Why is the J/ψ suppression enhanced at large transverse energy?

A. Capella, A. B. Kaidalov, D. Sousa
Laboratoire de Physique Théorique
Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France

Abstract

We study the ratio of J/ψ over minimum bias in Pb Pb collisions at SPS energy. The NA50 data exhibit a sharp turn-over at $E_T \sim 100$ GeV (close to the knee of the E_T distribution) followed by a steady, steep decrease at larger E_T. We show that this behaviour can be explained by the combined effects of a small decrease of the hadronic E_T in the J/ψ event sample (due to the E_T taken by the J/ψ trigger), together with the sharp decrease of the E_T distributions in this E_T region (tail). This phenomenon does not affect the (true) ratio J/ψ over DY (obtained by the NA50 standard analysis), but does affect the one obtained by the so-called minimum bias analysis. A good agreement is obtained with the data coming from both analysis – as well as with the ratios of J/ψ and DY over minimum bias – in the whole E_T region.

LPT Orsay 01-42
May 2001

1Unité Mixte de Recherche UMR n° 8627 - CNRS
1 Introduction

The NA50 collaboration has observed [1–3] an anomalous J/ψ suppression in $Pb Pb$ collisions, i.e. a suppression significantly larger than the one expected from the extrapolation of pA and SU data. Furthermore, the shape of the ratio J/ψ over DY shows a clear change of curvature – from concave to convex – at $E_T \sim 100$ GeV close to the knee of the E_T distribution followed by a steady decrease at larger E_T.

It is important for the discussion in this paper to distinguish between two types of analysis of the data [4]. One is the standard analysis, in which the ratio J/ψ over DY is measured. The other one is called the minimum-bias analysis. In the latter only the ratio of J/ψ over minimum bias (MB) is measured – and is multiplied by a theoretical ratio MB over DY, i.e.

$$\left(\frac{J/\psi}{DY}\right)_{MB \text{ analysis}} = \left(\frac{J/\psi}{MB}\right)_{exp.} \left(\frac{MB}{DY}\right)^{NA50}_{th}.$$ \hspace{1cm} (1)

Data for the true ratio J/ψ over DY, i.e. obtained in the standard analysis, are only available up to the knee of the E_T distribution. They give some indication of the change of curvature at $E_T \sim 100$ GeV mentioned above. However, the information on the behaviour of this ratio at larger values of E_T comes entirely from the MB analysis. In this analysis, the second factor in (1) is practically constant for $E_T > 100$ GeV and therefore the behaviour of the ratios J/ψ over DY and J/ψ over MB in this large E_T region is practically the same.

In this paper we present a simple ansatz according to which the ratio DY over MB is not constant at large E_T but decreases for $E_T > 100$ GeV, i.e. its behaviour is qualitatively similar to the one of the ratio J/ψ over MB. As a consequence, the true ratio J/ψ over DY for $E_T > 100$ GeV is significantly flatter than the one obtained according to eq. (1) – and in good agreement with the predictions [5,6] based on comovers interaction, taking into account the fluctuations in the density of comovers at large E_T.

Our ansatz is based on the trivial observation that, in the J/ψ event sample, $E_T \sim 3$ Gev is taken by the J/ψ trigger and, thus, the transverse energy deposited in the calorimeter by the other hadron species will be slightly smaller than the corresponding one in the MB event sample. This decrease is, of course, very small.
However, its effect on the ratio of J/ψ over MB at the tail of the E_T distribution is much larger. A possible way to determine this hadronic E_T loss is the following (see Section 2c for a more detailed discussion). Assume that one pair of participants, out of n_A, produces the J/ψ and no other hadrons, except, of course, in the fragmentation regions of the collision of this pair (which will contain at least the two leading baryons). The binary collisions of the remaining $n_A - 1$ pairs are assumed to produce ordinary hadrons, exactly in the same way as in the MB event sample.

