Research Article

Existence of Positive Weak Solutions for Quasi-Linear Kirchhoff Elliptic Systems via Sub-Supersolutions Concept

Amor Menaceur,1 Salah Mahmoud Boulaaras2,3, Rafik Guefaifia4, and Asma Alharbi2

1Laboratory of Analysis and Control of Differential Equations "ACED", Fac. MISM, Department of Mathematics, Faculty of MISM Guelma University, P.O. Box 401, Guelma 24000, Algeria
2Department of Mathematics, College of Sciences and Arts, Al-Rass, Qassim University, Saudi Arabia
3Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Algeria
4Department of Mathematics, Faculty of Exact Sciences, University Tebessa, Tebessa, Algeria

Correspondence should be addressed to Salah Mahmoud Boulaaras; s.boularas@qu.edu.sa

Received 14 January 2020; Revised 16 February 2020; Accepted 20 March 2020; Published 13 April 2020

By using the sub- and supersolutions concept (Schmitt, 2007), we prove in this paper the existence of positive solutions of quasi-linear Kirchhoff elliptic systems in bounded smooth domains. (This work is an extension of the recent work of Boulaaras et al., 2020.

1. Introduction

The scope of nonlinear partial differential equations is quite wide. One of the main advances in the development of nonlinear PDEs has been the study of wave propagation, then comes the equations related to chemical and biological phenomena, and later, the equations related to solid mechanics, fluid dynamics, acoustics, nonlinear optics, plasma physics, quantum field theory, and engineering.

Studying these equations is a daunting task because there are no general methods for solving them. Each problem requires an appropriate approach depending on the type of linearity ([1–10]).

The p-Laplacian operator is a model of quasi-linear elliptic operators which makes it possible to model physical phenomena such as the flow of non-Newtonian aids, reaction flow systems, nonlinear elasticity, the extraction of petroleum, astronomy, through porous media, and glaciology. Several authors in this field obtained many results of existence (see, for example, [1, 3, 5, 11, 12]).

In this work, we consider the following quasi-linear elliptic system:

\[
\begin{cases}
- \Delta u = \lambda u^\alpha v^\gamma, & \text{in } \Omega, \\
- \Delta v = \lambda u^\beta v^\delta, & \text{in } \Omega, \\
\nu = \mu = 0, & \text{on } \partial \Omega ,
\end{cases}
\]

(1)

where $\Omega \subset \mathbb{R}^N (N \geq 3)$ is a bounded domain and its boundary $\partial \Omega$. Also, A and B are two continuous functions on \mathbb{R}^+, and the parameters α, β, δ, and γ satisfy the following conditions:

\[
\begin{aligned}
0 \leq \alpha < 1, \\
0 \leq \beta < 1, \\
\delta, \gamma > 0,
\end{aligned}
\]

(2)

\[
\theta = (1 - \alpha)(1 - \beta) - \gamma \delta > 0 \text{ for each } \lambda > 0.
\]

Within previous studies [13–15], some nonlocal elliptical problems of the Kirchhoff type of the following model were extensively studied:

\[
\begin{cases}
M(\int_\Omega |u|^2dx) \Delta u = h(x, u), & \text{in } \Omega, \\
u = 0, & \text{in } \partial \Omega ,
\end{cases}
\]

(3)
where Ω is a bounded open domain of \mathbb{R}^n with a smooth boundary $\partial \Omega$ and $h(x,u)$ the right hand side is defined for some exceptional functions similar to those in [13–16]. In addition, M is a defined and continuous function on \mathbb{R}_+ with values in \mathbb{R}^*_+. In recent years, various Kirchhoff or $p(x)$-Kirchhoff-type problems have been widely studied by many authors due to their theoretical and practical importance. Such problems are often referred to as nonlocal due to the presence of a full term on $\partial \Omega$ or in \mathbb{R}^n. It is well known that this problem is analogous to the stationary problem of a model introduced by Kirchhoff [17],

$$\rho \frac{\partial^2 u}{\partial t^2} - \frac{P_0}{h^2} + \frac{E}{2L} \int_0^L \frac{\partial u^2}{\partial x} \, dx \frac{\partial^2 u}{\partial x^2} = 0. \tag{4}$$

