From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory

C. Frohmaier, C. R. Angus, M. Vincenzi, M. Sullivan, M. Smith, P. E. Nugent, S. B. Cenko, A. Gal-Yam, S. R. Kulkarni, N. M. Law and R. M. Quimby

1 Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
2 School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK
3 DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
4 DISCnet Centre for Doctoral Training, University of Portsmouth, Portsmouth PO1 3FX, UK
5 Université de Lyon 1, CNRS/IN2P3, Institut de Physique des Deux Infinis, 69622 Villeurbanne Cedex, France
6 Department of Astronomy, University of California, Berkeley, CA, 94720-3411, USA
7 Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
8 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA
9 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA
10 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
11 Cahill Centre for Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
12 Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA
13 Department of Astronomy/Mount Laguna Observatory, San Diego State University, 5500 Campanile Drive, San Diego, CA 92812-1221, USA
14 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Accepted 2020 November 16. Received 2020 November 16; in original form 2020 July 8

ABSTRACT

We present measurements of the local core-collapse supernova (CCSN) rate using SN discoveries from the Palomar Transient Factory (PTF). We use a Monte Carlo simulation of hundreds of millions of SN light-curve realizations coupled with the detailed PTF survey detection efficiencies to forward model the SN rates in PTF. Using a sample of 86 CCSNe, including 26 stripped-envelope SNe (SESNs), we show that the overall CCSN volumetric rate is \( r_{v}^{CC} = 9.10^{+1.56}_{-1.27} \times 10^{-5} \) SNe yr\(^{-1}\) Mpc\(^{-3}\) h\(^{-1}\) at \( z = 0.028 \), and the SESN volumetric rate is \( r_{v}^{SE} = 2.41^{+0.81}_{-0.64} \times 10^{-5} \) SNe yr\(^{-1}\) Mpc\(^{-3}\) h\(^{-1}\). We further measure a volumetric rate for hydrogen-free superluminous SNe (SLSNe-I) using eight events at \( z \leq 0.2 \) of \( r_{v}^{SLSN-I} = 35^{+31}_{-13} \) SNe yr\(^{-1}\) Gpc\(^{-3}\) h\(^{-1}\), which represents the most precise SLSN-I rate measurement to date. Using a simple cosmic star formation history to adjust these volumetric rate measurements to the same redshift, we measure a local ratio of SLSN-I to SESN of \( \sim 1/810^{+1500}_{-94} \), and of SLSN-I to all CCSN types of \( \sim 1/3500^{+2800}_{-720} \). However, using host galaxy stellar mass as a proxy for metallicity, we also show that this ratio is strongly metallicity dependent: in low-mass (log\( M_{*} < 9.5 M_{\odot} \)) galaxies, which are the only environments that host SLSN-I in our sample, we measure an SLSN-I to SESN fraction of \( 1/300^{+2800}_{-170} \) and \( 1/1700^{+1800}_{-720} \) for all CCSN. We further investigate the SN rates a function of host galaxy stellar mass, and show that the specific rates of all CCSNe decrease with increasing stellar mass.

Key words: methods: data analysis – transients: supernovae.

1 INTRODUCTION

The discovery space of optical transient surveys has been significantly expanded by recent wide field, high cadence, untargeted transient surveys. This has allowed the transient luminosity–duration domain to be populated at an unprecedented rate, uncovering an increasingly diverse variable Universe, with new classes of events ranging from the fast-and-faint to the enduring-and-bright. This has also highlighted the diversity of supernova (SN) classes.

This is particularly pronounced amongst core-collapse SNe (CCSNe), the explosion of massive stars (\( \sim \)8 M\(_{\odot}\), e.g. Heger et al. 2003; Smartt 2009). Observationally, this group can be dichotomized based on the presence of hydrogen in their spectra, with ‘hydrogen-rich events’ displaying clear signatures at all epochs of their evolution. The hydrogen-poor ‘stripped-envelope’ SNe (SESNs), on the other hand, predominantly lack hydrogen in their spectra (with the exception of SNe-IIb, which display some hydrogen at early times before evolving to show prominent helium emission later), and may or may not display signatures of helium (subclasses Ib and Ic, respectively). These SESN subclasses are heterogeneous (e.g. Lyman, Bersier & James 2014; Prentice et al. 2019; Shivvers et al. 2019), although they can be broadly grouped based upon the relative abundances of...
H/He in their spectra (e.g. Modjaz et al. 2015; Prentice & Mazzali 2017). They are thought to arise due to progenitors which have been subject to differing levels of stripping prior to explosion. However, the exact progenitor systems of SESNe, and the way in which these outer layers of hydrogen-rich material are removed from the star, are currently unknown. Direct searches have identified a handful of SN IIb progenitors (e.g. Crockett et al. 2008; Smartt 2009; Arcavi et al. 2011; Maund et al. 2011; Ryder et al. 2018; Van Dyk et al. 2014; Kilpatrick et al. 2017; Tartaglia et al. 2017), but for SN Ib/c, where the Wolf–Rayet (WR) progenitors are difficult to detect in optical imaging (Smartt 2009; Eldridge 2012), only one SN Ib (Cao et al. 2013) progenitor detection and one SN Ic detection (Van Dyk et al. 2018) in pre-explosion imaging.

Recently, an additional subclass of SESN events has emerged: hydrogen-poor superluminous supernovae (SLSNe-I). This class exhibits typically bright peak luminosities (\(M_V < -19.8\) mag; Gal-Yam 2019) and long-lived optical light curves, requiring extreme energies behind their production (events frequently radiate in excess of \(\sim 10^{51}\) erg s\(^{-1}\)). Here too, there exists significant uncertainty surrounding their progenitor systems, as their energy requirements surpass the typical energies produced under standard core-collapse models. Proposed models for their production range from interaction with hydrogen-free circumstellar material (Chevalier & Irwin 2011; Chatzopoulos, Wheeler & Couch 2013; Sorokina et al. 2016), to pair instability explosions (Gal-Yam et al. 2009; Yan et al. 2015), to energy injection from a central compact object (Kasen & Bildsten 2010; Woosley 2010; Inserra et al. 2013). The latter of these theories, implemented through the spin-down of a newly formed magnetar, is capable of broadly replicating the light-curve evolution and spectroscopic features of a large number of SLSNe-I reasonably well (Dessart et al. 2012; Inserra et al. 2013; Nicholl et al. 2013; Mazzali et al. 2016; Nicholl, Guillochon & Berger 2017).

In more recent years, homogeneously selected samples of SLSNe have begun to highlight significant diversity in both their photometric and spectroscopic properties (De Cia et al. 2018; Lunnan et al. 2018; Quimby et al. 2018; Angus et al. 2019), demonstrating a much broader range of luminosities and evolutionary time-scales than previously attributed to this spectroscopic class. Indeed, such samples have revealed fainter SLSNe, highlighting a potentially undersampled population of less luminous events in previous generation SN surveys. The luminosities and energies associated with these less-luminous SLSNe draw nearer to the brighter end of the ‘normal’ CCSN regime. The spectral similarity of these events to classical SNe Ic (Pastorello et al. 2010) at late times (Inserra et al. 2013) and during the nebular phase (Nicholl et al. 2016; Jerkstrand et al. 2017; Nicholl et al. 2019), has led to suggestions of a connection between the two spectroscopic subclasses (Liu, Modjaz & Bianco 2017; De Cia et al. 2018; Quimby et al. 2018).

Whether a physical connection exists between all the spectroscopic subclasses of SESN in uncertain. A magnetar-powered scenario is able to provide a broad range of power outputs depending upon the initial spin period and magnetic-field strength of the magnetar (Woosley 2010; Kasen & Bildsten 2010; Nicholl et al. 2017) and as such, could provide a unified model to encompass all SESN explosions. Although there is little evidence, or consensus, that a magnetar is the dominant energy source over the decay of \(^{56}\)Ni in SESNe.

One way in which we can begin to probe the underlying progenitor systems of SESNe is through an analysis of volumetric rates. For instance, for lone WR models of ‘normal’ (Ib/c) SESN production, the relative rates of SN Ib/c to SN II should reflect the relative population fractions of WR stars at a given redshift. Conversely, for binary-driven scenarios, the relative rate should reflect the population fractions of interacting massive stars within binaries.

Volumetric rates may also reflect any environmental dependencies in SESN progenitor production. An evolving rate with redshift may reflect an evolution of host galaxy properties (such as metallicity or star formation rate, SFR) with cosmic time, and thus provide clues as to the dependencies of their progenitors upon their host environment. Conversely, deviations from any expected environmental evolution at low/high redshift may reflect additional factors in progenitor production, which may have previously been overlooked. Understanding how the volumetric rate of events such as SLSNe-I evolve with redshift will not only improve searches for them in both current and upcoming surveys such as those conducted by Euclid and the Vera Rubin Observatory (Inserra et al. 2018a; Villar, Nicholl & Berger 2018), but can also help provide a better understanding of their likely progenitor systems.

In this paper, we present the measurements of the rate of all CCSNe, SESNe subtypes, and SLSNe-I from the Palomar Transient Factory (PTF; Law et al. 2009). PTF was an automated optical sky transient survey operating at the Samuel Oschin 48 inch telescope (P48) at the Palomar Observatory, searching over 8000 deg\(^2\) of the optical sky over its initial phase between 2009 and 2012, reaching typical depths of \(M_V \sim 20.5\). This wide-field survey presents the opportunity to constrain the low-redshift rate of core-collapse events of all luminosities, from which we may compare to models of their production and any environmental dependencies in the local Universe.

