WEIGHTED ANALYTIC REGULARITY FOR THE INTEGRAL FRACTIONAL LAPLACIAN IN POLYGONS

MARKUS FAUSTMANN*, CARLO MARCATI†, JENS MARKUS MELENK*, AND CHRISTOPH SCHWAB‡

*Institut für Analysis und Scientific Computing, TU Wien, A-1040 Wien, Austria
†Dipartimento di Matematica “F. Casorati”, Università di Pavia, I-27100 Pavia, Italy
‡Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zürich, Switzerland

Abstract. We prove weighted analytic regularity of solutions to the Dirichlet problem for the integral fractional Laplacian in polygons with analytic right-hand side. We localize the problem through the Caffarelli-Silvestre extension and study the tangential differentiability of the extended solutions, followed by bootstrapping based on Caccioppoli inequalities on dyadic decompositions of vertex, edge, and vertex-edge neighborhoods.

Key word. fractional Laplacian, analytic regularity, corner domains, weighted Sobolev spaces

AMS subject classifications. 26A33, 35A20, 35B45, 35J70, 35R11.

1. Introduction. In this work, we study the regularity of solutions to the Dirichlet problem for the integral fractional Laplacian

\begin{equation}
(-\Delta)^s u = f \text{ on } \Omega, \quad u = 0 \text{ on } \mathbb{R}^d \setminus \overline{\Omega},
\end{equation}

with 0 < s < 1. We consider the case of a polygonal \(\Omega \) and a source term \(f \) that is analytic in \(\Omega \), and derive weighted analytic-type estimates for the solution \(u \), with vertex and edge weights that vanish on the domain boundary \(\partial \Omega \).

Unlike their integer order counterparts, solutions to fractional Laplace equations are known to lose regularity near \(\partial \Omega \), even when the source term and \(\partial \Omega \) are smooth (see, e.g., [Gru15]). After the establishment of low-order Hölder regularity up to the boundary for \(C^{1,1} \) domains in [RS14], solutions to the Dirichlet problem for the integral fractional Laplacian have been shown to be smooth (after removal of the boundary singularity) in \(C^\infty \) domains [Gru15]. Subsequent results have filled in the gap between low and high regularity in Sobolev [AG20] and Hölder spaces [ARO20], with appropriate assumptions on the regularity of the domain. Besov regularity of weak solutions \(u \) of (1.1) has recently been established in [BN21] in Lipschitz domains \(\Omega \). Finally, for polygonal \(\Omega \), the precise characterization of the singularities of the solution in vertex, edge, and vertex-edge neighborhoods is the focus of the Mellin-based analysis of [GSS21, Sto20].

For smooth boundary \(\partial \Omega \), [Gru15] characterizes the mapping properties of the integral fractional Laplacian, exhibiting in particular the anisotropic nature of solutions near the boundary. Interior regularity results have been obtained in [Coz17, BWZ17, FKM22] and, under analyticity assumptions on the right-hand side, (interior) analyticity of the solution has been derived even for certain nonlinear problems [KRS19, DFOS12, DFOS13] and more general integro-differential operators [AFV15]. The loss of regularity near \(\partial \Omega \) can be accounted for by weights in the context of isotropic Sobolev spaces [AB17]. While all the latter references focus on the Dirichlet integral fractional Laplacian, which is also the topic of the present work, corresponding regularity results for the Dirichlet spectral fractional Laplacian are also available, see, e.g., [CS16].

The purpose of the present work is a description of the regularity of the solution of (1.1) for piecewise analytic input data that reflects both the interior analyticity and the anisotropic nature of the solution near the boundary. This is achieved in Theorem 2.1 through the use of appropriately weighted Sobolev spaces. Unlike local elliptic operators in polygons, for which vertex-weighted spaces allow for analytic regularity shifts (e.g., [BG88, MR10]), corresponding results for fractional operators in polygons require additionally edge-weights [Gru15].

An observation that was influential in the analysis of elliptic fractional diffusion problems is their localization through a local, divergence form, elliptic degenerate operator in higher dimension. First pointed out in [CS07], it subsequently inspired many developments in the analysis of fractional problems. While not falling into the standard elliptic setting (see, e.g., the discussion in [Gru15]), the localization via a higher-dimensional local elliptic boundary value problem does allow one to leverage tools from
elliptic regularity theory. Indeed, the present work studies the regularity of the higher-dimensional local degenerate elliptic problem and iners from that the regularity of (1.1) by taking appropriate traces.

Our analysis is based on Caccioppoli estimates and bootstrapping methods for the higher-dimensional elliptic problem. Such arguments are well-known to require (under suitable assumptions on the data) a basic regularity shift for variational solutions from the energy space of the problem (in the present case, a fractional order, nonweighted Sobolev space) into a slightly smaller subspace (with a fixed order increase in regularity). This is subsequently used to iterate in a bootstrapping manner local regularity estimates of Caccioppoli type on appropriately scaled balls in a Besicovitch covering of the domain. In the classical setting of non-degenerate elliptic problems, the initial regularity shift (into a vertex-weighted Sobolev space) is achieved by localization and a Mellin type analysis at vertices, as presented, e.g., in [MR10] and the references there. The subsequent bootstrapping can then lead to analytic regularity as established in a number of references for local non-degenerate elliptic boundary value problems (see, e.g., [BG88, GB97a, GB97b, CDN12] and the references there). The bootstrapping argument of the present work structurally follows these approaches.

While delivering sharp ranges of indices for regularity shifts (as limited by poles in the Mellin resolvent), the Mellin-based approach will naturally meet with difficulties in settings with multiple, non-separated vertices (as arise, e.g., in general Lipschitz polygons). Here, an alternative approach to extract some finite amount of regularity in nonweighted Besov-Triebel-Lizorkin spaces was proposed in [Sav98]; it is based on difference-quotient techniques and compactness arguments. In the present work, our initial regularity shift is obtained with the techniques of [Sav98]. In contrast to the Mellin approach, the technique of [Sav98] leads to regularity shifts even in Lipschitz domains but does not, as a rule, give better shifts for piecewise smooth geometries such as polygons. While this could be viewed as mathematically non-satisfactory, we argue in the present note that it can be quite adequate as a base shift estimate in establishing analytic regularity in vertex- and boundary-weighted Sobolev spaces, where quantitative control of constants under scaling takes precedence over the optimal range of smoothness indices.

1.1. Impact on numerical methods. The mathematical analysis of efficient numerical methods for the numerical approximation of fractional diffusion has received considerable attention in recent years. We only mention the surveys [DDG+20, BBN+18, BLN20, LP+20] and the references there for broad surveys on recent developments in the analysis and in the discretization of nonlocal, fractional models. At this point, most basic issues in the numerical analysis of discretizations of linear, elliptic fractional diffusion problems are rather well understood, and convergence rates of variational discretizations based on finite element methods on regular simplicial meshes have been established, subject to appropriate regularity hypotheses. Regularity in isotropic Sobolev/Besov spaces is available, [BN21], leading to certain algebraically convergent methods based on shape-regular simplicial meshes. As discussed above, the expected solution behavior is anisotropic so that edge-refined meshes can lead to improved convergence rates. Indeed, a sharp analysis of vertex and edge singularities via Mellin techniques is the purpose of [GS821, Sto20] and allows for unravelling the optimal mesh grading for algebraically convergent methods. The analytic regularity result obtained in Theorem 2.1 captures both the anisotropic behavior of the solution and its analyticity so that exponentially convergent numerical methods for integral fractional Laplace equations in polygons can be developed in our follow-up work [FMMS22b]; see also [FMMS22a] for the corresponding convergence theory in 1D.

1.2. Structure of this text. After having introduced some basic notation in the forthcoming subsection, in Section 2 we present the variational formulation of the nonlocal boundary value problem. We also introduce the scales of boundary-weighted Sobolev spaces on which our regularity analysis is based. In Section 2.2, we state our main regularity result, Theorem 2.1. The rest of this paper is devoted to its proof, which is structured as follows.

Section 3 develops, along the lines of [Sav98], a global regularity shift and provides localized interior regularity for the extension problem. In Section 4, we establish a local regularity shift for the tangential derivatives of the solution of the extension problem, in a vicinity of (smooth parts of) the boundary. These estimates are combined in Section 5 with covering arguments and scaling to establish the weighted analytic regularity.

Section 6 provides a brief summary of our main results, and outlines generalizations and applications of the present results.

1.3. Notation. For open $\omega \subseteq \mathbb{R}^d$ and $t \in \mathbb{N}_0$, the spaces $H^t(\omega)$ are the classical Sobolev spaces of order t. For $t \in (0, 1)$, fractional order Sobolev spaces are given in terms of the Aronstein-Slobodeckij
semnorn $| \cdot |_{H^s(\omega)}$ and the full norm $\| \cdot \|_{H^s(\omega)}$ by

$$
(1.2) \quad |v|^2_{H^s(\omega)} = \int_{x \in \omega} \int_{z \in \omega} |v(x) - v(z)|^2 |x - z|^{-d+2s} \, dz \, dx, \quad \|v\|^2_{H^s(\omega)} = \|v\|^2_{L^2(\omega)} + |v|_{H^s(\omega)}^2,
$$

where we denote the Euclidean norm in \mathbb{R}^d by $| \cdot |$. For bounded Lipschitz domains $\Omega \subset \mathbb{R}^d$ and $t \in (0, 1)$, we additionally introduce

$$
\tilde{H}^t(\Omega) = \{ u \in H^t(\mathbb{R}^d) : u \equiv 0 \text{ on } \mathbb{R}^d \setminus \overline{\Omega} \}, \quad \|v\|^2_{\tilde{H}^t(\Omega)} := \|v\|^2_{H^t(\Omega)} + \|v/r_{\partial \Omega}\|^2_{L^2(\Omega)},
$$

where $r_{\partial \Omega}(x) := \text{dist}(x, \partial \Omega)$ denotes the Euclidean distance of a point $x \in \Omega$ from the boundary $\partial \Omega$. On $\tilde{H}^t(\Omega)$ we have, by combining [Gri11, Lemma 1.3.2.6] and [AB17, Proposition 2.3], the estimate

$$
(1.3) \quad \forall u \in \tilde{H}^t(\Omega): \quad \|u\|_{\tilde{H}^t(\Omega)} \leq C \|u\|_{H^t(\mathbb{R}^d)}
$$

for some $C > 0$ depending only on t and Ω. For $t \in (0, 1) \setminus \{ \frac{1}{4} \}$, the norms $\| \cdot \|_{\tilde{H}^t(\Omega)}$ and $\| \cdot \|_{H^t(\Omega)}$ are equivalent on $\tilde{H}^t(\Omega)$, see, e.g., [Gri11, Sec. 1.4.4]. Furthermore, for $t > 0$, the space $H^{-t}(\Omega)$ denotes the dual space of $\tilde{H}^t(\Omega)$, and we write $\langle \cdot, \cdot \rangle_{L^2(\Omega)}$ for the duality pairing that extends the $L^2(\Omega)$-inner product.

We denote by \mathbb{R}_+ the positive real numbers. For subsets $\omega \subset \mathbb{R}^d$, we will use the notation $\omega^+ := \omega \times \mathbb{R}_+$ and $\omega^0 := \omega \times (0, \theta)$ for $\theta > 0$. For any multi index $\beta = (\beta_1, \ldots, \beta_d) \in \mathbb{N}_0^d$, we denote $\partial^\beta = \partial_{x_1}^{\beta_1} \cdots \partial_{x_d}^{\beta_d}$ and $|\beta| = \sum_{i=1}^d \beta_i$. We adhere to the convention that empty sums are null, i.e., $\sum_{j=a}^b c_j = 0$ when $b < a$; this even applies to the case where the terms c_j may not be defined. We also follow the standard convention $0^0 = 1$.

Throughout this article, we use the notation \lesssim to abbreviate \leq up to a generic constant $C > 0$ that does not depend on critical parameters in our analysis.

2. Setting. There are several different ways to define the fractional Laplacian $(-\Delta)^s$ for $s \in (0, 1)$. A classical definition on the full space \mathbb{R}^d is in terms of the Fourier transformation \mathcal{F}, i.e., $\mathcal{F}(-\Delta)^s u(\xi) = |\xi|^{2s}(\mathcal{F}u)(\xi)$. Alternative, equivalent definitions of $(-\Delta)^s$ are, e.g., via spectral, semi-group, or operator theory, [Kwa17] or via singular integrals.

In the following, we consider the integral fractional Laplacian defined pointwise for sufficiently smooth functions u as the principal value integral

$$
(2.1) \quad (-\Delta)^s u(x) := C(d, s) \text{ P.V.} \int_{\mathbb{R}^d} \frac{u(x) - u(z)}{|x - z|^{d+2s}} \, dz \quad \text{with} \quad C(d, s) := -2^{2s} \frac{\Gamma(s + d/2)}{\pi^{d/2} \Gamma(-s)},
$$

where $\Gamma(\cdot)$ denotes the Gamma function. We investigate the fractional differential equation

$$
(2.2a) \quad (-\Delta)^s u = f \quad \text{in } \Omega,
$$

$$
(2.2b) \quad u = 0 \quad \text{in } \Omega^c := \mathbb{R}^d \setminus \overline{\Omega},
$$

where $s \in (0, 1)$ and $f \in H^{-s}(\Omega)$ is a given right-hand side. Equation (2.2) is understood in weak form: Find $u \in \tilde{H}^s(\Omega)$ such that

$$
(2.3) \quad a(u, v) := \langle (-\Delta)^s u, v \rangle_{L^2(\mathbb{R}^d)} = \langle f, v \rangle_{L^2(\Omega)} \quad \forall v \in \tilde{H}^s(\Omega).
$$

The bilinear form $a(\cdot, \cdot)$ has the alternative representation

$$
(2.4) \quad a(u, v) = \frac{C(d, s)}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{u(x) - u(z)(v(x) - v(z))}{|x - z|^{d+2s}} \, dz \, dx \quad \forall u, v \in \tilde{H}^s(\Omega).
$$

Existence and uniqueness of $u \in \tilde{H}^s(\Omega)$ follow from the Lax–Milgram Lemma for any $f \in H^{-s}(\Omega)$, upon the observation that the bilinear form $a(\cdot, \cdot) : \tilde{H}^s(\Omega) \times \tilde{H}^s(\Omega) \to \mathbb{R}$ is continuous and coercive.
2.1. The Caffarelli-Silvestre extension. A very influential interpretation of the fractional Laplacian is provided by the so-called Caffarelli-Silvestre extension, due to [CS07]. It showed that the nonlocal operator \((-\Delta)^s\) can be be understood as a Dirichlet-to-Neumann map of a degenerate, local elliptic PDE on a half space in \(\mathbb{R}^{d+1}\). Throughout the following text, we let

\(\alpha := 1 - 2s.\)

2.1.1. Weighted spaces for the Caffarelli-Silvestre extension. Throughout the text, we single out the last component of points in \(\mathbb{R}^{d+1}\) by writing them as \((x, y)\) with \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d, y \in \mathbb{R}\). We introduce, for open sets \(D \subset \mathbb{R}^d \times \mathbb{R}_+\), the weighted \(L^2\)-norm \(\| \cdot \|_{L^2_w(D)}\) via

\[
\|U\|_{L^2_w(D)}^2 := \int_{(x,y) \in D} y^\alpha |U(x,y)|^2 \, dx \, dy.
\]

We denote by \(L^2_w(D)\) the space of functions on \(D\) that are square-integrable with respect to the weight \(y^\alpha\). We introduce \(H^1_w(D) := \{U \in L^2_w(D) : \nabla U \in L^2_w(D)\}\) as well as the Beppo-Levi space \(BL^1_w := \{U \in L^2_w(\mathbb{R}^d \times \mathbb{R}_+) : \nabla U \in L^2_w(\mathbb{R}^d \times \mathbb{R}_+)\}\). For elements \(U \in BL^1_w\), one can give meaning to their trace at \(y = 0\), which is denoted \(\text{tr} \ U\). Recalling \(\alpha = 1 - 2s\), one has in fact \(\text{tr} \ U \in H^s_\loc(\mathbb{R}^d)\) (see, e.g., [KM19, Lem. 3.8]). If \(\text{supp} \ U \subset \overline{\Omega}\) for some bounded Lipschitz domain \(\Omega\), then \(\text{tr} \ U \in H^s(\Omega)\) and

\[
\| \text{tr} \ U \|_{\tilde{H}^s(\Omega)} \lesssim \| \text{tr} \ U \|_{H^s(\mathbb{R}^d)} \lesssim \| \nabla U \|_{L^2_w(\mathbb{R}^d \times \mathbb{R}_+)}
\]

with an implied constant depending on \(s\) and \(\Omega\).

2.1.2. The Caffarelli-Silvestre extension. Given \(u \in \tilde{H}^s(\Omega)\), let \(U = U(x, y)\) denote the minimum norm extension of \(u\) to \(\mathbb{R}^d \times \mathbb{R}_+\), i.e., \(U = \arg\min\{\|\nabla U\|^2_{L^2_w(\mathbb{R}^d \times \mathbb{R}_+)} \mid U \in BL^1_w, \text{tr} \ U = u \in H^s(\mathbb{R}^d)\}\). The function \(U\) is indeed unique in \(BL^1_w\) (see, e.g., [KM19, p. 2900]).

The Euler-Lagrange equations corresponding to this extension problem read

\[
\begin{align*}
\text{div}(y^\alpha \nabla U) &= 0 & \text{in } \mathbb{R}^d \times (0, \infty), \\
U(\cdot, 0) &= u & \text{in } \mathbb{R}^d.
\end{align*}
\]

Henceforth, when referring to solutions of (2.8), we will additionally understand that \(U \in BL^1_w\).

The relevance of (2.8) is due to the fact that the fractional Laplacian applied to \(u \in \tilde{H}^s(\Omega)\) can be recovered as distributional normal trace of the extension problem [CS07, Section 3], [CS16]:

\[
(\Delta)^s u = -d_s \lim_{y \to 0^+} y^\alpha \partial_y U(x, y), \quad d_s := 2^{2s-1} \Gamma(s)/\Gamma(1-s).
\]

2.2. Main result: weighted analytic regularity for polygonal domains in \(\mathbb{R}^2\). The following theorem is the main result of this article. It states that, provided the data \(f\) is analytic in \(\overline{\Omega}\), we obtain analytic regularity for the solution \(u\) of (2.2) in a scale of weighted Sobolev spaces. In order to specify these weighted spaces, we need additional notation.

