Yes	Yes	Yes	No
Missouri	2016–2020	Yes	No	No	No	No
Montana	2016–2021	Yes	Yes	Yes	Yes	No
Nebraska	2017–2022	Yes	No	No	No	No
Nevada	2016–2020	Yes	Yes	Yes	No	No
New Hampshire						No
New Jersey	2008–2012	Yes	Yes	Yes	Yes	No
New Mexico	2012–2017	Yes	Yes	Yes	Yes	No
New York	2012–2017	Yes	Yes	Yes	Yes	No
North Carolina	2014–2020	Yes	Yes	No	No	No
North Dakota	2011–2016	Yes	Yes	Yes	Yes	No
Ohio	2015–2020	Yes	Yes	Yes	Yes	No
Oklahoma	2006–2010	No	No	No	No	No
Oregon	2005–2010	Yes	Yes	Yes	Yes	No
Pennsylvania	2013–2018	No	No	No	No	No
Rhode Island	2013–2018	No	No	No	No	No
South Carolina	2011–2015	Yes	Yes	Yes	Yes	No
South Dakota	2015–2020	Yes	Yes	Yes	Yes	No
Tennessee	2013–2017	Yes	Yes	Yes	Yes	No
Texas	2012	Yes	No	No	No	No
Utah	2016–2020	Yes	Yes	Yes	Yes	No
Vermont	2016–2020	Yes	No	No	No	No
Virginia	2013–2017	Yes	Yes	Yes	Yes	No
Washington	2009–2013	Yes	Yes	No	No	No
cancer control plans, and the number has continued to increase, even as cancer control plans have become more streamlined. (Laufman et al.’s 2012 study found that 64% (32/50) of state cancer plans included genomics-related goals, strategies, or objectives.\(^{28}\)) Most cancer control plans that are up-to-date (72% (21/29)) include genomics-related goals, objectives, or strategies. Five state cancer plans include goals, objectives, or strategies on LS screening of all newly diagnosed colorectal cancers. Nineteen state cancer control plans include goals, objectives, or strategies that address LS or family health history of colorectal cancer, 23 plans include goals, objectives, or strategies that address HBOC or BRCA testing, and an additional 10–11 include goals, objectives, or strategies that are relevant to HBOC and LS but use more general terms, such as hereditary cancer or family health history of cancer.

Surveillance activities

Surveillance activities include: surveys of providers, patients, and payers to assess knowledge, interest, and current practices regarding family health history, hereditary cancers, and genetic testing; the addition of questions on family health history of cancer and hereditary cancers to state surveys such as the Behavioral Risk Factor Surveillance System (BRFSS); hospital chart reviews to track the number of patients with newly diagnosed colorectal cancer screened for LS; and data collection through state-specific surveillance systems.

Using data from surveys, such as the BRFSS, states have been able to estimate the state prevalence of personal and family health history of breast, colorectal, and other cancers, assess awareness of and interest in genetic testing for hereditary cancer syndromes, and track state progress toward national goals and objectives and state cancer plan goals, objectives, or strategies. A study using data from the 2006–2009 Oregon BRFSS\(^{29}\) found that health-care providers were more likely to discuss cancer risk, screening for breast cancer, and health behavior changes with patients with a family health history of breast cancer, compared with those without a family health history of breast cancer. Women who discussed breast cancer screening with their providers were more likely to have mammograms than those who did not discuss it. Analyses using the Michigan BRFSS\(^{30}\) showed a twofold increase in the percentage of Michigan women with a significant family health history of breast and/or ovarian cancer (based on the 2005 USPSTF criteria) who received genetic counseling (8.5–8.8% in 2012; 16.0% in 2015), with about 10% of adult Michigan women meeting the 2005 USPSTF criteria for genetic counseling referral. Data from the 2010 Michigan BRFSS\(^{31}\) showed that a higher percentage of adults with a personal or family history of colorectal cancer reported having a colon cancer screening than those who did not report a personal or family health history of colorectal cancer (80.4 vs. 65.3%). A 2008 Oregon BRFSS study found that respondents with a family health history of colorectal cancer were more likely to report that their health-care provider discussed colorectal cancer screening (odds ratio = 4.2 (95% confidence interval = 2.4–7.4)), that they had colorectal screening within the recommended time period (odds ratio = 2.2 (95% confidence interval = 1.3–3.9)), and that they made lifestyle changes to prevent colorectal cancer (odds ratio = 2.6 (95% confidence interval = 1.7–4.0)).\(^{32}\)

