Study on the Cutting Propagation of *Lonicera cuminata* and *Lonicera macranthoides*

Haoquan Wang¹, Yin Yang¹, Yaqian Sun¹, Lamei Wang¹ and Qunxian Deng¹∗

¹College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China

∗Corresponding author’s e-mail: 1324856299@qq.com

Abstract: With the branches of *Lonicera cuminata* and *Lonicera macranthoides* used as materials, the rooting effects of the cutting season, plant growth regulators and their concentrations and processing time on stem cuttings are investigated. The factors mentioned above the rooting effects of stem cuttings form cutting *Lonicera cuminata* in spring and autumn are better than that of *Lonicera macranthoides*. In spring, cutting propagation the annual hardwood of *Lonicera cuminata* and *Lonicera macranthoides*, best result is 200 mg/L ABT No.1 to 2 h, with *Lonicera cuminata* rooting rate and average root length being 85.6% ~ 98.00%, 17.9 ~ 22.6 mm. *Lonicera macranthoides* rooting rate and average root length were 69.7% and 10.3 mm. In Autumn, cutting propagation the biannual hardwood of *Lonicera cuminata* and *Lonicera macranthoides*, best result is 100 mg/L ABT No.1 with 2 ~ 4 processing hours.

1. Introduction

Lonicera japonicas is an entwined semi-evergreen vine shrub of *Lonicera* [1]. The main breeding method of honeysuckle is cutting seedlings, and there are many research reports [3-6]. However, due to the wide variety of *Lonicera* genus, the distribution is wide, the climate, ecological environment and geological background vary greatly, and the habits of different kinds of plants are also different. Breeding ability of *Lonicera* is also very different [7]. At present, there are few reports on cutting propagation techniques of other species of *Lonicera* [7-9]. Due to the low survival rate of four superior materials, the seedling’s number is less, which affects their promotion and development. In this experiment, the four-materials of *Lonicera acuminata* Wall and *Lonicera macranthoides* Hand-Mazz are used as the test materials to study the effects of different cutting periods, auxin types and treatment concentrations on the rooting and survival of different species of Lonicera in open field environment. Plant seedling breeding provides practical technical support.

2. Materials and method

2.1. Materials

The test materials are three excellent materials “Cuilei 001”, “Cuilei 003” and “Dabaihua” and Muchuan County Yizhichun Tea Industry from the dominant population of *Lonicera edulis* in Muchuan County. The superior variant "Cuilei 109" is selected from the variety.

2.2. Method

Cuttings treatment seasons are divided into spring, summer and autumn. Root effect index is
calculated with reference to Zhongying, Ren.[10]. It included rooting rate, root number, root length, etc. Data statistics are performed using Excel software, analysis of variance and multiple comparisons using SPSS data statistics software.

3. Results and analysis

3.1. Effects of different concentrations of ABT on rooting of Lonicera.

Table 1 Effects of different concentrations of ABT in spring on cutting rooting of Lonicera

Germplasm name	ABT1 concentration (mg/L)	Rooting rate (%)	Number of roots	Length of roots (mm)	Root effect index
	100	60.66g	19.25d	21.3d	82.01cd
	200	85.60c	17.90de	23.7a	84.74e
	300	80.33d	14.02g	14.7d	41.36g
Dabaihua Water (CK)	53.33h	13.23g	12.4ef	32.86h	
Cuilei 001 Water	71.33e	21.15c	14.9d	62.94e	
Cuilei 003 Water	98.00a	17.90de	22.4ab	80.12d	
Cuilei 003 Water	83.67c	17.49e	18.4c	64.33e	
Cuilei 003 Water	49.67i	15.74f	11.6f	36.55h	
	100	72.00e	24.08a	18.7c	89.87b
	200	90.00b	22.62b	24.5a	110.79a
	300	77.67d	15.82f	15.8d	50.02f
Cuilei 109	100	33.33j	8.06j	9.3g	15.05j
	200	69.67f	10.34h	10.6f	21.82i
	300	51.33h	9.13i	9.9g	18.06j

Note: Different letters in the same column indicate significant differences (P<0.05). Same as below.

In the spring, the biennial branches of 4 parts of Lonicera acuminata Wall and Lonicera macranthoides Hand.-Mazz. are treated with different concentrations of ABT No.1. The rooting conditions of the cuttings are shown in Table 1. It can be seen that the rooting conditions of the two-year-old branches of the four materials of Lonicera acuminata Wall and Lonicera macranthoides Hand.-Mazz. are significantly different.

The rooting effect of four pieces of honeysuckle cuttings treated with 100~300 mg/L ABT No.1 showed high consistency, and the best rooting effect is achieved by soaking with 200 mg/L.

3.2. Effects of different concentrations of ABT on the growth of rooting cuttings of Lonicera.

In the spring, biennial shoots of Lonicera acuminata Wall and Lonicera macranthoides Hand.-Mazz four materials are treated with different concentrations of ABT1, and the growth of shoots and shoots of rooting cuttings are shown in Table 2.

It can be seen from Table 2 that the growth of Lonicera acuminata Wall and Lonicera macranthoides Hand.-Mazz four materials is significantly different from that of living branches.

