Treating early dementia: Drug targeting and circumventing the blood-brain barrier

Joseph S. D’Arrigo*
Cavitation-Control Technology Inc., Farmington, CT 06032, USA

Abstract

Over past decades, a frequent co-morbidity of cerebrovascular pathology and Alzheimer’s disease pathology has been observed. Accordingly, much evidence has been reported which indicates that microvascular endothelial dysfunction, due to cerebrovascular risk factors (e.g., atherosclerosis, diabetes, obesity, hypertension, smoking, aging), precedes cognitive decline in Alzheimer’s disease and contributes to its pathogenesis. These findings indicate that preservation of healthy cerebrovascular endothelium can be an important therapeutic target. Versatile small-molecule drug(s) targeting multiple pathways of Alzheimer’s disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble/nanoparticle-derived" (LCM/ND) lipid nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets certain cell-surface scavenger receptors, mainly class B type I (i.e., SR-BI), making it possible for various Alzheimer’s-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble (LCM) subpopulation (i.e., a stable LCM suspension); such LCM would facilitate accomplishing transcranial sonoporation (if additionally, desired for the Alzheimer’s patient) and assist in advancing sonoporation to the clinic.

Introduction

The fundamental involvement of the cerebrovasculature in the pathogenesis of common dementias, widely reported in the biomedical literature, has recently been reviewed (e.g. [1,2]). In fact, vascular brain lesions are very common in people over 70 years old, and a large proportion of dementia cases may be attributable to cerebrovascular disease. Small-vessel disease is commonly found in patients who have other brain pathologies, such as the plaques and tangles associated with neurodegenerative disease; small-vessel disease also increases the risk of Alzheimer’s disease. Accordingly, vascular cognitive impairment and dementia (VCID) is the second leading cause of dementia behind Alzheimer’s disease, and is a frequent co-morbidity in the Alzheimer’s patient [3-9]. On a worldwide basis, 36 million people had dementia in 2010; of these dementia patients, 60%-80% have Alzheimer’s disease [4,10,11].

Central role of endothelial dysfunction

It has been reported that nanocomplexes can be readily transported into brain capillary endothelial cells (bovine and porcine) via SR-BI receptor-mediated endocytosis [12-15]. Accordingly, endothelial modulation and repair become feasible by pharmacological targeting [16-26] via SR-BI receptors (cf. [25]). As the detailed review by Mahringer et al. [27] points out, the blood-brain barrier (BBB) is equipped with several endocytic receptors at the luminal surface (i.e., the capillary endothelial membrane), including the type BI scavenger receptor (SR-BI). These authors explain that, after i.v. injection, surfactant/lipid-coated nanoparticles apparently bind to apolipoproteins (for example, apoA-I in blood plasma) and are subsequently recognized by the corresponding lipoprotein receptors, namely (in the presence of apoA-I), SR-BI type scavenger receptors at the BBB [1].

Furthermore, very recently published experimental work (in human-endothelial-cell monolayer cultures as well as in three-dimensional tissue-engineered human vessels) has demonstrated in detail [28] that HDL, acting via scavenger receptors (class B type I, i.e., SR-BI), blocks β-amyloid uptake into endothelial cells – in experimental monolayers as well as, the authors argue, in the human cerebrovascular endothelium [1,2]. These authors also point out that SR-BI is the principal HDL receptor on (human brain microvascular) endothelial cells and activates several HDL-signaling pathways (in addition to mediating selective cholesterol uptake) upon HDL docking. The authors observed that inhibiting SR-BI binding with a specific blocking antibody abolished the ability of HDL to suppress “β-amyloid-induced” monocyte adhesion to (human microvascular) endothelial cells [28]. It is worth noting that such blood-borne human monocytes (with their high expression of CLA-1 (the human SR-BI ortholog [29]) and/or SR-BI, as well as their ability to differentiate into macrophages to elicit an immune response locally) have recently been reported [30] (cf. [31]) to reduce Alzheimer’s-like pathology and associated cognitive impairments in transgenic mice having Alzheimer’s-like symptoms (refer [1] for a review).

