Twisted p-adic (h, q)-L-functions

Yilmaz Simsek

*University of Akdeniz, Faculty of Arts and Science, Department of Mathematics, 07058 Antalya, Turkey

E-Mail: ysimsek@akdeniz.edu.tr

Abstract

Abstract. By using q-Volkenborn integral on \mathbb{Z}_p, we ([29], [30]) constructed new generating functions of the (h, q)-Bernoulli polynomials and numbers. By applying the Mellin transformation to the generating functions, we constructed integral representation of the twisted (h, q)-Hurwitz function and twisted (h, q)-two-variable L-function. By using these functions, we construct twisted new (h, q)-partial zeta function which interpolates the twisted (h, q)-Bernoulli polynomials and generalized twisted (h, q)-Bernoulli numbers at negative integers. We give relation between twisted (h, q)-partial zeta functions and twisted (h, q)-two-variable L-function. We construct twisted new (h, q)-partial zeta function which interpolates the twisted (h, q)-Bernoulli polynomials:

$$L^{(h)}_{\xi, p, q}(1 - n, t, \chi) = -\frac{B_{n, \chi, \xi}(p^s t, q) - \chi(n)p^{n-1}B_{n, \chi, \xi}(p^{-1}p^s t, q^p)}{n}.$$

2000 Mathematics Subject Classification. 11B68, 11S40, 11S80, 11M99, 30B50, 44A05.

Key Words and Phrases. q-Bernoulli numbers and polynomials, twisted q-Bernoulli numbers and polynomials, q-zeta function, p-adic L-function, twisted q-zeta function, twisted q-L-functions, q-Volkenborn integral.

1. Introduction, Definitions and Notations

In [8], Kim constructed p-adic q-L-functions. He gave fundamental properties of these functions. By p-adic q-integral he also constructed generating function of Carlitz’s q-Bernoulli number. Throughout this paper \mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will be denoted by the ring of rational integers, the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p, respectively, (see [9], [11]). Let v_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = p^{-1}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}_p$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}_p$, then we normally assume $1 - q |_p < p^{-\frac{1}{p-1}}$, so that $q^x = \exp(x \log q)$ for $| x |_p \leq 1$. If $q \in \mathbb{C}$, then we normally assume $| q | < 1$.

Kubota and Leopoldt proved the existence of meromorphic functions, $L_p(s, \chi)$, which is defined over the p-adic number field. $L_p(s, \chi)$ is defined by

$$L_p(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} \frac{(n, p) = 1}{(n, p) = 1} = (1 - \chi(p)p^{-s})L(s, \chi),$$
where \(L(s, \chi) \) is the Dirichlet \(L \)-function which is defined by

\[
L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.
\]

\(L_p(s, \chi) \) interpolates the values

\[
L_p(1-n, \chi) = \frac{(1-\chi(p)p^{n-1})}{n} B_{n, \chi}, \text{ for } n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\},
\]

where \(B_{n, \chi} \) denotes the \(n \)-th generalized Bernoulli numbers associated with the primitive Dirichlet character \(\chi \), and \(\chi_n = \chi w^{-n} \), with the Teichmüller character cf. (3, 2, 5, 3, 7, 18, 17, 21, 22, 24, 23).

Kim, Jang, Rim and Pak [20] defined twisted \(q \)-Bernoulli numbers by using \(p \)-adic invariant integrals on \(\mathbb{Z}_p \). They gave twisted \(q \)-zeta function and \(q \)-\(L \)-series which interpolate twisted \(q \)-Bernoulli numbers. In [27], the author gave relations between these functions and numbers. In [15], by using \(p \)-adic integral representation for the two-variable \(p \)-adic \(L \)-functions, he used the integral representation to extend the \(L \)-function to the large domain, in which it is a meromorphic function in the first variable and an analytic element in the second. These integral representations imply systems of congruences for the generalized Bernoulli polynomials. In [15], by using \(q \)-Volkenborn integration, Kim constructed the new \((h, q)\)-extension of the Bernoulli numbers and polynomials. He defined \((h, q)\)-extension of the \(z \)-eta functions which are interpolated new \((h, q)\)-extension of the Bernoulli numbers and polynomials. In [29], the author defined twisted \((h, q)\)-Bernoulli numbers, \(z \)-eta functions and \(L \)-function. The author also gave relations between these functions and numbers. In [19], Kim and Rim constructed two-variable \(L \)-function, \(L(s, x | \chi) \). They showed that this function interpolates the generalized Bernoulli polynomials associated with \(\chi \). By the Mellin transforms, they gave the complex integral representation for the two-variable Dirichlet \(L \)-function. They also found some properties of the two-variable Dirichlet \(L \)-function. In [10], Kim constructed the two-variable \(p \)-adic \(q \)-\(L \)-function which interpolates the generalized \(q \)-Bernoulli polynomials associated with Dirichlet character. He also gave some \(p \)-adic integrals representation for this two-variable \(p \)-adic \(q \)-\(L \)-function and derived \(q \)-extension of the generalized formula of Diamond and Ferro and Greenberg for the two variable \(p \)-adic \(L \)-function in terms of the \(p \)-adic gamma and log gamma function. In [32], Simsek, D. Kim and Rim defined \(q \)-analogue two-variable \(L \)-function. They generalized these functions.

In [17], Kim constructed the new \(q \)-extension of generalized Bernoulli polynomials attached to \(\chi \) due to his work [15] and derived the existence of a specific \(p \)-adic interpolation function which interpolate the \(q \)-extension of generalized Bernoulli polynomials at negative integers. He gave the values of partial derivative for this function. In this study, we construct twisted version of Kim’s \(p \)-adic \(q \)-\(L \)-function.

