Bactrian camels serve as an important means of transportation in the cold desert regions of China and Mongolia. Here we present a 2.01 Gb draft genome sequence from both a wild and a domestic bactrian camel. We estimate the camel genome to be 2.38 Gb, containing 20,821 protein-coding genes. Our phylogenomics analysis reveals that camels shared common ancestors with other even-toed ungulates about 55–60 million years ago. Rapidly evolving genes in the camel lineage are significantly enriched in metabolic pathways, and these changes may underlie the insulin resistance typically observed in these animals. We estimate the genome-wide heterozygosity rates in both wild and domestic camels to be 1.0 × 10⁻³. However, genomic regions with significantly lower heterozygosity are found in the domestic camel, and olfactory receptors are enriched in these regions. Our comparative genomics analyses may also shed light on the genetic basis of the camel’s remarkable salt tolerance and unusual immune system.
Wild bactrian camels (*Camelus bactrianus* fera) are the lone survivors of the old world camels. At present, their total number is only 730–880, less than that of the giant pandas. They live in northwestern China and southwestern Mongolia, especially the Outer Altai Gobi Desert. Considered critically endangered by the International Union for Conservation of Nature, wild bactrian camels are protected under both the Convention on International Trade in Endangered Species of Wild Fauna and Flora and domestic legislations in China and Mongolia. The archaeozoological record shows that fully domesticated bactrian camels were present in the third millennium BC and subsequently spread into much of Central Asia. However, our knowledge about the origins and migration history of domestic camels remains inconclusive.

To adapt to the harsh conditions—cold, hot, arid, and poor grazing—of deserts or semi-deserts, camels have acquired many special abilities and attributes. They can store energy in their humps and abdomen in the form of fat, enabling them to survive long periods without any food or water. The camel’s body temperature may vary from 34 to 41°C throughout the day. Blood glucose levels in camels are twice those of other ruminants. Camels tolerate a high dietary intake of salt, consuming eight times more than cattle and sheep, yet they do not develop diabetes or hypertension. The *Camelidae* family are the only mammals that can produce heavy-chain antibodies (HCAbs), a special form of immunoglobulin that lacks the light chain, in contrast to conventional antibodies (Abs). HCAbs are smaller and more stable, offering particular advantages in various medical and biotechnological applications.

In this study, we sequenced the genomes of both wild and domestic bactrian camel, to better understand the history of their evolution and domestication, and to provide a resource for research into the genetic mechanisms that enable camels to survive extreme environments.

Results

Genome sequence. We sequenced the genomes of an 8-year-old wild male bactrian camel named ‘Naran’ from the wild bactrian camel nature reserve of Altai province, Mongolia (‘wild camel’ hereafter, Supplementary Fig. S1) and a 6-year-old male Alashan bactrian camel from Inner Mongolia, China (‘domestic camel’ hereafter, Supplementary Fig. S2). For the wild camel genome, four paired-end/mate-pair sequencing libraries were constructed with insert sizes of 500 bp, 3 kb, 10 kb and 20 kb. For the domestic camel genome, only libraries with shorter insert size of 500 bp were constructed (Supplementary Table S2). We assembled the short reads obtained from the wild camel genome sequencing using SOAPdenovo. The reads with the insert size of 500 bp were first assembled into contigs. Then the contigs were joined into scaffolds with reads from the shortest to the longest insert size. In total, we obtained 120,352 scaffolds, including 13,544 scaffolds longer than 1 kb and 3,453 longer than 10 kb. The N50 length of the scaffolds longer than 1 kb is 2.00 Mb (Table 1). We remapped the usable reads to the scaffolds and obtained an average effective depth of 76 × and 24 × for the wild and the domestic camel genomes, respectively (Supplementary Table S3). Using the frequency distribution of 17-mer in the reads (Supplementary Fig. S3), we estimated the camel genome size to be 2.38 Gb. This is lower than that in human (2.9 Gb)\(^{10}\), mouse (2.5 Gb)\(^{11}\), horse (2.7 Gb)\(^{11}\) and cattle (2.9 Gb)\(^{12}\). Most of the repetitive DNAs are transposon-derived repeats. Long interspersed elements cover 19% of the whole genome, comparable to human (21%), mouse (19%), horse (20%) and cattle (23%). In contrast, the percentage of short interspersed elements is lower in bactrian camel (4%) than in human (13%), mouse (8%), horse (7%) and cattle (18%). This is likely one of the reasons that the bactrian camel has a smaller genome size than other mammals, for example, human (2.9 Gb)\(^{10}\), mouse (2.5 Gb)\(^{11}\), horse (2.7 Gb)\(^{11}\) and cattle (2.9 Gb)\(^{12}\).