In Section 2, we begin with a description of the general method for calculating volumetric transient rates in the PTF survey. We also describe our method of constructing template light curves and justify our assumptions for the model parameters. In Section 3, we present our SN sample for each of the transient subtypes observed by PTF. This is followed by a detailed explanation of the marriage between simulation and observation to calculate our rates of CCSNe and SLSNe in Section 4. The CCSN-to-SLSN relative-rate implications are reviewed in Section 6. Throughout, where relevant, we assume a flat \(\Lambda\)-cold dark matter Universe with a matter density \(\Omega_M = 0.3\) and a Hubble constant of \(H_0 = 70\) km s\(^{-1}\) Mpc\(^{-1}\), and we work in the AB photometric system.

2 RATE CALCULATION FRAMEWORK

We begin by outlining the framework that we use for calculating the PTF SN rates.

2.1 PTF survey simulations

This work makes extensive use of the analysis of Frohmaier et al. (2017, hereafter F17), which produced the detection efficiencies of point sources in images processed by the real-time difference imaging pipeline of PTF data. This study inserted around 7 million artificial point sources into PTF images to test the performance of the PTF transient detection pipeline. They found that a combination of the observing conditions (seeing/image quality, sky brightness, and limiting magnitude), the transient’s host galaxy surface brightness, and the transient’s magnitude provided a good description of the survey’s performance in detecting transients. From this, a multidimensional efficiency grid was created that described the probability that a point source (in an arbitrary environment) would have been detected in PTF difference imaging at any point in the survey.
We use these efficiencies in large Monte Carlo simulations to forward model the PTF survey, with the input rate in our simulations adjusted until it matches the observed SN detection rate in the data (e.g. Prajs et al. 2017; Frohmaier et al. 2018). We use recent CCSN templates and luminosity functions (Vincenzi et al. 2019) and SLSN template modelling (Inserra et al. 2018b; Angus et al. 2019) to simulate the artificial SLSNe. Key to the simulation is that real and simulated objects are treated identically, choosing the same sky areas (search volumes) and mimicking exactly the PTF survey strategy.

We define a sky area, Θ, and an appropriate observing duration over which PTF would have been sensitive to our SNe of interest. Since we are calculating volumetric rates, we define a (SN class dependent) maximum redshift out to which PTF could observe our SNe of interest. This is set by the maximum brightness of a typical object in the population, and by the light-curve evolution to ensure a sufficient number of observations for us to be confident of discovery.

Our methodology is as follows. We first draw a random value for the assumed intrinsic volumetric rate (\(r_{\text{intrinsic}}\)), and use this to generate the number of events, \(N_{\text{input}}\), that would have occurred within a given volume \((V_{\text{obs}})\) and observing duration \((T_{\text{obs}})\) drawn from the Poisson distribution

\[
P(N_{\text{input}}; \lambda) = \frac{\lambda^{N_{\text{input}}} e^{-\lambda}}{N_{\text{input}}!}
\]

where \(\lambda = r_{\text{intrinsic}} T_{\text{obs}} V_{\text{obs}}\), and

\[
V_{\text{obs}} = \frac{4\pi}{41253} \left[ \frac{c}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda}} \right]^3 \text{Mpc}^3,
\]

where \(c\) is the speed of light. Each object in the \(N_{\text{input}}\) sample is assigned an explosion date, sky position, and a redshift such that they occur randomly and uniformly in the simulated volume–time space. The light-curve properties for the \(N_{\text{input}}\) templates are drawn from a distribution of intrinsic population parameters described in Sections 2.2.1 and 2.2.2. Milky Way extinction is applied to each template based on its location (Schlegel, Finkbeiner & Davis 1998) following Cardelli, Clayton & Mathis (1989). We include the detection efficiency effects of the host galaxy surface brightness over which PTF would have been sensitive to our SNe of interest. This is set by the maximum brightness of a typical object in the population, and by the light-curve evolution to ensure a sufficient number of observations for us to be confident of discovery.

We then generate mock observations of our artificial SNe and use template light curves to produce reliable rate estimates, which we describe in the following section.

2.2 Supernova template light curves

2.2.1 Core-collapse supernovae

Our CCSNe are simulated using a library of 67 templates presented in Vincenzi et al. (2019). This library has been built combining spectroscopy and multiband photometry from well-observed CCSNe, and the templates span six classes of CCSN events (SN II, SN Ib, SN IIn, SN Ib, SN Ic, and SN Ic-BL). Each individual template extends from 1700 to 11 000Å. Every CCSN subclass also has an associated luminosity function, such that every template is adjusted so that the peak brightness of the simulated events follows this function (see Vincenzi et al. 2019, for further details). Furthermore, we adopt the host extinction-extended version of these models and assume the reddening in the templates is representative of the reddening in the data.

We additionally separate out the templates associated with SESNe (i.e. SNe Ib, SNe Ic, SNe Ic-BL, and SNe Ibb) to calculate an SESN-only rate. We do not differentiate between the subclasses of these normal luminosity SESNe, as divisions between these subclasses are poorly defined (Shivvers et al. 2019), and misclassification is a potential contaminant to any subsequent rate calculation.

2.2.2 Superluminous supernovae

Due to the scarcity of spectrophotometric data for SLSNe-I we create our template light curves using a parametric model capable of replicating the general form of an SLSN-I event. This neglects the small-scale behaviours often present within SLSN light curves, which may be indicative of multiple energy sources (e.g. Inserra et al. 2018b), as these features do not significantly affect the detectability of simulated SLSNe-I events.

We adopt the magnetar model of Inserra et al. (2013), including a time-dependent trapping coefficient introduced by Wang et al. (2016) to account for late-time behaviour. Models of magnetar spin-down have been shown to replicate the broad photometric properties of a large number of SLSN-I light curves (Inserra et al. 2013; Nicholl et al. 2017; Nicholl et al. 2017; Dessart 2019), and whilst there remains debate over whether a magnetar is the sole power source (e.g. Inserra et al. 2018b; Angus et al. 2019), it provides a framework with which a ‘typical’ SLSN light curve can be generated. The luminosity is given by

\[
L_{\text{SN}(t)} = \left(1 - \exp \left( \frac{9e M_2}{40\pi E_k} t^{-2} \right) \right) \times e^{-t/\tau_m} \times 2 \int_{t/\tau_m}^{t/T_m} \int_0^{4.9 \times 10^{46}} \left( \frac{B}{10^{14} \text{G}} \right)^2 \left( \frac{P}{\text{ms}} \right)^{-4} \frac{1}{(1 + t/T_m)} e^{(t'/\tau_m) - t'/\tau_m} dt' \text{erg s}^{-1},
\]

where \(B\) and \(P\) are the magnetic field strength and period of the magnetar, respectively, \(\tau_p\) is the spin-down time-scale of the magnetar, and \(\tau_m\) is the diffusion time-scale, which under the assumption of uniform ejecta density, can be expressed in terms of the mass, \(M_2\), opacity, \(\kappa\), and kinetic energy, \(E_k\) of the ejecta. We assume an explosion energy of \(10^{51}\) erg and a hydrogen-free ejecta
with an opacity to optical photons of $\kappa = 0.1 \text{ cm}^2 \text{ g}^{-1}$ (Inserra et al. 2013). We explored an opacity of $\kappa = 0.01 \text{ cm}^2 \text{ g}^{-1}$, the opacity of the ejecta to gamma-ray photons, which may be more applicable to the trapping of the input magnetar energy at early times in the light curve. Though this value is observationally supported (Nicholl et al. 2018), we find the inclusion of this parameter value has little affect upon the results presented here, as the influence of this lower opacity does not become predominant until extremely late times ($\gtrsim 250 \text{ d}$ post-maximum brightness).

We generate SLSN-I light curves by varying values $B$, $P$, and $\tau_m$. To explore the parameter space, we fit this model to the light curves of a well-observed sample of SLSNe-I with $z < 0.3$, close to the $z < 0.2$ redshift range of our rates measurement. We place the following data requirements on this sample to guarantee adequate sampling across both the duration of the light curve and the underlying spectral energy distribution (SED) for each event:

(i) The light curves must have data in $>3$ photometric bands to constrain the underlying SED;
(ii) The light curve must be well sampled in these bands ($>6$ epochs of data in each band).

We use Gaussian processes to interpolate the literature-sample SLSN-I light curves on to a 1 d cadence grid, and fit the resulting interpolated light curves with the phase dependent UV-absorbed blackbody model of Inserra et al. (2018a) and Angus et al. (2019). At each epoch, the SED is integrated to determine the bolometric luminosity of the SN, and the resulting bolometric light-curves fit with the magnetar model outlined above. The literature sample of 20 objects are presented in Table 1 alongside the best-fitting $B$, $P$, and $\tau_m$ values. Data were obtained from The Open Supernova Catalogue (Guillochon et al. 2017) using all SLSNe-I that met our sampling and redshift requirements.

We generate template light curves based models whose properties are contained within a parameter space enclosing the fitted properties of our sample. We follow Prajs et al. (2017) and use a Khachiyan algorithm (Aspvall & Stone 1980; Khachiyan 1980) to determine the smallest volume which contains all of our fitted magnetars.