Let \(\Omega \subset \mathbb{R}^2\) be a bounded, polygonal Lipschitz domain with finitely many vertices and (straight) edges. (Connectedness of the boundary is not necessary in the following.) We denote by \(\mathcal{V}\) the set of vertices and by \(\mathcal{E}\) the set of the (open) edges. For \(v \in \mathcal{V}\) and \(e \in \mathcal{E}\), we define the distance functions

\[
\begin{align*}
rv(x) &:= |x - v|, & re(x) &:= \inf_{y \in e} |x - y|, & \rho ve(x) &:= re(x)/rv(x).
\end{align*}
\]

For each vertex \(v \in \mathcal{V}\), we denote by \(\mathcal{E}_v := \{e \in \mathcal{E} : v \in e\}\) the set of all edges that meet at \(v\). For any \(e \in \mathcal{E}\), we define \(\mathcal{V}_e := \{v \in \mathcal{V} : v \in e\}\) as the set of endpoints of \(e\). For fixed, sufficiently small \(\xi > 0\) and for \(v \in \mathcal{V}, e \in \mathcal{E}\), we define vertex, vertex-edge and edge neighborhoods by

\[
\begin{align*}
\omega^\xi_v &:= \{x \in \Omega : rv(x) < \xi \quad \land \quad \rho ve(x) \geq \xi \quad \forall e \in \mathcal{E}_v\}, \\
\omega^\xi ve &:= \{x \in \Omega : rv(x) < \xi \quad \land \quad \rho ve(x) < \xi\}, \\
\omega^\xi e &:= \{x \in \Omega : rv(x) \geq \xi \quad \land \quad re(x) < \xi^2 \quad \forall v \in \mathcal{V}_e\}.
\end{align*}
\]
Fig. 1: Notation near a vertex \(v\).

Figure 1 illustrates this notation near a vertex \(v \in V\) of the polygon. Throughout the paper, we will assume that \(\xi\) is small enough so that \(\omega_\xi^v \cap \omega_\xi^{v'} = \emptyset\) for all \(v \neq v'\), that \(\omega_\xi^e \cap \omega_\xi^{e'} = \emptyset\) for all \(e \neq e'\) and \(\omega_\xi^{ve} \cap \omega_\xi^{ve'} = \emptyset\) for all \(v \neq v'\) and all \(e \neq e'\). We will drop the superscript \(\xi\) unless strictly necessary.

We can decompose the Lipschitz polygon \(\Omega\) into sectoral neighborhoods of vertices \(v\), which are unions of vertex and vertex-edge neighborhoods (as depicted in Figure 1), edge neighborhoods (that are away from a vertex), and an interior part \(\Omega_{\text{int}}\), i.e.,

\[
\Omega = \bigcup_{v \in V} \left(\omega_v \cup \bigcup_{e \in \mathcal{E}_v} \omega_{ve} \right) \cup \bigcup_{e \in \mathcal{E}} \omega_e \cup \Omega_{\text{int}}.
\]

Each sectoral and edge neighborhood may have a different value \(\xi\). However, since only finitely many different neighborhoods are needed to decompose the polygon, the interior part \(\Omega_{\text{int}} \subset \Omega\) has a positive distance from the boundary.

In a given edge neighborhood \(\omega_e\) or an vertex-edge neighborhood \(\omega_{ve}\), we let \(e_\parallel\) and \(e_\perp\) be two unit vectors such that \(e_\parallel\) is tangential to \(e\) and \(e_\perp\) is normal to \(e\). We introduce the differential operators

\[
D_{x_\parallel} v := e_\parallel \cdot \nabla_x v, \quad D_{x_\perp} v := e_\perp \cdot \nabla_x v
\]

corresponding to differentiation in the tangential and normal direction. Inductively, we can define higher order tangential and normal derivatives by \(D_{x_\parallel}^j v := D_{x_\parallel} (D_{x_\perp}^{j-1} v)\) and \(D_{x_\perp}^j v := D_{x_\perp} (D_{x_\parallel}^{j-1} v)\) for \(j > 1\).

Our main result provides local analytic regularity in edge- and vertex-weighted Sobolev spaces.

Theorem 2.1. Let \(\Omega \subset \mathbb{R}^2\) be a bounded polygonal Lipschitz domain. Let the data \(f \in C^\infty(\Omega)\) satisfy with a constant \(\gamma_f > 0\)

\[
(2.10) \quad \forall j \in \mathbb{N}_0: \sum_{|\beta|=j} \|\partial_\beta^f\|_{L^2(\Omega)} \leq \gamma_f^{j+1} j^j.
\]

Let \(v \in V, e \in E\) and \(\omega_v, \omega_e, \omega_{ve}\) be fixed vertex, vertex-edge and edge-neighborhoods. Let \(u\) be the weak solution of (2.2). Then, there is \(\gamma > 0\) depending only on \(\gamma_f, s,\) and \(\Omega\) such that for every \(\varepsilon > 0\) there exists \(C_{\varepsilon} > 0\) (depending only on \(\varepsilon\) and \(\Omega\)) such that the following holds:

(i) For all \(\beta \in \mathbb{N}_0^n\) there holds with \(|\beta| = p\)

\[
(2.11) \quad \left\| r_v^{p-1/2-s+\varepsilon} \partial_\beta^v u \right\|_{L^2(\omega_v)} \leq C_{\varepsilon} \gamma^{p+1} p^p.
\]

(ii) For all \((p_\perp, p_\parallel) \in \mathbb{N}_0^n\) there holds with \(p = p_\perp + p_\parallel\)

\[
(2.12) \quad \left\| r_e^{p_\perp-1/2-s+\varepsilon} D_{x_\perp}^{p_\perp} D_{x_\parallel}^{p_\parallel} u \right\|_{L^2(\omega_e)} \leq C_{\varepsilon} \gamma^{p+1} p^p,
\]

\[
(2.13) \quad \left\| r_v^{p_\parallel-1/2-s+\varepsilon} D_{x_\parallel}^{p_\parallel} D_{x_\perp}^{p_\perp} u \right\|_{L^2(\omega_{ve})} \leq C_{\varepsilon} \gamma^{p+1} p^p.
\]
(iii) For the interior part Ω_{int} and for all $\beta \in \mathbb{N}_0^d$ there holds with $|\beta| = p$

\[
\|\partial_\beta u\|_{L^2(\Omega_{\text{int}})} \leq \gamma^{p+1} p^p. \tag{2.14}
\]

Remark 2.2. Inequalities (2.12) and (2.13) can be written in compact form: For all $\nu > -1/2 - s$, there exists $C_\nu > 0$ such that for $\bullet \in \{e, ve\}$

\[
\|r_{\nu}^{p+\nu} \rho_{ve}^{p+\nu} D_\xi D_\omega u\|_{L^2(\omega)} \leq C_\nu \gamma^{p+1} p^p \quad \forall (p, p) \in \mathbb{N}_0^d \text{ with } p = p_\perp + p_\perp. \tag{2.15}
\]

Remark 2.3.

(i) Stirling’s formula implies $p^p \leq C p^p$. Therefore, there exists a constant \tilde{C}_ν such that (2.15) can also be written as

\[
\|r_{\nu}^{p+\nu} \rho_{ve}^{p+\nu} D_\xi D_\omega u\|_{L^2(\omega)} \leq \tilde{C}_\nu (\gamma^p)^{p+1} p^! \tag{2.16}
\]

and the same can also be done for (2.11) and (2.14) in Theorem 2.1.

(ii) We note that $(p_\perp + p_\perp)^{p_\perp + p_\perp} \leq p_\perp^{p_\perp} p_\perp^{p_\perp + p_\perp}$. Together with $p^p \leq C p^p$ (using Stirling’s formula), one can also formulate the estimates (2.15) as follows: There are constants \tilde{C}_ν and $\gamma > 0$ such that

\[
\forall (p, p) \in \mathbb{N}_0^d: \quad \|r_{\nu}^{p+\nu} \rho_{ve}^{p+\nu} D_\xi D_\omega u\|_{L^2(\omega)} \leq \tilde{C}_\nu (\gamma^p)^{p+1} p^! \tag{2.17}
\]

(iii) The assumption (2.10) on the data f expresses analyticity in $\overline{\Omega}$ (combine Morrey’s embedding [Gri11, eq. (1.4.4.6)] to see $f \in C^\infty$ with [Mor66, Lemma 5.7.2]). Inspection of the proof (in particular Lemmas 5.5 and 5.7) shows that f could be admitted to be in vertex or edge-weighted classes of analytic functions. For simplicity of exposition, we do not explore this further.

(iv) Inspection of the proofs also shows that, in order to obtained weight regularity of fixed, finite order p, only finite regularity of the data f is required.

(v) By Morrey’s embedding, e.g., [Gri11, eq. (1.4.4.6)], estimate (2.14) implies that the solution $u \in C^\infty(\overline{\Omega_{\text{int}}})$ as well as analyticity of u in $\overline{\Omega_{\text{int}}}$, [Mor66, Lemma 5.7.2]. Other results on interior analytic regularity of more general, linear integro-differential operators are, e.g., in [AFV15], for $1/2 < s < 1$.

3. Regularity results for the extension problem. In this section, we derive local (higher order) regularity results for solutions to the Caffarelli-Silvestre extension problem. As the techniques employed are valid in any space dimension, we formulate our results for general $d \in \mathbb{N}$.

Fix $H > 0$. Given $F \in L^2_{-\alpha}(\mathbb{R}^d \times (0, H))$ and $f \in H^{-s}(\Omega)$, consider the problem to find the minimizer $U = U(x, y)$ with $x \in \mathbb{R}^d$ and $y \in \mathbb{R}_+^d$ of

\[
(\text{3.1}) \quad \text{minimize } F \text{ on } BL^1_{\alpha,0,\Omega} := \{ U \in BL^1_{\alpha,0} : \text{ tr } U = 0 \text{ on } \Omega^c \},
\]

where

\[
(\text{3.2}) \quad F(U) := \frac{1}{2} b(U, U) - \int_{\mathbb{R}^d \times (0, H)} FU \, dx \, dy - \int_{\Omega} f \, U \, dx, \quad b(U, V) := \int_{\mathbb{R}^d \times \mathbb{R}_+^d} g^s \nabla U \cdot \nabla V \, dx \, dy.
\]

We have the following Poincaré type estimate:

Lemma 3.1.

(i) The map $BL^1_{\alpha,0,\Omega} \ni U \mapsto \|\nabla U\|_{L^2_{\alpha}(\mathbb{R}^d \times \mathbb{R}_+)}$ is a norm, and $BL^1_{\alpha,0,\Omega}$ endowed with this norm is a Hilbert space with corresponding inner-product given by the bilinear form $b(\cdot, \cdot)$ in (3.2).

(ii) For every $H \in (0, \infty)$, there is $C_{H,\alpha} > 0$ such that

\[
\forall U \in BL^1_{\alpha,0,\Omega}: \quad \|U\|_{L^2_{\alpha}(\mathbb{R}^d \times (0, H))} \leq C_{H,\alpha} \|\nabla U\|_{L^2_{\alpha}(\mathbb{R}^d \times \mathbb{R}_+)} \tag{3.3}
\]

Proof. Details of the proof are given in Appendix B.

With Lemma 3.1 in hand, existence and uniqueness of solutions of (3.1) follows from the Lax-Milgram Lemma since, for $F \in L^2_{-\alpha}(\mathbb{R}^d \times (0, H))$ and $f \in H^{-s}(\Omega)$, the map $U \mapsto \int_{\mathbb{R}^d \times (0, H)} FU + \int_{\Omega} f \, U$ in (3.2) extends to a bounded linear functional on $BL^1_{\alpha,0,\Omega}$. In view of (3.3) and the trace estimate (2.7),
the minimization problem (3.1) admits by Lax-Milgram a unique solution \(U \in BL^1_{α,0,Ω}\) with the a priori estimate

\[
(3.4) \quad \|\nabla U\|_{L^2_α(ℝ^d×ℝ^+)} \leq C \left[\|F\|_{L^2_α(ℝ^d×(0,H))} + \|f\|_{H^{1−}(Ω)} \right]
\]

with constant \(C\) dependent on \(s \in (0,1)\), \(H > 0\), and \(Ω\).

The Euler-Lagrange equations formally satisfied by the solution \(U\) of (3.1) are:

\[
\begin{align*}
(3.5a) & \quad -\text{div}(y^α\nabla U) = F & \text{in } ℝ^d \times (0,∞), \\
(3.5b) & \quad \partial_{α,n} U(\cdot,0) = f & \text{in } Ω, \\
(3.5c) & \quad \text{tr } U = 0 & \text{on } Ω^c,
\end{align*}
\]

where \(\partial_{α,n} U(x,0) = -d_α \lim_{y \to 0^+} y^α \partial_ν U(x,y)\) and we implicitly extended \(F\) to \(ℝ^d \times ℝ^+\) by zero. In view of (2.9) together with the fractional PDE \((-Δ)^s u = f\), this is a Neumann-type Caffarelli-Silvestre extension problem with an additional source \(F\).

Remark 3.2. (i) The system (3.5) is understood in a weak sense, i.e., to find \(U \in BL^1_{α,0,Ω}\) such that

\[
(3.6) \quad \forall V \in BL^1_{α,0,Ω}: \quad b(U, V) = \int_{ℝ^d×ℝ^+} FV \, dx \, dy + \int_Ω f \text{tr } V \, dx.
\]

Due to (3.3), the integral \(\int_{ℝ^d×ℝ^+} FV \, dx \, dy\) is well-defined.

(ii) For the notion of solution of (3.5), the support requirement \(\text{supp } F \subset ℝ^d \times [0,H]\) can be relaxed e.g., to \(F \in L^2_α(ℝ^d \times ℝ^+)\) by testing with \(V \in H^1_{α,0,Ω}(ℝ^d \times ℝ^+) := H^1(ℝ^d \times ℝ^+) \cap BL^1_{α,0,Ω}\). In this case, the integral \(\int_{ℝ^d×ℝ^+} FV \, dx \, dy\) is well-defined by Cauchy-Schwarz.

(iii) We note that working with functions supported in \(ℝ^d \times [0,H]\) induces an implicit dependence on \(H\) of all constants, which is due to the Poincaré type estimate (3.3). Alternatively to restricting the test space, one could also circumvent this by introducing suitable weights that control the behavior of \(F\) at infinity; we do not develop this here.

3.1. Global regularity: a shift theorem

The following lemma provides additional regularity of the extension problem in the \(x\)-direction. The argument uses the technique developed in [Sav98] (see also [EF99, Ebm02]) that has recently been used in [BN21] to show a closely related shift theorem for the Dirichlet fractional Laplacian; the technique merely assumes \(Ω\) to be a Lipschitz domain in \(ℝ^d\).

On a technical level, the difference between [BN21] and Lemma 3.3 below is that Lemma 3.3 studies (tangential) differentiability properties of the extension \(U\), whereas [BN21] focuses on the trace \(u = \text{tr } U\).

For functions \(U, F, f\), it is convenient to introduce the abbreviation

\[
(3.7) \quad N^2(U,F,f) := \|\nabla U\|_{L^2_α(ℝ^d×ℝ^+)} \left(\|\nabla U\|_{L^2_α(ℝ^d×ℝ^+)} + \|F\|_{L^2_α(ℝ^d×(0,h))} + \|f\|_{H^{1−}(Ω)} \right).
\]

In view of the a priori estimate (3.4), we have the simplified bound (with updated constant \(C\))

\[
(3.8) \quad N^2(U,F,f) \leq C \left(\|f\|_{H^{1−}(Ω)} + \|F\|_{L^2_α(ℝ^d×(0,h))} \right).
\]

Lemma 3.3. Let \(Ω \subset ℝ^d\) be a bounded Lipschitz domain, and let \(B_R^c \subset ℝ^d\) be a ball with \(Ω \subset B_R^c\). For \(t \in [0,1/2]\), there is a constant \(C_t > 0\) (depending only on \(s, t, α, R, Ω\)) such that for \(f \in C^∞(Ω)\), \(F \in L^2_α(ℝ^d×(0,H))\) the solution \(U\) of (3.1) satisfies

\[
\int_{ℝ^+} y^α \|\nabla U(\cdot, y)\|^2_{H^{1−}(B_R)} \, dy \leq C_t N^2(U,F,f)
\]

with \(N^2(U,F,f)\) given by (3.7).

Proof. The idea is to apply the difference quotient argument from [Sav98] only in the \(x\)-direction.

