Investigative Study for Low Particulate Matter Emission in Rice Husk Combustion

Emmanuel Owoicho ABAH※1※3 , Tofael AHAMED※2 , and Ryozo NOGUCHI※2†

(Received January 9, 2020)

Biomass combustion is one of the major sources of particulate matter (PM) emission, which forms a crucial part of air pollution. This study investigated the effects of particle size of rice husk and bran impurities on the emission trend of PM2.5. Rice husk from the Koshihikari variety, *Oryza sativa* was prepared into 3.00 g as rice husk samples from Japan (JPN). JPN had no bran impurities and consisted of normal sized Japonica husk particles (4.00 – 5.50 mm). Rice husk from the Nerica rice variety (a hybrid of *O. sativa* and *O. glaberima*) was imported and was prepared into 3.00 g as Nerica rice husk samples from Nigeria (NGR). The samples were smooth rice husk particles (0.10 – 2.00 mm) and had bran impurities. Rice husk briquette was made from JPN samples without a binding material, was prepared into 3.00 g as rice husk briquette (RB) sample. Three samples were combusted in temperatures between 600°C and 1000°C for a 3 minutes duration. The experimental set up comprised a Yamato F100 fixed bed electric furnace, Dust Track II aerosol analyzer and Testo 350 flue gas analyzer. Higher PM2.5 emission (32.4 mg/g) was recorded for the combustion of RB at 700°C compared to that of NGR husk (23.7 mg/g) at 800°C, and JPN (13.6 mg/g) at 900°C. That is because, RB had a lower surface area and pore volume, which affected its air-fuel mixing during the combustion phases. JPN emitted higher carbon monoxide (1592.4 ppmv) due to higher Sulphur content (0.2wt%db). That caused additional competition for oxygen in the oxidation process of Sulphur from SO2 emission.

Key Words
Temperature, PM2.5, Combustion, Surface area, Particle size, Pore volume, Emission

※1 Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1, Tennoudai, Tsukuba-shi, Ibaraki 305-8572, Japan
※2 Faculty of Life and Environmental Sciences, University of Tsukuba 1-1-1, Tennoudai, Tsukuba-shi, Ibaraki 305-8572, Japan
※3 Federal Ministry of Agriculture and Rural Development Abuja, Nigeria
†Corresponding author: noguchi.ryozo.gm@u.tsukuba.ac.jp
1. Introduction

The total world capacity of renewable energy was 2,006,202 MW in 2016, with bioenergy having a share of 109,731 MW. Biomass combustion is proven as the most popular technology for heat and power generation. Biomass combustion systems range from small to medium scale plants. The efficiency of heat production from biomass combustion is reasonably high and economically sustainable. Biomass combustion consists of consecutive heterogeneous and homogeneous reactions. These reactions include drying, combustion of volatile substance, and char/ash combustion. Therefore, biomass combustion has become an important source of particulate matter (PM) emissions. PM is a significant part of air pollution. Air pollution has been a major cause of diseases and deaths especially in the developing countries due to the inability to afford cleaner sources of energy.

Biomass such as rice husk is combusted, using inefficient combustion techniques which emits PM and smoke. Air pollution from biomass combustion is regarded as the third largest contributor to the global burden of disease. Inefficient combustion of biomass fuels emits a complex mixture of carbon monoxide (CO), PM, and other harmful gases. The combustion of biomass with high silica ash content such as rice husk, can lead to the emission of chemical compounds.

Studies have shown that emissions from biomass combustion is dependent on temperature, fuel properties, furnace design and air-to-fuel ratio. Knowledge of specific fuel properties is required in developing measures for emission reduction since pollutant emission (CO, soot and polycyclic aromatic hydrocarbons PAHs) occurs due to incomplete combustion. Studies have been done on advanced combustion systems to study the effect of pelletization, moisture content, nature of the biomass on combustion rates and energy optimization.

However, natural draught systems such as open-air combustion or simplified brick combustion and other similar fixed bed combustion systems are still being used extensively in the developing countries, especially in rural areas. The inefficiency of these systems becomes a major source of indoor and outdoor pollutions. Therefore, biomass combustion systems require assessments in terms of emission of PM and toxic gases. There is a need to investigate the best-case scenario of biomass combustion in these systems that emits lower PM emissions in a shorter time duration. Also, to understand how to control PM emissions in scenarios where the biomass fuel has been altered during its formation process.

