Abstract — The research on deep reinforcement learning which estimates Q-value by deep learning has been attracted the interest of researchers recently. In deep reinforcement learning, it is important to efficiently learn the experiences that an agent has collected by exploring environment. In this research, we propose NEC2DQN that improves learning speed of a poor sample efficiency algorithm such as DQN by using good one such as NEC at the beginning of learning. We show it is able to learn faster than Double DQN or N-step DQN in the experiments of Pong.

I. INTRODUCTION

Deep Q-Network (DQN) [1] made a success of deep reinforcement learning end-to-end, and various algorithms have been proposed since then [2]. However, learning a task with large state space is difficult, and many learning steps are necessary especially in an environment where rewards are sparse.

TABLE I	THE DIFFERENCES BETWEEN DQN AND NEC	
	DQN	NEC
Estimation	Neural Network	Neural Network + DND
Sampling	Random or with Priority	Random
Memory cost	Large	Huge

In order to solve it, it is necessary to efficiently use experiences obtained by exploration. DQN uses Experience Replay [3] which stores experiences in memory called Replay Buffer and train with minibatch randomly. Prioritized Experience Replay [4] has been proposed to learn more efficiently than random sampling. It considers experiences with large error at learning as important experiences, and greatly improves learning speed and performance. Neural Episodic Control (NEC) [5] is another way to efficiently learn.

NEC can take advantage of past similar experiences by using the memory module Differential Neural Dictionary (DND) even if it has never been visited it. In addition, it is able to learn end-to-end by utilizing that it is differentiable inside the network. DND makes it possible to carry out stable learning with a smaller number of learning steps.

However, DND needs to have a large memory for each action, and it requires a lot of calculation and memory cost. We show their relations in Table I. In this research, we propose a method of improving learning efficiency and speed by adapting NEC’s learning efficiency to a simple network like DQN.

II. DEEP REINFORCEMENT LEARNING

We target reinforcement learning assuming general Markov Decision Process (MDP). We define the state of the environment at time \(t \) as \(s_t \), and the agent selects the action \(a_t \) by the policy \(\pi \). Then, it obtains the reward \(r_t \) and the next state \(s_{t+1} \) corresponding to \(a_t \) from the environment. The revenue is discounted return \(G_t = \sum_{i}(\gamma^i r_i) \), and \(\gamma \) is discount rate as the degree of consideration of the future. The action-value function the agent uses for selecting action is defined as \(Q^*(s, a) = E[\gamma^t Q(s, a') | s, a] \).

\[
Q^*(s, a) = E[r + \gamma \max_{a'} Q(s', a') | s, a] \quad (1)
\]

Q-learning [7] is used to obtain the optimal Q-value.

\[
Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a') - Q(s, a)) \quad (2)
\]

In Q-learning, assuming that samples \((s, a, r, s')\) can be obtained infinitely from all pairs of \((s, a)\), even if they are given in any order, the optimal Q-value function \(Q^*(s, a) \) always exists with (2). Also, it converges to the same value, since the learned Q-value function does not depend on the policy. On the other hand, convergence may take time if there are pairs \((s, a)\) that are not tried.

In DQN, the agent uses the \(\varepsilon \)-greedy policy for tradeoff between exploration and exploitation. This \(0 < \varepsilon < 1 \) is a constant, or there is a method of linear decaying with increasing learning step.

\[
\pi(a | s) = \begin{cases} 1 - \varepsilon & (a = \text{argmax}_a Q(s, a)) \\ \varepsilon & \text{otherwise} \end{cases} \quad (3)
\]

DQN aiming at learning from images can use Convolutional Neural Network (CNN) [8] as a feature extractor in a state that is important for reinforcement learning in a large state space. For Q-value estimation, embedding \(h \) obtained from CNN is input, and the Q-value for the feature is estimated by fully-connected layers.

At the time a agent explores an environment, it stores tuples of \((s_t, a_t, r_t, s_{t+1})\) in Replay Buffer. When it learns, a minibatch is randomly formed from Replay Buffer. DQN uses
a target network for calculating a target value separately from a neural network for learning. It contributes to the stability of the target value by updating the neural network. The target network uses parameter \(\theta^- \) which is slightly older than the current parameter \(\theta \) of the learning network.

