Catalog of dessins d’enfants with ≤ 4 edges

N. M. Adrianov N. Ya. Amburg V. A. Dremov
Yu. A. Levitskaya E. M. Kreines Yu. Yu. Kochetkov
V. F. Nasretdinova G. B. Shabat

ITEP, MSU, Moscow, Russia

E-mails: kreines@itep.ru, shabat@mccme.ru

Abstract

In this work all the dessins d’enfant with no more than 4 edges are listed and their Belyi pairs are computed. In order to enumerate all dessins the technique of matrix model computations was used. The total number of dessins is 134; among them 77 are spherical, 53 of genus 1 and 4 of genus 2. The orders of automorphism groups of all the dessins are also found.

Dessins are listed by the number of edges. Dessins with the same number of edges are ordered lexicographically by their lists of 0-valencies. The corresponding matrix model for any list of 0-valencies is given and computed. Complex matrix models for dessins with 1 – 3 edges are used. For the dessins with 4 edges we use Hermitian matrix model, correlators for which are computed in [1].

1 Introduction

Dessin d’enfant is a compact connected smooth oriented surface S together with a graph Γ on it such that the complement $S \setminus \Gamma$ is homeomorphic to a disjoint union of open discs. The theory of Dessins d’enfants was initiated by A. Grothendieck in [6, 5] and actively developed thereafter, see [7] and references therein. Dessins d’enfants became rather popular within the last decades; they provide a possibility to describe in the easy and visually effective combinatorial language of graphs on surfaces many difficult and deep concepts and results of Inverse Galois theory, Teichmüller and moduli spaces, Maps and hypermaps, Matrix models, Quantum gravity, String theory, etc.

Dessins d’enfant appear naturally in different branches of mathematics. A smooth irreducible complete complex algebraic curve, defined over the field $\overline{\mathbb{Q}}$, provides a dessin d’enfant in the following way.
On such a curve X according to the famous Belyi theorem there exists a nonconstant rational function β having at most 3 critical values. Denote $X_\mathbb{C}$ its complexification and $\beta_\mathbb{C}$ the natural lift of β to $X_\mathbb{C}$. By definition, such β’s and $\beta_\mathbb{C}$’s are Belyi functions. Without loss of generality we assume that the critical values of β are in $\{0, 1, \infty\}$. Moreover, replacing β by $4\beta(1 - \beta)$, if needed, we can assume that $1 - \beta$ has only double zeros; such Belyi functions are called clean. Then $\beta^{-1}_\mathbb{C}([0, 1])$ is a dessin d’enfant on the topological model of $X_\mathbb{C}$ whose edges are $\{\beta^{-1}_\mathbb{C}([0, 1])\}$ and vertices are $\{\beta^{-1}_\mathbb{C}(0)\}$. In the main text we omit the complexification subscripts.

In this work, using the matrix model approach, (see [1, 3, 4]) we listed all the dessins d’enfants with no more than 4 edges. There are two 1-edge dessins, both of them are of genus zero, fifteen 2-edge dessins, among them only one is of genus 1, twenty 3-edge dessins: 14 spherical and 6 of genus 1, and one hundred seven 4-edge dessins: 57 spherical dessins, 46 dessins of genus 1, and 4 dessins of genus 2. The total number of dessins is 134. The main result is the calculation of the corresponding Belyi pairs (in the case of positive genus it means finding the curve and the Belyi function on it). This catalog is the analog of the well-known Betrema-Peré-Zvonkine catalog [2], where the trees with no more than 8 edges with their Belyi functions are collected.

Acknowledgments

We would like to thank all participants of the scientific seminar “Graphs on surfaces and curves over number fields” for the encouragement and interesting discussions. The 2nd, 5th, 7th, and 8th authors are grateful to Russian Federal Nuclear Energy Agency for financial support. Also the 2nd author would like to thank the grants NWO-RFBR 047.011.2004.026 (RFBR 05-02-89000-NWO-a), NSh-8004.2006.2, RFBR 07-01-00441-a, the 3rd, 4th, 5th and 8th authors would like to thank the grants RFBR 07-01-00441-a and NSH-1999.2006.1, the 5th author would like to thank the grant MK-2687.2007.1, the 7th author would like to thank the grants RFBR 07-01-00441-a and NSh-8065.2006.2. The 5th author would like to express her deep gratitude to Max-Plank Institute of Mathematics in Bonn, where some part of this work was done, for warm scientific atmosphere and financial support.
2 Comments on Belyi functions

For genus 0 dessins it is natural to write a Belyi function as a fraction of two polynomials. For the simplification of checking we factorize these polynomials.

Since all the curves of genus 1 and 2 are hyperelliptic, we always write their equations in the form \(y^2 = F(x) \) and denote by \(\tau \) the hyperelliptic involution \(\tau : (x, y) \mapsto (x, -y) \).

For the curves of positive genus there two different cases:

- Let \(\beta \) be invariant with respect to a hyperelliptic involution \(\tau \) (i.e. \(\beta = \beta \circ \tau \)), then \(\beta \) can be written as a quotient of two polynomials depending on the coordinate in a quotient space (by this involution), which is a projective line. In this case we write \((X : y^2 = F(x), \beta = \frac{P(x)}{Q(x)}) \).

- If Belyi function is not invariant with respect to \(\tau \), it is convenient to use symmetric functions in \(\beta \) and \(\beta^\tau \):
 \[
 n_0 = \beta \cdot \beta^\tau, \quad n_1 = (\beta - 1)(\beta^\tau - 1).
 \]

It is easy to reconstruct the Belyi function from this pair and the equation of the curve. Indeed,

\[
\beta = \frac{n_0 - n_1 + 1}{2} + y\sqrt{\frac{(n_0 - n_1)^2 - 2(n_0 + n_1) + 1}{4F}} \quad (1)
\]

For the convenience of the reader we give all above objects in these cases, namely:

\[
X : \{y^2 = F(x)\}, \quad \beta = \frac{P(x) + Q(x)y}{R(x)}, \quad n_0 = \frac{P(x)^2 - Q(x)^2 F(x)}{R(x)^2}, \quad n_1 = \frac{(P(x) - R(x))^2 - Q(x)^2 F(x)}{R(x)^2}.
\]

It is also useful to factorize numerators and denominators of functions \(n_0 \) and \(n_1 \). Note that the degrees of factors in the numerator of \(n_0 \) are related with the valencies of the vertices of the dessin, and degrees of factors in denominator are related to the valencies of faces.
3 The list of dessins with 1, 2, 3 edges

3.1 1-edge dessins

$$\langle \text{Tr}(Z^2)\text{Tr}((Z^+)^2) \rangle = \langle \langle \text{Tr}(Z^2)\text{Tr}((Z^+)^2) \rangle \rangle =$$

$$= 2 \cdot 2 \left(\frac{1}{2} N^2 \right).$$

Figure 1: $S(2|11)$. Valencies (2|1, 1).

The order of the automorphism group:

2. Dual dessin $S(11|2)$, see Figure 2 on the page 5. Belyi function is $\beta = \frac{z^2}{z^2 - 1}$.
\[
\langle Tr^2(Z)Tr((Z^+)^2) \rangle = \langle \langle Tr^2(Z)Tr((Z^+)^2) \rangle \rangle = 2! \cdot 2 \left(\frac{1}{2}N \right).
\]

Figure 2: \(S(11|2) \). Valencies (1,1|2).

The order of the automorphism group:

2. Dual dessin \(S(2|11) \), see Figure 1 on the page 4. Belyi function is \(\beta = 1 - z^2 \).
3.2 2-edge dessins

\[(Tr(Z^4)Tr^2((Z^+)^2)) = \langle \langle Tr(Z^4)Tr^2((Z^+)^2) \rangle \rangle = 4 \cdot 2! \cdot 2^2 \left(\frac{1}{2}N^3 + \frac{1}{4}N \right). \]

Figure 3: \(S(4|211) \). Valencies (4|2, 1, 1).
The order of the automorphism group: 2.
Dual dessin \(S(211|4) \), see Figure 7 on the page 10.
Belyi function is \(\beta = \frac{1}{4z^2(z^2-1)} \).
Figure 4: $T(4,4)$. Valencies $(4|4)$. The order of the automorphism group: 4. Dual dessin $T(4|4)$, see Figure 4 on the page 7. Belyi function is $(X: y^2 = x^3 - x, \beta = x^2)$.
\[\langle \text{Tr}(Z^3)\text{Tr}(Z)\text{Tr}^2((Z^+)^2) \rangle = \langle \langle \text{Tr}(Z^3)\text{Tr}(Z)\text{Tr}^2((Z^+)^2) \rangle \rangle = 3 \cdot 2! \cdot 2^2 (N^2). \]

Figure 5: \(S(31|31)\). Valencies \((3,1|3,1)\). The order of the automorphism group: 1. Dual dessin \(S(31|31)\), see Figure 5 on the page 8. Belyi function is \(\beta = -64 \frac{z^3(z-1)}{8z+1}\).
\[(\langle Tr^2(Z^2)Tr^2((Z^+)^2)\rangle) = 2! \cdot 2^2 \cdot 2! \cdot 2^2 \left(\frac{1}{4}N^2\right)\].

Figure 6: \(S(22|22)\). Valencies \((2, 2|2, 2)\). The order of the automorphism group: 4. Dual dessin \(S(22|22)\), see Figure 6 on the page 9. Belyi function is \(\beta = \frac{(z^2 - 1)^2}{4z^2}\).
\[\langle (\text{Tr}(Z^2)\text{Tr}^2(Z)\text{Tr}^2((Z^+)^2)) \rangle = 2 \cdot 2! \cdot 2! \cdot 2^2 \left(\frac{1}{2} N \right) . \]

Figure 7: $S(211|4)$. Valencies $(2,1,1|4)$. The order of the automorphism group: 2. Dual dessin $S(4|211)$, see Figure3 on the page6. Belyi function is $\beta = -4z^2(z^2 - 1)$.
3.3 3-edge dessins

\[\langle Tr(Z^6)Tr^3((Z^+)^2) \rangle = \langle \langle Tr(Z^6)Tr^3((Z^+)^2) \rangle \rangle = \]

\[= 6 \cdot 3! \cdot 2^3 \left(\frac{5}{6}N^4 + \frac{5}{3}N^2 \right) = \]

\[= 6 \cdot 3! \cdot 2^3 \left(\left(\frac{1}{3} + \frac{1}{2} \right)N^4 + \left(1 + \frac{1}{2} + \frac{1}{6} \right)N^2 \right) \]

Figure 8: $S(6|3111)$. Valencies $(6|3,1,1,1)$. The order of the automorphism group: 3. Dual dessin $S(3111|6)$, see Figure 25 on the page 21. Belyi function is $\beta = \frac{1}{4z(z^2-1)}$.