For \(f \in UD(\mathbb{Z}_p, \mathbb{C}_p) = \{ f \mid f : \mathbb{Z}_p \to \mathbb{C}_p \text{ is uniformly differentiable function} \} \), the \(p \)-adic \(q \)-integral (or \(q \)-Volkenborn integration) was defined by

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} q^x f(x), \quad (1.1)
\]

where

\[
\mu_q(a + dp^N \mathbb{Z}_p) = \frac{q^a}{[dp^N]_q}, \quad N \in \mathbb{Z}^+ \]

and

\[
[x]_q = \begin{cases}
\frac{1-q^x}{1-q}, & q \neq 1 \\
{x}, & q = 1
\end{cases} \quad \text{cf. (9, 10, 12, 13, 32).}
\]
\[I_1(f) = \lim_{q \to 1} I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_1(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x) \] (1.2)

cf. ([9], [12]).

If we take \(f_1(x) = f(x + 1) \) in (1.2), then we have
\[I_1(f_1) = I_1(f) + f'(0), \] (1.3)
where \(f'(0) = \frac{d}{dx} f(x) \bigg|_{x=0} \), cf. ([14], [11]).

Let \(p \) be a fixed prime. For a fixed positive integer \(f \) with \((p, f) = 1 \), we set (see [9])
\[
\begin{align*}
\mathbb{X} &= \mathbb{X}_f = \lim_{N \to \infty} \mathbb{Z}/fp^N\mathbb{Z}, \\
\mathbb{X}_1 &= \mathbb{Z}_p, \\
\mathbb{X}^* &= \mathbb{X}_1 \cup \{ a + fp\mathbb{Z}_p : 0 < a < fp, (a, p) = 1 \}
\end{align*}
\]
and
\[a + fp^N\mathbb{Z}_p = \{ x \in \mathbb{X} | x \equiv a (\text{mod } fp^N) \}, \]
where \(a \in \mathbb{Z} \) satisfies the condition \(0 \leq a < fp \). For \(f \in UD(\mathbb{Z}_p, \mathbb{C}_p) \),
\[\int_{\mathbb{Z}_p} f(x) d\mu_1(x) = \int_{\mathbb{X}} f(x) d\mu_1(x), \] (1.4)
(see [10], [13], for details). By (1.3), we easily see that
\[I_1(f_b) = I_1(f) + \sum_{j=0}^{b-1} f'(j), \] (1.5)
where \(f_b(x) = f(x + b), b \in \mathbb{Z}^+ \).

Let
\[T_p = \bigcup_{n \geq 1} C_{p^n} = \lim_{n \to \infty} C_{p^n}, \]
where \(C_{p^n} = \{ \xi \in \mathbb{C}_p | \xi p^n = 1 \} \) is the cyclic group of order \(p^n \). For \(\xi \in T_p \), we denote by \(\phi_\xi : \mathbb{Z}_p \to \mathbb{C}_p \) the locally constant function \(x \to \xi^x \) ([6], [20]).

By using \(q \)-Volkenborn integration ([9], [10], [11], [12], [13], [15]), the author [29] constructed generating function of the twisted \((h, q)\)-extension of Bernoulli numbers \(B^{(h)}_{n, \xi}(q) \) by means of the following generating function
\[F^{(h)}_{\xi, q}(t) = \frac{\log q^h + t}{\xi q^h e^t - 1} = \sum_{n=0}^{\infty} B^{(h)}_{n, \xi}(q) \frac{t^n}{n!}. \]

By using the above equation, and following the usual convention of symbolically replacing \((B^{(h)}_{\xi}(q))^n \) by \(B^{(h)}_{n, \xi}(q) \), we have
\[B^{(h)}_{0, \xi}(q) = \frac{\log q^h}{\xi q^h - 1} \] (1.6)
\[\xi q^h (B^{(h)}_{\xi}(q) + 1)^n - B^{(h)}_{n, \xi}(q) = \delta_{1, n}, \ n \geq 1, \]
where \(\delta_{1, n} \) is denoted Kronecker symbol. We note that if \(\xi \to 1 \), then \(B^{(h)}_{n, \xi}(q) \to B^{(h)}_{n}(q) \) and \(F^{(h)}_{\xi, q}(t) \to F^{(h)}_{q}(t) = \frac{\log q t}{q^t e^t - 1} \) (see [15]). If \(\xi \to 1 \) and \(q \to 1 \), then \(F^{(h)}_{\xi, q}(t) \to F(t) = \frac{1}{e^t - 1} \) and \(B_{n, \xi}(q) \to B_n \) are the usual Bernoulli numbers (see [33]).
Remark 1. Shiratani and Yamamoto\[24\] constructed a p-adic interpolation $G_{\mu}(s, u)$ of the Frobenius-Euler numbers $H_{n}(u)$ and as its application, they obtained an explicit formula for $L_{p}(u, \chi)$ with any Dirichlet character χ. Let u be an algebraic number. For $u \in \mathbb{C}$ with $|u| > 1$, the Frobenius-Euler numbers $H_{n}(u)$ belonging to u are defined by means of of the generating function
\[
\frac{1 - u}{e^t - u} = e^{H(u)t}
\]
with usual convention of symbolically replacing $H^{n}(u)$ by $H_{n}(u)$. Thus for the Frobenius-Euler numbers $H_{n}(u)$ belonging to u, we have (see\[23\])
\[
\frac{1 - u}{e^t - u} = \sum_{n=0}^{\infty} H_{n}(u) \frac{t^{n}}{n!}.
\]
By using the above equation, and following the usual convention of symbolically replacing $H^{n}(u)$ by $H_{n}(u)$, we have
\[
H_{0} = 1 \text{ and } (H(u) + 1)^{n} = uH_{n}(u) \text{ for } (n \geq 1).
\]

We also note that
\[
H_{n}(-1) = \mathcal{E}_{n},
\]
where \mathcal{E}_{n} denotes the aforementioned Tsumura version (see\[23\]) of the classical Euler numbers E_{n} which we recalled above. Let $\xi^{\ast} = 1, \xi \neq 1$.
\[
\frac{t}{\xi e^{t} - 1} = \sum_{n=0}^{\infty} B_{n, \xi} \frac{t^{n}}{n!} \text{ cf. }[6]
\]
\[
\frac{t}{\xi e^{t} - 1} = \frac{1 - \xi^{-1}}{e^{t} - \xi^{-1}} = \frac{t}{\xi^{-1}} \frac{1 - \xi^{-1}}{e^{t} - \xi^{-1}} = \frac{1}{\xi - 1} \sum_{n=0}^{\infty} (n + 1)H_{n}(\xi^{-1}) \frac{t^{n+1}}{(n + 1)!}
\]
By comparing the coefficients on both sides of the above equations, we easily see that
\[
B_{n+1, \xi} = \frac{1}{\xi - 1} (n + 1)H_{n}(\xi^{-1}).
\]

Therefore, if $\xi \neq 1$, then we obtain relations between Frobenius-Euler numbers, $H_{n}(\xi^{-1})$ and twisted Bernoulli numbers, $B_{n, \xi}$. If $\xi = 1$, then twisted Bernoulli numbers, $B_{n, \xi}$ are reduced to classical Bernoulli numbers, B_{n}, for detail about this numbers and polynomials see cf.\[9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 33, 1\].

