Spontaneous Bacterial Peritonitis: Is It Still A Life-Threatening Issue in Cirrhosis?

Tarsila Campanha da Rocha Ribeiro, Juliano Machado de Oliveira, Fábio Heleno de Lima Pace, Juliana Ferreira de Souza, Pedro Duarte Gaburri, Liliana Andrade Chebli, Kátia Valéria Bastos Dias Barbosa, Antônio Carlos Santana Castro, Júlio Maria Fonseca Chebli

Spontaneous bacterial peritonitis is the commonest and a deadly complication of cirrhosis that happens in 10% to 30% of patients admitted to hospital. The main mechanism that is being associated with its occurrence are bacterial overgrowth with translocation through the increased permeable small intestinal wall and impaired immune defense. The Gram-negative aerobic bacteria are the major pathogens responsible for SBP episodes although Gram-positive bacteria are being considered emergent agents. The ready diagnosis of SBP is a key factor for the decrease in mortality rates observed in recent years. The medical diagnosis is neither sensitive nor specific and the search for new useful and available tools to make it quicker is an important endpoint of current studies. The use of empirical antibiotics, mainly cefotaxime, improves significantly the short-term prognosis of patients with SBP. The recurrence rate is high and antibiotic prophylaxis has been recommended in high-risk scenarios. Unfortunately, the long-term prognosis remains poor.

© 2016 The Authors. Published by ACT Publishing Group Ltd.
complications. Cirrhosis-associated immune dysfunction syndrome (CAIDS) is a multifactorial state of systemic immune dysfunction, which decreases the capacity of clearing cytokines, bacteria and endotoxins from circulation which associated with portosystemic shunts allow fewer bacteria and endotoxins to be cleared by the liver from circulation. The development of bacterial infection exacerbates pre-existing cirulatary dysfunction, predisposes early onset of renal dysfunction, expressed by hepatorenal syndrome, and triggers an overstressed pro-inflammatory response which can lead to organ failure (acute on chronic liver failure) [7–9].

In the past few years the epidemiology of bacterial infection in cirrhotic patients has changed dramatically. Initially, SBP occurred in up to 30% of patients with cirrhosis and ascites, and had an estimated in-hospital mortality of 20% [10]. The prevalence of SBP in outpatients cirrhotic is estimated in 1.5% to 3.5% and in inpatients is about 10%[11,12]. Recent studies have shown that 60% of bacterial infections are community acquired and 40% are nosocomial [13]. Furthermore, several studies from different geographical areas, have reported a significant increase in the number of infections caused by multiresistant bacteria [MR]. The SBP prophylaxis with quinolones and other types of antibiotics, invasive procedures during hospitalization and the stay of cirrhotic patients in healthcare facilities are associated with a change in bacterial flora in these patients. More recent studies highlight the increasing emergence of gram positive cepas as quinolone-resistant organisms.

PATHOPHYSIOLOGY

The clinical context of cirrhosis gives the patient several factors that make them more susceptible to infections, particularly SBP. These factors are markedly influenced by certain clinical conditions of cirrhosis. The presence of ascites itself confers a risk of SBP of about 10% per year [14–16]. The likelihood that it occurs to increase occurs by six to ten times if the protein concentration of the ascitic fluid is less than 1g/dL, as this suggests an indirect clue of reduced concentration of C3 [17]. The progression of cirrhosis with the loss of liver function increases the risk of SBP and over 70% of the cases occur in patients in stage C of Child-Pugh score [18]. A bilirubin level of more than 3.2 mg/dL and platelet count lower than 98,000/ mm³ are considered independently risk factors for SBP and each point in the model for end-stage liver disease (MELD) increases the risk of SBP by about 11% [19]. Gastrointestinal bleeding in patients with advanced liver disease and ascites is associated with the onset of bacteremia and /or SBP in 50% of hemorrhagic episodes [19]. Such clinical conditions keep close relationship with factors linked to the pathogenesis of SBP: bacterial translocation, increased permeability of the intestinal mucosa and local (peritoneal) and systemic immunologic defectiveness.

Bacterial translocation (BT) of enterobacteria is the main source of infectious agent to ascites fluid. Only few intestinal bacteria are able to translocate into mesenteric lymph nodes (MLN), including Escherichia coli, Klebsiella pneumoniae and other Enterobacteriaceae. Interestingly, these species are the commonest agents responsible for SBP, and DNA sequencing studies reveal genotypic identity of bacteria in MLN and ascites in most of the cases. Three factors have been implicated in the development of pathological BT in cirrhosis: (1) derangement in gut microbiota; (2) increased intestinal permeability; and (3) impaired immunity.

The probability of BT’S occurrence is worsened by the trend of small bowel bacterial overgrowth (SIBO) in these patients [19]. Changes on bowel function associated with cirrhosis help bacterial small bowel proliferation. Altered small intestinal motility leads to slower bowel transit time contributing to bacterial overgrowth [20]. Changes in peristalsis can be explained by the predominance of sympathetic stimuli and nitric oxide overproduction [21,22]. A recent meta-analysis found evidence that beta blockers increase gut motility and reduce bacterial translocation, thereby reducing the incidence of infection [23]. Conversely, Madorfer et al addressed the effect of nonselective beta blockers use on patients with cirrhosis and ascites. It was demonstrated that once SBP has developed patients receiving beta blockers had a 58% increase in mortality risk compared with patients who did not receive beta blockers [24]. Currently, the use of non selective beta blockers is been widely studied and two large studies found that they could not only be safe in patients with ascites and do not increase mortality as they could also reduce mortality in those that develop acute on chronic liver failure [25,26].

Some studies had demonstrated that proton pump inhibitors [PPI] cannot only favor intestinal overgrowth but also affect cellular activity increasing the risk of developing bacterial infections. Garcia-Martinez et al [27] described in a recent paper that PPIs significantly reduce the oxidative burst activity of granulocytes and monocytes in patients with decompensated cirrhosis, which is a key mechanism of the immune system bactericidal activity. This affects the physiological control of gastrointestinal bacterial population. Moreover, the undiscriminating use of inhibitors of gastric acid secretion is an independent risk factor to infections in patients with liver cirrhosis and increases the rate of spontaneous bacterial peritonitis among cirrhotic patients receiving pharmacologic acid suppression [28]. On the other hand, a recently published multicenter study evaluated seven hundred seventy patients with a diagnosis of decompensated cirrhosis and did not find an association between the use of proton pump inhibitors and a higher risk of SBP [29]. Khan et al [30] carried out a recent systematic review and meta-analysis concluded that although the studies show a statistically significant relationship between the use of PPI and SBP, it is quantitatively small. Nevertheless, these drugs should be reserved for use in well-defined therapeutic indications and for a limited period of time.