Figure 9: $S(6|2211)$. Valencies $(6|2,2,1,1)$. The order of the automorphism group: 2. Dual dessin $S(2211|6)$, see Figure 27 on the page 23. Belyi function is $\beta = \frac{1}{(z^2-1)^2(z^2-4)}$.
Figure 10: $T(6|51)$. Valencies $(6|5, 1)$. The order of the automorphism group: 1. Dual dessin $T(51|6)$, see Figure 15 on the page 14. Belyi function is $\beta = -\frac{1}{216} \left(\frac{2x^3+2y-29x^2-15y+85x-50}{x^3} \right)$ on the curve $X : y^2 = x^4 - 14x^3 + 29x^2 - 60x$. $n_0 = \frac{625}{11664} \frac{x^6}{2x+1}$, $n_1 = \frac{1}{11664} \left(\frac{29x^3-54x^2+108x+108}{2x+1} \right)^2$.

Figure 11: $T(6|42)$. Valencies $(6|4, 2)$. The order of the automorphism group: 2. Dual dessin $T(42|6)$, see Figure 17 on the page 16. Belyi function is $(X : y^2 = x(x+3)(x-1), \beta = \frac{4x^3}{27(x-1)}$).

Figure 12: $T(6|33)$. Valencies $(6|3, 3)$. The order of the automorphism group: 6. Dual dessin $T(33|6)$, see Figure 22 on the page 19. Belyi function is $(X : y^2 = x^4 - x, \beta = x^3)$.
\[
\langle Tr(Z^5)Tr(Z)Tr^3((Z^+)^2) \rangle = \langle\langle Tr(Z^5)Tr(Z)Tr^3((Z^+)^2) \rangle \rangle = 5 \cdot 3! \cdot 2^3 (2N^3 + N) = 5 \cdot 3! \cdot 2^3 ((1 + 1)N^3 + N).
\]

Figure 13: \(S(51|411)\). Valencies \((5,1|4,1,1)\). The order of the automorphism group: 1. Dual dessin \(S(411|51)\), see Figure 18 on the page 17. Belyi function is \(\beta = \frac{256(z-1)}{z(z^2+4z+20)}\).

Figure 14: \(S(51|321)\). Valencies \((51|3,2,1)\). The order of the automorphism group: 1. Dual dessin \(S(321|51)\), see Figure 23 on the page 20. Belyi function is \(\beta = \frac{-64(15z+1)}{3125z^2(z-1)^2(5z-8)}\).
Figure 15: $T(51|6)$. Valencies $(5,1|6)$. The order of the automorphism group:

1. Dual dessin $T(6|51)$, see Figure 10 on the page 12. Belyi function is $\beta = \frac{25 x^3 - 270 xy - 255 x^2 + 216 y + 522 x - 216}{2500}$ on the curve $X : y^2 = -\frac{5}{18} x^3 + \frac{20}{36} x^2 - \frac{7}{3} x + 1$.

$n_0 = \frac{x^5(12+x)}{2500}$, $n_1 = \frac{(x^3+6x^2-18x+58)^2}{2500}$.
\[\langle \text{Tr}(Z^4)\text{Tr}(Z^2)\text{Tr}^3((Z^+)^2) \rangle = \]
\[= 4 \cdot 2 \cdot 3! \cdot 2^3 \left(N^3 + \frac{1}{2}N \right). \]

Figure 16: \(S(42|321) \). Valencies \((4,2|3,2,1)\). The order of the automorphism group: 1. Dual dessin \(S(321|42) \), see Figure 24 on the page 20. Belyi function is \(\beta = \frac{-(3z^2 - 2)^2}{4z^3(z-1)(z+2)}. \)
Figure 17: $T(42|6)$. Valencies $(4, 2|6)$. The order of the automorphism group: 2. Dual dessin $T(6|42)$, see Figure 11 on the page 12. Belyi function is $(X : y^2 = 4x^3 - 39x + 35, \beta = \frac{(x-1)^2(2x+7)}{27})$.
\[\langle \langle \text{Tr}(Z^4) \text{Tr}(Z) \text{Tr}(Z) \text{Tr}^3((Z^+)^2) \rangle \rangle = \]

\[= 2! \cdot 4 \cdot 3! \cdot 2^3 \left(\frac{3}{2} N^2 \right) = 2! \cdot 4 \cdot 3! \cdot 2^3 \left(\left(1 + \frac{1}{2} \right) N^2 \right). \]

Figure 18: \(S(411|51) \). Valencies \((4,1,1|5,1) \). The order of the automorphism group: 1. Dual dessin \(S(51|411) \), see Figure 13 on the page 13. Belyi function is \(\beta = \frac{z^4(z^2 + 4z + 20)}{256(z-1)} \).

Figure 19: \(S(411|33) \). Valencies \((4,1,1|3,3) \). The order of the automorphism group: 2. Dual dessin \(S(33|411) \), see Figure 20 on the page 18. Belyi function is \(\beta = \frac{z^4(4z^2 - 3)}{4(z^2 - 1)^3} \).
\[
\left\langle Tr(Z^3) Tr(Z^3) Tr^3((Z^+)^2) \right\rangle = \left\langle \left\langle Tr(Z^3) Tr(Z^3) Tr^3((Z^+)^2) \right\rangle \right\rangle = \\
= 2! \cdot 3^2 \cdot 3! \cdot 2^3 \left(\frac{2}{3} N^3 + \frac{1}{6} N \right) = 2! \cdot 3^2 \cdot 3! \cdot 2^3 \left(\left(\frac{1}{2} + \frac{1}{6} \right) N^3 + \frac{1}{6} N \right).
\]

Figure 20: \(S(33|411) \). Valencies \((3, 3|4, 1, 1)\). The order of the automorphism group: 2. Dual dessin \(S(411|33) \), see Figure 19 on the page 17. Belyi function is \(\beta = \frac{4(z^2 - 1)^3}{z^4(4z^2 - 3)} \).

Figure 21: \(S(33|222) \). Valencies \((3, 3|2, 2, 2)\). The order of the automorphism group: 6. Dual dessin \(S(222|33) \), see Figure 26 on the page 22. Belyi function is \(\beta = \frac{-4z^3}{(z^3 - 1)^2} \).
Figure 22: $T(33|6)$. Valencies $(3, 3|6)$. The order of the automorphism group: 6. Dual dessin $T(6|33)$, see Figure 12 on the page 12. Belyi function is $(X : y^2 = x^3 - 1, \beta = x^3)$.
\[
\langle \langle Tr(Z^3)Tr(Z^2)Tr(Z)Tr^3((Z^+)^2) \rangle \rangle = \\
= 3 \cdot 2 \cdot 3! \cdot 2^3 (2N^2) = 3 \cdot 2 \cdot 3! \cdot 2^3 ((1 + 1)N^2).
\]

Figure 23: \(S(321|51)\). Valencies \((3, 2, 1|5, 1)\). The order of the automorphism group: 1. Dual dessin \(S(51|321)\), see Figure 14 on the page 13. Belyi function is \(\beta = \frac{z^3(2z-5)^2(2z-8)}{64(3z+1)}\).

Figure 24: \(S(321|42)\). Valencies \((3, 2, 1|4, 2)\). The order of the automorphism group: 1. Dual dessin \(S(42|321)\), see Figure 16 on the page 15. Belyi function is \(\beta = \frac{-4z^3(2(z-1)^2(z+2))}{(3z-2)^2}\).
\[\langle \langle Tr(Z^3)Tr^3(Z)Tr^3((Z^+)^2) \rangle \rangle = 3 \cdot 3! \cdot 2^3 \left(\frac{1}{3} N \right). \]

Figure 25: \(S(3111|6) \). Valencies \((3,1,1,1|6)\). The order of the automorphism group: 3. Dual dessin \(S(6|3111) \), see Figure 8 on the page 11. Belyi function is \(\beta = -4z^3(z^3-1) \).
\[\langle \text{Tr}^3(Z^2)\text{Tr}^3((Z^+)^2) \rangle = 3! \cdot 2^3 \cdot 3! \cdot 2^3 \left(\frac{1}{6} N^2 \right). \]

Figure 26: \(S(222|33) \). Valencies \((2,2,2|3,3)\). The order of the automorphism group: 6. Dual dessin \(S(33|222) \), see Figure 21 on the page 18. Belyi function is \(\beta = \frac{-(z^3 - 1)^2}{4z^3} \).
\[\langle \langle \text{Tr}^2(Z^2)\text{Tr}^2(Z)\text{Tr}^3((Z^+)^2) \rangle \rangle = 2! \cdot 2^2 \cdot 2! \cdot 3! \cdot 2^3 \left(\frac{1}{2}N \right). \]

Figure 27: \(S(2211|6) \). Valencies \((2,2,1,1|6)\). The order of the automorphism group: \(2\). Dual dessin \(S(6|2211) \), see Figure 9 on the page 11. Belyi function is \(\beta = -(4z^2 - 1)^2(z^2 - 1) \).

4 4-edges dessins

4-edges dessins and Hermitian matrix model:

\[
\langle \langle \text{Tr}(H^8) \rangle \rangle = 8 \left(\frac{7}{4}N^5 + \frac{35}{4}N^3 + \frac{21}{8}N \right) = 8 \left(\left(1 + \frac{1}{2} + \frac{1}{4} \right)N^5 + \left(7 + 3 \cdot \frac{1}{2} + \frac{1}{4} \right)N^3 + \left(2 + \frac{1}{2} + \frac{1}{8} \right)N \right).
\]
Figure 28: $S(8|41111)$. Valencies $(8|4, 1, 1, 1, 1)$. The order of the automorphism group: 4. Dual dessin $S(41111|8)$, see Figure 121 on the page 56. Belyi function is $\beta = \frac{z^8}{4(z-1)(z+1)(z^2+1)}$.

