Molecular Regulation of Histamine Synthesis

Hua Huang1,2*, Yapeng Li1, Jinyi Liang1,3 and Fred D. Finkelman4,5

1 The Department of Biomedical Research, National Jewish Health, Denver, CO, United States, 2 The Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, IL, United States, 3 Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China, 4 The Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States, 5 The Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States

Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis, a neurotransmitter and a regulator of gastric acid secretion. Histamine is a monoamine synthesized from the amino acid histidine through a reaction catalyzed by the enzyme histidine decarboxylase (HDC), which removes carboxyl group from histidine. Despite the importance of histamine, transcriptional regulation of HDC gene expression in mammals is still poorly understood. In this review, we focus on discussing advances in the understanding of molecular regulation of mammalian histamine synthesis.

Keywords: histamine, histidine decarboxylase, enhancers, promoter, gene regulation

INTRODUCTION

Bill Paul’s impact on immunology is broad and enormous. Like many of his former trainees, I had the good fortune to learn from him. Bill’s mentorship has nurtured my lifelong interest in studying type 2 immune responses that cause allergic diseases and protect against parasitic infections. In the early years of my laboratory, we had investigated how naïve CD4+ T cells commit into T helper type 1 cells by silencing the potential to transcribe the Il4 gene (1–3). More recently, we extended our efforts to understand how a bi-potential basophil and mast cell progenitor acquires the capacity to transcribe a set of basophil-specific or mast cell-specific genes while simultaneously repressing transcription of a gene set that is specific for the other cell type (4). With a newly gained understanding of a network of transcription factors and their targeted enhancers (5), our laboratory has chosen to investigate the Hdc gene (encode histidine decarboxylase, a rate-limiting enzyme for histamine synthesis) in greater detail.

Anaphylaxis is a serious allergic reaction that is rapid in onset and can be life threatening. The clinic manifestations include symptoms that involve the skin, gastrointestinal track, respiratory system, and cardiovascular system (6). Anaphylaxis can be caused by allergy to foods, insect venoms, medications, and other agents (6). The incidence of food-induced anaphylaxis has risen dramatically in developed countries during the past several decades (7–9). The cost of treating food allergy is estimated at about 25 billion dollars annually in the US alone (10).

Histamine plays an essential role in IgE-mediated anaphylaxis, the most common type of anaphylaxis (11–14). Histamine was first purified from ergot fungi (15) in 1910 and from human tissues (16) in 1927. Histamine has pleiotropic effects on skin and the cardiovascular, respiratory, digestive, central nervous, and immune systems (17). It is a profound vasodilator that increases blood vessel permeability, allowing blood leukocytes to enter tissues to promote inflammatory responses. Relatively large quantities of histamine can cause a rapid decrease in body temperature due to massive leakage of blood plasma into the extravascular space. Rapid release of large amounts of histamine leads to anaphylaxis (12, 14). Histamine belongs to a family of biogenic amines that...
includes neurotransmitters, such as serotonin and dopamine, and hormones, such as epinephrine. Biogenic amines that contain one or more amine groups are formed mainly by decarboxylation of amino acids. Histamine is a monoamine synthesized from the amino acid histidine through a reaction catalyzed by the enzyme histidine decarboxylase (HDC), which removes carboxyl group from histidine (Figure 1). Although histamine can be synthesized by bacteria found in contaminated food (18) and in the gut of asthma patients (17, 19), in this review, we focus on discussing advances in the understanding of molecular regulation of mammalian histamine synthesis.

HISTAMINE-PRODUCING CELLS IN MAMMALS AND STIMULI THAT TRIGGER HISTAMINE RELEASE

Histamine is synthesized primarily by mast cells, basophils, histaminergic neurons in the basal ganglia of the brain and enterochromaffin-like cells (ECL) in the stomach. These cells produce large amounts of histamine and are thought to be the major histamine-producing cells (Figure 2). They continuously synthesize histamine, which is then linked to the carboxyl group of heparin and stored in intracellular granules until the cells receive the appropriate activating stimulus. Upon external stimulation, these cells degranulate, releasing the stored histamine. Stimuli that trigger histamine release by these major histamine-producing cells have been reviewed extensively (20–25). Antigen crosslinking of antigen-specific IgE bound to the high-affinity IgE receptor, FcεRI, on the mast cell and basophil surface is the most robust stimulus that triggers histamine release by these cells (20–23). Substance P and allergy-inducing drugs that bind to G-protein-coupled receptors can also trigger basophils and mast cells to release histamine via different signaling pathway (23, 26).

