Allo-anti-M: Detection peaks around 2 years of age, but may be attenuated by red blood cell transfusion

Yoshiko Tamai1,2 | Hitoshi Ohto1,3 | Hiroyasu Yasuda1,4 | Akihiro Takeshita1,5 | Nobuharu Fujii1,6 | Hiroaki Ogo1,6 | Yurika Yazawa1,7 | Takaaki Hato1,8 | Kinuko Mitani1,9 | Keijirosuzuki1,10 | Akihiko Yokohama1,11 | Yoko Kato1,12 | Misao Abe1,13 | Midori Kumagawa1,14 | Yasunori Ueda1,15 | Kenneth E. Nollet1,3 | Laura Cooling16 | Junichi Kitazawa1,17 | for the Pediatric RBC Alloimmunization Consortium1

1Japan Society of Blood Transfusion and Cell Therapy, Tokyo, Japan
2Department of Transfusion and Cell Therapy Medicine, Hirosaki University Post-Graduate School of Medicine, Hirosaki, Japan
3Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
4Department of Medical Technology, Fukushima Prefectural Hygiene Institute, Fukushima, Japan
5Department of Transfusion and Cell Therapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
6Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
7Transfusion Laboratory, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
8Division of Blood Transfusion and Cell Therapy, Ehime University Hospital, Toon, Japan
9Blood Transfusion Department, Dokkyo Medical University Hospital, Shimotsuga-gun, Japan
10Division of Transfusion Medicine, Iwate Medical University Hospital, Morioka, Japan
11Division of Blood Transfusion Service, Gunma University Hospital, Maebashi, Japan
12Department of Transfusion Medicine and Cell Therapy, The Jikei University Hospital, Tokyo, Japan
13Department of Transfusion Medicine and Cell Therapy, Kansai Medical University Hospital, Hirakata, Japan
14Division of Transfusion Medicine, Fukuoka University Hospital, Fukuoka, Japan
15Transfusion and Hemapheresis Center, Kurashiki Central Hospital, Kurashiki, Japan
16Department of Pathology, The University of Michigan, Ann Arbor, Michigan, USA
17Division of Clinical Laboratory and Department of Clinical Genetics, Aomori Prefectural Central Hospital, Aomori, Japan

Correspondence
Hitoshi Ohto, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan.
Email: hit-ohto@fmu.ac.jp

Abstract

Background: Anti-M is frequently observed as a naturally occurring antibody of little clinical significance. Naturally occurring anti-M is often found in children although the specific triggers of production, persistence, and evanescence of anti-M have yet to be elucidated.

Abbreviation: RBC, red blood cell.
Yoshiko Tamai and Hitoshi Ohto equally contributed to this study.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Transfusion published by Wiley Periodicals LLC on behalf of AABB.
Funding information
Kagoshima University; Tottori University; Gifu University; University of Tokyo; Saitama Medical University; Tohoku University; Jikei University School of Medicine; Gunma University; Dokkyo Medical University; Ehime University

Methods: In a retrospective, multicenter, nationwide cohort survey conducted from 2001 to 2015, alloantibody screening was performed before and after transfusion in 18,944 recipients younger than 20 years. Recipients were categorized into six cohorts based on their age at transfusion; within and among these cohorts, allo-anti-M was analyzed in regard to its production, persistence, and evanescence.

Results: In 44 patients, anti-M detected before and/or after transfusion was an age-related phenomenon, with a median age of 2 years and an interquartile range of 1–3 years; anti-M was most frequently detected in a cohort of children 1 to <5 years (0.77%, 31 of 4035). At least five patients were presumed to have concurrent infections. Among 1575 adolescents/young adults (15 to <20 years), no anti-M was detected. Of 29 patients with anti-M prior to transfusion, the antibody fell to undetectable levels in 17 recipients (89.5%, of whom at least 13 received only M-negative red cells) after anywhere from 5 days to 5.8 years; anti-M persisted in 2, and was not tested in 10. Only 15 recipients (0.08%) produced new anti-M after transfusion.

Conclusion: Naturally occurring anti-M is a phenomenon of younger ages, predominantly between 1 and 3 years. After transfusion, it often falls to undetectable levels.

