November 10, 2014

Nonorthogonal bases in variational calculations and the loss of numerical accuracy

Charles Schwartz*

Department of Physics, University of California
Berkeley, California 94720

Abstract

The most common method for calculating accurate numerical solutions for complicated linear differential equations - for example, finding eigenvalues and eigenfunctions of the Schrodinger equation for many-electron atoms - is the variational method with some convenient basis of functions. This leads to a finite matrix representation of the operators involved; and standard numerical operations - such as Gaussian elimination - may be employed. When the basis functions are not orthogonal, one expects substantial loss of numerical accuracy in those matrix manipulations; and so multiple-precision arithmetic is often required for useful results. In this paper, for the first time, we offer a way to estimate the rate at which numerical cancellations will grow in severity as one increases the basis size. For the familiar case of using simple power series, $x^n, n < N$ as the basis instead of orthogonal polynomials, we predict a loss of about 2N bits or 4N bits of numerical accuracy.

*E-mail: schwartz@physics.berkeley.edu
1 Introduction

Suppose we have the linear equation

\[H\psi = E\psi, \quad (1.1) \]

where \(H \) is some specified linear operator (for example, the Hamiltonian operator in quantum mechanics), and we want to find the eigenfunction(s) \(\psi \) and the eigenvalue(s) \(E \). One powerful approximation technique is to use the variational method, where we represent the function \(\psi \) by some finite linear superposition of convenient basis functions, \(u_n(x) \). Here I use the symbol \(x \) to represent any convenient set of coordinates in which the operator \(H \) may be expressed.

\[\psi(x) = \sum_{n=1,N} C_n u_n(x). \quad (1.2) \]

The full operator equation (1.1) is then replaced by a finite matrix representation,

\[\sum_{m=1,N} H_{n,m} C_m = E \sum_{m=1,N} I_{n,m} C_m, \quad n = 1, N; \quad (1.3) \]

\[H_{n,m} = \int dx u_n^*(x) H u_m(x), \quad I_{n,m} = \int dx u_n^*(x) u_m(x). \quad (1.4) \]

We would now proceed to use standard techniques of matrix manipulation to get this \(N \)th approximation to the eigenvalue \(E \) and the eigenvector \(\psi(x) \). A systematic increase in the size \(N \) would be a nice way to examine the convergence of this approximation method.

People who work in this arena find that they need increasing numerical accuracy in their computer programs in order to get reliable results as they go to higher orders of approximation. My own work on the ground state of the Helium atom \[1\] shows this in a striking manner. Using 24,099 basis functions for this 3-dimensional problem, I needed 120 decimals of arithmetic accuracy in my computer programs to get 47 decimals of reliable accuracy in the best approximation to the eigenvalue.

It is frequently thought \[2\] that a major cause of this problem is the lack of orthogonality in the basis functions used. But I know of no previous analysis that might give a quantitative estimate of the magnitude of that effect. The present paper offers an attempt to do just that.

First, look at the matrix \(I_{n,m} \) defined above. If the basis functions were orthogonal, this would be a diagonal matrix. Look at the matrix \(H_{n,m} \). If
the basis functions were exactly the eigenfunctions of the operator H, then this would also be a diagonal matrix. But, of course, we do not know the exact eigenfunctions and that is why we are engaged in using approximation techniques.

Let us dwell, however, on that first question, regarding the matrix $I_{n,m}$, and see what we can say about the loss of accuracy we might expect in trying to diagonalize it by familiar matrix techniques.

Given some arbitrary set of basis functions, $u_n(x)$, we have the familiar Gram-Schmidt method for recasting them into an orthogonal basis, $v_n(x)$.

\begin{align*}
v_1 &= u_1 \\
v_2 &= u_2 - C_{2,1} v_1, \quad C_{2,1} = \frac{<v_1|u_2>}{<v_1|v_1>} \\
v_3 &= u_3 - C_{3,1} v_1 - C_{3,2} v_2, \quad C_{3,1} = \frac{<v_1|u_3>}{<v_1|v_1>}, C_{3,2} = \frac{<v_2|u_3>}{<v_2|v_2>} \\
\text{etc.}
\end{align*}

where the symbol $<v|u>$ means $\int dx v^*(x)u(x)$.

That system of equations looks very much like the process of Gauss elimination, which we would use to reduce the matrix $I_{n,m}$ to diagonal form. Yes, there may well be loss of accuracy through the repeated subtractions in the Gram-Schmidt process; and I am guessing that this will be a fair model for what goes on the the matrix diagonalization process for the original problem in Eq. (1.3).

Should we believe that this model problem provides a fair representation of what happens with the real problem, involving the matrix of H? I will guess that H may be regarded as just some abstract weight function in the integrals shown in Eq. (1.4); and the detailed models explored below will have various weight functions in their integrals.

