Review

Dual role of cellular prion protein in normal host and Alzheimer’s disease

By Takashi ONODERA*1,†

(Communicated by Masanori OTSUKA, M.J.A.)

Abstract: Using PrPC-knockout cell lines, it has been shown that the inhibition of apoptosis through STI1 is mediated by PrPC-dependent SOD activation. Antioxidant PrPC may contribute to suppression of inflammasome activation. PrPC is functionally involved in copper metabolism, signal transduction, neuroprotection, and cell maturation. In another role, PrPC also tends to function as a neurotoxic protein. Aβ oligomer, which is associated with neurodegeneration in Alzheimer’s disease (AD), has also been reported to act as a ligand of PrPC. However, the physiological role of PrPC as an Aβ-binding protein is not clear. Actually, PrPC is critical in Aβ-mediated autophagy in neurons. PrPC shows a beneficial role in lipid rafts to promote autophagy. Further search for PrPC-interaction molecules using Prnp−/− mice and various types of Prnp−/− cell lines under various conditions may elucidate other important PrPC important functions.

Keywords: Alzheimer’s disease, autophagy, gene-targeting, reactive oxygen species, slow virus infection, prion

Introduction

Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurological disorders that include Creutzfeldt-Jakob disease (CJD) and kuru in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, and chronic wasting disease (CWD) in cervids. For the last 30 years, we and other Japanese groups have reported Japanese scrapie and BSE cases.1)–14) Hitherto, 36 cases of BSE10),13) have been reported in Japan (Fig. 1). Global elucidation of the etiology of kuru has lead to the discovery of pre-senile dementias, CJD and its variant—with basically similar cellular lesions—which are also transmissible and may be caused by a very similar and unconventional “virus” or prion.15),16) All the transmissible cerebral amyloidoses (TCA) are formed from the

Abbreviations: Aβ: β-amyloid; AβO: Aβ oligomer; α7nAChR: α7 nicotinic acetylcholine receptor; AD: Alzheimer’s disease; Brd2: B-cell lymphoma 2 protein; BECN1: beclin; BSE: bovine spongiform encephalopathy; cAMP: cyclic adenosine monophosphate; CDP: chronic demyelinating polyneuropathy; CID: Creutzfeldt-Jakob disease; CK2: protein kinase CK2; CWD: chronic wasting disease; cytoPrP: cytosolic compartment of prion protein; DCN: deep cerebellar nuclei; Dpl: doppel; EMCV: encephalomyocarditis virus; ERK: extracellular signal-regulated kinase; GPI: glycosylphosphatidylinositol; Grb2: growth factor receptor bound protein 2; HIV: human immunodeficiency virus; Hsp: heat shock protein; HTLV: human T-cell lymphotropic virus; IPSP: inhibitory postsynaptic potential; LFP: local field potential; LPR1: low-density lipoprotein-related protein 1; LTP: long-term potentiation; MAPK: mitogen-activated protein kinase; mGluR5: metabotropic glutamate receptor 5; NADPH: nicotinamide adenine dinucleotide phosphate; NLRP3: nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3; NMDAR: N-methyl-D-asparate receptor; NO: nitric oxide; NOS: nitric oxide synthase; OB: olfactory bulb; PI3K: phosphatidylinositol 3-kinase; PI3KC3: phosphatidylinositol 3-kinase, catalytic subunit type 3; Pint1: prion protein interacting protein 1; Pint2: prion protein interacting protein 2; PrPC: cellular isoform of prion protein; PrPSc: scrapie isoform of prion protein; Rag1: recombination activating gene 1; ROS: reactive oxygen species; RSSE: Russian spring-summer encephalitis; SOD: superoxide dismutase; STI1: stress-inducible protein 1; TCA: transmissible cerebral amyloidosis; TgGPI-PrP: GPI deficient PrP transgenic mouse; TSE: transmissible spongiform encephalopathy; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.

doi: 10.2183/pjab.93.010

©2017 The Japan Academy
TCA amyloid precursor protein (PrP) specified on the short arm of chromosome 2 in humans and chromosome 20 in mice.

There are other slow infections of the central nervous systems in humans that are caused by conventional viruses, including measles virus, papovaviruses (JC virus and SV40-progressive multifocal leukoencephalopathies or PML), rubella virus, cytomegalovirus, herpes simplex virus, adenovirus types 7 and 32, Russian spring-summer encephalitis (RSSE) viruses, and the human retroviruses (human T-cell lymphotropic viruses-1: HTLV1, and human immunodeficiency viruses: HIV) (Table 1). Recently, Notkins’s group, our and other groups have demonstrated that human enteroviruses and reoviruses can be regarded as typical slow infections causing type-1 diabetes mellitus. However, unlike these conventional viruses, the “unconventional viruses” of the subacute spongiform encephalopathies are truly slow in their replication, with long doubling times. Moreover, these alone appear to be viruses that have made it necessary to alter our conceptions of the possible range of virus structure. The process of infection appears to be a seeding by a “virus”, which is a nucleating agent inducing and the automatically accelerating the conformational transition in the amyloid subunit protein. In that process the host-specified precursor protein (cellular isoform of prion protein: PrPC) is converted to an insoluble cross-β-pleated configuration (scrapie isoform of prion protein: PrPSc) (Table 2). Oligomers of microfilament of this subunit protein nucleate its own polymerization, crystallization, and precipitation as insoluble arrays of amyloid fibrils. Thus, proteolytic cleavage and conformational change of the precursor and oligomeric assembly of this structurally altered polypeptide produces a fibril amyloid enhancing factor with apparent infectious properties. In this report, the dual role of PrPC is described in diseased and normal function in the compromised host. Additionally, the etiological role of PrPC in the induction of Alzheimer’s disease (AD) is discussed.

1. PrPC is indispensable for neurological functions

1) Neuritogenesis by PrPC. The mammalian PrPC is a highly conserved glycoprotein localized in membrane lipid rafts and anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is located in many cell types, and is particularly abundant in neurons. Under certain conditions PrPC may undergo conversion into a conformationally altered isoform (PrPSc) which is widely believed to be the pathogenic agent in prion disease or TSE. Although much has been studied about the effects of PrPSc in prion diseases, the normal function of PrPC is poorly understood as yet. Lehmann and our group have shown that PrPC has α- and β-cleavage site during normal processing and host translational modifications.

Recent experimental evidence showing that PrPC interacting with β1 integrin controls focal adhesion and turnover of the actin microfilaments in neurons substantiates a role for PrPC in neurito-
Several reports show that PrP^C participates in trans-membrane signaling processes associated with hematopoietic stem cell replication and neuronal differentiation. Integrins are well known in autophagy. Remarkably, during neuronal differentiation, the downregulation of Rho kinase activity is necessary for neurite sprouting. Abundant expression of PrP^C has been detected during mouse embryogenesis in association with the developing mouse nervous system. In the developing mouse brain, undifferentiated neural progenitor cells in the mitotically active ventricular zone do not express PrP^C. In contrast, post-mitotic neurons express high levels of PrP^C after their last mitosis in the neuroepithelium as they migrate towards marginal layers and differentiate. Thus, PrP^C may be expressed exclusively in differentiated neurons.

Studies in vitro have shown that expression of PrP^C is positively correlated with differentiation of multipotent neuronal precursors into mature neurons. In addition, treatment of embryonic hippocampal neurons with recombinant PrP^C enhances neurite outgrowth and survival. The distribution of PrP^C in the developing nervous systems of cattle, mice, and humans suggest that PrP^C plays a functional role in neural development. While PrP^C-knockout (Prnp^−/−) displays no overt in neural phenotype, numerous subtle phenotypes have been
reported,37) including reduction in the number of neural precursor cells in developing mouse embryo.35) Other studies have shown that PrP\textsubscript{C} induced neuritogenesis in embryonic hippocampal neurons cultured \textit{in vitro}.38),42) PrP\textsubscript{C} interacts with stress-inducible protein 1 (STI1),43) which is a heat-shock protein.44) The interaction of PrP\textsubscript{C} with STI1 not only activates cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) to transduce a survival signal but also induces phosphor-ylation/activation of the mitogen-activated protein kinase to promote neuritogenesis.42) Elucidation of the signaling pathways through which PrP\textsubscript{C} influences neurogenesis, along with an understanding of the pathways involved in other key cellular processes,42) may provide insight into how PrP\textsubscript{C} misfolding leads to devastating neurodegenerative diseases.

