Concomitant presentation of eosinophilic or oncocytic mucoepidermoid carcinoma, immunoglobulin G4–related disease, and adult-onset asthma and periocular xanthogranuloma
Case report of 3 uncommon clinical entities

Nikita Chhabra, DOa, John E. Cebak, DO, PhD, Alessandra Schmitt, MD, Devyani Lal, MD, Allison C. Rosenthal, DO, Cullen M. Taylor, MD, Ryan M. Thorwarth, MD, Ami A. Shah, MD, Alicia Rodriguez-Pla, MD, PhD,* NC and JEC contributed equally to the manuscript.

Abstract

Rationale: Immunoglobulin (Ig) G4–related disease (IgG4-RD) reportedly has a strong relationship with adult-onset asthma and periocular xanthogranuloma (AAPOX) and may be linked to sclerosing mucoepidermoid carcinoma (MEC). We present a rare case of IgG4-RD and AAPOX occurring in a patient with resected eosinophilic or oncocytic MEC.

Patient concerns: A 52-year-old woman was referred to our rheumatology clinic in 2020 to be evaluated for suspected IgG4-RD.

Diagnoses: The patient had diagnoses of periorbital xanthelasmas, worsening glucocorticoid-dependent chronic rhinosinusitis and adult-onset asthma, and cervical lymphadenopathy persisting 2 years after resection of a low-grade MEC of a minor salivary gland.

Interventions: Because the patient’s symptomatic relief was glucocorticoid dependent, IgG4-RD was suspected, and she was referred to our medical center. Her amylase and lipase levels were elevated. Serum IgG4 levels were initially within normal limits, but IgG4-RD was diagnosed because of the presence of lymphadenopathy and evidence of pancreatitis, which was shown on positron emission tomography/computed tomography. Furthermore, the IgG4 levels later increased without explanation. After the patient began combination therapy with a glucocorticoid (prednisone) and methotrexate, her symptoms improved but recurred when the daily oral glucocorticoid dosage decreased below 10 mg. An excisional biopsy of her right submandibular gland in 2021 yielded results consistent with IgG4-RD. In addition, AAPOX was diagnosed, given the presence of periorbicular edema and plaques, adult-onset asthma, and rhinosinusitis.

Outcome: The patient was carcinoma free at last follow-up and was receiving medication to treat the other conditions.

Lessons: The diagnosis of these 3 concomitant, uncommon entities required approximately 7 years of medical investigations. Clinicians should know that IgG4-RD, AAPOX, and MEC may occur together.

Abbreviations: AAPOX = adult-onset asthma and periocular xanthogranuloma, Ig = immunoglobulin, IgG4-RD = IgG4-related disease, MEC = mucoepidermoid carcinoma, PET/CT = positron emission tomography/computed tomography.

Keywords: adult-onset asthma and periocular xanthogranuloma, case report, IgG4-related disease, mucoepidermoid carcinoma, xanthelasma

*Correspondence: Alicia Rodriguez-Pla, Division of Rheumatology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ 85259 (e-mail: rodriguezpla.alicia@mayo.edu).

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Chhabra N, Cebak JE, Schmitt A, Lal D, Rosenthal AC, Taylor CM, Thorwarth RM, Shah AA, Rodriguez-Pla A. Concomitant presentation of eosinophilic or oncocytic mucoepidermoid carcinoma, immunoglobulin G4–related disease, and adult-onset asthma and periocular xanthogranuloma: Case report of 3 uncommon clinical entities. Medicine 2022;101:32(e30067).

Received: 11 May 2022 / Accepted: 17 June 2022
http://dx.doi.org/10.1097/MD.00000000000030067
1. Introduction

Immunoglobulin (Ig) G4–related disease (IgG4-RD) is an autoimmune disease of lymphoplasmacytic infiltration and IgG4 deposition in multiple organ systems. Adult-onset asthma and periocular xanthogranuloma (AAPOX) is a rare non-Langerhans histiocytosis that commonly presents with the triad of periorbital swelling and xanthelasmas, adult-onset asthma, and chronic rhinosinusitis. A strong relationship has been reported between IgG4-RD and AAPOX.

