Article Type:
Research Paper

Original Title of Article:
A study on the examination of the metaphoric perceptions of middle school students about pattern

Turkish Title of Article:
Ortaokul öğrencilerinin örüntü hakkındaki metaforik algılarının incelenmesi üzerine bir araştırma

Author(s):
Selin ÇENBERCİ, Dilek SEZGİN MEMNUN, Hasibe İNCE

For Cite in:
Çenberci, S., Sezgin Memnun, D., & İnce, H. (2020). A study on the examination of the metaphoric perceptions of middle school students about pattern. Pegem Eğitim ve Öğretim Dergisi, 10(1), 215-250. http://dx.doi.org/10.14527/pegegog.2020.008

Makale Türü:
Özgün Makale

Orijinal Makale Başlığı:
A study on the examination of the metaphoric perceptions of middle school students about pattern

Makalenin Türkçe Başlığı:
Ortaokul öğrencilerinin örüntü hakkındaki metaforik algılarının incelenmesi üzerine bir araştırma

Yazar(lar):
Selin ÇENBERCİ, Dilek SEZGİN MEMNUN, Hasibe İNCE

Kaynak Gösterimi İçin:
Çenberci, S., Sezgin Memnun, D., & İnce, H. (2020). A study on the examination of the metaphoric perceptions of middle school students about pattern. Pegem Eğitim ve Öğretim Dergisi, 10(1), 215-250. http://dx.doi.org/10.14527/pegegog.2020.008
A study on the examination of the metaphoric perceptions of middle school students about pattern

Selin ÇENBERCİ *a, Dilek SEZGİN MEMNUN **b, Hasibe İNCE ***c

a Necmettin Erbakan University, Ahmet Kelesoglu Faculty of Education, Konya/Turkey
b Uludag University, Faculty of Education, Bursa/Turkey
c Kadınhanı Örnekköy Ortaokulu, Konya/Turkey

Abstract

In this study, it was aimed both to examine middle school students’ perceptions of the concept of pattern and to reveal if the metaphoric perceptions which the students created in relation to the concept of pattern changed according to the variable of grade level. The metaphors in relation to the concept were carried out via the "phenomenological" design. For this, a short open ended form was directed to the volunteer fifth, sixth, and seventh-grade students who attended to the research from a middle school in Turkey. The qualitative data were analyzed through content analysis. Besides, the chi-square test was used for quantitative analysis. The perceptions of middle school students were gathered under six different categories. Moreover, the analyses made within the scope of this study revealed that the metaphors which the participant students created for the concept of pattern did not indicate significant difference according to the grade levels.

Keywords:
Metaphor,
Metaphoric perception,
Pattern,
Middle school student.

Article Type:
Research paper

Ortaokul öğrencilerinin örüntü hakkındaki metaforik algılarının incelenmesi üzerine bir araştırma

Bu araştırmada, ortaokul öğrencilerinin örüntü kavramını algılamalarının incelenmesi ve bu kapsamında araştırma kapsamında katılan öğrencilerin örüntü kavramına yönelik olarak metaforların ortaya koyulması amaçlanmıştır. Ayrıca, bu araştırmada öğrencilerin örüntü kavramına ilişkin olarak ürettilerleri metaforik algılarının sınıf düzeylerine göre değişimi de incelenecektir. Bu kavrama ilişkin metaforlar "olgunluk" deseni aracılığı ile ortaya koyulmuştur Açıkl uçlu bir form Türkiye’de bulunan bir ortaokulun başını, altını ve yedinci sınıflarında öğrencilerin görmekte olan araştırmaya katılmak konusunda istekli öğrencilerine uygulanmıştır. Elde edilen nitel veriler içerik analizi aracılığı ile geçirilecektir. Ayrıca, nicel verilerin analizinde ki-kare testi aracılığı ile yapılmıştır. Yapılan analizler sonucunda, araştırmaya katılan ortaokul öğrencilerinin metaforik algılardan toplan altı farklı kategori altında toplanmış ve analiz edilmiştir. Ayrıca, bu araştırma kapsamında yapılan incelenecek araştırmaya katılan öğrencilerin örüntü kavramı için ürettilerleri metaforların sınıf düzeylerine göre anlamlı bir şekilde farklılaşmış da ortaya koyulmuştur.

Makale Bilgisi

DOI: 10.14542/pegegog.2020.008

Makale Geçmişi:
Gelişme 10 Mart 2019
Düzenleme 08 Ağustos 2019
Kabul 04 Aralık 2019
Çevrimiçi 02 Şubat 2020

Anahtar Kelimeler:
Metafor,
Metaforik algı,
Örüntü,
Ortaokul öğrenci.

Makale Türü: Özgün makale

Özgün makale

* Author: scenberci@konya.edu.tr
** Author: dsmemnun@uludag.edu.tr
*** Author: hasibe83ince@gmail.com

Orcid ID: https://orcid.org/0000-0003-4025-7823
Orcid ID: https://orcid.org/0000-0003-3254-8858
Orcid ID: https://orcid.org/0000-0003-0076-4302
Introduction

Mathematics is in the lead of the branches of science which never lose their value and have a gradually increasing value. Mathematics, which we use intensively in our daily life as well as in science, takes the first place in countries’ curriculum (Polat, 2010). With an effective mathematics education, in our country and the world, it is aimed to raise individuals keeping up with the developing technology and science, being able to think analytically, taking matters critically and adopting solution-oriented thinking. However, especially in Turkey, mathematics is regarded by most individuals in compulsory basic education as a disliked and fearsome subject. Liking, understanding and learning mathematics is possible through getting acquainted with its structure. The mathematical structure is understood through the examination of patterns in mathematics and revealing the mathematical relationships (Hargreaves, Shorrocks-Taylor & Threlfall, 1999).

One of the fundamental subjects of mathematics is the concept of pattern. The concept of pattern was given place for the first time in the mathematics curriculum put into practice in 2004 in Turkey (Ministry of National Education, 2004). Pattern can be defined as “development of events or objects via following one another regularly” (Turkish Language Society, 2018). In our daily life, there is an order, a rule, that is to say, a pattern in general sense in many matters (Palabıyık & Akkus-İspir, 2011). In other words, patterns are structures which individuals encounter in every area of daily life and they also continuously appear before us mathematically. When they are taken in hand mathematically, it is observed that patterns are cases appearing as a result of the repetition of a shape or a movement in a certain order and taking place in a certain rule. When it is considered from the necessity of determining and explaining similar and different characteristics of mathematical concepts, patterns cover basic skills, which are fundamental in mathematics teaching and, from this aspect, they are very important (Papic, 2007). Characteristics such as recognizing, maintaining and creating patterns are essential abilities in comprehending the order of mathematics and making generalizations (Burns, 2000). Also helping to develop students’ abstract thinking skills, patterns are a significant factor in the development of their algebraic thinking. Moreover, the subject of patterns covers the skills which are regarded as necessary to understand functions and relationships in algebra at all grade levels (National Council of Teachers of Mathematics [NCTM], 2000). That is to say, in the formation of basic concepts in the area of algebra, the representation of patterns in different ways and symbolically is important (Ministry of National Education [MoNE}, 2009). Likewise, since they are in relation with number sets, measurements, and geometry concepts, patterns contribute to students’ understanding of relationships between math concepts and mathematical thinking. The contribution of making sense of these relationships to individuals is also important (Hargreaves et al., 1999; as cited in Özdemir, Dikici & Kültür, 2014).

Algebra which is one of the most important subfields of mathematics take place in each field in the mathematics. Students, who learn arithmetic with numbers and geometry with shapes, make the transition to algebra using letters and symbols (Ersoy & Erbaş, 2005). Algebra consists of two basic topics: Variables and equations (Knuth, Alibali, McNeil, Weinberg & Stephens, 2005; cited in: Erdem & Sarpkaya-Aktaş, 2018). The search for different ways of effective teaching of algebra has made it necessary for researchers to use pattern in the transition to algebra (Palabıyık & Akkus-İspir, 2011). Patterns, which have a vital role in and effect on the understanding of many mathematical concepts, were given together with algebra education starting from the middle school seventh grade in the years when the traditional teaching approach was adopted in Turkey. However, in the mathematics curriculums put into practice between the years 2005-2018, it started to take place at all grade levels starting from the nursery school as the subject of "Patterns and Relationships" (MEB, 2005, 2009, 2017 & 2018). In this way, it was planned to have students better understand the subject of algebra, an abstract concept, which they will encounter in the advancing middle school grades. In this scope, in the 2009 Mathematics Course Curriculum in Ministry of National Education, elementary school students are made to study firstly on repetitive patterns. Then, students work on completing a missing part of a pattern, continuing a pattern, discovering relationships in a pattern and finding the rule in a pattern (MEB, 2009). In the 6th-8th grades, "students' generalizing the rule in a pattern and stating it in letters"
is also included as a basic skill. Moreover, in the Middle School Mathematics curriculum prepared in 2013, in the fifth grade, the concept of pattern was included in the sub-learning area of "Numbers and Operations." At the sixth-grade level, too, it was projected to have students work on finding the desired term in number patterns and making sense of algebraic expressions (MEB, 2013). Hence, it was aimed for the first time to have students engage in the acquisitions related to the area of learning "Algebra." Then, with the Mathematics Course Teaching Programs for the Elementary and Middle School 1th, 2nd, 3rd, 4th, 5th, 6th, 7th and 8th grades put into practice in 2017 and 2018, the teaching of the concept of "pattern" was included important in the acquisitions of the elementary and middle school mathematics course. In this scope, in the 2018 program, in the first three grades (1st-3rd grades), the subject of "Geometric Patterns" is included in the "Geometry" unit in a way to have students attain 2 acquisitions during 6 lesson hours in the first-grade, 2 acquisitions during 5 lesson hours in the second-grade and 1 acquisition during 3 lesson hours in the third-grade. The acquisitions included in the program in these grades are students’ finding a certain geometric pattern through experiences, determining the relationship in a pattern, whose elements are objects, geometric shapes or objects, finding the missing part, and create a geometric pattern with three elements at most in the first grade. At the second and the third grades, there are acquisitions enabling students to determine and complete the missing elements in a repetitive pattern, see relationships in a pattern, create patterns having the same relationship by using different materials, do coatings and draw the coating pattern on a dotted or graph paper (MEB, 2018). Moreover, in the 2018 Mathematics Course Teaching Program, the acquisition included in the subject of "Natural Numbers" of the "Numbers and Operations" unit in the fourth-grade, and stated as "students create increasing or decreasing number patterns according to a certain rule and explain its rule" and similarly the subject of pattern included in the same unit and subject and stated as "students create the desired steps of the number and shape patterns with given rules" in the fifth-grade was not included in the sixth-grade. Instead of this, it was included with the acquisition stated as "students express the rule of number patterns in letters and find the desired term of the pattern, whose rule is expressed, with a letter" in the "Algebraic expressions" subject of the "Algebra" unit in the seventh-grade." That the subject of patterns has started to be attached importance and revisions have been made on the patterns in each renewed program in recent years in Turkey indicates the importance of the subject of patterns.

When previous studies made in this area are examined, it is observed that most of these studies also investigated the concepts related to patterns and some were made at the elementary level (MacGregor & Stacey, 1993; Palabıyık & Akkuş-İspir, 2011; Tanışlı, 2008; Yaman, 2010) and others were made at the university level (Tanışlı, Köse & Camcı, 2017; Yaman & Umay, 2013; Yeşildere & Akkoç, 2010, 2011). Of these studies, the study made by MacGregor and Stacey (1993) examined how the students aged 14-15 years saw the patterns and write their rules. As a result of the study, it was seen that the students had difficulty interpreting function tables and creating algebraic rules. Moreover, in a study by Tanışlı (2008) aiming to determine the fifth-grade students’ understandings and comprehending patterns, the repetitive, constant and increasingly changing patterns were investigated. As a result of the study, it was found that determining the unit of repetition in the repetitive patterns was an important factor in being able to continue the pattern to a finite step, finding the numerical relationship between the shapes and creating a repetitive pattern. Moreover, in the same study, it was also found that the students defined the relationship in the pattern by associating it with the preceding term or by taking in hand the natural structures of the terms in the pattern in the number pattern activities. Moreover, in the study made by Yaman (2010), too, it was aimed to determine the elementary school students’ comprehension styles in relation to the concept of pattern. As a result of the administration of an achievement test including questions in the form of tables, number sequences, shape patterns and pattern problems belonging to the repetitive, linearly expanding and increasingly changing patterns to the students, it was explained that success increased with the grade level, and it was reported that the students had difficulty writing the algebraic expressions requiring the use of symbols. In a study made by Yeşildere and Akkoç (2010), it was aimed to determine the strategies which a total of six pre-service teachers used to teach how to find the rule of the number patterns by using micro-teaching activities. As a result of the study, it was
determined that the pre-service teachers had some difficulties related to patterns. Moreover, the study made by Palabıyık and Akkus-Işpir (2011) aimed to examine the effects of the pattern-based and the non-pattern-based algebra teaching on the seventh-grade students' algebraic thinking skills and attitudes toward mathematics. As a result of the study, it was found that the students learned algebra conceptually better with the pattern-based algebra teaching. Moreover, in another study made by Yeşildere and Akkoç (2011), it was aimed to examine the mathematics teachers' pattern generalization processes. As a result of the study, it was observed that the pre-service teachers made an effort to determine the common characteristics in a way to find only the next term in the pattern. From these studies, it is understood that students have insufficient knowledge and some difficulties in relation to the subject of "Patterns" having been given more place in programs in recent years. In a study made by Yaman and Umay (2013), the changes in the students' performance levels related to mathematical patterns according to the grade levels were examined in terms of presentation styles of patterns. As a result of the study, significant differences were determined in the students' performance levels related to the mathematical patterns at different grade levels according to their pattern presentation styles. Moreover, Tanışlı et al. (2017) aimed to examine the middle school mathematics pre-service teachers' making generalizations by considering the patterns and discover the verifications which they used for the generalizations. The findings of the study indicated that the pre-service teachers used explicit and implicit reasoning in the process of generalization of the patterns and adopted deductive and inductive methods in the verification process.

It was understood in these examinations made within the scope of literature that most of the studies made in this area focused on kinds of patterns which individuals can use or examined difficulties related to this subject. As a result, it was explained in these studies that patterns were among the subjects which students had difficulty comprehending and there were already some difficulties related to the concept of pattern. However, it is clear that students' beliefs and attitudes related to this concept may also have an effect on the learning and the use of patterns. For this reason, different from these studies, in this study, it is aimed to determine and examine the students' beliefs, understandings, and comprehensions in relation to the concept of pattern and also thoughts about the structure of the concept of pattern. Hence, the students' viewpoints of pattern will be taken in hand and evaluated, and the reasons of the students' difficulties in this area will be investigated. One way of revealing individuals' perceptions and viewpoints about a subject is metaphors. For, individuals create mental images, that is to say, metaphoric structures, by establishing relationships between abstract concepts and known concrete concepts and use these metaphors for concepts while expressing their opinions (Saban, 2005).

Metaphors are "means used to mention and describe a new phenomenon or an object by using the characteristics of the things we know" (Lakoff & Johnson, 2005). They are also defined as "a powerful mental modeling mechanism which individuals use to understand and structure their own worlds" (Arslan & Bayraç, 2006). More generally, metaphors present a viewpoint directing an individual to think about a phenomenon (Shuell, 1990; cited in: Saban, 2003). In short, metaphors are mental tools used to reveal students' perceptions and learning styles during their mental developments (Öçak & Gündüz, 2006). For this reason, metaphors are frequently used in education, and it is likely to encounter many studies made especially on the use of metaphors in mathematics education.

