Research Paper
Comparing Gait Variability Between Deaf and Normal-Hearing Children After Proprioception Training

Fatemeh Yaghoubi Hamraz¹, *Mahdi Majlesi²

1. Department of Sport Biomechanics, Faculty of Humanities, Hamadan Branch, Islamic Azad University, Hamadan, Iran.

Citation
Yaghoubi Hamraz F, Majlesi M. [Comparing Gait Variability Between Deaf and Normal-Hearing Children After Proprioception Training (Persian)]. Journal of Sport Biomechanics. 2020; 5(4):262-271. https://doi.org/10.32598/biomechanics.5.4.6

Use your device to scan and read the article online

Objective
Gait variability is an important feature in clinical treatment of people with walking problems. Since the gait variability has not been yet evaluated among deaf people, the purpose of this study was to evaluate the gait variability in deaf children and compare it with normal-hearing peers.

Methods
The study population consists of deaf and normal-hearing children living in Hamedan, Iran. Of these, 10 deaf (aged 8-14 years) and 10 with normal hearing matched for age and anthropometric characteristics volunteered to participate in the study. The 3D Vicon motion analysis system was used to measure the kinematic gait parameters in subjects. Paired sample t-test was used for within-group comparison and independent sample t-test for between-group comparison. Statistical analysis was performed in SPSS software by considering a significance level of P<0.05.

Results
The gait variability after proprioception training decreased in deaf children, but this change was not statistically significant (P>0.05). There was no significant difference between the two groups before and after the training (P>0.05).

Conclusion
It is suggested that balance exercise with an emphasis on proprioception training be included in the physical education program of deaf children.

Key words:
Gait, Deafness, Spatio-temporal variables.

Extended Abstract

1. Introduction

Hearing loss is one of the most common sensory disorders in developed countries [1, 2] and is usually diagnosed in the first years of life. Three sensory systems are involved in controlling balance and posture, including visual, proprioceptive and vestibular systems. Among these, the vestibular system, in addition to control, plays an important role in human interaction with the environment [6]. Although various studies have focused on the analysis of gait in individuals with hearing loss [9, 17], biomechanical variables are not commonly considered in their activities including gait. Walking is a complex task that requires functional coordination of various biomechanical variables. Modification of walking techniques has recently been recommended as a part of rehabilitation programs [20].

Therefore, the biomechanical variables related to walking are of clinical importance and are used to provide feedback that can be used to evaluate the therapeutic effects or to plan...
rehabilitation programs. Despite assessments of balance, movement disorders, and factors related to health and quality of life, the gait of these individuals has not yet been properly examined [15]. Therefore, it is necessary to evaluate the kinematic pattern and gait variability of deaf children. The aim of this study was to analyze the gait variability of deaf people in comparison with healthy people at medio-lateral and anterior-posterior directions during walking.

2. Methods

The study population consists of all deaf and normal-hearing people living in Hamedan. Among them, 10 deaf people (aged 8-14 years) and 10 normal-hearing peers with similar age and anthropometric characteristics volunteered to participate in the study. The 3D Vicon motion analysis system was used to measure the kinematic gait variables in both groups. After the pre-test assessment, subjects participated in the proprioception training program for 4 weeks, 3 sessions per week each for 45 minutes with an emphasis on the proprioceptive system. After the training period, a post-test assessment was performed. In this study, the spatio-temporal gait parameters were extracted using Polygan version 3.5.2 software, and the formula (coefficient of variation) was used to calculate the variability of these parameters. Paired t-test was used for within-group comparison and independent t-test was used for between-group comparison. All statistical analyses were performed in SPSS software by considering a significance level of (P<0.05).

3. Results

The results of within-group comparison showed that variability in parameters cadence and gait speed, stride length and step length, stride time, step time, double-leg support time, single-leg support time, opposite leg support time and swing time was not significantly different before and after proprioception training. This indicates that gait variability was not affected between groups after exercise and the difference between the two groups was not significant (P>0.05).