A neural network learns from the loss function \(L(\theta) = E[y_t - Q(s, a; \theta)] \) using the target value in (4).

\[
y_t = r_t + \gamma \max_{a'} Q(s_{t+1}, a'; \theta^-) \tag{4}
\]

Hasselt et al. [9] show that DQN overestimates the action-value when the number of experience samples obtained from an environment is small, and Double Q-learning is a solution to that. Double Q-learning updates the Q-value using two Q-value estimators A and B.

\[
Q^A(s, a) \leftarrow Q^A(s, a) + \alpha(r + \gamma Q^B(s', a^*) - Q^A(s, a)) \tag{5}
\]

\[
Q^B(s, a) \leftarrow Q^B(s, a) + \alpha(r + \gamma Q^A(s', b^*) - Q^B(s, a)) \tag{6}
\]

where \(a^* = \arg\max_a Q^A(s', a) \), \(b^* = \arg\max_a Q^B(s', a) \).

\(Q^A \) prevents \(Q^B \) from overestimated and \(Q^B \) prevents \(Q^A \) from it, respectively.

The algorithm called Double DQN [10] using Double Q-learning for DQN has been also proposed. Equation (4) is rewritten as follows.

\[
y_t = r_t + \gamma \max_a Q(s_{t+1}, a; \theta); \theta^- \tag{7}
\]

Hasselt et al. have incorporated the idea of Double Q-learning into (7).

\[
y_t^{Double} = r_t + \gamma \max_a Q(s_{t+1}, a; \theta^-) \tag{8}
\]

This makes it possible to get higher scores with 90% of games played by DQN, and it is still widely used as a better algorithm than DQN.

III. RELATED WORK

Neural Episodic Control (NEC) is one of the method to efficient sampling from Replay Buffer. It is the algorithm based on episodic memory and improved Model-Free Episodic Control (MFEC) [11] to learn end-to-end from state mappings to estimations of Q-values.

Differential Neural Dictionary (DND) has been proposed to make this successful. DND for the action \(a \in A \) is a dictionary \(M_a = (K_a, V_a) \) which saves a pair of key \(K_a \) and value \(V_a \). The key is the embedding \(h \) which is the feature extracted the state \(s \in S \) with CNN, and the value is the Q-value.

We can perform two kinds of operations for DND, Lookup and Write. In Lookup, when \(h \) featured by CNN and corresponding action \(a \) are entered, we lookup the top \(p \)-nearest neighbors for \(h \) in \(M_a \) using kd-trees citek. We weight the value \(v_i \) corresponding to that \(p \) number of keys as follows and set it as \(Q_a \).

\[
w_i = \frac{k(h, h_i)}{\sum_j k(h, h_j)} \tag{9}
\]

\[
Q_a = \sum_i w_i v_i \tag{10}
\]

\(k(h, h_i) \) is a kernel function for \(h \) and \(h_i \). In DND, \([11] \) is used.

\[
k(h, h_i) = \frac{1}{\|h - h_i\|^2 + \delta} \tag{11}
\]

Although \(\delta \) is a parameter to prevent division by zero, we should make it a little larger such as \(\delta = 10^{-3} \) because each value of \(p \)-nearest neighbors is referred to a certain extent.

In Write, we write an input \(h \) and a corresponding Q-value to DND. They are added to \(M_a \) normally, but if the key that already matches the input \(h \) exists in \(M_a \), update the corresponding Q-value according to the following.

\[
Q_t \leftarrow Q_t + \alpha(Q^{(N)}(s, a) - Q_t) \tag{12}
\]

The \(\alpha \) is a learning rate. When the size of the dictionary reaches the upper limit, we overwrites a pair that has not been referred to recently as the top \(p \)-nearest neighbor value according to Least Recently Used (LRU).

NEC uses N-step Q-learning [13] as a target value.

\[
Q^{(N)}(s_t, a) = \sum_{j=0}^{N-1} \gamma^j r_{t+j} + \gamma^N \max_{a'} Q(s_{t+N}, a') \tag{13}
\]

However, N-step Q-learning is hard to be stabilized by off-policy algorithm [14].

We also use the method of NEC in our proposed algorithm, but we replace the output Q-value of NEC network with the Q-value defined in Chapter [15].

IV. PROPOSED ALGORITHM

NEC currently has the following problems.

1) As DND increases the number of pairs of key and value to hold, the computation time for finding top \(p \)-nearest neighbors increases.

2) The number of dictionaries \(M \) of DND is the same as the size of the action space \(|A| \).

3) State space and action space need to be discrete because Q-learning is used.

About [3] Matsumori et al. [15] is addressing research in an environment where the state space is continuous and it is Partially Observable Markov Decision Process (POMDP).

In this research, we focus on the problems [1] and [2] Continuing to use NEC requires a large computational resource due to constraints of time computational quantity and space computational quantity. Therefore, I will address using NEC’s sampling efficiency only in early learning of other deep Q-learning algorithms. We will use DQN which is the simplest network as an example and we call this algorithm NEC2DQN (N2D).

