A note on cyclic semiregular subgroups of some 2-transitive permutation groups

M. Giulietti and G. Korchmáros

Abstract

We determine the semi-regular subgroups of the 2-transitive permutation groups \(\text{PGL}(2, n) \), \(\text{PSL}(2, n) \), \(\text{PGU}(3, n) \), \(\text{PSU}(3, n) \), \(\text{Sz}(n) \) and \(\text{Ree}(n) \) with \(n \) a suitable power of a prime number \(p \).

2000 Math. Subj. Class.: 14H37

Keywords: 2-transitive permutation groups

1 Introduction

The finite 2-transitive groups play an important role in several investigations in combinatorics, finite geometry, and algebraic geometry over a finite field. With this motivation, the present notes are aimed at providing some useful results on semi-regular subgroups of the 2-transitive permutation groups \(\text{PGL}(2, n) \), \(\text{PSL}(2, n) \), \(\text{PGU}(3, n) \), \(\text{PSU}(3, n) \), \(\text{Sz}(n) \) and \(\text{Ree}(n) \) where \(n \) is a suitable power of a prime number \(p \).

2 The projective linear group

The projective linear group \(\text{PGL}(2, n) \) consists of all linear fractional mappings,

\[
\varphi_{(a,b,c,d)}: \ x \mapsto \frac{ax + b}{cx + d}, \quad ad - bc \neq 0,
\]

with \(a, b, c, d \in \mathbb{F}_n \). The order of \(\text{PGL}(2, n) \) is \(n(n - 1)(n + 1) \).
Let \(\Box \) be the set of all non-zero square elements in \(\mathbb{F}_n \). The special projective linear group \(\text{PSL}(2, n) \) is the subgroup of \(\text{PGL}(2, n) \) consisting of all linear fractional mapping \(\varphi_{(a,b,c,d)} \) for which \(ad - bc \in \Box \). For even \(n \), \(\text{PSL}(2, n) = \text{PGL}(2, n) \). For odd \(n \), \(\text{PSL}(2, n) \) is a subgroup of \(\text{PGL}(2, n) \) of index 2.

For \(n \geq 4 \), \(\text{PSL}(2, n) \) is a non-abelian simple group. For smaller values of \(n \), \(\text{PGL}(2, 2) \cong \text{PSL}(2, 3) \cong \text{Sym}_3 \). For this reason, we only consider the case of \(n \geq 4 \).

The above fractional mapping \(\varphi_{(a,b,c,d)} \) defines a permutation on the set \(\Omega = \mathbb{F}_n \cup \{ \infty \} \) of size \(n + 1 \). So, \(\text{PGL}(2, n) \) can be viewed as a permutation group on \(\Omega \). Such a permutation group is sharply 3-transitive on \(\Omega \), in particular 2-transitive on \(\Omega \), and it is defined to be the natural 2-transitive permutation representation of \(\text{PGL}(2, n) \). In this context, \(\text{PSL}(2, n) \) with \(n \) odd can be viewed as permutation group on \(\Omega \). Such a permutation group is 2-transitive on \(\Omega \), and it is defined to be the natural 2-transitive permutation representation of \(\text{PGL}(2, n) \).

The subgroups of \(\text{PSL}(2, n) \) were determined by Dickson, see [5, Hauptsatz 8.27].

Theorem 2.1. Dickson’s classification of subgroups of \(\text{PSL}(2, n) \): If \(U \) is a subgroup of \(\text{PSL}(2, n) \) with \(n = p^r \), then \(U \) is one of the following groups:

1. An elementary abelian \(p \)-group of order \(p^m \) with \(m \leq r \).
2. A cyclic group of order \(z \) where \(z \) is a divisor of \(2^r - 1 \) or \(2^r + 1 \), if \(p = 2 \), and a divisor of \(\frac{1}{2}(p^r - 1) \) or \(\frac{1}{2}(p^r + 1) \), if \(p > 2 \).
3. A dihedral group of order \(2z \) where \(z \) is as in (2).
4. A semidirect product of an elementary abelian \(p \)-group of order \(p^m \) and a cyclic group of order \(t \) where \(t \) is a divisor of \(p^{\gcd(m,r)} - 1 \).
5. A group isomorphic to \(A_4 \). In this case, \(r \) is even, if \(p = 2 \).
6. A group isomorphic to \(S_4 \). In this case, \(p^{2^r} - 1 \equiv 0 \) (mod \(16 \)).
7. A group isomorphic to \(A_5 \). In this case, \(p^r(p^{2^r} - 1) \equiv 0 \) (mod \(5 \)).
8. A group isomorphic to \(\text{PSL}(2, p^m) \) where \(m \) divides \(r \).
9. A group isomorphic to \(\text{PGL}(2, p^m) \) where \(2m \) divides \(r \).
From Dickson’s classification, all subgroups of PGL(2, n) with n odd, can also be obtained, see [11].