The results of Table 2 and Table 3 show that the treatment of biennial branches of Lonicera acuminata Wall and Lonicera macranthoides Hand.-Mazz with 200 mg/L ABT1 in spring can significantly promote the rooting and sprouting of cuttings.
Table 2 Effects of different concentrations of ABT on shoot growth of *Lonicera* in spring

Germplasm name	ABT concentrations(mg/L)	Rooting rate (%)	Number of new shoots (bars)	Length of new roots (mm)
Dabaihua Water(CK)	52.67g	4.16b	358.67	358.67
100	58.00f	3.57b	161.07c	161.07c
200	83.67c	2.57cd	88.73d	88.73d
300	80.00cd	1.63d	34.58e	34.58e
Cuilei 001 Water(CK)	59.33f	4.85a	358.77a	358.77a
100	67.00e	3.38b	278.36b	278.36b
200	96.67a	2.43cd	187.91c	187.91c
300	82.67c	2.88c	76.78d	76.78d
Cuilei 003 Water(CK)	49.00h	4.33ab	332.98a	332.98a
100	69.33b	4.29b	237.93b	237.93b
200	89.33b	2.33cd	152.70c	152.70c
300	77.00d	2.13cd	54.83d	54.83d
Cuilei 109 Water(CK)	20.67j	4.11b	191.02c	191.02c
100	32.00i	3.00c	142.11c	142.11c
200	68.33e	2.86c	84.40d	84.40d
300	52.00g	1.44d	32.42e	32.42e

3.3. Effects of rooting agents, treatment concentration and treatment time on Rooting of *Lonicera*.

The effects of concentration and time of Different Rooting agents on the rooting of lignified branches of *Lonicera acuminata* Wall and *Lonicera macranthoides* Hand.-Mazz are shown in Table 3.

The extreme difference analysis shows that the materials, rooting agent, treatment concentration and treatment time have significant effects on the root effect index of cuttings. The greater the extreme difference R of the mean K of each factor is, the higher the effect of the factor on the root effect index is; the greater the mean K of different levels of the same factor is, indicating that this level of the factor has a higher impact on the root effect index.

Table 3 Effects of rooting agent types, concentration and time on Rooting of *Lonicera* in autumn

Treatment name	Germplasm name	Rooting agent	concentration (mg/L)	Treatment time (h)	Rooting rate (%)	Number of new shoots (bars)	Length of new roots (mm)	Root effect index	Number of new shoots (bars)
1	Cuilei 001	NAA	100	2	70.67	8.70c	231.3b	40.25b	4.52a
2	Cuilei 001	IBA	200	4	78.67	10.95b	109.1f	23.88d	4.19a
3	Cuilei 001	ABT1	300	6	46.67	5.06g	190.0c	19.23f	4.89a
4	Cuilei 003	NAA	200	6	72.33	9.00c	196.5c	35.36c	3.30b
5	Cuilei 003	IBA	300	2	86.00	11.91a	135.6e	32.29c	2.74c
6	Cuilei 003	ABT1	100	4	91.00	12.40a	286.8a	71.13a	3.89b
7 Cuilei 109 NAA 300 4 56.67 6.00f 103.4f 12.40g 5.11a
8 Cuilei 109 IBA 100 6 61.00 8.04d 136.4e 21.94e 3.48b
9 Cuilei 109 ABT1 200 2 58.00 7.25e 183.8d 26.66d 5.00a
K1 27.79b 29.34b 44.4a 33.07a
K2 46.26a 26.04c 28.63b 35.80a
K3 20.33c 39.00a 21.31c 25.51b
R 25.93 12.96 23.13 10.29

4. Conclusions
In the summer of this experiment, *Lonicera acuminata* Wall and *Lonicera macranthoides* Hand.-Mazz. open field cuttings are carried out. In the absence of any shading and fertilizer management, the highest survival rate of all processed cuttings is only 2.68%. Because the test site is located at the top of the mountain at an altitude of 1200 m, the soil layer is shallow and the local summer is hot, and the cutting seedlings are extremely difficult to survive under natural conditions. Therefore, it is not suitable for cutting seedlings in the natural conditions of the area in summer.

In the spring cutting test, the survival rate and rooting quality of the cuttings treated with different concentrations of ABT No.1 are better than that of the clear water control. When ABT No.1 is 200 mg/L, the survival rate of the four materials of *Lonicera* is the highest, and is significantly higher than other concentrations. Among them, “Cuilei 001” has the highest rooting rate when treated with 200 mg/L ABT No.1; “Cuilei 003” had the best rooting quality when treated with 200 mg/L ABT No.1; “Dabaihua” had the highest rooting rate and rooting quality when treated with 200 mg/L ABT No.1, which is 2.27 times and 1.39 times of the water control respectively; the "Cuilei 109" cuttings are the most sensitive to ABT No.1. As the concentration of ABT No.1 increases, the inhibition of the number and length of new shoots gradually increases, but it can increase its survival rate. It is also found that there is no significant difference in the growth of all treated plants after 180 days of cutting, indicating that the inhibitory effect of ABT No.1 rooting powder on cutting new shoots is no longer apparent in the late growth stage, and the reasons need further study.