In addition, complement components, such as the C3a and C5a “anaphylatoxins,” have also been shown to induce histamine release by mast cells (27). Many cytokines, including IL-3, IL-18, IL-33, GM-CSF, and SCF, promote histamine synthesis (28–30). In general, cytokines alone do not induce histamine release although it remains controversial whether IL-33 can have this effect. Some reports describe that IL-33 stimulates histamine release (31, 32), while other reports dispute this (33, 34). It is suggested that IL-33 alone does not induce histamine release by basophils, but enhances histamine release in response to IgE/FcεRI crosslinking (35).

HDC AND HISTAMINE SYNTHESIS IN MAMMALS

After several groups purified mammalian HDC protein from fetal rat liver and mouse mastocytoma P-815 cells (43–45), a cDNA that encodes this protein was subsequently cloned (46, 47). The Hdc gene encodes HDC protein, which has a molecular mass of 74 kDa and is a proenzyme with little or no enzyme activity. Once the proenzyme is cleaved at the site near its c-terminus, presumably by Caspase-9, it yields a 53 kDa N-terminal and a 20 kDa C-terminal subunit. The 20 kDa C-terminal subunit is believed to possess inhibitory activity (48). The 53 kDa N-terminal subunit forms a homodimer that is an active decarboxylase (48, 49). HDC is the primary enzyme that catalyzes histamine synthesis. Mice deficient in the Hdc gene fail to synthesize histamine and have reduced or absent IgE-mediated anaphylactic responses (50–53).

Several potent HDC inhibitors have been identified, including the histidine derivatives α-fluoromethyl histidine, histidine methyl ester, and pirodoxal histidine methyl ester (54–56). However, these HDC inhibitors have not been further developed for clinical use.

HDC GENE EXPRESSION AND HISTAMINE SYNTHESIS IN BASOPHILS AND MAST CELLS

Hdc gene expression and histamine synthesis are regulated both positively and negatively by a range of factors. Notably, crosslinking of FcεRI by antigen binding to FcεRI-associated IgE increases mast cell Hdc mRNA expression and histamine synthesis (57, 58). These mast cell activation-induced increases in Hdc mRNA expression and histamine synthesis are also induced by phorbol 12-myristate 13-acetate (59). Hdc mRNA expression and histamine synthesis also increase as immature mast cells undergo maturation. Bone marrow-derived mast cells (BMMCs) appear immature because they contain relatively little histamine and express relatively low levels of FcεRI (60). These immature mast cells develop into mature mast cells with higher amounts of histamine in vivo if they are adoptively transferred into the peritoneal cavity (61). However, it is not clear if in vivo exposure to IgE promotes maturation and increases Hdc mRNA expression.

FIGURE 1 | Histamine synthesis.
In this regard, we demonstrated that chlorotoxin, which induces mast cell maturation (62), strongly upregulates Hdc gene expression in BMMCs within few hours after the treatment (5). The mechanism by which chlorotoxin enhances Hdc gene transcription remains to be determined. It is conceivable that chlorotoxin activates mast cells by binding to an acidic glycosphingolipid, ganglioside G, that has been shown to be expressed on the mast cell surface (62). Chlorotoxin-triggered signals in mast cells then activate transcription factors that directly and rapidly promote Hdc gene transcription. It is unknown whether bacteria in the gut of allergic patients can promote Hdc mRNA and histamine synthesis by producing substances similar to chlorotoxin.