Let $n \geq 5$ odd. Then the subgroups listed in (1) and (2) form a partition of PSL(2, n), that is, every non-trivial element of PSL(2, n) belongs exactly one of those subgroups, see [10]. This has the following corollary.

Proposition 2.2. Let $n \geq 5$ odd. Any two maximal cyclic subgroups of PSL(2, n) have trivial intersection.

If $n \geq 5$ is odd, the number of involutions in PGL(2, n) is equal to n^2.

Proposition 2.3. Let $n \geq 5$ be odd.

(I) $\varphi_{(a,b,c,d)} \in \text{PGL}(2, n)$ is an involution if and only if $a + d = 0$.

(II) If $n \equiv 1 \pmod{4}$, then PSL(2, n) has $\frac{1}{2}n(n + 1)$ involutions. Each has exactly exactly two fixed points on Ω, while no involution in PGL(2, n) \ PSL(2, n) has a fixed point on Ω.

(III) If $n \equiv 3 \pmod{4}$, then PSL(2, n) has $\frac{1}{2}n(n - 1)$ involutions. Each has exactly two fixed points on Ω.

Proof. A direct computation shows that $\varphi_{(a,b,c,d)} \in \text{PGL}(2, n)$ is an involution if and only if $b(a + d) = 0$ and $c(a + d) = 0$. The latter condition is satisfied when either $a + d = 0$ or $b = c = 0$. Furthermore, since $\varphi_{(a,0,0,d)}$ is an involution if and only if $a^2 = d^2$ but $a \neq d$, assertion (I) follows.

To show (II) and (III) take an involution $\varphi_{(a,b,c,-a)} \in \text{PGL}(2, n)$. A direct computation shows that $\varphi_{(a,b,c,-a)}$ has two or zero fixed points on Ω according as $-(a^2 - bc)$ is in □ or not. Since $-1 \in □$ if and only if $n \equiv 1 \pmod{4}$, assertions (II) and (III) follow. □

Proposition 2.4. Let $n \geq 5$ odd.

(x) The elements of PGL(2, n) of order p are contained in PSL(2, n).

(xx) Any two elements of PSL(2, n) of order p are conjugate in PGL(2, n).

.xxx) The elements of PSL(2, n) of order p form two different conjugacy classes in PSL(2, n).
Proof. In the natural 2-transitive permutation representation, the elements \(\varphi_{(a,b,c,d)} \) with \(a = d = 1, c = 0 \) and \(b \in \mathbb{F}_n \) form a Sylow \(p \)-subgroup \(S_p \) of \(\text{PGL}(2, n) \). Actually, all such elements \(\varphi_{(a,b,c,d)} \) are in \(\text{PSL}(2, n) \).

To show (x), it is enough to observe that \(\text{PSL}(2, n) \) is self-conjugate in \(\text{PGL}(2, n) \) and that any two Sylow \(p \)-subgroups are conjugate in \(\text{PGL}(2, n) \).

Take two non-trivial elements in \(S_p \), say \(\varphi_1 = \varphi_{(1,b,0,1)} \) and \(\varphi_2 = \varphi_{(1,b',0,1)} \). Let \(a = b'/b \), and \(\varphi = \varphi_{(a,0,0,1)} \). Then \(\varphi_2 = \varphi \varphi_1 \varphi^{-1} \) showing that \(\varphi_2 \) is conjugate to \(\varphi_1 \) in \(\text{PGL}(2, n) \). This proves (xx). Note that if \(a \in \Box \), then \(\varphi_2 \) is conjugate to \(\varphi_1 \) in \(\text{PSL}(2, n) \).

Take any two distinct elements of \(\text{PSL}(2, n) \) of order \(n \). Every element of \(\text{PGL}(2, n) \) of order \(p \) has exactly one fixed point in \(\Omega \) and \(\text{PSL}(2, n) \) is transitive on \(\Omega \). Therefore, to show (xxx), we may assume that both elements are in \(S_p \). So, they are \(\varphi_1 \) and \(\varphi_2 \) with \(b, b' \in \mathbb{F}_n \setminus \{0\} \). Assume that \(\varphi_2 \) is conjugate to \(\varphi_1 \) under an element \(\varphi \in \text{PSL}(2, n) \). Since \(\varphi \) fixes \(\infty \), we have that \(\varphi = \varphi_{(a,u,0,1)} \) with \(a, u \in \mathbb{F}_n \) and \(a \neq 0 \). But then \(a = b'/b' \). Therefore, \(\varphi_2 \) is conjugate to \(\varphi_1 \) under \(\text{PSL}(2, n) \) if and only if \(b'/b \in \Box \). This shows that \(\varphi_1 \) and \(\varphi_2 \) are in the same conjugacy class if and only if \(b \) and \(b' \) have the same quadratic character in \(\mathbb{F}_n \). This completes the proof.

