A geotechnical index for landslide dam stability assessment

Hai-mei Liaoa,b, Xing-guo Yangb, Gong-da Lac, Jian Taoc and Jia-wen Zhouc

aCollege of Civil Engineering, Guizhou University, Guiyang, PR China; bCollege of Water Resource and Hydropower, Sichuan University, Chengdu, PR China; cState Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, PR China

ABSTRACT
Effective disaster countermeasures of landslide dams hinge on the stability prediction in the emergency and mid-long-term stages. Variable morphological characteristics and multiple geomorphic indices as well as complicated geotechnical parameters pose significant challenges to a quick stability assessment. A particle size distribution (PSD) database was established based on 83 landslide deposits, including damming and non-damming landslides from around the world. Characteristic parameter K for quantitatively measuring landslide dam material properties were suggested on the basis of statistical analysis of deposit PSDs. Here we proposed a geotechnical index MMI (morphometry & material index) including dam volume, height and width, as well as characteristic parameter K, grain size d_{90} and lake volume that helps to estimate landslide dam stability. Besides, landslide dams in our inventory were divided into four levels based on their material composition, longevity and spillway form. With this we achieved the stability classification criterion according to the relation between these historical cases stability levels and MMI values. This study underlines the need to include geotechnical aspects such as grain size distribution for assessing dam stability, because the impact of material conditions on landslide dam evolution cannot be ignored.

1. Introduction

Natural river-damming events induced by landslides have occurred in all mountain environments on the globe (Delaney and Evans 2015; Do et al. 2016). The potential outburst flood from landslide dam failure often poses a major hazard to society and environment downstream, making dam stability assessment necessary (Chen et al. 1992; Glancy and Bell 2000; Hewitt 2006; Davies and Korup 2007; Evans et al. 2011a,
Examples include the landslide dam formed on Dadu River China in 1786, which might have resulted in the largest number of casualties in the human history ($\approx 1 \times 10^5$) (Dai et al. 2005). More recently, the Baige landslide dams impounding both the Jinsha River China in 2018 had caused evacuation of more than 1×10^5 people and extensive damage to infrastructure in the valley involved (Ministry of Emergency Management, PRC). Previous research and our investigations have indicated that there are also longer-lived dams which are preserved until today. Some of those dams provide opportunities for power generation and tourism (Weidinger et al. 2002; Duman 2009; Hermanns et al. 2009; Wang et al. 2012; Korup and Wang 2015; Delgado et al. 2020; Zhang et al. 2021). Examples include the Waikaremoana lake in New Zealand, which is a holiday destination and waterhead supply for a power station (Schuster and Alford 2004). And the 2014 Hongshiyan landslide dam in China that is also used for hydroelectricity generation after being stabilized by building concrete cut-off wall and headrace tunnel after emergency treatment (He et al. 2021). Thus, it is critical to increase our understanding of landslide dam stability assessment.

Apart from natural collapse, the failure of a multiple landslide dams was initiated artificially in the early stage of their existence in order to prevent an uncontrolled dam breach (Zhong et al. 2020). Thus, the natural longevity of these dams with human intervention is unknown. Therefore, both emergency and mid-long-term stability assessments play an important part in hazard mitigation and risk management (Korup and Tweed 2007; Crosta et al. 2011; Dufresne et al. 2018). However, such assessments are still challenging due to the diverse factors influencing in varying degrees on dam stability (Zheng et al. 2021). Efficient tools have to be developed to better address landslide dam hazards (Dong et al. 2011b; Yang et al. 2013; Fan et al. 2019).

Studies on landslide dam behavior in the past have gained a considerable significance for predicting the dam evolution for future dams (Tacconi Stefanelli et al. 2015; Zhang et al. 2016; Fan et al. 2020). Various morphological stability indices, including Blockage Index (BI) (Canuti et al. 1998; Casagli and Ermini 1999), Impoundment Index (II) (Casagli and Ermini 1999; Korup 2004), Dimensionless Blockage Index (DBI) (Ermini and Casagli 2003), Backstow Index (IS), Basin Index (BI), and Relief Index (RI) (Korup 2004), Hydromorphic Dam Stability Index ($HDSI$) (Tacconi Stefanelli et al. 2016, 2018), have been proposed for rapid assessment (all abbreviations of this paper are summarized in the attached table A1). However, regional geological and climatic differences and landslide types may have a larger impact on dam stability than these geomorphic indices (Ermini and Casagli 2003; Korup 2004; Weidinger 2011; Hermanns et al. 2011a; Oppikofer et al. 2020; Tacconi Stefanelli et al., 2018). A lack of data on landslide dam that did not pose a risk to society and the uncertainty of how dam volumes calculated might also impact the assessment results. Besides, these indices pay only attention to morphological parameters, although the three-dimensional distribution of landslide material also influences dam stability (Schuster 1986; Korup 2002; Weidinger 2011; Hermanns et al. 2011b; Korup and Wang 2015; Wang et al. 2016). Furthermore, some indices may not be
appropriate in assessing successive landslide dams which occur at the same site (Liao et al. 2020). For example, BI is the ratio dam volume $V_d / \text{catchment area } A_C$, and a larger ratio means a more stable dam. Thus, successive landslide dams with the same volume and different height would have the similar assessment result because their A_C is a constant. However, it is likely to be improper because a higher dam usually has a lower stability as suggested by most other indices. Similar problem also exists for the $HDSI$ index. Additionally, the altitude difference of a catchment is difficultly available for most cases, which hampers the use of RI index. Thus, sometimes these indices are not reliable if they are used in the emergency situation to make a good decision.

In fact, the inner structure and material composition also control the landslide dam stability (Costa and Schuster 1988; Fread 1988; Casagli et al. 2003; Ermini et al. 2006; Weidinger 2011; Chen et al. 2017; Kumar et al. 2019). However, the effort on better understanding the geotechnical aspects of landslide dam stability have been more restricted compared to the aspects of geomorphological constrains. A rapid prediction method of landslide dam stability that considers both morphological characteristics and dam composition is developed by using logistic regression analysis (Shen et al., 2020), but more available testing tools are needed to validate this model. Other assessment methods including dam material mainly rely on the qualitative evaluation of the type of the landslide, which is in a way a geotechnical assessment as landslides are classified based on materials (Weidinger 2011). Data deficiency of landslide dam material causes a lot of difficulties in quantitative characterization of dam geotechnical property (Casagli et al. 2003).

Within this contribution, we try to present a new geotechnical index for landslide dam stability assessments by considering dam geometry, grain size, and properties of the impounded water body. For this purpose, a PSD database was established based on 83 documented historical landslide deposits, including 60 damming and 23 non-damming landslides from around the word. Two empirical functions were applied to analyze the PSDs and search for characteristic parameters that can be used in a stability assessment of a landslide dam. At last, a geotechnical index MMI with limits of different stability levels was proposed based on existing indices and an inventory of 42 landslide dams.

2. Material and methods

2.1. Inventory and distribution analysis of landslide deposit PSDs

Material composition exerts a significant influence on the short and mid-long-term landslide dam stability (Alexander 2010; Weidinger 2011; Fan et al. 2020). Dams with fine particles tend to erode rapidly, but those with imbricated coarse grains may have a slower erosion process (Wang et al. 2012; Miller et al. 2018). The PSD is one of the most important material properties of a landslide deposit, which affects its inner texture and permeability (Visher 1969; Meyer et al. 1994; Gabet and Mudd 2006; Donato et al. 2009; Dunning and Armitage 2011; Zhou et al. 2019). Therefore, we developed a parameter for characterizing material property based on 83 landslide deposit PSDs (supplementary material, Table S1).
Here landslide dam was regarded simply as a landslide deposit. PSDs of landslide dams in Italy were extracted as number values from the literature, while data from all other sites by extracting values from grain size distribution curves. All the grain size distributions are between 0.0005 mm (d_5) and 27120 mm (d_{95}), this wide grain size distributions range accords with the landslide dam grain characteristic reported earlier (Casagli et al. 2003; Dunning and Armitage 2011; Davies and McSaveney 2011). Landslide dam material has been earlier divided into soil, soil with some boulders, boulders with some soil and boulders, which was used for a preliminary risk evaluation of Wenchuan earthquake-induced landslide dams (Cui et al. 2009). Based on this, the classification might be simplified into three types based on PSDs: soil-dominated landslide dam (s-d) if $d_{30} \leq 2$ mm & $d_{60} \leq 30$ mm, gravel & boulder-dominated landslide dam ($g\&b$-d) if $d_{50} \geq 50$ mm and $d_{90} \geq 700$ mm, soil & gravel-dominated landslide dam ($s\&g$-d) if particle size is out of the above both. Two statistical functions of the Rosin-Rammler-Sperling-Bennett (RRSB) distribution and the power law distribution were used to fit the 83 PSDs and characterize the PSDs properties.