4. Discussion

Most children who have vestibular disorder are not diagnosed because they have the ability to walk [23], but these children do not participate in games and outdoor activities, and teachers often complain of poor balance and coordination in these children that may prevent them from performing ideally [24]. In the present study, it was shown that the difference between the deaf and control groups when walking in normal position was high, but not significant. However, when walking, the gait speed decreased significantly in deaf children compared to healthy peers.

Proprioception training could not have a significant effect on gait speed and cadence, but the difference between the two groups after exercise was reduced; however, deaf children still had a slower gait speed after exercise therapy. Despite assessments of balance, movement disorders, and factors related to health and quality of life, there is still no educational program for these children except in cases where neurological and orthopedic injuries have been identified [15]. The results of several studies consistent with these results have shown that the gait speed in deaf people is slower than in healthy people [9, 25, 26]. Studies have also shown that deaf people have poor cognitive function, especially executive function [27, 28]. The association between impairment in executive function and gait has been confirmed by several studies [29-31] which is clearer during dual-task walking.

Ethical Considerations

Compliance with ethical guidelines

All subjects voluntarily participated in the present study after signing a consent form.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-profit sectors.

Authors’ contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
ارزیابی تغییرپذیری گام برداری یک شاخص مهم در درمان کلینیکی افراد با مشکلات گام برداری است. از آنجایی که تاکنون هدف تغییرپذیری گام برداری در افراد ناشنوا مورد ارزیابی قرار نگرفته است، هدف از این مطالعه ارزیابی تغییرپذیری گام برداری افراد ناشنوا و مقایسه آن با افراد سالم است.

جامعه آماری این پژوهش افراد ناشنوا و گروه با شنوایی عادی بودند که از بین آن‌ها ده نفر (با دامنه سنی هشت تا چهارده سال) داوطلب شرکت در این پژوهش بودند و نیز ده نفر از افراد با شنوایی عادی با سن و ویژگی‌های آنتروپومتریکی مشابه انتخاب شدند.

روش‌ها

برای اندازه‌گیری متغیر کینماتیکی جهت گام برداری افراد در این پژوهش از ابزار سیستم تحلیل حرکتی سه بعدی Vicon در مقایسه درون‌گروهی از روش آماری تی تست وابسته و در مقایسه بین گروهی از تی تست مستقل استفاده شد. کلیه مرحله‌های آزمایش با استفاده از پلاگین و SPSS به صورت جامعه‌ای تحلیل شد.

نتایج مطالعه حاضر نشان دادند تغییرپذیری در اثر تمرینات تداخلی حسی عمقی در گروه ناشنوا کاهش یافت؛ اما این یافته‌ها با توجه به نتایج این مطالعه پیشنهاد می‌شود که در برنامه تربیت بدنی مدارس این کودکان برنامه‌های تعادلی با تأکید بر بهبود نتیجه‌گیری سیستم‌های تعادلی، به ویژه سیستم حسی عمقی گنجانیده شود.

