PART I

INTRODUCTION AND BACKGROUND

What is virtual reality (VR)? What does VR consist of and for what situations is it useful? What is different about VR that gets people so excited? How do developers engage users so that they feel present in a virtual environment? This part of the book answers such questions, and provides a basic background that later chapters build upon. This introduction and background serves as a simple high-level toolbox of options to intelligently choose from, such as different forms of virtual and augmented reality (AR), different hardware options, various methods of presenting information to the senses, and ways to induce presence into the minds of users.

Part I consists of five chapters that cover the basics of VR.

Chapter 1, What Is Virtual Reality?, begins by describing what VR is at a high level and what it is suitable/effective for. This includes descriptions of different forms of communication that are at the heart of what VR is—communication between the user and a system created by the VR designer.

Chapter 2, A History of VR, provides a history of VR starting with stereoscopes created in the 1800s. The concept and implementation of VR is not new.

Chapter 3, An Overview of Various Realities, discusses forms of reality ranging from the real world to augmented reality (AR) to VR. Whereas the focus of this book is on fully immersive VR, this chapter provides context of where VR fits into the overall picture of related technologies. The chapter also gives a high-level description of various forms of input and output hardware options that can be used as part of AR and VR systems.
Chapter 4, Immersion, Presence, and Reality Trade-Offs, discusses the often-used terms of immersion and presence. Readers may be surprised to learn that realism is not necessarily the goal of VR and there are trade-offs for attempting to perfectly simulate reality, even if reality could be perfectly simulated.

Chapter 5, The Basics: Design Guidelines, concludes this introductory part of the book and gives a small number of guidelines for those looking to create VR experiences.
References

Abrash, M. (2013). Why Virtual Reality Is Hard (and Where It Might Be Going). In Game Developers Conference. Retrieved from http://media.steampowered.com/apps/valve/2013/MAbrashGDC2013.pdf 135

Adelstein, B. D., Burns, E. M., Ellis, S. R., and Hill, M. I. (2005). Latency Discrimination Mechanisms in Virtual Environments: Velocity and Displacement Error Factors. In Proceedings of the 49th Annual Meeting of the Human Factors and Ergonomics Society (pp. 2221–2225). 164, 184

Adelstein, B. D., Lee, T. G., and Ellis, S. R. (2003). Head Tracking Latency in Virtual Environments: Psychophysics and a Model. In Proceedings of the 47th Annual Meeting of the Human Factors and Ergonomics Society (pp. 2083–2987). 184

Adelstein, B. D., Li, L., Jerald, J., and Ellis, S. R. (2006). Suppression of Head-Referenced Image Motion during Head Movement. In Proceedings of the 50th Annual Meeting of the Human Factors and Ergonomics Society (pp. 2678–2682). 132, 185

Alonso-Nanclares, L., Gonzalez-Soriano, J., Rodriguez, J. R., and DeFelipe, J. (2008). Gender Differences in Human Cortical Synaptic Density. Proceedings of the National Academy of Sciences USA, 105, 14615–14619. DOI: 10.1073/pnas.0803652105.

Anstis, S. (1986). Motion Perception in the Frontal Plane: Sensory Aspects. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), Handbook of Perception and Human Performance (Vol. 1). New York: Wiley-Interscience. 131, 133, 185

Anthony, S. (2013, April 2). Kinect-Based System Diagnoses Depression with 90% Accuracy. ExtremeTech.com. Retrieved from http://www.extremetech.com/extreme/152309-kinect-based-system-diagnoses-depression-with-90-accuracy

Arditi, A. (1986). Binocular Vision. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), Handbook of Perception and Human Performance (Vol. 1). New York: Wiley-Interscience. 185

Attneave, F., and Olson, R. K. (1971). Pitch as a Medium: A New Approach to Psychophysical Scaling. The American Journal of Psychology, 84, 147–166. 100
Azuma, R. T. (1997). A Survey of Augmented Reality. *PRESENCE: Teleoperators and Virtual Environments*, 6(4), 355–385. 130

Azuma, R. T., and Bishop, G. (1995). A Frequency-Domain Analysis of Head-Motion Prediction. In *Proceedings of ACM SIGGRAPH 95* (pp. 401–408). ACM Press. 211

Badcock, D. R., Palmisano, S., and May, J. G. (2014). Vision and Virtual Environments. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed.). Boca Raton, FL: CRC Press. 89, 92, 93, 94, 95, 121, 166

Bailey, R. (1995, March 8). Costs Are Dropping for Virtual Reality Systems. *New York Times*. Retrieved from http://www.nytimes.com/1995/03/08/news/08iht-ff.html 27

Balakrishnan, R., and Hinckley, K. (2000). Symmetric bimanual interaction. *Human Factors in Computing Systems*, 2(1), 33–40. DOI: 10.1145/332040.332404. 342

Banks, M. S., Kim, J., and Shibata, T. (2013). Insight into Vergence-Accommodation Mismatch. Proc. SPIE, 8735, 873509. DOI: 10.1117/12.2019866. 173

Bhalla, M., and Proffitt, D. R. (1999). Visual-Motor Recalibration in Geographical Slant Perception. *Journal of Experimental Psychology. Human Perception and Performance*, 25, 1076–1096. DOI: 10.1037/0096-1523.25.4.1076. 123

Bliss, J. P., Proaps, A. B., and Chancey, E. T. (2014). Human Performance Measurements in Virtual Environments. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 749–780). Boca Raton, FL: CRC Press. 397, 402

Bolas, M., Kuruvilla, A., Chintalapud, S., Rabelo, F., Lympouridis, V., Suma, E., Barron, C., Matamoros, C., and Debevec, P. (2015). Creating Near-Field VR Using Stop Motion Characters and a Touch of Light-Field Rendering. In *ACM SIGGRAPH Posters*. 248

Bolas, M. T. (1989). Design and Virtual Environments. Master’s thesis, Stanford University. 383

Bolas, M. T. (1992). Design and Virtual Environments. In *International Conference on Artificial Reality and Tele-Existence* (pp. 135–141). 261, 383

Bolt, R. A. (1980). “Put-That-There”: Voice and Gesture at the Graphics Interface. In SIGGRAPH (pp. 262–270). DOI: 10.1145/800250.807503. 302, 303, 354

Botvinick, M., and Cohen, J. (1998). Rubber Hands “Feel” Touch that Eyes See. *Nature*, 391(6669), 756. DOI: 10.1038/35784. 47

Bowman, D. A., and Hodges, L. (1997). An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments. In *ACM Symposium on Interactive 3D Graphics* (pp. 35–38). ACM Press. 327, 332, 344, 351

Bowman, D. A., Kruijff, E., LaViola, J., Jr., and Poupyrev, I. (2004). *3D User Interfaces: Theory and Practice*. Addison-Wesley. Retrieved from http://books.google.com/books?id=JYzmCkf7yNc&pgis=1 101, 153, 253, 280, 282, 307, 329, 342, 351, 475
Bowman, D. A., McMahan, R. P., and Ragan, E. D. (2012). Questioning Naturalism in 3D User Interfaces. *Communications of the ACM, 55*(9), 78–88. DOI: 10.1145/2330667.

Bowman, D. A., and Wingrave, C. A. (2001). Design and Evaluation of Menu Systems for Immersive Virtual Environments. In *IEEE Virtual Reality* (pp. 149–156). DOI: 10.1109/VR.2001.913781.

Bowman, D. (1999). Interaction Techniques for Common Tasks in Immersive Virtual Environments. *Techniques.*

Bowman, D., Davis, E., Badre, A., and Hodges, L. Maintaining Spatial Orientation during Travel in an Immersive Virtual Environment. *Presence: Teleoperators and Virtual Environments,* vol. 8, no. 6, 1999, pp. 618-631.

Bowman, D., Koller, D., and Hodges, L. A Methodology for the Evaluation of Travel Techniques for Immersive Virtual Environments. *Virtual Reality: Research, Development, and Applications,* vol. 3, no. 2, 1998, pp. 120–131.

Brewster, D. (1856). *The Stereoscope: Its History, Theory, and Construction, with Its Application to the Fine and Useful Arts and to Education.* London: John Murray.

Bridgeman, B., Van der Heijden, A. H. C., and Velichkovsky, B. M. (1994). A Theory of Visual Stability across Saccadic Eye Movements. *Behavioral and Brain Sciences, 17*(2), 247–292.

Brooks, F. (1988). Grasping Reality through Illusion: Interactive Graphics Serving Science. In *CHI’88* (pp. 1–11). DOI: 10.1145/57167.57168.

Brooks, F. P. (2010). *The Design of Design: Essays From a Computer Scientist.* Addison-Wesley.

Brooks, F. P., Ouh-Young, M., Batter, J. J., and Jerome Kilpatrick, P. (1990). Project GROPE Haptic Displays for Scientific Visualization. *ACM SIGGRAPH Computer Graphics,* 24(4), 177–185. DOI: 10.1145/97880.97899.

Brooks, J. O., Goodenough, R. R., Crisler, M. C., Klein, N. D., Alley, R. L., Koon, B. L., Logan, W. C., Ogle, J. H., Tyrrell, R. A., and Wills, R. F. (2010). Simulator Sickness during Driving Simulation Studies. *Accident Analysis and Prevention,* 42, 788–796. DOI: 10.1016/j.aap.2009.04.013.

Brooks, F. P., Jr. (1995). *The Mythical Man Month: Essays on Software Engineering* (2nd ed.). Addison-Wesley.

Bryson, S., and Johan, S. (1996). Time Management, Simultaneity and Time-Critical Computation in Interactive Unsteady Visualization Environments. In *Proceedings of IEEE Visualization ’96* (pp. 255–262). IEEE Computer Science Press.

Burns, E., Razzaque, S., Panter, A. T., Whitton, M. C., McCallus, M. R., and Brooks, F. P., Jr. (2006). The Hand Is More Easily Fooled Than the Eye: Users Are More Sensitive
References

to Visual Interpenetration Than to Visual-Proprioceptive Discrepancy. *Presence: Teleoperators and Virtual Environments - Special Issue: IEEE VR 2005, 15*(1), 1–15. 109, 304, 306

Burton, T. M. W. (2012). Robotic Rehabilitation for the Restoration of Functional Grasping Following Stroke. Dissertation, University of Bristol, England. 103

Buxton, B. (2007). *Sketching User Experiences: Getting the Design Right and the Right Design*. Sketching User Experiences. Focal Press. DOI: 10.1016/B978-012374037-3/50064-X. 405

Buxton, W. (1986). There's More to Interaction Than Meets the Eye: Some Issues in Manual Input. In D. A. Norman and S. W. Draper (Eds.), *User Centered System Design: New Perspectives on Human-Computer Interaction* (pp. 319–337). Lawrence Erlbaum Associates. Retrieved from http://www.billbuxton.com/eye.html 283

Callahan, J., Hopkins, D., Weiser, M., and Shneiderman, B. (1988). An Empirical Comparison of Pie vs. Linear Menus. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems* (pp. 95–100). DOI: 10.1145/57167.57182. 346

Carmack, J. (2015). 2015 GDC - Carmack on Mobile VR (Full Livestream Recording). Retrieved April 20, 2015; from https://www.youtube.com/watch?v=UNAmAxT7-qs 212

Chance, S. S., Gaunet, F., Beall, A. C., and Loomis, J. M. (1998). Locomotion Mode Affects the Updating of Objects Encountered during Travel: The Contribution of Vestibular and Proprioceptive Inputs to Path Integration. *Presence: Teleoperators and Virtual Environments*. DOI: 10.1162/105474698565659. 336

Chen, S. E. (1995). Quicktime {VR}—An Image-based Approach to Virtual Environment Navigation. In *Proceedings of ACM SIGGRAPH 95* (pp. 29–38). ACM Press. 212

Clulow, F. W. (1972). *Color: Its Principle and Their Applications*. New York: Morgan and Morgan. 92

Cohn, M. (2005). *Agile Estimating and Planning*. Prentice Hall. 386

Comeau, C. P., and Brian, J. S. (1961, November). Headsight Television System Provides Remote Surveillance. *Electronics*, 86–90. 23

Coren, S., Ward, L. M., and Enns, J. T. (1999). *Sensation and Perception* (5th ed.). Harcourt Brace College Publishers. 86, 87, 88, 90, 91, 92, 93, 94, 98, 124, 125, 126, 128, 129, 131, 133, 134, 135, 136, 139, 140, 142, 148, 149, 296

Costello, P. (1997). *Health and Safety Issues Associated with Virtual Reality: A Review of Current Literature*. JISC Advisory Group on Computer Graphics (AGOCG) Technical Report Series No. 37, Computing Services, Loughborough University. 177, 179, 199

Craig, A. B., Sherman, W. R., and Will, J. D. (2009). *Developing Virtual Reality Applications: Foundations of Effective Design*. Elsevier. DOI: 10.1016/B978-0-12-374943-7.00005-7. 39
Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., and Hart, J. C. (1992). The CAVE: Audio Visual Experience Automatic Virtual Environment. *Communications of the ACM*. DOI: [10.1145/129888.129892](https://doi.org/10.1145/129888.129892).

Crystal, A., and Ellington, B. (2004). Task Analysis and Human-Computer Interaction?: Approaches, Techniques, and Levels of Analysis. In *America’s Conference on Information Systems* (pp. 1–9). Retrieved from http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1967&context=amcis2004.

Csikszentmihalyi, M. (2008). *Flow: The Psychology of Optimal Performance. Optimal Experience: Psychological Studies of Flow in Consciousness*. Harper Perennial Modern Classics.

Cunningham, D. W., Billock, V. A., and Tsou, B. H. (2001a). Sensorimotor Adaptation to Violations in Temporal Contiguity. *Psychological Science, 12*(6), 532–535. DOI: [10.1111/1467-9280.00383](https://doi.org/10.1111/1467-9280.00383).

Cunningham, D. W., Chatziastros, A., Von Der Heyde, M., and Bulthoff, H. H. (2001b). Driving in the Future: Temporal Visuomotor Adaptation and Generalization. *Journal of Vision, 1*(2), 88–98. DOI: [10.1167/1.2.2](https://doi.org/10.1167/1.2.2).

Cutting, J. E., and Vishton, P. M. (1995). Perceiving Layout and Knowing Distances?: The Integration, Relative Potency, and Contextual Use of Different Information about Depth. In W. Epstein and S. Rogers (Eds.), *Perception of Space and Motion* (Vol. 22, pp. 69–117). San Diego, CA: Academic Press. DOI: [10.1016/B978-012240530-3/50005-5](https://doi.org/10.1016/B978-012240530-3/50005-5).

da Cruz, L., Coley, B. F., Dorn, J., Merlino, F., Filley, E., Christopher, P., et al (2013). The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. *The British journal of ophthalmology, 97*(5), 632–636. DOI: [10.1136/bjo.2012.172840](https://doi.org/10.1136/bjo.2012.172840).

Daily, M., Howard, M., Jerald, J., Lee, C., Martin, K., McInnes, D., and Tinker, P. (2000). Distributed Design Review in Virtual Environments. In *Proceedings of the Third International Conference on Collaborative Virtual Environments* (pp. 57–63). ACM. Retrieved from DOI: [10.1145/351006.351013](https://doi.org/10.1145/351006.351013).

Daily, M., Sarfaty, R., Jerald, J., McInnes, D., and Tinker, P. (1999). The CABANA: A Reconfigurable Spatially Immersive Display. In *Projection Technology Workshop* (pp. 123–132). ACM.

Dale, E. (1969). *Audio-Visual Methods in Teaching* (3rd ed.). The Dryden Press.

Darken, R., Cockayne, W., and Carmein, D. (1997). The Omni-directional Treadmill: A Locomotion Device for Virtual Worlds. In *ACM Symposium on User Interface Software and Technology* (pp. 213–221). DOI: [10.1145/263407.263550](https://doi.org/10.1145/263407.263550).

Darken, R. P. (1994). Hands-Off Interaction with Menus in Virtual Spaces. In *SPIE Stereoscopic Displays and Virtual Reality Systems* (pp. 365–371). DOI: [10.1117/12.173893](https://doi.org/10.1117/12.173893).
Darken, R. P., and Cevik, H. (1999). Map Usage in Virtual Environments: Orientation Issues. *Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).* DOI: 10.1109/VR.1999.756944. 252

Darken, R. P., and Peterson, B. (2014). Spatial Orientation, Wayfinding, and Representation. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 467–491). Boca Raton, FL: CRC Press. 153, 244

Darken, R. P., and Sibert, J. L. (1993). A Toolset for Navigation in Virtual Environments. *Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology UIST93,* 2740, 157–165. DOI: 10.1145/168642.168658. 245

Darken, R. P., and Sibert, J. L. (1996). Wayfinding Strategies and Behaviors in Large Virtual Worlds. *CHI ’96,* 142–149. DOI: 10.1145/238386.238459. 242, 243

Davis, S., Nesbitt, K., and Nalivaiko, E. (2014). A Systematic Review of Cybersickness. In *Proceedings of the 2014 Conference on Interactive Entertainment* (pp. 1–9). Newcastle, NSW, Australia: ACM. 196

Debevec, P., Downing, G., M., B., Peng, H., and Urbach, J. (2015). Spherical Light Field Environment Capture for Virtual Reality Using a Motorized Pan/Tilt Head and Offset Camera. In *ACM SIGGRAPH Posters.* 248

De Haan, G., Koutek, M., and Post, F. H. (2005). IntenSelect: Using Dynamic Object Rating for Assisting 3D Object Selection. In *In Virtual Environments 2005* (pp. 201–209). 328

Delaney, D., Ward, T., and McLoone, S. (2006a). On Consistency and Network Latency in Distributed Interactive Applications: A Survey—Part I. *Presence: Teleoperators and Virtual Environments, 15*(2), 218–234. DOI: 10.1162/pres.2006.15.2.218. 415

Delaney, D., Ward, T., and McLoone, S. (2006b). On Consistency and Network Latency in Distributed Interactive Applications: A Survey—Part II. *Presence: Teleoperators and Virtual Environments, 15*(4), 465–482. 420

DiZio, P., Lackner, J. R., and Champney, R. K. (2014). Proprioceptive Adaptation and Aftereffects. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 835–856). Boca Raton, FL: CRC Press. 175

Dodgson, N. A. (2004). Variation and Extrema of Human Interpupillary Distance. In *SPIE Stereoscopic Displays and Virtual Reality Systems 5291* (pp. 36–46). 203

Dorst, K., and Cross, N. (2001). Creativity in the Design Process: Co-evolution of Problem-Solution. *Design Studies,* 22(5), 425–437. DOI: 10.1016/S0142-694X(01)00009-6. 380

Drachman, D. A. (2005). Do We Have Brain to Spare? *Neurology,* 64, 2004–2005. DOI: 10.1212/01.WNL.0000166914.38327.BB.

Draper, M. H. (1998). *The Adaptive Effects of Virtual Interfaces: Vestibulo-Ocular Reflex and Simulator Sickness.* University of Washington. 97, 98, 107, 144, 175
Duh, H. B., Parker, D. E., and Furness, T. A. I. (2001). An ‘Independent Visual Background’ Reduced Balance Disturbance Evoked by Visual Scene Motion: Implication for Alleviating Simulator Sickness. In Proceedings of ACM CHI 2001 (pp. 85–89). 168

Eastgate, R. M., Wilson, J. R., and D'Cruz, M. (2014). Structured Development of Virtual Environments. In Kelly S. Hale and K. M. Stanney (Eds.), Handbook of Virtual Environments (2nd ed., pp. 353–389). Boca Raton, FL: CRC Press. 237

Ebenholtz, S. M., Cohen, M. M., and Linder, B. J. (1994). The Possible Role of Nystagmus in Motion Sickness: A Hypothesis. Aviation Space and Environmental Medicine, 65(11), 1032–1035. 169

Eg, R., and Behne, D. M. (2013). Temporal Integration for Live Conversational Speech. In Auditory-Visual Speech Processing (pp. 129–134). 108

Ellis, S. R. (2014). Where Are All the Head Mounted Displays? Retrieved April 14, 2015, from http://humansystems.arc.nasa.gov/groups/acd/projects/hmd_dev.php 16

Ellis, S. R., Mania, K., Adelstein, B. D., and Hill, M. I. (2004). Generalizeability of Latency Detection in a Variety of Virtual Environments. In Proceedings of the 48th Annual Meeting of the Human Factors and Ergonomics Society (pp. 2083–2087). 98, 184

Ellis, S. R., Young, M. J., Adelstein, B. D., and Ehrlich, S. M. (1999). Discrimination of Changes in Latency during Head Movement. In Proceedings of Human-Computer Interaction 99 (pp. 1129–1133). L. Erlbaum Associates, Inc. 184

Fann, C.-W., Jiang, J.-R., and Wu, J.-W. (2011). Peer-to-Peer Immersive Voice Communication for Massively Multiplayer Online Games. 2011 IEEE 17th International Conference on Parallel and Distributed Systems, 759–764. DOI: 10.1109/ICPADS.2011.99. 421

Ferguson, E. S. (1994). Engineering and the Mind’s Eye. MIT Press. 380

Foley, J., Dam, A., Feiner, S., and Hughes, J. (1995). Computer Graphics: Principles and Practice. Reading, MA: Addison-Wesley Publishing. 32

Forsberg, A., Herndon, K., and Zeleznik, R. (1996). Aperture based selection for immersive virtual environments. In Proceedings of the 9th Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, USA, 95–96. DOI: 10.1145/237091 .237105. 331

Fuchs, H. (2014). Telepresence: Soon Not Just a Dream and a Promise. In IEEE Virtual Reality.