### Table 1. The best-fitting magnetar model parameters for a literature sample of low-redshift SLSNe in increasing redshift order.

| SN name   | $z$   | $P_{\text{spin}}$ (ms) | $B$ ($10^{14}$G) | $\tau_m$ (d) |
|-----------|-------|------------------------|------------------|--------------|
| SN2018bsz | 0.026665 | 3.70 | 18.46 | 18.47 |
| SN2017egm | 0.030721 | 15.41 | 5.33 | 11.58 |
| SN2018hti | 0.063 | 14.31 | 7.69 | 15.40 |
| SN2016eay | 0.1013 | 3.67 | 2.45 | 12.54 |
| PTF12dam  | 0.1073 | 9.80 | 2.40 | 14.45 |
| SN2015bhn | 0.1136 | 3.57 | 2.90 | 15.52 |
| SN2017dwh | 0.13 | 12.95 | 18.24 | 13.52 |
| SN2018avk | 0.132 | 3.76 | 2.21 | 11.24 |
| SN2011ke  | 0.1428 | 6.50 | 10.31 | 12.60 |
| SN2012il  | 0.175 | 13.84 | 12.44 | 14.72 |
| PTF12ghty | 0.1768 | 7.34 | 1.94 | 12.12 |
| PTF09as   | 0.1867 | 19.99 | 30.00 | 10.26 |
| SN2011kg  | 0.1924 | 9.71 | 8.40 | 14.25 |
| SN2016ard | 0.2025 | 7.91 | 11.13 | 13.49 |
| PTF10aagc | 0.2067 | 14.18 | 25.18 | 11.12 |
| SN2010gx  | 0.2297 | 7.73 | 6.68 | 13.59 |
| LSQ14mo   | 0.253 | 9.26 | 8.50 | 13.86 |
| PTF09cnd  | 0.2584 | 4.53 | 2.45 | 16.67 |
| SN2012il  | 0.265 | 10.63 | 6.86 | 13.59 |
| SN2018avk | 0.267 | 7.37 | 5.75 | 14.12 |

We then create templates from fixed combinations of magnetar properties contained in coordinates within this ellipsoidal parameter space. Given the small number of objects used to define this model parameter space, we perform jackknife resampling to ensure the parameter space is not skewed by outlying points, and find our ellipsoid fit to be optimal for the sample. We visualize this final parameter space in Fig. 1.

We finally create a library of template PTF $R$-band light curves, to phases of $+100 \text{ d}$ in the rest frame, using the possible magnetars contained within this defined parameter space. The observed luminosity function from our simulations in Fig. 2 is broadly representative of literature examples (e.g. Angus et al. 2019); although all homogeneously selected SLSN-I samples suffer from low number statistics and Malmquist bias. We assume a UV absorbed blackbody as the underlying SED and generate observer-frame light curves over all
redshifts within the range $0.001 < z < 0.2$, and a redshift bin size of $0.001$.

## 3 THE PTF SUPERNOVA SAMPLE

This section details the construction of our CCSN and SLSN samples. The largest uncertainty in our rate calculation is the spectroscopic completeness: the fraction of SNe detected by PTF that have a spectroscopic type and redshift. To mitigate this, our simulation parameters are designed to include times when PTF achieved a regular cadence and high spectroscopic classification efficiency, thus minimizing potential contaminants in the final sample.

We first describe our light-curve coverage cuts and discuss the details of our search for both spectroscopically confirmed and photometrically identified candidates. All cuts are applied to both our real and simulated SNe.

### 3.1 Light-curve coverage cuts

We adopt some of the light-curve coverage cuts made by Frohmaier et al. (2019) in their calculation of the PTF SN Ia rate. Our coverage cuts are:

1. There must be at least four epochs on which the SN is detected. To be considered detected, each epoch must have an RB score $\geq 0.07$ (Bloom et al. 2012).
2. These four epochs must all be separated by $\geq 12$ h.

These cuts were applied to the real-time PTF difference-imaging photometry.$^1$

### 3.2 The core-collapse sample

For our CCSN sample, we set a redshift limit of $z \leq 0.035$, chosen to ensure that objects at the faint end of the CCSN luminosity function (Li et al. 2011a) are detectable by PTF ($m \lesssim 20.5$). We then defined the sky area and date range over which to perform a search for real CCSNe.

The PTF search strategy evolved over the survey lifetime, which means that there is no single area that can be used over the three years of PTF operation. We instead establish nine areas across 2010–2012 where PTF sustained a regular cadence so that we could model each as a distinct subsurvey. These areas were selected through a visual inspection of the PTF fields and were unbiased by the SN distribution on the sky. The total sky is visualized in Fig. 3 and broken-down by the year of observation. The individual subsurvey parameters are listed in Table A1. We then searched the PTF database to find SN candidates within these subsurveys.

#### 3.2.1 Spectroscopically confirmed CCSNe

The spectroscopic follow-up campaign for the PTF survey is extensively detailed in the literature (e.g. Frohmaier et al. 2019), and we do not reproduce these details here. CCSNe in PTF were classified into subtypes based on their spectral features: SNe II (strong H lines), SNe Ib (strong H and He lines), SNe In (narrow H), SNe Ib (no H, strong He lines), and SNe Ic (no H or He lines). Additionally, events were classified as SN Ic-BL based on their similarities to SN

1A publicly available replica database, containing sources and photometry, can be accessed from https://irsa.ipac.caltech.edu/ (Laher et al. 2014)

#### 3.2.2 Photometrically identified CCSNe

We next search the PTF transient database of $\sim 48,000$ objects for candidate CCSNe that were not observed spectroscopically, following closely the method of Frohmaier et al. (2019). After applying our light-curve coverage cuts, and removing those objects with a spectroscopic classification, there are 20 PTF objects that meet our criteria and have no spectroscopic information. These were cross-matched with the SDSS (Sloan Digital Sky Survey) galaxy catalogues, and objects with $z_{\text{host}} > 0.035$ were removed. This left three objects: PTF12bvf, PTF12cxz, and PTF12gfx. PTF12cxz is coincident with a known SN-imposter candidate that was later identified in 2014 (Tartaglia et al. 2014), and is thus likely a luminous blue variable eruption, and so excluded from the sample. This leaves two events – PTF12bvf and PTF12gfx – with host spectroscopic redshifts within our range. A visual inspection of the light curves and faint peak magnitudes ($M_R > -17$) rule out an SN Ia classification. We consider these objects to be viable CCSN candidates and include them in this analysis. Our final sample of PTF spectroscopic and photometric CCSNe are listed in Table 2.

### 3.3 The SLSN sample

The PTF SLSN-I sample was classified in Quimby et al. (2018) and the light curves presented in De Cia et al. (2018). In total, 26 SLSNe-I were studied to form the largest low redshift, homogeneously selected, sample of SLSN-I to-date.

We draw our candidates from De Cia et al. (2018, table 1.). Each light curve was checked against the coverage cuts in Section 3.1.
Table 2. The PTF CCSN sample used in our calculation. Our sample contains 86 CCSNe of which 24 are SESNe. The two photometrically identified candidates do not have an assigned classification.

| PTF name | IAU name | RA (J2000) | Dec. (J2000) | Redshift | SN type |
|----------|----------|------------|--------------|----------|---------|
| PTF10acbu | – | 14:00:46.92 | +59:20:16.53 | 0.0099 | SN Ic |
| PTF10bnu | 2010Z | 09:16:21.29 | +17:43:40.24 | 0.026 | SN IIP |
| PTF10gbl | – | 10:19:04.70 | +66:27:23.34 | 0.03 | SN IIP |
| PTF10bld | – | 12:12:16.38 | +17:14:45.52 | 0.027 | SN II |
| PTF10cnn | – | 14:47:27.78 | +01:55:03.79 | 0.034 | SN Ib |
| PTF10vdb | 2010aw | 17:16:12.25 | +31:47:36.01 | 0.023 | SN IIP |
| PTF10chy | – | 13:39:29.47 | +46:00:53.75 | 0.006 | SN IIP |
| PTF10eqe | – | 14:04:34.18 | +63:43:26.15 | 0.031 | SN II |
| PTF10eqi | 2010av | 15:06:56.97 | +56:30:26.47 | 0.03 | SN Ib |
| PTF10eqz | – | 15:08:10.43 | +63:00:42.49 | 0.029 | SN II |
| PTF10eqq | – | 12:12:21.40 | +16:58:45.17 | 0.028 | SN Ib |
| PTF10eqz | – | 14:37:44.53 | +52:43:32.78 | 0.012 | SN II |
| PTF10fjh | 2010bq | 16:46:55.36 | +34:09:34.71 | 0.032 | SN IIn |
| PTF10fnr | 2010ck | 14:04:11.25 | +33:18:21.61 | 0.026 | SN II |
| PTF10gva | – | 12:23:55.40 | +10:34:50.62 | 0.028 | SN II |
| PTF10gxi | – | 12:44:33.68 | +31:05:05.35 | 0.029 | SN II |
| PTF10hlc | – | 15:44:18.60 | +45:48:14.97 | 0.035 | SN II |
| PTF10hny | – | 15:04:25.29 | +49:24:02.96 | 0.027 | SN IIP |
| PTF10hpa | 2010ca | 12:45:29.30 | +53:51:47.37 | 0.03 | SN IIP |
| PTF10hpy | – | 12:46:27.24 | +40:45:00.32 | 0.016 | SN IIP |
| PTF10jxj | – | 13:32:57.11 | +48:18:54.55 | 0.029 | SN II |
| PTF10kui | – | 13:31:38.54 | +40:11:33.96 | 0.021 | SN Ib |
| PTF10lnx | – | 16:04:39.18 | +13:23:43.68 | 0.034 | SN II |
| PTF10myz | – | 14:58:13.71 | +48:11:28.19 | 0.028 | SN IIP |
| PTF10npd | – | 23:20:12.62 | −07:28:50.42 | 0.01 | SN IIP |
| PTF10osr | – | 23:45:45.16 | +11:28:42.37 | 0.024 | SN IIP |
| PTF10qob | 2010db | 01:25:47.51 | −01:22:30.13 | 0.019 | SN IIP |
| PTF10qwz | 2010hm | 23:35:18.61 | +12:55:31.81 | 0.02 | SN IIP |
| PTF10rad | – | 23:28:24.08 | −11:07:27.67 | 0.024 | SN II |
| PTF10raj | – | 02:43:24.13 | +03:06:17.58 | 0.023 | SN II |
| PTF10rin | – | 22:52:38.95 | +13:00:36.57 | 0.032 | SN IIP |
| PTF10mn | – | 00:16:25.40 | +30:28:51.29 | 0.024 | SN IIP |
| PTF10xvt | – | 03:37:17.83 | −17:05:41.23 | 0.031 | SN Ic |
| PTF10oxf | – | 14:37:01.40 | +48:32:40.62 | 0.0075 | SN IIP |
| PTF10opa | – | 23:40:40.96 | −09:38:27.01 | 0.033 | SN IIP |
| PTF10oid | – | 02:05:52.70 | −11:49:57.04 | 0.015 | SN IIP |
| PTF10uiy | – | 00:23:16.42 | −10:18:54.68 | 0.023 | SN II |
| PTF10ujc | – | 23:34:31.92 | +22:21:03.24 | 0.032 | SN IIn |
| PTF10vdl | – | 23:05:48.88 | +03:31:25.54 | 0.016 | SN IIP |
| PTF10vnd | 2010ha | 02:00:24.81 | +24:34:44.16 | 0.015 | SN Ib |
| PTF10wcy | – | 00:25:19.50 | −14:33:37.50 | 0.024 | SN II |
| PTF10wmf | – | 21:56:15.70 | +02:10:13.78 | 0.029 | SN IIP |
| PTF10xgo | – | 21:55:37.38 | +01:19:14.11 | 0.034 | SN IIn |
| PTF10xjr | – | 02:49:19.49 | −08:10:30.21 | 0.03 | SN Ib |
| PTF10xjv | – | 00:10:29.13 | +24:28:01.05 | 0.028 | SN IIP |
| PTF10yna | – | 23:15:53.57 | +20:28:17.36 | 0.023 | SN II |
| PTF10yow | 2010eq | 21:54:23.30 | +15:09:20.65 | 0.025 | SN Ic |
| PTF10ecn | 2010is | 23:19:14.39 | +26:03:11.62 | 0.02 | SN Ic |
| PTF10bli | – | 14:02:16.18 | +33:39:41.46 | 0.03 | SN Ib/c |
| PTF10bov | 2011bm | 12:56:53.94 | +22:22:28.14 | 0.022 | SN Ic |
| PTF11cgs | – | 14:13:46.00 | +34:02:12.93 | 0.033 | SN II |
| PTF11dfz | – | 17:22:51.47 | +60:07:49.88 | 0.028 | SN Ib |
| PTF11ecp | – | 16:43:54.10 | +25:00:53.98 | 0.034 | SN II |
| PTF11eon | 2011dh | 13:30:05.08 | +47:10:11.22 | 0.0016 | SN Ib |
| PTF11fc | – | 21:06:39.24 | −13:33:09.46 | 0.03 | SN II |
| PTF11fr | – | 23:55:35.79 | +29:12:19.94 | 0.018 | SN II |
| PTF11fuv | 2011kh | 22:03:15.00 | +00:34:24.90 | 0.03 | SN IIP |
| PTF11gls | 2011dw | 16:31:39.38 | +41:29:23.12 | 0.03 | SN IIP |
Table 2 – continued

