Physiologically-based pharmacokinetic (PBPK) modeling for prediction of the optimal dose regimens of quinine and phenobarbital co-administration in adult patients with cerebral malaria and seizures

Teerachat Saeheng¹, Juntra Karbwang¹,², Rajith Kumar Reddy Rajoli³, Marco Siccardi³, and Kesara Na-Bangchang¹,²*

¹. Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, Thammasat University, Pathumthani, Thailand

². Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Thailand

³. Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom

Correspondence

K Na-Bangchang, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, 99 Moo 18 Phaholyothin Road, Klong Luang District, Pathumthani 12121, Thailand

Email: kesaratmu@yahoo.com
Abstract

Background: Cerebral malaria is a fatal disease. Patients with cerebral malaria are at risk of seizure development, therefore, the co-administration of antimalarial and antiepileptic drugs are needed. Quinine and phenobarbital are standard drugs for the treatment of cerebral malaria with seizures. However, there is no information on the optimal dosage regimens of both drugs when used concomitantly. The study applied physiologically-based pharmacokinetic (PBPK) modeling for prediction of the optimal dose regimens of quinine and phenobarbital when co-administered in patients with cerebral malaria and concurrent seizures who carry wild type and polymorphic cytochrome P450 (CYP450) 2C9/2C19.

Methods: The whole-body PBPK models for quinine and phenobarbital were constructed based on the previously published information using Simbiology®. One hundred virtual population were simulated. Four published articles were used for model verification. Sensitivity analysis was carried out to determine the effect of the changes in model parameters on AUC$_{0-72h}$. Simulation of optimal dose regimens was based on standard drug-drug interactions (DDIs), and actual clinical use study approaches.

Results: Dose adjustment of the standard regimen of phenobarbital is not required when co-administered with quinine. The proposed optimal dose regimen for quinine, when co-administered with phenobarbital for patients with a single or continuous seizure in all malaria-endemic areas regardless of CYP2C9/CYP2C19 genotypes, is a loading dose of 1,500 mg IV infusion over 8 hours, followed by 1,200 mg infusion over 8 hours given three times daily, or multiple doses of 1,400 mg IV infusion over 8 hours, given three times daily. In areas with quinine resistance, the dose regimen should be increased as a loading dose of 2,000 mg IV infusion over 8 hours, followed by 1,750 mg infusion over 8 hours given three times daily.
Conclusion: The developed PBPK models are reliable, and successfully predicted the optimal doses regimens of quinine-phenobarbital co-administration with no requirement of CYP2C9/CYP2C19 genotyping.

Keywords
Physiologically-based pharmacokinetic (PBPK) modeling, quinine, phenobarbital, cerebral malaria, seizure, cytochrome P450, drug-drug interactions
Background

Cerebral malaria remains a high burden neurological problem in sub-Saharan African countries with an increased risk of seizures [1]. Quinine is the standard antimalarial drug for the treatment of severe malaria, including cerebral malaria [1]. Phenobarbital, a cost-effective antiepileptic drug, is the standard treatment for cerebral malaria patients with seizures [2, 3]. Phenobarbital-induced severe cutaneous adverse reactions are, however, an issue of concern for clinical use of this drug [4]. Information on the contribution of host genetics on such reactions in cerebral malaria patients with seizures has been limited. Since phenobarbital induces xenobiotic drug-metabolizing enzymes cytochrome P450 (CYP450), the situation is further complicated when it is co-administered with drugs that are also metabolized by CYP450 enzymes. Phenobarbital is metabolized mainly in the livers by the polymorphic isoforms -- CYP2C9 and CYP2C19 [5, 6]. Quinine, on the other hand, is metabolized by CYP3A4 and UDP-glucuronosyltransferase 1A1 (UGT1A1) enzymes [7]. The activity of both enzymes is induced by phenobarbital [8, 9]. Cerebral malaria patients with polymorphic *CYP2C9/CYP2C19* genotypes who receive concomitant treatment with quinine and phenobarbital are, therefore, at risk of inadequate or toxic therapeutic drug concentrations due to metabolic drug interactions. To our knowledge, there have been few reports on the optimal phenobarbital dose for patients with epilepsy [5, 6], but not for cerebral malaria patients with seizures who carry polymorphic *CYP2C9* and *CYP2C19*. Besides, the optimal dosage of quinine when co-administered with phenobarbital has not been reported in this group of patients.

Physiologically-based pharmacokinetic (PBPK) modeling and simulation are accepted by various regulatory authorities as a promising tool to support dose optimization in the clinical phase of drug development, particularly for the investigation of drug-drug interactions (DDIs) and non-DDIs [10]. The present study aimed to apply PBPK modeling...
and simulation for optimization of quinine and phenobarbital co-administration in adult
patients with cerebral malaria and seizures, with consideration of genetic polymorphisms of
CYP2C9/CYP2C19 and DDIs.

Methods

Model construction

The whole-body PBPK models for quinine and phenobarbital (alone and co-administration)
were constructed based on the previously published information [11, 12] using Simbiology®
(version 5.8.2), the product of MATLAB® (version 2019a) (MathWorks, Natick, MA, USA).
The physicochemical and biochemical properties (model parameters) of each drug, including
human physiological parameters, were obtained from the published articles are available in
the supplementary material of this article [9, 11, 13-25] (Additional file 1).

Model assumptions included the limitation of blood-flow, immediate dissolution of each
drug in the gastrointestinal tract, absence of drug absorption in the stomach and large
intestine, absence of enterohepatic recirculation, and absence of effect of 3-hydroxyquinine
(quinine metabolite) on quinine disposition.

