Abstract. Previous cDNA microarray experiments revealed that the ATP-dependent DNA helicase Q4 (RECQL4) gene is overexpressed in hepatocellular carcinoma (HCC) tissues. However, the exact role of RECQL4 in HCC remains unknown. The present study aimed to investigate RECQL4 expression in HCC and to analyze the potential clinical implications of RECQL4 expression in HCC patients. The expression of RECQL4 mRNA was assessed in 205 samples of HCC tissues by reverse transcription-quantitative polymerase chain reaction. The results demonstrated that the expression of RECQL4 mRNA in HCC tissues was significantly higher compared with adjacent normal liver tissues (P<0.001). The level of RECQL4 mRNA expression was associated with high α-fetoprotein (AFP) levels (>100 ng/ml), tumor size (>6 cm), and Barcelona Clinic Liver Cancer stage (all P<0.05). Kaplan-Meier survival analysis indicated that HCC patients with higher levels of RECQL4 expression exhibited significantly shorter disease-free survival (DFS) and overall survival (OS) times compared with those with low levels of expression. Multivariate survival analysis revealed that high RECQL4 expression was a significant independent predictor for DFS [HR, 1.635; 95% confidence interval (CI), 1.062-2.515; P=0.025] and OS (HR, 1.618; 95% CI, 1.050-2.493; P=0.029) of HCC patients. These data indicated that RECQL4 might be a novel diagnostic and prognostic biomarker for HCC patients.

Introduction

Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality worldwide. In 2012, there were ~782,500 new cases and ~745,500 incidences of mortality owing to liver cancer, with China alone making up ~50% of this number (1). One issue in HCC management frequently confronted by hepatologist is the accurate prediction of survival outcome, which is necessary in order to provide optimal medical care. A number of staging systems, including clinical Tumor-Node-Metastasis (TNM) stage (2), Cancer of the Liver Italian Program (CLIP) (3) and Barcelona Clinic Liver Cancer (BCLC) (4), are used to predict the prognosis of HCC and stratify patients for treatment. However, patient outcome may be associated not only with disease stage, but also with biological factors. With recent developments in the fields of genomics and proteomics, more relevant prognostic factors are yet to be identified to improve the prognostic strategy of HCC.

In previous genome-wide microarray analysis, a series of genes, including ATP-dependent DNA helicase Q4 (RECQL4), disks large-associated protein 5 (5) and family with sequence similarity 83 member D (6), were significantly upregulated in HCC tissues. RECQL4, as one of the human DNA helicases, serves a critical role in genomic instability and aging processes (7). Genome instability is deemed to have an important part in the multistep development of human cancer (8). Furthermore, interaction has been observed between RECQL4 and proteins involved in genome surveillance (9). Previous studies have demonstrated that mutations in RECQL4 cause three autosomal recessive diseases, Rothmund-Thomson, Rapapdilino and Baller-Gerold syndromes (10-12). The potential for unlimited replication is a hallmark of cancer cells (8). RECQL4 serves an essential role in the initiation of DNA replication (13-15) and is directly or indirectly involved in multiple DNA repair pathways, through interactions with diverse repair proteins (16-18). Several studies have revealed that increased RECQL4 expression is observed in sporadic osteosarcoma, prostate carcinogenesis and breast tumorigenesis (19-21).

Uptregulation of RECQL4 expression predicts poor prognosis in hepatocellular carcinoma

JUN LI1, JUNFEI JIN1,2, MINJUN LIAO3, WEI DANG1,2, XINHUANG CHEN1, YONGFENG WU1 and WEIJIA LIAO1,2

1Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University; 2Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, Guangxi 541001; 3First Clinical Academy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China

Received March 31, 2016; Accepted June 15, 2017

DOI: 10.3892/ol.2018.7860

Correspondence to: Professor Weijia Liao, Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Xiufeng, Guilin, Guangxi 541001, P.R. China
E-mail: liao288@163.com