Partnerships and other activities

State cancer genetics programs have partnered with cancer registries, clinical facilities, health-care providers, health systems, public and private payers, policymakers, other state, regional, and federal programs, academic institutions, community organizations, advocacy groups, and industry. The LS Screening Network (LSSN),\(^{33}\) created in 2011, fosters collaboration and data sharing among institutions routinely screening newly diagnosed colorectal or endometrial cancers for LS. Thus far, 122 leading cancer institutions in 30 states have applied for LSSN membership, and 95 institutions and partners in 30 states are active members. Ninety-five percent of LSSN member institutions report that they used the EGAPP recommendation to justify or support their universal or routine LS screening of colorectal cancer cases (D. Duquette, personal communication). LSSN evolved from a 2010 CDC stakeholder meeting on universal colorectal cancer tumor screening for LS.\(^{34}\)

One of the first approaches some states have used to implement hereditary cancer activities has been bidirectional reporting using cancer registries to identify individuals at increased risk for LS (those with colorectal cancer and endometrial cancer before 50 years of age) and HBOC (those
with breast cancer before 50 years of age or ovarian cancer). These programs reported aggregate numbers of patients at increased risk to the reporting institution or provider and, in some cases, contacted the patient to inform them of their risk. While bidirectional reporting might not change clinical outcomes—in part due to the time elapsed between cancer diagnosis and reporting the risk—state health departments used it as an educational tool to promote compliance with the EGAPP, USPSTF, and other recommendations. The MDHHS cancer genomics program reported 10,340 colorectal cancers, 3,025 breast cancers in women <50 years of age, 1,985 people with multiple HBOC-related or LS-related primary cancers, 459 endometrial cancers in women <50 years of age, 127 ovarian cancers, and 147 male breast cancers. The Connecticut Department of Public Health reported >3,700 cancer cases for possible HBOC evaluation and received requests from 70% of participating hospitals for grand rounds presentations on prevention, early detection, and genetic counseling and testing for hereditary cancers. A 2009 project in Colorado reported hereditary colorectal cancer information on 575 cases to 412 health-care providers and 181 patients. HBOC bidirectional reporting programs are described further by Trivers et al.

Using CDC-funded state activities as models, CDC developed the Public Health Genomics Toolkit to assist other state health departments in implementing the EGAPP and USPSTF recommendations. The Toolkit has been visited over 20,000 times since its launch and includes resources such as patient and provider fact sheets on LS and HBOC, summaries of the EGAPP and USPSTF recommendations, pamphlets and sample letters to help those with LS or BRCA pathogenic variants share information about their diagnoses with family members, and a slide set for states to use for educating providers and institutions about LS and HBOC, all of which can be customized to suit states’ needs. To provide further access to public health genomics activities at the state level, CDC created the State Public Health Genomics Program Map, which provides state-by-state information on HBOC and LS activities, and has been visited >65,000 times.

EFFECTING CHANGE

For implementation of the USPSTF and EGAPP recommendations in the clinical setting, health insurance coverage for services related to BRCA testing and universal LS screening may be necessary. The Patient Protection and Affordable Care Act requires many health plans to provide in-network coverage without cost sharing for preventive services with a USPSTF rating of “A” or “B,” which includes the BRCA testing recommendation. A clarification in May 2015 stipulated that Patient Protection and Affordable Care Act coverage included women with a personal history of cancer, and the Centers for Medicare and Medicaid Services (CMS) Local Coverage Determinations on BRCA1 and BRCA2 Genetic Testing allow for regional coverage of BRCA genetic counseling and testing for Medicare beneficiaries with personal histories of breast, ovarian, and other cancers that fit specific criteria for increased risk for a BRCA pathogenic variant. Thus, coverage, depending on the source, can potentially be provided for individuals both with and without personal histories of BRCA-related cancers who meet certain criteria and have not previously undergone BRCA genetic testing. An MDHHS study, using data before the Patient Protection and Affordable Care Act (2008–2012), found that insurance or out-of-pocket cost concerns were a substantial barrier for BRCA testing in women (with and without personal histories of breast or ovarian cancer) who had received BRCA genetic counseling that indicated they were candidates for testing. A recent paper found a correlation between Patient Protection and Affordable Care Act coverage and increased BRCA testing in women with a family health history of breast and/or ovarian cancer. Major private payers and the CMS now provide coverage for LS screening, with some, including CMS, covering screening for all individuals diagnosed with colorectal cancer and citing the EGAPP recommendation.

