Milk quality of Etawa crossbred dairy goat fed combination of fermented oil palm fronds, Tithonia (Tithonia diversifolia) and Elephant Grass (Pennisetum Purpureum)

N Jamarun*, R Pazla, M Zain and A Arief
Faculty of Animal Science, Andalas University, Padang, West Sumatera, Indonesia

*novirman55@gmail.com

Abstract. The aim of this research was to determine the influence of Fermented Oil Palm Fronds (FOPF) by Phanerochaete chrysosporium with Tithonia (T) and Elephant Grass (EG) as roughage on milk quality of Etawa Crossbred Dairy Goats (ECDG). This study used a randomized complete design consisting of four treatment groups that is: T1 = 20% FOPF+16% T+64% EG, T2 = 20% FOPF+32% T+48% EG, T3 = 20% FOPF+48%T+32% EG and T4 = 20% FOPF+64% T+16% EG. Four replicates were used per treatment. The data were analysed using Analysis of Variance (ANOVA) and differences among the treatment means were tested using Duncan’s Multiple Range Tests (DMRT) with 5 replications and 1% confidence intervals. Parameters measured were quality of milk, i.e. protein, fat, lactose and mineral (Ca and P) content. Results showed using combination FOPF by phanerochaete chrysosporium with T and EG can significantly increase milk mineral concentration (Ca and P) (p<0.01), but there was no effect on milk content of protein, fat and lactose (p>0.05). The combination FOPF by Phanerochaete chrysosporium with Tithonia (T) and Elephant Grass (EG) can be used as an alternative feed for goats. The best feed for dairy goats was 20% FOPF + 64 % T+ 16 % EG (Treatment D).

1. Introduction
Goat milk is quite popular with Indonesian people because of its many health benefits. According to Affandi goat milk has been tested with various diseases, especially tuberculosis, asthma, anemia, hepatitis, muscle cramps and stomach ulcers [1]. Goat milk is also able to neutralize stomach acid, increase vitality and endurance, overcome impotence and optimize child growth. Goat milk is a good source of amino acids and nutrients, can be consumed by individuals who are not tolerant of cow's milk, because of several types of milk protein that produce milk that is not found in Cow milk [2]. Goat's milk is easier to digest than cow's milk because of its smaller fat size and in a more homogeneous state [3]. Fluorine content in goat milk is quite high. Fluorine is useful as a natural antiseptic that can produce pathogenic bacteria in the body [4].

Etawa crossbreed dairy goat have been maintained for a long time, so that they are considered to be local goats with better genetic quality than other local goats. Etawa cross bred Dairy Goat (ECDG) is a dual-purpose goat that can produce milk such as Etawa goat and produce meat such as Kacang goats [5]. Milk production of ECDG can reach 1.5-3 liters per day [6]. Goat's milk fat and protein is quite high at 6.08% and 4.48% [7].
The use of alternative feed in improving the quality of goat milk needs to be studied. This is due to the limited availability of forage and the quality of goat milk depends on the quality of the feed given. Oil palm fronds (OPF) is an oil palm plantation waste that is available all the time in large quantities [8,9]. The area of oil palm plantations in Indonesia in 2015 reached ± 11,300,370 Ha and continued to increase with an increase in area per year [10]. The use of palm fronds as animal feed is still very limited because the OPF contain high lignin which causes low digestibility [11-13]. The use of Phanerochaete chrysosporium fungus supplemented with minerals Ca, Mn and P in the OPF fermentation has been proven to reduce lignin content so that the cellulose and hemicellulose components can be used optimally for feed [14-15]. Digestibility values and VFA concentrations of OPF also increased significantly [16-17].

Tithonia (T) plants also have potential as an alternative feed. T cultivated in West Sumatra can produce as much as 30 t of fresh material or 6 t of dry matter per year on a land area of approximately 1/5 ha. When grown as a hedge, it can produce 27 kg of dry weight from three harvests in 1 year [18]. Jamarun et al. reported the following nutritional contents of T [19]: DM (25.57%), OM (84.01%), CP (22.98%), CF (18.17%), NDF (61.12%), ADF (40.15%), cellulose (34.59%) and lignin (4.57%). Jama et al. reported that the green leaves of T contained high levels of N (3.5-4.0%), P (0.35-0.38%), K (3.5-4.1%), Ca (0.59%) and Mg (0.27%) [20]. Research on T as a ruminant feed material is limited because its leaves contain many antinutritional substances that endanger livestock, such as phytic acid, tannins, saponins, oxalates, alkaloids and flavonoids [21]. The combination of T and elephant grass (EG) can improve the digestibility and fermentability of the rumen fluid. Jamarun et al. reported a combination of 20% T and 80% EG in vitro resulting in the dry matter and organic matter digestibilities of 58.30 and 57.85%, respectively, pH 6.68, ammonia (NH3) concentration of 16.89 mg/100 mL and volatile fatty acid (VFA) content of 127.50 mM [22]. The provision of diets with varying forage will increase VFA production and MPS in Etawa goat crossbreeds [23]. The forage composition of the feed greatly affects the response of livestock growth and production. Based on the description, research was conducted on milk quality ECDG feeding by rations FOPF, Tithonian and elephant grass.

