DECAY RATES OF THE SOLUTIONS TO THE THERMOELASTIC BRESSE SYSTEM OF TYPES I AND III

F. A. GALLEGOS AND J. E. MUÑOZ RIVERA

ABSTRACT. In this paper, we study the energy decay for the thermoelastic Bresse system in the whole line with two different dissipative mechanisms, given by heat conduction (Types I and III). We prove that the decay rate of the solutions are very slow. More precisely, we show that the solutions decay with the rate of $(1 + t)^{-\frac{1}{2}}$ in the L^2-norm, whenever the initial data belongs to $L^1(\mathbb{R}) \cap H^s(\mathbb{R})$ for a suitable s. The wave speeds of propagation have influence on the decay rate with respect to the regularity of the initial data. This phenomenon is known as regularity-loss. The main tool used to prove our results is the energy method in the Fourier space.

1. Introduction

In this paper, we consider two Cauchy problems related to the Bresse model with two different dissipative mechanisms, corresponding to the heat conduction coupled to the system. The first of them is the Bresse system with thermoelasticity of Type I:

\[
\begin{aligned}
\rho_1 \varphi_{tt} - k (\varphi_x - \psi - l \omega)_x - k_0 l (\omega_x - l \varphi)_x + l \gamma \theta_t &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\rho_2 \psi_{tt} - b \psi_{xx} - k (\varphi_x - \psi - l \omega)_x + \gamma \theta_{tt} &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\rho_1 \omega_{tt} - k_0 (\omega_x - l \varphi)_x - kl (\varphi_x - \psi - l \omega)_x + \gamma \theta_{1x} &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\theta_{1t} - k_1 \theta_{1xx} + m_1 (\omega_x - l \varphi)_t &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\theta_{2t} - k_2 \theta_{2xx} + m_2 \psi_{xt} &= 0 & \text{in } \mathbb{R} \times (0, \infty),
\end{aligned}
\]

with the initial data

\[
(\varphi, \varphi_t, \psi, \psi_t, \omega, \omega_t, \theta_1, \theta_2)(x, 0) = (\varphi_0, \varphi_1, \psi_0, \psi_1, \omega_0, \omega_1, \theta_{10}, \theta_{20})(x).
\]

The second one, is the Bresse system with thermoelasticity of Type III:

\[
\begin{aligned}
\rho_1 \varphi_{tt} - k (\varphi_x - \psi - l \omega)_x - k_0 l (\omega_x - l \varphi)_x + l \gamma \theta_t &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\rho_2 \psi_{tt} - b \psi_{xx} - k (\varphi_x - \psi - l \omega)_x + \gamma \theta_{tt} &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\rho_1 \omega_{tt} - k_0 (\omega_x - l \varphi)_x - kl (\varphi_x - \psi - l \omega)_x + \gamma \theta_{1x} &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\theta_{1t} - k_1 \theta_{1xx} - \alpha_1 \theta_{1xt} + m_1 (\omega_x - l \varphi)_t &= 0 & \text{in } \mathbb{R} \times (0, \infty), \\
\theta_{2t} - k_2 \theta_{2xx} - \alpha_2 \theta_{2xt} + m_2 \psi_{xt} &= 0 & \text{in } \mathbb{R} \times (0, \infty),
\end{aligned}
\]

with the initial data

\[
(\varphi, \varphi_t, \psi, \psi_t, \omega, \omega_t, \theta_1, \theta_2, \theta_{1t}, \theta_{2t})(x, 0) = (\varphi_0, \varphi_1, \psi_0, \psi_1, \omega_0, \omega_1, \theta_{10}, \theta_{20}, \theta_{11}, \theta_{21})(x),
\]

where $\alpha_1, \alpha_2, \rho_1, \rho_2, \gamma, b, k, k_0, k_1, k_2, l m_1$ and m_2 are positive constants.

The terms $k_0 (\omega_x - l \varphi)$, $k (\varphi_x - \psi - l \omega)$ and $b \psi_{xx}$ denote the axial force, the shear force and the bending moment, where ω, φ and ψ are the longitudinal, vertical and shear angle displacements, respectively. Furthermore, $\rho_1 = \rho A$, $\rho_2 = \rho I$, $k_0 = EA$, $k = k' G A$, $b = EI$ and $l = R^{-1}$, where ρ denotes the density, E is the elastic modulus, G is the shear modulus, k' is the shear factor, A is the cross-sectional area, I is the second moment of area of the cross-section and R is the radius of curvature of the beam. Here, we assume that all the above coefficients are positive constants. In what concerns of the Thermoelastic of type III, we refer the work of Green and Naghdi [9, 11]. They re-examined the classical model of thermoelasticity and introduced the so-called model of thermoelasticity of type III, which the constitutive assumption on the heat flux vector is different from Fourier’s law. They developed a model of thermoelasticity that includes

2010 Mathematics Subject Classification. Primary: 35B35, 35L55 Secondary: 93D20.

Key words and phrases. Decay rate, heat conduction, Bresse System, thermoelasticity.
temperature gradient and thermal displacement gradient among the constitutive variables and proposed a heat conduction law as

\[q(x, t) = -(\kappa \theta(x, t) + \kappa^* v_p(x, t)), \]

where \(v_p = \theta \) and \(v \) is the thermal displacement gradient, \(\kappa \) and \(\kappa^* \) are constants. Combining (3) with the energy balance law

\[\rho \theta_t + \rho \text{div} q = 0, \]

lead to the equation

\[\rho \theta_{tt} - \rho \kappa \theta_{xx} - \rho \kappa^* \theta_{xx} = 0, \]

which permits propagation of thermal waves at finite speed. The common feature of these theories, is that all of them lead to hyperbolic differential equations and model heat flow as thermal waves traveling at finite speed. More information about mathematical modeling can be found in [3, 11, 15].

The main purpose of this paper is to investigate the asymptotic behavior of the solutions to the Cauchy problems (1) and (2) posed on \(\mathbb{R} \). To the best of our knowledge, the stability of the Bresse model does not have any physical explanation when it is considered in the real line. Be that as it may, from mathematical point of view, a considerable number of stability issues concerning the Bresse model in a whole space, have received considerable attention in the last years [10, 24, 25, 28, 31]. This has been due to the regularity-loss phenomenon that usually appears in the pure Cauchy problems (for instance, see [5, 6, 12, 13, 14, 32] and references therein). Roughly speaking, the decay rate of the solution is of the regularity-loss type.

To the best of our knowledge, the stability of the Bresse model does not have any physical explanation when it is considered in the real line. Be that as it may, from mathematical point of view, a considerable number of stability issues concerning the Bresse model in a whole space, have received considerable attention in the last years [10, 24, 25, 28, 31]. This has been due to the regularity-loss phenomenon that usually appears in the pure Cauchy problems (for instance, see [5, 6, 12, 13, 14, 32] and references therein). Roughly speaking, the decay rate of the solution is of the regularity-loss type, when it is obtained only by assuming some additional order regularity on the initial date. Thus, based on this refinement of the initial data, we investigate the relationship between damping terms, the wave speeds of propagation and their influence on the decay rate of the vector solutions \(V_1 \) and \(V_2 \) (see (81)-(82) below) of the systems (1) and (2), respectively.

Thus, our main result reads as follows:

Theorem 1.1. Let \(s \) be a nonnegative integer, suppose that \(V_j^0 \in H^s(\mathbb{R}) \cap L^1(\mathbb{R}) \) for \(j = 1, 2 \). Then, the vector solutions \(V_j \) of thermoelastic Bresse problems (1) and (2), respectively, satisfy the following decay estimates,

1. If \(\frac{\rho_1}{\rho_2} = \frac{k}{b} \) and \(k = k_0 \), then
 \[
 \| \partial^k_x V_j(t) \|_2 \leq C_1 (1 + t)^{-\frac{k}{b} - \frac{s}{2}} \| V_j^0 \|_1 + C_2 (1 + t)^{-\frac{k}{b} - \frac{s}{2}} \| \partial_x^{k+l} V_j^0 \|_2, \]
 \(j = 1, 2, \quad t \geq 0. \)

2. If \(\frac{\rho_1}{\rho_2} \neq \frac{k}{b} \) or \(k \neq k_0 \), then
 \[
 \| \partial^k_x V_j(t) \|_2 \leq C_1 (1 + t)^{-\frac{k}{b} - \frac{s}{2}} \| V_j^0 \|_1 + C_2 (1 + t)^{-\frac{k}{b} - \frac{s}{2}} \| \partial_x^{k+l} V_j^0 \|_2, \]
 \(j = 1, 2, \quad t \geq 0. \)

where \(k + l \leq s \), \(C_1, C_2 \) are two positive constants.

Our proof is based on some estimates for the Fourier image of the solution as well as a suitable linear combination of series of energy estimates. The key idea is to construct functionals to capture the dissipation of all the components of the vector solution. These functional allows to build an appropriate Lyapunov functionals equivalent to the energy, which gives the dissipation of all the components in the vector \(\hat{V}_1(\xi, t) \) and \(\hat{V}_2(\xi, t) \) (See (83) below). Finally, we rely on the Plancherel theorem and some asymptotic inequalities to show the desired decay estimates.

The decay rate \((1 + t)^{-\frac{s}{2}} \) can be obtained only under the regularity \(V_0 \in H^s(\mathbb{R}) \). This regularity loss comes to analyze the Fourier image of the solution. Indeed, for \(\hat{V}(\xi, t) \), we have (see (46), (80) and (83) below) that

\[
|\hat{V}(\xi, t)|^2 \leq C e^{-\beta s(\xi)t} |\hat{V}(\xi, 0)|^2,
\]

where

\[
s(\xi) = \begin{cases}
C_1 \frac{\xi^4}{(1 + \xi^2)^{\frac{s}{2}}}, & \text{if } \frac{\rho_1}{\rho_2} = \frac{k}{b} \text{ and } k = k_0, \\
C_2 \frac{\xi^4}{(1 + \xi^2)^{\frac{s}{2}}}, & \text{if } \frac{\rho_1}{\rho_2} \neq \frac{k}{b} \text{ or } k \neq k_0.
\end{cases}
\]

As we will see, the decay estimate (5)-(6) depends in a critical way on the properties of the function \(s(\xi) \). Obviously, the function \(s(\xi) \) behaves like \(\xi^4 \) in the low frequency region \((|\xi| \leq 1) \) and like \(\xi^{-4} \) near infinity whenever \(\frac{\rho_1}{\rho_2} = \frac{k}{b} \) and \(k = k_0 \). Otherwise, if the wave speeds of propagation are different the function \(s(\xi) \)
behaves also like ξ^4 in the low frequency region and like ξ^{-6} near infinity, which means that the dissipation in the high frequency region is very weak and produces the regularity loss phenomenon. It has been known recently that this regularity loss leads to some difficulties in the nonlinear problems, see [12, 14] for more details.

There are many works on the global existence and asymptotic stability of solutions to the initial boundary value problem for the Bresse system with dissipation. In this direction, we refer the IBVP associated to (1) considered by Liu and Rao in [16]. They proved that the exponential decay exists only when the velocities of the wave propagation are the same. If the wave speeds are different, they showed that the energy decays polynomially to zero with the rate $t^{-\frac{4}{5}}$ and $t^{-\frac{4}{7}}$, provided that the boundary conditions are Dirichlet-Neumann-Neumann

$$\omega_x(x, t) = \varphi(x, t) = \varphi(x, t) = \theta_1(x, t) = \theta_2(x, t) = 0, \quad \text{for } x = 0, l,$$

and Dirichlet-Dirichlet-Dirichlet type,

$$\omega(x, t) = \varphi(x, t) = \psi(x, t) = \theta_1(x, t) = \theta_2(x, t) = 0, \quad \text{for } x = 0, l.$$

An improvement of the above results was made by Said-Houari and Soufyane in [31]. They considered the system

$$\begin{aligned}
\varphi_{tt} - (\varphi_x - \psi - lw)_x - k_0^2 l (\omega_x - l \varphi) &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\psi_{tt} - a^2 \psi_{xx} - k (\varphi_x - \psi - lw) \gamma_1 \psi_t &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\omega_{tt} - k_0^2 (\omega_x - l \varphi)_x - l (\varphi_x - \psi - lw) + \gamma_2 \omega_t &= 0 \quad \text{in } \mathbb{R} \times (0, \infty),
\end{aligned}$$

and investigated the relationship between the frictional damping terms, the wave speeds of propagation and their influence on the decay rate of the solution. In addition, they showed that the L^2-norm of the solution decays with the rate $(1 + t)^{-1/4}$. Later on, the same authors in [28], proved that the vector solution V of the Bresse system damped by heat conduction:

$$\begin{aligned}
\varphi_{tt} - k (\varphi_x - \psi - lw)_x - k_0^2 l (\omega_x - l \varphi) &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\psi_{tt} - a^2 \psi_{xx} - k (\varphi_x - \psi - lw) + m \theta_x &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\omega_{tt} - k_0^2 (\omega_x - l \varphi)_x - l (\varphi_x - \psi - lw) + \gamma_2 \omega_t &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\theta_t - k_1 \theta_{xx} + m \psi_{tt} &= 0 \quad \text{in } \mathbb{R} \times (0, \infty),
\end{aligned}$$

decays with the rate,

$$\|\partial_x^k V(t)\|_{L^2} \leq C(1 + t)^{-\frac{2}{5} - \frac{k}{4}} \|V_0\|_{L^1} + C(1 + t)^{-\frac{2}{5}} \|\partial_x^{k+1} V_0\|_{L^2},$$

for $a = 1$, and

$$\|\partial_x^k V(t)\|_{L^2} \leq C(1 + t)^{-\frac{2}{5} - \frac{k}{4}} \|V_0\|_{L^1} + C(1 + t)^{-\frac{2}{5}} \|\partial_x^{k+1} V_0\|_{L^2},$$

for $a \neq 1, k = 1, 2, \ldots, s - 1$. More recently, Said-Houari and Hamadouche [24] studied the decay properties of the Bresse-Cattaneo system:

$$\begin{aligned}
\varphi_{tt} - (\varphi_x - \psi - lw)_x - k_0^2 l (\omega_x - l \varphi) &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\psi_{tt} - a^2 \psi_{xx} - (\varphi_x - \psi - lw) + m \theta_x &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\omega_{tt} - k_0^2 (\omega_x - l \varphi)_x - l (\varphi_x - \psi - lw) + \gamma \omega_t &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\theta_t + q_x + m \psi_{tt} &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\tau_q t + \beta q + \theta_x &= 0 \quad \text{in } \mathbb{R} \times (0, \infty),
\end{aligned}$$

obtaining the same decay rate as the one of the solution for the Bresse-Fourier model (9). This fact has been also seen in the paper [26], where the authors investigated the Timoshenko-Cattaneo and Timoshenko-Fourier models and showed the same behavior for the solutions of both systems. Finally, concerning to the Thermoelectricity type III (in one-dimensional space), Said-Houari and Hamadouche in [25] have been recently analyzed the system:

$$\begin{aligned}
\varphi_{tt} - (\varphi_x - \psi - lw)_x - k_0^2 l (\omega_x - l \varphi) &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\psi_{tt} - a^2 \psi_{xx} - (\varphi_x - \psi - lw) + m \theta_x &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\omega_{tt} - k_0^2 (\omega_x - l \varphi)_x - l (\varphi_x - \psi - lw) + \gamma \omega_t &= 0 \quad \text{in } \mathbb{R} \times (0, \infty), \\
\theta_{tt} - k_1 \theta_{xx} + \beta \psi_{tx} - k_2 \theta_{txx} &= 0 \quad \text{in } \mathbb{R} \times (0, \infty).
\end{aligned}$$
They proved that the solution decay with the rate:
\[
\|\partial_x^a V(t)\|_{L^2} \leq C(1 + t)^{-\frac{1}{2} - \frac{a}{2}} \|V_0\|_{L^2} + C(1 + t)^{-\frac{1}{2}} \|\partial_x^{k+1} V_0\|_{L^2},
\]
for \(a = 1\), and
\[
\|\partial_x^a V(t)\|_{L^2} \leq C(1 + t)^{-\frac{1}{2} - \frac{a}{2}} \|V_0\|_{L^2} + C(1 + t)^{-\frac{1}{2}} \|\partial_x^{k+1} V_0\|_{L^2},
\]
for \(a \neq 1, k = 1, 2, \ldots, s - l\).