کلمه‌های کلیدی:
راه رفتن، ناشنوا، متغیرهای فضایی-زمانی
در یک پژوهش تست راه رفت، قبل و پس از تمرینات تداخلی هفت گام برداشته می شد. با این شرایط اثر مربوط به شروع فراهم کرده بود که بعد از فضای کالیبره شده هم حداقل حدود یک متری، این امکان را تاحدوده نداشت. در این پژوهش تست راه رفت، قبل و پس از تمرینات تداخلی هفت گام برداشته می شد. با این شرایط اثر مربوط به شروع فراهم کرده بود که بعد از فضای کالیبره شده هم حداقل حدود یک متری، این امکان را تاحدوده نداشت. در این پژوهش تست راه رفت، قبل و پس از تمرینات تداخلی هفت گام برداشته می شد. با این شرایط اثر مربوط به شروع فراهم کرده بود که بعد از فضای کالیبره شده هم حداقل حدود یک متری، این امکان را تاحدوده نداشت. در این پژوهش تست راه رفت، قبل و پس از تمرینات تداخلی هفت گام برداشته می شد. با این شرایط اثر مربوط به شروع فراهم کرده بود که بعد از فضای کالیبره شده هم حداقل حدود یک متری، این امکان را تاحدوده نداشت. در این پژوهش تست راه رفت، قبل و پس از تمرینات تداخلی هفت گام برداشته می شد. با این شرایط اثر مربوط به شروع فراهم کرده بود که بعد از فضای کالیبره شده هم حداقل حدود یک متری، این امکان را تاحدوده نداشت. در این پژوهش تست راه رفت، قبل و پس از تمرینات تداخلی هفت گام برداشته می شد. با این شرایط اثر مربوط به شروع فراهم کرده بود که بعد از فضای کالیبره شده هم حداقل حدود یک متری، این امکان را تاحدوده نداشت. در این پژوهش تست راه رفت، قبل و پس از تمرینات تداخلی هفت گام برداشته می شد. با این شرایط اثر مربوط به شروع فراهم کرده بود که بعد از فضای کالیبره شده هم حداقل حدود یک متری، این امکان را تاحدوده نداشت.
نتایج مقایسه دو گروهی قابل شناسایی تغییرات در متغیر کانفانتی و سرعت گام‌پذیری، قبل و بعد از تمرینات تغییر معمولی نداشت. با این معمانی که تغییرات در زمان گام و قدم قبل و بعد از تمرینات به‌طور کلی در گروه ناشنوا ممکن نبوده است. اختلافات زمانی در تغییرات طول قدم و گام معمولاً در جدول شماره 1 نشان داده شده است.

نتایج مقایسه دو گروهی فضایی

نتایج مقایسه دو گروهی در متغیر طول پا و طول قدم قبل و بعد از تمرینات تغییر معمولی نداشت. با این معمانی که تغییرات در گروه ناشنوا و در گروه نشان داده شده که تغییرات در گروه نشان داده شده است. اختلافات زمانی در تغییرات طول پا معمولاً در جدول شماره 1 نشان داده شده است.

نتایج مقایسه دو گروهی زمانی

نتایج مقایسه دو گروهی در زمان گام قبل و بعد از تمرینات تغییر معمولی نداشت. با این معمانی که تغییرات در گروه ناشنوا و در گروه نشان داده شده است. اختلافات زمانی در تغییرات طول پا معمولاً در جدول شماره 1 نشان داده شده است.

نتایج مقایسه دو گروهی

نتایج مقایسه دو گروهی قبل و بعد از تمرینات تغییر معمولی نداشت. با این معمانی که تغییرات در گروه ناشنوا و در گروه نشان داده شده است. اختلافات زمانی در تغییرات طول پا معمولاً در جدول شماره 1 نشان داده شده است.
پاسخ:

در این مطالعه، ارزیابی تغییرپذیری گام‌برداری افراد ناشنوا و مقایسه آن با افراد سالم پس از یک دوره تمرینات حسیـعمقی انجام شد. در این مطالعه، گروه کنترل و گروه آزمایش دو گروهی بودند که افراد ناشنوا و سالم بودند و از هر گروه 24 نفر انتخاب شدند. تمرینات شامل تعادل حسی-عمقی بودند.

نتیجه‌گیری‌ها:

1. مقایسه قبل و بعد از تمرین در گروه ناشنوا، مقایسه قبل و بعد از تمرین در گروه کنترل و مقایسه قبل و بعد از تمرین در گروه کنترل و آزمایشی نشان داد که تمرینات تعادل حسی-عمقی نتوانسته بودند گروه آزمایش به طور معنی‌داری نسبت به گروه کنترل کاهش یابد. اما، اختلاف بین گروه آزمایش و گروه کنترل در سرعت و کادنس در گام‌برداری پس از تمرین معنی‌دار نبود.

2. مقایسه قبل و بعد از تمرین در گروه شنوا، مقایسه قبل و بعد از تمرین در گروه کنترل، مقایسه قبل و بعد از تمرین در گروه ناشنوا نشان داد که اختلاف بین گروه کنترل و آزمایشی در سرعت و کادنس در گام‌برداری پس از تمرین معنی‌دار نبود.

