Extremal graphs for odd-ballooning of paths and stars

Tao Fanga and Xiying Yuana

aDepartment of Mathematics, Shanghai University, Shanghai 20444, P.R.China

Abstract

The odd-ballooning of a graph G, denoted by G_q, is the graph obtained from replacing each edge in G by a odd cycle of the same size where the new vertices of the odd cycles are all different. In 2002, Erdős et al. determined the extremal graphs of k-fan. In 2016, Hou et al. determined extremal graphs of the odd-ballooning of stars for $q \geq 5$. In 2020, Zhu et al. determined extremal graphs of the odd-ballooning of paths for $q \geq 3$. In this article, we use progressive induction lemma of Simonovits to determine the extremal graphs of both odd-ballooning of stars and odd-ballooning of paths for $q \geq 3$.

Keywords: Turán number, odd-ballooning, paths, stars

1 Introduction

In this article, we only consider the undirected graphs without loop and multiple edges. For a graph G, denote by $E(G)$ the set of edges and $V(G)$ the set of vertices of G. We denote the number of vertices in G by $\nu(G) = |V(G)|$ and the number of edges in G by $e(G) = |E(G)|$, respectively. Denote by $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ the neighborhood of v in G, and the closed of neighborhood $N_G[v]$ of v is $N_G(v) \cup \{v\}$. For a vertex $v \in G$, the degree of the vertex v, denoted by $d_G(v)$, is the size of $N_G(v)$. We use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degrees of G, respectively. A matching M in G is a subgraph of G with $\delta(M) = \Delta(M) = 1$. The matching number of G, denoted by $\nu(G)$, is the maximum number of edges in a matching of G. For a subset $X \subset V(G)$, let $G[X]$ denote the subgraph of G induced by X. Let G and H be two vertex disjoint graphs, we denote the vertex disjoint union of G and H by $G \cup H$ and the vertex disjoint union of k copies of G by kG. Denote by $G \vee H$ the graph obtained from $G \cup H$ by adding edges between each vertex of G and each vertex of H. For convenience, we indicates the number of vertices of a given graph by subscript, e.g. denote by P_k a path on k vertices, S_k a star on k vertices, C_k a cycle on k vertices, K_n a complete graph on n vertices, K_{n_1, n_2} a complete bipartite graph with parts of cardinality i and j, M_{2l} a matching on $2l$ vertices.

Given a graph H and an integer $p \geq 2$, the (edge) blow-up of H, denoted by H^{p+1}, is the graph obtained from H by replacing each edge of H by a clique of order $p + 1$ where the new vertices of the cliques are all different. Similarly,
Theorem 1.2 \([5], [6]\) For any integer \(n\) is sufficiently large, we have the following results:

Given a graph \(H\) and an odd integer \(q \geq 3\), the odd-ballooning of \(H\), denoted by \(H_q\), the graph obtained from \(H\) by replacing each edge of \(H\) by an odd cycle of length \(q\), say \(q\)-cycle, where the new vertices of the odd cycles are all different. Let \(P_{k,q}\) and \(S_{k,q}\) denote the odd-ballooning of path \(P_k\) and star \(S_k\). When \(q = 3\), the graph \(S_{k,3}\) is also called \(k\)-fan or friendship graph.

The Turán number of a class of graph \(\mathcal{L}\), \(\text{ex}(n, \mathcal{L})\), is the maximum number of edges in \(G\) of order \(n\) that does not contain any \(L \in \mathcal{L}\) as a subgraph. Denote by \(EX\) the class of graphs on \(n\) vertices with \(ex(n, L)\) edges containing no \(L \in \mathcal{L}\) as a subgraph and call a graph from \(EX\) extremal graph for \(L\) or \(\mathcal{L}\)-extremal graph. If \(\mathcal{L}\) contains only one graph, say \(\mathcal{L} = \{L\}\), we can simply use \(ex(n, L)\) and \(EX(n, L)\) to instead. If \(\mathcal{L}\) contains multiple graphs, we can use \(ex(n, H_1, H_2, \cdots, H_k)\) and \(EX(n, H_1, H_2, \cdots, H_k)\) to denote the maximum number of edges and the extremal graph with no subgraph \(H_i\) for \(1 \leq i \leq k\), respectively.

For integer \(1 \leq p \leq n\), the Turán graph, denoted by \(T_{n,p}\), is the complete \(p\)-partite graph on \(n\) vertices in which all parts are balanced. In [1], Turán showed that \(T_{n,p}\) is the unique extremal graph for the complete graph \(K_{p+1}\), and this theorem is often seen as the beginning of extremal graph theory. The number of edges in \(T_{n,p}\) is denoted by \(t_{n,p}\).

For \(s \geq 1, p \geq 2\), let \(H(n, p, s)\) be the graph \(K_{s-1} \vee T_{n-s+1, p}\) and \(H'(n, p, s)\) be any of the graphs obtained from \(H(n, p, s)\) by putting one extra edge in any part of \(T_{n-s+1, p}\) in \(H(n, p, s)\). Given a family of graph \(\mathcal{F}\), the subchromatic number \(p(\mathcal{F})\) of \(\mathcal{F}\) is defined by \(p(\mathcal{F}) = \min_{F \in \mathcal{F}} \chi(F) - 1\), where \(\chi(F)\) is the chromatic number of \(F\). Zhu [2] used a classical decomposition theorem of Simonovits (see for more information in [3], [4]) to determine the extremal number of odd-ballooning of paths and obtained the following result.