SIBO and BT are topics of major concern in the discussion of SBP and general infection on patients with liver cirrhosis. New studies in this field not only would help understanding the pathogenesis but would also allow new recommendations for this group of patients.

Rifaximin is an antibiotic with broad-spectrum activity against gram-positive and gram-negative microorganisms within the gastrointestinal tract usually used for hepatic encephalopathy prevention. Its main advantage is being nonabsorbable with few side effects. The use of rifaximin in SBP prophylaxis has been studied with controversial results. Kalambokis et al [31] first described in cohort of 16 cirrhotic patients with no previous episode of SBP that rifaximin can reduce SIBO and BT decreasing the incidence of SBP. These results were corroborated by a retrospective study conducted by Hanounen et al [32] in 404 cirrhotic patients in which rifaximin was used for hepatic encephalopathy and avoided the occurrence of SBP. However, two others recently published studies could not confirm these results. Lutz et al [33] studied 152 cirrhotic hospitalized patients that underwent a diagnostic paracentesis. Patients treated with rifaximin for hepatic encephalopathy prophylaxis have not had a reduction in the incidence of SBP. However, the etiology of it had changed with Klebsiella species being found in 75% of patients under rifaximin treatment and no enterococci or Escherichia coli had been observed. A multicenter prospective study evaluated the use of long-term antibiotics, including rifaximin, and proton pump inhibitor in predicting the development of infection in cirrhotic patients. Although the use of rifaximin reaches statistical significance in univariate analysis in increasing subsequent
Spontaneous bacterial peritonitis (SBP) is defined as the presence of more than 250 polymorphonuclear cells/mm³ (PMN) in ascitic fluid with a positive ascitic fluid culture in the absence of an intra-abdominal source of infection or malignancy. The most frequent condition, however, is the finding of an elevated PMN count without a positive ascitic culture that is called culture-negative neutrocytic ascites (CNNA). Individuals with CNNA have comparable clinical presentation and outcomes as patients with SBP and should be treated similarly. Furthermore, we can find positive culture results without PMN count elevation in the ascitic fluid, an entity known as non-neutrocytic bacterascites that can occur in 2% to 3% of outpatients and in up to 11% of hospitalized patients. In this case, if the patient has no symptom suggested of SBP, paracentesis should be repeated after 24-48 hours because this situation can represent either a transient and spontaneously reversible phenomenon or a colonization phase of ascitic fluid or the first step in the development of SBP[52]. If the patient has any symptom suggestive of SBP, some authors recommend that this patient should be managed as having SBP. Although previous studies have shown that a positive culture of ascitic fluid could be achieved with bedside culture bottles inoculation in approximately 93%, nowadays near 60% of ascitic fluid samples with a PMN count > 250 cell mm³ do not show evidence of bacterial growth[44,45]. The low positivity of ascitic fluid culture was confirmed in a study conducted by our group which found a positive culture in only 36% of studied population[44]. One can speculate that this is the result of the low bacteria population in ascitic fluid associated with the increasingly use of prophylactic antibiotics. Independently of culture results, antibiotic treatment should be promptly started in every cirrhotic patient with an ascitic PMN count greater than 250 cells/mm³ as soon as the cultures are obtained due to the high morbidity and mortality risks of SBP. Frequently, patients with SBP are asymptomatic and even if they present any symptom, most of them are unspecific. Therefore, cirrhotic subjects who have ascites and present any type of decompenation (e.g. abdominal pain, encephalopathy or renal dysfunction) or who have been admitted in a hospital for some reason should be considered at potential risk of SBP. Echocardiography is the most common feature related to SBP, followed by abdominal pain and fever[47,48]. In such cases, patients must undergo diagnostic paracentesis. Conversely, it is important to take into account that in cirrhosis all the classical signs and symptoms of infection do not hold true because it is per se a state of partial systemic inflammatory response syndrome and patients can present without fever, leukocytosis or other infectious signs. Hence, the higher suspicion is very important in these patients. A wide range of different tests has been investigated to render SBP diagnosis easier and faster, but none has been proved to be better than the traditional polymorphonuclear count in the ascitic fluid. The utility of urinary dipstick (leukocyte esterase detection resulting from activated neutrophils) has been proposed to reach such targets, but as they were originally developed for use in urinary tract infection the cut-off values are different and the number of false negative is high. Nevertheless, none of the recent guidelines recommends the use of these reagent test strips to assess leukocyte esterase activity of activated PMNs for the diagnosis of SBP owing to unacceptable diagnostic accuracy, mostly because of the high value of false negative results[46-47]. Recently, a new reagent strip test has been calibrated for ascitic fluid with a cut-off of 250 PMN/mm³. Validity scores achievable were reported to be 100% sensitivity and 100% negative predictive value. However, this needs to be confirmed in further studies, but it could be an important tool for a bedside diagnosis of SBP if the results are confirmed[47]. Analyses of lactoferrin or serum procalcitonin is another measure that can be useful for the diagnosis of ascitic inflammatory activity, but initial results need reproduction in studies with greater number of subjects. Neutrophil gelatinase associated lipocalin (NGAL) is a protein involved in iron metabolism that links to bacterial DNA in ascitic fluid. The use of NGAL to differentiate bacterial peritonitis from non-bacterial peritonitis has been studied and the results reported a high diagnostic accuracy, mostly if lactate dehydrogenase (LDH) is added to NGAL[44,45]. However, the use of these markers need to be confirmed and are not yet widely available.
Some biochemical parameters are especially useful on differential diagnosis. The presence of elevated levels of LDH and total protein level associated with low glucose level on ascitic fluid should raise the hypothesis of secondary bacterial peritonitis. The latter usually occurs on the clinical setting of acute abdomen caused by a surgically treatable intra-abdominal source with higher frequency of abdominal pain and clinical decompensation. The diagnosis of secondary peritonitis lay on the presence of 2 out of three of the following criteria: LDH greater than the upper limit of normal for serum, glucose less than 50 mg/dL and protein greater than 1g/dL. The occurrence of multiple organisms on Gram’s stain and a polymicrobial culture increase the possibility of its diagnosis.

Besides ascitic fluid analyses, blood parameters also assist in patient evaluation. Blood count and culture may be useful in confirming the presence of infection and in the identification of the causative agent. Renal function assessment is compulsory due to the great risk of decompensation and the need of immediate therapeutic intervention.

