The aim of this study was to evaluate the dietary effect of feeding pigs with diets enriched with sweet chestnut wood (Castanea sativa Mill.) extract on the microbiological and chemical characteristics of cooked pork ham. Three groups of 10 pigs were fed with a control diet (CTRL), with the CTRL diet enriched with 0.2% of oregano extract (OR) and with the CTRL diet enriched with 0.2% of sweet chestnut wood extract (SCW), respectively. Six cooked hams per group were produced, sliced and packaged under a modified atmosphere (N2:CO2=80:20) and stored at refrigeration temperature (4±1°C). Three packages per cooked hams per group were aseptically sliced after refrigeration period and packaged under a modified atmosphere condition (N2:CO2=80:20; multilayer film composed by polypropylene-ethylene vinyl alcohol-polypropylene; Tecknofood Pack, Castelnuovo, PV, Italy) in 150 g serving packs. Nine packs for each cooked ham were sampled on the turkey breast fillet microbial load and packaged under a modified atmosphere condition (N2:CO2=80:20; multilayer film composed by polypropylene-ethylene vinyl alcohol-polypropylene; Tecknofood Pack, Castelnuovo, PV, Italy) in 150 g serving packs. Nine packs for each cooked ham were sampled on the turkey breast fillet microbial load and packaged under a modified atmosphere condition (N2:CO2=80:20; multilayer film composed by polypropylene-ethylene vinyl alcohol-polypropylene; Tecknofood Pack, Castelnuovo, PV, Italy). Three packages per cooked hams per group were aseptically sliced after refrigeration period and packaged under a modified atmosphere condition (N2:CO2=80:20; multilayer film composed by polypropylene-ethylene vinyl alcohol-polypropylene; Tecknofood Pack, Castelnuovo, PV, Italy). Three packages per cooked hams per group were aseptically sliced after refrigeration period and packaged under a modified atmosphere condition (N2:CO2=80:20; multilayer film composed by polypropylene-ethylene vinyl alcohol-polypropylene; Tecknofood Pack, Castelnuovo, PV, Italy).
days of storage (3 packs/ham/group). Storage was performed at 4±1°C.

After 3 hour (0 day of storage) from packaging the following measurements were performed: chemical composition (AOAC, 1990); oxygen radical absorbance capacity assay (ORACFL) as described by Branciari et al. (2015); pH determination as described by Bendal (1975); colour coordinates (CIE, 1986), total volatile basic nitrogen (TVBN) as described by Pearson (1991); TBARs as described by Tarladgis et al. (1960).

The microbiological analyses were: total microbial count (TMC) on Plate Count Agar (PCA; Oxoid Ltd., Basingstoke, UK) aerobically incubated at 30°C for 72h; Lactobacillus spp. on MRS agar (Oxoid Ltd.) anaerobically incubated at 37°C for 48 h (LAB); Enterobacteriaceae count using Violet Red Bile Glucose Agar (VRBG; Oxoid Ltd.) aerobically incubated at 37°C for 24h. The results were normalized to colony forming unit (cfu) g⁻¹ and converted into Log values. The presence of Listeria monocytogenes was also tested for using the criteria set by ISO 11290-1 (ISO, 1996).

The determination of pH, colour, TVBN and TBARs, and the microbial analyses were repeated at 10 and 20 days of storage at 4°C.

Data were analyzed using an ANOVA model (Statview; SAS Institute Inc., Cary, NC, USA) with diet and time as fix factors. For chemical composition and ORACFL only diet were considered as fixed factor. Tukey’s test was used for post hoc comparisons between groups. Differences were considered to be significant when P<0.05. For microbial analysis the dietary effects on the same sampling time was evaluated using the unpaired T test (Statview) and the significance level was set at a value of P<0.05.

Results

The chemical composition and ORACFL values of the products are reported in Figures 1 and 2. No differences were recorded for chemical composition between the groups. Higher ORACFL mean values were recorded in SCW group (14.20±0.69 standard deviation) and OR (13.03±1.03) than CTRL (9.95±0.96) group (P<0.001).

Microbiological analyses (n=18 for each group at each sampling time) show an increase in TMC and LAB values during storage (Figure 3). No differences were recorded among CTRL, OR and SCW groups at the same storage times considered. Enterobacteriaceae counts were below the detection limit in all the samples tested (with an exception in one SCW sample at 10 days of storage with Log 2.3 cfu g⁻¹ value). No Listeria monocytogenes was isolated from the samples.

For the physical-chemical analyses, pH, L* and TVBN values did not differ between the groups considered (Table 1). For ham redness (a* value) and yellowishness (b* value) no difference at 0 day of storage was registered between the groups but at 10 and 20 days of storage. Significant decreases were recorded only in CTRL samples (a* value: from 12.93 at 0 day to 9.65 at 20 days; for b* value from 8.51 at 0 days to 6.83 at 20 days). TBARs values followed the same trend as higher values were recorded in CTRL samples than in OR and SCW after 10 and 20 days of storage. At 20 days TBARs value in SCW were also lower than OR (1.95 vs 2.06 mg MDA/kg respectively). The effect of time was evident for all the parameters considered (Table 1).
Table 1. pH, colour coordinates, total basic volatile nitrogen and thiobarbituric reactive substances values of cooked pork ham produced from pigs fed with oregano extract, sweet chestnut wood extract and with a standard diet at 0, 10 and 20 days of storage (n=6 hams/group).

