Research Article

Data Analysis Method of Intelligent Analysis Platform for Big Data of Film and Television

Youwen Ma and Yi Wan

School of Media and Communication, Shanghai Jiao Tong University, Shanghai 200240, China

Correspondence should be addressed to Yi Wan; wanyi197482@sjtu.edu.cn

Received 11 March 2021; Revised 29 March 2021; Accepted 7 April 2021; Published 17 April 2021

ACADEMIC EDITOR: Zhihan Lv

Copyright © 2021 Youwen Ma and Yi Wan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on cloud computing and statistics theory, this paper proposes a reasonable analysis method for big data of film and television. The method selects Hadoop open source cloud platform as the basis, combines the MapReduce distributed programming model and HDFS distributed file storage system and other key cloud computing technologies. In order to cope with different data processing needs of film and television industry, association analysis, cluster analysis, factor analysis, and K-mean + association analysis algorithm training model were applied to model, process, and analyze the full data of film and TV series. According to the film type, producer, production region, investment, box office, audience rating, network score, audience group, and other factors, the film and television data in recent years are analyzed and studied. Based on the study of the impact of each attribute of film and television drama on film box office and TV audience rating, it is committed to the prediction of film and television industry and constantly verifies and improves the algorithm model.

1. Introduction

Since the new era, the rapid development of the Internet industry has brought a huge impact on traditional media, breaking the monopoly position of mass media communication channels. The rise of various media technologies such as Weibo, social network, and mobile APP has opened up quantifiable and interactive electronic transmission channels belonging to the public. In recent years, emerging media have gradually broken through the restrictions of “traditional media,” making the film and television industry begin to pay attention to the influence of Internet elements on audience rating. Big data for film and television focuses on the network as the information platform, which refers to the mass data information generated in the creation, transmission, and reception of film and television works, as well as the system for the storage, processing, and presentation of such information [1–4]. Compared with traditional industries, the mining of big data of film and television based on the Internet has the following characteristics: first, there are many types and large amount of data; second, there is short timeliness; third, technology is fast [3]. However, the traditional processing methods and capabilities of big data in film and television can no longer meet the demand. Therefore, it is very necessary to build an effective intelligent analysis platform for big data of film and television. Cluster analysis is a process of classifying similar or identical objects into multiple categories, just as the proverb says, “objects” collect similar data sets to classify. Therefore, K-means in the clustering analysis algorithm is used in this paper algorithm to analyze the similarity of high-scoring movies in different movie genres. A series of samples are aggregated into k different categories (where k is the number of categories of the model), its actual goal. The function is the sum of variances between classes. The purpose of K-means clustering is to minimize the variance and initial of all classes. K class centers are the center points of the class. Through repeated iteration, a model that meets the requirements is obtained, and the end condition of iteration is obtained maximum number of iterations and the convergence value.

This paper mainly discusses a set of intelligent analysis system of big data of film and television based on Hadoop.
The system integrates TV series rating data, movie box office data, TV program editing and broadcast sequence data, and other basic information. Through data mining algorithm and big data analysis method, it can provide detailed data reference for TV stations or investors in movies and TV. The system is based on Hadoop, and its distributed idea can realize the computation and storage of large-scale data. Hadoop is composed of HDFS, MapReduce, HBase, Hive, and ZooKeeper, among which the most basic and important element is the MapReduce engine, which is the underlying file system HDFS (Hadoop distributed file system) used to store files of all storage nodes in the cluster to execute the MapReduce program. Compared with other computing platforms, Hadoop has the characteristics of high efficiency, high reliability, high scalability, and high fault tolerance [4–6]. Large-scale data distributed computing builds a distributed machine learning computing graph based on big data platform by reconstructing the underlying basic code [2, 3]. The storage computing system with high reliability, high concurrency, and high scalability can realize extremely efficient queries through the underlying serialization mode and compressed format and can realize large-scale machine learning algorithms in the environment of big data.

