Diagnostic efficacy of intravascular ultrasound combined with Gd$_2$O$_3$-EPL contrast agent for patients with atherosclerosis

SHUANGLI ZHU1,2, CHAOYANG WEN2, DONGXUE BAI2 and MEIYING GAO2

1Department of Ultrasonic Medicine, Beijing Royal Integrative Medicine Hospital; 2Department of Ultrasonic Medicine, Peking University International Hospital, Beijing 102206, P.R. China

Received September 28, 2018; Accepted August 16, 2019

DOI: 10.3892/etm.2020.9265

Abstract. Atherosclerosis is a cardiovascular disease that is pathologically associated with the growth of atherosclerotic plaques and vascular vulnerability. Intravascular ultrasound (IVUS) has been used to evaluate and treat cardiovascular diseases. Accumulating evidence has demonstrated that Gd$_2$O$_3$-doped nanoparticles contrast can be applied for the diagnosis of human diseases. In the present study, eplerenone (EPL), a mineralocorticoid receptor antagonist, was first doped with Gd$_2$O$_3$ nanoparticles (Gd$_2$O$_3$-EPL), following which its diagnostic efficacy for use in IVUS measurements (Gd$_2$O$_3$-EPL-IVUS) was evaluated for patients suspected with atherosclerosis. Gd$_2$O$_3$-EPL-IVUS presented with higher accuracy and sensitivity compared with IVUS in diagnosing 188 patients with suspected atherosclerosis. Gd$_2$O$_3$-EPL-IVUS exhibited stronger signals associated with plaque morphology compared with aloe IVUS for patients with atherosclerosis. In addition, Gd$_2$O$_3$-EPL-IVUS application resulted in clearer arterial plaque images compared with IVUS by binding mineralocorticoid receptors. Atherosclerosis was subsequently confirmed in all patients using computerized tomography-coronary angiography. Gd$_2$O$_3$-EPL-IVUS showed more accuracy in measuring vessel size, plaque burden and minimal lumen area compared with IVUS analysis alone. In conclusion, these outcomes suggest that Gd$_2$O$_3$-EPL-IVUS is a reliable tool for the evaluation of coronary lesions in patients with atherosclerosis.

Introduction

Atherosclerosis is a cardiovascular disease and a systemic chronic inflammatory disease that predominantly affects medium-sized arteries (1). Atherosclerosis is characterized by autoimmune response damage to the arterial wall accompanied with the subintimal accumulation of lipids, vascular smooth muscle cells and immunocompetent cells, which is pathologically associated with atherosclerotic plaque development and vascular vulnerability (2-4). In particular, pathology analysis revealed that the crucial event in the initiation and development of atherosclerosis is endothelial injury (5-7). Previous studies have suggested that atherosclerosis is a multifactorial disease triggered and sustained by a variety of risk factors including smoking, dyslipidemia, arterial hypertension and diabetes mellitus (8,9).

At present a number of techniques, including trans-esophageal echocardiography, epiaortic ultrasound, magnetic resonance imaging (MRI) and 3D ultrasound have been applied for diagnosis of atherosclerosis (10). A study has summarized current evidence regarding the role of intracoronary imaging for the diagnosis and risk stratification of coronary atherosclerosis (11). In addition, panoramic radiography offers a cost-effective approach in which early carotid artery calcification diagnosis and subsequent interventions can be performed (5). Ultrasound imaging have been widely applied for the diagnosis of atherosclerosis (12-15). Intravascular ultrasound (IVUS) is a more often used technique compared with thoracic ultrasound for the diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis (16). Although IVUS has proven to be a highly valuable tool for the evaluation of mild-to-moderate coronary lesions (17), improvements in the diagnostic efficacy of IVUS imaging for patients with atherosclerosis is still required.

