MIXED RAY TRANSFORM ON SIMPLE 2-DIMENSIONAL RIEMANNIAN MANIFOLDS

MAARTEN V. DE HOOP, TEEMU SAKSALA, AND JIAN ZHAI

Abstract. We characterize the kernel of the mixed ray transform on simple 2-dimensional Riemannian manifolds, that is, on simple surfaces for tensors of any order.

1. Introduction

We provide a characterization of the kernel of the mixed ray transform on simple 2-dimensional Riemannian manifolds for tensors of any order. The key application pertains to elastic qS-wave tomography \cite{3} in weakly anisotropic media.

We let (M,g) be a smooth, compact, connected 2-dimensional Riemannian manifold with smooth boundary ∂M. We assume that (M,g) is simple, that is, ∂M is strictly convex with respect to g and $\exp_p:\exp^{-1}(M)\to M$ is a diffeomorphism for every $p\in M$. We let $SM=\{(x,v)\in TM;\|v\|_g=1\}$ be the unit sphere bundle. We use the notation ν for the outer unit normal vector field to ∂M. We write $\partial in(SM)=\{(x,v)\in SM;x\in \partial M,(v,\nu)_g\leq 0\}$ for the vector bundle of inward pointing unit vectors on ∂M. For $(x,v)\in SM$, $\gamma_{x,v}(t)$ is the geodesic starting from x in direction v, and $\tau(x,v)$ is the time when $\tau_{x,v}$ exits M. Since (M,g) is simple $\tau(x,v)<\infty$ for all $(x,v)\in \partial in(SM)$ and the exit time function τ is smooth in $\partial in(SM)$ \cite[Section 4.1]{15}.

We use the notation S^kM, $k\in \mathbb{N}$, for the space of smooth symmetric tensor fields on M. We also use the notation $S^kM\times S^\ell M$, $k,\ell \geq 1$ for the space of smooth tensor fields that are symmetric with respect to first k and last ℓ variables. The mixed ray transform $L_{k,\ell}$ of a tensor field $f\in S^kM\times S^\ell M$ is given by the formula

\begin{equation}
L_{k,\ell}f(x,v) = \int_0^{\tau(x,v)} f_{i_1,\ldots,i_kj_1,\ldots,j_\ell}(\gamma(t))\dot{\gamma}(t)^{i_1}\cdots\dot{\gamma}(t)^{i_k}\eta(t)^{j_1}\cdots\eta(t)^{j_\ell}dt, (x,v)\in \partial in(SM), \gamma' = \gamma_{x,v},
\end{equation}

where we used the summation convention, while $\eta(t)$ is some unit length vector field on γ that is parallel and perpendicular to $\dot{\gamma}(t)$ and depends smoothly on $(x,v)\in \partial in(SM)$. We note that the definition of the mixed ray transform is different in higher dimensions, due to the freedom in the choice of η (See \cite[Section 7.2]{15}). We consider the choice of $\eta(t)$ and the mapping properties of $L_{k,\ell}$ in dimension 2.

We define two linear operators the images of which are contained in the kernel of $L_{k,\ell}$. For a $(k\times \ell)$-tensor, $f_{i_1,\ldots,i_kj_1,\ldots,j_\ell}$, we introduce the symmetrization operator as

\begin{equation}
(Sym(i_1,\ldots,i_k)f)_{i_1,\ldots,i_kj_1,\ldots,j_\ell} := \frac{1}{k!}\sum_\sigma f_{i_{\sigma(1)},\ldots,i_{\sigma(k)}j_1,\ldots,j_\ell},
\end{equation}

where σ runs over all permutations of $(1,2,\cdots,k)$. This operator symmetrizes f with respect to the first k indices. We define the symmetrization operator $Sym(j_1,\ldots,j_\ell)$, for the last ℓ indices analogously.

Date: August 7, 2018.
We introduce a first operator λ the image of which is contained in the kernel of $L_{k,\ell}$. The operator $\lambda : S^{k-1}M \times S^{\ell-1}M \to S^{k}M \times S^{\ell}M$ is defined by

\begin{equation}
(\lambda w)_{i_1, \ldots, i_k, j_1, \ldots, j_\ell} := \text{Sym}(i_1, \ldots, i_k)\text{Sym}(j_1, \ldots, j_\ell)(g_{i_1 j_1}w_{i_2 \ldots, i_k j_2 \ldots j_\ell}).
\end{equation}

Using (2) and (3) it is straightforward to verify that

\begin{equation}
(\lambda w)_{i_1, \ldots, i_k, j_1, \ldots, j_\ell} v^{i_1} \cdots v^{ik}(v^\perp)^{j_1} \cdots (v^\perp)^{j_\ell} = 0, \quad v \in TM,
\end{equation}

where v^\perp is any vector orthogonal to v. Therefore (4) implies that

$$\text{Im}(\lambda) \subset \ker(L_{k,\ell}).$$

We use the notation $u_{i_1, \ldots, i_k; \ell}$, for the ($h$) component functions of the covariant derivative ∇u of the tensor field u. We define the second operator, d' say, by the formula,

\begin{equation}
d' : S^{k-1}M \times S^{\ell}M \to S^{k}M \times S^{\ell}M, \quad (d'u)_{i_1, \ldots, i_k, j_1, \ldots, j_\ell} := \text{Sym}(i_1, \ldots, i_k)u_{i_2 \ldots, i_k j_1 \ldots j_\ell}.
\end{equation}

