Association between the TNFRII 196R allele and diagnosis of rheumatoid arthritis.

Vincent Goëb, Philippe Dieudé, Olivier Vittecoq, Othmane Mejjad, Jean-François Ménard, Marlène Thomas, Danièle Gilbert, Patrick Boumier, Sophie Pouplin, Alain Daragon, et al.

To cite this version:
Vincent Goëb, Philippe Dieudé, Olivier Vittecoq, Othmane Mejjad, Jean-François Ménard, et al.. Association between the TNFRII 196R allele and diagnosis of rheumatoid arthritis.. Arthritis Research and Therapy, BioMed Central, 2005, 7, pp.R1056-62..

HAL Id: inserm-00090354
http://www.hal.inserm.fr/inserm-00090354
Submitted on 30 Aug 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Research article

Association between the TNFRII 196R allele and diagnosis of rheumatoid arthritis
Vincent Goëb1,2*, Philippe Dieudé3*, Olivier Vittecoq1,2, Othmane Mejjad1, Jean-François Ménard4, Marlène Thomas2, Danièle Gilbert2, Patrick Boumier5, Sophie Pouplin1, Alain Daragon1,2, Patrice Fardellone5, François Tron2, François Cornélis3 and Xavier Le Loët1,2

1Rheumatology Department, University Hospital of Rouen, Rouen, France
2Inserm U519, IFRMP 23, Faculty of Medicine, Rouen, France
3GenHotel, University of Evry-Paris VII, Faculty of Lariboisière-Saint Louis, Evry-Genopole and Unité de Génétique clinique, University Hospital of Lariboisière, APHP, Paris, France
4Biostatistics Department, University Hospital of Rouen, Rouen, France
5Rheumatology Department, University Hospital of Amiens, Amiens, France
* Contributed equally

Corresponding author: Vincent Goëb, goebvince@yahoo.fr

Received: 6 Feb 2005 Revisions requested: 16 Feb 2005 Revisions received: 10 May 2005 Accepted: 31 May 2005 Published: 29 June 2005

Arthritis Research & Therapy 2005, 7:R1056-R1062
This article is online at: http://arthritis-research.com/content/7/5/R1056
© 2005 Goëb et al.; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Tumour necrosis factor (TNF)-α plays a key role in the pathogenesis of rheumatoid arthritis (RA). It binds to two receptors, namely TNF receptor (TNFR)I and TNFRII. Several studies have suggested an association between TNFRII 196M/R polymorphism and RA. The objective of the present study was to evaluate the predictive value of the TNFRII 196R allele for RA diagnosis and prognosis in a cohort of patients with very early arthritis. We followed up a total of 278 patients recruited from the community, who had swelling of at least two joints that had persisted for longer than 4 weeks but had been evolving for less than 6 months, and who had not received disease-modifying anti-rheumatic drugs or steroid therapy. All patients were genotyped with respect to TNFRII 196M/R polymorphism. Radiographs of hands and feet (read according to the modified Sharp method) and the Health Assessment Questionnaire were used to quantify structural and functional severity. The cohort of 278 patients was found to include 156 and 122 RA and non-RA patients, respectively. The TNFRII 196R allele was found to be associated with RA (P = 0.002). However, progression of radiographic severity and Health Assessment Questionnaire scores over 1 year did not differ between carriers of the 196R allele and noncarriers. Our findings suggest that the TNFRII 196R allele may be associated with RA diagnosis but that it does not predict early radiographic progression or functional severity in patients with very early, unclassified arthritis.

Introduction

Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease, and it can lead to progressive joint destruction, deformity and severe disability. Early diagnosis of RA and timely initiation of disease-modifying anti-rheumatic drugs (DMARDs) are necessary to limit joint damage and optimise the functional outcome (i.e. the concept of a ‘window of opportunity’) [1,2]. No diagnosis criteria for RA are yet available, the 1987 American College of Rheumatology (ACR) criteria being classification criteria [3]. With the overall objective being to manage patients better, identification of markers that would allow one to establish a diagnosis of RA at the very beginning of the disease process remains an important goal. Certain autoantibodies have been reported to be specific for RA [4] and thus may help in the diagnosis of RA. Autoantibodies against cyclic citrullinated peptides (anti-CCP) are specific for RA but lack sensitivity; this contrasts with rheumatoid factor, which has strong sensitivity but low specificity for RA.