In line with the notion that factors promoting mast cell maturation also enhance histamine synthesis, cytokines that promote basophil and mast cell maturation, such as IL-3, IL-18, IL-33, GM-CSF, and SCF, have also been reported to increase HDC activity (28–30, 63). It is unclear whether these cytokines regulate Hdc gene transcription by increasing the expression of the genes that encode Hdc gene-activating transcription factors or by activating already expressed transcription factors to induce transcription of the Hdc gene. Other substances, including chemokines, neuropeptide substance P, and IL-1α have also been reported to induce Hdc mRNA and histamine synthesis (64, 65).

By contrast, mitochondrial uncoupling protein 2, a mitochondrial transporter protein that transfers anions from the inner to the outer mitochondrial membrane and protons from the outer to the inner mitochondrial membrane, inhibits Hdc mRNA expression and histamine synthesis, possibly by suppressing the production of reactive oxygen species (66). Substances found in fruits and vegetables, such as quercetin (67), and in green tea, such as epigallocatechin gallate, also potentely inhibit HDC (68). More detailed examination of negative regulators of Hdc mRNA expression should promote development of agents that may be able to prevent and treat food allergy and other histamine-mediated allergic inflammatory disorders.

The human HDC gene is located in the 15q21.2 region of chromosome 15. It contains 12 exons (69) (Figure 3). Eight predicted isoforms can be generated by alternative splicing and two actual isoforms have been described (70). HDC mRNA is expressed broadly in many organs, with the highest expression levels found in the gallbladder, stomach, and lung (71). Because the RNA-seq data for normal tissues in the Human Protein Atlas were obtained from intact tissues, it is not clear whether the human HDC gene is expressed predominantly in known histamine-producing cells, such as mast cells and ECL in high HDC-expressing tissues, or predominantly in other cell types in those tissues. In contrast to
the human Hdc gene, the mouse HDC gene is located on chromosome 2 (72). It resembles the human gene in that it contains 12 exons, is expressed broadly in many tissues with the highest expression levels in lung, ovary, and subcutaneous fat pads (72, 73), and is 86% homologous with the human gene (https://www.ncbi.nlm.nih.gov/homologene/20490); however, there are only three predicted isoforms and no isoform, other than the classical one, have been found for murine Hdc (72).

There is still limited knowledge of how Hdc gene expression is regulated transcriptionally. Most previous work has concentrated on the promoter region of this gene. Deletion analysis of Hdc promoter-driven luciferase reporter gene transcription demonstrated that the transcription factor SP1 binds to a GC box (GGGGCGGGG) found in both the human and mouse Hdc gene promoters (72, 74). Several promoter elements have been reported to negatively regulate Hdc gene transcription. For example, the transcription factors YY1 and KLF4 have been shown to negatively regulate the Hdc gene by suppressing SP1 in a gastric cancer cell line (75, 76).

By contrast, Hdc gene expression is positively regulated by the transcription factor GATA binding protein 2 (GATA2), a member of the GATA family of transcription factors. GATA2 is critical for survival and proliferation of hematopoietic stem cells (77, 78), granulocyte-monocyte progenitor differentiation (79), and basophil and mast cell differentiation (80, 81) and is required for connective tissue mast cell development (5). By contrast, basophil development is not affected in connective tissue-specific Gata2-deficient mice (5). We have also found that mucosal and connective tissue-specific Gata2-deficient mice fail to develop both mucosal and connective tissue mast cells, indicating that GATA2 is required for both mucosal and connective tissue mast cell development (Li et al., unpublished data). To distinguish the role of GATA2 in regulating the Hdc gene from its role in mast cell development, we used an inducible gene deletion method to delete the Gata2 gene from mast cells after they had fully differentiated. In this inducible gene deletion model, the enzyme Cre is fused to the estrogen receptor (ER) and the ER-Cre fusion product is induced to enter the cell nucleus to cleave a floxed gene of interest to the estrogen receptor (ER) and the ER-Cre fusion product is induced to enter the cell nucleus to cleave a floxed gene of interest. This method, which is useful for assessing binding of transcription factors to cis regulatory elements in accessible regions. It has been reported that ~60% of annotated enhancers show enhancer activity by the luciferase reporter gene transcription assay alone (5).

