Anticoagulation Before Hospitalization Is a Potential Protective Factor for COVID-19: Insight From a French Multicenter Cohort Study

Richard Chocron, MD, PhD; Vincent Galand, MD; Joffrey Cellier, MD; Nicolas Gendron, MD, PhD; Thibaut Pommier, MD; Olivier Bory, MD; Lina Khider, MD; Antonin Trimaille, MD; Guillaume Goudot, MD, PhD; Orianne Weizman, MD; Jean Marc Alsac, MD, PhD; Laura Geneste, MD; Armand Schmeltz, MD; Vassili Panagides, MD; Aurélien Philippe, MD; Wassima Mansou, MD; Iannis Ben Abdallah, MD; Antoine Deney, MD; Salma El Bati, MD, PhD; Sabir Attou, MD; Philippe Juvin, MD, PhD; Thomas Delmotte, MD; Emmanuel Messas, MD, PhD; Théo Pezel, MD, PhD; Benjamin Planquette, MD, PhD; Baptiste Duceau, MD; Pascale Gaussem, MD, PhD; Willy Sutter, MD; Olivier Sanchez, MD, PhD; Victor Waldman, MD, PhD; Jean-Luc Diehl, MD, PhD; Tristan Mirault, MD, PhD; Guillaume Bonnet, MD, PhD; Ariel Cohen, MD, PhD; David M. Smadja, MD, PhD; for the Critical COVID-19 France Investigators

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with thrombotic outcomes with coagulation and endothelial disorders. Based on that, several anticoagulation guidelines have been proposed. We aimed to determine whether anticoagulation therapy modifies the risk of developing severe COVID-19.

METHODS AND RESULTS: Patients with COVID-19 initially admitted in medical wards of 24 French hospitals were included prospectively from February 26 to April 20, 2020. We used a Poisson regression model, Cox proportional hazard model, and matched propensity score to assess the effect of anticoagulation on outcomes (intensive care unit admission or in-hospital mortality). The study enrolled 2878 patients with COVID-19, among whom 382 (13.2%) were treated with oral anticoagulation therapy before hospitalization. After adjustment, anticoagulation therapy before hospitalization was associated with a better prognosis with an adjusted hazard ratio of 0.70 (95% CI, 0.55–0.88). Analyses performed using propensity score matching confirmed that anticoagulation therapy before hospitalization was associated with a better prognosis, with an adjusted hazard ratio of 0.43 (95% CI, 0.29–0.63) for intensive care unit admission and adjusted hazard ratio of 0.76 (95% CI, 0.61–0.98) for composite criteria intensive care unit admission or death. In contrast, therapeutic or prophylactic low- or high-dose anticoagulation started during hospitalization were not associated with any of the outcomes.

CONCLUSIONS: Anticoagulation therapy used before hospitalization in medical wards was associated with a better prognosis in contrast with anticoagulation initiated during hospitalization. Anticoagulation therapy introduced in early disease could better prevent COVID-19–associated coagulopathy and endotheliopathy, and lead to a better prognosis.

Key Words: anticoagulant ■ coagulopathy ■ COVID-19 ■ mortality ■ SARS-CoV-2
Chocron et al Oral Anticoagulation Is Protective in COVID-19

Since December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic spread rapidly throughout China1,2 with a higher transmission capacity and a higher mortality compared with SARS-CoV-1 epidemic of 2003.3 Coronavirus disease 2019 (COVID-19) clinical manifestations are first dominated by respiratory symptoms. Patients may experience severe cardiovascular damages4,5 associated with a coagulopathy characterized by an increase in procoagulant factors such as fibrinogen, and high levels of d-dimer that have been associated with a worsening of the disease and higher mortality.6–8 Increased incidence of venous thromboembolism, in particular pulmonary embolism, has been observed in several reports,9–12 and microvascular thrombosis in the lungs has been observed in autopsy series and during COVID-19 acute respiratory distress syndrome.13–16 Moreover, SARS-CoV-2 has been shown to induce vascular damage, and we recently described that circulating markers of endothelial lesion are a predictive factor for intensive care unit (ICU) referral and mortality, reinforcing the hypothesis of a COVID-19–associated microvascular dysfunction.17,18 The COVID-19–associated coagulopathy has led many medical societies to propose different anticoagulation strategies.19,20 Results showing that prophylactic anticoagulation with low-molecular-weight heparin (LMWH) improved critically ill patients’ prognosis argued for the use of prophylactic anticoagulation in patients with COVID-19.20–23 No protective effect of anticoagulation before hospitalization for COVID-19 on survival has been observed until now, in 2 small retrospective cohorts.24,25

Using data from a multicenter French cohort (n=2848), we aimed to determine whether anticoagulation therapy before hospitalization was an independent predictor for developing a severe form of the disease. Moreover, since several anticoagulation strategies based on recent national and international guidelines19,26 were used and still remain a matter of debate, we also aimed to analyze different prophylactic or therapeutic anticoagulation strategies introduced during hospitalization on patients’ clinical outcomes.

METHODS

Detailed data are available on request from the authors.

Study Settings and Population

From February 26 to April 20, 2020, consecutive patients with a diagnosis of SARS-CoV-2 infection and hospitalized in medical wards were included (none of the patients were directly admitted to the ICU). Patients were aged over 18 years old and were included in a retrospective multicentric (24 centers) observational study, which was named the CCF (Critical COVID-19 France) study and initiated by the French Society of Cardiology. Following World Health Organization criteria, SARS-CoV-2 infection was determined by positive results from real-time reverse transcriptase-polymerase chain reaction of nasal or pharyngeal swabs or lower respiratory tract aspirates (confirmed case) or by typical imaging characteristics on chest computed tomography (CT) when laboratory testing was inconclusive (probable case).27

Institutional Review Board Approval and Informed Consent

The CCF study was declared and authorized at the French data protection committee (authorization no. 2207326v0) and conducted in accordance with the ethical standards established in the 1964 Declaration of Helsinki and its later amendments (NCT04344327). Because an anonymized hospital database was used, informed consent from individual patients was not obtained.