As mentioned in [9], there is always one optimal action-value \(Q^* \), and if it is the same policy, it always converges to the same value. From this, both DQN algorithm and NEC algorithm head to the same \(Q^* \). Therefore, the Q-value estimated by other algorithms can be taken as the target value.
Hence it is easier to converge by using a better target value, that is a value close to Q^*. We show this simple image in Figure 1.

We set $Q^A(s,a) = Q_{DQN}(s,a)$, $Q^B(s,a) = Q_{NEC}(s,a)$ in (5), (6) and they become as follow.

$$Q_{DQN}(s,a) \leftarrow Q_{DQN}(s,a) + \alpha (r + \gamma Q_{NEC}(s',a^*) - Q_{DQN}(s,a))$$

$$Q_{NEC}(s,a) \leftarrow Q_{NEC}(s,a) + \alpha (r + \gamma Q_{DQN}(s',b^*) - Q_{NEC}(s,a))$$

where $a^* = \arg\max_a Q_{DQN}(s',a)$, $b^* = \arg\max_a Q_{NEC}(s',a)$

Equations (14) and (15) show $Q_{NEC}(s,a^*)$ is necessary for learning $Q_{DQN}(s,a)$, and $Q_{DQN}^{(N)}(s,b^*)$ is necessary for learning $Q_{NEC}(s,a)$. However, Q_{NEC} may not be able to learn well until DQN learns a network, and there is a possibility that Q_{DQN} can not be learned well due to the influence. Especially, NEC should be able to learn earlier by learning using the original $Q_{NEC}^{(N)}$. Therefore, we rewrite (17) like (19).

$$Q_{DQN}(s,a) \leftarrow Q_{DQN}(s,a) + \alpha (Q_{NEC}^{(N)}(s,a^*) - Q_{DQN}(s,a))$$

$$Q_{NEC}(s,a) \leftarrow Q_{NEC}(s,a) + \alpha (Q_{DQN}^{(N)}(s,b^*) - Q_{NEC}(s,a))$$

In comparison of (20) with (21), they use the same target value Q_{DQN}. We replace them the same Q-value function Q_{N2D} as follow.

$$Q_{DQN}(s,a) \leftarrow Q_{DQN}(s,a) + \alpha (Q_{N2D}^{(N)}(s,a^*) - Q_{DQN}(s,a))$$

$$Q_{NEC}(s,a) \leftarrow Q_{NEC}(s,a) + \alpha (Q_{DQN}^{(N)}(s,b^*) - Q_{NEC}(s,a))$$

From here, we define $Q_{N2D}(s,a)$ to satisfy the above property. We prepare networks of NEC and DQN separately.
as shown in Figure 2. Each network outputs its Q-value for the state \(s_t \), and we combine them as \(Q_{N2D}(s_t,a) \).

\[
Q_{N2D}(s_t,a) = \lambda(t)Q_{NEC}(s_t,a) + (1 - \lambda(t))Q_{DQN}(s_t,a)
\] (24)

\(\lambda(t) \) is a monotonically decreasing function related to the current learning step \(t \) representing the rate at which NEC is considered. We make it linear decay from 1 to 0 with increasing learning step, such as (25).

\[
\lambda(t) = \begin{cases}
1 - \frac{t}{CS} & (t < CS) \\
0 & (\text{otherwise})
\end{cases}
\] (25)

At the beginning of learning, it refers to the Q-value of NEC, and gradually refers to the Q-value of DQN as learning progresses. Thus, it is possible to switch naturally.

We set the number of steps \(CS \) to start to completely depend on DQN. It is not necessary to calculate \(Q_{NEC}(s_t,a) \), and calculation time is also reduced because \(\lambda(t) = 0 \) after \(CS \).

Loss functions of NEC and DQN are required respectfully because they are separate networks, and we use the same target value \(y_t \). Although we use \(a^* \) and \(b^* \) in (22) and (23), we do not use Double Q-learning but simply use N-step returns.

\[
y_t = Q_{N2D}^{(N)}(s,a) = \sum_{j=0}^{N-1} \gamma^j r_{t+j} + \gamma^N \max_{a'} Q_{N2D}(s_{t+N},a')
\] (26)

This is based on the fact that since NEC can refer to DND, it is hard for overestimation of the Q-value to occur when the amount of experience accumulated in Replay Buffer is small.