3 The projective unitary group

Let \(\mathcal{U} \) be the classical unital in \(\text{PG}(2, n^2) \), that is, the set of all self-conjugate points of a non-degenerate unitary polarity \(\Pi \) of \(\text{PG}(2, n^2) \). Then \(|\mathcal{U}| = n^3 + 1 \), and at each point \(P \in \mathcal{U} \), there is exactly one 1-secant, that is, a line \(\ell_P \) in \(\text{PG}(2, n^2) \) such that \(|\ell_P \cap \mathcal{U}| = 1 \). The pair \((P, \ell_P) \) is a pole-polar pair of \(\Pi \), and hence \(\ell_P \) is an absolute line of \(\Pi \). Each other line in \(\text{PG}(2, n^2) \) is a non-absolute line of \(\Pi \) and it is an \((n+1)\)-secant of \(\mathcal{U} \), that is, a line \(\ell \) such that \(|\ell \cap \mathcal{U}| = n + 1 \), see [4, Chapter II.8].

An explicit representation of \(\mathcal{U} \) in \(\text{PG}(2, n^2) \) is as follows. Let
\[
M = \{m \in \mathbb{F}_{n^2} \mid m^n + m = 0\}.
\]
Take an element \(c \in \mathbb{F}_{n^2} \) such that \(c^n + c + 1 = 0 \). A homogeneous coordinate system in \(\text{PG}(2, n^2) \) can be chosen so that
\[
\mathcal{U} = \{X_\infty\} \cup \{U = (1, u, u^{n+1} + c^{-1}m) \mid u \in \mathbb{F}_{n^2}, m \in M\}.
\]
Note that \(\mathcal{U} \) consists of all \(\mathbb{F}_{n^2} \)-rational points of the Hermitian curve of homogeneous equation \(cX_0^nX_2 + cX_0X_2^n + X_1^{n+1} = 0 \).
The **projective unitary group** $\text{PGU}(3, n)$ consists of all projectivities of $\text{PG}(2, n^2)$ which commute with Π. $\text{PGU}(3, n)$ preserves \mathcal{U} and can be viewed as a permutation group on \mathcal{U}, since the only projectivity in $\text{PGU}(3, n)$ fixing every point in \mathcal{U} is the identity. The group $\text{PGU}(3, n)$ is a 2-transitive permutation group on Ω, and this is defined to be the **natural 2-transitive permutation representation of $\text{PGU}(3, n)$**. Furthermore, $|\text{PGU}(3, n)| = (n^3 + 1)n^3(n^2 - 1)$.

With $\mu = \gcd(3, n+1)$, the group $\text{PGU}(3, n)$ contains a normal subgroup $\text{PSU}(3, n)$, the **special unitary group**, of index μ which is still a 2-transitive permutation group on Ω. This is defined to be the **natural 2-transitive permutation representation of $\text{PSU}(3, n)$**.

For $n > 2$, $\text{PSU}(3, n)$ is a non-abelian simple group, but $\text{PSU}(3, 2)$ is a solvable group.

The maximal subgroups of $\text{PSU}(3, n)$ were determined by Mitchell [9] for n odd and by Hartley [2] for n even, see [3].

Theorem 3.1. The following is the list of maximal subgroups of $\text{PSU}(3, n)$ with $n \geq 3$ up to conjugacy:

(i) the one-point stabiliser of order $n^3(n^2 - 1)/\mu$;

(ii) the non-absolute line stabiliser of order $n(n^2 - 1)(n + 1)/\mu$;

(iii) the self-conjugate triangle stabiliser of order $6(n + 1)^2/\mu$;

(iv) the normaliser of a cyclic Singer group of order $3(n^2 - n + 1)/\mu$;

further, for $n = p^k$ with $p > 2$,

(v) $\text{PGL}(2, n)$ preserving a conic;

(vi) $\text{PSU}(3, p^m)$, with $m \mid k$ and k/m odd;

(vii) the subgroup containing $\text{PSU}(3, p^m)$ as a normal subgroup of index 3 when $m \mid k$, k/m is odd, and 3 divides both k/m and $q + 1$;

(viii) the Hessian groups of order 216 when $9 \mid (q + 1)$, and of order 72 and 36 when $3 \mid (q + 1)$;

(ix) $\text{PSL}(2, 7)$ when either $p = 7$ or $\sqrt{-7} \notin \mathbb{F}_q$;
(x) the alternating group A_6 when either $p = 3$ and k is even, or $\sqrt{5} \in \mathbb{F}_q$ but \mathbb{F}_q contains no cube root of unity;

(xi) the symmetric group S_6 for $p = 5$ and k odd;

(xii) the alternating group A_7 for $p = 5$ and k odd;

for $n = 2^k$,

(xiii) $\text{PSU}(3, 2^m)$ with k/m an odd prime;

(xiv) the subgroups containing $\text{PSU}(3, 2^m)$ as a normal subgroup of index 3 when $k = 3m$ with m odd;

(xv) a group of order 36 when $k = 1$.

