Extension of shelf-life of ready-to-cook (RTC) pangas fish (Pangasianodon hypophthalmus) curry by modified atmosphere packaging at chilled storage

K Nayma1, K C Das1, E J Alice2, M F Mehbub1 and M T Islam2,*

1Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200
2Department of Fisheries, University of Rajshahi, Rajshahi 6205.

*Email: tariqrubd@gmail.com

Abstract. Ready-to-cook (RTC) fish products are getting popular due to busy lifestyle of the people. However, preservation is a big concern for these types of perishable food items. Modified atmosphere packaging (MAP) is a widely used packaging technique used for displaying chilled fish and fishery products in developed countries. In light of this, the quality and shelf-life of RTC pangas fish (Pangasianodon hypophthalmus) curry was evaluated by biochemical and microbiological analysis under not sealed pack (control), MAP-1 (50% CO2 & 50% N2) and MAP-2 (75% CO2 & 25%N2) pack at 4 days interval during 20 days of storage at 4°C. The pH value of pangas fish curry was in the range of 6.01 to 6.80 during the storage period. The total volatile base nitrogen (TVB-N) value in fish curry gradually increased with the storage time. However, there were no significant (p<0.05) differences in pH and TVBN values among all packaging conditions during storage. Thiobarbituric acid reactive substances (TBARS) fluctuated between 0.03 to 0.56 mg malonaldehyde/kg during the storage period. The pH, TVB-N and TBARS values under all packaging conditions were within the acceptable limit during the storage period. The total viable count (TVC) gradually increased with time in all packaging conditions. However, significantly (p<0.05) lower TVC values were observed on the 12th and 16th day of storage in all samples compared to that of the control sample. Considering the bacterial counts, the shelf-life was determined at approximately 9 days for not sealed pack, 13 days for MAP-1, and 15 days for MAP-2 sample, based on the 7 logs CFU/g, which is considered as the upper acceptable limit for fresh and frozen fish. Therefore, the MAP-2 (75% CO2 & 25%N2) is the best packaging, which can be utilized by the superstores to display this kind of value-added products with extended shelf life.

Keywords: RTC; pangas; curry; MAP; shelf-life.

1. Introduction

Pangas catfish (Pangasianodon hypophthalmus) has become one of the most popular commercial cultivable aquaculture fish species due to its high production within a short period. Total pangas production in Bangladesh was 0.51 million tons in 2016-17 [1]. This species has great economic importance because of its high flesh content which composed of thick layer of fat and good amount of protein [2]. Moreover, it is available all over the year due its higher survival rate and yield. Thus poor people can afford this fish even with their low income. The production cost was low and possessed high demand for both rural and urban people in Bangladesh [3]. Nowadays, the market price becomes very low compared to the production cost, which makes the farmer discourage to culture this fish in...
Bangladesh. Development of different value-added products from pangas fish may act as an alternative way to increase the value of fish [4].

On the other hand, there is a high demand for low cost and nutrient-rich food particularly in developing countries [5]. The city-dwellers particularly busy mothers and housewives seek ready-to-cook (RTC) foods to save their time and extra burden. The demand for ready-to-cook (RTC) or ready-to-eat (RTE) food is rising because of modern lifestyle. RTC products are developed by food companies to meet the requirement of easy preparation [6]. There is a great demand for value-added fish products, either RTC or RTE due to recent social and cultural change [7]. In Bangladesh, presently about 30 companies with more than 200 outlets of superstores have been operating in the Bangladesh which is playing a significant role in supplying good quality fish and fishery products in the country [8].

In Bangladesh, consumers usually buy the fish as raw, and most of the time the sellers do not maintain proper storage condition. As a result, a considerable amount of raw fishes confronted quality deterioration during marketing [9]. Value-added fish products could be whole, mince based products, battered & breaded products and surimi based products. Fish mince is versatile and can be used to make a variety of products such as fish fingers, fish cakes and fish sausage [10]. Fish sticks are very popular ready-to-cook value-added product. It is preferable for its characteristics flavor, firmness and test [11]. Surimi is another value-added product enriched with concentrated myofibrillar protein [12]. Surimi is the raw material for gel-based snack foods such as kamaboko and fish balls [13]. Tempura and Chikwa (Japanese surimi based products), fish sausage, fish burger are some popular value-added fish products. Fish curry can be excellent value-added products for consumers in our country as their food habits to have curry daily in their meal.

