Induced Gravity Models with Exact Bounce Solutions

E. O. Pozdeeva*, and S. Yu. Vernov**

*Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991 Russia
**Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991 Russia

*e-mail: pozdeeva@www-hep.sinp.msu.ru
**e-mail: svernov@theory.sinp.msu.ru

Abstract—We study dynamics of induced gravity cosmological models with the sixth-degree polynomial potentials, that have been constructed using the superpotential method. We find conditions on the potential under which exact bounce solutions exist and study the stability of these solutions.

DOI: 10.1134/S1063779618050337

1. INTRODUCTION

The observable evolution of the Universe [1] can be described by the spatially flat Friedmann—Lemaître—Robertson—Walker (FLRW) background with the interval

$$ds^2 = -dt^2 + a^2(t)\left(dx_1^2 + dx_2^2 + dx_3^2\right),$$

(1)

where $a(t)$ is the scale factor, and cosmological perturbations.

At the bounce point the period of universe contraction changes to a period of universe expansion. Thereby, a bounce point is characterized by two conditions: at this point the Hubble parameter $H = \dot{a}/a$ is equal to zero and its cosmic time derivative \dot{H} is positive. In models with standard (not phantom) scalar fields minimally coupled to gravity, the Hubble parameter is monotonically decreasing function. Bounce solutions exist in models with the standard scalar field non-minimally coupled to gravity [2–5].

Models with scalar fields are very useful to describe the evolution of the FLRW metric and play an essential role in modern cosmology. At the same time the number of integrable cosmological models is very limited [2, 6, 7]. A cosmological model with a generic polynomial potential is non-integrable, moreover sometimes it is not easy to get a particular solution in the analytic form. Using a reconstruction procedure, one can construct such a potential of the scalar field that the resulting model with non-minimal coupling has exact solutions with important physical properties [8, 9]. The reconstruction procedure for the models with non-minimally coupled scalar fields, proposed in [9], is similar to the Hamilton–Jacobi method (also known as the superpotential method or the first-order formalism) that has been applied to cosmological models with minimal coupling [10–16].

In this paper, we consider the induced gravity model with the sixth-degree polynomial potential proposed in [9]. This model has an exact solution that for some values of constants is a bounce solution [17]. We find the necessary condition of the existence and study stability of this exact bounce solution.

2. THE SUPERPOTENTIAL METHOD

AND BOUNCE SOLUTIONS

The models with the Ricci scalar multiplied by a function of the scalar field are described by the following action:

$$S = \int d^4x \sqrt{-g} \left[U(\sigma)R - \frac{1}{2} g^{\mu\nu} \sigma_\mu \sigma_\nu - V(\sigma) \right],$$

(2)

where $U(\sigma)$ and $V(\sigma)$ are differentiable functions of the scalar field σ.

In the spatially flat FLRW universe with the interval (1), the variation of action (2) gives the following equations [9, 17]:

$$6UH^2 + 6\dot{U}H = \frac{1}{2} \dot{\sigma}^2 + V,$$

(3)

$$2U\left(2\dot{H} + 3H^2\right) + 4UH + 2\dot{U} = -\frac{1}{2} \dot{\sigma}^2 + V,$$

(4)

$$\ddot{\sigma} + 3H \dot{\sigma} + V' = 6(\dot{H} + 2H^2)U',$$

(5)

where dots mean the time derivatives and primes indicate derivatives with respect to the scalar field σ. Combining Eqs. (3) and (4), we obtain

$$4UH - 2\dot{U}H + 2\dot{U} + \dot{\sigma}^2 = 0.$$

(6)

Let $H = Y(\sigma)$ and the function $F(\sigma)$ is defined by

$$\dot{\sigma} = F(\sigma).$$

(7)
Substituting $\dot{\sigma}$ and $\ddot{\sigma} = F'F$ into Eq. (6), one obtains the following equation [9]:

$$4U'Y + 2(F' - Y)U' + (2U'' + 1) F = 0. \quad (8)$$

The potential $V(\sigma)$ one can get from (3):

$$V(\sigma) = 6UY^2 + 6U'FY - \frac{1}{2} F^2. \quad (9)$$

To find the function $\sigma(t)$ and, hence, $H(t) = Y(\sigma(t))$ we integrate Eq. (7).

By definition a solution of Eqs. (3)–(5) is a bounce solution if there exists such a point t_b that

$$H(t_b) = 0, \quad \dot{H}(t_b) > 0. \quad (10)$$

From Eq. (3) we get that the necessary condition for the existence of a bounce solution is $V(\sigma_b) < 0$, where $\sigma_b = \sigma(t_b)$. Also, from Eq. (6) it follows that a model with a constant positive U has no bounce solutions.