The rest of this paper is organized as follows: the related work is discussed in Section 2. In Section 3, big data analysis system for film and television is described. In Section 4, based on film and TV big data collection, the experiment design and analysis are carried out. Section 5 summarizes the whole paper.

2. Related Work

In the Internet era, the emergence of big data has provided new impetus for the development of the film and television industry. In recent years, a large number of research [6–8] achievements have been made in its data analysis methods. 2013 was dubbed the "year of big data" for the film and television industry, and Google said its data model could predict the opening weekend box office of Hollywood movies a month in advance with 94% accuracy [9]. In the same year, Netflix, the leading website of streaming media in North America, became a global hit with its self-made drama House of Cards. The drama was produced by Netflix based on its huge database based on the audience selection of 30 million users, 4 million comments, 3 million topic searches, a large number of copyrights, and the accurate analysis of users’ usage data of website functions.

The success of the two makes people realize that Internet technology can participate in the production of film and television art to some extent, thus setting off a boom in the application of big data in film and television. Under this trend, China’s film and television industry has also begun to explore new industrial construction models by virtue of the application of big data. However, the research on big data of film and television in China is still in the exploratory stage. According to the existing research [10, 11], film and television big data applications focus on film and television production, transmission, and receiving; it is mainly concentrated in the application of a specific stage or specific instance of big data. The application system of big data in the entire film and television industry has not yet been formed, and it has failed to form a guiding significance for theoretical research.

Mutlu [9] proposed an application construction method of big data of film and television based on grounded theory and established the interaction relationship model between film and television industry and big data of film and television. NVIVO11-plus was used to analyze the correlation between the core category of film and television big data application and the nodes of each concept category, and the weight value of the impact of film and television big data on the concept category was obtained. Günther et al. [12] proposed a collaborative recommendation algorithm for film and television programs based on deep learning. Compared with the traditional algorithm that does not use convolutional neural network to process information, this model has achieved better results in improving the prediction ability and accuracy of scoring data. Yin et al. [13] studied and combined with the film and television system of collaborative filtering algorithm to realize the similarity of coupling objects to further improve the accuracy of personalized recommendation and solve problems such as cold start and sparsity. However, most of them focus on the application of big data in a certain link of the film and television industry or the analysis of a certain case and have not formed a systematic understanding of the application of big data in the entire film and television industry and theoretical research with guiding significance [14].

3. Intelligent Film and Television Information Analysis Platform

3.1. System Construction. Big data analysis system for film and television is a set of intelligent analysis system for big data for film and television based on Hadoop. Hadoop has become one of the most popular big data infrastructure software programs at present, it is an open source that can distribute file systems and run-time processing infrastructures running on large clusters are good at being built on cheap machines. Large amounts of data (structured and unstructured) are stored and processed offline on the cluster. It is somewhat used on a large scale. The programming model of parallel computation of data sets makes it convenient for programmers to run all kinds of programs on distributed systems. However, in languages, there is often a word or phrase to denote multiple concepts and semantics of disambiguation text, using natural language processing techniques to determine the actual concept and semantics of the word or phrase automatic crawl web resources of the program; it accesses the Internet web pages and related resources. And its technical framework is shown in Figure 1.

It runs as follows. Firstly, data is obtained from various websites through Python and stored in MongoDB, and then data is preprocessed. The data of the basic database comes from the Internet or is imported manually. The data includes director, drama, advertisement, producer, and other basic data. The data management platform carries out data cleaning, data structure transformation, and processing on
the basic data through ETL and other batch processing technologies and finally forms the detailed data model to be processed, which is stored in the form of file on the distributed file system HDFS. Hadoop ecological components are used to complete the calculation and storage of data. Use the Pig component to achieve SQL data processing and then use Mahout MLLib library to learn the data and precipitate the learning model; complete deep computing and processing of business data through Spark and MapReduce; put the calculated data results into the column database HBase and the data warehouse Hive. The hybrid architecture of Hadoop + MPP data is adopted, and the data set specified in Hadoop can be acquired in real time by MongoDB-Hadoop connector plug-in. Finally, the data analysis platform based on Hadoop framework and reporting tools analyzes the relevance and attributes of the data and transforms them into a multidimensional visual data display.

