Supplementary Material

Would Integrated Western and Traditional Chinese Medicine Have More Benefits for Stroke Rehabilitation? – A Systematic Review and Meta-analysis
Supplementary Figures

Supplementary Figure 1. Improvement of dependency (BI, MBI, ADL)

Study or Subgroup	Intervention	Mean SD Total	Control	Mean SD Total	Weight	Std. Mean Difference IV, Fixed, 95% CI	Std. Mean Difference IV, Fixed, 95% CI	
1.1 Barthel Index (BI)								
Li 2012	10	6.87	48	4.13	3.94	46	3.3%	1.03 [0.60, 1.47]
Magnusson 1994	50	12	38	23	35	40	2.9%	0.68 [0.23, 1.14]
Tang 2016	33.27	16.23	40	19.36	13.2	40	2.9%	0.93 [0.47, 1.39]
Wang 2016a	16.14	18.38	62	14.73	18.38	62	4.9%	0.08 [-0.28, 0.43]
Wang 2016b	23.83	4.03	30	21.9	5.01	29	2.3%	0.42 [-0.10, 0.94]
Wang 2020	21.1	12.88	102	12.08	12.61	101	7.6%	0.71 [0.42, 0.99]
Wei 2016	40.5	3.17	44	34.02	2.13	40	1.9%	2.36 [1.79, 2.92]
Xu 2007	29.2	8.24	34	27.77	8.13	34	2.7%	0.17 [-0.30, 0.65]
Yan 2019	23.55	5.5	34	13.18	5.21	34	1.8%	1.91 [1.33, 2.49]
Ye 2020	27.64	5.52	95	18.97	4.87	95	5.6%	1.66 [1.13, 2.19]
Subtotal (95% CI)	527							
Heterogeneity: Ch² = 94.09, df = 9 (P < 0.00001); I² = 90%								
Test for overall effect: Z = 13.60 (P < 0.00001)								

1.2 Modified Barthel Index (MBI)								
Bai 2013	30.15	14.33	40	34.56	16.76	41	3.2%	-0.28 [-0.72, 0.16]
Chi 2014	35.92	32.89	60	17.87	35.68	60	4.6%	0.52 [0.16, 0.89]
Jia 2017	25.58	13.52	26	16.2	14.45	25	1.9%	0.71 [0.14, 1.28]
Wang 2019	22.85	10.97	152	17.43	28.99	155	12.2%	0.18 [-0.04, 0.40]
Wei 2015	19.6	11.07	50	6.82	13.39	50	3.5%	1.03 [0.61, 1.45]
Xia 2015	88.3	5.89	50	59.49	20.5	48	2.6%	1.91 [1.43, 2.39]
Xia 2016	35.9	19.23	60	17.9	20.42	60	4.3%	0.90 [0.53, 1.28]
Xia 2016a	25.9	13.18	61	10.92	15.49	55	4.0%	1.04 [0.65, 1.43]
Subtotal (95% CI)	499							
Heterogeneity: Ch² = 69.33, df = 7 (P < 0.00001); I² = 90%								
Test for overall effect: Z = 9.07 (P < 0.00001)								

1.3 Activities of Daily Living (ADL)								
Cheng 2011	45.83	8.4	30	36.74	12.29	30	2.2%	0.85 [0.32, 1.38]
Wang 2017	26.24	10.14	38	14.66	10.54	38	2.7%	0.11 [0.62, 1.59]
Xu 2016	31.11	14.62	36	28.88	19.72	35	2.8%	0.13 [-0.34, 0.59]
Yan 2016	25.66	4.41	30	15.88	3.99	30	1.4%	2.30 [1.62, 2.96]
Zhang 2014	38.63	19.68	30	27.24	18.73	29	2.2%	0.60 [0.07, 1.12]
Zhang 2020	20.03	9.69	30	9.11	8.34	30	2.0%	1.19 [0.64, 1.74]
Zhong 2002	65.2	17.18	48	31.7	16.96	48	2.6%	1.95 [1.46, 2.44]
Subtotal (95% CI)	242							
Heterogeneity: Ch² = 45.33, df = 6 (P < 0.00001); I² = 87%								
Test for overall effect: Z = 10.73 (P < 0.00001)								

1.4 Comprehensive Functional Assessment (CFA)								
Xu 2016	22.28	12.38	36	19.34	13.48	35	2.8%	0.22 [-0.24, 0.69]
Zheng 2018	26.37	5.64	80	17.66	3.45	89	4.9%	1.86 [1.50, 2.21]
Subtotal (95% CI)	125							
Heterogeneity: Ch² = 29.84, df = 1 (P < 0.00001); I² = 97%								
Test for overall effect: Z = 8.80 (P < 0.00001)								

1.5 Barthel Index, upper limb (BI–UL)								
Zhu 2014	14.04	8.37	30	8.52	6.63	30	2.2%	0.72 [0.20, 1.24]
Subtotal (95% CI)	30							
Heterogeneity: Not applicable								
Test for overall effect: Z = 2.70 (P = 0.007)								

1.6 Barthel Index, lower limb (BI–LL)								
Zhu 2014	17.21	5.87	30	8.98	6.77	30	2.0%	1.28 [0.72, 1.84]
Subtotal (95% CI)	30							
Heterogeneity: Not applicable								
Test for overall effect: Z = 4.50 (P < 0.00001)								

| **Total (95% CI)** | 1453 | 1439 | 100.0% | 0.85 [0.77, 0.93] |
| **Heterogeneity: Ch² = 269.47, df = 28 (P < 0.00001); I² = 90%** |
| **Test for overall effect: Z = 21.36 (P < 0.00001)** |
| **Test for subgroup differences: Ch² = 30.89, df = 5 (P < 0.00001), I² = 83.8%** |

* The reference for each study have been listed in Table 2 and ‘List of included studies’ references.”
Supplementary Figure 2. Improvement of motor function (FMA, MASc, MEP, Brunn)

Study or Subgroup	Intervention	Control	Std. Mean Difference	Std. Mean Difference					
	Mean	SD	Mean	SD	Weight	IV, Fixed, 95% CI			
1.2.2 Fugl-Meyer Assessment, general motor (FMA)	2013	13.21	1.40	19.03	1.36	41	1.2%	-2.26 [-2.82, -1.69]	
	2017	-1.15	0.69	26	-0.24	0.65	25	1.0%	-1.39 [-2.01, -0.77]
	2018a	11.43	11.67	55	7.72	10.38	55	2.7%	0.33 [0.00, 0.67]
	2018b	10.61	15.07	40	12.43	12.78	40	1.6%	1.29 [0.80, 1.77]
	2019a	22.12	17.15	152	18.85	28.79	155	7.5%	0.16 [-0.07, 0.38]
	2019b	6.4	4.15	102	3.28	3.93	101	4.6%	0.77 [0.48, 1.05]
	2015a	18.63	22.12	179	15.25	29.13	174	8.7%	0.13 [-0.08, 0.35]
	2015b	9.4	2.75	50	8.23	15.16	48	2.1%	1.02 [0.60, 1.44]
	2020a	26.11	5.85	95	16.62	4.91	95	3.3%	1.78 [1.44, 2.11]
	2020b	11.46	8.57	50	10.1	9.19	50	2.5%	0.15 [-0.24, 0.54]
	2020c	18.63	9.55	30	8.44	8.25	30	1.1%	1.10 [0.55, 1.65]
	2020d	14.45	3.31	89	8.73	3.03	89	3.1%	1.79 [1.45, 2.14]
	2020e	44	25.05	48	11.5	23.58	48	1.9%	1.13 [0.88, 1.77]
Overall (95% CI)	956	951	41.5%	0.33 [0.45, 0.64]					

Supplemental material

1.2.3 Fugl-Meyer Assessment, upper extremities (FMA–UE)

Study or Subgroup	Intervention	Control	Std. Mean Difference	Std. Mean Difference				
	Mean	SD	Mean	SD	Weight	IV, Fixed, 95% CI		
2013	8.88	7.2	40	11.06	9.27	41	2.0%	-0.25 [-0.69, 0.18]
2017a	20.91	9.84	70	7.58	6.66	70	2.6%	1.58 [1.20, 1.96]
2017b	29.67	12.45	60	15.33	14.4	60	2.6%	1.07 [0.69, 1.46]
2019a	15.02	20.58	152	10.51	16.89	155	7.5%	0.23 [0.00, 0.46]
2020a	17.58	2.02	44	13.05	2.26	40	1.3%	2.10 [1.56, 2.64]
2020b	15.18	16.73	30	7.47	7.17	30	1.4%	0.45 [-0.06, 0.96]
2020c	20.86	12.48	36	16.44	12.96	35	1.7%	0.34 [-0.11, 0.81]
2020d	13.17	11.9	40	8.23	10.37	40	1.9%	0.44 [-0.01, 0.88]
2020e	17.85	16.05	60	10.74	8.08	60	2.8%	0.63 [0.28, 1.02]
2020f	8.73	2.19	60	7.02	1.91	60	2.7%	0.83 [0.45, 1.20]
2020g	14.25	4.01	40	8.82	3.49	40	1.5%	0.14 [-0.26, 0.45]
Overall (95% CI)	622	621	28.0%	0.61 [0.50, 0.73]				

Heterogeneity: $\chi^2 = 297.46, df = 12 (P < 0.00001); I^2 = 96$

Test for overall effect: $Z = 11.26 (P < 0.00001)$
Supplementary Figure 3. Improvement of depression (HAMA, HAMD, TCM, CES)