Data Collection and Anticoagulation Regimen

All data were collected by local investigators in an electronic case-report form via the Research Electronic Data Capture software (Vanderbilt University, Nashville, TN) hosted by a secured server from the French Institute of Health and Medical Research at the Paris...
Cardiovascular Research Centre. Patients’ baseline information included demographic characteristics, coexisting medical conditions, cardiovascular comorbidities, and chronic medications. Clinical parameters and biological findings were recorded at admission. On the chest CT scan, the degree of pulmonary lesions with ground-glass opacities and areas of consolidation was categorized as low/moderate (<50% involvement) or severe (≥50% involvement). Data on pharmacologic therapies, mode of respiratory support, complications, and final vital status were also gathered during the hospitalization. Oral anticoagulation regimen at admission was categorized into 2 groups: (1) none and (2) oral anticoagulation therapy with a vitamin K antagonist (VKA) or direct oral anticoagulant (DOAC) anti-IIa (dabigatran) or anti-Xa (rivaroxaban or apixaban). The anticoagulation regimen prescribed during hospitalization was categorized into 3 groups: (1) prophylactic low dose (daily LMWH or twice-daily subcutaneous unfractionated heparin), (2) prophylactic high dose (double the preventive dose), and (3) therapeutic regimen. All medical interventions, including anticoagulation and pharmacologic treatments for COVID-19, were performed at the discretion of the referring medical team.

Outcomes
The time from diagnosis to death or ICU admission for ventilation support (including invasive, noninvasive, or high-flow oxygen) were used as a composite primary outcome to define ICU-free survival. The secondary outcome was the time from diagnosis to death only for the selected population of patients secondarily referred to the ICU after the medical ward. Outcomes were assessed using the electronic medical record.

Statistical Analysis
Continuous data were expressed as mean (SD) and categorical data as proportion. Patients were compared according to the use of oral anticoagulation therapy (VKA or DOAC) before hospitalization using the Mann–Whitney test for continuous variables and Fisher exact test for categorical variables. In the multivariable analysis, we used Poisson regression to assess the association between the use of oral anticoagulation therapy before hospitalization and outcomes. The model included as covariates sex, age, cardiovascular comorbidities (history of high blood pressure, dyslipidemia, body mass index, type 2 diabetes mellitus, and current smoking), plasma creatinine level (µmol/L), C-reactive protein (mg/L), fraction of inspired oxygen, and the degree of pulmonary lesions with ground-glass opacities, and areas of consolidation. For the survival analysis, the start of the study was triggered by the diagnosis of SARS-CoV-2 infection and hospitalization in a medical ward. The end of the study was defined either by the death of the patient during the hospitalization or by discharge alive from the hospital. Vital status was ascertained through April 20, 2020, with the potential period of follow-up ranging from 1 to 54 days. If the patient was still hospitalized on April 20, 2020, the vital status was coded as alive. Survival time was calculated as the difference between the date of the diagnosis of SARS-CoV-2 infection and the date of event occurrence (ICU admission and in-hospital death) or the date of hospital discharge or the length of hospital stay for patients still hospitalized at the end of the study (April 20, 2020). We used a Cox proportional hazard (PH) model adjusted for the same potential confounders included in the Poisson regression model to investigate the relationships between the use of oral anticoagulation therapy and outcomes. Kaplan–Meier method was used to represent the Cox PH model results according to the use or not of oral anticoagulation therapy before hospitalization for COVID-19.

We performed 3 sensitivity analyses: (1) To take into account the retrospective design and to avoid the bias caused by censored data (n=513), we performed a complete data analysis for mortality risk: the same Poisson regression analysis in the population of patients who were discharged alive from hospital or dead in hospital (total patients analyzed n=2335) and thus excluded patient with censored outcome; (2) to explore the individual effect of in-hospital anticoagulation therapy (unfractionated heparin or LMWH) on the one hand, and of anticoagulation treatment before hospitalization (VKA or DOAC) on the other hand, and the magnitude of each effect on outcome, we decided to rerun the Cox PH models in the selected population without anticoagulation before hospitalization (n=2466) for the subgroup of patients who were hospitalized in the ICU and for those who stayed in the medical ward using the outcome (in-hospital mortality); (3) to adjust for bias caused by nonrandom allocation of potential covariates, we performed a propensity-matched analysis of patients who were on oral anticoagulation therapy (VKA or DOAC) before hospitalization for COVID-19 infection compared with those who were not and rerun the Cox PH model adjusted only for plasma creatinine level, C-reactive protein, fraction of inspired oxygen, and the degree of pulmonary lesions with ground-glass opacities and areas of consolidation. Missing data were handled using multiple random forest imputation using chained equation (10 sets of imputations). All analyses were 2-sided and a \(P < 0.05 \) was considered statistically significant. Statistical analysis was performed using R studio software including R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS
Patient Characteristics
During the study period, 2878 consecutive patients who were hospitalized for SARS-CoV-2 infection in the
medical ward were included. The demographic and clinical characteristics of the patients with COVID-19 according to use of anticoagulation before hospitalization are provided in Table 1. For analysis of anticoagulation before hospitalization assessment, we excluded 30 patients who were treated by heparin or LMWH because the regimen (therapeutic or prophylactic doses) was not known. Among the study population, 382 of 2848 (13.4%) patients were treated with oral anticoagulation therapy before hospitalization, physicians decided to pursue anticoagulation for 341 (90.0%) patients and to use prophylactic low dose for 58 (15.2%), prophylactic high dose for 9 (2.4%), and therapeutic dose for 274 (71.7%) during hospitalization. Among the remaining 2466 patients, 1478 (59.9%) received prophylactic low dose, 261 (10.6%) received prophylactic high dose, and 246 (10.0%) were treated with therapeutic anticoagulation during hospitalization. Patients receiving oral anticoagulation before hospitalization were older (P<0.001) and had significantly more cardiovascular risk factors, that is, more high blood pressure, diabetes mellitus, and dyslipidemia (Table 1). Overall, 352 of 2848 (12.4%) patients including 84 (2.9%) under anticoagulation therapy before hospitalization assessment, we excluded 30 patients who were discharged alive from the hospital or dead in the hospital; total patients analyzed, n=2335) and found the same protective effect of oral anticoagulation before hospitalization was 0.70 (95% CI, 0.55–0.88; P=0.003; Figure 2). In this propensity-matched population, there was still a statistically significant difference in outcome between the 2 groups: adjusted hazard ratios for the effect of oral anticoagulation before hospitalization were 0.43 (95% CI, 0.29–0.63; P<0.001), 0.76 (95% CI, 0.61–0.98; P=0.04) and 1.09 (95% CI, 0.83–1.55; P=0.49), respectively, for ICU admission, ICU admission or in-hospital mortality (combined outcome), and for in-hospital mortality (Table 3). Regarding anticoagulation therapy introduced during hospitalization, we reran multivariable analysis in the subgroup of patients without oral anticoagulation before hospitalization (n=2466). For the entire population, we did not observe a significant association between the use of anticoagulation during hospitalization for any regimen (prophylactic low or high dose and therapeutic dose) and in-hospital mortality (Table 4). The results were similar for patients admitted to the ICU or for patients who stayed in the medical ward (Table 4).

