Kramers' degeneracy for open systems in thermal equilibrium

Simon Lieu, Max McGinley, Oles Shtanko, Nigel R. Cooper, and Alexey V. Gorshkov

Phys. Rev. B 105, L121104 — Published 8 March 2022
DOI: 10.1103/PhysRevB.105.L121104
Kramers’ degeneracy for open systems in thermal equilibrium

Simon Lieu,1,2 Max McGinley,3, 4 Oles Shtanko,1,2 Nigel R. Cooper,4,5 and Alexey V. Gorshkov1,2

1 Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
2 Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742 USA
3 Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Oxford OX1 3PU, UK
4 TCM Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
5 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy

(Dated: February 24, 2022)

Kramers’ degeneracy theorem underpins many interesting effects in quantum systems with time-reversal symmetry. We show that the generator of dynamics for Markovian open fermionic systems can exhibit an analogous degeneracy, protected by a combination of time-reversal symmetry and the microreversibility (detailed balance) property of systems at thermal equilibrium—the degeneracy is lifted if either condition is not met. We provide simple examples of this phenomenon and show that the degeneracy is reflected in the single-particle Green’s functions. Furthermore, we show that certain experimental signatures of topological edge modes in open many-body systems can be protected by microreversibility in the same way. Our results highlight the importance of detailed balance in characterizing open topological matter.

Kramers’ theorem is one of the oldest and most celebrated theorems in quantum mechanics. It states that the Hamiltonian of a system with half-integer total spin will have a pairwise degenerate spectrum if time-reversal symmetry (TRS) is preserved [1, 2]. This simple claim carries deep implications, ranging from the quantum spin Hall effect [3, 4] to the robustness of superconductivity in disordered materials [5].

In this paper, we present an analogous degeneracy theorem that pertains to dissipative many-body fermionic systems. Dissipative systems propagate irreversibly in time, i.e. arbitrary initial states flow toward a (typically unique) steady state. Therefore it is not a priori obvious that TRS should have any bearing on dynamics in this context. However, if the open system is at thermal equilibrium, then TRS manifests itself in terms of microreversibility (also known as quantum detailed balance) [6–14], which has experimental consequences in the solid state [15–18]. Here we show that in Markovian open systems—which are governed by a Lindblad master equation with generator \mathcal{L}—the combination of TRS and microreversibility protect degeneracies in the spectrum of \mathcal{L}. An analogous non-equilibrium open system (e.g. one coupled to two reservoirs held at different temperatures) will not exhibit this degeneracy; see Fig. 1.

This degeneracy can be inferred in experiments that operate in a regime where coupling to an external environment cannot be ignored, such as noisy quantum simulators. Rather than being manifest in static properties of the steady state, the degeneracy of \mathcal{L} can instead be inferred from time-dependent quantities describing the dynamical response about and/or approach to thermal equilibrium. As an example, we show that fermionic Green’s functions and other related correlators [19] show signatures of the degeneracy, making our results directly observable in the solid state [20] and atomic systems [21].

Our theorem helps us identify an important connection between microreversibility and TRS-protected topological phases of matter. For closed systems, certain kinds of gapless edge modes can be attributed to Kramers’ degeneracy [3, 4, 22]. Although the irreversible effects of coupling such systems to an environment can spoil some of their TRS-protected properties [23], here we demonstrate that other properties of the edge modes can persist in the open regime.

These results complement recent work regarding symmetries and topological phenomena in open systems [24–38]. Many of those studies are based on non-Hermitian Hamiltonians [39–46], for which degeneracy theorems akin to Kramers’ are known [47–49], and have been cen-
ternal to explain symmetry-protected topological behavior. Our findings are distinct from such ‘non-Hermitian topological phenomena’, which are primarily of relevance to photonic and classical mechanical systems [50]. Indeed, the Lindblad master equation formalism used here is much more widely applicable to interacting, dissipative quantum matter.