Therefore, the aim of this study is to investigate the effects of particle size, surface area, pore volume and bran impurities of rice husks on PM emissions. Air pollution has been a major cause of diseases and deaths especially in the developing countries due to the inability to afford cleaner sources of energy.

2. Materials and methods

2.1 Rice husk properties

2.1.1 Physical properties

Three different groups of samples were used in the experiment to control PM and gaseous emissions since the biomass fuel can be easily altered during the process of its formation. In this regard, Japanese and African Nerica rice husks were used in this study. The rice husk briquettes were used for the combustion experiments to solve the problems of low bulk density and extra cost of transportation of rice husk.

The first group of samples refers to the rice husk from Japanese rice Koshihikari variety of the Oryza sativa and was prepared into 3.00 g samples and labeled as JPN. JPN samples have no bran impurities and consisted of normal size Japonica husk particles from 4.00-5.50 mm (Table 1).

The second group of samples refers to the African rice husk of the Nerica rice variety (a hybrid of O. sativa and O. glaberima) and was imported and prepared into 3.00 g as NGR samples. The samples were smooth rice husk particles between 0.10-2.00 mm size and had bran impurities. The rice husk was obtained from rural milling centers in Nigeria. The NGR particle size was smaller due to the type of rice milling technology used in the rural areas.

Table 1	Properties of JPN, NGR, RB rice husk samples		
Variety	JPN	NGR	RB
Method of formation	Koshihikari	Nerica	Koshihikari
Integrated milling system	Non parboiled	Parboiled	Non parboiled
Single pass milling system	Bran	<20	0.8
Briquetting (grinding and compressing at 300°C)	Non parboiled		
Impurities	-	Bran	-
Average particle size (mm)	4.0–5.5	01-20	<20
Bulk density (g/mL)	0.1	0.3	0.8
Sample weight (g)	3.0	30	30
areas (single pass milling machines). Single pass milling involves the removal of husk and bran in a single operation.

The third group of samples refers to rice husk briquettes made by grinding and compressing JPN husk temperatures of 300 °C. 1 kg of the rice husk briquette was obtained from a Japanese company and was prepared into 3.00 g per sample. The samples were labelled as RB. The JPN, NGR and RB samples were within the standard moisture content of 10% required for paddy milling. Fig. 1 shows the physical appearance of the three rice husk samples.

2.1.2 C-H-N-S (ultimate) analysis

Ultimate analysis of the samples was determined using the Unicube elemental analysis equipment. Unicube applied elemental’s proprietary and improved Temperature Programmed Desorption (TPD) technology for maximum dependability and performance for gas separation. In combination with the most powerful detector available, it has the ability of determining samples with CN and CS elemental ratios. The C-H-N-S analysis of all the samples are presented in Table 2. Carbon content represented the quantity of matter from which coke was formed during combustion. Fuel samples containing higher carbon content were expected to have longer coke combustion phase. JPN had lower carbon content (37.53 wt.%db) than RB (39.37 wt.%db) and NGR (39.41 wt.%db). Consequently, RB and NGR samples were expected to have longer coke combustion which serves as additional PM emission source.

2.1.3 Particle size distribution

Particle size distribution was determined using the Beckman Coulter SA3100 experimental gas analyzer. Prior to the analysis, the rice husk samples were oven dried at 105 °C for 5 hours. Gas sorption is the most popular and accurate method for total surface area measurements and pore size, within a range of 0.4 to 200 nm diameter particles. The Coulter SA3100 applied the gas sorption method, which involves the adsorption of gas (adsorbate gas) onto the surface and into the pores of the samples. Adsorption is the condensation of gas molecules onto a sample's surface, while desorption is the removal of gas molecules from the sample. The resultant data is termed adsorption/desorption isotherm. The sample tube assembly was weighed before the rice husk samples were added to the sample tube. Next, the samples were logged for the outgassing procedure. The weight of the outgassed samples was recorded before the analysis. The Coulter SA3100 analyzer assumed that all the adsorptions were detected as a result of the physically adsorbed gas. It applied the static fully equilibrated volumetric method for adsorption and desorption isotherms. The adsorption process was measured in volumes, using the static fully equilibrated method. The ideal gas law was used in calculating both the free-space and the volume of adsorptive closed. The amount of gas in moles n, dosed into the measuring manifold is giving by equation (1):