Contrast-enhanced ultrasound can be used for the diagnosis of different types of human atherosclerosis diseases, including coronary artery disease and peripheral artery disease (18). Of interest, nanoparticle technology such as Gd$_2$O$_3$ incorporate a variety of agents including anticancer compounds, fluorescent dyes and metal ions through physical encapsulation, covalent coupling or affinity binding for therapeutic or diagnostic applications (19). In particular, Gd$_2$O$_3$-albumin-conjugating photosensitizers can generate clearer signals in vivo during MRI diagnosis when coupled with enhanced imaging contrast for the effective localization of tumors (20). Additionally, Gd$_2$O$_3$ nanocrystal-based nanocomposites have been reported to serve as an ideal dual-mode contrast-enhancing agent for MRI by improving longitudinal reflexivity (21), which
may provide a versatile platform for molecular imaging and targeted drug delivery in ultrasound-facilitated diagnosis for human diseases (22).

Mineralocorticoid receptors are downstream effectors of angiotensin-II signaling in early atherosclerosis (23). A number of studies have recently found that mineralocorticoid receptor antagonists can regulate vascular function and/or contribute to vascular dysfunction (24-26). Eplerenone (EPL) is a specific mineralocorticoid receptor antagonist which has been shown to strengthen endothelium-dependent relaxation and suppress angiotensin-converting enzyme activity in the vasculature, thereby inhibiting the development of atherosclerosis (27).

In the present study, Gd$_2$O$_3$-coated EPL (Gd$_2$O$_3$-EPL) were used as the nanoparticles contrast to explore the diagnostic efficacy of Gd$_2$O$_3$-EPL combined with IVUS for patients with suspected atherosclerosis. This study also analyzed differences in the data obtained regarding vessel size, plaque burden and minimal lumen area using IVUS and Gd$_2$O$_3$-EPL-IVUS techniques.

Materials and methods

Participants. A total of 188 patients (sex, 94 men and 94 women; mean age, 54±12 years; age range, 47-68) with suspected atherosclerosis were admitted to the Peking University International Hospital (Beijing, China) between April 2014 and May 2016 were recruited into the present study. The inclusion criteria are as follows: i) Age of individuals >25 years; ii) individuals exhibited hypertension, coronary heart disease and hyperlipidemia; and iii) individuals provided informed consent for participation. The exclusion criteria for all patients were as follows: i) Patients with history of cancer; ii) patients who underwent coronary artery surgery; and iii) patients who underwent heart stent surgery. Following recruitment, all included patients underwent IVUS followed by Gd$_2$O$_3$-EPL-IVUS 4 weeks later. CT coronary angiography was then performed at four-week intervals. The Ethical Committee of the Peking University International Hospital (approval no. LK20131018) approved this study. Written informed consent was provided by all patients.

Contrast agent. The Gd$_2$O$_3$-coated EPL contrast agents were synthesized as described previously (28). Briefly, cetyltrimethylammonium bromide (C$_{16}$TAB, 0.2 g) was first dissolved in distilled water (50 ml). NH$_3$·H$_2$O (2 ml 25%) and tetraethoxysilane (4.49 mmol) were then added and the subsequent mixture was stirred at room temperature for 10 min. Gd$_2$O$_3$ (0.5 mmol) was added to this solution and stirred at 42°C for 1 h before EPL (0.1 mmol) was added to the solution and stirred at room temperature for 1 h. Samples were calcined at 37°C for 72 h before the Gd$_2$O$_3$-EPL nanoparticles were harvested. The purity and chemical structure of Gd$_2$O$_3$-EPL was determined by mass spectrometry as described previously (29). This resultant nanoparticle contrasting agent would be used for visualization for IVUS. All individuals received intravenously injections of Gd$_2$O$_3$-EPL contrast agents (0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 and 4.0 mg/kg) 2 h prior to IVUS. The application of Gd$_2$O$_3$-EPL contrast agents was approved by China Food and Drug Administration.