Fung et al. [32] separately report that SR-BI mediates the uptake and transcytosis of HDL in brain microvascular endothelial cells (i.e., across the blood-brain barrier). These investigators further argue that manipulation of HDL transcytosis across the BBB to increase

*Correspondence to: Joseph S. D’Arrigo, Cavitation-Control Technology Inc., Farmington, CT 06032, USA, E-mail: cavcon@ntplx.net

Key words: Alzheimer’s disease; drug targeting; nanoemulsion; SR-BI; scavenger receptors; transcranial sonoporation

Received: January 2, 2018; Accepted: February 25, 2018; Published: February 28, 2018

Geriatr Med Care, 2018 doi: 10.15761/GMC.1000111

Volume 2(1): 1-7

ISSN: 2515-5555
delivery of plasma apolipoprotein A-I (apoA-I) may, in turn, facilitate increasing the transport of “HDL-like synthetic particles” containing therapeutic drug across the BBB to treat neurodegenerative disorders such as Alzheimer’s disease [32]. Therefore, the recently reviewed [1,2] “lipid-coated microbubble/nanoparticle-derived” (LCM/ND) nanoemulsion (refer below) can arguably serve as a targeted, apoA-I-based, (SR-BI mediated) therapeutic agent for Alzheimer’s disease and vascular dementia [28,33,35] (cf. [36–42]).

Targeted treatment for early dementia

This targeted-drug-delivery therapeutic approach, using the proposed LCM/ND lipid nanoemulsion for treating the more common (late-onset) dementias, receives added impetus from continual findings of cerebrovascular pathology [43–53] and an apparent endothelium-dysfunction [33–41,49,54–60] in both Alzheimer’s disease and its major risk factors [53–72]. By incorporating drug candidates (such as Edaravone, DHA, or antibody therapeutics) into the LCM/ND lipid nanoemulsion type, known to be a successful drug carrier [73,74], one is likely to obtain a multisking tasking combination therapeutic for translational medicine. This therapeutic agent would target cell-surface SR-BI making it possible for various (above-described) cell types, all potentially implicated in Alzheimer’s disease (refer [1,2] for reviews; cf. [71,72]), to be simultaneously sought out and better reached for localized drug treatment of brain tissue in vivo. It is also possible that targeting multiple cellular sites, within the multiple-cell-type network underlying Alzheimer’s disease pathophysiology, may be successful even when each (SR-BI bearing) cell type targeted is affected in a relatively modest way; that is to say, the effects on the various cell types targeted may be additive, multiplicative, or otherwise synergistic [26].

With regard to receptor-mediated membrane transport across the BBB, brain microvascular endothelial cells are believed to control iron uptake and efflux, under the direct guidance of neighboring astrocytes [75,76]. Detailed evidence has been reported recently [75] showing that human brain microvascular endothelial cells, which constitute most of the blood-brain barrier, receive brain-iron status information via paracrine signals from ensheathing astrocytes. Lastly, aging, obesity, and smoking are significant determinants of brain iron accumulation in human subjects [77] and all have been long-associated with Alzheimer’s disease incidence [25,50–52,55,65,78–80].

Note that the above-mentioned (cf. preceding paragraph and Abstract) long association of specifically both obesity and diabetes with Alzheimer’s disease incidence has also renewed attention to the brain’s main facilitative glucose transporter protein, GLUT-1, involvement in and probable contribution to neurodegenerative diseases [81–83]. More than two decades ago it was already recognized that normal human brain capillary endothelium has a high density of GLUT-1, whereas the cerebral microvessels in subjects with Alzheimer’s disease showed a markedly decreased GLUT-1 density when compared with age-matched controls [84,85]. More recently, Winkler et al. [86] demonstrated that GLUT-1 deficiency in cerebral endothelium (but not in astrocytes), in a mouse model of Alzheimer’s disease, initiates blood-brain barrier breakdown. These authors observed from their detailed experiments that reduced GLUT-1 expression (at the BBB) worsens Alzheimer’s disease cerebrovascular degeneration, neuropathology, and cognitive function – suggesting that (cerebral endothelial) GLUT-1 may represent a therapeutic target for Alzheimer’s disease vasculo-neuronal dysfunction and degeneration [86]. Further, other investigators [87] (cf. [88]) have recently provided evidence for brain glucose dysregulation as a critical event in Alzheimer’s disease pathogenesis that closely reflects both the severity of Alzheimer’s disease pathology and the expression of symptoms. Moreover, abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms [87].