\[PV = nRT \] (1)

where \(P \), \(V \), \(T \) and \(R \) correspond to pressure, volume, temperature of the dose manifold, and gas constant respectively. The volume statistics (Arithmetic) for JPN, NGR and RB samples are presented in Table 3.

2.1.4 Surface area and pore volume analysis

The surface area and pore volume analysis were determined using the Beckman Coulter SA3100. The Langmuir surface area calculation was applied to the adsorption isotherms data with type 1 properties. Type 1 isotherm can be obtained when the measured sample is

Table 3	The volume statistics (Arithmetic) of JPN, NGR and RB		
	JPN	NGR	RB
Volume (mL/g)	0.0243	0.0237	0.0230
Mean (nm)	18.51	24.14	27.09
Median (nm)	10.39	10.72	13.33
Mode (nm)	75.42	81.94	77.77
Calculation range (nm)	3.695-155.8	3.671-146.7	3.807-174

Table 2	C-H-N-S elemental of JPN, NGR and RB samples in (wt.%db)
Element	JPN
C	37.53
H	5.05
N	0.18
S	0.23

Fig. 1 Physical appearance and numerical value of bulk density (g/mL) for JPN, NGR, and RB samples prepared for combustion.
microporous, characterized by a rapid rise in the adsorbed volume at low pressure. The Langmuir calculation assumed that only a monolayer is formed. The equation is given below, where \(V_M \) is the volume of the monolayer, \(P_s \) is the sample pressure, \(b \) is the Langmuir constant, and \(V_r \) is the volume adsorbed.

\[
\frac{P_r}{V_i} = \frac{1}{b V_M} + \frac{P_s}{V_M}
\]

Therefore, a linear plot of \(P_r/V_i \) vs \(P_s/P_r \) produces the gram monolayer volume \(V_M \). The surface area was then calculated using the equation (3), where \(S_{Langmuir} \) is the Langmuir surface area and \(M \) is the gram molecular volume.

\[
S_{Langmuir} = \frac{N_A \times A_M \times V_M}{M}
\]

The t-plot procedure was used for the calculation of the micropore volume and micropore area. It was used for categorizing and sizing the sample pore structure. The t-plot calculated data (surface area of the meso and macropores, and micropore volume) was then used together with the BET surface area to measure the micropore surface area. The surface area and pore volume analysis of all the samples are presented in Table 4. JPN had higher surface area than NGR and RB samples. Also, the total pore volume of JPN was higher than that of NGR and RB samples. Increasing internal pore volume lead to a decrease in bulk density, hence, JPN had lower density, followed by NGR and RB.

2.1.5 Thermo-gravimetric analysis (TGA)

The Thermo-gravimetric analysis of all the samples was performed using the TGDTA 7300 (differential thermal balance) system. The TGDTA 7300 system was used to measure thermo-gravimetry (TG)/change in mass and DTA (temperature difference) in the sample simultaneously. The dynamic thermal analyses (TG and DTG) data were obtained for JPN, NGR and RB samples and presented in Fig. 2a – c. It is evident that the volatiles decomposition and TG total loss of the samples varies significantly. From the DTG curve (Fig. 2), JPN and RB underwent a two-stage degradation, compared to NGR which had a four-stage degradation. RB samples had higher TG-loss of 5.4% at 151.2 °C than JPN (5.0%) and NGR (4.6%). This loss is mainly moisture. Consequently, RB volatiles decomposition was lower than that of NGR and JPN. Incomplete combustion of volatiles can lead to more PM emission. The TG curves of all the 3 samples experienced a gradual weight (TG) losses as the temperature was increased. JPN had higher volatiles decomposition (51.1%) than NGR (49.8%) and RB (48.8%), and suggest that, JPN underwent a more efficient thermal degradation than NGR and RB. Therefore, JPN had higher TG loss (63.6%) than NGR (62.0%) and RB (61.2%). JPN had lower density and its drying process started earlier (54.1 °C) and RB (70.0 °C). This implies that, JPN had an overall better drying and decomposition.