Gene content and annotation. We annotated the camel genome using two ab initio gene finders: Augustus\(^{14}\) and GenScan\(^{22}\). We also utilized the homology-based method, comparing it with several other mammalian genomes, including human, chimpanzee, mouse, rat, dog, horse and cattle, as well as the published expressed sequence tag data of dromedary camels. Combining these two methods, we predicted 20,821 bactrian camel genes, averaging eight exons and 1,322 bps coding region (CDS) per gene. Notably, the GC content of the CDS region is 52%, significantly higher than that of the whole genome (41%). Similar differences were observed in other mammals such as pig (50% versus 40%)\(^{19}\).

Among the camel genes, 12,050 were annotated to at least one term in Gene Ontology (GO)\(^{20}\) (Supplementary Fig. S4), and 4,750 genes were annotated to 288 KEGG pathways\(^{21}\). According to the InterProScan\(^{22}\) annotation (Supplementary Fig. S5), the most common protein domains found in the camel genome are immunoglobulin-like domains, consistent with a previous report\(^{16}\). The largest protein family identified from the camel genome is the rhodopsin-like G protein-coupled receptor family, which, with 1,011 members, is well-known for controlling the signalling pathways of many biological and physiological processes such as feeding, reproduction and behaviour.

Genome evolution. HomoloGene\(^{23}\) was used to examine the conservation of gene repertoires among bactrian camels and other vertebrate species. A total of 16,065 camel genes were grouped into 12,536 orthologous families, of which 12,521 genes are conserved in vertebrates and 2,912 in mammals (Fig. 1a). A total of 4,756 unique genes were found in bactrian camels, among which 3,774 genes do not have GO annotations. Using the identified orthologs as anchor points, we constructed the syntenic maps between the camel and other mammalian genomes (Supplementary Table S6). In total, we identified more than 1,100 syntenic blocks in the camel genome, which cover 12,965 orthologous camel genes (Fig. 1b).

We constructed a phylogenetic tree with the supertree method\(^{24}\), using 2,345 single-copy orthologs among the animals (Fig. 1c). As shown in this tree, cattle and pig are the closest relatives of bacterian camels. All of them belong to *Artiodactyla* (even-toed ungulates) in taxonomy, which form a sister group with the clades of *Perissodactyla* (for example, horse) and *Carnivora* (for example, dog). This phylogeny was also consistent with previous evolutionary studies based on a smaller number of camel genes\(^{25}\). Among the single-copy orthologs, we further selected 332 orthologs with constant evolutionary rates to determine the time of speciation events. We estimated that cattle and bactrian camel lineages diverged about 55–60 million years ago (Mya) (Fig. 1c and Supplementary Fig. S6), in the later...
Palaeocene period (55.8–65.5 Mya). This is slightly earlier than the first fossil evidence of the Camelidae family in North America (50 Mya). Rapidly evolving genes. Rapid divergence of protein-coding genes, as measured by an increased ratio of nonsynonymous-to-synonymous substitutions (dN/dS), may have important roles in species differentiation and adaptation. We estimated the dN/dS ratios by the PAML package for the camel and its closest cattle orthologs, taking the human ortholog as an outgroup. We used the likelihood ratio test (LRT) to identify 2,730 significantly faster evolving genes in camels than in cattle (false discovery rate (FDR) < 0.05) and mapped them to the KEGG pathways (Supplementary Table S7). It was shown that those rapidly evolving genes are significantly enriched in carbohydrate metabolism, lipid metabolism and signaling pathways regulating the metabolic processes, such as insulin (FDR = 9.1 × 10^{-4}) and adipocytokine signalling pathways (FDR = 0.03, Fig. 1d). The accelerated evolution of these pathways involved in metabolism may help camels to optimize their energy storage and production in the desert.