KEYWORDS
anti-M, child, infection, naturally occurring antibody

1 | INTRODUCTION

Anti-M, frequently observed as a naturally occurring antibody, is usually not clinically significant when reactive at room temperature but not at 37°C. Anti-M ranks fifth in frequency (10.3%) among red cell-associated alloantibodies in Dutch patients, and is the fourth most common antibody among Japanese patients, accounting for 7.2% (890) of 12,285 detected alloantibodies. Anti-M is more commonly found in children than adults although the specific mechanisms or triggers of anti-M formation are yet to be elucidated. For ABO and other naturally occurring IgM antibodies, the gut microflora, pathogens, and food-associated proteins are thought to be immunogenic stimuli for antibody formation mediated by the innate immune system.

“Transfusion-Related Alloimmunization to Red Blood Cell Antigens in Japanese Pediatric Recipients” was a large, retrospective, multi-institutional cohort study showing that alloimmunization did not occur from RBCs transfused within the first month of life (0%) and rarely occurred (0.46%–0.80%) after transfusion within the first decade of life, whereas alloimmunization occurred in 1.15%–1.88% of young pubescents and adolescents/young adults.

As part of this cohort study, naturally occurring or transfusion-related anti-M, in samples collected between 2001 and 2015, were investigated to assess the extent to which allo-anti-M arises or disappears from natural causes or by transfusion within different age brackets. This study has provided some insight into anti-M formation, persistence, and evanescence among transfusion recipients under 20 years of age.

2 | PATIENTS AND METHODS

2.1 | Study design

As part of the retrospective, multicenter, nationwide cohort survey, “Transfusion-Related Alloimmunization to Red Blood Cell Antigens in Japanese Pediatric Recipients,” this study investigated alloreactive anti-M found before and/or after red blood cell (RBC) transfusion. Pregnancy history was also solicited in the survey. This study was approved by the independent ethics committees of the Japan Society of Blood Transfusion and Cell Therapy, Hirosaki University Post-Graduate School of Medicine (#2016-224 and #2019-084), and the ethics committees of other participating institutions, as necessary. These ethics committees are guided by local policy, national law, and the World Medical Association Declaration of Helsinki.
2.2 | Institutions and patients included

Criteria for inclusion of medical institutions and patients were described elsewhere. Briefly, these were medical facilities in Japan that fulfilled criteria of having certified and continuously trained active staff, and had 30 or more pediatric patients every year who received RBC transfusions.

No exclusions were made for congenital or autoimmune diseases, transplantation, or the need for intravenous globulin. Eligible patients, including fetuses who received intrauterine transfusion, were included in the cohort, provided that informed consent was obtained and documented. Patients not transfused were excluded. Patient data from medical/transfusion service or chart records were anonymized and sent to Hirosaki University. Details about adverse reactions, including hemolysis or incorrect transfusions were not collected.

All 18,944 eligible patients, i.e., those who received any volume of allogeneic RBCs, were assigned to cohorts A-F according to their age at transfusion: A, neonates <1 month old; B, infants 1 to <12 months; C, children 1 to <5 years; D, prepubescents 5 to <10 years; E, young pubescents 10 to <15 years; and F, adolescents/young adults 15 to <20 years. Sex was assigned as male or female according to external phenotype.

2.3 | Antibody tests and RBC transfusion

Details about antibody testing and RBC transfusion were described elsewhere. Briefly, transfused RBC units were matched or compatible with patients’ ABO and RhD. Neonates with any maternally derived alloantibodies received RBCs compatible with those antibodies. RBC antibody screening (except in emergencies) on pretransfusion samples, follow-up testing, or maternal samples for pretransfusion neonatal care, proceeded according to institutional protocols and included indirect antiglobulin tests. RBCs for transfusion were always matched for clinically significant antibodies and also matched, whenever possible, for antibodies of lesser significance (e.g., Lewis, P1, Xg) when reactive at 37°C.

Allo-anti-M was rigorously confirmed by excluding auto-anti-M; after RBC M/N phenotyping, allo-anti-M was imputed only in patients with NN phenotype. During the study period, most facilities (~80%) transfused M-negative RBCs to patients with anti-M, even when the antibody was not reactive at 37°C. Information of allo-anti-M characteristics (titer, cold-reactive only or 37°C reactive) were not collected for this study.

