Development of a new ecological material based on Moroccan industrial wastes for road construction

Achraf Harrou 1, Elkhadir Gharibi 1*, Yassine Taha2, Nathalie Fagel 3, Meriam El Ouahabi 3

1Laboratory of applied chemistry and environment team of Mineral Solid Chemistry, Faculty of Sciences, University Mohammed first, Oujda, P.O. Box 60000, Morocco.

2Mining Environment and Circular Economy program (EMEC), Mohammed VI Polytechnic University (UM6P), Lot 660.Hay Moulay Rachid, Ben Guerir 43150, Morocco.

3UR Argile, Geochemistry and Sedimentary Environment (AGEs), Department of Geology, Quartier Agora, Bâtiment, B18, Allée du six Aout, 14, Sart-Tilman, University of Liège, B-4000, Belgium.

*Correspondence: gharibi_elkhadir@yahoo.fr

Abstract: The Black Steel slag (Ss) and phosphogypsum (PG) are industrial wastes produced in Morocco. In order to reduce these two wastes and to evaluate their pozzolanic reactivity in the presence of water, they were incorporated into bentonite (B) mixed with lime (L). The studied mixtures (BLW, BL-PG-W and BL-PG-Ss-W) were analyzed by X-ray diffraction, Infrared spectroscopy, Raman spectroscopy and SEM/EDX analysis. Compressive strength tests were performed on hardened specimens. The results obtained show that the hydration kinetics of the B-L-W and B-L-PG-W mixtures are slow. The addition of PG to a bentonite-lime mixture induces the formation of new microstructures such as hydrated calcium silicate (C-S-H) and ettringite, which increases the compressive strength of the cementitious specimens. The addition of the Ss to a mixture composed by 8%PG and 8%L-B accelerates the kinetics of hydration and activates the pozzolanic reaction. The presence of C2S in the slag helps to increase the mechanical strength of the mixture B-L-PG-Ss. The compressive strength of the mixtures BL-W, BL-PG-W and BL-PG-Ss-W increases from 15 to 28 days of setting. After 28 days of setting, 8% of Sc added to the mixture 8% PG-8%S-L-B is responsible for an increase of the compressive strength to 0.6 MPa.

Keywords: Bentonite; Phosphogypsum; Slag; Lime; Hydration; Kinetics; Pozzolanic reactions

1. Introduction

Recycling of industrial waste as an alternative to reduce natural resources consumption is a recently-developed solution to some environmental and economic problems. China, Europe, Japan and the United States are the worldwide leaders of steel industry production according to the statistics reported by the World Steel Association [1]. In Morocco, steel industry in the Jorf Lasfar (El Jadida, NE Morocco), represented by the SONASID Company, i.e. a subsidiary of ArcelorMittal, produces more than 150,000 tons of black steel slag (Ss) per year and recovers 90% of the slag produced [2]. Black steel slag presents major environmental risks [3]. It contains heavy metals like As and Cr that can be released into water sources [4]. Its chemical composition consists mainly of CaO, MgO, SiO2, MnO and FeO [5,6]. The slag has a porous morphology and alkaline properties. Therefore it is largely used for the retention of phosphate ions from waste-contaminated water [7-9].
presence of calcium silicate (Ca$_2$SiO$_4$), Tricalcium silicate (Ca$_3$SiO$_5$), tetracalcium aluminoferrite
(Ca$_4$Al$_2$Fe$_2$O$_{10}$) and other mineral components provide to the steel slag hydraulic setting properties
[10,11], allowing an increase of compressive strength of dredged marine clays [12]. Steel slag is also
successful used as an aggregate in the cement industry [13]. It helps to delay the hydration
mechanism of concrete and reduces their mechanical strength [14]. Likely slag activates the hydration
of C$_2$S and C$_3$S [15]. In addition, the occurrence of Fe$_2$O$_3$ in the steel slag decreases the expansion of
clay-based material and increases its mechanical strength [16]. In particular, the use of steel slag as
aggregate for metakaolinitic-cement enhances its mechanical properties [17]. In addition steel slag is
used in others fields such as civil engineering, mainly to stabilize the swelling behavior of clays in
road infrastructure [18].