2. Materials and methods
For this study, the in vivo treatments was conducted at the Company of Etawa Crossbred Dairy Goat (ECDG), Rantiang Ameh Agam Regency west Sumatra on January until Mei, 2018. The livestock used is the second lactation ECDG weighing 75-80 kg. Analysis of milk Quality was conducted in the Laboratory of Dairy Nutrition and Laboratory Dairy Cattle Production of the Bogor Agricultural Institute. The parameters measured in this study were quality of milk: protein, fat, lactose and mineral (Ca and P).

2.1. Fermented Oil Palm Fronds (FOPF)
The Oil Palm Fronds (OPF) materials used as the raw material in this study were taken from the distal two-thirds of the OPF. The OPF substrates were cut, dried and finely milled. The OPF were then fermented using phanerochaete chrysosporium, supplemented with 2000 ppm of Ca, 2000 ppm of P and 150 ppm of Mn. Fermentations were made for 20 days.

2.2. Rations of ECDG
FOPF are stirred with concentrate consisting of rice bran, soybean meal waste, corn, palm kernel cake, salt and minerals. Elephant grass and Titonia grasses are mixed according to treatment. Feeding is done twice a day, which is at 08.00 and 17.00, feed was given according to NRC which is 4% body weight in the form of dry matter [24]. Drinking water was given ad libitum. The composition of the ingredients in the treatments ration in this experiment can be seen in tables 1,2 and 3.
Table 1. Nutritional content of raw materials.

Nutritional content (%)	Raw materials	FOPF	EG	T	Rice bran	Soybean meal waste	Palm kernel cake	Corn
Dry Matter		72.01	21.23	25.57	87.80	28.40	91.83	85.80
Organic matter		91.34	89.46	84.01	90.80	97.67	91.41	99.10
Crude protein		08.89	10.88	22.98	10.72	20.11	12.36	07.70
Crude fiber		38.59	32.77	18.17	11.60	19.00	26.68	02.44
Extract ether		01.27	02.48	04.71	08.73	01.25	08.23	03.50
NDF		66.52	66.57	61.12	55.13	59.28	66.70	49.96
ADF		57.85	41.71	40.15	29.35	26.65	46.10	36.76
Cellulose		37.50	34.18	34.59	15.52	22.93	43.25	29.52
Hemicellulose		08.67	24.86	20.97	25.78	32.63	20.60	13.20
Lignin		18.35	06.29	04.57	06.90	02.20	17.29	07.50
TDN		61.90	63.48	62.60	66.63	74.61	65.40	81.90

Description: a. Laboratory of Dairy Animal Nutrition Faculty of Animal Husbandry IPB (2016)
 b. Laboratory of Ruminant Nutrition Faculty of Animal Husbandry Andalas University (2017)

Table 2. Ration composition %.

Raw Materials	treatments	A	B	C	D
FOPF		12	12	12	12
Elephant Grasa		38.4	28.8	19.2	9.2
Tithonia		9.6	19.2	28.8	38.4
Rice bran		12	12	12	12
Soybean meal waste		10	10	10	10
Palm Kernel cake		9	9	9	9
Corn		8	8	8	8
Salts+Mineral		1	1	1	1
Total	100,0	100,0	100,0	100,0	100,0

Table 3. Composition of experimental food ingredients.

