Evaluation the Serum Level of Sex Hormones in Patients With Trigeminal Neuralgia

Fatemeh Lavaee
Oral and Dental Disease Research center, Oral and Maxillofacial Disease Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

Parisa Mohaghegh Zahed
Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran

Fateme Zarei (fatemezarei@sums.ac.ir)
Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran

Maryam Shahrokhi Sardo
Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran

Research Article

Keywords: FSH, LH, Testosterone, Estrogen, Progesterone, trigeminal neuralgia

DOI: https://doi.org/10.21203/rs.3.rs-762981/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Evaluation the serum level of sex hormones in patients with trigeminal neuralgia

Fatemeh Lavaee

Assistant Professor of Oral and Dental Disease Research Center, Oral and Maxillofacial Disease Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

ORCID: 0000-0001-8896-1225

Fatemeh.lavaee@gmail.com

Parisa Mohaghegh Zahed

Undergraduate Students, Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

Pari200826@yahoo.com

Correspondence:

Fateme Zarei

Undergraduate students, school of dentistry, Shiraz university of medical sciences

Shiraz University of Medical Sciences, Ghasr-dasht street, Shiraz, Iran

ORCID: 0000-0001-8708-9949

Tel:09170885009

fatemezarei@sums.ac.ir

Maryam Shahrokhi Sardo

Undergraduate students, school of dentistry, Shiraz university of medical sciences
Key words: FSH, LH, Testosterone, Estrogen, Progesterone, trigeminal neuralgia

Date of submission: 29/07/2021

Conflict of interest: None declared.

Word count: 4299

Research article

Evaluation of sex hormones serum level in patients with trigeminal neuralgia in comparison with healthy controls

Fatemeh Lavaee,1 Parisa Mohaghegh Zahed,2 Fateme Zarei,2 Maryam Shahrokhi Sardo2

1Oral and Dental Disease Research center, Oral and Maxillofacial Disease Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

2Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran

Correspondence should be addressed to Fateme Zarei; fatemezarei@sums.ac.ir
Abstract

Background and Aim: In this study FSH, LH, Testosterone, Estrogen, Progesterone serum levels in women affected by trigeminal neuralgia have been evaluated.

Materials and Methods: This study is a cross sectional study during 2017-2018 in which FSH, LH, Testosterone, Estrogen, Progesterone serum levels in women affected by trigeminal neuralgia, who had referred to Emam Reza clinic and Oral and Maxillofacial Disease Department of Shiraz Dental Faculty, have been evaluated. Twenty-six women with trigeminal neuralgia were recruited in trigeminal neuralgia (TN) group and 26 healthy women whom their age were matched with TN group were enrolled in the healthy control group. Data was analyzed by SPSS version 18.

Results: Sex hormone serum level was not significantly different between patients with TN and healthy control group (P value ≥0.05). In spite of this finding, the serum level of FSH in non-menopausal (P value=0.002) participants and progesterone in menopausal (P value=0.016) participants of TN and healthy control group, were significantly different. The serum level for both of these hormones were higher in patients with TN. In contrast to healthy control group, the sex hormone profiles of patients with TN, except LH did not follow the natural pattern changes based on menopausal status.

Conclusion: In spite of no significant differences in sex hormonal profile of patients with TN and healthy controls, some hormonal disturbance in FSH and progesterone have been detected in TN patients in comparison between non-menopause and menopausal sex hormones profile.