2.4 | Statistical analysis

Quantitative variables are shown as medians with interquartile ranges defined by 25% and 75% boundaries. Comparisons to group were made using the chi-square test, Fisher exact test, Bonferroni’s multiple comparison test, and 95% confidence intervals (CI) for categorical variables, using StatMate IV for Microsoft Windows, version 4.01 (ATM, Niigata, Japan), and SAS Enterprise Guide 7.1 (SAS Institute, Cary, NC). Results were deemed to be statistically significant if the 95% CI did not contain its reference value, which is equivalent to a p value of <.05.

3 | RESULTS

3.1 | Detection of allo-anti-M according to patients’ age groups

As shown in Table 1, among 5253 neonates (cohort A), maternally derived passive anti-M was detected in 4 (0.08%), born to 3 mothers. Out of 4628 infants (cohort B), anti-M was detected in 7 (0.15%, 95% CI: 0.04%–0.26%). Cohort C patients accounted for 65% (31/48) of anti-M observed and predominated over all other age groups: 31 (0.77%, 95% CI: 0.52%–1.09%) of 4035 children aged 1 to <5 years. In older children, anti-M was identified in 5 of 1708 prepubescents (cohort D, 0.29%, 95% CI: 0.04%–0.55%), and 1 of 1575 young pubescents (cohort E, 0.06%, 95% CI: 0%–0.35%). Of note, there were no cases of anti-M among 1745 adolescents/young adults (cohort F, 0%, 95% CI: 0%–0.21%). When compared by age cohort, the incidence of anti-M among cohort C was significantly higher than cohorts A (p < .00001), B (p < .00001), E (p < .0005), and F (p < .00001), but did not differ statistically from cohort D (Table 1).

3.2 | Characteristics of patients with allo-anti-M

Anti-M was identified in 44 patients, 29 before and 15 after transfusion, aged between 6 months and 12 years. Four neonates with maternally-derived antibody (cohort A: 2 males, 2 females) were excluded from further analysis. Anti-M was identified in 22 males and 22 females with a median age of 2 years (interquartile range 1–3 years); this was consistent with cohort C patients (age 1 to <5 years, 56% male, 44% female). In all 44 of these patients, only anti-M was identified.

Table 2 summarizes the characteristics of patients found to have anti-M on pre- and/or post-transfusion
testing. Anti-M was identified primarily in patients undergoing surgery/trauma (50%) or having malignancies including leukemia (25%). Of 8 patients with an “other” diagnosis, it is noteworthy that 5 (63%) were presumed to have had severe viral/bacterial infections. None of these 44 patients with anti-M had a known history of pregnancy. Overall, the distribution of underlying diseases among patients with anti-M did not differ statistically from cohort C children: surgery/trauma (44%), malignancy (39%) and others (18%).

TABLE 1 Allo-anti-M detected in pediatric recipients

Cohort	Age interval	No. of patients tested	Anti-M detected (%)	Age distribution
A	0 to <1 month	5253	4b (0.08%) or 0c (0%, 0–0.07)	6 months (1)
B	1 to <12 months	4628	7 (0.15%, 0.04–0.26)	1 years (14)
C	1 to <5 years	4035	31 (0.77%, 0.52–1.09)	2 years (11)
D	5 to <10 years	1708	5 (0.29%, 0.04–0.55)	3 years (6)
E	10 to <15 years	1575	1 (0.06%, 0–0.35)	9 years (2)
F	15 to <20 years	1745	0 (0%, 0–0.21)	11 months (1)

aIncluding all patients who had anti-M before and/or after transfusion.
bIncluding 4 neonates (2 singletons, 2 twins: 3 mothers who had maternally-transferred antibody).
cExcluding 4 neonates who had maternally-derived anti-M.
dStatistically significant difference between cohort C vs. cohorts A (p < .00001), B (p < .00001), E (p < .0005), and F (p < .00001).

TABLE 2 Characteristics of the patients with allo-anti-M

Disease/condition for transfusion	No.
Surgery/trauma	22
Malignancy (including leukemia)	11
Others	8
Viral myocarditisb, c	1
Acute encephalopathyb, d	1
Viral associated hemophagocytic syndromeb, e	1
Respiratory distressb, f	1
Hemolytic uremic syndromeb, g	1
Pulmonary cyst	1
Pulmonary artery stenosis	1
Myelodysplastic syndrome	1
Anonymized	2
Unknown	1
Previous or present pregnancy	0

aExcluding 4 neonates with maternally-derived anti-M.
bInfection may be involved.
cNot described, but frequently by adenovirus or enterovirus (including coxsackie virus).
dNot described, but often by herpes viruses, influenza viruses, rotavirus, or respiratory syncytial virus.
eNot described, but often by Epstein–Barr virus.
fNot described, but often by respiratory syncytial virus.
gNo pathogen was identified.