Some of these studies (Bahadır & Özdemir, 2012; Cassel & Vincent, 2011; Erdoğan, Yazlık & Erdik, 2014; Güler, Akgün, Öcal & Doruk, 2012; Güner, 2013; Şahin, 2013; Sevindik, Sezgin-Memnun & Çenberci, 2016; Şengül & Katranç, 2012; Şengül, Katranç & Gerez-Cantimer, 2014; Yetim-Karaca & Ada, 2018) are the studies investigating different concepts such as mathematics, mathematics teacher and mathematics course by means of metaphors. Of these studies made in recent years (Bahadır & Özdemir, 2012; Erdoğan et al., 2014; Güler et al., 2012; Sevindik et al., 2016; Şengül & Katranç, 2012), it was aimed to determine the metaphors especially related to the concept of "mathematics." Of these, Bahadır and Özdemir (2012) explained mathematics under five categories, namely "game", "tool for calculation", "element of fear", "sweet" and "a forgotten element." Moreover, in this study, they explained that the students thought that mathematics is composed of only numbers and operations.
Moreover, as a result of the study made by Erdoğan et al. (2014), it was reported that the mathematics pre-service teachers' metaphors in relation to the concept of mathematics were gathered under 14 categories and the great majority of the pre-service teachers explained mathematics with the metaphors which they generated in the categories of "unlimited", "disconnected", "simply necessary", "amusing", "cumulative" and "compulsory." It was also understood that some of the students explained mathematics with metaphors in the categories of "guiding", "universal", "requiring continuity", "hardly solve-able", "mind developing" and "with a single solution". Moreover, as a result of the study made by Güler et al. (2012), it was understood that the mathematics pre-service teachers explained mathematics with metaphors which they created in relation to the concept of mathematics under five different categories, namely "infinity", "viewpoint", "requirement", "guiding" and "life itself." Moreover, Sevindik et al. (2016) determined from the vocational high school students' metaphors that more than half of them perceived mathematics negatively. Şengül and Katrancı (2012) reported that the elementary school second stage students perceived the concept of "mathematics" mostly as equivalent to the concepts of "life", "puzzle", "game", "world", "universe", "water" and "book."

However, some of the studies (Cassel & Vincent, 2011; Güner, 2013) focused on teaching. Of these, in the study made by Cassel and Vincent (2011), the elementary school pre-service teachers' metaphors about the teaching of mathematics and science were examined. As a result of the study, it was found that the students' classroom experiences shaped their attitudes toward the subject, teacher, and learning. It was also reported that the students' attitudes changed to negative from elementary education to middle school education and as the classroom experiences of the elementary pre-service teachers increased, they created their own in-classroom methods and these experiences shaped their attitudes toward mathematics and science learning and teaching. Güner (2013) investigated the twelfth-grade students' metaphors in relation to the learning of mathematics. As a result of the study, it was reported that these students explained the learning of mathematics in eight different categories, namely acting out the unknown, driving a vehicle, difficulty of learning mathematics, deriving pleasure from learning mathematics, the difficulty of learning mathematics. However, in the studies made by Şahin (2013) and Şengül et al. (2014), the metaphors related to the "mathematics teacher" were put forward as well. Of these, Şahin (2013) made a study with the aim of examining the pre-service teachers' metaphors related to three concepts, namely the mathematics teacher, mathematics and the course of mathematics. As a result of the study, it was found that the pre-service teachers perceived the mathematics teacher as the most knowing and authoritarian and the mathematics as "intelligence", "enjoyable", "necessary", "talent", "difficult", "success." Moreover, it was explained that the least preferred metaphors related to the concept of mathematics were "unnecessary", "authoritarian" and "easy". Moreover, Şengül et al. (2014) examined whether there were any differences between the metaphors which the middle school students created in relation to the concept of mathematics teacher according to gender and found that the metaphors did not show statistically significant differences according to gender in their study. Moreover, Yetim-Karaca and Ada (2018) tried to determine the students' perceptions in relation to mathematics and the mathematics teacher in their study. As a result of the study, most of the students explained the course of mathematics as difficult, boring and complicated and some of them defined the course as an easy and amusing course. Moreover, it was also explained in the study that some of the students stated that success at the course of mathematics required being intelligent.

Some of the studies made on metaphors in mathematics education (Cansız-Aktaş & Aktaş, 2013; Horzum & Yıldırım, 2016; Sezgin-Memnun, 2015; Sezgin-Memnun, Dinç & Aydin, 2018; Toluk-Ucar, Pişkin, Akkaş & Taşlı, 2010; Turhan-Turkhan & Yeşilpinar-Uyar, 2016; Yee, 2012) were the studies examining different mathematical phenomena such as mathematical proof, mathematics problem, geometry and function via metaphors. Of these, in the study made by Cansız-Aktaş and Aktaş (2013), it was aimed to examine the metaphors of the students from the mathematics department related to proof. As a result of the study, it was observed that the resource and the reasons of the students' metaphors were mostly related to the clarifying of the proving procedure. Moreover, in the study made by Horzum and Yıldırım (2016), it was aimed to reveal the high school students' perceptions related to
geometry. As a result of the study, it was reported that the students explained their metaphors under 10 categories over a total of 49 different metaphors. It was determined that most of the students had either positive or neutral perceptions of geometry, but one-fourth of them had negative perceptions. Moreover, the students having a negative perception emphasized the complex, boring, difficult and unlimited aspects of geometry.

In the study made by Sezgin-Memnun in 2015, it was aimed to determine the students' metaphors related to the mathematics problem. As a result of the study, it was explained that the metaphors gathered under eight categories, namely "difficult/complex", "requiring labour/skill", "enjoyable/amusing", "use of strategy", "advantage/contribution to knowledge acquisition", "frightening/boring", "important/valuable" and "convenience." Sezgin-Memnun et al. (2018) aimed to determine the students' metaphors about the concept of function, a mathematical concept. In the study, they identified 149 valid metaphors in a total of 8 categories. As a result of the study, they explained that while more than half of the students considered the concept of function as "difficult," some of the students found this concept as "easy". Toluk-Ucar et al. (2010) made a study taking in hand the elementary school students' metaphors related to mathematics from every aspect. As a result of the study, it was understood that the students interpreted mathematics mostly as "calculation," "numbers" and "operations." However, the students interpreted "solving mathematical problems" as "solving test questions" and "success at mathematics" as "calculating rapidly and correctly." Similarly, they reported that the students considered that being intelligent was enough for success at mathematics and mathematicians were generally non-social, lonely, introverted, quiet and nervous individuals engaged with numbers. Moreover, in the study made by Türkhan and Uyar (2016), it was determined that the metaphors which the middle school students created in relation to the mathematical problem were gathered under 7 categories and the most-frequently created 4 metaphors were "life", "game", "labyrinth" and "friend." Moreover, Yee (2012) carried out a study with the aim of determining how the students perceived solving mathematical problems via the participation of students and teachers. As a result of the study, it was reported that the students created consistent metaphors and the teachers' use of metaphors in the lesson was effective. However, it was observed in the analyses that the number of the metaphor studies made on mathematical definitions and concepts in different areas was limited and these studies examined the concepts which were different from the one taken within the scope of this study.

The use of metaphors considered particularly to help students to concretize abstract mathematical concepts for different mathematical concepts may make important contributions to mathematics teaching. For this reason, it is considered that carrying out a metaphor study related to "patterns," which are one of the fundamental subjects of mathematics, underlying the formation of algebra, having come into prominence as a result of the course program regulations and revisions made in recent years in Turkey and taking place in mathematics course programs starting from nursery school today, considered to be difficult-to-understand for students and examples of which are encountered very frequently in daily life, will make an important contribution to the field. In other words, it's being the concept having come into prominence following the program revisions made in recent years and also especially underlying the learning of such high school subjects as function became effective on the inclusion of the concept of "pattern" within the scope of this study. Since, the studies on this subject point to the difficulty in learning the concept of "pattern", obtaining ideas about students' thoughts and knowledge levels about the concept of pattern and having teachers acquire different viewpoints about the teaching of the concept of pattern is rather important. For this reason, in this study, it was aimed to examine the middle school fifth, sixth and seventh-grade students' perceptions about the concept of pattern and, in this scope, reveal the participant students' metaphors about the concept of pattern. For this aim, answers were sought for the following research questions:

1. What are the metaphors which the fifth-grade students have in relation to the concept of pattern?
2. What are the metaphors which the sixth-grade students have in relation to the concept of pattern?
3. What are the metaphors which the seventh-grade students have in relation to the concept of pattern?

4. Under which conceptual categories can the metaphors which the fifth, sixth and seventh grade students have in relation to the concept of pattern be gathered in terms of common characteristics?

5. Do the categories explaining the metaphors produced by the fifth, sixth and seventh grade students about the concept of pattern indicate significant differences according to grade level?

Method

This part includes detailed information about the model, sample, data collection and data analysis of the study carried out with the aim of determining the middle school students’ ways of perception of the concept of pattern and metaphoric perceptions in relation to this concept.

Research Design

This study aims to examine the fifth, sixth and seventh-grade students’ ways of perception of the concept of “pattern” and metaphors in relation to this concept was carried out via the “phenomenological” design. The aim of this research studies is not to make a generalization but to define phenomena (Akturan & Esen, 2008). In these studies, individual perceptions related to a phenomenon are revealed, analyzed and evaluated (Yıldırım & Şimşek, 2013). Similarly, in this study, too, how the students perceived and made sense of the concept of ”pattern” will be examined starting from their viewpoints. For this reason, in this study, the "phenomenological" design was used.

Study Group

This study was carried out with the participation of a total of 135 middle school students studying in Central Anatolia Region of Turkey during the 2017-2018 educational year. In the selection of the students, the "convenience sampling method" was used. One of the researchers was applied the form in a school which near to her living area. Besides, volunteer students were attended to the research. In order to take in hand, the research problem in a broader framework, the participants of the study were selected from among the fifth, sixth and seventh-grade students. Since the study data was collected in the last weeks of the spring semester and this period of time coincided with the intensive studying and examination period for the eight-grade students, they were not included in the study. In the following table, detailed information was given about the participant students.

Table 1. Information about Fifth, Sixth, and Seventh Grade Participants.

	Fifth Grade	Sixth Grade	Seventh Grade	All				
	f	%	f	%	f	%		
Female	32	23.70	34	25.19	18	13.33	84	62.22
Male	15	11.10	29	21.48	7	5.20	51	37.78
Total	47	34.80	63	46.67	25	18.53	135	100.00

As it is understood from the information included in the table, 62.22% of the participant students were female, and 37.78% of them were male. Moreover, 34.8% of the students were the fifth grade, 46.67% of them were the sixth-grade, and 18.53% of them were the seventh-grade students.

Data Collection and Procedure

For data collection, a short open-ended form was used. Each of students was asked to complete the statement of ”A pattern is like because” included in the form by one of the researchers and this form was used as the data collection tool. The data of the study were collected during the spring semester of the 2017-2018 educational year and, in this stage, the students were asked to write a concrete statement, that is to say, a metaphor about the pattern in the first space included in the first
part of the questionnaire and explain in detail the reason(s) why they wrote that metaphor in the second space.

The data collection procedure was completed as a result of the practices of about 20 minutes at each grade level. Before the collection of the data, the students were given the necessary information about what they were asked to do and explained that participation in the study was based on voluntariness.

Data Analysis

The stage of the data analysis made within the scope of the study, firstly the procedure of transferring into computer of a total of 107 forms belonging to the participant 38 fifth-grade, 49 sixth-grade, and 20 seventh-grade students was completed. Then, these forms were evaluated separately at each grade level. In the analysis of the metaphors, the content analysis method was used. In the content analysis, the aim is to organize and classify the obtained data and present it to the reader in a digitized format (Tavşancıl & Aslan, 2001). In this scope, the obtained data was transformed into systematic data and categorized. In this stage, the metaphors developed by the students were analyzed in three stages, namely determination, classification, and categorization of the metaphors, and interpreted.

In this stage, firstly with the aim of determining the themes, the valid metaphors were read separately by two different researchers. In the analysis of the obtained research data, in the stage of determining the metaphors, the metaphors which the fifth, sixth and seventh-grade students developed, and the reasons of these metaphors were coded and listed in alphabetical order. In the stage of classification of the metaphors, similar metaphors were classified according to their characteristics which they shared with other metaphors. In other words, the valid metaphors which the students created were listed and grouped by considering their frequency values. In the categorization stage, the metaphors were examined and analyzed one by one in terms of common characteristics associated with the concept of pattern. In this scope, the valid metaphors were detailed according to the grade levels and placed into categories determined by the researchers. In this stage, after the analysis of the explanations made by the students, the metaphor answers, which were likely to be included in more than one category, were counted as invalid and not included in any category. The categories were determined and presented by considering the findings obtained from previous studies made in this area and the students’ ways of explaining the data/metaphors obtained within the scope of this study. The metaphors were gathered under 6 different categories, namely "repetition/iteration", "being sequential and orderly", "having a rule", "continuity", "shape" and "other" by associating each metaphor with a certain theme. After that, the categorized metaphors were reviewed by one of the researchers two weeks later, and the categories related to the metaphors were revised finally. Following this, these metaphors and the tables belonging to the categories were presented in the findings section together with percentage and frequency values. Finally, the research findings were supported with direct quotations where necessary. Moreover, whether the metaphors grouped in accordance with the themes differ according to the grade levels was examined via the applied chi-square test. During the whole analysis process of the study, in the listing, tabulation, and categorization of the obtained data, some programs was used. The significance level was taken as 0.05 for the applied chi-square test.

Validity and reliability: The validity and reliability of this qualitative study were based on the strategies of credibility /consistency and transferability (Yıldırım & Şimşek, 2013, pp. 264-272). In this scope, to achieve the plausibility and the consistency, separate evaluations and categorizations were made by the researchers. Following the joint evaluations made by the researchers for the differences between the groupings, the categories were finally revised. Hence, the quality of the study was increased. For example, while the regular patterns of the ones having a certain rule were evaluated by some researchers in the same category, as a result of the joint evaluations, they were taken in separate categories. Transferability tried to be achieved via detailed description and evaluation of the cases and the characteristics obtained in the study. In addition, attention was paid to the classification of the research data in accordance with the content analysis, reorganization and interpretation according to the themes determined.
Results

In this section, students’ perceptions and metaphors in relation to the concept of ‘pattern’ were explained and interpreted in sub-headings in accordance with the research problems. Within the scope of this study, the participants created a total of 107 valid metaphors in relation to the concept of ‘pattern’. These metaphors which the students created were gathered under a total of 6 categories and presented in the following tables. These metaphors and the created categories are given below.

Results Related to the First Research Question

The first sub problem of this study was stated as “What are the metaphors which the fifth-grade students have in relation to the concept of pattern?” Related to this research problem, a total of 38 metaphors created by 47 fifth grade students were given in Table 2 with their frequency and percentage values.

Table 2.
Frequency and Percentage Values related to the Fifth Grade Students’ Metaphors.

Metaphor	f	%	Metaphor	f	%
Night-day	4	10.53	Alphabet	1	2.63
Phases of the moon	2	5.27	Tree	1	2.63
Months	2	5.27	Leap year	1	2.63
Seasons	2	5.27	Wardrobe	1	2.63
Shapes	2	5.27	Daily plan	1	2.63
Movement of sun, earth&moon	2	5.27	Human	1	2.63
Number of days in the months	1	2.63	TurkishNationalAnthem	1	2.63
Evening news	1	2.63	Ant	1	2.63
Friendship-love	1	2.63	Book	1	2.63
Flying horses	1	2.63	School bell	1	2.63
Sunrise and sunset	1	2.63	Game	1	2.63
The Sun-the earth-the moon	1	2.63	Window	1	2.63
morning-evening	1	2.63	Clock	1	2.63
Lightning-thunder	1	2.63	Caterpillar	1	2.63
The school start and finish times	1	2.63	Star	1	2.63
Total	38	100.0			

As a result of the analyses, it was determined that the fifth grade students created 30 different metaphors in relation to the concept of pattern and the total number of created metaphors was 38. The frequencies of the created metaphors changed between 1 and 4. It was observed that the most frequently repeated metaphors were ‘night-day’, ‘phases of the moon’, ‘months’, ‘the movements of the sun, the earth and the moon’, ‘seasons’ and ‘shapes.’ Below are given examples related to these metaphoric perceptions of the fifth-grade students.

“A pattern is like the movements of the sun, the earth and the moon because they continuously repeat.”

“A pattern is like a tree because trees blossom and yield fruit and they repeat this every spring.”

Results Related to the Second Research Question

The second research question was stated as “What are the metaphors which the sixth-grade students have in relation to the concept of pattern?” and a total of 49 metaphors created by a total of 63 sixth grade students in relation to this research problem were examined. The findings related to this were presented in Table 3. As a result of the examination of the table, it was determined that the sixth grade students, whose metaphors were counted as valid, created 34 different metaphors about the concept of pattern and the total number of metaphors was 49.
Table 3.
Frequency and Percentage Values related to the Sixth Grade Students’ Metaphors.