Key words: FSH, LH, Testosterone, Estrogen, Progesterone, trigeminal neuralgia

Introduction
Trigeminal neuralgia is a neuropathic pain, causing sudden, brief, stabbing and recurring pain, limited to a small region of the face[1]. Trigeminal neuralgia onset is usually middle or old age, but it also affects young adults and children. Trigeminal neuralgia can reoccur and lasts for few seconds. The attack might begin with stimulation of trigger zone, located within the trigeminal nerve pathway[2]. Trigeminal neuralgia is a neuropathic pain with different etiologies, causing demyelization in trigeminal zone. Neurovascular compression, multiple sclerosis, tumor, and cysts, diabetes mellitus are the most popular causes[3]. In some studies, neuropathic and neurotropic role were described for sexual hormones, even the effect of hormones on the quality and rate of nerve conduction reported. These studies showed a higher incidence of peripheral neuropathy in menopausal women[4]. Peripheral sensory and autonomic neurons express estrogen receptors[5]. The nerve transmission speed is dependent on velocity and latency (the duration between applying a stimulation and wave form record on nerve conduction study). On the other hand, the degree of myelination can significantly affect velocity and latency in nerve conduction studies[6]. A study showed that sexual hormone replacement therapy were affective on faster velocity and shorter latency, an indication for possible association between sexual hormones and nerve myelination[7]. Another study investigated whether Estrogen(E2) has a proper recovery effect on nerve injury in mice. They reported that local injection of E2 can induce greater nerve conduction velocity and vascularity [8]. In a study by Akanksha Singh explored the relationship between estrogen serum level and progesterone and -peripheral motor nerve neuropathy in postmenopausal women by motor nerve conduction velocity. Their findings reported lower level of serum estrogen in postmenopausal women with peripheral neuropathy[9]. According to these information and higher prevalence of some neuropathic pains, such as burning mouth syndrome and trigeminal neuralgia in female with more variant sex hormone status, the hypothesis of
possible relation between sex hormones and prevalence of trigeminal neuralgia can be evaluated. To the best of our knowledge, there is no study on sex hormones in patient with trigeminal neuralgia; hence, in this study FSH, LH, Testosterone, Estrogen, Progesterone serum levels in women affected by trigeminal neuralgia who had referred to Oral and Maxillofacial Disease Department of Shiraz Dental School, were evaluated.

Materials and Methods

This study is a cross sectional study, performed during 2017-18. The women with confirmed trigeminal neuralgia who had referred to Emam Reza clinic and Oral and Maxillofacial Disease Department of Shiraz Dental Faculty were enrolled in this study. The protocol of this study which was conducted according to the ethical principles of Helsinki [10], was approved by the ethics committee of Shiraz University of Medical Sciences (IR.SUMS.REC.1396.S886).

A written informed consent was obtained from each participant. The participants who had any disease that could affect sex hormone serum level were excluded from the study. The blood samples were obtained by an expert nurse in day 3 of participant’s menstruation of non-menopausal women; the day of sampling for menopausal women was not a specific day. The blood sample was obtained after 2-4 hours after waking up. The serum level of FSH, LH, Testosterone, progesterone, estrogen was evaluated. Patients’ demographic data including age, other systemic disease and menopausal situation were registered. Twenty-six women with trigeminal neuralgia were recruited in case group and 26 healthy women whom their age were matched with TN group were enrolled in the healthy control group. The participants in healthy control group were patients who had referred to Shiraz Dental School for routine dental evaluation. Data was analyzed by
SPSS version 18. The pattern of hormonal changes in menopausal and non-menopausal participants were compared by Mann-Whitney test.

Results

In this study, the mean age of participants in TN group was 52.73 ± 15.83 years old and 49.93 ± 12.04 for the healthy group. The mean serum level of evaluated sex hormones in TN and healthy control groups are presented in table 1. Other statistical data and the P value for comparing the mean of both groups are also in table 1.

Group	Age (years old)	FSH (miu/ml)	LH (miu/ml)	TESTO (ng/ml)	ESTRO (pg/ml)	PROG (ng/ml)
TN group	30	30	30	30	30	30
Mean	52.733	48.31013	23.51427	0.36717	64.57290	1.12663
Median	50.500	39.20950	18.44950	0.33900	34.06550	0.66400
Minimum	29.0	0.060	0.031	0.036	4.016	0.055
Maximum	99.0	105.000	68.055	1.031	263.374	10.000
Std. Deviation	15.8352	38.094427	17.002634	0.209768	72.854346	1.779472
Healthy control group	30	30	30	30	30	30
Mean	49.933	36.72390	19.60777	0.34317	71.52023	1.19077
Median	51.500	22.18650	17.30100	0.30300	47.31050	0.41000
Minimum	26.0	2.120	1.080	0.023	4.820	0.060
--------	------	-------	-------	-------	-------	-------
Maximum	70.0	101.900	45.870	0.970	193.000	10.000
Std. Deviation	12.0400	33.622332	14.333563	0.227073	57.065230	2.251321

Total	N	60	60	60	60	60	60
Mean	51.333	42.51702	21.56102	0.35517	68.04657	1.15870	
Median	50.500	32.83750	17.71950	0.32450	41.20000	0.55000	
Minimum	26.0	0.060	0.031	0.023	4.016	0.055	
Maximum	99.0	105.000	68.055	1.031	263.374	10.000	
Std. Deviation	14.0177	36.098116	15.714933	0.217069	64.975311	2.012148	

Asymp. Sig. (2-tailed) | 0.807 | 0.135 | 0.442 | 0.442 | 0.095 | 0.081 |

FSH=follicle stimulating hormone/ LH=luteinizing hormone/ TESTO=testosterone/ ESTRO= estrogen/ PRO=progesterone

Serum level between TN and healthy control group was not significantly different. The pattern of hormonal changes in menopausal and non-menopausal participants (TN and healthy control groups together) were compared and the P values are reported in table 2.