Phosphogypsum (PG) essentially consists of calcium sulphate dihydrate (CaSO$_4$.2H$_2$O). It is a
by-product resulting from the attack of sulfuric acid on phosphate rock to produce phosphoric acid,
mainly used in the fertilizer industry. The process of PG production is described by the following
reaction [19]:

$$\text{Ca}_5\text{F(PO}_4\text{)}_3 + 5\text{H}_2\text{SO}_4 + 10\text{H}_2\text{O} \rightarrow 3\text{H}_3\text{PO}_4 + 5\text{CaSO}_4.2\text{H}_2\text{O} + \text{HF}$$

World phosphate industry produces about 250 Mt/yr of PG [19]. In Morocco, it exceeds 25
Mt/year. PG is produced in large quantities, 5 tons of PG for one ton of phosphoric acid [20,21]. PG
also contains phosphates under the form of H$_3$PO$_4$, Ca(H$_2$PO$_4$)$_2$.H$_2$O and CaHPO$_4$.2H$_2$O,Ca$_3$(PO$_4$)$_2$,
residual acids, fluorids (NaF, CaF$_2$, Na$_3$AlF$_6$, Na$_3$FeF$_6$ and Na$_2$SiF$_6$), trace metals (Cd, Zn, Cu, Cr) and
organic matter [22]. It can also contains nuclides such as Ra, U and Th [19].

Recently, several studies aimed at valorizing PG to improve road pavements and stabilize
swelling behavior of soils have been realized [23-28]. PG was also used as aggregates for bricks
masonry materials [29,30] and for the production of cement [31,32]. Gu and Chen [33] attested that
the addition of PG and fly ash increased compressive strength of the loess-PG-fly ash mixture due to
the formation of nanosilicates gel (C-S-H) gel and ettringite (AF-t). Furthermore PG promotes the
carbonization rate of steel slag [34].

Bentonite, mainly composed of calcium and sodium montmorillonite, is among the most used
clays in civil engineering due to its high adsorption capacity [35]. At room temperature, at high pH,
and in the presence of water and lime (CaO), bentonite undergoes geopolymerization like a Portland
cement through complex pozzolanic reactions.

Our study aims to determine the influence of the addition of black steel slag and
phosphogypsum on the mechanical performance of bentonite-based mortar with the presence of
lime. This study will also strive to understand the different reaction mechanisms and to identify the
hydrated microstructures after hardness process using several analytical complementary techniques
(XRD, IR, RAMAN and SEM/EDX).

2. Material and Methods

2.1. Raw materials

The raw bentonite was sampled from the Trebia deposit in the Nador area (North-East Morocco).
The traditional lime marketed in Oujda (eastern Morocco) is used to stabilize swelling behavior of
bentonite. The black steel slag (Ss) produced by the ArcelorMittal SONASID company in the Jorf Lasfar (Eljadida, Morocco), is obtained after melting iron scrap in an electric arc furnace. Phosphogypsum (PG), produced by OCP at Jorf Lasfar (Eljadida, Morocco).

2.2. Experimental procedure

The collected samples were ground and sieved to a diameter less than 250 µm. Three mortar specimens were prepared with Ss, PG, L and B according to the proportions reported in Table 1. The prepared specimens are cylindrical with 3.4 cm in diameter and 6.8 cm in height according to ASTM Standard D1621. The test tubes contain 80 g of the solid mixed with 38.4 ml of the distilled water having a W/S ratio of 46% \[27\].

The mechanical resistance of the specimens was monitored after 15 and 28 days of setting. For the ES3, EP3 and EL3 test pieces, the mineralogical composition was determined by XRD after 3, 7, 15 and 28 days of setting. All test tubes were immersed in distilled water for 4 hours and the pH of the solution was measured.

Table 1. Formulations based on the different proportions of raw materials studied.

Mixtures	Ss (wt.%)	PG (wt.%)	L (wt.%)	B (wt.%)
EL1	0	0	2	98
EL2	0	0	5	95
EL3	0	0	8	92
EL4	0	0	11	89
EL5	0	0	14	86
EL6	0	0	20	80
EP1	0	2	8	90
EP2	0	5	8	87
EP3	0	8	8	84
EP4	0	11	8	81
EP5	0	14	8	78
EP6	0	20	8	72
ES1	2	8	8	82
ES2	5	8	8	77
ES3	8	8	8	74
ES4	11	8	8	73
ES5	14	8	8	70
ES6	20	8	8	64

2.3. Characterization techniques

Most the analytical methods have been done at the Faculty of Sciences, Mohammed Premier University, Morocco. The X-ray diffraction was carried out by a Shimadzu XRD 6100 diffractometer, equipped with a Cu X-ray tube, operating at 40 kV and 30 mA, in the range 2°- 70° 2θ. The infrared
Analysis was obtained using a Fourier transform spectrometer (FT/IR-4700, JASCO), ATR mode (attenuated total reflectance), equipped with DLaTGS detector and Peltier temperature control. Rapid 10Hz scan with a resolution of 0.4 cm\(^{-1}\) have acquired in a wavelength range of 400–4000 cm\(^{-1}\). Raman and Infrared (FTIR) analysis were performed at the Spectrometry Laboratory (CNRST, Rabat, Morocco), using the Vertex 70 Bruker apparatus equipped with an MCT detector with a resolution of 0.5 cm\(^{-1}\). The spectral range from 4000 to 70 cm\(^{-1}\). The pH was measured by a 920 Benchtop precision pH meter. The Scanning Electron Microscopy (SEM) was carried out at the Scientific Research National Center (CNRST, Rabat, Morocco), with a resolution of 3.5 nm coupled with an EDX microanalysis of 133 eV resolution. The TESTWELL device with a speed of 1 mm / min obtained the compressive strength analysis. The thermal analysis was carried out using thermogravimetry (TGA) and differential scanning calorimetry (DSC) by heating the samples from 20 to 1000 °C at a uniform temperature ratio of 10 °C/min.

