Notes on currently accepted species of *Colletotrichum*

Jayawardena RS\(^1,2\), Hyde KD\(^2,3\), Damm U\(^4\), Cai L\(^5\), Liu M\(^1\), Li XH\(^1\), Zhang W\(^1\), Zhao WS\(^6\) and Yan JY\(^1,\ast\)

\(^1\) Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China
\(^2\) Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
\(^3\) Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
\(^4\) Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
\(^5\) State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
\(^6\) Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY 2016 – Notes on currently accepted species of *Colletotrichum*. Mycosphere 7(8) 1192–1260, Doi 10.5943/mycosphere/si/2c/9

Abstract

Colletotrichum is an economically important plant pathogenic genus worldwide, but can also have endophytic or saprobic lifestyles. The genus has undergone numerous revisions in the past decades with the addition, typification and synonymy of many species. In this study, we provide an account of the 190 currently accepted species, one doubtful species and one excluded species that have molecular data. Species are listed alphabetically and annotated with their habit, host and geographic distribution, phylogenetic position, their sexual morphs and uses (if there are any known). There are eleven species complexes in *Colletotrichum* and 23 singleton species. The main characters of each species complex are detailed with illustrations. Phylogenetic trees are provided for the whole genus and each species complex. Genes and combination of genes that can be used for identification of the species complexes are suggested. Specific genes that can be used in species identification are given when possible.

Key words – Glomerellaceae – nomenclature – phylogeny – species complex – taxonomy

Introduction

The genus *Colletotrichum* was introduced by Corda (1831) and belongs to the family Glomerellaceae (Glomerellales, Sordariomycetes), and is the sole member of this family (Réblová et al. 2011, Maharachchikumbura et al. 2015, 2016). Species of this genus are important pathogens, some are endophytes as well as saprobes (Cannon et al. 2012, Hyde et al. 2014, Jayawardena et al. 2016a).

At the time of the first monographic treatment of *Colletotrichum* (von Arx 1957), around 750 names existed (Cannon et al. 2012). Von Arx (1957) reduced this to 11 taxa based on morphological characters. Sutton (1980) accepted 22 species, while Sutton (1992) accepted 39 species based on morphological and cultural characteristics. Hyde et al. (2009b) provided the first comprehensive overview of this genus with 66 names in common use and 19 doubtful names and also highlighted the need to revise this genus by using molecular methods (Hyde et al. 2009a). This
was the beginning of the still ongoing revision of the genus based on multi-locus sequence data in which several species were revised and typified or newly described and several species complexes were detected (Cannon et al. 2012, Damm et al. 2009, 2012a, b, 2013, 2014, Weir et al. 2012, Crouch et al. 2009a, 2014, Hyde et al. 2014, Liu et al. 2015a). Index Fungorum (2016) lists 820 epithets (www.indexfungorum.org; accesses 7th August 2016) under Colletotrichum, but only less than 200 names are currently accepted (Hyde et al. 2014).

Misidentification of Colletotrichum species is a frequent mistake that happens due to few distinctive morphological characters available for identification. Misunderstanding of their host specific nature has also lead to misapplication and misidentification of species (Cannon et al. 2012). Many older Colletotrichum names lack type specimens and authentic living strains for molecular analysis. This tends to get in the way of reconstructing a natural classification system for Colletotrichum (Cai et al. 2009, Hyde et al. 2009a,b, Cannon et al. 2012). Epi- or neotypes of the Colletotrichum species are being designated to preserve the current application of names according to the International Code of Nomenclature for Algae, Fungi and Plants (Hawksworth 2011). Before assigning an epitype for a species, the fresh collection needs to be carefully compared to the type material, if preserved. An epitype should have morphological characteristics similar to the holotype or the original description and originate from the same geographical region and host (Ariyawansa et al. 2014). Once an epitype is designated, questions of species diversity of this genus can be addressed on the basis of the DNA sequence data of the ex-epitype strain.

Currently, researchers strongly recommend the application of a polyphasic approach, including the analysis of geographical, ecological, morphological and genetic data in order to establish a natural classification system for the genus Colletotrichum (Cai et al. 2009). For species delimitation within this genus, phylogenetic analysis based on concatenated loci and the application of the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) have proven to be powerful tools (Cannon et al. 2012, Liu et al. 2016). Coalescent-based species delimation methods can be used to infer the dynamic of divergence, evolutionary process and the relationships among species (McCormack et al. 2009, Liu et al. 2016).

Most of the species in this genus are important phytopathogens, while some are endophytes and saprobes. The basis of the current study for the lifestyles is that if a fungus was isolated from a diseased tissue (fruit, leaf and stem) it is referred to as a pathogen; if a fungus was isolated from a healthy tissue it is considered as an endophyte and if a fungus was isolated from a dead plant matter is considered as a saprobe.

This study uses Cannon et al. (2012) as the starting point for the accepted species, as well as published records since that study. An overview of the currently accepted species in the genus with their hosts, geographic distribution, phylogenetic position, sexual morphs as well as their uses (if there are any known) is provided. The main characters of each species complex are illustrated. Phylogenetic trees are provided for the whole genus and the species complexes. Genes necessary to distinguish the species within the different species complexes are also provided when possible.

Material and Methods

This study deals with the species included in Cannon et al. (2012) and newly described species after this publication. The USDA fungal databases (Farr & Rossman 2016) have been used in order to gather information on host association and geographic distribution. Additional, new disease reports were also included.

Morphology

Conidial and appresorial characters of different species complexes were focused in this study. Photo plates were created from the photos provided by U. Damm and F. Liu. Line diagrams were drawn where necessary, using transparent drawing papers and drawing pens.

Phylogenetic Analysis

Actin (ACT), β-tubulin2 (TUB2), chitin synthase (CHS-1), DNA lyase (Apn2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), histone 3
(HIS3), internal transcribed spacers (ITS), manganese-superoxide dismutase (SOD2), mating type gene (Mat1), and Apn2/MAT1GS (Ap/Mat) sequences of each accepted species were downloaded, if available, from NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/). A backbone phylogenetic tree of the whole genus and separate phylogenetic trees of the species complexes were constructed.

Single gene regions were aligned using Clustal X1.81 (Thompson et al. 1997) and combined using BioEdit v.7.0.9.0 (Hall 1999). Further alignment of the sequences was done using default settings of MAFFT v.7 (Katoh & Toh 2008; http://mafft.cbrc.jp/alignment/server/) and manual adjustment was conducted using BioEdit where necessary. Maximum Parsimony analysis (MP) was performed using PAUP (Phylogenetic Analysis Using Parsimony) v. 4.0b10 (Swofford 2002) to obtain the most parsimonious trees. Gaps were treated as missing data and ambiguously aligned regions were excluded. Trees were inferred using the heuristic search option with Tree Bisection-Reconnection branch swapping and 1000 random sequence additions. Maxtrees were set up to 5000, branches of zero length were collapsed and all multiple parsimonious trees were saved. Descriptive tree statistics for parsimony (tree length, consistency index, retention index, rescaled consistency index, and homoplasy index) were calculated for trees generated under different optimality criteria. The robustness of the most parsimonious trees was evaluated by 1000 bootstrap replications resulting from maximum parsimony analysis (Hillis & Bull 1993). Kishino-Hasegawa tests (Kishino & Hasegawa 1989) were performed in order to determine whether trees were significantly different.

A maximum likelihood analysis was performed for the whole genus in raxmlGUIv.0.9b2 (Silvestro & Michalak 2010). Rapid bootstrapping with 1000 non-parametric bootstrapping iterations, using the general time reversible model (GTR) with a discrete gamma distribution, was set as the search strategy.

Bayesian inference (BI) was used in addition to construct the phylogenies using Mr. Bayes v.3.1.2 (Ronquist et al. 2003). MrModeltest v. 2.3 (Nylander 2004) was used to carry out statistical selection of best-fit model of nucleotide substitution and was incorporated into the analysis. Six simultaneous Markov chains were run for 1 000 000 generations and trees were sampled every 100th generation. The 2000 trees representing the burn-in phase of the analyses, were discarded and the remaining 8000 trees used for calculating posterior probabilities (PP) in the majority rule consensus tree. The fungal strains that were used for this study are listed in Table 1 with details of type cultures and sequence data.

Results and Discussion

The *Colletotrichum* names that are currently accepted are listed alphabetically below, with notes of the authorities and publication details, habits, hosts, geographical distribution, uses and sexual morphs (if there are any) as well as systematic position. The 190 accepted names are also listed in Table 1. Liu et al. (2016) emphasized on the importance of using polyphasic approaches such as genealogical concordance phylogenetic species recognition (GCPSR) and coalescent methods when describing new species in morphologically conserved genera. A backbone tree of the genus *Colletotrichum* comprising 189 species using five gene regions have been constructed (Fig. 1). However, several species have been excluded from this analysis due to the lack of sequences. All the species complexes can be distinguished effectively from each other by using ITS sequence data alone. Species within species complexes can be resolved with the use of additional genes are mentioned with the different complexes.

Acutatum species complex

This species complex consists of 34 species that include *C. acutatum* and its close relatives. Members of this species complex often cause fruit rots (Damm et al. 2012b). Most species within this complex have conidia with at least one acute end (Fig. 2) (Damm et al. 2012b). A combined gene analysis for this complex using ITS, GAPDH, CHS-1, HIS3, ACT and TUB2 sequences is
given in Fig. 3. In order to differentiate species within this complex effectively, use of both TUB2 and GAPDH are recommended (Damm et al. 2012b).

Fig. 1 One of the 100 most parsimonious trees obtained from a heuristic search of combined ITS, GAPDH, CHS-1, ACT and TUB2 sequence data of the genus Colletotrichum. Parsimony and likelihood bootstrap support values \(\geq 50\% \) are indicated at the nodes and branches with Bayesian posterior probabilities above 0.80 are given in bold. The ex-type strains are in bold. The tree is rooted with Monilochaetes infuscans CBS 869.96
Fig. 1 (continued)

Species complexes
Fig. 2 *Colletotrichum acutatum* (from ex-type strain CBS 112996, on SNA) a–e. Conidiophores f. Conidia g–n. Appressoria. Scale bars: f, g = 10μm; scale bar of f and g applies to a–n (Courtesy of U. Damm).

Fig. 3 One of the eight most parsimonious trees obtained from a heuristic search of combined ITS, GAPDH, CHS-1, HIS3, ACT and TUB2 sequence data of taxa from the acutatum species complex. Parsimony bootstrap support values above 50% are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. orchidophilum* CBS 632.80.
Boninense species complex

This species complex is defined as a collective of *C. boninense* and 18 closely related species with three main subclades containing 14, three and two species, respectively. Typical characters of species in this complex are the conidia that have a prominent basal scar as well as the conidiogenous cells with rather prominent periclinal thickening that sometimes extend to form a new conidiogenous locus (Damm et al. 2012a). Species of this complex are pathogens or endophytes (Damm et al. 2012a). A combined analysis of ITS, GAPDH, CHS-1, ACT, HIS3, TUB2 and CAL sequence of this species complex is given in Fig. 5. All species within this complex can be recognized with GAPDH alone (Damm et al. 2012a).

Fig. 4 Colletotrichum boninense (from ex-type strain CBS 123755, on SNA) a. Conidiophores b. Conidia c–h. Appressoria. Scale bars: b, c = 10μm; scale bar of b and c applies to a–h (Courtesy of U. Damm).

Fig. 5 The most parsimonious tree obtained from a heuristic search of combined ITS, GAPDH, CHS-1, ACT, HIS3, TUB2 and CAL sequence data of taxa from the boninense species complex. Parsimony bootstrap support values above 50 % are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. truncatum* CBS 151.35.
Fig. 6 Colletotrichum caudatum redrawn from NagRaj (1993). a. Seta with conidiogenous cells and developing conidia b. Germinating conidium c. Appressoria. Scale bars: a,b = 20μm, c = 5μm.
Fig. 7 The most parsimonious tree obtained from a heuristic search of ITS sequence data of taxa from the caudatum and graminicola species complex. Parsimony bootstrap support values above 50% are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. spaethianum* CBS 167.49.

Caudatum species complex

This species complex is defined as a collective of *C. caudatum* and seven closely related species. This complex can be distinguished by the presence of a filiform appendage at the apex of the conidium (Fig. 6) (Crouch 2014). A phylogenetic tree using ITS for the species of caudatum and graminicola species complexes has been constructed (Fig. 7). According to this phylogenetic tree, three species; *C. caudasporum*, *C. duyuensis* and *C. ochracea* which were previously identified to be in the graminicola species complex, clustered with the caudatum species complex.
However, further studies are needed to clarify whether to combine this complex with graminicola complex or to keep it as it is. Except for *C. ochracea*, the other two species agree with the morphology of the caudatum species complex. According to Fig. 7 caudatum complex appears to be a specific branch within the graminicola complex.

Dematiuim species complex

The dematiuim species complex includes *C. dematiuim* and ten closely related species. Species of this complex appear to be characteristic of temperate climates (Cannon et al. 2012). The type species of *Colletotrichum, C. lineola*, belongs in this species complex (Damm et al. 2009). There are two subclades within this complex. One clade comprises eight saprobic taxa, while the other comprises two pathogenic taxa and *C. sedi* being a saprobe. Typical are the conidia with an almost straight central part that bent abruptly to the apex and the truncate base, which gives them an almost angular shape (Fig. 8) (Damm et al. 2009). A combined gene analysis of ITS, GAPDH, CHS-1, ACT and TUB2 sequences of this species complex is shown in Fig. 9.

![Fig. 8 Colletotrichum dematiuim (from ex-type strain CBS 125.25, on SNA) a–b. Conidiophores c. Conidia d–i. Appressoria. Scale bars: c, d = 10μm; scale bar of c and d applies to a–i (Courtesy of U. Damm).](image)

Destructivum species complex

The destructивum species complex is a collective of *C. destructivum* and 14 closely related species that are mainly plant pathogens (Damm et al. 2014). The lifestyle of all species in this complex that had been examined in vivo is hemibiotrophic (Damm et al. 2014). O’Connell et al. (2012) showed that the destructивum species complex is monophyletic and distinct from other *Colletotrichum* species complexes. Species of this complex are characterized by conidia that are slightly curved due to their unilaterally tapering ends and by small inconspicuous acervuli with rather effuse growth (Fig. 10) (Damm et al. 2014). A combined analysis of ITS, GAPDH, CHS-1, HIS3, ACT and TUB2 sequences is given in Fig. 11. According to Damm et al. (2014) all species can be identified by a combination of TUB2 and GAPDH sequences.

Gigasporum species complex

The gigasporum species complex consists of *C. gigasporum* and five closely related species and is characterised by the formation of large (> 20 μm) conidia (Fig. 12) (Liu et al. 2014). Species of this complex can be either pathogens or endophytes. A combined analyses of ACT, CHS-1, GAPDH, ITS and TUB2 sequences of this complex is given in Fig. 13. All species within this complex can be identified by any of these five genes (Liu et al. 2014).
Fig. 9 One of the two most parsimonious trees obtained from a heuristic search of combined ITS, GAPDH, CHS-1, ACT and TUB2 sequence data of taxa from the dematium species complex. Parsimony bootstrap support values above 50 % are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. nigrum* CBS 169.49.

Fig. 10 *Colletotrichum destructivum* (from ex-type strain CBS 136228, on SNA) a–b. Conidiophores c. Conidia d–i. Appressoria. Scale bars: c, d = 10μm; scale bar of c and d applies to a–i (Courtesy of U. Damm).
Fig. 11 One of the two most parsimonious trees obtained from a heuristic search of combined ITS, GAPDH, CHS-1, HIS3, ACT and TUB2 sequence data of taxa from the destructivum species complex. Parsimony bootstrap support values above 50% are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with C. coccodes CBS 369.75.
Fig. 12 *Colletotrichum gigasporum* (from strain CBS 181.52, on SNA) a. Conidiophores and a seta b. Conidia. Scale bars: a–b = 10μm (Courtesy of F. Liu).

Fig. 13 One of the two most parsimonious trees obtained from a heuristic search of combined ACT, CHS-1, GAPDH, ITS and TUB2 sequence data of taxa from the gigasporum species complex. Parsimony bootstrap support values above 50 % are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. dematium* CBS 125.25.
Gloeosporioides species complex

The gloeosporioides species complex is a collective of *C. gloeosporioides* and 37 closely related species (Fig. 14). This species complex mainly consists of plant pathogens (Weir et al. 2012), but some species were isolated as endophytes (Liu et al. 2015a). Conidia of this species complex are cylindrical with rounded ends tapering slightly towards the base (Fig. 13) (Weir et al. 2012). Based on the multigene phylogeny, Weir et al. (2012) recognized two subclades within the species complex, namely kahawae and musae (Fig. 15). A combination of *ApMat* and GS sequences can be used to distinguish the species within this complex (Liu et al. 2015a). A phylogenetic tree constructed using *ApMat* gene alone for this complex is given in Fig. 16.

Fig. 14 Colletotrichum gloeosporioides (from strain CGMCC 3.17360, on SNA). a. Conidiogenous cells b. Conidia c–d. Appressoria. Scale bars: b, c = 10μm; scale bar of b and c applies to a–d (Courtesy of F. Liu).

Graminicola species complex

The graminicola species complex includes *C. graminicola* and 14 closely related species that are only associated with certain grasses (*Poaceae*) and form a monophyletic clade (Cannon et al. 2012). Species are characterized by widely falcate conidia (Fig. 17) (Crouch et al. 2009a). Several species of this complex are important pathogens. Results of a combined analysis of ITS, GAPDH, CHS-1, ACT and TUB2 sequence data are presented in Fig. 18.

Orbiculare species complex

The orbiculare species complex includes *C. orbiculare* and seven closely related species that are plant pathogens and are restricted to specific herbaceous host genera or species (Damm et al. 2013). The lifestyle of these species has been characterized as hemibiotrophic (Goodwin 2001, Damm et al. 2013). Members of the orbiculare species complex form conidia that are straight and relatively broad and short. Appressoria of these species are small and simple in outline (Fig. 19) (Damm et al. 2013). Results of a combined analysis of ITS, GAPDH, CHS-1, ACT, HIS3, TUB2 and GS sequence data are presented in Fig. 20. All species in this complex can be identified based on GS sequences alone (Damm et al. 2013).

Spaethianum species complex

The spaethianum species complex includes *C. spaethianum* and nine closely related species. Species in this species complex form complex appressoria (Fig. 21) (Damm et al. 2009). A multigene analysis comprised of ITS, GAPDH, CHS-1, ACT, HIS3 and TUB2 is given in Fig. 22.
Fig. 15 One of the ten most parsimonious trees obtained from a heuristic search of combined ACT, TUB2, CAL, CHS-1, GAPDH and ITS sequence data for taxa from the gloeosporioides species complex. Parsimony bootstrap support values above 50% are indicated at the nodes and branches with Bayesian posterior probabilities above 0.90 are given in bold. The ex-type strains are in bold. The tree is rooted with C. boninense CBS 123755.
Fig. 16 One of the two most parsimonious trees obtained from a heuristic search of *Apmat* sequence data of taxa from the gloeosporioides species complex. Parsimony bootstrap support values above 50 % are indicated at the nodes and branches with Bayesian posterior probabilities above 0.80 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. xanthorrhoeae* ICMP 17903.
Fig. 17 *Colletotrichum graminicola* redrawn from Politis (1975) and Panaccione et al. (1989). a. Tip of a seta b. Base of a seta c. Conidiogenous cells d. Conidia e. Appressoria. Scale bars: a, b = 20μm, c = 5μm.

Fig. 18 One of the two most parsimonious trees obtained from a heuristic search of combined ITS, GAPDH, CHS-1, ACT and TUB2 sequence data of taxa from the graminicola species complex. Parsimony bootstrap support values above 50 % are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. spaethianum* CBS 167.49.
Fig. 19 *Colletotrichum orbiculare* (a, d–h from ex-type strain CBS 570.97, b–c from strain CBS 133196, on SNA) a–c. Conidiophores d. Conidia e–h. Appressoria. Scale bars: d, e = 10μm; scale bar of d and e applies to a–h (Courtesy of U. Damm).

Fig. 20 One of the two most parsimonious trees obtained from a heuristic search of combined ITS, GAPDH, CHS-1, ACT, HIS3, TUB2 and GS sequence data of taxa from the orbiculare species complex. Parsimony bootstrap support values above 50% are indicated at the nodes and branches with Bayesian posterior probabilities above 0.90 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. brevisporum* BCC 38876.
Fig. 21 *Colletotrichum spaethianum* (a, c–g from CBS 1100063, b from ex-type strain CBS 167.49, on SNA) a. Conidiophores b. Conidia c–g. Appressoria. Scale bars: a–c = 10μm (Courtesy of U. Damm).

Fig. 22 The most parsimonious tree obtained from a heuristic search of combined ITS, GAPDH, CHS-1, ACT, HIS3 and TUB2 sequence data of taxa from the spaethianum species complex. Parsimony bootstrap support values above 50 % are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. hsienjenchang* MAFF 243051.
Truncatum species complex

The truncatum species complex includes *C. truncatum* and three closely related species that are pathogens (Damm et al. 2009, Wikee et al. 2011). This complex can be distinguished by their curved conidia with truncated base and acute, more strongly curved apex. Presence of appressoria in groups and dense clusters is also characteristic (Fig. 23) (Damm et al. 2009). A combined analysis of ITS, GAPDH, CHS-1, ACT, HIS3 and TUB2 sequences is given in Fig. 24.

![Image](image.jpg)

Fig. 23 *Colletotrichum truncatum* (a–c from ex-type strain CBS 151. 35, d–f from strain CBS 120709, on SNA). a. Tip of the seta b. Base of the seta c. Conidiophores d. Conidia e. Appressoria. Scale bars: a,e = 10μm (Courtesy of U. Damm).

![Image](image.png)

Fig. 24 The most parsimonious tree obtained from a heuristic search of combined ITS, GAPDH, CHS-1, ACT, HIS3 and TUB2 sequence data of taxa from the truncatum species complex. Parsimony bootstrap support values above 50 % are indicated at the nodes and branches with Bayesian posterior probabilities above 0.95 are given in bold. The ex-type strains are in bold. The tree is rooted with *C. boninense* CBS 123755.
Other taxa

There are several species that do not belong to any of these species complexes. These species are referred in this paper as singleton species, following the term used in Hyde et al. (2014).

Accepted species of Colletotrichum with notes

1. **Colletotrichum abscissum** Pinho & O.L. Pereira, Persoonia, Mol. Phyl. Evol. Fungi 34: 237 (2015)

 This species has been recorded as a pathogen on *Citrus sinensis* causing postbloom fruit drop disease and on *Psidium guajava* in Brazil and the USA (Crous et al. 2015, Bragança et al. 2016). *Colletotrichum abscissum* belongs to the acutatum species complex and is phylogenetically closely related to *C. tamarilloi* and *C. costaricense* (Crous et al. 2015).

2. **Colletotrichum acerbum** Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 43 (2012)

 This taxon causes bitter rot of *Malus domestica* in New Zealand and seems to be endemic (Damm et al. 2012b). *Colletotrichum acerbum* belongs to the acutatum species complex and is a sister taxon to *C. rhombiforme* (Damm et al. 2012b). According to Damm et al. (2012b) this species can distinguished most effectively with TUB2 and ITS.

3. **Colletotrichum acutatum** J.H Simmonds, Queensland J. agric. Anim. Sci. 22: 458 (1965)

 This taxon mainly causes fruit rots on a wide range of plants including the families *Anacardiaceae*, *Apocynaceae*, *Campanulaceae*, *Caricaceae*, *Fabaceae*, *Oleaceae*, *Pinaceae*, *Plumbaginaceae*, *Polemoniaceae*, *Proteaceae*, *Ranunculaceae*, *Rosaceae*, *Rubiacceae*, and *Solanaceae* worldwide (Damm et al. 2012b). *Colletotrichum acutatum* is the representative species of the acutatum species complex, and can be seperated with the use of any of the genes (ITS, GAPDH, CHS-1, HIS3, ACT or TUB2) used in Damm et al. (2012b).

4. **Colletotrichum aenigma** B. Weir & P.R. Johnst., Stud. Mycol. 73: 135 (2012)

 Colletotrichum aenigma has been recorded as a pathogen on *Camellia sinensis* in China (Wang et al. 2016), *Persea americana* in Israel, *Pyrus pyrifolia* in Japan (Weir et al. 2012), *Olea europaea* in Italy, *Poplar* sp. in China and the USA, and on *Vitis vinifera* in China (Schena et al. 2014, Yan et al. 2015). *Colletotrichum aenigma* can be distinguished with the use of TUB2 or GS gene sequences (Weir et al. 2012).

