Inactivation of avian influenza viruses by hydrostatic pressure as a potential vaccine development approach

Shana Priscila Coutinho Barroso1,2,3, Ana Clara Vicente dos Santos1,2, Patrícia Souza dos Santos1,2,4, José Nelson dos Santos Silva Couceiro5, Davis Fernandes Ferreira5, Dirlei Nico6, Alexandre Morrot6,7, Jerson Lima Silva1,2,* and Andrea Cheble de Oliveira1,2,*

Abstract
Vaccines are a recommended strategy for controlling influenza A infections in humans and animals. Here, we describe the effects of hydrostatic pressure on the structure, morphology and functional characteristics of avian influenza A H3N8 virus. The effect of hydrostatic pressure for 3 h on H3N8 virus revealed that the particles were resistant to this condition, and the virus displayed only a discrete conformational change. We found that pressure of 3 kbar applied for 6 h was able to inhibit haemagglutination and infectivity while virus replication was no longer observed, suggesting that full virus inactivation occurred at this point. However, the neuraminidase activity was not affected at this approach suggesting the maintenance of neutralizing antibody epitopes in this key antigen. Our data bring important information for the area of structural virology of enveloped particles and support the idea of applying pressure-induced inactivation as a tool for vaccine production.

INTRODUCTION
Influenza A H3N8 viruses have been originally isolated from birds, nowadays these viruses are currently the main causal agent of respiratory diseases in horses [1, 2] and their transmission from equines to dogs has already been observed [2, 3]. These enveloped viruses belong to the Alphainfluenzavirus genus into the Orthomyxoviridae family [4], which present a segmented genome of single-stranded negative RNA.

Their envelope exposes haemagglutinin (HA) and neuraminidase (NA) glycoproteins, rod-shaped trimeric and mushroom-shaped tetrameric spikes, respectively [5]. The haemagglutinins are classified into 18 subtypes and composed of head, where the receptor binding and the antigenic sites are localized, and a long fibrous stem, where a cleavage site is localized that, by its amino acid composition, permits classification of the virus samples by their pathogenicity in low pathogenicity avian influenza (LPAI) and highly pathogenic avian influenza (HPAI). The neuraminidase glycoproteins are classified into 11 subtypes and composed of head, where the sialidase cleavage site on sialic acid residues and the antigenic sites are localized, and a thin long stalk [5–7].

These viruses have been isolated from humans and a variety of animals, including, pigs, horses, sea mammals, poultry, wild ducks, birds and bats [7, 8], causing respiratory infections that result in severe human and animal suffering and high economic losses [9]. Only the genus Alphainfluenzavirus of influenza viruses are known to cause natural infections in birds; and the viruses are classified by their ability to cause avian disease as LPAI and HPAI samples. The latter is involved in outbreaks in birds and humans worldwide [10].

Vaccines are a recommended strategy for controlling these infections in humans and animals. Hydrostatic pressure (HP) has been a valuable tool to disturb the structure of...
many viruses and to allow a better understanding of the physical and chemical processes taking place in these particles [11, 12]. HP as a nonthermal, additive-free preservation method can be used to inactivate viruses [13]. The pressure-induced dissociation of viral proteins and icosahedral capsids is a phenomenon that has been demonstrated in many viruses [14–16]. The effects of the hydrostatic pressure have been studied [14] and used to inactivate some non-enveloped viruses presenting icosahedral capsid, such as hepatitis A virus (HAV) [17], foot-and-mouth disease virus (FMDV) [18, 19], norovirus [20, 21], infectious bursal disease virus (IBVD) [22] and rotavirus [23, 24]. This inhibitory effect of HP have been also shown on enveloped viruses of icosahedral capsid, such as hepatitis A virus (HAV) [17], foot-and-mouth disease virus (FMDV) [18, 19], norovirus [20, 21], infectious bursal disease virus (IBVD) [22] and rotavirus [23, 24]. This inhibitory effect of HP have been also shown on enveloped viruses of icosahedral capsid such as vesicular stomatitis virus (VSV) [24, 28].