TREATMENT

The development of new antibiotics and the possibility of an earlier diagnosis of SBP have dramatically changed the natural history of resolution from 25% before 1980 to 70% - 90% in the last few years[14, 64]. Although the in-hospital mortality is low and predicted by the presence of renal impairment and a higher MELD score, in-hospital non-infection-related mortality can be as high as 20% to 40%. The one and two-year mortality rates are approximately 70% and 80% percent, respectively[19]. Hence, the occurrence of SBP is still a life-threatening event in cirrhotic patients and liver transplantation should be seriously considered.

Relatively broad-spectrum therapy is warranted in patients with suspected ascitic fluid infection until the results of susceptibility tests are available and it can be narrowed after the results of culture become known. Delaying treatment until the ascitic fluid culture grows bacteria may result in death from overwhelming infection. Nowadays, it seems very important to take into account not only the type and severity of infection, but also the site of acquisition of it, since the strain of bacteria causing SBP may depend mainly on it.

In patients with no previous hospitalization and no prior antibiotic treatment, the causative bacteria still usually belongs to the easily treatable Enterobacteriaceae family. Several antibiotics have been recommended for the initial treatment of SBP. Felisart and colleagues demonstrated the first evidence of cefotaxime efficiency for SBP. The comparison of cefotaxime with the association of ampicillin and tobramycin showed a higher rate of infection resolution with neither nephrotoxicity nor inferiority in those treated with cefotaxime.[18]

Since that, cefotaxime has been considering the standard of care for treatment of SBP.[14, 15] However, one study compared two different doses of cefotaxime in 143 patients with SBP, using 2 g every 6 h and 2 g every 12 h. The rate of infection resolution was the same in both groups (77% versus 79%)[19]. The interval between doses could be less frequent, mainly in patients with renal function impairment. A similar third generation cephalosporin, as ceftriaxone 2 g intravenous daily, is considered a reasonable choice for suspected SBP, in empiric therapy, while the result of ascitic fluid culture is not known.[20, 21] These antibiotics used can cover 95% of the flora including the 3 most common isolates: *Escherichia coli*, Klebsiella pneumoniae, and Streptococcal pneumoniae. The efficacy of the treatment was demonstrated to be similar if the antibiotics are used for 5 or 10 days[22].

Other antibiotics have been studied and are an alternative for SBP treatment, but caution should be taken in avoiding those that have nephrotoxicity and increased risk of multiresistant bacteria development. The use of amoxicillin/clavulanate seemed to be secure and an efficient alternative[23]. Ofloxacin (400 mg bid for an average of eight days) has been demonstrated to be as effective as intravenous cefotaxime in treatment of patients with SBP without vomiting, shock, grade II (or higher) hepatic encephalopathy or serum creatinine greater than 3 mg/dL. The only drawback of this treatment is the recent observation of quinolone-resistant organism emergence[24].

The widespread use of quinolones to SBP’s prophylaxis in high-risk subgroups of patients as well as frequent hospitalizations with invasive procedures associated with the exposure to broad-spectrum antibiotics have led to a change in intestinal flora with more gram-positives and the occurrence of extended-spectrum b-lactamase producing Enterobacteriaceae in recent years[25, 26]. Some risk factors have been identified as important factors for the emergence of multiresistant infections as nosocomial origin of infection, long-term norfloxacin prophylaxis, recent infection with multiresistant bacteria, and recent use of beta-lactam antibiotics. Infections with these resistant organisms are associated with a higher mortality rate[27, 28, 29]. Moreover, none of the international guidelines to date differentiate between nosocomial and community-acquired SBP with regard to the type of antibiotic regimen to be used and new guidelines are urgently needed.

In the setting of nosocomial SBP the recommended antibiotics have recently been proved to achieve not only disappointing but also unacceptable low rates of resolution with third-generation cephalosporins and quinolones reaching levels of resistance of 23% to 44% and 38% to 55%, respectively. Another important issue is the increasing incidence of extended-spectrum b-lactamase (ESBL)-producing bacteria as well as multiresistant Gram-positive bacteria (*Enterococcus faecium*) or methicillin-resistant *Staphylococcus aureus* (MRSA) in this setting. ESBLs cause resistance to various types of newer b-lactam antibiotics (third-generation cephalosporins, monobactams, quinolones, e.g.[30, 31]). In-hospital mortality and/or 30-day mortality have been shown to be increased in nosocomial SBP caused by multiresistant bacteria compared with common bacteria.[32, 33, 34]. It is recommended that, in patients with cirrhosis who develop nosocomial SBP and present with risk factors for multiresistant bacteria, a more effective first-line empirical antibiotic therapy with a broader spectrum should be used, such as carbapenems[35, 36]. Nevertheless, this regimen should be narrowed as soon as possible if microbiological results reveal non-resistant easily treatable causative microorganisms.

One of the most important predictor of death in SBP is renal function impairment that occurs in almost 30% to 40% of patients. The use of plasma volume expansion, such as albumin, decreases the risk of death from 30% to 10%[35, 36]. The use of albumin is based on the theory that plasma volume expansion could attenuate the hemodynamic changes observed in those patients[37]. Albumin is the main circulating antioxidant system in the human body and nowadays it is known that cirrhotic patients have not only a decrease in the synthesis of albumin by the liver but also some degree of impairment in its function. Therefore, serum albumin in cirrhosis is not only reduced but also dysfunctional. Nevertheless, there are some evidences of the beneficial effect of albumin administration and it seems that it is mostly due to its non-oncotic properties.[37]

In the setting of SBP, albumin, but not other plasma expanders such as hydroxyethyl starch (HES), succeeds in hemodynamic...
improvement[89]. The first study that has evaluated the value of albumin infusion in SBP used a dosage of 1.5 g/kg of body weight within 6 hours of diagnosis, followed by 1 g/kg of body weight on day three and demonstrated a reduction in the incidence of renal failure and in-hospital and 3 months’ mortality[81]. A recent meta-analysis of randomized trials considerably confirmed these points: albumin infusion prevents renal impairment and reduces mortality among patients with SBP[82]. Sigal and colleagues have demonstrated in one study that albumin should be given when the serum creatinine is > 1 mg/dL, blood urea nitrogen > 30 mg/dL, or total bilirubin > 4 mg/dL but it is not necessary in patients who do not meet these criteria.[83]

A follow-up ascitic fluid is recommended to document sterility of culture and dramatic decrease in PMN count if the setting, symptoms, ascitic fluid analysis, organism(s), or response to treatment are atypical. Lack of resolution of the infection raises the possibility of secondary peritonitis and should prompt further evaluation and surgical intervention when appropriate. Current guideline recommends changing treatment if PMN count has not decreased at least 25% from pretreatment level after 2 days of treatment[14,64].