5. **Colletotrichum aeschynomenes** B. Weir & P.R. Johnst., Stud. Mycol. 73: 135 (2012)

 Colletotrichum aeschynomenes has been recorded only from the USA and is a pathogen of *Aeschynomene virginica* (Weir et al. 2012). It belongs to the musae clade of the gloeosporioides species complex and is genetically close to *C. siamense*. This species can be distinguished with the use of TUB2, GAPDH or GS gene sequences (Weir et al. 2012). *Colletotrichum aeschynomenes* has been developed as a weed control agent named “Collego” (Ditmore et al. 2008).

6. **Colletotrichum agaves** Cavara, Fung. Long. Exsicc. 3: no. 100 (1892)

 It has been recorded as a pathogen on *Agave* species in Cuba, El Salvador, Haiti, Italy, Jamaica, Mexico, the Netherlands and the USA (Farr et al. 2006). ITS sequence data show this taxon to be a distinctive singleton species and can be easily distinguished from the other *Colletotrichum* species on *Agavaceae* by the conidiomata with numerous black setae (Farr et al. 2006).

7. **Colletotrichum alatae** B. Weir & P.R. Johnst., Stud. Mycol. 73: 135 (2012)

 Colletotrichum alatae has been recorded from India and Nigeria as a pathogen of *Diospyros kaki* (Weir et al. 2012). This species belongs to the gloeosporioides species complex. ITS sequence data can distinguish *C. alatae* from all other taxa (Weir et al. 2012).

8. **Colletotrichum alcornii** J.A. Crouch, IMA Fungus 5(1):27 (2014)

 This taxon is known as a pathogen on *Imperata cylindrica* and *Bothriochloa bladhii* in Australia and belongs to the caudatum species complex (Crouch 2014). This species can be identified using any of the gene regions (*Apn2*, ITS, *Sod2*, Mat/*Apn2*) used in Crouch (2014).

9. **Colletotrichum alienum** B. Weir & P.R. Johnst., Stud. Mycol. 73: 139 (2012)

 This species is known from a wide range of introduced fruit crops such as *Banksia dryandroides*, *Camellia sinensis*, *Diospyros kaki*, *Grevillea* sp., *Leucospermum* sp., *Malus domestica*, *Nerium*
oleander, Persea americana, Protea sp., Serruria sp. and Telopea sp. in Australia, China, Hawaii, New Zealand, Portugal, South Africa and Zimbabwe (Weir et al. 2012, Crous et al. 2013a, Liu et al. 2013b, 2015a, Schena et al. 2014). *Colletotrichum alienum* cannot be distinguished by morphological characters; ITS sequences do not separate it from *C. siamense* isolates. This taxon is best distinguished using CAL or GS gene regions (Weir et al. 2012, Liu et al. 2015a). It belongs to the gloeosporioides species complex.

table

Taxon	Characteristics
Colletotrichum americae-borealis	This taxon belongs to the destructivum species complex and has been recorded only as a pathogen on *Medicago sativa* in the USA (Damm et al. 2014). Conidial shape of this species is similar to the conidia of *C. lini*, but it differs in having more complex appressoria. In contrast with most species of the destructivum complex, setae of this species are very abundant (Damm et al. 2014). TUB2, CHS-1, HIS3 and ACT sequence data can be used to distinguish it from other species in the destructivum complex (Damm et al. 2014).
Colletotrichum annellatum	This species has been recorded from *Hevea* sp. in Colombia. As its name suggests, *C. annellatum* produces conidiogenous cells that have annellid-like proliferations (Damm et al. 2012a). It belongs to the boninense species complex and is sister to the clade that contains *C. citricola*, *C. karstii* and *C. phyllanthi* (Damm et al. 2012a).
Colletotrichum anthrisci	*Colletotrichum anthrisci* is only known from *Anthriscus sylvestris* in the Netherlands (Damm et al. 2009). It belongs to the dematium species complex and has angular conidia, in which the apex is strongly pointed (Damm et al. 2009). This species differs from other species in this complex in having a constricted base of setae and very long, navicular appressoria (Damm et al. 2009, Yang et al. 2012a). *Colletotrichum anthrisci* has been found in association with stem lesions, as well as on dead stems of *Anthriscus sylvestris*.
Colletotrichum antirrhinicola	It is only known from a leaf of *Antirrhinum majus* in New Zealand (Damm et al. 2014). *Colletotrichum antirrhinicola* belongs to the destructivum complex and can be identified by its unique GAPDH and ITS sequence data.
Colletotrichum aotearoa	*Colletotrichum aotearoa* is known from Australia, India, Taiwan and New Zealand (Weir et al. 2012, Liu et al. 2013b, Sharma et al. 2015, Hsiao et al. 2016). It is common on taxonomically diverse native plants (*Bankisia marginata*, *Bredia oldhamii*, *Coprosma* sp., *Dacrycarpus dacrydioides*, *Knightia* sp., *Musa* sp., *Podocarpus totara* and *Vitex lucens*) as a pathogen causing fruit rot and also as an endophyte on naturalized weeds (*Boehmeria* sp.) (Weir et al. 2012, Liu et al. 2013b, Tao et al. 2013, Sharma et al. 2015, Hsiao et al. 2016). An endophytic strain (BCRC 09F0161) of this species from leaves of *Bredia oldhamii*, is capable of producing 18 secondary metabolites (Hsiao et al. 2016). *Colletotrichum aotearoa* belongs to the kahawae clade of the gloeosporioides species complex. This species is morphologically indistinguishable from *C. kahawae* subsp. *ciggaro*. It can be phylogenetically distinguished with TUB2, CAL, GS and GAPDH sequence data (Weir et al. 2012). Sharma et al. (2015) showed that this species can be well-resolved from other species of the gloeosporioides complex with the *ApMat* gene region.
Colletotrichum aracearum	This species has been recorded from *Monstera deliciosa* and *Philodendron selloum* in China (Hou et al. 2016). It is a singleton species with close affinity to *C. cliviae*. Sexual morph of this species has been observed.
Colletotrichum arxii	F. Liu, L. Cai, Crous & Damm, Persoonia, Mol. Phyl. Evol. Fungi 33: 87 (2014)
This species is known as an endophyte on *Oncidium excavatum* in the Netherlands and on *Paphiopedilum* sp. in Germany (Liu et al. 2014). *Colletotrichum arxii* belongs to the gigasporum species complex and can be identified with ITS and TUB2 sequences.

17. **Colletotrichum asiaticum** Prihastuti, L. Cai & K.D. Hyde, Fungal Diversity 39: 96 (2009)

This taxon is known as a pathogen of *Mangifera indica* in Australia (Rojas et al. 2010), Brazil (Lima et al. 2013, Veira et al. 2014a), Colombia (Afanador-Kafuri et al. 2003, Hoz et al. 2016), Ghana (Honer et al. 2014), India (Liu et al. 2015a), Japan, Malaysia, Panama, the Philippines, South Africa, Sri Lanka and Thailand. It is also reported to cause anthracnose on *Capsicum annuum* in Laos (Phoulivong et al. 2010) and reported as a pathogen of *Coffea arabica* in Thailand (Weir et al. 2012, Krishnapillai & Wijeratnam 2014, Sharma et al. 2013, 2015, Zakaria et al. 2015).

Colletotrichum asiaticum belongs to the gloeosporioides species complex (Weir et al. 2012). This species can be distinguished by all other taxa using ITS or any of the genes tested (ACT, TUB2, CAL, CHS-1, GAPDH) in Weir et al. (2012).

18. **Colletotrichum australicum** Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 57 (2012)

This species is a pathogen on *Trachycarpus fortunei* in Australia and *Hakea* sp. in South Africa (Damm et al. 2012b). It belongs to the acutatum species complex and can be distinguished with ITS, TUB2, ACT and HIS3 sequences; most effectively with HIS3 (Damm et al. 2012b).

19. **Colletotrichum axonopodi** J.A. Crouch, B.B. Clarke, J.F. White & B.I. Hillman, Mycologia 101(5): 727 (2009)

This species has a unique association with the temperate grass, *Axonopus* and has been reported as a pathogen on *Axonopus* in Australia and Honduras, Georgia and Louisiana states of the USA (Crouch et al. 2009a). It is morphologically similar to other *Colletotrichum* species associated with grasses and is sister to the clade that contains *C. echinochloae*, *C. hanai* and *C. jacksonii* belonging to the graminicola complex (Crouch et al. 2009a).

20. **Colletotrichum baltimorense** J.A. Crouch, IMA Fungus 5(1): 27 (2014)

This taxon has only been recorded as a pathogen on leaves of *Sorghastrum nutans* in the USA (Crouch 2014). *Colletotrichum baltimorense* belongs to the caudatum species complex. This species can be identified using any of the gene regions (*Apn2*, ITS, *Sod2*, Mat/Apn2) used in Crouch (2014).

21. **Colletotrichum beeveri** Damm, P.F. Cannon, Crous, P.R. Johnst & B. Weir, Stud. Mycol. 73: 9 (2012)

This species has been recorded as a pathogen of *Brachyglottis repanda* in New Zealand (Damm et al. 2012a), as well as an endophyte of *Pleione bulbocodioides* and possibly also of *Podocarpus* in China (Damm et al. 2012a, Yang et al. 2011). *Colletotrichum beeveri* belongs to the boninense species complex and forms a sister group to *C. brassicicola* and *C. colombiense* (Damm et al. 2012a). It can be distinguished by any of the gene regions used in Damm et al. (2012a) except for ITS and GAPDH.

22. **Colletotrichum bidentis** Damm, Guatimosim & Vieira, Fungal Diversity 61: 34 (2013)

This species is pathogenic on *Bidentis* sp. in Brazil and belongs to the orbiculare species complex. This taxon can be distinguished from the other species in the orbiculare species complex by its slightly curved conidia and setae with a conspicuous white tip (Damm et al. 2013) and it can be distinguished with the use of GS or GAPDH gene sequences.

23. **Colletotrichum blettillae** G. Tao, Zuo Y. Liu & L. Cai [as 'bletillum'], in Tao, Liu, Liu, Gao & Cai, Fungal Diversity 61: 144 (2013)

This species is an endophyte of *Bletilla ochracea* in China, and belongs to the spaethianum species complex (Tao et al. 2013). *Colletotrichum blettillae* closely related to *C. liriopes* (Tao et al. 2013). It can be distinguished by any of the gene regions (ITS, ACT, GAPDH and TUB2) used in Tao et al. (2013).

24. **Colletotrichum boninense** Moriwaki, Toy. Sato & Tsuki, Mycoscience 44: 48 (2003)

Colletotrichum boninense is a pathogen and an endophyte, occurring on a high diversity of host plants belonging to *Amaryllidaceae*, *Annonaceae*, *Bignoniaceae*, *Lauracea*, *Olivaceae*, *Orchidaceae*, *Piperaceae*, *Podocarpaceae*, *Protaceae*, *Rubiaceae*, *Rutaceaee*, *Solanaceae* and
Theaceae (Silva-Rojas et al. 2011, Diao et al. 2013, Feritas et al. 2013, Peng et al. 2012, Tao et al. 2013, Afanador-Kafuri et al. 2014, Alvarez et al. 2014, Mosca et al. 2014). Ascospores of this species are uniform with rounded ends, becoming brown and septate with age (Damm et al. 2012a). It is the reference species of the boninense species complex.

25. **Colletotrichum brasiiliense** Damm, P.F. Cannon, Crous & Massola, Stud. Mycol. 73: 11 (2012)

This species is only known as a pathogen on *Passiflora edulis* in Brazil (Tozze et al. 2010). *Colletotrichum brasiiliense* belongs to the boninense species complex and is closely related to *C. parsonsiae* and *C. hippeastri* (Damm et al. 2012a). This taxon can be distinguished from the other species with the use of ACT, GAPDH, ITS and TUB2 sequences (Damm et al. 2012a).

26. **Colletotrichum brassicicola** Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 14 (2012)

The taxon has been reported from leaf spots of *Brassica oleracea* in New Zealand (Damm et al. 2012a) and from *Rubus glaucus* in Colombia (Afanador-Kafuri et al. 2014). It belongs to the boninense species complex and is distinct in having very short conidia and longer asci and ascospores compared to the other species with known sexual morphs in the complex (Damm et al. 2012a). It can be distinguished by any of the gene regions used in Damm et al. (2012a) except for ITS and GAPDH.

27. **Colletotrichum brevisporum** Noireung, Phouliv., L. Cai & K.D. Hyde, Cryptog. Mycol. 33(3): 350 (2012)

This species is a pathogen on *Carica papaya* and *Sechium edule* in Brazil (Vieira et al. 2013, Bezerra et al. 2016), *Citrus medica* in China (Peng et al. 2012), and *Neoregelia* sp. and *Pandanus pygmaeus* in Thailand (Liu et al. 2014). *Colletotrichum brevisporum* has been recorded as an endophyte of *Lycium chinense* in Korea (Paul et al. 2014). It is a singleton species. This taxon forms a sister group to *C. cliviae* (Noireung et al. 2012, Hyde et al. 2014).

28. **Colletotrichum brisbanense** Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 59 (2012)

This pathogenic species is known to cause fruit rot in *Capsicum annuum* in Australia. It differs from *C. scovillei*, another anthracnose pathogen of *Capsicum annuum*, in appressoria size (Damm et al. 2012b). *Colletotrichum brisbanense* belongs to the acutatum species complex and can be distinguished effectively with the use of TUB2 and GAPDH (Damm et al. 2012b).

29. **Colletotrichum bryoniicola** Damm, in Damm, O'Connell, Groenewald & Crous, Stud. Mycol. 79: 57 (2014)

It is a saprobe known from decaying leaves of *Bryonia dioica* in the Netherlands (Damm et al. 2014). *Colletotrichum bryoniicola* belongs to the destructivum species complex and can be distinguished from closely related species by its ITS, GAPDH, HIS3 and TUB2 sequence data, as well as by its broader conidia (≥ 4μm on SNA) and distinct conidiogenous cells (Damm et al. 2014).

30. **Colletotrichum cairnsense** D.D. De Silva, R. Shivas & P.W.J Taylor, Plant pathology http://doi: 10.1111/ppa.12572 (2016)

It is a pathogen of *Capsicum annuum* in Australia and belongs to the acutatum species complex (De Silva et al. 2016). This species can be distinguished from the other species of the acutatum complex with GAPDH and TUB2 sequence data.

31. **Colletotrichum camelliae** Massee, Bull. Misc. Inf., Kew: 91 (1899)

This taxon is responsible for causing twig blight and brown blight of *Camellia* sp. in China, Sri Lanka, the UK and the USA (Liu et al. 2015a, Wang et al. 2016). *Colletotrichum camelliae* belongs to the kahawae clade within the gloeosporioides complex and can be distinguished with the use of GS and ApMat gene sequences. *Glomerella cingulata* “f. sp. camelliae” has been synonymized with *C. camelliae* (Liu et al. 2015a).

32. **Colletotrichum camelliae-japonicae** LW. Hou & L. Cai, Mycosphere 7(8): 1117 (2016)

This species is a pathogen on *Camellia japonica*. It was isolated from *C. japonica* imported from Japan (Hou et al. 2016). *C. camelliae-japonicae* belongs in the boninense species complex. Sexual morph of this species has been observed.

33. **Colletotrichum carthami** (Fukui) S. Uematsu, Kageyama, Moriwaki & Toy. Sato, J. Gen. Pl. Path. 78(5): 326 (2012)
This species is known to be pathogenic on *Calendula officinalis* in Italy, Japan (Baroncelli et al. 2015a) and on *Carthamus tinctorius* causing leaf blight, in Japan (Uematsu et al. 2012), as well as on *Chrysanthemum coronarium* var. *spatiosum* in Korea (Uematsu et al. 2012). *Colletotrichum carthami* belongs in the acutatum species complex (Damm et al. 2012b).

34. *Colletotrichum caudatum* (Peck ex Sacc.) Peck, Bull. N.Y. St. Mus. 131: 81 (1909)
The distribution of this species is limited to *Sorghastrum nutans* in the mid-Atlantic states of the USA (Crouch 2014). This taxon belongs to the caudatum species complex and is the representative species of the complex (Crouch 2014). This species can be identified using any of the gene regions (Apn2, ITS, Sod2, Mat/Apn2) used in Crouch (2014).

35. *Colletotrichum caudisporum* G. Tao, Zuo Y. Liu & L. Cai [as ‘caudasporum’], in Tao, Liu, Liu, Gao & Cai, Fungal Diversity 61: 149 (2013)
This taxon is an endophyte of *Bletilla ochraceae* in China (Tao et al. 2013). *Colletotrichum caudisporum* belongs to the caudatum species complex (this paper). It can be distinguished with the ITS sequences data.

36. *Colletotrichum cereale* Manns, in Selby & Manns, Proc. Indiana Acad. Sci.; 111 (1908)
It is a pathogen of grasses (*Poaceae*) of the subfamily Pooideae in Germany, Japan, New Zealand, the Netherlands and the USA (Young et al. 2008, Crouch & Ingüagliato 2009, Beirn et al. 2014) and an endophyte of *Bletilla* (*Orchidaceae*) in China (Tao et al. 2013). This species belongs to the graminicola species complex (Cannon et al. 2012, Hyde et al. 2014).

37. *Colletotrichum chengpingense* G. Zhang, Jayawardena & KD Hyde, in Jayawardena et al., Mycosphere 7(8): 1155 (2016)
It is a pathogen on *Fragaria × ananassa* in China, belonging to the gloeosporioides species complex (Jayawardena et al. 2016b). This species can be distinguished from its closely related species with any of the gene regions used in Jayawardena et al. (2016b).

38. *Colletotrichum chlorophyti* S. Chandra & Tandon [as ‘chlorophytumi’], Curr. Sci. 34: 565 (1965)
This species is a pathogen on *Chlorophytm* sp. in India (Damm et al. 2009). *Glycine max* in the USA (Yang et al. 2012b) and *Stylosanthes hamata* in Australia (Damm et al. 2009). *Colletotrichum chlorophyti* has curved conidia and can be distinguished from other species with curved conidia as it has dark brown chlamydospores in chains and clusters (Damm et al. 2009). This is a singleton species (Cannon et al. 2012, Hyde et al. 2014).

39. *Colletotrichum chrysanthemi* (Hori) Sawada, Rep. Govt Res. Inst. Dep. Agric., Formosa 85: 81 (1943)
This taxon is a pathogen on *Chrysanthemum coronarium* in China, Japan and the Netherlands causing vascular discoloration and leaf spots (Damm et al. 2012b). It also causes anthracnose on *Carthamus tinctorius* in Italy (Baroncelli et al. 2015a). This species belongs to the acutatum species complex and differs from all the other species in the complex in having very short, conidia with acute ends and can be phylogenetically best separated with TUB2, GAPDH and HIS3 (Damm et al. 2012b).

40. *Colletotrichum circinans* (Berk.) Voglino, Annali R. Accad. Agric. Torino 49: 175 (1907)
This species is common in temperate regions as an anthracnose pathogen on *Allium* sp. It is also a pathogen on *Anthiriscus sylvestris* (Germany), *Beta vulgaris* (New Zealand), and *Viola hirta* (Czech Republic) (Damm et al. 2009). *Colletotrichum spinaciae* is the sister taxon of this species. When compared with *C. spinaciae*, conidia of *C. circinans* are more strongly curved towards the truncate base and acute apex as well as dark brown, concolored seate that are often constricted and sometimes inflated above the constriction (Damm et al. 2009). It is a member of the dematium species complex (Cannon et al. 2012, Hyde et al. 2014).

41. *Colletotrichum citri* F. Huang, L. Cai, K.D. Hyde & Hong Y. Li, in Huang, Chen, Hou, Fu, Cai, Hyde & Li, Fungal Diversity 61(1): 69 (2013)
It is known on *Citrus aurantifolia* in China causing anthracnose (Huang et al. 2013) and belongs to the acutatum species complex. Huang et al. (2013) mentioned that this species is not common on *Citrus*.

1216
42. *Colletotrichum citricola* F. Huang, L. Cai, K.D. Hyde & Hong Y. Li, in Huang, Chen, Hou, Fu, Cai, Hyde & Li, Fungal Diversity 61(1): 67 (2013)
This species has only been reported as a saprobe from *Citrus unshiu* in China and belongs to the boninense species complex (Huang et al. 2013). *Colletotrichum citricola* differs from its sister taxon *C. phyllanthi* in having wider conidia (5.9–6.9 μm) (Huang et al. 2013).

43. *Colletotrichum clidemiae* B.S. Weir & P.R. Johnst., in Weir, Johnston & Damm, Stud. Mycol. 73: 148 (2012)
This species causes leaf spots on *Clidemia hirta*, *Vitis* sp. and *Quercus* sp. in the USA and belongs to the kahawae clade within the gloeosporioides species complex (Weir et al. 2012). *Colletotrichum clidemiae* can be distinguished by ACT, GAPDH or GS sequence data (Weir et al. 2012). *ApMat* sequence data can also be used to distinguish this species within the complex (in this study).

44. *Colletotrichum cliviae* Yan L. Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, in Yang, Liu, Cai, Hyde, Yu & McKenzie, Fungal Diversity 39: 133 (2009)
This taxon causes anthracnose on leaves of *Arundina graminifolia*, *Camellia sinensis*, *Clivia miniata* and *Cymbidium hookerianum* in China (Yang et al. 2009, 2011, Wang et al. 2016) and on *Cattleya* sp., *Calamus thwaitesii*, *Phaseolus* sp. and *Saccharum* sp. in India (Chowdappa et al. 2014). It is also an endophyte on *Camellia sinensis* and *Mangifera indica* in Brazil (Vieira et al. 2014a, Liu et al. 2015a). *Colletotrichum cliviae* forms a monophyletic lineage that is not closely related to any established clade; therefore it is a singleton species (Cannon et al. 2012, Hyde et al. 2014).

45. *Colletotrichum coccodes* (Wallr.) S. Hughes, Can. J. Bot. 36: 754 (1958)
This species is known as a pathogen on a wide range of plant families including *Amaranthaceae*, *Amaryllidaceae*, *Apiaceae*, *Araceae*, *Araliaceae*, *Arecaceae*, *Asteraceae*, *Cucurbitaceae*, *Euphorbiaceae*, *Fabaceae*, *Iridaceae*, *Lamiaceae*, *Malvaceae*, *Moraceae*, *Myrtaceae*, *Poaceae*, *Solanaceae* and *Theaceae* worldwide (Liu et al. 2011, Liu et al. 2013b, Garibaldi et al. 2015). It is a singleton species.

46. *Colletotrichum colombiense* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 16 (2012)
Colletotrichum colombiense is an endophyte of *Passiflora edulis* in Colombia. It belongs to the boninense species complex and forms a sister group to *C. beeveri* (Damm et al. 2012a).

47. *Colletotrichum conoides* Y.Z. Diao, C. Zhang, L. Cai & X.L. Liu, Persoonia 38: 27 (2017)
This is a pathogen of *Capsicum annuum* var. *conoides* in China. It belongs to the gloeosporioides species complex (Diao et al. 2017). *Colletotrichum conoides* can be distinguished with the use of GAPDH, ACT and TUB2 sequence data.

48. *Colletotrichum constrictum* Damm, P.F. Cannon, Crous, P.R. Johnst & B. Weir, Stud. Mycol. 73: 17 (2012)
This species belongs to the boninense species complex. It causes fruit rots of *Citrus limon* and *Solanum betacum* in New Zealand (Damm et al. 2012a). It differs from all other species in this complex by having broader ascospores with a lower L/W ratio (Damm et al. 2012a). This species can be identified with the use of any of the genes used in Damm et al. (2012a).

49. *Colletotrichum cordylinicola* Phoulivong, L. Cai & K. D. Hyde, Mycotaxon 114: 251 (2011)
This taxon is a pathogen on *Cordyline* sp. in Thailand (Sharma et al. 2014) and in the USA and *Eugenia* sp. in Laos (Weir et al. 2012). Phoulivong et al. (2011) reported that the isolate from *Eugenia* was not pathogenic to *Cordyline* and vice versa. *Colletotrichum cordylinicola* belongs to the gloeosporioides species complex. ITS sequence can separate this species from all other species of this complex (Weir et al. 2012).

50. *Colletotrichum cosmi* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 61 (2012)
Colletotrichum cosmi is a pathogen on the seeds of *Cosmos* sp. in the Netherlands and belongs to the acutatum species complex (Damm et al. 2012b). It can be distinguished with all loci used in Damm et al. (2012b), best with GAPDH and HIS3.