Primary malignant tumors of the salivary gland are rare. When they occur, most are mucoepidermoid carcinomas (MECs), which are composed of mucous, epidermoid, and intermediate cells. A rare variant known as sclerosing MEC also has unusual histologic characteristics consisting of abundant fibrous to hyalinized stroma and inflammatory cells. Sclerosing MEC is associated with increased numbers of IgG4-positive plasma cells, a finding that raises speculation about a potential link between MEC and IgG4-RD.

Herein, we describe the case of a patient with a combination of these 3 uncommon clinical entities: IgG4-RD, AAPOX, and MEC. The variant of MEC, however, was the eosinophilic or oncocytic subtype (not the sclerosing subtype).

2. Case report

In 2020, a 52-year-old woman was referred to our rheumatology clinic by her otorhinolaryngologist to be evaluated for suspected IgG4-RD. In 2014, periorbital swelling and yellow plaques developed on her eyelids, and biopsy findings from her health care facility at that time were consistent with xanthelasma (Fig. 1). In 2015, she was diagnosed with adult-onset asthma and was prescribed an inhaler. The next year, after treatment of chronic rhinosinusitis with antibiotics and antihistamines was ineffective, she received a course of oral glucocorticoids. Glucocorticoid therapy substantially improved her symptoms of rhinosinusitis and asthma, greatly decreased the periorbital swelling, and minimized the periorbital plaques. Over the next 4 years, she resumed glucocorticoid treatment intermittently when her symptoms recurred.

In 2017, the patient noticed cervical and submandibular lymphadenopathy and salivary gland swelling and underwent ultrasonography, which showed a tumor on the left side of the oral mucosa. The tumor was resected in 2018, and the pathologic findings were consistent with xanthelasma. Interstitial nests of xanthomatized histiocytes were present in the dermis, and several multinucleated xanthoma cells were identified; histopathologic findings were consistent with xanthelasma (Fig. 1). Although cases of IgG4-RD with bronchial asthma and chronic rhinosinusitis have been reported, the presence of xanthelasma led us to a probable diagnosis of AAPOX, which has been reported in relation to IgG4-RD.[3,10] Amylase and lipase levels were elevated at 130 and 68 mg/dL, respectively. The patient, however, did not have symptoms of pancreatitis.

We reviewed the previous pathologic slides of the eyelid for clinical correlation because of variability due to tissue sampling, and results showed xanthomatous infiltrate involving the dermis—again consistent with xanthelasma.

Despite the lack of characteristic histopathologic findings of AAPOX, we still thought that the patient had IgG4-RD and AAPOX, given her clinical characteristics, and decided to offer her rituximab treatment, which has been used to treat IgG4-RD[11,12] and IgG4-RD coexisting with AAPOX.[13] The patient, however, declined rituximab therapy because she was concerned about prolonged immunosuppression during the coronavirus disease 2019 pandemic.[14] She was started instead on an oral glucocorticoid regimen (prednisone) and methotrexate, which have proved useful for treating both IgG4-RD and AAPOX.[15] Subsequently, she noted substantial improvement in her symptoms. Additionally, abdominal magnetic resonance imaging performed 2 months after initiation of treatment scan to evaluate for metastasis showed hypermetabolic cervical lymph nodes, soft-tissue hypermetabolism to the right of the thyroid gland, and pulmonary nodular ground-glass opacities, which were thought to be reactive. Also shown was a subcutaneous lesion in the patient's right thigh with an associated inguinal lymph node. On biopsy, the cervical and inguinal lymph nodes were negative for cancer.

In 2020, the patient sought care at our institution because of persistent cervical lymphadenopathy, worsening chronic rhinosinusitis, inhaler-refractory asthma, recurrence of the orbital swelling, and more pronounced periorbital plaques. Results of initial examinations by an otorhinolaryngologist and an allergist were inconclusive, but IgG4-RD was suspected. The previous pathologic slides of the resected oral cavity tumor in the left retromolar trigone/cheek were reviewed, and additional IgG4 and CD138 immunohistochemical stains were performed to evaluate for underlying IgG4-related sclerosing disease (Fig. 2F). The tumor cells were positive for cytokeratin 5/6, and in the mucous cells, the intracytoplasmic mucin was highlighted by a mucicarmine stain. Results of tests for smooth muscle actin, S-100 protein, and γ-globulin were normal. Up to 40 IgG4-positive plasma cells per high-power field surrounded the tumor. As a marker of total plasma cells, CD138 showed the percentage of IgG4-positive cells at 90%. The final diagnosis was low-grade eosinophilic or oncocytic MEC. IgG4 induction by the adjacent MEC remained possible,[17] but given the patient’s unique constellation of symptoms, IgG4-RD could not be excluded from the diagnosis. She was then referred to our rheumatology clinic for further evaluation.