- Curve fitting with RRSB distribution

The RRSB function can be expressed as (Osbaeck and Johansen 1989):

$$R(d) = 100\exp\left(-\left(\frac{d}{d^*}\right)^n\right)$$

(1)

It can be written as a linear function ($\ln(\ln(100/R(d)))$ in Y-axis and $\ln d$ in X-axis) via natural logarithm transformation:

$$\ln(\ln(100/R(d))) = n\ln d - K_R$$

(2)

where d is the particle diameter; $R(d)$ is the quantile of particles with diameter larger than d; d^* is the size of particle with cumulative content smaller than 63.2%; n is the slope of this straight line and presents the dispersion degree of particles; $K_R = n\ln d^*$ is the intercept absolute value of Y-axis. As the product of particle dispersion degree (n) and particle size ($d^* = d_{63.2}$), K_R is deemed as a comprehensive reflection of landslide dam PSD property.

- Curve fitting with power law distribution

The power law function is expressed as (Tyler and Wheatcraft 1992)

$$\frac{M(r_i < r)}{M_T} = \left(\frac{r}{r_{\text{max}}}\right)^{3-D}$$

(3)

It also can be written as a linear function ($\ln (M(r))$ in Y-axis and $\ln r$ in X-axis) via natural logarithm transformation
\[\ln (M(r)) = (3 - D) \ln r + K_F \]

(4)

where \(r \) or \(r_i \) is the particle radius; \(r_{\text{max}} \) is the maximum radius for all over the particles; \(M(r_i < r) \) is the mass (or volume) of particles with radius smaller than \(r \); \(M_T \) is the total particles mass (or volume); \(M(r) \) is the quantile of particles with radius smaller than \(r \); \((3-D) \) is the slope of this straight line, \(D \) is the statistical constant closely related to the material composition and inner structure of deposits; \(K_F = (\ln 100-(3-D)\ln r_{\text{max}}) \) is the intercept absolute value of Y-axis. As the function of particle size statistical constant \((D) \) and maximum particle radius \((r_{\text{max}}) \), \(K_F \) is deemed as a comprehensive reflection of the landslide dam PSD property.

2.2. Landslide dam inventory and geotechnical index creation

A total of 42 landslide dams were compiled, the data included dam geometry, hydrology characteristics, material composition, particle diameter \(d_{90} \), parameters \(K_R \) and \(K_F \), spillway form and dam longevity (Table 1). In the database, material composition was classified into 4 levels based on the suggestion by Cui et al. (2009), which would be used to make the classification guideline for landslide dam stability below. Material types, \(d_{90} \), \(K_R \) and \(K_F \) were estimated by the quantitative and qualitative descriptions of dam material in the literature. The accuracy of all these parameters is based on the raw data validity. It is noteworthy that the PSDs in the supplementary material and \(d_{90} \), \(K_R \), \(K_F \) in Table 1 are not all from the same landslide deposits, because the information for most of the cases is not all available.

After landslide dam formation, a lot of contributing factors determine its stability and evolution over time. Lake volume \(V_L \) and catchment area \(A_C \) are both important hydrologic parameters for dam stability, while \(A_C \) is a constant for a specific damming site no matter what the dam height is (Fan et al. 2012). Thus, here we chose \(V_L \) as the hydrologic parameter. Increase of dam height \(H_d \) and decease of dam width \(W_d \) would reduce the ability to resist erosion (Wassmer et al. 2004; O’Connor and Beebee 2009; Alexander 2010). Dam volumes are positively related to the stability. Larger particle sizes contribute to more stable dam texture and slower dam breach speed (Costa and Schuster 1988; Cui et al. 2009; Weidinger 2011). Although the representative particle size for landslide dam stability and breach processes has not been fully understood (Smart 1984; Casagli et al. 2003; Zhong et al. 2021), a dam performs relatively well in erosion resistance if its \(d_{90} \) is larger than 1000 mm (Delaney and Evans 2011; Wang et al. 2012). Therefore, here \(d_{90} \) was selected as the representative particle size in stability assessment. Besides, \(K_F \) and \(K_R \) were used to characterize the landslide dam PSD. Turning to the traditional morphological indices for guideline, geotechnical index expresses as

\[MMI = K \log \frac{H_d^2 V_L}{V_D W_D d_{90}} \]

\[= K \log (H_d^2 V) - K \log (V_D W_D d_{90}) \]

(5)

where \(K \) is \(1/K_R \) or \(K_F \).
No.	Country	Landslide-dammed lake	Occurrence time	Dam volume V_D (10^6 m3)	Dam height H_D (m)	Dam width W_D (m)	Lake volume V_L (10^6 m3)	Charnement area (km2)	Material composition	d_{90} (10^{-3} m)	K	Spillway form	Longevity	References	
1	Bhutan	Tsatichhu dam	2003	10	110	900	7	—	Soil	180	1.5	3.15	Natural	300 days	Dunning et al. 2006
2	China	Baige 1	2018.10.10	23.5	43	1150	290	173500	Soil	25	0.9	3.8	Natural	2 days	Jin, 2018
3	China	Baige 2	2018.11.03	6	78	800	770	173500	Soil	25	0.9	3.8	Artificial	9 days	Jin, 2018
4	Donghekou		2008	12	20	750	3	1165	Boulders with some soil	500	2.2	2.6	Artificial	10 days	He et al. 2010
5	Ergangqiao		2008	0.8	45	235	0.7	160	Boulders with some soil	2500	5	1	Artificial	~1 year	ED&RI, 2009a
6	Gangou		2008	0.35	25	105	0.4	170	Boulders	2500	5	1	Artificial	~1 year	ED&RI, 2009a
7	Guanmenshangou		2008	2.7	80	500	3.7	56.3	Boulders	1000	4.5	1.3	Artificial	~1 year	Jin, 2018
8	Guantan		2008	1.2	15	120	10	215	Boulders with some soil	500	2.2	2.6	Artificial	26 days	He et al. 2010; Zhang et al. 2016
9	Guanzipu		2008	2	60	390	5.85	—	Boulders with some soil	450	3	2.15	Artificial	22 days	Zhang et al. 2016; Rao and Tang 2008
10	Heidongya		2008	0.5	30	250	0.2	192	Boulders	1500	4	1.5	Artificial	~1 year	ED&RI, 2009a; He et al. 2010
11	Hongshihe		2008	8	55	370	3	63.5 km	Boulders with some soil	300	2.2	2.6	Artificial	10 days	Zhang et al. 2016
12	Hongshiyang		2014	12	83	753	260	13672	Boulders	800	4	1.5	Artificial	~1 year	KEC, 2015
13	Hutiaoya		2008	4	100	600	1.5	22.5	Soil with some boulders	180	1.3	3.5	Artificial	130 days	MWCP, 2008
14	Jiadanwan		2008	2.1	60	400	6.1	164.5	Boulders	1000	4	1.5	Artificial	~1 year	ED&RI, 2009b
15	Jia 1		2018.10.17	50	80	2400	605	—	Soil	20	0.8	3.9	Natural	2 days	Jin, 2019
16	Jia 2		2018.10.29	30	77	3500	326	—	Soil	20	0.8	3.9	Natural	2 days	Jin, 2019
17	Kuangban		2008	0.4	25	150	0.6	175.5	Boulders	2000	5	1.0	Artificial	~1 year	ED&RI, 2009a
18	Laoyingyan		2008	4.7	106	1000	10.1	28.5	Boulders	1200	3.5	1.7	Artificial	>1 year	He, 2009; Pei et al. 2010
19	Nanba		2008	4	30	350	6.86	156.2	Boulders with some soil	300	2.5	2.5	Artificial	53 days	Dai et al. 2008
20	Tangjiashan		2008	20.37	82	802	316	3550	Boulders with some soil	659	2.7	2.3	Artificial	29 days	Liu et al. 2010; Hu et al. 2009
21	Tangjiawan 1		2008	4	40	532	15.2	60	Boulders	1500	3.8	1.6	Artificial	24 days	Rao and Tang 2008; Fan et al. 2019

