A review of cardiac rehabilitation and exercise in cardiovascular disease

Mohammad Mohammadi
Faculty of Physical Education and Sport Sciences, Department of Physical Education, Faculty of Literature and Humanities, Malayer University, Malayer, Iran
M.mohammadi@malayeru.ac.ir

Hojjatollah Siavoshi
PhD Student of Sport Physiology, Department of Sport Physiology, Institute of Sport Medicine, Institute of Physical Education and Sport Sciences, Tehran, Iran

Azadeh Naderi
Master of Sport Physiology, Iran

Maryam Panah Abadi
Master of Sport Physiology, Iran

Mohammad Maleki
Master of Physical Education, Strategic Management, Iran

Abstract
Aim: The purpose of this article was to review the effects of cardiac rehabilitation and exercise on cardiovascular disease. Heart disease is one of the most common diseases in the world. There is a negative relationship between mortality and physical activity level in cardiac patients. Rehabilitation is an important and effective part of cardiac care which, in addition to controlling the disease, slows its progress and improves symptoms. Nowadays; modern science in the field of medical and therapeutic programs has made a great effort to perform the exercises in the form of cardiac rehabilitation programs under the supervision of specialist physiologists and exercise physiologists.

Materials and methods: Google Scholar, PubMed, Scopus databases were searched for articles.

Results and Conclusion: Performing cardiac rehabilitation activities by cardiac patients enables them to perform daily living tasks and exercise improves their functional ability; the rate of participation in a sports rehabilitation program is inversely proportional to mortality, and cardiac rehabilitation, along with regular exercise, plays a role in stopping the process of heart disease and reducing its associated symptoms and improving mental health and enhancing functional capacity and returning to work and social activity without dependence on others and most importantly reducing mortality. Determining the type, severity, frequency, necessity of monitoring sports rehabilitation specifically with regard to the symptoms shown by the patient improves high intensity exercise, cardiac function, and an active life.

Keywords: Cardiac Rehabilitation, Exercise, Cardiovascular Disease

Introduction
According to the WHO definition, cardiac rehabilitation is a set of measures needed to achieve the best possible physical, psychological, and social conditions for heart patients to lead an active life. Unfortunately, many heart patients lack the physical strength or confidence to do their own thing. Cardiac rehabilitation is an important part of cardiac care today, in addition to controlling the course of the disease, it slows its progress and improves symptoms, and a comprehensive cardiac rehabilitation program includes improving health behaviors and modifying risk factors. In addition to exercise, these programs involve changing the pattern of nutritional, psychological, and social status (Pollock et al., 2000). Cardiovascular disease is one of the most important causes of mortality in developed countries and some developing countries; More than 6,000,000 Americans are affected each year and overall, 2.5 million people in the United States have heart disease (Qashqai et al., 2012). It is noteworthy that sedentary lifestyle has been identified as a risk factor by the American Heart Association. Unfortunately, approximately 70 percent of adults in the United States are sedentary and about half of young Americans have no regular physical activity. Such observations have been attributed to industrialization, automation, the presence of clients at home, and a decrease in leisure time physical activity (Cardiovascular and Lung Rehabilitation Organization, 2006). Exercise is a non-pharmacological intervention in cardiac rehabilitation. Peak VO2 is the most important predictor of mortality in cardiac patients (Sarhard et al., 2016). Exercise activity by cardiovascular patients increases their ability to perform daily tasks, increases their functional capacity and improves mortality by promoting quality of life (Shabani et al., 2010). Functional capacity is expressed as the maximum oxygen consumption of patients and is an important criterion for MET and is the unit of determination of cardiac patients' physical capacity (Ades, 2001). Exercise rehabilitation is effective in preventing or even reversing the functional, morphological, and structural changes of the heart, not only does it not damage the heart but it also improves these parameters (Szo et al., 2016). Unfortunately, despite the beneficial effects of sports rehabilitation, the participation rate of patients in these sessions is very low (10% - 20%) (Layler et al., 2011). Given the prevalence of cardiovascular disease and its resulting mortality and major limitations in quality of life, leaving work and imposing enormous economic damages, causing mental problems and, most importantly, increasing the age of those suffering from the disease Heart disease and the increased risk of this disease in young people, Considering appropriate and cost-effective strategies and the effective role of sport rehabilitation activity and increased physical fitness in prevention, reduction of complications and severity of symptoms of this disease is suggested. The present article examines the scientific resources of athletic rehabilitation and...
rehabilitation exercises in cardiovascular disease and the principles that should be followed in its administration.

Methodology

In this review study, 54 valid references from all studies, as well as reference books on cardiac rehabilitation and exercise physiology in scientific sites such as PubMed, Elsevier, Science Direct, Scopus, Google scholar and libraries that have been up-to-date and have a closer connection to the topic were selected and it has been searched and scrutinized, therefore, no time constraints were considered in the selection of articles.