51. *Colletotrichum costaricense* Damm, P. F. Cannon & Crous, Stud. Mycol. 73: 63 (2012)
This species is pathogenic/endophytic on *Coffea* sp. in Costa Rica and belongs to the acutatum species complex (Damm et al. 2012b). It can be differentiated from other species with TUB2, GAPDH and ACT sequences, most effectively with TUB2 sequence data (Damm et al. 2012b).

52. *Colletotrichum curcumae* (Syd. & P. Syd.) E.J. Butler & Bisby, Fungi of India: 153 (1931)
This taxon is a pathogen only on *Curcuma longa* in India (Damm et al. 2009) and belongs to the truncatum species complex (Cannon et al. 2012). *Colletotrichum curcumae* differs from all other species in producing large, brown, flattened stromata with straight setae that are aggregated in the centre, and with sparse sporulation (Damm et al. 2009).

53. *Colletotrichum cuscutae* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 64 (2012)
Colletotrichum cuscutae was recorded as a pathogen of *Cuscuta* sp. in Dominica. This species belongs to the acutatum species complex and can be identified using all the genes studied in Damm et al. (2012a) except for ITS; most effectively by TUB2 and ACT sequence data.

54. *Colletotrichum cymbidiicola* Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, Stud. Mycol. 73: 19 (2012)
This species is a pathogen on *Cymbidium* sp. in Australia, India, Japan and New Zealand (Damm et al. 2012a, Chowdappa et al. 2014). *Colletotrichum cymbidiicola* belongs to the boninense complex and is a sister group to *C. oncidii* (Damm et al. 2012a). It is apparently host-specific at plant genus level (Damm et al. 2012a).

55. *Colletotrichum dacrycarpi* Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, Stud. Mycol. 73: 19 (2012)
This taxon is an endophyte of *Dacrycarpus* sp. in New Zealand. Conidia of this species are produced within closed fruiting bodies with walls that rupture. *Colletotrichum dacrycarpi* belongs to the boninense species complex and can be identified using ITS sequence data as well as the other gene regions used in Damm et al. (2012a).

56. *Colletotrichum dematium* (Pers.) Grove, J. Bot., Lond. 56: 341 (1918)
This species occurs as a pathogen, endophyte as well as a saprobe. It has been recorded as a saprobe of *Apiaceae* in the Czech Republic and *Eryngium campestre* in France, as a pathogen of *Genista tinctoria* in the Czech Republic, *Solanum tuberosum* in Australia (Damm et al. 2009), *Bidens pilosa* in Cuba, Venezuela and West Indies, (Farr & Rossman 2016) and as an endophyte on *Vitis vinifera* in South Africa (Damm et al. 2009). This taxon is characterized by the angular shape of its conidia, the production of red pigments in fresh cultures and by its well developed sclerotium-like conidiomata (Damm et al. 2009).

57. *Colletotrichum destructivum* O’Gara, Mycologia 7(1): 38 (1915)
Colletotrichum destructivum is a pathogen on hosts in *Asteraceae, Convolvulaceae, Fabaceae, Magnoliaceae, Menispermaceae, Lamiaceae, Poaceae, Polygonacea* and *Solanaceae* worldwide (Damm et al. 2014) as well as an endophyte of *Bletilla ochracea* in China (Tao et al. 2013). *Colletotrichum destructivum* belongs to the destructivum species complex and can be distinguished by ITS, HIS3, ACT and TUB2 sequence data (Damm et al. 2014).

58. *Colletotrichum dracaenophilum* D.F. Farr & M.E. Palm, in Farr, Aime, Rossman & Palm, Mycol. Res. 110(12): 1401 (2006)
This species causes leaf anthracnose of *Dracaena* sp. in Bulgaria, China and Egypt (Farr et al. 2006, Morsy & Elshahawy 2016). It is a singleton species with close affinity to *C. yunnanense* (Farr et al. 2006, Hyde et al. 2014).

59. *Colletotrichum duyunensis* G. Tao, Zuo Y. Liu & L. Cai, in Tao, Liu, Liu, Gao & Cai, Fungal Diversity 61: 149 (2013)
This taxon is an endophyte on *Bletilla ochracea* in China (Tao et al. 2013). It belongs to the caudatum species complex (this paper). This species can be distinguished from *C. caudasporum* by its longer conidial appendages (Tao et al. 2013).

60. *Colletotrichum echinochloae* Moriwaki & Tsukib., Mycoscience 50(4): 275 (2009)
It causes leaf blight and leaf spot on *Echinochloa esculenta* in Japan (Moriwaki & Tsukiboshi 2009). *Colletotrichum echinochloae* belongs to the graminicola species complex and is a sister taxon to *C. jacksonii* (Hyde et al. 2014).
61. *Colletotrichum eleusines* Pavgi & U.P. Singh [as ‘eleusinis’], Mycopath. Mycol. appl. 27: 85 (1965)
This species is a pathogen on *Eleusine indica* in India, Japan and the USA (Crouch et al. 2009a) and belongs to the graminicola species complex (Cannon et al. 2012, Hyde et al. 2014). It is morphologically indistinguishable from the other closely related falcate-spored, grass inhabiting *Colletotrichum* species, but ITS, SOD2, *Atn2* and *Mat1* sequence data can be used to distinguish this species (Crouch et al. 2009a).

62. *Colletotrichum endophytica* Manamgoda, Udayanga, L. Cai & K.D. Hyde, in Manamgoda, Udayanga, Cai, Chukeatirote & Hyde, Fungal Diversity 61:110 (2013)
This is an endophytic species on *Pennisetum purpureum* in Thailand (Manamgoda et al. 2013) and was also found as a saprobe on an undetermined wild fruit in Thailand (Udayanga et al. 2013). Wang et al. (2016) recorded this taxon as a pathogen on *Camellia sinensis*. *Colletotrichum endophytica* belongs to the gloeosporioides species complex and placed in between the musae and kahawae clades (Manamgoda et al. 2013).

63. *Colletotrichum endophytum* G. Tao, Zuo Y. Liu & L. Cai, in Tao, Liu, Liu, Gao & Cai, Fungal Diversity 61(1): 152 (2013)
It is an endophyte on *Bletilla ochracea* in China (Tao et al. 2013). This species belongs to the graminicola species complex (Hyde et al. 2014) and is a sister taxon of *C. falcatum*. *Colletotrichum endophytum* has shorter conidia (8.5–21.5×3–5 μm) than *C. falcatum* (15.5–26.5×4–5 μm). *Colletotrichum endophytum* also produces relatively abundant seta and more strongly falcate conidia than *C. falcatum* (Tao et al. 2013).

64. *Colletotrichum eremochloae* J.A. Crouch & Tomaso-Pet., Mycologia 104(5): 1092 (2012)
This species belongs to the graminicola species complex and has been recorded as a pathogen of *Eremochloa ophiurioides* in China and the USA (Crouch & Tomaso-Peterson 2012).

65. *Colletotrichum euphorbiae* Damm & Crous, in Crous et al., Persoonia, Mol. Phyl. Evol. Fungi 31: 203 (2013)
This species is a pathogen on *Euphorbia* sp. in South Africa. *Colletotrichum euphorbiae* forms cylindrical to clavate conidia with one end rounded and one end truncate that are larger (> 20 μm) than those of *C. sansevieriae* and species in the orbiculare complex, which have similar shapes, often in closed fruiting bodies (Crous et al. 2013b). It is a singleton species.

66. *Colletotrichum excelsum-altitudinum* G. Tao, Zuo Y. Liu & L. Cai [as ‘excelsum-altitudum’], in Tao, Liu, Liu, Gao & Cai, Fungal Diversity 61: 152 (2013)
This taxon is an endophyte of *Bletilla ochracea* in China, and a singleton species with close affinity to *C. tropicicola* (Tao et al. 2013).

67. *Colletotrichum falcatum* Went, Archiv, voor de Java Suekerrind. 1: 265 (1893)
It is a pathogen of *Saccharum officinarum* (*Poaceae*) in Australia, Indonesia, Japan, the Netherlands and Thailand (Cai et al. 2009, Crouch et al. 2009a, Crouch 2014, Prihastuti et al. 2009, 2010). It belongs to the graminicola species complex (Cannon et al. 2012).

68. *Colletotrichum fioriniae* (Marcelino & Gouli) R.G. Shivas & Y.P. Tan, Fungal Diversity 39: 117 (2009)
Colletotrichum fioriniae causes fruit rot and leaf spots on *Acacia acuminate*, *Actinidia chinensis*, *Anemone* sp., *Berberis* sp., *Camellia reticulata*, *Camellia sinensis*, *Carica papaya*, *Cinnamomum subavenium*, *Coffea arabica*, *Cyclamen* sp., *Fragaria x ananassa*, *Grevillea* sp., *Kalmia* sp., *Liriodendron tulipifera*, *Magnolia* sp., *Malus* sp., *Olea europea*, *Parthenocissus* sp., *Penstemon* sp., *Persea americana*, *Piper nigrum*, *Primula* sp., *Pyrus* sp., *Rhododendron* sp., *Rubus* sp., *Solanum lycopersicum*, *Toxicodendron radicans*, *Tulipa* sp., *Vaccinium* sp. and *Vitis vinifera* in Australia, China, Germany, Hawaii, Italy, the Netherlands, New Zealand, the UK and the USA (Shivas & Tan 2009, Sun et al. 2012, Damm et al. 2012b, Baroncelli et al. 2015b, Kasson et al. 2014, Kou et al. 2014, Munda 2014, Liu et al. 2015a, Wang et al. 2016). This species is also an endophyte of *Mangifera indica* in Australia. *Colletotrichum fioriniae* is pathogenic on the hemlock scale insect, *Fiorinia externa*, in the USA (Marcelino et al. 2008). It belongs to the acutatum species complex and can be distinguished using any of the gene sequences mentioned in Damm et al. (2012b).
Kasson et al. (2014) have shown that *C. fioriniae* can be used as a mycoherbicide against Eastern Poison Ivy (*Toxicodendron radicans*).

69. Colletotrichum fructi (F.Stevans & J.G. Hall) Sacc. [as ‘fructus’], Syll. fung. (Abellini) 22: 1201 (1913)

This species belongs to the dematium species complex (Cannon et al. 2012) and is a pathogen on *Malus sylvestris* in the USA (Damm et al. 2009). This taxon is slow growing and has been mentioned very rarely in the literature (Damm et al. 2009).

70. Colletotrichum fructicola Prihastuti, L. Cai & K.D. Hyde, Fungal Diversity 39: 96 (2009)

Colletotrichum fructicola was originally reported from coffee berries in Thailand (Prihastuti et al. 2009). It has a wide host range and geographical distribution including *Arachis* sp. (*Fabaceae*), *Citrus bergamia* (*Rutaceae*) in China, *Ficus* sp. (*Dioscoreaceae*) in Germany, *Fraxariaxananassa* (*Rosaceae*) in Canada and the USA, *Limonium* sp. (*Plumbaginaceae*) in Israel, *Malus domestica* (*Rosaceae*) in Australia, Brazil and Uruguay (Weir et al. 2012, Velho et al. 2015), *Mangifera indica* (*Anacardiaceae*) in India and Brazil (Liu et al. 2015a, Viera et al. 2014), *Persea americana* (*Lauraceae*) in Australia, Brazil and Uruguay (Weir et al. 2012, Velho et al. 2015), *Theobroma cacao* (*Malvaceae*) and *Tetragastris panamensis* (*Burseraceae*) in Panama, *Pennisetum purpureum* (*Poaceae*) in Thailand (Manamgoda et al. 2013), *Rubus glaucus* (*Rosaceae*) and *Vitis vinifera* (*Vitaceae*) in China (Peng et al. 2013) (Yang et al. 2009, Afanador-Kafuri et al. 2014). This species also occurs as an endophyte.

Colletotrichum fructicola belongs to the musae clade in the gloeosporioides species complex. ITS sequences do not separate this taxon from *C. aescynomenes*. However, these species can be distinguished by GS or SOD2 sequences (Weir et al. 2012).

71. Colletotrichum fructivorum V.P. Doyle, P.V. Oudem. & S.A. Rehner, PLoS ONE 7(12): e51392, 12 (2012)

This taxon is pathogenic to *Vaccinium* sp. in Canada, Colombia and the USA (Doyle et al. 2013). Doyle et al. (2013) reported this species as an endophyte on *Rhexia virginica* and *Vaccinium macrocarpon* in the USA. It belongs to the gloeosporioides species complex (Doyle et al. 2013, Hyde et al. 2014).

72. Colletotrichum fuscum Laubert, Gartenwelt 31: 675 (1927)

This species causes anthracnose on *Digitalis* sp. Germany and the Netherlands (Damm et al. 2014). *Colletotrichum fuscum* belongs to the destructivum species complex. It can be distinguished from the other species in the complex by GAPDH sequence data, but has only one nucleotide difference from *C. bryoniicola* (Damm et al. 2014).

73. Colletotrichum fusiforme Jayawardena, Bhat, Tangthirasunun & K.D. Hyde, in Ariyawansa et al., Fungal Diversity 75(1): 158 (2015)

Colletotrichum fusiforme belongs to the truncatum species complex and was isolated from a dead leaf of an undetermined host in Thailand. *Colletotrichum curcumae* is a sister taxon of this species (Ariyawansa et al. 2015).

74. Colletotrichum gigasporum E.F. Rakotoniriana & F. Munaut, in Rakotoniriana, Scauflaire, Rabemanantsoa, Urveg-Ratsimamanga, Corbisier, Quetin-Leclercq, Declerck & Munaut, Mycol. Progr. 12(2): 407 (2013)

This species is a pathogen of *Acacia auriculiformis* in Thailand, *Centella asiatica* in Madagascar, *Coffeea* sp. in Vietnam, *Diospyros kaki* and *Musa* sp. in Japan, *Persea americana* in Sri Lanka, *Theobroma cacao*, *Trichilia tuberculata* and *Virola surinamensis* in Panama and *Solanum betaceum* in New Zealand (Rakotoniriana et al. 2013, Liu et al. 2014, Wijesundera et al. 2015). *Colletotrichum thailandicum* has been synonymized with this taxon (Liu et al. 2014). *Colletotrichum gigasporum* belongs to the gigasporum species complex and is characterized by large conidia. This species had also been isolated from a phaeohyphomycotic cyst of a human (Liu et al. 2014). It can be distinguished with all loci (ITS, ACT, TUB2, CHS-1 and GAPDH) used in Liu et al. (2014).
75. *Colletotrichum gloeosporioides* (Penz.) Penz. & Sacc., Atti Inst. Veneto Sci. lett., ed Arti, Sér. 6 (2): 670 (1884)

Colletotrichum gloeosporioides is mainly a pathogen of *Citrus* sp., but also occurs on *Carya illinoinsensis* (Australia), *Ficus* sp. (New Zealand), *Mangifera* sp. (China and South Africa), *Solanum betaceum* (Colombia), *Prunera* sp. (USA) and *Vitis vinifera* (China and the USA) (Phoulivong et al. 2010, Peng et al. 2012, Weir et al. 2012, Hoz et al. 2016, Rhaiem & Taylor 2016). Previously, about 600 species were synonymised with this species (von Arx 1957) and consequently, numerous taxa were named as *C. gloeosporioides*, and thus it has a wide host range in many publications (Farr & Rossman 2016). Weir et al. (2012) did a comprehensive study on *C. gloeosporioides* and related species, resolving most of the species under the name of *C. gloeosporioides*. ITS gene region separates this group from all other species.

76. *Colletotrichum godetiae* Neerg., Friesia 4(1–2): 72 (1950) [1949–50]

This species was initially described from seeds of *Clarkia* (syn. *Godetia*) and causes leaf spots, fruit rots, die back and stem end rots of many hosts in the families of *Adoxaceae, Anacardiaceae, Berberidaceae, Fabaceae, Juglandaceae, Myrtaceae, Oleaceae, Onagraceae, Podocarpaceae, Rosaceae, Rhamnaceae, Rutaceae, Solanaceae* and *Vitaceae* worldwide (Damm et al. 2012b, Afanador-Kafuri et al. 2014, Baroncelli et al. 2014, 2015b, Mosca et al. 2014, Munda 2014, Talhinhas et al. 2015). It has been also recorded as a saprobe of *Laurus nobilis* (Damm et al. 2012b). *Colletotrichum godetiae* belongs to the acutatum species complex and can be separated from the other species of this complex by all genes used in Damm et al. (2012b) except CHS-1; TUB2, ACT and HIS3 sequences separate this species best.

77. *Colletotrichum graminicola* (Ces.) G.W. Wilson, Phytopathology 4: 110 (1914)

Colletotrichum graminicola is a pathogen of *Zea mays* (Crouch et al. 2009a), belonging to the graminicola complex (Cannon et al. 2012). Whole-genome sequencing of this species has been completed (O’Connell et al. 2012). It has been known to be pathogenic on humans (Ritterband et al. 1997).

78. *Colletotrichum grevilleae* F. Liu, Damm, L. Cai & Crous, Fungal Diversity 61: 98 (2013)

This species is a pathogen of *Grevillea* sp. in Italy (Liu et al. 2013b). *Colletotrichum grevilleae* belongs to the gloeosporioides species complex and has a close affinity with *C. theobromicola*. However, these species can be distinguished based on CAL and GAPDH sequence data (Liu et al. 2013b).

79. *Colletotrichum grossum* Y.Z. Diao, C. Zhang, L. Cai & X.L. Liu, Persoonia 38: 29 (2017)

It is a pathogen on *Capsicum annuum* var. *grossum* in China (Diao et al. 2017). *Colletotrichum grossum* belongs to the gloeosporioides species complex and is phylogenetically closely related to *C. theobromicola*. This species can be distinguished with the use of GAPDH, ACT and TUB2 sequence data.

80. *Colletotrichum guajavae* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 69 (2012)

This taxon is a pathogen of *Psidium guajavae* in India, and belongs to the acutatum species complex (Damm et al. 2012b). It can be distinguished from other species by TUB2, ACT and GAPDH sequence data; most effectively by GAPDH (Damm et al. 2012b).

81. *Colletotrichum guizhouensis* G. Tao, Zuo Y. Liu & L. Cai, in Tao, Liu, Liu, Gao & Cai, Fungal Diversity 61: 152 (2013)

Colletotrichum guizhouensis is an endophyte of *Bletilla ochracea* (Tao et al. 2013) and *Phlegmariurus phlegmaria* in China (Zhang et al. 2015). It belongs to the spaethianum species complex and is a sister taxon to *C. spaethianum* (Hyde et al. 2014). Zhang et al. (2015) showed that this species is capable of producing Huperzine A.

82. *Colletotrichum hanauai* J.A. Crouch, B.B. Clarke, J.F. White & B.I. Hillman, Mycologia 101(5): 728 (2009)

This species has a unique association with grasses in the genus *Digitaria* and has been reported in China, Japan and the USA (Crouch et al. 2009a,b, Cannon et al. 2012). *Colletotrichum hanauai* is a pathogen belonging to the graminicola species complex (Cannon et al. 2012). Nucleotide polymorphisms in ITS, SOD2, *Apn2* and *Mat1* can be used to differentiate this taxon (Crouch et al. 2012b).
Zhao et al. (2013) showed that this species can be used as a bio-control agent on *Digitaria sanguinalis*.

83. **Colletotrichum hebeiense** X.H. Li, Y. Wang, K.D. Hyde, M.M.R.S. Jayawardena & J.Y. Yan, in Yan, Jayawardena, Goonasekara, Wang, Zhang, Liu, Huang, Wang, Shang, Peng, Bahkali, Hyde & Li, Fungal Diversity 71: 241 (2015)

This is a pathogen on *Vitis vinifera* in China. It belongs to the gloeosporioides species complex and has a close affinity to *C. aenigma* (Yan et al. 2015).

84. **Colletotrichum hemerocallidis** Yan L. Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, Tropical Plant Pathology 37(3): 170 (2012)

This taxon was isolated from a dead stalk of *Hemerocallis* sp. in Canada and China (Damm et al. 2009, Yang et al. 2012a). It is a member of the dematium species complex (Hyde et al. 2014).

85. **Colletotrichum henanense** F. Liu & L. Cai, in Liu, Weir, Damm, Crous, Wang, Liu, Zhang & Cai, Persoonia, Mol. Phyl. Evol. Fungi 35: 80 (2015)

Colletotrichum henanense is a pathogen known on *Camillia sinensis* and *Cirsium japonicum* in China. This taxon belongs to the gloeospoirioides species complex and can be distinguished by TUB2, *ApMat* and GS sequence data (Liu et al. 2015a).

86. **Colletotrichum higginsianum** Sacc., in Higgins, Riv. Accad. di Padova 33: 161 (1917)

Colletotrichum higginsianum causes anthracnose on a wide range of *Brassicaceae* hosts in Italy, Japan, Korea, Trinidad and Tobago and the USA (Damm et al. 2014). This species belongs to the destructivum species complex and can be distinguished with TUB2 and ITS sequence data (Damm et al. 2014). Whole-genome sequencing of this species has been completed (O’Connell et al. 2012).

87. **Colletotrichum hippeastri** Yan L. Yang, Zuo Y. Liu, K. D. Hyde & L. Cai, Fungal Diversity 39: 133 (2009)

This taxon is an endophyte on leaves of *Hippeastrum* sp. in China and the Netherlands (Damm et al. 2012a). *Colletotrichum hippeastri* is an outlying species in the boninense clade and can be distinguished from related species by any of the loci used in the study of Damm et al. (2012a).

88. **Colletotrichum horii** B. Weir & P.R. Johnst., Mycotaxon 111: 211 (2010)

Colletotrichum horii is associated with fruit and stem disease of *Diospyros kaki* in Brazil, China, Japan and New Zealand (Weir & Johnston 2010, Weir et al. 2012, De Mio et al. 2015). *Colletotrichum horii* belongs to the gloeosporioides species complex and ITS gene region distinguishes it from all other species (Weir et al. 2012).

89. **Colletotrichum hsienjenchang** I. Hino & Hidaka, Bull. Miyazaki Coll. Agric. Forest. 6: 93-99 (1934)

This species is a pathogen only on *Phyllostachys* sp. in Japan (Sato et al. 2012). Combined phylogenetic analysis of ITS, CHS, ACT and HIS3 places this taxon as a singleton species closely related to *C. metake* (in this study). Sato et al. (2012) mentioned it as a rare species. In order to fix the name of this species, it still needs to be epitypified.

90. **Colletotrichum hymenocallidicola** Chethana, Tangthir., Jayawardena. & K.D. Hyde, in Ariyawansa et al., Fungal Diversity 75(1): 160 (2015)

This taxon is a pathogen on *Hymenocallis* sp. in Thailand. It appears as a singleton species with close affinity to *C. brevisporum*. (Ariyawansa et al. 2015).

91. **Colletotrichum incanum** H.C. Yang, J.S. Haudenshield & G.L. Hartman, Mycologia 106(1): 38 (2014)

It is a pathogen on *Glycine max* and *Solanum lycopersicum* in the USA and on *Phaseolus vulgaris* in Canada (Yang et al. 2014, Hacquard et al. 2016), *Raphanus sativus* in Japan (Sato et al. 2005) and can also infect *Arabidopsis thaliana* (Hacquard et al. 2016). *Colletotrichum incanum* belongs to the spaethianum species complex (Hyde et al. 2014).

92. **Colletotrichum indonesiense** Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 71 (2012)

This taxon causes leaf spots on *Eucalyptus* sp. in Indonesia (Damm et al. 2012b). It belongs to the acutatum species complex and can be separated from other species by TUB2, ACT, GAPDH and CHS-1 sequences; most effectively with TUB2.
93. *Colletotrichum insertae* Jayawardena, Bulgakov & K.D. Hyde, in Hyde et al., Fungal Diversity 80: 176 (2016)
It is a saprobic on dying twigs and leafs of *Parthenocissus inserta* in Russia. *Colletotrichum insertae* falls within the dematium species complex.

94. *Colletotrichum jacksonii* J.A. Crouch, B.B. Clarke, J.F. White & B.I. Hillman, Mycologia 101(5): 729 (2009)
It is a pathogen of the genus *Echinochloa* in Japan and the USA (Crouch et al. 2009a). *Colletotrichum jacksonii* belongs to the graminicola species complex.

95. *Colletotrichum jasminigenum* Wikee, K.D. Hyde, L. Cai & McKenzie, in Wikee, Cai, Pairin, McKenzie, Su, Chukeatirote, Thi, Bahkali, Moslem, Abdelsalam & Hyde, Fungal Diversity 46(1): 174 (2011)
Colletotrichum jasminigenum belongs to the truncatum species complex and is known only from *Jasminium sambac* in Vietnam (Wikee et al. 2011, Hyde et al. 2014).