FIGURE 1 The occurrence, persistence, and evanescence of allo-anti-M other than maternally-derived

3.3 | The occurrence, persistence, and evanescence of anti-M

As shown in Figure 1 and Table 3, out of 29 patients who had anti-M before transfusion, only 2 (7%, subgroup I)
Subgroup	Disease/condition	RBC transfusion	Patient age	Anti-M status	Time interval	Anti-M status
Subgroup I						
01	Surgery/trauma	M-negative, 1 bag	2 years	Positive	28 days	Positive
02	Leukemia	M-negative, 25 bags	9 years	Positive	2.3 years	Positive
Subgroup II						
03	Cardiac surgery	M-negative, 4 bags	7 months,	Positive	3 years	Negative
04	Viral myocarditis	M-negative, 4 bags	8 months	Positive	11 days	Negative
05	Malignancy	M-negative, 3 bags	1 year	Positive	17 days	Negative
06	Malignancy	Random, 4 bags	1 year	Positive	20 days	Negative
07	Cardiac surgery	M-negative, 16 bags	1 year	Positive	10 days	Negative
08	Malignancy surgery	Random, 5 bags	1 year	Positive\(^a\)	9 months	Negative
09	Malignancy	M-negative, 6 bags	2 years	Positive	7 months	Negative
10	Malignancy chemotherapy	M-negative, 4 bags	2 years	Positive	3 months	Negative
11	Cardiac surgery	M-negative, 1 bag	2 years	Positive	3 days	Negative
12	Hemolytic-uremic syndrome	M-negative, 5 bags	2 years	Positive\(^b\)	9 days	Negative
13	Malignancy	M-negative, 4 bags\(^c\)	3 years	Positive	62 days	Negative
14	Leukemia	M-negative, 4 bags	3 years	Positive	21 days	Negative
15	Myelodysplastic syndrome	Random, 3 bags	3 years	Positive\(^d\)	68 days	Negative
16	Leukemia	M-negative, 5 bags	5 years	Positive	53 days	Negative
17	Brain surgery	M-negative, 1 bag	6 years	Positive	91 days	Negative
18	Respiratory distress	M-negative, 1 bag	8 years	Positive	5.8 years	Negative
19	Malignancy	NIA\(^e\), 1 bag	11 years	Positive	11 days	Negative
Subgroup III						
20	Acute encephalopathy	Random, 1 bag	8 months	Positive	Not tested	Not tested
21	Cardiac surgery	M-negative, 1 bag	1 year	Positive	Not tested	Not tested
22	Surgery/trauma	M-negative, 1 bag	1 year	Positive	Not tested	Not tested
23	Surgery/trauma	NIA\(^e\), 3 bags	1 year	Positive	Not tested	Not tested
24	Virus-associated hemophagocytic syndrome	NIA\(^e\), 1 bag	1 year	Positive	Not tested	Not tested
25	Others	M-negative, 1 bag	1 year	Positive	Not tested	Not tested
26	Anonymized	Random, 2 bags	2 years	Positive	Not tested	Not tested
27	Others	Random, 2 bags	2 years	Positive	Not tested	Not tested
28	Pulmonary-cystic disease	M-negative, 1 bag	2 years	Positive	Not tested	Not tested
29	Cardiac surgery	M-negative, 3 bags	3 years	Positive	Not tested	Not tested
Subgroup IV						
30	Cardiac surgery	Random, 3 bags\(^f\)	<1 month	Negative	6 months	Positive
31	Cardiac surgery	Random, 1 bag\(^g\)	<1 month	Negative	17 months	Positive\(^i\)
32	Surgery/trauma	Random, 3 bags\(^h\)	<1 month	Negative	13 months	Positive\(^j\)

\(^a\) Positive\(^d\) Positive\(^b\) Positive\(^c\) Positive\(^e\) Positive\(^f\) Positive\(^g\) Positive\(^h\) Positive\(^i\) Positive\(^j\)
were persistently positive at 28 days and 2.3 years after transfusion. On the contrary, testing revealed evanescent anti-M in 17 patients (59%, subgroup II), as early as 5 days to as late as 5.8 years after transfusion (median 53 days, interquartile range 11 days–7 months). Out of these 17 patients, at least 13 (76%) received M antigen-negative RBCs exclusively. Five patients in subgroup II lost anti-M within 2 weeks following transfusion of M-negative red cells. Ten (34%, subgroup III) were not tested after transfusion (Figure 1 and Table 3).

