Evaluation of peptidylarginine deiminase 4 and PADI4 polymorphisms in sepsis-induced acute kidney injury

Nara Aline Costa1
Bertha Furlan Polegato2
Amanda Gomes Pereira3
Sérgio Alberto Rupp de Paiva4
Ana Lúcia Gut2
André Luís Balbi2
Daniela Ponce5
Leonardo Antonio Mamede Zornoff4
Paula Schmidt Azevedo2
Marcos Ferreira Minicucci2

1. Professora Adjunta da Faculdade de Nutrição da Universidade Federal de Goiás – UFG, Goiania, GO, Brasil
2. Professor(a) Associado(a) da Faculdade de Medicina de Botucatu – Unesp, Botucatu, SP, Brasil
3. Aluna do Programa de Pós-graduação em Fisiopatologia em Clínica Médica – Unesp, São Paulo, SP, Brasil
4. Professor Titular da Faculdade de Medicina de Botucatu – Unesp, Botucatu, SP, Brasil
5. Médica Livre-docente e Coordenadora do Programa de Pós-graduação em Fisiopatologia em Clínica Médica – Unesp, São Paulo, SP, Brasil

http://dx.doi.org/10.1590/1806-9282.66.11.1515

SUMMARY

BACKGROUND: The aim of this study is to evaluate the peptidylarginine deiminase 4 (PAD4) concentration and PADI4 polymorphisms as predictors of acute kidney injury (AKI) development, the need for renal replacement therapy (RRT), and mortality in patients with septic shock.

METHODS: We included all individuals aged ≥ 18 years, with a diagnosis of septic shock at ICU admission. Blood samples were taken within the first 24 hours of the patient’s admission to determine serum PAD4 concentration and its PADI4 polymorphism (rs11203367 and rs874881). Patients were monitored during their ICU stay and the development of SAKI was evaluated. Among the patients in whom SAKI developed, mortality and the need for RRT were also evaluated.

RESULTS: There were 99 patients, 51.5% of whom developed SAKI and of these, 21.5% needed RRT and 80% died in the ICU. There was no difference between PAD4 concentration (p = 0.116) and its polymorphisms rs11203367 (p = 0.910) and rs874881 (p = 0.769) in patients in whom SAKI did or did not develop. However, PAD4 had a positive correlation with plasma urea concentration (r = 0.269 and p = 0.007) and creatinine (r = 0.284 and p = 0.004). The PAD4 concentration and PADI4 polymorphisms were also not associated with RRT and with mortality in patients with SAKI.

CONCLUSION: PAD4 concentration and its polymorphisms were not associated with SAKI development, the need for RRT, or mortality in patients with septic shock. However, PAD4 concentrations were associated with creatinine and urea levels in these patients.

KEYWORDS: Acute kidney injury. Protein-arginine deiminase type 4. Sepsis. Mortality. Dialysis.
INTRODUCTION

Sepsis-induced acute kidney injury (SAKI) represents one of the most common complications of sepsis and is associated with a worse prognosis and with mortality rates ranging from 50% to 70%\(^1\). Despite intense research, there is currently no effective therapy or preventive measures for SAKI\(^1\). The physiopathology of SAKI is multifactorial and complex, involving changes in renal hemodynamics, endothelial dysfunction, infiltration of inflammatory cells into the renal parenchyma, intraglomerular thrombosis, and tubular cell necrosis\(^2\). Indeed, renal inflammation and injury are mediated by the upregulation of proinflammatory cytokines followed by leukocyte infiltration, including T lymphocytes, natural killer cells, and neutrophils\(^3\). It should be reinforced that infiltrating neutrophils play a major role in renal tubular inflammation and cell death.\(^2\) In fact, blocking or neutralizing neutrophils has been shown to attenuate the severity and duration of ischemic acute kidney injury (AKI)\(^3,4\).

