NEAR-INFRARED COUNTERPARTS OF CHANDRA X-RAY SOURCES TOWARD THE GALACTIC CENTER

Curtis DeWitt1, Reba M. Bandyopadhyay1, Stephen S. Eikenberry1,4, Robert Blum2,5, Knut Olsen2, Kris Sellgren3, and Ata Sarajedini1

1 University of Florida, Gainesville, FL 32611, USA; dewitt@astro.ufl.edu
2 National Optical Astronomy Observatories, Tucson, AZ 85719, USA
3 Ohio State University, Enarson Hall, 154 West 12th Avenue, Columbus, OH 43210, USA

\textbf{Received 2010 March 24; accepted 2010 July 16; published 2010 September 13}

\section*{ABSTRACT}

The Chandra X-ray Observatory has now discovered nearly 10,000 X-ray point sources in the 2\arcdeg × 0.8 region around the Galactic Center. The sources are likely to be a population of accreting binaries in the Galactic Center, but little else is known of their nature. We obtained JHK_s imaging of the 17\arcsec × 17\arcsec region around Sgr A*, an area containing 4339 of these X-ray sources, with the ISPI camera on the Cerro Tololo Inter-American Observatory (CTIO) 4 m telescope. We cross-correlate the Chandra and ISPI catalogs to find potential IR counterparts to the X-ray sources. The extreme IR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. We find 2137 IR/X-ray astrometrically matched sources: statistically, we estimate that our catalog contains 289 ± 13 true matches to soft X-ray sources and 154 ± 39 matches to hard X-ray sources. However, the fraction of true counterparts to candidate counterparts for hard sources is just 11%, compared to 60% for soft sources, making hard source NIR matches particularly challenging for spectroscopic follow-up. We calculate a color–magnitude diagram (CMD) for the matches to hard X-ray sources, and find regions where significant numbers of the IR matches are real. We use their CMD positions to place limits on the absolute K_s-band magnitudes of the potential NIR counterparts to hard X-ray sources. We find regions of the counterpart CMD with 9 ± 3 likely Wolf-Rayet/supergiant binaries (with four spectroscopically confirmed in the literature) as well as 44 ± 13 candidates that could consist of either main-sequence high mass X-ray binaries or red giants with an accreting compact companion. In order to aid spectroscopic follow-up, we sort the candidate counterpart catalog on the basis of IR and X-ray properties to determine which source characteristics increase the probability of a true match. We find a set of 98 IR matches to hard X-ray sources with redenning consistent with GC distances which have a 45% probability of being true counterparts.

\textit{Key words:} Galaxy: center – infrared: stars – X-rays: stars

\textit{Online-only material:} color figures

\section*{1. INTRODUCTION}

The Galactic Center (GC) has been the target of several major observing campaigns with the Chandra X-ray Observatory. One of the primary results of these campaigns has been to unveil numerous faint and spectrally hard X-ray point sources toward the GC region. Hard X-ray sources, with spectral energy distributions (SEDs) that peak above 1.5 keV, often arise from high extinction. The line of sight to the GC has an average column density of $N_H = 6 \times 10^{22}$ cm$^{-1}$ (Baganoff et al. 2003), which causes the flux below 1.5 keV to experience more than $\tau = 2$ of attenuation (Tan & Draine 2004). This suggests that the hard X-ray sources with attenuated emission below 1.5 keV lie at or beyond the GC distance.

The faintness and hardness of the X-ray emission from these sources could in theory be met by background active galactic nuclei (AGNs), but Bandyopadhyay et al. (2005) find that the number of background AGNs within the 2\arcdeg × 0.8 field is <10%, using the source count distributions from the Chandra Deep Field extragalactic surveys. Munoz et al. (2003a) perform a similar analysis of the number of background AGNs in the smaller 17\arcsec × 17\arcsec field and find that between 20 and 100 of the 2076 X-ray sources detected at energies above 2keV are AGNs, meaning that the bulk of the hard X-ray sources lie within the Galaxy near to or beyond the GC distance.

Munoz et al. (2003a) enumerate the possible classes to which these unidentified X-ray sources may belong: these include coronally active main-sequence stars, Young Stellar Objects (YSOs), Algol binaries, Wolf-Rayet stars (W–Rs), cataclysmic variables (CVs), pulsars, low-mass X-ray binaries (LMXBs), and high-mass X-ray binaries (HMXBs). The soft foreground X-ray sources could in theory belong to any of these classes based on their X-ray SEDs; however, their low X-ray luminosity suggests that they may be more likely to be CVs or coronally active single stars. Of these candidate source types, only LMXBs, HMXBs, and a subclass of CVs with high magnetic fields called Intermediate Polars (IPs) are known to produce enough hard X-rays to be detectable through the large extinction to the GC.
Muno et al. (2003b) search for X-ray flux variability of the sources in the Muno et al. (2003a) X-ray point source catalog. They detect eight sources with periodic variability among the brightest X-ray sources, but the vast majority of sources are too faint to search for flux variability at similar levels.

The next step in identifying the nature of the X-ray sources is to search them at other wavelengths. The near-infrared bandpass is well suited to this effort because stellar photospheres are bright in these bands and the average extinction is dramatically less than at optical passbands. However, source crowding makes definitive association between X-ray and IR sources difficult. For example, a 1″ radius circle at a random location within 10′ of Sgr A* would contain a $K_s < 14.5$ mag star more than 25% of the time and this percentage only increases with fainter magnitudes. Thus, the authenticity of an individual IR/X-ray match can only be verified through spectroscopy. However, one can also examine the astrometrically identified candidate counterparts as a group, and make statistical arguments as to the presence and possible nature of true counterparts within the catalog of matched sources.

Several groups approach this problem by calculating the excess in the number of X-ray/IR matches over the number expected by random coincidence, including Bandopadhyay et al. (2005), Laycock et al. (2005), Arendt et al. (2008), Gosling et al. (2009), and Mauerhan et al. (2009). Bandopadhyay et al. (2005) used ISAAC on the Very Large Telescope (VLT) to image fields containing 77 of the X-ray point sources discovered by Wang et al (2002). They detect a small excess in counterparts in the J and H bands, but find no significant excess in matches in the K band. However, the positions of a number of the X-ray sources in the first Chandra source catalog were found to be inaccurate at the 0.5″ level. A reanalysis of the X-ray/IR matching of these data sets after the X-ray astrometry was improved indicates a 2–3σ excess in detections over that expected from random chance in J, H, and K bands (Gosling et al. 2010).

Laycock et al. (2005) observe the central 10′ × 10′ GC area with the PANIC near-infrared camera on Magellan to a confusion limit of $K_s = 15.4$ mag. Cross-correlating their IR catalog to the X-ray catalog of Muno et al. (2003a), they find a strong IR/X-ray matching significance for the soft X-ray sources, but little significance for the hard X-ray sources. They calculate that no more than 10% of the hard X-ray point sources can have apparent K_s magnitudes brighter than 15 mag. Assuming that these hard X-ray sources reside in the GC, they conclude that certain types of X-ray binaries that have bright mass-donor stars, such as Be-neutron HMXBs, must contribute no more than 10% to the hard X-ray source numbers.

Arendt et al. (2008) perform similar matching simulations using a catalog of ∼20,000 Spitzer IRAC point sources detected at $\lambda = 3.6$, 4.5, 5.8, and 8.0 μm lying within the 17′ × 17′ field of the Muno et al. (2003a) Chandra observations. They found that the soft X-ray sources are correlated to the IRAC catalog, but they detect no such correlation to the hard X-ray sources. However, they note that source crowding limits their catalog to GC sources with $[3.5] < 12.4$ mag, and actual counterparts may be much fainter than this limit.

Since these studies were published, the GC X-ray point source catalog has been updated to include a total of 2 Ms of accumulated observations of the $2° \times 0.8$ area around Sgr A* (Muno et al. 2009). Nine thousand and seventeen X-ray point sources are detected, the positions of many of which have been refined from the earlier catalogs. The majority of the sources in the catalog have astrometric errors less than 0.7″.

Mauerhan et al. (2009) utilize this data together with near-infrared data from the SIRIUS camera on the 1.4 m telescope at Sutherland Observatory in South Africa, and present a catalog of 5184 potential near-infrared candidate counterparts to the X-ray sources. They find that, statistically, 394 of the NIR matches to the hard X-ray sources are real counterparts. This amounts to 5.8% of the 6760 hard X-ray sources, consistent with the findings of Laycock et al. (2005) which limit this percentage to no more than 10%.

A complete accounting of the fraction of LMXBs and HMXBs can provide a useful tracer of both the accumulated star formation and the ongoing star formation in the GC (Grimm et al. 2003). The search can also yield rare and important systems, such as microquasars, X-ray pulsars, and wind-colliding binaries. Mikes et al. (2006), Hyodo et al. (2008), and Mauerhan et al. (2010) have discovered possible wind-colliding O supergiant and W-R binaries in the GC. These systems could prove to be important laboratories for studies of high-mass stellar winds and it may be that more sources of this rare type will be found among the GC X-ray population.