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI
Chen 2018	-15.1	3.2	30	-10.74	3.0	30	3.96	-1.11 [-1.66, -0.56]
Fu 2008	-13.74	3.94	38	-6.52	4.78	37	4.25	-1.63 [-2.16, -1.11]
Fu 2019	-14.06	3.86	48	-9.38	4.32	48	6.26	-1.13 [-1.57, -0.70]
Han 2018	-15.92	5.78	47	-11.61	6.27	47	6.66	-0.71 [-1.13, -0.29]
Jiang 2020	-8.16	7.74	62	-3.72	8.01	58	8.76	-0.56 [-0.93, -0.20]
Li 2015	-18.6	7.76	83	-3.7	8.57	83	8.88	-1.81 [-2.18, -1.45]
Li 2018	-4.21	2.81	39	0.41	2.81	37	3.15	-1.62 [-2.23, -1.01]
Nie 2013	-14.31	4.05	41	-13.33	4.3	40	6.06	-0.28 [-0.72, 0.16]
Teng 2019	-8.3	2.91	47	-2.3	2.65	47	6.66	-0.71 [-1.13, -0.30]
Wang 2017	-10.06	1.45	30	-13.02	1.59	30	2.45	-3.26 [-3.98, -2.58]
Xia 2015	9.4	7.86	50	17.3	7.6	48	6.56	-1.01 [-1.44, -0.59]
Xu 2007	-23.91	7.01	34	-18.83	5.76	34	4.75	-0.78 [-1.28, -0.29]
Yan 2019	-17.92	6.38	34	-11.23	6.55	34	4.56	-1.02 [-1.53, -0.52]
Yang 2015a	-21.91	3.66	33	-24.35	4.59	30	4.55	0.58 [0.08, 1.09]
Subtotal (95% CI)			634	601	76.7%	145	-0.98 [-1.10, -0.86]	

Heterogeneity: Chi² = 128.23, df = 13 (P < 0.00001); I² = 90%
Test for overall effect: Z = 15.63 (P < 0.00001)

1.3.3 Hamilton anxiety rating scale(HAMA)

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI
Jiang 2020	-6.93	5.93	62	-2.67	6.61	58	8.56	-0.68 [-1.04, -0.31]
Li 2015	-31.5	10.46	83	-21.4	11.09	83	11.26	-0.93 [-1.25, -0.61]
Subtotal (95% CI)			145	141	19.78	-0.82 [-1.06, -0.58]		

Heterogeneity: Chi² = 1.07, df = 1 (P = 0.30); I² = 6%
Test for overall effect: Z = 6.66 (P < 0.00001)

1.3.4 10-item Centre for Epidemiological Studies Depression Scale (CES-D10)

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI
Wu 2015	-4.4	1.22	30	-2.5	1.42	30	3.66	-1.42 [-1.99, -0.85]
Subtotal (95% CI)			30	30	3.66	-1.42 [-1.99, -0.85]		

Heterogeneity: Not applicable
Test for overall effect: Z = 4.87 (P < 0.00001)

Total (95% CI) 789 772 100.0% -0.96 [-1.07, -0.86]

Heterogeneity: Chi² = 133.10, df = 16 (P < 0.00001); I² = 88%
Test for overall effect: Z = 17.56 (P < 0.00001)
Test for subgroup differences: Chi² = 3.81, df = 2 (P = 0.15), I² = 47.5%

* The reference for each study have been listed in Table 2 and 'List of included studies’ references'.
Supplementary Figure 4. Improvement of swallowing function (WDT)

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI
Chen 2016	-2.04	0.63	30	-1.84	0.81	30	5.1%	-0.27 [-0.78, 0.24]
Fan 2007	-2.367	1.131	30	-0.3	0.912	30	3.5%	-1.89 [-1.50, -1.27]
Guan 2009	-1.5	1.67	30	-0.9	1.305	30	5.1%	-0.40 [-0.91, 0.12]
Jiang 2020	-6.96	4.77	62	-3.03	4.84	58	9.5%	-0.81 [-1.19, -0.44]
Lu 2010	-1.933	0.75	15	-0.733	1.15	15	2.1%	-1.20 [-1.19, -0.42]
Ma 2014	-2.71	0.67	35	-1.88	0.88	40	5.6%	-1.04 [-1.53, -0.56]
Wang 2016	-2.17	0.52	50	-1.59	0.95	50	7.6%	-1.01 [-1.43, -0.59]
Xiang 2016	1.19	1.19	38	0.62	1.32	38	6.4%	0.45 [-0.01, 0.90]
Zhou 2013	-2.4	1.59	40	-1.83	1.67	40	6.8%	-0.35 [-0.79, 0.10]
Subtotal (95% CI)		330	51.6%	51.6%	-0.64 [-0.80, -0.48]			

Heterogeneity: $\chi^2 = 50.84, df = 8$ ($p < 0.00001$); $I^2 = 84$

Test for overall effect: $Z = 7.90$ ($p < 0.00001$)

1.4.3 Standardized swallowing assessment (SSA)

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI
Chu 2014	-18.1	11.5	60	-15.3	12.3	60	10.2%	-0.23 [-0.59, 0.13]
Chu 2017	-10.4	8.87	48	-7.3	10.21	49	8.2%	-0.32 [-0.72, 0.08]
Li 2019	-5.78	6.23	40	-2.54	5.72	40	6.6%	-0.54 [-0.98, -0.09]
Xia 2016a	-15.2	7.24	61	-9.1	7.53	55	9.2%	-0.82 [-1.20, -0.44]
Zhao 2015	-7.17	8.74	40	-5.72	8.39	40	6.9%	-0.17 [-0.61, 0.27]
Subtotal (95% CI)		249	41.1%	41.1%	-0.62 [-0.60, -0.24]			

Heterogeneity: $\chi^2 = 7.08, df = 4$ ($p = 0.13$); $I^2 = 43$

Test for overall effect: $Z = 4.59$ ($p < 0.00001$)

1.4.4 Repetitive saliva-swallowing test (SSST)

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI
Chu 2017	-1.196	0.382	48	-0.918	0.494	49	7.3%	-1.07 [-1.50, -0.65]
Subtotal (95% CI)		48	7.3%	7.3%	-1.07 [-1.50, -0.65]			

Heterogeneity: Not applicable

Test for overall effect: $Z = 4.93$ ($p < 0.00001$)

Total (95% CI)

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI

Heterogeneity: $\chi^2 = 66.73, df = 14$ ($p < 0.00001$); $I^2 = 79$

Test for overall effect: $Z = 9.94$ ($p < 0.00001$)

Test for subgroup differences: $\chi^2 = 8.81, df = 2$ ($p = 0.01$); $I^2 = 77.3$

* The reference for each study have been listed in Table 2 and 'List of included studies' references.
Supplementary Figure 5. Funnel plot for outcome: Improvement of dependency
Supplementary Figure 6. Funnel plot for outcome: Improvement of motor function
Supplementary Figure 7. Funnel plot for outcome: Improvement of depression
Supplementary Figure 8. Funnel plot for outcome: Improvement of swallowing function
Supplementary Figure 9. Comparison on duration of treatment: Improvement of dependency

Study or Subgroup	Intervention Mean	Intervention SD	Intervention Total	Control Mean	Control SD	Control Total	Std. Mean Difference (IV, Random, 95% CI)	Std. Mean Difference (IV, Random, 95% CI)	
2.1.1 Shorter than or equal to 1 month									
Bai 2013	30.15	14.33	40	34.56	16.76	41	5.9%	-0.28 (-0.72, 0.16)	
CH 2014	35.96	32.89	60	17.87	35.68	60	6.1%	0.52 (0.16, 0.89)	
Jie 2017	25.08	11.52	26	16.2	14.45	20	5.5%	0.71 (0.14, 1.28)	
Wang 2016a	16.14	18.38	62	14.73	18.38	62	6.1%	0.08 (-0.28, 0.43)	
Wang 2017	26.24	10.14	38	14.65	10.54	38	5.8%	1.11 (0.62, 1.59)	
Wang 2019	22.85	30.87	152	25.43	28.95	155	6.3%	0.15 (-0.04, 0.40)	
Wang 2019a	23.83	4.03	30	21.9	5.01	29	5.7%	0.42 (-0.10, 0.94)	
Wang 2020	21.1	12.88	102	12.68	12.61	101	6.2%	0.71 (0.42, 0.99)	
Wei 2015	19.6	11.07	50	6.82	13.39	50	5.9%	1.03 (0.61, 1.45)	
Wei 2016	40.5	3.17	44	34.62	2.13	40	5.5%	2.36 (1.79, 2.92)	
Xia 2016	35.4	19.35	60	17.74	30.47	60	4.9%	0.00 (0.31, 1.31)	
Xu 2016	31.11	14.62	36	28.88	19.72	35	5.8%	0.15 (-0.34, 0.59)	
Yu 2020	27.64	5.52	95	18.87	4.87	95	6.1%	1.60 (1.33, 1.99)	
Zheng 2020	20.03	9.69	30	9.11	8.34	30	5.8%	1.19 (0.64, 1.74)	
Zong 2018	26.37	5.44	89	17.66	3.45	89	6.1%	1.86 (1.50, 2.21)	
Zhong 2002	65.2	17.18	48	31.7	16.96	48	5.7%	1.95 (1.46, 2.44)	
Zhu 2014	17.21	5.87	30	8.98	6.77	30	5.5%	1.28 (-0.72, 1.18)	
Subtotal (95% CI)	992	988	100%	9.02 (0.36, 1.28)	0.0%				

Heterogeneity: Tau² = 0.46; CH² = 200.45, df = 16 (P = 0.00001); I² = 93%

Test for overall effect: Z = 5.29 (P < 0.00001)