Biochemical Analysis. Blood samples (10 ml) were collected from each individual following overnight fasting for 12 h. Serum was obtained by centrifugation at 8,000 x g for 15 min at 4°C. Total serum levels of triglyceride, cholesterol, low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol were measured using a TBA2000FR biochemical analyzer (Toshiba Corporation) as described previously (30). Metabolism of Gd$_2$O$_3$-EPL was then determined using inductively coupled plasma mass spectrometry (ICP-MS; Elan DRC II; PerkinElmer, Inc.) according to a previous study (31).

Intravascular ultrasound virtual histology examination. IVUS examination was performed as described previously (32). All patients received nonionic contrast medium Gd$_2$O$_3$-EPL (1.2 mg/ml). IVUS was subsequently performed using a 20 MHz catheter (2.9F monorail, 0.6 mm/s automatic pullback) after injection using a dedicated IVUS console (Volcano Corporation; Philips Healthcare) 2 h following intracoronary administration of 10 µg nitroglycerin. The IVUS images were captured at 30 frames/s using a DVD-Rom for subsequent offline analysis (Volcano Corporation; Philips Healthcare) and recorded into high-resolution super VHS videotapes. Signal intensity was determined from digital imaging and communications in medicine-stored images using a new Medical Imaging Bench system (version 4.0; Echoplaque-MIB; INDEC Medical systems, Inc.).

Acquisition of carotid ultrasound index. The carotid ultrasound index of individuals was analyzed using a Siemens ACUSON SequoiaTM Ultrasound system (Volcano Corporation; Philips Healthcare). The probe frequency was defined at 12 MHz. Ultrasound was performed to evaluate wall thickness in the carotid artery by an experienced professional sonographer. The mean intimal-medial thickness (IMT) was measured and the number of plaques in left anterior descending (LAD) artery in all individuals was counted. During the ultrasound measurement, the systolic lumen diameter (D_s), the diastolic lumen diameter (D_d), the systolic pressure (P_s), and diastolic pressure (P_d) of the carotid artery were input. The arterial compliance (AC) was measured using the following formula:

$$AC=\pi(D_s^2-D_d^2)/[4(P_s-P_d)]$$

The degree of plaque was graded using the CHADS$_2$ method on a scale from 0 to 3 (0, no observable plaque; 1, one small plaque <30% of lumen diameter; 2, one medium plaque 30-50% of vessel diameter; 3, one large plaque 50% of vessel diameter) as described previously (34). Plaque volume was calculated from the IVUS images as the total volume of the external elastic membrane occupied by the atheroma. Plaque burden was calculated as plaque and media cross-sectional area/external elastic membrane cross-sectional area. Plaque morphology was assessed on IVUS images of the LAD. Velocity vector imaging (VVI) was performed using the VVI software (syngo® US workplace; Siemens Healthineers) to evaluate speed of blood flow and data were analyzed by two independent pathologists.

CHADS$_2$ scoring. CHADS$_2$ scores were used to predict the degree of carotid atherosclerosis. The percentage of excess risk as calculated using the CHADS$_2$ scoring system was determined according to current guidelines as described previously (35).
Coronary angiography. CT-coronary angiography was performed using a dual-source CT scanner (SOMATOM Definition Flash; Siemens AG) according to standard techniques as described previously (36). All patients received 370 mg I/ml Ultravist® nonionic contrast medium (Schering AG) using a dual-head power injector (SCT-210; Medrad, Inc; Bayer AG). Measurements of vessel geometry, plaque burden and plaque morphology using coronary angiography images were performed according to a previous study (37). Coronary angiography images in LAD were analyzed using a quantitative coronary angiography program (version 2.0; Medis Medical Imaging Systems) by two independent investigators.