Characterization of heterozygosity. We identified 1,986,420 heterozygous single nucleotide polymorphisms (SNPs) in the wild camel genome and 2,129,442 heterozygous SNPs in the domestic camel genome (Supplementary Table S8). In both cases, the heterozygosity rates are estimated to be about 1.0 × 10^{-3} across the whole genomes (Fig. 2a). The number of small indels identified in the two genomes is also comparable (Supplementary Table S9).
We then classified the SNPs according to the gene annotations and calculated the heterozygosity rates for coding and non-coding regions (Fig. 2a and Supplementary Table S10). Comparing with the wild camel, we found that an overall lower heterozygosity rate exists in the exon regions but not in other parts of the domestic camel genome, suggesting an artificial selection for certain genes in the domestic species. As strong artificial selection would reduce genetic diversity around a locus (selective sweep), it was worth inspecting the genes and their functions in such a locus. We therefore used 10-kb windows to scan the genome to identify regions where the heterozygosity rate of the domestic camel is significantly lower than the wild one (P < 0.05 after Bonferroni correction, \(\chi^2 \)-test) (Fig. 2b). There are 2,816 such regions identified, which incorporate 196 complete genes (Supplementary Table S11). GO analysis of these genes showed that they are significantly enriched in membrane receptors and signalling transduction, and more specifically, olfactory receptor activity (FDR = 3.8 \times 10^{-15}) (Fig. 2c and Supplementary Table S12). All of the olfactory receptors identified here (37 genes in total) are distributed in 17 different large scaffolds with median length over 800 kb (Supplementary Table S11), implying that the loci for the olfactory receptors are independent in genealogy. Therefore, it is reasonable to compare the heterozygosity rates of these loci between the wild and domestic camels, even though we only obtained data from one individual of each type. These results suggested that olfaction may be an important object of artificial selection during the domestication of bactrian camels.

Blood glucose levels. In general, blood glucose levels in domestic ruminants (2.5–3.5 mmol\(\text{l}^{-1} \)) are lower than in monogastric animals (3.5–5.0 mmol\(\text{l}^{-1} \)). Although camels belong to the suborder Tylopoda within Artiodactyla, they are also ruminating herbivores with an extensive forestomach. The levels of blood glucose in camels (6–8 mmol\(\text{l}^{-1} \)), however, are much higher than in most monogastrics. Previous physiological experiments demonstrated that the high level of blood glucose in camels may be caused by their strong capacity for insulin resistance. Consistent with this argument, our analysis shows that a large number of rapidly evolving genes in camels are involved in Type II diabetes mellitus (KEGG pathway accession code 04930) and the insulin signalling pathway (KEGG pathway accession code 04910) (Fig. 1d). The binding of insulin (INS) to insulin receptors could lead to tyrosine phosphorylation of insulin receptor substrates (IRs), which will in turn activate PI3K and AKT to trigger downstream actions to promote glucose uptake and storage. Of particular note was that PI3K and AKT, two critical genes in the process, have undergone rapid divergence in camels, which may change their responsiveness to insulin. Several other rapidly evolving genes, such as JNK, IKK, mTOR, and ERK, could also result in insulin resistance via serine phosphorylation of IRS proteins to negatively regulate IRS activities.

Cytochrome P450 families. Genes in cytochrome P450 (CYP) families are involved in the metabolism of arachidonic acids (KEGG pathway accession code 00590). For the CYP genes that were identified by InterProScan in the camel genome, we further assigned them to subfamilies by searching against the KEGG protein database and NCBI NR database. We found that the distribution of CYP genes in several subfamilies is quite different between the camel and other mammals. (Supplementary Table S13). Among the CYP subfamilies, the CYP450 subfamily was significantly enriched in the domestic camel genome, suggesting that the camel genome is under artificial selection for certain genes in this subfamily. The heterozygosity of the domestic camel is significantly lower than that of the wild one. The region also contains a cluster of olfactory receptors (OR10J1-like OR10J4-like OR10J1-like). Genes and gene intervals are represented by solid and dash lines, respectively. Exons are shown in blue blocks and transcriptional directions are indicated by arrows. The locations of SNPs are marked in black. Sequencing depth in the region is also shown, with white lines indicating the average sequencing depth.

Figure 2 | Comparison of genetic diversity between wild and domestic bactrian camels. (a) Heterozygosity rate in coding and non-coding regions. The heterozygosity rate is calculated as the number of heterozygous SNPs divided by the length of corresponding genomic regions. (b) A genomic region where the heterozygosity of the domestic camel is significantly lower than that of the wild one. The region also contains a cluster of olfactory receptors (OR10J1, olfactory receptor 10J1). Genes and gene intervals are represented by solid and dash lines, respectively. Exons are shown in blue blocks and transcriptional directions are indicated by arrows. The locations of SNPs are marked in black. Sequencing depth in the region is also shown, with white lines indicating the average sequencing depth. (c) Enrichment of molecular function for genes with low heterozygosity in the domestic camel. The hierarchy of the Gene Ontology is displayed. The size of the circle is proportional to the number of genes in the genome, and the colour indicates the odds ratio of the enrichment.

