X$_1$X$_1$X$_2$X$_2$/X$_1$X$_2$Y sex chromosome systems in the Neotropical Gymnotiformes
electric fish of the genus Brachyhypopomus

Adauto Lima Cardoso, Julio Cesar Pieczarka and Cleusa Yoshiko Nagamachi

Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará,
Campus do Guamá, Belém, PA, Brazil.

Abstract

Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X$_1$X$_1$X$_2$X$_2$/X$_1$X$_2$Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X$_1$X$_1$X$_2$X$_2$/X$_1$X$_2$Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B. n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X$_1$X$_1$X$_2$X$_2$/X$_1$X$_2$Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X$_1$X$_1$X$_2$X$_2$/X$_1$X$_2$Y system may represent sex chromosomes turnover events in Gymnotiformes.

Keywords: sex chromosome fusion, sexual trivalent, meiosis.

Received: June 20, 2014; Accepted: November 24, 2014.

Introduction

Sex determination mechanisms in vertebrates are varied and may involve environmental and genetics factors. Among the species with genetic sex determination, there are variations that go from those that have the implication of only one locus to those having a morphological sex chromosome system (Ezaz et al., 2006).

Fish is the most interesting group to study sex chromosomes because they have a large diversity of systems, including XY and ZW and their derivatives, with several stages of differentiation (Devlin and Nagahama, 2002). This evidences multiple origins of these systems in the group, even among closely related species (Ezaz et al., 2006). Among the multiple sex chromosome systems registered in fish, the X$_1$X$_1$X$_2$X$_2$/X$_1$X$_2$Y is the most common (Devlin and Nagahama, 2002; Kitano and Peichel, 2012). This type of system arises as a consequence of rearrangements involving autosomes and sex chromosomes or fission of a sex chromosome (White, 1973; Kitano and Peichel, 2012).

Gymnotiformes is the order that includes the electric fishes of the Neotropical region. These species have a high karyotypic variability that is reflected in diploid numbers (2n), karyotypic formula (KF), number and distribution of the nucleolar organizer regions, occurrence of B chromosomes and sex chromosome systems (Almeida-Toledo et al., 1984, 1993, 2000a,b, 2001, 2002; Fernandes-Matioli et al., 1998; Fernandes et al., 2005; Silva and Margarido, 2005; Fonteles et al., 2008; Milhomem et al., 2007, 2008, 2012a,b; Silva et al., 2009; Cardoso et al., 2011; Scacchetti et al., 2011; Mendes et al., 2012; Silva et al., 2013). The group presents simple and multiple sex chromosome systems and heterogamety of males and females (Table 1). This diversity evidences different origins and allows the identification of alternative mechanisms involved in the evolution of the sex chromosomes in this group (Henning et al., 2008, 2011; Almeida-Toledo et al., 2002; Silva et al., 2009).

Brachyhypopomus Mago-Leccia 1994 is one the most diverse genera of Gymnotiformes (Crampton, 2011), but cytogenetic data are known only for two populations of Brachyhypopomus gauderio from the Paraná river basin (Almeida-Toledo et al., 2000b; Mendes et al., 2012). In the present work we describe the karyotypes of two species of electric fish of this genus, which have an X$_1$X$_1$X$_2$X$_2$/X$_1$X$_2$Y
sex chromosome system. We also discuss the process that may be involved in the evolution of these systems in Gymnotiformes.

