Evaluation of long-term storage effects on buccal cell DNA from untreated cards for STR profiling

Hashom Mohd Hakim1,2, Japareng Lalung2, Hussein Omar Khan1, Siti Affah Ismail1, Mohd Yusmaidie Aziz3, Ahmad Razali Ishak4, Sabreena Safuan5, Nur Syahmina Rasudin5, Geoffrey Keith Chambers6 and Hisham Atan Edinur5,7,8

1 DNA Databank Division (D13), Criminal Investigation Department, Royal Malaysian Police, 43200, Cheras, Selangor, Malaysia
2 School of Industrial Technology, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
3 Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia.
4 Centre of Environmental Health and Safety, Faculty of Health Sciences, UiTM Puncak Alam, Kuala Selangor, Malaysia.
5 School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
6 School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
7 Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia.
8 Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

Email: hakimhashom@student.usm.my, edinur@usm.my.

Abstract. The success of DNA profiling using long-term stored samples depends on the amount and quality of their recovered DNA templates. Physical and biochemical factors such as microbial activity, humidity and temperature contribute to DNA degradation. In this study, we used genomic DNA extracted from buccal cell samples that were stored for more than 4 years on Bode Buccal DNA Collector™ cards (Bode Technology, Virginia, USA) for typing 27 and 24 short tandem repeat (STR) loci using Powerplex® Fusion 6C system (Promega Corporation, Madison, USA) and Globalfiler™ Express kit (Thermo Fisher Scientific, USA), respectively. Our results demonstrated that the Buccal DNA Collector can be used as a collection medium for buccal swab samples that are not immediately analyzed or those that need to be retrospectively analyzed. There is a sign of DNA degradation which might well be expected because buccal cell samples were deposited on untreated filter paper and have been stored for a long period (> four years) at room temperature. However, STR allele calls were obtained from most of the buccal cell samples, especially when typed using the Powerplex® Fusion 6C system kit.
1. Introduction

A buccal swab is a common sampling procedure used to obtain genetic materials for medical research, genetic testing and DNA profiling. It is superior to other sampling protocols (e.g. arterial, venepuncture and finger prick for blood sampling and biopsy for tissues sampling) and offers a non-invasive and rapid collection of biological samples by non-medical practitioners [1-3]. Buccal cells can be collected by swabbing the inner surface of the cheek using cotton, paper or simply by spitting directly to a storage medium such as treated or non-treated cards [4-5]. It is thus a simple procedure with almost negligible medical complications [4].

Ideally, buccal swab samples need to be properly dried at room temperature or in a controlled environment or directly analyzed soon after they were collected. This is because the quantity and yield of DNA extracted from swab samples will be reduced without proper handling and storage [6-9]. However, swab samples may sometimes need to be stored for a longer period due to the high demand for laboratory testing, lack of analysts and equipment and insufficient funds for purchasing reagents and consumables. Several studies have demonstrated the long-term storage effects of buccal cell DNA collected using cotton swabs [10-12]. There is only one study on the recovery of buccal cell DNA that was stored on untreated cards (i.e. Buccal DNA Collector) at room temperature for 2 years [13]. Their study showed that the extracted DNA samples can reliably be used as templates for simultaneously genotyping of multiple (19-13 loci) short tandem repeat (STR) loci.

The objective of this study is to evaluate the long-term storage effects of buccal cell DNA that were stored for more than 4 years on Bode Buccal DNA Collector™ cards (Bode Technology, Virginia, USA) for typing of 27 and 24 STR loci using Powerplex® Fusion 6C system (Promega Corporation, Madison, USA) and GlobalFiler™ Express kit (Thermo Fisher Scientific, USA), respectively [14-17]. These samples were submitted to the DNA Databank Laboratory, Criminal Investigation Department, Royal Malaysian Police and were collected from either suspect, detainees, drug dependents, convicted or volunteers (collectively referred to as reference samples) for STR profiling. However, none of these samples had been subjected to DNA profiling earlier due to several constraints mentioned earlier.