The specific process is shown in Figure 2.

3.2. Data Preprocessing. The video data and user data obtained using Python Web include title, release date, type, production field, director, actor, investment market, famous novel, producer, movie type, box office, popularity, and network rating, a total of 387,300 data. Usually, the amount of data on the network is huge, and there are too many data sources. It is easy to produce a lot of unreliable data. Low quality data will lead to the unreliability of data analysis, and there is a big gap with the actual data. In addition, since data from different sources often have different dimensions and dimension units, this will affect the processing of film and television data. Therefore, it is necessary to analyze the data and collect the data for preprocessing. Data preprocessing includes data cleaning, data duplication deletion, data integration, and data standardization. In the specific data preprocessing, it needs to be adjusted repeatedly according to the actual situation, which takes up 60% of the time in the whole data analysis.

The specific processing process is as follows:
(1) Use the mean and variance to eliminate abnormal data; for example, the obvious score is too high or too low data to eliminate the duplicate data.

\[
\frac{\partial o_i(z)}{\partial z_i} = \frac{\exp(z)\sum \exp(z_i) - \exp^2(z_i)}{\sum \exp(z_i)} = \frac{\exp(z)\sum \exp(z_i) + \exp(z)\sum \exp(z_i) - \exp(z_i)}{\sum \exp(z_i)}
\]

\[
= \exp(z)\sum \exp(z_i) \left(1 - \frac{\exp(z_i)}{\sum \exp(z_i)}\right)
\]

\[
= o_i(z) (1 - o_i(z)),
\]

(1) where \(Z \) represents the collected data value; \(O \) represents the dimensionless value.

(2) The data is standardized to eliminate the dimensional differences between the features of different evaluation indicators, and the maximum and minimum standardized methods are used to limit the range of various features to \([0, 1]\).

\[
D_{x,y} = \sqrt{\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} [S_{x,y}(i, j) - S_{x,y}]},
\]

(2) where \(S \) represents the collected data value; \(D \) represents the normalized value.

(3) The preprocessed data is stored in HDFS.

3.3. Data Processing Strategy

3.3.1. Association Analysis Algorithm

Association analysis refers to the query of various associations and causal structures between objects and item sets in data transactions and related data and some information [15]. The algorithm steps are as follows:

1. Determine the analysis sequence.
2. Nondimensionalize variables.
3. Calculate the correlation coefficient.

\[
r = \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}} = \frac{l_{xy}}{l_{xx}l_{yy}} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2(y - \bar{y})^2}},
\]

(3)

\[
l_{xx} = \sum_{i=1}^{n} (x - \bar{x})^2 = \sum_{i=1}^{n} x^2 - \left(\frac{\sum_{i=1}^{n} x}{n}\right)^2,
\]

\[
l_{yy} = \sum_{i=1}^{n} (y - \bar{y})^2 = \sum_{i=1}^{n} y^2 - \left(\frac{\sum_{i=1}^{n} y}{n}\right)^2,
\]

\[
l_{xy} = \sum_{i=1}^{n} (x - \bar{x})(y - \bar{y}) = \sum_{i=1}^{n} xy - \left(\frac{\sum_{i=1}^{n} x}{n}\right)\left(\frac{\sum_{i=1}^{n} y}{n}\right),
\]

(4)

where \(l \) is the resolution coefficient and its value is between the interval \((0, 1)\). When the resolution coefficient \(\eta \leq 0.5463 \), the resolution is the best, and \(l \) is usually 0.5 [16].