Abbreviations: HCC, hepatocellular carcinoma; HR, hazard ratios; CI, confidence intervals; DFS, disease-free survival; OS, overall survival; TNM, tumor-node-metastasis; BCLC, Barcelona Clinic Liver Cancer; AFP, α-fetoprotein; HBsAg, hepatitis B surface antigen; ANLT, adjacent noncancerous liver tissues; RT-qPCR, reverse transcription-quantitative polymerase chain reaction

Key words: hepatocellular carcinoma, ATP-dependent DNA helicase Q4, prognosis, diagnosis, biomarker
Therefore, the role of RECQL4 in human cancer, including HCC, necessitates further investigation.

The aims of the present study were to detect RECQL4 expression in HCC tissue, evaluate the association between RECQL4 expression and patient clinicopathological features and the prognostic significance of RECQL4 expression in HCC.

Materials and methods

Specimens. A total of 205 pairs of fresh HCC tissues and corresponding adjacent normal liver tissues (ANLT) were obtained from HCC patients who underwent radical curative surgery at the Affiliated Hospital of Guilin Medical University (Guilin, China) between March 2001 and September 2007. The mean age of the patients was 50.22 years (range, 21-74 years). The diagnosis of HCC was based on the results of clinical symptoms, serological, ultrasonography (US), computed tomography, magnetic resonance imaging, pathological examination, according to the primary liver cancer clinical diagnosis criteria of the present study were as follows: i) Samples were confirmed to be HCC by pathological examination, and the patients underwent radical resection; ii) all patients enrolled have complete background information and follow-up records, including periodic review of liver function, AFP value, imaging information, recurrence time and treatment regimen. Patients diagnosed with cholangiocarcinoma or those that suffered perioperative mortality or with incomplete clinical data were excluded. Additionally, patients who suffered from infectious diseases, autoimmune disease, hematologic disease or used drugs that affect the hematopoietic system within 1 month prior to starting treatment, HIV-positive patients and those who lost contact in the follow-up period were excluded.

The present study was approved by the Ethics Committee of The Affiliated Hospital of Guilin Medical University (Guilin, China) and complies with the Ethical Guidelines of the Declaration of Helsinki. All patients provided written informed consent prior to investigation.

Following surgical resection, the patients with HCC received long-term follow-up via monitoring of serum AFP levels and US examination every 2 months, a chest radiograph every 6 months during the first 2 postoperative years and at 3-6-month intervals thereafter. Computerized tomography or magnetic resonance imaging would be performed if the result of AFP test or US examination were abnormal. Disease-free survival (DFS) time was measured from the date of surgery to the date of recurrence, metastasis, mortality or the last follow-up. Overall survival (OS) time was measured from the date of surgery to the date of death or last follow-up.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNA was extracted from HCC frozen tissue samples using TRIzol (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) reagent, and cDNA was synthesized by using PrimeScript RT reagent kit (Takara Bio, Inc., Otsu, Japan) according to the manufacturer's instructions. The temperature protocol of reverse transcription was as follows: 42°C for 2 min in order to remove the contamination of genomic DNA, then reverse transcription at 37°C for 15 min and 85°C for 5 sec. qPCR analysis was performed using SYBR Premix Ex Taq (Takara Bio, Inc., Otsu, Japan), according to the manufacturer's instructions. Each well was mixed with 15 μl Master Mix (SYBR® Green PCR Master Mix; Applied Biosystems; Thermo Fisher Scientific, Inc.). The protocol was performed with an initial denaturation step at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 2 sec, annealing at 55°C for 5 sec and extension at 72°C for 15 sec. The sequences of the primers used were: RECQL4 (158 bp) forward, 5'-TCAACATGAGCAGAACACTAC-3' and reverse, 5'-CTGCTCGTTCAAGGAAAGAGCT-3'; and β-actin (142 bp) forward, 5'-GACAGGATGCAGAAAGGAGATTACT-3' and reverse, 5'-GATCCACATCTGTGGAGAGTT-3'. The levels of RECQL4 were normalized to the levels of β-actin expression using the 2^ΔΔCq methods reported by Livak and Schmittgen (22).