In this case, the E_T loss in the J/ψ event sample at $b \sim 0$ (where n_A is close to 200) is about 0.5 %. In order to have a rough estimation of its effect on the J/ψ over MB ratio at the tail of the E_T distribution let us consider the E_T-b correlation $P(E_T, b) \propto \exp \left\{ -\frac{(E_T - E_T(b))^2}{2qa E_T(b)} \right\}$ With the values of the parameter given below (Section 2a) we find at $E_T = 130$ GeV:

\[
\frac{P_{MB}(E_T = 130 \text{ GeV}, b = 0)}{P_{J/\psi}(E_T = 130 \text{ GeV}, b = 0)} \simeq \frac{\exp \left\{ -(130 - E_T(0))^2/2qa E_T(0) \right\}}{\exp \left\{ -(130 - 0.995E_T(0))^2/2qa 0.995E_T(0) \right\}} = 1.3. \tag{2}
\]

Such an effect is close to what is needed in the model of refs. [5,6] in order to reproduce the data. This shows that a small variation in the value of $E_T(0)$ between the J/ψ and the MB event samples (0.5 %), produces a much larger effect in their ratio at the tail of the E_T distribution.

A more precise calculation of the hadronic E_T loss and of its effect on the ratio J/ψ over MB beyond the knee will be given below. However, independently of any details, we see that one should be very cautious in interpreting the experimental results on this ratio beyond the knee of the E_T distribution.

Clearly, the effect discussed above will affect the ratio DY over MB in a similar way – while the ratio J/ψ over DY turns out to be practically unaffected. Of course, the ratio of J/ψ over DY, obtained according to eq. (1), will be affected in the same way as the ratio J/ψ over MB.

The plan of this paper is as follows. In Section 2a we describe a model for J/ψ suppression based on comovers interaction with the comovers density computed in the Dual Parton Model (DPM). We show that in the rapidity region of the dimuon trigger, the charged multiplicity per participant increases with centrality, whereas in that of the E_T calorimeter it is centrality independent. In Section 2b we introduce
fluctuations in the density of comovers beyond the knee of the E_T distribution. In Section 2c we propose a simple ansatz to compute the loss in the average $E_T(b)$ of the J/ψ event sample resulting from the trigger requirement. In Section 3 we present our results for the ratios J/ψ over MB, DY over MB and J/ψ over DY. As explained above the latter is found to be different in the standard analysis and in the MB one. Conclusions are given in Section 4.

2 The model

a) Comovers interaction in the dual parton model

Here we summarize the model of J/ψ suppression based on comovers interaction [5–8]. We use the centrality dependence of the comovers density obtained [9] in the Dual Parton Model (DPM) [10]. The model in this subsection can be used from peripheral collisions up to the knee of the E_T distribution. To go into the tail of the distribution one has to introduce the modifications in Sections 2b and 2c.

The cross-section of MB, DY and J/ψ event samples are given by

\[I_{MB}^{AB}(b) \propto \sigma_{AB}(b) \]
\[I_{DY}^{AB}(b) \propto \int d^2s \sigma_{AB}(b) n(b, s) \]
\[I_{J/\psi}^{AB}(b) \propto \int d^2s \sigma_{AB}(b) n(b, s) S_{abs}(b, s)S_{co}(b, s) \] .

Here $\sigma_{AB}(b) = \int d^2s \{1 - \exp[-\sigma_{pp} A B T_{AB}(b, s)]\}$ where $T_{AB}(b, s) = T_A(b) T_B(b - s)$ is the product of profile functions obtained from the Woods-Saxon nuclear densities [11]. Upon integration over b we obtain the AB total cross-section, σ_{AB}. The factor n in (3) is given by

\[n(b, s) = AB \sigma_{pp} T_A(s) T_B(b - s)/\sigma_{AB}(b) \] .

Upon integration over s we obtain the average number of binary collisions $n(b) = AB \sigma_{pp} T_{AB}(b)/\sigma_{AB}(b)$.

4
The factors S_{abs} and S_{co} in (4) are the survival probabilities of the J/ψ respectively due to nuclear absorption and comovers interaction. They are given by

$$S_{\text{abs}}(b, s) = \frac{1 - \exp(-AT_A(s) \sigma_{\text{abs}})) [1 - \exp(-B T_B(b - s) \sigma_{\text{abs}})]}{\sigma_{\text{abs}}^2 AB T_A(s) T_B(b - s)} \tag{7}$$

$$S_{\text{co}}(b, s) = \exp \left[-\sigma_{\text{co}} \frac{3}{2} N_{yDT}^\text{co}(b, s) \ell n \left(\frac{3}{2} N_{yDT}^\text{co}(b, s) N_f \right) \right] \tag{8}$$

In (8), $N_{yDT}^\text{co}(b, s)$ is the density of charged comovers (positives and negatives) in the rapidity region of the dimuon trigger and $N_f = 1.15$ fm$^{-2}$ is the corresponding density in pp. The factor $3/2$ in (8) takes care of the neutrals. In the numerical calculations we use $\sigma_{\text{abs}} = 4.5$ mb and $\sigma_{\text{co}} = 1$ mb.

