The handle http://hdl.handle.net/1887/19146 holds various files of this Leiden University dissertation.

Author: Doorduin, Lena Johanna
Title: Rapid evolution or preadaptation in invasive Jacobaea vulgaris
Issue Date: 2012-06-26
A review of the phytochemical support for the shifting defence hypothesis

Leonie J. Doorduin* & Klaas Vrieling

PHYTOCHEMISTRY REVIEWS
Volume: 10 Issue: 1 Special Issue: SI Pages: 99-106
DOI: 10.1007/s11101-010-9195-8
Published: MAR 2011

Ecology and Phytochemistry
Institute of Biology
Leiden University
PO Box 9505
2300 RA Leiden
The Netherlands
Tel +31(071) 5275136
Fax +31(071) 5274900
* Corresponding author
Email: L.J.Doorduin@Biology.leidenuniv.nl

Abstract

Several theories have been developed to explain why invasive species are very successful and develop into pest species in their new area. The shifting defence hypothesis (SDH) argues that invasive plant species quickly evolve towards new defence levels in the invaded area because they lack their specialist herbivores but are still under attack by local (new) generalist herbivores. The SDH predicts that plants should increase their cheap, toxic defence compounds and lower their expensive digestibility reducing compounds. As a net result resources are saved that can be allocated to growth and reproduction giving these plants a competitive edge over the local plant species. We conducted a literature study to test whether general toxic defence compounds in the invaded area are increased and that digestibility reducing compounds are lowered. We specifically studied the levels of pyrrolizidine alkaloids, a toxin which is known for its beneficial and detrimental impact against specialists and generalists respectively. Digestibility reducers did not show a clear trend which might be due to the small number of studies and traits measured. The meta analysis showed that toxic compounds in general and pyrrolizidine alkaloid levels specifically, increased significantly in the invaded area, supporting the predictions of the SDH that a fast evolution takes place in the allocation towards defence.

Keywords: defence, EICA, invasion, PAs, SDH
Introduction

With an increase in human travel intensity over the past 300 years, many species have been introduced into new areas (Long 2003). The introduction of these species has often gone unnoticed, and many of these species have probably not survived. The species that do survive in their new habitats often have a marginal existence. However, a small number of species thrive. For example 21% of the North American flora consists of exotic species (Rejmanek 2000) but only 2% of these have developed into pests. These pest species have economic consequences as well as severe impacts on the biodiversity and ecological networks in their new ranges. For instance, the introduction of goats on islands quickly led to deforestation of these islands (Long 2003), the introduction of the cane toad in Australia has been detrimental to local fauna (Easteal 1981), and the introduction of ragwort into Australia, New Zealand and North America has led to livestock poisoning (Craig et al. 1986, Coombs 1994) and review by Koricheva 2002). When plants reduce their investment in their new exotic ranges, and this dilemma is referred to as the specialist-generalist dilemma (van der Meijden 1996). Increasing PA or toxin levels protects the plant against unadapted generalist herbivores, but simultaneously makes it more vulnerable to adapted specialist herbivores. PAs and toxins concentrations are therefore constrained by opposing selective forces from specialist herbivores and small allocation cost on one hand, and from herbivory by generalist herbivores on the other hand (Fig. 1).

The SDH is a further extension of the EICA hypothesis. The SDH differentiates between defences based on their effectiveness against specialist and generalist herbivores, and couples this to types of defences (Müller-Schärer et al. 2004, Joshi and Vrieling 2005). Feeny (1976) and Rhoades and Cates (1976) developed the Apparency theory, which distinguishes between “quantitative” and “qualitative” defences in plants. Qualitative defences are toxins or deterrents against herbivores and occur in relative low quantities in plants. Quantitative defences are digestibility reducers and occur in higher concentrations. Toxins act mainly against unadapted generalist herbivores while specialist herbivores often are very well adapted to these compounds in their diet. An important class of toxins are the pyrrolizidine alkaloids (PAs), with more than 660 different structures identified in over 600 plant species. About half of these PAs formed are toxic to livestock and wildlife and also to most insects. However, specialist herbivores use these compounds for their own benefit as cues to recognize their food plant, e.g. PAs acting as an oviposition stimulant (Mácel and Vrieling 2003) and as feeding stimulant (Bernays et al. 2004).