Metaphor	f	%	Metaphor	f	%
Daily life	4	8.18	Houses	1	2.04
Lessons	3	6.13	Rule of life	1	2.04
Human life/life	3	6.13	Worship	1	2.04
Night-day	2	4.08	Human	1	2.04
Days	2	4.08	Ant	1	2.04
Rule	2	4.08	The crown of math	1	2.04
Mathematics	2	4.08	Colours	1	2.04
Clock	2	4.08	Hour wheel	1	2.04
Number	2	4.08	Number on the clock	1	2.04
Train	2	4.08	Rank	1	2.04
Road	2	4.08	Ranking	1	2.04
Screw of a car	1	2.04	Water	1	2.04
Adjustable apparatus	1	2.04	Train wagon	1	2.04
Cycle-circle	1	2.04	Ironed linen	1	2.04
Mountain	1	2.04	Salt in a meal	1	2.04
School timetable	1	2.04	Walking	1	2.04
World	1	2.04	Time	1	2.04
Total				49	100.0

Moreover, it was understood from the analyses made that the frequencies of these metaphors changed between 1 and 4. As a result of the analyses, it appeared that the most frequently repeated metaphors were “daily life”, ”lessons” and ”human life”. The examples related to the sixth-grade students' perceptions about this concept were given below:

“A pattern is like mathematics because there is a rank among them like mathematics.”

“A pattern is like a life because the heart repeats the same procedures while pumping blood. And this is a pattern. Hence, life is impossible without patterns.”

Results Related to the Third Research Question

The third research question included within the scope of this study was stated as "What are the metaphors which the seventh-grade students have in relation to the concept of pattern?" In this stage, firstly a total of 25 seventh grade students created a total of 20 different metaphors about “pattern”. These created metaphors were presented in Table 4 below with their frequency values.

Table 4.
Frequency and Percentage Values related to the Seventh Grade Students’ Metaphors.

Metaphor	f	%	Metaphor	f	%
Clock	3	15.00	Human	1	5.00
Months	2	10.00	Seasons	1	5.00
Days of the week	2	10.00	School	1	5.00
Block of apartments	1	5.00	Onion	1	5.00
Baby	1	5.00	Limitless	1	5.00
Building	1	5.00	Candy Crush Saga	1	5.00
Number of flowers	1	5.00	Train-wagon	1	5.00
World	1	5.00	Attendance sheet	1	5.00
Total				20	100.0

As a result of the examination of the table, it was observed that the great majority of the metaphors created by the seventh grade students were created by one participant. It was also observed that the most frequently repeated metaphor was ‘clock.’ It was determined that the metaphors created by two participants were ‘months’ and ‘days.’ Below are given the examples related to these metaphors.
"A pattern is like the game of Candy Crush Saga because it becomes more difficult at each level."

"A pattern is like the world because it has an order."

Results Related to the Fourth Research Question

The findings related to the fourth research question included in this study and stated as "Under which conceptual categories can the metaphors which the fifth, sixth and seventh grade students have in relation to the concept of pattern be gathered in terms of common characteristics?" were included in this section. In this context, it was examined which characteristic of the concept of "pattern" was emphasized by the valid metaphors that the fifth, sixth and seventh grade students produced regardless of grade level. As a result of this, 107 valid metaphors of a total of 135 students were taken in hand and presented under a total 6 different conceptual categories. These categories were presented in detail in the following tables.

Category 1. Repetition/Iteration: In this category included under the name of "repetition/iteration" related to the concept of pattern, the metaphors fitting for the definition that the elements in an object or event set follow one another were gathered. The metaphors gathered under this category were tabulated according to the grade levels and presented in Table 5.

Table 5.
Students' Metaphors for Repetition/Iteration Category.

Metaphor	Fifth Grade	Sixth Grade	Seventh Grade			
Metaphor	f	%	f	%	f	%
Months	2	5.27	2	4.08	2	10.00
Tree	1	2.63	1	2.04	1	5.00
Night-day	1	2.63	1	2.04	1	5.00
Clock	1	2.63	Life	1	2.04	
Turkish National Anthem	1	2.63	1	2.04		
School start&finish times	1	2.63	Ant	1	2.04	
School bell	1	2.63	Clock	1	2.04	
Movements of the sun, earth and world	1	2.63				

When Table 5 is examined, it is understood that 9 fifth grade students created a total of 8 different metaphors, 8 sixth grade students created a total of 7 different metaphors and 4 seventh grade students created 3 different metaphors under the "repetition/iteration" category of the concept of pattern. According to the grade levels, the most frequently repeated metaphors were "months", "daily life" and "days", respectively. Some students' opinions related to the metaphors included under this category were given below:

"A pattern is like the movements of the sun, the earth and the moon because they continuously repeat."

"A pattern is like daily life because it always repeats."

"A pattern is like days because they repeat."

Category 2. Being sequential and orderly: In the category of "being sequential and orderly" related to patterns, the metaphors stating that the concept of pattern were gathered. These were gathered under this category were tabulated according to the grade levels and presented below. When Table 6 is examined, it is observed that 15 fifth grade students created a total of 12 different metaphors, 15 sixth grade students created a total of 13 different metaphors and 7 seventh grade students created a total of 7 different metaphors under the category of the patterns' "being sequential and orderly". Under this category, while the metaphors most frequently repeated by the fifth-grade students were "night-day" and "seasons," the ones most frequently repeated by the sixth-grade students were "night-day" and "days."
Table 6.
Students’ Metaphors for the Category of Being Sequential and Orderly.

Metaphor	Fifth Grade	%	Sixth Grade	%	Seventh Grade	%
Night-day	3	7.90	2	4.08	1	5.00
Seasons	2	5.27	2	4.08	1	5.00
Evening news	1	2.63	1	2.04	1	5.00
Alphabet	1	2.63	1	2.04	1	5.00
Phases of the moon	1	2.63	1	2.04	1	5.00
Shapes	1	2.63	1	2.04	1	5.00
Star	1	2.63	1	2.04	1	5.00
Sunrise and sunset	1	2.63	1	2.04	1	5.00
Book	1	2.63	1	2.04	1	5.00
Morning-evening	1	2.63	1	2.04	1	5.00
The movement of the sun, earth	1	2.63	1	2.04	1	5.00
and moon						
Number of days in a month	1	2.63	1	2.04	1	5.00

Total: 15 39.47 Total: 15 30.60 Total: 7 35.00

Moreover, it appeared that, under this category, the metaphors created by the seventh-grade students were each uttered by one participant. Examples from the metaphors included under this category were given below.

"A pattern is like the number of days in a month on the calendar because they are in different lengths, January has 31 days and then 30."

"A pattern is like a life of one day because life goes on in succession. I think lives of humans are a pattern."

"A pattern is like an attendance sheet because the attendance sheet is sequential."

Category 3. Regularity of the pattern: It was observed that five of the fifth-grade students, three of the sixth-grade students and two of the seventh-grade students created metaphors by emphasizing the concept of pattern. The metaphors gathered under this category were tabulated according to the grade levels and presented in Table 7.

Table 7.
Students’ Metaphors for the Category of Being Sequential and Orderly.

Metaphor	Fifth Grade	%	Sixth Grade	%	Seventh Grade	%
Leap year	1	2.63	2	4.08	1	5.00
Phases of the moon	1	2.63	1	2.04	1	5.00
Movements of sun, earth&moon	1	2.63				
Daily plan	1	2.63				
Lightning-thunder	1	2.63				

Total: 5 13.15 Total:3 6.12 Total: 2 10.00

When Table 7 is examined, it is observed that the fifth-grade students created 5 different metaphors, sixth grade students created 3 different metaphors and the seventh grade students created 2 different metaphors under the category of "the pattern's having a rule". It is observed that most of the metaphors created according to the grade levels were created by one participant. Moreover, it was understood from the analyses that only 10 of these metaphors stated by the participants took this characteristic into consideration. The examples of the metaphors included under this category were given below:
"A pattern is like a rule because a pattern is not possible without a rule."
"A pattern is like a leap year because it has a rule of taking place once every four years"
"A pattern is like a clock, time because there is a rule between two numbers. Just as the time difference on a clock is the same, there are seconds. One is no longer or shorter than another. The interval is the same; it has a rule."

Category 4. Continuity of pattern: This category, called the continuity of the pattern, is the category under which the metaphors covering the characteristic of the patterns' regularly continuing and expanding structures were gathered. The metaphors gathered under this category were tabulated according to the grade levels and presented in Table 8.

Table 8.
Students’ Metaphors for the Category of the Pattern’s Continuity.

Metaphor	Fifth Grade		Sixth Grade		Seventh Grade			
------------------------	-------------		-------------		----------------			
Human	1	2.63	Mountain	1	2.04	Block of apartments	1	5.00
Lessons	1	2.04	Baby	1	5.00			
House	1	2.04	Human	1	5.00			
Number	1	2.04	Clock	1	5.00			
Water	1	2.04	Infinity	1	5.00			
Walking	1	2.04						
Time	1	2.04						
Total: 1	2.63		Total: 7	14.28				
Total: 5	25.00							

When Table 8 is examined, it is observed that only one of the fifth-grade students created metaphors under the category of "the continuity of pattern." Moreover, 7 sixth grade students were able to create a total of 7 different metaphors and 5 seventh grade students were able to create 5 different metaphors. The metaphors created according to the grade levels were the metaphors created by one participant. Some student opinions about the metaphors under this category were given below according to the grade levels.

"A pattern is like a human because it always increases and decreases."
"A pattern is like time because it always lasts."
"A pattern is like infinity because the beginning of a pattern is known but its end is unknown."

Category 5. Pattern as a shape: Starting from the shapes used while forming a pattern and the shapes which students encounter in pattern questions, the metaphors created by the student were gathered in the category of 'the pattern as a shape'. The metaphors gathered under this category were tabulated according to the grade levels and presented in Table 9.

Table 9.
Students’ Metaphors for the Category of ‘The Pattern as a Shape’.

Metaphor	Fifth Grade		Metaphor	Sixth Grade	
-------------	-------------		-------------	-------------	
Wardrobe	1	2.63	Train	2	4.08
Ant	1	2.63	Road	2	4.08
Window	1	2.63	Cycle-circle	1	2.04
Shape	1	2.63	Ironed linen	1	2.04
Caterpillar	1	2.63	Train wagon	1	2.04
Total: 5	13.15		Total: 7	14.28	

When Table 9 is examined, it is observed that 5 fifth grade students created a total of 5 different metaphors and 7 sixth grade students created a total of 5 different metaphors under the category of "The pattern as a shape". However, the seventh-grade students did not create any metaphors under this category. It is considered that this obtained result arose from the fact that the algebra-intensive subjects...
are taught at the seventh-grade level. The most frequently repeated metaphors which the sixth-grade students created were the metaphors of "train" and "road." Some student opinions about the metaphors included under this category were given below according to the grade levels.

"A pattern is like a train wagon because shapes of patterns are regular."

"A pattern is like a window because it is composed of panes."

Category 6. Other: Since the metaphors created by 3 of the fifth-grade students, 9 of the sixth-grade students and 2 of the seventh-grade students were not included in any category, they were gathered under the category of "other" and presented. The metaphors gathered under this category were tabulated according to the grade levels and presented in Table 10.

Table 10. Students' Metaphors for the 'Other' Category.

Metaphor	Fifth Grade	Sixth Grade	Seventh Grade					
Metaphor	f	%	Metaphor	f	%	Metaphor	f	%
Friendship/Love	1	2.63	Life	2	4.08	Onion	1	5.00
Flying horses	1	2.63	Screw of the car	1	2.04	Candy Crush Saga	1	5.00
Game	1	2.63				Mathematics	1	2.04
						Crown of math	1	2.04
						Colors	1	2.04
						Hour wheel	1	2.04
						Salt in a meal	1	2.04
Total	3	7.91		9	18.40		2	10.00

It is eye-catching that it was the sixth-grade students that created most metaphors (9 metaphors) under the category of 'other'. Samples in this category were given below:

"A pattern is like a game because it is amusing."

"A pattern is like the crown of mathematics because it ornaments and shapes."

"A pattern is like colors; because colors are formed from one another, the pattern resembles it."

Results Related to the Fifth Research Question

While an answer was sought for the fifth research question included in the study and stated as "Do the categories explaining the metaphors produced by the fifth, sixth and seventh grade students about the concept of pattern indicate significant differences according to grade level?" the metaphors created by the students were evaluated and compared in the context of 6 different categories determined within the scope of this study.

For this comparison, the Chi-Square Test was used. In order to administer this test, firstly frequency and percentage values were calculated to determine the categories under which the metaphors created by the students. The frequency and the percentage values of the metaphors included under these conceptual categories were given in Table 11. From the above table, it is observed that the participant students created more metaphors in the category of "Being sequential and orderly" compared to the other categories (Fifth grade 39.47%; Sixth grade 30.61%; Seventh grade 35.00%; All 34.58%). However, it is observed that few metaphors were created by the fifth-grade students in the category of 'the continuity of the pattern' (2.63%). Moreover, while the least number of metaphors in the sixth-grade students (6.12%) were in the category of "The pattern's having a rule", the least number of metaphors in the seventh-grade students (.00%) were in the category of "The pattern as a shape."

When the general picture is examined, it is observed that the fifth, sixth and seventh grade students created metaphors mostly under the categories of "Being sequential and orderly" and "Repetition and iteration" (34.58% and 19.63%, respectively). However, it was also determined that they created fewest metaphors under the category of "The pattern's having a rule" (9.35%).
Table 11.
Frequency and Percentage Values of the Conceptual Categories according to Grade Levels.

Categories	Fifth Grade	Sixth Grade	Seventh Grade	Total				
	f	%	f	%	f	%	f	%
Repetition-Iteration	9	23.69	8	16.32	4	20.00	21	19.63
Being sequential, Orderly	15	39.47	15	30.60	7	35.00	37	34.58
A pattern’s having a rule	5	13.15	3	6.12	2	10.00	10	9.35
Continuity of a pattern	1	2.63	7	14.28	5	25.00	13	12.15
The pattern as a shape	5	13.15	7	14.28	0	.00	12	11.21
Other	3	7.91	9	18.40	2	10.00	14	13.08
Total	38	100.00	49	100.00	20	100.00	107	100.00

The results of the Chi-Square applied with the aim of investigating if the metaphors which the fifth, sixth and seventh grade students created in relation to the concept of pattern changed according to the grade levels were given in Table 12. According to the Chi-Square Test result ($\chi^2=20.45$; $p=.16$), there were no significant differences between the grade levels and the metaphors included in different categories.

Table 12.
Analysis Results related to the Comparison of Metaphors according to the Grade Levels.

	Value	df	p
Pearson Chi-Square	20.45*	15	.16
Likelihood Ratio	20.28	15	.16
N of Valid Cases	107		

Discussion, Conclusion & Implementation

In this study, the students' ways of understanding the concept of "pattern" were revealed via metaphors. The metaphors created by the students within the scope of this study were grouped in 6 different dimensions. In this scope, the created groups related to the concept of pattern appeared as the dimensions of repetition/iteration, being sequential and orderly, being regular, and continuity of the pattern, shape and the category of other including the valid metaphors not grouped under the other categories.

An important part of the students emphasized the sequential and orderly (34.58%) and repeating/iterating (19.63%) aspects of the concept of pattern in the metaphors which they created. These points to the fact that the students were more acquainted with the repeating and hence sequential and orderly pattern examples from lessons and course books. In the analyses, it was observed that the examples generally used in course books and lessons for the pattern started with the sequences of numbers or shapes repeating in a certain order. This reached result seems to support the result obtained by Yaman (2010) that the kind of pattern at which the students were most successful was the repeating patterns. In this context, it can be stated that the repetitive visuals presented concretely to students are more understandable and permanent than the patterns with a certain rule. Moreover, in the analyses, it was observed that the fifth-grade students created the highest number of metaphors related to these two categories.