In order to compute the density of comovers we use the DPM formalism developed in [9]. The density of charged particles is given by a linear superposition of the density of participants and the density of binary collisions with coefficients calculable in DPM. For $A = B$ we have

$$N_y^\text{co}(b) = n_A(b) \left[N_{\mu(b)}^{\mu^- - \mu^+}(y) + N_{\mu(b)}^{q\bar{q} - q\bar{q}}(y) + (2k - 2) N_{\mu(b)}^{q_s - \bar{q}_s}(y) \right]$$

$$+ \left[(n(b) - n_A(b)) 2k N_{\mu(b)}^{q_s - \bar{q}_s}(y) \right] \tag{9}$$

Here $n_A(b, s)$ is given by

$$n_A(b, s) = A T_A(s) [1 - \exp \{ -\sigma_{pp}, B T_B(b - s) \}] / \sigma_{AB}(b) \tag{10}$$

Upon integration over s of (10) we obtain the average number of participants of A (or participant pairs for $A = B$). $k = 1.4$ is the average number of inelastic collisions in each NN collision and $\mu(b) = k n(b)/n_A(b)$ is the total average number of collisions suffered by each participant. The first term in (9) is the charged plateau height in one NN collision, resulting from the superposition of $2k$ strings, multiplied by the average number of participant pairs n_A. This would be the only contribution if each participant of A would interact with only one participant of B. The second term in (9) contains the contributions resulting from the extra collisions of each

2This value is in between the ones obtained from fits of the pA data of the NA38 [18] and of E866 [19] Collaborations, and is consistent with both sets of data.
participant. Since in DPM there are two strings per inelastic collision, this second term, consisting of strings stretched between sea quarks and antiquarks, completes the total average number of strings – equal to $2kn$. The string multiplicities in (9) are obtained from a convolution of momentum distribution functions and fragmentation functions. All relevant equations and the values of the parameters needed for their calculation are given in [9]. Their numerical values for several values of b are listed in Table 1 – for the rapidity regions of both the dimuon trigger and the E_T calorimeter.

The results, in the rapidity regions of both the dimuon trigger and the E_T calorimeter, are shown in Fig. 1. We see that the charged multiplicity per participant increases with centrality in the rapidity region of the dimuon trigger. This increase is slightly smaller than the one in the central region $-0.5 < y^* < 0.5$ [4,12]. However, it is still significant. On the contrary, in the rapidity region of the calorimeter, the same quantity is practically independent of centrality and we recover here the behaviour expected in the wounded nucleon model [13].

In order to compute $S^{co}(b, s)$, eq. (8), we need the density of comovers at each b and s. In this case $n_A \neq n_B$ and we have to use the general DPM formulae (eqs. 6.1 and 6.15 of [10]). We have [8]

$$N^{co}_y(b, s) = [N_1 n_A(b, s) + N_2 n_B(b, b - s) + N_3 n(b, s)] \theta (n_B(b, b - s) - n_A(b, s)) + [N'_1 n_A(b, s) + N'_2 n_B(b, b - s) + N'_3 n(b, s)] \theta (n_A(b, s) - n_B(b, b - s)) .$$

(11)

The values of the coefficients N_i and N'_i are given in Table 2 [1]. By comparing the values in Tables 1 and 2 we see that for $n_A = n_B$ we recover eq. (10).

Eqs. (2) to (10) allow to compute the impact parameter distributions of the MB, DY and J/ψ event samples. Experimental results for these quantities are plotted as a function of observable quantities such as E_T – the energy of neutrals deposited in the calorimeter. Using the proportionality between E_T and multiplicity, we have

$$E_T(b) = \frac{1}{2} q N^{co}_{y, cal}(b) .$$

(12)

Here the multiplicity of comovers is determined in the rapidity region of the E_T
calorimeter. The factor 1/2 is introduced because N^{co} is the charged multiplicity whereas E_T refers to neutrals. In this way q is close to the average transverse energy per particle, but it also depends on the calibration of the calorimeter. The correlation $E_T - b$ is parametrized in the form

$$P(E_T, b) = \frac{1}{\sqrt{2\pi qaE_T(b)}} \exp\left\{-(E_T - E_T(b))^2/2qaE_T(b)\right\} \; .$$ \hspace{1cm} (13)