If some model has been constructed by the superpotential method and we know the functions $Y(\sigma)$ and $F(\sigma)$ explicitly, then the search of bounce solutions is simplified, because a value of the scalar field at a bounce point σ_b is a solution of the equation $Y(\sigma) = 0$. The condition $\dot{H}(t_b) > 0$ is equivalent to $Y(\sigma_b)F(\sigma_b) > 0$.

3. INDUCED GRAVITY COSMOLOGICAL MODELS WITH EXACT BOUNCE SOLUTIONS

In this paper, we study the induced gravity models with $U(\sigma) = \xi \sigma^2 / 2$, where ξ is a positive constant. The induced gravity was first suggested by A. Sakharov [18] and has found many applications in cosmology [8, 19–21].

Due to superpotential method, the induced gravity model with the sixth-degree polynomial potential has been constructed in [9]. The coefficients of the potential of this model depend on three parameters. For some values of the parameters, an exact bounce solution exists [17]. In this paper, we continue the consideration of this model and study conditions for existence of bounce solutions and their behavior.

Let $Y(\sigma)$ is a generic quadratic polynomial $Y(\sigma) = C_0 + C_1\sigma + C_2\sigma^2$, where C_0, C_1, and C_2 are arbitrary constants, but $C_0 \neq 0$ and $C_2 \neq 0$. From Eq. (8), we obtain

$$F(\sigma) = \frac{2\left[(8\xi + 1)C_0 - (4\xi + 1)C_2\sigma^2\right]}{(4\xi + 1)(8\xi + 1)} \frac{\xi \sigma}{B\sigma^{-(1+2\xi)/(1+\xi)}},$$

where B is an arbitrary constant. When $B = 0$, the function $F(\sigma)$ is a cubic polynomial and the general solution for Eq. (7) can be written in terms of elementary functions [9]:

$$\sigma_\pm(t) = \pm \sqrt{(8\xi + 1)C_0 \e^{\omega t} + (4\xi + 1)C_2},$$

where $\omega = 4\xi C_0/(4\xi + 1)$, e is an integration constant.

The function σ_\pm should be real at any moment of time, therefore, considering limits at $t \to \pm \infty$ we get two possibilities: $C_0 > 0$ and $C_2 > 0$, or $C_0 < 0$ and $C_2 < 0$. In both cases $\omega < 0$.

The potential of the model considered is the sixth-degree polynomial [9, 17]:

$$V(\sigma) = \frac{(16\xi + 3)(6\xi + 1)^2}{(8\xi + 1)^3} C_2^2\sigma^6 + \frac{6(6\xi + 1)^2}{8\xi + 1} C_2 C_3^2 \sigma^5 + \frac{6(6\xi + 1)^2}{4\xi + 1} C_3 C_4 \sigma^3 \sigma^4 + \frac{(16\xi + 3)(6\xi + 1)^2}{(4\xi + 1)^2} C_0^2 \sigma^2. \quad (13)$$

The change of signs both C_i and σ does not change the value of the potential and the Hubble parameter. So, we can consider the solutions σ_+ only. Note that $\sigma_+(t) > 0$ for all t. All obtained results will be correct for σ_- and the potential with $-C_1$ as well.

4. EXISTENCE AND STABILITY OF EXACT BOUNCE SOLUTIONS

Let us find conditions that are necessary for the existence of a bounce solution. The first restriction on parameters C_i, we get from the equation $Y = 0$ that has the following solutions:

$$\sigma_{b\pm} = \frac{-C_1 \pm \sqrt{C_1^2 - 4C_0 C_2}}{2C_2}. \quad (14)$$

These solutions are two different real solutions only if $C_1^2 \geq 4C_0 C_2$. We consider the $C_0 > 0$, $C_2 > 0$, and $\sigma_+ > 0$, so, the model get the bounce only at $\sigma = \sigma_{b+} > 0$ and only under condition $C_1 < -2\sqrt{C_0 C_2}$. Note that the value of the potential at the bounce
point does not depend on C_1, because

$$V(\sigma_0) = -\frac{F^2}{2}. $$

All considering exact solutions tend to de Sitter ones. In our paper [17], it has been found that these de Sitter solutions are unstable at

$$C_1 < -\frac{2(16\xi^2 + 3)}{3\sqrt{8(8\xi + 1)(4\xi + 1)}} C_0 C_2. \tag{15}$$