Therapeutic Anticoagulation Before Hospitalization Decreased In-Hospital Mortality or ICU Admission

In the whole population and after adjustment, male sex, body mass index, C-reactive protein, fraction of inspired oxygen, and parenchymal opacification in chest CT scan were significantly associated with ICU admission and in-hospital mortality (Table 2). Therapeutic oral anticoagulation before hospitalization was associated with a better outcome, with a relative risk (RR) of 0.45 (95% CI, 0.32–0.62; P<0.001) for ICU admission and relative risk of 0.72 (95% CI, 0.57–0.90; P=0.006) for ICU admission or in-hospital mortality. The use of prophylactic high-dose or therapeutic anticoagulation during hospitalization was significantly associated with higher ICU admission and in-hospital mortality (relative risk, 2.00; 95% CI, 1.49–2.70; P<0.001; and relative risk, 1.62; 95% CI, 1.21–2.18; P=0.001, respectively) (Table 2). To take into account the retrospective design and to avoid the bias caused by censored data (n=513), the same multivariable analysis was performed in the selected population of patients without censored outcome (patients who were discharged alive from the hospital or dead in the hospital; total patients analyzed, n=2335) and found the same protective effect of therapeutic anticoagulation before hospitalization for COVID-19 and worse outcome for receiving prophylactic high-dose or therapeutic-dose anticoagulation during hospitalization (Table S1). Effect of oral anticoagulation before hospitalization on outcomes was confirmed by using the Kaplan–Meier curve and multivariable adjusted Cox PH model (Figures 1 and 2). In the multivariable adjusted Cox regression model, the adjusted hazard ratio for the effect of oral anticoagulation before hospitalization was 0.70 (95% CI, 0.55–0.88; P=0.003; Figure 2). In this multivariable adjusted Cox regression model, we also confirmed that male sex and chest CT scan with ≥50% opacification were associated with a high risk of ICU transfer or in-hospital mortality (Figure 2). In sensitivity analysis, the propensity matching yielded 382 patients who received oral anticoagulation and 1528 patients who did not before hospitalization, with balanced variables between the groups (Table S2). In this propensity-matched population, there was still a statistically significant difference in outcome between the 2 groups: adjusted hazard ratios for the effect of oral anticoagulation before hospitalization were 0.43 (95% CI, 0.29–0.63; P<0.001), 0.76 (95% CI, 0.61–0.98; P=0.04) and 1.09 (95% CI, 0.83–1.55; P=0.49), respectively, for ICU admission, ICU admission or in-hospital mortality (combined outcome), and for in-hospital mortality (Table 3).

DISCUSSION

In this retrospective study, we demonstrated that an early anticoagulation before COVID-19 hospitalization improves the outcome of patients with COVID-19. Using a multicenter French study of patients hospitalized for COVID-19, we provide evidence that previous oral anticoagulation with VKA or DOAC significantly decreased ICU admission or in-hospital mortality. Furthermore, in patients without anticoagulation before hospitalization, anticoagulation started during hospitalization (heparin or LMWH) was not associated with a better prognosis. Importantly, this is the first study evaluating anticoagulation in patients with COVID-19 that provides a clear description of baseline patient characteristics.21,24,31
Table 1. Patient Characteristics and Outcomes According to the Use of Oral Anticoagulation Before Hospital Admission

	Total Population	No Oral Anticoagulation	Oral Anticoagulation	P Value
	n=2878	n=2466*	n=382	
Age, y, mean (SD)	66.63 (16.96)	64.81 (16.83)	78.34 (12.55)	<0.001
Male sex, n (%)	1666 (57.9)	1412 (57.3)	233 (61.0)	
Time from onset illness to hospitalization, days, mean (SD)	6.76 (4.66)	6.95 (4.58)	5.72 (5.03)	<0.001

Cardiovascular comorbidities
- Body mass index, kg/m², mean (SD) 27.82 (6.03) 27.88 (6.04) 27.63 (6.07) <0.47
- High blood pressure, n (%) 1453 (50.5) 1149 (46.6) 291 (76.2) <0.001
- Diabetes mellitus, n (%) 677 (23.5) 558 (22.6) 112 (29.3) 0.016
- Dyslipidemia, n (%) 800 (27.8) 632 (25.6) 157 (41.1) <0.001
- Current smoking, n (%) 378 (13.1) 309 (12.5) 60 (15.7) 0.20
- History of venous thromboembolism, n (%) 212 (7.4) 113 (4.6) 83 (21.7) <0.001
- History of atrial fibrillation, n (%) 416 (14.5) 118 (4.8) 293 (76.7) <0.001

Medication
- Beta blockers, n (%) 735 (25.5) 526 (21.3) 201 (52.6) <0.001
- ACE inhibitors, n (%) 506 (17.6) 402 (16.3) 102 (26.7) <0.001
- ARBs, n (%) 469 (16.3) 381 (15.5) 86 (22.5) 0.001
- Any diuretic medication, n (%) 564 (19.6) 378 (15.3) 179 (46.9) <0.001
- Antplatelet therapy, n (%) 627 (21.8) 575 (23.3) 47 (12.3) <0.001
- Immunosuppressive drug, n (%) 147 (5.1) 122 (4.9) 17 (4.5) 0.77
- Diabetes mellitus oral drug, n (%) 451 (15.7) 377 (15.3) 70 (18.3) 0.15
- Statins, n (%) 653 (22.7) 527 (21.4) 122 (31.9) <0.001