PROPHYLAXIS

The recurrence rate after one year of the first episode of SBP has been demonstrated in 40% to 70% of patients with survival rates of 30% to 50% after 1 year and 25% to 30% at 2 years[62,84]. Therefore, the efficacy and role of prophylactic antibiotics is undeniable. Different situations, however, should be set apart.

First, are those patients who had already had a previous episode of SBP. In this group of patients, the recommendation of antibiotic prophylaxis is indisputable. For secondary prophylaxis the strongest evidence is for norfloxacin[85]. The mortality rates could be significantly reduced to 20% in patients submitted to the use of oral norfloxacin (400 mg/day) and the approach advised by the AASLD Guideline, recently published, seems to be cost effective[86]. Other choices had been studied such as the use of trimethoprim/sulfamethoxazole or ciprofloxacin that also appears to be cost-effective[87]. Some guidelines recommend the use of trimethoprim/sulfamethoxazole or oral ciprofloxacin as an alternative. However, there are some drawbacks for this strategy. In the first case, we have to take into account that the data of the use of trimethoprim/ sulfamethoxazole are weak and it is even no longer recommended as the first line of treatment in urinary tract infection due to the higher risk of resistance. In the latter alternative use of intermittent ciprofloxacin has been associated with higher rate of quinolone-resistant organism, a fact that can be potentially dangerous[88]. Therefore, the use of weekly quinolones could not achieve this efficacy and the emergence of resistant pathogens seems to be an actual problem.

The second situation is called primary prophylaxis, and is indicated when the patient had never had an episode of SBP but has risk factor for it. The risk of developing SBP in this group of patients is 13% to 45% in one-year period and the recommendation of primary prophylaxis is not as well defined as the two other cases. The increase in Gram-positive resistance organisms in those who use prolonged antibiotic prophylaxis has been considered a problem to recommend it and some authors disagree with this strategy, limiting the antibiotic employment to in-hospital period[89]. Factors that have been associated with increased SBP incidence are: low protein ascitic fluid (< 1.5 g/dL), impaired renal function (Cr > 1.2 mg/dL, BUN > 25 mg/dL or serum Na < 130 meq/L) or liver failure (Child score > 9 and bilirubin > 3[64,84,85]). In this highly selected ‘high-risk’ group of patients with cirrhosis, norfloxacin reduced the 1-year probability of SBP from 61% to 7% (p < 0.001) and improved the 1-year survival probability from 48% to 60% (p < 0.05)[80]. Nonetheless, guidelines state very cautiously that the long-term use of norfloxacin can be justified or should be considered in these selected patients.

The third setting is the role of SBP prophylaxis in patients with acute gastrointestinal bleeding that is renowned. A meta-analysis evaluated the use of antibiotic prophylaxis for patients with gastrointestinal hemorrhage and reports a significant reduction in the incidence of infections (32%) and an improvement in short-term survival (9%) was also demonstrated[80]. The decrease in the rate of variceal rebleeding could be observed in another study[90]. Although quinolones are frequently used in this scenario, in patients demanding invasive procedures, infections are increasingly caused by Gram-positive bacteria and an intravenous route could be more appropriate. Ceftriaxone intravenously 1 g/d for 7 days has been shown to be superior to oral norfloxacin, mostly in patients with advanced cirrhosis[88]. A French group demonstrated a reduction in hospitalization mortality for patients with variceal hemorrhage from 43% 20 years ago to 15% recently; much of the reduced mortality was attributed to use of antibiotics to prevent infections[81]. The increased emergence of multiresistant pathogens, mostly quinolone-resistant bacteria, has demanded the search for alternative ways of SBP prophylaxis. Other antibiotics such as amoxicillin-clavulanate and trimethoprim/sulfamethoxazole are proved to be efficient[92]. In addition, the use of ciprofloxacin and pranoprofen were evaluated in order to increase the intestinal motility and consequently decrease the bacterial translocation[93]. The studies in animal models reveal the efficacy of such drugs, but their use in humans needs to be demonstrated. Ultimately, the rational use of proton pump inhibitors is also an important issue because these drugs have also been associated with an increased rate of SBP[94-97].

Actually, the importance of this life-threatening condition is being widely studied and the early diagnosis associated with better treatments with drugs that have less nephrotoxicity have dramatically changed the current scenario of SBP. The widespread use of broad-spectrum antibiotics needs to be stopped and further studies on alternatives forms of SBP prophylaxis are expected for the optimal management of such hazardous cirrhosis complication.

The figure 1 tries to propose an algorithm about the evaluation and management of patients with SBP suspicion.

CONCLUSION

SBP is the commonest and life-threatening infection in patients with end-stage liver disease requiring prompt recognition and treatment. Traditionally, it is defined by the presence of >250 polymorphonuclear/mm³ in ascites in the absence of an intra-abdominal source of infection or malignancy. Diagnostic paracentesis should be performed on all patients with ascites at hospital admission because the classical signs of SBP are often absent and in any patient with cirrhosis and renal dysfunction or hepatic encephalopathy. Better and faster diagnostic tools are necessary for the prompt diagnosis of SBP. Timely treatment is both crucial and different depending on the clinical setting. Patients with community-acquired infections must receive recommended first-line antibiotics (i.e. cefotaxime or ceftriaxone) while those with nosocomial infections will require broader spectrum antibiotics (e.g. carbapenems). Patients with SBP must be stratified in low risk and high risk based on renal function and jaundice. Intravenous albumin may reduce the mortality on high-
SBP: spontaneous bacterial peritonitis; CNNA: culture negative neutrocytic ascites; TB: total bilirubin; BUN: urea nitrogen; Cr: creatinin; Na: sodium; K: potassium; INR: international normalization rate; PMN: polymorphonuclear; AF: ascitic fluid; HF: hepatic failure; TP: total protein; CPT: Child-Pugh-Turcotte classification

* Albumin: selected case: TB > 4 mg/dL; Cr > 1 mg/dL; BUN > 30 mg/dL. Dose: First day: 1.5 mg/kg/day; Third day: 1 g/kg/day

** Primary and Secondary prophylaxis: Norfloxacin 400 mg/day

Figure 1 Proposed Algorithm for Ascitic Fluid Management.
risk patients. Prophylaxis is of critical relevance for trying to improve prognosis. Thus, identification of risk factors and particularization of timing and selection of prophylactic measures are the key to success while attenuating the bacterial resistance to multiple antibiotics.

