Draft Genome Sequence of an Erythromycin-Resistant Propionibacterium acnes Isolate Recovered from Folliculitis of the Scalp

Guillaume Ghislain Aubin,a,b Stanimir Kambarev,c Aurélie Guillouzouic,a Amir Khammari,d,e Brigitte Dréno,d,e Stéphane Corvec,a,d

Bacteriology and Hygiene department, Nantes University Hospital, Nantes, France; EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections, Institut de Recherche en Santé 2, Nantes, France; Institut de Recherche en Santé de l’Université de Nantes INSERM U892-CNRS 6299 CRCNA Centre de Recherche en Cancérologie Nantes Angers Université de Nantes, Team 13: Nuclear Oncology Research, Nantes, France; Institut de Recherche en Santé de l’Université de Nantes INSERM U892-CNRS 6299 CRCNA Centre de Recherche en Cancérologie Nantes Angers Université de Nantes, Team 2: Clinical and Translational Research in Skin Cancer; Nantes, France; Dermato-Oncology Department, Nantes Hospital, Nantes, France

ABSTRACT Propionibacterium acnes is now well-known and recognized for its implication in the pathogenesis of acne vulgaris. Here, we report the draft genome sequence of an erythromycin-resistant P. acnes strain isolated from a case of folliculitis of the scalp belonging to phytype IA1 and sequence type 18 (ST18).

Propionibacterium acnes is an aerotolerant anaerobic Gram-positive bacterium constituting a significant part of the human skin microbiota (1). Although P. acnes is considered to be commensal and is likely to be found on all healthy adult skin (2), this bacterium is clearly well-known for its implication in the pathogenesis of acne or folliculitis (3–6). Moreover, P. acnes is clearly underestimated in medical device-related infections and sometimes considered a contaminant (7, 8). Using different molecular typing methods (multilocus sequence typing [MLST]/sequence-based strain typing [SLST]), P. acnes strains have been subdivided into six main phylogenetic types: IA1, IA2, IB, IC, II, and III (9, 10). In the acne field, phytype/SLST type IA1/A1 is the most frequent lineage found (9, 11). In the context of this skin disorder, erythromycin, clindamycin, and tetracycline resistances have been extensively reported over the years (12, 13).

Here, we present the draft genome sequence of Propionibacterium acnes HB strain isolated from a patient suffering from folliculitis at Nantes University Hospital, France.

P. acnes HB was grown overnight at 37°C on a Schaedler agar plate (Oxoid, United Kingdom) under an anaerobic atmosphere. Genomic DNA was extracted using a DNeasy blood and tissue kit (Qiagen Gmbh, Germany), as described previously (14). A paired-end library was prepared with NEBNext Ultra DNA library prep kit for Illumina (NEB) and sequenced (2 × 150 bp) on a MiSeq sequencer (Illumina, USA). De novo assembly was performed with Velvet 1.2.10 and VelvetOptimiser 2.2.5 (optimal hash value = 127). A total of 4,394,492 reads were assembled into 21 contigs with an average coverage of 205×. Contig reordering and annotation were performed with Mauve 2.3.1 and the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP), respectively (15, 16). Sequence alignment and comparison were performed with CLC Sequence Viewer 7.0 and BLAST. Average nucleotide identity (ANI) to the P. acnes reference strain KPA171202 was calculated using Oat 0.91 (17).
The draft genome of strain HB (GenBank accession no. MDGS00000000) contains 2,328 genes, 2,275 coding sequences (CDSs), 45 tRNAs, four rRNAs, and four noncoding RNAs. The G+C content was 60.0%, and the ANI value was 99.1%.

Although *Propionibacterium* species on healthy human skin could be highly diverse (18, 19), an increased frequency of IA1/A1 phylotype/SLST has been observed, especially in case of severe acne (5). Despite a conserved core genome of 83% for *P. acnes* (20), with more than 100 genome sequences of *P. acnes* from different clonal complexes or sequence types at that time, genome analysis compared with clinical data can help to better understand how the inflammatory potential of *P. acnes* sequenced strains may influence the severity of skin lesions (4).