The only way to positively identify individual sources is with spectroscopy. In the near infrared, active accretion manifests in emission lines, such as in Brγ line emission. Spectroscopic campaigns such as those described in Mikes et al. (2006), Mauerhan et al. (2010), and Gosling et al. (2010) have observed only the brightest infrared matches to X-ray sources. With the coming advent of deep multi-object spectroscopy in the near-infrared (Eikenberry 2008), it will be possible to comprehensively follow up nearly all potential near-infrared counterparts, greatly increasing the chance of discovering the true nature of these X-ray populations.

In this work, we present new NIR imaging of the deepest part of the Chandra observations in the 17′ × 17′ area around Sgr A* containing 4339 X-ray point sources. We create a catalog of 2137 candidate NIR counterparts to X-ray point sources and statistically identify the locations of the true counterparts on a NIR color–magnitude diagram (CMD). We also isolate the characteristics that make likely authentic counterparts easier to find among the large number of spurious matches. These results will greatly aid the target selection for future spectroscopic observations as well as indicating the likely types of interacting binaries we may identify within this source population.

2. OBSERVATIONAL DATA

We use four sets of data in this work: the Chandra X-ray point source catalog of Muno et al. (2009), a near-infrared J, H, and K_s catalog from our observations with ISPI at the CTIO 4 m telescope, the Two Micron All Sky Survey (2MASS) JHK_s, all sky data release (Skrutskie et al. 2006), and the JHK_s imaging data and catalogs of the UKIDSS Galactic Plane Survey (Lucas et al. 2008). The 2MASS and UKIDSS data were used to photometrically and astrometrically calibrate the ISPI data, while the ISPI data and Chandra data were used to create a crossmatched source catalog.

2.1. X-ray

Muno et al. (2009) compile 88 Chandra observations of the GC taken between 2000 April and 2007 August and find 9017 point sources over a 2° × 0.8 field. The 17′ × 17′ field centered on Sgr A* has been the target of 1 Ms of exposures and has some of the best sensitivity (4×10^{31} erg s$^{-1}$ for GC sources
at 8 kpc distance) and the best positional accuracy in the X-ray catalog. Seventy-six percent of the X-ray sources in this region have positional accuracies of $0.7\arcsec$ and better.

2.2. ISPI

We used the ISPI camera on the CTIO 4 m Blanco Telescope to observe the $17\arcmin \times 17\arcmin$ central region of the GC, covering the region of highest source density and in sensitivity in the Chandra X-ray data. ISPI has a $10.5' \times 10.5'$ square field of view and a 0.3 pixel$^{-1}$ plate scale (van der Bliek et al. 2004). We observed the $17\arcmin \times 17\arcmin$ region with the J, H, and K_s filters, on 2005 August 10.

We obtained IR imaging of the full Chandra field of Muno et al. (2003a) using a total of four pointings. The individual exposure times were short, 3.2 s for H and K_s, and 5 s for J, so that the number of saturated bright sources would be kept to a minimum. We used a 5-point dither pattern with a nod length of 20" to compensate for the detector's cosmetic defects. The total exposure times for each quadrant of the field were 200 s, 113 s, and 32 s for J, H, and K_s, respectively. Between pointings we checked the image focus by observing the center of the field. The focus stability was very good, which allowed us to use these frames for the creation of a fifth pointing, overlapping the other four pointings. This amounted to obtaining an additional frame with exposure times of 60 s, 68 s, and 68 s for the J, H, and K_s filters. The typical seeing for all images was $\sim 0.7\arcsec$.

The theoretical limiting magnitudes (not including crowding effects) for the fields were $J = 19.5$ mag, $H = 18.5$ mag, and $K_s = 17.7$ mag, taken from the CTIO exposure calculator for ISPI. For sky background removal, we observed an off-source field $10'$ south of the GC, with the same exposure times and the same 5-point dither pattern in all three filters. Dome flats and dark frames were taken at the beginning and end of the night. The left panel of Figure 1 shows a three-color composite image of the full $17'\times 17'$ field and demonstrates the extreme stellar crowding in this region. The right panel of Figure 1 displays the pointing pattern of our observations.

2.3. 2MASS Data

The 2MASS catalog is an all-sky J, H, and K_s survey that has become a standard infrared photometry reference (Skrutskie et al. 2006). The astrometric precision of 2MASS is reported as ~ 0.15 rms. We used this catalog for calculating the ISPI image distortion and defining the World Coordinate System (WCS) of the images. However, the depth of the survey is significantly shallower than the ISPI data, with 10σ limits of $J = 15.8$ mag, $H = 15.1$ mag, and $K_s = 14.3$ mag and a point-spread function (PSF) full width half maximum (FWHM) which was typically between 2'5 and 3'. The severe crowding in the GC makes the "effective" magnitude limits even brighter than these nominal values. The combination of the high crowding and larger PSF of 2MASS meant that many stars that could have been used as photometric references for our ISPI field were badly blended in 2MASS.

2.4. UKIDSS Data

The UKIRT Infrared Deep Sky Survey (UKIDSS) is a set of 5 NIR imaging surveys with complementary goals (Lawrence et al. 2007). One of the sub-surveys is the Galactic Plane Survey (GPS), which includes JHK coverage of the region between $-5^\circ < l < 15^\circ$ and $|b| < 2^\circ$ (Lucas et al. 2008). The nominal survey depth was $J = 19.9$ mag, $H = 19.0$ mag, and $K = 18.8$ mag. The plate scale of the UKIRT IR camera is 0'4, but using the technique of microstepping the delivered plate scale of the images is 0'2. The typical seeing is 0'9 for the data covering the region of our ISPI field. The primary data product of the survey is a source catalog produced with an aperture photometry pipeline. We rederived the photometry of UKIDSS GC data with PSF fitting in DAOPHOT, in part to better match the PSF photometry that we performed with.
ISPI and in part because the aperture pipeline catalogs did not include some of the highest stellar density regions in the field. The details of the UKIDSS PSF reduction followed the same procedures as for ISPI PSF reduction, described in Section 3.1, and will be described in full in a subsequent paper (C. DeWitt et al. 2010, in preparation). The JHK filter set for the UKIDSS survey is slightly different from the JHK set used by 2MASS and ISPI. We converted the UKIDSS JHK magnitudes to the 2MASS system using the prescription found in Hodgkin et al. (2009). The depth and resolution of the UKIDSS data are a closer match to the ISPI data than 2MASS, allowing better star-to-star comparison of the photometry. We used our PSF-fit UKIDSS catalog along with the 2MASS catalog for photometric calibration of the ISPI data.

3. DATA REDUCTION

3.1. Creating the ISPI Catalog

The ISPI images were reduced with the FATBOY pipeline, an imaging and spectroscopy package developed at the University of Florida (C. Warner et al. 2010, in preparation). FATBOY uses Python routines similar to the standard image reduction tasks found in IRAF. The processing steps include pixel linearization, dark subtraction, flat-field correction, cosmic-ray removal, sky-background subtraction, and image stacking. We made a 6th order distortion correction for each color using the 2MASS images, but as for ISPI PSF reduction, described in Section 3.1, we used IRAF tasks as part of the dither pattern of 1 arcsec² that made up just ~2% of the total 17′ × 17′ area of the ISPI GC field.

We locked the astrometry to the 2MASS catalog by using the IRAF task MSCTPEAK. The residual rms error of the ISPI plate solution with respect to 2MASS was 0′.2. The internal astrometric precision of 2MASS is reported to be 0′.15 (Skrutskie et al. 2006). We used the 2MASS catalog to find photometric zero points for each image, by positionally matching the bright, unblended 2MASS sources to stars found in the 2MASS catalog and then calculating the median offset. At this point, we had five catalogs for each filter, one for each ISPI pointing, with significant overlap in coverage between the individual filters. We merged the per-pointing ISPI catalogs of each filter using a 0′.5 error radius. We combined the catalog entries by either averaging the photometry, or in the case where the same star differed in brightness by more than the 1σ error for that magnitude (see Section 3.2), we adopted whichever brightness measurement had the lower PSF fitting residuals reported by IRAF. The processing steps include pixel linearization, dark subtraction, flat-field correction, cosmic-ray removal, sky-background subtraction, and image stacking. We made a 6th order distortion correction for each color using the 2MASS images, but as for ISPI PSF reduction, described in Section 3.1, we used IRAF tasks as part of the dither pattern of 1 arcsec² that made up just ~2% of the total 17′ × 17′ area of the ISPI GC field.

We merged the per-pointing ISPI catalogs of each filter using a 0′.5 error radius. We combined the catalog entries by either averaging the photometry, or in the case where the same star differed in brightness by more than the 1σ error for that magnitude (see Section 3.2), we adopted whichever brightness measurement had the lower PSF fitting residuals reported by IRAF. The result was a single catalog for each of the J, H, and Ks filters, covering the entire 17′ × 17′ ISPI GC field.

We merged the J, H, and Ks catalogs into a single three-color catalog by matching sources between the individual filters with a 0′.3 error radius. The standard deviation of the positions of sources matched across filters is ~0′.1, which means that our 0′.3 match threshold should match sources with up to 3σ positional errors. First, the J, H, and Ks catalogs were matched in pairs, i.e., JH, JKs, and HKs. To locate the 3-filter matches, we identified entries from the JH catalog and HKs catalog with the same H-band source. Fewer than 0.5% of sources had multiple astrometric matches in another band. In the few cases when there was a second astrometric match, we adopted the closer match for our final merged catalog. We used the Ks-band position whenever available for the final catalog astrometry. If a source was not detected in Ks, we used the H position, and if H was unavailable we used the J position.