In contrast, 15 patients developed de novo anti-M following transfusion. Among five patients with follow-up testing, anti-M was undetectable in four patients (subgroup V) and persistently positive in one patient (subgroup IV). In 10 patients (subgroup VI), no further test results were available.

DISCUSSION

This survey quantified the incidence of allo-anti-M before and/or after transfusion in pediatric patients aged between 1 month and 20 years. Anti-M was identified among infants, children, and prepubescents, i.e., patients 6 months to 12 years of age, with a median age of 2 years and interquartile range of 1–3 years. No one younger than 6 months or older than 13 years were found to have anti-M. These results concur with a previous report.7
In infants and young children, anti-M is generally considered naturally occurring, often in the setting of infection. In this study, we found at least 5 instances of anti-M in patients with suspected viral/bacterial infection. Naturally occurring anti-M has been reported to be produced almost exclusively in young children after infections of Hemophilus influenzae, Proteus mirabilis, Staphylococcus aureus, Neisseria meningitis, and others. Studies of Hemophilus and Neisseria species have shown expression of sialylated glycans that could potentially stimulate cross-reactive antibodies to monosialylated type 1 O-glycan structures on the RBC membrane, including M/N antigen. Based on shared epitopes using the BLASTp database, a potential connection between microbial infection and RBC alloimmunization has been investigated. Curiously, anti-M was not detected among young adults, suggesting that these cross-reactive, naturally occurred antibodies are not strongly specific to M-antigen and gradually evanescence below detection level. Still, we cannot explain why no young adults had cross-reactive anamnestic responses when RBCs were transfused.

In addition, some viruses (e.g., influenza) and bacteria secrete neuraminidase, which can modify glycans present on M/N antigen, thus altering their immunogenicity. Acquired B antigen” on RBCs in A individuals is a well-known phenomenon observed with certain Gram-negative infections that secrete de-acytelase enzymes that convert A antigen to a B-like antigen. Many pathogens, including rotaviruses, adenoviruses, influenza viruses, and some bacteria, exploit sialic acid structures as receptors for binding. Given the abundance of sialic acids on glycoporphin A (1 x 10^7/RBC), on which MN antigens are present, some infected hosts may evoke so-called naturally occurring, or microbiota-cross-reacting anti-M during immune response to invading pathogens. An analogous example is paroxysmal cold hemoglobinuria, which classically follows infection and is associated with induction of a transient auto-anti-P. Likewise, Epstein–Barr virus, the etiologic agent of infectious mononucleosis, induces a transient anti-i IgM and cold autoimmune hemolytic anemia.

Anti-M is reported to be detected in around 10% of pregnant women in the USA, 3.9% in Africa, and 10.8% in Japan as follow-up to a positive antibody screen. Our findings are consistent with a recent article by Takeshita and colleagues. Among 12,285 RBC alloantibodies, the detection of anti-M in men (7.0%) was similar to that of women (7.4%, p = 0.40). Contrary to expectations, anti-M is less frequent in patients with a history of transfusion than in patients with no or unknown transfusion history (2.9% vs. 8.9%, p < .001). However, the frequency of anti-M during pregnancy is more than that of women not pregnant (10.8% vs. 8.6%, p < .029). The increase in anti-M during pregnancy may reflect restimulation by exposure to fetal M antigen. We hypothesize that childhood infection can provoke M-reactive antibodies that evanesce following infection and/or aging. Among male military veterans (USA), anti-M reactive at 37°C persisted in 67%, similar to other allo-antibodies: 65% for anti-K, 64% for anti-E, and 70% for anti-c.

