West Nile Virus Isolates from Mosquitoes in New York and New Jersey, 1999

Roger S. Nasci,* Dennis J. White,† Helen Stirling,‡ JoAnne Oliver,† Thomas J. Daniels,§ Richard C. Falco,§ Scott Campbell,¶ Wayne J. Crans,# Harry M. Savage,* Robert S. Lanciotti,* Chester G. Moore,* Marvin S. Godsey,* Kristy L. Gottfried,* and Carl J. Mitchell*

*Centers for Disease Control and Prevention, Fort Collins, Colorado, USA; †New York State Department of Health, Albany, New York, USA; ‡New York City Department of Health, New York City, New York, USA; §Louis Calder Center, Fordham University, Armonk, New York, USA; ¶Suffolk County Department of Health, Yaphank, New York, USA; and #Rutgers University, New Brunswick, New Jersey, USA

An outbreak of encephalitis due to West Nile (WN) virus occurred in New York City and the surrounding areas during 1999. Mosquitoes were collected as part of a comprehensive surveillance program implemented to monitor the outbreak. More than 32,000 mosquitoes representing 24 species were tested, and 15 WN virus isolates were obtained. Molecular techniques were used to identify the species represented in the WN virus-positive mosquito pools. Most isolates were from pools containing Culex pipiens mosquitoes, but several pools contained two or more Culex species.

In late August 1999, an outbreak of human encephalitis was detected in New York City (NYC) (1). The first cases occurred in a small area in northern Queens and were immunoglobulin M seropositive against St. Louis encephalitis (SLE) virus. The etiologic agent was West Nile (WN) virus (2,3), a member of the Japanese encephalitis virus complex (genus *Flavivirus*, family *Flaviviridae*), which includes other mosquito-transmitted human pathogens such as Japanese encephalitis virus, SLE virus, Murray Valley encephalitis virus, and Kunjin viruses (4). Both SLE virus, which is a native North American arbovirus, and WN viruses are zoonotic agents maintained in a transmission cycle involving bird and mosquito species (4,5).

Outbreak investigations identified human and animal cases, virus-positive dead birds, seropositive live birds, and virus-positive mosquitoes, indicating widespread virus transmission throughout the NYC metropolitan area (6,7). Sixty-two laboratory-confirmed human cases with clinical illness occurred (46 in NYC, 15 in surrounding suburbs in Westchester and Nassau counties, and 1 in a Canadian tourist who visited NYC) (8). The earliest detected onset of human illness occurred during the first week of August and the latest during the third week of September 1999 (2). In this report, we describe the mosquito surveillance program conducted in response to the outbreak and discuss mosquito species associated with WN virus transmission in 1999.

Materials and Methods

Surveillance designed to monitor mosquito populations associated with the outbreak and determine the species and proportion of mosquitoes carrying the virus was initiated in NYC and surrounding counties during the first 2 weeks of September. NYC and most surrounding counties had not maintained systematic mosquito surveillance and control programs before this outbreak. As a result, no information was available about the density or distribution of mosquito species in the area (1). The exceptions were Nassau and Suffolk counties, NY, and all counties in New Jersey (NJ), where comprehensive mosquito control programs, including surveillance for eastern equine encephalitis (EEE) virus activity, had been in effect for many years. As widespread virus transmission became apparent, mosquitoes were collected from a broader geographic area. Existing mosquito control programs participated by expanding mosquito sampling and providing specimens for testing.

Mosquitoes were collected from September 2, 1999, through October 29, 1999. Some Culex species mosquitoes collected earlier in the season as part of long-term EEE virus monitoring programs were provided by Suffolk and Nassau counties, NY, and all counties in New Jersey (NJ), where comprehensive mosquito control programs, including surveillance for eastern equine encephalitis (EEE) virus activity, had been in effect for many years. As widespread virus transmission became apparent, mosquitoes were collected from a broader geographic area. Existing mosquito control programs participated by expanding mosquito sampling and providing specimens for testing.

