Molecular Dynamics Simulation of Spinodal Decomposition in Three-Dimensional Binary Fluids

Using large-scale molecular dynamics simulations of a two-component Lennard-Jones model in three dimensions, we show that the late-time dynamics of spinodal decomposition in concentrated binary fluids reaches a viscous scaling regime with a growth exponent $n = 1$, in agreement with experiments and a theoretical analysis for viscous growth.

General information
State: Published
Organisations: Department of Chemistry, University of Toronto, University of Copenhagen
Authors: Laradji, M. (Ekstern), Toxvaerd, S. (Ekstern), Mouritsen, O. G. (Intern)
Pages: 2253-2256
Publication date: 1996
Main Research Area: Technical/natural sciences

Publication information
Journal: Physical Review Letters
Volume: 77
Issue number: 11
ISSN (Print): 0031-9007
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.33 SJR 3.56 SNIP 2.133
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 3.823 SNIP 2.205 CiteScore 5.76
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 5.027 SNIP 2.646 CiteScore 6.62
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 5.674 SNIP 2.796 CiteScore 7.46
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 6.243 SNIP 2.845 CiteScore 7.19
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 6.252 SNIP 2.886 CiteScore 7.02
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 6.418 SNIP 2.764
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 6.342 SNIP 2.94
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 6.223 SNIP 2.854
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 6.14 SNIP 2.862
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 5.645 SNIP 2.807