Kramers’ theorem for Hamiltonians.—We review Kramers’ theorem in closed fermionic systems. Since fermions have half-integer spin, time reversal is implemented by an antiunitary operator T satisfying

$$T^2 = P, \quad P = (-1)^\hat{N}, \quad [H, T] = 0,$$

(1)

where \hat{N} is the total fermion number, and P is henceforth referred to as ‘parity’. Note that $[P, T] = 0$. Physical Hamiltonians must conserve parity, $[H, P] = 0$, and so Fock space can be decomposed into even and odd parity sectors $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$, wherein H and T are block diagonal

$$H = \begin{pmatrix} H_+ & 0 \\ 0 & H_- \end{pmatrix}, \quad T = \begin{pmatrix} U_+ & 0 \\ 0 & U_- \end{pmatrix} K.$$

(2)

Here, K takes the complex conjugate of any scalar to its right, and $U_\pm U_\mp^* = \pm 1$.

Kramers’ theorem states that for a TRS-invariant Hamiltonian (i.e. when $THT^{-1} = H$), the eigenvalues of H_- must be twofold degenerate. Specifically, any eigenstate $|\psi_-\rangle$ with odd parity has a time-reversed partner $T|\psi_-\rangle$ which is also an eigenstate of the same energy and is orthogonal to $|\psi_-\rangle$. In contrast, H_+ is generically non-degenerate.

Symmetries of open quantum systems.—For the purposes of this Letter, we will focus on Markovian open systems described by a density matrix ρ, whose dynamics is governed by a Lindblad master equation [51, 52]

$$\frac{d\rho}{dt} = \mathcal{L}(\rho) = -i[H, \rho] + \sum_i \left(2L_i^\dagger \rho L_i^\dagger - \{L_i L_i^\dagger, \rho\}\right).$$

(3)

Here, the Hamiltonian part H describes the coherent evolution of the system, and the dissipators L_i arise from coupling to an environment. The generating superoperator \mathcal{L} is often referred to as the ‘Lindbladian’.

We define time-reversal and parity superoperators (T and P, respectively) which specify how these symmetries transform the state $\rho(t)$. These act as $T|\rho\rangle = T\rho T^{-1}$ and $P|\rho\rangle = P\rho P^{-1}$. The space of operators can be split into even and odd superparity sectors $\mathcal{B}(H) = \mathcal{B}(H)_+ \oplus \mathcal{B}(H)_-$, where $\mathcal{B}(H)_\pm$ contains operators satisfying $P(A) = \pm A$ (where A is an arbitrary operator). Specifically, $\mathcal{B}(H)_+$ contains operators of the form $|\text{even}\rangle \langle \text{even}|$ or $|\text{odd}\rangle \langle \text{odd}|$, and operators in $\mathcal{B}(H)_-$ are $|\text{even}\rangle \langle \text{odd}|$ or $|\text{odd}\rangle \langle \text{even}|$, which are traceless. (We use the convention $P|\text{even}\rangle = +|\text{even}\rangle$, $P|\text{odd}\rangle = -|\text{odd}\rangle$.) Since coherent superpositions of states with opposite fermion parity are not physical, the system density matrix must belong to $\mathcal{B}(H)_+$ (note that this does not prohibit classical mixtures of wavefunctions with opposite parity). Accordingly, physical generators must satisfy $[\mathcal{L}, \mathcal{P}] = 0$. By analogy to Eq. (2), the matrix representations of \mathcal{L} and T then become block diagonal:

$$\mathcal{L} = \begin{pmatrix} \mathcal{L}_+ & 0 \\ 0 & \mathcal{L}_- \end{pmatrix}, \quad T = \begin{pmatrix} U_+ & 0 \\ 0 & U_- \end{pmatrix} K.$$

(4)

From Eq. (1), we have $T^2 = \mathcal{P}$, and hence $U_\pm U_\mp^* = \pm 1$. Evidently, the superoperator T^2 leaves operators in $\mathcal{B}(H)_-$ invariant only up to a (-1) phase. This contrasts with systems made up of bosonic or spin degrees of freedom, where $T^2 = \pm 1$, and hence $T^2 = 1$, even for half-integer spins.

