Inactivation of DNA-Binding Response Regulator Sak189 Abrogates β-Antigen Expression and Affects Virulence of Streptococcus agalactiae

Anastasia S. Rozhdestvenskaya, Artem A. Totolian, Alexander V. Dmitriev*

Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia

Abstract

Background: Streptococcus agalactiae is able to colonize numerous tissues employing different mechanisms of gene regulation, particularly via two-component regulatory systems. These systems sense the environmental stimuli and regulate expression of the genes including virulence genes. Recently, the novel two-component regulatory system Sak188/Sak189 was identified. In S. agalactiae genome, it was adjacent to the bac gene encoding for β-antigen, an important virulence factor.

Methodology/Principal Findings: In this study, the sak188 and sak189 genes were inactivated, and the functional role of Sak188/Sak189 two-component system in regulation of the β-antigen expression was investigated. It was demonstrated that both transcription of bac gene and expression of encoded β-antigen were controlled by Sak189 response regulator, but not Sak188 histidine kinase. It was also found that the regulation occurred at transcriptional level. Finally, insertional inactivation of sak189 gene, but not sak188 gene, significantly affected virulent properties of S. agalactiae.

Conclusions/Significance: Sak189 response regulator is necessary for activation of bac gene transcription. It also controls the virulent properties of S. agalactiae. Given that the primary functional role of Sak188/Sak189 two-component systems is a control of bac gene transcription, this system can be annotated as BgrR/S (bac gene regulatory system).

Introduction

Streptococcus agalactiae (group B streptococcus) is an important cause of neonatal invasive infections and variety of diseases in human and animals [1,2]. This bacterium is able to sense the changing environmental conditions and colonize numerous tissues employing different mechanisms of gene regulation. One mechanism for adaptation to changing environment is transcriptional regulation by two-component regulatory systems (TCSs), a family of systems that are widely distributed among many bacterial genera [3]. These regulatory systems comprise two proteins, sensor histidine kinase, HK, and DNA-binding response regulator, RR. HK is a sensor protein, responding to the environmental changes by autophosphorylating a conserved histidine residue. Subsequently, phosphoryl group is transferred to RR protein resulting in conformational changes in RR molecule. Conformationally modified RR molecule functions as transcriptional regulator (activator or repressor) by binding with promoter regions of the genes through helix-turn-helix (HTH) motif. In many cases, two-component systems play an important role in the regulation of multiple genes encoding products which are essential for adaptation of bacteria to a particular environment and development of bacterial diseases [3–5].

In contrast to other pathogenic gram-positive cocci such as S. pneumoniae and S. pyogenes, S. agalactiae has larger number of TCSs. For example, 20 TCSs have been identified after the complete genome sequencing in the strain NEM316 [6], and 17 TCSs in the strain 2603 V/R [7]. Three of them, CsrRS/CovRS, DltR/DltS, and RgfA/RgfC, have been previously investigated [8–12]. S. agalactiae CsrRS/CovRS demonstrated high similarity with CsrRS/CovRS of S. pyogenes [8]. Inactivation of CovR in S. agalactiae increased transcription levels of hemolysin cfb gene and C5a peptidase scpB gene, and reduced the level of CAMP factor cfb gene [8,9]. Inactivation of CovRS was also observed at phenotypic level: the mutant strains became less virulent compared to the parental wild-type strain [9]. Transcriptome analysis revealed the CovRS core-regulon which consisted of 39 genes including genes of the stress response, the genes important for adhesion of S. agalactiae to the host cells and others [10]. DltR/DltS of S. agalactiae is important for transcription of dlt operon (dltA, dltB, dltC, and dltD genes), which is necessary for incorporation of D-alanine residues in lipoteichoic acids. The role of DltR/DltS in S. agalactiae virulence was shown by the attenuated virulent properties of dltA and dltR mutant strains in vivo [11]. RgfA/RgfC controls adhesion of S. agalactiae to epithelial cells. In addition, inactivation of histidine kinase gene rgfC resulted in increased transcription of scpB gene [12].
Recently, putative two-component regulatory system genes encoding for sensor histidine kinase (sak188) and DNA-binding response regulator (hk06) were identified in S. agalactiae strains 98-D606C and A909 [13,14]. sak188 and sak189 genes were located on putative pathogenicity island [13] adjacent to the bta gene encoding for β-antigen. This surface protein has capacity to bind IgA and factor H of complement, and it is supposed to be an important virulence factor [15]. Sak188 and Sak189 proteins revealed 78% and 83% similarity with sensor histidine kinase sak188 (serotype Ib) was used as parental strain for insertional inactivation sak189 on putative pathogenicity island [13] adjacent to the cpn60 gene encoding choline binding protein, CbpA, a surface-exposed protective antigen and virulence factor of S. pneumoniae [20,21]. Similarly to the β-antigen, CbpA has capacity to bind factor H of complement. In addition, some regions of CbpA protein has the certain similarity with sak189.

