ON THE 3-TORSION PART OF THE HOMOLOGY OF THE CHESSBOARD COMPLEX

JAKOB JONSSON

Abstract. Let $1 \leq m \leq n$. We prove various results about the chessboard complex $M_{m,n}$, which is the simplicial complex of matchings in the complete bipartite graph $K_{m,n}$. First, we demonstrate that there is nonvanishing 3-torsion in $\tilde{H}_d(M_{m,n}; \mathbb{Z})$ whenever $\frac{m+n-4}{3} \leq d \leq m-4$ and whenever $6 \leq m < n$ and $d = m-3$. Combining this result with theorems due to Friedman and Hanlon and to Shareshian and Wachs, we characterize all triples (m, n, d) satisfying $\tilde{H}_d(M_{m,n}; \mathbb{Z}) \neq 0$. Second, for each $k \geq 0$, we show that there is a polynomial $f_k(a, b)$ of degree $3k$ such that the dimension of $\tilde{H}_{k+a+2b-2}(M_{k+a+3b-1,k+2a+3b-1}; \mathbb{Z}_3)$, viewed as a vector space over \mathbb{Z}_3, is at most $f_k(a, b)$ for all $a \geq 0$ and $b \geq k + 2$. Third, we give a computer-free proof that $\tilde{H}_2(M_{5,5}; \mathbb{Z}) \cong \mathbb{Z}_3$. Several proofs are based on a new long exact sequence relating the homology of a certain subcomplex of $M_{m,n}$ to the homology of $M_{m-2,n-1}$ and $M_{m-2,n-3}$.

1. Introduction

Given a family Δ of graphs on a fixed vertex set, we identify each member of Δ with its edge set. In particular, if Δ is closed under deletion of edges, then Δ is an abstract simplicial complex.

A matching in a simple graph G is a subset σ of the edge set of G such that no vertex appears in more than one edge in σ. Let $M(G)$ be the family of matchings in G; $M(G)$ is a simplicial complex. We write $M_n = M(K_n)$ and $M_{m,n} = M(K_{m,n})$, where K_n is the complete graph on the vertex set $[n] = \{1, \ldots, n\}$ and $K_{m,n}$ is the complete bipartite graph with block sizes m and n. M_n is the matching complex and $M_{m,n}$ is the chessboard complex.

The topology of M_n, $M_{m,n}$, and related complexes has been subject to analysis in a number of theses [1, 7, 11, 12, 15, 17] and papers.
Despite the simplicity of the definition, the homology of the matching complex M_n and the chessboard complex $M_{m,n}$ turns out to have a complicated structure. The rational homology is well-understood and easy to describe thanks to beautiful results due to Bouc [5] and Friedman and Hanlon [10], but very little is known about the integral homology and the homology over finite fields.

In a previous paper [13], we proved a number of results about the integral homology of the matching complex M_n. The purpose of the present paper is to extend a few of these results to the chessboard complex $M_{m,n}$.

For $1 \leq m \leq n$, define

$$\nu_{m,n} = \min \{ m - 1, \left\lceil \frac{m+n-4}{3} \right\rceil \} = \left\{ \begin{array}{ll} \frac{m+n-4}{3} & \text{if } m \leq n \leq 2m + 1; \\ m-1 & \text{if } n \geq 2m - 1. \end{array} \right.$$

Note that $\left\lceil \frac{m+n-4}{3} \right\rceil = m-1$ for $2m-1 \leq n \leq 2m+1$. By a theorem due to Shareshian and Wachs [20], $M_{m,n}$ contains nonvanishing homology in degree $\nu_{m,n}$ for all $m,n \geq 1$ except $(m,n) = (1,1)$. Previously, Friedman and Hanlon demonstrated that this bottom nonvanishing homology group is finite if and only if $m \leq n \leq 2m-5$ and $(m,n) \notin \{(6,6),(7,7),(8,9)\}$.

To settle their theorem, Shareshian and Wachs demonstrated that $\tilde{H}_{\nu_{m,n}}(M_{m,n}; \mathbb{Z})$ contains nonvanishing 3-torsion whenever the group is finite. One of our main results provides upper bounds on the rank of the 3-torsion part. Specifically, in Section 4.2, we prove the following:

Theorem 1. For each $k \geq 0$, $a \geq 0$, and $b \geq k+2$, we have that
dim $\tilde{H}_{\nu_{m,n}}(M_{m,n}; \mathbb{Z}_3)$ is bounded by a polynomial in a and b of degree $3k$.

An equivalent way of expressing Theorem 1 is to say that
\[
\dim \tilde{H}_d(M_{m,n}; \mathbb{Z}_3) \leq f_{3d-m-n+4}(n-m, m-d-1)
\]
whenever $m \leq n \leq 2m - 5$ and $\frac{m+n-4}{3} \leq d \leq \frac{2m+n-7}{4}$, where f_k is a polynomial of degree $3k$ for each k. The bound in Theorem 1 remains true over any coefficient field.

Note that we express the theorem in terms of the following transformation:

$$\begin{align*}
(1) \quad & \left\{ \begin{array}{ll} k = -m - n + 3d + 4 \\
 a = -m + n \\
 b = m - d - 1 \end{array} \right. \iff \left\{ \begin{array}{ll} m = k + a + 3b - 1 \\
 n = k + 2a + 3b - 1 \\
 d = k + a + 2b - 2. \end{array} \right.
\end{align*}$$
Assuming that \(m \leq n \), each of the three new variables measures the difference between two important parameters:

- For \(m \leq n \leq 2m + 1 \), we have that \(k \) measures the difference between the degree \(d \) and the bottom degree in which \(M_{m,n} \) has nonvanishing homology: \(\frac{k}{3} = d - \frac{m+n-4}{3} \).
- \(a \) is the difference between the block sizes \(n \) and \(m \).
- \(b \) is the difference between \(\dim M_{m,n} = m - 1 \) and \(d \).

To establish Theorem 1, we introduce two new long exact sequences; see Sections 2.3 and 2.4. These two sequences involve the subcomplex \(\Gamma_{m,n} \) of \(M_{m,n} \) obtained by fixing a vertex in the block of size \(n \) and removing all but two of the edges that are incident to this vertex. Our first sequence is very simple and relates the homology of \(M_{m,n} \) to that of \(\Gamma_{m,n} \) and \(M_{m-1,n-1} \). Our second sequence is more complicated and relates \(\Gamma_{m,n} \) to \(M_{m-2,n-1} \) and \(M_{m-2,n-3} \). Combining the two sequences and “cancelling out” \(\Gamma_{m,n} \), we obtain a bound on the dimension of the \(\mathbb{Z}_3 \)-homology of \(M_{m,n} \) in terms of \(M_{m-1,n-1}, M_{m-2,n-1}, \) and \(M_{m-2,n-3} \). By an induction argument, we obtain Theorem 1.

For \(k = 0 \), Theorem 1 says that \(\dim \tilde{H}_{\nu}(M_{m,n}; \mathbb{Z}_3) \) is bounded by a constant whenever \(m \leq n \leq 2m - 5 \) and \((m+n) \mod 3 = 1 \). Indeed, Shareshian and Wachs [20] proved that \(\tilde{H}_{\nu}(M_{m,n}; \mathbb{Z}_3) \cong \mathbb{Z}_3 \) for any \(m \) and \(n \) satisfying these equations. Their proof was by induction on \(m+n \) and relied on a computer calculation of \(\tilde{H}_2(M_{5,5}; \mathbb{Z}) \). In Section 3, we provide a computer-free proof that \(\tilde{H}_2(M_{5,5}; \mathbb{Z}) \cong \mathbb{Z}_3 \), again using the exact sequences from Sections 2.3 and 2.4.

In Section 4.1, we use results about the matching complex \(M_n \) from a previous paper [13] to extend Shareshian and Wachs’ 3-torsion result to higher-degree groups:

Theorem 2. For \(m+1 \leq n \leq 2m-5 \), there is 3-torsion in \(\tilde{H}_d(M_{m,n}; \mathbb{Z}) \) whenever \(\frac{m+n-4}{3} \leq d \leq m - 3 \). There is also 3-torsion in \(\tilde{H}_d(M_{m,m}; \mathbb{Z}) \) whenever \(\frac{2m-4}{3} \leq d \leq m - 4 \).