The three models examined below involve a single variable, x, with basis functions chosen as $x^n, n = 0, N - 1$; and the weight functions (metrics) lead us to identify three familiar sets of orthogonal polynomials, named Legendre, Laguerre, Jacobi. We have formulas for the integral of the square of any one polynomial; and we shall compare that with the largest term, involving the integral of a single power of x, as will occur in expanding the polynomials in their full power series.
2 \(x^n \) vs Legendre polynomials

Legendre polynomials are orthogonal over the range \(-1 \leq x \leq 1;\)

\[
\int_{-1}^{1} dx \; P_n(x) \; P_m(x) = \delta_{mn} \frac{2}{2n + 1}.
\]

(2.1)

One familiar formula for these polynomials is,

\[
P_n(x) = \frac{1}{2^n n!} \left(\frac{d}{dx} \right)^n (x^2 - 1)^n;
\]

(2.2)

and from this we find the leading term in the polynomial to be

\[
P_n(x) = \frac{2^n x^n}{\sqrt{\pi n}} + O(x^{n-2})
\]

(2.3)

for large \(n \).

The question we ask is this. When we try to calculate the orthonormality integral, Eq. (2.1), how big is the largest term that occurs when we use the full power series? From Eq. (2.3) we see that there will be a term as big as

\[
\int_{-1}^{1} dx [2^n x^n]^2/\pi n = 2^{2n} \frac{1}{2n+1} \frac{1}{\pi n}.
\]

This says that we may expect to lose \(2n \) bits of accuracy in the calculation.

3 \(x^n \) vs Laguerre polynomials

Laguerre polynomials are orthogonal over the range \(0 \leq x \leq \infty \), with the weight function \(x^\alpha e^{-x} \);

\[
\int_{0}^{\infty} dx \; x^\alpha e^{-x} L_n^{(\alpha)}(x) \; L_m^{(\alpha)}(x) = \delta_{mn} \frac{(n + \alpha)!}{n!}.
\]

(3.1)

The generating function for these polynomials is,

\[
(1 - t)^{-\alpha-1}e^{-xt/(1-t)} = \sum_{n=0}^{\infty} t^n L_n^{(\alpha)}(x);
\]

(3.2)

and from this we find the leading term in the polynomial to be

\[
L_n^{(\alpha)}(x) = (-x)^n/n! + O(x^{n-1})
\]

(3.3)

for large \(n \).

When we try to calculate the orthonormality integral, Eq. (3.1), how big is the largest term that occurs when we use the full power series? From Eq. (3.3) we see that there will be a term as big as \(\frac{(2n+\alpha)!}{(n!)^2} \). Comparing this with the actual normalization integral from Eq. (3.1) we see that, for large \(n \), we may expect to lose \(2n \) bits of accuracy in the calculation.
4 \(x^n \) vs Jacobi polynomials

Jacobi polynomials are orthogonal over the range \(0 \leq x \leq 1 \) with the weight function \(x^\alpha(1-x)^\beta \):

\[
F_n(\alpha, \beta, x) = x^{-\alpha}(1-x)^{-\beta} \left(\frac{-d}{dx} \right)^n x^{n+\alpha}(1-x)^{n+\beta} \tag{4.1}
\]

\[
= \frac{(2n + \alpha + \beta)!}{(n + \alpha + \beta)!} x^n + O(x^{n-1}) \sim 2^{2n+\alpha+\beta} n! \frac{x^n}{\sqrt{\pi n}}. \tag{4.2}
\]

\[
\int_0^1 dx \ x^\alpha(1-x)^\beta F_n(x) F_m(x) = \delta_{mn} \frac{n!(n+\alpha)!(n+\beta)!}{(2n + \alpha + \beta + 1)(n + \alpha + \beta)!}. \tag{4.3}
\]

When we calculate the integral of the square of the \(x^n \) term in \(F_n \), given in Eq. (4.2), and compare that with the normalization integral, Eq. (4.3), we see that it is larger by a factor \(2^4n \). This says that we may expect to lose 4n bits of accuracy in the calculation for large \(n \).

5 Discussion

The three model problems examined in the previous sections all give the answer that the likely numerical cancellation errors grow exponentially with \(N \), if we start with a basis of one dimensional functions \(1, x, x^2, \ldots, x^{N-1} \), and then seek to diagonalize the matrix \(I_{n,m} \). But it is not the same exponential: we find \(2N \) bits lost for the Legendre, \(2N \) bits lost for the Laguerre, and \(4N \) bits lost for the Jacobi.

Since Legendre polynomials can be written as a special case of Jacobi polynomials, their different results seem at first worrisome. But then we recognize that the Legendre polynomials have reflection symmetry, so that even and odd order polynomials - as well as the simple powers \(x^n \) - are automatically orthogonal to each other. The better phrasing of the results is then: For the polynomials on a finite interval (Jacobi and Legendre and Chebyschev, etc.) the expected loss of accuracy is \(4N \) bits, where \(N \) is the number of powers kept. That means \(1, x^2, x^4, \ldots x^{2N} \) for the Legendre and \(1, x, x^2, x^3, \ldots x^N \) for the Jacobi.

For some discussion of the differing results, \(2N \) vs \(4N \) bits lost, see Appendix A.
I have not proven, but merely conjectured, that these rules are relevant to the problem of calculating the eigenvalue E of the matrix $< H - EI >$ constructed with such a basis (and some appropriate metric).