Mosquitoes were placed in labeled tubes, frozen and held at -70°C, and shipped to the Centers for Disease Control and Prevention, Fort Collins, Colorado. The specimens were identified to species if possible, but the condition of certain morphologically similar Culex mosquitoes often prevented this. Morphologic characteristics essential for accurate species identification are often damaged during mosquito...
collection and shipping (and as a result of natural aging of mosquitoes). Therefore, many specimens were only identified to the level of genus or to a species group (e.g., *Cx. pipiens*/*restuans* group, which includes the morphologically similar *Cx. pipiens* and *Cx. restuans* species). All specimens, including those that appeared to contain blood meals or partially digested blood meals, were tested for virus. Therefore, the virus infection rate in the mosquito population reflects the proportion of mosquitoes that had contacted a viremic host. Specimens were grouped into pools of 50 (by species, date, and location of collection) and were tested for virus. Every mosquito pool was tested by a Vero cell plaque assay (14), which is sensitive to all North American mosquito-transmitted pathogenic viruses and many nonpathogenic mosquito-transmitted viruses. After WN virus was determined to be the etiologic agent, a WN virus-specific reverse transcriptase-polymerase chain reaction (RT-PCR) assay (15) was used in conjunction with the Vero cell plaque assay to detect and identify WN virus in mosquito pools. Other viruses isolated in the plaque assay were identified by virus-specific RT-PCR (R. Lanciotti, unpub. data). The identity of the mosquitoes in virus-positive pools was subsequently determined or verified by species-diagnostic PCR (16). This technique, based on interspecific nucleic acid sequence variation, identifies *Cx. pipiens*, *Cx. restuans*, or *Cx. salinarius* (in combination or alone) in a pool of 50 mosquitoes.

Results

During the surveillance program, 32,814 mosquitoes representing 25 species were collected and tested for WN virus in 1,853 pools (Table 1). More than half of mosquitoes tested (18,016) were in the genus *Culex*; most of these could not be identified to species but were likely *Cx. pipiens* or *Cx. restuans*. In the remaining specimens, the predominant species were the floodwater mosquitoes *Aedes vexans* and *Ae. trivittatus*. The collection period, number of *Culex* mosquitoes, and number of other mosquito species tested for each of the 10 NY and 10 NJ counties providing specimens are listed in Table 2. The number collected and tested was not a good representation of the relative population density of *Culex* and other species mosquitoes because sampling was not consistent across participating counties. The total number collected was higher in areas where sampling was more intense. The numbers of *Culex* and other species within a county were representative of the relative abundance of various mosquito larval habitats where mosquito traps were placed (e.g., permanent water sites appropriate for *Cx. pipiens* and *Cx. restuans* development vs. floodwater habitats appropriate for *Ae. vexans* and *Ae. trivittatus*).

![Table 2.](image.png)
Table 3. West Nile virus-positive mosquito pools, New York and New Jersey, 1999

County	Collection date	Speciesa (morphologic id.)	Speciesb (molecular id.)	Virus identification
Queens, NY	9/12/99	Culex pipiens	Culex pipiens	not done
	9/13/99	Culex pipiens	Culex pipiens	not done
	9/13/99	Culex species	Culex pipiens / restuans	Flanders
	9/19/99	Culex species	Culex pipiens	Flanders
	9/20/99	Culex species	Culex pipiens	Flanders
	10/10/99	Culex pipiens / restuans	Culex pipiens / restuans	Flanders
Kings (Brooklyn), NY	9/12/99	Culex species	Culex pipiens	Flanders
Bronx, NY	9/15/99	Culex species	Culex restuans / salinarius	Flanders
Nassau, NY	9/29/99	Culex species	Culex restuans / salinarius	Flanders
	10/3/99	Culex species	Culex pipiens / restuans / salinarius	Flanders
	10/10/99	Culex pipiens / restuans	Culex pipiens / restuans / salinarius	Flanders
Suffolk, NY	10/4/99	Culex species	Culex restuans / salinarius	Flanders
Westchester, NY	10/1/99	Culex restuans	Culex restuans / salinarius	Flanders
Hudson, NJ	9/28/99	Culex pipiens	insufficient sample	Flanders

aSpecies identification by morphologic characteristics.

