Differential Modulation of SERCA2 Isoforms by Calreticulin

Linu M. John,* James D. Lechleiter,‡ and Patricia Camacho§
*Department of Biomedical Engineering, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908;
†Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245; and ‡Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284

Abstract. In Xenopus laevis oocytes, overexpression of calreticulin suppresses inositol 1,4,5-trisphosphate-induced Ca\(^{2+}\) oscillations in a manner consistent with inhibition of Ca\(^{2+}\) uptake into the endoplasmic reticulum. Here we report that the alternatively spliced isoforms of the sarcoplasmic reticulum Ca\(^{2+}\)·ATPase (SERCA)2 gene display differential Ca\(^{2+}\) wave properties and sensitivity to modulation by calreticulin. We demonstrate by glucosidase inhibition and site-directed mutagenesis that a putative glycosylated residue (N1036) in SERCA2b is critical in determining both the selective targeting of calreticulin to SERCA2b and isoform functional differences. Calreticulin belongs to a novel class of lectin ER chaperones that modulate immature protein folding. In addition to this role, we suggest that these chaperones dynamically modulate the conformation of mature glycoproteins, thereby affecting their function.

Key words: calreticulin • Ca\(^{2+}\)·ATPases • Ca\(^{2+}\) waves • confocal imaging • ER lectin chaperones

Calreticulin, calnexin, and calmegin represent a novel class of lectin chaperones that modulate protein folding in the ER, ensuring that immature polypeptides achieve their correct mature folding conformation. Selective targeting of calreticulin to SERCA2b and isoform functional differences. Calreticulin belongs to a novel class of lectin ER chaperones that modulate immature protein folding. In addition to this role, we suggest that these chaperones dynamically modulate the conformation of mature glycoproteins, thereby affecting their function.

Key words: calreticulin • Ca\(^{2+}\)·ATPases • Ca\(^{2+}\) waves • confocal imaging • ER lectin chaperones

Address all correspondence to Patricia Camacho, Ph.D., Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284-7756. Tel.: (210) 567-6558; Fax: (210) 567-4410. E-mail: camacho@uthscsa.edu

Abbreviations used in this paper: DNJ, deoxynojirimicin; GFP, green fluorescent protein; IP\(_{3}\)R, Inositol 1,4,5-trisphosphate receptor; SERCA, Sarco endoplasmic reticulum calcium ATPase.
two- to threefold increase in the frequency of Ca\(^{2+}\) waves (Camacho and Lechleiter, 1993; Camacho and Lechleiter, 1995). Three genes encode a family of structurally related Ca\(^{2+}\)-ATPases (MacLennan et al., 1985; Brandl et al., 1986; Guntesski-Hamblin et al., 1988; Lytton and MacLennan, 1988; Burk et al., 1989). By overexpressing SERCA isoforms in COS cells, Lytton and coworkers demonstrated that all SERCAs are activated by a rise in cytosolic Ca\(^{2+}\), and that isoforms differ in their sensitivity to Ca\(^{2+}\) (Lytton et al., 1992). SERCA3, a selectively expressed isoform (Wu et al., 1995), is the least sensitive to Ca\(^{2+}\) (\(K_d \sim 1\ \mu M\)), while SERCA1, the skeletal muscle isoform (Wu et al., 1995), has an intermediate sensitivity (\(K_d \sim 400\) nM). The SERCA2 gene produces two alternatively spliced products that differ in their Ca\(^{2+}\) sensitivity, turnover rates of Ca\(^{2+}\) transport, and ATP hydrolysis (Lytton et al., 1992; Verboomen et al., 1992; Verboomen et al., 1994). SERCA2a, the cardiac isoform (Wu et al., 1995), has an intermediate sensitivity to cytosolic Ca\(^{2+}\) (\(K_d \sim 400\) nM), and is functionally indistinguishable from SERCA1 (Lytton et al., 1992). In contrast, the SERCA2b isoform, which is expressed in all nonmuscle cells (Wu et al., 1995), has the highest sensitivity to Ca\(^{2+}\) (\(K_d \sim 200\) nM) and the lowest transport capacity of all SERCAs (Lytton et al., 1992). In the present study, we report functional differences in terms of Ca\(^{2+}\) wave properties when either SERCA2a or SERCA2b isoforms are overexpressed. Unlike SERCA2a, SERCA2b has an additional 46 amino acids at its COOH terminus (Guntesski-Hamblin et al., 1988). Thus, unlike all other members of this family of Ca\(^{2+}\)-ATPases, SERCA2b has an additional eleventh transmembrane segment that places its COOH terminus in the ER lumen (Bayle et al., 1995). In this COOH terminus, asparagine residue N1036 forms part of a glycosylation consensus signal. Recent evidence suggests that this residue may be glycosylated (Bayle et al., 1995).

We have previously demonstrated that calreticulin over-expression in *Xenopus laevis* oocytes modulates IP\(_3\)-mediated Ca\(^{2+}\) release. This modulation is characterized by a sustained elevation in cytosolic Ca\(^{2+}\) without repetitive oscillations in Ca\(^{2+}\) release (Camacho and Lechleiter, 1995). Even in those oocytes that display Ca\(^{2+}\) oscillations, the latter are of lower amplitude and frequency (Camacho and Lechleiter, 1995). Modulation of Ca\(^{2+}\) release by calreticulin survives despite deletion of the high-capacity/low-affinity Ca\(^{2+}\) binding domain (\(\Delta C\) mutant), suggesting that high-capacity Ca\(^{2+}\) buffering by calreticulin is not responsible for inhibition of Ca\(^{2+}\) oscillations. The \(\Delta C\) mutant contains both the N- and P-domains of calreticulin (Michalak et al., 1992; Camacho and Lechleiter, 1995). The proline-rich P-domain, which is responsible for lectin activity (Krause and Michalak, 1997), is shared with calnexin and calmegin (Ohsako et al., 1994; Tjoelker et al., 1994; Watanabe et al., 1994). Here we test the hypothesis that calreticulin inhibits IP\(_3\)-mediated Ca\(^{2+}\) oscillations by interacting with the putative glycosylated residue at the COOH terminus of SERCA2b, thereby modulating the folding state, and thus Ca\(^{2+}\) uptake by SERCA2b. Since SERCA2a lacks this luminal COOH terminus, we test the hypothesis that differences in Ca\(^{2+}\) uptake between the two isoforms are due to an interaction with calreticulin. By pharmacologically inhibiting glucosidases, we implicate the lectin activity of calreticulin in modulating Ca\(^{2+}\) pump activity of SERCA2b. Furthermore, by site-directed mutagenesis we demonstrate that the residue N1036 of SERCA2b is critical in determining the functional differences between the products of the SERCA2 gene.