Despite remarkable progress in genome-wide annotation of potential enhancers, functional validation of annotated enhancers remains an unmet challenge. Transgenic mice, reporter gene assay, and CRISPR/Cas9 genome editing have been used to validate the biological functions of enhancers identified by histone marks. Each of these methods has its strengths and weaknesses (89, 90). The reporter gene assay has been widely used to assess enhancer activity. It is simple, rapid, and efficient at assessing promoter and enhancer activity in transiently or stably transfected cell lines. The limitation of the transient reporter gene assay is that it does not measure promoter and enhancer activity in the context of chromatin. Despite this disadvantage, this reductionist approach is useful for assessing binding of transcription factors to cis regulatory elements in accessible regions. It has been reported that ~60% of annotated enhancers show enhancer activity by the luciferase reporter gene assay (86, 91–94). The in vivo function of the −8.8 kb Hdc enhancer requires further investigation.

HISTAMINE SYNTHESIS IN THE CENTRAL NERVOUS SYSTEM AND THE STOMACH

In addition to its activity as a vasoactive mediation, histamine is a neurotransmitter and a regulator of gastric acid secretion. HDC mRNA is expressed in the brain exclusively in the basal ganglia (95). Specific ablation of histaminergic neurons leads to repetitive movements (96), that resemble the signs of Tourette syndrome (97). Consistent with this, a nonsense mutation at the human
HDC gene (W317X) has been identified in a family of patients with this syndrome (97, 98) and mice completely deficient in Hdc gene transcription develop a Tourette-like syndrome (97, 99). However, the mechanisms involved in Hdc gene regulation in the basal ganglia are currently unknown. In the stomach, histamine is synthesized in ECL and is released from these cells upon gastrin and acetylcholine stimulation. The released histamine then stimulates parietal cells to secrete stomach acid (25, 100). Mice deficient in the Hdc gene fail to fully acidify their gastric contents (100), which can lead to indigestion, diarrhea, constipation, or rectal itching (101). Clinically, histamine 2 (H$_2$) receptor antagonists, such as ranitidine, are currently used to ameliorate stomach symptoms. Understanding transcriptional regulation of the Hdc gene (W317X) has been identified in a family of patients. The mechanisms involved in Hdc gene regulation in the basal ganglia are currently unknown. In the stomach, histamine is synthesized in ECL and is released from these cells upon gastrin and acetylcholine stimulation. The released histamine then stimulates parietal cells to secrete stomach acid (25, 100). Mice deficient in the Hdc gene fail to fully acidify their gastric contents (100), which can lead to indigestion, diarrhea, constipation, or rectal itching (101). Clinically, histamine 2 (H$_2$) receptor antagonists, such as ranitidine, are currently used to ameliorate stomach symptoms.