Fish and fishery products are well known to the source of nutrients due to their high protein content [14]. Fresh fish muscle is highly perishable product with a short shelf life due to the presence of unsaturated fatty acids [15]. Spoilage is the undesirable changes that make the food unsafe for human consumption. The food is no longer usable, and complete degradation takes place [16]. The spoilage of fish or fishery product is caused by enzymatic, bacterial and chemical action [17]. Chilling is the most common short term preservation technique done by lowering the temperature [18]. The purpose of chilling is to prolong the shelf-life of fish by reducing the spoilage process. Beside all these preservation technique packaging technologies has been improved a lot in the developed countries. To fulfill the high demand for fresh and convenient foods without introduction of chemical preservatives, modified atmosphere packaging (MAP) can be a preferred packaging method.

MAP is a preservation method by altering the atmospheric environment around a perishable food with a single or a mixture of protective gas [19]. MAP is a widely used packaging technique for chilled fish and fishery products in developed countries. It extends the shelf-life at refrigerated temperature [20]. In recent years, consumer demand has been increased for ready-to-cook fish products. MAP along with refrigerated storage, has become popular preservation techniques. MAP also brought significant changes in storage, distribution and marketing of raw and processed fishery product [21].

To maintain increased shelf life and keeping quality, modified atmosphere packaging (MAP) offers technological options to the fishery product [22]. MAP lengthening the shelf life of a product and reduce economic losses. It also ensures to supply a better quality product [23]. This technology allows delivering the product to long-distance markets; therefore commercial value may increase [24]. This type of packaging system has not yet developed in Bangladesh. The overall goal of this research is to increase the value and shelf-life of ready-to-cook fish and fishery products in the country and develop a proper MAP packaging system under refrigerated condition. The specific objective is to develop pangas fish curry as a ready-to-cook (RTC) fish product and determine the overall quality and shelf-life of the product under modified atmosphere packaging stored at 4°C.
2. Materials and Methods

2.1. Sample Collection and Preparation of RTC Fish Curry
The pangas catfishes (*Pangasianodon hypophthalmus*) weighting 1.5±0.3 kg were purchased from the local market and brought under live condition to the Quality Control Lab of Department of Fisheries, University of Rajshahi, Bangladesh. Upon arrival, they were washed with tap water to remove contaminants from the skin and then beheaded, gutted and cut into slices at approximately 70 g using sharp knife. Slices were washed two times with tap water, and the final wash was done with distilled water. For preparation of RTC pangas fish curry from one kilogram of fish, different ingredients and spices including 1½ teaspoon of ginger paste; 1 teaspoon of garlic paste, red chili powder, coriander powder, salt; ½ teaspoon of cumin powder, lemon juice and ¾ teaspoon of turmeric powder were required. All the ingredients were taken in a bowl and added little amount of water to make a smooth paste. Then the slices were mixed with paste properly in the bowl and kept at refrigerator for twenty minutes after wrapping with plastic.

2.2. Packaging and Storage of RTC Fish Curry
The required amount of RTC fish curry was packed under modified atmosphere packaging in low gas and moisture permeable plastic pouch. The packaging material used for this purpose was multilayer transparent pouch (PE/PA/PE) of having 100 μm densities. Three types of packaging were applied under modified atmosphere packaging with different gas ratio using the method described by Noseda et al. [25]. MAP packaging was performed using a packaging machine (C100 Multivac, Haggenmuller, Germany) attached with Gas Mixer (KM100-3 MEM, WITT, Germany) by following the manual instruction of the machine. Analysis of the O₂, N₂ and CO₂ levels in the headspace of the packaged samples were performed with a gas analyzer (Oxybaby M+, WITT, Germany). Those three types of packaging was used as treatments namely, (1) Not sealed pack as treatment-0 (control); (2) MAP-1 (50% CO₂ & 50% N₂) as treatment-1 and (3) MAP-2 (75% CO₂ & 25% O₂) as treatment-2. All samples were stored at 4°C in the laboratory refrigerator. Three samples from each packaging condition were analyzed at four days interval during the storage at 4°C for 20 days in the laboratory.