Since $\rho(t)$ belongs to $\mathcal{B}(H)_+$, it is often stated that the odd-supersparity part of the Lindbladian \mathcal{L}_- is unphysical. However, this is not true if we ask about the joint state of two fermionic systems. If system S and some probe R evolve independently under Lindbladians $\mathcal{L}_{S,R}$, then their joint state $\rho_{SR}(t)$ evolves as $\rho_{SR}(t) = (\mathcal{L}_S \otimes \mathcal{I}_R + \mathcal{I}_S \otimes \mathcal{L}_R)\rho_{SR}(t)$. When the two are coupled, the overall superparity $\mathcal{P}_{tot} = \mathcal{P}_S \mathcal{P}_R$ must still be even (\mathcal{P}_S and \mathcal{P}_R are superparities for S and R, respectively), however the state $\rho_{SR}(t)$ may contain components which are odd under \mathcal{P}_S and \mathcal{P}_R separately, e.g. if a fermion is in a superposition between S and R.

These components will evolve under $\mathcal{L}_{S,-}$ and $\mathcal{L}_{R,-}$. We will later identify specific physical observables that can be used to infer properties of \mathcal{L}_-. We now establish a degeneracy theorem analogous to Kramers’ which applies to the spectrum of \mathcal{L}_-.\footnote{Kramers’ degeneracy for Lindbladians.—Because open quantum systems evolve irreversibly in time, TRS cannot be expected to play the same role as in closed systems. Indeed, if the Hamiltonian H is TRS-invariant in the sense of Eq. (1), then we have $T^{-1} \mathcal{L} T = -\mathcal{L}$. This relation is incompatible with a non-trivial dissipative part of Eq. (3), which is negative semi-definite [53]. One way in which an antiunitary symmetry can be imposed on open systems without such an inconsistency is to demand that the Hamiltonian be odd under TRS, i.e. $THT^{-1} = -H$, in which case $T^{-1} \mathcal{L} T = \mathcal{L}$ can be satisfied [54]. Although such a symmetry is mathematically well-defined, it does not physically correspond to time-reversal in the closed system limit.

Instead, for systems in thermal equilibrium, time-reversal symmetry of the system and environment degrees of freedom naturally gives rise to a “micoreversibility” property, otherwise known as detailed balance. This condition relates the rate of each possible physical process to the rate of its time-reversed process. Mathematically, a Lindbladian that respects detailed balance satisfies a superoperator equation [6, 7, 9]

$$\mathcal{L}^\dagger = Q^{-1} T^{-1} \mathcal{L} T Q,$$

(5)
where Q acts as $Q[A] = qA$, and $q = \exp[-\beta H]/Z$ is the density matrix in the Gibbs ensemble at inverse temperature β with respect to the system Hamiltonian H (Z is the partition function). We have defined

$$\mathcal{L}^\dagger[\rho] = +i[H, \rho] + \sum_i \left(2L^\dagger_i \rho L_i - \{L^\dagger_i, L_i, \rho\}\right),$$

(6)

which is the usual adjoint of \mathcal{L} with respect to the Hilbert-Schmidt inner product $\langle A, B \rangle := \text{Tr}[A^\dagger B]/\text{Tr} I$.

A simple example of jump operators satisfying (5) is a pair $L_1 = \sqrt{\gamma_1 V}$, $L_2 = \sqrt{\gamma_2 V^\dagger}$, where V is TRS-invariant up to a phase, $T[V] = e^{i\theta} V$ [55], and acts as a lowering operator $[H, V] = -\omega V$. The temperature is implicitly determined by $\gamma_1/\gamma_2 = e^{-\omega}$. In words, L_1 lowers the system energy by ω at a given rate, and L_2 does the opposite at a rate that differs by a Boltzmann factor. This is the essence of the detailed balance condition. More generally, Eq. (5) is naturally satisfied when a time-reversal symmetric system is coupled to TRS-respecting environment Eq. (5) is satisfied when a time-reversal symmetric Hamiltonian H (denoted $H[1, 1]$) is coupled to a thermal bath for $\beta > 1$ [56].