bSpecies identification by species-specific polymerase chain reaction primers.

seven contained two or more Culex species (combinations of Cx. pipiens, Cx. restuans, and Cx. salinarius). Two pools contained insufficient material for molecular species identification. The only evidence that another species was involved in WN virus transmission in 1999 was the isolation of WN virus from a pool of Culex ans mosquitoes collected on September 14, 1999, in southwestern Connecticut (7). The earliest WN virus isolates in NY and NJ came from collections made on September 12, 1999, in Queens, Brooklyn, and the Bronx. The latest WN virus isolate came from collections made on October 10, 1999, in Queens and Nassau County. Most isolates were from Queens, which was the location of most human WN-virus infection cases (6).

Other viruses were isolated from mosquitoes during the surveillance program (Table 4). Flanders virus was isolated from 11 pools of Culex species mosquitoes, most of which contained combinations of species. Flanders virus is a widely distributed rhabdovirus frequently found in birds and bird-feeding mosquitoes and apparently nonpathogenic in vertebrates (17). EEE virus was isolated from a pool of Culex melanura collected in Burlington County, NJ. Three isolates of a California serogroup virus were obtained from pools of Ae. trivittatus collected in the Bronx and Nassau County, NY. Numerous California serogroup viruses are present in this region of North America (18). Although these California serogroup isolates were not specifically identified for this study, they are likely trivittatus virus, a generally nonpathogenic member of the California serogroup commonly found in Ae. trivittatus (19).

The minimum infection rate (MIR) of WN virus in Culex mosquitoes, expressed as the number infected per 1,000 specimens tested, was calculated by county for the sampling periods (weeks) during which WN virus was isolated from mosquitoes (Table 5). MIR for a given period and location is an indicator of prevalence of virus in the habitat and of transmission intensity and, in many circumstances, is related to the risk for human disease. All Culex mosquitoes collected in a county during a particular week, except Cx. territans, which feeds predominantly on amphibians, were combined to determine the denominator for this value because many of the Culex specimens could not be identified below genus or species levels. As a result, MIR estimates probably underestimate the infection rate for certain Culex species and overestimate the rate for others. MIR for WN virus-infected Culex in this outbreak was 0.7/1,000 to 57.1/1,000, although the 95% confidence intervals are very large around MIR estimates calculated from small sample sizes.

Conclusion

Mosquito surveillance, although not implemented until late in the outbreak (well after most transmission to humans that resulted in clinical cases), provided information about transmission dynamics that may prove useful in developing...
new surveillance systems. *Culex* mosquitoes, particularly *Cx. pipiens*, appear primarily responsible for epizootic transmission. *Cx. pipiens* was quite common in Queens, NY, and other areas where isolates were obtained and transmission activity was documented by avian and human surveillance programs. *Cx. restuans* and *Cx. salinarius* were also implicated in virus transmission. Since these species were found only in combination in WN virus-positive pools, their importance is difficult to assess. *Cx. pipiens* and *Cx. restuans* are ornithophilic, feeding mainly on birds and occasionally on mammals (20). *Cx. salinarius*, which is a pest species common in the region (21), feeds readily on humans and other mammals (20), which suggests that it may be involved in epidemic transmission of WN virus.

Relatively high MIR values in areas where human cases occurred validated use of mosquito-based surveillance to estimate risk for virus transmission to humans. MIRs found in this study are consistent with MIRs calculated for WN virus in mosquitoes reported in other areas. MIR estimates for the primary vector species during WN virus outbreaks range from 0.8/1,000 for *Cx. fatigans* in India (22) to as high as 25.0/1,000 for *Cx. univittatus* in South Africa (23). While it is difficult to associate a quantified risk for human disease to an MIR value, evidence from *Cx. pipiens*-borne SLE outbreaks indicates that widespread transmission to humans is likely when MIR exceeds 3/1,000 but may occur at much lower infection rates (24).