**Materials and Methods**

**Expression Vector Construction**

All cDNAs were subcloned between the 5’ and 3’ untranslated regions of *Xenopus laevis* β-globin as previously described (Camacho and Lechleiter, 1995). To overexpress SERCA2a, we used PCR to amplify the full open-reading frame from the cDNA encoding rat SERCA2a (Guntesski-Hamblin et al., 1988; clone RS 8-17, gift of G. Shull, University of Cincinnati College of Medicine, Department of Microbiology and Molecular Genetics). The forward primer in the PCR reaction had the sequence 5’-ATGCGGAGTCCGCCATGGAAGCCTCAACAAGAGCCG-3’ and encoded for a BamHI site at the NH\(_2\) terminus, while the reverse primer with the sequence 5’-TCTGAGCTCGTCTACTCAGTATGCGACC-3’ incorporated a HindIII site at the 3’ end of the SERCA2a-encoding cDNA. After amplification, the PCR product was gel-isolated, digested with BamHI and HindIII, and subcloned into the vector pGEM-HE Not. Because the plasmid RS 8-17 encoding SERCA2a had a missing adenosine (nucleotide 1490) that would create an open reading frame shift at the NH\(_2\) terminus, the fragment BamHI-ECORI was substituted with the identical fragment from SERCA2b. Since the cDNAs encoding SERCA2a and SERCA2b are identical until nucleotide 3,484, the resulting plasmid pHN-SERCA2a contains the cDNA encoding SERCA2a between the 5’ UT and the 3’ UT of *Xenopus laevis* β-globin. DNA sequencing was used to corroborate the addition of the missing adenosine nucleotide. The construction of *Xenopus* expression vectors for ΔC and SERCA2b has previously been described (Camacho and Lechleiter, 1995).

A general-purpose *Xenopus* expression vector encoding a fusion of GFP with any desired cDNA was made as follows: on the first round of construction, the EcoRI fragment from pRSETB-GFP S65T (gift of R. Tsien, University of California San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA) was subcloned into plasmid pGEM-HE-Not digested with EcoRI treated with calf intestinal phosphatase (Boehringer Mannheim Corp., Indianapolis, IN) to dephosphorylate the ends. The resulting plasmid pHN-GFP-S65T contains the GFP (S65T) mutant and multiple cloning sites (MCS) from pRSETB. In the second round of construction, we used this template to PCR-amplify GFP-S65T without a stop codon. The forward primer used in the PCR reaction had the sequence 5’-ATGCGGAGTCTGGTACCCAGCTTGCTTGTTC-3’, while the reverse primer with the sequence 5’-GAGCTCGAATTCCTGTTTTCCAGTTTATAGATTTCACTACCATGCC-3’ contains the last seven amino acids at the COOH terminus of GFP (except the stop codon) followed by the BamHI site, SfiI, and Xhol restriction sites from the MCS of pRSETB. The amplified PCR fragment GFP-S65T without the stop codon was digested with EcoRI gel-isolated, and subcloned into plasmid pGEM-HE-Not. This vector called pHN-GFP-S65T (\(\Delta\)AA) was sequenced to corroborate deletion of the stop codon, and was used to prepare the fusion constructs of GFP (S65T) at the NH\(_2\) terminus of SERCA2a, SERCA2b, and the SERCA2bN1036A. A BamHI fragment from pHN-GFP-S65T(\(\Delta\)AA) containing the GFP (S65T) minus the stop codon was subcloned into pHN-GFP-SERCA2a previously digested with BamHI, and was treated with calf intestinal phosphatase. Thus, the cDNA encoding GFP-S65T(\(\Delta\)AA) would be fused in frame with the SERCA2a cDNA. The analogous procedure was followed in the construction of pHN-GFP-S65T(SERCA2b as well pHN-GFP-S65T-S2bN1036A.

**In Vitro Transcriptions and Oocyte Protocols**

Synthetic mRNA was prepared as previously described (Camacho and Lechleiter, 1995). In brief, plasmids were linearized with NotI (restriction enzymes from Gibco BRL, Gaithersburg, MD) except for plasmid pHN-\(\Delta\)C, which was linearized with NheI. Transcription from the T7 promoter was carried out using reagents from the Megascript\textsuperscript{TM} high-yield transcription kit and capped with m\(^{5}\)ppp(5\(^{\prime}\)) (both from Ambion, Austin, TX). All synthetic mRNAs were resuspended at a concentration of 1.5-2.0 µg/µl and stored in aliquots of 3 µl at −80°C until used. Stage VI-defolliculated oocytes were injected with a 50-nl bolus of mRNA using a standard positive pressure injector (Nanoject; Drummond Scientific Co.,

*The Journal of Cell Biology, Volume 142, 1998*
To compare the modulation of IP3-mediated Ca2+ release by SERCA2a and SERCA2b, we overexpressed each isoform by injecting synthetic mRNAs (50 nl, 2 μg/μl) into Xenopus laevis oocytes (cDNAs encoding rat SERCAs; Gunteski-Hamblin et al., 1988). Confocal imaging of Ca2+ wave activity was performed 5–7 d later as previously described (Camacho and Lechleiter, 1995). In control oocytes (H2O replacing mRNA), IP3 injection (∼300 nM final) initiates a tidal wave of Ca2+ release that envelopes the entire oocyte, and is followed by low-frequency oscillations (Camacho and Lechleiter, 1993; Camacho and Lechleiter, 1995). In contrast, similar injections of IP3 into oocytes overexpressing SERCA2a isoforms result in high-frequency Ca2+ waves (shorter period between waves) without an initial Ca2+ tide. Confocal images of intracellular Ca2+ release for two oocytes overexpressing either SERCA2a or SERCA2b obtained at low magnification are shown in Fig. 1a (a 10× objective, top). Ca2+ wave profiles in SERCA2b-overexpressing oocytes (n = 30) are characterized by broad wave widths and sharply delineated wave fronts. In contrast, the wave profiles in SERCA2a-overexpressing oocytes (n = 19) have shorter wave widths, and the leading wave fronts are poorly delineated. These differences in individual Ca2+ wave characteristics are more clearly observed at a higher magnification (40× objective) in oocytes overexpressing either SERCA2a (n = 4) or SERCA2b (n = 4; Fig. 1a, bottom). Immunofluorescence images with a SERCA-specific antibody shows that both Ca2+-ATPases are targeted to the same yolk-free ER corridors in the oocyte (Fig. 1b). The immunofluorescence pattern is identical in SERCA2a and SERCA2b-overexpressing oocytes. A control oocyte (H2O
replacing mRNA injection) also demonstrates a similar pattern of low-intensity cross-reactivity of the anti-rat SERCA antibody with the endogenous Xenopus Ca\(^{2+}\) ATPases (Fig. 1 b, lower left). Western blot analysis reveals that the SERCA2 isoforms are overexpressed at roughly equivalent levels (Fig. 1 c). Since quantitation of expression levels by Western blotting is not very precise, we incorporated a fluorescent tag into either SERCA2a or SERCA2b so that Ca\(^{2+}\) wave properties could be compared in oocytes expressing equivalent levels of exogenous pumps. To this end we labeled each SERCA2 isoform with the green fluorescent protein (GFP) S65T mutant (Heim et al., 1995). GFP tagging at the NH\(_1\) terminus was the preferred strategy since the sequence differences between the two isoforms reside at the COOH terminus (Fig. 2 a). In these fusion constructs and according to accepted topological maps of SERCA proteins (Clarke et al., 1990; Bayle et al., 1995), GFP is expected to face the cytosol. The resulting fusion constructs were expressed in the oocyte by injecting synthetic mRNAs encoding GFP-SERCA2a and GFP-SERCA2b. Extracts from oocytes overexpressing either the wild-type (SERCA2a and SERCA2b) isoforms or the fusion proteins (GFP-SERCA2a and GFP-SERCA2b) were prepared and analyzed by Western blot probing with an antibody that recognizes the SERCA2 antigens. As ex-