Note that \(m + 1 \leq n \leq 2m - 5 \) and \(\frac{m+n-4}{3} \leq d \leq m - 3 \) if and only if \(k \geq 0, a \geq 1, \) and \(b \geq 2 \), where \(k, a, \) and \(b \) are defined as in (1). Moreover, \(m = n \) and \(\frac{2m-4}{3} \leq d \leq m - 4 \) if and only if \(k \geq 0, a = 0, \) and \(b \geq 3 \).

Our proof of Theorem 2 relies on properties of the top homology group of \(M_{k,k+1} \) for different values of \(k \); this group was of importance also in the work of Shareshian and Wachs [20].

Thanks to Theorem 2 and Friedman and Hanlon’s formula for the rational homology [10], we may characterize those \((d, m, n)\) satisfying \(\tilde{H}_d(M_{m,n}; \mathbb{Z}) \neq 0 \):
Theorem 3. For $1 \leq m \leq n$, we have that $\tilde{H}_d(M_{m,n}; \mathbb{Z})$ is nonzero if and only if either of the following is true:

- $\lceil \frac{m+n-4}{3} \rceil \leq d \leq m-2$. Equivalently, $k \geq 0$, $a \geq 0$, and $b \geq 1$.
- $d = m - 1$ and $n \geq m + 1$. Equivalently, $k \geq 2 - a$, $a \geq 1$, and $b = 0$.

Again, see Section 4.1 for details.

The problem of detecting p-torsion in the homology of $\tilde{M}_{m,n}$ for $p \neq 3$ remains open. In this context, we may mention that there is 5-torsion in the homology of the matching complex \tilde{M}_{14}.

1.1. Notation. We identify the two parts of the graph $K_{m,n}$ with the two sets $[m] = \{1, 2, \ldots, m\}$ and $[n] = \{1, 2, \ldots, n\}$. The latter set should be interpreted as a disjoint copy of $[n]$; hence each edge is of the form ij, where $i \in [m]$ and $j \in [n]$. Sometimes, it will be useful to view $M_{m,n}$ as a subcomplex of the matching complex M_{m+n} on the complete graph K_{m+n}. In such situations, we identify the vertex j in $K_{m,n}$ with the vertex $m+j$ in K_{m+n} for each $j \in [n]$.

For finite sets S and T, we let $M_{S,T}$ denote the matching complex on the complete bipartite graph with blocks S and T, viewed as disjoint sets in the manner described above. In particular, $M_{[m],[n]} = M_{m,n}$. For integers $a \leq b$, we write $[a,b] = \{a, a+1, \ldots, b-1, b\}$.

The join of two families of sets Δ and Σ, assumed to be defined on disjoint ground sets, is the family $\Delta \ast \Sigma = \{\delta \cup \sigma : \delta \in \Delta, \sigma \in \Sigma\}$.

Whenever we discuss the homology of a simplicial complex or the relative homology of a pair of simplicial complexes, we mean reduced simplicial homology. For a simplicial complex Σ and a coefficient ring \mathbb{F}, we denote the generator of $\tilde{C}_d(\Sigma; \mathbb{F})$ corresponding to a set $\{e_0, \ldots, e_d\} \in \Sigma$ as $e_0 \wedge \cdots \wedge e_d$. Given a cycle z in a chain group $\tilde{C}_d(\Sigma; \mathbb{F})$, whenever we talk about z as an element in the induced homology group $\tilde{H}_d(\Sigma; \mathbb{F})$, we really mean the homology class of z.

We will often consider pairs of complexes (Γ, Δ) such that $\Gamma \setminus \Delta$ is a union of families of the form

$$\Sigma = \{\sigma\} \ast M_{S,T},$$

where $\sigma = \{e_1, \ldots, e_s\}$ is a set of pairwise disjoint edges of the form ij and S and T are subsets of $[m]$ and $[n]$, respectively, such that $S \cap e_i = \emptyset$. We may write the chain complex of Σ as

$$\tilde{C}_d(\Sigma; \mathbb{F}) = (e_1 \wedge \cdots \wedge e_s) \mathbb{F} \otimes_{\mathbb{F}} \tilde{C}_d-|\sigma|(M_{S,T}; \mathbb{F}),$$

defining the boundary operator as

$$\partial(e_1 \wedge \cdots \wedge e_s \otimes_{\mathbb{F}} c) = (-1)^s e_1 \wedge \cdots \wedge e_s \otimes_{\mathbb{F}} \partial(c).$$
For simplicity, we will often suppress \mathbb{F} from notation. For example, by some abuse of notation, we will write
\[e_1 \wedge \cdots \wedge e_s \otimes \tilde{C}_{d-\rho}(M_{S,T}) = (e_1 \wedge \cdots \wedge e_s)\mathbb{F} \otimes \tilde{C}_{d-\rho}(M_{S,T};\mathbb{F}). \]

We say that a cycle z in $\tilde{C}_{d-1}(M_{m,n};\mathbb{F})$ has type $[m_1,m_2] \wedge \cdots \wedge [m_s,n_s]$ if there are partitions $[m] = \bigcup_{i=1}^s S_i$ and $[n] = \bigcup_{i=1}^s T_i$ such that $|S_i| = m_i$ and $|T_i| = n_i$ and such that $z = z_1 \wedge \cdots \wedge z_s$, where z_i is a cycle in $\tilde{C}_{d-1}(M_{S_i,T_i};\mathbb{F})$ for each i.

1.2. Two classical results.

Before proceeding, we list two classical results pertaining to the topology of the chessboard complex $M_{m,n}$.

Theorem 1.1 (Björner et al. [4]). For $m,n \geq 1$, $M_{m,n}$ is $(\nu_{m,n} - 1)$-connected.

Indeed, the $\nu_{m,n}$-skeleton of $M_{m,n}$ is vertex decomposable [23]. Garst [11] settled the case $n \geq 2m - 1$ in Theorem 1.1. As already mentioned in the introduction, there is nonvanishing homology in degree $\nu_{m,n}$ for all $(m,n) \neq (1,1)$; see Section 3 for details.

The transformation (1) maps the set $\{(m,n,\nu_{m,n}) : 1 \leq m \leq n\}$ to the set of triples (k,a,b) satisfying either of the following:

- $k \in \{0,1,2\}$, $a \geq 0$, and $b \geq 1$ (corresponding to $d = \lceil \frac{m+n-4}{3} \rceil$ and $m \leq n \leq 2m - 2$).
- $2 - a \leq k \leq 2$ and $b = 0$ (corresponding to $0 \leq d = m - 1$ and $n \geq 2m - 1$).

Friedman and Hanlon [10] established a formula for the rational homology of $M_{m,n}$; see Wachs [22] for an overview. For our purposes, the most important consequence is the following result:

Theorem 1.2 (Friedman and Hanlon [10]). For $1 \leq m \leq n$, we have that $H_d(M_{m,n};\mathbb{Z})$ is infinite if and only if $(m-d-1)(n-d-1) \leq d+1$, $m \geq d+1$, and $n \geq d+2$. In particular, $H_{\nu_{m,n}}(M_{m,n};\mathbb{Z})$ is finite if and only if $n \leq 2m - 5$ and $(m,n) \notin \{(6,6),(7,7),(8,9)\}$.

With k, a, and b defined as in (1), the conditions $1 \leq m \leq n$, $(m-d-1)(n-d-1) \leq d+1 \leq m$, and $n \geq d+2$ are equivalent to
\[b(a+b) \leq k + a + 2b - 1 \iff (b-1)(a+b-1) \leq k, \]
a ≥ 0, $b \geq 0$, $a+b \geq 1$, and $k+a+3b \geq 2$. Moreover, the conditions $d = \nu_{m,n}$, $m \leq n \leq 2m - 5$, and $(m,n) \notin \{(6,6),(7,7),(8,9)\}$ are equivalent to $k \in \{0,1,2\}$, $a \geq 0$, $b \geq 2$, and $(k,a,b) \notin \{(1,0,2),(2,0,2),(2,1,2)\}$.
2. Four long exact sequences

We present four long exact sequences relating different families of chessboard complexes. In this paper, we will only use the third and the fourth sequences; we list the other two sequences for reference. Throughout this section, we consider an arbitrary coefficient ring \mathbb{F}, which we suppress from notation for convenience.