The reach of the EGAPP and USPSTF recommendations and public health efforts to implement these recommendations has been magnified by the inclusion of similar recommendations in other guidelines and initiatives. Following the EGAPP recommendation, ten national and international recommendations have included universal LS screening. Recommendations from at least seven national and international organizations include strategies for identification of women at risk for BRCA pathogenic variants and cite the USPSTF recommendation. BRCA testing and LS screening were included in national initiatives aimed at improving health. The Healthy People 2020 genomics objectives, which cite the USPSTF and EGAPP recommendations, are to “increase the proportion of women with a family health history of breast and/or ovarian cancer who receive genetic counseling” and “increase the proportion of persons with newly diagnosed colorectal cancer who receive genetic testing to identify LS (or familial colorectal cancer syndromes).” The 2016 National Cancer Institute Cancer Moonshot Blue Ribbon Panel Report recommended an LS demonstration project, which includes LS screening of all new colorectal cancers in the United States, and cited the EGAPP recommendation. The report included an HBOC demonstration project focused on genetic testing of men with breast cancer, women <50 years of age with breast cancer, and women with ovarian cancer. While the USPSTF recommendation starts with unaffected women whose risk is identified through their family health history, it acknowledges that testing should ideally first be done in a family member who has had a BRCA-related cancer. Also, the demonstration project would extend testing to relatives of individuals who test positive for a pathogenic variant.

Recent studies indicate that LS screening of colorectal cancer patients is not yet universal. A population-based study on those diagnosed in 2011 in Louisiana found that only 23% of the 274 colorectal cancer patients aged ≤50 years were screened for LS. However, studies on institutions
implementing universal screening have seen higher rates. As one measure of efficacy of the work to increase LS screening of all colorectal cancers, LSSN member institutions have screened >31,000 colorectal cancer cases since 2008, and LSSN provides a forum for providers to discuss questions on cases and screening (D. Duquette, personal communication). LSSN recently received funding for its database, which will provide an opportunity to track LS screening nationally across its member institutions.

Recent studies have shown increases in BRCA testing rates, and cancer family health history has surpassed personal history of breast or ovarian cancer as the indication for testing. This is consistent with more women being identified and tested in accordance with the USPSTF guidelines.

Studies have shown disparities by race and ethnicity and rural and urban residential status in the identification and treatment of those with hereditary cancer syndromes, highlighting opportunities for public health approaches that address these disparities. Black breast cancer survivors are less likely than breast cancer survivors of other races to have HBOC genetic counseling or testing.

The most commonly reported reason is that their health-care provider has not recommended genetic services, and health-care providers primarily serving minority populations are less likely to refer or order genetic testing for their patients. Black people with BRCA pathogenic variants are less likely to tell their relatives about their pathogenic variant, and relatives are less likely to be tested for the pathogenic variant.

Furthermore, black women with BRCA pathogenic variants have lower rates of risk-reducing salpingo-oophorectomy than BRCA carriers of other races. Similarly for colorectal cancer, colonoscopy screening at ages 40–49 for first-degree relatives of those with colorectal cancer was lower among black people than white people. Hispanic women with early-onset breast cancer are also less likely to undergo BRCA testing, compared with non-Hispanic white women.

Disparities have also been observed for those living in rural areas. A recent study looking at women with employee-sponsored insurance found that BRCA testing rates were lower in nonmetropolitan areas compared with metropolitan areas, although the differences decreased over the study period, especially in younger women. Women living in nonmetropolitan areas were also less likely to receive certain preventive interventions. Universal LS screening of colorectal cancers is less common in community hospitals, which tend to serve rural populations, compared with institutions with comprehensive cancer centers or programs, which tend to be located in more urban areas.