3. Results and discussion

3.1. Characterization of raw materials

The physical properties of raw bentonite are shown in Table 2. Bentonite studied is classified as fatty clays (CH) according to the Unified Soil Classification System (USCS). The particle size analysis by sedimentometry shows that this bentonite consists of 48.7% sandy fraction, 33.8% clay fraction and 17.8% silt.

The XRD analysis shows the occurrence of Ca-montmorillonite (Ca-Mt), Na-montmorillonite (Na-Mt), Na-feldspar (NaF) and K-feldspar (KF) (Figure 1). The grains of bentonite show a “cornflake” or “oak leaf” morphology typical and representative of montmorillonite, associated with feldspars (Figure 2a). Lime XRD analysis reveal the presence of CaO, MgO and Ca (OH): [27]. The steel slag consists of calcium ferrite (CaFe\(_2\)O\(_4\)), calcium dis-silicate (Ca\(_2\)SiO\(_4\)) srebrodskite (Ca\(_2\)Fe\(_2\)O\(_5\)), fayalite (Fe\(_2\)SiO\(_4\)), quartz (SiO\(_2\)), lime (CaO), dolomite (CaMg (CO\(_3\)) _2) and brownmillerite (Ca\(_2\) (Al, Fe)\(_2\)O\(_5\)) (Figure 1). The slag grains show pores with a diameter of 1.7 - 2.25 μm (Figure. 2). The Phosphogypsum used in this study contains gypsum (CaSO\(_4\cdot\)2H\(_2\)O), bassanite (CaSO\(_4\cdot1/2\)H\(_2\)O) and anhydrite (CaSO\(_4\)) (Harrou et al., 2020) [27].
Table 1. Physical properties of raw bentonite.

	Liquid limit: %	Plasticity limit: %	Plasticity index (PI)	Clay (<0.005mm)	Silt (0.005-0.075mm)	Sand (0.075-2mm)	pH₀
Bentonite	103	30.5	72.5	33.8	17.8	48.7	8.72

Figure 1. XRD patterns of steel slag and raw bentonite.
Figure 2. SEM images of raw material. A) raw bentonite and B) black steel slag.

3.2. Compressive uniaxial strength

Figure 3a compares the uniaxial compressive strengths of the bentonite-lime mixture specimens after 15 and 28 days of hydration. The histograms corresponding to the two periods of setting are similar. The optimal value is 0.97 MPa for EL mixture, corresponding to the maximum compressive strength, is obtained when 8% of lime is added to the mixture (EL3). When increasing the amount of lime added, the compression strength increases. This result can be explained by the fact that the concentration of Ca$^{2+}$ increases and the formation of C-S-H phase becomes more important due to the occurrence of pozzolanic reactions. From 15 to 28 days the amount of C-S-H increases, which is consistent with the increase in mechanical strength. Similar results are obtained by Manzano et al. [36]. In additions, they also showed that the longer the chains of the CSH silicate gel, the better the mechanical properties.

The addition of PG to the bentonite+8% lime mixture increases the compressive uniaxial strength. The maximum value is obtained by adding 8% of PG (Figure 3 b), which is in agreement with the results obtained by Oumnih et al. [26]. Using more than 8% of PG, there is a remarkable drop in mechanical strength. Excess PG increases the acidity of the mixture, making the chains of the C-S-H gel and the hydrates formed less stable, explaining the observed decrease in compressive strength.

The addition of black steel slag to the bentonite+8% lime+8% PG mixture increases the uniaxial compressive strength of the specimens test (Figure 3c). The optimum value is 1.91 MPa after 28 days of hydration for ES3 mixture. It’s obtained when adding 8% of black steel slag to the mixture B + %8L+ % 8PG. From 15 days to 28 days of hydration. The compression increases by 0.6 MPa probably due to the presence of hydraulic phases such as CaSiO_4, CaFe_2O_3 and FeSiO_4 in the slag. These hydraulic phases may contribute to the setting of the cement paste. After flocculation of the clay minerals, aggregates can form around the coarse grains. This releases the surface of the bentonite and allows its direct contact with the lime which activates the pozzolanic reactions. Similarly, slags, being alkaline, may increase intake by neutralizing the residual acidity of PG.
3.3. **Kinetic study by XRD**

Figure 4a shows the evolution of the pH of the mixtures EL3, EP3 and ES3 over time. Figure 4b, c and d indicate the evolution of mineralogical composition of the mixtures EL3, EP3 and ES3.