2.1. Long exact sequence relating $M_{m,n}$, $M_{m,n-1}$, and $M_{m-1,n-1}$.

Theorem 2.1. Define

$$P_{d_{m-1,n-1}}^{m-1,n-1} = \bigoplus_{s=1}^{m} s \bar{1} \otimes \tilde{H}_d(M_{[m]\setminus\{s\},[2,n]}).$$

For each $m \geq 1$ and $n \geq 1$, we have a long exact sequence

$$\cdots \longrightarrow P_{d_{m-1,n-1}}^{m-1,n-1} \longrightarrow \tilde{H}_d(M_{m,n-1}) \longrightarrow \tilde{H}_d(M_{m,n}) \longrightarrow P_{d_{m-1,n-1}}^{m-1,n-1} \longrightarrow \cdots.$$

Proof. This is the long exact sequence for the pair $(M_{m,n}, M_{m,n-1})$. □

We refer to this sequence as the 00-01-11 sequence, thereby indicating that the sequence relates $M_{m-0,n-0}$, $M_{m-0,n-1}$, and $M_{m-1,n-1}$. Note that the sequence is asymmetric in m and n; swapping the indices, we obtain an exact sequence relating $M_{m,n}$, $M_{m-1,n}$, and $M_{m-1,n-1}$.

2.2. Long exact sequence relating $M_{m,n}$, $M_{m-1,n-2}$, $M_{m-2,n-1}$, and $M_{m-2,n-2}$.

Theorem 2.2 (Shareshian & Wachs [20]). Define

$$P_{d_{m-1,n-2}}^{m-1,n-2} = \bigoplus_{t=2}^{n} \bar{1} \otimes \tilde{H}_d(M_{[2,m],[2,n]\setminus\{t\}});$$

$$Q_{d_{m-2,n-1}}^{m-2,n-1} = \bigoplus_{s=2}^{m} s \bar{1} \otimes \tilde{H}_d(M_{[2,m]\setminus\{s\},[2,n]});$$

$$R_{d_{m-2,n-2}}^{m-2,n-2} = \bigoplus_{s=2}^{m} \bigoplus_{t=2}^{n} \bar{1} \wedge s \bar{1} \otimes \tilde{H}_d(M_{[2,m]\setminus\{s\},[2,n]\setminus\{t\}}).$$

For each $m \geq 2$ and $n \geq 2$, we have a long exact sequence

$$\cdots \longrightarrow P_{d_{m-1,n-2}}^{m-1,n-2} \oplus Q_{d_{m-2,n-1}}^{m-2,n-1} \longrightarrow \tilde{H}_d(M_{m,n}) \longrightarrow R_{d_{m-2,n-2}}^{m-2,n-2} \longrightarrow \cdots.$$
We refer to this sequence as the 00-12-21-22 sequence. The sequence played an important part in Shareshian and Wachs’ analysis [20] of the bottom nonvanishing homology of \(M_{m,n} \). Note that the sequence is symmetric in \(m \) and \(n \).

2.3. Long exact sequence relating \(M_{m,n}, \Gamma_{m,n}, \) and \(M_{m-1,n-1} \). The sequence in this section is very similar, but not identical, to the 00-01-11 sequence in Section 2.3. Define

\[
\Gamma_{m,n} = \{ \sigma \in M_{m,n} : s \bar{\tau} \notin \sigma \text{ for } s \in [3,m] \}.
\]

Theorem 2.3. Define

\[
P_{d-1}^{m-1,n-1} = \bigoplus_{s=3}^{m} s \bar{\tau} \otimes \tilde{H}_d(M_{[s],[2,n]}); \\
\]

note that this definition differs from that in Section 2.1. For each \(m \geq 1 \) and \(n \geq 1 \), we have a long exact sequence

\[
\cdots \rightarrow P_{d-1}^{m-1,n-1} \rightarrow \tilde{H}_d(\Gamma_{m,n}) \rightarrow \tilde{H}_d(M_{m,n}) \rightarrow P_{d-1}^{m-1,n-1} \rightarrow \cdots.
\]

Proof. This is the long exact sequence for the pair \((M_{m,n}, \Gamma_{m,n})\). \(\square\)

We refer to this sequence as the 00-\(\Gamma \)-11 sequence. Note that the sequence is asymmetric in \(m \) and \(n \).

2.4. Long exact sequence relating \(\Gamma_{m,n}, M_{m-2,n-1}, \) and \(M_{m-2,n-3} \). Recall the definition of \(\Gamma_{m,n} \) from (2).

Theorem 2.4. Write

\[
Q_d^{m-2,n-1} = (1 \bar{\tau} - 2 \bar{\tau}) \otimes \tilde{H}_d(M_{[3,m],[2,n]});
\]

\[
R_d^{m-2,n-3} = \bigoplus_{s \notin t \in [2,n]} 1 \bar{\tau} \wedge 2 \bar{\tau} \otimes \tilde{H}_d(M_{[s],[2,n] \setminus \{s,t\}}).
\]

For each \(m \geq 2 \) and \(n \geq 3 \), we have a long exact sequence

\[
\cdots \rightarrow Q_{d-1}^{m-2,n-1} \rightarrow \phi^* \inj \tilde{H}_d(\Gamma_{m,n}) \rightarrow \tilde{H}_d(M_{m,n}) \rightarrow Q_{d-2}^{m-2,n-1} \rightarrow \cdots,
\]

where \(\phi^* \) is induced by the map \(\phi \) defined by

\[
\phi(1 \bar{\tau} \wedge 2 \bar{\tau} \otimes x) = (1 \bar{\tau} - 2 \bar{\tau}) \otimes x.
\]

and \(\inj^* \) is induced by the natural map \(\inj((1 \bar{\tau} - 2 \bar{\tau}) \otimes x) = ((1 \bar{\tau} - 2 \bar{\tau}) \wedge x.\]
Proof. Define a filtration
\[\Delta^0_{m,n} \subset \Delta^1_{m,n} \subset \Delta^2_{m,n} = \Gamma_{m,n} \]
as follows:
- \(\Delta^2_{m,n} = \Gamma_{m,n} \).
- \(\Delta^1_{m,n} \) is the subcomplex of \(\Delta^2_{m,n} \) obtained by removing all faces containing \(\{1s, 2t\} \) for some \(s, t \in [2, n] \).
- \(\Delta^0_{m,n} \) is the subcomplex of \(\Delta^1_{m,n} \) obtained by removing the elements \(11, \ldots, 1n \) and \(22, \ldots, 2n \).

Writing \(\Delta^{-1}_{m,n} = \emptyset \), let us examine \(\Delta^i_{m,n} \setminus \Delta^{i-1}_{m,n} \) for \(i = 0, 1, 2 \).
- \(i = 0 \). Note that
 \[\Delta^0_{m,n} = M_{2,1} \ast M_{[3,m],[2,n]} \cong M_{2,1} \ast M_{m-2,n-1} \]
As a consequence,
 \[\tilde{H}_d(\Delta^0_{m,n}) \cong (1\bar{T} - 2\bar{T}) \otimes \tilde{H}_{d-1}(M_{[3,m],[2,n]}) = Q_{d-1}^{m-2,n-1} \).
- \(i = 1 \). Observe that
 \[\Delta^1_{m,n} \setminus \Delta^0_{m,n} = \bigcup_{a=1}^{2} \bigcup_{u=2}^{n} \{\{a\bar{u}\}\} \ast M_{\{3-a\},\{1\}} \ast M_{[3,m],[2,n]\{u\}} \]
It follows that
 \[\tilde{H}_d(\Delta^1_{m,n}, \Delta^0_{m,n}; F) = \bigoplus_{a,u} a\bar{u} \otimes \tilde{H}_{d-1}(M_{\{3-a\},\{1\}} \ast M_{[3,m],[2,n]\{u\}}; F) = 0; \]
 \(M_{\{3-a\},\{1\}} \cong M_{1,1} \) is a point.
- \(i = 2 \). We have that
 \[\Delta^2_{m,n} \setminus \Delta^1_{m,n} = \bigcup_{s,t \in [2, n]} \{\{1s, 2t\}\} \ast M_{[3,m],[2,n]\{s,t\}} \]
we may hence conclude that
 \[\tilde{H}_d(\Delta^2_{m,n}, \Delta^1_{m,n}; F) = \bigoplus_{s,t} 1s \wedge 2t \otimes \tilde{H}_{d-2}(M_{[3,m],[2,n]\{s,t\}}; F) = R_{d-1}^{m-2,n-3}. \]
By the long exact sequence for the pair \((\Delta^2_{m,n}, \Delta^1_{m,n}) \), it remains to prove that the induced map \(\varphi^* \) has properties as stated in the theorem. Now, in the long exact sequence for \((\Delta^2_{m,n}, \Delta^1_{m,n}) \), the induced boundary map from \(\tilde{H}_{d+1}(\Delta^2_{m,n}, \Delta^1_{m,n}) \) to \(\tilde{H}_d(\Delta^1_{m,n}) \) maps the element \(1s \wedge 2t \otimes z \) to \((2t - 1s) \otimes z \). Since
 \[(2t - 1s) \otimes z - \partial((1T \wedge 2\bar{T} + 1\bar{s} \wedge 2T) \otimes z) = (1T - 2\bar{T}) \otimes z, \]
we are done. \(\square \)
3-TORSION IN THE CHESSBOARD COMPLEX

We refer to this sequence as the Γ-21-23 sequence. Note that the sequence is asymmetric in m and n.