Then the following holds for any $u \in S^{k-1}M \times S^{\ell}M$,

\begin{equation}
\frac{d}{dt} \left(u_{i_1, \ldots, i_k-1, j_1, \ldots, j_\ell}(\gamma(t))\dot{\gamma}(t)^i_1 \cdots \dot{\gamma}(t)^i_k-1 \eta(t)^i_\ell \cdots \eta(t)^i_\ell \right) = (d'u)_{i_1, \ldots, i_k, j_1, \ldots, j_\ell}(\gamma(t))\ddot{\gamma}(t)i_1 \cdots \dot{\gamma}(t)^i_k \eta(t)^i_\ell \cdots \eta(t)^i_\ell.
\end{equation}

If $u|_{\partial M} = 0$, then $L_{k,\ell}(d'u) = 0$ by the fundamental theorem of calculus. Thus

$$\{d'u : u \in S^{k-1}M \times S^{\ell}M, u|_{\partial M} = 0\} \subset \ker(L_{k,\ell}).$$

Our main result shows that the kernel of $L_{k,\ell}$ is spanned by the images of these two linear operators.

Theorem 1. Let (M, g) be a simple 2-dimensional Riemannian manifold. Let $f \in S^{k}M \times S^{\ell}M$, $k, \ell \geq 1$. Then

$$L_{k,\ell}f(x, v) = 0, \quad (x, v) \in \partial_n(SM)$$

if and only if

$$f = d'u + \lambda w, \quad u \in S^{k-1}M \times S^{\ell}M, \quad u|_{\partial M} = 0, \quad w \in S^{k-1}M \times S^{\ell-1}M.$$

The key observation needed to prove this theorem is that the mixed ray transform and the geodesic ray transform can be transformed to one another, for arbitrary $k, \ell \geq 1$, if (M, g) is a 2-dimensional simple Riemannian manifold. A similar observation has already been obtained for the transverse ray transform by Sharafutdinov [15, Chapter 5]. The work by Paternain, Salo and Uhlmann [9] proved the s-injectivity of the geodesic ray transform on simple manifolds in dimension 2. In Theorem 1 we characterize the kernel of $L_{k,\ell}$ using their results.

2. Relation with elastic qS-wave tomography

We describe a mixed ray transform arising from elastic wave tomography. We follow the presentation in [15, Chapter 7], wherein one can find more details. Let (x^1, x^2) be any curvilinear coordinate system in \mathbb{R}^2, where the Euclidean metric is

$$ds^2 = g_{jk} dx^j dx^k.$$

The elastic wave equations

\begin{equation}
\rho \frac{\partial^2 u_j}{\partial t^2} = \sigma_{jk}^{l} := \sigma_{jk; l}g^{kl}
\end{equation}
describes the waves traveling in a two-dimensional elastic body $M \subset \mathbb{R}^2$. Here $u(x, t) = (u^1, u^2)$ is the displacement vector. The strain tensor is given by

$$
\varepsilon_{jk} = \frac{1}{2} (u_{j;k} + u_{k;j}),
$$

while the stress tensor is

$$
\sigma_{jk} = C_{jklm} \varepsilon^{lm},
$$

where $C(x) = (C_{jklm})$ is the elastic tensor and $\rho(x)$ is the density of mass. Here ε^{lm} is obtained by raising indices with respect to the metric g_{jk}. The elastic tensor has the following symmetry properties

$$
(C_{jklm} = C_{kjlm} = C_{lmjk}).
$$

We assume that the elastic tensor is weakly anisotropic, that is, it can be represented as

$$
C_{jklm} = \lambda g_{jk} g_{lm} + \mu (g_{jl} g_{km} + g_{jm} g_{kl}) + \delta c_{jklm},
$$

where λ and μ are positive functions called the Lamé parameters, and $c = (c_{jklm})$ is an anisotropic perturbation. Here, δ is a small positive real number. We note here that $c = 0$ corresponds to an isotropic medium.

We construct geometric optics solutions to system (7) using the parameter $\omega = \omega_0 / \delta$,

$$
\begin{align*}
 u_j &= e^{i \omega \iota} \sum_{m=0}^{\infty} \frac{u^{(m)}_{j}}{(i \omega)^{m}}, \\
 \varepsilon_{jk} &= e^{i \omega \iota} \sum_{m=-1}^{\infty} \frac{\varepsilon^{(m)}_{jk}}{(i \omega)^{m}}, \\
 \sigma_{jk} &= e^{i \omega \iota} \sum_{m=-1}^{\infty} \frac{\sigma^{(m)}_{jk}}{(i \omega)^{m}},
\end{align*}
$$

where $\iota(x)$ is a real function.

We substitute the above solutions into equation (7), assume $u^{(-1)} = \varepsilon^{(-2)} = \sigma^{(-2)} = 0$ and equate the terms of the order -2 and -1 respectively in ω, to obtain

$$
(\lambda + \mu) \langle u^{(0)}, \nabla \iota \rangle_g \nabla \iota + (\mu \| \nabla \iota \|_g^2 - \rho) u^{(0)} = 0.
$$

If we take

$$
\| \nabla \iota \|_g^2 = \frac{\rho}{\mu},
$$

then

$$
\langle u^{(0)}, \nabla \iota \rangle_g = 0.
$$

The solutions $u^{(0)}_j$ represent shear waves (S-waves), and the displacement vector $u^{(0)}$ is orthogonal to $\nabla \iota$. We denote $n_s = \rho / \mu$ and $v_s = 1 / n_s$. The characteristics of the eikonal equation (9) are geodesics of the Riemannian metric $n_s^2 ds^2 = n_s^2 g_{jk} dx^j dx^k$.