More specifically, Kirchhoff proposed this model as an extension of the wave equation of the Alembert classic by considering the effects of variations in the length of the strings during vibration. The parameters of the above equation have the following meanings: E is Young’s modulus of the material, ρ is the mass density, L is the length of the chain, h is the section area, and P_0 is the initial tension.

In recent work in [18], we have discussed the existence of the weak positive solution for the following Kirchhoff elliptic systems:

$$
\begin{align*}
-A(\|u\|_{L^2(\Omega)}) \Delta u &= \lambda_1 u + \mu_1 |u|^\alpha \nu^\beta, \quad \text{in} \, \Omega, \\
-B(\|v\|_{L^2(\Omega)}) \Delta v &= \lambda_2 v + \mu_2 |v|^\alpha \nu^\beta, \quad \text{in} \, \Omega, \\
u = v = 0, & \quad \text{on} \, \partial \Omega,
\end{align*}
$$

where $\lambda_1, \mu_1, \lambda_2, \mu_2$ are positive parameters, $\alpha + \beta < 1$, and $\beta + \delta < 1$.

Motivated by the recent work in [13, 14, 18, 19] and by using the sub- and supersolution method which is defined in [20], existence of positive solutions of quasi-linear Kirchhoff elliptic systems is shown in bounded smooth domains.

The paper outline is as follows: some assumptions and definitions related to problem (1) are given in Section 2. Finally, our main result is given in Section 3.

2. Preliminaries and Assumptions

We assume the following hypothesis:

(H1): we assume that $M: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a nonincreasing and continuous function which satisfies

$$\lim_{t \to 0^+} M(t) = m_0, \tag{6}$$

where $m_0 > 0$, and there exists $a_i, b_i > 0, i = 1, 2$ such that

$$a_1 \leq A(t) \leq a_2, \quad b_1 \leq B(t) \leq b_2 \quad \text{for all} \, t \in \mathbb{R}^+. \tag{7}$$

(H2): and

$$a, \beta \in C(\overline{\Omega}),$$

$$a(x) \geq a_0 > 0, \beta(x) \geq \beta_0 > 0$$

for all $x \in \Omega$.

(H3): $f, g, h,$ and τ are C^1 on $[0, +\infty)$ and increasing functions, where

$$\begin{cases}
\lim_{t \to +\infty} f(t) = +\infty, \\
\lim_{t \to -\infty} g(t) = +\infty.
\end{cases} \tag{9}$$

(H4): $\exists \gamma > 0$ such that

$$\lim_{t \to +\infty} \frac{h(t)f(k|g(t)|)}{t} = 0, \quad \text{for all} \, k > 0,$$

$$\lim_{t \to +\infty} \frac{\tau(k|g(t)|)}{t^\gamma} = 0, \quad \text{for all} \, k > 0. \tag{10}$$

Lemma 1 (see [14]). Under assumption (H1), we suppose further that function $H(t) := tM(t^2)$ is increasing on \mathbb{R}.

We assume that u and v are couple nonnegative functions, where

$$\begin{cases}
-M(\int_\Omega |\nabla u|^2 \, dx) \Delta u \geq -M(\int_\Omega |\nabla v|^2 \, dx) \Delta v, & \text{in} \, \Omega, \\
u = v = 0, & \text{on} \, \partial \Omega,
\end{cases} \tag{11}$$

and then $u \geq v \, \text{a.e. in} \, \Omega$.