Thus, the understanding of pathways that modulate the inflammatory process could improve the current knowledge of SAKI physiopathology and identify new therapeutic targets. In this scenario, the citrullination process deserves to be highlighted because it has been identified in several inflammatory diseases\(^5\). Citrullination is the posttranslational modification of peptidyl arginine to peptidyl citrulline, catalyzed by the family of enzymes peptidyl arginine deiminase (PAD)\(^6\). In humans and rodents, there are five PAD subtypes. Among them, PAD4 has been widely studied in innate immunity and autoimmune diseases as multiple sclerosis, lupus, ulcerative colitis, and rheumatoid arthritis\(^7\).

PAD4 was first identified in the nucleus of a neutrophil-like cell line (HL-60)\(^8\), and PAD4 mediated citrullination of core histones (H3, H4, and H2A) is critical for neutrophil extracellular traps (NETs) formation after bacterial infection\(^8\). In the kidney, PAD2 and PAD4 messenger RNAs are present, although only PAD4 protein expression has been detected\(^9,10\). Ham et al.\(^11\) demonstrated that PAD4 plays an important role in a model of renal ischemia-reperfusion injury by increasing tubular inflammatory response. Based on previous data published by our group, using the same dataset, higher PAD4 concentrations were associated with lower ICU survival in patients with septic shock\(^12\).

Despite PAD4 concentration, PAD4 polymorphisms could influence enzyme activity. In this context, some polymorphisms of the PAD4 gene have been found in humans. The PAD4 gene is located on the short arm of chromosome 1 at position 36.13, and functional polymorphisms, such as rs11203367 and rs874881, have been associated with susceptibility to rheumatoid arthritis\(^13,14\). However, to our knowledge, no clinical studies have evaluated the influence of PAD4 concentration and its polymorphisms in SAKI development. Thus, the aim of the current study was to evaluate PAD4 concentration and PAD4 polymorphisms as predictors of SAKI development, and among these patients, the need for renal replacement therapy (RRT) and mortality.

METHODS

Study population

This prospective observational clinical study was a subanalysis of a previous study by our group that analyzed oxidative stress markers as early predictors of septic shock mortality and SAKI development\(^15\). We included patients admitted to the Intensive Care Unit (ICU) of our institution with the diagnosis of septic shock, from May 2014 to June 2015.

We included in the study all individuals with the diagnosis of septic shock at ICU admission, over 18 years of age, of both sexes and requiring vasopressor support for at least 24 hours. The diagnosis of septic shock and acute kidney injury was made by the medical team according to standard guidelines\(^16,17\). Baseline creatinine was characterized as the lowest creatinine value in the past 6 months before AKI or, the lowest value achieved during hospitalization in the absence of dialysis\(^18,19\). CKD was defined according to CKD Epidemiology Collaboration equation (CKD-EPI)\(^20\).

The exclusion criteria were delayed diagnosis of septic shock (time greater than 24 h), the presence of other types of shock, noradrenaline dose > 2.0 \(\mu g/\) kg/min, inability to provide consent, pregnancy, confirmed brain death, and the need for palliative care. Moreover, we did not include patients with AKI at ICU admission, stage 4 or 5 CKD (creatinine clearance less than 30 mL/min/1.73 m\(^2\)).

Demographic, clinical and laboratory data were collected upon ICU admission. Blood samples were taken within the first 24 hours of the patient’s admission to determine serum PAD4 concentration and its polymorphism PAD4 (rs11203367) and (rs874881). The development of SAKI was evaluated and among the patients in whom SAKI developed, mortality and need for RRT were also evaluated.
Laboratory Analysis

Laboratory tests such as CRP, albumin, lactate, urea and creatinine were measured with the dry chemistry method. The hemograms were performed with a Coulter STKS hematological auto analyzer.

Serum PAD4 concentration

For the determination of serum concentration of PAD4, we used enzyme-linked immunosorbent assay (Cloud-Clone Corp, Houston, TX, USA). All instructions on the manufacturer’s kit were followed, and the sensitivity value adopted was 0.137 ng/mL.

PAD4 gene polymorphism

From whole blood samples, the DNA was isolated, its integrity was confirmed on 1% agarose gel, and the concentration was obtained by Nanodrop 8000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). In addition, the TaqMan Open Array (Applied Biosystem, Foster City, CA, USA) was used according to the manufacturer’s instructions for the genotyping of the polymorphisms of the PAD4 gene rs11203367 and rs87481.