The E_T distributions of MB, DY and J/ψ are then obtained by folding eqs. (3)-(5) with $P(E_T, b)$, i.e.

$$I^{MB,DY,J/\psi}_{AB}(E_T) = \int d^2b \; I^{MB,DY,J/\psi}_{AB}(b) \; P(E_T, b) \; .$$ \hspace{1cm} (14)

The parameters q and a are obtained from a fit of the E_T distribution of the MB event sample. Note that since $N^{\text{co}}_{\text{cal}}(b)$ is proportional to the number of participants (see Fig. 1) our fit is identical to the one obtained \[7\] using the wounded nucleon model. Actually, we obtain identical curves to the ones in Fig. 1 of ref. \[1\] – where the E_T distributions of MB events of 1996 and 1998 are compared with each other. The values of the parameters for the 1996 data are $q = 0.62$ GeV and $a = 0.825$. For the 1998 data, the tail of the E_T distribution is steeper, and we get $q = 0.62$ GeV and $a = 0.60$\[4\]. In the following we shall use the latter values. Indeed, according to the NA50 Collaboration \[4\], the 1996 data (thick target) at large E_T are contaminated by rescattering effects – and only the 1998 data should be used beyond the knee.

b) Comovers fluctuations

The model described above allows to compute the E_T distribution of MB, DY and J/ψ event samples between peripheral AB collisions and the knee of the E_T distribution. Beyond it, most models, based on either deconfinement or comovers interaction, give a ratio J/ψ over DY which is practically constant – in disagreement with NA50 data. A possible way out was suggested in \[5\]. The idea is that, since E_T increases beyond the knee due to fluctuations, one can expect that this is also

\[4\] Note that the same value of the parameter a is used in the MB, DY and J/ψ event sample. A priori there could be some differences in the fluctuations for hard and soft processes.
the case for the density of comovers. Since \(N_{y_{DT}}^{co} \) does not contain this fluctuation it has been proposed to introduce the following replacement in eq. (8):

\[
N_{y_{DT}}^{co}(b, s) \rightarrow N_{y_{DT}}^{Fco}(b, s) = N_{y_{DT}}^{co}(b, s) \ F(b)
\tag{15}
\]

where \(F(b) = E_T/E_T(b) \). Here \(E_T \) is the measured value of the transverse energy and \(E_T(b) \) is its average value given by eq. (12) – which does not contain the fluctuations.

The replacement (15) assumes that the fluctuation in \(N_{y}^{co} \), in the rapidity region of the dimuon trigger, is identical to the fluctuation in \(E_T \) measured by the calorimeter. Since these two regions do not overlap, the two fluctuations could be weakly correlated. However, this is not the case in string models where multiplicity fluctuations are mainly due to fluctuation in the number of strings (rather than to multiplicity fluctuations within individual strings). This introduces long-range rapidity correlations [14] (see also [15] for a discussion on this point).

It has been shown in [16] that, introducing the fluctuations given by (15) in a deconfining approach, one can describe the NA50 data, at large and intermediate values of \(E_T \), either with two sharp deconfining thresholds or with a gradual onset of \(J/\psi \) suppression (rather than a sharp one)\(^5\).

Introducing the replacement (15) in the comovers model of Section 2a, we obtain a change of curvature in the ratio \(J/\psi \) over \(DY \) at \(E_T \sim 100 \text{ GeV} \). However, its decrease at larger values of \(E_T \) is smaller than the experimental one. In the next section, we introduce a new mechanism which increases the \(J/\psi \) suppression at large \(E_T \), in the \(MB \) analysis.

c) \(E_T \) loss of ordinary hadrons induced by the \(J/\psi \) trigger

As discussed in the Introduction, due to energy conservation, the production of a \(J/\psi \) in the dimuon trigger produces a decrease of the \(E_T \) of ordinary hadrons in

