Growth Rate of *Plasmodium falciparum*: Analysis of Parasite Growth Data From Malaria Volunteer Infection Studies

Leesa F. Wockner,1,4 Isabell Hoffmann,1,8 Lachlan Webb,1 Benjamin Mordmüller,2 Sean C. Murphy,3 James G. Kublin,4 Peter O’Rourke,1 James S. McCarthy,1,a and Louise Marquart1

1QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia, 2Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany, 3Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA, 4Fred Hutchinson Cancer Research Center, Seattle, Washington, USA, 5School of Medicine, The University of Queensland, Brisbane, Queensland, Australia

Background. Growth rate of malaria parasites in the blood of infected subjects is an important measure of efficacy of drugs and vaccines.

Methods. We used log-linear and sine-wave models to estimate the parasite growth rate of the 3D7 strain of *Plasmodium falciparum* using data from 177 subjects from 14 induced blood stage malaria (IBSM) studies conducted at QIMR Berghofer. We estimated parasite multiplication rate per 48 hours (PMR48), PMR per life-cycle (PMRLC), and parasite life-cycle duration. We compared these parameters to those from studies conducted elsewhere with infections induced by IBSM (n = 66), sporozoites via mosquito bite (n = 336), or injection (n = 51).

Results. The parasite growth rate of 3D7 in QIMR Berghofer studies was 0.75/day (95% confidence interval [CI], .73–.77/day), PMR48 was 31.9 (95% CI, 28.7–35.4), PMRLC was 16.4 (95% CI, 15.1–17.8), and parasite life-cycle was 38.8 hours (95% CI, 38.3–39.2 hours). These parameters were similar to estimates from IBSM studies elsewhere (0.71/day, 95% CI, .67–.75/day; PMR48 26.6, 95% CI, 22.2–31.8) but significantly higher (P < .001) than in sporozoite studies (0.47/day, 95% CI, .43–.50/day; PMR48 8.6, 95% CI, 7.3–10.1).

Conclusions. Parasite growth rates were similar across different IBSM studies and higher than infections induced by sporozoite.

Keywords. CHMI; induced blood stage malaria; parasite growth rate; *Plasmodium falciparum* 3D7; statistical models.

The growth rate of *Plasmodium* parasites in the blood of infected individuals is a major determinant of parasite biomass and the pathology of malaria [1]. The therapeutic goal of preventing or treating malaria is to control parasite replication, using vaccines or antimalarial chemotherapy. Therefore, the parasite growth rate is an important outcome of malaria clinical trials designed to evaluate an effect on parasite replication after a vaccine-induced antibody response. Furthermore, the parasite growth rate is a key parameter of pharmacometric models used to predict the efficacy of antimalarial drugs [2].

The parasite multiplication rate (PMR) is the fold-change in number of parasites over a life-cycle. The PMR is derived from the log10-based parasite growth rate, and it is typically expressed as growth across a 48-hour period (PMR48), the generally accepted duration of the *Plasmodium falciparum* life-cycle. Analysis of historical studies of malaria therapy for syphilis, where parasitemia was determined by microscopy, estimated a PMR48 of 8 for several *P falciparum* strains [3]. The PMR48 estimates of clinical isolates of *P falciparum* collected from patients with malaria have varied from 2.3 to 6.0 in ex vivo cultures [4]. However, the effect of adaptation to culture is a key determinant of this variability. The PMR48 has also been estimated using parasitemia data from volunteer infection studies (VIS)—otherwise known as Controlled Human Malaria Infection (CHMI) studies—conducted to evaluate efficacy of blood stage vaccines. In VIS, healthy subjects are infected by bites of *Plasmodium*-infected mosquitoes [5, 6], by parenteral injection of cryopreserved *P falciparum* sporozoites [7, 8], or by intravenous injection of *Plasmodium*-infected erythrocytes using the induced blood stage malaria (IBSM) model [9, 10]. The PMR48 of 3D7 or NF54, the common *P falciparum* strains used in VIS, has been reported to range from 7.5 to 14.4 in mosquito bite studies [11–13] and from 10 [14] to 21 [15] in the IBSM model.
The PMRₜₚ may differ between malaria-naive individuals and individuals previously exposed to malaria [16], as well as between different parasite strains. The method used to measure parasitemia [17] and the statistical model used to estimate parasite growth rate [18, 19] can also substantially affect PMRₜₚ estimates. Estimating parasite growth rate accurately is important when developing blood stage vaccines and antimalarial drugs. Shorter parasite life-cycles than the generally accepted 48 hours have been estimated by visual interpretation of *P. falciparum* 3D7 parasitemia data in mosquito bite sporozoite studies [17]. However, the duration of *P. falciparum* 3D7 life-cycle in the IBSM model has not been estimated using a statistical model. Accurate estimation of the parasite life-cycle in the IBSM model would allow estimation of PMR per life-cycle (PMRLC).

In this study, we analyzed data from IBSM studies conducted at QIMR Berghofer (QIMR-B) in which subjects were inoculated with *P. falciparum* 3D7 under similar experimental conditions [20–32] and parasitemia quantitated by a validated quantitative polymerase chain reaction (qPCR) assay [33]. We estimated the parasite growth rate and parasite life-cycle of *P. falciparum* 3D7, to then calculate PMRₜₚ and PMRₗₚ. We compared these estimates with our estimates using data from IBSM studies conducted by other research groups [14, 15, 34–37], from mosquito bite sporozoite studies [17, 19, 34, 38], and from cryopreserved sporozoite studies [8, 10, 39–42].