REFERENCES

1. Zhang Y, Apilado R, Coleman J, Ben-Sasson S, Tsang S, Hu-Li J, et al. Interferon gamma stabilizes the T helper cell type 1 phenotype. *J Exp Med* (2001) 194(2):165–72. doi:10.1084/jem.194.2.165
2. Zhanng Y, Huang Z, Nishida J, Brown M, Zhang L, Huang H. A continuous T-bet expression is required to silence the interleukin-4-producing potential in T helper type 1 cells. *Immunology* (2009) 128(1):34–42. doi:10.1111/j.1365-2567.2009.03049.x
3. Huang H. Suppressing allergic immune responses. *Front Biosci* (2011) 3:864–70. doi:10.2741/e294
4. Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D, et al. Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. *Immunity* (2013) 39(3):97–110. doi:10.1016/j.immuni.2013.06.012
5. Li Y, Liu B, Harmacek L, Long Z, Liang J, Lukin K, et al. The transcription factors GATA2 and MITF regulate Hdc gene expression in mast cells and are required for IgE/mast cell-mediated anaphylaxis. *J Allergy Clin Immunol* (2017). doi:10.1016/j.jaci.2017.10.043
6. Simons FE. Anaphylaxis. *J Allergy Clin Immunol* (2010) 125(2 Suppl 2):S161–81. doi:10.1016/j.jaci.2009.12.981
7. Sicherer SH, Sampson HA. Food allergy. *J Allergy Clin Immunol* (2010) 125(2 Suppl 2):S116–25. doi:10.1016/j.jaci.2009.08.028
8. Hogan SP, Wang YH, Strait R, Finkelman FD. Food-induced anaphylaxis: mast cells as modulators of anaphylactic severity. *Semin Immunopathol* (2012) 34(5):643–53. doi:10.1007/s00281-012-0320-1
9. Vickery BP, Chin S, Burks AW. Pathophysiology of food allergy. *Pediatr Clin North Am* (2011) 58(2):363–76, ix–x. doi:10.1016/j.pcl.2011.02.012
10. Gupta R, Holdford D, Bilaver L, Dyer A, Holl JD, Meltzer D. The economic impact of childhood food allergy in the United States. *JAMA Pediatr* (2013) 167(11):1026–31. doi:10.1001/jamapediatrics.2013.2376
11. Kemp SF, Lockey RF. Anaphylaxis: a review of causes and mechanisms. *J Allergy Clin Immunol* (2002) 110(5):341–8. doi:10.1067/mai.2002.12681
12. Finkelman FD. Anaphylaxis: lessons from mouse models. *J Allergy Clin Immunol* (2007) 120(3):506–15; quiz 516–7. doi:10.1016/j.jaci.2007.07.033
13. Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the mouse. *J Allergy Clin Immunol* (2002) 109(4):658–68. doi:10.1067/mai.2002.123302
14. Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. *J Allergy Clin Immunol* (2017) 140(2):335–48. doi:10.1016/j.jaci.2017.06.003
15. Dale HH, Laidlaw PP. The physiological action of beta-iminazolylethylamine. *J Physiol* (1910) 41(5):318–44. doi:10.1113/jphysiol.1910.sp001046
16. Best CH, Dale HH, Dudley HW, Thorpe NV. The nature of the vaso-dilator constituents of certain tissue extracts. *J Physiol* (1927) 62(4):397–417. doi:10.1113/jphysiol.1927.sp002369
17. O’Mahony L, Akdis M, Akdis CA. Regulation of the immune response and inflammation by histamine and histamine receptors. *J Allergy Clin Immunol* (2011) 128(6):1153–62. doi:10.1016/j.jaci.2011.06.051
18. Landete JM, De las Rivas B, Marcobal A, Munoz R. Updated molecular knowledge about histamine biosynthesis by bacteria. *Crit Rev Food Sci Nutr* (2008) 48(8):697–714. doi:10.1080/10408390701639041
19. Barwick W, Pugin B, Westermann P, Perez NR, Ferstl R, Wawrzyniak M, et al. Histamine-secreting microbes are increased in the gut of adult asthma patients. *J Allergy Clin Immunol* (2016) 138(5):1491–4.e1497. doi:10.1016/j.jaci.2016.05.049
20. Giffilian AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. *Nat Rev Immunol* (2006) 6(3):218–30. doi:10.1038/nri1782
21. Caslin HL, Kiwanuka KN, Haque TT, Taruselli MT, MacKnight HP, Paranjape A, et al. Controlling mast cell activation and homeostasis: work influenced by Bill Paul that continues today. *Front Immunol* (2018) 9:868. doi:10.3389/fimmu.2018.00868
22. Gaudiozio N, Sibiano R, Marichal T, Starkl P, Reber LL, Cenac N, et al. Different activation signals induce distinct mast cell degranulation strategies. *J Clin Invest* (2016) 126(10):3981–98. doi:10.1172/JCI85538
23. Cildir G, Paut H, Lopez AF, Tergaonkar V. The transcriptional program, functional heterogeneity, and clinical targeting of mast cells. *J Exp Med* (2017) 214(9):2491–506. doi:10.1084/jem.201709910
24. Rapanelli M, Pittenger C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions. *Neuropharmacology* (2016) 106:85–90. doi:10.1016/j.neuropharm.2015.08.019
25. Hersey SJ, Sachs G. Gastric acid secretion. *Physiol Rev* (1995) 75(1):155–89. doi:10.1152/physrev.1995.75.1.155
26. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. *Nature* (2015) 519(7542):237–41. doi:10.1038/nature14022
27. Woolhiser MR, Brockow K, Metcalfe DD. Activation of human mast cells by aggregated IgG through FcgammaRI: additive effects of C3a. *Clin Immunol* (2004) 120(2):172–80. doi:10.1016/j.clim.2003.11.007
28. Sahuja R, Ketelaar ME, Hawro T, Church MK, Maurer M, Navijn MC. The role of the IL-33/IL-1RL1 axis in mast cell basophil activation in allergic
37. Szeberenyi JB, Pallinger E, Zsinko M, Pos Z, Rothe G, Orso E, et al. Inhibition of effects of endogenously synthesized histamine disturbs in vitro human dendritic cell differentiation. Mol Med Rep (2014) 44(1):33–6. doi:10.1002/mmr.20144262