In summary, endothelial cells are the main component of the BBB, which is seriously disrupted in various neurological pathologies – including many neurodegenerative disorders [89–91]. An early BBB breakdown and/or dysfunction has been documented [92] in Alzheimer’s disease before dementia, neurodegeneration, and/or brain atrophy occur, and investigators have reported that targeting the BBB can influence the course of neurological disorder [92]. Hence, vascular-targeted therapies become plausible for the prevention and treatment of common dementias [4,36,89,93–95]. In respect to vascular tone, vasodilators (nitric oxide, acetylcholine) are repressed while vasoconstrictor (endothelin-1) is enhanced, thus contributing to endothelial dysfunction in Alzheimer’s disease [90,96]. Also, β-amyloid can induce apoptosis and/or necrosis of brain endothelial cells. Presence of β-amyloid, as well as tau protein oligomers, leads to accumulation of inflammatory molecules in microvessels – which further fosters endothelial dysfunction [90,97–99]. Other component cell types of the neurovascular unit are affected as well in Alzheimer’s disease [90]. For example, deposition and aggregation of β-amyloid within vascular smooth muscle cells leads to inflammation, oxidative stress, impaired vasorelaxation, and disruption of BBB integrity. At the same time, midlife vascular-risk factors such as hypertension, cardiovascular disease, diabetes, dyslipidemia, and obesity all increase the relative risk for Alzheimer’s disease [89,100–103]. These covariables are all characterized by low and/or dysfunctional HDL, which itself is an Alzheimer’s risk factor. Namely, (in addition to long-published lipid transport,) HDL regulates vascular health via modulating vasorelaxation, inflammation, and oxidative stress as well as promoting endothelial cell survival and integrity [36,102,104]. Since SR-BI has already been identified as a major receptor for HDL (with their major apolipoprotein (apo)A-I) as well as for the earlier-described LCM/ND nanoemulsion [1,2], this multiskating lipid nanoemulsion can arguably serve as a targeted, apoA-I-based, (SR-BI mediated) therapeutic agent for common (late-onset) dementias (cf. [28,33,35,37–42]).

Promising developments regarding complementary neurotherapy using targeted sonoporation

A completely separate and additional advantage of such LCM/ND (drug-delivery) nanoemulsion(s) stems from the characteristic lipid-coated microbubble (LCM) subpopulation existing in this nanoemulsion type [1,2]. This characteristic LCM subpopulation would now be available to substantially reduce the acoustic power levels needed for accomplishing endothelial sonoporation (refer [1] for a review), if additionally desired for further targeted (transcranial) neurotherapy (cf. [105–120]) of the Alzheimer’s patient. Over the past decade, neuroscientists have been exploring the use of ultrasound in combination with preformed (intravenous) microbubbles to temporarily open the BBB [1,2,121–126], allowing drugs or the immune system to target brain tumors or Alzheimer’s brain plaque in vivo effectively, repeatedly, and safely [127–133] in animals up to primates [127,134] and even in humans [134]. It is believed that (non-thermal focused) ultrasound pulses cause the (intravenously injected) preformed microbubbles to expand and contract (with acoustic pressure rarefaction and compression, respectively) against the BBB structure, thereby loosening the tight junctions [135,136] between endothelial cells which form the structural core of the BBB. Recently, this research approach was employed by Leinenenga and Gotz [135] who utilized focused (transcranial) ultrasound coupled with intravenous

Geriatr Med Care, 2018 doi: 10.15761/GMC.1000111

Volume 2(1): 2-7
injection of lipid-encased microbubbles. These authors concluded that their findings suggest that microbubble-assisted ultrasound irradiation is useful for removing β-amyloid plaques in the mouse brain without causing observable damage, and should be explored further as a noninvasive method with potential as a (non-pharmacological) therapeutic approach for Alzheimer’s disease [1,2,135,136].