We choose a geodesic γ of metric $n_s^2 ds^2$ and apply the change of variables,

$$
u^{(0)}_j = A_s n_s^{-1} \zeta_j,$$

where

$$A_s = \frac{C}{\sqrt{J \rho v_s}}, \quad J^2 = n_s^2 \det(g_{jk}), \quad C \text{ is a constant}.$$

Then it is shown in [15], Section 7.1.5, that ζ satisfies the following Rylov's law

$$
\left(\frac{D \zeta}{dt} \right)_j = -i \frac{1}{\rho v_s^6} (\delta_j^q - \hat{\zeta}_j \hat{\zeta}_q) \omega_0 c_{qklm} \hat{\zeta}^k \hat{\zeta}^m \zeta^l,
$$
where \(\frac{D}{\gamma} \) is the covariant derivative along \(\gamma \). We note that \(c_{\gamma \gamma^k \gamma^m} \) is quadratic in \(\gamma \), and symmetric in \(k,m \), so the solution \(\zeta \) of (10) depends only on the symmetrization

\[
 f_{jklm} = -i \frac{1}{4\rho \nu_k} (c_{jklm} + c_{jmlk}).
\]

We assume that for every unit speed geodesic \(\gamma : [a, b] \to M \) (in Riemannian manifold \((M, n_s^2 ds^2) \)) with endpoints in \(\partial M \), the value \(\zeta(b) \) of a solution to equation (10) is known as \(\zeta(b) = U(\gamma)\zeta(a) \), where \(U(\gamma) \) is the solution operator of (10) and \(\eta(a) \) is the initial value. We formulate an inverse problem.

Inverse Problem 1. Determine tensor field \(f \) from \(U(\gamma) \).

We linearize this problem as in [15, Chapter 5]. Take a unit vector \(\xi(t) \perp \dot{\gamma}(t) \), which is also parallel along \(\gamma \). Then \(\xi_1(t) = \xi(t) \) and \(\xi_2(t) = \dot{\gamma}(t) \) form an orthonormal frame along \(\gamma \). In this basis, equation (10) is

\[
 \dot{\zeta}_1 = -i \frac{1}{\rho \nu_\gamma} \omega_0 \hat{c}_{111m} \dot{\gamma}^{[l} \hat{\gamma}^{m]} \zeta_1^l, \quad \dot{\zeta}_2 = 0.
\]

We denote \(F(t) = -i \frac{1}{\rho \nu_\gamma} \omega_0 \hat{c}_{111m}(\gamma(t)) \dot{\gamma}^{[l}(t) \dot{\gamma}^{m]}(t) \). Since (11) is a separable first order ordinary differential equation, its solution is

\[
 \zeta_1(b) = e^{\int_a^b F(t) dt} \zeta_1(a).
\]

We take the first-order Taylor expansion of the right-hand side of the equation above to obtain

\[
 \zeta_1(b) - \zeta_1(a) \sim \int_a^b F(t) \zeta_1^1(a) dt.
\]

Multiplying this equation by \(\eta^1(a) \), we get

\[
 (\zeta_1(b) - \zeta_1(a)) \eta_1^1(a) \sim \int_a^b F(t) \zeta_1^1(a) \eta_1^1(a) dt = \int_a^b \omega_0 f_{111m}(\gamma(t)) \zeta_1^1(a) \zeta_1^1(a) \eta_1^1(t) \dot{\gamma}^m(t) dt.
\]

We denote the vector field \(\eta(t) = \zeta_1^1(a) \xi_1(t), \zeta_2^1(a) = 0 \), and observe that it is parallel along \(\gamma \) and perpendicular to \(\dot{\gamma}(t) \). The right-hand side of (12) then takes the form

\[
 \int_a^b \omega_0 f_{111m}(\gamma(t)) \eta_1^1(t) \eta_1^1(t) \dot{\gamma}^l(t) \dot{\gamma}^m(t) dt,
\]

We arrive at the inverse problem.

Inverse Problem 2. Determine the tensor field \(f \) from

\[
 L_{2,2}(f) = \int_a^b f_{jklm}(\gamma(t)) \eta_1^j(t) \eta_1^k(t) \dot{\gamma}^l(t) \dot{\gamma}^m(t) dt
\]

for all \(\gamma \) and \(\eta \perp \gamma \), where \(\eta \) is parallel along \(\gamma \).

Remark 1. The tensor field \(f \) possesses the same symmetry properties \(S \) as \(C \). Therefore \(f \in S^2 M \times S^2 M \). Since

\[
 L_{2,2}(f + du + \lambda w) = L_{2,2}(f), \quad \text{for any } u \in S^1 M \times S^2 M, \ w \in S^1 M \times S^1 M,
\]

we can only recover the tensor \(f \) up to the kernel of \(L_{2,2} \). Thus the Inverse Problem \(2 \) is a special case of Theorem \(3 \).
3. Context and previous work

We note that if \(\ell = 0 \) in \([11]\), the operator \(L_{k,0} \) is the geodesic ray transform \(I_k \) for a symmetric \(k \)-tensor \(f \). It is well known that \(\text{Sym}(i_1, \ldots, i_k)\nabla u \) is in the kernel of \(I_k \), where \(u \) is a symmetric \((k-1) \)-tensor with \(u|_{\partial \Omega} = 0 \). If \(I_k f = 0 \) implies \(f = \text{Sym}(i_1, \ldots, i_k)\nabla u \), we say \(I_k \) is s-injective.