\textbf{2) Neuroprotection by PrP\textsubscript{C}.}\ In this chapter we describe how our group has spent much effort to understand the normal function of PrP\textsubscript{C} using \textit{Prnp}−/− mice. Interestingly we observed that PrP\textsubscript{C} worked in an \textit{in vitro} system favorably provide neuroprotection for mice under the oxidative stress or virus infection by suppressing the apoptosis. In this chapter and Chapter 4, we show the same neuroprotective role of PrP\textsubscript{C} in an \textit{in vivo} mouse system. The most commonly observed function on PrP\textsubscript{C} is copper-binding. Previous and our studies by our laboratories and others have demonstrated that the octapeptide-repeat region of PrP\textsubscript{C} binds with Cu2+ within the physiological concentration range.45)–47) Furthermore, PrP\textsubscript{C} displays a functional role in normal brain metabolism of copper.48) Besides binding with Cu2+ at the synapse, PrP\textsubscript{C} serves as Cu2+ buffer as well.49) Overexpression of PrP\textsubscript{C} increases Cu2+ uptake into cells,50) while PrP\textsubscript{C}-knockout (\textit{Prnp}−/−) mice show a lower synaptosomal Cu2+ concentration than normal mice.49) However, Cu2+ rapidly and reversibly stimulates the internal-ization of PrP\textsubscript{C} during PrP\textsubscript{C} endocytosis.51),52) Through binding with Cu2+, PrP\textsubscript{C} displays super-oxide dismutase (SOD) activity \textit{in vitro}.50),53)–57) Intriguingly, treatment with copper chelator cupri-zone induces TSE-like spongiform degeneration.58) Therefore, Cu2+ metabolism appears to play an important role in not only PrP function but also the pathogenesis of prion diseases. PrP\textsubscript{C} may act as an antiapoptotic agent by blocking some of the internal or environmental factors that initiate apoptosis.59),60) Mature PrP\textsubscript{C} trends to localize in lipid rafts of cells.30) As lipid rafts are membrane structures specialized in signaling, a potential role of PrP\textsubscript{C} in signal transduction may be anticipated. \(\alpha\beta\) on the raft is the most important interacting protein among them (see the next chapter: section 3). Such a signaling platform or signalosome is based on PrP\textsubscript{C}. PrP\textsubscript{C} localizes to cholesterol- and sphingolipid-rich, detergent-resistant lipid rafts due to the saturated acryl chains in its GPI anchor and to an N-terminal targeting

\begin{table}
\centering
\caption{Transmissible spongiform encephalopathies with mutations responsible for inherited genetic forms of the disease}
\begin{tabular}{|l|}
\hline
\textbf{In humans} \\
\hline
Kuru \\
Creutzfeldt-Jakob disease \\
Sporadic \\
Iatrogenic (human growth hormone, pituitary gonadotropin, dura matter and corneal transplants, stereotactic electrodes) \\
Familial (178asn, 200lys, 210ile, octapeptides inserts 2, 4-9) \\
Variant \\
Gerstmann-Straussler-Scheinker syndrome (GSS is only genetic, mutations are classified according to disease phenotype) \\
Fatal familial insomnia (178asn) \\
\hline
\textbf{In Animals} \\
\hline
Scrapie (sheep, goats, moufflon) \\
Transmissible mink encephalopathy \\
Chronic wasting disease (mule deer, elk) \\
Bovine spongiform encephalopathy \\
Exotic ungulate spongiform encephalopathy (nyala, gemsbok, Arabian oryx, greater kudu, eland) \\
Feline spongiform encephalopathy (cats, albino tiger, puma, cheetah) \\
\hline
\end{tabular}
\end{table}
signal interacting with heparin sulfate proteoglycan, glypican-1. PrP C has been proposed as a key scaffolding protein for dynamic assembly of cell surface signaling modules, and PrP C, along with the microdomain-forming flotillin, or caveolin proteins, may lead to the local assembly of membrane protein complexes at sites involved in cellular communication, such as cell-cell contacts, focal adhesions, the T-cell cap, and synapses.

In addition, a phosphorylating function of PrP C, mediated by caveolin-1 to indirectly increase Fyn (a member of the Src family of tyrosine kinase) phosphorylation, governs the downstream production of NADPH-oxidase-dependent reactive oxygen species and activation of the extracellular regulated kinase 1/2 has been demonstrated.30,61 PrP C interacts with normal phosphoprotein synapsin Ib and cytoplasmic adaptor protein Grb2 without being deciphered with prion interactor Pint1.62 Bovine PrP strongly interacts with the catalytic α/α’ subunit of protein kinase CK2 to increase the phosphotransferase activity of CK2, thus leading to the phosphorylation of calmodulin.63

Upon engagements with PrP C binding peptides and certain antibodies, PrP C transduces neuroprotective signals that affect the sensitivity to induce cell death.54 Linden et al. have suggested that the engagement of PrP C transduces neuroprotective signals through a cAMP/PKA-dependent pathway. According to their theory, PrP C may function as a trophic receptor, where the activation of which leads to a neuroprotective state.64 In addition, PrP C binds with extracellular matrix laminin to promote genesis and maintenance of neurites. We have shown that PI3K is activated by PrP C through the intercellular transportation of copper molecules.65 In fact, a study has discovered PrP C to induce self-renewal of long-term populating hematopoietic stem cells.34 Furthermore, another study has revealed that PrP C is expressed on the multipotent neural precursors and mature neurons without being detected in glia, suggesting that PrP C plays an important role in neural differentiation.39 Therefore, the interaction between PrP C and various signal transduction molecules speaks well for important functions (such as differentiation and cell survival) in the living system (Fig. 2).

A stress-protective activity has also been assigned to PrP C based on results with primary neuronal cultures. Neuronal cells derived from Prnp−/− mice are more sensitive to oxidative stress and serum deprivation than wild-type cells. Moreover, after ischemic brain injury, Prnp−/− mice reveal enlarged infarct volumes.66 In our studies Prnp−/− cell line (HpL3-4), immortalized from hippocampal neuronal precursor cells in Rikn Prnp−/− mice (Fig. 3), is sensitive to serum deprivation-induced apoptosis, although it is activated and/or survives
with PrPC expression.53 The same effect was observed in another Prnp-deficient cell line (NpL2), immortalized from hippocampal neuronal cells in Zrch I Prnp−/− mice.57 Overexpression of B-cell lymphoma 2 protein (Bcl-2) in this cell line reveals a functional relation of PrPC with Bcl-2 in the anti-apoptotic pathway.53 Martin \textit{et al.} have shown that prevention of cell death in cultured retinal explants from neonatal rats and mice induced by anisomycin (a protein synthesis inhibitor) unfurls the effect associated with PrPC-STI1 interactions.43 Li and our group show that the production of another type of heat-shock protein (Hsp 70) is enhanced when PrP levels elevate during hyperglycemia.67 We have demonstrated that the inhibition of apoptosis through STI1 is mediated by PrPC-dependent SOD activation.68 This neuroprotective role of PrPC has been linked to cell signaling events. The interaction of PrPC with the STI1 generates neuroprotective signals that rescue cells from apoptosis (Fig. 4). The functional role of STI1 and PrPC have been confirmed in both murine and bovine systems.69

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig3.png}
\caption{Phenotypes of \textit{Prnp}--/-- mice established in several laboratories in the world. Different kinds of targeting cassette for \textit{Prnp} are shown. The structures of constructs used to produce six lines of \textit{Prnp}--/-- mice are explained. The structure of wild-type (WT) \textit{Prnp} exon3 and PrP coding region (open box) is shown at the top. The selection markers are indicated by black boxes. The presence and absence of 3 splicing acceptors are correlated with ectopic expression of Doppel (Dpl) and development of late-onset ataxia induced by loss of Purkinje cells. Chronic demyelinating polyneuropathy (CDP) was observed in type-1 and type-2 \textit{Prnp}--/-- mice. The selection markers were: PGK, mouse phosphoglycerate kinase promoter; NEO, neomycin phosphotransferase; HPRT, mouse hypoxanthine phosphoribosyltransferase; TK, human herpes simplex virus type 1 thymidine kinase promoter; MT, mouse metallothionein promoter; loxP, a 34 bp recombination site from phage P1. The restriction enzyme sites were: E, EcoRI; X, XbaI, S.A., splicing acceptor.149 Zurich type-2 knockout mouse produces while type-1 mouse does not produce doppel proteins. NT: not tested.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig4.png}
\caption{Capacity of truncated \textit{Prnp}--/-- genes to rescue apoptosis when reintroduced to \textit{Prnp}--/-- cells. Introducing empty vector (EM) to \textit{Prnp}--/-- cells shows strong apoptosis. However, introducing \textit{Δ}#1 (octarepeat region (OR): aa 53-94 truncated) induces more potent apoptosis, showing the dominant negative effect of \textit{Δ}#1 gene. Similarly, introducing \textit{Δ}#2 (STI1 binding area; N-terminal half of hydrophobic region: aa 95-132 truncated) failed to rescue \textit{Prnp}--/-- cells from apoptosis.}
\end{figure}
The late onset of severe ataxia and loss of cerebellar Purkinje cells in several Prnp−/− mouse lines from several laboratories suggest the lack of cerebellar protection by PrPC in these mice. Interestingly, deposition of PrPSc has been located in the deep cerebellar nuclei (DCN) of scrapie-infected sheep. Future studies with a microarray analysis by our group applied in eye-blink-conditioning of mice may provide insight into understanding the normal function of PrPC in the DCN of the cerebellum.

A loss of PrPC function could be implicated in the pathogenesis of prion diseases and PrPC-dependent pathways might be involved in neurotoxic signaling. For example, in vivo crosslinking of PrPC by antibodies triggered neuronal apoptosis and PrPC-dependent receptors were postulated to explain the neurotoxic effect of a PrP mutant lacking the hydrophobic domain (see next sections 2 and 3). Still available data indicated that PrPC is a critical element of the network that controls the sensitivity to programmed cell death in both the nervous system and several other cell types. The outcome of the engagement of PrPC on either cell death or survival is likely dictated by its available ligands. These ligands in fact determine the array of intervening signaling pathways.

Taken together, PrPC is functionally involved in copper metabolism, signal transduction, neuroprotection, and cell maturation. Despite these putative roles, mice null for PrPC display no consistent phenotype apart from complete resistance to TSE infection. Further searches for PrPC-interaction molecules using Prnp−/− mice and various types of Prnp−/− cell lines under various conditions may elucidate the PrPC functions.