food ingredients	Treatments (%)	A	B	C	D
Dry Matter		47.75	48.17	48.58	49.00
Organic matter		90.20	89.67	89.14	88.62
Crude protein		12.48	13.64	14.79	15.96
Crude fiber		24.84	23.44	22.04	20.68
Extract ether		03.75	03.96	04.17	04.39
NDF		61.95	61.43	60.90	60.38
ADF		40.08	39.94	39.79	39.64
Cellulose		31.35	31.39	31.43	31.47
Hemicellulose		21.86	21.49	21.11	20.74
Lignin		08.18	08.02	07.85	07.69
Total Digestible Nutrient		65.71	65.62	65.53	65.45
Ca		00.71	00.72	00.85	00.94
P		01.87	01.90	02.07	02.44
2.3. Milk collection and measurement of milk quality
Livestock maintenance during the study period was carried out in three periods, namely the period of adaptation, introduction and collection. The adaptation period lasts for 15 days aimed at adjusting livestock to the experimental ration. The preliminary period lasts for 25 days, aiming to eliminate the influence of the previous ration. Collecting period is a data collection period lasting 5 days for fecal sampling and calculation of feed consumption. Collective milk production begins after the end of the 30-day adaptation period. Sampling for milk quality testing was carried out for 2 times in the study in 2 different milking times, namely morning and evening. Determination of the levels of protein, fat, milk lactose using the Milkotester Master Pro 10211 tool. Phosphorus mineral levels were measured based on Taussky and Shorr [25].

2.4. Experimental design and statistical analysis
This research was conducted using a completely randomized design (4x4) with 5 replications (levels of FOPF, T and EG as the treatments). The differences between the treatment means were analyzed using Duncan’s multiple range tests (DMRT) with confidence intervals of 5% and 1% Steel and Torrie [26]. The treatments were as follows:

A = 20% FOPF + 16% T + 64% RG
B = 20% FOPF + 32% T + 48% RG
C = 20% FOPF + 48% T + 32% RG
D = 20% FOPF + 64% T + 16% RG

3. Results and discussion
Data analysis of the milk quality of ECDG fed with FOPF combined with different levels of Titonia and elephant grass are presented in table 4. Table 4 shows that the treatments had not significant effect (P> 0.05) on the levels of protein, fat, Lactose but highly significant effect (P <0.01) on the levels mineral of Ca and P. This shows that the response of ECDG to forage rations consisting of a combination of FOPF, titonia and elephant grass is good, there is no difference in the quality of milk (Protein, fat and Lactose) despite an increase in titonia levels to 64%.

Table 4. The milk quality of ECDG fed with FOPF combined with different levels of titonia and elephant grass.

Parameters	Treatment			
Protein (%)	A	B	C	D
4.03	4.08	4.14	4.39	
Fat (%)	7.29	7.61	8.23	8.23
Laktose (%)	4.10	4.15	4.24	4.46
Ca (%)	0.21^a	0.23^b	0.24^b	0.25^c
P (%)	0.08^a	0.09^b	0.09^{bc}	0.10^c

^{a-c}Means in the same row with different letters are significantly different (P<0.01)

3.1. Milk protein
Judging from protein content, milk protein content of ECDG varied from 4.17-4.56% [27]. Sunarlim et al. stated that the analysis of ECDG milk protein content was relatively higher at 4.3% for goat milk and 3.8% for cow’s milk [28]. According to Afandi the protein content of goat milk ranged from 4.1% to 4.5% [1]. Chaniago and Hartono obtained goat milk protein content of 3.3-4.9% [29], while Adriani obtained a range of goat milk, the results of which were 3.00-6.90% [30]. These results indicate the protein content of milk obtained is still within the normal range of goat milk protein. Protein content of
ECDG milk obtained in this study is higher when compared to the results of Ardiansyah [31] and Rizqan [32] research which obtained milk protein levels by feeding concentrate based on palm oil waste was 2.95% and 3.68%. Milk protein in this study included the category of premium or best milk protein based on Thai Agricultural Standards due to > 4% milk protein value [33].

Not different effect (P > 0.05) of treatments A, B, C, and D on milk protein levels caused by crude protein in all treatments consumed by livestock can still be digested by livestock so that the need for crude protein to form proteins in milk is still can be fulfilled. The value of crude protein digestibility in all treatments also differed not significantly (P > 0.05) and the protein quality of the ration given was also high. Like the opinion raised by Smith et al. which states that high quality protein can be protected from degradation of rumen microorganisms so that it is more available in the pasca rumen [34]. Then the protein rations consumed will condense and enter the bloodstream to be converted into blood amino acids with carbon precursors from non-essential amino acids. Furthermore, amino acids from the blood will be converted into amino acid deposits and will enter the udder secretory cells and be synthesized into milk proteins. This is explained by Collier which states that milk protein synthesis comes from amino acids circulating into the blood as a result of absorption of the digestive tract, body protein changes and amino acids synthesized epithelial cells gland milk into milk protein [35]. Akers adds that when there is an increase in milk production, most of the protein or amino acid feed is focused on milk synthesis so that the milk protein content does not increase [36].