When \((M, g)\) is a 2-dimensional simple manifold, Paternain, Salo and Uhlmann \([9]\) proved the s-injectivity of \(I_k \) for arbitrary \(k \). The standard way to prove s-injectivity of \(I_0 \) and \(I_1 \) is to use an energy identity known as the Pestov identity. If \(k \geq 2 \) this identity alone is not sufficient to prove the s-injectivity. The special case \(k = 2 \) was proved earlier \([14]\) using the proof for boundary rigidity \([13]\).

In dimension three or higher, it has been proved that \(I_0 \) is injective \([6, 7]\), and \(I_1 \) is s-injective \([2]\). The s-injectivity of \(I_k \) for \(k \geq 2 \) is still open for simple Riemannian manifolds. Under certain curvature conditions, the s-injectivity of \(I_k \), \(k \geq 2 \) has been proved in \([4, 11, 12, 15]\). Without any curvature condition, it has been proved that \(I_2 \) has a finite-dimensional kernel \([16]\). If \(g \) is in a certain open and dense subset of simple metrics in \(C^r, r \gg 1 \), containing analytic metrics, the s-injectivity is proved by analytic microlocal analysis for \(k = 2 \) \([17]\). Under a different assumption that \(M \) can be foliated by strictly convex hypersurfaces, the s-injectivity has been established for \(m = 0 \) \([20]\), and \(m = 1, 2 \) \([18]\).

The mixed ray transform \((\ell \neq 0, k \neq 0)\) is not studied as extensively as the geodesic ray transform. In dimension two or higher, a result similar to Theorem \([11]\) has been obtained under a restrictive curvature condition \([15]\).

When \(k = 0 \), \(L_{0,\ell} \) is called the transverse ray transform, also denoted by \(J_\ell \). For \(J_\ell \), the situations are quite different for dimension two and higher dimensions. In dimension three or higher, \(J_\ell \) is injective for \(\ell < \dim M \) under certain curvature conditions \([15]\). However, \(J_\ell \) has a nontrivial kernel in dimension 2. This problem is related to polarization tomography, for which some results are given under different conditions \([5, 8, 10]\).

4. Proof of Theorem \([11]\)

Since \((M, g)\) is a 2-dimensional simple Riemannian manifold, there exists a diffeomorphism \(\phi \) from \(M \) onto a closed unit disc \(\mathbb{B} \) of \(\mathbb{R}^2 \). If \(g' \) is the pullback of metric \(g \) under \(\phi^{-1} \) on \(\mathbb{B} \) then \(g' \) is conformally Euclidean, meaning that there exists a change of coordinates after which \(g' = he \), where \(h \) is some positive function and \(e \) is the Euclidean metric; this was shown in \([11]\) Theorem 4] and \([19]\) Proposition 1.3. Therefore there exists global isothermal coordinates \((x_1, x_2)\) on \(M \), so that the metric \(g \) can be written as \(e^{2\alpha(x)}(dx_1^2 + dx_2^2) \) where \(\alpha(x) \) is a smooth real-valued function of \(x \).

The global isothermal coordinate structure makes it possible to define a smooth rotation,

\[
\sigma : TM \to TM, \quad \sigma(v) := (v_2, -v_1),
\]

where \(v = (v_1, v_2) \) in these coordinates. This map satisfies

\[
v \perp \sigma(v) \quad \text{and} \quad \|v\|_g = \|\sigma(v)\|_g.
\]

Moreover, there exists a linear map

\[
(\Phi f)(x, v) := f_{i_1\ldots i_k j_1\ldots j_l}(x) v^{i_1} \ldots v^{i_k} \sigma(v)^{j_1} \ldots \sigma(v)^{j_l}.
\]

Thus each tensor field \(f \in S^k M \times S^l M \) is related to a smooth function on \(SM \) via \([14]\). We note that \(\Phi \) is not one-to-one since \(\Phi(\lambda w) = 0 \) for any \(w \in S^{k-1} M \times S^{l-1} M \), where \(\lambda \) is as in \([3]\). We have the following
Lemma 1. For any $f \in S^k M \times S^\ell M$ it holds that

$$L_{k,\ell} f(x, v) = \int_0^{\tau(x,v)} (\Phi f)(\gamma_{x,v}(t), \dot{\gamma}_{x,v}(t)) dt, \quad (x, v) \in \partial_M(SM)$$

and

$$L_{k,\ell} : S^k M \times S^\ell M \to C^\infty(\partial_M SM),$$

if we assume that

$$\eta(0) = \sigma(v), \quad (x, v) \in \partial_M(SM).$$

Proof. Let $(x, v) \in \partial_M(SM)$. We define $\eta = \sigma(v)$. Let $P_t(\eta)$ be the parallel transport of η from $T_x M$ to $T_{\gamma_{x,v}(t)} M$, $t \in [0, \tau(x,v)]$. By the property of parallel translation, $P_t : T_x M \to T_{\gamma_{x,v}(t)} M$ is an isometry, whence $\|P_t\eta\|_g = 1$ and $\langle P_t\eta, \dot{\gamma}(t) \rangle_g = 0$. Since M is 2-dimensional, the continuity of $P_t\eta$ in t with \([13]\) imply

$$P_t\eta = \sigma(\dot{\gamma}_{x,v}(t)).$$

Because the functions Φf and τ are smooth in $\partial_M(SM)$, the function $L_{k,\ell}(f)$ is smooth in $\partial_M(SM)$ due to \([15]\). \hfill \Box