\(^5\)Note, however, that this model does not describe the data at low \(E_T \). Moreover, according to the analysis of [6], it should also fail to describe the preliminary data [2] on the \(J/\psi \) suppression versus the energy \(E_{ZDC} \) of the zero degree calorimeter for peripheral collisions. Indeed, it was shown in [6] that these data confirm the low \(E_T \) shape of the data versus \(E_T \). Moreover, this new data require the anomalous suppression to be present for very peripheral \(Pb Pb \) collisions.
the J/ψ event sample – as compared to its value in the MB one. As discussed there, this effect is strongly amplified in the tail of the E_T distribution. The size of this hadronic E_T loss is very small. However, its exact value is difficult to compute since we do not know in detail the rapidity region affected by the about 3 GeV of E_T taken by the J/ψ. We propose the following ansatz. Let us single out the NN collision in which the J/ψ is produced and let us assume that in this collision no hadrons, other than the J/ψ, are produced in the central rapidity interval $-1.8 \lesssim y_* \lesssim 1.8$ – which includes the regions of the E_T calorimeter and of the dimuon trigger. Of course, ordinary hadrons, in particular the two leading baryons, will be produced in the two fragmentation regions of this collision. With this assumption, eq. (12) has to be replaced by

$$E_T(b) = \frac{1}{2} q \left\{ (n_A(b) - 1) \left[N_{qq}^{P-qq_T}(y) + n_{\mu(b)}^{q-p-q_T}(y) + (2k - 2)N_{Nq}\mu(y) \right]
+ (n(b) - n_A(b)) 2k N_{\mu(b)}^{q-q_{\mu}}(y) \right\}$$

(16)

One could think that the hadronic E_T loss resulting from the replacement of eq. (12) by eq. (16) is the maximal possible one. Actually, this is not the case. Indeed, it could happen that the J/ψ trigger produces a decrease of the average energy of the other collisions involving either one of the two nucleons of the binary collision which produces the J/ψ. In (16) we have assumed that this is not the case and that all these extra collisions produce exactly the same hadronic multiplicity as in the MB case. One could instead assume that no ordinary hadrons are produced in these extra collisions either, i.e. that one pair of participants produces only the J/ψ and no other hadrons (in the central rapidity interval defined above). In this case (12) should be scaled down by a factor $(n_A(b) - 1)/n_A(b)$, i.e.

$$E_T(b) = \frac{1}{2} q \frac{n_A(b) - 1}{n_A(b)} N_{yca}(b)$$

(17)

Both possibilities, eqs. (16) and (17), will be discussed in the next section6. Of course, for the MB event sample we use eq. (12) without any change.

In order to see how the hadronic E_T loss in the J/ψ event sample, given by eqs. (16) and (17), compares to the $E_T \sim 3$ GeV taken by the J/ψ, we have calculated

6The same changes should also be made in N_{yca}^{co} but, obviously, their effect is negligibly small.
the charged multiplicity per participant pair in the rapidity region $-1.8 < y^* < 1.8$ – which includes both the dimuon trigger and the E_T calorimeter. Using the values in Table 1 we obtain 6.6. Multiplying it by 1.5 to include the neutrals and assuming an average E_T per particle of 0.5 GeV we obtain an average E_T loss of $E_T \sim 5$ GeV. This is the average E_T loss induced by eq. (15), where the contribution of one participant pair to the hadronic E_T has been removed. At $b = 0$, where n_A is close to 200, it amounts to about 0.5 % of the total E_T produced in the above rapidity interval. From, the values in Table 1, one can also see that the average E_T loss induced by (16) is about one half of the above value, i. e. $E_T \sim 2.5$ GeV – corresponding to about 0.25 % of the total E_T in the considered rapidity interval. Therefore an average E_T loss of $E_T \sim 3$ GeV would be somewhere in between the ones obtained with the ansatzs in eqs. (16) and (17).

3 Numerical results and comparison with experiment

a) Ratio J/ψ over MB

The results for the ratio J/ψ over MB versus E_T in $Pb Pb$ collisions at 158 GeV are shown in Fig. 2 and compared with NA50 preliminary data [2]. The dotted curve is the result of the model as presented in Section 2a, i.e. without the effect of the fluctuations, eq. (13), or that of the E_T loss induced by eqs. (16) or (17). The dashed line is the result obtained with the fluctuations but without the E_T loss. The dashed-dotted and the solid curves are the results obtained when both effects are taken into account using eqs. (16) and (17), respectively, for the E_T loss. We see that the turn-over and subsequent decrease are well reproduced. Note that the calculation of the dashed, dashed-dotted and full lines does not involve any new free parameter.

