Supporting Information

A global assessment of Holistic Planned Grazing™ compared with season-long, continuous grazing: meta-analysis findings
Heidi-Jayne Hawkins
African Journal of Range and Forage Science 2017, 34(2): 65–75. DOI: http://dx.doi.org/10.2989/10220119.2017.1358213

Table S1: The means, standard deviations and Quality Indices (Qi) for data sets comparing plant cover (basal cover except where noted otherwise), plant biomass, animal gain (or production in kg ha\(^{-1}\)) and animal average daily gain (or condition in kg head\(^{-1}\) d\(^{-1}\)) for Holistic Planned Grazing™ (HPG) and season-long continuous grazing are given in the context of the location and Aridity Index (AI). Peer-reviewed studies were selected that included comparisons between HPG and season-long continuous grazing at set stocking rates. The coordinates provided by some studies were approximate. Source of the AI data: CGIAR-CSI Global-Aridity and Global-PET Database, http://www.cgiar-csi.org, Zomer et al. (2007, 2008). Full citations of the studies can be found in the References of the main article.

Data set (first author, year, details)	Data type	Lat.	Long.	AI	Country	Time (yrs)	Size (n)	Mean	SD	Mean	SD	Qi	Qi calculation (refer Table 1)
Badgery 2016a (dry yrs, low prod.)	Plant cover	33.450	148.933	0.684	Australia	4	3	82.94	0.904	83.50	0.736	0.81	1+1+2+1+0.5+1
Badgery 2016a (dry yrs, med. prod.)	Plant cover	33.450	148.933	0.684	Australia	4	3	92.13	0.688	85.75	2.175	0.81	1+1+2+1+0.5+1
Badgery 2016a (dry yrs, high prod.)	Plant cover	33.450	148.933	0.684	Australia	4	3	99.13	0.239	91.88	1.028	0.81	1+1+2+1+0.5+1
Badgery 2016a wet yrs, low prod.)	Plant cover	33.450	148.933	0.684	Australia	4	3	93.50	3.926	93.50	3.926	0.81	1+1+2+1+0.5+1
Badgery 2016a wet yrs, med. prod.)	Plant cover	33.450	148.933	0.684	Australia	4	3	97.25	1.931	94.00	3.373	0.81	1+1+2+1+0.5+1
Badgery 2016a (wet yrs, high prod.)	Plant cover	33.450	148.933	0.684	Australia	4	3	99.13	0.427	96.25	2.278	0.81	1+1+2+1+0.5+1
Clatworthy 1984 (S1)	Plant cover	18.192	31.542	0.624	Zimbabwe	7	7	43.71	16.449	38.43	8.867	0.38	0+0+2+1+0+0
Clatworthy 1984 (S2)	Plant cover	18.192	31.542	0.624	Zimbabwe	7	7	45.00	13.191	41.00	14.714	0.38	0+0+2+1+0+0
Dowling 2005 (Guyra)	Plant cover	30.200	151.666	0.610	Australia	6	6	17.42	3.890	15.88	3.365	0.81	1+1+2+1+0.5+1
Dowling 2005 (Armidale)	Plant cover	30.514	151.666	1.069	Australia	4	4	11.13	3.944	7.06	3.489	0.81	1+1+2+1+0.5+1
Dowling 2005 (Newbridge)	Plant cover	33.589	149.380	0.766	Australia	6	6	9.71	4.530	8.96	4.109	0.88	1+1+2+1+1+1
Dowling 2005 (Tarago)	Plant cover	35.069	149.654	0.610	Australia	6	3	2.73	1.519	2.02	1.845	0.81	1+1+2+1+0.5+1
Dowling 2005 (Oatlands)	Plant cover	42.300	147.371	1.069	Australia	3	3	7.79	3.684	7.57	2.835	0.88	1+1+2+1+1+1
Derner 2007	Plant cover	40.817	-107.767	0.352	USA	2	3	15.56	2.185	21.80	4.950	0.75	1+1+2+0+1+1
Data set (first author, year, details)	Data type	Lat.	Long.	AI	Country	Time (yrs)	Size (n)	Mean (SD)	Mean (SD)	Qi (refer Table 1)			