Figure 29: $S(8|32111)$. Valencies $(8|3, 2, 1, 1, 1)$. The order of the automorphism group: 1. Dual dessin $S(32111|8)$, see Figure 132 on the page 61. Belyi function is $\beta = \frac{729}{1024} \frac{z^8}{(z-1)(3z^2+8z+16)(3z^2-4)}$.

Figure 30: $S(8|22211)$. Valencies $(8|2, 2, 2, 1, 1)$. The order of the automorphism group: 2. Dual dessin $S(22211|8)$, see Figure 134 on the page 63. Belyi function is $\beta = \frac{1}{-4z^2(z^2-2)(z-1)^2(z+1)^2}$.
Valencies (8|6, 1, 1). The order of the automorphism group: 2. Dual dessin $T(611|8)_2$, see Figure [76] on the page [11]. Belyi function is $(X: y^2 = 3 x^3 + 8 x^2 + 16 x, \beta = \frac{27}{256} x^4)$.

For the dessin $T(8|611)_2$ Belyi function β can be found from the equality
\[
\frac{1}{\beta} = -\frac{1}{22769316864} (-835 - 872 \sqrt{2}) (x^4 - 16 y x^2 + 24 \sqrt{2} y x^2 - 648 x^3 + 272 \sqrt{2} x^3 - 4032 \sqrt{2} y x + 4224 y x - 19296 \sqrt{2} x^2 + 34200 x^2 + 30240 \sqrt{2} y - 50112 y - 818208 x + 706752 \sqrt{2} x - 1088640 \sqrt{2} + 1708560)\]
on the curve $X: y^2 = x^3 + 16 y x^2 + 24 \sqrt{2} y x^2 - 648 x^3 + 272 \sqrt{2} x^3 - 4032 \sqrt{2} y x + 4224 y x - 19296 \sqrt{2} x^2 + 34200 x^2 + 30240 \sqrt{2} y - 50112 y - 818208 x + 706752 \sqrt{2} x - 1088640 \sqrt{2} + 1708560$.

Valencies (8|6, 1, 1). The order of the automorphism group: 1. Dual dessin $T(611|8)_1 A$, see Figure [77] on the page [11].

For the dessin $T(8|611)_1 A$ Belyi function β can be found from the equality
\[
\frac{1}{\beta} = -\frac{1}{22769316864} (-835 + 872 \sqrt{2}) (x^4 - 16 y x^2 - 24 \sqrt{2} y x^2 - 648 x^3 - 272 \sqrt{2} x^3 + 4032 \sqrt{2} y x + 4224 y x + 19296 \sqrt{2} x^2 + 34200 x^2 - 30240 \sqrt{2} y - 50112 y - 818208 x + 706752 \sqrt{2} x + 1088640 \sqrt{2} + 1708560)\]
on the curve $X: y^2 = x^3 + 20 x^2 - 8 \sqrt{2} x^2 + 1104 \sqrt{2} x - 132 x$.

Valencies (8|6, 1, 1). The order of the automorphism group: 1. Dual dessin $T(611|8)_1 B$, see Figure [78] on the page [11].

For the dessin $T(8|611)_1 B$ Belyi function β can be found from the equality
\[
\frac{1}{\beta} = -\frac{1}{22769316864} (-835 + 872 \sqrt{2}) (x^4 - 16 y x^2 - 24 \sqrt{2} y x^2 - 648 x^3 - 272 \sqrt{2} x^3 + 4032 \sqrt{2} y x + 4224 y x + 19296 \sqrt{2} x^2 + 34200 x^2 - 30240 \sqrt{2} y - 50112 y - 818208 x + 706752 \sqrt{2} x + 1088640 \sqrt{2} + 1708560)\]
on the curve $X: y^2 = x^3 + 20 x^2 + 8 \sqrt{2} x^2 - 1104 \sqrt{2} x - 132 x$.

\[\]
For the dessins $T(8|521)A_+$, $T(8|521)A_-$ and $T(8|521)B$ Belyi function β can be found from
\[
\frac{1}{\beta} = \frac{1}{735306250} (552\nu^2 - 617\nu + 68)(42875 x^4 + 1756160 \nu y x^2 - 860160 \nu^2 y x^2 - 4543840 y x^2 + 3959200 \nu x^3 - 10346175 x^3 - 1926400 \nu^2 x^3 + 31782912 \nu^2 y x - 63438592 \nu y x + 168996968 y x + 18916352 \nu^2 x^2 - 37781632 \nu x^2 + 100206428 x^2 - 257512128 y - 48381952 \nu^2 y + 96684032 \nu y - 62101504 \nu^2 x - 330259656 x + 123960064 \nu x + 48381952 \nu^2 - 96684032 \nu + 257512128) \text{ on the curve}
\]
\[
X : y^2 = -\frac{(17\nu^2+8-42\nu)}{960400} (19600 x^2 + 55552 \nu x - 18432 \nu^2 x - 88408 x + 338963 - 130592 \nu + 65792 \nu^2)(x - 1).
\]
Here $256\nu^3 - 544\nu^2 + 1427\nu - 172 = 0$, and real ν corresponds to the case B.

Figure 34: $T(8|521)A_+$. Valencies $(8|5,2,1)$. The order of the automorphism group: 1. Dual dessin $T(521|8)A_+$, see Figure 92 on the page 46.

Figure 35: $T(8|521)A_-$. Valencies $(8|5,2,1)$. The order of the automorphism group: 1. Dual dessin $T(521|8)A_-$, see Figure 93 on the page 46.

Figure 36: $T(8|521)B$. Valencies $(8|5,2,1)$. The order of the automorphism group: 1. Dual dessin $T(521|8)B$, see Figure 94 on the page 46.
Figure 37: $T(8|431)A$. Valencies $(8|4, 3, 1)$. The order of the automorphism group: 1. Dual dessin $T(431|8)A$, see Figure 110 on the page 52. Belyi function is
\[
\beta = -\frac{85766121}{256}(5488 x^4 + 14112 yx^2 - 26264 x^3 + 37548 yx - 202741 x^2 + 3240 y - 73368 x - 3240)^{-1}
\] on the curve $X: y^2 = \frac{1}{4} (1-x)(448 x^2 + 1872 x + 81)$. $n_0 = \frac{1}{62523502209} \frac{65536}{x^4(4x+45)(4x+21)}$, $n_1 = \frac{1}{4096 x^4+55296 x^3+158976 x^2+55296 x-247617}$. $n_0 = 16 \frac{1}{x^4(4x+45)(4x+21)}$, $n_1 = \frac{1}{27} \frac{27 x^4-36 x^2-32 x-20}{(x-2)(3x+2)^3 x^4}$.

Figure 38: $T(8|431)B$. Valencies $(8|4, 3, 1)$. The order of the automorphism group: 1. Dual dessin $T(431|8)B$, see Figure 111 on the page 52. Belyi function is $\beta = -36 (81 x^4 - 108 yx^2 + 288 x^3 - 96 yx + 308 x^2 - 24 y + 160 x + 32)^{-1}$ on the curve $X : y^2 = \frac{1}{4} (x+1)(9 x^2 + 4 x + 4)$. $n_0 = 16 \frac{1}{3 (x-2)(3x+2)^3 x^4}$, $n_1 = \frac{1}{27} \frac{27 x^4-36 x^2-32 x-20}{(x-2)(3x+2)^3 x^4}$.
Figure 39: $T(8|422)_4$. Valencies $(8|4,2,2)$. The order of the automorphism group: 4. Dual dessin $T(422|8)_4$, see Figure 114 on the page 58. Belyi function is $(X : y^2 = x^3 - x, \beta = \frac{1}{4} \cdot \frac{x^4}{(x-1)(x+1)})$.

Figure 40: $T(8|422)_2$. Valencies $(8|4,2,2)$. The order of the automorphism group: 2. Dual dessin $T(422|8)_2$, see Figure 115 on the page 58. Belyi function is $X : y^2 = 4x^3 - 4x^2 - x, \beta = \frac{1}{16x^2(x-1)^2}$.

Figure 41: $T(8|332)$. Valencies $(8|3,3,2)$. The order of the automorphism group: 2. Dual dessin $T(332|8)$, see Figure 125 on the page 58. Belyi function is $X : y^2 = x(x-1)(3x^2 + 8x + 16); \beta = \frac{27}{256} \cdot \frac{x^4}{x-1}$.
Figure 42: $P(8|8)$. Valencies $(8|8)$. The order of the automorphism group: 8. Dual dessin $P(8|8)$, see Figure 42 on the page 29. Belyi function is $\beta = (x^2 - 2)(x^4 - 2x^2 + 2)$. $n_0 = 1$, $n_1 = 4(x - 1)^4(x + 1)^4$.

Figure 43: $P(8|8)_2$. Valencies $(8|8)$. The order of the automorphism group: 2. Dual dessin $P(8|8)_2$, see Figure 43 on the page 29. Belyi function is $\beta = (-xy + x^4 - 2x^2 + 1)^2$ on the curve $X : y^2 = x^6 - 24x^5 - 2(24x^4 - 16x^3 + 12x^2 - 4x - 9\mu x + 7)$. $n_0 = x^8$, $n_1 = -\frac{1}{196}(-9 + 4\mu)(7x^4 + 12x^3 - 4\mu x^3 + 6x^2 - 16\mu x^2 + 12x - 4\mu x + 7)^2$, where $\mu = \pm \sqrt{2}$.

Figure 44: $P(8|8)_1A$. Valencies $(8|8)$. The order of the automorphism group: 1. Dual dessin $P(8|8)_1A$, see Figure 44 on the page 29.

Figure 45: $P(8|8)_1B$. Valencies $(8|8)$. The order of the automorphism group: 1. Dual dessin $P(8|8)_1B$, see Figure 45 on the page 29.

