Application of Particle Swarm Optimization Algorithm in Power Transformer Fault Diagnosis

Zhong Cao¹, Chen Chen², Yu Chen¹, Lei Song¹, Huirui Zhou³*, Guo Zhao³ and Jiang Guo⁴

¹Yangtze Ecology and Environment Co.Ltd, Wuhan, China
²The Municipal Engineering CO.LTD. of CTCE GROUP, Hefei, China
³School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
⁴School of Power and Mechanical Engineering, Wuhan University, Wuhan, China

*Corresponding author email: 1838852655@qq.com

Abstract. Fault diagnosis of power transformer is indispensable for power system reliability. To improve the function of fault diagnosis and overcome the “code absence” problem of the traditional ratio method, this paper presents a novel approach for oil chromatographic fault diagnosis based on particle swarm optimization algorithm. The PSO algorithm is used to obtain the optimal three-ratio value that can best represent various fault types of power transformers, and then the change trend of the characteristic gas of the power transformer is analyzed to predict the possible faults. Combining the stereogram method and the optimal three-ratio method, A comprehensive fault diagnosis method for based on oil chromatographic distraction is obtained. In the end, simulation of the actual oil chromatographic data of the transformer verifies the accuracy and effectiveness of the proposed method.

Keywords: Power transformer; Fault diagnosis; PSO; Oil chromatographic analysis.

1. Introduction
The stable operation of the power transformer is indispensable for the entire power system. When the transformer equipment fails or is abnormal, it is necessary to discover the failure in time and determine the location and cause of the failure.

In engineering practice, an effective method used to determine whether a transformer fault occurs is dissolved gas analysis (DGA) [3-5]. The three-ratio is a widely used DGA method that uses the generational rate of gas to determine fault types. However, the ratio method has some limitations, such as codes absence, inaccurate diagnosis and lack of formulation. therefore, artificial intelligence technologies such as support vector machines [6-8], fuzzy clustering [9,10], neural network algorithms [11], and particle swarm optimization [12-14] are used to adjust parameters and further improve the performance of fault diagnosis capabilities in power transformer. The principle of particle swarm algorithm is relatively simple, few parameters to be set, and easy to achieve through programming. Therefore, this paper uses particle swarm optimization algorithm to calculate the optimal three-ratio of transformer faults, and finally obtains a comprehensive fault diagnosis model of transformer based on PSO algorithm.
2. Basic PSO Algorithm
Set a swarm composed of \(n \) particles in D-dimensional space. The position and velocity of the particle \(i \) in D-dimensional space is \(x_i \) and \(v_i \).

\[
x_i = (x_{i1}, \ldots, x_{id}, \ldots, x_{iD}) \quad 1 \leq i \leq n, 1 \leq d \leq D
\]

\[
v_i = (v_{i1}, \ldots, v_{id}, \ldots, v_{iD}) \quad 1 \leq i \leq n, 1 \leq d \leq D
\]

The best position of particle \(i \) in the solution space as \(P_i = (p_{i1}, p_{i2}, \ldots, p_{id}) \), and the optimal position of the particle swarm is \(P_g = (p_{g1}, p_{g2}, \ldots, p_{gd}) \). The evolution equation of the particle swarm:

\[
v_{id}^{k+1} = w v_{id}^{k} + c_1 r_1 (P_{id}^k - x_{id}^k) + c_2 r_2 (P_{gd}^k - x_{id}^k)
\]

\[
x_{id}^{k+1} = x_{id}^{k} + v_{id}^{k+1}
\]

Parameters \(c_1 \) and \(c_2 \) are nonnegative learning factors, \(w \) is inertia weight vector, \(r_1 \) and \(r_2 \) are random variables with the scope of zero to one, \(k \) is the iteration. The range of the \(d \) particle position and velocity are \([\, \text{dMIN}_d, \, \text{dMAX}_d\,]\) and \([\, \text{vMIN}_d, \, \text{vMAX}_d\,]\).

