EMBEDDING CENTRAL EXTENSIONS OF SIMPLE LINEAR GROUPS INTO WREATH PRODUCTS

ANDREI V. ZAVARNITSINE

Abstract. We find a criterion for the embedding of a nonsplit central extension of PSL\(_n\)(q) with kernel of prime order into the permutation wreath product that corresponds to the action on the projective space.

Keywords: finite simple groups, permutation module, central cover, group cohomology.

MSC2010: 20D06, 20J06

1. Introduction

A group \(B\) included in a short exact sequence of groups

\[
1 \to A \to B \to C \to 1
\]

is called an extension of \(A\) by \(C\) and denoted by \(A.C\) in general, or by \(A \times C\) if it is split. The extension \(B\) is central if \(\iota(A) \subseteq Z(B)\).

We write \(Z_n\) for a cyclic group of order \(n\) and \((m, n)\) for gcd\((m, n)\).

This note concerns the following

Problem 1. Let \(G = PSL_n(q)\), where \(q\) is a prime power, and let \(r\) be a prime divisor of \((n, q - 1)\). Does the permutation wreath product \(Z_r \wr_{\rho} G\) contain a subgroup isomorphic to the nonsplit central extension \(Z_r.G\), where \(\rho\) is the natural permutation representation of \(G\) on the points of the projective space \(\mathbb{P}^{n-1}(q)\)?

We remark that the nonsplit extension \(Z_r.G\) mentioned in Problem 1 is unique up to isomorphism and is a quotient of SL\(_n\)(q). This problem is a generalization of the one raised in [1, p. 67], where the case \(n = r\) is considered. The case \(n = 2\) was studied in [2], where it was shown that the embedding holds if and only if \(q \equiv -1\) mod 4. We generalize this result by proving the following

Theorem 2. In the notation of Problem 1, the nonsplit central extension \(Z_r.G\) is embedded into \(Z_r \wr_{\rho} G\) if and only if \(r\) does not divide \((q - 1)/(n, q - 1)\).

The main method that we use is based on some cohomological considerations and is similar to that of [2].

2. Preliminaries

Let \(G\) be a group and let \(L, M\) be right \(G\)-modules. Suppose

\[
0 \to L \to M
\]

and

\[
1 \to M \to E \xrightarrow{\pi} G \to 1
\]
are exact sequences of modules and groups, where the conjugation action of E on M agrees with the G-module structure, i.e. $m^e = m \cdot \pi(e)$ for all $m \in M$ and $e \in E$, and we identify M with its image in E. A subgroup $S \leq E$ such that

$$(2) \quad S \cap M = L, \quad SM = E,$$

where we also identify L with its image in M, which is itself an extension of L by G, will be called a subextension of E that corresponds to the embedding (1).

It is known \cite{3} that the equivalence classes of extensions of L by G are in a one-to-one correspondence with (thus are defined by) the elements of the second cohomology group $H^2(G, L)$. Furthermore, the sequence (1) gives rise to a homomorphism

$$(3) \quad H^2(G, L) \to H^2(G, M).$$

Lemma 3. \cite{2} Lemma 2] Let L, M be G-modules and E an extension as specified above. Let $\bar{\gamma} \in H^2(G, M)$ be the element that defines E. Then the set of elements of $H^2(G, L)$ that define the subextensions S of E corresponding to the embedding (1) coincides with $\varphi^{-1}(\bar{\gamma})$, where φ is the induced homomorphism (3). In particular, E has such a subextension S if and only if $\bar{\gamma} \in \text{Im} \varphi$.

We now present a slight generalization of the argument in \cite{2} Section 7.

Denote by \mathbb{F}_q a finite field of order q. The order of a group element g will be denoted by $|g|$. Let G be a finite group, X a set, and let ρ be a permutation representation of G on X. For a prime p, we consider the permutation $\mathbb{F}_p G$-module V that corresponds to ρ with basis (identified with) X and its trivial submodule I spanned by $\sum_{x \in X} x$. Clearly, the wreath product $\mathbb{Z}_p \wr \rho G$ is the natural split extension $V \rtimes G$.