Material and Methods

We analyzed 23 specimens of Brachyhypopomus pinnicaudatus Hopkins, 1991 (10 males and 13 females) and 12 specimens of Brachyhypopomus n. sp. FLAV (an undescribed species; Crampton, pers. Comm.; 6 males and 6 females; “FLAV” indicates the first four letters of the specific epithet that the species will receive), both from Reserva de Desenvolvimento Sustentável Mamirauá (Amazonas state, Brazil). All samples were identified by Dr. William G. R. Crampton and their collection was authorized by IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) permit 020/2005 (IBAMA Registration: 207419). The animals were deposited in the ichthyologic collection of Museu Paraense Emílio Goeldi (MPEG 22740, MPEG 22743, MPEG 27107, MPEG 27108, MPEG 27109) and in the ichthyologic collection of the Instituto de Desenvolvimento Sustentável Mamirauá (IDSMiectio000731, IDSMiectio000737, IDSMiectio000738, IDSMiectio000792). Eugenol was used to anesthetize the animals. Metaphase chromosomes were obtained following standard procedures (Bertollo et al., 1978) and were analyzed after sequential C-banding (Sumner, 1972) and classified according to Guerra (1986). Meiotic chromosomes were obtained following standard procedures (Gross et al., 2009).

Results

Males of Brachyhypopomus pinnicaudatus presented 2n = 41 (1m-sm/40st-a), and females had 2n = 42 (42st-a) (Figure 1A,C). Males and females Brachyhypopomus n. sp. FLAV showed 2n = 43 (1m-sm/42st-a) and 2n = 44 (44st-a), respectively (Figure 2A,C). The reduced diploid number in males and the chromosomes morphologies strongly suggest a fusion between an autosome and the Y chromosome giving origin to an X1X1X2X2/X1X2Y sex chromosome system. In B. pinnicaudatus, the Y chromosome is metacentric and the X1 and X2 chromosomes are acrocentric with similar sizes. On the other hand, in B. n. sp. FLAV, the Y chromosome is submetacentric and the X1 and X2 chromosomes are acrocentric with different sizes.

Discussion

Our data indicate sex-related differences in the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV. These differences result from the presence of a biarmed chromosome exclusively in the males’ karyotypes, which is part of a trivalent during meiosis. The fact that it shows chiasmatic and end-to-end associations suggests that a rearrangement involving a sex chromosome occurred. If the large chromosome had resulted from the rearrangement

Taxa	2n	SCS	References
Gymnotidae			
Gymnotus pantanal	39M/40F	X,X,X,X;X;X;Y	1
Hypopomidae			
Brachyhypopomus gauderio	41M/42F	X,X,X,X;X;X;Y	2, 3
Brachyhypopomus pinnicaudatus	41M/42F	X,X,X,X;X;X;Y	4
Brachyhypopomus n. sp. Flav	43M/44F	X,X,X,X;X;X;Y	4
Rhamphichthyidae			
Steatogenys elegans	50	ZZ/ZW	5
Sternopygidae			
Eigenmannia virescens	38	ZZ/ZW*	6, 7
Eigenmannia virescens	38	XX/XY	8
Eigenmannia sp. 2	31M/32F	X,X,X,X;X;X;Y	9

1. Silva and Margarido, 2005; 2. Almeida-Toledo et al., 2000b; 3. Mendes et al., 2012; 4. Present work; 5. Cardoso et al., 2011; 6. Almeida-Toledo et al., 2002; 7. Silva et al., 2009; 8. Almeida-Toledo et al., 2001; 9. Almeida-Toledo et al., 1984. *Different populations have the same type of sex chromosome system but with different mechanisms of origin. SCS + sex chromosome system. M: male. F: female.
between two autosomes, only chiasmatic associations would be present (Ueno and Takai, 2008). The association of these variations with the sex and the involvement of a pair of autosomes plus the sex chromosomes indicate that the two species have a $X_1X_1X_2X_2/X_1X_2Y$ sex chromosome system.

An $X_1X_1X_2X_2/X_1X_2Y$ system has also been previously identified in a population of $B.\ pinnicaudatus$ from

Figure 1 - Karyotypes of males (A, B) and females (C, D) of *Brachyhypopomus pinnicaudatus* after conventional staining (A, C) and C-banding (B, D).