Statistical analysis. All quantitative data are expressed as the mean ± standard deviation and were analyzed using an independent t-test. Categorical variables were compared using χ² test. The DFS and OS rates were calculated using the Kaplan-Meier method, and comparisons of survival curves between groups were assessed with log-rank test. Multivariate analysis was performed using the Cox proportional hazards model, and only variables that were statistically significant in univariate analysis were included in this model. All statistical analyses were performed using SPSS13.0 statistical software (SPSS, Inc., Chicago, IL, USA). P<0.05 was considered to indicate a statistically significant difference.

Results

Expression of RECQL4 mRNA is upregulated in human HCC tissues. RECQL4 mRNA expression was examined in 205 samples of fresh HCC tissues and their corresponding ANLT by RT-qPCR. As shown in Fig. 1A, the relative expression of RECQL4 mRNA in HCC cancer tissues (1.10±0.07) was significantly higher compared with ANLT (0.33±0.04), when normalized to β-actin (P<0.001). The RECQL4 mRNA levels were increased in 141 cases (68.8%), but decreased in 64 cases (31.2%). Notably, the upregulation of RECQL4 mRNA expression and the increase of serum AFP levels did not completely overlap. High RECQL4 expression along with high serum AFP levels were increased in 96 cases (46.83%), high serum AFP level alone was detected in 34 cases (16.59%), and upregulation of RECQL4 but not AFP was detected in 45 cases (21.95%; Fig. 1B). These results indicated that RECQL4 might be a novel histological biomarker for HCC. When these two markers were combined, the HCC diagnosis rate was increased to 85.37%.

Association between RECQL4 mRNA and clinical pathological characteristics of HCC. To further investigate the association between RECQL4 mRNA expression and clinicopathological parameters of HCC, the characteristics of the
205 HCC patients were analyzed. As shown in Table I, the level of RECQL4 mRNA expression was positively associated with AFP level (>100 ng/ml) ($\chi^2=4.246$, P=0.039), tumor size (>6 cm) ($\chi^2=7.852$, P=0.005), and BCLC stage ($\chi^2=6.293$, P=0.012), but was not associated with age (>55 years), gender, family history, alcohol consumption, HBsAg expression, liver cirrhosis, tumor number, metastasis or postoperative recurrence (all P>0.05).

Kaplan-Meier survival analysis revealed that patients expressing high levels of RECQL4 mRNA had significantly shorter DFS and OS times compared with those with low RECQL4 mRNA expression (log-rank test: P=0.002, and P=0.001, respectively; Fig. 2). Mean DFS and OS in the high-RECQL4 mRNA expression group was 34.23 months [95% confidence interval (CI), 28.42-40.03] and 38.37 months (95% CI, 30.53-46.21) compared with 46.50 months (95% CI, 41.00-52.00) and 46.37 months (95% CI, 40.50-52.24) in the low-RECQL4 mRNA expression group, respectively.

Table I. Association between clinicopathological characteristics and RECQL4 mRNA expression in HCC.