The function

$$\frac{2(16\xi^2 + 3)}{3\sqrt{8(8\xi + 1)(4\xi + 1)}} \quad \text{is a monotonically decreasing function that is equal to 2 at } \xi = 0. \quad \text{So, we come to the conclusion that at any } \xi > 0 \text{ all bounce exact solutions } \sigma_+ \text{ tend to unstable de Sitter solutions. The corresponding Hubble parameter is a monotonically increasing function after a bounce, because}

$$\dot{H}(\sigma) > \sqrt{C_2^2 - 4C_0 C_2 \sigma > 0 \text{ for all } \sigma > \sigma_{m+}. \quad \text{Using the symmetry of the potential with respect to the change } \sigma_+ \text{ on } \sigma_- \text{ and } C_1 \text{ on } -C_1, \text{ we obtain that any exact-bounce solution tends to unstable de Sitter ones. Surely, such solutions can not describe the evolution of the observable Universe, because inflation corresponds to a decreasing Hubble parameter, but these solutions are not unique bounce solutions in the model considered.}

5. CONCLUSIONS

We have found the necessary condition of existence of the exact bounce solutions that has been constructed using the superpotential method. Any bounce solution that can be presented in the analytic form (12) tends to unstable de Sitter solution.

The exact bounce solutions of the considering model are not able to describe the evolution of observable Universe. It does not mean that they are useless because it can be possible to slightly modified these solutions to do not lose the bounce points but get more suitable behaviour after this point. It demands numerical calculations and maybe some modification of the potential. Note that exact bounce solutions obtained in the integrable cosmological model [2] corresponds to monotonically increasing Hubble parameter, whereas as slightly modified models that are not integrable [3, 5] allow getting bounce solutions with non-monotonic Hubble parameter. We hope that further disquisition with numeric calculations gives bounce solutions with an interesting non-monotonic behaviour of the Hubble parameter in this model or in a slightly modified model.

ACKNOWLEDGMENTS

This work was partially supported by grant NSh-7989.2016.2 of the President of Russian Federation. Research of E.P. is supported in part by grant MK-7835.2016.2 of the President of Russian Federation.

REFERENCES

1. P. A. R. Ade et al. (Planck Collab.), “Planck 2015 results. XX. Constraints on inflation,” Astron. Astrophys. 594, A20 (2016); arXiv:1502.02114.

2. B. Boisseau, H. Giacomini, D. Polarski, and A. A. Starobinsky, “Bouncing universes in scalar-tensor gravity models admitting negative potentials,” J. Cosmol. Astropart. Phys. 1507, 002 (2015); arXiv:1504.07927.

3. B. Boisseau, H. Giacomini, and D. Polarski, “Bouncing universes in scalar-tensor gravity around conformal invariance,” J. Cosmol. Astropart. Phys. 1605, 048 (2016); arXiv:1603.06648.

4. A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Interdependence between integrable cosmological models with minimal and non-minimal coupling,” Classical Quantum Gravity 33, 015004 (2016); arXiv:1509.00590.

5. E. O. Pozdeeva, M. A. Skugoreva, A. V. Toporensky, and S. Yu. Vernov, “Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields,” J. Cosmol. Astropart. Phys. 1612, 006 (2016); arXiv:1608.08214.

6. P. Fre, A. Sagnotti, and A. S. Sorin, “Integrable scalar cosmologies I. Foundations and links with string theory,” Nucl. Phys. B 877, 1028 (2013); arXiv:1307.1910; P. Fre, A. S. Sorin, and M. Trigiante, “Integrable scalar cosmologies II. Can they fit into gauged extended supergravity or be encoded in N = 1 superpotentials?,” Nucl. Phys. B 881, 91–180 (2014); arXiv:1310.5340.

7. A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Integrable cosmological models with non-minimally coupled scalar fields,” Classical Quantum Gravity 31, 105003 (2014); arXiv:1312.3540; A. Yu. Kamenshchik, E. O. Pozdeeva, A. Tronconi, G. Venturi, and S. Yu. Vernov, “General solutions of integrable cosmological models with non-minimal coupling,” Phys. Part. Nucl. Lett. 14, 382 (2017); arXiv:1604.01959.

8. A. Yu. Kamenshchik, A. Tronconi, and G. Venturi, “Reconstruction of scalar potentials in induced gravity and cosmology,” Phys. Lett. B 702, 191 (2011); arXiv:1104.2125.

9. A. Yu. Kamenshchik, A. Tronconi, G. Venturi, and S. Yu. Vernov, “Reconstruction of scalar potentials in modified gravity models,” Phys. Rev. D 87, 063503 (2013); arXiv:1211.6272.

10. D. S. Salopek and J. R. Bond, “Nonlinear evolution of long-wavelength metric fluctuations in inflationary models,” Phys. Rev. D 42, 3936–3962 (1990); A. G. Muslimov, “On the scalar field dynamics in a spatially flat Friedman universe,” Classical Quantum Gravity 7, 231–237 (1990).