Anticoagulation characteristics
- Oral anticoagulation therapy, n (%) … … 232 (60.7)
- Vitamin K antagonists 150 (6.2) … 150 (39.3)
- Heparin 30 (1.0) … …
- Anticoagulation indication, n (%) … … 260 (68.1)
- Atrial fibrillation 370 (12.9) … 83 (21.7)
- Venous thromboembolism 212 (7.4) … 83 (21.7)
- Unknown 39 (1.3) 39 (10.2)
- Direct oral anticoagulants, type, n (%) … … 85 (22.3)
- Rivaroxaban 85 (3.0) … 85 (22.3)
- Apixaban 132 (4.6) … 132 (34.6)
- Dabigatran 15 (0.5) … 15 (3.9)
- In-hospital anticoagulation, n (%) … … 23 (6.0)
- None 337 (11.7) 313 (12.7) 23 (6.0)
- Prophylactic low dose 1549 (53.8) 1478 (59.9) 58 (15.2)
- Prophylactic high dose 271 (9.4) 261 (10.6) 9 (2.4)
- Therapeutic dose 533 (18.5) 246 (10.0) 274 (71.7)
- Unknown 188 (6.5) 188 (8.8) 18 (4.7)

Biology
- Hemoglobin—g/L, mean (SD) 131.2 (19.9) 132.1 (19.3) 126.9 (22.2) <0.001
- Platelet count—x10^9/L, mean (SD) 220.44 (99.21) 221.72 (99.71) 209.72 (92.20) 0.02
- Plasma creatinine level—µmol/L, mean (SD) 98.24 (95.63) 93.70 (86.95) 126.73 (137.06) <0.001
- Creatinine clearance (Cockcroft-Gault), mL/min, mean (SD) 102.57 (109.56) 83.85 (250.52) 0.02

(Continued)
Based on the rationale that SARS-CoV-2 infection is associated with endothelial dysfunction, COVID-19–induced coagulopathy might be a consequence of endothelial injury. We indeed previously described that patients with COVID-19 treated with therapeutic anticoagulation had a lower level of circulating endothelial cells, a marker of endothelial lesion. This protective effect of anticoagulation therapy on endothelial dysfunction could explain the protective effect of anticoagulation on microvascular thrombosis and coagulopathy observed in patients with COVID-19. Indeed, endotheliitis has been described during COVID-19 and could be at the origin of impaired microcirculatory function affecting particularly the lungs and kidneys. From patients’ autopsies, this endotheliitis has been described associated with an angiogenic process in the lungs. Moreover, the central involvement of endothelial compartment in COVID-19 outcome and pathophysiology is supported by the higher level of circulating endothelial cells in patients who are COVID-19 positive versus negative, associated with the increased plasma levels of angiopoietin-2 and E-selectin correlated to ICU transfer. In the present study, we observed that anticoagulation administered before hospitalization for COVID-19 had a significant positive impact on ICU admission or in-hospital mortality by contrast with patients without anticoagulation. Our results are not in line with those of Tremblay et al, who recently reported that they used a propensity score to compare patients who were anticoagulated versus nonanticoagulated before hospitalization. Of note, the logistic regression model they used to calculate the propensity score was not adjusted on relevant cardiovascular comorbidities such as hypertension, diabetes mellitus, smoking, or renal function and could explain the divergent results in the literature. This makes the association between anticoagulation and outcomes difficult to analyze since endothelial dysfunction during COVID-19 mostly results from these comorbidities.

Table 1. Continued

	Total Population	No Oral Anticoagulation	Oral Anticoagulation	P Value	
Glomerular filtration rate					
(MDRD), L/min per 1.73 m², mean (SD)	n=2878	81.62 (29.51)	83.92 (28.59)	67.28 (30.86)	<0.001
White blood cells					
(×10⁹/L), mean (SD)	n=2466*	7.33 (5.14)	7.34 (5.35)	7.17 (3.41)	0.55
Lymphocytes					
(×10⁹/L), mean (SD)	n=382	1.31 (3.46)	1.34 (3.68)	1.13 (1.67)	0.29
C-reactive protein					
(mg/L), mean (SD)	n=382	90.34 (77.11)	90.87 (78.38)	86.67 (87.44)	0.33
FiO₂, %, mean (SD)					
n=382	28.62 (12.11)	28.63 (12.10)	28.71 (12.23)	0.91	
PaO₂ mm Hg, mean (SD)					
n=382	80.89 (29.08)	81.30 (29.28)	79.08 (27.74)	0.26	
Parenchymal opacification					
in chest CT scan >50%, n (%)	n=382	430 (14.9)	377 (15.3)	51 (13.4)	<0.001
Time from hospital admission					
to ICU admission, mean (SD)	n=382	8.74 (6.50)	8.62 (6.56)	9.48 (8.07)	0.02
Time from hospital admission					
to in-hospital death, mean (SD)	n=382	8.68 (6.93)	8.86 (7.39)	8.14 (5.28)	0.41
Noninvasive mechanical ventilation					
n (%)	n=382	81 (2.8)	69 (2.8)	11 (2.9)	0.99
Invasive mechanical ventilation					
n (%)	n=382	370 (12.9)	341 (13.8)	27 (7.1)	<0.001
Reasons for ICU admission					
n (%)	n=382	<0.001			
Septic shock					
n (%)	n=382	2 (0.1)	0 (0.0)	2 (0.5)	
Acute respiratory failure					
n (%)	n=382	522 (18.1)	480 (19.5)	39 (10.2)	
Acute cardiac failure					
n (%)	n=382	9 (0.3)	6 (0.2)	2 (0.5)	
Other					
n (%)	n=382	5 (0.2)	5 (0.2)	0 (0.0)	
In-hospital mortality					
etiology, n (%)	n=382	<0.001			
Acute respiratory failure					
n (%)	n=382	309 (10.7)	236 (8.6)	70 (18.3)	
Acute cardiac failure					
n (%)	n=382	13 (0.5)	8 (0.3)	4 (1.0)	
Cardiac arrest					
n (%)	n=382	19 (0.7)	12 (0.5)	7 (1.8)	
Other					
n (%)	n=382	15 (0.5)	12 (0.5)	3 (0.8)	

ACE indicates angiotensin-converting-enzyme inhibitors; ARBs, angiotensin II receptor blockers; CT, computed tomography; FiO₂, fraction of inspired oxygen; ICU, intensive care unit; LMWH, low molecular weight heparin; MDRD, modification of diet in renal disease; and PaO₂, partial pressure of oxygen.