METHODS

Induced Blood Stage Malaria Studies from QIMR Berghofer

We analyzed data from 177 malaria-naive healthy subjects who participated in 14 IBSM studies across 27 cohorts between 2012 and 2017 at Q-Pharm Pty Ltd (Supplementary Table 1). All studies were approved by the QIMR-B human research ethics committee, and all subjects provided informed consent (Supplementary Table 1).

Table 1 summarizes characteristics of the QIMR-B IBSM studies analyzed. Subjects were inoculated intravenously on Day 0 with human erythrocytes infected with approximately 1800, 2300, or 2800 viable *P. falciparum* 3D7 parasites. Subjects were treated with an antimalarial drug on Day 7, 8, or 9.

Parasite Growth Monitoring and Data Processing of Induced Blood Stage Malaria Studies from QIMR Berghofer

Parasite growth was monitored using a qPCR assay targeting the *P. falciparum* 18S ribosomal ribonucleic acid (rRNA) gene using a TaqMan probe [33]. Parasitemia was monitored twice daily after subjects were qPCR-positive until time of antimalarial drug administration. All samples from a subject were analyzed in duplicate or triplicate in a single assay at the end of study. Replicates were geometrically averaged on the log₁₀ scale. The limit of detection of the qPCR assay was 64 parasites/mL [33]. However, the qPCR assay frequently detected parasitemia densities below this value; the measured parasitemia densities were used in the analysis. If one parasitemia replicate was not detected, and the other replicate was positive, the replicate nondetected value was set to 1 parasite/mL to give zero on the log₁₀ scale, and the geometric mean of geometrically averaged parasitemia values was set to 32 parasites/mL (half the limit of detection of the qPCR assay). Other approaches to substitute nondetected parasitemia values have been reported including substitutition methods [12] and modeling techniques to handle censored observations [19, 43]. Processed individual parasitemia data for the 177 subjects are presented in Supplementary Table 2.

Induced Blood Stage Malaria and Sporozoite Studies from Other Research Groups

We analyzed parasitemia data from IBSM and sporozoite studies conducted by other research groups. These studies used a range of methodologies, including different means of infection (IBSM, mosquito bite, or cryopreserved sporozoites), different *P. falciparum* strains (3D7 or NF54), and different PCR methods to estimate parasitemia: TaqMan qPCR, SYBR Green qPCR, quantitative reverse-transcription PCR, or nested PCR with fluorescence quantification of band intensity (Table 2). The methodology used to process parasitemia data is summarized in Supplementary Table 3 and Supplementary Methods.

Statistical Models

Pretreatment parasitemia data from QIMR-B IBSM studies were used to fit log-linear and sine-wave growth models. Data were fitted overall by simultaneously analyzing data from the 177 subjects. Data

Table 1. Summary Details of QIMR Berghofer IBSM Studies

Characteristics	n (%)
Gender	
Male	129 (73%)
Female	48 (27%)
Age	
18–24	96 (54%)
25–29	50 (28%)
≥30	31 (18%)
Inoculum Dose (Approximate No. of Viable Parasites)	
1800	122 (69%)
2300	9 (5%)
2800	46 (26%)
Treatment Day	
Day 7	67 (38%)
Day 8	109 (62%)
Day 9	1 (0.6%)
Ethnicity	
White	155 (88%)
Other	22 (12%)

Abbreviations: IBSM, induced blood stage malaria.

*Number of subjects in each category. Total number of subjects, n = 177.
were also fitted by subject (177 subjects individually) and by cohort (27 cohorts individually). Data from IBSM and sporozoite studies conducted by other research groups were only analyzed overall for all data presented in each of the original publications. Model selection for the random effects structure in mixed-effects models was assessed using the Bayesian Information Criterion and the stability of the parameter estimates.

Log-Linear Parasite Growth Model

The log-linear model used to estimate parasite growth was as follows:

\[\log_{10}(Y) = a + m \times \text{time}, \]

where \(Y \) = parasitemia (parasites/mL) measured by qPCR; \(a \) = y-intercept, \(m \) = parasite growth rate per day; \(\text{time} \) = days from inoculation, ranging from first positive PCR timepoint to treatment. The model was fitted by subject using simple log-linear regression and by cohort and overall using a linear mixed-effects model with a random effect for \(a \) estimated using maximum likelihood. The models fitted by cohort assumed that the random effect for \(a \) was independent for each subject. For the model fitted overall, a nested random effect for \(a \) was included to capture the variability at cohort and subjects-within-cohort levels.

Sine-Wave Parasite Growth Model

The sine-wave model used to estimate parasite growth was as follows:

\[\log_{10}(Y) = a + m \times \text{time} + c \times \sin\left(\frac{2 \times \pi}{\text{period}} \times \text{time} + k\right), \]
where Y, a, m, and $time$ are as above, and $c =$ sine-wave amplitude; $period =$ duration of the parasite life-cycle in days; $k =$ sine-wave phase shift. This model was fitted by subject using nonlinear regression and by cohort and overall using a nonlinear mixed-effects model. The same random effects described in the log-linear model were applied. In addition, because each subject within a cohort received inoculum from the same batch, but the inoculum was not synchronized between cohorts, the model fitted overall included a random effect for the sine-wave phase shift modeled at the cohort level and assumed to be independent of the random effect for a.