Let \(x_0 \in Π\) be arbitrary. For \(h \in ℝ^d\) denote \(T_h U := η U_h + (1−η)U\), where \(U_h(x,y) := U(x+h,y)\) and \(η\) is a cut-off function that localizes to a suitable ball \(B_{2ρ}(x_0)\), i.e., \(0 ≤ η ≤ 1\), \(η ≡ 1\) on \(B_{ρ}(x_0)\) and \(\text{supp } η \subset B_{2ρ}(x_0)\). In Steps 1–5 of this proof, we will abbreviate \(B_{ρ'}(x_0)\) for \(B_{ρ'}(x_0)\) for \(ρ' > 0\).
 Altogether we get from the previous estimates that

\[\omega(U) := \sup_{h \in D \setminus \{0\}} \frac{\mathcal{F}(T_h U) - \mathcal{F}(U)}{\|h\|} = \omega_b(U) + \omega_f(U), \]

\[\omega_f(U) := \sup_{h \in D \setminus \{0\}} \frac{\int_{\mathbb{R}^d \times (0, H)} F(T_h U - U)}{\|h\|}, \]

\[\omega_b(U) := \frac{1}{2} \sup_{h \in D \setminus \{0\}} \frac{b(T_h U, T_h U) - b(U, U)}{\|h\|}, \]

\[\omega(T) := \sup_{h \in D \setminus \{0\}} \frac{\int_{\mathbb{R}^d \times (0, H)} F(T_h U - U)}{\|h\|}, \]

\[\omega_f(U) := \sup_{h \in D \setminus \{0\}} \frac{\int_{\mathbb{R}^d \times (0, H)} F(T_h U - U)}{\|h\|}, \]

\[\text{can be used to derive regularity results in Besov spaces. Here, } D \subset \mathbb{R}^d \text{ denotes a set of admissible directions } h. \text{ These directions are chosen such that the function } T_h U \text{ is an admissible test function, i.e., } T_h U \in \mathcal{B}L^1_{\alpha_0,0} \Omega \text{. For this, we have to require } \text{sup} \text{tr}(T_h U) \subset \overline{\Omega}. \text{ In } [\text{Sav98}, (30)] \text{ a description of this set is given in terms of a set of admissible outward pointing vectors } \mathcal{O}_p(x_0), \text{ which are directions } h \text{ with } |h| \leq \rho \text{ such that for all } t \in [0,1] \text{ the translate } B_{\rho p}(x_0) \setminus \Omega + th \text{ is completely contained in } \Omega^c. \]

Step 1. (Estimate of \(\omega_b(U) \)). The definition of the bilinear form \(b(\cdot, \cdot), h \in D \), and the definition of \(T_h \) give

\[b(T_h U, T_h U) - b(U, U) = \int_{\mathbb{R}^d \times \mathbb{R}^d} g^a(|\nabla T_h U|^2 - |\nabla U|^2) \, dx \, dy \]

\[= \int_{\mathbb{R}^d \times \mathbb{R}^d} g^a((|\nabla \eta|)(U_h - U) + T_h \nabla U|^2 - |\nabla U|^2) \, dx \, dy \]

\[= \int_{\mathbb{R}^d \times \mathbb{R}^d} g^a((|\nabla \eta|)(U_h - U))^2 + 2T_h \nabla U \cdot (\nabla \eta)(U_h - U)) \, dx \, dy + \int_{\mathbb{R}^d \times \mathbb{R}^d} g^a(|T_h \nabla U|^2 - |\nabla U|^2) \, dx \, dy \]

\[=: T_1 + T_2. \]

For the first integral \(T_1 \), we use the support properties of \(\eta \) and that \(\|U(\cdot,y) - U_h(\cdot,y)\|_{L^2(B_{2\rho})} \lesssim |h| \|\nabla U(\cdot,y)\|_{L^2(B_{2\rho})} \), which gives

\[T_1 \lesssim \int_{B_{2\rho}^+} g^a(|\nabla \eta|(x-h)) \|\nabla U(\cdot,y)\|_{L^2(B_{2\rho})} \|T_h \nabla U(\cdot,y)\|_{L^2(B_{2\rho})} \, dy \]

\[\lesssim |h| \int_{B_{2\rho}^+} g^a |\nabla U|^2 \, dx \, dy. \]

For the term \(T_2 \), we first note \(|T_h \nabla U|^2 \leq \eta |\nabla U_h|^2 + (1 - \eta) |\nabla U|^2 \) since \(0 \leq \eta \leq 1 \). Using the variable transformation \(z = x + h \) together with \(B_{2\rho}(x_0) + h \subset B_{3\rho}(x_0) \) we obtain

\[T_2 = \int_{\mathbb{R}^d \times \mathbb{R}^d} g^a(|T_h \nabla U|^2 - |\nabla U|^2) \, dx \, dy \leq \int_{\mathbb{R}^d} \int_{B_{2\rho}^+} g^a \eta (|\nabla U_h|^2 - |\nabla U|^2) \, dx \, dy \]

\[\leq \int_{\mathbb{R}^d} \int_{B_{2\rho}^+} g^a (\eta (x-h) - \eta (x)) |\nabla U|^2 \, dx \, dy \lesssim |h| \int_{B_{2\rho}^+} g^a |\nabla U|^2 \, dx \, dy. \]

Altogether we get from the previous estimates that

\[\omega_b(U) \lesssim \int_{B_{2\rho}^+} g^a |\nabla U|^2 \, dx \, dy. \]

Step 2. (Estimate of \(\omega_f(U) \)). Using the definition of \(T_h \), we can write \(U - T_h U = \eta(U - U_h) \), and \(\text{supp } \eta \subset B_{2\rho}(x_0) \) implies

\[\left| \int_{\mathbb{R}^d \times (0,H)} F(U - T_h U) \, dx \, dy \right| = \left| \int_{\mathbb{R}^d \times (0,H)} F\eta(U - U_h) \, dx \, dy \right| \leq \|F\|_{L^2_{\alpha_0}(B_{2\rho} \times (0,H))} \|U - U_h\|_{L^2_{\alpha_0}(B_{2\rho}^+)} \]

\[\lesssim |h| \|F\|_{L^2_{\alpha_0}(B_{2\rho} \times (0,H))} \|\nabla U\|_{L^2(B_{2\rho}^+)} \]

\[(3.9) \]
which produces
\[\omega_F(U) \lesssim \| F \|_{L^2_{\alpha,\beta}((0,H))} \| \nabla U \|_{L^2_{\alpha,\beta}(B_3^p)}. \]

Step 3. (Estimate of \(\omega_f(U) \)). For the trace term, we use a second cut-off function \(\tilde{\eta} \in C_c^\infty(\mathbb{R}^{d+1}) \) with \(\tilde{\eta} \equiv 1 \) on \(B_{3p}(x_0) \times \{0\} \) and \(\text{supp}(\tilde{\eta}) \subset B_{4p}(x_0) \times (-H, H) \) and get with the trace inequality (2.7) and the estimate (3.3) since \(\text{supp}(f\eta - (f\eta)_{-h}) \subset B_{3p} \)
\[
\left| \int_{\Omega} f \text{tr}(U - T_h U) U_h \, dx \right| = \left| \int_{B_{3p}} f \eta (U - U_h) \, dx \right| = \left| \int_{B_{3p}} (f \eta)_{-h} \text{tr}(\tilde{\eta} U) \, dx \right|
\leq \| f \eta - (f \eta)_{-h} \|_{H^{-1}(B_{3p})} \| \text{tr}(\tilde{\eta} U) \|_{H^1(B_{3p})}
\]
\[
\lesssim \| f \|_{H^{1,\alpha}(B_{3p})} \| \nabla U \|_{L^2_{\alpha,\beta}(\mathbb{R}^d \times \mathbb{R}^n)},
\]
(3.10)
where the estimate \(\| f \eta - (f \eta)_{-h} \|_{H^{-1}(B_{3p})} \lesssim \| h \| f \|_{H^{1,\alpha}(B_{3p})} \) can be seen, for example, by interpolating the estimates \(\| f \eta - (f \eta)_{-h} \|_{H^{-1}(\mathbb{R}^d)} \lesssim \| h \| f \|_{L^2(\mathbb{R}^d)} \) and \(\| f \eta - (f \eta)_{-h} \|_{L^2(\mathbb{R}^d)} \lesssim \| h \| \eta \|_{H^1(\mathbb{R}^d)} \), see, e.g., [Tar07]. We have thus obtained
\[\omega_f(U) \lesssim \| f \|_{H^{1,\alpha}(B_{3p})} \| \nabla U \|_{L^2_{\alpha,\beta}(\mathbb{R}^d \times \mathbb{R}^n)}. \]

Step 4. (Application of the abstract framework of [Sav98]). We introduce the seminorm \(\| U \|_2 := \int_{\mathbb{R}^d \times \mathbb{R}^n} g^a |\nabla U|^2 \, dx \, dy \). By the coercivity of \(b(\cdot, \cdot) \) on \(L^1_{\alpha,0,\Omega} \) with respect to \(|\cdot|^2 \) and the abstract estimates in [Sav98, Sec. 2], we have
\[
[U - T_h U]^2 \lesssim \omega(U) |h| \lesssim |h| (\omega(u) + \omega_f(U) + \omega_f(U)) \leq |h| \left(\| \nabla U \|_{L^2_{\alpha,\beta}(B_{3p})}^2 + \| F \|_{L^2_{\alpha,\beta}(B_{3p})} \| \nabla U \|_{L^2_{\alpha,\beta}(\mathbb{R}^d \times \mathbb{R}^n)} + \| f \|_{H^{1,\alpha}(B_{3p})} \| \nabla U \|_{L^2_{\alpha,\beta}(\mathbb{R}^d \times \mathbb{R}^n)} \right)
\]
\[= |h| \tilde{C}_{U,F,f}^2. \]

Using that \(\eta \equiv 1 \) on \(B_{3p}^c(x_0) \), we get
\[
\left(\int_{B_{3p}^c} g^a |\nabla U - \nabla U_h|^2 \, dx \, dy \right) \lesssim \left(\int_{\mathbb{R}^d \times \mathbb{R}^n} g^a |\nabla (\eta U - \eta U_h)|^2 \, dx \, dy \right) = [U - T_h U]^2 \lesssim |h| \tilde{C}_{U,F,f}^2.
\]

Step 5: (Removing the restriction \(h \in D \)). The set \(D \) contains a truncated cone \(C = \{ x \in \mathbb{R}^d : |x \cdot e_D| > \delta \} \cap B_{R'}(0) \) for some unit vector \(e_D \) and \(\delta \in (0,1), R' > 0 \). Geometric considerations then show that there is \(c_D > 0 \) sufficiently large such that for arbitrary \(h \in \mathbb{R}^d \) sufficiently small, \(h + c_D |h| e_D \in D \). For a function \(v \) defined on \(\mathbb{R}^d \), we observe
\[v(x) - v_h(x) = v(x) - v(x + h) = v(x) - v((x + h) + c_D |h| e_D)) + v((x + h) + c_D |h| e_D) - v(x + h). \]

We may integrate over \(B_{R'}(x_0) \) and change variables to get
\[\| v - v_h \|_{L^2(B_{R'})} \leq 2 \| v - v + c_D |h| e_D \|_{L^2(B_{R'})}^2 + 2 \| v - v + c_D |h| e_D \|_{L^2(B_{R'} + h)}^2. \]

Selecting \(\rho' = \rho/2 \) and for \(|h| \leq \rho/2 \), we obtain
\[\| v - v_h \|_{L^2(B_{R'/2})} \leq 2 \| v - v + c_D |h| e_D \|_{L^2(B_{R'})}^2 + 2 \| v - v + c_D |h| e_D \|_{L^2(B_{R'})}^2. \]

Applying this estimate with \(v = \nabla U \) and using that \(h + c_D |h| e_D \in D \) and \(c_D |h| e_D \in D \), we get from (3.11) that
\[\| \nabla U - \nabla U_h \|_{L^2(B_{R'/2})} \lesssim |h| \tilde{C}_{U,F,f}^2. \]

The fact that \(\Omega \) is a Lipschitz domain implies that the value of \(\rho \) and the constants appearing in the definition of the truncated cone \(C \) can be controlled uniformly in \(x_0 \in \Omega \). Hence, covering the ball \(B_{2R} \)
(with twice the radius as the ball B_{R}) by finitely many balls $B_{p/2}$, we obtain with the constant $N(U, F, f)$ of (3.7) that for all $h \in \mathbb{R}^d$ with $|h| \leq \delta'$ for some fixed $\delta' > 0$:

$$\|\nabla U - \nabla U_h\|_{L^2(B_{2R})}^2 \lesssim |h| \cdot N^2(U, F, f).$$

Step 6: ($H^t(B_{R})$–estimate). For $t < 1/2$, we estimate with the Aronstein-Slobodecki seminorm

$$\int_{|x| \leq 2R} \left| \frac{\nabla U(x+h,y) - \nabla U(x,y)}{|h|} \right|^2 \, dh \, dx \, dy.$$

The integral in h is split into the range $|h| \leq \varepsilon$ for some fixed $\varepsilon > 0$, for which (3.12) can be brought to bear, and $\varepsilon < |h| < 2R$, for which a triangle inequality can be used. We obtain

$$\int_{|x| \leq 2R} |\nabla U(x,y)|^2 \, dy \lesssim N^2(U, F, f) \int_{|x| \leq \varepsilon} |\nabla U|_{L^2(B_{R})}^2 \, dh \quad \text{and} \quad \int_{|x| \leq 2R} |\nabla U|_{L^2(B_{R})}^2 \, dh \lesssim N^2(U, F, f),$$

which is the sought estimate.

Remark 3.4. The regularity assumptions on F and f can be weakened by interpolation techniques as described in [Sav98, Sec. 4]. For example, by linearity, we may write $U = U_F + U_f$, where U_F and U_f solve (3.5) for data $(F,0)$ and $(0,f)$. The a priori estimate (3.4) gives $\|\nabla U_f\|_{L^2_{\alpha}^2(\mathbb{R}^d)} \lesssim \|f\|_{H^{-\gamma}(\Omega)}$ so that we have

$$\int_{R_+} |\nabla U_f(x,y)|_{H^t(B_{R})}^2 \, dy \leq C_t \left(\|\nabla U_f\|_{L^2_{\alpha}^2(\mathbb{R}^d)}^2 + \|f\|_{H^{-\gamma}(\Omega)} \|\nabla U_f\|_{L^2_{\alpha}^2(\mathbb{R}^d)} \right) \lesssim \|f\|_{H^{-\gamma}(\Omega)} \|f\|_{H^{-\gamma}(\Omega)} \lesssim \|f\|_{H^{-\gamma}(\Omega)} \|f\|_{H^{-\gamma}(\Omega)}.$$

By, e.g., [Tar07, Lemma 25.3], the mapping $f \mapsto U_f$ then satisfies

$$\int_{R_+} |\nabla U_f(x,y)|_{H^t(B_{R})}^2 \, dy \leq C_t \|f\|_{H^{1/2-\varepsilon}(\mathbb{R}^d)}^2,$$

where $B_{1/2-\varepsilon}(\mathbb{R}^d) = (H^{-\gamma}(\Omega), H^{1-\gamma}(\Omega))_{1/2,1}$ is an interpolation space (K-method). We mention that $B_{1/2-\varepsilon}(\mathbb{R}^d) \subset H^{1/2-\varepsilon}(\mathbb{R}^d)$ for every $\varepsilon > 0$. A similar estimate could, in principle, be obtained for U_F; however, the pertinent interpolation space is less tractable.

3.2. Interior regularity for the extension problem.

In the following, we derive localized interior regularity estimates, also called Caccioppoli inequalities, for solutions to the extension problem (3.5), where second order derivatives on some ball $B_{R}(x_0) \subset \Omega$ can be controlled by first order derivatives on some ball with a (slightly) larger radius.

The following Caccioppoli type inequality provides local control of higher order x-derivatives and is structurally similar to [FMP21, Lem. 4.4].

Lemma 3.5 (Interior Caccioppoli inequality). Let $B_R := B_R(x_0) \subset \Omega \subset \mathbb{R}^d$ be an open ball of radius $R > 0$ centered at $x_0 \in \Omega$, and let B_{cR} be the concentric scaled ball of radius cR with $c \in (0,1)$. Let $\zeta \in C_0^{\infty}(B_R)$ with $0 \leq \zeta \leq 1$ and $\zeta \equiv 1$ on B_{cR} as well as $\|\nabla \zeta\|_{L^\infty(B_R)} \leq C_\zeta((1-c)R)^{-1}$ for some $C_\zeta > 0$ independent of c, R. Let U satisfy (3.5) for given data f and F with supp $F \subset \mathbb{R}^d \times [0,H]$.

Then, there exists a constant $C_{\text{int}} > 0$, which depends only on s, Ω, and C_ζ, such that for $i \in \{1, \ldots, d\}$

$$\|\partial_{x_i} (\nabla U)\|_{L^2(B_{\alpha}^c)}^2 \leq C_{\text{int}} \left((1-c)R^{-2} \|\nabla U\|_{L^2(B_R)}^2 + \|\zeta \partial_{x_i} f\|_{H^{-\gamma}(\Omega)}^2 + \|f\|_{L^2(B_R)}^2 \right).$$

Furthermore, $\|\zeta \partial_{x_i} f\|_{H^{-\gamma}(\Omega)} \leq C_{\text{loc}} \|\partial_{x_i} f\|_{L^2(B_R)}$ for some $C_{\text{loc}} > 0$ independent of R, c, and f (cf. Lemma A.1).