ACKNOWLEDGEMENTS

Author contributions: Ribeiro TCR, Machado JO, Pace FHL, Souza JF, Gaburdi PD, Cheibli LA and Cheibli JMF designed the concept for this review; Ribeiro TCR, Oliveira JM, Pace FHL; Barbosa, KVD and Souza JF performed the literature search; Ribeiro TCR, Machado JO, Pace FHL, Cheibli JMF analyzed the data; Ribeiro TCR, Machado JO, Pace FHL, Souza JF, Cheibli JMF, Gaburdi PD and Cheibli LA composed the paper and revised the manuscript; Ribeiro TCR, Castro ACS, Cheibli JMF assisted with editing the manuscript. All authors approved the final version. Conflict-of-interest statement: Supported by a clinical research fund from the CNPq and FAPEMIG, Brazil.

REFERENCES

1. Ginés P, Quintero E, Arroyo V, Terés J, Bruguera M, Rimola A, Caballero J, Rodés J, Rozman C. Compensated cirrhosis: natural history and prognostic factors. Hepatology 1987; 7:122-8.
2. Runyon BA. Management of adult patients with ascites due to cirrhosis: an update. Hepatology 2009; 49(6):2087-107.
3. Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multi-organ failure in cirrhosis. Semin Liver Dis 2008; 28:26-42.
4. Toledo C, Salmerón JM, Rimola A, Navasa M, Arroyo V, Llach J, Ginés A, Ginés P, Rodés J. Spontaneous bacterial peritonitis in cirrhosis: predictive factors of infection resolution and survival in patients treated with cefotaxime. Hepatology 1993; 17:251-7.
5. Andreu M, Sola R, Síges-Serra A, Alia C, Gallen M, Vila MC, et al. Risk factors for spontaneous bacterial peritonitis in cirrhotic patients with ascites. Gastroenterology 1993; 104:1133-8.
6. Andreu M, Sola R, Síges-Serra A, Alia C, Gallen M, Vila MC, Coll S, Oliver MI. Analysis of clinical course and prognosis of culture-positive spontaneous bacterial peritonitis and neutrocytic aces. Evidence of the same disease. Dig Dis Sci 1992; 37:1499-1504.
7. Arvaniti V, D’Amico G, Fede G, Manousou P, Tsochatzi E, Pleguezuelo M, Burroughs AK. Infections with patients in cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010; 139:1246-56.
8. Nadim MK, Durand F, Kellum JA, Levitsky J, O’Leary JG, Poterucha JJ, Kamath PS, Evans LT, Kim WR, Poterucha JJ, Kamath PS. Spontaneous bacterial peritonitis in cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol 2015; 62:968-74.
9. Garcia-Tsao G. Spontaneous bacterial peritonitis: a historical perspective. J Hepatol 2004; 41:522-7.
10. Evans LT, Kim WR, Poterucha JJ, Kamath PS. Spontaneous bacte-
rial peritonitis in asymptomatic outpatients with cirrhotic ascites. Hepatology 2003; 37(4):897-901.
11. Castellote J, Girbau A, Maisterra S, Chahú N, Ballester R, Xiol X. Spontaneous bacterial peritonitis and bacterascites prevalence in asymptomatic cirrhotic outpatients undergoing large-volume paracentesis. J Gastroenterol Hepatol 2008; 23:256-9.
12. Pleguezuelo M, Benitez JM, Jurado J, Montero JL, De la Mata M. Diagnosis and management of bacterial infections in decompen-
sated cirrhosis. World J Hepatol 2013; 5:16-25.
13. Runyon BA. Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012. Hepatology 2013; 57:1651-3.
14. Navasa M, Fernández J, Rodes J. Bacterial infections in liver cir-
rhosis. Ital J Gastroenterol Hepatol 1999; 31:616-25.
15. Guarner C, Runyon BA. Spontaneous bacterial peritonitis: patho-
genesis, diagnosis, and management. Gastroenterologist 1995; 3:311-28.
16. Llach J, Rimola A, Navasa M, Ginés P, Salmerón JM, Ginés A, Arroyo V, Rodés J. Incidence and predictive factors of first epi-
sode of spontaneous bacterial peritonitis in cirrhosis with ascites: relevance of ascitic fluid protein concentration. Hepatology 1992; 16:724-7.
17. Bleicher G, Boulanger R, Square P, Sollet JP, Parent A. Fre-
quency of infections in cirrhotic patients presenting with acute gastrentestinal haemorrhage. Br J Surg 1986; 73:724-6.
18. Bauer TM, Schwacha H, Steinbrückner B, Brinkmann FE, Ditzen AK, Aponte JJ, Pelz K, Berger D, Kist M, Blum HE. Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxaemia. Am J Gastroenterol 2002; 97:2364-70.
19. Chang CS, Chen GH, Lien HC, Yeh HZ. Small intestine dysmoti-
lility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 1998; 28:1187-90.
20. Pérez-Paramo M, Muñoz J, Albillos A, Freile I, Porto G, Santos M, Ortiz-Berrocal J. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology 2000; 31:43-8.
21. Garcia-Tsao G. Beta-Blockers in Cirrhosis: The Window Re-
opens. J Hepatol 2015 [Epub ahead of print].
22. Garcia-Tsao G. Beta-Blockers in Cirrhosis: The Window Re-
opens. J Hepatol 2015 [Epub ahead of print].
23. Mandorfer M, Bota S, Schwab P, Bucsics T, Pfisterer N, Kruzik M, Hagmann M, Blacky A, Ferlitsch A, Sieghart W, Trauner M, Peek-Radosavljevic M, Reiberger T. Nonselective β-blockers increase risk for hepatorenal syndrome and death in patients with cirrhosis and spontaneous bacterial peritonitis. Gastroenterology 2014; 146:1680-90.
24. Bossen L, Krag A, Vilstrup H, Watson H, Jepsen P. Non-selective β-blockers do not affect mortality in cirrhosis patients with ascites: Post hoc analysis of three RCTs with 1198 patients. Hepatology 2015 [Epub ahead of print].
25. Moskerjee RP, Pavlesi M, Thomsen KL, Mehta G, Macnaughton J, Bendsøe F3, Coenraad M, Sperl J, Gines P, Moreau R, Arroyo V, Jalan R; CANONIC Study Investigators of the EASL-CLIF Con-
sortium. Treatment with non-selective beta-blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J Hepatol 2015 [Epub ahead of print].
26. García-Martínez I, Francés R, Zapater P, Giménez P, Gómez-Hurtado I, Moratalla A, Lozano-Ruiz B, Bellot P, González-Navajas JM, Such J. Use of proton pump inhibitors decreases cellu-
lar oxidative burst in patients with uncompensated cirrhosis. J Gastroenterol Hepatol 2015; 30:147-54.
27. Ratelie M, Perreault S, Villeneuve J-P, Tremblay L. Association between proton pump inhibitor use and spontaneous bacterial peritonitis in cirrhotic patients with ascites. Can J Gastroenterol Hepatol 2014; 28:330-4.
28. Terz R, Casciato P, Garbe C, Cartier M, Stieben T, Mendizabal M, Niveyro C, Benavides J, Marino M, Colombato L, Barbera D, Silva M, Salgado P, Barreyro F, Fassio E, Gadano A; Study Group of Cirrhosis Complications of the Argentine Association for the Study of Liver Disease. Proton pump inhibitor therapy does not increase the incidence of spontaneous bacterial peritonitis in cir-
rhosis: a multicenter prospective study. J Hepatol 2015; 62: 1056-60.