Model convergence and parameter estimation for the sine-wave models fitted by subject were sensitive to the starting values of the model, which were chosen as the estimated parasite growth parameters of the sine-wave model fitted by cohort, for the cohort to which the subject belonged.

For all models, the time variable was centered by its corresponding mean to aid model convergence, calculated either at the overall or cohort levels as per the respective analysis group (calculated at cohort level for subject level analysis).

Parasite Multiplication Rate Estimation

The PMR_{48} was estimated as follows:

$$PMR_{48} = 10^{(2m)} ,$$

where m is the parasite growth rate per day estimated by the log-linear or sine-wave growth models, and 2 days is the accepted parasite life-cycle of 48 hours.

PMR_{LC} was estimated as follows:

$$PMR_{LC} = 10^{(period \times m)} ,$$

where m is the parasite growth rate per day and $period$ is the duration of the parasite life-cycle in days, both estimated by the sine-wave model.

Effect of Gender, Age, and Inoculum Size on Parasite Growth Parameters

The log-linear and sine-wave growth models described above were fitted to data from QIMR-B studies stratified by subject gender and age and by inoculum size (Supplementary Table 1). The inoculum size of 2300 viable parasites was excluded for analysis because of its small sample size ($n = 9$) (Table 1). The same random effects described above for the log-linear and sine-wave models were applied.

Statistical Analysis

Parasite growth models were fitted using the package nlme, version 3.1 [44] within R statistical software [45], version 3.3.0. Summary statistics (mean, maximum, minimum, standard deviation) were determined using R. Standard errors were extracted from the appropriate mixed-effects model and subsequently used to estimate 95% confidence intervals (CIs) based on the standard Normal distribution. Parasite growth rate estimates are presented as increase in parasitemia per day in log$_{10}$ scale. Parasite life-cycles were estimated per day and transformed as per hour with corresponding 95% CI.

A paired t test was used to compare parasite growth rates estimated by log-linear and sine-wave models fit by cohort and by subject. Two sample t tests were used to compare parasite growth rate, sine-wave amplitude, and parasite life-cycle estimated by growth models stratified by gender, age, and inoculum size.

Parasite growth rate and parasite life-cycle of pooled IBSM and sporozoite studies were estimated with random effects meta-analyses using the DerSimonian-Laird estimate [46]. Meta-analysis was performed using package meta, version 4.8–1 [47] within R. Differences in pooled estimates between groups were assessed using the between subgroup heterogeneity Q statistic. Studies that used a *Plasmodium* 18S rRNA PCR-based methodology that had been analytically validated and compared in an external quality assessment (EQA) program [48] were included in the pooled analysis (Table 2). The study from Mordmüller et al [10] was also included in the pooled analysis because the PCR methodology was comparable to those compared in the EQA program. All hypotheses were tested at the 5% significance level.

For QIMR-B studies, sensitivity analyses were performed to evaluate the effect of substituting nondetected parasitemia values. Nondetected parasitemia values were substituted by 3 different values: 1 parasite/mL, 32 parasites/mL (half of the limit of detection of the qPCR assay), and as a missing value.

RESULTS

Parasite Growth Rates of QIMR-B Induced Blood Stage Malaria Studies

Figure 1 shows the individual parasitemia profile of the 177 QIMR-B subjects and the overall fitted log-linear and sine-wave models of parasite growth. The log$_{10}$ parasite growth rate estimated fitting QIMR-B IBSM parasitemia data overall using a sine-wave model was 0.75/day (95% CI, 0.73–0.77/day), the amplitude was estimated as 0.63 log$_{10}$ parasites (95% CI, 0.59–0.66 log$_{10}$ parasites), and the parasite life-cycle was estimated as 38.8 hours (95% CI, 38.3–39.2 hours). This corresponds to a PMR_{48} of 31.9 (95% CI, 28.7–35.4) and a PMR_{LC} of 16.4 (95% CI, 15.1–17.8) (Table 3).

From the 1128 parasitemia timepoints for the QIMR-B IBSM studies, 26 (2.3%) had nondetected values for all replicates after the first positive value, and 105 (9.3%) had 1 replicate with nondetected values. Sensitivity of the model to substituted parasitemia values for these nondetected samples and replicates is presented in Supplementary Material (Supplementary Table 4 and Supplementary Material).

Parasite growth and shape parameters estimated overall were similar to parameters obtained by fitting the data by subject...
and by cohort (Supplementary Tables 5–7). The mean parasite growth rates estimated using log-linear models were significantly different to parasite growth rates estimated using sine-wave models when fitted by subject ($P < .001$) and by cohort ($P = .007$). This difference was not significant when only subjects treated on Day 7 were included in the analysis by cohort (Supplementary Table 8).

Analysis of data stratified by gender, age, and inoculum size is presented in Supplementary Table 9. The mean parasite growth rate and amplitude in female subjects were significantly higher than in male subjects when using a sine-wave model ($P < .001$), but not when using a log-linear model ($P = .10$). Subject age did not significantly affect parasite growth or shape parameters. The parasite life-cycle of the 2800 viable parasites inoculum was marginally longer than that of the 1800 viable parasites inoculum when using a sine-wave model ($P = .033$), but the opposite pattern was found for amplitude ($P = .025$).