Variable	Patients, n	Low, n (%)	High, n (%)	χ^2	P-value
Age, years					
≤55	138	41 (29.7)	97 (70.3)	0.448	0.503
>55	67	23 (34.3)	44 (65.7)		
Sex					
Male	172	56 (32.6)	116 (67.4)	0.892	0.345
Female	33	8 (24.2)	25 (75.8)		
Family history					
No	172	53 (30.8)	119 (69.2)	0.082	0.775
Yes	33	11 (33.3)	22 (66.7)		
Alcohol consumption					
No	101	34 (33.7)	67 (66.3)	0.554	0.457
Yes	104	30 (28.8)	74 (71.2)		
HBsAg					
Negative	41	16 (39.0)	25 (61.0)	1.454	0.228
Positive	164	48 (29.3)	116 (70.7)		
AFP, ng/ml					
≤100	75	30 (40.0)	45 (60.0)	4.246	0.039
>100	130	34 (26.2)	96 (73.8)		
Cirrhosis					
No	20	3 (15.0)	17 (85.0)	2.715	0.099
Yes	185	61 (33.0)	124 (67.0)		
Tumor size, cm					
≤6	89	37 (41.6)	52 (58.4)	7.852	0.005
>6	116	27 (23.3)	89 (76.7)		
Tumor number					
Single	137	45 (32.8)	92 (67.2)	0.509	0.475
Multiple	68	19 (27.9)	49 (72.1)		
BCLC stage					
0-A	92	37 (40.2)	55 (59.8)	6.293	0.012
B-C	113	27 (23.9)	86 (76.1)		
Metastasis					
No	176	57 (32.4)	119 (67.6)	0.789	0.374
Yes	29	7 (24.1)	22 (75.9)		
Recurrence					
No	135	38 (28.1)	97 (71.9)	1.737	0.188
Yes	70	26 (37.1)	44 (62.9)		

RECQL4, ATP-dependent DNA helicase Q4; HBsAg, hepatitis B surface antigen; AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; Metastasis, distant metastasis or lymph node metastasis.

Univariate analysis of prognostic factors of DFS and OS. Kaplan-Meier survival analysis revealed that patients expressing high levels of RECQL4 mRNA had significantly shorter DFS and OS times compared with those with low RECQL4 mRNA expression (log-rank test: P=0.002, and P=0.001, respectively; Fig. 2). Mean DFS and OS in the high-RECQL4 mRNA expression group was 34.23 months [95% confidence interval (CI), 28.42-40.03] and 38.37 months (95% CI, 30.53-46.21) compared with 46.50 months (95% CI, 41.00-52.00) and 46.37 months (95% CI, 40.50-52.24) in the low-RECQL4 mRNA expression group, respectively.
32.84-43.90) respectively, compared with 50.73 months (95% CI, 41.88-59.58) and 56.31 months (95% CI, 48.33-64.30) in the low-RECQL4 mRNA expression group (P=0.002 and P=0.001, respectively; Table II). Apart from high RECQL4 mRNA expression, other factors, including size of tumor (>6 cm), multiple tumor number, stage B-C (according to BCLC staging) and metastasis, were also strongly associated with a shorter DFS and OS, and recurrence was associated with a shorter OS (Table II).

Multivariate analysis of independent predictors on DFS and OS. To evaluate the predictive roles of these factors in HCC prognosis further (other than recurrence factor, which was measured only for OS), high RECQL4 mRNA expression and other clinical pathological parameters [size of tumor (>6 cm), multiple tumor number, BCLC stage B-C and metastasis] that were identified to be statistically significant by univariate analysis were analyzed using the multivariate Cox proportional hazards model for DFS and OS. Cox multivariate analysis revealed that high RECQL4 mRNA expression (HR, 1.635; 95% CI, 1.062-2.515; P=0.025), as well as size of tumor (>6 cm) (HR, 2.670; 95% CI, 1.704-4.183; P<0.001), BCLC stage B-C (HR, 1.835; 95% CI, 1.116-3.018; P=0.017) were independent predictors for DFS (Table III). High RECQL4 mRNA expression (HR, 1.618; 95% CI, 1.050-2.493; P=0.029), size of tumor (>6 cm) (HR, 2.536; 95% CI, 1.621-3.967; P<0.001), BCLC stage B-C (HR,1.679; 95% CI, 1.128-2.760; P=0.041) and disease recurrence (HR, 2.832; 95% CI, 1.827-4.391; P<0.001) were independent predictors for OS (Table III).

