Tweedy, J; Spyrou, MA; Pearson, M; Lassner, D; Kuhl, U; Gompels, UA (2016) Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection. Viruses, 8 (1). ISSN 1999-4915 DOI: https://doi.org/10.3390/v8010019

Downloaded from: http://researchonline.lshtm.ac.uk/2537461/

DOI: 10.3390/v8010019

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Supplementary Materials: Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection

Joshua Tweedy, Maria Alexandra Spyrou, Max Pearson, Dirk Lassner, Uwe Kuhl and Ursula A. Gompels

Table S1. Geographic prevalence studies separated into CiHHV-6A and CiHHV-6B.

Study	Country	n	CiHHV-6A (%)	CiHHV-6B (%)	References
Donors					
Cord blood	USA (NY)	5638	[19 *] 12 (0.2)	[38 *] 25 (0.4)	(Hall et al., 2008, 2004)
Blood donor-adult	USA (Texas)	100	0 (<1.0)	1 (1.0)	(Hudnall et al., 2008)
Blood donor	Canada (Ontario)	288	0 (<0.3)	0 (<0.3)	(Gravel et al., 2013)
Blood donors-adult	France	200	0 (<0.5)	1 (0.5)	(Geraudie et al., 2012)
Blood donor-adult	UK (London)	500	0 (<0.2)	4 (0.8)	(Leong et al., 2007)
Serum bank-child	UK	610	4 + (0.7)	6 + (1.0)	(Ward et al., 2005)
Blood controls	UK (Northern)	563	1 (0.2)	10 (1.7)	(Bell et al., 2014)
Nails adult	Czech Republic	421	1 (0.2)	3 (0.7)	(Hubacek et al., 2013)
Normal birth/infant-saliva, sera, nails	Southern Africa (Zambia)	495	0 (<0.2)	0 (<0.2)	#
Region Totals	North America N	6026	12 (0.2)	26 (0.4)	
Europe E	2582	6 (0.2)	24 (0.9)		
Donor Total	NA + E	8608	18 (0.2)	50 (0.6)	
Patients					
SOT-Liver	USA	548	1 (0.2)	6 (1.1)	(Lee et al., 2012)
SOT-Kidney	USA	46	0 (<2.0)	1 (2.2)	(Lee et al., 2011)
Leukemic children	Canada (Ontario)	287	1 (0.3)	0 (<0.3)	(Gravel et al., 2013)
SOT-mixed. Blood, tissue, hair samples	Italy	135	1 (0.7)	0 (<0.8)	(Potenza et al., 2009)
SCT-Blood, hair samples	Italy	70	0 (<1.4)	1 (1.4)	(Potenza et al., 2009)
CSF-encephalitis referral child/adult	UK	522	1 (0.2)	5 (1.0)	(Ward et al., 2007)
Hodgkins lymphoma	UK (Northern)	936	1 (0.1)	15 (1.6)	(Bell et al., 2014)
Cardiac referrals	Germany	3610	7 (0.2)	13 (0.4)	(Tweedy et al., 2015)
Malignant disease-blood	Czech Republic	812	7 (0.9)	2 (0.2)	(Hubacek et al., 2013)
Leukemia-child-blood	Czech Republic	339	4 (1.2)	1 (0.3)	(Hubacek et al., 2009)
Transplant donors/recipients-blood, herpesvirus referrals	Japan (Osaka)	2332	1 (0.04)	4 (0.2)	(Tanaka-Taya et al., 2004)
Neonatal intensive care unit, sera	Southern Africa (Zambia)	303	0 (<0.3)	0 (<0.3)	(Tembo et al., 2014)
Leukemia-blood	North Africa (Tunisia)	73	0 (<1%)	1 (1.2%)	(Faten et al., 2012)
Region Totals	North America	881	2 (0.2)	7 (0.8)	
	Europe	6424	21 (0.3)	37 (0.6)	
	Japan, J	2332	1 (0.04)	4 (0.2)	
Patient Total	NA + E + J + A	9719	23 (0.3)	34 (0.4)	
Table S1. Cont.

Study	Country	n	CiHHV-6A (%)	CiHHV-6B (%)	References
	Donor + Patients				
Region Totals					
North America	6907	14 (0.2)	33 (0.5)		
Europe	9006	27 (0.3)	61 (0.7)		
Japan	2332	1 (0.04)	4 (0.2)		
Africa, A	868	0 (<0.1)	1 (0.1)		
ALL NA + E + J + A	19,113	41 (0.2)	74 (0.4)		

* Original numbers screened, then those positively identified listed next; +4 and 6 positively identified; SOT—solid organ transplantation recipients; CSF—cerebral spinal fluid; NA North America; # Musonda, K. and Gompels, U.A., Analyses congenital infections with betaherpesviruses in Zambia, unpublished; manuscript in preparation; ^ References [1,15] type by polymerase gene, which HHV-6A variation may confound [4,16].

Table S2. HHV-6A SNPs detected in CiHHV-6A by deep sequencing.