Proof. The function ζ is defined on \mathbb{R}^d; through the constant extension we will also view it as a function on $\mathbb{R}^d \times \mathbb{R}_+$. With the unit vector e_{x_i} in the x_i-coordinate and $\tau \in \mathbb{R} \setminus \{0\}$, we define the difference quotient

$$D_{\tau}^x w(x) := \frac{w(x + \tau e_{x_i}) - w(x)}{\tau}.$$
For \(|\tau|\) sufficiently small, we may use the test function \(V = D_{x_i}^{-\tau}(\zeta^2 D_{x_i}^\tau U)\) in the weak formulation of (3.5) (observe that this is an admissible test function and has support in \(B_R\)) and compute
\[
\text{tr } V = -\frac{1}{\tau^2} \left(\zeta^2(x - \tau x_i)(u(x) - u(x - \tau x_i)) + \zeta^2(x)(u(x) - u(x + \tau x_i)) \right) = D_{x_i}^{-\tau}(\zeta^2 D_{x_i}^\tau u).
\]
Integration by parts in (3.5) over \(\mathbb{R}^d \times \mathbb{R}_+\) and using that the Neumann trace (up to the constant \(d_s\) from (2.9)) produces the fractional Laplacian gives
\[
\int_{\mathbb{R}^d \times \mathbb{R}_+} F V \, dx \, dy - \frac{1}{d_s} \int_{\mathbb{R}^d \times \mathbb{R}_+} (-\Delta)^s u \, \text{tr } V \, dx = \int_{\mathbb{R}^d \times \mathbb{R}_+} g^\alpha \nabla U \cdot \nabla V \, dx \, dy
\]
\[
= \int_{\mathbb{R}^d \times \mathbb{R}_+} D_{x_i}^\tau(g^\alpha \nabla U) \cdot \nabla(\zeta^2 D_{x_i}^\tau U) \, dx \, dy
\]
\[
= \int_{B_R^+} g^\alpha D_{x_i}^\tau(\nabla U) \cdot (\zeta^2 \nabla D_{x_i}^\tau U + 2\zeta \nabla \zeta D_{x_i}^\tau U) \, dx \, dy
\]
\[
= \int_{B_R^+} g^\alpha \zeta^2 D_{x_i}^\tau(\nabla U) \cdot D_{x_i}^\tau(\nabla U) \, dx \, dy + \int_{B_R^+} 2\zeta \nabla \zeta \cdot D_{x_i}^\tau(\nabla U) D_{x_i}^\tau U \, dx \, dy.
\]
We recall that by, e.g., [Eva98, Sec. 6.3], we have uniformly in \(\tau\)
\[
(3.14) \quad \|D_{x_i}^\tau v\|_{L^2(\mathbb{R}^d \times \mathbb{R}_+)} \lesssim \|\partial_x v\|_{L^2(\mathbb{R}^d \times \mathbb{R}_+)}.
\]
Using the equation \((-\Delta)^s u = f\) on \(\Omega\), Young’s inequality, and the Poincaré inequality together with the trace estimate (2.7), we get the existence of constants \(C_j > 0, j \in \{1, \ldots, 5\}\), such that
\[
\|\zeta D_{x_i}^\tau(\nabla U)\|_{L^2(B_R^+)}^2 \leq C_1 \left(\left| \int_{B_R^+} g^\alpha \nabla \zeta \cdot D_{x_i}^\tau(\nabla U) D_{x_i}^\tau U \, dx \, dy \right| + \left| \int_{\mathbb{R}^d \times \mathbb{R}_+} F D_{x_i}^{-\tau\tau}(\zeta^2 D_{x_i}^\tau U) \, dx \, dy \right| \right)
\]
\[
\leq \frac{1}{4} \|\zeta D_{x_i}^\tau(\nabla U)\|_{L^2(B_R^+)}^2 + C_2 \left(\|\nabla \zeta\|_{L^\infty(B_R^+)}^2 \|D_{x_i}^\tau U\|_{L^2(B_R^+)}^2 \right)
\]
\[
+ \|F\|_{L^2(\mathbb{R}^d \times \mathbb{R}_+)} \|\partial_x(v(\zeta^2 D_{x_i}^\tau U))\|_{L^2(B_R^+)} + \|\zeta D_{x_i}^\tau f\|_{H^{-s}(\Omega)} \|\zeta D_{x_i}^\tau u\|_{H^s(\mathbb{R}^d)}
\]
\[
\leq \frac{1}{2} \|\zeta D_{x_i}^\tau(\nabla U)\|_{L^2(B_R^+)}^2 + C_3 \left(\|\nabla \zeta\|_{L^\infty(B_R^+)}^2 \|\nabla U\|_{L^2(B_R^+)}^2 \right)
\]
\[
+ \|\zeta D_{x_i}^\tau f\|_{H^{-s}(\Omega)} \|\zeta D_{x_i}^\tau u\|_{H^s(\mathbb{R}^d)}
\]
\[
\leq \frac{3}{4} \|\zeta D_{x_i}^\tau(\nabla U)\|_{L^2(B_R^+)}^2
\]
\[
+ C_5 \left(\|\nabla \zeta\|_{L^\infty(B_R^+)}^2 \|\nabla U\|_{L^2(B_R^+)}^2 \right) + \|\zeta D_{x_i}^\tau f\|_{H^{-s}(\Omega)}^2.
\]
Absorbing the first term of the right-hand side in the left-hand side and taking the limit \(\tau \to 0\), we obtain the sought inequality for the second derivatives since \(\|\nabla \zeta\|_{L^\infty(B_R^+)} \lesssim ((1 - c)R)^{-1}\).

Remark that the constant \(C_{\text{int}}\) of (3.13) depends on \(s\), due to the usage of (2.7) in the proof above.

The Caccioppoli inequality (3.13) in Lemma 3.5 can be iterated on concentric balls to provide control of higher order derivatives by lower order derivatives locally, in the interior of the domain.

Corollary 3.6 (High order interior Caccioppoli inequality). Let \(B_R := B_R(x_0) \subset \Omega \subset \mathbb{R}^d\) be an open ball of radius \(R > 0\) centered at \(x_0 \in \Omega\), and let \(B_{cR}\) be the concentric scaled ball of radius \(cR\) with \(c \in (0, 1)\). Let \(U\) satisfy (3.5) for given data \(f\) and \(F\) with supp \(\bar{F} \subset \mathbb{R}^d \times [0, R]\).
Then, there exists a constant \(\gamma > 0 \) (depending only on \(\alpha, \Omega, \) and \(c \)) such that for all \(\beta \in \mathbb{N}_0^d \) with \(p = |\beta| \) holds
\[
\left\| \partial_x^\beta \nabla U \right\|_{L^2(B_{cR}^+)}^2 \leq (\gamma p)^{2p} R^{-2p} \left\| \nabla U \right\|_{L^2(B_{cR}^+)}^2 \\
+ \sum_{j=1}^p (\gamma p)^{2(p-j)} R^{2(j-p)} \left(\max_{|\eta|=j} \left\| \partial_x^\eta f \right\|_{L^2(B_R)}^2 + \max_{|\eta|=j-1} \left\| \partial_x^\eta F \right\|_{L^2(B_{cR}^+)}^2 \right).
\]

Proof. We start by noting that the case \(p = 0 \) is trivially true since empty sums are zero and \(\theta^0 = 1 \). For \(p \geq 1 \), we fix a multi index \(\beta \) such that \(|\beta| = p \). As the \(x \)-derivatives commute with the differential operator in (3.5), we have that \(\partial_x^\beta U \) solves equation (3.5) with data \(\partial_x^\beta F \) and \(\partial_x^\beta f \). For given \(c > 0 \), let
\[
c_i = c + (i-1) \frac{1-c}{p}, \quad i = 1, \ldots, p + 1.
\]
Then, we have \(c_{i+1} R - c_i R = \frac{(1-c)R}{p} \) and \(c_1 R = cR \) as well as \(c_{p+1} R = R \). For ease of notation and without loss of generality, we assume that \(\beta_1 > 0 \). Applying Lemma 3.5 iteratively on the sets \(B_{c_i R}^+ \) for \(i > 1 \) provides
\[
\left\| \partial_x^\beta \nabla U \right\|_{L^2(B_{cR}^+)}^2 \\
\leq C_{\text{int}}^2 \left(\frac{p}{1-c} \right)^2 R^{-2\beta_1} \left\| \partial_x^{\beta_1-1,\beta_2} \nabla U \right\|_{L^2(B_{cR}^+)}^2 + C_{\text{loc}}^2 \left\| \partial_x \beta f \right\|_{L^2(B_{cR}^+)}^2 + \left\| \partial_x^{\beta_1-1,\beta_2} F \right\|_{L^2(B_{cR}^+)}^2 \\
\leq \left(\frac{C_{\text{int}} p}{1-c} \right)^{2p} R^{-2p} \left\| \nabla U \right\|_{L^2(B_{cR}^+)}^2 + C_{\text{loc}}^2 \sum_{j=1}^p \left(\frac{C_{\text{int}} p}{1-c} \right)^{2p-2j} R^{-2p+2j} \max_{|\eta|=j} \left\| \partial_x^\eta f \right\|_{L^2(B_{cR}^+)}^2 \\
+ \sum_{j=1}^{p-1} \left(\frac{C_{\text{int}} p}{1-c} \right)^{2p-2j-2} R^{-2p+2j+2} \max_{|\eta|=j} \left\| \partial_x^\eta F \right\|_{L^2(B_{cR}^+)}^2.
\]
Choosing \(\gamma = \max(C_{\text{loc}}^2, 1)C_{\text{int}}/(1-c) \) concludes the proof.

The previous Caccioppoli inequalities can also be localized in \(y \). To that end, we recall the notation \(\omega = \omega \times (0, \theta) \).

Corollary 3.7. Let \(B_R := B_R(x_0) \subset \Omega \subset \mathbb{R}^d \) be an open ball of radius \(R > 0 \) centered at \(x_0 \in \Omega \), and let \(B_{cR} \) be the concentric scaled ball of radius \(cR \) with \(c \in (0, 1) \). Let \(0 < \theta < \theta' \). Let \(U \) satisfy (3.5) for given data \(f \) and \(F \) with \(\text{supp} \, F \subset \mathbb{R}^d \times [0, H] \). Then, there exists a constant \(\gamma > 0 \) (depending only on \(\alpha, \Omega, H, \theta, \theta', \) and \(c \)) such that there holds for all \(\beta \in \mathbb{N}_0^d \) with \(p = |\beta| \)
\[
\left\| \partial_x^\beta \nabla U \right\|_{L^2(B_{cR}^+)}^2 \leq (\gamma p)^{2p} R^{-2p} \left\| \nabla U \right\|_{L^2(B_{cR}^+)}^2 \\
+ \sum_{j=1}^p (\gamma p)^{2(p-j)} R^{2(j-p)} \left(\max_{|\eta|=j} \left\| \partial_x^\eta f \right\|_{L^2(B_R)}^2 + \max_{|\eta|=j-1} \left\| \partial_x^\eta F \right\|_{L^2(B_{cR}^+)}^2 \right).
\]

Proof. The proof is very similar to the proof of Corollary 3.6, which iterates Lemma 3.5. In fact, an (also in \(y \)) localized version of Lemma 3.5 can be obtained by replacing the cut-off function \(\zeta = \zeta(x) \) in Lemma 3.5 by a cut-off function with product structure
\[
\zeta(x, y) = \zeta_x(x) \zeta_y(y), \quad \zeta_x \in C_0^\infty(B_R), \quad \zeta_y \in C_0^\infty(-\theta', \theta').
\]
Here, \(\zeta_x \) is the cut-off function as stated in Lemma 3.5 and \(\zeta_y \) satisfies \(\zeta_y \equiv 1 \) on \((-\theta, \theta) \) as well as \(\left\| \partial_x^\beta \zeta_y \right\|_{L^\infty((-\theta, \theta))} \leq C \zeta(\theta - \theta')^{-1} \) for \(j \in \{0, 1\} \) with a constant \(C \zeta \) independent of \(R, \theta, \theta' \). Hence \(\left\| \nabla \zeta \right\|_{L^\infty(B_R^{\theta, \theta'})} \leq (1-c)R^{-1} + (\theta' - \theta)^{-1} \). Then, tracking the arguments in the proof of Lemma 3.5 leads to a variant of estimate (3.13) in which \(B_{cR}^+ \) is replace by \(B_{cR}^{\theta, \theta'} \), the set \(B_R^{\theta, \theta'} \) is replaced by \(B_R^\theta \), and the factor \((1-c)R^{-2} \) is replaced by \((1-c)R^{-2} + (\theta' - \theta)^{-2} \). The statement of the present corollary is then obtained by an argument similar to that in Cor. 3.6 using the nested sets \(B_{c_i R}^{\theta, \theta'} \), where \(\theta_i = \theta + (i-1) \frac{\theta - \theta'}{p} \). As \(R \leq \text{diam} \, \Omega \), one has \(\theta_{i+1} - \theta_i)^{-2} + (c_{i+1} R - c_i R)^{-2} \leq C p^2 R^{-2}/(1-c)^2 \) for a \(C > 0 \) depending only on \(\Omega, \theta, \theta' \).
4. Local tangential regularity for the extension problem in 2d. Lemma 3.3 provides global regularity for the solution U of (3.5). In this section, we derive a localized version of Lemma 3.3 for tangential derivatives of U, where we solely consider the case $d = 2$.

Lemma 3.5 is formulated as an interior regularity estimate as the balls are assumed to satisfy $B_R(x_0) \subset \Omega$. Since $u = 0$ on $\partial\Omega$ (i.e., u satisfies “homogeneous boundary conditions”), one obtains estimates near $\partial\Omega$ for derivatives in the direction of an edge.

Lemma 4.1 (Boundary Caccioppoli inequality). Let $e \subset \partial\Omega$ be an edge of the polygon Ω. Let $B_R = B_R(x_0)$ be an open ball with radius $R > 0$ and center $x_0 \in e$ such that $B_R(x_0) \cap \Omega$ is a half-ball, and let B_{cR} be the concentric scaled ball of radius cR with $c \in (0,1)$. Let $C \in C^\infty_0(B_R)$ be a cut-off function with $0 \leq C \leq 1$ and $\int_{B_R} C = 1$ on B_{cR} as well as $\|\nabla C\|_{L^\infty(B_{cR})} \leq C_0((1-c)R)^{-1}$ for some $C_0 > 0$ independent of c, R. Let U satisfy (3.5) for given data f and F with $\text{supp} \ f \subset \mathbb{R}^d \times [0,H]$.

Then, there exists a constant $C > 0$ (depending only on α, Ω, C_0) such that
\[
\|D_{x_1}^\tau U\|_{L^2_s(B_{cR}^+)}^2 \leq C \left((1-c)R^{-2}\|\nabla U\|_{L^2_s(B_R^+)}^2 + \|C D_{x_1}^\tau f\|_{L^2_s(\Omega)} + \|F\|_{L^2_{s+}(B_{cR}^+)}^2 \right)
\]
Furthermore, $\|\nabla C D_{x_1}^\tau f\|_{L^2_s(\Omega)} \leq C_{\text{loc}} \|D_{x_1}^\tau f\|_{L^2_s(B_{cR}^+)}$ for some $C_{\text{loc}} > 0$ independent of R and c (cf. Lemma A.1).

Proof. The proof is almost verbatim the same as that of Lemma 3.5. The key observation is that $V = D_{x_1}^\tau (\zeta^2 D_{x_1}^\tau U)$ with the difference quotient
\[
D_{x_1}^\tau w(x) := \frac{w(x + \tau e_1) - w(x)}{\tau}
\]
is an admissible test function.

Iterating the boundary Caccioppoli equation provides an estimate for higher order tangential derivatives.

Corollary 4.2 (High order boundary Caccioppoli inequality). Let $e \subset \partial\Omega$ be an edge of the polygon Ω. Let $B_R = B_R(x_0)$ be an open ball with radius $R > 0$ and center $x_0 \in e$ such that $B_R(x_0) \cap \Omega$ is a half-ball, and let B_{cR} be the concentric scaled ball of radius cR with $c \in (0,1)$. Let U satisfy (3.5) for given data f and F with $\text{supp} \ f \subset \mathbb{R}^d \times [0,H]$.

Then, there exists a constant $\gamma > 0$ (depending only on α, Ω and c, but independent of the choice of $R > 0$) such that for every $p \in \mathbb{N}_0$ there holds
\[
\|D_{x_1}^p \nabla U\|_{L^2_s(B_{cR}^+)}^2 \leq (\gamma p)^{2^p} R^{-2^p} \|\nabla U\|_{L^2_s(B_R^+)}^2 + \sum_{j=1}^p (\gamma p)^{2(p-j)} R^{2^p-j} \left(\|D_{x_1}^j f\|_{L^2_s(B_R)}^2 + \|D_{x_1}^{j-1} F\|_{L^2_{s+}(B_{cR}^+)}^2 \right).
\]

Proof. The statement follows from Lemma 4.1 in the same way as Corollary 3.6 follows from Lemma 3.5.

The term $\|\nabla U\|_{L^2_s(B_{cR}^+)}^2$ in (4.2) is actually small for $R \to 0$ in the presence of regularity of U, which was asserted in Lemma 3.3; this is quantified in the following lemma.

Lemma 4.3. Let $S_R = \{x \in \partial \Omega : r_{\partial\Omega}(x) < R\}$ be the tubular neighborhood of $\partial\Omega$ of width $R > 0$. Then, for $t \in [0,1/2)$, there exists $C_{\text{reg}} > 0$ depending only on t and Ω such that the solution U of (3.1) satisfies
\[
R^{-2t} \|\nabla U\|_{L^2_s(S_R^+)}^2 \leq \|r_{\partial\Omega}^{-1} \nabla U\|_{L^2_s(\Omega^+)}^2 \leq C_{\text{reg}} C_t N^2(U,F,f)
\]
with the constant $C_t > 0$ from Lemma 3.3 and $N^2(U,F,f)$ given by (3.7).

Proof. The first estimate in (4.3) is trivial. For the second result Lemma 3.3 gives the global regularity
\[
\int_{\mathbb{R}_+} y^n \|\nabla U(\cdot, y)\|_{H^{1}(\Omega)}^2 dy \leq C_t N^2(U,F,f).
\]
For $t \in [0,1/2)$ and any $v \in H^t(\Omega)$, we have by, e.g., [GriI1, Thm. 1.4.4.3] the embedding result $\|r_{\partial\Omega}^{-1} v\|_{L^2(\Omega)} \leq C_{\text{reg}} \|v\|_{H^t(\Omega)}$. Applying this embedding to $\nabla U(\cdot, y)$, multiplying by y^n, and integrating in y yields (4.3).
The following lemma provides a shift theorem for localizations of tangential derivatives of U.