Results of the rheumatologic workup on October 27, 2020, showed an initially normal IgG4 level of 38.8 mg/dL (Table 1). A repeated PET/CT scan showed interval development of diffuse swelling of the pancreas (Fig. 3A) with increased tracer uptake consistent with pancreatitis (Fig. 3B), a common finding in IgG4-RD.[9] Amylase and lipase levels were elevated at 130 and 68 mg/dL, respectively. The patient, however, did not have symptoms of pancreatitis.

We reviewed the previous pathologic slides of the eyelid for the right lateral inferior pretarsal region, where microscopic evaluation of the hematoxylin–eosin–stained sections showed a shave biopsy specimen that extended through the superficial dermis. Interstitial nests of xanthomatized histiocytes were present in the dermis, and several multinucleated xanthoma cells with scattered single plasma cells and lymphocytes were identified; histopathologic findings were consistent with xanthelasma (Fig. 1). Although cases of IgG4-RD with bronchial asthma and chronic rhinosinusitis have been reported,[3] the presence of xanthelasma led us to a probable diagnosis of AAPOX, which has been reported in relation to IgG4-RD.[3,10] In our patient, however, the substantial lymphocytic infiltrates, fibrosis, and Touton giant cells often described in AAPOX were not seen. The infiltrate consisted almost entirely of lipid-laden histiocytes, and the numbers of plasma cells were insufficient for definitive IgG4 testing. A second eyelid biopsy was performed at our institution; for clinical correlation because of variability due to tissue sampling, and results showed xanthomatous infiltrate involving the dermis—again consistent with xanthelasma.

Figure 1. Shave biopsy specimen of the right lateral inferior pretarsal region. Xanthomatous infiltrate of the dermis (arrows; hematoxylin–eosin, original magnification x400).
showed resolving pancreatitis (Fig. 3C). A subsequent measurement of her IgG4 level in January 2021 was elevated without explanation (Table 1). Another PET/CT scan in June 2021 showed resolution of tracer-avid findings at the left parotid fossa, left pharyngeal region, and bilateral aspect of the neck. These images also showed mild to borderline residual uptake in the right inguinal region, skin of the right thigh, and near resolution of diffuse pancreatic swelling (Fig. 3D) with standardized uptake values of 2.3 to 3.3 (Fig. 3E), a decrease from prior values of 6.6 to 8.1.

When the patient tried to taper the dose of glucocorticoids, symptoms recurred despite combination therapy with methotrexate and glucocorticoid. Because liver enzyme levels became elevated with higher doses of methotrexate, the methotrexate dose had to be decreased.

In September 2021, to confirm the diagnosis of IgG4-RD, an excisional biopsy of a right submandibular gland was performed after the patient had stopped glucocorticoid and methotrexate therapy for a few weeks. The biopsy specimen showed patchy involvement of the submandibular gland by a dense chronic fibroinflammatory process, with chronic lymphoplasmacytic inflammation accompanied by storiform fibrosis and dense fibrous bands. Although no definite obliteratorive phlebitis was seen, immunohistochemical findings for IgG and IgG4 showed markedly elevated IgG4-positive plasma cells (up to 180/high-power field) and an elevated IgG4/IgG ratio (up to 70%). Additional immunohistochemical tests for CD3, CD5, CD10, CD20, CD21, CD43, BCL2, BCL6, and cyclin D1 were performed, along with in situ hybridization of κ and λ light chains. Results of these studies highlighted a mixed infiltrate of small T cells and small B cells without aberrant antigen expression, along with a polytypic population of plasma cells without light chain restriction, offering no evidence of an underlying lymphoproliferative disorder. No evidence of neoplasia or cancer was seen (Fig. 4A–D). After a multidisciplinary discussion and in agreement with the patient, we restarted glucocorticoid treatment and planned to start treatment with rituximab.