The findings obtained in this study indicate that few of the students (9.35%) created metaphors in relation to the fact that the concept of pattern is required to have a rule. The fact that the students emphasized this situation little in this study supports their difficulties in determining pattern rule and writing it as an algebraic expression revealed by previous research. It is considered that this arose from the fact that in this study the students could not use the regularity characteristic of the pattern sufficiently in their thought structures due to these difficulties which they experienced.
The other two categories arising in this study were the categories of *continuity of the pattern* and *shape*. When the metaphors created by the students in relation to the category of *continuity* were examined, it was understood that especially the sixth and the seventh-grade students, though few created metaphors within the scope of this category. On the contrary, when the metaphors included in the category of *shape* were looked in, it was also observed that only the fifth and the sixth-grade students created metaphors highlighting this aspect of the pattern. This can be attributed to the fact that continuity is also highlighted in the practices done with the aim of determining the rule of the pattern in the seventh-grade programs. In addition, it was understood that the fifth grade students produced metaphors that emphasized the regularity of the pattern while they produced the least number of metaphors regarding its continuity. In this context, the fact that the students highlighted more the continuity aspect of the pattern instead of its shape as their grade levels increased points to the fact that as the grade levels increased, the students started to internalize and understand the concept of *pattern* completely. These results seem to support the finding obtained in the studies carried out by Yaman and Umay (2013) and Yaman (2010) indicating that student achievements concerning *pattern* increased as their grade levels raised.

Moreover, when the metaphors created within the scope of this study were examined, it was observed that the fifth grade students created metaphors by looking at the characteristics belonging to the concept of *pattern* from a broader perspective and the students at this grade level did not take the expanding characteristic of the *pattern* into consideration. Considering the concept of pattern is fundamental in teaching algebra, it was revealed that the sixth and seventh grade students did not have a grasp of the concept of pattern sufficiently in mathematical sense during the transition to algebra. Moreover, it was understood from the metaphors that the concept of *pattern* was rather a concept remembered with examples from daily life and progressing in a certain order for middle school students. This makes the role of the teacher in the learning of this concept important. Besides this, it is also eye-catching that the examples given by the students in relation to the concept of *pattern* such as days, months, night-day were greatly similar. This result seems to support the result obtained in the study made by Lannin, Barker and Townsend (2006) pointing out that one of the factors affecting students’ approaches was teacher’s interaction. For, it was understood from the analyses made within the scope of this study that when the teachers of the students at different grade levels were the same, they used similar examples and explanations. Moreover, it is also eye-catching that the metaphors created by the fifth, sixth and seventh grade students in different categories in relation to the concept of *pattern* did not differ significantly according to the grade levels. It could be understand that the students at different grade levels created similar metaphors.

In addition, the metaphors were used as a tool in revealing all grade students’ perceptions in relation to the concept of “*pattern*” and it was found as a result of the analyses that the students created metaphors in relation to the concept of “*pattern*” not based on their positive and negative aspects but mostly based on the characteristics of the concept of “*pattern*”. As it is seen in the obtained results, the students generally focused on the repetition characteristic of the “*pattern*”.

The results obtained within the scope of this study indicated that the middle school students having worked on different patterns starting from the nursery school ages created metaphors primarily in this way as a result of the works on the pattern highlighting the sequential and repetitive characteristics of the pattern. This situation points out the importance of including works where different characteristics of the pattern are also emphasized starting from small classes. This study was carried out with a group of student who study in only one region and one city. It was organized with only middle school students except eighth grade students.

Further studies may include students from different grades and regions. In studies to be made on the pattern, designs and practices aiming to teach the concept of *pattern* could be included. Moreover, in future studies, students’ insufficient knowledge, mistakes, and misperceptions about different mathematical concepts like the concept of *pattern* can be determined through metaphors. Lessons can also be prepared by teachers with the aim of helping students consolidate their knowledge. In this way,
problems arising from mathematical concepts could be solved without leading to new problems in different concepts, which are based on the concept under examination, that is to say, without causing any learning deficiency.

The researchers to make studies on metaphors are suggested to determine student opinions about different subjects/concepts or the same subject over broader samples. Moreover, reasons for opinions can be examined in detail also by including the interview technique in future studies.
Giriş

Bilim dalları içinde değeri hiçbir zaman yitirmeyen ve değeri gün geçtikçe artan alanların başında matematik gelmektedir. Bilim de olduğu kadar günlük hayatımızda da ağırlıklı olarak kullandığımız matematik, ülkelerin eğitim programlarında en ön sırada yer almaktadır (Polat, 2010). Etkili bir matematik eğitimi ile ülkemizde ve dünyamızda, gelişen teknolojiye ve bilime ayak uydurabilen, analitik düşününebilir, konulara eleştirel yaklaşan ve çözüm odaklı düşünen bireylerin yetiştirilmesi amaçlanmaktadır. Bununla birlikte, özellikle günlük hayatımızda matematik çok yaygın olarak kullanılmaktadır. Matematikte yer alan örüntülerin incelenmesi, matematiksel ilişkilerin ortaya koyulması ile matematik yapısı anlaşılabilirmektedir (Hargreaves, Shorrocks & Threlfall, 1999).

Matematiğin temel konularından birisi de örumçuk kavramıdır. Örumçuk, İngilizcede "pattern" sözcüğine karşılık gelmekle olup, bu kavrama ilk kez 2004 yılında uygulamaya koyulan matematik programında (Milli Eğitim Bakanlığı, 2004) yer verilmiştir. Örumçuk "olay veya nesnelerin düzenli bir biçimde birbirini takip ederek gelisi̇mesi" şeklinde tanımlanabilir (Türk Dil Kurumu, 2018). Günümüzde birçok konuda bir düzen, bir kural yani genel anlayışla bir örumçuk yer almaktadır (Palabıyık & Akkuş-İşpir, 2011). Başka bir ifadeyle, örumçuklar bireylerin günlük hayatın her alanında kavramları ve matematiksel ilişkileri oluşturmakla birlikte, matematiksel olarak da sürekli karşımıza çıkmaktadır. Matematiksel olarak belirlenen örumçuklar ve ilişkilerin belirlenmesi ve açıklanması gereklidir (Hargreaves et al., 1999; as cited in Özdemir, Dikici & Kültür, 2014).

Birçok matematik kavramının anlaşılmasında önemli bir role ve etkiye sahip bir örumçuk kavramı, Türkiye'de geleneksel öğretme yaklaşımını uygulandığı yıllarda cebir eğitimi ile birlikte ortaokul yedinci sınıfından itibaren verilmekteydi. 2005-2018 yılları arasında uygulamaya koyulan matematik programlarında ise, "Öremen ve ilişkiler konusu" konusu olarak anayokulundan itibaren tüm sınıf düzeylerinde yer almaya başlamıştır (MEB, 2005; 2009; 2017; 2018). Böylelikle, öğrencilerin ilerleyen ortaokul sınıflarında örumçuklar kavramlarının oluşumunun örumçukları ile ilişkileri belirlenmesi ve açıklanması gereklidir (Milli Eğitim Bakanlığı [MEB], 2009). Benzer şekilde; sayı kümeleri, ölçümler ve geometri kavramları ile de ilişkili olduğundan, örumçukların matematiksel olarak örumçuklar arasındaki ilişkileri anlamalarına ve dolayısıyla matematiksel düşünmeye de katkı sağlar. Bu örumçukları anlamlandırmanın ve örumçukları öğrenmek için büyük önem arz etmektedir (Hargreaves et al., 1999; as cited in Özdemir, Dikici & Kültür, 2014).
icerisinde örutü kavramına yer verilmiştir. Altıncı sınıf düzeyinde de, öğrencilerin sayı örutüleri ve istenen terimi bulmaları da ele alındığı ve bazılarının ilköğretim (MacGregor & Stacey, 1993; Palabıyık & Akkuş-İşpir, 2011; Tanışlı, 2008; Yeşildere & Akkoç, 2010; 2011) düzeyinde yapılmış araştırmalar olduğu görülmüştür. Böylelikle, önemli bir geometrik örutü deneysimlerle bulmaları; öğeleri nesneler, geometrik şekiller veya cisimler olan bir örutüdeki ilikinin belirlenmesi ve eksik birakılan öğenin bulunması, en çok üç öğeli geometrik örutü oluşturmak için çok önemlidir.نغورۈمۈش (MEB, 2013). Böylelikle, örutü olarak okunabilecek, kuralını harfle ifade eder, kuralı verilen sayı ve şekil örutüleri oluşturur ve kuralını açıklar" biçiminde ve beşinci sınıfda da benzer şekilde aynı ünite ve konu içerisinde "Kuralı verilen sayı ve şekil örutüleri istenen adımlarını oluşturur" yer alan örutü konusu altıncı sınıfda yer almamıştır. bunun yerine, yediinci sınıfda "Cebir" ünitesi içerisinde "Cebirsel ifadeler" konusunda "Sayı örutüleri kavramına yer verilmiştir. Bu sınıflarda programda yer alan cebir öğretiminin yedinci sınıf öğrencilerinin cebirsel düşünme becerilerine ve matematiksel düşünce tablolarını yorumlarken ve cebirsel kurallar oluştururken zorlandıkları açıklanmıştır. Palabıyık ve Akkuş-İşpir (2011) tarafından yapılan araştırmadan sonra, öğrencilerin örutü ile ilgili ilerlemeleri ve örutüleri oluşturma; kaplama yapmaya, kaplama örutüünün noktalı ya da kareli köşeye çizmeye imkan veren kazanımlar yer almaktadır (MEB, 2018). 2018 yılı Matematik Dersi Öğretim Programı’nda, dördüncü sınıfında "Sayılar ve İşlemler" ünitesi içerisinde "Doğal Sayılar" konusunda "Belli bir kurala göre artan ya da azalan sayı örutüleri oluşturur ve kuralını açıklar" biçiminde ve beşinci sınıfda da benzer şekilde aynı ünite ve konu içerisinde "Kuralı verilen sayı ve şekil örutüleri istenen adımlarını oluşturur" yer alan örutü konusu altıncı sınıfda yer almamıştır. bunun yerine, yediinci sınıfda "Cebir" ünitesi içerisinde "Cebirsel ifadeler" konusunda "Sayı örutüleri kavramını harfle ifade eder, kuralı harfle ifade edilen örutünün istenen terimi bulunur" biçimindeki örutünün istenen terimi bulur biçiminde ve beşinci sınıfta da sırasıyla; tekrarlayan, sabit değişen ve artarak değişen örutüleri oluşturma; kaplama yapmaya; kaplama örutüünün noktalı ya da kareli köşeye çizmeye imkan veren kazanımlar yer almaktadır (MEB, 2013). Böylelikle, örutü konusunun önemli olduğunu gösterir niteliktedir. Bu alanda yapılan araştırmalar incelendiğinde, bu araştırmaların çoğunlukla örutü kavramını ile ilgili olduğu oranları da ele alındığı ve bazılarının ilköğretim (MacGregor & Stacey, 1993; Palabıyık & Akkuş-İşpir, 2011; Tanışlı, 2008; Yeşildere & Akkoç, 2010; 2011) düzeyinde yapılmış araştırmalar olduğu görülmüştür. Bu araştırmalardan, MacGregor ve Stacey (1993) yapılan araştırmada, 14-15 yaş grubundaki öğrencilerin örutüyle görme ve kuralını yazma durumları incelenmiştir. Araştırmının sonucunda, öğrencilerin fonksiyon tablolarını yorumlarken ve cebirsel kurallar oluştururken zorlandıkları açıklanmıştır. Palabıyık ve Akkuş-İşpir (2011) tarafından yapılan araştırmının sonucunda ise, örutü temelli olan ve örutü temelli olmayan cebir öğretiminin yediinci sınıfta öğrencinin cebirsel düşünme becerilerine ve matematiksel düşünce tablolarını yorumlarken ve cebirsel kurallar oluştururken zorlandıkları açıklanmıştır. Araştırmının sonucunda, örutü temelli cebir öğretimi ile öğrencilerin kavramsal olarak cebirde daha iyi öngörümleri sonucuna ulaşılmasıdır. Tanışlı (2008) tarafından,andoneduğunun önemli olduğunu gösterir niteliktedir. Dünya matematiğe karşı tutumlarına olan etkilerinin incelenmesi amaçlanmıştır. Çalışmanın sonucunda, örutü temelli cebir öğretimi ile öğrencilerin kavramsal olarak cebirde daha iyi öngörümleri sonucuna ulaşılmasıdır. Tanışlı (2008) tarafından, ilköğretim beşinci sınıf öğrencilerinin örutüle ilgili anlama ve kavrama biçimlerini belirlemeye amaçlayan çalışmadan ise tekrarlayarak, sabit değişen ve artarak değişen örutüleri yer verilmiştir. Araştırmının sonucunda, tekrar eden örutülerde tekrar birimini belirlemelerini; örutüyü sonuç bulmak için adanın etirebilir, şekilleri arası sayısız ilikinin bulunmasına ve tekrarlayarak bir örutü oluştururken önemli bir etken olduğu belirlenmiştir. Ayrıca, aynı sınıflarda örutüleri sayısız örutüseri etiktedirler; örutüdeki ilikini bir önceki terimle ilişkilendirecekler ya da örutüdeki terimlerin doğal yapısını ele alarak tanımlayacakları sonucuna ulaşmıştır. Tanışlı vd. (2017) ise, ortaokul matematik öretmen adaylarının örutüleri dikkate alarak genellemelerini inceleyerek, genellemeler için ortaya koydukları doğrulamaları keşfetme ve örutüle amaçlamalaridır. Çalışma bulgularının neticesinde, öretmen adaylarının örutüleri genelleme sürecinde belirgin ve belirgin olmayan muhakemeleri kullandıkları ve doğrulama sürecinde ise tüm dengelendirme ve tümçelirm venterimalını benimsedikleri ortaya koyulmuştur. Yaman (2010) tarafından gerçekleştirilir bir araştırmda da, ilköğretim öretmeninin örutü kavramına ilişkin kavrama biçimlerinin belirlenmesi amaçlanmıştır. Öğrencilere tekrarlayarak, doğrulurŞişaylenn ve artarak değişen örutüle ait tablo, sayi dizisi, şekillerin örutüüsü ve örutü problemini formundaki sorunlar yer aldığı bir şekilde testinin uygulanması sonucunda, sinif düzeyi ile bașarının artığı açıklanmış ve öğrencilerin sembol kullanmayı gerektiren cebirsel ifadelerin yazımında zorluklar yaşadığı raporlanmıştır.
Yaman ve Umay (2013) tarafından yapılan çalışmada, öğrencilerin sunum biçimleri açısından öğrencilerin matematiksel örüntüler ile ilgili performanslarının sınıflar seviyelerine göre gösterdiği değişim incelemiştir. Çalışmanın sonucunda, öğrencilerin örüntü sunum biçimlerine göre sınıflar seviyelerinde matematiksel örüntülerle ilgili performanslarının sınıflar seviyelerinin kuralını bulmayı öğretemediğine dair stratejilerin tespit edilmesi amaçlanmıştır. Çalışmanın sonucunda, öğrencilerin örüntü sunum biçimlerine göre sınıflar seviyelerinde matematiksel örüntü hakkında sahip olduğu belirtilmiştir. Yeşildere ve Akkoç (2010) tarafından gerçekleştirilen araştırmada, mikro-öğretim etkinlikleri kullanarak toplam altı öğretmen adayının sayı örüntülerinin kuralını bulmayı öğretmede kuralı olan öğretmenlerin kuralını bulmayı öğretmede kullanıkları stratejilerin tespit edilmesi amaçlanmıştır. Çalışmanın sonucunda, öğretmenlerin ayların öğrencilerin matematiksel örüntü sunum biçimleri açısından öğrencilerin matematiksel örüntüler ile ilgili performanslarının sınıflar seviyelerine göre gösterdiği değişim incelemiştir. Çalışmanın sonucunda, öğrencilerin örüntü sunum biçimlerine göre sınıflar seviyelerinde matematiksel örüntülerle ilgili performanslarının sınıflar seviyelerine göre gösterdiği değişim incelemiştir. Çalışmanın sonucunda, öğrencilerin örüntü sunum biçimlerine göre sınıflar seviyelerinde matematiksel örüntülerle ilgili performanslarının sınıflar seviyelerine göre gösterdiği değişim incelemiştir. Çalışmanın sonucunda, öğrencilerin örüntü sunum biçimlerine göre sınıflar seviyelerinde matematiksel örüntülerle ilgili performanslarının sınıflar seviyelerine göre gösterdiği değişim incelemiştir. Çalışmanın sonucunda, öğrencilerin örüntü sunum biçimlerine göre sınıflar seviyelerinde matematiksel örüntülerle ilgili performanslarının sınıflar seviyelerine göre gösterdiği改变検討が行われました。
"sonsuzluğ", "bacağı açılır", "gereksinim", "yol göstericil" ve "hayatın kendisi" olmak üzere 5 farklı kategoride ürettikleri metaforlarla açıkladıkları anlaşılmıştır. Sevindik vd. (2016) ise, çalışmalarında meslek lisesi öğrencilerin arasında fazlasının matematik hakkındaki metaforik algılarının matematigi olumsuz algılandırılmıştır. Şengül ve Katrancı (2012), ilköğretim ikinci kademe öğrencilerinin "matematik" kavramını "çoğunlukla "hayat", "bilmaca", "oynu", "dunya", "evren", "su" ve "kitap" kavramlarını ile eş anlamlı olarak algılandırıkları rapor etmiştir. Araştırmalarından bir kısmı (Cassel & Vincent, 2011; Güner, 2013) ise öğrenci time odaklanmıştır. Bu araştırmadaların Cassel ve Vincent (2011) tarafından yapılan araştırmada, ilköğretim öğretmen adaylarının matematik ve bilim öğretim hakkındaki metaforları incelenmiştir. Çalışmanın sonucunda, sınıf deneyimlerinin konuya, öğretmene ve öğrenime yönelik tutumlarının şekillendirdiği açıklanmıştır. İlköğretimden ortaöğretim ester öğrencilerin tutumlarına negatif dönüştüğü, ilköğretim öğretmen adaylarının da sınıf deneyimlerini arıkça kendi sınıf içi metotlarını ürettiği ve bu deneyimlerin de matematik ve fen öğrenimi ve öğretimine ilgili tutumlarını şekillendirdiği belirtilmiştir. Güner (2013) ise, on ikinci sınıf öğrencilerinin matematik öğrenmeye yönelik metaforlarla araştırılmıştır. Çalışmanın sonucunda, bu öğrencilerin matematik öğrenmeyi bilmeyenini oynamak, bir araç kullanmak, matematik öğrenmenin zorluğu, matematik öğrenmekten keyif almak, matematik öğrenmenin eziiyet olmak üzere sekiz farklı kategoride açıkladıkları raporlanmıştır. Bununla birlikte; Şahin (2013) ve Şengül vd. (2014) tarafından yapılan araştırmalarda ise "matematik öğretmeni" ne ilişkin metaforlar da ortaya koyulmuştur. Bu kapsamda Şahin (2013), öğretmen adaylarının matematik öğretmeleri, matematik ve matematik dersi olmak üzere bu üç kavrama yönelik sahip oldukları metaforları incelemek amacıyla bir araştırmada yapmıştır. Yapılan çalışmanın sonuçunda, adayların matematik öğretmelerini en çok bilgili ve otoriter; matematik "zeka", "zevki", "gerekli", "yetenek", "zor", "başarı" olarak algılandırılmış sonucuna ulaşılmıştır. Ayrıca, matematik kavramı ile ilgili en az tercih edilen metaforları ise "gereksiz", "otoriter" ve "kolay" şeklinde açıklamıştır. Şengül vd. (2014) tarafından yapılan çalışmanın da, ortaokul öğrencilerinin matematik öğretmeleri kavramına ilişkin üretikleri metaforlar arasında cinsiyete göre farklılaşmıştır. Bu çalışmanın sonuçunda, öğrencilerin matematik öğretmenlerine yönelik algılarını belirlemeyi çalışmışlardır. Araştırma sonuçunda, öğrencilerin birçoğu matematik dersini zor, sıkıcı ve karmaşık olarak açıklamış, bir kısmı ise dersi kolay ve eğlenceli bir ders olarak ifade etmişlerdir. Ayrıca, bazı öğrencilerin matematik dersinde başarılı olmak için zekii olmanın gerektiğini vurgulamışlardır. Uçar, Pişkin, Akkaş ve Taşlı, 2010; Turhan ve Yeşilpınar, 2013; Horzum ve Yıldırım, 2016; Sezgin Memnun, 2015; Sezgin Memnun, Dinç ve Aydin, 2018; Toluk-Uçu, Pişkin, Akkaş ve Taşlı, 2010; Turhan-Türkran ve Yeşilpinar-Uyar, 2016; Yee, 2012) ise matematik ispatı, matematik problemi, geometri, ve fonksiyon gibi farklı matematik olgularının metaforlar üzerinde incelenmiş ve metaforların cinsiyete göre istatistiksel olarak anlamalı bir farklı bulunmadığı sonucuna ulaşılmıştır. Ayrıca, Yetim-Karaca ve Ada (2018) ise, öğrencilerin matematik öğretmenleri matematik öğretmeninine yönelik algılarını belirlemeyi çalışmışlardır. Araştırma sonuçunda, öğrencilerin birçoğu matematik dersini zor, sıkıcı ve karmaşık olarak açıklamış, bir kısmı ise dersi kolay ve eğlenceli bir ders olarak ifade etmişlerdir. Ayrıca, bazı öğrencilerin matematik dersinde başarılı olmak için zeki olmanın gerektiğini belirtikleri bu araştırma da açıklanmıştır.