![Figure 1](image1.png)

**Figure 1.** Overexpression of SERCA2a and SERCA2b reveals functional differences between isoforms in IP\(_3\)-induced repetitive Ca\(^{2+}\) wave activity. (a) Comparison of the IP\(_3\) (~300 nM final)-induced Ca\(^{2+}\) response in a SERCA2a (left) and a SERCA2b (right)-overexpressing oocyte. In the top two panels the confocal images are 745 \(\mu\)m \(\times\) 745 \(\mu\)m and are imaged at low magnification (10\(\times\) objective; bar, \(~\sim\)100 \(\mu\)m). In the bottom two panels, two different oocytes are confocally imaged at higher magnification (40\(\times\) objective; bar, \(~\sim\)20 \(\mu\)m) and the confocal images are 240 \(\mu\)m \(\times\) 180 \(\mu\)m. Individual images of Ca\(^{2+}\) wave activity were taken at peak activity. (b) Confocal immunofluorescence of SERCA2a and SERCA2b. The top panels show immunofluorescence obtained with a primary antibody to rat SERCAs generated in rabbit (C-4, gift of J. Lytton) and a secondary FITC-conjugated goat anti-rabbit antibody (Jackson Immunoresearch Laboratories). The bottom panels are controls. The left panel shows immunofluorescence of a control oocyte (not injected with SERCA2 message) revealing endogenous levels of cross-reactivity with the native Xenopus oocyte SERCA2b protein. The right panel shows control immunofluorescence omitting the primary antibody. Bar, \(~\sim\)10 \(\mu\)m. (c) Western blot of SERCA2 protein levels in either control oocytes injected with H\(_2\)O (lane 1) or oocytes overexpressing SERCA2b (lane 2) and SERCA2a (lane 3) mRNAs. SERCA2 products were detected by probing with the same C-4 primary antibody used in b. One oocyte equivalent was loaded per lane and run on an 8% SDS PAGE gel. Molecular size markers (in kD) are indicated on the left (Hi range; Bio-Rad Laboratories).

![Figure 2](image2.png)

**Figure 2.** Overexpression of GFP-SERCA2 fusion constructs reveals functional differences in SERCA2a and SERCA2b. (a) Cartoon view of the fusion constructs used to tag SERCA isoforms at the NH\(_1\) terminus with the S65T increased fluorescence mutant of GFP. (b) Western blot analysis demonstrates overexpression of GFP-SERCA2 fusion products detected by probing the membrane with a polyclonal anti-SERCA antibody that was raised in rabbit against a recombinant His-tagged fragment encompassing most of the cytoplasmic loop between M4 and M5 from rat SERCA2 (N1, gift of J. Lytton). Wild-type SERCA2a and SERCA2b (lanes 1 and 3, respectively) migrated ~27 kD below fusion protein products contained in extracts from oocytes overexpressing GFP-SERCA2a and GFP-SERCA2b (lanes 2 and 4, respectively). Oocyte extracts from control oocytes (H\(_2\)O replacing mRNA) were run on lane 5. Molecular size markers (in kD) are indicated on the left (Kaleidoscope; Bio-Rad Laboratories). (c) High magnification confocal images of GFP fluorescence in oocytes overexpressing GFP-SERCA2a and GFP-SERCA2b fusion proteins (left and middle, respectively). Note that fluorescence is confined to the ER corridors between yolk platelets. A control oocyte overexpressing cytosolic GFP is shown (right). In this oocyte, fluorescence is more diffuse. Images are 52 \(\mu\)m \(\times\) 36 \(\mu\)m, and were acquired with an OZ confocal laser scanning microscope (Noran Instruments, Middleton, WI). The oocytes were excited at 488 nm and imaged with a 60\(\times\) water immersion objective. Bar, \(~\sim\)10 \(\mu\)m.
Figure 3. GFP-SERCA2 isoforms retain the characteristics of their respective unmodified proteins and at equivalent levels of expression exhibit different Ca\(^{2+}\) wave characteristics. (a) Fluorescence images in GFP-SERCA2a (left) and GFP-SERCA2b (middle) overexpressing oocytes that have been matched for equivalent levels of GFP fluorescence intensity. GFP fluorescence (745 \(\mu\text{m} \times 530 \mu\text{m}\)) was excited at 488 nm. Note that under these imaging conditions, fluorescence levels in control oocytes (injected with H\(_2\)O instead of GFP-SERCA2 mRNA) are not detectable. For quantification of overexpression levels of GFP fusion proteins, fluorescence values were measured from images obtained at a low magnification (10\(\times\) objective; bar, \(\sim\)100 \(\mu\text{m}\)). (b) Spatio-temporal patterns (left) of Ca\(^{2+}\) release induced by injection of IP\(_3\) (\(\sim\)300 nM final) in oocytes as labeled. In this experiment, Ca\(^{2+}\) Orange (Molecular Probes, Inc.) was used as an indicator of Ca\(^{2+}\) wave activity so that GFP fluorescence and Ca\(^{2+}\) wave activity could be observed in the same oocyte. GFP(S65T) absorption and emission maxima in the visible spectrum occur at 490 and 509 nm, respectively, while for Ca\(^{2+}\) Orange these are 590 nm and 650 nm, respectively. Thus, for the imaging parameters used, Ca\(^{2+}\) Orange fluorescence does not overlap with GFP fluorescence emission. Each temporal stack contains 400 images taken at 0.5-s intervals. A single image (530 \(\mu\text{m} \times 745 \mu\text{m}\)) of Ca\(^{2+}\) wave activity is shown at the indicated time (right). (c) At equivalent levels of GFP fluorescence, the Ca\(^{2+}\) wave properties are different for oocytes overexpressing GFP-SERCA2a (gray bars, \(n = 13\)) and GFP-SERCA2b (black bars, \(n = 10\)). Histogram of GFP fluorescence (left) shows fluorescence intensity measurements in arbitrary units. Histogram of Ca\(^{2+}\) wave period (middle) and Ca\(^{2+}\) wave decay time (right) measure each of these parameters from the time course of the average fluorescence intensity of a 5 \(\times\) 5 pixel area. Note that GFP-SERCA2a-overexpressing oocytes display a higher Ca\(^{2+}\) wave frequency (i.e., shorter periods) than the GFP-SERCA2b-overexpressing oocytes. * Indicates a statistically significant difference at \(P < 0.005\).