Table 1

Laboratory test	Reference range	October 2020	January 2021
Inflammatory markers			
ESR, mm/h	0–29.0	35.0	26.0
CRP, mg/L	≤8.0	6.4	4.0
IgE, kU/L	<214.0	75.3	Not done
IgA	61.0–356.0	180.0	130.0
IgM	37.0–286.0	96.0	97.0
IgG	767.0–1590.0	1820.0	610.0
IgG1	341.0–894.0	1070.0	324.0
IgG2	171.0–632.0	486.0	149.0
IgG3	18.4–106.0	183.0	50.5
IgG4	2.4–121.0	38.8	139.0

CRP = C-reactive protein, ESR = erythrocyte sedimentation rate, Ig = immunoglobulin. *Unless otherwise indicated.

3. Discussion

We report a rare case of IgG4-RD and AAPOX occurring in a patient with resected eosinophilic or oncocytic MEC, which was confirmed by review of the pathology slides obtained from the initial treating physicians. In patients with cancer, IgG4-positive cells may occur as an inflammatory response, a finding that raises the suspicion of MEC-mediated IgG4 production.[7,16] The mechanism behind this inflammatory response is thought to be cytokine-mediated, involving interleukin-10 and transforming growth factor β, both of which induce increased IgG4-positive cells and fibrosis.[17] Tian et al.[18] reported several cases of sclerosing MEC with surrounding IgG4-positive cells, but none of their patients had IgG4-RD in other organs or in the nontumoral salivary gland.
Malignant tumors have been reported in patients with IgG4-RD. Gill et al.\[18\] reported elevated serum IgG4 levels and salivary duct carcinoma of the parotid gland in a patient with chronic sclerosing sialadenitis and regional lymphadenopathy. Tasaki et al.\[6\] described a patient with sclerosing MEC who had eosinophils in the submandibular gland along with IgG4-related chronic sclerosing inflammation and who postoperatively had an elevated serum IgG4 level. The authors suggested that the chronic inflammatory process might have triggered the sclerosing MEC to develop, but they could not exclude the possibility that the prominent IgG4-positive plasma cell and fibrosis were immune reactions caused by the tumor.\[6\] Our patient had a different type of MEC, called eosinophilic or oncocytic variant. In the resected tumor specimen, IgG4-positive cells were increased only surrounding the tumor, a finding that could be related just to the presence of the tumor\[7\] but does not exclude IgG4-RD from the diagnosis. Furthermore, our patient had systemic organ involvement, including pancreatitis and rhinosinusitis, which are both common in IgG4-RD,\[11,12,19\] but rhinosinusitis also commonly occurs in AAPOX. Although the patient’s serum
IgG4 level was not initially high, ultimately the patient’s IgG4 level became elevated, for which we have no explanation, and results of a salivary gland biopsy were consistent with IgG4-RD. The presence of periorbital edema, adult-onset asthma, and rhinosinusitis led to the diagnosis of AAPOX, a rare non-Langerhans histiocytosis characterized by periorbital disease with a specific granulomatous inflammation composed of foamy histiocytes and Touton giant cells. The findings from our patient’s eyelid biopsies were consistent with xanthelasmas, although the typical histopathologic findings of AAPOX were not observed, which could be related to tissue sampling. AAPOX is part of a rare heterogeneous group of disorders that includes 3 other clinical syndromes: adult-onset xanthogranuloma, necrobiotic xanthogranuloma, and Erdheim-Chester disease. For our patient, a PET/CT scan excluded the poorer prognosis of Erdheim-Chester disease, wherein long bone lesions predominate, and her symptoms suggested a diagnosis of AAPOX. London et al reported that substantial histopathologic similarities and clinical overlap exist between AAPOX and IgG4-RD, and they later suggested a strong relationship between the 2 conditions. This previously reported relationship between IgG4-RD and AAPOX in addition to our patient’s constellation of symptoms makes the coexistence of both diagnoses very likely in this case.

The Mayo Clinic Institutional Review Board does not require approval for a single case report. The patient’s written consent was obtained for the purpose of publication.

Author contributions

Nikita Chhabra, DO: Substantial contribution to the acquisition of data, drafting of the manuscript, and revising it critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

John E. Cebak, DO, PhD: Substantial contribution to the acquisition of data, drafting of the manuscript, and revising it critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Alessandra Schmitt, MD: Substantial contribution to the acquisition of data, drafting of the manuscript, and revising it critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Deyvani Lal, MD: Substantial contribution to the acquisition of data, reviewing the manuscript critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Allison C. Rosenthal, DO: Substantial contribution to revising the manuscript critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Cullen M. Taylor, MD: Substantial contribution to revising the manuscript critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ryan M. Thorwarth, MD: Substantial contribution to revising the manuscript critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Ami A. Shah, MD: Substantial contribution to revising the manuscript critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Alicia Rodriguez-Pla, MD, PhD: Substantial contribution to revising the manuscript critically for important intellectual content and final approval; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Acknowledgments

The Scientific Publications staff at Mayo Clinic provided substantive editing, proofreading, administrative, and clerical support.