*Patients treated with LMWH or unfractionated heparin at admission were excluded because the therapeutic or prophylactic regimen was unknown.
in Wuhan, China, a prophylactic dose of LMWH used in 99 patients decreased mortality only in a specific subgroup of patients with a sepsis-induced coagulopathy.21 In our study, we have tried to discern the specific and individual effect of the anticoagulation before hospitalization and anticoagulation initiated during hospitalization. In our population, no beneficial effect of prophylactic anticoagulation was reported, as recently described by Lynn et al.37 Even for prophylactic high doses or therapeutic anticoagulation introduced...

Oral anticoagulation prior admission (DOAC or VKA)	ICU Admission	ICU Admission or In-Hospital Mortality	In-Hospital Mortality					
RR	95% CI	P Value	RR	95% CI	P Value	RR	95% CI	P Value
0.45	0.32–0.62	<0.01	0.72	0.57–0.90	<0.01	0.94	0.68–1.26	0.68

In-hospital anticoagulation

Prophylactic low dose	RR	95% CI	P Value	0.81–1.66	0.44	
Prophylactic high dose	2.92	2.02–4.31	<0.01	2.00	1.49–2.70	<0.01
Therapeutic dose	2.64	1.81–3.92	<0.01	1.62	1.21–2.18	<0.01
Age, y	0.98	0.97–0.98	<0.01	1.01	1.00–1.01	<0.01
Male sex, n (%)	1.46	1.21–1.77	<0.01	1.35	1.16–1.56	<0.01
High blood pressure, n (%)	1.09	0.88–1.33	0.41	1.04	0.88–1.22	0.61
Diabetes mellitus, n (%)	1.12	0.90–1.37	0.31	1.13	0.95–1.32	0.15
Dyslipidemia, n (%)	1.22	0.99–1.50	0.05	1.07	0.91–1.25	0.39
Current smoker, n (%)	1.10	0.86–1.37	0.44	1.02	0.83–1.23	0.84
Body mass index, kg/m², mean (SD)	1.02	1.01–1.04	<0.01	1.01	0.99–1.02	0.09
Plasma creatinine level—µmol/L, mean (SD)	1.00	0.99–1.01	0.47	1.00	1.00–1.01	<0.01
C-reactive protein, mg/L, mean (SD)	1.00	1.01–1.02	<0.01	1.00	1.00–1.01	<0.01
FiO₂, %, mean (SD)	1.02	1.01–1.02	<0.01	1.02	1.01–1.02	<0.01
Parenchymal opacification in chest CT scan >50%	1.61	1.32–1.94	<0.01	1.44	1.22–1.69	<0.01

In-hospital mortality or ICU admission as a composite event to define ICU-free survival (B) and to in-hospital mortality (C). CT indicates computed tomography; DOAC, direct oral anticoagulant; FiO₂, fraction of inspired oxygen; ICU, intensive care unit; RR, relative risk; and VKA, vitamin K antagonist.

Figure 1. Survival curves of Cox proportional hazard model according to admission to ICU admission. A. Admission to in-hospital mortality, or ICU admission as a composite event to define ICU-free survival (B) and to admission to in hospital mortality (C). Cox proportional hazards model is adjusted for sex, age, cardiovascular comorbidities (history of high blood pressure, dyslipidemia, body mass index, type 2 diabetes mellitus, and current smoking), plasma creatinine level (µmol/L), C-reactive protein (mg/L), and fraction of inspired oxygen. The degree of pulmonary lesions with ground-glass opacities and areas of consolidation and the use of in hospital anticoagulation (preventive low or high dose and therapeutic dose anticoagulation). DOAC indicates direct oral anticoagulant; ICU, intensive care unit; and VKA, vitamin K antagonist.
during hospitalization, an increase of patients with unfavorable outcome was observed. This finding is supported by the recent description of Paranjpe et al., who found that patients who received anticoagulation were more likely to require invasive mechanical ventilation. We hypothesize that prehospital anticoagulation (VKA or DOAC) is more likely efficient at the early step of disease by preventing COVID-19–associated coagulopathy and endotheliopathy. Once the endotheliitis condition is reached, the COVID-19 worsens and the anticoagulation therapy loses its protective effect.

The clinical course of COVID-19 consists of 2 main phases: viral infection followed by immune and inflammatory response. Both phases are associated with coagulopathy and potential need of anticoagulation but probably with several different objectives. In both phases, anticoagulation could decrease microthrombosis in small lung vessels and delay aggravation in the early phase or decrease the burst of thromboinflammation and associated microthrombosis. Early anticoagulation before hospitalization for COVID-19 could also help, besides the coagulopathy associated with endothelial lesion, directly on the inhibition of the entry of SARS-CoV-2 into endothelial cells. Indeed, cell entry of SARS-CoV-2 depends on the binding of the viral spike proteins to cellular receptors and on spike-protein priming by host cell proteases. It has been demonstrated that serine protease TMPRSS2 is necessary for spike-protein priming. Thus, a TMPRSS2 inhibitor has been proposed as a treatment option. If virus entrance inside cells is dependent on a serine protease action, anticoagulation, by blocking the coagulation cascade, could directly limit the virus entrance in endothelial but also in other cells. This hypothesis needs to be tested in preclinical models of infection.

Our study has several limitations. Because of its retrospective design, it precludes determination of any causal relationship between the use of oral anticoagulants and outcomes. Moreover, this study has included only patients who were initially hospitalized in the medical ward and did not include patients who were directly admitted to the ICU. This selected population would not be representative of all patients with COVID-19. Despite efforts to control confounders by using different analytical strategies, some potential biases may have been disregarded such as the delay to introduction of anticoagulation, the duration of anticoagulation therapy during hospitalization and its indication.