Table 4 Surface area and pore volume analysis of JPN, NGR and RB samples

Parameter	JPN	NGR	RB
t-plot surface area (m^2/g)	9.829	8.704	8.004
Pore size (Desorp) vol. (mL/g)	0.02447	0.02368	0.02392
Pore size (Adsorp) vol. (mL/g)	0.02422	0.02258	0.02245
Total pore vol. (mL/g)	0.0216	0.0193	0.0184
Micropore volume (mL/g)	-0.00329	-0.00305	-0.00272
Langmuir surface area (m^2/g)	0.935	0.378	0.602

2.2 PM_{2.5} and flue gas analysis

This study was limited to particulate matter of size fraction of 2.5 µm. The combustion experiment was limited to temperature range of 600 – 1000 °C. The experimental conditions were limited to laboratory environment and using a small-scale fixed bed incinerator. Consequently, the size
Fig. 2 a: Thermogravimetric analysis of JPN rice husk sample, b: Thermogravimetric analysis of NGR rice husk sample, and c: Thermogravimetric analysis of RB rice husk briquette sample

per sample was limited to 3.00 g. However, the study gives insight and discussed the practical issues with the quantity of rice husk combusted at specific combustion temperatures.

For PM2.5 and flue gas samplings, combustion experiments were performed using all the samples. The samples were separately combusted in an electric furnace in temperature categories of 600 °C, 700 °C, 800 °C, 900 °C and 1000 °C. These temperature categories were selected since most biomass is combusted within this temperature range. The duration of each experiment under each temperature category was 3 minutes. This study adopted the experimental set-up of a previous study 3), and a Testo 350 flue gas analyzer was used in this experiment.

The Testo 350 was mounted at the top of the exhaust for flue gas analysis and for the measurement of the flue gas velocity (Fig. 3). The Testo 350 flue gas analyzer is suitable for wide range of professional measurements of industrial emissions. The analyzer consists of two key
components namely, the control unit and the analysis box. The analysis box comprised sensor system and electronics essential for carrying out emission measurement.

The targeted gaseous emission measurement for these experiments were carbon monoxide (CO) and oxides of nitrogen (NO, NO₂, NOₓ). The login interval for the data collection for the dust track II instrument was set at 10 secs mode. A total of 18 points data for 180 secs (3 minutes) was recorded by the instrument for each temperature category (600°C, 700°C, 800°C, 900°C, and 1000°C). PM₂.₅ emission (mg/g) represents the sum of the values from the 18 points data (180 secs) recorded for each temperature category. The total emission for JPN, NGR and RB samples was calculated for each temperature category, using equation (4) and (5) and the illustration presented in Fig. 4.

$$PM_{2.5} \text{ emission (mg/g)} = \frac{\int_{t_0}^{t_1} g(t) \cdot V_i \cdot S \cdot dt}{W_{\text{sample}}}$$ \hspace{1cm} (4)

$$PM_{2.5} \text{ emission (mg/g)} = \sum_{i=1}^{18} \frac{g_i \cdot V_i \cdot S \cdot \Delta t}{W_{\text{sample}}}$$ \hspace{1cm} (5)

where Δt is the time interval in secs ($\Delta t = 10$ s in this study) and g_i, V_i, and S are PM₂.₅ concentration at i, flue gas velocity at i, and cross-sectional area of the exhaust pipe (0.00061575 m²), respectively. $g(t)$ is the PM₂.₅ concentration and V_i is the flue gas velocity at time t.

3. Results and Discussion

3.1 PM₂.₅ emission analysis

Fig. 5 shows the result from the combustion of JPN samples and PM₂.₅ emission trend at the different stages of the combustion process. PM₂.₅ peaked between 20 and 60 s (depending on the temperature category) and declined rapidly. The peaked concentration occurred during the brief smoldering phase. The total period of emission as shown by the dotted line was between 10 and 80 secs. That is because, from the surface area and pore volume analysis, JPN had higher surface area and pore volume.

