Method development and validation for simultaneous
determination of IEA-R1 reactor’s pool water uranium
and silicon content by ICP OES

J C Ulrich, S N Guilhen, M E B Cotrim, and M A F Pires
Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP - Av. Prof. Lineu
Prestes, 2242 - Cidade Universitária - CEP: 05508-000 - São Paulo/SP
E-mail: jculrich@ipen.br

Abstract. IPEN’s research reactor, IEA-R1, an open pool type research reactor moderated
and cooled by light water. High quality water is a key factor in preventing the corrosion of
the spent fuel stored in the pool. Leaching of radionuclides from the corroded fuel cladding
may be prevented by an efficient water treatment and purification system. However, as a
safety management policy, IPEN has adopted a water chemistry control which periodically
monitors the levels of uranium (U) and silicon (Si) in the pool’s reactor, since IEA-R1
employs U$_3$Si$_2$-Al dispersion fuel. An analytical method was developed and validated for
the determination of uranium and silicon by ICP OES. This work describes the validation
process, in a context of quality assurance, including the parameters selectivity, linearity,
quantification limit, precision and recovery.

1. Introduction
IEA-R1, an open pool type research reactor moderated and cooled by light water, was
commissioned in 1957 and is located at the Instituto de Pesquisas Energéticas e Nucleares,
IPEN/CNEN-SP, a Brazilian agency managed by the National Nuclear Energy Commission. The
reactor’s fuel elements use low enriched uranium (LEU) targets, i.e., up to 20% enriched uranium
(235U isotope), assembled as fuel plates of U$_3$Si$_2$ dispersed in Al [1].

Spent fuel is provisionally stored in the pool until relocation to a final disposal site or until the
decay heat is low enough to allow migration to a dry storage facility. Systematic treatment and
purification of the pool water is required to its quality assurance, a key factor in preventing
corrosion of aluminum clad fuel elements and other structural components in water [2-4].

Also, dispersed impurities in the water may become activated by neutron flux as the water
circulates through the reactor core, impairing radiological shielding and, consequently, the
attenuation of the radiation emitted by the reaction in the core.

This way, specifying requirements and operational limits for water treatment and purifications
systems is essential for the management of water quality in research reactors. Therefore, the
Research Reactor Center (CRPq/IPEN) has established sampling procedures and physical-
chemical parameters to periodically monitor the water quality. The Chemistry and Environment
Center (CQMA/IPEN) provides assistance concerning the water chemistry control, in which the
levels of silicon and uranium in the pool’s reactor are determined. This way, the detection of either
of these elements in the water may indicate a possible leakage of the fuel to the reactor’s pool.
However, carbon steels, usually employed in pipelines and valves of the reactor, may also respond for the silicon presence in the water, since carbon steels are essentially alloys of iron and carbon with small additions of elements such as manganese and silicon to provide the desired mechanical properties [5]. Also, silicon in water may also be accounted for its leaching from the concrete.

That’s why, more permissible limits for silicon are allowed, given that the amount of silicon determined in the water would only be derived from the fuel leaching process if the equivalent amount of uranium was also determined. When silicon is found in water in the absence of uranium, one can assume that the source is less worrisome and that the water quality is satisfactory, since no corrosion products are being detected in the water. Therefore, uranium is the key parameter.

Naturally, corrosion products are greatly diluted, given that 273 m3 of water is used to fill the pool. This way, when uranium is detected, immediate attention should be directed to remediate and isolate the fuel element.

An applicable technique for uranium and silicon quantification in water is inductively coupled plasma optical emission spectrometry (ICP OES).

Validation is defined by the International Vocabulary of Metrology (VIM) [6] as “verification, where the specified requirements are adequate for an intended use”. Method validation has an important role in analytical laboratories to ensure the quality and to demonstrate the method performance. In this paper required information for method development and validation described by INMETRO document [7].

In this study, the main objective was to develop and validate method which may be applicable for simultaneous analysis of uranium (U) and silicon (Si) in reactor pool water.

2. Experimental

2.1. Reagents and standards
Uranium (U) and silicon (Si) single element standard solutions (1000 µg mL$^{-1}$, Inorganic Ventures, USA) were appropriately diluted to prepare standard calibration solutions ranging from 0.05 to 10 mg L$^{-1}$ in a 1% (v/v) nitric acid (HNO$_3$, 65%, Merck, Darmstadt, Germany) aqueous solution. Ultrapure water with a resistivity of 18 MΩ cm was obtained using a Master system (Gehaka, São Paulo, Brazil).