96. *Colletotrichum jiangxiense* F. Liu and L. Cai, Persoonia 35: 82 (2015)
This species is a pathogen as well as an endophyte on *Camellia sinensis* in China. It belongs to the gloeosporioides species complex and is closely related to *C. kahawae* s.l.. *Colletotrichum jiangxiense* can be distinguished by GS gene sequences (Liu et al. 2015a).

97. *Colletotrichum johnstonii* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 72 (2012)
This species is a pathogen on *Citrus* sp. and *Solanum lycopersicum*, and is thought to be endemic to New Zealand. It belongs to the acutatum species complex and can be differentiated from other species by ACT, HIS3, TUB2 and GAPDH, most effectively with ACT gene sequences (Damm et al. 2012b).

98. *Colletotrichum karstii* Y.L.Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, Cryptog. Mycol. 32(3): 241 (2011)
This taxon was first reported from orchids and is also known from many other host plants causing anthracnose, including *Annona cherimola*, *Anthurium* sp., *Bombax aquaticum*, *Camellia* sp., *Capsicum annum*, *Carica papaya*, *Citrus* sp., *Clivia miniata*, *Coffeea* sp., *Cucumis melo*, *Diospyros australis*, *Eucalyptus grandis*, *Malus domestica*, *Olea europaea*, *Pistacia vera*, *Rubus glaucus* and also on *Bletilla ochracea*, *Mangifera indica*, *Quercus salicifolia*, *Theobroma cacao* and *Zamia oblique* as an endophyte (Damm et al. 2012a, Yang et al. 2011, Peng et al. 2012, Tao et al. 2013, Afanador-Kafuri et al. 2014, Schena et al. 2014, Velho et al. 2015, Wang et al. 2016). *Colletotrichum karstii* belongs to the boninense species complex and is the most common and geographically distributed species within the complex (Damm et al. 2012a). This species can be identified with the use of any of the genes used in Damm et al. (2012a).

99. *Colletotrichum kinghornii* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 73 (2012)
This species is a pathogen of *Phormium* sp. in the UK (Damm et al. 2012b). It belongs to the acutatum species complex and can be effectively separated from other species with the use of HIS3 sequence data (Damm et al. 2012b).

100. *Colletotrichum laticiphilum* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 74 (2012)
Colletotrichum laticiphilum causes anthracnose of *Hevea brasiliensis* in Colombia, and belongs to the acutatum species complex (Damm et al. 2012b). It can be differentiated most effectively from other species by TUB2 sequences (Damm et al. 2012b).

101. *Colletotrichum ledebouriae* Crous & M.J. Wingf, Persoonia 36: 331(2016)
This taxon causes anthracnose on *Ledebouria floridunda* in South Africa (Crous et al. 2016). It is closely related to *C. sansevieriae*. Conidia of *C. sansevieriae* are larger (12.5–32.5 × 2.8–8.8 μm) (Nakamura et al. 2006) than those of *C. ledebouriae* and overlap with those of *C. neosansevieriae* (18–22 × 5–6 μm) (Crous et al. 2015). It is a singleton species.

103. **Colletotrichum lentis** Damm, in Damm, O’Connell, Groenewald & Crous, Stud. Mycol. 79: 65 (2014)
This taxon is a pathogen of *Lentilus lentilis* in Canada and on *Vicia sativa* in China (Damm et al. 2014). It was first described as "Glomerella truncata" (Armstrong-Cho & Banniza 2006). *Colletotrichum lentis* belongs to the destructivum species complex (Damm et al. 2014).

104. **Colletotrichum liaoningense** Y.Z. Diao, C. Zhang, L. Cai & X.L. Liu, Persoonia 38: 34 (2017)
This taxon is a pathogen on *Capsicum annuum* var. *conoides* in China (Diao et al. 2017). *Colletotrichum liaoningense* is a singleton species and phylogenetically most closely related to *C. brevisporum*. This species can be distinguished with the use of GAPDH and TUB2 sequence data.

105. **Colletotrichum lilii** Plakidas ex Boerema & Hamers, Neth. Jl Pl. Path. 94 (suppl.1): 12 (1988)
Colletotrichum lilii is the type species of the genus *Colletotrichum* and was primarily observed on a dead stem of an unknown host of *Apiaceae* in the Czech Republic (Corda 1831). *Colletotrichum lilii* is also reported on dead stems of *Anthriscus* sp., *Allium giganteum* and *Heracleum* sp. in the Netherlands, on petioles of *Fragaria* sp. in Canada, on rotten fruit of *Prunus domestica* in Czech Republic (Damm et al. 2009). *Colletotrichum lilii* is pathogenic on *Clarkia elegans*, *Trillium* sp. in the USA, *Astrantia major* in Zimbabwe, *Tussilago farfara*, *Euphorbia egula* in Canada, *Lupinus polyphyllus* in Germany, and *Symlocarpus foetidus* in the USA (Damm et al. 2012). It belongs to the dematium species complex (Cannon et al. 2012, Hyde et al. 2014) and is characterized by small, compressed acervuli, emerging in rows/lines (Damm et al. 2009).

106. **Colletotrichum limettiocola** (R.E. Clausen) Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 76 (2012)
It is pathogenic to *Citrus aurantifolia* in Cuba and the USA (Damm et al. 2012b). This taxon belongs to the acutatum species complex and can be separated from the other species of this complex by TUB2, GAPDH and HIS3, most effectively distinguished by TUB2 sequence data (Damm et al. 2012b).

107. **Colletotrichum lindemuthianum** (Sacc. & Magnus) Briosi & Cavara, Funghi Parass. Piante Colt. od Utili, Fasc. 2: no. 50 (1889)
This species belongs to the orbiculare species complex and is a pathogen restricted to *Phaseolus vulgaris* and *P. coccineus* (Fabaceae) (Damm et al. 2013, Liu et al. 2013a).

108. **Colletotrichum lineola** Corda, in Sturm, Deutschl. Fl., 3 Abt. (Pilze Deutschl.) 3 (12): 41 (1831)
Colletotrichum lineola is the type species of the genus *Colletotrichum* and was primarily observed on a dead stem of an unknown host of *Apiaiceae* in the Czech Republic (Corda 1831). *Colletotrichum lineola* is also reported on dead stems of *Anthriscus* sp., *Allium giganteum* and *Heracleum* sp. in the Netherlands, on petioles of *Fragaria* sp. in Canada, on rotten fruit of *Prunus domestica* in Czech Republic (Damm et al. 2009). *Colletotrichum lineola* is pathogenic on *Clarkia elegans*, *Trillium* sp. in the USA, *Astrantia major* in Zimbabwe, *Tussilago farfara*, *Euphorbia egula* in Canada, *Lupinus polyphyllus* in Germany, and *Symlocarpus foetidus* in the USA (Damm et al. 2009). It belongs to the dematium species complex (Cannon et al. 2012, Hyde et al. 2014) and is characterized by small, compressed acervuli, emerging in rows/lines (Damm et al. 2009).

109. **Colletotrichum lini** (Westerd.) Tochinai, J. Coll. agric., Hokkaido Imp. Univ. 14(4): 176 (1926)
Colletotrichum lini is a pathogen of *Linum* sp., *Medicago sativa*, *Nigella* sp., *Raphanus raphanistrum*, *Taraxacum* sp., *Teucrium scorodonia* and *Trifolium* sp.in France, Germany, Ireland, the Netherlands, New Zealand, Tunisia, the UK and the USA (Damm et al. 2014). *Colletotrichum lini* belongs to the destructivum species complex and can be distinguished by CHS-1, ACT, HIS3 and TUB2 gene regions. Damm et al. (2014) has synonymized *C. linicola* under this species.

110. **Colletotrichum liriopes** Damm, P.F. Cannon & Crous, in Damm, Woudenberg, Cannon & Crous, Fungal Diversity 39: 71 (2009)
This taxon is known to cause anthracnose on *Eria coronaria* in China (Yang et al. 2011), *Liriope muscari* in Mexico (Damm et al. 2009) and *Rohdea japonica* in Korea (Kwon & Kim 2013). Tao et al. (2013) reported this species as an endophyte of *Bletilla ochracea* in China. Also, Yang et al. (2011) reported that *C. liriopes* occurs as an endophyte on *Peione bulbocodioides* in China and
isolated this species from a dead stalk of *Hemerocallis fulva* in China. *Colletotrichum liriopes* belongs to the spaethanium species complex (Cannon et al. 2012).

111. *Colletotrichum lupini* (Bondar) Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 78 (2012)

It is a pathogen on *Camellia* sp. (UK), *Cinnamomum verum* (Portugal), *Lupinus* sp. (Australia, Austria, Bolivia, Canada, Costa Rica, France, Germany, Korea, Netherlands, Poland, South Africa, USA and Ukraine), and *Manihot utilissima* (Ruwanda) (Damm et al. 2012b, Han et al. 2014, Rosskopf et al. 2014). It belongs to the acutatum species complex, and can be differentiated effectively from other species by all genes used in Damm et al. (2012b) except for ACT; most effectively with TUB2.

112. *Colletotrichum magnisporum* F. Liu, L. Cai, Crous & Damm, Persoonia, Mol. Phyl. Evol. Fungi 33: 91 (2014)

This species belongs to the gigasporum species complex and was isolated from an unknown source. *Colletotrichum magnisporum* is phylogenetically close to *C. arxii* and can be differentiated by all loci used in Liu et al. (2014), including ITS. Based on ITS sequence comparison, it occurs on *Coffea* in USA (Hawaii) and on *Rhizodendrum* (*Poaceae*) and a tropical woody plant in Panama (Vega et al. 2010, Higgins et al. 2011, Higginbotham et al. 2013).

113. *Colletotrichum malvarum* (A. Braun & Casp.) SouthW., J. Mycol. 6(3): 116 (1891)

It is a pathogen on *Malvaceae* in Germany, Korea, the UK and belongs to the orbiculare species complex (Kim et al. 2008, Damm et al. 2013). This species is one of the slowest growing species in the orbiculare species complex (Damm et al. 2013). *Colletotrichum malvarum* is closely related to *C. trifolii* and can be separated using the GS sequence data (Damm et al. 2013).

114. *Colletotrichum melonis* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 80 (2012)

This species is pathogenic to *Cucumis melo* in Brazil, *Malus domestica* in Brazil and Uruguay (Bragança et al. 2016, Velho et al. 2015) and belongs to the acutatum species complex (Damm et al. 2012b). This species can be differentiated with the use of the GAPDH, ACT and HIS3 gene sequences; most effectively with GAPDH (Damm et al. 2012b).

115. *Colletotrichum menispermi* Chethana, Jayawardena, Bulgakov & K.D. Hyde, in Li et al., Fungal Diversity 78: 80 (2016)

This taxon is a saprobe on *Menispermum dahuricum* in Russia (Li et al. 2016). *Colletotrichum menispermi* belongs to the dematium species complex.

116. *Colletotrichum metake* Sacc., Annls mycol. 6(6): 557 (1908)

This species is known only as a pathogen on *Pleioblastus simoni* in Japan (Sato et al. 2012). Morphologically this species has falcate conidia, and ITS sequence data alone can be used to identify this species. It is a singleton species, closely related to *C. hsienjenchang* (in this study). However, further studies are needed to confirm the position of this species. Sato et al. (2012) mentioned it as a rare species. In order to fix the name of this species, it still needs to be epitypified.

117. *Colletotrichum miscanthi* J.A. Crouch, B.B. Clarke, J.F. White & B.I. Hillman, Mycologia 101(5): 729 (2009)

This species has an association with the genus *Miscanthus* (Crouch et al. 2009a) in Japan. Tao et al. (2013) reported it as an endophyte on *Bletilla ochracea* in China. It belongs to the graminicola species complex (Hyde et al. 2014).

118. *Colletotrichum musae* (Berk. & M. A. Curtis) Arx, Verh. K. ned. Akad. Wet., tweede sect. 51(3): 107 (1957)

Colletotrichum musae is known to be associated with fruit lesions of *Musa* sp. in many countries and belongs to the gloeosporioides species complex (Su et al. 2011, Sakinah et al. 2014, Sharma et al. 2015, Weir et al. 2012). It has been recognized as an endophyte on *Musa acuminata* in Thailand (Tao et al. 2013). ITS sequence data can be used to separate *C. musae* from all other species (Weir et al. 2012).

119. *Colletotrichum navitas* J.A. Crouch, Mycol. Res. 113(12): 1417 (2009)

This taxon belongs to the graminicola species complex and is only known as a pathogen on *Panicum* sp. in the USA (Crouch et al. 2009b).
120. *Colletotrichum neosansevieriae* Crous & N.A. van der Merwe, Persoonia, Mol. Phylog. Evol. Fungi 34: 221 (2015)
It is a pathogen on leaves of *Sansevieria trifasciata* in South Africa (Crous et al. 2015). This is a singleton species, and morphologically similar to *C. sansevieriae*. However, this species is phylogenetically distinct from *C. sansevieriae*.

121. *Colletotrichum nicholsonii* J.A. Crouch, B.B. Clarke, J.F. White & B.I. Hillman, Mycologia 101(5): 730 (2009)
This taxon causes anthracnose on *Paspalum* sp. in Japan and New Zealand (Crouch et al. 2009a). *Colletotrichum nicholsonii* belongs to the graminicola species complex (Cannon et al. 2012).

122. *Colletotrichum nigrum* Ellis & Halst., in Halsted, New Jersey Agric. Coll. Exp. Sta. Bull.: 297 (1895)
This species is a well-known pathogen of *Capsicum* sp., *Cichorium intybus*, *Fragaria* sp., *Helianthus tuberosus*, *Lens culinaris*, *Lycopersicon esculentum* and *Solanum* sp. worldwide (Liu et al. 2013a). *Colletotrichum nigrum* is a singleton species with a close affinity to *C. coccodes* and can be identified using ITS gene sequence (Liu et al. 2013a, Cannon et al. 2012).

123. *Colletotrichum novae-zelandiae* Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, Stud. Mycol. 73: 25 (2012)
This species belongs to the boninense species complex (Damm et al. 2012a). *Colletotrichum novae-zelandiae* is only known from New Zealand and has been isolated from fruit rots of *Capsicum* sp. and *Citrus* sp. (Damm et al. 2012a).

124. *Colletotrichum nupharicola* D.A. Johnson, Carris & J.D. Rogers, Mycol. Res. 101(6): 647 (1997)
This species is a pathogen known only in the USA, on the aquatic plants *Nuphar* and *Nymphae* sp. (Johnson et al. 1997). *Colletotrichum nupharicola* belongs to the gloeosporioides species complex and is closely related to *C. fructicola* and *C. alienum* within the musae clade (Weir et al. 2012). ITS sequence can separate this from all other species.

125. *Colletotrichum nymphaeae* (Pass.) Aa, Netherlands Journal of Plant Pathology, Supplement 1 84(3): 110 (1978)
This taxon is a pathogen of *Anemone* sp. (Israel, Italy, and the Netherlands), *Capsicum* sp. (Indonesia and Zimbabwe), *Fragariaxananassa* (Bulgaria, Canada, France, Israel, Italy, Netherlands, South Africa, Spain, Switzerland, UK and the USA), *Leucaena* sp. (Mexico), *Malus domestica* (Brazil and Uruguay), *Nuphar luteum* (Netherlands), *Nymphaea alba* (Netherlands), *Oenothera* sp. (Netherlands), *Olea europaea* (Portugal), *Pelargonium graveolens* (India), *Photinia* sp. (UK), *Protea* sp. (Australia and South Africa), *Phaseolus* sp. (Netherlands) and *Vitis vinifera* (China) (Damm et al. 2012b, Velho et al. 2014, 2015, Baroncelli et al. 2015b, Talhinhas et al. 2015, Liu et al. 2016). It has also been recorded as a saprobe from litter in Thailand (Damm et al. 2012b). *Colletotrichum nymphaeae* belongs to the acutatum species complex and can be separated from other species by analysis of TUB2 sequence data (Damm et al. 2012b).

126. *Colletotrichum ochraceae* G. Tao, Zuo Y. Liu & L. Cai [as 'ochracea'], in Tao, Liu, Liu, Gao & Cai, Fungal Diversity 61: 156 (2013)
This taxon is an endophyte of *Bletilla ochracea* in China (Tao et al. 2013). It belongs to the cadatum species complex. *Colletotrichum ochraceae* can be identified from the other species of this complex as it lacks conidial appendages.

127. *Colletotrichum ocimi* Damm, in Damm, O'Connell, Groenewald & Crous, Stud. Mycol. 79: 70 (2014)
This species causes anthracnose on leaves and stems of *Ocimum basilicum* in Italy (Damm et al. 2014). *Colletotrichum ocimi* belongs to the destructivum complex. It forms conidiogenous cells that are often covered by a mucoid sheath and can be identified by its unique ITS, CHS-1, HIS3, ACT and TUB2 sequences (Damm et al. 2014).

128. *Colletotrichum oncidii* Damm, P.F. Cannon & Crous, Stud. Mycol. 73: 26 (2012)
Colletotrichum oncidii has been recorded as an endophyte in leaves of Oncidium sp. in Germany and belongs to the boninense species complex (Damm et al. 2012a). It forms a sister group to C. cymbidiicola.

129. **Colletotrichum orbiculare** Damm, P.F. Cannon & Crous, in Damm, Cannon, Liu, Barreto, Guatimosim & Crous, Fungal Diversity 61: 39 (2013)

This taxon is a pathogen of Benincasa hispida (Cucurbitaceae) in Australia, Cucumis melo in Japan, Cucumis sativus in Japan, the UK, and the Netherland. Colletotrichum orbiculare belongs to the orbiculare species complex and is closely related to C. sidea, C. spinosum and C. tebeestii (Damm et al. 2013). This species can be separated from other species with its unique GS, ACT and HIS3 sequence data (Damm et al. 2013).

130. **Colletotrichum orchidophilum** Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 83 (2012)

It is pathogenic or endophytic to Orchidaceae (Ascocenda sp., Cycnoches aureum, Dendrobium sp. and Phalaenopsis sp.) (Damm et al. 2012). It clusters basal to the acutatum species complex, and is a singleton species. Colletotrichum orchidophilum can be distinguished by its very narrow cylindrical conidia and uniformly shaped, dark brown, pyriform to spathulate appressoria (Damm et al. 2012b).

131. **Colletotrichum panacicola** Uyeda & S. Takim., in Takimoto, Chosen Nokai-ho 14: 24 (1919)

This species causes anthracnose on Panax sp. in China, Japan, Korea and Russia (Damm et al. 2014). Colletotrichum panacicola belongs to the destructivum species complex and has pyriform, olive appressoria (Damm et al. 2014). It can be identified by ITS and GAPDH sequences (Damm et al. 2014).

132. **Colletotrichum paranaense** C.A.D. Bragança & Damm, Fungal Biology 120: 555 (2016)

This species is a pathogen of Caryocar brasiliense, Malus domestica and Prunus persica in Brazil (Bragança et al. 2016). It belongs to the acutatum species complex and can be identified by its unique TUB2 and HIS3 sequence data.

133. **Colletotrichum parsonsiae** Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, in Damm, Cannon, Woudenberg, Johnston, Weir, Tan, Shivas & P.Crous, Stud. Mycol. 73: 27 (2012)

This taxon is an endophyte of Bletilla ochracea in China (Tao et al. 2013) and Parsonia caspularis in New Zealand (Damm et al. 2012a). It belongs to the boninense species complex (Damm et al. 2012a).

134. **Colletotrichum paspali** J.A. Crouch, B.B. Clarke, J.F. White & B.I. Hillman, Mycologia 101(5): 730 (2009)

It causes anthracnose on Paspalum notatum in Japan (Crouch et al. 2009a). This species belongs to the graminicola species complex (Cannon et al. 2012).

135. **Colletotrichum paxtonii** Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 85 (2012)

This species is known from Musa sp. as a pathogen in Saint Lucia, belongs to the acutatum species complex, and can be separated from other species with the analysis of GAPDH or TUB2 sequence data; most effectively with TUB2 (Damm et al. 2012b).

136. **Colletotrichum petchii** Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, in Damm, Cannon, Woudenberg, Johnston, Weir, Tan, Shivas & P.Crous, Stud. Mycol. 73: 29 (2012)

This species is recorded as a pathogen from Dracaena sp. in China, Italy and the Netherlands. Colletotrichum petchii is a member of the boninense species complex (Damm et al. 2012b).

137. **Colletotrichum phormii** (Henn.) D.F. Farr & Rossman, in Farr, Aime, Rossman & Palm, Mycol. Res. 110(12): 1403 (2006)

This taxon has been reported as a pathogen from Phormium sp. in Germany, New Zealand, South Africa and the UK (Damm et al. 2012b). It belongs to the acutatum species complex and is closely related to C. salicis. It can be separated from other species by TUB2, GAPDH, HIS3 and ACT sequences; most effectively with HIS3 (Damm et al. 2012b).

138. **Colletotrichum phyllanthi** (H.S. Pai) Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, Johnston, Weir, Tan, Shivas & P.Crous, Stud. Mycol. 73: 31 (2012)
It is a pathogen and an endophyte of *Phyllanthus acidus* in India and belongs to the boninense species complex (Damm et al. 2012b).

139. Colletotrichum pisicola Damm, in Damm, O'Connell, Groenewald & Crous, Stud. Mycol. 79: 71 (2014)

This species is a pathogen only of *Pisum* sp. in the USA. *Colletotrichum pisicola* is characterized by distinctly curved conidia with few, short, pale brown setae with rounded tips. It is the basal species of the destructivum species complex (Damm et al. 2014). The sequences of all loci studied in Damm et al. (2014) are unique for this species.

140. Colletotrichum proteae F. Liu, Damm, L. Cai & Crous, Fungal Diversity 61: 100 (2013)

It is a pathogen only on *Protea* sp. in South Africa. Even though, the conidia of *C. proteae* resemble the acutatum species complex, phylogenetically this species clusters in the gloeosporioides species complex with a close affinity to *C. gloeosporioides* (Liu et al. 2013b, Cannon et al. 2012).

141. Colletotrichum pseudoacutatum Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 91 (2012)

This taxon is only known from *Pinus radiata* in Chile. It is basal to the acutatum species complex and considered as a singleton species (Cannon et al. 2012, Hyde et al. 2014).

142. Colletotrichum pseudomajus F. Liu, L. Cai, Crous & Damm, Persoonia, Mol. Phyl. Evol. Fungi 33: 91 (2014)

Colletotrichum pseudomajus is an endophyte only known on *Camellia sinensis* in Taiwan and belongs to the gigasporum species complex (Liu et al. 2014).

143. Colletotrichum psidii Curzi, Atti Ist. bot. R. Univ. Pavia, 3 Sér. 3(3): 207 (1927)

Only one isolate is available for this species that is known as a pathogen of *Psidium* in Italy, but it is well separated from all other species by its by ITS sequence (Weir et al. 2012). *Colletotrichum psidii* belongs to the kahawae clade within gloeosporioides species complex (Weir et al. 2012).

144. Colletotrichum pyricola Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 94 (2012)

This species is known only from New Zealand causing fruit rot of *Pyrus communis* (Damm et al. 2012b). It belongs to the acutatum species complex and can be identified with its unique ACT, TUB2, CHS-1, GAPDH and HIS3 sequences (Damm et al. 2012b).

145. Colletotrichum queenslandicum B. Weir & P.R. Johnst., in Weir, Johnston & Damm, Stud. Mycol. 73: 164 (2012)

This is a pathogen, known from *Capsicum* sp., *Carica papaya* and *Persea americana* in Australia, from *Coffea* sp. in Fiji and *Olea europaea* in Montenegro (Weir et al. 2012, Schena et al. 2014, De Silva et al. 2016). *Colletotrichum queenslandicum* belongs to the musae clade within the gloeosporioides species complex. It can be best distinguished with the use of TUB2, GAPDH and GS sequences (Weir et al. 2012).

146. Colletotrichum quinquefoliae Jayawardena, Bulgakov & K.D. Hyde, in Li et al. Fungal Diversity 78: 83 (2016)

This taxon is a saprobe and a weak pathogen on *Parthenocissus quinquefolia* in Russia. It belongs to the dematium species complex (Li et al. 2016).

147. Colletotrichum radicis F. Liu, L. Cai, Crous & Damm, Persoonia, Mol. Phyl. Evol. Fungi 33: 93 (2014)

Colletotrichum radicis belongs to the gigasporum species complex. *Colletotrichum radicis* has been isolated from a root of an undetermined host in Costa Rica (Liu et al. 2014).

148. Colletotrichum rhexiae Ellis & Everh., Proc. Acad. nat. Sci. Philad. 46: 372 (1894)

This species is a pathogen of *Rhexia* sp. in the USA as well as a fruit endophyte on *Vaccinium macrocarpon* in the USA (Doyle et al. 2013). *Colletotrichum rhexiae* belongs to the kahawae clade within the gloeosporioides species complex (Hyde et al. 2014).

149. Colletotrichum rhombiforme Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 95 (2012)
Colletotrichum rhombiforme is a pathogen of Olea europaea (Portugal) and Vaccinium macrocarpum (USA) and belongs to the acutatum species complex (Damm et al. 2012b). It can be distinguished by its rhomboidal ascospores. This species can be separated from other species by all the sequences studied in Damm et al. (2012b) except CHS-1; best identified with TUB2 and ITS sequence data.

150. *Colletotrichum riograndense* D.M. Macedo, R.W. Barreto, O.L. Pereira & B.S. Weir, in Macedo, Pereira, Hora Jr., Weir & Barreto Australasian Plant Pathology 45: 49 (2016)

This taxon is a pathogen on Tradescantia viz. fluminensis in Brazil and a member of the spaethianum species complex. *Colletotrichum riograndense* is closely related to *C. bletillum* and *C. incanum* (Macedo et al. 2016).

151. *Colletotrichum rusci* Damm, P.F. Cannon & Crous, in Damm, Woudenberg, Cannon & Crous, Fungal Diversity 39: 72 (2009)

This species is a pathogen of Ruscus sp. in Italy (Damm et al. 2009). It is a singleton species and phylogenetically close to *C. trichellum* (Cannon et al. 2012).

152. *Colletotrichum salicis* (Fuckel) Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 97 (2012)

This species is a pathogen on Acer platanoides (USA), Fragaria × ananassa (New Zealand), Malus domestica (Germany, New Zealand), Populus sp. (Netherlands, New Zealand), Pyrus pyrifolia (New Zealand), Salix sp. (Germany, Netherlands, New Zealand and UK) and Solanum lycopersicum (Germany) (Damm et al. 2012b). It belongs to the acutatum species complex and can be distinguished with HIS3, TUB2, GAPDH and ACT (Damm et al. 2012b). Sexual morph of this species has been identified as *Glomerella salicis* (Damm et al. 2012b).

153. *Colletotrichum salsolae* B. Weir & P.R. Johnst., in Weir, Johnston & Damm, Stud. Mycol. 73: 164 (2012)

It is known to be pathogenic on Salsola sp. in Hungary (Schwarczinger et al. 1998). *Colletotrichum salsolae* belongs to the musae clade within the gloeosporioides species complex and can be distinguished using TUB2 and GAPDH (Weir et al. 2012).

154. *Colletotrichum sansevieriae* Miho Nakam. & Ohzono, in Nakamura, Ohzono, Iwai & Arai, J. Gen. Pl. Path. 72(4): 253 (2006)

It is known only on Sansevieria sp. in Australia, Japan, Korea and the USA (Nakamura et al. 2006, Aldaoud et al. 2011, Palmateer et al. 2012, Park et al. 2013, Liu et al. 2014). It is a singleton species closely related to *C. ledebouriae* (Crous et al. 2013b)

155. *Colletotrichum scovillei* Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 100 (2012)

It causes diseases of Capsicum sp. (Brazil, China, Indonesia, Taiwan and Thailand), and belongs to the acutatum species complex (Damm et al. 2012b, Caires et al. 2014, Baroncelli et al. 2015b, Hao et al. 2016). Use of TUB2, GAPDH and ACT sequence data can distinguish *C. scovillei* from other species of the acutatum species complex; with GAPDH being most effective.

156. *Colletotrichum sedi* Jayawardena, Bulgakov & K.D. Hyde, in Liu et al., Fungal Diversity 72:27 (2015)

This species is a saprobe on Sedum sp. in Russia and belongs to the dematium species complex (Liu et al. 2015b). *Colletotrichum sedi* is a sister taxon to *C. circinans* and *C. spinaciae* and produces appressoria in small groups or short chains and smaller conidia.

157. *Colletotrichum siamense* Phoulivong, L. Cai & K.D. Hyde, in Prihastuti, Cai, McKenzie & Hyde, Fungal Diversity 39: 98 (2009)

Colletotrichum siamense was considered to be a species complex, in which the cryptic species can be resolved using the ApMat marker (Sharma et al. 2015). However, Liu et al. (2016) showed using the Genealogical Concordance Phylogenetic Species Recognition (GCPsR) that it is not a species complex and the earlier described species *C. communis*, *C. diansei*, *C. endomangiferae*, *C. hymenocallidis*, *C. jasmini-sambac*, *C. melanocaulon* and *C. murrayae* were synonymised with *C. siamense*. It occurs as a pathogen on a wide range of hosts and has a worldwide occurrence including Capsicum sp., Olea europaea, Persea americana, Pistacia vera in Australia (Weir et al. 2012).
2012, Schena et al. 2014, De Silva et al. 2016), Mangifera indica in Brazil and Colombia (Lima et al. 2013, Sharma et al. 2015, Hoz et al. 2016), Camellia sinensis, Citrus sp., Hymenocallis sp., Jasminum sambac and Murraya sp. in China (Yang et al. 2009, Wikee et al. 2011, Peng et al. 2012, Wang et al. 2016), Bauhinia variegata, Cassia fisculata, Citrus sp., Ficus elastic, Mangifera indica, Psidium guajava and Saraca indica in India (Lima et al. 2013, Liu et al. 2015a, Sharma et al. 2015), Citrus, Murraya sp. and on Strawberry in Italy (Peng et al. 2012), Dioscorea rotunda, Commelina sp. from Nigeria, Carica papaya from South Africa, Coffea Arabica, Capsicum annuum, Pennisetum purpureum, and Cymbopogon citrates in Thailand (Manamgoda et al. 2013), Fragaria × ananassa, Malus domestica Vaccinium macrocarpon, Vitis vinifera from the USA (Weir et al. 2012, Doyle et al. 2013) and Jasminium sambac in Vietnam (Prihastuti et al. 2009, Wikee et al. 2011). Colletotrichum siamense can be identified with the use of CAL or TUB sequence data (Weir et al. 2012).

158. Colletotrichum sidae Damm & P.F. Cannon, in Damm, Cannon, Liu, Barreto, Guatimosim & Crous, Fungal Diversity 61: 44 (2013)
This species is a pathogen on Sida spinosa (Prickly sida) in the USA and belongs to the orbiculare species complex (Damm et al. 2013). It can be distinguished with GS and ITS sequences.

159. Colletotrichum simmondsii R.G. Shivas & Y.P. Tan, Fungal Diversity 39:119 (2009)
It is a pathogen on Capsicum sp., Carica papaya (Australia), Cyclamen sp. (Netherlands), Fragaria × ananassa (Australia), Mangifera indica (Australia), Murrayae sp. (China) and Protea cynaroides (USA) (Damm et al. 2012b, Peng et al. 2012, De Silva et al. 2016). Colletotrichum simmondsii is also a stem endophyte of Actinidia chinensis in Australia (Shivas & Tan 2009). This species belongs to the acutatum species complex and can be distinguished with the analysis of GAPDH and TUB2 sequence data; with effectively by TUB2 gene (Damm et al. 2012b).

160. Colletotrichum sloanei Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 103 (2012)
It is known as an endophyte of Theobroma cacao in Malaysia. This species belongs to the acutatum species complex and can be distinguished with the use of TUB2, ACT and HIS3 sequence data (Damm et al. 2012b).

161. Colletotrichum somersetense J.A. Crouch, IMA Fungus 5(1):27 (2014)
This species is a pathogen on leaves of Sorghastrum nutans in the USA (Crouch 2014). Colletotrichum somersetense belongs to the caudatum species complex. It can be identified using any of the gene regions (Apn2, ITS, Sod2, Mat/Apn2) used in Crouch (2014).

162. Colletotrichum spaethianum (Allesch.) Damm, P.F. Cannon & Crous, in Damm, Woudenberg, Cannon & Crous, Fungal Diversity 39: 74 (2009)
Colletotrichum spaethianum has been recorded as a saprobe on dead stems of Hosta sieboldiana in Germany, Hymenocallis americana and Peucedanum praeruptorum in China (Damm et al. 2009, Yang et al. 2009, Guo et al. 2013) and as a pathogen of Allium fistulosum in Brazil, Hermerocallis sp. in Brazil and New Zealand and Lilium sp. in Korea (Damm et al. 2009, Vieira et al. 2014b, Cheon & Jeon 2016, Santana et al. 2016). It belongs to the spaethianum species complex (Cannon et al. 2012) and can be distinguished by its setae that have usually acute tips and cylindrical to conical bases and by its appressoria that are are irregular in outline and more or less lobed (Damm et al. 2009).

163. Colletotrichum spinaciae Ellis & Halst., J. Mycol. 6(1): 34 (1890)
This taxon is a pathogen on Spinacea sp. in Germany, Italy, the Netherlands and Turkey (Damm et al. 2009, Yang et al. 2009, Kurt et al. 2016), Chenopodium album in the USA, Portulaca oleracea in Canada and Medicago sativa in the Netherlands (Damm et al. 2009). On hosts other than spinach it develops only weak symptoms (von Arx 1957). It belongs to the dematium species complex (Cannon et al. 2012).

164. Colletotrichum spinosum Damm & P.F. Cannon, in Damm, Cannon, Liu, Barreto, Guatimosim & Crous, Fungal Diversity 61: 46 (2013)
This species causes seed blight and stem anthracnose of *Xanthium spinosum* in Argentina and Australia (Damm et al. 2013). It belongs to the orbiculare species complex and can be identified effectively based on GAPDH, HIS3, TUB2 and GS sequences data.

165. *Colletotrichum sublineola* Henn. ex Sacc. & Trotter, Syll. fung. (Abellini) 22: 1206 (1913)

It is known only as a pathogen of *Sorghum* sp. in Togo and the USA (Crouch & Tomaso-Peterson 2012). *Colletotrichum sublineola* is a member of the graminicola species complex (Cannon et al. 2012). It can be distinguished by *Apn2, Apn2/Mat1* and SOD2 sequence data (Crouch & Tomaso-Peterson 2012).

166. *Colletotrichum syzygiicola* Udayanga, Manamgoda & K.D. Hyde [as 'syzygicola'], in Udayanga, Manamgoda, Liu, Chukeatirote & Hyde, Fungal Diversity 61: 173 (2013)

This species belongs to the gloeosporioides species complex and causes anthracnose of *Citrus aurantifolia* and *Syzygium samarangense* in Thailand (Udayanga et al. 2013).

167. *Colletotrichum tabacum* Böning, Prakt. Bl. Pflanzenbau Pflanzenschutz 10: 89 (1932)

Colletotrichum tabacum belongs to the acutatum species complex and occurs as a pathogen on *Solanum betaceum* in Colombia (Damm et al. 2012a, Hoz et al. 2016). This species can be separated from other species using CHS-1, HIS3, TUB2 and GAPDH sequences; most effectively by GAPDH sequence data (Damm et al. 2012a).

168. *Colletotrichum tamarilloi* Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 105 (2012)

Colletotrichum tamarilloi belongs to the acutatum species complex and occurs as a pathogen on *Solanum betaceum* in Colombia (Damm et al. 2012a, Hoz et al. 2016). This species can be separated from other species using CHS-1, HIS3, TUB2 and GAPDH sequences; most effectively by GAPDH sequence data (Damm et al. 2012a).

169. *Colletotrichum tanaceti* M. Barimani, S.J. Pethybridge, N. Vaghefi, F.S. Hay & P.W.J. Taylor, Pl. Path. 62(6): 1248–1257 (2013)

It is a pathogen, only known from *Tanacetum cinerariifolium* in Australia and Tasmania (Barimani et al. 2013, Damm et al. 2014). *Colletotrichum tanaceti* belongs to the destructivum species complex (Damm et al. 2014).

170. *Colletotrichum tebeestii* Damm & P.F. Cannon, in Damm, Cannon, Liu, Barreto, Guatimosim & Crous, Fungal Diversity 61: 48 (2013)

This taxon belongs to the orbiculare species complex and is known as a pathogen on *Malva pusilla* in Canada (Damm et al. 2014). *Colletotrichum tebeestii* can be differentiated from the other species in the orbiculare species complex by using GAPDH sequence data.

171. *Colletotrichum temperatum* V. Doyle, P.V. Oudem. & S.A. Rehner, PLoS ONE 7(12): e51392, 17 (2012)

This species is a pathogen on *Vaccinium macrocarpon* as well as a stem endophyte on *V. macrocarpon* in the USA. *Colletotrichum temperatum* belongs to the gloeosporioides species complex (Doyle et al. 2013).

172. *Colletotrichum theobromicola* Delacr., Bull. Soc. mycol. Fr. 21: 191 (1905)

Colletotrichum theobromicola is broadly distributed as a pathogen in tropical and subtropical regions on a wide range of hosts including *Acca* sp., *Annona* sp., *Limonium* sp., *Mangifera indica*, *Olea* sp., *Stylosanthes* sp., *Theobroma cacao*, *Quercus* sp. (Weir et al. 2012, Schena et al. 2014, Sharma et al. 2015, Hoz et al. 2016). *Colletotrichum theobromicola* is also known as a pathogen of strawberry runners; previously known as *C. fragaria*, which has been synonymized with *C. theobromicola* by Weir et al. (2012). It belongs to the gloeosporioides species complex and ITS sequence can be used to distinguish this species from all other taxa.

173. *Colletotrichum ti* B. Weir & P.R. Johnst., in Weir, Johnston & Damm, Stud. Mycol. 73: 171 (2012)

This species is a leaf pathogen of *Cordyline* sp. in New Zealand. *Colletotrichum ti* belongs to the kahawae clade within the gloeosporioides species complex (Weir et al 2012). TUB2 and GAPDH sequences can be used to distinguish this taxon (Weir et al 2012).
174. *Colletotrichum tofieldiae* (Pat.) Damm, P.F. Cannon & Crous, in Damm, Woudenberg, Cannon & Crous, Fungal Diversity 39: 77 (2009)
This taxon occurs on many host plants including *Agapanthus* sp. in Portugal, *Dianthus* sp. in the UK, *Lupinus* sp. and *Semele gayae* in Germany, and *Tofieldia* sp. in Switzerland and in China (Damm et al. 2009, Hacquard et al. 2016). This species has also been collected as a leaf endophyte of *Bletilla ochracea* in China (Tao et al. 2013) and as a beneficial root endophyte of *Arabidopsis thaliana* in Spain (Hacquard et al. 2016). *Colletotrichum tofieldiae* belongs to the spathenianum species complex (Cannon et al. 2012).

175. *Colletotrichum torulosum* Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, in Damm, Cannon, Woudenberg, Johnston, Weir, Tan, Shivas & P.Crous, Stud. Mycol. 73: 32 (2012)
This taxon is an endophyte of *Solanum melongena* and a pathogen of *Passiflora edulis* in New Zealand and is characterized by highly convoluted appressoria (Damm et al. 2012a). *Colletotrichum torulosum* belongs to the boninense species complex (Damm et al. 2012a).

176. *Colletotrichum trichellum* (Fr.) Duke, Trans. Br. mycol. Soc. 13(3–4): 173 (1928)
This species occurs as a pathogen on *Hedera* sp. worldwide (Damm et al. 2009, Hyde et al. 2009). It is a singleton species with close affinity to *C. rusci* (Cannon et al. 2012).

177. *Colletotrichum trifolii* Bain, in Bain & Essary, J. Mycol. 12(5): 193 (1906)
This species is a pathogen on *Medicago sativa* and *Trifolium pratense* in the USA and on *Malva sylvestris* in China (Damm et al. 2014, Samac et al. 2014, Zhou et al. 2014). *Colletotrichum trifolii* belongs to the orbiculare species complex and has darker and often knobby setae than the other species in this complex (Damm et al. 2014). It is closely related to *C. malvarum* and can be distinguished with GS sequences.

178. *Colletotrichum tropicale* E.I. Rojas, S.A. Rehner & Samuels, Mycologia 102(6): 1331 (2010)
It has been recorded from hosts in tropical America including *Annona muricata* (Annonaceae), *Cordia aliobora* (Boraginaceae), *Trichilia tuberculata* (Meliaceae), *Viola surinamensis* (Myristicaceae), and as leaf endophyte of *Theobroma cacao* (Malvaceae) (Rojas et al. 2010), *Litchi chinensis* (Sapindaceae) in Japan (Weir et al. 2012) and *Pennisetum purpureum* in Thailand (Manamgoda et al. 2013). *Colletotrichum tropicale* belongs to the gloeosporioides species complex and can be distinguished using TUB2, CHS-1, GS or SOD2 sequences (Weir et al. 2012).

179. *Colletotrichum tropicicola* Phouliv., Noireung, L. Cai & K.D. Hyde, Cryptog. Mycol. 33(3): 353 (2012)
This species is an endophyte of *Citrus maxima* and *Paphiopedilum bellatulum* in Thailand (Noireung et al. 2012). It is a singleton species with close affinity to *C. excelsum-altitudinum*.

180. *Colletotrichum truncatum* (Schwein.) Andrus & W.D. Moore, Phytopathology 25: 121 (1935)
This taxon has a wide host range including the families *Amaranthaceae*, *Amaryllidaceae*, *Apocynaceae*, *Asteraceae*, *Basellaceae*, *Brassicaceae*, *Cactaceae*, *Caricaceae*, *Convolvulaceae*, *Cyperaceae*, *Euphorbiaceae*, *Fabaceae*, *Malvaceae*, *Nyctaginaceae*, *Oleaceae*, *Pipieraceae*, *Plumbaginaceae*, *Poaceae*, *Polygonaceae*, *Rosaceae*, *Solanaceae* and *Theaceae* (Damm et al. 2009, De Silva et al. 2016, He et al. 2016, Wang et al. 2016). It belongs to the truncatum species complex (Cannon et al. 2012). *Colletotrichum truncatum* is associated with symptoms of leaf tip die-back, foliar blight and leaf spots (Shenoy et al. 2007). The taxon is also known to be pathogenic to humans (Damm et al. 2009, Squissato et al. 2015). *Colletotrichum aciculare* which was introduced in Ariyawansa et al. 2015 is also synonymized under this species, due to the high morphological and phylogenetic similarities (This study).

181. *Colletotrichum utrechtense* Damm, in Damm, O’Connell, Groenewald & Crous, Stud. Mycol. 79: 77 (2014)
This species is a pathogen on *Trifolium pratense* in the Netherlands and belongs to the destructivum species complex (Damm et al. 2014). *Colletotrichum utrechtense* can be distinguished by CHS-1, HIS3 and TUB2 sequence data (Damm et al. 2014).

182. *Colletotrichum verruculosum* Damm, P.F. Cannon & Crous, in Damm, Woudenberg, Cannon & Crous, Fungal Diversity 39: 81 (2009)
This species is known on *Crotalaria juncea* from Zimbabwe (Damm et al. 2009). *Colletotrichum verruculosum* belongs to the spaethianum species complex (Cannon et al. 2012).

183. *Colletotrichum vietnamense* F. Liu, L. Cai, Crous & Damm, Persoonia, Mol. Phyl. Evol. Fungi 33: 93 (2014)

This species is a pathogen on *Coffea* sp. in Vietnam and belongs to the gigasporum species complex (Liu et al. 2014).

184. *Colletotrichum vignae* Damm, in Damm, O'Connell, Groenewald & Crous, Stud. Mycol. 79: 78 (2014)

Colletotrichum vignae is known from *Vigna unguiculata* in Nigeria causing anthracnose and belongs to the destructivum species complex (Damm et al. 2014). It is one of the slowest growing species in the destructivum species complex and can be identified by its ITS, GAPDH, HIS3 and ACT sequences (Damm et al. 2014).

185. *Colletotrichum viniferum* L.J. Peng, L. Cai, K.D. Hyde & Z-Y. Ying, Mycoscience 54(1): 36 (2013)

It has been identified as a pathogen on *Vitis vinifera* in China (Peng et al. 2013, Yan et al. 2015). *Colletotrichum viniferum* belongs to the gloeosporioides species complex (Peng et al. 2013).

186. *Colletotrichum walleri* Damm, P.F. Cannon & Crous, in Damm, Cannon, Woudenberg, & Crous, Stud. Mycol. 73: 106 (2012)

This species is an endophyte of *Coffea arabica* in Vietnam and belongs to the acutatum species complex (Damm et al. 2012b). It is easily distinguished by using HIS3 and ITS sequence data.

187. *Colletotrichum wuxiense* Y.C. Wang, X.C. Wang & Y.J. Yang, Scientific Reports 6 (no:35287): 8 (2016)

It is a pathogen on leaves of *Camellia sinensis* in China. This species belongs in the gloeosporioides species complex (Wang et al. 2016). *Colletotrichum wuxiense* can be distinguished from the other members of the complex by its concatenated *ApMat* and GS sequence data.

188. *Colletotrichum xanthorrhoeae* R.G. Shivas, Bathgate & Podger, Mycol. Res. 102 (3): 280 (1998)

This species is a pathogen on *Xanthorrhoea preissii* causing leaf spot in Australia (Shivas et al. 1998). *Colletotrichum xanthorrhoeae* belongs to gloeosporioides species complex and ITS sequence can be used to identify this species (Weir et al. 2012).

189. *Colletotrichum yunnanense* Xiao Ying Liu & W.P. Wu, in Liu, Xie & Duan, Mycotaxon 100: 139 (2007)

This species is a leaf endophyte on *Buxus* sp. in China (Liu et al. 2007, Xia-Ying et al. 2007). *Colletotrichum yunnanense* is a singleton species and closely related to *C. dracaenophilum* (Cannon et al. 2012, Hyde et al. 2014).

190. *Colletotrichum zoysiae* J.A. Crouch, IMA Fungus 5(1):27 (2014)

This taxon belongs to the caudatum species complex and has been recorded as a pathogen on *Zoysia tenuifolia* only in Japan (Crouch 2014). It can be identified using any of the gene regions (*Apn2*, ITS, *Sod2*, Mat/*Apn2*) used in Crouch (2014).

Doubtful species

Colletotrichum phaseolorum S. Takim., Ann. phytopath. Soc. Japan 5: 21 (1934)

This taxon is a pathogen of *Phaseolus radiatus* var. *aureus* and on *Vigna sinensis* in Japan (Damm et al. 2009). *Colletotrichum phaseolorum* is a singleton species, phylogenetically close to *C. chlorophyti* (Damm et al. 2009, Hyde et al. 2014). However, as it has two ex-type strains belonging to two different species, we consider this species as a doubtful species.

Excluded species

Colletotrichum corchori-capsularis X.P. Niu, H. Gao, J.M. Qi, M.C. Chen & J.G. Su [as 'corchorum-capsularis']. Scientific Reports 6 (no. 25179): 4 (2016)
Colletotrichum corchorum-capsularis belongs to the truncatum species complex. This is a pathogen on Corchorus capsularis in China (Niu et al. 2016). However, as the authors have not listed an authentic dried type specimen, this species cannot be accepted as an authentic species.

Acknowledgements

We are grateful to the CARS-30, Youth Foundation of Beijing Academy of Agriculture and Forestry Sciences (number QNJ 201515) and Mushroom Research Foundation, Chiang Rai, Thailand. K.D. Hyde thanks the Chinese Academy of Sciences, project number 2013T2S0030, for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany. Ruvishika S. Jayawardena thanks B. Weir for his valuable suggestions to improve this manuscript. Fang Liu is thanked for providing the photos. The authors have no conflict of interest to declare.

References

Afanador-Kafuri L, Minz D, Maymon M, Freeman S. 2003 – Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus. Phytopathology 93, 579–587.

Afanador-Kafuri L, González A, Gañán L, Mejía JF, Cardona N, Álvarez E. 2014 – Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Disease 98, 1503–1513.

Alaoud R, de Alwis S, Salib S, Cunnington JH, Doughty S. 2011 – First record of Colletotrichum sansevieriae on Sansevieria sp. (mother-in-law's tongue) in Australia. Australasian Plant Disease Notes 6, 60–61.

Álvarez E, Gañán L, Rojas-Triviño A, Mejía JF, Llano GA, González A. 2014 – Diversity and pathogenicity of Colletotrichum species isolated from soursop in Colombia. European journal of plant pathology 139, 325–338.

Ariyawansa HA, Hawksworth DL, Hyde KD, Jones EBG, Maharachchikumbura SSN, Manamgoda DS, Thambugala KM, Udayanga D, Camporesi E, Daranagama A, Jayawardena R, Liu J-K, McKenzie EHC, Phookamsak R, Senanayake IC, Shivas RG, Xu J-C. 2014 – Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Diversity 69, 57–91.

Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Thilini Chethana KW, Dai D-Q, Dai YC, Daranagama DA, Jayawardena RS, Lucking R, Ghobad-Nejad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li G-J, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui Y-Y, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li Q-R, Liu JK. 2015 – Fungal diversity notes 111–252 - taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75, 27–274.

Armstrong-Cho CL, Banniza S. 2006 – Glomerella truncata sp. nov., the teleomorph of Colletotrichum truncatum. Mycological Research 110, 951–956.

Arx JA von. 1957 – Die Arten der Gattung Colletotrichum Cda. Phytopathologische Zeitschrift 29, 413–468.

Barimani M, Pethybridge SJ, Vaghefi N, Hay FS, Taylor PWJ. 2013 – A new anthracnose disease of pyrethrum caused by Colletotrichum tanaceti sp. nov. Plant Pathology 62, 1248–1257.

Baroncelli R, Sreemivasaprasad S, Lane CR, Thon MR, Sukno SA. 2014 – First report of Colletotrichum acutatum sensu lato (Colletotrichum godetiae) causing anthracnose in grapevine (Vitis vinifera) in the United Kingdom. New Disease Report 29, 26.

Baroncelli R, Sarrocco S, Zapparata A, Tavarini S, Angelini LG, Vannacci G. 2015a – Characterization and epidemiology of Colletotrichum acutatum sensu lato (C. chrysanthemi) causing Carthamus tinctorius anthracnose. Plant Pathology 64, 375–384.
Baroncelli R, Zapparata A, Sarrocco S, Sukno SA, Lane CR, Thon MR, Vannacci G, Holub E, Sreenivasaprasad S. 2015b – Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species. PloS One 10, e0129140.

Bezerra JP, Ferreira PV, Barbosa L da F, Ramos-Sobrinho R, Pinho DB, Reis A, Assuncao IP, Lima GSA. 2016 – First report of anthracnose on chayote fruits (Sechium edule) caused by Colletotrichum brevisporum. Plant Disease 100, 217.

Beirn LA, Clarke BB, Crouch JA. 2014 – Influence of host and geographic locale on the distribution of Colletotrichum cereale lineages. PloS One 9, e97706.

Bragança CA, Damm U, Baroncelli R, Júnior NSM, Crous PW. 2016 – Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biology 120, 547–561.

Cai L, Hyde KD, Taylor PWJ, Weir B, Waller JM, Abang MM, Yang YL, Phouliyong S, Shivas RG, McKenzie EHC, Johnston PR. 2009 – A polyphasic approach for studying Colletotrichum. Fungal Diversity 39, 183–204.

Caires NP, Souza JSC, Silva MA, Lisboa DO, Pereira OL, Furtado GQ. 2014 – First report of anthracnose on pepper fruit caused by Colletotrichum scovillei in Brazil. Plant Disease 98, 1437.

Cannon PF, Damm U, Johnston PR, Weir BS. 2012 – Colletotrichum current status and future directions. Studies in Mycology 73, 181–213.

Cheon W, Jeon Y. 2016 – First report of anthracnose caused by Colletotrichum spaethianum on fragrant plantain lily in Korea. Plant Disease 100, 224.

Chowdappa P, Chethana CS, Pant RP, Bridge PD. 2014 – Multilocus gene phylogeny reveals occurrence of Colletotrichum cymbidiicola and C. cliviae on orchids in North East India. Journal of Plant Pathology 96, 327–334.

Corda ACI. 1831 – Die Pilze Deutschlands. In: Sturm J (ed) Deutschlands Flora in Abbildungen nach der Natur mit Beschreibungen. Sturm, Nürnberg vol. 3, Abt. 12, 33–64, tab, 21–32.

Crouch JA, Clarke BB, White JF Jr, Hillman BI. 2009a – Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species from warm-season grasses. Mycologia 101, 717–732.

Crouch JA, Beirn LA, Cortese LM, Bonos SA, Clarke BB. 2009b – Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas. Mycological Research 113, 1411–1421.

Crouch JA, Inguagiato JC. 2009 – First report of anthracnose disease of ornamental feather reed grass (Calamagrostis acutifolia 'Karl Foerster') caused by Colletotrichum cereale. Plant Disease 93, 203–203.

Crouch JA, Tomaso-Peterson M. 2012 – Anthracnose disease of centipedegrass turf caused by Colletotrichum eremochloae, a new fungal species closely related to Colletotrichum sublineola. Mycologia 104, 1085–1096.

Crouch JA. 2014 – Colletotrichum caudatum s.l. is a species complex.IMA Fungus 5, 1–30.

Crous PW, Denman S, Taylor JE, Swart L, Bezuidenhout CM, Hoffman L, Palm ME, Groenewald JZ. 2013a – Cultivation and disease of Proteaceae: Leucadendron, Leucospermum and Protea: Second Edition. CBS Biodiversity Series, 1–360.

Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, Damm U, Wood AR, Shuttleworth LA, Hodges CS, Munster M, de Jesús Yañez-Morales M, Zúñiga-Estrada L, Cruywagen EM, de Hoog GS, Silvera C, Najafzadeh J, Davison EM, Davison PJN, Barrett MD, Barrett RL, Manamgoda DS, Minnis AM, Klczezewski NM, Flory SL, Castlebury LA, Clay K, Hyde KD, Mäusse-Sitoe SND, Chen S, Lechat C, Hairaud M, Lesage-Meessen L, Pawlowska J, Wilk M, Sliwinska-Wyrzychowska A, Metrak M, Wrzosek M, Pavlic-Zupanc D, Maleme HM, Slippers B, Mac Cormack WP, Archuby DI, Grünwald NJ, Tellería MT, Dueñas M, Martín
MP, Marincowitz S, de Beer Zw, Perez CA, Gené J, Marin-Felix Y, Groenewald JZ. 2013a – Fungal Planet description sheets: 154–213. Persoonia 31, 188–296.

Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo, Sutton DA, Acharya K, Barber PA, Boekhout T, Dimitrov RA, Dueñas, Dutta AK, Gené J, Gouliamova DE, Groenewald M, Lombard L, Morozova OV, Sarkar J, Smith MTh, Stchigel AM, Wiederhold NP, Alexandrova AV, Antelmi I, Arrangegol J, Barnes I, Cano-Lira JF, Ruiz RFC, Contu M, Courtecuisse PrP, da Silveira AL, Decock CA, de Goes A, Edathodu J, Ercole E, Firmino AC, Fourie A, Fournier J, Furtado EL, Geering ADW, Gershenzon J, Giraldo A, Gramaje D, Hammerbacher A, He XL, Haryadi D, Khenmuk W, Kovalenko AE, Krawczynski R, Laich F, Lechat C, Lopes UP, Madrid H, Malseheva EF, Marin-Felix Y, Martin MP, Mostert L, Nigro F, Pereira OL, Picillo B, Pinho DB, Polow ES, Peláez CA, Rooney-Latham S, Sandoval-Denis M, Shivis RG, Silva V, Stoliova-Disheva MM, Telleria MT, Ullah C, Unsicker SB, van der Merwe NA, Vizzini A, Wagner HG, Wong PTW, Wood AR, Groenewald JZ. 2015 – Fungal planet description sheets: 320–370. Persoonia 34, 167–266.

Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, Martin MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolářik M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JHC, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MYu, Dueñas M, Dutta AK, EsteveRaventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GEstJ, Held BW, Jurjjevič Ž, Kaufwargajt T, Latha KPD, Lombard L, Luangsa-ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosce I, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H-D, Silva BDB, Silva GA, Smith MTh, Souza-Motta CM, Stchigel AM, Stoliova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ. 2016 – Fungal planet description sheets: 400–468. Persoonia 36, 316–458.

Damm U, Woudenberg JHC, Cannon PF, Crous PW. 2009 – Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity 39, 45–87.

Damm U, cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Shivis RG, Crous PW. 2012a – The Colletotrichum boninense species complex. Studies in Mycology 73, 1–36.

Damm U, Cannon PF, Woudenberg JHC, Crous PW. 2012b – The Colletotrichum acutatum species complex. Studies in Mycology 73, 37–113.

Damm U, Cannon PF, Liu F, Barreto RW, Guatimosim E, Crous PW. 2013 – The Colletotrichum orbiculare species complex: important pathogens of field and weeds. Fungal Diversity 61, 29–59.

Damm U, O`Connell RJ, Groenewald JZ, Crous PW. 2014 – The Colletotrichum destructivum species complex - hemibiotrophic pathogens of forage and field crops. Studies in Mycology 79, 49–84.

De Mio LLM, Silva FAD, Blood RY, Figueiredo JAG. 2015 – Twig blight and defoliation caused by Colletotrichum horii in persimmons in Brazil. Revista Brasileira de Fruticultura 37, 256–260.

De Silva DD, Ades PK, Crous PW, Taylor PWJ. 2016 – Colletotrichum species associated with chili anthracnose in Australia. Plant Pathology (available online) http://doi: 10.1111/ppa.12572.

Diao YZ, Fan JR, Wang ZW, Liu XL. 2013 – First report of Colletotrichum boninense causing anthracnose on pepper in China. Physiological and Molecular Plant Pathology 84, 138–145.

Diao YZ, Zhang C, Liu F, Wang WZ, Cai L, Liu XL. 2017 – Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38, 20–37.
Ditmore M, Moore JW, TeBeest DO. 2008 – Interactions of two selected field isolates of *Colletotrichum gloeosporioides* f. sp. *aeschynomene* on *Aeschynomene virginica*. Biological Control 47, 298–308.

Doyle VP, Oudemans PV, Rehner SA, Litt A. 2013 – Habitat and host indicate lineage identity in *Colletotrichum gloeosporioides* sl. from wild and agricultural landscapes in North America. PLoS One 8, e62394.

Farr DF, Aime MC, Rossman AY, Palm ME. 2006 – Species of *Colletotrichum* on agavaceae. Mycological Research 110, 1395–1408.

Farr DF, Rossman AY. 2016 – Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/

Freitas RL, Maciel-Zambolim E, Zambolim L, Lelis DT, Caixeta ET, Lopes UP, Pereira OL. 2013 – *Colletotrichum boninense* causing anthracnose on Coffee trees in Brazil. Plant Disease 97, 1255–1255.

Garibaldi A, Gilardi G, Ortu G, Gullino ML. 2015 – First report of leaf spot caused by *Colletotrichum coccodes* on *Salvia greggii* in Italy. Journal of Plant Pathology 97, 544.

Goodwin PH. 2001 – A molecular weed-mycoherbicide interaction: *Colletotrichum gloeosporioides* f. sp. *malvae* and round-leaved mallow, *Malva pusilla*. Canadian Journal of Plant Pathology 23, 28–35.

Guo M, Pan YM, Dai YL, Gao Z-M. 2013 – First Report of Leaf Spot Caused by *Colletotrichum spaethianum* on *Peucedanum praeruptorum* in China. Plant Disease 97, 1380.

Hacquard S, Kracher B, Hiruma K, Münch PC, Garrido-Oter R, Thon MR, Weimann A, Damm U, Dallery J-F, Hainaut M, Henriassat B, Lespinet O, Sacristán S, Ver Loren van Themaat E, Kemen E, McHardy AC, Schulze-Lefert P, O’Connell RJ. 2016 – Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications 7, article 11362.

Hall TA. 1999 – BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Hao W, Wang T, Chen QQ, Chi YK, Swe TM, Qi RD. 2016 – First report of *Colletotrichum scovillei* causing anthracnose fruit rot on pepper in Anhui Province, China. Plant Disease 100, 2168.

Hawksworth D. 2011 – A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1, 7–20.

He YY, Chen Q, Wu CW, Yang M, Zhou E. 2016 – *Colletotrichum truncatum*, a new cause of anthracnose on Chinese flowering cabbage (*Brassica parachinensis*) in China. Tropical Plant Pathology 41, 183–192.

Higginbotham SJ, Arnold AE, Ibanez A, Spadafora C, Coley PD, Kursar TA. 2013 – Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8, e73192.

Higgins KL, Coley PD, Kursar TA, Arnold AE. 2011 – Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses. Mycologia 103, 247–260

Hillis DM, Bull JJ. 1993 – An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.

Honger JO, Offei SK, Oduro KA, Odamten GT, Nyaku ST. 2014 – Identification and species status of the mango biotype of *Colletotrichum gloeosporioides* in Ghana. European Journal of Plant Pathology 140, 455–467.

Hou LW, Liu F, Duan WJ, Cai L. 2016 – *Colletotrichum aracearum* and *C. camelliae-japonicae*, two holomorphic new species from China and Japan. Mycosphere 7, 1111–1123.
Hoz CJP, Calderon C, Rincon AM, Cardenas M, Danies G, Lopez-Kleine L, Restrepo S, Jimenez P. 2016 – Species from the *Colletotrichum acutatum*, *Colletotrichum boninense* and *Colletotrichum gloeosporioides* species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology 65, 227–237.

Hsiao Y, Cheng MJ, Chang HS, Wu MD, Hsieh SY, Liu TW, Lin CH, Yuan GF, Chen IS. 2016 – Six new metabolites produced by *Colletotrichum aotearoa* 09F0161, an endophytic fungus isolated from *Bredia oldhamii*. Natural Product Research 30, 251–258.

Huang F, Chen GQ, Hou X, Fu YS, Cai L, Hyde KD, Li HY. 2013 – *Colletotrichum* species associated with cultivated citrus in China. Fungal Diversity 61, 61–74.

Hyde KD, Cai L, McKenzie EHC, Yang YL, Zhang JZ, Prihastuti H. 2009a – *Colletotrichum*: a catalogue of confusion. Fungal Diversity 39, 1–17.

Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW, Damm U, Goodwin PH, Chen H, Johnston PR, Jones EBG, Liu ZY, McKenzie EHC, Moriwaki J, Noireung P, Pennycook SR, Pfenning LH, Prihastuti H, Sato T, Shivas RG, Tan YP, Taylor PWJ, Weir BS, Yang YL, Zhang JZ. 2009b – *Colletotrichum*—names in current use. Fungal Diversity 39, 147–182.

Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE, Cai L, de Cock AWAM, Dissanayake AJ, Gockling SL, Goonasekara ID, Gorczak M, Hahn M, Jayawardena RS, van Kan JAL, Laurence MH, Lévesque CA, Li XH, Liu JK, Maharachchikumbura SSN, Manamgoda DS, Martin FN, McKenzie EHC, McTaggart AR, Mortimer PE, Nair PVR, Pawlowska J, Rintoul TL, Shivas RG, Spies CFJ, Summerrell BA, Taylor PWJ, Terhem RB, Udayanga D, Vaghefi N, Walther G, Wilk M, Wrzosek M, Xu JC, Yan YJ, Zhou N. 2014 – One stop shop: backbones trees for important pytopathogenic genera: I. Fungal Diversity 67, 21–125.

Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Abdel-Aziz FA, Abdel-Wahab MA, Banmai S, Chomnunti P, Cui BK, Daranagama DA, Das K, Dayarathne MC, de Silva NL, Dissanayake AJ, Doirom M, Ekanayaka AH, Gibertoni TB, Góes-Neto A, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li WJ, Lin CG, Liu JK, Lu YZ, Luo GL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, de Santiago ALCMA, Drechsler-Santos ER, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tiptromma S, Thongbai B, Vizzini A, Wanasinghe DN, Wijayawardene NN, Wu H, Yang J, Zeng XY, Zhang H, Zhang JF, Bulgakov TS, Camporesi E, Bahkali AH, Amoozegar AM, Araujoneta LS, Ammirati JF, Baghela A, Bhatt RP, Bojantchev S, Buyck B, da Silva GA, de Lima CLF, de Oliveira RJS, de Souza CAB, Dai YC, Dima B, Duong TT, Ercole E, Mafalda-Freira F, Ghosh A, Hashimoto A, Kamolhan S, Kang JC, Karunarathna SC, Kirk PM, Kytövuori I, Lantieri A, Liinamäe K, Liu ZY, Liu XW, Lücking R, Medardi G, Mortimer PE, Nguyen TTT, Promputtha I, Raj KNA, Reck MA, Lumyong S, Shahzadeh-Fazeli SA, Sadler M, Soudi MR, Su HY, Takahashi T, Tangthirasunun N, Uniyal P, Wang Y, Wen CT, Xu JC, Zhang ZK, Zhao YC, Zhou JZ, Zhu L. 2016 – Fungal diversity notes 367–491: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80, 1–270.

Index Fungorum, 2016. http://www.indexfungorum.org/names/names.asp

Jayawardena RS, Hyde KD, Jeewon R, Liu XH, Liu M, Yan JY. 2016a – Why it is important to correctly name *Colletotrichum* species? Mycosphere 7, 1076–1092.

Jayawardena RS, Huang J, Jin B, Yan JY, Li XH, Hyde KD, Bahkali AH, Yin S, Zhang GZ. 2016c – Morphology and molecular phylogeny updated *Colletotrichum* species associated with strawberry anthracnose in China. Mycosphere 7, 1147–1163.

Johnson DA, Carris LM, Rogers JD. 1997 – Morphological and molecular characterization of *Colletotrichum nymphaeae* and *C. nupharicola* sp. nov. on water-lilies (*Nymphaea* and *Nuphar*). Mycological Research 101, 641–649.

Katoh K, Toh H. 2008 – Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 276–285.
Kasson MT, Pollok JR, Benhase EB, Jelesko JG. 2014 – First report of seedling blight of eastern poison Ivy (*Toxicodendron radicans*) by *Colletotrichum fioriniae* in Virginia. Plant Disease 98, 995–995.

Kim WG, Hong SK, Kim JH. 2008 – Occurrence of anthracnose on Chinese mallow caused by *Colletotrichum malvarum*. Mycobiology 36, 139–141.

Kishino H, Hasegawa M. 1989 – Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data. Journal of Molecular Evolution 29, 170–179.

Kou LP, Gaskins V, Luo YG, Jurick II WM. 2015 – First report of *Colletotrichum fioriniae* causing postharvest decay on ‘Nittany’ apple fruit in the United States. Genetic Resources and Crop Evolution 62, 765–794.

Krishnapillai N, Wilson-Wijeratnam RS. 2014 – First report of *Colletotrichum asiaticum* causing anthracnose on Willard mangoes Sri Lanka. New Disease Reports 29, 1.

Kwon J-H, Kim J. 2013 – First report of anthracnose on *Rohdea japonica* caused by *Colletotrichum liriopes* in Korea. Plant Disease 97, 559.

Kurt Ş, Uysal A, Akgül DS. 2015 – First report of anthracnose caused by *Colletotrichum spinaciae* on Spinach in the Mediterranean region of Turkey. Plant Disease 100, 219.

Lei Y, Tang XB, Jayawardena RS, Yan JY, Wang XD, Liu M, Chen T, Liu XM, Wang JC, Chen QX. 2016 – Identification and characterization of *Colletotrichum* species causing grape ripe rot in Southern China. Mycosphere (This issue).

Lima NB, Barbosa MAG, Hyde KD, Camara MPS, Michereff SJ, de A Batista MV, de Morais Jr MA. 2013 – Five *Colletotrichum* species are responsible for mango anthracnose in northeastern Brazil. Fungal Diversity 61, 75–88.

Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA, Baghela A, Bahkali AH, Beug M, Bhat DJ, Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O, Chakraborty D, Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Danaranaga DA, Das K, Dayarathne MC, De Crop E, De Oliveira RJV, de Souza CAF, de Souza JL, Dentinger BMT, Dissanayake AJ, Doilom M, Drechsler-Santos ER, Ghobad-Nejad M, Gilmore SP, Góes-Neto A, Gorczak M, Haitjema CH, Hapuarachchi KK, Hashimoto A, He MQ, Henske JK, Hirayama K, Iribarren MJ, Jayasiri SC, Jayawardena RS, Jeon SJ, Jerónimo GH, Jesus AL, Jones EBG, Kang JC, Karunarathna SC, Kirk PM, Konta S, Kuhnert E, Lagner E, Lee HS, Lee HB, Li WJ, Li XI, Liimatainen K, Lima DX, Lin CG, Liu JK, Liu XZ, Liu ZY, Luangsarad JJ, Lufting R, Lumbsch HT, Lumyong S, Leaño EM, Marano AV, Matsumura M, McKenzie EHC, Mangkolsamrit S, Mortimer PE, Nguyen TT, Niskanen T, Norphanphoun C, O’Malley MA, Parmen S, Pawlowska J, Perera RH, Phookamsak R, Phukhamsakda C, Pires-Zottarelli CLA, Raspé O, Reck MA, Rocha SCO, de Santiago ALCMA, Senanayake IC, Setti L, Shang QJ, Singh SK, Sir EB, Solomon KV, Song J, Srikitkulchai P, Stadler M, Suertong S, Takahashi Y, Takahashi T, Tanaka K, Tang LP, Thambugala KM, Thanakitpipattana D, Theodorou MK, Thongbai B, Thummarukcharoen T, Tian Q, Tiptromma S, Verbeken A, Vizzini A, Vlasák J, Voigt K, Wanasinghe DN, Wang Y, Wookkoon G, Wen HA, Wen TC, Wijayawardena NN, Wongkanoun S, Wrzosek M, Xiao RX, Xu JC, Yan JY, Yang J, Yang SD, Hu Y, Zhang JF, Zhao J, Zhou LW, Peršoh D, Phillips AJL, Maharachchikumbura S SN. 2016 – Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78, 1–237.

Liu X, Xie X, Duan J. 2007 – *Colletotrichum yunnanense* sp. nov., a new endophytic species from *Buxus* sp. Mycotaxon 100, 137–144.

Liu F, Hyde KD, Cai L. 2011 – Neotypification of *Colletotrichum coccodes*, the causal agent of potato black dot disease and tomato anthracnose, Mycology 2, 248–254.

Liu F, Cai L, Crous PW, Damm U. 2013a – Circumscription of the anthracnose pathogens *Colletotrichum lindemuthianum* and *C. nigrum*. Mycologia 105, 844–860.
Liu F, Damm U, Cai L, Crous PW. 2013b – Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae. Fungal Diversity 61, 89–105.

Liu F, Cai L, Crous PW, Damm U. 2014 – The Colletotrichum gigasporum species complex. Persoonia 33, 83–97.

Liu F, Weir BS, Damm U, Crous PW, Wang Y, Liu B, Wang M, Zhang M, Cai L. 2015a. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35, 63–86.

Liu F, Wang M, Damm U, Crous PW, Cai L. 2016 – Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evolutionary Biology 16, article81.

Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SSN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, D'souza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Peršoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tībprommma S, Udayanga D, Wijayawardene NN, Wanasinghe D, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamčík S, Bahkali AH, Boonyuen N, Bulgak N, Tattac P, Chomnunti P, Greiner K, Hashimoto A, Hofsetetter V, Kang JC, Lewis D, Li XI, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verroken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E. 2015b – Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72, 1–197.

Macedo DM, Pereira OL, Júnior BH, Weir BS, Barreto RW. 2016 – Mycobiota of the weed Tradescantia fluminensis in its native range in Brazil with particular reference to classical biological control. Australasian Plant Pathology 45, 45–56.

Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Huang S-K, Abdel-Wahab MA, Daranagama DA, Dayarathe M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu J-K, Liu Z-Y, Norphanphoun C, Shenoy BD, Xiao Y, Bakali AH, Kang J, Somrithipol S, Suetrong S, Wen T, Xu J. 2015 – Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72, 199–301.

Maharachchikumbura SN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathe MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao Y, D’souza MJ, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bakali Ah, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang J, Li QR, Liu JK, Liu XZ, Liu ZY, Luangsard-ar J, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Stadler M, Wen T, Wijayawardene NN. 2016 – Families of Sordariomycetes. Fungal Diversity 79, 1–317.

Manamgoda DS, Udayanga D, Cai L, Chukeatirote E, Hyde KD. 2013 – Endophytic Colletotrichum from tropical grasses with a new species C. endophytica. Fungal Diversity 61, 107–115.

Marcelino J, Giordano R, Gouli S, Gouli V, Parker BL, Skinner M, TeBeest D, Cesnik R. 2008 – Colletotrichum acutatum var. foriniae (teleomorph: Glomerella acutata var. foriniae var. nov. infection of a scale insect. Mycologia 100, 353–374.

McCormack JE, Huang H, Knowles LL. 2009 – Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design. Systematic Biology 58, 501–508.

Moriwaki J, Tsukiboshi T. 2009 – Colletotrichum echinochloae, a new species on Japanese barnyard millet (Echinochloa utilis). Mycoscience 50, 273–280.

Morsy AA, Elshahawy IE. 2016 – Anthracnose of lucky bamboo Dracaena sanderiana caused by the fungus Colletotrichum dracaenophilum in Egypt. Journal of Advanced Research 7, 327–335.
Mosca S, Nicosia MGLD, Cacciola SO, Schena L. 2014 – Molecular analysis of Colletotrichum species in the carposphere and phyllosphere of olive. PloS One 9, e114031.

Munda A. 2014 – First report of Colletotrichum fioriniae and C. godetiae causing apple bitter rot in Slovenia. Plant Disease 98, 1282–1282.