Statistical analysis. The pilot trial sample size of this study was determined using the following formula: N=(μα+μβ)²/12(1-c)(p'−0.5)² (μ, standard deviation; α, I error probability; β, II error probability; p, error probability; c, ration of group) (38). Data are presented as mean ± SD and statistical analyses were performed using SPSS 19.0 software (IBM Corp.). A receiver operator characteristic (ROC) curve was used to analyze sensitivity and specificity determined by Youden's index. The area under the curve (AUC) and the P-values were obtained using the SPSS software. Relative risk was expressed as HR with 95% confidence intervals (95% CI) and global χ²-analyses utilized utilized logistic regression and likelihood ratios test. Student's t-test was used to compare two independent groups of data. P<0.05 was considered to indicate a statistically significant difference.

Results

Patients. The clinical characteristics of the patients in the present study are summarized in Table I. There were no statistically significant differences in the baseline clinical parameters between male and female patients with suspected atherosclerosis. All patients exhibited symptoms of hypertension, coronary heart disease, and hyperlipidemia.

Table I. Baseline clinical characteristics of patients with suspected atherosclerosis.

Characteristics	Values
Male (n, %)	94 (50%)
Female (n, %)	94 (50%)
Age (years)	54±12
Hypertension (n, %)	134 (71.3%)
Body mass index (kg/m² ± SD)	24.30±3.40 (healthy range, 18.5-24.0)
Cholesterol (mmol/l ± SD)	4.88±0.76 (healthy range, 3.0-5.2)
HDL cholesterol (mmol/l ± SD)	1.40±0.28 (healthy range, 1.0-2.0)
LDL cholesterol (mmol/l ± SD)	2.85±0.80 (healthy range, 2.0-3.0)
Triglycerides (mmol/l ± SD)	1.62±0.84 (healthy range, 3.5-4.0)

HDL, high density lipoprotein; LDL, low density lipoprotein; SD, standard deviation.

Dose selection and detection time of Gd₂O₃-EPL. Results identified 1.2 mg/kg Gd₂O₃-EPL to be the optimal dose in diagnosing carotid atherosclerosis based on signal intensity 2 h after injection. A range of doses of Gd₂O₃-EPL between 0 and 4.0 mg/kg was tested in patients with suspected atherosclerosis. EPL, eplerenone.

Diagnostic efficacy of Gd₂O₃-EPL-IVUS for patients with suspected atherosclerosis. The present study explored the diagnostic efficacy of Gd₂O₃-EPL-IVUS in patients with suspected atherosclerosis. In total, Gd₂O₃-EPL-IVUS diagnosed 142 patients out of 188 patients with suspected atherosclerosis, whilst IVUS diagnosed 124 patients out of 188 patients with suspected atherosclerosis. EPL, eplerenone.
ZHU et al: DIAGNOSTIC EFFICACY OF Gd₂O₃-EPL-IVUS FOR ATHEROSCLEROTIC PATIENTS

Table II. Diagnostic efficacy of Gd₂O₃-EPL-IVUS for patients with suspected atherosclerosis.

Patient	IVUS (n, %)	Gd₂O₃-EPL-IVUS (n, %)	P-value
Atherosclerosis	124 (75.5)	142 (66.0)	0.048*
Non-atherosclerosis	64 (24.5)	46 (34.0)	0.035*

Statistical analysis was performed using Student’s t-test. IVUS, intravascular ultrasound; EPL, eplerenone. *P<0.05 vs. IVUS.

Table III. Parameters diagnosed using Gd₂O₃-EPL-IVUS in patients with suspected atherosclerosis.

Parameter	IVUS	Gd₂O₃-EPL-IVUS	P-value
IMT (mm)	0.302±0.045	0.273±0.030	0.030*
CHADS₂	2.5±1.0	3.0±1.5	0.042*
AC (mm²/kPa)	2.00±0.82	3.50±0.96	0.016*

*Statistical analysis was performed using Student’s t-test. IMT, intimal-medial thickness; IVUS, intravascular ultrasound; EPL, eplerenone; AC, arterial compliance.

Table IV. Logistic regression of Gd₂O₃-EPL-IVUS to identify risk factors for atherosclerosis.