Results

History of cardiac rehabilitation

Understanding the principles and goals of cardiac rehabilitation goes back to the 1950s and it was the start of rehabilitation exercises in 1960, which began four to six months after myocardial infarction with careful supervision. The earliest cardiac rehabilitation programs were limited to regular exercise, which slowed the progression of coronary risks. At the time, according to the American Heart Association, exercise was inappropriate for older patients. In 1960, researchers began hospital mobility studies after myocardial infarction (Thomas et al., 2007; Julliff et al., 2001) and the use of early motor protocols for patients after open surgery was also increased as a common practice. In the early 1970s, a large number of clinical groups underwent supervised rehabilitation exercises. This method was first implemented in Europe and subsequently in Canada and the US. Exercise was often associated with diet and smoking cessation to reduce coronary risks. During the 1980s, research showed that: Patients with coronary artery disease who received drug therapy such as beta-blockers and calcium-blockers and nitrates were able to practice more effectively through the rehabilitation exercise program. As well as a decrease in symptoms and improvement in functional capacity have also been the results of exercise (American Heart and Vascular Association, 2006). Patients undergoing open surgery or angioplasty in the late 1980s and early 1990s were also allowed to participate in cardiac rehabilitation programs. In 1990, there were significant changes in the clinical care practices of cardiovascular patients and the time of rehabilitation care for these patients (Thomas et al., 2007). Cardiac rehabilitation includes a set of medical procedures, exercise, cardiovascular risk factors, training and counseling. Designed to limit physiological and psychological factors, reduce the risk of heart attack and re-infarction, control of heart symptoms, reverse the process of atherosclerosis, and improve the social and occupational mental status of cardiac rehabilitation services (Goyle et al., 1999).

Cardiac rehabilitation consists of four steps:

First step

During hospitalization, a patient admitted to the hospital for reasons such as myocardial infarction, open surgery, angioplasty, angina, or emergency admission for heart disease or early diagnosis of heart failure. During this step, medical evaluation, education, correction of myths about the disease and the heart, risk factors, and mobility and dynamics are considered (American Society of Cardiovascular and Lung, 2006; Donker et al., 2000).

Second step

Immediately after the patient’s discharge at this step, home examinations, telephone communication and guidance are performed through supervised instructions. These are supervised guidelines for the patient self-help program that have been effective in reducing anxiety and depression after a heart attack (American Cardiovascular and Lung Association, 2006; Donker et al., 2000).

Third step

It is recommended to supervise exercise program, along with psychological support training and counseling on specific risk factors and individual training such as reducing misconceptions about illness and encouraging smoking cessation and controlling weight and returning to professional life and see a psychiatrist, cardiologist, or exercise physiologist (American Heart Association, 2006).

Fourth step

Doing physical activity for a long time is a lifestyle change.

Ban on sports rehabilitation

Absolute restriction of rehab includes angina, unstable, recent myocardial infarction, uncontrolled arrhythmia, severe aortic stenosis and heart disease, irreversible heart failure, severe myocarditis and pericarditis. Part involved in temporarily stop athletic rehabilitation include tachycardia, Bradycardia, systolic blood pressure above 200 and diastolic levels above 110 mm Hg, electrolyte abnormalities and severe anemia.

The effect of exercise on the cardiac

Daily exercise can reduce your heart’s need for oxygen and nutrients. There are many mechanisms involved in improving oxidative metabolism and increasing exercise endurance, these include decreased catecholamines, increased cardiac output and reduced lactate accumulation, improved endothelial function of vessels, and increased capacity for oxidative metabolism by the heart muscle (Ellard et al., 1992). Exercise as a preventive method, by modifying risk factors, can dramatically decrease mortality from heart disease. Aerobic exercise has been shown to decrease the risk of recurrence, strength and speed in activating the intracellular inflammatory pathway in cardiac protection (preventing coronary artery obstruction) (Riahi et al., 2015 and 2016). Increased blood flow to the coronary arteries and intensification of oxygen extraction in the skeletal muscles decrease cardiac output (O’Connor et al., 1989). Malfunction of the autonomic system (sympathetic / parasympathetic imbalance) is a major cause of heart disease and sudden death, the sports rehabilitation program improves the performance of the autonomic system. Even abnormalities in ventricular polarization that lead to poor ventricular function and sudden death are reduced by performing exercise rehabilitation (Pollock et al., 2000; Levy et al., 2011). Aerobic exercise increases cardiac output and reduces resting heart rate (Duckey et al., 2016). Samawati Sharif et al stated in a study that: Many dangerous diseases of adulthood are rooted in adolescence and concluded that all three types of exercise (endurance, strength and speed) can reduce some of the cardiovascular risk factors in adolescent soccer; However, each of these exercises has its own benefits (Samawati Sharif et al., 2018).