**Differential Effects of Calreticulin on SERCA2 Isoforms**

We have previously demonstrated that injecting IP\(_3\) in *Xenopus laevis* oocytes coexpressing calreticulin and SERCA2b results in a sustained release of Ca\(^{2+}\) without repetitive Ca\(^{2+}\) oscillations (Camacho and Lechleiter, 1995). This effect of calreticulin survives deletion of the high-capacity Ca\(^{2+}\) binding domain (\(\Delta C\) mutant), and therefore it is not due to the high Ca\(^{2+}\) storage capacity of calreticulin in the ER stores. The inhibition of Ca\(^{2+}\) oscillations by calreticulin (or \(\Delta C\)) overexpression is consistent with a modulation of SERCA activity to slow Ca\(^{2+}\) uptake (Camacho and Lechleiter, 1995). Because \(\Delta C\) contains the proline-rich P-domain of calreticulin shared by the other members of the SERCA family, this effect presumably reflects the intrinsic differences in their primary structure (amino acid sequence).
this class of ER chaperones (Ohsako et al., 1994; Tjoelker et al., 1994; Watanabe et al., 1994), and because lectin activity resides in the P-domain (Krause and Michalak, 1997), we tested whether ΔC modulation of SERCA2b was responsible for the decreased rate of Ca\(^{2+}\) transport characteristic of this pump (Lytton et al., 1992). Furthermore, since SERCA2a does not have a glycosylation motif facing the lumen of the ER, we also decided to test whether the functional differences between the two isoforms are due to a lack of interaction of calreticulin with SERCA2a. To this end, we coexpressed ΔC with SERCA2b or with SERCA2a (Fig. 4). A high percentage of SERCA2b-overexpressing oocytes exhibited robust high-frequency IP3-mediated Ca\(^{2+}\) oscillations (94%; \(n = 32\); Fig. 4 a). The number of oocytes showing repetitive Ca\(^{2+}\) activity was significantly reduced when SERCA2b

![Figure 4](https://example.com/figure4)

**Figure 4.** ΔC inhibits Ca\(^{2+}\) oscillations when coexpressed with SERCA2b, but not when coexpressed with SERCA2a. (a and b) Comparison of the IP3 (~300 nM)-induced Ca\(^{2+}\) wave activity in a SERCA2b-overexpressing oocyte with the Ca\(^{2+}\) wave activity of a SERCA2b + ΔC-coexpressing oocyte. (c and d) Comparison of the IP3 (~300 nM)-induced Ca\(^{2+}\) wave activity in a SERCA2a-overexpressing oocyte with the Ca\(^{2+}\) wave activity of a SERCA2a + ΔC-coexpressing oocyte. Individual confocal images (745 μm × 745 μm) of Ca\(^{2+}\) wave activity were taken at the indicated times. The bottom trace in each panel represents the change in fluorescence (ΔF/Δt) shown as a function of time for a 5 × 5 pixel area (white square in the first panel of each image).

![Figure 5](https://example.com/figure5)

**Figure 5.** ΔC inhibition of repetitive Ca\(^{2+}\) waves and reversal of the ΔC effect by glucosidase inhibitors. (a) The percent of oocytes exhibiting repetitive Ca\(^{2+}\) oscillations is significantly reduced in oocytes coexpressing ΔC with SERCA2b (black bars), but not in oocytes coexpressing ΔC with SERCA2a (gray bars; **P < 0.01, Chi-squared test). Of those oocytes that did display repetitive Ca\(^{2+}\) oscillations, the interwave period (middle histogram) and decay time (right histogram) were significantly increased in oocytes coexpressing ΔC with SERCA2b when compared with control oocytes overexpressing SERCA2b alone (*P < 0.005). No significant differences were found between oocytes coexpressing ΔC with SERCA2a as compared with control oocytes overexpressing SERCA2a alone (*P < 0.005). No significant differences were found between oocytes coexpressing ΔC with SERCA2a as compared with control oocytes overexpressing SERCA2a alone in either interwave period or in decay time of individual waves. Note that there is a change in scale values for the ordinate in histograms of wave period and decay time with respect to Fig. 3 c. The larger scale in this figure reflects the longer period and longer decay time of Ca\(^{2+}\) waves in SERCA2b + ΔC-overexpressing oocytes. (b) Western blot analysis demonstrates overexpression of the ΔC mutant of CRT in fractions from oocytes coexpressing this calreticulin mutant with SERCA2a (lane 1) and SERCA2b (lane 2). Oocyte extracts from control oocytes (H2O replacing mRNA) were run on lane 3. The membrane was probed with a primary anti-CRT KDEL Ab that recognizes the last six amino acids at the COOH terminus of rabbit CRT (gift of Michalak). (c) Glucosidase inhibition antagonizes the effects of ΔC overexpression on oscillatory Ca\(^{2+}\) waves. Period between waves in SERCA2b + ΔC-overexpressing oocytes is significantly decreased (\(n = 13\)) in oocytes injected with 1 mM final DNJ (Toronto Research Chemicals, North York, Ontario, Canada) when compared with un.injected SERCA2b + ΔC control oocytes (\(n = 18\)). ** Indicates statistical significance at \(P < 0.025\). In the same groups of oocytes, decay time of individual Ca\(^{2+}\) waves is also reduced, although the differences are not statistically significant.
was coexpressed with \( \Delta C \) (66%, \( n = 32 \), \( P < 0.01 \)). In the remaining oocytes (34%), injections of IP\(_3\) caused sustained release of Ca\(^{2+}\) without repetitive Ca\(^{2+}\) waves (Fig. 4b). Detailed analysis of Ca\(^{2+}\) waves revealed that even in those SERCA2b + \( \Delta C \)-coexpressing oocytes that had repetitive Ca\(^{2+}\) waves, the interwave periods were significantly longer (\( P < 0.005 \)), and wave widths were significantly broader (\( P < 0.005 \)) than those oocytes overexpressing SERCA2b alone (Fig. 5a). In the majority of SERCA2a-overexpressing oocytes (95%, \( n = 20 \)), injections of IP\(_3\) caused high-frequency Ca\(^{2+}\) oscillations as those observed in the oocyte shown in Fig. 4a. In contrast to the inhibition of Ca\(^{2+}\) oscillations seen in oocytes coexpressing SERCA2b + \( \Delta C \), all SERCA2a + \( \Delta C \)-overexpressing oocytes tested (100%, \( n = 20 \)) exhibited high-frequency Ca\(^{2+}\) oscillations (Fig. 4d). Detailed analysis revealed that there were no statistically significant differences in Ca\(^{2+}\) wave properties between SERCA2a and SERCA2a + \( \Delta C \)-overexpressing oocytes (Fig. 5a). Western blot analysis revealed that the \( \Delta C \) mutant was coexpressed with either SERCA2a or SERCA2b in this set of experiments, suggesting that the lack of modulation of SERCA2a by \( \Delta C \) cannot be attributed to a lack of \( \Delta C \) expression (Fig. 5b). Correct targeting of \( \Delta C \) to the ER was confirmed by confocal immunofluorescence performed on oocyte slices probed with an anti-calreticulin Ab as previously described (Camacho and Lechleiter, 1995; data not shown). Together these results indicate that the differential Ca\(^{2+}\) transport by the SERCA2 isoforms must be due to the presence of the luminal-facing COOH terminus extension of SERCA2b, conferring susceptibility of SERCA2b to modulation by calreticulin.

**Residue N1036 of SERCA2b is Implicated in the Inhibitory Effect of Calreticulin**

Deoxynojirimycin (DNJ) is a specific inhibitor of glucosidases I and II, and prevents calreticulin and calnexin binding to monoglycosylated target residues (Hebert et al., 1995; Peterson et al., 1995). If modulation of SERCA2b Ca\(^{2+}\) uptake by calreticulin results from a lectin effect, then this glucosidase inhibitor should antagonize the effects of \( \Delta C \) overexpression. To test this hypothesis, we injected DNJ into oocytes that were overexpressing SERCA2b + \( \Delta C \) (\( n = 18 \)) 30–60 min before imaging. DNJ injection (~1 mM final) resulted in significantly (\( P < 0.025 \)) decreased interwave periods in SERCA2b + \( \Delta C \)-overexpressing oocytes (\( n = 13 \); Fig. 5c). A similar trend was observed in terms of a decrease in the decay time of individual waves in these oocytes. No significant differences were observed in the percent of oocytes displaying repetitive Ca\(^{2+}\) wave activity between control and DNJ-injected oocytes.