Parameter	OR	95% CI	P-value
Plaque index (r)	1.062	0.078-0.096	0.024*
CHADS₂ score (r)	0.462	1.042-1.684	0.020*

*Statistical analysis was performed using χ²-test with logistic regression data. P-value was represented the statistical difference between Gd₂O₃-EPL-IVUS and IVUS. OR, odds ratio; CI, confidence interval; IVUS, intravascular ultrasound; EPL, eplerenone.

suspected atherosclerosis (Table II). ROC analysis also demonstrated that Gd₂O₃-EPL-IVUS exhibited higher accuracy and sensitivity compared with IVUS in diagnosing patients with suspected atherosclerosis (P<0.05; Fig. 3), since the AUC was 0.870 for the Gd₂O₃-EPL-IVUS group (95% CI, 0.858-0.882) and 0.782 for the IVUS group (95% CI, 0.772-0.792). These data suggest that Gd₂O₃-EPL-IVUS can accurately diagnose atherosclerosis by binding mineralocorticoid receptors in arterial lesions.

Analysis of carotid ultrasound indices and VVI indices in patients diagnosed using IVUS and Gd₂O₃-EPL-IVUS. Carotid Ultrasound Indices and VVI indices were subsequently compared between IVUS and Gd₂O₃-EPL-IVUS groups. The mean IMT was calculated to be 0.302±0.045 versus 0.273±0.030 diagnosed by IVUS and Gd₂O₃-EPL-IVUS, respectively. There were significant differences in the CHADS₂ scores between IVUS and Gd₂O₃-EPL-IVUS group (2.5±1.0 vs. 3.0±1.5, P<0.05). The arterial compliance (AC) index was 2.00±0.82 and 3.50±0.96 in patients diagnosed using IVUS and Gd₂O₃-EPL-IVUS, respectively (Table III).

Comparison of atherosclerotic plaque characteristics using Gd₂O₃-EPL-IVUS or IVUS. Multiple plaques were diagnosed on the same patient. The Gd₂O₃-EPL-IVUS technique observed stronger signals associated with the plaque morphology as determined by measuring signal intensity compared with IVUS in patients with atherosclerosis (Fig. 4). Gd₂O₃-EPL-IVUS resulted in clearer images of arterial plaques compared with IVUS (Fig. 5). Gd₂O₃-EPL-IVUS revealed arterial plaque lesions at higher frequencies compared with IVUS in the same patients with suspected atherosclerosis (Fig. 6).

Logistic regression to identify risk factors for atherosclerosis. According to the results of multivariate analysis, plaque index

(OR, 1.062; 95% CI, 0.078-0.096) and CHADS₂ score (OR, 0.462; 95% CI, 1.042-1.684) was positively correlated with atherosclerosis diagnosis (Table IV). Taking either CHADS₂ scores or plaque index into consideration, Gd₂O₃-EPL-IVUS
Confirmation of atherosclerosis in patients using coronary angiography. The atherosclerosis diagnosis in all patients as deduced using by Gd$_2$O$_3$-EPL-IVUS and IVUS were subsequently confirmed using coronary angiography. As shown in Fig. 7, representative coronary angiography images showed the presence of pathological atherosclerotic plaques in patients. Coronary angiography confirmed four false positive cases in 142/188 patients and three false negative cases in 46/188 patients following the use of Gd$_2$O$_3$-EPL-IVUS, whilst eight false positive cases in 124/188 and 29 false negative cases in 64/188 were reported as a result of IVUS (Table V).

Pharmacodynamics of Gd$_2$O$_3$-EPL in plasma concentration in patients with atherosclerosis. The serous metabolism of Gd$_2$O$_3$-EPL was investigated in patients with atherosclerosis. Gd$_2$O$_3$-EPL was fully metabolized within 12 h after injection (Fig. 8). No other side effects, including irritation on the injection site, hypertension and nausea, were observed in patients with atherosclerosis. These data suggest that Gd$_2$O$_3$-EPL is a safe contrast agent for use in IVUS in diagnosing patients with atherosclerosis.