Their loss functions also use \(y_t \).

\[
L_{NEC}(\theta_t) = E(y_t - Q_{NEC}(s_t,a_t))
\] (27)

\[
L_{DQN}(\theta_t) = E(y_t - Q_{DQN}(s_t,a_t))
\] (28)

Similarly to original NEC, Replay Buffer stores a tuple of \((s_t,a_t,y_t)\). Since \(y_t \) requires N steps of reward data and the subsequent state \(s_{t+N} \), we accumulate the trajectory of the episode experienced by the agent at the end of each episode.

We show the overall algorithm in Algorithm 1.

Algorithm 1 NEC2DQN

1: Initialize the number of entire timesteps \(S \) to 0.
2: Initialize the change step \(CS \) for \(\lambda(t) \).
3: Initialize replay memory \(D \) to capacity \(C_D \).
4: Initialize DND memories \(M \) to capacity \(C_{M_{a}} \).
5: Initialize action-value function \(Q_{NEC} \) and \(Q_{DQN} \) with random weights.
6: for each episode do
 7: Initialize trajectory memory \(G \).
 8: for \(t = 1,2,...;T \) do
 \(\triangleright \) Explore and train.
 9: Receive observation \(s_t \) from environment.
 10: Receive \(Q_{DQN}(s_t,a) \).
 11: if \(S < CS \) then \(\triangleright \) If \(S < CS \), we use NEC.
 12: Receive embedding \(h \) and \(Q_{NEC}(s_t,a) \).
 13: else
 14: Set \(Q_{NEC}(s_t,a) \) to free values.
 15: end if
 16: Calculate \(Q_{N2D}(s_t,a) \). \(\triangleright \) Calculate by (24).
 17: \(a_t \leftarrow \varepsilon \)-greedy policy based on \(Q_{N2D}(s_t,a) \).
 18: Take action \(a_t \), receive reward \(r_t \).
 19: Append \((s_t,a_t,r_t)\) to \(G \).
 20: Train on a random minibatch from \(D \).
 21: \(S \leftarrow S + 1 \)
22: end for
23: for \(t = 1,2,...;T \) do \(\triangleright \) Calculate N-step returns.
24: Calculate \(y_t \). \(\triangleright \) Calculate by (26).
25: Append \((h_t,y_t)\) to \(M_{a_t} \).
26: if \(S < CS \) then
27: Append \((h_t,y_t)\) to \(M_{a_t} \).
28: end if
29: end for
30: end for
V. IMPLEMENTATION

Experiment with Pong of Atari 2600 which is provided with OpenAI Gym \[16\] which can easily share the result of library and reinforcement learning algorithms.

Pong is the game of 21 points win. If the opponent cannot hit the ball, we gets a reward of +1, and if we cannot it, we get a reward of -1. That is, the reward set \(R = \{ -1, 0, 1 \} \). Many of the algorithms targeting versatility such as DQN use Reward Clipping that clips rewards gained from games to \([-1, 1]\). It is a technique that enables learning without changing parameters necessary for learning. However, Reward Clipping may make it impossible to distinguish between a high reward and a small reward with a large absolute value, so there is a possibility that it will not try to obtain high rewards \[17\]. We do not consider it in this research because Pong’s reward is \(r_t \in R \).

Like the DQN, we process one frame of the game such as Figure 3 to \(84 \times 84 \) and convert to grayscale, then the state is set with the consecutive 4 frames together. We show the main parameters and the network parameters setting for the experiment in Table II and Table III as Appendix.

We compare NEC2DQN, N-step DQN and Double DQN as a comparison of learning speed to the number of learning steps. Also we observe the learning result by the difference in the size of Replay Buffer. We test 5 times every 50,000 learning steps, and we take these averages and we use greedy policy (\(\varepsilon = 0 \)) in every test.

VI. RESULT

Figure 4 is a comparison with NEC2DQN, Double DQN and N-step DQN \((N = 10)\). NEC2DQN acquired about 18 points at 5M steps, and it is possible to incorporate the learning efficiency of NEC. Although Double DQN required more than 30M steps to earn more than 10 points, NEC2DQN achieved it in about 3M steps. That is, it is able to grasp efficient features at about 1/10 of the speed. Furthermore, NEC2DQN has better learning efficiency and performance than N-step DQN.

Figure 5 is shown the difference in results depending on Replay Buffer size. The size affects the stability of sampling,
the larger it is, the better the performance is. However, since the target value is also stored in Replay Buffer, the target value is too old to proceed well if it is too large like size = 500,000. Looking at the graph bottom the Figure 5, the smaller size is, the faster learning is due to the newness of the target value at the 2M frame. However, as learning progresses, it turns out that the game score is not obtained well in the case the size is small like size = 100,000. NEC2DQN needs to consider this balance.