Lemma 2 (see [1]). If M verifies the conditions of Lemma 1, then for each $f \in L^2(\Omega)$, there exists a unique solution $u \in H^1_0(\Omega)$ to the M-linear problem:

$$-M(\int_\Omega |\nabla u|^2 \, dx) \Delta u = f(x) \quad \text{in} \, \Omega \text{ and } u = 0 \text{ in } \partial \Omega. \tag{12}$$

Lemma 3 (see [1]). Let w solve $\Delta w = g \, \text{in} \, \Omega$. If $g \in C(\Omega)$, then $w \in C^{1,\alpha}(\Omega)$ for any $\alpha \in (0,1)$, so particularly, w is continuous in Ω.

Definition 1. Let $(u, v) \in (H^1_0(\Omega) \cap L^\infty(\Omega)) \times (H^1_0(\Omega) \cap L^\infty(\Omega)),$ and (u, v) is said a weak solution of (1) if it satisfies

$$A\left(\int_\Omega |\nabla u|^2 \, dx\right) \int_\Omega \nabla u \nabla \phi \, dx = \lambda \int_\Omega u^\alpha v^\beta \phi \, dx, \quad \text{in} \, \Omega,$$

$$B\left(\int_\Omega |\nabla v|^2 \, dx\right) \int_\Omega \nabla v \nabla \psi \, dx = \lambda \int_\Omega u^\alpha v^\beta \psi \, dx, \quad \text{in} \, \Omega,$$

(13)

for all $(\phi, \psi) \in (H^1_0(\Omega) \times H^1_0(\Omega))$.

Definition 2. We call the following nonnegative functions $(\overline{u}, \overline{v})$, respectively; $(\overline{u}, \overline{v}) \in (H^1_0(\Omega) \cap L^\infty(\Omega)) \times (H^1_0(\Omega) \cap L^\infty(\Omega))$ are a weak subsolution (respectively, supersolution) of (1) if they verify $(\underline{u}, \underline{v})$ and $(\overline{u}, \overline{v}) = (0, 0)$ in $\partial \Omega$:
positive weak supersolution for system (1) is established such that each component belongs to \(C^{0,\rho} (\Omega) \), for \(\rho \in (0, 1) \).

Lemma 4. Suppose that \((H1)\) holds, \(0 \leq \alpha, \beta < 1, \delta, \gamma > 0, \) and \(\theta = (1-\alpha)(1-\beta) - \gamma \delta > 0. \) Then, system (1) possesses a positive weak supersolution

\[(\overline{u}, \overline{v}) \in L^2(0, T, C^{0,\rho_1} (\Omega)) \times L^2(0, T, C^{0,\rho_2} (\Omega)),\]

for \(\rho_1 \in [0, 1], i = 1, 2 \) and \(\lambda > 0. \)

Proof. Let \(e_i \in C^{0,\rho_i} (\Omega) \), for \(i = 1, 2, \rho_i > 0 \), be the solution of the following problem:

\[
\begin{align*}
-\Delta e_i &= 1, & & \text{in } \Omega, \\
e_i &= 0, & & \text{on } \partial \Omega.
\end{align*}
\]

Then, by the strong maximum principle, we get \(e_i > 0 \) in \(\Omega, i = 1, 2. \)

We define

\[(\overline{u}, \overline{v}) = (C_1 e_1, C_2 e_2),\]

where \(C_1 \) and \(C_2 \) are positive constants which we will fix them later.

Let \((\phi, \psi) \in (H^1_0 (\Omega) \times H^1_0 (\Omega)), \) with \((\phi, \psi) \geq 0. \)

Then, we obtain

\[
A(\int_\Omega |\nabla \phi|^2 \, dx) \int_\Omega \nabla \nu \phi \, dx = A(\int_\Omega |\nabla \psi|^2 \, dx) C_1 \int_\Omega \nabla e_1 \nabla \phi \, dx
= A(\int_\Omega |\nabla \phi|^2 \, dx) C_1 \int_\Omega \phi \, dx
\geq a_1 C_1 \int_\Omega \phi \, dx,
\]

and similarly,

\[
B(\int_\Omega |\nabla \nu |^2 \, dx) \int_\Omega \nabla \nu \psi \, dx = B(\int_\Omega |\nabla \psi|^2 \, dx) C_2 \int_\Omega \psi \, dx
\geq b_1 C_2 \int_\Omega \psi \, dx.
\]