Let $f \in S^k M \times S^\ell M$. Simplifying the notation, from here on we do not distinguish tensor f from function $\Phi(f)$. We notice first that

$$f(x, v) = (-1)^{\ell-N(j_1, \ldots, j_\ell)} f_{i_1, \ldots, i_k j_1, \ldots, j_\ell}(x) v^{i_1} \cdots v^{i_k} v_1^{\ell-N(j_1, \ldots, j_\ell)} v_2^{N(j_1, \ldots, j_\ell)}, \quad (x, v) \in SM,$$

where $N(j_1, \ldots, j_\ell)$ is the number of 1s in (j_1, \ldots, j_ℓ). We let δ be the map that maps 1s in (j_1, \ldots, j_ℓ) to 2s and vice versa. We denote by $\delta(j_1, \ldots, j_\ell)$ the ℓ-tuple obtained from applying δ to (j_1, \ldots, j_ℓ). Then we define a linear operator

$$A : S^k M \times S^\ell M \to S^k M \times S^\ell M, \quad (Af)_{i_1, \ldots, i_k j_1, \ldots, j_\ell} = (-1)^{\ell-N(j_1, \ldots, j_\ell)} f_{i_1, \ldots, i_k \delta(j_1, \ldots, j_\ell)}.$$

We note that if $\ell = 1$, then A and the Hodge star operator coincide. Formula \([17]\) implies that A is invertible with the following inverse

$$A^{-1} = (-1)^\ell A.$$

We then point out that

$$\quad (Af)_{i_1, \ldots, i_k j_1, \ldots, j_\ell}(x) v^{i_1} \cdots v^{i_k} v^{j_1} \cdots v^{j_\ell} = (\text{Sym} Af)_{i_1, \ldots, i_k j_1, \ldots, j_\ell}(x) v^{i_1} \cdots v^{i_k} v^{j_1} \cdots v^{j_\ell}.$$

The notation Symh stands for the full symmetrization of the tensor field h.

Using equations \([16]\), \([17]\) and \([19]\), we find that

$$L_{k,\ell}(f) = I_{k+\ell}(\text{Sym}(Af)),$$

where $I_{k+\ell}$ is the geodesic ray transform on symmetric tensor field $h \in S^{k+\ell}M$, defined by the formula

$$I_{k+\ell}(h)(x, v) = \int_0^{\tau(x,v)} h_{i_1, \ldots, i_{k+\ell}}(\gamma_{x,v}(t), \dot{\gamma}_{x,v}(t)) \gamma_{x,v}(t)^{i_1} \cdots \gamma_{x,v}(t)^{i_{k+\ell}} dt, \quad (x, v) \in \partial_M(SM).$$

By \([20]\) and \([9, \text{Theorem 1.1}]\) it holds that for any $h \in S^k M \times S^\ell M,$

$$L_{k,\ell}(h) = 0 \text{ if and only if } \text{Sym} Ah = d^s v, \quad v \in S^{k+\ell-1} M, \quad v|_{\partial M} = 0.$$

In the above, d^s stands for the inner derivative, that is, the symmetrization of the covariant derivative

$$d^s u = \text{Sym}(\nabla u), \quad u \in S^{k+\ell-1} M.$$
If $L_{k,\ell}(f) = 0$ then, with (21) and (24), we can write
\[
 f = (-1)^{\ell} A(\text{Sym}(Af) + (Af - \text{Sym}(Af))) = (-1)^{\ell} A(d^s u) + f + (-1)^{\ell+1} A(\text{Sym}(Af)).
\]
We conclude that the claim of Theorem 1 holds if
\[
 f + (-1)^{\ell+1} A(\text{Sym}(Af)) = \lambda w, \quad A(d^s u - d'u) = \lambda w', \quad d'A = Ad',
\]
for some $w, w' \in S^{k-1}M \times S^{\ell-1}M$ and $u \in S^{k+\ell-1}M$. These equations will be proved in the following subsections.

4.1. **Analysis of operator $A\text{Sym}A$.** In this subsection, we prove the following identity for any $f \in S^kM \times S^\ell M$:

\[
 (23) \quad f + (-1)^{\ell+1} A(\text{Sym}(Af)) = \lambda w \quad \text{for some } w \in S^{k-1}M \times S^{\ell-1}M.
\]

We start with a lemma that characterizes the kernel of $A\text{Sym}A$

Lemma 2. For the linear maps $A\text{Sym}A : S^kM \times S^\ell M \to S^kM \times S^\ell M$ and $\lambda : S^{k-1}M \times S^{\ell-1}M \to S^kM \times S^\ell M$ the following holds

\[
 \ker(A\text{Sym}A) = \text{Im}(\lambda).
\]

Proof. We use the notation \otimes_s for the symmetric product of tensors. We note that operator A maps a basis element \((\otimes^h dx_1) \otimes_s (\otimes^{k-h} dx^2) \otimes (\otimes^a dx_1) \otimes_s (\otimes^{\ell-a} dx^2), h \in \{0, \ldots, k\}, a \in \{0, \ldots, \ell\}\) of $S^kM \times S^\ell M$ to

\[
 (-1)^{\ell-a} ((\otimes^h dx_1) \otimes_s (\otimes^{k-h} dx^2)) \otimes ((\otimes^{\ell-a} dx_1) \otimes_s (\otimes^a dx^2)).
\]

We also note that the choice of isothermal coordinates implies
\[
 (24) \quad \lambda(a \otimes b) = e^{2\alpha(x)} ((dx_1 \otimes_s a) \otimes (dx_1 \otimes_s b)) + (dx^2 \otimes_s a) \otimes (dx^2 \otimes_s b), \quad a \otimes b \in S^{k-1}M \times S^{\ell-1}M.
\]