3. BOTTOM NONVANISHING HOMOLOGY

Using the long exact sequences in Sections 2.3 and 2.4, we give a computer-free proof that $\tilde{H}_2(M_{5,5};\mathbb{Z})$ is a group of size three. While the proof is complicated, our hope is that it may provide at least some insight into the structure of $M_{5,5}$ and related chessboard complexes.

Theorem 3.1. We have that $\tilde{H}_2(M_{5,5};\mathbb{Z}) \cong \mathbb{Z}_3$.

Proof. First, we examine $M_{3,4}$; for alignment with later parts of the proof, we consider $M_{[3,5],[2,5]}$, thereby shifting the first index two steps and the second index one step. The long exact 00-Γ-11 sequence from ι isomorphism. As a consequence, the map ι^* induced by the natural inclusion map is an isomorphism. The long exact Γ-21-23 sequence for $\Gamma_{[3,5],[2,5]}$ becomes

\[
0 \longrightarrow \tilde{H}_2(\Gamma_{[3,5],[2,5]}) \longrightarrow \tilde{H}_2(M_{[3,5],[2,5]}) \overset{\omega^*}{\longrightarrow} 5\mathbb{Z} \otimes \tilde{H}_1(M_{[3,4],[3,5]}) \longrightarrow \tilde{H}_1(\Gamma_{[3,5],[2,5]}) \longrightarrow 0.
\]

Now, $M_{m,m+1}$ is well-known to be an orientable pseudomanifold for all $m \geq 1$ [20]; hence $\tilde{H}_2(\Gamma_{[3,5],[2,5]}) = 0$ and the map ω^* is necessarily an isomorphism. As a consequence, the map ι^* induced by the natural inclusion map is an isomorphism. The long exact Γ-21-23 sequence for $\Gamma_{[3,5],[2,5]}$ from Section 2.4 becomes

\[
0 \longrightarrow (3\mathbb{Z} - 4\mathbb{Z}) \otimes \tilde{H}_0(M_{[3,5],[3,5]}) \overset{\iota^*}{\longrightarrow} \tilde{H}_1(\Gamma_{[3,5],[2,5]}) \longrightarrow 0,
\]

which yields that each of $\tilde{H}_1(\Gamma_{[3,5],[2,5]})$ and $\tilde{H}_1(M_{[3,5],[2,5]})$ is generated by $e_i = (3\mathbb{Z} - 4\mathbb{Z}) \wedge (5\mathbb{Z} - 5\mathbb{Z})$ for $i \in \{4, 5\}$.

Now, consider $M_{5,5}$. The tail end of the Γ-21-23 sequence is

\[
\bigoplus_{s,t} 15 \wedge 2\mathbb{I} \otimes \tilde{H}_1(M_{[3,5],[2,5]}) \overset{\varphi^*}{\longrightarrow} (1\mathbb{I} - 2\mathbb{I}) \otimes \tilde{H}_1(M_{[3,5],[2,5]}) \overset{\iota^*}{\longrightarrow} \tilde{H}_2(\Gamma_{5,5}) \rightarrow 0,
\]

where the first sum ranges over all pairs of distinct elements $s, t \in [2, 5]$. Writing $\{s, t, u, v\} = [2, 5]$, we note that $\tilde{H}_1(M_{[3,5],[2,5]}) = \tilde{H}_1(M_{[3,5],[2,5]})$ is generated by the cycle

\[
z_{uv} = 3\mathbb{I} \wedge 4\mathbb{I} \wedge 4\mathbb{I} \wedge 5\mathbb{I} + 5\mathbb{I} \wedge 5\mathbb{I} + 3\mathbb{I} \wedge 5\mathbb{I} + 4\mathbb{I} \wedge 5\mathbb{I} + 5\mathbb{I} + 5\mathbb{I} \wedge 3\mathbb{I}.
\]

By Theorem 2.4, φ^* maps $15 \wedge 2\mathbb{I} \otimes z_{uv}$ to $(1\mathbb{I} - 2\mathbb{I}) \otimes z_{uv}$. Since $z_{uv} = z_{vu}$, we conclude that the image under φ^* is generated by the six cycles $z_{23}, z_{24}, z_{25}, z_{34}, z_{35}, z_{45}$.
In $\tilde{H}_1(M_{[3,5],[2,5]})$, we have that $z_{st} = z_{uv}$, because $z_{st} - z_{uv}$ equals the boundary of

$$\gamma = 3\pi \land 5\pi \land 4\pi - 5\pi \land 3\pi \land 5\pi \land 3\pi \land 3\pi \land 5\pi + 4\pi \land 5\pi \land 3\pi \land 3\pi \land 5\pi + 4\pi \land 4\pi \land 3\pi \land 3\pi \land 5\pi
+ 5\pi \land 3\pi \land 5\pi - 3\pi \land 5\pi \land 3\pi \land 3\pi \land 5\pi
+ 4\pi \land 3\pi \land 5\pi - 3\pi \land 5\pi \land 3\pi \land 5\pi \land 3\pi \land 5\pi.$$

Namely, γ is of the form $a_1 \land a_2 \land a_3 - a_2 \land a_3 \land a_4 + \cdots - a_{12} \land a_1 \land a_2$, which yields the boundary $-a_1 \land a_3 + a_2 \land a_4 - \cdots + a_{12} \land a_2$. As a consequence, the image under φ^* is generated by the three cycles z_{34}, z_{35}, z_{45}.

Assume that $s = 2$ and $\{t, u, v\} = \{3, 4, 5\}$ and write

$$w_{uv} = 5\pi \land 4\pi \land 3\pi - 4\pi \land 3\pi \land 5\pi + 3\pi \land 5\pi \land 4\pi
- 5\pi \land 4\pi \land 3\pi + 4\pi \land 3\pi \land 5\pi.$$

We obtain that

$$\partial(w_{uv} + w_{vu}) = (5\pi \land 4\pi - 5\pi \land 3\pi + 4\pi \land 5\pi - 3\pi \land 4\pi + 5\pi \land 3\pi
- 4\pi \land 5\pi + 3\pi \land 5\pi) + (5\pi \land 4\pi - 5\pi \land 3\pi + 4\pi \land 5\pi
- 3\pi \land 4\pi + 5\pi \land 3\pi - 4\pi \land 5\pi + 3\pi \land 5\pi)
= (4\pi - 3\pi) \land (2 \cdot 5\pi - 5\pi - 5\pi) - z_{uv}.$$

Since $s = 2$, it follows that z_{uv} is equal to either $-e_4 - e_5, 2e_4 - e_5,$ or $-e_4 + 2e_5$ in $\tilde{H}_1(M_{[3,5],[2,5]})$ depending on the values of $t, u,$ and v.

We conclude that the set $\{\varphi^*(1\pi \land 2\xi \otimes z_{uv}) : \{s, t, u, v\} = \{2, 5\}\}$ generates the subgroup $\{(1\xi - 2\xi) \otimes (ae_4 + be_5) : a - b \equiv 0 \mod 3\}$ of $(1\xi - 2\xi) \otimes \tilde{H}_1(M_{[3,5],[2,5]})$. As a consequence, $\tilde{H}_2(\Gamma_{5,5}) \cong \mathbb{Z}_3$ and

$$\rho = (1\xi - 2\xi) \land (3\xi - 4\xi) \land (5\xi - 5\xi)$$

is a generator for this group. Swapping 3 and 4, we obtain $-\rho$; we obtain the same result if we swap 3 and 4 or if we swap 1 and 2. Hence, by symmetry, the group

$$T = \mathcal{S}_{\{1,2\}} \times \mathcal{S}_{\{3,4,5\}} \times \mathcal{S}_{\{2,3,5\}}$$

acts on $\tilde{H}_2(\Gamma_{5,5}) \cong \mathbb{Z}_3$ by $\pi(\rho) = \text{sgn}(\pi) \cdot \rho$.