Parameters	CTRL 0 day	OR 0 day	SCW 0 day	CTRL 10 days	OR 10 days	SCW 10 days	CTRL 20 days	OR 20 days	SCW 20 days	SEM	D	T	D×T	
pH	6.14	6.16	6.02	5.79	5.79	5.79	5.75	5.75	5.35	5.46	0.041	0.483	<0.001	0.066
L*	62.34	60.76	61.53	63.93	65.49	66.61	64.84	66.05	66.46	1.084	0.415	<0.001	0.474	
a*	12.93	13.20	12.73	10.63	12.01	12.48	9.65	11.91	12.38	0.570	0.005	0.003	0.140	
b*	8.51	7.89	7.65	6.92	7.77	7.83	6.83	7.27	7.39	0.271	0.527	0.001	0.019	
TBARS (mg MDA kg⁻¹)	1.48	1.46	1.37	1.80	1.70	1.59	2.12	2.06	1.95	0.034	<0.001	<0.001	0.437	

SEM, standard error of mean; CTRL, control diet; OR, oregano extract; SCW, sweet chestnut wood extract; D, diet effect; T, time effect; D×T, interaction diet and time effects; L*, lightness; a*, redness; b*, yellowness; TBARS, thiobarbituric reactive substances; MDA, malondialdehyde. * Means within a row with different letters are statistically different.

Discussion

The ORAC₉₀ results confirm that bioactive substances could reach meat and meat products through enriched diets (Moñino et al., 2008). These molecules are responsible for the different effects on the products but in this study only antioxidant effects were registered. Furthermore the hygienic characteristics of meat products are strongly affected by several factor including food processing, packaging and storage conditions. The addition of natural preservatives directly to the products could affect microbial growth only if a certain amount of extract is used (Zhang et al., 2009). Probably, in this study, the amount of bioactive substances used could not affect the hygienic characteristics of the products during storage. This consideration is in contrast to other author who found dietary antimicrobial effects of natural preservative in meat (Govaris et al., 2007; Nieto et al., 2010; Bañón et al., 2012; Serrano et al., 2014), including oregano leaves (Botsoglou et al., 2010).

The dietary effects on lipid oxidation of OR and SCW was observed in cooked pork hams. This effects in meat exerted by oregano is reported by several authors (Simitzis et al., 2008), even though Janz et al. (2007) observed only a tendency towards a reduced lipid oxidation (oregano essential oil added to the diet at a dose of 0.05%) and Simitzis et al. (2010) (feed supplemented with oregano essential oil at concentrations of 0.25, 0.5 and 1 ml/kg of feed diet) did not find any effect on stored pig meat when different concentrations of oregano essential oils were added to the diet. SCW extract was proved effective against lipid oxidation in rabbit meat (Liu et al., 2009) but not in poultry meat (Schiavone et al., 2008). An antioxidant effect of a combination of the two extract was found in pork meat when it was used in the diet of outdoor reared pigs (Ranucci et al., 2015).

Oxidation is a relevant factor affecting shelf life of the products (i.e. development of off-flavour) (Nieto et al., 2011) and colour stability (Luciano et al., 2011). This effects was registered in SCW ham, where a* value remained stable during storage time even when pH fell under acceptable conditions (pH<5.5). The SCW samples showed a higher antioxidant capacity and subsequently a lower oxidation than OR.

Conclusions

The dietary supplementation with SCWE and oregano extract affected the oxidative status of cooked pork ham but no antimicrobial effects were detected on the products. More relevant information could be provided by the evaluation of the antimicrobial effects on specific bacterial that inhabit the animal intestine and are responsible for foodborne disease and are possibly present in meat. Nonetheless the cooking process performed on the hams considered, that reach 72°C at the core of the product, is responsible for the elimination of such pathogens and only post process intervention (i.e. slicing) could contaminate the products. Strategies could nevertheless be considered with the use of such diet enrichments and other processing interventions able to promote food hygiene and improve shelf-life through a combination of antibacterial and antioxidant effects.

References

AOAC, 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists ed., Washington, DC, USA.

Bañón S, Méndez L, Almela E, 2012. Effects of dietary rosemary extract on lamb spoilage...
under retail display conditions. Meat Sci 90:579-83.

Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA, 2008. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem 107:1106-13.

Bendlal JR, 1975. Cold-contracture and ATP-turnover in the red and white musculature of the pig, post mortem. J Sci Food Agr 26:55-71.

Botsoglou E, Govaris A, Moulas A, Botsoglou N, 2010. Oxidative stability and microbial growth of turkey breast fillets during refrigerated storage as influenced by feed supplementation with olive leaves, oregano and/or α-tocopheryl acetate. Brit Poultry Sci 51:760-8.

Bozin B, Mimika-Dukic N, Simin N, Anackov G, Botsoglou E, Govaris A, Moulas A, Botsoglou N, Bendal JR, 1975. Cold-contracture and ATP-turnover in the red and white musculature of the pig, post mortem. J Sci Food Agr 26:55-71.