Proposition 3.2. Let $n \geq 3$ be odd. Let U be a cyclic subgroup of $\text{PSU}(3, n)$ which contains no non-trivial element fixing a point on Ω. Then $|U|$ divides either $\frac{1}{2}(n + 1)$ or $(n^2 - n + 1)/\mu$.

Proof. Fix a projective frame in $\text{PG}(2, n^2)$ and define the homogeneous point coordinates (x, y, z) in the usual way. Take a generator u of U and look at the action of u in the projective plane $\text{PG}(2, \mathbb{K})$ over the algebraic closure \mathbb{K} of \mathbb{F}_{n^2}. In our case, u fixes no line point-wise. In fact, if a collineation point-wise fixed a line ℓ in $\text{PG}(2, \mathbb{K})$, then ℓ would be a line $\text{PG}(2, n^2)$. But every line in $\text{PG}(2, n^2)$ has a non-trivial intersection with Ω, contradicting the hypothesis on the action of U.

If u has exactly one fixed point P, then $P \in \text{PG}(2, n^2)$ but $P \notin \Omega$. Then the polar line ℓ of P under the non-degenerate unitary polarity Π is a $(n + 1)$-secant of Ω. Since $\Omega \cap \ell$ is left invariant by U, it follows that $|U|$ divides $n + 1$. Since every involution in $\text{PSU}(3, n)$ has a fixed point on Ω, the assertion follows.

If u has exactly two fixed points P, Q, then either $P, Q \in \text{PG}(2, n^2)$, or $P, Q \in \text{PG}(2, n^4) \setminus \text{PG}(2, n^2)$ and $Q = \Phi^{(2)}(P)$, $P = \Phi^{(2)}(Q)$ where

$$\Phi^{(2)} : (x, y, z) \rightarrow (x^{n^2}, y^{n^2}, z^{n^2})$$

is the Frobenius collineation of $\text{PG}(2, n^4)$ over $\text{PG}(2, n^2)$. In both cases, the line ℓ through P and Q is a line ℓ of $\text{PG}(2, n^2)$. As u has no fixed point in Ω, ℓ is not a 1-secant of Ω, and hence it is a $(n + 1)$-secant of Ω. Arguing as before shows that $|U|$ divides $\frac{1}{2}(n + 1)$.
If U has exactly three points P, Q, R, then P, Q, R are the vertices of a triangle. Two cases can occur according as $P, Q, R \in PG(2, n^2)$ or $P, Q, R \in PG(2, n^6) \setminus PG(2, n^2)$ and $Q = \Phi(3)(P), R = \Phi(3)(Q), P = \Phi(3)(R)$ where
\[
\Phi(3): (x, y, z) \rightarrow (x^{n^2}, y^{n^2}, z^{n^2})
\]
is the Frobenius collineation of $PG(2, n^6)$ over $PG(2, n^2)$.

In the former case, the line through P, Q is a $(n + 1)$-secant of Ω. Again, this implies that $|U|$ divides $\frac{1}{2}(n + 1)$.

In the latter case, consider the subgroup Γ of $PGL(3, n^2)$, the full projective group of $PG(2, n^2)$, that fixes P, Q and R. Such a group Γ is a Singer group of $PG(2, n^2)$ which is a cyclic group of order $n^4 + n^2 + 1$ acting regularly on the set of points of $PG(2, n^2)$. Therefore, U is a subgroup of Γ. On the other hand, the intersection of Γ and $PSU(3, n)$ has order $(n^2 - n + 1)/\mu$, see case (iv) in Proposition 2.4.

4 The Suzuki group

A general theory on the Suzuki group is given in [6, Chapter XI.3].

An ovoid \mathcal{O} in $PG(3, n)$ is a point set with the same combinatorial properties as an elliptic quadric in $PG(3, n)$; namely, Ω consists of $n^2 + 1$ points, no three collinear, such that the lines through any point $P \in \Omega$ meeting Ω only in P are coplanar.

In this section, $n = 2n_0^2$ with $n_0 = n^s$ and $s \geq 1$. Note that $x^{\varphi} = x^{2q_0}$ is an automorphism of F_n, and $x^{\varphi^2} = x^2$.

Let Ω be the Suzuki–Tits ovoid in $PG(3, n)$, which is the only known ovoid in $PG(3, n)$ other than an elliptic quadric. In a suitable homogeneous coordinate system of $PG(3, q)$ with $Z = (0, 0, 0, 1)$,
\[
\Omega = \{Z \in \Omega \}_{(1, u, v, w + u^{2q + 2}v^{\varphi}) | u, v \in F_n}.
\]

The Suzuki group $Sz(n)$, also written $B_2(q)$, is the projective group of $PG(3, n)$ preserving Ω. The group $Sz(n)$ can be viewed as a permutation group on Ω as the identity is the only projective transformation in $Sz(n)$ fixing every point in Ω. The group $Sz(n)$ is a 2-transitive permutation group on Ω, and this is defined to be the natural 2-transitive permutation representation of $Sz(n)$. Furthermore, $Sz(n)$ is a simple group of order $(n^2 + 1)n^2(n - 1)$.