VII. CONCLUSION

In this research, we have verified that the good sampling efficiency of NEC is adopted in the early learning of DQN algorithm using Pong example. We have showed that the learning speed is faster than only DQN by using the same and better target values for NEC and DQN. Indeed, we could observe a significant learning speed improvement by using NEC during 2M steps only.

It is necessary to confirm whether this method succeeds also in other games. In particular, although NEC does not need to Reward Clipping, DQN is better to do Reward Clipping. Thus, there is a possibility that NEC’s goodness cannot be taken advantage of.

Since NEC and DQN do not connect on the network, updating weights of each other’s networks does not directly affect. Therefore, it is easy to replace it with a network other than DQN. It is necessary to verify whether other Q-learning algorithms also works as well as DQN by changing Q\textsubscript{DQN} used for Q\textsubscript{N2D} to the Q-value of others.

The most important issue is that multiple networks learn while choosing appropriate target values. In this research, we have used NEC since it is excellent in Q-value estimation at the beginning of learning, but NEC is not necessarily useful for estimating Q-value. Deep Q-learning from Demonstrations (DQfD) is used to estimate the Q-value with reference to human play. It is sometimes hard to go well in tasks that humans cannot do very well (such as Pong), but if it is a task that humans can do well, it is good for learning faster than NEC cannot do very well (such as Pong). It is sometimes hard to go well in tasks that NEC is not especially useful. It is important that various networks of deep Q-learning cooperate by learning while choosing an appropriate target value automatically.

REFERENCES

[1] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare, Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al. Human-level control through deep reinforcement learning. In Nature, 518(7540):529-533, 2015.
[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A Brief Survey of Deep Reinforcement Learning. arXiv:1708.05866, 2017.
[3] Long-Ji Lin. Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching. Machine Learning, 8(3-4):293-321, 1992.
[4] Schaul, Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay. In ICLR, 2016.
[5] Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria’ Puigdomenech, Oriol Vinyals, Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural Episodic Control. In ICML, 2017.
[6] Richard Bellman. On the Theory of Dynamic Programming. In PNAS, 38(8):716-719, 1952.
[7] Christopher ICH Watkins and Peter Dayan. Q-Learning. Machine Learning, 8(3-4):279-292, 1992.
[8] Alex Krizhevsky, Ilya Sutskever, Geoffrey E.Hinton. ImageNet classification with deep convolutional neural networks. In ANIPS, 2012.
[9] Hado van Hasselt. Double Q-Learning. In NIPS, 2010.
[10] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double Q-Learning. In AAAAI, 2016.
[11] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo, Jack Rae, Daan Wierstra, and Demis Hassabis. Model-Free Episodic Control. arXiv:1606.04400, 2016.
[12] Bentley, Jon Louis. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9): 509-517, 1975.
[13] Jing Peng and Ronald Williams. Incremental multi-step Q-learning. Machine Learning, 22:283-290, 1996.
[14] Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G Bellemare. Safe and Efficient Off-Policy Reinforcement Learning. In NIPS, 2016.
[15] Shoya Matsumori, Takuma Seno, Toshiki Kikuchi, Yusuke Takimoto, Masahiko Osawa, Michai Imai. Embedding Cognitive Map in Neural Episodic Control. In SIG-AGI, 2017
[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01565, 2016.

APPENDIX

TABLE II

Parameter	Value
Optimizer	RMSProp(\epsilon = 0.01)\dagger
Optimizer learning rate	0.00025\dagger
Optimizer momentum	0.95\dagger
Explore \(\epsilon\)	1 \rightarrow 0.01 over 1M steps
Replay buffer size	300,000
DND learning rate	0.1
DND size	500,000 per action\dagger
p for KDTree	50\dagger
N-step returns \(N\)	10
NEC embedding size	64
DQN embedding size	512\dagger
Replay period	every 4 learning steps\dagger
Minibatch size	32\dagger
Discount rate	0.99\dagger
NEC2DQN change step CS	2M steps
	[†] same as Double DQN
	[††] same as NEC

TABLE III

Parameter	Value
NEC,DQN: CNN channels	32, 64, 64
NEC,DQN: CNN filter size	8 \times 8, 4 \times 4, 3 \times 3
NEC,DQN: CNN stride	4, 2, 1
NEC: embedding size	64
DQN : hidden layer	512
DQN : output units	Number of actions

TABLE IV

Parameter	Value
NEC2DQN change step CS	2M steps
NEC,DQN: CNN channels	32, 64, 64
NEC,DQN: CNN filter size	8 \times 8, 4 \times 4, 3 \times 3
NEC,DQN: CNN stride	4, 2, 1
NEC: embedding size	64
DQN : hidden layer	512
DQN : output units	Number of actions