Theorem 1.1 [2] For any integer \(k \geq 1\) and any odd integer \(q \geq 3\), when \(n\) is sufficiently large, we have the following results:

\[
\text{ex}(n, P_{k+1,q}) = t_{n-p,2} + e(K_{p,n-p}) + e(K_p),
\]

where \(p = \left\lfloor \frac{k-1}{2} \right\rfloor\), and \(H(n, 2, p + 1)\) is the extremal graph of \(P_{k+1,q}\) when \(k\) is odd, \(H'(n, 2, p + 1)\) is the unique extremal graph of \(P_{k+1,q}\) when \(k\) is even.

If a graph \(G\) with vertex number \(n\) has \(n-1\) vertices degree \(d\) and the remaining vertex degree \(d-1\), the graph is called almost \(d\)-regular graph and denoted by \(R(n, d)\). Erdős [5] and Hou [6] determined the extremal number of \(k\)-fan (which also seen as odd-ballooning of stars for \(q = 3\)) and the extremal number of odd-ballooning of stars for \(q \geq 5\), respectively.

Theorem 1.2 ([5], [6]) For any integer \(k \geq 1\) and any odd integer \(q \geq 3\), when \(n\) is sufficiently large, we have the following results:

1. When \(q = 3\),

\[
\text{ex}(n, S_{k+1,3}) = t_{n,2} + \begin{cases}
 k^2 - k & \text{if } k \text{ is odd,} \\
 k^2 - \frac{3}{2}k & \text{if } k \text{ is even.}
\end{cases}
\]

For odd \(k\), the extremal graph is constructed by taking a Turán graph \(T_{n,2}\) and embedding two vertex-disjoint copies of \(K_k\) in one partite set. For even \(k\), the extremal graph is constructed by taking a Turán graph \(T_{n,2}\)
and embedding a graph with $2k - 1$ vertices, $k^2 - \frac{3}{2}k$ edges with maximum degree $k - 1$ in one partite set, that is $R(2k - 1, k - 1)$.

2. When $q \geq 5$,

$$ex(n, S_{k+1,q}) = t_{n,2} + (k - 1)^2.$$

The extremal graph of $S_{k+1,q}$ must be a Turán graph $T_{n,2}$ with a copy of complete bipartite graph $K_{k-1,k-1}$ in one partite set.

The following lemma indicates that the extremal graph without both $P_{k+1,q}$ and $S_{k+1,q}$ exists.

Lemma 1.3 Let $k \geq 3$ be an integer, $q \geq 3$ be an odd integer, then we have the following:

1. the extremal graphs for $S_{k+1,q}$ contain $P_{k+1,q}$.

2. the extremal graphs for $P_{k+1,q}$ contain $S_{k+1,q}$.

Proof (1). Let G be the extremal graph for $S_{k+1,q}$. It is clear that there is a $T_{n,2}$ in G. We denote by A_0, A_1 the two partite sets of $T_{n,2}$ in G. Then we will show that $P_{k+1,q} \subseteq G$.

When odd integer $q \geq 5$, without loss of generality, we assume that the copy of $K_{k-1,k-1}$ is embedded in A_0. Let $v_1, v_2, \cdots v_{2(k-1)}$ be the vertices of $K_{k-1,k-1}$ in A_0. It is easy to find a path $P_{k+1} : v_1v_2\cdots v_{2(k-1)}$ in G where each edge $v_i v_{i+1} (i \in \{1, 2, \cdots, k\})$ satisfies that v_i, v_{i+1} belong to different parts of $K_{k-1,k-1}$. Then the edge $v_i v_{i+1}$ can be extended to a q-cycle by using $q - 2$ vertices respectively in A_1 and A_2 except the vertices in P_{k+1}. Hence, we obtain $P_{k+1,q}$ in G.

When $q = 3$ and k is odd, without loss of generality, we assume that two vertex-disjoint copies of K_k are embedded in A_0. Let u_1, u_2, \cdots, u_k be the vertices of K_k in A_0 and w_1, w_2, \cdots, w_k be the vertices of another K_k in A_0. We can easily find a path $P_{k+1} : u_1u_2\cdots u_{k-1}u'w_1$ in G where u' is a common neighbor of u_{k-1} and w_1 in A_1 since A_0, A_1 are completely joined. The edge $u_j u_{j+1} (j \in \{1, 2, \cdots, k-2\})$ can be extended to a q-cycle by using $q - 2$ vertices respectively in A_0 and A_1 except the vertices in P_{k+1}. The edge $u_{k-1}u'$ together with u_k and other $q - 3$ vertices respectively in A_0 and A_1 except the vertices in P_{k+1} and the vertices forming the q-cycle of each edge $u_j u_j'$ forms a copy of q-cycle. The edge $u'w_1$ together with w_2 and other $q - 3$ vertices respectively in A_0 and A_1 except the vertices in P_{k+1}, the vertices forming the q-cycle of each edge $u_j u_{j+1}$ and the vertices forming the q-cycle of edge $u_{k-1}u'$ forms a copy of q-cycle. Hence, we obtain $P_{k+1,q}$ in G.

When $q = 3$ and k is even, without loss of generality, we assume that $R(2k - 1, k - 1)$ is embedded in A_1. Similarly, one can easily find a path P_{k+1} in $R(2k - 1, k - 1)$ and each edge of P_{k+1} together with $q - 2$ vertices respectively in A_0 and A_1 except the vertices in P_{k+1} forms q-cycle. Then $P_{k+1,3}$ is a subgraph of G.

(2). Let H be the extremal graph for $P_{k+1,q}$, x be a vertex of K_p in H, where $p = \lceil \frac{k}{k-1} \rceil (\geq 1)$. Then k different q-cycles, which intersect in x, can be found in H. This is possible since x is adjacent to all the other vertices in H and n is sufficiently large. Hence, $S_{k+1,q}$ is a subgraph of H. □
Let $G_{n,p,k}$ be a graph of order n which is constructed by taking a Turán graph $T_{n,p}$ and embedding a copy of K_k in one partite set. Consider Theorem 1.1, Theorem 1.2 and Lemma 1.3, we focus on the extremal number of both odd-ballooning of paths and odd-ballooning of stars, that is $ex(n, S_{k+1,q}, P_{k+1,q})$.

