Supplemental Material

Systematic Characterization of A-to-I RNA Editing Hotspots in MicroRNAs across Human Cancers

Table of contents:

Supplemental Figures
Supplemental Fig S1. Over expression of ADAR1 and ADAR2 in Hs578T, 786O and HeyA8 cell lines ..2
Supplemental Fig S2. The editing levels of 15 validated A-to-I editing hotspots in 20 cancer types3
Supplemental Fig S3. The correlations of miRNA editing level with WT miRNA expression across different cancer types ..4
Supplemental Fig S4. The correlations of miRNA editing levels with significantly mutated genes and copy number alterations in different cancer types ...5
Supplemental Fig S5. Correlation of ADAR mRNA expression with patient survival times6
Supplemental Fig S6. Quantitative assessment of transfected miR-200b expression amount in cell lines ..7
Supplemental Fig S7. Effects of miR-200b mimics on cell viability in MCF10A, MDAMB-231 and SLR25 cells ..8
Supplemental Fig S8. Effect of wild-type miR-200b on target gene ZEB2 ..9
Supplemental Fig S9. Correlations of LIFR with patient survival times in different cancer types10
Supplemental Fig S10. Correlation between edited miR-200b expression level and LIFR expression across cancer types ...11

Supplemental Tables
Supplemental Table S1. Overview of TCGA miRNA sequencing data ..12
Supplemental Table S2. Summary of high-confidence RNA editing events and RNA editing hotspots13
Supplemental Table S3. Information about 19 A-to-I RNA editing hotspots identified in miRNAs.....15
Supplemental Table S4. Validation of the correlations of miRNA editing level with ADAR2 enzymes using a miRNA-seq dataset of ADAR2-perturbed cell lines ...16
Supplemental Table S5. List of potential new targets of edited miR-200b ...17
Supplemental Table S6. List of 3’UTR binding sites of wild-type and edited miR-200b to their target genes ZEB1, ZEB2, and LIFR ..18
Supplemental Fig S1. Overexpression of ADAR1 and ADAR2 in 3 cell lines. Western blot of ADAR enzymes overexpression in Hs578T, 786O and HeyA8 cell lines (NC: negative control, WT: wild-type, MUT: mutated).
Supplemental Fig S2. The editing levels of 15 validated A-to-I editing hotspots in 20 cancer types.
Each box plot represents the average editing level of a miRNA editing hotspot across the edited samples within a cancer type.
Supplemental Fig S3. The correlations of miRNA editing level with WT miRNA expression across different cancer types. Color depicts the correlation coefficient, and black box highlights correlations that are significant (FDR < 0.05).
Supplemental Fig S4. The correlations of miRNA editing levels with significantly mutated genes and copy number alterations in different cancer types

(A) miRNAs are depicted in orange, and mutated genes are in red or blue. Given a mutated gene, the edge color reflects the fold-change direction of the mean miRNA editing level in the mutated sample group relative to the wild-type sample group: red, increase; and blue, decrease. Color of each gene node reflects the fold change (log transformed). The specific cancer types showing the significant correlations are listed below gene names. (B) correlations of miRNA editing hotspots with frequent SCNAs. Red for positive correlations and blue for negative correlations.
Supplemental Fig S5

Supplemental Fig S5. Correlations of ADAR mRNA expression with patient survival times
Dot size depicts log-rank P value, and color represents the correlation direction (os = overall survival; pfs = progression free survival).
Supplemental Fig S6

(A) The over-expression amounts of miR-200b upon 24-hr transfection with 50nm wide-type miR-200b mimics in MCF10A, MDAMB-231 and SLR25 cell lines by qRT-PCR. The expression amounts transfected with negative controls were set as 1.

(B) The expression amount distribution of wide-type miR-200b (RPM) in all TCGA patient cancer samples. The expression amount of miR-200b in MDAMB-231 was calculated based on a miRNA sequencing dataset (NCBI SRA SRX004030) using the same analytic procedure. The arrow indicates the fold increase of miR-200b expression in MDAMB-231 relative to the highest expression level observed among patients.