11. V. M. Zhuravlev, V. M. Chervon, and V. M. Shchigolev, “New classes of exact solutions in inflationary cosmology,” J. Exp. Theor. Phys. 87, 223 (1998); V. M. Chervon and I. V. Fomin, “On calculation of the cosmological parameters in exact models of inflation,” Gravity Cosmol. 14, 163 (2008); arXiv:1704.05378; A. V. Yurov, V. A. Yurov, V. M. Chervon, and M. Sami, “Total energy potential as a superpotential in integrable cos-
12. I. Ya. Aref’eva, S. Yu. Vernov, and A. S. Koshelev, “Exact solution in a string cosmological model,” Theor. Math. Phys. 148, 895–909 (2006); astro-ph/0412619; I. Ya. Aref’eva, A. S. Koshelev, and S. Yu. Vernov, “Crossing the $w = -1$ barrier in the D3-brane dark energy model,” Phys. Rev. D 72, 064017 (2005); arXiv:astro-ph/0507067; S. Yu. Vernov, “Construction of exact solutions in two-field cosmological models,” Theor. Math. Phys. 155, 544 (2008); arXiv:astro-ph/0612487; I. Ya. Aref’eva, N. V. Bulatov, and S. Yu. Vernov, “Stable exact solutions in cosmological models with two scalar fields,” Theor. Math. Phys. 163, 788 (2010); arXiv:0911.5105.

13. K. Skenderis and P. K. Townsend, “Hamilton–Jacobi method for domain walls and cosmologies,” Phys. Rev. D 74, 125008 (2006); arXiv:hep-th/0609056; P. K. Townsend, “Hamilton–Jacobi mechanics from pseudo-supersymmetry,” Classical Quantum Gravity 25, 045017 (2008); arXiv:0710.5178.

14. D. Bazeia, C. B. Gomes, L. Losano, and R. Menezes, “First-order formalism and dark energy,” Phys. Lett. B 633, 415–419 (2006); arXiv:astro-ph/0512197; D. Bazeia, L. Losano, and R. Rosenfeld, “First-order formalism for dust,” Eur. Phys. J. C 55, 113–117 (2008); arXiv:astro-ph/0611770.

15. A. A. Andrianov, F. Cannata, A. Yu. Kamenshchik, and A. Yu. Regoli, “Reconstruction of scalar potentials in two-field cosmological models,” J. Cosmol. Astropart. Phys. 0802, 015 (2008); arXiv:0711.4300; A. Yu. Kamenshchik and S. Manti, “Scalar field potentials for closed and open cosmological models,” Gen. Relativ. Gravitation 44, 2205–2214 (2012); arXiv:1111.5183.

16. T. Harko, F. S. N. Lobo, and M. K. Mak, “Arbitrary scalar field and quintessence cosmological models,” Eur. Phys. J. C 74, 2784 (2013); arXiv:1310.7167.

17. E. O. Pozdeeva and S. Yu. Vernov, “Stable exact cosmological solutions in induced gravity models,” AIP Conf. Proc. 1606, 48–58 (2014); arXiv:1401.7550.

18. A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,” Sov. Phys. – Dokl. 12, 1040 (1968); Gen. Relativ. Gravitation 32, 365 (2000).

19. F. Cooper and G. Venturi, “Cosmology and broken scale invariance,” Phys. Rev. D 24, 3338 (1981); A. Cerioni, F. Finelli, A. Tronconi, and G. Venturi, “Inflation and reheating in induced gravity,” Phys. Lett. B 681, 383 (2009); arXiv:0906.1902; A. Yu. Kamenshchik, A. Tronconi, and G. Venturi, “Dynamical dark energy and spontaneously generated gravity,” Phys. Lett. B 713, 358 (2012); arXiv:1204.2625.

20. J. L. Cervantes-Cota and H. Dehnen, “Induced gravity inflation in the standard model of particle physics,” Nucl. Phys. B 442, 391 (1995); arXiv:astro-ph/9505069; J. L. Cervantes-Cota, R. de Putter, and E. V. Linder, “Induced gravity and the attractor dynamics of dark energy/dark matter,” J. Cosmol. Astropart. Phys. 1012, 019 (2010); arXiv:1010.2237.

21. I. Ya. Aref’eva, N. V. Bulatov, R. V. Gorbachev, and S. Yu. Vernov, “Non-minimally coupled cosmological models with the Higgs-like potentials and negative cosmological constant,” Classical Quantum Gravity 31, 065007 (2014); arXiv:1206.2801.