The initial pH of the leaching solutions of the mixtures is high (pH = 12.5) due to the dissolution of calcium hydroxide (Ca(OH)$_2$) in water. It is attested by the decrease of the intensities of the Ca(OH)$_2$ peak (d = 2.6 Å) of the mixings EL3, EP3 and ES3.

The mixture EL3 (i.e., 92% bentonite and 8% of lime, soaked in water -Figure 4b), shows the presence of Ca-montmorillonite (Ca-Mt), Na-montmorillonite (Na-Mt), Na-feldspar (NaF) and K-feldspar (KF), lime (L), periclase (P), and calcium hydroxide (CH). In presence of water (W/s = 46%), bentonite grains (Na-Mt and Ca-Mt) consolidate by coagulation aggregation and become denser [37]. The pH of the leach solution decreases slightly over time due to the consumption of OH$^-$ ions released by the lime during pozzolanic reactions. The pH decreases from ~12 to 11.3 after 7 days of setting.

After 7 days of hydration of EL3 mixture, calcite (CaCO$_3$) is formed and showed by the appearance of the characteristic peak at d = 3.03 Å. The formation of calcite can be explained by the neo-carbonation of lime according to the following reaction:

$$\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}$$
After 28 days of hydration of the mixture EL3, the formation of hydrated calcium silicate (C-S-H) occurs at \(d = 3.08 \, \text{Å} \), due to the alteration of sodium and calcium bentonite by \(\text{Ca}^{2+} \) and \(\text{OH}^- \) ions released by lime in intra-granular solutions. The formation of C-S-H consumes the \(\text{OH}^- \) ions, which causes a decrease in pH values.

Ettringite \((\text{Ca}_6\text{Al}_2(\text{SO}_4)_3(\text{OH})_{12} \cdot 26\text{H}_2\text{O})\) appears at \(d = 5.61 \, \text{Å} \), is formed after 3 days of hydration of the mixtures EP3 and ES3 containing PG and PG+Ss, respectively (Figure 4b, 4c). Ettringite crystals may accelerate the hydration of C-S-H phases, increase their compressive strength, reduce the setting time, yield strength, and plastic viscosity of the mixtures [38].

After 7 days of setting, the pH of the leachate solution of the EP3 specimen drops to 10.7 (Figure 4a) and the C-S-H phases appear (Figure 4b). The occurrence of C-S-H gel which consumes the hydroxide ions is accelerated by the presence of PG. The drop in pH could also be attributed to the release of residual acidity over time. After 28 days, the pH of the EP3 solution stabilizes at 9.48.

The addition of 8% of black steel slag to the mixture PG-bentonite- lime does not reflect any change in the XRD spectra of the EP3 mixture, and the evolution of the pH of the leached solutions gives the same variation as the EP3 mixture.

Figure 4. Evolution of pH of EL3, EP3 and ES3 mixtures (a); XRD spectra of EL3 (b), EP3 (c) and ES3 (d).
3.4. Infrared and Raman results

Figure 5a shows the infrared spectra of raw bentonite and samples EL3, EP3 and ES3. The absorption band at 3700-3600 cm\(^{-1}\) is due to stretching of the OH band of water adsorbed \[17\]. The two peaks observed at 1622 and 1539 cm\(^{-1}\) are related to the vibration of OH of water adsorbed in the interlayer space of Na-montmorillonite or Ca-montmorillonite and PG hydration water. The band at 1107 cm\(^{-1}\) is attributed to the bending vibrations of the Si-O band. The Al-Al-OH bending vibration are observed at 918 cm\(^{-1}\), the Al-O-Si deformation vibrations are at ~520 cm\(^{-1}\), and the Si-O-Si deformation vibrations are at 467 cm\(^{-1}\) \[39\].

When 8% of PG is added, a peak at 3411 cm\(^{-1}\) appears which is attributed to the symmetrical and asymmetric stretching of the OH bond of hydrated water in the gypsum molecule CaSO\(_4\).2H\(_2\)O \[26\]. Stretching and bending vibrations of SO\(_4\) of PG are also observed at 1102 cm\(^{-1}\) and 669 cm\(^{-1}\), respectively. The most intense band at 992 cm\(^{-1}\) is attributed to asymmetric Si-O-Si stretching and the band at 518 cm\(^{-1}\) is due to the vibrational mode of Si-O-Si bending in calcium silicate (Ca\(_2\)SiO\(_4\)) found in steel slag \[40\].