Promising results have already been obtained with pressurized and inactivated influenza A H3N8 virus in studies that support the idea that non-human viruses can be used to produce vaccines for humans [29–31]. Here, we describe the effects of hydrostatic pressure (from 0 to 2.9 kbar) on the structure, morphology and functional characteristics of avian influenza A H3N8 virus by using fluorescence spectroscopy, light scattering and electron microscopy. For functional analyses, the viruses were assayed for biological activities of their haemagglutinin and neuraminidase spikes. Our study provides a detailed description of the relationship between the structure stability of avian influenza virus and its inactivation by HP treatment.

METHODS

Chemicals

Urea and guanidine were purchased from Merck KGaA (Darmstadt), while bis-8-anilino-1-naphthalenesulfonate (bis-ANS) was acquired from Thermo Fisher Scientific (Waltham, MA, USA). All other reagents were of the highest commercially available analytical grade. Distilled water was filtered and deionized through a Millipore water purification system.

Influenza virus preparation

Avian influenza A/duck/Ukraine/1/63 (H3N8) sample was replicated for 24 h at 37°C in the allantoic cavity of 10-day-old embryonated chicken eggs. The allantoic fluid was collected, and cell debris was removed by a low-speed spin (6000 g). The virus was pelleted by spinning the allantoic fluid at 80 000 g, then resuspended in TE buffer (20 mM Tris, 2 mM EDTA, pH 8.4), and banded at 100 000 g on a continuous 20–60% sucrose density gradient in TE buffer, pH 8.4. The protein concentration of the purified virus sample was determined as preconized by Lowry et al. [32] and stored at −80°C after confirmation of its purity by electrophoresis on 12.5% SDS-polyacrylamide gel [33].

Structural analysis by fluorescence and light scattered

The HP cell has been described by [34] and was purchased from ISS (Champaign, IL, USA). It was coupled to a fluorimeter and equipped with sapphire windows [35]. Fluorescence and light-scattering measurements were recorded on ISSK2 spectrofluorometers (ISS, USA). Samples were excited at 280 nm and emission was observed from 300 to 420 nm. Scattered light (320 nm) was collected at an angle of 90° of the incident light by integrating the intensity in the 315–325 window. In order to detect exposure of hydrophobic segments of influenza virus proteins, the fluorescent probe bis-ANS (15 µM) was excited at 360 nm and the emission of its extrinsic fluorescence was measured between 400 and 600 nm.

Structural analysis by electron microscopy

Virus preparations were observed in a Morgani electron microscope, 100 KV operating voltage. Negative staining
was performed with 2.0% uranyl acetate as described. The samples were placed on copper grids coated with carbon film, the concentration of 400 µg ml⁻¹.

Functional analysis of hemagglutinating and sialidase activity

For analysis of their haemagglutinating (receptor-binding) activity, virus preparations were assayed by haemagglutination assay in 96-well microtitre plates (Nunc, U type), 25 µl of PBS was added to each well. Viral suspension (25 µl) was added to the first well in column one, serial dilutions were made by transferring 25 µl from the first well of column one to the successive columns, the final 25 µl were discarded. The positive control was done with lectin and negative with PBS. Lastly, 25 µl of 0.5% human erythrocyte suspension was added to each well on the plate and haemagglutinating litres were recorded after 45 min as previously described [36]. For analysis of their sialidase activity, virus preparations were assayed in 96-well microtitre plates (Corning, black flat botton type) with 4-methylumbelliferyl-N-acetyl-a-D-neuraminic acid (4-MU-NANA) ammonium salt (Nacalai Tesque, Kyoto, Japan), according to a fluorometric assay method as described previously [37]. Five microlitres of viral suspension, 20 µl of a solution of NA inhibitor, and 20 µl of 0.1 mM 4-MU-NANA solution were mixed and incubated for 60 min for 37°C. Fluorescence of released 4-MU was measured with excitation at 365 nm and emission spectra were recorded at 450 nm from fluorescence spectrophotometer SpectraMax M5 (Molecular Devices).