Since A is a bijection, it suffices to prove

\[
 (25) \quad \text{Im}(\lambda) = \ker(\text{Sym}A).
\]

We prove first that $\text{Im}(\lambda) \subset \ker(\text{Sym}A)$. In view of the linearity of λ, it suffices to prove that $\lambda w \in \ker \text{Sym}A$ when

\[
 w = r(x)((\otimes^{h-1} dx_1) \otimes_s (\otimes^{k-h} dx^2)) \otimes ((\otimes^{a-1} dx_1) \otimes_s (\otimes^{\ell-a} dx^2)), \quad h \in \{1, \ldots, k\}, a \in \{1, \ldots, \ell\}.
\]

Then
\[
 (26) \quad e^{-2\alpha(x)} A\lambda w = (-1)^{\ell-a} r(x) \left(((\otimes^h dx_1) \otimes_s (\otimes^{k-h} dx^2)) \otimes ((\otimes^{\ell-a} dx_1) \otimes_s (\otimes^a dx^2)) \right.
\]
\[
 - \left. ((\otimes^{h-1} dx_1) \otimes_s (\otimes^{k+h+1} dx^2)) \otimes ((\otimes^{\ell-a+1} dx_1) \otimes_s (\otimes^{a-1} dx^2)) \right).
\]

Since Sym is a linear operator, we have $\text{Sym}A(\lambda w) = 0$. Therefore $\text{Im}(\lambda) \subset \ker(\text{Sym}A)$.

Now we prove that $\ker(\text{Sym}A) \subset \text{Im}(\lambda)$. We assume first that $f = \sum_{m=1}^M u_m$, where

\[
 (27) \quad u_m = r_m(x)((\otimes^h dx_1) \otimes_s (\otimes^{k-h} dx^2)) \otimes ((\otimes^{\ell-a} dx_1) \otimes_s (\otimes^a dx^2)), \quad h + a \leq \min\{k, \ell\}.
\]

Then we can write $f = \sum_{H=0}^{k+\ell} f_H$, where $f_H = 0$, if $H \geq \min\{k, \ell\}$ and otherwise

\[
 f_H = \sum_{h=0}^{H} a_{H,h} f_{H,h}, \quad f_{H,h} := ((\otimes^h dx_1) \otimes_s (\otimes^{k-h} dx^2)) \otimes ((\otimes^{\ell-(H-h)} dx_1) \otimes_s (\otimes^{H-h} dx^2)).
\]
Moreover \(f \in \ker(\text{Sym}A) \) if and only if \(f_{2j} \in \ker(\text{Sym}A) \) for every \(H \in \{1, \ldots, \min\{k, \ell\}\} \). In the following we study the tensor \(f_H \), for a given \(H \in \{1, \ldots, \min\{k, \ell\}\} \).

For \(h \in \{1, \ldots, H\} \) we define \(w_h \in S^{k-1}M \times S^{\ell-1}M \) by formula
\[
 w_h = \left((\otimes^h dx^1) \otimes_s (\otimes^{k-h} dx^2) \right) \otimes \left((\otimes^{\ell-(H-h)} dx^1) \otimes_s (\otimes^{H-h} dx^2) \right).
\]

Then (24) yields
\[
 \lambda w_h = e^{2\alpha(x)}(f_{H,h} + f_{H,h-1}).
\]
This implies the recursive formula
\[
 f_{H,h} = \lambda(e^{-2\alpha(x)}w_h) - f_{H,h-1}.
\]
Thus for every \(h \in \{0, \ldots, H\} \) there exists \(w'_h \in S^{k-1}M \times S^{\ell-1}M \) such that
\[
 (28) \quad f_{H,h} = \lambda w'_h + (-1)^h f_{H,0}.
\]
Therefore there exists \(w_H \in S^{k-1}M \times S^{\ell-1}M \) such that
\[
 f_H = \sum_{h=0}^H a_{H,h}f_{H,h} = \lambda w_H + f_{H,0} \sum_{h=0}^H (-1)^h a_{H,h}.
\]
If \(f \in \ker\text{Sym}A \) it holds by the first part of this proof that
\[
 \text{Sym}Af_H = (\text{Sym}Af_{H,0}) \left(\sum_{i=0}^H (-1)^h a_{H,h} \right) = 0.
\]
Since \(\text{Sym}Af_{H,0} \neq 0 \) it follows that \(\sum_{i=0}^H (-1)^h a_{H,h} = 0 \) whence \(f_H = \lambda w_H \). This implies \(f = \lambda w \) for some \(w \in S^{k-1}M \times S^{\ell-1}M \).

If \(f \in \ker\text{Sym}A \) and we cannot write \(f = \sum_{m=1}^M u_m \), where each \(u_m \) satisfies (27), then there exists \(u_m \) that satisfies
\[
 \left((\otimes^h dx^1) \otimes_s (\otimes^{k-h} dx^2) \right) \otimes \left((\otimes^{\ell-a} dx^1) \otimes_s (\otimes^a dx^2) \right), \quad \min\{k, \ell\} < h + a \leq \max\{k, \ell\}.
\]
Therefore \(f_H \neq 0 \) for some \(\min\{k, \ell\} < H \leq \max\{k, \ell\} \) and there exist two sub cases. If \(k < H \leq \ell \), then
\[
 f_H = \sum_{h=0}^k a_{H,h}f_{H,h}, \quad f_{H,h} = \left((\otimes^h dx^1) \otimes_s (\otimes^{k-h} dx^2) \right) \otimes \left((\otimes^{\ell-(H-h)} dx^1) \otimes_s (\otimes^{H-h} dx^2) \right).
\]
If \(\ell < H \leq k \), then
\[
 f_H = \sum_{h=0}^\ell a_{H,h}f_{H,h}, \quad f_{H,h} = \left((\otimes^{H-h} dx^1) \otimes_s (\otimes^{k-h} dx^2) \right) \otimes \left((\otimes^{\ell} dx^1) \otimes_s (\otimes^{H-h} dx^2) \right).
\]
By an analogous recursive argument as before, we find that \(f = \lambda w \), for some \(w \in S^{k-1}M \times S^{\ell-1}M \). This completes the proof. \(\square \)