The goal of the present study was to investigate the function of S. agalactiae Sak188/Sak189 TCS.

Materials and Methods

Bacterial strains and growth conditions

A total of 239 strains from collection of the Institute of Experimental Medicine isolated from human (139 strains) and cows (100 strains) were studied. The S. agalactiae strain 168/00 (serotype Ib) was used as parental strain for insertional inactivation of sak188 and sak189 genes. Escherichia coli strains JM109 and DH5α served as hosts for expression vectors and recombinant plasmids. S. agalactiae strains were cultured in Todd-Hewitt Broth (THB) (HiMedia Laboratories Pvt. Ltd., India) or on THB agar supplemented with 5% erythrocytes at 37°C. E. coli strains were grown in Luria-Bertani (LB) broth (Sigma, USA) or on 1% LB agar. Antibiotics were used in the following concentrations: 2.5 μg/ml of erythromycin for S. agalactiae, 200 μg/ml of erythromycin and 100 μg/ml of ampicillin for E. coli.

DNA techniques

The oligonucleotide primers for PCR and sequencing are listed in the Table 1. Routine DNA techniques were used for nucleic acid analysis. Chromosomal DNA was isolated by the phenol-chloroform extraction [25]. Plasmid DNA was isolated and purified using the AxyPrep Plasmid Miniprep Kit and AxyPrep Plasmid Midiprep Kit (Axygen Biosciences, USA) according to the manufacturer’s instructions. PCR was carried out with Taq polymerase with initial denaturation of 2 min at 94°C followed by 30 cycles of amplification (30 sec at 94°C, 1 min at 52°C, and 1 min at 72°C). PCR products were purified with AxyPrep DNA Gel Extraction Kit (Axygen Biosciences). Sequencing of PCR products was performed by an ABI 3100 automated DNA sequencer using the Big-Dye Terminator Kit (Applied Biosystems, USA).

SDS-PAGE and western-blotting

S. agalactiae strains were grown during 2 and 5 hours, corresponding to middle-exponential and post-exponential phase of growth, respectively, and the cells were harvested by centrifugation. Bacterial cell lysates were prepared by extraction with HCl [26], NaOH [27], and 2-mercaptoethanol [28] and by vortexing of the cell suspensions with glass beads of 0.1 mm in diameter. For isolation of secreted proteins, cells were removed by centrifugation, resuspended in phosphate-buffered saline (PBS) and dialyzed overnight against the PBS. The same volume of buffer containing 2-mercaptoethanol.

Table 1. Primers used in the study.

Primer	Nucleotide sequence (5’→3’)	Annealing temperature, °C	Gene/Plasmid
hkFor	GGTCAATCCACATTTGCACATCAC	54.8	sak188
hkRev	GTCAAAACCTTATCCAATGCTCT	53.3	sak188
rrFor	GATATGAATTAGAGGAGGAGTAGCTCT	54.3	sak189
rrRev	GACCTGTTCTATAGTTGGATCAAA	53.9	sak189
274	GTAAAAACGAGGCGCAGTG	48.6	pGEM-T Easy
275	CAGGAGAAACAGCTATGACCATG	49.8	pGEM-T Easy
40/1	AGGGAGGACAGCCTGAGATTTACG	55.4	pVA891-2
40/2	TCCCATTTGACCGCTATTTCCAG	55.6	pVA891-2
L5	TGGTAAAGGAGCAGATTTAAAGAC	49.8	hac
L6	CATTGTTGATCCCTTTTGC	49.7	hac
0417-60	TTGTAAATTTTGTAGAGATGCT	49.9	hac
0417-61	CTTGATACGCTTTGAGCAGGAT	49.5	hac
BACS	CTACGTTGACAAAGAGGCT	56.0	hac
0407-172	CACAAATGGAGATGCTGACTAG	49.2	hac
SAGAF	CGCTGTTGATTTGAACTAGCTGTT	51.0	cpn60
SAGAR	GGTATACGGATTTCCAGAGGAGGAG	53.0	cpn60