If

\[
I = \|e_1\|_{\infty}, \quad L = \|e_2\|_{\infty},
\]

\[
0 \leq a < 1, \quad 0 \leq \beta < 1, \quad \lambda > 0, \quad \theta > 0,
\]

and \((H1)\) holds, it is easy to prove that there exist positive constants \(C_1 \) and \(C_2 \) such that

\[
a_1 C_1^{1-\alpha} = \lambda C_2^{1-\beta} L^{\beta},
\]

\[
b_1 C_2^{1-\beta} = \lambda C_1^{1-\alpha} L^{\alpha}.
\]

Thus, from (21), we obtain for all \(x \in \Omega \)

\[
\lambda \nabla^2 \phi \leq \lambda C_1^{1-\alpha} L^{\beta} \leq a_1 C_1,
\]

\[
\lambda \nabla^2 \phi \leq \lambda C_2^{1-\beta} L^{\alpha} \leq b_1 C_2.
\]

Therefore, by using (18), (19), and (22), we conclude that

\[
A(\int_\Omega |\nabla \phi|^2 \, dx) \int_\Omega \nabla \nu \phi \, dx \geq \lambda \int_\Omega \nabla^2 \phi \, dx, \quad \text{in } \Omega,
\]

\[
B(\int_\Omega |\nabla \psi|^2 \, dx) \int_\Omega \nabla \nu \psi \, dx \geq \lambda \int_\Omega \nabla^2 \psi \, dx, \quad \text{in } \Omega.
\]

Hence, \((\overline{u}, \overline{v}) \in C^{0,\rho_1} (\Omega) \times C^{0,\rho_2} (\Omega)\) is a positive weak supersolution of system (1).

\[\square\]

3.2. Existence of Weak Subsolution. Existence of a positive weak subsolution for system (1) is proved such that each component belongs to \(C^0 (\Omega) \).

Lemma 5. We assume that \((H1)\) holds:

\[
0 \leq \alpha, \beta < 1, \delta, \gamma > 0,
\]

\[
\theta = (1-\alpha)(1-\beta) - \gamma \delta > 0.
\]

Therefore, system (1) possesses a positive weak subsolution \((u, \psi) \in C^0 (\Omega) \times C^0 (\Omega), \) for all \(\lambda > 0. \)

Proof. We assume that \(\lambda_i \) is the first eigenvalue of \(-\Delta \) with Dirichlet condition with \(\phi_i \) which is its corresponding eigenfunction and \(\phi_i \) belongs to \(C_0^{\rho_i} (\Omega) \times C_0^{\rho_i} (\Omega), \) \(\phi_i > 0 \) in \(\Omega \) and \(|\nabla \phi_i| \geq \sigma_1 \) on \(\partial \Omega, \) for some positive constants \(\sigma_1, \mu_1, \) and \(\rho_1. \)

We define

\[
(u, \psi) = (c \phi_1^2, c^k \phi_1^2)
\]

which belongs to \((C^0 (\Omega) \cap C^1 (\Omega)) \times (C^0 (\Omega) \cap C^1 (\Omega)), \) with \(c > 0 \) to be fixed later, and
4 Mathematical Problems in Engineering

because \(\theta > 0, 1 - \alpha > 0, \) and \(1 - \beta > 0. \) Then, for all \((\phi, \psi) \in (H^2_0(\Omega) \times H^1_0(\Omega)), \) with \(\phi, \psi \geq 0, \) we have

\[
A\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V u \phi \, dx = 2cA\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega \phi \psi_1 \psi, \\
= 2cA\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega \left[\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \right] \phi \, dx.
\]

(27)