Efforts to increase risk assessment and genetic testing in populations with lower rates have shown success. For example, a study offering genetic counseling and testing for HBOC to women at a safety-net hospital in which 78% of patients were from racial and ethnic minority groups had high uptake rates for these services. Future public health efforts can impact disparities in the implementation of the EGAPP and USPSTF recommendations.
The National Cancer Institute convened a 2017 workshop on “Approaches to Blue Ribbon Panel recommendations: the case of LS” to review the Blue Ribbon Panel recommendations and discuss health-care delivery, knowledge gaps, and resources needed for implementation. The workshop helped lead to 2018 National Cancer Institute funding for implementation research on hereditary cancers, including LS and HBOC.

SUMMARY
We used CDC’s SIF to document the trajectory and influence of public health activities to implement genomics, starting with the EGAPP and USPSTF recommendations. The SIF is beneficial for examining the effects of public health activities to translate recommendations, which are broad and often difficult to delineate and measure on a causal pathway. A single product rarely produces impact in isolation, but rather produces effects in combination with other contributions. Effects may not follow chronologically. The SIF accounts for all of this. One challenge in using the SIF is establishing links between events and outcomes without a set protocol or database to search, especially retrospectively when opportunities to collect further data may not be available. Also, the SIF lacks measures of magnitude or quantitation of effect size.

Our evaluation shows how cancer prevention programs have translated clinical evidence-based recommendations for the identification of individuals at risk for hereditary cancer syndromes into activities for public health practice, with the long-term goal of improving health. For example, MDHHS worked to raise awareness and establish systems to improve HBOC screening and showed a twofold increase in genetic counseling for women with a family history consistent with HBOC, using BRFSS data. The inclusion of LS- and HBOC-related goals, objectives, and strategies in state cancer plans and national initiatives, such as Healthy People 2020 and the Cancer Moonshot, can provide the impetus for state health departments to implement hereditary cancer activities. CDC funds the central state-based cancer registries, which could provide further opportunities for collaborating at the state level to move these agendas forward. Evaluating activities of CDC-funded states is important to increase the evidence base for future efforts by state health departments and others.

The continued role of public health is crucial to ensure that health disparities in the identification and treatment of hereditary cancer syndromes are addressed. These disparities have been recognized in some cases, but work is needed to effect change. The Genomics and Population Health Action Collaborative health disparities working group focuses on identifying and addressing these disparities, and the Cancer Moonshot funding includes the development of “optimum strategies for reaching diverse communities such as rural, racial/ethnic minorities and low-socioeconomic groups.” Evaluations of this work will be needed to see whether it results in changes in health disparities in hereditary cancer risk assessment and prevention.

Comparing the implementation of the USPSTF and EGAPP recommendations is informative. HBOC-related recommendations and federal funding were available earlier than for LS. Clinicians responsible for carrying out the recommendations differ: primary care providers for USPSTF and pathologists for EGAPP, requiring different target audiences for provider education. Patients participate directly in HBOC screening by sharing family health history information, unlike with LS tumor tissue testing. Tracking LS screening using available databases is challenging: the biochemical test used for most LS screening has multiple applications, so its use does not necessarily indicate LS screening. However, the LSSN database will address this gap. The success of the Family-health-history-based USPSTF recommendation might impede progress of the EGAPP recommendation, as providers performing LS screening might assume that family health history information is required, highlighting the importance of clear public health messaging that all colorectal cancers should be screened.

Public health efforts to implement hereditary cancer prevention activities can serve as a model for future integration of genomics into public health approaches to chronic disease prevention, such as integration of familial hypercholesterolemia into heart disease prevention activities. To help those in the public health and clinical arenas determine which genomic applications are ready for implementation, CDC created an evidence-based classification of genomic tests and family health history, the Tier Table Database. The Tier Table ranks genomic applications in three tiers according to the level of evidence supporting their use, with tier 1 applications having a synthesized evidence base supporting implementation in practice. LS screening of all newly diagnosed colorectal cancers, based on the EGAPP recommendation, and the use of HBOC family health history for risk prediction for BRCA genetic counseling referral, based on the USPSTF recommendation, are two of >40 tier 1 tests. CDC works to promote implementation of tier 1 genomic applications, and public health efforts to translate the EGAPP and USPSTF recommendations into public health activities can inform this work.