3) Enhanced synaptic plasticity by PrPC. In Rikn Prnp−/− mice, Kim et al. in our group have observed pathological alterations and some physiological dysfunctions in the olfactory bulb (OB). Recently, Le Pichon et al. have proposed that electrophysiological alterations at the dendrodendritic synapse in the OB could underlie the behavior phenotypes. In detail, the cookie finding task, a test of broad olfactory acuity, to analyze a battery of mice including PrP knockout from multiple genetic backgrounds and transgenic mice in which Prnp expression was driven by cell type-specific promoters. Prnp−/− mice exhibited impaired behavior that was rescued in transgenic mice expressing PrPC specifically in neurons but not in mice expressing only extra-neuronal PrPC. Prnp−/− mice displayed altered behavior in an additional olfactory test (habituation-dishabituation) which was also rescued by transgenic neuronal PrP expression suggesting that the phenotype was olfactory-specific. Additionally, the odor-evoked electrophysiological properties of the OB of Prnp−/− mice have been studied. In these mice, alterations in the patterns of oscillatory activity in the OB were detected. The plasticity of dendrodendritic synaptic transmission was altered between the granule cells and mitral cells.

Disruption was observed in local field potential (LFP) oscillation and in the plasticity of the dendrodendritic synapse, either, or both, of which could contribute to the behavioral phenotype in Prnp−/− mice. Oscillatory LFPs may act to organize information flow within the olfactory system by constraining the timing of mitral cell action potentials. In addition, gamma oscillations are specifically implicated in behavioral performance in olfactory tasks. Therefore, alterations in oscillatory timing during odor exposure may perturb OB output to higher centers by disrupting how information is packaged within a breathing cycle.

Altering the dendrodendritic synapse may have multiple functional consequences. This synapse may mediate lateral inhibition between ensembles of mitral cells, and be critical for olfactory discrimination. Additionally, because granule cells receive convergent information onto their proximal dendritic arbor from multiple higher brain areas, disruption of the dendrodendritic synapse may alter the transmission of centrifugal modulation of OB mitral cells.

High-frequency oscillations in the OB are shown to result from the rapid and reciprocal interactions between granule and mitral cells across the dendro-
dendritic synapse in vitro. Therefore, Le Pichon’s observation could imply that increased facilitation of mitral cell inhibitory postsynaptic potential (IPSP) following repetitive spiking decreases the dynamic range and increases the duration of gamma oscillations across the boundaries of breath. Although both oscillatory and synaptic effects could be reversed by neuronal PrPC expression, they cannot claim a causal link between these findings. Mitral cells receive facilitated inhibition in Prnp−/− mice. Future work should determine the precise synaptic localization of the PrPC protein as well as its biochemical interactions with synaptic machinery.

At least two definite molecular interactions of PrPC with hippocampal cell surface proteins, ST11 and laminin, can mediate the effect of PrPC on memory consolidation. Moreover, it is likely that PrPC modulates memory retention through both these interactions. Further support of the hypothesis that PrPC plays important roles in memory and cognition is found in humans. The presence of Val at codon 129 of PRNP (human prion protein gene) in at least one allele is associated with worsened cognitive performance in elderly subjects, with early cognitive decline. Conversely, healthy young adults expressing Met at codon 129 in at least one allele exhibit better long-term memory than those with Val in this codon, although short-term memory was unaffected. Thus, polymorphism at codon 129, a site that is highly important for protein structure, seems to be strongly related to cognitive performance.

Another report shows the potential impact of the temporary disruption of the cerebellar circuit during the time window critical for sensorimotor development in Zrch I Prnp−/− mice. In that investigation, the authors considered the effect of PrP gene knock-out on cerebellar neural circuits, which show intense PrP expression during development and selective affinity for PrP. Zrch I Prnp−/− mice showed low performance in the accelerating rotarod and runway test and the functioning of 40% of granule cells was abnormal. This phenomenon may have a reflection in some of the late motor, cognitive, and emotional abnormalities in Zrch I Prnp−/− mice. Their results suggest that PrP plays an important role in granule cell development to eventually regulate cerebellar network and motor control.

4) Myelination in peripheral nerves by PrPC. A late-onset peripheral neuropathy has been identified in PrPC-deficient Ngsk Prnp−/− and Zrch I Prnp−/− mice. (Fig. 4). This indicates that PrPC might have a role in peripheral neuropathies. At 60 weeks of age, all investigated Zrch I Prnp−/− mice (n = 52) showed chronic demyelinating polyneuropathy (CDP). CDP was 100% penetrating and conspicuous in all investigated peripheral nerves (sciatic and trigeminal nerves, dorsal and ventral spinal roots) (Fig. 4). Besides, CDP was associated with another 2 independently targeted Prnp knock-out mouse lines, GFP Prnp−/− mice and Npu Prnp−/− mice.

Zrch I Prnp−/− and Npu Prnp−/− mice suffered from CDP despite normal expression of Doppel (Dpl), indicating that Dpl regulation did not cause polyneuropathy. CDP was present in mice lacking both Prnp and Prnd (the gene for Dpl), but absent from mice selectively lacking Prnd. Therefore, Dpl is not required for the maintenance of peripheral nerves. PrPC might interact with myelin component directly or through other axonal proteins. Certain reported PrPC interacting proteins have roles in homeostasis and represent possible candidates for mediation of its myelinotrophic effects. The octapeptide repeat region was not required for myelin maintenance, whereas mice PrP lacking central domain (aa 94-134) developed CDP. It is worthy to note that the hydrophobic core, but not the charge cluster (CC2), of this central PrPC domain was essential for peripheral myelin maintenance.

Our and many other recent reports have shown that PrPC undergoes regulated proteolysis in late secretory compartments. Bremer et al. have observed an association between the presence of CDP and lack of C1 fragment in the sciatic nerves. All PrPC mutants in which CDP was rescued produced abundant C1. CDP was prevented by PrPC variants that undergo proteolytic amino-proximal cleavage, but not by variants that undergo nonpermissive cleavage, including secreted PrPC lacking its glycolipid membrane anchor. Cleavage of PrPC appeared therefore to be linked to its myelinotrophic function. This conjunction might also explain the requirement for membrane anchoring of PrPC uncovered in GPI-deficient PrP transgenic (18GPI-PrP) mice, as anchorless PrPC did not undergo regulated proteolysis. These results indicate that neuronal expression and regulated proteolysis of PrPC are essential for myelin maintenance.

Nervous myelin degeneration in optic nerves, corpus callosum or spinal cords was not detected in 60-week-old Zrch I Prnp−/− mice. Nevertheless subliminal myelin pathologies might extend to central myelin in Zrch I Prnp−/− mice and transgenic mice expressing toxic PrPC show both peripheral
and central myelinopathies. PrPC deficiency has been reported to affect synaptic function, however, the amplitudes of foot muscle compound action potentials following distal stimulation are not significantly altered in 53-week-old Zrch I Prnp−/− mice; arguing against an important synaptic defect in the neuromuscular synaptic junction.

It has been suggested that PrPC has various roles in immunity, and lymphocytes are important in mouse models of hereditary demyelinating neuropathies. As the CDP in our mutant mice was not modulated by Rag1 removal, lymphocytes were not involved in its pathogenesis. The combined results of restricting expression of PrPC of neurons and of selectively depleting PrPC from neurons indicate that the expression of PrPC by the neuron is essential for the long-term integrity of peripheral myelin sheaths. Not only was the trophic function of PrPC exerted in trans, but also correlated with the proteolytic processing of in diverse transgenic mouse models. These findings identify PrPC as a critical messenger of transcellular axonemalic communication, and indicate that regulated proteolysis of axonal PrPC might expose domains that interact with Schwann cell receptors. Recently, Aguzzi’s group has reported that PrPC promotes myelin homeostasis through flexible tail (23-50)-mediated Gpr126 agonism, and Gpr126 is crucial for peripheral nerve development. Gpr126−/− mice exhibit drastic hypomyelination. Clarifying the molecular basis of these phenomena might lead to better understanding of peripheral neuropathies, particularly those with late-onset, and might help to uncover new therapeutic targets.

2. PrPC mediates toxic signaling by PrPSc

Mice with prion disease show PrPSc accumulation and develop extensive neurodegeneration, in contrast to mouse models of AD or Parkinson’s disease, where neuronal loss is rare. Therefore, prion-infected mice allow access to mechanisms linking protein misfolding to neuronal death. Studies of both neuronal and nonneuronal cells substantiate the coupling of PrPC to signaling effectors involved in cell survival, redox equilibrium and homeostasis (e.g., ERK1/2, NADPH oxidase, cyclic AMP-responsive element binding protein (CREB) transcription factor and metalloproteinases) (Fig. 2). According to these studies, PrPC functions as a dynamic cell surface platform for assembly of signaling molecules. However, the sequence of cellular and molecular events that leads to neuronal cell demise in TSEs remains obscure. At present, we envision that neuronal cell death results from several parallel, interacting or sequential pathways involving protein processing and proteasome dysfunction, oxidase stress, apoptosis, and autophagy.

The fact that PrPSc levels alone cannot serve as a marker for tissue infectivity suggests that it may be useful to adapt current protocols of prion detection in tissues, since they are so far largely based on the detection of bona fide PrPSc. Mallucci’s group has previously shown rescue of neuronal loss and reversal of early cognitive and morphological changes in prion-infected mice by depleting PrPC in neurons, preventing prion replication and abrogating neurotoxicity. Recently, the same group has shown that PrPSc replication causes sustained unfolded protein response (UPR) induction with persistent, deleterious expression of eLF2α-P in prion disease. The resulting chronic blockade of protein synthesis leads to synaptic failure, spongiosis, and neuronal loss. Promoting eLF2α-P dephosphorylation rescues vital translation rates and is thereby neuroprotective, whereas preventing this further reduces translation and enhances neurotoxicity. The data support the development of generic proteostatic approaches to therapy in prion diseases. The unfolded PrPC response works as a protective cellular mechanism triggered by rising levels of misfolded PrPSc protein.

