Nonketotic hyperglycinemia (NKH) is an autosomal recessive disorder due to failure of the mitochondrial glycine cleavage system (GCS) (P, H, T and L protein) resulting in an inability of oxidative decarboxylation of glycine. Accumulation of glycine occurs in excessive amounts in body fluids. Glycine is a non-essential amino acid and acts mainly as a neurotransmitter. Two types of receptors mediate the effect of excess glycine in the CNS: inhibitory strychnine sensitive receptors and excitatory N-methyl-D-aspartate (NMDA) receptors. The classical neonatal form of the disease presents within a few days of life with poor feeding, lethargy, hypotonia, hiccup, apnea, convulsion, and coma. The infantile form presents after 6 months. Late onset and a transient form of NKH has been reported. Classical NKH is the commonest and is due mostly to deficiency of GCS P-protein deficiency. The gene of P-protein is located on the short arm of chromosome 9. The condition is common in Finland where the incidence is 1:12 000. NKH has been reported from Saudi Arabia before, but the exact extent of the problem is difficult to estimate as most cases remain undiagnosed due partly to lack of orientation of pediatricians and neonatologists. We are reporting here three classical cases of NKH. Two from same family were associated with dysgenesis of the corpus callosum. This association has recently been reported in the literature, but not in previous cases that were reported from Saudi Arabia.

Case One

A 5-day-old Saudi female was admitted to Suleimaniah Children's Hospital (SCH) for progressive lethargy, weak cry, poor feeding and hiccup for 3 days. The baby was born normally at term. The pregnancy and delivery were uncomplicated. The parents were first-degree cousins. They had four other children one of whom is presented as case two and who was suffering from seizure disorder and developmental delay.

On examination the baby was not dysmorphic, weight was 3.0 kg, length 51 cm and head circumference was 35 cm. The baby was hypotonic, unable to open the eyes, had a very weak cry on painful stimuli, and her pupils were equal and reactive to light. She had a Glasgow coma scale of 6/15, and was hyporeflexive. Other systemic examinations were normal. She had very shallow breathing on arrival at the hospital with hiccup and a respiratory rate of 50/minute. She became apneic soon after admission to hospital and was intubated and ventilated. After a few hours she developed a multifocal clonic seizure. Blood count, BUN, creatinine and electrolytes were normal. A septic work up was negative, serum ammonia, other hepatic profiles, serum pyruvate and lactate were all normal. Blood gases showed respiratory acidosis on arrival, which normalized on minimum ventilatory support. TORCH screening was negative, the urine was free of ketones and organic acid screening was negative. Blood tandem MS was unremarkable. The blood glycine level was 515 µmol/L (normal, 60-310 µmol/L) and CSF glycine was 190 µmol/L. The CSF/blood glycine ratio was 0. 37 (normal, <.03). On ultrasound, the corpus callosum could not be visualized. MRI of the brain showed a hypoplastic corpus callosum and generalized brain atrophy. EEG showed generalized epilepsy with a burst suppression pattern. The baby was treated with sodium benzoate 500 mg/kg/day and dextromethorphan 5 mg /kg/day. She was also given phenobarbitone. The baby showed an initial good response. Her tone improved, she started to breathe well, was taken off the ventilator and her seizures came under control.