Comparison of Parasite Growth Parameters of QIMR-B Induced Blood Stage Malaria (IBSM) Studies with IBSM and Sporozoite Studies Conducted by Other Research Groups

Parasite growth and shape parameters estimated using log-linear and sine-wave models fitted overall for data from IBSM, and sporozoite studies conducted by other research groups are presented in Table 3. The parasite growth rate of *P. falciparum* 3D7 estimated using parasitemia data from QIMR-B studies was similar to the parasite growth rate estimated using parasitemia data from pooled IBSM studies conducted by other groups (0.75/day [95% CI, .73–.77/day] vs 0.71/day [95% CI, .67–.75/day], $P = .087$) (Table 4). The duration of the *P. falciparum* 3D7 life-cycle for all IBSM studies (QIMR-B and studies from other groups) was similar to the *P. falciparum* 3D7 life-cycle from pooled sporozoite mosquito bite studies (40.6 hours [95% CI, 38.9–42.3 hours] vs 39.7 hours [95% CI, 38.4–40.9 hours], $P = .40$). However, the *P. falciparum* 3D7 growth rate from pooled IBSM studies from QIMR-B and other groups (0.73/day, 95% CI, 0.69–0.77/day; PMRab 28.9, 95% CI, 24.1–34.8) was significantly higher ($P < .001$) than the *P. falciparum* 3D7 growth rate from pooled sporozoite mosquito bite studies (0.47/day, 95% CI, 0.43–0.50/day; PMRab 8.6, 95% CI, 7.3–10.1).

The parasite growth rate of *P. falciparum* NF54 estimated using data from sporozoite studies by mosquito bite (0.51/day, 95% CI, .46–.57/day; PMRab 10.7, 95% CI, 8.4–13.6) was comparable ($P = .14$) with that of *P. falciparum* 3D7 (0.47/day, 95% CI, .43–.50/day; PMRab 8.6, 95% CI, 7.3–10.1) (Table 4) and comparable ($P = .42$) to the sporozoites studies using cryopreserved NF54.
Table 3. Parasite Growth Parameters for IBSM and Sporozoite Studies from Other Research Groups Fitted Overall Using the Log-Linear or Sine-Wave Model

Study	n^a	Log-Linear Model	Sine-Wave Model	Parasite Life-Cycle (hours) (95% CI)	Sine-Wave Amplitude (95% CI)		
		Parasite Growth Rate per Day (95% CI)	PMR_{48} (95% CI)	PMR_{LC} (95% CI)	Parasite Growth Rate per Day (95% CI)	PMR_{48} (95% CI)	PMR_{LC} (95% CI)
IBSM							
QIMR-B [20–32]	177	.71 (.67–.74)	25.7 (22.2–29.8)	13.8 (12.2–15.5)	.75 (0.73–0.77)	31.9 (28.7–35.4)	16.4 (15.1–17.8)
Payne et al [14]	27	.66 (.61–.71)	20.9 (16.8–25.9)	12.9 (10.7–15.5)	.69 (0.67–0.72)	24.5 (21.5–28.0)	14.7 (13.2–16.5)
Bijker et al [34]	5	.61 (.46–.77)	16.7 (8.2–34.0)	10.6 (5.8–19.3)	.79 (0.67–0.90)	37.3 (21.8–63.9)	20.8 (13.3–32.7)
Duncan et al [35]	5	.69 (.58–.80)	24.3 (14.7–40.3)	19.5 (12.2–31.2)	.73 (0.66–0.80)	28.8 (21.1–39.3)	22.8 (17.1–30.5)
Sanderson et al [15]	5	.67 (.50–.84)	22.2 (10.2–48.4)	13.4 (70–25.8)	.71 (0.58–0.84)	26.0 (14.3–47.6)	15.4 (9.3–25.4)
Lawrence et al [36]	17	.61 (.52–.69)	16.6 (11.0–24.2)	11.5 (8.0–15.9)	.67 (0.60–0.74)	22.3 (16.2–30.8)	14.9 (11.2–19.7)
Cheng et al [37]	4	.40 (.35–.46)	6.3 (5.0–8.2)	4.0 (3.4–4.9)	.40 (0.35–0.45)	6.3 (5.1–8.0)	4.0 (3.4–4.8)
Sporozoite Mosquito Bite							
Reuling et al [38]	16	.45 (.39–.51)	7.8 (5.9–10.3)	5.6 (4.4–7.0)	.44 (.39–.49)	7.7 (6.0–9.7)	5.5 (4.5–6.7)
Douglas et al [17]—TaqMan	94	.46 (.44–.48)	8.3 (7.4–9.2)	5.9 (5.4–6.5)	.47 (.45–.49)	8.7 (8.0–9.5)	6.2 (5.7–6.6)
Douglas et al [17]—SYBR Green	165	.39 (.36–.41)	5.9 (5.2–6.7)	4.3 (3.9–4.8)	.39 (.36–.42)	6.0 (5.3–6.8)	4.4 (4.0–4.9)
Bijker et al [34]	5	.56 (.42–.70)	13.2 (7.1–24.8)	7.8 (4.8–13.0)	.59 (.43–.74)	14.8 (7.1–30.9)	8.6 (4.8–15.4)
Coffeng et al [19]	56	.51 (.46–.55)	10.3 (8.2–12.8)	7.7 (6.4–9.4)	.51 (.46–.57)	10.7 (8.4–13.6)	7.9 (6.4–9.7)
Cryopreserved Sporozoites							
Sheehy et al [8]	14	.62 (.55–.70)	17.7 (12.3–25.5)	11.2 (8.3–15.3)	.67 (.62–.73)	22.3 (17.4–28.7)	13.7 (11.1–16.9)
Mordmüller et al [10]	16	.54 (.48–.61)	12.2 (8.1–16.4)	6.3 (5.1–7.8)	.51 (.45–.57)	10.6 (8.0–14.1)	5.7 (4.6–7.0)
Sulsky et alb [40]	4	.58 (.42–.73)	14.2 (7.0–28.4)	NA	NA	NA	NA
Murphy et alb [39]	4	.51 (.33–.70)	10.7 (4.5–25.3)	NA	NA	NA	NA
MALACHITE [41]	9	.49 (.36–.61)	9.5 (4.6–16.8)	4.9 (3.3–7.4)	.52 (.41–.62)	10.8 (6.7–17.4)	5.4 (3.8–7.6)
PREMVER [42]	4	.53 (.42–.64)	11.5 (8.9–19.3)	9.6 (5.9–16.4)	.51 (.44–.59)	10.7 (7.6–15.1)	8.9 (6.5–12.3)