How do we extend this result to d-dimensional problems? This can become more complicated. Depending on how the basis functions are organized, one might predict a loss of $2N$ (or $4N$) bits or $2dN$ (or $4dN$) bits or something in between - where N is the maximum number of basis functions used in any one dimension.

Let me check with the Helium calculations mentioned in the Introduction. The value of N (for any one coordinate) was 50; so the $2N$ rule predicts a loss of 100 bits, or 30 decimal places, while the $4N$ rule says 60 decimal places. In the actual computations I noted a loss of up to $120 - 47 = 73$ decimal places. In this three dimensional problem I started with the famous Hylleraas variables, s,t,u, and then set up my basis functions as follows: defining $x = t/u$, with the range (-1,1), I used Legendre polynomials $P_n(x)$; defining $y = u/s$, with the range (0,1), I used simple powers of y (as with Jacobi); for the variable s, range $(0,\infty)$, I used simple powers with the exponential (as with Laguerre). In addition, for that third coordinate, s, I used not only s^n but also $s^n \ln(s)$; and this may, in effect, double the size of the basis from N to $2N$. So it appears that my model calculations, with the $4N$ rule, give a pretty good “ballpark” estimate of what actually occurred.

Acknowledgment

I thank Gordon Drake for some helpful conversation.

Appendix A

Here is an attempt to gain some understanding of why we found somewhat differing results for the rate of loss of accuracy between the two categories of model problems discussed in earlier sections of this paper.

Loosely speaking, the loss of numerical accuracy comes about because successive basis functions, say x^n and x^{n-1}, differ rather little from each other and so the diagonalization of the matrix - analogized to the orthogonalization of the basis functions - involves taking a difference between two similar things. That invites loss of accuracy in a finite computational scheme.

Here we want to set up some measure of that closeness and apply it to the model problems considered above.
Let’s look at the function \(f = w \cdot x^n \), where \(w \) is the weight function for a particular model problem. We will picture this as a function of \(x \) that peaks at some place, depending on \(n \), and we want to see how that position changes with \(n \). But we need to evaluate that “distance” in reference to some other “distance” implied by the function \(f \).

Here is one way to do that. Calculate the average, \(\bar{x} = \int dx \frac{xf}{f} \) and then define \(\Delta = \frac{d\bar{x}}{dn} \). Next calculate the spread, \(\delta = \sqrt{x^2 - (\bar{x})^2} \) and take the ratio \(\Delta/\delta \), at large \(n \), as a measure of separateness of the neighboring basis functions.

First, for \(w = x^\alpha e^{-x} \) on the interval \((0, \infty)\), we calculate,

\[
\bar{x} = \frac{(n + \alpha + 1)!}{(n + \alpha)!} = n + \alpha + 1, \quad (A.1)
\]
\[
\Delta = \frac{d\bar{x}}{dn} = 1, \quad (A.2)
\]
\[
\delta = \sqrt{n + \alpha + 1}, \quad (A.3)
\]
\[
\Delta/\delta = 1/\sqrt{n + \alpha + 1} \sim 1/\sqrt{n}. \quad (A.4)
\]

Second, for \(w = x^\alpha (1 - x)^\beta \) on the interval \((0, 1)\), we calculate,

\[
\bar{x} = \frac{(n + \alpha + 1)}{(n + \alpha + \beta + 2)}, \quad (A.5)
\]
\[
\Delta = \frac{d\bar{x}}{dn} \sim (\beta + 1)/n^2, \quad (A.6)
\]
\[
\delta \sim \sqrt{\beta + 1}/n, \quad (A.7)
\]
\[
\Delta/\delta \sim \sqrt{\beta + 1}/n. \quad (A.8)
\]

In both cases, we see that the ratio \(\Delta/\delta \) gets small at large \(n \), meaning that the successive basis functions are not far apart but rather close to each other, as expected. But the second model problem gives a ratio that is smaller than the first, increasingly so as \(n \) gets larger. This implies that the second model will experience more severe numerical cancellation errors; and this is what we found in Section 4 (the 4N rule) compared to Section 3 (the 2N rule).

An alternative approach is to calculate as follows:

\[
< u_n | u_{n-1} > / \sqrt{< u_n | u_n > < u_{n-1} | u_{n-1} >} = \cos \theta, \quad (A.9)
\]
where \(\theta \) may be called the angle between the two neighboring basis functions in the vector space of functions. For large \(n \), \(\theta \) will be small, indicating
that the two functions are close. Doing this calculation for the two models considered above, we find $\theta \sim 1/\sqrt{2n}$ and $\theta \sim \sqrt{\beta + 1}/2n$, in concordance with the results shown by the Δ/δ method.

We also note that if we take the limit $\beta \to \infty$ in these calculations, before we consider large n, then the second model gives the same answers as the first. This is to be expected, since $(1 - x/\beta)^{\beta} \to e^{-x}$ in this limit.

References

[1] C. Schwartz, *IJMPE* **15**, 877 (2006); and further data at arXiv:math-ph/0605018

[2] See, for example, C. S. Estienne, M. Busuttil, A. Moini and G. W. F. Drake, *Physical Review Letters* **112**, 173001 (2014) and other references therein.