Figure 5b shows the Raman spectra for raw bentonite and mixtures EL3, EP3 and ES3. The peak at 1086 cm\(^{-1}\) is due to Si-O\(^*\) bond stretching vibration of SiO\(_5/2\) of the Si-O-Si (Q\(^4\)) bond in SiO\(_2\) \[41-43\]. This peak disappears on the spectra EL3, EP3 and ES3 due to the destabilization of the siliceous structure by lime. C-S-H gel are formed in EL3, EP3 and ES3 mixtures changes the environment of tetrahedra [SiO\(_4\)]\(^{4-}\) and give the peak labelled Q\(^1\) (Figure 5. b). A peak at 702 cm\(^{-1}\) is observed for mixtures EL3, EP3 and ES3, attributed to the elongations of the Si-O\(^*\) bond (Q\(^1\)) \[44\].

![Figure 5](image.png)

Figure 5. Infrared (a) and Raman (b) spectra of raw bentonite and EL3, EP3 and ES3 mixtures.

The mechanism of C-S-H chains formation involves three steps according to Monnin \[45\]:

- **Step 1:** formation of Q\(^3\) tetrahedra by attack of hydroxyl ions on Q\(^4\) tetrahedra:

\[
2 \text{SiO} + \text{OH} \rightarrow \text{SiO}_{5/2} + \text{SiO}_{2}H
\]

Breaking a siloxane bond induces the formation of two Q\(^3\) tetrahedra. Depending on the pH, the Q\(^3\) sites are either ionized or protonated:

\[
\text{SiO}_{5/2} + \text{H}_2\text{O} + \text{SiO}_{3/2}H \rightarrow \text{OH}^-
\]
- Step 2: dissolution of tetrahedra Q^3 in the form of tetrahedra Q^0 follows further cutting of siloxane bonds by hydroxyl ions:

$$\text{SiO}_{5/2}^- + \text{OH}^- + \frac{1}{2} \text{H}_2\text{O} \rightarrow \text{H}_2\text{SiO}_4^-$$

- Step 3: the dissolved silica can diffuse into the interstitial solution and form with the alkalis and lime hydrated calcium silicates and/or hydrated calco-sodium silicates of type Q^1:

$$\text{H}_2\text{SiO}_4^- + \text{Ca}^{2+} + x \text{H}_2\text{O} \rightarrow \text{C-S-H}$$

$$\text{Ou} 2\text{H}_2\text{SiO}_4^- + \text{Na}^+ + \text{Ca}^{2+} + x \text{H}_2\text{O} \rightarrow \text{C-S-N-H}$$

Figure 6 summarizes the arrangement of tetrahedra $[\text{SiO}_4]^4-$ in silicate structures and the corresponding peak type Q^n.

![Schematic diagram of Q^n in alumino-silicate structure.](image)

3.5. **Microstructure**

SEM observations of mixtures EL3 after 28 days of hydration (*Figure 7a*) shows the development of C-S-H gel around bentonite grains. The EP3 and ES3 mixtures rather display elongated crystal of acicular shape corresponding to ettringite (*Figure 7b, c*). Ettringite is formed in the free spaces of the mixtures EP3 and ES3 and its presence decreases the porosity of the specimen block. Consequently, ettringite contributes to improve the cohesion between the particles of clays and therefore increases the mechanical strength.

The particles of the black steel slag have modified the surface of the bodies (*Figure 7c*), allowing ettringite and C-S-H gel neoformation. The influence of chemical alteration may be attested by the presence of calcium di-silicate (Ca$_2$SiO$_4$, belite) in steel slag. Belite, a major component of portland cement that reacts with water to give C-S-H gel.
3.6. DSC analysis

As shown in figure 8, the DSC analysis of EL3 mixture showed four endothermic peaks associated with a loss of mass. The first weight loss occurs between 85 and 156 °C, is attributed to the water molecules adsorbed to the Ca-Mt or Na-Mt.

The addition of 8% of PG in EP3 and ES3 mixtures shows two small endothermic peaks at 128 °C and 152 °C, which later corresponds to a loss of water molecules from ettringite crystal in the samples [46]. The endothermic peak at 470-545 °C can attributed to the decomposition of calcium hydroxide to the lime with following reaction:

$$\text{Ca(OH)}_2 \rightarrow \text{CaO} + 2\text{H}_2\text{O}$$

The fourth weight loss occurs at 650–800 °C, which corresponds to the decomposition of calcite [46,47].
4. Conclusions

The industrial waste produced in Morocco, namely black steel slag (Ss) and phosphogypse (PG), was recovered by mixing it with bentonite (B) and lime (L) without any prior chemical treatment. The main results are reported:

- The hydration kinetics of the B-L-W and B-L-PG-W mixtures are slow.
- The addition of PG alone to the bentonite-lime mixture allows the neo-formation of hydrated calcium silicate (C-S-H) and ettringite, which increases the compressive strength of the specimens.
- The addition of the black steel slag to the bentonite-lime-PG mixture accelerates the hydration kinetics and activates the pozzolanic reaction due to the presence of C2S in the slag, thus promoting the increase of the mechanical strength of the B-L-PG-Ss mixture.
- The compressive strength of hydrated BL, BL-PG and BL-PG-Ss blends increases from 15 to 28 days of curing. Furthermore, 8% of slag added to the B-L-PG mixture increase the mechanical compression of 0.6 MPa after 28 days of hardening.
Author Contributions:

