Data Article

Dataset concerning the hourly conversion factors for the cumulative energy demand and its non-renewable part, and hourly GHG emission factors of the Swiss mix during a one year period (2015–2016)

Didier Vuarnoz*, Thomas Jusselme

Ecole Polytechnique Fédérale de Lausanne (EPFL), Building 2050 research group, Passage du Cardinal 13B, CH-1700 Fribourg, Switzerland

ARTICLE INFO

Article history:
Received 24 July 2018
Received in revised form 22 October 2018
Accepted 23 October 2018
Available online 26 October 2018

ABSTRACT

The data presented in this article are related to the research article entitled “Temporal variations in the primary energy use and greenhouse gas emissions of the electricity provided to the Swiss grid” Vuarnoz and Jusselme (2018). The provided data are the hourly CO₂-eq emission factors, and the hourly conversion factors for the cumulative energy demand and its non-renewable part for the Swiss electricity mix over one year. These data have been assessed on the basis of an inventory of the technology used for electricity generation and an attributional life-cycle approach. The presented data are necessary for life-cycle assessment of all processes and products using electricity in Switzerland. They serve also as a sustainable benchmark when implementing renewable energy systems and energy storage.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Electricity mix
More specific subject area	Life-cycle assessment of electricity, i.e. hourly emission factor, hourly conversion factors for the cumulative energy demand and its non-renewable part
Type of data	Excel file
How data was acquired	Application of the Input-Output assessment model described in [1] for the analyzed period (28/01/2015–27/01/2016) with hourly input data from: - for the inventory of technology involved in electricity generation: • EEX [2] for Switzerland, Germany and Austria • RTE [3] for France - for the amount of electricity imports: • Swissgrid [4] for Switzerland • Itten et al. [5] - for the technology-specific conversion factors: • KBOB database [6]
Data format	Raw
Experimental factors	The life-cycle assessment is performed with “cradle-to-grave” system boundaries. Transport and distribution losses are included in the assessment.
Experimental features	The reference time is GMT +1
Data source location	Switzerland
Data accessibility	Data are with this article
Related research article	D.Vuarnoz, T.Jusselme, Temporal variations in the primary energy use and greenhouse gas emissions of the electricity provided to the Swiss grid. Energy 161: 573–582 [1].

Value of the data

- The dataset can be directly used to compute life-cycle assessment (LCA) of processes and products using electricity.
- The dataset can serve to develop time-dependent strategies of electricity use for primary energy optimization and greenhouse gases emission mitigation.
- The dataset can be compared with the dataset of electricity mixes from different regions/countries.
- The dataset can serve as a benchmark, e.g. for the same national grid mix during other period of time, and for a sustainable implementation of renewable energy system and energy storages.

1. Data

The data provided within this article consist of hourly conversion factors for the cumulative energy demand (CED) and its non-renewable part (CEDnr), both in (MJoil-eq/kW h), as well as the CO2-eq emission factors (GWP) in (kg CO2-eq/kW h) of the electricity provided by the Swiss mix during a one-year period (28/01/2015–27/01/2015). See the.xlsx file.

2. Experimental design, materials, and methods

The methodology used to generate the dataset presented in this article is detailed in Ref. [1]. The method consider an input-output model. Any pre-treatment of the input data has been performed...
and no filter has been applied to the obtained dataset. Original input data used for the assessment originate from different sources and consist of hourly inventories of domestic productions, hourly electricity imports/exports and technology-specific conversion factors. For each domestic production, data from the inventory are (1) the energy generation per hour (kWh/h) and (2) the types of technology used. Regarding the domestic productions, the inventory of the technologies involved during each hour has been provided by [2] for Switzerland, Germany and Austria. As for the inventory of France, we use the data from [3]. The technology-specific conversion factors used for the assessment are those from the KBOB database [4]. With regard to the electricity imports, hourly values of the Swiss imports have been provided by Itten et al., (2014) [5]. French, Austrian, and German imports have been assumed to be constant over one year, and corresponding to the mean annual values given in Ref. [6].

Acknowledgments

The work presented in this paper has been funded by the State of Fribourg (message du Conseil d'Etat au Grand Conseil 2014-DEE-22) and EPFL.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.090.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.090.

References

[1] D. Vuarnoz, T. Jusselme, Temporal variations in the primary energy use and greenhouse gas emissions of the electricity provided to the Swiss grid, Energy 161 (2018) 573–582.
[2] EEX (European Energy Exchange), EEX transparency platform, 2016. Available: (https://www.eex-transparency.com/). (Accessed 19 June 2018).
[3] RTE (Réseau de Transport de l’Electricité), Production d’électricité par filière. Database, 2016. Available: (http://www.rte-france.com/fr/eco2mix/eco2mix). (Accessed 19 June 2018).
[4] Swissgrid, Aperçu éner gétique Suisse 2015 Excell Work, 2016. (http://www.swissgrid.ch/fr/home/operation/grid-data/generation.html) (Accessed 19 June 2018).
[5] R. Itten, R. Frischknecht, M. Stucki, Life Cycle Inventories of Electricity Mixes and Grid, Tech. Rep. Version 1.3, ESU Services Ltd. On behalf of the Paul Scherrer Institute (PSI), Switzerland (2014) 1–221.
[6] R. Friedli, M. Jausslin, O. Meile, C. Affentranger, V. Steiner, C. Faber, R. Nufer, N. Egli, A. Puder, D. Dubas, R. Waebber, A. Lalive, M. Pöll, C. Pyroth, D. Rhyner, A. Buchmüller, C. Coppey, T. Henking, C. Keller, KBOB 2009/1:2014, KBOB. Office fédéral des constructions et de la logistique, Fellerstrasse 21, 3003 Berne, 2014 (http://urlz.fr/6u93), (Accessed 19 June 2018).