In addition, PAs and other compounds are sometimes sequenced for the defence of the herbivore itself (Eisner and Eisner 1991). In other cases PAs amongst others have become an essential part of the herbivore’s sex pheromone system, or are used as a nuptial gift (Weller et al. 1999). Because PAs and other toxins occur in low concentrations (usually less than 1 percent of the dry weight), they are assumed to be a cheap defence. Digestibility reducers occur in higher concentrations and are more expensive for the plant to produce (Glawe et al. 2003) because costs of secondary metabolites increase with their concentration (Vrieling and van Wijk 1994). However, they are believed to be less easy to circumvent by specialist herbivores and generalist herbivores. Toxins therefore pose a dilemma for the plants in their native ranges, and this dilemma is referred to as the specialist-generalist dilemma (van der Meijden 1996). Increasing PA or toxin levels protects the plant against unadapted generalist herbivores, but simultaneously makes it more vulnerable to adapted specialist herbivores. PAs and toxins concentrations are therefore constrained by opposing selective forces from specialist herbivores and small allocation cost on one hand, and from herbivory by generalist herbivores on the other hand (Fig. 1).

The ERH states that when plants are introduced into a new area, they leave their specialist herbivores behind and are therefore freed from detrimental herbivore pressure by these specialist herbivores. It is predicted that herbivory from local generalist herbivores is limited because newly introduced plants contain unknown, and therefore potent chemical defences to which local herbivores are not adapted (unless native relatives of the introduced plant species are present; Connor et al. 1980). This theory about chemical novelties is known as the novel weapons theory (Callaway and Ridenour 2004). Both the ERH and novel weapons theory do not predict per se a change in the chemistry of introduced plants in their exotic ranges. However, the EICA hypothesis predicts that an absence of specialist herbivores will cause plant defences against specialists to decline in exotic species over evolutionary time. The EICA hypothesis assumes that secondary metabolites act as chemical defences against specialists herbivores. It is known that many species vary genetically in composition and concentration of their secondary metabolites (Vrieling et al. 1993, Van Dam and Vrieling 1994, Arany et al. 2009). In the absence of specialist herbivores in the invasive area, selection favours plants that have lower concentrations of such compounds because these compounds are costly to produce; selection thus results in a decline in secondary metabolite concentrations over a number of generations (see Vrieling and van Wijk 1994 and review by Koricheva 2002). When plants reduce their investment in defence, they can allocate the freed resources to growth and reproduction, giving them a competitive edge over local plants. Many studies show that pest species show increased growth or reproduction compared to native individuals. The EICA therefore predicts an evolutionary change such that levels of chemical defence compounds are decreased in individuals in the invaded area compared to the individuals in the native area (Blowsley and Nötztold 1995).

![Fig. 1 Schematic overview of selection pressures of generalists and specialists in the native area and the invaded area. Under the influence of the selection pressure of the specialist herbivores in the invaded area the defence distribution has shifted to the right. Generalists are represented by a rabbit, specialists are represented by a caterpillar.](image-url)
Digestibility reducers provide protection against both generalist and specialist herbivores but have a higher allocation cost (Glawe et al. 2003). The SDH comes into play for plants introduced into areas where their specialist herbivores are absent. Expensive digestibility reducer levels are decreased at the expense of cheap toxins, yielding a net allocation gain that can be diverted to growth and reproduction. The SDH therefore predicts that toxin concentrations will increase, digestibility reducer levels will decrease, and growth and reproduction will increase upon plant introduction into a new area. Fundamental to the EICA and the SDH is the assumption that rapid evolutionary change takes place upon plant introduction into the new area.

We searched the literature for studies in which defence levels were measured in common garden experiments in plants from both native and invasive areas to find evidence for increased levels of toxins and decreased levels of digestibility reducers in invaded areas.

Because PAs are toxins known for their beneficial impact on specialists and their detrimental impact on generalists, we expect differences in PA levels between the native and the invasive areas. As a sub study, PA levels from native and invasive plants measured in different studies were compared. Based on the SDH we expect increased levels of PAs in the invaded areas.

Material and methods

We used the ISI Web of Science to gather data for comparing defence levels between native and invasive individuals. The following keyword combinations were typed in to search for papers: invasive/invasion AND defence/defense AND plant and invasive/invasion AND common garden experiment. This search resulted in 398 papers. A first selection was made by reading the paper titles and abstracts. The majority of papers contained defence data from native or invasive individuals only; these papers were excluded. Moreover, several articles comprised data about allelopathy. The hypotheses and theories we wanted to test were not developed for allelopathic interactions and we therefore excluded these articles. Several papers could not be incorporated because they lacked quantitative data. After making this selection, we extended the literature search to the references in the articles that were dealing with our subject. With regard to digestibility reducers we included measurements of trichome density, toughness and dry matter content. These mechanical defence products were grouped with the digestibility reducers based on the study of Travers-Martin and Müller (2008). This study of matching plant defence syndromes showed that mechanical defence and digestibility reducers were clustered because the performance of specialists was the same for both defence mechanisms.