In another study, expression of PrPC in neuronal cells is required to mediate neurotoxic effects of PrPSc which might elicit a deadly signal through a PrPC-dependent signaling pathway. Spontaneous neurodegeneration in transgenic mice expressing a PrPC mutant without the N-terminal ER-targeting sequence indicated the toxic potential of PrPC when located in the cytosolic compartment (cytoPrP). Toxicity of cytoPrP seems to be dependent on its association with cellular membranes and its binding to Bcl-2, an antiapoptotic protein present at the cytosolic side of ER and mitochondrial membranes. Might the toxic potential of misfolded PrPC in the cytosol be relevant to the pathogenesis of prion diseases? The most recent finding has revealed an impairment of the ubiquitin-proteasome system (UPS) in prion-infected mice. In conjunction with in vitro and cell culture approaches, it has been proposed that prion neurotoxicity is linked to PrPSc oligomers, which translocate to the cytosol and inhibit the UPS. Another study shows that a reduction in autophagy combined with endosomal/lysosomal dysfunction has indeed been proposed for the development of prion diseases.
3. Role of PrPC in AD

PrPC is anchored to the cell surface by GPI. Since the 1980s, PrP-related studies have mainly focused on the mechanisms by which PrPC is converted into PrPSc that is responsible for transmissible spongiform encephalopathies (TSE) and causes fatal neurodegeneration and aggregation. Concomitantly, the physiology of PrPC has also been studied, including the role in the cellular trafficking of copper ions, hippocampal morphology, cognition, oxidative stress and apoptosis (Fig. 5). Depending on cell context or physiological conditions, PrPC is beneficial or harmful to the cell. Many studies have indicated that PrPC can rescue neurons from various stressful situations. Evidence from Prnp-knockout mice studies has provided information regarding subtle phenotypes (e.g., mild neuropathological, cognitive and behavioral deficits) and enhanced brain injury after ischemia. In addition, the N-terminal region of PrPC displays a neuroprotective function. Converstly, PrPC also tends to function as a neurotoxic protein.

PrPC expression is indispensable for prion-induced neurotoxicity to develop implying PrPC could be a receptor for prions to trigger detrimental signaling. Strittmatter has reported that PrPC transduces the synaptic cytotoxicity of amyloid-β (Aβ) oligomers in vitro and in Aβ-transgenic mice. Moreover, different anti-PrP antibodies or their antigen-binding fragments that disrupt the PrP-Aβ interaction are able to block the Aβ-mediated disruption of synaptic plasticity. These findings are important because they suggest the involvement of PrPC in AD pathogenesis. However, others have found that the absence of PrPC does not prevent defects in hippocampal-dependent behavioral tests upon intracerebral Aβ injection. It has been suggested that variations in copper availability may contribute to these discrepancies.

PrPC seems to regulate the β-secretase cleavage of amyloid precursor protein, thereby regulating the production of Aβ. In addition, α-secretase regulates the cleavage of PrPC, regulating an N-terminal fragment with neuroprotective activity. PrPC also binds to transmembrane proteins such as the 67-kDa laminin receptor and low density lipoprotein receptor-related protein 1 (LRP1), which are able to promote intracellular signaling-mediated neuronal adhesion and differentiation as well as PrPC internalization. Remarkably, PrPC functions as a receptor or coreceptor for extracellular matrix proteins such as laminin, vitronectin, as well as ST11 which has been repeatedly found by our group. These data suggest that GPI-anchored PrPC is a potential scaffold receptor in a multiprotein, cell surface, and signaling complex that may serve as the basis for the multiple neuronal functions ascribed to PrPC.

PrPC has been identified to bind Aβ oligomers (AβO), but not monomers or fibrils, with high affinity and to selectively interact with high molecular mass assemblies of AβO in AD but not control brains. PrPC is responsible for AβO-mediated inhibition of long-term potentiation (LTP) in hippocampal slices and is also required for the manifestation of memory impairment in an AD mouse model. AβO-binding to PrPC leads to activation of Fyn kinase. In addition, the AβO activation of Fyn leads to tau phosphorylation. Both metabotropic glutamate receptor 5 (mGluR5) and LPR1 have been identified as co-receptors required for the PrPC-bound AβO to activate Fyn. Fyn kinase phosphorylates N-methyl-D-aspartate receptor (NMDAR) and tau. Eventually NMDAR and tau (pTyr18) induce synaptic impairment and neurodegeneration.

Recently, Aβ42, which is associated with neurodegeneration in AD, has also been reported to act as a ligand of PrPC. However, the physiological role of PrPC as an Aβ42-binding protein is not clear. Actually, Jung and our group have demonstrated that PrPC is critical in Aβ42-mediated autophagy in neurons. The interaction of PrPC with Beclin (BECN1) facilitates the localization of BECN1 into lipid rafts and thus allows the activation of phosphatidylinositol 3-kinase (catalytic subunit type-3 or PI3KC3) complex in response to Aβ42, showing a beneficial role of PrPC as a positive regulator of the BECN1-PI3KC3 complex in lipid rafts.

4. PrPC and viral or bacterial infection

Microglia is one of the major cell types that produce NO, which in fact plays a role in active cellular protection. Keshet et al. and our group have reported that NOS activity is significantly reduced in adult Zurich I Prnp−/− mice (age >100 days), whereas NOS activity in young Zurich I Prnp+/− mice (<30-day-old) is similar to that of wild-type Prnp+/+ mice. To further elucidates the role of PrPC, we have infected wild type prion protein gene (Prnp+/+) and Zurich I or Rikin Prnp−/− mice with encephalomyocarditis virus (EMCV)-B via an intra-
Fig. 5. Summarized schematic representation of phenotypes of Prnp^{−/−} mice. Under the stressful conditions, Prnp^{−/−} mice showed various phenotypes. Detail of these phenotypes is summarized in reference 119. In vivo studies have demonstrated that Prnp^{−/−} mice are more prone to seizure, depression, and induction of epilepsy as well as experience extensive cerebral damage following ischemic challenge or viral infection. In experimental autoimmune encephalomyelitis, Prnp^{−/−} mice reportedly have a more aggressive disease onset and clinical improvement during chronic phase than wild-type mice. Prnp^{−/−} mice demonstrated significantly greater increase in blood glucose concentration after intraperitoneal injection of glucose than wild-type mice. In mice given oral dextran sulfate, PrPC indicated a potential protective role against inflammatory bowel disease.

Fig. 6. PrP^C-based lipid raft signaling platform. The co-receptors LRP1 and mGluR5 clusters with PrP^C upon AβO binding leads to activation of Fyn kinase. Fyn kinase phosphorylates NMDAR and tau. Subsequently tau becomes pTyr18 (phosphor-Tyr-18). NMDAR becomes pTyr1482NR2 (phosphor-Tyr-1482 NMDAR). NMDAR and tau (pTyr18) then induce synaptic impairment and neurodegeneration.
It is tempting to speculate that the inability of bacterial sepsis. Their response may confer some protection from full-scale induced peritonitis in Zrch I context of the neutrophil response to zymosan-observed in the brains of Zrch I (superoxide dismutase and catalase) have been accordingly, they found that although Zrch I mice. There is histopathological evidence of suppressed microglial response in Prnp mice, whereas these are more enlarged apoptotic brain lesions after EMCV infection in Prnp mice.140

Decreases in the activities of certain enzymes (superoxide dismutase and catalase) have been observed in the brains of Zrch I Prnp mice.60),66),141) This enzyme-related deficiency may induce an intracellular oxidative state in mouse brain cells. Increased lipoperoxidation, a phenomenon reported in other neurodegenerative diseases such as Alzheimer’s diseases and epilepsy,142),143) has been observed in such mice. In the absence of PrPC, increased oxidation of lipids and protein has been observed in the brain.144) These findings suggest the physiological function of PrPC is related to the cellular antioxidant defense system: viz., loss of the antioxidant defense system in Prnp mice may contribute to more severe lesions in the brain after EMCV infection.

A murine model of streptococcal sepsis that mimics many aspects of pathogenesis and immunity in the human disease has been investigated.145) Accordingly, they found that although Zrch I Prnp mice had impaired ability to clear Streptococcus pyogenes at the inoculation site in the thigh muscle (an event that is largely neutrophil-dependent), these mice were protected from bacteremia and sepsis. This protection was accompanied by a standard decrease in most serum cytokine concentrations, the exceptions being IL-9 and interferon-α. It is tempting to speculate that the inability of Zrch I Prnp mice to mount a full-blown cytokine response may confer some protection from full-scale bacterial sepsis. Their findings are noteworthy in the context of the neutrophil response to zymosan-induced peritonitis in Zrch I Prnp mice,146) which may be caused by deficient IL-17 production leading to inadequate neutrophil migration.

Recently, it has been reported that mitochondria control the activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome, and that the inflammasome activation is negatively regulated by autophagy and positively regulated by reactive oxygen species (ROS).147) PrPC has SOD activity and protects neurons from oxidative stress. Antioxidant PrPC may contribute to suppressing inflamma-

some activation. The relationship between PrPC and inflammasome remains to be fully elucidated.

Acknowledgements

The author thanks Dr. Akikazu Sakudo, Associate Professor, Ryukyu University, for continuous support and help for this slow virus projects. Thanks are due to Dr. Makoto Haritani, Member of Research Center for Food Safety, University of Tokyo, and Dr. Katsuki Sugiura, Professor of University of Tokyo, for preparing and reading this manuscript. This study was supported by grants-in-aid from the Ministry of Health, Labor and Welfare, Japan.