Supplemental Fig S6. Quantitative assessment of transfected miR-200b expression amount in cell lines

(A) The over-expression amounts of miR-200b upon 24-hr transfection with 50nm wide-type miR-200b mimics in MCF10A, MDAMB-231 and SLR25 cell lines by qRT-PCR. The expression amounts transfected with negative controls were set as 1. (B) The expression amount distribution of wide-type miR-200b (RPM) in all TCGA patient cancer samples. The expression amount of miR-200b in MDAMB-231 was calculated based on a miRNA sequencing dataset (NCBI SRA SRX004030) using the same analytic procedure. The arrow indicates the fold increase of miR-200b expression in MDAMB-231 relative to the highest expression level observed among patients.
Supplemental Fig S7.

Effects of miR-200b mimics on cell viability in MCF10A, MDAMB-231 and SLR25 cells

Two-sided t-test was used to assess the difference. Error bars denote +/- SEM; *$p < 0.05$; **$p < 0.01$; ***$p < 0.001$.

Supplemental Fig S7
Supplemental Fig S8

(A) **p < 0.001.

(B) Negative control

Supplemental Fig S8. Effect of wild-type miR-200b on target gene ZEB2
(A) 3' UTR representations of WT miR-200b target genes ZEB1; (B) qRT-PCR of ZEB2 upon 24-hr transfection with WT miR-200b mimics in MCF10A, MDAMB-231 and SLR25 cells. Two-sided t-test was used to assess the difference. Error bars denote +/- SEM; *p < 0.05; **p < 0.01; ***p < 0.001.
Supplemental Fig S9

(A) Summary of correlations between LIFR mRNA expression and patient survival times across cancer types. Circle size indicates statistical significance; color indicates correlation direction. In general, high expression of miR-200b is associated with better patient survival. (B) Kaplan-Meier plots of patients grouped by LIFR mRNA expression in individual cancer types.
Supplemental Fig S10. Correlation between edited miR-200b expression level and LIFR expression across cancer types

We used edited miR-200b expression (log₂RPM) and the corresponding LIFR mRNA expression level (log₂RSEM) to evaluate their correlation. Each dot represents a sample; different colors depict different cancer types. A significant negative correlation was detected by both Spearman rank correlation ($Rs = -0.189, p = 0$); and two-factor ANOVA test, with the cancer type being the fixed effect and miR-200b being an independent variable ($p = 4.3\times10^{-4}$).
Supplemental Table S1. Overview of TCGA miRNA sequencing data.

TCGA code	Cancer type	# Sample	Tumor sample	Normal sample	Average tumor mappable reads (millions)	Average normal mappable reads (millions)	# Confident A-to-I editing events
BLCA	Bladder	414	395	19	5.96 ± 3.85	15.39 ± 9.99	929
BRCA	Breast	890	801	89	3.76 ± 2.74	3.80 ± 2.49	2021
CESC	Cervical	301	298	3	5.33 ± 2.46	15.3 ± 1.74	682
COAD	Colon	399	391	8	4.48 ± 3.82	1.22 ± 0.36	883
HNSC	Head and neck	562	518	44	5.05 ± 2.34	6.34 ± 2.13	1189
KICH	Kidney (chromophobe)	90	65	25	6.35 ± 1.60	8.08 ± 2.25	103
KIRC	Kidney (clear)	587	516	71	3.57 ± 2.41	3.73 ± 1.39	1032
KIRP	Kidney (papillary)	325	291	34	6.74 ± 2.94	9.00 ± 2.64	551
LAML	Leukemia	188	188	0	0.85 ± 0.31	NA	311
LGG	Low-grade glioma	511	511	0	2.41 ± 1.08	NA	2620
LIHC	Liver	421	371	50	5.12 ± 2.27	5.53 ± 1.61	935
LUAD	Lung (adeno)	529	483	46	5.47 ± 2.73	5.99 ± 2.75	1250
LUSC	Lung (squamus)	519	474	45	3.83 ± 2.10	8.22 ± 2.88	1137
OV	Ovarian	489	489	0	4.01 ± 1.99	8.34 ± 4.70	976
PRAD	Prostate	545	493	52	6.71 ± 3.56	NA	1233
READ	Rectum	160	157	3	5.32 ± 4.17	1.10 ± 0.34	347
SKCM	Melanoma	100	98	2	4.20 ± 2.24	1.94 ± 0.11	219
STAD	Stomach	430	389	41	5.31 ± 4.16	9.70 ± 6.57	879
THCA	Thyroid	587	518	69	5.65 ± 2.09	7.16 ± 2.12	1057
UCEC	Uterus	548	515	33	5.12 ± 3.74	16.69 ± 7.57	1092
Total		8595	7961	634	4.76 ± 7.50	7.50 ± 19446	19446
Supplemental Table S2. Summary of high-confidence RNA editing events and RNA editing hotspots