2.1.2 Longer than 1 month									
Chen 2011	45.83	8.4	30	38.74	12.29	30	9.8%	0.85 (0.32, 1.38)	
Li 2012	10	6.87	48	4.13	3.94	46	10.5%	1.03 (0.60, 1.47)	
Magnusson 1994	50	12	38	35	28	40	10.3%	0.68 (0.23, 1.14)	
Tang 2016	33.27	16.23	40	19.36	15.2	40	10.3%	0.83 (0.47, 1.39)	
Xie 2015	45.3	5.89	50	59.49	20.5	48	10.1%	1.91 (1.45, 2.39)	
Xie 2015a	25.9	13.8	61	10.92	15.49	55	10.7%	1.04 (0.65, 1.43)	
Xu 2007	29.2	8.24	34	27.77	8.13	34	10.2%	0.17 (-0.30, 0.65)	
Yan 2016	25.66	4.41	30	15.88	3.99	30	8.8%	2.30 (1.63, 2.96)	
Yan 2019	23.55	5.5	34	13.18	5.21	34	9.4%	1.91 (1.33, 2.49)	
Zhang 2014	38.63	19.68	30	27.24	18.73	29	9.8%	0.60 (0.07, 1.12)	
Subtotal (95% CI)	395	386	100%	1.12 (0.75, 1.50)	0.0%				

Heterogeneity: Tau² = 0.31; CH² = 52.71, df = 9 (P = 0.00001); I² = 93%

Test for overall effect: Z = 5.83 (P < 0.00001)

* The reference for each study have been listed in Table 2 and 'List of included studies’ references'.
Supplementary Figure 10. Comparison on duration of treatment: Improvement of motor function

Study or Subgroup	Intervention Mean	Intervention SD	Control Mean	Control SD	Std. Mean Difference IV	Random 95% CI	Weight
2.2.1 Shorter than or equal to 1 month							
Bai 2013	8.88	7.72	40	11.06	9.27	41	5.0%
Ja 2017	-1.15	0.59	26	-0.24	0.65	25	4.5%
Ja 2017a	20.91	9.84	70	7.58	6.66	70	5.1%
Li 2019a	11.43	11.67	55	7.72	10.38	55	5.1%
Wan 2013	29.67	12.45	60	15.13	14.4	60	5.1%
Wang 2019	15.14	16.58	152	10.51	18.69	155	5.4%
Wong 2019	7.47	3.30	29	3.23	0.96	29	4.7%
Wang 2020	6.4	4.15	102	3.28	3.92	101	5.3%
Wei 2016	17.58	2.00	44	13.05	2.26	40	4.7%
Yu 1999	0.9	1.36	59	0.5	1.08	59	5.1%
Xu 2010a	18.03	22.12	178	10.23	28.13	174	3.4%
Xu 2014	15.18	16.71	30	7.47	17.01	30	4.8%
Xu 2016	20.96	12.48	36	16.44	12.96	35	4.9%
Ye 2020	26.21	5.8	95	16.62	4.91	95	5.2%
Zhang 2009	13.17	11.9	40	8.23	10.37	40	5.0%
Zhang 2020	18.63	9.95	30	8.44	8.25	30	4.7%
Zhao 2009	8.73	2.19	60	7.62	1.91	60	5.1%
Zheng 2016	14.45	3.31	89	8.73	3.03	89	5.2%
Zhong 2002	44	25.05	48	11.5	23.56	48	5.0%
Zhu 2014	14.25	4.03	30	8.82	34.10	30	4.8%
Subtotal (95% CI)						1275	
						1266	100.0%
Heterogeneity: Tau^2 = 0.40; Chi^2 = 262.59, df = 19 (P < 0.00001); I^2 = 93%							
Test for overall effect: Z = 4.45 (P < 0.00001)							

2.2.4 Longer than 1 month

Study or Subgroup	Intervention Mean	Intervention SD	Control Mean	Control SD	Std. Mean Difference IV	Random 95% CI	Weight
Cheng 2011	1.3	0.97	30	0.87	9.36	30	16.1%
Ja 2017a	19.03	4.17	70	11.8	3.35	30	16.1%
Tang 2016	30.81	15.07	40	12.43	12.78	40	16.3%
Xia 2015	93.4	2.75	50	82.3	15.16	48	16.9%
Zeng 2016	11.46	8.57	50	15.1	9.19	50	17.2%
Zhu 2017	16.01	9.66	60	8.63	8.15	60	17.4%
Subtotal (95% CI)						380	
						258	100.0%
Heterogeneity: Tau^2 = 0.37; Chi^2 = 41.44, df = 5 (P < 0.00001); I^2 = 88%							
Test for overall effect: Z = 3.20 (P = 0.001)							

* The reference for each study have been listed in Table 2 and ‘List of included studies’ references.

Zhong LLD, et al. Stroke Vasc Neurol 2022; 7:e000781. doi: 10.1136/svn-2020-000781
Supplementary Figure 11. Comparison on duration of treatment: Improvement of depression

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Std. Mean Difference	Std. Mean Difference
Chen 2018	15.1	9.32	30	-3.8	10.74	30	10.8%	-1.11 [-1.66 , -0.56]
Fu 2019	-14.06	3.86	48	-9.38	4.32	48	11.5%	-1.13 [-1.57 , -0.70]
Han 2018	-15.92	5.79	47	-11.61	6.27	47	11.6%	-0.71 [-1.13 , -0.29]
Jiang 2020	-6.93	5.93	62	-2.67	6.61	58	11.9%	-0.68 [-1.04 , -0.31]
Li 2015	-31.5	10.46	83	-21.4	11.09	83	12.1%	-0.93 [-1.25 , -0.61]
Li 2018	-4.21	2.81	29	0.41	2.81	27	10.3%	-1.62 [-2.23 , -1.01]
Nie 2013	-14.31	4.05	41	-13.13	4.3	40	11.5%	-0.28 [-0.72 , 0.16]
Wang 2017	-16.06	1.45	38	-11.02	1.59	38	9.7%	-3.28 [-3.96 , -2.58]
Wu 2015	-4.4	1.32	30	-2.5	1.42	30	10.6%	-1.42 [-1.95 , -0.85]
Subtotal (95% CI)	**408**		**401**	**100.9%**			**-1.19 [-1.62 , -0.76]**	

Heterogeneity: $I^2 = 0.37$, $Chi^2 = 63.78$, $df = 8$ ($P < 0.00001$); $P = 87$

Test for overall effect: $Z = 5.43$ ($P < 0.00001$)

2.3.4 Longer than 1 month

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Std. Mean Difference	Std. Mean Difference
Fu 2008	-13.74	3.94	38	-6.52	4.78	37	16.2%	-1.63 [-2.16 , -1.11]
Teng 2019	-4.3	2.91	47	-2.3	2.65	47	17.2%	-0.71 [-1.13 , -0.30]
Xia 2015	9.4	7.86	50	17.3	7.6	48	17.2%	-1.01 [-1.44 , -0.59]
Xu 2007	-23.91	7.01	34	-18.83	5.76	34	16.5%	-0.78 [-1.28 , -0.29]
Yan 2019	-17.92	6.38	34	-11.23	5.55	34	16.4%	-1.02 [-1.53 , -0.52]
Yang 2015a	-21.91	3.66	33	-24.35	4.59	30	16.4%	0.59 [0.08, 1.09]
Subtotal (95% CI)	**236**		**230**	**100.6%**			**-0.76 [-1.31 , -0.21]**	

Heterogeneity: $I^2 = 0.41$, $Chi^2 = 40.20$, $df = 5$ ($P < 0.00001$); $P = 88$

Test for overall effect: $Z = 2.72$ ($P = 0.007$)

Test for subgroup differences: $Chi^2 = 1.45$, $df = 1$ ($P = 0.23$), $I^2 = 31.3%$

* The reference for each study have been listed in Table 2 and 'List of included studies' references.
Supplementary Figure 12. Comparison on duration of treatment: Improvement of swallowing function

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Std. Mean Difference (IV, Random, 95% CI)	Std. Mean Difference (IV, Random, 95% CI)
2.4.1 Shorter than or equal to 1 month								
Chen 2016	-2.04	0.63	30	-1.84	0.81	30	9.9% [0.27 (0.78, 0.24)]	
CN 2014	-18.1	11.5	60	-15.3	12.3	60	10.9% [-0.23 (0.59, 0.13)]	
Fan 2007	-2.267	1.131	30	-0.3	0.912	30	9.1% [-1.89 (0.26, 0.27)]	
Jiang 2020	-6.96	4.77	62	-3.03	4.84	58	10.8% [-0.81 (1.15, -0.44)]	
Li 2019	-6.78	6.25	40	2.94	5.72	40	10.3% [-0.54 (0.96, -0.99)]	
Lu 2019	-1.933	0.75	15	-0.733	1.15	15	7.8% [-1.20 (-1.95, -0.42)]	
Ma 2014	-2.71	0.67	35	-1.88	0.88	40	10.0% [-1.04 (-1.53, -0.56)]	
Wang 2016	-2.17	0.52	50	-1.39	0.95	50	10.5% [-1.01 (-1.45, -0.59)]	
Xiang 2016	1.19	1.19	38	0.62	1.32	38	10.3% [0.45 (0.01, 0.90)]	
Zhou 2013	-2.4	1.59	40	-1.83	1.67	40	10.4% [-0.35 (0.79, 0.10)]	
Subtotal (95% CI)			469	-1.8	1.67	401	100.0% [-0.46 (-1.82, -0.36)]	

Heterogeneity: Tau^2 = 0.20; CH^2 = 54.67, df = 9 (P = 0.00001); I^2 = 54%

Test for overall effect: Z = 3.38 (P = 0.0003)