2. Materials and Methods

This work was conducted as part of ISO/IEC 17025:2005 quality assurance assessment for DNA Databank Division (D13), Royal Malaysia Police Forensic Laboratory (RMPFL) Cheras Selangor, Malaysia. Experimental works were carried out under the Malaysian DNA Identification Act 2009 and DNA Identification Regulations Act 2012 and were approved by the Forensic DNA Databank Laboratory (D13), Criminal Investigation Department Royal Malaysia Police (RMP).

2.1. Sample preparation

This survey involved thirty-nine buccal swab samples (S01-S39) collected in 2015. These samples were taken by gentle scrape on the inner surface of the cheek using Bode Buccal DNA Collector™ (Bode Technology, Virginia, USA) filter paper. The filter paper was then allowed to dry and stored at room temperature.

2.2. STR amplification using PowerPlex® Fusion 6C kit (PPF6C) and fragment separation

Buccal cell samples on Bode Buccal DNA Collector™ were punched (1.2mm diameter) using BSD600 DUET (Microelectronic Systems Pty Ltd, Australia) and loaded into 96 well plates for STR amplification. Then, 10 μl of PunchSolution™ Reagent (Promega Corporation, Madison, WI) was added into each well [18]. The plate was then incubated for 30 minutes at 70°C. The treated samples were then mixed with PCR reaction mixtures included in the PPF6C kit (Promega Corporation, Madison, USA) and amplification reactions were performed on a GeneAmp® PCR System 9700 Thermal Cycler (Life Technologies, Foster City, CA) with a gold-plated sample block and max ramp speed mode set as described in the PPF6C Technical Manual [18] with slight modifications to the thermal cycling parameters; 96°C for 1 min; 25 cycles for 96°C for 10 s and 60°C for 1 min, followed by a 60°C final extension for 10 min. The 2800M Control DNA (Promega Corporation, Madison, USA) and PCR reaction mix without DNA template were also added in each PCR run which acts as quality control and negative control, respectively. The STR specific amplicons, allelic ladder and internal Size Standard dye of 600 LIZ™ v2 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) were fractionated using capillary electrophoresis in an ABI 3500xl Genetic Analyzer (Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s guidelines.
and as described earlier [14-16]. GeneMapper® ID-X software version 1.4 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used for determining STR allele calls.

2.3. STR amplification using Globalfiler™ Express kit (GFE) and fragment separation
One punch of 1.2mm diameter per sample was treated with 3 μl of Prep-n-Go™ Lysis Buffer (Thermo Fisher Scientific, Inc., Waltham, MA, USA) at room temperature [19]. To the lysate was then added reaction mixtures included in the GFE kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and PCR was performed on a GeneAmp® PCR System 9700 Thermal Cycler (Life Technologies, Foster City, CA) with a gold-plated sample block and max ramp speed mode. Quality assurance and negative control were set-ups as described in sub-section 2.2. The PCR conditions were as follows; 95°C for 1 min; 27 cycles for 94°C for 3s and 60°C for the 30s, followed by a 60°C final extension for 8 min and final hold at 4°C. STR amplification product separation and determination of STR allele calls were as described in sub-section 2.2.

2.4. STR data analysis
Analytical threshold (AT) and stochastic threshold (ST) for PPF6C were set at 80 RFU and 180 RFU while the AT and ST for GFE were set at 150 RFU and 300 RFU, respectively. The AT and ST data from Penta D, Penta E, DYS576, and DYS570 in PPF6C panel and AT and ST data for Y-indel from the GFE panel were excluded because only overlap AT and ST data from both STR kits were compared.

3. Results and Discussion
Good preservation of genetic materials is crucial for genomic analysis. In forensic work, collected biological specimens may be re-analyzed when a new molecular method is made available for DNA profiling or new leads are forwarded for unsolved crime cases (commonly known as cold cases). Therefore, any collected biological evidence should be properly preserved as a storage medium, duration and condition influence the success of DNA profiling of old samples [20-22].