It is worth noting that the above-proposed mechanism of plaque-burden reduction, by sonoporation (i.e., “loosening the tight junctions of the cells forming the BBB” [135,136]), might carry an additional effect. (Microbubble-assisted) sonoporation not only facilitates localized delivery of drugs and/or “activated” immune cells to target Alzheimer’s brain plaque in vivo [135], but also facilitates (passive-transport) reduction of β-amyloid plaque burden from brain tissue in a mouse model of Alzheimer’s disease [137]. Specifically, this same mechanism might also function to counteract characteristic decreased “brain clearance” of neurototoxic β-amyloid “monomer” [137]—which has been described as a central event in the pathogenesis of Alzheimer’s disease (cf. [1,2,138]). Namely, the recent biomolecular study by Keaney et al. reports that controlled modulation of tight junction components at the BBB can enhance the clearance (into the plasma) of soluble human β-amyloid monomers from the brain in a murine model of Alzheimer’s disease [137].

The actual cellular and biophysical mechanism(s) of the reversible BBB “opening” process from sonoporation, when employing focused transcranial ultrasound coupled with injected preformed microbubbles, has been described further in other published studies over the last several years [1,139-145]. For example, the preformed microbubbles concentrate the ultrasound effects to the microvasculature, greatly reducing the ultrasound exposure levels needed to produce bioeffects; thus, with injected microbubbles one can apply focused ultrasound transcranially without significant skull heating [139,140]. Moreover, other investigators have recently pointed out [144,145] that microbubble-mediated sonoporation is also believed to actually enhance local drug uptake across the cell membrane itself (e.g., of endothelial cells). Hence, CNS-endothelial sonoporation offers a range of neurotherapeutic options that can include either: (1) inducing/facilitating endocytosis (and, in turn, transcytosis); (2) transient cellular-pore generation; and/or (3) widening of tight junctions between endothelial cells of the cerebral microvasculature. These varied neurotherapeutic options are important and useful, for both the researcher and the clinician, because the BBB disruption associated with various neurological disorders (e.g., Alzheimer’s disease, vascular dementia) has not been characterized in full detail cellarily [1]. In the foreseeable future, taking full advantage of this ongoing, noninvasive, and targeted use of preformed (such as LCM/ND nanoemulsion-based) microbubbles with sonoporation, while optimizing drug-delivery efficiency (through judicious choice of acoustic parameters [129,133]) and minimizing side effects, may assist in advancing sonoporation to the clinic (cf. [1,144-150]).

In this neurotherapeutic approach to the clinic, both the researcher and the clinician are still faced with the challenge of translation from rodent to large animal or man – yet significant progress on minimizing potential side effects, in large-animal transcranial-ultrasound work, has already been reported in the literature (refer [1] for a review). For example, an earlier study by Xie et al. [140] in pigs has demonstrated that intravenous lipid-encapsulated microbubbles, combined with transtemporal-applied 1-MHz ultrasound, can transiently and reversibly increase BBB permeability in a large-animal model. These authors explain that their study achieved an alteration in BBB permeability with lower peak negative pressures and lower doses of ultrasound contrast (i.e., intravenous, film-stabilized microbubbles) in a large-animal model and, thus, transient alterations in BBB permeability sufficient for enhanced drug delivery and without unwanted bioeffects (hemorrhage, necrosis, apoptosis) [140] in human subjects appear increasingly feasible (refer [1,2] for added discussion).

Conclusion

The proposed multitasking combination therapeutic may also display greater efficacy at different stages of Alzheimer’s disease (cf. [72]); as a result, this multitasking (drug-delivery) therapeutic could represent a promising way to treat, delay, or even prevent the disease in the future [1,2]. In addition, preformed (lipid-stabilized) microbubbles, as contained within this combination therapeutic [1,73], are known to substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment [1,105-109,111-113,130,151-156], or sonoporation [1,110,114-119,157-159], if additionally desired for the Alzheimer’s patient.

Funding Sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. J.S.D. is an employee of Cov-Con Inc.

Conflicts of Interest

Beyond the above employment, the author declares no potential conflicts of interest.

Acknowledgments

Many thanks are due to numerous past (basic-research and clinical) colleagues for cultivating important collaboration, over the past few decades, on some of the published investigations described in this review and/or their generous help with various experimental measurements.

References

1. D’Arrigo JS (2017) Alzheimer’s disease, brain injury, and C.N.S. nanotherapy in humans: Sonoporation augmenting drug targeting. Medical Sciences 5: 29. [Crossref]

2. D’Arrigo JS (2018) Nanotherapy for Alzheimer’s disease and vascular dementia: Targeting senile endothelium. Adv Collid Interface Sci 251: 44-54. [Crossref]

3. Cooper LL, Mitchell GF (2016) Aortic Stiffness, Cerebrovascular Dysfunction, and Memory. Pulse (Basel) 4: 69-77. [Crossref]

4. Dichgans M, Leys D (2017) Vascular Cognitive Impairment. Circ Res 120: 573-591. [Crossref]

5. The Lancet Neurology (2017) Vascular disease and neurodegeneration: advancing together. Lancet Neurol 16: 333. [Crossref]

6. Kalaria RN (2016) Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol 131: 659-685. [Crossref]

7. Duncombe J, Kitamura A, Hase Y, Ibara M, et al. (2017) Chronic cerebral hyperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 131: 2451-2468. [Crossref]

8. Perrotta M, Lembo G, Carnesale D (2016) Hypertension and Dementia: Epidemiological and Experimental Evidence Revealing a Detrimental Relationship. Int J Mol Sci 17: 347. [Crossref]

9. Suddath TL, Weekman EM, Price BR, Gooch JL, Woolams A, et al. (2017) Time-course of glial changes in the hyperhomocysteinemia model of vascular cognitive impairment and dementia (VCID). Neuroscience 341: 42-51. [Crossref]

10. Bhat NR (2015) Vasculoprotection as a Convergent, Multi-Targeted Mechanism of Anti-AD Therapeutics and Interventions. J Alzheimers Dis 46: 581-591. [Crossref]
11. Manukhina EB, Downey HF, Shi X, Mallet RT (2016) Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp Biol Med 241: 1351-1363. [Crossref]

12. Sirmane AE, Regberg J, Hallbrink M, Vajragupta O, Langel U (2016) Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood-brain barrier model. Int J Pharm 500: 128-135. [Crossref]

13. Lajoie JM, Shusta EV (2015) Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 55: 613-631. [Crossref]

14. Alger M, Mangge H, Zimmer A, Prass R (2015) Lipoprotein-Related and Apolipoprotein-Mediated Delivery Systems for Drug Targeting and Imaging. Curr Med Chem 22: 3631-3651. [Crossref]

15. Preston JE, Joan Abbott N, Begley DJ (2014) Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol 71: 147-163. [Crossref]

16. Di Marco LY, Vennari A, Farkas E, Evans PC, Marzo A, et al. (2015) Vascular dysfunction in the pathogenesis of Alzheimer’s disease—A review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 82: 593-606. [Crossref]

17. Salmina AB, Inzhutova AI, Malinovskaya NA, Petrova MM (2010) Endothelial dysfunction and repair in Alzheimer-type neurodegeneration: neuronal and glial control. J Alzheimers Dis 22: 17-36. [Crossref]

18. Tong X, Hamel E (2015) Simvastatin restored vascular reactivity, endothelial function and reduced string vessel pathology in a mouse model of cerebrovascular disease. J Cereb Blood Flow Metab 35: 512-520. [Crossref]

19. Carradori D, Gaudin A, Brambilla D, Andrieux K (2016) Application of Nanomedicine to the CNS Diseases. Int Rev Neurobiol 130: 73-113. [Crossref]

20. Koster KP, Thomas R, Morris AW, Tai LM (2016) Epidermal growth factor prevents oligomeric amyloid-ß induced angiogenesis deficits in vitro. J Cereb Blood Flow Metab 36: 1865-1871.

21. Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis 107: 41-56. [Crossref]

22. Qosa H, Mohamed A, Al Rihani SB, Batarseha YS, Duong QV, Keller JN, Kaddoumi A (2016) High throughputscreening for identification of blood-brain barrier integrity enhancers: A drug repurposing opportunity to rectify vascular amyloid toxicity. J Alzheimers Dis 53: 1499-1516.