It remains to prove that $\tilde{H}_2(\Gamma_{5,5}) \cong \tilde{H}_2(M_{5,5})$. For this, consider the tail end of the 00-00-11 sequence from Section 2.3:

$$\bigoplus_{x=3}^5 x\xi \otimes \tilde{H}_2(M_{[5] \setminus \{x\},[2,5]}) \xrightarrow{\varphi^*} \tilde{H}_2(\Gamma_{5,5}) \longrightarrow \tilde{H}_2(M_{5,5}) \rightarrow 0$$

By a result due to Shareshian and Wachs [20, Lemma 5.9], we have that $\tilde{H}_2(M_{[5] \setminus \{x\},[2,5]}) \cong \tilde{H}_2(M_{4,4})$ is generated by cycles of type $[\frac{3}{2}] \land [\frac{1}{2}]$
and cycles of type \([\frac{2}{3}] \wedge [\frac{2}{1}]\); recall notation from Section 1.1. By properties of \(\psi^*\), we need only prove that any such cycle vanishes in \(H_2(\Gamma_{5,5})\) whenever \(x \in [3, 5]\).

- A cycle of the first type is of the form \(z = \lambda \cdot \gamma \wedge (d\bar{u} - d\bar{v})\), where \(\lambda\) is a constant,
 \[\gamma = a\bar{s} \wedge b\bar{t} + b\bar{t} \wedge c\bar{s} + c\bar{s} \wedge a\bar{t} + a\bar{t} \wedge b\bar{s} + b\bar{s} \wedge c\bar{t} + c\bar{t} \wedge a\bar{s},\]
 \(\{a, b, c, d\} = [5] \setminus \{x\}\), and \(\{s, t, u, v\} = [2, 5]\). By the above discussion, swapping \(\bar{s}\) and \(\bar{t}\) in \(z\) should yield \(-z\), but obviously the same swap in \(\gamma\) again yields \(\gamma\), which implies that \(z = -z\); hence \(z = 0\).

- A cycle of the second type is of the form \(z = \lambda \cdot \gamma \wedge (c\bar{u} - d\bar{v})\), where \(\lambda\) is a constant, say \(\lambda = 1\), and
 \[\gamma = a\bar{s} \wedge b\bar{t} + b\bar{t} \wedge a\bar{u} + a\bar{u} \wedge b\bar{s} + b\bar{s} \wedge a\bar{t} + a\bar{t} \wedge b\bar{u} + b\bar{u} \wedge a\bar{s};\]
 again \(\{a, b, c, d\} = [5] \setminus \{x\}\) and \(\{s, t, u, v\} = [2, 5]\). If \(\{a, b\} \subset [3, 5]\), then we may swap \(a\) and \(b\) and again conclude that \(z = -z\); the same argument applies if \(\{a, b\} = \{1, 2\}\). For the remaining case, we may assume that \(c \in [1, 2]\) and \(d \in [3, 5]\). Swapping \(d\) and \(x\) yields \(-z = \gamma \wedge (c\bar{v} - x\bar{u})\); recall that \(x \in [3, 5]\). As a consequence,
 \[2z = z - (-z) = \gamma \wedge (x\bar{v} - d\bar{u}) = \partial(c\bar{t} \wedge \gamma \wedge (x\bar{v} - d\bar{u}));\]
 hence \(z\) is again zero. Namely, since \(c \in [1, 2]\), we have that \(c\bar{t}\) is an element in \(\Gamma_{5,5}\). As a consequence, \(\psi^*\) is the zero map as desired. □

By Theorems 1.1 and 1.2, the connectivity degree of \(M_{m,n}\) is exactly \(\nu_{m,n} - 1\) whenever \(n \geq 2m - 4\) or \((m, n) \in \{(6, 6), (7, 7), (8, 9)\}\). As mentioned in the introduction, Shareshian and Wachs [20] extended this result to all \((m, n) \neq (1, 1)\), thereby settling a conjecture due to Björner et al. [4]:

Theorem 3.2 (Shareshian & Wachs [20]). If \(m \leq n \leq 2m - 5\) and \((m, n) \neq (8, 9)\), then there is nonvanishing 3-torsion in \(\hat{H}_{\nu_{m,n}}(\nu_{m,n}; \mathbb{Z})\). If in addition \((m + n) \mod 3 = 1\), then \(\hat{H}_{\nu_{m,n}}(\nu_{m,n}; \mathbb{Z}) \cong \mathbb{Z}_3\).

By Theorem 4.4 in Section 4.1, there is nonvanishing 3-torsion also in \(\hat{H}_{\nu_{m,n}}(M_{m,n}; \mathbb{Z})\); in that theorem, choose \((k, a, b) = (2, 1, 2)\).

[Table 1]

In fact, Shareshian and Wachs provided much more specific information about the exponent of \(\hat{H}_{\nu_{m,n}}(M_{m,n}; \mathbb{Z})\); see Table 1.

Conjecture 3.3 (Shareshian & Wachs [20]). The group \(\hat{H}_{\nu_{m,n}}(M_{m,n}; \mathbb{Z})\) is torsion-free if and only if \(n \geq 2m - 4\).
The conjecture is known to be true in all cases but \(n = 2m - 4 \) and \(n = 2m - 3 \); Shareshian and Wachs [20] settled the case \(n = 2m - 2 \).

Corollary 3.4 (Shareshian & Wachs [20]). For all \((m, n) \neq (1, 1)\), we have that \(\tilde{H}_{\nu_{m,n}}(M_{m,n}; \mathbb{Z}) \) is nonzero.

4. Higher-degree homology

In Section 4.1, we detect 3-torsion in higher-degree homology groups of \(M_{m,n} \). In Section 4.2, we proceed with upper bounds on the dimension of the homology over \(\mathbb{Z}_3 \).

4.1. 3-torsion in higher-degree homology groups.

This section builds on work previously published in the author’s thesis [12]. Fix \(n, d \geq 0 \) and let \(\gamma \) be an element in \(\tilde{H}_{d-1}(M_n; \mathbb{Z}) \); note that we consider the matching complex \(M_n \). For each \(k \geq 0 \), define a map

\[
\begin{align*}
\theta_k : \tilde{H}_{k-1}(M_{k,k+1}; \mathbb{Z}) &\rightarrow \tilde{H}_{k-1+d}(M_{2k+1,n}; \mathbb{Z}) \\
\theta_k(z) &= z \wedge \gamma^{(2k+1)},
\end{align*}
\]

where we obtain \(\gamma^{(2k+1)} \) from \(\gamma \) by replacing each occurrence of the vertex \(i \) with \(i + 2k + 1 \) for every \(i \in [n] \).

For any prime \(p \), we have that \(\theta_k \) induces a homomorphism

\[
\theta_k \otimes \mathbb{Z}_p : \tilde{H}_{k-1}(M_{k,k+1}; \mathbb{Z}) \otimes \mathbb{Z}_p \rightarrow \tilde{H}_{k-1+d}(M_{2k+1,n}; \mathbb{Z}) \otimes \mathbb{Z}_p,
\]

where \(\iota_p : \mathbb{Z}_p \rightarrow \mathbb{Z}_p \) is the identity. The following result about the matching complex is a special case of a more general result from a previous paper [13].

Theorem 4.1 (Jonsson [13]). Fix \(k_0 \geq 0 \). With notation and assumptions as above, if \(\theta_{k_0} \otimes \mathbb{Z}_p \) is a monomorphism, then \(\theta_k \otimes \mathbb{Z}_p \) is a monomorphism for each \(k \geq k_0 \).

As already mentioned in the proof of Theorem 3.1 in Section 3, we have that \(M_{k,k+1} \) is an orientable pseudomanifold of dimension \(k - 1 \); hence \(\tilde{H}_{k-1}(M_{k,k+1}; \mathbb{Z}) \cong \mathbb{Z} \). Shareshian and Wachs [20] observed that this group is generated by the cycle

\[
z_{k,k+1} = \sum_{\pi \in \mathcal{S}_{k+1}} \text{sgn}(\pi) \cdot 1\pi(1) \wedge \cdots \wedge k\pi(k).
\]

Note that the sum is over all permutations on \(k + 1 \) elements. Theorem 4.1 implies the following result.

