Existence of non-coercive Lyapunov functions is equivalent to integral uniform global asymptotic stability

Andrii Mironchenko · Fabian Wirth

Received: 7 June 2018 / Accepted: 6 March 2019 / Published online: 14 March 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
In this paper, a class of abstract dynamical systems is considered which encompasses a wide range of nonlinear finite- and infinite-dimensional systems. We show that the existence of a non-coercive Lyapunov function without any further requirements on the flow of the forward complete system ensures an integral version of uniform global asymptotic stability. We prove that also the converse statement holds without any further requirements on regularity of the system. Furthermore, we give a characterization of uniform global asymptotic stability in terms of the integral stability properties and analyze which stability properties can be ensured by the existence of a non-coercive Lyapunov function, provided either the flow has a kind of uniform continuity near the equilibrium or the system is robustly forward complete.

Keywords Nonlinear control systems · Infinite-dimensional systems · Lyapunov methods · Global asymptotic stability

1 Introduction
The theory of Lyapunov functions is one of the cornerstones in the dynamical and control systems theory. The numerous applications of Lyapunov theory include characterizations of stability properties of equilibrium points and more complex attractors [6,12,15,29], conditions for forward completeness of trajectories [1], criteria for the existence of a bounded absorbing ball [2, Theorem 2.1.2], etc. Some of these uses extend from finite-dimensional applications to the infinite-dimensional case, while others rely on distinctly finite-dimensional arguments.
On the other hand, numerous converse results have been obtained which prove the existence of certain types of Lyapunov functions characterizing different stability notions. Indeed, before starting to look for a Lyapunov function it is highly desirable to know in advance that such a Lyapunov function for a given class of systems exists. The first results guaranteeing existence of Lyapunov functions for asymptotically stable systems appeared in the works of Kurzweil [14] and Massera [17]. These have been generalized in different directions, see [12,20] for references.

The standard definition of a Lyapunov function, V, found in many textbooks on finite-dimensional dynamical systems is that it should be a continuous (or more regular) positive definite and proper function, i.e., a function for which there exist \mathcal{K}_∞ functions ψ_1, ψ_2, α such that

$$\psi_1(\|x\|) \leq V(x) \leq \psi_2(\|x\|) \quad \forall x \in X,$$

where X is the state space of the system and such that

$$\dot{V}(x) \leq -\alpha(\|x\|) \quad \forall x \in X,$$

where $\dot{V}(x)$ is some sort of generalized derivative of V along the trajectories of the system.

If V is as above with the exception that instead of (1), V satisfies the weaker property

$$0 < V(x) \leq \psi_2(\|x\|), \quad x \neq 0,$$

then V is called a non-coercive Lyapunov function.

Non-coercive Lyapunov functions are frequently used in linear infinite-dimensional systems theory. There are at least two reasons for this. On the one hand, using the generalized Datko lemma [5,16] one can show that the existence of non-coercive Lyapunov functions already proves exponential stability of a linear system (and thus it is not necessary to look for coercive Lyapunov functions). On the other hand, non-coercive Lyapunov functions are in a certain sense even more natural than coercive ones. For example, a classic type of Lyapunov functions for linear exponentially stable systems over Hilbert spaces are quadratic Lyapunov functions constructed by solving the operator Lyapunov equation [3, Theorem 5.1.3]. However, solutions of this equation are not coercive in general, and hence, the corresponding Lyapunov functions are not coercive either.

In spite of these advantages, the usage of non-coercive Lyapunov functions was limited to linear infinite-dimensional systems and to nonlinear time-delay systems, for which the efficient method of Lyapunov–Krasovskii functionals is widely used [7,22] (Lyapunov–Krasovskii functionals have, however, a different type of non-coercivity, see [19] for a comparison and discussion). Recently, the situation has changed: in [20] the authors have shown that for a broad class of forward complete non-linear infinite-dimensional systems the existence of a non-coercive Lyapunov function ensures uniform global asymptotic stability (UGAS) of a system, provided the flow of the system has a certain uniform continuity at the origin and finite-time reachability.

1 An increasing, unbounded, continuous, positive definite function from \mathbb{R}_+ to itself that maps 0 to 0.
sets of the system are bounded. On the other hand, it was demonstrated in [20] that without these additional assumptions uniform global asymptotic stability cannot be guaranteed, even for systems of ordinary differential equations (ODEs). In particular, the existence of a non-coercive Lyapunov function alone does not ensure forward completeness of the system (in contrast to coercive Lyapunov functions). Hence, although non-coercive Lyapunov functions provide more flexibility for the stability analysis of dynamical systems, further conditions have to be verified separately. Another result of [20] is a construction of a Lipschitz continuous non-coercive Lyapunov function by means of an integration of the solution along trajectories.

In this paper, we continue the investigations initiated in [20]. In our first main result (Theorem 3), we show that forward complete systems possessing non-coercive Lyapunov functions (even if they do not satisfy any further assumptions) enjoy an “integral version” of uniform global asymptotic stability (iUGAS), which is a weaker notion than UGAS. Our second result (Theorem 4) is a converse non-coercive Lyapunov theorem for the iUGAS property. Since iUGAS is weaker than UGAS, a coercive Lyapunov function does not exist for such systems in general. However, we show (without requiring any further regularity of the flow!) that we can construct a non-coercive Lyapunov function for this system. The construction is motivated by [20] and based upon classic converse theorems and Yoshizawa’s method [29, Theorem 19.3], [8, Theorem 4.2.1]. A key tool for achieving our main results are the characterizations of the iUGAS property in terms of weaker stability notions, developed in Theorem 1, which is a third notable result in this work. In Fig. 1 (see Sect. 6), we provide a graphical overview of the results obtained in this paper, in particular, the relationship between the introduced stability notions.

Relations between integral and “classic” stability notions have been studied in a number of papers. In particular, in [28] uniform global asymptotic stability of
finite-dimensional differential inclusions has been characterized via “integral” uniform attractiveness. A natural extension of the iUGAS notion to the case of systems with inputs leads to the nonlinear counterparts of L_2-stability (which was originally introduced in the context of linear systems in the seminal work [30], see also [24]). In [13, 25], it was shown that these extensions are equivalent to input-to-state stability for the systems of ordinary differential equations with Lipschitz continuous nonlinearities.

Although this paper is of rather theoretical nature, we stress that non-coercive Lyapunov functions have been already applied in several contexts. In particular, in [20] applications of the non-coercive Lyapunov methodology have been analyzed for nonlinear evolution equations in Banach spaces with Lipschitz continuous right-hand sides, for linear systems with unbounded input operators, for switched systems with an infinite number of switching modes as well as for homogeneous systems. It was shown that for these classes of systems the assumptions of robustness of the equilibrium point and boundedness of finite-time reachability sets can be weakened or even completely dropped which makes the application of non-coercive Lyapunov functions much easier.

In [18], sufficient conditions for practical UGAS notion in terms of non-coercive Lyapunov functions have been proved. In the same paper, relations between uniform weak attractivity (which is one of the key concepts in this paper) and the closely related concepts of weak attractivity and recurrence are discussed.

Important applications of non-coercive Lyapunov functions to input-to-state stability (ISS) theory have been reported in [21]. It was shown that the existence of a so-called non-coercive ISS Lyapunov function implies ISS for a broad class of nonlinear infinite-dimensional systems. In [9], it was shown that non-coercive ISS Lyapunov functions can be successfully used to study ISS of boundary control systems with boundary inputs. In particular, a non-coercive ISS Lyapunov function has been constructed for a linear heat equation with a boundary Dirichlet inputs, for which no construction of a coercive ISS Lyapunov function is known. We expect that during the next years we will see a number of further applications of the non-coercive Lyapunov methodology.

1.1 Notation

The following notation will be used throughout. By \mathbb{R}_+ we denote the set of nonnegative real numbers. For an arbitrary set S and $n \in \mathbb{N}$, the n-fold Cartesian product is $S^n := S \times \cdots \times S$. The open ball in a normed linear space X endowed with the norm $\| \cdot \|_X$ with radius r and center in $y \in X$ is denoted by $B_r(y) := \{ x \in X \mid \| x - y \|_X < r \}$ (the space X in which the ball is taken will always be clear from the context). For short, we denote $B_r := B_r(0)$. The (norm)-closure of a set $S \subset X$ will be denoted by \overline{S}.

For the formulation of stability properties, the following classes of comparison functions are useful, see [6, 11]. The set \mathcal{H} is the set of functions $\gamma : \mathbb{R}_+ \to \mathbb{R}_+$ that are continuous, strictly increasing and with $\gamma(0) = 0$; \mathcal{H}_∞ is the set of unbounded $\gamma \in \mathcal{H}$; \mathcal{H}_L is the set of continuous $\beta : \mathbb{R}_+^2 \to \mathbb{R}_+$, such that $\beta(\cdot, t) \in \mathcal{H}$, for all $t \geq 0$ and $\beta(r, \cdot)$ is decreasing to 0 for all $r > 0$.

 Springer
2 Problem statement

We consider abstract axiomatically defined time-invariant and forward complete systems on the state space X which are subject to a shift-invariant set of disturbances \mathcal{D}.