Lemma 4.4 (High order localized shift theorem). Let U be the solution of (3.1). Let $x_0 \in \mathcal{E}$ for an edge $e \in \mathcal{E}$ of the polygon Ω. Let $R \in (0,1/2]$, and assume that $B_R(x_0) \cap \Omega$ is a half-ball. Let $\eta_j \in C_0^\infty(B_R(x_0))$, $\eta \in C_0^\infty(-H,H)$ with $\eta \equiv 1$ on $(-H/2,H/2)$ and $\|\nabla^2 \eta\|_{L^\infty(\partial B_R(x_0))} \leq C_R^{-j}$, $j \in \{0,1,2\}$ as well as $\|\partial_\eta \eta_j\|_{L^\infty(-H,H)} \leq C_R^{-j}$, $j \in \{0,1,2\}$, with a constant $C_R > 0$ independent of R and H. Let $\eta(x,y) := \eta_j(x)\eta_0(y)$. Then, for $t \in [0,1/2)$, there is $C > 0$ independent of R and x_0 such that, for each $p \in \mathbb{N}$, the function $\tilde{U}_t(p) = \eta_0 D_{x_0}^p U$ satisfies

\[
\int_{\mathbb{R}_+^+} y^n \left\| \nabla \tilde{U}_t(p)(\cdot,y) \right\|_{H^r(\Omega)}^2 dy \leq CR^{-2p-1+2t}(\gamma p)^{2p}(1+\gamma p)\tilde{N}(p)(F,f),
\]

where γ is the constant in Corollary 4.2 and

\[
\tilde{N}(p)(F,f) := \|f\|_{H^r(\Omega)}^2 + \|F\|_{L^2_{x_0}(\mathbb{R}^2 \times (0,H))}^2 + \sum_{j=2}^{p+1} (\gamma p)^{-j} \left(2^j \max_{|\beta|=j} \|\partial_\beta^p f\|_{L^2_x(\Omega)}^2 + 2^{j-1} \max_{|\beta|=j-1} \|\partial_\beta^p F\|_{L^2_{x_0}(\mathbb{R}^2 \times (0,H))}^2 \right).
\]

In addition,

\[
\int_{\mathbb{R}_+^+} y^n y^{n-1} \nabla \tilde{U}_t(p)(\cdot,y) \left\|_{L^2_x(\Omega)}^2 dy \leq CR^{-2p-1+2t}(\gamma p)^{2p}(1+\gamma p)\tilde{N}(p)(F,f).
\]

Proof. We abbreviate $U_t(p) := D_{x_0}^p U$, $\tilde{U}_t(p)(x,y) := \eta_j(x)\eta_0(y) D_{x_0}^p U(x,y)$, $F_t(p) = D_{x_0}^p F$, and $f_t(p) = D_{x_0}^p f$. Throughout the proof we will use the fact that, for all $j \in \mathbb{N}$ and all sufficiently smooth functions v, we have

\[
|D_{x_0}^j v| \leq 2^{j/2} \max_{|\beta|=j} |\partial_\beta^j v|.
\]

We also note that the assumptions on $\eta(x,y) = \eta_j(x)\eta_0(y)$ imply the existence of $\tilde{C}_\eta > 0$ (which absorbs the dependence on H that we do not further track) such that

\[
\|\nabla^j \eta\|_{L^\infty(\mathbb{R}^2 \times \mathbb{R}^2)} \leq \tilde{C}_\eta R^{-j}, \quad j \in \{0,1,2\}, j' \in \{0,1,2\}.
\]

Step 1. (Localization of the equation). Using that U solves the extension problem (3.5), we obtain that the function $\tilde{U}_t(p) = \eta_0 U_t(p)$ satisfies the equation

\[
\text{div}(g^{n-1} \nabla \tilde{U}_t(p)) = g^{n-1} \text{div}_x(\nabla_x \tilde{U}_t(p)) + \partial_g(y^n \partial_g \tilde{U}_t(p))
\]

\[
= g^n \left((\Delta x_0) U_t(p) + 2\Delta x_0 \cdot \nabla_x U_t(p) + \eta_0 \Delta x_\eta U_t(p) \right) + \eta_0 \partial_g(y^n \partial_g U_t(p)) + \eta_0 \partial_y(y^n U_t(p) \partial_y \eta) + y^n \partial_y U_t(p) \partial_y \eta
\]

\[
\text{as well as the boundary conditions}
\]

\[
\partial_{\nu} \tilde{U}_t(p)(\cdot,0) = \eta(\cdot,0) D_{x_0}^p f =: \tilde{f}(p) \quad \text{on } \Omega,
\]

\[
\text{tr } \tilde{U}_t(p) = 0 \quad \text{on } \partial \Omega.
\]

By the support properties of the cut-off function η, we have $\text{supp } \tilde{f}(p) \subset \overline{B_R(x_0)} \times [0,H] \subset \mathbb{R}^2 \times [0,H]$. By Lemma 3.3, for all $t \in [0,1/2)$, there is a $C_t > 0$ such that

\[
\int_{\mathbb{R}_+^+} y^n \left\| \nabla \tilde{U}_t(p)(\cdot,y) \right\|_{H^r(\Omega)}^2 dy \leq C_t N^2(\tilde{U}_t(p), \tilde{f}(p), \tilde{f}(p)),
\]

where B_R is a ball containing $\overline{\Omega}$. By (3.7), we have to estimate $N^2(\tilde{U}_t(p), \tilde{F}_t(p), \tilde{J}_t(p))$, i.e., $\|\nabla \tilde{U}_t(p)\|_{L^2_{x_0}(\mathbb{R}^2 \times (0,H))}$, $\|\tilde{F}_t(p)\|_{L^2_{x_0}(\mathbb{R}^2 \times (0,H))}$, and $\|\tilde{J}_t(p)\|_{H^r(\Omega)}$. Let γ be the constant introduced in Corollary 4.2. We note that by (3.8) there exists $C_N > 0$ such that, for all $p \in \mathbb{N}_0$,

\[
N^2(U,F,f) \leq C_N \tilde{N}(p)(F,f).
\]
Step 2. (Estimate of $\|\nabla \widehat{U}(p)\|_{L^2_x(B_{2R})}$). We write

$$\|\nabla \widehat{U}(p)\|_{L^2_x(B_{2R})}^2 \leq 2\|\nabla \eta\|_{L^\infty}^2 \|\nabla_x U^{(p-1)}\|_{L^2_x(B_{2R})}^2 + 2\|\nabla \eta\|_{L^\infty} \|\nabla U^{(p)}\|_{L^2_x(B_{2R})}^2$$

(4.11)

We employ Corollary 4.2 with a ball B_{2R} and $c = 1/2$ as well as Lemma 4.3 to obtain for $p \in \mathbb{N}_0$

$$\|\nabla U^{(p)}\|_{L^2_x(B_{2R})}^2 \leq (2R)^{-2p} (\gamma p)^{2p} \left(\|\nabla U\|_{L^2_x(B_{2R})}^2 + \sum_{j=1}^p (2R)^{2j} (\gamma p)^{-2j} \left(\|D_{xj}^2 f\|_{L^2_x(B_{2R})}^2 + \|D_{xj}^{-1} F\|_{L^2_{x\alpha}(B_{2R})}^2 \right) \right)$$

$$\leq (2R)^{-2p} (\gamma p)^{2p} \left(\|\nabla U\|_{L^2_x(B_{2R})}^2 \right.$$

$$\left. + (2R)^2 \sum_{j=1}^p (2R)^{2j-1} (\gamma p)^{-2j} \left(2^j \max_{i=0} \|\partial_x^j f\|_{L^2_x(B_{2R})}^2 + 2^{j-1} \max_{i=0} \|\partial_x^j F\|_{L^2_{x\alpha}(B_{2R})}^2 \right) \right)$$

$$R \leq 1/2. \tag{4.13}$$

$$\leq (2R)^{-2p} (\gamma p)^{2p} \left(C_{\text{reg}, C, R^{2\gamma}} + (2R)^2 \gamma^{-2} \right) \left(\frac{C_{\text{reg}, C, R^{2\gamma}}}{\gamma^{-2}} \right) \left(\frac{C_{\text{reg}, C, R^{2\gamma}}}{\gamma^{-2}} \right) \left(\frac{C_{\text{reg}, C, R^{2\gamma}}}{\gamma^{-2}} \right)$$

(4.12)

$$\leq (2R)^{-2p} (\gamma p)^{2p} \left(C_{\text{reg}, C, R^{2\gamma}} \left(1 + \frac{8}{\gamma^{-2}} \right) C_{N} + 4 \right) R^{2\gamma} \tilde{N}(p) \left(F, f \right).$$

For $p \in \mathbb{N}$, we apply (4.12) to the $(p-1)^{th}$ derivative and exploit the structure of the expression $(\gamma(p-1))^{2p-2} \tilde{N}(p-1) (F, f)$ to get

$$\|\nabla U^{(p-1)}\|_{L^2_x(B_{2R})}^2 \leq (2R)^{-2(p-1)} \left(C_{\text{reg}, C, R^{2\gamma}} \left(1 + \frac{8}{\gamma^{-2}} \right) C_{N} + 4 \right) R^{2\gamma} \tilde{N}(p) \left(F, f \right).$$

(4.13)

Inserting (4.12) and (4.13) into (4.11) provides the estimate

$$\|\nabla \widehat{U}(p)\|_{L^2_x(B_{2R})}^2 \leq CR^{-2p+2\gamma}(\gamma p)^{2p} \tilde{N}(p) \left(F, f \right)$$

with a constant $C > 0$ depending only on the constants $C_{\text{reg}, C, \tilde{C}, \eta, C_N,}$ and γ.

Step 3. (Estimate of $\|\tilde{F}(p)\|_{L^2_{\alpha\alpha}(\mathbb{R}^2 \times \mathbb{R}^+)}$). We treat the five terms appearing in $\|\tilde{F}(p)\|_{L^2_{\alpha\alpha}(\mathbb{R}^2 \times \mathbb{R}^+)}$ separately. With (4.12), we obtain

$$\left\| \frac{\gamma}{\alpha} \nabla_x \eta \cdot \nabla_x U^{(p)} \right\|_{L^2_x(B_{2R})} \leq \left\| \nabla_x \eta \cdot \nabla_x U^{(p)} \right\|_{L^2_x(B_{2R})} \leq \frac{C}{\gamma} \frac{1}{R^2} \left\| \nabla_x U^{(p)} \right\|_{L^2_x(B_{2R})}$$

(4.12)

$$\leq (2R)^{-2p} (\gamma p)^{2p} \tilde{C}_{\text{reg}, \eta} R^{-2+2\gamma} \tilde{N}(p) \left(F, f \right).$$

Similarly, we get

$$\left\| \frac{\gamma}{\alpha} \Delta_x \eta U^{(p)} \right\|_{L^2_x(B_{2R})} \leq \left\| \Delta_x \eta U^{(p)} \right\|_{L^2_x(B_{2R})} \leq \frac{C}{\gamma} \frac{1}{R^4} \left\| \nabla U^{(p-1)} \right\|_{L^2_x(B_{2R})}$$

(4.13)

$$\leq \frac{4}{(2R)^{-2p}} (\gamma p)^{2p} \tilde{C}_{\text{reg}, \eta} R^{-2+2\gamma} \tilde{N}(p) \left(F, f \right).$$

Next, we estimate

$$\|\eta F^{(p)}\|_{L^2_{\alpha\alpha}(\mathbb{R}^2 \times (0, H))} \leq \|F\|_{L^2_x(B_{2R})} \leq 2p \max_{\beta = p} \|\partial_x^p F\|_{L^2_{x\alpha}(B_{2R})} \leq \left(\gamma p \right)^{2p+2} \tilde{N}(p) \left(F, f \right).$$

Finally, for the term $\partial_x (\gamma U^{(p)} \partial_y \eta) + \gamma \partial_y U^{(p)} \partial_y \eta$, we observe that $\partial_y \eta$ vanishes near $y = 0$ so that the weight γ does not come into play as it can be bounded from above and below by positive constants depending only on H. We arrive at

$$\left\| \partial_x (\gamma U^{(p)} \partial_y \eta) + \gamma \partial_y U^{(p)} \partial_y \eta \right\|_{L^2_{\alpha\alpha}(\mathbb{R}^2 \times (0, H))} \leq C \left(H^{-2} \|U^{(p)}\|_{L^2_x(B_{2R} \times (0, H))} + H^{-1} \|\nabla U^{(p)}\|_{L^2_x(B_{2R})} \right)$$

(4.12), (4.13)

$$\leq \frac{C}{H} (\gamma p)^{2p} R^{-2p+2\gamma} \tilde{N}(p) \left(F, f \right).$$
for suitable $C_H > 0$ depending on H.

Step 4. (Estimate of $\|f^{(p)}\|_{H^{−1}(\Omega)}$.) Here, we use Lemma A.1 and $R < 1/2$ together with $s < 1$ to obtain

$$\| \hat{f}^{(p)} \|_{H^{−1}(\Omega)}^2 \leq 2C^2_{\text{loc,2}}C^2_q \left(9R^{2s−2} \| D^{p}_x f \|_{L^2(\Omega)}^2 + \| D^{p}_x f \|_{H^{−1}(\Omega)}^2 \right) \leq CC^2_{\text{loc,2}}R^{2s−2} \left(6 \max_{|\beta|=p} \| \partial^\beta_x f \|_{L^2(\Omega)}^2 + 2^{p+1} \max_{|\beta|=p+1} \| \partial^\beta_x f \|_{L^2(\Omega)}^2 \right) \leq CC^2_{\text{loc,2}}C^2_qR^{2s−2}(\gamma p)^{2p}(1+(\gamma p)^2) \tilde{N}^{(p)}(F;f)$$

with a constant $C > 0$ depending only on Ω and s.

Step 5. (Putting everything together.) Combining the above estimates, we obtain that there exists a constant $C > 0$ depending only on $C_{\text{reg}}, C_t, C_q, C_{\text{loc,2}}, H, \gamma, \Omega, s$ such that

$$N^2(\tilde{U}^{(p)}, \tilde{F}^{(p)}, \tilde{f}^{(p)}) = \left(\| \nabla \tilde{U}^{(p)} \|_{L^2_\#(\mathbb{R}^2 \times \mathbb{R}^+)} + \| \nabla \tilde{U}^{(p)} \|_{L^2_\#(\mathbb{R}^2 \times \mathbb{R}^+)} \right) \leq C \left[R^{−2p+1}(\gamma p)^p + R^{−p+1}(\gamma p)^p R^{−1}(\gamma p)^p (1+\gamma p) \right] \tilde{N}^{(p)}(F;f)$$

$$\leq C R^{−2p+1}(\gamma p)^p (1+\gamma p) \tilde{N}^{(p)}(F;f).$$

Inserting this estimate in (4.9) concludes the proof of (4.5).

Step 6: The estimate (4.7) follows from [Grill1, Thm. 1.4.4.3], which gives

$$\int_{\mathbb{R}^+} y^a \| r^{-p}_0 \nabla \tilde{U}^{(p)}(\cdot,y) \|_{L^2(\Omega)}^2 dy \leq C \int_{\mathbb{R}^+} y^a \| \nabla \tilde{U}^{(p)}(\cdot,y) \|_{H^{−1}(\Omega)}^2 dy,$$

and from (4.5).

5. **Weighted H^p-estimates in polygons.** In this section, we derive higher order weighted regularity results, at first for the extension problem and finally for the fractional PDE. This is our main result, Theorem 2.1.

5.1. **Coverings.** A main ingredient in our analysis are suitable localizations of vertex neighborhoods ω_v and vertex-edge neighborhoods ω_{ve} near a vertex v and of edge neighborhoods ω_e near an edge e. This is achieved by covering such neighborhoods by balls or half-balls with the following two properties: a) their diameter is proportional to the distance to vertices or edges and b) scaled versions of these balls/half-balls satisfy a locally finite overlap property.

We start by recalling a lemma that follows from Besicovitch’s Covering Theorem.

Lemma 5.1. ([MW12, Lem. A.1], [HMW13, Lem. A.1]). Let $\omega \subset \mathbb{R}^d$ be bounded, open and $M \subset \partial \omega$ be closed. Fix $c, \zeta \in (0,1)$ such that $1−c(1+\zeta) = c_0 > 0$. For each $x \in \omega$, let $B_x := B_{c \text{dist}(x,M)}(x)$ be the closed ball of radius $c \text{dist}(x,M)$ centered at x, and let $\hat{B}_x := \bar{B}_{(1+\zeta)\text{dist}(x,M)}(x)$ be the stretched closed ball of radius $(1+\zeta)c \text{dist}(x,M)$ centered at x. Then, there is a countable set $(x_i)_{i \in \mathbb{N}}$ such that $\omega \subset \bigcup\hat{B}_x$ and points $(x_i)_{i \in \mathbb{N}} \subset \omega$ such that the collections $\mathcal{B} := \{ B_i = B_{c \text{dist}(x_i,\omega)}(x_i) \mid i \in \mathbb{N} \}$ and $\hat{\mathcal{B}} := \{ \hat{B}_i := B_{(1+\zeta)\text{dist}(x_i,\omega)}(x_i) \mid i \in \mathbb{N} \}$ of (open) balls satisfy the following conditions: the balls from \mathcal{B} cover ω_v; the balls from $\hat{\mathcal{B}}$ satisfy a finite overlap property with overlap constant N depending only on the spatial
provides a collection cover to the 1D line segment with 3
Furthermore, for every δ > \sum \text{balls given by Lemma c possibly slightly increasing the parameter the balls } B \{\text{such that for all } i \in \mathbb{N} \in \varepsilon \text{ such that for the radii } R_i := \varepsilon \text{dist}(x_i, \varepsilon) \text{ it holds that}
\begin{equation}
(5.1) \quad \sum_i R_i^d \leq C_5.
\end{equation}

Proof. Apply Lemma 5.1 with \(M = \{v\} \) and sufficiently small parameters \(c, \zeta > 0 \). Note that by possibly slightly increasing the parameter \(c \), one can ensure that the open balls rather than the closed balls given by Lemma 5.1 cover \(\omega_\varepsilon \). Also, since \(c < 1 \), the index set \(\mathcal{I} \) of Lemma 5.1 cannot be finite so that \(\mathcal{I} = \mathbb{N} \).

To see (5.1), we compute with the spatial dimension \(d = 2 \)
\[
\sum_i R_i^d = \sum_i R_i^{d-\delta} R_i^d \lesssim \int_{\hat{B}_i} r_{\delta}^{d-\delta} dx \lesssim \int_{\Omega} r_{\delta}^{d-\delta} dx < \infty.
\]

We now introduce a covering of vertex-edge neighborhoods \(\omega_{ve} \). We start by a covering of half-balls resting on the edge \(e \) and with size proportional to the distance from the vertex, see Figure 3 (left).

Lemma 5.3 (covering of \(\omega_{ve} \)). Given \(v \in \mathcal{V}, e \in \mathcal{E}(\varepsilon) \), there is \(\xi > 0 \) and parameters \(0 < c < \tilde{c} < 1 \) as well as points \((x_i)_{i \in \mathbb{N}} \subset e \) such that the following holds:

(i) the sets \(H_i := B_{\xi \text{dist}(x_i, \varepsilon)}(x_i) \cap \Omega \) are half-balls and the collection \(\mathcal{B} := \{H_i \mid i \in \mathbb{N}\} \) covers \(\omega_{ve} = \hat{\omega}_{ve} \).

(ii) The collection \(\hat{\mathcal{B}} := \{\hat{H}_i := B_{\xi \text{dist}(x_i, \varepsilon)}(x_i) \cap \Omega \} \) is a collection of half-balls and satisfies a finite overlap property, i.e., there is \(N > 0 \) depending only on the spatial dimension \(d = 2 \) and the parameters \(c, \tilde{c} \) such that for all \(x \in \mathbb{R}^2 \) it holds that card\{\(i \mid x \in \hat{H}_i \}\} \leq N.

Furthermore, for every \(\delta > 0 \) there is \(C_6 > 0 \) such that for the radii \(R_i := \varepsilon \text{dist}(x_i, \varepsilon) \) it holds that \(\sum_i R_i^d \leq C_6 \).