Pairwise conjugate Belyi function of dessins $P(8|8)_1A$ and $P(8|8)_1B$: $\beta = -1/8 (-5 + 4\mu)(x - 1 - \mu)(x + 1 - \mu)(x + 1)(x^2 - 2x - 2\mu x + 1)y + \frac{1}{56}(-5 + 4\mu)(7x^8 - 8x^7 - 40\mu x^7 + 140x^6 - 56\mu x^5 + 168x^5 - 14x^4 - 224\mu x^4 + 168x^3 - 56\mu x^3 + 140x^2 - 8x - 40\mu x + 7)$ on the curve $X : \{y^2 = x^6 - \frac{24}{7}\mu x^5 - 2/7x^5 + \frac{107}{49}x^4 - \frac{200}{49}\mu x^4 + \frac{500}{49}x^3 - \frac{48}{49}\mu x^3 - \frac{200}{49}\mu x^2 + \frac{107}{49}x^2 - \frac{24}{7}\mu x - 2/7 x + 1\}$. $n_0 = x^8$, $n_1 = -\frac{1}{196}(-9 + 4\mu)(7x^4 + 12x^3 - 4\mu x^3 + 6x^2 - 16\mu x^2 + 12x - 4\mu x + 7)^2$, where $\mu = \pm \sqrt{2}$.
\langle\langle \text{Tr}(H^7)\text{Tr}(H) \rangle \rangle = 7 \left(5N^4 + 10N^2 \right).

Figure 46: S(71|5111). Valencies (7,1|5,1,1,1). The order of the automorphism group: 1. Dual dessin S(5111|71), see Figure 95 on the page 47. Belyi function is \(\beta = \frac{16384z(z-1)^7}{896z^3-2912z^2+3216z-1225} \).
Figure 47: \(S(71|4211)_+ \). Valencies \((7, 1|4, 2, 1, 1)\). The order of the automorphism group: 1. Dual dessin \(S(4211|71)_+ \), see Figure 116 on the page 54. Belyi function is \(\beta = \frac{-7340032(z(\sqrt{7}+21)z(z-1)^7}{(896z^2-1904z+48z\sqrt{7}+1029-49z\sqrt{7})(112z-119-5z\sqrt{7})^2} \).

Figure 48: \(S(71|4211)_- \). Valencies \((7, 1|4, 2, 1, 1)\). The order of the automorphism group: 1. Dual dessin \(S(4211|71)_- \), see Figure 117 on the page 54. Belyi function is \(\beta = \frac{-7340032(z(\sqrt{7}+21)z(z-1)^7}{(896z^2-1904z-48z\sqrt{7}+1029+49z\sqrt{7})(112z-119+5z\sqrt{7})^2} \).

Figure 49: \(S(71|3311) \). Valencies \((7, 1|3, 3, 1, 1)\). The order of the automorphism group: 1. Dual dessin \(S(3311|71)_+ \), see Figure 126 on the page 59. Belyi function is \(\beta = -1728z^2 \frac{z}{(1+z^2-5z^2)(49-13z+z^2)} \).

Figure 50: \(S(71|3221) \). Valencies \((7, 1|3, 2, 2, 1)\). The order of the automorphism group: 1. Dual dessin \(S(3221|71)_+ \), see Figure 129 on the page 60. Belyi function is \(\beta = -\frac{1}{256} \frac{z^7(-48+z)}{(z+1)(7z^4+28z+24)^2} \).
Figure 51: $T(71|71)A_+$. Valencies $(7,1|7,1)$. The order of the automorphism group: 1. Dual dessin $T(71|71)A_+$, see Figure 52 on the page 32.

- $T(71|71)A_+ T(71|71)A_-$. Belyi function is $\beta = -\frac{(\nu+3)}{8(32x^2-51-7\nu)}(-2\nu yx^3 + 10yx^3 + 56x^4 - 64yx^2 - 14\nu x^3 - 266x^3 + 116yx + 12\nu yx + 504x^2 + 56\nu x^2 - 11\nu y - 73y - 454x - 82\nu x + 171+41\nu)$ on the curve $X: y^2 = -\frac{1}{32}(5+\nu)(16 x^3 + 4\nu x^2 - 52 x^2 - 4\nu x + 68 x + \nu - 37)$. \(\nu = \pm i\sqrt{7}\).

$n_0 = \frac{(13+7\nu)(x+3)(x-1)^7}{8(32x^2-51-7\nu)}$, $n_1 = \frac{(13+7\nu)(8x^4-16x^3-16x^2+80x-59-7\nu)^2}{512(32x^2-51-7\nu)}$.

Figure 52: $T(71|71)A_-$. Valencies $(7,1|7,1)$. The order of the automorphism group: 1. Dual dessin $T(71|71)A_-$, see Figure 51 on the page 32.

Figure 53: $T(71|71)B_+$. Valencies $(7,1|7,1)$. The order of the automorphism group: 1. Dual dessin $T(71|71)B_+$, see Figure 53 on the page 32. Belyi function is: ...

Figure 54: $T(71|71)B_-$. Valencies $(7,1|7,1)$. The order of the automorphism group: 1. Dual dessin $T(71|71)B_-$, see Figure 54 on the page 32. Belyi function can be seen below.
For the dessin $T(71|71)B_+$ Belyi function is $\beta = -\frac{343}{3554432} \left(-91i\sqrt{7}+87 \right) \frac{1}{(98x^2+21x+21i\sqrt{7}x+2)(14x^2+7x+7i\sqrt{7}x-2)^2} y + \frac{1}{8388608} \left(-91i\sqrt{7}+87 \right) (1647086x^8 + 3294172x^7 + 3294172i\sqrt{7}x^7 - 15764966x^6 + 4941258i\sqrt{7}x^6 - 4705960i\sqrt{7}x^5 - 17882648x^5 - 3882417i\sqrt{7}x^4 + 5260591x^4 + 672280i\sqrt{7}x^3 + 2554664x^3 - 321734x^2 + 100842i\sqrt{7}x^2 + 2044i\sqrt{7}x + 1532x + 686)$ on the curve $X : -x^4 - \frac{11}{7} i\sqrt{7} x^3 - \frac{11}{7} x^3 + \frac{519}{98} x^2 - \frac{153}{98} i\sqrt{7} x^2 + \frac{51}{49} i\sqrt{7} x + \frac{869}{343} x + y^2 - 1 = 0$.

$n_0 = 1$, $n_1 = -\frac{343}{3554432} \left(-91i\sqrt{7}+87 \right) \frac{1}{(14x^2+7x+7i\sqrt{7}x-2)^4} y$.

For the dessin $T(71|71)B_-$ Belyi function is $\beta = -\frac{343}{3554432} \left(91i\sqrt{7}+87 \right) \frac{1}{(98x^2+21x-21i\sqrt{7}x+2)(14x^2+7x-7i\sqrt{7}x-2)^2} y + \frac{1}{8388608} \left(91i\sqrt{7}+87 \right) (1647086x^8 + 3294172x^7 - 3294172i\sqrt{7}x^7 - 15764966x^6 - 4941258i\sqrt{7}x^6 + 4705960i\sqrt{7}x^5 - 17882648x^5 + 3882417i\sqrt{7}x^4 + 5260591x^4 - 672280i\sqrt{7}x^3 + 2554664x^3 - 321734x^2 - 100842i\sqrt{7}x^2 - 2044i\sqrt{7}x + 1532x + 686)$ on the curve $X : -x^4 + \frac{11}{7} i\sqrt{7} x^3 - \frac{11}{7} x^3 + \frac{519}{98} x^2 + \frac{153}{98} i\sqrt{7} x^2 - \frac{51}{49} i\sqrt{7} x + \frac{869}{343} x + y^2 - 1 = 0$.

$n_0 = 1$, $n_1 = \frac{343}{3554432} \left(91i\sqrt{7}+87 \right) \frac{1}{(14x^2+7x-7i\sqrt{7}x-2)^4} x$.

Figure 55: $T(71|71)C$. Valencies $(7, 1, |7, 1)$. The order of the automorphism group: 1. Dual dessin $T(71|71)C$, see Figure 55 on the page 33. Belyi function is $\beta = \frac{1}{128} x^3 (7x+y)$ on the curve $X : y^2 = 4x^3 + 13x^2 + 32x$. $n_0 = -\frac{1}{4096} x^3 (x-8x^2-32x+64) / x-1$, $n_1 = \frac{1}{4096} (x^4-4x^3-8x^2-32x+64) / x-1$.

33
Figure 56: $T(71|62)_+$. Valencies $(7,1|6,2)$. The order of the automorphism group: 1. Dual dessin $T(62|71)_+$, see Figure 64 on the page 36.

Figure 57: $T(71|62)_-$. Valencies $(7,1|6,2)$. The order of the automorphism group: 1. Dual dessin $T(62|71)_-$, see Figure 65 on the page 36.

For the dessins $T(71|62)_+$ and $T(71|62)_-$ Belyi function is $\beta = \frac{1}{49(-112x^2-147+81\nu)^2} (784x^5 + 19404\nu yx^3 + 12348y^2x^3 + 15435x^4 + 567\nu x^4 + 54684\nu yx^2 + 188748yx^2 + 80892x^3 - 6804\nu x^3 + 48384\nu yx + 33868yx^2 - 40824\nu x^2 + 146664x^2 + 13608\nu y + 140616x - 45360\nu x - 13608\nu + 25272) on the curve of the form X : $y^2 = \frac{(35+9\nu)}{87808} (2x + 1)(14x^2 + 18\nu x + 42x + 9\nu + 189)$, where $\nu = \pm i\sqrt{7}$.

In this case $n_0 = \frac{4}{49} \frac{(x-24)x^7}{(-112x^2-147+81\nu)^2}$, $n_1 = \frac{1}{49} \frac{(2x^4-24x^3-144x^2-944x-1077+567\nu)^2}{(-112x^2-147+81\nu)^2}$.

Figure 58: $T(71|53)_A$. Valencies $(7,1|5,3)$. The order of the automorphism group: 1. Dual dessin $T(53|71)_A$, see Figure 82 on the page 42.

Figure 59: $T(71|53)_B$. Valencies $(7,1|5,3)$. The order of the automorphism group: 1. Dual dessin $T(53|71)_B$, see Figure 83 on the page 42.