ELECTRONIC SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at https://doi.org/10.1038/s41436-018-0028-2

DISCLOSURE
The authors declare no conflicts of interest.

REFERENCES
1. Küchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317:2402–16.
2. Moyer VA, United States Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160:271–81.
3. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med. 2009;11:35–41.
4. National Comprehensive Cancer Network. NCCN Guidelines Version 1, Genes/Familial High-Risk Assessment: Colon 2017. https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Accessed 5 February 2018.

5. Nelson HD, Pappas M, Zakhour B, et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related disease in women: a systematic review to update the U.S. preventive services task force recommendation. Ann Intern Med. 2014;160:255–66.

6. Siu AL, United States Preventive Services Task Force. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2016;164:279–96.

7. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. Cancer. 2007;57:75–89.

8. Centers for Disease Control and Prevention. CDC Science Making a Difference—Five Domains of Influence. https://www.cdc.gov/od/science/impact/index.htm. Accessed 5 February 2018.

9. United States Preventive Services Task Force. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: recommendation statement. Ann Intern Med. 2005;143:355–61.

10. Palomaki GE, McClain MR, Melillo S, et al. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11:42–65.

11. Healthy People 2020 Progress Review: Cancer and Genomics. https://www.healthypeople.gov/sites/default/files/HP2020_Cancer_and_Genomics_Progress_Review_Slides.pdf. Accessed 5 February 2018.

12. Grosse SD, Palomaki GE, Mvundura M, et al. The cost-effectiveness of routine testing for Lynch syndrome in newly diagnosed patients with colorectal cancer in the United States: corrected estimates. Genet Med. 2015;17:510–1.

13. Cohen SA, Laurino M, Bowen DJ, et al. Initiation of universal tumor screening for Lynch syndrome in colorectal cancer patients as a model for the implementation of genetic information into clinical oncology practice. Cancer. 2016;122:393–401.

14. Beamer LC, Grant ML, Espenschied CR, et al. Reflex immunohistochemistry and microsatellite instability testing of colorectal tumors for Lynch syndrome among US Cancer Programs and follow-up of abnormal results. J Clin Oncol. 2012;30:1058–63.

15. Volmar KE, Idowu MO, Souers RJ, et al. Molecular testing in anatomic pathology: an update to the Michigan BRFSS Surveillance Brief. Vol. 10, No. 3. Lansing, MI: Michigan Department of Health and Human Services, Lifecourse Epidemiology and Genomics Division, December 2016.

16. Centers for Disease Control and Prevention. Lynch Syndrome Screening Program in a breast-imaging community practice. Breast Cancer Res Treat. 2016;23:273

17. Centers for Disease Control and Prevention. Tier 1 Genomic Applications Genet Med. 2017;19:510–2.

18. Senier L, Lee R, Nicoll L. The strategic defense of physician autonomy: state public health agencies as countervailing powers. Soc Sci Med. 2017;186:113–21.

19. Lowery JT, Axell L, Vu K, et al. A novel approach to increase awareness about hereditary colon cancer using a state cancer registry. Genet Med. 2010;12:721–5.

20. Centers for Disease Control and Prevention. State Public Health Genomics Program Map. https://phkgb.cdc.gov/FHGK&stateMapStartPage.action. Accessed 5 February 2018.

21. H.R.3590—Patient Protection and Affordable Care Act. https://www.congress.gov/bill/111th-congress-house-bill/3590. Accessed 5 February 2018.

22. Centers for Medicare & Medicaid Services. FAQs About Affordable Care Act Implementation (Part XXVI). https://www.cms.gov/CCIIO/Resources/Fact-Sheets-and-FAQs/aca_implementation_faqs26.pdf. Accessed 5 February 2018.