2.4.3 Longer than 1 month

Study or Subgroup	Intervention Mean	SD	Total	Control Mean	SD	Total	Std. Mean Difference (IV, Random, 95% CI)	Std. Mean Difference (IV, Random, 95% CI)
Chu 2017	-10.4	8.87	48	-7.3	10.21	49	35.8% [-0.32 (0.72, 0.08)]	
Guan 2009	-1.5	1.67	30	-0.9	1.305	30	26.7% [-0.40 (0.91, 0.12)]	
Xia 2016a	-15.2	7.24	61	-9.1	7.53	55	37.7% [-0.82 (-1.20, -0.44)]	
Subtotal (95% CI)			139	-9.61	8.56	134	109.9% [-6.53 (-8.86, -4.20)]	

Heterogeneity: Tau^2 = 0.04; CH^2 = 3.56, df = 2 (P = 0.17); I^2 = 44%

Test for overall effect: Z = 3.16 (P = 0.002)

Test for subgroup differences: CH^2 = 3.28, df = 1 (P = 0.60), I^2 = 0%

* The reference for each study have been listed in Table 2 and 'List of included studies' references.
Criteria for judging risk of bias

1. Random sequence generation (selection bias)
 - Low risk: random number table; computer random number generator;
 - High risk: date of admission; odd or even clinic record number
 - Unclear risk: randomization was stated, but the process was not described

2. Allocation concealment (selection bias)
 - Low risk: central allocation (telephone or web-based); sequentially numbered sealed envelopes; or real-time randomization
 - High risk: participants or the investigators enrolling participants could potentially predict the assignments
 - Unclear risk: method of concealment was not described or not described in sufficient detail

3. Blinding participants and personnel (performance bias)
 - Low risk: Blinding of participants and key study personnel was ensured, or it was unlikely that the blinding was compromised, blinding of participants and personnel to the hypothesis or study objectives.
 - High risk: open label; no blinding or incomplete blinding; or attempted blinding of key study participants and personnel, but it was likely that the blinding was compromised
 - Unclear risk: insufficient information to permit the judgment of ‘low risk’ or ‘high risk’

4. Blinding of outcome assessment (detection bias)
 - Low risk: Blinding of outcome assessment was ensured. No blinding of outcome assessment, but the review authors judged that the outcome measurement was not likely to be influenced by a lack of blinding
 - High risk: open label, no blinding of outcome assessment and the outcome measurement was likely to be influenced by lack of blinding
 - Unclear risk: insufficient information to permit the judgment of ‘low risk’ or ‘high risk’

5. Incomplete outcome data (attrition bias)
 - Low risk: intention-to-treat analysis; no missing outcome data; reasons for missing outcome data unlikely to be related to outcome; or missing outcome data were balanced across intervention groups
 - High risk: ‘As-treated’ analysis; reason for missing outcome data likely to be related to outcome; proportion of missing outcomes compared with observed event risk was sufficient to induce clinically relevant bias in the intervention effect estimate
 - Unclear risk: insufficient reporting of dropout and exclusion to permit the judgment of ‘low risk’ or ‘high risk’ (e.g. number randomized not stated, no reasons for missing data provided)

6. Selective reporting (reporting bias)
 - Low risk: The study protocol was available, and all of the study’s prespecified outcomes that were of interest in the review were reported in a prespecified manner; or the study protocol was not available, but it was clear that the published reports include all expected outcomes, including those that were prespecified
 - High risk: Not all of the study’s prespecified outcomes were reported; or one or more reported primary outcomes were not prespecified
 - Unclear risk: insufficient information for a clear decision
Risk of bias within studies

Supplementary Figure 13. Risk of bias graph
Study ID	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)
Bai 2013	?	?	?	?	?	?
Chen 2016	?	?	?	?	?	?
Chen 2018	?	?	?	?	?	?
Cheng 2011	?	?	?	?	?	?
Chi 2014	?	?	?	?	?	?
Chu 2017	?	?	?	?	?	?
Fan 2007	?	?	?	?	?	?
Fu 2008	!	?	?	?	?	?
Fu 2019	!	?	?	?	?	?
Guan 2009	!	?	?	?	?	?
Han 2018	!	?	?	?	?	?
Jia 2017	!	?	?	?	?	?
Jia 2017a	!	?	?	?	?	?
Jiang 2020	!	?	?	?	?	?
Li 2012	!	?	?	?	?	?
Li 2015	?	?	?	?	?	?
Li 2018	!	?	?	?	?	?
Li 2019	!	?	?	?	?	?
Li 2019a	!	?	?	?	?	?
Lu 2010	?	?	?	?	?	?
Ma 2014	!	?	?	?	?	?
Magnusson 1994	?	?	?	?	?	?
Nie 2013	!	?	?	?	?	?
Tang 2016	!	?	?	?	?	?
Teng 2019	!	?	?	?	?	?
Supplementary Figure 14. Risk of bias summary
Supplementary Tables

Supplementary Table 1. Search Strategy

	Search Term
1	exp basal ganglia cerebrovascular disease/
2	cerebrovascular disorders/
3	exp brain ischemia/
4	exp carotid artery diseases/
5	exp cerebral small vessel diseases/
6	exp intracranial arterial diseases/
7	exp "intracranial embolism and thrombosis"/
8	exp intracranial hemorrhages/
9	stroke/
10	exp brain infarction/
11	stroke, lacunar/
12	vasospasm, intracranial/
13	vertebral artery dissection/
14	(stroke or post stroke or post-stroke),tw.
15	(cerebrovasc$ or brain vasc$ or cerebral vasc$ or cva$ or apoplex$ or SAH),tw.
16	((brain$ or cerebr$ or cerebell$ or intracran$ or intracerebral) adj5 (isch?emi$ or infarct$ or thrombo$ or emboli$ or occlus$)).tw.
17	((brain$ or cerebr$ or cerebell$ or intracranial or intracranial or subarachnoid) adj5 (haemorrhage$ or hemorrhage$ or haematoma$ or hematoma$ or bleed$)).tw.
18	hemiplegia/
19	exp paresis/
20	(hemipleeg$ or hemipar$ or paresis or paretic),tw.
21	brain injuries/
22	brain injury, chronic/
23	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22
24	acupuncture/ or acupuncture therapy/ or acupuncture analgesia/ or acupuncture, ear/ or electroacupuncture/ or meridians/ or acupuncture points/ or trigger points/
---	---
25	(acupuncture$ or electroacupuncture or electro-acupuncture or acupoint$ or meridians or needling).tw.
26	((meridian or non-meridian or trigger) adj10 point$).tw.
27	24 or 25 or 26
28	exp drugs, chinese herbal/
29	exp medicine, chinese traditional/
30	exp Plants, Medicinal/
31	exp Medicine, Traditional/
32	exp Plant Extracts/
33	exp Phytotherapy/
34	phytopharmaceutic$.mp.
35	herb$.mp.
36	traditional medicine$.mp.
37	traditional therap$.mp.
38	herbal medicine$.mp.
39	herbal therap$.mp.
40	aconite root.mp.
41	camelia.mp.
42	cayenne.mp.
43	chinese cucumber.mp.
44	chrysanthemum flower$.mp.
45	cocklebur fruit.mp.
46	cow dipper.mp.
47	croton seed.mp. or exp Croton/
48	ginger.mp. or exp Ginger/
49	ginkgo.mp. or exp Ginkgo biloba/
50	ginseng.mp. or exp Panax/
51	goji berry.mp.
52	horny goat weed.mp.
53	rhubarb.mp. or exp Rheum/
54	thunder vine.mp.
55	strychnine tree.mp.
56	sweet wormwood.mp.
57	willow bark.mp.
58	27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57
59	23 and 58
---	---
59	not 60

- **Cochrane (Wiley interface), searched on 24 Jul 2019**
 1. MeSH descriptor: [Medicine, Chinese Traditional] explode all trees
 2. MeSH descriptor: [Drugs, Chinese Herbal] explode all trees
 3. MeSH descriptor: [Medicine, Traditional] explode all trees
 4. ((traditional or herbal) and (therap* or medicine*)):ti,ab,kw
 5. #1 or #2 or #3 or #4
 6. (acupuncture):ti,ab,kw OR (electroacupuncture):ti,ab,kw OR (meridians):ti,ab,kw
 OR (acupuncture*):ti,ab,kw OR (acupoints):ti,ab,kw
 7. ((meridian or non-meridian or trigger) adj10 point$):ti,ab,kw
 8. MeSH descriptor: [Acupuncture Therapy] explode all trees
 9. #6 or #7 or #8
 10. #5 or #9
 11. MeSH descriptor: [Stroke Rehabilitation] explode all trees
 12. (stroke):ti,ab,kw
 13. #11 or #12
 14. #10 and #13

- **CNKI, 1915 to 24 Jul 2019**
 1. SU=(卒中+脑梗+心梗)*(针+中医+中药)*(随机+对照)
Supplementary Table 2. Characteristics of included studies (ordered by study ID)

ID	Title	Method	No. of participants	Age range	Type of health problem	Disease course	Duration of Treatment	Name of decoction and herbal medicine or acupoints	Outcomes	No. of Drop outs	Duration of follow-up	Is blind method used in outcome assessment?	If yes, who is/are blinded?
Bai	Prospective, randomized controlled trial of physiotherapy and acupuncture on motor function and daily activities in patients with ischemic stroke	RCT	120	61.54 ±9.47	Motor function problem	15 days - 90 days	4 weeks	Baihui, Jianyu, Jianzheng, Quchi, Waiguan, Hegu, Yanglingquan, Kunlun, Juegu, Huantiao, Fengshi, Neiguan, Shangqi, Taichong, Yinlingquan, Sanyingjiao, Yingu, Daling, Houxi, Jiquan, Chize, Quze	FMA, MBI	NA	NA	NA	NA