No.	SNPs U54 HHV-6A > CiHHV-6A	SNPs U54 HHV-6A > CiHHV-6A	HHV-6A % HHV-6A Minor Variant	HHV-6A % HHV-6A Minor Variant	HHV-6A % HHV-6A Minor Variant	
	HHV-6A:U1102, GS & AJ	Changes	Position	2284	5055	5814
1	A > G	-	86,106	<	<	<
2	A > G	-	86,142	17	<	<
3	G > A (AJ only)	-	86,195	17	<	<
4	A > G (AJ only)	I > T	86,329	16	<	<
5	G > T (AJ only)	L > I	86,372	16	<	<
6	T > C	[S, A, T > M]	86,379	17	<	<
7	G > A	[S, A, T > M]	86,380	18	<	<
8	C (U1102) A (GS) > T	S, A, T > M	86,381	<	<	<
9	T > C	T > A	86,387	16	<	<
10	G > C	-	86,400	17	<	<
11	T > C (GS only)	-	86,514	14	<	<
12	T > C	T > A	86,537	30	<	4
13	G > T	T > N	86,608	31	<	<
14	A > G	-	86,613	31	<	<
15	A > G	-	86,619	31	<	<
16	C > A	V > F	86,627	30	<	<
17	G > A	-	86,638	28	<	<
18	G > A	P > S	86,645	25	<	<
19	A > G	-	86,720	17	<	<
20	T > A (GS only)	-	86,724	<	<	<
21	G > T	A > D	86,761	16	<	<
22	A > C	[I, L > R]	86,791	17	<	<
23	T > G (GS only)	I, L > R	86,792	<	<	<
24	T > C (AJ only)	N > D	86,801	17	<	<
25	G > T (U1102)	K, N > I	86,811	<	<	<
26	T > A	[K, N > I]	86,812	16	<	<
27	A > G	-	86,859	14	<	<
28	T > C	N > D	86,891	19	<	<
29	C > G (U1102 only)	G > A	86,893	<	<	<
30	G > T	T > N	86,896	19	<	<
31	C > T (U1102 only)	-	86,943	<	<	<
32	A > C (GS only)	N > K	86,949	<	<	<
33	G > T (U1102 only)	Q > K	87,011	<	<	<
34	T > C	K > R	87,016	22	<	<
35	A > G	-	87,036	21	<	<
36	C > T	A > T	87,092	16	<	<
37	C > T (U1102 and AJ)	R > H	87,100	16	<	<
38	A > G (GS only)	S > P	87,110	<	<	<
Table S1. Cont.

No.	SNPs U54 HHV-6A > CiHHV-6A	SNPs U54 Amino Acid	HHV-6A U1102	% HHV-6A Minor Variant SNPs in CiHHV-6A		
	HHV-6A:U1102, GS & AJ	Changes	Position	2284	5055	5814
39	C > A (GS only)	A > S	87,119	<	<	<
40	T > C (GS only)	M > V	87,128	<	<	<
41	G > C	N > K	87,129	20	<	<
42	G > A	H > Y	87,137	19	<	<
43	T > G	R > S	87,171	18	<	<
44	A > T	I > N	87,199	18	<	2
45	C > A	Q > R	87,204	18	<	<
46	T > C	Q > R	87,205	18	<	3
47	T > C	T > A	87,266	15	<	<
48	A > G	I > T	87,289	15	<	<
49	T > C (GS)	-	87,299	<	<	<
50	A > G (U1102 and AJ)	S > P	87,308	15	<	<
51	A > G (GS)	S > P	87,314	<	<	<

Mean read depths from new sequences from this study (methods 2.3) were for endogenous CiHHV-6A genomes from patients 2284, 5055 and 5814 it was 314, 9943 and 8941 respectively. Comparisons were made to all available reference genomes, from exogenous HHV-6A strains U1102, GS and AJ (methods 2.2). SNP% cutoffs were <0.5% reads indicated by <. Coding from the opposite strand. Brackets [] indicate same codon giving the coding change.

Figure S1. (a) Structure of CiHHV-6A/B underlined as integrated into the sub-telomeric region of human chromosomes. DR-L is the left direct repeat and DR-R is the right direct repeat in the prototype orientation of the virus genome, and bound the unique region, U, encoding most coding sequences; (b) The structure of the DR region from HHV-6A/B which includes the pac 1 and pac 2 DNA packaging signals, imperfect telomeric repeat region T1, perfect telomeric repeat region T2, and spliced coding sequences for genes DR1 and DR6. In the CiHHV-6A/B genomes the DR regions do not have the terminal pac sites.
References

1. Bell, A.J.; Gallagher, A.; Mottram, T.; Lake, A.; Kane, E.V.; Lightfoot, T.; Roman, E.; Jarrett, R.F. Germ-line transmitten, chromosomally integrated HHV-6 and classical Hodgkin lymphoma. PLoS ONE 2014, 9, e112642.

2. Faten, N.; Agnes, G.D.; Nadia, B.F.; Nabil, A.B.; Monia, Z.; Abderrahim, K.; Henri, A.; Salma, F.; Mahjoub, A. Quantitative analysis of human herpesvirus-6 genome in blood and bone marrow samples from Tunisian patients with acute leukemia: a follow-up study. Infect. Agent Cancer 2014, 7, 31, doi:10.1186/1750-9378-7-31.