This paper is organized as follows:
- In Section 2, we analyze the ODE system generated by the Fourier transform applies to the Cauchy problem, obtaining appropriate decay estimates for the Fourier image of the solution.
- Section 3 is dedicated to proof our main result.

2. Energy method in the Fourier space.

In this section, we establish decay rates for the Fourier image of the solutions of thermoelastic Bresse systems. To obtain the estimates of the Fourier image is actually the hardest and technical part. These estimates will play to a crucial role in proving the Theorems 2.11 and 2.23, below.

2.1. Thermoelastic Bresse system of Type I. Taking Fourier Transform in (1), we obtain the following ODE system:

\[
\rho_1 \ddot{\varphi}_{tt} - ik \xi \left(i \xi \ddot{\varphi} - \ddot{\psi} - l \dot{\omega} \right) - k_0 l (i \xi \dot{\omega} - l \ddot{\varphi}) + l \gamma \ddot{\theta}_1 = 0 \quad \text{in } \mathbb{R} \times (0, \infty)
\]
\[
\rho_2 \ddot{\psi}_{tt} + b k_0 (i \xi \ddot{\varphi} - \ddot{\psi} - l \dot{\omega}) + i \gamma \ddot{\theta}_2 = 0 \quad \text{in } \mathbb{R} \times (0, \infty)
\]
\[
\rho_1 \ddot{\omega}_{tt} - ik_0 \xi (i \xi \ddot{\varphi} - \ddot{\psi} - l \dot{\omega}) - kl (i \xi \ddot{\varphi} - \ddot{\psi} - l \dot{\omega}) + i \gamma \theta_1 = 0 \quad \text{in } \mathbb{R} \times (0, \infty)
\]
\[
\ddot{\theta}_1 + k_1 \xi^2 \ddot{\theta}_1 + m_1 (i \xi \ddot{\varphi} - \ddot{\psi} - l \dot{\omega})^2 = 0 \quad \text{in } \mathbb{R} \times (0, \infty)
\]
\[
\ddot{\theta}_2 + k_2 \xi^2 \ddot{\theta}_2 + m_2 (i \xi \ddot{\varphi} - \ddot{\psi} - l \dot{\omega})^2 = 0 \quad \text{in } \mathbb{R} \times (0, \infty)
\]

The energy functional associated to the above system is defined as:
\[
\hat{E}(\xi, t) = \rho_1 |\dot{\varphi}_t|^2 + \rho_2 |\dot{\psi}_t|^2 + \rho_1 |\ddot{\omega}_t|^2 + \frac{\gamma}{m_1} |\ddot{\theta}_1|^2 + \frac{\gamma}{m_2} |\ddot{\theta}_2|^2 + b |\ddot{\varphi} - \dot{\psi} - l \ddot{\omega}|^2 + k |i \xi \ddot{\varphi} - \ddot{\psi} - l \ddot{\omega}|^2.
\]

Lemma 2.1. Consider the energy functional \(\hat{E}\) associated to the system (13)-(17). Then,
\[
d\frac{d}{dt} \hat{E}(\xi, t) = -2 \gamma \xi^2 \left(\frac{k_1}{m_1} |\ddot{\theta}_1|^2 + \frac{k_2}{m_2} |\ddot{\theta}_2|^2 \right).
\]

Proof. Multiplying (13) by \(\varphi_t\), (14) by \(\psi_t\), (15) by \(\omega_t\), (16) by \(\frac{\gamma}{m_1} \ddot{\theta}_1\), and (17) by \(\frac{\gamma}{m_2} \ddot{\theta}_2\), adding and taking real part, (19) follows.

We show that the decay rate of the solution will depend on the wave speeds of propagation. More precisely, we analyze two cases: First, we suppose that
\[
\frac{\rho_1}{\rho_2} = \frac{k}{b} \quad \text{and} \quad k = k_0.
\]
Otherwise, we consider the case when the wave speeds of propagation are different (\(\frac{\rho_1}{\rho_2} \neq \frac{k}{b}\) or \(k \neq k_0\)). The proof of our main results in this section (Theorems 2.11 and 2.23 below) are based on the following lemmas:

Lemma 2.2. The functional
\[
J_1(\xi, t) = \text{Re}(i \rho_2 \xi \ddot{\varphi} \ddot{\theta}_2),
\]
satisfies
\[
d\frac{d}{dt} J_1(\xi, t) + \frac{m_2 \rho_2}{2} \xi^2 |\dot{\psi}_t|^2 \leq b |\xi|^3 |\ddot{\varphi}| + m_1 |\ddot{\theta}_1||i \xi \ddot{\varphi} - \ddot{\psi} - l \ddot{\omega}| + C_1 (1 + \xi^2 |\ddot{\theta}_2|^2,
\]
where \(C_1\) is a positive constant.
Proof. Multiplying (17) by $-i\rho_2\xi\overline{\overline{\psi_t}}$ and taking real part, we obtain
\[
\frac{d}{dt}Re\left(-i\rho_2\xi\overline{\overline{\psi_t}\theta_2}\right) + Re\left(i\rho_2\xi\overline{\overline{\psi_t}i\theta_2}\right) - Re\left(ik_2\rho_2\xi^2\overline{\overline{\psi_t}\theta_2}\right) + m_2\rho_2\xi^2|\dot{\psi}|^2 = 0.
\]
By (14), we have
\[
\frac{d}{dt} \left(-i\rho_2\xi\overline{\overline{\psi_t}\theta_2}\right) + m_2\rho_2\xi^2|\dot{\psi}|^2 \leq k_2\rho_2\xi|\psi||\dot{\theta}_2| + b\xi|\psi||\dot{\theta}_2| + k\xi||\dot{\theta}_2||i\xi\dot{\psi} - \dot{\psi} - l\dot{\omega} + \gamma\xi^2|\dot{\theta}_2|^2
\]
Applying Young inequality, we obtain (20). \qed

Lemma 2.3. The functional
\[
T_1(\xi, t) = Re\left(-\rho_1\dot{\overline{\overline{\varphi_t}}}(i\xi\dot{\omega} - l\dot{\varphi}) - \frac{\rho_1}{m_1}\dot{\varphi_t}\overline{\overline{\theta_1}}\right),
\]
satisfies
\[
\frac{d}{dt}T_1(\xi, t) + \frac{k_0l}{2}|i\xi\dot{\omega} - l\dot{\varphi}|^2 \leq \frac{\rho_1k_1}{m_1}|\xi|^2|\dot{\varphi}_t||\overline{\overline{\theta}_1}| - Re(ik_2\xi(i\xi\ddot{\varphi} - \dot{\psi} - l\ddot{\omega})(i\xi\dot{\omega} - l\dot{\varphi})) + \frac{k}{m_1}|\xi||\dot{\theta}_1||i\xi\dot{\varphi} - \dot{\psi} - l\dot{\omega}| + C_2|\dot{\theta}_1|^2,
\]
where C_2 is a positive constant.

Proof. Multiplying (13) by $-i(i\xi\dot{\omega} - l\dot{\varphi})$ and taking real part, we have
\[
\frac{d}{dt} Re(-\rho_1\dot{\overline{\overline{\varphi_t}}}(i\xi\dot{\omega} - l\dot{\varphi})) + Re(\rho_1\dot{\overline{\overline{\varphi_t}}}(i\xi\dot{\omega} - l\dot{\varphi})) = \frac{\rho_1k_1}{m_1} Re\left(\xi^2\dot{\overline{\overline{\varphi_t}}}\overline{\overline{\theta}_1}\right)
\]
\[
(16) \text{ implies that }
\frac{d}{dt} Re\left(-\rho_1\dot{\overline{\overline{\varphi_t}}}(i\xi\dot{\omega} - l\dot{\varphi})\right) - \frac{\rho_1}{m_1} Re \left(\dot{\varphi_t}\overline{\overline{\theta}_1}\right) = \frac{\rho_1k_1}{m_1} Re \left(\xi^2\dot{\overline{\overline{\varphi_t}}}\overline{\overline{\theta}_1}\right)
\]
\[
(22) \text{ implies that }
\frac{d}{dt} Re\left(-\rho_1\dot{\overline{\overline{\varphi_t}}}(i\xi\dot{\omega} - l\dot{\varphi})\right) + \frac{\rho_1}{m_1} Re \left(\dot{\varphi_t}\overline{\overline{\theta}_1}\right) = \frac{k_0l|m_1|}{m_1} Re \left(\xi^2\dot{\overline{\overline{\varphi_t}}}\overline{\overline{\theta}_1}\right)
\]
On the other hand, multiplying (13) by $-\overline{\overline{\theta}_1}$ and taking real part, it follows that
\[
\frac{d}{dt} Re\left(-\rho_1\dot{\overline{\overline{\varphi_t}}}(i\xi\dot{\omega} - l\dot{\varphi})\right) + \frac{\rho_1}{m_1} Re \left(\dot{\varphi_t}\overline{\overline{\theta}_1}\right) = \frac{k_0l|m_1|}{m_1} Re \left(\xi^2\dot{\overline{\overline{\varphi_t}}}\overline{\overline{\theta}_1}\right)
\]
\[
\text{ Adding (22) and (23), }
\frac{d}{dt} T_1(\xi, t) + k_0|m_1|\xi\dot{\omega} - l\dot{\varphi}|^2 \leq \frac{\rho_1k_1}{m_1}|\xi|^2|\dot{\varphi}_t||\overline{\overline{\theta}_1}| - Re\left(ik_2\xi(i\xi\ddot{\varphi} - \dot{\psi} - l\ddot{\omega})(i\xi\dot{\omega} - l\dot{\varphi})\right) + \frac{k_0l}{m_1}|\xi||\dot{\theta}_1||i\xi\dot{\varphi} - \dot{\psi} - l\dot{\omega}| + \frac{k_0l}{m_1}|\theta_1||i\xi\dot{\omega} - l\dot{\varphi}| + \frac{l_\gamma}{m_1}|\dot{\theta}_1|^2,
\]
applying Young inequality, (21) follows. \qed

Lemma 2.4. The functional
\[
T_2(\xi, t) = Re\left(i\rho_1\xi\dot{\omega}_t(i\xi\dot{\omega} - l\dot{\varphi}) + i\frac{\rho_1}{m_1}\xi\dot{\varphi}_t\overline{\overline{\theta}_1}\right),
\]
satisfies
\[
\frac{d}{dt} T_2(\xi, t) + \frac{k_0}{2}|\xi|^2|\xi\dot{\omega} - l\dot{\varphi}|^2 \leq \frac{\rho_1k_1}{m_1}|\xi|^2|\overline{\overline{\theta}_1}| + Re\left(ik_2\xi(i\xi\ddot{\varphi} - \dot{\psi} - l\ddot{\omega})(i\xi\dot{\omega} - l\dot{\varphi})\right)
\]
\[
(24) \text{ + } \frac{k_0l}{m_1}|\xi||\dot{\theta}_1||i\xi\dot{\varphi} - \dot{\psi} - l\dot{\omega}| + C_3|\xi|^2|\dot{\theta}_1|^2,
\]
where C_3 is a positive constant.
Proof. Multiplying (15) by $i\xi (i\hat{\omega} - l\hat{\varphi})$ and taking real part, we obtain
\begin{equation}
\frac{d}{dt} \text{Re} \left(i\rho_1 i\xi \hat{\omega}_t (i\xi \hat{\omega} - l\hat{\varphi}) \right) - \text{Re} \left(i\rho_1 i\xi \hat{\omega}_t (i\xi \hat{\omega} - l\hat{\varphi}) \right) + k_0 |\xi|^2 |i\xi \hat{\omega} - l\hat{\varphi}|^2
\end{equation}
using (16), it follows that
\begin{equation}
\frac{d}{dt} \text{Re} \left(i\rho_1 i\xi \hat{\omega}_t (i\xi \hat{\omega} - l\hat{\varphi}) \right) + \frac{\rho_1}{m_1} \text{Re} \left(i\xi \hat{\omega}_t \hat{\theta}_1 \right) + \frac{\rho_1 k_1}{m_1} \text{Re} \left(i\xi^2 \hat{\omega}_t \hat{\theta}_1 \right) + k_0 |\xi|^2 |i\xi \hat{\omega} - l\hat{\varphi}|^2
\end{equation}
On the other hand, multiplying (15) by $\frac{i\xi}{m_1} \overline{\hat{\theta}_1}$ and taking real part,
\begin{equation}
\frac{d}{dt} \text{Re} \left(\frac{i\rho_1 i\xi \hat{\omega}_t \overline{\hat{\theta}_1}}{m_1} \right) - \frac{\rho_1}{m_1} \text{Re} \left(i\xi \hat{\omega}_t \overline{\hat{\theta}_1} \right) + \text{Re} \left(\frac{k_0 \xi^2}{m_1} (i\xi \hat{\omega} - l\hat{\varphi}) \overline{\hat{\theta}_1} \right) - \frac{\gamma}{m_1} |\xi|^2 |\hat{\theta}_1|^2 = 0.
\end{equation}
Adding (26) and (27), applying Young inequality, (24) follows. \qed

Lemma 2.5. Consider the functional
\[J_2(\xi, t) := \mathcal{I}T_1(\xi, t) + T_2(\xi, t). \]
Then, there exist $\delta > 0$ such that
\begin{equation}
\frac{d}{dt} J_2(\xi, t) + k_0 |\xi \hat{\omega} - l\hat{\varphi}|^2 \leq \frac{\rho_1 k_1}{m_1} |\xi|^2 |\hat{\theta}_1| + \frac{2k l}{m_1} |\xi||i\xi \hat{\omega} - l\hat{\varphi}| + \rho_1 k_1 |\xi|^2 |\hat{\theta}_1|^2 + C_4 (1 + \xi^2) |\hat{\theta}_1|^2,
\end{equation}
where C_4 is a positive constant.