38. Makabe-Kobayashi Y, Hori Y, Adachi T, Ishigaki-Suzuki S, Kikuchi Y, Kagaya Y, et al. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis. J Allergy Clin Immunol (2002) 110(2):298–303. doi:10.1067/aji.2002.125977

39. Nakazawa S, Sakanaoka M, Furuta K, Natsuhara M, Takano H, Tsuchiya S, et al. Histamine synthesis is required for granule maturation in murine mast cells. Eur J Immunol (2014) 44(1):204–14. doi:10.1002/eji.201343838

40. Kollonitsch J, Perkins LM, Patchett AA, Doldouras GA, Marburg S, Duggan DE, et al. Selective inhibitors of biosynthesis of aminergic neurotransmitters. Nature (1997) 387(6634):564–9. doi:10.1038/387564a0

41. Kelley JL, Miller CA, White HL. Inhibition of histidine decarboxylase. Derivatives of histidine. J Med Chem (1977) 20(4):506–9. doi:10.1021/jm00214a009

42. Wu F, Yu J, Gehring H. Inhibitory and structural studies of novel coenzyme-substrate analogs of human histidine decarboxylase. FASEB J (2008) 22(3):890–7. doi:10.1096/fj.07-9566com

43. Castellani ML, Perrellia A, Kempuraj DJ, Boucher W, Tagen M, Salini V, et al. Immunological activation of human umbilical cord blood mast cells induces tryptase secretion and interleukin-6, and histidine decarboxylase mRNA gene expression. Pharmacol Res (2007) 55(1):57–63. doi:10.1016/j.phrs.2006.10.006

44. Chhiwa KD, Hsu CL, BERdnikovs S, Bryce PF. Transcriptional heterogeneity of mast cells and basophils upon activation. J Immunol (2017) 198(12):4688–78. doi:10.4049/jimmunol.1601825

45. Nagashima Y, Kako K, Kim JD, Fukamizu A. Enhanced histamine production from mouse mastocytoma P-815 cells. FEMS Lett (1990) 276(1–2):214–8. doi:10.1016/0168-6446(90)80545-T

46. Furuta K, Nakayama K, Aginagawa Y, Ichikawa A, Tanaka S. Activation of histidine decarboxylase through post-translational cleavage by caspase-9 in a mouse mastocytoma P-815. J Biol Chem (2007) 282(18):13438–46. doi:10.1074/jbc.M609943200

47. Komori H, Nitta Y, Ueno H, Higuchi Y. Structural study reveals that Ser-354 determines substrate specificity on human histidine decarboxylase. J Biol Chem (2012) 287(34):29175–83. doi:10.1074/jbc.M112.381897

48. Ohtsu H, Tanaka S, Terui T, Hori Y, Makabe-Kobayashi Y, Pejler G, et al. Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBBS Lett (2001) 502(1–2):53–6. doi:10.1006/flet.2001.47663-1