Twisted (h, q)-extension of Bernoulli polynomials $B_{n, \xi}^{(h)}(z, q)$ are defined by means of the generating function\[29\]
\[
F_{\xi, q}^{(h)}(t, z) = \frac{(t + \log q^{h}) e^{tz}}{q^{h} e^{t} - 1} = \sum_{n=0}^{\infty} B_{n, \xi}^{(h)}(z, q) \frac{t^{n}}{n!},
\]
where $B_{n, \xi}^{(h)}(0, q) = B_{n, \xi}^{(h)}(q)$. By using Cauchy product in \[17\], we have
\[
B_{n, \xi}^{(h)}(z, q) = \sum_{k=0}^{n} \binom{n}{k} z^{n-k} B_{k, \xi}^{(h)}(q).
\]
We summarize our paper as follows:

In section 2, by applying the Mellin transformation to the generating functions of the Bernoulli polynomials and generalized Bernoulli polynomials, we give integral representation of the twisted (h, q)-Hurwitz function and twisted (h, q)-two-variable L-function. By using these functions, we construct twisted new (h, q)-partial
zeta function which interpolates the twisted \((h, q)\)-Bernoulli polynomials at negative integers. We give relation between twisted \((h, q)\)-partial zeta functions and twisted \((h, q)\)-two-variable \(L\)-function.

In section 3, we construct \(p\)-adic twisted \((h, q)\)-functions \((L_{\xi,\rho,q}^{(h)}(s, t, \chi))\), which are interpolate the twisted generalized \((h, q)\)-Bernoulli polynomials at negative integers. We calculate residue of \(L_{\xi,\rho,q}^{(h)}(s, t, \chi)\) at \(s = 1\). We also give fundamental properties of this functions.

2. \((h, q)\)-PARTIAL ZETA FUNCTIONS

Our primary aim in this section is to define twisted \((h, q)\)-partial zeta functions. We give the relation between generating function in \([17]\) and twisted \((h, q)\)-Hurwitz zeta function\([30]\). In this section, we assume that \(q \in \mathbb{C}\) with \(|q| < 1\). For \(s \in \mathbb{C}\), by applying the Mellin transformation to \([17]\), we have

\[
\frac{1}{\Gamma(s)} \int_0^\infty t^{s-2} \xi_q(t, x)dt = \zeta^{(h)}(s, x).
\]

By using the above equation, we\([29]\), \([30]\) defined twisted \((h, q)\)-Hurwitz zeta function as follows:

Definition 1. Let \(s \in \mathbb{C}\), \(x \in \mathbb{R}^+\). We define

\[
\zeta_{\xi,q}^{(h)}(s, x) = \sum_{n=0}^{\infty} \frac{q^n \zeta^{(h)}(n, x)}{(n + x)^s} - \frac{h \log q}{s - 1} \sum_{n=0}^{\infty} \frac{q^n}{(n + x)^{s-1}}.
\] (2.1)

Remark 2. Observe that when \(w \to 1\), \(\zeta_{\xi,q}^{(h)}(s, x)\) reduces to

\[
\zeta_{\xi,q}(s, x) = \sum_{n=0}^{\infty} \frac{q^n}{(n + x)^s} - \frac{h \log q}{s - 1} \sum_{n=0}^{\infty} \frac{q^n}{(n + x)^{s-1}}
\]

(see \([15]\)). When \(q \to 1\), \(\xi \to 1\), \(\zeta_{\xi,q}^{(h)}(s)\) reduces to \(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}\), Riemann zeta function and \(\zeta_{\xi,q}^{(h)}(s, x)\) reduces to \(\zeta(s, x) = \sum_{n=1}^{\infty} \frac{1}{(n + x)^s}\), Hurwitz zeta function. Observe that when \(x = 1\) in \([27]\), we easily see that \(\zeta_{\xi,q}^{(h)}(s, 1) = \zeta_{\xi,q}^{(h)}(s)\), which denotes twisted zeta function (see \([29]\)). We also note that \(\zeta_{\xi,q}^{(h)}(s)\) are analytically continued for \(\text{Re}(s) > 1\). \(\lim_{\xi \to 1} \zeta_{\xi,q}^{(h)}(s) = \zeta_{\xi,q}(s)\), which is given in \([15]\).

Theorem 1. \([30]\) Let \(n \in \mathbb{Z}^+\). We obtain

\[
\zeta_{\xi,q}^{(h)}(1 - n, x) = -\frac{B_{n,q}(x, q)}{n}.
\] (2.2)

Twisted \((h, q)\)-\(L\)-function is defined as follows:

Definition 2. \([29]\) Let \(s \in \mathbb{C}\). Let \(\chi\) be a Dirichlet character of conductor \(f \in \mathbb{Z}^+\). We define

\[
L_{\xi,q}^{(h)}(s, \chi) = \sum_{n=1}^{\infty} \frac{q^n \chi(n \xi)}{n^s} - \frac{\log q}{(s - 1)} \sum_{n=1}^{\infty} \frac{q^n \chi(n) \zeta^{(h)}(n, x)}{n^{s-1}}.
\] (2.3)

Observe that if \(\xi \to 1\), \(2.3\) reduces to \(L_q^{(h)}(s, \chi)\) function (see \([15]\)).

