Proposal of an ultrasonographic classification for hepatic alveolar echinococcosis: Echinococcosis multilocularis Ulm classification-ultrasound

Wolfgang Kratzer, Beate Gruener, Tanja EM Kaltenbach, Sarina Ansari-Bitzenberger, Peter Kern, Michael Fuchs, Richard A Mason, Thomas FE Barth, Mark M Haenle, Andreas Hillenbrand, Suemeyra Oeztuerk, Tilmann Graeter

Wolfgang Kratzer, Tanja EM Kaltenbach, Sarina Ansari-Bitzenberger, Peter Kern, Michael Fuchs, Richard A Mason, Thomas FE Barth, Mark M Haenle, Andreas Hillenbrand, Suemeyra Oeztuerk, Tilmann Graeter

Author contributions: Kratzer W and Gruener B contributed equally to this work; Kratzer W, Gruener B and Graeter T designed the research; Gruener B, Kaltenbach TEM and Ansari-Bitzenberger S performed the research; Oeztuerk S, Mason RA, Haenle MM, Barth TFE, Kern P, Fuchs M and Hillenbrand A analyzed the data; and Kratzer W, Gruener B and Kaltenbach TEM wrote the paper.

Institutional review board statement: The study was reviewed and approved by the local Ethics Committee of University of Ulm.

Informed consent statement: Because of retrospective and anonymous character of this study the need for informed consent was waived by the Institutional Review Board.

Conflict-of-interest statement: The authors declare that there are no conflicts of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Wolfgang Kratzer, MD, Professor, Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany. wolkfgang.kratzer@uniklinik-ulm.de

Telephone: +49-731-50044730
Fax: +49-731-50044620

Received: April 13, 2015
Peer-review started: April 15, 2015
First decision: June 2, 2015
Revised: June 19, 2015
Accepted: September 13, 2015
Article in press: September 14, 2015
Published online: November 21, 2015

Abstract

AIM: To establish an ultrasonographic classification based on a large sample of patients with confirmed hepatic alveolar echinococcosis (AE).
METHODS: Clinical data and ultrasonography (US) findings of 185 patients (100 males; 85 females; mean age at diagnosis: 51.4 ± 17.6 years; mean age at time of US examination: 58.7 ± 18.2 years) were retrospectively reviewed with respect to the US morphology of hepatic AE lesions. The sonomorphological findings were grouped according to a five-part classification scheme.

RESULTS: Application of the new classification resulted in the following distribution of sonomorphological patterns among the patients examined: hailstorm (54.1%); pseudocystic (13.5%); ossification (13.0%); hemangioma-like (8.1%); and metastasis-like (6.5%). Only 4.9% of lesions could not be assigned to a sonomorphological pattern.

CONCLUSION: The sonomorphological classification proposed in the present study facilitates the diagnosis, interpretation and comparison of hepatic alveolar echinococcosis in routine practice and in the context of scientific studies.

Key words: Hepatic echinococcosis; Echinococcus multilocularis; Classification; Diagnosis; Ultrasonography; Alveolar echinococcosis

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Alveolar echinococcosis (AE) is a rare but potentially life-threatening parasitic disease. Despite the importance of ultrasonography as an imaging modality in the work-up of hepatic AE, there is no established sonomorphological classification of hepatic AE lesions analogous to the World Health Organization’s ultrasonographic classification for cystic echinococcosis. Objective of the present study was to establish an ultrasonographic classification based on a large sample of patients with confirmed hepatic AE. Assignment of hepatic AE lesions to one of the five sonomorphological patterns was successful in 95% of cases based on the ultrasonographic classification scheme proposed in the present study.

INTRODUCTION
Alveolar echinococcosis (AE) is a rare but potentially life-threatening parasitic disease caused by infection with the larval stage of the cestode tapeworm, Echinococcus alveolaris[1-3]. Worldwide, the distribution of the parasite is limited to the cool and temperate regions of the Northern Hemisphere[4]. A characteristic feature of AE is its tumor-like growth in the liver, which may infiltrate neighboring organs[1]. In a large majority of cases, the liver is the first organ to be infested by the larvae: in seven out of ten cases, hepatic lesions occur in the right hepatic lobe; in 40%, the liver hilus is also involved; while, in only two of ten cases, both hepatic lobes are affected[5].