7 The points obtained with the standard analysis are not included in Fig. 2 since they are not experimental measurements of the ratio J/ψ over MB. These points extend to lower values of E_T than the ones obtained in the MB analysis. Unfortunately, we see from Fig. 7 of [4] that, at low E_T, the measured values of DY over MB deviate from the theoretical ones.
b) Ratio DY over MB

As mentioned in Section 2c the effect of the E_T loss should also be present in the case of the DY event sample – where a dimuon of average mass close to that of J/ψ is produced. We use in this case the same prescriptions, eqs. (14)-(17), as for J/ψ. The results for this ratio versus E_T in $Pb Pb$ collisions at 158 GeV are presented in Fig. 3 and compared to 1996 NA50 data \[4\]. The dotted line is obtained without introducing the E_T loss. We see that the ratio tends to saturates at large E_T. The dashed-dotted and solid curves are obtained using the E_T loss given by eqs. (16) and (17), respectively. We observe a turn-over and a subsequent decrease at large E_T, qualitatively similar to the one in J/ψ over MB ratio, but smaller in magnitude due to the absence, here, of the comover interaction – and, hence, of the effect of the fluctuations. It is interesting that the data, although having large statistical errors, also seem to indicate a turn-over. In any case, they are consistent with our results\[8\].

A test of our mechanism could be provided by a measurement of the ratio open charm over MB beyond the knee. The presence of a similar turn-over beyond the knee would strongly support our interpretation.

c) Ratio J/ψ over DY

The results of our model for this ratio, versus E_T, in $Pb Pb$ collisions at $\sqrt{s} = 158$ GeV, are shown in Fig. 4 and compared to NA50 data \[1\] – both for the true J/ψ over DY ratio (labeled with DY), and for the one obtained with the MB analysis (labeled Min. Bias). The results of the model for the true ratio are given by the dotted line (without fluctuations) and the dashed line (with fluctuations). The latter is practically the same as the ones obtained in \[4\] and \[5\]. In both cases the E_T loss mechanism introduced above was not present. However, our results for the true ratio J/ψ over DY do not change, since the effect due to the E_T loss cancels, to a high accuracy, in this ratio. We see that our results are in good agreement with

\[8\]Note that the ration DY over MB has been measured in 1996. The NA50 Collaboration does not consider the 1996 data to be reliable beyond the knee due to possible contamination of rescattering in the (thick) target. However, from the comparison of 1996 and 1998 data on the ratio J/ψ over MB, we can expect that, using a thin target, the DY over MB ratio beyond the knee would be smaller than with a thick one.
the NA50 data for this ratio – which do not extend beyond the knee. The other data in Fig. 4 are obtained with the MB analysis, summarized by eq. (11) – where the last factor is given by eq. (14), and, therefore, does not contain the E_T loss induced by eqs. (16) or (17). Using our results (Section 3a) for the ratio J/ψ over MB and multiplying it by the ratio $(MB/DY)^{\text{NA50}}_{th}$ we obtain the dashed-dotted and solid curves in Fig. 4. The agreement with the NA50 data obtained with the MB analysis is substantially improved.

A straightforward consequence of the above results is that the data of the standard and MB analysis are different at large E_T and, therefore, should not be put on the same figure. The latter should be shown only as a ratio J/ψ over MB (which is the measured quantity in this analysis). A plot of the J/ψ over DY ratio should include only data obtained in the standard analysis.

Another consequence of our approach is that the decrease, beyond the knee, of the ratio J/ψ over DY in the MB analysis, as a function of E_{ZDC} (the energy of the zero degree calorimeter), should be less pronounced than the corresponding one versus E_T. This is due to the fact that the main contribution to E_{ZDC} is proportional to the number of spectators, which is not affected by the presence of the J/ψ trigger. The data [2,3] seem to indicate that this is indeed the case [6].

4 Conclusions

The idea of using the J/ψ over MB ratio as a measure of the J/ψ suppression was first introduced in ref. [17]. While this allows to improve considerably the statistics, it can only be safely used from peripheral collisions up to the knee of the E_T distribution. Beyond it, this ratio is very sensitive to small differences between the average E_T of the J/ψ and MB event samples. We have argued that such a difference is indeed present due to the E_T taken by the J/ψ trigger.