The final catalog contains 241,552 distinct sources, consisting of 50,851 detections in J, 200,302 detections in H, and 192,292 detections in Ks. The reason for the greater number of detections in H than in Ks is mostly due to ~24,000 arcsec² of missing coverage in the Ks band on the outer parts of the observed fields. These areas were observed in Ks as part of the dither pattern of one of the pointings, but they were discarded because two Ks images were blurred by telescope shake. This region with only J- and H-band coverage lies on the outer edges of the North–East quadrant of 1 and makes up just ~2% of the total 17′ × 17′ area of the ISPI GC field.

3.2. Photometric Errors and Completeness

To derive photometric errors, we used regions of the field that were observed multiple times in the ISPI data. We calculated the differences in the measured magnitudes, and took the standard deviation of all stars in a certain magnitude bin to represent \(\sqrt{\sum x^2} \) the error for that magnitude. This error should encompass photon noise and errors associated with PSF fitting, but it will be an underestimate when stellar blending dominates the noise. The error versus magnitude relation for each filter is shown in the left panel of Figure 2.

We calculated the completeness fraction of our catalogs by injecting artificial stars of various magnitudes into the images with the DAOPHOT tool addstar. The stars were overlaid on the original images in a sparse rectangular grid where the magnitudes and x and y values of the grid position were randomly assigned. We made sure that the magnitude range covered the interval where between 1% and 95% of stars were recovered. We restricted the number of injected stars to fewer than 10% of the number of stars already contained in the image in order to prevent the introduction of different crowding characteristics. The DAOPHOT and ALLSTAR parameters were kept the same as in the original reduction. We counted an artificial star as recovered if it was found within 0′.5 of its injected position and we excluded any artificial stars that fell within 0′.5 of a real star in the ISPI images. Figure 2 shows the completeness fraction versus magnitude for artificial stars for the J, H, and Ks filters. These values should reflect typical regions in the ISPI field, but the local completeness limit will likely vary with the source density changes across the field.

In Table 1, we show the number of sources in the final merged ISPI catalog, the 5σ limiting magnitude predicted by the ISPI exposure calculator from Poisson statistics, the 5σ magnitude limit (where the magnitude error is ~0.2 mag) calculated from the photometry of stars observed multiple times, and the mean 50% completeness magnitude for each of the filters.
We exclude any X-ray sources with $\sigma_X > \sigma_0$, where σ_X is the 95% positional uncertainty for the X-ray sources, in arcseconds. The 71 sources with larger errors have a median number of possible matches of 5 each, which would preclude useful follow-up. For the rest of this work, we only consider the remaining 4268 X-ray sources.

We cross-correlate these 4268 X-ray sources with the ISPI catalog using a $\sigma_X + 0.2$ matching radius, where 0.2 represents the IR catalog astrometric error. We do not use the quadrature sum of these errors, $\sqrt{\sigma_X^2 + 0.2^2}$, because it underestimates our positional uncertainty. The imperfect distortion correction contributes a small, regional systematic error to the 0.2, which we discovered during the filter merging stage of the ISPI catalog creation. This type of error should have an additive effect on the separation between X-ray and NIR sources. This matching criterion is imperfect, and may exclude a small number of actual NIR/X-ray matches with $\sim3\sigma$ positional errors, but we have compromised in order to obtain fewer spurious matches so that we can extract useful information from the matched sources.

With this matching criterion in effect, we find that 43.2% of X-ray sources have one or more candidate NIR counterparts within their matching radius, and 5.5% have two or more counterparts (see Table 2). Our catalog of ISPI/X-ray matches is available online as a searchable database called Chandra Galactica. The Web site’s URL is http://galcent.astro.ufl.edu. A sample of the catalog is shown in Table 3.

4. REAL AND SPURIOUS IR MATCHES TO THE CHANDRA X-RAY CATALOG

There are 4339 X-ray point sources from the Muno et al. (2009) catalog that lie within our field. We exclude any X-ray sources with $\sigma_X > 2\sigma_0$, where σ_X is the 95% positional uncertainty for the X-ray sources, in arcseconds. The 71 sources with larger errors have a median number of possible matches of 5 each, which would preclude useful follow-up. For the rest of this work, we only consider the remaining 4268 X-ray sources.

In Figure 3, we show magnitude and color histograms for all the ISPI sources and the candidate matches to X-ray sources. The histogram for the X-ray candidate counterpart IR sources is overplotted in red and normalized to the total number of sources in the whole ISPI catalog. Inset in each histogram is the same data plotted as a cumulative distribution. The J band clearly shows a difference between the candidate counterparts and the field source populations. The fact that the distribution of the J-band magnitudes of candidate counterpart is distinct from the entire catalog suggests that at least some of these matches are real. The H and K_s candidate counterpart magnitude distributions are less distinct from the overall ISPI catalog, which is probably due to the higher rate of spurious matches in these bands.

The ($J - H$), ($J - K_s$), and ($H - K_s$) color histograms in the lower panels of Figure 3 all clearly show an excess in matches to less reddened foreground sources. This suggests that a significant number of the unreddened candidate counterparts to X-ray sources are authentic counterparts.

In Figures 4 and 5, we display a $H - K_s$ CMD and a $J - H$ versus $H - K_s$ color–color diagram of the matched NIR sources and the entire ISPI catalog. The CMD clearly shows two populations of sources: sources with low reddening in a nearly vertical line at $H - K_s = 0.2$ mag and sources with high reddening centered at $H - K_s = 2.0$ mag. The sources with low reddening are nearby field sources, while the sources with high reddening should be near the GC. The color–color diagram shows that the sources are dispersed along the reddening vector. By eye, the X-ray source matches marked in color on these figures show little difference from the overall ISPI catalog. This would be expected either if the sources actually are not distinct from the overall NIR source population or if most of the matches are spurious. To evaluate the number and characteristics of the probable true matches, we need to have an idea of the number of matches that would happen simply by chance.

4.1. Definitions of the Catalog Properties

We divide the matched catalog into properties of the X-ray and IR sources in order to calculate the number of true physical counterparts with a given set of IR/X-ray properties. The X-ray...
characteristics include σ_X, the X-ray source positional error, in arcseconds, the X-ray hardness ratio, the X-ray luminosity, and the number of IR sources in the vicinity of the X-ray source.

1. **Positional error.** Sources with smaller X-ray error circles are likely to have fewer coincidental matches. In the left panel of Figure 6, we show the histogram of position errors for the 4268 X-ray sources with positional uncertainties under 2″ and for the 1864 X-ray sources with NIR matches. The fraction of sources with a match (shown in the right panel of Figure 6) is about 27% for the X-ray sources with errors of 0′′.3, and reaches nearly 90% around 1′′.1. This implies that the sources with larger positional errors have more spurious matches, as would be expected.

2. **Hardness ratios.** Soft X-rays are not expected to penetrate the gas and dust column to the GC. The X-ray hardness ratio provides a way to divide the X-ray sources into those that are heavily absorbed and therefore at or beyond the GC, or soft and therefore located well in front of the GC. We adopt the same hardness ratio criteria as in Muno et al. (2009). They define $HR0 = \frac{h - s}{h + s}$, where h is the flux in the 2.0–3.3 keV energy band and s is the flux in the 0.5–2.0 keV energy band. Soft sources are defined to have $HR0 < -0.175$. Any source with a $HR0 > -0.175$ or with no counts in the soft band are defined to be hard sources. Of the 4268 X-ray sources in our field, 3583 are hard and 685 are soft.
3. X-ray brightness. We divide the X-ray catalog into bright and faint on the basis of the total count rate. The distribution of count rates shows a roughly Gaussian distribution with a tail toward the bright end. We define sources to be within this bright tail if their combined hard and soft count rate is greater than 1×10^{-4} photons s$^{-1}$ cm$^{-2}$. There are 1075 sources brighter than this threshold and 3193 fainter. We estimate the corresponding X-ray luminosity by assuming that the sources lie in the GC and using the Chandra proposal planning tool, PIMMS. Using a GC distance of 8 kpc, a power-law index of $\Gamma = 2.0$, and an absorbing column of $N_H = 6 \times 10^{22}$ cm$^{-2}$, our bright/faint threshold corresponds to $L_X = 8 \times 10^{31}$ erg s$^{-1}$ for sources at the GC distance.

4. IR source density. Dust lanes are evident in the image of the ISPI data in Figure 1. The lanes correspond to lines of sight with higher extinction and are seen as regions with more reddened colors and fewer star counts. We attempt to quantitatively locate these higher extinction areas by computing the average stellar surface density in the vicinity of the X-ray sources. We calculate the stellar surface density using stars with $10 < K_s < 13.5$ mag within a 10″ radius of each X-ray source and normalize this value by Σ_{ISPI}, the mean density of 10 $< K_s < 13.5$ mag stars in the entire ISPI GC field. Therefore, the density parameter is the fraction of the mean density of the field. We call regions with $>1.0 \times \Sigma_{ISPI}$, dense and regions with values $\leq 1.0 \times \Sigma_{ISPI}$, sparse. The intention is that sparse areas indicate regions of high extinction and dense areas indicate windows of lower extinction.