Different types of milk protein treatments A, B, C and D are also caused by genetic factors that ECDG are used uniformly. The effect of feed on milk protein is relatively small, even though the feed protein of each treatment is different and increases from treatment A to D. This is in accordance with the opinion of Le Jaouen which states that variation in milk protein content is relatively small compared to milk fat content because Milk protein is more influenced by genetic factors than environmental factors [37].

3.2. Milk fat
The difference in titonia and elephant grass combination levels in each treatment did not affect (P <0.05) the fat content of goat milk produced. The average fat content of goat milk was 7.84%, with a range of 7.29 - 8.23%. This result is higher than other studies in lactating ECDG which are 6 ± 0.05% Budi [38] and Arief [39], with palm oil industry based byproducts of food which is 5.24%. Milk fat content obtained in this study is almost the same as Chania goat and Hartono which is 7.3% [29]. This difference is caused by differences in the crude fiber content in the ration. Sutardi states that milk fat content is the most volatile component and is very dependent on the crude fiber content of food [40]. Low coarse food fiber will produce low acetate, whereas acetate is the main ingredient in the formation of milk fat [41]. The fat content value in this study is quite high due to the high contribution of crude fiber content and digestibility of crude fiber so that the need for crude fiber to form fat in milk can still be fulfilled and is able to maintain milk fat. In dairy cattle consumption of crude fiber found in animal feed is very important and affects the quality of milk, especially milk fat. As explained by Wikantadi the level of milk fat is strongly influenced by the consumption of crude fiber in the feed given [42].

In addition, consumption of livestock for carbohydrates obtained from the combination of forage combination FOPF, titonia and elephant grass is still sufficient so that acetic acid produced as a precursor to form milk fat content is available in large quantities so that it can meet the needs in the formation of milk fat content. This is supported by Arief explanation that milk fat content is affected by acetic acid from forage [39]. Forage eaten by livestock, then undergoes a fermentative process in the rumen by rumen microbes. The results of the fermentative process are VFA. VFA consists of propionate, acetate and butyrate. Acetate enters the blood and is converted into fatty acids, then it will enter the secretion cells of the udder and become milk fat. Milk fat content is influenced by feed because most of the milk components are synthesized in the udder of a simple substrate derived from feed [39].
3.3. Milk Lactose

The difference between titonia and elephant grass levels does not affect the lactose content of ECDG milk. The average lactose of the study milk was 4.34%, with a range of 4.10 to 4.46%. This result is almost close to some previous researchers, namely goat milk lactose is 5.0% [43] and 4.84% [39]. Lactose content of PE goat milk obtained in this study is still included in the standard levels of goat milk lactose in the tropics in the opinion of Davendra and Burn which ranges from 3.52% - 6.30% [44]. Lactose milk is one indicator to increase the amount of milk produced, the higher the lactose content in milk, the higher the absorption capacity of water for milk formation, resulting in increased production of milk without changing the lactose content in milk [41].

It was not different in fact (P> 0.05) treatments A, B, C, and D due to the digestibility of the fiber fraction also did not differ significantly, but an increase in titonia levels up to 64% showed the highest levels of milk lactose. Fiber fraction is a source of carbohydrates. The carbohydrates found in these feeds will be overhauled by microorganisms into VFA, one of which is propionic acid which is a precursor in the formation of blood sugar which as the raw material for forming lactose and amino acids absorbed in the intestine is converted into glucose in the liver through gluconeogenesis, so blood glucose levels can be maintained. The availability of a substrate in the form of glucose can help in the process of lactose milk synthesis. This is supported by the opinion of Schmidt also stated that glucose is the main precursor to the formation of lactose milk. In addition, it was added by Leng et al. which states that 54% of body glucose comes from propionic acid [45]. Concentrate on the four treatments was also not different in type and number.

3.4. Milk Minerals (Ca and P)

The mean of Ca and P of this experimental goat milk was 0.23% and 0.09%. This result is lower than Arief which is 2.84% and 0.56% [39]. The combination of titonia and elephant grass levels were very significantly different (P> 0.01) affecting the levels of Ca da P milk. The highest levels of Ca and P were obtained at Treatment D (Combination of 64% T + 16% RG) and the lowest in treatment A (16% T + 64% RG). This difference is due to the mineral content of the ration. The content of Ca and P rations increased from A to D along with the addition of titonia levels. Ration D gets the highest titonia portion so that it contributes high minerals Ca and P as well. This is consistent with Jama et al. statement that titonia is rich in minerals such as Ca and P [20].