Theorem 1.4 For any integer $k \geq 1$ and any odd integer $q \geq 3$, when n is sufficiently large, we have

$$ex(n, S_{k+1,q}, P_{k+1,q}) = t_{n,2} + \frac{1}{2}(k^2 - k).$$

Furthermore, $G_{n,2,k}$ is the unique extremal graph for both $P_{k+1,q}$ and $S_{k+1,q}$.

2 Preliminaries

In 1946, Erdös and Stone [7] stated the following well-known theorem.

Theorem 2.1 [7] For all integers $p \geq 2$ and $N \geq 1$, and every $\epsilon > 0$, there exists an integer n_0 such that every graph with $n \geq n_0$ vertices and at least $t_{n,p} - 1 + \epsilon n^2$ edges contains a $T_{N,p,p}$ as a subgraph.

The following lemma is powerful to estimate the number of edges of a graph with restricted degrees and matching number.

Lemma 2.2 [8] For any graph G with maximum degree $\Delta \geq 1$ and matching number $\nu \geq 1$, then

$$e(G) \leq f(\nu, \Delta) = \nu \Delta + \lfloor \frac{\nu}{2} \lfloor \frac{\nu}{\Delta/2} \rfloor \rfloor \leq \nu (\Delta + 1).$$

Recall the definition of subchromatic number, the famous Erdös-Stone-Simonovits Theorem gives a rough range of the extremal number of the graph which the subchromatic number of \mathcal{L} is given.

Lemma 2.3 [9] If \mathcal{L} is a family of graphs with subchromatic number $p > 0$, then

$$ex(n, \mathcal{L}) = \left(1 - \frac{1}{p}\right)\left(\frac{n}{2}\right) + o(n^2).$$

For every family \mathcal{L} of forbidden graphs, Simonovits [10] defined the decomposition family $\mathcal{M}(L)$.

Definition 2.4 Given a family \mathcal{L}, define $p' = p'(\mathcal{L}) = \min_{L \in \mathcal{L}} \chi(L) - 1$. For any integer $p : 2 \leq p \leq p'$, let $\mathcal{M}_p(\mathcal{L})$ be the family of minimal graph M that satisfy the following: there exists an $L \in \mathcal{L}$ and a $t = t(L)$ such that $L \subseteq M' \cup T_{p-1}(pt - t)$, where $M' = M \cup I_t$. We call $\mathcal{M}(\mathcal{L})$ the p-decomposition family of \mathcal{L}.

Given a graph H and a vertex $v \in V(H)$ with $d_H(v) \geq 2$, a vertex split on the vertex v is defined as follows: replace v by an independent set of $d(v)$ vertices in which each vertex is adjacent to exactly one distinct neighbor in $N_G(v)$. Given
a vertex subset \(U \subseteq V(H) \), a vertex split on \(U \) means applying vertex split on the vertices in \(U \) one by one. Obviously, the order of vertices we apply vertex split does not matter. Denote by \(\mathcal{H}(H) \) the family of all the graphs that can be obtained from \(H \) by applying vertex split on some \(U \subseteq V(H) \). Note that \(U \) could be empty, therefore \(H \in \mathcal{H}(H) \). Let \(\mathcal{H}_p(H) \subseteq \mathcal{H}(H) \) be the family of all the graphs obtained from \(H \) by applying vertex split on any vertex subset \(U \) of \(H \), which satisfies \(\chi(H[U]) \leq p \). Then we have the following lemma to determined the decomposition family of both \(P_{k+1,q} \) and \(S_{k+1,q} \).

Lemma 2.5 Let \(H \) be any bipartite graph and \(q \geq 5 \) be an odd integer. Then \(\mathcal{M}_2(H_q) = \mathcal{H}_2(H) \).

Proof Let \(H \) be any bipartite graph, \(H_q \) be the odd-ballooning of \(H \) with \(q \geq 5 \). Then \(\chi(H_q) = 3 \). Let \(p' = \chi(H_q) - 1 = 2 \), then \(p = 2 \). By definition 2.4, we have \(H_q \subseteq M' \cup K_1(t) \), where \(M' = M \cup I_t \) and \(M \in \mathcal{M}_2(H_q) \). This means each odd cycle of \(H_q \) must contain at least two of the vertices in \(M' \) since \(\chi(H_q) = 3 \).

For each vertex \(v \in M' \), \(N[v] \) in \(H_q \) can span into a \(S_{d_H(v),q} \). If \(v \in M \), then \(M \) must contain another vertices for each odd cycle. This implies that \(v \) is not a split vertex in \(M \). Due to the minimality of \(M \), \(d_M(v) = d_H(v) \). Note that \(I_t \) and \(K_1(t) \) can form a complete bipartite graph \(K_{t,t} \). If \(v \notin M \), then \(K_{t,t} \) does not contain odd cycles, the odd-ballooning of each edge in \(K_{t,t} \) must contain exactly two vertices in \(M \) due to the minimality of the number of edges in \(M \) and \(q \geq 5 \). This means that there must be \(d_H(v) \) independent edges in \(M \). Using the minimality of \(M \) again, then \(e(M) = e(H) \) and \(M \in \mathcal{H}(H) \). Let \(U \) be the set of the vertices of \(H \) which are split. Since \(H[U] \subseteq K_{t,t} \), then \(\chi(H[U]) \leq 2 \) and \(M \in \mathcal{H}_2(H) \). Since \(M \) is arbitrary, hence \(\mathcal{M}_2(H_q) \subseteq \mathcal{H}_2(H) \). For each \(H' \in \mathcal{H}_2(H) \), \(H_q \subseteq (H' \cup I_t) \cup K_1(t) \), by definition 2.4, \(H' \in \mathcal{M}_2(H_q) \). Hence, \(\mathcal{H}_2(H) \subseteq \mathcal{M}_2(H_q) \). \(\Box \)