5. IR catalog properties. The characteristics of the infrared catalog include the J, H, and K_s magnitudes and the $J - H$, $J - K_s$, and $H - K_s$ colors. Two major populations can be seen in the $H - K_s$ distribution in Figure 7. There is a less reddened population, centered at $H - K_s = 0.2$ mag and a more reddened population centered at $H - K_s = 2.0$ mag. We separate the two at $H - K_s = 1.0$ mag, and call sources with $H - K_s < 1.0$ mag, unreddened and sources with $H - K_s > 1.0$ mag, reddened. We derived corresponding criteria for $J - H$ and $J - K_s$ using the Galactic bulge extinction ratios from Nishiyama et al. (2008). These were $J - H < 1.76$ mag, $J - K_s < 2.76$ mag for unreddened sources, and $J - H > 1.76$ mag, $J - K_s > 2.76$ mag for reddened sources.
4.2. Estimating the Number of Spurious NIR Matches to the Chandra Catalog

We simulated the rate of false matches by performing Monte Carlo tests of the matching procedure. In this procedure, the positions of the ISPI NIR catalog sources are fixed while the positions of the 4268 X-ray sources with $\sigma_X \leq 2.0'$ are randomly shifted. The X-ray sources are repositioned to lie between $0'$ and $10'$ of their original position in a random direction. All the other X-ray properties, including the positional error and X-ray photometry are preserved during the process. We performed the randomization 3000 times, producing 3000 artificial X-ray catalogs. Then, we cross-correlated the artificial X-ray catalogs to the NIR catalog in the same way as for the original, positionally aligned X-ray catalog, using $\sigma_X + 0.2'$ as the matching radius, in arcseconds. In the following, we call the X-ray catalog with the true X-ray source positions the aligned X-ray catalog. The number of NIR-matched X-ray sources to the aligned X-ray catalog is called N_{obs} and the total number of X-ray sources in the catalog is A. The average number of IR-matched X-ray sources to the randomized catalogs is called N_{ran}, and the standard deviation of this number is called $\sigma_{N_{\text{ran}}}$. These variables can refer to the entire catalog of X-ray sources or to a subset with specified X-ray properties (for example, soft X-ray sources with bright X-ray flux, or hard X-ray sources with $\sigma_X \leq 0.5'$).

The number of NIR-matched X-ray sources to the aligned X-ray catalog is called N_{obs} and the total number of X-ray sources in the catalog is A. The average number of IR-matched X-ray sources to the randomized catalogs is called N_{ran}, and the standard deviation of this number is called $\sigma_{N_{\text{ran}}}$. These variables can refer to the entire catalog of X-ray sources or to a subset with specified X-ray properties (for example, soft X-ray sources with bright X-ray flux, or hard X-ray sources with $\sigma_X \leq 0.5'$).

The number N_{obs} includes both real physical matches and spurious matches. We would like to calculate the number of spurious matches, N_{spur}, and subtract it from N_{obs} to obtain the number of real matches, N_{real}. However, the randomized X-ray catalogs consist of randomizations of all the X-ray sources, including the ones with true detected NIR counterparts. When randomized, these true matches contribute to the total N_{ran}, making it an overestimate of the number of spurious matches to the aligned X-ray catalog.

Fortunately, N_{real} can be solved in terms of the known values of N_{obs}, N_{ran}, and A. The variable definitions are collected in Table 4.

From the definition of N_{obs}:

$$N_{\text{obs}} = N_{\text{real}} + N_{\text{spur}}. \quad (1)$$

To represent N_{ran} in terms of our defined variables we assume that the randomized X-ray catalogs should contain zero real NIR matches to the X-ray sources. We define the rate of spurious IR matches to the real X-ray catalog to be R. This rate is the number of spurious matches divided by the total number of X-ray sources without detected real NIR counterparts, i.e., $A - N_{\text{real}}$.

$$R = \frac{N_{\text{spur}}}{A - N_{\text{real}}}. \quad (2)$$

If we assume that R is the same value for all the randomized X-ray catalogs, then N_{ran} is simply $A \times R$.

$$N_{\text{ran}} = A \times \frac{N_{\text{spur}}}{A - N_{\text{real}}}. \quad (3)$$

When Equations (1) and (3) are solved, we find that the number of real NIR matches within N_{obs} is

$$N_{\text{real}} = N_{\text{obs}} - \frac{N_{\text{ran}}(A - N_{\text{obs}})}{A - N_{\text{ran}}}, \quad (4)$$

and the number of spurious matches is

$$N_{\text{spur}} = \frac{N_{\text{ran}}(A - N_{\text{obs}})}{A - N_{\text{ran}}}. \quad (5)$$
The uncertainty in these numbers is calculated by standard error propagation using the standard deviation of the number of matches from the random simulations, σ_{ran}.

$$\sigma_{\text{real}} = \sigma_{\text{spur}} = \frac{A^2 - A N_{\text{obs}}}{(A - N_{\text{ran}})^2} \sigma_{\text{ran}}$$

(6)

We note that there are two critical assumptions for Equations (1)–(6).

1. N_{obs} and N_{ran} contain only X-ray sources matched to a single IR counterpart. Our prescription omits the \sim6% of X-ray sources with multiple matches, which obviously can also contain real X-ray/NIR counterparts. We address this omission in Section 5, where we use the rate of matches to real counterparts from these equations to estimate the number of additional real NIR counterparts present in the X-ray sources matched to multiple IR sources.

2. Equations (1)–(6) can only be used to find the numbers of real IR matches to X-ray sources with specified X-ray properties. The situation becomes more complicated if we wish to find the number of X-ray sources that have real IR counterparts with a specified IR property. In these cases, the properties of the real NIR counterparts can bias the matching simulations. For example, we found that the number of soft X-ray sources matched to reddened IR counterparts was higher for the simulations than for the real X-ray catalog. This is because there is a number of real unreddened NIR counterparts to the soft X-ray sources, and when they are positionally randomized, they are more likely to be matched to reddened NIR sources, which make up \sim80% of the ISPI catalog. The solution is to rederive Equations (1)–(6), keeping track of both the number of sources with and without the specified NIR property. This derivation is presented in the Appendix.

In the next section, we briefly ignore the biases associated with the matching simulations in order to get an illustrative view of the content of the matched X-ray/NIR catalog. Then we apply these corrective equations in Sections 4.5–4.6 and 6 to find more exact numbers of the real IR/X-ray counterparts.

4.3. The Fractional Excess of X-ray Sources with NIR Matches

We compare the fraction of matched X-ray sources in the Chandra catalog to the fraction obtained with the randomized catalogs. The randomized catalogs should contain essentially no true matches, so the difference between these two fractions will yield the fraction of X-ray sources with authentic detected matches in the ISPI catalog. Since this calculation does not address the overcounting of randomized catalog matches described in Section 4.2, the rates are all likely to be underestimates but they are useful to get an illustrative view of the level of real and spurious matching between the Chandra and ISPI catalogs.

We sort the X-ray catalog by the properties described in Section 4.1, including hard/soft, bright/faint, and dense/sparse, and we count the number of sources with a specific set of properties that are matched to NIR sources. The size of the X-ray positional error circle is a strong factor in whether an X-ray source is matched, so we record the number of matched and unmatched sources per each X-ray positional error bin (σ_X is between 0.3 and 2.0 in intervals of 0.1). We call the number of matched sources per error bin $N_{\text{obs},i}$, where i is a label for the X-ray error circle size. The mean number of matched sources to the randomized X-ray catalogs is $N_{\text{ran},i}$, and its standard deviation is σ_N. We divide $N_{\text{obs},i}, N_{\text{ran},i}$, and σ_N by A_i, the total number of X-ray sources in the Chandra catalog with the specified properties and error circle size. This yields the matching fractions $f_{\text{obs},i}$ and $f_{\text{ran},i}$, and the 1σ fractional scatter, $\sigma_{f,i}$. The fraction of X-ray sources (with a given σ_X) with a real detected counterpart is

$$f_{\text{real},i} = f_{\text{obs},i} - f_{\text{ran},i}$$

(7)

We combine the values of $f_{\text{real},i}$ by calculating the weighted mean using $\sigma_{f,i}$ as the weight.

$$f_{\text{real}} = \sum_i \frac{f_{\text{obs},i} - f_{\text{ran},i}}{\sigma_{f,i}^2} \frac{1}{\sum_i \frac{1}{\sigma_{f,i}^2}}$$

(8)

i is a label for the X-ray positional error bins (e.g., $i = 1, 2, 3\ldots\Rightarrow \sigma_X = 0.3, 0.4, 0.5\ldots$)

The formal uncertainty of this expression is

$$\sigma_f = \frac{1}{\sqrt{\sum_i \frac{1}{\sigma_{f,i}^2}}}$$

(9)

In Table 5, we show the R_{real} values and uncertainties for combinations of the X-ray source properties. Twenty percent of soft sources have detected matches in the ISPI catalog compared to only 1.6% of the hard sources. Both soft and hard sources show a bias toward detection of bright sources over faint sources, with a bright source being more than twice as likely to have a detected counterpart. There is a slight (6% ± 3%) bias toward detecting soft sources in sparse regions over dense regions. This effect may be caused by the crowding limits being more severe in dense regions. There is no significant difference between dense and sparse regions seen in the hard sources. However, the low number statistics for hard sources would mask an effect of similar magnitude to the soft sources.