The maximal subgroups of $Sz(n)$ were determined by Suzuki, see also [6, Chapter XI.3].
Proposition 4.1. The following is the list of maximal subgroups of $Sz(n)$ up to conjugacy:

(i) the one-point stabiliser of order $n^2(n-1)$;
(ii) the normaliser of a cyclic Singer group of order $4(n+2n_0+1)$;
(iii) the normaliser of a cyclic Singer group of order $4(n-2n_0+1)$;
(iv) $Sz(n')$ for every n' such that $n = n^m$ with m prime.

Proposition 4.2. The subgroups listed below form a partition of $Sz(n)$:

(v) all subgroups of order n^2;
(vi) all cyclic subgroups of order $n-1$;
(vii) all cyclic Singer subgroups of order $n + 2n_0 + 1$;
(viii) all cyclic Singer subgroups of order $n - 2n_0 + 1$.

Proposition 4.3. Let U be a cyclic subgroup of $Sz(n)$ which contains no non-trivial element fixing a point on Ω. Then $|U|$ divides either $n - 2n_0 + 1$ or $(n + 2n_0 + 1)$.

Proof. Take a generator u of U. Then u, and hence U, is contained in one of the subgroups listed in Proposition 4.2. More precisely, since u fixes no point, such a subgroup must be of type (v) or (vi). \qed

5 The Ree group

The Ree group can be introduced in a similar way using the combinatorial concept of an ovoid, this time in the context of polar geometries, see for instance [2, Chapter XI.13].

An ovoid in the polar space associated to the non-degenerate quadric Q in the space $PG(6,n)$ is a point set of size $n^3 + 1$, with no two of the points conjugate with respect to the orthogonal polarity arising from Q.

In this section, $n = 3n_0^2$ and $n_0 = 3^s$ with $s \geq 0$. Then $x^\varphi = x^{3n_0}$ is an automorphism of \mathbb{F}_n, and $x^{\varphi^2} = x^3$.

8
Let Ω be the Ree–Tits ovoid of \mathbb{Q}. In a suitable homogenous coordinate system of $\text{PG}(6, n)$ with $Z_\infty = (0, 0, 0, 0, 0, 1)$, the quadric is defined by its homogenous equation $X_3^2 + X_0X_6 + X_1X_5 + X_2X_4 = 0$, and

$$\Omega = \{ Z_\infty \} \cup \{ (1, u_1, u_2, u_3, v_1, v_2, v_3) \},$$

with

$$v_1(u_1, u_2, u_3) = u_1^2u_2 - u_1u_3 + u_2^\varphi - u_1^{\varphi+3},$$

$$v_2(u_1, u_2, u_3) = u_1^\varphi u_2^2 - u_3^\varphi + u_1u_2^2 + u_2u_3 - u_1^{2\varphi+3},$$

$$v_3(u_1, u_2, u_3) = u_1u_3^\varphi - u_1^{\varphi+1}u_2^\varphi + u_1^{\varphi+3}u_2 + u_1^2u_2^2 - u_2^{\varphi+1} - u_3^2 + u_1^{2\varphi+4},$$

for $u_1, u_2, u_3 \in \mathbb{F}_n$.

The Ree group $\text{Ree}(n)$, also written $^2G_2(n)$, is the projective group of $\text{PG}(6, n)$ preserving Ω. The group $\text{Ree}(n)$ can be viewed as a permutation group on Ω as the identity is the only projective transformation in $\text{Ree}(n)$ fixing every point in Ω. The group $\text{Ree}(n)$ is a 2-transitive permutation group on Ω, and this is defined to be the natural 2-transitive permutation representation of $\text{Ree}(n)$. Furthermore, $|\text{Ree}(n)| = (n^3 + 1)n^3(n - 1)$. For $n_0 > 1$, the group $\text{Ree}(n)$ is simple, but $\text{Ree}(3) \cong \text{PGL}(2, 8)$ is a non-solvable group with a normal subgroup of index 3.