In some papers defence levels of chemical compounds were measured per genotype. For our analysis we averaged values over genotypes and populations. Units of measurement different between studies and could not be converted to standard measurement units in some cases.

Hedges et al. (1999) developed statistical tools for meta-analysis that can be used to compare ratios between different studies to estimate effect sizes. For each study effect sizes were calculated as \(L = \ln(\text{value of invasive plants}/\text{value of the native plants}) = \ln(\text{value of the invasive plants}) - \ln(\text{value of the native plants}) \). Over all studies a weighted mean of \(L \) and confidence limits were calculated, taking into account sample sizes and standard errors within each study (Hedges et al. 1999). L values were returned to simple ratios by taking the antilog of the \(L \) value and calculating 95% confidence intervals. An antilog value of 1 therefore represents the situation that the level of defence in the native plants is exactly equal to the level of defence in the invasive plants. Antilog values larger than 1 indicate that the level of defences are higher in the invasive area compared to the native area. For the sub study on PAs, effect sizes were calculated in a similar way for PAs only.

For all studies except that of Willis et al. (1999), means and standard errors could be derived from the text. The study of Willis et al. (1999) was therefore not included although it supports the SDH.

Results

The literature yielded 15 publications in which plants from invaded and native areas were reared in a common garden set up, and in which toxins and/or digestibility reducers were measured (Table 1). In total 8 different toxins were measured in 9 different species yielding 13 comparisons. In 3 studies, comprising 4 data sets, PA levels were measured and these data were included in the sub study. We found 4 publications in which all data about digestibility reducers were available. Moreover, three other studies were found where 5 morphological traits such as dry matter content, trichome density or toughness were measured yielding 10 comparisons in total (Table 1). Antilog values of the weighted mean of \(L \) and confidence limits were 0.933 and 0.660-1.318 respectively (see also Figure 2). This is not in line with the expectation of the SDH that native individuals should have higher levels of digestibility reducers than invasive individuals. This meta-analysis therefore showed that digestibility reducers were not significantly decreased in plants from invaded areas as predicted by the SDH.

For toxins, antilog values of the weighted mean of \(L \) and confidence limits were 1.390 and 1.085-1.781 respectively (see also Figure 2). All values were above 1 which is in line with the expectation of the SDH that native individuals have lower levels of toxins than invasive individuals.

The meta-analysis therefore showed that toxins were significantly increased in plants from the invaded area as predicted by the SDH. For the PAs, antilog values of the weighted mean of \(L \) and confidence limits were even higher than for toxins overall (resp. 2.834 and 1.844-4.354). This finding is in line with the SDH.
Table 1

Studies used for the analysis of toxins and digestibility reducers in native and invasive individuals. Studies used for the analysis on PA's alone are indicated with ^.

Species	Compound	Native	Invasive	Sig
Alliaria petiolata	Trichomes	20.10	20.10	n.s.
Moroziola sp.	Dry matter	8.7	14.4	2.3
Alliaria petiolata	Trichomes	20.10	20.10	n.s.
Moroziola sp.	Dry matter	8.7	14.4	2.3
Ageratum adenophora	Cell wall protein	3.11	3.11	n.s.
Focus esencesin	Phenolic	3.10	3.10	n.s.
Alliaria petiolata	Trypan inhibitors	7.10	4.10	3.0
Centaura macrostoma	Catechin	4.5	24.4	n.s.
Hypericum perforatum	Catechin	4.5	24.4	n.s.
Alliaria petiolata	Catechin	4.5	24.4	n.s.
Centaura macrostoma	Catechin	4.5	24.4	n.s.
Alliaria petiolata	Trypan inhibitors	7.10	4.10	3.0
Centaura macrostoma	Catechin	4.5	24.4	n.s.
Alliaria petiolata	Trypan inhibitors	7.10	4.10	3.0
Centaura macrostoma	Catechin	4.5	24.4	n.s.
Alliaria petiolata	Trypan inhibitors	7.10	4.10	3.0

Note: PA stands for Pyrrolizidine Alkaloids.