\[
P = \frac{O}{E}
\]

where the heterozygosity of the domestic camel is significantly lower than that of the wild one. The region also contains a cluster of olfactory receptors (OR10J1, olfactory receptor 10J1). Genes and gene intervals are represented by solid and dash lines, respectively. Exons are shown in blue blocks and transcriptional directions are indicated by arrows. The locations of SNPs are marked in black. Sequencing depth in the region is also shown, with white lines indicating the average sequencing depth. (c) Enrichment of molecular function for genes with low heterozygosity in the domestic camel. The hierarchy of the Gene Ontology is displayed. The size of the circle is proportional to the number of genes in the genome, and the colour indicates the odds ratio of the enrichment.
In bactrian camels, there are 11 copies of CYP2J and 2 copies of CYP2E, more than in cattle (four and one, respectively), horses (one and one) and humans (one and one). In contrast, there are only one copy of CYP4A and two copies of CYP4F in camels, fewer than in cattle (three and seven, respectively), horses (three and seven) and humans (two and six).

CYP2E and CYP2J can help to transform arachidonic acid into 19(S)-HETE, whereas CYP4F and CYP4A help to transform it into 20-HETE. 19(S)-HETE has been demonstrated to be a potent vasodilator of renal preglomerular vessels that stimulates water reabsorption. So more copies of CYP2E and CYP2J and fewer copies of CYP4A and CYP4F may help camels produce more 19(S)-HETE, potentially useful for survival in the desert. In addition, the activity of CYP2J2 is regulated by high-salt diet and its suppression can lead to high blood pressure. Camels are known to be able to take in a large amount of salt apparently without developing hypertension, perhaps because they have more copies of CYP2J genes.

Heavy-chain antibodies. A HCAb is an immunoglobulin that consists of only two heavy chains (IgH) and lacks the two light chains usually found in conventional Abs. Camelids, such as camels, dromedaries and alpacas, are the only mammals that produce HCABs. We searched the bactrian camel genome using the sequences of human, alpaca and dromedary IgH genes. In total, 17 VH, 7 DH, 6 JH and 10 CH genes were identified in 16 scaffolds (Supplementary Table S14). On the basis of a unique gene cluster in scaffold 355.1, we inferred an organization of the IgH loci similar to the typical mammalian V-D-J-C translocon. It has been reported that amino-acid substitutions in the sites of 37, 44, 45 and 47 in the FR2 region of VH genes can result in conformational changes of the heavy chains, making them no longer able to bind to the light chains. We found that five of the VH genes in the bactrian camel contain such mutation sites, which may code for HCABs (Supplementary Table S15 and Supplementary Fig. S7a).

Discussion

Our comparative analysis based on the genome sequences provides important insights into the evolution and domestication of the bactrian camel.
of bactrian camels. In addition, the identified genes and pathways may enhance our understanding of the genetic mechanisms that enable camels to survive in extreme environments. Further studies could focus on the molecular functions of these genes necessary for the special physiology of camels. These findings may also improve our understanding of the metabolism-related diseases, thereby benefiting human health.

Methods

Sampling, genome sequencing and assembly. An 8-year-old male wild bactrian camel was selected for the whole genome sequencing on 18 February 2010. The pedigree shows that it is from a pure bred wild camel group living in the Mongolian Wild Camel Protection Area, Bayan Tooree, Altai province, Mongolia. A 6-year-old male Alashan domestic bactrian camel from Altan ovooy balgas, Alshaa aimag, Inner Mongolia, China, was selected for the domestic camel sequencing on 8 March 2010. The blood from the ear tissue was collected for both bactrian camels. The genomic DNA was extracted using Puregene Tissue Core Kit A (Qiagen).

The 500-bp pair-end and 3-kb mate-pair DNA library was sequenced on the Illumina Genome Analyzer Ix system. The 10-kb mate-pair DNA library was sequenced on the Applied Biosystems SOLiD 3 system. The 20-kb mate-pair DNA library was sequenced using the Roche Genome Sequencer FLX system. Library preparation, sequencing and base calling were performed according to the manufacture’s recommendations.

The genome sequence of the wild camel was assembled using SOAPdenovo9 (http://soap.genomics.org.cn). We first assembled the reads with the insert size of 500 bp into contigs using the sequence overlap information, and then used the mate-pair libraries, step by step from the shortest to the longest insert size, to join the contigs into scaffolds. To fill the intra-scaffold gaps, we retrieved read pairs that had one read well-aligned on the contigs and the other read located in the gap region.

We estimated the genome size of the wild bactrian camel based on the frequency distribution of the 17 base oligonucleotides. The reads with the insert size of 500 bp were used in this analysis. The occurrences of 17-mer in the reads were counted by distributing the 17 base oligonucleotides. The reads with the insert size of 500 bp gap region.