Similarly,

\[
B\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V \psi \psi \, dx = 2cB\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega \left[\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \right] \psi \, dx.
\]

(28)

Since \(\phi_1 = 0 \) and \(|\nabla \phi_1| \geq \sigma_1 \) on \(\partial \Omega, \) there exists \(\eta > 0 \) such that, for every \(x \in \Omega_\eta = \{ x \in \Omega : d(x, \partial \Omega) \leq \eta \}, \) we have

\[
\left[\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \right] \leq 0,
\]

(29)

Then, for each \(\lambda > 0, \) we get

\[
A\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V u \phi \, dx \leq \lambda \int_\Omega \phi \psi_1 \psi \, dx,
\]

(30)

for all \(\phi \in H^1_0(\Omega), \) \(\phi \geq 0, \) and

\[
B\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V \psi \psi \, dx \leq \lambda \int_\Omega \phi \psi_1 \psi \, dx,
\]

(31)

for all \(\psi \in H^1_0(\Omega) \) and \(\psi \geq 0. \)

Now, as \(\phi_1 > 0 \) in \(\Omega \) and \(\phi_1 \) is continuous, then there exists \(\mu > 0 \) such that \(\phi_1(x) \geq \mu > 0 \) for all \(x \in \Omega \setminus \Omega_\eta. \)

Therefore, from (26), we obtain \(a_0 > 0 \) such that the following inequalities hold:

\[
2b_2 \lambda_1 e^{k(1-\beta)-\delta} \phi_1^{2-2\delta} (x) \leq \lambda \mu^{2\delta} \leq \phi_1^{2\delta} (x), \quad \forall x \in \Omega \setminus \Omega_\eta,
\]

(32)

\[
2a_2 \lambda_1 e^{[1-\alpha-\delta] \phi_1^{2-2\alpha} (x) \leq \lambda \mu^{2\gamma} \leq \phi_1^{2\gamma} (x), \quad \forall x \in \Omega \setminus \Omega_\eta,
\]

(33)

for each \(c \in (0, a_0). \)

Then,

\[
2cA\left(\int_\Omega |V u|^2 \, dx \right) \left[\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \right] \phi \leq 2a_2 c \lambda_1 \phi_1^2
\]

(34)

\[
= 2a_2 \lambda_1 e^{[1-\alpha-\delta] \phi_1^{2-2\alpha} [H^{k\gamma} \phi_1^{2\gamma}] .
\]

By (33), we have

\[
2cA\left(\int_\Omega |V u|^2 \, dx \right) \left[\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \right] \phi \leq \lambda \mu^{2\gamma}.
\]

(35)

And similarly, from (32), we have

\[
2cB\left(\int_\Omega |V u|^2 \, dx \right) \left[\lambda_1 \phi_1^2 - |\nabla \phi_1|^2 \right] \leq \lambda \mu^{2\gamma}.
\]

(36)

in \(\Omega \setminus \Omega_\eta \) and each \(c \in (0, a_0). \)

Therefore,

\[
A\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V u \phi \, dx \leq \lambda \int_\Omega \phi \psi_1 \psi \, dx,
\]

(37)

\[
B\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V \psi \psi \, dx \leq \lambda \int_\Omega \phi \psi_1 \psi \, dx.
\]

(38)

Hence, from (30), (31), (37), and (38), it follows that

\[
\left\{ \begin{array}{l}
A\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V u \phi \, dx + \int_\Omega \phi \psi_1 \psi \\
B\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V \psi \psi \, dx + \int_\Omega \phi \psi_1 \psi
\end{array} \right\} = A\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V u \phi \, dx \leq \int_\Omega \phi \psi_1 \psi \, dx,
\]

(39)

\[
\left\{ \begin{array}{l}
A\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V u \phi \, dx + \int_\Omega \phi \psi_1 \psi \\
B\left(\int_\Omega |V u|^2 \, dx \right) \int_\Omega V \psi \psi \, dx + \int_\Omega \phi \psi_1 \psi
\end{array} \right\} \leq \lambda \int_\Omega \phi \psi_1 \psi \, dx.
\]

(40)

Then, by (39) and (40), \((\mu, \psi)\) is a positive weak subsolution of system (1), for each \(c \in (0, a_0). \)

\[\square\]

4. Main Result

In this section, we give the result of the existence of the positive weak solution to quasi-linear elliptic system (1) by using the sub- and supersolution method which has been already used for some classical elliptic equations by known authors (see [1, 4, 11, 19, 21]).