49. Halgren J, Gourish MF. Granule maturation in mast cells: histamine in control. Eur J Immunol (2014) 44(1):33–6. doi:10.1002/eji.201344262

50. Furuta K, Nakayama K, Nakamura M, Hirai K, Ichikawa A, Tanaka S. Activation of histidine decarboxylase by phorbol ester through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells. Mol Med Rep (2012) 6(5):944–8. doi:10.3892/mmr.2012.1049

51. Galli SJ, Dvorak AM, Marcum JA, Ishizuka T, Nabel G, Der Simonian H, et al. Mast cell clones: a model for the analysis of cellular maturation. J Cell Biol (1982) 92(2 Pt 1):435–45. doi:10.1083/jcb.92.2.435-a

52. Nakano T, Sonoda T, Hayashi C, Yamatodani A, Kanayama Y, Yamamura T, et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast-cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med (1985) 162(3):1025–43.

53. Katz HR, Levine JS, Austen KF. Interleukin-3 dependent mouse mast cells express the choleria toxin-binding acidic glycosphingolipid, ganglioside GM1, and increase their histamine content in response to toxin. J Immunol (1987) 139(5):1640–6.

54. Wang Z, Mascarenhas N, Eckmann L, Miyamoto Y, Sun X, Kawakami T, et al. Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes. J Clin Immunol (2017) 139(4):1205–16. e1206. doi:10.1007/jcim.2016.09.019

55. Conti P, Pang X, Boucher W, Letourneau R, Reale M, Barbacane RC, et al. Impact of Rantes and MCP-1 chemokines on in vivo basophilic cell recruitment in rat skin injury model and their role in modifying the protein and mRNA levels for histidine decarboxylase. Blood (1997) 89(11):4120–7.

56. Castellani ML, Ciampoli C, Felaco M, Tete S, Conti CM, Salini V, et al. Neuropeptide substance P induces mRNA expression and secretion of CCL8 chemokine, and HDC in human umbilical cord blood mast cells. Clin Invest Med (2008) 31(6):E362–73. doi:10.25011/cim.v31i6.4923

57. Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley CL, Shirihai OS, et al. Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J Immunol (2009) 183(10):6313–9. doi:10.4049/jimmunol.0803422
67. Kempuraj D, Castellani ML, Petrarca C, Frydas S, Conti P, Theoharides TC. Inhibitory effect of quercetin on trypstatine and interleukin-6 release, and human decarboxylase mRNA transcription by human mast cell-1 cell line. *Clin Exp Med* (2006) 6(4):150–6. doi:10.1097/CEM.0b013e3280114474

68. Rodriguez-Caso C, Rodriguez-Agudo D, Sanchez-Jimenez F, Medina MA. Green tea epigallocatechin-3-gallate is an inhibitor of mammalian histidine decarboxylase. *Cell Mol Life Sci* (2003) 60(8):1760–3. doi:10.1007/s00018-003-3135-3

69. Yatsunami K, Ohtsu H, Tsuchikawa M, Ohkawara Y, Ohtsu H, Tsuchikawa M, Higuchi T, Ishibashi K, Shida A, et al. Structure of the L-histidine decarboxylase gene. *J Biol Chem* (1994) 269(2):1554–9.

70. Mamune-Sato R, Yamaudi K, Tanno Y, Ohtsu H, Katayose D, et al. Structure of the L-histidine decarboxylase gene: structure and transcriptional regulation by CpG methylation in the promoter region. *Nucleic Acids Res* (2002) 30(14):3267–33. doi:10.1093/nar/28.14.2627

71. Fagerberg L, Hallstrom BM, Oksvold P, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. *Mol Cell Proteomics* (2014) 13(2):397–406. doi:10.1074/mcp.M113.035600

72. Suzuki-Ishigaki S, Numayama-Tsuura K, Kuramasu A, Sakurai E, Makabe Y, Shimura S, et al. The mouse L-histidine decarboxylase gene: structure and transcriptional regulation by CpG methylation in the promoter region. *Nucleic Acids Res* (2002) 30(14):3267–33. doi:10.1093/nar/28.14.2627

73. Yue F, Cheng Y, Brechi A, Vierstra J, Wu Y, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. *Nature* (2014) 515(7527):355–64. doi:10.1038/nature13992

74. Hirasawa N, Torigoe M, Kano K, Ohuchi K. Involvement of Sp1 in lipopolysaccharide-induced expression of HDC mRNA transcription by human mast cell-1 cell line. *Distinct and predictive chromatin signatures of transcriptional promoters and their use in understanding of cell type identity and disease*.