30. Khan MA, Kamal S, Khan S, Lee WM, Howden CW. Systematic review and meta-analysis of the possible association between pharmacological gastric acid suppression and spontaneous bacte-

reral peritonitis. Eur J Gastroenterol Hepatol 2015; 27: 1327-36.

31. Kalambokis GN, Mouzaki A, Rodi M, Tsianos E V. Rifaximin for

the prevention of spontaneous bacterial peritonitis. World J Gastro-

enterol 2012; 18: 1700-2.

32. Hanouneh IA, Hanouneh IA, Hashash JG, Law R, Esfeh JM,

Lopez R, Hazratte J, Smith T, Zein NN. The role of rifaximin in

the primary prophylaxis of spontaneous bacterial peritonitis in

patients with liver cirrhosis. J Clin Gastroenterol 2012; 46: 709-15.

33. Lutz P, Parcina M, Bekeredjian-Ding I, Nischalke HD, Natter-

mann J, Sauerbruch T, Hoerauf A, Strassburg CP, Spengler U. Im-

pact of rifaximin on the frequency and characteristics of sponta-

neous bacterial peritonitis in patients with liver cirrhosis and ascites. PLoS One 2014; 9: e93909.

34. O’Leary JG, Reddy KR, Wong F, Kamath PS, Patton HM, Big-

gins SW, Fallon MB, Garcia-Tsao G, Subramanian RM, Malik R, Thacker LR, Bajaj JS; North American Consortium for the Study of End-Stage Liver Disease. Long-term use of antibiotics and pro-
top pump inhibitors predict development of infections in patients with cirrhosis. Clin Gastroenterol Hepatol 2015; 13: 753-9.

35. Kalaitzakis E, Johansson J-E, Bjarnason I, Björnsson E. Intestinal

permeability in cirrhotic patients with and without ascites. Scand J Gastroenterol 2006; 41: 326-30.

36. Alibillos A, de la Hera A. Multifactorial gut barrier failure in cir-

rhosis and bacterial translocation: working out the role of probiot-

ics and antioxidants. J Hepatol 2010; 52: 523-6.

37. Misra V, Misra SP, Dwivedi M, Gupta SC. Histomorphometric

study of portal hypertensive enteroopathy. Am J Clin Pathol 1997; 108: 652-7.

38. Bellot P, Frances R, Such J. Pathological bacterial translocation in cirrhosis: pathophysiology, diagnosis and clinical implications. Liver Int 2013; 33: 31-9.

39. Francés R, Chiva M, Sánchez E, González-Navajas JM, Llovet T,

Castellote J, Xiol X. Guarner C, Such J. Bacterial translocation is downregulated with cirrhosis and ascites. J Hepatol 2002; 37: 523-6.

40. Gabelle E, Mühlbauer M, Paulo H, Johann M, Meltzer C, Leidl F, Wodarz N, Riebt, Schönricher J, Helferbrand C. World J Gastro-

enterol 2009; 15: 5558-62.

41. Runyon BA, Morrissey RL, Hoefs JC, Wyle FA. Opsonic activity of human ascitic fluid: a potentially important protective mecha-

nism against spontaneous bacterial peritonitis. Hepatology 1985; 5: 634-7.

42. Such J, Guarner C, Enríquez J, Rodriguez JL, Seres I, Vilardell F.

Low C3 in cirrhotic ascites predisposes to spontaneous bacterial peritonitis. J Hepatol 1988; 6: 80-4.

43. Runyon BA. Low-protein-concentration ascitic fluid is predis-
posed to spontaneous bacterial peritonitis. Gastroenterology 1986; 91: 1343-6.

44. Runyon BA, Canawati HN, Akriviadis EA. Optimization of ascitic fluid culture technique. Gastroenterology 1988; 95: 1351-5.

45. de Mattos AA, Costaibeber AM, Liongo LC, Tovo CV. Multi-

resistant bacteria in spontaneous bacterial peritonitis: a new step in managament? World J Gastroenterol 2014; 20: 14079-14086.

46. Ribeiro TCR, Kondo M, Amaral ACC, Parise ER, Bragagnolo Júnior MA, Souza AFM de. Evaluation of reagent strips for ascitic fluid leukocyte determination: is it a possible alternative for sponta-

neous bacterial peritonitis rapid diagnosis? Br J Infect Dis 2007; 11: 70-4.

47. Ribeiro TC, Chebli JM, Kondo M, Gaburri PD, Chebli LA, Feld-

ner ACA. Spontaneous bacterial peritonitis: How to deal with this life-threatening cirrhosis complication? Ther Clin Risk Manag

2008; 4: 919-25.

48. Rimola A1, García-Tsao G, Navasa M, Piddock LJ, Planas R,

Bernard B, Inadomi JM. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. Interna-
tional Ascites Club. J Hepatol 2000; 32: 142-53.

49. Koulaouzidis A1, Leontiadis GI, Abdullah M, Moschos J, Gasem J, Tharakan J, Maltezos E, Saeed AA. Leucocyte esterase reagent strips for the diagnosis of spontaneous bacterial peritonitis: a sys-
tematic review. Eur J Gastroenterol Hepatol 2008; 20: 1055-60.