Nakamura M, Ohzono M, Iwai H, Arai K. 2006 – Anthracnose of Sansevieria trifasciata caused by Colletotrichum sansevieriae sp. nov. Journal of General Plant Pathology 72, 253–256.

NagRaj TR. 1993 – Coelomycetous anamorphs with appendage-bearing conidia. Mycologue Publications, Waterloo, Ontalario, Canada. 220–221.

Niu X-P, Gao H, Qi J-M, Chen M-C, Tao A-F, Xu J-T, Dai Z-G, Su J-G. 2016 – Colletotrichum species associated with jute (Corchorus capsularis L.) anthracnose in southeastern China. Scientific Report 6, article 25179.

Noireung P, Phoulivong S, Liu F, Cai L, McKenzie EH, Chukeatirote E, Jones EBG, Bahkali, AH, Hyde KD. 2012 – Novel species of Colletotrichum revealed by morphology and molecular analysis. Cryptogamie Mycology 33, 347–362.

Nylander JAA. 2004 – MrModeltest 2.0. Program distributed author. Evolutionary Biology Centre, Uppsala University.

O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller, Alvarado–Balderama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henriassat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun MH, Lee YH, Miyara I, Moore N, Neumann U, Nordström, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhaloki UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, Zhou S, Dickman MB, Schulze–Lefert P, Loren van Themaat EV, Ma LJ, Vaillancourt LJ. 2012 – Life–style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics 44, 1060–1065.

Panaccione DG, Vaillancourt LJ, Hanau RM. 1989 – Conidial dimorphism in Colletotrichum graminicola. Mycologia 81, 876–883.

Palmateer AJ, Tarnowski TLB, Lopez P. 2012 – First report of Colletotrichum sansevieriae causing anthracnose of Sansevieria trifasciata in Florida. Plant Disease 96, 293.

Park JH, Han KS, Kim JY, Shin HD. 2013 – First report of anthracnose caused by Colletotrichum sansevieriae on Sansevieria in Korea. Plant Disease 97, 1510.

Paul NC, Lee HB, Lee JH, Shin KS, Ryu TH, Kwon HR, Kim YK, Youn YN, Yu SH. 2014 – Endophytic fungi from Lycium chinense Mill and characterization of two new Korean records of Colletotrichum. International Journal of Molecular Science 15, 15272–15286.

Peng LJ, Yang YL, Hyde KD, Bahkali AH, Liu ZY. 2012 – Colletotrichum species on Citrus leaves in Guizhou and Yunnan provinces, China. Cryptogamie Mycology 33, 267–283.

Peng LJ, Sun T, Yang YL, Cai L, Hyde KD, Bahkali HA, Liu ZY. 2013 – Colletotrichum species on grape in Guizhou and Yunnan provinces, China. Mycoscience 54, 29–41.

Phoulivong S, Cai L, Chen H, McKenzie EHC, Abdelsalam K, Chukeatirote E, Hyde KD. 2010 – Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Diversity 44, 33–43.

Politis DJ. 1975 – The identity and perfect state of Colletotrichum graminicola. Mycologia 67, 56–62.

Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD. 2009 – Characterization of Colletotrichum species associated with coffee berries in Northern Thailand. Fungal Diversity 39, 89–109.

Prihastuti H, Cai L, Crouch JA, Phoulivong S, Moslem MA, McKenzie EHC, Hyde KD. 2010 – Neotypification of Colletotrichum falcatum, the causative agent of red-rot disease in sugarcane. Sydowia 62, 283–293.

Rakotoniriana EF, Scauflaire J, Rabemanantsoa C, Urveg-Ratsimamanga S, Corbisier AM, Quetin-Leclercq J, Declerck S, Munaut F. 2013 – Colletotrichum gigasporum sp. nov., a new
species of *Colletotrichum* producing long straight conidia. Mycological Progress 12: 403–412.

Réblová M, Gams W, Seifert KA. 2011 – *Monilochaetes* and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Studies in Mycology 68, 163–191.

Rhaiem A, Taylor PWJ. 2016 – *Colletotrichum gloeosporioides* associated with anthracnose symptoms on citrus, a new report for Tunisia. European Journal of Plant Pathology 146, 219–224.

Ritterband DC, Shah M, Seedor JA. 1997 – *Colletotrichum graminicola*: a new corneal pathogen. Cornea 16, 362–364.

Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA, Cannon P, Chen R, Pang J, Wang R, Zhang Y, Peng YQ. 2010 – *Colletotrichum gloeosporioides* s. l. associated with *Theobroma cacao* and other plants in Panama: multilocus phylogenies distinguish pathogen and endophyte clades. Mycologia 102, 1318–1338.

Ronquist F, Huelsenbeck JP. 2003 – MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.

Rosskopf EN, Hong J, Kokalis-Burelle N. 2014 – First report of *Colletotrichum lupini* on *Lupinus hartwegii* and *L. mutabilis*. Plant Disease 98, 161.

Sakinah MI, Suzianti IV, Latiffah Z. 2014 – Phenotypic and molecular characterization of *Colletotrichum* species associated with anthracnose of banana (*Musa* spp.) in Malaysia. Genetics and Molecular Research 13, 3627–3637.

Samac DA, Allen S, Witte D, Miller D, Peterson J. 2014 – First report of race 2 of *Colletotrichum trifolii* causing anthracnose on alfalfa (*Medicago sativa*) in Wisconsin. Plant Disease 98, 843.

Santana KFA, Garcia CB, Matos KS, Hanada RE, Silva GF, Sousa NR. 2016 – First report of anthracnose caused by *Colletotrichum spathianum* on *Allium fistulosum* in Brazil. Plant Disease 100, 224–225.

Sato T, Muta T, Imamura Y, Nojima H, Moriwaki J, Yaguchi Y. 2005 – Anthracnose of Japanese radish caused by *Colletotrichum dematium*. Journal of General Plant Pathology 71, 380–383.

Sato T, Moriwaki J, Uzuhashi S, Degawa Y, Ono T, Nishimura K. 2012 – Molecular phylogenetic analyses and morphological re-examination of strains belonging to three rare *Colletotrichum* species in Japan. Microbiology and Culture Collections 28, 121–134.

Schenk L, Mosca S, Cacciola SO, Faedda R, Sanzani SM, Agosteo GE, Sergeeva V, Magnano di San Lio G. 2014 – Species of the *Colletotrichum gloeosporioides* and *C. boninense* complexes associated with olive anthracnose. Plant Pathology 63, 437–446.

Schwarczinger I, Vajna L, Bruckart WL. 1998 – First report of *Colletotrichum gloeosporioides* on Russian thistle. Plant Disease 82, 1405.

Sharma G, Gryzenhout M, Hyde KD, Pinnaka AK, Shenoy BD. 2013 – First report of *Colletotrichum asiaticum* causing mango anthracnose in South Africa. Plant Disease 99, 725.

Sharma K, Goss E, van Bruggen AH. 2014 – Isolation and identification of the fungus *Colletotrichum cordylinicola* causing anthracnose disease on *Cordyline fruticosa* in Florida. HortScience 49, 911–916.

Sharma G, Kumar-Pinnaka A, Shenoy BD. 2015 – Resolving the *Colletotrichum siamense* species complex using *ApMat* marker. Fungal Diversity 71, 247–264.

Shenoy BD, Jeewon R, Lam WH, Bhat DJ, Than PP, Taylor PWJ, Hyde KD. 2007 – Morpho-molecular characterisation and epitypification of *Colletotrichum capsici* (*Glomerellaceae*, Sordariomycetes), the causative agent of anthracnose in chilli. Fungal Diversity 27, 197–211.

Shivas RG, Bathgate J, Podger FD. 1998 – *Colletotrichum xanthorrhoeae* sp. nov. on *Xanthorrhoea* in Western Australia. Mycological Research 102, 280–282.
Shivas RG, Tan YP. 2009 – A taxonomic re-assessment of *Colletotrichum acutatum*, introducing *C. fioriniae* comb. et stat. nov. and *C. simmondsii* sp. nov. Fungal Diversity 39, 111–112.

Silva-Rojas HV, Ávila-Quezada GD. 2011 – Phylogenetic and morphological identification of *Colletotrichum boninense*: a novel causal agent of anthracnose in avocado. Plant Pathology 60, 899–908.

Silvestro D, Michalak I. 2010 – raxmlGUI: a graphical front-end for RAxML. http://sourceforge.net/projects/raxmlgui/

Squissato V, Yucel YH, Richardson SE, Alkhotani A, Wong DT, Nijhawan N, Chan CC. 2015 – *Colletotrichum truncatum* species complex: Treatment considerations and review of the literature for an unusual pathogen causing fungal keratitis and endophthalmitis. Medical Mycology Case Reports 9, 1–6.

Su YY, Noireung P, Liu F, Hyde KD, Moslem MA, Bahkali AH, Abd-Elsalam KA, Cai L. 2011 – Epitypification of *Colletotrichum musae*, the causative agent of banana anthracnose. Mycoscience 52, 376–382.

Sun X, Guo L-D, Hyde KD. 2012 – Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Diversity 47, 85–95.

Sutton BC. 1980 – The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and Stromata. Commonwealth Mycological Institute, Kew, Surrey, England, 1–696.

Sutton BC. 1992 – The genus *Glomerella* and its anamorph *Colletotrichum*. In: *Colletotrichum*: Biology, Pathology and Control (Bailey JA, Jeger MJ, eds). CABI, Wallingford, UK: 1–26.

Swofford DL. 2002 – PAUP* 4.0: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland.

Talhinhas P, Gonçalves E, Sreenivasaprasad S, Oliveira H. 2015 – Virulence diversity of anthracnose pathogens (*Colletotrichum acutatum* and *C. gloeosporioides* species complexes) on eight olive cultivars commonly grown in Portugal. European Journal of Plant Pathology 142, 73–83.

Tao G, Liu ZY, Liu F, Gao YH, Cai L. 2013 – Endophytic *Colletotrichum* species from *Bletilla ochracea* (*Orchidaceae*), with description of seven new species. Fungal Diversity 61, 139–164.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997 – The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 4876–4882.

Tolze Jr HJ, Fischer IH, Camara MPS, Massola Jr NS. 2010 – First report of *Colletotrichum boninense* infecting yellow passion fruit (*Passiflora edulis* f. *flavicarpa*) in Brazil. Australasian Plant Disease Notes 5, 70–72.

Uematsu S, Kageyama K, Moriwaki J, Sato T. 2012 – *Colletotrichum carthami* comb. nov., an anthracnose pathogen of safflower, garland chrysanthemum and pot marigold, revived by molecular phylogeny with authentic herbarium species. Journal of Genetic Plant Pathology 78, 316–330.

Udayanga D, Manamgoda DS, Liu X-Z, Chukateirote E, Hyde KD. 2013 – What are the common anthracnose pathogens of tropical fruits?. Fungal Diversity 61, 165–179.

Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE. 2010 – Fungal endophyte diversity in coffee plants from Colombia, Hawai‘i, Mexico and Puerto Rico. Fungal Ecology 3, 122–138.

Velho AC, Stadnik MJ, Casanova L, Mondinho P, Alaniz S. 2014 – First report of *Colletotrichum nymphaeae* causing apple bitter rot in southern Brazil. Plant Disease 98, 567.

Velho AC, Alaniz S, Casanova L, Mondinho P, Stadnik MJ. 2015 – New insights into the characterization of *Colletotrichum* species associated with apple diseases in southern Brazil and Uruguay. Fungal Biology 119, 229–244.

Vieira WAS, Nascimento RJ, Michereff SJ, Hyde KD, Camara MPS. 2013 – First report of Papaya fruit anthracnose caused by *Colletotrichum brevissporum* in Brazil. Plant Disease 97, 1659.
Vieira WAS, Michereff SJ, de Morais Jr MA, Hyde KD, Camara MPS. 2014a – Endophytic species of *Colletotrichum* associated with mango in northeastern Brazil. Fungal Diversity 67, 181–202.

Vieira WAS, Michereff SJ, Oliveira AC, Santos A, Camara MPS. 2014b – First report of anthracnose caused by *Colletotrichum spaethianum* on *Hemerocallis flava* in Brazil. Plant Disease 98, 997.

Waller JM, Bridge PD, Black R, Hakiza G. 1993 – Characterisation of the coffee berry disease pathogen, *Colletotrichum kahawae* sp. nov. Mycological Research 97, 989–994.

Wang YC, Hao XY, Wang L, Xiao B, Wang XC, Yang YJ. 2016 – Diverse *Colletotrichum* species cause anthracnose of tea plants (*Camellia sinensis* (L.) O. Kuntze) in China. Scientific reports 6, article 35287.

Weir BS, Johnston PR. 2010 – Characterisation and neotypification of *Gloeosporium kaki* Hori as *Colletotrichum horii* nom. nov. Mycotaxon 111, 209–219.

Weir BS, Johnston PR, Damm U. 2012 – The *Colletotrichum gloeosporioides* species complex. Studies in Mycology 73, 115–180.

Wikee S, Cai L, Pairin N, McKenzie EHC, Su YY, Chukeatirote E, ThiHN, Bahkali AH, Moslem MA, AbdelSalam K, Hyde KD. 2011 – *Colletotrichum* species from *Jasminum sambac*. Fungal Diversity 46, 171–182.

Wijesundera RLC, Chandrasekharan NV, Wijesundera WSS, Kathriarachchi HS, Fernando THPS. 2015 – Characterization of *Colletotrichum* isolates causing avocado anthracnose and first report of *C. gigasporum* infecting avocado in Sri Lanka. Plant Pathology & Quarantine 5, 132–143.

Xia-Ying L, Xiang-Ming X, Jun-Xing D. 2007 – *Colletotrichum yunnanense* sp. nov., a new endophytic species from *Buxus* sp. Mycotaxon 100, 137–144.

Xu S, Li YZ. 2015 – First report of common vetch anthracnose caused by *Colletotrichum lentis* in China. Plant Disease 99, 1859.

Yang H-C, Haudenshield JS, Hartman GL. 2014 – *Colletotrichum incanum* sp. nov., a curved-conidial species causing soybean anthracnose in USA. Mycologia 106, 32–42.

Yang HC, Haudenshield JS, Hartman GL. 2012b – First report of *Colletotrichum chlorophyti* causing soybean anthracnose. Plant Disease 96, 1699.

Yang YL, Liu ZY, Cai L, Hyde KD, Yu ZN, McKenzie EHC. 2009 – *Colletotrichum anthracnose of Amaryllidaceae*. Fungal Diversity 39, 123–146.

Yang YL, Cai L, Yu ZN, Liu ZY, Hyde KD. 2011 – *Colletotrichum* species on orchids in southwest China. Cryptogamie Mycologie 32, 229–253.

Yang Y, Liu Z, Cai L, Hyde KD. 2012a – New species and notes of *Colletotrichum* on daylilies (*Hemerocallis* spp.). Tropical Plant Pathology 37, 165–174.

Yan JY, Jayawardena MMRS, Goonasekara ID, Wang Y, Zhang W, Liu M, Huang J-B, Wang Z-Y, Shang J-J, Peng Y-L, Bahkali A, Hyde KD, Li XH. 2015 – Diverse species of *Colletotrichum* associated with grapevine anthracnose in China. Fungal Diversity 71, 233–246.

Young JR, Tomaso-Peterson M, Crouch JA. 2008 – First report of *Colletotrichum cereale* causing anthracnose foliar blight of creeping bentgrass in Mississippi and Alabama. Plant Disease 92, 1475.

Zakaria L, Juhari NZ, Vijaya SI, Anuar ISM. 2015 – Molecular characterization of *Colletotrichum* isolates associated with anthracnose of mango fruit. Sains Malaysiana 44, 651–656.

Zhang FF, Wang MZ, Zheng YX, Liu HY, Zhang XQ, Wu SS. 2015 – Isolation and characterization of endophytic Huperzine-A producing fungi from *Phlegmariurus phlegmaria*. Microbiology 84, 701–709.

Zhao MN, Qiu HP, Jiang H, Zhang Z, Mao XQ, Wang JY, Chari RY, Du XF, WangYL, Sun GC. 2012 – Optimization of fermentation conditions of biocontrol strain Col-68 *Colletotrichum hanaui* against *Digitaria sanguinalis*. Acta Agriculturae Zhejiangensis 3, 021.
Zhou RJ, Yuan Y, Xu HJ, Fu JF, Ou YH. 2014 – First report of anthracnose of *Malva sylvestris* caused by *Colletotrichum trifolii* in China. Plant Disease 98, 1587.
Table 1 GenBank accession Numbers of the accepted *Colletotrichum* species

Species Name	Isolate No	ITS	GAPDH	CHS-1	HIS3	ACT	TUB2	CAL	GS	SOD2	ApMat	Apn2	Mat1
C. abscissum	COAD 1877*	KP84312	KP84312	KP843132	KP843138	KP843141	KP843135	-	-	-	-	-	-
C. acerbum	CBS 128530*	JQ94845	JQ94879	JQ949120	JQ949450	JQ949780	JQ950110	-	-	-	-	-	-
C. acutatum	CBS 112996*	JQ00577	JQ94867	JQ005797	JQ005818	JQ005839	JQ005860	-	-	-	-	-	-
C. aenigma	ICMP 18608*	JX01024	JX01004	JX009774	JX009443	JX010389	JX009683	JX010078	JX010311	KM36014	-	-	-
C. aescynomenes	ICMP 17673*	JX01017	JX00993	JX009799	JX009483	JX010392	JX009721	JX010081	JX010314	-	-	-	-
C. agaves	CBS 118190	DQ2862	-	-	-	-	-	-	-	-	-	-	-
C. alatae	ICMP 17919*	JX01019	JX00999	JX009837	JX009471	JX010383	JX009738	JX010065	JX010305	KC88893	-	-	-
C. alienum	ICMP 12071*	JX01025	JX01002	JX009882	JX009572	JX010411	JX009654	JX010101	JX010333	KM36014	-	-	-
C. alcornii	IMI 1766192	JX07685	-	-	-	-	-	-	-	-	-	-	-
C. americae-borealis	CBS 136232*	KM1052	KM1055	KM10529	KM105364	KM10543	KM105504	-	-	-	-	-	-
C. annellatum	CBS 129826*	JQ00522	JQ00530	JQ005396	JQ005483	JQ005570	JQ005656	JQ005743	-	-	-	-	-
C. anthrisci	CBS 125334*	GU2278	GU2282	GU22833	-	GU227943	GU228139	-	-	-	-	-	-
Species Name	Isolate No	ITS	GAPDH	CHS-1	HIS3	ACT	GenBank Accession Numbers						
----------------------	------------	---------	---------	---------	---------	---------	---------------------------						
C. antirrhinicola	CBS 102189*	KM1051	KM1055	KM10525	KM10530	KM10539	KM105400, JX01011						
		80	31	0	0	0	JX01011						
C. aotearoa	ICMP 18537*	JX01020	JX01000	JX009853	JX009564	JX01042	JX01034						
		5	5	-	JX01042	JX009611	KC8893						
C. aracearum	CGMCC	KX8531	KX8935	67	KX893578	KX893582	KF68775						
	3.14982*		86		-	-							
C. arxii	CBS 132511*	KF68771	KF68784	6	KF68780	KF687819	JX01010						
			3		KF68782	KF687819	JX01034						
C. asianum	ICMP 18580*	FJ97261	JX01005	2	JX009867	JX009584	JX01009						
			3		JX010406	JX01009	FR718814						
C. australis	CBS 116478*	JQ94845	JQ94878	5	JQ949116	JQ949776	JX07688						
			6		JQ949446	JX07688	JX0769						
C. axonopodi	IMI 279189*	EU55408		-	-	-							
		6	-		-	-							
C. baltimorense	BPI892771*	JX07686		-	-	-							
		6	-		-	-							
C. beeveri	CBS 128527*	JQ00517	JQ00525	1	JQ005345	JQ005519	JQ005605						
			8		JQ005432	JQ005605	JQ005692						
C. bidentis	COAD 1020*	KF17848	KF17850	1	KF178530	KF178554	KF17862						
			6		KF178530	KF178578	KF178602						
C. bletillum	CGMCC	JX62517	KC8435	8	KC843542	JX625207							
	3.15117*		06		-	-							
C. boninense	CBS 123755*	JQ00515	JQ00524	3	JQ005327	JQ005519	JQ005605						
			0		JQ005414	JQ005519	JQ005606						
C. brasiliense	CBS 128501*	JQ00523	JQ00532	5	JQ005409	JQ005583	JQ005606						
			2		JQ005496	JQ005606	JQ005692						
C. brassicola	CBS 101059*	JQ00517	JQ00525										