Tumor Type	#RNA editing events	#RNA editing hotspots
BRCA		
AG	929	5
AC	355	16
UA	153	1
GU	28	2
CU	25	1
UG	16	1
CEC		
AG	2021	7
UA	81	1
AC	58	3
CU	23	1
GU	11	1
COAD		
AG	682	3
UA	107	1
AC	27	1
HNSC		
AG	1189	3
AC	801	20
GU	499	15
UA	66	1
KICH		
AG	103	2
GU	13	1
KIRC		
AG	1032	5
UA	24	1
CU	11	1
UG	301	1
LAML		
AG	311	3
LGG		
AG	2620	14
AC	760	44
UA	171	1
GU	32	1
UG	21	1
CU	18	1
UC	15	1
LIHC		
AG	935	7
GU	236	18
AC	199	11
UA	105	1
LUAD		
AG	1250	7
AC	1141	22
GU	591	15
UA	43	1
LUSC		
AG	1137	6
AC	535	15
GU	259	11
UA	49	1
OV		
AG	976	5
GC	282	1
CU	59	2
UG	30	1
UA	11	1

Tumor Type	#RNA editing events	#RNA editing hotspots
KIRP		
AG	551	4
AC	239	12
GU	214	11
UA	96	1
LAML		
AG	311	3
LGG		
AG	2620	14
AC	760	44
UA	171	1
GU	32	1
UG	21	1
CU	18	1
UC	15	1
LIHC		
AG	935	7
GU	236	18
AC	199	11
UA	105	1
LUAD		
AG	1250	7
AC	1141	22
GU	591	15
UA	43	1
LUSC		
AG	1137	6
AC	535	15
GU	259	11
UA	49	1
OV		
AG	976	5
GC	282	1
CU	59	2
UG	30	1
UA	11	1
TCGA	#RNA editing events	#RNA editing hotspots
-------	---------------------	-----------------------
PRAD		
AG	1233	4
UA	301	1
AC	177	10
CU	139	2
READ		
AG	347	3
AC	28	1
SKCM		
AG	219	4
UA	33	1
UC	28	1
GC	17	1
GU	10	1
STAD		
AG	879	3
UA	152	1
AC	126	5
CA	54	3
UC	13	1
THCA		
AG	1057	6
AC	537	23
UA	71	1
GU	36	2
UC	35	1
UCEC		
AG	1092	4
AC	106	7
UA	44	1
GU	20	2
Supplemental Table S3. Information about 19 A-to-I RNA editing hotspots identified in miRNAs

miRNA	Edited sequence	Cross mapping	Edited seed region	Shared seed region with miRNA
hsa-miR-376a-5p	guggauucuccuucuaugagua	No	uggauuc	No
hsa-miR-381-3p	uaugcaagggcaagcucucugu	No	augcaag	No
hsa-miR-411-5p	uaguggacguauagcguacg	No	aguggac	No
hsa-miR-99a-5p	gacccguagauccgaucuugug	No	accgua	not in seed region
hsa-miR-379-5p	ugguggacuaugacguagg	No	gguggac	hsa-miR-8071
hsa-miR-376c-3p	aacauggagaaauuccacgu	No	acaugga	hsa-miR-4802-3p
hsa-miR-589-3p	ucagagcaaagccguucccaga	No	cagacga	hsa-miR-6501-3p
hsa-miR-664a-5p	acuggcugggaaaauguuggau	No	cuggcug	hsa-miR-3064-5p
hsa-miR-497-5p	cggcagcCACACACUGGUUUGU	No	gccagca	No
hsa-miR-151a-3p	cuggacugaagcuccuuggagg	No	uggacug	hsa-miR-1269a
hsa-miR-200b-3p	uaaugcugcccucuuaugaga	No	aaugcug	No
hsa-miR-3144-3p	auguaccuuucguucuuaua	No	uguaccu	No
hsa-miR-1301-3p	uugcgccuggccuggagucuuc	No	ugcggcu	No
hsa-miR-1251-5p	acucugccugccaaagcgcgu	No	cucuggc	No
hsa-miR-6503-3p	gggacugggaugcagaccucc	No	ggacugg	hsa-miR-4515
hsa-miR-1295b-3p	aauaggccgcaugcagggcaaa	No	auaggcc	not in seed region
hsa-miR-337-3p	cucucuguauagccuucuuc	No	uccugua	No
hsa-miR-1304-3p	ucucgcuguauccccuagccccc	No	cucgcug	No
hsa-miR-3622a-3p	ugcaccugccuaccuaccuacc	No	gcaccuaga	hsa-miR-6078
Supplemental Table S4. Validation of the correlations of miRNA editing level with ADAR2 enzymes using a miRNA-seq dataset of ADAR2-perturbed cell lines