For the dessins $T(71|53)_A$, $T(71|53)_B$ Belyi function has the form $\beta = \frac{(78133+7625\nu)}{8232} (169344x^5 + 17640yx^3 - 47250\nu x^4 - 489510x^4 - 5250\nu yx^2 - 7350yx^2 + 1269324x^3 + 94500\nu x^3 + 12250\nu yx - 54950yx - 3537716x^2 + 94500\nu x^2 + 45885y - 7125\nu y - 30100\nu x + 4558440x - 1978857 + 160125\nu) on the curve of the form X : $y^2 = \frac{1}{350} (2688x^3 - 10388x^2 + 100\nu x^2 - 500\nu x + 15972x + 1275\nu - 17247)(12x - 13)$. Here $\nu = \pm \sqrt{105}$ and $n_0 = \frac{1944(78133+7625\nu)}{343} (x + 3)(x - 1)^7$, $n_1 = \frac{(78133+7625\nu)}{131712} (864x^4 - 1728x^3 - 1728x^2 + 5504x - 11895 + 875\nu)^2$.
Figure 60: $T(71|44)$. Valencies $(7,1|4,4)$. The order of the automorphism group: 1. Dual dessin $T(44|71)$, see Figure 100 on the page 49. Belyi function is $\beta = \frac{128}{343} (294 x^4 - 28 y x^2 + 154 x^3 - 7 y x + 77 x^2 - 2 y + 13 x + 2)$ on the curve $X: y^2 = 112 x^4 + 56 x^3 + 37 x^2 + 6 x + 1$. $n_0 = -\frac{65536}{343} (x - 2)^7$, $n_1 = -\frac{1}{343} (256 x^4 - 256 x^3 - 128 x^2 - 128 x - 13)^2$.
$$\langle \langle Tr(H^6)Tr(H^2) \rangle \rangle = 6 \cdot 2 \left(\frac{5}{2}N^4 + 5N^2 \right) =$$

$$= 6 \cdot 2 \left(\left(2 + \frac{1}{2} \right) N^4 + \left(4 + 2 \left(\frac{1}{2} \right) \right) N^2 \right).$$

Figure 61: $S(62|4211)$. Valencies $(6, 2|4, 2, 1, 1)$. The order of the automorphism group: 1. Dual dessin $S(4211|62)$, see Figure 118 on the page 55. Belyi function is $\beta = -\frac{1}{108} \frac{z^6(z-4)^2}{(z^2+2z+3)(z-3)^2}$.

Figure 62: $S(62|3311)$. Valencies $(6, 2|3, 3, 1, 1)$. The order of the automorphism group: 2. Dual dessin $(3311|62)$, see Figure 127 on the page 59. Belyi function is $\beta = -64 \frac{z^6}{(-1+3z)(3z+1)(z-1)^4(z+1)^2}$.

Figure 63: $S(62|3221)$. Valencies $(6, 2|3, 2, 2, 1)$. The order of the automorphism group: 1. Dual dessin $S(3221|62)$, see Figure 130 on the page 60. Belyi function is $\beta = -4 \frac{z^6(z-2)^2}{(4z+1)(-1-2z^2+2z)^2}$.
Figure 64: $T(62|71)_+$. Valencies $(6, 2|7, 1)$. The order of the automorphism group: 1. Dual dessin $T(71|62)_+$, see Figure 56 on the page 34.

Figure 65: $T(62|71)_-$. Valencies $(6, 2|7, 1)$. The order of the automorphism group: 1. Dual dessin $T(71|62)_-$, see Figure 57 on the page 34.

For the dessins $T(62|71)_+$ and $T(62|71)_-$ Belyi function has the form $eta = \frac{(11ν+7)}{224(x-24)x^3}(-686x^5 + 1078νx^5 + 197568yx^3 + 20727νx^4 - 18963x^4 + 691488y^2x^2 - 211680νyx^2 + 117180νx^3 - 5292x^3 + 762048yx - 423360νyx + 237384νx^2 + 264600x^2 - 181440νy + 254016y + 344736x + 184032νx + 46656ν + 108864)$ on the curve of the form $X : y^2 = \frac{(35+9ν)}{87808}(2x+1)(14x^2 + 18νx + 42 + 9ν + 189)$, where $ν = ±i\sqrt{7}$.

For these dessins $n_0 = \frac{49}{4} \frac{(-112x-147+81ν)^2}{(x-24)x^7}$, $n_1 = \frac{1}{4} \frac{(2x^4-24x^3-144x^2-944x-1077+567ν)^2}{(x-24)x^7}$.
Figure 66: $T(62|62)_2$. Valencies $(6,2|6,2)$. The order of the automorphism group: 2. Dual dessin $T(62|62)_2$, see Figure 66 on the page 38. Belyi function is $(X : y^2 = x(x+8)(x-1), \beta = \frac{1}{64} x^3(x+8))$.

Figure 67: $T(62|62)_1$. Valencies $(6,2|6,2)$. The order of the automorphism group: 1. Dual dessin $T(62|62)_1$, see Figure 67 on the page 38. Belyi function is $\beta = -\frac{1}{432} (18 x^3-810 x^2+9342 x-5382)$ on the curve $X : y^2 = 4(x-2)(x^2 + 2x + 73)$. $n_0 = \frac{1}{186624} (x-29)^2 (x-5)^6$, $n_1 = \frac{1}{186624} (x^4-84 x^3+510 x^2-572 x+35161)^2 / (4x-89)^2$.

Figure 68: $T(62|53)$. Valencies $(6,2|5,3)$. The order of the automorphism group: 1. Dual dessin $T(53|62)$, see Figure 84 on the page 38. Belyi function is $\beta = \frac{1}{162} (x^5 + y x^3 + 65 x^4 + 6 y x^2 + x^3 - 64 x^2 - 16 y - 16 x + 80)$ on the curve $X : y^2 = \frac{1}{4} (x-1)(4x+5)(x^2 + 4x - 20)$. $n_0 = \frac{1}{20736} (x+8)^2 x^6$, $n_1 = \frac{1}{20736} (x^4 + 8 x^3 - 128 x - 16)^2$.

Figure 69: $T(62|44)$. Valencies $(6,2|4,4)$. The order of the automorphism group: 2. Dual dessin $T(44|62)$, see Figure 101 on the page 49. Belyi function is $(X : y^2 = (x - 2)(4x^2 + 4x + 3)x, \beta = -\frac{16}{27} x^3(x-2))$.
\[\langle Tr(H^6)Tr^2(H) \rangle = 6 \cdot 2! \left(5N^3 + \frac{5}{2}N \right) = \\
= 6 \cdot 2! \left(4 + 2 \left(\frac{1}{2} \right) \right) N^3 + \left(2 + \frac{1}{2} \right) N . \]

Figure 70: \(S(611|611)_2 \). Valencies \((6, 1, 1|6, 1, 1) \). The order of the automorphism group: 2. Dual dessin \(S(611|611)_2 \), see Figure 70 on the page 39. Belyi function is \(\beta = -4 \frac{(z^2-2)z^6}{4z^2+1} \).

Figure 71: \(S(611|611)_1 \). Valencies \((6, 1, 1|6, 1, 1) \). The order of the automorphism group: 1. Dual dessin \(S(611|611)_1 \), see Figure 71 on the page 39. Belyi function is \(\beta = -\frac{27}{4} \frac{(3z^2+6z+7)z^b}{2z^2-12z+4} \).

Figure 72: \(S(611|521) \). Valencies \((6, 1, 1|5, 2, 1) \). The order of the automorphism group: 1. Dual dessin \(S(521|611) \), see Figure 86 on the page 44. Belyi function is \(\beta = \frac{z^6 (9z^2+24z+70)}{(4z-1)(14z-5)^2} \).
Figure 73: \((S(611|431)_+\). Valencies \((6,1,1|4,3,1)\). The order of the automorphism group: 1. Dual dessin \((S(431|611)_+, \text{ see Figure } 104\) on the page 50\). Belyi function is \(\beta = \frac{1}{12} \left(-6 z^2 + 20 i \sqrt{3} z - 12 z - 19 i \sqrt{3} + 17 \right) z^6 \left(-747 + 1763 i \sqrt{3} \right) (3 z^2 + 2 i \sqrt{3} + 3)(z-1)^3 \).

Figure 74: \((S(611|431)_-\). Valencies \((6,1,1|4,3,1)\). The order of the automorphism group: 1. Dual dessin \((S(431|611)_-, \text{ see Figure } 105\) on the page 50\). Belyi function is \(\beta = -\frac{1}{12} \left(6 z^2 + 20 i \sqrt{3} z + 12 z - 19 i \sqrt{3} - 17 \right) z^6 \left(1763 i \sqrt{3} + 747 \right) (3 z^2 + 2 i \sqrt{3} + 3)(z-1)^3 \).

Figure 75: \(S(611|332)\). Valencies \((6,1,1|3,3,2)\). The order of the automorphism group: 2. Dual dessin \(S(332|611)\), see Figure 122 on the page 57. Belyi function is \(\beta = -4 \frac{z^6 (9 z^2 + 2)}{(4 z^2 + 1)^3} \).
Figure 76: $T(611|8)_{2}$. Valencies $(6,1,1|8)$. The order of the automorphism group: 2. Dual dessin $T(8|611)_{2}$, see Figure 31 on the page 25.
Belyi function is $(X : y^2 = x(x^2 + 1/2x + 3/16), \beta = -\frac{256}{27}x^3(x-1))$.

Figure 77: $T(611|8)_{1A}$. Valencies $(6,1,1|8)$. The order of the automorphism group: 1. Dual dessin $T(8|611)_{1A}$, see Figure 32 on the page 25.

Figure 78: $T(611|8)_{1B}$. Valencies $(6,1,1|8)$. The order of the automorphism group: 1. Dual dessin $T(8|611)_{1B}$, see Figure 33 on the page 25.

For the dessin $T(611|8)_{1A}$ Belyi function is $\beta = -\frac{1}{22769316864}(-835 - 872 \sqrt{2}) (x^4 - 16yx^2 + 24 \sqrt{2}yx^2 - 648x^3 + 272 \sqrt{2}x^3 - 4032 \sqrt{2}yx + 4224yx - 19296 \sqrt{2}x^2 + 34200x^2 + 30240 \sqrt{2}y - 50112y - 818208x + 706752 \sqrt{2}x - 1088640 \sqrt{2} + 1708560)$ on the curve $X : y^2 = -x^3 + 20x^2 - 8 \sqrt{2}x^2 + 1104 \sqrt{2}x - 132x$.