Figure 2 - Karyotypes of males (A, B) and females (C, D) of *Brachyhypopomus* n. sp. FLAV after conventional staining (A, C) and C-banding (B, D).
the Tietê river (Almeida-Toledo et al., 2000b). This population was later identified as *B. gauderio* in a different report dealing with populations of *B. gauderio* from the upper Paraná river (Mendes et al., 2012). However, in a report describing this species, the distribution area of *B. gauderio* did not include the region where the population of the Tietê river was found (Giora and Malabarba, 2009). According to Campos-da-Paz (pers. comm.), this species was introduced into the upper part of the Paraná river (including the Tietê river) (Graça and Pavanelli, 2007). Furthermore, Crampton (pers. comm.) analyzed samples of several localities and confirmed that the population of the Tietê river (Almeida-Toledo et al., 2000B) is *B. gauderio* and that *B. pinnicaudatus* occurs only in the basins of the rivers of the Amazon and Guiana Shield, although *B. gauderio* is endemic to the Paraná-Paraguay system. Therefore, since the population from the Tietê river is not *B. pinnicaudatus* but *B. gauderio*, this is the first record of the X1X2Y sex chromosome system in *B. pinnicaudatus*, and also in *B. n. sp. FLAV*.

A review on the occurrence of X1X1X2X2/X1X2Y systems in fishes suggested that a fusion between an autosome and the ancestral Y was the major mechanism for its origin (Kitano and Peichel, 2012). The same mechanism may explain the origin of the multiple sex chromosome systems identified in *B. pinnicaudatus*, *B. n. sp. FLAV* and *B. gauderio* (Almeida-Toledo et al., 2000b; Mendes et al., 2012). In the ancestral karyotype with a simple XX/XY sex chromosome system, the X and Y chromosomes were morphologically undifferentiated (but likely divergent in genetic content) and paired only through the pseudoautosomal region (PAR) during meiosis I. A centric fusion between the Y chromosome and an acrocentric autosome would have originated the X1X1X2X2/X1X2Y system (Figure 4A), resulting in a meiotic trivalent involving the sex chromosomes and with two types of association: chiasmatic between X2-Yq and end-to-end in the X1-Yp PAR region (Figure 3 and 4B). The regions involved in the chiasmatic association are undifferentiated or poorly differentiated, similar to those found in autosomal bivalents (Figure 3). This suggests a recent origin for these multiple sex chromosome systems, differently from those that only present the end-to-end association, which would be more differentiated (Suzuki et al., 1988).

A similar system was found in the spider *M. ferruginea*, in which an X1X2X3X4X5Y system arose through a rearrangement between the homomorphic sex chromosome pair and an autosome. The constitutive heterochromatin pattern of the original sex chromosomes did not differ from those of autosomes and the multiple X chromosomes were generated by non-disjunctions of the sex pair. The structural differentiation of the newly formed X chromosomes was facilitated by their heterochromatinization, observed in the sex chromosomes bivalents during prophase I of females (Král, 2007).

The occurrence of X1X1X2X2/X1X2Y systems in three species of the same genus suggests a common origin. However, whereas in *B. pinnicaudatus* and *B. gauderio* the neo-Y is metacentric and the X1 and X2 are acrocentric of similar size, in *B. n. sp. FLAV*, the neo-Y is submetacentric and the X1 and X2 are acrocentric of different sizes (Figure 5). Moreover, meiotic chromosome pairing allowed us to
conclude that in *B. n. sp. FLAV*, the X_1 is smaller than X_2 because the neo-Y has a chiasmatic association with the larger X chromosome and only an end-to-end association with the smaller X. Meiotic chromosome pairing also confirmed that the X_1 and X_2 have similar sizes in *B. gauderio*. These findings suggest that the ancestral sex chromosomes (XY) and the autosomes that evolved to form the $X_1X_2YX_1X_2Y$ systems in *Brachyhypopomus* had a similar size. On the other hand, the sex chromosome system of *B. n. sp. FLAV* likely had an independent origin. Other differences in the karyotype of this species (2n and KF) result from an event of fusion/fission involving autosomes. This may suggest that this species is less related with *B. pinnicaudatus* and *B. gauderio* than these two are between themselves, which may reinforce the hypothesis of an independent origin for the *B. n. sp. FLAV* sex chromosome system. Independent origins of sex chromosome systems in related species are well documented in fish (Devlin and Nagahama, 2002). In Gymnotiformes, several kinds of systems have been registered, and their disagreement with the phylogeny is consistent with this pattern (Silva and Margarido, 2005; Henning et al., 2010). Despite the present evidence for the independent origins of $X_1X_2X_1X_2Y$ systems in *Brachyhypopomus*, we cannot discard the possibility of a common origin followed by alternative processes of differentiation.