We now state the main claim of this work: Suppose a fermionic Lindbladian satisfies microreversibility via Eq. (5); then the odd-superparity superoperator \mathcal{L} in Eq. (5) is guaranteed to have a twofold degenerate spectrum via an example. Consider a system of spin-1/2 fermions with N two-fold degenerate single-particle orbitals. The most general particle-conserving quadratic Hamiltonian is

$$H = \sum_{ij; \sigma, \sigma'} H_{ij, \sigma, \sigma'} f_i^\dagger \sigma f_j \sigma' = \sum_{k=1}^N \sum_{\tau = \pm} \epsilon_k c^\dagger_{k, \tau} c_{k, \tau},$$

(10)

with $i, j \in \{1, \ldots, N\}$ and $\sigma, \sigma' \in \pm$. We impose a TRS on the Hamiltonian: $[H, T] = 0$, such that the single-particle spectrum is twofold degenerate, with $T[f_i, \sigma T^{-1}] = \sigma f_i, \sigma$. Let us define the following dissipators

$$L_{1, pq} = \sqrt{\gamma_{1, pq}} \sum_{\tau = \pm} \left(\epsilon^\dagger_{q, \tau} c_{p, \tau} + \tau \epsilon^\dagger_{c, \tau} c_{p, -\tau}\right),$$

(11)

$$L_{2, pq} = \sqrt{\gamma_{2, pq}} \sum_{\tau = \pm} \left(\epsilon^\dagger_{p, \tau} c_{q, \tau} + \tau \epsilon^\dagger_{c, \tau} c_{q, -\tau}\right),$$

(12)

for $\gamma_{1, pq} = \frac{\alpha}{\epsilon} [\epsilon - \epsilon_q + 1]$, $\gamma_{2, pq} = gn/\epsilon_q - 1\alpha^{-1}$ [the Bose function], where $c_{pq} > \epsilon_q$. Physically, such terms can appear due to coupling to a bosonic bath (since the dissipators are quadratic in fermions). L_1 represents a process that lowers the energy of the system; L_2 raises the energy. The Ls satisfy:

$$[H, L_{1, pq}] = (\epsilon_q - \epsilon_p) L_{1, pq}, L_{2, pq} \sim L_{1, pq}, \gamma_{1, pq} / \gamma_{2, pq} = e^{\beta(\epsilon_q - \epsilon_p)},$$

and $[L_{1, 2, pq}, T] = 0$, thus respecting microreversibility [see Fig. 2(a)]. We include these dissipators between each pair of energy levels in the system, and also consider uniform dephasing in the energy basis: $L_{1, 2, pq} = \sqrt{\Delta} c_{pq}^{\dagger} c_{pq}$ [preserves microreversibility]. For a fixed number of fermions in the system, the thermal state is the unique steady state.

Our analysis also suggests that a similar Kramers’ degeneracy is present in the spectrum of a thermal quantum channel superoperator, which can describe the evolution of a system coupled to a non-Markovian bath [56].

Example: random quadratic Hamiltonian.—We confirm the generalized Kramers’ theorem via an example. Consider a system of spin-1/2 fermions with N two-fold degenerate single-particle orbitals. The most general particle-conserving quadratic Hamiltonian is

$$H = \sum_{ij; \sigma, \sigma'} H_{ij, \sigma, \sigma'} f_i^\dagger \sigma f_j \sigma' = \sum_{k=1}^N \sum_{\tau = \pm} \epsilon_k c^\dagger_{k, \tau} c_{k, \tau},$$