Discussion

Early and accurate diagnosis of atherosclerosis is crucial for the treatment of this disease (12,39,40). The present study is the first to examine the diagnostic efficacy of Gd$_2$O$_3$-EPL combined with IVUS for atherosclerosis in suspected patients, which provided evidence that Gd$_2$O$_3$-EPL-IVUS resulted in stronger signals associated with plaque morphology and generating clearer images of arterial plaques compared with IVUS alone. In addition, Gd$_2$O$_3$-EPL-IVUS uncovered higher frequencies of arterial plaque lesions and diagnosed atherosclerosis in patients with higher accuracy and sensitivity compared with IVUS alone.
EPL is one of mineralocorticoid receptor antagonists where a previous study has found that EPL treatment reduced the sizes of lesions in early but not advanced atherosclerosis in Apolipoprotein E-deficient mice (41). EPL strengthened the endothelium-dependent relaxation and suppressed angiotensin-converting enzyme activity in the vasculature, which further prevented the development of atherosclerosis (24). Another study has previously found that IVUS can produce qualitative and quantitative images with high accuracies of plaque morphology identification in atherosclerosis lesions (5).

Table V. Diagnostic efficacy of Gd$_2$O$_3$-EPL-IVUS for patients with suspected atherosclerosis.

Type	IVUS (%)	Gd$_2$O$_3$-EPL-IVUS (%)	P-value
False positive (n, %)	8 (6.5)	4 (2.8)	0.034a
True positive (n, %)	116 (93.5)	138 (97.2)	0.049a
False negative (n, %)	29 (45.3)	3 (6.5)	<0.001a
True negative (n, %)	35 (54.7)	43 (93.5)	<0.001a

aStatistical analysis was performed using χ^2-test. IVUS, intravascular ultrasound; EPL, eplerenone.

In conclusion, the findings in the present study suggest that Gd$_2$O$_3$-EPL-IVUS is a reliable tool for the evaluation of coronary lesions in patients with atherosclerosis. In addition, positive associations were found between the CHADS$_2$ scores and carotid ultrasound indicators and risk of atherosclerosis using data obtained from Gd$_2$O$_3$-EPL-IVUS in the present study, suggesting that images taken using Gd$_2$O$_3$-EPL-IVUS can reflect the degree of structural and functional impairment of atherosclerosis. Consequently, the application of Gd$_2$O$_3$-EPL-IVUS may contribute to the assessment of the
severity of atherosclerosis and the design of subsequent treatment strategies.

Acknowledgements
Not applicable.