Regular exercise with atherogenesis (enlargement and remodeling of the cardiac arteries) and angio genesis (growth and growth of capillaries) increases blood supply to the heart. In patients with ST coronary heart disease, exercise activity leads to decreased segmental depression, indicating a decrease in vascular resistance leading to increased blood supply to ischemic sites (Levy et al., 2011). The benefits of exercise include increased endurance, reduced daily fatigue, increased workouts, reduced heart rate, decreased blood pressure (heart oxygen demand), reduction of dyspnea, reduction of heart fatigue (poor cardiac function after prolonged endurance exercise despite absence of disease) (Whitey et al., 2000) and reduction of atherogenic and thrombogenic factors. Increased blood concentration due to coronary artery disease decreases with exercise. Exercise reduces the risk of cardiac arrhythmias by improving endothelial function, reducing platelet adhesion and balancing the autonomic system. Physical activity not only prevents hypertension but also reduces it in people with hypertension and slows or even reverses the progression of coronary atherosclerosis and reduces mortality (Pollock et al., 2000).

Effect of exercise on cardiac disease prevention:

Journal of critical reviews
In healthy people, increased cardiopulmonary readiness is associated with a significant decrease in mortality. Evidence shows that exercise increases the cardio-respiratory fitness of men and women of all ages from childhood to adulthood and the amount of physical activity is directly related to health (Petschow et al., 2000). Exercise increases physical strength due to the increased ability to use oxygen to generate energy, maximize cardiac output, and release oxygen from the capillaries. Aerobic exercise reduces myocardial oxygen demand and thereby reduces the likelihood of cardiac ischemia (White et al., 2000). Exercise increases Lipoxygenase Lipase Activity, Fat and Muscle Tissue, Lipase Reduction, and Liver Cholesterol Stress Transfer Activity Leads to Lower LDL-C and Blood Cholesterol and by increasing the clearance of low-density lipoproteins and chylomicrons, it reduces triglycerides and increases -HDL C. Improvement in lipoprotein profile is directly related to physical activity but not related to exercise intensity. Aerobic exercise reduces the occurrence of lethal arrhythmias by modulating sympathetic / parasympathetic activity (Reese et al., 2000). Exercise is used as part of rehabilitation programs to increase muscle strength and increase aerobic capacity (Saeedi et al., 2005).

Exercise and cardiac disease

The rate of mobility in people with chronic heart disease such as stroke and heart failure is 40% -30% lower than healthy individuals (Tsai et al., 2006). Even exercise for as little as 1-3 months has a positive effect on their quality of life (Tsai et al., 2006). The type of exercise also influences the rate of recovery of heart patients (Niobi et al., 2000).

Both heavy and light exercise is useful in patients with left ventricular failure who regularly participate in rehabilitation and enhances functional capability (Liu et al., 2016). For those who are sedentary, exercise is ideal for a quick and regular walk which increases lipoprotein in addition to increasing fitness, which improves lipid profile in addition to increasing fitness (Tsai et al., 2006). Studies show that every 1 mL / kg / min maximal increase in oxygen consumption is associated with a 15% reduction and every 1 MET is correlated with a 43% reduction in cardiac deaths (Nampson et al., 2000). The severity of heart disease determines the amount of monitoring during exercise (Gobel et al., 2000).

General principles of prescribing exercise in the prevention of cardiac disease

A. Prescribing exercise in the absence of ischemia or arrhythmia (low risk group): In this group, the intensity of exercise is approximately 50% -80% VO2max. People who are less physically fit should start exercising with less intensity. If the patient is willing to walk, exercises can be done on a treadmill with a specific heart rate. To determine the severity of exercise, patients should be instructed on how to use the RPE criterion. The target is to reach the threshold of 13-13 Borg pressure, which is equal to the average intensity or MHR of 75% -60%. Exercise volume is increased to 5 minutes per week after a healthy and safe range is determined. Once the patient has sufficient physical fitness, then resistance exercise can be included in the exercise program.