3. Optimal Three-ratio Based on PSO Algorithm
Set the sample as a consisting of 1 dimensional vector \(Y_i \), \(Y = \{Y_i; i=1, 2, \ldots, n\} \), and perform sample \(Y \) according to the fault type \(C = \{C_1, C_2, \ldots, C_m\} \).

\[
Y = \bigcup_{i=1}^{m} C_i
\]

The total inter-class discrete sum:

\[
J_c = \sum_{i=1}^{m} \sum_{Z_k \in C_i} d(Y_i, Z_k)
\]

In the above equation, \(Z_k \) is the center of the \(k \) cluster, \(d(Y_i, Z_k) \) is the distance from the sample to the cluster center, and \(J_c \) is the sum of the distances from all samples to the corresponding cluster center:

\[
d(Y_i, Z_k) = \sqrt{\sum_{j=1}^{n} (Y_{ij} - Z_{kj})^2}
\]

The smaller the \(J_c \) value, the more the corresponding cluster center can represent fault type. The specific process of finding various faults through particle swarm optimization is shown in Figure 1.
4. Comprehensive Diagnostic Method of Oil Chromatography

4.1. Analysis of Gas Change Rate

The generational rate of gas is related to the temperature of fault point and the energy consumption of the fault when a transformer fails. If only the absolute value of the characteristic gas is analyzed, it is difficult to correctly determine the severity of the fault. Therefore, it is necessary to consider the gas production rate of the characteristic gas when analyzing the fault. The average value of the characteristic gas x per operation day is the absolute gas generation rate of the gas $γ_x$:

$$γ_x = \frac{(C_{x2} - C_{x1}) \cdot m}{\Delta t \cdot \rho}$$ \hspace{1cm} (8)

Where C_{x1}, C_{x2} are the concentrations of the gas x measured in the first and second sampling; m is the total oil quantity of the equipment; Δt is the operating time in the sampling; and ρ is the density of the oil.

The alert values of the characteristic gas generation rate are shown in Table 1.

Types	Open Type	Diaphragm Type
THC	6	12
C₂H₂	0.1	0.2
H₂	5	10

Table 1. Alert value for absolute gas generation rate.
The content of various characteristic gases on the n day is predicted by the gas generation rate. The gas content C^n_x of the characteristic gas x on the n day is:

$$C^n_x = C_x + (1 + \gamma_x)^n$$

Where C_x is the last measured concentration of the characteristic gas x in the transformer oil measured.

The content of various characteristic gases can be predicted, and the transformer can be predicted according to the oil chromatography analysis method.

4.2. Oil Chromatography Based on PSO Algorithm

The power transformer fault diagnosis can be combined into four types: medium and low temperature overheating, high temperature overheating, low energy discharge, and high energy discharge. The steps for comprehensive diagnosis of transformer oil chromatography based on the PSO algorithm are as follows:

- **Step 1:** Calculate the characteristic gas dissolution rate in the transformer oil. If it exceeds the value, it means that the transformer is faulty.
- **Step 2:** The PSO algorithm is used to calculate the optimal three ratios of the four types of faults in the transformer.
- **Step 3:** For the analysis of transformer oil chromatography, first use the stereogram method. If the failure cannot be judged due to the "code absence" problem, then use the improved three-ratio method to re-analyze.
- **Step 4:** When the improved three-ratio method cannot judge a fault due to "code absence", the distances of the three three-ratio samples to the various optimal three-ratio values are calculated respectively, and the fault type corresponding to the optimal three-ratio with the smallest distance is selected.
- **Step 5:** Calculate the gas generation rate of the characteristic gas in the oil, analyze the severity of the transformer failure, predict the possible failure of the transformer, and take corresponding protective measures.
- **Step 6:** When the oil chromatogram judges that it is a thermal fault, and the DC resistance of the three-phase winding is unbalanced, it can be judged that the wire cake is broken. If the current of the core ground wire exceeds the standard, or the core-to-earth insulation is reduced, then the core-to-ground fault; if the DC resistance of the winding exceeds the standard, the joint is not well welded and the conductive area is small.