Plasmid Miniprep Kit (Axygen Biosciences, USA) according to the manufacturer's instructions. PCR was carried out with Taq polymerase with initial denaturation of 2 min at 94°C followed by 30 cycles of amplification (30 sec at 94°C, 1 min at 52°C, and 1 min at 72°C). PCR products were purified with AxyPrep DNA Gel Extraction Kit (Axygen Biosciences). Sequencing of PCR products was performed by an ABI 3100 automated DNA sequencer using the Big-Dye Terminator Kit (Applied Biosystems, USA).
anol (10%, w/w) was added to all samples, and the samples were boiled for 10 min.

Bacterial cell lysates and secreted proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as described by Laemmli [28]. The gels were stained with Coomassie R-250 (Amresco, USA) or electroblotted onto nitrocellulose membrane Trans-Blot Transfer Medium, 0.45 µm, (Bio-Rad Laboratories, USA) as previously described [29] and probed with conjugated human IgA-horseradish peroxidase.

RNA isolation

An overnight cultures of S. agalactiae strains were inoculated into 40 ml of THB in 50-ml tubes (Fisher Scientific, USA) to an A₆₀₀ = 0.08. The cultures were grown to the middle-exponential phase corresponding to 2 hrs of growth. Cultures were centrifuged, and the cells were suspended in 5 ml of RNAprotect (QIAGEN, USA). RNA was isolated with an RNeasy Mini Kit (QIAGEN), according to the protocol recommended by the manufacturer. The concentration of RNA was assessed with an SmartSpecTM3000 (Bio-Rad Laboratories).

Quantitative reverse transcriptase (RT)-PCR

Oligonucleotide primers (Table 1) were designed with Primer-BLAST (www.ncbi.nlm.nih.gov/tools/primer-blast). Amplification and detection were done with the ABI Prism 7500 Real-Time PCR System (Applied Biosystems) using Power SYBR[®] Green RNA-to-C_TTM 1–Step Kit (Applied Biosystems), as recommended by the manufacturer. Briefly, a total of 20 ng of total RNA was used in the reaction. Reverse transcription was done at 48°C for 30 min, and amplification was performed at the following conditions: activation of AmpliTaq[®] Gold DNA Polymerase at 95°C for 10 min followed by 40 cycles of denaturation at 95°C for 15 sec and annealing/extension at 60°C for 1 min. Each assay was done in duplicates with two independently isolated RNA samples. The quantity of bac gene RNA was normalized to the quantity of cpn60 gene RNA in each sample, and the mean ± standard error of the mean of independently isolated RNA samples was determined.

In vivo infection model

S. agalactiae wild-type strain 168/00 and mutant strains were grown in 40 ml of THB overnight, centrifuged, washed twice with sterile PBS, and resuspended in 4 ml of PBS. Ten-week old (14–16 g), male, white outbred mice (Rappolovo Laboratory, Rappolovo, Russia) were used in the study. They were housed according to standard animal laboratory conditions. Each animal was infected by intra-peritoneal injection of 0.5 ml of PBS containing 10⁸ CFUs of the strain. A total of 15 animals were used in each experimental group.

All the mice were monitored twice a day for up to 10 days. Once each individual animal was died, it was dissected, and the spleen was isolated and homogenized in 1 ml of PBS. In order to determine the number of S. agalactiae CFUs in the spleen, ten-fold dilutions of suspensions were grown at THB blood agar plates containing erythromycin when appropriate. As control, injection of PBS (0.5 ml) was applied to one additional group of animals. At the end of survival assay, all the remaining mice were sacrificed, and their spleens were analyzed as described above. All the experimental procedures were done according to the principles and guidelines for the care and use of laboratory animals (National Institutes of Health, USA, and Russian Academy of the Medical Sciences, Russia) and were approved by Saint-Petersburg Institute of Experimental Medicine Animal Care Unit Committee, Russia.