The main point to draw from this is that hard sources have a particularly low rate of IR detection in the data, at least four...
times lower than for soft sources. We conclude that most of the sources in the X-ray catalog are too faint in the NIR to be detected by the ISPI observations, which is consistent with the finding that 57% of X-ray sources do not have a candidate match at all. We discuss the characteristics of the sources without NIR matches in the next section.

4.4. Characteristics of the X-ray Sources without NIR Matches

Fifty seven percent of the X-ray catalog sources have no astrometric matches in the ISPI catalog. Soft X-ray sources have an unmatched percentage of 31% (214 unmatched out of 685 total soft X-ray sources) and hard X-ray sources have an unmatched percentage of 62% (2211 unmatched out of 3583 total hard X-ray sources).

The unmatched sources are skewed toward having smaller error circles compared to the total X-ray catalog. Their mean error circle size is 0.052 ± 0.007 for all X-ray sources, 0.22 ± 0.02 for soft sources, 0.016 ± 0.007 for hard sources, 0.15 ± 0.02 for soft faint sources, 0.42 ± 0.03 for soft bright sources, 0.18 ± 0.02 for soft sources, sparse regions, 0.23 ± 0.02 for soft sources, dense regions, 0.001 ± 0.008 for hard faint sources, 0.05 ± 0.01 for hard bright sources, 0.012 ± 0.009 for hard sources, dense regions, and 0.02 ± 0.01 for hard sources, sparse regions.

Table 5

Criteria	$f_{\text{real}} \pm \sigma_f$	Significance
All X-ray sources	0.052 ± 0.007	7.7σ
Soft sources	0.22 ± 0.02	13.6σ
Hard sources	0.016 ± 0.007	2.2σ
Soft, faint sources	0.15 ± 0.02	8.0σ
Soft, bright sources	0.42 ± 0.03	13.3σ
Soft sources, dense regions	0.18 ± 0.02	8.3σ
Soft sources, sparse regions	0.23 ± 0.02	10.4σ
Hard, faint sources	0.001 ± 0.008	0.2σ
Hard, bright sources	0.05 ± 0.01	3.8σ
Hard sources, dense regions	0.012 ± 0.009	1.4σ
Hard sources, sparse regions	0.02 ± 0.01	1.7σ

Table 6

Criteria	N_{obs}	N_{ran}	N_{real}	$R = N_{\text{real}} / N_{\text{obs}}$	σ_R	n_{ran}
All soft X-ray	387	236.0	230	0.60	0.03	18.5
Unreddened	254	45.9	224	0.88	0.02	47.0
Reddened	133	190.1	7	0.05	0.08	0.6
With J detection	286	47.8	254	0.89	0.02	51.2
With no J detection	101	188.1	24	-0.24	0.11	2.2
Unreddened with J detection	242	15.5	232	0.96	0.01	87.1
Reddened with J detection	44	32.4	22	0.51	0.09	5.6

$>10^{27}$ erg s$^{-1}$ level is seen at all spectral types in field dwarf stars (Feigelson 2004). For an illustrative case, we consider that a $J = 9$ mag $M_0 V$ star with no extinction would be detected in our ISPI data out to a distance of ~ 800 pc. Muno et al. (2003a) determine that the soft sources in the Chandra GC data can reside as far out as 4 kpc, which leaves a substantial volume for coronally active late type dwarf stars to reside and yet be undetectable in our ISPI imaging.

The unmatched hard X-ray sources have a number of diverse candidates: AGNs, isolated pulsars and magnetars, magnetic CVs and LMXBs. Muno et al. (2003a) calculate that the $17' \times 17'$ central GC field should have between 20 and 100 AGNs contributing to the hard source counts. AGNs that are seen through the GC will be very faint. Bandyopadhyay et al. (2005) note that no AGN in the Hubble Deep Field–North survey brighter than $K = 17$ mag. After $A_K > 2.5$ mag extinction is added on, this magnitude is well beyond our sensitivity, which means that there should be no detected counterparts for the $\sim 10^5$ AGNs in the X-ray catalog.

Isolated neutron stars can be bright at young ages, but except for the Crab Pulsar, the brightest K-band detected neutron star is the magnetar 1E 1547.0-54.08 with $K = 18.2$ mag, at a distance of 9 kpc (Mignani 2009). We conclude that for all but the most exceptional systems, isolated pulsars in the GC should be undetectable in our ISPI data.

LMXBs and magnetic CVs share the same types of donor stars, usually late type K dwarfs (Jonker & Nelemans 2004; Knigge 2006). When in quiescence, these systems can be dominated by the light of the secondary star. In the case of a KO dwarf star, a system in the GC would be $K \sim 21$ mag, assuming $A_K = 2.5$ mag (Baganoff et al. 2003) and a GC distance of 8 kpc (Gillessen et al. 2009; Cox 2000; Carroll & Ostlie 1996). Thus, the majority of canonical LMXBs and CVs would be undetected at GC distances in our ISPI data.

4.5. Probable Matches to Soft X-ray Sources

The fraction of soft sources that are matched in section 4.3, suggests that a relatively high number of soft source candidate counterparts are real. We use the results of the random matching simulations with Equations (4) and (A3) to derive the numbers of real counterparts to soft sources. We break down the soft X-ray/IR matches by source properties in Table 6.

There are 387 single IR matches to X-ray soft sources. Analysis of the randomized X-ray catalog matching suggests that 230 ± 12 are probable real matches, for a rate of 60% & $\pm 3\%$. We see that almost all (96%) the soft X-ray sources matched to unreddened NIR sources with a J detection are real, while a trivial number of matches to reddened X-ray sources are real. The lack of true soft/reddened sources is not surprising, because the X-ray attenuation implied by the reddened IR colors should
make an intrinsically soft source be detected as a hard source, or be completely extinguished.

4.6. Probable Matches to Hard X-ray Sources

There are 1223 hard X-ray sources with only a single NIR candidate counterpart in our ISPI catalog. However, when the randomized X-ray catalogs are matched to the ISPI catalog, 1135.0 matches are created on average, meaning a large percentage of hard, matched sources are spurious. Our analyses indicate that the number of real physical associations within the 1223 matches is 129 ± 39 sources or 11% ± 3% (see Table 7). Such a low rate of true matches is a problem for observing campaigns that seek to follow up these sources. We therefore try to find the source parameters that maximize the return rate. In particular, we wish to locate probable real matches which are both hard and reddened, which would suggest that they exist at or beyond the GC distance. We present the statistics for a number of properties and combinations of properties in Table 7.

The most promising property seems to be whether or not a candidate counterpart has a J-band detection. In Table 7, we see that there are 96 ± 35 probable true matches within the set of 1004 NIR single reddened/hard X-ray matches. 51 ± 13 of these probable true matches are among the 216 candidate matches with a J-band detection, meaning the remaining 45 true matches are among the 788 candidate matches without a J-band detection. Even though the number of probable true matches within the J detected and J undetected categories are roughly the same, the percentage of candidate matches that are real clearly favors those with J-band detections: 27% ± 5% for J detected versus 6% ± 4% for J undetected.

With this in mind, we break the set of J-band detected hard and reddened matches into sub-categories of bright/sparse, bright/dense, faint/sparse, and faint/dense. X-ray sources which are bright include 76 single source IR matches and have a 45% probability of being real. If we restrict the error circle sizes of the X-ray sources to $\sigma_X \leq 1.0$, the number of true IR matches drops by 1 source, and the probability of being real rises to 47% (see second-to-last row of Table 7). The X-ray faint sources with J-band detections have a lower rate of expected real matches, 12%. We searched for other parameters that can raise the percentage of true sources within the X-ray faint category, and we find that if the sources are matched to 13.0 $\leq K_S < 14.0$ mag IR sources (in addition to their being reddened and detected in the J band), and the X-ray error circles are restricted to $\sigma_X \leq 1.0$, the percentage probability of being real rises to 40% (see last row of Table 7). The 13.0 $\leq K_S < 14.0$ mag criterion is suggested by the color–magnitude analysis in Section 6.2. In combination, these two categories, shown in the bottom two lines of Table 7, have 98 X-ray/NIR candidate matches, with 44 ± 7 probable real matches.

In Figure 7, we plot the $J – H$, $J – K_S$, and $H – K_S$ histograms for all the candidate matches followed by the color histograms for the component of the matches that are expected to be real. The numbers of soft source matches are shown in blue and the hard source matches are shown in red. It is apparent that the ratio of real to candidate sources is much higher for soft sources than hard sources. Also, soft sources with reddened counterparts seem to nearly all be spurious, as are most hard sources with unreddened counterparts.

5. TOTAL NUMBER OF REAL COUNTERPARTS IN THE ISPI CATALOG

There are 233 X-ray sources with 2 or more NIR candidate counterparts in the matched catalog, totalling 527 matches. Of these 233 sources, 84 are X-ray soft (with 185 matches) and 149 are X-ray hard (with 342 matches). We use the rate of real matches, $R = N_{real}/N_{obs}$, derived in Sections 4.5 and 4.6 and listed in Tables 6 and 7 to estimate the total number of detected true NIR counterparts within the multiply matched sources.