Bozín B, Mimika-Dukic N, Simin N, Anackov G, 2006. Characterization of the volatile composition of essential oil of some Lamiaceae species and the antimicrobial and antioxidant activities of the entire oils. J Agr Food Chem 54:1822-8.

Branciari R, Ranucci D, Trabalza Marunici M, Codini M, Orrù M, Ortenzi R, Forte C, Ceccarini MR, Valiani A, 2015. Evaluation of the antioxidant properties and oxidative stability of Pecorino cheese made from the raw milk of ewes fed Rosmarinus officinalis L. leaves. Int J Food Sci Tech 50:558-65.

Burt S, 2004. Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223-53.

CIE, 1986. Colorimetry 15.2. Commission Internationale de l’Eclairage Publ., Vienna, Austria.

Comandini P, Lerma-Garcia MJ, Simó-Alfonzo EF, Toschi TG, 2014. Tannin analysis of Vanilla planifolia Mill. by HPLC-DAD–MS. Food Chem 124:1036-42.

Frankie T, Solobir J, 2011. In vivo antioxidant activity of the extracts from chestnut flower, leaf, skins and fruit. Food Chem 107:1106-13.

Graziani R, Tosi G, Denti R, 2006. In vitro antimicrobial activity of SILVA FEED ENC on bacterial strains of poultry origin. In: EPC

ISO, 1996. Microbiology of food and animal feeding stuffs. Horizontal method for the detection and enumeration of Listeria monocytogenes. Part 1: Detection. ISO Norm 11290-1:1996. International Organisation for Standardisation ed., Geneva, Switzerland.

Janz JAM, Morel PCH, Wilkinson BHP, Purchas RW, 2007. Preliminary investigation of the effects of low-level dietary inclusion of fragrant essential oils and oleoresins on pig performance and pork quality. Meat Sci 75:350-5.

Lahucky R, Nuernberg K, Kovac I, Bucko O, Nuernberg K, 2010. Assessment of the antioxidant potential of selected plant extracts. In vitro and in vivo experiments on pork. Meat Sci 85:779-84.

Liu HW, Gai F, Gasco L, Brugiapaglia A, Ciusi L, Guo KJ, Tong JM, Zoccarato I, 2009. Effects of chestnut tannins on carrass characteristics, meat quality, lipid oxidation and fatty acid composition of rabbits. Meat Sci 83:678-83.

Lopes GK, Schulman HM, Hermes-Lima M, 1999. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1472:142-52.

Luciano G, Vasta V, Monahan FJ, López-Andrés P, Biondi L, Lanza M, Priolo A, 2011. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem 124:1036-42.

Moñino I, Martínez C, Sotomayor JA, Lafiufente A, Jordan MJ, 2008. Polyphenolic transmission to Segureño lamb meat from ewes’ diet supplemented with the distillate from rosemary (Rosmarinus officinalis) leaves. J Agr Food Chem 56:3363-9.

Nieto G, Díaz P, Bañón S, Garrido MD, 2010. Dietary administration of ewe diets with a distillate from rosemary leaves (Rosmarinus officinalis L.): influence on lamb meat quality. Meat Sci 85:1429-32.

Nutrition and nitrogen balance of broiler chicks. J Sci Food Agr 90:579-83.

Ranucci D, Branciari R, Acuti G, Delia Casa G, Trabalza Marunici M, Miraglia D, 2013. Quality traits of Ciauscoul salami from meat of pigs fed rosemary extract enriched diet. Ital J Food Safety 2:49-52.

Sanchez-Escalante A, Djenane D, Torrescano G, Beltran JA, Roncales P, 2003. Antioxidant action of borage, rosemary, oregano, and ascorbic acid in beef patties packaged in modified atmosphere. J Food Sci 68:339-44.

Schiavone A, Guo K, Tassone S, Gasco L, Hernandez E, Denti R, Zoccarato I, 2008. Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks. Poultry Sci 87:521-7.

Serrano R, Jordan MJ, Bañón S, 2014. Use of dietary rosemary extract in ewe and lamb to extend the shelf life of raw and cooked meat. Small Ruminant Res 116:144-52.

Shan B, Kai Y-Z, Brooks JD, Corke H, 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 117:112-9.

Simitzis PE, Deligeorgis SG, Bizelas JA, Dardamani A, Theodosiou I, Fegeros K, 2008. Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Sci 79:217-23.

Simitzis PE, Symeon GK, Charisiadou MA, Bizelas JA, Deligeorgis SG, 2010. The effects of dietary oregano oil supplementation on pig meat characteristics. Meat Sci 84:670-6.

Tarladgis BG, Watts BM, Yonathan M, 1960. Determination of malonaldehyde in rancid foods. J Am Oil Chem Soc 37:44-8.

Zhang H, Kong B, Xiong YL, Sun X, 2009. Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4°C. Meat Sci 81:686-92.

Zheng W, Wang SY, 2001. Antioxidant activity and phenolic compounds in selected herbs. J Agr Food Chem 49:5165-70.