Definition 1 Consider the triple $\Sigma = (X, \mathcal{D}, \phi)$, consisting of:

(i) A normed linear space $(X, \| \cdot \|_X)$, called the state space, endowed with the norm $\| \cdot \|_X$.
(ii) A set of disturbance values D, which is a nonempty subset of a certain normed linear space.
(iii) A space of disturbances $\mathcal{D} \subset \{d : \mathbb{R}_+ \to D\}$ satisfying the following two axioms. The axiom of shift invariance states that for all $d \in \mathcal{D}$ and all $\tau \geq 0$ the time shift $d(\cdot + \tau)$ is in \mathcal{D}. The axiom of concatenation is defined by the requirement that for all $d_1, d_2 \in \mathcal{D}$ and for all $t > 0$ the concatenation of d_1 and d_2 at time t

$$
 d(\tau) := \begin{cases} d_1(\tau), & \text{if } \tau \in [0, t], \\ d_2(\tau - t), & \text{otherwise}, \end{cases} (4)
$$

belongs to \mathcal{D}.
(iv) A map $\phi : \mathbb{R}_+ \times X \times \mathcal{D} \to X$, called the transition map.

The triple Σ is called a (forward complete) system, if the following properties hold:

$\Sigma 1$ Forward completeness: for every $(x, d) \in X \times \mathcal{D}$ and for all $t \geq 0$ the value $\phi(t, x, d) \in X$ is well-defined.

$\Sigma 2$ The identity property: for every $(x, d) \in X \times \mathcal{D}$ it holds that $\phi(0, x, d) = x$.

$\Sigma 3$ Causality: for every $(t, x, d) \in \mathbb{R}_+ \times X \times \mathcal{D}$, for every $\tilde{d} \in \mathcal{D}$, such that $d(s) = \tilde{d}(s), s \in [0, t]$ it holds that $\phi(t, x, d) = \phi(t, x, \tilde{d})$.

$\Sigma 4$ Continuity: for each $(x, d) \in X \times \mathcal{D}$ the map $t \mapsto \phi(t, x, d)$ is continuous.

$\Sigma 5$ The cocycle property: for all $t, h \geq 0$, for all $x \in X, d \in \mathcal{D}$ we have

$$
\phi(h, \phi(t, x, d), d(t + \cdot)) = \phi(t + h, x, d).
$$

Here $\phi(t, x, d)$ denotes the state of the system at the moment $t \in \mathbb{R}_+ \times \mathcal{D}$ corresponding to the initial condition $x \in X$ and the disturbance $d \in \mathcal{D}$.

Remark 1 Note that forward completeness is part of our definition of a system. Some results in this paper can be proved without this axiom: sometimes the existence of solutions for initial states from a neighborhood of the equilibrium is sufficient (“local forward completeness”), on several other occasions one can assume existence of each solution on a finite interval and add the so-called boundedness-implies-continuation (BIC) axiom, see [10, Definition 1.4]. However, many concepts studied in this work, such as uniform global attractivity, integral uniform global attractivity, etc., cannot be even defined for systems which are not forward complete, and in order to keep the developments of the paper more clear, we decided to restrict ourselves to the consideration of forward complete systems.

We require a stronger version of forward completeness.
Definition 2 The system $\Sigma = (X, \mathcal{D}, \phi)$ is called robustly forward complete (RFC) if for any $C > 0$ and any $\tau > 0$ it holds that
\[
\sup \{ \| \phi(t, x, d) \|_X | \| x \|_X \leq C, \ t \in [0, \tau], \ d \in \mathcal{D} \} < \infty.
\]
In other words, a system Σ is RFC iff its finite-time reachability sets (emanating from bounded sets) are bounded.

The condition of robust forward completeness is satisfied by large classes of infinite-dimensional systems.

Definition 3 We call $0 \in X$ an equilibrium point of the system $\Sigma = (X, \mathcal{D}, \phi)$, if $\phi(t, 0, d) = 0$ for all $t \geq 0$, $d \in \mathcal{D}$.

Note that according to the above definition, disturbances cannot move the system out of the equilibrium position.

Definition 4 We call $0 \in X$ a robust equilibrium point (REP) of the system $\Sigma = (X, \mathcal{D}, \phi)$, if it is an equilibrium point such that for every $\varepsilon > 0$ and for any $h > 0$ there exists $\delta = \delta(\varepsilon, h) > 0$, satisfying
\[
t \in [0, h], \ \| x \|_X \leq \delta, \ d \in \mathcal{D} \implies \| \phi(t, x, d) \|_X \leq \varepsilon. \quad (5)
\]

In this paper, we investigate the following stability properties of equilibria (or fixed points) of abstract systems.

Definition 5 Consider a system $\Sigma = (X, \mathcal{D}, \phi)$ with a fixed point 0. The equilibrium position 0 is called

(i) Uniformly locally stable (ULS), if for every $\varepsilon > 0$ there is a $\delta > 0$ so that
\[
\| x \|_X \leq \delta, \ d \in \mathcal{D}, \ t \geq 0 \implies \| \phi(t, x, d) \|_X \leq \varepsilon. \quad (6)
\]

(ii) Uniformly globally asymptotically stable (UGAS) if there exists a $\beta \in \mathcal{KL}$ such that
\[
x \in X, \ d \in \mathcal{D}, \ t \geq 0 \implies \| \phi(t, x, d) \|_X \leq \beta(\| x \|_X, t). \quad (7)
\]

(iii) Uniformly (locally) asymptotically stable (UAS) if there exist a $\beta \in \mathcal{KL}$ and an $r > 0$ such that
\[
\| x \|_X \leq r, \ d \in \mathcal{D}, \ t \geq 0 \implies \| \phi(t, x, d) \|_X \leq \beta(\| x \|_X, t).
\]

(iv) Uniformly globally weakly attractive (UGWA), if for every $\varepsilon > 0$ and for every $r > 0$ there exists a $\tau = \tau(\varepsilon, r)$ such that for all $\| x \|_X \leq r$, $d \in \mathcal{D}$
\[
\exists t = t(x, d, \varepsilon) \leq \tau : \| \phi(t, x, d) \|_X \leq \varepsilon.
\]
(v) Uniformly globally attractive (UGATT), if for any \(r, \varepsilon > 0 \) there exists \(\tau = \tau(r, \varepsilon) \) so that
\[
\|x\|_X \leq r, \ d \in \mathcal{D}, \ t \geq \tau(r, \varepsilon) \Rightarrow \|\phi(t, x, d)\|_X \leq \varepsilon.
\]

It is clear that UGAS of 0 implies UGATT of 0, which in turn implies UGW A of 0.

As we will see, in the study of non-coercive Lyapunov functions one arrives very naturally at “integral” versions of the notions stated above:

Definition 6 We call \(0 \in X \) an integrally robust equilibrium point (iREP) of the system \(\Sigma = (X, \mathcal{D}, \phi) \), if it is an equilibrium point and there is \(\alpha \in \mathcal{K} \) such that for every \(\varepsilon > 0 \) and for any \(h > 0 \) there exists \(\delta = \delta(\varepsilon, h) > 0 \), satisfying
\[
\|x\|_X \leq \delta, \ d \in \mathcal{D} \Rightarrow \int_0^h \alpha(\|\phi(s, x, d)\|_X)\, ds \leq \varepsilon.
\] (8)

Definition 7 For a given \(\alpha \in \mathcal{K} \), system \(\Sigma = (X, \mathcal{D}, \phi) \) is called \(\alpha \)-integrally robustly forward complete (\(\alpha \)-iRFC), if for any \(C > 0 \) and any \(\tau > 0 \) it holds that
\[
\sup_{x \in \mathcal{B}_C, d \in \mathcal{D}} \int_0^\tau \alpha(\|\phi(t, x, d)\|_X)\, dt < \infty.
\]

Remark 2 Note that every forward complete system is automatically \(\alpha \)-iRFC for any bounded \(\alpha \in \mathcal{K} \), since \(\int_0^\tau \alpha(\|\phi(t, x, d)\|_X)\, dt < \tau \sup_s \alpha(s) \). On the other hand, if \(\Sigma \) is RFC, then \(\Sigma \) is also \(\alpha \)-iRFC for any \(\alpha \in \mathcal{K} \).

Definition 8 Consider a forward complete system \(\Sigma = (X, \mathcal{D}, \phi) \) with a fixed point at 0. The equilibrium position 0 is called

(i) Integrally uniformly locally stable (iULS) provided there are \(\alpha \in \mathcal{K}, \psi \in \mathcal{K}_\infty \) and \(r > 0 \) so that
\[
\|x\|_X \leq r, \ d \in \mathcal{D} \Rightarrow \int_0^\infty \alpha(\|\phi(s, x, d)\|_X)\, ds \leq \psi(\|x\|_X).
\] (9)

(ii) Integrally uniformly globally stable (iUGS) provided there are \(\alpha \in \mathcal{K}, \psi \in \mathcal{K}_\infty \) so that (9) is valid for \(r := \infty \).

(iii) Integrally uniformly globally attractive (iUGATT) provided there is \(\alpha \in \mathcal{K} \) so that
\[
r > 0 \Rightarrow \lim_{t \to \infty} \sup_{x \in \mathcal{B}_r, d \in \mathcal{D}} \int_t^\infty \alpha(\|\phi(s, x, d)\|_X)\, ds = 0.
\] (10)

(iv) Integrally uniformly globally asymptotically stable (iUGAS) provided there are \(\alpha \in \mathcal{K} \) and \(\beta \in \mathcal{K}, \mathcal{L} \) so that for all \(x \in X, \ d \in \mathcal{D}, \ t \geq 0 \) we have
\[
\int_t^\infty \alpha(\|\phi(s, x, d)\|_X)\, ds \leq \beta(\|x\|_X, t).
\] (11)
Properties (9) and (10) resemble a kind of uniform attractivity. This similarity becomes even more apparent if we rewrite the definition of UGA TT in an equivalent form:

Lemma 1 Let \(\Sigma = (X, \mathcal{D}, \phi) \) be a forward complete system with fixed point 0. Then 0 is UGATT iff there is \(\alpha \in \mathcal{K} \) so that

\[
\lim_{t \to \infty} \sup_{x \in B_r, d \in \mathcal{D}} \alpha(\|\phi(\cdot + t, x, d)\|_{C(X)}) = 0 \quad \forall r > 0,
\]

where \(\|\phi(\cdot + t, x, d)\|_{C(X)} \) is the sup-norm of the “tail” of the trajectory \(\phi \) after the time \(t \).