5.1. Soft Sources

The real counterpart matching rate for soft X-ray sources is 0.60 ± 0.032, as derived from the singly matched sources. When applied to the 84 multiply matched soft X-ray sources, we expect an additional 50 ± 2 real counterparts. However, a stronger
predictor of real matches is the presence of a J-band detection. Within these 84 sources, 66 have a J-detected counterpart. If we apply the rate of real matches for J-detected soft source counterparts of 0.89 ± 0.017 we estimate 59 ± 1 real matches within the multiply-matched soft sources. The 18 soft sources with no J-band counterpart have no expected real matches. Thus, if we include singly and multiply matched soft X-ray sources, we expect there to be $230 + 59 = 289 ± 13$ real IR counterparts to soft sources in our ISPI catalog. The fraction of soft sources with detected counterparts is $f_{\text{real}} = \frac{289}{685} = 0.42 ± 0.02$.

In the ISPI $17′ × 17′$ area, Mauerhan et al. (2009) find 324 candidate matches to soft X-ray sources; 200 of these are unreddened. They do not report on the probable number of true matches within this field, but they find that within the entire $2° × 0.8°$ field, 890 out of 1007 blue matches are real. If the ratio of 0.88 holds for the $17′ × 17′$ subfield, then they discovered ~ 177 unreddened real counterparts to soft X-ray sources in the $17′ × 17′$ ISPI GC field. They report essentially zero real reddened soft source counterparts making their total detected fraction of soft X-ray counterparts, $f_{\text{real}} = \frac{177}{685} = 0.26$. Our value of 0.42 ± 0.02 is larger, which we expect because our catalog has twice as many detected sources as the SIRIUS catalog within this area due to our NIR data’s greater depth and resolution.

5.2. Hard Sources

For hard sources, the rate of real counterparts to number of candidate counterparts is $0.11 ± 0.03$, for an estimated total of 16 ± 5 within the set of 149 hard sources with multiple matches.

To get a better estimate of the real counterpart content of the multiply matched sources we break this set into the following criteria.

1. **Hard** reddened sources with J-band detections (24% real matches).
2. **Hard** unreddened sources with J-band detections (37% real matches).
3. **Hard** reddened sources without J-band detections (6% real matches).
4. **Hard** unreddened sources without J-band detections (0% real matches).

In parentheses is the fraction of real matches to candidate matches calculated for singly matched sources in Table 7. Since these sources are multiply matched, it is possible for an X-ray source to have a match for more than one of criteria 1–4.

To reduce the complexity we note that the real match probability for X-ray sources with J-band detected matches is much higher than for X-ray sources without J-band detected matches. Therefore, we assume that if one of these multiply matched hard sources has a J-detected counterpart, the possibility that any additional match without a J detection is the real counterpart is negligible.

There are 65 multiply matched hard X-ray sources with at least one J-detected match. Four have both unreddened and reddened J-band detected matches, 28 have reddened J-band detected matches, and 33 have unreddened J-band detected matches. For the four sources with both reddened and unreddened matches, we estimate $0.4 ± 0.1$ real reddened matches and $0.9 ± 0.2$ real unreddened matches. The 28 X-ray sources with reddened J-band matches should contain $7 ± 2$ real matches and the 33 X-ray sources with unreddened J-detected matches should have $12 ± 3$ real matches.

The remaining sources 84 sources do not have J detections. Since we expect 0% of the unreddened sources without J detections to have matches, we only consider the subset of 76 X-ray sources with reddened candidate matches. Using the real match probability of 0.06, we estimate an additional 4 ± 3 real reddened matches to hard X-ray sources from this set of sources.

In total, we find that there should be $24 ± 4$ additional real matches to the 149 multiply matched hard X-ray sources. 11 ± 3 are reddened and 13 ± 3 are unreddened.

The total number of real, hard X-ray source counterparts for singly and multiply matched data is $129 + 24 = 153 ± 39$ sources. 107 ± 37 sources are hard and reddened, and 44 ± 14 are hard and unreddened.

This amounts to a fraction of $f_{\text{real}} = \frac{153}{3583} = 0.04 ± 0.01$ hard X-ray sources with detected counterparts. Mauerhan et al. (2009) found a rate of 0.058 ± 0.015 with data that is slightly shallower in depth but that spans a larger area around the GC; nevertheless, our fraction is still consistent with Mauerhan et al. (2009) within the errors.

For a fairer comparison, we use their statistics on the 8′ radius region around Sgr A∗ ($α = 266.41726°, δ = −29.00798°$). They calculate the number of real hard reddened counterparts within this region to be $46.2 ± 23.1$ sources out of 617 candidate matches.

Our total for this region is $73 ± 33$ sources out of 1018 X-ray sources with candidate matches. This fraction is consistent with Mauerhan et al. (2009) and our greater total is likely due to the greater depth and resolution of the ISPI imaging with respect to the SIRIUS data.

6. CMD POSITIONS OF PROBABLE REAL MATCHES

We constructed an infrared CMD for probable real matches to X-ray sources. We divided the X-ray sources into soft and hard and then used the matching statistics within the $H − K_s$ CMD with Equations (A3) and (A4) to locate color–magnitude regions where there are excess matches to the aligned X-ray catalog. We calculate the excess in matches using bins of 1 mag in K_s and 1 mag in $H − K_s$, ranging from 0.0 < $H − K_s$ < 4.0 mag and 8.0 < K_s < 17.0 mag. This approach has the advantage that it does not exclude any region of the CMD a priori, as would happen if we forced a J detection or a color cut.

In Figures 8 and 9, we show the CMD of the entire ISPI catalog overplotted by boxes which are color coded to represent the number of probable true counterparts within a CMD bin. Here, we only include X-ray sources with a single IR match. The box colors are black, yellow, green, and blue and correspond to 0, 1, 5, 9, and > 9 real matches, respectively. Bins with less than a $2σ$ significance ($\frac{N_{\text{real}}}{\sqrt{N_{\text{real}}}} < 2.0$) are also marked in black.

6.1. CMD of Soft Source Counterparts

In Figure 8, we see that the real soft sources are mostly confined to $H − K_s < 1$ mag, and $8.0 < K_s < 16.0$ mag, with a smaller number in the bright but more reddened CMD bins ($H − K_s > 1$ mag and 9.0 < $K_s < 12.0$ mag). The number of unreddened counterparts are consistent with the contribution expected from coronally active stars in the field (Mauerhan et al. 2009; Muno et al. 2009). The fact that the X-ray spectra appear soft suggests that these sources lie within 4 kpc of the sun (Mauerhan et al. 2009). Since the stars can be arbitrarily closer than this distance, and dwarf stars have a wide dispersion in magnitudes, it is difficult to place further constraints on the
Figure 8. Left: $H - K_s$, K_s color–magnitude diagram of all ISPI sources, in red, with the positions of probable true counterparts to X-ray soft sources shown by the colored boxes. The color coding is yellow: 1–5 sources, green: 5–9 sources, and blue: 9 or more sources. Black boxes contain counts with lower than 2σ significance and are consistent with 0 real counterparts. The boxes are undersized for clarity. Right: $H - K_s$, K_s color magnitude diagram of all ISPI sources, in dark red. Overplotted in blue are a set of 242 soft X-ray matches with J-band detections and low reddening. These 242 IR sources should have a 96% likelihood of being the true counterparts to their matched X-ray sources. See Section 4.5 for details. (A color version of this figure is available in the online journal.)

6.2. CMD of Hard Source Counterparts

The hard X-ray source CMD has three bins with a 2σ detection of 9 or more real matches (the blue boxes in Figure 9). All of these CMD bins reside in the $1 < H - K_s < 2$ mag column of the CMD. The magnitudes at which these appear are not contiguous, with 9 ± 3 sources at $10 < K_s < 11$ mag, 23 ± 9 sources at $13 < K_s < 14$ mag, and 21 ± 9 sources at $15 < K_s < 16$ mag. There are also a handful of true counterpart detections in the unreddened bins dispersed between $10 < K_s < 16$ mag as well as 5 ± 1 likely true counterparts at $10 < K_s < 11$ mag and 3 < $H - K_s$ < 4 mag.

In the right panel of Figure 9, we show the CMD positions of the 98 hard, reddened matches with a J-band detection, of which ~45% should be real as discussed in Section 4.6. These sources represent the highest proportion of reddened authentic counterparts to hard X-ray sources that we could locate in the matched catalog. Even so, half of these counterparts are spurious. Since the criterion of a J detection was used to enhance the real counterpart probability, the lower right CMD is excluded due to flux sensitivity.

The unknown distance, unknown extinction and unknown intrinsic ($H - K_s)_0$ color make interpretation of the hard counterpart CMD complicated. Nevertheless, a useful constraint on the M_K magnitudes can be found by considering ranges of the uncertainty in these parameters.

Muno et al. (2009) argue that the majority of hard X-ray sources must be farther than 4 kpc from the Sun, because of the extinction column required to make soft sources appear as hard. We adopt this value as the minimum distance for hard X-ray sources. For the maximum distance, we use a value of 8 kpc, a reasonable value for the distance to the GC. There

population of unreddened IR counterparts to soft X-ray sources without spectroscopy.