Proof. Let \(\bar{e} \) be the (infinite) line containing \(e \). We apply Lemma 5.1 to the 1D line segment \(e \cap B_{\xi}(v) \) (for some sufficiently small \(\xi \)) and \(M := \{v\} \) and the parameter \(c \) sufficiently small so that \(B_{2\xi \text{dist}(x, v)}(x) \cap \Omega \) is a half-ball for all \(x \in e \cap B_{\xi}(v) \). Lemma 5.1 provides a collection \((x_i)_{i \in \mathbb{N}} \subset e \) such the balls \(B_i := B_{\xi \text{dist}(x_i, v)}(x_i) \subset \mathbb{R}^2 \) and the stretched balls \(\hat{B}_i := B_{(1 + \zeta) \text{dist}(x_i, v)}(x_i) \subset \mathbb{R}^2 \) (for suitable, sufficiently small \(\zeta \)) satisfy the following: the intervals \(\{B_i \cap \bar{e} \mid i \in \mathbb{N}\} \) cover \(B_{\xi}(v) \cap e \), and the intervals \(\{\hat{B}_i \cap \bar{e} \mid i \in \mathbb{N}\} \) satisfy a finite overlap condition on \(\bar{e} \). By possibly slightly increasing the parameter \(c \) (e.g., by replacing \(c \) with \(c(1 + \zeta/2) \)), the newly defined balls \(B_i \) then cover a set \(\omega_{ve} \) for a possibly
reduced ξ. It remains to see that the balls \tilde{B}_i satisfy a finite overlap condition on \mathbb{R}^2: given $x \in \tilde{B}_i$, its projection x_p onto \tilde{e} satisfies $x_p \in \tilde{B}_i \cap \tilde{e}$ since $x_p \in \tilde{e} \subset \tilde{e}$. This implies that the overlap constants of the balls \tilde{B}_i in \mathbb{R}^2 is the same as the overlap constant of the intervals $\tilde{B}_i \cap \tilde{e}$ in \tilde{e}. The half-balls $\tilde{H}_i := \tilde{B}_i \cap \Omega$ and $\hat{H}_i := \hat{B}_i \cap \Omega$ have the stated properties.

Finally, the convergence of the sum $\sum_i R_i^2$ is shown by the same arguments as in Lemma 5.2. □

We will also need a covering of the half-balls H_i constructed in Lemma 5.3, which we introduce in the next lemma. See also Figure 3 (right).

LEMMA 5.4. Let $B = \{H_i \mid i \in \mathbb{N}\}$ and $\hat{B} = \{\hat{H}_i \mid i \in \mathbb{N}\}$ be constructed in Lemma 5.3. Fix a $\tilde{c} \in (c, \tilde{c})$ with c, \tilde{c} from Lemma 5.3 and define the collection $\tilde{B} := \{\tilde{H}_i := B_{\tilde{c}r_\nu(x_i)}(x_i) \cap \Omega \mid i \in \mathbb{N}\}$ of half-balls intermediate to the half-balls H_i and \hat{H}_i.

There are constants $0 < c_1 < \tilde{c}_1 < 1$ such that the following holds: for each i, there are points $(x_{ij})_{j \in \mathbb{N}} \subset H_i$ such that the collection $\tilde{B}_i := \{\tilde{B}_{ij} := B_{\tilde{c}_1r_\nu(x_{ij})}(x_{ij})\}$ covers H_i and the collection $\hat{B}_i := \{\hat{B}_{ij} := B_{\hat{c}_1r_\nu(x_{ij})}(x_{ij})\}$ satisfies $\hat{B}_{ij} \subset \hat{H}_i$ for all j as well as a finite overlap property, i.e., there is $N > 0$ independent of i such that for all $x \in \mathbb{R}^2$ it holds that $\text{card}\{j \mid x \in \hat{B}_{ij}\} \leq N$.

Proof. We apply Lemma 5.1 with $M = \{\tilde{c}\}$ and $\omega = H_i$. The parameters c and ζ are chosen small enough so that the balls $B_{\tilde{c}}$ in Lemma 5.1 satisfy $B_{\tilde{c}} \subset \hat{H}_i$. Then, the lemma follows from Lemma 5.1 □

5.2. Weighted H_p-regularity for the extension problem. To illustrate the techniques, we start with the simplest case of estimates in vertex neighborhoods ω_ν. It is worth stressing that we have $r_\nu \sim r_{\tilde{e}}$ on ω_ν.

The following lemma provides higher order regularity estimates in a vertex weighted norm for solutions to the Caffarelli-Silvestre extension problem with smooth data.

LEMMA 5.5 (Weighted H_p-regularity in ω_ν). Let $\omega_\nu = \omega_\nu^{\tilde{e}}$ be given for some $\xi > 0$ and $\nu \in \mathbb{V}$. Let U be the solution of (3.1). There is $\gamma > 0$ depending only on ν, Ω, ω_ν, and H, and for every $\varepsilon \in (0, 1)$, there exists $C_\varepsilon > 0$ depending additionally on ε such that for all $\beta \in \mathbb{N}_0^n$ there holds with $p = |\beta|$

\[
\|r_{\nu}^{-1/2+\varepsilon} \partial_\beta^2 \nabla U\|_{L_2(B_\nu)}^2 \leq C_\varepsilon 2^p \left[\|f\|_{H^1(\Omega)}^2 + \|F\|_{L_2(\mathbb{R}^2 \times (0,H))}^2 \right] + \sum_{j=2}^{p+1} \max_{|\eta|=j} \|\partial_\eta^p F\|_{L_2(\mathbb{R}^2 \times (0,H))}^2
\]

Proof. The case $p = 0$ follows from Lemma 4.3 and the estimates (3.7), (3.8). We therefore assume $p \in \mathbb{N}$.

Let the covering $\omega_\nu \subset \bigcup_i B_i$ with $B_i = B_{\tilde{c}\text{dist}(x_i, \nu)}(x_i)$ and stretched balls $\tilde{B}_i = B_{\tilde{e}\text{dist}(x_i, \nu)}(x_i)$ be given by Lemma 5.2. It will be convenient to denote $R_i := \text{dist}(x_i, \nu)$ the radius of the ball \tilde{B}_i and to note that, for some $C_B > 0$,

\[
(5.2) \quad \forall i \in \mathbb{N} \quad \forall x \in \tilde{B}_i \quad C_B^{-1} R_i \leq r_{\nu}(x) \leq C_B R_i.
\]

We assume (for convenience) that $R_i \leq 1/2$ for all i.

Let β be a multi index and $p = |\beta|$. By (4.10) there is $C_N > 0$ independent of p such that $N^2(U, F, f) \leq C_N \tilde{N}^{(p)}(F, f)$, where $\tilde{N}^{(p)}$ is defined in (4.6). We employ Corollary 3.6 to the pair (B_i, \tilde{B}_i) of concentric balls together with Lemma 4.3 for $t = 1/2 - \varepsilon/2$ and $N^2(U, F, f) \leq C_N \tilde{N}^{(p)}(F, f)$ to obtain, for suitable $\gamma > 0$,

\[
\|\partial_\beta^2 \nabla U\|_{L_2(B_\nu)}^2 \leq \gamma^{2p+1} R_i^{-2p+1-\varepsilon} 2^{p} \tilde{N}^{(p)}(F, f).
\]
Summation over \(i\) (with very generous bounds for the data \(f, F\) and (5.2) provides

\[
\|r_\psi^{e^{-1/2+\varepsilon}} \partial_\psi^\alpha \nabla U\|_{L^2_\omega}^2 \leq C_B^{2p_{-1/2}+1+2\varepsilon} \sum_i R_i^{2p_{-1/2}+1+2\varepsilon} \|\partial_\psi^\alpha \nabla U\|_{L^2_\omega(B_i^+)}^2
\]

\[
\leq \gamma^{2p_{+1}} C_B^{2p_{+1}} p^{2p} \left(\sum_i R_i^{2p}\right) \tilde{N}(\psi) (F, f)
\]

\[
\leq C_c (\gamma C_B)^{2p_{+1}} p^{2p} \left\{ \|f\|_{L^2(\Omega)}^2 + \|F\|_{L^2_{\omega}((\mathbb{R}^2 \times (0,H)))}^2 + \max_{\beta, j=2} \left(\max_{\beta, j=1} \|\partial_\psi^\beta f\|_{L^2(\Omega)}^2 + \max_{\beta, j=1} \|\partial_\psi^\beta F\|_{L^2_{\omega}((\mathbb{R}^2 \times (0,H)))}^2 \right) \right\},
\]

since \(\sum_i R_i^{2p_{+1}} = C < \infty\) by Lemma 5.2. Relabelling \(\gamma C_B\) as \(\gamma\) gives the result.

We continue with the more involved case of vertex-edge neighborhoods.

Lemma 5.6 (Weighted \(H^p\)-regularity in \(\omega_{\psi e}\)). Let \(\xi \in \text{c}^0\) be sufficiently small. There exists \(\gamma > 0\) depending only on \(s, \xi, \Omega, \text{and } H\), and for any \(\varepsilon \in (0,1)\), there exists \(C_{\varepsilon} > 0\) depending additionally on \(\varepsilon\) such that the solution \(U\) of (3.1) satisfies, for all \(p_{\parallel}, p_{\perp} \in \mathbb{N}\) with \(p = p_{\parallel} + p_{\perp}\)

\[
\|r_\psi^{e^{-1/2+\varepsilon}} \partial_\psi^\alpha D_{\parallel}^{p_{\parallel}} D_{\perp}^{p_{\perp}} \nabla U\|_{L^2_{\omega}}^2 \leq C_s \gamma^{2p_{+1}} p^{2p} \left\{ \|f\|_{L^2_{\omega}((\mathbb{R}^2 \times (0,H)))}^2 + \max_{\beta, j=2} \left(\max_{\beta, j=1} \|\partial_\psi^\beta f\|_{L^2_{\omega}((\mathbb{R}^2 \times (0,H)))}^2 + \max_{\beta, j=1} \|\partial_\psi^\beta F\|_{L^2_{\omega}((\mathbb{R}^2 \times (0,H)))}^2 \right) \right\}.
\]

Proof. As in the proof of Lemma 5.5, the case \(p = 0\) follows from Lemma 4.3 and the estimates (3.7), (3.8) so that we may assume \(p \in \mathbb{N}\). By Lemma 5.4, for sufficiently small \(\xi\), there is a covering of \(\omega_{\psi e}\) by half-balls \((H_i)_{i \in \mathbb{N}}\) with corresponding stretched half-balls \((\tilde{H}_i)_{i \in \mathbb{N}}\) and intermediate half-balls \((\hat{H}_i)_{i \in \mathbb{N}}\) such that each \(H_i\) is covered by balls \(B_i := \{B_{ij} | j \in \mathbb{N}\}\) with the stretched balls \(\hat{B}_{ij}\) satisfying a finite overlap condition and being contained in \(\tilde{H}_i\). We abbreviate the radii of the half-balls \(\tilde{H}_i\) and the balls \(\hat{B}_{ij}\) by \(R_i\) and \(R_{ij}\) respectively. We note that the half-balls \(H_i\) and the balls \(\hat{B}_{ij}\) satisfy for all \(i, j:\)

\[
(5.3) \quad \forall x \in \hat{H}_i : \quad C_B^{-1} R_i \leq r_{\psi}(x) \leq C_B R_i,
\]

\[
(5.4) \quad \forall x \in \tilde{B}_{ij} : \quad C_B^{-1} R_{ij} \leq r_{\psi}(x) \leq C_B R_{ij}
\]

for some \(C_B > 0\) depending only on \(\omega_{\psi e}\). For convenience, we assume that \(R_i \leq 1/2\) for all \(i\) and hence \(R_{ij} \leq 1/2\) for all \(i, j\).

Let \(p_{\parallel}, p_{\perp} \in \mathbb{N}_0\). Since the balls \((B_{ij})_{i,j \in \mathbb{N}}\) cover \(\omega_{\psi e}\), we estimate using (5.3), (5.4)

\[
\|r_\psi^{e^{-1/2+\varepsilon}} \partial_\psi^\alpha D_{\parallel}^{p_{\parallel}} D_{\perp}^{p_{\perp}} \nabla U\|_{L^2_{\omega}}^2 \leq C_{\parallel} B^{2p_{-1/2}+1+2\varepsilon} \sum_{i,j} R_{ij}^{2p_{-1/2}+1+2\varepsilon} \|D_{\parallel}^{p_{\parallel}} D_{\perp}^{p_{\perp}} \nabla U\|_{L^2_{\omega}(B_{ij}^+/2)}^2
\]

With the constant \(\gamma > 0\) from Corollary 3.6, we abbreviate

\[
\hat{N}_{ij}(\xi, F, F) := \sum_{n=1}^{P_{ij}} (\gamma_{ij,n})^{-2n} \left(\max_{|\xi|=n} \|\partial_\psi\partial_\xi D_{\parallel}^{p_{\parallel}} f\|_{L^2(\hat{B}_{ij})}^2 + \max_{|\xi|=n-1} \|\partial_\psi\partial_\xi D_{\parallel}^{p_{\parallel}} F\|_{L^2_{\omega}(\hat{B}_{ij} \times (0,H))}^2 \right),
\]

\[
\tilde{N}_{ij}(\xi, F, F) := \sum_{n=1}^{P_{ij}} (\gamma_{ij,n})^{-2n} \left(\max_{|\xi|=n} \|\partial_\psi\partial_\xi D_{\parallel}^{p_{\parallel}} f\|_{L^2(\tilde{H}_{ij})}^2 + \max_{|\xi|=n-1} \|\partial_\psi\partial_\xi D_{\parallel}^{p_{\parallel}} F\|_{L^2_{\omega}(\tilde{H}_{ij} \times (0,H))}^2 \right).
\]

Applying the interior Caccioppoli-type estimate (Corollary 3.7) for the pairs \((B_{ij}^+ \times (0,H/4), \tilde{B}_{ij} \times (0,H/2))\) and the function \(D_{\perp}^{p_{\parallel}} \nabla U\) (noting that this function satisfies (3.5) with data \(D_{\parallel}^{p_{\parallel}} f, \partial_\psi D_{\perp}^{p_{\parallel}} F\) provides
(we also use \(R_i \leq 1/2 \leq 1 \))

\[
\|D^p_{x,\perp} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} \leq \sum_{j=1}^{2p+} \max_{|\ell| = p+} \|\partial^\ell_{x,\perp} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})}
\]

\[
\leq (\sqrt{2} p \gamma) 2^{2p} R_i^{2p} \left(\|\nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} + R_{ij}^{2p} \hat{\nabla}^{(p)\perp}(F, f) \right)
\]

\[
\leq C_B 1^{-\varepsilon} (\sqrt{2} \gamma p) 2^{2p} R_i^{2p+1+\varepsilon} \left(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} + R_{ij}^{1+\varepsilon} \hat{\nabla}_{ij}^{(p)\perp}(F, f) \right).
\]

Inserting this in \((5.5)\), summing over all \(j\), and using the finite overlap property as well as \(R_{ij} \leq R_i \) yields

\[
\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} \lesssim C_B 2^{2p+2n+2\varepsilon} (\sqrt{2} \gamma p) 2^{2p} \sum_{i} R_i^{2p+1+2\varepsilon} \left(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} + R_{ij}^{1+\varepsilon} \hat{\nabla}_{ij}^{(p)\perp}(F, f) \right),
\]

with the implied constant reflecting the overlap constant. Using again \(R_i \leq 1 \), we estimate the sum over the \(\hat{\nabla}_{ij}^{(p)\perp}(F, f) \) (generously) by

\[
\sum_{i} R_i^{2p+1+2\varepsilon} \|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} \lesssim C_B 2^{2p+2n+2\varepsilon} (\sqrt{2} \gamma p) 2^{2p} \sum_{i} R_i^{2p+1+2\varepsilon} \left(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} + R_{ij}^{1+\varepsilon} \hat{\nabla}_{ij}^{(p)\perp}(F, f) \right).
\]

The term involving \(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} \) in \((5.7)\) is treated with Lemma 4.3 for the case \(p_i = 0 \) and Lemma 4.4 for \(p_i > 0 \). Considering first the case \(p_i = 0 \), we estimate using the finite overlap property of the half-balls \(\tilde{\Omega}_i \) and \(r_{\Omega_i} \leq r_e \)

\[
\sum_{i} R_i^{2p+1+2\varepsilon} \|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} \lesssim C_B 2^{2p+2n+2\varepsilon} (\sqrt{2} \gamma p) 2^{2p} \sum_{i} R_i^{2p+1+2\varepsilon} \left(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} + R_{ij}^{1+\varepsilon} \hat{\nabla}_{ij}^{(p)\perp}(F, f) \right);
\]

here, we used that \(\sum_{i} R_i < \infty \) by Lemma 5.3.

Combining the above estimates we have shown the existence of \(C \geq 1 \) independent of \(p = p_i + p_{\perp} \) such that

\[
\sum_{i} R_i^{2p+1+2n} \left(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} + R_{ij}^{1+\varepsilon} \hat{\nabla}_{ij}^{(p)\perp}(F, f) \right) \leq C 2^{p_{\perp}} \left(\sum_{i} R_i^{2p+1+2\varepsilon} \left(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} + R_{ij}^{1+\varepsilon} \hat{\nabla}_{ij}^{(p)\perp}(F, f) \right) \right)
\]

For \(p_{\perp} > 0 \), we use Lemma 4.4. To that end, we select, for each \(i \in N \), a cut-off function \(\eta_i \in C_0^\infty(\mathbb{R}^2) \) with \(\text{supp} \eta_i \cap \Omega \subset \tilde{\Omega}_i \) and \(\eta_{ij} \equiv 1 \) on \(\tilde{\Omega}_i \) and a cut-off function \(\eta_y \in C_0^\infty(-H/2, H/2) \) with \(\eta_y \equiv 1 \) on \((H/2, -H/2)\). Applying Lemma 4.4 with \(t = 1/2 - \varepsilon/2 \) there and using the finite overlap property we get for \(\hat{U}_i^{(p_{\perp})} := \eta_i \eta_y D^p_{x,\perp} U \) and \(\hat{\nabla}_{ij}^{(p_{\perp})}(F, f) \) from \((4.6)\)

\[
\sum_{i} R_i^{2p_{\perp}+2\varepsilon} \|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} \leq \sum_{i} R_i^{2p_{\perp}+2\varepsilon} \left(\|r_{e}^{-1/2+\varepsilon/2} \nabla \hat{U}_i^{(p_{\perp})}\|^2_{L^2_x(\Omega_{2i})} + \|\hat{\nabla}_{ij}^{(p_{\perp})}(F, f)\|^2_{L^2_x(\Omega_{2i})} \leq (\gamma p_{\perp})^2 p_{\perp} (1 + \gamma p_{\perp}) \hat{\nabla}_{ij}^{(p_{\perp})}(F, f) \right);
\]

and analogously for the sum over the terms \(\|r_{e}^{-1/2+\varepsilon/2} \nabla D^p_{x,\perp} U\|^2_{L^2_x(\Omega_{2i})} \). Also by similar arguments, we estimate \(p_{p_{\perp}}^{2p_{\perp}} \hat{\nabla}_{ij}^{(p_{\perp})}(F, f) \leq C p_{p_{\perp}} \hat{\nabla}_{ij}^{(p_{\perp})}(F, f) \). Using \(p_{p_{\perp}}^2 = p_{\perp} \) as well as \(|D^p_{x,\perp} v| \leq
$2^{p/2} \max_{|\beta| = p_1} |\partial_\beta^2 v|$ completes the proof of the vertex-edge case in view of the definition of $\tilde{N}^{(p)}(F, f)$ from (4.6), $r^e_{r^e} \sim r^{e/2}$, and by suitably selecting γ.