References
1) Onodera, T., Haritani, N., Narita, M. and Nakagawa, M. (1990) Epidemiology of ovine scrapie in Japan. Jpn. Agric. Res. Q. 24, 216–218.
2) Onodera, T., Ikeda, T., Muramatsu, Y. and Shinagawa, M. (1993) Isolation of scrapie agent from the placenta of sheep with natural scrapie in Japan. Microbiol. Immunol. 37, 311–316.
3) Maas, E., Geissen, M., Genschup, M.H., Rost, R., Onodera, T. and Schatzl, H. (2007) Scrapie infection of prion protein-deficient cell line upon ectopic expression of mutant prion protein. J. Biol. Chem. 282, 18702–18710.
4) Marshall, K.E., Hughson, A., Vascellari, S., Priola, S., Sakudo, A., Onodera, T. and Baron, G.S. (2016) PrP knockout cells expressing transmembrane PrP resist prion infection. J. Virol. 91, e01686-16.
5) Onodera, T. and Hayashi, T. (1994) Diversity of clinical signs in natural scrapie cases occurring in Japan. Jpn. Agric. Res. Q. 28, 59–61.
6) Onodera, T. and Saeki, K. (2000) Japanese scrapie cases. Jpn. J. Infect. Dis. 53, 56–61.
7) Hosokawa, T., Tuchiya, K., Sato, I., Takeyama, N., Ueda, S., Tagawa, Y., Kimura, K.M., Nakamura, I., Wu, G., Sakudo, A., Casalone, C., Mazza, M., Caramelli, M., Takahashi, H., Sata, T., Sugiura, K., Baj, A., Toniolo, A. and Onodera, T. (2008) A monoclonal antibody (1D12) defines novel distribution patterns of prion protein (PrP) as granule in nucleus. Biochem. Biophys. Res. Commun. 366, 657–663.
8) Uraki, R., Sakudo, A., Michibata, K., Ano, Y., Kono, J., Yukawa, M. and Onodera, T. (2011) Blocking of FcR suppresses the intestinal invasion of scrapie agents. PLoS One 6, e17928.
9) Sugiura, K., Yokoyama, T., Kumagai, S. and Onodera, T. (2003) A model to assess the risk of the introduction into Japan of bovine spongiform encephalopathy agent through imported animals, meat and meat-and-bone meal. Rev. Sci. Tech. 22, 777–794.
10) Onodera, T. and Kim, C.K. (2006) BSE situation and establishment of Food Safety Commission in Japan. J. Vet. Sci. 7, 1–11.
11) Onodera, T., Sakudo, A., Wu, G. and Saeki, K. (2006) Bovine spongiform encephalopathy in Japan: history and recent studies on oxidative stress in prion diseases. Microbiol. Immunol. 50, 565–578.

12) Sugiura, K. and Onodera, T. (2008) Cattle traceability system in Japan for bovine spongiform encephalopathy. Vet. Ital. 44, 519–526.

13) Sugiura, K., Onodera, T. and Bradley, R. (2009) Epidemiological features of the bovine spongiform encephalopathy epidemic in Japan. Rev. Sci. Tech. 28, 945–956.

14) Kusama, T., Hibino, H., Onodera, T. and Sugiura, K. (2009) Animal feed controls implemented in Japan for the eradication of bovine spongiform encephalopathy. Vet. Ital. 45, 287–295.

15) Gajdusek, D.C. (1977) Unconventional viruses and the origin and disappearance of kuru. Science 197, 943–960.

16) Prusiner, S.B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522.

17) Thomas, H. (2016) Diabetes: Enterovirus dysregulates islet miRNAs. Nat. Rev. Endocrinol. 12, 2.

18) Yoon, J.W., Onodera, T. and Jenson, A.B. (1978) Virus-induced diabetes mellitus. XI. Replication of coxsackie B3 in human pancreatic beta cells in culture. Diabetes 27, 778–781.

19) Yoon, J.W., Austin, M., Onodera, T. and Notkins, A.L. (1980) Virus-induced diabetes mellitus: isolation of virus from the pancreas of child with diabetic ketoacidosis. N. Engl. J. Med. 300, 1173–1179.

20) Yoon, J.W., McClintock, P.R., Onodera, T. and Notkins, A.L. (1980) Virus-induced diabetes mellitus. XVIII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J. Exp. Med. 152, 878–892.

21) Onodera, T., Taniguchi, T., Yoshihara, K., Shimizu, S., Satoh, M. and Hayashi, T. (1990) Reovirus type 2-induced diabetes in mice prevented by immunosuppression and effects of thymic hormone. Diabetologia 33, 192–196.

22) Onodera, T., Yoon, J.W., Brown, K.S. and Notkins, A.L. (1978) Virus-induced diabetes mellitus. XIII. Evidence of genetic control by single locus. Nature 274, 693–696.

23) Onodera, T., Jenson, A.B., Yoon, J.W. and Notkins, A.L. (1978) Virus-induced diabetes mellitus: Reovirus infection of pancreatic B cells in mice. Science 201, 529–531.

24) Onodera, T., Tonio1, A., Ray, U.R., Jenson, A.B., Knazek, R.A. and Notkins, A.L. (1981) Virus-induced diabetes mellitus. XX. Polyendocrinopathy and autoimmunity. J. Exp. Med. 153, 1457–1473.

25) Onodera, T., Ray, U.R., Meletz, K.A., Suzuki, H., Tonio1, A. and Notkins, A.L. (1982) Autoimmunity and polyendocrine disease prevented by immunosuppression. Nature 297, 66–68.

26) Come, J.H., Fraser, P.E. and Lausbury, P.T. Jr. (1993) A kinetics model for amyloid formation in the prion diseases: Importance for seeding. Proc. Natl. Acad. Sci. U.S.A. 99, 5959–5963.

27) Aiken, J.M. and Marsh, R.F. (1990) The search for scrapie agent nucleic acid. Microbiol. Rev. 54, 242–246.

28) Sakudo, A., Onodera, T., Sugamunya, Y., Kohayashi, T., Saeki, K. and Ikuta, K. (2006) Recent advances in clarifying prion protein functions using knockout mice and derived cell lines (Review). Mini Rev. Med. Chem. 6, 589–601.

29) McKinley, M.P., Taraboulos, A., Kenaga, L., Serban, D., Steiber, A., DeArmond, S.J., Prusiner, S.B. and Gonatas, N. (1991) Ultrastructural localization of kscrapie prion protein in cytoplasmic vesicles of infected cultured cells. Lab. Invest. 65, 622–630.

30) Jarosz-Griffiths, H.H., Noble, E., Ruthworth, J.V. and Hooper, N.M. (2016) Amyloid-β receptors: The good, the bad, and the prion protein. J. Biol. Chem. 291, 3174–3183.

31) Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Melihorn, I., Huang, Z., Fletterick, R.J., Cohen, F.E. and Prusiner, S.B. (1993) Conversion of αβ-helix into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 10962–10966.

32) Mange, A., Beranger, F., Peoc’h, K., Onodera, T., Flobert, Y. and Lehmann, S. (2004) Alpha- and beta-cleavages of the amino-terminus of the cellular prion protein. Biol. Cell 96, 125–132.

33) Loudet, D., Dakovski, C., Pietri, M., Pradines, E., Bernard, S., Callebert, J., Aída-Psorio, H., Mousil-Michard, S., Lamury, J.M., Kellermann, O. and Schneider, B. (2012) Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J. 26, 678–690.

34) Zhang, C.C., Steele, A.D., Lindquist, S.L. and Lodish, H.F. (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl. Acad. Sci. U.S.A. 103, 2184–2189.

35) Steele, A.D., Emaley, J.G., Ozdinler, P.H., Lindquist, S. and Macklin, J. (2006) Prion protein (PrPα) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc. Natl. Acad. Sci. U.S.A. 103, 3416–3421.

36) Tremblay, P., Bouzamondo-Bernstein, E., Heinrich, C., Prusiner, S.B. and DeArmond, S.J. (2007) Developmental expression of PrPα in the post-implantation embryo. Brain Res. 1030, 60–67.

37) Steele, A.D., Lindquist, S. and Aguzzi, A. (2007) The prion protein knockout mouse: a phenotype under challenge. Prion 1, 83–93.

38) Kanaani, J., Prusiner, S.B., Diacono, J., Baekkeskov, S. and Legname, G. (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J. Neurochem. 95, 1373–1386.

39) Peralta, O.A., Huckle, W.R. and Eyestona, W.H. (2011) Expression and knockdown of cellular
prion protein (PrP^C) in differentiating mouse embryonic stem cells. Differentiation 81, 68–77.

40) Adle-Biassette, H., Verney, C., Pooch, K., Dauge, M.C., Razavi, F., Choudat, L., Gressens, P., Budka, H. and Hein, D. (2006) Immunohistochemical expression prion protein (PrP^C) in the human forebrain during development. J. Neuropathol. Exp. Neurol. 65, 698–706.

41) Bueder, H., Fischer, M., Lang, Y., Flueuthmann, H., Lipp, H.P., DeArmond, S.J., Prusiner, S.B., Agnet, M. and Weissmann, C. (1992) Normal development and behavior of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.

42) Lopes, M.H., Hajj, G.N., Muras, A.G., Mancini, G.L., Castro, R.M., Ribeiro, K.C., Brentani, R.R., Linden, R. and Martins, V.R. (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci. 25, 11330–11339.

43) Zanata, S.M., Lopes, M.H., Mercadante, A.F., Hajj, G.N., Chiarini, L.B., Nomizo, R., Freitas, A.R., Cabral, A.L., Lee, K.S., Juliano, M.A., de Oliveira, E., Jachi, S.G., Burlingame, A., Huang, L., Linden, R., Brentani, R.R. and Martins, V.R. (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21, 3307–3316.

44) Lasle, M., Blatch, G.L., Kundra, V., Takatori, T. and Zetter, B.R. (1997) Stress-inducible, murine protein mSTI1. Characterization of binding domains for heat shock proteins and in vitro phosphorylation by different kinase. J. Biol. Chem. 272, 1876–1884.