Lemma 4. In the above notation, if a central extension $S = \mathbb{Z}_p \rtimes G$ is a subextension of $V \rtimes G$ that corresponds to the embedding of $\mathbb{F}_p G$-modules $I \to V$ then S has no element s that satisfies the following three conditions

(i) $|s| = p^2$,

(ii) $|g| = p$, where $g \in G$ is the image of s under the natural epimorphism $S \to G$.

(iii) $\rho(g)$ has a fixed point on X.

Proof. Assume to the contrary that s is such an element. Denote $t = \sum_{x \in X} x \in I$. Since $S = I \rtimes G$, we have $s^p = ct$ for a nonzero $c \in \mathbb{F}_p$, and since S is a subextension of $V \rtimes G$ with respect to $I \to V$, there exists $v \in V$ such that $s = gv$. Therefore, we have $ct = s^p = (gv)^p = vh$, where

$$h = 1 + g + \ldots + g^{p-1}.$$

Let $x \in X$ be a fixed point of $\rho(g)$. We can write $v = a_x x + w$, for some $a_x \in \mathbb{F}_p$, where $w = \sum_{y \in X \setminus \{x\}} a_y y$. Clearly, wh is a linear combination of elements of $X \setminus \{x\}$, and

$$(a_x x)h = a_x(x + \ldots + x) = a_x px = 0.$$

Hence, the coefficient of x in $ct = vh$ is zero, which contradicts $c \neq 0$. \hfill \square

3. A permutation module for $\text{PSL}_n(q)$

We henceforth denote $G = \text{PSL}_n(q)$ and fix a prime divisor r of $(n, q - 1)$. The natural permutation action ρ of G on the points of the projective space $\mathcal{P} = \mathbb{P}^{n-1}(q)$ gives rise to a permutation $\mathbb{F}_r G$-module V. As every permutation module, V has a trivial submodule I spanned by $\sum_{x \in \mathcal{P}} x$, and the augmentation submodule V_0 that
consists of the elements $\sum_{x \in \mathcal{P}} a_x x$ with $\sum x a_x = 0$. Since $\dim V = 1 + q + \ldots + q^{n-1} \equiv 0 \pmod{r}$, we have $I \leq V_0$, and the quotient $U = V_0/I$ is known \cite{4} to be absolutely irreducible whenever $n \geq 3$. It was noticed by various authors \cite{5, 6} that U is one of the few examples of modules with 2-dimensional 1-cohomology, namely we have:

Lemma 5. In the above notation, $H^1(G, U) \cong \mathbb{Z}_r^2$, whenever $n \geq 3$.

We will also require the 1-cohomology of V.

Lemma 6. Let V be the above-defined permutation module. Then we have

$$H^1(G, V) \cong \begin{cases} \mathbb{Z}_r, & r \text{ divides } (q - 1)/(n, q - 1), \\ 0, & \text{otherwise}. \end{cases}$$

Proof. We will assume that $n \geq 3$, as the claim holds for $n = 2$ by \cite{2} Lemma 12. Since the action of G on \mathcal{P} is transitive, we have $V \cong T^G$, where T is the principal \mathbb{F}_r, H-module for a point stabilizer H. By Shapiro’s lemma \cite{7} §6.3, we have $H^1(G, V) \cong H^1(H, T) \cong \text{Hom}(H/H', T)$. The structure of H is known \cite{8} Section 2 and has the shape $\text{ASL}_{n-1}(q).\mathbb{Z}_{(q-1)/(n, q-1)}$. Since $n \geq 3$ and $(n, q - 1) > 1$, the group $\text{ASL}_{n-1}(q)$ is perfect and so $H/H' \cong \mathbb{Z}_{(q-1)/(n, q-1)}$. As T is cyclic of order r, the claim follows. \hfill \Box