Unlike SERCA2a, SERCA2b has a potential glycosylated residue (N1036) at the COOH terminus (Fig. 6a). If the sustained Ca\(^{2+}\) release and inhibition of oscillatory Ca\(^{2+}\) waves is due to an interaction of calreticulin (or \( \Delta C \)) with this SERCA2b residue, then site-directed mutagenesis to an unreactive alanine (SERCA2bN1036A mutant) should remove this potential site of calreticulin interaction. Consequently, when coexpressed with SERCA2b-N1036A, \( \Delta C \) should no longer have an effect on repetitive Ca\(^{2+}\) wave activity. To test this hypothesis, we overexpressed either SERCA2bN1036A by itself, or coexpressed it with \( \Delta C \) (SERCA2bN1036A + \( \Delta C \) oocytes). Overexpression of SERCA2bN1036A alone resulted in high-frequency Ca\(^{2+}\) oscillations in all oocytes tested (\( n = 23 \); Fig. 6b). Detailed analysis of Ca\(^{2+}\) waves revealed that even in those SERCA2bN1036A + \( \Delta C \)-coexpressing oocytes that had repetitive Ca\(^{2+}\) waves, the interwave periods were significantly longer (\( P < 0.005 \)), and wave widths were significantly broader (\( P < 0.005 \)) than those oocytes overexpressing SERCA2bN1036A alone (Fig. 6c). Western blot analysis revealed that the \( \Delta C \) mutant was coexpressed with either SERCA2a or SERCA2b in this set of experiments, suggesting that the lack of modulation of SERCA2a by \( \Delta C \) cannot be attributed to a lack of \( \Delta C \) expression (Fig. 6d). Correct targeting of \( \Delta C \) to the ER was confirmed by confocal immunofluorescence performed on oocyte slices probed with an anti-calreticulin Ab from Fig. 4a. Together these results indicate that the differential Ca\(^{2+}\) transport by the SERCA2 isoforms must be due to the presence of the luminal-facing COOH terminus extension of SERCA2b, conferring susceptibility of SERCA2b to modulation by calreticulin.

**Figure 6.** Site-directed mutagenesis of SERCA2b residue N1036 creates a protein that is no longer responsive to \( \Delta C \) coexpression, and that resembles SERCA2a. (a) Amino acid sequence comparison between the COOH terminus of SERCA2a and SERCA2b. The eleventh transmembrane segment of SERCA2b is shown (hatched). The consensus N-linked glycosylation motif is underlined, and the mutated residue N1036A is indicated in bold. (b) Comparison of Ca\(^{2+}\) wave activity in two oocytes overexpressing SERCA2bN1036A (top) or SERCA2bN1036A + \( \Delta C \) (bottom). (c) The left histogram shows percent of oocytes exhibiting repetitive Ca\(^{2+}\) oscillations when SERCA2bN1036A is expressed alone or with \( \Delta C \). Of those oocytes that displayed repetitive Ca\(^{2+}\) oscillations, no significant differences were found in either interwave period (middle histogram) or in decay time (right histogram) between oocytes coexpressing \( \Delta C \) with SERCA2bN1036A and control oocytes overexpressing SERCA2bN1036A alone. These results are similar to those observed for SERCA2a and SERCA2a + \( \Delta C \)-overexpressing oocytes (see Fig. 4b). (d) Western blot analysis demonstrates overexpression of \( \Delta C \) in fractions from SERCA2bN1036A + \( \Delta C \) oocytes (lane 1). No detectable CRT product was observed in extracts from control oocytes (H\(_2\)O replacing mRNA) (lane 2). The membrane was probed with the anti-CRT KDEL primary Ab from Fig. 4c.
As predicted, repetitive Ca\(^{2+}\) activity was not inhibited when \(\Delta C\) was coexpressed with SERCA2bN1036A \((n = 22)\), suggesting that this mutation removed the site of interaction of calreticulin with SERCA2b (Fig. 6, b and c). Detection of the \(\Delta C\) mutant protein product in SERCA2bN1036A + \(\Delta C\)-overexpressing oocytes was corroborated by Western blotting and probing with an anti-KDEL Ab to the COOH terminus of calreticulin (Fig. 6 d). Together, these results implicate a role for calreticulin in the modulation of Ca\(^{2+}\) uptake via SERCA2b, but not SERCA2a, and suggest that the residue N1036 in SERCA2b is a putative target of lectin activity of this chaperone.

The Single Amino Acid Substitution (N1036A) Confers SERCA2a-like Functional Properties to SERCA2b

To compare the properties of SERCA2bN1036A with those of the wild-type SERCA2 isoforms on Ca\(^{2+}\) wave activity accurately, we tagged SERCA2bN1036A with GFP at the NH\(_2\) terminus under conditions of equivalent levels of expression. A Western blot probed with an anti-SERCA2 antibody demonstrated that SERCA2bN1036A migrated differentially from GFP-SERCA2bN1036A protein as expected (Fig. 7 a). GFP fluorescence imaging at high magnification (60x objective) of a GFP-SERCA2bN1036A-overexpressing oocyte (Fig. 7 b) demonstrated that the fusion protein was targeted to the same ER compartment as shown for both wild-type (Fig. 1 b) and GFP-tagged SERCA2 isoforms (Fig. 2 c). GFP fluorescence intensity of equal magnitude to that in the oocytes shown in Fig. 3 a was measured at low magnification (10x objective) for a GFP-SERCA2bN1036A oocyte shown in Fig. 7 b, allowing us to compare the Ca\(^{2+}\) wave properties of this oocyte directly (Fig. 7 c) with those of GFP-SERCA2a and GFP-SERCA2b oocytes shown in Fig. 3 b. We carried out detailed analyses of oocytes that were matched in GFP fluorescence intensity in the study (Table I). Remarkably, Ca\(^{2+}\) wave activity normalized for GFP fluorescence revealed that the single amino acid mutation in SERCA2b (N1036A) yielded a Ca\(^{2+}\) ATPase with uptake properties indistinguishable from those of SERCA2a. Furthermore, there was no inhibitory effect of \(\Delta C\) when it was coexpressed with either SERCA2a or SERCA2bN1036A (Figs. 4 b and 6 c). Together, these data indicate that the functional differences between SERCA2a and SERCA2b on Ca\(^{2+}\) wave activity reported here and elsewhere (Lytton et al., 1992; Verboomen et al., 1992; Verboomen et al., 1994) can be attributed to the presence of the luminal glycosylated residue on SERCA2b that is absent in SERCA2a.

Figure 7. Residue N1036 is critical in determining the functional differences between SERCA2 isoforms. (a) Differential migration patterns between SERCA2bN1036A (lane 1) vs. GFP-SERCA2bN1036A (lane 2) on a Western blot probed with the same N1 anti-SERCA2 Ab from Fig. 2 b. Fractions from control oocytes (H\(_2\)O replacing mRNA) were run on lane 3. (b) Confocal images of GFP fluorescence intensity at high resolution (60x objective; 52 \(\mu\)m \(\times\) 36 \(\mu\)m) and at low resolution (10x objective; 745 \(\mu\)m \(\times\) 530 \(\mu\)m) in a GFP-SERCA2bN1036A oocyte matched for GFP fluorescence intensity with the oocytes shown in Fig. 3 a. (c) Spatiotemporal stack (left) of Ca\(^{2+}\) wave activity from the GFP-SERCA2bN1036A overexpressing oocyte in b. Confocal image of Ca\(^{2+}\) wave activity at the indicated time (right). Imaging parameters were similar to those described in Fig. 3 b.