Discussion

As predicted by the shifting defence hypothesis (SDH), toxin concentrations in invasive individuals were significantly higher than in native individuals. Invasive plants evolved an energetically beneficial but effective defence strategy in response to the absence of specialists. The sub study on PA levels showed even a stronger pattern compared to the overall study of toxins, with concentrations significantly higher in invasive populations compared to native individuals. However, in a study by Estes et al. (2008), no difference was found in the level of pyrrolizidine alkaloids between native and invasive individuals, which may indicate that other factors such as environmental conditions play a role in the production of these compounds.

Despite big differences in chemistry, a majority of the studies showed the same pattern. Because all studies were carried out in a common garden, native and invasive individuals were exposed to identical environmental conditions. This may be a cost-saving strategy resulting from reduced selective pressure by herbivores (Koricheva et al. 2005).
The SDH also predicts a decrease in expensive digestibility reducing compounds of invasive individuals compared to native individuals. Our review of the literature did not find support for this prediction. However, most of the data consisted of morphological traits that have functions other than defence. Moreover, there can be morphological constraints for the production of chemical defence. It is only possible to produce more terpenoids if there are more storage compartments such as resin ducts and glandular trichomes (Björkman et al. 1998). It is also known that trichomes have important functions in regulating leaf temperature and light reflection (Smith and Nobel 1977) and leaf evaporation (Brewer et al. 1991). One assumption of the SDH is that quantitative defence products are more expensive than qualitative defence products. However, this may depend on the environmental conditions of a plant. For example, leaf toughness is not necessarily expensive. Leaves can become tougher by increasing the thickness of the photosynthetic mesophyll (Read et al. 2009). In a sunny environment the costs of carbon gain due to internal self-shading are very small in relation to the increase of photosynthesis (Roderick et al. 1999). Under such conditions, toughening of leaves incurs no cost. These alternative benefits could also contribute to invasiveness and might be selected for in the invasive range. Therefore, the number of trichomes and leaf toughness are difficult to interpret in the light of quantitative defences. Besides having multiple functions within a particular species range, a chemical compound might also have different functions in native and invasive individuals.

Another strategy to cope with herbivory, which is not taken account by comparing defence compounds, is regrowth capacity. It has been argued that this strategy is especially beneficial for plants that suffer from high herbivory, such as that from specialists (van der Meijden et al. 2000). Instead of investing energy in defence, energy can be allocated to regrowth. Joshi and Vrieling (2005) indeed found evidence for this strategy. Invasive individuals without specialists had lower regrowth capacity compared to native individuals.

In conclusion, we found higher levels in invasive individuals for toxins in general and also specifically for PAs, which is in accordance with the SDH. Digestibility reducing products of native and invasive individuals did not differ. However, a smaller number of studies were available that addressed digestibility reducing defences, and a number of these defences are also known to be involved in other plant processes.

Acknowledgements

We are grateful to two anonymous reviewers for their helpful comments on the manuscript and for suggesting some papers that could be included in this study. Furthermore we want to thank B. Muton-Phillips and H. Kirk for revising the English.

References

Agrawal, A. A., and N. S. Kurashige. 2003. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. Journal of Chemical Ecology 29:1403-1415.

Arany, A. M., T. J. de Jong, and E. van der Meijden. 2009. Herbivory and local genetic differentiation in natural populations of Arabidopsis italiana (Brassicaceae). Plant Ecology 201:651-659.

Bennuas EA, Hartmann T, Chapman RF. 2004. Gustatory responsiveness to pyrrolizidine alkaloids in the Senecio specialist, Tyria jacobaeae (Lepidoptera, Arctiidae). Phys. Entomol. 29: 67-72.

Biere, A., H. B. Marak, and J. M. M. van Damme. 2004. Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs? Oecologia 140: 430-441.

Björkman, C., M. Kyto, S. Larsson, and P. Niemela. 1998. Different responses of two carbon-based defences in Scots pine needles to nitrogen fertilization. Ecoscience 5:502-507.

Blair, A. C., and L. M. Wolfe. 2004. The evolution of an invasive plant: An experimental study with Silene latifolia. Ecology 85:3035-3042.

Blossey, B., and R. Nötzold. 1995. Evolution of Increased Competitive Ability in Invasive Nonindigenous Plants - a Hypothesis. Journal of Ecology 83:867-889.

Bossdorf, O., H. Auge, L. Lafuma, W. E. Rogers, E. Siemann, and D. Prati. 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1-11.

Bradburne, R. P., and R. Mithen. 2000. Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proceedings of the Royal Society of London Series B-Biological Sciences 267:89-95.