For the dessin $T(611|8)_{1B}$ Belyi function is $\beta = -\frac{1}{22769316864}(-835 + 872 \sqrt{2}) (x^4 - 16yx^2 - 24 \sqrt{2}yx^2 - 648x^3 - 272 \sqrt{2}x^3 + 4032 \sqrt{2}yx + 4224yx + 19296 \sqrt{2}x^2 + 34200x^2 - 30240 \sqrt{2}y - 50112y - 818208x - 706752 \sqrt{2}x + 1088640 \sqrt{2} + 1708560)$ on the curve $X : y^2 = -x^3 + 20x^2 + 8 \sqrt{2}x^2 - 1104 \sqrt{2}x - 132x$.

$n_0 = \frac{(-2217993-1456240\nu)}{51844179045324794496}(x^2 + 76x - 152 \nu x + 44100 - 19600 \nu)(x + 6 - 12 \nu)^6,$

$n_1 = \frac{(-2217993+1456240\nu)}{51844179045324794496}(x^4 + 56x^3 - 112 \nu x^3 + 22680x^2 - 10080 \nu x^2 - 75600x + 665280 \nu x + 24794640 - 25197696 \nu)^2.$ \(\nu^2 = 2, \nu > 0 \ A \ \nu < 0 \ B.$
\[\langle \text{Tr}(H^5)\text{Tr}(H^3) \rangle = 5 \cdot 3 (3N^4 + 4N^2). \]

Figure 79: \(S(53|5111). \) Valencies \((5, 3|5, 1, 1, 1). \) The order of the automorphism group: 1. Dual dessin \(S(5111|53), \) see Figure 96 on the page 47. Belyi function is \(\beta = \frac{1}{4} \frac{(z-4)^3 z^5}{6 z^4 - 22 z^3 - 12 z - 9}. \)

Figure 80: \(S(53|4211). \) Valencies \((5, 3|4, 2, 1, 1). \) The order of the automorphism group: 1. Dual dessin \(S(4211|53), \) see Figure 119 on the page 55. Belyi function is \(\beta = \frac{1}{4} \frac{(-1+8z)^3}{z^2(9 z^2 + 42 z - 5)}. \)

Figure 81: \(S(53|3221). \) Valencies \((5, 3|3, 2, 2, 1). \) The order of the automorphism group: 1. Dual dessin \(S(3221|53), \) see Figure 131 on the page 60. Belyi function is \(\beta = 4 \frac{(3z+4)^3 z^5}{(1+7z)(3z+1)^2(z^2+1)^2}. \)

Figure 82: \(T(53|71)A. \) Valencies \((5, 3|7, 1). \) The order of the automorphism group: 1. Dual dessin \(T(71|53)A, \) see Figure 58 on the page 34.

Figure 83: \(T(53|71)B. \) Valencies \((5, 3|7, 1). \) The order of the automorphism group: 1. Dual dessin \(T(71|53)B, \) see Figure 59 on the page 34.
For the dessins $T(53|71)A$ and $T(53|71)B$ Belyi function has the form $\beta = \frac{1}{2730105000(64 x - 105 + 45 \nu)} (297675 \nu yx^3 - 4456305 yx^3 + 49546350 x^4 - 201285 \nu yx^2 + 25806879 yx^2 - 151587135 x^3 - 14586075 \nu x^3 - 8511615 \nu yx + 173009165 yx + 24310125 \nu x - 1233745275 x + 1348801875 \nu x + 972759375 \nu - 25761054375) on the curve of the form $X : y^2 = \frac{225(675 \nu + 5033)}{45019072} (14 x^4 - 420 x^2 + 560 x - 60825 + 6075 \nu)^2$. Here $\nu = 105$.

Now $n_0 = \frac{343(17983 + 1755 \nu)}{15552000} \frac{(x+5)^3(x-3)^5}{64 x - 105 + 45 \nu}$,
$n_1 = \frac{7(17983 + 1755 \nu)}{62208000} \frac{(14 x^4 - 420 x^2 + 560 x - 60825 + 6075 \nu)^2}{64 x - 105 + 45 \nu}.$

Figure 84: $T(53|62)$. Valencies $(5,3|6,2)$. The order of the automorphism group: 1. Dual dessin $T(62|53)$, see Figure 68 on the page 38. Belyi function is $\beta = 1296 (8 yx^3 + 48 yx^2 - 128 y + 8 x^5 + 65 x^4 + 8 x^3 - 512 x^2 - 128 x + 640)^{-1}$ on the curve $X : y^2 = \frac{1}{4} (x - 1) (4x + 5)(x^2 + 4x - 20)$. $n_0 = 20736 \frac{1}{(x+8)^6x^6}$,
$n_1 = \frac{(x^4 + 8 x^3 - 128 x - 16)^2}{(x+8)^6x^6}.$

Figure 85: $T(53|53)$. Valencies $(5,3|5,3)$. The order of the automorphism group: 1. Dual dessin $T(53|53)$, see Figure 85 on the page 43. Belyi function is $\beta = -\frac{26}{25} x^2 + 1/2 x^5 - \frac{1}{2} x - \frac{8}{25} y + \frac{59}{50} x^3 + \frac{25}{10} x^4 + \frac{5}{2} y x + y x^2 + 1/2 y x^3 + \frac{1}{2}$ on the curve $X : y^2 = \frac{1}{5} (x - 1) (13 x^2 + 12 x + 4 x^3 - 4)$. $n_0 = \frac{1}{6400} (9 x + 16)^3 x^5$,
$n_1 = \frac{1}{6400} (27 x^4 + 72 x^3 + 32 x^2 - 128 x - 48)^2.$
\[
\langle \langle Tr(H^5)Tr(H^2)Tr(H) \rangle \rangle = 5 \cdot 2 (6N^3 + 3N).
\]

Figure 86: \(S(521|611)\). Valencies \((5, 2, 1|6, 1, 1)\). The order of the automorphism group: 1. Dual dessin \(S(611|521)\), see Figure 72 on the page 39. Belyi function is \(\beta = -\frac{1}{4} \frac{(5z-14)^2(z-4)z^3}{70z^2+24z+9}\).

Figure 87: \(S(521|521)A\). Valencies \((5, 2, 1|5, 2, 1)\). The order of the automorphism group: 1. Dual dessin \(S(521|521)A\), see Figure 87 on the page 44. Belyi function is \(\beta = \{16 \frac{(391+550\nu+455\nu^2)(z+2\nu)(z+1)^2z^5}{(16z-\nu+7\nu^2-4)(-8z+3\nu+3\nu^2-4)^5}, 7\nu^3 + 2\nu^2 - \nu - 4 = 0, \nu > 0\}\).
Figure 88: $S(521|521)B_+$. Valencies $(5, 2, 1|5, 2, 1)$. The order of the automorphism group: 1. Dual dessin $S(521|521)B_+$, see Figure 88 on the page 45. Belyi function is $\beta = \{16 \left(\frac{391+550\nu+455\nu^2}{(16z-\nu+7\nu^2-4)^2}(-8z+3
u+3\nu^2-4)\right)^2, 7\nu^3 + 2\nu^2 - \nu - 4 = 0, Im\nu < 0\}$.

Figure 89: $S(521|521)B_-$. Valencies $(5, 2, 1|5, 2, 1)$. The order of the automorphism group: 1. Dual dessin $S(521|521)B_-$, see Figure 89 on the page 45. Belyi function is $\beta = \{16 \left(\frac{391+550\nu+455\nu^2}{(16z-\nu+7\nu^2-4)^2}(-8z+3
u+3\nu^2-4)\right)^2, 7\nu^3 + 2\nu^2 - \nu - 4 = 0, Im\nu > 0\}$.

Figure 90: $S(521|431)$. Valencies $(5, 2, 1|4, 3, 1)$. The order of the automorphism group: 1. Dual dessin $S(431|521)$, see Figure 106 on the page 51. Belyi function is $\beta = -16 \frac{z^2(z+3)(6z-7)^2}{(15z-4)(7z-4)^2}$.

Figure 91: $S(521|332)$. Valencies $(5, 2, 1|3, 3, 2)$. The order of the automorphism group: 1. Dual dessin $S(332|521)$, see Figure 123 on the page 57. Belyi function is $\beta = \frac{27}{4} \frac{z^2(7z+2)^2(11z-4)}{(6z^2-1)^2(z+1)^2}$.
Figure 92: $T(521|8)A_+$. Valencies $(5,2,1|8)$. The order of the automorphism group: 1. Dual dessin $T(8|521)A_+$, see Figure 34 on the page 26.

Figure 93: $T(521|8)A_-$. Valencies $(5,2,1|8)$. The order of the automorphism group: 1. Dual dessin $T(8|521)A_-$, see Figure 35 on the page 26.

Figure 94: $T(521|8)B$. Valencies $(5,2,1|8)$. The order of the automorphism group: 1. Dual dessin $T(8|521)B$, see Figure 36 on the page 26.

- $T(521|8)A_+,$ $T(521|8)A_-,$ $T(521|8)B$ Belyi function is

$$\beta = \frac{1}{335306250} (552\nu^2 - 617\nu + 68)(42875x^4 + 1756160\nu y x^2 - 860160\nu^2 y x^2 - 4543840yx^2 + 3959200\nu x^3 - 10346175x^3 - 1926400\nu^2 x^3 + 31782912\nu^2 y x - 63438592\nu y x + 168996968yx + 18916352\nu^2 x^2 - 37781632\nu x^2 + 100206428x^2 - 257512128y - 48381952\nu^2 y + 96684032\nu y - 6201504\nu^2 x - 330259656 x + 123960064\nu x + 48381952\nu^2 - 96684032\nu + 257512128)\) on the curve $X: y^2 = -\frac{(17\nu^2-42\nu)}{960,000}(19600 x^2 + 55552\nu x - 18432\nu^2 x - 88408 x + 33963 - 130592\nu + 65792\nu^2)(x-1)$.