Gabbard, J. L. (1997). A Taxonomy of Usability Characteristics in Virtual Environments. Virginia Tech. 441

Gabbard, J. L. (2014). Usability Engineering of Virtual Environments. In K. S. Hale and K. M. Stanney (Eds.), Handbook of Virtual Environments (2nd ed., pp. 721–747). Boca Raton, FL: CRC Press. 403, 440, 441, 442
Ganel, T., Tanzer, M., and Goodale, M. A. (2008). A Double Dissociation between Action and Perception in the Context of Visual Illusions. *Psychological Science*, 19, 221–225. DOI: 10.1111/j.1467-9280.2008.02071.x

Gautier, L., Diot, C., and Kurose, J. (1999). End-to-End Transmission Control Mechanisms for Multiparty Interactive Applications on the Internet. In *IEEE INFOCOM* (pp. 1470–1479). DOI: 10.1109/INFCOM.1999.752168

Gebhardt, S., Pick, S., Leithold, F., Hentschel, B., and Kuhlen, T. (2013). Extended Pie Menus for Immersive Virtual Environments. *IEEE Transactions on Visualization and Computer Graphics*, 19(4), 644–51. DOI: 10.1109/TVCG.2013.31

Gibson, J. J. (1933). Adaptation, After-Effect and Contrast in the Perception of Curved Lines. *Journal of Experimental Psychology*. DOI: 10.1037/h0074626

Gliner, J. A., Morgan, G. A., and Leech, N. L. (2009). *Research Methods in Applied Settings: An Integrated Approach to Design and Analysis* (2nd ed.). Routledge.

Gogel, W. C. (1990). A Theory of Phenomenal Geometry and Its Applications. *Perception and Psychophysics*, 48(2), 105–123.

Goldstein, E. B. (2007). *Sensation and Perception* (7th ed.). Belmont, CA: Wadsworth Publishing.

Goldstein, E. B. (Ed.). (2010). *Encyclopedia of Perception*. SAGE Publications.

Goldstein, E. B. (2014). *Sensation and Perception* (9th ed.). Cengage Learning.

Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. (1996). The Lumigraph. In *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96* (pp. 43–54). DOI: 10.1145/237170.237200

Gothelf, J., and Seiden, J. (2013). *Lean UX* (E. Ries, Ed.). O’Reilly Media, Inc.

Grau, C., Ginhoux, R., Riera, A., Nguyen, T. L., Chauvat, H., Berg, M., Amengual, J. L., Pascual-Leone, A., and Ruffini, G. (2014). Conscious Brain-to-Brain Communication in Humans Using Non-invasive Technologies. *PloS One*, 9(8), e105225. DOI: 10.1371/journal.pone.0105225

Greene, N. (1986). Environment Mapping and Other Applications of World Projections. *IEEE Computer Graphics and Applications*, 6(11), 21–29.

Gregory, R. L. (1973). *Eye and Brain: The Psychology of Seeing* (2nd ed.). London: Weidenfeld and Nicolson.

Gregory, R. L. (1997). *Eye and Brain: The Psychology of Seeing* (5th ed.). Princeton University Press.
Guadagno, R. E., Blascovich, J., Bailenson, J. N., and Mccall, C. (2007). Virtual Humans and Persuasion: The Effects of Agency and Behavioral Realism. *Media Psychology, 10*(1), 1–22. 49

Guardini, P., and Gamberini, L. (2007). *The Illusory Contoured Tilting Pyramid*. Best illusion of the year contest 2007. Sarasota, Florida. http://illusionoftheyear.com/cat/top-10-finalists/2007/. 64

Guiard, Y. (1987). Asymmetric Division of Labor in Human Skilled Bimanual Action: The Kinematic Chain as a Model. *Journal of Motor Behavior, 19*(4), 486–517. DOI: 10.1080/00222895.1987.10735426. 287

Hallett, P. E. (1986). Eye Movements. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interactive. 95, 96, 97

Hamit, F. (1993). *Virtual Reality and the Exploration of Cyberspace*. Sams Publishing. 15, 59

Hannema, D. (2001). *Interactions in Virtual Reality*. University of Amsterdam. 299

Harm, D. L. (2002). Motion Sickness Neurophysiology, Physiological Correlates, and Treatment. In K. M. Stanney (Ed.), *Handbook of Virtual Environments* (pp. 637–661). Mahwah, N. J.: Lawrence Erlbaum Associates. 165, 196, 197

Harmon, L. (1973). The Recognition of Faces. *Scientific American, 229*(5), 70–84. 59, 60

Hartson, R., and Pyla, P. (2012). *The UX Book: Process and Guidelines for Ensuring a Quality User Experience* (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 441

Heider, F., and Simmel, M. (1944). An Experimental Study of Apparent Behavior. *The American Journal of Psychology, 57*, 243–259. DOI: 10.2307/1416950. 225, 226

Heilig, M. (1960). Stereoscopic-television apparatus for individual use. US Patent 2955156. 20, 21

Heilig, M. L. (1992). El Cine Del Futuro: The Cinema of the Future. *Presence: Teleoperators and Virtual Environments, 1*(3), 279–294. 21

Hettinger, L. J., Schmidt-Daly, T. N., Jones, D. L., and Keshavarz, B. (2014). Illusory Self-Motion in Virtual Environments. In K. Hale and K. Stanney (Eds.), *Handbook of virtual environments* (2nd ed., pp. 435–465). Boca Raton, FL: CRC Press. 136

Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F. (1994). Passive Real-World Interface Props for Neurosurgical Visualization. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Celebrating Interdependence, CHI ’94* (Vol. 30, pp. 452–458). DOI: 10.1145/191666.191821. 334

Hinckley, K., Pausch, R., Proffitt, D., and Kassell, N. F. (1998). Two-Handed Virtual Manipulation. In *ACM Transactions on Computer-Human Interaction* (Vol. 5, pp. 260–302). DOI: 10.1145/292834.292849. 287, 315, 333
Ho, C. C., and MacDorman, K. F. (2010). Revisiting the Uncanny Valley Theory: Developing and Validating an Alternative to the Godspeed Indices. *Computers in Human Behavior, 26*(6), 1508–1518. DOI: 10.1016/j.chb.2010.05.015.

Hoffman, H. G. (2004). Virtual-reality therapy. *Scientific American, 291*, 58–65. DOI: 10.1038/scientificamerican0804-58.

Hollister, S. (2014). Oculus Wants to Build a Billion-Person MMO with Facebook. Retrieved April 8, 2015, from http://www.theverge.com/2014/5/5/5684236/oculus-wants-to-build-a-billion-person-mmo-with-facebook

Holloway, R. (1997). Registration Error Analysis for Augmented Reality. *Presence: Teleoperators and Virtual Environments, 6*(4), 413–432.

Holloway, R. L. (1995). *Registration Errors in Augmented Reality Systems*. Department of Computer Science, University of North Carolina at Chapel Hill.

Homan, R. (1996). SmartScene: An Immersive, Realtime, Assembly, Verification and Training Application. In *Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment* (pp. 119–140). NASA Conference Publication. Retrieved from https://archive.org/stream/nasa_techdoc_19970014680/19970014680_djvu.txt

Hopkins, A. A. (2013). *Magic: Stage Illusions and Scientific Diversions, Including Trick Photography*. Dover Publications. 15

Houben, M., and Bos, J. (2010). Reduced Seasickness by an Artificial 3D Earth-Fixed Visual Reference. In *International Conference on Human Performance at Sea* (pp. 263–270).

Howard, I. P. (1986a). The Perception of Posture, Self Motion, and the Visual Vertical. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interscience. 98, 137

Howard, I. P. (1986b). The Vestibular System. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interscience. 107, 109, 137, 164

Howard, M., Tinker, P., Martin, K., Lee, C., Daily, M., and Clausner, T. (1998). The Human Integrating Virtual Environment. In *All-Raytheon Software Symposium*. 418

Hu, H., Ren, Y., Xu, X., Huang, L., and Hu, H. (2014). Reducing View Inconsistency by Predicting Avatars’ Motion in Multi-server Distributed Virtual Environments. *Journal of Network and Computer Applications, 40*(1), 21–30. DOI: 10.1016/j.jnca.2013.08.011.

Hummels, C., and Stappers, P. J. (1998). Meaningful Gestures for Human Computer Interaction: Beyond Hand Postures. In *Proceedings, 3rd IEEE International Conference on Automatic Face and Gesture Recognition, FG 1998* (pp. 591–596). DOI: 10.1109/AFGR.1998.71012.
Hutchins, E., Hollan, J., and Norman, D. (1986). Direct Manipulation Interfaces. In D. A. Norman and S. W. Draper (Eds.), User-Centered System Design: New Perspectives in Human-Machine Interaction (pp. 87–124). Boca Raton, FL: CRC Press. DOI: 10.1207/s15327051hci0104_2. 284

Ingram, R., and Benford, S. (1995). Legibility enhancement for information visualisation. In Proceedings Visualization '95 (pp. 209–216). DOI: 10.1109/VISUAL.1995.480814. 245

Insko, B. E. (2001). Passive Haptics Significantly Enhances Virtual Environments. PhD dissertation, Department of Computer Science, UNC-Chapel Hill. 37

International Society for Presence Research. (2000). The Concept of Presence: Explication Statement. Retrieved November 6, 2014, from http://ispr.info/

ITU-T. (2015). Definition of “Open Standards.” Retrieved June 20, 2015; from http://www.itu.int/en/ITU-T/ipr/Pages/open.aspx 482

Iwata, H. (1999). Walking about Virtual Environments on an Infinite Floor. In IEEE Virtual Reality (pp. 286–293). DOI: 10.1109/VR.1999.756964. 42

Jacob, R. J. K. (1991). The Use of Eye Movements in Human-Computer Interaction Techniques: What You Look at Is What You Get. ACM Transactions on Information Systems. DOI: 10.1145/123078.128728. 318

James, T., and Woodsmall, W. (1988). Time Line Therapy and the Basis of Personality. Meta Publications. 81

Jerald, J. (2009). Scene-Motion- and Latency-Perception Thresholds for Head-Mounted Displays. Department of Computer Science, University of North Carolina at Chapel Hill. 31, 106, 132, 142, 163, 164, 183, 185, 186, 188, 189, 191, 194, 211

Jerald, J., Daily, M. J., Neely, H. E., and Tinker, P. (2001). Interacting with 2D Applications in Immersive Environments. In EUROIMAGE International Conference on Augmented Virtual Environments and 3d Imaging (pp. 267–270). 35

Jerald, J., Fuller, A. M., Lastra, A., Whitton, M., Kohli, L., and Brooks, F. (2007). Latency Compensation by Horizontal Scanline Selection for Head-Mounted Displays. Proceedings of SPIE, 6490, 64901Q–64901Q–11. Retrieved from http://link.aip.org/link/PSISDG/v6490/i1/p64901Q/s1&Agg=doi 33, 212

Jerald, J., Marks, R., Laviola, J., Rubin, A., Murphy, B., Steury, K., and Hirsch, E. (2012). The Battle for Motion-Controlled Gaming and Beyond (Panel). In ACM SIGGRAPH. 309

Jerald, J., Mlyniec, P., Yoganandan, A., Rubin, A., Paullus, D., and Solotko, S. (2013). MakeVR: A 3D World-Building Interface. In Symposium on 3D User Interfaces (pp. 197–198). 213, 342, 438, 489

Jerald, J., Peck, T. C., Steinicke, F., and Whitton, M. C. (2008). Sensitivity to Scene Motion for Phases of Head Yaws. In Symposium on Applied Perception in Graphics
and Visualization (pp. 155–162). ACM Press. Retrieved from http://portal.acm.org/citation.cfm?doid=1394281.1394310 DOI: 1394281.1394310. 132

Jerald, J. (2011). iMedic. SIGGRAPH 2011: Real-Time Live Highlights. Retrieved Aug 24, 2015 from https://youtu.be/n-KXs3iWyuA?t=30s. 248

Johansson, G. (1976). Spatio-temporal Differentiation and Integration in Visual Motion Perception. Psychological Research, 38(4), 379–393. DOI: 10.1007/BF00309043. 136

Johnson, D. M. (2005). Simulator Sickness Research Summary. Fort Rucker, AL: U.S. Army Research Institute for the Behavioral and Social Sciences. 174, 197, 201, 203, 205, 207

Jones, J. A., Suma, E. A., Krum, D. M., and Bolas, M. (2012). Comparability of Narrow and Wide Field-of-View Head-Mounted Displays for Medium-Field Distance Judgments. In ACM Symposium on Applied Perception (p. 119). 27

Kabbash, P., Buxton, W., and Sellen, A. (1994). Two-Handed Input in a Compound Task. In SIGCHI Conference on Human Factors in Computing Systems (pp. 417–423). DOI: 10.1145/191666.191808. 287

Kant, I. (1781). Critique of Pure Reason. Critique of Pure Reason (Vol. 2). Retrieved from http://www.gutenberg.org/files/4280/4280-h/4280-h.htm 10

Kennedy, R. S., and Fowlkes, J. E. (1992). Simulator Sickness Is Polygenic and Polysymptomatic: Implications for Research. The International Journal of Aviation Psychology. DOI: 10.1207/s15327108ijap0201_2. 195

Kennedy, R. S., Kennedy, R. C., Kennedy, K. E., Wasula, C., and Bartlett, K. M. (2014). Virtual Environments and Product Liability. In K. S. Hale and K. M. Stanney (Eds.), Handbook of Virtual Environments (2nd ed., pp. 505–518). Boca Raton, FL: CRC Press. 175

Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. (1993). A Simulator Sickness Questionnaire (SSQ): A New Method for Quantifying Simulator Sickness. International Journal of Aviation Psychology, 3(3), 203–220. 163, 195, 196, 197, 207

Kennedy, R. S., and Lilienthal, M. G. (1995). Implications of Balance Disturbances Following Exposure to Virtual Reality Systems. In Proceedings of the IEEE Virtual Reality Annual International Symposium (VRAIS) (pp. 35–39). IEEE Computer Society Press. 163, 174

Kersten, D., Mamassian, P. and Knill, D. C. (1997). Moving cast shadows induce apparent motion in depth. Perception, 26, 171–192. 117

Keshavarz, B., Hecht, H., and Lawson, B. D. (2014). Visually Induced Motion Sickness. In K. Hale and K. Stanney (Eds.), Handbook of Virtual Environments (2nd ed., pp. 647–698). Boca Raton, FL: CRC Press. 169, 175, 213
Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., and Kim, H. T. (2005). Characteristic Changes in the Physiological Components of Cybersickness. *Psychophysiology, 42*(5), 616–625. DOI: 10.1111/j.1469-8986.2005.00349.x.

Klumpp, R. G. (1956). Some Measurements of Interaural Time Difference Thresholds. *The Journal of the Acoustical Society of America*. DOI: 10.1121/1.1908493.

Kohli, L. (2013). *Redirected Touching*. University of North Carolina at Chapel Hill.

Kolasinski, E. (1995). *Simulator Sickness in Virtual Environments*. U.S. Army Research Institute for the Behavioral and Social Sciences, Technical Report 1027.

Kopper, R., Bowman, D. A., Silva, M. G., and McMahan, R. P. (2010). A Human Motor Behavior Model for Distal Pointing Tasks. *International Journal of Human Computer Studies, 68*(10), 603–615. DOI: 10.1016/j.ijhcs.2010.05.001.

Korzybski, A. (1933). *Science and Sanity—An Introduction to Non-Aristotelean Systems and General Semantics*. European Society for General Semantics.

Krum, D. M., Suma, E. A., and Bolas, M. (2012). Augmented Reality using Personal Projection and Retroreflection. *Personal and Ubiquitous Computing, 16*(1), 17–26. DOI: 10.1007/s00779-011-0374-4.

Kumar, M. (2007). *Gaze-Enhanced User Interface Design*. PhD dissertation, Stanford University.

Kurtenbach, G., Sellen, A., and Buxton, W. (1993). An Empirical Evaluation of Some Articulatory and Cognitive Aspects of Marking Menus. *Human-Computer Interaction*. DOI: 10.1207/s15327051hci0801_1.

Lackner, J. (2014). Motion sickness: More Than Nausea and Vomiting. *Experimental Brain Research, 232*, 2493–2510. DOI: 10.1007/s00221-014-4008-8.

Lackner, J. R., and Teixeira, R. (1977). Visual-Vestibular Interaction: Vestibular Stimulation Suppresses the Visual Induction of Illusory Self-Rotation. *Aviation, Space and Environmental Medicine, 48*, 248–253.

Lang, B. (2015, January 5). Visionary VR Is Reinventing Filmmaking’s Most Fundamental Concept to Tell Stories in Virtual Reality. *Road to VR*.

Larman, C. (2004). *Agile and Iterative Development: A Manager’s Guide*. Addison-Wesley.

LaViola, J. (1999). *Whole-Hand and Speech Input in Virtual Environments*. Providence, RI: Brown University Press.

LaViola, J. (2000). A Discussion of Cybersickness in Virtual Environments. *ACM SIGCHI Bulletin*. DOI: 10.1145/333329.333344.

LaViola, J., and Zeleznik, R. (1999). Flex and Pinch: A Case Study of Whole-Hand Input Design for Virtual Environment Interaction. In *International Conference on Computer Graphics and Imaging* (pp. 221–225).
Lawson, B. D. (2014). Motion Sickness Symptomatology and Origins. In K. Hale and K. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 531–600). Boca Raton, FL: CRC Press. 163, 197, 200, 207

Lehar, S. (2007). The Constructive Aspect of Visual Perception: A Gestalt Field Theory Principle of Visual Reification Suggests a Phase Conjugate Mirror Principle of Perceptual Computation. Retrieved from http://cns-alumni.bu.edu/~slehar/ConstructiveAspect/ConstructiveAspect.pdf 64, 231

Leigh, J., Johnson, A., and Defanti, T. A. (1997). CAVERN: A Distributed Architecture for Supporting Scalable Persistence and Interoperability in Collaborative Virtual Environments. *Virtual Reality: Research, Development and Applications*, 2(2), 217–237.

Levoy, M., and Hanrahan, P. (1996). Light Field Rendering. *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’96*, 31–42. DOI: 10.1145/237170.237199. 248

Li, L., Adelstein, B. D., and Ellis, S. R. (2006). Perception of Image Motion during Head Movement. In *Proceedings of the ACM Symposium on Applied Perception in Graphics and Visualization* (pp. 45–50). Boston, MA: ACM Press. 132

Liang, J., and Green, M. (1994). JDCAD: A Highly Interactive 3D Modeling System. *Computers and Graphics*, 18(4), 499–506.

Lin, J. J. W., Abi-Rached, H., and Lahav, M. (2004). Virtual Guiding Avatar: An Effective Procedure to Reduce Simulator Sickness in Virtual Environments. In *Conference on Human Factors in Computing Systems, Proceedings* (pp. 719–726). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-4544250250&partnerID=40&md5=e8702da495f6ad516a11210168b1efd0 210

Lindeman, R., and Beckhaus, S. (2009). Crafting Memorable VR Experiences Using Experiential Fidelity. *Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology*, 187–190. DOI: 10.1145/1643928.1643970. 227

Lindeman, R. W. (1999). *Bimanual interaction, Passive-Haptic Feedback, 3D Widget Representation, and Simulated Surface Constraints for Interaction in Immersive Virtual Environments*. George Washington University.

Lindeman, R. W., Sibert, J. L., and Hahn, J. K. (1999). Hand-Held Windows: Towards Effective 2D Interaction in Immersive Virtual Environments. In *IEEE Virtual Reality* (pp. 205–212). DOI: 10.1109/VR.1999.756952. 37, 349

Link. (2015). Link Foundation Advanced Simulation and Training Fellowships. Retrieved April 15, 2015, from http://linksim.org/ 19

Lisberger, S. G., and Movshon, J. A. A. (1999). Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys. *The Journal of Neuroscience*, 19(6), 2224–2246.