Virus infectivity assay

The infectivity of the influenza virus was tested with 50% tissue culture infectious dose (TCID₅₀) in Madin-Darby Canine Kidney (MDCK) cells obtained from the Rio de Janeiro Cell Bank. Confluent monolayers of MDCK cells were infected with serial dilutions of 10⁻¹ to 10⁻⁷. After 48 h at 37°C, the cytopathic effects of influenza virus were observed under microscope and TCID₅₀ was calculated according to the Reed and Muench method [38].

Blind infection to access residual virus infectivity

The residual infectivity of the pressurized virus samples was assayed for three sequential blind passages. For each blind passage, the samples, which had no infectivity by TCID₅₀, were inoculated into eggs (five eggs per sample) and incubated, as described previously. Finally, the collected and clarified allantoic fluids were analysed by hemagglutination test [HI].

RESULTS

Previous studies have shown that hydrostatic pressure can be used to inactivate enveloped and non-enveloped RNA and DNA viruses [39–42]. In this study, we show that avian influenza H3N8 particles submitted to this treatment undergo changes in conformation, morphology and size. The effects of pressure on the tertiary conformation of the influenza viruses were analysed by changes on the intrinsic fluorescence spectra and light scattering of the particles. Fig. 1a shows the effects on the intrinsic fluorescence and light scattering of the influenza A H3N8 virus particles by applying gradual pressure. By applying higher pressure, the variation of the centre of spectral mass decreased, resulting in a total spectral red shift of about 100 cm⁻¹. This result indicates that few conformational changes have occurred to the exposed particles. Our data reveal a decrease of approximately 20% in LS when pressure reached around 3 kbar.
The effects of this pressure range applied for 6 h resulted in a variation in the centre of spectral mass of about 300 cm$^{-1}$ (Fig. 1b). This single elevated pressure also affected the light-scattering values of influenza viruses. Fig. 2a shows a 20% decrease of bis-ANS fluorescence when gradual increasing pressure is applied, leading to a slight detachment of the probe. When the pressure was raised to 3 kbar and kept at this pressure for 6 h, bis-ANS fluorescence yield gradually decreased. To approach the morphological changes, we access the transmission electron micrographs of influenza virus after incubation at 2.9 kbar (289.58 Mpa – 42 kpsi – 2895.8 bar) (25°C for 6h) as compared to controls incubated at atmospheric pressure. The native influenza virus is a pleomorphic particle, as shown in Fig. 3(a–c). However, viruses treated by high pressure had the same size as their native counterparts, but their shells were not as continuous or regular as the latter (Fig. 3d).

Many pressurized virus particles showed discontinuing envelopes (Fig. 3d), other presented spikes in their envelopes (HA and NA) and had their architecture visibly altered (Fig. 3f). Additionally, virus particles were not fused. However, it is interesting to note that many of these particles presented pores in the envelope and showed leakage of internal content or complete absence. However, some whole virus particles were observed after this pressurization process (Fig. 3e). These electron micrographs suggest that HHP affects influenza virus structure.

To investigate the effect of high pressure in the haemagglutinin activity we applied the haemagglutination test. Our data show that 3 h of applied pressure did not reduce the haemagglutinating activity of the virus particles. However, additional time of pressurization led to a complete loss of the haemagglutinating titre (Fig. 4a), suggesting that pressure leads to
some structural changes that abolish the haemagglutinating activity of the particles. We also investigated the NA activity that showed no significant inhibition of its sialidase activity when under pressure at any of the four times here tested (3, 6, 12 and 18 h) (Fig. 4b). Several studies describe the effect of pressure in reducing infectivity and in turning the virus inactive both in enveloped and non-enveloped viruses with minimal effects on the integrity of the particles. Fig. 5 shows the pressure effect (at 25 °C) on the infectivity of influenza H3N8 viruses that was determined by TCID$_{50}$ on MDCK cells. As shown in this figure, applied pressure for all of the four times tested here (3, 6, 12 and 18 h) dramatically decreased the virus titres in all cases.

DISCUSSION

Our results show that the influenza virus has undergone conformational changes promoted by pressure as well as changes in function of their membrane glycoproteins. These observations are consistent with data showing that high hydrostatic pressure is able to promote modifications in the viral structure, which can lead to virus inactivation.