ACR = American College of Rheumatology; CCP = cyclic citrullinated peptides; CI = confidence interval; DMARD = disease-modifying anti-rheumatic drug; F-HAQ = French version of the Health Assessment Questionnaire; IL = interleukin; NPV = negative predictive value; OR = odds ratio; PPV = positive predictive value; RA = rheumatoid arthritis; TNF = tumour necrosis factor; TNFR = tumour necrosis factor receptor.
Recently, a study conducted in blood donors [5] showed that positivity for IgM rheumatoid factor and anti-CCP may precede the clinical manifestations of RA. However, although concomitant positivity of both markers has been shown to be highly predictive of a diagnosis of RA, it has a low sensitivity (<50%) [6,7]. Thus, new RA diagnosis markers are needed, such as autoantibody populations and/or genetic markers. The latter have the particular advantages of being present from the onset of the disease and of remaining unchanged by therapy. To date, the only genetic susceptibility factor identified for RA is HLA-DRB1. This association is restricted to HLA-DRB1 alleles encoding a specific conserved amino acid sequence referred to as the shared epitope [8]. The predictive value of the shared epitope alleles for diagnosis of RA was studied in a cohort of 680 patients with early unclassified arthritis and was found to be lower than expected [9]. The contribution of HLA to the overall genetic risk has been estimated to range from 30% to 50% [10]. These data suggest that non-HLA genes are involved in RA susceptibility and could represent a very helpful tool for diagnosis of RA. Genome scans have implicated 1p36 as a susceptibility locus for RA [11,12], and *TNFRII*, which encodes the tumour necrosis factor (TNF)-α receptor (TNFRII), is located within this locus [13].

Recent studies have reported an association between the *TNFRII* 196R/R genotype and familial RA in UK and French Caucasian populations [14,15] and RA in the Japanese population [16]. In the UK and French populations, the association was restricted to familial RA [14,15]. However, a case-control study conducted in the Swedish population [17] failed to replicate the association between RA and the *TNFRII* 196M/R polymorphism. That study revealed that RA patients carrying the *TNFRII* 196R allele were significantly younger at disease onset than those homozygous for the *TNFRII* 196M allele.

Recent studies have reported conflicting results concerning the value of the *TNFRII* 196R allele as a marker of RA severity [18-20]. Glossop and coworkers [19] reported no association between this single nucleotide polymorphism and functional or radiological RA severity. van der Helm-van Mil and coworkers [20] recently reported similar findings in a study based on a comparison of the extremes of phenotypes. Constantin and colleagues [18] found a worse Health Assessment Questionnaire score in RA patients carrying the *TNFRII* 196R allele. Taking those data into account, the aim of this study was to assess the contribution of the *TNFRII* 196R allele, alone or in combination with HLA-DR1/DR4 alleles, in predicting RA diagnosis and prognosis in a community-based cohort of patients with very early arthritis (V ERA study [6]).

Materials and methods

Patients

The VERA cohort comprises 314 patients with early inflammatory arthritis who were prospectively recruited between October 1998 and January 2002 in two French regions: the entire province of Upper Normandy (1,800,000 people) and the metropolitan area of Amiens (300,000 people). All private rheumatologists and those running rheumatology clinics in the five hospitals of these areas were contacted regarding the project. In parallel, most general practitioners were asked to participate. All these physicians were encouraged to notify and refer all patients with inflammatory polyarthritis to one of the four hospital clinics organized to conduct assessments (Amiens, Evreux, Le Havre and Rouen). To contact as many patients as possible, and so obtain a representative sample of these regions, a large publicity campaign was conducted each year via the news, radio and TV media. Patients were required to have swelling of at least two joints that had persisted for longer than 4 weeks but had been evolving for less than 6 months, and who had not received DMARDs and/or steroid therapy before inclusion. Excluded were patients younger than 18 years, those with a history of inflammatory back pain, and pregnant or nursing women. The mean (± standard deviation) age of the 314 VERA patients was 51.7 ± 14.5 years (range 19–84 years) and the female/male ratio was 2.17. All were European Caucasians. No information was available concerning the past history of RA in first-degree and second-degree relatives.