Theorem 2. \([29]\) Let \(\chi\) be a Dirichlet character of conductor \(f \in \mathbb{Z}^+\). Let \(n \in \mathbb{Z}^+\). We have

\[
L_{\xi,q}^{(h)}(1 - n, \chi) = -\frac{B_{n+1,\chi,q}(q)}{n + 1}.
\]

Relation between \(\zeta_{w,q}^{(h)}(s, z)\) and \(L_{w,q}^{(h)}(s, \chi)\) are given by the following theorem\([29]\):

Theorem 3. Let \(s \in \mathbb{C}\). Let \(\chi\) be a Dirichlet character of conductor \(f \in \mathbb{Z}^+\). We have

\[
L_{\xi,q}^{(h)}(s, \chi) = \frac{1}{f} \sum_{a=0}^{f-1} q^{ha} \chi(a) \zeta_{\xi,q}^{(h)}(s, a f).
\] (2.4)
The generalized twisted \((h, q)\)-extension of Bernoulli polynomials \(B_{n,\chi,\xi}^{(h)}(z, q)\) are defined by means of the generating function\,[30]::

\[
F_{\chi,\xi,q}^{(h)}(t, z) = \sum_{n=0}^{\infty} B_{n,\chi,\xi}^{(h)}(z, q) \frac{t^n}{n!}, \quad \text{cf. (29), (30)}.
\]

We are now ready to define the new twisted two-variable \((h, q)\)-functions. For \(s \in \mathbb{C}\), we consider the below integral which is known the Mellin transformation of \(F_{\chi,\xi,q}^{(h)}(t, z)\)[30].

\[
\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2} F_{\chi,\xi,q}^{(h)}(-t, z) dt = F_{\chi,\xi,q}^{(h)}(s, z, \chi).
\] (2.8)

We are now ready to define the new twisted two-variable \((h, q)\)-function. By using the above integral representation we arrive at the following definition:
Definition 3. [30] Let \(s \in \mathbb{C} \). Let \(\chi \) be a Dirichlet character of conductor \(f \in \mathbb{Z}^+ \). We define

\[
L_{\xi,q}^{(h)}(s,z,\chi) = \sum_{m=0}^{\infty} \frac{\chi(m)\phi_{\xi}(m)q^{hm}}{(z+m)^s} - \frac{\log q^h}{s-1} \sum_{m=0}^{\infty} \frac{\chi(m)\phi_{\xi}(m)q^{hm}}{(z+m)^{s-1}}. \tag{2.9}
\]

Relation between \(c_{\xi,q}^{(h)}(s,z) \) and \(L_{\xi,q}^{(h)}(s,z,\chi) \) is given by the following theorem:

Theorem 4. [30] We have

\[
L_{\xi,q}^{(h)}(s,z,\chi) = \frac{1}{f} \sum_{a=1}^{f} q^{ha} \xi^a \chi(a) c_{\xi^a,q}(s, a + \frac{z}{f}). \tag{2.10}
\]

Theorem 5. Let \(\chi \) be a Dirichlet character of conductor \(f \in \mathbb{Z}^+ \). Let \(n \in \mathbb{Z}^+ \). We have

\[
L_{\xi,q}^{(h)}(1-n,z,\chi) = \frac{\pi^{(h)}}{n}. \tag{2.11}
\]

Proof. Substituting \(s = 1 - n, n \in \mathbb{Z}^+ \) into (2.10), we obtain

\[
L_{\xi,q}^{(h)}(1-n,z,\chi) = \sum_{m=0}^{\infty} \frac{\chi(m)\phi_{\xi}(m)q^{hm}}{(z+m)^{1-n}} - \frac{\log q^h}{s-1} \sum_{m=0}^{\infty} \frac{\chi(m)\phi_{\xi}(m)q^{hm}}{(z+m)^{n-1}}.
\]

Substituting (2.9) into the above equation, we arrive at the desired result. \(\square \)

Remark 3. Note that Proof of (2.11) runs parallel to that of Theorem 8 in [33], for \(s = 1 - n, n \in \mathbb{Z}^+ \) and by using Cauchy Residue Theorem in (2.9), we arrive at the another proof the above theorem[30]. Observe that \(\lim_{p \to 0} L_{\xi,q}^{(h)}(s,1,\chi) = L_{q}^{(h)}(s,\chi) \). For \(q \to 1 \) and \(z = 1 \), then relations (2.9) reduces to the following well-known definition:

Let \(r \in \mathbb{Z}^+ \), set of positive integers, let \(\chi \) be a Dirichlet character of conductor \(f \in \mathbb{Z}^+ \), and let \(\xi^r = 1, \xi \neq 1 \). Twisted \(L \)-functions are defined by [22]

\[
L_{\xi}(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)\xi^n}{n^s}.
\]

Since the function \(n \to \chi(n)\xi^n \) has period \(fr \), this is a special case of the Dirichlet \(L \)-functions. Koblitz[22] and the author gave relation between \(L(s,\chi,\xi) \) and twisted Bernoulli numbers, \(B_{n,\chi,\xi} \) at non-positive integers(see [21], [22], [26], [25]).