Non-enveloped RNA viruses such as human rhinovirus type 14 (HRV14) [34], foot-and-mouth disease virus (FMDV) [18, 19], infectious bursal disease virus (IBDV) [22] and rotavirus, and enveloped RNA viruses such as vesicular stomatitis virus (VSV) [24, 28], avian metapneumovirus [24] and influenza virus, subject of our analysis, are examples of infectious agents inactivated by pressure.

The effect of applying hydrostatic pressure for 3 h on H3N8 virus revealed that the particles were resistant to this condition, and the virus displayed only a discrete conformational change, as observed by bis-ANS fluorescence (Fig. 2). Additionally, we observed a small decrease in the value of the centre of mass, which indicate a small shift in fluorescence
emission spectrum of tryptophan (Fig. 1a). Lastly, no significant changes in values of light scattering were observed.

The pressure of 3 kbar alters the exposure of tryptophan residues of viral particles. Under the same conditions, the human rhinovirus 14 (HRV14) showed deviations of 350 cm$^{-1}$ [43], the FMDV varied 200 cm$^{-1}$ [19], and IBDV varied 690 cm$^{-1}$ [22]. These differences in variation suggest that viruses have a certain ‘individual thermodynamics’ and this behaviour seems to be the result of interactions among viral proteins and between those and the viral genetic material [44].

This discrete structural change caused by hydrostatic pressure leads to virus inactivation. In the case of other pressure-inactivated viruses, such as vesicular stomatitis virus (VSV) or rotavirus, constant changes on the shape of viral particles and on the integrity of the membrane or the coat proteins were also observed [35, 45]. Enveloped virus particles have a high level of complexity, due to the multiple interactions of the capsid with the nucleic acid and with the associated lipids in the viral membrane. To characterize the morphology of the particles, electron microscopy experiments were performed with the pressurized samples for 6 h and pores were observed crossing the envelope of these treated samples (Fig. 3). However, a small number of whole particles could be observed by electron microscopy (Fig. 3f). The presence of pores and the observed alteration in the display of glycoproteins in the virus envelope might be explained by the fact that hydrostatic pressure is known to promote a decrease in lipidic fluidity of biological membranes [46], (Fig. 3e).

During an influenza virus infection, the adsorption promoted by haemagglutinin glycoprotein is a function of its binding to sialic acid receptor sites [47]. Our data show that a pressurization time longer than 3 h led to complete loss of the haemagglutination titre (Fig. 4a), suggesting that pressure leads to some structural changes in the haemagglutinin, resulting in loss of its cell-binding activity. The neuraminidase was evaluated in vitro for its sialidase activity, which allows the removal of sialic acid residues from both haemagglutinin and neuraminidase spikes, as well as from cell surface glycoconjugates. Interestingly, the pressure range used was not able to cause significative effect on the neuraminidase activity in all periods of time tested (Fig. 4b). Palese et al. [48] have shown that an impaired function of neuraminidase activity may result in aggregation of virus particles appearing on the surface of the host cell. This observation corroborates the electron microscopy images in which no aggregation in pressurized virus is noticed (Fig. 3d). The resistance of the NA mushroom-shaped structure to the hydrostatic treatment can be explained by its cluster arrangement on the virus envelope and by the fact that its globular dense heads are less exposed.

We found that pressure of 3 kbar applied for 6 h was able to inhibit haemagglutination and infectivity while virus replication was no longer observed, suggesting that full virus inactivation occurred at this point. However, this inhibition was observed in the presence of NA activity that was only slightly affected at 18 h (Fig. 4b), suggesting that inhibition of NA sialidase activity is not a sine qua non condition for virus inactivation. This unexpected finding deserves further investigation.