Lisberger, S. G., and Movshon, J. A. A. (1999). Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys. *The Journal of Neuroscience*, 19(6), 2224–2246.
Loomis, J. M., and Knapp, J. M. (2003). Visual Perception of Egocentric Distance in Real and Virtual Environments. In L. J. Hettinger and M. W. Haas (Eds.), *Virtual and Adaptive Environments*. Mahwah, NJ: Lawrence Erlbaum Associates. 124

Loose, R., and Probst, T. (2001). Velocity Not Acceleration of Self-Motion Mediates Vestibular-Visual Interaction. *Perception, 30*(4), 511–518. 132

Lucas, G. M., Gratch, J., King, A., and Morency, L. P. (2014). It’s Only a Computer: Virtual Humans Increase Willingness to Disclose. *Computers in Human Behavior, 37*, 94–100. DOI: 10.1016/j.chb.2014.04.043. 477

Lynch, K. (1960). *The Image of the City*. MIT Press. 243

Mack, A. (1986). Perceptual Aspects of Motion in the Frontal Plane. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interscience. 112, 130

Mack, A., and Herman, E. (1972). A New Illusion: The Underestimation of Distance during Pursuit Eye Movements. *Perception and Psychophysics, 12*, 471–473. 141

Maltz, M. (1960). *Psycho-Cybernetics*. Prentice-Hall. 48

Mania, K., Adelstein, B. D., Ellis, S. R., and Hill, M. I. (2004). Perceptual Sensitivity to Head Tracking in Virtual Environments with Varying Degrees of Scene Complexity. In *Proceedings of the ACM Symposium on Applied Perception in Graphics and Visualization* (pp. 39–47). 184

Mapes, D., and Moshell, J. (1995). A Two-Handed Interface for Object Manipulation in Virtual Environments. *Presence: Teleoperators and Virtual Environments, 4*(4), 403–416. 341

Mark, W. R., McMillan, L., and Bishop, G. (1997). Post-rendering 3D Warping. In *Proceedings of Interactive 3D Graphics* (pp. 7–16). Providence, RI. 212

Marois, R., and Ivanoff, J. (2005). Capacity Limits of Information Processing in the Brain. *Trends in Cognitive Sciences*. DOI: 10.1016/j.tics.2005.04.010.

Martin, J. (1998). TYCOON: Theoretical Framework and Software Tools for Multimodal Interfaces. In J. Lee (Ed.), *Intelligence and Multimodality in Multimedia Interfaces*. AAAI Press. 302

Martini (1998). *Fundamentals of Anatomy and Physiology*. Upper Saddle River: Prentice Hall. 106

Mason, W. 2015, Open Source vs. Open Standard, an Important Distinction. Retrieved July 2, 2015, from http://uploadvr.com/osvr-may-be-open-source-but-it-is-not-open-standard-and-that-is-an-important-distinction-says-neil-schneider-of-the-ita/ 482

May, J. G., and Badcock, D. R. (2002). Vision and Virtual Environments. In K. M. Stanney (Ed.), *Handbook of Virtual Environments* (pp. 29–63). Mahwah, NJ: Lawrence Erlbaum Associates. 96
McCauley, M. E., and Sharkey, T. J. (1992). Cybersickness: Perception of Motion in Virtual Environments. *Presence: Teleoperators and Virtual Environments, 1*(3), 311–318. 207

McGurk, H., and MacDonald, J. (1976). Hearing lips and seeing voices. *Nature, 264,* 746–748. 108

McMahan, R. P., and Bowman, D. A. (2007). An Empirical Comparison of Task Sequences for Immersive Virtual Environments. In *IEEE Symposium on 3D User Interfaces* (pp. 25–32). DOI: 10.1109/3DUI.2007.340770. 302

McMahan, R. P., Bowman, D. A., Zielinski, D. J., and Brady, R. B. (2012). Evaluating Display Fidelity and Interaction Fidelity in a Virtual Reality Game. *IEEE Transactions on Visualization and Computer Graphics, 18*(4), 626–633. DOI: 10.1109/TVCG.2012.43. 337

McMahan, R. P., Kopper, R., and Bowman, D. A. (2014). Principles for Designing Effective 3D Interaction Techniques. In K. M. Stanney and K. S. Hale (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 285–311). Boca Raton, FL: CRC Press. 299, 325, 345, 397, 398

McMahan, R. P., Ragan, E. D., Bowman, D. A., Tang, F., and Lai, C. (2015). FIFA: The Framework for Interaction Fidelity Analysis. Tech Report UTDCS-06-15. The University of Texas at Dallas. 290

Meehan, M., Brooks, F., Razzaque, S., and Whitton, M. (2003). Effects of Latency on Presence in Stressful Virtual Environments. In *Proceedings of IEEE Virtual Reality* (pp. 141–148). Los Angeles, CA. 184

Meehan, M., Insko, B., Whitton, M., and Brooks, F. P. (2002). Physiological Measures of Presence in Stressful Virtual Environments. *ACM Transactions on Graphics.* DOI: 10.1145/566654.566630. 37

Melzer, J. E., and Moffitt, K. (2011). *Head-Mounted Displays: Designing for the User.* CreateSpace Publishing. 178

Merriam-Webster (2015). Merriam-Webster. Retrieved May 8, 2015, from http://www.merriam-webster.com/ 9

Milgram, P., and Kishino, F. (1994). Taxonomy of Mixed Reality Visual Displays. *IEICE Transactions on Information and Systems, E77-D*(12), 1321–1329. 29, 30

Miller, G. A., and Isard, S. (1963). Some Perceptual Consequences of Linguistic Rules. *Journal of Verbal Learning and Verbal Behavior.* DOI: 10.1016/S0022-5371(63)80087-0. 102

Miné, M. (2003). Towards Virtual Reality for the Masses: 10 Years of Research at Disney’s VR Studio. In *Proceedings of the Workshop on Virtual Environments 2003* (pp. 11–17). DOI: 10.1145/769953.769955. 180
Miné, M., and Bishop, G. (1993). *Just-in-Time Pixels*. Technical Report TR93-005, Department of Computer Science, University of North Carolina at Chapel Hill. 191

Miné, M. R. (1993). *Characterization of End-To-End Delays in Head-Mounted Display Systems*. Technical Report TR93-001, Department of Computer Science, University of North Carolina at Chapel Hill. 187

Miné, M. R., Brooks, F. P., Jr., and Séquin, C. (1997). Moving Objects in Space: Exploiting Proprioception in Virtual Environment Interaction. In *SIGGRAPH* (pp. 19–26). ACM Press. 113, 291, 294, 328, 339, 348, 351

Mirzaie, H. (2009, March 16). Stereoscopic Vision. Retrieved from http://www.slideshare.net/hmirzaeee/stereoscopic-vision 121

Miyaura, M., Narumi, T., Nishimura, K., Tanikawa, T., and Hirose, M. (2011). Olfactory Feedback System to Improve the Concentration Level Based on Biological Information. *2011 IEEE Virtual Reality Conference*, 139–142. DOI: 10.1109/VR.2011.5759452. 108

Mlyniec, P. (2013). Motion-Controlled Gaming for Neuroscience Education. Retrieved April 14, 2015, from http://sbirsource.com/sbir/awards/146246-motion-controlled-gaming-for-neuroscience-education 439

Mlyniec, P., Jerald, J., Yoganandan, A., Seagull, J., Toledo, E., and Schultheis, U. (2011). iMedic: A Two-Handed Immersive Medical Environment for Distributed Interactive Consultation. In *Studies in Health Technology and Informatics* (Vol. 163, pp. 372–378). 248, 341, 353

Mori, M. (1970). The Uncanny Valley. *Energy*, 7(4), 33–35. DOI: 10.1162/pres.16.4.337. 50

Murphy, K. R., and Davidshofer, C. O. (2005). *Psychological Testing: Principles and Applications*. Pearson/Prentice Hall. 430

Nakayama, K., and Tyler, C. W. (1981). Psychological Isolation of Movement Sensitivity by Removal of Familiar Position Cues. *Vision Research*, 21, 427–433. 129

Neely, H. E., Belvin, R. S., Fox, J. R., and Daily, M. J. (2004). Multimodal Interaction Techniques for Situational Awareness and Command of Robotic Combat Entities. In *IEEE Aerospace Conference Proceedings* (Vol. 5, pp. 3297–3305). DOI: 10.1109/AERO.2004.1368136. 354, 407

Negroponte, N. (1993, December). Virtual Reality: Oxymoron or Pleonasm. *Wired Magazine*. Retrieved from http://archive.wired.com/wired/archive/1.06/negroponte_pr.html 27

Nichols, S., Ramsey, A. D., Cobb, S., Neale, H., D’Cruz, M., and Wilson, J. R. (2000). *Incidence of Virtual Reality Induced Symptoms and Effects (VRISE) in Desktop and Projection Screen Display Systems*. HSE Contract Research Report. 203
References

Norman, D. A. (2013). *The Design of Everyday Things, Expanded and Revised Edition. Human Factors and Ergonomics in Manufacturing*. New York: Basic Books. DOI: 10.1002/hfm.20127. 11, 76, 77, 79, 227, 278, 285, 286

Oakes, E. H. (2007). *Encyclopedia of World Scientists*. Infobase Publishing. 22

Oculus Best Practices. (2015). Retrieved May 22, 2015, from https://developer.oculus.com/documentation/ 164, 201, 441

Olano, M., Cohen, J., Miné, M., and Bishop, G. (1995). Combatting Rendering Latency. In *Proceedings of the ACM Symposium on Interactive 3D Graphics* (pp. 19–24). Monterey, CA. 187

Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H. (2007). *Engineering Design: A Systematic Approach*. Springer. 396

Patrick, G. T. W. (1890). The Psychology of Prejudice. *Popular Science Monthly*, 36, 634. 55

Pausch, R., Crea, T., and Conway, M. J. (1992). A Literature Survey for Virtual Environments: Military Flight Simulator Visual Systems and Simulator Sickness. *PRESENCE: Teleoperators and Virtual Environments*, 1(3), 344–363. 205

Pausch, R., Snoddy, J., Taylor, R., Watson, S., and Haseltine, E. (1996). Disney's Aladdin: First Steps toward Storytelling in Virtual Reality. In *Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques* (pp. 193–203). ACM Press. DOI: 10.1145/237170.237257. 180, 200, 228, 258, 313

Peck, T. C., Seinfeld, S., Aglioti, S. M., and Slater, M. (2013). Putting Yourself in the Skin of a Black Avatar Reduces Implicit Racial Bias. *Consciousness and Cognition*, 22(3), 779–787. DOI: 10.1016/j.concog.2013.04.016. 48

Pfeiffer, T., and Memili, C. (2015). GPU-Accelerated Attention Map Generation for Dynamic 3D Scenes. In *IEEE Virtual Reality*. Retrieved from http://gpu-heatmap.multimodal-interaction.org/AttentionVisualizer/GPU_accelerated_Heatmaps.pdf 150

Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik, R., and Miné, M. R. (1997). Image Plane Interaction Techniques in 3D Immersive Environments. In *ACM Symposium on Interactive 3D Graphics* (pp. 39–44). ACM Press. 329, 330

Pierce, J. S., Stearns, B. C., and Pausch, R. (1999). Voodoo Dolls?: Seamless Interaction at Multiple Scales in Virtual Environments. In *Symposium on Interactive 3D Graphics* (pp. 141–145). DOI: 10.1145/300523.300540. 352

Plato. (380 BC). *The Republic*. Athens, Greece: The Academy.

Pokorny, J., and Smith, V. C. (1986). Colorimetry and Color Discrimination. In K. Boff, L. Kaufman, and J. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interscience. 91
Polonen, M. (2010). *A Head-Mounted Display as a Personal Viewing Device: Dimensions of Subjective Experiences*. University of Helsinki, Finland. Retrieved from http://helda.helsinki.fi/bitstream/handle/10138/19799/aheadmou.pdf?sequence=1

Posner, M. I., Nissen, M. J., and Klein, R. M. (1976). Visual Dominance: An Information-Processing Account of Its Origins and Significance. *Psychological Review, 83*, 157–171. DOI: [10.1037/0033-295X.83.2.157](https://doi.org/10.1037/0033-295X.83.2.157)

Poupyrev, I., Billinghurst, M., Weghorst, S., and Ichikawa, T. (1996). The Go-Go Interaction Technique: Non-linear Mapping for Direct Manipulation in VR. In *ACM Symposium on User Interface Software and Technology* (pp. 79–80). ACM Press. DOI: [10.1145/237091.237102](https://doi.org/10.1145/237091.237102)

Poupyrev, I., Weghorst, S., and Fels, S. (2000). Non-isomorphic 3D Rotational Techniques. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’00* (pp. 540–547). DOI: [10.1145/332040.332497](https://doi.org/10.1145/332040.332497)

Pratt, A. B. (1916). Weapon. US Patent 1183492.

Proffitt, D. R. (2008). An Action-Specific Approach to Spatial Perception. *Embodiment, Ego-Space, and Action*, 177–200. Retrieved from http://people.virginia.edu/~drp/reprints/Proffitt_2008_CMU_Chapter.pdf

Proffitt, D. R., Bhalla, M., Gossweiler, R., and Midgett, J. (1995). Perceiving Geographical Slant. *Psychonomic Bulletin and Review*. DOI: [10.3758/BF03210980](https://doi.org/10.3758/BF03210980)

Prothero, J. D., and Parker, D. E. (2003). A Unified Approach to Presence and Motion Sickness. In L. J. Hettinger and M. Haas (Eds.), *Virtual and Adaptive Environments* (pp. 47–66). Boca Raton, FL: CRC Press. DOI: [10.1201/9781410608888.ch3](https://doi.org/10.1201/9781410608888.ch3)

Provancher, W. (2014). Creating Greater VR Immersion by Emulating Force Feedback with Ungrounded Tactile Feedback. *IJT Quarterly*, 18–21.

Ramachandran, V. S., and Hirstein, W. (1998). The Perception of Phantom Limbs. The D. O. Hebb lecture. *Brain, 121*(9), 1603–1630. DOI: [10.1093/brain/121.9.1603](https://doi.org/10.1093/brain/121.9.1603)

Rash, C. E. (2004). Awareness of Causes and Symptoms of Flicker Vertigo Can Limit Ill Effects. *Flight Safety Foundation-Human Factors and Aviation Medicine, 51*(2), 1–6.

Rasmussen, J. (2010). The Agile Samurai—How Agile Masters Deliver Great Software. Pragmatic Bookshelf. http://pragprog.com/titles/jtrap/the-agile-samurai.

Razzaque, S. (2005). *Redirected Walking*. Department of Computer Science, University of North Carolina at Chapel Hill. 74, 97, 98, 107, 109, 169, 170

Razzaque, S., Kohn, Z., and Whitton, M. (2001). Redirected Walking. In *Eurographics* (pp. 289–294). Manchester, UK.

Reason, J. T., and Brand, J. J. (1975). *Motion Sickness*. London: Academic Press. 165, 202
Reeves, B., and Voelker, D. (1993). *Effects of Audio-Video Asynchrony on Viewer’s Memory, Evaluation of Content and Detection Ability*. Research report, Stanford University. 108

Regan, D. M., Kaufman, L., and Lincoln, J. (1986). Motion in Depth and Visual Acceleration. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interscience. 130

Regan, M., Miller, G., Rubin, S., and Kogelnik, C. (1999). A Real-Time Low-Latency Hardware Light-Field Renderer. In *Proceedings of ACM SIGGRAPH 99* (pp. 287–290). ACM Press. 212

Regan, M., and Pose, R. (1994). Priority Rendering with a Virtual Reality Address Recalculation Pipeline. In *Proceedings of ACM SIGGRAPH 94* (pp. 155–162). ACM Press. 212

Reichelt, S., Haussler, R., Füterer, G., and Leister, N. (2010). Depth Cues in Human Visual Perception and Their Realization in 3D Displays. In *Three Dimensional Imaging, Visualization, and Display 2010* (p. 76900B–76900B–12). DOI: 10.1117/12.850094. 94, 95, 122

Renner, R. S., Velichkovsky, B. M., and Helmert, J. R. (2013). The Perception of Egocentric Distances in Virtual Environments - A Review. *ACM Computing Surveys, 46*(2), 23:1–40. 123, 124

Riccio, G. E., and Stoffregen, T. A. (1991). An Ecological Theory of Motion Sickness and Postural Instability. *Ecological Psychology*. DOI: 10.1207/s15326969eco0303_2. 166

Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., von der Heyde, M., and Bülthoff, H. H. (2005). Scene Consistency and Spatial Presence Increase the Sensation of Self-Motion in Virtual Reality. In *Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, APGV ’05* (pp. 111–118). DOI: 10.1145/1080402.1080422. 137

Ries, E. (2011). *The Lean Startup*. Crown Business. 375

Roberts, D. J., and Sharkey, P. M. (1997). Maximising Concurrency and Scalability in a Consistent, Causal, Distributed Virtual Reality System, Whilst Minimising the Effect of Network Delays. In *Workshop on Enabling Technologies on Infrastructure for Collaborative Enterprises* (pp. 161–166). DOI: 10.1109/ENABL.1997.630808. 421

Robinson, D. A. (1981). Control of Eye Movements. In V. B. Brooks (Ed.), *The Handbook of Physiology* (Vol. II, Part 2, pp. 1275–1320). Baltimore: Williams and Wilkens. 96

Rochester, N., and Seibel, R. (1962). Communication Device. US Patent 3022878. 24

Rohlick, A., and Lubow, R. E. (1991). Why Is the Driver Rarely Motion Sick? The Role of Controllability in Motion Sickness. *Ergonomics, 34*, 867–879. DOI: 10.1080/00140139108964831. 171
Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic Rendering: Introductory Concepts. IEEE Computer Graphics and Applications, 24(2), 24–32. DOI: 10.1109/MCG.2004.1274058. 413

Samuel, A. G. (1981). Phonemic Restoration: Insights from a New Methodology. Journal of Experimental Psychology. General, 110, 474–494. DOI: 10.1037/0096-3455.110.4.474. 102

Sareen, A., and Singh, V. (2014). Noise Induced Hearing Loss: A Review. Otolaryngology Online Journal, 4(2), 17–25. Retrieved from http://jorl.net/index.php/jorl/article/viewFile/noise_hearingloss/pdf_55 179

Schneider, N. (2015). The Secret Sauce of Standardization, Gamasutra. Retrieved July 2, 2015, from http://www.gamasutra.com/blogs/NeilSchneider/20150121/234683/The_Secret_Sauces_of_Standardization.php 481

Schowengerdt, B. T., Seibel, E. J., Kelly, J. P., Silverman, N. L., and Furness III, T. A. (2003, May). Binocular retinal scanning laser display with integrated focus cues for ocular accommodation. In Electronic Imaging 2003 (pp. 1–9). International Society for Optics and Photonics. 479

Schultheis, U., Jerald, J., Toledo, F., Yoganandan, A., and Mlyniec, P. (2012). Comparison of a Two-Handed Interface to a Wand Interface and a Mouse Interface for Fundamental 3D Tasks. In IEEE Symposium on 3D User Interfaces 2012, 3DUI 2012, Proceedings (pp. 117–124). 287, 341, 343

Sedig, K., and Parsons, P. (2013). Interaction Design for Complex Cognitive Activities with Visual Representations: A Pattern-Based Approach. AIS Transactions on Human-Computer Interaction, 5(2), 84–133. Retrieved from http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1057&context=thci 323

Sekuler, R., Sekuler, A. B., and Lau, R. (1997). Sound Alters Visual Motion Perception. Nature. DOI: doi:10.1038/385308a0. 108

Shakespeare, W. (1598). Henry IV. Part 2, Act 3, scene 1, 26–31. 22

Shaw, C., and Green, M. (1994). Two-Handed Polygonal Surface Design. In Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology (pp. 205–212). 346

Sherman, W. R., and Craig, A. B. (2003). Understanding Virtual Reality. Morgan Kaufmann Publishers. 9

Sherrington, C. S. (1920). Integrative Action of the Nervous System. New Haven, CT: Yale University Press. 108

Siegel, A., and Sapru, H. N. (2014). Essential Neuroscience (3rd ed.). Lippincott Williams and Wilkins. 87, 169
Simons, D. J., and Chabris, C. F. (1999). Gorillas in Our Midst: Sustained Inattentional Blindness for Dynamic Events. *Perception, 28*(9), 1059–1074. DOI: 10.1068/p2952.147

Slater, M. (2009). Place Illusion and Plausibility Can Lead to Realistic Behaviour in Immersive Virtual Environments. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364*(1535), 3549–3557. DOI: 10.1098/rstb.2009.0138.47

Slater, M., Antley, A., Davison, A., Swapp, D., Guger, C., Barker, C., Pistrang, N., and Sanchez-Vives, M. V. (2006a). A Virtual Reprise of the Stanley Milgram Obedience Experiments. *PLoS ONE, 1*(1). DOI: 10.1371/journal.pone.0000039.49

Slater, M., Pertaub, D. P., Barker, C., and Clark, D. M. (2006b). An Experimental Study on Fear of Public Speaking Using a Virtual Environment. *Cyberpsychology and Behavior, 9*(5), 627–633. Retrieved from <Go to ISI>://WOS:000241415100018. 49

Slater, M., and Steed, A. J. (2000). A Virtual Presence Counter. *Presence: Teleoperators and Virtual Environments, 9*(5), 413–434. 47

Slater, M., and Wilbur, S. (1997). A Framework for Immersive Virtual Environments (FIVE): Speculation on the Role of Presence in Virtual Environments. *Presence: Teleoperators and Virtual Environments, 6*(6). 45

Smith, R. B. (1987). Experiences with the Alternate Reality Kit: An Example of Tension between Literalism and Magic. *IEEE Computer Graphics and Applications, 7*(8), 42–50. DOI: 10.1109/MCG.1987.277078.290

So, R. H. Y., and Griffin, M. J. (1995). Effects of Lags on Human Operator Transfer Functions with Head-Coupled Systems. *Aviation, Space and Environmental Medicine, 66*(6), 550–556. 184

Spector, R. H. (1990). Visual Fields. In HK Walker, W. Hall, and J. Hurst (Eds.), *Clinical Methods: The History, Physical, and Laboratory Examinations* (3rd ed.). Boston, MA: Butterworths. 90

Stanney, K. M., Kennedy, R. S., and Drexler, J. M. (1997). Cybersickness Is Not Simulator Sickness. In *Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting* (pp. 1138–1142).