(continued)
No.	Country	Landslide-dammed lake	Occurrence time	Dam volume V_D (10^6m^3)	Dam height H_D (m)	Dam width W_D (m)	Lake volume V_L (10^6m^3)	Chatham area (km²)	Material composition	d_{50} $(10^{-3}m)$	K	Spillway form	Longevity	References	
22	China	Tangjawan 2	2016	0.65	15	270	1.79	60	Soil with some boulders	163	1.8	2.9	Artificial	1 day	Fan et al., 2019
23	China	Xiaogangjian	2008	2	62	300	11	330.1	Boulders with some soil	1580	2.5	2.5	Artificial	30 days	ED&RI, 2009a; Ma and Zou 2008
24	China	Xiaojiqiao	2008	2.42	64	390	20	154.81	Boulders with some soil	400	2.5	2.5	Artificial	24 days	He et al. 2010; Zhang et al. 2016
25	China	Xiaomuling	2008	0.3	28	300	0.23	181	Boulders with some soil	500	2.5	2.5	Artificial	~1 year	ED&RI, 2009a
26	China	Xujia 2	2008	7.5	110	750	3	107	Boulders	2000	5.5	0.8	—	Still alive	ED&RI, 2009a; field investigation
27	China	Yangjiagou	2008	0.6	50	160	0.85	126.4	Boulders	800	3.7	1.7	Artificial	~1 year	ED&RI, 2009a
28	China	Yaqizgou	2008	1.8	60	250	6.2	135.3	Boulders	850	4.8	1.1	Artificial	~1 year	ED&RI, 2009b
29	China	Yibadao	2008	0.9	30	500	0.55	372.05	Boulders with some soil	800	3	2.15	Artificial	~1 year	ED&RI, 2009a
30	China	Yinong	2000	115	60	2200	3000	13533	Soil	170	0.9	3.8	Artificial	60 days	Shang et al. 2003; Liu et al. 2000
31	China	Yikaishu	2008	0.4	30	100	0.3	142	Boulders	1500	5.5	0.8	Artificial	~1 year	ED&RI, 2009a
32	China	Zhonzu	2008	0.8	30	150	0.1	107	Boulders	1500	5.5	0.8	Artificial	~1 year	ED&RI, 2009a
33	China	Hsiaolin village	2009	15.4	44	1500	9.9	354	Soil	17	0.8	4	Natural	~1 hour	Hu et al. 2009
34	China	Taosu-Ling Lake	1941 ~ 1951	200	200	1600	157	—	Soil with some boulders	170	1.9	2.7	Natural	10 years	Dong et al. 2011a; Chigira et al. 2003; Chen et al. 2006
35	Ecuador	La Josefina	1993	20	100	1100	200	—	Soil with some boulders	100	1.9	2.7	Artificial	33 days	Schuster and Evans 2011; Harden 2001
36	Indonesia	Ambon Island	2012	17	137	1660	24.8	—	Soil	80	1.5	3.15	Natural	1 year	Schuster and Evans 2011; Harden 2001; Schuster and Evans 2011; Crosta et al. 2007; Crosta et al. 2004; Crosta et al. 2011
37	Italy	Val Pola	1987	45	60	2500	22	—	Boulders with some soil	1000	2.5	2.5	Artificial	Still alive	Schuster and Evans 2011; Crosta et al. 2007; Crosta et al. 2004; Crosta et al. 2011
38	New Zealand	Mt Adams	1999	10	100	700	7	—	Soil with some boulders	100	1.8	2.9	Natural	6 days	Hancox et al. 2005
39	New Zealand	Waikaremoana	2200yrs B.P.	2500	400	6000	5200	—	Boulders	20000	6	0.6	—	Still alive	(continued)
No.	Country	Landslide-dammed lake	Occurrence time	Dam volume V_D ($10^6 m^3$)	Dam height H_D (m)	Dam width W_D (m)	Lake volume V_L ($10^6 m^3$)	Chathment area (km²)	Material composition	d_{50} ($10^{-3} m$)	K_R	K_F	Spillway form	Longevity	References
-----	-----------	------------------------	-----------------	-------------------------------	---------------------	-------------------	-------------------------------	---------------------	----------------------	-----------------	-------	-------	----------------	-----------	--
40	Pakistan	Karli dam	2005	80	130	1587	90.28	44.17	Soil with some boulders	150	1.9	2.7	Natural	5 years	Schuster and Alford 2004; Marshall 1927; Beetham et al. 2002
41	Tajikistan	Sarez Lake	1911	2000	600	3900	17000	–	Boulders	5000	6	0.6	—	—	Basharat et al. 2012; Dunning et al. 2007; Niazi et al. 2010
42	Turkey	A dam on Tortum River	1700s	180	160	3100	538	1820	Boulders	1000	3.5	1.7	—	—	Still alive Schuster and Alford 2004; Ischuk 2006

Table 1. Continued.
2.3. Classification guideline for landslide dam stability

For geotechnical index, landslide dams are considered to be stable when the outburst flood hazard is low (Miller et al. 2018). In fact, those landslide dams which gradually release lake water usually only cause small peak discharge and that may result in minor damage to downstream areas. The breach speed and discharge are closely related to dam material composition. The longevity of landslide dams is critical to hazard mitigation since it determines the available time to take temporary and permanent countermeasures (Yang et al. 2010; Shen et al. 2020). A disastrous landslide dam breach would possibly be avoided if the available time is more than 1 year. Thus, here we classified landslide dams that prevail longer than 1 year as the long-lived, 3 months-1 year as the mid-term-lived, and less than 3 months as the short-lived. Lately, a new method is proposed to calculate failure probability based on empirical data from Norway and around the world (Oppikofer et al. 2020), different failure probabilities correspond to different stability levels. And the lifetime of a dam that its failure is induced artificially is always shorter than if the dam erosion would take its natural course. Thus, we proposed a four-level scale of stability that was based on landslide dam material composition, longevity and spillway form (Table 2). Blue in the table was for apparent stability (level IV), yellow for moderately apparent stability (III), orange for moderate stability (II), and red for low stability (I). Earthquake (Fan et al. 2012; Romeo et al. 2017), changes in meteorological conditions (Hermanns et al. 2004b) and landslides into the impounded reservoir (Hermanns et al. 2004a) can play a part in landslide dam failures. However, they are not considered here for they represent special cases that are not frequent.

Items for judge of landslide dam stability	Spillway form						
	Artificial/Natural	Artificial	Natural	Artificial	Natural	Artificial	Natural
Longevity							
> 1 year	IV	IV	III	III	III	III	III
3 months-1 year	IV	IV	III	III	III	III	III
1-3 months	IV	III	III	III	III	III	III
< 1 month	IV	III	III	III	III	III	III
Material composition	Boulders	Boulders with some soil	Soil with some boulders	Soil			

Level IV (blue) represents the apparent stability, level III (yellow) represents the moderately apparent stability, level II (orange) represents the moderate stability, and level I (red) represents the low stability.