Discussion

On the basis of sequence homology at the COOH terminus with calsequestrin, calreticulin was originally described as a Ca\(^{2+}\)-binding protein buffering Ca\(^{2+}\) in the ER lumen (Fliegel et al., 1989; Treves et al., 1990; Michalak et al., 1992; Krause and Michalak, 1997). Several investigators have reported that calreticulin affects Ca\(^{2+}\) signaling in multiple cell systems (Treves et al., 1990; Liu et al., 1994; Bastianutto et al., 1995; Coppolino et al., 1997). The majority of these reports have discussed the role of calreticulin in terms of its ability to bind Ca\(^{2+}\) with low affinity but high capacity. Our work, however, uncovers a distinct and separate pathway that points towards a calreticulin-mediated modulation of Ca\(^{2+}\) signaling, possibly via its known lectin properties. IP3-mediated Ca\(^{2+}\) release in Xenopus

Table I. Ca\(^{2+}\) Wave Activity in GFP-SERCA2 Fusion Proteins

|  | n  | GFP fluorescence | Oocytes with repetitive waves<sup>1</sup> | Period | Decay time <i>t</i><sub>50</sub> |
|---|---|-----------------|-----------------|--------|-----------------|
| Peaks |  |  |  |  |  |
| GFP-SERCA2a<sup>*</sup> | 10 | 80.98 ± 8.10 | 100 | 3.01 ± 0.30 | 0.91 ± 0.09 |
| GFP-SERCA2b<sup>*</sup> | 13 | 81.51 ± 6.27 | 100 | 3.70 ± 0.28<sup>4</sup> | 1.16 ± 0.09<sup>4</sup> |
| GFP-SERCA2bN1036A | 8 | 81.82 ± 10.23 | 100 | 3.38 ± 0.42 | 0.74 ± 0.09 |

Mean ± SEM. n, total number of oocytes in each category. % is the percent of n. *These data have been plotted in Fig. 3 C. †Oocytes with repetitive waves of Ca\(^{2+}\) release only. SERCA2b is not equivalent to SERCA2a (P < 0.005). SERCA2b is not equivalent to SERCA2a (P < 0.005). Serum 2b is not equivalent to SERCA2b (P < 0.005).
Calreticulin Modulation of SERCA2 Isoforms

Xenopus oocytes overexpressing wild-type calreticulin is characterized by a sustained elevation in intracellular Ca\(^{2+}\) without concurrent oscillations in Ca\(^{2+}\) release (Camacho and Lechleiter, 1995). Deletion of the high-capacity Ca\(^{2+}\)storage domain (ΔC mutant) does not affect the ability of calreticulin to modulate Ca\(^{2+}\) release (Camacho and Lechleiter, 1995), indicating that the mechanism of action of calreticulin cannot be attributed to Ca\(^{2+}\) buffering in the ER lumen. Furthermore, the inhibitory effect of calreticulin (or ΔC) on Ca\(^{2+}\) waves suggests two possible mechanisms of action: either calreticulin interacts with the IP,R to prolong Ca\(^{2+}\) release or it interacts with the Ca\(^{2+}\)-ATPase to inhibit Ca\(^{2+}\) uptake. These two mechanisms need not be mutually exclusive, as both types of interaction may occur. In this report we focused our studies on the functional interaction of calreticulin with the Ca\(^{2+}\)-ATPases.

We demonstrated that there are functional differences in Ca\(^{2+}\) signaling by SERCA2a and SERCA2b isoforms. These differences are consistent with the kinetic parameters of SERCA2a and SERCA2b reported by other groups (Lytton et al., 1992; Verboomen et al., 1994). SERCA2b was reported to have the lowest transport capacity of all Ca\(^{2+}\)-ATPases (Lytton et al., 1992). In agreement with this result, we observed that the width of individual Ca\(^{2+}\) waves as well as the period between waves is larger in SERCA2b-overexpressing oocytes (as compared with SERCA2a-overexpressing oocytes). In addition, Lytton and coworkers reported that SERCA2b has the highest Ca\(^{2+}\) sensitivity. Thus, SERCA2b-overexpressing oocytes have more sharply delineated Ca\(^{2+}\) wavefronts since the pump begins to uptake Ca\(^{2+}\) almost simultaneously as it is released by the IP,R. The differences in Ca\(^{2+}\) wave properties between the alternatively spliced products of the SERCA2 gene must be attributed to the additional eleventh transmembrane segment and luminal COOH terminus of SERCA2b. Unlike the other members of the SERCA family, SERCA2b has a glycosylation motif in the ER lumen (Guntesski-Hamblin et al., 1988; Bayle et al., 1995). If the functional differences between SERCA2b and SERCA2a are due to an interaction of calreticulin (or ΔC) with the putative glycosylated residue of SERCA2b, then coexpression of ΔC with SERCA2a should not inhibit repetitive Ca\(^{2+}\) waves. Indeed, we found that this was the case in all oocytes overexpressing SERCA2a + ΔC. These data implicate asparagine1036 of SERCA2b as a site of possible lectin interaction with calreticulin. This conclusion is supported by three additional findings. First, it is the ΔC mutant where the lectin activity of the calreticulin resides (Krause and Michalak, 1997) that causes inhibition of repetitive Ca\(^{2+}\) waves when coexpressed with SERCA2b. Second, glucosidase inhibition by DNJ inhibits the ΔC effect when the ΔC was coexpressed with SERCA2b. Third, site-directed mutagenesis of N1036 to an unreactive alanine abrogates the ΔC effect in oocytes overexpressing SERCA2bN1036A + ΔC. These results suggest that a lectin interaction of calreticulin is responsible for inhibition of Ca\(^{2+}\) oscillations, and provide compelling evidence that N1036 is functional and glycosylated. Interestingly, a previous report demonstrated that progressive deletion mutants of the COOH terminus of SERCA2b, all of which lacked the N1036 residue, confer upon SERCA2b Ca\(^{2+}\) transport properties of SERCA2a (Verboomen et al., 1994). These results can now be understood in light of our data, which clearly demonstrate that residue N1036 is responsible for the functional differences between the two isoforms. By tagging each pump with GFP at the NH\(_2\) terminus, we were able to match individual oocytes for levels of expression based on GFP fluorescence intensity. The isoform differences displayed in Fig. 3 clearly demonstrate that at equivalent levels of expression, SERCA2b modulates Ca\(^{2+}\) wave activity differently from SERCA2a, and more interestingly, the modulation by the SERCA2b-N1036 mutant is indistinguishable from that of SERCA2a (Fig. 7 c and Table I). Site-directed mutagenesis did not appear to cause misfolding defects of the SERCA2bN1036 mutant since (a) the extent and appropriate SDS-PAGE migration of SERCA2bN1036A was observed by Western blot analysis; (b) high-resolution imaging demonstrated ER targeting similar to that of wild-type SERCA2 proteins; and (c) physiological evidence demonstrated full functionality of the protein. These observations are consistent with the fact that other transporters fold normally, are targeted properly, and are not misfolded without the cotranslational addition of N-linked oligosaccharide (Groves and Tanner, 1994). We suggest that the N1036 residue is critical in determining the transport characteristics of SERCA2b. Furthermore, our data suggest that a functional interaction between calreticulin and this residue determines the lower transport capacity of this Ca\(^{2+}\)-ATPase. In support of this result, SERCA2b and calreticulin are found to colocalize in Xenopus laevis oocytes (Parys et al., 1994; Camacho and Lechleiter, 1995) and in other cell types (Takei et al., 1992; Parys et al., 1994; Stendahl et al., 1994; Lievremont et al., 1996; Rooney and Meldolesi, 1996; Vanlingen et al., 1997).