2.2. Instrumentation
A Spectro ARCOS ICP optical emission spectrometer (Spectro Analytical Instruments Co, Kleve, Germany), equipped with an axially viewed plasma, was used for the determination of U and Si in water. Sample introduction system was composed by a cross flow nebulizer and a Scott double-pass spray chamber. Instrumental parameters selected for U and Si determination were: 1400 W RF power, 12 L min$^{-1}$ plasma flow, 1 L min$^{-1}$ auxiliary flow, 1 L min$^{-1}$ nebulizer flow, 3 replicates, wavelengths: U = 409,014 nm and Si = 251,612 nm.

2.3. Method validation
The first step in method validation was to prepare a written protocol with detailed instructions in the form of analytical procedures and statistical treatment of the obtained data. This protocol assumed that the instrument was previously selected for sensitivity and that the analysts were experienced in analytical methods validation. The second step involved experimental tasks as to prepare and analyze the solutions for each specific parameter defined in the protocol. The following step was the evaluation of the method’s performance and to establish the degree of acceptability that is required for each specific parameter. Finally, the appropriate filing of the method’s documentation, containing procedures, calculations and the all records, was conducted.

The evaluation of the matrix effect, or selectivity, was investigated comparing two calibration curves obtained from matrix blank solution spiked with U and Si standard solutions and spiked
public supply water. Student’s t-test was applied for the comparison of the two curves and the (1) was used to calculate experimental t (t_{exp}), which is then compared with the critical (theoretical) t.

$$t_{exp} = \frac{|X_A - X_B|}{\sqrt{\frac{S_{AB}^2}{n_A} + \frac{S_{AB}^2}{n_B}}}$$ \hspace{1cm} (1)

where X_A, X_B = average of groups A, B; n_A, n_B = number of values each group and S_{AB} = weighted variance.

Linearity was evaluated by the determination of the working range and then, the calibration solutions were prepared and measured. ANOVA statistical test was applied. The total variability of the responses was decomposed into the sum of squares due to regression and the residual (about regression) sum of squares and the later is decomposed into lack-to-fit and pure error sums of square.

The method’s precision was evaluated as the coefficients of variation for the recovery tests on the measured concentration of elements in two spiked samples.

Accuracy was estimated through recovery tests using two spiked solutions and the results calculated by (2).

$$Recovery \ (%) = \left(\frac{C_1 - C_2}{C_3} \right) \times 100$$ \hspace{1cm} (2)

where:

C_1 = concentration of the analyte in the fortified sample
C_2 = concentration of the analyte in the unfortified sample
C_3 = concentration of the analyte added to the fortified sample

3. Results and Discussion

3.1. Selectivity
As cited in 2.3 section, the t-test was applied to compare the two calibration curves. For U, $t_{exp} = 0.04$ and $t_{critical} = 2.23$ and for Si, $t_{exp} = 0.39$ and $t_{critical} = 2.23$. The criterion is if $t_{exp} < t_{critical}$ the H_0 is “accept”, i.e. both samples (and calibration curves) contain the analytes and exhibit no matrix effect. Therefore, for both analytes, the selectivity is proved.

3.2. Linearity
As cited in 2.3, the calibration experiment was started with the choice of a preliminary linear working range from 0.05 to 10.0 µg g⁻¹ of both analytes. Six calibration solutions (concentrations of 0.05, 0.25, 0.5, 2.5, 5.0 and 10.0 µg g⁻¹) were prepared and analyzed. Three replicates of each concentration were prepared and the calibration curves were measured three times, independently. Table 1 summarizes the analysis of variance. Homogeneity of variances and linearity were verified by a statistical significant test. Table 2 shows the results of linearity and regression efficiency tests for the U and Si.
Table 1. Analysis of variance – uranium (U) and silicon (Si) calibration curves.

Sources of Variability	Sum of Squares (SQ)	Degrees of Freedom	Mean Sum of Squares (MQ)
Totals	1.59x10^{11}	17	9.35 x10^9
Regression	1.59x10^{11}	1	1.59x10^{10}
Residual	3.22 x10^{8}	16	2.01 x10^7
Pure Error	2.98 x10^{8}	13	2.29 x10^7
Lack-of-Fit	2.41 x10^{7}	4	6.02 x10^6

Silicon

Sources of Variability	Sum of Squares (SQ)	Degrees of Freedom	Mean Sum of Squares (MQ)
Totals	9.13 x10^{11}	17	5.37 x10^{10}
Regression	9.08 x10^{11}	1	9.08 x10^{10}
Residual	5.52 x10^{8}	16	3.45 x10^8
Pure Error	5.27 x10^{8}	13	4.06 x10^8
Lack-of-Fit	2.45 x10^{8}	4	6.13 x10^7

Table 2. Results of linearity and regression efficiency tests.