Statistical Analysis

Data are expressed as mean ± standard deviation, median (including the lower and upper quartiles), or percentage. Statistical comparisons between two groups for continuous variables were performed using the t-test for parameters with a normal distribution. If data were not normally distributed, comparisons between two groups were performed using the Mann-Whitney U test. The Fisher test or the chi-square test was used for all categorical data. The Spearman correlation was performed to analyze the association between continuous variables. The Hardy-Weinberg equilibrium was determined using the chi-square test. Data analysis was performed using SigmaPlot software for Windows v12.0 (Systat Software Inc., San Jose, CA, USA). Values of \(P < 0.05 \) were considered statistically significant.

RESULTS

During the study, 150 consecutive patients were admitted to the ICU with the diagnosis of septic shock. However, 27 patients were excluded due to the presence of AKI at ICU admission; 12 because of a delay in septic shock diagnosis; 4 because of the presence of advanced chronic kidney disease; 3 because PAD4 concentration was below assay sensitivity; and 5 had technical problems with polymorphism analysis. Thus, we evaluated 99 patients.

The mean age was 63.6 ± 14.4 years, 56% were male, and the median length of ICU stay was 9 (4 to 17) days. The mortality rate during the ICU stay was 69.0%. Median PAD4 serum concentration was 4.4 (2.5 to 6.2) ng/mL. Among these patients with septic shock, SAKI developed in 51.5% during the ICU stay; of these, 21.5% required RRT and 80% died.

The genotype frequencies for the rs11203367 polymorphism were 49.5% for CT, 35.4% for CC, and 15.1% for TT; for the rs874881 polymorphism, they were 51.5% for CG, 16.2% for GG, and 32.3% for CC. These

Variables	SAKI development	P	
Age (years)	Yes (n = 51)	No (n = 48)	0.093
Male, n (%)	27 (53)	28 (58)	0.736
APACHE II score	18.8 + 6.0	16.5 + 6.8	0.070
SOFA score	10.4 + 2.7	8.8 + 2.3	0.002
Sepsis focus, n (%)	35 (69)	23 (48)	0.203
Respiratory	11 (22)	12 (25)	
Abdominal	1 (2)	3 (6)	
Urinary	4 (7)	10 (21)	
Outros	41 (80)	28 (58)	0.003
Mortality ICU, n (%)	0.910		
PAD4 (ng/mL)	4.6 (3.1-6.7)	3.8 (1.9-6.2)	0.116
Lactate (mmol/L)	2.3 (1.4-3.5)	2.3 (1.2-3.8)	0.890
Hemoglobin (g/dL)	10.7 ± 2.0	11.4 ± 2.1	0.072
Hematocrit (%)	32.2 ± 6.1	34.0 ± 6.1	0.155
Leucocytes (103/mm3)	17.0 (13.2-22.4)	16.5 (11.0-24.6)	0.872
CRP (mg/dL)	36.5 (28.0-44.1)	30.5 (8.2-35.5)	0.030
Albumin (g/dL)	2.3 (2.0-2.5)	2.1 (1.8-2.6)	0.427
Urea (mg/dL)	101 (68-160)	53 (33-85)	<0.001
Creatinine (mg/dL)	2.0 (1.6-2.6)	0.8 (0.3-11)	<0.001

APACHE II = Acute Physiology and Chronic Health Evaluation, SOFA = Sequential Organ Failure Assessment, ICU = intensive care unit, PAD4 = polymorphisms peptidylarginine deiminase 4, PAd4 = peptidylarginine deiminase 4, CRP = C-reactive protein. Data are expressed as the mean ± SD, median (including the lower and upper quartiles) or percentage.
The demographic and laboratory data are presented in Table 1.

Patients with SAKI who died in the ICU had higher Acute Physiology and Chronic Health Evaluation (APACHE II) and SOFA scores. However, there were no differences between PAD4 concentrations and its polymorphisms rs11203367 and rs874881 in patients who died during the ICU stay (Table 2).

Patients with SAKI who needed RRT had a higher SOFA score, but the same association was not observed with PAD4 concentration and \textit{PADI4} polymorphisms (Table 3).