Model verification

Four published articles for quinine [26-29] and one article for phenobarbital [30] were used
for model verification. The published data were extracted using Plot digitizer® version 2.6.8
(Free Software Foundation, Inc., Boston, MA, USA). The area under the plasma
concentration-time curve (AUC) was calculated based on the trapezoidal rule using the Excel
spreadsheet. The simulated results from the developed models were compared against the
published data, using the accepted criterion --absolute average-folding errors (AAFEs) of ±
2-fold [31]. The mathematical equation for AAFEs is given below:

\[
\text{AAFE} = 10^{\left(\frac{\sum \text{abs}(\log(\text{prediction}/\text{observation}))/n}{n} \right)}
\]
Where n is the number of samples. The prediction is the simulated results from the developed model, and the observation is the published clinical data.

Sensitivity analysis (the study of the uncertainty of certain model input parameters on the model output)

Sensitivity analysis was performed to determine the effect of the changes in model parameters on the AUC during the first 72 hours ($\text{AUC}_{0\text{-}72h}$) following the standard intravenous (IV) regimen of quinine (quinine model) or phenobarbital (phenobarbital model) or quinine and phenobarbital co-administration (DDIs model). The model parameters for sensitivity analysis of the quinine model were a fraction of unbound drug (f_u), a fraction of UGT1A1 on total metabolism ($f_{m,\text{UGT1A1}}$), a fraction of CYP3A4 on total metabolism ($f_{m,CYP3A4}$), inhibitor concentration that produces half-maximal inhibition (K_{i3A4}), and blood-to-plasma partition ratio (R_{bp}). The model parameters for phenobarbital were f_u, R_{bp}, half-maximal effective concentrations ($EC_{50,2C9}$), maximum effect at the maximum concentration ($EC_{\text{max,2C9}}$), a fraction of CYP2C9 on total metabolism ($f_{m,CYP2C9}$), and a fraction of CYP2C19 on total drug metabolism ($f_{m,CYP2C19}$). The model parameters for DDIs included $E_{\text{max,3A4}}$, $EC_{50,3A4}$, $EC_{50,\text{UGT1A1}}$, and $E_{\text{max,UGT1A1}}$. The effect of the changes in model parameters on the $\text{AUC}_{0\text{-}72h}$ was determined by the change of each model parameter within $\pm20\%$. The mathematical equation for sensitivity analysis is given below:

$$\text{Sensitivity coefficient} = \frac{\%Y}{\%X}$$

Where $\%Y$ is the percent change of the $\text{AUC}_{0\text{-}72h}$ and $\%X$ is the percent change of the model parameter.
Virtual population simulation

One hundred virtual population (50 males and 50 females, aged 18-60 years, weighing 60 kg, fasting state) were simulated in (i) seizure patients with polymorphic CYP2C9/CYP2C19 (phenobarbital model), (ii) patients with cerebral malaria (quinine model), and (iii) patients with cerebral malaria and seizures with polymorphic CYP2C9/CYP2C19 (DDIs model). The intrinsic clearance of phenobarbital in each genotype was obtained from the published clinical data for wild type [CYP2C9 extensive metabolizer (EM)/CYP2C19EM] [6], CYP2C9*1/*1 CYP2C19*1/*3 [CYP2C9EM/CYP2C19 poor metabolizer (PM)] or CYP2C9/CYP2C19*2/*2 (CYP2C9EM/CYP2C19PM) or CYP2C9/CYP2C19*3/*3 (CYP2C9EM/CYP2C19PM) [5,6], and CYP2C9*1/*3/CYP2C19*1/*1 (CYP2C9PM/CYP2C19EM) [32].

Quinine and phenobarbital dose regimens used in simulations

The standard regimen of quinine for severe malaria is the loading dose of 20 mg kg$^{-1}$ (1,000 mg base total dose for the average 60 kg body weight) IV infusion over 4 hours, followed by the maintenance dose of 10 mg kg$^{-1}$ (500 mg base total dose for the average 60 kg body weight) IV infusion over 4 hours, given three times daily (every 8 hours) [1] for 72 hours. The simulation time used was based on the average time for patients with cerebral malaria to regain consciousness (72 hours) [28].

DDIs model simulation

Simulation based on standard DDIs study approach: For standard DDIs study approach, plasma concentration-time profiles of phenobarbital and quinine following the co-administration of standard dose regimen of phenobarbital and quinine were simulated. Phenobarbital is given at 2 mg kg$^{-1}$day$^{-1}$ (1-3 mg kg$^{-1}$day$^{-1}$) or 120 mg total dose for the
average 60 kg body weight) IV infusion over 30 minutes for 17 consecutive days. The standard dose regimen of quinine for three days (described above) was given on day 14 of phenobarbital administration when steady-state plasma concentration was achieved.

Simulation based on actual clinical use approach: For the PBPK simulation based on actual clinical use study approach, two simulated scenarios were applied with the total simulation time of 72 hours. The scenario-I applies for patients who have only a single seizure; phenobarbital (15 mg kg\(^{-1}\) or 900 mg total dose for the average 60 kg body weight, IV infusion over 30 minutes) is given as a single dose 6 hours after the first dose of quinine (average time of occurrence of seizure after admission) [33]. The scenario-II applies for patients who have continuous seizures; phenobarbital at a loading dose of 15 mg kg\(^{-1}\) or 900 mg total dose for the average 60 kg body weight IV infusion over 30 minutes, followed by the maintenance dose of 1.5 mg kg\(^{-1}\)day\(^{-1}\) (1-3 mg.kg\(^{-1}\) day\(^{-1}\)) or 90 mg total dose for average 60 kg body weight IV infusion over 30 minutes [33] is given every 24 hours, starting 6 hours after the first dose of quinine until 72 hours. The time of simulation and seizure frequency was based on the clinical report [34]. The predicted optimal dosage regimens were presented as amount of quinine base.