Nucleotide sequence accession numbers

The nucleotide sequences of sak188 and sak189 genes of the strain 168/00 have been deposited into the GenBank database under accession number FJ909928.

Results

An occurrence of bac gene, sak188, sak189 TCS genes and erythromycin resistance among S. agalactiae strains

A total of 239 S. agalactiae strains isolated from human and animals were studied. The strains were tested by PCR for the presence of virulence gene bac and sak188 and sak189 TCS genes, which were previously found to be located on pathogenicity island [13]. As result, 53 strains isolated from pregnant women and 5 strains isolated from the cow’s milk were found to be bac gene positive. They were selected for further study. PCR analysis of the bac gene positive strains revealed that the presence of bac gene correlated with the presence of sensor histidine kinase gene sak188 and DNA-binding response regulator gene sak189 (data not shown). Genomic architecture of DNA fragments containing sak188, sak189 and bac genes in S. agalactiae [13,14], and rr06, hh06 and cbpA genes in S. pneumoniae [22] is presented in the Fig. 1.

For the purpose of insertional inactivation, the vector pVA891-2 that provides erythromycin (Em) resistance was used. Thus, the strains were additionally screened for sensitivity to Em. As result, most of human bac gene positive strains showed resistance or intermediate resistance to Em in the standard diffusion disk test, that is in agreement with previous observations demonstrating an increase in Em resistance in S. agalactiae population [30,31]. One of the strains, 168/00, which demonstrated the large diameter of growth inhibition zone, was selected for further study. In this strain, the bac gene has unique allele with the closest similarity with 676a and 676b alleles according to classification of Kong et al. [32].

Construction and characterization of mutant strains

To investigate a functional role of the two-component regulatory system Sak188/Sak189 in S. agalactiae, the sak188 and sak189 genes were inactivated by insertional mutagenesis (Fig. 2). Briefly, DNA fragments of sak188 and sak189 genes were PCR amplified using pairs of primers hkFor, hkRev, and rrFor, rrRev (Table 1), respectively. PCR products were cloned into pGEM-T Easy vector (Promega, USA), and the recombinant plasmids named as pGEM-T-sak188 and pGEM-T-sak189 were digested with EcoRI. Subsequently, EcoRI fragments were cloned into suicide vector pVA891-2, and the recombinant plasmids named as pHK and pRR, respectively, were used to transform S. agalactiae strain 168/00 according to the protocol [33]. The recombinant clones were selected on THB agar plates containing 2.5 µg/ml of erythromycin. Construction of the strains was confirmed by PCR and nucleotide sequencing (data not shown). Given that insertional inactivation of RR gene results in inactivation of HK gene [22] which are co-transcribed (Fig. 1), the strain with insertionally inactivated sak189 gene can be considered as sak189/sak188 double mutant strain, while the strain with insertionally inactivated sak188 gene—as sak188 mutant strain.

Comparative analysis of the wild-type strain 168/00 and mutant strains revealed no difference in morphological properties. The size, shape and color of the colonies, diameter of zone of hemolysis, morphology of the cells and the chain length were similar in all the strains. At the same time the growth curves of mutant strains in THB slightly differed from the growth curve of the strain 168/00.
Two time points (2 hrs and 5 hrs) corresponding to the middle-exponential and post-exponential phases of growth, respectively, were selected for further study.

Effect of insertional inactivation on expression of β-antigen

Several approaches were used to prepare the cell lysates of the wild-type strain 168/00 and mutant strains. As result, 10 min boiling of the cells in 2-mercaptoethanol (10%, w/w) was found to be most effective with respect to higher yield and quality of the protein bands observed after SDS-PAGE (data not shown). Subsequently, bacterial cell lysates and secreted proteins after 2 hrs and 5 hrs of growth in THB were analyzed. SDS-PAGE of secreted proteins did not reveal any difference among the wild-type strain and mutant strains (data not shown). However, SDS-PAGE of the cell lysates revealed that at least one protein band of ≈140 kDa was present in the wild-type strain 168/00 and sak189 mutant strain, and was absent in sak189/sak188 double mutant strain. Western-blotting with labeled human IgA identified this protein as β-antigen (Fig. 3).

