Grafos – Aula 11

Roteiro
- MST
- Algoritmo de Prim
- Algoritmo de Kruskal
- Propriedades da MST
- Corretude dos algoritmos
Projetando uma Rede

- Conjunto de localidades (ex. cidades)
- Custo para conectá-los diretamente (ex. construir estradas)

Garantir conectividade
- de qualquer lugar, chegamos a qualquer outro

Problema: Como conectar as localidades de forma a minimizar o custo total?
Projetando uma Rede

- Abstração via grafos
 - Vértices: localidades
 - Arestas com pesos: custo de conexão direta entre localidades

Que tipo de rede (grafo) é o resultado?
- Subgrafo de G, uma árvore geradora

Qualquer árvore?

Árvore Geradora de Custo Mínimo!
MST

Minimum Spanning Tree (MST)
- árvore geradora de custo mínimo
- custo = soma dos pesos das arestas

Exemplo

![Diagram of a graph with nodes a, b, c, d, e, f and edges with weights]

MST?

![Diagram of a spanning tree with nodes b, c, d, e, f and edges with weights]

Custo desta MST? **11**

MST é única?
Descobrindo a MST

Problema: Obter uma MST de um grafo

Grafo com pesos idênticos?
- qualquer árvore geradora tem custo mínimo

Grafo com pesos diferentes?

BFS to the rescue!

Idéias?
Descobrindo a MST – Idéias I

- BFS constrói uma árvore geradora
- Dado vértice inicial s, construir árvore geradora mínima

Ideia: expandir fronteira na direção correta

Qual é a direção correta?

- Direção de menor custo do ponto de vista da árvore
Descobrindo a MST – Idéias I

- Dado G=(V, E), construir MST, T=(S, E')
- Inicialmente S e E' estão vazios
- Seleccionar s qualquer, vértice inicial
- Adicionar vértices em T na ordem mais barata possível
 - próximo vértice aumenta custo da árvore o mínimo possível