(10)

which is the usual adjoint of the Lindbladian, satisfies microreversibility via T where

$$\mathcal{L}^\dagger[\rho] = +i[H, \rho] + \sum_i \left(2L^\dagger_i \rho L_i - \{L^\dagger_i, L_i, \rho\}\right),$$

(6)

where \mathcal{L} is the usual adjoint of \mathcal{L} with respect to the Hilbert-Schmidt inner product $\langle A, B \rangle := \text{Tr}[A^\dagger B]/\text{Tr} I$. A simple example of jump operators satisfying (5) is a pair $L_1 = \sqrt{\gamma_1 V}$, $L_2 = \sqrt{\gamma_2 V^\dagger}$, where V is TRS-invariant up to a phase, $T[V] = e^{i\theta} V$ [55], and acts as a lowering operator $[H, V] = -\omega V$. The temperature is implicitly determined by $\gamma_1/\gamma_2 = e^{-\omega}$. In words, L_1 lowers the system energy by ω at a given rate, and L_2 does the opposite at a rate that differs by a Boltzmann factor. This is the essence of the detailed balance condition. More generally, Eq. (5) is naturally satisfied when a time-reversal symmetric system is coupled to TRS-respecting environment Eq. (5) is satisfied when a time-reversal symmetric Hamiltonian H (denoted $H[1, 1]$) is coupled to a thermal bath for $\beta \geq 1$ [56].

We now state the main claim of this work: Suppose a fermionic Lindbladian satisfies microreversibility via Eq. (5); then the odd-superparity superoperator \mathcal{L} in Eq. (5) is guaranteed to have a twofold degenerate spectrum via an example. Consider a system of spin-1/2 fermions with N two-fold degenerate single-particle orbitals. The most general particle-conserving quadratic Hamiltonian is

$$H = \sum_{ij; \sigma, \sigma'} H_{ij, \sigma, \sigma'} f_i^\dagger \sigma f_j \sigma' = \sum_{k=1}^N \sum_{\tau = \pm} \epsilon_k c^\dagger_{k, \tau} c_{k, \tau},$$

(10)

with $i, j \in \{1, \ldots, N\}$ and $\sigma, \sigma' \in \pm$. We impose a TRS on the Hamiltonian: $[H, T] = 0$, such that the single-particle spectrum is twofold degenerate, with $T[f_i, \sigma T^{-1}] = \sigma f_i, \sigma$. Let us define the following dissipators

$$L_{1, pq} = \sqrt{\gamma_{1, pq}} \sum_{\tau = \pm} \left(\epsilon^\dagger_{q, \tau} c_{p, \tau} + \tau \epsilon^\dagger_{c, \tau} c_{p, -\tau}\right),$$

(11)

$$L_{2, pq} = \sqrt{\gamma_{2, pq}} \sum_{\tau = \pm} \left(\epsilon^\dagger_{p, \tau} c_{q, \tau} + \tau \epsilon^\dagger_{c, \tau} c_{q, -\tau}\right),$$

(12)

for $\gamma_{1, pq} = \frac{\alpha}{\epsilon} [\epsilon - \epsilon_q + 1]$, $\gamma_{2, pq} = gn/\epsilon_q - 1\alpha^{-1}$ [the Bose function], where $c_{pq} > \epsilon_q$. Physically, such terms can appear due to coupling to a bosonic bath (since the dissipators are quadratic in fermions). L_1 represents a process that lowers the energy of the system; L_2 raises the energy. The Ls satisfy:

$$[H, L_{1, pq}] = (\epsilon_q - \epsilon_p) L_{1, pq}, L_{2, pq} \sim L_{1, pq}, \gamma_{1, pq} / \gamma_{2, pq} = e^{\beta(\epsilon_q - \epsilon_p)},$$

and $[L_{1, 2, pq}, T] = 0$, thus respecting microreversibility [see Fig. 2(a)]. We include these dissipators between each pair of energy levels in the system, and also consider uniform dephasing in the energy basis: $L_{1, 2, pq} = \sqrt{\Delta} c_{pq}^{\dagger} c_{pq}$ [preserves microreversibility]. For a fixed number of fermions in the system, the thermal state is the unique steady state.