Effect of insertional inactivation on transcription of bac gene

In order to analyze if changes in β-antigen expression are regulated at transcriptional level, the quantitative RT-PCR was performed using RNA samples isolated during the middle-exponential phase corresponding to 2 hrs of growth. As result, transcription of bac gene in sak189/sak188 double mutant strain was 17-fold less than in 168/00 wild-type strain (Fig. 3). On the other hand, the bac gene transcription level in sak188 mutant strain was almost similar to that in the wild-type strain that confirmed the results of SDS-PAGE and western-blotting. Thus, these data demonstrate that Sak189 protein regulates expression of β-antigen at transcriptional level.

In vivo virulent properties of the wild-type strain and mutant strains

Murine intraperitoneal model of streptococcal infection was developed to compare the virulent properties of the strains under study. Mice were injected with 0.5 ml of PBS containing 10⁶ CFUs and observed for 10 days. As seen from the Fig. 4, the mortality rate caused by sak189/sak188 double mutant strain significantly differed in comparison with that caused by the wild-type and sak188 mutant strains. Compared to the wild-type strain, the differences in virulent properties were statistically significant in case of sak189/sak188 double mutant strain (P-value <0.02), and not significant in case of sak188 mutant strain (P-value = 0.73).

Discussion

Transcriptional regulation of the genes is important process for successful adaptation of pathogenic bacteria to changing environ-
Regulation of β-Antigen

Figure 3. Expression of β-antigen and bac gene transcription levels in S. agalactiae strains. Expression of β-antigen in the whole cell lysates of the wild-type strain 168/00 and mutant strains after 2 hrs (lanes 1–3) and 5 hrs of growth (lanes 4–6) was analyzed by SDS-PAGE (Panel A) and western-blotting with labeled human IgA (Panel B). Lanes 1 and 4–strain 168/00; lanes 2 and 5–sak188 mutant strain; lanes 3 and 6–sak189/sak188 double mutant strain; lane 7–protein ladder (Bio-Rad Laboratories). bac gene transcription levels (Panel C) were assessed by quantitative reverse transcriptase (RT)-PCR. Numbers indicate relative differences (%) in transcription levels of bac gene in mutant strains compared to transcription level of bac gene in wild-type strain. The bac gene transcription level was normalized to the cpn60 gene transcription level in each strain. Mean values and standard errors are shown as results of two independent experiments.
doi:10.1371/journal.pone.0010212.g003

Figure 4. Mortality rates of laboratory mice due to the streptococcal intraperitoneal infection. Mice were infected by intra-peritoneal injection of 0.5 ml of PBS containing 10⁸ CFUs of 168/00 wild-type strain, sak188 mutant strain and sak189/sak188 double mutant strain, and analysis of the virulent properties was assessed as described in Materials and Methods. As control, injection of PBS (0.5 ml) was applied to additional group of animals.
doi:10.1371/journal.pone.0010212.g004

Variety of publications are currently available regarding the occurrence of bac gene among S. agalactiae strains as well as genetic polymorphism of bac gene and use of encoded β-antigen as a vaccine component [32,34–38]. In some strains, the mutations in bac gene resulted in expression of truncated non-functional forms of β-antigen [39,40]. However, the regulatory mechanism of bac gene expression has not been studied. In present study, the sak188 and sak189 genes of S. agalactiae were inactivated. Given that insertional inactivation does not delete the entire gene from the chromosome and often results in truncated or modified protein, we analyzed which functional activities of Sak188 and Sak189 proteins could potentially retain if the modified proteins expressed. Comparative analysis of Sak188 and Sak189 amino acid sequences in the wild-type strain 168/00 and deduced protein sequences in mutant strains predicted the replacement of 95 amino acids at the C-terminal end of Sak188 protein by 191 amino acids, and replacement of 51 amino acids at the C-terminal end of Sak189 protein by 15 amino acids (Fig. 5). Importantly, 8 out of 9 amino acids, which composed HTH motif presumably involved in DNA-binding according to BLASTp analysis (http://blast.ncbi.nlm.nih.gov/BLAST.cgi), were lost in Sak189 protein due to insertional mutagenesis. Similarly, ATP-binding and Mg²⁺-binding sites located at C-terminal end of Sak188, which are essential for phosphorylation, were lost in Sak188 protein due to the mutagenesis. Theoretically, in both sak188 mutant strain and sak189/sak188 double mutant strain, the Sak188/Sak189 TCS can be inactive.