Thus, using the lemma above, we have the following decomposition family of both \(P_{k+1,q} \) and \(S_{k+1,q} \) where \(q \geq 5 \):

\[
\mathcal{M}(S_{k+1,q}) = \mathcal{H}_2(S_{k+1}) = \{ S_{k+1}, M_{2k} \},
\]

\[
\mathcal{M}(P_{k+1,q}) = \mathcal{H}_2(P_{k+1}) = \{ \text{all linear forests with } k \text{ edges} \}.
\]

For a family of forbidden graph \(\mathcal{L} \) with decomposition family \(\mathcal{M}(\mathcal{L}) \), we have the following proposition:

Proposition 2.6

\[
e(T_p(n)) + \text{ex} \left(\left\lceil \frac{n}{p} \right\rceil, \mathcal{M}(\mathcal{L}) \right) \leq \text{ex} \left(n, \mathcal{L} \right) \leq e(T_p(n)) + (1 + o(1)) p \cdot \text{ex} \left(\left\lceil \frac{n}{p} \right\rceil, \mathcal{M}(\mathcal{L}) \right) + cn,
\]

where \(c = c(\mathcal{L},p) \) depends only on \(\mathcal{L} \) and \(p \).

This proposition give a bound of the extremal number of given graph, and for the lower bound, the graph is obtained by embedding a copy of a graph from \(EX \left(\left\lceil \frac{n}{p} \right\rceil, \mathcal{L} \right) \) into the largest part of \(T_{n,p} \). For the upper bound, which was discussed in [11].

Recall the definition of \(G_{n,p,k} \) in Section 1, we have
Lemma 2.7 Let $k \geq 1$, $n \geq 2k$, then
\[e(n, M(P_{k+1,q}), M(S_{k+1,q})) \geq \frac{1}{2}k(k-1), \]
where the equality holds for the graph in $G_{n,1,k}$.

Proof Let G be any graph in $EX(n, M(P_{k+1,q}), M(S_{k+1,q}))$. It is clear that the graph in $G_{n,1,k}$ do not contain any graph in both $M(P_{k+1,q})$ and $M(S_{k+1,q})$ as a subgraph. It means that
\[e(G) = ex(n, M(P_{k+1,q}), M(S_{k+1,q})) \geq \frac{1}{2}k(k-1). \]
This implies the desired result. \hfill \Box

By proposition 2.6 and lemma 2.7, it is clear that:

Lemma 2.8 For every integer $k \geq 3$ and odd integer $q \geq 3$, let G be the extremal graph for both $S_{k+1,q}$ and $P_{k+1,q}$, then we have $e(G) \geq e(G_{n,2,k})$.

The following stability result was proved by Erdős [5] and Simonovits [12], which was given a rough structure of the extremal graphs for a graph H with $\chi(H) = r \geq 3$ and $H \neq K_r$.

Lemma 2.9 ([5],[12]) Let H be a graph with $\chi(H) = r \geq 3$ and $H \neq K_r$. Then for every $\gamma > 0$, there exists $\delta > 0$ and $n_0 = n_0(H, \gamma) \in \mathbb{N}$ such that the following holds: If G is an H-free graph on $n \geq n_0$ vertices with $e(G) \geq ex(n, H) - \delta n^2$, then there exists a partition of $V(G) = V_1 \cup \cdots \cup V_{r-1}$ such that $\sum_{i=1}^{r-1} e(V_i) < \gamma n^2$.

Let $V_0 \cup V_1$ be a partition of $V(G)$ such that $e(V_0, V_1)$ is maximized, lemma 2.9 implies that $m = e(V_0) + e(V_1) < \gamma n^2$ where γ is any positive integer. The following claim asserts that the partition is close to being balanced.

Corollary 2.10 Let G be an H-free $(H \neq K_r, r \geq 3)$ graph on n vertices with classes V_0 and V_1, γ be any positive number. Then, we have
\[\frac{n}{2} - \sqrt{\gamma n} < |V_i| < \frac{n}{2} + \sqrt{\gamma n}, \text{ for } i = 0, 1. \]
Furthermore, $e(V_0) + e(V_1) \geq \frac{1}{2}k(k-1)$ and if the equality holds then G contains a complete graph K_k with classes V_0 and V_1.

Proof Let $|V_0| = \frac{n}{2} + a$, then $|V_1| = \frac{n}{2} - a$. Let k be any positive integer, $m = e(V_0) + e(V_1)$. Since
\[\frac{n^2}{4} + \frac{1}{2}k(k-1) = t_{n,2} + \frac{1}{2}k(k-1) \leq e(G) \leq |V_0||V_1| + m = \frac{n^2}{4} - a^2 + m, \]
we have $m \geq \frac{1}{2}k(k-1)$ and $m \geq a^2$. By lemma 2.9, $m < \gamma n^2$, $a^2 < \gamma n^2$. Hence, $|a| < \sqrt{\gamma n}$. If $m = \frac{1}{2}k(k-1)$, then
\[t_{n,2} + \frac{1}{2}k(k-1) \leq e(G) \leq |V_0||V_1| + \frac{1}{2}k(k-1). \]
Hence, $|V_0||V_1| = t_{n,2}$, which means that V_0, V_1 are balanced and G contains a complete graph K_k with classes V_0 and V_1. \hfill \Box
If there exists a Turán graph \(T_{2n,2} \), where \(2a < n \), in \(G \) with classes \(V'_0 \) and \(V'_1 \) such that \(V'_0 \subseteq V_0 \) and \(V'_1 \subseteq V_0 \), then we denote by \(W \) the set of vertices in \(G - T_{2n,2} \) that are joined to all vertices in \(T_{2n,2} \). Let \(G_i = G[V_i] \), \(\Delta_i = \Delta(G_i) \) and \(\nu_i = \nu(G_i) \), \(i = 0, 1 \). For a vertex \(x \in V_i \), let \(E_{1-i}(x) = \{ e \in E(G_{1-i}) \mid V(e) \cap N_G(x) \neq \emptyset \} \).