Mosquito-based virus surveillance has its limitations. Adequate estimates of virus distribution and transmission require extensive field and laboratory resources to obtain and process large sample sizes over relatively large geographic areas. In addition, identification of field-collected *Culex* mosquito specimens to species by morphologic characters is difficult, and verification of species composition in pools often requires use of molecular techniques not commonly available to mosquito surveillance programs. The importance of accurate mosquito species identification is underscored by the indication that *Cx. salinarius* may have been involved in WN-virus transmission during 1999. This information was not evident from morphologic identification and was determined only by molecular techniques. Accurate identification of species is essential in estimating risk for transmission to humans and directing mosquito control programs.

Acknowledgments

The authors thank S. Aspen, B. Biggerstaff, B. Davis, C. Happ, A. Kerst, K. Volpe, V. Demary, M. Spar, J. Hauer, the staff of the NYC Mayor's Office of Emergency Management, G. Terrillon, S. Lindquist, M. Anand, A. Huang, L. McCuiston, and L. Friedlander for their assistance in the field, laboratory, and organizational aspects of this project.

Dr. Nasci is a research entomologist at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado. His research interests include the ecology and control of mosquito-transmitted zoonoses.

References

1. Centers for Disease Control and Prevention. Outbreak of West Nile-like viral encephalitis—New York, 1999. MMWR Morb Mortal Wkly Rep 1999;48:845-9.
2. Centers for Disease Control and Prevention. Update: West Nile Virus encephalitis—New York, 1999. MMWR Morb Mortal Wkly Rep 1999;48:944-6,955.
3. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999;286:2333-7.
4. Hayes CG. West Nile fever. In: Monath TP, editor. The arboviruses: epidemiology and ecology. Vol V. Boca Raton (FL): CRC Press; 1989. p. 59-88.
5. Monath TP. Epidemiology. In: Monath TP, editor. St. Louis encephalitis. Washington: American Public Health Association; 1980. p. 239-312.
6. Centers for Disease Control and Prevention. Update: West Nile-like viral encephalitis—New York, 1999. MMWR Morb Mortal Wkly Rep 1999;48:890-2.
7. Anderson JF, Andreadis TG. Drought conditions in Northeastern United States: an attraction to mosquitoes. Mosquito News 1983;43:496-8.
West Nile Virus

16. Crabtree MB, Savage HM, Miller BR. Development of a species-diagnostic polymerase chain reaction assay for the identification of Culex vectors of St. Louis encephalitis virus based on interspecies sequence variation in ribosomal DNA spacers. Am J Trop Med Hyg 1995;53:105-9.

17. Kokernot RH, Hayes J, Will RL, Radivojevic B, Boyd KR, Chan DHM. Arbovirus studies in the Ohio-Mississippi basin, 1964-1967. III Flanders virus. Am J Trop Med Hyg 1969;18:762-7.

18. Calisher CH. Taxonomy, classification, and geographic distribution of California serogroup Bunyaviruses. In: Calisher CH, Thompson WH, editors. California serogroup viruses. New York: Alan R. Liss, Inc.; 1983. p. 1-6.

19. Sudia WD, Newhouse VF, Calisher CH, Chamberlain RW. California group arboviruses: isolations from mosquitoes in North America. Mosquito News 1971;31:576-600.

20. Mitchell CJ, Francy DB, Monath TP. In: Monath TP, editor. St. Louis encephalitis. Washington: American Public Health Association; 1980. p. 313-79.

21. Slaff M, Crans WJ. Impounded water as a major producer of Culex salinarius (Diptera: Culicidae) in coastal areas of New Jersey, USA. J Med Entomol 1982;19:185-90.

22. Pavri KM, Singh KRP. Isolations of West Nile virus from Culex fatigans mosquitoes from western India. Indian J Med Res 1965;53:501-5.

23. McIntosh BM, Jupp PG, Dos Santos I, Meenehan GM. Epidemics of West Nile and Sindbis viruses in South Africa with Culex (Culex) unicittatus Theobald as vector. S Afr J Sci 1976;72:295-9.

24. Bowen GS, Francy DB. Surveillance. In: Monath TP, editor. St. Louis encephalitis. Washington: American Public Health Association; 1980. p. 473-99.