Criteria for optimal dose regimens

The optimal dose regimens of quinine for adult patients with cerebral malaria with seizures were proposed based on the therapeutic range of quinine, i.e., maximum plasma concentration (\(C_{\text{max}}\)) \(\leq 20\ \text{mg.L}^{-1}\), and trough plasma concentration (\(C_{\text{trough}}\)) \(\geq 10\ \text{mg.L}^{-1}\) [35]. The optimal dosage of phenobarbital were proposed based on the therapeutic rage of phenobarbital: \(C_{\text{max}} \leq 40\ \text{mg.L}^{-1}\) [36], and \(C_{\text{trough}} \geq 15\ \text{mg.L}^{-1}\) [33]. The predicted pharmacokinetic parameters are presented as mean (95% confidence interval or CI).
Results

Model verification

The AAFEs for quinine and phenobarbital, quinine alone, and phenobarbital alone ranged from 1.17 (1.03-1.21) [26-30], 1.14 (1.03-1.21) [26-29], and 1.20 [30], respectively. All were within accepted ranges [31], indicating the reliability of the PBPK models (Table 1). Visual Predictive Checks (VPCs) between predicted results and published data are shown in Additional file 2.

Sensitivity analysis

Sensitivity coefficient analysis values for AUC_{0-72h} of quinine, phenobarbital, and quinine and phenobarbital co-administration ranged from -0.72 to +0.14, -0.02 to +0.10, and -0.48 to +0.12, respectively. All values were less than one, indicating no significant impact of the model parameters on model construction.

Simulation of standard dose regimen of phenobarbital in patients with seizures with polymorphic CYP2C9 and CYP2C19

Simulation based on standard DDIs study approach: Results of the simulation of optimal dose regimens of phenobarbital (C_{max}, C_{trough}, and clearance) in patients with wild type (CYP2C9EM/CYP2C19EM) and polymorphic CYP2C9EM/CYP2C19PM, and CYP2C9PM/CYP2C19EM are summarized in Table 2. The average values of all parameters in all genotypes were within the therapeutic range.

Simulation based on actual clinical use study approach: Results of the simulation of optimal dose regimens (single and multiple dosing) of phenobarbital (C_{max}, C_{trough}, and clearance) in patients with wild type (CYP2C9EM/CYP2C19EM) and polymorphic
CYP2C9EM/CYP2C19PM, and CYP2C9PM/CYP2C19EM are summarized in Table 3. The average values of all parameters in all genotypes were within the therapeutic range.

Simulation of the optimal dose of quinine when co-administered with phenobarbital in cerebral malaria patients with concomitant seizures and polymorphic CYP2C9/CYP2C19

Results (C_{trough}, C_{max}, AUC ratio or AUCR, and C_{max} ratio or C_{max}R) of the simulation of the standard dose of quinine, when co-administered with phenobarbital in cerebral malaria patients with concomitant seizures (scenario I: single seizure, and scenario II: continuous seizures) and polymorphic CYP2C9/CYP2C19 based on DDI and actual clinical use study approaches, are summarized in Table 4.

Simulation based on standard DDIs study approach: Standard dose regimen of quinine provided inappropriate plasma drug concentrations when co-administered with phenobarbital (C_{trough} < 10 mg.L^{-1}) (Table 4). The initially proposed quinine (regimen-1: a loading dose of 2,200 mg IV infusion over 4 hours, followed by maintenance doses of 1,200 mg IV infusion over 4 hours given three times daily) in patients with wild type and polymorphic CYP2C9/CYP2C19 provided 2.2-fold lower plasma drug concentrations compared with standard quinine regimen, with AUCR ranging from 0.42 to 0.45. This 2.2-fold increase of quinine standard dose provided the C_{max} exceeding 20 mg.L^{-1}, but the C_{trough} lower than 10 mg.L^{-1} both in patients with wild type and polymorphic CYP2C9/CYP2C19 (Fig. 1, and Fig. 2 for wild type and polymorphic CYP2C9/CYP2C19, respectively) (Table 5). The time to reach therapeutic concentration ranged from 2 to 3 hours. The three subsequent dose regimens were therefore simulated, e.g., a loading dose of 2,200 mg IV infusion, followed by 2,000 mg IV infusion (regimen-2), a loading dose of 2,000 mg IV infusion, followed by 1,500 mg IV infusion (regimen-3), and a loading dose of 1,750 mg IV infusion, followed by 1,500 mg IV infusion (regimen-4). All regimens were given as IV infusion over 8 hours, and
the maintenance doses were given three times daily. The average C_{max} and C_{trough} (95%CI) for each regimen (-2, -3, and -4) are shown in Fig. 1 (wild type), and Fig. 2 (polymorphic CYP2C9/CYP2C19) (Table 5). The time to reach therapeutic concentration ranged from 4 to 6 hours.