--------------------------------------	-------------------------	-------	-----------	---------	----------	------------	----------	-----------	-----------	---------------------			
Derner 2007 (foliar cover)	Plant cover	40.817	-107.767	0.352	USA	2	3	64.10 (2.546)	68.40 (3.536)	0.75 1+1+2+0+1+1+1			
Hart 1988	Plant cover	41.183	-103.117	0.367	USA	6	6	74.00 (5.000)	69.00 (5.000)	0.69 1+0.5+2+1+0+1			
Jacobo 2006 (highland)	Plant cover	-36.000	-64.000	0.463	Argentina	4	4	81.50 (9.000)	82.75 (2.062)	0.94 2+1+2+0+1+1+1			
Jacobo 2006 (lowland)	Plant cover	-36.000	-64.000	0.463	Argentina	4	4	86.00 (5.099)	76.25 (9.743)	0.94 2+1+2+0+1+1+1			
Manley 1997 (mod/heavy stocking)	Plant cover	41.183	-104.883	0.372	USA	6	12	15.00 (5.000)	15.00 (5.000)	0.94 2+0.5+2+1+1+1			
Manley 1997	Plant cover	41.183	-104.883	0.372	USA	6	13	11.15 (4.598)	9.88 (3.618)	0.69 2+0.5+2+1+1+1			
Teague 2011	Plant cover	33.267	-98.133	0.542	USA	7	9	99.00 (5.000)	100.00 (5.000)	0.63 2+0+0+1+1+1			
Thurow 1988 (forb foliar cover)	Plant cover	31.000	-100.000	0.378	USA	3	3	2.53 (1.357)	4.67 (2.529)	0.56 1+1+0.5+1+1+1			
Thurow 1988 (grass foliar cover)	Plant cover	31.000	-100.000	0.378	USA	3	3	14.64 (2.335)	16.73 (1.849)	0.56 1+1+0.5+1+1+1			
White 1991 (Yr1)	Plant cover	33.352	-105.592	0.341	USA	2	40	13.30 (5.123)	12.90 (2.909)	0.44 2+0.5+0+0+0+1			
White 1991 (Yr2)	Plant cover	33.352	-105.592	0.341	USA	2	40	12.40 (3.542)	11.60 (2.340)	0.44 2+0.5+0+0+0+1			
Anderson 1988 (Yr1)	Plant biomass	32.483	-106.733	0.160	USA	1	2	832.00 (207.000)	833.00 (225.000)	0.56 1+0.5+1+0+1+1+1			
Anderson 1988 (Yr2)	Plant biomass	32.483	-106.733	0.160	USA	2	2	711.00 (78.000)	1109.00 (78.000)	0.56 1+0.5+1+0+1+1+1			
Badgery 2016a (dry yrs, low prod.)	Plant biomass	-33.450	148.933	0.684	Australia	4	3	1312.50 (12.500)	1125.00 (75.000)	0.81 1+1+2+1+0.5+1			
Badgery 2016a (dry yrs, med. prod.)	Plant biomass	-33.450	148.933	0.684	Australia	4	3	1650.00 (86.603)	1112.50 (129.703)	0.81 1+1+2+1+0.5+1			
Badgery 2016a (dry yrs, high prod.)	Plant biomass	-33.450	148.933	0.684	Australia	4	3	2275.00 (149.304)	1475.00 (110.868)	0.81 1+1+2+1+0.5+1			
Badgery 2016a wet yrs, low prod.)	Plant biomass	-33.450	148.933	0.684	Australia	4	3	2775.00 (532.877)	2425.00 (366.003)	0.81 1+1+2+1+0.5+1			
Badgery 2016a wet yrs, med. prod.)	Plant biomass	-33.450	148.933	0.684	Australia	4	3	2975.00 (444.175)	2525.00 (417.083)	0.81 1+1+2+1+0.5+1			
Badgery 2016a wet yrs, high prod.)	Plant biomass	-33.450	148.933	0.684	Australia	4	3	3475.00 (464.354)	2950.00 (427.200)	0.81 1+1+2+1+0.5+1			
Cassels 1995	Plant biomass	36.067	-99.217	0.493	USA	5	5	3600.00 (360.000)	3000.00 (360.000)	0.75 1+0.5+2+0.5+1+1+1			
Dowling 2005 (Guyra)	Plant biomass	-30.200	151.666	0.610	Australia	6	6	4896.67 (1408.526)	5121.67 (1299.806)	0.81 1+1+2+1+0.5+1			
Dowling 2005 (Armidale)	Plant biomass	-30.514	151.666	1.069	Australia	4	4	6207.50 (3603.992)	6445.00 (2940.981)	0.81 1+1+2+1+0.5+1			
Dowling 2005 (Newbridge)	Plant biomass	-33.589	149.380	0.766	Australia	6	6	5921.67 (2493.395)	5808.33 (1496.722)	0.88 1+1+2+1+1+1+1			