Matematik eğitiminde metaforlar üzerinden yapılan çalışmaların bir kısmı (Cansiz-Aktaş ve Aktaş, 2013; Horzum ve Yıldırım, 2016; Sezgin-Memnun, 2015; Sezgin-Memnun, Dinç ve Aydin, 2018; Toluk-Uçu, Pişkin, Akkaş ve Taşlı, 2010; Turhan-Türkran ve Yeşilpinar-Uyar, 2016; Yee, 2012) ise matematik ispatı, matematik problemi, geometri, ve fonksiyon gibi farklı matematik olgularının metaforlar üzerinden incelenmiş ve metaforların cinsiyete göre istatistiksel olarak anlamalı bir farklı bulunmadığı sonucuna ulaşılmıştır. Ayrıca, Yetim-Karaca ve Ada (2018) ise, öğrencilerin matematik öğretmenleri matematik öğretmeninine yönelik algılarını belirlemeyi çalışmuşlardır. Araştırma sonuçunda, öğrencilerin birçoğu matematik dersini zor, sıkıcı ve karmaşık olarak açıklamış, bir kısmı ise dersi kolay ve eğlenceli bir ders olarak ifade etmişlerdir. Ayrıca, bazı öğrencilerin matematik dersinde başarılı olmak için zeki olmanın gerektiğini belirtikleri bu araştırma da açıklanmıştır.

"sonsuzluğ", "bacağı açılır", "gereksinim", "yol göstericil" ve "hayatın kendisi" olmak üzere 5 farklı kategoride ürettikleri metaforlarla açıkladıkları anlaşılmıştır. Sevindik vd. (2016) ise, çalışmalarında meslek lisesi öğrencilerin arasında fazlasının matematik hakkındaki metaforik algılarının matematig olumsuz algılandırılmıştır. Şengül ve Katrancı (2012), ilköğretim ikinci kademe öğrencilerinin "matematik" kavramını "çoğunlukla hayat", "bilmaca", "oynu", "dunya", "evren", "su" ve "kitap" kavramlarını ile eş anlamlı olarak algılandırıkları rapor etmiştir. Araştırmalarından bir kısmı (Cassel & Vincent, 2011; Güner, 2013) ise öğrenci time odaklanmıştır. Bu araştırmadaların Cassel ve Vincent (2011) tarafından yapılan araştırmada, ilköğretim öğretmen adaylarının matematik ve bilim öğretim hakkındaki metaforları incelenmiştir. Çalışmanın sonucunda, sınıf deneyimlerinin konuya, öğretmene ve öğrenime yönelik tutumlarının şekillendirdiği açıklanmıştır. İlköğretimden ortaöğretim ester öğrencilerin tutumlarına negatif dönüştüğü, ilköğretim öğretmen adaylarının da sınıf deneyimlerini arıkça kendi sınıf içi metotlarını ürettiği ve bu deneyimlerin de matematik ve fen öğrenimi ve öğretimine ilgili tutumlarını şekillendirdiği belirtilmiştir. Güner (2013) ise, on ikinci sınıf öğrencilerinin matematik öğrenmeye yönelik metaforlarla araştırılmıştır. Çalışmanın sonucunda, bu öğrencilerin matematik öğrenmeyi bilmeyenini oynamak, bir araç kullanmak, matematik öğrenmenin zorluğu, matematik öğrenmekten keyif almak, matematik öğrenmenin eziiyet olmak üzere sekiz farklı kategoride açıkladıkları raporlanmıştır. Bununla birlikte; Şahin (2013) ve Şengül vd. (2014) tarafından yapılan araştırmalarda ise "matematik öğretmeni" ne ilişkin metaforlar da ortaya koyulmuştur. Bu kapsamda Şahin (2013), öğretmen adaylarının matematik öğretmenleri, matematik ve matematik dersi olmak üzere bu üç kavrama yönelik sahip oldukları metaforları incelemek amacıyla bir araştırmada yapmıştır. Yapılan çalışmanın sonucunda, adayların matematik öğretmenlerini en çok bilgili ve otoriter; matematik "zeka", "zevki", "gerekli", "yetenek", "zor", "başarı" olarak algılandırılmış sonucuna ulaşılmıştır. Ayrıca, matematik kavramı ile ilgili en az tercih edilen metaforları ise "gereksiz", "otoriter" ve "kolay" şeklinde açıklamıştır. Şengül vd. (2014) tarafından yapılan çalışmanın da, ortaokul öğrencilerinin matematik öğretmenleri kavramına ilişkin üretikleri metaforlar arasında cinsiyete göre farklılaşmıştır. Bu çalışmanın sonucunda, öğrencilerin matematik öğretmenlerine yönelik algılarını belirlemeyi çalışmışlardır. Araştırma sonuçunda, öğrencilerin birçoğu matematik dersini zor, sıkıcı ve karmaşık olarak açıklamış, bir kısmı ise dersi kolay ve eğlenceli bir ders olarak ifade etmişlerdir. Ayrıca, bazı öğrencilerin matematik dersinde başarılı olmak için zeki olmanın gerektiğini belirtikleri bu araştırma da açıklanmıştır.

Matematik eğitiminde metaforlar üzerinden yapılan çalışmaların bir kısmı (Cansiz-Aktaş ve Aktaş, 2013; Horzum ve Yıldırım, 2016; Sezgin-Memnun, 2015; Sezgin-Memnun, Dinç ve Aydin, 2018; Toluk-Uçu, Pişkin, Akkaş ve Taşlı, 2010; Turhan-Türkran ve Yeşilpinar-Uyar, 2016; Yee, 2012) ise matematik ispatı, matematik problemi, geometri, ve fonksiyon gibi farklı matematik olgularının metaforlar üzerinden incelenmiş ve metaforların cinsiyete göre istatistiksel olarak anlamalı bir farklı bulunmadığı sonucuna ulaşılmıştır. Ayrıca, Yetim-Karaca ve Ada (2018) ise, öğrencilerin matematik öğretmenleri matematik öğretmeninine yönelik algılarını belirlemeyi çalışmışlardır. Araştırma sonuçunda, öğrencilerin birçoğu matematik dersini zor, sıkıcı ve karmaşık olarak açıklamış, bir kısmı ise dersi kolay ve eğlenceli bir ders olarak ifade etmişlerdir. Ayrıca, bazı öğrencilerin matematik dersinde başarılı olmak için zeki olmanın gerektiğini belirtikleri bu araştırma da açıklanmıştır.

Selin ÇENBERCI, Dilek SEZGIN MEMNUN, Hasibe İNÇE – Pegem Eğitim ve Öğretim Dergisi, 10(1), 2020, 215-250
Çalışmanın sonucunda da, öğrencilerin yarısından fazlasının fonksiyon kavramını "zor" bir kavram olarak düşünürken, bazı öğrenciler bu kavramı "kolay" bulduklarını açıklamışlardır. Toluk-Uçar vd. (2010), ilköğretim öğrencilerinin matematiğin her yönü ile ele alan bir metafor çalışması yapmışlardır. Çalışmanın sonucunda, öğrencilerin matematiğin coğuna "hesaplama", "sayılar" ve "işlemler" olarak yörengiğini anlaştıkları belirtilmiştir. Bununla birlikte, öğrenciler "matematik problemi çözme"yi "test sorusu çözme", "matematikte başarısı olma"yi ise "hızlı ve doğru hesap yapma" olarak gördülerlerdir. Benzer şekilde, öğrencilerin matematiğe başarı için zeki olmanın yeterli olduğunu ve matematikçiler genelde şaşırlarla ugraşan, sosyal olmayan, yalnız, içe kapanık, sessiz ve sinirli bireyler olduğunu ifade ettiklerini rapor etmişlerdir. Turhan-Türkhan ve Yeşilpınar-Uyar (2016) tarafından gerçekleştirilen araştırmada ise, ortaokul öğrencilerinin matematik problemine yönelik oluşturdukları metaforlar 7 kategoride toplanmıştır ve en çok üreten 4 metaforun "yaşam", "oyun", "labirent" ve "arkadaş" olduğu belirlenmiştir. Yee (2012) ise, öğrencilerin matematiksel problem çözme problemi nasıl algılanıp kolaylaştırmalarını belirlemek amacıyla, öğrenci ve öğretmenlerin katıldığını bir çalışma gerçekleştirmiştir. Çalışmanın sonucunda, öğrencilerin tutarlı metaforlar ürettiğini ve derste öğretmenlerin metafor kullanımının etkili olduğu rapor etmiştir. Bununla birlikte, yapılan incelemelerde matematiksel tanımlar ve kavramlar üzerine yapılan metafor çalışmalarının farklı alanlarda yapılmış sınırlı sayıda çalışma olduğunu ve bu çalışmaların da araştırmacı kademesine alınma kavramdan farklı kavramlar olduğu görülmüştür. Özellikle öğretmenlerin ve öğrencilerin matematiksel problemlerin çözümünde matematiğe yönelik etkisi kolaylaştırılabileceğini düşünülmektedir. Bu nedenle, bu çalışmada cevaplanacağı konular, matematiksel problemlerin çözümlenmesi, öğrencilerin matematiğe yönelik algıları ve matematiğe yönelik metafor üretimi etkisi. Araştırmacı, bu eğilimlerin ortaya çıkartıldığı ve öğrencilerin matematiğe yönelik algılarını araştırması amacıyla, ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerinin örüntü kavramına yönelik metasöz electorate olarak ana okul öğrencilerinin matematiğe yönelik algılarını araştırmayı amaçlamıştır. Bu amaçla, öğrencilerin örüntü kavramına yönelik metaforların toplanması ve analizi amacıyla, ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerin örüntü kavramına yönelik metaforlar ortaya çıkartılması amaçlanmıştır. Bu amaç, işte araştırmada problem olarak ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerin örüntü kavramına yönelik metaforların toplanması ve analizi amaçlanmaktadır. Bu analiz, işte araştırmada problem olarak ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerin örüntü kavramına yönelik metaforların toplanması ve analizi amaçlanmaktadır. Bu amaç, işte araştırmada problem olarak ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerin örüntü kavramına yönelik metaforların toplanması ve analizi amaçlanmaktadır.

Yöntem

Bu bölümde; ortaokul öğrencilerinin örüntü kavramına algılarının farklılık, öğretnilere matematiksel problemlerin çözümünde metafor kullanmayı bilenlerinin oranı, metafor kullanmayı bilen öğrencilerin matematiğe yönelik algılarını araştırılması amaçlanmıştır. Çalışma grubuna, verilerin toplanması ve analiz edilmesine ilişkin detaylı bilgileri yer verilmiştir.
Araştırma Modeli

Ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerinin “örüntü” kavramını algılayış biçimleri ile bu kavrama yönelik sahip oldukları metaforların incelenmesini amaçlayan bu çalışma, araştırma desenini nitel araştırma yöntemlerinden biri olan "olgubilim" (fenomenoloji) deseni aracılığı ile gerçekleştirilmiştir. "Olgubilim" araştırmalarında amaç genelleme yapmak değil, olguları tanımlamaktır (Akturan & Esen, 2008). Bu çalışmalarda, olaya ilişkin bireysel algılar ortaya çıkartılır, incelenir ve değerlendirilir (Yıldırım & Şimşek, 2013). Benzer şekilde, bu araştırmada da “örüntü” kavramı için öğrencilerin bireysel bakış açılarından hareketle nasıl algılayıp anlamlandırdıkları incelenme gerçekleştirecektir. Bu nedenle de, bu çalışmada "olgubilim" deseni kullanılmıştır.