3. Results

3.1. Characteristic parameter K of landslide deposit PSDs

Landslide deposit PSDs were well described with RRSB and power law functions. According to PSDs curve fitting result by using RRSB function, the correlation coefficient R^2 was 0.84 ~ 1.00, and 93.98% of the values larger than 0.9. According to the PSDs curve fitting result by using power law function, the correlation coefficient R^2 was 0.75 ~ 1.00, and 90.40% of the values larger than 0.9. Fitted lines of three landslide dams were presented in Figure 1, which were the examples of s-d landslide dams, s&g-d landslide dams, and g&b-d landslide dams, respectively. A significant linear relation between $\ln(\ln(100/R(d)))$ and $\ln d$ with RRSB function fitting, and \ln
and \(\ln r \) with power law function fitting was shown. For the fitted functions, \(y \) represented \(\ln(100/R(d)) \) or \(\ln(M(r)) \), \(x \) represented \(\ln d \) or \(\ln r \), and the absolute value of intercept was the \(K_R \) or \(K_F \) number.

Interesting relationships between statistical constants \(K_R \), \(K_F \) and all landslide deposit PSDs in our data set have been observed through careful investigation. Most \(K_R \) values were positively correlated with the particle size, while most \(K_F \) values were negatively correlated. The \(K_R \) was in \([0.50, 1.50]\) for 19 of 22 \(s\)-\(d \) deposit PSDs, \(K_F \) was in \([3.15, 4.35]\) for 19 of 22 \(s\)-\(d \) deposit PSDs; the \(K_R \) was in \([1.50, 3.00]\) for 40 of 49 \(s\&g\)-\(d \) deposit PSDs, \(K_F \) was in \([2.15, 3.15]\) for 45 of 49 \(s\&g\)-\(d \) deposit PSDs; the \(K_R \) was in \([3.50, 6.00]\) for 12 of 12 \(g\&b\)-\(d \) deposit PSDs, \(K_F \) was in \([0.6, 1.7]\) for 9 of 12 \(g\&b\)-\(d \) deposit PSDs, as shown in Figure 2. The few exceptional values that plotted outside the domains have been excluded from further analysis. In fact, some of these exceptional values were very close to the domain boundary. A summary of the correspondence between landslide dam type and \(K_R \), \(K_F \) was listed in Table 3. This will play a role in stability assessment below.

At present stage, we could not quantitatively characterize the relationship between each PSD and its \(K_R \) or \(K_F \) value. In every domain, not all \(K_R \) or \(K_F \) values increased with particle size. Figure 3 showed the PSD areas of the three value domains for \(K_R \) and \(K_F \). There were overlaps for the three areas, however the overlaps were relatively small when compared to the total areas. Although a rough conclusion is provided here, it might be a first attempt to offer a preliminary guidance for measurement of the dam material properties.

3.2. Dam stability assessment

The 42 landslide dams were divided into four levels based on guideline in Table 2. And then \(MMI_R \) (when \(K \) equals \(1/K_R \)) and \(MMI_F \) (when \(K \) equals \(K_F \)) of these dams were calculated. Based on the results of stability classification and \(MMI \) calculation, we achieved the \(MMI \) limits of different stability levels for landslide dams

- \(MMI_R < 0.4 \), apparent stability (IV)
- \(0.4 \leq MMI_R < 1.1 \), moderately apparent stability (III)
- \(1.1 \leq MMI_R < 2.0 \), moderate stability (II)
- \(MMI_R \geq 2.0 \), low stability (I)
and

- $MMI_F < 3.0$, apparent stability (IV)
- $3.0 \leq MMI_F < 7.0$, moderately apparent stability (III)
- $7.0 \leq MMI_F < 10.0$, moderate stability (II)
- $MMI_F \geq 10.0$, low stability (I)

This geotechnical method based on MMI index was also performed in Figure 4. It showed that the results of $MMIR$ and $MMIF$ were similar. Stability levels of four cases by using $MMIR$ (legends with excircle in Figure 4a) and six cases by using $MMIF$
(legends with excircle in Figure 4b) were not equal to the results based on classification guideline (Table 2). Thus, the assessment accuracies of MMI_R and MMI_F were 90.48% and 85.71%, respectively.

4. Discussion

4.1. Characteristic parameter K

Landslide dams with larger grain sizes usually have a relatively higher stability compared to those with finer grained composition, that rather favor drainage and erosion.
resistance (Dunning et al. 2006). Most PSDs in our database were obtained from a specific position in the landslide dam body. In fact, apart from grain size, spatial distribution of grain size also plays a key role in stability and the breach process. For example, material composition around the spillway is more important because it directly relates to dam-breach speed and breach form. Large boulders contribute to the spillway stabilization and prevent rapid downcutting into the dam (Plaza et al. 2011). Consequently, although the characteristic parameter K based on PSDs presents grain size and grain size dispersion, and dam inner structure to some degree, it could not reflect the grain distribution in the whole dam body. Inner composition, structure, and geotechnical properties are usually unknown until the dam is artificially or naturally cut. Aiming for the prevention of damaging events, the goal should be to carry out that the landslide dam stability assessment and related hazard prediction prior to dam breach.

Combining field investigation of landslide (scarp) and dam material is one of the most frequently used method to understand inner structure and composition of landslide dams (Delgado et al. 2020). Seismic, geoelectric and electromagnetic methods or a combination of those are most common techniques (Fan et al. 2021). Dam heterogeneous interior consisting of various sub-facies depends on landslide structures and emplacement conditions, as well as the stratigraphic situation in the landslide source area which is typically preserved in rock avalanche and rock slide deposits (Abdrakhmatov and Strom 2006; Weidinger et al. 2014; Wang et al. 2016). Landslide composition and geological properties could be transferred to dam stability assessments (Fan et al. 2021). Thus, diverse engineering geophysical and geotechnical methods should not only be used to explore the internal structure of the dam and its material properties, but also to the potential damming landslide or its close slope. Then it will become possible to build a comprehensive parameter for characterizing

Figure 5. The dimensionless blockage index (DBI) for 31 dams of our inventory. Different DBI limits are also presented based on the inventories in this paper and the study of Oppikofer et al. (2020).
both dam composition and inner structure, and thus the geotechnical properties. Such characteristic parameters could be conducive to upgrade dam stability assessments and even breach discharge estimations.

4.2. Assessment differences between morphological and geotechnical methods

A morphological method that predicts the relative probability of dam breach has been developed based on empirical data from around the world, Norway and the Andes (Oppikofer et al. 2020). The likelihood of a dam failure p_f could be estimated by using Eq. 6:

$$
p_f = \begin{cases}
0 & \quad \text{if } DBI \leq DBI_{lower} \\
\frac{DBI - DBI_{lower}}{DBI_{upper} - DBI_{lower}} & \quad \text{if } DBI_{lower} < DBI < DBI_{upper} \\
1 & \quad \text{if } DBI > DBI_{upper}
\end{cases}
$$

Table 4. Dam stability and failure probability assessment based on different methods.