23. Hostenback S, D’haeseleer M, Kooijman R, De Keyser J (2016) The pathophysiological role of astrocytic endothelin-1. Prog Neurobiol 144: 88-102. [Crossref]

24. Koizumi K, Wang G, Park L (2016) Endothelial Dysfunction and Amyloid-ß-Induced Neurovascular Alterations. Cell Mol Neurobiol 36: 155-165. [Crossref]

25. Goldwaser EL, Acharya NK, Sarkar A, Godsey G, Nagele RG (2016) Breakdown of the blood-brain barrier: The challenge of brain drug targeting. Annu Rev Pharmacol Toxicol 56: 241-268. [Crossref]

26. Yin ZG, Li, Cui M, Zhou SM, Yu MM, et al. (2014) Inverse relationship between apolipoprotein A-I and cerebral white matter lesions: A cross-sectional study in middle-aged and elderly subjects. PLoS ONE 9: e97113. [Crossref]

27. Weeckman EM, Sudholt TL, Caverly CN, Kopper TJ, Phillips OW, et al. (2016) Reduced efficacy of anti-Aß immunotherapy in a mouse model of amyloid deposition and vascular cognitive impairment comorbidity. J Neurosci 36: 8986-9907.

28. Ma C, Li J, Bao Z, Ruan Q, Yu Z (2015) Serum Levels of ApoA1 and ApoA2 Are Associated with Episodic Memory Performance in Healthy elderly individuals. J Alzheimers Dis 44: 175-182. [Crossref]

29. Lazarus J, Mather KA, Armstrong NJ, Song F, Poljak A, et al. (2015) DNA methylation in the apolipoprotein-A1 gene is associated with episodic memory performance in healthy elderly individuals. J Alzheimers Dis 44: 175-182. [Crossref]

30. Darlington D, Li S, Hou H, Habib A, Tian J, et al. (2015) Human umbilical cord blood-derived monocytes improve cognitive deficits and reduce amyloid-ß pathology in PSAPP mice. Cell Transplant 24: 2237-2250. [Crossref]

31. Chang EH, Rigotti A, Huerta PT (2009) Age-related influence of the HDL receptor SR-BI on synaptic plasticity and cognition. Neurobiol Aging 30: 407-419. [Crossref]

32. Fung KYY, Wang C, Nyegaard S, Heit B, Faim G, Lee W (2017) Scavenger receptor BI mediates the uptake and transcytosis of HDL in brain microvascular endothelial cells independent of PDZK1 and nitric oxide.FASEB J 31: S783.1. [Crossref]

33. Robert J, Stukas S, Button E, Cheng WH, Lee M, et al. (2016) Reconstituted high-density lipoproteins acutely reduce soluble brain Aß levels in symptomatic APP/PS1 mice. Biochim Biophys Acta 1862: 1027-1036.

34. Armstrong SM, Sugiyama MG, Fang KY, Gao Y, Wang C, et al. (2015) A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res 108: 268-277.

35. Hottman DA, Chernecki D, Cheng S, Wang Z, Li L (2014) HDL and cognition in neurodegenerative disorders. Neurobiol Dis 72 Pt A: 22-36. [Crossref]

36. Velagapudi S, Yalcinkaya M, Piemontese A, Meier R, Norrelykke SF, et al. (2017) VEGF-A regulates cellular localization of SR-BI as well as transendothelial transport of HDL but not LDL. Atheroscler Thromb Vasc Biol 37: 794-803.

37. Choi HJ, Seo EH, Yi D, Sohn BK, Choe YM, et al. (2016) Amyloid-independent amnestic mild cognitive impairment and serum apolipoprotein A1 levels. Am J Geriatr Psychiatry 24: 144-153. [Crossref]

38. Kitamura Y, Usami R, Ichihara S, Kida H, Satoh M, et al. (2017) Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer’s disease. Neurobiol Dis 39: 231-238. [Crossref]

39. Lazarus J, Mather KA, Armstrong NJ, Song F, Poljak A, et al. (2015) DNA methylation in the apolipoprotein-A1 gene is associated with episodic memory performance in healthy elderly individuals. J Alzheimers Dis 44: 175-182. [Crossref]

40. McAlenee KL, Alafuzoff I, Charidimou A, De Reuck J, Grinberg LT, et al. (2016) Post-mortem assessment in vascular dementia: Advances and aspirations. BMC Med 14: 129.

41. Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV (2016) Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta 1862: 887-900. [Crossref]

42. Kapasi A, Schneider JA (2016) Vascular contributions to cognitive impairment, clinical Alzheimer’s disease, and dementia in older persons. Biochim Biophys Acta 1862: 878-886.