In the autumn, cuttings *Lonicera acuminata* Wall and *Lonicera macranthoides* Hand.-Mazz with lignified branches are consistent with the rooting effect of spring cutting. The rooting and seedling formation of cuttings varied with the type of material. The rooting ability of *Lonicera acuminata* Wall is stronger than that of *Lonicera macranthoides* Hand.-Mazz. ABT promotes rooting effect better than NAA and IBA and 100 mg/L of ABT rooting agent soaking treatment cuttings with 2~4h has good rooting effect.

The results of this experiment showed that the roots of the spring and autumn cuttings of "Cuilei 109" belonging to the *Lonicera hypoglauca* are lower than those of "Cuilei 001", "Cuilei 003" and "Dabaihua" belonging to *Lonicera acuminata* Wall. The biannual shoots of Lonicera genus in spring are treated with 200 mg/L ABT No.1, and the hardwood shoots in the autumn are treated with 100 mg/L ABT No.1 for 2~4h. *Lonicera* is not suitable for cutting seedlings under natural conditions of summer in open field.

Acknowledgments
This work financially supported by the National Innovation Training Program 'Analysis of Active Matter Content and Antioxidant Activity of Honeysuckle in Muchuan County'. And thanks to Sichuan Yizhichuncha Co., Ltd. for providing experimental materials.
Reference

[1] Editorial board of Chinese flora of the Chinese Academy of Sciences. (1988) Flora of china. Science and technology of China press, Beijing.

[2] Chinese Pharmacopoeia Commission. (2010) Pharmacopoeia of the people's Republic of China (Part one). China Medical Science Press, Beijing.

[3] Guo, Y.W. (2008) Research on technology of cuttings propagation of two vineplants. D. Beijing Forestry University.

[4] Li, Q., Zhang, J.Z., Jia, P. (2013) Effect of ABT rooting powder solution on rooting rate of Lonicera japonica Thunb cuttings. J. Practical Forestry Technology., 11:27-28.

[5] Dong, Z.Y., Yang, B., Yang, L.Y. (2013) Study on cutting propagation of Lonicera japonica. J. Guangdong Agricultural Sciences., 4:14-15.

[6] Zhao, X.R. (2014). Experimental study on Cutting Propagation of Lonicera japonica Thunb. J. Guangdong Science & Technology., 22:139-145.

[7] Chen, S.R., Li, Y.Q., Huang, Y.M. (2013) The Study on the Cutting Propagation System of Lonicera hypoglauca Miq.. J. Chinese Agricultural Science Bulletin., 29(22):135-141.

[8] Feng J.P., Xie, M.D. (2011) Experiments in Cutting Seedling- raising of Lonicera confusa DC. J. Tropical Forestry., 39(3):18

[9] Tu, L.J., Huang, C.Q. (2010) Cutting propagation experiment of Lonicera modesta. J. Northern Horticulture., 21:112-113.

[10] Ren, C.Y., Li, Y.M., Ma, L.N. (2015) Effects of different cuttings types and quality on root rooting of Cercidiphyllum japonicum Sieb. Et Zucc. J. Xiandai Horticulture., 2:7-8.

[11] A, Z.S., Zhang, W.Y. (2015) Cultivation techniques of Lonicera japonica Thunb : J. Agricultural Development & Equipments., 2:132.

[12] Appanah,S., Putz,F. E.(1984). Climber abundance invirgin dipterocarp forest and effect of pre felling climber cutting on logging damage. J. Malaysian Forester., 47:335-342.

[13] Castellanos V, Duran R, Guzman S, Briones. (1992) Three-dimensional space utilization of lianas: a methodology. J. Biotropica., 24:396-401.

[14] Christensen M V, Eriksen E N., Andersen A S. (1980) Interaction of stock plant irradiance and auxin in the propagation of apple rootstocks by cuttings. J. Scientia Hort., 12:11-17.

[15] R.G, Nong., Z.S, Tang., Y.P, Liang (2004) Journal of Central South Forestry University. 2:55-58,69.

[16] T, Wang., C.L, Xu., Y.H, He. (2000) Studies on Rooting Capability and Mechanism of Cutting s of Rosa xanthina. J. Journal Of Anhui Agricultural University., 27(3):221-224.

[17] Wu, Q.H. (2007) Reproductive Biological Study on Lonicera hypoglaucua Miq. J. Lishizhen Medicine and Materia Medica Research., 15(10):2396-2397.

[18] Zhang, X. (2009) Study on cuttage techniques of Lonicera macranthoides Hand.-Mazz. And its rooting mechanism. D. Southwest University.

[19] Dong, M. (2008) Study on cutting propagation and ecological adaptability of Arnold Red Honeysuckle. D. Beijing Forestry University.

[20] Dong, P.H. (2011) Application Study of GGR on the Cutting Seedling-raising of Eucalyptus Hybrid Clones. J. Modern Agricultural Sciences and Technology., 4:191-192.

[21] Chen, H.Y., Li, D.W. (2012) Cutting effect of Different Rooting agents on Seedless purple grape. J. South China Fruits., 41(3):94-95.