B. Exercise with Ischemia or Arrhythmia (Moderate to Severe Risk Group): In these patients, exercise should be done under medical supervision. Exercise stress testing is necessary to determine a healthy range of cardiac activity. There is less exercise intensity in this group and using the maximum heart rate is wrong. The purpose of medical supervision is to familiarize patients with physical activity and to encourage concerned patients to investigate possible problems (such as chest pain, heart failure, and arrhythmia). Patients are regularly reevaluated so that they can perform physical activity at home or in a group setting after being recovered and placed in a lower risk group (Gilliar et al., 2006). Physical activity begins at the end of the recovery period and mostly involves aerobic exercise such as hiking, biking (American Heart Association, 2006). In cardiac patients, it is best to perform aerobic exercise with a high intensity of 15-13 bp in the first few weeks. Then add resistance training. Each exercise session begins with a 10-minute warm-up, during which light exercises and stretching exercises are performed to gradually increase the heart rate while preventing muscle damage. Stretching exercises in an exercise program increase range of motion and aerobic capacity. Fat and Muscle Tissue, Lipase Reduction, and Liver Cholesterol Stress Transfer Activity Leads to Lower LDL-C and Blood Cholesterol and by increasing the clearance of low-density lipoproteins and chylomicrons, it reduces triglycerides and increases -HDL C. Improvement in lipoprotein profile is directly related to physical activity but not related to exercise intensity. Aerobic exercise reduces the occurrence of lethal arrhythmias by modulating sympathetic / parasympathetic activity (Reese et al., 2000). Exercise is used as part of rehabilitation programs to increase muscle strength and increase aerobic capacity (Saeedi et al., 2005).

Cardiac disease and resistance exercise

In the early years, most aerobic rehabilitation exercises were performed but later resistance training was added, studies have emphasized the need for resistance training in these patients (Karloldidi et al., 2002). Since 1980, resistance exercise has been considered part of a sports rehabilitation program and many articles have been published regarding its safety (McCartney et al., 2006). In the last two decades, resistance exercise has been proven safe in heart patients and it has even been reported that cardiac ischemia is less prevalent during walking than cycling (cycling) and cycling (Noss et al., 2009). Cardiac patients need a minimum amount of resistance exercise to perform their daily activities. Resistance exercise increases Muscle Strength and Strength and Self-Confidence (American Cardiovascular Society, 2006). Resistance exercise complements the beneficial effect of aerobic exercise in coronary artery disease. Because while aerobic exercise modulates cardiac risk factors, resistance exercises increases muscle strength and volume (Ventura et al., 2007). Some studies find resistance training to be more effective in improving functional capacity and improving quality of life than aerobic training (Thiobi et al., 2000). But others believe that aerobic and resistance exercises exacerbate each other’s effects, and resistance exercise will increase performance capacity compared to endurance training (Kamps et al., 2008). Until recently, weight-bearing exercise was prohibited in cardiac patients but a study in a small group of coronary patients found that: This exercise is healthy and useful and improves the functionality of patients and has a beneficial effect on cardiovascular risk factors. This type of exercise is recommended in asymptomatic or mild symptoms after a period of aerobic exercise but the maximum weight should not exceed 60% 1RM and the volume of exercise should be adjusted according to the patient's wish (Jahan et al., 2009). In order to avoid Valsalva maneuvers, patients should be instructed on how to lift weights correctly to control blood pressure and the result of a double heart rate and to encourage their patients (Noss et al., 2009). Exercise with low resistance and high repetition reduces the likelihood of imprisonment due to the need for less effort (Stackey et al., 2010). A major concern in resistance exercise is hypertension. Hypertension in resistance exercise depends on controllable factors such as...
the intensity of the load and the amount of muscle mass being exercised and the number of repetitions and the duration of exercise. Measurement of intra-arterial blood pressure in cardiac patients showed that in resistance exercise with intensity of 40-60% maximal voluntary contraction and 10-15 sec of contraction duration, Endurance exercise is not different from moderate intensity exercise (Karlstad et al., 2007). There is no increase in low and moderate intensity resistance exercise with proper breathing and avoidance of the Valsalva maneuver but at 1 RM 100%-80% hypertension was observed. Resistance exercise in patients with controlled hypertension is unobstructed (Stake et al., 2010). Prescribing resistance exercise depends on the patient’s clinical condition and its potential complications. Good to moderate left ventricular function, good cardiac function, absence of angina pectoralis, and absence of reverse ST fragment are essential for this (Carlstad et al., 2007).