| PTF name | IAU name | RA (J2000) | Dec. (J2000) | Redshift | SN type  |
|----------|----------|------------|-------------|----------|----------|
| PTF11htj | –        | 21:16:03.50| +12:31:20.95| 0.017    | SN IIP   |
| PTF11hyg | 2011ee   | 23:27:57.34| +08:46:38.02| 0.03     | SN Ic    |
| PTF11iil | –        | 21:07:41.58| −13:39:55.11| 0.029    | SN II    |
| PTF11klg | –        | 22:07:09.92| +06:29:08.72| 0.027    | SN Ic    |
| PTF11lqz | –        | 23:42:25.58| +00:15:16.83| 0.022    | SN IIP   |
| PTF11qgi | –        | 13:13:41.51| +47:17:57.03| 0.028    | SN Ib n  |
| PTF12bro | 2012br   | 12:24:17.05| +18:55:27.96| 0.023    | SN IIP   |
| PTF12bvf | –        | 11:51:01.66| +20:23:59.64| 0.022    | SN IIP   |
| PTF12cde | –        | 13:58:58.39| +36:14:26.43| 0.013    | SN Ib/c  |
| PTF12cgb | –        | 16:21:44.43| +43:44:23.15| 0.026    | SN II    |
| PTF12cli | –        | 13:42:34.46| +35:01:15.83| 0.024    | SN II    |
| PTF12cod | 2012cd   | 13:22:35.29| +54:48:47.11| 0.012    | SN II    |
| PTF12cwp | –        | 12:56:56.12| +32:30:43.21| 0.031    | SN Ic    |
| PTF12fip | –        | 14:35:17.71| +35:07:04.14| 0.029    | SN IIP   |
| PTF12fx  | –        | 15:00:51.04| +09:20:25.12| 0.034    | SN II    |
| PTF12gnn | –        | 16:01:39.35| +18:63:36.88| 0.029    | SN IIP   |
| PTF12gnt | –        | 15:58:49.28| +36:10:10.95| 0.031    | SN II    |
| PTF12gzk | –        | 17:27:47.30| +26:51:22.11| 0.029    | SN IIP   |
| PTF12hip | –        | 22:12:41.53| +00:30:43.07| 0.014    | SN Ic    |
| PTF12jim | –        | 16:23:10.01| +25:42:06.92| 0.02    | SN II    |
| PTF12lmo | –        | 23:04:55.63| −06:32:11.67| 0.019    | SN II    |
| PTF12lhy | –        | 21:45:46.45| −00:03:25.12| 0.029    | SN Ic    |
| PTF12lzh | –        | 23:43:44.15| −42:38:30    | 0.024    | SN IIP   |
| PTF12lzy | 2012iw   | 02:32:39.67| +00:37:00.12| 0.021    | SN II    |
| PTF12lzp | –        | 23:10:12.80| +30:34:43.11| 0.02    | SN II    |

Table 3. The spectroscopically confirmed PTF SLSN sample used for this rate measurement.

| PTF name    | IAU name | RA (J2000) | Dec. (J2000) | Redshift | SN type  |
|------------|----------|------------|-------------|----------|----------|
| PTF10bfz   | –        | 12:54:41.27| +15:24:16.99| 0.17     | SLSN-I   |
| PTF10hgi   | 2010md   | 16:37:47.04| +06:12:32.32| 0.099    | SLSN-I   |
| PTF10vwd   | 2010hy   | 18:59:32.86| +19:24:25.74| 0.19     | SLSN-I   |
| PTF11hqq   | –        | 00:51:47.22| −26:25:09.99| 0.057    | SLSN-I   |
| PTF11rks   | 2011kg   | 01:39:45.51| +29:55:27.01| 0.19     | SLSN-I   |
| PTF12dam   | –        | 14:24:46.20| +46:13:48.32| 0.11     | SLSN-I   |
| PTF12gty   | –        | 16:01:15.23| +21:23:17.42| 0.18     | SLSN-I   |
| PTF12hni   | –        | 22:31:55.86| −06:47:48.99| 0.11     | SLSN-I   |

This coverage cut was designed to maximize the spectroscopic completeness for the SN Ia rate (Frohmaier et al. 2019). The follow-up of targets was decided by observers at a number of telescopes, which may be biased towards different science goals (e.g. SN Ia). Naturally, this results in a complex selection function ultimately dictated by the brightness of the target transients. Motivated by this, as with the CCSNe, we make a redshift cut to ensure a high sample completeness. We choose to be conservative and set this as $z \leq 0.2$, below the volume-weighted mean redshift of the whole PTF sample at $\langle z \rangle = 0.33$. This redshift limit coincides with an apparent peak in the De Cia et al. (2018) redshift distribution and ensures the majority of objects simulated from our own luminosity function in Section 2.2.2 will be detectable by PTF. Applying this redshift cut to the De Cia et al. (2018) sample provides us with eight objects, which we list in Table 3.

The inclusion of PTF10hgi in our sample may be somewhat contentious as it has been classified as both SLSN-I (Inserra et al. 2013; De Cia et al. 2018) and SLSN-IIb (Quimby et al. 2018; Gal-Yam 2019) in the literature. Given that our sample was initially defined following the De Cia et al. (2018) analysis, we continue our rate measurement with PTF10hgi included. If, however, this object truly does not belong to the SLSN-I class, our resulting rate measurement may be a small overestimate.

We also included PTF10vwd (SN2010hy) in our sample, initially identified by the Lick Observatory Supernova Search (LOSS; Filippenko et al. 2001) as a high-luminosity SN Ic (although the possibility of an SN Ia classification was difficult to rule out). As noted by Quimby et al. (2018), this object was located in a PTF field which was not subject to prompt searching due to its low galactic latitude ($b \approx 7^\circ$). PTF10vwd was later identified within the PTF data following its initial announcement, with follow-up observations showing it to be consistent with an SLSN-I. As with all rate studies, if other such objects exist in the data but were never formally discovered, the resulting measurements would be an underestimate of the intrinsic rate.

4 THE VOLUMETRIC SN RATES

In this section, we detail the process of calculating the CCSN and SLSN-I rates from the PTF data. We follow the methodology
principles laid out in Section 2 and describe the subtle differences in the treatment of data for each of our calculated rates. We also present the measurement uncertainties and justify how our method naturally incorporates the statistical and systematic uncertainties into a single probability density function. We begin by calculating the rate of CCSNe and follow this by extracting only the SESNe for a separate analysis. We then perform a near identical study on the SLSNe-I and conclude by comparing all subsets to investigate the relative fractions.

4.1 Core-collapse supernova rate

To calculate the volumetric rate, we start with a large Monte Carlo simulation where many realizations of an intrinsic SN rate, \( r_{\text{intrinsic}} \), are drawn along with the fixed \( T_{\text{obs}} \) and \( V_{\text{obs}} \) for the subsurveys. These values are used in equation (1) to generate an \( N_{\text{output}} \) and, following the methods in Section 2, a subsequent value of \( N_{\text{output}} \) is determined. This process was repeated for 400,000 realizations of the intrinsic CCSN rate, \( r_{\text{intrinsic}} \), to produce a corresponding set of \( N_{\text{output}} \). At this stage, it is possible to connect any value of \( N_{\text{output}} \) to a distribution of initial \( r_{\text{intrinsic}} \) (e.g. Pras et al. 2017) values, however, we must also include an uncertainty on our true SN sample size.