Lemma 2.11 Let odd integer \(q \geq 5 \), \(a \left(< 1/2n \right) \) be a sufficiently large number and \(G \) be a graph with a partition vertices into two parts,

\[
V(G) = V_0 \cup V_1.
\]

Moreover, let \(V'_1 \subseteq V_i, V''_1 \subseteq V_i \setminus V'_1, |V''_1| = a \) and \(G[V'_0 \cup V'_1] = T_{2n,2} \), the vertex in \(V''_1 \) is joined to each vertex of \(V'_1 \) for \(i = 0, 1 \). Then we have:

1. If \(G \) is \(P_{k+1,q} \)-free, then \(G[V''_0 \cup V''_1] \) does not contain linear forest with more than \(k - 1 \) edges. Moreover, the number of matches in \(G \) does not more than \(k \).

2. If \(G \) is \(S_{k+1,q} \)-free, then we have the following two result:
 a. \(|W| = 0 \),
 b. and for any vertex \(x \in V_i \),

\[
\deg_{G_i} (x) + \nu(G_i - N_{G_i} | x) + \nu(G[E_{1-i}(x)]) \leq k - 1.
\]

Proof (1). If \(G \) is \(P_{k+1,q} \)-free, we will prove \(G[V''_0 \cup V''_1] \) does not contain a linear forest with \(k \) edges. Suppose to the contrary that there is a linear forest with \(k \) edges in \(G[V''_0 \cup V''_1] \). Define

\[
\xi(j) = \begin{cases}
1 & \text{if } j \text{ is odd}, \\
0 & \text{if } j \text{ is even}.
\end{cases}
\]

Then we will find a copy of \(P_{k+1,q} \) in \(G \) as follows.

Case 1. The linear forest with \(k \) edges is a path \(P_{k+1} \). Let \(P_{k+1} : u_1 u_2 \cdots u_{k+1} \). Without loss of generality, suppose that there is a path \(P_{k+1} \) in \(G[V''_0] \), then for each \(i \in [1, k] \), we find a sequence of vertices \(w^1_{i1}, w^2_{i1}, \ldots, w^q_{i1} \) with \(w^j_{i1} \in V''_1 \) for \(1 \leq j \leq q - 2 \), such that \(u_iu_{i+1}w^2_{i1}w^3_{i1}w^q_{i1}w^q_{i1}u_{i+1}u_i \) is a \(q \)-cycle \((q \geq 5) \). Furthermore, we require that \(w^j_{i1} \) (\(l \in [1, k], j \in [1, q - 2] \)) are pairwise different. Hence, the \(P_{k+1} \) can be extended to a copy of \(P_{k+1,q} \), a contradiction.

Case 2. The linear forest with \(k \) edges contains both \(P_2 \) and the paths with more than \(2 \) vertices.

Without loss of generality, suppose that there are \(tP_2 \) in the linear forest, denoted as \(M_t \), and the rest paths in the linear forest are

\[
P_{t_1+1}, P_{t_2+1}, \ldots, P_{t_m+1},
\]

where \(t_i \geq 2, i = 1, 2, \ldots, m \). Then \(t + t_1 + t_2 + \cdots + t_m = k \). First, we will show that there exists a path \(P_{t+1} \) which can be extended to a copy of \(P_{t+1,q} \).

If the edges of \(M_t \) are in the same part, say \(G[V''_0] \), then we can easily find a \(P_{t+1} : u_1 u_2 \cdots u_{t+1} \) in \(G[V''_0 \cup V''_1] \), since \(G[V''_0 \cup V''_1] = T_{2n,2} \) and \(a \) is sufficiently large. For each \(i \in [1, t] \), we can find vertices \(w^2_{i1}, w^3_{i1}, \ldots, w^q_{i1} \) one by one,
then a common neighbor of \(w_0^{q-3} \) and \(u_t \), say \(w_1^{l_1} \), in \(V_1 \) and a common neighbor of \(w_0^{q-3} \) and \(u_{t+1} \), say \(w_1^{l_{t+1}} \), in \(V_1 \), such that
\[
 u_t w_1^{l_1} w_0^{q-3} w_1^{l_{t+1}} u_{t+1}
\]
is a \(q \)-cycle. Hence, the path \(P_{t+1} \) can be extended to \(P_{t+1,q} \).