Lemma 5.7 (Weighted H^p-regularity in ω_e). Given $\xi > 0$ and $e \in E$, there is γ depending only on s, Ω, H, and $\omega_e = \omega_\xi^e$ such that for every $\varepsilon \in (0, 1)$ there is $C_\varepsilon > 0$ depending additionally on ε such that the solution U of (3.1) satisfies, for all $(p_\|, p_\perp) \in \mathbb{N}_0^2$ with $p = p_\| + p_\perp$

$$\begin{align*}
&\frac{[r^e_{p_-} / 2 + \varepsilon] D^p_{\|} D^{p_\perp}_{p_\perp} \nabla U}{L^2_{r^e_{\varepsilon}}(\omega_\xi^{\varepsilon})} \\
&\quad \leq C_\varepsilon^{p+1} \max_{|\beta| = p} \left[\frac{\| r^e_{p_-} / 2 + \varepsilon] D^p_{\|} D^{p_\perp}_{p_\perp} \nabla U}{L^2_{r^e_{\varepsilon}}(\omega_\xi^{\varepsilon})} \right].
\end{align*}$$

Proof. The proof is essentially identical to the case $p_\perp = 0$ in the proof of Lemma 5.6 using a covering of ω_e analogous to the covering of ω_ξ given in Lemma 5.2 that is refined towards e rather than ε, see Figure 4.

Fig. 4: Covering of edge-neighborhoods ω_e.

Remark 5.8. The assumption that ξ is sufficiently small in Lemma 5.6 can be dropped (as long as ω_{\ve_e} is well defined, as per Section 2.2). Indeed, for all ξ_1, ξ_2 such that $\xi_1 \geq \xi_2 > 0$ there exists $\xi_3 > \xi_2$ such that

$$\omega_{\ve_e}^\xi \subset \left(\omega_{\ve_e}^{\xi_2} \cup \omega_{\ve_e}^{\xi_3} \cup \omega_{\ve_e}^{\xi_1} \right).$$

In addition, there exists a constant $C_{\xi_3} > 0$ that depends only on ξ_3 and ε such that

$$\begin{align*}
&\| r^e_{p_-} / 2 + \varepsilon] D^p_{\|} D^{p_\perp}_{p_\perp} \nabla U \|_{L^2_{r^e_{\varepsilon}}(\omega_\xi^{\varepsilon})}^2 \\
&\quad \leq C_{\xi_3}^{p+1} \max_{|\beta| = p} \left[\frac{\| r^e_{p_-} / 2 + \varepsilon] D^p_{\|} D^{p_\perp}_{p_\perp} \nabla U \|_{L^2_{r^e_{\varepsilon}}(\omega_\xi^{\varepsilon})}^2} \right].
\end{align*}$$

(5.9)

and that

$$\begin{align*}
&\| r^e_{p_-} / 2 + \varepsilon] D^p_{\|} D^{p_\perp}_{p_\perp} \nabla U \|_{L^2_{r^e_{\varepsilon}}(\omega_\xi^{\varepsilon})}^2 \\
&\quad \leq C_{\xi_3}^{p+1} \max_{|\beta| = p} \left[\frac{\| r^e_{p_-} / 2 + \varepsilon] D^p_{\|} D^{p_\perp}_{p_\perp} \nabla U \|_{L^2_{r^e_{\varepsilon}}(\omega_\xi^{\varepsilon})}^2} \right].
\end{align*}$$

(5.10)

Given $\xi_1 > 0$, bounds in $\omega_{\ve_e}^{\xi_1}$ can therefore be derived by choosing ξ_2 such that Lemma 5.6 holds in $\omega_{\ve_e}^{\xi_2}$, exploiting the decomposition (5.8), using Lemmas 5.5 and 5.6 in $\omega_{\ve}^{\xi_3}$ and $\omega_{\ve}^{\xi_1}$, respectively, and concluding with (5.9) and (5.10).

5.3. Proof of Theorem 2.1 – weighted H^p regularity for fractional PDE (1.1). In order to obtain regularity estimates for the solution u of $(-\Delta)^s u = f$, we have to take the trace $y \to 0$ in the weighted H^p-estimates for the Caffarelli-Silvestre extension problem provided by the previous subsection.

Proposition 5.9. Under the hypotheses of Theorem 2.1, there exists a constant $\gamma > 0$ depending only on γ_f, s, and Ω such that for every $\varepsilon > 0$ there exists $C_\varepsilon > 0$ (depending only on ε and Ω) such that the following holds:

(i) for all $p \in \mathbb{N}$ there holds

$$\| r^e_{p_-} / 2 + \varepsilon] D^p_{\|} u \|_{L^2(\omega_e)} \leq C_{\varepsilon} \gamma^{p+1} p^p.$$

(5.11a)
(ii) For all $p \in \mathbb{N}_0$, $p_\perp \in \mathbb{N}$ with $p_\parallel + p_\perp = p$ there holds

$$\left\| r^{p_\perp - 1/2 - s + \varepsilon} \mathcal{P}_V \mathcal{D}^{p_\parallel}_{\Delta z_1} u \right\|_{L^2(\omega_\alpha)} \leq C \gamma^{p+1} p^p. \quad (5.11b)$$

(iii) For all $\beta \in \mathbb{N}_0$ with $|\beta| = p \geq 1$ and all $p_\parallel \in \mathbb{N}_0$, $p_\perp \in \mathbb{N}$ with $p_\parallel + p_\perp = p \geq 1$ there holds

$$\left\| r^{p_\parallel - 1/2 - s + \varepsilon} \mathcal{P}_U \mathcal{D}^{p_\parallel}_{\Delta z_1} u \right\|_{L^2(\omega_\alpha)} \leq C \gamma^{p+1} p^p, \quad (5.12)$$

$$\left\| r^{p_\parallel - 1/2 - s + \varepsilon} \mathcal{P}_U \mathcal{D}^{p_\parallel}_{\Delta z_1} u \right\|_{L^2(\omega_\alpha)} \leq C \gamma^{p+1} p^p. \quad (5.13)$$

(iv) For $p_\parallel \in \mathbb{N}$, we have

$$\left\| r^{1/2 - s + \varepsilon} \mathcal{P}_U \mathcal{D}^{p_\parallel}_{\Delta z_1} u \right\|_{L^2(\omega_\alpha)} \leq C \gamma^{p+1} p^p. \quad (5.14)$$

(v) For all $\beta \in \mathbb{N}_0$ there holds with $|\beta| = p$

$$\left\| \mathcal{D}_x^\beta u \right\|_{L^2(\Omega_{\text{int}})} \leq \gamma^{p+1} p^p. \quad (5.15)$$

Proof. We only show the estimates (5.11a) and (5.11b) using Lemma 5.6. The bounds (5.12) (using Lemma 5.5) and (5.13), (5.14) (using Lemma 5.7) follow with identical arguments. The bound in Ω_{int} follows directly from the interior Caccioppoli inequality, Corollary 3.6, and a trace estimate as below. (Note that the case $|\beta| = 0$ follows directly from the energy estimate $\|u\|_{L^2(\Omega_{\text{int}})} \leq \|\mathcal{F}^\nu\|_{H^{-1}(\Omega)} \leq C \|f\|_{H^{-1}(\Omega)}$)

Due to Lemma 5.6, applied with $F = 0$, and the assumption (2.10) on the data f, there exists a constant $C > 0$ such that for all $(q_\perp, q_\parallel) \in \mathbb{N}_0^2$ we have with $q = q_\perp + q_\parallel \in \mathbb{N}_0$

$$\left\| r^{q_\perp - 1/2 + \varepsilon} r^{q_\parallel} \mathcal{D}^{q_\parallel}_{\Delta z_1} \mathcal{D}^{q_\parallel}_{\Delta z_1} \nabla U \right\|_{L^2(\omega_{\text{int}})} \leq C \gamma^{q_\parallel + q_\perp} q_\perp \perp. \quad (5.16)$$

The last step of the proof of [KM19, Lem. 3.7] gives the multiplicative trace estimate

$$\|V(x, \partial_x V(x))\|^2 \leq C_{\text{tr}} \left(\|V(x, \partial_x V(x, \cdot))\|_{L^{2, \perp}(\mathbb{R}_e)} \right)^2 \quad (5.17)$$

where, for univariate $v : \mathbb{R}_+ \to \mathbb{R}$, we write $\|v\|_{L^2, \perp}(\mathbb{R}_e) := \int_{y=0}^\infty y^{-\alpha} |v(y)|^2 \, dy$. Applying this estimate to $\eta_\nu V$ with a cut-off function $\eta_\nu \in C^\infty_0(-H/4, H/4)$ satisfying $\eta_\nu = 1$ on $(-H/8, H/8)$ shows that in (5.17) \mathbb{R}_+ can be replaced by $(0, H/4)$ at the expense of a constant depending additionally on H.

We have $p = p_\perp + p_\parallel \geq 1$. Suppose first $p_\perp \geq 1$ and $p_\parallel \geq 0$. Using the trace estimate (5.17) with $V = \mathcal{D}^{p_\parallel}_{\Delta z_1} \mathcal{D}^{p_\parallel}_{\Delta z_1} U$ and additionally multiplying with the corresponding weight (using that $\alpha = 1 - 2s$) provides

$$\left\| r^{p_\perp - 1/2 + \varepsilon} r^{p_\parallel} \mathcal{D}^{p_\parallel}_{\Delta z_1} \mathcal{D}^{p_\parallel}_{\Delta z_1} U(x, 0) \right\|^2 \leq C_{\text{tr}} \left(\left\| r^{p_\perp - 1/2 + \varepsilon} r^{p_\parallel} \mathcal{D}^{p_\parallel}_{\Delta z_1} \mathcal{D}^{p_\parallel}_{\Delta z_1} U(x, \cdot) \right\|_{L^{2, \perp}(\mathbb{R}_e)}^{1+\alpha} \right)^2 \left(\left\| r^{p_\perp - 1/2 + \varepsilon} r^{p_\parallel} \mathcal{D}^{p_\parallel}_{\Delta z_1} \mathcal{D}^{p_\parallel}_{\Delta z_1} U(x, \cdot) \right\|_{L^{2, \perp}(\mathbb{R}_e)}^{1+\alpha} \right)^2 \quad (5.18)$$

where we have also used the fact that $(D_{\Delta z_1} v)^2 = (e_{\perp} \cdot \nabla v)^2 \leq |\nabla v|^2$ for all sufficiently smooth functions v. Integration over ω_{ve} together with $r^{-s} \lesssim r^{-1}$ gives

$$\left\| r^{p_\perp - 1/2 + \varepsilon} r^{p_\parallel} \mathcal{D}^{p_\parallel}_{\Delta z_1} \mathcal{D}^{p_\parallel}_{\Delta z_1} U \right\|_{L^2(\omega_{\text{ve}})} \leq C_{\text{tr}} \left(\left\| r^{p_\perp - 1/2 + \varepsilon} r^{p_\parallel} \mathcal{D}^{p_\parallel}_{\Delta z_1} \mathcal{D}^{p_\parallel}_{\Delta z_1} U \right\|_{L^{2, \perp}(\omega_{\text{ve}})}^{1+\alpha} \right)^2 \left(\left\| r^{p_\perp - 1/2 + \varepsilon} r^{p_\parallel} \mathcal{D}^{p_\parallel}_{\Delta z_1} \mathcal{D}^{p_\parallel}_{\Delta z_1} U \right\|_{L^{2, \perp}(\omega_{\text{ve}})}^{1+\alpha} \right)^2 \quad (5.19)$$

$$\leq C_{\text{tr}} C^{2p-1}(p-1)^2 p^{2(p-1)}(1-\alpha)/2 \left(C^{2p+1} p^p \right)^{(1+\alpha)/2} + CC_{\text{tr}} C^{2p-1}(p-1)^2 p^{2(p-1)} \leq C_{\text{tr}} C^{2p+1+\alpha} p^{2p+\alpha} + C_{\text{tr}} C^{2p-1} p^p \leq \gamma^{2p+1} p^{2p} \quad (5.20)$$
for suitable $\gamma > 0$, which is estimate (5.11b). If $p_\perp = 0$, then $p_\parallel \geq 1$, and we have instead

$$
\left\| e^{-1/2+\varepsilon p_\parallel} D_{x\parallel}^p u \right\|_{L^2(\omega_{ve})}^2 \\
\leq C_{\mu} \left\| e^{-1/2+\varepsilon p_\parallel} \nabla D_{x\parallel}^{p_\parallel} \nabla u \right\|_{L^2(\omega_{ve})}^{1-\alpha} \left\| e^{-1/2+\varepsilon p_\parallel} \nabla D_{x\parallel}^{p_\parallel} \nabla u \right\|_{L^2(\omega_{ve})}^{1+\alpha} \\
+ C_{\mu} \left\| e^{-1/2+\varepsilon p_\parallel} \nabla D_{x\parallel}^{p_\parallel} \nabla u \right\|_{L^2(\omega_{ve})}^2.
$$

Again, inserting ($x = \tilde{x}$) separately by using a Hardy inequality and then appealing to Proposition 5.9.

Proof of (2.11). Equation (2.11) with $p = 0$ follows from the weighted Hardy inequality [KMR97, Lem. 7.1.3], which provides

$$
\left\| r_\parallel^{1/2-s+\varepsilon} u \right\|_{L^2(\omega_{ve})} \leq C_{H,1} \left\| r_\parallel^{1/2-s+\varepsilon} \nabla u \right\|_{L^2(\omega_{ve})} \text{Prop. 5.9} < \infty.
$$

Proof of (2.12). Let (x_\perp, x_\parallel) be the coordinate system associated with edge e. For $\mu, \xi > 0$ sufficiently small and an interval I_μ of length μ consider

$$
\omega_{e,\mu}^\xi \subseteq \{ (x_\perp, x_\parallel) : x_\parallel \in I_\mu, x_\perp \in (0, \xi^2) \} =: \tilde{\omega}_{e,\mu}.
$$

The interval I_μ is chosen such that $\omega_{e,\mu}^\xi \subset \tilde{\omega}_{e,\mu}$ and $\tilde{\omega}_{e,\mu}$ stays away from the vertices V and the edges $E \setminus \{ e \}$ so that the assertions of Proposition 5.9 still hold for $\tilde{\omega}_{e,\mu}$ - cf. Remark 5.8. We will show (2.12) for $\tilde{\omega}_{e,\mu}$ (dropping the superscripts ξ, μ).

Let \tilde{u} be the function such that $\tilde{u}(x_\perp, x_\parallel) = u(x_1, x_2)$ in $\tilde{\omega}_{e,\mu}$. By Fubini-Tonelli’s theorem, for almost all $x_\parallel \in I_\mu$, there holds

$$
(5.18) \quad x_\perp \mapsto r_\parallel^{1/2-s+\varepsilon} D_{x\parallel} (D_{x\parallel}^p \tilde{u})(x_\perp, x_\parallel) \in L^2((0, \xi^2)).
$$

The fundamental theorem of calculus, the Cauchy-Schwarz inequality, and (5.18), imply that, for almost all $x_\parallel \in I_\mu$, one has for $\varepsilon < s$ that $(D_{x\parallel}^p \tilde{u})(x_\parallel) \in C^{0,\alpha-s}(\omega_{e,\mu})$. As $u \in H^s(\Omega)$, we infer the pointwise equality $(D_{x\parallel}^p \tilde{u})(0, x_\parallel) = 0$ for almost all x_\parallel. We can apply [KMR97, Lem. 7.1.3] again, in one dimension: for almost all $x_\parallel \in I_\mu$, there holds

$$
\left\| e^{-1/2-s+\varepsilon} (D_{x\parallel}^p \tilde{u})(x_\parallel) \right\|_{L^2((0, \xi^2))} \leq C_{H,2} \left\| e^{-1/2-s+\varepsilon} (D_{x\parallel}^p \tilde{u})(x_\parallel) \right\|_{L^2((0, \xi^2))}.
$$

Squared and integrating over $x_\parallel \in I_\mu$ concludes the proof of (2.12).