The contigs into scaffolds. To fill the intra-scaffold gaps, we retrieved read pairs that had one read well-aligned on the contigs and the other read located in the gap region.

We estimated the genome size of the wild bactrian camel based on the frequency distribution of the 17 base oligonucleotides. The reads with the insert size of 500 bp were used in this analysis. The occurrences of 17-mer in the reads were counted by Jellyfish11. The peak of the k-mer frequency (M) in reads is correlated with the real sequencing depth (N), read length (L) and k-mer length (K) according to the formula $M = N \times (L - K + 1)/L$. We divided the total length of all reads by the real sequencing depth, and obtained an estimated genome size of 2.38 Gb. We also collected the C values and genome sizes of other mammals to estimate the genome size of camel (http://www.genomesize.com). The camel genome has a C value between 2.41 and 2.86 picograms, which is translated to a genome size between 2.02 and 2.40 Gb.

Genome annotation. The repeat sequences were identified by RepeatMasker (version 3.2.9) (http://www.repeatmasker.org) against the Repbase TE library (version 2009-06-04). The transfer RNAs (tRNAs) were predicted by tRNAscan-SE-1.23 (ref. 14; Table 1), and short interspersed element-masked tRNAs and pseudogenes were eliminated. The ribosomal RNAs (rRNAs) were identified by aligning the eukaryote rRNA sequences from the SILVA database using BlastN12 with the cutoff of e value 1×10^{-5}, identity $>85\%$ and match length >50 bp. The microRNAs (miRNAs) were identified by aligning the miRNA precursor sequences from miRBase13 using BlastN with the cutoff of e value 1×10^{-5}, identity $>90\%$, mature length 21-25. As a result, 1701 rRNAs, 602 rRNAs and 330 miRNAs were identified in the camel genome.

For protein-coding gene annotation, ab initio prediction was performed by Augustus14 and GenScan15. Augustus predicts 26,842 genes, averaging 7.0 exons per gene. The average gene length is 21,269 bp, including coding regions 1,144 bp. GenScan predicts 42,677 genes, averaging 7.8 exons per gene. The average gene length is 31,880 bp, including coding regions 1,212 bp. Homology-based prediction was performed by searching against other mammalian gene sequences by Automatic Annotation Server) for KEGG pathway annotation.

Comparative genomics and evolutionary analysis. We performed BlastP16 for all the camel proteins against the NCBI HomoloGene database23 to assign them to gene families. To avoid too short local alignments, the best hit should have the e value 1×10^{-5} and coverage length longer than 1/3 on both aligned proteins. The syntenic maps between the camel and other mammalian genomes were constructed by CHISMT24, with their orthologs as anchor points. The gap size between two neighbouring ortholog pairs was set to be <2.0 Mb. Only the syntetic blocks with P-value less than 5×10^{-5} were preserved.

We used ClustalW25 to perform multiple alignment for proteins in each ortholog family. The phylogeny tree was constructed based on the single-copy genes in mammals with chicken as outgroup. The maximum likelihood tree for each family was built by Phylik26 under the JTT model. The consence programme in Phylik was used to integrate the individual gene trees to the final supertree.

To evaluate the supertree topology, we applied the bootstrap strategy to resample from the original tree set for 100 times.

SNP and heterozygosity analysis. We utilized the BWA program27 to remap the usable reads from the wild and domestic camel to the assembled scaffolds, respectively. The parameters for mapping were chosen as the seed length of 28 and the maximum occurrences for extending a long deletion of 20. The reads that could map to multiple positions were removed in the following analysis. The candidate SNPs and small indels (<50 bp) were retrieved by the SAMtools pipeline28 with default settings. We flagged a candidate SNP as a likely false-positive one if it exhibited the following behaviour: (1) total depth is above 400 or below 10; (2) root mean square of mapping quality is below 20; (3) depth of alternate bases is below 4; (4) P-value of reference and non-reference bases being evenly distributed on both strands is below 1×10^{-4} (Fisher exact test). These thresholds were applied to both the heterozygous SNPs within the wild and domestic camel genome, and the homozygous SNPs between them.

The heterozygosity rate was estimated as the density of heterozygous SNPs for the whole genome, gene intervals, introns and exons, respectively. For the estimation of local heterozygosity rate, sliding windows of 10 kb that had 90% overlap between adjacent windows were used to scan the genome. The z-test was performed for each window to identify the regions where the heterozygosity rate of the domestic camel is significantly lower than that of the wild one (P<0.05 after Bonferroni correction). The GO enrichment analysis for genes located in the regions was performed by GOEAST29.