3. Geraudie, B.; Charrier, M.; Bonnafous, P.; Heurte, D.; Desmonet, M.; Bartoletti, M.A.; Penasse, C.; Agut, H.; Gautheret-Dejean, A. Quantitation of human herpesvirus-6A, -6B and -7 DNAs in whole blood, mononuclear and polymorphonuclear cell fractions from healthy blood donors. J. Clin. Virol. 2012, 53, 151–155.

4. Gravel, A.; Sinnett, D.; Flamand, L. Frequency of chromosomally-integrated human herpesvirus 6 in children with acute lymphoblastic leukemia. PLoS ONE 2013, 8, e84322.

5. Hall, C.B.; Caserta, M.T.; Schnabel, K.; Shelley, L.M.; Marino, A.S.; Carnahan, J.A.; Yoo, C.; Lofthus, G.K.; McDermott, M.P. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatr. Microbiol. 2008, 122, 513–520.

6. Hall, C.B.; Caserta, M.T.; Schnabel, K.C.; Boettrich, C.; McDermott, M.P.; Lofthus, G.K.; Carnahan, J.A.; Dewhurst, S. Congenital infections with human herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7). J. Pediatr. 2004, 145, 472–477.

7. Hubacek, P.; Hrdlickova, A.; Spacek, M.; Zajac, M.; Muzikova, K.; Sedlacek, P.; Cetkovsky, P. Prevalence of chromosomally integrated HHV-6 in patients with malignant disease and healthy donors in the Czech Republic. Folia Microbiol. 2013, 58, 87–90.

8. Hubacek, P.; Muzikova, K.; Hrdlickova, A.; Cinek, O.; Hynicka, K.; Hrstkova, H.; Sedlacek, P.; Stary, J. Prevalence of HHV-6 integrated chromosomally among children treated for acute lymphoblastic or myeloid leukemia in the Czech Republic. J. Med. Virol. 2009, 81, 258–263.
9. Hudnall, S.D.; Chen, T.; Allison, P.; Tyring, S.K.; Heath, A. Herpesvirus prevalence and viral load in healthy blood donors by quantitative real-time polymerase chain reaction. *Transfusion* 2008, 48, 1180–1187.

10. Lee, S.O.; Brown, R.A.; Eid, A.J.; Razonable, R.R. Chromosomally integrated human herpesvirus-6 in kidney transplant recipients. *Nephrol. Dial. Transplant.* 2011, 26, 2391–3239.

11. Lee, S.O.; Brown, R.A.; Razonable, R.R. Chromosomally integrated human herpesvirus-6 in transplant recipients. *Transpl. Infect. Dis.* 2012, 14, 346–354.

12. Leong, H.N.; Tuke, P.W.; Tedder, R.S.; Khanom, A.B.; Eglin, R.P.; Atkinson, C.E.; Ward, K.N.; Griffiths, P.D.; Clark, D.A. The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. *J. Med. Virol.* 2007, 79, 45–51.

13. Potenza, L.; Barozzi, P.; Masetti, M.; Pecorari, M.; Bresciani, P.; Gautheret-Dejean, A.; Riva, G.; Vallerini, D.; Tagliazucchi, S.; Codeluppi, M.; et al. Prevalence of human herpesvirus-6 chromosomal integration (CIHHV-6) in Italian solid organ and allogeneic stem cell transplant patients. *Am. J. Transplant.* 2009, 9, 1690–1697.

14. Tanaka-Taya, K.; Sashihara, J.; Kurahashi, H.; Amo, K.; Miyagawa, H.; Kondo, K.; Okada, S.; Yamanishi, K. Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. *J. Med. Virol.* 2004, 73, 465–473.

15. Tembo, J.; Kabwe, M.; Chilukutu, L.; Chilufya, M.; Mwaanza, N.; Chabala, C.; Zumla, A.; Bates, M. Prevalence and risk factors for betaherpesvirus DNAemia in infants aged between 3 weeks and 2 years of age, admitted to a large referral hospital in sub-Saharan Africa. *Clin Infect Dis.* 2014, doi:10.1093/cid/ciu853.

16. Tweedy, J.; Spyrou, M.A.; Hubacek, P.; Kuhl, U.; Lassner, D.; Gompels, U.A. Analyses of germline, chromosomally integrated human herpesvirus 6A and B genomes indicate emergent infection and new inflammatory mediators. *J. Gen. Virol.* 2015, 96, 370–389.

17. Ward, K.N.; Andrews, N.J.; Verity, C.M.; Miller, E.; Ross, E.M. Human herpesviruses-6 and -7 each cause significant neurological morbidity in Britain and Ireland. *Arch. Dis. Child.* 2005, 90, 619–623.

18. Ward, K.N.; Leong, H.N.; Thiruchelvam, A.D.; Atkinson, C.E.; Clark, D.A. Human herpesvirus 6 DNA levels in cerebrospinal fluid due to primary infection differ from those due to chromosomal viral integration and have implications for diagnosis of encephalitis. *J. Clin. Microbiol.* 2007, 45, 1298–1304.