Association of either calreticulin or calnexin with thioredoxins has been reported (Nigam et al., 1994; Baksh et al., 1995; Oliver et al., 1997), in some instances in a Ca\(^{2+}\)- and/or ATP-dependent manner (Nigam et al., 1994; Baksh et al., 1995). This result suggests that modulation of protein folding by calreticulin or calnexin involves intra- or interdisulfide bond formation. In this context, it is interesting to note that the SERCA2 isoforms possess a conserved pair of cysteine residues in their longest luminal facing loop (Guntesski-Hamblin et al., 1988), which is in close proximity to the COOH terminus (Stokes et al., 1994). Thus, it is likely that the ΔC-induced inhibition of Ca\(^{2+}\) oscillations in oocytes overexpressing SERCA2b involves modulation of the redox state of the thiol groups facing the lumen of this Ca\(^{2+}\)-ATPase. According to this hypothetical scenario, the initial event would involve binding to the target protein in the monoglucosylated state by calreticulin, followed by recruitment of other proteins, including thioredoxins, in a complex that modulates folding of the target. Two current models have been proposed regarding the chaperone activity of calreticulin and calnexin. One model assumes that binding to the monoglucosylated carbohydrate group is sufficient for interaction with the target (Heleneius, 1997). The second model suggests that in addition to the lectin interaction, calreticulin and calnexin may have direct protein–protein interactions with their target, thereby fulfilling their role as traditional chaperones (Williams, 1995). In our experiments, a lectin interaction is
suggested by the demonstration that the N-glycosylation site in SERCA2b is necessary for calreticulin-mediated inhibition of Ca\(^{2+}\) oscillations. At the present time we cannot rule out the possibility that after initial binding to the monoglycosylated residue, the P-domain interacts directly with a motif in SERCA2b to suppress IP\(_3\)-mediated Ca\(^{2+}\) oscillations. Overexpression of calreticulin or any other deletion mutant of calreticulin that we have tested, including the ΔC mutant, does not interfere with the extent of coexpression of SERCA2 pumps (Camacho and Lechleiter, 1995), suggesting that the chaperone does not induce misfolding and degradation of SERCA2b. Optimal levels of expression of SERCA2b (as indicated by the appearance of high-frequency Ca\(^{2+}\) waves) appear only 7–9 d after mRNA injection. This observation together with data from other laboratories (Gill et al., 1996) in which the formation of functional Ca\(^{2+}\) pools after thapsigargin treatment requires 3–6 h, suggests that the synthesis of new SERCA protein is very slow. Thus, we suggest the possibility that calreticulin not only functions as a lectin chaperone that modulates folding of integral membrane glycoproteins, thereby affecting their function.

We wish to thank David Castle, Jonathan Lytton, Enrico Nasi, and Llewelyn Hammond, C., I. Braakman, and A. Helenius. 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91:913–917.

Hammond, C., and A. Helenius. 1994. Quality control in the in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment and Golgi apparatus. J. Cell Biol. 126:41–52.

Hausen, P., and C. Dreyer. 1991. The use of polyacrylamide as an embedding medium for immunohistochemical studies of embryonic tissues. Stain Technol. 56:287–293.

Hert, D., B. Foeller, and A. Helenius. 1995. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 8:425–433.

Heim, R., A. Cubitt, and R. Tsien. 1995. Improved green fluorescence. Nature. 373:663–664.

Helenius, A. 1994. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell. 5:253–265.

Helenius, A., E.S. Trombetta, D.N. Hebert, and J.F. Simmons. 1997. Calnexin, calreticulin, and the folding of glycoproteins. Trends Cell Biol. 7:193–200.

Inoue, M. 1990. Biphasic Ca\(^{2+}\) release and uptake. Based on the lectin properties of calreticulin, we suggest that this novel class of chaperones can dynamically modulate the formation of integral membrane glycoproteins, thereby affecting their function.

We wish to thank David Castle, Jonathan Lytton, Enrico Nasi, and Llewelyn Hammond, C., I. Braakman, and A. Helenius. 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91:913–917.

Hammond, C., and A. Helenius. 1994. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment and Golgi apparatus. J. Cell Biol. 126:41–52.

Hausen, P., and C. Dreyer. 1991. The use of polyacrylamide as an embedding medium for immunohistochemical studies of embryonic tissues. Stain Technol. 56:287–293.

Hert, D., B. Foeller, and A. Helenius. 1995. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 8:425–433.

Heim, R., A. Cubitt, and R. Tsien. 1995. Improved green fluorescence. Nature. 373:663–664.

Helenius, A. 1994. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell. 5:253–265.

Helenius, A., E.S. Trombetta, D.N. Hebert, and J.F. Simmons. 1997. Calnexin, calreticulin, and the folding of glycoproteins. Trends Cell Biol. 7:193–200.

Inoue, M. 1990. Biphasic Ca\(^{2+}\) release and uptake. Based on the lectin properties of calreticulin, we suggest that this novel class of chaperones can dynamically modulate the formation of integral membrane glycoproteins, thereby affecting their function.

We wish to thank David Castle, Jonathan Lytton, Enrico Nasi, and Llewelyn Hammond, C., I. Braakman, and A. Helenius. 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91:913–917.

Hammond, C., and A. Helenius. 1994. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment and Golgi apparatus. J. Cell Biol. 126:41–52.

Hausen, P., and C. Dreyer. 1991. The use of polyacrylamide as an embedding medium for immunohistochemical studies of embryonic tissues. Stain Technol. 56:287–293.

Hert, D., B. Foeller, and A. Helenius. 1995. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 8:425–433.

Heim, R., A. Cubitt, and R. Tsien. 1995. Improved green fluorescence. Nature. 373:663–664.

Helenius, A. 1994. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell. 5:253–265.

Helenius, A., E.S. Trombetta, D.N. Hebert, and J.F. Simmons. 1997. Calnexin, calreticulin, and the folding of glycoproteins. Trends Cell Biol. 7:193–200.

Inoue, M. 1990. Biphasic Ca\(^{2+}\) release and uptake. Based on the lectin properties of calreticulin, we suggest that this novel class of chaperones can dynamically modulate the formation of integral membrane glycoproteins, thereby affecting their function.
mic reticulum family of calcium pumps. J. Biol. Chem. 267:14483–14489.

MacLennan, D.H., C.J. Brandl, B. Korczak, and N.M. Green. 1985. Amino-acid sequence of a Ca²⁺-Mg²⁺-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary cDNA sequence. Nature. 316:696–700.