DISCUSSION

The aim of the current study was to evaluate PAD4 concentration and \textit{PADI4} polymorphisms as predictors of SAKI development, and among these patients, the need for RRT and mortality. This study showed that PAD4 concentration and its polymorphisms were not associated with SAKI development or with the other outcomes. However, PAD4 concentrations were associated with creatinine and urea levels in patients with septic shock.

SAKI is a frequent complication in patients with sepsis and is associated with adverse outcomes including increased length of hospital stay, development of CKD, and increased risk of death22,23. Despite efforts to obtain early diagnosis and treatment of septic shock, mortality rates remain high15. In our study, 69.0% of patients with septic shock died. In addition, in patients in whom SAKI developed, the mortality was even greater, representing 80% of the cases. Although very high, our rates are in agreement with data found for Latin America15,24.

The pathophysiology of AKI induced by sepsis is multifactorial and complex, and the development of frequencies are consistent with those expected under the Hardy-Weinberg equilibrium.

TABLE 2. DEMOGRAPHIC, PAD4 SERUM CONCENTRATION, AND PADI4 POLYMORPHISM DATA OF 51 PATIENTS WITH SAKI

Variables	Mortality ICU	\(P \)
Age (years)		
Yes (n = 41)		
No (n = 10)		
Male, n (%)		
Yes (n = 28)		
No (n = 23)		0.624
APACHE II score		
Yes (n = 39)		
No (n = 12)		0.731
SOFA score		
Yes (n = 40)		
No (n = 11)		0.020
Sepsis focus, n (%)		
Yes (n = 30)		
No (n = 21)		0.070
Respiratory		
Yes (n = 35)		
No (n = 16)		0.432
Abdominal		
Yes (n = 30)		
No (n = 21)		0.496
Urinary		
Yes (n = 31)		
No (n = 20)		0.077
Others		
Yes (n = 34)		
No (n = 17)		0.043
PAD4 (ng/mL)		
Yes (n = 41)		
No (n = 10)		
PADI4 (rs11203367), n (%)		
Yes (n = 28)		
No (n = 23)		0.034
CT		
Yes (n = 28)		
No (n = 23)		0.053
CC		
Yes (n = 28)		
No (n = 23)		
TT		
Yes (n = 28)		
No (n = 23)		
PADI4 (rs874881), n (%)		
Yes (n = 28)		
No (n = 23)		0.034

TABLE 3. DEMOGRAPHIC, PAD4 SERUM CONCENTRATION, AND PADI4 POLYMORPHISM DATA OF 51 PATIENTS WITH SAKI

Variables	RRT ICU	\(P \)
Age (years)		
Yes (n = 11)		
No (n = 40)		
Male, n (%)		
Yes (n = 7)		
No (n = 44)		0.061
APACHE II score		
Yes (n = 22)		
No (n = 29)		0.003
SOFA score		
Yes (n = 22)		
No (n = 29)		0.017
PAD4 (ng/mL)		
Yes (n = 41)		
No (n = 10)		
PADI4 (rs11203367), n (%)		
Yes (n = 28)		
No (n = 23)		0.094
CT		
Yes (n = 28)		
No (n = 23)		
CC		
Yes (n = 28)		
No (n = 23)		
TT		
Yes (n = 28)		
No (n = 23)		
PADI4 (rs874881), n (%)		
Yes (n = 28)		
No (n = 23)		

APACHE II = Acute Physiology and Chronic Health Evaluation; ICU = intensive care unit; SOFA = Sequential Organ Failure Assessment; PAD4 = peptidylarginine deiminase 4; PADI4 = polymorphisms peptidylarginine deiminase 4, SOFA = Sequential Organ Failure Assessment. Data are expressed as the mean ± standard deviation. median (including the lower and upper quartiles) or percentage.
early and effective therapeutic targets is fundamental. In this scenario, PAD4 could play an important role. Currently, it is believed that the process of renal ischemia-reperfusion contributes to the increase of PAD4 expression. Consequently, there would be a stimulus for the release of proinflammatory cytokines, renal neutrophils infiltration, and histone citrullination, which together would corroborate the formation of NETs. The disconnected formation of NETs seems to stimulate the formation of thrombi, contributing to renal tubular cell necrosis. In addition, patients with septic shock have a high proinflammatory response, reduced immune capacity, and tissue hypoperfusion, which together with increased NET formation create a vicious and extremely lethal cycle\(^8\). In this context, experimental studies suggest that blocking the action of PAD4 using drugs or genetically has a protective effect against ischemic AKI\(^25\).