In our study, 17 (90%) of 19 pediatric patients positive for anti-M before transfusion and tested after transfusion lost detectable anti-M as early as 5 days to as late as 5.8 years, with a median of 53 days, per post-transfusion testing. Thirteen (76%) of 17 patients who lost anti-M after transfusion received only M antigen-negative RBCs. The loss of anti-M after transfusion is a phenomenon we call “transfusion-related anti-M attenuation.” One mechanism may be transfusion-related clonal anergy following cross-match-compatible, M-positive red cells. Specifically, anti-M might go into clonal anergy after rapid transfusion that is massive in comparison to body size and blood volume, thus decreasing the production of antibody to undetectable levels. However, we should stop short of saying that anti-M clones are totally depleted, as in so-called clonal deletion or immunological accommodation in patients who lose anti-A (or B) following ABO-mismatched transplantations.

The mechanism would not, however, explain the loss of anti-M after transfusion of M-negative cells. In six children, anti-M disappeared within 2 weeks of M-negative RBC transfusion. This raises the question whether there was nonspecific adsorption and clearance of anti-M by donor NN-red cells, which has not been described. Theoretically, some examples of anti-M might also possess an anti-PRM component. Anti-Pr is a common, pH-sensitive autoantibody that recognizes the terminal sialylated O-glycans on both glycoporphin A and B. Anti-PrM has M-specificity at warmer temperature that can be inhibited by glycoporphin extracts from both M+ or N+ red cells.

For patients with allo-anti-M, M antigen-negative red cells were transfused even for cold-reactive anti-M at around 80% of Japanese facilities in our study, and allocated only for 37°C reactivity at the remaining ~20% during our study period (2001–2015); Japanese policy has since been updated to specify that compatible RBCs should be transfused when the antibody is reactive at 37°C, based on evidence from a nationwide survey.

That anti-M is usually of little clinical significance in transfusion is supported by two Japanese surveys. No one developed hemolytic reactions after 41 M antigen-positive RBC transfusions into 14 patients who had cold reactive anti-M. No adverse reactions were reported in 33 patients with anti-M following transfusion of M-
positive RBCs (5 clinically relevant by IAT and 28 clinically not relevant by only saline/enzyme methods).19 Such clinical non-significance is presumptively attributed to the fact that almost all anti-M is mainly of IgM class. There are rare reports of anti-M, reactive both at 37°C and at room temperature/4°C, causing delayed hemolytic transfusion reactions.20–22 When anti-M is detected, the vigilance in regard to any change of reactivity state is warranted, i.e., to assess a bi-phasic behavior at 37°C and lower temperatures.23

In contrast, anti-M is one of the most clinically significant antibodies in cases of severe anemic disease of the fetus and newborn (ADFN) in Japanese and Chinese populations,24,25 even if maternal anti-M includes only miniscule amounts of IgG.26 Although maternal anti-M IgG titers are often quite low, there is chronic transplacental transfer of maternal IgG into fetal circulation throughout the course of pregnancy, with ongoing cumulative adverse effects.27 Glycophorin A is expressed on early erythroid precursors and it is believed that anti-M binding may lead to ineffective erythropoiesis and reticulocytopenia similar to that reported for anti-K,24,27 but with a distinct target molecule. This was demonstrated by Ishida et al. who showed a decrease in erythroid colony formation by anti-M in vitro.26 A subsequent case of a low titer, cold reactive anti-M IgG causing ADFN with reticulocytopenia was recently reported in the USA.28 Similarly, ADFN with ineffective erythropoiesis is reported with anti-Ge3 antibodies against glycophorin C.29

This study has some limitations. As a retrospective survey, it relied on post-transfusion data collection that was not necessarily part of routine care. This makes it likely that there were unobserved instances of attenuation and formation/reactivation of allo-anti-M. Moreover, pregnancy-related anti-M sensitization should be elucidated more carefully. Although no case of anti-M was found in cohort F (15 to <20 years), this might be due to or relatively small sample size (n = 1745); anti-M arising either from pregnancy or transfusion is plausible in this age cohort.

In conclusion, this retrospective survey revealed that naturally occurring anti-M was often found among children between 1 and 3 years of age and was frequently attenuated, irrespective of whether transfused RBCs carried M antigen.