Stanney, K. M., Kennedy, R. S., and Hale, K. S. (2014). Virtual Environment Usage Protocols. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 797–809). Boca Raton, FL: CRC Press. 202, 207

Stefanucci, J. K., Proffitt, D. R., Clore, G. L., and Parekh, N. (2008). Skating Down a Steeper Slope: Fear Influences the Perception of Geographical Slant. *Perception, 37*(2), 321–323. DOI: 10.1068/p5796.123

Steinicke, F., Visell, Y., Campos, J., and Lécuyer, A. (2013). *Human Walking in Virtual Environments*. Springer. DOI: 10.1007/978-1-4419-8432-6.336
Stoakley, R., Conway, M. J., and Pausch, R. (1995). Virtual Reality on a WIM: Interactive Worlds in Miniature. In *ACM Conference on Human Factors in Computing Systems* (Vol. 95, pp. 265–272). DOI: 10.1145/223904.223938. 349, 352, 353

Stoffregen, T. A., Draper, M. H., Kennedy, R. S., and Compton, D. (2002). Vestibular Adaptation and Aftereffects. In K. M. Stanney (Ed.), *Handbook of Virtual Environments* (pp. 773–790). Mahwah, NJ: Lawrence Erlbaum Associates. 96

Stratton, G. M. (1897). Vision without Inversion of the Retinal Image. *Psychological Review*. DOI: 10.1037/h0075482. 144

Stroud, J. M. (1986). The Fine Structure of Psychological Time. In H. Quastler (Ed.), *Information Theory in Psychology: Problems and Methods* (pp. 174–207). Glencoe, IL: Free Press. 124

Sutherland, I. E. (1965). The ultimate display. In *The Congress of the International Federation of Information Processing (IFIP)* (pp. 506–508). DOI: 10.1109/MC.2005.274. 9, 23, 30

Sutherland, I. E. (1968). A Head-Mounted Three Dimensional Display. In *Proceedings of the 1968 Fall Joint Computer Conference AFIPS* (Vol. 33, part 1, pp. 757–764). Washington, D.C.: Thompson Books. 25

Taylor, R. M. (2010). Effective Virtual Environments for Microscopy. Retrieved April 23, 2015, from http://cismm.cs.unc.edu/core-projects/visualization-and-analysis/advanced-graphics-and-interaction/eve-for-microscopy/ 250

Taylor, R. M. (2015). OSVR: Sensics Latency-Testing Hardware. Retrieved from https://github.com/sensics/Latency-Test/blob/master/Latency_Hardware/Latency_Tester_Hardware.pdf 194

Taylor, R. M., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., and Helser, A. T. (2001a). VRPN: A Device-Independent, Network-Transparent VR Peripheral System. In *Proceedings of VRST ’01* (pp. 55–61). Banff, Alberta, Canada. 481

Taylor, R. M., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., and Helser, A. T. (2001b). VRPN: A Device-Independent, Network-Transparent VR Peripheral System. Retrieved May 15, 2015, from http://www.cs.unc.edu/Research/vrpn/VRST_2001_conference/taylorl_VRPN_presentation_files/v3_document.htm 481

Taylor, R. M., Jerald, J., VanderKnyff, C., Wendt, J., Borland, D., Marshburn, D., Sherman, W. R., and Whitton, M. C. (2010). Lessons about Virtual Environment Software Systems from 20 Years of VE Building. *Presence: Teleoperators and Virtual Environments, 19*(2), 162–178. 413

Treisman, M. (1977). Motion Sickness: An Evolutionary Hypothesis. *Science, 197*, 493–495. DOI: 10.1126/science.301659. 165

Turnbull, C. M. (1961). Some Observations Regarding the Experiences and Behavior of the BaMbuti Pygmies. *The American Journal of Psychology, 74*, 304–308. 140
Ulrich, R. (1987). Threshold Models of Temporal-Order Judgments Evaluated by a Ternary Response Task. *Perception and Psychophysics, 42*, 224–239. 124

Usaoh, M., Arthur, K., Whitton, M. C., Bastos, R. R., Steed, A., Slater, M., and Brooks, F. P., Jr. (1999). Walking > Walking-in-Place > Flying, in Virtual Environments. In *SIGGRAPH '99 Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques* (pp. 359–364). DOI: 10.1145/311535.311589. 336

Valve. (2015). Source Multiplayer Networking. Retrieved May 31, 2015, from https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking 418, 420

Van Beers, R. J., Wolpert, D. M., and Haggard, P. (2002). When Feeling Is More Important Than Seeing in Sensorimotor Adaptation. *Current Biology, 12*(10), 834–837. DOI: 10.1016/S0960-9822(02)00836-9. 304

Van der Veer, G. C., and Melguizo, M. del C. P. (2002). Mental Models. In A. Sears and J. A. Jacko (Eds.), *The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications* (3rd ed.). Boca Raton, FL: CRC Press. 283

Vierre, E., Price, B. J., and Chase, B. (2014). Direct Effects of Virtual Environments on Users. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 521–529). Boca Raton, FL: CRC Press. 174

Vorlander, M., and Shinn-Cunningham, B. (2014). Virtual Auditory Displays. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 87–114). Boca Raton, FL: CRC Press. 100

Wake, B. (2003). INVEST in Good Stories, and Smart Tasks. Retrieved April 18, 2015, from http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/ 392

Wallach, H. (1987). Perceiving a Stable Environment When One Moves. *Annual Review of Psychology, 38*, 1–27. 96, 143, 144

Wallach, H., and Kravitz, J. H. (1965a). Rapid Adaptation in the Constancy of Visual Direction with Active and Passive Rotation. *Psychonomic Science, 3*(4), 165–166. 144

Wallach, H., and Kravitz, J. H. (1965b). The Measurement of the Constancy of Visual Direction and of Its Adaptation. *Psychonomic Science, 2*, 217–218. 142, 175

Wang, J., and Lindeman, R. (2014). Coordinated 3D Interaction in Tablet- and HMD-Based Hybrid Virtual Environments. In *ACM Symposium on Spatial User Interaction*. 349

Warren, R. M. (1970). Perceptual Restoration of Missing Speech Sounds. *Science, 167*, 392–393. DOI: 10.1126/science.167.3917.392. 102

Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., and Sahuc, S. (2001). Optic Flow Is Used to Control Human Walking. *Nature Neuroscience, 4*(2), 213–216. DOI: 10.1038/84054. 154

Webster’s New Universal Unabridged Dictionary. (1989). New York: Barnes and Noble Books. 9
Weinbaum, S. G. (1935, June). Pygmalion’s Spectacles. *Wonder Stories*. 20

Welch, R. B. (1986). Adaptation of Space Perception. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interscience. 143, 144, 207

Welch, R. B., and Mohler, B. J. (2014). Adapting to Virtual Environments. In K. S. Hale and K. M. Stanney (Eds.), *Handbook of Virtual Environments* (2nd ed., pp. 627–646). Boca Raton, FL: CRC Press. 143

Welch, R. B., and Warren, D. H. (1986). Intersensory Interactions. In K. R. Boff, L. Kaufman, and J. P. Thomas (Eds.), *Handbook of Perception and Human Performance* (Vol. 1). New York: Wiley-Interscience. 100, 108, 112

Wendt, J. D. (2010). *Real-Walking Models Improve Walking-in-Place Systems*. UNC-Chapel Hill. 337

Whitton, M. C. (1984). Memory Design for Raster Graphics Displays. *IEEE Computer Graphics and Applications*, 4(3), 48–65. 190

Wilkes, C., and Bowman, D. A. (2008). Advantages of Velocity-Based Scaling for Distant 3D Manipulation. In *ACM Symposium on Virtual Reality Software and Technology* (pp. 23–29). DOI: 10.1145/1450579.1450585. 351

Willemsen, P., Colton, M. B., Creem-Regehr, S. H., and Thompson, W. B. (2009). The Effects of Head-Mounted Display Mechanical Properties and Field of View on Distance Judgments in Virtual Environments. *ACM Transactions on Applied Perception*. DOI: 10.1145/1498700.1498702. 177

Williams, K. (2014). A Wider FOV - A Guide to Virtual Reality Demonstrations. Retrieved April 29, 2015, from http://www.roadtovr.com/wider-fov-special-guide-virtual-reality-demonstrations/ 180

Williams, K., and Mascioni, M. (2014). *The Out-of-Home Immersive Entertainment Frontier: Expanding Interactive Boundaries in Leisure Facilities*. Gower Publishing Limited. Retrieved from http://www.amazon.com/Out—Home-Immersive-Entertainment-Frontier/dp/1472426959/ref=sr_1_1?ie=UTF8&qid=1430409256&sr=8-1&keywords=kevin+williams+immersive 256

Wingrave, C. A., and LaViola, J. (2010). Reflecting on the Design and Implementation Issues of Virtual Environments. *Presence: Teleoperators and Virtual Environments*, 19(2), 179–195. 3, 374, 391

Wingrave, C. A., Tintner, R., Walker, B. N., Bowman, D. A., and Hodges, L. F. (2005). Exploring Individual Differences in Ray-Based Selection: strategies and traits. *IEEE Proceedings. VR 2005. Virtual Reality, 2005*. DOI: 10.1109/VR.2005.1492770. 324, 391

Wolfe, J. (2006). Sensation & Perception. Sunderland, Mass.: Sinauer Associates. 232
Wood, R. W. (1895). The “Haunted Swing” Illusion. *Psychological Review*. DOI: 10.1037/h0073333. 16

Yoganandan, A., Jerald, J., and Mlyniec, P. (2014). Bimanual Selection and Interaction with Volumetric Regions of Interest. In *IEEE Virtual Reality Workshop on Immersive Volumetric Interaction*. 233, 331

Yost, W. A. (2006). *Fundamentals of Hearing: An Introduction* (5th ed.). Academic Press. 100

Young, S. D., Adelstein, B. D., and Ellis, S. R. (2007). Demand Characteristics in Assessing Motion Sickness in a Virtual Environment: Or Does Taking a Motion Sickness Questionnaire Make You Sick? In *IEEE Transactions on Visualization and Computer Graphics* (Vol. 13, pp. 422–428). 196, 202, 433

Zaffron, S., and Logan, D. (2009). *The Three Laws of Performance: Rewriting the Future of Your Organization and Your Life*. San Francisco, CA: Jossey-Bass. 475

Zhai, S., Milgram, P., and Buxton, W. (1996). The Influence of Muscle Groups on Performance of Multiple Degree-of-Freedom Input. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Common Ground - CHI ’96*, 308–315. DOI: 10.1145/238386.238534. 333

Zimmerman, T. G., Lanier, J., Blanchard, C., Bryson, S., and Harvill, Y. (1987). A Hand Gesture Interface Device. In *ACM SIGCHI* (pp. 189–192). DOI: doi:10.1145/30851.275628. 26

Zimmons, P., and Panter, A. (2003). The Influence of Rendering Quality on Presence and Task Performance in a Virtual Environment. In *IEEE Virtual Reality* (pp. 293–294). DOI: 10.1109/VR.2003.1191170. 51

Zone, R. (2007). Stereoscopic Cinema and the Origins of 3-D Film, 1838-1952. Retrieved from http://books.google.ch/books?hl=en&lr=&id=C1dgJ3-y1ZsC&oi=fnd&pg=PP1&dq=origins+cinema+psychological+laboratory&ots=iUS0TPJ1Vn&sig=S-jW0qxpCEUl0EySZDoZKMN6c 15, 16

Zuckerberg, M. (2014). Announcement to Acquire Oculus VR. Retrieved April 8, 2015, from https://www.facebook.com/zuck/posts/10101319050523971 474
Index

Page numbers in **bold** are sections, definitions, or pages of most importance for that entry. Page numbers followed by ‘*’ are in design guidelines chapters. Page numbers followed by ‘A’ are from Appendix A. Page numbers followed by ‘B’ are from Appendix B. Page numbers followed by ‘g’ are glossary definitions.

2D desktop integration, 35, 346, 497g
3D Multi-Touch Pattern, 219*, 248–249, 251, 340–342, 353, 365*, 497g
mental model, 209–210, 219*, 341
posture and approach, 342
spindle, 342, 343
usage, 341
vection, 137
viewbox, 353, 537g
3D Tool Pattern, 334–335, 364*, 497g
hand-held tools, 284, 335, 512g
jigs, 335, 336, 364*, 515g
object-attached tools, 335, 364*, 521g

Above-the-head widgets and panels, 348, 497g

Accommodation-vergence conflict. See under sensory conflicts

Action (perceptual), 151–154. See also locus of control, navigation; nerve impulses; neurons, mirror neuron systems
dorsal pathway, 88, 129, 131, 152, 506g
intended, 123, 171
mental model, 172
performance, 152

Action space. See under space perception

Adaptation, 143–145, 187, 201, 221*. See also aftereffects
dual, 144, 176, 207, 506g
negative training effects, 52, 159, 184, 289
optimizing, 207, 221*
perceptual, 143–145, 171, 175, 523g
factors, 143–144
position-constancy, 96, 144, 175, 524g
temporal, 145, 185–187, 207, 217*, 399, 534g
postural stability, 167
rate of, 201, 213
readaptation, 175–176, 221*, 527g
active readaptation, 176, 221*, 498g
natural decay, 175, 175–176, 221*, 519g
sensory, 143, 145, 516g, 530g
dark, 128, 143, 145, 157*, 174, 185–187, 504g
desensitization, 77
motion, 70

Adverse health effects, 159–214, 215–221*, 361*, 412–413, 461*, 498g. See also adaptation; comfort; fatigue; hygiene, injuries; sickness
Affordances, 278–279, 356*, 383, 404, 498g
geometry, 237–238
tools, 335

After action reviews, 443, 468*

Aftereffects
afterimages, 68
negative, 68, 69, 519g
positive, 68, 125, 524g
motion, 70, 518g
negative, 144, 145, 174, 519g
negative training effects, 52, 159, 184, 289
VR, 174–176, 221*, 538g

Agents. See avatars and characters, computer-controlled (agents)

Aliasing. See under rendering, visual artifacts

Analysis. See under data

Analysis paralysis, 379, 454*

Apparent motion, 133–135, 235, 498g. See also judder; strobing

Art, 223, 233, 235, 261, 373, 383. See also content creation; sketches
abstract, 51, 233, 235
aesthetics, 262, 272*, 396, 421
assets, 399
color, 238–239, 244, 269*
conceptual integrity, 229–230, 268*, 502g
trompe-l’œil, 57–58, 111, 113, 535g

Assessment and feasibility, 382–383, 385, 455–456*

Assumptions (project), 369, 380, 388, 456*, 498g
changes, 230, 375, 453*
design specification, 405
experiment, 444, 446
risk, 388, 456*
violations of data, 434, 537g

Attention, 146–151, 157–158*, 358*, 498g.
See also search; conscious perception
attentual capture, 149, 499g
attentional gaze, 148, 499g
auditory, 148–149
cocktail party effect, 147, 502g
characters, 258–259, 272*
cycle of interaction, 286–287
eye tracking, 319–320
feedback, 281
filtering, 146, 147
deletion, 82
fixation, 150, 509g
flow, 151, 158*, 228, 302, 360*, 509g
inattentual blindness, 147–148, 513g
change blindness, 147, 501g
change blindness blindness, 147, 501g
change deafness, 148, 501g
choice blindness, 147, 501g
continuity errors, 147, 503g
video overlap phenomenon, 148, 537g
inhibition of return, 150, 514g
involuntary shift of, 149
landmarks, 153, 243
maps, 149, 150, 157*, 320, 498g
orienting
covert orienting, 150, 504g
overt orienting, 150, 522g
perceptual capacity, 146, 523g
perceptual load, 146, 523g
reticular activating system, 87, 146–147, 529g
salience, 157*, 238–239, 269*, 529g
saliency maps, 149, 529g
scene schemas, 148, 529g
shadowing, 147, 531g
sound, 240
task-irrelevant stimuli, 149, 150, 157*, 534g
time, 127–128
vigilance, 151, 537g
visual scanning, 95, 150, 538g

Attitude, 83, 499g
failure, 427–428, 437, 465*
feedback, 377, 380, 428, 465*
team, 377, 422, 428

Audio. See sound

Augmented reality (AR), 29, 30, 499g
convergence with VR, 484
hand-held, 34, 511g
optical-see-through, 32, 130, 168, 484, 521g
Index

video-see-through, 32–33, 537g
Augmented virtuality, 30, 33, 247–249, 484, 499g
Auralization, 240, 499g. See also sound
Automated Pattern, 342–344, 365–366*, 499g
passive vehicles, 344, 522g
route planning, 252, 344, 529g
target-based travel, 344, 533g
teleportation, 304, 344, 361*, 365*, 534g
Automatic mode switching, 354, 368*

Avatars and characters
animation, 49, 226, 258, 420
caricature/cartoon, 48, 50, 257, 272*, 501g
computer-controlled (agents), 49, 153, 158*, 240, 257–259, 271–272*, 414
directing attention, 272*
motion, 259, 272*
response, 318–319, 362*
eyes, 258–259, 272*
motion, 49, 135–136, 258–259, 271–272*, 414, 500g
tokens, 421, 462*, 534g
Uncanny Valley, 49, 50–51, 54*, 257–258, 536g
user-controlled (avatars), 257, 271*, 499g
dominant hand, 288, 295, 333, 348, 358*, 366*, 506g
non-dominant hand, 251, 288, 295, 327, 333, 348–349, 353, 358*, 366*, 520g
techniques
3D multi-touch, 209, 248–249, 251, 340–342, 353, 365*, 497g
framing hands, 330, 510g
panels, 248, 327, 348–349, 364*, 366*
physical props, 333, 364*, 366*
selection box, 330, 331, 332, 353, 533g, 537g
two-handed flying, 339, 535g
two-handed pointing, 328–329, 536g
viewbox, 353, 537g
voodoo dolls, 352, 353, 538g

Binaural cues, 100–101, 156*, 240, 500g
Binaural interaction, 287–288, 334, 358*, 499g
classification
symmetric/asymmetric, 288, 358*, 499g
synchronous/asynchronous, 340
handedness
dominant hand, 288, 295, 333, 348, 358*, 366*, 506g
non-dominant hand, 251, 288, 295, 327, 333, 348–349, 353, 358*, 366*, 520g
techniques
3D multi-touch, 209, 248–249, 251, 340–342, 353, 365*, 497g
framing hands, 330, 510g
panels, 248, 327, 348–349, 364*, 366*
physical props, 333, 364*, 366*
selection box, 330, 331, 332, 353, 533g, 537g
two-handed flying, 339, 535g
two-handed pointing, 328–329, 536g
viewbox, 353, 537g
voodoo dolls, 352, 353, 538g

Beliefs, 80, 83, 123, 499g

Background. See under scene; customers and clients
Balance. See postural stability/instability; vestibular system
Behavior. See also avatars and characters
adaptation, 143, 145
affecting, 155*, 251–259, 272*
body language, 49, 259
circadian rhythms, 126, 501g
communication, 11, 49, 81, 259
cycle of interaction, 286–287
demand characteristics, 433
goal driven, 71, 286
measures, 149, 196, 432, 466*
neuro-linguistic programming (NLP), 80–84
internal state, 84
memories, 84
primal, 11, 537g
processes, 56, 71, 77–78, 499g
iterative, 74–75
realism, 49
sickness, 159, 196, 201, 221*, 259
subconscious, 76
travel, 154

Binding (perceptual), 72–73, 146, 155*, 282, 500g
Binocular-occlusion conflict. See under sensory conflicts
Biological motion, 50, 135–136, 500g. See also avatars and characters; motion perception

Biomechanical symmetry, 290, 337–338, 364*, 500g

Blind spot, 65, 86, 93, 126, 500g

Block diagrams, 407, 459*, 500g

Boundary completion. See under illusions

Breadcrumbs, 245, 270*, 500g

Break-in-presence. See under presence

Brightness, 90–91, 500g

Brooks’ Law, 385, 456*

Buttons. See under input device characteristics

Call of Duty Syndrome, 202, 220*, 501g

CAVEs. See under displays, world-fixed

Center of action zones, 254, 255, 271*

Center of mass, 177, 200

Central vision. See under eye eccentricity

Change blindness. See under attention

Channels (navigation), 244, 270*, 501g

Characters. See avatars and characters

Classes (software), 408–409, 460*, 501g

diagrams, 409, 410, 460*, 501g

objects, 409, 520g

Clients. See customers and clients; networked environments

Close-ended questions, 438, 501g

Clutching, 307, 333, 364*, 502g

Color, 90–92, 156*, 238–239, 269*, 347, 502g

aferimages, 68–69, 519g, 524g

constancy, 140, 142, 238, 269*, 502g

content creation, 238, 239, 244, 269*
cube, 347, 502g

dark adaptation, 143, 157*

emotions, 91, 238, 269*

eye eccentricity, 88, 90–91, 157*, 510g

highlighting, 305, 356*, 359*, 361*, 512g

salience, 149, 156–157*, 238–239, 529g

subconscious, 91
todo, 213–214

Color cubes, 347, 502g

Comfort, 398, 502g, 512g. See also fatigue; sensory conflicts; sickness; viewpoint, motion

configuration options, 201

depth cues, 122, 215*, 304

reticle projection, 265

hand pose, 177, 216*, 219*, 247, 265, 288, 304, 313, 316, 342, 361*

manipulating the world as an object, 342

non-dominant hand, 288

shooting from the hip, 304

tracking requirements, 216*, 316, 361*

headset fit, 178, 200, 512g

interviews, 467*

social, 112

stereoscopic 360° capture, 247

Uncanny Valley, 50–51

Communication. See also speech

brain-to-brain, 477–479

direct, 10, 475, 505g

structural, 10–11, 298, 377, 533g

visceral, 11, 46, 54*, 77, 298, 537g. See also empathy

face-to-face, 259, 298

indirect, 11, 11–12, 78, 298, 514g

interaction, 259, 275, 298

language

body, 49–50, 259, 434, 475, 511g, 519g.