Theorem 1. Suppose that \((H1)\) holds, \(0 \leq \alpha, \beta < 1, \delta, \gamma > 0, \) and \(\theta = (1 - \alpha)(1 - \beta) - \gamma \delta > 0 \) as well as under the results of Lemma 4 and 5. Then, system (1) possesses a weak solution \((u, \nu) \in (H^2_0(\Omega) \times H^1_0(\Omega)), \) where each component is positive and belongs to \(C^{2, \rho}(\Omega) \cap C^{2, \mu}(\Omega) \) for some \(\rho \in [0, 1], \mu > 0, \) and each \(\lambda > 0. \)

Proof 3. In order to obtain a weak solution of problem (1), we shall use the arguments by Azzouz and Bensedik [13]. For this purpose, we define a sequence \(\{ (u_n, v_n) \} \subset (H^2_0(\Omega) \times H^1_0(\Omega)) \) as follows: \(u_0 = \overline{u}, v_0 = \overline{v}, \) and \((u_n, v_n) \) is the unique solution of the system.
Mathematical Problems in Engineering

\[
\left\{ \begin{array}{l}
-A\left(\int_\Omega |\nabla u_n|^2 \, dx \right) \Delta u_n = \lambda u_{n-1}^\delta v_{n-1}^\delta, \quad \text{in } \Omega, \\
-B\left(\int_\Omega |\nabla v_n|^2 \, dx \right) \Delta v_n = \lambda u_{n-1}^\beta v_{n-1}^\beta, \quad \text{in } \Omega, \\
\quad u_n = v_n = 0, \quad \text{on } \partial \Omega.
\end{array} \right.
\]

(41)

Problem (41) is \((A,B)\)-linear in the sense that if \((u_{n-1}, v_{n-1}) \in (H^1_0(\Omega) \times H^1_0(\Omega))\)

is given, the right-hand sides of (41) are independent of \(u_n, v_n\).

Set
\[
A(t) = t^2 A(t^2),
\]
\[
B(t) = t^2 B(t^2).
\]

Then, since
\[
A(\mathbb{R}) = \mathbb{R}, \quad B(\mathbb{R}) = \mathbb{R},
\]
\[
f(u_{n-1}, v_{n-1}) = u_{n-1}^p v_{n-1}^q \in L^2(\Omega),
\]
\[
g(u_{n-1}, v_{n-1}) = u_{n-1}^\delta v_{n-1}^\delta \in L^2(\Omega).
\]

According to the result in [1], we can deduce that system (41) admits a unique solution

\[
(u_n, v_n) \in (H^1_0(\Omega) \times H^1_0(\Omega)).
\]

(45)

By using (41) and the fact that \((u_0, v_0)\) is a supersolution of (1), we have
\[
-A\left(\int_\Omega |\nabla u_0|^2 \, dx \right) \Delta u_0 \geq \lambda u_0^\delta v_0^\delta = -A\left(\int_\Omega |\nabla u_1|^2 \, dx \right) \Delta u_1,
\]
\[
-B\left(\int_\Omega |\nabla v_0|^2 \, dx \right) \Delta v_0 \geq \lambda u_0^\beta v_0^\beta = -B\left(\int_\Omega |\nabla v_1|^2 \, dx \right) \Delta v_1.
\]

(46)