Cardiac disease and aerobic exercise
Aerobic exercise improves both mobility and cardiopulmonary fitness in stroke patients. Physical fitness exercises increase the strength of legs and walking distance in people with myocardial infarction and improve daily activity (Mako et al., 2005). A volume of aerobic exercise equivalent to 1,000 kcal a week is moderate enough to reduce mortality by 30%-20%. 1000 kcal equals 30 minutes of moderate-intensity aerobic activity most or all days of the week. Aerobic activity most or all days of the week and 30% of the duration of exercise (Snowden et al., 2002). 16 weeks of exercise that included 10 minutes warm-up and 30 minutes of continuous exercise with 65% heart rate reserve and resistance training and finally 10 minutes of cooling, compared to the intermittent exercise that included warming up then 2 minutes of vigorous exercise with 90% rhythm intensity and 2 minutes recovery with 40% rhythm intensity and cooling made a similar improvement in fitness. Intense intermittent exercise seems to be more effective in athletic rehabilitation and is less risky than moderate-intensity continuous exercise (Haykowski et al., 2007). Another reason for the discrepancy in the results of the reports may be related to the timing of rehabilitation exercise. The timing of the onset of exercise rehabilitation plays a role in the patient’s response to exercise, although not recommended in specific time studies but athletic rehabilitation usually begins 4-6 weeks after discharge (Warburton et al., 2002). The importance of aerobic exercise on muscles, the positive effects of exercise on cardiac rehabilitation appear to be related to improved athletic fitness and environmental mechanisms such as muscle function (Haykowski et al., 2007). One of the causes of early fatigue and disability in cardiac patients is the pathological and metabolic changes of the muscle fibers. Exercise improves these effects. Exercise regeneration enhances one’s functional capacity by activating physiological mechanisms such as greater oxygen uptake of blood, increased oxidative reaction efficiency, and increased cardiac output (Hanson et al., 1997). In women over 65 years of age with congestive heart failure, 10 weeks of resistance exercise three times a week prevents skeletal muscle myopathy caused by heart failure and increased the strength, endurance, and number of type I muscle fibers (Ellard & Larson, 1992). Increased functional ability after exercise rehabilitation may also be related to noncardiac factors such as improved oxidative and glycolytic function of the muscle cell and better oxygen depletion of the capillaries and improved vascular function (Smart et al., 2007). Activities that increase aerobic capacity have specific characteristics, including: alternating muscle relaxation and relaxation, especially large muscle groups, these exercises are known as endurance and cardiovascualr activities. In the early stages of the exercise program, walking has more benefits than other exercises (McGlowe et al., 1990). Studies of heart patients and healthy people have shown that: Rapid walking on a flat surface has a significant effect on gaining medium intensity (Rogenmo et al., 2012). Patient classification helps reduce risk (Lyon et al., 2005).

Discussion
Studies show that exercise plays an important role in controlling and preventing the progression of heart disease. Even a small amount of physical activity can help these patients live independent lives. All types of exercise play a role in athletic rehabilitation but this effect varies with the type and intensity of exercise. High-intensity exercise improves cardiac function and exercise endurance and reduces the incidence of angina and ST segment depression (Warburton et al., 2005). High-intensity intermittent exercise increases the VO2 peak despite moderate risk of continuing moderate-intensity exercise (Sherhard et al., 2016). Exercise with HR peak intensity of 95%-85% is more effective than HR peak 70%-60%. Given the effectiveness of high-intensity exercise, such exercises are recommended for cardiac rehabilitation (Rogenmo et al., 2012). In the early years, most of the exercises were aerobic rehabilitation, but later resistance training was added. Aerobic exercise improves both mobility and cardio-respiratory fitness and daily activity in patients and effectively modulates cardiac risk factors. Strength training increases muscle strength and volume, it reduces the heart’s need for oxygen during exercise. Today, it is believed that if the patient is in a stable physical state, intermittent exercise has a greater effect on increasing VO2 max than continuing exercise and the extent of the effect is strongly dependent on exercise type (Rogenmo et al., 2002). 16 weeks of exercise that included 10 minutes warm-up and 30 minutes of continuous exercise with 65% heart rate reserve and resistance training and finally 10 minutes of cooling, compared to the intermittent exercise that included warming up then 2 minutes of vigorous exercise with 90% rhythm intensity and 2 minutes recovery with 40% rhythm intensity and cooling made a similar improvement in fitness. Intense intermittent exercise seems to be more effective in athletic rehabilitation and is less risky than moderate-intensity continuous exercise (Haykowski et al., 2007). Another reason for the discrepancy in the results of the reports may be related to the timing of rehabilitation exercise. The timing of the onset of exercise rehabilitation plays a role in the patient’s response to exercise, although not recommended in specific time studies but athletic rehabilitation usually begins 4-6 weeks after discharge (Warburton et al., 2002). The importance of aerobic exercise on muscles, the positive effects of exercise on cardiac rehabilitation appear to be related to improved athletic fitness and environmental mechanisms such as muscle function (Haykowski et al., 2007). One of the causes of early fatigue and disability in cardiac patients is the pathological and metabolic changes of the muscle fibers. Exercise improves these effects. Exercise regeneration enhances one’s functional capacity by activating physiological mechanisms such as greater oxygen uptake of blood, increased oxidative reaction efficiency, and increased cardiac output (Hanson et al., 1997). In women over 65 years of age with congestive heart failure, 10 weeks of resistance exercise three times a week prevents skeletal muscle myopathy caused by heart failure and increased the strength, endurance, and number of type I muscle fibers (Ellard & Larson, 1992). Increased functional ability after exercise rehabilitation may also be related to noncardiac factors such as improved oxidative and glycolytic function of the muscle cell and better oxygen depletion of the capillaries and improved vascular function (Smart et al., 2007). Activities that increase aerobic capacity have specific characteristics, including: alternating muscle relaxation and relaxation, especially large muscle groups, these exercises are known as endurance and cardiovascualr activities. In the early stages of the exercise program, walking has more benefits than other exercises (McGlowe et al., 1990). Studies of heart patients and healthy people have shown that: Rapid walking on a flat surface has a significant effect on gaining
training intensity up to 70% of maximal heart rate (Pollack et al., 2000). In cardiac patients, prolonged hospitalization or inactivity may decrease muscle mass, which reverses these effects of aerobic endurance training, increase the heart’s endurance against load pressures and because it increases the number of mitochondria and oxidative capacity, it reduces inflammation. Another effect of aerobic exercise is to increase blood volume, thereby increasing the volume of cardiac output and cardiac output and increasing blood distribution capacity in active muscles (Ding Wall et al., 2006). Studies have shown that when patients perform aerobic exercise several times a week, the size of the heart becomes significantly smaller and pumps blood better. Aerobic exercise reduces productive pressure (heart rate, systolic blood pressure) in patients, it also reduces ventilation during exercise and lowers lactate levels and reduces fatigue. On the other hand we can say that: Maximum oxygen consumption, which is one of the best methods for measuring exercise capacity in heart patients, Regular aerobic exercise increases the rate of 16 to 29 percent in the elderly (Qashqai et al., 2012). Studies examining exercise in patients with heart disease suggest that: Regular aerobic exercise is not only safe but can significantly improve your lifestyle (Mako et al., 2005). High-intensity exercise improves cardiac function and athletic ability. The type, severity, frequency, necessity of monitoring the fitness of the sport is specifically determined according to the patient’s symptoms (Riahi, 2016). Resistance exercises increase endurance and muscle strength (Carvalho et al., 2015). The benefits of strength training include the following:

 ✓ Increase in maximal muscle strength and endurance by 50% or more of training volume (Pollack et al., 2000).
 ✓ Improvement or delay in reducing bone mineral density or content (Tong et al., 2016).
 ✓ Increase in maximal training capacity, sub-maximal endurance and pressure perception during heavy sub-maximal exercise (Pina et al., 2003).
 ✓ Reduction of arterial pressure while increasing training muscle mass (Pollack et al., 2000).
 ✓ Improvements in tasks, especially in hand and foot ability (Fontes Carvalho et al., 2015).
 ✓ Improvement in quality of life parameters such as depression and anxiety, mood disturbances, fatigue and weakness, and emotional states (Anderson et al., 2016).

On the other hand, it should be noted that: Resistance exercises can be effective, safe and effective in improving cardiovascular function, modifying risk factors, and providing well-being for coronary artery disease patients and because increased muscle mass is associated with increased basal metabolic rate and increased energy return, it can decrease or stabilize body weight and reduce fatigue. They are therefore complementary to aerobic exercise (Karros et al., 2015).

Conclusion

Overall, it is concluded that exercise rehabilitation leads to a significant reduction in deaths and complications from heart disease. The type, intensity, and timing of the exercise are important factors that determine the extent of the effect of exercise rehabilitation. It is advisable to begin physical rehabilitation immediately after the patient’s physical condition has been established and in exercise protocol to get the most out of a combination of aerobic, resistance, and intense exercise. The frequency, duration and necessity of monitoring sessions are specifically determined by the severity of the symptoms and the patient’s condition and given the advantages mentioned in doing aerobic and resistance exercises, it can be concluded that spending a cardiac rehabilitation program in addition to providing lateral adjustments can be effective in reducing the risk factors of the disease, to enable cardiovascular patients to live faster and to perform daily activities without dependence on others.