Proof. Lemmas (2.3) and (2.4) imply that
\begin{equation}
\frac{d}{dt} J_2(\xi, t) + k_0 |\xi \hat{\omega} - l\hat{\varphi}|^2 \leq \frac{\rho_1 k_1}{m_1} |\xi|^2 |\hat{\theta}_1| + \frac{2k l}{m_1} |\xi||i\xi \hat{\omega} - l\hat{\varphi}| + \frac{\rho_1 k_1}{m_1} |\xi|^2 |\hat{\theta}_1|^2 + C_4 (1 + \xi^2) |\hat{\theta}_1|^2.
\end{equation}
Note that there exist $\delta > 0$ such that $2\delta \leq \frac{\xi^2 + \xi^2}{1 + \xi^2}$. Thus,
\begin{equation}
\frac{d}{dt} J_2(\xi, t) + k_0 (1 + \xi^2) |\xi \hat{\omega} - l\hat{\varphi}|^2 \leq \frac{\rho_1 k_1}{m_1} |\xi|^2 |\hat{\theta}_1| + \frac{2k l}{m_1} |\xi||i\xi \hat{\omega} - l\hat{\varphi}| + \frac{\rho_1 k_1}{m_1} |\xi|^2 |\hat{\theta}_1|^2 + C_4 (1 + \xi^2) |\hat{\theta}_1|^2.
\end{equation}

Lemma 2.6. Consider the functional
\[J_3(\xi, t) = \text{Re} \left(-\rho_2 \hat{\psi}_t (i\xi \hat{\varphi} - \hat{\psi} - l\hat{\omega}) - \frac{\rho_1 k}{k} \xi \hat{\psi}_t \hat{\varphi}_t \right). \]
If $\frac{\rho_1}{\rho_2} = \frac{k}{b}$ and $k = k_0$, then
\begin{equation}
\frac{d}{dt} J_3(\xi, t) + \frac{k}{2} |i\xi \hat{\varphi} - \hat{\psi} - l\hat{\omega}|^2 \leq \rho_2 |\hat{\psi}_t|^2 + \rho_2 l \text{Re} \left(\hat{\psi} \overline{\hat{\omega}_t} \right) - b l \text{Re} \left(i\xi \hat{\varphi} (i\xi \hat{\omega} - l\hat{\varphi}) \right) + \frac{b \gamma}{k} |\xi||\hat{\psi}||\hat{\theta}_1| + C_5 |\xi|^2 |\hat{\theta}_2|^2.
\end{equation}
Moreover, if $\frac{\rho_1}{\rho_2} \neq \frac{k}{b}$ or $k \neq k_0$, then
\begin{equation}
\frac{d}{dt} J_3(\xi, t) + \frac{k}{2} |i\xi \hat{\varphi} - \hat{\psi} - l\hat{\omega}|^2 \leq \rho_2 |\hat{\psi}_t|^2 + \rho_2 l \text{Re} \left(\hat{\psi} \overline{\hat{\omega}_t} \right) + \left(\rho_2 - \frac{b \gamma}{k} \right) \text{Re} \left(i\xi \hat{\psi}_t \hat{\varphi}_t \right)
\end{equation}
\begin{equation}
- \frac{k}{k} b l \text{Re} \left(i\xi \hat{\psi} (i\xi \hat{\omega} - l\hat{\varphi}) \right) + \frac{b \gamma}{k} |\xi||\hat{\psi}||\hat{\theta}_1| + C_5 |\xi|^2 |\hat{\theta}_2|^2,
\end{equation}
where C_5 is a positive constant.
Proof. Multiplying (14) by \(- (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega})\) and taking real part,

\[
\frac{d}{dt} \text{Re} \left(- \rho_2 \dot{\psi}_t (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}) \right) - \text{Re} \left(i\rho_2 \dot{\psi}_t \bar{\varphi}_t \right) - \rho_2 |\dot{\psi}_t|^2 - \text{Re} \left(\rho_2 l \dot{\psi}_t \bar{\omega}_t \right) - \text{Re} \left(b\xi^2 \dot{\psi} (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}) \right)
\]

\[+ k |i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}|^2 - \text{Re} \left(i\gamma \xi \hat{\theta}_2 (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}) \right) = 0. \tag{31} \]

First, suppose that

\[
\frac{\rho_1}{\rho_2} = \frac{k}{b} \quad \text{and} \quad k = k_0. \tag{32} \]

By (13) and (32),

\[
\text{Re} \left(b\xi^2 \dot{\psi} (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}) \right) = b \text{Re} \left(i\xi \dot{\psi} \xi (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}) \right)
\]

\[= \frac{\rho_1 b}{k} \text{Re} \left(i\xi \dot{\psi} \varphi_t \right) - b \text{Re} \left(i\xi \dot{\psi} (i\xi \bar{\omega} - l\varphi) \right) + \frac{bl_\gamma}{k} \text{Re} \left(i\xi \dot{\psi} \bar{\theta}_1 \right)
\]

\[= \frac{\rho_2 d}{dt} \text{Re} \left(i\xi \dot{\psi} \varphi_t \right) - \rho_2 \text{Re} \left(i\xi \dot{\psi} \varphi_t \right) - b \text{Re} \left(i\xi \dot{\psi} (i\xi \bar{\omega} - l\varphi) \right) + \frac{bl_\gamma}{k} \text{Re} \left(i\xi \dot{\psi} \bar{\theta}_1 \right). \]

Substituting in (31), we have

\[
\frac{d}{dt} J_3 (\xi, t) + k |i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}|^2 \leq \rho_2 |\dot{\psi}_t|^2 + \text{Re} \left(\rho_2 l \dot{\psi}_t \bar{\omega}_t \right) - b \text{Re} \left(i\xi \dot{\psi} (i\xi \bar{\omega} - l\varphi) \right)
\]

\[+ \frac{bl_\gamma}{k} |\xi||\dot{\psi}| |\bar{\theta}_1| + \gamma |\xi| |\bar{\theta}_2| |i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}|. \]

Applying Young inequality, (29) follows. Now, suppose that

\[
\frac{\rho_1}{\rho_2} \neq \frac{k}{b} \quad \text{or} \quad k \neq k_0. \tag{33} \]

Proceeding as above, (13) implies that

\[
\text{Re} \left(b\xi^2 \dot{\psi} (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}) \right) = \frac{\rho_1 b}{k} \frac{d}{dt} \text{Re} \left(i\xi \dot{\psi} \varphi_t \right) - \frac{\rho_1 b}{k} \text{Re} \left(i\xi \dot{\psi} \varphi_t \right) - \frac{k_0}{k} b \text{Re} \left(i\xi \dot{\psi} (i\xi \bar{\omega} - l\varphi) \right)
\]

\[+ \frac{bl_\gamma}{k} \text{Re} \left(i\xi \dot{\psi} \bar{\theta}_1 \right). \]

Substituting in (31) and applying Young inequality, we obtain (30). \qedhere

\[\]

Lemma 2.7. Let \(0 < \varepsilon_1 < \frac{b l_\gamma^2}{\rho_1}\) and consider the functional

\[
J_4 (\xi, t) = \text{Re} \left(\frac{\rho_2 l^2}{\rho_1} \dot{\psi}_t \bar{\varphi}_t - \rho_2 l \dot{\omega}_t \bar{\psi}_t \right).
\]

Then,

\[
\frac{d}{dt} J_4 (\xi, t) + b \left(\frac{\rho_2 l^2}{\rho_1} - \varepsilon_1 \right) \xi^2 |\dot{\psi}|^2 \leq \frac{\rho_2 l^2}{\rho_1} |\dot{\psi}_t|^2 - \rho_2 l \text{Re} \left(\bar{\varphi}_t \bar{\omega}_t \right) + \frac{\rho_2 k_0 l}{\rho_1} \text{Re} \left(i\xi \dot{\psi} (i\xi \bar{\omega} - l\varphi) \right)
\]

\[+ C(\varepsilon_1) \left(|\bar{\theta}_1|^2 + |\bar{\theta}_2|^2 \right), \tag{34} \]

where \(C(\varepsilon_1)\) is a positive constant.

Proof. Multiplying (14) by \(\bar{\psi}\) and taking real part,

\[
\frac{d}{dt} \text{Re} \left(\rho_2 \dot{\psi}_t \bar{\psi}_t \right) - \rho_2 |\dot{\psi}_t|^2 + b\xi^2 |\dot{\psi}|^2 - \text{Re} \left(k \bar{\psi} (i\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}) \right) + \text{Re} \left(i\gamma \xi \bar{\psi} \bar{\theta}_2 \right) = 0. \tag{35} \]

(15) implies that,

\[
\frac{d}{dt} \text{Re} \left(\rho_2 \dot{\psi}_t \bar{\psi}_t \right) - \frac{d}{dt} \text{Re} \left(\frac{\rho_1}{l} \bar{\psi}_t \bar{\omega}_t \right) + b\xi^2 |\dot{\psi}|^2 = \rho_2 |\dot{\psi}_t|^2 - \frac{\rho_1}{l} \text{Re} \left(\bar{\psi}_t \bar{\omega}_t \right) - \frac{k_0}{l} \text{Re} \left(i\xi \bar{\psi} (i\xi \bar{\omega} - l\varphi) \right)
\]

\[+ \frac{\gamma}{l} \text{Re} \left(i\xi \bar{\psi} \bar{\theta}_1 \right) - \text{Re} \left(i\gamma \xi \bar{\psi} \bar{\theta}_2 \right). \tag{36} \]
Multiplying above by \(\frac{\rho_2 l^2}{\rho_1} \), we have
\[
\frac{d}{dt} J_4(\xi, t) + \frac{b_1 l^2}{\rho_1} \xi^2 |\psi|^2 = \frac{\rho_2 l^2}{\rho_1} |\tilde{\psi}|^2 - \rho_2 l \Re \left(\overline{\psi_t} \tilde{\omega}_t \right) - \frac{\rho_2 k l}{\rho_1} \Re \left(i\xi \psi (i\xi \omega - l\phi) \right)
\]
\[+ \frac{\gamma \rho_2 l}{\rho_1} \Re \left(i\xi \psi \tilde{\theta}_1 \right) - \frac{\gamma \rho_2 l^2}{\rho_1} \Re \left(i\xi \psi \tilde{\theta}_2 \right).\]

Applying Young inequality and using the wave speeds of propagation, we obtain (34).

Lemma 2.8. Let \(0 < \varepsilon_1 \leq \frac{\rho_2 l^2}{2\rho_1} \) and consider \(K(\xi, t) = J_3(\xi, t) + J_4(\xi, t) \). If \(\frac{\rho_1}{\rho_2} = \frac{k}{b} \) and \(k = k_0 \), then
\[
\frac{d}{dt} K(\xi, t) + \left(\frac{\rho_2 l^2}{\rho_1} - \varepsilon_1 \right) b\xi^2 |\psi|^2 + \frac{k}{2} |i\xi \phi - \psi - l\omega|^2 \leq \rho_2 s_1 |\tilde{\psi}|^2 + C(\varepsilon_1)|\tilde{\theta}_1|^2 + C(\varepsilon_1)(1 + \xi^2)|\tilde{\theta}_2|^2.
\]
Moreover, if \(\frac{\rho_1}{\rho_2} \neq \frac{k}{b} \) or \(k \neq k_0 \), then
\[
\frac{d}{dt} K(\xi, t) + \left(\frac{\rho_2 l^2}{\rho_1} - \varepsilon_1 \right) b\xi^2 |\psi|^2 + \frac{k}{2} |i\xi \phi - \psi - l\omega|^2
\]
\[
\leq \rho_2 s_1 |\tilde{\psi}|^2 + \left(\frac{\rho_2}{\rho_1} - \frac{b}{k} \right) k_0 l \Re \left(i\xi \psi (i\xi \omega - l\phi) \right) + \left(\rho_2 - \frac{b_1}{k} \right) \Re \left(i\xi \psi \tilde{\theta}_1 \right) + C(\varepsilon_1)|\tilde{\theta}_1|^2 + C(\varepsilon_1)(1 + \xi^2)|\tilde{\theta}_2|^2,
\]
where \(s_1 = \frac{\rho_2 l^2}{\rho_1} + 1 \).

Proof. It follows from Lemmas 2.6 and 2.7, applying Young inequality.

For next lemma, it is necessary to observe that
\[
(i\xi \phi - \psi - l\omega)_t - i\xi \phi_t + \tilde{\psi}_t + l\tilde{\omega}_t = 0
\]
(36)
\[
(i\xi \omega - l\phi)_t - i\xi \omega_t + l\tilde{\phi}_t = 0
\]
(37)

Lemma 2.9. Consider the functional,
\[
H(\xi, t) = \rho_1 \Re \left(\left(i\xi \phi - \psi - l\omega \right) \overline{\tilde{\omega}_1} \right) + \rho_1 \Re \left(\left(i\xi \omega - l\phi \right) \overline{\tilde{\theta}_1} \right).
\]
If \(\frac{\rho_1}{\rho_2} = \frac{k}{b} \) and \(k = k_0 \), then
\[
\frac{d}{dt} H(\xi, t) + \rho_1 |\tilde{\phi}|^2 + \frac{\rho_1 l}{2} |\tilde{\omega}|^2 \leq \frac{\rho_2 l^2}{2b l} |\tilde{\psi}|^2 + \frac{3k l}{2} |i\xi \phi - \psi - l\omega|^2 + \frac{3k l}{2} |i\xi \omega - l\phi|^2 + C_0(1 + \xi^2)|\tilde{\theta}_1|^2.
\]
Moreover, if \(\frac{\rho_1}{\rho_2} \neq \frac{k}{b} \) or \(k \neq k_0 \),
\[
\frac{d}{dt} H(\xi, t) + \rho_1 |\tilde{\phi}|^2 + \frac{\rho_1 l}{2} |\tilde{\omega}|^2 \leq \rho_2 l^2 |\tilde{\psi}|^2 + C_1(k, k_0) |i\xi \phi - \psi - l\omega|^2 + C_2(k, k_0)(1 + \xi^2) |i\xi \omega - l\phi|^2
\]
(39)
\[+ C_0(1 + \xi^2)|\tilde{\theta}_1|^2,
\]
where \(C_1(k, k_0) \) and \(C_0 \) are positive constants.