Also, by using Lemma 1, \(u_0 \geq u_1\) and \(v_0 \geq v_1\), and since \(u_0 \geq u_1\) and \(v_0 \geq v_1\), and the monotonicity of \(f(u,v)\), we have
\[
-A\left(\int_\Omega |\nabla u_0|^2 \, dx \right) \Delta u_1 = \lambda u_0^\delta v_0^\delta \geq \lambda u_1^\delta v_1^\delta = -A\left(\int_\Omega |\nabla u_2|^2 \, dx \right) \Delta u_2,
\]
\[
-B\left(\int_\Omega |\nabla v_0|^2 \, dx \right) \Delta v_1 = \lambda u_0^\beta v_0^\beta \geq \lambda u_1^\beta v_1^\beta = -B\left(\int_\Omega |\nabla v_2|^2 \, dx \right) \Delta v_2,
\]

(47)

from which, according to Lemma 1, \(u_1 \geq u_2\) and \(v_1 \geq v_2\). For \(u_2, v_2\), we write
\[
-A\left(\int_\Omega |\nabla u_2|^2 \, dx \right) \Delta u_2 = \lambda u_1^\delta v_1^\delta \geq \lambda u_2^\delta v_2^\delta = -A\left(\int_\Omega |\nabla u_3|^2 \, dx \right) \Delta u_3,
\]
\[
-B\left(\int_\Omega |\nabla v_2|^2 \, dx \right) \Delta v_2 = \lambda u_1^\beta v_1^\beta \geq \lambda u_2^\beta v_2^\beta = -B\left(\int_\Omega |\nabla v_3|^2 \, dx \right) \Delta v_3,
\]

(48)

and then \(u_1 \geq u_2\) and \(v_1 \geq v_2\). Similarly, \(u_2 \geq u_1\) and \(v_2 \geq v_1\) because
\[
-A\left(\int_\Omega |\nabla u_3|^2 \, dx \right) \Delta u_3 = \lambda u_2^\delta v_2^\delta \geq \lambda u_3^\delta v_3^\delta = -A\left(\int_\Omega |\nabla u_4|^2 \, dx \right) \Delta u_4.
\]

Repeating this argument, we get a bounded monotone sequence \(\{(u_n, v_n)\} \subset (H^1_0(\Omega) \times H^1_0(\Omega))\) satisfying
\[
\pi = u_0 \geq u_1 \geq u_2 \geq \ldots \geq u_n \geq \ldots \geq u \geq 0,
\]
\[
\varphi = v_0 \geq v_1 \geq v_2 \geq \ldots \geq v_n \geq \ldots \geq \varphi \geq 0.
\]

(50)

(51)

Using the continuity of the functions \(f\) and \(g\) and the definition of the sequence \(\{u_n\}, \{v_n\}\), there exist constants \(C_i > 0, i = 1, \ldots, 4\), independent of \(n\) such that
\[
|f(u_{n-1}, v_{n-1})| \leq C_1,
\]
\[
|g(u_{n-1}, v_{n-1})| \leq C_2, \quad \text{for all } n.
\]

(52)

From (52), we multiply the first equation of (41) by \(u_n\); in addition, by using the Holder inequality combined with Sobolev embedding, we have
\[
a_1\left(\int_\Omega |\nabla u_n|^2 \, dx \right) \leq A\left(\int_\Omega |\nabla u_0|^2 \, dx \right)\left(\int_\Omega |\nabla u_n|^2 \, dx \right)
\]
\[
\leq \lambda\left(\int_\Omega |\nabla u_0|^2 \, dx \right)\left(\int_\Omega |\nabla u_n|^2 \, dx \right)
\]
\[
\leq \lambda\left(\int_\Omega |\nabla u_0|^2 \, dx \right)^{1/2} \leq C_3, \quad \forall n
\]

(53)

where \(C_3 > 0\) is a constant independent of \(n\). Similarly, there exists \(C_4 > 0\) independent of \(n\) such that
\[
|v_n|_{H^1_0(\Omega)} \leq C_4, \quad \forall n.
\]

(54)

From (53) and (54), we deduce that the couple \(\{(u_n, v_n)\}\) converges weakly in \(H^1_0(\Omega, \mathbb{R}^2)\) to the couple \((u, v)\) with \(u > 0\) and \(v > 0\).