23. For example, Local Coverage Determination (LCD): MolDX: BRCA1 and BRCA2 Genetic Testing (L36082). https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCD=36082&ver=26&CoverageSelection=Both&ArticleType=All&PolicyType=Final&c&BRCA2&KeyWordLookUp=Title&KeyWordSearchType=And&bc=AAAAAAAAAAAA%3d&$. Accessed 5 February 2018 and Local Coverage Determination (LCD): MolDX: BRCA1 AND BRCA2 Genetic Testing (L36163). https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCD=36163&ver=3&SearchType=Advanced&CoverageSelection=Local&PolicyType=Both&b&BRCA1+and+BRCA2&KeyWordLookUp=Title&KeyWordSearchType=Exact&true&bc=AAAAAAAAAAAA%3d&$. Accessed 5 February 2018.

24. Hayden S, Mange S, Duquette D, Petruccielli N, Raymond VM, Partners BCN. Large, prospective analysis of the reasons patients do not pursue BRCA genetic testing following genetic counseling. J Genet Couns. 2017;26:859–65.

25. Han X, Jemal A. Recent patterns in genetic testing for breast and ovarian cancer risk in the U.S. Am J Prev Med. 2017;53:504–7.

26. For example, BlueCross BlueShield of North Carolina Corporate Medical Policy: Genetic Testing for Colon Cancer. http://www.bcbsnc.com/assets/services/publicpdfs/medicallpolicy/genetic_testing_for_colon_cancer.pdf. Accessed 5 February 2018. BlueCross BlueShield
of Rhode Island Medical Coverage Policy: Genetic Testing for Lynch Syndrome and Other Inherited Intestinal Polyposis Syndromes-PREADM. https://www.bcbssri.com/sites/default/files/policies/GeneticTesting_LynchSyndrome.pdf. Accessed February 5, 2018. HMSA Genetic Testing for Lynch Syndrome And Other Inherited Colon Cancer Syndromes. https://hmsa.com/portal/provider/MM/0.02.007_GeneticTesting_for_Lynch_Syndrome_and_Other_Inherited_Colon_Cancer_Syndromes_042216.pdf. Accessed February 5, 2018. Aetna: Genetic Testing. http://www.aetna.com/cpb/medical/data/100/199_0140.html. Accessed February 5, 2018. Cigna Medical Coverage Policy: Tumor Profiling, Gene Expression Assays and Molecular Diagnostic Testing for Hematology/Oncology Indications. https://cignaforhpc.cigna.com/public/content/pdf/coversagepolicies/medical/mm_0520_coveragepositioncriteria_tumor_profiling.pdf. Accessed February 5, 2018. Cigna Medical Coverage Policy: Genetic Testing for Hereditary Cancer Susceptibility Syndromes. https://cignaforhpc.cigna.com/public/content/pdf/coversagepolicies/medical/mm_0518_coveragepositioncriteria_genetic_cancer Syndromes.pdf. Accessed February 5, 2018. Humana Medical Coverage Policy: Genetic Testing for Colorectal Cancer Susceptibility. http://apps.humana.com/tad/tad_new/Search.aspx?criteria=Lynch&searchtype=freetext&policyType=both. Accessed February 5, 2018. Anthem Medical Policy: Genetic Testing for Colorectal Cancer Susceptibility. https://www.anthem.com/medical/policies/imp_pw_c166601.htm. Accessed February 5, 2018. United Healthcare: Medical Care Policy: Genetic Testing. https://www.unitedhealthcareonline.com/cmccontent/Provider/UID/HUC/en-US/Assets/ProviderStaticFiles/ProviderStaticFilesPdf/Tools%20and%20Resources/Policies%20and%20Protocols/Medical%20Policies/Medical%20Policies_Genetic_Testing.pdf. Accessed February 5, 2018.

For example, Local Coverage Determination (LCD): MolDX: Genetic Testing for LYNCH SYNDROME (L35349). https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCDid=3534998&ver=159&CoverageSelection=Both&ArticleType=All&PolicyType=Final98& ail98KeyWord=lynch syndrome98&KeyWordLookUp=TITLE98&KeyWordType=And98&c=aaqaACAAAAA98.. Accessed 11 June 2018.