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on the supplemental material supplied by the author(s).
Author	Year	Study Title	Design	Participants	Intervention	Outcome Measures	Follow-up	Comparison	Outcome Differences	Notes		
Chen	2018	Effect of early acupuncture intervention on post-stroke depression: a randomized controlled trial	RCT 60	36-75	Depression	4 to 30 days	4 weeks	Baihui, Sishencong, Neiguan, Hegu, Taixi, Taichong, Zusanli, Xuehai	Clinical effective rate	NA	4 Weeks	NA
Cheng	2011	Post-stroke hand dysfunction treated with acupuncture at Zhongzhu (TE 3) and Waiguan (TE 5)	Quasi-RCT 60	^41-74	Motor function problem	^86.6 ± 16.2 days	8 weeks	Waiguan, Zhongzhu	FMA - Hand NIHSS Holden ADL	NA	NA	NA
Xia	2010	Combination of Feeding-Swallowing Training and Acupuncture: an Effective Rehabilitation Method for Post-Stroke Dysphagia	RCT 120	^65.32 ±14.85	Dysphagia	^8.94±3.62 days	4 weeks	Yamen, Fengchi, Jingjiuji, Lianquan, Baihui, Zhaohai	SSA VFSS MBI SW - AL - QOL	NA	NA	NA
Chu	2017	Effects of GAO's neck acupuncture on swallowing function and quality of life in patients with post-stroke pseudobulbar palsy	Quasi-RCT 100	^67±11	Dysphagia	acu: 41.1±38.6 days	8 weeks	Fengchi, Yiming, Gongxue, Zhiqiang, Tunyan, Fayin, Lianquan, exteriorJinjin, exteriorYuye	RSST SSA SWAL - QOL WDT	3	NA	NA
Study Year	Title	Study Design	Sample Size	Comparison	Treatment	Outcome Measures						
------------	---	--------------	-------------	------------	-----------	------------------						
Fan 2007[28]	Clinical Observations on Acupuncture Treatment of Post - Stroke Dysphagia	RCT	60	NA	Dysphagia	NA						
						Tiantu, anteriorLianquan, upperLianquan, Lianquan, Fengchi, Wangu, Lieque, Fuliu, Zusanli, Fenglong						
Fu 2008[19]	Efficacy and safety of Deanxit combined with Wuling Capsule in treating post - stroke depression: a randomized controlled trial	RCT	120	45 - 78	Depression	NA						
						Wuling Capsule: Wulingjun						
Guan 2009[37]	Therapeutic effect of acupuncture plus deglutition training on patients with dysphagia caused by brainstem stroke	Quasi-RCT	60	^6.5	Dysphagia	^23.25±6.07						
				59.3±7.1		25.11±5.54						
						days						
Jia 2017[38]	Spasmodic hemiplegia after stroke treated with scalp acupuncture, music	RCT	76	^61±11	Motor function	2 week - 3 months						
				58±12		4 weeks						
						anterior Shencong, Xuanli, Baihui, Qubin						

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Li 2012^[9]	Observation on therapeutic effect of acupuncture combined with medicine on mild cognition disorders in patients with post-stroke	RCT	100	40 - 79	Cognitive disorder	3 months	Baihui, Shenting, Qucha, Shencong, Fengchi, Neiguan, Hegu, Zusanli, Sanyinjiao, Daxi, Zhaohai	Clinical effective rate MMSE HDS - R BI	6	NA	NA
Li 2015^[20]	83 cases of depression due to stroke treated with therapy of integrated traditional Chinese and western medicine	RCT	166	30 - 75	Depression	1 to 24 months	Modified Xiaoyansan:Baishao, Danggui, Chuanxiong, Chaihu, Yujin, Taoren, Honghua, Zhigancao	Clinical effective rate HAMA HAMD	NA	NA	NA
Li 2018^[39]	Clinical observation on auricular magnetotherapy for convalescent stroke patients with depression	RCT	93	^ 59±11 * 59±12	Depression	4 weeks	Gan, Xin, Pi, Shen, Shenmen, Pizhixia	Clinical effective rate HAMD SS - QOL	10	4 weeks	yes, outcome accessors
Li 2019^[29]	Influence of nape acupuncture therapy on swallowing function of patients with cerebral infarction	RCT	80	^ 40 * 40	Dysphagia	^ 61.9±7.9 days *	16.9±7.1	Fengchi, Yiming, Gongxue, Zhiqiang, Tunyan, Lianquan, exteriorJinjin, exteriorYuye	FEES WDT SSA PAS	NA	NA
Study	Title	Study Design	Participants	Dysphagia Duration	Intervention Details	Outcomes	Notes			
Lu 2010 [30]	Therapeutic effects of neuromuscular electrical stimulation and electroacupuncture for dysphagia post stroke	RCT 45	59.87±7.94	9 days	Lianquan, Hegu, Neiguan, Zusanli, Zhaohai	WDT VFSS	NA			
Ma 2014 [40]	Post-stroke dysphagia treated with acupoint injection combined with neural electrical stimulation	RCT 183	50.6±11.1	4 days	Tunyanxue	WDT Clinical effective rate	55	yes; outcome assessors, data analysts		
Name	Title	Study Design	n	Age range	Treatment	Comparator	Outcome Measure	Follow-up	Clinical Effective Rate	Clinical Effective Rate Units
------------	--	--------------	----	-----------	--	--	---	-----------	-------------------------	--------------------------------
Magnusson	Sensory stimulation with acupuncture promotes normalization of the	RCT	78	54 - 89	≤10 days	11 weeks	upperJuxu, Zusanli, Yanglingquan, Yuji, Chize, Waiguan, Baihui, Yinshi, Zhongfu, Taichong	30 died	1 year	NA
1994[41]	dynamic control of posture after hemispheric stroke						Barthe Index			
Nie	Post-stroke depression treated with acupuncture and moxibustion: an	RCT	123	51 - 81	NA	4 weeks	Acupuncture: Hegu, Taichong, Baihui, Yintang Moxibustion: Zhongwan, Xiawan, Guanyuan, Qihai	NA	NA	NA
2013[25]	evaluation of therapeutic effect and safety						Clinical effective rate			
Wang	The study of acupuncture and swallowing training in the treatment of	RCT	100	^ 50 * 50	28 days		Fengchi, Wangu, Tianzhu, Lianquan, interiorDaying, Fenglong, Jinjin, Yuye WDT Fujishima Ichiro swallowing effect score	NA	NA	NA
2016[31]	dysphagia after stroke						Clinical effective rate			
Study	Title	Type of Trial	Sample Size	Age Range	Problem Duration	Intervention Duration	Location of Acupuncture Points	Outcome Measures		
-------	-------	---------------	-------------	------------	------------------	----------------------	--------------------------------	------------------		
Wang 2019[42]	Effect of Tui Na on upper limb spasticity after stroke: a randomized clinical trial	RCT	444	18 - 75	1 to 3 months (270) 4 to 6 months (101) 7 to 12 months (67)	4 weeks	Jianyu, Jianliao, Quchi, Neiguan, Waiguan, Shousanli, Yangchi, Hegu	Mini - Mental Status Examination, MAS, FMA, MBI		
Wang 2019a[10]	Effects of acupuncture treatment on lower limb spasticity in patients following hemorrhagic stroke: A pilot study	RCT	59	40 - 70	30 to 90 days	4 weeks	Baihui, Taiyang, Yinmen, Fuxi, Xiyangguan, Yanglingquan, Zusani, Tiaokou, Taichong	MAS, FMA, BI, MEP, IEMG		
Wei 2015[11]	Clinical study of acupuncture combined with rehabilitation training in the treatment of dysphagia after stroke	RCT	100	^61.50 ±4.20 62.50 ±4.90	NA	2 weeks	Lianquan, Tiantu, Jinjin, Yuye, Hegu, Neiguan, Zusani	MBI, FIM		
Wei 2016[43]	Synergistic effect of moxibustion and rehabilitation training in functional recovery of	RCT	84	^53.15 ±14.2 3	^61.61±8.75 days	4 weeks	Zhongdi, Jiansui, Quchi, Shousanli, Waiguan, Hegu, Yanglingquan, Zusani, Xuanzhong, Sanyinjiao	Brunnsstorm, MAS, CSI, FMA		