45) Kramer, M.L., Kraitz, H.D., Schmidt, S., Bommer, A., Wind, O., Liemann, S., Hornemann, S. and Kretzschmar, H. (2001) Prion protein binds copper within the physiological concentration range. J. Biol. Chem. 276, 16711–16719.

46) Sakudo, A., Lee, D.C., Sai, K., Nakamura, Y., Inoue, K., Matsumoto, Y., Itohara, S. and Onodera, T. (2004) Prion protein suppress perturbation of cellular copper homeostasis under oxidative conditions. Biochem. Biophys. Res. Commun. 313, 850–855.

47) Prusiner, S.B. (1997) Prion diseases and BSE crisis. Science 278, 245–251.

48) Brown, D.R., Qin, K., Herns, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., Von Bohnen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D. and Kretzschmar, H. (1997) The cellular prion protein binds copper in vitro. Nature 390, 684–687.

49) Kretzschmar, H.A., Tings, T., Madlung, A., Giese, A. and Herns, J. (2000) Function of PrP(C) as a copper-binding protein at the synapse. Arch. Virol. Suppl. 16, 239–249.

50) Brown, D.R. (1999) Prion protein expression aids cellular uptake and veratridine-induced release of copper. J. Neurosci. Res. 58, 717–725.

51) Haigh, C.L., Edwards, K. and Brown, D.R. (2005) Copper binding is governing determinant of prion protein turnover. Mol. Cell. Neurosci. 30, 186–196.

52) Kubosaki, A., Nishimura-Nastu, Y., Nishimura, T., Yusa, S., Sakudo, A., Saeki, K., Matsumoto, Y., Itohara, S. and Onodera, T. (2003) Expression of normal cellular prion protein (PrPc) on T lymphocytes and effect of copper ion: analysis by wild-type and prion gene-deficient mice. Biochem. Biophys. Res. Commun. 307, 810–813.
(2002) Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–3326.

65) Vassallo, N., Hermus, J., Behrens, C., Krebs, B., Saeki, K., Onodera, T., Windl, O. and Kretzschmar, H. (2005) Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun. 332, 75–82.

66) Hoshino, S., Inoue, K., Yokoyama, T., Kobayashi, S., Asakura, T., Teramoto, A. and Itohara, S. (2003) Prions prevent brain damage after experimental brain injury: a preliminary report. Acta Neurochir. Suppl. 86, 297–299.

67) Shyu, W.C., Chen, C.P., Saeki, K., Kubosaki, A., Matsumoto, Y., Onodera, T., Ding, D.C., Chiang, M.F., Lee, Y.J., Lin, S.Z. and Li, H. (2005) Hypoglycemia enhances the expression of prion protein and heat-shock protein 70 in a mouse neuroblastoma cell line. J. Neurosci. Res. 80, 887–894.

68) Sakudo, A., Lee, D.C., Nishimura, T., Li, S., Tsuji, S., Nakamura, T., Matsumoto, Y., Saeki, K., Itohara, S., Ikuta, K. and Onodera, T. (2005) Octapeptide repeat region and N-terminal half of hydrophobic region of prion protein (PrP) mediates PrP-dependent activation of superoxide dismutase. Biochem. Biophys. Res. Commun. 326, 600–606.

69) Hashimoto, K., Onodera, T., Ikeda, H. and Kitani, H. (2000) Isolation and characterization of fetal bovine brain cells in primary culture. Res. Vet. Sci. 69, 39–46.

70) Moore, R.C., Lee, I.Y., Silverman, G.L., Harrison, P.M., Strome, R., Heinrich, C., Karunaratne, A., Pasternak, S.H., Chishti, M.A., Liang, Y., Mastrangelo, P., Wang, K., Smit, A.F., Pasternak, S.H., Chishti, M.A., Liang, Y., Prusiner, S.B., Melton, D.W., Tremblay, P., Hood, L.E. and Westaway, D. (1999) Ataxia in PrP null mice inversely correlated with Dpl level in brain. EMBO J. 20, 694–702.

71) Sakaguchi, S., Katamine, S., Nishida, N., Morinuchi, R., Shigematsu, K., Sugimoto, T., Nakatani, A., Kataoka, Y., Houtani, T., Shirabe, S., Okada, H., Hasegawa, S., Miyamoto, T. and Noda, T. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531.

72) Ersdal, C., Ulvund, M.J., Benestad, S.L. and Tianulis, M.A. (2003) Accumulation of pathogenic prion protein (PrPSc) in nervous and lymphoid tissue of sheep with subclinical scrapie. Vet. Pathol. 40, 164–174.

73) Park, J.S., Onodera, T., Nishimura, S., Thompson, R.F. and Itohara, S. (2006) Molecular evidence for two-stage learning and partial laterality in eyelid conditioning of mice. Proc. Natl. Acad. Sci. U.S.A. 103, 5549–5554.

74) Solforosi, L., Crist, J.R., McGavern, D.B., Wirz, S., Sanchez-Alavez, M., Sugama, S., DeGiorgio, L.A., Volpe, B.T., Wiseman, E., Abalos, G., Masliah, E., Gilden, D., Oldstone, M.B., Conti, B. and Williamson, R.A. (2004) Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516.

75) Winklhofer, K.F., Tatetz, J. and Haass, C. (2008) The two faces of protein misfolding: gain-and loss-of-function in neurodegenerative diseases. EMBO J. 23, 336–349.

76) Hoshino, S., Inoue, K., Yokoyama, T., Kobayashi, S., Asakura, T., Teramoto, A. and Itohara, S. (2003) Prions prevent brain damage after experimental brain injury: a preliminary report. Acta Neurochir. Suppl. 86, 297–299.

77) Shyu, W.C., Chen, C.P., Saeki, K., Kubosaki, A., Matsumoto, Y., Onodera, T., Ding, D.C., Chiang, M.F., Lee, Y.J., Lin, S.Z. and Li, H. (2005) Hypoglycemia enhances the expression of prion protein and heat-shock protein 70 in a mouse neuroblastoma cell line. J. Neurosci. Res. 80, 887–894.

78) Sakudo, A., Lee, D.C., Nishimura, T., Li, S., Tsuji, S., Nakamura, T., Matsumoto, Y., Saeki, K., Itohara, S., Ikuta, K. and Onodera, T. (2005) Octapeptide repeat region and N-terminal half of hydrophobic region of prion protein (PrP) mediates PrP-dependent activation of superoxide dismutase. Biochem. Biophys. Res. Commun. 326, 600–606.

79) Hashimoto, K., Onodera, T., Ikeda, H. and Kitani, H. (2000) Isolation and characterization of fetal bovine brain cells in primary culture. Res. Vet. Sci. 69, 39–46.

80) Moore, R.C., Lee, I.Y., Silverman, G.L., Harrison, P.M., Strome, R., Heinrich, C., Karunaratne, A., Pasternak, S.H., Chishti, M.A., Liang, Y., Mastrangelo, P., Wang, K., Smit, A.F., Katamine, S., Carlson, G.A., Cohen, F.E., Prusiner, S.B., Melton, D.W., Tremblay, P., Hood, L.E. and Westaway, D. (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J. Mol. Biol. 292, 797–817.

81) Sakaguchi, S., Katamine, S., Nishida, N., Morinuchi, R., Shigematsu, K., Sugimoto, T., Nakatani, A., Kataoka, Y., Houtani, T., Shirabe, S., Okada, H., Hasegawa, S., Miyamoto, T. and Noda, T. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531.

82) Ersdal, C., Ulvund, M.J., Benestad, S.L. and Tianulis, M.A. (2003) Accumulation of pathogenic prion protein (PrPSc) in nervous and lymphoid tissue of sheep with subclinical scrapie. Vet. Pathol. 40, 164–174.

83) Park, J.S., Onodera, T., Nishimura, S., Thompson, R.F. and Itohara, S. (2006) Molecular evidence for two-stage learning and partial laterality in eyelid conditioning of mice. Proc. Natl. Acad. Sci. U.S.A. 103, 5549–5554.

84) Solforosi, L., Crist, J.R., McGavern, D.B., Wirz, S., Sanchez-Alavez, M., Sugama, S., DeGiorgio, L.A., Volpe, B.T., Wiseman, E., Abalos, G., Masliah, E., Gilden, D., Oldstone, M.B., Conti, B. and Williamson, R.A. (2004) Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516.

85) Winklhofer, K.F., Tatetz, J. and Haass, C. (2008) The two faces of protein misfolding: gain-and loss-of-function in neurodegenerative diseases. EMBO J. 23, 336–349.

86) Hoshino, S., Inoue, K., Yokoyama, T., Kobayashi, S., Asakura, T., Teramoto, A. and Itohara, S. (2003) Prions prevent brain damage after experimental brain injury: a preliminary report. Acta Neurochir. Suppl. 86, 297–299.

87) Shyu, W.C., Chen, C.P., Saeki, K., Kubosaki, A., Matsumoto, Y., Onodera, T., Ding, D.C., Chiang, M.F., Lee, Y.J., Lin, S.Z. and Li, H. (2005) Hypoglycemia enhances the expression of prion protein and heat-shock protein 70 in a mouse neuroblastoma cell line. J. Neurosci. Res. 80, 887–894.

88) Sakudo, A., Lee, D.C., Nishimura, T., Li, S., Tsuji, S., Nakamura, T., Matsumoto, Y., Saeki, K., Itohara, S., Ikuta, K. and Onodera, T. (2005) Octapeptide repeat region and N-terminal half of hydrophobic region of prion protein (PrP) mediates PrP-dependent activation of superoxide dismutase. Biochem. Biophys. Res. Commun. 326, 600–606.