5. Verification

This paper uses collected oil chromatographic data that has proven to be faulty and fully reflects the type of transformer faults, and verifies the accuracy and effectiveness of the proposed method for transformer fault diagnosis through simulation calculations. In the particle swarm optimization algorithm, the inertia weight w is 0.729, the learning factor c_1 and c_2 are set to 1.4962, the number of iterations is 1000, and the number of individuals in the population is 30. The optimal three ratios of the four kinds of faults obtained by the PSO algorithm are shown in Table 2. The results of sexual verification are shown in Table 3.

Fault types	C_2H_2/C_2H_4	C_2H_4/C_2H_6	CH_4/H_2
Low energy discharge	1.055	0.333	6.404
High energy discharge	0.790	0.393	8.1124
Medium and low temperature	0.040	2.587	3.716
overheating			
High temperature overheating	0.011	1.913	5.067
Table 3. Algorithm validation results.

No.	H₂	CH₄	C₂H₆	C₂H₄	C₂H₂	The code of three-ratio	PSO triple ratio	Real Fault
1	58	290	373	149	0	Medium temperature	Medium temperature	Partial iron core heating
2	93	58	37	43	0	None code	Medium temperature	The upper yoke are grounded
3	160	130	96	33	0	Low temperature	Low temperature	Short circuits between some core silicon steel sheets
4	2300	0	5	116	0	Partial discharge	Partial discharge	The capacitor core is loosely rolled, and many steam drums between paper layers.
5	1565	93	47	34	0	None code	Partial discharge	Loose insulation partition between clamp and pressure pole
6	130	270	500	67	3	High temperature	Medium temperature	The positioning pin is not turned over and has a melting point
7	180	180	4	74	3	Arc discharge and overheating	Arc discharge and overheating	Interver short circuit
8	4824	29272	16647	5052	3.5	High temperature	High temperature	Partial short-circuit fault
9	180	175	50	75	4	Low temperature	Low temperature	Poor contact of the tap-changer
10	60	139	430	21	4.6	High temperature	High temperature	Two points of the iron core are grounded to generate circulating currents and cause high temperature heat
11	610	1200	1800	300	6	High temperature	High temperature	Neutral lead has overheating
12	259	863	994	393	6	Medium temperature	Medium temperature	Low temperature bushing conductive rod and nut pad overheating, visible heat traces
13	73	520	1230	140	7	High temperature	High temperature	The iron pallet is short-circuited to the iron core and has a melting point
14	135	466	502	70	9	High temperature	High temperature	High-voltage B-phase tap-changer burned out
15	56	13	2.4	22	22.13	Arc discharge	Arc discharge	W-phase 4-layer enclosures have traces of creepage
16	218	195	217	35	33	Arc discharge	Arc discharge	Obvious discharge marks between the high-voltage and the low-voltage winding
17	500	4400	5590	500	34	High temperature	High temperature	The primary circuit changes the pressure ratio, the joint nut is loose, and the nut and the piece are melted
18	170	24	17	7	54	Low energy discharge	Low energy discharge	High-voltage lead discharges the sleeve conductive tube
19	980	73	12	0	58	Partial discharge	Partial discharge	The bushing is not grounded
20	80	20	20	6	62	Low energy discharge	Low energy discharge	Bare lead discharges to sleeve conductive tube
21	60	40	110	10	70	Arc discharge	Arc discharge	The tap-changer has an arc
22	707	115	55	11	81	Arc discharge	Arc discharge	Scorched insulation paper partially scattered on the bottom of the box
As the table shown, the accuracy of the optimal three-ratio based on particle swarm proposed in this paper is higher, which is in line with the situation of on-site maintenance confirmation such as hanging hoods, and can well compensate for the defects such as "code absence" of improved three-ratio.