Brewer, C. A., W. K. Smith, and T. C. Vogelmann. 1991. Functional Interaction between Leaf Trichomes, Leaf Wettability and the Optical-Properties of Water Droplets. Plant Cell and Environment 14:955-962.

Callaway, R. M., and W. M. Ridenour. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment 2:436-443.

Cano, L., J. Escare, K. Vrieling, and F. X. Sans. 2009. Palatability to a generalist herbivore, defence and growth of invasive and native Senecio species: testing the evolution of increased competitive ability hypothesis. Oecologia 159:95-106.

Cipollini, D., J. Bhagow, K. Barto, C. Hilstrom, and S. Enright. 2005. Expression of constitutive and inducible chemical defences in native and invasive populations of Allaria petiolata. Journal of Chemical Ecology 31:1255-1267.

Connor, E. F., S. H. Faeth, D. Simberloff, and P. A. Opler. 1980. Taxonomic isolation and the Accumulation of Herbivorous Insects - a Comparison of Introduced and Native Trees. Ecological Entomology 5:205-211.

Coombs, E., J. Clark, G. Piper, and A. e. Cofrancesco jr. 2004. Biological control of invasive plants in the United States. Oregon State University Press, Corvallis, Oregon,USA.

Craig, A. M., L. L. Blythe, E. D. Lassen, and M. L. Sliweski. 1986. Resistance of sheep to pyrrolizidine alkaloids. Isr. J. Vet. Medicin 4:376-384.

Eastal, S. 1981. The History of Introductions of Bufo-Marinus (Amphibia, Anura) - a Natural Experiment in Evolution. Biological Journal of the Linnean Society 16:93-110.

Eigenbrode, S. D., J. E. Andrews, M. G. Cripps, H. Ding, R. C. Biggman, and M. Schwarzlander. 2008. Induced chemical defences in invasive plants: a case study with Cynoglossum officinale L. Biological Invasions 10:1373-1379.

Eisner, T., and M. Eisner. 1991. Unpalatability of the pyrrolizidine alkaloid containing moth, Uetheelia ornatrix, and its larva, to wolf spiders. Psyche 98:111-118.

Feeny, P. P. 1976. Plant apparency and chemical defence. Rec. Adv. Phytochem 10:1-40.

Feng, Y. L., Y. B. Lei, R. F. Wang, R. M. Callaway, A. Valiente-Banuet, Inderjit, Y. P. Li, and Y. L. Zheng. 2009. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America 106:1853-1856.

Glawe, G. A., J. A. Zavala, A. Kessler, N. M. Van Dam, and I. T. Baldwin. 2003. Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata. Ecology 84:79-90.

Hedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:1150-1156.

Hull-Sanders, H. M., R. Clare, R. H. Johnson, and G. A. Meyer. 2007. Evaluation of the evolution of increased competitive ability (EICA) hypothesis: Loss of defense against generalist but not specialist herbivores. Journal of Chemical Ecology 33:781-799.

Jakobs, G., E. Weber, and P. J. Edwards. 2004. Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Diversity and Distributions 10:11-19.