Consequently, a greater portion of JPN samples interacted actively with the combustion air. Also, the large interparticle space of the JPN samples resulted in its lower density, and improved turbulence thus, emitted lower PM₂.₅. Furthermore, JPN sample had lower carbon content which may have contributed to its low PM₂.₅ emission. Particle size was linearly related to pore space. Also, pore spaces had a negative linear relationship with bulk density.

The thermal gravimetric analysis of JPN showed a two-stage differential thermal degradation (DTG). The first combustion stage (drying) of JPN occurred at an earlier temperature of 54.1°C (Fig. 2a). And this suggested that the combustion cycle was rapid and efficient. Consequently, JPN had a total TG loss and decomposition rate of 63.6% and 51.1% respectively. Confirming that JPN underwent a rapid decomposition process due to its advantaged pore volume and surface area.

Fig. 6 shows the result from the combustion of NGR samples and PM₂.₅ emission trend at different stages of the combustion process. PM₂.₅ peaked between 20 and 70 s (depending on the temperature category) and declined slowly. The peaked concentration for each temperature category corresponds to the longer smoldering phase of the combustion process. The total period of emission is shown by the dotted line and was between 10 and 130 s.
and signify higher emission as compared to JPN. That is because NGR husk had higher density with smaller particle size rice husk and bran impurities. Which reduced the interparticle space, consequently decreasing the air-fuel mixing.

The bran impurities increased the carbon content of NGR as seen from the C_H_N_S analysis. Also, from the surface area and pore volume analysis, NGR had lower surface area and pore volume compared to JPN. That resulted in low efficiency and delayed flaming combustion stage as confirmed by the TG analysis. NGR had a four-stage DTG, having its first combustion stage at 63.7°C (Fig. 2b). Thus, compared to JPN, it had a lower volatiles decomposition. Consequently, it had a lower TG-total loss of 62.0%.

Result from the combustion of RB samples and PM2.5 emission is presented in Fig. 7. PM2.5 peaked between 30 and 140 s (depending on the temperature category). The peaked concentration lasted for longer periods compared to that of JPN and NGR. The peaked concentration for each temperature category corresponds to the longer smoldering phase of the combustion process. The total period of emission as shown by the dotted line was between 30 and 150 s, signifying higher emission.

The surface area and pore volume of RB was less compared to that of NGR and JPN. Consequently, the air-fuel interaction of RB was lower compared to that of NGR and JPN. Therefore, the first combustion stage of RB occurred at 82.9°C (Fig. 2c). Comparatively, RB had a delayed initial combustion stage compared to NGR and JPN. That can be seen from the lower TG loss and decomposition rate of 61.2% and 48.8%, respectively. Also, the combustion of higher volatile matter fuels emits higher amount of flammable substances which requires the supply of additional air for the complete combustion of these substance⁵. This explains why RB emitted higher PM2.5.

Fig. 8 presents the combine comparative result of PM2.5 emission in mg/g from the combustion of JPN, NGR and RB samples. PM2.5 emission from the combustion of JPN increased from a minimum of 5.5 mg/g at 600°C to a maximum of 13.6 mg/g at 900°C. Temperature increase at constant supply of combustion air can affect oxygen availability. Emission from NGR was higher at 800°C (23.7 mg/g). The high PM2.5 emission from NGR was due to the low pore volume and surface area, resulting in low turbulence between the combustion air and the rice husk fuel particles.

JPN had higher pore volume that aided the air-fuel mixing, thus, low emission. Therefore, particle size, fuel density, and interparticle space are not limited to combustion rate only, but also affect PM2.5 emission. For RB, emission decreased as temperature increased. High density fuel like RB, requires high temperature for complete combustion. This explained why RB combustion at 1000°C emitted lower PM2.5 (24.4 mg/g) compared to its combustion at 700°C (/g). These key factors are listed in Table 5.
3.2 Carbon monoxide emission analysis

Fig. 9 shows the result of CO emission from the combustion of JPN, NGR and RB samples. CO emission from the combustion of JPN decreased from an initial value of 523.2 ppm-v at 600 °C to 217.3 ppm-v and rapidly increased as temperature increase to 1000 °C. That is because of the incomplete oxidation of the carbon element in the fuel (smoldering phase) caused by oxygen deficiency (Table 5). This result agreed with Mitchella et al. (2016) that during the smoldering phase, the external layer of a fuel particle (char and unreacted fuel particles) decomposed at the center of the particle.