50. Koulaouzidis A. Diagnosis of spontaneous bacterial peritonitis: an update on leucocyte esterase reagent strips. World J Gastroenterol 2011; 17: 1091-4.

51. Farmer AD, Cook MJ, Bruckner Holt CE, Syn WK, Lewis MJ V. Leucocyte esterase reagent strips for the diagnosis of spontaneous bacterial peritonitis: a systematic review by Koulaouzidis et al Eur J Gastroenterol Hepatol 2009; 21: 1102.

52. Castelletote J, Xiol X. Reagent strips and spontaneous bacterial peritonitis. Aliment Pharmacol Ther 2008; 28: 660.

53. Mendler MH1, Agarwal A, Trimizi M, Madrigal E, Tushima M, Joo E, Santiago M, Flores E, David G, Workman A, Runyon B. A new highly sensitive point of care screen for spontaneous bacterial peritonitis using the leucocyte esterase method. J Hepatol 2010; 53: 477-83.

54. Parsi MA, Saadeh SN, Zein NN, Davis GL, Lopez R, Boone J, et al. Ascitic fluid lactoferrin for diagnosis of spontaneous bacterial peritonitis. Gastroenterology 2008; 135: 803-7.

55. Yang Y, Li L, Qu C, Zeng B, Liang S, Luo Z, Wang X, Zhong C. Diagnostic Accuracy of Serum Procalcitonin for Spontaneous Bacterial Peritonitis Due to End-stage Liver Disease: A Meta-

analysis. Medicine (Baltimore) 2015; 94: e2077.

56. Tandon P, García-Tsao G. Rifaximin is the most important independent predictor of mortality in cirrhotic patients with spon-
taneous bacterial peritonitis. Clin Gastroenterol Hepatol 2011; 9: 260-5.

57. Runyon BA, Mutchnick J, Antillon MR, Akriviadis EA, Monta-

no TA. Short-course versus long-course antibiotic treatment of spontaneous bacterial peritonitis. A randomized controlled study of 100 patients. Gastroenterology 1991; 100: 1737-1742.

58. Navasa M, Folloy A, Llovet JM, Clemente G, Vargas V, Rimola A, Marco F, Guarner C, Forne M, Planas R, Bahares R, Castells L, Jimenez De Anta MT, Arroyo V, Rodés J. Randomized, compara-
tive study of oral ofloxacin versus intravenous cefotaxime in spon-
taneous bacterial peritonitis. Gastroenterology 1996; 111: 1011-7.

59. Titó L, Rimola A, Ginés P, Lluch J, Arroyo V, Rodés J. Recurrence of spontaneous bacterial peritonitis in cirrhosis: frequency and predictive factors. Hepatology 1998; 27: 23-31.

60. Ariza X, Castellote J, Lora-Tamayo J, Girbau A, Salord S, Rota R, Ariza J, Xiol X. Risk factors for resistance to ceftriaxone and its impact on mortality in community, healthcare and nosocomial spontaneous bacterial peritonitis. J Hepatol 2012; 56: 825-32.

61. Fernández J, Acevedo J, Castro M, García O, de Lope CR, Roca D, Pavesi M, Sola E, Moreira L, Silva A, Seva-Pereira T, Corradi F, Mensa J, Ginés P, Arroyo V. Prevalence and risk factors of infec-
tions by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 2012; 55: 1551-61.

62. Fernández J, Tandon P, Mensa J, García-Tsao G. Antibiotic prophylaxis in cirrhosis: Good and bad. Hepatology 2015 [Epub ahead of print]

63. Felsisart J, Rimola A, Arroyo V, Perez-Ayuso RM, Quintero E, Ginés P, Rodes J. Cefotaxime is more effective than is ampicillin-tobramycin in cirrhoses with severe infections. Hepatology 1985; 5: 457-62.

64. Ginés P, Angeli P, Lenz K, Maller S, Moore K, Moreau R, Merkel C, Ring-Larsen H, Bernardi M. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol 2010; 53: 397-417.
65. Rimola A, Salmerón JM, Clemente G, Rodrigo L, Obrador A, Miranda ML. Two different dosages of cefotaxime in the treatment of spontaneous bacterial peritonitis in cirrhosis: results of a prospective, randomized, multicenter study. Hepatology 1995; 21: 674-9.

66. Javid G, Khan BA, Shah AH, Gulzar GM, Khan MA. Short-course ceftriaxone therapy in spontaneous bacterial peritonitis. Postgrad Med J 1998; 74: 592-5.

67. Grange JD, Amiot X, Grange T, Bremme K, Schaffner F, Weber C, Staeheli P. Prognostic significance of ascitic lactate: a prospective study of twenty-seven cases in cirrhotic patients. Hepatology 1990; 11: 360-4.

68. Fernández JI, Ruiz del Arbol L, Gómez C, Duranández R, Serrallada J, Guarnier C, Planas R, Arroyo V, Navasa M. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterology 2006; 131: 1049-56.

69. Loomans A, Wessel R, Bain C, Csako G, Pucino F. Role of fluoroquinolones in the primary prophylaxis of spontaneous bacterial peritonitis: meta-analysis. Clin Gastroenterol Hepatol 2009; 7: 487-93.

70. Friedrich K, Nüssle S, Rehle T, Strengel W, Mischnik A, Eisenbach C. Microbiolgy and resistance in first episodes of spontaneous bacterial peritonitis: implications for management and prognosis. J Gastroenterol Hepatol 2015 [Epub ahead of print]

71. Pitout JDD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8: 159-66.

72. Angeloni S, Leboffe C, Parente A, Venditti M, Giordano A, Merli M, Riggi O. Efficacy of current guidelines for the treatment of spontaneous bacterial peritonitis in the clinical practice. World J Gastroenterol 2008; 14: 2575-62.

73. Arabi YM, Afsar N, Al Abdulla Reem A, Al Tanem TM, Al-Shirawi N, Parrillo JE, Dodek P, Lapinsky S, Feinstein D, Wood G, Dial S, Zanotti S, Kumar A; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Antimicrobial therapeutics determinants of outcomes from septic shock among patients with cirrhosis. Hepatology 2012; 56: 2305-15.

74. Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol [Internet]. 2012; 56 Suppl 1: S1-12.

75. Bass NM. Intravenous albumin for spontaneous bacterial peritonitis in patients with cirrhosis. N Engl J Med 1999; 341: 443-4.