It is important to point out that the emergence of $X_1X_2X_1X_2Y$ systems in Gymnotiformes is more recurrent than that of other types of systems (Table 1). This suggests an advantage in the fusion between the primitive Y and an autosome. Theoretical models suggest that sex chromosomes evolve by suppression of recombination in regions that harbor sexually antagonistic genes (genes with alleles that confer differential fitness in males and females) tightly linked to the sex determination locus, and that this sexual antagonism may be the driving force behind this process (Charlesworth et al., 2005; van Doorn and Kirkpatrick, 2007; Kikuchi and Hamaguchi, 2013). In protosimple sex systems (XY, ZW), inversions play an important role in the suppression of recombination and chromosome differentiation (Charlesworth et al., 2005). On the other hand, when the sexually antagonistic gene is unlinked to the sex chromosomes, other mechanisms such as translocations or fusions involving an autosome and the sex chromosomes may create a linkage between them (multiple sex chromosome systems) and suppress crossing-over in the regions around the breakpoint in heterozygous (Charlesworth et al., 2005; Kitano and Peichel, 2012). Moreover, in this last situation, the generation of neo-sex chromosomes as a neo-Y may avoid the degeneration of the ancestral Y caused by the suppression of recombination that promotes the accumulation of deleterious mutations and the expansion of the non-recombining segment, which may cause haploinsufficiency (Volff et al., 2007; Blaser et al., 2012; Livernois et al., 2012). The recurrent emergence of the $X_1X_2X_1X_2Y$ sex chromosome system may represent events of sex chromosomes turnover that are driven by the process explained above. Future analyses aiming to detect possible closely related species with different sex chromosome systems and to understand the relationship between these systems may help to elucidate this question.
Acknowledgments

Most of this research was supported by FAPESP (Fundação Amazônia Paraense de Amparo à Pesquisa) through the National Excellence on Research Program (PRONEX, TO 011/2008) coordinated by JCP. Other funding and supports sources included UFPA, CNPq and CAPES. This study is part of the Master dissertation of ALC who was a recipient of a CAPES Master Scholarship. CYN (306398/2009-3) and JCP (307071/2009-0) are grateful to CNPq for Productivity Grants. We thank the IDSM (Instituto de Desenvolvimento Sustentável Mamirauá) for logistic support to collect samples; to Jonas Alves de Oliveira (IDSM) for help in collecting samples and in taxonomic identification, and to Dr. William G. R. Crampton for the taxonomic identification of the samples. Collections were authorized by IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) permit 020/2005 (IBAMA Registration: 207419).

References

Almeida-Toledo LF, Foresti F and Toledo-Filho SA (1984) Complex sex chromosome system in Eigenmannia sp. (Pisces, Gymnotiformes). Genetica 64:165-169.

Almeida-Toledo LF, Foresti F, Daniel MF and Toledo-Filho SA (1993) Nucleolar chromosome variants in Sternopygus macrurus (Pisces, Sternopygidae) from three Brazilian river basins. Caryologia 46:53-61.

Almeida-Toledo LF, Daniel-Silva MFZ, Lopes CE and Toledo-Filho SA (2000a) Sex chromosome evolution in fish: The formation of the neo-Y chromosome in Eigenmannia (Gymnotiformes). Chromosoma 109:197-200.

Almeida-Toledo LF, Daniel-Silva MFZ, Lopes CE and Toledo-Filho SA (2000b) Sex chromosome evolution in fish II. Second occurrence of an X;X;Y sex chromosome system in Gymnotiformes. Chromosome Res 8:335-340.