Proof. Multiplying (13) by \((i\xi \omega - l\phi) \), (37) by \(\rho_1 \overline{\tilde{\theta}_1} \), adding these equalities and taking the real part, we obtain
\[
\frac{d}{dt} \Re \left(\rho_1 (i\xi \omega - l\phi) \overline{\tilde{\theta}_1} \right) - \rho_1 \Re \left(i\xi \omega \tilde{\theta}_1 \right) + \rho_1 l |\tilde{\phi}|^2 - k \Re \left(i\xi \phi - \psi - l\omega \right) \left(i\xi \omega - l\phi \right)
\]
\[- k_0 l |i\xi \omega - l\phi|^2 + l \Re \left(\tilde{\theta}_1 (i\xi \omega - l\phi) \right) = 0.
\]
Multiplying (15) by \((i\xi \phi - \psi - l\omega) \), (36) by \(\rho_1 \overline{\tilde{\omega}_1} \), adding and taking the real part,
\[
\frac{d}{dt} \Re \left(\rho_1 (i\xi \phi - \psi - l\omega) \overline{\tilde{\omega}_1} \right) - \rho_1 \Re \left(i\xi \phi \overline{\tilde{\omega}_1} \right) + \rho_1 \Re \left(\psi \tilde{\omega}_1 \right) + \rho_1 l |\tilde{\omega}|^2 - k l |i\xi \phi - \psi - l\omega|^2
\]
\[- k_0 \Re \left((i\xi \omega - l\phi) (i\xi \phi - \psi - l\omega) \right) + l \Re \left(i\xi \phi \tilde{\theta}_1 (i\xi \phi - \psi - l\omega) \right) = 0.
\]
Adding (40) and (41),
\[
\frac{d}{dt}H(\xi, t) + \rho_1 l |\dot{\phi}|^2 + \rho_1 l |\dot{\omega}|^2 \leq k_\ell |\xi \dot{\phi} - \dot{\psi} - \dot{\omega}|^2 + k_\ell |\xi \dot{\omega} - l_\ell \dot{\phi}|^2 + \gamma |\xi| |\dot{\theta}_1||\xi \dot{\phi} - \dot{\psi} - \dot{\omega}| + \gamma l |\dot{\theta}_1||\xi \dot{\omega} - l_\ell \dot{\phi}|
\]
\[
+ |k_\ell - k_\ell| |\xi||\xi \dot{\phi} - \dot{\psi} - \dot{\omega}| + \rho_1 |\dot{\psi}| |\dot{\omega}|.
\]
Applying Young inequality and using the wave propagation properties, (38) and (39) follow. □

In order to prove our main result, we need to establish a functional equivalent to the energy (18) in a polynomial sense. In particular, this kind of functional gives some dissipative terms of the vector solution. First, let us define:

(42) \[
L_1(\xi, t) = \left\{ \begin{array}{ll}
J_1 + \varepsilon_2 \xi^2 K + \xi^2 J_2 + \varepsilon_3 \xi^2 H, \\
\frac{(\xi^2 + \varepsilon_1^2)}{(1 + \xi^2 + \varepsilon_1^2)} \left(\varepsilon_3 \lambda_2 K + J_2 + \varepsilon_3 H \right),
\end{array} \right.
\]

where \(\lambda_1, \lambda_2, \varepsilon_2, \varepsilon_3 \) are positive constants to be fixed later.

Proposition 2.10. There exists constants \(M, M' > 0 \) such that, if \(\frac{m_1}{m_2} = \frac{k}{b} \) and \(k = k_0 \),

\[
\frac{d}{dt}L_1(\xi, t) + M\xi^2 \left\{ b\xi^2 |\dot{\psi}|^2 + k |\xi \dot{\phi} - \dot{\psi} - \dot{\omega}|^2 + \rho_2 |\dot{\psi}|^2 + k_\ell |\xi \dot{\omega} - l_\ell \dot{\phi}|^2 + \rho_1 |\dot{\phi}|^2 + \rho_1 |\dot{\omega}|^2 \right\}
\]
\[
\leq C(\varepsilon_1, \varepsilon_2, \varepsilon_3)(1 + \xi^2 + \xi^4)(1 + \xi^2 + \xi^4)|\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \xi^2 + \xi^4)|\dot{\theta}_2|^2.
\]

Moreover, if \(\frac{m_1}{m_2} \neq \frac{k}{b} \) or \(k \neq k_0 \), we obtain

\[
\frac{d}{dt}L_1(\xi, t) + M'\xi^4 \left\{ \frac{b\xi^2}{1 + \xi^2 + \xi^4} |\dot{\psi}|^2 + k |\xi \dot{\phi} - \dot{\psi} - \dot{\omega}|^2 + \rho_2 \left(\frac{m_2}{2} - s_1 \varepsilon_2 \right) \xi^2 |\dot{\psi}|^2 \right\}
\]
\[
\leq C(\varepsilon_1, \varepsilon_2, \lambda_1, \lambda_2)(1 + \xi^2)(1 + \xi^2)|\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \xi^2)|\dot{\theta}_2|^2.
\]

Proof. First, we suppose that \(\frac{m_1}{m_2} = \frac{k}{b} \) and \(k = k_0 \). By using Lemmas 2.2 and 2.8, we have

\[
\frac{d}{dt} \left\{ J_1(\xi, t) + \varepsilon_2 \xi^2 K(\xi, t) \right\} + b_\varepsilon \left(\frac{m_1^2}{\rho_1} - \varepsilon_1 \right) \xi^4 |\dot{\psi}|^2 + \rho_2 \left(\frac{m_1^2}{\rho_1} - \varepsilon_1 \right) \xi^4 |\xi \dot{\phi} - \dot{\psi} - \dot{\omega}|^2
\]
\[
+ \rho_2 \left(\frac{m_2}{2} - s_1 \varepsilon_2 \right) \xi^2 |\dot{\psi}|^2 \leq b |\xi|^3 |\dot{\psi}| |\dot{\theta}_1| + k |\xi||\dot{\theta}_2||\xi \dot{\phi} + \dot{\psi} + \dot{\omega}|
\]
\[
+ C(\varepsilon_1, \varepsilon_2) \xi^2 |\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \xi^2) |\dot{\theta}_2|^2.
\]

On the other hand, By Lemmas 2.5 and 2.9, it follows that

\[
\frac{d}{dt} \left\{ \xi^2 J_2(\xi, t) + \varepsilon_3 \xi^2 H(\xi, t) \right\} + k_\delta \xi^2 |\xi \dot{\omega} - l_\ell \dot{\phi}|^2 + \rho_1 \varepsilon_3 \xi^2 |\dot{\phi}|^2 + \rho_2 \varepsilon_3 \xi^2 |\dot{\omega}|^2
\]
\[
\leq \frac{\rho_1 k_1}{m_1} |\xi| |\dot{\phi}| |\dot{\theta}_1| + \frac{\rho_1 k_1}{m_1} |\xi|^2 |\dot{\theta}_2| + \frac{2k_\ell l_\ell}{m_1} |\xi| |\dot{\phi} - \dot{\omega}|
\]
\[
+ C(1 + \xi^2) |\dot{\theta}_1|^2 + \frac{3k_\delta \varepsilon_3}{2} |\xi \dot{\omega} - l_\ell \dot{\phi}|^2 + \frac{3k_\ell \varepsilon_3}{2} |\xi| |\dot{\phi} - \dot{\omega}|^2
\]
\[
+ \frac{\rho_2 \varepsilon_3 k_\delta}{2b} \xi^2 |\dot{\psi}|^2 + C(\varepsilon_3)(1 + \xi^2) |\dot{\theta}_1|^2.
\]

Adding and by using Young inequality, we obtain

\[
\frac{d}{dt}L_1(\xi, t) + b_\varepsilon \left(\frac{m_1^2}{\rho_1} - 2 \varepsilon_1 \right) \xi^4 |\dot{\phi}|^2 + k \left(\frac{m}{2} - 2 \varepsilon_3 \right) \xi^2 |\xi \dot{\phi} - \dot{\psi} - \dot{\omega}|^2 + \rho_2 \left(\frac{m_2}{2} - s_1 \varepsilon_2 \right) \xi^2 |\dot{\psi}|^2
\]
\[
+ k_\delta \left(\frac{3k_\delta \varepsilon_3}{2} \right) \xi^2 |\xi \dot{\omega} - l_\ell \dot{\phi}|^2 + \rho_1 \left(\frac{m_1^2}{\rho_1} - \varepsilon_3 \right) |\xi|^2 |\dot{\phi}|^2 + \rho_1 |\dot{\phi}|^2 + \rho_1 |\dot{\omega}|^2
\]
\[
\leq C(\varepsilon_1, \varepsilon_2, \varepsilon_3)(1 + \xi^2 + \xi^4) |\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \xi^2 + \xi^4) |\dot{\theta}_2|^2.
\]

We choose our constants as follows,

\[
\varepsilon_1 < \frac{m_2}{2s_1}, \quad \varepsilon_2 < \frac{m_2}{2s_1} \quad \text{and} \quad \varepsilon_3 < \min \left\{ \frac{2\delta}{3l}, \frac{2m_1^2}{2s_1}, \frac{4b_\varepsilon}{k} \left(\frac{m_2}{2} - s_1 \varepsilon_2 \right) \right\}.
\]
Consequently, we deduce that there exist $M > 0$, such that
\[
\frac{d}{dt} L_1(\xi,t) + M^2 \left\{ k\xi^2 |\hat{\psi}|^2 + k|i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2 + \rho_2 |\hat{\psi}|^2 + k_0 |i\xi\phi - l\hat{\phi}|^2 + \rho_1 |\hat{\phi}|^2 + \rho_1 |\hat{\omega}|^2 \right\}
\leq C(\varepsilon_1,\varepsilon_2,\varepsilon_3)(1 + \xi^2 + \xi^4 + \xi^6)|\hat{\theta}_1|^2 + C(\varepsilon_1,\varepsilon_2)(1 + \xi^2 + \xi^4)|\hat{\theta}_2|^2.
\]

At last, we assume that $\frac{\rho_2}{\rho_1} \neq \frac{k}{k}$ or $k \neq k_0$. Consider the functional
\[
P_1 = \frac{\xi^2}{1 + \xi^2 + \xi^4} \lambda_1 \xi_3 J_1(\xi,t) + \frac{\xi^2}{1 + \xi^2 + \xi^4} \lambda_2 \xi_3 K(\xi,t).
\]
By Lemmas 2.2 and 2.8 and by using Young inequality, it follows that
\[
\frac{d}{dt} P_1(\xi,t) + \left(\frac{\rho_2 \xi^2}{\rho_1} - 3\varepsilon_1 \right) \left\{ \lambda_2 \xi_3 \beta_3 k_0 \xi^6 |\hat{\psi}|^2 + \frac{\varepsilon_3 \lambda_2 \xi_3 k^4}{4(1 + \xi^2 + \xi^4)^2} |i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2
+ \left(\frac{\lambda_1 m_2}{2} - C(\varepsilon_4, \lambda_2) \right) \frac{\rho_2 \xi_3 \xi^4}{(1 + \xi^2 + \xi^4)^2} |\hat{\psi}|^2 \right\}
\leq \frac{\lambda_2 \xi_3 \xi^4 |\hat{\psi}|^2}{(1 + \xi^2 + \xi^4)^2} + C(\varepsilon_1, \lambda_2) \frac{(1 + \xi^2 + \xi^4)^2 |i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2}{(1 + \xi^2 + \xi^4)^2} + C(\varepsilon_1, \varepsilon_3, \lambda_1, \lambda_2) (1 + \xi^2 + \xi^4)^2 \left(|\hat{\theta}_1|^2 + |\hat{\theta}_2|^2 \right).
\]

In the last estimate we used the following inequalities:
\[
\frac{1}{1 + \xi^2 + \xi^4} \leq 1, \quad \frac{1 + \xi^4}{1 + \xi^2 + \xi^4} \leq 1, \quad \frac{\xi^2}{1 + \xi^2 + \xi^4} \leq 1.
\]

On the other hand, consider the functional
\[
P_2 = \frac{\xi^4}{(1 + \xi^2 + \xi^4)^2} \left(J_2(\xi,t) + \varepsilon_3 H(\xi,t) \right).
\]
By (28) in Lemma 2.5, Lemma 2.9, Young inequality and (45), we obtain
\[
\frac{d}{dt} P_2 + k_0 (\delta - C(k, k_0)) \xi_3 \frac{(1 + \xi^4) \xi^4}{(1 + \xi^2 + \xi^4)^2} |i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2 + \frac{\rho_1 \xi_3 \xi^4}{2(1 + \xi^2 + \xi^4)^2} |\hat{\theta}_1|^2 + \frac{\rho_1 \xi_3 \xi^4}{4(1 + \xi^2 + \xi^4)^2} |\hat{\omega}|^2
\leq \frac{\rho_1 \xi_3 \xi^4}{2(1 + \xi^2 + \xi^4)^2} |\hat{\psi}|^2 + C(k, k_0) \xi_3 \frac{\xi^4}{(1 + \xi^2 + \xi^4)^2} |i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2 + C(\varepsilon_3) (1 + \xi^2 + \xi^4)^2 |\hat{\theta}_1|^2.
\]

Thus, Adding above estimates of P_1 and P_2, we get
\[
\frac{d}{dt} L_1(\xi,t) + \left(\frac{\rho_2 \xi^2}{\rho_1} - 3\varepsilon_1 \right) \left\{ \lambda_2 \xi_3 \beta_3 k_0 \xi^6 |\hat{\psi}|^2 + \left(\frac{\lambda_2}{4} - C(k, k_0) \right) \frac{\xi^4}{(1 + \xi^2 + \xi^4)^2} |i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2
+ \left(\frac{\lambda_1 m_2}{2} - C(\varepsilon_4, \lambda_2) \right) \frac{\rho_2 \xi_3 \xi^4}{(1 + \xi^2 + \xi^4)^2} |\hat{\psi}|^2 \right\}
+ \left(\delta - C(k, k_0, \varepsilon_1, \lambda_2) \right) \xi_3 \frac{k_0(1 + \xi^4) \xi^4}{(1 + \xi^2 + \xi^4)^2} |i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2 + \left(\frac{\varepsilon_3}{2} \frac{\lambda_4 \lambda_2}{\rho_1} \right) \frac{\rho_1 \xi_3 \xi^4}{(1 + \xi^2 + \xi^4)^2} |\hat{\theta}_1|^2 \right\}
\leq C(\varepsilon_1, \varepsilon_3, \lambda_1, \lambda_2) (1 + \xi^2 + \xi^4)^2 \left(|\hat{\theta}_1|^2 + |\hat{\theta}_2|^2 \right).
\]

We choose our constants as follows:
\[
\varepsilon_1 < \frac{\rho_2 \xi^2}{3\rho_1}, \quad \lambda_2 > 4C(k, k_0), \quad \varepsilon_4 < \frac{\rho_1 l}{2\lambda_2}, \quad \lambda_1 > \frac{\rho_1 + 2l \rho_2 C(\varepsilon_4, \lambda_2)}{m_2 \rho_2} \quad \text{and} \quad \varepsilon_3 < \frac{\delta}{C(k, k_0, \varepsilon_2, \lambda_2)}.
\]
Consequently, by using (45), we deduce that there exist $M' > 0$, such that
\[
\frac{d}{dt} L_1(\xi,t) + M' \frac{(1 + \xi^2 + \xi^4)^2}{(1 + \xi^2 + \xi^4)^2} \left\{ k\xi^2 |\hat{\psi}|^2 + k|i\xi\hat{\phi} - \hat{\psi} - l\hat{\omega}|^2 + \rho_2 |\hat{\psi}|^2 + k_0 |i\xi\phi - l\hat{\phi}|^2 + \rho_1 |\hat{\phi}|^2 + \rho_1 |\hat{\omega}|^2 \right\}
\leq C(\varepsilon_1, \varepsilon_3, \lambda_1, \lambda_2) (1 + \xi^2 + \xi^4)^2 \left(|\hat{\theta}_1|^2 + |\hat{\theta}_2|^2 \right)
\]