Here we report the effects of long term storage of 39 buccal swab samples collected using Bode Buccal DNA Collector™ (Bode Technology, Virginia, USA). The samples were kept at room temperature for over 4 years and their quality for DNA profiling was assessed by direct amplification using the Powerplex® Fusion 6C system (Promega Corporation, Madison, USA) and Globalfiler™ Express kit (Thermo Fisher Scientific, USA). A full STR profile was obtained for 30 samples and 22 samples using, PPF6C and GFE kits, respectively. Among these, full STR profiles were generated for 20 samples using both kits and were labeled as S01-S20. Partial STR profiles obtained either using PPF6C or GFE kits were labeled as S21-S39.

Overall, higher numbers of STR allele calls were obtained using PPF6C than the GFE kit, including those samples that were partially amplified. These observations are correlated with average peak height (APH; Table 1a and 1b) and average peak height ratio (PHR: Figures 1a and 1b) which are higher for the PPF6C kit.

Table 1a. Average peak height (RFU) of 20 samples with full STR profiles obtained using PP6CF and GFE kits.

Sample ID	Average peak height (RFU)	
	PP6CF	GFE
S01	5759	5417
S02	2683	4805
S03	4950	5094
S04	2937	3104
S05	3816	3522
S06	8531	5288
S07	9761	9516
S08	11200	5867
S09	5248	6356
S10	6434	8180
S11	4645	6881
S12	3303	5056
Table 1b. Average peak height (RFU) of 19 samples with partial STR profiles obtained using PP6CF and GFE kits.

Sample ID	Average peak height (RFU)	
	PP6CF	GFE
S21	3109	4675
S22	2092	1571
S23	1234	1566
S24	3183	9306
S25	8815	8048
S26	1720	3866
S27	2209	934
S28	3829	1068
S29	4378	5064
S30	2408	1764
S31	12546	5634
S32	3997	2590
S33	5449	2606
S34	3248	789
S35	3739	1975
S36	3299	789
S37	4891	2824
S38	3160	2975
S39	3444	5602
Mean (x̅)	4039	3350

Figure 1a. Average peak height ratio (PHR) of 20 samples with full STR profiles (23 loci) obtained using PP6CF and GFE kits. x̅; the mean value of average PHR.
Five samples showed discordant allele calls between PPF6C and GFE kits; sample S23 at locus CSF1PO and samples S25, S27, S28 and S29 at locus TPOX. The CSF1PO locus for sample S23 was called as homozygous (allele 11 with 366 RFU) using GFE, but allele 10 and 11 with 411 RFU and 355 RFU (respectively) were called using the PPF6C kit. Sample S25, S27, S28 and S29 were found to be heterozygous and homozygous using PPF6C and GFE kits, respectively. These discordant results might be due to primer mismatch that causes the null allele or allele dropout that has been previously reported for the GFE kit [23-27]. Another possibility is that both CSF1PO and TPOX are larger-size STR sequences (300bp-4500bp) and any alleles from these loci are possibly the first to drop out when amplifying degraded DNA samples [7].

![Figure 1b. Average peak height ratio (PHR) of 19 samples with partial STR profiles obtained using PPF6C and GFE kits.](image)

It is highly recommended to swab the filter paper more than twice to get a sufficient amount of DNA (i.e. buccal cells) for downstream analysis. Besides, a larger amount of DNA was found at the filter tip than the area near the handle of the Buccal DNA Collector [13]. In this study, the samples were randomly punched from Buccal DNA Collector and it is unlikely that the number of swipes and punch area contribute systematically to a higher number of STR allele calls for PPF6C than those generated using GFE. The PPF6C allows maximum discrimination with higher numbers of loci and works well with low amounts of DNA and inhibitor-laden samples [28]. Our results thus further support the general reliability of PPF6C kits for STR genotyping of long term stored buccal swab specimens.

Overall, our results demonstrated that the Buccal DNA Collector can be used as a collection medium for the long storage of genetic materials. In particular, full STR profiles were obtained for many samples using both kits and variations in the number of STR allele calls between kits might be due to primer design and sample degradation as discussed above. The latter is evident by the failure to obtain STR allele calls for CSF1PO, TPOX, and D22S1045, for which PCR products often are larger than for other STR loci. The Bode Buccal DNA Collector™ also has several other advantages from an operational perspective as it cheaply and samples can be stored at room temperature. In the long run, the use of the Buccal DNA Collector is a DNA storage medium that can save cost (purchasing of freezer and bill for power consumption) and laboratory space.