If the edges of \(M_t \) are in the different parts, we assume that there \(a \) edges in \(G[V_0''] \) and \(b \) edges in \(G[V_1''] \), where \(a + b = t \), \(a, b \geq 1 \). We can find a \(P_{a+1} \) in \(G[V_0' \cup V_1''] \) and at least one endpoint of this path is in \(G[V_i'''] \) (\(i \in \{0, 1\} \)). Let
\[
P_{a+1} : u_1 w_1^{l_1} \cdots w_{a+1}^{l_{a+1}}, \quad u_1 \in G[V_0''].
\]
For each \(l \in [1, a] \), we can find vertices \(w_0^{l_1}, w_1^{l_{a+1}} \) one by one, then a common neighbor of \(w_0^{l_1} \) and \(u_t \), say \(w_1^{l_{t+1}} \), in \(V_1 \) and a common neighbor of \(w_0^{l_{a+1}} \) and \(u_{t+1} \), say \(w_1^{l_{t+2}} \), in \(V_1 \), such that
\[
 u_t w_1^{l_1} w_0^{l_{a+1}} w_1^{l_{t+1}} u_{t+1} w_1^{l_{t+2}}
\]
is a \(q \)-cycle. Then we can find a \(P_{b+1} \) in \(G[V_0' \cup V_1'] \) and one endpoint of this path is \(u_1 \). Similarly, each edge of \(P_{b+1} \) can be extended to \(q \)-cycle by the method above. It is not hard to find that \(P_{a+1} \) together with \(P_{b+1} \) forms a \(P_{a+b+1} = P_{t+1} \). Hence, the path \(P_{t+1} \) can be extended to \(P_{t+1,q} \).

Assume \(P_{t+1} : u_1 w_1^{l_1} \cdots u_{t+1} \) is the path obtained above, and \(P_{t+1} \) is a path \(v_1 v_2 \cdots v_{t+1} \) in \(G[V_i'''] \). \(P_{t+1} \) is a path \(v_1 w_2 \cdots w_{t+1} \) in \(G[V_i'''] \), where \(i \in \{0, 1\} \). Without loss of generality, we can assume that \(u_1 \in V_1'' \). Then we can find a path
\[
P_{t+1,t+1} : u_{t+1} w_1^{l_1} \cdots u_t v_2 \cdots v_t w_2 \cdots w_{t+1},
\]
where \(w \) is a common neighbor of \(v_1 \) and \(w_2 \) in \(G[V_0' \cup V_1'] \). Each edge of the path \(P_{t+1,t+1} \) can be extended into \(q \)-cycle by the method in Case 1. The edge \(u_1 v_2 \) together with the edge \(v_1 v_2 \) and other \(q - 3 \) vertices in \(T_{2a,2} \) except the vertices which form \(q \)-cycle in \(P_{t+1} \) and \(w \) forms a \(q \)-cycle. The edge \(v_1 w_2 \) together with the edge \(v_1 v_2 \) and other \(q - 3 \) vertices in \(T_{2a,2} \) except the vertices which form \(q \)-cycle in \(P_{t+1} \) and \(w \) forms a \(q \)-cycle. The edge \(w_2 w_2 \) together with the edge \(w_1 w_2 \) and other \(q - 3 \) vertices in \(T_{2a,2} \) except the vertices which form \(q \)-cycle in \(P_{t+1} \) and \(w \) forms a \(q \)-cycle. Hence, together with the \(P_{t+1,q} \) obtained above, the path \(P_{t+1,t+1} \) can be extended to a copy of \(P_{t+1,t+1,q} \). Using the same procedure repeatedly, we can find a copy of \(P_{k+1,q} \), a contradiction.

Case 3. The linear forest with \(k \) edges only contains paths with more than \(2 \) vertices.

Let the paths with more than \(2 \) edges in the linear forest be:
\[
P_{t+1}, P_{t+1}, \ldots, P_{t_m+1},
\]
where \(2 \leq t_i \leq k - 2 \), \(i = 1, 2, \ldots, m \). Next, we will find a path \(P_{k+1} \) which can be extended to \(P_{k+1,q} \).

If \(P_{t+1} \) and \(P_{t+1} \), denoted as \(v_1 v_2 \cdots v_{t+1} \) and \(w_1 w_2 \cdots w_{t+1} \) respectively, are in the same part, say \(G[V_i'''] \), then we can find a copy of path
\[
P_{t+1,t+1} : v_1 v_2 \cdots v_{t+1} w w_2 \cdots w_{t+1},
\]
where \(w \) is a common neighbor of \(v_1 \) and \(w_2 \) in \(V_i''' \). That is possible (by Lemma 2.9 and Corollary 2.10) since \(G \) always contains triangle. Then each edge of the
path \(P_{t_1+1} \) and \(P_{t_2+1} \) can be extended into \(q \)-cycle by the method in Case 1. The edge \(v_1w \) together with the edge \(v_1v_{t_1+1} \) and other \(q-3 \) vertices in \(T_{2a,2} \) except the vertices which form \(q \)-cycle in \(P_{t_1+1} \) and \(P_{t_2+1} \) forms a \(q \)-cycle. The edge \(w_2w_2 \) together with the edge \(w_1w_2 \) and other \(q-3 \) vertices in \(T_{2a,2} \) except the vertices which form \(q \)-cycle in \(P_{t_1+1}, P_{t_2+1} \) and \(v_1w \) forms a \(q \)-cycle. Hence, the path \(P_{t_1+t_2+1} \) can be extended to a copy of \(P_{t_1+t_2+1,q} \). Using the same procedure repeatedly, we can find a copy of \(P_{k+1,q} \), a contradiction.

If \(P_{t_1+1} \) and \(P_{t_2+1} \) are in the different parts, without loss of generality, we assume that the path \(P_{t_1+1} \) in \(G[V_0^q] \), the path \(P_{t_2+1} \) in \(G[V_1^q] \). Then we can find a path

\[
P_{t_1+t_2+1} : v_1v_2 \cdots v_{t_1+1}w_3 \cdots w_{t_2+1}.
\]

Then each edge of the paths \(P_{t_1+1} \) and \(P_{t_2+1} \) can be extended into \(q \)-cycle by the method in Case 1. The edge \(v_{t_1+1}w_2 \) together with the edge \(w_1w_2 \) and other \(q-3 \) vertices in \(T_{2a,2} \) except the vertices which form \(q \)-cycle in \(P_{t_1+1} \) and \(P_{t_2+1} \) forms a \(q \)-cycle. Hence, the path \(P_{t_1+t_2+1} \) can be extended to a copy of \(P_{t_1+t_2+1,q} \). Using the same procedure repeatedly, we can find a copy of \(P_{k+1,q} \), a contradiction.