جدول 1. مقایسه قبل و بعد از تمرین در گروه کنترل و آزمایشی

متغیر	قبل از تمرین	بعد از تمرین	تفاوت
سرعت گام	2.04 (1.24)	1.96 (1.22)	0.08
زمان نوسان	2.56 (1.08)	2.49 (1.06)	0.07

نتیجه‌گیری‌های عمده:

افراد ناشنوا، از نظر تعادل حسی-عمقی، بیشتر از افراد شنوا بودند. مطالعه نشان داد که تمرینات تعادل حسی-عمقی می‌توانند تغییراتی در گام‌برداری افراد ناشنوا ایجاد کنند. در نتیجه، افراد ناشنوا می‌توانند با تمرینات تعادل حسی-عمقی بهبود یابند.

پاسخ:

تجلیل که باید است. اگرچه این مطالعه حاضر نیست حال شخصیت هدایت گروه به طور مؤثری تلقی نمی‌شود. این امر نشان می‌دهد که تمرینات تعادل حسی-عمقی می‌توانند تغییراتی در گام‌برداری افراد ناشنوا ایجاد کنند، اما، این تغییرات باید با توجه به تفاوت‌های فیزیولوژیک جسمانی، و عدم شرایط معیارهای تحقیق شده، باعث بهبود در گام‌برداری ناشنوا نباشد. بنابراین، اجرای تمرینات تعادل حسی-عمقی به عنوان یک روش برای بهبود گام‌برداری ناشنوا نخواهد بود. ولی، این تمرینات می‌توانند به عنوان یک روش جدید برای بهبود گام‌برداری ناشنوا به‌عنوان یک روش جدید برای بهبود گام‌بردا
نتایج مطالعه حاضر نشان داد که تغییرات در طول گام و طول قدم قبل و بعد از تمرینات تغییر معنی‌داری ندارند. این نتایج تا حدودی با نتایج مطالعات قبلی هماهنگ نیستند. این نتایج نشان می‌دهد که تغییرات در طول گام و طول قدم قبل و بعد از تمرینات ممکن است به دلیل تغییرات در سیستم حرکتی و تعادلی باشد.

ملاحظات

پیروی از اصول اخلاق پژوهش

همه آزمودنی ها به صورت داوطلبانه و با تکمیل رضایت نامه در پژوهش حاضر شرکت کردند.

حمایت مالی

این مقاله حامی مالی نداشت.

مشارکت نویسندگان

همه نویسندگان در اماده سازی مقاله مشارکت داشتند.

تعارض منافع

پیش از انتشار مقاله نویسندگان این مقاله تاریخ منتشر تاریکی ممتان.

ازدواج نادر گرگر. مادرگرگری که دارای نقشی برای تغییرات تعادلی و اجتماعی از این بود. بهبود مهارت‌های رفتاری در مهارت تعادلی کودکان شک‌تا-همت‌ساز، گرسنگی و همکاری را به‌کار می‌برد. همچنین نقش‌های اجتماعی و فردی در بهبود تعادلی و اجتماعی کودکان نقش کلیدی دارد. بهبود مهارت‌ها و رفتار‌های تعادلی کودکان به شکلی که به‌کار می‌رود تأثیر مناسبی در رشد و پیشرفت هماهنگی حواس و سیستم‌های تعادلی دارد.
References

[1] Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Maes-Perlman JA, et al. Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin: The epidemiology of hearing loss study. Am J Epidemiol. 1998; 148(9):879-86. [DOI:10.1093/oxfordjournals.aje.a009713] [PMID]

[2] Davis AC. The prevalence of hearing impairment and reported hearing disability among adults in Great Britain. Int J Epidemiol. 1989; 18(4):311-7. [DOI:10.1093/ije/18.4.911] [PMID]

[3] World Health Organization. Deafness and hearing loss. Geneva: World Health Organization; 2020. https://www.who.int/news-room/factsheets/detail/deafness-and-hearing-loss

[4] Carvill S. Sensory impairments, intellectual disability and psychiatry. J Intellect Disabil Res. 2001; 45(Pt 6):467-83. [DOI:10.1046/j.1365-2788.2001.00366.x] [PMID]

[5] Mohr PE, Feldman JJ, Dunbar JL, McConkey-Robbins A, Niparko JK, Rittenhouse RK, et al. The societal costs of severe to profound hearing loss in the United States. Int J Technol Assess Health Care. 2000; 16(4):110-35. [DOI:10.1017/S0266462300103162] [PMID]

[6] Wiener-Vacher SR. Vestibular disorders in children. Int J Audiol. 2008; 47(9):578-83. [DOI:10.1080/14992020802334358] [PMID]

[7] Koffler T, Ushakov K, Avraham KB. Genetics of hearing loss: Syndromal and nonsyndromal hearing loss disorders. Eur Arch Otorhinolaryngol. 2012; 269(4):1063-71. [DOI:10.1007/s00405-011-1815-4] [PMID]

[8] Azadian E, Taheri HR, Saberi Kakhki AR, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance (Persian). Iran J Ageing. 2016; 11(1):100-9. [DOI:10.21859/jiaa-110100]

[9] Rine RM. Growing evidence for balance and vestibular problems in children. Audiol Med. 2009; 7(3):138-42. [DOI:10.1080/16513860903181447]

[10] Butterfield SA. Gross motor profiles of deaf children. Percept Mot Skills. 1986; 62(1):68-70. [DOI:10.2466/pms.1986.62.1.68] [PMID]

[11] Azadian E, Sahebkar H, Saberi Kakhki AR, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance (Persian). Iran J Ageing. 2016; 11(1):100-9. [DOI:10.21859/jiaa-110100]

[12] Lin FR, Ferrucci L, Metter EJ, An Y, Zonderman AB, Resnick SM. Hearing loss and gait speed among older adults in the United States. J Am Geriatr Soc. 2003; 51(11):1633-7. [DOI:10.1046/j.1532-5415.2003.51517.x] [PMID]

[13] Azadian E, Sahebkar H, Saberi Kakhki AR, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance (Persian). Iran J Ageing. 2016; 11(1):100-9. [DOI:10.21859/jiaa-110100]

[14] Azadian E, Sahebkar H, Saberi Kakhki AR, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance (Persian). Iran J Ageing. 2016; 11(1):100-9. [DOI:10.21859/jiaa-110100]

[15] Azadian E, Sahebkar H, Saberi Kakhki AR, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance (Persian). Iran J Ageing. 2016; 11(1):100-9. [DOI:10.21859/jiaa-110100]

[16] Melo RD, Silva PWAd, Tasatano RM, Macksy CF, Silva UGC. Balance and gait evaluation: Comparative study between deaf and hearing students. Rev Paul Pediatr. 2012; 30(3):385-91. [DOI:10.1590/S0103-05822012000300012]

[17] Li L, Simonsick EM, Ferrucci L, Lin FR. Hearing loss and gait speed among older adults in the United States. Gait Posture. 2013; 38(1):25-9. [DOI:10.1016/j.gaitpost.2012.10.006] [PMID] [PMCID]

[18] Jafari Z, Malayeri SA. The effect of saccular function on static balance skills in deaf children. Phys Ther. 1984; 64(7):1071-5. [PMID]

[19] Majlesi M, Azadian E, Farahpour N, Jafarnazhad AA, Rashedi H. Lower limb muscle activity during gait in individuals with hearing loss. Australas Phys Eng Sci Med. 2017; 40(3):659-65. [DOI:10.1007/s11246-017-0574-y] [PMID]

[20] Heiderscheit B. Gait retraining for runners: In search of the ideal. J Orthop Sports Phys Ther. 2011; 41(12):909-10. [DOI: 10.2519/jospt.2011.0111] [PMID]

[21] Winter DA. Biomechanics and motor control of human movement. Hoboken: John Wiley & Sons; 2005. [DOI:10.1007/9780470594148] [PMID]

[22] Azadian E, Taheri HR, Saberi Kakhki AR, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance (Persian). Iran J Ageing. 2016; 11(1):100-9. [DOI:10.21859/jiaa-110100]

[23] Rine RM. Growing evidence for balance and vestibular problems in children. Audiol Med. 2009; 7(3):138-42. [DOI:10.1080/16513860903181447]