Table 2: comparison between hormones serum level in menopause and non-menopause participants (TN and healthy control group together)
Table 3: the comparison of hormonal level between TN and healthy control groups in menopause and none menopause participants

Group	Age (years old)	FSH (miu/ml)	LH (miu/ml)	TESTO (ng/ml)	ESTRO (pg/ml)	PROG (ng/ml)	
Non _Menopause							
TN group	15	15	15	15	15	15	
Mean	41.333	33.72120	19.56267	0.39427	77.02840	0.85547	
Median	45.000	19.18700	12.44400	0.35100	38.30700	0.76200	
Minimum	29.0	5.251	0.031	0.109	10.000	0.055	
Maximum	50.0	105.000	68.055	0.737	263.374	2.092	
	Std. Deviation						
--------	----------------						
	7.5467						
Healthy control group	32.780559						
Mean	18.978451						
Median	0.171218						
Minimum	81.115178						
Maximum	0.614944						
	3.2780559						
Mean	12.83933						
Median	0.43793						
Minimum	104.57293						
Maximum	1.40887						
	7.2886						
Mean	5.57000						
Median	5.32000						
Minimum	90.04700						
Maximum	0.55000						
	7.3278						
Mean	13.855412						
Median	0.229874						
Minimum	63.446536						
Maximum	2.027978						
	7.2886						
Mean	5.272371						
Median	13.855412						
Minimum	0.229874						
Maximum	2.027978						
	7.3278						
Mean	16.20100						
Median	0.41610						
Minimum	90.80067						
Maximum	1.13217						
	7.3278						
Mean	16.680756						
Median	0.200388						
Minimum	72.910467						
Maximum	1.499066						
	7.3278						
Mean	64.133						
Median	62.89907						
Minimum	27.46587						
Maximum	52.11740						
	62.89907						
Mean	27.46587						
Median	0.34007						
Minimum	52.11740						
Maximum	1.39780						
	62.89907						
Mean	24.22400						
Median	0.29200						
Minimum	30.90400						
Maximum	0.62600						
	62.89907						
Mean	10.285						
Median	0.036						
Minimum	4.016						
Maximum	0.140						
	62.89907						
Mean	65.181						
Median	1.031						
Minimum	204.194						
Maximum	10.000						
	Std. Deviation						
---------------	---------------	---	---	---	---	---	---
Healthy control group	13.5640	38.410709	14.324306	0.245476	63.894624	2.454282	
N	15	15	15	15	15	15	
Mean	60.000	65.91100	26.37620	0.24840	38.46753	0.97267	
Median	60.000	68.43000	23.59000	0.24000	39.80000	0.35000	
Minimum	53.0	25.800	11.780	0.023	4.820	0.060	
Maximum	70.0	101.900	45.870	0.670	75.900	10.000	
Std. Deviation	5.4772	22.099776	11.637732	0.186336	19.467676	2.506850	
Total		30	30	30	30	30	
N	30	30	30	30	30	30	
Mean	62.067	64.40503	26.92103	0.29423	45.29247	1.18523	
Median	59.500	66.10450	23.90700	0.29100	34.45000	0.45000	
Minimum	51.0	0.060	10.285	0.023	4.016	0.060	
Maximum	99.0	105.000	65.181	1.031	204.194	10.000	
Std. Deviation	10.3788	30.828220	12.835324	0.219147	46.925686	2.447129	
Asymp. Sig.		0.617	0.002	0.191	0.852	0.085	0.983
(2-tailed)							
Asymp. Sig.		0.852	0.950	0.983	0.351	0.443	0.016
(2-tailed)							

FSH=follicle stimulating hormone/ LH=luteinizing hormone/ TESTO=testosterone/ ESTRO= estrogen/ PRO=progesterone
FSH in non-menopausal participants and progesterone in menopause participants of TN and healthy control group were significantly different. The comparison of hormonal serum level between menopause and non-menopause participants in TN and healthy control groups are presented in table 4.