Here $256\nu^3 - 544\nu^2 + 1427\nu - 172 = 0$, and the real root corresponds to the case B.

$$n_0 = -\frac{1}{34603218002500000000} (1225 x + 90376 - 34944\nu + 16384\nu^2)(1225 x + 56519 - 19936\nu + 10496\nu^2)^2 x^5,$$

$$n_1 = -\frac{-119417376\nu x^2 + 57409536\nu^2 x^2 - 1834522624x + 68950456\nu x - 344457216\nu^2 x + 6757769763 - 2539197472\nu + 1270132992\nu^2}{185122979184640000000} (313600x^4 + 26036992x^3 - 9576448\nu x^3 + 4784128\nu^2 x^3 + 307426304x^2 - 114917376\nu x^2 + 57409536\nu^2 x^2 - 1834522624x + 68950456\nu x - 344457216\nu^2 x + 6757769763 - 2539197472\nu + 1270132992\nu^2)^2$.

\[\langle \langle \text{Tr}(H^5) \text{Tr}^3(H) \rangle \rangle = 5 \cdot 3! (2N^2). \]

Figure 95: \(S(5111|71) \). Valencies \((5,1,1,1|7,1) \). The order of the automorphism group: 1. Dual dessin \(S(71|5111) \), see Figure 46 on the page 30. Belyi function is \(\beta = \frac{1}{16384} \frac{z^5(1225z^3 - 3216z^2 + 2912z - 896)}{(z - 1)^2}. \)

Figure 96: \(S(5111|53) \). Valencies \((5,1,1,1|5,3) \). The order of the automorphism group: 1. Dual dessin \(S(53|5111) \), see Figure 79 on the page 42. Belyi function is \(\beta = \frac{4}{(4z - 1)^3} \frac{z^5(9z^3 + 12z^2 + 22z - 6)}{(4z - 1)^3}. \)
\[
\langle \langle T r^2 (H^4) \rangle \rangle = 4^2 \cdot 2! \left(\frac{9}{8} N^4 + \frac{15}{8} N^2 \right) = 4^2 \cdot 2! \left(\left(2 \cdot \frac{1}{2} + \frac{1}{8} \right) N^4 + \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) N^2 \right).
\]

Figure 97: \(S(44|4211) \). Valencies \((4, 4|4, 2, 1, 1)\). The order of the automorphism group: 2. Dual dessin \(S(4211|44) \), see Figure 120 on the page 55. Belyi function is \(\beta = 1/4 \frac{(z^2+1)^4}{z^4(2z^2+1)} \).

Figure 98: \(S(44|3311) \). Valencies \((4, 4|3, 3, 1, 1)\). The order of the automorphism group: 2. Dual dessin \(S(3311|44) \), see Figure 128 on the page 59. Belyi function is \(\beta = -432 \frac{z^4}{(2z^2+10z-1)(2z^2+2z-1)^3} \).

Figure 99: \(S(44|2222) \). Valencies \((4, 4|2, 2, 2, 2)\). The order of the automorphism group: 8. Dual dessin \(S(2222|44) \), see Figure 133 on the page 62. Belyi function is \(\beta = 4 \frac{z^4}{(z^2+1)^2} \).
Figure 100: $T(44|71)$. Valencies $(4,4|7,1)$. The order of the automorphism group: 1. Dual dessin $T(71|44)$, see Figure 60 on the page 35. Belyi function is
\[\beta = -\frac{1}{512}(-343yx^3 + 2401x^4 - 931yx^2 + 9604x^3 - 581yx + 11662x^2 - y + 3860x - 7) \]
on the curve $X : y^2 = (4x + 7)(7x^2 + 18x + 7)$. $n_0 = -\frac{343}{65536}(\frac{(7x^2+14x+3)^3}{x})$, $n_1 = -\frac{7}{65536}(\frac{343x^4+1372x^3+1666x^2+588x-65}{x})^2$.

Figure 101: $T(44|62)$. Valencies $(4,4|6,2)$. The order of the automorphism group: 2. Dual dessin $T(62|44)$, see Figure 69 on the page 38. Belyi function is $(X : y^2 = (x - 1)(3x^2 + 8x + 16), \beta = 27\frac{x^4}{256x-1})$.

Figure 102: $T(44|44)_8$. Valencies $(4,4|4,4)$. The order of the automorphism group: 8. Dual dessin $T(44|44)_8$, see Figure 102 on the page 49. Belyi function is $(X : y^2 = x^4 - 1, \beta = x^4)$.

Figure 103: $T(44|44)_4$. Valencies $(4,4|4,4)$. The order of the automorphism group: 4. Dual dessin $T(44|44)_4$, see Figure 103 on the page 49. Belyi function is $(X : y^2 = (x^2 - 1)(x^2 - 2), \beta = (x^2 - 1)^2)$.
\[\langle \langle \text{Tr}(H^4)\text{Tr}(H^3)\text{Tr}(H) \rangle \rangle = 4 \cdot 3 \left(6N^3 + 2N \right). \]

Figure 104: $S(431|611)_+$. Valencies $(4,3,1|6,1,1)$. The order of the automorphism group: 1. Dual dessin $S(611|431)_+$, see Figure 73 on the page 40. Belyi function is \[\beta = \frac{87i\sqrt{3} + 211}{686 z^2 - 672 z + 56 i \sqrt{3} - 57 i \sqrt{3} - 51}. \]

Figure 105: $S(431|611)_-$. Valencies $(4,3,1|6,1,1)$. The order of the automorphism group: 1. Dual dessin $S(611|431)_-$, see Figure 74 on the page 40. Belyi function is \[\beta = \frac{87i\sqrt{3} - 211}{686 z^2 + 672 z + 51 - 57 i \sqrt{3}}. \]
Figure 106: $S(431|521)$. Valencies $(4,3,1|5,2,1)$. The order of the automorphism group: 1. Dual dessin $S(521|431)$, see Figure 90 on the page 45. Belyi function is $\beta = -\frac{1}{16} \frac{(4z-7)(4z-15)}{(3z+1)(7z-6)^2}$.

Figure 107: $S(431|431)A$. Valencies $(4,3,1|4,3,1)$. The order of the automorphism group: 1. Dual dessin $S(431|431)A$, see Figure 107 on the page 51. Belyi function is $\beta = \frac{1}{3294172} \frac{(835+872\sqrt{2})(-z+8+5\sqrt{2})(-z-8+9\sqrt{2})^3z^4}{(-z+11+8\sqrt{2})(z-1)^3}$.

Figure 108: $S(431|431)B$. Valencies $(4,3,1|4,3,1)$. The order of the automorphism group: 1. Dual dessin $S(431|431)B$, see Figure 108 on the page 51. Belyi function is $\beta = \frac{1}{3294172} \frac{(-835+872\sqrt{2})(z-8+5\sqrt{2})(z+8+9\sqrt{2})^3z^4}{(z+11+8\sqrt{2})(z-1)^3}$.

Figure 109: $S(431|422)$. Valencies $(4,3,1|4,2,2)$. The order of the automorphism group: 1. Dual dessin $S(422|431)$, see Figure 112 on the page 53. Belyi function is $\beta = -\frac{4}{(6z^2+4z+1)^2} (z+1)^4 z^3 (z+4)$.
Figure 110: \(T(431|8)A \). Valencies (4, 3, 1|8). The order of the automorphism group: 1. Dual dessin \(T(8|431)A \), see Figure 37 on the page 27. Belyi function is
\[\beta = -\frac{256}{85766121} (5488 x^4 + 14112 y x^2 - 26264 x^3 + 37548 y x - 202741 x^2 + 3240 y - 73368 x - 3240) \]
on the curve \(X : y^2 = \frac{1}{81} (1 - x)(448 x^2 + 1872 x + 81) \).
\[n_0 = \frac{65536}{62523502209} (4 x + 45) (4 x + 21)^3 x^4, \]
\[n_1 = \frac{(4096 x^4 + 55296 x^3 + 158976 x^2 + 55296 x - 247617)^2}{62523502209}. \]

Figure 111: \(T(431|8)B \). Valencies (4, 3, 1|8). The order of the automorphism group: 1. Dual dessin \(T(8|431)B \), see Figure 38 on the page 27. Belyi function is
\[\beta = -\frac{9}{4} x^4 + 3 y x^2 - 8 x^3 + 8/3 y x - \frac{77}{9} x^2 + 2/3 y - \frac{40}{9} x - \frac{8}{9} \]
on the curve \(X : y^2 = \frac{4}{9} (x + 1) (9 x^2 + 4 x + 4) \).
\[n_0 = \frac{2}{\pi^2} (x - 2) (3 x + 2)^3 x^4, \]
\[n_1 = \frac{1}{144} (27 x^4 - 36 x^2 - 32 x - 20)^2. \]
\[
\langle\langle Tr(H^4)Tr^2(H^2)\rangle\rangle = 4 \cdot 2^2 \cdot 2! \left(\frac{3}{2} N^3 + \frac{3}{4} N \right) = 4 \cdot 2^2 \cdot 2! \left(\left(1 + \frac{1}{2} \right) N^3 + \left(\frac{1}{2} + \frac{1}{4} \right) N \right).
\]

Figure 112: \(S(422\mid 431)\). Valencies \((4, 2, 2\mid 4, 3, 1)\). The order of the automorphism group: 1. Dual dessin \(S(431\mid 422)\), see Figure 109 on the page 51. Belyi function is \(\beta = -1/4 \left(\frac{z^2+4z+6}{(z+1)^2(4z+1)} \right)^2 z^4\).

Figure 113: \(S(422\mid 422)\). Valencies \((4, 2, 2\mid 4, 2, 2)\). The order of the automorphism group: 2. Dual dessin \(S(422\mid 422)\), see Figure 113 on the page 53. Belyi function is \(\beta = -1/4 \left(\frac{z^2-2}{(z-1)^2(z+1)^2} \right)^2 z^4\).

Figure 114: \(T(422\mid 8)_4\). Valencies \((4, 2, 2\mid 8)\). The order of the automorphism group: 4. Dual dessin \(T(8\mid 422)_4\), see Figure 39 on the page 28. Belyi function is \((X : y^2 = x(x - 1)(x + 1), \beta = -4x^2(x - 1)(x + 1))\).