Proof If 0 is UGATT, then for any \(\alpha \in \mathcal{K}_\infty \) and any \(r, \varepsilon > 0 \) there exists \(\tau = \tau(r, \varepsilon) \) so that

\[
\|x\|_X \leq r, \quad d \in \mathcal{D}, \quad t \geq \tau(r, \varepsilon) \implies \|\phi(t, x, d)\|_X \leq \alpha^{-1}(\varepsilon).
\]

Equivalently, the left-hand side implies \(\alpha(\|\phi(t, x, d)\|_X) \leq \varepsilon \) and taking the limit \(\varepsilon \to +0 \) we arrive at (12). The proof of the converse implication is analogous. \(\square \)

Remark 3 Note that merely choosing a positive definite \(\alpha \) in (12) (i.e., \(\alpha \in C(\mathbb{R}_+, \mathbb{R}_+) \): \(\alpha(0) = 0 \) and \(\alpha(r) > 0 \) for \(r > 0 \)) we do not arrive at any kind of attractivity, since the trajectory may grow to infinity, and \(\alpha(\|\phi(t, x, d)\|_X) \) may converge to zero at the same time. For example, consider \(\dot{x}(t) = x(t), \quad x(t) \in \mathbb{R}, \quad \alpha(r) := \frac{r}{r^2 + 1} \).

Analogously, it is possible to restate the UGS property. In Theorem 2, we will show that UGAS implies iUGAS.

Finally, it is easy to see that

Lemma 2 Let \(\Sigma = (X, \mathcal{D}, \phi) \) be a system. If 0 is a REP, then 0 is an iREP with arbitrary \(\alpha \in \mathcal{K}_\infty \).

Proof Fix \(\alpha \in \mathcal{K}_\infty \). Since 0 is a REP of \(\Sigma = (X, \mathcal{D}, \phi) \), for every \(\varepsilon > 0 \), \(h > 0 \) there is \(\delta = \delta(\varepsilon, h) > 0 \) such that

\[
\|x\|_X \leq \delta, \quad d \in \mathcal{D} \quad \sup_{t \in [0, h]} \|\phi(s, x, d)\|_X \leq \alpha^{-1}\left(\frac{\varepsilon}{h}\right).
\]

Hence it holds that

\[
\|x\|_X \leq \delta, \quad d \in \mathcal{D} \quad \Rightarrow \quad \int_0^h \alpha(\|\phi(s, x, d)\|_X)ds \leq \varepsilon,
\]

which shows 0 is an iREP with the above \(\alpha \). \(\square \)

We now introduce Lyapunov functions which will help in characterizing the UGAS and iUGAS concepts. To this end, we first recall the notion of Dini derivative. For
$h : \mathbb{R} \to \mathbb{R}$, the right-hand lower Dini derivative D_-^+ and the right-hand upper Dini derivative D_+^+ at a point $t \in \mathbb{R}$ are defined by, see [27],

$$D_-^+ h(t) := \lim_{\tau \to +0} \frac{1}{\tau} (h(t + \tau) - h(t)), $$

$$D_+^+ h(t) := \lim_{\tau \to +0} \frac{1}{\tau} (h(t + \tau) - h(t)).$$ \quad (13)

Consider a system $\Sigma = (X, \mathcal{D}, \phi)$ and let $V : X \to \mathbb{R}$ be a map. Given $x \in X, d \in \mathcal{D}$, we consider the (right-hand lower) Dini derivative of the function $t \mapsto V(\phi(t, x, d))$ at $t = 0$ denoted by:

$$\dot{V}_d(x) := \lim_{t \to +0} \frac{1}{t} (V(\phi(t, x, d)) - V(x)).$$ \quad (14)

We call this the Dini derivative of V along the trajectories of Σ. We stress that at this point no continuity assumption has been placed on V.

Remark 4 Please note that the limit inferior and limit superior in the definitions of Dini derivatives in (13) and (14) always exist (though they may be infinite). Thus, for the existence of Dini derivatives we do not have to impose any regularity requirements on the function V or the disturbances d, which makes it possible to use our results in a very general setting. Furthermore, the definition (14) reflects the essence of the differentiation along the trajectory, which makes it very appealing from the mathematical point of view. Of course, computation of the limit in (14) is in general a tough task and various methods can be employed to tackle it for specific classes of systems. For example, in a PDE setting it is possible to compute \dot{V}_d relatively easily on certain dense subsets of X, and then, one can use density arguments to compute $\dot{V}_d(x)$ for all $x \in X$, see, e.g., [4, Section 4.1] for a typical computation of this kind. In time-delay systems, a standard way to compute \dot{V}_d is to use the so-called Driver derivative (under certain regularity conditions on the nonlinearity and the disturbances d). For ODE systems and Lipschitz continuous V, one can compute \dot{V}_d explicitly for almost all $x \in X$.

Having introduced the main stability properties, we introduce now a predominant tool for their study, which is a Lyapunov function.

Definition 9 Consider a system $\Sigma = (X, \mathcal{D}, \phi)$ and a function $V : X \to \mathbb{R}_+$, satisfying for each $y \in X$, each $s > 0$ and each $d \in \mathcal{D}$ the inequalities

$$\lim_{h \to +0} V(\phi(s - h, y, d)) \geq V(\phi(s, y, d)) \geq \lim_{h \to +0} V(\phi(s + h, y, d)).$$ \quad (15)

Assume also that the right inequality in (15) is satisfied for $s := 0$ as well. The map V is called:
(i) A non-coercive Lyapunov function for the system \(\Sigma = (X, D, \phi) \), if \(V(0) = 0 \) and if there exist \(\psi_2 \in K_\infty \) and \(\alpha \in \mathcal{K} \) such that
\[
0 < V(x) \leq \psi_2(\|x\|_X) \quad \forall x \in X \setminus \{0\}.
\]
holds and the Dini derivative of \(V \) along the trajectories of \(\Sigma \) satisfies
\[
\dot{V}_d(x) \leq -\alpha(\|x\|_X)
\]
for all \(x \in X \) and all \(d \in D \).

(ii) A (coercive) Lyapunov function if in addition there is \(\psi_1 \in K_\infty \) satisfying
\[
\psi_1(\|x\|_X) \leq V(x) \quad \forall x \in X.
\]
The inequalities (15) say that if a Lyapunov function is not continuous along a trajectory at some point, then its value jumps down at this point.

The following result is known:

Proposition 1 Let \(\Sigma = (X, D, \phi) \) be a system. Then:

(i) If there exists a coercive continuous Lyapunov function for \(\Sigma \), then \(0 \) is UGAS.

(ii) If there exists a non-coercive continuous Lyapunov function for \(\Sigma \), and if \(\Sigma \) is RFC and \(0 \) is a robust equilibrium, then \(0 \) is UGAS.

Proposition 1 (i) is a classic result, and item (ii) has been shown in [20], where the concept of a non-coercive Lyapunov function for nonlinear systems has been introduced and analyzed. There is an apparent distinction in the results (i) and (ii), in that in item (ii) the existence of a non-coercive Lyapunov function implies UGAS, provided that REP and RFC hold. In case that either REP or RFC do not hold, non-coercive Lyapunov functions do not imply UGAS, as demonstrated by examples in [20].

This difference in the formulations of items (i) and (ii) of Proposition 1 motivates the first question:

What are the stability properties, which can be inferred from the existence of a non-coercive Lyapunov function, without requiring any further assumptions on \(\Sigma \)?

On the other hand, it is well known, that UGAS implies existence of a coercive Lyapunov function, at least under certain regularity assumptions on the flow of \(\Sigma \). This leads to the second problem which we analyze in this paper:

What property, which is weaker than UGAS, implies existence of a non-coercive Lyapunov function (and at the same time does not imply the existence of a coercive Lyapunov function)?

In Sect. 5, we resolve both these questions by showing that existence of a non-coercive Lyapunov function is equivalent to the iUGAS property. Moreover, in Sect. 3 we show several useful criteria for iUGAS and iUGATT, we give “atomic decompositions” of the UGAS property in Sect. 4. Furthermore, in Sect. 5 we analyze which stability properties can be ensured by the existence of a non-coercive Lyapunov function, if it is only assumed that either 0 is a REP or that the RFC property of \(\Sigma \) holds.
In Fig. 1, a reader can find a graphical overview of the results obtained in this paper, in particular, the relationship between the introduced stability notions.

3 Criteria for iUGATT and iUGAS

In this section, we study “integral” stability properties starting with criteria for integral UGATT and then for iUGAS.