Corollary 4.2. With notation and assumptions as in Theorem 4.1, if \((z_{k_0,k_0+1} \wedge \gamma^{(2k_0+1)}) \otimes 1 \) is nonzero in \(\tilde{H}_{k_0-1+d}(M_{2k_0+1,n}; \mathbb{Z}) \otimes \mathbb{Z}_p \), then \((z_{k,k+1} \wedge \gamma^{(2k+1)}) \otimes 1 \) is nonzero in \(\tilde{H}_{k-1+d}(M_{2k+1,n}; \mathbb{Z}) \otimes \mathbb{Z}_p \) for all \(k \geq k_0 \).
We will also need a result about the bottom nonvanishing homology of the matching complex. Define
\[\gamma_{3r} = (12 - 23) \wedge (45 - 56) \wedge (78 - 89) \wedge \cdots \wedge ((3r - 2)(3r - 1) - (3r - 1)(3r)); \]
this is a cycle in both \(\tilde{C}_{r-1}(M_{3r}; \mathbb{Z}) \) and \(\tilde{C}_{r-1}(M_{3r+1}; \mathbb{Z}) \).

Theorem 4.3 (Bouc [5]). For \(r \geq 2 \), we have that \(\tilde{H}_{r-1}(M_{3r+1}; \mathbb{Z}) \cong \mathbb{Z}_3 \). Moreover, this group is generated by \(\gamma_{3r} \) and hence by any element obtained from \(\gamma_{3r} \) by permuting the underlying vertex set.

Assume that \((m + n) \mod 3 = 0 \) and \(m \leq n \leq 2m \). Define the cycle \(\gamma_{m,n} \) in \(\tilde{H}_{\nu_{m,n}}(M_{m,n}; \mathbb{Z}) \) recursively as follows, the base case being \(\gamma_{1,2} = 1 \tilde{1} - 1 \tilde{2} \):
\[\gamma_{m,n} = \begin{cases}
\gamma_{m-1,n-2} \wedge (m(n - 1) - m\overline{n}) & \text{if } m < n; \\
\gamma_{m-2,n-1} \wedge ((m - 1)\overline{n} - m\overline{n}) & \text{if } m = n.
\end{cases} \]

For \(n > m \), we define \(\gamma_{n,m} \) by replacing \(i \tilde{j} \) with \(j \tilde{i} \) in \(\gamma_{m,n} \) for each \(i \in [m] \) and \(j \in [n] \).

Recall that \(\nu_{m,n} = \frac{m+n-4}{3} \) whenever \(m \leq n \leq 2m - 2 \).

Theorem 4.4. There is 3-torsion in \(\tilde{H}_{d}(M_{m,n}; \mathbb{Z}) \) whenever
\[\begin{cases}
m + 1 \leq n \leq 2m - 5 \\
\left\lfloor \frac{m+n-4}{3} \right\rfloor \leq d \leq m - 3
\end{cases} \iff \begin{cases}
k \geq 0 \\
a \geq 1 \\
b \geq 2,
\end{cases} \]
where \(k, a, \) and \(b \) are defined as in (1). Moreover, there is 3-torsion in \(\tilde{H}_{d}(M_{m,m}; \mathbb{Z}) \) whenever
\[\left\lfloor \frac{2m - 4}{3} \right\rfloor \leq d \leq m - 4 \iff \begin{cases}
k \geq 0 \\
a = 0 \\
b \geq 3.
\end{cases} \]

Proof. Assume that \(k \geq 0, a \geq 1, \) and \(b \geq 2 \). Writing \(m_0 = a + 3b - 2 \) and \(n_0 = 2a + 3b - 3 \), we have the inequalities
\[a + 3b - 2 \leq 2a + 3b - 3 \leq 2a + 6b - 9 \iff m_0 \leq n_0 \leq 2m_0 - 5. \]

Note that \(m_0 + n_0 = 3a + 6b - 5 \equiv 1 \pmod{3} \). Define
\[w_{k+1} = z_{k+1,k+2} \wedge \gamma_{m_0,n_0-1}^{(k+1,k+2)}, \]
where we obtain \(\gamma_{m_0,n_0-1}^{(k+1,k+2)} \) from the cycle \(\gamma_{m_0,n_0-1} \) defined in (4) by replacing \(i \tilde{j} \) with \((i + k + 1) \tilde{j} + (k + 2) \). View \(\gamma_{m_0,n_0-1} \) as an element in the homology of \(M_{m_0,n_0} \). Since \(z_{k+1,k+2} \) has type \(\left[\frac{k+1,k+2}{k+1} \right] \) and since
Clearly, The group Corollary 4.5 implies that the same must be true for \(w \) have exponent three in \(\gamma \). It follows that the exponent of \(m \) for every \(k \) viewed as an element in \(\gamma \) hence we may view \(w_{k+1} \) as an element in \(\tilde{H}_{d}(M_{m,n};\mathbb{Z}) \).

Choosing \(k = 0 \), we obtain that

\[
\begin{array}{c}
\gamma_{m_0,n_0-1} \text{ has type } \left[\frac{a+3b-2,2a+3b-3}{a+2b-2} \right] \quad \text{or rather } \left[\frac{a+3b-2,2a+3b-4}{a+2b-2} \right] \wedge \left[\frac{0,1}{0,1} \right],
\end{array}
\]

we obtain that \(w_{k+1} \) has type

\[
\begin{bmatrix}
k + 1 + a + 3b - 2, k + 2 + 2a + 3b - 3 \\
k + 1 + a + 2b - 2
\end{bmatrix} = \begin{bmatrix} m, n \\ d + 1 \end{bmatrix};
\]

hence we may view \(w_{k+1} \) as an element in \(\tilde{H}_{d}(M_{m,n};\mathbb{Z}) \).

Applying Corollary 4.2, we conclude that \(w_{k+1} \otimes 1 \) is a nonzero element in the group \(\tilde{H}_{k+a+2b-2}(M_{2k+3a+6b-2};\mathbb{Z}) \otimes \mathbb{Z}_3 = \tilde{H}_{d}(M_{m+n};\mathbb{Z}) \otimes \mathbb{Z}_3 \) for every \(k \geq 0 \). As a consequence, \(w_{k+1} \otimes 1 \) is nonzero also in

\[
\tilde{H}_{k+a+2b-2}(M_{k+a+3b-1,k+2a+3b-1};\mathbb{Z}) \otimes \mathbb{Z}_3 = \tilde{H}_{d}(M_{m,n};\mathbb{Z}) \otimes \mathbb{Z}_3
\]

for every \(k \geq 1 \). Since \(\tilde{H}_{a+b-3}(M_{m_0,n_0};\mathbb{Z}) \) is an elementary 3-group by Theorem 3.2 and (5), the exponent of \(\gamma_{m_0,n_0-1} \) in \(\tilde{H}_{r}(M_{m_0,n_0};\mathbb{Z}) \) is three. It follows that the exponent of \(w_{k+1} \) in \(\tilde{H}_{d}(M_{m,n};\mathbb{Z}) \) is three as well.

The remaining case is \(m = n \), in which case the upper bound on \(d \) is \(m - 4 \) rather than \(m - 3 \). Since \(a = 0 \), we get

\[
\begin{cases}
k = -2m + 3d + 4 \\
b = m - d - 1
\end{cases} \iff \begin{cases}
m = k + 3b - 1 \\
d = k + 2b - 2.
\end{cases}
\]

Clearly, \(k \geq 0 \) and \(b \geq 3 \).

Consider the cycle \(w_{k+1} = z_{k+1,k+2} \wedge \gamma_{3b-3}^{(k+1,k+2)} \). By Corollary 4.2, \(w_{k+1} \otimes 1 \) is nonzero in \(\tilde{H}_{k+2b-2}(M_{2b+6b-2};\mathbb{Z}) \otimes \mathbb{Z}_3 \). Namely, \(w_1 \) is isomorphic to \(\gamma_{6b-3} \) in (4), which is a nonzero element with exponent three in \(\tilde{H}_{2b-3}(M_{6b-2};\mathbb{Z}) \) by Theorem 4.3; \(b \geq 3 \). We conclude that \(w_{k+1} \otimes 1 \) is a nonzero element in \(\tilde{H}_{k+2b-2}(M_{k+3b-1,k+3b-1};\mathbb{Z}) \otimes \mathbb{Z}_4 = \tilde{H}_{d}(M_{m,m};\mathbb{Z}) \otimes \mathbb{Z}_3 \). Since \(3b - 3 \geq 6 \), we have that \(\gamma_{3b-3}^{(k,k+2)} \) must have exponent three in \(\tilde{H}_{2b-3}(M_{3b-2,3b-3};\mathbb{Z}) \); apply Theorem 3.2. This implies that the same must be true for \(w_{k+1} \) in \(\tilde{H}_{d}(M_{m,m};\mathbb{Z}) \).