In general, studies available in the literature only address ischemic AKI in experimental models, and this is the first clinical study to evaluate the influence of PAD4 and its polymorphisms in SAKI. In this study, AKI developed in half of the patients during hospitalization, which contributes to septic shock severity and survival reduction. Despite this, we did not observe a difference in the concentration of PAD4 between the individuals in whom AKI developed and those who died. This response is different from what we found in our previous study, with the same dataset, in which PAD4 concentration was associated with increased mortality in patients with septic shock\(^12\). This different performance of PAD4 as a biomarker suggests that PAD4 concentration is more important in sepsis than in AKI pathophysiology. Importantly, despite the lack of significant results, we did not rule out the influence of PAD4 in the development and worse evolution of AKI because its higher concentration was associated with increased levels of creatinine and urea in patients with septic shock.

It is already known that functional polymorphisms could influence enzyme activity and patient evolution. In this work, we evaluated only two PADI4 polymorphisms (rs 11203367, rs 87481) and none of them had an association with the development of SAKI, or the need for RRT and mortality. In addition, our previous study also showed that other PADI4 polymorphisms (rs 11203366, rs 2240340, rs 1748033) were not associated with mortality in patients with septic shock\(^12\). We also could not exclude the participation of other PADI4 polymorphisms in SAKI development and outcomes.

Some limitations of this study should be considered. We only included patients from a single center and our sample size was relatively small. Regarding the diagnosis of AKI, it was based on serum creatinine values and not on urine output. Moreover, the only inflammation marker that we measured was CRP and we did not evaluate the formation of NETs. Despite these limitations, we strongly believe that our data contribute to a better knowledge of inflammatory pathways in patients with SAKI.

CONCLUSION

In conclusion, PAD4 concentrations were associated with creatinine and urea levels in patients with septic shock. However, PAD4 concentration and its polymorphisms were not associated with SAKI development, the need for RRT, and mortality in these patients.

Funding

This study was funded by the State of São Paulo Research Foundation (FAPESP – 2014/17262-0; 2014/07988-4) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

The funding had no role in the design of the study, collection, analysis, and interpretation of data and in writing the manuscript.

Author’s Contribution

Nara Aline Costa: concept, data collection, and drafting of the original article
Bertha Furlan Polegato: data collection, formal analysis, and review of the original article
Amanda Gomes Pereira: data collection and methodology
Sergio Alberto Rupp de Paiva: formal analysis, investigation, methodology, and review of the original article
Ana Lúcia Gut: formal analysis and methodology
André Luís Balbi: formal analysis and methodology
Daniela Ponce: formal analysis, investigation, methodology, and review of the original article
Leonardo Antônio Mamede Zornoff: formal analysis, drafting, and review of the original article
Paula Schmidt Azevedo: formal analysis and methodology
Marcos Ferreira Minicucci: formal analysis, project managing, supervision, drafting, and review of the original article
RESUMO

OBJETIVO: Avaliar a concentração da peptidilarginina desiminase 4 (PAD4) e os polimorfismos de PADI4, como preditores de desenvolvimento de lesão renal aguda, necessidade de terapia renal substitutiva (TRS) e mortalidade em pacientes com choque séptico.

MÉTODOS: Foram incluídos indivíduos com idade ≥18 anos, com diagnóstico de choque séptico na admissão na Unidade de Terapia Intensiva (UTI). Amostras de sangue foram coletadas nas primeiras 24 horas após a admissão do paciente para determinar a concentração sérica de PAD4 e seus polimorfismos PADI4 e os polimorfismos de PADI4 também não foram associados à TRS e à mortalidade em pacientes com Saki.