Simulation based on actual clinical use study approach: Standard dose regimen of quinine provided inappropriate plasma drug concentrations when co-administered with phenobarbital ($C_{\text{trough}} < 10 \text{mg.L}^{-1}$) (Table 4). Dose adjustment in both clinical scenarios based on standard dosage regimen of quinine provided the AUCR of quinine when co-administered with phenobarbital in patients with wild type genotype, and polymorphic CYP2C9/CYP2C19 ranging from 0.47 to 0.53 (Table 4). The 2-fold increase of quinine standard dose (regimen-5: a loading dose of 2,000 mg IV infusion over 4 hours, followed by maintenance doses of 1,000 mg IV infusion over 4 hours given three times daily) provided the concentrations out of therapeutic range ($C_{\text{max}} > 20 \text{mg.L}^{-1}$, and $C_{\text{trough}} < 10 \text{mg.L}^{-1}$) both in patients with wild type and polymorphic CYP2C9/CYP2C19 (Fig. 3 (scenario I and II), Fig. 4 (scenario I), and 5 (scenario II) for wild type and polymorphic CYP2C9/CYP2C19, respectively) (Table 6 and 7 for scenario I and scenario II, respectively). The three subsequent dose regimens for the scenario I (single seizure) and II (multiple seizures) were therefore simulated, i.e., a loading dose of 2,000 mg IV infusion, followed by 1,750 mg IV infusion three times daily (regimen-6), a loading dose of 1,500 mg IV infusion, followed by 1,200 mg IV infusion three times daily (regimen-7), and multiple doses of 1,400 mg IV infusion three times daily (regimen-8).

The IV infusion duration in all regimens was 8 hours, and the maintenance doses were given three times daily. The average C_{max}, and C_{trough} (95%CI) of quinine for wild type genotype in each simulation are shown in Fig. 3, and those for polymorphic CYP2C9/CYP2C19 for the scenario I and scenario II are presented in Fig. 4 and Fig. 5, respectively. Table 5, 6, and 7 summarize the parameters predicted based on standard DDI and actual clinical use (single...
and continuous seizures) study approach, respectively. Time to reach therapeutic quinine levels ranged from 4 to 6 hours. Plasma quinine concentrations following regimen-7 and -8 except regimen-5 and -6 were within the therapeutic range for both scenarios I and scenario II. The C_{max} of quinine following regimen-6 in both scenarios ranged from 21-23 mg.L^{-1}.

Discussion

Results of the current study based on PBPK modeling and simulation raise a concern about the potential DDIs between quinine and phenobarbital in patients with cerebral malaria who have seizures and require concurrent treatment with both drugs. The conventional dose adjustment based on the AUCR of both drugs in different clinical scenarios may provide suboptimal dose regimens with inadequate trough plasma levels, which pose the patients at risk of treatment failure and/or severe complication. The PBPK modeling approach, on the other hand, has proved a promising tool for dose optimization of quinine and phenobarbital co-administration.

Optimal phenobarbital dose regimens in patients with seizures with polymorphic CYP2C9 and CYP2C19

Simulation of the optimal phenobarbital dose regimens in patients with seizures who carry polymorphic CYP2C9/CYP2C19 was investigated using dose regimens based on the two approaches, i.e., the standard DDIs study approach (at steady-state of phenobarbital level), and the actual clinical use study approach (scenario I for single seizure and scenario II for continuous seizures). Results of the present study supported the previous report of the decrease in total clearance of phenobarbital by 48.2% [32] and 20% [5, 6] in patients carrying CYP2C9PM/CYP2C19EM and CYP2C9EM/CYP2C19PM genotypes, respectively. The reported frequencies of the wild type, CYP2C9PM/CYP2C19EM, and
CYP2C9EM/CYP2C19PM genotypes in the Thai population are 42% [37], 2.8% [38], and 13% [37], respectively. Based on the results of PBPK modeling using both DDIs and actual clinical use study approaches, however, dosage adjustment of phenobarbital may not be required as plasma drug concentrations were maintained within the therapeutic range ($C_{\text{max}} \leq 40 \text{ mg.L}^{-1}$ [36], and $C_{\text{trough}} \geq 15 \text{ mg.L}^{-1}$ [33]) (Table 2 and 3). The proposed phenobarbital dosage regimens are optimal for the treatment of patients with single seizure (single dose of 900 mg or 15 mg. kg$^{-1}$), as well as patients with cerebral malaria who have continuous seizures (a loading dose of 15 mg. kg$^{-1}.\text{day}^{-1}$, followed by 1.5 mg.kg$^{-1}.\text{day}^{-1}$ once-daily) regardless of patients’ CYP2C9/CYP219 genotypes. Genotyping is therefore not necessary, which is practical both in developed and developing countries. Besides, the advantage of using phenobarbital over other anticonvulsants is its relatively low cost [2].

Optimal quinine dose regimens when co-administered with phenobarbital in cerebral malaria patients with concomitant seizures and polymorphic CYP2C9/CYP2C19

Similarly to phenobarbital, simulation of the optimal quinine dose regimens in patients with concurrent cerebral malaria and seizures with polymorphic CYP2C9/CYP2C19 were investigated using dose regimens based on standard DDIs study and actual clinical use (scenario I and II) study approaches. Dose optimization based on AUCR yielded undesirable plasma quinine concentrations when co-administered with phenobarbital.