89) Hashimoto, K., Onodera, T., Ikeda, H. and Kitani, H. (2000) Isolation and characterization of fetal bovine brain cells in primary culture. Res. Vet. Sci. 69, 39–46.
oscillations in the olfactory bulb. Proc. Natl. Acad. Sci. U.S.A. 104, 7259–7264.

89) Linden, R., Martins, V.R., Prado, M.A., Cammarota, M., Izquierdo, I. and Brentani, R.R. (2008) Physiology of the prion protein. Physiol. Rev. 88, 673–728.

90) Prestori, F., Rossi, P., Bearzatto, B., Laine, J., Necchi, D., Diwaker, S., Schiuffinan, S.N., Axelrad, H. and D’Angelo, E. (2008) Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J. Neurosci. 28, 7091–7103.

91) Nishida, N., Tremblay, P., Sugimoto, T., Shigematsu, K., Shirabe, S., Petronilli, C., Erpel, S.P., Nakaoke, R., Atarashi, R., Houtani, T., Torchia, M., Sakaguchi, S., DeArmond, S.J., Prusiner, S.B. and Katamine, S. (1999) A mouse prion protein transgene rescues mice deficient for the prion protein gene from Purkinje cell degeneration and demyelination. Lab. Invest. 79, 689–697.

92) Bremer, J., Baumann, F., Tiberi, C., Wessig, C., Fischer, H., Schwarz, P., Steele, A.D., Toyka, K.V., Nave, K.-A., Weis, J. and Aguzzi, A. (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci. 13, 310–318.

93) Heikenwalder, M., Kurrer, M.O., Margalith, I., Kranich, J., Zeller, N., Haybeck, J., Polymenidou, M., Matter, M., Bremer, J., Jackson, W.S., Lindquist, S., Sigurdson, C.J. and Aguzzi, A. (2008) Lymphocyte-dependent prion replication in inflammatory stromal cells of granulomas. Immunity 29, 998–1008.

94) Genoud, N., Behrens, A., Miele, G., Robay, D., Heppner, F.L., Freigang, S. and Aguzzi, A. (2004) Disruption of Doppel prevents neurodegeneration in mice with extensive PrP deletions. Proc. Natl. Acad. Sci. U.S.A. 101, 4198–4203.

95) Behrens, A., Genoud, N., Naumann, H., Rulicke, T., Janett, F., Heppner, F.L., Ledermann, B. and Aguzzi, A. (2002) Absence of the prion protein homologue Doppel causes male sterility. EMBO J. 21, 3652–3658.

96) Rutishauser, D., Mertz, K.D., Moos, R., Brunner, E., Rulicke, T., Calella, A.M. and Aguzzi, A. (2009) The comprehensive native interactome of a fully functional tagged prion protein. PLoS One 4, e4444.

97) Baumann, F., Tolmay, M., Brabec, C., Pahmke, J., Kloz, U., Niemann, H.H., Heikenwalder, M., Rulicke, T., Burké, A. and Aguzzi, A. (2007) Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J. 26, 538–547.

98) Watt, N.T. and Hooper, N.M. (2005) Reactive oxygen species (ROS)-mediated beta-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress. Biochem. Soc. Trans. 33, 1123–1125.

99) Sunyach, C., Cisse, M.A., da Costa, C.A., Vincent, B. and Cheeer, F. (2007) The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J. Biol. Chem. 282, 1956–1963.

100) Walmsley, A.R., Watt, N.T., Taylor, D.R., Perera, W.S. and Hooper, N.M. (2009) Alpha-cleavage of the prion protein occurs in a late compartment of the secretory pathway and is independent of lipid rafts. Mol. Cell. Neurosci. 40, 242–248.

101) Chesebro, B., Trifa, M., Race, R., Mead-White, K., Teng, C., LaCasse, R., Raymond, L., Favara, C., Baron, G., Priola, S., Caughey, B., Masliah, E. and Oldstone, M. (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439.

102) Nazor, K.E., Seward, T. and Telling, G.C. (2007) Motor behavioral and neuropathological deficits in mice for normal prion protein expression. Biochim. Biophys. Acta 1772, 645–653.

103) Radvanivich, I., Braun, N., Giger, O.T., Mertz, K., Miele, G., Prinz, M., Navarro, B. and Aguzzi, A. (2005) Truncated prion protein and Doppel are myelotoxic in the absence of oligodendrocytic PrPC. J. Neurosci. 25, 4879–4888.

104) Collinge, J., Whittington, M.A., Sidle, K.C., Smith, C.J., Palmer, M.S., Clarke, A.R. and Jefferys, J.G. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 293–297.

105) Mallucci, G.R., Ratte, S., Asante, E.A., Linehan, J., Gowland, I., Jefferys, J.G. and Collinge, J. (2002) Postnatal knock out of prion protein alters hippocampal CA1 properties, but not result in neurodegeneration. EMBO J. 21, 292–210.

106) Issacs, J.D., Jackson, G.S. and Altman, D.M. (2006) The role of the cellular prion protein in the immune system. Clin. Exp. Immunol. 146, 1–8.

107) Kuffer, A., Lakkaraju, A.K.K., Mogha, A., Petersen, S.C., Airich, K., Doutcerain, C., Marpakwar, R., Bakirci, P., Senatore, A., Monnard, A., Schiav, C., Nivolone, M., Grosshans, B., Hornemann, S., Bassilana, F., Mon, K.R. and Aguzzi, A. (2016) The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature 536, 464–468.

108) Safar, J.G., Geschwind, M.D., Deering, C., Didorenko, S., Sattavatt, M., Sanchez, H., Servan, A., Vey, M., Baron, H., Giles, K., Miller, B.L., DeArmond, S.J. and Prusiner, S.B. (2005) Diagnosis of human prion disease. Proc. Natl. Acad. Sci. U.S.A. 102, 3501–3506.

109) White, M.D., Farmer, M., Mirabile, I., Brander, S., Collinge, J. and Mallucci, G.R. (2008) Sige treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl. Acad. Sci. U.S.A. 105, 10238–10243.

110) Moreno, J.A., Redford, H., Perotti, D., Steinert, J.R., Verity, N., Martin, M.G., Halliday, M., Morgan, J., Dinadale, D., Ortori, C.A., Barret, D.A., Tsaytler, P., Bertolotti, A., Willis, A.E., Bushell, M. and Mallucci, G.R. (2012) Sustained translational repression by eIF2a-P mediates
prion neurodegeneration. Nature 485, 507–511.

111) Tsayler, P., Harding, H.P., Ron, D. and Bertolotti, A. (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94.

112) Balch, W.E., Morimoto, R.I., Dillin, A. and Kelly, J.W. (2008) Adapting proteostasis for disease intervention. Science 319, 916–919.

113) Ma, J., Wollmann, R. and Lindquist, S. (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785.

114) Wang, X., Wang, F., Arterburn, L., Wollmann, R. and Ma, J. (2006) The interaction between cytoplasmic prion protein and the hydrophobic lipid core of membrane correlates with neurotoxicity. J. Biol. Chem. 281, 13559–13565.

115) Rambold, A.S., Miesbauer, M., Rapaport, D., Bartke, T., Baier, M., Winklhofer, K.F. and Tatzelt, J. (2006) Association of Bel-2 with misfolded prion protein is linked to the toxic potential of cytosolic PrP. Mol. Biol. Cell 17, 3356–3368.

116) Kristiansen, M., Deriziotis, P., Dimcheff, D.E., Jackson, G.S., Oavaa, H., Naumn, H., Clarke, A.R., Van Leeuwen, F.W., Menendez-Benito, V., Dantuma, N.P., Portis, J.L., Collinge, J. and Tabrizi, S.J. (2007) Disease-associated prion oligomers inhibit the 26S proteasome. Mol. Cell 26, 175–186.

117) Mok, S.W., Riemer, C., Madela, K., Hsu, D.K., Liu, F.T., Gultner, S., Heise, I. and Baier, M. (2007) Role of galectin-3 in prion infections of the CNS. Biochem. Biophys. Res. Commun. 359, 672–678.

118) Guillot-Seastier, M.V. and Cheeler, F. (2012) Cellular prion and its catabolites in the brain: production and function. Curr. Mol. Med. 12, 304–315.

119) Onodera, T., Sakudo, A., Tsubone, H. and Itohara, S. (2014) Review of studies that have used knockout mice to assess normal function of prion protein under immunological or pathophysiological stress. Microbiol. Immunol. 58, 361–374.

120) Cirado, J.R., Sanchez-Alavez, M., Conti, B., Giacchino, J.L., Wills, D.N., Henriksen, S.J., Race, R., Manson, J.C., Chesebro, B. and Oldstone, M.B. (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol. Dis. 19, 255–265.

121) Weise, J., Sandau, R., Schwarting, S., Crome, B., Wrede, A., Schultz-Schaeffer, W., Zerr, I. and Bahr, M. (2006) Deletion of cellular prion protein results in Akt activation, enhanced postsynaptic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37, 1296–1300.

122) Guillot-Seastier, M.V., Sunyach, C., Druon, C., Scarzello, S. and Cheeler, F. (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J. Biol. Chem. 284, 35973–35986.

123) Westaway, D., DeArmond, S.J., Cayetano-Calas, J., Groth, D., Foster, D., Yang, S.L., Torchia, M., Carlson, G.A. and Prusiner, S.B. (1994) Degeneration of skeletal muscle, peripheral nerves, and central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129.

124) Brandner, S., Isemann, S., Raether, A., Fischer, M., Sailer, A., Kobayashi, Y., Marino, S. and Weissmann, C. (1996) Normal host prion protein is necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.

125) Lauren, J., Gimble, D.A., Nygaard, H.B., Gilbert, J.W. and Strittmatter, S.M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132.