Let \(s \) be a complex variable, \(a \) and \(f \) be integers with \(0 < a < f \). Then we define new twisted \((h,q)\)-partial zeta function as follows:

Definition 4.

\[
H_{\xi,q}^{(h)}(s,a:f) = \sum_{n \equiv a \pmod{f} \atop n > 0} q^{nh} \xi^n \frac{n^s}{s-1} - \sum_{n \equiv a \pmod{f} \atop n > 0} q^{nh} \xi^n \frac{n^s}{s^2 - 1}.
\]

By using the above definition, relation between \(H_{\xi,q}^{(h)}(s,a:f) \) and \(c_{\xi,q}^{(h)}(s,x) \) are given by

Theorem 6.

\[
H_{\xi,q}^{(h)}(s,a:f) = q^{ha} \xi^a f^{-s} c_{\xi^a,q}(s, a/f). \tag{2.12}
\]
Remark 4. The function $H_{\xi,q}^{(h)}(s,a : f)$ is meromorphic function for $s \in \mathbb{C}$ with simple pole at $s = 1$, having residue, $\text{Re} \ z_{s=1}H_{\xi,q}^{(h)}(s,a : f)$:

$$\text{Re} \ z_{s=1}H_{\xi,q}^{(h)}(s,a : f) = \lim_{s \to 1} (s - 1)H_{\xi,q}^{(h)}(s,a : f) = \frac{q^{ha} \zeta^a \log q^h}{q^hf \xi^f - 1}.$$

By (2.12) and (2.13), we have

Corollary 1. Let $n \in \mathbb{Z}^+$. We have

$$H_{\xi,q}^{(h)}(1 - n,a : f) = - \frac{q^{ha} \zeta^a f^{n-1}B_{n,\xi^f}(\frac{a}{f}, q^f)}{n}. \quad (2.13)$$

We modify the twisted (h,q)-extension of the partial zeta function as follows:

Corollary 2. Let $s \in \mathbb{C}$. We have

$$H_{\xi,q}^{(h)}(s,a : f) = \frac{a^s - q^{ha} \zeta^a}{(s-1)f} \sum_{k=0}^{\infty} \left(\frac{1}{k} \right) B_{k,\xi^f}(q^f). \quad (2.14)$$

Proof.

By using (13) and (2.13), we have

$$H_{\xi,q}^{(h)}(1 - n,a : f) = - \frac{q^{ha} \zeta^a f^{n-1}}{n} \sum_{k=0}^{n} \left(\frac{n}{k} \right) B_{k,\xi^f}(q^f).$$

Substituting $s = 1 - n$, and after some elementary calculations, we arrive at the desired result. \qed

Observe that if $\xi = 1$, then $H_{q}^{(h)}(s,a : f)$ is reduced to the following equation cf. [17]:

$$H_{q}^{(h)}(s,a : f) = \frac{a^s - q^{ha} \zeta^a}{(s-1)f} \sum_{k=0}^{\infty} \left(\frac{1}{k} \right) B_{k,\xi^f}(q^f).$$

By using (2.1), (2.12) and (2.14), we arrive at the following theorem:

Theorem 7. Let $s \in \mathbb{C}$. Let $\chi \ (\chi \neq 1)$ be a Dirichlet character of conductor $f \in \mathbb{Z}^+$.

$$L_{\xi,q}^{(h)}(s,\chi) = \sum_{a=1}^{f} \chi(a)H_{\xi,q}^{(h)}(s,a : f)$$

$$= \frac{1}{(s-1)f} \sum_{a=1}^{f} \chi(a) a^s - q^{ha} \zeta^a \sum_{k=0}^{\infty} \left(\frac{1}{k} \right) B_{k,\xi^f}(q^f).$$

We now define new twisted (h,q)-partial Hurwitz zeta function as follows:

Definition 5.

$$H_{\xi,q}^{(h)}(s,x + a : f) = \sum_{n \equiv a \ (\text{mod} \ f)}^{\infty} \frac{q^{ha} \zeta^n}{(x + n)^s} - \log q^{h} \sum_{n \equiv a \ (\text{mod} \ f)}^{\infty} \frac{q^{ha} \zeta^n}{(x + n)^{s-1}}.$$

Relation between $\zeta_{\xi,q}^{(h)}(s,x)$ and $H_{\xi,q}^{(h)}(s,x + a : f)$ are given by

$$H_{\xi,q}^{(h)}(s,x + a : f) = \frac{q^{ha} a^s}{f} \zeta_{\xi,q}^{(h)}(s, \frac{a + x}{f}). \quad (2.15)$$
Let $n \in \mathbb{Z}^+$. Substituting (2.2) in the above and using (1.8), we obtain
\[
H^{(h)}_{\xi,q}(1-n,x+a : f) = \frac{H^{(h)}_{\xi,q}(a+x,q^f)}{n - \frac{q^h a x^n}{f}} - n \sum_{k=0}^{n} \binom{n}{k} \left(\frac{x+a}{f} \right)^{n-k} B^{(h)}_{n,k}(\frac{x+a}{f},q^f).
\]
Thus, by the above equation, we obtain
\[
H^{(h)}_{\xi,q}(s,x+a : f) = \frac{1-s^q a^s}{(s-1)f} \sum_{k=0}^{\infty} \binom{1-s}{k} \left(\frac{f}{x+a} \right)^k B^{(h)}_{k,\xi}(q^f).
\]
By (2.10) and (2.13), we obtain the following relations:
\[
L^{(h)}_{\xi,q}(s,x,\chi) = \sum_{a=1}^{f} \chi(a) H^{(h)}_{\xi,q}(a+x,q^f) = \frac{1}{(s-1)f} \sum_{a=1}^{f} \chi(a)(x+a)^{1-s} q^h a^s \sum_{k=0}^{\infty} \binom{1-s}{k} \left(\frac{f}{x+a} \right)^k B^{(h)}_{k,\xi}(q^f).
\]
By the above equation, $L^{(h)}_{\xi,q}(s,x,\chi)$ is an analytic for $x \in \mathbb{R}$ with $0 < x < 1$ and $s \in \mathbb{C}$ except $s = 1$.

Remark 5. Observe that if $\xi = 1$, then $L^{(h)}_{\xi,q}(s,x,\chi)$ is reduced to the following equation cf. [17]:
\[
L^{(h)}_{q}(s,x,\chi) = \frac{1}{(s-1)f} \sum_{a=1}^{f} \chi(a)(x+a)^{1-s} q^h a^s \sum_{k=0}^{\infty} \binom{1-s}{k} \left(\frac{f}{x+a} \right)^k B^{(h)}_{k}(q^f).
\]
By (2.11), the values of $L^{(h)}_{\xi,q}(s,x,\chi)$ at negative integers are algebraic, hence may be regarded as lying in an extension of \mathbb{Q}_p. Consequently, we investigate a p-adic function which agrees with at negative integers in the next section.