2.3. Biochemical and Microbiological Analysis
The biochemical and microbiological parameters were analyzed in the laboratory to know the quality of RTC fish curry as well as to determine the shelf-life of curry under chilled storage. The pH value of the fish flesh homogenate was measured by means of a glass electrode pH meter (HI2002-Edge, Hanna Inst, USA) using the instruction manual. In this case, 10 g of cut flesh was homogenized with 50 mL of distilled water to make the homogenate. Total volatile base nitrogen (TVB-N) was determined using 10 g of ground fish sample with perchloric acid, according to EC [26] method. Thiobarbituric acid reactive substances (TBARS) values were measured by colorimetric method using the procedure of Witte et al. [27]. TBARS values was calculated as follows: TBARS value (mg malonaldehyde/kg) = optical density (O.D.)×5.2. Total viable count (TVC) was determined by a standard plate count method on plate count agar by APHA [28] method. Plates were incubated at 35°C in an incubator for 48 hours and counted the colony.

2.4. Statistical Analysis
The values were expressed as mean ± standard deviation. Differences among treatments were estimated by using one-way ANOVA with the application of the Tukey test using SPSS Version 20. Average values were considered significantly different when p<0.05.

3. Result and Discussion
The present study was undertaken to assess the shelf life of ready-to-cook (RTC) pangas (*Pangasianodon hypophthalmus*) fish curry under modified atmosphere packaging at 4°C. The quality and shelf life of the pangas fish curry was determined by evaluating various biochemical parameters namely pH, total volatile base nitrogen (TVB-N), thiobarbituric acid reactive substance (TBARS) value and microbiological analysis through total viable count during 20 days of storage period.
3.1. pH Value

One of the most important indicators to determine the quality of fish and fishery products is pH. Muscle pH can be used as a biochemical method to assess the freshness of fish. The acceptable limit of postmortem pH ranges between 6.8–7.0 [29]. At the beginning of the study, pangas fish curry showed a pH value of 6.69. Then the pH value was in decreasing trend until the 8th day of storage for MAP-1 (50% CO₂ & 50% N₂) and MAP-2 (75% CO₂ & 25% N₂) samples and 4th day of storage for control sample, and after that an increasing trend was observed at rest of the storage period (Table 1). However, there was no significant (p<0.05) difference in pH values among three packaging conditions during the storage period. Besides, pH values were within the acceptable limit in all packaging conditions throughout the storage period.

Table 1. pH value of RTC pangas fish curry under three different packaging conditions at chilled storage (4°C).

Treatments	Storage period (days)					
	0 d	4 d	8 d	12 d	16 d	20 d
Not sealed pack (Control)	6.69±0.06a	6.32±0.10a	6.62±0.18a	6.64±0.16a	6.77±0.17a	
MAP-1 (50% CO₂ & 50% N₂)	6.69±0.06a	6.80±0.02a	6.22±0.37a	6.56±0.08a	6.21±0.07a	
MAP-2 (75% CO₂ & 25% N₂)	6.69±0.06a	6.47±0.27a	6.01±0.00a	6.27±0.20a	6.39±0.20a	

This declined trend of pH perhaps happened due to the surface reaction of CO₂ with water forming carbonic acid, which results in the acidification of the fillets [30]. Another reason might be due to the accumulation of lactic acid by anaerobic glycolysis and the liberation of inorganic phosphates by the degradation of ATP. This is an agreement with the result reported by Ayala et al. [31] for sea bream during 22 days of ice storage. Islami et al. [32] also reported that sardine (Sardina pilchardus) fish showed a sharp decrease of pH after their marination with different concentrations of acetic acid and salt solutions. On the other hand, the increasing trend of pH at later stages of storage may be happened due to the production of amines and other volatile bases by the autolytic and microbial action on protein and other components [33, 34]. Similar increasing behavior was observed during storage in brined chub mackerel [35], marinated anchovies [36] at refrigerated temperature.