See also gestures

emotion, 2, 11

generative (aka future-based), 475, 511g

human-computer translation, 30

internal, 11, 78

perception, 49, 102, 232–233

phonemes and morphemes, 102

project, 392, 395, 409, 447, 458*, 470*, 480

sign, 11–12, 476

spoken / verbal, 11, 49, 78, 240, 434

timing, 124–125

written, 11, 232–233

project, 428, 436, 465*

team, 4, 230, 376–377, 428, 454*, 465*
symbolic, 298, 475–477, 533g
team, 4, 230, 376–377, 428, 454*, 465*
Compasses, 252–254, 271*, 502g
Compliance, 282–284, 357*, 502g
spatial, 282, 293, 306, 531g
directional, 282–283, 284, 352, 357*, 505g
nulling, 283, 357*, 520g
position, 282, 284, 357*, 524g
temporal, 283–284, 338, 357*, 534g
Compound patterns, 350–354, 367–368*, 502g. See also Multimodal Pattern; Pointing Hand Pattern; World-in-Miniature Pattern
Cone-casting flashlight selection, 331, 502g
Cone of Experience, 12–13
Conscious perception, 76, 503g
apprehension, 139
changing beliefs, 83
chunks, 82
cycle of interaction, 286
delayed, 145
figure/ground, 236
memories, 84
subjective present, 124
Constancies. See perceptual constancies
Constraints (interaction), 280–281, 356*, 503g
3D multi-touch, 210, 341, 365*
degrees of freedom (DOFs), 280, 362*, 504g
physics
real world, 220*, 316, 329, 349, 414
simulated, 280, 304, 361*
tools, 334
jigs, 335, 364*, 515g
Constraints (project), 388–390, 392, 456–457*, 503g
cultural/social, 280, 474
feedback, 388
indirect, 389
intentional artificial, 389
misperceived, 389, 390, 393, 457*
obsolete, 389, 390, 399
puzzle, 390, 393, 396, 399, 457*
real, 389
resource, 389, 424, 463*
tools, 390
Constructivist approaches, 430, 436–443, 444, 466–469*, 503g. See also after action reviews; demos; expert evaluations; focus groups; interviews; questionnaires; retrospectives
Construct validity, 431–432, 466*, 503g
Content creation, 223–273. See also art; scene; real world capture; reusing content; wayfinding aids, environmental
basic, 229, 262, 268*, 272*
color, 238, 239, 244, 269*
conceptual integrity, 229–230, 268*, 502g
core experience, 228–229, 268*, 503g
gamification, 229, 510g
high-level concepts, 53–54*, 225–236, 267–268*
iteration, 2, 369
lighting, 238–239, 269*
landmarks, 243
moving stimuli, 70
multiple disciplines, 3–4, 223, 261, 272*, 376–377, 454*
real world lessons, 29, 56, 262
skeuomorphism, 227, 531g
transitioning to VR, 261–265, 272–273*
wired vs wireless, 255–256, 271*
Continuity errors, 147, 503g
Continuous discovery, 374–375, 427, 453–454*, 503g
Contracts
assessment vs. implementation, 385, 456*
estimating time and costs, 385–387, 392, 456*
milestones, 385, 456*
minimizing risk, 387–388, 395, 456*
negotiating, 385–386
requirements, 395
support and updates, 425, 464*
Control/display (C/D) ratio, 328, 503g
Controllers. See input device classes; input device characteristics
Critical incidents, 441, 468*, 504g
Crosshairs. See reticles
Culture
 constraints, 280, 474
 effect on perception, 60
 learning and failure, 375, 454*
 mappings, 284
 project considerations, 381–382
 skeuomorphism, 227
 VR community, 474–475
Customers and clients. See also contracts; delivery
 background and context, 380–382, 455*
 lack of standards, 481
 misunderstanding and unmet expectations, 481
 point of view, 379–381, 455*
Cybersickness. See under sickness
Cycle of interaction, 152, 285–287, 357*, 403, 504g
 execution/evaluation, 285, 507g
 gulls/bridges of execution/evaluation, 286, 287, 511g
 task analysis, 403, 459*
Cyclopean eye, 296, 504g. See also reference frames, head
Dark adaptation. See under adaptation, sensory
Data
 analysis, 446, 447–452. See also statistical conclusion validity
 correlation, 431, 438, 451, 467*, 504g
 fishing, 434, 447, 469*, 509g
 practical significance, 451–452, 470*, 525g
 p-value, 451, 526g
 statistical power, 434, 446, 469*, 532g
 statistical significance, 451–452, 470*, 532g
 artifacts, 432
 average, 449, 470*, 499g
 mean, 448, 449, 517g
 median, 448, 449, 470*, 518g
 mode, 448, 449, 470*, 518g
 collecting, 221*, 229, 268*, 429–431, 436, 443, 465*. See also constructivist approaches; scientific method
 bias, 202, 430, 433, 434, 437, 445, 467*, 501g, 507g, 529g–530g
 continuous delivery, 425, 464*
 demos, 436–437
 programmers, 429, 465*
 prototypes, 421–423
 scoring system, 441, 468*
 distribution, 449–451
 histogram, 449, 450, 470*, 512g
 interquartile range, 448, 449–450, 451, 515g
 mean deviation, 451, 518g
 normal, 434, 449, 450–451, 520g
 range, 449, 515g, 526g
 spread, 449–451, 470*, 532g
 standard deviation, 194, 448, 451, 532g
 variance, 447, 451, 536g
 interpreting, 443, 447–448, 469*
 false conclusion, 447, 469*. See also validity
 measurement types, 448, 470*
 categorical variables, 448, 449, 470*, 501g
 interval variables, 448, 515g
 ordinal variables, 448, 522g
 ratio variables, 448, 527g
 outliers, 447, 451, 469–470*, 522g
 physiological, 196, 221*, 432, 524g
 qualitative data, 430, 436, 438, 441–442, 465*, 495B, 526g
 quantitative data, 430, 441–442, 465*, 526g
 reliability, 430–431, 465–466*, 528g
 observed score, 431, 521g
 stable characteristics, 430–431, 532g
true score, 431, 466*, 535g
unstable characteristics, 431, 536g
review with users, 404, 443
sensitivity, 435–436, 466*, 530g
violated assumptions, 434, 537g
Dead reckoning (extrapolation), 419, 420, 462*, 504g
Define-Make-Learn, 370–371. See also Define Stage; Make Stage; Learn Stage
Define Stage, 379–401, 458*, 464*. See also questions; assessment and feasibility; objectives; estimates; risk; assumptions; constraints; personas; user stories; storyboards; scope; requirements
Degrees of freedom (DOFs). See under constraints (interaction); input device characteristics
Delay. See latency
Delivery, 424–425, 464*
continuous delivery, 425, 464*, 503g
onsite installation, 425, 464*, 503g
prioritization, 384
Demos, 424–425, 436–437, 464*, 467*, 504g
attitude, 428
vs. data collection, 429, 436–437, 467*
failure, 424, 428, 437
in-house, 424, 464*
programmers, 429
scheduling, 424, 438, 464*
travel, 424
Depth perception, 114–124, 505g. See also illusions, depth
binocular disparity, 95, 115, 119, 120–121, 205, 500g. See also sensory conflicts, binocular-occlusion conflict
horopter, 120, 121, 513g
Panum’s fusional area, 121, 522g
stereoblindness, 121, 532g
stereopsis, 95, 113, 120–121, 532g
compressed, 124, 132
consistent cues, 66, 114
presence, 47, 114
figure/ground, 236
future effect, 123, 510g
fear, 123, 508g
intended action, 123, 497g
motion, 115, 118–120
number of cues, 66, 140, 249–250, 263
presence, 114, 157*
oculomotor cues, 115, 122, 521g
accommodation, 87, 122, 497g
accommodation-vergence conflict. See sensory conflicts, accommodation-vergence conflict
vergence, 96, 122, 536g
pictorial, cues height relative to horizon, 115, 118, 512g
pictorial cues, 113, 114–119, 237, 524g
aerial perspective, 115, 118, 120, 498g
linear perspective, 65, 115, 116, 242, 516g
occlusion, 68, 114–116, 157*, 342, 521g. See also binocular-occlusion conflict
relative/familiar size, 115, 116–117, 238, 528g
shadows/shading, 115, 116, 117, 531g
texture gradient, 115, 117, 118, 534g
pivot hypothesis, 132, 524g
presence, 47, 54*, 114, 116, 157*, 262
relative importance, 114–115, 156*
Design patterns (software), 409–410, 460*, 505g
Design specification, 405, 405–410, 459–460*, 505g. See also block diagrams; classes (software); design patterns; sketches; use cases
Direct Hand Manipulation Pattern, 332–333, 364*, 505g
go-go technique, 333, 363*, 511g
non-isomorphic rotations, 291, 333
Direct/indirect interaction continuuum, 284–285, 357*
direct, 283, 284, 285, 298, 308, 357*, 505g
indirect, 11, 284–285, 514g. See also Indirect Control Patterns
semi-irect, 285
Director, 230, 268*, 377, 454*, 505g
Discoverability (user), 278, 505g
Displays. See also heads-up displays (HUDs)
- apparent motion, 133–135, 235, 498g
- binocular (stereoscopic), 116, 121, 122, 173, 199, 215*, 217*, 263, 296, 500g
- biocular, 121, 199, 215*, 500g
- CRT (cathode ray tube), 189, 205
- DLP (digital light processing), 189
- flicker, 199, 205, 215*, 217*
- hand-held, 34, 511g
- head-mounted displays (HMDs), 32–33, 512g. See also comfort; field of view
accommodation-vergence conflict, 173, 264, 296, 304, 483, 497g
- calibration, 32, 198, 216*, 413, 461*
depth compression, 132
- design trade-offs, 174, 199, 255
fit, 178, 200, 512g
- historical, 20–23, 25–27
- hygiene, 179–181, 200, 220*
- interpupillary distance (IPD), 199, 202, 203, 216*, 296, 351, 515g
- latency, 32, 98, 130, 142, 183–194, 198, 211–212, 216–217*, 399, 412–413, 460*, 516g
- non-see-through, 32, 130, 520g
- non-tracked, 132, 142
- optical-see-through, 32, 130, 168, 484, 521g
- tracking, 32, 142, 149, 215–216*, 318, 399, 413
- usage, 205, 220*
- video-see-through, 32–33, 168, 537g
- weight and center of mass, 177–178, 200, 215*
- LCD (liquid crystal display), 189, 199
- monocular, 121, 199, 518g
- OLED (organic light-emitting diode), 189, 192, 205
- persistence, 192, 199, 215–216*, 523g
- raster, 190–192, 481, 526g
- vertical sync, 190, 190–192, 217*, 526g, 536g
- refresh rate, 189–190, 262, 527g
- flicker, 174
- requirements, 399, 412, 460*
- stimulus onset asynchrony, 134
- refresh time, 189, 190, 527g
- response time, 192, 199, 215–216*, 481, 528g
- touch screens, 284, 476
- VRDs (virtual retinal displays), 189, 479
- world-fixed, 20–21, 33–34, 36, 119, 539g
- CAVEs, 34, 62, 257, 501g
- Distal stimuli, 71–72, 169, 506g
- iterative perceptual processing, 75–76
- motion parallax, 118
- pictorial depth cues, 114
- sensation, 72
- Distortion (perceptual filter), 82–83, 506g
- Dolls (world-in-miniature), 352–353, 367*, 506g
- voodoo, 352–353, 538g
- Dominant eye, 112, 264, 296, 506g
- Dominant hand. See under bimanual interaction, handedness
- Double buffer. See under rendering
- Dual analog sticks, 211, 219*, 339, 365*, 506g
- Dwell selection, 328, 363*, 506g
- Early wanderings, 405, 506g
- Egocentric judgments and interaction. See under proprioception
- Embodiment. See presence, self-embodiment
- Emotions, 155*, 227, 473
- body language, 298
- colors, 91, 238, 269*
- communication, 11
- empathy, 152, 298, 477
- field of view, 255
- mirror neuron systems, 152
- processes, 78–79, 155*, 227, 507g
- internal state, 84
- relationships, 477
- stories, 227, 267*, 473
- subconscious, 76
- users, 428
Empathy, 48–49, 152, 477–478. See also communication, direct, visceral
Encumbrance, 309–310, 312, 317, 536g
Engagement, 228, 267*
Equipment. See system
Estimates (project), 385–388, 392, 456*
planning poker, 386, 456*, 524g
Events, 125, 507g
anticipated, 125, 227
attention, 128, 146–151, 157*
blindness, 147–148
priming, 125, 149, 153, 227
critical incidents, 441, 468*, 504g
extraneous, 432
filtering, 81–84, 146–148, 156*
implementation, 410
infreqent, 151
meetups, 474, 486
memory, 72, 78, 84, 149, 156–157*
multimodal, 108, 157*
owned, 283, 286, 410, 416–417
opportunistic, 286
perception of
binding, 72, 126, 282, 500g
continuity, 126, 416, 419, 461*,
522g–523g
delayed, 125–126
time, 124–128, 534g. See also time
perception
sequence and timing, 125, 127, 157*, 416
unexpected, 77, 80
visual capture, 109, 538g
Evolutionary theory of motion sickness,
165–166, 507g
Exocentric judgments, 112, 507g
Expectations. See under mental models
Experiential fidelity, 52, 54*, 227, 507g
Experiments. See also outliers; measurement
types; validity; data
carryover effects, 445, 469*, 501g
design, 444–446
A/B testing, 425, 445–446
between-subjects, 195, 445–446, 469*,
499g
confounding factors, 445, 466, 469*,
503g
control variables, 445, 469*, 503g
dependent variable, 432, 445, 504g
hypothesis, 433–434, 443, 444, 466*,
469*, 513g
independent variable, 432, 436, 442,
444, 445, 513g
internal validity, 432–434, 445, 466*,
469*, 515g
pilot study, 446, 469*, 524g
quasi-experiments, 446, 469*, 526g
ture experiments, 446–447, 469*, 535g
variables, 431–434, 436, 442, 444–445,
448, 466*, 469*
within-subjects, 445, 469*, 539g
participant selection
based on scores, 433, 532g
bias, 433, 530g
randomize, 433, 446, 466*, 469*
sel-selection, 433, 530g
replication, 443
Expert evaluations, 439–443, 468*, 508g
comparative (aka summative), 442–443,
468*, 502g
forme usability, 403, 440, 441–442,
468*, 510g
task analysis, 441. See also task analysis
guidelines-based (aka heuristic), 440,
440–441, 468*, 508g
Experts, 2, 374, 377, 385, 427, 453*, 459*,
464*. See also expert evaluations
how to read, 5
subject-matter, 245, 270*, 377, 382, 403,
459*
users, 432
constraints removal, 281, 356*
marking (pie) menus, 346–347
sickness, 176, 201
Extender grab, 351, 508g
External validity, 435, 508g
Eye eccentricity
central vision, 87–88
eye movements, 95, 97, 150
Eye eccentricity (continued)
central vision (continued)
fovea, 85, 85–86, 90, 93, 95, 97, 146, 150, 157*, 510g
motion perception, 131
properties, 88
colors, 88, 90–91, 157*, 510g
neurophysiology, 85–87
peripheral vision, 88–89, 255, 499g
head-mounted displays (HMDs), 168, 199–200, 212, 255, 291, 296
interaction, 291, 354
light sensitivity, 86, 90, 129
motion perception, 131, 212
motion sickness, 168, 199–200
presence, 255
properties, 88
sickness, 168, 199–200
vection, 131–132, 137, 199–200
visual acuity, 86, 88, 92–93, 95, 99, 143, 157*, 319
Eye gaze input, 312, 318–320, 362*
attention maps, 149–150, 157*, 320, 498g
avatars, 258–259
dominant eye, 112, 264, 296, 506g
input device, 318, 508g
interface
feedback, 319
Midas touch problem, 318, 328, 518g
reference frame, 296
selection, 328, 363*, 508g
multimodal, 319
passive over active, 319, 363*
pointer/reticle, 319
redirected walking, 96
rendering resolution, 99
selection, 328, 508g
specialized tasks and subtle interactions, 319
tracking, 296, 318, 362*
avatars, 258
image slip, 98
Eye movements, 95–98, 169, 508g
affects judgments, 112
characters, 258–259, 272*
fixational eye movements, 96, 509g
microsaccades, 96
microtremors, 96
ocular drift, 70, 96, 521g
gaze-shifting eye movements, 95–96
inhibition of return, 150, 514g
overt orienting, 150, 522g
pursuit, 95, 526g
saccades, 95, 98, 148, 150, 319, 529g
saccadic suppression, 96, 529g
vergence, 96, 122, 536g. See also accommodation-vergence conflict
visual scanning, 95, 150, 538g
gaze-stabilizing eye movements, 96–98, 168, 510g
eye rotation gain, 97, 98, 508g
nystagmus, 98, 169, 520g
optokinetic reflex (OKR), 97, 169, 521g
pendular nystagmus, 98, 522g
retinal image slip, 96, 97–98, 184, 529g
vestibulo-ocular reflex (VOR), 97, 98, 144, 168–169, 537g
passive vs. active, 74, 98, 171
theory of motion sickness, 96, 168–169, 508g
unified model of motion sickness, 169–172
Face validity, 431, 508g
Fade outs, 213, 217*, 262, 399, 508g
False conclusions, 447, 469*
Fatigue, 177–178. See also comfort
accommodation-vergence conflict, 173
flicker, 174, 199
gorilla arm, 177, 204, 304, 310, 317, 345, 350, 476, 511g
image-plane selection, 329
reducing, 213, 316, 342, 358*
hardware weight and center of mass, 177–178, 200, 215*
physical panels, 349
vigilance, 151, 537g
walking, 178, 337
Feedback (brain). See also nerve signals
back projections, 87
perceptual, 73, 87, 144
Feedback (interaction). See also compliance; haptics; mappings
adaptation, 143–145, 214
buttons, 309, 362*
core experience, 228
eye tracking, 319
force, 38–39, 340
gestures, 350
head tracking, 318
immediate, 144, 281, 283–284, 357*
Multimodal Pattern, 349
presence, 49
rumble, 39, 306
sickness, 412
sound, 240, 269*, 281
speech and gestures, 359*
tactile, 37, 334, 364*, 559
Feedback (project), 375, 377, 427, 444, 454*, 467*. See also constructivist approaches
attitude, 377, 380, 428, 465*
conceptualization, 380
constraints, 388
end users, 262, 287, 358*, 369, 374, 377, 391, 423
experts. See expert evaluations
external, 429
fast, 374, 427, 453*, 465*
market demand, 423
naive users, 423, 463*
programmers, 423, 427, 429, 465*
prototypes. See prototypes
stakeholders, 423, 463*
team, 377, 423, 427
team culture, 375, 454*
Feedforward, 285–286
Fidelity
experiential, 52, 54*, 227, 507g
interaction, 52, 54*, 289–291, 358*, 514g
3D multi-touch, 365*
biomechanical symmetry, 290, 337–338, 364*, 500g
control symmetry, 290–291, 503g
hands, 351, 363–364*, 367*
input veracity, 290, 514g
magical, 227, 290, 358*, 363*, 517g
non-realistic, 289, 304, 326, 327, 341, 351, 358*, 367*, 520g
pointing, 327
realistic, 289, 325, 358*, 363–364*, 527g
selection, 325
steering, 338–339, 365*
walking, 336–337, 364*
representational, 51, 54*, 528g
Field of regard, 89–90, 509g
Field of view, 89–90, 509g
emotions, 255
error
delay compensation, 212
mismatched, 141–142, 144, 175, 198, 212, 216*
flicker, 88, 174, 199
presence, 45, 47, 206
reducing, 201, 216*, 220*, 255, 265
rendering, 241
sickness, 199, 202, 206
standards, 480
vection, 199, 206
Film. See also content creation; real world capture; stories
capture
360°, 247
light fields, 248
stereoscopic, 247–248
true 3D, 248
continuity errors, 147, 503g
immersivity, 30, 51, 154, 247, 270*
automated pattern, 343
camera motion, 262. See also viewpoint, motion
center of action zones, 254, 255, 271*
content, 228
Sensorama, 21–22
L’Arrivée d’un train en gare de La Ciotat, 18
stereoscopic glasses, 180
stroboscopic and judder, 135
temporal closure, 234
Final production, 423–424, 463*, 509g
Finger menus, 347–348, 509g
Fixational eye movements. See eye movements