The observed number of SN events follows an intrinsic rate (for any given volume and time-span) that is governed by the statistics of the Poisson point process. The probability of observing an integer \( n \) events given we have \( N_{\text{obs}} = 86 \) observed events follows the Poisson distribution, identical in functional form to equation (1)

\[
P(n; N_{\text{obs}}) = \frac{N_{\text{obs}}^n e^{-N_{\text{obs}}}}{n!}
\]  

In principle, \( n \) extends over the range \( 0 \leq n \leq \infty \), however, in practise \( P(n = N_{\text{obs}}) \) quickly becomes vanishingly small either side of the maximum probability for our sample size of \( N_{\text{obs}} = 86 \). We therefore compute the probabilities over a finite range of \( n \) where beyond this the probabilities have a negligible effect upon the final result.

We now infer our final rate by bootstrap sampling from equation (4) and couple this with the output of the rate simulations. First, we sample a value of \( n \) from equation (4) to set the observed number of events for our trial. We then compare all outputs from the rate realizations described in Section 2 where \( N_{\text{output}} = n \) to form a set of corresponding intrinsic rates \( r_{\text{intrinsic}} \). We then randomly select a value from this set to assume the intrinsic CCSNe rate for this realization. This process was repeated ~10,000 times to build up a distribution of \( r_{\text{intrinsic}} \), which we present in Fig. 4. A skewed Gaussian was then fit to the raw data to find the maximum probability (the mode) and the 1\( \sigma \) uncertainties around the mean. We infer the volumetric rate of CCSNe to be \( r_{\text{v}} = 9.10^{+1.56}_{-1.27} \times 10^{-5} \text{SNe yr}^{-1} \text{Mpc}^{-3} h_{70}^{-3} \) at the simulated sample volume-weighted mean redshift of \( \langle z \rangle = 0.028 \). The (16, 50, 84) percentiles from the distribution are (7.83, 9.18, 10.66) \times 10^{-5} \text{SNe yr}^{-1} \text{Mpc}^{-3} h_{70}^{-3}.

4.1.1 Stripped-envelope supernova rate

We then applied our rate methodology to the SESNe subset of CCSNe from PTF. Our sample consists of 26 objects listed in Table 2, including our two SNe of unknown type. We thus adopt \( N_{\text{obs}} = 26 \) in equation (4) and follow the prescription of Section 4.1. This measurement of the SESN rate is performed completely independently of the CCSN simulation and thus is unaffected by any assumptions on the SESN to CCSN population fraction. We perform 400,000 realizations of the SESN rate, finding the most likely SESN rate to be

4.2 Comparison to literature CCSN rates

We compare our CCSN rates to those from other surveys at \( z < 0.4 \). We select works that have computed volumetric rates from rolling search data (e.g. Bazin et al. 2009), or from those that have converted rates in units of host galaxy properties to volumetric rates.
We summarize the comparable rate measurements through increasing redshift in Table 4.

We present this combined literature sample, including our CCSN and SESN rate measurements, in Fig. 6, correcting to our assumed cosmology where relevant. The increasing CCSN rate with redshift reflects the increasing SFR with look back time – which CCSNe are excellent probes of, given that they explode relatively promptly after formation ($\lesssim 40$ Myr). We normalize the cosmic star formation history (SFH) as parametrized by Li (2008) with the Cole et al. (2001) functional form (blue dashed line in Fig. 6). The CCSN rate follows this simple SFH which, from $z = 0$ over a look back time of $\sim 4.3$ Gyr, increases by a factor of $\sim 4.2$.

We are unable to make any assertions on the fraction of CCSN that are SESNe from our data as this ratio is an implicit assumption used in the CCSN rate simulation. However, we can use the Shivvers et al. (2017) population fractions to probe any systematic biases in our simulation pipeline. It is natural to expect that the brighter intrinsic luminosities of SESNe would make them easier to discover and, hence, introduce a Malmquist bias. We explore this by taking our normalized SFH and scaling it by the estimated SESN/CCSN population fractions from Shivvers et al. (2017). This is presented in Fig. 6 by the green dotted–dashed line and is in good agreement with our measured SESN rate represented by the orange star. We are, therefore, confident that our rate simulations are unaffected by the Malmquist bias and further adds credence to our independent measurement of the absolute SESN rate.

4.3 SLSN-I rate

We now examine the rate of SLSNe-I from the PTF data. In principle, the method we follow here is identical to the CCSN rate measurements but with all PTF fields included in the simulation.
This change is justified as; (i) the longer duration of a typical SLSN light curve makes the detection of such an event less sensitive to the cadence of any particular PTF field, (ii) our SLSN-I sample is small to begin with and prioritizing cadence over sky area significantly affects this statistics limited sample. These additional fields and SN locations are marked in Fig. 3.

The rate simulations were conducted using the methodology presented in Section 2, with Poisson variation in the observed sample accounted for following equation (4), and template light curves generated with the prescription of Section 2.2.2. Again, in comparison to the CCSN rates, the variables $T_{\text{obs}}$ and $V_{\text{obs}}$ are adjusted to encompass the entire PTF visible sky from 2010 to 2012 out to a redshift of \( z = 0.2 \). We performed \( 1 \times 10^5 \) realizations of the SLSNe-I rate and compared the simulation output observations to the Poisson distributed observed sample of SLSNe-I in PTF with \( N_{\text{obs}} = 8 \). The probability distribution of rates, calculated following the bootstrap method in Section 4.1, is shown in Fig. 7 and from the functional fit to the data we infer the SLSN-I rate to be \( r_{\text{SLSN-I}} = 35_{-13}^{+25} \) SNe yr\(^{-1}\) Gpc\(^{-3}\) \( h^3_{70} \) and (16, 50, 84) percentiles of (22, 39, 60) SNe yr\(^{-1}\) Gpc\(^{-3}\) \( h^3_{70} \).

### 4.4 Comparison to literature SLSN rates

There are few well-measured SLSN-I rates in the literature as a result of the low intrinsic volumetric rate and relatively recent shift to wide-area untargeted rolling sky surveys. This is further complicated by uncertainties in the classification of SLSNe-I, either due to insufficient wavelength coverage to determine the H-poor/H-rich subtypes, or poor signal-to-noise ratio it difficult to distinguish the faint absorption features which mark these events at optical wavelengths. This is only exacerbated at higher redshifts where high signal-to-noise spectra are expensive to collect.

In Fig. 8, we show the literature SLSN rate measurements and briefly present these results in increasing redshift order in Table 5. As with CCSNe, we see an increasing trend in SN rate with redshift. However, given that there are only a handful of poorly constrained high-\( z \) rates in the literature, it is difficult to determine how closely the rate follows SFR evolution with cosmic time, or whether other astrophysical factors become more dominant in the early Universe.

### 5 Host Stellar Mass Rates

Our analysis can be extended to look at the relative and absolute rates of SN populations as a function of the host galaxy stellar mass. This will allow us to examine whether the volumetric rate ratios hold, or if different SN subtypes preferentially occur in galaxies of different masses.

The volumetric rates framework, described in Section 2, can be modified to produce rates as a function of stellar mass (SNe yr\(^{-1}\) M\(_{\odot}\)^{-1}) through the use of a galaxy stellar mass function (GSMF; e.g. Cole et al. 2001; Bell et al. 2003). The GSMF is the number density (in units of Mpc\(^{-3}\)) of galaxies in a given logarithmic stellar-mass interval and is typically described by a double Schechter (1976) function. In Section 3.2, we established nine fixed-volume subsurveys for our rate calculation, we use these volumes to convert the GSMF from a number density to the raw number of galaxies and then integrate over any given mass range to calculate the total stellar mass in that volume. We adopt the double Schechter function fit of the Wright et al. (2017) GSMF for our analysis.

It is now possible to continue with our rate calculation by drawing random values for the intrinsic rate per unit mass and multiply this by the total stellar mass from the GSMF to produce a simulated number of SNe. This is analogous to equation (1), but with a change of variable from \( T_{\text{obs}} \rightarrow M_{\ast} \), where \( M_{\ast} \) is the total stellar mass in our bin. This simple change to our pipeline allows us to perform realizations of the rate per unit mass to compare the simulated population to the observed population of SNe. Once again, the simulated intrinsic rates that reproduce the observed population determine our measurement of the rate.

The final piece of our puzzle requires us to measure the host galaxy masses for all the CCSNe and SLSNe in our sample. In Perley et al. (2016) host galaxy masses were presented for most of our SLSN sample, however, owing to the different luminosity cuts between their and the De Cia et al. (2018) SLSN sample, we are missing the galaxy masses for PTF12gty and PTF12hni; a description of how we measure galaxy masses for all objects follows. A consequence of our low-redshift CCSNe sample is that many of our host galaxies are in SDSS fields. For galaxies with a spectroscopic redshift, an SED was constructed from stellar population modelling (Maraston 2005) and fit to the ugriz photometry fixed at that redshift. We used the SDSS computed (Maraston et al. 2006) stellar masses where available. The galaxy masses for all our CCSNe and additional SLSNe-I are listed in Table 5.

In the event, an SN host in our sample was not in an SDSS field or did not have spectrophotometric-derived properties, we perform our own SED template fits fixed at the SN redshift. Our galaxy photometry was obtained primarily from SDSS, but if the target field was not covered we turned to the Panoramic Survey Telescope and Rapid Response System (PanSTARRS) catalogues (Flewelling et al. 2016). We used the galaxy fluxes from apertures determined by the cModelMag or KronFlux for the griz photometry from SDSS and PanSTARRS catalogues, respectively. We next adopt the p\( \chi^2 \) spectral synthesis code (Fioce & Rocca-Volmerange 1997; Le Borgne & Rocca-Volmerange 2002) to construct the SEDs for our galaxies. The templates SEDs are fit to the observed fluxes through a \( \chi^2 \) minimization; this method is extensively described in Sullivan et al. (2010), Kim et al. (2018), and Smith et al. (2020). From the
template fits, we derive our sample host galaxy masses and list them in Table B1.