56. Balmana J, Balaguer F, Cervantes A, et al. Familial risk-colorectal cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 2013;24:vi73–vi80.

57. Duffys MJ, Lamerz R, Haglund C, et al. Tumor markers in colorectal cancer, Lynch Syndrome. Ann J Gastroenterol. 2015;110:223–225.

58. Ferrari J, Lisiecki MC, Liu Y, et al. Screening for Lynch syndrome using targeted evaluations and genetic testing and result availability prior to colon surgery. Am J Gastroenterol. 2015;110:948–55.

59. Chen Z, Kolor K, Grosse SD, et al. Trends in utilization and costs of BRCA testing among women aged 18–64 years in the United States, 2003–2014. Genet Med. 2017;20:428–34.

60. McCarthy AM, Bristol M, Domchek SM, et al. Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer. J Clin Oncol. 2016;34:2610–8.

61. National Cancer Institute. Cancer MoonshotSM Blue Ribbon Panel. https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative/blue-ribbon-panel. Accessed 5 February 2018.

62. Karlitz JJ, Hsieh MC, Liu Y, et al. Population-based Lynch syndrome screening by microsatellite instability in patients ≤50: prevalence, testing determinants, and result availability to prior to colon surgery. Am J Gastroenterol. 2015;110:948–55.

63. Chen Z, Kolor K, Grosse SD, et al. Trends in utilization and costs of BRCA testing among women aged 18–64 years in the United States, 2003–2014. Genet Med. 2017;20:428–34.

64. McCarthy AM, Bristol M, Domchek SM, et al. Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer. J Clin Oncol. 2016;34:2610–8.

65. Cragun D, Weidner A, Lewis C, et al. Racial disparities in BRCA testing and cancer risk management across a population-based sample of young breast cancer survivors. Cancer. 2017;123:2497–505.

66. Levy DE, Byfield SD, Comstock CB, et al. Underutilization of BRCA1/2 testing to guide breast cancer treatment: black and Hispanic women particularly at risk. Genet Med. 2011;13:349–55.

67. Shields AE, Burke W, Levy DE. Differential use of available genetic tests among primary care physicians in the United States: results of a national survey. Genet Med. 2008;10:404–14.

68. Feighner J, Lin F, Beattie MS, et al. Family communication of BRCA1/2 results and family uptake of BRCA1/2 testing in a diverse population of BRCA1/2 carriers. J Genet Couns. 2013;22:603–12.

69. Tsai MH, Xirasagar S, de Groen PC. Persisting racial disparities in colonoscopy screening of persons with a family history health of colorectal cancer. J Racial Ethn Health Disparities—e-journal appendix of print 15 August 2017.

70. Kolor K, Chen Z, Grosse SD, et al. BRCA genetic testing and receipt of preventive interventions among women aged 18–64 years with employer-sponsored health insurance in nonmetropolitan and metropolitan areas—United States, 2009–2014. MMWR Surveill Summ. 2017;66:1–11.

71. Komenaka IK, Noda JR, Madlersky L, et al. Participation of low-income women in genetic cancer risk assessment and BRCA1/2 testing: the experience of a safety-net institution. J Community Genet. 2016;7:177–83.

72. National Academies of Sciences, Engineering, and Medicine. Action Collaboratives: Genomics and Population Health—A Precision Health Activity. http://www.nationalacademies.org/hmd/Activities/Research/GenomicBasedResearch/Innovation-Collaboratives/Genomics-andPopulation-Health.aspx. Accessed 5 February 2018.

73. National Cancer Institute. Approaches to Prioritization of BRCA1/2 Testing Recommendations: The Case of Lynch Syndrome. https://cancercontrol.cancer.gov/lynch-syndrome-workshop/. Accessed 5 February 2018.

74. National Institutes of Health, National Cancer Institute. Approaches to Prioritization of BRCA1/2 Testing Recommendations: The Case of Lynch Syndrome. https://cancercontrol.cancer.gov/lynch-syndrome-workshop/. Accessed 5 February 2018.

75. Dotson WD, Douglas MP, Kolor K, et al. Prioritizing genomic applications for action by level of evidence: a horizon-scanning method. Clin Pharmacol Ther. 2014;95:394–402.