Flavor, 107, 509g

Flicker, 128–129, 174, 199, 509g
displays, 199, 205, 215*, 217*
flicker-fusion frequency threshold, 129, 203, 509g
factors, 88, 108, 128–129, 174, 199, 203, 205, 217*
photic seizures, 174, 523g

Flight simulators
Link Trainers, 19
motion platforms, 39
sickness, 160, 203, 205

Flow. See also motion perception, optic flow
attention, 151, 158*, 228, 302, 360*, 509g
interaction, 151, 301–302, 360*
order, 302
perception of time, 151, 228

Flying
one-handed, 339, 521g
two-handed flying, 339, 535g

Focus groups, 439, 467*, 509g
example, 439

Fovea, 85, 85–86, 90, 93, 95, 97, 146, 150, 157*, 510g

Frame. See under rendering
Frame rate. See under rendering
Framing hands selection technique, 330, 510g

Game engines, 263–265, 412, 420
Gamification, 229, 510g
Gaze-directed steering, 338–339, 510g
Gaze-shifting eye movements. See eye movements
Gaze-stabilizing eye movements. See eye movements

Generalizations, 80, 83, 156*, 510g

Geometry. See under affordances; real world capture; reusing content; scene

Gestalt, 230–236, 268*, 511g
groupings, 231–235, 268*, 511g
principle of closure, 234, 235, 525g
principle of common fate, 235, 236, 525g
principle of continuity, 231, 232, 525g
principle of proximity, 231, 232, 525g
principle of similarity, 233, 234–235, 525g
principle of simplicity, 231, 232, 525g
temporal closure, 234, 534g
interfaces, 234, 345, 366*
segregation, 231, 236, 268*, 530g
feature searches, 151, 508g
figure, 151, 231, 234–235, 236, 268*, 509g
figure-ground problem, 236, 509g
ground, 236, 268*, 511g

Gestures, 297–299, 300, 359–360*, 367*, 420, 476, 511g
accuracy, 349
direct, 299, 360*, 505g
error, 310, 316–317, 359–360*, 367*, 476
indirect, 299, 514g
pinch, 316, 347, 366*
posture, 298, 299, 525g
push-to-gesture, 298–299, 349, 360*, 367*
self-revealing, 346, 366*
types of information, 298

Getting started, 485–487
reading this book, 4–5

Ghosting, 305, 361*, 511g
Gloves, 307, 310, 316–317, 362*, 483–484
examples, 21, 24, 26, 38–39, 317, 476, 484
gestures, 299, 476
haptics, 38–39, 316
pinch, 316, 362*, 477

Go-go selection and manipulation technique, 327, 333, 363*, 511g
Gorilla arm. See under fatigue
Gravity, 39, 112, 177, 209, 356*

Grids
depth perception, 116
jigs, 335–336
networked environments, 420
structure, 244–245, 270*
warning, 213–214, 217*, 538g
Gustatory system. See taste

Hand-held controllers. See input device classes; touch
Hand-held tools, 284, 335, 512g
Hand pointing, 299, 328, 502g, 511gd
Handrails (visual), 244, 270*, 512gd
Hands. See also bimanual interaction; comfort; Direct Hand Manipulation Pattern; Hand Selection Pattern; input device classes; mappings; Pointing Hand Pattern; Pointing Pattern; reference frames; Steering Pattern; touch
fidelity
non-realistic, 289, 304, 326, 327, 341, 351, 358*, 367*, 520g
realistic, 326, 527g
semi-realistic, 326
visual-physical conflict, 280, 304, 361*, 538g. See also sensory substitution penetrations, 304–305, 361*, 414
Hand Selection Pattern, 325–327, 363*, 511g
go-go technique, 327, 363*, 511g
non-realistic hands, 289, 304, 326, 327, 341, 351, 358*, 367*, 520g
realistic hands, 326, 527g
semi-realistic hands, 326
Hand/weapon models, 265
Haptics, 36–39, 311–312, 413, 477, 512g. See also motion platforms; touch
active, 37, 311, 497g
injury, 179
gloves, 316
passive, 37, 104, 293, 305, 315, 333, 361*, 522g
proprioceptive forces, 38, 340, 526g
self-grounded, 38, 39, 530g
tactile, 37–38, 334, 364*, 533g
electrotactile, 37
vibrotactile/rumble, 37, 39, 49, 104, 306, 361*, 529g
world-grounded, 39, 539g
Hardware. See systems
Head crusher selection technique, 329, 330, 512g
Head-mounted displays (HMDs). See displays
Head pointing, 318, 328, 512g
Head-related transfer function (HRTF), 101, 240, 512g
Heads-up displays (HUDs), 114–116, 296, 297, 512g
guidelines, 157*, 217*, 281, 296, 356*
porting from video games, 114, 116, 173, 204, 263–264, 273*
Hearing. See sound
Highlighting, 305, 356*, 359*, 361*, 512g
HOMER selection and manipulation technique, 351, 513g
Homunculus, 103–104, 513g
Human joystick navigation, 337, 513g
Hygiene, 179–181, 200, 220*, 309
domite, 179, 509g
Illusions, 61–70. See also aftereffects; presence
2D, 57, 62–63
Hering illusion, 62, 63
Jastrow illusion, 62, 63
blind spot, 65, 86, 93, 126, 500g
boundary completion, 63–65
illusory contours, 64–65, 513g
Kanizsa, 63–64, 234
depth, 47, 57, 65–67, 116, 185–187
Ames room, 66, 66–67, 111
moon illusion, 67–68
Ponzo railroad illusion, 65–66, 67, 116, 152
Pulfrich pendulum effect, 145, 185–187
trompe-l’œil, 57–58, 111, 113, 535g
motion, 68–70. See also vection
appearant, 133–135, 235, 498g
autokinetic effect, 70, 112, 133, 168, 499g
induced, 70, 133, 136, 514g
moon-cloud illusion, 70
Ouchi illusion, 68–69
multimodal
Illusions (continued)
 multimodal (continued)
 McGurk effect, 108
 rubber hand illusion, 47
 visual capture (ventriloquism effect),
 109, 538g
 temporal, filled duration illusion, 128,
 509g
 Image-based rendering, 248
 Image-Plane Selection Pattern, 329–330,
 363*, 513g
 framing hands technique, 330, 510g
 head crusher technique, 329, 330, 512g
 lifting palm technique, 330, 516g
 sticky finger technique, 329, 532gd
 Immersion, 32, 45–46, 47, 54*, 513g. See also
 presence
 Indirect control patterns, 344–350, 366–367*,
 514g. See also Non-Spatial Pattern;
 Widgets and Panels Pattern
 Indirect interaction. See direct/indirect
 interaction continuum; indirect
 control patterns
 Induced motion. See illusions, motion,
 induced
 Injuries, 178–179, 217*, 364*
 brain, 174
 collisions, 178, 205, 213, 364*
 ear damage, 101, 178–179, 205
 falling, 42, 178–179, 205, 215*, 336–337,
 364*
 physical trauma, 178, 524g
 reducing, 178–179
 spotter, 179, 220*, 256, 337, 532g
 warning grids, 213–214, 217*, 538g
 repetitive strain, 179, 205, 219*, 528g
 Input. See also gestures; input device
 characteristics; input device classes;
 multimodal interactions; speech
 alphanumeric, 476
 chord keyboard, 476–477
 neural, 479–480
 non-symbolic. See under mappings
 symbolic, 475–477
 Input device characteristics, 307–311,
 361–362*, 411–412, 483, 528g
 absolute, 283, 308, 357*, 497g
 buttons, 309, 311–316, 362*, 389, 477,
 500g
 push-to-talk/gesture, 298–299, 301, 303,
 320, 349, 360*, 367*
 signifiers, 279, 295, 359*
 stress, 179
 degrees of freedom (DoFs), 307–308, 362*,
 483, 504g
 constraints, 280, 335
 control symmetry, 290, 291
 hands, 299
 integral, 308
 tracked hand-held controllers, 314, 411
 world-grounded devices, 311, 313
 encumbrance, 309–310, 312, 317, 536g
 haptics capable, 311
 hybrid tracking, 308, 311, 315, 483, 513g
 integral, 308, 514g
 isometric, 308, 309, 515g
 isotonic, 308, 309, 515g
 relative, 198, 308, 310, 528g
 reliability, 310, 528g
 effects on performance, 310
 gestures, 476
 gloves, 483
 requirements, 310, 397, 399
 separable, 308
 size and shape, 307
 Input device classes, 311–321, 362–363*,
 411–412
 Bare-hand, 312, 317, 499g
 eye tracking, 312, 318, 508g
 full-body tracking, 312, 317, 320, 510g
 hand-worn, 312, 316, 512g
 head tracking, 312, 318, 512g
 microphones, 51, 301, 312, 317, 320, 363*,
 407, 518g
 non-tracked hand-held controllers, 293–
 294, 308, 311–312, 313, 314, 520g,
 535g
 tracked hand-held controllers, 265, 273*,
Index 581

293–295, 308, 311–313, 314, 315, 359*, 362*, 411–412, 477, 483, 535g
world-grounded input devices, 282, 311, 312–313, 315, 340, 539g
Installation (onsite), 425, 464*, 521g
Interaction, 275–354, 355–368*. See also bimanual interaction;
communication; constraints;
cycle of interaction; direct/indirect interaction continuum; feedback;
fidelity; interaction patterns;
interaction techniques; multimodal interactions
Interaction patterns, 323–324, 355*, 363*, 383, 514g. See also selection patterns;
manipulation patterns; viewpoint control patterns; indirect control patterns;
compound patterns
Interaction techniques, 275, 323–324, 355*, 361*, 374, 515g. See also interaction patterns
creating new, 290, 325, 402
implementing, 307, 460*
Interfaces, 275, 277, 515g. See also compliance; constraints; feedback;
interaction design; interaction patterns; signifiers
placement, 292, 294, 314, 345, 348–349, 359*
Internal validity, 432–434, 515g
threats to, 432–434, 443, 445–446, 466*, 469*
attrition (aka mortality), 433, 499gd
carryover effects, 445, 469*, 501g
confounding factors, 445, 446, 469*, 503g
demand characteristics, 433, 504g
experimenter bias, 434, 507g
history, 432, 513g
instrumentation, 432, 514g
maturation, 432, 517g
placebo effects, 214, 433, 524g
retesting bias, 433, 445, 529g
selection bias, 433, 530g
statistical regression, 433, 532g
Interpupillary distance (IPD), 199, 202, 203, 216*, 296, 351, 515g
Interviews, 403, 437–438, 459*, 467*, 515g
demos, 437
guidelines, 437–438, 467*, 495Bd–496Bd
personas, 391, 437–438, 457*, 467*
scheduling, 438, 467*
task analysis, 403–404
Intuitiveness, 79, 156*, 277, 278, 282, 309, 355*. See also mental models;
metaphors
Iterative design, 369–470*, 515g. See also Define-Make-Learn philosophy, 373–379, 453–454*
art and science, 373
continuous discovery, 374–375, 427, 453–454*, 503g
human-centered, 2, 373–374, 453*, 513g
project dependence, 369, 371, 375–376, 454*
team, 376–377
Jigs, 335, 336, 364*, 515g
Jitter, 413–414, 416, 515g
filtering, 187–188, 198, 216*
network, 416
physics, 413–414, 461*
tracking, 187–188, 213
Judder, 134–135, 199, 515g. See also apparent motion; strobing
factors, 134–135
display response/persistence, 192, 199, 216*
distance, 134–135
interstimulus interval (blanking time), 134, 515g
stimulus duration, 134, 135, 532g
stimulus onset asynchrony (refresh time), 134, 135, 189–190, 199, 533g
Just-in-time pixels, 191, 192, 217*, 515g
Kennedy Simulator Sickness Questionnaire (SSQ), 195–196, 203, 221*, 433, 438, 489A–490A, 516g
Key players, 384–385, 455–456*, 516g
understandable requirements, 395–396, 458*

Labels and icons. See under signifiers
Landmarks, 137, 153, 237, 243–244, 245, 252–253, 270–271*, 516g
Language. See under communication
Latency, 183–194
compensation, 187, 192, 211–212, 504g
2D warp (aka time warping), 212, 497g
cubic environment map, 212, 504g
head-motion prediction, 183, 211, 217*, 512g
post-rendering, 211–212, 217*, 524g
delayed perception, 125, 185–187
effective, 183, 516g
induced scene motion, 98, 164–165, 183–185
measuring delay
latency meter, 194, 412, 460*, 516g
parallel port, 194
timing analysis, 193–194
negative effects, 183–184. See also sickness, motion
perception of, 183
reducing delay, 216–217*
just-in-time pixels, 191, 192, 217*, 515g
vertical sync off, 192, 217*, 536g
sources, 187–192
application delay, 188–189, 498g
display delay, 189–192, 481, 506g. See also displays
rendering delay, 189, 242, 528g
synchronization delay, 192–193, 194, 533g
tracking delay, 187–188, 535g
system delay, 187, 188, 533g
requirements, 262, 397, 399
timing analysis, 193, 194
thresholds, 184–185
adaptation, 145
variable latency, 185, 190, 399, 412
Learned helplessness, 80, 83, 156*, 516g
Learn Stage, 371, 427–452, 464–470*, 516g.
See also constructivist approaches; data; scientific method; validity
Lifting palm selection technique, 330, 516g
Lighting. See brightness; content creation, lighting; highlighting; lightness
Lightness, 90, 516g
constancy, 90, 140, 142, 238, 516g
Likert scales, 438, 491A, 516g
Lip sync, 108, 517g
Locomotion. See navigation, travel
Locus of control, 73, 204, 218–219*, 517g. See also action (perceptual)
active motion, 73, 98, 154, 171, 204, 210–211, 213, 219*
passive motion, 73–74, 98, 153–154, 171, 204, 210, 218–219*, 343–344. See also Automated Pattern
leading indicators, 210, 219*, 343, 366*, 516g
vehicles, 171, 342, 344, 522g
Make Stage, 370, 379, 401–425, 455*, 458–464*, 517g. See also delivery; design specification; final production; networked environments; prototypes; simulation; systems; task analysis
Manipulation patterns, 332–335, 364*, 517g.
See also 3D Tool Pattern; Direct Hand Manipulation Pattern; Proxy Pattern
Mappings, 282–284, 285, 357*, 517g. See also compliance; World-In-Miniature Pattern
abstract maps, 251
hands, 113, 314. See also Direct Hand Manipulation Pattern; Hand Selection Pattern; Proxy Pattern
extender grab, 351, 508g
go-go technique, 327, 333, 363*, 511g
non-isomorphic rotations, 291, 328, 333, 364*, 520g
non-spatial, 284, 344, 357*, 366*, 476, 520g. See also Widgets and Panels Pattern; Non-Spatial Control pattern
buttons, 309
scaled world grab, 351, 529g
tools, 334
viewpoint. See also 3D Multi-Touch Pattern;
Steering Pattern; Walking Pattern
one-to-one head tracking, 304, 361*
world-grounded input example, 313
Maps. See wayfinding aids, personal
Markers, 245–246, 251, 270*, 344, 517g
Marketing
demos, 436, 467*
protoype, 423
testimonials, 437, 534g
Marking menus. See menus, pie
Markup tools and measurement, 245–246,
248, 270*
Masking (perceptual), 125, 126, 157*, 517g
Medication, 213–214
Meetups, 474, 486
Memories, 60, 84, 156–157*, 518g
emotional connection, 78–79
illusory conjunctions, 72
muscle, 283, 346, 357–358*, 366*
wayfinding, 153
Mental models, 79–80, 81, 156*, 244, 278, 323, 518g. See also mappings; metaphors;
neuro-linguistic programming (NLP)
3D Multi-Touch, 137, 209–210, 219*, 340–343, 497g
spindle, 342–343
audio, 99
phonemic restoration effect, 102, 126, 523g
cognitive map, 153, 242, 292, 359*
compliance, 282–284
cycle of interaction, 287
expectations, 61, 72, 80
Midas Touch (eye gaze), 318, 518g
pain, 105
placebo effects, 214, 433, 524g
priming, 125, 149, 153, 227
quality, 423, 480
scene motion, 170–172, 202, 203
violations (network), 416, 461*, 507g
generalizations, 83, 510g
interviews, 403, 459*
intuitiveness, 79, 156*, 277, 278, 282, 309, 355*. See also metaphors
leading indicators, 210, 219*, 343, 366*, 516g
learned helplessness, 80, 83, 156*, 516g
meta-structure of the world, 244
motion, 172
vection, 137
non-spatial mappings, 284–285, 357*, 520g
perceptual constancies, 139–142
sickness, 167, 169–171, 202, 203, 210, 339
Call of Duty Syndrome, 202, 220*, 501g
eye movements, 168
motion, 170, 172, 202, 343
sensory conflicts, 165
skeuomorphism, 227, 531g
top OWN processing, 73, 102, 125, 142, 170, 534g
within world tutorials, 83, 278, 355*, 442
Menus. See also Widgets and Panels Pattern
finger, 347–348, 509g
pie (marking), 346–347, 366*, 524g
hierarchical, 347
mark ahead, 347, 366*
selF-revealing gestures, 346
ring, 346–347, 529g
voice menu hierarchies, 350, 538g
Metaphors. See also mental models
appropriate, 411, 460*
environmental wayfinding aids, 244–245, 270*
interactions, 278, 290, 355*, 358*, 383, 514g. See also interaction patterns
2D desktop, 345, 346, 366*
appropriate modes, 301, 355*
consistent, 301, 342, 355*
non-spatial mappings, 357*
language, 85
power of VR, 22
real-world, 227, 267*
Microphones, 51, 301, 312, 317, 320, 363*, 407, 518g
Midas touch problem, 318, 328, 518g
Milestones, 385, 456*
Mixed reality, 29, 30. See also augmented reality; augmented virtuality
Morphemes. See under speech, perception
Motion. See apparent motion; avatars and characters; motion; illusions, motion; motion perception; motion platforms; scene, motion; sickness, motion; vection; viewpoint, motion; viewpoint control patterns
Motion aftereffect, 70, 518g
Motion blur/smear. See under persistence (perceptual)
Motion perception, 129–137. See also nerve impulses; vection; vestibular system; viewpoint, motion
acceleration, 109, 129–130
sickness, 137, 164, 204, 209, 210–211, 399
apparent, 133–135, 235, 498g. See also judder; strobing
biological, 50, 135–136, 500g
character, 50, 136, 258, 272*
coherence, 135, 518g
figure-ground, 236
head movement, 132
induced motion, 70, 133, 172, 514g
object-relative, 70, 130, 521g
optic flow, 131, 154, 521g
focus of expansion, 131, 509g
gradient flow, 131, 511g
pivot hypothesis, 132, 524g
subject-relative, 130, 533g
unified model, 169
velocity, 129–130, 164, 205, 210, 218–219*, 366*
angular, 109, 132, 164, 219*
Motion platforms, 39–41, 109, 212–213, 519g
active motion platforms, 40, 41, 498g
passive motion platforms, 40, 213, 522g
sickness, 160, 165, 200, 212–213, 216*
Motion sickness. See sickness
Multimodal interactions
complementarity input, 303, 360*, 502g
concurrent input, 303, 360*, 502g
equivalent input, 303, 360*, 507g
put-that-there, 302, 303, 354, 360*, 526g
redundant input, 303, 360*, 527g
specialized input, 302, 360*, 532g
speech, 299, 354
transfer, 303, 361*, 555g
Multimodal Pattern, 354, 367–368*, 519g
automatic mode switching, 354, 368*
put-that-there, 302, 303, 354, 360*, 526g
that-moves-there, 302, 354, 360*
Multimodal perception, 108–109. See also sensory substitution; vection
lip sync, 108, 517g
McGurk effect, 108
perceptual moments, 124
visual capture (ventriloquism effect), 109, 538g
Muscle memory, 283, 346, 357–358*, 366*
Music. See sound

Navigation, 153–154, 519g. See also locus of control; viewpoint control patterns
exploration, 153, 248, 508g
naive search, 153, 519g
primed search, 153, 525g
sickness, 303
time, 153–154, 535g
costs, 244, 270*, 280, 338, 356*
pre-planned path, 210
wayfinding, 153, 237, 242, 244–245, 251, 538g. See also wayfinding aids
cognitive maps, 37, 153, 242, 292, 359*
Navigation by leaning technique, 338, 519g
Negative training effects, 52, 159, 184, 289
Nerve impulses, 73–74
afference, 73–74, 98, 169, 171–172, 498g
efference, 73–74, 98, 171–172, 507g
efference copy, 73, 74, 170–171, 507g
re-afference, 74, 170, 171, 527g