Almeida-Toledo LF, Foresti F, Pêquignot EV and Daniel-Silva MFZ (2001) XX:XY sex chromosome system with X heterochromatinization: An early station of sex chromosome differentiation in the Neotropic electric eel Eigenmannia virensens. Cytogenet Cell Genet 95:73-78.

Almeida-Toledo LF, Daniel-Silva MFZ, Moysés CB, Fonteles SBA, Lopes CE, Akama A and Foresti F (2002) Sex chromosome evolution in fish: Sex chromosome variability in Eigenmannia virensens (Gymnotiformes, Sternopygidae). Cytogenet Genome Res 99:164-169.

Bertolino LAC, Takahashi CS and Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias lacerae (Pisces, Erythrinidae). Braz J Genet 2:103-120.

Blaser O, Grossen C, Neuenkshander S and Perrin N (2012) Sex-chromosome turnovers induced by deleterious mutation load. Evolution 67:635-645.

Cardoso AL, Pieczarka JC, Feldberg E, Milhomem SSR, Moreira-Almeida T, Silva DS, Silva PSC and Nagamachi CY (2011) Chromosomal characterization of two species of genus Steatogenys (Gymnotiformes, Rhampichthyoides, Steatogenini) from the Amazon basin: Sex chromosomes and correlations with Gymnotiformes phylogeny. Rev Fish Biol Fisher 21:613-621.

Charlesworth D, Charlesworth B and Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118-128.

Crampton WGR (2011) An ecological perspective on diversity and distributions. In: Albert JS and Reis RE (eds) Historical Biogeography of Neotropical Freshwater Fishes, University of California Press, Berkeley, pp 165-189.

Devlin RH and Nagahama Y (2002) Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 208:191-364.

Ezaz T, Stigle R, Veeyruses F and Graves JAM (2006) Relationships between vertebrate ZW and XY sex chromosome systems. Curr Biol 16:736-743.

Fernandes-Matioli FMC, Marchetto MCN, Almeida-Toledo LF and Toledo-Filho SA (1998) High interspecific karyological conservation in four species of Gymnotus (Pisces, Gymnotiformes) from Southeastern Brazilian basins. Caryologia 51:221-234.

Fernandes FMC, Albert JS, Daniel-Silva MF, Lopes CE, Crampton WGR and Almeida-Toledo LF (2005) A new Gymnotus (Teleostei, Gymnotiformes, Gymnotidae) from the Pantanal Matogrossense of Brazil and adjacent drainages: Continued documentation of a cryptic fauna. Zootaxa 933:1-14.

Fonteles SBA, Lopes CE, Akama A, Fernandes FMC, Porto-Foresti F, Senhorini JA, Daniel MF, Foresti F and Almeida-Toledo LF (2008). Cytogenetic characterization of the strongly electric Amazonian eel, Electrophorus electricus (Teleostei, Gymnotiformes), from the Brazilian rivers Amazon and Araguaia. Genet Mol Biol 31:227-230.

Giora J and Malabarba LR (2009) Brachyhippopomus gauderio, new species, a new example of underestimated species diversity of electric fishes in the southern South America (Gymnotiforme, Hypopomidae). Zootaxa 2093:60-68.

Graça WJ and Pavanelli CS (2007) Peixes da Planicie de Inundação do Alto Rio Paraná e Áreas Adjacentes. Universidade Federal do Paraná, Maringá, 241 pp.

Gross MC, Feldberg E, Cell a D, Schneider MC, Schneider CH, Porto JIR and Martins C (2009) Intriguing evidence of translocations in Discus fish (Symphysodon, Cichlidae) and a report of the largest meiotic chromosomal chain observed in vertebrates. Heredity 102:435-441.

Guerra MS (1986) Reviewing the chromosome nomenclature of Levan et al. Braz J Genet 9:741-743.

Henning F, Trifonov V, Ferguson-Smith MA and Almeida-Toledo LF (2008) Non-homologous sex chromosomes in two species of the genus Eigenmannia (Teleostei, Gymnotiformes). Cytogenet Genome Res 121:55-58.