Every 6 months, VERA patients were evaluated and classified using the ACR 1987 criteria for RA [3]. Only those VERA patients with well defined RA and unclassified inflammatory polyarthritis were followed up. Thus, VERA patients with well defined non-RA rheumatism were included in the study but were not followed up, and so radiographs from the follow-up period were not available for the majority of them. The same therapeutic approach was applied in all patients; specifically, hydroxychloroquine was tried first and, in the case of nonresponse, patients were switched to methotrexate. None received any biologics during the study.

At baseline and during the follow-up period we collected clinical (Disease Activity Score, the French version of the Health Assessment Questionnaire [F-HAQ]), biological (erythrocyte sedimentation rate, C-reactive protein, autoantibodies), genetic (HLA-DR typing, *TNFRII* 196M/R polymorphism [see below]) and radiological data (see below). Before entry into the protocol, each patient gave his or her written consent after receiving verbal and written information regarding the nature, duration and purpose of the study. The protocol was approved by the Committee for Protection of Persons Participating in Biomedical Research of Rouen (French law 88–1138; 20 December 1988).

Radiographic assessments

Radiographs of hands and feet were performed at inclusion and every 6 months during the follow-up period. Radiographs were scored chronologically by two independent rheumatologists (OM and PF) according to the van der Heijde/modified Sharp method [21]. The total radiographic damage score
(range 0–448) was used to quantify progression of structural damage for the whole cohort and for RA patients.

TNFRII 196M/R polymorphism genotyping

Genomic DNA used for genotyping was extracted from EDTA anticoagulated peripheral blood leukocytes using standard methods. **TNFRII** 196M/R polymorphism genotyping was performed using PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) with the enzyme NlaIII, as previously described [22]. The substitution at codon 196 (i.e. ATG [methionine] → AGG [arginine]) eliminated the NlaIII restriction site. Each genotype was interpreted independently by two individuals (VG and PD) who were unaware of the underlying disease process. HLA-DRB1 shared epitope genotypes were not available.

Statistical analysis

Taking into account the previously reported low frequency of the **TNFRII** 196R allele and severity of RA [18], Fischer’s exact test and Student’s t-test were performed to test for an association between the **TNFRII** 196R allele and RA diagnosis and age at onset of RA. To determine the potential relationship between **TNFRII** 196R allele and progression of structural damage and functional severity, Mann–Whitney test was performed comparing the variation in radiological score over 1 year of follow up and comparing the progression of F-HAQ score over the same period, both for the whole cohort and for RA patients. All of these statistical analyses were also performed for HLA-DR status, considered alone or in combination with the **TNFRII** 196R allele. \(P < 0.05 \) was considered statistically significant.

Hardy–Weinberg equilibrium check

The Hardy–Weinberg equilibrium of the **TNFRII** 196M/R polymorphism was investigated using a \(\chi^2 \) test with one degree of freedom.

Results

Main characteristics of the 314 patients included in the VErA cohort

Baseline characteristics of the VErA cohort, subdivided according to diagnosis as defined using ACR criteria, are summarized in Table 1. From this cohort, 278 patients were studied. According to ACR criteria, 156 patients were classified as having RA and 122 as having non-RA disease, including well defined (\(n = 55 \)) and undifferentiated (\(n = 67 \)) arthritides.

HLA-DR status and diagnosis, functional severity and early progression of joint damage of RA

Among RA patients, 13% and 33% were heterozygous for at least the HLA-DR1 and HLA-DR4 alleles, respectively. HLA-DR1 and/or HLA-DR4 status (i.e. presence of at least one HLA-DR1/DR4 allele) was not found to be associated with RA diagnosis (\(P = 0.051 \); positive predictive value [PPV] 62.3%, negative predictive value [NPV] 49%; odds ratio [OR] 1.59, 95% confidence interval [CI] 0.99–2.57) and RA functional severity (\(P = 0.182 \)). However, positivity for at least one HLA-DR1 and/or HLA-DR4 allele was found to be associated with early progression of joint damage both for the whole cohort (\(P = 0.011 \)) and for the subgroup of patients with RA (\(P = 0.0012 \)).