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Study Source	Study Design	Participants	Intervention	Primary Outcome	Secondary Outcome	Comparator	Additional Details														
Wong 1999[44]	RCT	118 patients	Electrical acupuncture	Motor function problem	10 - 14 days from onset	Shousanli, Hegu, Futu, Xuehai, Yanglingquan, Taichong	NA NA														
Wu 2015[26]	RCT	60 patients	Kaiyuditan Decoction	Depression	4 weeks	Banxia, Chenpi, Zhizi, Zhurui, Duananxing, Shichangpu, Yujin, Fuling, Zhishi, Qingpi, Houpu, Chaihu, Foshou, Zisu, Chuanxiong, Chaobaizhu, Shengjiang, Gancao	CES - D10 NA NA														
Wu 2015a[16]	Effect of Acupuncture Combined Physical Training and Relearning on Stroke Rehabilitation: a Multi-center Randomized Controlled Clinical Study	RCT	364	*(Centre 1 : 64.92 ±11.51)	*(Centre 2 : 63.56 ±13.25)	*(Centre 3 : 60.30 ±9.29)	*(Centre 4 : 66.00 ±10.64)	*(Centre 1 : 25.80 ±1.15)	*(Centre 2 : 24.53 ±1.03)	*(Centre 3 : 18.08 ±0.73)	*(Centre 4 : 17.45 ±0.69)	*(Centre 1 : 25.69 ±0.87)	*(Centre 2 : 26.75 ±0.44)	*(Centre 3 : 25.60 ±0.74)	*(Centre 4 : 26.00 ±0.85)	4 weeks	Yintang, Baihui, Sishencong, Fengchi, Jianyu, Quchi, Waiguan, Hegu, Huantiao, Zusani, Xuanzhong, Sanyinjiao, Taichong	Fugl-Meyer Score FIM Score	NA	5 months	NA
Xia 2015[12]	Clinical observation of acupuncture plus rehabilitation training for post-stroke depression	RCT 108	67±8	Depresion^40.2±13.7 days *	8 weeks	Yintang, Baihui, Sishencong, Zusani, Sanyinjiao, Taichong, Neiguan, Shuigou, ADL, HAMD, FMA, MBI	10	3 months	NA												
Author	Description	Design	N	Time	Diagnosis	Outcomes	Acupoints	Time	Other Details												
--------	-------------	--------	---	------	-----------	---------	----------	------	--------------												
Xia 2016^[45]	Does the addition of specific acupuncture to standard swallowing training improve outcomes in patients with dysphagia after stroke? a randomized controlled trial	RCT	124	40 - 80	Dysphagia	38.9±11.6 days	Jiquan, Chize, Weizhong, Shenting	SSA	4 A(2)	NA yes, evaluators											
Xia 2016^[13]	Post-stroke dysphagia treated with acupuncture of meridian differentiation: a randomized controlled trial	RCT	116	^67±9 * 66±10	Dysphagia	4 - 12 days	Fengchi, Jiaji, Lianquan, Jijianquan, Baihui, Lique, Fenglong, Sanyinjiao, Jijin, Yuye, Taixi, Zhaohai	SSA	4 A(2)	NA yes, evaluators											
Xu 2007^[5]	Observation on effect of Wuling Capsule in treating poststroke depression	RCT	108	44 - 79	Depression	NA	Wuling Capsule: Wulingjun	SSA	14	3 months yes; outcome assessors											
Author	Title	Study Design	Sample Size	Follow-up	Endpoint	Intervention	Outcome Measures	Effective Rate	Safety	Outcome Assessors											
---------	--	--------------	-------------	------------	----------	-------------	-----------------	----------------	--------	------------------											
Yan 2016[46]	Therapeutic observation of thunder - fire moxibustion at Dazhui (GV14) and Shenshu (BL23) plus cognitive training for mild cognitive impairment due to ischemic cerebral stroke	RCT	60	8 weeks	Dazhui, Shenshu	Clinical effective rate MoCA MMSE ADL WMS	NA NA NA	NA NA NA													
Yang 2015a[27]	Clinical observation on the treatment with acupuncture combined with medicine on 33 cases with depression after apoplexy	RCT	63	6 weeks	Shenmen, Naogan, Xin, Gan, Shen	Clinical effective rate HAMD	NA NA NA	NA NA NA													
Zeng 2016[47]	Clinical study on acupuncture for ambulation disturbance in subacute stage of cerebral stroke	RCT	100	8 weeks	Jianyu, Naohui, Shousanli, Waiguan, Zhongzhu, Chengfu, Yinmen, Weizhong, Yanglingquan, Chengjin	NIHSS FMA Bathel Score FAC Safety	NA NA NA	NA NA NA													
Zhang 2009[17]	Effect of heat - reinforcing needling combined with rehabilitation training on	RCT	80	3 weeks	Jianyu, Quchi, Hegu, Yanglingquan, Yinlingquan, Zusanli, Sanyinjiao	Fugl-Meyer effective rate	NA NA yes; outcome assessors	NA NA NA													
Study	Description	Design	N	Baseline	Intervention	Follow-Up	Outcomes	Acupuncture Points	Additional Notes												
----------------	--	--------	-----	----------	--	-----------	---------------------------	---	--												
Zhang 2014[48]	Observation on efficacy of acupuncture combined with rehabilitation training for post-stroke balance disorders	Quasi-RCT	59	30-75	Balance disorder	3 to 11 months	Motor function problem	Dazhu, Dushu, Ganshu, Shenshu, Dachangshu, Guanyuanshu, Futonggu, Huangshu, Qixue, Liangmen, Tianshu, Daju, Fushe, Daheng, Fuai	Berg score ADL												
Zhang 2017[49]	Neuronavigation - Assisted Aspiration and Electro - Acupuncture for Hypertensive Putaminal Hemorrhage: A Suitable Technique on Hemiplegia Rehabilitation	RCT	240	57.2±9.6	Motor function problem	8 weeks	FMA - UL, FMA - LL, MAS, BI	Jiquan, Quchi, Shousanli, Hegu, Waiguan, Jianyu, Jianliao, Binao, Yanglingquan, Zusanli, Baihui, Dazhui, Chengshan, Sanyinjiao	NA												
Zhao 2009[18]	Effect of acupuncture treatment on spastic states of stroke patients	RCT	131	58.50±11.6	Motor function problem	30 days	MAS, FMA, BI, EMG	Neiguan, Sanyinjiao, Shuigou, Jiquan, Chize, Weizhong, Fengchi	NA yes; physician examining the patients and carrying												
Author	Study Title	Design	Sample Size	Intervention	Outcome Measures	Comparison	Measurement														
--------------	---	--------	-------------	---	--	------------	-------------														
Zheng 2018	A clinical study on acupuncture in combination with routine rehabilitation therapy for early pain recovery of post-stroke shoulder-hand syndrome	RCT	178	Motor function problem	7 days - 3 months	Jianyu, Jianliao, Jianzhen, Jianneiling, Quchi, Shousanli, Hegu, Waiguan	NA	NA													
Zhong 2002	Effects of acupuncture and balance facilitation of muscular tension on the early rehabilitation of patients with stroke and hemiplegia	RCT	96	Balance disorder	26 - 28 days	Tianfu, Cize, Shaohai, Quze, Hongzhong, Ximen, Neiguan, Yuji, Shenmen, Tongli, Huantiao, Futu, Fengshi, Zusanli, Yanglingquan, Weizhong, Chengshan, Jiexi, Kunlun	FMA ADL	NA													
Zhou 2013	Clinical research on post-stroke dysphagia treated with nape acupuncture and rehabilitation training	Quasi-RCT	80	Dysphagia	4 weeks	Fengchi, Yiming, Gongxue, Zhiqiang, Tunyan, Lianquan, exteriorJinjin, exteriorYuye	WDT SSA VFSS	NA													
Study	Title	Design	N	Mean and SD/Range	4 weeks	Modified Ashworth Scale	Composite spasticity scale	Fugl-Meyer assessment scale	Barthel Index	IEMG RMS	FMA	ADL	WHOQOL - BREF	Duration	Outcome						
--------	---	--------	---	-------------------	---------	-------------------------	---------------------------	-----------------------------	----------------	---------	-----	-----	----------------	----------	---------						
Zhu 2014[51]	Clinical efficacy and sEMG analysis of a new traditional Chinese medicine therapy in the treatment of spasticity following apoplectic hemiparesis	RCT	60	40 - 80 ^ 63.17 ± 9.50 * 65.53 ± 8.64	4 weeks	7.86 ± 6.62 days * 8.46 ± 5.14 days							1 month								
Zhang 2020[52]	Clinical effect of traditional Chinese medicine acupuncture and moxibustion combined with rehabilitation training in the treatment of hemiplegia after cerebral apoplex	RCT	60	^ 63.89 ± 13.2 5 * 64.15 ± 13.4 7	4 weeks	Jianliao, Binao, Liangqiu, Fengshi, Tianjing, Xuehai, Yanglingquan, Yinlingquan, Sanyinjiao	NIHSS MMT FMA ADL WHOQOL - BREF		NA	NA			1 month								
Study	Intervention	Design	Sample Size	Primary Outcome	Secondary Outcome	Treatment	TCM Components														
-------	--------------	--------	-------------	-----------------	-------------------	----------	----------------														
Teng 2019^[21]	Effect of Peiyuan Xiaoshuan Jieyu prescription and brain protein hydrolysate on the levels of monoamine neurotransmitters in cerebrospinal fluid and serum 5-hydroxytryptamine, brain-derived neurotrophic factor and apolipoprotein A1 in post-stroke depression patients with kidney deficiency and liver stagnation type	RCT	94	Depresion: *62.4 ±5.8*⁶ months	Peiyuanxiaoshuanjieyu Decoction: *Huangqi, Baishu, Tianma, Gouqizi, Shudihuang, Baishao, Suanzaoren, Fuling, Zhimu, Xiangfu, Chaihu, Yujin*	TCM	*HAMD*														
Yan 2019^[6]	Effect of western medicine combined with Chaihu plus Longgu Muli decoction in the treatment of patients with post-stroke depression	RCT	68	Depresion (Dependency): *60.40 ±3.42* days	Chaihujialonggumuli decoction: *Muli, Huangqi, Longgu, Dangcen, Chaihu, Guizhi, Fuling, Xiangfu, Zhibanxia, Zhizi, Dahuang, Gancao, Dazao*	TCM	*HAMD, NIHSS, Barthel index, ADL*														
Author(s)	Title	Method	Sample Size	Depressed Duration	Treatment	Treatment Details	End Points	Results													
----------	-------	--------	-------------	--------------------	-----------	-------------------	------------	---------													
Fu et al. 2019	Effect of Acupuncture plus Medication on Electroencephalogram and the Levels of Serum NE, NSE, IL-6 and TNF-α in Post-stroke Depression Patients	RCT	96	62±8	Depressed	Baihui, Shuigou, Yintang, Neiguan, Sanyinjiao	HAMD Electroencephalography	NA													
Ye et al. 2020	Clinical Study on Tongluo Ditan Tang Combined with Rehabilitation Training for Shoulder-Hand Syndrome After Stroke	RCT	95	58.89±9.66	Motor function (dependency)	Tongluoditan Decoction: Huangqi, Baishao, Yanhusuo, Banxia, Fuling, Guizhi, Chuanxiong, Yujin, Qianghuo, Tiannanxing, Jiangcan, Dilong, Gancao	SHS TCM Clinical effective rate	NA													
Jiang et al. 2020	Clinical Study of Dysphasia After Cerebral Stroke Mainly Treated with Three Tongue Needle Therapy	RCT	130	60±10	Dysphasia	upperLianquan	HAMA HAMDS EMG	^3 * 7													
Author	Title	Study Design	Sample size	Intervention	Outcome Measures	Effect Size	p Value	Clinical Efficacy Rate													
--------	--	--------------	-------------	--	------------------	-------------	---------	-----------------------													
Li	The therapeutic Effect of Acupuncture Combined with rehabilitation Training on Shoulder-hand Syndrome after Stroke: 55 Cases	RCT	110	Motor function problem	1 month	Jianyu, Jianliao, Quchi, Waiguan, Hegu	NA	NA													
Wang	Clinical Observation of Gualou Guizhi Tang for Lower Limb Spasm After Stroke and Its Effect on Motor Function of Lower Limbs	RCT	203	Motor Function	4 weeks	Gualouguizhi Decoction: Gualougen, Guizhi, Shengjiang, Bai shao, Dazao, Gancao	TCM	0													
Wang	Clinical Study on Treatment of Depression After Stroke with Combination of Chinese and Western Medicine	RCT	76	Depression (Dependenc)	4 weeks	Shuganyishentongluo Decoction: Huangqi, Chaihu, Zhike, Shichangpu, Baishu, Yujin, Fuling, Danggui, Suanzaoren, Gancao	HAMD	0													
Wang	Clinical efficacy of qi-tonifying and stasis-eliminating therapy in treatment of ischemic stroke patients in	RCT	125	Dependency >= 14days	4 weeks	Qi-tonifying and stasis-eliminating decoction: Huangqi, Dilon, Chishao, Danggui	NIHSS	0													
Study	Treatment	Study Design	Mean	SD	Outcome	Comparator	Effect Measure	N/A	N/A	N/A											
-------	-----------	--------------	------	----	---------	-------------	----------------	-----	-----	-----											
Han 2018	Chaihu plus Longgu Muli Decoction combined with Fluoxetine in the Treatment of Post Stroke Depression (Ganyu Tanrao) Randomized Parallel Control Study	Quasi-RCT	62.25±7.28		Depression	4 weeks	Chaihu plus Longgu Muli decoction: Muli, Longgu, Danggui, Huangqi, Dangshen, Chaihu, Guizhi, Yujin, Dilong, Dazao, Banxia, Fuling, Gancao	HAMD	MESSS	GQOLI-74	0	NA	NA								
Jia 2017a	The effect of Chinese drug for tonify qi and activate the blood on dyskinesia at recovery period after ischemic stroke with syndrome of qi deficiency and blood stasis and its effect on S100β and Hcy	RCT	64.90±5.34		Dysphagia	8 weeks	modified Buyanghuanwu Decoction: Huangqi, Dangcan, Chuanxiuxi, Dilong, Sangjisheng, Jixueteng, Guizhi, Danggui, Chishao, Chuanxiong, Duzhong, Shenjincao, Gancao	TCM	FMA	BI	0	NA	NA								
Xiang 2016	Therapeutic Observation of Low-frequency Electrical Stimulation plus Acupuncture for Deglutition Disorders	RCT	53±8		Dysphagia	5.7 weeks	Neiguan, Shuigou, Sanyinjiao, Fengchi, Wangu, Yifeng	WDT	Clinical effective rate	0	NA	NA									
Study	Description	Design	n	Duration	Intervention	Primary Outcomes	Improvement	4 weeks	Comparison												
-------	--	--------	---	----------	--	------------------	------------	---------	------------												
Xu	Efficacy assessment of treating post-stroke shoulder-hand syndrome patients of yin deficiency yang hyperactivity with blood stasis stagnation collaterals syndrome by yishen tongluo decoction	RCT	60	32.21±7.01 days	Yishenjiejing decoction: Duzhong, Tianma, Sanqi, Shanyurou, Quanxie, Baishao	Clinical effective rate	32.21±7.01 days	64.23±7.66	31.18±7.85												
Wan	Post-stroke shoulder-hand syndrome treated with acupuncture and rehabilitation: a randomized controlled trial	RCT	120	38.4±9.0 days	Taiyuan, Zusanli, Xuanzhong, Waiguan, Shousanli, Quchi, Jianpi	TCM FMA	38.4±9.0 days	60±6	53±6												
Xu	Clinical Observation of Jin’s Three-needle Acupuncture plus Rehabilitation for Post-stroke Spastic Hemiplegia	RCT	76	50.39±2.52 days	Niesanzhen, Jiquan, Chize, Neiguan, Shuqi, Yinlingquan, Sanjinjiao	Clinical effective rate	50.39±2.52 days	60±10	65±6												