ACKNOWLEDGMENT

We thank the following investigators who supported this study. Dr Hideto Takahashi (National Institute of Public Health), Ms Naomi Yachida (Tokyo Metropolitan Children’s Medical Center), Mr Yasukazu Doi (Ehime University Hospital), Ms Junko Takadate (Iwate Medical Children’s Medical Center), Mr Yasukazu Doi (Ehime University Hospital), Ms Naomi Yachida (Tokyo Metropolitan Children’s Medical Center), and Mr Hiroaki Nagashima (Hokkaido Medical University Hospital), Dr Tetsunori Tasaki (The Jikei University School of Medicine Hospital), Mr Yoshihiro Yabuta (Kurashiki Central Hospital), Dr Minami Yamada-Fujiwara and Ms Ayuko Narita (Tohoku University Hospital), Ms Maiko Abe-Yamada and Ms Kinuyo Kawabata (Fukushima Medical University Hospital), Dr Koji Yamamoto and Mr Masahiro Anan (Saitama Medical University Saitama Medical Center), Dr Toshiyuki Ikeda, Mr Yutaka Nagura and Dr Hitoshi Okazaki (The University of Tokyo Hospital), Ms Kayoko Kimura and Dr Shohei Yamamoto (Showa University Fujigaoka Hospital), Dr Soranobu Ninomiya (Gifu University Hospital), Mr Masahiro Ueda and Ms Ikuyo Hayakawa (Kobe University Hospital), Mr Yuki Hatayama and Dr Toru Motokura (Tottori University Hospital), Dr Yoshitaka Furukawa and Ms Tamaka Miyamoto (Kagoshima University Hospital), Mr Yo Taniguchi (National Hospital Organization Nagoya Hospital Center), Dr Asayuki Iwai, Ms Kumiko Hiraoka (Shikoku Medical Center for Children and Adults), and Mr Hiroaki Nagashima (Hokkaido Medical Center for Child Health and Rehabilitation).

CONFLICT OF INTEREST

The authors have disclosed no conflicts of interest.

ORCID

Hitoshi Ohto https://orcid.org/0000-0003-0340-883X
Akihiro Takeshita https://orcid.org/0000-0001-7504-6677
Akihiko Yokohama https://orcid.org/0000-0001-8514-086X

REFERENCES

1. Melland C, Nance S. Other blood group systems and antigens. In: Cohn CS, Delay M, Johnson ST, Katz LM, editors. Technical manual. 20th ed. Bethesda, MD: AABB; 2020. p. 355–88.
2. Schonewille H, Brand A. Alloimmunization to red cell antigens after universal leucodepletion. A regional multicentre retrospective study. Br J Haematol. 2005;129:151–6.
3. Takeshita A, Watanabe H, Yamada C, Nadarajan VS, Permpikul P, Sinkitjasub A, et al. Erythrocyte alloimmunity and genetic variance: results from the collaborative study of alloimmunity to antigen diversity in Asian populations (all ADP). Transfus Apher Sci. 2020;59:102944.
4. Klein HG, Anstee DJ. Other red cell antigens. In: Klein HG, Anstee DJ, editors. Mollison’s blood transfusion in clinical medicine. 11th ed. London: Blackwell Science; 2005. p. 209–52.
5. Cooling L. Blood groups in infection and host susceptibility. Clin Microbiol Rev. 2015;28:801–70.
6. Tamai Y, Ohto H, Takahashi H, Kitazawa J, for the Pediatric RBC Alloimmunization Consortium. Transfusion-related alloimmunization to red blood cell antigens in Japanese pediatric recipients. Transfus Med Rev. 2021;35:29–36.
7. Strahl M, Pettenkofer HJ, Hasse W. A haemolytic transfusion reaction due to anti-M. Vox Sang. 1955;5:34.
8. Kao YS, Frank S, DeJongh DS. Anti-M in children with acute bacterial infections. Transfusion. 1978;18:320–2.

9. Mandrell RE, Apicella MA. Lipo-oligosaccharide (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunology. 1993;187:382–402.

10. Baine I, Bahar B, Hendrickson JE, Hudson KE, Tormey CA. Microbial pathogen primary sequence inversely correlates with blood group antigen immunogenicity. Transfusion. 2019;59:1651–6.

11. Issitt OD, Anstee D. Applied blood group serology. 4th ed. Durham, NC: Montgomery Scientific Publications; 1998.

12. Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci. 2012;1253:16–36.