Case 4. The linear forest with \(k \) edges only contains paths with 2 edges.

In this case, there are exactly \(kP_2s \) in the linear forest, denoted as \(M_k \). Then we can find a path \(P_{t_1+1} \) in \(G[V_0^q \cup V_1^q] \) by using the method in Case 2 and it can be extended to a copy of \(P_{t_1+1,q} \), a contradiction.

Furthermore, if the number of matches in \(G \) more than \(k \), we can move the vertices, which are the endpoint of the paths, in \(T_{2a,2} \) to \(G \setminus T_{2a,2} \). Let \(T_{2a',2} \) be the new graph from \(T_{2a,2} \) by moving vertices. Hence, we have to move at least \(k \) vertices from \(T_{2a,2} \) to \(G \setminus T_{2a,2} \) such that there is no edges between \(T_{2a',2} \) and \(G \setminus T_{2a',2} \). Then there exists a linear forest with more than \(k \) edges in \(G \setminus T_{2a',2} \) which is contradiction.

(2). If \(G \) is \(S_{k+1,q} \)-free, then we will prove that \(|W| = 0 \). Suppose to the contrary that there exists a vertices \(w \) in \(W \). It is clear that \(k \) paths, which length is \(q-2 \), can be find in \(T_{2a,2} \) where the vertices of the paths are all different and each endpoint of the paths is adjacent to \(w \). Then \(w \) together with these \(k \) \((q-2) \)-paths form a copy of \(S_{k+1,q} \), a contradiction. \(\square \)

Remark 1 The second result (b) was proved by Hou in the Claim 10 in [6]. It means that if \(G \) is \(S_{k+1,q} \)-free then there are at most \(k-1 \) edges in \(G \).

In this article, our main method is the so-called progression induction which was introduced by Simonovits in 1968. This method is similar to the mathematical induction and Euclidean algorithm and combine from them in a certain sense.

Lemma 2.12 [12] Let \(\mathcal{U} = \bigcup_{i=1}^{\infty} \mathcal{U}_n \) be a set of given elements, such that \(\mathcal{U}_n \) are disjoint subsets of \(\mathcal{U} \). Let \(\mathcal{B} \) be a condition or property defined on \(\mathcal{U} \) (i.e. the elements of \(\mathcal{U}_n \) may satisfy or not satisfy \(\mathcal{B} \)). Let \(\Theta \) be a function defined also on \(\mathcal{U} \) such that \(\Theta \) is a nonnegative integer and

1. if \(a \) satisfies \(\mathcal{B} \), then \(\Theta (a) \) vanishes,

2. there is an \(M_0 \) such that if \(n > M_0 \) and \(a \in \mathcal{U}_n \) then either a satisfies \(\mathcal{B} \) or there exist an \(n' \) and an \(a' \) such that

\[
\frac{n}{2} < n' < n, a' \in \mathcal{U}_{n'} \text{ and } \Theta (a) < \Theta (a') .
\]
Then there exists an n_0 such that if $n > n_0$, from $a \in \mathcal{U}_n$ follows that a satisfies \mathfrak{B}.

3 Proof of the main theorem

In this section, we will prove that $ex(n,S_{k+1,q},P_{k+1,q}) = t_{n,2} + \frac{1}{2}(k^2 - k)$ for any integer $k \geq 1$ and any odd integer $q \geq 3$, when n is sufficiently large. For $q = 3$, the result was already proved by Zhu in [13]. So in the later article, we only consider the extremal graph for both odd-balooning of paths and odd-balooning of stars with odd integer $q \geq 5$.

Let F_n be an extremal graph for both $S_{k+1,q}$ and $P_{k+1,q}$ on n vertices, G_n be any graph in $G_{n,2,k}$. By lemma 2.8, $e(F_n) \geq t_{n,2} + \frac{1}{2}k(k - 1)$. We will show that $e(F_n) = t_{n,2} + \frac{1}{2}k(k - 1)$ and the extremal graph is the Turán graph $T_{n,2}$ embedding a complete graph K_k into one partite set.

Our main theorem will be proved by progressive induction, where \mathcal{U}_n is the set of extremal graph for both $S_{k+1,q}$ and $P_{k+1,q}$ on n vertices. Property \mathfrak{B} states that $e(F_n) \leq e(G_n)$ and the equality holds if and only if $F_n \in G_{n,2,k}$.

Define $\Theta(F_n) = e(F_n) - e(G_n)$ (\geq 0). By lemma 2.12, it is enough to show that if $e(F_n') \leq e(F_n)$, then either $F_n' \in G_{n,2,k}$ or there exists an $n' \in \left(\frac{2}{3}, n\right)$ such that $\Theta(F_n') > \Theta(F_n)$ when n is sufficiently large.

Now, we will find a subgraph of F_n satisfying the lemma 2.11. By lemma 2.1, for sufficiently large n, F_n must contain a Turán graph $T_{2r,2}$, where r is sufficiently large. We divide $T_{2r,2}$ into two partite set B_0, B_1 in F_n. Denote \widehat{F}_{n-2r} the rest of the graph $F_n - T_{2r,2}$, e_u the number of edges joining \widehat{F}_{n-2r} and $T_{2r,2}$. Then we have

$$e(F_n) = e(\widehat{F}_{n-2r}) + e_u + t_{2r,2}.$$

Next, we partition the vertices of \widehat{F}_{n-2r} into several vertex sets. Let c be a sufficiently small constant. Denote by W the vertices joining to at least cr vertices of each class of $T_{2r,2}$. Let $i \in \{0, 1\}$. If x is adjacent to less than c^2r vertices of B_i and is adjacent to at least $(1 - c)cr$ vertices of B_{1-i}, then let $x \in C_i$. If x is adjacent to less than c^2r vertices of B_i and is adjacent to less than $(1 - c)cr$ vertices of B_{1-i}, then let $x \in D$. We has already known that there is no vertex in W by lemma 2.11.