By using a standard regularity argument, \(\{(u_n, v_n)\}\) converges to \((u, v)\). Thus, when \(n \to +\infty\) in (41), we can see that \((u, v)\) is a positive solution of system (1).

The proof is completed.

\[\square\]

5. Conclusion

As a conclusion of this contribution, we have proved the existence of positive solutions of quasi-linear Kirchhoff elliptic systems in bounded smooth domains by using the sub- and super-solution method [20], which is an extension of our recent works of Boularaas et al. in [18]. In the next work, some other methods such as variational and Galerkin methods (see, for example, [15]) will be used for this problem, and some numerical examples will also be given [9, 22].
Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Authors’ Contributions

The authors contributed equally to this article. They have all read and approved the final manuscript.

References

[1] C. O. Alves and F. J. S. A. Corrêa, “On existence of solutions for a class of problem involving a nonlinear operator,” *Communications on Applied Nonlinear Analysis*, vol. 8, pp. 43–56, 2001.

[2] M. Chipot and B. Lovat, “Some remarks on non local elliptic and parabolic problems,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 30, no. 7, pp. 4619–4627, 1997.

[3] F. J. S. A. Corrêa and G. M. Figueiredo, “On an elliptic equation of p–Kirchhoff type via variational methods,” *Bulletin of the Australian Mathematical Society*, vol. 74, pp. 263–277, 2006.

[4] F. J. S. A. Corrêa and G. M. Figueiredo, “On a p–Kirchhoff equation type via Krasnosel’ski’s genus,” *Applied Mathematics Letters*, vol. 22, no. 6, pp. 819–822, 2009.

[5] D. D. Hai and R. Shivaji, “An existence result on positive solutions for a class of p–Laplacian systems,” *Nonlinear Analysis*, vol. 56, pp. 1007–1010, 2004.

[6] T. M. I-Shahat, S. Abdel-Khaliek, M. Abdel-Aty, and A.-S. F. Obada, “Aspects on entropy squeezing of a two-level atom in a squeezed vacuum,” *Chaos, Solitons and Fractals*, vol. 18, no. 2, pp. 289–298, 2003.

[7] J.-S. Zhang, A.-X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” *Journal of Physics B: Atomic, Molecular and Optical Physics*, vol. 43, no. 2, Article ID 025501, 2010.

[8] M. Abdel-Aty, M. S. Abdalla, and A.-S. F. Obada, “Uncertainty relation and information entropy of a time-dependent bimodal two-level system,” *Journal of Physics B: Atomic, Molecular and Optical Physics*, vol. 35, pp. 4773–4786, 2002.

[9] S. Boulaaras and M. Haiour, “The maximum norm analysis of an overlapping Schwarz method for parabolic quasi-variational inequalities related to impulse control problem with the mixed boundary conditions,” *Applied Mathematics & Information Sciences*, vol. 7, pp. 343–353, 2013.

[10] S. Boulaaras, A. Allahem, M. Haiour, K. Zennir, S. Ghanem, and B. Cherif, “A posteriori error estimates in $H^1(\Omega)$ spaces for parabolic quasi-variational inequalities with linear source terms related to American options problem,” *Applied Mathematics & Information Sciences*, vol. 10, pp. 1097–1110, 2016.

[11] S. Boulaaras, R. Guefaifa, and S. Kabli, “An asymptotic behavior of positive solutions for a new class of elliptic systems involving of $(p(x), q(x))-Laplacian systems,” *Boletin de la Sociedad Matemática Mexicana*, vol. 25, no. 1, pp. 145–162, 2019.