Çalışma Grubu

Bu araştırma, 2017-2018 eğitim-öğretim yılında Konya ilinde öğrenim gören toplam 135 ortaokul öğrencisinin katılımıyla gerçekleştirilmişdir. Araştırma problemini daha geniş bir çerçevede ele almak için, çalışmanın katılımcıları beşinci, altıncı ve yedinci sınıf düzeyindeki öğrenciler arasından belirlenmiştir. Araştırma verilerinin bahar döneminin son haftalarında toplanması, bu zaman diliminin sekizinci sınıf öğrencilerinin yoğun çalışma ve sınav dönemlerine denk gelmesi nedeniyle sekizinci sınıf öğrenciler çalışmaya dahil edilmemiştir. Ayrıca, bu öğrencilerin belirlenmesinde, "kolay ulaşılabilir" örneklem yöntemi esas alınmış ve öğrencilerin gönüllülük durumlarına da dikkat edilmiştir. Aşağıda yer alan tabloda, araştırmaya katılan öğrencilere ilişkin detaylı bilgilere yer verilmiştir.

Tablo 1.
Araştırıtma Katılan Beşinci, Altıncı ve Yedinci Sınıf Öğrencileri.

	Beşinci Sınıf		Altıncı Sınıf		Yedinci Sınıf		Tümü	
	f	%	f	%	f	%	f	%
Kız	32	23.70	34	25.19	18	13.33	84	62.22
Erkek	15	11.10	29	21.48	7	5.20	51	37.78
Toplam	47	34.80	63	46.67	25	18.53	135	100.00

Tabloda yer alan bilgilerden de görüldüğü üzere, araştırmaya katılan öğrencilerin %62.22’si kız, %37.78’i ise erkek öğrencidir. Ayrıca, araştırmaya katılan öğrencilerin %34.80’si beşinci, %46.67’i altıncı ve %18.53’ü de yedinci sınıf öğrencisidir.

Verilerin Toplanması

Araştırmaya katılan ortaokul öğrencilerinin ‘örüntü’ kavramına ilişkin algılarını ortaya çıkarabilmek için, her birinden veri toplama aracı olarak kullanılan formda yer alan "Örüntü …… gibidir, çünkü …" cümlesi tamamlaması istenmiştir. Araştırmada toplanan veriler, 2017-2018 bahar yarıyasında toplanmış ve bu aşamada öğrencilerden anketin birinci bölümünde yer alan ilk boşluğa örüntü ile ilgili somut bir ifade yanı bir metafort yazmaları, ikinci boşluğa ise bu metafortu yazma nedenlerini detaylı bir biçimde açıklamaları istenmiştir. Verileri toplama işlemi, her sınıf seviyesinde yaklaşık 20 dakikalık uygulamalar sonucunda tamamlanmıştır. Verilerin toplanmasından önce, öğrencilerle kendilerinden istenen ilişkin uygun bilgiler verilmiştir ve araştırmaya katılmanın gönüllülük esasına göre olduğu da açıklanmıştır.

Verilerin Analizi

Öğrencilerin doldurdukları formlar, ilk önce detektör bir şekilde okunmuştur. İlk okuma sonrasında, bir metafort oluşturulmuş olan ya da örüntü kavramı ile ilgili olmayan formlar (toplam 28 form) geçersiz sayılarak çalışma dışına tutulmuştur.

Araştırma kapsamında gerçekleştirilen verilerin analizi aşamasında, ilk olarak araştırıtma yer alan 38’i beşinci sınıf, 49’u altıncı sınıf, 20’si yedinci sınıf öğrencilerine ait olan toplam 107 formun bilgisayar ortamına aktanlama işlemi tamamlanmıştır. Ardından, bu formlar her sınıf düzeyinde ayrı ayrı değerlendirilmiştir. Metaforların çözülenmesinde, içerik analizi yöntemi kullanılmıştır. İçerik analizinde amaç, ede edilen bulguların düzenlenmesi, sınıflandırılması ve sayısallaştırılması bir biçimde okuçuça sunulmasını, bu kapsamda, ede edilen veriler sistemli verilere dönüştürülmuş ve kategorileştirilmiştir.
Selin ÇENBERCI, Dilek SEZGİN MEMNUN, Hasibe İNCE – Pemeg Eğitim ve Öğretim Dergisi, 10(1), 2020, 215-250

(Tavşancıl & Aslan, 2001). Bu aşamada da, öğrencilerin geliştirdikleri metaforlar metaforların belirlenmesi, sınıflandırılması ve kategorileştirilmesi olmak üzere üç aşamada analiz edilmiş ve yorumlanmıştır.

Bu aşamada, öncelikle geçerli metaforlar temaların belirlenmesi amacıyla iki farklı araştırmacı tarafından ayrı ayrı okunmuştur. Elde edilen araştırma bulgularının analizinde, metaforların belirlenmesi aşamasında araştırmaya katılan ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerinin geliştirdikleri metaforlar ve bu metaforların nedenlerini alfabetik sıraya göre kodlanmış ve listelenmiştir. Metaforların sınıflandırılması aşamasında, benzer metaforlar diğer metaforlarla ortak özelliklerine göre sınıflandırılmıştır. Başka bir ifadeyle, öğrencilerin ürettiğleri geçerli metaforlar frekans değerleri göz önüne alınarak sıralanmış ve gruplanmıştır. Kategorileştirme aşamasında ise, metaforlar örtüntü kavramı ile ilişkili ortak özellikleri açısından tek tek irdelemiştir ve analiz edilmiştir. Bu kapsamda, geçerli metaforlar sınıf düzeylerine göre detaylandırılmış ve araştırmacılar tarafından belirlenen kategorilere yerleştirilmişlerdir. Bu aşamada, öğrenciler tarafından yapılan açıklamalar incelendiğinde birden fazla kategoriye dahil olabilecek metafor yanıtları gerçeşiz sayılan hiçbir kategoriye dahil edilmemiştir. Belirlenen kategoriler, daha önce bu alanda yapılan çalışmalarla elde edilen bulgular ve bu araştırma kapsamında elde edilen verilerin/metaforların açıklamalarının öğrenciler tarafından ortaya koyulan kişi tipleri açısından, metaforların son şekli verilmiştir. Ardından, metaforların sınıflandırılmasında biri tarafından iki hafta sonrasında gözden geçirilmiştir ve metaforlara ilişkin kategorileri oluşturmuştur. Araştırmacılar tarafından bu metaforların ve kategorilerin değerlendirilmesi için birlikte çalışması sağlanmıştır. Bu çalışmadan, metaforların ve kategorilerin birincil ve ikincil değerlendirmesi için birlikte çalışılması sağlanmıştır. Böylece, öğrencilerin ürettiğleri geçerli metaforlar sınıflandırılması ve kategorileştirilmesi sağlanmıştır. Bu çalışma, öğrencilerin ürettiğinde geçerli metaforların sınıf düzeylerine göre sınıflandırılması ve kategorileştirilmesi için birincil ve ikincil değerlendirmesi sağlanmıştır.

Araştırmanın Geçerlik ve Güvenilirliği

Bu nitel araştırmanın geçerlik ve güvenilirliğinde, inandırıcılık/tutarlılık ve aktarılabilirlik stratejileri esas alınmıştır (Yıldırım & Şimşek, 2013: 264-272). Bu kapsamda, inandırıcılığın ve tutarlılığın sağlanması için araştırmacılar tarafından ayrı ayrı değerlendirilmesi ve kategoriledirmeler yapmıştır. Bu stratejiler, araştırmacılar tarafından ayrı ayrı gruplamalar arasındaki farklılıkların, araştırmacılar tarafından yapılan ortak değerlendirilmesi ve kategorilerin son şeklinin verilmesi ile sağlanmıştır. Böylelikle, araştırmanın niteliği de artmıştır. Örneğin, örtüntülerin düzenli olması ve belirli bir kuralın olması bazı araştırmacılar tarafından aynı kategoriye incelenirken yapılan ortak değerlendirilme sonucunda ayrı kategorilerde ele alınmıştır. Aktarılabilirlik, araştırılarda elde edilen durumların ve özelliklerin aynıdırı bir biçimde betimlenmesi ve yorumlanması ile sağlanmaya çalışılmıştır. Ayrıca, araştırma verilerinin içerik analizine uygun olarak açık biçimde sınıflandırılması, belirlenen temalarla göre yeniden düzenlenmesi ve yorumlanmasına da dikkat edilmiştir. Araştırıma bulgularına ilişkin rapor yazımında da, araştırma verilerinin aka yatkılık, bireylerin deneyimlerine uygunluk ve okunurluk özelliklerini taşmasına da özen gösterilmiştir.

Bulgular

Bu bölümde, araştırıma katılan ortaokul beşinci, altıncı, yedinci sınıf öğrencilerinin ‘örtüntü’ kavramına yönelik algıları ve sahip oldukları metaforlar araştırma problemlerine uygun olarak alt başlıklara halinde açıklanmış ve yorumlanmıştır. Bu araştırma kapsamında, araştırıma katılan altıncı, yedinci ve sekizinci sınıf öğrencileri "örtüntü" kavramına ilişkin toplam 107 geçerli metafor oluşturulmuşlardır. Öğrencilerin ürettiğleri bu metaforlar toplam 6 kategori altında toplanmış ve aşağıdaki yer alan tablolarda sunulmuştur. Bu metaforlar ve oluşturulan kategorilere ağaçda yer verilmiştir.
Birinci Araştırma Problemine İlişkin Bulgular

Bu araştırmanın birinci alt problemi "Ortaokul beşinci sınıf öğrencilerinin örüntü kavramına ilişkin sahip oldukları metaforlar nelerdir?" şeklinde olup, araştırma problemine ilişkin olarak araştırmaya katılan 47 beşinci sınıf öğrencinin ortaya koyduğu toplam 38 metafor frekans ve yüzde değerleri ile birlikte Tablo 2'de verilmiştir.

Tablo 2.
Beşinci Sınıf Öğrencilerinin Metaforlarına ilişkin Yüzde ve Frekans Değerleri.

Metafor	f	%	Metafor	f	%
1 Gece-gündüz	4	10.53	16 Alfabefeverci�	1	2.63
2 Aynı evreleri	2	5.27	17 Ağaç	1	2.63
3 Aylar	2	5.27	18 Artık yıl	1	2.63
4 Mevsimler	2	5.27	19 Dolap	1	2.63
5 Şekiller	2	5.27	20 Günlük plan	1	2.63
6 Güneş, dünya ve ay hareketi	2	5.27	21 İnsan	1	2.63
7 Aylardaki gün sayısı	1	2.63	22 İstiklal Marş	1	2.63
8 Akşam haberleri	1	2.63	23 Karınca	1	2.63
9 Arkadaşlık-sevgi	1	2.63	24 Kitap	1	2.63
10 Atlı karınca	1	2.63	25 Okul zili	1	2.63
11 Güneşin doğup batması	1	2.63	26 Oyun	1	2.63
12 Güneş-dünya-ay	1	2.63	27 Pencere	1	2.63
13 Sabah- akşam	1	2.63	28 Saat	1	2.63
14 Şimşek-gök güçlütüsü	1	2.63	29 Tırtıl	1	2.63
15 Okula giriş çıkış saati	1	2.63	30 Yıldız	1	2.63

Toplam: 38 100.0

Yapılan incelemeler sonucunda, araştırma katılan beşinci sınıf öğrencilerinin örüntü hakkında toplam 30 farklı metafor ürettiler ve üretilen toplam metafor sayısının 38 olduğu belirlenmiştir. Üretilen metaforların sıklığı 1 ile 4 arasında değişmektedir. En çok tekrarlanan metaforların ise 'gece-gündüz', 'ayın evreleri', 'aylar', 'güneş dünya ve ay hareketleri', 'mevsimler' ve 'şekiller' olarak ifade edildiği görülmüştür. Aşağıda da, beşinci sınıf öğrencilerinin bu metaforik algılara ilişkin örnekler yer verilmiştir.

"Örüntü güneş, dünya ve ay hareketleri gibidir; çünkü onlar sürekli tekrarlar."

İkinci Araştırma Problemine İlişkin Bulgular

İkinci araştırma problemi "Ortaokul altıncı sınıf öğrencilerinin örüntü kavramına ilişkin sahip oldukları metaforlar nelerdir?" biçiminde olup, araştırmanın bu alt problemine ilişkin olarak araştırmaya katılan toplam 63 altıncı sınıf öğrencinin ürettiği toplam 49 metafor incelemiştir. Buna ilişkin bulgulara Tablo 3'te sunulmuştur.

Tablonun incelenmesi sonucunda, araştırmaya katılan altıncı sınıf öğrencilerin örüntü hakkında 34 farklı metafor ürettiler ve üretilen toplam metafor sayısının ise 49 olduğu belirlenmiştir. Ayrıca, yapılan incelemelerde bu metaforların frekanslarının 1 ve 4 arasında değişiklik gösterdiği anlaşılmıştır. Incelenen metaforlar, düşük tırmalar olmayan metaforlar ise "günlük hayat", "dersler" ve "insan hayatı" şeklinde ortaya çıkmıştır. Altıncı sınıf öğrencilerinin örüntü hakkında metaforik algıları ile ilgili örneklerde aşağıda yer verilmiştir.

"Örüntü matematik gibidir; çünkü matematik gibi aralarında bir sıra vardır."

"Örüntü hayat gibidir; çünkü kalp bize kan pompalarken aynı işlemler tekrar eder. Buda örüntü oluyor. Dolayısıyla örüntü olmazsa hayat olmaz."
Üçüncü Araştırma Problemine İlişkin Bulgular

Bu araştırma kapsamında yer alan üçüncü araştırma problemi ise, "Ortaokul yedinci sınıf öğrencilerinin örüntü kavramına ilişkin sahip oldukları metaforlar nelerdir?" şeklinde belirlenmiştir. Bu aşamada, ilk olarak bu araştırmaya katılan toplam 25 yedinci sınıf öğrencisi "örüntü" hakkında toplam 20 farklı metafor üretmişlerdir. Bu metaforlar, Tablo 4'te frekans değerleri ile birlikte aşağıda sunulmuştur.

Tablo 4.
Yedinci Sınıf Öğrencilerinin Metaforlarına İlişkin Frekans ve Yüzde Değerleri.

Metafor	f	%	Metafor	f	%
1 Saat	3	15.00	İnsan	1	5.00
2 Aylar	2	10.00	Mevsimler	1	5.00
3 Haftanın günleri	2	10.00	Okul	1	5.00
4 Apartman	1	5.00	Soğan	1	5.00
5 Bebek	1	5.00	Sonsuz	1	5.00
6 Bina	1	5.00	Şeker oyunu	1	5.00
7 Çiçek sayısı	1	5.00	Tren-vagon	1	5.00
8 Dünya	1	5.00	Yoklama listesi	1	5.00
Toplam	20	100.00			

Tablonun incelenmesi neticesinde, araştırmaya katılan yedinci sınıf öğrencilerinin metaforlarının büyük çoğunluğunun birer katılımcı tarafından üretilendiği görülmüştür. En çok tekrarlanan metaforun ‘saat’ olduğu görülmüştür. İkiser katılımcı tarafindan üretilen metaforlar ise ‘aylar’ ve ‘günler’ olarak belirlenmiştir. Aşağıda bu metaforlarına ilişkin örneklerde yer verilmektedir.

"Örüntü şeker oyunu gibidir; çünkü her seviyede zorlaşıyor."

"Örüntü dünya gibidir; çünkü bir dizi zorunlu sahiptir."
Dördüncü Araştırma Problemine İlişkin Bulgular

Bu araştırmada yer alan "Ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerinin örtüntü kavramına yönelik sahip oldukları metaforlar ortak özellikler bakımından hangi kavramsal kategoriler altında toplanabilir?" şeklindeki dördüncü araştırma problemine ilişkin elde edilen bulgulara da bu kısımda yer verilmştir. Bu kapsamda, araştırmaya katılan beşinci, altıncı ve yedinci sınıf öğrencilerinin "örtüntü" kavramına ilişkin olarak ürettiği geçerli metaforların sınıf seviyesine bakılmadan örtüntü kavramı ile ilgili hangi özelliğini vurguladığı incelenmiştir. Bunun sonucunda, araştırmaya katılan toplam 135 ortaokul öğrencisinin geçerli 107 metaforu toplam 6 farklı kavramsal kategori de ele alınmış ve sunulmuştur. Bu kavramsal kategoriler, aşağıdaki yer alan tablolarında detaylı bir şekilde sunulmuştur.