References

1. Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med. 2001;345(12):892-902. DOI: 10.1056/NEJMra001529 PMID: 11565524.
2. American Association of Cardiovascular & Pulmonary Rehabilitation. AACVPR cardiac rehabilitation resource manual. Canada: Human Kinetics; 2006.
3. Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, et al. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J Am Coll Cardiol. 2016;67(1):1-12. DOI: 10.1016/j.jacc.2015.10.044 PMID: 26764059.
4. Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JA, et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology, the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. J Cardiopulm Rehabil Prev 2007; 27(3): 121-9.
5. Caruso FR, Arena R, Phillips SA, Bonjorno JC, Jr., Mendes RG, Arakelian VM, et al. Resistance exercise training improves heart rate variability and muscle performance: a randomized controlled trial in coronary artery disease patients. Eur J Phys Rehabil Med. 2015;51(3):281-9. PMID: 25384514.
6. Cerher T, Julan K, Alexander M. Acute physiological response to short -and long -stage high intensity interval exercise in cardiac rehabilitation A pilot study. Sport Med Sci. 2016;23:80-91.
7. Dakei Z, Hemmat Far A. Effect of resistance and endurance training protocols on functional capacity and quality of life in middle aged patients after myocardial infarction. Iran J Cardiovas Nurs. 2014;3(1):26-33.
8. Dingwall H, Ferrier K, Semple J. Exercise prescription in cardiac rehabilitation. Exercise Leadership Cardiac Rehabil West Sussex England Whurr Publishers Ltd. 2006:97-131.
9. Donker FJ, Caruso FR, Arena R. Rehabilitation benefits on physiological aspects in cardiac rehabilitation. In: Prevention Committee, the Council on Clinical Cardiology, the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. J Cardiopulm Rehabil Prev 2007; 27(3): 121-9.
10. Elward K, Larson EB. Benefits of exercise for older adults. A review of existing evidence and current recommendations for the general population. Clin Geriatr Med. 1992;8(1):35-50. PMID: 1576579.
11. Fontes-Carvalho R, Azevedo AI, Sampaio F, Teixeira M, Bettencourt N, Campos L, et al. The Effect of Exercise Training on Diastolic and Systolic Function After Acute Myocardial Infarction: A Randomized Study. Medicine (Baltimore). 2015;94(36):e1450. DOI: 10.1097/MD.0000000000001450 PMID: 26356698.
12. Ghashgaei FE, Sadeghi M, Yazdekhasti S. [A review of cardiac rehabilitation benefits on physiological aspects in patient with cardiovascular diseases Isfahan]. Res Rehabil Sci. 2012.
13. Giallauria F, Lucci R, Pietrosante M, Gargiulo G, De LA, D’Agostino M, et al Exercise-based cardiac rehabilitation improves heart rate recovery in elderly patients, it can acute myocardial infarction. J Gerontol A Biol Sci Med Sci 2006; 61(7): 713-7.
14. Goble AJ, Worcester MUC. Best Practice Guidelines for Cardiac Rehabilitation and Secondary Prevention. Available from URL: http://www.sign.ac.uk/guidelines/published/humliet.html.
A review of cardiac rehabilitation and exercise in cardiovascular disease

http://www.health.vic.gov.au/nhpa/downloads/bestin tr.pdf. 1999.

Goble AJ, Worcester MUC. Best Practice Guidelines for Cardiac Rehabilitation and Secondary Prevention. Available from: URL: http://www.health.vic.gov.au/nhpa/downloads/bestin tr.pdf. 1999.

Hanson P, Nagle F. Isometric exercise: cardiovascular responses in normal and cardiac populations. Cardiol Clin. 1987;5(2):157-70. PMID: 2884033.

Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;60(2):120-8. DOI: 10.1016/j.jacc.2012.02.055 PMID: 22766328.

Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAulester FA, Clark AM. A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol. 2007;49(24):2329-36. DOI: 10.1016/j.jacc.2007.02.055 PMID: 17572248.

Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA, Clark AM. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol. 2013;111(10):1466-9. DOI: 10.1016/j.amjcard.2013.01.303 PMID: 2343767.

Jehn M, Schmidt- Truckass A, Schuster T, Weis M, Hanssen H, Halle M, et al. Daily walking performance as an independent predictor of advanced heart failure: Prediction of exercise capacity in chronic heart failure. J Am Coll Cardiol. 2009;53(2):172-8.

Jolliffe JA, Rees K, Taylor RS, Thompson D, Oldridge N, Ebrahim S. Exercise training for chronic heart disease: a Cochrane systematic review and meta-analysis of randomized controlled trials. Circ. 2012;126(25):e166-74. DOI: 10.1161/CIR.0b013e3182745499.

Lloyd-Williams F, Mair FS, Leitner M. Exercise training and heart failure: a systematic review of current evidence. Br J Gen Pract. 2000;50(474):47-55. PMID: 11798186.

Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005;36(10):2206-11. DOI: 10.1161/01.STR.0000181076.91985.9F PMID: 16151305.

McCartney N, Mckelvie RS. The role of resistance training in patients with cardiac disease. J Cardiovasc Risk. 1996;3(2):160-6. PMID: 8856857.

Mckelvie RS, McCarney N. High intensity interval training in cardiac patients. Considerations. Sports Med. 1990;10(6):355-64. PMID: 2291031.

Neves A, Alves AJ, Ribeiro F, Gomes JL, Oliveira J. The effect of cardiac rehabilitation with relaxation therapy on psychological, hemodynamic, and hospital admission outcome variables. J Cardiopulm Rehabil Prev 2009; 29(5):304-9.

Newby LK, Eisenstein EL, Califf RM, Thompson TD, Nelson CL, Peterson ED, et al. Cost effectiveness of early discharge after uncomplicated acute myocardial infarction. N Engl J Med 2000; 342(11):749-55. DOI: 10.1056/NEJM200004203421612 PMID: 10567383.