In its initial phase, the infection is usually asymptomatic. First symptoms and signs may include upper abdominal pain or cholestatic jaundice. The incubation period ranges between five and fifteen years[6]. Complications, such as biliary obstruction, portal hypertension and bleeding esophageal varices, have been reported in advanced disease and are ascribed to the invasively growing mass of Echinococcus alveolaris in the liver[7]. Metastatic infiltration by Echinococcus alveolaris has been described for many organs[8,9] and is reflected in the PNM classification introduced by Kern et al[10].

Radical resection of echinococcal foci is the sole curative therapy for patients with AE. Curative therapy is followed by administration of benzimidazoles for two years; long-term administration of these agents is indicated for non-resectable lesions[9]. Left untreated, the disease is associated with a fatal outcome in more than 95% of cases within a period of ten years following diagnosis[11]. Only early diagnosis, based on diagnostic imaging and serological markers, can increase the rate of curative resections[12,13]. Early diagnostic imaging therefore takes on decisive importance[14].

Beside US, computed tomography (CT) represents the imaging method of choice among currently available diagnostic imaging modalities[15,16]. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is a sensitive and specific tool that uses 18F-fluorodesoxyglucose (18F-FDG) metabolism to estimate the metabolic activity of hepatic AE lesions[17-19]. The development of the US contrast enhanced SonoVue® (Bracco Medical Imaging Deutschland GmbH, Konstanz, Germany) has over the past few years facilitated US assessment of the vitality of AE lesions at follow-up monitoring. Assessment of the vascularization of hepatic AE lesions with contrast-enhanced ultrasound (CEUS) correlates with their metabolic activity at combined 18F-FDG-PET-CT[20,21] and can better delineate the spatial extent of hepatic alveolar echinococcosis lesions[22,23]. Lesions characterized by vesicles and small cysts show a high degree of correlation between 18F-FDG-PET and CEUS findings[24].

In 2003, Kodama et al[25] introduced a five-part classification for assessing hepatic AE with magnetic resonance imaging (MRI): Type 1: Multiple small round cysts without a solid component; Type 2: Multiple...
small round cysts with a solid component; Type 3: A solid component surrounding a large and/or irregular pseudo-cyst with multiple small round cysts; Type 4: A solid component without cysts; Type 5: A large cyst without a solid component.

No corresponding classification has yet been published for either CT or ultrasonography (US). Current studies suggest that the occurrence of alveolar echinococcosis is increasing worldwide and is spreading to previously unaffected regions. Especially in the Northern Hemisphere, there is a growing number of AE lesions occurring as coincidental findings at routine upper abdominal US\(^{[14,26,27]}\). Knowledge of the typical presentations of hepatic AE at diagnostic imaging may aid in making an early diagnosis\(^{[28]}\). Despite the importance of US as an image modality in the work-up of hepatic AE, there is no sonomorphological classification of hepatic AE lesions analogous to the World Health Organization (WHO)'s ultrasonographic classification for cystic echinococcosis, which has achieved worldwide acceptance for assessing the activity of that disease\(^{[14,15,28]}\). Objective of the present study was to establish an ultrasonographic classification based on a large sample of patients with confirmed hepatic AE as a way of facilitating the diagnosis, interpretation, classification and comparison of ultrasonographic findings of the rare disease entity.

MATERIALS AND METHODS

Study collective
Clinical data and US findings of 185 patients (\(n = 100\) males; 85 females; mean age at diagnosis: 51.4 ± 17.6 years; mean age at time of US examination: 58.7 ± 18.2 years) followed at the Echinococcosis outpatient clinic of Ulm University Hospital (\(n = 385\) patients) were reviewed with respect to the ultrasonographic morphology of hepatic AE lesions. Patients were originally examined between 1999 and 2014. A total of 200 patients were excluded from this analysis due to limitations in image quality impacting interpretation or incomplete data sets. The US findings of all patients (\(n = 200\)) with confirmed hepatic AE were documented and interpreted. US examinations were performed exclusively using convex transducer heads (1-6 MHz) with different US units (Philips HDI 3000, HDI 5000, IU 22, Toshiba Aplio 500, Siemens S3000, Hitachi Ascendus).