Table 4: the comparison of hormonal serum level between menopause and non-menopause participants in TN and healthy control groups

Group	Mann-Whitney U	Wilcoxon W	Z	Asymp. Sig. (2-tailed)
TN group				
Mann-Whitney	0.000	120.000	-4.670	<0.001
FSH (miu/ml)	66.000	186.000	-1.933	0.053
LH (miu/ml)	64.000	184.000	-2.012	0.044
TESTO (ng/ml)	86.000	206.000	-1.099	0.272
ESTRO (pg/ml)	91.000	211.000	-0.892	0.372
PROG (ng/ml)	109.000	229.000	-0.145	0.885
Healthy control group				
Mann-Whitney	0.000	120.000	-4.671	<0.001
FSH (miu/ml)	0.000	120.000	-4.666	<0.001
LH (miu/ml)	50.000	170.000	-2.592	0.010
TESTO (ng/ml)	66.000	186.000	-1.929	0.054
ESTRO (pg/ml)	42.000	162.000	-2.924	0.003
PROG (ng/ml)	72.000	192.000	-1.680	0.093
FSH=follicle stimulating hormone/ LH=luteinizing hormone/ TESTO=testosterone/ ESTRO= estrogen/
PRO=progesterone

Discussion

Sex hormone serum level was not significantly different between TN and healthy control group (P value ≥0.05). In spite of this finding, the serum level of FSH in non-menopausal (P value=0.002) participants and progesterone in menopausal (P value=0.016) participants of TN and healthy control group, were significantly different. The serum level for both these hormones were higher in patients with TN(case group). Although in this study the evaluated hormones in a general pattern confirmed the natural changes of hormonal level in women based on their menopausal status, but in patient of TN group, just LH showed the natural pattern of hormonal change. The importance of this finding is noticeable when comparing to natural pattern of these hormones in healthy controls. This imbalance might be related to incidence of TN in the case group. The effect of sex hormones (especially estrogen and progesterone) on neurons was evaluated in previous studies, but the reports are controversial. Some studies indicated a neuroprotective role for these hormones;[11-15] while others did not confirm this role [16-20]. In a study, the relationship between peripheral motor nerve status, estrogen serum level and progesterone was evaluated by Motor Nerve Conduction Velocity(MNCV) in post-menopausal women. In spite of significant lower serum level of estrogen in post-menopausal patient with peripheral neuropathy, no significant effect was reported for progesterone[9]. In another study, higher levels of progesterone was accompanied with reduced optic nerve conduction
velocity[16]. Also elevated level of progesterone was considered to be effective in reducing the nerve conduction velocity in an evaluation[17]. On the other hand, animal model evaluation did not consider noticeable influence of estrogen and progesterone therapy on nerve repair[21]. The findings of these studies are in accordance with what we have reported in our study, in menopause participants which are considerably more prone to neuropathies, where a significant higher level of progesterone was reported in patients with TN compared to healthy controls. On the other hand, some other studies showed a neuroprotective and neurotrophic properties for progesterone. This role was reported in electrophysiological alteration of diabetic induced neuropathy in rats[15, 22]. This neuroprotective effect was also reported for estrogen in some studies. A study proposed the protective effect of estrogen against neural death mediated by estrogen receptors. Estrogen can also regenerate the damaged nerves or enhance the nerve velocity and vascularity[8, 12]. Several neuroprotective mechanisms in the literature have been proposed; for example, progesterone can induce regeneration and nerve demyelination which plays an important role in pathogenesis of most neuropathies [22-40]. In damaged nerves, progesterone prevents secondary neural losses by reducing edema, inflammatory cytokines and reactive gliosis[41]. Some studies reported that estrogen treatment can increase vascular epithelial growth factor expression, which suggests the pro-angiogenic properties of estradiol [42]. In the result of present study, rather than confirming the neuroprotective role of progesterone and estrogen, an imbalance of sex hormones in patients with TN was shown. Menopause patients with TN had higher level of progesterone in comparison with healthy controls. According to pathogenesis of TN and role of demyelinized affected trigeminal nerve and following neuropathies, the higher level of progesterone cannot be indicative of neuroprotection. On the other hand, in non-menopause participants who were less prone to TN,
the serum level of FSH in patients with TN was significantly higher than healthy controls. Since there is no study on the possible effect of FSH on neurons, this hormone can impose its effect by estradiols. FSH is a gonadotropin hormone that regulates the secretion of estradiol. Any alteration in serum level of estradiol can affect FSH. Although in menopause TN patients’ progesterone level was higher than healthy patients, significant higher level of FSH in non-menopause TN patients was noticeable. Hormonal imbalance for FSH and progesterone in TN patients was significant. This can be a novel point when evaluating new methods for adjuvant treatment. Considering the sex hormonal profile evaluation in patients affected by TN and improving these imbalances, might affect patients’ response to routine treatment. The sample size was small due to financial limitation and low prevalence of TN; hence, it would be wise to recruit larger sample size. To the best of our knowledge there is no similar study on TN patients. Previous studies evaluated different types of neuropathies by several methods and designs. These diverse methodologies make the comparison difficult and sometimes inaccurate, which explains the controversies in their findings. As we proposed, in contrast to healthy controls, the sex hormone profiles of patients with TN, except LH did not follow the natural pattern changes based on menopausal status. This can show sex hormonal imbalance in these patients. Perhaps small sample size in our study limited the study power to discriminate the quality of these imbalances and their possible association with pathogenesis of TN. Further case-control studies with larger sample size, as well as recruiting men can be suggested for further studies.