Substituting $s = 0$ into (2.10), we obtain
\[
L^{(h)}_{\xi,q}(0,x,\chi) = \frac{1}{f} \sum_{a=1}^{f} \chi(a)(x+a)^{q^h a^s} \left(\frac{f q^h \log q^h - (x+a)(\xi f q^h - 1) \log q^h}{(x+a)(\xi f q^h - 1)^2} \right).
\]

3. Twisted p-adic interpolation function for the q-extension of the generalized Bernoulli polynomials

In this section, we can use some notations which are due to Kim [17] and Washington [34]. The integer p^* is defined by $p^* = p$ if $p > 2$ and $p^* = 4$ if $p = 2$ cf. (7, 17, 35). Let w denote the Teichmüller character, having conductor $f_w = p^*$. For an arbitrary character χ, we define $\chi_n = \chi \circ w^{-n}$, where $n \in \mathbb{Z}$, in the sense of the product of characters. In this section, if $q \in \mathbb{C}_p$, then we assume $|1-q|_p < p^{-\frac{1}{p^*}}$. Let $<a> = w^{-1}(a) a = \frac{a}{w(a)}$. We note that $<a> \equiv 1(\text{mod } p^* \mathbb{Z}_p)$. Thus, we see that
\[
< a + p^* t > = w^{-1}(a + p^* t)(a + p^* t) = w^{-1}(a) a + w^{-1}(a)(p^* t) \equiv 1(\text{mod } p^* \mathbb{Z}_p[t]),
\]
where $t \in \mathbb{C}_p$ with $|t|_p \leq 1$, $(a,p) = 1$. The p-adic logarithm function, \log_p, is the unique function $\mathbb{C}_p^\times \to \mathbb{C}_p$ that satisfies the following conditions:

1) $\log_p(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$, $|x|_p < 1$,
ii) \(\log_p(xy) = \log_p x + \log_p y, \forall x, y \in \mathbb{C}_p^* \),

iii) \(\log_p p = 0. \)

Let

\[
A_j(x) = \sum_{n=0}^{\infty} a_{n,j} x^n, a_{n,j} \in \mathbb{C}_p, j = 0, 1, 2, \ldots
\]

be a sequence of power series, each of which converges in a fixed subset

\[
D = \{ s \in \mathbb{C}_p : | s |_p \leq | p^* |^{-1} p^{-\frac{1}{p-1}} \}
\]

of \(\mathbb{C}_p \) such that

1) \(a_{n,j} \to a_{n,0} \) as \(j \to \infty \), for \(\forall n, \)

2) for each \(s \in D \) and \(\epsilon > 0 \), there exists \(n_0 = n_0(s, \epsilon) \) such that \(| \sum_{n \geq n_0} a_{n,j} s^n | < \epsilon \) for \(\forall j \). Then \(\lim_{j \to \infty} A_j(s) = A_0(s) \) for all \(s \in D \). This is used by Washington [34] to show that each of the function \(w^{-s}(a)a^s \) and

\[
\sum_{k=0}^{\infty} \left(\begin{array}{c} s \\ k \end{array} \right) \left(\frac{F}{a} \right)^k B_k
\]

where \(F \) is the multiple of \(p^* \) and \(f = f_\chi \), is analytic in \(D \). We consider the twisted \(p \)-adic analogs of the twisted two variable \(q \)-L-functions, \(L^{(h)}_{\xi,q}(s,t,\chi) \). These functions are the \(q \)-analogs of the \(p \)-adic interpolation functions for the generalized twisted Bernoulli polynomials attached to \(\chi \). Let \(F \) be a positive integral multiple of \(p^* \) and \(f = f_\chi \).

We define

\[
L^{(h)}_{\xi,p,q}(s,t,\chi) = \frac{1}{(s-1)F} \sum_{a=1 \atop (a,p) = 1}^{F} \chi(a) < a + p^* t > 1-s q^{ha} \xi^a \sum_{k=0}^{\infty} \left(\begin{array}{c} 1-s \\ k \end{array} \right) \left(\frac{F}{a + p^* t} \right)^k B^{(h)}_{k,\xi^a}(q^F).
\]

Then \(L^{(h)}_{\xi,p,q}(s,t,\chi) \) is analytic for \(t \in \mathbb{C}_p \) with \(| t |_p \leq 1 \), provided \(s \in D \), except \(s = 1 \) when \(\chi \neq 1 \). For \(t \in \mathbb{C}_p \) with \(| t |_p \leq 1 \), we see that

\[
\sum_{k=0}^{\infty} \left(\begin{array}{c} 1-s \\ k \end{array} \right) \left(\frac{F}{a + p^* t} \right)^k B^{(h)}_{k,\xi^a}(q^F)
\]

is analytic for \(s \in D \). By definition of \(< a + p^* t > \), it is readily follows that

\[
< a + p^* t >^s = < a >^s \sum_{k=0}^{\infty} \left(\begin{array}{c} s \\ k \end{array} \right) (a^{-1} p^* t)^k
\]

is analytic for \(t \in \mathbb{C}_p \) with \(| t |_p \leq 1 \) when \(s \in D \). Since \((s-1)L^{(h)}_{\xi,p,q}(s,t,\chi) \) is a finite sum of products of these two functions, it must also be analytic for \(t \in \mathbb{C}_p \) with \(| t |_p \leq 1 \), whenever \(s \in D \).