Fig. 2(b) plots the Lindblad spectrum associated with a random TRS-respecting Hamiltonian $(H_{ij} \in [0, \Delta]; \Delta$ sets the energy scale) coupled to a thermal bath for states with up to two occupied fermionic modes. The spectrum of the odd superparity sector (blue and red dots) is indeed twofold degenerate, whilst the spectrum of the even sector (black dots) is not. Note that the Kramers’ theorem does not imply a degeneracy of the steady state.

How can an open system violate microreversibility (and hence break its degeneracy)? One obvious way involves a system-environment coupling that directly violates TRS. However, a more subtle way to break degeneracy involves coupling the system to a non-equilibrium environment. Consider a system that is connected to *two* thermal baths, each at a different temperature. Even if all system-environment couplings respect TRS, the system will host a non-equilibrium (non-thermal) steady
state, and hence microreversibility will be violated. We have numerically verified that the degeneracy of \mathcal{L}_- for the spin-1/2 system is broken when coupled to baths at different temperatures. We note that such non-equilibrium splitting requires quartic terms (quadratic dissipators) in the master equation (see SM [56]).

Physical observables.—As argued above, \mathcal{L}_- only governs dynamics in scenarios where fermions can move between the system (S) and some external ‘probe’ (R). Therefore, rather than looking at expectation values of the system density matrix $\text{Tr}[O_S \rho_S(t)]$ (which are determined by \mathcal{L}_+), we suggest that the Kramers’-like degeneracy of \mathcal{L}_- can be detected in the retarded Green’s function of the steady state ρ_{SS}:

$$G_{\tau \sigma}^R(t) = -i\Theta(t)\text{Tr}[\{f_{\tau \sigma}(t), f_{1,\sigma}^+\}\rho_{SS}].$$

Here, $\Theta(t)$ is the Heaviside step function, and we work in the Heisenberg picture where operators evolve as $A(t) = e^{\mathcal{L}t}[A]$ (although this expression should be slightly modified for open systems coupled to fermionic baths; see the Supplemental Material [56]).

The Green’s function (13) can be measured in solid state systems using, e.g. photoemission or tunnelling spectroscopy, which indeed involve fermions moving in/out of the system [20]. Probing single-particle Green’s functions in ultracold atoms is more challenging, but protocols involving stimulated Raman spectroscopy have been developed [21]. More concretely, $G_{\tau \sigma}^R(t)$ is sensitive to the Kramers’ degeneracy of \mathcal{L}_- because $f_{\tau \sigma} \in \mathcal{B}(\mathcal{H})_-$ is superparity-odd, and so the time evolution of (13) is governed by \mathcal{L}_-. The generalized Kramers’ theorem ensures the relation: $G_{\tau \sigma}^R(t) = G_{\tau \sigma}^R(-t)$ [56], which we confirm numerically in Fig. 2(c). However, when the system is coupled to two baths at different temperatures, microreversibility is broken and the Green’s functions differ for opposite spins [Fig. 2(d)]. We note that the Fourier transform of the temporal Green’s function is directly probed in solid-state electron-tunneling experiments (see below, and the SM [56]).

It is rather natural that microreversibility has implications for response functions such as (13); indeed, the very definition of microreversibility is sometimes framed in terms of fluctuation-dissipation relations for steady-state correlators [6, 18]. The above demonstrates that the correlation functions of superparity-odd operators have a particular structure associated with the Kramers’ degeneracy of \mathcal{L}_-.

Degenerate zero-bias peak from microreversibility.—Kramers’ degeneracy plays an important role in determining the stability of symmetry-protected topological edge modes of Hamiltonians [3, 57], e.g. the presence of spinful Majorana zero modes in 1D cannot gap. For closed systems, degenerate Majorana modes are detectable via degenerate spin-resolved tunneling spectroscopy at the edge of the superconductor [19]. Here, we show that the spin-resolved tunneling spectra remain unshifted if the superconductor is coupled to a thermal bath with TRS-respecting terms, while a splitting can arise if microreversibility is violated.