Simulations based on standard DDIs approach: The three proposed quinine dosage regimens, i.e., regimen-2, -3 and -4) provided adequate C_{trough} above 10 mg.L$^{-1}$ in both wildtype genotype (Fig 1B, C, D for regimen-2, 3, and -4, respectively) and polymorphic CYP2C9/CYP2C19 (Fig 2B, C, D for regimen-2, -3, and -4, respectively). Nevertheless, regimen-2 (a loading dose of 2,200 mg IV infusion over 8 hours, followed by 2,000 mg IV infusion over 8 hours given three times daily) is not appropriate for clinical use due to high
drug concentrations above 20 mg.L\(^{-1}\) in individuals with both wild type and polymorphic
\(CYP2C9/CYP2C19\) and thus, the possibility of toxicity. Since the reported minimum
inhibitory concentration (MIC) of quinine in quinine-resistant areas has been rising to over 10
mg.L\(^{-1}\) [39], the most optimal dose regimen would be \textit{regimen-3} (a loading dose of 2,000 mg
IV infusion over 8 hours, followed by 1,500 mg IV infusion over 8 hours given three times
daily). In low quinine resistant malaria-endemic areas, \textit{regimen-4} (a loading dose of 1,750
mg IV infusion over 8 hours, followed by 1,500 mg IV infusion three times daily) could be
an alternative regimen. It is noted, however, that the infusion duration of 8 hours might result
in the delay of time to reach therapeutic level compared with the recommended standard
regimens (4-6 and 2-3 hours for the recommended and standard regimens, respectively).
Since the critical clinical period for treatment of patients with cerebral malaria is during the
first 24 hours [27], such delay is unlikely to pose the patients at risk of complicated
manifestation or death. These quinine regimens can be co-administered with phenobarbital
without consideration of \(CYP2C9/CYP2C19\) genotypes.

\textit{Simulations based on actual clinical use study approach:} Optimal \(C_{\text{max}}\) and \(C_{\text{trough}}\) of
quinine were achieved with the two proposed quinine dose regimens (\textit{regimen-7} and \textit{-8})
when co-administered with phenobarbital in both clinical scenarios (scenario I for a single
seizure and scenario II for continuous seizures) using PBPK modeling and simulation, but not
the AUCR, resulted in adequate plasma concentrations (Fig. 3, Fig. 4, and Fig. 5 for wild
type, the scenario I in polymorphic \(CYP2C9/CYP2C19\), and scenario II in polymorphic
\(CYP2C9/CYP2C19\), respectively). With the administration time of quinine 6 hours prior to
phenobarbital in actual clinical study approach, the optimal quinine dosage regimens can be
reduced as a loading dose of 2,000 mg IV infusion over 8 hours, followed by 1,750 mg IV
infusion three times daily (\textit{regimen-6}), or alternatively, 1,500 mg IV infusion, followed by
1,200 mg IV infusion (\textit{regimen-7}), or 1,400 mg IV infusion over 8 hours given three times
These quinine regimens can be co-administered with phenobarbital without consideration of CYP2C9/CYP2C19 genotypes since plasma quinine concentrations in patients with wild type, and polymorphic CYP2C9/CYP2C19 were comparable. There is no influence of CYP2C9/CYP2C19 genotypes on the inducing effect of quinine metabolism since the steady-state drug concentrations are not achieved with a short duration of phenobarbital dosing. The possibility of dose reduction could be due to the lack of CYP450 enzyme-inducing effect of phenobarbital during this period (6 hours). In the case of quinine resistant malaria, particularly with the contribution of large interindividual variability in quinine clearance, quinine regimen-6 would be the best option. The higher C_{max} of 1-3 mg.L$^{-1}$ above the therapeutic range is unlikely to cause toxicity due to high plasma protein binding during the acute phase of malaria infection. It is noted that the recommended optimal dose regimens of quinine and phenobarbital co-administration apply for cerebral malaria patients with seizures who have normal hepatic function but not in those with impaired function. Therapeutic drug monitoring for quinine in those patients is recommended.

The limitations of the study include the exclusion of the contribution of P-glycoprotein transporter on quinine disposition (due to lack of information on in vitro studies), as well as the inhibitory effect of 3-hydroxyquinine metabolite on CYP3A4 activity. Nevertheless, the significant impacts of these two factors on quinine disposition are unlikely [11].

In summary, PBPK models are a potential tool for dose optimization of quinine in patients with cerebral malaria in resource-limited countries. The developed PBPK models for phenobarbital and quinine-phenobarbital co-administration are reliable, and successfully predicted the optimal doses regimens of phenobarbital in cerebral malaria patients with single or continuous seizures with no requirement of CYP2C9/CYP2C19 genotyping. Dose adjustment based on PBPK modeling but not AUCR provided desirable plasma quinine
concentrations. Dose adjustment of the standard regimen of phenobarbital is not required when co-administered with quinine. The proposed optimal dose regimen for quinine when co-administered with phenobarbital for patients with a single seizure (scenario I), and continuous seizures (scenario II) in all malaria-endemic areas regardless of CYP2C9/CYP2C19 genotypes is a loading dose of 1,500 mg IV infusion over 8 hours, followed by 1,200 mg IV infusion over 8 hours given three times daily (regimen-7), or multiple doses of 1,400 mg IV infusion over 8 hours, given three times daily (regimen-8). In areas with quinine resistance, the dose regimen should be increased as a loading dose of 2,000 mg IV infusion over 8 hours, followed by 1,750 mg IV infusion over 8 hours given three times daily (regimen-6).

Abbreviations

95%CI: 95% confident interval; AAFEs: absolute average-folding errors; AUC: the area under the plasma concentration-time curve; AUCR: AUC ratio; C\text{max}: peak plasma concentration; C\text{max}R: C\text{max} ratio; C\text{trough}: trough plasma concentration; CYP450: cytochrome P450; DDIs: drug-drug interactions; EC\text{50}: half-maximal effective concentrations; EM: extensive metabolizer; E\text{max}: maximum effect at the maximum concentration; f\text{m}: fraction of metabolism; f\text{u}: fraction of unbound drug; IV: intravenous; K\text{i}: inhibitor concentration that produces half-maximal inhibition; R\text{bp}: blood-to-plasma ratio; PM: poor metabolizer; UGT1A1: UDP-glucuronosyltransferase 1A1; VPC: visual predictive check.