Statistical analysis
Statistical analyses were performed using the SAS statistical software package (version 9.2; SAS Institute Inc., Cary, NC, United States). Data were analyzed descriptively with regard to absolute and relative frequencies, means and standard deviation. The AE lesions were divided into five morphological patterns. One-way analysis of variance was applied to analyze differences between the patterns.

RESULTS
The most frequently encountered sonomorphological pattern among the 185 patients was the hailstorm pattern (54.1%, \(n = 100\)), followed, in 13.5% (\(n = 25\)) by the pseudocystic appearance and in 13% (\(n = 24\)) by the ossification appearance. Much less frequently observed were the hemangioma-like appearance (8.1%, \(n = 15\)) and the metastasis-like appearance (6.5%, \(n = 12\)). In terms of their mean diameters, the hailstorm lesions measured 59.6 ± 27.9 mm; the pseudocystic lesions, 120.0 ± 47.3 mm; the hemangioma-like lesions, 68.1 ± 37.3 mm; the ossification lesions, 28.0 ± 19.4 mm; and metastasis-like lesions, 35.3 ± 33.1 mm (Figure 6). The diameters of lesions exhibiting pseudocystic sonomorphology were significantly larger than any of the other four lesion types (\(P < 0.05\)). In terms of their mean diameters, lesions of both the hailstorm and hemangioma-like types differed significantly from

Kratzer W et al. Hepatic alveolar echinococcosis ultrasonographic classification
those of the ossification type $(P < 0.05)$.

In nine cases (4.9%), the complexity of the sonomorphological appearance or the simultaneous occurrence of characteristics typical for more than one sonomorphological pattern precluded assignment of sonomorphological findings to any one of the defined sonomorphological types in the new classification (Table 1).

Solitary echinococcus foci were by far the most frequent, being observed in 62.7% of cases. Only 13 patients (7%) exhibited more than ten identifiable foci (Table 1). Typical calcifications with dorsal acoustic shadow were visualized ultrasonographically in nearly three-fourths of cases (74.6%). A majority of lesions (61.1%) were localized in the right hepatic lobe compared with only 31.4% in the left hepatic lobe.

Figure 1 Hailstorm: The typical hailstorm appearance is characterized by indistinct, irregular boundaries, non-homogeneous pattern and hyperechoic formations, with or without dorsal acoustic shadow.
Echinococcal lesions affecting both hepatic lobes were identified in only 7.6%. Further characteristics and findings are summarized in Table 1.

DISCUSSION

Alveolar echinococcosis is a rare disease\(^{14,15,29}\). AE is characterized by destructive growth and exhibits all the characteristics of a malignant disease with infiltration of adjacent organs and formation of distance metastases\(^{10,15}\). Hence, rapid and definitive diagnosis is essential. Due to the rarity of the disease, however, especially in non-endemic areas, AE presents a significant diagnostic challenge in routine clinical
practice[30]. US is the imaging method of choice in the work-up of symptomatic patients and especially as a screening tool[14,31]. The widespread use of imaging modalities, such as US, CT and MRI, has led to an increase in the detection of previously unsuspected liver masses in asymptomatic patients[32]. These hepatic incidentalomas in asymptomatic patients are mostly benign and, in most cases, US (including CEUS) will suffice to definitively distinguish them from malignant lesions[32,33]. Certain hepatic incidentalomas, such as regenerative nodules, angiomyolipomas of the liver or hepatic AE, however, remain a diagnostic challenge. Sonomorphologically, the lesions present as a relatively clearly demarcated non-homogeneous tumor that appears hyperechoic in comparison with the surrounding hepatic parenchyma. Echogenicity ranges from slightly and non-homogeneously hyperechoic to strongly and homogeneous hyperechoic.

Figure 3 Hemangioma-like: These lesions are difficult to distinguish from atypical (e.g., partially thrombosed) hemangiomas, and often represent a significant diagnostic challenge. Sonomorphologically, the lesions present as a relatively clearly demarcated non-homogeneous tumor that appears hyperechoic in comparison with the surrounding hepatic parenchyma. Echogenicity ranges from slightly and non-homogeneously hyperechoic to strongly and homogeneous hyperechoic.
challenge for all imaging modalities[14,30,34]. Not infrequently, a final diagnosis is made only upon histopathological examination of material obtained at puncture or resection[35,36].