References

1. Bannikov, A. Wild camels of the Gobi. Wildlife 18, 398–403 (1976).
2. Yuan, G.e.a. Ecology and Conservation of Wild Bactrian Camels (Camelus bactrianus ferus). (Mongolian Conservation Coalition & Admon Publishing, 2002).
3. Peters, J. & Driesch, A. The two-humped camel (Camelus bactrianus): new light on its distribution, management and medical treatment in the past. J. Zool. 242, 651–679 (1997).
4. Emmanuel, B. & Nahapetian, A. Fatty acid composition of depot fat, and rumen wall of the camel (Camelus dromedarius). Comp. Biochem. Physiol. Part B: Comp. Biochem. 67, 701–704 (1980).
5. Schmidt-Nielsen, K. Desert Animals. Physiological Problems of Heat and Water. (Oxford University Press, 1964).
6. Ali-Al, A., Husayni, H. & Power, D. A comprehensive biochemical analysis of the blood of the camel (Camelus dromedarius). Comp. Biochem. Physiol. Part B: Comp. Biochem. 89, 35–37 (1988).
7. Ali, T. A. Manual for the Primary Animal Health Care Worker. (Food and Agriculture Organization of the United Nations, 1994).
8. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).
9. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).
10. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
11. Wade, C. et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326, 865–867 (2009).
12. Elsko, C. G., Tellam, R. L. & Worley, K. C. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522–528 (2009).
13. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–526 (2002).
14. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).
15. Locke, D. P. et al. Comparative and demographic analysis of orang-utan genomes. Nature 469, 529–533 (2011).
16. Sankar, M. & Waack, S. GOEAST 1.0: an improved tool with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).
17. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).
18. Al-Swalem, A. M. et al. Sequencing, analysis, and annotation of expressed sequence tags for Camelus dromedarius. PLoS One 5, e10720 (2010).
19. Weymouth, T. et al. Pigs in sequence space: a 0.66 X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6, 70 (2005).
20. The Gene Ontology Consortium. The gene ontology: enhancements for 2011. Nucleic Acids Res. 40, D359–D364 (2012).
21. Kanehisa, M., Goto, S., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 38, D35–D38 (2010).
22. Kaske, M., Elmahdi, B., Engelhardt, W. & Sallmann, H. P. Insulin pathways: insights into insulin action. Trends Genet. 20, 631–639 (2004).
23. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 21, 108–116 (2004).
24. Carroll, M. A. Comparative aspects of glucose tolerance in camels, sheep, and ponies. Biochem. Physiol. Part A: Physiol. 71, 487–509 (2007).
25. Murphy, W. L., Pezvner, P. A. & O’Brien, S. I. Mammalian phylogenomics comes of age. Trends Genet. 20, 210–218 (2004).
26. Janis, C. M., Scott, K. M. & Jacobs, L. L. Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulate-like Mammals. (Cambridge University Press, 1998).
27. Kasahara, M. et al. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714–719 (2007).
28. Rhesus Macaque Genome Sequencing and Analysis Consortium. Comparative aspects of glucose tolerance in camels, sheep, and ponies. Comp. Biochem. Physiol. Part A: Physiol. 118, 147–151 (1997).
29. Kaske, M., Elmahdi, B., Engelhardt, W. & Sallmann, H. P. Insulin responsiveness of sheep, ponies, miniature pigs and camels: results of hyperinsulinemic clamps using porcine insulin. J. Comp. Physiol. B 171, 553–556 (2001).
30. Muoio, D. M. & Newgard, C. B. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).
31. Chenna, R., Sugawara, H., Koike, T., Milne, C. J. & Gibson, T. J. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3947–3950 (2003).
32. Felsenstein, J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418–427 (1996).
33. Burleigh, J. G., Driskell, A. C. & Sanderson, M. J. Supertree bootstrapping methods for assessing phylogenetic variation among genes in genome-scale data sets. Syst. Biol. 55, 426–440 (2006).
34. Carroll, M. A. Comparative aspects of glucose tolerance in camels, sheep, and ponies. Comp. Biochem. Physiol. Part A: Physiol. 71, 487–509 (2007).
35. Kaske, M., Elmahdi, B., Engelhardt, W. & Sallmann, H. P. Insulin responsiveness of sheep, ponies, miniature pigs and camels: results of hyperinsulinemic clamps using porcine insulin. J. Comp. Physiol. B 171, 553–556 (2001).
36. Muoio, D. M. & Newgard, C. B. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).
37. Sugawara, H., Koike, T., Milne, C. J. & Gibson, T. J. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3947–3950 (2003).
38. Felsenstein, J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418–427 (1996).
39. Burleigh, J. G., Driskell, A. C. & Sanderson, M. J. Supertree bootstrapping methods for assessing phylogenetic variation among genes in genome-scale data sets. Syst. Biol. 55, 426–440 (2006).
40. Wang, Z., Ding, G., Yu, Z., Liu, L. & Li, Y. CHSMiner: a GUI tool to identify chromosomal homologous segments. Algorithms Mol. Biol. 4, 2 (2009).
41. Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3947–3950 (2003).
42. Felsenstein, J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418–427 (1996).
43. Blair Hedges, S. & Kumar, S. Genomic clocks and evolutionary timescales. Trends Genet. 19, 200–206 (2003).
44. NERML: ApART: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res. 31, 3537–3539 (2003).
45. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
46. Li, H. et al. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
47. Zeng, Q. & Wang, X. J. GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res. 36, W358–W363 (2008).