Obviously, $C_0 \cup C_1 \cup B_0 \cup B_1 \cup D$ is the partition of $V(F_n)$. Since both $\mathcal{M}(P_{k+1,q})$ and $\mathcal{M}(S_{k+1,q})$ contain a matching with size k and each vertex of C_i is adjacent to less than c^2r vertices of B_i, is adjacent to at least $(1 - c)cr$ vertices of B_{1-i}. Hence, there are at most k independent edges in $B_i \cup C_i$. Consider the edges joining B_i and C_i and select a maximal set of independent edges, say x_1y_1, \cdots, x_ty_t with $x_i \in B_i, y_j \in C_i$ and $i \in \{0, 1\}, j \in \{1, 2, \cdots, t\}$. Since the number of vertices of B_i joining to at least one of y_1, \cdots, y_t is less than c^2rk and the remaining vertices of B_i are not adjacent to any vertices of C_i. Hence, we can move c^2rk vertices of B_i to C_i, obtain B'_i and C'_i such that there is no edge between B'_i and C_i. Let $T_{2r',2}$ be the new graph obtained from above with class B'_0 and B'_1 and \widehat{F} be the remain graph, that is $\widehat{F} = F_n - T_{2r',2}$, with class C'_0, C'_1 and D. We conclude that the remain graph \widehat{F}, as the induced subgraph of F_n, satisfying that the vertices in C'_i is adjacent to no vertex in B'_i.

10
is adjacent to at least \((1 - c - ck) cr\) vertices of \(B_{i-1}^r\) and the vertices in \(D\) is adjacent to less than \(c^2r\) vertices of \(B_i^r\) and less than \((1 - c) cr\) vertices of \(B_{i-1}^r\).

Denote by \(e_u'\) the number of edges joining \(V(\hat{F})\) and \(V(T_{2r',2})\). Then we have

\[
\Theta(F_n) = e(F_n) - e(G_n) = e(T_{2r',2}) - e(T_{2r',2}) + (e_{u'} - e_{v'}) + e(\hat{F}) - e(G_{n-2r'})
\]

\[
\leq (e_{u'} - e_{v'}) + e(F_{n-2r'}) - e(G_{n-2r'})
\]

\[
= (e_{u'} - e_{v'}) + \Theta(F_{n-2r'}).
\]

If \(e_{u'} - e_{v'} < 0\), then \(\Theta(F_n) < \Theta(F_{n-2r'})\). Since \(n - 2r' \in \left(\frac{n}{2}, n\right)\), we are done. Thus, we may assume that \(e_{u'} - e_{v'} \geq 0\), then

\[
e_{u'} - e_{v'} \leq (n - 2r' - |D|) r' + |D| \left(c^2r + (1 - c) cr\right) - (n - 2r') r'
\]

\[
= |D| \left(c^2r - (1 - c) cr - r'\right)
\]

\[
= (2c^2r - cr - r')|D|
\]

\[
\leq 0,
\]

where the equality holds if and only if \(|D| = 0\). Hence, we have \(e_{u'} = e_{v'}\) and each vertex of \(C_i'\) is adjacent to each vertex of \(B_i'^r\). Since \(F_n\) does not contain both \(P_{k+1,q}\) and \(S_{k+1,q}\) as a subgraph, the vertices in \(C_i'\) satisfy the condition in lemma 2.11 and, by corollary 2.10, the subgraph \(F_n \setminus T_{2r',2}\) is balance and there is a complete graph \(K_k\) in it.

References

[1] P. Turán. On an external problem in graph theory. *Matematikai és Fizikai Lapok*, 48:436–452, 1941.

[2] H. Zhu, L. Kang, and E. Shan. Extremal graphs for odd-ballooning of paths and cycles. *Graphs and Combinatorics*, 36:755–766, 2020.

[3] M. Simonovits. Extremal graph problems with symmetrical extremal graphs. additional chromatic conditions. *Discrete Mathematics*, 7(3–4):349–376, 1974.
[4] M. Simonovits. How to solve a Turán type extremal graph problem? DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, 1999.

[5] P. Erdős. On some new inequalities concerning extremal properties of
graphs. Theory of graphs, Academic Press, New York, pages pp. 77–81, 1968.

[6] X. Hou, Y. Qiu, and B. Liu. Extremal graph for intersecting odd cycles.
Electronic Journal of Combinatorics, 23(2):P2.29, 2016.

[7] P. Erdős and A. H. Stone. On the structure of linear graphs. Bulletin of
the American Mathematical Society, 52(12):1087–1092, 1946.

[8] V. Chvátal and D. Hanson. Degrees and matchings. Journal of Combin-
torial Theory, 20(2):128–138, 1976.

[9] P. Erdős and M. Simonovits. A limit theorem in graph theory. Studia
Scientiarum Mathematicarum Hungarica, 1:51–57, 1966.

[10] M. Simonovits. Extremal graph problems and graph products. Studies in
pure mathematics, Birkhäuser, Basel, 1983.

[11] B. Bollobás. Extremal Graph Theory. Academic Press, 1978.

[12] M. Simonovits. A method for solving extremal problems in graph theory,
stability problems. Theory of graphs, Academic Press, New York, pages
pp. 279–319, 1968.

[13] L. Kang, H. Zhu, and E. Shan. Extremal graphs for blow-ups of stars and
paths. Discrete Applied Mathematics, 290(2):79–85, 2020.