3.1 Criteria for integral UGATT

First we would like to give a criterion for iUGATT in terms of uniform global weak attractivity (UGWA). To this end, we need one more concept:

Definition 10 Let \(\Sigma \) be a forward complete system. We say that the equilibrium point 0 is ultimately (locally) integrally stable (ultimately iULS) if there is \(\alpha \in \mathcal{K} \) so that for any \(\varepsilon > 0 \) there exist \(T = T(\varepsilon) > 0 \) and \(\delta = \delta(\varepsilon) > 0 \) so that

\[
\|x\|_X \leq \delta, \; d \in \mathcal{D} \Rightarrow \int_{T(\varepsilon)}^{\infty} \alpha(\|\phi(t, x, d)\|_X) ds \leq \varepsilon. \tag{18}
\]

Now we are in a position to characterize iUGATT.

Proposition 2 Consider a forward complete system \(\Sigma = (X, \mathcal{D}, \phi) \) with equilibrium point 0. Then 0 is iUGATT with some \(\alpha \in \mathcal{K} \) if and only if 0 is UGWA and ultimately iULS with the same \(\alpha \).

Proof \(\Rightarrow \). Assume 0 is iUGATT for a given \(\alpha \in \mathcal{K} \). Ultimate iULS of 0 (with the same weight function \(\alpha \)) easily follows from iUGATT. Let us show that 0 is UGWA.

Pick any \(R > 0 \) and any \(\varepsilon > 0 \). Since 0 is integrally UGATT, there is a time \(\tilde{\tau} = \tilde{\tau}(R, \varepsilon) \) so that

\[
\sup_{x \in \overline{B}_R, \; d \in \mathcal{D}} \int_{\tilde{\tau}(R, \varepsilon)}^{\infty} \alpha(\|\phi(s, x, d)\|_X) ds \leq \frac{1}{2} \alpha(\varepsilon).
\]

Assume that for some \(x \in \overline{B}_R \), some \(d \in \mathcal{D} \) and all \(s \in [\tilde{\tau}(R, \varepsilon), \tilde{\tau}(R, \varepsilon) + 1] \), it holds that \(\|\phi(s, x, d)\|_X \geq \varepsilon \). Then

\[
\frac{1}{2} \alpha(\varepsilon) \geq \int_{\tilde{\tau}(R, \varepsilon)}^{\infty} \alpha(\|\phi(s, x, d)\|_X) ds \geq \alpha(\varepsilon),
\]

a contradiction. This shows that 0 is uniformly globally weakly attractive with \(\tau(R, \varepsilon) := \tilde{\tau}(R, \varepsilon) + 1 \).

\(\Leftarrow \). Since 0 is ultimately iULS, there exists \(\alpha \in \mathcal{K} \) so that for all \(\varepsilon > 0 \) there are \(\delta(\varepsilon) > 0 \) and \(T(\varepsilon) > 0 \) so that (18) holds.
Pick any $\varepsilon > 0$ and $r > 0$. Since 0 is uniformly globally weakly attractive, there is a time $\tilde{t} = \tilde{t}(r, \varepsilon)$ so that for any $x \in B_r$ and any $d \in \mathcal{D}$ there is a time $\tilde{t} \in [0, \tilde{t}(r, \varepsilon))$ so that $\|\phi(\tilde{t}, x, d)\|_X \leq \delta(\varepsilon)$.

In view of the ultimate iULS property, we have that

$$t \geq T(\varepsilon) \Rightarrow \int_t^\infty \alpha(\|\phi(s, \phi(\bar{t}, x, d), d(\bar{t} + \cdot))\|_X) ds \leq \varepsilon.$$

Due to the cocycle property it holds that

$$\int_t^\infty \alpha(\|\phi(s, \phi(\bar{t}, x, d), d(\bar{t} + \cdot))\|_X) ds = \int_{t+\bar{t}}^\infty \alpha(\|\phi(s, x, d)\|_X) ds.$$

Considering $t \geq \bar{t} + T(\varepsilon)$, it is now easy to see that 0 is iUGATT (with the same α).

Analogously to Proposition 2, one can characterize the UGATT property. We define

Definition 11 Consider a forward complete system $\Sigma = (X, \mathcal{D}, \phi)$ with equilibrium point 0. The fixed point 0 is called ultimately uniformly stable if for any $\varepsilon > 0$ there exist $T = T(\varepsilon) > 0$ and $\delta = \delta(\varepsilon) > 0$ so that

$$t \geq T, \|x\| \leq \delta, d \in \mathcal{D} \Rightarrow \|\phi(t, x, d)\| \leq \varepsilon.$$

Proposition 3 Consider a forward complete system $\Sigma = (X, \mathcal{D}, \phi)$ with equilibrium point 0. Then 0 is UGATT if and only if 0 is ultimately uniformly stable and UGWA.

Proof “\Rightarrow”. Clear.

“\Leftarrow”. Fix $\varepsilon > 0$. Since 0 is ultimately uniformly stable, there are positive $\delta(\varepsilon)$ and $T(\varepsilon)$ so that (19) holds. Now pick any $r > 0$. By uniform global weak attractivity of 0 there is a time $\tilde{t} = \tilde{t}(r, \varepsilon)$ so that for any $x \in B_r(0)$ and any $d \in \mathcal{D}$ there is a time $\bar{t} \in [0, \tilde{t}(r, \varepsilon))$ so that $\|\phi(\bar{t}, x, d)\| \leq \delta(\varepsilon)$.

Due to the cocycle property

$$\phi(t + \bar{t}, x, d) = \phi(t, \phi(\bar{t}, x, d), d(\bar{t} + \cdot)),$$

and in view of ultimate uniform stability we have that

$$t \geq \bar{t} + T(\varepsilon), x \in B_r(0), d \in \mathcal{D} \Rightarrow \|\phi(t, x, d)\| \leq \varepsilon,$$

Specializing this to $t \geq \tilde{t}(r, \varepsilon) + T(\varepsilon)$, we see that 0 is UGATT.
3.2 Characterization of iUGAS

In [20, Proposition 3.7], the following result has been obtained (the statement in [20] was somewhat different, but the proof is exactly the same):

Proposition 4 Consider a forward complete system \(\Sigma = (X, D, \phi) \) with equilibrium point 0. If 0 is iUGS, then 0 is UGWA.

We also note:

Lemma 3 Consider a forward complete system \(\Sigma = (X, D, \phi) \) with equilibrium point 0. Then 0 is iULS if and only if 0 is an iREP and ultimately iULS.

Proof \(\Rightarrow \). This is clear.

\[\leftarrow \]. Since 0 is ultimately iULS, there is \(\alpha_1 \in \mathcal{K} \) so that for any \(\varepsilon > 0 \) there are \(r = r(\varepsilon) > 0 \) and a time \(\tau = \tau(\varepsilon) > 0 \) satisfying

\[\|x\|_X \leq r(\varepsilon), \; d \in \mathcal{D} \Rightarrow \int_0^{\infty} \alpha_1(\|\phi(s, x, d)\|_X)ds \leq \frac{\varepsilon}{2}. \]

Now since 0 is an iREP, there is \(\alpha_2 \in \mathcal{K} \) so that for these \(\varepsilon, \tau \) there is a \(0 < \tilde{\delta} = \tilde{\delta}(\varepsilon) \leq r(\varepsilon) \) so that

\[\|x\|_X \leq \tilde{\delta}, \; d \in \mathcal{D} \Rightarrow \int_0^{\tau} \alpha_2(\|\phi(s, x, d)\|_X)ds \leq \frac{\varepsilon}{2}. \]

Define \(\alpha(s) := \min\{\alpha_1(s), \alpha_2(s)\}, s \geq 0 \). Clearly, \(\alpha \in \mathcal{K} \) and it holds that

\[\|x\|_X \leq \tilde{\delta}, \; d \in \mathcal{D} \Rightarrow \int_0^{\infty} \alpha(\|\phi(s, x, d)\|_X)ds \leq \varepsilon. \]

Without loss of generality, we can assume that \(\tilde{\delta} \) is nondecreasing as a function of \(\varepsilon \). Furthermore, by construction it holds that \(\tilde{\delta} \) can be continuously extended by \(\tilde{\delta}(0) = 0 \). Then it can be lowerbounded by a certain \(\delta \in \mathcal{K} \).

Now iULS of 0 follows by choosing \(\psi(s) := \delta^{-1}(s), s \in [0, \lim_{s \to \infty} \delta(s)) \). \(\square \)

The main result in this section is the characterization of the notion of iUGAS:

Theorem 1 Consider a forward complete system \(\Sigma = (X, D, \phi) \). Then the following statements are equivalent:

(i) \(0 \) is iUGAS.
(ii) \(0 \) is iUGS.
(iii) \(0 \) is iULS (with a certain \(\alpha \in \mathcal{K} \)) and \(0 \) is UGWA.
(iv) \(0 \) is an iREP and \(0 \) is iUGATT.
(v) \(0 \) is iULS and \(0 \) is iUGATT.
(vi) \(0 \) is iUGS and \(0 \) is iUGATT.

Moreover, in item (iv) the function \(\alpha \) can be chosen to be equal to \(\alpha \) from item (iii).
Proof (i) ⇒ (ii) Evident.

(ii) ⇒ (iii) Follows by Proposition 4.

(iii) ⇒ (iv) As 0 is iULS, it follows that it is an iREP. Furthermore, since 0 is UGWA and ultimately iULS with \(\alpha \in \mathcal{H} \), then, by means of Proposition 2, 0 is iUGATT with the same \(\alpha \).

(iv) ⇒ (v) This follows directly from Lemma 3 and Proposition 2.