Proof of (2.13). We use the same notation as in the previous part of the proof, but assume that the coordinate system (x_1, x_2) and the coordinate system (x_\perp, x_\parallel) associated with edge e satisfy $x_1 = x_\parallel$ and $x_2 = x_\perp$. Correspondingly, we assume $I_\mu = (0, \mu)$. We introduce the equivalent vertex-edge neighborhood

$$
\tilde{\omega}_{e,ve} = \{ (x_\perp, x_\parallel) : x_\parallel \in (0, \mu), x_\perp \in (0, \xi x_\parallel) \}.
$$

We remark that in $\tilde{\omega}_{e,ve}$ there exists $c \geq 1$ such that for all $(x_\perp, x_\parallel) \in \tilde{\omega}_{e,ve}$

$$
(5.19) \quad x_\parallel \leq r_e(x_\parallel, x_\perp) \leq c x_\parallel.
$$

We note $r_e(x_\perp, x_\parallel) = x_\perp$. Hence, for almost all $x_\parallel \in (0, \mu)$, there holds

$$
(5.20) \quad (x_\perp \mapsto r_e^{1/2-s+\varepsilon} (D_{x_\perp}^p (D_{x_\parallel}^p \tilde{u}))(x_\perp, x_\parallel)) \in L^2((0, \xi x_\parallel)).
$$
By the same argument as above, it follows that, for almost all \(x_\parallel \in (0, \mu)\), we have \((D^{\parallel}_{x_\parallel} \tilde{u}) (x_\parallel) \in C^{0, s-\gamma}([0, \xi_{x_\parallel}])\) and hence \((D^{\parallel}_{x_\parallel} \tilde{u}) (0, x_\parallel) = 0\). Therefore, [KMR97, Lem. 7.1.3] gives for almost all \(x_\parallel \in (0, \mu)\)

\[
\| r^{1/2-s+\gamma}_{\parallel} (D^{\parallel}_{x_\parallel} \tilde{u})(x_\parallel) \|_{L^2((0, \xi_{x_\parallel}))} \leq C_{H,3} \| r^{1/2-s+\gamma}_{\parallel}(D_{x_\parallel}, D_{x_\parallel} \tilde{u})(x_\parallel) \|_{L^2((0, \xi_{x_\parallel}))},
\]

with a constant \(C_{H,3}\) independent of \(x_\parallel\). Multiplying by \(r^{1/2-s+\gamma}_{\parallel}\), squaring, integrating over \(x_\parallel \in (0, \mu)\), and using (5.19), we obtain

\[
\| r^{1/2-s+\gamma}_{\parallel} (D^{\parallel}_{x_\parallel} \tilde{u}) \|_{L^2(\tilde{\omega}_{\parallel})} \leq \epsilon^{1/2} C_{H,3} \| r^{1/2-s+\gamma}_{\parallel} (D_{x_\parallel}, D_{x_\parallel} \tilde{u}) \|_{L^2(\tilde{\omega}_{\parallel})}.
\]

This completes the proof except for the fact that the region \(\omega_{\parallel} \setminus \tilde{\omega}_{\parallel}\) is not covered yet. This region is treated with the observations of Remark 5.8.

6. Conclusions. We briefly recapitulate the principal findings of the present paper, outline generalizations of the present results, and also indicate applications to the numerical analysis of finite element approximations of (2.2). We established analytic regularity of the solution \(u\) in a scale of edge- and vertex-weighted Sobolev spaces for the Dirichlet problem for the fractional Laplacian in a bounded polygon \(\Omega \subset \mathbb{R}^2\) with straight sides, and for forcing \(f\) analytic in \(\tilde{\Omega}\).

While the analysis in Sections 4 and 5 was developed at present in two spatial dimensions, we emphasize that all parts of the proof can be extended to higher spatial dimension \(d \geq 3\), and polytopal domains \(\Omega \subset \mathbb{R}^d\). Details shall be presented elsewhere.

Likewise, the present approach is also capable of handling nonconstant, analytic coefficients similar to the setting considered (for the spectral fractional Laplacian) in [BMN+19]. Details on this extension of the present results, with the presently employed techniques, will also be developed in forthcoming work.

The weighted analytic regularity results obtained in the present paper can be used to establish exponential convergence rates with the bound \(C \exp(-b \sqrt{N})\) on the error for suitable \(hp\)-Finite Element discretizations of (2.2), with \(N\) denoting the number of degrees of freedom of the discrete solution in \(\Omega\). This will be proved in the follow-up work [FMMS22b]. Importantly, as already observed in [BMN+19], achieving this exponential rate of convergence mandates anisotropic mesh refinements near the boundary \(\partial \Omega\).

Appendix A. Localization of Fractional Norms. The following elementary observation on localization of fractional norms was used in several places.

Lemma A.1. Let \(\eta \in C_0^\infty(B_R)\) for some ball \(B_R \subset \Omega\) of radius \(R\) and \(s \in (0, 1)\). Then,

\[
\| \eta f \|_{H^{-s}(\Omega)} \leq C_{loc} \| \eta \|_{L^\infty(B_R)} \| f \|_{L^2(B_R)},
\]

\[
\| \eta f \|_{H^{1-s}(\Omega)} \leq C_{loc,2} \left(R^s \| \nabla \eta \|_{L^\infty(B_R)} + (R^{s-1} + 1) \| \eta \|_{L^\infty(B_R)} \right) \| f \|_{L^2(\Omega)} + \| \eta \|_{L^\infty(B_R)} \| f \|_{H^{1-s}(\Omega)},
\]

where the constants \(C_{loc}\) and \(C_{loc,2}\) depend only on \(\Omega\) and \(s\).

Proof. (A.1) follows directly from the embedding \(L^2 \subset H^{-s}\). For (A.2), we use the definition of the Sobolev norm and the triangle inequality to write

\[
\| \eta f \|_{H^{1-s}(\Omega)}^2 = \int_{B_{2R}} \int_{B_{3R}} \frac{\| \eta f \|_{L^\infty(B_R)} \| f \|_{L^2(B_R)}}{\| \eta \|_{L^\infty(B_R)}} dz dx \leq \int_{B_{2R}} \int_{B_{3R}} \frac{\| \eta f \|_{L^\infty(B_R)} \| f \|_{L^2(B_R)}}{\| \eta \|_{L^\infty(B_R)}} dz dx + \int_{B_{2R}} \int_{B_{3R}} \frac{\| \eta f \|_{L^\infty(B_R)} \| f \|_{L^2(\Omega)}}{\| \eta \|_{L^\infty(B_R)}} dz dx.
\]

The first term on the right-hand side can directly be estimated by \(\| \eta \|_{L^\infty(B_R)} \| f \|_{H^{1-s}(\Omega)}\). For the second term, we split the integration over \(\Omega \times \Omega\) into four subsets, \(B_{2R} \times B_{3R}, B_{2R} \times B_{3R} \cap \Omega, B_{2R} \times \Omega \times B_{3R}, B_{2R} \times \Omega \times B_{3R}\); here, for simplicity we assume for the concentric balls \(B_R \subset B_{2R} \subset B_{3R} \subset \Omega\), otherwise one has to intersect all balls with \(\Omega\). For the last case, \(B_{2R} \cap \Omega \times B_{3R} \cap \Omega\), we have that \(\eta(x) \neq \eta(z)\) vanishes and the integral is zero. For the case \(B_{2R} \times B_{3R}\), we have \(|x-z| \geq R\) there. This gives

\[
\int_{B_{2R}} \int_{B_{3R}} \frac{\| \eta f \|_{L^\infty(B_R)} \| f \|_{L^2(B_R)}}{\| \eta \|_{L^\infty(B_R)}} dz dx = \int_{B_{2R}} \int_{B_{3R}} \frac{\| \eta f \|_{L^\infty(B_R)} \| f \|_{L^2(B_R)}}{\| \eta \|_{L^\infty(B_R)}} dz dx \leq R^{-d+2-2s} \int_{B_{2R}} \int_{B_{3R}} \| f \|_{L^\infty(B_R)} dz dx \leq R^{-d+2-2s} \| \eta \|_{L^\infty(B_R)} \| f \|_{L^2(\Omega)}.
\]
For the integration over $B_{2R} \cap \Omega \times B_R$, we write using polar coordinates (centered at z)

$$
\int_{B_{2R} \cap \Omega} \int_{B_R} \frac{\{|\eta(x)f(z)|^2\}}{|x-z|^{d+2}} ~ dx \, dz = \int_{B_R} |\eta(z)f(z)|^2 \int_{B_{2R} \cap \Omega} \frac{1}{|x-z|^{d+2}} ~ dx \, dz \\
\lesssim \int_{B_R} |\eta(z)f(z)|^2 \int_{R} \frac{1}{r^{d+2}} ~ dr \, dz \lesssim R^{2s-2} \|\eta\|_{L^\infty(B_R)} \|f\|_{L^2(\Omega)}^2.
$$

Finally, for the integration over $B_{2R} \times B_{3R}$, we use that $|\eta(x) - \eta(z)| \leq \|\nabla \eta\|_{L^\infty(B_R)} |x-z|$ and polar coordinates (centered at z) to estimate

$$
\int_{B_{2R}} \int_{B_{3R}} \frac{|\eta(x)f(z) - \eta(z)f(z)|^2}{|x-z|^{d+2}} ~ dx \, dz \leq \|\nabla \eta\|_{L^\infty(B_R)} \int_{B_{3R}} |f(z)|^2 \int_{B_{2R}} \frac{1}{|x-z|^{d+2}} ~ dx \, dz \\
\lesssim \|\nabla \eta\|_{L^\infty(B_R)} \int_{B_{3R}} |f(z)|^2 \int_0^{5R} r^{-1+2s} ~ dr \, dz \lesssim \|\nabla \eta\|_{L^\infty(B_R)} \|f\|_{L^2(\Omega)}^2 R^{2s}.
$$

The straightforward bound $\|\eta f\|_{L^2(\Omega)} \leq \|\eta\|_{L^\infty(B_R)} \|f\|_{L^2(\Omega)}$ concludes the proof. \hfill \Box

Appendix B. Proof of Lemma 3.1. Proof of Lemma 3.1: The proof follows from the arguments given in [KM19, Sec. 3]; a more general development of Beppo-Levi spaces is given in [DL54].

Proof of (i): Fix a (nondegenerate) hypercube $K = \prod_{i=1}^d (a_i, b_i)$ with $a_{d+1} = 0$. Elements of the Beppo-Levi space \mathcal{B}_L^1 are locally in L^2, and one can equip the space \mathcal{B}_L^1 with the norm $\|U\|_{\mathcal{B}_L^1} := \|U\|_{L^2(K)}^2 + \|\nabla U\|_{L^2(K \times \mathbb{R}^+)}^2$. Endowed with this norm, \mathcal{B}_L^1 is a Hilbert space and $C^\infty(\mathbb{R}^d \times [0, \infty)) \cap \mathcal{B}_L^1$ is dense, [KM19, Lem. 3.2]. On the subspace $\mathcal{B}_{L,0}^{1,0}$ we show the norm equivalence $\|U\|_{\mathcal{B}_L^{1,0}} \sim \|\nabla U\|_{L^2(\mathbb{R}^d \times \mathbb{R}^+)}$ using the bounded linear lifting operator $\mathcal{E} : H^s(\mathbb{R}^d) \to H^s(\mathbb{R}^d \times \mathbb{R}^+)$ of [KM19, Lem. 3.9] and the norm equivalence of [KM19, Cor. 3.4]

$$
\|\nabla U\|_{L^2(\mathbb{R}^d \times \mathbb{R}^+)} \leq \|U\|_{\mathcal{B}_L^{1,0}} \leq \|U - \mathcal{E} \text{tr} U\|_{\mathcal{B}_L^{1,0}} + \|\mathcal{E} \text{tr} U\|_{\mathcal{B}_L^{1,0}} \leq \|U - \mathcal{E} \text{tr} U\|_{L^2(\mathbb{R}^d \times \mathbb{R}^+)} + \|\mathcal{E} \text{tr} U\|_{L^2(\mathbb{R}^d)}.
$$

Proof of (ii): From the fundamental theorem of calculus, we have for smooth univariate functions v and $x \in (0, H)$ the estimate $|v(x)| = |v(0) + \int_0^x v'(t) \, dt| \lesssim |v(0)| + \sqrt{\int_0^x |v'(t)|^2 \, dt}$.

Fix a closed hypercube $K' \subset \mathbb{R}^d$ of side length $dK' > 0$ with $K' \supset \Omega$. Define the translates $K_j := d_{K', j} + K'$ for $j \in \mathbb{Z}^d$. For smooth U, we infer from the 1D estimate that

$$
\|U\|_{L^2(\mathbb{R}^d \times (0,H))} \leq C_{K'} (\|\nabla U\|_{L^2(\mathbb{R}^d \times (0,H))} + \|\text{tr} U\|_{L^2(\mathbb{R}^d \times K')}).
$$

By the density of $C^\infty(\mathbb{R}^d \times [0, \infty)) \cap \mathcal{B}_L^{1,0}$ in \mathcal{B}_L^1, and for all translates K_j, $j \in \mathbb{Z}^d$, with the same constant $C_{K'}$. For $U \in \mathcal{B}_L^{1,0}$, we observe $\|\text{tr} U\|_{L^2(\mathbb{R}^d \times K')} \leq C_{\Omega'} \|\text{tr} U\|_{H^{s}(\mathbb{R}^d)} (\text{cf. (1.3)})$ and $\|U\|_{L^2(\mathbb{R}^d \times K')} = 0$ for $j \neq 0$. Hence, using the Kronecker $\delta_{j,0}$, we arrive at

$$
\|U\|_{L^2(\mathbb{R}^d \times (0,H))} \leq C_{K'} (\|\nabla U\|_{L^2(\mathbb{R}^d \times (0,H))} + \|\text{tr} U\|_{H^{s}(\mathbb{R}^d)}).
$$

Since $\mathbb{R}^d = \cup_{j \in \mathbb{Z}^d} K_j$ and the intersection $K_j \cap K_{j'}$ is a set of measure zero for $j \neq j'$, summation over all j implies

$$
\|U\|_{L^2(\mathbb{R}^d \times (0,H))} \lesssim \|\nabla U\|_{L^2(\mathbb{R}^d \times (0,H))} + \|\text{tr} U\|_{H^{s}(\mathbb{R}^d)}.
$$

The proof is completed by noting $\|\text{tr} U\|_{H^{s}(\mathbb{R}^d)} \lesssim \|\nabla U\|_{L^2(\mathbb{R}^d \times \mathbb{R}^+)}$ by [KM19, Lem. 3.8]. \hfill \Box
REFERENCES

[AB17] G. Acosta and J.P. Borthagaray. A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal., 55(2):472–495, 2017.

[AFV15] G. Albanese, A. Fiscella, and E. Valdinoci. Gevrey regularity for integro-differential operators. J. Math. Anal. Appl., 428(2):1225–1238, 2015.

[AG20] H. Abels and G. Grubb. Fractional-Order Operators on Nonsmooth Domains. arXiv e-prints, page arXiv:2004.10134, April 2020.

[ARO20] N. Abatangelo and X. Ros-Oton. Obstacle problems for integro-differential operators: higher regularity of free boundaries. Adv. Math., 360:106931, 61, 2020.

[BBN+18] A. Bonito, J.P. Borthagaray, R.H. Nochetto, E. Otárola, and A.J. Salgado. Numerical methods for fractional diffusion. Comput. Vis. Sci., 19(5-6):19–46, 2018.

[BG88] I. Babuška and B.Q. Guo. Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal., 19(1):172–203, 1988.

[BLN20] J.P. Borthagaray, W. Li, and R.H. Nochetto. Linear and nonlinear fractional elliptic problems. In 75 years of mathematics of computation, volume 754 of Contemp. Math., pages 69–92. Amer. Math. Soc., Providence, RI, 2020.

[BMN+19] L. Banaji, J.M. Melenk, R.H. Nochetto, E. Otárola, A.J. Salgado, and Ch. Schwab. Tensor FEM for spectral fractional diffusion. Found. Comput. Math., 19(4):901–962, 2019.

[BN21] J.P. Borthagaray and R.H. Nochetto. Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains. arXiv e-prints, page arXiv:2110.02801, 2021.

[BWZ17] U. Biccari, M. Warma, and E. Zuazua. Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud., 17(2):387–409, 2017.

[CDN12] M. Costabel, M. Dauge, and S. Nicaise. Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci., 22(8):1250015, 18, 2012.

[Coo17] M. Cozzi. Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces. Ann. Mat. Pura Appl. (4), 196(2):555–578, 2017.

[CS07] L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 32(7-9):1245–1260, 2007.

[CS16] L.A. Caffarelli and F.R. Stinga. Fractional elliptic equations. Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(3):767–807, 2016.

[DDG+20] M. D’Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian, and Z. Zhou. Numerical methods for nonlocal and fractional models. Acta Numer., 29:1–124, 2020.

[DFO12] A. Dall’Acqua, S. Fournais, T. Östergaard Sørensen, and E. Stockmeyer. Real analyticity away from the nucleus of pseudorelativistic Hartree-Fock orbitals. Anal. PDE, 5(3):657–691, 2012.

[DFO13] A. Dall’Acqua, S. Fournais, T. Östergaard Sørensen, and E. Stockmeyer. Real analyticity of solutions to Schrödinger equations involving a fractional Laplacian and other Fourier multipliers. In XVIIIth International Congress on Mathematical Physics, pages 600–609, 2013.

[DL54] J. Deny and J. L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier (Grenoble), 5:305–370, 1954.

[Ebm02] C. Ebmeyer. Mixed boundary value problems for nonlinear elliptic systems with p-structure in polyhedral domains. Math. Nachr., 236:91–108, 2002.

[EF99] C. Ebmeyer and J. Frehse. Mixed boundary value problems for nonlinear elliptic equations in multidimensional non-smooth domains. Math. Nachr., 203:47–74, 1999.

[Eva98] L.C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

[FKM22] M. Faustmann, M. Karkulik, and J.M. Melenk. Local Convergence of the FEM for the Integral Fractional Laplacian. SIAM J. Numer. Anal., 60(3):1055–1082, 2022.

[FMMS22a] M. Faustmann, M. Marcati, J.M. Melenk, and C. Schwab. Exponential convergence of hp-FEM for the integral fractional Laplacian in 1D. Technical report, 2022. arXiv:2204.04113.

[FMMS22b] M. Faustmann, M. Marcati, J.M. Melenk, and C. Schwab. Exponential convergence of hp FEM for the Integral Fractional Laplacian in polygons. In preparation, 2022.

[FPM21] M. Faustmann, J.M. Melenk, and D. Praetorius. Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Math. Comp., 90:1557–1587, 2021.

[GB97a] B. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth domains in R^3. I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A, 127(1):77–126, 1997.

[GB97b] B. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth domains in R^3. II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A, 127(3):517–545, 1997.

[Gr11] P. Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics (SIAM), Philadelphia, PA, 2011.

[Grull98] G. Grubb. Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math., 268:478–528, 2015.

[GSS01] G. Griso, E.P. Stephan, and J. Stók. Corner singularities for the fractional Laplacian and finite element approximation. preprint, 2021. http://www.macs.hw.ac.uk/~hg94/corners.pdf.

[HMW13] T. Horger, J.M. Melenk, and B. Wohlmuth. On optimal L^∞ and surface flux convergence in FEM. Comput. Vis. Sci., 16(5):231–246, 2013.

[KM19] M. Karkulik and J.M. Melenk. H-matrix approximability of inverses of discretizations of the fractional Laplacian. Adv. Comput. Math., 45(5-6):2893–2919, 2019.

[KMR97] V.A. Kozlov, V.G. Maz’ya, and J. Rossmann. Elliptic boundary value problems in domains with point singularities, volume 52 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