Dowling 2005 (Tarago)	Plant biomass	-35.069	149.654	0.610	Australia	6	6	4790.00 (1489.872)	3980.00 (1712.157)	0.81 1+1+2+1+0.5+1			
Dowling 2005 (Oatlands)	Plant biomass	-42.300	147.371	1.069	Australia	3	3	3066.67 (1339.602)	2506.67 (1053.391)	0.88 1+1+2+1+1+1+1			
Gammon 1978	Plant biomass	-20.132	28.626	0.370	Zimbabwe	2	4	1989.33 (493.622)	1945.00 (658.021)	0.56 1+0.5+2+0+0+1			
Data set (first author, year, details)	Data type	Lat.	Long.	AI	Country	Time (yrs)	Size (n)	Mean	SD	Mean	SD	Qi	Qi calculation (refer Table 1)
--------------------------------------	---------------------	-------	---------	-------	----------	------------	----------	-------	-------	-------	-------	-------	--------------------------------
Gillen 1998	Plant biomass	36.367	-99.067	0.477	USA	5	6	2716.67	584.523	2466.67	602.218	0.94	2+1+2+0.5+1+1
Manley 1997	Plant biomass	41.183	-104.883	0.372	USA	6	4	1047.50	472.961	1200.00	511.534	0.94	2+0.5+2+1+1+1
Teague 2010 (grass, loam)	Plant biomass	33.267	-98.133	0.542	USA	7	7	1868.00	89.956	1835.00	103.184	0.88	1+0.5+0+1+1+1
Teague 2010 (grass, clay-loam)	Plant biomass	33.267	-98.133	0.542	USA	7	7	1264.00	100.539	1338.00	95.247	0.88	1+0.5+0+1+1+1
Teague 2010 (grass, clay)	Plant biomass	33.267	-98.133	0.542	USA	7	7	908.00	52.915	940.00	63.498	0.88	1+0.5+0+1+1+1
Teague 2010 (forb, loam)	Plant biomass	33.267	-98.133	0.542	USA	7	7	416.00	44.978	450.00	55.561	0.88	1+0.5+0+1+1+1
Teague 2010 (forb, clay-loam)	Plant biomass	33.267	-98.133	0.542	USA	7	7	299.00	52.915	343.00	47.624	0.88	1+0.5+0+1+1+1
Teague 2010 (forb, clay)	Plant biomass	33.267	-98.133	0.542	USA	7	7	272.00	31.749	318.00	39.686	0.88	1+0.5+0+1+1+1
Teague 2011	Plant biomass	33.267	-98.133	0.542	USA	1	3	4680.00	470.000	2696.00	270.000	0.75	2+0.5+0+1+1+1
Thurow 1988	Plant biomass	31.000	-100.000	0.378	USA	3	3	2040.91	347.000	2013.64	394.393	0.56	1+1+0+0.5+1+1
Vermeire 2008	Plant biomass	46.367	-105.083	0.366	USA	6	4	1310.00	180.000	1406.00	180.000	0.94	2+1+2+0.5+1+1
White 1991	Plant biomass	33.352	-105.592	0.341	USA	2	6	1214.14	242.509	1199.14	173.027	0.63	2+1+0+0+1+1
Anderson 1988 (Yr1)	Animal gain	32.483	-106.733	0.160	USA	1	3	200.00	4.000	244.00	2.000	0.56	1+0.5+1+0+1+1
Anderson 1988 (Yr2)	Animal gain	32.483	-106.733	0.160	USA	2	3	252.00	1.000	240.00	1.000	0.56	1+0.5+1+0+1+1
Badgerly 2016b (pregnant ewes)	Animal gain	-33.450	148.933	0.684	Australia	4	3	306.51	36.781	271.76	32.611	0.81	1+1+2+1+0.5+1
Clatworthy 1984 (S1)	Animal gain	-18.192	31.542	0.624	Zimbabwe	7	7	157.04	11.613	125.76	9.883	0.38	0+0+2+1+0+0
Clatworthy 1984 (S2)	Animal gain	-18.192	31.542	0.624	Zimbabwe	7	7	232.86	15.040	151.19	9.879	0.38	0+0+2+1+0+0
Derner 2008	Animal gain	41.183	-104.883	0.352	USA	9	14	99.29	26.374	100.71	21.200	1.00	2+1+2+1+1+1
Hart 1988	Animal gain	41.183	-104.883	0.372	USA	6	2	75.56	14.240	84.11	15.831	0.69	1+0.5+2+1+0+1
McCollum 1999	Animal gain	36.367	-99.067	0.477	USA	6	6	100.83	8.232	115.83	5.601	0.94	2+0.5+2+1+1+1