Tablo 5.

Başlıca Metafor	Sınıf	Freq.	%	Başlıca Metafor	Sınıf	Freq.	%
Aylar	2	5.27		Günlik hayat	2	4.08	
Gece-gündüz	1	2.63		Ders programi	1	2.04	
Güneş, dünya ve ay h.	1	2.63		Ders	1	2.04	
İstiklal marşı	1	2.63		Hayat	1	2.04	
Okula giriş çıkış saati	1	2.63		Karnca	1	2.04	
Okul zili	1	2.63		Saat	1	2.04	
Saat	1	2.63					
Toplam:	9	23.68		**Toplam:**	8	16.32	
Toplam:	4	20.00					

Tablo 5 incelendiğinde, örtüntü kavramının "tekrar etme/yineleme" kategorisinde 9 beşinci sınıf öğrencisi toplam 8 farklı metafor, 8 altıncı sınıf öğrencisi toplam 7 farklı metafor ve 4 yedinci sınıf öğrencisinin ise 3 farklı metafor ürettikleri anlaşılmıştır. Metaforların sırasıyla; "aylar", "günlik hayat" ve "günün" metaforlardır. Bu kategori altında toplanan metaforların sınıf seviyelerine göre tablolaştırılması Tablo 5’te sunulmuştur.

Kategori 1. Tekrar etme/Yineleme: Örtüntü kavramına ilişkin olarak "tekrar etme/yineleme" adı altında yer verilen bu kategoride, nesne veya olay kümesindeki elemanların birbirini takip etmesi tanımlanmıştır. Bu kategoride, öğrencilerin toplam 135 metaforunu toplam 6 farklı kavramsal kategori de ele almıştır. Bu kavramsal kategoriler, aşağıdaki yer alan tablolarında detaylı bir şekilde sunulmuştur.

Tablo 6.

Başlıca Metafor	Sınıf	Freq.	%	Başlıca Metafor	Sınıf	Freq.	%
Aylar	2	5.27		Günlik hayat	2	4.08	
Gece-gündüz	1	2.63		Ders programi	1	2.04	
Güneş, dünya ve ay h.	1	2.63		Ders	1	2.04	
İstiklal marşı	1	2.63		Hayat	1	2.04	
Okula giriş çıkış saati	1	2.63		Karnca	1	2.04	
Okul zili	1	2.63		Saat	1	2.04	
Saat	1	2.63					
Toplam:	9	23.68		**Toplam:**	8	16.32	
Toplam:	4	20.00					

Kategori 2. Ardışık ve düzenli olma: Örtüntü kavramının "ardışık ve düzenli olma" kategorisinde, örtüntü kavramının sistematik bir düzende olduğunu ifade eden metaforlar toplanmıştır. Bu kategori altında toplanan metaforlar, sınıf seviyelerine göre tablolaştırılması Tablo 6’da sunulmuştur.

Tablo 6 incelendiğinde, örtüntülerin "ardışık ve düzenli olma" kategorisinde 15 beşinci sınıf öğrencisi toplam 12 farklı metafor, 15 altıncı sınıf öğrencisi toplam 13 farklı metafor ve 7 yedinci sınıf öğrencisi toplam 7 farklı metafor ürettiğini görülmüştür. Bu kategori altında, beşinci sınıf öğrencileri tarafından en çok tekrarlanan metaforlar, "gece-gündüz", "mevsimler" ve "aylar" şeklinde iken, altıncı sınıf öğrencileri tarafından en çok tekrarlanan metafor ise "gece-gündüz" ve "günün" biçimindedir. Ayrıca, bu kategori altında yedinci sınıf öğrencileri tarafından oluşturulan metaforlar birer katılımcı tarafından söylenendi ortaya çıkılmıştır. Bu kategori altında yer alan metaforlardan örneklerde de aşağıda yer verilmiştir.

"Örtüntü takvimdeki ayların çektiği gün sayısı gibidir; çünkü her zaman tekrarlar."
"Örüntü bir günlük hayat gibidir; çünkü hayat ardı ardına devam eder. Bence insanların hayatı örüntüdür.

"Örüntü yoklama listesi gibidir; çünkü yoklama sıralıdır."

Tablo 6.
Ardıçık ve Düzenli Olma Kategorisi için Öğrencilerin Ürettikleri Metaforlar.

Beşinci Sınıf	%	Altıncı Sınıf	%	Yedinci Sınıf	
Gece-gündüz	3	7.90	Gece-gündüz	2	4.08
Mevsimler	2	5.27	Günler	2	4.08
Akşam haberleri	1	2.63	Aylar	2	4.08
Alfabe	1	2.63	Bina	1	5.00
Ayn evreleri	1	2.63	Yağmur	1	5.00
Ayak güvencesi	1	2.63	Saat	1	2.04
Güneş, dünya ve ay h.	1	2.63	Hangi kural	1	5.00
Güneşin doğup batm.	1	2.63	İnsan	1	2.04
Kitap	1	2.63	Matematik	1	2.04
Sabah-akşam	1	2.63	Saatteki sayısı	1	2.04
Şekiller	1	2.63	Sayı	1	2.04
Yıldız	1	2.63	Sıra	1	2.04

Kategori 3. Örüntünün kurallı olması: Araştırma范围内 katılan beşinci sınıf öğrencilerinden 5, altıncı sınıf öğrencilerinden 3 ve sekizinci sınıf öğrencilerinden 2 tanesi örüntü kuralına vurgu yaparak metaforlar üretmiştir. Bu kategori altında toplanan metaforlar sınıf düzeylerine göre tablolaştırılarak aşağıdaki Tablo 7'de sunulmuştur.

Tablo 7.
Ardıçık ve Düzenli Olma Kategorisi için Öğrencilerin Ürettikleri Metaforlar.

Beşinci Sınıf	%	Altıncı Sınıf	%	Yedinci Sınıf	
Artık yıl	1	2.63	Kural	2	4.08
Ayn evreleri	1	2.63	Saat	1	2.04
Güneş dünya ve ay h.	1	2.63	Tren-vagon	1	5.00
Günlük plan	1	2.63	Ranking	1	2.04

Tablo 7 incelendiğinde, "örüntünün kurallı olması" kategorisi altında beşinci sınıf öğrencisi 5 farklı metafor, altıncı sınıf öğrencisi 3 ve yedinci sınıf öğrencisi 2 farklı metafor üretmiştir. Sınıf seviyelerine göre, üretilen metaforların çoğunlukla birer katılımcı tarafından ifade edildiği görülmektedir. Ayrıca, katılımcılar tarafından ifade edilen bu metaforların yalnızca 10 tanesinin bu özelliği dikkate aldığı da yapılan incelemelerden anlaşılmıştır. Bu kategori altında metafor örneklere aşağıdaki yer verilmiştir:

"Örüntü artık yıl gibidir; çünkü dört yılda bir olmak üzere kuralı vardır."

"Örüntü kural gibidir; çünkü örüntü kuralsız olmaz."

"Örüntü bir saat bir zaman gibidir; çünkü iki saati arası bir kural vardır. Bir saatteki zaman farkının aynı olduğu gibi sanıların vardır. Birisi uzun birisi kısa değildir. Aralık aynıdır kurallıdır.

Kategori 4. Örüntünün devamlığı: Örüntünün devamlılığı adı verilen bu kategori, örüntünün düzenli devam eden ve genişleyen yapılar olma özelliğini kapsayan metaforların toplandığı bir kategoridir. Bu kategori altında toplanan metaforlar sınıf düzeylerine göre tablolaştırılarak Tablo 8'de sunulmuştur.
Tablo 8.
Örüntünün Devamlılığı Kategorisi için Öğrencilerin Ürettikleri Metaforlar.

Beşinci Sınıf	Altıncı Sınıf	Yedinci Sınıf						
Metafor	f	%	**Metafor**	f	%	**Metafor**	f	%
İnsan	1	2.63	Dağ	1	2.04	Apartman	1	5.00
Dersler	1	2.04	Bebek	1	5.00			
Ev	1	2.04	İnsan	1	5.00			
Saat	1	2.04	Apartman	1	5.00			
Su	1	2.04	Sonsuz	1	5.00			
Yürüyüş	1	2.04						
Zaman	1	2.04						
Toplam:	1	2.63	**Toplam:**	7	14.28	**Toplam:**	5	25.00

Tablo 8 incelendiğinde, "örüntünün devamlılığı" kategorisinde beşinci sınıf öğrencilerinden sadece bir öğrencinin metafor ürettiği görülmuştur. Ayrıca, 7 altıncı sınıf öğrencisi toplam 7 farklı metafor ve 5 yedinci sınıf öğrencisi toplam 5 farklı metafor üretmiştir. Sınıf seviyelerine göre üretilen metaforlar, birer katılımcı tarafından üretilen metaforlardır. Bu kategori altında üretilen metaforlar hakkında bazı öğrenci görüşlerine aşağıda yer verilmiştir.

"Örüntü insan gibidir; çünkü her zaman artar ve azalır."
"Örüntü zaman gibidir; çünkü her zaman sürer."
"Örüntü sonsuz gibidir; çünkü örüntünün başlangıcı belli ama sonu belli değildir."

Kategori 5. Şekil olarak örüntü: Şekil olarak örüntü kategorisinde, örüntü oluşturulan şekillerle öğrencilerin karşılaş.WebElementlerdeki hareketle, öğrenciler tarafından üretilen metaforlar toplanmıştır. Bu kategorideki metaforlar sınıf düzeylerine göre tablolaştırılırak Tablo 9'da sunulmuştur.

Tablo 9.
Şekil Olarak Örüntü Kategorisi için Öğrencilerin Ürettikleri Metaforlar.

Beşinci Sınıf	Altıncı Sınıf				
Metafor	f	**Metafor**	f		
Dolap	1	2.63	Tren	2	
Karınca	1	2.63	Yol	2	
Pencere	1	2.63	Çember-daire	1	
Şekil	1	2.63	Ütülü çarşaf	1	
Tırtıl	1	2.63	Tren vagonu	1	
Toplam:	5	13.15	**Toplam:**	7	14.28

Tablo 9 incelendiğinde, "Şekil olarak örüntü" kategorisinde 5 beşinci sınıf öğrencisi toplam 5 farklı metafor ve 7 altıncı sınıf öğrencisi toplam 5 farklı metafor üretmiştir. Yedinci sınıf öğrencileri вообще da bu kategori altında metafor üretmemiştir. Elde edilen bu sonucun, yedinci sınıf düzeyinde cebir ağırlıklı konularda yer verilmesinden kaynaklandığı düşünülmektedir. Altıncı sınıf öğrencileri tarafından oluşturulan metaforlardır en çok tekrarlanan metaforlar ise; "tren" ve "yol" metaforlardır. Bu kategori altında üretilen metaforlar hakkında bazı öğrenci görüşlerine sınıf düzeylerine göre aşağıdaki yer verilmiştir.

"Örüntü tren vagonu gibidir; çünkü örüntü şekilleri düzgündür"
"Örüntü pencere gibidir; çünkü bölüm bölümdür"

Kategori 6. Diğer: Araştırmaya katılan beşinci sınıf öğrencilere 3'ü, altıncı sınıf öğrencilere 9'u ve yedinci sınıf öğrencilere 2'sinin ürettiği metaforlar herhangi bir kategoriye yerleştirilemediğiinden, "diğer" kategorisinde toplam ve sunulmuştur. Bu kategori altında üretilen metaforlar, sınıf düzeylerine göre tablolaştırılarak aşağıda Tablo 10'da sunulmuştur.
Diğer Kategorisi için Öğrencilerin Ürettikleri Metaforlar.

Metafor	Beşinci Sınıf	Altıncı Sınıf	Yedinci Sınıf
Arkadaşlık/Sevgi	1 2.63	2 4.08	1 5.00
Atlı karınca	1 2.63	1 2.04	1 5.00
Oyun	1 2.63	1 2.04	1 5.00
Toplam	3 7.91	9 18.40	2 10.00

Diğer kategorisi adı altında en çok metaforu (9 adet) altıncı sınıf öğrencilerinin üretmiş olmaları dikkat çekicidir. Bu kategorideki öğrenci görüşlerinden örneklerde de aşağıda yer verilmiştir:

"Örüntü oyun gibidir; çünkü eğlencelidir."
"Örüntü matematiğin baş tacı gibidir; çünkü matematiği süsler ve şekillendirir."
"Örüntü renkler gibidir; çünkü renkler birbirleriyle oluşturulan karelerin içindedir.

Beşinci Araştırma Problemine İlişkin Bulgular

Bu araştırmada yer alan "Ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerinin örüntü kavramına yönelik olarak ürettikleri metaforlar sınıf düzeylerine göre farklılaşmakta mıdır?" şeklindeki beşinci araştırma problemine cevap aranırken, öğrencilerin ortaya koyduğu metaforlar araştırma kapsamında belirlenen 6 farklı kategori bağlamında değerlendirilmiştir.

Bu karşılaştırma için kare kare testi kullanılmıştır. Bu testin yapılabilmesi için öncelikle öğrencilerin ürettiğleri metaforların hangi kategori altında olduğuna ilişkin frekans ve yüzde değerleri hesaplanmıştır. Aşağıda, bu kavramsal kategoriler altında yer alan Tablo 11'de metaforların sınıf düzeylerine göre frekans ve yüzde değerleri yer almaktadır.

Tablo 11.
Kavramsal Kategorilerin Sınıf Düzeylerine Göre Frekans ve Yüzde Değerleri.

Kategoriler	Beşinci Sınıf	Altıncı Sınıf	Yedinci Sınıf	Toplam
Tekrar Etme-Yineleme	9 23.69	8 16.32	4 20.00	21 19.63
Arışık, Düzenli Olma	15 39.47	15 30.60	7 35.00	37 34.58
Örüntü.Kurallı Olması	5 13.15	3 6.12	2 10.00	10 9.35
Örüntünün Devamlılığı	1 2.63	7 14.28	5 25.00	13 12.15
Şekil Olarak Örüntü	5 13.15	7 14.28	0 .00	12 11.21
Diğer	3 7.91	9 18.40	2 10.00	14 13.08
Toplam	38 100.00	49 100.00	20 100.00	107 100.00

Yukarıdaki tabloya göre, araştırmaya katılan öğrencilerin "Arışık ve düzenli olma" üzerinde diğer kategorilere göre daha fazla metafor üretmektedir (Beşinci sınıf %39.47; Altıncı sınıf %30.61; Yedinci sınıf %35.00; Tümü %34.58). Bununla birlikte, beşinci sınıf öğrencileri tarafından üretilen en az sayıda metaforların 'Örüntünün devamlılığı' (%2.63) kategorisinde olduğu görülmektedir. Ayrıca, altıncı sınıf öğrencilerinde en az metafor üretimi (%6.12) "Örüntünün kurallı olması" kategorisinde iken, yedinci sınıf öğrencilerinde en az metafor (%0.00) üretimi ise "Şekil olarak örüntü" kategorisindedir.
Genel tabloya bakılacak olunrsa; ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerinde en çok “Ardışık ve düzenli olma” ve “Tekrar etme ve yineleme” (Sırasıyla %34.58 ve %19.63) kategorilerine ilişkin metaforlar üretildiğini görülmektedir. Bununla birlikte, en az “Örüntünün kurallı olması” (%9.35) kategorisine ilişkin metafor üretimli de belirlenmiştir.

Beşinci, altıncı ve yedinci sınıf öğrencilerin örüntü kavramına ilişkin olarak ürettikleri metaforların sınıf düzeylerine göre değişip değişmediğinin araştırılması amacıyla gerçekleştirilen Ki-Kare Testi sonuçlarına ise Tablo 12'de yer verilmiştir. Elde edilen Ki-kare Testinin sonucuna (χ² = 20.45; p = .16) göre, sınıf düzeyleri ile farklı kategorilere yer alan metaforlar arasında anlamlı bir fark yok bulunmamıştır.

Tablo 12.
Metaforların Sınıf Düzeylerine Göre Karşılaştırılmasına ilişkin Analiz Sonuçları.