Abbreviations: CI, confidence interval; IBSM, induced blood stage malaria; NA, not applicable; PMR_{48}, parasite multiplication rate per 48 hours; PMR_{LC}, PMR per life-cycle; QIMR-B, QIMR Berghofer.

^aNumber of subjects included in analysis for each study.

bSparse data with no cyclic pattern observed. Nonlinear models did not result in appropriate fits, so results are excluded.
Table 4. Parasite Growth Parameters of Pooled Studies using IBSM and Sporozoite Models Calculated Using Random Effects Meta-Analysis for Sine-Wave Model

IBSM (Datasets Analyzed)*	Parasite Growth Rate per Day (95% CI)	PMR_{48} (95% CI)	PMR_{LC} (95% CI)*	Parasite Life-Cycle (h) (95% CI)
QIMR-B IBSM (14 studies, 177 subjects)	.75 (.73–.77)	31.9 (28.7–35.4)	16.4 (15.1–17.8)	38.8 (38.3–39.2)
Others IBSM (3 studies, 40 subjects)	.71 (.67–.75)	26.6 (22.2–31.8)	17.2 (14.7–20.1)	41.6 (38.9–44.3)
QIMR-B + others IBSM (17 studies, 217 subjects)	.73 (.69–.77)	28.9 (24.1–34.8)	17.2 (14.7–20.1)	40.6 (38.9–42.3)
Sporozoites—mosquito bite (datasets analyzed)				
3D7 (3 studies, 115 subjects)	.47 (.43–.50)	8.6 (7.3–10.1)	5.9 (5.2–6.8)	39.7 (38.4–40.9)
NF54 (1 study 56 subjects)	.51 (.46–.57)	10.7 (8.4–13.6)	7.9 (6.4–9.7)	41.8 (40.5–43.2)
Sporozoites—cryopreserved (datasets analyzed)				
NF54 (4 studies, 43 subjects)	.56 (.47–.65)	13.1 (8.5–20.0)	7.9 (5.6–11.1)	38.5 (34.4–42.6)

Abbreviations: CI, confidence interval; h, hours; IBSM, induced blood stage malaria; PCR, polymerase chain reaction; PMR_{48}, parasite multiplication rate per 48 hours; PMR_{LC}, PMR per life-cycle; QIMR-B, QIMR Berghofer.

*Studies that used a Plasmodium 18S rRNA PCR-based methodology that had been analytically validated and compared in an EQA program were included in the meta-analysis (see Table 2): IBSM: Payne et al [14], Bijker et al [34], and Duncan et al [35] studies; sporozoite mosquito bite 3D7: Reuling et al [38], Douglas et al [17], and Bijker et al [34] studies; sporozoite mosquito bite NF54: Coffeng et al [19]; sporozoites cryopreserved NF54: Sheehy et al [8], Mordmüller et al [10], MALACHITE [41], PREMIVER [42].

The sine-wave model is a good indicator of the synchronicity of the infection, and values were generally higher in IBSM studies than in sporozoite studies, a factor that likely reflects the differences between different parasite lines used for mosquito bite studies. The overall result from the 14 studies was used. All other studies were treated as individual studies.

DISCUSSION

The dataset analyzed here offers a unique opportunity to characterize the growth of Plasmodium falciparum in malaria-naive subjects undergoing experimental infections. We estimated parasite growth rate, PMR_{48}, PMR_{LC}, amplitude and life-cycle of Plasmodium 3D7 by modeling data from 177 subjects of 14 IBSM studies conducted by QIMR-B at a single site using similar conditions. The parasite growth rates estimated for QIMR-B IBSM studies were similar to rates estimated using the same statistical models on data from other IBSM studies that used equivalent molecular methods, thus confirming the robustness of the estimates.

Our results suggest that the parasite growth rate is similar in studies using similar means of infection. Our estimates of PMR_{48} in subjects from the studies undertaken by Payne et al [14] and Duncan et al [35] were substantially higher than the estimates reported in their original publications (PMR_{48} = 10 [14] and ~17 [35], respectively), where the intercept was fixed and data were fitted by subject. However, fixing the intercept to the inoculum size by extrapolating beyond the range of measured parasitemia timepoints introduces a confounding effect on estimation of parasite growth rate [18]. Our estimate of the PMR_{LC} in subjects from the report by Coffeng et al [19], where subjects were infected with Plasmodium NF54, was marginally lower than the estimates in the original publication, which used a more complex model and Bayesian fitting framework; this suggests that using the sine-wave model to estimate parasite growth rate resulted in similar output.