Discussion

RECQL4 expression is associated with cancer-prone syndromes and premature aging. RECQL4 shares homology in its N-terminal domain with the yeast replication initiation protein Sld2, which participates in DNA replication initiation (13-15,23,24). Unlimited replicative potential is a hallmark of HCC cells. In the present study, the expression of RECQL4 mRNA was investigated in HCC tissues, and RECQL4 mRNA was found to be highly expressed in liver cancer tissues compared with ANLT. Similar to other onco-genes, overexpression of RECQL4 may confer an unlimited...
proliferative potential to hepatoma cells and promote hepatocellular tumorigenesis (20,21).

The upregulation of RECQL4 mRNA expression in HCC tissues was positively associated with serum AFP levels (>100 ng/ml). Despite being a recommended tumor marker for HCC screening, detecting AFP alone is not optimal for the surveillance or diagnosis of HCC, owing to its deficiencies in the sensitivity and specificity of testing (25). Therefore, the

Table II. Association between RECQL4 mRNA expression, clinical parameters and disease-free/overall survival.

Clinical characteristics	Patients, n	Disease-free survival	Overall survival				
		Mean, months	95% CI	P-value	Mean, months	95% CI	P-value
RECQL4 mRNA							
Low	64	50.73	41.88-59.58	0.002	56.31	48.33-64.30	0.001
High	141	34.23	28.42-40.03		38.37	32.84-43.90	
Age, years							
≤55	138	38.09	32.06-44.11	0.646	43.70	37.84-49.57	0.634
>55	67	40.68	32.17-49.19		45.85	37.62-54.08	
Sex							
Female	33	45.30	31.98-58.63	0.299	53.41	41.20-65.62	0.141
Male	172	37.82	32.53-43.10		42.81	37.63-47.50	
Family history							
No	172	37.20	31.90-42.50	0.155	42.85	37.65-48.06	0.115
Yes	33	48.00	35.61-60.39		53.12	41.56-64.68	
Alcohol consumption							
No	101	43.60	36.17-51.04	0.139	48.07	41.02-55.13	0.081
Yes	104	34.88	28.50-41.26		40.51	34.20-46.81	
HBsAg							
Negative	41	35.44	25.01-45.87	0.652	41.84	31.60-52.09	0.616
Positive	164	39.74	34.18-45.30		44.61	39.30-49.93	
AFP, ng/ml							
≤100	75	42.88	35.17-50.58	0.200	48.09	40.94-55.24	0.209
>100	130	37.19	30.73-43.65		41.20	35.06-47.34	
Cirrhosis							
No	20	35.40	19.79-51.01	0.694	41.85	27.14-56.56	0.824
Yes	185	39.23	34.05-44.14		44.24	39.27-49.21	
Tumor size, cm							
≤6	89	57.76	50.66-64.85	<0.001	62.66	56.55-68.77	<0.001
>6	116	25.25	19.59-30.91		29.59	24.04-35.14	
Tumor number							
Single	137	44.85	38.77-50.92	<0.001	50.84	45.03-56.65	<0.001
Multiple	68	26.57	19.03-34.11		31.75	24.25-39.25	
BCLC stage							
0-A	92	54.29	47.04-61.54	<0.001	60.09	53.47-66.72	<0.001
B-C	113	26.41	20.70-32.12		31.76	25.94-37.58	
Metastasis							
No	176	41.15	35.76-46.53	0.023	45.63	40.51-50.75	0.048
Yes	29	23.56	14.71-32.42		34.12	22.84-45.39	
Recurrence							
No	135	34.55	28.81-40.28	<0.001	63.22	56.70-69.75	
Yes	70						

CI, confidence interval; HBsAg, hepatitis B surface antigen; AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; Metastasis, distant metastasis or lymph node metastasis; RECQL4, ATP-dependent DNA helicase Q4.
identification of novel molecular markers with superior sensitivity and specificity is urgently required. The present study indicated that RECQL4 maybe a potential novel biomarker for HCC diagnosis, and the positive rate of HCC diagnosis may be improved to 85.37% by detecting a combination of AFP and RECQL4. In addition, the increase in the level of RECQL4 mRNA expression was also positively associated with large tumor size (>6 cm) and stage B-C disease. Therefore, the authors hypothesize that RECQL4 contributes to malignant progression of HCC.