By the proof of the previous Lemma we can write any \(f \in S^k M \times S^\ell M \) in the form
\[
 f = \lambda w + \sum_{H=0}^{k+\ell} r_H f_{H,0}, \quad r_H \in C^\infty(M),
\]
for some \(w \in S^{k-1}M \times S^{\ell-1}M \). Next, we prove that
\[
 (30) \quad A\text{Sym}Af_{H,0} = (-1)^\ell f_{H,0} + \lambda w, \quad H \in \{1, \ldots, k + \ell\}.
\]
We assume first that \(H \leq \min\{k, \ell\} \). Then
\[
f_{H,0} = (\otimes^k dx^2) \otimes ((\otimes^{\ell-H} dx^1) \otimes_s (\otimes^H dx^2)).
\]
This implies
\[
\text{Sym}Af_{H,0} = (-1)^{\ell} (\otimes^H dx^1 \otimes_s (\otimes^{k+\ell-H} dx^2))
\]
\[
= (-1)^{\ell} \frac{1}{(k+\ell)!} \sum_{h=0}^H A_h (\otimes^h dx^1 \otimes_s (\otimes^{k-h} dx^2)) \otimes (\otimes^{H-h} dx^1 \otimes_s (\otimes^{\ell-H+h} dx^2)),
\]
where \(\sum_{h=0}^H A_h = (k+\ell)! \). Using \((28) \) we obtain
\[
ASymAf_{H,0} = (-1)^{\ell} \frac{1}{(k+\ell)!} \sum_{h=0}^H (-1)^h A_h f_{H,h} = (-1)^{\ell} \frac{1}{(k+\ell)!} \left(\sum_{h=0}^H A_h \right) f_{H,0} + \lambda w
\]
\[
= (-1)^{\ell} f_{H,0} + \lambda w.
\]
If \(\min\{k, \ell\} < H \leq \max\{k, \ell\} \) it follows by a similar argument that \(ASymAf_{H,0} = (-1)^{\ell} f_{H,0} + \lambda w \).
Therefore, we proved \((30) \).

Equation \((23) \) follows from Lemma \((2) \) and \((29)-(30) \).

4.2. **Analysis of operator** \(Ad^s \). We note that \(S^{k+\ell} M \subset S^k M \times S^\ell M \). Therefore, we can extend the inner derivative, \(d^s \), to an operator \(d^s : S^{k-1} M \times S^\ell M \to S^k M \times S^\ell M \) and evaluate \(d^s - d' \). In this subsection, we show that for any \(u \in S^{k-1} M \times S^\ell M \) the following equations hold,
\[
A(d^s u - d'u) = \lambda w \quad \text{for some} \ w \in S^{k-1} M \times S^\ell M;
\]
\[
d'A = Ad'.
\]
Since \(Ad^s \) and \(Ad' \) are linear it suffices to prove the claims for
\[
u = r(x) (\otimes^{h-1} dx^1) \otimes_s (\otimes^{k-h} dx^2) \otimes ((\otimes^a dx^1) \otimes_s (\otimes^{\ell-a} dx^2)), \quad r \in C^\infty(M).
\]
By \((15) \) and \((17) \) we have
\[
(33) \quad Ad'u = (-1)^{\ell-a} \left(\frac{\partial}{\partial x^1} r(x) - R_1 \right) \left((\otimes^h dx^1) \otimes_s (\otimes^{k-h} dx^2) \otimes ((\otimes^a dx^1) \otimes_s (\otimes^a dx^2))
\]
\[
+ \left(\frac{\partial}{\partial x^2} r(x) - R_2 \right) \left((\otimes^{h-1} dx^1) \otimes_s (\otimes^{k-h+1} dx^2) \otimes ((\otimes^a dx^1) \otimes_s (\otimes^a dx^2)) \right),
\]
where \(R_m = \sum_{s=1}^{k+\ell} r_{i_1, \ldots, i_{s-1}, p, i_{s+1}, \ldots, i_{k+\ell}} \Gamma_{p i s}^{m}, \ m \in \{1, 2\} \) and \(r_{i_1, \ldots, i_{s-1}, p, i_{s+1}, \ldots, i_{k+\ell}} \in \{0, r\} \) depending on \((i_1, \ldots, i_{k+\ell}) \).