4. PROOF

We can now prove Theorem \cite{2} Due to \cite{2}, we may assume that $n \geq 3$. We denote by S the nonsplit central extension \mathbb{Z}_r, G. Since G is simple, the only possibility for S to be a subgroup of the extension $V \ltimes G$ is if S is its subextension, and since I is the unique trivial submodule of V, this subextension must be with respect to the embedding $I \to V$. Being split, the extension $V \ltimes G$ is defined by the zero element of $H^2(G, V)$. Hence, Lemma \cite{3} implies that all subextensions of $V \ltimes G$ with respect to $I \to V$ are defined by the elements of $\ker \varphi$, where φ is the induced homomorphism

$$H^2(G, I) \xrightarrow{\varphi} H^2(G, V).$$

The short exact sequence of modules

$$0 \to I \to V \to V^0 \to 0,$$

where $V^0 \cong V/I$, gives rise to the long exact sequence

$$H^1(G, I) \to H^1(G, V) \xrightarrow{\alpha} H^1(G, V^0) \xrightarrow{\delta} H^2(G, I) \to H^2(G, V),$$

which implies that $\ker \varphi = \text{Im} \delta$. Observe that $H^1(G, I) \cong \text{Hom}(G/G', I) = 0$, since G is simple. Therefore, the map α in \cite{5} is an embedding, and $\ker \varphi \cong H^1(G, V^0)/H^1(G, V)$.

The structure of V, see \cite{4} Lemma 2, allows us to include V^0 in the nonsplit short exact sequence

$$0 \to U \to V^0 \to I \to 0,$$

which gives rise to the exact sequence

$$H^0(G, V^0) \to H^0(G, I) \to H^1(G, U) \to H^1(G, V^0) \to H^1(G, I).$$

Now, $H^0(G, V^0) = 0$, since V^0 has no trivial submodules, and $H^1(G, I) = 0$ as above. Therefore, $H^1(G, V^0) \cong H^1(G, U)/H^0(G, I)$. Since $H^0(G, I) \cong \mathbb{Z}_r$, Lemma \cite{5} implies $H^1(G, V^0) \cong \mathbb{Z}_r$, and so $\ker \varphi$ is 0 or \mathbb{Z}_r according as r divides $(q - 1)/(n, q - 1)$ or otherwise, by Lemma \cite{6} It follows that the nonzero element of $H^2(G, I)$ that defines
the nonsplit extension S lies in Ker φ if and only if r does not divide $(q-1)/(n, q-1)$. By Lemma 3, this completes the proof of the theorem.

In the case when r divides $(q-1)/(n, q-1)$, we can also prove the nonembedding of S into $V \times G$ in a different way. Suppose this is the case. Then \mathbb{F}_q has an element a of multiplicative order $r(n, q-1)$. Let s be the image in S of diag$(a, a, \ldots, a, a^{1-n})$ under the epimorphism $\text{SL}_n(q) \to S$. We have $|s| = r^2$ and $|g| = r$, where g is the image of s under the epimorphism $S \to G$. Observe that $\rho(g)$ has a fixed point on \mathcal{P}, because every diagonal element of $\text{SL}_n(q)$ fixes a point on \mathcal{P}, e.g. the projective image of the basis vector $(1, 0, \ldots, 0)$. Therefore, S cannot be a subextension of $V \times G$ by Lemma 4.

References

[1] N. V. Maslova, *Finite groups with arithmetic restrictions on maximal subgroups*, Algebra and Logic, **54**, N 1 (2015), 65–69.
[2] A. V. Zavarnitsine, *Subextensions for a permutation PSL$_2(q)$-module*, Sib. Elect. Math. Reports **10**, (2013), 551-557.
[3] K. W. Gruenberg, *Cohomological topics in group theory*, Lect. Notes Math., **143**, Springer-Verlag, Berlin–New York, 1970, 275 p.
[4] B. Mortimer, *The modular permutation representations of the known doubly transitive groups*, Proc. London Math. Soc. (3), **41** (1980), 1–20.
[5] J. Bray, *A new family of modules with 2-dimensional 1-cohomology*, preprint, (2007), 5 p.
[6] V. P. Burichenko, *On some cohomologies of groups L$n(q)$*, abstract, Gomel (2009), 1 p.
[7] Ch. A. Weibel, *An introduction to homological algebra*, Camb. Studies Adv. Math., **38**, Camb. Univ. Press, Cambridge, 1994, 450 p.
[8] V. D. Mazurov, *Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups*, Algebra and Logic, **32**, N 3 (1993), 142–153.

Andrei V. Zavarnitsine, Sobolev Institute of Mathematics, 4, Koptyug av., 630090, Novosibirsk, Russia

E-mail address: zav@math.nsc.ru