3.2. Total Volatile Base Nitrogen (TVB-N) Value

Chemical spoilage of fish samples can be evaluated by measuring the changes of total volatile base nitrogen (TVB-N) content which mainly comprises ammonia (NH₃), dimethylamine (DMA) and trimethylamine (TMA) [37] and is commonly used as an estimation of spoilage and has been widely used as an index for freshness of fish [38]. The acceptable limit of TVB-N value for freshly caught fish is 5.6 mgN/100g, and ice-stored cold-water fish is 30–35mgN/100g of fish [39].

Table 2. TVB-N value (mg/100g) of RTC pangas fish curry under three different packaging conditions at chilled storage (4°C).

Treatments	Storage period (days)					
	0 d	4 d	8 d	12 d	16 d	20 d
Not sealed pack (Control)	3.36±0.40a	3.36±0.00a	4.20±0.40a	5.88±0.40a	6.75±0.16a	
MAP-1 (50% CO₂ & 50% N₂)	3.36±0.40a	3.72±0.68a	4.00±0.68a	6.02±0.59a	6.42±0.54a	
MAP-2 (75% CO₂ & 25% N₂)	3.36±0.40a	3.50±0.76a	5.18±0.20a	5.65±1.06a	6.22±0.30a	7.49±0.21a

Different superscript letters in the same column represent a significant difference among the means of treatments (p < 0.05).

In the present study, the initial TVB-N value of RTC pangas fish curry was 3.36 mg/100 g and then gradually increased with time during the storage period in all packaging conditions (Table 2). There were no significant (p>0.05) differences found in relation to TVB-N values among three packaging conditions during the storage period. However, the TVB-N values were within the acceptable limit...
(30-35 mg/100g) in all packaging conditions (Table 2). Similar results were observed by Soccol et al. [40] that there were no significant differences on TVB-N values among the treatments of tilapia fish (air, vacuum and MAP with 60% CO_2/40% O_2) during the 20 days of storage period at 1°C.

The amount of TVB-N in fish increases as spoilage progresses. An increase in TVB-N during storage is a consequence of the liberation of basic compounds by microbial activity on protein and non-protein nitrogenous compounds. Sivertsvik et al. [41] reported that TVB-N increased on MAP-1 (CO_2/N_2: 80/20) & MAP-2 (CO_2/N_2: 60/40) packaging system of filleted Cod fish (Gadus morhua) during 28 days of storage where MAP-1 showed higher TVB-N compared to MAP-2. In their study, they also reported no significant difference (p > 0.05) of TVB-N values during 90 days of storage [35]. A previous study conducted by Noseda et al. [25] also reported that TVB-N values were increased for Vietnamese pangas (Pangasius hypophthalmus) with various gas mixture (50%CO_2/50%N_2; 50%CO_2/50%O_2) during 60 days of storage.

3.3. TBARS (Thiobarbituric Acid Reactive Substance) value

TBARS (Thiobarbituric acid reactive substance) value is a widely used indicator for the assessment of the degree of lipid oxidation. It is mainly the measure of secondary lipid oxidation. The acceptable limit of TBARS value is 2 mg malonaldehyde/kg fish. However beyond this limit, an objectionable odor and taste develop in fish [42].

In the present study, the initial TBARS value was 0.14 mg malonaldehyde/kg RTC pangas fish curry. The TBARS value fluctuated between approximately 0.1 to 0.2 mg malonaldehyde/kg until the 12th day of storage in all packaging conditions and then gradually increased until end of the storage period (Table 3). Significantly (p<0.05) lower TBARS values were observed in all samples on 12th and 16th day of storage compared to that of control sample. TBARS values were within the acceptable limit (2 mg malonaldehyde/kg) in all samples during the storage period.

