The refolding of thermally denatured model collagen-like peptides was studied for a set of 21 guest triplets embedded in a common host framework: acetyl-(Gly-Pro-Hyp)n-Gly-Xaa-Yaa-(Gly-Pro-Hyp)n-Gly-Gly-amide. The results show a strong dependence of the unfolding rate on the identity of the guest Gly-Xaa-Yaa triplet, with the half-times for unfolding varying from 6 to 110 min (concentration = 1 mg/ml). All triplets of the form Gly-Xaa-Hyp promoted rapid unfolding, with the rate only marginally dependent on the residue in the Xaa position. In contrast, triplets of the form Gly-Pro-Yaa and Gly-Xaa-Yaa were slower and showed a wide range of half-times, varying with the identity of the residues in the triplet. At low concentrations, the folding can be described by third-order kinetics, suggesting nucleation is rate-limiting. Data on the relative nucleation ability of different Gly-Xaa-Yaa triplets support the favorable nature of imino acids, the importance of hydroxyproline, the varying tendency of the same residue in the Xaa position versus the Yaa position, and the difficulties encountered when leucine or aspartic acid are in the Yaa position. Information on the relative propensities of different tripeptide sequences to promote nucleation of the triple-helix in peptides will aid in identification of nucleation sites in collagen sequences.

The collagen triple helix is the basic structural motif found in all fibril-forming collagens as well as some host-defense proteins such as C1q, mannos-binding protein, and macrophage scavenger receptor (1, 2). The triple-helix conformation consists of three extended polyproline II-like chains supercoiled around each other as determined by x-ray fiber diffraction, crystallography, and NMR (3–7). The three chains are staggered by one residue with respect to each other and stabilized by interchain hydrogen bonding (5, 8, 9). This conformation requires that every third residue must be a glycine, a repeating glycine (Gly-Xaa-Yaa), pattern, and that a high proportion of residues are the imino acids proline and hydroxyproline. Gly-Pro-Hyp is indeed the most common and stabilizing tripeptide found in collagens.

The folding of the collagen triple helix in vivo is a multistep process involving chain association, registration, nucleation, and propagation (10–12). There is also evidence for the involvement of chaperones (13, 14). Fibril-forming collagens are synthesized at the rough endoplasmic reticulum membrane in a precursor form, procollagen, containing both N- and C-terminal propeptides terminating the long central triple helix. Proper chain selection and registration is initiated by the association of the C-propeptide domains into trimers followed by nucleation of the correctly aligned triple helix (15, 16) and propagation in a C- to N-terminal direction (17). In the unfolded state, most proline residues in the Yaa position of Gly-Xaa-Yaa triplets are enzymatically hydroxylated, and the resulting hydroxyproline (Hyp) residues are required for the formation and stabilization of the triple helix (18).

Folding studies on mature collagens are complicated by their length and varied sequences; these complicating features can be reduced by the use of natural or synthetic peptides. Collagen fragments have been used to better define the folding process, e.g. the observation of third-order kinetics for a 36-residue cyanogen bromide fragment of collagen type I (19). Synthetic peptide models of the triple helix allow the sequence dependence of folding to be investigated systematically by varying both the design and the composition of the Gly-Xaa-Yaa sequences. Investigations on synthetic model peptides, such as (Pro-Pro-Gly)n, which adopt a stable triple-helical structure, have allowed quantitation of third-order rate constants, the effect of length and the testing of sophisticated theoretical models including folding intermediates resulting from incorrectly staggered chains (20, 21). Here we present data on the refolding of a set of homologous peptides that contain one variable Gly-Xaa-Yaa guest triplet embedded in a Gly-Pro-Hyp-rich host sequence. This design allows the analysis of the effect of a single triplet sequence on different triple-helix properties. Work in our laboratory has shown that all host-guest peptides analyzed so far form stable triple helices, with melting temperatures dependent on the identity of the guest triplet (22–24). This study reports folding rates for a set of host-guest peptides that provide information on the relative propensities of different tripeptide sequences to promote nucleation of the triple helix.

EXPERIMENTAL PROCEDURES

Peptide Synthesis—Peptides were synthesized on an Applied BioSystems 430A synthesizer using the standard FastMoc (Applied Biosys...
Folding of Collagen-like Triple-helical Peptides

Peptide Design and Stability—Host-guest peptides of the form acetyl-(Gly-Pro-Hyp)$_2$-Gly-Xaa-Yaa-(Gly-Pro-Hyp)$_2$-Gly-Gly-amide provide a useful template to contribute the participation of individual Gly-Xaa-Yaa triplets to triple-helix properties (22–24). To assure formation of a stable triple-helix, the guest triplet is flanked by stabilizing Gly-Pro-Hyp triplets. The concentration of monomer $[A]$ at any given time was calculated as

$$F = \frac{[A]_0 - [A]}{[A]_0}$$

where $[A]_0$, $[A]$, and θ_0, represent the observed, the triple helix, and monomer ellipticity, respectively. θ_0 was measured directly before denaturation at the temperature used for refolding. θ_0 was determined by extrapolating the initial data points to time zero. This θ_0 value was slightly lower than that resulting from linear extrapolation of the monomer ellipticity observed in the high temperature region of equilibrium melting curves, but the use of either value gave similar results. To compare the data of different peptides independent of the folding mechanism, the time ($t_{1/2}$) at which $F = 0.5$ was determined.

The concentration of monomer $[A]$ at any given time was calculated as

$$[A] = (1 - e^{-kt})$$

with $[A]_0$ denoting the initial monomeric peptide concentration, which was assumed to be equal to the total peptide concentration. Data were fitted to a single-step first (Eq. 3), second (Eq. 4), or third (Eq. 5)-order kinetics:

$$\frac{[A]}{[A]_0} = 1 - e^{-kt}$$

Eq. 3

$$\frac{[A]}{[A]_0} = 1 + \frac{1}{2}e^{-kt}$$

Eq. 4

$$\frac{[A]_0^2}{[A]} = 1 + \frac{1}{6}e^{-kt}$$

Eq. 5

Rate constants k_i were calculated after linearization from the slope resulting from linear least squares fit. Curves were categorized as of i^{th} order based on maximum linear correlation coefficients.

RESULTS

Peptide Design and Stability—Host-guest peptides of the form acetyl-(Gly-Pro-Hyp)$_2$-Gly-Xaa-Yaa-(Gly-Pro-Hyp)$_2$-Gly-Gly-amide provide a useful template to contribute the participation of individual Gly-Xaa-Yaa triplets to triple-helix properties (22–24). To assure formation of a stable triple-helix, the guest triplet is flanked by stabilizing Gly-Pro-Hyp triplets. The N and C termini are blocked by acetylation and amidation, respectively, to ensure that the only ionizable groups, if any, would be those introduced in the guest triplet and to eliminate charge repulsion at the ends of the triple helix. The peptide length is designed to be short enough so that the effects of a single guest triplet would not be masked by the constant part of the structure but long enough to ensure triple-helix stability (22). Because imino acids are found at high frequency in triple helices, guest triplets of the form Gly-Xaa-Hyp, Gly-Pro-Yaa, and Gly-Xaa-Yaa were considered, with the Xaa and Yaa residues occupied by the most common nonpolar residues, and charged residues found in collagens. In the following, we refer to the different peptides by their guest triplet sequence. This design allows analysis of the effects on folding of a single residue within a defined triple-helical environment.

CD measurements of all host-guest peptides indicate triple-helical structures at low temperature. The spectra show a characteristic maximum near 225 nm with a mean residue ellipticity in the order of 4000 deg cm2 dmol$^{-1}$, which decreases upon unfolding (Fig. 1, inset). Equilibrium unfolding curves exhibit a highly cooperative behavior with melting temperatures ranging from 20 to 45 °C, depending on the identity of the guest triplet (22–25). The curves can be fitted to a two-state trimer to monomer transition, an assumption supported by analytical ultracentrifugation experiments performed on closely related peptides (26).

Refolding of Host-Guest Peptides—Refolding rates were measured for a total of 21 host-guest peptides (concentration = 1 mg/ml). Despite the variations in stability of the host-guest peptides, a common folding temperature of 15 °C was selected. At this temperature all peptides showed a fraction of folded peptide close to one in their equilibrium melting curves, and little dependence of the folding rate on temperature of folding was observed at 5, 10, 15, and 20 °C (data not shown). As an example, the signal recovery for peptide Gly-Ala-Hyp at 15 °C is shown in Fig. 1, which also illustrates the determination of $t_{1/2}$ values as a common measure to compare the refolding behavior of the different peptides. The $t_{1/2}$ values for the host-guest peptides varied between 6 and 110 min, revealing that the folding rate critically depends on the sequence of the guest triplet (Table I). For example, the folding half-times of peptides Gly-Pro-Hyp, Gly-Ala-Hyp, Gly-Pro-Ala, and Gly-Ala-Ala are 6.0, 8.3, 12, and 21 min, respectively, at 15 °C (Fig. 2). The fast folding of Gly-Pro-Hyp is decreased slightly by the substitution of Pro by Ala in the Xaa position and somewhat more when the Hyp is replaced by an Ala.

Guest triplets with Hyp in the Xaa position (Gly-Xaa-Hyp) fold fastest and show only a small dependence on the identity of

2 The abbreviation used is: CD, circular dichroism.
TABLE I
Sequence dependence of refolding
Refolding of the indicated peptides (concentration = 1 mg/ml) after denaturation at 70 °C for 20 min was monitored at 15 °C, and halftimes $t_{1/2}$ (in min) were determined. Peptides are sorted in complementary sets.

Xaa-Yaa	$t_{1/2}$ Gly-Pro-Hyp	$t_{1/2}$ Gly-Pro-Yaa	$t_{1/2}$ Gly-Xaa-Hyp	$t_{1/2}$ Gly-Xaa-Yaa	
Gly-Pro-Hyp	6.0	11	Gly-Pro-Ala	12	
Gly-Pro-Hyp	8.3	Gly-Pro-Ala	12	Gly-Ala-Ala	21
Gly-Leu-Hyp	12	Gly-Pro-Leu	40	Gly-Leu-Ala	35
Gly-Asn-Hyp	8.3	Gly-Pro-Asn	38	Gly-Ala-Leu	86
Gly-Leu-Hyp	8.6	Gly-Pro-Asp	98	Gly-Asp-Ala	83
Gly-Glu-Hyp	9.4	Gly-Pro-Gln	22	Gly-Pro-Glu	27
Gly-Glu-Hyp	6.1	Gly-Pro-Glu	27	Gly-Pro-Lys	29
Gly-Pro-Arg	15	Gly-Ala-Arg	15	Gly-Pro-Arg	15

The studies reported here on a set of host-guest peptides demonstrate that the folding rate of the triple helix critically depends on the sequence of a single guest triplet. Analysis of our data indicates that the folding proceeds via a mechanism involving more than a single reaction step and that the folding involves a third-order process that becomes rate-limiting at low concentrations. The steps requiring the involvement of three polypeptide chains are chain association and nucleation. Although the association process, which is limited by diffusion, is unlikely to be significantly affected by sequence, triple-helix nucleation is known to be facilitated by the presence of conformationally restricted imino acids and is thus expected to be sequence-dependent (30) (Fig. 4). In the present study, the magnitude of the third-order rate constant is strongly affected by the identity of the guest triplet and is greater for imino acid-containing triplets, suggesting it is the nucleation step.
Folding of Collagen-like Triple-helical Peptides

The third-order rate constants and half-times of folding yield information concerning the relative propensity of different residues in the Xaa and Yaa position to initiate triple-helix nucleation. Entropic factors are likely to play an important role in nucleation because imino acids are sterically constrained to dihedral angles similar to those found in collagen. Gly-Pro-Hyp is the fastest folding triplet, and all Gly-Xaa-Hyp triplets are very favorable. The Hyp residue appears more favorable than Pro, as seen in the faster folding rate of Gly-Pro-Hyp versus Gly-Pro-Pro. It has been suggested that the OH of Hyp has an inductive effect, leading to a decrease in the cis:trans isomer ratio compared with Pro in the unfolded state (33). A decrease in the cis isomer concentration could accelerate the propagation step. In addition, the decreased cis:trans ratio could promote nucleation by making it more likely to find a stretch of contiguous all-trans tripeptide units and by creating a more rigid monomer chain (34). Although Pro in the Xaa position also can lead to favorable folding, the identity of the nonimino acid residue in the Yaa position of Gly-Pro-Yaa triplets has a very strong influence. For example, Gly-Pro-Ala is a fast folding peptide, whereas Gly-Pro-Asp has the slowest folding rate observed.

In addition to entropic factors, the influence of specific side chains in promoting nucleation may relate to steric factors, electrostatic interactions, and hydrogen bonding. The difficulty in packing bulky residues such as Leu in the Yaa position (35), which is less exposed than the Xaa position, may contribute to the slow folding of Gly-Pro-Leu and Gly-Ala-Leu peptides. Despite its large side chain, arginine in the Yaa position is favorable in promoting chain nucleation as well as for stabilization (24), and both features may be related to its ability to form multiple hydrogen bonds combined with its restricted mobility (36, 37). Gly-Pro-Asp is the slowest folding peptide, suggesting an unfavorable effect of aspartic acid in the Y position. It was previously observed that aspartic acid in the Yaa position had a destabilizing effect on the triple helix. Both the decreased folding rate and low stability may be related to the restricted rotational freedom of Asp in the triple helix, hindering its participation in interchain hydrogen bond formation (23).

The systematic exchange of single guest triplets embedded in an otherwise constant environment allows their influence on folding to be related to their contribution to triple-helix stability. The relationship between folding half-times and the melting temperatures of the host-guest peptide concentrations set at 1 mg/ml was considered (Fig. 5). All Gly-Xaa-Hyp peptides have fast folding rates and high stabilities, with a small range for both $t_{1/2}$ values and melting temperature values. The Gly-Pro-Yaa peptides show a broad range for both folding half-times (12–98 min) and melting temperatures (30–45 °C), with the more stable peptides tending to fold faster. For Gly-Xaa-Yaa triplets with no imino acids, four peptides with similar

TABLE II

Peptide	k_3 ($M^{-2} s^{-1}$)
Gly-Pro-Hyp	16,000
Gly-Pro-Pro	12,000
Gly-Ala-Hyp	6,000
Gly-Pro-Ala	4,700
Gly-Leu-Ala	1,500
Gly-Ala-Ala	950
Gly-Ala-Leu	500
Gly-Pro-Asp	470

FIG. 3. Refolding kinetics of host-guest peptides at low concentration. A, recovery of the CD signal at 225 nm was monitored at 15 °C after denaturation, and the signal was converted to the fraction of folded peptide at a concentration of 0.4 mg/ml for (from top to bottom) Gly-Pro-Hyp, Gly-Pro-Pro, Gly-Ala-Hyp, Gly-Pro-Ala, Gly-Leu-Ala, Gly-Ala-Ala, Gly-Ala-Leu, and Gly-Pro-Asp. B, curves linearized according to Equation 5 are shown for the same peptide set. Third-order rate constants (Table II) were derived from the slope of the fitted lines.

itself reflected by these values. NMR studies on peptides with specific 15N labels indicated that nucleation can occur at (Gly-Pro-Hyp), sites at either end of a peptide (31). For the Gly-Pro-Hyp-enriched host-guest peptides, it is realistic to assume that nucleation could begin at any tripeptide unit in the chain (32) (Fig. 4). Previous findings suggest the nucleation domain is as long as six triplets in noncovalently linked peptides (20, 21), making this a dominant event in short peptides.

Refolding of the indicated peptides (concentration = 0.4 mg/ml) after denaturation at 70 °C for 20 min was monitored at 15 °C. Third-order rate constants k_3 were determined according to Equation 5 as outlined in Fig. 4B.

TABLE II

Effect of sequence on third-order rate constants

- Gly-Pro-Hyp: 16,000 $M^{-2} s^{-1}$
- Gly-Pro-Pro: 12,000 $M^{-2} s^{-1}$
- Gly-Ala-Hyp: 6,000 $M^{-2} s^{-1}$
- Gly-Pro-Ala: 4,700 $M^{-2} s^{-1}$
- Gly-Leu-Ala: 1,500 $M^{-2} s^{-1}$
- Gly-Ala-Ala: 950 $M^{-2} s^{-1}$
- Gly-Ala-Leu: 500 $M^{-2} s^{-1}$
- Gly-Pro-Asp: 470 $M^{-2} s^{-1}$

FIG. 3. Refolding kinetics of host-guest peptides at low concentration. A, recovery of the CD signal at 225 nm was monitored at 15 °C after denaturation, and the signal was converted to the fraction of folded peptide at a concentration of 0.4 mg/ml for (from top to bottom) Gly-Pro-Hyp, Gly-Pro-Pro, Gly-Ala-Hyp, Gly-Pro-Ala, Gly-Leu-Ala, Gly-Ala-Ala, Gly-Ala-Leu, and Gly-Pro-Asp. B, curves linearized according to Equation 5 are shown for the same peptide set. Third-order rate constants (Table II) were derived from the slope of the fitted lines.
thermal stabilities were found to have very different folding times. This suggests the interactions determining folding differ from those important for stability for tripeptides with no imino acids.

The host-guest peptide set shows the wide range in effectiveness of Gly-Xaa-Yaa tripeptides in a fixed Gly-Pro-Hyp environment to facilitate or depress nucleation. The nucleation step of peptides differs from that of collagen in that this step occurs in three independent peptides, whereas triple-helix nucleation in collagen occurs in a molecule that is linked together by the association of disulfide-linked C-propeptides (Fig. 4). Despite this difference, it is likely that the propensity of individual tripeptides to nucleate a peptide triple helix can be applied to the ability of different sequences at the C terminus of collagen to serve as a nucleation site. In addition, it is possible that interruptions in the (Gly-Xaa-Yaa)$_n$-repeating sequence, as found normally in basement membrane collagen or for osteogenesis imperfecta Gly\rightarrowXaa mutations in type I collagen, may terminate propagation (38, 39), making a renucleation event necessary to complete triple-helix formation. Information on the propensity of different Gly-Xaa-Yaa triplets to promote nucleation will aid in the identification of such renucleation sequences.

Acknowledgments—We are grateful to Alan Kirkpatrick for peptide synthesis and Nick Bartone for peptide characterization. We also thank Drs. Naina K. Shah, Wei Yang, and Ellen Doss for helpful comments, Chirag Shah for preliminary results, and Ms. Virginia C. Chan for experimental guidance in the early stages of this project. Furthermore, we appreciate the continuous discussions with Dr. Jean Baum.

REFERENCES

1. Brodsky, B., and Ramshaw, J. A. M. (1997) Matrix Biol. 15, 545–554
2. Beck, K., and Brodsky, B. (1998) J. Struct. Biol. 122, 17–29
3. Rich, A., and Crick, F. H. C. (1961) J. Mol. Biol. 3, 483–506
4. Fraser, R. D. B., MacRae, T. P., and Suzuki, E. (1979) J. Mol. Biol. 129, 463–481
5. Bella, J., Eaton, M., Brodsky, B., and Berman, H. M. (1994) Science 266, 75–81
6. Mayo, K. H. (1996) Biopolymers 40, 359–370
7. Baum, J., and Brodsky, B. (1997) Folding & Design 2, R53–R60
8. Privatov, P. (1982) Adv. Protein Chem. 35, 1–104
9. Lee, J. F., Tasab, M., and Bulleid, N. J. (1997) EMBO J. 16, 908–916
10. Engel, J., and Prockop, D. J. (1991) Annu. Rev. Biophys. Biophys. Chem. 20, 137–152
11. McLaughlin, S. H., and Bulleid, N. J. (1997) Matrix Biol. 16, 369–377
12. Bulleid, N. J. (1996) Cell. Dev. Biol. 7, 667–672
13. Wilson, R., Lee, J. F., and Bulleid, N. J. (1998) J. Biol. Chem. 273, 9637–9643
14. Nagata, K. (1996) Folding & Design 1, 25–26
15. Lees, J. F., Tasab, M., and Bulleid, N. J. (1997) EMBO J. 16, 908–916
16. Bulleid, N. J., Dalley, J. A., and Lees, J. F. (1997) EMBO J. 16, 6684–6701
17. Bachinger, H. P., Bruckner, P., Timpl, R., Prockop, D. J., and Engel, J. (1986) Eur. J. Biochem. 160, 619–632
18. Sakakibara, S., Inouye, K., Shudo, K., Kishida, Y., Kohayashi, Y., and Prockop, D. J. (1973) Biochim. Biophys. Acts 303, 198–202
19. Pizzuti, A., and Sherman, M. S. (1970) Biochemistry 9, 4134–4140
20. Sutoh, K., and Noda, H. (1974) Biopolymers 13, 2477–2488
21. Weidner, H. (1975) Biopolymers 14, 763–780
22. Shah, N. K., Ramshaw, J. A. M., Kirkpatrick, A., Shah, C., and Brodsky, B. (1990) Biochemistry 30, 10262–10268
23. Chan, V. C., Ramshaw, J. A. M., Kirkpatrick, A., Beck, K., and Brodsky, B. (1997) J. Biol. Chem. 272, 31441–31446
24. Yang, W., Han, Y., C., Kirkpatrick, A., Ramshaw, J. A. M., and Brodsky, B. (1997) J. Biol. Chem. 272, 28837–28840
25. Ramshaw, J. A. M., Shah, N. S., and Brodsky, B. (1998) J. Struct. Biol. 122, 86–91
26. Long, C. G., Braswell, E., Zhu, D., Apigo, J., Baum, J., and Brodsky, B. (1993) Biochemistry 32, 11688–11695
27. Brodsky, B. (1990) In The Protein Folding Problem (Gierasch, L., and King, J., eds) pp. 55–62, American Association for the Advancement of Science, Washington, D. C.
28. Bachinger, H. P., Bruckner, P., Timpl, R., and Engel, J. (1978) Eur. J. Biochem. 90, 605–615
29. Bachinger, H. P. (1987) J. Biol. Chem. 262, 17144–17148
30. Von Hippel, P. H., and Harrington, W. F. (1959) Biochim. Biophys. Acts 36, 457–467
31. Liu, X., Siegel, D. L., Fan, P., Brodsky, B., and Baum, J. (1996) *Biochemistry* **35**, 4306–4313

32. Weidner, H., Engel, J., and Fietzek, P. P. (1974) in *Peptides, Polypeptides, and Proteins* (Blout, E. R., Bovey, F. A., Goodman, M., and Lotan, N., eds) pp. 419–435, Wiley, New York

33. Eberhardt, E. S., Panasik, N., Jr., and Raines, R. T. (1996) *J. Am. Chem. Soc.* **118**, 12261–12266

34. Bansal, M., and Ananthanarayanan, V. S. (1988) *Biopolymers* **27**, 299–312

35. Bansal, M. (1977) *Int. J. Pept. Protein Res.* **9**, 224–234

36. Richardson, J. S., and Richardson, D. (1989) in *Prediction of Protein Structure and the Principles of Protein Conformation* (Fasman, G. D., ed) pp. 1–98, Plenum Publishing Corp., New York

37. Vitagliano, L., Nemethy, G., Zagari, A., and Scheraga, H. A. (1993) *Biochemistry* **32**, 7354–7359

38. Bachinger, H. P., Morris, N. P., and Davis, J. M. (1993) *Am. J. Med. Genet.* **45**, 152–162

39. Liu, X., Kim, S., Dai, Q.-H., Brodsky, B., and Baum, J. (1998) *Biochemistry* **37**, 15526–15533