CO emission from RB samples recorded lower emission especially at higher temperatures. That is because the density of RB was higher (0.8 g/mL). RB combustion was gradual and stable than that of NGR and JPN. The higher Sulphur content of JPN as stated in Table 5 indicate that, there was more competition for oxygen during JPN oxidation than that of NGR and RB. The combustion of NGR or RB, which had smaller pore volume/particle size and surface area implies that, the char ignition occurred before the total combustion of volatiles. Also, low competition for oxygen was observed from Sulphur during the oxidation reaction.

Therefore, char and volatiles combustion occurred simultaneously. Consequently, the volatiles combustion was not completed. Thus, resulted in high PM$_{2.5}$. JPN emitted lower PM$_{2.5}$ and higher CO emission. Other studies also found weak correlation between PM$_{2.5}$ and CO emission (2, 10). However, Bignal et al. (2008) found moderate correlation between PM$_{2.5}$ and CO emission.

3.3 Oxides of Nitrogen

Fig. 10 shows the result from the measurement of oxides of Nitrogen (NO$_2$, NO, NOx) during the combustion of JPN, NGR and RB samples. RB emitted lower oxides of nitrogen because the combustion was characterized by higher smoldering phase and lower flaming phase. Consequently, lower gaseous emissions. Bignal et al. (2008) reported that the flaming phase of combustion emitted higher NO compared to the smoldering phase. NO, NO$_2$ and NOx originated from the nitrogen in the fuel, therefore, more NOx was emitted during the flaming phase.
3.4 Relationship among rice husk properties, PM$_{2.5}$ and flue gas emission

From the C-H-N-S analysis, NGR and RB had higher carbon content than JPN. Although, this difference was smaller, however, was influential. Also, fuel samples that have higher carbon content, requires longer coke combustion. And coke combustion generates more PM. This partly explains why NGR and RB had higher PM$_{15}$ emission compared to JPN. Also, JPN had higher sulphur content (0.23 wt.%db.) compared to NGR (0.16 wt.%db) and RB (0.11 wt.%db). This suggest more competition for oxygen as SO$_2$ was also emitted. Therefore, creating a shortage of oxygen needed for the oxidation of CO into CO$_2$. This explain why JPN emitted higher CO than NGR and RB.

NGR had higher nitrogen content (0.67 wt.%db.) compared to RB (0.34 wt.%db) and JPN (0.18 wt.%db). Bran impurities in NGR was a factor and suggested that NGR had more emission of oxides of Nitrogen. Although RB had more nitrogen content than JPN however, JPN emitted more oxides of nitrogen than RB.

JPN had lower mean particle size of 18.51 nm compared to 24.14 nm and 27.09 nm of NGR and RB respectively. This confirms that JPN had higher interparticle space. From the surface area and pore volume analysis, JPN had higher t-plot surface area (9.829 m2/g) than NGR (8.704 m2/g) and RB (8.004 m2/g). Indicating that, a great portion of the JPN sample was in the active combustion phase. Thus, having a rapid flaming combustion phase therefore, emitted lower PM$_{15}$. Also, the total pore volume of JPN was higher (0.0216 mL/g) compared to NGR (0.0193 mL/g) and RB (0.0184 mL/g). Hence, JPN had lower density (0.10 g/mL) than NGR (0.30 g/mL) and RB (0.80 g/mL). Subsequently, JPN had a better air-to-fuel mixing that resulted to low PM$_{2.5}$.

Interestingly, from the thermo-gravimetric analysis, RB had lower volatiles decomposition (48.8%). This indicates that, RB required higher pressure and secondary air in order to increase its volatiles combustion. The electric furnace used in this study had a constant air speed of 1.5 m/s, which was not enough for adequate oxygen supply for all the studied combustion temperatures and rice husk samples. Therefore, this partly explains why RB emitted higher PM$_{15}$. That is because, incomplete combustion of volatile matter leads to emission of PM.