Conceptualization: Achraf Harrou, Elkhadir Gharibi and Meriam El Ouahabi
Methodology: Achraf Harrou, Elkhadir Gharibi and Meriam El Ouahabi
Validation, Achraf Harrou, Elkhadir Gharibi and Meriam El Ouahabi
Formal analysis, Achraf Harrou
Investigation, Achraf Harrou
Writing—original draft preparation, Achraf Harrou
Writing—review and editing, Elkhadir Gharibi, Meriam El Ouahabi, Yassine Taha and Nathalie Fagel
Supervision, Elkhadir Gharibi and Meriam El Ouahabi
Project administration Elkhadir Gharibi and Meriam El Ouahabi
All authors have read and agreed to the published version of the manuscript.

Funding: Please add: This research received no external funding.

Acknowledgments: The authors would like to thank the company SONASID for the slag samples and the company OCP for the phosphogypsum provided.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Steel in Figures (2016), World Steel Association ISBN 978-2-930069-87-6. Website: https://www.worldsteel.org/en/dam/jcr:4f060d8b-3602-4ffe-9e87-7e93e0659449/Word+Steel+in+Figures+2016.pdf. (accessed on 29 09 2020).

2. Rapport financier semestriel (2019) Relation actionnaires, SONASID, Web site: http://www.sonasid.ma/Finances/Rapports-annuels (accessed on 29 09 2020).

3. Chaurand, P.; Rose, J.; Briois, V.; Olivi, L.; Hazemann, J.L.; Proux, O.; Nzssif V.; Susini J.; Salom M.; Bottero, J.Y. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. J. Hazard. Mater. 2007, 139(3), 537-542. https://doi.org/10.1016/j.jhazmat.2006.02.060

4. Nakase, K.; Matsui, A.; Kikuchi, N.; Miki, Y.; Kishimoto, Y.; Goto, I.; Nagasaka, T. Fundamental research on a rational steelmaking slag recycling system by phosphorus separation and collection. J. Manuf. Sci. Prod. 2013, 13(1-2), 39-45. https://doi.org/10.1515/jmsp-2012-0038

5. Sarfo, P.; Das, A.; Wyss, G.; Young, C. Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Manage. 2017, 70, 272-281. https://doi.org/10.1016/j.wasman.2017.09.024

6. Sarfo, P.; Wyss, G.; Ma, G.; Das, A.; Young, C. Carbothermal reduction of copper smelter slag for recycling into pig iron and glass. Miner. Eng. 2017, 107, 8-19. https://doi.org/10.1016/j.mineng.2017.02.006

7. Roychand, R.; Pramanik, B.K.; Zhang, G.; Setunge, S. Recycling steel slag from municipal wastewater treatment plants into concrete applications—A step towards circular economy. Resour. Conserv. Recycl. 2020, 152, 104533. https://doi.org/10.1016/j.resconrec.2019.104533
8. Wang, Z.; He, X.; Li, J.; Qi, J.; Zhao, C.; Yang, G. Preparation of magnetic steel-slag particle electrode and its performance in a novel electrochemical reactor for oilfield wastewater advanced treatment. *J. Ind. Eng. Chem.* **2018**, *58*, 18-23. https://doi.org/10.1016/j.jiec.2017.09.001

9. Barca, C.; Roche, N.; Troesch, S.; Andres, Y.; Chazarenc, F. Modelling hydrodynamics of horizontal flow steel slag filters designed to upgrade phosphorus removal in small wastewater treatment plants. *J. Env. Manage.* **2018**, *206*, 349-356. https://doi.org/10.1016/j.jenvman.2017.10.040

10. Amuchi, M.; Abtahi, S.M.; Koosha, B.; Hejazi, S.M.; Sheikhzeinoddin, H. Reinforcement of steel-slag asphalt concrete using polypropylene fibers. *J. Ind. Text.* **2015**, *44*(4), 526-541. https://doi.org/10.1177%2F1528083713502998

11. Gonçalves, D.R.; Fontes, W.C.; Mendes, J.C.; Silva, G.J.; Peixoto, R.A. Evaluation of the economic feasibility of a processing plant for steelmaking slag. *Waste Manage Res.* **2016**, *34*(2), 107-112. https://doi.org/10.1177%2F0734242X15615955

12. Kang, G.; Cikmit, A.A.; Tsuchida, T.; Honda, H.; Kim, Y.S. Strength development and microstructural characteristics of soft dredged clay stabilized with basic oxygen furnace steel slag. *Constr. Build. Mater.* **2019**, *203*, 501-513. https://doi.org/10.1016/j.conbuildmat.2019.01.106