Table 3. Hazard Ratios of Cox Proportional Hazard Model According to Admission to ICU Admission (A)

	aHR	95% CI	p-value
Oral anticoagulation prior admission (VKA or DOAC) (n=382)			
Admission to ICU admission	0.43	0.29–0.63	<0.001
Admission to in-hospital mortality or ICU admission as a composite event to define ICU-free survival	0.76	0.61–0.98	0.04
Admission to in-hospital mortality	1.09	0.83–1.55	0.49

Admission to in-hospital mortality or ICU admission as a composite event to define ICU-free survival (B) and to admission to in hospital mortality (C) in propensity matched population (n=1528). Cox proportional hazards model is adjusted for sex, age, cardiovascular comorbidities (history of high blood pressure, dyslipidemia, body mass index, type 2 diabetes mellitus, and current smoking), plasma creatinine level (µmol/L), C-reactive protein (mg/L), fraction of inspired oxygen, the degree of pulmonary lesions with ground-glass opacities and areas of consolidation, and the use of in-hospital anticoagulation (preventive low or high dose and therapeutic dose).
In conclusion, our study is the first to demonstrate a beneficial effect of oral anticoagulation before hospitalization for COVID-19 on disease outcomes. Our results provide new data to suggest introduction of anticoagulation in ambulatory patients in case of close contacts with patients with confirmed COVID-19. Anticoagulation introduction in early disease, in particular in ambulatory patients, could prevent coagulopathy and endothelial-related disease, while an anticoagulation introduction too late, during the thrombo-inflammatory phase, do not provide protective effects. This hypothesis needs to be tested in appropriate prospective randomized studies.

ARTICLE INFORMATION

Received July 27, 2020; accepted January 21, 2021.

Affiliations

From the PARCC, INSERM, Université de Paris, France (R.C., J.C., O.B., O.W., E.M., B.D., W.S., V.M., T.M., G.B.); Emergency Department, AP-HP, CUP, Georges Pompidou European Hospital, Paris, France (R.C., O.B.); CHU Rennes, INSERM, LTSI - UMR 1099, Univ Rennes, France (V.G.); AP-HP, CUP, Georges Pompidou European Hospital, Paris, France (J.C., B.D., W.S., V.W., G.B.); Innovative Therapies in Haemostasis, INSERM, Université de Paris, France (N.G., J.M.A., A.P., I.B.A., S.E.B., P.G., O.S., J.D., D.M.S.); Hematology Department and Biosurgical Research Lab (Carpentier Foundation), AP-HP, CUP, Georges Pompidou European Hospital, Paris, France (O.S., J.D., D.M.S.); Centre Hospitalier Universitaire de Dijon, Dijon, France (T.P.); Vascular Medicine Department and Biosurgical Research Lab (Carpentier Foundation), AP-HP, CUP, Georges Pompidou European Hospital, Paris, France (N.G., A.P., D.M.S.); Centre Hospitalier Universitaire de Reims, Reims, France (T.D.); Cardiology Department, AP-HP, CUP, Georges Pompidou European Hospital, Paris, France (E.M., T.M.); Lariboisiere Hospital, AP-HP, University of Paris, France (E.M., T.M.); Respiratory Medicine Department and Biosurgical Research Lab (Carpentier Foundation), AP-HP, CUP (P.G.); Intensive Care Medicine Department and Biosurgical Research Lab (Carpentier Foundation), AP-HP, CUP (J.D.); Georges Pompidou European Hospital, Paris, France; and Service de Cardiologie, Unité de Cardio-Oncologie AP-HP6, Groupe de Recherche Clinique en Cardio Oncologie, Inserm 856, Hôpitaux Universitaires Paris-EstService de Cardiologie, Unité de Cardio-Oncologie AP-HP6, Groupe de Recherche Clinique en Cardio Oncologie, Inserm 856, Hôpitaux Universitaires Paris-Est, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Université Pierre et Marie Curie, Paris, France (A.C.).

Disclosures

Drs Chocron, Gendron, Sanchez, Cohen, and Smadja acknowledge the following without any relation to the current manuscript. Dr Chocron received consultant fees from Aspen. Dr Cohen received research grant from RESICARD (research nurses) and consultant and lecture fees from Amgen, AstraZeneca, Bayer, Alliance Bristol-Myers Squibb/Pfizer, Novartis, and Sanofi-Aventis. Dr Smadja received consultant and lecture fees or travel awards from Aspen, Bayer, Carmat, Alliance Bristol-Myers Squibb/Pfizer, LEO-Pharma, and Boehringer-Ingelheim. Dr Sanchez received grants, personal fees, or nonfinancial support from Bayer, Alliance Bristol-Myers Squibb/Pfizer, Sanofi Aventis, Daiichi Sanyo, MSD, Boston Scientifics, and Chiesi. Dr Gendron discloses consulting fees by Boehringer-Ingelheim, Bayer, Alliance Bristol-Myers Squibb/Pfizer, and LEO-Pharma. The remaining authors have no disclosures to report.

Supplementary Material

Appendix S1
Tables S1–S2

REFERENCES

1. Guan W-J, Ni Z-Y, Hu Y-Y, Liang W-H, Ou C-Q, He J-X, Li L, Shan H, Lei C-L, Hui DSC, et al. Clinical characteristics of coronavirus disease 2019
Oral Anticoagulation Is Protective in COVID-19

10

J Am Heart Assoc. 2021;10:e018624. DOI: 10.1161/JAHA.120.018624
37. Lynn L, Reyes JA, Hawkins K, Panda A, Linville L, Aldhabri W, Kango G, Shah S, Ayanian S, Teufel K. The effect of anticoagulation on clinical outcomes in novel coronavirus (COVID-19) pneumonia in a U.S. cohort. *Thromb Res.* 2020;197:65–68. DOI: 10.1016/j.thromres.2020.10.031.

38. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herlier T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell.* 2020;181:271–280.e278. DOI: 10.1016/j.cell.2020.02.052.
SUPPLEMENTAL MATERIAL
Appendix

Critical Covid-19 France Investigators

1. ATTOU, Sabir, Centre Hospitalier Universitaire de Caen-Normandie, 14000 Caen, France
2. AUBRY, Matthieu, Hospices Civils de Lyon, Centre Hospitalier Universitaire, 69003 Lyon, France
3. BAGDADI, Imane, Institut Mutualiste Montsouris, 75014 Paris, France
4. BARBIN, Eva, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
5. BARNAUD, Clement, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
6. BENABOU, Léa, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
7. BENMANSOUR, Othmane, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
8. BONNET, Guillaume, Université de Paris, PARCC, INSERM, 75015 Paris, France
9. BOTHOREL, Léa, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
10. BOUCHOT, Océane, Centre Hospitalier Annecy Genevois, 74370 Epagny Metz-Tessy, France
11. BOUFOULA, Ines, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
12. CELLIER, Joffrey, Hôpital Européen Georges Pompidou, Université de Paris, 75015 Paris, France
13. CHABBI, Chaima, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
14. CHAN, Camille, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
15. CHAUMONT, Corentin, Hôpital Charles-Nicolle, Centre Hospitalier Universitaire de Rouen, 76000 Rouen, France
16. CHAVIGNIER, Diane, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
17. CHEMALY, Pascale, Institut Cardiovasculaire Paris Sud, 91300 Massy, France
18. COHEN, Ariel, Saint Antoine Hospital, 75012 Paris, France
19. CUGNEY, Erwan, Centre Hospitalier Régional Universitaire de Nancy, 54511 Vandoeuvre-Les-Nancy, France
20. DARMON, Arthur, Hôpital Bichat-Claude-Bernard, APHP, Université de Paris, 75018 Paris, France
21. DELMOTTE, Thomas, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
22. DELSARTE, Laura, Centre Hospitalier Régional Universitaire de Brest, 29200 Brest, France
23. DENEY, Antoine, Centre Hospitalier Universitaire de Toulouse, 31400 Toulouse, France
24. DOCQ, Clemence, Centre Hospitalier Universitaire de Lille, 59000 Lille, France
25. DOUAIR, Amine, Centre Hospitalier Annecy Genevois, 74370 Epagny Metz-Tessy, France
26. DUCEAU, Baptiste, Université de Paris, PARCC, INSERM, 75015 Paris, France
27. EZZOUHAIRI, Nacim, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
28. FAUVEL, Charles, Centre Hospitalier Intercommunal Elbeuf, 76503 Saint-Aubin-lès-Elbeuf, France

29. FRAIX, Antoine, Centre Hospitalier Régional Universitaire de Nancy, 54511 Vandoeuvre-Les-Nancy, France

30. GAUTIER, Alexandre, Institut Cardiovasculaire Paris Sud, 91300 Massy, France

31. GENESTE, Laura, Centre Hospitalier Universitaire d'Amiens-Picardie, 80000 Amiens, France

32. GIORDANO, Gauthier, Centre Hospitalier Régional Universitaire de Nancy, 54511 Vandoeuvre-Les-Nancy, France

33. GODEAU, Guillaume, Institut Cardiovasculaire Paris Sud, 91300 Massy, France

34. GUILLEMINOT, Pierre, Centre Hospitalier Universitaire de Dijon, 21079 Dijon, France

35. KARSENTY, Clément, Centre Hospitalier Universitaire de Toulouse, 31400 Toulouse, France

36. LEBLON, Thiphaine, Centre Hospitalier Universitaire de Lille, Université Catholique de Lille, 59000 Lille, France

37. LEOBARDON, Romane, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France

38. LEVASSEUR, Thomas, Centre Hospitalier Intercommunal Fréjus-Saint-Raphaël, 83600 Fréjus, France

39. MA, Iris, Hôpital Européen Georges Pompidou, Université de Paris, 75015 Paris, France
40. MARSOU, Wassima, Centre Hospitalier Universitaire de Lille, Université Catholique de Lille, 59000 Lille, France
41. MASSIN, Michael, Centre Hospitalier Régional Universitaire de Nancy, 54511 Vandoeuvre-Les-Nancy, France
42. MECHERI, Yasmine, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
43. MEVELEC, Marine, Centre Hospitalier Régional d'Orléans, 45101 Orléans, France
44. MIKA, Delphine, Université Paris-Saclay, Inserm, UMR-S 1180, 92296 Chatenay-Malabry, France
45. NOIRCLERC, Nathalie, Centre Hospitalier Annecy Genevois, 74370 Epagny Petz-Tessy, France
46. PACE, Nathalie, Centre Hospitalier Régional Universitaire de Nancy, 54511 Vandoeuvre-Les-Nancy, France
47. PANAGIDES, Vassili, Centre Hospitalier Universitaire de Marseille, 13005 Marseille, France
48. PASTIER, Julie, Centre Hospitalier Universitaire de Dijon, 21079 Dijon, France
49. PERIN, Benjamin, Centre Hospitalier Régional Universitaire de Nancy, 54511 Vandoeuvre-Les-Nancy, France
50. PEZEL, Théo, Cardiology, Lariboisiere hospital, APHP, University of Paris, 75010 Paris, France
51. POMMIER, Thibaut, Centre Hospitalier Universitaire de Dijon, 21079 Dijon, France
52. RIBEYROLLES, Sophie, Institut Mutualiste Montsouris, 75014 Paris, France
53. SAGNARD, Audrey, Centre Hospitalier Universitaire de Dijon, 21079 Dijon, France
54. SUTTER, Willy, Université de Paris, PARCC, INSERM, 75015 Paris, France
55. TRIMAILLE, Antonin, Nouvel Hopital Civil, Centre Hospitalier Régional Universitaire de Strasbourg, 67000 Strasbourg, France

56. WALDMANN, Victor, Université de Paris, PARCC, INSERM, 75015 Paris, France

57. WEIZMAN, Orianne, Centre Hospitalier Régional Universitaire de Nancy, 54511 Vandoeuvre-Les-Nancy, France

58. YVOREL, Cédric, Centre Hospitalier Universitaire de Saint-Etienne, 42270 Saint-Priest-en-Jarez

59. ZAKINE, Cyril, Clinique Saint-Gatien, 37540 Saint-Cyr-sur-Loire, France
Table S1. Poisson regression model according to: ICU admission (A); ICU admission or In-hospital mortality as a composite event to define ICU-free survival (B); and to in-hospital mortality (C) in uncensored population (n=2335).