The sine wave amplitude is a good indicator of the synchronicity of the infection, and values were generally higher in IBSM studies than in sporozoite studies, a factor that likely reflects some variation in time of rupture of infected liver schizonts.

The duration of the parasite life-cycle of the 3D7 strain of Plasmodium falciparum was similar in IBSM and sporozoite studies, and in all cases it was shorter than 48 hours. The life-cycle estimated for QIMR-B IBSM studies was 38.8 hours, whereas in a pooled analysis of IBSM studies from QIMR-B and other research groups the parasite life-cycle was 40.6 hours. To our knowledge, this is the first time the parasite life-cycle of Plasmodium 3D7 has been estimated for the IBSM model using a sine-wave model. In a previous study, life-cycle was fixed to 48 hours [3] when sine-wave models were used to estimate parasite growth rate. However, our results suggest that allowing the model to estimate the parasite life-cycle would result in more accurate estimates of parasite growth rate and the derived PMR_{LC}.

The PMR_{LC} provides an estimate of the average number of parasite progeny produced by a single infected erythrocyte over a replication cycle. According to our meta-analysis, each Plasmodium 3D7 parasite infects an average of 17.2 (95% CI, 14.7–20.1) erythrocytes in each life-cycle during IBSM infection. Previous in vitro studies with cultured Plasmodium 3D7 have reported the average number of merozoites within a schizont to be 22 [49]; however, the number of merozoites that successfully infected erythrocytes, which is estimated by the PMR_{LC}, was not reported.

Lower parasite growth rates in subjects infected by mosquito bite compared with those infected by IBSM have been previously reported [15]. This difference could be due to several reasons. Inocula used to infect subjects in all the IBSM studies were prepared from a single donor unit collected from a volunteer experimentally infected by mosquito bite from a single Plasmodium 3D7 in vitro culture. In contrast, parasites derived from mosquitoes used in sporozoite studies are from separate preparations of mosquitoes fed on in vitro-cultured parasites. It is possible that there are genetic or epigenetic differences between different parasite lines used for mosquito bite studies. Spence et al [50] reported that the parasite growth rate
of Plasmodium chabaudi in mice was higher when the infection was induced by IBSM than by mosquito bite, and they proposed that epigenetic reprogramming during sexual recombination in the mosquito may explain this difference. Furthermore, in mosquito bite studies, typically undertaken to test pre-erythrocytic vaccine efficacy, parasitemia is generally monitored only until infection is confirmed (1 to 3 parasite cycles), whereas in IBSM studies parasitemia is typically measured for 4 to 5 parasite life-cycles before treatment. It is possible that the preceding liver stage of sporozoite studies more strongly initiates innate or adaptive immunity that serves to slow subsequent growth in blood stage. Estimates of parasite growth rate will be more accurate as the duration of infection increases, as more data above the limit of detection are available for analysis. In the IBSM studies reported here, all inocula were effectively identical and prepared as the product of a single mosquito infection.

The parasite growth rates estimated using log-linear models appeared to be sensitive to the phase of the growth cycle of the last observation included in analyses. Although the log-linear model is simpler to implement because it does not require specialist software, our results suggest that fitting the sine-wave model can provide more consistent estimates of the parasite growth rate. An additional advantage of fitting the sine-wave model is that it provides estimates of the parasite amplitude and life-cycle. However, fitting the sine-wave model requires at least 6 observations, and convergence of the model can be sensitive to starting values.

The Bayesian Information Criterion has been used as an indication of model fit; however, mixed-effects models with other nested random effects based on alternative model selection criteria result in similar parameter estimates and conclusions. Inclusion of the additional random effect for m in the QIMR-B studies had minimal or no improvement on the model fit. Therefore, the more parsimonious models with a nested random effect for a is presented.

A limitation of this report is the lack of consistency in processing parasitemia values. We used geometric mean of replicate parasitemia data for QIMR-B studies, whereas arithmetic mean was used in 2 studies from other research groups [14, 35], and other studies did not specify how parasitemia data was processed. This difference in parasitemia data processing may influence comparison between studies.

CONCLUSIONS

This report presents the parasite growth rate, PMR₃₀, PMR₄₈, amplitude, and life-cycle of P falciparum 3D7 in subjects inoculated using the IBSM model under similar conditions. The parasite growth rates estimated using data from IBSM studies conducted by QIMR-B were comparable to estimates using data from other IBSM studies. The P falciparum 3D7 parasite life-cycle estimated in this study can be used to calculate the PMR₄₈ in future VIS.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Notes

Acknowledgments. We thank all volunteers who participated in the studies. We also thank all Q-Pharm staff involved in the conduct of QIMR Berghofer clinical trials, staff of the Queensland Paediatric Infectious Diseases laboratory for quantitative polymerase chain reaction analyses, and Dr. Katharine Trenholme for assistance with inoculum preparation. Furthermore, we thank Dr. Laura Cascales for serving as a medical writer. Finally, we thank Prof. Philip Bejon, Prof. Simon Draper, Dr. Sandy Douglas, Dr. Christopher Duncan, Prof. Adrian Hill, Dr. Susanne Hodgson, Dr. Stephen Hoffman, Prof. Peter Kremsner, Prof. Robert Sauerwein, and Dr. Isaac Reuling for assistance in analysis of previously published data and for constructive review of the manuscript.