6. Conclusion
This paper focuses on fault diagnosis methods of transformers analyzed by oil chromatography. The PSO optimization algorithm is used to calculate the optimal three-ratio value that can best represent various fault types of power transformers, and then the rate of change of the characteristic gas of the power transformer is analyzed to predict the possible failures. Combining the stereogram method and the optimal three-ratio method, A comprehensive DGA method for power transformers based on oil chromatography analysis was obtained. Finally, by simulating the actual oil chromatographic data of the transformer, it can be seen from the simulation results that the method proposed in this paper can improve the accuracy of fault judgment and overcome the "code absence" problem of the traditional ratio method, which can be used for engineering transformer fault diagnosis in practice.

Acknowledgments
This work is supported by the PhD research start-up foundation of Hubei University of Technology (BSQD2019011).

References
[1] CHEN Jianing, YANG Xuan, YE Chengjin. On-line fault diagnosis method for power transformer based on missing data repair [J]. Power System Protection and Control,2019,47(15):86-92.
[2] ZHANG Pengfei, ZHOU Lixing, ZHANG Zhuodong. Analysis and Prediction of Transformer Overheating Fault Based on Chaotic Characteristics of Oil Chromatogram [J]. High Voltage Apparatus,2019,55(08):237-243.
[3] RONG Zhihai, QI Bo, LI Chengrong. Combined DBN Diagnosis Method for Dissolved Gas Analysis of Power Transformer Oil [J]. Power System Technology,2019,43(10):3800-3808.
[4] Zhang Mingliu, Sun Caixin. Study on Fault Diagnosis of Transformer DGA Method with Fuzzy Multi-Criteria Analysis [J]. Transactions of China Electrotechnical Society,1998(01):52-55.
[5] QI Bo, WANG Yiming, ZHANG Peng. Deep Recurrent Belief Network Model for Trend Prediction of Transformer Oil Chromatography Data [J]. Power System Technology,2019,43(06):1892-1900.
[6] TIAN Fenglan, ZHANG Enze, PAN Sirong. Fault diagnosis model of power transformers based on feature quantity optimization and ICA-SVM [J]. Power System Protection and Control,2019,47(17):163-170.
[7] ZHANG Shiling, YAO Qiang. Predicting model of transformer DGA time series based on WNN-GNN-SVM combined algorithm [J]. Electric Power Automation Equipment, 2018, 38(09): 155-161.

[8] Sun Zhipeng, Cui Qing, Zhang Zhilei. The application of multiclass support vector machine in power transformer fault diagnosis [J]. Power Technology, 2019, 20(10): 25-28.

[9] Li Enwen, Wang Linong, Song Bin. Analysis of Transformer Oil Chromatography Based on Improved Fuzzy Clustering Algorithm [J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4594-4602.

[10] WU Zhanyu, DONG Ming, WANG Jianyi. Fault Diagnosis of Power Transformer Based on Fuzzy Association Rules Minin [J]. High Voltage Apparatus, 2019, 55(08): 157-163.

[11] LI Hao, WANG Fuzhong, WANG Rui. Transformer Fault Diagnosis by Using RBF Neural Network Optimized by Immune Particle Swarm [J]. Process Automation Instrumentation, 2016, 37(11): 4-7+11.

[12] WEI Jinxiao, ZHOU Buxiang, TANG Hao. Transformer Fault Diagnosis with the Combination of RapidMiner-modified Particle Swarm Optimization-extreme Learning Machine Algorithm [J]. Proceedings of the CSU-EPSA, 2019, 31(03): 133-138.

[13] SHI Xunshan, MA Hongzhong, ZHANG Lin. Application of RBPNN improved by PSO in fault diagnosis of transformers [J]. Power System Protection and Control, 2016, 44(17): 39-44.

[14] MA Yezh, JIAO Yanjun, WANG Dongsheng. Detection of Dissolved Gas with PSO-WFCM Algorithm for Fault Diagnosis of Power Transformer [J]. High Voltage Apparatus, 2014, 50(01): 72-76.