	ICU referral	ICU or in-hospital mortality	In-hospital mortality						
	RR	95% CI	p-value	RR	95% CI	p-value	RR	95% CI	p-value
Oral anticoagulation prior admission (DOAC or VKA)	0.45 [0.32-0.62]	0.000	0.77 [0.59-0.93]	0.050	0.94 [0.68-1.26]	0.68			
In hospital anticoagulation,									
Prophylactic low dose	1.15 [0.81-1.66]	0.441	1.09 [0.82-1.40]	0.614	1.10 [0.76-1.61]	0.62			
Prophylactic high dose	2.92 [2.02-4.31]	0.000	2.01 [1.49-2.70]	0.000	1.11 [0.65-1.86]	0.69			
Therapeutic dose	2.64 [1.81-3.92]	0.000	1.68 [1.21-2.18]	0.001	1.35 [0.89-2.06]	0.16			
Age, years	0.98 [0.97-0.98]	0.000	1.01 [1.00-1.01]	0.000	1.06 [1.04-1.06]	0.000			
Male sex, n(%)	1.46 [1.21-1.77]	0.000	1.35 [1.16-1.56]	0.000	1.28 [1.02-1.61]	0.031			
High blood pressure, n(%)	1.09 [0.88-1.33]	0.408	1.04 [0.88-1.22]	0.605	1.17 [0.90-1.52]	0.23			
Diabetes, n(%)	1.12 [0.90-1.37]	0.305	1.13 [0.95-1.32]	0.148	1.39 [1.08-1.76]	0.007			
Dyslipidemia, n(%)	1.22 [0.99-1.50]	0.054	1.07 [0.91-1.25]	0.394	1.01 [0.80-1.26]	0.94			
Current smoker, n(%)	1.10 [0.86-1.37]	0.439	1.02 [0.83-1.23]	0.837	1.25 [0.91-1.68]	0.15			
Body mass index, Kg/m², mean (SD)	1.02 [1.01-1.04]	0.002	1.01 [0.99-1.02]	0.099	1.00 [0.98-1.02]	0.72			
Plasma creatinine level - µmol/L, mean (SD)	1.00 [0.99-1.01]	0.474	1.00 [1.00-1.01]	0.001	1.00 [1.00-1.01]	0.000			
C-reactive protein, mg/L, mean(SD)	1.00 [1.01-1.02]	0.000	1.00 [1.00-1.01]	0.000	1.00 [1.00-1.01]	0.000			
FiO2, mean (SD)	1.02 [1.01-1.02]	0.000	1.02 [1.01-1.02]	0.000	1.02 [1.01-1.02]	0.000			
Parenchymal opacification in chest CT-scan >50%	1.61 [1.32-1.94]	0.000	1.44 [1.22-1.69]	0.000	1.18 [0.89-1.54]	0.234			

RR= Relative Risk; CI= Confident Interval; ICU =Intensive Care Unit. DOAC=Direct Oral anticoagulant; VKA= Vitamin K antagonist; SD= Standard deviation; CT=Computed tomography.
Table S2. Patients’ characteristics and outcomes according to the propensity matching analysis (n=1528).

	Propensity matched population		
	No prior oral AC	oral AC prior to hospitalization	p-value
	n=1146	n=382	
Age, years, mean (SD)**	76.53 (12.28)	77.31 (12.55)	0.051
Male sex, n (%)**	679 (59.2)	233 (61.0)	0.588
Time from onset illness to hospitalization, days, mean(SD)	6.46 (4.59)	5.71 (4.91)	0.007
Cardiovascular comorbidities			
Body mass index, Kg/m², mean (SD)**	27.67 (5.62)	27.56 (5.74)	0.758
High blood pressure, n (%)**	855 (74.6)	295 (77.2)	0.338
Diabetes Mellitus, n (%)**	351 (30.6)	112 (29.3)	0.676
Dyslipidemia, n (%)**	458 (40.0)	161 (42.1)	0.489
Current smoking, n (%)**	855 (74.6)	295 (77.2)	0.338
History of venous thromboembolism n (%)	69 (6.0)	83 (21.7)	<0.001
History of atrial fibrillation n (%)	86 (7.5)	293 (76.7)	<0.001
In hospital anticoagulation, n (%)			
None	134 (11.7)	23 (6.0)	<0.001
Prophylactic low dose	113 (9.9)	9 (2.4)	<0.001
Prophylactic high dose	763 (66.6)	58 (15.2)	<0.001
Therapeutic dose	136 (11.9)	292 (76.4)	<0.001
Biology			
Plasma creatinine level - μmol/L, mean (SD)	108.97 (102.64)	126.56 (136.55)	0.008
Creatinine clairance (Cockcroft-Gault), mL/min mean (SD)	73.93 (55.05)	81.75 (234.82)	0.296
C-reactive protein, mg/L, mean (SD)	92.86 (77.22)	86.28 (66.20)	0.135
FiO2, %, mean (SD)	29.50 (13.02)	28.83 (12.15)	0.378
In hospital outcomes			
Parenchymal opacification in chest CT-scan >50%, n (%)	169 (14.7)	51 (13.4)	0.556
Time from hospital admission to ICU transfer, mean (SD)	6.87 (3.37)	7.63 (3.27)	<0.001
Time from admission to in-hospital mortality, mean (SD)	11.29 (4.54)	11.33 (4.39)	0.860
Non-invasive mechanical ventilation, n (%)	41 (3.6)	11 (2.9)	0.625
Invasive mechanical ventilation, n (%)	146 (12.7)	27 (7.1)	<0.001
Reasons for ICU admission, n (%)			
Septic shock	0 (0.0)	2 (0.5)	0.046
Acute respiratory failure	1142 (99.7)	378 (99.0)	0.0000
Acute cardiac failure	2 (0.2)	2 (0.5)	0.001
Other	2 (0.2)	0 (0.0)	0.001
In-hospital mortality, n (%)	218 (19.0)	84 (21.9)	0.235
In-hospital mortality etiology, n (%)	193 (88.5)	70 (83.3)	0.095
Acute respiratory failure	3 (3.7)	4 (4.7)	0.720
Acute cardiac failure	6 (2.7)	7 (8.3)	0.235
Cardiac arrest	11 (5.1)	3 (3.6)	0.118

CT= Computerized Tomography, ICU = Intensive Care Unit, FiO2=Fraction of inspired oxygen (%), U/L= Units per Liter.**Covariates used in the propensity score matching.