Funding
No funding was received.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions
CYW and DXB made substantial contributions to the conception and prepared experiments. MYG was responsible for data acquisition, analysis and interpretation. SLZ designed this study, was involved in drafting the article and critically revising it for important intellectual content. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The Ethical Committee of the Peking University International Hospital (approval no. LK20131018) approved this study. Written informed consent was provided by all patients.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Yong WC, Sanguanekoe A and Upala S: Association between sarcoidosis, pulse wave velocity, and other measures of subclinical atherosclerosis: A systematic review and meta-analysis. Clin Rheumatol 37: 2825-2832, 2018.
2. Yanoli L, Signorelli SS, Inserm G and Castellino P: Subclinical atherosclerosis in patients with inflammatory bowel diseases: A systematic review and meta-analysis. Angiology 68: 463, 2017.
3. Forgo B, Medda E, Hernyes A, Szalontai L, Tarnoki DL and Tarnoki AD: Carotid artery atherosclerosis: A review on heritability and genetics. Twin Res Hum Genet 21: 333-346, 2018.
4. Fava C and Montagnana M: Atherosclerosis is an inflammatory disease which lacks a common anti-inflammatory therapy: How human genetics can help to this issue. A narrative review. Front Pharmacol 9: 55, 2018.
5. Borba DL, Hilopito UV and Pereira YCL: Early diagnosis of atherosclerosis with panoramic radiographs: A review. J Vasc Bras 15: 302-307, 2016.
6. Moroni F, Ammirati E, Magnoni M, D'Ascenzo F, Ansellimo M, Anzalone N, Rocca MA, Falini A, Filippi M and Camici PG: Carotid atherosclerosis, silent ischemic brain damage and brain atrophy: A systematic review and meta-analysis. Int J Cardiol 223: 681-687, 2016.
7. Anwaiyer G, Chen C, Cao Y and Qi R: A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomedicine 12: 7681-7693, 2017.
8. Chen FH, Liu T, Xu L, Zhang L and Zhou XB: Association of serum vitamin D level and carotid atherosclerosis: A systematic review and meta-analysis. J Ultrasound Med 37: 1293-1303, 2018.
9. Mirnejad R, Razeghian-Jahromi I, Sepehrimanesh M, Zibaeenezhad MJ and Lopez-Jornet P: Proteomic analysis of the virulence factors of three common bacterial species involved in periodontitis and consequent possible atherosclerosis: A narrative review. Curr Protein Pept Sci 19: 1124-1130, 2018.
10. Jansen Klop W, Brandon Bravo Bruinisma GJ, van ’t Hof AW, Grandjean JG and Nierich AP: Imaging techniques for diagnosis of thoracic aortic atherosclerosis. Int J Vasc Med 2016: 4726094, 2016.
11. Koskinas KC, Ughi GJ, Windecker S, Tearney GJ and Raber L: Intracoronary imaging of coronary atherosclerosis: Validation for diagnosis, prognosis and treatment. Eur Heart J 37: 524-535a-c, 2016.
12. Signorelli SS, Di Pino L, Fichera G, Celotta G, Pennisi G, Marchese G, Costa MP, Fallico R, Torrisi B and Virgilio V: Ultrasonic diagnosis of carotid artery lesions in a population of asymptomatic subjects presenting atherosclerosis risk factors. J Stroke Cerebrovasc Dis 13: 95-98, 2004.
13. Mougiakakou SG, Golemati S, Goussias I, Nicolaides AN and Nikita KS: Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws texture and neural networks. Ultrasound Med Biol 33: 26-36, 2007.
14. Betriu-Bars A and Fernandez-Giraldez E: Carotid ultrasound for the early diagnosis of atherosclerosis in chronic kidney disease. Nefrologia 32: 7-11, 2012 (In Spanish).
15. Faust O, Acharya UR, Sudarshan VK, Tan RS, Yeong CH, Molinari F and Ng KH: Computer-aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: A review. Phys Med 33: 1-15, 2017.
16. Hibi K, Honda Y, Kimura K and Umemura S: Atherosclerosis: Progress in diagnosis and treatments. Topics: III. Progress in diagnosis of atherosclerosis; 5. IVUS (intravascular ultrasound). Nihon Naika Gakkai Zasshi 102: 344-353, 2013 (In Japanese).