5.1 CCSN and SESN galaxy mass rates

To calculate the CCSN rate as function of galaxy stellar mass, we first split our sample up into three mass bins: \( \log M^* \leq 9.5 \) (low), \( 9.5 < \log M^* \leq 10.5 \) (intermediate), and \( 10.5 < \log M^* \leq 11 \) (high). The number of SNe in each bin determines the \( N_{\text{obs}} \) parameter described in equation (4). In each bin, we perform 100,000 realizations of the mass rate using the methods described in this and previous sections. We then compare the output of the simulation to the observed number of SNe by PTF to connect back to the intrinsic rate distribution. This analysis was conducted following the methods presented in Section 4. For each mass bin, a rate probability distribution was inferred, with the 16, 50, and 84 percentiles representing our median rate and 1σ uncertainties. These results are presented in Table 6 and Fig. 9 in units of SNe.M.2

5.2 SLSN-I galaxy mass rate

Several studies have shown that SLSNe-I are predominantly found in low-mass galaxies (e.g. Lunnan et al. 2014; Perley et al. 2016; Chen et al. 2017). For our analysis of SLSN rates, we extend the PTF sample in Perley et al. (2016) to include PTF12gty and PTF12hni from the De Cia et al. (2018) analysis. The host of PTF12gty was not detected in optical imaging from SDSS. To estimate an upper limit on the host stellar mass, we fixed the template SEDs at the redshift of the SN and assumed an SDSS limiting magnitude of \( m_r = 23.1 \).

\[ \text{SNe.M} = \text{the supernova rate per unit mass, defined as the rate of SNe per century per } 10^{10} M_\odot \text{ or equivalently, } 1 \times 10^{-12} \text{yr}^{-1} M_\odot^{-1}. \]
We place an upper limit on the host stellar mass at log $M_*$ < 9.5 $M_\odot$. Considering all other galaxies in the SLSN-I sample are below this limit, we perform a simulation of the SLSN-I rate with host galaxies drawn from the GSMF with log $M_*$ < 9.5 $M_\odot$. We performed 100,000 realizations of the rate and matched the output SLSN-I populations to the PTF observed SLSN-I population following the methods described in previous sections. For the simulations that reproduce the observed sample, we infer the galaxy stellar mass rate as the median of the rate probability distribution and quote the 16 and 84 percentiles as our 1σ uncertainties. These results are shown in Table 6 and Fig. 9.

### 6 THE RELATIVE RATES OF CCSNE AND SLSNE-I

We now use our rate estimates to examine the relative rates of CCSNe to SLSNe-I in the PTF sample. We choose to only use the results of this work to mitigate biases introduced by different survey selection effects and systematic errors.

The relative rates of SNe are a useful diagnostic in constraining progenitor scenarios for different SN types and/or the role of galaxy properties in hosting these SNe. Under the assumption of a constant initial mass function (IMF), the evolution of relative rates of CCSNe-to-SLSNe may help break the degeneracy between the host SFR and metallicity for core-collapse progenitors (for instance, if the ratios remains constant with redshift, this would heavily imply that the production of the respective progenitors were mostly reliant on the local star-forming properties, whilst an evolving ratio would suggest that one progenitor may be more dependent upon other environmental properties such as metallicity). However, this requires good estimates of how relative rates evolve across all redshifts and reliable progenitor models for all SN subtypes. In this regard, we are currently limited in what can be achieved with rates measured from a single survey at a single redshift, but we begin the efforts by analysing our low-redshift sample.

#### 6.1 Relative volumetric rate

To measure the relative rates of CCSNe-to-SLSNe, we first scale our CCSN rate to the redshift of our SLSN measurement using the normalized SFH in Section 4.2. We then perform a Monte Carlo simulation by drawing random values for the rates of CCSNe and SLSNe from the distributions shown in Figs 4 and 7, respectively. In total, $1 \times 10^5$ realizations were made to find the number of CCSNe per SLSN-I. The resulting probability distribution is shown in Fig. 10 and from this we infer the SLSN-I-to--CCSN fraction to be $1/3500^{+2800}_{-720}$. The process was repeated in an identical fashion for the SESNe sample, from which we infer an SLSN-I-to--SESN fraction to be $1/810^{+1500}_{-94}$ and, again, present the probability distribution in Fig. 10. Quimby et al. (2013) estimated that for every one SLSN-I there are 1000–20,000 CCSNe. This is consistent with our results; however, our larger SLSN-I sample size offers improved constraints on the population fraction.

#### 6.2 Relative host galaxy rates

We now compare the relative fractions of SLSNe-I to only the CCSNe and SESNe that were hosted in galaxies of similar stellar masses.
For each SN subtype, we randomly sample the full rate probability distribution for each of the host galaxy rates. Since we only have SLSNe-I in our lowest mass bins we only present results for the relative rates in galaxies with log $M_\star < 9.5M_\odot$. For each trial rate from the SN class, we compare their relative frequencies and repeat this process 100,000 times. Our analysis infers that the SLSN-I-to-CCSN fraction is $1/1700^{+1800}_{-1720}$, and an SLSN-I-to-SESN fraction to be $1/300^{+380}_{-170}$.

We next check whether the dearth of SLSN-I in higher mass galaxies is likely an astrophysical effect, or a consequence of their relative rarity conflated with the PTF observing strategy. To test this, we assume the relative frequency between SESNe and SLSNe-I in the low-mass bin remains constant across all host galaxies and scale the SESN rate accordingly. Using this scaled rate as our fiducial SLSN-I rate, we perform a simulation of the PTF survey, drawing SN host galaxies from the GSMF in the range $9.5 < \log M_\star \leq 10.5$. The simulated light curves are computed through the analysis framework described in Section 4 to assess how many, if any, SLSNe-I would have been discovered in higher mass hosts. From our analysis, if the SESN-to-SLSN-I ratio holds then the Poisson probability of observing zero events is $< 7.5 \times 10^{-6}$. We extend the calculation to include all galaxies with log $M_\star > 9.5M_\odot$ and find the Poisson probability of PTF discovering zero SLSN-I to be $< 1.1 \times 10^{-9}$. Given this result, we confirm previous reports (e.g. Leloudas et al. 2015; Angus et al. 2016; Schulze et al. 2018) that SLSNe-I show a preference for low-mass (low-metallicity) environments.

These relative fractions could be used to infer the potential ranges of progenitor masses for the different SN classes. However, without a firm knowledge of the underlying IMF representing each transient population, this becomes difficult. The functional form of the IMF may be altered by both the stellar metallicity and the binarity of the population. Additionally, factors such as the level of stellar rotation and magnetic field strength can also alter the evolution of massive stars. This changes the amount of stellar material lost to winds between main sequence and collapse, thus weakening the assumption that the natal IMF is representative of the mass function at the point of explosion.

7 SUMMARY

We have presented the volumetric rates for three types of SNe occurring from massive star progenitors -- CCSNe, SESNe, and hydrogen-poor SLSNe-I. Our data are from the PTF and our rate calculation methodology builds on the detection efficiencies of F17. To measure the volumetric rates for CCSN populations, we adopted the light-curve templates of Vincenzi et al. (2019), and coupled them to a statistically representative simulation of PTF. Our sample of CCSNe consists of 84 spectroscopically classified objects and two photometrically identified candidates across the II, Ib, IIn, and Ibc subclasses. Our simulations infer that, at a mean redshift of $\langle z \rangle = 0.028$, the CCSN rate is

$$r_\nu^{CCSNe} = 9.10^{+1.50}_{-1.27} \times 10^{-5} \text{ SNe yr}^{-1} \text{ Mpc}^{-3} h_7^3.$$  

We then performed an independent rates analysis on the subsample of CCSNe that do not show strong hydrogen in their spectra -- SESNe. The principles behind the methodology were identical to the CCSNe, except we restricted ourselves to the SN Ib/c and Ib templates and worked with a sample of 26 objects: 24 spectroscopically classified and two photometrically identified candidates. From this, we measure the SESN rate to be

$$r_\nu^{SESN} = 2.4^{+0.81}_{-0.64} \times 10^{-5} \text{ SNe yr}^{-1} \text{ Mpc}^{-3} h_7^3.$$  

Including our measurements in a collection of other CCSN results from the literature to a redshift of $z = 0.4$ demonstrates that the CCSN rate traces the cosmic SFH. This translates to an increase of $\sim 4.2$ times in both the CCSN rate and SFR over the past 4.3 Gyr of cosmic evolution.

The population fraction of CCSNe obscured by large amounts of dust may be as high as $\sim 20$ per cent in local Universe optical surveys, (Mattila et al. 2012), particularly hosts with intrinsically high levels of dust, such as luminous infrared galaxies. While our core-collapse light-curve models are extincted following the Vincenzi et al. (2019) population, our simulations do not account for a completely obscured population. If this effect is truly significant, then the intrinsic CCSN rate may be higher than reported in this work.