Under univariate analysis, high RECQL4 expression, tumor size >6 cm, and stage B-C disease were shown to be independent predictors of DFS and OS for HCC patients. Large tumor size (>5 cm) has been consistently shown to be an independent prognostic marker in HCC patients (30,31). Generally, HCC patients with larger tumors (>6 cm) have a poorer prognosis. Since an inaccurate prediction can bring about severe harm to patients, as independent predictors for the outcomes of HCC, the expression of RECQL4, tumor size and BCLC stage can aid hepatologists in providing more accurate prognosis predictions, improved risk assessment assessing and in planning therapeutic trials.

In conclusion, the results of the current study found that the expression of RECQL4 mRNA was significantly higher in HCC tissue compared with adjacent normal liver tissues. Whether the upregulation of RECQL4 expression contributes to hepatocarcinogenesis will be a key research question to be investigated in future experiments. It may be possible to use RECQL4 as a novel biomarker for HCC diagnosis. This retrospective study also provides evidence that RECQL4 may serve as an independent predictor of prognosis for HCC patients. Furthermore, targeting RECQL4 may provide a promising strategy for the treatment of HCC patients with high RECQL4 expression. However, further research is required to elucidate the underlying molecular mechanism of HCC.

Acknowledgements

The present study was supported in part by grants from the National Natural Science Foundation of China (grant no. 81773148), and the Innovation and Entrepreneurship Project of University Students in Guangxi (grant nos. 201610598047 and 201610601006).
References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 65: 87-108, 2015.

2. Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG and Morrow M (eds): AJCC Cancer Staging Manual. 6th edition. Springer, Chicago, IL, 2002.

3. A new prognostic system for hepatocellular carcinoma: A retrospective study of 435 patients: The Cancer of the Liver Italian Program (CLIP) investigators. Hepatology 28: 751-755, 1998.

4. Llovet JM, Brä C and Bruix J: Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin Liver Dis 19: 329-338, 1999.

5. Liao W, Liu W, Yuan Q, Liu X, Ou Y, He S, Yuan S, Qin L, Chen Q, Nong K, et al: Silencing of DLGAP5 by siRNA significantly inhibits the proliferation and invasion of hepatocellular carcinoma cells. PLoS One 8: e80789, 2013.

6. Liao W, Liu W, Liu X, Yuan Q, Ou Y, Qi Y, Huang W, Wang Y and Huang J: Upregulation of FAM83D affects the proliferation and invasion of hepatocellular carcinoma. Oncotarget 6: 624-631, 2012.

7. Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell 144: 646-674, 2011.

8. Petkovic M, Dietzchy T, Freire K, Jiao R and Stagljar I: The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118: 4261-4269, 2005.

9. Kita S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM and Furuchi Y: Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 22: 82-84, 1999.

10. Siitonen HA, Kopa R, Kääriäinen H, Haravuori H, Winter RM, Säämänen AM, Peltonen L and Kestiä M: Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 12: 2837-2844, 2003.

11. Van Maldergem L, Siitonen HA, Jalkh N, Chouery E, De Roy M, Delague V, Muenke M, Jabs EW, Cai J, Wang LL, et al: Revisiting sis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43: 148-152, 2006.

12. Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dumphrey WG and Venkitaraman AR: Initiation of DNA replication requires the RECQ4 protein mutated in Rothmund-Thomson syndrome. Cell 121: 887-898, 2005.

13. Xu X and Liu Y: Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4. EMBO J 28: 568-577, 2009.

14. Collart C, Allen GE, Bradshaw CR, Smith JC and Zegerman P: Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341: 893-896, 2013.

15. Fan W and Luo J: RecQ4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A (XPA). J Biol Chem 283: 29037-29044, 2008.

16. Schurrman SH, Hedayati M, Wang Z, Singh DK, Spinea E, Zhang Y, Becker K, Macris M, Sung P, Wilson DM III, et al: Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 18: 3470-3483, 2009.