On the other hand, the fact that haemagglutination was impaired by pressurization agrees with other results previously reported for other subtypes of influenza A viruses (H3N2) [49] and H3N8 [50] suggests that the virus-binding activity promoted by HA is primordial for the virus infectious process. The long period of pressurization required for full inactivation of the influenza viruses agrees with findings reported by Silva et al. [39], revealing that this procedure was also crucial to achieve the full inactivation of another enveloped virus as VSV. Enveloped viruses with helical structure are highly destabilized by high pressure, that leads their glycoproteins to assume a receptor-activated conformational state, mimicking a fusion-active conformation [40]. Perhaps, as already observed to VSV, this fusion-active conformation prevents the internalization by endocytosis [40].

The structures of the VSV were not dissociated after a long time of pressurization, but the subunits appear displaced from
their normal positions, as shown by bulges under the envelope [38]. Pressure was also able to inhibit the haemagglutinating activity of dimeric VP4 spikes (receptor-binding structures) of rotavirus, a triple-shelled non-enveloped virus, that loses its infectivity but maintains its immunogenicity [23].

Studies with pressure-inactivated particles of yellow fever virus [44], infectious bursal disease virus [22], vesicular stomatitis virus (VSV) [35], simian and bovine rotavirus [23] and human influenza virus [49, 50] demonstrate that they maintain their immunogenic properties as native particles. These interesting findings have generated the idea of applying hydrostatic pressure to prepare virus vaccines with high efficiency and safety. In addition, it is also a simple and inexpensive means to prepare effective vaccines [22, 35, 44, 51]. As a physical approach, high pressure shows many advantages over other methods of preparing vaccines. The application of pressure does not introduce exogenous substances into vaccines as chemical methods usually do.

The findings of this study showing that pressure does not act equally on HA and NA glycoproteins reveal that the technique presents some selectivity that might be a useful feature when considering it for developing a potential inactivated viral particle, as some desirable parts of the virus may still remain functional. For instance, whole enveloped particles of pressurized virus may preserve, probably by very subtle structural changes [38], the immunogenicity of their original antigenic structure. Recent exciting findings, that need to be discussed, show that antibodies to HA can function in vivo by blocking NA enzyme activity to prevent virion release and enhance Fc receptor-based activation of innate immune cells [52]. Our data bring more information to the field of structural virology of enveloped particles and reinforce the idea of applying hydrostatic pressure to prepare antiviral vaccines.