Table 3. TBARS value (mg malonaldehyde/kg) of RTC pangas fish curry under three different packaging conditions at chilled storage (4°C).

Treatments	0 d	4 d	8 d	12 d	16 d	20 d
Not sealed pack (Control)	0.14±0.10a	0.18±0.08b	0.18±0.05a	0.16±0.01b	0.39±0.01b	
MAP-1 (50% CO_2 & 50% N_2)	0.14±0.10a	0.12±0.03a	0.08±0.04a	0.14±0.00ab	0.29±0.00a	
MAP-2 (75% CO_2 & 25% N_2)	0.14±0.10a	0.24±0.07a	0.11±0.09a	0.13±0.01a	0.29±0.03a	0.56±0.12

Different superscript letters in the same column represent a significant difference among the means of treatments (p < 0.05).

There is an agreement with the findings of Sallam et al. [43] showed an initial TBARS value of 0.37 mg malonaldehyde/kg in fresh raw Pacific saury where lower values observed in not sealed aerobic pack sample compared to that of MAP (75% CO_2 & 50% N_2 & 50% CO_2 & 75% N_2) sample. In the present study, MAP-2 sample having 75% CO_2 showed higher TBARS value than MAP-1. Ruiz-capillas and Moral [44] observed higher TBARS amounts for atmospheres richer in CO_2. This was probably due to a synergistic action between CO_2 and O_2, which made the auto-oxidation of polyunsaturated fatty acids easier. According to Aubourg [45], TBARS records may not reveal the actual rate of lipid oxidation as malonaldehyde may interact with other components of fish muscle. Such components may be amines, nucleosides and nucleic acid, proteins, amino acids of phospholipids, and other aldehydes that are end products of lipid oxidation and this interaction may vary significantly with fish species.

3.4. Total Viable Count (TVC)

Microbiological assessment is an excellent way to evaluate product quality. One of the most common methods of microbial assessment is the determination of bacterial count [46]. The initial total viable count (TVC) of sliced tilapia fishes was 5.11 Log CFU/g on plate count agar medium that indicated an acceptable initial quality of fish. Most of the available literature on freshly caught freshwater fishes (sea bass, tilapia, rainbow trout, and silver perch) reported bacterial counts of 2-6 Log CFU/g [47].
Table 4. Total viable count (log CFU/g) of pangas fish curry under three different packaging conditions at chilled storage (4°C).

Treatments	Storage period (days)	0 d	4 d	8 d	12 d	16 d	20 d
Not sealed pack (Control)		5.11±0.33^a	5.21±0.40^a	6.65±0.30^a	7.90±0.13^b	9.25±0.48^b	
MAP-1 (50% CO₂ & 50% N₂)		5.11±0.33^a	5.17±0.42^a	6.12±0.35^a	6.74±0.16^a	7.85±0.09^a	
MAP-2 (75% CO₂ & 25% N₂)		5.11±0.33^a	4.92±0.10^a	5.85±0.55^a	6.39±0.22^a	7.21±0.31^a	7.71±0.27^a

Different superscript letters in the same column represent a significant difference among the means of treatments (p < 0.05).

In the present study the TVC gradually increased with the progression of storage time in all packaging conditions. There was no significant difference in TVC observed among all packaging conditions until the 8th day of storage. However, significantly (p<0.05) lower TVC were observed on 12th and 16th day of storage in all packaged samples compared to that of control sample (Table 4).

![Figure 1](image-url) Total viable count (log CFU/g) of pangas fish curry under three different packaging conditions at chilled storage (4°C).

The TVC values exceeded the 7 Log CFU/g, which is considered as the upper acceptable limit for fresh and frozen fish and cold-smoked fish species [48] on approximately 9th day for not sealed pack (control), 13th day for MAP-1 and 15th day of storage for MAP-2 sample (Figure 1). Taking the 7 Log CFU/g as the maximum acceptable limit for fresh, frozen and cold-smoked fish species, the shelf-life of RTC pangas fish curry was determined at approximately 9 days for not sealed pack, 13 days for MAP-1 (50% CO₂ & 50% N₂), and 15 days for MAP-2 (75% CO₂ & 25% N₂) sample.