In S. pneumoniae, inactivation of the response regulator RR06 (83% similarity with Sak189), which binds promoter region of cbpA, repressed transcription of the cbpA gene [22]. In this study, western blotting and quantitative RT-PCR revealed that DNA-binding response regulator Sak189 is necessary for β-antigen expression suggesting direct binding of Sak189 with bac gene promoter. This is not surprising given the high similarity in the sequences, functions and relative locations of Sak188/Sak189 and HK06/RR06, and β-antigen and CbpA (Fig. 1).

Importantly, insertional inactivation can have a polar effect on the genes located downstream. In this study, both sak188 and bac
genes located downstream the sak189 gene (Fig. 1). As seen from the Fig. 3, insertional inactivation of sak189 affected bac gene transcription, while insertional inactivation of the sak188 did not affect. Thus, we can conclude that sak188 and bac gene are not in the operon, and repression of bac gene transcription in sak189/ sak188 double mutant strain is not due to the polar effect.

Given that insertional inactivation of sak188 gene does not affect β-antigen expression, we suggest that β-antigen expression can be activated independently of Sak188, perhaps through small-molecular-weight phosphodonor such as acetyl phosphate or other noncognate histidine kinases. Thus, we can not rule out the possibility of a cross-talk between Sak189 response regulator and sensor kinase(s) in S. agalactiae, and Sak189 can potentially recruit another histidine kinase for proper functioning. The cross-talk among different TCSs has been described for many bacterial species [3] including pathogenic streptococci. For example, in S. pneumoniae inactivation of histidine kinase HK06 (78% similarity with Sak188), in contrast to RR06 (83% similarity with Sak189), did not repress transcription of the adjacent chpA gene [22].

In conclusion, the data presented here characterize the functional role of S. agalactiae Sak188/Sak189 two-component system. Both transcription of bac gene and expression of encoded β-antigen are controlled by Sak188 response regulator, and the regulation occurs at transcriptional level. Inactivation of histidine kinase Sak188 does not affect transcription of bac gene and expression of β-antigen, that suggests the cross-talk between Sak189 and other sensor kinase(s) in S. agalactiae. Finally, Sak189, but not Sak188, controls virulent properties of S. agalactiae in vivo.

Acknowledgments
We are thankful to Tatiana Gupalova, Yurii Il'yasov and Alexander Pinaev for the valuable comments.

Author Contributions
Conceived and designed the experiments: ASR AD. Performed the experiments: ASR. Analyzed the data: ASR AAT AD. Wrote the paper: ASR AAT AD.

References
1. Keefe GP (1997) Streptococcus agalactiae mastitis: a review. Can Vet J 38(7): 429-437.
2. Facklam RR, Washington JA (1991) Streptococcus and related catalase-negative gram-positive cocci. In: Balows A, et al. eds. Manual of Clinical Microbiology. American Society for Microbiology. pp 230-239.
3. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem. 69: 183-215.
4. Lamarche MG, Wanner BL, Grépin S, Haefle J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32(3): 461-473.
5. Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24(3): 895-904.
6. Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, et al. (2002) Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 45(6): 1499-1513.
7. Tettelin H, Masignani V, Cielewicz MJ, Eisen JA, Peterson S, et al. (2002) Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A 99(19): 12391-12396.
8. Lamy MC, Zouine M, Fert J, Vergassola M, Couve E, et al. (2004) CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol 54(5): 1250-1268.
9. Jiang SM, Cielewicz MJ, Kasper DL, Wessels MR (2005) Regulation of virulence by a two-component system in Group B Streptococcus. J Bacteriol 187(3): 1105-1113.
27. Grubb AO, Grubb RE, Christensen PB, Shalen C (1982) Isolation and some properties of an IgG binding protein from group A streptococci type 15. Int Arch Allergy Appl Immunol 67: 369–376.