Corollary 4.5. The group \(\tilde{H}_5(M_{8,9};\mathbb{Z}) = \tilde{H}_9(M_{8,9};\mathbb{Z}) \) contains nonvanishing 3-torsion. As a consequence, there is nonvanishing 3-torsion in \(\tilde{H}_{\nu_n}(M_{m,n};\mathbb{Z}) \) whenever \(m \leq n \leq 2m - 5 \).
Proof. The first statement is a consequence of Theorem 4.4; choose $k = 2$, $a = 1$, and $b = 2$. For the second statement, apply Theorem 3.2. □

Theorem 4.6. For $1 \leq m \leq n$, the group $\tilde{H}_d(M_{m,n}; \mathbb{Z})$ is nonzero if and only if either

$$\left\lceil \frac{m+n-4}{3} \right\rceil \leq d \leq m-2 \iff \begin{cases} k \geq 0 \\ a \geq 0 \\ b \geq 1 \end{cases}$$

or

$$\begin{cases} m \geq 1 \\ n \geq m+1 \iff a \geq 1 \\ d = m-1 \iff b = 0, \end{cases}$$

where k, a, and b are defined as in (1).

Proof. For homology to exist, we certainly must have that $b \geq 0$, and we restrict to $a \geq 0$ by assumption. Moreover, $b = 0$ means that $d = m - 1$, in which case there is homology only if $m \leq n - 1$, hence $a \geq 1$ and $k + a \geq 2$; for the latter inequality, recall that we restrict our attention to $m \geq 1$. Finally, $k < 0$ reduces to the case $b = 0$, because we then have homology only if $n \geq 2m + 2$ and $d = m - 1$; apply Theorem 1.1.

For the other direction, Theorem 4.4 yields that we only need to consider the following cases:

- $k \geq 0$, $a = 0$, and $b = 2$. By Theorem 1.2, we have infinite homology for $a = 0$ and $b = 2$ if and only if $k \geq (b - 1)(a + b - 1) = a + 1 = 1$. The remaining case is $(k,a,b) = (0,0,2) \iff (m,n,d) = (5,5,2)$, in which case we have nonzero homology by Theorem 3.1.
- $k \geq 0$, $a \geq 0$, and $b = 1$. This time, Theorem 1.2 yields infinite homology for $a \geq 0$ and $b = 1$ as soon as $k \geq 0$.
- $k \geq 2 - a$, $a \geq 1$, and $b = 0$. By yet another application of Theorem 1.2, we have infinite homology for $b = 0$ whenever $a \geq 1$, $k \geq 1 - a$, and $k + a \geq 2$. Since the third inequality implies the second, we are done. □

Conjecture 4.7 (Shareshian & Wachs [20]). For $1 \leq m \leq n$, the group $\tilde{H}_d(M_{m,n}; \mathbb{Z})$ contains 3-torsion if and only if

$$\begin{cases} m \leq n \leq 2m - 5 \\ \left\lceil \frac{m+n-4}{3} \right\rceil \leq d \leq m-3 \end{cases} \iff \begin{cases} k \geq 0 \\ a \geq 0 \\ b \geq 2. \end{cases}$$

Note that Conjecture 4.7 implies Conjecture 3.3. Conjecture 4.7 remains unsettled in the following cases:
\begin{itemize}
 \item $d = m - 2$: $9 \leq m + 2 \leq n \leq 2m - 3$. Equivalently, $k \geq 1$, $a \geq 2$, and $b = 1$. Conjecture: There is no 3-torsion.
 \item $d = m - 3$: $8 \leq m = n$. Equivalently, $k \geq 3$, $a = 0$, and $b = 2$. Conjecture: There is 3-torsion.
\end{itemize}

The conjecture is fully settled for $n = m + 1$ and $n \geq 2m - 2$; see Shareshian and Wachs [20] for the case $n = 2m - 2$ and use Theorem 1.1 for the case $n \geq 2m - 1$. For the case $n = m + 1$, we have that $\tilde{H}_{m-2}(M_{m,m+1}; \mathbb{Z})$ is torsion-free, because $M_{m,m+1}$ is an orientable pseudomanifold; see Spanier [21, Ex. 4.E.2].

4.2. Bounds on the homology over \mathbb{Z}_3. Fix a field \mathbb{F} and let
\[
\beta^m_{d,n} = \dim \mathbb{F} \tilde{H}_d(M_{m,n}; \mathbb{F}); \quad \alpha^m_{d,n} = \dim \mathbb{F} \tilde{H}_d(\Gamma_{m,n}; \mathbb{F});
\]
$\Gamma_{m,n}$ is defined as in (2).

Lemma 4.8. For each $m \geq 2$ and $n \geq 3$, we have that
\[
\beta^m_{d,n} \leq \beta^{m-2,n-1}_{d-1} + (m-2)\beta^{m-1,n-1}_{d-1} + 2\binom{n-1}{2} \beta^{m-2,n-3}_{d-2}.
\]
Thus, by symmetry,
\[
\beta^m_{d,n} \leq \beta^{m-1,n-2}_{d-1} + (n-2)\beta^{m-1,n-1}_{d-1} + 2\binom{m-1}{2} \beta^{m-3,n-2}_{d-2},
\]
whenever $m \geq 3$ and $n \geq 2$.

Proof. By the long exact 00-G-11 sequence in Section 2.3, we have that
\[
\beta^m_{d,n} \leq \alpha^m_{d,n} + (m-2)\beta^{m-1,n-1}_{d-1}.
\]
Moreover, the long exact Γ-21-23 sequence in Section 2.4 yields the inequality
\[
\alpha^m_{d,n} \leq \beta^{m-2,n-1}_{d-1} + 2\binom{n-1}{2} \beta^{m-2,n-3}_{d-2}.
\]
Summing, we obtain the desired inequality. \hfill \Box

Define $\hat{\beta}_{k,a,b}^m = \beta_{d,n}^m$, where k, a, and b are defined as in (1). We may rewrite the second inequality in Lemma 4.8 as follows:

Corollary 4.9. We have that
\[
\hat{\beta}_{k,a,b}^m \leq \hat{\beta}_{k+1,a+b-3}^{n-1} + (k+2a+3b-3)\hat{\beta}_{k-1}^{n-1} + 2\binom{k+a+3b-2}{2} \hat{\beta}_{k-1}^{n-1}.
\]
for $k \geq 0$, $a \geq 0$, and $b \geq 2$.

Theorem 4.10. With $\mathbb{F} = \mathbb{Z}_3$ and $d = \nu_{m,n}$, the second bound in Lemma 4.8 is sharp whenever $m \leq n \leq 2m - 5$, $m + n \equiv 1 \pmod{3}$, and $(m,n) \neq (5,5)$. Equivalently, $k = 0$, $a \geq 0$, $b \geq 2$, and $(k,a,b) \neq (0,0,2)$, where k, a, and b are defined as in (1).
Proof. Since $\hat{\beta}_0^{a,b} = 1$ for $a \geq 0$ and $b \geq 2$ by Theorem 3.2, it suffices to prove that

$$\hat{\beta}_0^{a-1,b} + (2a + 3b - 3)\hat{\beta}_1^{a,b} + 2\left(a + 3b - 2\right)\hat{\beta}_1^{a+1,b-1} = 1$$

for all a and b as in the theorem; apply Corollary 4.9. Clearly, $\hat{\beta}_0^{a-1,b} = 1$; when $a = 0$, use the fact that $\hat{\beta}_0^{a-1,b} = \hat{\beta}_1^{a,b-1}$. Moreover, Theorem 1.1 yields that $\hat{\beta}_1^{a,b} = 0$ whenever $a \geq 0$ and $b \geq 1$. As a consequence, we are done. □

Theorem 4.11. For each $k \geq 0$, there is a polynomial $f_k(a, b)$ of degree $3k$ such that $\hat{\beta}_k^{a,b} \leq f_k(a, b)$ whenever $a \geq 0$ and $b \geq k + 2$ and such that

$$f_k(a, b) = \frac{1}{3^k k!} \left((a + 3b)^3 - 9b^3 \right)^k + \epsilon_k(a, b)$$

for some polynomial $\epsilon_k(a, b)$ of degree at most $3k - 1$. Equivalently,

$$\beta_m^{m,n} \leq f_{3d-m-n+4}(n - m, m - d - 1)$$

for $m \leq n \leq 2m - 5$ and $\frac{m+n-4}{3} \leq d \leq \frac{2m+n-7}{4}$.