We investigated the rate of SLSNe-I from the PTF sample (Quimby et al. 2018; De Cia et al. 2018). We performed our Monte Carlo simulation on the entire PTF sky and adopted a light-curve model for a transient powered by the spin-down of a magnetar. We performed $1 \times 10^8$ rate realizations and compared the output to our observed sample at a mean redshift of $\langle z \rangle = 0.17$. From this, we infer the SLSN-I rate to be

$$r_\nu^{SLSNe-I} = 35^{+25}_{-13} \text{ SNe yr}^{-1} \text{ Gpc}^{-3} h_7^3.$$  

Finally, we compared the relatives fractions of CCSNe to SLSNe from the perspective of both the comoving volume of the Universe and their host galaxy environments. For the volumetric rates, we find one SLSN-I per $3500^{+2800}_{-720}$ CCSN and one SLSN-I per $810^{+1500}_{-940}$ SESN. When we restrict our galaxy sample to hosts with log $M_\star < 9.5M_\odot$, we find one SLSN-I per $1700^{+1520}_{-370}$ CCSN and one SLSN-I per $300^{+380}_{-170}$ SESN. The propensity for SLSNe to occur in low-mass galaxies, when compared to the volumetric rate ratios, suggests a progenitor scenario favouring these environments.

In the coming decade, the next generation of wide-fast-deep surveys, such as the Rubin Observatory Legacy Survey of Space and Time (LSST; Ivezic et al. 2009), will discover transients in vastly greater quantities than we present today. This is will allow measurements of SN rates across multiple redshift bins out to large distances from a single survey, and thus, will not suffer differing survey systematics as current literature comparisons do. Measuring rates for multiple SN classes is key to understanding how both SN progenitors and their host systems evolve with cosmic time. The methods presented in this paper will be applicable to rate calculations from LSST and other sky surveys.

ACKNOWLEDGEMENTS

We thank the anonymous referee for their useful comments. We are grateful to Laura Nuttall and Or Graur for their support and scientific discussions during the preparation of this manuscript.

We acknowledge support from EU/FP7 ERC grant number 615929 and the Science & Technology Facilities Council (STFC) grant number ST/P006760/1 through the DISCnet Centre for Doctoral Training. We acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services, at the University of Southampton. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Observations were obtained with the Samuel Oschin Telescope and the 60-inch Telescope at the Palomar Observatory as part of the PTF project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.
Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. Funding for the SDSS-IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org.

SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request from the corresponding author.

REFERENCES

Angus C. R., Levan A. J., Perley D. A., Tanvir N. R., Lyman J. D., Stanway E. R., Fruchter A. S., 2016, MNRAS, 458, 84
Angus C. R. et al., 2019, MNRAS, 487, 2215
Arcavi I. et al., 2011, ApJ, 742, L18
Aspvall B., Stone R. E., 1980, J. Algor., 1, 1
Bazin G. et al., 2009, A&A, 499, 653
Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJ, 585, L117
Bloom J. S. et al., 2008, A&A, 479, 49
Cao Y. et al., 2013, ApJ, 775, L7
Cappellaro E., Evans R., Turatto M., 1999, A&A, 351, 459
Cappellaro E. et al., 2005, A&A, 430, 83
Cappellaro E. et al., 2015, A&A, 584, A62
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Chatzopoulos E., Wheeler J. C., Couch S. M., 2013, ApJ, 776, 129
Chen T.-W., Smartt S. J., Yates R. M., Nicholl M., Krühler T., Schady P., Dennefeld M., Inserra C., 2017, MNRAS, 470, 3566
Chevalier R. A., Irwin M. C., 2011, ApJ, 729, L6
Chornock R. et al., 2011, ApJ, 739, 41
Cole S. et al., 2001, MNRAS, 326, 255
Cook D. O. et al., 2014, MNRAS, 445, 899
Cooke J. et al., 2012, Nature, 491, 228
Crockett R. M. et al., 2008, MNRAS, 391, L5
Dahlen T., Strolger L.-G., Riess A. G., Mattila S., Kankare E., Mobasher B., 2012, ApJ, 757, 70
De Cia A. et al., 2018, ApJ, 860, 100
Dessart L., Hillier D. J., Waldman R., Livne E., Blondin S., 2012, MNRAS, 426, L76
Eldridge J. J., 2012, MNRAS, 422, 794
Filippenko A. V., Li W. D., Treffers R. R., Modjaz M., 2001, The Lick Observatory Supernova Search with the Katzman Automatic Imaging Telescope. Cambridge University Press, p. 121
Fioc M., Rocca-Volmerange B., 1997, A&A, 500, 507
Flewelling H. A. et al., 2016, ApJS, 251, 62
Frohmaier C., Sullivan M., Maguire K., Nugent P., 2018, ApJ, 858, 50
Frohmaier C., Sullivan M., Nugent P. E., Goldstein D. A., DeRose J., 2017, ApJS, 230, 4
Frohmaier C. et al., 2019, MNRAS, 486, 2308
Gal-Yam A., 2019, ArAA, 57, 305
Gal-Yam A. et al., 2009, Nature, 462, 624
Graur O., Bianco F. B., Huang S., Modjaz M., Shivvers I., Filippenko A. V., Li W., Eldridge J. J., 2017, ApJ, 837, 120
Graur O., Bianco F. B., Modjaz M., 2015, MNRAS, 450, 905
Guillochon J., Parentet J., Kelley L. Z., Margutti R., 2017, ApJ, 835, 64
Heger A., Fryer C. L., Woosley S. E., Langer N., Hartmann D. H., 2003, ApJ, 591, 288
Inserra C., Pras S., Gutierrez C. P., Angus C., Smith M., Sullivan M., 2018b, ApJ, 854, 175
Inserra C. et al., 2013, ApJ, 770, 128
Inserra C. et al., 2018a, A&A, 609, A83
Ivezić Z. et al., 2009, in American Astronomical Society Meeting Abstracts #213. p. 366
Jerkstrand A. et al., 2017, ApJ, 835, 13
Kasen D., Bildsten L., 2010, ApJ, 717, 245
Khachian L., 1980, USSR Comput. Math. Math. Phys., 20, 53
Kilpatrick C. D. et al., 2017, MNRAS, 465, 4650
Kim Y.-L., Smith M., Sullivan M., Lee Y.-W., 2018, ApJ, 854, 24
Laher (2014) Publications of the Astronomical Society of the Pacific 000, 1086/67751, 00046280
Law N. M. et al., 2009, PASP, 121, 1395
Le Borgne D., Rocca-Volmerange B., 2002, A&A, 386, 446
Leloudas G. et al., 2015, MNRAS, 449, 917
Li L.-X., 2008, MNRAS, 388, 1487
Liu Y.-Q., Modjaz M., Bianco F. B., 2017, ApJ, 845, 85
Li W., Chornock R., Leaman J., Filippenko A. V., Poznanski D., Wang X., Ganesalingam M., Mannucci F., 2011b, MNRAS, 412, 1473
Li W. et al., 2011a, MNRAS, 412, 1441
Lunnan R. et al., 2014, ApJ, 787, 138
Lunnan R. et al., 2018, ApJ, 852, 81
Lyman J. D., Bersier D., James P. A., 2014, MNRAS, 437, 3848
Maraston C., 2005, MNRAS, 362, 799
Maraston C., Daddi E., Renzini A., Cimatti A., Dickinson M., Papovich C., Pasquali A., Finzel K., 2006, ApJ, 652, 85
Mattila S. et al., 2012, ApJ, 756, 111
Maund J. R. et al., 2011, MNRAS, 413, L7
Mazzali P. A., Sullivan M., Pian E., Greiner J., Kann D. A., 2016, MNRAS, 458, 3455
McCrum M. et al., 2015, MNRAS, 448, 1206
Modjaz M., Liu Y.-Q., Bianco F. B., Graur O., 2015, ApJ, 832, 108
Moriya T. J. et al., 2019, ApJS, 241, 16
Nicholl M. et al., 2016, ApJ, 826, 39
Nicholl M. et al., 2018, ApJ, 866, L24
Pastorello A. et al., 2010, ApJ, 714, L17
Perley D. A. et al., 2016, ApJ, 830, 13
Pras S. et al., 2017, MNRAS, 464, 3568
Prentice S. J., Mazzali P. A., 2017, MNRAS, 469, 2672
Prentice S. J. et al., 2019, MNRAS, 485, 1559
Quimby R. M., Yuan F., Akerlof C., Wheeler J. C., 2013, MNRAS, 431, 912
Quimby R. M. et al., 2018, ApJ, 855, 2
Ryder S. D. et al., 2018, ApJ, 856, 83

RATES OF MASSIVE STELLAR EXPLOSIONS FROM PTF
APPENDIX A: SUBSURVEY PARAMETERS

Table A1 shows the parameters for each of the subsurveys we construct for the simulations in Section 4.1.

| Subsurvey | RA (J2000) | Dec. (J2000) | Area (deg^2) | Start (MJD) | End (MJD) |
|-----------|------------|--------------|--------------|-------------|-----------|
| 2010 A    | 12:46:00   | +35:00:00    | 10155        | 55257       | 55397     |
| 2010 B    | 22:20:00   | +06:30:00    | 2716         | 55347       | 55517     |
| 2010 C    | 02:30:00   | +06:30:00    | 4074         | 55412       | 55517     |
| 2011 A    | 15:10:00   | +40:00:00    | 3524         | 55627       | 55722     |
| 2011 B    | 17:10:00   | +50:00:00    | 1289         | 55717       | 55857     |
| 2011 C    | 22:00:00   | +10:00:00    | 3385         | 55742       | 55857     |
| 2012 A    | 14:20:00   | +45:00:00    | 4456         | 56007       | 56077     |
| 2012 B    | 16:00:00   | +20:00:00    | 1841         | 56077       | 56152     |
| 2012 C    | 23:55:00   | +00:00:00    | 314          | 56107       | 56192     |

APPENDIX B: GALAXY STELLAR MASSES

Table B1 lists the CC and SLSNe-I host galaxy stellar masses used in Section 5.
Table B1. The host galaxy masses used to measure our rate per unit mass. We show all CCSNe, along with two SLSNe-I that were excluded by Perley et al. (2016) luminosity cut. Our masses were obtained from SDSS data products (methods described in Maraston et al. 2006), or from our own SED template-fitting routines to either SDSS or PanSTARRS photometry.