There is an agreement with several studies including Davis <i>et al.</i> [49] who found higher total viable count on aerobic, not sealed pack sample compared to MAP samples which exceed the limit after 10 days of storage. He also observed lower bacterial counts in MAP (70%CO₂ & 30%N₂) compared to MAP (30%CO₂ & 70%N₂) sample of Cod fillet. In the present study, MAP-2 contain more CO₂ (75%) than MAP-1 (50%) which is the main factor. Fagan <i>et al.</i> (2004) also observed higher total viable count on Salmon fish under MAP (60% N₂/40% CO₂), which contains less CO₂ concentration compared to MAP (100%CO₂). They also reported that high CO₂ level delayed microbial growth.

In the present study, the best performance was observed in case of MAP-2 (75% CO₂ & 25%N₂) packaging. In addition to this system, lower bacterial count was observed during the storage period compared to other packaging condition. Perhaps this type of packaging created anaerobic condition.
inside the pack; therefore, it’s inhibited the aerobic bacterial growth and increased the shelf-life of the product. Besides, CO₂ possess bacteriostatic effect, which also retards the oxidative rancidity and inhibits the growth of aerobic microorganisms from the system [50].

4. Conclusions
Modified atmosphere packaging is getting popular to the consumer due to providing excellent quality fishery products. MAP system can also ensure other quality attributes such as stabilizing color of the product and prevent objectionable odor. The shelf life of fishery products can be hampered by MAP technology in our country. Different value added products need to be optimized by this system which will ensure better quality fish and fishery products with an extended shelf life.

References
[1] DoF 2017 Yearbook of Fisheries Statistics of Bangladesh, (Dhaka: Fisheries Resources Survey System, Department of Fisheries)
[2] Islam R, Paul D K, Rahman A, Parvin T and Islam D 2012 Comparative characterization of lipids and nutrient contents of Pangasius pangasius and Pangasius sutchi available in Bangladesh J. Nutr. Food Sci. 30 408-419
[3] Sayeed M, Hossain G, Mistry S and Huq K 2008 Growth performance of Thai Pangus (Pangasius hypophthalmus) in polyculture system using different supplementary feeds, University of Rajshahi Univ. J. Zool. 27 59-62
[4] Viji P, Tanuja S, Ninan G, Lalitha K, Zynudheen A A, Binsi P K and Srinivasagopal T K 2015 Biochemical, textural, microbiological and sensory attributes of gutted and un gutted sutchi catfish (Pangasianodon hypophthalmus) stored in ice J. Food Sci. Tech. 52 3312–21
[5] Pagarkar A U, Joshi V R, Baug T and Kedar J 2011 Value addition is need of Seafood Industries J Fishcoops. 23 8-14
[6] Adetunji V O and Odetokun I A 2012 Fish species availability observed in the fish landing centers of Bangladesh Res. J. Microbiol. 7 235-241
[7] Rathod N and Pagarkar A 2013 Biochemical and sensory quality changes of fish cutlets, made from Pangasius fish (Pangasianodon hypophthalmus), during storage in refrigerated display unit at -15 to -18°C Int. J. Food Agric. Vet. Sci. 3 1-8
[8] Alam Z and Rana S M 2013 Customers attitudes towards retail chain store services in Bangladesh- A comparative study between retail chain stores and small retail stores J. Soc. Sci. Bus. Stud. 59 260-264
[9] Hossain M M, Rahman M, Hassan M N and Nowsad A A K M 2013 Post-harvest Loss of Farm Raised Indian and Chinese Major Carps in the Distribution Channel from Mymensingh to Rangpur of Bangladesh Pak. J. Biol. Sci. 16 564-569
[10] Hall G, Undeland I, Wendin K, Gangby I and Rutgersson A 2005 Preventing lipid oxidation during recovery of functional proteins from Herring (Clupea harengus) fillets by an acid solubilization process J. Agric. Food Chem. 53 5624-34
[11] Kumar G P, Balange A K, Martin K A, Nayak B B and Kumar H S 2017 Biochemical Changes during Salt Fermentation of Pangasius hypophthalmus (Sauvage, 1878) J. Fish. Tech. 54 60-65
[12] Jeyakumari A, George N, Joshy C G, Parvathy U, Zynudheen A and Lalitha K V 2016 Effect of chitosan on shelf life of restructured fish products from Pangasius (Pangasianodon hypophthalmus) surimi during chilled storage J. Food Sci. Tech. 53 2099-2107