4. Calculate the correlation degree.

\[
Y_{A(x,y)} = \frac{\text{MPS}(xy) - \text{MPW}(xy)}{\sqrt{(d f_w S_{SS}(x) - d f_s S_{Sw}(y)) (d f_w S_{SS}(y) - d f_s S_{Sw}(y))}}
\]

(5)

5. Rank the correlation degree.

\[
Y_{A(S)}(x,y) = \frac{C_{\hat{D}}S(x,y)}{\delta S},
\]

\[
Y_{A(D)}(x,y) = \frac{C_{\hat{D}}D(x,y)}{\delta D},
\]

\[
Y_{A(S-D)}(x,y) = \frac{C_{\hat{D}}D(x,y) + C_{\hat{D}}S(x,y)}{\sqrt{(\delta D + \delta S)^2 + (\delta D + \delta S)^2}}
\]

3.3.2. Cluster Analysis Algorithm

Cluster analysis is a method of classification analysis and multivariate statistics of statistical objects [17]. The classification should be conducted according to the characteristics of the samples to make the individuals of the same category have homogeneity, while the heterogeneity between categories should be as high as possible in order to facilitate the discovery of the macroscopic distribution of the seemingly irregular data set and the relationship attributes among data attributes.

In this paper, K-means algorithm in the clustering analysis algorithm is used to analyze the similarity existing in film and television data. The algorithm flow chart is shown in Figure 3. The purpose of K-means clustering is to minimize the sum of variance in all classes. K class centers are initialized to be the center points of the class. Through repeated iteration, a model meeting the requirements can be obtained.

3.3.3. Factor Analysis Algorithm

The basic purpose of factor analysis is to use a few factors to describe the relationship between many indicators or factors [18–21]. Based on the dependence of variables, factor analysis adopts multivariate statistical analysis method to divide some variables with complex relationship into several comprehensive factors. The main steps are as follows: analyze and confirm the feasibility of factor analysis on the original variables; construct factor variables; to ensure the interpretability of factor variables, rotation method is a common method. The final step is to calculate the score. The calculation process is as follows: standardize the original data; the correlation coefficient matrix of the data was calculated. The eigenvalue and eigenvector of the correlation matrix were calculated.
Calculate the contribution rate of the variance and the cumulative variance of the matrix.

(1) Calculate the factor.

If F_1, F_2, FP are P factors: if m factors have more than 80% of the total data information, the first M factors can be determined and used to reflect the original evaluation index.

(2) Rotated factor.

By linear combination of the original indexes, the scores of each factor were calculated. The Bartlett and Thomson estimation methods were used to calculate the scores of each factor.

(3) Comprehensive score.

In the comprehensive score, the weight is the variance contribution rate of each factor, and the function is the evaluation index obtained by linear combination of these factors.

$$r_t = \sum_{i=1}^{R} \theta_i r_{t-i} + \sum_{i=1}^{M} \theta_i r_{t-i} + \epsilon_t,$$

$$\epsilon_t = \mu t \sqrt{h_t},$$

$$h_t = k + \sum_{i=1}^{q} \theta_i r_{t-i} + \sum_{j=1}^{p} \theta_j^2 \epsilon_t. \quad (7)$$

Among them, WI mainly refers to the variance contribution rate of the factor.

4. Experimental Design and Result Analysis

4.1. Association Analysis of Film and Television Data. As the key indicators of film evaluation, film box office and network rating are not independent behaviors, which need to be established on the basis of the comparison and analysis of a large number of data. This paper takes film title, genre, production region, investment, box office, famous novel, comic adaptation, network rating, type of movie-goers, duration, popularity, and other key words and conducts correlation analysis on the processed data to analyze what factors are the main influences of film box office and network rating. Association analysis is to seek the law between relevant affairs in large-scale data set, and directors and actors have innumerable relationships in film and television works. Therefore, association algorithm is applied to analyze the relationship between film box office, network score and title, genre, production region, director, and actors.