The real counterparts to soft sources with $H - K_s > 1$ mag are more mysterious since the high reddening implied by the IR color should also make the X-ray component appear hard. However, Mauerhan et al. (2009) do note that for sources near the hard/soft threshold, the uncertainty could cause a hard source to be labeled as a soft source, and vice versa. Another possibility is that these systems may have internal absorption that affects the IR component more than the X-ray component. Finally, for some sources that are particularly strong soft X-ray emitters, the large extinction may not soften it enough to change its hard/soft designation. One such source in our sample (CXOJ74550.6-285919), is nominally soft and reddened but spectroscopic follow-up found that it was a Wolf-Rayet binary in the GC, with a spectral class WN6b (Mauerhan et al. 2010).

In Section 4.5, we found that 96% of the 242 singly matched soft X-ray source counterparts with unreddened colors and J detections are likely to be authentic. We plot their positions over the ISPI CMD in the right panel of Figure 8. However, because we used unreddened colors and a J-band detection as a criteria in order to enhance the probability, any real reddened matches to soft X-ray sources will not be represented in this figure.
is the possibility of observing bright IR counterparts on the far side of the bulge (with distance \(>8\) kpc). However, the strongest candidate CMD bins lie in the \(1 < H - K_s < 2\) mag range, which is mostly to the blue side of the modal value of \(H - K_s = 1.8\) mag for the ISPI catalog, implying that they may lie on the near side of the GC.

The intrinsic colors for main sequence, giant and supergiant stars range from \(-0.06 < (H - K)_0 < 0.36\) mag, and \(-0.06 < (H - K)_0 < 0.1\) mag for all spectral types except for M (Cox 2000). We use this dispersion in intrinsic color and the \(1 < H - K_s < 2\) mag limits of the color bin to calculate the range in absolute \(K_s\) extinction, \(A_{K_s}\). Using extinction ratios for the GC of \(A_V : A_J : A_H : A_K_s = 1.00 : 0.188 : 0.108 : 0.062\) (Nishiyama et al. 2008) we find that sources with \(1 < H - K_s < 2\) mag are experiencing \(0.86 < A_{K_s} < 2.78\) mag of extinction.

We estimate the absolute \(M_{K_s}\) magnitude range for the blue bins in Figure 9 using Equation (10) with the magnitude ranges of the bins and the estimated \(A_{K_s}\) range.

\[
M_{K_s} = K_s - 5 \log(d) + 5 - A_{K_s},
\]

(10)

The resulting limits on \(M_{K_s}\) are listed in Table 8.

The ranges of possible \(M_{K_s}\) are broad: each 1 mag bin in apparent magnitude can accommodate an interval of \(\sim 3\) mag in absolute magnitude for certain distances and extinctions. But we can still suggest certain classes of object that meet the criteria for these probable real sources.

The systems in the \(10 < K_s < 11\) mag bin have a possible range of \(-2.9 < M_K < -7.3\) mag. The matched catalog contains 20 candidate matches in this bin, and four of these have had published spectroscopic followup. Mauerhan et al. (2010) observed \(K\)-band spectra of the NIR counterparts to CX0174532.7-285617, CX0174536.1-285638, CX0174555.3-285126, CXO174617.0-285131 which all lie within the \(10 < K_s < 11\) mag, \(1 < H - K_s < 2\) mag bin and are X-ray hard. They found spectral types of O4-6I, WN8-9h, WN5-6b, O6If+, respectively. Supergiants of all spectral types are brighter than \(M_K \sim -6\) mag, as are W-R stars and O main-sequence stars (Cox 2000; Carroll & Ostlie 1996). At the GC extinction levels, W-R stars and single O stars are usually too soft in X-rays to be detected. However, if they exist in a binary, with either an accreting compact object or a star with high mass loss, then this can create a wind shock zone energetic enough to generate hard X-rays.

The sources in the \(13 < K_s < 14\) mag, \(1 < H - K_s < 2\) mag bin should come from stars with \(0.1 < M_K < -4.3\) mag and the \(15 < K_s < 16\) mag, \(1 < H - K_s < 2\) mag bin
sources correspond to $2.1 < M_K < -2.3$ mag. Both ranges overlap well with giant stars in luminosity class III, which have $M_K = -0.75$ mag for G types and get monotonically brighter to $M_K = -5$ mag for mid M-type giants (Carroll & Ostlie 1996; Cox 2000). These stars could produce the requisite hard X-rays if they belonged to an accreting binary system, such as a LMXB or a symbiotic binary (containing a red giant branch (RGB) star and a white dwarf). Most symbiotic stars have soft X-ray spectra but recent evidence suggests that symbiotic stars with a highly magnetized white dwarf have hard X-ray spectra (Luna & Sokoloski 2007).

B0–B8 stars on the main sequence have $0 < M_K < -3$ mag, which also makes them good candidates for the $13 < K < 14$ mag and $15 < K < 16$ mag bins. B star HMXBs are known to have hard spectra and would be expected to exist in regions where there has been recent star formation. This would be consistent with the known existence of young massive stars in the GC.

7. CONCLUSIONS

We cross-correlated a new JHK$_s$ catalog of the central 17' × 17' of the Galaxy with a catalog of 9017 X-ray point sources observed with Chandra. Our catalog of astrometrically matched candidate counterparts contains 2137 IR matches to 1843 X-ray sources. Through Monte Carlo simulations of the matching procedure we determine that the candidate matches contain 289 ± 13 true matches to soft X-ray sources and 154 ± 39 true matches to hard X-ray sources. The soft X-ray sources are likely to be a mix of coronally active dwarf stars within 4 kpc, and we find that, by choosing the candidate singly matched 242 IR/X-ray candidate counterparts with unreddened infrared colors and J-band detections, there will be 232 ± 2 real NIR counterparts.

Hard, reddened sources, which other authors have suggested to be a mix of HMXBs, colliding wind binaries and other rare systems in the GC vicinity, should have 110 ± 40 real infrared matches in our catalog, out of 1372 candidates. We calculate the difference in CMD diagrams between candidate matches and simulated spurious matches and locate three distinct regions of the $H - K_s$ CMD with a significant number of probable real counterparts. Hidden behind between $0.86 < A_K < 2.78$ mag of extinction, some of these sources should have absolute magnitude ranges compatible with W-R stars and supergiants, while the fainter two bins are more likely to be main-sequence B star HMXBs or RGB stars with a compact accreting companion (possibly a neutron star or black hole LMXB or as a symbiotic star with a magnetic white dwarf).

The low probability (~10%) of finding real matches in the set of hard match candidates is a challenge for spectroscopic follow-up campaigns. We find sets of properties which enhance the probability of obtaining real matches to X-ray hard, IR-reddened sources. We find that by restricting the hard, reddened candidate matches to those that are X-ray bright, with positional errors $\sigma_X \leq 1.0$, and that are matched to an IR source with a J-band detection, or from X-ray faint sources with small positional errors ($\sigma_X \leq 1.0$) with $13.0 < K < 14.0$ mag and a J-band detection, one is likely to find 44 ± 7 real IR counterparts out of a total of 98 candidate counterparts. These results will be used for target selection and slit design to maximize the return of upcoming NIR spectroscopic campaigns, such as the FLAMINGOS-2 Galactic Center Survey (Eikenberry 2008).

We thank Craig Warner for extensive help with his data reduction pipeline, and the anonymous referee for a helpful critique of the manuscript. CD and RMB gratefully acknowledge partial support for this work provided by the National Aeronautics and Space Administration through Chandra Award Number AR8-9005X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. CD, RMB, and SSE gratefully acknowledge the support of MSF grant AST-0807687. This work is based in part on data obtained as part of the UKIRT Infrared Deep Sky Survey (UKIDSS), which is made possible by the UK Infrared Telescope, the University of Cambridge Astronomical Survey Unit, and the WFCAM Science Archive at the Royal Observatory Edinburgh. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of observations made with the Chandra X-ray Observatory. This publication makes use of observations made at the Cerro Tololo Inter-American Observatory.

APPENDIX

In Section 4.2, we derived equations that estimate the number of singly matched X-ray sources with real NIR counterparts for X-ray sources with a given set of X-ray properties. We wish to extend this analysis to ask the question, how many real NIR counterparts are there for a given set of X-ray properties and NIR properties?

In this case, there is a bias that occurs when a real NIR counterpart is randomized to match a NIR source with the opposite NIR properties.

We begin by defining P to be a set of NIR properties (such as being within a ($H - K_s$) color interval or having a J-band detection).

$N_{\text{obs},1}$ is the number of singly matched X-ray sources in the aligned X-ray catalog whose counterparts fall within P. $N_{\text{obs},2}$ is the number singly matched X-ray sources whose counterparts fall within the complement of P.

$N_{\text{obs},1}$ and $N_{\text{obs},2}$ consist of both real and spurious NIR matches.

$$N_{\text{obs},1} = N_{\text{real},1} + N_{\text{spur},1} \quad (A1)$$

and

$$N_{\text{obs},2} = N_{\text{real},2} + N_{\text{spur},2} \quad (A2)$$

We define $N_{\text{ran},1}$ and $N_{\text{ran},2}$ to be the average number of singly matched X-ray sources to the randomized X-ray catalogs whose counterparts are within P and the complement of P, respectively.