P. acnes HB belongs to ST18, phylotype IA1, and SLST A1. Sequence analysis revealed that the 235 rRNA gene is mutated at position 2059 (according to the *Escherichia coli* numbering), thus leading to a high-level resistance to erythromycin. This draft genome will also be used for studying the impact of different virulence factors, especially lipase or hyaluronate lyase on skin innate immunity (21).

ACKNOWLEDGMENTS

This work was supported by an internal grant.

We are most grateful to the GenoBiRD Core Facility for its technical support.

REFERENCES

1. Leccia MT, Auffret N, Poli F, Claudel JP, Corvec S, Dreno B. 2015. Topical acne treatments in Europe. J Eur Acad Dermatol Venereol 29:1485–1492. https://doi.org/10.1111/jdv.12989.
2. Jahns AC, Eilers H, Alexeyev OA. 2016. Transcriptomic analysis of *Propionibacterium acnes* biofilms in vitro. Anaerobe 42:111–118. https://doi.org/10.1016/j.anaerobe.2016.10.001.
3. Lomholt HB, Kilian M. 2010. Population genetic analysis of *Propionibacterium acnes* identifies a subpopulation and epidemic clones associated with acne. PLoS One 5:e12277. https://doi.org/10.1371/journal.pone.0012277.
4. Jasson F, Nagy I, Knol AC, Zuliani T, Khammari A, Dréno B. 2013. Different strains of *Propionibacterium acnes* modulate differently the cutaneous innate immunity. Exp Dermatol 22:587–592. https://doi.org/10.1111/exd.12206.
5. Saint-Jean M, Frenard C, Le Bras M, Aubin GG, Corvec S, Dréno B. 2015. Topical *Propionibacterium acnes* biofilms influence the severity of skin lesions. *Exp Dermatol* 24:330–334. https://doi.org/10.1111/exd.12206.
6. Hershle K, Mobacken H, Möller A. 1979. Chronic non-scarring folliculitis of the scalp. Acta Derm Venerol 59:249–253.
7. Bémer P, Corvec S, Tariel S, Assery N, Bouteille D, Langlois C, Tequi B, Druegeon H, Passuti N, Touchais S. 2008. Significance of *Propionibacterium acnes*-positive samples in spinal instrumentation. Spine 33: E971–E976. https://doi.org/10.1097/BRS.0b013e31818e28dc.
8. Portillo ME, Corvec S, Borens O, Trampuz A. 2013. *Propionibacterium acnes*: an underestimated pathogen in implant-associated infections. BioMed Res Int 2013:804391. https://doi.org/10.1155/2013/804391.
9. Aubin GG, Portillo ME, Trampuz A, Corvec S. 2014. *Propionibacterium acnes*, an emerging pathogen: from acne to implant-infections, from phylotype to resistance. Med Mal Infect 44:241–250. https://doi.org/10.1016/j.medmal.2014.02.004.
10. Brüggemann H, Lomholt HB, Kilian M. 2012. The flexible gene pool of *Propionibacterium acnes* in vivo. PLoS One 7:e38715. https://doi.org/10.1371/journal.pone.0038715.
11. Aubin GG, Jomier C, Portillo ME, Trampuz A, Tettelin H, Kilian M. 2016. Genome stability of *Propionibacterium acnes*: a comprehensive study of indels and homopolymeric tracts. Sci Rep 6:20662. https://doi.org/10.1038/srep20662.
12. Oprica C, Löfmark S, Lund B, Edlund C, Emtestam L, Nord CE. 2005. Genetic basis of resistance in *Propionibacterium acnes* strains isolated from diverse types of infection in different European countries. Anaerobe 11:137–143. https://doi.org/10.1016/j.anaerobe.2005.01.005.
13. Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704.
14. Angiuli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyripides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O. 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. *OMICs* 12:137–141. https://doi.org/10.1089/omi.2008.0017.
15. Lomholt HB, Kilian M. 2014. Clonality and anatomic distribution on the skin of antibiotic resistant and sensitive *Propionibacterium acnes* clones. *Dermatol Ther* 17:434–443. https://doi.org/10.1111/dth.12391.
16. Sardana K. 2016. Heterogeneity and antibiotic resistance in *Propionibacterium acnes* from different clonal complexes. *Front Microbiol* 7:451–454. https://doi.org/10.3389/fmicb.2016.00451.