28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685.

29. Towbin H, Staehelin T, Gordon J (1982) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 24: 145–149.

30. Panda B, Bruettgoyena I, Stiller R, Panda A (2009) Antibiotic resistance and penicillin tolerance in ano-vaginal group B streptococci. J Matern Fetal Neonatal Med 22(2): 111–114.

31. Dogan R, Schöckel YH, Sanistelch B, Rott KJ (2003) Distribution of serotypes and antimicrobial resistance genes among *Streptococcus agalactiae* isolates from bovine and human hosts. J Clin Microbiol 41(12): 5899–5906.

32. Krog F, Gidding HH, Bernt R, Gibert GL (2006) *Streptococcus agalactiae* Cheta protein gene (bca) sequence types, based on the repeated region of the cell-wall domain: relationship to virulence and a proposed standardized nomenclature. J Med Microbiol 55(7): 829–837.

33. Framson PE, Nattayajarn A, Merry J (1997) New genetic techniques for group B streptococci: high-efficiency transformation, maintenance of temperature-sensitive pvP01 plasmids, and mutagenesis with Tn917. Appl Environ Microbiol 63(6): 3339–3347.

34. Dmitriev A, Tkachukova L, Sukorov A, Kantková M, Mikola I, et al. (1999) Comparative genetic study of group B streptococcal strains of human and bovine origin. Folia Microbiol (Praha) 44(4): 449–453.

35. Bernt R, Ruus M, Bereswill S, Brands M (2002) Polymorphisms in the cell wall-spanning domain of the C protein beta-antigen in clinical *Streptococcus agalactiae* isolates are caused by genetic instability of repeating DNA sequences. Pediatr Res 51(1): 106–111.

36. Nagano N, Nagano Y, Taiguchi F (2002) High expression of a C protein beta antigen gene among invasive strains from certain clonally related groups of type Ia and Ib group B streptococci. Infect Immun 70(8): 4645–4649.

37. Dmitriev A, Hu YY, Shen AD, Sukorov A, Yang YH (2002) Chromosomal analysis of group B streptococcal clinical strains; bac gene-positive strains are genetically homogenous. FEMS Microbiol Lett 201(1): 93–98.

38. Leont’eva GF, Sukorov AN, Merinova LF, Grabovskaya KB, Usinovich IA, et al. (2005) Experimental evaluation of recombinant polypeptides as *Streptococcus Group B vaccine. Zh Mikrobiol Epidemiol Immunobiol 2: 3–40.

39. Nagano N, Nagano Y, Taiguchi F (2002) High expression of a C protein beta antigen gene among invasive strains from certain clonally related groups of type Ia and Ib group B streptococci. Infect Immun 70(8): 4645–4649.

40. Brady LJ, Boyle P (1989) Identification of non-immunoglobulin A-Fc-binding forms and low-molecular-weight secreted forms of the group B streptococcal beta antigen. Infect Immun 57(5): 1573–1581.

41. Hynès W, Johnson C, Stokes M (2009) A single nucleotide mutation results in loss of enzymatic activity in the hyaluronate lyase gene of *Streptococcus agalactiae*. Microbiol Pathog 47(6): 308–313.

42. Graham MR, Smoot LM, Migliaccio CA, Virtaneva K, Sturdevant DE, et al. (2002) Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99(21): 13855–13860.

43. Kogasch K, Ruhmeling V, Pané-Farré J, Höper D, Weinberg C, et al. (2006) Influence of the two-component system SaeRS on global gene expression in two different *Staphylococcus aureus* strains. J Bacteriol 188(22): 7742–7750.

44. Jerström PG, Chhatwal GS, Timmis KN (1991) The IgA-binding beta antigen of the c protein complex of Group B streptococci: sequence determination of its gene and detection of two binding regions. Mol Microbiol 5(4): 363–419.