| PTF Name  | Redshift | SN Type | Galaxy mass log M_\odot(M_\odot) | Uncertainty | Source          |
|-----------|----------|---------|---------------------------------|-------------|-----------------|
| 10acbu    | 0.0099   | SN Ic   | 10.78                           | +0.07       | SDSS            |
| 10bau     | 0.026    | SN IIP  | 10.03                           | +0.36       | SDSS            |
| 10bgd     | 0.03     | SN IIP  | 10.58                           | +0.11       | SDSS Phot       |
| 10bld     | 0.027    | SN II   | 8.95                            | +0.06       | SDSS            |
| 10cxs     | 0.034    | SN Iib  | 9.58                            | +0.37       | SDSS            |
| 10dvd     | 0.023    | SN IIP  | 10.04                           | +0.00       | SDSS            |
| 10ehy     | 0.006    | SN IIP  | 7.81                            | +0.14       | SDSS            |
| 10eqe     | 0.031    | SN II   | 8.75                            | +0.20       | SDSS            |
| 10eqi     | 0.03     | SN Iib  | 10.86                           | +0.00       | SDSS            |
| 10eqz     | 0.029    | SN II   | 9.47                            | ±0.03       | PanSTARRS Phot  |
| 10eqq     | 0.028    | SN Iib  | 9.75                            | +0.19       | SDSS            |
| 10eqz     | 0.012    | SN II   | 8.57                            | ±0.09       | SDSS            |
| 10fjh     | 0.032    | SN IIn  | 10.88                           | ±0.04       | SDSS Phot       |
| 10fmr     | 0.02     | SN Iib  | 8.63                            | ±0.61       | SDSS            |
| 10fgg     | 0.028    | SN Iib  | 8.32                            | ±0.00       | SDSS            |
| 10fqn     | 0.017    | SN IIP  | 9.34                            | ±0.01       | SDSS Phot       |
| 10gki     | 0.026    | SN II   | 10.85                           | ±0.18       | SDSS            |
| 10gva     | 0.028    | SN II   | 8.36                            | ±0.11       | SDSS            |
| 10gxi     | 0.029    | SN II   | 8.52                            | ±0.04       | SDSS            |
| 10hlc     | 0.035    | SN II   | 8.34                            | ±0.03       | SDSS            |
| 10hyy     | 0.027    | SN IIP  | 10.10                           | ±0.09       | SDSS            |
| 10hpa     | 0.03     | SN IIP  | 8.98                            | ±0.23       | SDSS            |
| 10hpy     | 0.016    | SN IIP  | 7.73                            | ±0.00       | SDSS            |
| 10jlx     | 0.029    | SN II   | 8.69                            | ±0.20       | SDSS            |
| 10kui     | 0.021    | SN Iib  | 9.39                            | ±0.45       | SDSS            |
| 10lnx     | 0.034    | SN IIn  | 9.45                            | ±0.00       | SDSS            |
| 10myz     | 0.028    | SN IIP  | 9.12                            | ±0.37       | SDSS            |
| 10npd     | 0.01     | SN IIP  | 6.54                            | ±0.16       | SDSS Phot       |
| 10osc     | 0.024    | SN IIP  | 8.04                            | ±0.43       | SDSS Phot       |
| 10qob     | 0.019    | SN IIP  | 8.44                            | ±0.01       | PanSTARRS Phot  |
| 10qoz     | 0.02     | SN IIP  | 10.29                           | ±0.05       | PanSTARRS Phot  |
| 10rad     | 0.024    | SN II   | 8.90                            | ±0.02       | PanSTARRS Phot  |
| 10raj     | 0.023    | SN II   | 9.69                            | ±0.02       | PanSTARRS Phot  |
| 10rin     | 0.032    | SN IIP  | 10.13                           | ±0.02       | SDSS Phot       |
| 10rnmu    | 0.024    | SN IIP  | 8.60                            | ±0.04       | SDSS Phot       |
| 10svt     | 0.031    | SN Ic   | 8.35                            | ±0.04       | PanSTARRS Phot  |
| 10rff     | 0.0075   | SN IIP  | 8.97                            | ±0.15       | SDSS            |
| 10tpa     | 0.033    | SN IIP  | 8.76                            | ±0.45       | SDSS            |
| 10tdl     | 0.015    | SN IIP  | 9.34                            | ±0.06       | SDSS Phot       |
| 10uiy     | 0.023    | SN II   | 8.64                            | ±0.00       | SDSS            |
| 10ujc     | 0.032    | SN IIn  | 8.44                            | ±0.15       | SDSS Phot       |
| 10vdz     | 0.016    | SN IIP  | 10.43                           | ±0.03       | PanSTARRS Phot  |
| 10vuz     | 0.028    | SN Iib  | 10.08                           | ±0.03       | PanSTARRS Phot  |
| 10wcy     | 0.024    | SN II   | 10.42                           | ±0.04       | SDSS Phot       |
| 10wnf     | 0.029    | SN IIP  | 10.73                           | ±0.05       | SDSS Phot       |
| 10xgo     | 0.034    | SN IIn  | 8.22                            | ±0.07       | SDSS Phot       |
| 10xjv     | 0.028    | SN IIP  | 8.16                            | ±0.09       | SDSS Phot       |
| 10yna     | 0.023    | SN IIP  | 8.58                            | ±0.03       | SDSS Phot       |
| 10yow     | 0.025    | SN Ic   | 11.03                           | ±0.05       | SDSS Phot       |
| 10zcn     | 0.02     | SN Ic   | 10.18                           | ±0.02       | SDSS Phot       |
| 10bli     | 0.03     | SN Ibc  | 9.37                            | ±0.14       | SDSS            |
| 11bov     | 0.022    | SN Ic   | 9.12                            | ±0.15       | SDSS            |
| 11cgx     | 0.033    | SN II   | 9.46                            | ±0.14       | SDSS            |
| 11dhe     | 0.028    | SN Iib  | 9.80                            | ±0.24       | SDSS            |
| 11epc     | 0.034    | SN II   | 9.69                            | ±0.26       | SDSS            |
| 11eon     | 0.0016   | SN Iib  | 10.78                           | ---         | Cook et al. (2014) |
| 11ftc     | 0.03     | SN II   | 9.23                            | ±0.06       | PanSTARRS Phot  |
Table B2. The host galaxy masses used to measure our rate per unit mass. We show all CCSNe, along with two SLSNe-I that were excluded by Perley et al. (2016) luminosity cut. Our masses were obtained from SDSS data products (methods described in Maraston et al. 2006), or from our own SED template-fitting routines to either SDSS or PanSTARRS photometry.

| PTF name | Redshift | SN type | Galaxy mass $\log M_*(M_\odot)$ | Uncertainty | Source |
|----------|----------|---------|-------------------------------|-------------|--------|
| 11ftr    | 0.018    | SN II   | 8.01                          | ±0.05       | SDSS Phot |
| 11fuv    | 0.03     | SN IIP  | 10.59                         | ±0.31       | SDSS    |
| 11gls    | 0.03     | SN IIP  | 10.08                         | ±0.58       | SDSS    |
| 11htj    | 0.017    | SN IIP  | 7.96                          | ±0.01       | SDSS Phot |
| 11hyg    | 0.03     | SN Ic   | 10.82                         | ±0.02       | SDSS Phot |
| 11iil    | 0.029    | SN II   | 9.60                          | ±0.03       | PanSTARRS Phot |
| 11klg    | 0.027    | SN Ic   | 10.40                         | ±0.03       | SDSS Phot |
| 11qax    | 0.022    | SN IIP  | 9.26                          | ±0.13       | SDSS    |
| 11qcj    | 0.028    | SN Ibn  | 8.58                          | ±0.13       | SDSS    |
| 12bmo    | 0.023    | SN IIP  | 7.62                          | ±0.15       | SDSS Phot |
| 12bvf    | 0.022    | SN      | 10.38                         | ±0.44       | SDSS    |
| 12cdc    | 0.013    | SN Ibc  | 8.02                          | ±0.02       | SDSS Phot |
| 12cgb    | 0.026    | SN II   | 8.78                          | ±0.04       | SDSS    |
| 12cli    | 0.024    | SN II   | 10.25                         | ±0.03       | PanSTARRS Phot |
| 12cod    | 0.012    | SN II   | 9.54                          | ±0.09       | SDSS    |
| 12dcp    | 0.031    | SN Ic   | 10.23                         | ±0.19       | SDSS    |
| 12eaw    | 0.029    | SN Ib   | 10.45                         | ±0.34       | SDSS    |
| 12fip    | 0.034    | SN II   | 8.97                          | ±0.03       | SDSS    |
| 12gtx    | 0.029    | SN II   | 9.81                          | ±0.06       | SDSS    |
| 12gmn    | 0.031    | SN II   | 7.54                          | ±0.20       | SDSS Phot |
| 12gti    | 0.176    | SLSN-I  | <9.5                         | -           | SDSS Phot |
| 12gzk    | 0.014    | SN Ic   | 6.76                          | ±0.04       | SDSS    |
| 12hag    | 0.02     | SN II   | 8.29                          | ±0.36       | SDSS Phot |
| 12hmi    | 0.11     | SLSN-I  | 8.84                          | ±0.03       | SDSS Phot |
| 12hmo    | 0.019    | SN II   | 9.63                          | ±0.01       | SDSS Phot |
| 12hvv    | 0.029    | SN Ic   | 9.06                          | ±0.05       | SDSS    |
| 12iif    | 0.024    | SN IIP  | 10.55                         | ±0.03       | PanSTARRS Phot |
| 12ixy    | 0.021    | SN II   | 9.92                          | ±0.07       | SDSS    |
| 12jfp    | 0.02     | SN II   | 9.46                          | ±0.05       | SDSS Phot |

This paper has been typeset from a TeX/LaTeX file prepared by the author.