Conclusions

In spite of no significant differences in sex hormonal profile of patients with TN and healthy controls, the serum level of FSH in non-menopause TN participants and progesterone in
menopause TN patients were significantly higher. These findings confirmed the sex hormonal imbalance of TN patients.

List of abbreviations

TN: Trigeminal neuralgia

EST: Estrogen

FSH: Follicle Stimulating Hormone

LH: Luteinizing Hormone

PROG: Progesterone

TESTO: Testosterone

ESTRO: Estrogen

MNCV: Motor Nerve Conduction Velocity

Declarations

Acknowledgments

The authors would like to thank the Vice-Chancellor of Shiraz University of Medical Science for supporting this research. This article was extracted from the thesis by Dr. Parisa Mohaghegh Zahed (grant # 152889). The authors also thank Dr. Salehi of the Center for Research Improvement at School of Dentistry for his statistical analysis. The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.
Authors’ contributions

Fateme Lavaee and Parisa Mohaghegh Zahed were involved in study design, patients’ evaluation and data interpretation. Fateme Zarei and Maryam Shahrokhi Sardo were involved in data acquisition and preparing the manuscript. All the authors read and approved the manuscript.

Data Availability

The readers can access the data supporting the conclusions of the study by a request through an email to the corresponding author.

Funding Statement

The Vice-Chancellor of Shiraz University of Medical Sciences supported this research. (grant # 152889)

Availability of data materials

The datasets used and/or analyzed during the study are available from the corresponding author on reasonable request.

Ethical approval and consent to participate

An informed consent was taken from all the participants before the study. This study was approved by the ethics committee of Shiraz University of Medical Sciences.

Consent for publication

Not applicable
Competing interest

The authors declare that they have no competing interests.

References

[1.] Amanat D, Ebrahimi H, Lavaee F, Alipour A, “The adjunct therapeutic effect of lasers with medication in the management of orofacial pain: double blind randomized controlled trial,” *Photomedicine and laser surgery*, vol. 31, no. 10, pp. 474-9, 2013.

[2.] Love S, Coakham HB, “Trigeminal neuralgiaPathology and pathogenesis,” *Brain*, vol. 124, no. 12, pp. 2347-60, 2001.

[3.] Toda K, “Etiology of trigeminal neuralgia,” *Oral Science International*, vol. 4, no. 1, pp. 10-8, 2007.

[4.] Lobo R, “Menopause: endocrinology, consequences of estrogen deficiency, effects of hormone replacement therapy, treatment regimens,” *Comprehensive Gyncology 5th ed Philadelphia, PA: Mosby Elsevier*, vol., no., pp. 1039-71, 2007.

[5.] Jeon KW. International Review of Cytology: A Survey of Cell Biology: Elsevier Science; 2003.

[6.] Takeo T, Sakuma Y, “Diametrically opposite effects of estrogen on the excitability of female rat medial and lateral preoptic neurons with axons to the midbrain locomotor region,” *Neuroscience Research*, vol. 22, no. 1, pp. 73-80, 1995.

[7.] Kim H, Ku SY, Sung JJ, Kim SH, Choi YM, Kim JG, et al., “Association between hormone therapy and nerve conduction study parameters in postmenopausal women,” *Climacteric*, vol. 14, no. 4, pp. 488-91, 2011.