126) Gimbel, D.A., Nygaard, H.B., Coffey, E.E., Gunther, E.G., Lauren, J., Gimbel, Z.A. and Strittmatter, S.M. (2010) Memory impairment in transgenic Alzheimer mice require cellular prion protein. J. Neurosci. 30, 6367–6374.

127) Balducci, C., Beeg, M., Stavalaci, M., Bastone, A., Scip, A., Biasini, E., Tapella, L., Colombo, L., Manzoni, C., Borsello, T., Chiesa, R., Gobbi, M., Salmonea, M. and Forloni, G. (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. U.S.A. 107, 2295–2300.

128) Stys, P.K., You, H. and Zamponi, G.W. (2012) Copper-dependent regulation of NMDA receptors by cellular prion protein: implication for neurodegenerative disorders. J. Physiol. 590, 1357–1368.

129) Parkin, E.T., Watt, N.T., Hussain, I., Eckman, E.A., Eckman, C.B., Manson, J.C., Baybutt, H.N., Turner, A.J. and Hooper, N.M. (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 104, 11062–11067.

130) Cisse, M.A., Sunyach, C., Lefranc-Jullien, S., Postina, R., Vincent, B. and Cheeler, F. (2005) The disintegrin ADM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J. Biol. Chem. 280, 40624–40631.

131) Schmitt-Ulms, G., Legname, G., Baldwin, M.A., Ball, H.L., Bradon, N., Bosque, P.J., Crossin, K.L., Edelman, G.M., DeArmond, S.J., Cohen, F.E. and Prusiner, S.B. (2001) Binding of neural cell adhesion molecules (NCAMs) to the cellular prion protein. J. Mol. Biol. 314, 1209–1225.

132) Santuccione, A., Sytnyk, V., Leschryn’ska, I. and Schachner, M. (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59(56k) and to enhance neurite outgrowth. J. Cell Biol. 169, 341–354.

133) Taylor, D.R. and Hooper, N.M. (2007) The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochem. J. 402, 17–23.

134) Parkyn, C.J., Vermeulen, E.G., Mootoomany, R.C., Sunyach, C., Lacobson, C., Ovix, C., Moestrup,
135) Hajj, G.N., Lopes, M.H., Mercadante, A.F., Veiga, S.S., da Silva, R.B., Santos, T.G., Ribeiro, K.C., Juriano, M.A., Jachcieri, S.G., Zanata, S.M. and Martins, V.R. (2007) Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins. J. Cell Sci. 120, 1915–1926.

136) Sakudo, A., Lee, D.C., Li, S., Nakamura, T., Matsumoto, Y., Saeki, K., Itohara, S., Ikuta, K. and Onodera, T. (2005) PrP cooperates with STI1 to regulate SOD activity in PrP deficient neuronal cell line. Biochem. Biophys. Res. Commun. 328, 14–19.

137) Martins, V.R., Beraldo, F.H., Hajj, G.N., Lopes, M.H., Lee, S.K., Prado, M.M. and Linden, R. (2010) Prion protein: orchestrating neurotrophic activities. Curr. Issues Mol. Biol. 12, 63–86.

138) Nah, J., Pyo, J.O., Jung, S., Yoo, S.M., Kam, T.I., Chang, J.W., Han, J., An, S.S.A., Onodera, T. and Jung, Y.K. (2013) BECN1/Beclin is recruited into lipid rafts by prion to activate autophagy in response to amyloid Aβ42. Autophagy 9, 2009–2022.

139) Keshet, G.I., Ovaida, H., Taraboulos, A. and Gabison, R. (1999) Scrapie-infected mice and PrP knockout mice share abnormal localization and activity of neuronal nitric oxide synthase. J. Neurochem. 72, 1224–1231.

140) Nasu-Nishimura, Y., Taniuchi, Y., Nishimura, T., Sakudo, A., Nakajima, K., Ano, Y., Sugiiura, K., Sakaguchi, S., Itohara, S. and Onodera, T. (2008) Cellular prion protein prevents brain damage after encephalomyocarditis virus (EMCV) infection in mice. Arch. Virol. 153, 1007–1012.

141) Kitamura, Y., Yanagisawa, D., Inden, M., Tanaka, K., Tsuchiya, D., Kawasaki, T., Taniguchi, T. and Shimohama, S. (2005) Recovery of focal brain ischemia-induced behavior dysfunction by intracerebroventricular injection of microglia. J. Pharmacol. Sci. 97, 289–293.

142) Dal-Pizzol, F., Klamt, F., Vianna, M.M., Schoroder, N., Quevedo, J., Benfato, M.S., Moreira, J.C. and Waltz, R. (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci. Lett. 291, 179–182.

143) Hafiz, F.B. and Brown, D.R. (2000) A model for the mechanism of astrogial in prion diseases. Mol. Cell. Neurosci. 16, 221–232.

144) Wong, B.S., Liu, T., Li, R., Pan, T., Petersen, R.B., Smith, M.A., Gambetti, P., Perry, G., Manson, J.C., Brown, D.R. and Sy, M.S. (2001) Increased levels of oxidative stress markers detected in the brain of mice devoid of prion proteins. J. Neurochem. 76, 565–572.

145) Srisandan, S. and Altmann, D.M. (2008) The immunology of sepsis. J. Pathol. 214, 214–223.

146) De Almeida, C.J., Chiarini, L.B., da Silva, J.P., Silva, E.P.M., Marius, M.A. and Linden, R. (2005) The cellular prion protein modulates phagocytosis and inflammatory response. J. Leukoc. Biol. 77, 238–246.

147) Zhou, R., Tardivel, A., Thorens, B., Choi, I. and Tschopp, J. (2010) Thioredoxin-interacting protein links oxidative stress in inflasome activation. Nat. Immunol. 11, 136–140.

148) Brown, P., Will, R.G., Bradley, R., Asber, D.M. and Detwiler, L. (2001) Bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease: background, evolution and current concerns. Emerg. Infect. Dis. 7, 6–16.

149) Sakudo, A. and Onodera, T. (2015) PrP gene-knockout cell line: insight into functions of the PrP. Front. Cell Dev. Biol. 15, 2–75, doi: 10.3389/fcell.2014.00075.
Profile

Takashi Onodera was born in 1947. He graduated from the University of Tokyo, School of Agricultural and Life Sciences in 1969 with a doctorate degree in veterinary medicine (DVM). After his graduation from the veterinary school, he majored in zoonosis and received his Ph.D. degree in the Graduate Student Training Program in 1974 from the Institute of Medical Science, and Graduate School of Agricultural and Life Sciences of the University of Tokyo. He worked as an Assistant Professor at the Department of Animal Pathology, Institute of Medical Science, in the University of Tokyo between 1974–1977. He was given a Visiting Fellowship at the National Institute of Dental Research (NIDR), National Institutes of Health (NIH) in the United States (U.S.A.) in 1974. In 1977 he was a Visiting Associate in the Laboratory of Oral Medicine (LOM) in NIDR, NIH, and in 1981 he was promoted to serve as an Expert in LOM, NIDR, NIH. During his days at NIH, U.S.A., he worked for Dr. Abner Louis Notkins, Chief of LOM, to investigate the virus-induced diabetes mellitus and autoimmunity. Upon his accomplishment, he received the NIH Director’s Award (titled: Innovative studies on the role of viruses in autoimmunity) in 1983. He was appointed as the Chief of Laboratory of Immunology, National Institute of Animal Health in Ministry of Agriculture, Forestry and Fisheries (MAFF) in Japan in 1986, and served as the Chief of Laboratory of Immune Cytology, National Institute of Animal Health in 1988. He assumed a chair, and became the Professor and Chairman of the Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo in Tokyo, Japan (1991–2010). During his career in MAFF between 1984–1991, he received the Bifidus Award from the Japanese Society for Intestinal Microbiology for his study of prion diseases. He has a distinguished research career in unfurling the virological and immunopathological mechanisms controlling slow virus infection as well as contributing to the development of prion infectiology. At the U.S. NIH, his pioneering works covered a broad range of immunopathology of virus infections, such as in the fields of dentistry, virology and vaccinology. While in Japan, his scientific contribution has focused on the field of slow virus associated with normal function of prion protein in prion diseases and Alzheimer’s diseases, and epidemiological analysis of Japanese BSE. Currently he is working on chemicals to treat and prevent for prions and Alzheimer’s disease. Besides his career at the University of Tokyo, he served as a Government Advisor for MAFF, Ministry of Health, Labor and Welfare, and Cabinet Office. He assumed the Chair in the Advisory Committee on Food, Agriculture and Rural Policy’s Subcommittee on Prion Disease, MAFF in 2000, and became a Member of the Expert Committee on Prions, Food Safety Commission in the Cabinet Office in 2003. During his career as a Chairperson in MAFF, the Prion Disease Subcommittee spotted the first Japanese BSE case, which was also the first domestic BSE case outside Europe. For these achievements and scientific contributions, he was awarded the Japan Agricultural Science Award, and the Yomiuri Agriculture Award (titled: Animal model for prion diseases) in 2009. He is now a Project Professor in Research Center for Food Safety, University of Tokyo (2010–present), and is also working as a Visiting Scientist in the Brain Research Institute of Riken (1994–present). He has served as a Member in Institut de France (French National Academy of Science and Art, titled: Veterinary Science) in Paris since 2012, and is still actively duty-bound to said position. He further serves as a Board Member of the Japanese Society of Bio-defense and of the Human Genome Research Center, Institute of Medical Science of the University of Tokyo. He has also served as a President for the following organizations: the Japanese Society for Neurovirology, and the Japanese Society for Veterinary Immunology.

Photographer: Mayumi Suzuki