Acknowledgements

K.N. receives research support from the National Research Council of Thailand and Thammasat University (Center of Excellence in Pharmacology and Molecular Biology of...
Malaria and Cholangiocarcinoma). J.K. receives research support from Thammasat University (Bualuang ASEAN Chair Professor).

Authors’s contributions
T.S., J.K., M.S., and K.N. designed the study. M.S., T.S., and R.K.R. collected the information. T.S., R.K.R., and M.S. performed research. T.S., J.K., and K.N. wrote the manuscript. All authors had accessed and interpreted the data. All authors approved the final version.

Funding
The study was supported by Thammasat University under the Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma (TU-CoE 005-2018).

Availability of data and materials
All data generated or analysed during this study are included in this published article [and its supplementary information files].

Ethical approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

References

1. Idro R, Jenkins NE, Newton CR: Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 2005, 4:827-840.

2. Chisholm D, Who C: Cost-effectiveness of first-line antiepileptic drug treatments in the developing world: a population-level analysis. Epilepsia 2005, 46:751-759.

3. Meremikwu M, Marson AG: Routine anticonvulsants for treating cerebral malaria. Cochrane Database Syst Rev 2002:CD002152.

4. Manuyakorn W, Siripool K, Kamchaisatian W, Pakakasama S, Visudtibhan A, Vilaiyuk S, Rujirawat T, Benjaponpitak S: Phenobarbital-induced severe cutaneous adverse drug reactions are associated with CYP2C19*2 in Thai children. Pediatr Allergy Immunol 2013, 24:299-303.

5. Mamiya K, Hadama A, Yukawa E, Ieiri I, Otsubo K, Ninomiya H, Tashiro N, Higuchi S: CYP2C19 polymorphism effect on phenobarbitone. Pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur J Clin Pharmacol 2000, 55:821-825.

6. Yukawa E, Mamiya K: Effect of CYP2C19 genetic polymorphism on pharmacokinetics of phenytoin and phenobarbital in Japanese epileptic patients using Non-linear Mixed Effects Model approach. J Clin Pharm Ther 2006, 31:275-282.
7. Mirghani RA, Hellgren U, Bertilsson L, Gustafsson LL, Ericsson O: Metabolism and elimination of quinine in healthy volunteers. Eur J Clin Pharmacol 2003, 59:423-427.

8. Ramirez J, Komoroski BJ, Mirkov S, Graber AY, Fackenthal DL, Schuetz EG, Das S, Ratain MJ, Innocenti F, Strom SC: Study of the genetic determinants of UGT1A1 inducibility by phenobarbital in cultured human hepatocytes. Pharmacogenet Genomics 2006, 16:79-86.

9. Almond LM, Mukadam S, Gardner I, Okialda K, Wong S, Hatley O, Tay S, Rowland-Yeo K, Jamei M, Rostami-Hodjegan A, Kenny JR: Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model. Drug Metab Dispos 2016, 44:821-832.

10. Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A, Peters SA, Reddy VP, Zheng M, de Zwart L, et al: Physiologically Based Pharmacokinetic Model Qualification and Reporting Procedures for Regulatory Submissions: A Consortium Perspective. Clin Pharmacol Ther 2018, 104:88-110.

11. Saeheng T, Na-Bangchang K, Siccardi M, Rajoli RKR, Karbwang J: Physiologically-Based Pharmacokinetic Modeling for Optimal Dosage Prediction of Quinine Coadministered With Ritonavir-Boosted Lopinavir. Clin Pharmacol Ther 2019.

12. Rajoli RK, Back DJ, Rannard S, Freel Meyers CL, Flexner C, Owen A, Siccardi M: Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV. Clin Pharmacokinet 2015, 54:639-650.

13. Qualauquin (FDA product Label) [https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021799s011lbl.pdf]
14. Dua VK, Sarin R, Prakash A: Determination of quinine in serum, plasma, red blood cells and whole blood in healthy and Plasmodium falciparum malaria cases by high-performance liquid chromatography. J Chromatogr 1993, 614:87-93.

15. Supanaranond W, Davis TM, Pukrittayakamee S, Silamut K, Karbwang J, Molunto P, Chanond L, White NJ: Disposition of oral quinine in acute falciparum malaria. Eur J Clin Pharmacol 1991, 40:49-52.

16. Koudriakova T, Iatsimirskaia E, Utkin I, Gangl E, Vouros P, Storozhuk E, Orza D, Marinina J, Gerber N: Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 1998, 26:552-561.

17. Strauch S, Dressman JB, Shah VP, Kopp S, Polli JE, Barends DM: Biowaiver monographs for immediate-release solid oral dosage forms: Quinine sulfate. Journal of Pharmaceutical Sciences 2012, 101:499-508.

18. Zhao XJ, Ishizaki T: A further interaction study of quinine with clinically important drugs by human liver microsomes: determinations of inhibition constant (Ki) and type of inhibition. Eur J Drug Metab Pharmacokinet 1999, 24:272-278.

19. Wallin A, Herngren L: Distribution of phenobarbital in whole blood during pregnancy and perinatally--an in vitro study. Eur J Clin Pharmacol 1985, 29:187-191.