Networked environments, 413–421, 461–463*
architectures, 417–418, 462*, 519g
authoritative servers, 418, 421, 462–463*, 499g
client-server, 418, 501g
example, 419
hybrid, 418, 462*, 513g
non-authoritative servers, 418, 520g
peer-to-peer, 417–418, 522g
peer-to-peer, 418
super-peers, 418, 533g
causality, 416, 501g
causality violations, 416, 461*, 501g
concurrency, 416, 502g
consistency, 415, 519g
dead reckoning (extrapolation), 419, 420, 462*, 504g
determinism, 418–420, 462*
divergence, 416, 420, 461–462*, 506g
expectation violations, 416, 461*, 507g
jitter, 416
local estimation, 418–420, 462*
packets, 415, 417, 418–420, 462*, 522g
perceived continuity, 416, 419, 461*
physics, 416, 421, 463*
protocols
multicast, 417, 418, 519g
TCP (transport control protocol), 417, 462*, 534g
UDP (user datagram protocol), 417, 462*, 536g
reducing traffic, 420–421, 462*
animations, 420, 462*
audio, 418, 420–421, 462*
divergence filtering, 420, 506g
dynamic grid/cells, 420
relevance filtering, 420–421, 462*, 528g
stress tests, 420, 462*
subscribe, 417, 420–421
responsiveness, 416, 461–462*
simultaneous interactions, 421, 462*
synchronization, 416, 417, 533g
tokens, 421, 462*, 534g

Neuro-linguistic programming (NLP), 80–84, 519g
attitudes, 83, 391, 499g
beliefs, 80, 83, 123, 499g
decisions, 76, 78–80, 84, 156*, 504g
deletion, 82, 146, 504g
distortion, 82–83, 506g
filters, 81, 82–84, 146, 156*, 226, 523g
generalization, 80, 83, 156*, 510g
internal representations, 84, 515g
memories, 60, 78–79, 83, 84, 153, 156*, 518g
meta program, 83, 518g
preferred modality, 82
values, 78, 83, 536g

Neurons, 55–56
magno cells, 86–87, 129, 517g
mirror neuron systems, 152–153
parvo cells, 86, 522g
retinal, 85–86
cones, 85–86, 91–92, 96, 143, 503g
rods, 85–86, 90, 96, 143, 529g
Nomadic VR, 256, 519g
Non-dominant hand. See under bimanual interaction, handedness
Non-isomorphic rotations, 291, 328, 333, 364*, 520g
Non-realistic hands, 289, 304, 326, 327, 341, 351, 358*, 367*, 520g
Non-Spatial Control Pattern, 349–350, 367*, 520g
gestures, 349, 350, 366–367*. See also gestures
voice menu hierarchies, 450, 538g

Object-attached tools, 335, 364*, 521g
Objective reality, 59–70, 71, 79, 90, 155*, 169, 521g. See also distal stimuli
Objectives (project), 383–384, 455*, 521g
SMART, 384, 455*, 531g
Object snapping (selection), 328, 363*, 521g
Olfactory system (smell), 41, 107–108, 200, 243, 531g
Open-ended questions, 438, 493A, 521g
Open source, 481–482, 521g. See also standards
OSVR (open source VR), 482
VRPN (VR Peripheral Network), 481
Optic flow. See under motion perception
OSVR (open source VR), 482
Output, 30–43. See also displays; sound; haptics; motion platforms; smell; sound; taste; wind
direct retinal, 479
neural, 479–480
non-spatial, 284
symbolic, 475

Pain, 105, 522g
Panels. See Widgets and Panels Pattern
Perception, 55–158*. See also action; motion perception; multimodal perception;
perceptual constancies; perceptual processes; pain; proprioception;
smell; sound; space perception; taste; time perception; touch; vestibular system; visual system
Perceptual constancies, 139–142, 523g
color constancy, 140, 142, 238, 269g, 502g
lightness constancy, 90, 140, 142, 238, 516g
loudness constancy, 142, 517g
position constancy, 96, 140, 141–142, 157g, 172, 187, 524g. See also adaptation, perceptual, position-constancy adaptation
displacement ratio, 141–142, 144, 505g
range of immobility, 142, 526g
shape constancy, 140, 141, 157g, 531g
size constancy, 139–141, 157g, 531g
Perceptual continuity, 126, 523g
blind spot, 126
networked environments, 416, 419, 461g, 522g
phonemic restoration effect, 102, 126, 523g
Perceptual processes, 2, 61. See also adaptation; nerve impulses
apprehension, 139, 140, 498g
object properties, 73, 139, 140, 172, 520g
situational properties, 73, 139, 140, 531g
behavioral, 56, 77–78, 499g. See also behavior
binding, 72–73, 146, 155*, 282, 500g
bottom-up, 73, 87, 102, 170, 500g
emotional, 72, 76, 78–79, 84, 91, 152, 155*, 227, 507g. See also emotions
iterative, 74–76, 515g. See also cycle of interaction
reflective, 78, 156g, 286, 527g
registration, 139, 528g
top-down, 73, 534g
attention, 148
back projections, 87, 88, 499g
color constancy, 142
pathways, 87
phonemic restoration effect, 102
priming, 125, 149, 153, 227
sickness, 170
visceral, 77, 155g, 286–287, 537g
Performance. See also requirements
effects on beliefs, 83
compliance, 282, 357g
constraints, 280
critical incidents, 441, 504g
device reliability, 310
interaction fidelity, 290–291, 358g
interaction techniques, 275
latency, 184
non-isomorphic rotations, 291, 328, 333, 364g, 520g
passive haptics, 37
scene motion, 164
task-irrelevant stimuli, 149, 150, 157g
wayfinding aids, 244–245
measures
accuracy, 280, 397, 523g
precision, 397, 523g
time to completion, 397, 534g
training transfer, 397, 535g
negative training effect, 52, 159, 184, 289
perception, 152
reviewing, 156*, 443
task, 397, 534g
Peripheral vision. See under eye eccentricity
Persistence (display), 192, 199, 215–216*, 523g
Persistence (perceptual), 125–126, 523g. See also strobing
masking, 125, 126, 157*, 517g
motion blur/smear, 135, 519g
dark adaptation, 187
due to latency, 183
eye pursuit, 95
object motion, 119
positive afterimage, 68, 125, 524g
Personal space. See under space perception
Personas, 391, 457*, 523g
interviews, 391, 437–438, 457*, 467*
neuro-linguistic programming, 84, 156*
questionnaires, 438, 457*, 467*
task analysis, 403, 458*
template, 391
Phonemes. See under speech, perception
Photorealism, 50–51, 185, 228, 267*
Physics, 461*
constraints, 280, 304
hands, 304–305, 361*, 413–414, 461*
jitter, 413–414, 461*
large forces, 415, 461*
networked, 421, 463*
divergence, 416, 421
nonrealistic, 280, 304, 414–415
structural communication, 10–11, 533g
update rate, 413, 461*
Pie (marking) menus. See under menus
Pilot study, 446, 469*, 524g
Pivot hypothesis, 132, 524g
Placebo effects, 214, 433, 524g
Plot, 45, 513g
Pointing Hand Pattern, 350–351, 367*, 524g
extender grab, 351, 508g
HOMER technique, 351, 513g
scaled world grab, 351, 529g
Pointing Pattern, 327–329, 345, 354, 363*, 524g
control/display (C/D) ratio, 328, 503g
dwell selection, 328, 363*, 506g
eye gaze selection, 328, 508g
hand pointing, 299, 328, 502g, 511gd
head pointing, 318, 328, 512g
object snapping, 328, 363*, 521g
precision mode pointing, 328, 525g
two-handed pointing, 328, 536g
Postural stability/instability, 106–107, 167, 169, 174, 179, 203, 205. See also vestibular system
adaptation, 167
causes of misbalance, 42, 166, 218*
tests, 195, 196, 221*, 525g
theory of motion sickness, 166–167, 205, 525g
Posture. See gestures, posture; postural stability/instability
Posture and approach, 342
Precision mode pointing, 328, 525g
Preferred sensory modalities, 82, 156*
Presence, 46–49, 73, 206, 525g. See also immersion
break-in-presence, 47, 258, 500g
characters, 228, 258, 272*
data collection, 430
imperfect devices, 310, 314
lack of physicality, 49, 414
latency, 184, 281
network challenges, 416
real world, 47, 213
visual artifacts, 211, 228, 242
wires, 255–256
physical interaction, 49
hands, 309, 326, 362*
walking, 42, 336, 364*
Presence (continued)
 self-embodiment, 47–48, 116, 119, 290, 320, 326, 362*, 530g
 bare hands, 309, 317, 362*
 realistic hands, 326, 527g
 touch, 37, 47, 295, 310, 313–315, 362*
 social, 49, 50, 54*, 255, 257–259, 271–272*, 320, 477
 stable spatial place, 47, 54*, 248
 depth cues, 114, 116, 157*, 262
 vection and sickness, 164, 205–206
Proprioception, 105–106, 291, 526g
 biomechanical symmetry, 290, 337–338, 364*, 500g
 compliance, 72, 282–284, 293, 357*, 502g
 egocentric interaction, 291, 358–359*, 507g
 body-relative tools, 294–295, 364*, 535g
 eyes-off, 291, 348, 358–359*
 egocentric judgments, 112, 154, 507g
 input device classes, 312
 torso reference frame, 293–294, 339–340, 358–359*, 535g
 visual domination over, 109, 304, 306
Props. See Proxy Pattern; haptics, passive; touch
Prototypes, 375, 377, 421–423, 453*, 459*, 463*, 485, 526g
 core experience, 229, 268*
 marketing, 423, 517g
 minimal, 422, 463*, 518g
 programmer, 423, 526g
 real-world, 422, 463*, 527g
 representative users, 423, 528g
 stakeholder, 423, 532g
 team, 423, 534g
Proximal stimuli, 71–72, 526g
 bottom-up processing, 73
 iterative perceptual processing, 75–76
 motion, 118, 169
 pictorial depth cues, 114
 sensation, 72
 Proxy Pattern, 333–334, 364*, 526g
 proxy, 333, 334, 351–353, 364*, 367*, 526g
 tracked physical props, 333, 334, 364*, 535g
 Push-to-talk/gesture, 298–299, 301, 303, 320, 349, 360*, 367*
 Put-that-there, 302, 303, 354, 360*, 526g
Questionnaires, 403, 437, 438, 450, 467*, 489A–493A, 526g
 close-ended questions, 438, 501g
 examples, 196, 438, 450, 489Ad–493Ad
 likert scales, 438, 491A, 516g
 open-ended questions, 438, 493A, 521g
 partially open-ended questions, 438, 522g
 personas, 457*, 467*
 sickness, 195
 Kennedy Simulator Sickness Questionnaire, 195–196, 203, 221*, 433, 438, 490A, 516g
 placebo effects, 433
 simulator, 195–196, 203, 221*, 433, 438, 490A, 516g
 task analysis, 403, 459*
Questions (project), 380–383, 403, 436, 446–447, 450, 455*, 467*, 489A–493A, 526g. See also questionnaires
 focus groups, 439, 509g
 interviewing, 403, 437, 495B–496B, 515g
 scientific method, 443–444
Ratcheting, 211, 526g
Readaptation. See under adaptation
Realistic hands, 326, 527g
Real world capture, 246–250, 270*
 3D geometry, 248, 320–321
 360° film, 51, 210, 247, 270*
 360° stereoscopic, 247
 augmented virtuality, 30, 499g
 light fields, 248, 270*, 516g
 medical and scientific, 248–250, 270*
 stereoscopic film, 247–248, 270*
Index 589

Receptors, 45, 47, 73–74, 126, 150
 chemo (smell and taste), 107
 cutaneous (touch), 103, 104
 hair cells
 cochlea (hearing), 72, 99
 otolith organs and semicircular canals
 (motion and balance), 106–107
 mechano
 Pacinian corpuscles (vibration), 104
 proprioceptors, 105
 noci (pain), 105
 photo, 85–86, 96, 128, 143
 cones, 85–86, 91–92, 96, 143, 503g
 rods, 85–86, 90, 96, 143, 529g
 Redistributed walking, 96, 337, 365*, 527*
 Reference frames, 291–297, 306, 345, 359*, 527g
 exocentric and egocentric judgments, 112
 eye, 296, 508g
 hand, 293, 295, 511g
 non-ominant, 288, 295, 327, 333, 353,
 358*, 366*, 520g
 signifiers, 295, 359*
 head, 296, 297, 356*, 359*, 512g. See also
 heads-up displays (HUDs)
 cyclopean eye, 296, 504g
 real-world, 292–293, 306, 359*, 366*, 527g.
 See also rest frames
 torso, 281, 291, 293–294, 295, 356*, 359*,
 366*, 535g. See also proprioception,
 egocentric interaction
 steering, 293, 339, 535g
 virtual-world, 292, 306, 359*, 537g
 Reflective processing, 78, 156*, 286, 527g
 Refresh rate. See under displays
 Regions (districts and neighborhoods), 244,
 245, 270*, 354, 418, 527g
 Reliability. See under input device
 characteristics; data
 Rendering, 31–32, 191–192, 193, 212, 528g.
 See also field of view
 asynchronous, 189, 193–194, 413, 461*
 auralization, 240, 499g
 constraints, 389
 cubic environment map, 212, 504g
 delay, 189, 412, 528g
 double buffer, 190, 506g
 frame, 189
 frame rate, 189, 192, 204, 389, 412, 460*, 510g
 minimum, 399, 460*
 image-based, 248
 just-in-time pixels, 191, 192, 217*, 515g
 minimal points, 49
 post, 211–212, 217*, 524g
 requirements, 262, 397, 399
 resolution, 98–99, 242
 sampling, 191, 240–242, 269*
 time, 189, 190, 242, 397, 528g
 transparency
 hand, 295, 326, 329
 heads-up display (HUD), 264, 296
 voxels, 248
 world-in-miniature, 352
 visual artifacts, 212, 247
 aliasing, 240–242, 269*, 498g
 delay compensation, 212
 gaps and skins, 212, 248
 stereo, 248
 tearing, 190, 191–192, 217*, 534g
 Repetitive strain injuries, 179, 205, 219*, 528g
 Requirements, 262, 272*, 316, 384, 392,
 395–399, 458*, 528g
 defining, 395, 458*
 document, 396
 functional requirements, 398
 line-of-sight, 216*, 317
 quality, 396, 526g
 system, 34, 396, 533g
 accuracy, 34, 198, 290, 315–316, 320,
 396, 397, 497g
 precision, 198, 290, 315, 366–367*, 396,
 397, 483, 525g
 reliability, 309–310, 362*, 396, 397, 399,
 476, 483, 528g
 task performance, 397, 534g
Requirements (continued)

- task performance (continued)
 - performance accuracy, 397, 523g
 - performance precision, 397, 523g
 - time to completion, 397, 452, 534g
 - training transfer, 361*, 397, 535g
- universal VR, 262, 398–399
- usability, 396, 398, 536g
 - comfort, 201, 247, 275, 398, 502g
 - ease of learning, 398, 506g
 - ease of use, 272*, 398, 496B
- Resolution, 98–99, 242
- Rest frames, 167–168, 205, 207–209, 218*, 293, 528g
 - background, 137, 167–168, 172, 218*, 236 examples, 293, 359*
 - anti-seasickness display, 168
 - cockpit, 208
 - stabilized arrows, 208–209
 - hypothesis, 167–168, 205, 528g
 - induced motion, 133
 - presence, 205–206
 - real world, 168, 200
- reference frame, 292–293, 359*, 527g
 - top–own processing, 137
- Reticles, 264–265, 273*, 529g
 - eye tracking, 319
 - head pointing, 318, 328, 512g
 - implementation, 264–265
- Retina. See under visual system
- Retrospectives
 - mini, 436, 466–467*, 518g
 - prime directive, 436
- Reusing content, 262–265, 272*. See also
 - content creation; real world capture
 - geometry, 263
 - hands and weapons, 265
 - heads-up displays (HUDs), 173, 204, 263–264, 273*
 - skeuomorphism, 227, 531g
 - transitioning to VR, 261–265, 272–273*
- Ring menus, 346–347, 529g
- Risk (project), 387–388, 456*

- Route planning, 252, 344, 529g
- Routes, 153, 244, 252, 271*, 344, 529g
- Saccades. See under eye movements,
 - gaze-shifting eye movements
- Salience. See under attention
- Scaled world grab, 351, 529g
- Scene, 237, 238, 255, 269*, 529g. See also film
 - action, 262, 272*
 - center of action zones, 254–255, 271*
 - attention, 148
 - background, 236, 237, 238, 269*, 499g
 - change blindness, 147
 - rest frame, 167–168
 - figure and ground, 151, 236, 268*, 530g
 - geometry
 - contextual, 237, 269*, 503g
 - detail, 263
 - fundamental, 237, 269*, 510g
 - hacks, 263, 273*
 - scaling, 238, 269*
 - interactive objects, 238, 269*
 - motion, 163–164. See also sickness,
 - motion; locus of control; rest frames;
 - vection; viewpoint, motion
 - expectations, 170–172, 202, 203
 - head movement, 144, 165, 183–185, 204, 207, 218*, 220*, 413
 - intentional, 163–164, 199
 - latency-induced, 98, 164–165, 183–185
 - perception, 131–132
 - sensitivity, 98, 131, 185, 201, 203, 212
 - unintentional/incorrect, 70, 130, 161, 164, 165, 183–184, 198–199, 212, 216*
 - velocity, 130, 164, 210, 218–219*, 366*
 - perceptual continuity, 126, 523g
 - postural instability, 166–167
- Scientific method, 443–447, 468–469*, 530g.
 See also experiments
- Scope (project), 386, 393–395, 458*
- Search, 151, 153, 157–158*, 245, 252, 271*, 284, 530g
 - conjunction, 151, 158*, 503g
Index 591

feature, 151, 157*, 508g
naive, 153, 519g
primed, 153, 525g
visual, 151, 538g

Segregation. See under gestalt

Selection patterns, 325–332, 363*, 530g. See also Hand Selection Pattern; Pointing Pattern; Image-Plane Selection Pattern; Volume-Based Selection Pattern

Self-embodiment. See under presence

Semi-realistic hands, 326

Sensation, 72, 75, 530g. See also sensory modalities

Sensory conflicts. See also sickness
accommodation-vergence, 160, 173, 201, 264, 296, 304, 483, 497g
binocular-occlusion, 173, 204, 264, 273*, 500g
theory of motion sickness, 165, 166–167, 171, 183, 200, 207–208, 530g
visual-physical, 280, 304, 361*, 538g
visual-vestibular, 130, 165, 171, 200, 207–208
latency, 183, 283

Sensory modalities, 81. See also pain; proprioception; smell; sound; taste; touch; vestibular system; visual system
delay times, 124
immersion, 45
multimodal. See also multimodal perception; multimodal interactions
binding, 72, 164, 170, 231, 500g
consistency, 66, 154, 155*, 164–165. See also sensory conflicts
integration, 99, 107, 108–109, 111, 124
presence, 47
preferred, 82, 156*
Sensory substitution, 49, 109, 281, 304–306, 361*, 414, 530g
audio, 49, 240, 305, 361*
ghosting, 305, 361*, 511g
highlighting, 305, 356*, 359*, 361*, 512g
rumble, 306, 529g
Sickness. See also adaptation; comfort; fatigue; hygiene; injuries
Call of Duty Syndrome, 202, 220*, 501g
cybersickness, 160, 163, 504g
factors, 197–206
application design, 203–205
individual user, 200–203
system, 198–200
headset fit, 178, 200, 512g
measuring, 195–196, 221*
Kennedy Simulator Sickness Questionnaire, 195–196, 203, 221*, 433, 438, 489A–490A, 516g
physiological measures, 195, 196, 221*, 432, 524g
postural stability tests, 195, 196, 221*, 525g
mitigation techniques. See also locus of control
active readaptation, 176, 221*, 498g
constant visual velocity, 210
fade outs, 213, 217*, 262, 399, 508g
leading indicators, 210, 219*, 343, 366*, 516g
manipulate the world as an object, 209
medication, 213–214
minimize virtual rotations, 210
minimize visual accelerations, 210
motion platforms, 39–40, 109, 200, 212–213, 216*, 519g
natural decay, 175–176, 221*, 519g
optimize adaptation, 207
ratcheting, 211, 526g
real-world stabilized cues, 206, 207, 218*, 338, 365*
motion, 163–172, 218–219*, 519g. See also sickness, theories of motion sickness
simulator, 160, 163, 174, 196, 203, 205, 212, 531g
symptoms, 160, 163, 166, 174, 195, 197, 201–202
Sickness (continued)
symptoms (continued)
 aftereffects, 159, 174–175, 221*, 538g
 discomfort, 163, 173, 178, 199–200, 202–203, 220–221*, 346, 490A. See also comfort
disease, 159, 498g
disorientation, 68, 163, 172, 195, 203, 210, 256, 353
dizziness, 132, 163, 174, 195
drowsiness, 163, 175
eye strain, 116, 173–174, 195, 199–200, 203–204, 490A
gorilla arm, 177, 204, 213, 304, 316, 342, 345, 363*, 511g
headaches, 116, 163, 174, 177–178, 195, 200, 203, 490A
nausea, 87, 159, 163, 166, 169, 174, 195, 203, 490A
noise-induced hearing loss, 179, 519g
pallor, 163, 221*
seizures, 174, 199, 523g. See also flicker
sweating, 163, 166, 171, 180, 196, 221*, 490A
vertigo, 160, 163, 195, 490A
vomiting, 87, 163, 166, 171, 197
theories of motion sickness
 evolutionary, 165–166, 507g
eye movement, 96, 168–169, 508g
postural instability, 166–167, 205, 525g. See also postural stability/instability
rest frame hypothesis, 167–168, 172, 205, 528g. See also rest frames
sensory conflict, 130, 165, 171, 183, 200, 207–208, 283, 530g
unified model, 169–172, 536g
Sight. See visual system
Signifiers, 279–280, 356*, 366–367*, 442, 531g
anti, 279
constraints, 280, 356*
false, 279
figures, 236
on the hand, 282, 295, 309, 315, 348, 359*, 362*
highlighting, 305, 361*, 512g
indirect control, 344–345, 366*
finger menus, 347, 348, 509g
speech and gestures, 297, 349–350, 359*
wedges and panels, 345
labels and icons, 282, 295, 309, 315, 345, 348–349, 362*
mode, 280, 301, 356*, 360*
object attached tools, 335, 364*
physical, 279, 282, 313, 359*
unintended, 279
Simulation, 413–415, 461*. See also flight simulators; physics vs. rendering, 189, 413, 461*
Simulator sickness. See sickness
Sketches, 393, 405–406, 459*, 531g
personas, 391
Skeuomorphism, 227, 531g
Skewers, 245
Smell (olfactory perception), 41, 107–108, 200, 243, 531g
Social networking, 6, 257–259, 271*, 321
Software. See Make Stage
Sound. See also attention; sensory substitution; speech ambient, 239, 269*, 320, 498g
auralization, 240, 499g
continuous contact, 305
deafness, 239, 269*, 278
deafness change, 148, 501g
injury, 101, 178, 179, 205
interfaces, 240, 269*
music, 100, 239, 269*
time, 124
perception, 99–100, 101–102
binding, 72, 500g
loudness, 99, 100–101
loudness constancy, 142, 517g
multimodal, 108–109, 124
pitch, 100
spatial acuity, 101
thresholds, 100, 101
timbre, 100
vection, 136–137
physical, 99
amplitude, 99, 100, 305, 531g
frequency, 99, 100–101, 531g
real world break-in-presence, 47
spatialized audio, 34–36, 157*, 240, 531g
binaural cues, 100–101, 156*, 240, 500g
head-related transfer function (HRTF), 101, 240, 512g
networked, 420
wayfinding aids, 242
warnings, 240, 269*