13. Cao, L.; Shen, W.; Huang, J.; Yang, Y.; Zhang, D.; Huang, X.; Jiel Z.; Ji, X. Process to utilize crushed steel slag in cement industry directly: Multi-phased clinker sintering technology. *J. Cleaner Prod.* **2019**, *217*, 520-529. https://doi.org/10.1016/j.jclepro.2019.01.260

14. Zhang, X.; Zhao, S.; Liu, Z.; Wang, F. (2019). Utilization of steel slag in ultra-high performance concrete with enhanced eco-friendliness. *Constr. Build. Mater.* **2019**, *214*, 28-36. https://doi.org/10.1016/j.conbuildmat.2019.04.106

15. Zhang, Y.J.; Liu, L.C.; Xu, Y.; Wang, Y.C. (2012). A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water. *J. Haz. Mater.* **2012**, *209*, 146-150. https://doi.org/10.1016/j.jhazmat.2012.01.001

16. Huang, Y.; Qian, J.; Lu, L.; Zhang, W.; Wang, S.; Wang, W.; Cheng, X. (2020). Phosphogypsum as a component of calcium sulfoaluminate cement: Hazardous elements immobilization, radioactivity and performances. *J. Cleaner Prod.* **2020**, *248*, 119287. https://doi.org/10.1016/j.jclepro.2019.119287

17. Liu, L.; Zhou, A.; Deng, Y.; Cui, Y.; Yu, Z.; Yu, C. (2019). Strength performance of cement/slag-based stabilized soft clays. *Constr. Build. Mater.* **2019**, *211*, 909-918. https://doi.org/10.1016/j.conbuildmat.2019.03.256

18. Croft, J.B. The influence of soil mineralogical composition on cement stabilization. *Geotech.* **1967**, *17*(2), 119-135. https://doi.org/10.1680/geot.1967.17.2.119

19. Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J., López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. *J. Environ. Manage.* **2009**, *90*(8), 2377-2386. https://doi.org/10.1016/j.jenvman.2009.03.007

20. Oumnih, S.; Gharibi, E.; Yousfi, E.B.; Bekkouch, N.; El Hammouti, K. Phosphogypsum waste valorization by acid attack with the presence of metallic iron. *J. Mater. Environ. Sci.* **2017**, *8*(1), 338-344.

21. Tsioka, M.; Voudrias, E.A. Comparison of alternative management methods for phosphogypsum waste using life cycle analysis. *J. Cleaner Prod.* **2020**, *121386*. https://doi.org/10.1016/j.jclepro.2020.121386
22. Rutherford, P.M.; Dudas, M.J.; Arocena, J.M. Trace elements and fluoride in phosphogypsum leachates. *Environ. Technol.* **1995**, *16*(4), 343-354. https://doi.org/10.1080/09593331608616276

23. Silva, M.V.; de Rezende, L.R.; dos Anjos Mascarenha, M.M.; de Oliveira, R.B. Phosphogypsum, tropical soil and cement mixtures for asphalt pavements under wet and dry environmental conditions. *Resour. Conserv. Recycl.* **2019**, *144*, 123-136. https://doi.org/10.1016/j.resconrec.2019.01.029

24. De Rezende, L.R.; Curado, T.D.S.; Silva, M.V.; Mascarenha, M.M.D.A.; Metogo, D.A.N.; Neto, M.P.C.; Bernucci, L.L.B. Laboratory study of phosphogypsum, stabilizers, and tropical soil mixtures. *J. Mater. Civ. Eng.* **2017**, *29*(1), 04016188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001711

25. Zeng, L.L.; Bian, X.; Zhao, L.; Wang, Y. J.; Hong, Z.S. Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China. *Geomech. Energy Environ.* **2020**, 100195. https://doi.org/10.1016/j.gete.2020.100195

26. Oumnih, S.; Gharibi E.K.; Bekkouch, N.; Fagel, N., Elhamouti, K., El Ouahabi, M. Phosphogypsum waste as additives to lime stabilization of bentonite. *Sustainable Environ. Res.* **2019**, *29*(1), 35. https://doi.org/10.1186/s42834-019-0038-z

27. Harrou, A.; Gharibi E.; Nasri, H.; Fagel, N.; El Ouahabi, M. Physico-mechanical properties of phosphogypsum and black steel slag as aggregate for bentonite-lime based materials. *Mater. Today: Proc.* https://doi.org/10.1016/j.matpr.2020.05.819

28. Amrani, M.; Taha, Y.; Chkichach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum recycling: New horizons for a more sustainable road material application. *J. Build. Eng.* **2020**, *30*, 101267. https://doi.org/10.1016/j.jobe.2020.101267