Consider the following spin-1/2 Kitaev chain

$$H = -i \sum_{j=1}^{N} [u_1 a_{j,\sigma} b_{j,\sigma} + u_2 a_{j,\sigma} b_{j,-\sigma}]$$

(14)

$$-i \sum_{j=1}^{N-1} [v_1 b_{j,\sigma} a_{j+1,\sigma} + v_2 b_{j,\sigma} a_{j+1,-\sigma}],$$

where $a_{j,\sigma}, b_{j,\sigma}$ are Majoranas corresponding to site j with spin σ. This model can be diagonalized as: $H = \sum_{j=1}^{N} \sum_{\tau=\pm} \epsilon_j d_{j,\tau} d_{j,\tau}^+$. We include the same thermal dissipators as before [see Eq. (11)] between each pair of energy levels p, q in the system at inverse temperature β. While such dissipators are manifestly non-local, they can arise from local system-bath coupling [53]. The weak-coupling Markovian approximation is commonly used in studying topological matter connected to a thermal bath [58, 59]. To break microreversibility, we consider a non-equilibrium bath that re-
where we define the complex fermion: $\psi^N = i/\beta v_1$. Set by the temperature. (b) Splitting between spin-up and spin-down spectral functions due to breaking of microreversibility via a non-equilibrium environment. Parameters: $N = 3, u_1/v_1 = 0.25, u_2/v_1 = 0.25, v_2/v_1 = 0.5, \beta v_1 = 3.3, g/v_1 = 0.05, g_{\text{eq}}/v_1 = 2$.

moves pairs of fermions on each site: $L_j = \sqrt{g_{\text{eq}}\psi^j_+\psi^j_-}$, where we define the complex fermion: $\psi^j_\sigma = a^j_\sigma + ib^j_\sigma$. These dissipators obey $[L_j, T] = 0$ but do not evolve the system toward a thermal state.

The spectral degeneracy (or its splitting) can be experimentally detected using spin-resolved tunneling spectroscopy [20] (see Fig. 1). For a zero-temperature probe, the current-voltage characteristic of the tunnel junction is $I = 0$ but do not evolve the system toward a thermal state.

The spectral degeneracy (or its splitting) can be experimentally detected using spin-resolved tunneling spectroscopy [20] (see Fig. 1). For a zero-temperature probe, the current-voltage characteristic of the tunnel junction is $I = 0$ but do not evolve the system toward a thermal state.

We note that microreversibility may also have interesting implications for the random-matrix theory of open systems [61–64], e.g. the non-Hermitian random matrix generalization of class AII might constrain the spectral statistics of the odd-superparity sector of microreversible Lindbladians [85].

Conclusions and outlook.—We have proved a generalization of Kramers’ theorem for open quantum systems, and shown that it has implications for symmetry-protected topological phases.

Future work should further investigate the role that detailed balance plays in protecting topological signatures and phases of open quantum systems. For example, it is known that non-Hermitian generalizations of time-reversal symmetry can prevent the non-Hermitian skin effect [39], i.e. extreme spectral sensitivity to boundary conditions [43, 60]. Can microreversibility guarantee the absence of the skin effect in Lindbladians?

Imposing TRS on a Hamiltonian allows us to identify topologically-distinct ground states which cannot smoothly evolve into one another without closing the energy gap [22]. It is currently unclear whether microreversibility has similar implications for the topological properties of the steady-state density matrix [37].

Finally, we note that microreversibility may also have interesting implications for the random-matrix theory of open systems [61–64], e.g. the non-Hermitian random matrix generalization of class AII might constrain the spectral statistics of the odd-superparity sector of microreversible Lindbladians [85].