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on the supplemental material which has been supplied by the author(s).
Study	Title	Design	Sample Size	Efficacy	Intervention	Outcome Measures	Comparison	Funding	Study Quality
Chen 2016 [58]	Efficacy Study of Acupuncture and Moxibustion on Dysphagia after Stroke	RCT	60	22.63 days	4 weeks	Fengchi, Wangu, Tianzhu, Lianquan, interiorDaying, Jinjin, Yuye	WDT PRO	0	NA NA
Tang 2016 [1]	Analysis of five Buyanghuanwu decoction combined with western medicine treatment of stroke sequela	Quasi-RCT	80	4.3 months	4.3 weeks	Buyanghuanwu Decoction: Huangqi, Chuanxiong, Dangguiwei, Taoren, Dilong, Honghua	NIHSS FMA BI	0	NA NA
List of included studies’ references

1. Tang D, Tang Y. Analysis of five Buyanghuanwu decoction combined with western medicine treatment of stroke sequela. Cardiovascular Disease Journal of Integrated Traditional Chinese and Western Medicine. 2016;14:139-140.
2. Wang C. Clinical efficacy of qi-tonifying and stasis-eliminating therapy in treatment of ischemic stroke patients in recovery period and its influence on levels of hs-CRP, Fg and HCY. Journal of Clinical Medicine in Practice. 2016;20:28-31.
3. Wang Y. Clinical Study on Treatment of Depression After Stroke with Combination of Chinese and Western Medicine. Acta Chinese Medicine. 2017;32:1519-1522.
4. Wang J, Xing Y and Jiang S. Clinical observation of Gualou Guizhi Tang for lower limb spasm after stroke and its effect on motor function of lower limbs. Journal of New Chinese Medicine. 2020;52:28-31.
5. Xu B, Zhou WY and Zhang SJ. Observation on effect of wuling capsule in treating poststroke depression. Chinese journal of integrated traditional and western medicine. 2007;27:640-642.
6. Yan Q, Yang G. Effect of western medicine combined with Chaihu plus Longgu Muli decoction in the treatment of patients with post-stroke depression. Clinical Research and Practice. 2019;36:152-154.
7. Ye S, Yang G, Jin J, et al. Clinical Study on Tongluo Ditan Tang Combined with Rehabilitation Training for Shoulder-Hand Syndrome After Stroke. Journal of New Chinese Medicine. 2020;52:70-72.
8. Zhong CM, Liu QF, Jin HY, et al. Effects of acupuncture and balance facilitation of muscular tension on the early rehabilitation of patients with stroke and hemiplegia. Chinese Journal of Clinical Rehabilitation. 2002;6:3612-3613.
9. Li W, Ceng YH and Yu XG. Observation on therapeutic effect of acupuncture combined with medicine on mild cognition disorders in patients with post-stroke. Chinese acupuncture & moxibustion. 2012;32:3-7.
10. Wang HQ, Hou M, Bao CL, et al. Effects of acupuncture treatment on lower limb spasticity in patients following hemorrhagic stroke: A pilot study. Eur Neurol. 2019;81:5-12.
11. Wei HT, Peng T, Yang D, et al. Clinical study of acupuncture combined with rehabilitation training in the treatment of dysphagia after stroke. Journal emergency in traditional chinese medicine. 2015;24:1808-1810.
12. Xia JH, Xu CE, Xia WG, et al. Clinical observation of acupuncture plus rehabilitation training for post-stroke depression. Shanghai journal of
13. Xia W, Zheng C, Xia J, et al. Post-stroke dysphagia treated with acupuncture of meridian differentiation: A randomized controlled trial. Chinese acupuncture & moxibustion. 2016;36:673-678.

14. Cheng XK, Wang ZM, Sun L, et al. Post-stroke hand dysfunction treated with acupuncture at zhongzhu (Te 3) and waiguan (Te 5). Chinese acupuncture & moxibustion. 2011;31:117-120.

15. Li Y, Li L. The therapeutic effect of acupuncture combined with rehabilitation training on shoulder-hand syndrome after stroke: 55 cases. Chinese Journal of Ethnomedicine and Ethnopharmacy. 2019;28:96-98.

16. Wu XL, Mi ZP, Wang HS, et al. Effect of acupuncture combined physical training and relearning on stroke rehabilitation: A multi-center randomized controlled clinical study. Chinese journal of integrated traditional and Western medicine. 2015;35:549-554.