With the Proposition 2.10 in hands and making some appropriate combinations, we build a Lyapunov functional \mathcal{L}, which plays a crucial role in the proof of our main result.
Theorem 2.11. For any $t \geq 0$ and $\xi \in \mathbb{R}$, we obtain the following decay rates
\begin{equation}
\dot{E}(\xi, t) \leq \begin{cases} C \dot{E}(\xi, 0) e^{-\beta s_1(\xi) t}, & \text{if } \frac{\rho_1}{\rho_2} = \frac{k}{b} \text{ and } k = k_0, \\
C' \dot{E}(\xi, 0) e^{-\beta' s_2(\xi) t}, & \text{if } \frac{\rho_1}{\rho_2} \neq \frac{k}{b} \text{ or } k \neq k_0,
\end{cases}
\end{equation}
where C, β, C', β' are positive constants and
\begin{align*}
s_1(\xi) &= \frac{\xi^4}{(1 + \xi^2 + \xi^4 + \xi^6)^2}, \\
s_2(\xi) &= \frac{\xi^4}{(1 + \xi^2 + \xi^4 + \xi^6)^2}.
\end{align*}

Proof. Consider the following Lyapunov functional:
\begin{equation}
\mathcal{L}(\xi, t) = \begin{cases} \xi^2 \mathcal{L}_1(\xi, t) + N(1 + \xi^2 + \xi^4 + \xi^6 + \xi^8) \dot{E}(\xi, t), & \text{if } \frac{\rho_1}{\rho_2} = \frac{k}{b} \text{ and } k = k_0, \\
\mathcal{L}_1(\xi, t) + N'(1 + \xi^2) \dot{E}(\xi, t), & \text{if } \frac{\rho_1}{\rho_2} \neq \frac{k}{b} \text{ or } k \neq k_0,
\end{cases}
\end{equation}
where N and N' are positive constants to be fixed later. First, we suppose that $\frac{\rho_1}{\rho_2} = \frac{k}{b}$ and $k = k_0$. By Lemma 2.1 and Proposition 2.10,
\begin{align*}
\frac{d}{dt} \mathcal{L}(\xi, t) &\leq -M \xi^2 \left\{ |\xi\dot{\varphi}|^2 + k|\xi\dot{\varphi} - \dot{\psi} - l\dot{\omega}|^2 + \rho_2 |\dot{\varphi}_l|^2 + k_0 |i \xi \omega - l \dot{\varphi}|^2 + \rho_1 |\dot{\varphi}_l|^2 + \rho_1 |\omega_i|^2 \right\} \\
&\quad - (2\gamma N - C(\varepsilon_1, \varepsilon_2, \varepsilon_3)) (1 + \xi^2 + \xi^4 + \xi^6 + \xi^8) \xi^2 \left(|\dot{\theta}_1|^2 + |\dot{\theta}_2|^2 \right),
\end{align*}
where $\eta = \min \{ \frac{k_1}{m_1}, \frac{k_2}{m_2} \}$. On the other hand, by definition of \mathcal{L}_1, there exist $M_1 > 0$, such that
\begin{equation}
|\xi^2 \mathcal{L}_1(\xi, t)| \leq M_1 (1 + \xi^2 + \xi^4 + \xi^6) \dot{E}(\xi, t).
\end{equation}
It follows that
\begin{equation}
(N - M_1)(1 + \xi^2 + \xi^4 + \xi^6 + \xi^8) \dot{E}(\xi, t) \leq \mathcal{L}(\xi, t) \leq (N + M_1)(1 + \xi^2 + \xi^4 + \xi^6 + \xi^8) \dot{E}(\xi, t).
\end{equation}
Choosing $N > \max \left(M_1, \frac{C(\varepsilon_1, \varepsilon_2, \varepsilon_3)}{2\gamma \eta} \right)$ and by using
\begin{equation}
(1 + \xi^2 + \xi^4 + \xi^6 + \xi^8) \geq \xi^2,
\end{equation}
there exist $M_2 > 0$, such that
\begin{equation}
\frac{d}{dt} \mathcal{L}(\xi, t) \leq -M_2 \xi^4 \dot{E}(\xi, t).
\end{equation}
Note that, (48) implies that
\begin{equation}
\frac{d}{dt} \mathcal{L}(\xi, t) \leq - \beta \frac{\xi^4}{(1 + \xi^2 + \xi^4 + \xi^6 + \xi^8)} \mathcal{L}(\xi, t),
\end{equation}
where $\beta = \frac{M_2}{N + M_1}$. By using Gronwall inequality, it follows that
\begin{equation}
\mathcal{L}(\xi, t) \leq \mathcal{L}(\xi, 0) e^{-\beta s_1(\xi) t}.
\end{equation}

Now, from (48), it yields that
\begin{equation}
\dot{E}(\xi, t) \leq C \dot{E}(\xi, 0) e^{-\beta s_1(\xi) t},
\end{equation}
where $C = \frac{N + M_1}{N - M_1} > 0$.

At last, we assume that $\frac{\rho_1}{\rho_2} \neq \frac{k}{b}$ or $k \neq k_0$. By Lemma 2.1 and Proposition 2.10,
\begin{align*}
\frac{d}{dt} \mathcal{L}(\xi, t) &\leq -M' \frac{\xi^4}{(1 + \xi^2 + \xi^4 + \xi^6 + \xi^8)^2} \left\{ |b \xi^2 |\dot{\varphi}|^2 + k|\xi \dot{\varphi} - \dot{\psi} - l\dot{\omega}|^2 + \rho_2 |\dot{\varphi}_l|^2 + k_0 |i \xi \omega - l \dot{\varphi}|^2 + \rho_1 |\dot{\varphi}_l|^2 + \rho_1 |\omega_i|^2 \right\} \\
&\quad - (2\gamma N' - C(\varepsilon_1, \varepsilon_3, \lambda_1, \lambda_2)) (1 + \xi^2) \xi^2 \left(|\dot{\theta}_1|^2 + |\dot{\theta}_2|^2 \right).
\end{align*}
On the other hand, by definition of \mathcal{L}_2 and by using Young inequality, there exist $M'_1 > 0$ such that
\begin{equation}
(N' - M'_1)(1 + \xi^2) \dot{E}(\xi, t) \leq \mathcal{L}(\xi, t) \leq (N' + M'_1)(1 + \xi^2) \dot{E}(\xi, t).
\end{equation}
Choosing $N' > \max \left(M'_1, \frac{C(\varepsilon_1, \varepsilon_3, \lambda_1, \lambda_2)}{2\gamma \eta} \right)$ and by using
\begin{equation}
(1 + \xi^2) \geq \frac{\xi^2}{(1 + \xi^2 + \xi^4)^2},
\end{equation}
there exist $M'_2 > 0$, such that
\begin{equation}
\frac{d}{dt} \mathcal{L}(\xi, t) \leq -M'_2 \frac{\xi^4}{(1 + \xi^2 + \xi^4)^2} \dot{E}(\xi, t).
\end{equation}

From (52), we get
\begin{equation}
\frac{d}{dt} \mathcal{L}(\xi, t) \leq -\beta' \frac{\xi^4}{(1 + \xi^2)(1 + \xi^2 + \xi^4)^2} \mathcal{L}(\xi, t),
\end{equation}
where $\beta' = \frac{M'_2}{N + M'_1}$. By using Gronwall inequality, we conclude that
\begin{equation}
\mathcal{L}(\xi, t) \leq \mathcal{L}(\xi, 0) e^{-\beta' s^2(\xi)t}.
\end{equation}
The last inequality together with (52) leads to the second inequality of theorem, which completes the proof.

2.2. Thermoelastic Bresse system of type III. In this subsection, we establish decay rates for the Fourier image of the solutions of the thermoelastic Bresse system of Type III. Taking Fourier Transform in (2), we obtain the following ODE system:
\begin{enumerate}
\item[(56)] \(\rho_1 \ddot{\psi}_{tt} - i k \xi \left(i \xi \dot{\psi} - \dot{\psi} - l \dot{\omega} \right) - k_0 l \left(i \xi \dot{\omega} - l \dot{\psi} \right) + l \gamma \dot{\theta}_{tt} = 0 \quad \text{in } \mathbb{R} \times (0, \infty), \)
\item[(57)] \(\rho_2 \ddot{\psi}_{tt} + b k^2 \psi - k \left(i \xi \dot{\psi} - \dot{\psi} - l \dot{\omega} \right) + i \gamma \dot{\theta}_{tt} = 0 \quad \text{in } \mathbb{R} \times (0, \infty), \)
\item[(58)] \(\rho_1 \ddot{\omega}_{tt} - i k a \xi \left(i \xi \dot{\psi} - \dot{\psi} - l \dot{\omega} \right) - k l \left(i \xi \dot{\omega} - l \dot{\psi} \right) + i \gamma \dot{\theta}_{tt} = 0 \quad \text{in } \mathbb{R} \times (0, \infty), \)
\item[(59)] \(\dot{\theta}_{tt} + k_1 \xi^2 \dot{\theta} + a_1 \xi \dot{\theta}_t + m_1 \left(i \xi \omega - l \dot{\psi} \right)_t = 0 \quad \text{in } \mathbb{R} \times (0, \infty), \)
\item[(60)] \(\dot{\theta}_{tt} + k_2 \xi^2 \dot{\theta} + a_2 \xi \dot{\theta}_t + m_2 \psi \dot{\psi} = 0 \quad \text{in } \mathbb{R} \times (0, \infty). \)
\end{enumerate}
The energy functional associated to the above system is defined as:
\begin{equation}
\bar{E}(\xi, t) = \rho_1 |\dot{\phi}_t|^2 + \rho_2 |\psi_t|^2 + \rho_1 |\dot{\omega}_t|^2 + \frac{\gamma}{m_1} |\dot{\theta}_{tt}|^2 + \frac{k_1 a_1}{m_1} \xi^2 |\dot{\theta} |_t|^2 + \frac{\gamma}{m_2} |\dot{\theta}_{tt}|^2 + \frac{k_2 a_2}{m_2} \xi^2 |\dot{\theta} |_t|^2 + b |\xi|^2 |\dot{\psi}|^2,
\end{equation}
\begin{equation}
+ k |i \xi \dot{\psi} - \dot{\psi} - l \dot{\omega}|^2 + k_0 |i \xi \omega - l \dot{\psi}|^2
\end{equation}

Lemma 2.12. Let \bar{E} the energy functional associated to the system (56)-(60). Then,
\begin{equation}
\frac{d}{dt} \bar{E}(\xi, t) = -2 \gamma \xi^2 \left(\frac{a_1}{m_1} |\dot{\theta}_{tt}|^2 + \frac{a_2}{m_2} |\dot{\theta}_{tt}|^2 \right).
\end{equation}

Proof. Multiplying (56) by $\overline{\dot{\psi}}_t$, (57) by $\overline{\dot{\psi}}_t$, (58) by $\overline{\dot{\omega}}_t$, (59) by $\overline{\dot{\theta}}_{tt}$, (60) by $\overline{\dot{\theta}}_{tt}$, adding these inequalities and taking the real part, (62) follows.

In order to establish the main result of this subsection and based in the approach done in the previous subsection, we establish the following lemmas:

Lemma 2.13. The functional
\begin{equation}
J_1(\xi, t) = \text{Re} \left(i \rho_2 \xi \overline{\dot{\psi}}_t \overline{\dot{\theta}}_{tt} \right) + \text{Re} \left(i k_2 \rho_2 \xi^3 \overline{\dot{\psi}}_t \overline{\dot{\theta}}_{tt} \right),
\end{equation}
satisfies
\begin{equation}
\frac{d}{dt} J_1(\xi, t) + \frac{m_2 a_2}{2} \xi^2 |\psi_t|^2 \leq k_2 \rho_2 |\xi|^3 |\dot{\psi}| |\dot{\theta}_{tt}| + b |\xi|^3 |\dot{\psi}| |\dot{\theta}_{tt}| + k |\xi| |\dot{\theta}_{tt}| |i \xi \dot{\psi} - \dot{\psi} - l \dot{\omega}| + C_1 (1 + \xi^2) \xi^2 |\dot{\theta}_{tt}|^2,
\end{equation}
where C_1 is a positive constant.

Proof. Multiplying (60) by $-i \rho_2 \xi \overline{\dot{\psi}}_t$ and taking real part, we obtain
\begin{equation}
\frac{d}{dt} \text{Re} \left(-i \rho_2 \xi \overline{\dot{\psi}}_t \overline{\dot{\theta}}_{tt} \right) + \text{Re} \left(i \rho_2 \xi \overline{\dot{\psi}}_t \overline{\dot{\theta}}_{tt} \right) - \frac{d}{dt} \text{Re} \left(i k_2 \rho_2 \xi^3 \overline{\dot{\psi}}_t \overline{\dot{\theta}}_{tt} \right) + \text{Re} \left(i k_2 \rho_2 \xi^3 \overline{\dot{\psi}}_t \overline{\dot{\theta}}_{tt} \right) - \text{Re} \left(i \alpha_2 \rho_2 \xi^3 \overline{\dot{\psi}}_t \overline{\dot{\theta}}_{tt} \right) + m_2 \rho_2 \xi^2 |\psi_t|^2 = 0.
\end{equation}
By (57), it follows that
\[
\frac{d}{dt} \mathcal{J}_1(\xi, t) + m_2 \rho_2 \xi^2 |\tilde{\psi}_t|^2 \leq k_2 \rho_2 |\xi|^3 |\tilde{\psi}| |\tilde{\theta}_{2t}| + \alpha_2 \rho_2 |\tilde{\psi}_t||\tilde{\theta}_{2t}| + b |\xi|^3 |\tilde{\psi}| |\tilde{\theta}_{2t}| + k |\xi||\tilde{\theta}_{2t}| |i\xi \tilde{\psi} - \tilde{\psi} - l \tilde{\omega}| + \gamma \xi^2 |\tilde{\theta}_{2t}|^2.
\]
Applying Young inequality, (63) follows.

Lemma 2.14. The functional
\[
\mathcal{T}_1(\xi, t) = \text{Re} \left(-\rho_1 \varphi_t (i\xi \tilde{\omega} - l \tilde{\phi}) - \frac{\rho_1}{m_1} \tilde{\phi}_t \tilde{\theta}_{1t} \right),
\]
satisfies
\[
\frac{d}{dt} \mathcal{T}_1(\xi, t) + \frac{k_0}{2} |i\xi \tilde{\omega} - l \tilde{\phi}|^2 \leq \frac{\alpha_1 \rho_1}{m_1} |\xi|^3 |\tilde{\varphi}| |\tilde{\theta}_{1t}| - \text{Re}(ik\xi (i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega})(i\xi \tilde{\omega} - l \tilde{\phi}))
\]
\[
- \frac{k}{m_1} \text{Re}(i\xi \tilde{\varphi}_t (i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega})) + \frac{\rho_1 k_1}{m_1} \text{Re} \left(\xi^2 \tilde{\varphi}_t \tilde{\theta}_1 \right) + C_2 |\tilde{\theta}_{1t}|^2,
\]
where C_2 is a positive constant.