13. Cooling L. Kids, colds, and complement: paroxysmal cold hemoglobinuria. Transfusion. 2017;57:1332–5.

14. Burkart PT, Hsu TCS. IgM cold-warm hemolysis in infectious mononucleosis. Transfusion. 1979;19:535–8.

15. De Young-Owens A, Kennedy M, Rose RL, Boyle J, O'Shaughnessy R. Anti-M isoimmunization: management and outcome at the Ohio State University from 1969 to 1995. Obstet Gynecol. 1997;90:962–6.

16. Ngoma AM, Mutombo PB, Ikeda K, Nollet KE, Natukunda B, Ohto H. A systematic review of red blood cell alloimmunization in pregnant women in Africa: time to do better. ISBT Sci Series. 2016;11:62–9.

17. Tormey CA, Stack G. The persistence and evanescence of blood group alloantibodies in men. Transfusion. 2009;49:505–12.

18. Tomoda Y, Higashihara T, Endo T, Ono S, Kanemitsu Y, Kishino K, et al. A prospective clinical trial of hemolytic reaction in patients with positive cold-reactive antibodies following transfusion of corresponding antigen. Jpn J Transfus Cell Ther. 2013;59:733–9.

19. Yamada C, Takeshita A, Ohto H, Ishimaru K, Kawabata K, Nomaguchi Y, et al. A Japanese multi-institutional collaborative study of antigen-positive red blood cell (RBC) transfusions in patients with corresponding RBC antibodies. Vox Sang. 2020;115:456–65.

20. Alperin JB, Riglin H, Branch DR, Gallagher MT, Petz LD. Anti-M causing delayed hemolytic transfusion reaction. Transfusion. 1983;23:322–4.

21. Furlong MB Jr, Monaghan WP. Delayed haemolytic episodes due to anti-M. Transfusion. 1981;21:45–9.

22. Sancho JM, Pujol M, Fernandez F, Soler M, Manzano P, Fellu E. Delayed haemolytic transfusion reaction due to anti-M antibody. Br J Haematol. 1998;103:268–9.

23. Shah SP, Kalugutkar SM, Sawant RB, Deshpande AS. Anti-M antibodies: biphasic (reactive at room temperature and at 37 °C): a case series. Asian J Transfus Sci. 2016;10:159–60.

24. Yasuda H, Ohto H, Nollet KE, Kawabata K, Saito S, Yagi Y, et al. Hemolytic disease of the fetus and newborn with late-onset anemia due to anti-M: a case report and review of the Japanese literature. Transfus Med Rev. 2014;28:1–6.

25. Li S, He Z, Luo Y, Ji Y, Luo G, Fang Q, et al. Distribution of maternal red cell antibodies and the risk of severe alloimmune haemolytic disease of the foetus in a Chinese population: a cohort study on prenatal management. BMC Pregnancy Childbirth. 2020;20:539.

26. Ishida A, Ohto H, Yasuda H, Negishi Y, Tsuiki H, Arakawa T, et al. Anti-M antibody induced prolonged anemia following hemolytic disease of the newborn due to erythropoietic suppression in 2 siblings. J Pediatr Hematol Oncol. 2015;37:375–7.

27. Ohto H, Denomme GA, Ito S, Ishida A, Nollet KE, Yasuda H. Three non-classical mechanisms for anemic disease of the fetus and newborn, based on maternal anti-Kell, anti-Ge3, anti-M, and anti-Jr^+ cases. Transfus Apher Sci. 2020;59:102949.

28. Andersen LH, Jacob EK, McThenia SS, Tausher CD, Patterson ER, Oliveira JL, et al. Hemolytic disease and reticulocytopenia of the newborn attributable to maternal immunoglobulin G anti-M reacting optimally at cold temperature. Transfusion. 2021;61:974–8.

29. Arndt PA, Garratty G, Daniels G, Green CA, Wilkes AM, Hunt P, et al. Late onset neonatal anaemia due to maternal anti-Ge: possible association with destruction of erythroid progenitors. Transfus Med. 2005;15:125–32.

How to cite this article: Tamai Y, Ohto H, Yasuda H, Takeshita A, Fujii N, Ogo H, et al. Allo-anti-M: Detection peaks around 2 years of age, but may be attenuated by red blood cell transfusion. Transfusion. 2021;61:2718–26. https://doi.org/10.1111/trf.16594