4. Conclusion
Overall, our study demonstrated that Bode Buccal DNA Collector™ can be used as a sampling method and storage medium for the long term preservation of genetic materials. There few signs of slight DNA degradation which is might well expect because buccal cell samples were deposited on untreated filter
paper and stored for a long period at room temperature. However, STR allele calls were obtained from most of the buccal cell samples, especially when typed using the PPF6C kit.

Acknowledgments
We would like to acknowledge DNA Databank Division (D13), Criminal Investigation Department, Royal Malaysia Police Cheras Selangor Malaysia for providing STR genotyping facilities and Mr. Thiau Fu Ang from Interscience Sdn. Bhd. for his technical assistance. This study received financial support from Universiti Sains Malaysia; Bridging Grant: 304/PTEKIND/6316501 and Ghana Education Trust Fund: 304/PPSK/6150159. Geoff Chambers wishes to acknowledge Victoria University for Alumnus Scholar support.

References
[1] van Wieren-de Wijer D B, Maitiland-van der Zee A H, de Boer A, Belitser SV, Kroon A A, de Leeuw P W, Schiffers P, Janssen R G, van Dujin C M, Stricker B H and Klungel O H 2009 Determinants of DNA yield and purity collected with buccal cell samples, Eur. J. Epidemiol. 24 677-682.
[2] Ghatak S, Muthukumaran R B and Nachimuthu S K 2013 A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis, J. Biomat. Tech. 24 224-231.
[3] Kampmann M L, Buchard A, Börsting C and Morling N 2016 High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs Biotechniques 61 149–151.
[4] El-Fahmawi B 2014 Invasive vs. non invasive sampling: an efficient non-invasive sample collection technology for various population segments, Qatar Foundation Annual Research Conference (Doha, Qatar) Vol. 2014, HBPP0665.
[5] Saab Y B, Kabbara W, Chbib C and Gard P R 2007 Buccal cell DNA extraction: yield, purity, and cost: a comparison of two methods, Genet Test 11 413-416.
[6] Verdon T J, Mitchell R J and van Oorschot R A H 2013 The influence of substrate on DNA transfer and extraction efficiency, Forensic Sci. Int. Genet. 7 167–175.
[7] Butler J M 2012 Advanced topics in forensic dna typing: methodology (Elsevier Academic Press, San Diego) pp 10 & 295.
[8] Bauer N, Rohmanstorfer R, Zelch S, Wallerstorfer D, Hunt S, Hyun C and Kazlova V 2017 DNA by mail: ensure dna integrity by use of self-drying buccal swabs, Lett. Health Biol. Sci. 2 71-77.
[9] Woo J S and Lu D Y 2019 Procurement, transportation, and storage of saliva, buccal swab, and oral wash specimens, Methods Mol. Biol. 1897 99-105.
[10] Freeman B, Smith N, Curtis C, Huckett L, Mill J and Craig I W 2003 DNA from buccal swabs recruited by mail: evaluation of storage effects on long-term stability and suitability for multiplex polym-erase chain reaction genotyping, Behav. Genet. 33 67–72.
[11] Sigurdson A J, Ha M, Cosentino M, Franklin T, Haque K A, Qi Y, Glaser C, Reid Y, Vaught J B and Bergen A W 2006 Long-term storage and recovery of buccal cell DNA from treated cards, Cancer Epidemiol. Biomarkers Prev. 15 385–388.
[12] Corradini B, Alù M, Magnanini E, Galinier M E and Silingardi E 2019 The importance of forensic storage support: DNA quality from 11-year-old saliva on FTA cards, Int. J. Legal Med. 133 1743–1750.
[13] Burger M F, Song E Y and Schumm J W 2005 Buccal DNA samples for DNA typing: new collection and processing methods, Biotechniques 39 257-261.
[14] Hakim H M, Khan H O, Ismail S A, Lalung J, Kofi A E, Abdullah M T, Chambers G K and Edinur H A 2020 Forensic parameters and ancestral fraction in the Kedayan population inferred using 21 autosomal STR loci, Meta Gene 25 100741.
[15] Hakim H M, Khan H O, Ismail S A, Lalung J, Kofi A E, Abdullah M T, Chambers G K and Edinur H A 2020 Dataset on 21 autosomal and two sex determining short tandem repeat loci in the Kedayan population in Borneo, Malaysia, Data in Brief 31 105909.
[16] Hakim H M, Khan H O, Ismail S A, Ayob S, Lalung J, Kofi E A, Chambers G K and Edinur H A 2019 Assessment of autosomal and male DNA extracted from casework samples using Casework Direct Kit, Custom and Maxwell 16 System DNA IQ Casework Pro Kit for autosomal-STR and Y-STR profiling. Sci Rep. 9 14558.
[17] Hakim H M, Lalung J, Khan H O, Khaw N R, Narayanesan S, Chambers G K and Edinur H A 2019 Experiences, challenges and the future direction of forensic DNA databanking in Malaysia, JSSM...
[18] Promega Corporation 2017 PowerPlex® Fusion System Technical Manual TMD039 (Revision 4/17).