References

[1] Perugino CA, Stone JH. IgG4-related disease: an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol. 2020;16:702–14.

[2] Sahu K, Sethy M, Sirka CS, et al. Adult-onset asthma with periorcular xanthogranuloma (AAPOX), a variant of periorbital xanthogranulomatous disease: an uncommon entity. Indian Dermatol Online J. 2020;11:792–5.

[3] London J, Martin A, Soussan M, et al. Adult onset asthma and periorcular xanthogranuloma (AAPOX), a rare entity with a strong link to IgG4-related disease: an observational case report study. Medicine (Baltimore). 2015;94:e1916.

[4] Mucoepidermoid carcinoma. In: Thompson LDR, Wenig BM, Müller S, et al, eds. Diagnostic Pathology: Head and Neck. 2nd edn. Elsevier; 2016:508–17.

[5] Tran W, Yakirevich E, Matsoso A, et al. IgG4(+) plasma cells in sclerosing variant of mucoepidermoid carcinoma. Am J Surg Pathol. 2012;36:973–9.

[6] Tasaki T, Matsuyama A, Tabata T, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia of the salivary gland: case report and review of the literature. Pathol Int. 2013;63:125–31.

[7] Deshpande V. IgG4 related disease of the head and neck. Head Neck Pathol. 2015;9:24–31.

[8] Stone JH. IgG4-related disease: nomenclature, clinical features, and treatment. Semin Diagn Pathol. 2012;29:177–90.

[9] Lee YS, Cho HJ, Yoo HS, et al. A case of IgG4-related disease with bronchial asthma and chronic rhinosinusitis in Korea. J Korean Med Sci. 2014;29:599–603.

[10] London J, Soussan M, Gille T, et al. Adult-onset asthma associated with periorcular xanthogranuloma: new diagnostic and therapeutic approaches in a very rare systemic disease. Ophthalmic Plast Reconstr Surg. 2013;29:104–8.

[11] Carruthers MN, Stone JH, Khosroshahi A. The latest on IgG4-RD: a rapidly emerging disease. Curr Opin Rheumatol. 2012;24:60–9.

[12] Carruthers MN, Topazian MD, Khosroshahi A, et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis. 2015;74:1171–7.

[13] Asproudis I, Kanari M, Ntountas I, et al. Successful treatment with rituximab of IgG4-related disease coexisting with adult-onset asthma and periorbital xanthogranuloma. Rheumatol Int. 2020;40:671–7.

[14] Rodriguez-Pla A, Vikram HR, Khalid V, et al. COVID-19 pneumonia in a patient with granulomatosis with polyangiitis on rituximab: case-based review. Rheumatol Int. 2021;41:1509–14.

[15] Della-Torre E, Campochiaro C, Bozzolo EP, et al. Methotrexate for maintenance of remission in IgG4-related disease. Rheumatology (Oxford). 2015;54:1934–6.

[16] Strehl JD, Hartmann A, Agaimy A. Numerous IgG4-positive plasma cells are ubiquitous in diverse localised non-specific chronic inflammatory conditions and need to be distinguished from IgG4-related systemic disorders. J Clin Pathol. 2011;64:237–43.

[17] Jeannin P, Leconet S, Delhete Y, et al. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol. 1998;160:3555–61.

[18] Gill J, Angelo N, Yeong ML, et al. Salivary duct carcinoma arising in IgG4-related autoimmune disease of the parotid gland. Hum Pathol. 2009;40:881–6.

[19] Jakobiec FA, Mills MD, Hidayat AA, et al. Periorbital xanthogranulomas associated with severe adult-onset asthma. Trans Am Ophthalmol Soc. 1993;91:99–125.

[20] Sivak-Callcott JA, Rootman J, Rasmussen SL, et al. Adult xanthogranulomatous disease of the orbit and ocular adnexa: new immunohistochemical findings and clinical review. Br J Ophthalmol. 2006;90:602–8.