Proof. Multiplying (56) by $-(i\xi \tilde{\omega} - l \tilde{\phi})$ and taking real part, we have
\[
\frac{d}{dt} \text{Re}(-\rho_1 \varphi_t (i\xi \tilde{\omega} - l \tilde{\phi})) + \text{Re}(\rho_1 \varphi_t (i\xi \tilde{\omega} - l \tilde{\phi})) + \text{Re}(ik\xi \left(i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega} \right)(i\xi \tilde{\omega} - l \tilde{\phi}))
\]
\[
+ k_0 |i\xi \tilde{\omega} - l \tilde{\phi}|^2 - \text{Re}(l \gamma \tilde{\theta}_{1t} (i\xi \tilde{\omega} - l \tilde{\phi})) = 0,
\]
by using (59), we have
\[
\frac{d}{dt} \text{Re}(-\rho_1 \varphi_t (i\xi \tilde{\omega} - l \tilde{\phi})) = \frac{\rho_1}{m_1} \frac{d}{dt} \text{Re} \left(\varphi_t \tilde{\theta}_{1t} \right) + \frac{\rho_1 k_1}{m_1} \text{Re} \left(\xi^2 \tilde{\varphi}_t \tilde{\theta}_1 \right) - \frac{\alpha_1 \rho_1}{m_1} \text{Re} \left(\xi^2 \tilde{\varphi}_t \tilde{\theta}_1 \right)
\]
\[
+ \text{Re}(ik\xi \left(i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega} \right)(i\xi \tilde{\omega} - l \tilde{\phi})) + k_0 |i\xi \tilde{\omega} - l \tilde{\phi}|^2 - \text{Re}(l \gamma \tilde{\theta}_{1t} (i\xi \tilde{\omega} - l \tilde{\phi})) = 0.
\]
Note that, (56) implies that
\[
\frac{d}{dt} \mathcal{T}_1(\xi, t) + \frac{k}{m_1} \text{Re} \left(i\xi \tilde{\theta}_{1t} \left(i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega} \right) \right) + \text{Re}(ik\xi \left(i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega} \right)(i\xi \tilde{\omega} - l \tilde{\phi})) + k_0 |i\xi \tilde{\omega} - l \tilde{\phi}|^2
\]
\[
- \frac{\rho_1 k_1}{m_1} \text{Re} \left(\xi^2 \tilde{\varphi}_t \tilde{\theta}_1 \right) - \frac{\alpha_1 \rho_1}{m_1} \text{Re} \left(\xi^2 \tilde{\varphi}_t \tilde{\theta}_1 \right) \leq \frac{l \gamma}{m_1} |\tilde{\theta}_{1t}|^2 \left(\frac{k_0 l_1}{m_1} \right) |i\xi \tilde{\omega} - l \tilde{\phi}|.
\]
Applying Young inequality, we obtain (64).

Lemma 2.15. The functional
\[
\mathcal{T}_2(\xi, t) = \text{Re} \left(i \rho_1 \xi \tilde{\omega}_t (i\xi \tilde{\omega} - l \tilde{\phi}) + \frac{\rho_1}{m_1} i \xi \tilde{\omega}_t \tilde{\theta}_{1t} \right),
\]
satisfies
\[
\frac{d}{dt} \mathcal{T}_2(\xi, t) + \frac{k_0}{2} |i\xi \tilde{\omega} - l \tilde{\phi}|^2 \leq \frac{\alpha_1 \rho_1}{m_1} |\xi|^3 |\tilde{\omega}_t||\tilde{\theta}_{1t}| + \text{Re}(ik\xi (i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega})(i\xi \tilde{\omega} - l \tilde{\phi}))
\]
\[
+ \frac{k l}{m_1} \text{Re} \left(i\xi \tilde{\theta}_{1t} \left(i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega} \right) \right) - \frac{k_1 \rho_1}{m_1} \text{Re} \left(i \xi^3 \tilde{\omega}_t \tilde{\theta}_1 \right) + C_3 |\xi|^2 |\tilde{\theta}_{1t}|^2,
\]
where C_3 is a positive constant.

Proof. Multiplying (58) by $i\xi (i\xi \tilde{\omega} - l \tilde{\phi})$ and taking real part,
\[
\frac{d}{dt} \text{Re} \left(i \rho_1 \xi \tilde{\omega}_t (i\xi \tilde{\omega} - l \tilde{\phi}) \right) - \text{Re} \left(i \rho_1 \xi \tilde{\omega}_t (i\xi \tilde{\omega} - l \tilde{\phi}) \right) + k_0 |\xi|^2 |i\xi \tilde{\omega} - l \tilde{\phi}|^2
\]
\[
- \text{Re} \left(ik l \xi (i\xi \tilde{\varphi} - \tilde{\psi} - l \tilde{\omega})(i\xi \tilde{\omega} - l \tilde{\phi}) \right) - \text{Re} \left(\gamma \xi^2 \tilde{\theta}_{1t} (i\xi \tilde{\omega} - l \tilde{\phi}) \right) = 0.
\]
by using (59), we have

\[
\frac{d}{dt} \left(i \rho_1 \xi \omega_i (i \xi \omega - l \varphi) \right) + \frac{\rho_1}{m_1} \frac{d}{dt} \left(i \xi \omega_i \bar{\theta}_t \right) - \frac{\rho_1}{m_1} \left(i \xi \omega_i \bar{\theta}_t \right) + \rho_1 k_1 \left(i \xi^2 \omega_i \bar{\theta}_t \right)
\]

\[
+ \frac{\alpha_1 \rho_1}{m_1} \left(i \xi^2 \omega_i \bar{\theta}_t \right) + k_0 |\xi|^2 |i \xi \omega - l \varphi|^2 - \text{Re} \left(i k \xi \left(i \xi \varphi - \bar{\varphi} i \xi \omega - l \varphi \right) \right) - \text{Re} \left(\gamma \xi^2 \bar{\theta}_t \left(i \xi \omega - l \varphi \right) \right) = 0.
\]

Note that, (58) implies that

\[
\frac{d}{dt} \mathcal{J}_2(\xi, t) - \frac{k l}{m_1} \text{Re} \left(i \xi \bar{\theta}_t \left(i \xi \varphi - \bar{\varphi} i \xi \omega - l \bar{\omega} \right) \right) - \text{Re} \left(i k l \xi \left(i \xi \varphi - \bar{\varphi} i \xi \omega - l \bar{\omega} \right) \right) + k_0 \xi^2 |i \xi \omega - l \phi|^2
\]

\[
+ \frac{k_1 \rho_1}{m_1} \text{Re} \left(i \xi^2 \omega_i \bar{\theta}_t \right) + \frac{\alpha_1 \rho_1}{m_1} \text{Re} \left(i \xi^3 \omega_i \bar{\theta}_t \right) \leq \frac{\gamma_2}{m_1} |\bar{\theta}_t|^2 + \left(\gamma + \frac{k_0}{m_1} \right) \xi^2 |\bar{\theta}_t||i \xi \omega - l \phi|.
\]

Applying Young inequality, we obtain (65).

Lemma 2.16. Consider the functional

\[
\mathcal{J}_2(\xi, t) := \mathcal{L}_1(\xi, t) + \mathcal{L}_2(\xi, t) + \frac{\rho_1 k_1}{m_1} \text{Re} \left(\xi^2 \bar{\theta}_t \left(i \xi \omega - l \varphi \right) \right).
\]

Then, there exist \(\delta > 0 \) such that

\[
\frac{d}{dt} \mathcal{J}_2(\xi, t) + k_0 \delta |\xi \omega - l \phi|^2 \leq \frac{\alpha_1 \rho_1}{m_1} |\xi|^2 |\dot{\varphi}| \|\dot{\bar{\theta}}_t\| + \frac{\alpha_1 \rho_1}{m_1} |\xi|^2 |\bar{\omega}| \|\dot{\bar{\theta}}_t\| + C_4(1 + \xi^2) |\dot{\bar{\theta}}_t|^2
\]

where \(C_4 \) is a positive constant.

Proof. By Lemma (2.14) and Lemma (2.15),

\[
\frac{d}{dt} \mathcal{J}_2(\xi, t) + \frac{k_0}{2} \left(2 + \xi^2 \right) |\xi \omega - l \phi|^2 \leq \frac{\rho_1 l a_1}{m_1} |\xi|^2 |\dot{\varphi}| \|\dot{\bar{\theta}}_t\| + \frac{\rho_1 k_1}{m_1} \xi^2 |\dot{\bar{\theta}}_t||i \xi \omega - l \phi| + \frac{\alpha_1 \rho_1}{m_1} |\xi|^2 |\bar{\omega}| \|\dot{\bar{\theta}}_t\|
\]

\[
+ C_4(1 + \xi^2) |\dot{\bar{\theta}}_t|^2.
\]

Note that there exist \(\delta > 0 \) such that \(4 \delta \leq \frac{\rho_1 \xi^2}{1 + \xi^2} \). Thus,

\[
\frac{d}{dt} \mathcal{J}_2(\xi, t) + 2 k_0 \delta (1 + \xi^2) |\xi \omega - l \phi|^2 \leq \frac{\rho_1 l a_1}{m_1} |\xi|^2 |\dot{\varphi}| \|\dot{\bar{\theta}}_t\| + \frac{\rho_1 k_1}{m_1} (1 + \xi^2) |\dot{\bar{\theta}}_t||i \xi \omega - l \phi| + \frac{\alpha_1 \rho_1}{m_1} |\xi|^2 |\bar{\omega}| \|\dot{\bar{\theta}}_t\|
\]

\[
+ C_4(1 + \xi^2) |\dot{\bar{\theta}}_t|^2.
\]

Applying Young inequality, (66) follows.

Lemma 2.17. Consider the functional

\[
\mathcal{J}_3(\xi, t) = \text{Re} \left(- \rho_2 \bar{\psi}_t \left(i \xi \bar{\varphi} - \bar{\psi} - i \omega \right) - i \frac{\rho_1 b}{k} \xi \bar{\psi}_t \bar{\varphi}_t \right).
\]

If \(\frac{\alpha_1}{\rho_2} = \frac{k}{b} \) and \(k = k_0 \), then

\[
\frac{d}{dt} \mathcal{J}_3(\xi, t) + \frac{k}{2} |i \xi \bar{\varphi} - \bar{\psi} - i \omega|^2 \leq \rho_2 |\psi_t|^2 + \rho_2 m_1 \text{Re} \left(\bar{\psi}_t \bar{\omega} \right) - b \text{Re} \left(i \xi \bar{\psi} (i \xi \bar{\omega} - i \bar{\omega}) \right) + \frac{b \gamma}{k} |\xi||\bar{\psi}||\dot{\bar{\theta}}_t| + C_5 |\xi|^2 |\dot{\bar{\theta}}_2|^2
\]

Moreover, if \(\frac{\alpha_1}{\rho_2} \neq \frac{k}{b} \) or \(k \neq k_0 \), then

\[
\frac{d}{dt} \mathcal{J}_3(\xi, t) + \frac{k}{2} |i \xi \bar{\varphi} - \bar{\psi} - i \omega|^2 \leq \rho_2 |\psi_t|^2 + \rho_2 m_1 \text{Re} \left(\bar{\psi}_t \bar{\omega} \right) + \left(\rho_2 - \frac{b \rho_1}{k} \right) \text{Re} \left(i \xi \psi_i \bar{\varphi}_t \right)
\]

\[
- \frac{k_0 b \rho_1}{k} \text{Re} \left(i \xi \psi (i \xi \omega - l \bar{\omega}) \right) + \frac{b \gamma}{k} |\xi||\bar{\psi}||\dot{\bar{\theta}}_t| + C_5 |\xi|^2 |\dot{\bar{\theta}}_2|^2,
\]

where \(C_5 \) is a positive constant.

Proof. Proceeding as proof of Lemma 2.6, we obtain (68) and (69).
Lemma 2.18. Let $0 < \varepsilon_1 < \frac{\rho_l^2}{2\rho_1}$ and consider the functional
\[
\mathcal{J}_4(\xi, t) = \text{Re} \left(\frac{\rho_l^2}{\rho_1} \tilde{\psi}_t \psi - \rho_l \tilde{\omega}_t \psi \right).
\]
If $\frac{\rho_1}{\rho_2} = \frac{k}{\varepsilon_1}$ and $k = k_0$, then
\[
\frac{d}{dt} \mathcal{J}_4(\xi, t) + b \left(\frac{\rho_l^2}{\rho_1} - \frac{\varepsilon_1}{2} \right) \xi^2 |\psi_t|^2 \leq \frac{\rho_l^2}{\rho_1} |\tilde{\psi}_t|^2 - \rho_l b \text{Re} \left(\tilde{\omega}_t \psi \right) + b \text{Re} \left(i \xi \tilde{\psi} (i \xi \omega - l \tilde{\phi}) \right) + C(\varepsilon_1) \left(|\tilde{\theta}_{tt}|^2 + |\tilde{\theta}_{ttt}|^2 \right)
\]
Moreover, if $\frac{\rho_1}{\rho_2} \neq \frac{k}{\varepsilon_1}$ or $k \neq k_0$, then
\[
\frac{d}{dt} \mathcal{J}_4(\xi, t) + b \left(\frac{\rho_l^2}{\rho_1} - \frac{\varepsilon_1}{2} \right) \xi^2 |\psi_t|^2 \leq \frac{\rho_l^2}{\rho_1} |\tilde{\psi}_t|^2 - \rho_l b \text{Re} \left(\tilde{\omega}_t \psi \right) + \frac{\rho_l b k}{\rho_1} \text{Re} \left(i \xi \tilde{\psi} (i \xi \omega - l \tilde{\phi}) \right) + C(\varepsilon_1) \left(|\tilde{\theta}_{tt}|^2 + |\tilde{\theta}_{ttt}|^2 \right),
\]
where $C(\varepsilon_1)$ is a positive constant.

Proof. Proceeding as proof of Lemma 2.7, we obtain (70) and (71).

Lemma 2.19. Let $0 < \varepsilon_1 < \frac{\rho_l^2}{2\rho_1}$ and consider $\mathcal{H}(\xi, t) = \mathcal{J}_3(\xi, t) + \mathcal{J}_4(\xi, t)$, If $\frac{\rho_1}{\rho_2} = \frac{k}{\varepsilon_1}$ and $k = k_0$, then
\[
\frac{d}{dt} \mathcal{H}(\xi, t) + b \left(\frac{\rho_l^2}{\rho_1} - \varepsilon_1 \right) \xi^2 |\psi_t|^2 + \frac{k}{2} |i \xi \tilde{\phi} - \psi - l \tilde{\omega}|^2 \leq \rho_l s_1 |\tilde{\psi}_t|^2 + C(\varepsilon_1) |\tilde{\theta}_{ttt}|^2 + C(\varepsilon_1)(1 + \xi^2) |\tilde{\theta}_{ttt}|^2
\]
Moreover, if $\frac{\rho_1}{\rho_2} \neq \frac{k}{\varepsilon_1}$ or $k \neq k_0$, then
\[
\frac{d}{dt} \mathcal{H}(\xi, t) + b \left(\frac{\rho_l^2}{\rho_1} - \varepsilon_1 \right) \xi^2 |\psi_t|^2 + \frac{k}{2} |i \xi \tilde{\phi} - \psi - l \tilde{\omega}|^2 \leq \rho_l s_1 |\tilde{\psi}_t|^2 + \rho_l s_0 |\tilde{\psi}_t|^2 + C(\varepsilon_1) |\tilde{\theta}_{ttt}|^2 + C(\varepsilon_1)(1 + \xi^2) |\tilde{\theta}_{ttt}|^2,
\]
where $s_1 = \frac{\rho_l^2}{\rho_1} + 1$.