Case Two

A 1-year-old Saudi girl, the elder sister of the first patient had been suffering from developmental delay and seizure disorder and was under treatment and follow-up in another hospital. We admitted this baby to SCH for screening for NKH after the diagnosis of her younger sister. The baby was treated with sodium benzoate 500 mg/kg/day and dextromethorphan 5 mg /kg/day. She was also given phenobarbitone. The baby showed an initial good response. Her tone improved, she started to breathe well, was taken off the ventilator and her seizures came under control.
A 4-month-old Saudi male infant was admitted to SCH. The parents were first-degree cousins. The mother had one abortion, and the two other siblings were normal. Around the 50th centiles. Vital signs were stable. He had no visual fixation, no social smile, no response to sound and was waiting for a pediatric neurology appointment. The baby was lethargic, and sleepy on arrival at home and sought medical advice on day after birth. The parents noticed the baby was lethargic and sleepy and he was discharged from hospital on the second day of delivery. She was not dysmorphic and her vital signs were stable. The cardiovascular, respiratory and gastrointestinal systems were normal. Neurological examination revealed generalized hypotonia, severe head lag, subnormal muscle power and brisk tendon reflexes. There was no motor cranial nerve palsy, the anterior fontanel was normal and open, and pupils were reactive with normal appearance of the fundus. She still could not roll over or reach for objects. She was neither fixing nor following colorful objects or light, nor responding to sounds and was not vocalizing. Tests showed a normal blood count, normal blood biochemistry, and normal liver function tests. The CSF glycine level was 105 μmol/L, and the blood glycine level was 600 μmol/L. The CSF/blood glycine ratio was 0.175. Ultrasound of the brain showed absence of the corpus callosum, and the EEG showed a burst suppression pattern. The patient was started on sodium benzoate and dextromethorphan. Our third patient was referred to tertiary care centers for further follow up. Haider and his associates reported the first case of NKH in Saudi Arabia. This report would definitely add to the evidence of increased incidence of this autosomal recessive disorder in the Kingdom. Since the disorder presents with neurological depression in very early life without any other particular metabolic derangements like acidosis, hypoglycemia, hy-
perammonemia or electrolyte abnormalities, most are not subjected to metabolic screening and diagnosed wrongly as hypoxic ischemic encephalopathy. Even routine metabolic screening like blood tandem mass spectroscopy and urine gas chromatography-mass spectroscopy would not indicate the diagnosis of NKH until the CSF/blood glycine ratio is done. Even though our earlier colleagues found associated hyponatraemia in their cases, we did not find this association. We found associated anomalies of corpus callosum in two of our patients, which was not reported in previous cases from Saudi Arabia. The association of NKH and normal corpus callosum has been reported in recent literature. Other CNS abnormalities in NKH include abnormal myelination, gyral malformation, progressive atrophy and parenchymal volume loss. Van Hove et al recently reported cases of NKH with acute hydrocephalus. These associations imply that any infant with NKH should be investigated for CNS malformations and vice versa.

Clinical presentations of NKH may differ with different types of the disease. The classical or neonatal form presents in the early neonatal period is like that in our patients. The initial presentation may be indistinguishable from hydroptic ischemic encephalopathy or CNS depression from other metabolic or infective causes. Some patients may have hiccup like our first patient. Sooner or later the patient develops seizures, which are often of the myoclonic type. The CNS depression may progress to coma, respiratory depression and apnea. Remarkably in initial presentation these infants show no abnormalities of blood gases, blood glucose, electrolytes, liver or renal function. This may keep the treating physician's threshold at a low level in thinking about defects in inborn errors of metabolism in these patients. The infantile form of the disease presents after 6 months of age. Seizures are the common presenting feature. The late onset form may present between 2 to 33 years of age with progressive spastic paraparesis, choreoathetosis and optic atrophy. Severity of the disease may vary considerably in different patients of the same variety. A transient and atypical form of NKH has been described.

Laboratory findings in NKH may or may not show a high blood glycine level. This is why all suspected patients should have CSF and blood glycine levels. The diagnostic ratio is more than .08. EEG usually shows a burst suppresion pattern. Huisman has recently shown that proton magnetic resonance spectrometry (MRS) of the brain may be useful in the diagnosis and monitoring of treatment in NKH. Definitive diagnosis may be made by GCS enzyme assay from liver biopsy. More than 80% of patients have a defect in P-protein of glycine cleavage enzyme. The gene of P-protein is located on the short arm of chromosome 9. Different mutations have been found in patients with NKH. Perinatal diagnosis may be done by GCS enzyme assay in chorionic villi. However Applegrath has recently reported a few false negative results. DNA analysis is helpful in family screening when the mutation is known.

Even though some progress has been made for better treatment of NKH, no absolute cure has yet been found. The two most commonly used agents for the treatment are sodium benzoate and dextromethorphan. Benzoate is used to decrease glycine by conjugation and excretion as the hippurate. Dextromethorphan is used to block the N-methyl-D-aspartate (NMDA) receptor, which is sensitized by glycine and causes seizures in NKH. Other agents like strychnine, diazepam, ketamine, tryptophan and exchange transfusion have been tried but without any remarkable beneficial neurological outcome. Prognosis of NKH is still poor, but early diagnosis and treatment may improve the neurological outcome.

In conclusion, the awareness of pediatricians and neonatologists about NKH may help to identify more cases of NKH in Saudi Arabia and other neighboring countries. The CSF and blood glycine ratio is the most important diagnostic resource at present. It is important to look for other CNS anomalies like agenesis of corpus callosum in these patients. Patients with CNS anomalies should also be investigated for NKH. Further studies are required to determine the incidence and outcome of NKH in Saudi Arabia.

Acknowledgements
The authors are grateful to Dr. Mohammed Al-Rashed, PhD, head of the department of metabolic screening laboratory of KFSH&RC for helping us for metabolic screening and estimation of blood and CSF glycine for our patients.