17. Zhang NX, Liu GZ, Huang TQ, et al. Effect of heat-reinforcing needling combined with rehabilitation training on the motor function of ischemic stroke patients. Acupuncture research. 2009;34:406-409.

18. Zhao JG, Cao CH, Liu CZ, et al. Effect of acupuncture treatment on spastic states of stroke patients. J Neurol Sci. 2009;276:143-147.

19. Fu JL, Zhao YW and Sun XJ. Efficacy and safety of deanxit combined with wuling capsule in treating post-stroke depression: A randomized controlled trial. Journal of Chinese integrative medicine. 2008;6:258-261.

20. Li TG. 85 cases of depression due to stroke treated with therapy of integrated traditional Chinese and western medicine. Henan traditional Chinese medicine. 2015;35:535-536.

21. Teng X, Gao L and Zhou B. Effect of Peiyuan Xiaoshuan Jieyu prescription and brain protein hydrolysate on the levels of monoamine neurotransmitters in cerebrospinal fluid and serum 5-hydroxytryptamine, brain-derived neurotrophic factor and apolipoprotein A1 in post-stroke depression patients with kidney deficiency and liver stagnation type. Heibei J TCM. 2019;41:397-401.

22. Yan Q, Yang G. Effect of western medicine combined with Chaihu plus Longgu Muli decoction in the treatment of patients with post-stroke depression. Clinical Research and Practice. 2019;36:152-154.

23. Chen A, Gao Y, Wang G, et al. Effect of early acupuncture intervention on post-stroke depression: A randomized controlled trial. Chinese acupuncture & moxibustion. 2018;38:1141-1144.

24. Fu W. Effect of Acupuncture plus Medication on Electroencephalogram and the Levels of Serum NE, NSE, IL-6 and TNF-α in Post-stroke Depression Patients. Shanghai J Acu-mox. 2019;38:1214-1218.
25. Nie RR, Huang CH. Post-stroke depression treated with acupuncture and moxibustion: An evaluation of therapeutic effect and safety. *Chinese acupuncture & moxibustion*. 2013;33:490-494.

26. Wu JR, Yang JC and Nie J. 30 case of depression of post stroke with treatment kaiyu ditan decoction. *Journal of jiangxi university of traditional chinese medicine*. 2015;27:50-54.

27. Yang J, Wang F and Xiao W-H. Clinical observation on the treatment with acupuncture combined with medicine on 33 cases with depression after apoplexy. *Journal emergency in traditional chinese medicine*. 2015;24:1227-1228.

28. Fan CF, Jiang HY and Wu LZ. Clinical observations on acupuncture treatment of post-stroke dysphagia. *Journal of Acupuncture and Tuina Science*. 2007;5:297-300.

29. Li XZ, Gu BL, Zhou H, et al. Influence of nape acupuncture therapy on swallowing function of patients with cerebral infarction. *Medical Journal of Chinese People's Liberation Army* 2019;44:322-326.

30. Lu M, Meng L and Peng J. Therapeutic effects of neuromuscular electrical stimulation and electroacupuncture for dysphagia post stroke. *Chinese journal of rehabilitation medicine*. 2010;25:135-138.

31. Wang ZJ, Zhang Y, Ji QC, et al. The study of acupuncture and swallowing training in the treatment of dysphagia after stroke. *China and foreign medical treatment*. 2016;36:174-176.

32. Xiang L, Liu X, Xu Z. Therapeutic Observation of Low-frequency Electrical Stimulation plus Acupuncture for Deglutition Disorders After Cerebral Stroke. *Shanghai J Acu-mox*. 2016;35:1417-1419.

33. Zhou XM, Li XZ and Gu BL. Clinical research on post-stroke dysphagia treated with nape acupuncture and rehabilitation training. *Chinese acupuncture & moxibustion*. 2013;33:587-590.

34. Chu J, Liu X, Chen F, et al. Effects of gao's neck acupuncture on swallowing function and quality of life in patients with post-stroke pseudobulbar palsy: A randomized controlled trial. *Chinese acupuncture & moxibustion*. 2017;37:691-695.

35. Bai YL, Li L, Hu YS, et al. Prospective, randomized controlled trial of physiotherapy and acupuncture on motor function and daily activities in patients with ischemic stroke. *J Altern Complement Med*. 2013;19(8):684-689.

36. Xia W, Zheng C, Zhu S, et al. Combination of feeding-swallowing training and acupuncture: An effective rehabilitation method for dysphagia post strok. *Acta Med Univ Sci Technol Huazhong*. 2010;39:614-619.

37. Guan CX, Guo GH and Yu L. Therapeutic effect of acupuncture plus deglutition training on patients with dysphagia caused by brainstem
stroke. *Journal of medical forum*. 2009;30:19-23.

38. Jia C, Zhang H, Ni G, et al. Spasmodic hemiplegia after stroke treated with scalp acupuncture, music therapy and rehabilitation: A randomized controlled trial. *Chinese acupuncture & moxibustion*. 2017;37:1271-1275.

39. Li Z, Liu F, Luo B, et al. Clinical observation on auricular magnetotherapy for convalescent stroke patients with depression. *Chinese acupuncture & moxibustion*. 2018;38:942-947.

40. Ma FX, Cao GP and Li WL. Post-stroke dysphagia treated with acupoint injection combined with neural electrical stimulation. *Chinese acupuncture & moxibustion*. 2014;34:1169-1173.

41. Magnusson M, Johansson K and Johansson BB. Sensory stimulation promotes normalization of postural control after stroke. *Stroke*. 1994;25:1176-1180.

42. Wang M, Liu S, Peng Z, et al. Effect of Tui Na on upper limb spasticity after stroke: a randomized clinical trial. *Ann Clin Transl Neurol*. 2019;6(4):778-787.

43. Wei YX, Zhao X and Zhang BC. Synergistic effect of moxibustion and rehabilitation training in functional recovery of post-stroke spastic hemiplegia. *Complement Ther Med*. 2016;26:55-60.

44. Wong AM, Su TY, Tang FT, et al. Clinical trial of electrical acupuncture on hemiplegic stroke patients. *Am J Phys Med Rehabil*. 1999;78(2):117-122.

45. Xia W, Zheng C, Zhu S, et al. Does the addition of specific acupuncture to standard swallowing training improve outcomes in patients with dysphagia after stroke? A randomized controlled trial. *Clin Rehabil*. 2016;30(3):237-246.

46. Yan HD, Yang N, Zhao MH, et al. Therapeutic Observation of Thunder-fire Moxibustion at Dazhui (GV14) and Shenshu (BL23) plus Cognitive Training for ;Mild Cognitive Impairment Due to Ischemic Cerebral Stroke. *Shanghai Journal of Acupuncture and Moxibustion*. 2016;12:1410-1413.

47. Zeng YH, Bao Y, Zhu M, et al. Clinical study on acupuncture for ambulation disturbance in subacute stage of cerebral stroke. *Shanghai journal of acupuncture and moxibustion*. 2016;35:262-265.

48. Zhang HY, Li PF. Observation on efficacy of acupuncture combined with rehabilitation training for post-stroke balance disorders. *World Journal of Acupuncture - Moxibustion*. 2014;24:25-29.

49. Zhang Y, Al-Aref R, Fu H, et al. Neuronavigation-Assisted Aspiration and Electro-Acupuncture for Hypertensive Putaminal Hemorrhage: A
Suitable Technique on Hemiplegia Rehabilitation. *Turk Neurosurg*. 2017;27(4):500-508.

50. Zheng J, Wu Q, Wang L, et al. A clinical study on acupuncture in combination with routine rehabilitation therapy for early pain recovery of post-stroke shoulder-hand syndrome. *Exp Ther Med*. 2018;15:2049-2053.

51. Zhu W, Zheng G, Gu Y, et al. Clinical efficacy and sEMG analysis of a new traditional Chinese medicine therapy in the treatment of spasticity following apoplectic hemiparesis. *Acta Neurol Belg*. 2014;114(2):125-129.

52. Zhang J, Zheng W. Clinical effect of traditional Chinese medicine acupuncture and moxibustion combined with rehabilitation training in the treatment of hemiplegia after cerebral apoplexy. *China Modern Medicine*. 2020;27:155-158.

53. Jiang Y, Lin L, You Y, et al. Clinical Study of Dysphasia After Cerebral Stroke Mainly Treated with Three Tongue Needle Therapy. *Shanghai J Acu-mox*. 2020;39:530-535.

54. Jia L, Zhang J, Wang G, et al. The effect of Chinese drug for tonify qi and activate the blood on dyskinesia at recovery period after ischemic stroke with syndrome of qi deficiency and blood stasis and its effect on S100βand Hcy. *Modern Journal of Integrated Traditional Chinese and Western Medicine*. 2017;32:3551-3554.

55. Xu X, Ye S. Efficacy assessment of treating post-stroke shoulder-hand syndrome patients of yin deficiency yang hyperactivity with blood stasis stagnation collaterals syndrome by yishen tongluo decoction. *Chinese journal of integrated traditional and Western medicine*. 2014;34:1069-1073.

56. Wan WR, Wang TL, Cheng SL, et al. Post-stroke shoulder-hand syndrome treated with acupuncture and rehabilitation: a randomized controlled trial. *Chinese acupuncture & moxibustion*. 2013;33:970-974.

57. Xu S, Gu J. Clinical Observation of Jin’s Three-needle Acupuncture plus Rehabilitation for Post-stroke Spastic Hemiplegia. *Shanghai J Acu-mox*. 2016;35:153-156.

58. Chen L, Zhang G. Efficacy Study of Acupuncture and Moxibustion on Dysphagia after Stroke. *Journal of Emergency in Traditional Chinese Medicine*. 2016;25:1111-1113.