For every prime $d > 3$, the Sylow d-subgroups of $\text{Ree}(n)$ are cyclic, see [6] Theorem 13.2 (g)]. Put

$$w_1(u_1, u_2, u_3) = -u_1^{\varphi+2} + u_1u_2 - u_3,$$

$$w_2(u_1, u_2, u_3) = u_1^{\varphi+1}u_2 + u_1^\varphi u_3 - u_2^2,$$

$$w_3(u_1, u_2, u_3) = u_3^\varphi + (u_1u_2)^\varphi - u_1^{\varphi+2}u_2 - u_1u_2^2 + u_2u_3 - u_1^{\varphi+1}u_3 - u_1^{2\varphi+3},$$

$$w_4(u_1, u_2, u_3) = u_1^{\varphi+3} - u_2^2u_2 - u_2^\varphi - u_1u_3.$$

Then a Sylow 3-subgroup S_3 of $\text{Ree}(n)$ consists of the projectivities represented by the matrices:

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 1 & 0 & 0 & 0 & 0 & 0 \\
b & a^\varphi & 1 & 0 & 0 & 0 & 0 \\
c & b - a^{\varphi+1} & -a & 1 & 0 & 0 & 0 \\
v_1(a, b, c) & w_1(a, b, c) & -a^2 & -a & 1 & 0 & 0 \\
v_2(a, b, c) & w_2(a, b, c) & ab + c & b & -a^\varphi & 1 & 0 \\
v_3(a, b, c) & w_3(a, b, c) & w_4(a, b, c) & c & -b + a^{\varphi+1} & -a & 1
\end{bmatrix}$$
for $a, b, c \in \mathbb{F}_n$. Here, S_3 is a normal subgroup of $\text{Ree}(n)_{Z_\infty}$ of order n^3 and regular on the remaining n^3 points of Ω. The stabiliser $\text{Ree}(n)_{Z_\infty, O}$ with $O = (1, 0, 0, 0, 0, 0)$ is the cyclic group of order $n - 1$ consisting of the projectivities represented by the diagonal matrices,

$$\text{diag}(1, d, d^{\phi+1}, d^{\phi+2}, d^{\phi+3}, d^{2\phi+3}, d^{2\phi+4})$$

for $d \in \mathbb{F}_n$. So the stabiliser $\text{Ree}(n)_{Z_\infty}$ has order $n^3(n - 1)$.

The group $\text{Ree}(n)$ is generated by S_3 and $\text{Ree}(n)_{Z_\infty, O}$, together with the projectivity W of order 2 associated to the matrix,

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},$$

that interchanges Z_∞ and O. Here, W is an involution and it fixes exactly $n + 1$ points of Ω. Furthermore, $\text{Ree}(n)$ has a unique conjugacy classes of involutions, and hence every involution in $\text{Ree}(n)$ has $n + 1$ fixed points in Ω.

Assume that $n = n''$ with an odd integer $t = 2v + 1$, $v \geq 1$. Then \mathbb{F}_n has a subfield \mathbb{F}_n', and PG$(6, n)$ may be viewed as an extension of PG$(6, n')$. Doing so, Q still defines a quadric in PG$(6, n')$, and the points of Ω contained in PG$(6, n')$ form an ovoid, the Ree-Tits ovoid of Q in PG$(6, n')$. The associated Ree group $\text{Ree}(n')$ is the subgroup of $\text{Ree}(n)$ where the above elements a, b, c, d range over \mathbb{F}_n'.

The maximal subgroups of $\text{Ree}(n)$ were determined by Migliore and, independently, by Kleidman [8, Theorem C], see also [1, Lemma 3.3].

Proposition 5.1. The following is the list of maximal subgroups of $\text{Ree}(n)$ with $n > 3$ up to conjugacy:

(i) the one-point stabiliser of order $n^3(n - 1)$;

(ii) the centraliser of an involution $z \in \text{Ree}(n)$ isomorphic to $\langle z \rangle \times \text{PSL}(2, n)$ of order $n(n - 1)(n + 1)$;
(iii) a subgroup of order $6(n + 3n_0 + 1)$, the normaliser of a cyclic Singer group of order $n + 3n_0 + 1$;

(iv) a subgroup of order $6(n - 3n_0 + 1)$, the normaliser of a cyclic Singer group of order $6(n - 3n_0 + 1)$;

(v) a subgroup of order $6(n + 1)$, the normaliser of a cyclic subgroup of order $n + 1$;

(vi) $\text{Ree}(n')$ with $n = n'^a$ and t prime.

Proposition 5.2. Let U be a cyclic subgroup of $\text{Ree}(n)$ with $n > 3$ which contains no non-trivial element fixing a point on Ω. Then $|U|$ divides either $\frac{1}{2}(n + 1)$, or $n - 3n_0 + 1$ or $n + 3n_0 + 1$.

Proof. Every involution in $\text{Ree}(n)$ has exactly $n+1$ fixed points on Ω, and every element in $\text{Ree}(n)$ whose order is 3 fixes exactly one point in Ω. Therefore, neither 3 nor 2 divides $|U|$. Furthermore, if U is contained in a subgroup (iii), then U preserves the set of fixed points of z, and hence $|U|$ divides $\frac{1}{2}(n + 1)$.