References
1. Applegrath DJ, Toone JR. Nonketotic Hyperglycinemia (Glycine Encephalopathy): Laboratory Diagnosis. Mol Genet Metab. 2001;74:139-146.
2. Reznani I. Defects in Metabolism of Amino Acids In: Behman RE, Kliegman RM, Jenson HB, eds. Nelson's Textbook of Pediatrics. 16th ed. Philadelphia: WB Saunders; 2000:362-363.
3. Haider N, Salih MAM, Al-Rashed S et al. Nonketotic Hyperglycinemia: A Life-threatening Disorder in Saudi Newborn. Ann Saudi Med. 1996;16:400-404.
4. Press GA, Barshop BA, Haas RH, Nyhan WL, Glass RF, Hesselink JR. Abnormalities of brain in nonketotic hyperglycinemia: MR manifestations. Am J Neuroradiol. 1989;10:315-321.
5. Rogers T, Al-Rayess M, O'Shea P, Ambler MW. Dysplasia of the callosum in identical twins with nonketotic hyperglycinemia. Pediatr Pathol. 1991;11:897-902.
6. Kelsesinska-Figatoewska M, Rokicki D, walecki J. M R I in nonketotic hyperglycinemia: case report. Neuroradiology. 2001;43:792-793.
7. Nissenkom A, Michelson M, Ben-Zeev B, Lerman-Sagie T. Inborn errors of metabolism: A cause of abnormal brain development. Neurology. 2001;56:1265-1272.

NONKETOTIC HYPERGLYCINEMIA
8. Dobyns WB. Agenesis of the corpus callosum and gyral malformations are frequent manifestations of non-ketotic hyperglycinemia. *Neurology.* 1989;39:817-820.
9. Shuman RM, Leech RW, Scott CR. The neuropathology of the nonketotic and ketotic hyperglycinemias: three cases. *Neurology.* 1978;28:139-146.
10. Van Hove JLK, Kishnani PS, Demaerel P, et al. Acute hydrocephalus in nonketotic hyperglycinemia. *Neurology.* 2000;54:754-758.
11. Steiner RD, Sweetser DA, Rohrbough JR, et al. Nonketotic hyperglycinemia: Atypical clinical and biochemical manifestations. *J Pediatr.* 1996;128:243-246.
12. Zammarchi E, Donati MA, Ciani F. Transient neonatal nonketotic hyperglycinemia: A 13-year follow-up. *Neuropediatrics.* 1995;26:328-330.
13. Chen PT, Young C, Lee WT, et al. Early epileptic encephalopathy with suppression burst electroencephalographic pattern— an analysis of eight Taiwanese patients. *Brain Dev.* 2001;23:715-720.
14. Huisman TA, Thiel T, Steinmann B, Zeilinger G, Martin E. Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex-vivo) correlation. *Eur Radiol.* 2002;12:858-861.
15. Kure S, Kojima K, Kudo T, et al. Chromosomal localization, structure, single-nucleotide polymorphism, and expression of human H-protein gene of the glycine cleavage system (GCSh), a candidate gene for nonketotic hyperglycinemia. *J Hum Genet.* 2001;46:378-384.
16. Kure S, Tada K, Narisawa K. Nonketotic hyperglycinemia: biochemical molecular and neurological aspects. *Jpn J Hum Genet.* 1997;42:13-22.
17. Applegarth DA, Toone JR, Rolland MO, et al. Nonconcordance of CVS and liver glycine cleavage enzyme in three families with non-ketotic hyperglycinemia (NKH) leading to false negative prenatal diagnoses. *Prenat Diagn.* 2000;20:367-370.
18. Deutsch SI, Rosse RB, Mastropaolo J. Current status of NMDA antagonist intervention in the treatment of nonketotic hyperglycinemia. *Clin Neuropharmacol.* 1998;21:71-79.
19. Hamosh A, Maher JF, Bellus GA, et al. Long-term use of high-dose benzoate and dextromethorphan for the treatment of nonketotic hyperglycinemia. *J Pediatr.* 1996;132:709-713.
20. Alemzadeh R, Gammeltoft K, Madsen K. Efficacy of Low-dose Dextromethorphan in the treatment of Nonketotic Hyperglycinemia. *Pediatrics.* 1996;97:924-926.
21. Matsuo S, Inoue F, Takeuch Y, et al. Efficacy of tryptophan for the treatment of nonketotic hyperglycinemia: A new therapeutic approach for modulating the N-methyl-D-aspartate receptor. *Pediatrics.* 1995;1:142-146.
22. Boneh A, Degani Y, Harari M. Prognostic clues and outcome of early treatment of nonketotic hyperglycinemia. *Pediatr Neurol.* 1996;15:137-141.