4. Conclusion

The combination of 20% fermented oil palm fronds + 64% titonia + 16% elephant grass (Treatment D) yielded the best quality of milk.

Acknowledgments

This research was funded by the Andalas University Professor Grant 2018 and is part of the Ph.D. dissertation of Roni Pazla in Animal Nutrition, Faculty of Animal Science, Andalas university.

References

[1] Afandi I 2007 Susu Kambing Etawa FF Farm. http://www.ff-farm.com.
[2] Mateljan G 2008 Milk Goat. The GM. Foundation USA. http://www._dairy Goat.com.
[3] Jennes R 1990 Composition and Characteristic of Goat Milk: Review 1968-1979 J. Dairy Sci. 63 1605-1630
[4] Mulyanto R D and Wiryanta B T W 2002 Khasiat dan Manfaat Susu Kambing (Jakarta Agromedia Pustaka)
[5] Sutama I K 2010 Perakitan Sapera dengan Produksi Susu 2 Liter dan Pertumbuhan Pasca Sapih > 100 g/hari (Bogor: Balai Penelitian Ternak)
[6] Fitriyanto T Y, Astutidiana S, and Utami 2013 Kajian Viskositas dan Berat Jenis Susu Kambing
Peranakan Etawa (PE) Pada Awal, Puncak Dan Akhir Laktasi Jurnal Ilmiah Peternakan 1(1) 299-306
[7] Arief, Jamaran N, Pazla and Satria B 2018 Milk Quality of Etawa Crossbred Dairy Goat Fed by Product of Palm Oil Industry Int.J. Dairy Sci.
[8] Jamaran N, Arief and Satria B 2016 Pemanfaatan Limbah Kebun dan Limbah Industri Kelapa Sawit Supplementasi Probiotik pada Ransum Kambing Peranakan Etawa Menunjang Program Swasembada Susu 2020 (Laporan MP3EI)
[9] Zain M, Erpomen and Kartini 2007 Amoniasi Daun Kelapa Sawit dengan Beberapa Taraf Urea Idan Pengaruhnya Terhadap Kandungan Gizi Dan Kecernaan Secara In Vitro Jurnal Penelitian Indonesia 12(3) 195-200
[10] Badan Pusat Statistik 2015 Statistik Kelapa Sawit Indonesia 2015 (BPS Indonesia)
[11] Febrina D 2016 Pemanfaatan Biodelignifikasi Pelepah Sawit Menggunakan Kapang Phanerochaete Chrysosporium Sebagai Pakan Utama Ternak Ruminansia. [Disertasi] (Padang. Program Pasca Sarjana. Fakultas Peternakan. Universitas Andalas)
[12] Jamaran N, Zein M, Arief and Pazla R 2018 Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum) Pak. J. Nutr. 17 39-45
[13] Zain M, Rahman J and Khasrad 2014 Effect of Palm Oil by Products on In Vitro Fermentation and Nutrient Digestibility Anim. Nutr. Feed Technol. 14 175-181
[14] Febrina D, Jamaran N, Zain M and Khasrad 2016 Effects of Calcium (Ca) and Manganese (Mn) Supplementation During Oil Palm Frond Fermentation by Phanerochaete chrysosporium on In Vitro Digestibility and Rumen Fluid Characteristics Pak. J. Nutr. 15 352-358
[15] Jamaran N, Zain M, Arief and Pazla R 2017 Effects of calcium, phosphorus and manganese supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on laccase activity and in vitro digestibility Pak. J. Nutr. 16 119-124
[16] Febrina D, Jamaran N, Zain M and Khasrad 2016 The Effects of P,S and Mg Supplementation of Oil Palm Fronds Fermented by Phanerochaete chrysosporium on Rumen Fluid Characteristics and Microbial Protein Synthesis Pakistan Journal of Nutrition 15(3) 299-304
[17] Jamaran N, Zain M, Arief and Pazla R 2017 Effects of Calcium (Ca), Phosphorus (P) and Manganese (Mn) supplementation during oil palm frond fermentation by Phanerochaete chrysosporium on rumen fluid characteristics and microbial protein synthesis Pak. J. Nutr. 16 393-399
[18] Hakim N 2001 Kemungkinan Penggunaan Tithonia (Tithonia diversifolia) sebagai Sumber Bahan Organik dan Nitrogen. Laporan Penelitian Pusat Penelitian Pemanfaatan Iptek Nuklir (PSNI) Unand (Padang) p 8
[19] Jamaran N, Elihasridas R, Pazla and Fitriyani 2017 In vitro nutrients digestibility of the combination Titonia (Tithonia diversifolia) and Napier grass (Pennisetum purpureum) Proceedings of the 7th International Seminar on Tropical Animal Production (Yogyakarta, Indonesia)
[20] Jama B, Palm C A, Buresh R J, Niang A, Gachengo C, Nziguheba G and Amadalo B 2000. Tithonia diversifolia as a Green Manure for Soil Fertility Improvement in Western Kenya: a Review Agroforestry Systems 49 201-221
[21] Fasuyi A O, Dairo F A S and Ibitayo F J 2010 Ensiling wild sunflower (Tithonia diversifolia) leaves with sugar cane molasses Livest. Res. Rural Dev. 22(3)
[22] Jamaran N, Elihasridas, Pazla R and Fitriyani 2017 In Vitro nutrients digestibility and rumen fluid characteristics of the combination Titonia (Tithonia diversifolia) and napier grass (Pennisetum purpureum) Proceedings of the 3th National Seminar on Cows and Buffalo
[23] Suryani N N, M Budiasa, Ketut I, Astawa A and Putu I 2014 Fermentasi rumen dan sintesis protein mikroba kambing peranakan ettawa yang diberi pakan dengankomposisi hijauan beragam dan level konsentrat berbeda Majalah Ilmiah Peternakan 17(2)
[24] National Research Council 1981 Nutrient Requirements of Goats: Angora, Dairy and Meat Goats
Taussky H H and Shorr E 1953 A Micro Colorimetric Method for the Determination of Inorganic Phosphorus J. Biol. Chem 202 675-685