Observe that

\[
\lim_{s \to 1} (s-1)L^{(h)}_{\xi,p,q}(s,t,\chi) = \frac{1}{F} \sum_{a=1 \atop (a,p) = 1}^{F} \chi(a)q^{ha} \xi^a B^{(h)}_{0,\xi^a}(q^F).
\]
Substituting $\chi = 1$ in the above, then we have
\[
\lim_{s \to 1} (s - 1) L_{\xi; p, q}^{(h)}(s, t, \chi) = \frac{B_{0, F}^{(h)}(q^F)}{F} \sum_{a = 1}^{F} q^{h a \xi^a} \\
= \frac{B_{0, F}^{(h)}(q^F)}{F} \left(\frac{1 - q^{h F \xi^F}}{1 - q^{h F}} - \frac{1 - q^{h p F}}{1 - q^{p F}} \right).
\]

By definition of $B_{0, F}^{(h)}(q^F)$ in (1.6), we obtain
\[
\Re z = 1 L_{\xi; p, q}^{(h)}(s, t, \chi) = \lim_{s \to 1} (s - 1) L_{\xi; p, q}^{(h)}(s, t, \chi) = \frac{\log q^h}{q^h \xi - 1} \left(\frac{1 - q^{h F \xi^F}}{1 - q^{h F}} - \frac{1 - q^{h p F}}{1 - q^{p F}} \right),
\]
when $\chi = 1$. Let $n \in \mathbb{Z}^+$ and $t \in \mathbb{C}_p$ with $|t|_p \leq 1$. Since F must be a multiple of $f = f_{x_n}$, by (2.7), we obtain
\[
B_{n, x_n, \xi}^{(h)}(p^s t, q) = F^{n-1} \sum_{a = 0}^{F} \chi_n(a) \xi^a q^{h a} B_{n, F}^{(h)} \left(\frac{a + p^s t}{F}, q^F \right).
\]
If $\chi_n(p) = 0$, then $(p, f_{x_n}) = 1$, so that $\frac{F}{p}$ is a multiple of f_{x_n}. Consequently, we get
\[
\chi_n(p) p^{n-1} B_{n, x_n, \xi}^{(h)}(p^{-1} p^s t, q^F) = F^{n-1} \sum_{\substack{a = 0 \\ p \mid a}}^{F} \chi_n(a) \xi^a q^{h a} B_{n, F}^{(h)} \left(\frac{a + p^s t}{F}, q^F \right).
\]

The difference of (3.2) and (3.3), we have
\[
B_{n, x_n, \xi}^{(h)}(p^s t, q) - \chi_n(p) p^{n-1} B_{n, x_n, \xi}^{(h)}(p^{-1} p^s t, q^F) = F^{n-1} \sum_{\substack{a = 0 \\ p \mid a}}^{F} \chi_n(a) \xi^a q^{h a} B_{n, F}^{(h)} \left(\frac{a + p^s t}{F}, q^F \right).
\]

By using (1.8), we obtain
\[
B_{n, F}^{(h)} \left(\frac{a + p^s t}{F}, q^F \right) = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{a + p^s t}{F} \right)^{n-k} B_{k, F}^{(h)}(q^F) = (a + p^s t)^n F^{-n} \sum_{k=0}^{n} \binom{n}{k} \left(\frac{F}{a + p^s t} \right)^k B_{k, F}^{(h)}(q^F).
\]

Since $\chi_n(a) = \chi(a) w^{-n}(a)$, $(a, p) = 1$, and $t \in \mathbb{C}_p$ with $|t|_p \leq 1$, we have
\[
B_{n, x_n, \xi}^{(h)}(p^s t, q) - \chi_n(p) p^{n-1} B_{n, x_n, \xi}^{(h)}(p^{-1} p^s t, q^F) = \frac{1}{F} \sum_{a = 1}^{F} \chi(a) < a + p^s t > q^{h a \xi^a} \sum_{k=0}^{\infty} \binom{n}{k} \left(\frac{F}{a + p^s t} \right)^k B_{k, F}^{(h)}(q^F).
Substituting $s = 1 - n$, $n \in \mathbb{Z}^+$, into \([3.1]\), we obtain
\[
L^{(h)}_{\xi,p,q}(1-n,t,\chi) = -\frac{B^{(h)}_{n,\chi,\xi}(p^*t,q) - \chi_n(p)p^{n-1}B^{(h)}_{n,\chi,\xi}(p^{-1}p^*t,q^p)}{n}.
\]
Consequently, we arrive at the following main theorem:

Theorem 8. Let F be a positive integral multiple of p^* and $f = f_{\xi,\chi}$, and let
\[
L^{(h)}_{\xi,p,q}(s,t,\chi) = \frac{1}{(s-1)^F} \sum_{a=1}^{F} \chi(a) < a + p^*t >^{1-s} q^{ha} \sum_{k=0}^{\infty} \left(\frac{1}{k} \right) (F)_{a+p^*t}^k B^{(h)}_{\xi}(q^F).
\]
Then $L^{(h)}_{\xi,p,q}(s,t,\chi)$ is analytic for $h \in \mathbb{Z}^+$ and $t \in \mathbb{C}_p$ with $t \mid p \leq 1$, provided $s \in D$, except $s = 1$. Also, if $t \in \mathbb{C}_p$ with $t \mid p \leq 1$, this function is analytic for $s \in D$ when $\chi \neq 1$, and meromorphic for $s \in D$, with simple pole at $s = 1$ having residue
\[
\frac{\log q^h}{q^h - 1} \left(\frac{1 - q^{hF} }{1 - q^h} - \frac{1 - q^{hpF}}{1 - q^p} \right)
\]
when $\chi = 1$. In addition, for each $n \in \mathbb{Z}^+$, we have
\[
L^{(h)}_{\xi,p,q}(1-n,t,\chi) = \frac{B^{(h)}_{n,\chi,\xi}(p^*t,q) - \chi_n(p)p^{n-1}B^{(h)}_{n,\chi,\xi}(p^{-1}p^*t,q^p)}{n}.
\]

Remark 6. Observe that $\lim_{q^{-1}} L^{(h)}_{\xi,p,q}(s,t,\chi) = L^{(h)}_{\xi,p,q}(s,t,\chi)$ cf. \([17]\). $\lim_{q^{-1}} L^{(h)}_{\xi,p,q}(s,0,\chi) = L^{(h)}_{\xi,p,q}(s,\chi)$ cf. \([7,8]\). $\lim_{q^{-1}} L^{(h)}_{\xi,p,q}(s,\chi) = L^{(h)}_{\xi,p,q}(s,\chi)$, cf. \([2,3,5,21,22,34,31]\).