20. Ehrnebo M, Odar-Cederlof I: Binding of amobarbital, pentobarbital and diphenylhydantoin to blood cells and plasma proteins in healthy volunteers and uraemic patients. Eur J Clin Pharmacol 1975, 8:445-453.

21. Bender AD, Post A, Meier JP, Higson JE, Reichard G, Jr.: Plasma protein binding of drugs as a function of age in adult human subjects. J Pharm Sci 1975, 64:1711-1713.
22. Xu Y, Zhou Y, Hayashi M, Shou M, Skiles GL: Simulation of clinical drug-drug interactions from hepatocyte CYP3A4 induction data and its potential utility in trial designs. Drug Metab Dispos 2011, 39:1139-1148.

23. Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, Zhang H, Di L, Cram M, Fenner KS, El-Kattan AF: pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm 2012, 9:1199-1212.

24. Shou M, Hayashi M, Pan Y, Xu Y, Morrissey K, Xu L, Skiles GL: Modeling, prediction, and in vitro in vivo correlation of CYP3A4 induction. Drug Metab Dispos 2008, 36:2355-2370.

25. Wilensky AJ, Friel PN, Levy RH, Comfort CP, Kaluzny SP: Kinetics of phenobarbital in normal subjects and epileptic patients. Eur J Clin Pharmacol 1982, 23:87-92.

26. Salako LA, Sowunmi A: Disposition of quinine in plasma, red blood cells and saliva after oral and intravenous administration to healthy adult Africans. Eur J Clin Pharmacol 1992, 42:171-174.

27. White NJ, Looareesuwan S, Warrell DA, Warrell MJ, Bunnag D, Harinasuta T: Quinine pharmacokinetics and toxicity in cerebral and uncomplicated Falciparum malaria. Am J Med 1982, 73:564-572.

28. White NJ, Looareesuwan S, Warrell DA, Warrell MJ, Chanthavanich P, Bunnag D, Harinasuta T: Quinine loading dose in cerebral malaria. Am J Trop Med Hyg 1983, 32:1-5.

29. Davis TM, White NJ, Looareesuwan S, Silamut K, Warrell DA: Quinine pharmacokinetics in cerebral malaria: predicted plasma concentrations after rapid
intravenous loading using a two-compartment model. Trans R Soc Trop Med Hyg 1988, 82:542-547.

30. Nelson E, Powell JR, Conrad K, Likes K, Byers J, Baker S, Perrier D: Phenobarbital pharmacokinetics and bioavailability in adults. J Clin Pharmacol 1982, 22:141-148.

31. Saeheng T, Na-Bangchang K, Karbwang J: Utility of physiologically based pharmacokinetic (PBPK) modeling in oncology drug development and its accuracy: a systematic review. Eur J Clin Pharmacol 2018, 74:1365-1376.

32. Goto S, Seo T, Murata T, Nakada N, Ueda N, Ishitsu T, Nakagawa K: Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther Drug Monit 2007, 29:118-121.

33. Kokwaro GO, Ogutu BR, Muchohi SN, Otieno GO, Newton CR: Pharmacokinetics and clinical effect of phenobarbital in children with severe falciparum malaria and convulsions. Br J Clin Pharmacol 2003, 56:453-457.

34. Mohapatra MKD, L.K.; Mishra, N.R., et al.: Profile of seizures in adult falciparum malaria and clinical efficacy of phenytoin sodium for control seizures. Asian Pac J Trop Dis 2012, 2:5.

35. Verdier MC, Bentue-Ferrer D, Tribut O, pour le groupe Suivi Therapeutique Pharmacologique de la Societe Francaise de Pharmacologie et de T: [Therapeutic drug monitoring of quinine]. Therapie 2011, 66:507-516.

36. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E: Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 2008, 49:1239-1276.
37. Sukasem C, Tunthong R, Chamanphon M, Santon S, Jantaratongtong T, Koomdee N, Prommas S, Puangpetch A, Vathesatogkit P: CYP2C19 polymorphisms in the Thai population and the clinical response to clopidogrel in patients with atherothrombotic-risk factors. Pharmgenomics Pers Med 2013, 6:85-91.

38. Sangviroon A, Panomvana D, Tassaneeyakul W, Namchaisiri J: Pharmacokinetic and pharmacodynamic variation associated with VKORC1 and CYP2C9 polymorphisms in Thai patients taking warfarin. Drug Metab Pharmacokinet 2010, 25:531-538.

39. Krudsood S, Watcharee; Silachamroon, Udomsak; Phumratanaprapin, Weerapong; Viriyavejakul, Parnpen; Bussaratid, Valai; Looareesuwan, Sornchai: Clinical malaria and treatment of multidrug resistance falciparum in Thailand. J Trop Med Hyg 1999, 27:7.

Figures

Figure 1 Prediction of quinine dose regimens in wild type CYP2C9/CYP2C19 based on standard DDIs approach. Prediction of quinine dosage regimens when co-administered with phenobarbital based on standard DDIs study approach in cerebral malaria patients with seizures who carry wild type CYP2C9/CYP2C19. Data are presented as mean (95%CI). Set criteria for dose optimization are $C_{\text{max}} \leq 20 \text{ mg.L}^{-1}$ and $C_{\text{trough}} \geq 10 \text{ mg.L}^{-1}$ (therapeutic range of quinine).