Anderson 1988 (Yr1)	Animal condition	32.483	-106.733	0.160	USA	1	3	0.08	0.040	0.17	0.030	0.56	1+0.5+1+0+1+1
Anderson 1988 (Yr2)	Animal condition	32.483	-106.733	0.160	USA	2	3	0.29	0.040	0.38	0.050	0.56	1+0.5+1+0+1+1
Badgerly 2016b (pregnant ewes)	Animal condition	-33.450	148.933	0.684	Australia	4	3	0.16	0.020	0.17	0.016	0.81	1+1+2+1+0.5+1
Derner 2007	Animal condition	40.817	-107.767	0.352	USA	9	10	1.03	0.111	1.05	0.087	0.75	1+1+2+1+0+0
Derner 2008 (dry yr)	Animal condition	41.183	-104.883	0.372	USA	9	16	0.82	0.400	0.81	0.400	1.00	2+1+2+1+1+1
Derner 2008 (avg yr)	Animal condition	41.183	-104.883	0.372	USA	9	16	0.83	0.250	0.88	0.250	1.00	2+1+2+1+1+1
Data set (first author, year, details)	Data type	Lat.	Long.	AI	Country	Time (yrs)	Size (n)	Mean	SD	Mean	SD	QI	Qi calculation (refer Table 1)
---------------------------------------	-----------------	--------	-----------	------	---------	------------	----------	---------	-------	---------	-------	------------------	-----------------------------
Derner 2008 (wet yr)	Animal condition	41.183	−104.883	0.372	USA	9	16	0.88	0.350	0.91	0.350	1.00	2+1+2+1+1+1+1
Hart 1988	Animal condition	41.183	−104.883	0.372	USA	6	6	0.73	0.189	0.87	0.202	0.69	1+1+1+1+0.5+1
Hart 1993b (nursing cows)	Animal condition	41.183	−104.883	0.372	USA	7	5	0.42	0.152	0.24	0.130	0.69	1+1+1+1+0.5+1
Hart 1993b (dry cows)	Animal condition	41.183	−104.883	0.372	USA	7	5	0.67	0.130	0.67	0.160	0.69	1+1+1+1+0.5+1
Hart 1993b (calves)	Animal condition	41.183	−104.883	0.372	USA	7	5	0.86	0.075	0.77	0.086	0.69	1+1+1+1+0.5+1
Hart 1993b (heifers)	Animal condition	41.183	−104.883	0.372	USA	7	5	0.73	0.101	0.66	0.111	0.69	1+1+1+1+0.5+1
Heidschmidt 1982	Animal condition	33.333	−99.233	0.468	USA	2	10	0.58	0.329	0.58	0.358	0.38	1+0+2+0+0+0
Manley 1997	Animal condition	41.183	−104.883	0.372	USA	6	7	0.76	0.100	0.88	0.090	0.69	1+0.5+1+0.5+1+1
McCollum 1999	Animal condition	36.367	−99.067	0.477	USA	3	6	0.33	0.060	0.29	0.034	0.94	2+0.5+2+1+1+1
Table S2: Assumptions and weightings assigned to the fixed- (FE), random- (RE) and quality effects (QE) models.

Model	FE	RE	QE
Main assumption	Studies are from one population	Studies are from different populations	Studies are from different populations
Calculation of effect size at \(p = 0.05 \) level	Difference in means between treatment \((\bar{x}_t) \) and the control \((\bar{x}_c) \) as: \[
\frac{\bar{x}_t - \bar{x}_c}{\bar{x}_c} \times 100 \]			
As for FE	As for FE	As for FE	
Assumed source of error/s	Sampling error	As for FE; plus heterogeneity between studies	As for FE; plus heterogeneity between studies
Weighting	High weighting for studies with small standard errors	As for FE, plus a random term based on between-study heterogeneity	As for FE, plus a Quality Index (Qi) based on study design
Criticism	Assumes different studies are one populations	Random term is applied equally across studies regardless of quality	Qi is sensitive to user-defined criteria
References	Lipsey and Wilson (2001); Senn (2007)	Senn (2007)	Doi and Thalib (2008, 2009)