We write \(H = h + a \), assume that \(H \leq \min\{k, \ell\} \) and denote \(\tilde{R}_m = \frac{\partial}{\partial x^m} r(x) - R_m \). Then we obtain from \((17) \) and \((22) \),
\[
d^s u = \tilde{R}_1 \frac{1}{(k+\ell)!} \sum_{j=0}^H A_j (\otimes^j dx^1) \otimes_s (\otimes^{k-j} dx^2) \otimes ((\otimes^{H-j} dx^1) \otimes_s (\otimes^{\ell+j-H} dx^2))
\]
\[
+ \tilde{R}_2 \frac{1}{(k+\ell)!} \sum_{i=0}^{H-1} B_i (\otimes^i dx^1) \otimes_s (\otimes^{k-i} dx^2) \otimes ((\otimes^{H-i-1} dx^1) \otimes_s (\otimes^{\ell+i-H+1} dx^2)),
\]
Thus \(\lambda v \) and we define

\[
(34)
\]

Finally we prove equation (32). We note that

\[
\text{Ad}^{-1}u = (\log H)^{-1} \sum_{j=0}^{H} (-1)^{\ell-H+j} A_j\left((\otimes^j dx^1) \otimes_s (\otimes^{k-j} dx^2)\right) \otimes \left((\otimes^{\ell+j-H} dx^1) \otimes_s (\otimes^{H-j} dx^2)\right)
\]

We define

\[
g_{H,j} = \left((\otimes^j dx^1) \otimes_s (\otimes^{k-j} dx^2)\right) \otimes \left((\otimes^{\ell+j-H} dx^1) \otimes_s (\otimes^{H-j} dx^2)\right), \quad j \in \{0, \ldots, H\},
\]

and

\[
v_{H,j} = \left((\otimes^j dx^1) \otimes_s (\otimes^{k-j-1} dx^2)\right) \otimes \left((\otimes^{\ell+j-H} dx^1) \otimes_s (\otimes^{H-j-1} dx^2)\right), \quad j \in \{1, \ldots, H\}.
\]

Then (24) implies that \(\lambda v_{H,j} = e^{2\alpha(x)}(g_{H,j} + g_{H,j+1}) \). We obtain

\[
g_{H,j} = \lambda w_{H,j} + (-1)^{H-j} g_{H,H}, \quad \text{for some } w_j \in S^{k-1}M \times S^{\ell-1}M.
\]

Thus

\[
dA' u = (-1)^{\ell-a}\left(\tilde{R}_1 g_{H,H} + \tilde{R}_2 g_{H-1,H-1}\right)
\]

Then (32) holds since the previous equation coincides with (33).

REFERENCES

[1] L. V. Ahlfors. Conformality with respect to riemannian metrics. annales academi scientiarum fennicae series a. i. Mathematica, 206:1–22, 1955.
[2] Y. Anikonov and V. Romanov. On uniqueness of determination of a form of first degree by it integrals along geodesics. J. Inverse Ill-Posed Probbl., 5:467–480, 1997.
[3] C. H. Chapman and R. G. Pratt. Traveltome tomography in anisotropic media - i. theory. Geophysical Journal International, 109(1):1–19, 1992.
[4] D. S. Daribekov. Integral geometry problem for nontrapping manifolds. Inverse Problems, 22:431–445, 2006.
[5] S. Holman. Generic local uniqueness and stability in polarization tomography. Journal of Geometric Analysis, 23(1):229–269, 2013.
[6] R. G. Mukhometov. On the problem of integral geometry (russian). Math. problems of geophysics. Akad. Nauk SSSR, Sibirsk., Otdel., Vychisl., Tsentr, Novosibirsk, 6, 1975.
[7] R. G. Mukhometov. On a problem of reconstructing riemannian metrics. Sibirsk. Mat. Zh., 22:119–135, 1987.
[8] R. Novikov and V. Sharafutdinov. On the problem of polarization tomography: I. Inverse problems, 23(3):1229, 2007.
[9] G. Paternain, M. Salo, and G. Uhlmann. Tensor tomography on simple surfaces. Invent. Math., 193:229–247, 2013.
[10] G. Paternain, M. Salo, G. Uhlmann, and H. Zhou. The geodesic x-ray transform with matrix weights, preprint (2016). arXiv preprint arXiv:1605.07894, 2.
[11] L. Pestov. Well-posedness questions of the ray tomography problems (in Russian). Siberian Science Press, Novosibirsk, 2003.
[12] L. Pestov and V. A. Sharafutdinov. Integral geometry of tensor fields on a manifold of negative curvature. Siberian Math. J., 29:427–441, 1988.
[13] L. Pestov and G. Uhlmann. Two dimensional compact simple riemannian manifolds are boundary distance rigid. Annals of mathematics, pages 1093–1110, 2005.
[14] V. Sharafutdinov. Variations of dirichlet-to-neumann map and deformation boundary rigidity of simple 2-manifolds. The Journal of Geometric Analysis, 17(1):147, 2007.
[15] V. A. Sharafutdinov. Integral geometry of tensor fields, volume 1. Walter de Gruyter, 1994.
[16] P. Stefanov and G. Uhlmann. Stability estimates for the x-ray transform of tensor fields and boundary rigidity. Duke Mathematical Journal, 123(3):445–467, 2004.
[17] P. Stefanov and G. Uhlmann. Boundary rigidity and stability for generic simple metrics. Journal of Amer. Math. Soc., 18:975–1003, 2005.
[18] P. Stefanov, G. Uhlmann, and A. Vasy. Inverting the local geodesic x-ray transform on tensors. arXiv preprint arXiv:1410.5145, 2014.
[19] J. Sylvester. An anisotropic inverse boundary value problem. Communications on Pure and Applied Mathematics, 43(2):201–232, 1990.
[20] G. Uhlmann and A. Vasy. The inverse problem for the local geodesic ray transform. Invent. Math., 205:83–120, 2016.

Simons Chair in Computational and Applied Mathematics and Earth Science, Rice University, Houston, TX 77005, USA (mdehoop@rice.edu).

Department of Computational and Applied Mathematics, Rice University, Houston, TX, 77005, USA (teemu.saksala@rice.edu)

Department of Computational and Applied Mathematics, Rice University, Houston, TX, 77005, USA (jian.zhai@rice.edu).