[13] Balange A K, Joshi V R and Pagarkar A U 2004 Preparation of pasteurized fish ball in curry and its storage study J. Indian Fish. Assoc. 30 141-148

[14] Masniyom P 2011 Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging J. Sci. Tech. 33 181-192

[15] Regenstein M J and Regenstein C E 1991 Shelf-life extension of fresh fish: A review Part I. Spoilage of fish J. Food Qual. 11 117-127

[16] Blackburn W and Mcclure P J 2002 Foodborne Pathogens: Hazards, Risk Analysis and Control, (Cambridge: Woodhead Publishing Ltd)

[17] Abbas K A, Saleh A M, Mohamed A and Lasekan O 2009 The relationship between water activity and fish spoilage during cold storage: A review J. Food. Agric. Environ. 7 86-90

[18] Tawari C C and Abowei J F N 2011 Traditional Economics of fish production in Kaduna State, fish handling and preservation in Nigeria. Asian Nigeria. ARPN J. Agric. J. Agric. Sci. 3 427-436

[19] Arashisar S, Hisar O, Kaya M and Yanik T 2004 Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of Rainbow trout (Oncorhyncus mykiss) fillets Int. J. Food Microbiol. 97 209-14

[20] Han J H 2005 New technologies in food packaging (Amsterdam: Elsevier) p 3-12

[21] Koral S, Sevim K and Bekir T 2010 The effect of storage temperature on the chemical and sensorial quality of Atlantic Bonito (Sarda sarda, Bloch, 1838) packed in aluminium foil Turk. J. Fish. Aquat. Sci.10 439-443

[22] Rodgers S 2008 Technological innovation supporting different food production philosophies in the food service sectors Int. J. Contemp. Hosp. Manag. 20 19-34

[23] Sivertsvik M, Jeksrud W K and Rosnes J T 2002 A review of modified atmosphere packaging of fish and fishery products significance of microbial growth, activities and safety Int. J. Food Sci. Tech. 37 107-127

[24] Pastoriza L, Sampedro G, Herrera J J and Cabo M L 1996 Effect of carbon dioxide atmosphere on microbial growth and quality of salmon slices J. Sci. Food Agric. 72 348-352

[25] Noseda B, Islam M T, Eriksson M, Heyndrickx M, Reu K D, Langenhove H V and Devlieghere F 2012 Microbiological spoilage of vacuum and modified atmosphere packaged Vietnames Pangasius hypophthalmus fillets J. Food Microbiol. 30 408-419

[26] EC 2005 Determination of the concentration of TVB-N in fish and fishery products. Commission Regulation, Chapter III, (EC) No 2074/2005 O. J. EU 37 338

[27] Witte V C, Krause G F and Bailey M E 1970 A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage J. Food Sci. 35 582–585

[28] APHA (American Public Health Association) 1992 Compendium of methods for the microbiological Examination of foods Eds C Vander dent and D Splitstoeesser (Washington DC: APHA) p 12-14

[29] Zang B and Deng S 2012 Quality assessment of Scomber japonicus during different temperature storage: biochemical, textural and volatile flavor properties Int. J. Food Res. 28 123-130

[30] Bank H, Nickelson R, and Finne G, 1980 Shelf-life studies on carbon dioxide packaged finfish from the Gulf of Mexico J. Food Sci. 45 157-162

