A note on families of hyperelliptic curves

SERGEY GORCHINSKYI AND FILIPPO VIVIANI

Abstract. We give a stack-theoretic proof for some results on families of hyperelliptic curves.

Mathematics Subject Classification (2000). Primary 14H10, 14A20; Secondary 14D22, 14H45.

Keywords. Hyperelliptic curves, stack, families.

1. Introduction. Let k be a field and g be an integer such that $\text{char}(k) \neq 2$ and $g \geq 2$. All schemes that we consider are of finite type over k.

Any family $\mathcal{F} \to S$ of smooth genus g hyperelliptic curves is a double cover of a conic bundle $\mathcal{C} \to S$ branched at a Cartier divisor D finite and étale of degree $2g+2$ over the base S (see [11]). Conversely, starting with a family $(\mathcal{C} \to S, D)$ as above, one can ask what are the obstructions to the existence of a corresponding family of hyperelliptic curves $\mathcal{F} \to S$ and how many such families does there exist.

The classical theory of double covers immediately gives the answer to this question in terms of the functions on \mathcal{C} and its Picard group $\text{Pic}(\mathcal{C})$.

In Theorem 3.1 we give a different answer to these questions in terms of the geometry of the base S. Our proof is completely stack-theoretic and uses the fact that the stack \mathcal{H}_g of hyperelliptic curves is a μ_2-gerbe over the stack \mathcal{D}_{2g+2} of conic bundles endowed with an effective Cartier divisor finite and étale of degree $2g+2$, and the fact that both these stacks have an explicit description as quotient stacks (see [2] and [6]).

As an application of the Theorem 3.1, we give a proof of two classical facts on families of hyperelliptic curves.

The first author was partially supported by the grants RFBR 05-01-00455, Nsh-1987.2008.1, and INTAS no. 05-100008-8118.

During the preparation of this paper, the second author was partially supported by a grant from Mittag-Leffler Institute in Stockholm.
In Proposition 4.7, we prove that there exists a tautological family of hyperelliptic curves over a non-empty open subset of the coarse moduli space \(H^g \) if and only if \(g \) is odd. Moreover, we give a different proof of [6, Theorem 3.12], stating that such a family never exists over the open subset \(H^g_0 \) corresponding to curves without extra-automorphisms apart from the hyperelliptic involution (this is in contrast with the fact that a tautological family exists over the open subset \(M^g_0 \subset M^g \) of general curves of genus \(g \geq 3 \) without automorphisms). From this result and the rationality of \(H^g \) (see [4] and [9]), we deduce that the stack \(H^g \) is rational if and only if \(g \) is odd (Corollary 4.9).

In Proposition 4.11, we give a different (and for us simpler) proof of a result of Mestrano–Ramanan ([12]), stating that a global \(g_2^1 \) for a family of hyperelliptic curves exists only in the case \(g \) even.

2. Notations. By \(H^g \), \(D_{2g+2} \), and \(H_g \) denote the stack of families of genus \(g \) smooth hyperelliptic curves, the stack of conic bundles together with an effective Cartier divisor finite and \(\acute{e}tale \) of degree \(2g+2 \) over the base, and the common coarse moduli space of the two stacks above, respectively.

Recall that given a \(k \)-scheme \(X \) and a \(k \)-group scheme \(G \) acting on \(X \), the quotient stack, denoted as \(\left[X/G \right] \), is the category fibered in groupoids over the category of \(k \)-schemes, whose fiber over a \(k \)-scheme \(S \) is the groupoid whose objects are \(G \)-torsors \(E \to S \) endowed with a \(G \)-equivariant morphism \(E \to X \) and whose arrows are isomorphisms of the above objects. In the particular case where \(X = \text{Spec}(k) \), we get the classifying stack of \(G \), denoted with \(BG \), whose fiber over \(S \) is the groupoid of \(G \)-torsors \(E \to S \).

The stacks \(H^g \) and \(D_{2g+2} \) admit the following description as quotient stacks (see [2, Corollary 4.7] and [6, Proposition 3.4]):

\[
\begin{align*}
H^g &= \left[\mathbb{A}_{sm}(2,2g+2)/\left(GL_2/\mu_{g+1} \right) \right], \\
D_{2g+2} &= \left[\mathbb{A}_{sm}(2,2g+2)/\left(GL_2/PGL_2 \right) \right] = \left[\mathbb{B}_{sm}(2,2g+2)/PGL_2 \right], \\
H_g &= \mathbb{B}_{sm}(2,2g+2)/PGL_2,
\end{align*}
\]

where \(A_{sm}(2,2g+2) \) is the linear space of degree \(2g+2 \) binary forms without multiple roots, \(B_{sm}(2,2g+2) \) is the projectivization of \(A_{sm}(2,2g+2) \), and \(GL_2 \) acts on \(A_{sm}(2,2g+2) \) by the formula \(A \cdot f(x) = f(A^{-1} \cdot x) \).

We briefly recall the notion of the rigidification of a stack (see [1, Section 5.1]). Let \(X \) be an algebraic stack over \(k \) (even though everything can be extended to a general base scheme), \(H \) a commutative \(k \)-group scheme and assume that for every object \(\xi \in X(T) \) there is an embedding \(H_T \subset \text{Aut}_T(\xi) \) compatible with pullbacks. Then there is an algebraic stack \(X^H \) (called the rigidification of \(X \) along \(H \)) together with a smooth morphism of algebraic stacks \(\phi : X \to X^H \) uniquely determined by the properties: