Research Article

Ferulic Acid Alleviates Oxidative Stress-Induced Cardiomyocyte Injury by the Regulation of miR-499-5p/p21 Signal Cascade

Shenghui Sun,1 Yang Ruan,2 Mingjing Yan,1,3 Kun Xu,1 Yao Yang,1, Tao Shen,1,3 and Zening Jin2

1The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
2Cardiac and Macrovascular Disease Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
3Peking University Fifth School of Clinical Medicine, Beijing 100730, China

Correspondence should be addressed to Tao Shen; shentao4189@bjhmoh.cn and Zening Jin; zeningjin@qq.com

Received 13 July 2021; Accepted 17 November 2021; Published 7 December 2021

Academic Editor: Shuzhen Guo

Copyright © 2021 Shenghui Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To investigate the protective effects and regulatory mechanisms of ferulic acid on oxidative stress-induced cardiomyocyte injury. Methods. We established a cardiomyocyte oxidative stress cell model by H2O2 treatment and a mouse heart injury model by isoprenaline infusion of male C57BL/6 mice. Ferulic acid was applied to treat oxidative stress-induced cardiomyocyte injury. DHE staining was used to detect ROS production. DNA fragmentation, TUNEL assay, and cleaved caspase-3 were used to analyze cell apoptosis. Real-time PCR and Western blotting were used to analyze miRNA and protein levels to investigate the regulatory mechanisms of ferulic acid on oxidative stress-induced cardiomyocyte injury. Results. Ferulic acid pretreatment significantly inhibited H2O2- and isoprenaline-induced oxidative stress and cell apoptosis by promoting miR-499-5p expression and inhibiting p21 expression. MiR-499-5p inhibition reversed the protective effects of ferulic acid. Further study found that ferulic acid could also attenuate isoprenaline-induced mouse heart fibrosis and cell apoptosis by reducing oxidative stress, inflammation, and apoptosis in vivo. Conclusions. We proved that ferulic acid protects cardiomyocytes from oxidative stress-induced injury by regulating the miR-499-5p/p21 signaling pathway, which provides insight into the clinical application of ferulic acid in the treatment of cardiovascular diseases.

1. Introduction

Cardiovascular disease (CVD) is the main cause of death worldwide. With the increase in the aging population, the mortality rate caused by cardiovascular disease is on the rise [1], with more than 17 million people dying every year worldwide. Death and disability caused by cardiovascular disease also cause serious public health and economic burdens [2]. Therefore, the prevention and treatment of cardiovascular diseases are worldwide priorities.

Oxidative stress, defined as excessive production of reactive oxygen species (ROS) and a disturbance between ROS and antioxidants, has been shown to cause cumulative damage and to play an important role in the development of cardiovascular diseases, such as heart failure, heart infarction and ischemia, and heart remodeling [3]. Many studies have shown that oxidative stress is increased in cardiomyocyte injury and heart failure. Excessive ROS production can cause cell dysfunction, protein and lipid peroxidation, and DNA damage, which may lead to irreversible cell damage and death and a variety of cardiovascular diseases [3]. Many cardiovascular diseases can lead to mitochondrial function impairment or loss in cardiomyocytes and cause a chronic increase in ROS production and retention of antioxidant function, which leads to catastrophic positive feedback of mitochondrial DNA (mtDNA) damage and more ROS generation [4]. Excessive ROS production can directly damage the expression and...
function of key proteins that are involved in the excitation-contraction coupling of cardiomyocytes and the activation of a variety of proinflammatory signal kinases and transcription factors, which lead to cardiomyocyte injury and apoptosis [5]. Cardiomyocyte death leads to reduced heart function and heart failure. ROS can also stimulate cardiac fibroblast proliferation and matrix metalloproteinase activation, leading to increases in extracellular matrix and heart remodeling [5]. Therefore, it is very important to find new drugs to inhibit oxidative stress for the treatment of cardiovascular diseases.

Previous studies have found that many compounds in plant extracts, such as resveratrol, curcumin, anthocyanins, and ginsenosides, have cardiovascular regulation functions. These plant-derived polyphenol compounds provide a new choice for the treatment of cardiovascular diseases, and their applications are more effective and cost-effective and have fewer side effects. With the development of new research methods and the discovery of new compounds derived from natural plants, in-depth research on the mechanism of plant extracts provides an important basis for the development of new treatments for cardiovascular diseases.

Ferulic acid ([E]-3-[4-hydroxy-3-methoxy-phenyl] prop-2-enolic acid), one of the most common cinnamic acid derivatives, is a phenolic compound that is abundantly present in grains, fruits, vegetables, and herbs (such as rice, wheat, oranges, tomatoes, resina ferulae, and angelica) [6,7]. Ferulic acid is characterized by antioxidant properties, and its benzene ring contains hydroxyl and methoxy groups with antioxidant activity, which prevents cell injury and inflammatory reactions caused by free radicals. For example, ferulic acid can inhibit melanin production, enhance angiogenesis, promote wound healing, and delay the skin photoaging process. Ferulic acid can bind to phospholipids of biological membranes, protect cell membrane integrity and function, and alleviate the damage caused by free radicals. Ferulic acid has a low molecular weight and high bioavailability to penetrate cells [6,8]. Ferulic acid also has anti-inflammatory effects in vivo and in vitro [9]. Recent studies have also found that ferulic acid can protect cardiomyocytes from diabetes mellitus and doxorubicin-induced cardiac tissue injury in vivo [10–12]. However, its cardioprotective mechanisms remain unclear.

In this study, we investigated the protective effects and mechanisms of ferulic acid in H2O2- or isoprenaline-induced cardiomyocyte injury and provided novel insight into how ferulic acid regulates cardiomyocyte miR-499-5p and p21 expression in vivo and in vitro. These findings provide insights into the protective mechanisms of ferulic acid in cardiotoxicity and a new potential treatment method for oxidative stress-induced cardiovascular diseases.

2. Materials and Methods

2.1. Reagents. Ferulic acid was purchased from Sigma–Aldrich Co., Ltd. (St. Louis, MO, USA) and Solarbio Co., Ltd. (Beijing, China). P21, phospho-p38, p38, Bcl2, Bax, cleaved-caspase-3 (c-caspase-3), and GAPDH antibodies were purchased from Cell Signaling Technology (MA, USA).

2.2. Cell Cultures and Treatments. H9c2 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma, USA) containing 10% fetal bovine serum (FBS; HyClone, USA; v/v), 2 mmol/L glutamine, and antibiotics (10 mol/L penicillin G and 10 mol/L streptomycin) at 37°C in an incubator with 5% CO2. Before every experiment, the cells were incubated in DMEM without FBS for 24 hours. Ferulic acid was added in the medium 4 hrs before 200 μM of H2O2 treatment. After 24 hrs of H2O2 treatment, the H9c2 cells were harvested for further analysis [13,14].

2.3. Assessment of Cell Viability. Cell viability was analyzed by MTT assay according to the manufacturer’s instructions. H9c2 cells were seeded into 96-well plates. All samples were analyzed in triplicate. 3-[4, 5-Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (0.5 mg/ml) was added to the plates, and the cells were cultured for 4 hours. Samples were then analyzed by measuring the absorbance at 490 nm. The MTT assay kit was obtained from Solarbio Co., Ltd. (Beijing, China).

2.4. In Situ Detection of Reactive Oxygen Species (ROS). ROS production was detected using dihydroethidium (DHE, Sigma), a fluorescent probe for detecting intracellular superoxide anion levels. H9c2 cells were stained with 10 μM DHE for 30 min in a dark and humid chamber at 37°C to analyze ROS production in situ. The production of ROS was indicated using red fluorescence, observed by fluorescence microscopy, and subsequently quantified using ImageJ software (NIH) [13].

2.5. DNA Fragmentation Analysis (DNA Laddering). After the treatment, the cells were lysed in lysis buffer containing 10 mM Tris-Cl (pH 8.0), 150 mM NaCl, 10 mM EDTA, 0.4% SDS, and 100 g/ml protease K. The cells were incubated at 37°C overnight with gentle agitation and extracted with phenol/CHCl3/isoamyl alcohol, followed by CHCl3/isoamyl alcohol. DNA fragmentation was detected by loading 10–20 μg of total DNA onto a 2% agarose gel in Tris-acetate/EDTA buffer and visualized by ethidium bromide staining as described previously [14].

2.6. TUNEL and Hoechst33342 Staining. TUNEL staining was performed in fixed cells or heart cryosections using a cell death detection kit from Roche, and the nuclei were then counterstained with10 mM Hoechst 33342 as previously described [15]. The nuclei were observed by fluorescence microscopy.
2.7. Transfection. Normal mimic control (NC), miR-499-5p mimics (miR-499-5p-m), miRNA inhibitor negative control (NG), and miR-499-5p inhibitor (miR-499-5p-i) were chemically synthesized by GenePharma Co. (Suzhou, China) (Table 1). When the H9c2 cells reached 70% confluence, miRNA or siRNA was transfected using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. After 8 hours of transfection, the medium was replaced with fresh medium. Then, the cells were cultured for 24 hrs before H2O2 treatment [15].

2.8. Mouse Model of Isoprenaline-Induced Heart Injury Model and Oral Administration of Ferulic Acid. All animal experiments were approved by the Beijing Normal University, Animal Use and Care Committee, and the Guide for the Care and Use of Laboratory Animals (NIH publication #85–23, revised in 1996). Ten- to 12-week-old male C57BL/6J mice were randomly divided into the following four groups: sham + saline, isoprenaline + saline (ISO + saline), isoprenaline + ferulic acid (ISO + FA), and sham + ferulic acid (sham + FA). The mice were anesthetized with 1–1.5% isoflurane in oxygen. An osmotic pump (ALZET, Cupertino, CA; DURECT, Cupertino, CA) filled with isoprenaline (30 mg/kg per day) in saline or saline alone was delivered by infusion for 14 days after the operation to subcutaneously insert the pump [16]. Ferulic acid was dissolved in saline, and equal volumes of a freshly prepared ferulic acid solution or saline were administered to mice every day through oral gavage starting 3 days before the operation to the end of the experiments. The dosages of ferulic acid were 30 mg/kg/day, as reported previously [6]. All mice were identically housed and fed the same chow. Fourteen days after isoprenaline infusion, mice were anesthetized with 3–4% isoflurane and euthanized by cervical dislocation. The hearts were removed and weighed, and the ratio of the heart to the tibia length was analyzed. The heart tissues were kept in liquid nitrogen for further analysis.

2.9. H&E Staining and Sirius Red Staining. H&E staining was performed on adult mouse heart paraffin sections with a hematoxylin-eosin/H&E staining kit from Solarbio Co. (Beijing, China) as described previously [13]. Heart fibrosis was analyzed with the Sirius Red staining kit from Solarbio Co. (Beijing, China) according to the manufacturer’s protocol. The collagen volume fraction was determined by performing quantitative morphometry as described previously [13].

2.10. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (RT–PCR). The expression of miR-499-5p was detected by RT–PCR. Briefly, total RNA was extracted with a TRIzol kit (Sigma) from H9c2 cells or mouse heart tissue following the manufacturer’s protocol. Then, reverse transcription of the RNAs into cDNAs was performed with a First Strand cDNA Synthesis Kit (New England Biolabs). Then, real-time PCR was performed in a QuantStudio3 Real-Time PCR system (Thermo Fisher Scientific, USA) with a reaction mixture containing SYBR Green (Roche Applied Science, Mannheim, Germany). The reaction conditions for reverse transcription were as follows: 95°C for 30 s, 40 cycles at 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s, as previously described [17]. The primers for miR-499-5p and U6 are listed in Table 1. U6 was used for normalization. The relative expression of miR-499-5p was calculated using 2−ΔΔCt, and the data are the average of 4–6 independent experiments.

2.11. Western Blotting. Western blotting was performed on cells or homogenized myocardial tissue using standard procedures with specific antibodies (p21, phospho-p38, p38, Bcl2, Bax, c-caspase-3, and GAPDH). All bands were visualized using chemiluminescence reagent (Perkin Elmer, Wellesley, MA, USA). GAPDH was used as the protein loading control. ImageJ software (NIH) was used to perform densitometric analysis (http://rsb.info.nih.gov/ij/) as reported previously [17].

2.12. Statistical Analysis. Data are expressed as the mean ± SEM of at least three experiments. Statistical analysis was performed using the statistical software GraphPad Prism 6.0 (GraphPad Software, CA, USA). Student’s t-test was used to evaluate the differences between the two groups. Differences between multiple groups were analyzed by one-way ANOVA, followed by Bonferroni’s procedure for multiple-group comparisons. P < 0.05 was considered statistically significant.

3. Results

3.1. Ferulic Acid Protects Cardiomyocytes from H2O2-Induced Cell Injury by Inhibiting ROS Production. The cytotoxicity of ferulic acid was analyzed by MTT assay in H9c2 cells treated with different concentrations of ferulic acid (0, 0.1, 1, 5, 25, 50, and 100 μM) for 24 hrs. We found that ferulic acid did not have significant cytotoxic effects in H9c2 cells at concentrations of 0–100 μM (Figure 1(a)). To evaluate the potential protective effects of ferulic acid, we established an oxidative stress-induced cell injury model by treating H9c2 cells with 200 μM H2O2. We found that 200 μM H2O2 markedly decreased viability (Figures 1(b) and 1(c)) and increased the ROS content in H9c2 cells (Figures 1(d) and 1(e)). Next, H9c2 cells were pretreated with different concentrations of ferulic acid for 4 hrs and then treated with 200 μM H2O2. Pretreatment with ferulic acid could increase cell viability in a concentration-dependent manner in the H2O2-induced H9c2 cell injury model. When the concentration of ferulic acid reached 50 μM, the cell viability peaked (Figure 1(b)). Therefore, we used 50 μM ferulic acid to perform the following experiments.

3.2. Ferulic Acid Attenuates H2O2-Induced Cell Injury by Inhibiting Cell Apoptosis in Vitro. H2O2 (200 μM) could induce cell apoptosis and resulted in ladder-like bands of DNA, confirming that H2O2 could cause apoptosis in H9c2
Group name	Sequences
miR-499-5p mimic	Sense: 5′-UUAAAGACUUUGCAGUGAUGUUU-3′
	Antisense: 5′-AAACAUCACUGCAAGCUUAA-3′
Negative control (nc)	Sense: 5′-UCACAACCUCUCUAGAAAGAUGA-3′
	Antisense: 5′-UCUACUCUUUCUAGGAGGUUGA-3′
miR-499-5p inhibitor	5′-AAACAUCACUGCAAGCUUAA-3′
Negative control of miRNA	5′-CAGUACUUUUUGUAGUACAA-3′
inhibitor (nci)	
Rattus-miR-499-5p	RT primer: 5′-GTCGTATCCAGTGCAGGTTCCAGGATACGACAAACATC-3′
	PCR forward primer: 5′-CGTCCGATTAAGACCTTGCAG-3′
U6	RT primer: 5′-GTCGTATCCAGTGCAGGTTCCAGGATACGACAAACATC-3′
	PCR forward primer: 5′-GCGCGTCGTGAAGCGTTC-3′
Universal PCR reverse primer	5′-GTGCAGGTCCAGGT-3′
for miRNA and U6	
Mus-p21 PCR primers	5′-GTACTTCCCTCCTGCCCTGCTG-3′ 5′-AGAGTGCAAGACGGAGA-3′
	5′-GAGCGGAGATCTGGATCG-3′ 5′-GGCCGGCTGATGTACCAGT-3′
Mus-coll1a1 PCR primers	

Table 1: Sequences for cell transfection and primers for RT–PCR.

![Graphs and images](https://example.com/graphs.png)
Figure 1: Continued.
cells. Pretreatment with ferulic acid significantly reduced cell apoptosis in vitro (Figure 2(a)). Next, we analyzed nuclear morphology in control, H2O2-, H2O2+FA-, and FA-treated cells. Hoechst 33342 staining showed that H9c2 cells exhibited typical chromatin condensation and increased apoptotic bodies after 24 hrs of H2O2 treatment. However, ferulic acid pretreatment could significantly decrease the chromatin condensation and apoptotic bodies in H2O2-treated H9c2 cells (Figure 2(b)). TUNEL staining also confirmed the antiapoptotic effect of ferulic acid in H2O2-treated H9c2 cells (Figure 2(c) and 2(d)). We observed a similar protective phenotype in a 10 μM isoprenaline (ISO)- induced H9c2 cell oxidative stress model in H9c2 cells by DHE staining (Figures 2(e) and 2(f)) and TUNEL staining (Figures 2(g) and 2(h)).

3.3. Ferulic Acid Attenuates H2O2-Induced H9c2 Cell Inflammation and Apoptosis by Regulating the miR-499-5p/p21 Signaling Cascade. Our data showed that H2O2-induced cell inflammation and apoptosis increased expression of proinflammatory proteins, such as Bax, phosphorylatedp38 (p-p38), and the active form of caspase-3 (cleaved caspase-3, c-caspase-3), and decreased the level of Bcl2 (Figures 3(a)–3(d)). Interestingly, pretreatment with ferulic acid inhibited proinflammation and proapoptotic signal activation after H2O2 treatment.

To investigate the regulatory mechanisms of the protective effect of ferulic acid, we screened several important miRNAs in cardiomyocytes. Interestingly, we found that miR-499-5p expression was decreased significantly in H2O2-treated H9c2 cells, and its expression was increased most significantly in ferulic acid-treated cells, which suggested that miR-499-5p might be involved in the protective effects of ferulic acid (Figure 3(e)). Next, we analyzed the expression of miR-499-5p after 0–300 μM H2O2 treatment (Figure 3(f)). The results showed that 10–50 μM H2O2 treatment increased the expression of miR-499-5p, while 150–300 μM H2O2 treatment decreased miR-499-5p expression in a concentration-dependent manner (Figure 3(f)). These data suggest that miR-499-5p may be an oxidative stress response miRNA in cardiomyocytes. Interestingly, ferulic acid also increased miR-499-5p expression in 200 μM H2O2-treated H9c2 cells in a concentration-dependent manner (Figure 3(g)). The p21 protein expression levels were significantly inhibited by the miR-499-5p mimic and increased by the miR-499-5p inhibitor, which validated the regulation of p21 by miR-499-5p reported previously (Figures 3(k) and 3(l)).

3.4. MiR-499-5p Is a Key Regulator of the Protective Effect of Ferulic Acid in Oxidative Stress-Induced Cardiomyocyte Injury. We investigated the function of miR-499-5p by overexpressing or inhibiting its expression in H9c2 cells. Overexpression of miR-499-5p by miR-499-5p mimic inhibited H2O2-induced cardiomyocyte apoptosis. Moreover, the miR-499-5p inhibitor reversed the protective effect of ferulic acid in H2O2-treated H9c2 cells (Figures 4(a)-4(d)). TUNEL, MTT, and DNA laddering assays also proved that miR-499-5p overexpression could inhibit H2O2-induced cell apoptosis, and miR-499-5p inhibitor could fully block the protective effect of ferulic acid on H2O2-treated H9c2 cells (Figures 4(a)-4(d)). Therefore, our data suggested that ferulic acid could protect cardiomyocytes from H2O2-induced injury by upregulating miR-499-5p.
Con Marker H2O2+FA

(b) *** **

(c) 35

(d) ISO

(e) 3.0

(f) Figure 2: Continued.
To further investigate the protective effect of ferulic acid on H2O2-treated cardiomyocytes, we analyzed the expression levels of different proteins in cardiomyocytes upon miR-499-5p inhibitor transfection by Western blotting. The results showed that H2O2 led to a significant increase in p21 expression compared with the control group. As shown in Figures 4(e)-4(i), the expression of p21 in the H2O2+FA+miR-499-5p inhibitor group was higher than that in the H2O2+FA+Nc group, indicating that miR-499-5p could inhibit H2O2-induced cardiomyocyte injury by inhibiting p21 expression.

Interestingly, when p21 expression was upregulated due to the inhibition of miR-499-5p, the protective effects of ferulic acid on H2O2-treated H9c2 cells were reversed significantly. Similarly, ferulic acid inhibited H2O2-induced upregulation of Bax, cleaved-caspase-3, and p38MAPK phosphorylation, and miR-499-5p inhibitor reversed these protective effects significantly (Figures 4(e)-4(i)). Therefore, both ferulic acid treatment and miR-499-5p overexpression inhibited H2O2-induced cell injury, and miR-499-5p inhibition reversed the protective effect of ferulic acid on H2O2-induced cell injury. Thus, these data suggested that ferulic acid protects H9c2 cells from H2O2-induced injury via the miR-499-5p/p21 signaling pathway.

3.5. Ferulic Acid Attenuates the Isoproterenol-Induced Heart Injury Mouse Model. To further verify the protective effect of ferulic acid on H2O2-treated cardiomyocytes, we analyzed the expression levels of different proteins in cardiomyocytes upon miR-499-5p inhibitor transfection by Western blotting. The results showed that H2O2 led to a significant increase in p21 expression compared with the control group. As shown in Figures 4(e)-4(i), the expression of p21 in the H2O2+FA+miR-499-5p inhibitor group was higher than that in the H2O2+FA+Nc group, indicating that miR-499-5p could inhibit H2O2-induced cardiomyocyte injury by inhibiting p21 expression.

Interestingly, when p21 expression was upregulated due to the inhibition of miR-499-5p, the protective effects of ferulic acid on H2O2-treated H9c2 cells were reversed significantly. Similarly, ferulic acid inhibited H2O2-induced upregulation of Bax, cleaved-caspase-3, and p38MAPK phosphorylation, and miR-499-5p inhibitor reversed these protective effects significantly (Figures 4(e)-4(i)). Therefore, both ferulic acid treatment and miR-499-5p overexpression inhibited H2O2-induced cell injury, and miR-499-5p inhibition reversed the protective effect of ferulic acid on H2O2-induced cell injury. Thus, these data suggested that ferulic acid protects H9c2 cells from H2O2-induced injury via the miR-499-5p/p21 signaling pathway.

3.5. Ferulic Acid Attenuates the Isoproterenol-Induced Heart Injury Mouse Model. To further verify the protective effect of ferulic acid on H2O2-treated cardiomyocytes, we established an isoproterenol-treated C57BL6 mouse myocardial injury model to investigate the cardioprotective effect of ferulic acid. Subcutaneous infusion of 30 mg/kg/day isoproterenol by osmotic pump for 14 days could induce a mouse heart injury model in vivo. As shown in Figures 5(a) and 5(b), the mouse hearts were enlarged, and the ratio of the heart weight to the tibia length was significantly increased, suggesting that isoproterenol could cause heart hypertrophy in vivo. H&E staining (Figure 5(c)), Sirius Red staining (Figures 5(d) and 5(e)), and Col1a1 mRNA (Figure 5(f)) expression of the heart tissue showed a significant cardiomyocyte size increase and myocardial fibrosis in vivo, suggesting that isoproterenol could cause significant heart remodeling. TUNEL staining (Figures 4(g) and 4(h)) also confirmed that the apoptotic cell rate was upregulated in cardiac tissue, suggesting that isoproterenol causes not only heart hypertrophy but also cardiomyocyte cell death. Interestingly, oral gavage of 30 mg/kg/day ferulic acid alleviated isoproterenol-induced heart injury in vivo.

Further, we analyzed the expression level of miR-499-5p in myocardial tissues by real-time quantitative PCR. Isoproterenol subcutaneous infusion reduced the expression level of miR-499-5p in the mouse heart. However, ferulic acid restored miR-499-5p and p21 expression in isoproterenol-treated mouse hearts (Figures 5(i) and 5(j)). Western blot analysis of mouse heart samples also proved the results from cell experiments. Therefore, ferulic acid can reduce oxidative stress, inflammation, and cell apoptosis and protect heart function in an isoproterenol-induced mouse heart injury model, suggesting that ferulic acid can attenuate isoproterenol-induced heart injury and protect heart function in vivo.
Figure 3: Continued.
4. Discussion

Ferulic acid is a phenolic acid that is commonly found in vegetables, cereals, and traditional Chinese medicines [18]. It was reported that one of the most important properties of ferulic acid is its antioxidant activity, which mainly depends on the hydroxyl and methoxy groups of the benzene ring [19]. S. Chowdhury et al. reported that ferulic acid is more easily absorbed by the body and stays in the blood for a longer time than another phenolic acids. Therefore, ferulic acid is considered to be a good antioxidant [20]. Ferulic acid has lower toxicity and has been widely used in pharmaceuticals and foods. Previous studies have found that, in randomized clinical trials, ferulic acid can improve blood lipid status, oxidative stress, and inflammation in patients with hyperlipidemia [21]. In addition, there is evidence that ferulic acid can quench ROS to exert its antioxidant properties [22]. Oxidative stress is crucial in the occurrence and development of a plethora of diseases, including atherosclerosis [23], chronic obstructive pulmonary disease (COPD) [24], and Alzheimer’s disease (AD) [25]. Here, we explored the role of ferulic acid in oxidative stress-induced cardiomyocyte injury. Our results confirmed that both H2O2 and isoprenaline could cause oxidative stress and inflammation in cardiomyocytes, and ferulic acid could inhibit both H2O2- and isoprenaline-induced oxidative stress and inflammation in vitro and in vivo.

To further explore the effects of ferulic acid on oxidative stress-induced cardiomyocyte injury, we also analyzed H2O2- and isoprenaline-induced apoptosis with or without ferulic acid treatment. Some studies found that ferulic acid significantly reduced diabetes-induced kidney damage by...
Figure 4: Continued.
inhibiting apoptosis, inflammation, and autophagy defects [20]. The administration of ferulic acid significantly inhibited the colonic apoptosis induced by trinitrobenzenesulfonic acid (TNBS) [26]. R. Sahu et al. showed that wheat phenolics, including ferulic acid, inhibited cardiotoxicity caused by doxorubicin by inhibiting oxidative stress and cardiomyocyte apoptosis [12]. These studies indicate that ferulic acid exerts its biological function through the inhibitory activity on apoptosis. In our study, ferulic acid inhibited both H$_2$O$_2$- and isoprenaline-induced inflammation and cardiomyocyte apoptosis in vivo and in vitro significantly.

MiRNAs play an important role in the negative regulation of gene expression by pairing with the 3'-UTR of protein-coding gene mRNAs. Many studies have found that miRNAs are involved in the development and progression of many cardiovascular diseases, including heart hypertrophy, myocardial infarction, myocardial ischemia reperfusion, and heart failure [27]. MiR-499-5p is an evolutionarily conserved microRNA encoded by myosin. It is highly expressed in the ventricles [28,29] and plays an important function in cardiomyocytes during ischemia, hypoxia, or oxidative stress [30,31]. A clinical study found that the expression of miR-499-5p increased significantly in the serum of patients with acute myocardial infarction, suggesting that plasma miR-499-5p is a potential biomarker to predict acute myocardial infarction [32,33]. Recent studies have also found that miR-499-5p attenuates mitochondrial fission and apoptosis by downregulating p21 in doxorubicin-mediated cardiotoxicity [34]. In this study, we found that miR-499-5p expression was decreased after treatment with H$_2$O$_2$ or isoprenaline, which in turn promoted p21 expression and proapoptotic signal transduction in vivo and in vitro. Ferulic acid could promote miR-499-5p expression and inhibit cell apoptosis. The protective effect was abolished by the miR-499-5p inhibitor. Our study suggested that ferulic acid may be an effective drug for the treatment of oxidative stress-induced cardiomyocyte injury by regulating the miR-499-5p/p21 signaling pathway.

In this study, we demonstrated that ferulic acid suppresses H$_2$O$_2$- or isoprenaline-induced cardiomyocyte injury by...
(a) Sham ISO ISO+FA FA
(b) HW/Tibia ratio (g/cm)
(c) Collagen volume fraction (%)
(d) Col1a1 mRNA level (Fold change)
(e) TUNEL positive nuclear rate (%)