No.	Landslide dams	MMI_{SP}	MMI_{F}	Failure probability
1	Baige 1	3.221	13.22	1
2	Baige 2	5.102	19.654	1
3	Donghekou	-0.287	-0.356	0.55
4	Erganggiao	0.096	0.48	0.72
5	Gangou	0.087	0.435	0.75
6	Guannenschangou	0.276	1.765	0.53
7	Guantan	0.748	5.438	0.59
8	Heidongya	0.005	0.237	0.75
9	Hongshihe	0.505	4.080	0.38
10	Hongshiyin (still alive)	0.599	3.855	0.99
11	Hutaoya	1.123	7.298	0.41
12	Jiadanwan	0.355	2.391	0.65
13	Kuangban	0.099	0.495	0.75
14	Laoyingyan	0.373	2.608	0.42
15	Nanba	0.467	3.528	0.61
16	Tangjiaoshan	0.85	6.111	0.78
17	Tangjiawan 1	0.232	1.738	0.42
18	Tangjiawan 2	0.638	4.672	0.51
19	Xiaoanggian	0.660	5.118	0.74
20	Xiaojiaqiao	0.934	6.835	0.63
21	Xiamulang	0.241	2.503	0.80
22	Xujia (still alive)	0.093	0.330	0.52
23	Yangjiagou	0.390	2.842	0.74
24	Yaqizhou	0.368	1.989	0.64
25	Yibadao	0.046	1.013	0.76
26	Yigong	3.420	13.903	0.70
27	Yikeshu	0.119	0.445	0.74
28	Zhonzi	0.109	0.404	0.87
29	Hsiao village	2.111	9.164	0.48
30	Karli dam	1.002	6.305	0.17
31	A dam on Tortum River (still alive)	0.398	2.759	0.53

Blue represents level IV and $p_f=0.25 \sim 0.75$, yellow represents level III and $p_f=0.25 \sim 0.50$, orange represents level II and $p_f=0.50 \sim 0.75$, red represents level I and $p_f=0.75 \sim 1$.

Both dam composition and inner structure, and thus the geotechnical properties. Such characteristic parameters could be conducive to upgrade dam stability assessments and even breach discharge estimations.
of the upstream catchment area of some cases, the relationship between the ratio dam volume \(V_D \)/dam height \(H_D \) and the upstream catchment area \(A_C \) was plotted for only 31 of our 42 empirical dams following that approach (Figure 5). The \(DBI_{upper} \) was 4.976, the lowest \(DBI \) was 1.856 but it could not be not defined as the \(DBI_{lower} \), because there was not a lowest \(DBI \) for the stable dam in Figure 5. Here, we used the \(DBI_{upper} = 5.0 \) and \(DBI_{lower} = 1.2 \) suggested by Oppikofer et al. (2020) to assess the likelihood of a dam failure \(p_f \). Compared to our geotechnical index, this failure probability method had a relative more conservative assessment. As shown in Table 4, the ratio 4/31 by \(MMI_R \) or 3/31 by \(MMI_F \) had a I level and 9/31 by failure probability method had a \(p_f \geq 0.75 \); the ratio 5/31 by both \(MMI_R \) and \(MMI_F \) had a level \(\geq II \) and 25/31 by failure probability method had a \(p_f \geq 0.50 \); the ratio 14/31 by both \(MMI_R \) and \(MMI_F \) had a level \(\geq III \) and 30/31 by failure probability method had a \(p_f \geq 0.25 \); the ratio 31/31 by both \(MMI_R \) and \(MMI_F \) had a level \(\geq IV \) and 31/31 by failure probability method had a \(p_f \geq 0.0 \). Besides, one dam with a \(p_f \) of 0.48 had failed about one hour after its formation, and there was also a gradually eroded dam with a \(p_f \) of 0.38. Several dams with a \(p_f > 0.75 \) had been eroded gradually, and there was one stable dam with a \(p_f \) of 0.99.

Possible reasons for this difference between the two methods are obvious. For our geotechnical assessment method, we focus on morphological parameters, dam material, longevity and spillway form. However, the failure probability method based on \(DBI \) considers morphological parameters and dam evolution (breach or not) only. Dams with the same geometry and hydrology condition would also have different stability level and failure probability if grain size is different. Additionally, our compiled data set is empirical semi-representative for short lived dams (34 cases) but certainly not for long lived ones (8 cases). And our data counts only for about 30–70% of all landslide dams globally (Fan et al. 2020), while the method suggested by Oppikofer et al. (2020) includes all dams in the respective data sets thus also dams that prevailed for thousands to tens of thousands of years. Extending the inventory to more global dams might increase the overall proportion of stable dams as the remaining dams on the globe have a much longer longevity. This helps obtain \(DBI_{lower} \) and \(DBI_{upper} \) belong to the inventory itself. Here the \(DBI_{lower} \) and \(DBI_{upper} \) come from other landslide dam data.

4.3. The proposed geotechnical method

Although the geotechnical \(MMI \) index considers the grain size effect on dam stability, it is an attempt to develop a more effective assessment method considering dam geometry, hydrology and geology conditions. Factors of the \(MMI \) index are empirically chosen based on state of the art about landslide dams, as well as the availability of parameter data from our inventory. Besides, this index solely includes material parameters of dam PSDs and particle size \(d_{90} \) in the absence of detailed geotechnical information. Nevertheless, \(MMI \) index seems to be incapable of working well in the emergency stage due to the difficulty in obtaining inner PSDs shortly after dam formation (Fan et al. 2020). The efficiency of this method also depends on the method progress for investigating the internal conditions of landslide dams.
Stability classification is defined based on dam material composition, longevity and spillway form (Table 2). A dam with a longevity more than one year is assumed to have a relatively good stability. We base our definition of “relatively good stability” on the assessment that in most cases a catastrophic breach event could be prevented within one year or the population evacuated from the critical areas. This would be different to Norway where an outburst flood with a likelihood of a 1 in 200 years has to be assessed (Hermanns et al. 2013). Furthermore, geotechnical properties may tend stable if a dam survives beyond one year, which is conducive to dam stability (Fan et al. 2020, 2021). Our stability classification guideline presented here would be better if dam breach speed was included. Empirical data on dam breach process could be collected in our future dam breach experiments, such as the temporal relations between flood discharge and residual dam size. It is important to mention that our dam inventory is empirical semi-representative for short lived dams but not for long lived landslide dams. Thus, this geotechnical assessment method is for dams with a short or mid-term lifespan. More cases are needed to improve and test the limitation of MMI for different stability levels. An improved geotechnical method might even better help in landslide dam risk management with limited temporal resources. This is especially important in situations where multiple dams form simultaneously caused by a large triggering event.

5. Conclusions

So far, the role of impacting factors especially the material composition in landslide dam stability cannot be quantitative measured. On the basis of statistical analysis of landslide deposit PSDs, the parameters K_R and K_F were developed to characterize the material properties of soil-dominated, soil & gravel-dominated and gravel & boulder-dominated landslide dams in this contribution. As a next step, a geotechnical index MMI was suggested to predict landslide dam stability in the classes of short- and mid-term ones. This new index consisted of 6 parameters involving dam geometry (V_D, H_D, W_D), particle size distribution (K and d_{90}) and river hydrology (V_L). Landslide dam stability was classified into four types based on dam material composition, longevity and spillway form. The geotechnical assessment method was proposed based on the MMI values and a landslide dam inventory with 42 cases. Due to the absence of more information on landslide dam composition, structure, and geotechnical properties, this work is not an ultimately conclusive suggestion but a first attempt to provide preliminary guidance.

Acknowledgments

Critical comments by the anonymous reviewers greatly improved the initial manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.
Funding

National Natural Science Foundation of China (U20A20111, 42107189), National Key R&D Program of China (2018YFC1508601), Sichuan Youth Science and Technology Innovation Research Team Project (2020JDTD0006), and Talent Employment Funds of Guizhou University (702897203301).