TNFRII 196M/R genotypes, 196R allele frequencies and diagnosis of very early RA

A total of 283 VErA patients were genotyped for the **TNFRII** 196M/R polymorphism and, of these, five genotypes were uninterpretable. Indeed, DNA material for 31 patients was not available either because of patient refusal to participate in the

Table 1

Parameter	RA (n = 176)	Non-RA (n = 138)
Age (years; mean ± SD [range])	52.3 ± 14.8 (20–84)	51 ± 14.2 (19–84)
Disease duration (months; mean ± SD [range])	4 ± 1.7 (0.9–6)	4.2 ± 1.7 (1–6)
Disease Activity Score (mean ± SD [range])	3.5 ± 1.3 (0.5–7.5)	2.5 ± 1 (0.4–5.9)
ESR (mm 1st hour; mean ± SD [range])	29.7 ± 25.4 (2–110)	21.8 ± 22.9 (2–110)
CRP (mg/l; n < 5, mean ± SD [range])	24.8 ± 34.8 (2–206)	15.8 ± 24.8 (1.5–128)
RF (lgM isotype; % of positivity)	35.2	7.9
Anti-CCP (% of positivity)	39.2	3.6
HLA-DR1 (%)	13	18.5
HLA-DR4 (%)	33	20.7

CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; RA, rheumatoid arthritis; RF, rheumatoid factor; SD, standard deviation.
The frequencies of the \(\text{TNFRII} \) 196M/M, 196M/R and 196R/R genotypes were (respectively) 48.7%, 46.8% and 4.5% in RA patients, and 67.2%, 27.1% and 5.7% in non-RA patients. The frequencies of the \(\text{TNFRII} \) 196R allele in RA and non-RA patients are shown in Table 2. The \(\text{TNFRII} \) 196R allele was found to be associated with diagnosis of RA \((P = 0.002; \text{PPV} 66.6\%, \text{NPV} 51.9\%; \text{OR} 2.158, 95\% \text{CI} 1.284–3.641)\) and its concomitant presence with at least one HLA-DR1/DR4 allele \((P = 0.012; \text{PPV} 71\%, \text{NPV} 47.4\%; \text{OR} 2.2, 95\% \text{CI} 1.16–4.32)\) were found to be associated with diagnosis of rheumatoid arthritis (RA).

Table 2

Diagnosis	\(\text{TNFRII} \) 196R allele	\(P \)	Concomitant presence of \(\text{TNFRII} \) 196R allele and at least one HLA-DR1/DR4 allele	\(P \)
RA \((n = 156)\)	78 (48.7%) 80 (51.3%)	0.002	44 (71%)	0.012
Non-RA \((n = 122)\)	82 (67.2%) 40 (32.8%)			

Using Fischer’s exact test, the \(\text{TNFRII} \) 196R allele \((P = 0.002; \text{PPV} 66.6\%, \text{NPV} 51.9\%; \text{OR} 2.158, 95\% \text{CI} 1.284–3.641)\) and its concomitant presence with at least one HLA-DR1/DR4 allele \((P = 0.012; \text{PPV} 71\%, \text{NPV} 47.4\%; \text{OR} 2.2, 95\% \text{CI} 1.16–4.32)\) were found to be associated with diagnosis of rheumatoid arthritis (RA).

Table 3

\(\text{TNFRII} \) 196R allele and progression of the structural damage over the 1-yr follow-up
Whole cohort
RA patients
\(\text{TNFRII} \) 196R allele
Absent \((n = 132)\)
Present \((n = 106)\)
Radiographic score progression \((-1 to +15)\)

The total radiographic score, calculated in accordance with the van der Heijde modified Sharp method, was used to quantify the progression of the structural damage for the whole cohort and for rheumatoid arthritis (RA) patients, whether or not they carried the 196R allele. Values are expressed as median (interquartile range).

TNFRII 196R allele and early progression of joint damage

Radiographs of hands and feet were available for 237 patients from the VEra cohort. Table 3 shows the baseline and 1-year radiographic scores, and progression of the radiographic scores according to the absence or presence of the \(\text{TNFRII} \) 196R allele, both for the whole cohort and for the subgroup of patients with RA. At baseline and after 1 year of follow up the radiographic damage scores did not differ statistically between \(\text{TNFRII} \) 196R allele carriers and noncarriers. Progression of the radiographic score did not differ between 196R allele carriers and noncarriers \((P = 0.98 \text{ [whole cohort]} \text{ and } P = 0.92 \text{ [RA patients]})\).