Değer	sd	p	
Pearon Chi-Square	20.45	15	.16
İhtimal oranı	20.28	16	.16
n	107		

Tartışma, Sonuç ve Öneriler

Ortaokul beşinci, altıncı ve yedinci sınıf öğrencilerinin “örün” kavramını algılayış biçimlerinin metaforlar aracılığıyla ortaya koyduğu bu araştırmada, araştırmaya katılan öğrencilerin örüntü kavramına ilişkin geçerli toplam 107 metafor oluşturdukları elde edilen bulgularдан anlaşılmıştır. Bu metaforların 38’i beşinci sınıf, 49’u altıncı sınıf ve 20’si yedinci sınıf öğrencisi tarafından üretildiği raporlanmıştır.

Bu araştırma kapsamında, öğrenciler tarafından üretilen metaforlar 6 farklı boyutta gruplandırılmıştır. Bu kapsamda oluşturulan gruplar; örüntü kavramına ilişkin tekrar etme/yineleme, ardışık ve düzenli olma, kurallı olma, örüntünün devamlılığı, şekil boyutları ile bunların hiçbirine dahil edilememiş geçerli metaforların yer aldığı diğer kategorisi olarak ortaya çıkmıştır.

Bu araştırmaya katılan öğrencilerin önemli bir kısmı ürettikleri metaforlarda örüntü kavramının ardışık ve düzenli olma (%34.58) ve tekrar eden/yineleme (%19.63) yapılar olmasına vurgu yapmışlardır. Bu durum, öğrencilerin tekrarlayıcı ve dolayısıyla da ardışık ve düzenli olan örüntü örneklerine derslerden ve ders kitaplarından daha fazla aşına olduğu anlamak mümkündür. Yaptıkları incelemelerde, ders kitaplarında ve derslerde genellikle örüntü için kullanılan örneklerin belirli düzende tekrar eden sayılar veya şekiller dizeri ile başladığı görülmektedir. Ulaşlan bu sonuç Yaman (2010) tarafından elde edilen incelemede öğrencilerin en başarılı oldukları örüntü çeşidinin tekrarlayıcı örnekler olduğu sonucunu destekler niteliktedir. Bu bağlamda, somut olarak öğrenciyi sunduğunun yinelemeli görsellerin, belirgin kuralı bulunan örüntülere göre de daha anlamlığı ve kalıcı olduğu söylenebilir. Ayrıca yapılan incelemelerde, bu iki kategoriyi ilişkin en çok sayıda metaforu çevirmiş olan öğrencilerin örüntü ürettiğini görmüştür.

Bu araştırma ve edilen bulgular, öğrencilerin az bir kısmının da (%9.35) örüntü kavramının kurallı olması omuzlu metinlerin ürettiğini göstermektedir. Bu araştırmada bu durumda az sayıda vurgulamış olmalar ise, öğrencilerin düzenliliği aratılmış metafor oluşturmak zorunda kalan kuralini belirlemeye ve cebirsel ifade olarak yazma konusunda zorluklar yaşandığı destekler niteliktedir. Bu durumun, bu araştırmada öğrenciler yaşadıkları zorlukların nedenini sorular için[q]. Öğrencilerin devamlılık kategorisine ilişkin olarak ürettiğini metaforlar incelendiğinde, az sayıda olmakla birlikte özellikle altıncı ve yedinci sınıf öğrencinin bu kategorisi kapsamında yer alan metaforlar ürettiğini anlaşılmıştır. Aksine, şekil kategorisindeki metaforlara bakıldığında da, sadece beşinci ve altıncı sınıf öğrencilerinin örüntünün bu yönünü ortaya koyan metaforlar geçmiş oldukları da

Selin ÇENBERCI, Dilek SEZGIN MEMNUN, Hasibe İNCE – Pegem Eğitim ve Öğretim Dergisi, 10(1), 2020, 215-250
görülmüştür. Bu durum, yedinci sınıf programlarında örüntünün kuralını belirlenmesine yönelik olarak yapılan çalışmalarda devamlılarının da ön plana çıkmamasına bağlıdır. Ayrıca, yapılan incelemlerde en çok beşinci sınıf öğrencilerinin örüntünün kuralı olma yönünü vurgulayan metaforlar üretmektedir. Bu bağlamda, öğrencilerin örüntü düzeyi arttıkça öğrencinin tekrar etme özelliğine odaklanmaktadır. Öörüntü kavramının cebir öğretiminde temel olduğu düşünüldüğünde, araştırmacıya katkıda bulunmuş ve yedinci sınıf öğrencilerinin cebirin geçiş döneminde örüntü kavramına matematiksel anlam vererek yeterince hakim olamadıkları sonucu ortaya çıkmaktadır. Ayrıca, öğrencilerin cebir öğretiminde örüntü kavramı ortaokul öğrenciler için de çok önemlidir. Örüntü kavramının öğrencinin öğrenme sürecinde önemli bir rol oynamığı, belirlenir. Lannin, Barker ve Townsend (2006) tarafından gerçekleştirilen araştırmının sonuçlarına göre, öğrenci yaklaşımlarını etkileyen faktörlerden birinin öğretmen etkileşimi olduğu sonucunu destekleme.

Sonuç olarak, bu araştırmada metaforlar bıçak, altıncı ve yedinci sınıf öğrencilerinin örüntü kavramına ilişkin sahip oldukları algıları ortaya çıkarmada araştırma aracı olarak kullanılmış ve yapılan incelemlerde öğrencilerin örüntü kavramı ile ilişkili metaforların oluşturmaya çalışmışlardır. Ötüken ve arkadaşları (2010) tarafından gerçekleştirilen çalışmanın sonuçlarında, öğrencilerin örüntü kavramının öğrenme sürecinde önemli bir rol oynamığı, belirlenir. Ayrıca, metaforlar aracılığıyla örüntü kavramı gibi farklı matematik kavramı öğrenme süreci etkilenmesine neden olabilir. Bu durum, matematik kavramlarına ilişkin veya aynı konu üzerinde daha geniş örneklemler üzerinden öğrenci görüşlerinin belirlenmesine öncelik verilmesi gerektirir. Ayrıca, öğrencilerin örüntü kavramını tekrar etme özelliğine odaklanırken, metotlar aracılığıyla örüntü kavramı gibi farklı matematik kavramı öğrenme süreci etkilenmesine neden olabilir. Bu durum, matematik kavramlarına ilişkin veya aynı konu üzerinde daha geniş örneklemler üzerinden öğrenci görüşlerinin belirlenmesine öncelik verilmesi gerektirir. Ayrıca, metaforlar aracılığıyla örüntü kavramı öğrenme süreci etkilenmesine neden olabilir.
References

Akturan, U. & Esen, A. (2008). Fenomenoloji. In T. Baş & U. Akturan (Eds), *Nitel araştırma yöntemleri* (pp. 83-98). Ankara: Seçkin Yayıncılık.

Arslan, M. M. & Bayrakçı, M. (2006). Metaforik düşünme ve öğrenme yaklaşımının eğitim-öğretim açısından incelenmesi. *Milli Eğitim*, 35 (171), 100-108.

Bahadır, E. & Özdemir, A. Ş. (2012). İlköğretim 7. sınıf öğrencilerinin matematik kavramına ilişkin sahip oldukları zihinsel imgeler. *International Journal of Social Science Research*, 1 (1), 26-40.

Burns, M. (2000). *About teaching Mathematics. K-8 resource* (2nd ed.). Sausalito, CA: MathSolutions Publications.

Cansız-Aktas, M. & Aktaş, D. Y. (2013). Determination of Mathematics department students' perceptions about proving through metaphors. *International Online Journal of Educational Sciences*, 5 (3), 704-718.

Cassel, D. & Vincent, D. (2011). Metaphors reveal preservice elementary teachers' views of mathematics and science teaching. *School Science and Mathematics*, 111 (7), 319-324.

Erdem, Ö. & Sarpkaya-Aktas, G. (2018). Ortaokul 7. sınıf öğrencilerinin cebir öğrenme alanında yaşadıkları kavram yanlışlarının giderilmesinde etkinlik temelli öğretimin değerlendirilmesi. *Turkish Journal of Computer and Mathematics Education*, 9 (2), 312-338.

Erdoğan, A., Yazlık, O. D., & Erdik, C. (2014). Mathematics teacher candidates’ metaphors about the concept of “mathematics”. *International Journal of Education in Mathematics, Science and Technology*, 2(4), 289-299.

Ersoy, Y. & Erbaş, A. K. (2005). Kassel projesi cebir testinde bir grup Türk öğrencinin genel başarısı ve öğrenme güçlükleri. *Elementary Education Online*, 4 (1), 18-39.

Güler, G., Akgün, L., Öğal, M. F., & Doruk, M. (2012). Pre-service mathematics teachers' metaphors about mathematics concept. *Journal of Research in Education and Teaching*, 1 (2), 25-29.

Hargreaves, M., Shorrocks-Taylor, D., & Threlfall, J. (1999). Children’s strategies with number patterns. In A. Orton (Ed), *Pattern in the teaching and learning of Mathematics* (pp. 67-83). London & New York, NY: Cassell.

Horzum, T. & Yıldırım, G. (2016). High school students' metaphors about Geometry. *Mehmet Akif University Journal of Education Faculty*, 40, 357-374.

Lakoff, G. & Johnson, M. (2005). *Metaforlar hayat. Anlam ve dil. G.Y. Demir (Çev).* İstanbul: Paradigma.

Lannin, J., Barker, D., & Townsend, B. (2006). Algebraic generalisation strategies: Factors influencing student strategy selection. *Mathematics Education Research Journal*, 18 (3), 3-28.

MacGregor, M. & Stacey, K. (1993) Seeing a pattern and writing a rule. In I. Hirabayashi et al. (Eds), *Proceedings of the 17th Conference for Psychology of Mathematics Education*, 1 (pp. 181-188). Tsukuba, Japan: International Group for the Psychology of Mathematics Education.

Milli Eğitim Bakanlığı [MEB] (2004). *İlköğretim Matematik dersi 6-8. siniflar öğretim programı ve kilavuzu*. Ankara: Milli Eğitim Basımevi.

MEB (2005). *İlköğretim matematik dersi öğretim programı ve kilavuzu*. Ankara: Milli Eğitim Basımevi.

MEB (2009). *İlköğretim matematik dersi 6-8. siniflar öğretim programı*. Retrieved August 14, 2016, from https://ttkb.meb.gov.tr

MEB (2013). *Ortaokul matematik dersi (5, 6, 7 ve 8. siniflar) öğretim programı*. Retrieved August 14, 2016, from https://ttkb.meb.gov.tr

MEB (2017). *Matematik dersi öğretim programı (ilkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. siniflar)*. Retrieved August 28, 2018, from http://mufredat.meb.gov.tr

MEB (2018). *Matematik Dersi Öğretim Programı*. Retrieved September 29, 2018, from http://mufredat.meb.gov.tr
National Council of Teachers of Mathematics [NCTM] (2000). *Principles and standards for school Mathematics*. Reston, VA: NCTM.

Ocak, G. & Gündüz, M. (2006). The comparison of pre-service teachers' metaphors about the teacher-profession before and after the "introduction to teacher-profession" course. *Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi*, 2, 293-310.

Özdemir, E., Dikici R., & Kültür M. N. (2014). Students' pattern generalization process: The 7th grade sample. *Kastamonu University Kastamonu Education Journal*, 23 (2), 523-548.

Palabıyık, U. & Akkuş-İşpir, O. (2011). The effects of pattern-based Algebra instruction on students' Algebraic thinking attitude towards Mathematics. *Pamukkale Üniversitesi Eğitim Fakültesi Dergisi*, 30, 111-123.

Papic, M. (2007). Promoting repeating patterns with young children-more than just alternating colours!.* Australian Primary Mathematics Classroom*, 12 (3), 8–13. Retrieved September 22, 2017, from https://eric.ed.gov/?id=EJ793981

Polat, S. (2010). “İlköğretim 6–7. sınıf öğrencilerinin matematik kavramına ilişkin kullandıkları metaforlar.” Unpublished master’s thesis, Gaziosmanpaşa Üniversitesi Sosyal Bilimler Enstitüsü, Tokat.

Saban, A. (2003). A Turkish profile of prospective elementary school teachers and their views of teaching. *Teaching and Teacher Education*, 19, 829-846. Retrieved September 25, 2018, from https://eric.ed.gov/?id=EJ779173

Saban, A. (2005). “Öğretmen adaylarının öğretmen kavramına ilişkin sahip oldukları metaforlar.” Paper presented in XIV. Eğitim Bilimleri Kongresi, 28-30 September, Pamukkale University, Denizli. Retrieved June 25, 2018, from https://www.pegem.net/akademi/kongrebildiri_detay.aspx?id=100590

Sevindik, F., Sezgin-Memnun, D., & Çenberci, S. (2016). Metaphors about mathematics of industrial vocational high school students. *Journal of Educational and Instructional Studies in the World*, 6 (1), 13-21.

Sezgin-Memnun, D. (2015). Secondary school students' metaphors about mathematical problem and change of metaphors according to grade levels. *Faculty of Necatibey Education Electronic Journal of Science and Mathematics Education*, 9 (1), 351-374.

Sezgin-Memnun, D., Dinç, E., & Aydin, B. (2018). Metaphoric perceptions of high school students about functions. *American Journal of Educational Research*, 6 (6), 603-608.

Şahin, B. (2013). “Öğretmen adaylarının ‘matematik öğretmeni’, ‘matematik’ ve ‘matematik dersi’ kavramlarına ilişkin sahip oldukları metaforik algılar.” *Mersin University Journal of the Faculty of Education*, 9 (1), 313-321.

Şengül, S. & Katrancı, Y. (2012). İlköğretim ikinci kademe öğrencilerinin “matematik” kavramına ilişkin sahip oldukları metaforlar. *Eğitim ve Öğretim Araştırmalar Dergisi*, 1 (4), 355-369.

Şengül, S., Katrancı, Y. & Gerez-Cantimer, G. (2014). Metaphor perceptions of secondary school students about "mathematics teacher". *The Journal of Academic Social Science Studies*, 25 (I), 89-111.

Tanışlı, D. (2008). “İlköğretim beşinci sınıf öğrencilerinin ören migliere ilişkin anlama ve kavrama biçimlerinin belirlenmesi.” Unpublished doctoral dissertation, Ankara Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.

Tanışlı, D., Yavuzsoy-Köse, N., & Camci, F. (2017). Preservice mathematics teachers' knowledge of generalization and justification about patterns. *Journal of Qualitative Research in Education*, 5 (3), 195-222.

Toluk-Uçar, Z., Pişkin, M., Akkaş, E. N., & Taşçı, D. (2010). Elementary students' beliefs about Mathematics, Mathematics' teachers and mathematicians. *Education & Science*, 35 (155), 132-144.

Turhan-Türkkan, B. & Yeşilpinar-Uyar, M. (2016). The metaphors of secondary school students towards the concept of “mathematical problem”. *Çukurova University Faculty of Education Journal*, 45 (1), 99-129.
Selin ÇENBERCI, Dilek SEZGIN MEMNUN, Hasibe İNCE – Pegem Eğitim ve Öğretim Dergisi, 10(1), 2020, 215-250

Türk Dil Kurumu. Sözlük. Retrieved August 18, 2018, from tdk.gov.tr.

Yaman H. (2010). İlköğretim öğrencilerinin matematiksel örüntülerdeki ilişkileri algılayışları üzerine bir inceleme. Unpublished doctoral dissertation, Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.

Yaman H. & Umay A. (2013). The elementary students’ perceptions of Mathematical patterns according to presentation forms. Hacettepe University Journal of Education, 28 (1), 405-416.

Yee, S. P. (2012). Students’ metaphors for mathematical problem solving. Unpublished doctoral dissertation, Kent State University, College of Education, Ohio. Retrieved December 01, 2018, from https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:55185

Yeşildere, S. & Akkoç, H. (2010). Matematik öğretmen adaylarının sayı örüntülerine ilişkin pedagojik alan bilgilerinin konuya özel stratejiler bağlamında incelenmesi. Ondokuz Mayıs University Journal of Faculty of Education, 29 (1), 125-149.

Yeşildere, S. & Akkoç, H. (2011). Matematik öğretmen adaylarının şekil örüntülerini genelleme süreçleri. Pamukkale University Journal of Education, 30, 141-153.

Yetim-Karaca, S. & Ada, S. (2018). Determining students’ perceptions regarding the Mathematics and mathematics teachers through metaphors. Kastamonu University Kastamonu Education Journal, 26 (3), 790-800.

Yıldırım, A. & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