MacLennan, D.H., W.J. Rice, and N.M. Green. 1997. The mechanism of Ca²⁺ transport by sarco(endoplasmic) reticulum Ca²⁺-ATPases. J. Biol. Chem. 272:28185–28188.

Mahoney, M.G., L.L. Slakey, P.K. Hepler, and D.J. Gross. 1993. Independent modes of propagation of calcium waves in smooth muscle cells. J. Cell Sci. 104:1101–1107.

Michalak, M., R.E. Milner, K. Burns, and M. Opas. 1992. Calreticulin. Biochem. J. 285:681–692.

Nauseef, W.M., S.J. McCormick, and R.A. Clark. 1995. Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J. Biol. Chem. 270:4741–4747.

Nigam, S., A. Goldberg, S. Ho, M. Rhode, K. Bush, and M. Sherman. 1994. A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca²⁺-binding proteins and members of the thiodoxin superfamily. J. Biol. Chem. 269:1744–1749.

Ohsako, S., Y. Hayashi, and D. Bunck. 1994. Molecular cloning and sequencing of calnexin-t. J. Biol. Chem. 269:14140–14148.

Olive, J.D., F.I. Van Der Wal, N.J. Bulleid, and S. High. 1997. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science. 275:86–88.

Osborn, M., and K. Weber. 1982. Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol. 24:97–132.

Otten, A., and B. Moss. 1996. Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J. Biol. Chem. 271:97–103.

Ou, W.-J., P. Cameron, D.Y. Thomas, and J.J. Bergeron. 1993. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 364:771–776.

Parker, L., and J. Iyama. 1990. Inhibition by Ca²⁺ of inositol triphosphate-mediated Ca²⁺ liberation: A possible mechanism for oscillatory release of Ca²⁺. Proc. Natl. Acad. Sci. USA. 87:260–264.

Parker, L., and Y. Yao. 1991. Regenerative release of calcium from functionally discrete subcellular stores by inositol triphosphate. Proc. R. Soc. Lond. Ser. B. 246:269–274.

Parys, J.B., M.M. McPherson, L. Mathews, K.P. Campbell, and F.J. Longo. 1994. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calnexin in eggs of sea urchins and Xenopus laevis. Dev. Biol. 161:466–476.

Peterson, J.R., A. Ora, P.N. Van, and A. Helenius. 1995. Transient, lectin-like function in Ca²⁺-storage compartments (calciosomes) of liver and brain. Biochem. J. 271:473–480.

Pozzan, T., R. Rizzuto, P. Volpe, and J. Meldolesi. 1994. The functional importance of the C-terminal tail in the gene 2 organelar Ca²⁺-storage compartments (calciosomes) of liver and kidney cells. Cell Calcium. 22:475–486.

Pozzan, T., R. Rizzuto, P. Volpe, and J. Meldolesi. 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74:595–636.

Putney, J.W. and J. Bird. 1993. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr. Rev. 14:610–631.

Robb-Gaspers, L.D., and A.P. Thomas. 1995. Coordination of Ca²⁺ signaling by intercellular propagation of Ca²⁺ waves in the intact liver. J. Biol. Chem. 270:8102–8107.

Rodan, A.R., J.F. Simons, E.S. Trombetta, and A. Helenius. 1996. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO (Eur. Mol. Biol. Organ.) J. 15:6921–6930.

Rooney, E., and J. Meldolesi. 1996. The endoplasmic reticulum in PC12 cells. J. Biol. Chem. 271:29304–29311.

Rooney, T.A., and A.P. Thomas. 1993. Intracellular calcium waves generated by Ins(1,4,5)P₃-dependent mechanisms. Cell Calcium. 14:674–690.

Simpson, P., and J. Russell. 1996. Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca²⁺ waves in cultured oligodendrocytes. J. Biol. Chem. 271:33493–33501.

Sousa, M., and A.J. Parodi. 1995. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc glycoprotein glucosyltransferase. EMBO (Eur. Mol. Biol. Organ.) J. 14:4396–4203.

Stendahl, O., K.H. Krause, J. Krischker, P. Jerstrom, J.M. Theuer, R.A. Clark, J.L. Carpenter, and D.P. Lew. 1994. Redistribution of intracellular Ca²⁺ stores during phagocytosis in human neutrophils. Science. 265:1439–1441.

Stokes, D.L., W.R. Taylor, and N.M. Green. 1994. Structure, transmembrane topology and helix packing of P-type ion pumps. FEBS Lett. 346:32–38.

Takei, K., H. Stuhlenbrok, A. Metcalf, G.A. Mignery, T.C. Sudhof, P. Volpe, and P. DeCammilli. 1992. Ca²⁺ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP₃ receptor, Ca²⁺-ATPase, and calnexin. J. Neurosci. 12:489–505.

Tjekeler, L.W., C.E. Seyfried, R.L.J. Eddy, M.G. Byers, T.B. Shows, J. Calderon, R.B. Schreiber, and F.W. Gray. 1994. Human, mouse, and rat calnexin CDNA cloning; identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry. 33:3229–3236.

Treves, S., M. De Mattei, M. Lanfredi, A. Villa, N.M. Green, D.H. MacLennan, J. Meldolesi, and T. Pozzan. 1990. Calreticulin is a candidate for a calsequesmin-like function in Ca²⁺-storage compartments (calciosomes) of liver and brain. Biochem. J. 271:473–480.

Vanilgen, S., J.B. Parys, L. Missiaen, H. De Smidt, F. Wuytack, and R. Castells. 1997. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca²⁺ binding proteins in RBL-2H3 rat basophilic leukemia cells. Cell Calcium. 22:475–486.

Verboom, H., F. Wuytack, H. De Smidt, B. Himpens, and R. Castells. 1992. Functional difference between SERCA2a and SERCA2b Ca²⁺ pumps and their modulation by phospholamban. Biochem. J. 286:591–595.

Verboom, H., F. Wuytack, L. Van Den Boshe, L. Mertens, and R. Castells. 1994. The functional importance of the C-terminal tail in the gene 2 organellar Ca²⁺ transport ATPase (SERCA2a/b). Biochem. J. 303:979–984.

Ware, F.E., A. Vassilakos, P.A. Peterson, M.R. Jackson, M.A. Lehrman, and D.B. Williams. 1995. The molecular chaperone calnexin binds Glc1-Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270:4697–4704.

Watanabe, D., K. Yamada, Y. Nishina, Y. Tajima, U. Koshimizu, A. Nagata, and Y. Nishimune. 1994. Molecular cloning of a novel Ca²⁺ binding protein (calmegin) specifically expressed during male meiotic germ cell development. J. Biol. Chem. 269:7744–7749.

Williams, D.B. 1995. Calnexin: a molecular chaperone with a taste for carbohydrates. Biochem. Cell Biol. 73:123–132.

Wu, K.-D., W.-S. Lee, J. We, D. Bungard, and J. Lytton. 1995. Localization and quantification of endoplasmic reticulum Ca²⁺-ATPase isoform transcript. Am. J. Physiol. 269:C775–C784.

Zapun, A., S.M. Petrescu, P.M. Rudd, R.A. Dwek, D.Y. Thomas, and J.J.M. Bergeron. 1997. Conformation-independent binding of monoglycosylated ribonucleoside B to calnexin. Cell. 88:29–38.