TNFRII 196R allele and functional severity of RA

Table 4 shows the baseline and 1 year F-HAQ scores as well as variation in F-HAQ index over the 1-year follow-up period, stratified by absence or presence of the \(\text{TNFRII} \) 196R allele. At baseline and after 1 year of follow up, the F-HAQ scores did not differ statistically between 196R allele carriers and noncarriers \((P = 0.98 \text{ [whole cohort]} \text{ and } P = 0.92 \text{ [RA patients]})\).

Concomitant presence of TNFRII 196R allele and at least one HLA-DR1/DR4 allele

Concomitant presence of \(\text{TNFRII} \) 196R allele and at least one HLA-DR1/DR4 allele was found to be associated with RA diagnosis \((P = 0.012; \text{PPV} 71\%, \text{NPV} 47.4\%; \text{OR} 2.2, 95\% \text{CI} 1.16–4.32)\) but not with early progression of joint damage, both for the whole cohort \((P = 0.806)\) and for RA patients \((P = 0.802)\), or with functional severity, both for the whole cohort \((P = 0.285)\) and for RA patients \((P = 0.587)\).
The diagnostic value of the sis of RA because they are not part of the ACR criteria for the little diagnostic value and are not routinely used in the diagno-

age at onset of RA was not statistically different between RA and non-RA arthritis. However, the age at onset

The aim of this study, conducted in a French Caucasian cohort

Discussion

Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

Our study’s contribution is a comparison of the TNFRII 196R allele frequencies between community recruited RA and non-

Although the present findings revealed statistical significance between the TNFRII 196R allele and RA diagnosis, independent studies are needed before it may be concluded that there is an association between the TNFRII 196R allele and RA diagnosis. Indeed, in a complex disease such as RA, a particular combination of genetic and environmental factors is needed for the disease to develop. Hence, the probability of developing the disease is greater when those risk alleles are present. However, the genetic contribution of each allele to the risk for development of the disease is unknown and probably modest. The problem is further complicated by the fact that many of these alleles interact with other genes in the background as well as with environmental factors. Thus, the use of one genetic marker to predict diagnosis and/or prognosis in a complex disease is probably limited by the low contribution of that marker. Nevertheless, a particular combination of various genetic markers could confer significant risk that may represent a powerful tool in predicting diagnosis and/or prognosis. In the case of the TNFRII 196R allele, the relative risk observed was under 3, suggesting the involvement of other genetic markers. However, even though concomitant presence of TNFRII 196R allele and at least one HLA-DR1/DR4 allele was also found to be associated with RA diagnosis ($P = 0.012$), their combination did not improve upon the diagnostic accuracy of the TNFRII 196R allele alone.

The frequencies of the TNFRII 196R allele observed in the present study are not statistically different from the previously reported frequencies in the UK and the French RA populations (range 20–27% for non-familial RA, and 27–37% for familial RA) [14,15]. Moreover, the familial status of the RA patients in the VErA cohort is unknown.

The French version of the Health Assessment Questionnaire (F-HAQ) score was used to quantify functional severity for the whole cohort and for rheumatoid arthritis (RA) patients, whether or not they carried the 196R allele. Values are expressed as median (minimum-maximum).

Our study’s contribution is a comparison of the TNFRII 196R allele frequencies between community recruited RA and non-RA patients with very early arthritis and similar clinical manifestations at inclusion. However, because of the type of recruitment of the VErA cohort, RA patients who usually require corticosteroids at the onset of the disease were not included in the present study, which led to exclusion of the more severe forms of the disease. Thus, the functional severity and RA structural damage observed may be of lesser magnitude than in studies conducted in populations recruited from hospitals.

Table 4

| TNFRII 196R allele and functional severity progression over the 1-year follow up |
|---|---|---|---|
| Whole cohort | RA patients | | |
| | Absent ($n = 132$) | Present ($n = 106$) | | Absent ($n = 76$) | Present ($n = 80$) | | |
| Baseline F-HAQ score | 0.63 (0.0–2.75) | 0.88 (0.0–2.50) | 0.07 | 0.88 (0.0–2.75) | 1.13 (0.0–2.50) | 0.50 |
| 1-year F-HAQ score | 0.46 (0.0–2.50) | 0.38 (0.0–2.38) | 0.78 | 0.63 (0.0–2.50) | 0.63 (0.0–2.38) | 0.99 |
| F-HAQ score progression | -0.13 (-2.0 to +1.0) | -0.25 (-2.38 to +0.88) | 0.31 | -0.13 (-1.88 to +1.00) | -0.38 (-2.38 to +0.88) | 0.70 |