Proof. It follows from Lemmas 2.17 and 2.18, applying Young inequality.

Lemma 2.20. Consider the functional
\[
\mathcal{H}(\xi, t) = \rho_l \text{Re} \left((i \xi \tilde{\phi} - \psi - l \tilde{\omega}) \tilde{\omega}_t \right) + \rho_l \text{Re} \left((i \xi \omega - l \tilde{\phi}) \tilde{\psi}_t \right).
\]
If $\frac{\rho_1}{\rho_2} = \frac{k}{\varepsilon_1}$ and $k = k_0$, then
\[
\frac{d}{dt} \mathcal{H}(\xi, t) + \rho_l |\tilde{\phi}_t|^2 + \frac{\rho_l l}{2} |\tilde{\omega}_t|^2 \leq \rho_l s_1 |\tilde{\psi}_t|^2 + \frac{3k}{2} |i \xi \tilde{\phi} - \psi - l \tilde{\omega}|^2 + \frac{3k l}{2} |i \xi \omega - l \tilde{\phi}|^2 + C_0 (1 + \xi^2) |\tilde{\theta}_{ttt}|^2
\]
Moreover, if $\frac{\rho_1}{\rho_2} \neq \frac{k}{\varepsilon_1}$ or $k \neq k_0$, then
\[
\frac{d}{dt} \mathcal{H}(\xi, t) + \rho_l |\tilde{\phi}_t|^2 + \frac{\rho_l l}{2} |\tilde{\omega}_t|^2 \leq \rho_l s_1 |\tilde{\psi}_t|^2 + C_1(k, k_0) |i \xi \tilde{\phi} - \psi - l \tilde{\omega}|^2 + C_2(k, k_0)(1 + \xi^2) |i \xi \omega - l \tilde{\phi}|^2 + C_0 (1 + \xi^2) |\tilde{\theta}_{ttt}|^2
\]
where $C_1(k, k_0), C_0$ are positive constants.

Proof. Proceeding as proof of Lemma 2.9, we obtain (72) and (73).

Lemma 2.21. The functional
\[
\mathcal{S}(\xi, t) = \frac{\gamma}{m_1} \text{Re} \left(\xi^2 \tilde{\theta}_t \tilde{\theta}_1 \right) + \frac{\gamma}{m_2} \text{Re} \left(\xi^2 \tilde{\theta}_t \tilde{\theta}_2 \right) + \frac{\gamma}{2} \xi^4 \left(\frac{\alpha_1}{m_1} |\tilde{\theta}_{tt}|^2 + \frac{\alpha_2}{m_2} |\tilde{\theta}_{ttt}|^2 \right) + \gamma \text{Re} \left(i \xi^3 \tilde{\psi}_2 + \xi^2 \tilde{\theta}_1 (i \xi \omega - l \tilde{\phi}) \right)
\]
satisfies
\[
\frac{d}{dt} \mathcal{S}(\xi, t) + \frac{k_1}{m_1} \gamma \xi^4 |\tilde{\theta}_t|^2 + \frac{k_2}{m_2} \gamma \xi^4 |\tilde{\theta}_2|^2 \leq \gamma |\xi^2| |\tilde{\theta}_{ttt}| |i \xi \omega - l \tilde{\phi}| + \gamma |\xi^3| |\tilde{\psi}_2| |\tilde{\theta}_{ttt}| + \frac{\gamma}{m_1} \xi^2 |\tilde{\theta}_{ttt}|^2 + \frac{\gamma}{m_2} \xi^2 |\tilde{\theta}_{ttt}|^2
\]
Proof. Multiplying (59) by $\frac{\gamma}{m_1}\xi^2\bar{\theta}_1$ and taking real part, we obtain

$$
\frac{d}{dt}\left\{\frac{\gamma}{m_1}Re\left(\xi^2\bar{\theta}_1\right) + \frac{\alpha_1\gamma}{2m_1}\xi^4|\bar{\theta}_1|^2 + \gamma Re\left(\xi^2\bar{\theta}_1(i\xi\dot{\omega} - l\phi)\right)\right\} + k_1\frac{\gamma}{m_1}\xi^4|\bar{\theta}_1|^2 \\
\leq \frac{\gamma}{m_1}\xi^2|\bar{\theta}_1|^2 + \gamma\xi^2|\bar{\theta}_1||i\xi\dot{\omega} - l\phi|.
$$

(75)

Moreover, multiplying (60) by $\frac{\gamma}{m_2}\xi^2\bar{\theta}_2$ and taking real part,

$$
\frac{d}{dt}\left\{\frac{\gamma}{m_2}Re\left(\xi^2\bar{\theta}_2\right) + \frac{\alpha_2\gamma}{2m_2}\xi^4|\bar{\theta}_2|^2 + \gamma Re\left(\xi^2\bar{\theta}_2(i\xi\dot{\psi} - l\phi)\right)\right\} + k_2\frac{\gamma}{m_2}\xi^4|\bar{\theta}_2|^2 \leq \frac{\gamma}{m_2}\xi^2|\bar{\theta}_2|^2 + \gamma\xi^2|\bar{\theta}_2||i\xi\dot{\psi} - l\phi|.
$$

(76)

Adding (75) and (76), we obtain (74)

Now, consider the functional

$$
L_2(\xi, t) = \left\{J_1(\xi, t) + \varepsilon_2\xi^2i\dot{\omega}(\xi, t) + \xi^2\dot{\Xi}(\xi, t) + \varepsilon_3\xi^2i\dot{\Xi}(\xi, t) + S(\xi, t), \right. \\
\left. \frac{\varepsilon_2}{(1 + \xi^2 + \varepsilon_2)}\left(\lambda_1\varepsilon_3J_1 + \frac{1}{1 + \xi^2 + \varepsilon_2}\left(\varepsilon_3\lambda_2\xi^2i\dot{\omega} + \xi^2\dot{\Xi} + \varepsilon_3\xi^2\dot{\Xi} + S\right)\right), \right. \right. \right.
$$

if $\frac{\rho_2}{\rho_2} = \frac{\rho_1}{\rho_1}$, and $k = k_0$,

where $\lambda_1, \lambda_2, \varepsilon, \varepsilon_3$ are positive constants to be fixed later.

Proposition 2.22. There exist constants $M, M' > 0$ such that if $\frac{\rho_2}{\rho_2} = \frac{\rho_1}{\rho_1}$ and $k = k_0$, then

$$
\frac{d}{dt}L_2(\xi, t) + M\xi^2\left\{b\varepsilon_2|\dot{\theta}_2|^2 + k_i|\dot{\theta}_2|^2 - \psi - l\omega|^2 + \rho_2|\dot{\theta}_1|^2 + k_0|\dot{\theta}_1|^2 + |\dot{\theta}_1|^2 + |\dot{\theta}_2|^2 + \rho_1|\dot{\theta}_1|^2 + \rho_1|\dot{\theta}_2|^2
$$

$$
+ \frac{k_1}{m_1}\xi^2|\dot{\theta}_1|^2 + \frac{k_2}{m_2}\xi^2|\dot{\theta}_2|^2\right\} \leq C(\varepsilon_1, \varepsilon_2, \varepsilon_3)(1 + \varepsilon^2 + \varepsilon^4 + \varepsilon^6)|\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \varepsilon^2 + \varepsilon^4)|\dot{\theta}_2|^2.
$$

(78)

Moreover, if $\frac{\rho_2}{\rho_2} \neq \frac{\rho_1}{\rho_1}$ or $k \neq k_0$, we obtain

$$
\frac{d}{dt}L_2(\xi, t) + M'\frac{\xi^4}{(1 + \varepsilon^2 + \varepsilon^4)2}\left\{b\varepsilon_2|\dot{\theta}_2|^2 + k_i|\dot{\theta}_2|^2 - \psi - l\omega|^2 + \rho_2|\dot{\theta}_1|^2 + k_0|\dot{\theta}_1|^2 + |\dot{\theta}_1|^2 + |\dot{\theta}_2|^2 + \rho_1|\dot{\theta}_1|^2 + \rho_1|\dot{\theta}_2|^2
$$

$$
+ \frac{k_1}{m_1}\xi^2|\dot{\theta}_1|^2 + \frac{k_2}{m_2}\xi^2|\dot{\theta}_2|^2\right\} \leq C(\varepsilon_1, \varepsilon_2, \varepsilon_3)(1 + \varepsilon^2 + \varepsilon^4 + \varepsilon^6)|\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \varepsilon^2 + \varepsilon^4)|\dot{\theta}_2|^2.
$$

(79)

Proof. We can prove (78) and (79) following the ideas used on the proof of Proposition 2.10, thus we omit some details. First, we suppose that $\frac{\rho_2}{\rho_2} = \frac{\rho_1}{\rho_1}$ and $k = k_0$. By Lemmas 2.13, 2.19, 2.16 and 2.20, it follows that

$$
\frac{d}{dt}\{L_2(\xi, t) - S(\xi, t)\} + \left(\frac{\rho_2^2}{\rho_1} - 3\varepsilon_1\right)\varepsilon_2b\xi^4|\dot{\theta}_2|^2 + \left(\frac{\varepsilon_2}{4} - \frac{3\delta}{2}\varepsilon_3\right)\xi^2|\dot{\theta}_2|^2 - \psi - l\omega|^2
$$

$$
+ \left(\frac{m}{2} - s_1\varepsilon_2 - \frac{k}{2\varepsilon_3}\right)\rho_2\xi^2|\dot{\theta}_2|^2 + \left(\frac{3\delta}{2} - \frac{3\delta}{2}\varepsilon_3\right)k_0\xi^2|\dot{\theta}_1|^2 + \rho_1|\dot{\theta}_1|^2 + \rho_1|\dot{\theta}_2|^2
$$

$$
+ \frac{k_1}{m_1}\xi^2|\dot{\theta}_1|^2 + \frac{k_2}{m_2}\xi^2|\dot{\theta}_2|^2 \leq C(\varepsilon_1, \varepsilon_2, \varepsilon_3)(1 + \varepsilon^2 + \varepsilon^4 + \varepsilon^6)|\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \varepsilon^2 + \varepsilon^4)|\dot{\theta}_2|^2.
$$

Adding $S(\xi, t)$ in the above inequality, applying Lemma 2.21 and Young inequality, we obtain

$$
\frac{d}{dt}L_2(\xi, t) + \left(\frac{\rho_2^2}{\rho_1} - 3\varepsilon_1\right)\varepsilon_2b\xi^4|\dot{\theta}_2|^2 + \left(\frac{\varepsilon_2}{4} - \frac{3\delta}{2}\varepsilon_3\right)\xi^2|\dot{\theta}_2|^2 - \psi - l\omega|^2
$$

$$
+ \left(\frac{m}{2} - s_1\varepsilon_2 - \frac{k}{2\varepsilon_3}\right)\rho_2\xi^2|\dot{\theta}_2|^2 + \left(\frac{3\delta}{2} - \frac{3\delta}{2}\varepsilon_3\right)k_0\xi^2|\dot{\theta}_1|^2 + \rho_1|\dot{\theta}_1|^2 + \rho_1|\dot{\theta}_2|^2
$$

$$
+ \frac{k_1}{m_1}\xi^2|\dot{\theta}_1|^2 + \frac{k_2}{m_2}\xi^2|\dot{\theta}_2|^2 \leq C(\varepsilon_1, \varepsilon_2, \varepsilon_3)(1 + \varepsilon^2 + \varepsilon^4 + \varepsilon^6)|\dot{\theta}_1|^2 + C(\varepsilon_1, \varepsilon_2)(1 + \varepsilon^2 + \varepsilon^4)|\dot{\theta}_2|^2.
$$

We choose our constants as follows:

$$\varepsilon_1 < \frac{\rho_2^2}{3\rho_1}, \quad \varepsilon_2 < \frac{m_2}{2s_1} \quad \text{and} \quad \varepsilon_3 < \min\left\{\frac{\delta}{2l}, \frac{2bl}{k}\left(\frac{m_2}{2} - s_1\varepsilon_2\right)\right\}$$

We choose our constants as follows:
Consequently, we deduce that there exist $M > 0$, such that (78) holds.

Second, we assume that $\frac{\rho_1}{\rho_2} \neq \delta$ and $k \neq k_0$. By Lemmas 2.13, 2.19, the estimate (67) in Lemma 2.16, Lemma 2.20, adding these inequalities and by using Young inequality, we obtain

$$
\frac{d}{dt} \left\{ L_2(\xi, t) - \frac{\xi^2 S(\xi, t)}{(1 + \xi^2 + \xi^4)^2} \right\} + \left(\frac{\rho_1^4}{\rho_2^4} - 3 \varepsilon_1 \right) \lambda_2 \varepsilon_3 b \varepsilon_4 \left(\frac{1 + \xi^2 + \xi^4}{1 + \xi^2 + \xi^4} \right)^2 |\hat{\varphi}|^2 + \frac{\rho_1 \varepsilon_3 l^4}{4(1 + \xi^2 + \xi^4)^2} |\hat{\omega}_t |^2
$$

$$
+ (\lambda_1 m_2^2 - C(\varepsilon_4, \lambda_2) - \frac{\rho_1^4}{\rho_2^4}) \frac{\rho_2 \varepsilon_3 \xi}{(1 + \xi^2 + \xi^4)^2} |\hat{\varphi}|^2 + \frac{\rho_1 \varepsilon_3 l^4}{4(1 + \xi^2 + \xi^4)^2} |\hat{\omega}_t |^2
$$

$$
+ (\delta - C(k, k_0, \varepsilon_1, \lambda_2) |\hat{\xi}|^2 - l |\hat{\varphi}| + \left(\frac{l}{2} - \frac{\varepsilon_4 \lambda_2}{\rho_1} \right) \frac{\rho_1 \varepsilon_3 l^4}{(1 + \xi^2 + \xi^4)^2} |\hat{\varphi}|^2
$$

$$
\leq C(\varepsilon_1, \varepsilon_3, \lambda_1, \lambda_2) (1 + \xi^2) \xi^2 \left(|\hat{\omega}_t |^2 + |\theta_2 |^2 \right).
$$

We choose our constants as follows:

$$
\varepsilon_1 < \frac{\rho_1^4}{4 \rho_2^4}, \quad \lambda_2 > 4C(k, k_0), \quad \varepsilon_4 < \frac{\rho_1 l}{2 \lambda_2}, \quad \lambda_1 > \frac{2(\rho_1 + C(\varepsilon_4, \lambda_2) \rho_2)}{m_2 \rho_2} \quad \text{and} \quad \varepsilon_3 < \frac{\delta}{C(k, k_0, \varepsilon_2, \lambda_2)}.
$$

Consequently, by using (45), we deduce that there exist $M' > 0$, such that (79) holds.