(v) ⇒ (vi) Note that if 0 is iULS or iUGATT for a certain \(\alpha \in \mathcal{K} \), then the same is true for any \(\tilde{\alpha} \in \mathcal{K} \) with \(\tilde{\alpha} \leq \alpha \) (here \(\leq \) is the pointwise ordering). Thus without loss of generality 0 is both iULS and iUGATT for same \(\alpha \in \mathcal{K} \setminus \mathcal{K}_\infty \).

As 0 is iUGATT we know that for each \(R > 0 \) and \(\varepsilon > 0 \) there is \(\tau := \tau(R, \varepsilon) \) so that

\[
\sup_{x \in B_R, \ d \in \mathcal{D}} \int_0^\infty \alpha(\| \phi(s, x, d) \|_X) \, ds \leq \varepsilon.
\]

Denoting \(\alpha(\infty) := \lim_{s \to \infty} \alpha(s) < \infty \) we see that

\[
\sup_{x \in B_R, \ d \in \mathcal{D}} \int_0^\tau \alpha(\| \phi(s, x, d) \|_X) \, ds \leq \tau \alpha(\infty),
\]

and hence, for all \(R > 0 \),

\[
\tilde{\sigma}(R) := \sup_{x \in B_R, \ d \in \mathcal{D}} \int_0^\infty \alpha(\| \phi(s, x, d) \|_X) \, ds < \infty.
\]

Clearly, \(\tilde{\sigma} \) is a nondecreasing function of \(R \), and so there exist \(\overline{\sigma} \in \mathcal{K}_\infty \) and \(c > 0 \) so that \(\tilde{\sigma}(r) \leq \overline{\sigma}(r) + c \) for all \(r \in \mathbb{R}_+ \). Consequently, for any \(x \in X \) and any \(d \in \mathcal{D} \) we obtain

\[
\int_0^\infty \alpha(\| \phi(s, x, d) \|_X) \, ds \leq \overline{\sigma}(\| x \|_X) + c.
\] \hspace{1cm} (20)

As 0 is iULS, there exist \(\psi \in \mathcal{K}_\infty \) and \(r > 0 \) so that

\[
\| x \|_X \leq r, \ d \in \mathcal{D} \Rightarrow \int_0^\infty \alpha(\| \phi(s, x, d) \|_X) \, ds \leq \psi(\| x \|_X).
\] \hspace{1cm} (21)

Using (20), (21) and standard manipulations of \(\mathcal{K}_\infty \)-functions (see, e.g., [26, proof of Lemma I.2, p. 1287]), it may be seen that there is a \(\sigma \in \mathcal{K}_\infty \) so that

\[
x \in X, \ d \in \mathcal{D} \Rightarrow \int_0^\infty \alpha(\| \phi(s, x, d) \|_X) \, ds \leq \sigma(\| x \|_X).
\]

This shows that 0 is iUGS with \(\alpha \in \mathcal{K} \setminus \mathcal{K}_\infty \).

(vi) ⇒ (i) As in the previous step, without loss of generality we may assume that the function \(\alpha \) is the same in the definitions of iUGS and iUGATT. We now consider a fixed, suitable \(\alpha \).
Since 0 is an iUGS equilibrium point, there exists $\psi \in K_\infty$ so that for all $t \geq 0$, $\delta \geq 0$, $\|x\|_X \leq \delta$, $d \in \mathcal{D}$ we have
\[
\int_0^\infty \alpha(\|\phi(t,x,d)\|_X) dt \leq \psi(\delta).
\] (22)

For a fixed $\delta \geq 0$, define $\varepsilon_n := \frac{1}{2^n} \psi(\delta)$, $n \in \mathbb{N}$. Let $\tau_0 := 0$. As 0 is iUGA TT there exist times $\tau_n := \tau(\varepsilon_n, \delta)$, $n \geq 1$, which we assume without loss of generality to be strictly increasing, such that
\[
t \geq \tau_n, \quad \|x\|_X \leq \delta, \quad d \in \mathcal{D} \Rightarrow \int_0^\infty \alpha(\|\phi(s,x,d)\|_X) ds \leq \varepsilon_n.
\]

Define $\omega(\delta, 0) := 2\psi(\delta)$ and $\omega(\delta, \tau_n) := \varepsilon_{n-1}$, for $n \in \mathbb{N}$, $n \neq 0$. Extend the function $\omega(\cdot, \cdot)$ to \mathbb{R}_+ so that $\omega(\delta, \cdot) \in L$. Note that for any $n \in \mathbb{N}$ and for all $t \in (\tau_n, \tau_{n+1})$ it holds that
\[
\int_0^\infty \alpha(\|\phi(s,x,d)\|_X) ds \leq \varepsilon_n < \omega(\delta, t).
\] (23)

Doing this for all $\delta \in \mathbb{R}_+$, we obtain a function $\omega : \mathbb{R}_+^2 \to \mathbb{R}_+$.

Now define $\tilde{\beta}(r, t) := \sup_{0 \leq s \leq r} \omega(s, t) \geq \omega(r, t)$. Obviously, $\tilde{\beta}$ is nondecreasing in the first argument and decreasing in the second. Moreover, for each fixed $t \geq 0$, $\tilde{\beta}(r, t) \leq \sup_{0 \leq s \leq r} \omega(s, 0) = 2\psi(r)$, which implies that $\tilde{\beta}$ is continuous in the first argument at $r = 0$ for any fixed $t \geq 0$. Now Proposition 9 implies that $(r, t) \mapsto \tilde{\beta}(r, t) + |t|e^{-t}$ may be upper bounded by $\beta \in \mathcal{K}\mathcal{L}$ and the estimate (11) is satisfied with such a β.

\[\square\]

Remark 5 Note that in all the integral notions we have assumed that the corresponding function α belongs to the class \mathcal{K}. If we require in the definitions that α must belong to the class K_∞, we obtain stronger versions of the corresponding concepts. The difference is that every forward complete system is automatically α-integrally RFC with $\alpha \in \mathcal{K}\setminus\mathcal{K}_\infty$ (see Remark 2), but it need not be α-integrally RFC for all $\alpha \in K_\infty$.

For the stronger concepts the proof of (iv) \Rightarrow (i) in Theorem 1 does not work as described. In order to close the gap in the proof the stronger version of this implication, we need to strengthen the assumptions in items (iii), (iv) by assuming in addition that the system is α-iRFC with a certain $\alpha \in K_\infty$. Then after some minor modifications, we recover the characterization of iUGAS with $\alpha \in K_\infty$. We leave the details to the reader.

4 “Integral” characterization of the UGAS property

Until now we have worked nearly completely on the level of “integral” notions, which is almost parallel to the world of classic stability notions. Now we are going to relate “integral” and “classic” worlds.
The next proposition shows that classic stability properties can be recovered from their “integral” counterparts combined with the REP property.

Proposition 5 Consider a forward complete system $\Sigma = (X, D, \phi)$. Then the following holds:

(i) If 0 is a REP and iULS, then 0 is ULS.
(ii) If 0 is a REP and iUGATT, then 0 is UGATT and UAS.

Proof (i) Seeking a contradiction, assume that Σ is not uniformly stable in $x^* = 0$. Then there exist an $\epsilon > 0$ and sequences $\{x_k\}_{k \in \mathbb{N}}$ in X, $\{d_k\}_{k \in \mathbb{N}}$ in D, and $t_k \geq 0$ such that $x_k \to 0$ as $k \to \infty$ and

$$\|\phi(t_k, x_k, d_k)\|_X = \epsilon \quad \forall k \geq 1.$$

Since 0 is iULS, there are $\alpha \in \mathcal{K}$ and $\psi \in \mathcal{K}_\infty$ so that for the above ϵ there is a $\delta_1 = \delta_1(\epsilon) > 0$ satisfying

$$\|x\|_X \leq \delta_1, \ d \in D \Rightarrow \int_0^{\infty} \alpha(\|\phi(s, x, d\|_X)\) ds \leq \psi(\|x\|_X). \quad (24)$$

Without loss of generality, we assume that $\|x_k\|_X \leq \delta_1$ for all $k \in \mathbb{N}$. (Otherwise, we can pick a subsequence of $\{x_k\}$ with this property.)

Since 0 is a REP, for the above ϵ there is a $\delta = \delta(\epsilon, 1)$ so that

$$\|x\|_X \leq \delta, \ t \in [0, 1], \ d \in D \Rightarrow \|\phi(t, x, d)\|_X \leq \frac{\epsilon}{2}, \quad (25)$$

Define for this δ the following quantities:

$$\tilde{t}_k := \sup\{t \in [0, t_k] : \|\phi(t, x_k, d_k)\|_X \leq \delta\},$$

provided the supremum is taken over a nonempty set, and $\tilde{t}_k := 0$ otherwise. Denote also $\eta_k := t_k - \tilde{t}_k$, $k \in \mathbb{N}$. There are two possibilities.

First assume that $\{\eta_k\}_{k \in \mathbb{N}}$ does not converge to 0 as $k \to \infty$. Then there is a $\eta^* > 0$ and a subsequence of $\{\eta_{k_m}\}$ so that $\eta_{k_m} \geq \eta^*$ for all $m \geq 1$.

Using (24) for $x := x_{k_m}$, $d := d_{k_m}$ and $t := t_{k_m}$, we see that

$$\eta^* \alpha(\delta) \leq \eta_{k_m} \alpha(\delta) \leq \psi(\|x_{k_m}\|_X).$$

Since $\psi(\|x_{k_m}\|_X) \to 0$ as $m \to \infty$, we obtain a contradiction.