The relational analysis algorithm model is built under Python to analyze the relationship between the box office of a movie and other factors.

Box office and network rating are key indicators of film evaluation. This paper takes film title, genre, production region, investment, box office, famous novel, comic adaptation, network rating, type of movie-goers, duration, popularity, etc. as key words and conducts association algorithm analysis on the processed data, so as to analyze the factors that mainly affect film box office and network rating. Figure 4(a) shows the influence of various factors on the box office and score of a film. It can be seen that the influence of film type and actors on the box office and score of a film is 31.1% and 32.8%, respectively; that is to say, the box office and score of a film are mainly affected by the appeal and influence of film type and actors.

As the key indicators of TV drama evaluation, TV ratings and network ratings are not independent behaviors, but are based on the comparison and analysis of a large number of data. In this paper, the title, genre, production region, investor, TV duration, famous novel, comic adaptation, network rating, type of movie-watching personnel, duration, popularity, and other key words are used to carry out correlation analysis on the processed data and analyze which factors are the main influence of TV ratings and network rating. Association analysis is to look for the rules between related affairs in large-scale data sets. Therefore, association algorithm is used to analyze the relationship between network rating as TV drama rating and evaluation on title, genre, production region, director, actors, and TV drama duration.
In addition, the correlation algorithm is used to analyze the relationship between network rating and TV drama rating, evaluation, title, genre, production region, director, actors, and TV drama duration. See Figure 4(b). From the above results, it can be seen that the influence ratio of various factors on TV ratings and ratings is 40.5% for actors, 29.4% for director stations, 18.1% for TV type, 7.4% for investment, 4.2% for production area stations, and 0.3% for duration. It can be seen that TV ratings, on-demand actors, and directors' appeal have a greater impact.

4.2. Cluster Analysis of Film and Television Data. In this paper, K-means algorithm of cluster analysis algorithm is used to analyze the similarity of high-scoring movies in different movie types. Due to the large amount of data, in order to facilitate calculation and display, the data should be processed first; that is, the average of the data between 5 points, 5–6 points, 6–7 points, 7–8 points, 8–9 points, and above 9 points should be calculated, respectively.

The relationship between movie popularity, genre, and movie score can be obtained by cluster analysis, as shown in Figure 5. Here, the horizontal axis represents the movie score, the vertical axis represents the popularity of the movie, and the movie genre is from top to bottom, science fiction, family, love, and action. It can be seen from this that the four largest diamond shapes are, respectively, the clustering centers of science fiction, family, love, and action. Although science fiction films have a high popularity, their ratings are polarized. Although the public has a high enthusiasm for the cool special effects, the unsatisfactory content will also drag down the ratings of films.

Cluster analysis algorithm is used to analyze the relationship between different types of TV series. See Figure 6. The relationship between the type and number of TV broadcasts and the three largest diamonds in the process of cluster analysis which are idols, clothing, and love, is kind of clustering center, including green icon, a red ancient costume, and blue for love; it can be seen that although the heat of the idol drama is very high, but the score is polarized, for all kinds of fresh meat, while much fairy has high enthusiasm, but the poor also can lower the content of the TV
ratings, in recent years, the ancient costume GongDou heat after idol drama, the good production and have a good score.

In daily work, it takes a long time to calculate tens of thousands of film and television data, so we hope to calculate it. The calculation ability is more efficient and the prediction model is more accurate. Therefore, it is considered to use the clustering method to enter the data before the correlation analysis. Row classification processing (to reduce the latitude of the data), and then select dozens of groups of data close to the cluster center for correlation. After repeated experiments, the parameters were adjusted and a new model was established.

The K-means + association analysis algorithm training model is established, as shown in Figure 7. Blue represents the actual results, and red represents the test results. It can be seen that the test results obtained by the superposition algorithm are very similar to the actual results, so the model established by this method can effectively predict the future film market.