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The frequencies of the TNFRII 196R allele observed in the present study are not statistically different from the previously reported frequencies in the UK and the French RA populations (range 20–27% for non-familial RA, and 27–37% for familial RA) [14,15]. Moreover, the familial status of the RA patients in the VErA cohort is unknown.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium checks

We found the TNFRII 196M/R genotype distributions in the VErA patients to be in Hardy–Weinberg equilibrium.
We also tested the hypothesis that there is an association between the TNFRII 196R allele and RA structural severity in our cohort of patients with very early arthritis. The results show that the progression of the radiographic damage after 1 year of follow up did not differ between the whole group of patients and the subgroup of patients with RA, whether the TNFRII 196R allele was carried or not. Previous studies also reported no relationship between the 196R allele and progression of joint damage [18-20]. In contrast, positivity of at least one HLA-DR1 and/or HLA-DR4 allele was found to be associated with early progression of joint damage in RA patients \((P = 0.0012) \), as previously described [24], whereas their concomitant presence with TNFRII 196R allele was not \((P = 0.802) \).

As was previously reported by van der Helm-van Mil and coworkers [20], we observed a lack of association between the TNFRII 196R allele and the functional severity of RA, which is in disagreement with the findings reported by Constantin and coworkers [18]. There may be several explanations for these discrepancies, including the heterogeneity of the studied population, differences in the selected outcome criterion between studies, and the influence of treatment, notably with DMARDs and biologies, on outcome. In this respect, one should recall that early and aggressive treatments were reported to affect the relationship of HLA class II alleles with progression of joint damage in RA [25]. Thus, we cannot exclude the possibility that DMARDs and biologics interfere with the possible association between presence of the TNFRII 196R allele and RA structural or functional severity. Because the VErA patients were all treated with the same DMARD schedule, our data support the hypothesis that the TNFRII 196R allele is not associated with functional severity of RA. Nevertheless, after only 1 year of follow up it is probably premature to conclude that there is no association between TNFRII 196R allele carriers and noncarriers and RA functional severity. Moreover, we investigated the ability of the TNFRII 196R allele to predict rapid radiographic progression in patients with very early RA. Our study appears to show that TNFRII 196R allele is not able to predict rapid radiographic progression in very early RA. However, because the kinetics of radiographic progression are heterogeneous among patients developing RA, we cannot exclude the possibility that the TNFRII 196R allele can predict radiographic damage over a follow-up period of 3 or 5 years.

New insights were recently provided by recent data on the role of the TNFRII. Indeed, Morita and coworkers [22], using TNFRII-transfected HeLa cells activated with TNF-α, demonstrated that 196R-transfected cells transduce signals for IL-6 production more effectively than do 196M-transfected cells. It is now well established that IL-6 plays pathological roles in RA, and that blockade of IL-6 may be therapeutically effective in RA [26]. Recently, Till and coworkers [27], using transfected HeLa cell populations and immortalized fibroblasts from \(\text{tnfr1}^{-/} \text{tnfr2}^{-/} \) double knockout mice, reported an altered induction of apoptosis and nuclear factor-κB pathway in the TNFRII 196R allele transfected cells, which could also serve as an explanation for the association of this allele with increased susceptibility to RA. Moreover, patients with the TNFRII 196R/R genotype were shown to have worse RA course and to be less responsive to TNF antagonist therapy [28].

Conclusion

Our findings suggest that the TNFRII 196R allele may be associated with RA diagnosis but that it does not predict early progression of structural damage and functional severity in patients with very early arthritis. Independent studies are required before it may be concluded that there is a definite association between the TNFRII 196R allele and RA diagnosis.