Steel R G D and Torrie J H 1991 Prinsip dan Prosedur Statistik. Suatu Pendekatan. Biometrik (Jakarta: PT. Gramedia Pustaka Utama)

Rangkuti J H 2011 Produksi dan Kualitas Susu Kambing Peranakan Etawa (PE) pada Kondisi Talataksana yang Berbeda. Departemen Ilmu Produksi dan Teknologi Peternakan. Fakultas Peternakan (Bogor: Institut Pertanian Bogor)

Sunarlim R, Triyantini, Setiadi B and Setiyanto H 1990 Upaya Mempopulerkan dan Meningkatkan Penerimaan Susu Kambing dan Domba. B. Haryanto, I.K Sutama, B. Sudaryanto dan A. Djajanegara (eds) Prosiding Sarasehan Usaha Ternak Domba dan Kambing Menyongsong Era PJPT live. 171–174.

Chaniago T D and Hartono 2001 Pre-Wearing Growth of Etawa Crossbred Kid Fed with Replacement Milk. Proc. Seminar Nasional Teknologi Peternakan dan Veteriner (Bogor: Pusat Penelitian dan Pengembangan peternakan Bogor) 241-246

Adriani 2003 Optimalisasi Produksi Anak dan Susu Kambing PE dengan Superovulasi dan Suplementasi Seng. Disertasi (Bogor: Program PascaSarjana, IPB)

Arief 2013 Supplementasi Probiotik pada Ransum Konsentrat Kambing Perah Berbasis Produk Samping Industri Pengolahan Sawit [Disertasi] (Padang: Program Pascasarjana Universitas Andalas) p 174

Sutardi T 1980 Landasan ilmu Nutrisi Jilid 1 (Bogor: Departemen Ilmu Makanan ternak fakultas peternakan Institut Pertanian Bogor)

Schmidt G H, Van Vleck L D and Hutjens M F 1988 Principles of Dairy Science (New Jersey: Zed Practise Hall Englewood Cliff)

wikantadi B 1977 Biologi Laktasi (Yogyakarta: Universitas Gadjah Mada)

Devendra C and Mc Leroy G B 1982 Goat and Sheep Production In The Tropic (Intermediate Tropical Agricultural Series) (Longham, London and New York)

Devendra C and Burns M 1994 Produksi Kambing di Daerah Tropis. Terjemahan: IDK H. Putra (Bandung: Institut Teknologi Bandung)

Leng R A 1991 Feeding Strategies for Improving Milk Production of Dairy Animals Managed by Small Farmers in the Tropic. FAO [Online] Retrieved from: http://www.fao.org/Waicent/FAOINFO/Agricult/aga/Agap/Frg/Ahpp86/Leng.pdf Accessed on 15 April 2017