Funding information
This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Instituto Milênio de Biologia Estrutural em Biomedicina e Biotecnologia (IMBEB), Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Biomagem (INBEB), and Programa de Apoio a Núcleos de Excelência (PRONEX) to J.L.S. and A.C.O. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We are grateful to Ana Maria de Amorim Ferreira and Emerson R. Gonçalves for technical assistance.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Wilson WD. Equine influenza. Vet Clin North Am Equine Pract 1993;9:257–282.
2. Gibbs EPJ, Anderson TC. Equine and canine influenza: a review of current events. Anim Health Res Rev 2010;11:43–51.
3. Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EPJ et al. Transmission of equine influenza virus to dogs. Science 2005;310:482–485.
4. King AMQ, Lefkowitz EJ, Mushegan AR, Adams MJ, Dutlih BE et al. Changes to taxonomy and the International Code of virus classification and nomenclature ratified by the International Committee on taxonomy of viruses (2018). Archi Viral 2018;163:2601–2631.
5. Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 2019;285:28403–28409.
6. Shaw ML, Palese P. Orthomyxoviridae. In: Knipe DM, Howley PM (eds). Fields Virology, 2. Philadelphia, PA: Lippincott Williams and Wilkins; 2013. p. 35.
7. Wu Y, Wu Y, Tefsen B, Shi Y, Gao GF. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbial 2014;22:183–191.
8. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecodology of influenza A viruses. Microbiol Rev 1992;56:152–179.
9. Nayak DP, Lehmann S, Reich J. Downstream processing of MDCK cell-derived equine influenza virus. J Chromatogr B Analyt Technol Biomed Sci 2005;823:75–81.
10. Silneke-Gröber A, Vey M, Angliker H, Shaw E, Thomas G et al. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. Embio J 1992;11:2407–2414.
11. Prevelige PE, King J, Silva JL. Pressure denaturation of the bac- triphage P22 coat protein and its entropic stabilization in icosahedral shells. Biophys J 1994;66:1631–1641.
12. Demazear G, Rivalin N. High hydrostatic pressure and biology: a brief history. Appl Microbial Biotechnol 2011;89:1305–1314.
13. Lee A, Lewis T, Stewart CM, Chen H, Chen H et al. Inactivation of foodborne viruses of significance by high pressure and other processes. J Food Prot 2006;69:957–968.
14. Oliveira ACV, Almeida AP, Lima FCL, Ishimaru SM, Gonçalves D. Hydrostatic pressure as a tool to study virus assembly: pressure inactivation of viruses by formation of fusion intermediate states. In: Winter R, Jonas J (eds). High Pressure Molecular Science, NATO Science Series. Dordrecht, The Netherlands: Kluwer; 1999. p. 17.
15. Otake T, Mori H, Kawahata T, Izumoto Y, Nishimura H et al. Effects of high hydrostatic pressure treatment on HIV infectivity. In: Heremans K (editor). High Pressure Research in the Biosciences and Biotechnology, 4. Leuven, Belgium: Leuven University Press; 1997.
16. Silva JL, Fuguel D, Da Poian AT, Prevelige PE. The use of hydro- static pressure as a tool to study viruses and other macromole- cular assemblages. Curr Opin Struct Biol 1996;6:166–175.
17. Calci KR, Meade GK, Tezloff RC, Kingsley DH. High-pressure inac- tivation of hepatitis A virus within oysters. Appl Environ Microbiol 2005;71:339–343.
18. Oliveira AC, Ishimaru D, Gonçalves RB, Smith TJ, Mason P et al. Low temperature and pressure stability of picornaviruses: implica- tions for virus uncoating. Biophys J 1999;76:1270–1279.
19. Ishimaru D, Sá-Carvalho D, Silva JL. Pressure-inactivated FMDV: a potential vaccine. Vaccine 2004;22:2334–2339.
20. Tang Q, Li D, Xu J, Wang J, Zhao Y et al. Mechanism of inactiva- tion of murine norovirus-1 by high pressure processing. Int J Food Microbiol 2010;137:186–189.
21. Kingsley DH, Holliman DR, Calci KR, Chen H, Flick GJ. Inactivation of a norovirus by high-pressure processing. Appl Environ Microbiol 2007;73:581–585.
22. Tian SM, Ruan KC, Qian JF, Shao QG, Balny C. Effects of hydro- static pressure on the structure and biological activity of infectious bursal disease virus. Eur J Biochem 2000;267:4486–4494.
23. Pontes L, Cordeiro Y, Giongo V, Villas-Boas M, Barreto A et al. Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein VP4. J Mol Biol 2001;307:1171–1179.
24. Lou F, Neeto H, Li J, Chen H, Li J. Lack of correlation between virus barosensitivity and the presence of a viral envelope during inactivation of human rotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressure processing. Appl Environ Microbiol 2011;77:8538–8547.
25. Raviv Y, Viard M, Bess JW, Chertova E, Blumenthal R. Inactivation of retroviruses with preservation of structural integrity by targeting the hydrophobic domain of the viral envelope. J Virol 2005;79:1394–14200.

26. Jurkiewicz E, Villas-Boas M, Silva JL, Weber G, Hunsmann G et al. Inactivation of simian immunodeficiency virus by hydrostatic pressure. Proc Natl Acad Sci USA 1995;92:6935–6937.

27. Freitas M, Da Poian AT, Barth OM, Rebelo MA, Silva JL et al. The fusogenic state of Mayaro virus induced by low pH and by hydrostatic pressure. Cell Biochem Biophys 2006;44:325–335.

28. Silva JL, Luan P, Glaser M, Voss EW, Weber G. Effects of hydrostatic pressure on a membrane-enveloped virus: high immunogenicity of the pressure-inactivated virus. J Virol 1992;66:2111–2117.

29. Ribery JM, Flynn KJ, Stech J, Webster RG, Altman JD et al. Protection against a lethal avian influenza A virus in a mammalian system. J Virol 1999;73:1453–1459.