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

VG and PD carried out the molecular genetic studies with the help of MT, DG, FT and FC, and acquired, analyzed and interpreted the data. OV, OM, PB, SP, AD, PF, FT, FC and XLL made substantial contributions to the acquisition of clinical and radiological data and to the recruitment and the follow up of patients. OV and XLL also revised the article critically for important intellectual content. JFM participated in the design of the study and performed the statistical analysis. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to the Collège des Rhumatologues de Haute Normandie et de Picardie for the recruitment of patients and to the Institut National pour la Santé et la Recherche Médicale (INSERM), the Association de Recherche sur la Polyarthrite (ARP), the Association Française de Rhumatologie (SFR), the Genopole, the Fondation pour la Recherche Médicale (FRM), the Programmes Hospitalier de Recherche Clinique (PHRC), 1997 and 2002, and l’Association Française des Polyaarthritiques (AFP) for their financial support.

References

1. Nell VP, Machold KP, Eberl G, Stamm TA, Uffmann M, Smolen JS: Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. *Rheumatology (Oxford)* 2004, 43:906-914.

2. American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines: Guidelines for the management of rheumatoid arthritis: 2002 Update. *Arthritis Rheum* 2002, 46:328-346.

3. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, et al.: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis Rheum* 1988, 31:315-324.

4. van Boekel MA, Vossenaar ER, van den Hoogen FH, van Venrooij WJ: Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value. *Arthritis Res* 2002, 4:87-93.

5. Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, Habibuw MR, Vandenbroucke JP, Dijkmans BA: Specific autoantibodies precede the
symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. *Arthritis Rheum* 2004, 50:380-386.

6. Vittecoq O, Incourt-arguet B, Jouen-Beades F, Legodeed J, Letoumeur O, Rolland D, Gervais G, Menard JF, Gayet A, Fardellone P, *et al.:* Autoantibodies recognizing citrullinated rat flaggin in an ELISA using citrullinated and non-citrullinated recombinant proteins as antigens are highly diagnostic for rheumatoid arthritis. *Clin Exp Immunol* 2004, 135:173-180.

7. Jansen AL, van der Horst-Bruinsma I, van Schaardenburg D, van de Stadt RJ, de Koning MH, Dijkmans BA: Rheumatoid factor and antibodies to cyclic citrullinated Peptide differentiate rheuma
toid arthritis from undifferentiated polyarthritis in patients with early arthritis. *J Rheumatol* 2002, 29:2074-2076.

8. Gregersen PK, Silver J, Winchester RJ: *et al.:* Early and aggressive treatment of rheumatoid arthritis patients affects the association of HLA class II antigens with progression of joint damage. *Arthritis Rheum* 2002, 46:899-905.

9. Thomson W, Harrison B, Ollier B, Niles N, Payton T, Barrett J, Symmons D, Silman A: *Quantifying the exact role of HLA-DRB1 alleles in susceptibility to inflammatory polyarthritides: results from a large, population-based study.* *Arthritis Rheum* 1999, 42:757-763.

10. Sellin MF, Amos CI, Ward R, Gregersen PK: The genetics revolu
tion and the assault on rheumatoid arthritis. *Arthritis Rheum* 1999, 42:1071-1079.

11. Cornels F, Faure S, Martinez M, Prud’homme JF, Fritz P, Dib C, Alvarez H, Barrera P, de Vries N, Balza A, *et al.:* New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. *Proc Natl Acad Sci USA* 1998, 95:10746-10750.

12. Shiozawa S, Hayashi S, Tsukamoto Y, Goko K, Kawasaki H, Wada T, Shimizu K, Yasuda N, Hamatani N, Takasugi K, *et al.:* Identification of the gene loci that predispose to rheumatoid arthritis. *Int Immunol* 1998, 10:1891-1895.

13. Kemper O, Derre J, Cherif D, Engelmann H, Wallach D, Berger R: The gene for the type II (p75) tumor necrosis factor receptor (TNF-RII) is localized on band 1p36.2-p36.3.

14. Barton A, John S, Ollier WE, Silman A, Worthington J: Association between rheumatoid arthritis and polymorphism of tumor necrosis factor receptor II, but not tumor necrosis factor receptor I, in Caucasians. *Arthritis Rheum* 2001, 44:51-65.

15. Dieude P, Petit E, Caillaud-Moindroux S, Osorio J, Pierlot C, Martinez M, Faure S, Albort L, Lasbleis S, de Toma C, *et al.:* Association between tumor necrosis factor receptor II and familial, but not sporadic, rheumatoid arthritis: evidence for genomic heterogeneity. *Arthritis Rheum* 2002, 46:2039-2044.