Henning F, Moysés CB, Calcagnotto D, Meyer A and Almeida-Toledo LF (2010) Independent fusions and recent origins of sex chromosome in the evolution and diversification of glass knifefishes (Eigenmannia). Heredity 106:391-400.

Kikuchi K, Hamaguchi S (2013) Novel sex-determining genes in fish and sex chromosome evolution. Developmental Dynamics 242:339-353.

Kitano J and Peichel CL (2012) Turnover of sex chromosomes and speciation in fishes. Environ Biol Fishes 94:549-558.

Král J (2007) Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae, Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Research 15:863-879.
Livernois AM, Graves JAM and Waters PD (2012) The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 108:50-58.

Mendes V, Portela-Castro A and Júlio-Júnior H (2012) First record of supernumerary (B) chromosomes in electric fish (Gymnotiformes) and the karyotype structure of three species of the same of the same order from the upper Paraná River basin. Comp Cytogen 6:1-16.

Milhomem SSR, Pieczarka JC, Crampton WGR, Souza ACP, Carvalho-Jr JR and Nagamachi CY (2007) Differences in karyotype between two sympatric species of Gymnotus (Gymnotiformes, Gymnotidae) from the eastern Amazon of Brazil. Zootaxa 1397:55-62.

Milhomem SSR, Pieczarka JC, Crampton WGR, Silva DS, Souza ACP, Carvalho-Jr JR and Nagamachi CY (2008) Chromosomal evidence of a cryptic species in the Gymnotus carapo species-complex (Gymnotiformes-Gymnotidae). BMC Genet 9:75.

Milhomem SSR, Crampton WGR, Pieczarka JC, Silva DS, Cardoso AL, Silva PC, Oliveira JA and Nagamachi CY. (2012a) Chromosomal and electric signal variation among three sympatric electric knifefish species (Gymnotus, Gymnotidae) from the Central Amazon Floodplain. Rev Fish Biol Fisher 22:485-497.

Milhomem SSR, Crampton WGR, Pieczarka JC, Silva DS and Nagamachi CY (2012b) Gymnotus capanema, a new species of electric knife fish (Gymnotidae-Gymnotiformes) form eastern Amazonia, with comments on an unusual karyotype. J Fish Biol 80:802-815.

Scacchetti PC, Pansonato-Alves JC, Utsunomia R, Oliveira C and Foresti F (2011) Karyotypic diversity in four species of the genus Gymnotus Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae): Physical mapping of ribosomal genes and telomeric sequences. Comp Cytogenet 5:223-235.

Silva EB and Margarido VP (2005) An X1X1X2X2/X1X2Y multiple sex chromosome system in a new species of the genus Gymnotus (Pisces, Gymnotiformes). Environ Biol Fishes 73:293-297.

Silva DS, Milhomem SSR, Pieczarka JC and Nagamachi CY (2009) Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus. BMC Genet 10:74.

Silva PC, Nagamachi CY, Silva DS, Milhomem SSR, Cardoso AL and Pieczarka JC (2013) Karyotypic similarities between two species of Rhamphichthys (Rhamphichthyidae, Gymnotiformes) from the Amazon basin. Comp Cytogenet 7:279-291.

Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306.

Suzuki A, Taki Y, Takeda M and Akatsu S (1988) Multiple sex chromosome in a Monodactilyd fish. Jpn J Ichthyol 35:98-101.

Ueno K and Takai A (2008) Multiple sex chromosome system of X1X1X2X2/X1X2Y type in lutjanid fish, Lutjanus quinquefasciatus (Perciformes). Genetica 132:35-41.

van Doorn GS and Kirkpatrick M (2007) Turnover of sex chromosome induced by sexual conflict. Nature 449:909-912.

Volff JN, Nanda I, Schmid M and Schartl M (2007) Governing sex determination in fish: Regulatory putsches and ephemeral dictators. Sex Dev 1:85-99.

White MJD (1973) Animal Cytology and Evolution. Cambridge University Press, Cambridge, 961 pp.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.