29. Değirmenci, N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. *Constr. Build. Mater.* **2008**, *22*(8), 1857-1862. https://doi.org/10.1016/j.conbuildmat.2007.04.024

30. Ajam, L.; Ouezdou, M.B.; Felfoul, H.S.; El Mensi, R. Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. *Constr. Build. Mater.* **2009**, *23*(10), 3240-3247. https://doi.org/10.1016/j.conbuildmat.2009.05.009

31. Rosales, J.; Pérez, S.M.; Cabrera, M.; Gázquez, M.J.; Bolivar, J.P.; de Brito, J.; Agrela, F. Treated phosphogypsum as an alternative set regulator and mineral addition in cement production. *J. Cleaner Prod.* **2020**, *244*, 118752. https://doi.org/10.1016/j.jclepro.2019.118752

32. Gu, K.; Chen, B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. *Constr. Build. Mater.* **2020**, *231*, 117195. https://doi.org/10.1016/j.conbuildmat.2019.117195

33. Haque, M.A.; Chen, B.; Liu, Y.; Shah, S.F.A.; Ahmad, M.R. Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum. *J. Cleaner Prod.* **2020**, 121268. https://doi.org/10.1016/j.jclepro.2020.121268

34. Shen, W.; Liu, Y.; Wu, M.; Zhang, D.; Du, X.; Zhao, D.; Xu G.; Zhang B.; Xiong, X. Ecological carbonated steel slag pervious concrete prepared as a key material of sponge city. *J. Cleaner Prod.* **2020**, *256*, 120244. https://doi.org/10.1016/j.jclepro.2020.120244

35. A Salah, B.; S Gaber, M.; Kandil, T. The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite. *Miner.* **2019**, *9*(10), 626. https://doi.org/10.3390/min9100626
36. Manzano, H.; Dolado, J.S.; Ayuela, A. Elastic properties of the main species present in Portland cement pastes. *Acta Mater.* 2009, 57(5), 1666-1674. https://doi.org/10.1016/j.actamat.2008.12.007

37. Dihang, M.D. Mécanisme de coagulation et de flocculation de suspensions d’argiles diluées rencontrées en traitement des eaux (Doctoral dissertation, Université de Toulouse, Université Toulouse III-Paul Sabatier) 2007.

38. Gu, Y.; Martin, R.P.; Metalissi, O.O.; Fen-Chong, T.; Dangla, P. Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation. *Cem. Concr. Res.* 2019, 123, 105766. https://doi.org/10.1016/j.cemconres.2019.05.011

39. Qiao, Z.; Liu, Q.; Zhang, S.; Wu, Y. The mineralogical characteristics between opaline silica in bentonite and α-cristobalite. *Solid State Sci.* 2019, 96, 105948. https://doi.org/10.1016/j.solidstatesciences.2019.105948

40. Gou, Z.; Chang, J.; Gao, J.; Wang, Z. In vitro bioactivity and dissolution of Ca$_2$(SiO$_3$)(OH)$_2$ and β-Ca$_2$SiO$_4$ fibers. *J. Eur. Ceram. Soc.* 2004, 24(13), 3491-3497. https://doi.org/10.1016/j.jeurceramsoc.2003.11.023

41. Robinet, L.; Coupry, C.; Eremin, K.; Hall, C. (2006). The use of Raman spectrometry to predict the stability of historic glasses. *J. Raman Spectrosc.* 2006, 37(7), 789-797. https://doi.org/10.1002/jrs.1540

42. Matson, D.W.; Sharma, S.K.; Philpotts, J.A. (1983). The structure of high-silica alkali-silicate glasses. A Raman spectroscopic investigation. *J. Non-Crys. solids* 1983, 58(2-3), 323-352. https://doi.org/10.1016/0022-3093(83)90032-7

43. Sharma, S.K., Mammone, J.F., Nicol, M.F. Raman investigation of ring configurations in vitreous silica. *Nature* 1981, 292(5819), 140-141. https://doi.org/10.1038/292140a0

44. McMillan, P. Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. *Am. Mineral.* 1984, 69(7-8), 622-644.

45. Monnin, Y. Méthodologie pour décrire le gonflement multi-échelle de calcaires siliceux soumis à la réaction alcali-silice dans le matériau béton (Doctoral dissertation, Université d’Artois) 2005.

46. Li, H.; Guan, X.; Zhang, X.; Ge, P.; Hu, X.; Zou, D. (2018). Influence of superfine ettringite on the properties of sulphaaluminate cement-based grouting materials. *Constr. Build. Mater.* 2018, 166, 723-731. https://doi.org/10.1016/j.conbuildmat.2018.02.013

47. Jiménez, A.; Prieto, M. Thermal stability of ettringite exposed to atmosphere: Implications for the uptake of harmful ions by cement. *Environ. Sci. Technol.* 2015, 49(13), 7957-7964. https://doi.org/10.1021/acs.est.5b00536