Now, assume that U is contained in a subgroup (iii) or (iv), say N. Let S be the cyclic Singer subgroup of N. We show that U is contained in S. Suppose on the contrary that $S \cap U \neq U$. Then SU/S is a non-trivial subgroup of factor group N/S. Hence either 2 or 3 divides $|SU/S|$. Since $|SU/S| = |S| \cdot |U|/|S \cap U|$ and neither 2 nor 3 divides $|S|$, it follows that either 2 or 3 divides $|U|$. But this is impossible by the preceding result.

If U is contained in a subgroup (v), say N, we may use the preceding argument. Let S be the cyclic subgroup of N. Arguing as before, we can show that U is a subgroup of S.

Finally, we deal with the case where U is contained in a subgroup (vi) which may be assumed to be $\text{Ree}(n')$ with

$$n = n'^{(2v+1)}, \ v \geq 1;$$

equivalently

$$s = 2uv + u + v.$$

Without loss of generality, U may be assumed not be contained in any subgroup $\text{Ree}(n'')$ of $\text{Ree}(n')$.

If $n' = 3$ then U is a subgroup of $\text{Ree}(3) \cong \text{PGL}(2,8)$. Since $|\text{PGL}(2,8)| = 2^3 \cdot 3^3 \cdot 7$, and neither 2 nor 3 divides $|U|$, this implies that $|U| = 7$. On the
other hand, since \(n = 3^k \) with \(k \) odd, 7 divides \(n^3 + 1 \). Therefore, 7 divides \(n^3 + 1 = (n + 1)(n + 3n_0 + 1)(n - 3n_0 + 1) \) whence the assertion follows.

For \(n' > 3 \), the above discussion can be repeated for \(n' \) in place of \(n \), and this gives that \(|U|\) divides either \(n' + 1 \) or \(n' + 3n'_0 + 1 \) or \(n' + 3n'_0 + 1 \). So, we have to show that each of these three numbers must divide either \(n + 1 \), or \(n + 3n_0 + 1 \), or \(n - 3b_0 + 1 \).

If \(U \) divides \(n' + 1 \) then it also divide \(n + 1 \) since \(n \) is an odd power of \(n' \).

For the other two cases, the following result applies for \(n_0 = k \) and \(n'_0 = m \).

Claim 5.3. [12, V. Vigh] Fix an \(u \geq 0 \), and let \(m = 3^u \), \(d^+ = 3m^2 + 3m + 1 \).

For a non-negative integer \(v \), let \(s = 2uv + u + v \), \(k = 3^s \), and

\[
M_1(v) = 3k^2 + 3k + 1, \quad M_2(v) = 3k^2 + 1, \quad M_3(v) = 3k^2 - 3k + 1.
\]

Then for all \(v \geq 0 \), \(d^+ \) divides at least one of \(M_1(v) \), \(M_2(v) \) and \(M_3(v) \).

We prove the claim for \(d^+ = d = 3m^2 + 3m + 1 \), the proof for other case \(d^- = m^2 - 3m + 1 \) being analog.

We use induction on \(v \). We show first that the claim is true for \(v = 0, 1, 2 \), then we prove that the claim holds true when stepping from \(v \) to \(v + 3 \).

Since \(M_1(0) = d \), the claim trivially holds for \(v = 0 \).

For \(v = 1 \) we have the following equation:

\[(3^{2u+1} + 3^u + 1)(3^{4u+2} - 3^{3u+2} + 3^{2u+2} - 3^{2u+1} - 3^{u+1} + 1) = 3^{6u+3} + 1,
\]

whence

\[3^{2u+1} + 3^u + 1 = d \mid M_2(1) = 3^{6u+3} + 1. \tag{1}\]

Similarly,

\[(3^{2u+1} + 3^u + 1)(3^{8u+4} - 3^{7u+4} + 3^{6u+4} - 3^{6u+3} - 3^{5u+3}) = 3^{10u+5} - 3^{5u+3} + 1 - (3^{6u+3} + 1).
\]

On the other hand, using (1) we obtain that

\[3^{2u+1} + 3^u + 1 = d \mid M_3(2) = 3^{10u+5} - 3^{5u+3} + 1,
\]

which gives the claim for \(v = 2 \).

Furthermore, using (1) together with

\[M_2(v+3) - M_2(v) = (3^{4uv+14u+2v+7} + 1) - (3^{4uv+2u+2v+1} + 1) = 3^{4uv+2u+2v+1}(3^{u+3} + 1)(3^{u+3} - 1)
\]

12
we obtain that
\[d \mid M_2(v + 3) - M_2(v). \] (2)

Now, direct calculation shows that
\[M_1(v + 3) - M_3(v) = M_2(v + 3) - M_2(v) + 3^{2uv^2+u+v+1} \cdot M_2(1). \]

From (1) and (2),
\[d \mid M_1(v + 3) - M_3(v). \]

Similarly,
\[M_3(v + 3) - M_1(v) = M_2(v + 3) - M_2(v) - 3^{2uv^2+u+v+1} \cdot M_2(1), \]
and so
\[d \mid M_3(v + 3) - M_1(v). \]

This finishes the proof of the Claim and hence it completes the proof of Proposition 5.2. \(\Box \)

One may ask for a proof that uses the structure of \(\text{Ree}(n) \) in place of the above number theoretic Claim. This can be done as follows.