In the present study population, over 80% of cases corresponded sonomorphologically to the hailstorm, pseudocystic or ossification patterns. These morphologically very characteristic appearances have already been described by many authors, though not in the context of an ultrasonographic classification[16,37].

The so-called “hailstorm” and “pseudocystic” patterns were described as early as 1984 by Didier et al[37]. In fact, in their small series of 24 patients, the distribution of the hailstorm and pseudocystic pattern in 62.5% and 12%, respectively, was quite similar to that observed in the present study with 54.1% and 13.5% for the
hailstorm and pseudocystic patterns, respectively. Bresson-Hadni et al. also describe patterns that correspond to our hailstorm and pseudocystic patterns. Taken together, these two forms comprise about 70% of “typical” AE lesions among the lesions studied. The French research group also reported an hemangioma-like pattern as well as a usually small, calcified form of AE lesion (ossification pattern). AE lesions exhibiting an ossification appearance may present a diagnostic challenge. The differential diagnosis encompasses other hyperechoic, calcified lesions occurring in a wide range of benign, infectious or vascular disorders; with hepatic metastases of colorectal or breast cancer; or metastases of malignant melanomas. A metastasis-like appearance for hepatic AE has not previously been described. Unlike typical liver metastases, which

![Figure 5 Metastasis-like: Beside the hemangioma-like lesions, the metastasis-like lesions of alveolar echinococcosis represent the greatest diagnostic challenge. Mostly hypoechoic, these lesions exhibit a typical characteristic-compared to typical hepatic metastases (e.g., of colorectal cancer)-the absence of the halo phenomenon. Instead, there is a central, hyperechoic, non-homogeneous scar.](image)
exhibit an hypoechoic halo, lesions characterized by a metastasis-like appearance may be visualized as a hypoechoic growth without the halo sign or often with a central, hyperechoic scar [39].

In cases with pseudocystic manifestation, especially when the lesion is very large, the differential diagnosis includes liver abscess, cystadenoma or cystic echinococcosis [14]. In our series, the pseudocystic lesions were significantly larger than lesions of other sonomorphological types (68.1 ± 37.3 mm, P < 0.05).

Since AE is a very rare disease conducting an inter-rater reliability is difficult. The lack of inter-rater reliability remains a limitation of the proposed classification. In the present series, very few hepatic lesions (4.9%) could not be assigned to one of the five sonomorphological patterns. In routine clinical practice, only histopathological confirmation can clarify these unclear hepatic findings [36]. Depending on the experience of the pathologist, even the histopathological diagnosis of AE may be difficult. Immunohistochemical examination using Em-specific monoclonal antibodies facilitates a definitive diagnosis even in archived formalin-fixed or paraffin-embedded tissue [40].

In conclusion, ninety-five per cent of cases of hepatic alveolar echinococcosis could be successfully assigned to one of the sonomorphological patterns based on the ultrasonographic classification scheme proposed in the present study. The hailstorm pattern represented the most frequent form, being observed in over 50%. The sonomorphological classification proposed in the present study can facilitate the diagnosis, interpretation, classification and comparison of ultrasonographic findings in patients with alveolar

Table 1 Patient characteristics *n (%)*

Characteristics	mean ± SD
Number of patients	185
Gender	
Female	100 (54.1)
Male	85 (45.9)
Age at diagnosis	51.4 ± 17.6
Age at ultrasonographic examination	58.7 ± 18.2
Sonomorphological classification	
Hailstorm	100 (54.1)
Pseudocystic	25 (13.5)
Ossification	24 (13.0)
Hemangioma-like	15 (8.1)
Metastasis-like	12 (6.5)
Unclassifiable	9 (4.9)
Number of lesions	
1	116
2	24
3	16
4	5
5	7
6-10	4
> 10	13
Mean diameter of the largest lesion	62.5 ± 40.4
Mean lesion diameter according to sonomorphological classification	
Hailstorm	59.6 ± 27.9
Pseudocystic	120.0 ± 47.3
Ossification	28.0 ± 19.4
Hemangioma-like	68.1 ± 37.3
Metastasis-like	35.3 ± 33.1
Unclassifiable	53.9 ± 30.6
Localization of the largest lesion (hepatic lobe)	
Right	113 (61.1)
Left	58 (31.4)
Both	14 (7.6)
Calcification	
No	47 (25.4)
Yes	138 (74.6)
Affected liver segments (multiple segments possible)	
I	6 (3.2)
II	19 (10.3)
III	22 (11.9)
IVa	30 (16.2)
IVb	28 (15.1)
V	44 (23.8)
VI	41 (22.2)

Figure 6 Lesion size depending on the sonomorphological pattern.
echinococcosis of the liver, both in routine clinical practice and in the context of scientific studies. The evaluation of different clinical courses (PNM classification) with inclusion of biological markers and other imaging modalities should be investigated in further studies.