Note: * indicates presence of the gene in the isolate.
Species Name	Isolate No	ITS	GAPDH	CHS-1	HIS3	ACT	GenBank Accession Numbers										
C. brevisporum	BCC 38876*	2	9				JN05023	JN05022	KF687760	JN050216	JN050244	-	-	-	-	-	
C. brisbanense	CBS 292.67*	1	1	JQ94862	JQ94952	JQ949282	JQ949612	JQ949942	-	-	-	-	-	-	-	-	
C. bryoniicola	CBS 109849*	81	32	KM1055	KM10525	KM10531	KM10539	KM105461	-	-	-	-	-	-	-	-	
C. cairnsense	BRIP 63642*	72	84	KU9236	KU92371	KU923722	KU923721	KU923688	-	-	-	-	-	-	-	-	
C. camelliae	CGMCC 3.14925*	1	2	KJ95508	KJ95478	-	KJ954363	KJ955523	KJ954634	KJ95493	KJ954497	-	-	-	-	-	
C. camelliae-japonicae	CGMCC3.18118*	65	84	KX8531	KX8935	KX893576	KX893580	-	-	-	-	-	-	-	-	-	
C. carthami	SAPA100011*	98	98	AB6969	-	-	AB696992	-	-	-	-	-	-	-	-	-	
C. caudatum	CBS13602*	0	0	JX07686	-	-	-	JX07687	JX0769	JX0769	JX076893	-	-	-	-	-	
C. caudasperum	CGMCC 3.15106*	2	12	KC8435	-	-	KC843526	JX625190	-	-	-	-	-	-	-	-	
C. cereale	CBS 129663*	4	-	JQ00577	-	-	JQ005795	JQ005816	JQ005837	JQ005858	-	-	-	-	-	-	
C. chengpingense	MFLUCC 15-0022*	92	98	KP68315	KP85246	KP852449	KP683093	KP852490	-	-	-	-	-	-	-	-	
C. chlorophyti	IMI 103806*	94	86	GU2278	GU2282	GU22838	GU227992	GU228188	-	-	-	-	-	-	-	-	
C. chrysanthemi	CBS 126518*	1	1	JQ94827	JQ94860	JQ948932	JQ949262	JQ949592	JQ949922	-	-	-	-	-	-	-	-
Species Name	Isolate No	ITS	GAPDH	CHS-1	HIS3	ACT	TUB2	CAL	GS	SOD2	ApMat	Apn2	Mat1				
------------------	------------	---------	--------	--------	-------	---------	--------	-------	------	------	-------	------	------				
C. circinans	CBS 221.81*	GU2278	GU2282	GU22834	5	GU227953	GU228149	-	-	-	-	-	-				
C. citri	ZJUC41*	KC2935	KC2937	41	-	KC293621	KC293661	KC29370	1	KC2937	81	-	-				
C. citricola	SXC151*	KC2935	KC2937	36	KC293792	KC293616	KC293656	KC29369	6	KC2937	76	-	-				
C. clidemiae	ICMP 18658*	JX01026	JX00998	5	JX009877	JX009537	JX010438	JX009645	-	JX01012	9	JX01035	6				
C. cliviae	CBS 125375*	GQ4856	GQ8567	56	GQ85672	GQ856777	GQ849440	-	-	-	-	-	-				
C. coccodes	CBS 369.75*	HM1716	HM1716	79	JX546681	HM17166	JX546873	-	-	-	-	-	-				
C. colombiense	CBS 129818*	JQ00517	JQ00526	4	JQ005348	JQ005522	JQ005608	JQ005695	-	-	-	-	-				
C. conoides	CAUG17*	KP89016	KP89016	8	KP890156	KP890144	KP890174	KP890150	-	-	-	-	-				
C. constrictum	CBS 128504*	JQ00523	JQ00532	8	JQ005412	JQ005499	JQ005586	JQ005759	-	-	-	-	-				
C. cordylinicola	ICMP 18579*	JX01022	JX00997	6	JX009864	HM47023	5	JX010440	HM47023	8	JX01012	2	JX01036	1	JQ899274	-	-
C. cosmi	CBS 853.73*	JQ94827	JQ94860	4	JQ948935	JQ949265	JQ949595	JQ949925	-	-	-	-	-				
C. costaricense	CBS 330.75*	JQ94818	JQ94851	1	JQ948842	JQ949172	JQ949502	JQ949832	-	-	-	-	-				
C. curcurnae	IMI 288937*	GU2278	GU2282	93	GU22838	GU228089	GU227991	GU228187	-	-	-	-	-				
C. cuscutae	IMI 304802*	JQ94819	JQ94852	-	-	-	-	-	-	-	-	-	-				
Species Name	Isolate No	ITS	GAPDH	CHS-1	HIS3	ACT	GenBank Accession Numbers										
-----------------------	--------------	-------	--------	--------	---------	-------	--------------------------										
C. cymbidiicola	IMI 347923	5	5														
		JQ00516	JQ00525	JQ005340	JQ005427	JQ005514	JQ005600	JQ005687	-	-	-	-					
C. dacrycarpi	CBS 130241	6	6														
		JQ00523	JQ00532	JQ005410	JQ005497	JQ005584	JQ005670	JQ005757	-	-	-	-					
C. dematium	CBS 125.25	19	11	9													
		GU2278	GU2282	GU22830	GU228015	GU227917	GU228113	-	-	-	-						
C. destructivum	CBS 136228	7	7	7													
		KM1052	KM1055	KM10527	KM105347	KM10541	KM105487	-	-	-	-						
C. dracaenophilum	CBS 118199	2	7	-	-												
		JX51922	JX54670	JX519230	-	JX519238	JX519247	-	-	-	-						
C. duyunensis	CGMCC 3.15105	0	15	-	-												
		JX62516	KC8435	-	KC843530	JX625187	-	-	-	-							
C. echinochloae	MAFF 511473	11	-	-	-												
		AB4398	-	-	-												
C. eleusines	MAFF 511155	8	-	-	-												
		JX51921	-	-	-	JX519234	JX519243	-	-	-	-						
C. endophytica	MFLUCC 13–0418*	54	54	-	KF306258	-	KC81001	-	-	-	-						
		KC6338	KC8328	-	-												
C. endophytum	CGMCC 3.15108	7	21	-	-	-	-	-	-	-							
		JX62517	KC8435	-	KC843533	JX625206	-	-	-	-							
C. eremochloae	CBS 129661	0	-	-	-	JX519236	JX519245	-	-	-	-						
C. euphorbiae	CBS 134725	6	1	1	-	-	-	-	-	-							
		KF77714	KF77713	KF777128	KF777134	KF777125	KF777247	-	-	-	-						
C. excelsum-altitudum	CGMCC 3.15130	15	02	-	-	-	-	-	-	-							
		HM7518	KC8435	-	KC843548	JX625211	-	-	-	-							
Species Name	Isolate No	GenBank Accession Numbers															
--------------	------------	--------------------------															
C. falcatum	CBS 147945*	JQ00577 - 2	JQ005793	JQ005814	JQ005835	JQ005856	-	-	-	-	-	-					
C. fioriniae	CBS 128517*	JQ94829 - 2	JQ94862 2	JQ948953	JQ949283	JQ949613	JQ949943	-	-	-	-	-	-				
C. fructi	CBS 346.37*	GU2278 - 44	GU2282 - 36	GU22833 - 4	GU227942	GU228138	-	-	-	-	-	-					
C. fructicola	ICMP 18581*	JX01016 - 5	JX01003 - 3	JX009866 -	FJ907426	JX010405	FJ917508	JX01009 - 5	JX01032 - 7	JQ807838	-	-					
C. fructivorum	Coll1414 *	JX14514 - 5	-	-	-	-	JX145196	-	-	-	JX145300	-	-				
C. fuscom*	CBS 133701*	KM1051 - 74	KM1055 - 24	KM10524 - 4	KM105314	KM10538	-	KM105454	-	-	-	-	-				
C. fusiforme	MFLUCC 12-0437*	KT29026 - 6	KT29025 - 5	KT29025 -	KT290251	KT290256	-	-	-	-	-	-					
C. gigasporum	CBS 133266*	KF68771 - 5	KF68782 - 2	KF687761	KF687844	-	KF687866	-	-	-	-	-					
C. gloeosporioides	CBS 112999*	JQ00515 - 2	JQ00523 - 9	JQ005326	JQ005413	JQ005500	JQ005587	JQ005673 - 5	JQ01008 - 5	JX01036 - 5	JQ807843	-					
C. godetiae	CBS 133.44*	JQ94840 - 2	JQ94873 - 3	JQ949063	JQ949393	JQ949723	JQ950053	-	-	-	-						
C. graminicola	CBS 130836*	JQ00576 - 7	-	JQ005788	-	JQ005830	JQ005851	-	-	-	-						
C. grevilleae	CBS 132879*	KC2970 - 78	KC2970 - 10	KC296987 -	KC296941	KC297102	KC29696	-	-	-	-						
C. grossum	CAUG7*	KP89016 - 5	KP89015 - 9	KP890153	-	KP890171	KP890147	-	-	-	-						
C. guajavae	IMI 350839*	JQ94827	JQ94860	JQ948931	JQ949261	JQ949591	JQ949921	-	-	-	-						

* Indicates the specimen is used as the type strain.
| Species Name | Isolate No | ITS | GAPDH | CHS-1 | HIS3 | ACT | CAL | GS | SOD2 | ApMat | Apn2 | Mat1 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C. guizhouensis | CGMCC 3.15112* | JX62515 | 8 | KC8435| 07 | - | - | - | - | - | - | - |
| C. hanaui | MAFF 3054042* | JX51921 | 7 | - | - | JX519225| - | - | JX519242| - | - | - |
| C. hebeiense | MFLUCC13–0726* | KF15686 | 3 | KF37749| 5 | KF289008| - | KF377532| KF288975| - | - | - |
| | CDLG5* | JQ40001 | 5 | JQ39999| 2 | JQ399991| JQ400019| KJ781319| - | - | - | - |
| C. hemerocallidis | CGMCC 3.17354* | KJ95510 | 9 | KJ955481| 0 | KM02325 | KJ955257| KJ954662| KJ95496| KJ954524| - |
| C. henanense | IMI 349061* | KM1051 | 84 | KM1055| 36 | KM10525 | KM105324| KM10539| KM105464| - | - | - |
| C. higginsianum | CBS 125376* | JQ00523 | 8 | JQ00531| 4 | JQ005405| JQ005579| JQ005665| JQ005752| - | - | - |
| C. hippeastri | ICMP 10492* | GQ3296 | 90 | GQ3296| 81 | JX009752| JX009438| JX010450| JX009604| JX01013| JX01037| JQ807840| - |
| C. horii | MAFF 243051 | AB7388 | 55 | - | AB738846| AB738847| AB738845| AB738845| - | - | - | - |
| C. hsienjenchang | MFLUCC 12–0531* | KT29026 | 4 | KT29026| 3 | KT290262| - | - | - | - | - | - |
| C. hymenocallicidola | ATCC 64682* | KC1107 | 89 | KC1108| 07 | - | KC110798| KC110825| KC110816| - | - | - |
| C. incanum | CBS 127551* | JQ94828 | 8 | JQ94861| 8 | JQ948949| JQ949279| JQ949609| JQ949939| - | - | - |
| C. jacksonii | MAFF 3054602* | JX51921 | 6 | - | JX519224| - | JX519233| JX519241| - | - | - | - |
| Species Name | Isolate No | ITS | GAPDH | CHS-1 | HIS3 | ACT | GenBank Accession Numbers |
|-------------------|------------|-------|-------|-------|------|------|--------------------------|
| C. jasiminigenum | MFLUCC 10-0273* | HM1315 13 | HM1314 99 | - | - | HM13150 8 | HM153770 - |
| C. jiangxiense | CGMCC 3.17363* | KJ95520 1 | KJ95490 2 | - | - | KJ954471 | KJ955348 KJ954752 1 |
| C. johnstonii | CBS 128532* | JQ94844 4 | JQ94877 5 | JQ949105 | JQ949435 | JQ949765 | JQ950095 - |
| C. kahawae | ICMP 17816* | JX01023 1 | JX01001 2 | JX009813 | - | JX009452 | JX010444 JX009642 |
| C. karstii | CBS 127597* | JQ00520 4 | JQ00520 4 | JQ005378 | JQ005465 | JQ005552 | JQ005638 JQ005725 |
| C. kinghornii | CBS 198.35* | JQ94845 4 | JQ94878 5 | JQ949115 | JQ949445 | JQ949775 | JQ950105 |
| C. lacticiphilum | CBS 112989* | JQ94828 9 | JQ94861 9 | JQ948950 | JQ949280 | JQ949610 | JQ949940 |
| C. liaoningense | CAUOS2* | KP89010 4 | KP89013 5 | KP890127 | - | KP890097 | KP89011 |
| C. lili | CBS 109214 | GU2278 10 | GU2282 02 | - | - | GU227908 | GU228104 |
| C. limetticola | CBS 114.14* | JQ94819 3 | JQ94852 3 | JQ948854 | JQ949184 | JQ949514 | JQ949844 |
| C. lindemuthianum | CBS 144.31* | JQ00577 9 | JX54671 2 | JQ005800 | JQ005821 | JQ005842 | JQ005863 KF17864 3 |
| C. lentis | CBS 127604* | JQ00576 6 | KM1055 97 | JQ005787 | JQ005808 | JQ005829 | JQ005850 |
| C. ledebouriae | CBS 141284* | KX2282 54 | - | - | KX228365 | KX228357 | - |
| C. lineola | CBS 125337* | GU2278 | GU2282 | GU22831 | - | GU227927 | GU228123 |

1253
Species Name	Isolate No	GenBank Accession Numbers													
	Species	Accession Numbers													
	Name	ITS	GAPDH	CHS-1	HIS3	ACT	TUB2	CAL	GS	SOD2	ApMat	Apn2	Mat1		
C. lini	CBS 172.51*	JQ00576	KM1055	9											
		5	81	JQ005786	JQ005807	JQ005828	JQ005849	-	-	-	-	-	-		
		29	21												
C. liriopes	CBS 119444*	GU2278	GU2281	96											
		04	1	GU22829	-						GU227902	GU228098	-	-	
		5	4	JQ005807	JQ005828	JQ005849	-	-	-	-	-	-			
		29	21												
C. lupini	CBS 109225*	JQ94815	JQ94848	5											
		5	5	JQ94816	JQ949146	JQ949476	JQ949806	-	-	-	-	-	-		
		29	21												
C. magnisporum	CBS 398.84*	KF68771	KF68784	8							KF68774		-		
		2		KF68788	KF687865	KF687803	KF68782	-	-	-	-	-	-		
		4		KF178529	KF178553	KF178601	KF17862	-	-	-	-	-	-		
		29	21												
C. malvarum	CBS 521.97*	KF17848	KF17850	4							KF17862		-		
		0		KF178529	KF178553	KF178601	KF17862	-	-	-	-	-	-		
		29	21												
C. melonis	CBS 159.84*	JQ94819	JQ94852	4							JQ94915	JQ949845	-		
		0		JQ948855	JQ949185	JQ949515	JQ949845	-	-	-	-	-	-		
		29	21												
C. menispermi	MFLU 14-0625*	KU2423	KU2423	57									-		
		56		KU24235	KU242354	KU242356	KU242354	-	-	-	-	-	-		
		29	21												
C. metake	MAFF 244029*	AB7388											-		
		59									(Sequences available at http://www.gene.affrc.go.jp/databases-micro_search_en.php)	-			
C. miscanthi	MAFF 510857*	JX51922											-		
		1													
C. musae	ICMP 19119*	JX01014	JX01005	6							JX01010	JX01033	KC88892		
		0		JX009896	-						3	5			
		29	21												
C. navitas	CBS 1250862*	JQ00576									JQ005790	JQ005811	JQ005832		
		9		JQ005828	JQ005849	JQ005854	-	-	-	-	-	-			
		29	21												
C. neosansevieriae	CBS 139918*	KR4767	KR4767	47							KR476792	KR476790	KR476797		
		91									KR476792	KR476790	KR476797		
		29	21												
C. nicholsonii	MAFF 511152*	JQ00577									JQ005791	JQ005812	JQ005833		
		0		JQ005812	JQ005849	JQ005854	-	-	-	-	-	-			
		29	21												
Species Name	Isolate No	ITS	GAPDH	CHS-1	HIS3	ACT	TUB2	CAL	GS	SOD2	ApMat	Apn2	Mat1		
-----------------	--------------	------	-------	-------	------	------	------	-----	----	------	-------	------	-------		
C. nigrum	CBS 169.49*	JX54683	JX54674	JX546693	-	JX546646	JX546885	-	-	-	-	-	-		
C. novae-	CBS 128505*	JQ00522	JQ00531	JQ005402	JQ005489	JQ005576	JQ005662	JQ005749	-	-	-	-	-		
zelandiae															
C. nupharicola	ICMP 18187*	JX01018	JX00997	JX009835	-	JX009437	JX010398	JX009663	JX01008	JX01032	-	-	-		
C. nymphaeae	CBS 515.78*	JQ94819	JQ94852	JQ948858	JQ949188	JQ949518	JQ949848	-	-	-	-	-	-		
C. ochracea	CGMCC 3.15104*	JX62516	KC8435	-	-	KC843527	JX625183	-	-	-	-	-	-		
C. ocimi	CBS 298.94*	KM1052	KM1055	KM10529	KM10532	KM105432	KM105502	-	-	-	-	-	-		
C. oncidii	CBS 129828*	JQ00516	JQ00525	JQ005343	JQ005430	JQ005517	JQ005603	JQ005690	-	-	-	-	-		
C. orbiculare	CBS 570.97*	KF17846	KF17849	KF178515	KF178539	KF178563	KF178578	KF17861	-	-	-	-	-		
C. orchidophilum	CBS 632.80*	JQ94815	JQ94848	JQ948812	JQ949142	JQ949472	JQ949802	-	-	-	-	-	-		
C. panacolina	C08048	GU9358	GU9358	GU9358	-	-	-	-	-	-	-	-	-		
C. paraense	CBS 134729*	KC2049	KC2050	KC20504	KC20504	KC205077	KC205060	-	-	-	-	-	-		
C. parsoniae	CBS 128525*	JQ00523	JQ00532	JQ005407	JQ005494	JQ005581	JQ005667	JQ005754	-	-	-	-	-		
C. paspali	MAFF 3054032*	JX51921	-	JX519227	JX519235	JX519244	-	-	-	-	-	-	-		
C. paxtonii	IMI 165753*	JQ94828	JQ94861	JQ948946	JQ949276	JQ949606	JQ949936	-	-	-	-	-	-		
Species Name	Isolate No	GenBank Accession Numbers													
----------------------------	------------	---------------------------													
		ITS	GAPDH	CHS-1	HIS3	ACT	TUB2	CAL	GS	SOD2	ApMat	Apn2	Mat1		
C. petchii	CBS 378.94*	JQ00522 3	JQ00531 0	JQ005397	JQ005484	JQ005571	JQ005657	JQ005744	-	-	-	-	-	-	
C. phormii	CBS 118194*	JQ94844 6	JQ94877 7	JQ949107	JQ949437	JQ949767	JQ950097	-	-	-	-	-	-		
C. phyllanthi	CBS 175.67*	JQ00522 1	JQ00530 8	JQ005395	JQ005482	JQ005569	JQ005655	JQ005742	-	-	-	-	-	-	
C. pisolica	CBS 724.97*	KM1051 72	KM1055 22	KM10524 2	KM105312	KM105382	KM105452	-	-	-	-	-	-		
C. proteae	CBS 132882*	KC2970 79	KC2970 09	KC29698 6	-	KC296940	KC297101	KC29696 0	-	-	-	-	-	-	
C. pseudoacutatum	CBS 436.77*	JQ94848 0	JQ94881 1	JQ949141	JQ949471	JQ949801	JQ950131	-	-	-	-	-	-		
C. pseudomajus	CBS 571.88*	KF68772 2	KF68782 6	KF687779	KF687864	KF687801	KF687807	KF68774 4	-	-	-	-	-	-	
C. psidii	ICMP 19120*	JX01021 9	JX00996 7	JX009901	-	JX009515	JX010443	JX009743	JX01013 3	JX01036 6	KC88893 1	-	-		
C. pyicola	CBS 128531*	JQ94844 5	JQ94877 6	JQ949106	JQ949436	JQ949766	JQ950096	-	-	-	-	-	-		
C. queenslandicum	ICMP 1778*	JX01027 6	JX00993 4	JX009899	-	JX009447	JX010414	JX009691	JX01010 4	JX01033 6	KC88892 8	-	-		
C. quinquefoliae	MFLU 14–0626*	KU2363 91	KU2363 90	-	-	KU236389	KU236392	-	-	-	-	-	-		
C. radicis	CBS 529.93*	KF68771 9	KF68782 5	KF687762	KF687847	KF68785	KF687869	KF687806	KF68774 3	-	-	-	-	-	-
C. rhombiforme	CBS 129953*	JQ94845 7	JQ94878 8	JQ949118	JQ949448	JQ949778	JQ950108	-	-	-	-	-	-		
Species Name	Isolate No	GenBank Accession Numbers													
------------------	------------	--------------------------													
ITS	**GAPDH**	**CHS-1**	**HIS3**	**ACT**	**TUB2**	**CAL**	**GS**	**SOD2**	**ApMat**	**ApN2**	**Mat1**				
C. riograndense	COAD 928*	KM6552 99	KM6552 98	KM6552 97	-	KM655295	KM65530 6	-	-	-	-	-			
C. rusi	CBS 119206*	GU2278 18	GU2282 10	GU22830 8	-	GU227916	GU228112 -	-	-	-	-	-			
C. salicis	CBS 607.94*	JQ94846 0	JQ94879 1	JQ949121	JQ949451	JQ949781	JQ950111 -	-	-	-	-	-			
C. salsolae	ICMP 19051*	JX01024 2	JX00991 6	JX009863	-	JX009562	JX010403	JX009696	JX01009 3	JX01032 5	KC88892 5	-			
C. sansevieriae	MAFF 239721*	AB2129 91	(Sequences available at http://www.gene.affrc.go.jp/databases-micro_search_en.php)												
C. scovillei	CBS 126529*	JQ94826 7	JQ94859 7	JQ948928	JQ949258	JQ949588	JQ949918 -	-	-	-	-	-			
C. sedi	MFLUCC 14–1002*	KM9747 58;	KM9747 55	KM9747 4	-	KM974756	KM974757 -	-	-	-	-	-			
C. siamense	ICMP 18578*	JX01017 1	JX00992 4	JX009865	-	FJ907423	JX010404	FJ917505	JX01009 4	JX01032 6	JQ899289 -	-			
C. sidae	CBS 504.97*	KF17847 2	KF17849 7	KF178521	KF178545	KF178569	KF178593 -	KF17861 8	-	-	-	-			
C. simmondsii	CBS 122122*	JQ94827 6	JQ94860 6	JQ948937	JQ949267	JQ949597	JQ949927 -	-	-	-	-	-			
C. sloanei	IMI 364297*	JQ94828 7	JQ94861 7	JQ948948	JQ949278	JQ949608	JQ949938 -	-	-	-	-	-			
C. somersetense	CBS 131599*	JX07686 2	-	-	-	-	-	-	JX07688 0	JX0769 18	JX076895				
C. spaethianum	CBS 167.49*	GU2278 07	GU2281 99	GU22829 7	GU22803	GU227905	GU228101 -	-	-	-	-	-			
C. spinaceae	CBS 128.57*	GU2278	GU2282	GU22833	GU228043	GU227945	GU228141 -	-	-	-	-	-			
Species Name	Isolate No	ITS	GAPDH	CHS-1	HIS3	ACT	GenBank Accession Numbers								
--------------	-----------	-----	-------	-------	------	-----	--------------------------								
C. spinosum	CBS 515.97*	47	39	7			KF17862								
C. sublineola	CBS 131301*	JQ00577	1	-	JQ005792	JQ005813	JQ005834	JQ005855	-	-	-	-			
C. syzygicola	MFLUCC10–0624*	KF24209	4	KF24215	-	-	KF157801	KF254880	KF254859	-	-	-			
C. tabacum	CPC 18945*	KM1052	04	KM1055	KM10527	KM105344	KM105414	KM105484	-	-	-	-			
				57	4										
C. tamarillor	CBS 129814*	JQ94818	4	JQ94851	JQ948845	JQ949175	JQ949505	JQ949835	-	-	-	-			
C. tanacetii	CBS 132693*	JX21822	8	JX21824	JX259268	-	JX218238	JX218233	-	-	-	-			
C. tebeestii	CBS 522.97*	KF17847	3	KF17850	KF178522	KF178546	KF178570	KF178594	KF17861	-	-	-			
C. temperatum	Coll883*	JX14515	9	-	-	-	JX145211	-	-	JX145298	-	-			
C. theobromicola	ICMP 18649*	JX01029	4	JX01000	JX009869	-	JX009444	JX010447	JX009591	JX01013	JX01037	KC79072	-		
				6											
C. ti	ICMP 4832*	JX01026	9	JX00995	JX009898	-	JX009520	JX010442	JX009649	JX01012	JX01036	KM36014	-		
				2											
C. tofieldiae	CBS 495.85	GU2278	01	GU2281	GU228299	GU227899	GU228095	-	-	-	-				
				93	1										
C. torulosum	CBS 128544*	JQ00516	4	JQ00525	JQ005338	JQ005425	JQ005512	JQ005512	-	-	-	-			
				1											
C. trichellum	CBS 217.64*	GU2278	12	GU2282	GU228302	GU227910	GU228106	-	-	-	-				
				04	2										
Species Name	Isolate No	GenBank Accession Numbers													
------------------	------------	--------------------------													
C. trifolii	CBS 158.83*	KF17847 8, KF17850 2, KF178527 4, KF178551 2, KF178575 7, KF178599 9	KF17862 4, JX01009 7, JX01032 9, KC79072 8, -												
C. tropical	ICMP 18653*	JX01026 4, JX01000 7, JX009870 -	JX009489 7, JX010407 9, JX009719 7, -												
C. tropicola	LC0598*	JN05024 0, JN05022 9, JN050218 -	JN050246 -												
C. truncatum	CBS 151.35*	GU2278 62, GU2282 54, GU22835 2, JX01009 7, JX01032 9, KC79072 8, -													
C. utrechense	CBS 130243*	KM1052 01, KM1055 54, KM10527 1, KM105341 -	KM105411 -												
C. verruculosum	IMI 45525*	GU2278 06, GU2281 98, GU22829 6, -	GU227904 7, GU228100 9, -												
C. vietnamense	CBS 125478*	KF68772 1, KF68783 2, KF687769 2, KF687855 7, KF68792 7, KF687877 7, KF687816 7, -													
C. vignae	CBS 501.97*	KM1051 83, KM1051 83, KM10525 3, KM105323 3, KM105393 3, KM105463 -	-												
C. viniferum	GZAAS5.08601*	JN41280 4, JN41279 8, JN41279 8, -	JN412795 7, JN412813 9, JQ309639 9, -												
C. wuxiense	CGMCC 3.17894*	KU2515 91, KU2520 45, KU25193 9, -	KU25183 3, KU2521 01, KU25172 2, -												
C. walleri	CBS 125472*	JQ94827 5, JQ94860 5, JQ948936 5, JQ949266 5, JQ949596 5, JQ949926 5, -													
C. xanthorrhoeae	ICMP 17903*	JX01026 1, JX00992 7, JX009823 -	JX010448 7, JX009653 8, JX01013 9, KC79068 9, -												
C. yunnanense	CBS 132135*	JX54680 95, JX54670 95, JX519231 -	JX519248 -												
Species Name	Isolate No	GenBank Accession Numbers													
--------------	------------	---------------------------													
C. zoysia	MAFF 2385732*	JX0768799													
	1	JX0769													

ATCC: American Type Culture Collection; BCC: BIOTEC Culture Collection, National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathumthani, Thailand; BRIP: Plant Pathology Herbarium, Department of Employment, Economic, Development and Innovation, Queensland, Australia; CBS: Culture collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection; COAD: Coleção Octávio Almeida Drummond, Viçosa, Brazil; CPC: Working collection of Pedro W. Crous, housed at CBS; IMI: Culture collection of CABI Europe UK Centre, Egham, UK; LC: Working collection of Lei Cai, housed at CAS, China; MAFF: MAFF GeneBank Project, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Japan; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; MFLU: Herbarium of Mae Fah Luang University, Chiang Rai, Thailand; ICMP: International Collection of Microorganisms from Plants, Auckland, New Zealand; NBRC: Culture Collection of the Biological Resource Center, National Institute of Technology and Evaluation, Kisarazu, Japan. *ex-type strains.