As in Section 4.2, we assume the spurious match rate from the aligned X-ray catalog is the same as for the randomized catalog, and we find $N_{\text{ran},1}$ and $N_{\text{ran},2}$ to be

$$N_{\text{ran},1} = A \times \frac{N_{\text{spur},1}}{A - N_{\text{real},1} - N_{\text{real},2}} \quad (A3)$$

and for spurious matches to sources without property P

$$N_{\text{ran},2} = A \times \frac{N_{\text{spur},2}}{A - N_{\text{real},1} - N_{\text{real},2}} \quad (A4)$$
Table 9

Variable Name	Meaning
A	Total number of X-ray sources with a given set of X-ray properties
$N_{\text{obs},1}$	Number of singly matched X-ray sources from aligned X-ray catalog w/o P
$N_{\text{obs},2}$	Number of singly matched X-ray sources from aligned X-ray catalog w/i P
$N_{\text{ran},1}$	Mean number of singly matched X-ray sources from rand. X-ray catalogs w/o P
$N_{\text{ran},2}$	Mean number of singly matched X-ray sources from rand. X-ray catalogs w/i P
$\sigma_{N_{\text{ran},1}}$	Standard deviation of $N_{\text{ran},1}$
$\sigma_{N_{\text{ran},2}}$	Standard deviation of $N_{\text{ran},2}$
$N_{\text{real},1}$	Number of real IR counterparts within N matches w/o P
$N_{\text{spur},1}$	Number of spurious IR counterparts within N matches w/o P
$N_{\text{real},2}$	Number of real IR counterparts within N matches w/i P
$N_{\text{spur},2}$	Number of spurious IR counterparts within N matches w/i P
$\sigma_{N_{\text{real},1}}$	1σ error in value of $N_{\text{real},1}$
$\sigma_{N_{\text{spur},1}}$	1σ error in value of $N_{\text{spur},1}$
$\sigma_{N_{\text{real},2}}$	1σ error in value of $N_{\text{real},2}$
$\sigma_{N_{\text{spur},2}}$	1σ error in value of $N_{\text{spur},2}$

The result is four linear equations and four unknown variables, $N_{\text{real},1}, N_{\text{spur},1}, N_{\text{real},2}$ and $N_{\text{spur},2}$. Solving via Gaussian elimination gives

\[
N_{\text{spur},1} = \frac{N_{\text{ran},1}(A - N_{\text{obs},1} - N_{\text{obs},2})}{A - N_{\text{ran},1} - N_{\text{ran},2}} \quad (A5)
\]

\[
N_{\text{real},1} = \frac{N_{\text{obs},1} - N_{\text{ran},1}(A - N_{\text{obs},1} - N_{\text{obs},2})}{A - N_{\text{ran},1} - N_{\text{ran},2}} \quad (A6)
\]

\[
N_{\text{spur},2} = \frac{N_{\text{ran},2}(A - N_{\text{obs},1} - N_{\text{obs},2})}{A - N_{\text{ran},1} - N_{\text{ran},2}} \quad (A7)
\]

\[
N_{\text{real},2} = \frac{N_{\text{obs},2} - N_{\text{ran},2}(A - N_{\text{obs},1} - N_{\text{obs},2})}{A - N_{\text{ran},1} - N_{\text{ran},2}} \quad (A8)
\]

The errors in the expected number of real counterparts follow from the standard rules of error propagation.

\[
\sigma_{N_{\text{real},1}} = \sigma_{N_{\text{spur},1}} = \sqrt{\left(\frac{(A - N_{\text{ran},2})(A - N_{\text{obs},1} - N_{\text{obs},2})}{(A - N_{\text{ran},1} - N_{\text{ran},2})^2}\right)^2 \sigma_{N_{\text{ran},1}}^2 + \left(\frac{N_{\text{ran},1}(A - N_{\text{obs},1} - N_{\text{obs},2})}{(A - N_{\text{ran},1} - N_{\text{ran},2})^2}\right)^2 \sigma_{N_{\text{ran},2}}^2} \quad (A9)
\]

\[
\sigma_{N_{\text{real},2}} = \sigma_{N_{\text{spur},2}} = \sqrt{\left(\frac{(A - N_{\text{ran},1})(A - N_{\text{obs},1} - N_{\text{obs},2})}{(A - N_{\text{ran},1} - N_{\text{ran},2})^2}\right)^2 \sigma_{N_{\text{ran},1}}^2 + \left(\frac{N_{\text{ran},2}(A - N_{\text{obs},1} - N_{\text{obs},2})}{(A - N_{\text{ran},1} - N_{\text{ran},2})^2}\right)^2 \sigma_{N_{\text{ran},2}}^2} \quad (A10)
\]

The variable definitions for this derivation are collected in Table 9.

REFERENCES

Arendt, R. G., et al. 2008, *ApJ*, 685, 958
Baganoff, F. K., et al. 2003, *ApJ*, 591, 891
Bandyopadhyay, R. M., et al. 2005, *MNRAS*, 364, 1195
Belczynski, K., & Taam, R. E. 2004, *ApJ*, 616, 1159
Carroll, B. W., & Ostlie, D. A. 1996, *An Introduction to Modern Astrophysics* (New York: Addison-Wesley), A-13
Clark, J. S., Crowther, P. A., & Mikles, V. J. 2009, *A&A*, 507, 1567
Cox, A. N. 2000, *Allen’s Astrophysical Quantities* (4th ed.; New York: Springer), 151
Eikenberry, S. S. 2008, in AIP Conf. Ser. 1010, *A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments*, ed. R. M. Bandyopadhyay et al. (Melville: AIP), 132
Feigelson, E. D., et al. 2004, *ApJ*, 611, 1107
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., & Ott, T. 2009, *ApJ*, 692, 1075
Gosling, A. J., Bandyopadhyay, R. M., & Blundell, K. M. 2009, *MNRAS*, 394, 2247
Gosling, A. J., Bandyopadhyay, R. M., & Blundell, K. M. 2010, *MNRAS*, submitted
Grinn, H. J., Gilfanov, M., & Sunyaev, R. 2003, *MNRAS*, 339, 793
Grindlay, J. E., et al. 2005, *ApJ*, 635, 920
Hodgekin, S. T., Irwin, M. J., Hewett, P. C., & Warren, S. J. 2009, *MNRAS*, 394, 675
Hyodo, Y., Tsujimoto, M., Koyama, K., Nishiyama, S., Nagata, T., Sakon, I., Murakami, H., & Matsumoto, H. 2008, *PASI*, 60, 173
Jonker, P. G., & Nelemans, G. 2004, *MNRAS*, 354, 355
Kniege, C. 2006, *MNRAS*, 373, 484
Lawrence, A., et al. 2007, *MNRAS*, 379, 1599
Laycock, S., Grindlay, J., van den Berg, M., Zhao, P., Hong, J., Koenig, X., Schlegel, E. M., & Persson, S. E. 2005, *ApJ*, 634, L3
Lucas, P. W., et al. 2008, *MNRAS*, 391, 136
Luna, G. J. M., & Sokoloski, J. L. 2007, *ApJ*, 671, 741
Mauerhan, J. C., Muno, M. P., & Morris, M. 2007, *ApJ*, 662, 574
Mauerhan, J. C., Muno, M. P., Morris, M. R., Bauer, F. E., Nishiyama, S., & Nagata, T. 2009, *ApJ*, 703, 30
Mauerhan, J. C., Muno, M. P., Morris, M. R., Stolovy, S. R., & Cotera, A. 2010, *ApJ*, 710, 706
Mignani, R. P. 2009, *Messenger*, 138, 19
Mikles, V. J., Eikenberry, S. S., Bandyopadhyay, R. M., & Muno, M. P. 2008, *ApJ*, 689, 1222
Mikles, V. J., Eikenberry, S. S., Muno, M. P., Bandyopadhyay, R. M., & Patel, S. 2006, *ApJ*, 651, 408
Muno, M. P., Baganoff, F. K., Bautz, M. N., Brandt, W. N., Garmire, G. P., & Ricker, G. R. 2003b, ApJ, 599, 465
Muno, M. P., Bauer, F. E., Bandyopadhyay, R. M., & Wang, Q. D. 2003a, ApJ, 589, 225
Muno, M. P., Bauer, F. E., Bandyopadhyay, R. M., & Wang, Q. D. 2006, ApJS, 165, 173
Muno, M. P., et al. 2004, ApJ, 613, 1179
Muno, M. P., et al. 2009, ApJS, 181, 110

Nishiyama, S., Nagata, T., Tamura, M., Kandori, R., Hatano, H., Sato, S., & Sugitani, K. 2008, ApJ, 680, 1174
Pfahl, E., Rappaport, S., & Podsiadlowski, P. 2002, ApJ, 571, L37
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Stetson, P. B. 1987, PASP, 99, 191
Tan, J. C., & Draine, B. T. 2004, ApJ, 606, 296
van der Bliek, N. S., et al. 2004, Proc. SPIE, 5492, 1582
Wang, Q. D., Gotthelf, E. V., & Lang, C. C. 2002, Nature, 415, 148