ORCID

Xing-guo Yang http://orcid.org/0000-0001-7346-9190
Jia-wen Zhou http://orcid.org/0000-0002-6817-1071

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

Abdrakhmatov K, Strom A. 2006. Dissected rockslide and rock avalanche deposits; Tien Shan, Kyrgyzstan. In: Evans S.G., Mugnozza G.S., Strom A., Hermanns R.L. (eds) Landslides from Massive Rock Slope Failure. NATO Science Series, Springer, Dordrecht; vol. 49, p. 551–570.
Alexander S. 2010. Landslide dams in Central Asia region. J Japan Landslide Soci. 47(6): 309–324.
Basharat M, Rohn J, Ehret D, Baig MS. 2012. Lithological and structural control of Hattian Bala rock avalanche triggered by the Kashmir earthquake 2005, sub-Himalayas, northern Pakistan. J Earth Sci. 23(2):213–224.
Beetham RD, McSaveney MJ, Read SAL. 2002. Four extremely large landslides in New Zealand. Landslides. 2002:97–102.
Canuti P, Casagli N, Ermini L. 1998. Inventory and analysis of landslide dams in the Northern Appenine as a model for induced flood hazard forecasting. In: Kodwo Andah (eds) CNR-GNDCI and UNESCOIHP. Grifo Publishers, Perugia; no. 1900, p. 189–200.
Casagli N, Ermini L. 1999. Geomorphic analysis of landslide dams in the Northern Apennine. Transactions of the Japanese Geomorphological Union. 20(3):219–249.
Casagli N, Ermini L, Rosati G. 2003. Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods. Eng Geol. 69(1–2):83–97.
Chen RF, Chang KJ, Angelier J, Chan YC, Deffontaines B, Lee CT, Lin ML. 2006. Topographical changes revealed by high-resolution airborne LiDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Eng Geol. 88(3–4):160–172.
Chen XQ, Cui P, You Y, Cheng ZL, Khan A, Ye CY, Zhang S. 2017. Dam-break risk analysis of the Attabad landslide dam in Pakistan and emergency countermeasures. Landslides. 14(2):675–683.
Chen YJ, Zhou F, Feng Y, Xia YC. 1992. Breach of a naturally embanked dam on Yalong River. Can J Civ Eng. 19(5):811–818.
Chigira M, Wang WN, Furuya T, Kamai T. 2003. Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Eng Geol. 68(3–4):259–273.
Costa JE, Schuster RL. 1988. The formation and failure of natural dams. Geological Society America Bulletin. 100(7):1054–1068.
Crosta GB, Chen H, Lee CF. 2004. Replay of the 1987 Val Pola landslide, Italian alps. Geomorphology. 60(1–2):127–146.
Crosta GB, Frattini P, Fusi N. 2007. Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res. 112(F1):F01006.

Crosta GB, Frattini P, Fusi N, Sosio R. 2011. Formation, characterization and modeling of the Val Pola rock-avalanche dam (Italy): natural and artificial rockslide dams. Berlin, Heidelberg: Springer; p. 347–368.

Cui P, Zhu YY, Han YS, Chen XQ, Zhuang JQ. 2009. The 12 May Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation. Landslides. 6(3): 209–223.

Dai FC, Lee CF, Deng JH, Tham LG. 2005. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology. 65(3–4):205–221.

Dai RQ, Yan KA, Zhou F. 2008. Mitigation engineering construction for the Wenjiaba landslide-dammed lake in Pingwu County, Sichuan Province. Yangtze River. In Chinese. 39(22):7–8.

Davies TR, Korup O. 2007. Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs. Earth Surf Process Landforms. 32(5):725–742.

Davies TR, McSaveney MJ. 2011. Rock-avalanche size and runout—implications for landslide dams. In: Evans S, Hermanns R, Strom A, Scarascia-Mugnozza G, editors) Natural and artificial rockslide dams; lecture notes in earth sciences. Berlin, Heidelberg: Springer, 133; p. 441–462.

Delaney KB, Evans SG. 2011. Rockslide dams in the Northwest Himalayas (Pakistan, India) and the Adjacent Pamir Mountains (Afghanistan, Tajikistan), Central Asia. In: Natural and artificial rockslide dams. Berlin, Heidelberg: Springer; p. 205–242.

Delaney KB, Evans SG. 2015. The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: review, remote sensing analysis, and process modelling. Geomorphology. 246:377–393.

Delgado F, Zerathe S, Audin L, Schwartz S, Benavente C, Carcaillet J, Bourlacues DL, Team A. 2020. Giant landslide triggerings and paleoprecipitations in the Central Western Andes: the aricota rockslide dam (South Peru). Geomorphology. 350:106932.

Do XK, Kim M, Nguyen HT, Jung K. 2016. Analysis of landslide dam failure caused by overtopping. Procedia Eng. 154:990–994.

Donato SV, Reinhardt EG, Boyce JJ, Pilarczyk JE, Jupp BP. 2009. Particle-size distribution of inferred tsunami deposits in Sur Lagoon, Sultanate of Oman. Mar Geol. 257(1–4):54–64.

Dong JJ, Li YS, Kuo CY, Sung RT, Li MH, Lee CT, Chen CC, Lee WR. 2011a. The formation and breach of a short-lived landslide dam at Hsiaolin village, Taiwan—part I: post-event reconstruction of dam geometry. Eng Geol. 123(1–2):40–59.

Dong JJ, Tung YH, Chen CC, Liao JJ, Pan YW. 2011b. Logistic regression model for predicting the failure probability of a landslide dam. Eng Geol. 117(1–2):52–61.

Dufresne A, Ostermann M, Preusser F. 2018. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria). Geomorphology. 310:153–167.

Duman TY. 2009. The largest landslide dam in Turkey: tortum landslide. Eng Geol. 104(1–2):66–79.

Dunning SA, Armitage PJ. 2011. The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans S, Hermanns R, Strom A, Scarascia-Mugnozza G, editors. Natural and artificial rockslide dams: lecture notes in earth sciences. Berlin, Heidelberg: Springer; vol. 133; p. 479–498.

Dunning SA, Mitchell WA, Rosser NJ, Petley DN. 2007. The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir earthquake of 8 October 2005. Eng Geol. 93(3–4):130–144.

Dunning SA, Rosser NJ, Petley DN, Massey CR. 2006. Formation and failure of the Tsatichhu landslide dam, Bhutan. Landslides. 3(2):107–113.

Engineering design and research institute of Sichuan University (ED&RI). 2009a., Investigation and disposition protocol for 2008 Mianyuan River landslide dams (In Chinese). Design report. Chengdu, Sichuan.
Engineering design and research institute of Sichuan University (ED&RI). 2009b., Investigation and disposition protocol for 2008 Baisha River landslide dams (In Chinese). Design report. Chengdu, Sichuan.

Ermini L, Casagli N. 2003. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surf Process Landforms. 28(1):31–47.

Ermini L, Casagli N, Farina P. 2006. Landslide dams: analysis of case histories and new perspectives from the application of remote sensing monitoring techniques to hazard and risk assessment. Italian J Engng Geol Environ Special Issue. 1:45–52.

Evans SG, Delaney KB, Hermanns RL, Strom A, Scarascia-Mugnozza G. 2011. The formation and behaviour of natural and artificial rockslide dams; implications for engineering performance and hazard management. In Natural and artificial rockslide dams. Berlin, Heidelberg: Springer; p. 1–75.

Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G. 2011. Natural and artificial rockslide dams. Springer Science & Business Media; p. 1–74.

Fan XM, Dufresne A, Siva Subramanian S, Strom A, Hermanns R, Stefanelli CT, Hewitt K, Yunus AP, Dunning S, Capra L, et al. 2020. The formation and impact of landslide dams-state of the art. Earth Sci Rev. 203:103116.

Fan XM, van Westen CJ, Xu Q, Gorum T, Dai FC. 2012. Analysis of landslide dams induced by the 2008 Wenchuan earthquake. J Asian Earth Sci. 57:25–37.

Fan XM, Xu Q, Alonso-Rodriguez A, Subramanian SS, Li WL, Zheng G, Dong XJ, Huang RQ. 2019. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides. 16(5):1003–1020.

Fan X, Dufresne A, Whiteley J, Yunus AP, Subramanian SS, Okeke CAU, Pánek T, Hermanns RL, Ming P, Strom A, et al. 2021. Recent technological and methodological advances for the investigation of landslide dams. Earth Sci Rev. 218:103646.

Fread DL. 1988. BREACH, an erosion model for earthen dam failures. Hydrologic Research Laboratory, United States: National Weather Service, NOAA.