We have introduced a simple, physically sound, ansatz to evaluate this E_T loss in the J/ψ event sample (as compared to its value in the MB one) and have shown that with this ansatz the NA50 data for the ratio J/ψ over MB can be reproduced. In our model, this mechanism does not affect the true ratio J/ψ over DY – i.e. the one obtained by the standard analysis. However, it does affect this ratio in the case
of the minimum bias analysis. Agreement is obtained with the NA50 data for this ratio, in both analysis.

An unavoidable consequence of our approach is that the ratio DY over MB should also exhibit a turn-over close to the knee of the E_T distribution followed by a subsequent decrease. Actually, the 1996 NA50 data [4] provide some indication of such a turn-over. Our results are in agreement with these data.

Independently of the details of our implementation of the hadronic E_T loss in the J/ψ event sample, the analysis presented here indicates that it is premature to interpret the NA50 data at large E_T (beyond the knee of the E_T distribution) as a manifestation of a phase transition to a new state of matter. Actually, we have shown that a model based on comovers interaction provides a good description of the NA50 data in the whole E_T region.

Acknowledgments

It is a pleasure to thank N. Armesto, E. G. Ferreiro, D. Kharzeev, C. Salgado and J. Tran Thanh Van for discussions. D.S. thanks Fundación Barrie de la Maza for financial support. This work was supported in part by NATO grant PSTCLG 977275.

References

[1] NA50 collaboration, M. C. Abreu et al., Phys. Lett. B477, 28 (2000).

[2] NA50 collaboration, Proceedings QM 2001, presented by P. Bordalo (to be published in Nucl. Phys. A).

[3] NA50 collaboration, Proceedings XXXVI Rencontres de Moriond, Les Arcs, France 2001, presented by R. Arnaldi.

[4] NA50 collaboration, Phys. lett. B450, 2456 (1999).

[5] A. Capella, E. G. Ferreiro and A. Kaidalov, Phys. Rev. Lett. 85, 2080 (2000).

[6] A. Capella and D. Sousa, nucl-th/01100072. N. Armesto, A. Capella, E. G. Ferreiro, A. Kaidalov and D. Sousa, nucl-th/0104004. Proceedings QM 2001, pre-
sented by A. Capella, ibid, and Proceedings XXXVI Rencontres de Moriond, Les Arcs, France 2001, presented by D. Sousa.

[7] D. Kharzeev, C. Lourenço, M. Nardi and H. Satz, Z. Phys. C74, 307 (1997).

[8] N. Armesto and A. Capella, Phys. Lett. B430, 23 (1998). N. Armesto, A. Capella and E. G. Ferreiro, Phys. Rev. C59, 359 (1999).

[9] A. Capella and D. Sousa, Orsay preprint LPT 00-137, nucl-th/0101023, to be published in Phys. Lett. B.

[10] A. Capella, U. Sukhatme, C-I Tan and J. Tran Thanh Van, Phys. Rep. 236, 225 (1994).

[11] C. W. de Jager et al, Atomic Data and Nuclear Data Tables 14, 485 (1974).

[12] WA98 collaboration, M. M. Agarwala et al., nucl-ex/0008004.

[13] A. Bialas, A. Bleszyncki and W. Cyz, Nucl. Phys. B111, 461 (1976).

[14] A. Capella and A. Krzywicki, Phys. Rev. D18, 4120 (1978).

[15] J. Hüfner, B. Kopeliovich and A. Polleri, nucl-th/0012003.

[16] J. P. Blaizot, P. M. Dinh and J. Y. Ollitrault, Phys. Rev. Lett. 85, 4020 (2000) and Proceedings QM 2001, presented by P. M. Dinh, ibid.

[17] A. Capella, J. Ranft, J. Tran Thanh Van, C. Merino, C. Pajares and A. V. Ramallo, Proceedings 25th International Conference on High Energy Physics, Singapore 1990 (Editors K. K. Phua and Y. Yamaguchi). See also J. Gosset, A. Baldisseri, H. Borel, F. Staley and Y. Terrien, Euro. Phys. Jour. C13, 63 (2000).

[18] NA38 Collaboration, M. C. Abreu et al., Phys. Lett. B406, 408 (1999).

[19] E866 Collaboration, M. J. Leitch et al., Phys. Rev. Lett. 84, 3256 (2000).
Figure Captions:

Figure 1. Charged multiplicity per unit-rapidity and per participant pair versus number of participants in Pb Pb collisions at 158 GeV, in the rapidity regions of the dimuon trigger and of the E_T calorimeter.