As predicted, JPN had higher volatiles decomposition (51.1%) compared to NGR (49.8%) and RB (48.8%) samples. That was due to the lower density, higher surface area and pore volume. Consequently, the TG-total loss of JPN was higher (63.6%) than that of NGR (62.0%) and RB (61.2%). In general, carbon, sulphur and nitrogen contents of the samples affected PM$_{15}$ and gaseous emission. Particle size, surface area and pore volume affected the combustion stages, as seen from the insight provided by the thermo-gravimetric analysis. The general effects of rice husk properties on PM$_{2.5}$ and gaseous emission are summarized in Table 6.

4. Conclusions

This study investigated the effects of rice husk properties and bran impurities on PM$_{2.5}$ and gaseous emission. The following points are summarized from this experimental research for JPN, NGR and RB rice husk samples.

1) Oxygen availability and pore volume had significant influence on PM$_{2.5}$ at combustion temperature range from 600 – 700°C.
2) JPN had higher pore volume and emitted low PM$_{2.5}$ compared to NGR and RB.
3) Increased combustion temperature from 800–1000°C lead to oxygen deficiency, causing low air-fuel mixing for JPN and NGR. However, RB had better performance because of its high volatile matter content.
4) High Sulphur content created competition for oxygen needed for the oxidation of CO to CO$_2$ and emission of SO$_2$.
5) JPN had higher Sulphur content and emitted higher CO than NGR and RB samples.
6) Fuel properties such as surface area, pore volume and density greatly influenced the combustion phases.

Acknowledgments

The authors would like to thank Mr. Yasuyuki Hidaka (National Agriculture and Food Research Organization, Japan) for providing support and instrumentation for

CHNS	JPN	NGR	RB
Surface area, pore volume	High surface area/pore vol. improved air-fuel mixing and increased active combustion area	Low surface area/pore vol. led to Less air-fuel mixing, less active combustion area	Lowest surface area/pore vol. led to poor air-fuel mixing, less active combustion area
TGA	Rapid decomposition	Slow decomposition	Slow decomposition
conducting this research. We would like to thank the Nigerian Ministry of Agriculture and Rural Development for granting permission for this study at the University of Tsukuba, Japan. The authors extend their gratitude for cooperation to the Japanese authority to allow import of Nerica samples through quarantine procedure for experimental analysis in Japan.

References
1) IRENA, Renewable capacity statistics. The International Renewable Energy Agency, (2017), available online: https://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Capacity_Statistics_2017.pdf (accessed on April 7, 2020)
2) Klasen, E. M. et al., Environmental Research, 142, 424-431 (2015), DOI: http://dx.doi.org/10.1016/j.envres.2015.07.012
3) Abah, E. O. et al., J. Jpn. Inst. Energy, 97, 222-225 (2018), DOI: https://doi.org/10.3775/jie.97.222
4) Monedero, E.; Portero, H.; Lapuerta, M., Energies, 11, 1580 (2018), DOI: https://doi.org/10.3390/en11061580
5) Boguta, P.; Sokolowska, Z.; Skic, K., PLOS ONE, (2017), DOI: https://doi.org/10.1371/journal.pone.0189653
6) Greinert, A. et al., Energies, 13(2), 463 (2020), DOI: https://doi.org/10.3390/en13020463
7) Mierzwa-Hersztek, M. et al., Journal of Material Cycles and Waste Management, 21, 786-800 (2019), DOI: https://doi.org/10.1007/s10163-019-00832-6
8) Mitchell, E. J. S. et al., Fuel Processing Technology, 142, 115-123 (2016), DOI: http://dx.doi.org/10.1016/j.fuproc.2015.09.031
9) Chen, C. et al., PLOS ONE, 11(7), (2016), DOI: https://dx.doi.org/10.1371/journal.pone.0157984
10) Bartington, S. E. et al., Environmental Pollution, 220, 38-45 (2016), DOI: https://doi.org/10.1016/j.envpol.2016.08.074
11) Bignal, K. L.; Ashmore, M. R.; Headley, A. D., Environmental Pollution, 156(2), 332-340 (2008), DOI: https://doi.org/10.1016/j.envpol.2008.02.011