Figure 5: Continued.
Figure 5: Ferulic acid inhibits isoproterenol-induced oxidative stress and cardiomyocyte apoptosis by regulating the miR-499-5p/p21 signaling pathway in vivo. An osmotic pump filled with isoprenaline in saline (30 mg/kg per day) or saline alone was delivered subcutaneously by infusion for 14 days after the operation to insert the pump. Equal volumes of ferulic acid (30 mg/kg/day) or saline were administered to mice daily through oral gavage starting 3 days before the operation and continuing until the end of the experiments. (a), (b) Representative images of mouse hearts and the average heart weight to tibia length ratio (HW/TL) in sham, isoproterenol- (ISO-), isoproterenol + ferulic acid- (ISO+FA-), and ferulic acid- (FA-) treated mice (n = 6). (c) Histological analysis of heart sections by H&E staining in sham-, ISO-, ISO+FA-, and FA-treated mice (n = 6). (d), (e) Images of Sirius Red and quantitative analysis of heart fibrosis of the heart sections of sham-, ISO-, ISO+FA-, and FA-treated mice (n = 6). (f), (g) TUNEL staining and statistical analysis of the TUNEL-positive nucleus rates of heart sections from sham-, ISO-, ISO+FA-, and FA-treated mice (n = 6). (h), (i), (j) Real-time quantitative PCR analysis of miR-499-5p, p21, and Col1a1 mRNA levels in the four groups (n = 6). (k) Western blot and statistical analysis of p21, p-p38, p38, Bcl-2, Bax, and c-caspase-3 in the four groups of mice (n = 6). *P < 0.05, **P < 0.01, and ***P < 0.001.
apoptosis in vivo and in vitro. Ferulic acid treatment effectively protects the heart from oxidative stress and inflammation. Therefore, our findings may implicate novel therapeutic strategies for oxidative stress and inflammation-related heart diseases, including heart hypertrophy, myocardial infarction, and myocardial ischemia reperfusion.

5. Conclusions
In summary, we demonstrated that ferulic acid could suppress oxidative stress-induced cardiomyocyte injury by regulating the miR-499-5p/p21 signaling pathway. These findings provide insight into the mechanisms by which ferulic acid acts as a potential therapeutic prescription for the treatment of oxidative stress-induced cardiovascular diseases, including heart hypertrophy, myocardial infarction, and myocardial ischemia reperfusion.

Data Availability
All the data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.

Ethical Approval
All animal experiments were approved by the Beijing Normal University Animal Use and Care Committee. All the methods were carried out in accordance with ARRIVE guidelines (https://arriveguidelines.org).

Consent
Neither the manuscript nor any part of it has been published nor is currently under consideration for publication by any other journal. All coauthors have read the manuscript and approved its submission to Evidence-Based Complementary and Alternative Medicine.

Conflicts of Interest
The authors declare that there are no conflicts of interest in the publication of this paper.

Authors’ Contributions
S. Sun, Y. Ruan, and M. Yan contributed equally to this work. T. Shen and Z. Jin conceived and designed the experiments. S. Sun, Y. Ruan, M. Yan, K. Xu, and Y. Yang performed the experiments. S. Sun, Y. Ruan, M. Yan, K. Xu, Y. Yang, and T. Shen analyzed the data. M. Yan, T. Shen, and Z. Jin wrote the paper. All the authors read and approved the final manuscript.

Acknowledgments
This study was supported by grants from the National Natural Science Foundation of China (Grant nos. 81770228 and 81470427), the Beijing Natural Science Foundation (Grant no. 7142142), and the CAMS Innovation Fund for Medical Sciences (no. 2021-1-I2M-050).

References
[1] M. Yan, S. Sun, K. Xu et al., “Cardiac aging: from basic research to therapeutics,” Oxidative Medicine and Cellular Longevity, vol. 2021, Article ID 9570325, 2021.
[2] M. Afzal, “Recent updates on novel therapeutic targets of cardiovascular diseases,” Molecular and Cellular Biochemistry, vol. 476, no. 1, pp. 145–155, 2021.
[3] M. A. Incalza, R. D’Oria, A. Natalicchio, P. Sebastio, L. Luigi, and G. Francesco, “Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases,” Vascular Pharmacology, vol. 100, pp. 1–19, 2018.
[4] J. Marin-García, “Mitochondrial DNA repair: a novel therapeutic target for heart failure,” Heart Failure Reviews, vol. 21, no. 5, pp. 475–487, 2016.
[5] T. Münzel, G. G. Camici, C. Maack, R. B. Nicole, F. Valentin, and C. K. Jason, “Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-Part Series,” Journal of the American College of Cardiology, vol. 70, no. 2, pp. 212–229, 2017.
[6] T. Mori, N. Koyama, J. Tan, S. Tatsuya, M. Masahiro, and T. Terrence, “Combination therapy with octyl gallate and ferulic acid improves cognition and neurodegeneration in a transgenic mouse model of Alzheimer’s disease,” Journal of Biological Chemistry, vol. 292, no. 27, pp. 11310–11325, 2017.
[7] J. M. Harnly, R. F. Doherty, G. R. Beecher et al., “Flavonoid content of U.S. fruits, vegetables, and nuts,” Journal of Agricultural and Food Chemistry, vol. 54, no. 26, pp. 9966–9977, 2006.
[8] Z. Zhao, Y. Egashira, and H. Sanada, “Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver,” Journal of Nutrition, vol. 134, no. 11, pp. 3083–3088, 2004.
[9] K. Zdunuska, A. Dana, A. Kołodziejczak, and H. Rotsztejn, “Antioxidant properties of ferulic acid and its possible application,” Skin Pharmacology and Physiology, vol. 31, no. 6, pp. 332–336, 2014.
[10] Y. H. Cheng, F. H. Lin, C. Y. Wang et al., “Recovery of oxidative stress-induced damage in Cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel,” Biomaterials, vol. 103, pp. 207–218, 2016.
[11] S. Chowdhury, S. Ghosh, K. Rashid, and P. C. Sil, “Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats,” Food and Chemical Toxicology, vol. 97, pp. 187–198, 2016.
[12] R. Sahu, T. K. Dua, S. Das, V. De Peo, and S. Dewanjee, “Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis,” Food and Chemical Toxicology, vol. 125, pp. 503–519, 2019.
[13] T. Shen, C. Yang, L. Ding et al., “Tbx20 functions as an important regulator of estrogen-mediated cardiomyocyte protection during oxidative stress,” International Journal of Cardiology, vol. 168, no. 4, pp. 3704–3714, 2013.
[14] T. Shen, M. Zheng, C. Cao et al., “Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis,” Journal of Biological Chemistry, vol. 282, no. 32, pp. 23354–23361, 2007.
[15] Q. Wang, X. Yu, L. Dou et al., “miR-154-5p functions as an important regulator of angiotensin II-mediated heart
remodeling,” *Oxid Med Cell Longev*, vol. 2019, Article ID 8768164, 2019.