Just like movies, the test results of TV series data model are also highly consistent with the actual results, as shown in Figure 8. It shows that the model can pick out the characteristic data which is more in line with the actual situation and predict the development trend of TV series in the future.

For films, \[y = 11.23x_1^2 + 0.65x_2^2 + 2.09x_3 + 4.77x_4 + 0.55x_5 + 5.69, \] (8)

For TV dramas, \[y = 0.67x_1 + 2.66x_2^2 + 3.86x_3 - 0.89x_4 - 0.021x_5 + 2.84. \] (9)

The results show that the Chinese mainland box office income is the biggest influence factor for production area, and the second is whether it is adapted from famous novels, comics, etc. So far, there is still a certain gap between the production level of domestic films and foreign countries, resulting in a gap in the box office. Due to the interaction between film works and other forms, classic movies have more advantages at the box office.

The two most positive factors affecting the ratings of domestic TV dramas from 2016 to 2020 are whether they are adapted from well-known novels and network rating. In addition, it can be seen that there is not necessarily a positive relationship between ratings and investment, and the ratings of TV dramas with large investment may not be good. For now, TV series based on classic novels and good word of mouth are crucial to ratings.

At present, TV series on demand on emerging media platforms (Youku, iQIYI, Tencent Video, etc.) has become the norm. Commercial video websites have formed a large number of online video resources through procurement, cooperative production, self-making, and other ways, among which movies and TV plays are the most watched programs by users.

4.3. Factor Analysis of Film and Television Data. With the key words of film title, genre, production region, investment, box office, whether it is adapted from well-known novels or comics, network rating, and type of movie-goers, Python web crawler is used to collect the data of movie playing in cinemas. SPSS software was used to conduct factor analysis on the standardized data. After extracting the first four common factors, the cumulative variance reaches 90.042%, which can reflect most of the information of the original variable. After obtaining the factor model, the orthogonal rotation method with Kaiser standardization was used to perform rotation. The rotation converged after 3 iterations, and the composition diagram of the rotation space was obtained, as shown in Figure 9.

For TV series, take title, genre, production region, investment, and box office, whether adapted from well-known novels or comics, network rating, and type of movie-watching personnel, as key words. SPSS software is used to conduct factor analysis on the processed standardized data and rotate it to get Figure 10.

Taking box office and audience rating as dependent variables and other factors after standardization as independent variables, a multivariate statistical model was established, as shown by formulas (1) and (2). The SPSS software was used to calculate and obtain relative parameters.

As shown in Figure 11, from 2010 to 2018, the total box office of Chinese films rose from 10.172 billion yuan to 60 billion yuan, showing a linear growth trend. The fitting function of box office revenue (Z) and time (t) is obtained by using linear regression.

\[Z = 67.88t - 136400. \] (10)

It is predicted that China’s total box office revenue will reach 64.972 billion yuan in 2021 and will exceed the 100 billion yuan mark in 2025.

The relationship between TV drama production and average number of episodes is also shown in this figure. The average number of episodes of each TV play can be calculated by statistical data of production and episode number of Chinese TV plays from 2010 to 2018. It can be seen that the production of TV dramas in China has decreased to a certain extent in recent years, but the number of episodes per TV series is increasing, from an average of 34 episodes in 2010 to nearly 43 episodes in 2018. In fact, most popular TV dramas in recent years have a large number of episodes, including urban dramas with more than 50 episodes and
costume dramas with more than 60 episodes. Many of them are “flooding.” This shows that the production of domestic TV dramas is increasing year by year, but the structural differences are increasingly obvious.

Using data from the Internet dating back to 1890, the number of films was aggregated in 10 years, and high scores were measured, shown in Figure 12. As can be seen from this, the production of high-scoring films has grown rapidly.
over time, especially from 1990 to 2020. From the perspective of origin, movies from the United States, Japan, and Britain are more likely to get high ratings and higher box office.