Financial support. This work was partly supported by funds from the Bill & Melinda Gates Foundation received via Medicines for Malaria Venture (Grant Number OPP1111147) and partly by an NHMRC grant (Grant Number 1131932).

Potential conflicts of interest. All authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Kingston HW, Ghose A, Plewes K, et al. Disease severity and effective parasite multiplication rate in falciparum malaria. Open Forum Infect Dis 2017; 4:ofx169.
2. Simpson JA, Zaloumis S, DeLivera AM, Price RN, McCaw JM. Making the most of clinical data: reviewing the role of pharmacokinetic-pharmacodynamic models of antimalarial drugs. AAPS J 2014; 16:962–74.
3. Simpson JA, Aarons L, Collins WE, Jeffery GM, White NJ. Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection. Parasitology 2002; 124:247–63.
4. Murray L, Stewart LB, Tarr SJ, et al. Multiplication rate variation in the human malaria parasite Plasmodium falciparum. Sci Rep 2017; 7:6436.
5. Chulay JD, Schneider I, Cosgriff TM, et al. Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. Am J Trop Med Hyg 1986; 35:66–8.
6. Roestenberg M, McCall M, Hopman J, et al. Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 2009; 361:468–77.
7. Roestenberg M, Bijker EM, Sim BK, et al. Controlled human malaria infections by intradermal injection of
cryopreserved *Plasmodium falciparum* sporozoites. Am J Trop Med Hyg 2013; 88:5–13.
8. Sheehy SH, Spencer AJ, Douglas AD, et al. Optimising controlled human malaria infection studies using cryopreserved *P. falciparum* parasites administered by needle and syringe. PLoS One 2013; 8:e65960.
9. McCarthy JS, Sekuloski S, Griffin PM, et al. A pilot randomised trial of induced blood-stage *Plasmodium falciparum* infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS One 2011; 6:e21914.
10. Moore T, Surat G, Lagler H, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 2017; 542:445–9.
11. Steenbergen M, O’Hara GA, Duncan CJ, et al. Comparison of clinical and parasitological data from controlled human malaria infection trials. PLoS One 2012; 7:e38434.
12. Bejon P, Andrews L, Andersen RF, et al. Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J Infect Dis 2005; 191:619–26.
13. Joernsten CC, de Vlas SJ, van Gemert GJ, Telgt DS, Verhage DF, Sauerwein RW. Testing vaccines in human experimental malaria: statistical analysis of parasitemia measured by a quantitative real-time polymerase chain reaction. Am J Trop Med Hyg 2004; 71:196–201.
14. Payne RO, Milne KH, Elias SC, et al. Demonstration of the blood-stage *Plasmodium falciparum* controlled human malaria infection model to assess efficacy of the *P. falciparum* apical membrane antigen 1 vaccine, FMP2.1/AS01. J Infect Dis 2016; 213:1743–51.
15. Sanderson F, Andrews L, Douglas AD, Hunt-Cooke A, Bejon P, Hill AV. Blood-stage challenge for malaria vaccine efficacy trials: a pilot study with discussion of safety and potential value. Am J Trop Med Hyg 2008; 78:878–83.
16. Pinkeych M, Petravic J, Chelimo K, et al. Decreased growth rate of *P. falciparum* blood stage parasites with age in a holoendemic population. J Infect Dis 2014; 209:1136–43.
17. Douglas AD, Edwards NJ, Duncan CJ, et al. Comparison of modeling methods to determine liver-to-blood inocula and parasite multiplication rates during controlled human malaria infection. J Infect Dis 2013; 208:340–5.
18. Wockner LF, Hoffmann I, O’Rourke P, McCarthy JS, Marquart L. Comparison of statistical models to estimate parasite growth rate in the induced blood stage malaria model. Malar J 2017; 16:352.
19. Coffeng LE, Joernsten CC, Sauerwein RW, de Vlas SJ. The power of malaria vaccine trials using controlled human malaria infection. PLoS Comput Biol 2017; 13:e1005255.
20. McCarthy JS, Marquart L, Sekuloski S, et al. Linking murine and human *Plasmodium falciparum* challenge models in a translational path for antimalarial drug development. Antimicrob Agents Chemother 2016; 60:3669–75.
21. McCarthy JS, Baker M, O’Rourke P, et al. Efficacy of OZ439 (arteferomel) against early *Plasmodium falciparum* blood-stage malaria infection in healthy volunteers. J Antimicrob Chemother 2016; 71:2620–7.
22. McCarthy JS, Lotharius J, Rückle T, et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect Dis 2017; 17:626–35.
23. Pasay CJ, Rockett R, Sekuloski S, et al. Piperacaine monotherapy of drug-susceptible *Plasmodium falciparum* infection results in rapid clearance of parasitemia but is followed by the appearance of gametocytemia. J Infect Dis 2016; 214:105–13.
24. McCarthy JS, Rückle T, Djeriou E, et al. A phase II pilot trial to evaluate safety and efficacy of ferroquine against early *Plasmodium falciparum* in an induced blood-stage malaria infection study. Malar J 2016; 15:469.
25. Krause A, Dingemanse J, Mathis A, Marquart L, Möhrle JJ, McCarthy JS. Pharmacokinetic/pharmacodynamic modeling of the antimalarial effect of Actelion-451840 in an induced blood stage malaria study in healthy subjects. Br J Clin Pharmacol 2016; 82:412–21.
26. ClinicalTrials.gov. U.S. National Library of Medicine. Identifier: NCT02281344. A proof-of-concept study to assess the effect of MMV390048 against early *Plasmodium falciparum* blood stage infection in healthy participants. 2014. Available at: https://clinicaltrials.gov/ct2/show/NCT02281344. Accessed 06 June 2019.
27. McCarthy JS, Rückle T, Elliott S, et al. A single dose combination study with the experimental antimalarials arteferomel and DSM265 to determine safety and antimalarial activity against blood-stage *Plasmodium falciparum* in healthy volunteers. Antimicrob Agents Chemother 2019. doi:10.1128/AAC.01371-19
28. Collins KA, Wang CY, Adams M, et al. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions. J Clin Invest 2018; 128:1551–62.
29. ClinicalTrials.gov. U.S. National Library of Medicine. Identifier: NCT02543086. A phase I interventional sequential single site study to characterize the effectiveness of oral KAE609 in reducing asexual & sexual blood-stage *P. falciparum* following inoculation in healthy volunteers & subsequent infectivity to mosquitoes. 2015. Available at: https://clinicaltrials.gov/ct2/show/NCT02543086. Accessed 06 June 2019.
30. Collins KA, Rückle T, Elliott S, et al. DSM265 at 400 milligrams clears asexual stage parasites but not mature gametocytes from the blood of healthy subjects experimentally
infected with Plasmodium falciparum. Antimicrob Agents Chemother 2019; 63:e01837–18.