Now assume that $\eta_k \to 0$ as $k \to \infty$. Then there is a $k_1 > 0$ so that $\eta_{k_1} < 1$. In view of a cocycle property, we have that

$$\phi(t_k, x_k, d_k) = \phi(\eta_k, \phi(\tilde{t}_k, x_k, d_k), d_k (\cdot + \tilde{t}_k)).$$

Since $\|\phi(\tilde{t}_k, x_k, d_k)\|_X \leq \delta$, by (25) we obtain $\|\phi(t_k, x_k, d_k)\|_X \leq \frac{\epsilon}{2}$, which contradicts to the assumption that $\|\phi(t_k, x_k, d_k)\|_X = \epsilon$. This shows uniform stability of 0.
(ii) It is easy to see that iUGATT implies ultimate iULS. According to Lemma 2, 0 is an iREP. Using Lemma 3 and Proposition 5 (i) we have that 0 is ULS. Furthermore, by Proposition 2 the equilibrium point 0 is UGW A, and Proposition 3 shows that 0 is UGATT. Finally, since 0 is UGATT and ULS, then 0 is UAS as well. ⊓⊔

Remark 6 We note that in [18, Theorem 3.1] it is shown that if Σ is RFC and 0 is iUGATT or iUGS or iUGAS, then Σ satisfies a property that is termed practically UGAS in [18] and which amounts to validity of (7) with $\beta(\|x\|_X, t) + c$ instead of $\beta(\|x\|_X, t)$, where c is a certain positive number.

Next we show criteria for UGAS in terms of integral stability notions. To this end, we need two technical results. The first one is Sontag’s well-known KL-lemma [25, Proposition 7]:

Lemma 4 For all $\beta \in KL$ there exist $\alpha_1, \alpha_2 \in K_\infty$ with
$$\beta(r, t) \leq \alpha_2(\alpha_1(r)e^{-t}) \quad \forall r \geq 0, \forall t \geq 0.$$ \hfill (26)

The second one is a characterization of UGAS in terms of the UGATT property from [10, Theorem 2.2]:

Proposition 6 Consider $\Sigma = (X, D, \phi)$. Then 0 is UGAS if and only if Σ is robustly forward complete and 0 is a UGATT robust equilibrium point for Σ.

The main result of this section is:

Theorem 2 Consider a forward complete system $\Sigma = (X, D, \phi)$. Then the following statements are equivalent:

(i) 0 is UGAS.
(ii) Σ is RFC and 0 is a REP \land iUGAS.
(iii) Σ is RFC and 0 is a REP \land iUGATT.
(iv) Σ is RFC and 0 is a REP \land UGWA \land ultimately iULS.
(v) Σ is RFC and 0 is a REP \land UGWA \land ultimately ULS.

Proof (i) \Rightarrow (ii) Since 0 is UGAS, there is a $\beta \in KL$ so that (7) holds. In view of Lemma 4 there are $\alpha_1, \alpha_2 \in K_\infty$ so that (26) holds. Set $\alpha := \alpha_2^{-1}$. Then we have for any $r > 0$ and any $t > 0$ it holds that:
$$\sup_{x \in B_r, d \in D} \int_t^\infty \alpha(\|\phi(s, x, d)\|_X)ds \leq \sup_{x \in B_r} \int_t^\infty \alpha(\beta(\|x\|_X, s))ds \leq \int_t^\infty \alpha_1(r)e^{-s}ds = \alpha_1(r)e^{-t}$$

and 0 is iUGAS with $\psi := \alpha_1 \in K_\infty$ and $\alpha \in K_\infty$.

(ii) \Rightarrow (iii) Clear.

(iii) \Leftrightarrow (iv) Follows from Proposition 2

(iii) \Rightarrow (v) Follows from Proposition 5, item (ii).

(v) \Rightarrow (i) Follows from Propositions 3 and 6. \hfill □
Remark 7 [“Atomic decompositions”] Items (iv) and (v) of Theorem 2 give a decomposition of UGAS into elementary stability notions. In some sense, the notions of UGW A, REP, RFC and ultimate ULS and their integral counterparts iREP, ultimate iULS and (possibly) iRFC are the “atoms” by combinations of which the other stability notions can be constructed.

Comparing items (iv) and (v) of Theorem 2 to the analogous “atomic” decompositions of iUGAS shown in Theorem 1, we see that the notion of UGW A plays a remarkable role in such characterizations, supported by the integral variants of REP and ultimate ULS. Uniform global weak attractivity is the common point of the worlds of classic and integral notions, which are otherwise largely parallel.

Remark 8 It is worth mentioning that for the special case of linear systems over Banach spaces without disturbances the notions of UGAS, iUGAS and UGW A coincide, as can be seen from [18, Proposition 5.1].

5 Non-coercive Lyapunov theorems

In this section, we relate the existence of non-coercive Lyapunov functions to the integral stability concepts we have introduced. It is shown that for forward complete systems the existence of non-coercive Lyapunov functions implies iUGAS.

In the next step, we treat a converse result.

5.1 Direct Lyapunov theorems

For the proof of direct Lyapunov theorems, we need the generalized Newton-Leibniz formula (see [23, Theorem 7.3, p. 204-205] and the comments directly after that result):

Proposition 7 Suppose that $F : \mathbb{R} \to \mathbb{R}$ is a function\(^2\) such that for all $x \in \mathbb{R}$ we have

$$\lim_{h \to +0} F(x - h) \leq F(x) \leq \lim_{h \to +0} F(x + h).$$ (27)

Let g be a Perron-integrable\(^3\) function of a real variable satisfying $D^+ F(x) \geq g(x)$ for all $x \in I$. Then for all $a, b > 0$: $a < b$ it holds that

$$F(b) - F(a) \geq (P) \int_a^b g(x)dx,$$ (28)

where (P) indicates that the integral in (28) is a Perron integral.

\(^2\) In the formulation of [23, Theorem 7.3, p. 204-205], the terminology that F is a finite function is used, which means that $F(x) \in \mathbb{R}$ for any $x \in \mathbb{R}$ (see [23, p. 6]).

\(^3\) For a definition of Perron integrability see, e.g., [23, p. 201].
Using Theorem 1 and Proposition 7, we can show that the existence of a non-coercive Lyapunov function implies iUGAS without any further requirements on the flow of the system. If we additionally assume either the REP or the RFC property, we obtain additional stability properties.

Theorem 3 Consider a forward complete system \(\Sigma = (X, \mathcal{D}, \phi) \). Assume that \(V \) is a non-coercive Lyapunov function for \(\Sigma \) with corresponding functions \(\alpha \in \mathcal{K} \) and \(\psi_2 \in \mathcal{K}_\infty \). Then:

(i) The following statements hold:

(i-a) 0 is iUGS with this \(\alpha \) and with \(\psi := \psi_2 \).

(i-b) 0 is iUGATT with this \(\alpha \).

(i-c) 0 is iUGAS.

(ii) If additionally 0 is a REP, then 0 is UGATT and UAS.

(iii) If additionally 0 is a REP and \(\Sigma \) is RFC, then 0 is UGAS.

Proof (i-a) Since \(V \) is a non-coercive Lyapunov function (with a corresponding \(\alpha \in \mathcal{K} \)), we have the decay estimate (17). Pick any \(x \in X \) and any \(d \in \mathcal{D} \) and define \(\xi : \mathbb{R}_+ \to \mathbb{R} \) via \(\xi(t) := -V(\phi(t, x, d)) \).

Along the trajectory \(\phi \) of \(\Sigma \), we have the inequality

\[
\dot{V}_{d(t+)}(\phi(t, x, d)) \leq -\alpha(\|\phi(t, x, d)\|_X), \quad \forall t \geq 0.
\]

Due to the cocycle property, we have

\[
\dot{V}_{d(t+)}(\phi(t, x, d)) = \lim_{h \to +0} \frac{1}{h} (V(h, \phi(t, x, d), d(t+)) - V(\phi(t, x, d)))
\]

\[
= \lim_{h \to +0} \frac{1}{h} (V(\phi(t+h, x, d)) - V(\phi(t, x, d)))
\]

\[
= \lim_{h \to +0} \frac{1}{h} (-\xi(t+h) + \xi(t)) = D_+(-\xi(t)) = -D^+\xi(t).
\]

With this new notation, equation (29) can be rewritten as

\[
D^+\xi(t) \geq \alpha(\|\phi(t, x, d)\|_X), \quad \forall t \geq 0.
\]

In view of (15) and since \(\lim_{h \to +0} -\xi(t+h) = -\overline{\lim}_{h \to +0} \xi(t+h) \), we see that the inequality

\[
\overline{\lim}_{h \to +0} \xi(t-h) \leq \xi(t) \leq \overline{\lim}_{h \to +0} \xi(t+h)
\]

is satisfied for all \(t > 0 \), and the right inequality is satisfied for \(t = 0 \) as well.
Now we can apply Proposition 7 to the above inequality. Since \(t \mapsto \phi(t, x, d) \) is continuous due to the continuity axiom \(\Sigma 4 \), the function \(g : t \mapsto \alpha(\|\phi(t, x, d)\|_X) \) is continuous as well, and thus, it is Riemann integrable on any compact interval in \(\mathbb{R}_+ \). As \(g \) is a positive function, the Riemann and the Perron integral coincide (see [23, p. 203]). Thus in our case the Perron integral in the formula (28) is merely a Riemann integral.