Theorem 2.23. For any $t \geq 0$ and $\xi \in \mathbb{R}$, we obtain the following decay rates,

$$
\hat{E}(\xi, t) \leq \begin{cases}
C \hat{E}(\xi, 0) e^{-\delta s_1(\xi) t}, & \text{if } \frac{\rho_1}{\rho_2} = \frac{k}{b} \text{ and } k = k_0, \\
C' \hat{E}(\xi, 0) e^{-\beta' s_2(\xi) t}, & \text{if } \frac{\rho_1}{\rho_2} \neq \frac{k}{b} \text{ or } k \neq k_0,
\end{cases}
$$

where C, β, β' are positive constants and

$$
s_1(\xi) = \frac{\xi^4}{(1 + \xi^2 + \xi^4 + \xi^6 + \xi^4)}, \quad s_2(\xi) = \frac{\xi^4}{(1 + \xi^2 + \xi^4 + \xi^6 + \xi^4)}.
$$

Proof. We prove (80), by Proposition 2.22 and using the same approach done in the proof of Theorem 2.11. Thus, we omit the details. ☐

3. The main result

In this section, we establish decay estimates of the solutions to the systems (1) and (2). For Bresse system (1), thermoelasticity of Type II, we consider the vector solution:

$$
V_1 := \left(\frac{1}{\rho_1} \varphi_t, \frac{1}{\rho_2} \psi_t, \frac{1}{\rho_2^2} \omega_t, \right) \left(\frac{\gamma}{m_1} \right)^{\frac{1}{2}} \theta_1, \left(\frac{\gamma}{m_2} \right)^{\frac{1}{2}} \theta_2, b^2 \psi_x, k^2 (\varphi_x - \psi - l \omega_x), k^2 (\omega_x - l \varphi)
$$

and for Bresse system (2), thermoelasticity of type III,

$$
V_2 := \left(\frac{1}{\rho_1} \varphi_t, \frac{1}{\rho_2} \psi_t, \frac{1}{\rho_2^2} \omega_t, \right) \left(\frac{\lambda_1 m_2}{\rho_1} \right)^{\frac{1}{2}} \theta_1, \left(\frac{\lambda_1 m_2}{m_2} \right)^{\frac{1}{2}} \theta_2, b^2 \psi_x, k^2 (\varphi_x - \psi - l \omega_x), k^2 (\omega_x - l \varphi).
$$
Note that
\begin{equation}
\dot{E}(\xi, t) = |V_1(\xi, t)|^2, \quad \dot{\dot{E}}(\xi, t) = |V_2(\xi, t)|^2,
\end{equation}
where \(\dot{E} \) and \(\dot{\dot{E}} \) are defined in (18) and (61), respectively.

We are now in position to prove our main result.

Proof of Theorem 1.1. Applying the Plancherel identity and (83), we have
\begin{equation}
\|\partial_x^k \partial_t V_1(t)\|_{L^2(\mathbb{R})}^2 = \|\tilde{(i\xi)^k \tilde{V}_1(t)}\|_{L^2(\mathbb{R})}^2 = \int_{\mathbb{R}} |\xi|^{2k} \tilde{E}(\xi, t)^2 d\xi,
\end{equation}
and
\begin{equation}
\|\partial_x^k \partial_t V_2(t)\|_{L^2(\mathbb{R})}^2 = \|\tilde{(i\xi)^k \tilde{V}_2(t)}\|_{L^2(\mathbb{R})}^2 = \int_{\mathbb{R}} |\xi|^{2k} \tilde{\dot{E}}(\xi, t)^2 d\xi.
\end{equation}

By Theorems 2.11 and 2.23, it yields that
\begin{equation}
\|\partial_x^k \partial_t V_j(t)\|_{L^2(\mathbb{R})}^2 \leq C \int_{\mathbb{R}} |\xi|^{2k} e^{-\beta s_j(\xi)t} \tilde{V}_j(0, \xi)^2 d\xi \leq C \int_{|\xi| \leq 1} |\xi|^{2k} e^{-\beta s_j(\xi)t} \tilde{V}_j^2(0, \xi) d\xi + C \int_{|\xi| \geq 1} |\xi|^{2k} e^{-\beta s_j(\xi)t} \tilde{V}_j^2(0, \xi) d\xi
= I_1 + I_2, \quad (i, j = 1, 2).
\end{equation}
It is not difficult to see that if \(\frac{\rho_1}{\rho_2} = \frac{k}{b} \) and \(k = k_0 \), the function \(s_1(\xi) \) satisfies
\begin{equation}
\left\{ \begin{array}{ll}
 s_1(\xi) \geq \frac{1}{3} \xi^4 & \text{if } |\xi| \leq 1 \\
 s_1(\xi) \geq \frac{1}{5} \xi^{-4} & \text{if } |\xi| \geq 1
\end{array} \right.
\end{equation}
Thus, we estimate \(I_1 \) as follows,
\begin{equation}
I_1 \leq C \|\tilde{V}_j^0\|_{L^\infty}^2 \int_{|\xi| \leq 1} |\xi|^{2k} e^{-\frac{4}{5} \xi^4} d\xi \leq C_1 \|\tilde{V}_j^0\|_{L^\infty}^2 (1 + t)^{-\frac{1}{4}(1 + 2k)} \leq C_1 (1 + t)^{-\frac{1}{4}(1 + 2k)} \|\tilde{V}_j^0\|_{L^1}, \quad j = 1, 2.
\end{equation}
On the other hand, by using the second inequality in (84), we obtain
\begin{equation}
I_2 \leq C \int_{|\xi| \geq 1} |\xi|^{2k} e^{-\frac{4}{5} \xi^4} \tilde{V}_j^2(0, \xi) d\xi \leq C \sup_{|\xi| \geq 1} \{|\xi|^{2(\xi^4)} \tilde{V}_j^2(0, \xi)\} \int_{\mathbb{R}} |\xi|^{2(k+1)} \tilde{V}_j^2(0, \xi) d\xi
\leq C_2 (1 + t)^{-\frac{1}{4}} \|\partial_x^{k+1} \tilde{V}_j^0\|_{L^2}^2, \quad j = 1, 2.
\end{equation}
Combining the estimates of \(I_1 \) and \(I_2 \), we obtain (5). On the other hand, if \(\frac{\rho_1}{\rho_2} \neq \frac{k}{b} \) or \(k \neq k_0 \), the function \(s_2(\xi) \) satisfies
\begin{equation}
\left\{ \begin{array}{ll}
 s_2(\xi) \geq \frac{1}{3} \xi^4 & \text{if } |\xi| \leq 1 \\
 s_2(\xi) \geq \frac{1}{18} \xi^{-6} & \text{if } |\xi| \geq 1
\end{array} \right.
\end{equation}
Thus, we estimate \(I_1 \) as following,
\begin{equation}
I_1 \leq C \|\tilde{V}_j^0\|_{L^\infty}^2 \int_{|\xi| \leq 1} |\xi|^{2k} e^{-\frac{4}{5} \xi^4} d\xi \leq C_1 \|\tilde{V}_j^0\|_{L^\infty}^2 (1 + t)^{-\frac{1}{4}(1 + 2k)} \leq C_1 (1 + t)^{-\frac{1}{4}(1 + 2k)} \|\tilde{V}_j^0\|_{L^1}.
\end{equation}
Moreover, by using the second inequality in (86), it follows that
\begin{equation}
I_2 \leq C \int_{|\xi| \geq 1} |\xi|^{2k} e^{-\frac{4}{5} \xi^4} \tilde{V}_j^2(0, \xi) d\xi \leq C \sup_{|\xi| \geq 1} \{|\xi|^{2(\xi^4)} \tilde{V}_j^2(0, \xi)\} \int_{\mathbb{R}} |\xi|^{2(k+1)} \tilde{V}_j^2(0, \xi) d\xi
\leq C_2 (1 + t)^{-\frac{1}{4}} \|\partial_x^{k+1} \tilde{V}_j^0\|_{L^2}^2.
\end{equation}
Combining the estimates of \(I_1 \) and \(I_2 \), we obtain (6). □
References

[1] M. Alves, L. Fatori, J. Silva, and R. Monteiro. Stability and optimality of decay rate for a weakly dissipative bresse system. *Mathematical Methods in the Applied Sciences*, 2014.

[2] F. A. Boussoûira, J. E. M. Rivera, and D. d. S. A. Júnior. Stability to weak dissipative bresse system. *Journal of Mathematical Analysis and Applications*, 374(2):381–398, 2011.

[3] D. Chandrasekarahaiy. Hyperbolic thermoelasticity: a review of recent literature. *Applied Mechanics Reviews*, 51(12):705–729, 1998.

[4] L. H. Fatori and R. N. Monteiro. The optimal decay rate for a weak dissipative bresse system. *Applied Mathematics Letters*, 25(3):300–304, 2012.

[5] L. Djoouamai and B. Said-Houari. Decay property of regularity-loss type for solutions in elastic solids with voids. *J. Math. Anal. Appl.*, 409(2):705715, 2014.

[6] R. Duan. Global smooth flows for the compressible Euler-Maxwell system. The relaxation case. *J. Hyperbolic Differ. Equ.*, 8(2):375413, 2011.

[7] L. H. Fatori, J. Muñoz Rivera, and R. Nunes Monteiro. Energy decay to timoshenko’s system with thermoelasticity of type iii. *Asymptotic Analysis*, 86(3):227–247, 2014.

[8] L. H. Fatori and J. E. M. Rivera. Rates of decay to weak thermoelastic bresse system. *IMA journal of applied mathematics*, 75(6):881–904, 2010.

[9] A. Green and P. Naghdi. A re-examination of the basic postulates of thermomechanics. *Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences*, 432(1885):171–194, 1991.

[10] A. Ghoul, M. Khenissi and B. Said-Houari, On the stability of the Bresse system with frictional damping. *arXiv preprint arXiv:1610.05500*, 2016.

[11] A. Green and P. Naghdi. On undamped heat waves in an elastic solid. *Journal of Thermal Stresses*, 15(2):253–264, 1992.

[12] K. Ide, K. Haramoto and S. Kawashima. Decay property of regularity-loss type for dissipative Timoshenko system. *Math. Models Methods Appl. Sci.*, 18 (5) 647-667, 2008.

[13] T. Hosono and S. Kawashima. Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system. *Math. Mod. Meth. Appl. Sci.*, 16:18391859, 2006.

[14] K. Ide and S. Kawashima. Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system. *Math. Models Methods Appl. Sci.*, 18 (7) 1001-1025, 2008.

[15] J.E. Lagnese, G. Leugering and E.J.P.G. Schmidt. Modelling of dynamic networks of thin thermoelastic beams. *Math. Methods Appl. Sci.*, 16(5):327–358, 1993.

[16] Z. Liu and B. Rao. Energy decay rate of the thermoelastic bresse system. *Zeitschrift für angewandte Mathematik und Physik*, 60(1):54–69, 2009.

[17] S. A. Messaoudi and B. Said-Houari. Energy decay in a timoshenko-type system of thermoelasticity of type iii. *Journal of Mathematical Analysis and Applications*, 348(1):298–307, 2008.

[18] S. A. Messaoudi, B. Said-Houari, et al. Energy decay in a timoshenko-type system with history in thermoelasticity of type iii. *Advances in Differential Equations*, 14(3/4):375–400, 2009.

[19] R. Quintanilla and R. Racke. Stability for thermoelasticity of type iii. *Discrete and Continuous Dynamical Systems B*, 3(3):383–400, 2003.

[20] M. Reissig and Y.-G. Wang. Cauchy problems for linear thermoelastic systems of type iii in one space variable. *Mathematical methods in the applied sciences*, 28(11):1359–1381, 2005.

[21] S. Ríos, O. Vera and J. E. M. Rivera. The lack of exponential stability of the hybrid Bresse system. *J. Math. Anal. Appl.*, 436 1-15, 2016.

[22] J. E. M. Rivera and R. Racke. Mildly dissipative nonlinear timoshenko systemsglobal existence and exponential stability. *Journal of Mathematical Analysis and Applications*, 276(1):248–278, 2002.

[23] J. E. M. Rivera and R. Racke. Timoshenko systems with indefinite damping. *Journal of Mathematical Analysis and Applications*, 341(2):1068–1083, 2008.

[24] B. Said-Houari and T. Hamadouche. The asymptotic behavior of the bresse–cattaneo system. *Communications in Contemporary Mathematics*, 2010.

[25] B. Said-Houari and T. Hamadouche. The cauchy problem of the bresse system in thermoelasticity of type iii. *Applicable Analysis*, to appear.

[26] B. Said-Houari and A. Kasimov. Damping by heat conduction in the timoshenko system: Fourier and cattaneo are the same. *Journal of Differential Equations*, 255(4):611–632, 2013.

[27] B. Said-Houari and R. Rahali. Asymptotic behavior of the solution to the cauchy problem for the timoshenko system in thermoelasticity of type iii. *Evolution Equations & Control Theory*, 2(2), 2013.

[28] B. Said-Houari and A. Soufyane. The bresse system in thermoelasticity. *Mathematical Methods in the Applied Sciences*, 2014.

[29] M. Santos and D. d. S. A. Junior. Numerical exponential decay to dissipative bresse system. *Journal of Applied Mathematics*, 2010, 2010.

[30] H. D. F. Sare and R. Racke. On the stability of damped timoshenko systems: Cattaneo versus fourier law. *Archive for Rational Mechanics and Analysis*, 194(1):221–251, 2009.

[31] A. Soufyane and B. Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the bresse system. *Evolution Equations and Control Theory*, 3(4):713–738, 2014.

[32] Y. Ueda and S. Kawashima. Decay property of regularity-loss type for the Euler-Maxwell system. *Methods Appl. Anal.*, 18(3):245267, 2011.

[33] Y. Ueda and J. E. M. Rivera. Energy decay to bresse’s system with thermoelasticity of type iii. *Sumitted*, 2015.

[34] X. Zhang and E. Zuazua. Decay of solutions of the thermoelastic bresse system. *Communications in Contemporary Mathematics*, 5(01):25–83, 2003.
Institute of Mathematics, Federal University of Rio de Janeiro, UFRJ, P.O. Box 68530, CEP 21945-970, Rio de Janeiro, RJ, Brazil.

E-mail address: fgallego@ufrj.br, ferangares@gmail.com

Laboratório de Computação Científica, LNCC, Petrópolis, RJ, Brazil, Federal University of Rio de Janeiro, UFRJ, P.O. Box 68530, CEP 21945-970, Rio de Janeiro, RJ, Brazil.

E-mail address: rivera@lncc.br, rivera@im.ufrj.br