Algoritmo de Prim

- Muito parecido com algoritmo de Dijkstra
Algoritmo de **Prim**

Idéia: crescer T de forma mais barata possível

Exemplo

```
S  a  b  c  d  e  f

Edges:
S-a: 4
a-b: 4
b-c: 1
c-d: 2
d-f: 2
f-e: 1
```

```
Algoritmo de Prim

Como tornar a idéia em algoritmo (eficiente)?

- adicionar o vértice que aumenta o custo da árvore o menos possível

Idéias:

- Manter um conjunto de vértices da árvore (vértices explorados)
- Manter custo para adicionar cada vértice até o momento (vértices descobertos)
- Adicionar o vértice de menor custo
- Atualizar custos
Algoritmo de *Prim*

1. Prim(G,o)
2. Para cada vértice v
3. custo[v] = infinito
4. Define conjunto S = ∅ // vazio
5. custo[o] = 0
6. Enquanto S != V
   7. Selecione u em V-S, tal que custo[u] é mínimo
   8. Adicione u em S
   9. Para cada vizinho v de u faça
   10. Se custo[v] > w(u,v) então
       11. custo[v] = w(u,v)

Custo do vértice depende apenas do peso da aresta incidente a ele
Execute o Algoritmo

Manter tabela com passos e custos

\[ c(u) \text{ é igual ao custo}[u] \text{ no algoritmo} \]

| Passo | Conjunto S | c(a) | c(b) | c(c) | c(d) | c(e) | c(f) | c(g) |
|-------|------------|------|------|------|------|------|------|------|
| 0     | {}         | 0    | inf  | inf  | inf  | inf  | inf  | inf  |
| 1     | {a}        | -1   | inf  | 4    | 2    | inf  | inf  | inf  |
| 2     | {a,b}      | -    | 4    | 2    | 2    | inf  | inf  | inf  |
| 3     | {a,b,e}    | 4    | 2    | -    | 3    | inf  |       |      |
| 4     | {a,b,e,d}  | 1    | -    | 2    | inf  |       |       |      |
| 5     | {a,b,e,d,c}| -    | 2    | 2    |      |       |       |      |
| 6     | {a,b,e,d,c,f}| -  | 2    |      |       |       |       |      |
| 7     | {a,b,e,d,c,f,g} | - |      |      |       |       |       |      |
Complexidade

Mesmo funcionamento que algoritmo de Dijkstra
mesma complexidade

1. Prim(G, o)
2. Para cada vértice v
3. custo[v] = infinito
4. Define conjunto S = 0 // vazio
5. custo[o] = 0
6. Enquanto S != V
7. Selecione u em V-S, tal que custo[u] é mínimo
8. Adicione u em S
9. Para cada vizinho v de u faça
10. Se custo[v] > w(u, v) então
11. custo[v] = w(u, v)

Usando filas de prioridade baseada em heap
n operações de remoção, m de atualização
O((m+n)log n) = O(m log n)
Outra abordagem, diferente de BFS
mas também gulosa

Observações
aresta de menor peso sempre está na MST
aresta de segundo menor peso sempre está na MST
aresta de terceiro menor pode estar na MST
vai estar se não formar um ciclo

Cuidado para não formar ciclos!
Descobrindo a MST – Idéias II

- Dado G=(V, E), construir MST, T=(V, E')
- Ordenar arestas por peso
- Inicialmente E' está vazio
- Adicionar arestas em ordem crescente de peso
- Se aresta formar um ciclo em T, então descarte e continue

Algoritmo de Kruskal
Algoritmo de **Kruskal**

- **Idéia:** construir $T$ adicionando arestas de menor peso
- **Exemplo**
Analizando o Algoritmo

Algoritmos de *Prim* e *Kruskal* sempre retornam uma MST
  mas isto é óbvio?

Como provar que algoritmo sempre produz resultado desejado – uma MST?

Duas propriedades de uma MST
  Propriedade do Corte (*cut property*)
  Propriedade do Ciclo (*cycle property*)
Propriedade do Corte

Considere um conjunto de vértices S e a aresta e=(u, v) de menor peso com uma ponta em S e outra em V-S. Então toda MST contém e=(u,v).

O que isto está dizendo?

Como provar isto? Por contradição
Propriedade do Corte

Prova por contradição: assumir que o oposto é verdade, e mostrar que nova afirmação não é verdadeira

Oposto: Existe MST que não possui aresta e
Como provar que isto não é verdade?
1) T' possui aresta e' e algum peso total
2) Mostrar que e pode substituir e' em T'
3) Peso da árvore com e é menor, logo T' com e' não é mínima, e não pode ser MST
Assumir árvore $T'$ sem $e$

Existe caminho $P$ em $T'$ entre $u$ e $v$

Seguir caminho $P$ até encontrar vértice $x$ em $S$ e $y$ em $V-S$, chamar $e'=(x,y)$

Trocav $e'$ por $e$ cria nova árvore geradora $T$

Nova $T$ tem peso menor que $T'$

Logo $T'$ não é MST
Corretude de *Prim*

- **Algoritmo de Prim**
  - a cada passo, adiciona aresta de menor peso entre S e V-S (corte)
- **Pela Propriedade do Corte, aresta faz parte de qualquer MST**
- **Prim só inclui arestas em T que fazem parte de qualquer MST**
- **Prim gera uma MST!**
Propriedade do Ciclo

Seja C um ciclo em G e e = (u, v) a aresta de maior custo de C. Então e = (u, v) não faz parte de nenhuma MST.

O que isto está dizendo?

- Considere ciclo C = x, y, w, v, u, x
- Considere aresta e = (u, v) de maior peso neste ciclo
- Então aresta e não está em nenhuma MST

Como mostrar isto é verdade?

por contradição
Corretude de *Kruskal*

- Algoritmo de Kruskal
  - processa arestas em ordem crescente de peso, não inclui aresta que fecha ciclo
- Pela Propriedade do Ciclo, aresta deixada de fora não pertence a nenhuma MST
- Kruskal não inclui arestas que não pertencem a nenhuma MST
- Kruskal gera uma MST!