43. Gutierrez J, Honig L, Elkind MS, Mohr JP, Goldman J, et al. (2016) Brain arterial autoregulatory dysfunction, endothelial impairment, and vascular cognitive impairment comorbidity. J Neurosci 36: 445-456. [Crossref]

44. Bredesen DE (2014) Reversal of cognitive decline: a novel therapeutic program. Aging (Albany NY) 6: 707-717. [Crossref]

45. Mahringer A, Reichel V, Ott M, MacLean C, Reinhold I, Hollnack-Pusch E, Fricker G (2012) Overcoming the blood brain barrier: The challenge of brain drug targeting. J Nanonanosc 2: 5-18.

46. Robert J, Button EB, Stukas S, Boyce GK, Gibbs E, Cowan CM, Gilmour M, Cheng WH, Soo SK, Yuen B, et al. (2017) High-density lipoproteins suppress Aß-induced PBMC adhesion to human endothelial cells in bioengineered vessels and in monoculture. Mol Neurodegener 12: 60. doi:10.1186/s13024-017-0201-0. [Crossref]

47. Vishnyakova TG, Bocharov AV, Baranova IN, Chen Z, Remaley AT, et al. (2003) Binding and internalization of lipopolsaccharide by CL-1, a human orthologue of rodent scavenger receptor BI. J Biol Chem 278: 22771-22780.

48. Darlington D, Li S, Hou H, Habib A, Tian J, et al. (2015) Human umbilical cord blood-derived monocytes improve cognitive deficits and reduce amyloid-ß pathology in PSAPP mice. Cell Transplant 24: 2237-2250. [Crossref]

49. Chang EH, Rigotti A, Huerta PT (2009) Age-related influence of the HDL receptor SR-BI on synaptic plasticity and cognition. Neurobiol Aging 30: 407-419. [Crossref]

50. Fung KYY, Wang C, Nyegaard S, Heit B, Faim G, Lee W (2017) Scavenger receptor BI mediates the uptake and transcytosis of HDL in brain microvascular endothelial cells independent of PDZK1 and nitric oxide.FASEB J 31: S783.1. [Crossref]
55. Khalil RB, Khoury E, Kousa S (2016) Linking multiple pathogenic pathways in Alzheimer’s disease. World J Psychiatry 6: 208-214.

56. Festoff BW, Saja RK, van Dremen P, Cucullo L (2016) HGBM1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 75: 139. [Crossref]

57. Gagndora SV, Butlin M, Gupta V, Chung R, Avolio A (2016) Pulsatile stretch alters expression and processing of amyloid precursor protein in human cerebral endothelial cells. J Hypertens 34: e24. [Crossref]

58. Roberts AM, Jagadapillai R, Vaishnav RA, Friedland RP, Drinovac R, et al. (2016) Increased pulmonary arteriolar tone associated with lung oxidative stress and nitric oxide in a mouse model of Alzheimer’s disease. Physiol Rep 4: e12953. [Crossref]

59. Shang S, Yang YM, Zhang H, Tian L, Jiang JS, et al. (2016) Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer’s disease mice. J Cereb Blood Flow Metab 36: 1987-1991.

60. Austin SA, Katusic ZS (2016) Loss of Endothelial Nitric Oxide Synthase Promotes p25 Generation and Tau Phosphorylation in a Murine Model of Alzheimer’s Disease. Circ Res 119: 1128-1134. [Crossref]

61. Katusic ZS, Austin SA (2016) Neurovascular Protective Function of Endothelial Nitric Oxide - Recent Advances. Circ J 80: 1499-1503. [Crossref]

62. Wang L, Du Y, Wang K, Xu G, Luo S, et al. (2016) Chronic cerebral hypoperfusion induces memory deficits and facilitates Aβ generation in C57BL/6J mice. Exp Neurol 283: 353-364. [Crossref]

63. Kyrtos C, Baras JS (2015) Modeling the role of the glycophathic pathway and cerebral blood vessel properties in Alzheimer’s disease pathogenesis. PLoS ONE 10: e0139574. [Crossref]

64. Kalaria RN, Akinyemi R, Ihara M (2016) Stroke injury, cognitive impairment and progression to neurodegeneration in Alzheimer’s disease. J Neurol 263: 4293-4301. [Crossref]