O’Connor GT, Buring JE, Yusuf S, Goldhaber SZ, Olmstein EM, Paffenbarger RS Jr., et al. An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation. 1989;80(2):234-44. PMID: 2665973.

Pitcairn IL, Apstein CS, Balady GJ, Bolardini R, Chartman BR, Duscha BD, et al. Exercise and heart failure: A statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation. 2003;107(8):1210-25. DOI: 12615804. Anderson L, Oldridge N, Thompson DR, Zwiers AD, Rees K, McKenna N, et al. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J Am Coll Cardiol. 2016;67(1):1-12. DOI: 10.1016/j.jacc.2015.10.044 PMID: 26764059.

Pollock ML, Franklin BA, Balady GJ, Chartman BL, Fleg JL, Fletcher GF, Pescatello LS. American Heart Association. Exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation. 2000;101(7):822-33. PMID: 10683360.

Riahi S, Mohammadi MT, Sobhani V, Abazadeh S. Chronic Aerobic Exercise Decreases Lectin-Like Low Density Lipoprotein (LOX-1) Receptor Expression in Heart of Diabetic Rat. Iran Biomed. J. 2016;20(1):26-32. PMID: 26432573.

Riahi S, Mohammadi MT, Sobhani V, Soleimany M. Chronic effects of aerobic exercise on gene expression of LOX-1 receptor in the heart of rats fed with high fat diet. Iran J Basic Med Sci. 2015;18(8):805-12. PMID: 26557970.

Riyahi, Smin. (2016). Athletic Rehabilitation in Heart Disease: A Systematic Review Study, Journal of Health Research, Volume I, Number 4. p. 245-.

Roguno O, Moholdt T, Bakken H, Hole T, Molstad P, Myhr NE, et al. Cardiovascular risk of high-intensity aerobic exercise in coronary heart disease patients. Circulation. 2012;126(12):1436-40. DOI: 10.1161/CIRCULATIONAHA.112.123117 PMID: 22879367.
41. Saeidi M, Rabiei K. Cardiac rehabilitation in patients with diabetes mellitus. ARYA Atherosclerosis 2005; 1(3): 202-6.

42. Samavati Sharbof Mohammad Ali, Chazani Sharif, Asadallah Siavash, Hojjat. The Effect of Three Selected Exercise Exercises on Some Cardiovascular Risk Factors in Football Adolescents. Sadra Journal of Medical Sciences, Volume 6, Number 2, pp. 150 - 137.

43. Shahani R, Gaeini AA, Nikoo MR, Nikbackt H, Sadegifar M. Effect of cardiac rehabilitation program on exercise capacity in women undergoing coronary artery bypass graft in hamadan-iran. Int J Prev Med. 2010;1(4):247-51. PMID: 21566780.

44. Smart N, Haluska B, Jeffriess L, Marwick TH. Exercise training in systolic and diastolic dysfunction: effects on cardiac function, functional capacity, and quality of life. Am Heart J. 2007;153(4):530-6. DOI: 10.1016/j.ahj.2007.01.004 PMID: 17383289.

45. Steki Ghashghaei F, Taghian F, Najafian J, Marandi M, Ramezani MA, Moastafavi S, et al. Effect of cardiac rehabilitation on functional capacity of patients after cardiac surgery by assessing 6-minute walking test. ARYA Atherosclerosis Journal 2010; 5(4): 147-51.

46. Szt W, Zajac J, Kubinyi A, Kostkiewicz M. The effects of cardiac rehabilitation on overall physical capacity and myocardial perfusion in women with microvascular angina. Kardiol Pol. 2016;74(5):431-8. DOI: 10.5603/KP.a2015.0198 PMID: 26412475.

47. Tang LH, Zwisler AD, Taylor RS, Doherty P, Zangger G, Berg SK, et al. Self-rating level of perceived exertion for guiding exercise intensity during a 12-week cardiac rehabilitation programme and the influence of heart rate reducing medication. J Sci Med Sport. 2016;19(8):611-5. DOI: 10.1016/j.jsams.2015.08.004 PMID: 26410665.

48. Warburton DE, McKenzie DC, Haykowsky MJ, Taylor A, Shoemaker P, Ignaszewski AP, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 2005;95(9):1080-4. DOI: 10.1016/j.amjcard.2004.12.063 PMID: 15842976.

49. Whyte GP, George K, Sharma S, Lumley S, Gates P, Prasad K, et al. Cardiac fatigue following prolonged endurance exercise of differing distances. Med Sci Sports Exerc. 2000;32(6):1067-72 PMID: 10862531.

50. Wisloff U, Stoylen A, Loennechen JP, Bnvol M, Roggmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007; 115(24): 3086-94.