Gabet EJ, Mudd SM. 2006. The mobilization of debris flows from shallow landslides. Geomorphology. 74(1–4):207–218.

Glancy PA, Bell JW. 2000. Landslide-induced flooding at Ophir Creek, Washoe County, western Nevada. May 30, 1983. US Geological Survey. 1617:1–94.

Hancox GT, McSaveney MJ, Manville VR, Davies TR. 2005. The October 1999 Mt Adams rock avalanche and subsequent landslide dam-break flood and effects in Poerua river, Westland, New Zealand. N Z J Geol Geophys. 48(4):683–705.

Harden C. 2001. Sediment movement and catastrophic events: the 1993 rockslide at La Josefina, Ecuador. Phys Geogr. 22(4):305–320.

He XR. 2009. Engineering disposal at emergent stage for Laoyingyan landslide-dammed lake. Seminar on earthquake disaster reduction in the first anniversary of Wenchuan earthquake (In Chinese). China: Chengdu.

He N, He B, Zhang ZL, Zhang ZL, Zhou YZ, Wang ZC. 2021. Deformation and stress of concrete cut-off wall of Hongshiyuan dammed body at initial stage of water storage. Chinese J Geotechnical Eng (In Chinese). 43(6):1125–1130.

He BS, Wang YJ, Wei JJ, Zhang SC. 2010. Field investigation on 14 landslide-dammed lakes triggered by Wenchuan earthquake (In Chinese). China Flood Drought Management. 20(3): 36–42.

Hermanns RL, Blikra LH, Longva O. 2009. Relation between rockslide dam and valley morphology and its impact on rockslide dam longevity and control on potential breach development based on examples from Norway and the Andes. In Proceedings of the 2nd International Conference on Long Term Behavior of Dams, 12th-13th October 2009, Graz, Austria, Graz, Austria; p. 789–794.

Hermanns RL, Dahle H, Bjerke PL, Crosta GB, Anda E, Blikra LH, Longva O. 2013. Rockslide dams in møre og romsdal county, Norway. In: Landslide science and practice. Berlin, Heidelberg: Springer; p. 3–12.
Hermanns RL, Folguera A, Penna I, Fauqué L, Niedermann S. 2011a. Landslide dams in the Central Andes of Argentina (northern Patagonia and the Argentine northwest). In Natural and artificial rockslide dams. Berlin, Heidelberg: Springer; p. 147–176.

Hermanns RL, Hewitt K, Strom A, Evans SG, Dunning SA, Scarascia-Mugnozza G. 2011b. The classification of rockslide dams. In: Natural and artificial rockslide dams. Berlin, Heidelberg: Springer; p. 581–593.

Hermanns RL, Naumann R, Folguera A, Pagenkopf A. 2004b. Sedimentologic analyses of deposits of a historic landslide dam failure in Barrancas valley causing the catastrophic 1714 Rio Colorado flood, northern Patagonia. Argentina. In: Lacerda W., Ehrlich M., Fontoura S.A.B., Sayao A.S.F. (eds) Landslides: Evaluation and Stabilization. CRC Press, Florida; vol. 2, p. 1439–1445.

Hermanns RL, Niedermann S, Ivy-Ochs S, Kubik PW. 2004a. Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina)—evidence from surface exposure dating and stratigraphic analyses. Landslides. 1(2):113–122.

Hewitt K. 2006. Disturbance regime landscapes: mountain drainage systems interrupted by large rockslides. Prog Phys Geogr. 30(3):365–393.

Hu XW, Huang RQ, Shi YB, Lv XP, Zhu HY, Wang XR. 2009. Analysis on the Tangjiashan landslide dam formation mechanism and dam-breath mode (In Chinese). Chinese Journal of Rock Mechanics and Engineering. 028(001):181–189.

Ischuk AR. 2006. Usoy natural dam: problem of security; Lake Sarez, Pamir Mountains, Tajikistan. Italian Journal of Engineering Geology and the Environment (Special Issue. 1): 189–192.

Jiang N, Li HB, Kou QJ, Zhou JW. 2021. Quantitative monitoring method for analyzing the erosion of a landslide dam discharge channel using three-dimensional terrestrial laser scanning, Geomatics Nat Hazards Risk. 12(1):1905–1930.

Jin XP. 2019. Reviews and reflections on emergency response countermeasures for barrier lakes in Jinsha River and Yarlung Zangbo River (In Chinese). Yangtze River. 50(3):5–9.

Jin XP. 2018. Review and discussion on emergency disposal of landslide-dammed lakes in the Jinsha and Yaluzangbu River (In Chinese). Report of the Seminar on the Emergency Disposal Technology for Landslide Dammed-lake. Wuhan, China.

Korup O. 2002. Recent research on landslide dams—a literature review with special attention to New Zealand. Prog Phys Geogr. 26(2):206–235.

Korup O. 2004. Geomorphometric characteristics of New Zealand landslide dams. Eng Geol. 73(1–2):13–35.

Korup O, Tweed F. 2007. Ice, moraine, and landslide dams in mountainous terrain. Quat Sci Rev. 26(25–28):3406–3422.

Korup O, Wang GH. 2015. Multiple landslide-damming episodes. In: Davies T. (eds) Landslide Hazards, Risks and Disasters. Academic Press, London; p. 241–261.

Kumar V, Gupta V, Jamir I, Chattoraj SL. 2019. Evaluation of potential landslide damming: case study of Urni landslide, Kinnaur, Satluj valley, India. Geosci Front. 10(2):753–767.

Kunming Engineering Corporation (KEC). 2015. Disposition protocol for Hongshiyan landslide dam (In Chinese). Design Report. Kunming, Yunnan.

Liao HM, Yang XG, Li HB, Gan BR, Zhou JW. 2020. Increase in hazard from successive landslide-dammed lakes along the Jinsha River, Southwest China. Geomatics Nat Hazards Risk. 11(1):1115–1128.

Liu N, Chen ZY, Zhang JX, Lin W, Chen WY, Xu WJ. 2010. Draining the Tangjiashan Barrier Lake. J Hydraul Eng. 136(11):914–923.

Liu N, Jiang NM, Yang QG, Xue GF, Wan HB. 2000. On emergency treatment scheme for Yigong massive landslide and river blockage disaster in Tibet (In Chinese). Yangtze River. 31(9):10–13.

Ma XQ, Zou J. 2008. Mitigation engineering construction for landslide-dammed lakes in Mianyuan River upstream (In Chinese). Water Res Hydropower Engng. 39(8):46–49.

Marshall P. 1927. The origin of lake Waikaremoana. In: Hughes J, Printer, editors. Transactions and Proceedings of the New Zealand Institute. 57; p. 237–244.
Meyer W, Schuster RL, Sabol MA. 1994. Potential for seepage erosion of landslide dam. Journal of Geotech Engng. 120(7):1211–1229.

Mianyang Water Conservancy Planning Corporation (MWCPC). 2008. Safety evaluation report for Hutiaoying landslide dam (In Chinese). Design report, Mianyang, Sichuan.

Miller B, Dufresne A, Geertsema M, Atkinson N, Evensen H, Cruden D. 2018. Longevity of dams from landslides with sub-channel rupture surfaces, Peace river region, Canada. Geoenviron Disas. 5(1):1–14.

Ministry of Emergency Management, PRC. (https://www.mem.gov.cn/).

Niazi FS, Habib-Ur R, Akram T. 2010. Application of electrical resistivity for subsurface characterization of Hattian Bala landslide dam. In: GeoFlorida 2010: Advances in Analysis, Modeling & Design. Florida, United States; vol.1, p. 480–489.

O’Connor JE, Beebee RA. 2009. Floods from natural rock-material dams. In: Burr D., Baker V. (eds) Megaflooding on Earth and Mars. Cambridge University Press, London; vol. 1, p. 128–163.