Author contributions
J. Z.W., G.H.D., Y.M.S., G.L.C. and Z.H.S. contributed equally to this work as first authors. J.M.L., Y.X.S., X.Y.T., C.Y.G., W.L., L.M., T., A.Y.C., Y.L., J.H.G., J.L., H.M. and Y.X.L. did coordinating and project management in this work. J., G.L.C., M.B., W.B.Z., B.T., W., B.I.S., B.B., Z.X.W., J.W., N., T., S., N., L.P., Y., G., D., E., A., T.L., M.H.C., B., H., Z.T.A. and H.P.Z. contributed to this project. We thank the Ministry of Environment and Sources of Mongolia for providing sample collections from wild bactrian camels. This work was supported by State Key basic research program (973) (2011CB109204, 2010CB929206, 2011CB108001), Research Programme of CAS (KSCX2-ER-R4, KSCX2-YW-R190, 2011KIP204), National Natural Science Foundation of China (30900272, 31070752), Chinese Ministry for Science and Technology Grant 2008BAE4A01, Chinese High-Tech R&D Programme (863) (2009AA022204) and SA-SIBS Scholarship Programme.

Acknowledgements
We are indebted to many people whose names are not included in the author list, but who contributed to this project. We thank the Ministry of Environment and Sources of Mongolia for permitting sample collections from wild bactrian camels. This work was supported by State Key basic research program (973) (2011CB109204, 2010CB929206, 2011CB108001), Research Programme of CAS (KSCX2-ER-R4, KSCX2-YW-R190, 2011KIP204), National Natural Science Foundation of China (30900272, 31070752), Chinese Ministry for Science and Technology Grant 2008BAE4A01, Chinese High-Tech R&D Programme (863) (2009AA022204) and SA-SIBS Scholarship Programme.

Supplementary Information
98: Health and Disease in Wild and Domestic Bactrian Camels. Nucleic Acids Res. 36, W358–W363 (2008).

Additional information
Accession codes: This Whole Genome Shotgun project has been deposited in DDBJ/EMBL/GenBank as project accession PRJNA67177. The genome assembly has been deposited in DDBJ/EMBL/GenBank under the accession code accession number GOV00000000. The version described in this paper is the first version, GOV01000000.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Jiririmt. et al. Genome sequences of wild and domestic bactrian camels. Nat. Commun. 3:1202 doi: 10.1038/ncomms1219 (2012).

License: This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
Jirimutu1, Zhen Wang2,3,4, Guohui Ding2,3,4, Gangliang Chen5, Yamin Sun6, Zhihong Sun1, Heping Zhang1, Lei Wang6, Surong Hasi7, Yan Zhang8, Jianmei Li1, Yixiang Shi2,9, Ze Xu4, Chuan He10, Siriguleng Yu7, Shengdi Li3, Wenbin Zhang11, Mijiddorj Batmunkh12, Batsukh Ts13, Narenbatu14, Unierhu14, Shirzana Bat-Ireedui15, Hongwei Gao10,16, Banzragch Baysgalan17, Qing Li1, Zhiling Jia1, Turigenbayila14, Subudenggerile7, Narenmanduhu7, Zhaoxia Wang1, Juan Wang1, Lei Pan1, Yongcan Chen10,18, Yaichil Ganerdene19, Dabxilt20, Erdemt21, Altansha22, Altansukh23, Tuya Liu24, Minhui Cao25, Aruuntevser26, Bayart27, Hosblig28, Fei He4, A Zha-ti29, Guangyong Zheng3, Peng Qiu2,4, Zikui Sun18, Lele Zhao10, Wenjing Zhao10, Baohong Li4, Chao Li3, Yunqin Chen2, Xiaoyan Tang3, Chunyan Guo1, Wei Liu1, Liang Ming1, Temuulen1, Aiying Cui1, Yi Li1, Junhui Gao4, Jing Li2, Wurentaodi11, Shen Niu3, Tao Sun10, Zhongxiao Zhai10, Min Zhang1, Chen Chen1, Tunteg Baldan30, Tuman Bayaer31, Yixue Li2,3,32,33, He Meng10

1Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Huhhot 010018, China. 2 Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai 201203, China. 3 Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. 4 EG Information Technology Enterprise (EGI), Encode Genomics Biotechnology Co., Ltd., 100 Qinzhou Road, Shanghai 200235, China. 5 Bactrian Camel Academic of Altai, Xingjiang, Wangyuan Camel Milk Limited Company, 99 Huanchengdong Road, Fuhai County, Xinjiang 836500, China. 6 Tianjin Key Laboratory of Microbial Functional Genomics, TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China. 7 Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Huhhot 010018, China. 8 Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC0477, Blacksburg, Virginia 24061, USA. 9 School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China. 10 Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China. 11 Bactrian Camel Institute of Alsha, Inner Mongolia, 16 Tuerhute Road, Bayanhot, Inner Mongolia 750306, China. 12 Mongolian Wild Camel Protection Area, Ministry of Nature and Environment, Ulaanbaatar 210646, Mongolia. 13 College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Huhhot 010018, China. 14 Zelem Limited Company, 2 horoo 25-114, 2 Sukhbatdar district, Ulaanbaatar 210646, Mongolia. 15 Shanghai Quality Safety Center of Agricultural Products, 779 Xianxiaxi Road, Shanghai 200335, China. 16 Shanghai Personal Biotechnology Limited Company, 777 Longwu Road, Shanghai 200336, China. 17 Animal Husbandry Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 18 Animal Science Institute, Xinjiang Academy of Animal Science, 151 Kelamayi East Street, Urumqi 830000, China. 19 Research Institute of Animal Husbandry, J.Sambuu, Zaisan, Khoroo 11, Khan-Uul District, Ulaanbaatar 210153, Mongolia. 20 Veterinary Bureau of East Alsha, 9 Ejnee Road, Bayanhot, Inner Mongolia 750300, China. 21 Animal Husbandry Bureau of East Alsha, 12 South Ring Road, Bayanhot, Inner Mongolia 750300, China. 22 Animal Husbandry Bureau of West Sunid, Shiliinol Aimag, 52 Eejnuur Road, Tsetserleg City, Inner Mongolia 026000, China. 23 Veterinary Bureau of East Alsha, 9 Ejnee Road, Bayanhot, Inner Mongolia 750300, China. 24 Veterinary Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 25 Animal Husbandry Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 26 Research Institute of Animal Husbandry, J.Sambuu, Zaisan, Khoroo 11, Khan-Uul District, Ulaanbaatar 210153, Mongolia. 27 Animal Husbandry Bureau of West Sunid, Shiliinol Aimag, 52 Eejnuur Road, Tsetserleg City, Inner Mongolia 026000, China. 28 Animal Husbandry Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 29 Animal Husbandry Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 30 Animal Husbandry Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 31 Animal Husbandry Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 32 Animal Husbandry Bureau of North Urad, 9 Tsog Undur Road, Dunshuur, Bayannuur, Inner Mongolia 015500, China. 33 Animal Husbandry Bureau of West Sunid, Shiliinol Aimag, 52 Eejnuur Road, Tsetserleg City, Inner Mongolia 026000, China. 34 Animal Husbandry Bureau of West Sunid, Shiliinol Aimag, 52 Eejnuur Road, Tsetserleg City, Inner Mongolia 026000, China. 35 Animal Husbandry Bureau of West Sunid, Shiliinol Aimag, 52 Eejnuur Road, Tsetserleg City, Inner Mongolia 026000, China. 36 Animal Husbandry Bureau of West Sunid, Shiliinol Aimag, 52 Eejnuur Road, Tsetserleg City, Inner Mongolia 026000, China.
Corrigendum: Genome sequences of wild and domestic bactrian camels

The Bactrian Camels Genome Sequencing and Analysis Consortium

Nature Communications 3:1202 doi: 10.1038/ncomms2192 (2012); Published 13 Nov 2012; Updated 16 Aug 2013

Provision for access to the domestic camel genome sequence was not provided in this Article. The sequence has now been deposited in NCBI Sequence Read Archive under accession code SRX224984.