miRNA	Editing site	TCGA LGG	U87 cell line	U118 cell line					
		Correlation Coefficient	FDR	control	ADAR2 over - expression	control	ADAR2 over - expression	ADAR2 E/A	siADAR2
miR-99a	1	0.64	0	0	0.786	0	13.815	0	6.913
miR-379	5	0.51	0	NE	NE	NE	NE	NE	NE
miR-497	2	0.42	8.36E-22	0	1.058	0	25.862	0	16.245
miR-411	5	0.37	2.53E-16	0	2	NE	13.26	NE	5.882
miR-1301	5	0.33	9.58E-14	0	NE	0	9.524	0	0
miR-1251	6	0.31	5.79E-11	NE	NE	NE	NE	NE	NE

The editing levels (%) in two glioblastoma cell lines U87 and U118 were presented for 6 miRNA editing hotspots that show significantly strong correlation (FDR < 0.05, spearman correlation Rs ≥ 0.3) with ADAR2 enzyme in TCGA LGG patient samples. ADAR2 E/A is the inactive form of ADAR2. “NE” depicts sites with not enough coverage (< 10) to quantify the editing level.
Supplemental Table S5. List of potential new targets of edited miR-200b

Gene	Transcript	# Match to wt miR-200b	# Match to edited miR-200b	FDR	Log2 fold change
LIFR	NM_002310	0	2	2.05E-12	0.940541692
RAB5C	NM_004583	0	2	7.05E-12	1.045945875
MFAP3	NM_005927	0	2	1.34E-11	1.178306516
LIN9	NM_173083	0	2	1.28E-10	1.418951397
MARCH6	NM_005885	0	4	2.66E-10	0.966610739
GINS1	NM_021067	0	2	2.66E-10	0.823375314
SLC12A6	NM_005135	0	2	1.93E-09	0.976012095
BTBD3	NM_014962	0	2	2.02E-09	1.224580566
CSRP2	NM_001321	0	2	1.65E-08	1.173966876
C15orf41	NM_032499	0	3	1.02E-07	0.923243231
SUN1	NM_025154	0	2	1.49E-07	0.76629024
PDS5A	NM_001100399	0	3	1.97E-07	1.066848588
ARL5B	NM_178815	0	2	2.48E-07	0.880867339
SNX13	NM_015132	0	2	1.23E-06	0.753840947
IL13RA1	NM_001560	0	2	1.47E-06	0.691503253
ZSCAN31	NM_030899	0	2	3.54E-06	0.814574932
TRPC1	NM_003304	0	2	5.13E-06	1.08040322
FAR1	NM_032228	0	2	5.38E-06	0.960681537
RUNDC1	NM_173079	0	2	1.01E-05	0.697887552
Supplemental Table S6. List of 3’UTR binding sites of wild-type and edited miR-200b to their target genes ZEB1, ZEB2, and LIFR.

Target Gene	3’UTR binding sites
ZEB1	
	357…GTTTTATCTTATCGTATTA…376
	451…CTAAATCCGCTTCAGTATTT…470
	880…AGTGCCATTTCCTCGATTT…899
	1231…ATTTTTACCTATCGTATTA…1250
	1301…CTTCAAAACCTGGCAGTATTA…1320
	1952…TTTCATCATTACGATTT…1971
ZEB2	
	380…ACTACCATACTACGATTT…399
	443…ACTACAAATGCATCAGTATTA…462
	801…AACGCCCATGTGAGTATTTG…820
	886…CATTAATTTCACCAGTATTA…905
	1017…TACTGTAGTGTACGATTT…1036
LIFR	
	500…CTCCTCTATCCACACGATTC…519
	3255…CATTTTCCAAAAACCGATTT…3274