5. Conclusion

Based on cloud computing and statistical theory, a reasonable analysis method of big data for film and television is proposed. The method is based on Hadoop open source cloud platform, combined with MapReduce distributed programming model and HDFS distributed file storage system and other key cloud computing technologies. Correlation analysis, cluster analysis, factor analysis, and K-mean + correlation analysis algorithms were used to train the model, so as to model, process, and analyze the entire film and television data. This system can realize the different dimension of film and television large data analysis; compared with the previous research, this system can realize the prediction of video data and get the trend of the development of the industry and the following conclusions: through the film and television big data modeling and analysis, we can predict that, by 2021, the overall domestic film at the box office is about 64.972 billion yuan, and in 2025 the domestic total box office revenue will exceed 100 billion yuan. The production of domestic TV series is on the decline, but the total number of episodes per TV series is on the rise. In 2016–18, the biggest factor affecting a film’s box office earnings was where the films were made, followed by whether they were adapted from famous novels and comics. Two of the most positive factors that affect the ratings of a TV series are whether it is adapted from a well-known novel
and network ratings. Data mining is very important for the film and television industry to realize effective prediction. In the future, more attention should be paid to the development and maintenance of big data intelligent platform.

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments
This work was supported by the Important Project supported by the National Social Science Fund of China: Digital archives, setting of creative intelligence platform and global communication of China’s intangible cultural heritage, 19ZDA336.

References
[1] K. E. Psannis, C. Stergiou, and B. B. Gupta, “Advanced media-based smart big data on intelligent cloud systems,” IEEE Transactions on Sustainable Computing, vol. 4, no. 1, pp. 77–87, 2018.
[2] A. H. Arsenault, “The datafication of media: big data and the media industries,” International Journal of Media & Cultural Politics, vol. 13, no. 1-2, pp. 7–24, 2017.
[3] T. H. Davenport and J. Dyché, “Big data in big companies,” International Institute for Analytics, vol. 3, pp. 1-31, 2013.
[4] J. L. Jimenez-Marquez, I. Gonzalez-Carrasco, J. L. Lopez-Cuadrado, and B. Ruiz-Mezcua, “Towards a big data framework for analyzing social media content,” International Journal of Information Management, vol. 44, pp. 1-12, 2019.
[5] A. Oussous, F.-Z. Benjelloun, A. Ait Lahcen, and S. Belfkih, “Big Data technologies: a survey,” Journal of King Saud University-Computer and Information Sciences, vol. 30, no. 4, pp. 431–448, 2018.
[6] Y. Wang, M. Wang, and W. Xu, “A sentiment-enhanced hybrid recommender system for movie recommendation: a big data analytics framework,” Wireless Communications and Mobile Computing, vol. 14, no. 2, pp. 21–26, 2018.
[7] R. Lobato, “Rethinking international TV flows research in the age of Netflix,” Television & New Media, vol. 19, no. 3, pp. 241–256, 2018.
[8] S. F. Wamba, S. Akter, A. Edwards et al., “How “big data” can make big impact: findings from a systematic review and a longitudinal case study,” International Journal of Production Economics, vol. 165, pp. 234–246, 2015.
[9] N. G. A. Mutlu, “The future of film-making: data-driven movie-making techniques,” Global Journal of Arts Education, vol. 10, no. 2, pp. 167–174, 2020.
[10] Y. Sun, N. Yang, Z. Zhang et al., “Structural damage identification study based on kernel component analysis and support vector machine,” Journal of Basic Science and Engineering, vol. 26, no. 4, pp. 888–900, 2018.
[11] W. W. Li, J. Peng, M. C. Dong et al., “Automatic identification and extraction of clouds from astronomical images based on support vector machine,” Chinese Astronomy and Astrophysics, vol. 43, no. 1, pp. 128–142, 2019.