[19] Iyavoo S, Knights S, Movrommatis M and Haizel T 2019 Implementation of Prep-n-Go™ Buffer for DNA extraction from buccal swabs, Forensic Sci. Int. Genet. Suppl. Ser. 7 211 – 213.

[20] Caputo M, Bosio L A and Corach D 2011 Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage, Investig. Genet. 2 17.

[21] Kornienko I V, Faleeva T G, Bachurin S S, Gudkov D A, Guruleva E A and Ivanov P L 2014 The evaluation of stability of blood stains immobilized on the FHA cards during their prolonged storage, Sudebno-meditsinskaia Ekspertiza 57 28-30.

[22] Hara M, Nakanishi H, Yoneyama K, Saito K and Takada A 2016 Effects of storage conditions on forensic examinations of blood samples and bloodstains stored for 20 years, Legal Med. (Tokyo) 18 81–84.

[23] Budowle B, Masibay A, Anderson S J, Barna C, Biega L, Brenneke S, Brown B L, Cramer J, DeGroot G A, Douglas D, Duceman B, Eastman A, Giles R, Hamill J, Haase D J, Janssen D W, Kupferschmidt T D, Lawton T, Lemire C, Llewellyn B, Moretti T, Neves J, Palaski C, Schueler S, Sgueglia J, Sprecher C, Tomsey C and Yet D 2001 STR primer concordance study, Forensic Sci. Int. 124 47–54.

[24] Budowle B and Sprecher C 2001 Concordance Study on Population Database Samples Using the PowerPlex™ 16 Kit and AmpF®STR Profiler Plus™ Kit and AmpF®STR COfiler™ Kit, J. Forensic Sci. 46 637-641.

[25] Delamoye M, Duverneuil C, Riva K, Leterreux M, Taieb S and De Mazancourt P 2004 False homozygosities at various loci revealed by discrepancies between commercial kits: implications for genetic databases, Forensic Sci. Int. 143 47–52.

[26] Vanderheyden N, Mai A, Gilissen A, Cassiman J J and Decorte R 2007 Identification and sequence analysis of discordant phenotypes between AmpFISTR SGM Plus™ and PowerPlex® 16, Int. J. Legal Med. 121 297–301.

[27] Westen A A, Kraaijenbrink T, Roblesde Medina E A, Harteveld J, Willemse P, Zuniga S B, van der Gaag K J, Weiler N E C, Warnaar J, Kayser M, Sijen T and de Knijff P 2014 Comparing six commercial autosomal STR kits in a large Dutch population sample, Forensic Sci. Int. Genet. 10 55–63.

[28] Budowle B, Eisenberg A J and van Daal A 2009 Validity of low copy number typing and applications to forensic science, Croat. Med. J. 50 207–217.