S.L. was supported by the NIST NRC Research Postdoctoral Associateship Award. M.M. was supported by an EPSRC studentship. O.S. and A.V.G. acknowledge funding by AFOSR MURI, NSF PFCQC program, AFOSR, U.S. Department of Energy Award No. DE-SC0019449, DoE ASCR Quantum Testbed Pathfinder program (award No. DE-SC0019040), DoE ASCR Accelerated Research in Quantum Computing program (award No. DE-SC00020312), and ARO MURI. N.R.C. was supported by EPSRC Grants EP/P034616/1 and EP/P009565/1 and by an Investigator Award of the Simons Foundation.
[19] H. Bruus and K. Flensberg, *Many-body quantum theory in condensed matter physics: an introduction* (Oxford university press, 2004).

[20] H. Oka, O. O. Brovko, M. Corbetta, V. S. Stepanyuk, D. Sander, and J. Kirschner, *Rev. Mod. Phys.* **86**, 1127 (2014).

[21] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto, *Phys. Rev. Lett.* **98**, 240402 (2007).

[22] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[23] M. McGinley and N. R. Cooper, *Nature Physics* **10**, 320 (2011).

[24] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto, *Phys. Rev. Lett.* **98**, 240402 (2007).

[25] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[26] M. McGinley and N. R. Cooper, *Nature Physics* (2020).

[27] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, *Nature Physics* **7**, 341 (2011).

[28] S. Lieu, M. McGinley, and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[29] M. van Caspel, S. E. T. Arze, and I. P. Castillo, *SciPost Phys.* **6**, 26 (2019).

[30] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[31] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[32] M. van Caspel, S. E. T. Arze, and I. P. Castillo, *SciPost Phys.* **6**, 26 (2019).

[33] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[34] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[35] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[36] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[37] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, *Nature Physics* **7**, 341 (2011).

[38] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto, *Phys. Rev. Lett.* **98**, 240402 (2007).

[39] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[40] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[41] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[42] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[43] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, *Nature Physics* **7**, 341 (2011).

[44] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto, *Phys. Rev. Lett.* **98**, 240402 (2007).

[45] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[46] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[47] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[48] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[49] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[50] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[51] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[52] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[53] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, *Phys. Rev. B* **81**, 064439 (2010).

[54] M. McGinley and N. R. Cooper, *Phys. Rev. Lett.* **124**, 040401 (2020).

[55] The phase \(\theta \) carry no physical significance, since jump operators can be changed by a transform \(L_i \rightarrow e^{i\chi} L_i \) without changing the Lindbladian (3).

[56] See the Supplemental Material for ***. Contains Refs. ***.

[57] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, *New J. Phys.* **12**, 065010 (2010).

[58] R. Alicki, M. Fannes, and M. Horodecki, *Journal of Physics A: Mathematical and Theoretical* **42**, 065303 (2009).

[59] S. Bravyi and J. Haah, *Phys. Rev. Lett.* **111**, 200501 (2013).

[60] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, *Phys. Rev. Lett.* **121**, 026808 (2018).

[61] S. Denisov, T. Laptyeva, W. Tarnowski, D. Chrusciński, and K. Życzkowski, *Phys. Rev. A* **213**, 140403 (2019).

[62] T. Can, V. Oganesyan, D. Orgad, and S. Gopalakrishnan, *Phys. Rev. Lett.* **123**, 234103 (2019).

[63] L. Sá, P. Ribeiro, and T. c. v. Prosen, *Phys. Rev. X* **10**, 021019 (2020).

[64] K. Wang, F. Piazza, and D. J. Luitz, *Phys. Rev. Lett.* **124**, 100604 (2020).

[65] R. Hamazaki, K. Kawabata, N. Kura, and M. Ueda, *Phys. Rev. Research* **2**, 023286 (2020).

[66] T. Prosen, *New J. Phys.* **10**, 043026 (2008).

[67] B. Buča and T. Prosen, *New J. Phys.* **14**, 073007 (2012).

[68] R. Kubo, *J. Phys. Soc. Jpn* **12**, 570 (1957).