Uranium calibration curve

- Linearity (lack-of-fit): $F_{calculated} = \frac{\text{MQL}}{\text{MQEP}} = 0.26$
- Regression validity: $F_{calculated} = \frac{\text{MQR}}{\text{MQE}} = 7875.1$
- $F_{0.025;4;12} = 4.12$ $F_{0.025;1;16} = 6.12$
- $F_{calculated} < F_{0.025;4;12}$: Linearity is accepted
- $F_{calculated} > F_{0.025;1;16}$: Regression validity accepted
- Efficiency: $R^2 = \frac{\text{SQR}}{\text{SQC}} = 0.998$ $R^2 > 0.95$ regression accepted

Silicon calibration curve

- Linearity (lack-of-fit): $F_{calculated} = \frac{\text{MQL}}{\text{MQEP}} = 0.15$
- Regression validity: $F_{calculated} = \frac{\text{MQR}}{\text{MQE}} = 2631.4$
- $F_{0.025;4;12} = 4.12$ $F_{0.025;1;16} = 6.12$
- $F_{calculated} < F_{0.025;4;12}$: Linearity is accepted
- $F_{calculated} > F_{0.025;1;16}$: Regression validity accepted
- Efficiency: $R^2 = \frac{\text{SQR}}{\text{SQC}} = 0.994$ $R^2 > 0.95$ regression accepted

It was observed, in table 2, that $R^2 = 0.99$ for both analytes. As $R^2 > 0.95$ was the adopted criterion to accept the regression, the linearity for U and Si was accepted.

A significant MQR/MQE ratio confirms that there is regression. If the ratio MQL/MQEP is higher than the critical level, the linear model appears to be inadequate.

3.3. Quantification limit

As mentioned in INMETRO document [7], quantification limit was defined as the first point of calibration curve, i.e. for both analytes the quantification limit is 0.05 µg g⁻¹.
3.4. **Precision**
Coefficients of variation (CV) ranging from 0.02 % to 1.2 % and 0.1 % to 1.6 % (n = 9) for U and Si, respectively. These results demonstrated that the method has good precision.

3.5. **Recovery**
A satisfactory accuracy for the proposed method was achieved, since recovery values, for U, varied from (90.4±0.2) % (5.0 µg g⁻¹) to (100.4±0.8) % (2.5 µg g⁻¹) and for Si the values from (83.6±0.1) % (5.0 µg g⁻¹) to (98.4±0.8) % (2.5 µg g⁻¹).

4. **Conclusion**
The method development in this work was suitable for the determination of U and Si with good precision and accuracy. The validation process proved the absence of matrix effects and the linearity was suitable since $R^2 > 0.95$ for both analytes, with acceptable regression.

References
[1] Saxena R N and Fulfar R 2003 IAEA-CN-100/43. Proceedings of an International Conference on Research Reactor Utilization, Safety, Decommissioning, Fuel and Waste Management; organized by the IAEA, Santiago, Nov 10–14
[2] Cegalla M A 1996 6o. Congresso Geral de Energia Nuclear–CGEN, Rio de Janeiro, 27 de outubro a 1 de novembro
[3] Cegalla M A, Neto A J S and Longo E S 1999 7o. Congresso Geral de Energia Nuclear–CGEN, Belo Horizonte, 31 de agosto a 3 de setembro
[4] Cegalla M A and Carvalho M R 2002 International Nuclear Atlantic Conference, 13th National Meeting of Reactor Physics and Thermal Hydraulics, Rio de Janeiro, Aug. 11-16
[5] Haddad R, Rodriguez S, Lanzani L, Quiroga A, Silva E. 2003 IAEA-CN-100/10. Proceedings of an International Conference on Research Reactor Utilization, Safety, Decommissioning, Fuel and Waste Management, organized by the IAEA, Santiago, Nov 10–14
[6] JCGM 2012 International vocabulary of metrology – basic and general concepts and associated terms (VIM). 3rd edition
[7] Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) - Coordenação Geral de Acreditação (CGCRE). Orientação sobre validação de métodos analíticos. Rev. 04, julho 2011 (DOQ-CGCRE-008)