Supplemental Material

Estimation of the Relative Abundance of Quartz to Clay Minerals Using the Visible–Near-Infrared–Shortwave-Infrared Spectral Region

Nicolas Francos*, Gila Notesco and Eyal Ben Dor

Remote Sensing Laboratory, Geography Department, Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Israel

*Corresponding author emails: nicolasfrancosd@gmail.com; nicolasf@mail.tau.ac.il

Table S1. The selected samples and their measured values for the analyzed properties.

Soil sample	Quartz (%)	Quartz-to-clay mineral ratio	SQCMI	Clay minerals (%)
A1	35	0.74	1.01	47
A2	30	0.53	1.00	57
A3	35	0.60	1.01	58
A4	35	0.64	1.00	55
A5	34	0.65	1.00	52
B1	27	0.90	1.01	30
B10	24	0.53	1.00	45
B11	58	5.80	1.01	10
B2	20	0.50	1.00	40
B3	38	0.95	1.01	40
B4	40	1.14	1.01	35
B5	40	2.35	1.00	17
B6	50	2.78	1.00	18
B7	31	0.62	1.00	50
B8	30	0.75	1.00	40
B9	20	1.67	1.01	12
C1	20	1.43	1.01	14
---	---	---	---	---
C10	10	0.40	1.01	25
C11	51	2.55	1.00	20
C12	43	2.87	1.01	15
C2	60	6.00	1.04	10
C3	55	1.83	1.03	30
C4	17	1.13	1.02	15
C5	26	1.04	1.01	25
C6	28	0.80	1.01	35
C8	7	0.25	1.01	28
C9	19	0.66	1.00	29
E1	85	8.50	1.05	10
E2	90	18.00	1.07	5
E3	70	3.50	1.04	20
E4	80	5.71	1.03	14
E5	1	0.01	1.02	85
E6	80	5.33	1.02	15
E7	75	5.00	1.03	15
EC1	90	22.50	1.10	4
H1	34	0.76	1.02	45
H10	23	0.77	1.01	30
H11	36	3.60	1.02	10
H12	24	0.53	1.01	45
H13	41	0.91	1.00	45
H14	25	0.56	0.99	45
H2	4	0.06	0.98	67
H3	41	1.03	1.00	40
H4	30	1.00	1.01	30
H5	40	1.33	1.00	30
H6	15	0.29	1.00	52
H7	10	0.15	0.99	65
H8	43	1.72	1.01	25
H9	42	1.68	1.01	25
J1	20	0.49	1.00	41
J2	20	0.33	0.99	60
J3	37	1.85	1.01	20
K1	18	0.60	1.02	30
K3	15	1.00	1.00	15
K4	10	0.67	1.01	15
K5	10	0.56	1.01	18
K6	20	1.33	1.00	15
K7	10	0.83	1.00	12
K8	25	1.00	1.00	25
O1	10	0.31	1.01	32
O2	5	1.00	1.01	5
O3	25	2.50	1.00	10
O4	30	6.00	1.01	5
P1	20	0.61	1.01	33
P2	5	0.19	1.00	27
P3	25	3.57	1.02	7
S1	67	8.38	1.02	8
S10	58	4.46	1.02	13
S11	45	4.09	1.02	11
S12	61	10.17	1.03	6
S13	62	8.86	1.02	7
S14	60	10.00	1.02	6
S15	63	5.25	1.01	12
S16	55	3.67	1.02	15
S17	58	6.44	1.02	9
S18	55	4.58	1.01	12
S19	47	4.70	1.01	10
S2	70	7.78	1.02	9
-----	-----	------	------	---
S3	75	15.00	1.02	5
S4	85	42.50	1.03	2
S6	77	15.40	1.02	5
S7	73	10.43	1.01	7
S8	60	10.00	1.01	6
S9	73	18.25	1.02	4
W1	70	5.83	1.03	12