[16] S. C. Chang, S. Ren, C. D. Rau, and J. J. Wang, “Isoproterenol-induced heart failure mouse model using osmotic pump implantation,” *Methods in Molecular Biology*, vol. 1816, pp. 207–220, 2018.

[17] T. Shen, I. Aneas, N. Sakabe et al., “Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function,” *Journal of Clinical Investigation*, vol. 121, no. 12, pp. 4640–4654, 2011.

[18] N. Kumar and V. Pruthi, “Potential applications of ferulic acid from natural sources,” *Biotechnol Rep (Amst)*, vol. 4, pp. 86–93, 2014.

[19] M. Srinivasan, A. R. Sudheer, and V. P. Menon, “Ferulic Acid: therapeutic potential through its antioxidant property,” *Journal of Clinical Biochemistry & Nutrition*, vol. 40, no. 2, pp. 92–100, 2007.

[20] S. Chowdhury, S. Ghosh, A. K. Das, and P. C. Sil, “Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy,” *Frontiers in Pharmacology*, vol. 10, p. 27, 2019.

[21] A. Bumrungpert, S. Lilitchan, S. Tuntipopipat, N. Tirawanchai, and S. Komindr, “Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial,” *Nutrients*, vol. 10, no. 6, Article ID 713, 2018.

[22] S. Adisakwattana, “Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications,” *Nutrients*, vol. 9, no. 2, Article ID 163, 2017.

[23] A. J. Kattoor, N. V. K. Pothineni, D. Palagiri, and J. L. Mehta, “Oxidative stress in atherosclerosis,” *Current Atherosclerosis Reports*, vol. 19, no. 11, p. 42, 2017.

[24] P. A. Kirkham and P. J. Barnes, “Oxidative stress in COPD,” *Chest*, vol. 144, no. 1, pp. 266–273, 2013.

[25] Z. Chen and C. Zhong, “Oxidative stress in Alzheimer’s disease,” *Neurosci Bull*, vol. 30, no. 2, pp. 271–281, 2016.

[26] S. S. Sadar, N. S. Vyawahare, and S. L. Bodhankar, “Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOS, COX-2, and apoptosis in laboratory rats,” *EXCLI Journal*, vol. 15, pp. 482–499, 2016.

[27] T. Barwari, A. Joshi, and M. Mayr, “MicroRNAs in cardiovascular disease,” *Journal of the American College of Cardiology*, vol. 68, no. 23, pp. 2577–2584, 2019.

[28] Y. Shi, Y. Han, L. Niu, J. Li, and Y. Chen, “MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6,” *Biotechnology Letters*, vol. 41, no. 6-7, pp. 837–847, 2019.

[29] D. A. Chistiakov, A. N. Orekhov, and Y. V. Bobryshev, “Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction),” *Journal of Molecular and Cellular Cardiology*, vol. 94, pp. 107–121, 2016.

[30] H. Jia, M. Qu, G. Fan, H. Wu, and L. Wang, “miR-499-5p suppresses C-reactive protein and provides neuroprotection in hypoxic-ischemic encephalopathy in neonatal rat,” *Neurosciences Research*, vol. 161, pp. 44–50, 2020.

[31] W. Ding and M. Li, “A polymorphism rs3746444 within the pre-miR-499 alters the maturation of miR-499-5p and its antiapoptotic function,” *J Cell Mol Med*, vol. 22, no. 11, pp. 5418–5428, 2018.