Figure 2. The ratio J/ψ over MB versus E_T in Pb Pb collisions at 158 GeV. The dotted curve is obtained without E_T fluctuations and E_T loss. The dashed line contains the E_T fluctuations (eq. (15)) and no E_T loss. The dashed-dotted and solid lines are obtained when both effects are taken into account, using, respectively, eqs. (16) and (17) for the E_T loss. The data (in arbitrary units) are from refs. [2,3].

Figure 3. Same as Fig. 2 for the ratio DY over MB. The dotted curve is obtained without E_T loss. The dashed-dotted and solid curves are obtained with E_T loss using eqs. (16) and (17), respectively. The data are from ref. [4].

Figure 4. Same as Fig. 2 for the ratio J/ψ over DY. The data are from ref. [1]. The data labeled with DY are for the true J/ψ over DY ratio (standard analysis). They should be compared with the dotted and dashed lines obtained, respectively, without and with E_T fluctuations. The effect of the E_T loss cancels in the true ratio J/ψ over DY. The data labeled Min. Bias are obtained with the MB analysis (see eq. (1)) and should be compared with the dashed-dotted and solid lines, obtained with the E_T loss given by eqs. (16) and (17), respectively.

Table Captions:

Table 1. Values of $N_{\mu(b)}^{qq-Pq^T} + N_{\mu(b)}^{q-\bar{q}^T}$ (second column) and $N_{\mu(b)}^{q-\bar{q}}$ (third column) for charged particles in eq. (11), for various values of the impact parameter (b) (first column), integrated in y in the rapidity region of the dimuon trigger $0 < y^* < 1$. The forth and fifth columns are the same quantities integrated in the rapidity region of the E_T calorimeter ($-1.8 < y^* < -0.6$), and divided by its length (1.2 units).

Table 2. Values of the coefficients N_i and N'_i in eq. (11), integrated in rapidity in the region $0 < y^* < 1$ for various values of the impact parameter b.

15
Fig. 1

\[\frac{1}{0.5N_{\text{par}}} \frac{dN^{ch}}{dy} \]

- \[0. < y' < 1. \]
- \[-1.8 < y' < -0.6 \]
Fig. 2

\[R(\langle J/\psi \rangle)/M_B \] (a.u.)

\[E_T \] (GeV)

- \textbf{Pb–Pb 1996 Min. Bias}
- \textbf{Pb–Pb 1998 Min. Bias}
Fig. 4

![Graph showing R(J/ψ/DY) vs. E_T (GeV) with different data sets for Pb-Pb collisions labeled Pb-Pb 1996 with DY, Pb-Pb 1998 with DY, Pb-Pb 1996 Min. Bias, and Pb-Pb 1998 Min. Bias.](image)
\[
\begin{align*}
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.994 + 0.142 = 1.136 \\
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.751 + 0.087 = 0.838 \\
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.144 + 0.088 = 0.232 \\
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.784 + 0.092 = 0.876 \\
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.154 + 0.097 = 0.251 \\
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.878 + 0.106 = 0.984 \\
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.178 + 0.118 = 0.296 \\
N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P} &= 0.195 + 0.134 = 0.329
\end{align*}
\]

Table 1

b (fm)	$N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P}$	$N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P}$	$N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P}$	$N_{\mu(b)}^{qq^P-\bar{q}^T} + N_{\mu(b)}^{q\bar{q}^P-qq^P}$
0	0.994	0.142	0.751	0.087
2	1.002	0.144	0.760	0.088
4	1.024	0.148	0.784	0.092
6	1.057	0.154	0.823	0.097
8	1.105	0.164	0.878	0.106
10	1.167	0.178	0.952	0.118
12	1.241	0.195	1.040	0.134

Table 2

b (fm)	N_1	N_2	$N_3 = N'_3$	N'_1	N'_2
0	0.5896	0.1210	0.3970	0.3743	0.3363
2	0.5937	0.1222	0.4018	0.3772	0.3387
4	0.6038	0.1250	0.4134	0.3844	0.3444
6	0.6192	0.1295	0.4323	0.3954	0.3533
8	0.6405	0.1358	0.4601	0.4107	0.3656
10	0.6671	0.1443	0.4988	0.4300	0.3814
12	0.6961	0.1541	0.5470	0.4513	0.3989