RESULTADOS: Foram avaliados 99 pacientes; 51,5% desenvolveram Saki e, desses, 21,5% necessitaram de TRS e 80% morreram na UTI. Não houve diferença entre a concentração de PAD4 versus controle (p=0,116) e seus polimorfismos versus controle (p=0,284; p=0,004). A concentração de PAD4 e os polimorfismos da PADI4 também não foram associados à TRS e à mortalidade em pacientes com Saki.

CONCLUSÕES: A concentração de PAD4 e seus polimorfismos não foram associados ao desenvolvimento de Saki, à necessidade de TRS ou à mortalidade em pacientes com choque séptico. No entanto, as concentrações de PAD4 foram associadas às concentrações de creatinina e ureia nesses pacientes.

PALAVRAS-CHAVE: Lesão renal aguda. Proteína-arginina desiminase tipo 4. Sepse. Mortalidade. Diálise.

REFERENCES

1. Clark E, Bagshaw SM. Long-term risk of sepsis among survivors of acute kidney injury. Crit Care. 2014;18(1):103.
2. Jo SK, Rosner MH, Okusa MD. Pharmacologic treatment of acute kidney injury: why drugs haven't worked and what is on the horizon. Clin J Am Soc Nephrol. 2017;12(2):356-65.
3. Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Haemost. 2007;97(5):738-47.
4. Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure. Am J Kidney Dis. 1999;34(2):384-99.
5. Baka Z, György B, Géher P, Buzás É, Falus A, Nagy G. Citrullination under physiological and pathological conditions. Joint Bone Spine. 2012;79(5):431-6.
6. Bode-Boger SM, Bode M, Gómez-Serrano LA, Altenschmidt H, Fujita A. Arginase. Biomed Pharmacother. 2003;57(5):283-90.
7. Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Haemost. 2007;97(5):738-47.
8. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110(21):8674-9.
9. Almeida GM, Berthelot G, Klotz SL. Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie. 2013;95(2):299-308.
10. Vossenaar ER, Zendman AJ, van venrooij WJ, Pruijn GJ. PAd4-low mice. Biochimie. 2013;95(2):299-308.
11. Amadori D, Gualdani J, Remuzzi G. The role of haematuria in the diagnosis of renal disease. Nephrol Dial Transplant. 1999;14(1):17-20.
12. Sultana N, Mallick A, Bhaskar S, Marañón M. The role of haematuria in the diagnosis of renal disease. Nephrol Dial Transplant. 1999;14(1):17-20.
13. Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Magalhães ES, et al. Neutrophil extracellular traps in ischemic AKI: a potential therapeutic target. Crit Care. 2014;18(1):103.
14. Lee YH, Bae SC. Association between susceptibility to rheumatoid arthritis and PADI4 polymorphisms: a meta-analysis. Clin Rheumatol. 2016;35(1):361-71.
15. Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Magalhães ES, et al. Neutrophil extracellular traps in ischemic AKI: a potential therapeutic target. Crit Care. 2014;18(1):103.
16. Lee YH, Bae SC. Association between susceptibility to rheumatoid arthritis and PADI4 polymorphisms: a meta-analysis. Clin Rheumatol. 2016;35(1):361-71.
17. Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Magalhães ES, et al. Neutrophil extracellular traps in ischemic AKI: a potential therapeutic target. Crit Care. 2014;18(1):103.
18. Lee YH, Bae SC. Association between susceptibility to rheumatoid arthritis and PADI4 polymorphisms: a meta-analysis. Clin Rheumatol. 2016;35(1):361-71.
19. Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Magalhães ES, et al. Neutrophil extracellular traps in ischemic AKI: a potential therapeutic target. Crit Care. 2014;18(1):103.
20. Lee YH, Bae SC. Association between susceptibility to rheumatoid arthritis and PADI4 polymorphisms: a meta-analysis. Clin Rheumatol. 2016;35(1):361-71.
21. Lee YH, Bae SC. Association between susceptibility to rheumatoid arthritis and PADI4 polymorphisms: a meta-analysis. Clin Rheumatol. 2016;35(1):361-71.
22. Lee YH, Bae SC. Association between susceptibility to rheumatoid arthritis and PADI4 polymorphisms: a meta-analysis. Clin Rheumatol. 2016;35(1):361-71.