65. Iadecola C (2016) Untangling Neurons with Endothelial Nitric Oxide. Nat Rev Neurol 12: 232-242.

66. Kamarjian DP, Baras JS (2016) Stroke injury, cognitive impairment and cardiovascular dementia. Biochim Biophys Acta 1862: 915-925. [Crossref]

67. Khan A, Kalaria RN, Corbett A, Ballard C (2016) Update on Vascular Dementia. J Geriatr Psychiatry Neurol 29: 281-301. [Crossref]

68. Austin SA, Santhanam AV, d’Uscio LV, Katusic ZS (2015) Regional heterogeneity of cerebral microvasculatures and brain susceptibility to oxidative stress. PLoS ONE 10: e0144062. [Crossref]

69. Toda N, Okamura T (2016) Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer’s disease. J Pharmacol Sci 131: 223-232.

70. Uiterwijk R, Huijts M, Staals J, Rouhl RP, De Leeuw PW, et al. (2016) Endothelial activation is associated with cognitive performance in patients with hypertension. Am J Hypertens 29: 404-469.

71. Kamarjian DP, Kaleska A, Baras JS (2016) Stroke injury, cognitive impairment and cardiovascular dementia. Biochim Biophys Acta 1862: 915-925. [Crossref]

72. Kamarjian DP, Baras JS (2016) Stroke injury, cognitive impairment and cardiovascular dementia. Biochim Biophys Acta 1862: 915-925. [Crossref]

73. D’Arrigo JS (2015) Stable Nanoemulsions: Self-Assembly in Nature and Nanomedicine.

74. Barbarese E, Ho SY, D’Arrigo JS, Simon RH (1995) Internalization of microbubbles by tumor cells in vivo and in vitro. J Neurooncol 26: 25-34. [Crossref]

75. Beydoun R, Hamood MA, Gomez Zubieta DM, Kondapalli KC (2017) Na+/H+ rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress. Am J Cell Physiol 312: C500-C516. [Crossref]
D’Arrigo JS (2018) Treating early dementia: Drug targeting and circumventing the blood-brain barrier
148. Chow BW, Gu C (2017) Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 93: 1325-1333.

149. Aw MS, Paniwnyk L, Losic D (2016) The progressive role of acoustic cavitation for non-invasive therapies, contrast imaging and blood-tumor permeability enhancement. Expert Opin Drug Deliv 13: 1383-1396.

150. Park I, Fan Z, Kumon RE, El-Sayed ME, Deng CX (2010) Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation. Ultrasound Med Biol 36: 1176-1187.

151. Alonso A, Reinz E, Jenne JW, Fatar M, Schmidt-Glenewinkel H, et al. (2010) Reorganization of gap junctions after focused ultrasound blood-brain barrier opening in the rat brain. J Cereb Blood Flow Metab 30: 1394-1402.

152. Alonso A, Reinz E, Fatar M, Hennerici MG, Meairs S (2011) Clearance of albumin following ultrasound-induced blood-brain barrier opening is mediated by glial but not neuronal cells. Brain Res 1411: 9-16.

153. Ashlund AKO, Snipstad S, Healey A, Kvale S, Torp SH, et al. (2017) Efficient enhancement of blood-brain barrier permeability using acoustic cluster therapy (ACT). Theranostics 7: 23-30.

154. Delalande A, Kotopoulos S, Postema M, Midoux P, Pichon C (2013) Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 525: 191-199. [Crossref]

155. Meairs S (2015) Facilitation of Drug Transport across the Blood-Brain Barrier with Ultrasound and Microbubbles. Pharmaceutics 7: 275-293. [Crossref]

156. Meng Y, Volpini M, Black S, Lozano AM, Hynynen K, et al. (2017) Focused ultrasound as a novel strategy for Alzheimer disease therapeutics. Ann Neurol 81: 611-617. [Crossref]

157. Horodyckid C, Canney M, Vignot A, Boisgard R, Drier A, et al. (2016) Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: A multiparametric study in a primate model. J Neurosurg 10: 1-11.

158. O’Reilly MA, Hough O, Hynynen K (2017) Blood-Brain Barrier Closure Time After Controlled Ultrasound-Induced Opening Is Independent of Opening Volume. J Ultrasound Med 36: 475-483. [Crossref]

159. Semoga CA, Kanbar E, Auboire L, Dujardin PA, Fouan D, et al. (2016) Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv 11: 1-13.