31. ClinicalTrials.gov. U.S. National Library of Medicine. Identifier: NCT02867059. A proof-of-concept study to assess the effect of (+)-SJ000557733 (SJ733) against early Plasmodium falciparum blood stage infection in healthy participants. 2016. Available at: https://clinicaltrials.gov/ct2/show/NCT02867059. Accessed 06 June 2019.

32. ClinicalTrials.gov. U.S. National Library of Medicine. Identifier: NCT02783833. A single centre, two-part, phase I study to investigate the safety, tolerability and pharmacokinetic profile of ascending oral doses of MMV390048 and its antimalarial activity against Plasmodium falciparum in healthy adult subjects, Part B. 2016. Available at: https://clinicaltrials.gov/ct2/show/NCT02783833. Accessed 06 June 2019.

33. Rockett RJ, Tozer SJ, Peatey C, et al. A real-time, quantitative PCR method using hydrolysis probes for the monitoring of Plasmodium falciparum load in experimentally infected human volunteers. Malar J 2011; 10:48.

34. Bijker EM, Bastiaens GJ, Teirlinck AC, et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc Natl Acad Sci U S A 2013; 110:7862–7.

35. Duncan CJ, Sheehy SH, Ewer KJ, et al. Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909. PLoS One 2011; 6:e22271.

36. Lawrence G, Cheng QQ, Reed C, et al. Effect of vaccination with 3 recombinant asexual-stage malaria antigens on initial growth rates of Plasmodium falciparum in non-immune volunteers. Vaccine 2000; 18:1925–31.

37. Cheng Q, Lawrence G, Reed C, et al. Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. Am J Trop Med Hyg 1997; 57:495–500.

38. Reuling IJ, van de Schans LA, Coffeng LE, et al. A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model. Elife 2018; 7:e31549.

39. Murphy SC, Duke ER, Shipman KJ, et al. A randomized trial evaluating the prophylactic activity of DSM265 against preerythrocytic Plasmodium falciparum infection during controlled human malarial infection by mosquito bites and direct venous inoculation. J Infect Dis 2018; 217:693–702.

40. Sulyok M, Rückle T, Roth A, et al. DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect Dis 2017; 17:636–44.

41. ClinicalTrials.gov. U.S. National Library of Medicine. Identifier: NCT02858817. Safety and protective efficacy of IV immunization with cryopreserved PfSPZ under A/P chemoprophylaxis. 2016. Available at: https://clinicaltrials.gov/ct2/show/NCT02858817. Accessed 06 June 2019.

42. European Union Clinical Trials Register. Evaluation of the potential anti-malarial effect of ivermectin: a controlled human malaria infection trial. Vol. EudraCT number: 2017-002723-16 European Medicines Agency. 2017. Available at: https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-002723-16/DE. Accessed 06 June 2019.

43. Twisk J, Rijmen F. Longitudinal tobit regression: a new approach to analyze outcome variables with floor or ceiling effects. J Clin Epidemiol 2009; 62:953–8.

44. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1; 2019.

45. R: A Language and Environment for Statistical Computing [computer program]. Vienna, Austria: R Core Team; 2015.

46. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7:177–88.

47. Schwarzer G. meta: an R package for meta-analysis. R News 2007; 7:40–5.

48. Murphy SC, Hermsen CC, Douglas AD, et al. External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance. PLoS One 2014; 9:e97398.

49. Garg S, Agarwal S, Dabral S, Kumar N, Sehrawat S, Singh S. Visualization and quantification of Plasmodium falciparum intraerythrocytic merozoites. Syst Synth Biol 2015; 9:23–6.

50. Spence PJ, Jarra W, Lévy P, et al. Vector transmission regulates immune control of Plasmodium virulence. Nature 2013; 498:228–31.