[24] Butterfield SA. Gross motor profiles of deaf children. Percept Mot Skills. 1986; 62(1):68-70. [DOI:10.2466/pms.1986.62.1.68] [PMID]

[25] Cavanaugh JT, Goldvasser D, McGibbon CA, Krebs DE. Comparison of head-and body-velocity trajectories during locomotion among healthy and vestibulopathic subjects. J Rehabil Res Dev. 2005; 42(2):191-18. [DOI:10.1682/jrrd.2004.01.0005] [PMID]

[26] Marchetti GF, Whitney SL, Blatt PJ, Morris LO, Vance JM. Temporal and spatial characteristics of gait during performance of the Dynamic Gait Index in people with and without balance or vestibular disorders. Phys Ther. 2008; 88(5):640-51. [DOI:10.2522/ptj.20070130] [PMID] [PMCID]

[27] Lin FR, Ferrucci L, Metter EJ, An Y, Zonderman AB, Resnick SM. Hearing loss and cognition in the Baltimore Longitudinal Study of Aging. Neuropsychology. 2011; 25(6):763-70. [DOI:10.1037/a0024238] [PMID] [PMCID]

[28] Tun PA, McCoy S, Wingfield A. Aging, hearing acuity, and the attentional costs of effortful listening. Psychol Aging. 2009; 24(3):761-6. [DOI:10.1037/a0014802] [PMID] [PMCID]

[29] Allali G, Assal F, Kressig RW, Dubost V, Herrmann FR, Beauchet O. Impact of impaired executive function on gait stability. Dement Geriatr Cogn Disord. 2008; 26(4):364-9. [DOI:10.1159/000162358] [PMID]

[30] Ble A, Volpato S, Zuliani G, Guralnik JM, Bandinelli S, Lauretani F, et al. Executive function correlates with walking speed in older persons: The InCHIANTI study. J Am Geriatr Soc. 2005; 53(3):410-5. [DOI:10.1111/j.1532-5415.2005.53157.x] [PMID]

[31] Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on locomotor function: Divided attention increases gait variability in Alzheimer’s disease. J Am Geriatr Soc. 2003; 51(11):1633-7. [DOI:10.1046/j.1532-5415.2003.51516.x] [PMID]
[32] Hallemans A, Ortibus E, Truijen S, Meire F. Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil. 2011; 32(6):2069-74. [DOI:10.1016/j.ridd.2011.08.017] [PMID]

[33] Hallemans A, Ortibus E, Meire F, Aerts P. Low vision affects dynamic stability of gait. Gait Posture. 2010; 32(4):547-51. [DOI:10.1016/j.gaitpost.2010.07.018] [PMID]

[34] Crowe TK, Horak FB. Motor proficiency associated with vestibular deficits in children with hearing impairments. Phys Ther. 1988; 68(10):1493-9. [PMID]

[35] Gheysen F, Loots G, Van Waesvelde H. Motor development of deaf children with and without cochlear implants. J Deaf Stud Deaf Educ. 2008; 13(2):215-24. [DOI:10.1093/deafed/enm053] [PMID]

[36] Lewis S, Higham L, Cherry DB. Development of an exercise program to improve the static and dynamic balance of profoundly hearing-impaired children. Am Ann Deaf. 1985; 130(4):278-84. [DOI:10.1353/aad.2012.1020] [PMID]

[37] Braswell J, Rine RM. Preliminary evidence of improved gaze stability following exercise in two children with vestibular hypofunction. Int J Pediatr Otorhinolaryngol. 2006; 70(11):1967-73. [DOI:10.1016/j.ijporl.2006.06.010] [PMID]

[38] Melo RDS, Silva PWAd, Tasitano RM, Macky CFST, Silva LVCd. Avaliação do equilíbrio corporal e da marcha: Estudo comparativo entre surdos e ouvintes em idade escolar. Rev Paul Pediatr. 2012; 30(3):385-91. [DOI:10.1590/S0103-05822012000300012]

Yaghoubi Hamee F & Majlesi M. Comparing Gait Variability Between Deaf and Normal-Hearing Children. J Sport Biomech. 2020; 5(4):262-271.