Joshi, J., and K. Vrieling. 2005. The enemy release and EICA hypothesis revisited: incorporating the fundamental
difference between specialist and generalist herbivores. Ecology Letters 8:704-714.
Keane, R. M., and M. J. Crawley. 2002. Ecotone plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17:164-170.
Koricheva, J. 2002. Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176-190.
Koricheva, J., H. Nykanen, and E. Gianoli. 2004. Meta-analysis of trade-offs among plant antiherbivore defenses: Are plants jack-of-all-trades, masters of all? American Naturalist 163:E64-E75.
Lew, K. C., F. A. Barzezz, Q. Liao, and C. M. Orstęp. 2006. Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Allaria petiolata. Oecologia 148:384-395.
Long, 2003. Introduced Mammals of the World: their History, Distribution and Influence. CAB Publishing, Oxford, UK.
Mácel, M., and K. Vrieling. 2003. Pyrrolizidine alkaloids as oviposition stimulants for the cinnabar moth, Tyria jacobaeae. Journal of Chemical Ecology 29:1435-1446.
Maron, J. L., M. Vila, and J. Arnason. 2004. Loss of enemy resistance among introduced populations of St John’s Wort (Hypericum perforatum). Ecology 85:3243-3253.
Müller, C., and N. Martens. 2005. Testing predictions of the ‘evolution of increased competitive ability’ hypothesis for an invasive crucifer. Evolutionary Ecology 19:533-550.
Müller-Schürer, H., U. Schaffner, and T. Steinger. 2004. Evolution in invasive plants: implications for biological control. Trends in Ecology & Evolution 19:417-422.
Read, J., G. D. Sanson, E. Caldwell, F. J. Clissold, A. Chatain, P. Peeters, B. B. Lamont, M. De Garine-Wichatitsky, T. Jaffre, and S. K. Kerr. 2009. Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Annals of Botany 103:757-767.
Rejmanek, M. 2000. Invasive plants: approaches and predictions. Austral Ecology 25:497-506.
Rodecker, M. L., S. L. Berry, I. R. Noble, and G. D. Farquhar. 1999. A theoretical approach to linking the composition and morphology with the function of leaves. Functional Ecology 13:683-695.
Siemann, E., and W. E. Rogers. 2001. Genetic differences in growth of an invasive tree species. Ecology Letters 4:514-516.
Smith, W. K., and P. S. Nobel. 1977. Influences of Seasonal Changes in Leaf Morphology on Water-Use Efficiency for 3 Desert Biosaile shrubs. Ecology 58:1033-1043.
Stemp, N. 2003. Out of the quagmire of plant defense hypotheses. Quarterly Review of Biology 78:23-55.
Straus, S. Y., D. H. Siemers, M. B. Decher, and T. Mitchell-Olids. 1999. Ecological costs of plant resistance to herbivores in the currency of pollination. Evolution 53:1105-1113.
Travers-Martin, N., and C. Müller. 2008. Matching plant defense syndromes with performance and preference of a specialist herbivore. Functional Ecology 22:1033-1043.
Van Dam, N. M., K. Vrieling. 1994. Genetic-Variation in Constitutive and Inducible Pyrrolizidine Alkaloid Levels in Cynoglossum Officinalis L. Oecologia 99:374-378.
Van der Meijden, E. 1996. Plant defence, an evolutionary dilemma: Contrasting effects of specialist herbivores in natural and experimental design. Entomologia Experimentalis et Applicata 80:307-310.
Van der Meijden, E., N. J. de Boer, and C. M. van der Veen-van Wijk. 2000. Pattern of storage and regrowth in ragwort. Evolutionary Ecology 14:439-455.
Vrieling, K. H. de Vos, and C. A. M. van Wijk. 1993. Genetic-Analysis of the Concentrations of Pyrrolizidine Alkaloids in Senecio-Jacobaea. Phytochemistry 32:1141-1144.
Vrieling, K., and C. A. M. van Wijk. 1994. Cost Assessment of the Production of Pyrrolizidine Alkaloids in Ragwort (Senecio-Jacobaeae L). Oecologia 97:541-546.
Weller, S. J., N. L. Jacobson, and W. E. Conner. 1999. The evolution of defensive chemicals and mating systems in tiger moths (Lepidoptera: Arctiidae). Biological Journal of the Linnean Society 68:557-578.
Will, K. A., and J. B. Steinbeck. 2006. Increased chemical resistance explains low herbivore colonization of introduced seaweed. Oecologia 148:593-601.
Wills, A. J., M. B. Thomas, and J. H. Lawton. 1999. Is the increased vigour of invasive weeds explained by a trade-off between growth and herbivore resistance? Oecologia 120:632-640.

Abstract

Jacobaea vulgaris (Asteraceae) is a species of Eurasian origin that has become a serious non-indigenous weed in Australia, New Zealand, and North America. We used neutral molecular markers to (1) test for genetic bottlenecks in invasive populations and (2) to investigate invasion pathways. It is for the first time that molecular markers were used to unravel the process of introduction in this species.

The genetic variation of 15 native populations from Europe and 16 invasive populations from Australia, New Zealand and North America was compared using Amplified Fragment Length Polymorphisms (AFLP’s). An analysis of molecular variance showed that a significant part (10 %) of the total genetic variation between all individuals could be explained by native or invasive origin. Significant among-population differentiation was detected only in the native range, whereas populations from the invasive areas did not significantly differ from each other; nor did the Australian, New Zealand and North American regions differ within the invasive range. The result that native populations differed significantly from each other and that the amount of genetic variation, measured as the number of polymorphic bands, did not differ between the native and invasive area, strongly suggests that introductions from multiple source populations have occurred. The lack of differentiation between invasive regions suggests that either introductions may have occurred from the same native source in all invasive regions or subsequent introductions took place from one into another invasive region and the same mix of genotypes was subsequently introduced into all invasive regions.

An assignment test showed that European populations from Ireland, the Netherlands and the United Kingdom most resembled the invasive populations.