76. Runyon BA. Albumin infusion for spontaneous bacterial peritonitis. Lancet (London, England) 1999; 354: 389-91.

77. Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, Castells L, Vargas V, Soriano G, Guevara M, Ginés P, Rodés J.Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 1999; 341: 403-9.

78. Ginés P, Martín PY, Niederberger M. Prognostic significance of renal dysfunction in cirrhosis. Kidney Int Suppl 1997; 61: S77-82.

79. García-Martínez R, Caraceni P, Bernardi M, Ginés P, Arroyo V, Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology 2013; 58: 1836-46.

80. Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, Castells L, Vargas V, Soriano G, Guevara M, Ginés P, Rodés J. Randomized unblinded pilot study comparing albumin versus hydroxyethyl starch in spontaneous bacterial peritonitis. Hepatology 2005; 42: 627-34.

81. Salerno F, Gerbes A, Ginés P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Postgrad Med J [Internet]. 2008 Dec [cited 2016 Jan 5]; 84(998): 662–70. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1954971&tool=pmcentrez&rendertype=abstract.

82. Salerno F, Navickis RJ, Wilkes MM. Albumin infusion improves outcomes of patients with spontaneous bacterial peritonitis: a meta-analysis of randomized trials. Clin Gastroenterol Hepatol [Internet]. 2013 Feb [cited 2016 Jan 5]; 11(2): 123-30.e1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23178229.

83. Sigal SH, Stanca CM, Fernandez J, Arroyo V, Navasa M. Restricted use of albumin for spontaneous bacterial peritonitis. Gut [Internet]. 2007 Apr [cited 2016 Jan 5]; 56(4): 597-9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1856861&tool=pmcentrez&rendertype=abstract.

84. Ginés PJ, Rimola A, Planas R, Vargas V, Marco F, Almela M, Forne M, Miranda ML, Llach J, Salmerón JM. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology [Internet]. 1990 Oct [cited 2015 Dec 11]; 12(4 Pt 1): 716-24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2210673.

85. Inadomi J, Sonnenberg A. Cost-analysis of prophylactic antibiotics in spontaneous bacterial peritonitis. Gastroenterology [Internet]. 1997 Oct [cited 2016 Jan 5]; 113(4): 1289-94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9322524.

86. Terg R1, Llano K, Cobo SM, Brocco C, Barrios L, Denies M, Wartell MA. Effects of oral ciprofloxacin on aerobic gram-negative fecal flora in patients with cirrhosis: results of short- and long-term administration, with daily and weekly dosages. J Hepatol [Internet]. 1998 Sep [cited 2016 Jan 5]; 29(3): 437-42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9764991.

87. Novella M1, Solà R, Soriano G, Andreu M, Gana J, Ortiz J, Coll S, Sàbat M, Vila MC, Guarrer C, Villardell F. Continuous versus inpatient prophylaxis of the first episode of spontaneous bacterial peritonitis with norfloxacin. Hepatology [Internet]. 1997 Mar [cited 2016 Jan 5]; 25(3): 532-6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9049193.

88. Fernández JI, Navasa M, Planas R, Montoliu S, Monfort D, Soriano G, Vila C, Parot A, Quintero E, Vargas V, Such J, Ginés P, Arroyo V. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology [Internet]. 2007 Sep [cited 2015 Dec 11]; 133(3): 818-24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17854593.

89. Bernard B, Grangé JD, Khac EN, Amiot X, Opolon P, Poynard T. Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding: a meta-analysis. Hepatology [Internet]. 1999 Jun [cited 2016 Jan 11]; 29(6): 1655-61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10347104.

90. Hou M-C, Lin H-C, Liu T-T, Kuo B-I, Lee F-Y, Chang F-Y. Antibiotic prophylaxis after endoscopic therapy prevents rebleeding in acute variceal hemorrhage: a randomized trial. Hepatology [Internet]. 2004 Mar [cited 2016 Jan 5]; 39(3): 746-53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14999693.

91. Carbonell N, Pauwels A, Serfaty L, Fourdan O, Lévy VG, Poupon R. Improved survival after variceal bleeding in patients with cirrhosis over the past two decades. Hepatology [Internet]. 2004 Sep [cited 2015 Dec 27]; 40(3): 652-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15349604.

92. Lontos S, Gow PJ, Vaughan RB, Angus PW. Norfloxacin and trimethoprim-sulfamethoxazole therapy have similar efficacy in prevention of spontaneous bacterial peritonitis. J Gastroenterol Hepatol [Internet]. 2008 Feb [cited 2016 Jan 5]; 23(2): 252-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17559367.

93. Pardo A, Bartoli R, Lorenzo-Zúñiga V, Planas R, Viñolo B, Ribó J, Cabrè E, Santos J, Luque T, Ausina V, Gassull MA. Effect of ciprofloxacin on intestinal bacterial overgrowth and bacterial translocation in cirrhosis. Hepatology [Internet]. 2000 Apr [cited 2016 Jan 5]; 31(4): 858-63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10733540.

94. de Vos M1, De Vroe B, García BG, Roy C, Kidd F, Henrion J, Deltenre P. Role of proton pump inhibitors in the occurrence and the prognosis of spontaneous bacterial peritonitis in cirrhotic pa-

2110
95. Goel GA, Deshpande A, Lopez R, Hall GS, van Duin D, Carey WD. Increased rate of spontaneous bacterial peritonitis among cirrhotic patients receiving pharmacologic acid suppression. *Clin Gastroenterol Hepatol* [Internet]. 2012 Apr [cited 2016 Jan 4]; 10(4): 422-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22155557

96. Deshpande A, Pasupuleti V, Thota P, Pant C, Mapara S, Hassan S, Rolston DD, Sferra TJ, Hernandez AV. Acid-suppressive therapy is associated with spontaneous bacterial peritonitis in cirrhotic patients: a meta-analysis. *J Gastroenterol Hepatol* [Internet]. 2013 Feb [cited 2016 Jan 4]; 28(2): 235-42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23190338

97. Deshpande A, Pasupuleti V, Thota P, Pant C, Mapara S, Hassan S, Rolston DD, Sferra TJ, Hernandez AV. Acid suppressive therapy is associated with spontaneous bacterial peritonitis in cirrhotic patients: a meta-analysis. *J Gastroenterol Hepatol* [Internet]. 2012; Available from: http://www.ncbi.nlm.nih.gov/pubmed/23190338

Peer reviewer: Chun Gao, MD, Department of Gastroenterology, China-Japan Friendship Hospital, Ministry of Health, No.2 Yinghua East Road, Beijing 100029, PR China.