75. Ai W, Liu Y, Wang TC. Yin yang 1 (YY1) represses histidine decarboxylase mRNA transcription by human mast cell-1 cell line. *Clin Exp Med* (2015) 42(1):186–98. doi:10.1007/s11391-014-0121-4

76. Li Y, Qi X, Liu B, Huang H. The STAT5-GATA2 pathway is critical in enhancer activity during embryonic development. *Transcriptional Regulation of the Hdc Gene* (2014) 44(2):148–56. doi:10.1038/nature14064

77. Koues OJ, Kovalewski RA, Chang JW, Pyfrom SC, Schmidt JA, Luo H, et al. Enhancer sequence variants and transcription-factor derepression synergize to construct pathogenic regulatory circuits in B-cell lymphoma. *Immunity* (2015) 42(1):186–98. doi:10.1016/j.immuni.2014.12.021

78. May D, Blow MJ, Kaplan T, McCulley DJ, Jensen BC, Akiyama JA, et al. Large-scale discovery of enhancers from human heart tissue. *Nat Genet* (2011) 44(1):89–93. doi:10.1038/ng.1606

79. Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. Genome-wide quantitative enhancer activity maps identified by STARR-seq. *Science* (2013) 339(6123):1074–7. doi:10.1126/science.1232542

80. Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. *Nat Genet* (2012) 44(2):148–56. doi:10.1038/nature14064

81. Kusonkong K, Erkan-Sencicek AG, Xu M, Ohuts H, Anderson GM, State MW, et al. High levels of histidine decarboxylase in the striatum of mice and rats. *Neurosci Lett* (2011) 495(2):110–4. doi:10.1016/j.neulet.2011.03.050

82. Rapanelli M, Frick L, Bito H, Pitterger C. Histidine modulation of the basal ganglia circuitry in the development of pathological grooming. *Proc Natl Acad Sci U S A* (2017) 114(25):6599–604. doi:10.1073/pnas.1704571114

83. Baldis LD, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, et al. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice. *Neuron* (2014) 81(1):77–90. doi:10.1016/j.neuron.2013.10.052

84. Erkan-Sencicek AG, Stillman AA, Ghosh AK, Bilgur K, O’Roak BJ, Mason CE, et al. L-histidine decarboxylase and Tourette’s syndrome. *N Engl J Med* (2010) 362(20):1901–8. doi:10.1056/NEJMoa0970066

85. Xu M, Li L, Ohtsu H, Pitterger C. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear. *Neurosci Lett* (2015) 595:50–3. doi:10.1016/j.neulet.2015.03.067

86. Tanaka S, Hamada K, Yamada N, Sugita Y, Toinai S, Hunyady B, et al. Gastric acid secretion in L-histidine decarboxylase-deficient mice. *Gastroenterology* (2002) 122(1):145–55. doi:10.1053/gast.2002.30312

87. Saltzman JR, Kemp JA, Golner BB, Pedrosa MC, Dallal GE, Russell RM. Effect of hypochlorhydria due to omeprazole treatment or atrophic gastritis on protein-bound vitamin B12 absorption. *J Am Coll Nutr* (1994) 13(6):584–91. doi:10.1080/07315729.1994.10718452

88. Brodgen RN, Carmine AA, Heel RC, Speight TM, Avery GS. Ranitidine: a review of its pharmacology and therapeutic use in peptic ulcer disease and other allied diseases. *Drugs* (1982) 24(4):267–303. doi:10.2165/00003495-198224040-00002

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.