[31] Ayala M D, Abdel I, Santana L, Martinez C, Periago M J, Gil F, Blanco A and Albors O L 2010 Muscle tissue structural changes and texture development in sea bream, Sparus aurata L, during post-mortem storage Food Sci. Tech. 43, 465-475

[32] Islami S, Faisal M D, Akter M, Reza S and Kamal M D 2015 Comparative shelf life study of whole fish and fillets of cultured striped catfish (Pangasianodon hypophthalmus) Indian J. Mar. Sci. 45 147-149

[33] Wang M Y and Brown W O 1983 Effect of elevated CO2 atmosphere storage of freshwater crayfish (Pacifastacus leniusculus) J. Food Sci. 48 158-162
[34] Binsi P K, Shamasundar B A, Dileep A O 2007 Physico-chemical and functional properties of proteins from green mussel (Perna viridis) during ice storage J. Sci. Food Agric. 87, 245-254
[35] Goulas A E and Kontominas M G 2005 Effect of marination with acetic acids on the keeping quality of chub mackerel (Scomber japonicus): biochemical and sensory attributes Food Chem. 93 511-520
[36] Poligne I and Collignan A 2000 Quick marination of anchovies (Engraulis encrasicholus) using acetic and gluconic acids. Quality and stability of the end product LWT-J. Food Sci. Tech. 33 202–209
[37] Kilcast D and Subramaniam P 2000 The stability and shelf life of food (Cambridge: Publishing Limited) pp 178-180
[38] Wu T H, and Bechtel PJ 2008 Ammonia, Dimethylamine, Trimethylamine, and Trimethyloxide from raw and processed fish by-products J. Aquat. Food Prod. Technol. 17 27-38
[39] Connell J J 1995 Control of fish quality (Guildford: RSC publishers)
[40] Soccol M C H, Oetterer M, Gallo C R, Spoto M F and Biato D O 2005 Effects of modified atmosphere and vacuum on shelf life of tilapia (Oreochromis niloticus) fillets Braz. J. Food Tech. 8 7-15
[41] Sivertsvik M 2007 The optimized modified atmosphere for packaging of pre-rigor filleted farmed cod (Gadus morhua) is 63 ml/100 ml oxygen and 37 ml/100 ml carbon dioxide LWT-Food Sci. Tech. 40 430-438.
[42] Connell J J 1990 Control of fish quality (Oxford: Fishing News Books)
[43] Sallam Kh I, Ahmed A M and Elgazzar M M 2006 Chemical quality and sensory attributes of marinated Pacific saury (Cololabis saira) during vacuum-packaged storage at 4°C J. Food Chem. 102 106-110
[44] Ruiz-Capillas C and Moral A C 2001 Chilled bulk storage of gutted hake (Merluccius merluccius L.) in CO₂ and O₂ enriched controlled atmospheres Int. J. Food Res. 34 739–746
[45] Aubourg S P 1993 Review: Interaction of malondialdehyde with biological molecules- new trends about reactivity and significance Int. J. Food Sci. Tech. 28, 323-335
[46] Fernandez K, Aspe E and Roeckel M 2010 Scaling up parameters for shelf-life extension of Atlantic Salmon (Salmo salar) fillets using superchilling and modified atmosphere packaging Food Control. 21 857-862
[47] Gelman A, Glatman L, Drabkin V and Harpaz S 2001 Effects of storage temperature and preservative treatment on shelf-life of the pond-raised fresh water fish, silver perch (Bidyanus bidyanus) J. Food Prot. 64 1584-91
[48] ICMSF (International Commission of Microbiological Specification for Food) 1986. Microorganisms in Food-2 Sampling for Microbiological Analysis: Principles and Specific Applications (Toronto: University of Toronto Press)
[49] Davis H K 2003 Fish and shellfish. Principles and applications of modified atmosphere packaging of foods (London: Blackie Academic & Professional) pp 194-239
[50] Farber J M 1991 Microbiological aspects of modified-atmosphere packing technology-A review J. Food Sci. 9 58-70