We defined Witt’s formula for $B^{(h)}_{n,\chi,\xi}(z,q)$ polynomials as follows:
\[
B^{(h)}_{n,\chi,\xi}(q) = \int_X \chi(x)q^{hz} d\mu_q(x), \text{ cf. } \([29,30]\)
\]
where $|1 - q|_p \leq p^{-\frac{1}{m-1}}$.

By using this formula, we define
\[
L^{(h)}_{\xi,p,q}(s,\chi) = \frac{1}{s-1} \int_X \chi(x)q^{hz} < x >^{s-1} q^{hz} d\mu_q(x),
\]
where $s \in \mathbb{C}_p$.

Substituting $s = 1 - n$, $n \in \mathbb{Z}^+$, into the above, we have
\[
L^{(h)}_{\xi,p,q}(1-n,\chi) = -\frac{1}{n} \int_X \chi(x)q^{hz} < x >^{n-1} q^{hz} d\mu_q(x) = -\frac{1}{n} \left(\int X \chi_n(x)q^{hz} x^m d\mu_q(x) - \int_{p^X} \chi_n(px)q^{p^h} x^m d\mu_q(px) \right) = -\frac{B^{(h)}_{n,\chi,\xi}(q) - \chi_n(p)p^{n-1}B^{(h)}_{n,\chi,\xi}(p^p)}{n}.
\]
Consequently, we arrive at the following theorem:

Theorem 9. Let $s \in \mathbb{C}_p$ and let
\[
L^{(h)}_{\xi,p,q}(s,\chi) = \frac{1}{s-1} \int_X \chi(x)q^{hz} < x >^{s-1} q^{hz} d\mu_q(x).
\]
For $n \in \mathbb{Z}^+$, we have
\[
L^{(h)}_{\xi,p,q}(1-n,\chi) = -\frac{1}{n} \int_{X, < x >} \xi^x \chi(x) < x >^{n-1} q^{hx} d\mu_q(x) = -B^{(h)}_{n,\xi,p,q}(q) - \chi_n(p)p^{n-1} B^{(h)}_{n,\xi,p,q}(q^p)\
\]

Acknowledgement 1. This paper was supported by the Scientific Research Project Administration Akdeniz University.

REFERENCES

[1] M. Cenkci, Y. Simsek, V. Kurt, Further remarks on multiple p-adic q-L-function of two variables, Adv. Stud. Contemp. Math. 14 (1) (2005) 49-68.
[2] J. Diamond, The p-adic log gamma function and p-adic Euler constant, Trans. Amer. Math. Soc. 233 (1977) 321-337.
[3] B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at $s = 0$, Invent. Math. 50 (1978) 91-102.
[4] G. J. Fox, A p-adic L-function of two variables, Enseign. Math., II. Sér. 46(3-4) (2000), 225-278.
[5] K. Iwasawa, Lectures on p-adic L-functions, Princeton Univ. Press 1972.
[6] T. Kim, An analogue of Bernoulli numbers and their congruences. Rep. Fac. Sci. Engrg. Saga Univ. Math. 22(2) (1994), 21-26.
[7] T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994) 73-86.
[8] T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002) 179-187.
[9] T. Kim, q-Volkenborn integration, Russ. J. Math Phys. 19 (2002) 288-299.
[10] T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli Polynomials, Russ. J. Math Phys. 10 (2003) 91-98.
[11] T. Kim, q-Riemann zeta function, Internat. J. Math. Sci. 2004 (12) (2003) 185-192.
[12] T. Kim, A note on Dirichlet L-series, Proc. Jangjeon Math. Soc. 6 (2003) 161-166.
[13] T. Kim et al, Introduction to Non-Archimedean Analysis, Kyo Woo Sa (Korea), 2004. [http://www.kyowoo.co.kr].
[14] T. Kim, p-adic q-integrals associated with the Changhee-Barnes’ q-Bernoulli Polynomials, Integral Transform. Spec. Funct. 15 (2004) 415-420.
[15] T. Kim, A new approach to q-zeta function, Adv. Stud. Contemp. Math. 11 (2) (2005) 157-162.
[16] T. Kim, Power series and asymptotic series associated with the q-analogue of two-variable p-adic L-function, Russ. J. Math Phys. 12 (2) (2005) 186-196.
[17] T. Kim, A new approach to p-adic q-L-functions, Adv. Stud. Contemp. Math. 12 (1) (2006) 61-72.
[18] T. Kim, On a p-adic interpolation function for the q-extension of the generalized Bernoulli polynomials and its derivative, arXiv:math.NT/0502460 v1 22 Feb 2005.
[19] T. Kim and S.-H. Rim, A note on two variable Dirichlet L-function, Adv. Stud. Contemp. Math. 10 (2005) 1-7.
[20] T. Kim, L. C. Jang, S.-H. Rim and H. K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (1) (2003) 13-21.
[21] Y. Kohlbzt, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (2) (1979) 455-468.
[22] K. Shiratani, On Euler numbers, Mem. Fac. Kyushu Univ. 27 (1973) 1-5.
[23] K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. 39 (1985) 113-125.
[24] Y. Simsek, On q-analogue of the twisted L-functions and q-twisted Bernoulli numbers, J. Korean Math. Soc. 40 (6) (2003) 963-975.
[25] Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2) (2005) 205-218.
[26] Y. Simsek, q-analogue of the twisted L-functions and twisted Euler numbers, J. Number Theory 110 (2) (2005) 267-278.
[27] Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, J. Math. Anal. Appl. 318(2) (2006) 340-349.
[28] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006) 790-804.
[29] Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (2007) 466-473.
[30] Y. Simsek, On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers, Russian J. Math. Phys. 13(3) (2006) 340-349.
[31] Y. Simsek, D. Kim and S.-H. Rim, On the two-variable Dirichlet q-L-series, Adv. Stud. Contemp. Math. 10 (2) (2005) 131-142.
[32] H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math Phys. 12 (2) (2005) 241-268.
[33] L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag (1st Ed.), 1982.
[34] P. T. Young, On the behavior of some two-variable p-adic L-function, J. Number Theory 98 (2003) 67-86.