[8.] Sekiguchi H, Ii M, Jujo K, Renault M-A, Thorne T, Clarke T, et al., “Estradiol Triggers Sonic-hedgehog-induced Angiogenesis During Peripheral Nerve Regeneration by Downregulating Hedgehog-interacting Protein,” *Laboratory investigation; a journal of technical methods and pathology*, vol. 92, no. 4, pp. 532-42, 2012.

[9.] SiNggh A, ASif N, SiNggh PN, Hossain MM, “Motor Nerve Conduction Velocity In Postmenopausal Women with Peripheral Neuropathy,” *Journal of clinical and diagnostic research: JCDR*, vol. 10, no. 12, pp. CC13, 2016.

[10.] Lewis JA, Jonsson B, Kreutz G, Sampaio C, van Zwieten-Boot B, “Placebo-controlled trials and the Declaration of Helsinki,” *The Lancet*, vol. 359, no. 9314, pp. 1337-40, 2002.

[11.] Suzuki S, Brown CM, Wise PM, “Mechanisms of neuroprotection by estrogen,” *Endocrine*, vol. 29, no. 2, pp. 209-15, 2006.

[12.] Wise PM, Dubal DB, Wilson ME, Rau SW, Böttner M, Rosewell KL, “Estradiol is a protective factor in the adult and aging brain: understanding of mechanisms derived from in vivo and in vitro studies,” *Brain Research Reviews*, vol. 37, no. 1-3, pp. 313-9, 2001.

[13.] Sekiguchi H, Ii M, Jujo K, Thorne T, Ito A, Klyachko E, et al., “Estradiol promotes neural stem cell differentiation into endothelial lineage and angiogenesis in injured peripheral nerve,” *Angiogenesis*, vol. 16, no. 1, pp. 45-58, 2013.

[14.] Sekiguchi H, Ii M, Jujo K, Renault M-A, Thorne T, Clarke T, et al., “Estradiol triggers sonic-hedgehog-induced angiogenesis during peripheral nerve regeneration by downregulating hedgehog-interacting protein,” *Laboratory Investigation*, vol., no., pp. 532, 2012.

[15.] Sameni H, Panahi M, Sarkaki A, Saki G, Makvandi M, “The neuroprotective effects of progesterone on experimental diabetic neuropathy in rats,” *Pakistan Journal of Biological Sciences*, vol., no., pp. 1994-2000, 2008.

[16.] Azarmina M, Soheilian M, Azarmina H, “Increased latency of visual evoked potentials in healthy women during menstruation,” *Journal of ophthamic & vision research*, vol. 6, no. 3, pp. 183, 2011.
Amir D, Fessler DM, “Boots for Achilles: Progesterone's reduction of cholesterol is a second-order adaptation,” *The Quarterly review of biology*, vol. 88, no. 2, pp. 97-116, 2013.

Henderson V, Popat R, “Effects of endogenous and exogenous estrogen exposures in midlife and late-life women on episodic memory and executive functions,” *Neuroscience*, vol. 191, no., pp. 129-38, 2011.

Nachemson AK, Lundborg G, Myrhole R, Rank F, “Nerve regeneration and pharmacological suppression of the scar reaction at the suture site: An experimental study on the effect of estrogen-progesterone, methylprednisolone-acetate and cis-hydroxyproline in rat sciatic nerve,” *Scandinavian journal of plastic and reconstructive surgery*, vol. 19, no. 3, pp. 255-60, 1985.

Kim H, Ku S, Sung J, Kim S, Choi Y, Kim J, et al., “Association between hormone therapy and nerve conduction study parameters in postmenopausal women,” *Climacteric*, vol. 14, no. 4, pp. 488-91, 2011.

Hale G, Burger H, “Hormonal changes and biomarkers in late reproductive age, menopausal transition and menopause,” *Best practice & research Clinical obstetrics & gynaecology*, vol. 23, no. 1, pp. 7-23, 2009.

Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, Garcia-Segura LM, et al., “Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis,” *Neuroscience*, vol. 144, no. 4, pp. 1293-304, 2007.

Yin X, Crawford TO, Griffin JW, Tu P-h, Lee VM-Y, Li C, et al., “Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons,” *Journal of Neuroscience*, vol. 18, no. 6, pp. 1953-62, 1998.

Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al., “Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury,” *Journal of Neuroscience*, vol. 25, no. 19, pp. 4694-705, 2005.

Koenig HL, Schumacher M, Ferzaz B, Thi AN, Ressouches A, Guennoun R, et al., “Progesterone synthesis and myelin formation by Schwann cells,” *Science*, vol. 268, no. 5216, pp. 1500-3, 1995.

Chan JR, Phillips LJ, Glaser M, “Glucocorticoids and progestins signal the initiation and enhance the rate of myelin formation,” *Proceedings of the National Academy of Sciences*, vol. 95, no. 18, pp. 10459-64, 1998.

Jung-Testas I, Schumacher M, Robel P, Baulieu E, “Demonstration of progesterone receptors in rat Schwann cells,” *The Journal of steroid biochemistry and molecular biology*, vol. 58, no. 1, pp. 77-82, 1996.

Magnaghi V, Cavarretta I, Galbiati M, Martini L, Mecangi RC, “Neuroactive steroids and peripheral myelin proteins,” *Brain research reviews*, vol. 37, no. 1-3, pp. 360-71, 2001.

Chan JR, Rodriguez-Waitkus PM, Ng BK, Liang P, Glaser M, “Progesterone synthesized by Schwann cells during myelin formation regulates neuronal gene expression,” *Molecular biology of the cell*, vol. 11, no. 7, pp. 2283-95, 2000.

Groyer G, Eychenne B, Girard C, Rajkowski K, Schumacher M, Cadepond F, “Expression and functional state of the corticosteroid receptors and 11β-Hydroxysteroid dehydrogenase type 2 in Schwann cells,” *Endocrinology*, vol. 147, no. 9, pp. 4339-50, 2006.

Sereda MW, zu Hörste GM, Suter U, Uzma N, Nave K-A, “Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A),” *Nature medicine*, vol. 9, no. 12, pp. 1533, 2003.

Lubetzki C, Demerens C, Anglade P, Villarroya H, Frankfurter A, Lee V, et al., “Even in culture, oligodendrocytes myelinate solely axons,” *Proceedings of the National Academy of Sciences*, vol. 90, no. 14, pp. 6820-4, 1993.

Baumann N, Pham-Dinh D, “Biology of oligodendrocyte and myelin in the mammalian central nervous system,” *Physiological reviews*, vol. 81, no. 2, pp. 871-927, 2001.

Ghoumari A, Ibanez C, El-Etr M, Leclerc P, Eychenne B, O'malley B, et al., “Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum,” *Journal of neurochemistry*, vol. 86, no. 4, pp. 848-59, 2003.
[35.] Dusart I, Airaksinen MS, Sotelo C, “Purkinje cell survival and axonal regeneration are age dependent: an in vitro study,” *Journal of Neuroscience*, vol. 17, no. 10, pp. 3710-26, 1997.
[36.] Ghomari AM, Wehrle R, De Zeeuw CI, Sotelo C, Dusart I, “Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration,” *Journal of Neuroscience*, vol. 22, no. 9, pp. 3531-42, 2002.
[37.] Notterpek L, Bullock P, Malek-Hedayat S, Fisher R, Rome L, “Myelination in cerebellar slice cultures: development of a system amenable to biochemical analysis,” *Journal of neuroscience research*, vol. 36, no. 6, pp. 621-34, 1993.
[38.] Baulieu E, Schumacher M, “Neurosteroids, with special reference to the effect of progesterone on myelination in peripheral nerves,” *Multiple Sclerosis Journal*, vol. 3, no. 2, pp. 105-12, 1997.
[39.] Roof RL, Duvdevani R, Stein DG, “Gender influences outcome of brain injury: progesterone plays a protective role,” *Brain research*, vol. 607, no. 1-2, pp. 333-6, 1993.
[40.] Roof RL, Duvdevani R, Braswell L, Stein DG, “Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats,” *Experimental neurology*, vol. 129, no. 1, pp. 64-9, 1994.
[41.] VanLandingham JW, Cutler SM, Virmani S, Hoffman SW, Covey DF, Krishnan K, et al., “The enantiomer of progesterone acts as a molecular neuroprotectant after traumatic brain injury,” *Neuropharmacology*, vol. 51, no. 6, pp. 1078-85, 2006.
[42.] Hamada H, Kim MK, Iwakura A, Li M, Thorne T, Qin G, et al., “Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction,” *Circulation*, vol. 114, no. 21, pp. 2261-70, 2006.