30. Barroso SPC, Nico D, Gomes DC, Santos ACVdos, Couceiro JNSS et al. Mice vaccination with high hydrostatic pressure-inactivated H3N8 virus protects against experimental avian flu. Procedia Vaccinol 2012;6:98–105.

31. Dumard CH, Barroso SPC, Santos ACV, Alves NS, Couceiro JNSS et al. Stability of different influenza subtypes: how can high hydrostatic pressure be a useful tool for vaccine development? Biochem Chem 2017;231:116–124.

32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265–275.

33. Lasemli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 1970;227:680–685.

34. Paladini AA, Weber G. Pressure-induced reversible dissociation of enolase. Biochemistry 1981;20:2587–2593.

35. Silva JL, Silveira CF, Correia Júnior A, Pontes L. Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of ar repressor. J Mol Biol 1992;223:545–555.

36. Hierholzer JC, Killington RA. Classical techniques: virus isolation and quantitation. In: Mahy BWM, Kangro HO (eds). Virology Methods Manual, San Diego, CA: Academic Press Ltd.; 1996. p. 5.

37. Potier M, Mamelli L, Bélisle M, Dallaire L, Melaçon SB. Fluorometric assay of neuraminidase with a sodium (4-methylumeb liferil-alpha-D-N-acetylneuraminate) substrate. Anal Biochem 1979;94:287–296.

38. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Hyg 1938;27:493–497.

39. Silva JL, Oliveira AC, Gomes AMO, Lima LMTR, Mohana-Borges R et al. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. Biochim Biophys Acta 2002;1595:250–265.

40. Lou F, Neetoo H, Chen H, Li J. High hydrostatic pressure processing: a promising nontermal technology to inactivate viruses in high-risk foods. Annu Rev Food Sci Technol 2015;6:389–409.

41. Silva JL, Barroso SPC, Mendes YS, Dumard CH, Santos PS et al. Pressure-Inactivated virus: a promising alternative for vaccine production. Subceli Biochem 2015;72:301–318.

42. Shigehisa TN, Ohno H, Mori H, Kawahata T, Morimoto M. Inactivation of HIV in blood plasma by high hydrostatic pressure. In: Hayashi R, Balny C (editors). High Pressure Bioscience and Biotechnology, 6. Amsterdam: Elsevier (Progress in Biotechnology Series); 1996.

43. Goncalves RB, Mendes YS, Soares MR, Katpally U, Smith TJ et al. VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN. J Mol Biol 2007;366:295–306.

44. Gaspar LP, Johnson JE, Silva JL, Da Poian AT. Partially folded states of the capsid protein of cowpea severe mosaic virus in the disassembly pathway. J Mol Biol 1997;273:456–466.

45. Pontes L, Giongo V, Araujo JRV, Sepulveda A, Villas-Boas M. Pressure inactivation of animal viruses: potential biotechnological applications. In: Heremans K (editor). High Pressure Research in the Biosciences and Biotechnology. Leuven, Belgium: Leuven University Press; 1997. p. 4.

46. Chong PLG, Weber G. Pressure dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in single component phosphatidylcholine liposomes. Biochemistry 1983;22:5544–5550.

47. Bishop NE. An update on non-clathrin coated endocitosis. Rev Med Virol 1997;4:199–209.

48. Palese P, Tobita K, Ueda M, Comps R. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 1974;61:397–410.

49. Dumard CH, Barroso SPC, de Oliveira GAP, Carvalho CAM, Gomes AMO et al. Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection. PLoS One 2013;8:e80785.

50. Barroso SPC, Nico D, Nascimento D, Santos ACV, Couceiro JNSS et al. Intranasal immunization with pressure inactivated avian influenza virus elicits cellular and humoral responses in mice. PLoS One 2015;10:e0128785.

51. Masson P, Tonello C, Balny C. High-pressure biotechnology in medicine and pharmaceutical science. J Biomed Biotechnol 2001;1:85–88.

52. Kosik I, Yewdell JW. Influenza hemagglutinin and neuraminidase: yin-yang proteins coevolving to thwart immunity. Viruses 2019;11:p1346.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.