Applying Proposition 7, we obtain:

\[
\xi(t) - \xi(0) \geq \int_0^t \alpha(\|\phi(s, x, d)\|_X) ds, \quad \forall t \geq 0.
\] (32)

Since \(\xi(0) = -V(\phi(0, x, d)) = -V(x) \) due to the identity axiom of \(\Sigma \), the above inequality immediately implies that

\[
V(\phi(t, x, d)) - V(x) \leq -\int_0^t \alpha(\|\phi(s, x, d)\|_X) ds,
\]

which in turn shows that for all \(t \geq 0 \) we have

\[
\int_0^t \alpha(\|\phi(s, x, d)\|_X) ds \leq V(x) \leq \psi_2(\|x\|_X).
\] (33)

Taking the limit \(t \to \infty \), we see that 0 is iUGS.

(i-b) By Proposition 4 and item (i) we see that 0 is UGWA. Checking the proof of the Theorem 1 (implication (iii) \(\Rightarrow \) (iv)), we see that 0 is iUGATT with the same \(\alpha \).

(i-c) Follows from items (i), (ii) and Theorem 1.

(ii) By the item (i-b) of this theorem, 0 is iUGATT. Now Corollary 5 implies that 0 is UGATT and UAS.

(iii) By the item (i-b) of this theorem, 0 is iUGATT. The rest follows from Theorem 2. \(\square \)

Remark 9 Condition (15) means that for each \(x \in X \) and \(d \in D \) the map \(t \mapsto V(\phi(t, x, d)) \) is either continuous at \(t^* \) or the function jumps down at \(t^* \), for arbitrary \(t^* \in \mathbb{R}_+ \).

Remark 10 The crucial difference of Theorem 3 from classic Lyapunov theorems is that we do not assume the coercivity of a Lyapunov function. This makes it impossible to use any kind of a comparison principle to derive the desired UGAS stability property.

On the other hand, in contrast to the non-coercive direct Lyapunov theorem shown in [20] we assume for item (i) of Theorem 3 neither robustness of the trivial equilibrium nor the RFC property of the system \(\Sigma \). (However, we still assume in advance the forward completeness of system \(\Sigma \).) Even under such mild assumptions (and with very mild regularity assumptions on \(V \)), we are able to infer the iUGAS property.

We note that it is also possible to show a practical UGAS property if in addition to the existence of \(V \) we assume RFC, see [18, Corollary 3.10]. Item (iii) of Theorem 3 is slightly stronger than [20, Theorem 3.5], where a more direct proof of this result was given.
5.2 Converse non-coercive Lyapunov theorem

We proceed to the converse Lyapunov theorem.

Theorem 4 Consider a forward complete system $\Sigma = (X, D, \phi)$ and let 0 be an equilibrium of Σ. Assume that Σ is iUGS with $\alpha \in \mathcal{K}$ and $\psi \in \mathcal{K}_\infty$.

Then for any $\rho \in \mathcal{K} \setminus \mathcal{K}_\infty$ so that $\rho(r) \leq \alpha(r)$ for all $r \in \mathbb{R}_+$ it holds that

$$V(x) := \sup_{d \in D} \int_0^\infty \rho(\|\phi(s, x, d)\|_X)ds$$

(34)

is a (possibly non-coercive) Lyapunov function for Σ, satisfying (16) with ψ_2 as above and so that (15) holds.

Before we proceed to the proof of Theorem 4, we would like to stress that in contrast to most of the converse Lyapunov theorems for infinite-dimensional nonlinear systems (as [18], [10, Section 3.4]), we do not impose any additional regularity assumptions on the flow of the system, and in particular, we assume neither continuous dependence on data nor robustness of the equilibrium point nor the RFC property.

Theorems 3 and 4 together show that non-coercive Lyapunov functions are a natural tool for analysis of integral stability properties.

In the proof, we follow ideas from [10, Section 3.4], [18, Theorem 5.6].

Proof (of Theorem 4). Pick any $\rho \in \mathcal{K} \setminus \mathcal{K}_\infty$ so that $\rho(r) \leq \alpha(r)$ for all $r \in \mathbb{R}_+$.

(i) Since 0 is iUGS with α, ψ, it follows that

$$0 \leq V(x) \leq \sup_{d \in D} \int_0^\infty \alpha(\|\phi(s, x, d)\|_X)ds \leq \psi_2(\|x\|_X).$$

Since 0 is an equilibrium of Σ, $\phi(s, 0, d) \equiv 0$ for all $s \geq 0$ and all $d \in D$, which immediately implies that $V(0) = 0$. If $x \neq 0$, then by continuity of solutions, we have for every $d \in D$ a $T > 0$ such that $\phi(t, x, d) \neq 0$ for all $t \in [0, T]$. This implies that $V(x) > 0$ and in summary (16) is satisfied.

(ii) To compute the Dini derivative of V, fix $x \in X$ and $v \in D$. In view of the cocycle property, we have for any $h > 0$:

$$V(\phi(h, x, v)) = \sup_{d \in D} \int_0^\infty \rho(\|\phi(t, \phi(h, x, v), d)\|_X)dt$$

$$= \sup_{d \in D} \int_0^\infty \rho(\|\phi(t + h, x, \tilde{d})\|_X)dt$$

$$= \sup_{d \in D} \int_h^\infty \rho(\|\phi(t, x, \tilde{d})\|_X)dt,$$

where the disturbance function \tilde{d} is defined as

$$\tilde{d}(t) := \begin{cases} v(t), & \text{if } t \in [0, h] \\ d(t - h) & \text{otherwise.} \end{cases}$$
Note that \(\tilde{d} \in \mathcal{D} \) due to the axiom of concatenation. Since \(\tilde{d}(t) = v(t) \) for \(t \in [0, h] \), it holds that
\[
\int_0^h \rho(\|\phi(t, x, v)\|_X)dt + V(\phi(h, x, v)) = \sup_{d \in \mathcal{D}} \left(\int_0^h \rho(\|\phi(t, x, v)\|_X)dt + \int_h^\infty \rho(\|\phi(t, x, \tilde{d})\|_X)dt \right) = \sup_{d \in \mathcal{D}} \int_0^\infty \rho(\|\phi(t, x, \tilde{d})\|_X)dt.
\]
Since the supremum cannot decrease, if we allow a larger class of disturbances, it may be seen that for all \(h > 0 \) we have
\[
\int_0^h \rho(\|\phi(t, x, v)\|_X)dt + V(\phi(h, x, v)) \leq \sup_{d \in \mathcal{D}} \int_0^\infty \rho(\|\phi(t, x, d)\|_X)dt = V(x). \tag{35}
\]

The obtained inequality may be interpreted as an instance of Bellman’s principle. To compute the Dini derivative of \(V \) along trajectories, we note that rearranging the inequality (35) we obtain for all \(h > 0 \) that
\[
\frac{1}{h} \left(V(\phi(h, x, v)) - V(x) \right) \leq -\frac{1}{h} \int_0^h \rho(\|\phi(t, x, v)\|_X)dt. \tag{36}
\]
As the map \(t \mapsto \rho(\|\phi(t, x, v)\|_X) \) is continuous by the axiom of continuity, it follows that
\[
\lim_{h \to +0} \frac{1}{h} \int_0^h \rho(\|\phi(t, x, v)\|_X)dt = \rho(\|x\|_X),
\]
and due to (36) we obtain \(\dot{V}_v(x) \leq -\rho(\|x\|_X) \) and so (17) holds for the given \(\rho \in \mathcal{K} \).

(iii) It remains to show that (15) holds. The right-hand side in this inequality holds (even in \(s = 0 \)) by a direct application of (35) to the case \(x = \phi(s, y, d) \) and arbitrary \(s \geq 0, y \in X, d \in \mathcal{D} \), because the integral on the left-hand side of (35) is always nonnegative.

To show the left-hand side, fix \(d \in \mathcal{D}, s > 0, y \in X \) and \(h \in (0, s) \). Substitute \(x := \phi(s - h, y, d) \) and \(v := d(s - h + \cdot) \) into Bellman’s inequality (35) to obtain
\[
\int_0^h \rho(\|\phi(t, \phi(s - h, y, d), d(s - h + \cdot))\|_X)dt + V(\phi(h, \phi(s - h, y, d), d(s - h + \cdot))) \leq V(\phi(s - h, y, d)).
\]
Using again the cocycle property and rearranging the terms of the above inequality, we conclude for all \(h \in (0, s) \) that

\[
V(\phi(s-h, y, d)) \geq V(\phi(s, y, d)) + \int_0^h \rho(\|\phi(t+s-h, y, d)\|_X)dt.
\]

Arguing as above, we obtain that:

\[
\lim_{h \to +0} V(\phi(s-h, y, d)) \geq V(\phi(s, y, d)).
\]

(37)

This shows (15) and the proof is complete. \(\square \)

6 Conclusions

In order to understand the implications of the existence of non-coercive Lyapunov functions, we have introduced several integral notions of stability, which do not measure the pointwise distance to the equilibrium but rather a weighted average along trajectories. It has been shown that in a quite general setting non-coercive Lyapunov functions characterize these integral notions. Also the relation to standard stability notions are discussed, see also Fig. 1. It will be of interest to investigate how the results obtained here carry over to questions of input-to-state stability (ISS). Some results in this direction have been recently developed in [9,21].

Acknowledgements This research has been supported by the German Research Foundation (DFG) within the project “Input-to-state stability and stabilization of distributed parameter systems” (Grant Wi 1458/13-1).

Appendix

In this appendix, we show a result providing conditions for the existence of a \(K \mathcal{L} \)-bound for a function of two arguments that has been used in our proofs. Although the result may not be surprising for experts, we have not found an explicit reference and so prefer to present the construction here.