17. Chen L, Xu T, Xue XJ, Zhang JH, Ye F, Tian NL and Chen SL: Intravascular ultrasound-guided drug-eluting stent implantation is associated with improved clinical outcomes in patients with unstable angina and complex coronary artery true bifurcation lesions. Int J Cardiovasc Imaging 34: 1685-1696, 2018.
18. Jiang X, Zhu J, Hu Y, Xing C, Li D and Hu B: Can scavenger receptor class B type I loaded ultrasound contrast agent be a new method for treating atherosclerosis? Med Hypotheses 73: 36-37, 2009.
19. Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY and Kim K: Photostimulator-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 1: 230-239, 2011.
20. Zhou L, Yang T, Wang J, Wang Q, Lv X, Ke H, Guo Z, Shen J, Wang Y, Xing C and Chen H: Size-Tunable Gd3O4@Albumin nanoparticles conjugating chlorin e6 for magnetic resonance imaging-guided photo-induced therapy. Theranostics 7: 764-774, 2017.
21. Wang FH, Bae K, Huang ZW and Xue JM: Two-photon graphene quantum dot modified Gd3O4 nanocomposites as a dual-mode MRI contrast agent and cell labelling agent. Nanoscale 10: 5642-5649, 2018.
22. Jung SH, Na K, Lee SA, Cho SH, Seong H and Shin BC: Gold(III)-DOTA-modified nonsensitive liposomes for ultrasound-triggered release and MR imaging. Nanoscale Res Lett 7: 462, 2012.
23. Keidar S, Hayek T, Kaplan M, Pavlotzky E, Hamoud S, Coleman R and Aviram M: Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 41: 955-963, 2003.
24. Greenberg B: Mineralocorticoid receptor antagonists in heart failure: They work better when patients use them. Eur J Heart Fail 20: 1335-1337, 2018.
25. Shioita M, Fujimoto N, Higashijima K, Imada K, Kashiwagi E, Takeuchi A, Inokuchi J, Tatsugami K, Kajioka S, Uchiimi T and Eto M: Mineralocorticoid receptor signaling affects therapeutic effect of enalaprilamide, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 41: 955-963, 2003.
26. Greenberg B: Mineralocorticoid receptor antagonists in heart failure: They work better when patients use them. Eur J Heart Fail 20: 1335-1337, 2018.
27. Shioita M, Fujimoto N, Higashijima K, Imada K, Kashiwagi E, Takeuchi A, Inokuchi J, Tatsugami K, Kajioka S, Uchiimi T and Eto M: Mineralocorticoid receptor signaling affects therapeutic effect of enalaprilamide, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 41: 955-963, 2003.
28. Shao Y, Tian X, Hu W, Zhang Y, Liu H, He H, Shen Y, Xie F and Li L: The properties of Gd2O3-assembled silica nanocomposite targeted nanoparticles and their application in MRI. Biomaterials 33: 6438-6446, 2012.
29. Li X, Hu J, Yin D and Hu X: Solid-phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X-ray contrast media in environmental water samples. J Sep Sci 38: 1998-2005, 2015.
30. Zhang GM, Bai SM, Ma XB and Goyal H: A novel method for estimating low-density lipoprotein (LDL) levels: Total cholesterol and non-high-density lipoprotein (HDL) can be used to predict abnormal LDL level in an apparently healthy population. Med Sci Monit 24: 1688-1692, 2018.
31. Moustakas M, Hanc A, Dobrikova A, Sperdouli I, Adamakis IS and Apostolova E: Spatial heterogeneity of cadmium effects on salvia sclarea leaves revealed by chlorophyll fluorescence imaging analysis and laser ablation inductively coupled plasma mass spectrometry. Materials (Basel) 12: 2953, 2019.
32. Calvert PA, Obaid DR, O'Sullivan M, Shapiro LM, McNab D, Densmore CG, Schotfeldt PM, Braganza D, Clarke SC, Ray KK, et al: Association between IVUS findings and adverse outcomes in patients with coronary artery disease: The VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc Imaging 4: 894-901, 2011.
33. Zhang P, Gao R, Li Z, Xiao D, Ma L, Huang P and Wang C: Effect of smoking on common carotid artery wall elasticity evaluated by echo tracking technique. Ultrasound Med Biol 40: 643-649, 2014.
34. Falcão JL, Falcão BA, Gurudevan SV, Campos CM, Silva ER, Kalil-Filho R, Rochitte CE, Shiozaki AA, Coelho-Filho OR and Lemos PA: Comparison between MDCT and Grayscale IVUS in a quantitative analysis of coronary lumen in segments with or without atherosclerotic plaques. Arq Bras Cardiol 104: 315-323, 2015 (In English, Portuguese).