Figure 2 Prediction of quinine dose regimens in polymorphic CYP2C9/CYP2C19 based on standard DDIs approach. Prediction of quinine dosage regimens when co-administered with phenobarbital based on standard DDIs study approach in cerebral malaria patients with seizures who carry polymorphic CYP2C9/CYP2C19. Data are presented as mean (95%CI).
Set criteria for dose optimization are $C_{\text{max}} \leq 20 \text{ mg.L}^{-1}$, and $C_{\text{trough}} \geq 10 \text{ mg.L}^{-1}$ (therapeutic range of quinine).

Figure 3 Prediction of quinine dose regimens in wild type $CYP2C9/CYP2C19$ based on actual clinical use approach. Prediction of quinine dosage regimens when co-administered with phenobarbital based on actual clinical use study approach in cerebral malaria patients with seizures (scenario I: single, and scenario II: continuous) who carry wild type $CYP2C9/CYP2C19$. Data are presented as mean (95%CI). Set criteria for dose optimization are $C_{\text{max}} \leq 20 \text{ mg.L}^{-1}$, and $C_{\text{trough}} \geq 10 \text{ mg.L}^{-1}$ (therapeutic range of quinine).

Figure 4 Prediction of quinine dose regimens in polymorphic $CYP2C9/CYP2C19$ based on actual clinical use approach (scenario-I). Prediction of quinine dosage regimens when co-administered with phenobarbital based on actual clinical use study approach in cerebral malaria patients with a single seizure (scenario I) who carry polymorphic $CYP2C9/CYP2C19$. Data are presented as mean (95%CI). Set criteria for dose optimization are $C_{\text{max}} \leq 20 \text{ mg.L}^{-1}$, and $C_{\text{trough}} \geq 10 \text{ mg.L}^{-1}$ (therapeutic range of quinine).

Figure 5 Prediction of quinine dose regimens in polymorphic $CYP2C9/CYP2C19$ based on actual clinical use approach (scenario-II). Prediction of quinine dosage regimens when co-administered with phenobarbital based on actual clinical use study approach in cerebral malaria patients with continuous seizures (scenario II) who carry polymorphic $CYP2C9/CYP2C19$. Data are presented as mean (95%CI). Set criteria for dose optimization are $C_{\text{max}} \leq 20 \text{ mg.L}^{-1}$, and $C_{\text{trough}} \geq 10 \text{ mg.L}^{-1}$ (therapeutic range of quinine).

Tables
Table 1 Model verification of quinine and phenobarbital in cerebral malaria, severe malaria, and healthy adults. Comparisons of quinine and phenobarbital between predicted results and published data in patients with cerebral malaria, severe malaria, and healthy adults.

Table 2 Simulated standard dose regimens of phenobarbital based on standard DDI study approach. Simulation of standard dose regimens of phenobarbital in patients with seizures with wild type and polymorphic CYP2C9/CYP2C19 based on standard DDI study approach.

Table 3 Simulated standard dose regimens of phenobarbital based on actual clinical use study approach. Simulation of standard dose regimen of phenobarbital in patients with seizures with wild type and polymorphic CYP2C9/CYP2C19 based on actual clinical use study approach.

Table 4 Simulated standard dose regimens of quinine when co-administered with phenobarbital based on actual clinical use approach. Simulation of the standard dose of quinine when co-administered with phenobarbital in cerebral malaria patients with concomitant seizures with wild type and polymorphic CYP2C9/CYP2C19.

Table 5 Prediction of quinine dose regimens when co-administered with phenobarbital based on standard DDI study approach. Prediction of quinine dosage regimens when co-administered with phenobarbital in cerebral malaria patients with concomitant seizures and polymorphic CYP2C9/CYP2C19 based on standard DDI study approach.

Table 6 Prediction of quinine dose regimens when co-administered with phenobarbital based on scenario-I. Prediction of quinine dosage regimen when co-administered with phenobarbital in cerebral malaria patients with concomitant seizures with wild type and polymorphic CYP2C9/CYP2C19 based on actual clinical study approach (scenario I: single seizure).

Table 7 Prediction of quinine dose regimens when co-administered with phenobarbital based on scenario-II. Prediction of quinine dosage regimen when co-administered with
phenobarbital in cerebral malaria patients with concomitant seizures with wild type and polymorphic CYP2C9/CYP2C19 based on actual clinical study approach (*scenario II*: continuous seizures).

Additional files

Additional file 1: Table S1. PBPK model input parameters for quinine and phenobarbital.

Additional file 2: Figure S1. A comparison of 500 mg quinine IV infusion over 4 hours in African healthy adults between predicted result and published data. Figure S2. A comparison of 10 mg kg\(^{-1}\) body weight quinine IV infusion over 4 hours in adult Thai patients with cerebral malaria between predicted result and published data. Figure S3. A comparison of 4 mg kg\(^{-1}\) body weight quinine IV infusion over 4 hours in adult Thai patients with severe malaria between predicted result and published data. Figure S4. A comparison of loading dose of 20 mg kg\(^{-1}\) body weight quinine IV infusion over 4 hours, followed by 10 mg kg\(^{-1}\) body weight IV infusion over 4 hours given 3 times daily in adult Thai patients with cerebral malaria between predicted result and published data. Figure S5. A comparison of 10 mg kg\(^{-1}\) body weight IV infusion over 4 hours given 3 times daily in adult Thai patients with cerebral malaria between predicted result and published data. Figure S6. A comparison of 5 mg kg\(^{-1}\) body weight IV infusion over 4 hours given 3 times daily in adult Thai patients with cerebral malaria between predicted result and published data. Figure S7. A comparison of 2.6 mg kg\(^{-1}\) (218 mg) phenobarbital IV infusion over 6 minutes given in healthy male subjects between predicted result and published data.