We start with an auxiliary statement:

Proposition 8 For any \(z \in C(\mathbb{R}_+, \mathbb{R}) \) and for any \(\varepsilon > 0 \) there is a sequence \(\{R_k\}_{k \in \mathbb{Z}} \subset (0, +\infty) \) satisfying the following properties:

(i) \(R_k \to 0 \) as \(k \to -\infty \).

(ii) \(R_k \to +\infty \) as \(k \to +\infty \).

(iii) \(R_k < R_{k+1} \) for all \(k \in \mathbb{Z} \).

(iv) \(\max_{s \in [R_k, R_{k+1}]} z(s) - \min_{s \in [R_k, R_{k+1}]} z(s) < \varepsilon \), for all \(k \in \mathbb{Z} \).
We stress that by conditions (i), (ii), (iii), zero is the only finite accumulation point of \(\{ R_k \}_{k \in \mathbb{Z}} \).

Proof It is easy to see that a sequence satisfying the properties (i)–(iii) always exists (and can be chosen independently on \(z \)). Pick any such sequence and denote it \(\{ S_k \}_{k \in \mathbb{Z}} \). Since \(z \in C(\mathbb{R}_+, \mathbb{R}) \), by Cantor’s theorem \(z \) is uniformly continuous on \([S_k, S_{k+1}]\) for any \(k \in \mathbb{Z} \). Thus, there exists a partition of \([S_k, S_{k+1}]\) into finitely many subintervals with boundary points \(S_k \) that \(\lim_{t \to \infty} \max_{s \in [S_k, S_{k+1}]} R_k^s(t) = \beta \leq 0 \). Overall, \(\beta \in \mathcal{H} \mathcal{L} \).

Now define the desired sequence \(\{ R_k \}_{k \in \mathbb{Z}} \) by inserting considering the ordered sequence \(\{ S_k \}_{k \in \mathbb{Z}, j=1,...,m_k} \). Clearly, \(\{ R_k \}_{k \in \mathbb{Z}} \) satisfies (i)–(iv). \(\square \)

The following estimation result is useful in our derivations.

Proposition 9 Let \(\psi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+ \) be any function which is nondecreasing and continuous at 0 in the first argument, nonincreasing in the second argument and so that \(\lim_{r \to \infty} \psi(r, t) = 0 \) for any \(r \geq 0 \). Let also \(\psi(0, t) = 0 \) for any \(t \geq 0 \). Then there exists a \(\beta \in \mathcal{H} \mathcal{L} \) such that

\[
\psi(r, t) \leq \beta(r, t) \quad \forall r, t \geq \mathbb{R}_+.
\]

Proof Pick a sequence \(R := \{ R_k \}_{k \in \mathbb{Z}} \subset (0, +\infty) \) satisfying the properties (i)–(iii) of Proposition 8 and another sequence \(\tau := \{ \tau_m \}_{m \in \mathbb{N}} \subset [0, +\infty) \) satisfying the properties (ii)–(iii) of Proposition 8 and so that \(\tau_0 = 0 \). The Cartesian product \(R \times \tau \) defines a mesh over \(\mathbb{R}_+ \times \mathbb{R}_+ \). Let \(\omega \in \mathcal{H} \mathcal{L} \) be arbitrary so that \(\omega(r, t) > 0 \) for all \((r, t) \in (0, \infty) \times \mathbb{R}_+ \).

For each \(k \in \mathbb{Z} \) and \(m \in \mathbb{N} \), \(m \neq 0 \) define

\[
\beta(R_k, \tau_m) := \psi(R_{k+1}, \tau_{m-1}) + \omega(R_{k+1}, \tau_{m-1}).
\]

For \(m = 0 \) define

\[
\beta(R_k, 0) = \beta(R_k, \tau_0) := 2 \psi(R_{k+1}, 0) + \omega(R_{k+1}, 0).
\]

For each \(k \in \mathbb{Z} \) and \(m \in \mathbb{N} \) define \(\beta(r, t) \) for all \((r, t) \) in the triangles with corner points \((R_{k+1}, \tau_m), (R_k, \tau_{m+1}), (R_k, \tau_m)\) or \((R_{k+1}, \tau_m), (R_{k+1}, \tau_{m+1}), (R_k, \tau_{m+1})\) by linear interpolation of the values in the corner points (which have already been defined). This defines the values of \(\beta \) in \((0, +\infty) \times [0, +\infty) = \bigcup_{k \in \mathbb{Z}} \bigcup_{m \in \mathbb{N}} [R_k, R_{k+1}] \times [\tau_k, \tau_{k+1}] \).

Defining \(\beta(0, t) := 0, t \geq 0 \), we see that \(\beta \) is defined over \(\mathbb{R}_+ \times \mathbb{R}_+ \), is continuous, strictly increasing in the first argument and decreasing in the second argument. Since \(\lim_{r \to \infty} \psi(r, t) = 0 \) for any \(r \geq 0 \), it holds also that \(\lim_{r \to \infty} \beta(r, t) = 0 \) for any \(r \geq 0 \). Overall, \(\beta \in \mathcal{H} \mathcal{L} \).
It remains to show that β estimates ψ from above. To see this, pick any $k \in \mathbb{Z}$ and $m \in \mathbb{N}$. For every $(r, s) \in [R_k, R_{k+1}] \times [\tau_m, \tau_{m+1}]$ we have:

$$
\beta(r, s) - \psi(r, s) \geq \beta(R_k, \tau_{m+1}) - \psi(R_{k+1}, \tau_m) \\
= \psi(R_{k+1}, \tau_m) + \omega(R_{k+1}, \tau_m) - \psi(R_{k+1}, \tau_m) \\
= \omega(R_{k+1}, \tau_m).
$$

Hence, $\beta(r, s) \geq \psi(r, s)$ for all $r, s \geq 0$. □

References

1. Angeli D, Sontag ED (1999) Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst Control Lett 38(4–5):209–217
2. Chueshov I (2015) Dynamics of quasi-stable dissipative systems. Springer, Berlin
3. Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, New York
4. Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of infinite-dimensional control systems. Math Control Signals Syst 25(1):1–35
5. Datko R (1970) Extending a theorem of A. M. Liapunov to Hilbert space. J Math Anal Appl 32(3):610–616
6. Hahn W (1967) Stability of motion. Springer, New York
7. Hale JK, Verduyn Lunel SM (1993) Introduction to functional-differential equations, volume 99 of Applied mathematical sciences. Springer, New York
8. Henry D (1981) Geometric theory of semilinear parabolic equations. Springer, Berlin
9. Jacob B, Mironchenko A, Partington JR, Wirth F (2018) Remarks on input-to-state stability and non-coercive Lyapunov functions. In: Proceedings of the 57th IEEE Conference on Decision and Control (CDC 2018). Miami Beach, USA, pp 4803–4808
10. Karafyllis I, Jiang Z-P (2011) Stability and stabilization of nonlinear systems. Springer, London
11. Kellett CM (2014) A compendium of comparison function results. Math Control Signals Syst 26(3):339–374
12. Kellett CM (2015) Classical converse theorems in Lyapunov’s second method. Discrete Continuous Dyn Syst Ser B 20(8):2333–2360
13. Kellett CM, Dower PM (2016) Input-to-state stability, integral input-to-state stability, and L_2-gain properties: qualitative equivalences and interconnected systems. IEEE Trans Automat Control 61(1):3–17
14. Kurzweil J (1956) On the inversion of Lyapunov’s second theorem on stability of motion. Czechoslovak Math J 81:217–259
15. Lin Y, Sontag ED, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34(1):124–160
16. Littman W (1989) A generalization of a theorem of Datko and Pazy. In: Advances in computing and control, vol 130. Lecture notes in control and information sciences. Springer, Berlin, pp 318–323
17. Massera JL (1956) Contributions to stability theory. Ann Math 64(1):182–206
18. Mironchenko A (2017) Uniform weak attractivity and criteria for practical global asymptotic stability. Syst Control Lett 105:92–99
19. Mironchenko A, Wirth F (2017) A non-coercive Lyapunov framework for stability of distributed parameter systems. In: Proceedings of the 56th IEEE conference on decision and control. IEEE, pp 1900–1905
20. Mironchenko A, Wirth F (2017) Non-coercive Lyapunov functions for infinite-dimensional systems. J Differ Equ. https://doi.org/10.1016/j.jde.2018.11.026
21. Mironchenko A, Wirth F (2018) Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans Automat Control 63(6):1602–1617
22. Pepe P, Jiang Z-P (2006) A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett 55(12):1006–1014
23. Saks S (2005) Theory of the integral. Dover Publications, Mineola, NY (reprint of the 2nd rev. ed. (1937))
24. Schnaubelt R (2002) Feedbacks for nonautonomous regular linear systems. SIAM J Control Optim 41(4):1141–1165
25. Sontag ED (1998) Comments on integral variants of ISS. Syst Control Lett 34(1–2):93–100
26. Sontag ED, Wang Y (1996) New characterizations of input-to-state stability. IEEE Trans Automat Control 41(9):1283–1294
27. Szarski J (1965) Differential inequalities. Polish Scientific Publishers PWN, Warszawa
28. Teel A, Panteley E, Loría A (2002) Integral characterizations of uniform asymptotic and exponential stability with applications. Math Control Signals Syst 15(3):177–201
29. Yoshizawa T (1966) Stability Theory by Liapunov’s second method. Mathematical Society of Japan
30. Zames G (1966) On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity. IEEE Trans Automat Control 11(2):228–238

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.