Space perception, 111–124, 156*, 237. See also depth perception
action space, 113, 115, 237, 497g
interaction, 238, 363*
dominant eye, 112
egocentric judgments, 112, 154, 507g
exocentric judgments, 112, 507g
illusions, 111
personal space, 112–113, 115, 237, 310, 363*, 523g
comfort, 325, 342, 345
device reliability, 310, 362*
interaction, 238, 291
scaled world grab, 351
social, 259
stereopsis, 121
equila space, 113, 115, 237, 538g
Spatialized audio. See under sound

Speech
output, 240
perception, 100–101, 102
lip sync, 108, 517g
McGurk effect, 108
morphemes, 102, 518g
phonemes, 102, 523g
phonemic restoration effect, 102, 126, 523g
segmentation, 102, 532g
recognition, 299–301, 359–360*, 363*, 476, 532g
categories, 299–300
context, 300, 301, 360*, 476
errors, 300–301, 320, 359–360*, 367*
feedback, 297, 349–350, 359*
microphones, 301, 320, 363*, 518g
multimodal, 299, 302, 354
push-to-talk, 298, 301, 303, 320, 349, 360*, 367*
put-that-there, 302–303, 354, 360*, 526g
signifiers, 297, 349–350, 359*, 367*, 531g
strategies, 300
voice menu hierarchies, 350, 538g
Spindle, 342, 343
Spotter, 179, 220*, 256, 337, 532g
Standards, 480–483. See also de facto standards, open source standards, open standards, organizations, 482–483
Statistical conclusion validity, 434–435, 466*, 532g
threats to false positives, 434, 451, 508g
fishing, 434, 447, 469*, 509g
statistical power, 434, 446, 469*, 532g
violated assumptions of data, 434, 444, 446–449, 466*, 537g
Statistics. See data; statistical conclusion validity
Steering Pattern, 338–340, 365*, 532g
dual analog sticks, 211, 219*, 339, 365*, 506g
gaze-directed steering, 338–339, 510g
navigation by leaning, 338, 519g
one-handed flying, 339, 521g
torso-directed steering, 293, 339, 535g
two-handed flying, 339, 535g
usage, 338
virtual steering device, 340, 537g
world-grounded devices, 282, 311, 312–313, 315, 340, 539g
Stereoscopic displays. See displays
Sticky finger selection technique, 329, 532gd
Stories. See also film
Disney, 228
Stories (continued)
emotions, 78–79, 155*, 227, 267*, 473, 477
engagement, 228, 267*
escape from reality, 228, 267*
 experiential fidelity, 52, 54*, 227, 507g
plot, 45, 513g
reflective processing, 78
stimulation, 228, 267*
storyboards, 393–394, 457–458*, 533g
subjectivity, 226
Top own processing, 73
user, 392, 408, 457*, 536g
user created, 227
Storyboards, 393, 394, 457–458*, 533g
Strobing, 134–135, 533g. See also apparent
motion; judder; persistence
(perceptual); persistence (display)
factors, 134–135
distance, 134–135
interstimulus interval (blanking time), 134, 515g
stimulus duration, 134, 135, 532g
stimulus onset asynchrony, 134, 135, 189–190, 533g
Subconscious, 56–57, 76, 81, 533g. See also
neuro-linguistic programming (NLP)
balance, 166
behavioral processing, 76, 77–78
colors, 91
cycle of interaction, 286–287, 357*
filters, 62, 82–84, 146, 156*, 226, 523g
hands, 288, 298, 314, 357*
head motion, 241
illusions, 61–62
touch, 57
Subjective reality, 48, 59–70, 72, 79, 139,
155*, 533g. See also illusions
Symbolic input, 477
Systems, 30–43, 75, 255–256, 293, 527g.
See also displays; input; output;
tracking; haptics; motion platforms;
treadmills; requirements; latency;
networked environments
audio, 34, 179
block diagrams, 407, 459*, 500g
calibration, 32, 216*, 263, 272*, 413, 461*
scene motion, 164
sickness, 198, 204
chair, 41, 312
freely turnable (aka wireless seated), 256, 510g
rotation, 219*, 256, 293, 340, 358*, 365*
steering, 339, 535g
tracked, 293, 340, 358*, 365*
wired seated, 255, 539g
considerations, 410–413, 460–461*
design for, 383
fully walkable, 256, 510g
hardware support, 411–412, 460*
location-based, 256, 313, 362*, 517g
mobile, 256, 389, 518g
nomadic, 256, 519g
sickness factors, 198–200, 215–217*
trade-offs, 410–411, 460*
VRPN (VR peripheral network), 481
weight. See weight
wired vs wireless, 215*, 219*, 255–256,
271*, 336–337, 340, 365*, 539g
Target-based travel, 344, 533g
Task analysis, 287, 357*, 402–405, 441,
458–459*, 534g
cycle of interaction, 403, 459*
diagrams, 402
expert evaluations, 441
hierarchical, 404, 512g
interviews, 403–404
iteration, 404
organization and structure, 402, 404, 458*
personas, 403, 458*
task elicitation, 403–404, 534g
Task performance. See performance
Taste (gustatory perception), 41, 107,
107–108, 534g
flavor, 107, 509g
Team
attitude, 377, 422, 428, 465*
communication, 4, 230, 376–377, 428,
454*, 465*
culture, 375, 454*
director, 230, 268*, 377, 454*, 505g

Tearing. See under rendering, visual artifacts

Teleportation, 304, 344, 361*, 365*, 534g

That-moves-there, 302, 354, 360*

Theories of motion sickness. See under sickness

Thresholds. See also vision, visual acuity

auditory, 100

flicker-fusion frequency, 108, 129, 174, 203, 509g

latency, 145, 184–185

redirected touching, 306

redirected walking, 337, 527g

saccadic suppression, 96

speech synchronization, 108

Time perception, 124–128, 534g. See also events

age, 127, 128

biological clock, 126–127

supra chiasmatic nucleus (SCN), 126

change, 124, 126, 127–128

filled duration illusion, 128, 509g

circadian rhythm, 126, 127, 129, 501g

cognitive clock, 127–128, 502g

events, 125–128, 507g. See also events

passage of time, 126–128, 228

flow, 151, 158*, 228, 360*, 509g

perceptual moment, 124, 125, 523g

processing effort, 128

subjective present, 124, 533g

temporal attention, 128

Time warping. See latency, delay compensation, 2D warp

Tools. See 3D Tool Pattern

Top-down processing. See under perceptual processes

Torso-directed steering, 293, 339, 535g

Touch. See also haptics; sensory substitution

active, 104–105, 498g

bare hands, 310, 312, 317

hand held controllers / props, 302, 315, 333, 334, 360*, 362*, 364*, 366*, 535g

homunculus, 103–104, 513g

lack of, 49, 57, 103, 109, 291, 304, 317

matching visuals, 47, 293, 295, 315

pain, 105, 522g

passive, 104–105, 522g

physical panels, 349, 366*, 524g

presence, 37, 47, 49, 315, 362*

break-in, 49, 179, 256, 500g

rubber hand illusion, 47

redirected, 109, 306

subconscious, 57

symbolic input, 477

texture, 104

vection, 136

vibration, 104

visual-physical conflict, 280, 304, 361*, 538g

Tracking. See also compliance; input; input device characteristics; input device classes

absolute devices, 283, 308, 357*, 497g

accuracy, 198, 290, 315–317, 397, 483

bare hands, 311–312, 317

calibration, 164, 198–199, 204, 208, 216*, 272*, 293, 318, 413

camera-based, 309, 310–311, 318, 320–321

device challenges, 177, 216*, 299, 310, 317, 476

chair, 293, 340, 358*, 365*

error, 198, 216*, 397, 413

eyes, 296, 318, 362*. See also eye gaze input

fingers, 38, 306, 310, 316–318, 476. See also gloves

full-body, 312, 320–321, 510g

hands, 50, 272*, 308, 310, 316, 328, 358*.

See also input device classes

head, 204, 272*, 293, 312, 318, 483, 512g

avatars, 258, 271*, 420

calibration, 204, 413

requirements, 399

walking, 337

hybrid (sensor fusion), 308, 315, 483, 513g

inertial, 198, 308

input velocity, 290, 514g

position, 198, 215*, 282

precision, 198, 315, 397, 483, 525g

relative vs. absolute, 308
Tracking (continued)
reliability, 309, 310, 362*, 397, 399, 476, 483, 528g
requirements, 34, 397, 399, 458*
torso, 293, 340, 358*, 365*
unencumbered, 309–310, 312, 317, 536g
Trails, 245, 270*, 535g
Transparency. See under rendering
Travel. See under travel
Treadmills, 40–42, 154, 312, 338, 365*, 535g
biomechanical vection, 136
mental model, 202
omnidirectional, 42, 256, 521g
Tutorials (within VR), 83, 278, 355*, 442, 486
Two-handed box selection. See under Volume-Based Selection Pattern
Two-handed interaction. See bimanual interaction
Two-handed pointing, 328, 536g
Uncanny Valley, 49–51
Usage, 220–221*
Use cases, 407–408, 459–460*, 536g
scenarios, 408, 536g
User stories, 392, 536g
Validity, 431–435, 443, 466*, 536g. See also construct validity; external validity; face validity; internal validity; statistical conclusion validity
task analysis, 402
Values (perceptual filters), 78, 83, 536g
Vection, 136–137, 164–165, 167, 208, 536g
acceleration, 137, 164, 204, 209–211, 219*, 338, 365*, 399
auditory, 136–137
biomechanical, 136
top-down processing, 137
example, 74, 168
eye fixation, 169
mental model, 137, 209–210, 219*
periphery, 131, 137, 199–200
presence, 164, 205–206
sickness, 164–165, 167–170, 199, 204, 338
reducing, 164, 169, 200, 209–211, 218–219*, 338, 343, 365–366*, 399
suppression of, 132, 137, 164
Vehicles
active control, 171
audio cues, 243
passive, 171, 342, 344, 522g
leading indicators, 210, 219*, 343, 366*, 516g
perception of landmarks, 244
real-world travel sickness, 163, 207
rest frames, 207–208, 218*
virtual steering devices, 340, 537g
Ventriloquism effect (visual capture), 109, 538g
Vestibular system, 106–107, 480, 537g.
See also motion perception;
motion platforms; postural stability/instability; scene, motion;
sensory conflicts, visual-vestibular;
sickness, motion; vection; viewpoint, motion; viewpoint control patterns
acceleration, 106–107, 109
visual, 129–130, 137, 164, 204, 210–211, 219*, 338, 365*, 399
ambiguous input, 109
artificial input, 480
compliance, 72–73, 282–283, 337, 502g
disorientation, 210, 242, 256, 353
eye movements
nystagmus, 98, 520g
pendular nystagmus, 98, 522g
vestibulo-ocular reflex (VOR), 97–98, 168–169, 171, 537g
leading indicators, 210, 219*, 343, 366*, 516g
motion platforms, 39–40, 212, 216*, 519g
motion sickness. See sickness
otolith organs, 106–107, 109, 164, 522g
position-constancy adaptation, 144, 524g
rest frames, 167–168, 205, 208–209, 218*, 293
examples, 208–209
semicircular canals (SCCs), 106, 107, 109, 164, 530g
sensory conflict, 130, 165, 167, 171, 200, 207–208, 530g
latency, 183, 283
superior colliculus, 87, 533g
velocity, 130, 132, 164, 210, 530g
Video games (traditional). See also heads-up displays; reticles
Call of Duty Syndrome, 202, 220*, 501g
controllers, 313
differences, 262–263
dual analog stick steering, 339
gaze-directed steering, 202, 220*, 339, 510g
geometric detail, 263
hand/weapon models, 265
transitioning from, 261–265, 272–273*
zoom mode, 265, 273*, 328
Viewbox, 353, 537g. See also 3 Multi-Touch Pattern; Volume-Based Selection Pattern, two-handed box selection; World-in-Miniature Pattern
Viewpoint. See also space perception
first-person
after action reviews, 443
disembodied, 47
egocentric judgments, 112, 154, 507g
self-embodiment. See under presence size constancy, 141
with third person, 291–292
video games, 141, 202, 262, 265, 293, 339
walking in someone’s shoes, 48
motion. See also locus of control; motion perception; motion platforms; postural stability/instability; scene, motion; sensory conflicts, visual-vestibular; sickness, motion; vection; vestibular system; viewpoint control patterns
acceleration, 130, 204, 210–211, 219*, 338, 365*, 399
angular velocity, 164
expectations, 170–172, 202, 203
manipulate the world as an object, 209
rendering artifacts, 241
rotation, 164, 204, 210–211, 219*, 340–342
sensitivity, 131, 203
velocity, 130, 164, 210, 218–219*, 366*
scale, 353
3D Multi-Touch, 209, 340–342, 353, 365*
world grab, 351, 529g
third-person, 156*, 257
after action review, 443, 468*, 498g
egocentric judgments, 112, 507g
with first person, 291–292
Viewpoint control patterns, 335–344, 364–366*, 537g. See also 3D Multi-Touch Pattern; Automated Pattern; Steering Pattern; Walking Pattern
Vigilance, 151, 537g
Virtual body. See presence, self-embodiment
Virtual environments, 30, 537g
Virtual steering device, 340, 537g
Visceral processing, 77, 155*, 286–287, 537g. See also communication, direct, visceral
Vision. See visual system
Vista space. See under space perception
Visual acuity, 92–95, 538g
color, 88, 143, 157*
dark adaptation, 157*
degraded, 164, 183
detection, 93, 94, 505g
eye eccentricity, 86, 88, 92–93, 95, 99, 143, 157*, 319
grating, 94, 511g
pursuit, 95, 526g
recognition, 94, 527g
separation, 94, 530g
Snellen eye chart, 94
stereoscopic, 95, 98, 532g
vernier, 94, 98, 536g
Visual capture (ventriloquism effect), 109, 538g
Visual-physical conflict. See under sensory conflicts
Visual system, 85–99, 109
back projections, 87–88, 499g
Index

Visual system (continued)
cones, 85, 86, 91–92, 96, 143, 503g
magno cells, 86–87, 88, 129, 479, 517g
parvo cells, 86, 522g
retina, 85–88, 92–93, 114, 479, 529g
blind spot, 65, 86, 93, 126, 500g
fovea, 85–86, 90, 93, 95, 97, 146, 150, 157*, 510g
image slip, 96, 97–98, 184, 529g
virtual retinal displays (VRDs), 189, 479
rods, 85–86, 90, 96, 143, 529g
visual pathways, 87–88, 129, 132
dorsal (where/how/action), 88, 129, 152, 506g
lateral geniculate nucleus (LGN), 87–88, 125, 479, 516g
primary (geniculostriate system), 87–88, 129, 525g
primitive (tectopulvinar system), 87, 129, 148, 525g
superior colliculus, 87, 479, 533g
ventral (what), 88, 129, 152, 536g
Visual-vestibular conflict. See under sensory conflicts
Voice menu hierarchies, 350, 538g
Volume-Based Selection Pattern, 330–332, 353, 363*, 538g
cone-casting flashlight, 331, 502g
two-handed box selection, 331, 332, 535g.
See also viewbox
nudge, 331–332, 520g
snap, 331–332, 531g
VRPN (VR Peripheral Network), 481
Walking in place, 290, 337, 365*, 538g
Walking Pattern, 154, 178, 336–338, 364–365*, 538g
human joystick, 337, 513g
real walking, 249, 290, 336, 377, 364*, 527g
redirected walking, 96, 337, 365*, 527g
treadmills, 40, 42, 136, 256, 338, 365*, 535g
walking in place, 290, 337, 365*, 538g
Wand. See input device classes, tracked hand-held controllers

Warnings
 grids, 213–214, 217*, 538g
sound, 240, 269*
Wayfinding aids, 240, 242, 253, 270*, 538g.
See also navigation, wayfinding
environmental, 153, 242–246, 269–270*
abstract data, 245, 341, 365*
breadcrumbs, 245, 270*, 500g
channels, 244, 270*, 501g
districts, 244
dodges, 244, 270*, 516g
handrails, 244, 270*, 501g
trees, 244, 270*, 501g
landmarks, 137, 153, 237, 244–246, 245, 252–253, 270–271*, 516g
markers, 245–246, 251, 270*, 344, 517g
neighborhoods, 244
nodes, 244, 270*, 519g
path, 153, 210, 243–245, 344
regions, 244, 245, 270*, 354, 418, 527g
routes, 153, 244, 252, 271*, 344, 529g
skewers, 245
subtle, 243, 270*
trails, 245, 270*, 535g
user-placed, 245, 270*
you are–here, 251, 271*
personal, 251–253
compasses, 252–254, 271*, 502g
forward-up maps, 252, 271*, 352, 367*, 510g
north-up maps, 252, 271*, 520g
you are–here maps, 251, 271*
Weight, 177–178, 200, 215*. See also fatigue
center of mass, 177, 200
gorilla arm, 177, 204
reducing, 213
physical panels, 349
walking, 178
Widgets, 345, 346–349, 356*, 366*, 475–477, 538g
Widgets and Panels Pattern, 345–349, 366*, 539g
2D desktop integration, 35, 346, 497g
above-the-head widgets and panels, 348, 497g
color cubes, 347, 502g
menus. See menus
panels, 345, 366*
 hand-held, 295, 347, 348, 537g
 physical, 349, 366*, 524g
widgets, 345, 346–349, 356*, 366*, 475–477, 538g
Wind, 41–43

World-grounded devices, 282, 311, 312–313, 315, 340, 539g
World-in-Miniature Pattern, 251, 352–353, 367*, 539g
dolls, 352–353, 367*, 506g
moving into, 353, 367*
viewbox, 353, 537g
voodoo dolls, 352–353, 538g
Author’s Biography

Jason Jerald

Jason Jerald, PhD, is Co-Founder and Principal Consultant at NextGen Interactions. In addition to primarily focusing on NextGen Interactions and its clients, Jason is Chief Scientist at Digital ArtForms, is Adjunct Visiting Professor at the Waterford Institute of Technology, serves on multiple advisory boards of companies focusing on VR technologies, coordinates the Research Triangle Park VR Meetup, and speaks about VR at various events throughout the world.

Jason has been creating VR systems and applications for approximately 20 years. He has been involved in over 60 VR-related projects across more than 30 organizations including Valve, Oculus, Virtuix, Sixense, NASA, General Motors, Raytheon, Lockheed Martin, three U.S. national laboratories, and five universities. Jason’s work has been featured on ABC’s Shark Tank, on the Discovery Channel, on the UK’s Gadget Show, in the New York Times, and on the cover of the MIT Press journal Presence: Teleoperators and Virtual Environments. He has held various technical and leadership positions including building and leading a team of approximately 300 individuals, and has served on the ACM SIGGRAPH, IEEE Virtual Reality, and IEEE 3D User Interface Committees.

Jason earned a Bachelor of Computer Science degree with an emphasis in Computer Graphics and Minors in Mathematics and Electrical Engineering from Washington State University. He earned a Masters and a Doctorate in Computer Science from the University of North Carolina at Chapel Hill with a focus on perception of motion and latency in VR. His graduate work consisted of building a VR system with under 8 ms of end-to-end latency; the development of a mathematical model relating latency, head motion, scene motion, and perceptual thresholds; and validation of the model through psychophysics experiments. Jason as authored over 20 publications and patents directly related to VR.