16. Kyogoku C, Tsuchiya N, Shibue T, Tokunaga K, Matsuta K: TNF-R2 position 196 polymorphism in Japanese patients with rheu
toid arthritis: comment on the article by Dieude et al. *Arthritis Rheum* 2003, 48:273-274.

17. Dahlqvist SR, Arlestad L, Sikstrom C, Linghult S: Tumor necrosis factor receptor type II (exon 6) and interleukin-6 (-174) gene polymorphisms are not associated with family history but tumor necrosis factor receptor type II is associated with hypertension in patients with rheumatoid arthritis from northern Sweden. *Arthritis Rheum* 2002, 46:3086-3098.

18. Constantin A, Dieude P, Lauwers-Cances V, Jamard B, Mazieres B, Cambon-Thomsen A, Cornels F, Cantagrel A: Tumor necrosis factor receptor II gene polymorphism and severity of rheuma
toid arthritis. *Arthritis Rheum* 2004, 50:742-747.

19. Davenport JR, Nixon NB, Dawes PT, Hassell AB, Mattey DL: No association of polymorphisms in the tumor necrosis factor receptor I and receptor II genes with disease severity in rheumatoid arthritis. *J Rheumatol* 2003, 30:1406-1409.

20. van der Helm-van Mil AH, Dieude P, Schonkaren JJ, Cornelis F, Suzuki TW: No association between tumour necrosis factor receptor type 2 gene polymorphism and rheumatoid arthritis severity: a comparison of the extremes of phenotypes. *Rheumatology (Oxford)* 2004, 43:1232-1234.

21. van der Heijde DM, van Hof MA, van Riel PL, Theunisse LA, Lubbers EW, van Leeuwen MA, van Rijswijk MH, van de Putte LB: Judging disease activity in clinical practice in rheumatoid arthritis: first step in the development of a disease activity score. *Ann Rheum Dis* 1990, 49:916-920.

22. Morita C, Horuchi T, Tsukamoto H, Hatta N, Kikuchi Y, Aino Y, Otsuka T, Sawaki Y, Harashima S, Nagasawa K, Niyo Y: Association of tumor necrosis factor receptor type II polymorphism with Systemic lupus erythematosus in the Japanese: molecular and functional analysis. *Arthritis Rheum* 2001, 44:2819-2827.

23. Berglin E, Padyukov L, Sundin U, Hallmans G, Stenlund H, Van Venrooij WJ, Klareneglo K, Dahlqvist SR: A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis. *Clin Exp Immunol* 2004, 135:173-180.

24. van Aken J, Lard LR, le Cessie S, Hazes JM, Breedveld FC, Huiz
inga TW: Radiological outcome after four years of early versus delayed treatment strategy in patients with recent onset rheu
toid arthritis. *Ann Rheum Dis* 2004, 63:274-279.

25. Lard LR, Boers M, Verhoeven A, Vos K, Visser H, Hazes JM, Zwint
erman AH, Schreuder GM, Breedveld FC, De Vries RR, *et al.:* Early and aggressive treatment of rheumatoid arthritis patients affects the association of HLA class II antigens with progression of joint damage. *Arthritis Rheum* 2002, 46:899-905.

26. Nishimoto N, Yoshizaki K, Miyasaki N, Yamamoto K, Kawai S, Takeuchi T, Hashimoto J, Azuma K, Kishimoto T: Treatment of rheumatoid arthritis with humanized anti-interleukin-6 recep
tor antibody: a multicenter, double-blind, placebo-controlled trial. *Arthritis Rheum* 2004, 50:1761-1769.

27. Till A, Rosenstiel PC, Krippner-Heidenreich A, Mascheretti-Croucher S, Croucher PJ, Schafer H, Scherich P, Seegert D, Schreiber S: The Met196→Arg variation of human TNFR2 al
terna
tory (TNF-R2) is associated with TNF-alpha-induced apoptosis by impaired NF-kappa B signalling and target gene expression. *J Biol Chem* 2005, 280:5994-6004.

28. Fabris M, Tolusso B, Di Poi E, Assaloni R, Sinigaglia L, Ferraccioli G: Tumor necrosis factor-alpha receptor II polymorphism in patients from southern Europe with mild-moderate and severe rheumatoid arthritis. *J Rheumatol* 2002, 29:1847-1850.