Proof. The case $k = 0$ is a consequence of Theorem 3.2. Assume that $k \geq 1$ and $b > k + 2$.

First, assume that $a > 0$. Induction and Corollary 4.9 yield that

$$\hat{\beta}_k^{a,b} - \hat{\beta}_k^{a-1,b} \leq (k + 2a + 3b - 3)f_{k-1}(a, b) + 2\left(k+a+3b-2\right)f_{k-1}(a+1, b-1),$$

where f_{k-1} is a polynomial with properties as in the theorem. The right-hand side is of the form

$$g_k(a, b) = \frac{1}{3^{k-1}(k-1)!} \left((a + 3b)^3 - 9b^3 \right)^{k-1} (a + 3b)^2 + h_k(a, b),$$

where $h_k(a, b)$ is a polynomial of degree at most $3k - 2$. Now,

$$= \frac{1}{3^{k-1}(k-1)!} \sum_{\ell=0}^{k-1} \binom{k-1}{\ell} (a + 3b)^{3k-3\ell-1}(-9b^3)^\ell.$$

Summing over a, we obtain that

$$\hat{\beta}_k^{a,b} \leq \hat{\beta}_k^{0,b} + \sum_{i=1}^{a} g_k(i, b).$$
The right-hand side is a polynomial in a and b with dominating term
\[
\frac{1}{3^{k-1}(k-1)!} \sum_{\ell=0}^{k-1} \binom{k-1-1}{\ell} \frac{(a+3b)^{3k-3\ell} - (3b)^{3k-3\ell}}{3k-3\ell} (-9b^3)^\ell
\]

\[= \frac{1}{3^k k!} \sum_{\ell=0}^{k} \binom{k}{\ell} \left((a+b)^3\right)^{k-\ell} \left((27b^3)^{k-\ell}\right) (-9b^3)^\ell
\]

(8) \[= \frac{1}{3^k k!} \left((a+b)^3 - 9b^3\right)^k - \frac{1}{3^k k!} (18b^3)^k.
\]

Proceeding with $\beta_k^{0, b}$ for $b \geq k + 3$, note that $\beta_{k-1}^{0, b} = \beta_{k-1}^{1, b-1}$. As a consequence,
\[
\beta_k^{0, b} \leq \beta_{k-1}^{1, b-1} + (k + 3b - 3)\beta_{k-1}^{0, b} + 2\left(\frac{k+3b-2}{2}\right)\beta^{1, b-1}_{k-1}
\]
\[\leq \beta_k^{0, b} + (k + 3b - 4)\beta_{k-1}^{1, b-1} + 2\left(\frac{k+3b-4}{2}\right)\beta_k^{2, b-2}
\]
\[+ (k + 3b - 3)\beta_k^{0, b} + 2\left(\frac{k+3b-2}{2}\right)\beta^{1, b-1}_{k-1}.
\]

Using induction, we conclude that
\[
\beta_k^{0, b} \leq \beta_k^{0, b-1} + 9b^2 f_{k-1}(2, b - 2) + 9b^2 f_{k-1}(1, b - 1) + O(b^{3k-2})
\]
\[= 18b^2 \left(\frac{18b^3)^k-1}{3k-1(k-1)!}\right) + O(b^{3k-2}) = \frac{18k b^{3k-1}}{3k-1(k-1)!} + O(b^{3k-2}),
\]
where f_{k-1} is a polynomial with properties as in the theorem. Summing over b, we may conclude that $\beta_k^{0, b}$ is bounded by a polynomial in b with dominating term $\frac{18k b^{3k}}{3k-1 k!}$. Combined with (8), this yields the theorem.

\[\square\]

References

[1] J. L. Andersen, Determinantal Rings Associated with Symmetric Matrices: a Counterexample, PhD Thesis, University of Minnesota, 1992.

[2] C. A. Athanasiadis, Decompositions and connectivity of matching and chessboard complexes, Discrete Comput. Geom. 31 (2004), no. 3, 395–403.

[3] E. Babson, A. Björner, S. Linusson, J. Shareshian and V. Welker, Complexes of not i-connected graphs, Topology 38 (1999), no. 2, 271–299.

[4] A. Björner, L. Lovász, S. T. Vrecica and R. T. Živaljević, Chessboard complexes and matching complexes, J. London Math. Soc. (2) 49 (1994), 25–39.

[5] S. Bouc, Homologie de certains ensembles de 2-sous-groupes des groupes symétriques, J. Algebra 150 (1992), 187–205.

[6] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.

[7] X. Dong, The Topology of Bounded Degree Graph Complexes and Finite Free Resolutions, PhD Thesis, University of Minnesota, 2001.

[8] X. Dong and M. L. Wachs, Combinatorial Laplacian of the matching complex, Electronic J. Combin. 9 (2002), no. 1, R17.
[9] J.-G. Dumas, F. Heckenbach, B. D. Saunders and V. Welker, Simplicial Homology, a share package for GAP, 2000.
[10] J. Friedman and P. Hanlon, On the Betti numbers of chessboard complexes, *J. Algebraic Combin.* 8 (1998), 193–203.
[11] P. F. Garst, Cohen-Macaulay complexxes and group actions, Ph.D. Thesis, University of Wisconsin-Madison, 1979.
[12] J. Jonsson, Simplicial Complexes of Graphs, Doctoral Thesis, KTH, 2005.
[13] J. Jonsson, Exact sequences for the homology of the matching complex, submitted.
[14] J. Jonsson, Five-torsion in the homology of the matching complex on 14 vertices, Preprint, 2006.
[15] D. B. Karaguezian, Homology of complexxes of degree one complexxes, PhD Thesis, Stanford University, 1994.
[16] D. B. Karaguezian, V. Reiner and M. L. Wachs, Matching complexxes, bounded degree graph complexxes and weight spaces of GL_n-complexes, *J. Algebra* 239 (2001), 77–92.
[17] R. Ksontini, Propriétés homotopiques du complexe de Quillen du groupe symétrique, PhD Thesis, Université de Lausanne, 2000.
[18] P. Pilarczyk, Computational Homology Program, 2004.
[19] V. Reiner and J. Roberts, Minimal resolutions and homology of chessboard and matching complexxes, *J. Algebraic Combin.* 11 (2000), 135–154.
[20] J. Shareshian and M. L. Wachs, Torsion in the matching and chessboard complexxes, *Adv. Math.* to appear.
[21] E.H. Spanier, *Algebraic Topology*, McGraw-Hill, 1966.
[22] M. L. Wachs, Topology of matching, chessboard and general bounded degree graph complexxes, *Alg. Universalis* 49 (2003), no. 4, 345–385.
[23] G. M. Ziegler, Shellability of chessboard complexxes, *Israel J. Math.* 87 (1994), 97–110.
Table 1. The exponent $\epsilon_{m,n}$ of $\hat{H}_{m,n}(M_{m,n}; \mathbb{Z})$ for $m \leq n \leq 2m - 5$ and $(m, n) \not\in \{(6, 6), (7, 7), (8, 9)\}$. On the right we give the values k, a, and b defined as in (1).

$2m - n$	Restriction	$\epsilon_{m,n}$	k	a	b
5		3	0	≥ 0	2
6	$m \geq 7$	divides $\epsilon_{7,8}$	1	≥ 1	
7	$m \geq 9$	divides $\epsilon_{9,11}$	2	≥ 2	
8		3	0	≥ 0	3
9		divides $\gcd(9, \epsilon_{9,9})$	1	≥ 0	
10	$m = 10$	multiple of 3	2	$= 0$	
	$m \geq 11$	divides $\epsilon_{7,8}$		≥ 1	
11 + 3t	$t \geq 0$	3	0	≥ 0	4 + t
12 + 3t		divides $\gcd(9, \epsilon_{9,9})$	1		2
13 + 3t					

Department of Mathematics, KTH, 10044 Stockholm, Sweden
E-mail address: jakobj@math.kth.se