Take a prime divisor \(d \) of \(|U| \). As we have pointed out at the beginning of the proof of Proposition 5.2 \(U \) has no elements of order 2 or 3. This implies that \(d > 3 \). In particular, the Sylow \(d \)-subgroups of \(\text{Ree}(n) \) are cyclic and hence are pairwise conjugate in \(\text{Ree}(n) \).

Since \(|U| \) divides \(n^3 + 1 \), and \(n^3 + 1 \) factorizes into \((n + 1)(n + 3n_0 + 1)(n - 3n_0 + 1) \) with pairwise co-prime factors, \(d \) divides just one of this factors, say \(v \). From Proposition 5.1 \(\text{Ree}(n) \) has a cyclic subgroup \(V \) of order \(v \). Since \(d \) divides \(v \), \(V \) has a subgroup of order \(d \). Note that \(V \) is not contained in \(\text{Ree}(n') \) as \(v \) does not divide \(|\text{Ree}(n')| \).

Let \(D \) be a subgroup of \(U \) of order \(d \). Then \(D \) is conjugate to a subgroup of \(V \) under \(\text{Ree}(n) \). We may assume without loss of generality that \(D \) is a subgroup of \(V \).

Let \(C(D) \) be the centralizer of \(D \) in \(\text{Ree}(n) \). Obviously, \(C(D) \) is a proper subgroup of \(\text{Ree}(n) \). Since both \(U \) and \(V \) are cyclic groups containing \(D \), they are contained in \(C(D) \). Therefore, the subgroup \(W \) generated by \(U \) and \(V \) is contained in \(C(D) \). To show that \(U \) is a subgroup of \(V \), assume on the contrary that the subgroup \(W \) of \(C(D) \) generated by \(U \) and \(V \) contains \(V \) properly. From Proposition 5.1 the normalizer \(N(V) \) is the only maximal subgroup containing \(V \). Therefore \(W \) is a subgroup of \(N(V) \) containing \(V \),
and \(W = UV \). The factor group \(W/V \) is a subgroup of the factor group \(\mathcal{N}(V)/V \). From Proposition 5.1, \(|W/V| \) divides 6. On the other hand,

\[
|W/V| = \frac{|U||V|}{|U \cap V||V|} = \frac{|U|}{|U \cap V|}.
\]

But then \(|U| \) has to divide 6, a contradiction.

References

[1] X.G. Fang, C.H. Li, C.E. Praeger, The locally 2-arc transitive graphs admitting a Ree simple group. \textit{J. Algebra} \textbf{282} (2004), 638–666.

[2] R.W. Hartley, Determination of the ternary collineation groups whose coefficients lie in \(GF(2^h) \), \textit{Ann. of Math.} \textbf{27} (1926), 140-158.

[3] A.R. Hoffer, On unitary collineation groups, \textit{J. Algebra} \textbf{22} (1972), 211–218.

[4] D.R. Hughes and F.C. Piper, \textit{Projective Planes}, Graduate Texts in Mathematics \textbf{6}, Springer, New York, 1973, x+291 pp.

[5] B. Huppert, \textit{Endliche Gruppen. I}, Grundlehren der Mathematischen Wissenschaften \textbf{134}, Springer, Berlin, 1967, xii+793 pp.

[6] B. Huppert and B.N. Blackburn, \textit{Finite groups. III}, Grundlehren der Mathematischen Wissenschaften \textbf{243}, Springer, Berlin, 1982, ix+454 pp.

[7] W.M. Kantor, M. O’Nan and G.M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic, \textit{J. Algebra} \textbf{21} (1972), 17–50.

[8] P.B. Kleidman, The maximal subgroups of the Chevalley groups \(G_2(q) \) with \(q \) odd, the Ree groups \(^2G_2(q) \), and their automorphism groups, \textit{J. Algebra} \textbf{117} (1988), 30–71.

[9] H.H. Mitchell, Determination of the ordinary and modular linear group, \textit{Trans. Amer. Math. Soc.} \textbf{12} (1911), 207-242.

[10] M. Suzuki, On a finite group with a partition, \textit{Arch. Math.} \textbf{12} (1961), 241–254.
[11] R.C. Valentini and M.L. Madan, A Hauptsatz of L.E. Dickson and Artin–Schreier extensions, *J. Reine Angew. Math.* **318** (1980), 156–177.

[12] V. Vígh, On a divisibility problem, *Private comunication*, 2008.