Figure 115: \(T(422\mid 8)_2\). Valencies \((4, 2, 2\mid 8)\). The order of the automorphism group: 2. Dual dessin \(T(8\mid 422)_2\), see Figure 40 on the page 28. Belyi function is \((X : y^2 = (x^2 - 2x - 1)x, \beta = (x - 2)^2 x^2)\).
\[\langle \langle \text{Tr}(H^4) \text{Tr}(H^2) \text{Tr}^2(H) \rangle \rangle = 4 \cdot 2 \cdot 2! \left(\frac{9}{2} N^2 \right) = 4 \cdot 2 \cdot 2! \left(\left(4 + \frac{1}{2} \right) N^2 \right). \]

Figure 116: \(S(4211|71)_+ \). Valencies \((4, 2, 1, 1|7, 1)\). The order of the automorphism group: 1. Dual dessin \(S(71|4211)_+ \), see Figure 47 on the page 31. Belyi function is \(\beta = \frac{(49z^2 - 90z - 2i\sqrt{7}z + 42 \pm 2i\sqrt{7})(128z - 5i\sqrt{7} - 119)z^4}{512(16377 + 181i\sqrt{7})(z-1)^7} \).

Figure 117: \(S(4211|71)_- \). Valencies \((4, 2, 1, 1|7, 1)\). The order of the automorphism group: 1. Dual dessin \(S(71|4211)_- \), see Figure 48 on the page 31. Belyi function is \(\beta = \frac{(49z^2 - 90z - 2i\sqrt{7}z + 42 \pm 2i\sqrt{7})(128z - 5i\sqrt{7} - 119)z^4}{512(16377 - 181i\sqrt{7})(z-1)^7} \).
Figure 118: \(S(4211|62) \). Valencies \((4, 2, 1, 1|6, 2)\). The order of the automorphism group: 1. Dual dessin \(S(62|4211) \), see Figure 61 on the page 36. Belyi function is
\[
\beta = -108 \frac{z^4(1+2z+3z^2)(-1+3z)^2}{(-1+4z)^6}.
\]

Figure 119: \(S(4211|53) \). Valencies \((4, 2, 1, 1|5, 3)\). The order of the automorphism group: 1. Dual dessin \(S(53|4211) \), see Figure 80 on the page 42. Belyi function is
\[
\beta = 4 \frac{(3z+1)^2(-9-42z+5z^2)}{(z-8)^3z^5}.
\]

Figure 120: \(S(4211|44) \). Valencies \((4, 2, 1, 1|4, 4)\). The order of the automorphism group: 2. Dual dessin \(S(44|4211) \), see Figure 97 on the page 48. Belyi function is
\[
\beta = 4 \frac{z^2(z^2+2)}{(z^2+1)^4}.
\]
\[\langle \langle Tr(H^4)Tr^4(H) \rangle \rangle = 4 \cdot 4! \left(\frac{1}{4^N} \right). \]

Figure 121: \(S(41111|8) \). Valencies \((4,1,1,1,1|8)\). The order of the automorphism group: 4. Dual dessin \(S(8|41111) \), see Figure 28 on the page 24. Belyi function is \(\beta = -4z^4(z-1)(z+1)(z^2+1) \).
\[\langle\langle Tr^2(H^3)Tr(H^2)\rangle\rangle = 3^2 \cdot 2 \cdot 2! \left(2N^3 + \frac{1}{2}N \right) = \\
= 3^2 \cdot 2 \cdot 2! \left(\left(1 + 2 \cdot \frac{1}{2} \right) N^3 + \frac{1}{2}N \right). \]

Figure 122: \(S(332|611)\).
Valencies \((3,3,2|6,1,1)\).
The order of the automorphism group: 2.
Dual dessin \(S(611|332)\), see Figure 75 on the page 40. Belyi function is \(\beta = -1/4 \frac{(z^2+4)^3z^2}{2z^2+9}\).

Figure 123: \(S(332|521)\).
Valencies \((3,3,2|5,2,1)\).
The order of the automorphism group: 1.
Dual dessin \(S(521|332)\), see Figure 91 on the page 45. Belyi function is \(\beta = \frac{4(z+4)^2(z^2+6)^3}{27(2z+7)^2(4z-11)^3}\).

Figure 124: \(S(332|332)\).
Valencies \((3,3,2|3,3,2)\).
The order of the automorphism group: 2.
Dual dessin \(S(332|332)\), see Figure 124 on the page 57. Belyi function is \(\beta = \frac{64z^2(z^2+1)^3}{(8z^2-1)^3}\).
Figure 125: $T(332|8)$. Valencies $(3,3,2|8)$. The order of the automorphism group: 2. Dual dessin $T(8|332)$, see Figure 11 on the page 28. Belyi function is $X : y^2 = (x - 2) (4 x^2 + 4 x + 3), \beta = -\frac{16}{27} (x - 2) x^3)$.

\[\text{Diagram of graph with vertices labeled a, b, c and edges connecting them.} \]
\[\langle \langle \text{Tr}^2(H^3) \text{Tr}^2(H) \rangle \rangle = 3^2 \cdot 2! \cdot 2! (2N^2) = \\
= 3^2 \cdot 2! \cdot 2! \left(\left(1 + 2 \cdot \frac{1}{2} \right) N^2 \right). \]

Figure 126: $S(3311|71)$. Valencies $(3, 3, 1, 1|7, 1)$. The order of the automorphism group: 1. Dual dessin $S(71|3311)$, see Figure 49 on the page 31. Belyi function is $\beta = \frac{1}{1728} \left(\frac{1}{1 + z^2 - 5z} \right)^3 (49z^2 - 13z + 1)$.

Figure 127: $S(3311|62)$. Valencies $(3, 3, 1, 1|6, 2)$. The order of the automorphism group: 2. Dual dessin $S(62|3311)$, see Figure 62 on the page 36. Belyi function is $\beta = \frac{1}{64} \left(\frac{1}{z - 3(3+z)(z-1)^3(z+1)^3} \right)$.

Figure 128: $S(3311|44)$. Valencies $(3, 3, 1, 1|4, 4)$. The order of the automorphism group: 2. Dual dessin $S(44|3311)$, see Figure 98 on the page 48. Belyi function is $\beta = \frac{1}{432} \left(\frac{1}{z^2 - 10z - 2} \right)^3 \left(\frac{1}{z^2 - 2z - 2} \right)$.

59
\[\langle \langle \text{Tr}(H^3)\text{Tr}(H^2)\text{Tr}(H) \rangle \rangle = 3 \cdot 2^2 \cdot 2! \cdot (3N^2). \]

Figure 129: $S(3221|71)$. Valencies (3, 2, 2, 1|7, 1). The order of the automorphism group: 1. Dual dessin $S(71|3221)$, see Figure 50 on the page 31. Belyi function is $\beta = 256 \frac{z^3(z+1)(7+28 z+24 z^2)^2}{48 z-1}$.

Figure 130: $S(3221|62)$. Valencies (3, 2, 2, 1|6, 2). The order of the automorphism group: 1. Dual dessin $S(62|3221)$, see Figure 63 on the page 36. Belyi function is $\beta = -\frac{1}{4} \frac{z^3(4+z)(z^2+2 z-2)^2}{(-1+2 z)^2}$.

Figure 131: $S(3221|53)$. Valencies (3, 2, 2, 1|5, 3). The order of the automorphism group: 1. Dual dessin $S(53|3221)$, see Figure 81 on the page 42. Belyi function is $\beta = \frac{1}{4} \frac{(z+7)(3+z)^3(z^2+1)^2}{(3+4 z)^4}$.
\[
\langle \langle \text{Tr}(H^3)\text{Tr}(H^2)\text{Tr}^3(H) \rangle \rangle = 3 \cdot 2 \cdot 3! \cdot (N).
\]

Figure 132: \(S(32111|8)\). Valencies \((3,2,1,1,1|8)\). The order of the automorphism group: 1. Dual dessin \(S(8|32111)\), see Figure 29 on the page 24. Belyi function is \(\beta = -\frac{1024}{729} z^3(z - 1)(16z^2 + 8z + 3)(4z - 3)^2\)
\[\langle \langle \text{Tr}^4(H^2) \rangle \rangle = 2^4 \cdot 4! \left(\frac{1}{8} N^2 \right). \]

Figure 133: \(S(2222|44) \). Valencies (2, 2, 2, 2|4, 4). The order of the automorphism group: 8. Dual dessin \(S(44|2222) \), see Figure 99 on the page 68. Belyi function is \(\beta = \frac{(z + 1)^2}{4z^3} \).
\[\langle \langle Tr^3(H^2)Tr^2(H) \rangle \rangle = 2^3 \cdot 3! \cdot 2! \left(\frac{1}{2} N \right). \]

Figure 134: \(S(22211|8) \). Valencies \((2, 2, 2, 1, 1|8) \). The order of the automorphism group: 2. Dual dessin \(S(8|22211) \), see Figure 30 on the page 24. Belyi function is \(\beta = -4z^2(z^2 - 2)(z - 1)^2(z + 1)^2 \)

References

[1] A.Alexandrov, A.Mironov, A.Morozov Partition Functions of Matrix Models as the First Special Functions of String Theory I. Finite Size Hermitean 1-Matrix Model //hep-th/0310113, Int.J.Mod.Phys. A19 (2004) 4127-4165.

[2] Bètremia J., Père D., Zvonkine A. Plane Trees and their Shabat Polynomials. Catalog. Bordeaux: Rapport Interne de LaBRI. — 1992.—V. 75-92.

[3] Chada S., Mahoux G., Mehta M.L. A method of integration over matrix variables:II. — J.Phys.A: Math. Gen., 1981, vol.14, 589-586.

[4] P. Di Francesco C. Itzykson, A generating function for fatgraphs.// Preprint, 1992, 27pp.

[5] Grothendieck A. Sketch of a Programme // Lond. Math. Soc. Lect. Note Ser. 242 (1997) 243-283
[6] Grothendieck A. Esquisse d’un programme // London Math. Soc. Lecture Notes Series.—Cambridge: Cambridge Univ. Press.—1997.—V. 243.—P. 3-43.

[7] S.K. Lando, A.K. Zvonkin Graphs on Surfaces and Their Applications // vol. 141 of Encyclopedia of Mathematical Sciences, Springer (2003)