ACKNOWLEDGMENTS

Thanks to the members of the Echinococcus Multilocularis Study Group who not list as authors, in alphabetical order: Max G Bachem, Ambros J Beer, Meinrad Beer, Bernhard O Boehm, Franziska Eihing, Martina Furitsch, Martin Gottstein, Doris Henne-Bruns, Max Kurlbaum, Thomas Seufferlein.

REFERENCES

1 Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 2004; 17: 107-135 [PMID: 14726458]
2 Miguel JP, Bresson-Hadni S. Alveolar echinococcosis of the liver. J Hepatol 1998; 8: 373-379 [PMID: 2567298]
3 Nunnari G, Pinzone MR, Gruttadauria S, Celecia BM, Madeddu G, Malaguarnera G, Pavone P, Cappellani A, Cacopardo B. Hepatic echinococcosis: clinical and therapeutic aspects. World J Gastroenterol 2012; 18: 1448-1458 [PMID: 22509076 DOI: 10.3748/wjg.v18.i13.1448]
4 Romig T. Epidemiology of echinococcosis. Langenbecks Arch Surg 2003; 388: 209-217 [PMID: 12937989]
5 Heyd B, Weise L, Betschart V, Gillet M. [Surgical treatment of hepatic alveolar echinococcosis]. Chirurg 2000; 71: 16-20 [PMID: 10662997]
6 Ammann RW, Eckert J. Cestodes. Echinococcus. Gastroenterol Clin North Am 1996; 25: 655-689 [PMID: 8863045]
7 Craig P. Echinococcus multilocularis. Curr Opin Infect Dis 2003; 16: 437-444 [PMID: 14501996]
8 Moro P, Schantz PM. Echinococcosis: a review. Int J Infect Dis 2009; 13: 125-133 [PMID: 18938096 DOI: 10.1016/j.ijid.2008.03.037]
9 McManus DP, Gray DJ, Zhang W, Yang Y. Diagnosis, treatment, and management of echinococcosis. BMJ 2012; 344: e3866 [PMID: 22689886 DOI: 10.1136/bmj.e3866]
10 Kern P, Wen H, Sato N, Vuitton DA, Gruener B, Shao Y, Delabrousse E, Kratzer W, Bresson-Hadni S. WHO classification of alveolar echinococcosis: principles and application. Parasitol Int 2006; 55 Suppl: S283-S287 [PMID: 16343985]
11 Buttenschoen K, Carli Buttenschoen D, Gruener B, Kern P, Beger HG, Henne-Bruns D, Reuter S, Seiter L. Long-term experience on surgical treatment of alveolar echinococcosis. Langenbecks Arch Surg 2009; 394: 689-698 [PMID: 18651165 DOI: 10.1007/s00423-008-0392-5]
12 Kern P, Kratzer W, Reuter S. [Alveolar echinococcosis: diagnosis]. Dtsch Med Wochenschr 2000; 125: 59-62 [PMID: 10682000]
13 Sezgin O, Altintas E, Saritas U, Sahin B. Hepatic alveolar echinococcosis: clinical and radiologic features and endoscopic management. J Clin Gastroenterol 2005; 39: 160-167 [PMID: 15681914]
14 Liu W, Delabrousse É, Blagosklonov O, Wang J, Zeng H, Jiayi W, Qin Y, Vuitton DA, Wen H. Innovation in hepatic alveolar echinococcosis imaging: best use of old tools, and necessary evaluation of new ones. Parasite 2014; 21: 74 [PMID: 25531446 DOI: 10.1015/parasite/2014072]
15 Brunetti E, Kern P, Vuitton DA. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop 2010; 114: 1-16 [PMID: 19931502 DOI: 10.1016/j.actatropica.2009.11.001]
16 Bresson-Hadni S, Delabrousse E, Blagosklonov O, Bartholomot B, Koch S, Miguel JP, André Manton G, Angèle Vuitton D. Imaging aspects and non-surgical interventional treatment in human alveolar echinococcosis. Parasitol Int 2006; 55 Suppl: S267-S272 [PMID: 16403670]
17 Reuter S, Schirrmeister H, Kratzer W, Drewes C, Reske SN, Kern P. Percutaneous metabolic activity in alveolar echinococcosis: assessment and follow-up by positron emission tomography. Clin Infect Dis 1999; 29: 1157-1163 [PMID: 10524957]
18 Reuter S, Buck A, Manfras B, Kratzer W, Seitz HM, Darge K, Reske SN, Kern P. Structured treatment interruption in patients with alveolar echinococcosis. Hepatology 2004; 39: 509-517 [PMID: 14768005]
19 Reuter S, Gruner B, Buck AK, Blumstein N, Kern P, Reske SN. Long-term follow-up of metabolic activity in human alveolar echinococcosis using FDG-PET. Nuklearmedizin 2008; 47: 147-152 [PMID: 18690373]
20 Kaltenbach T, Graeter T, Mason RA, Kratzer W, Oeztuerk S, Haelele MM, Gruener B, Gottstein M. Determination of vitality of liver lesions by alveolar echinococcosis. Comparison of parametric contrast enhanced ultrasound (SonoVue®) with quantified 18F-FDG-PET-CT. Nuklearmedizin 2014; 26: 54
21 Ehrhardt AR, Reuter S, Buck AK, Haenle MM, Mason RA, Gabelmann A, Kern P, Kratzer W. Assessment of disease activity in alveolar echinococcosis: a comparison of contrast enhanced ultrasound, three-phase helical CT and [(18)F] fluorodeoxyglucose positron emission tomography. Abdom Imaging 2007; 32: 730-736 [PMID: 17285403 DOI: 10.1007/s00261-007-9177-5]
22 Tao S, Qin Z, Hao W, Yongguan L, Lanhu Y, Lei Y. Usefulness of grey-scale contrast-enhanced ultrasonography (SonoVue®) in diagnosing hepatic alveolar echinococcosis. Ultrasound Med Biol
Kratzer W et al. Hepatic alveolar echinococcosis ultrasonographic classification

2011; 37: 1024-1028 [PMID: 21640477 DOI: 10.1016/j.ultrasmed.bio.2011.04.014]

Kratzer W, Reuter S, Hirschbuehl K, Ehrhardt AR, Mason RA, Haenle MM, Kern P, Gabelmann A. Comparison of contrast-enhanced power Doppler ultrasound (Levovist) and computed tomography in alveolar echinococcosis. Abdom Imaging 2005; 30: 286-290 [PMID: 15965776]

Azizi A, Blagosklonov O, Lounis A, Berthet L, Vuitton DA, Bresson-Hadni S, Delabrousse E. Alveolar echinococcosis: correlation between hepatic MRI findings and FDG-PET/CT metabolic activity. Abdom Imaging 2015; 40: 56-63 [PMID: 24970734 DOI: 10.1007/s00261-014-0183-0]

Kodama Y, Fujita N, Shimizu T, Endo H, Nambu T, Sato N, Todo S, Miyasaka K. Alveolar echinococcosis: MR findings in the liver. Radiology 2003; 228: 172-177 [PMID: 12750459]

Tennent U, Schubert S, Tröltzsch M, Ivanova Tchavdarova L, Mösner J, Schoppmeyer K. Pitfall alveolar echinococcosis in non-endemic areas. Alveolar echinococcosis-migrating northward. Ann Hepatol 2010; 9: 99-103 [PMID: 20308731]

Antolova D, Miterpakova M, Radoňak J, Hudačkova D, Szilagysiova M, Začek M. Alveolar echinococcosis in a highly endemic area of Northern Slovakia between 2000 and 2013. Diagn Radiol 2011; 44: 221-226 [PMID: 25795033 DOI: 10.1067/j.cradioi.2014.08.006]

Madhusudhan KS, Srivastava DN, Dash NR, Venuthurimilli A, Sharma R, Gamanagatti S, Gupta AK. Alveolar echinococcosis of liver: a diagnostic problem in a nonendemic area. Curr Probl Diagn Radiol 2015; 44: 221-226 [PMID: 25795033 DOI: 10.1067/j.cradioi.2014.08.006]

Pierroux M, Pierroux R, Giorgi R, Knap J, Bandonnet K, Sudre B, Watelot J, Dunforttier J, Gendar A, Beytour J, Abergel A, Manton G, Vuitton DA, Bresson-Hadni S. Clinical features and evolution of alveolar echinococcosis in France from 1982 to 2007: results of a survey in 387 patients. J Hepatol 2011; 55: 1025-1033 [PMID: 21354448 DOI: 10.1016/j.jhep.2011.02.018]

Kantarci M, Bayraktutan U, Karabulut N, Aydinli B, Ogul H, Yuce I, Calik M, Eren S, Atamanalp SS, Oto A. Alveolar echinococcosis: spectrum of findings at cross-sectional imaging. Radiographics 2012; 32: 2053-2070 [PMID: 23150858 DOI: 10.1148/rg.327125708]

Romig T, Kratzer W, Kinmig P, Frosch M, Gaus W, Flegel WA, Gottstein B, Lucius R, Beckh K, Kern P. An epidemiologic survey of human alveolar echinococcosis in southwestern Germany. Römerstein Study Group. Am J Trop Med Hyg 1999; 61: 566-573 [PMID: 10548290]

Koca JB. Hepatic incidentaloma: the rule of tens. HPB (Oxford) 2013; 15: 379-383 [PMID: 23557409 DOI: 10.1111/j.1477-2574.2012.00595.x]

Dietrich CF, Sharma M, Gibson RN, Schreiber-Dietrich D, Jeness C. Fortuitously discovered liver lesions. World J Gastroenterol 2013; 19: 3173-3188 [PMID: 23745019 DOI: 10.3748/wjg.v19.i21.3173]

Galanski M, Jördens S, Weidemann J. [Diagnosis and differential diagnosis of benign liver tumors and tumor-like lesions]. Chirurg 2008; 79: 707-721 [DOI: 10.1007/s00108-008-1522-x]

Atanasov G, Benckett C, Thelen A, Tappe D, Frosch M, Teichmann D, Barth TF, Wittekind C, Schubert S, Jonas S. Alveolar echinococcosis-spreading disease challenging clinicians: a case report and literature review. World J Gastroenterol 2013; 19: 4257-4261 [PMID: 23864792 DOI: 10.3748/wjg.v19.i26.4257]

Mueller M, Kratzer W, Oeztuerk S, Wilhelm M, Mason RA, Mao R, Haenle MM. Percutaneous ultrasonographically guided liver punctures: an analysis of 1961 patients over a period of ten years. BMC Gastroenterol 2012; 12: 173 [PMID: 23216751 DOI: 10.1186/1477-5225-12-173]

Didier D, Weiler S, Rohmer P, Lassegue A, Deschamps JP, Vuitton D, Miguet JP, Weill F. Hepatic alveolar echinococcosis: correlation US and CT study. Radiology 1985; 154: 179-186 [PMID: 3880602]

Stoupis C, Taylor HM, Paley MR, Buettow PC, Marre S, Baer HU, Vock P, Ros PR. The Rocky liver: radiologic-pathologic correlation of calcified hepatic masses. Radiographics 1998; 18: 675-685; quiz 726 [PMID: 9599391]

Werneck K, Vassallo P, Bick U, Diederich S, Peters PE. The distinction between benign and malignant liver tumors on sonography: value of a hypoechic halo. AJR Am J Roentgenol 1992; 159: 1005-1009 [PMID: 1329454]

Barth TF, Herrmann TS, Tappe D, Stark L, Grüner B, Butten-schoen K, Hillenbrand A, Juchems M, Henne-Brüns D, Kern P, Seitz HM, Möller P, Rausch RL, Kern P, Deplazes P. Specific immunohistochemical diagnosis of human alveolar echinococcosis with the monoclonal antibody Em2G11. PLoS Negl Trop Dis 2012; 6: e1877 [PMID: 23145198 DOI: 10.1371/journal.pntd.0001877]

P- Reviewer: Botcher D, Martakis K, Tamarozzi F
S- Editor: Yu J L- Editor: A E- Editor: Liu XM