Oppikofer T, Hermanns RL, Jakobsen VU, Böhme M, Nicolet P, Penna I. 2020. Semi-empirical prediction of dam height and stability of dams formed by rock slope development in Norway. Nat Hazards Earth Syst Sci. 20(11):3179–3196.

Osbaeck B, Johansen V. 1989. Particle size distribution and rate of strength development of Portland cement. J American Ceramic Soc. 72(2):197–201.

Pei XJ, Hao YF, Zhang JX, Yuan JK. 2010. Movement characteristics and mechanism of Laoyingyan landslide triggered by Wenchuan earthquake. J Geologic Hazards Environ Preserv. 21(4):28–32.

Plaza G, Zevallos O, Cadier E. 2011. La Josefina landslide dam and its catastrophic breaching in the Andean region of Ecuador. In: Evans S.G., Hermanns R.L., Strom A.,Scarascia-Mugnozza G. (eds) Natural and Artificial Rockslide Dams. Springer, Dordrecht; vol. 1, p. 389–406.

Rao XJ, Tang XL. 2008. Engineering disposal for Tangjiawan, Hongyansunjiayuanzi, Guanzipu landslide dams (In Chinese). Water Res Hydropower Enginng. 39(8):33–35.

Romeo S, Di Matteo L, Meletti L, Cencetti C, Dragoni W, Fredduzzi A. 2017. Seismic-induced rockfalls and landslide dam following the October 30, 2016 earthquake in Central Italy. Landslides. 14(4):1457–1465.

Schuster RL. 1986. Landslide dams: processes, risk, and mitigation. ASCE, Virginia.

Schuster RL, Alford D. 2004. Usui landslide dam and lake sarez, Pamir mountains, Tajikistan. Environ Enginng Geosci. 10(2):151–168.

Schuster RL, Evans SG. 2011. Engineering measures for the hazard reduction of landslide dams. Natural and Artificial Rockslide Dams. Berlin, Heidelberg: Springer; p. 77–100.

Shang YJ, Yang ZF, Li LH, Liu DA, Liao QL, Wang YC. 2003. A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Geomorphology. 54(3–4):225–243.

Shen DY, Shi ZM, Peng M, Zhang LM, Jiang MZ. 2020. Longevity analysis of landslide dams. Landslides. 17(8):1797–1821.

Smart GM. 1984. Sediment transport formula for steep channels. J Hydraul Eng. 110(3):267–276.

Tacconi Stefanelle C, Catani F, Casagli N. 2015. Geomorphological investigations on landslide dams. Geoenviron Disas. 2(1):1–15.

Tacconi Stefanelle C, Segoni S, Casagli N, Catani F. 2016. Geomorphic indexing of landslide dams evolution. Eng Geol. 208:1–10.

Tacconi Stefanelle C, Vilimek V, Emmer A, Catani F. 2018. Morphological analysis and features of the landslide dams in the Cordillera Blanca, Peru. Landslides. 15(3):507–521.

Tyler SW, Wheatcraft SW. 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am J. 56(2):362–369.

Visher GS. 1969. Grain size distributions and depositional processes. J Sediment Res. 39(3):1074–1106.

Wang ZY, Cui P, Yu GA, Zhang K. 2012. Stability of landslide dams and development of knickpoints. Environ Earth Sci. 65(4):1067–1080.
Wang G, Furuya G, Zhang F, Doi I, Watanabe N, Wakai A, Marui H. 2016. Layered internal structure and breaching risk assessment of the Higashi-Takezawa landslide dam in Niigata, Japan. Geomorphology. 267:48–58.

Wassmer P, Schneider JL, Pollet N, Schmitter-Voirin C. 2004. Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims sturzstrom and Ilanz paleo-lake, Swiss Alps. Geomorphology. 61(1–2):3–17.

Weidinger JT. 2011. Stability and life span of landslide dams in the Himalayas (India, Nepal) and the Qin Ling Mountains (China). In: Evans S, Hermanns R, Strom A, Scarascia-Mugnozza G, editors) Natural and artificial rockslide dams. Lecture Notes in Earth Sciences. Berlin, Heidelberg: Springer; vol. 133, p. 243–277.

Weidinger JT, Korup O, Munack H, Altenberger U, Dunning SA, Tippelt G, Lottermoser W. 2014. Giant rockslides from the inside. Earth Planet. Sci. Lett. 389:62–73.

Weidinger JT, Wang JD, Ma NX. 2002. The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, PR of China—the benefits of a lake-damming prehistoric natural disaster. Quat Int. 93–94:207–214.

Wu Q, Zhao Z, Liu L, Granger DE, Wang H, Cohen DJ, Wu X, Ye M, Bar-Yosef O, Lu B, et al. 2016. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty. Science. 353(6299):579–582.

Yang SH, Pan YW, Dong JJ, Yeh KC, Liao JJ. 2013. A systematic approach for the assessment of flooding hazard and risk associated with a landslide dam. Nat Hazards. 65(1):41–62.

Yang XG, Yang ZH, Cao SY, Gao XJ, Li SJ. 2010. Key techniques for the emergency disposal of Quake lakes. Nat Hazards. 52(1):43–56.

Zhang JY, Fan G, Li HB, Zhou JW, Yang XG. 2021. Large-scale field model tests of landslide dam breaching. Eng Geol. 293:106322.

Zhang YZ, Huang CC, Shulmeister J, Guo YQ, Liu T, Kemp J, Patton NR, Liu L, Chen Y, Zhou Q, et al. 2019. Formation and evolution of the Holocene massive landslide-dammed lakes in the Jishixia Gorges along the upper Yellow River: no relation to China’s Great Flood and the Xia Dynasty. Quat Sci Rev. 218:267–280.

Zhang LM, Peng M, Chang DS, Xu Y. 2016. Dam failure mechanisms and risk assessment. John Wiley & Sons, New York.

Zheng HC, Shi ZM, Shen DY, Peng M, Hanley KJ, Ma CY, Zhang LM. 2021. Recent advances in stability and failure mechanisms of landslide dams. Front Earth Sci. 9:201.

Zhong QM, Chen SS, Wang L, Shan Y. 2020. Back analysis of breaching process of Baige landslide dam. Landslides. 17(7):1681–1692.

Zhong Q, Wang L, Chen S, Chen Z, Shan Y, Zhang Q, Ren Q, Mei S, Jiang J, Hu L, et al. 2021. Breaches of embankment and landslide dams-State of the art review. Earth Sci Rev. 216:103597.

Zhou GGD, Zhou MJ, Shrestha MS, Song DR, Choi CE, Cui KFE, Peng M, Shi Z, Zhu X, Chen H. 2019. Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floods. Geomorphology. 334:29–43.
Table A1. Explanations for abbreviations and some terms in this paper.

Abbreviations or terms	In full or definition	References
BI	Blockage Index	Canuti et al. 1998; Casagli and Ermini 1999
II	Impoundment Index	(Casagli and Ermini 1999; Korup 2004)
DBI	Dimensionless Blockage Index	(Ermini and Casagli 2003)
IS	Backstow Index	Korup 2004
BI	Basin Index	Korup 2004
RI	Relief Index	Korup 2004
HDSI	Hydromorphic Dam Stability Index	Tacconi Stefanelli et al. 2016, 2018
RRSB	Rosin-Rammler-Sperling-Bennett	Osbaeck and Johansen 1989
MMI	Particle size distribution(s)	—
s-d	Soil-dominated landslide dam	This paper
s&g-d	Soil & gravel-dominated landslide dam	This paper
g&b-d	Gravel & boulder-dominated landslide dam	This paper
K	Characteristic parameter for quantitatively measuring landslide dam material properties based on landslide deposit PSDs	This paper
K_R	The K by using RRSB distribution	This paper
K_F	The K by using power law distribution	This paper
Short-lived dam	Landslide dams that prevail longer than 1 year	This paper
Mid-term-lived dam	Landslide dams that prevail 3 months-1 year	This paper
Long-lived dam	Landslide dams that prevail less than 3 months	This paper