A STUDY ON ABRASIVE WATER JET MACHINING USING ANOVA ON D3 TOOL STEEL

P. Sneha1, A. Chinnamahammad Bhasha2, Deepthi. T3, Arun Karthikeyan4

1,2,4Department of Mechanical Engineering, VFSTR (Deemed to Be University), Guntur, 522213, AP, India

3Department of Mechanical Engineering, VIGNAN’S LARA Institute of Technology and Science, Guntur, 522213, AP, India

https://doi.org/10.26782/jmcms.2020.07.00040

Abstract

The pressurized high-speed water flows together with the Al_2O_3 particles forms slurry used in abrasive water jet machining (AWJM) to slice specimens. This approach is particularly appropriate for fragile, soft and strident materials. D3 tool steel used as a sample size of 200 x 200 x 23 mm has excellent strength and is also suitable for high-temperature machining operations. In the present work, the 8 mm diameter hole was created using AWJM. The L27 orthogonal array experiments were conducted with crossover speeds (T_s) 80, 100 and 120 mm / min, abrasive mass flow rate (A_f) 250, 325 and 400 (g / min) and a standoff distance (Sod) of 1, 1.5 and 2 mm as processing parameters. Optimum parameters have been set from ANOVA to achieve high metal extraction. Optimum Sod, T_s, and A_f are 400 g / min, 1.5 mm and 120 mm / min. Experiment number 26 and the 27 processing parameters are the best for the D3 tool steel unit to achieve higher metal extraction.

Keywords : AWJM, D3 Tool Steel, ANOVA, cutting speed, standoff distance, Traverse speed.

I. Introduction

AWJM is a non-conventional machining technique in which pressurized high-speed water flows together with the micron size of Al_2O_3, SiC, granite particles form slurry used commonly for cutting ferrous, non-ferrous and composite samples. To optimize processing parameters widely using ANOVA with different popularized algorithms [I]. Cutting glass of various kinds of abrasive particles used as grenade, Al_2O_3, SiC during abrasive water jet practice revealed that increased hydraulic pressure, abrasive mass flow at the same time as a decrease in standoff distance and crossover rate could result in improved machining performance [II]. Composite make with FRP & CFRP after carried out AWJM to optimize the process parameters ANOVA used [III, XVI]. Characterization on parameters were performed using optimization techniques to reduce the minimum flow rate on the surfaces [IV, XIV]. Fuzzy logic technique is preferable for finding the right accuracy on following...
parameters such as mass flow rate, traverse speed and standoff distance for development of width of cut for preferable material [V, XVII]. The enhanced surface roughness can be measured and conditions of the microstructure on the surface at different locations were performed [VI]. Using different types of machining process such as single-pass and multi-pass on the given specimen, the following parameters such as standoff distance and surface roughness can be predicted to optimize the reduction of the material [VII]. The major responses are predicted using ANOVA technique to reduce the optimal condition [VIII]. By using regression technique such as Taguchi method is used to analyze the surface condition of a given composite [IX, XV]. The two different surface roughness such as rough and smooth are considered to find the optimum value by varying the different parameters such as mass flow rate, SOB and traverse speed on given material [X]. Using different types of optimization techniques, the surface roughness can be optimized [XI]. By considering different aspects, the condition of mass flow rate can be minimized and erode the material in sufficient manner is considered to fabricate the structures [XII]. To optimize the surface roughness by using taguchi analysis by considering the different parameters [XIII]. By varying the matrix composition the characteristics were determined and it can be modulated in regression analysis [XVIII].

Using Water jet machining process, the performance of surface roughness can be effective manner [XIX]. Experiments were analyzed using different types of variance methods [XX]. Fabricated aluminum hybrid composites using AWJM [XXI].

The main objective of the abrasive water jet machining is to optimize the material extraction and surface roughness of D3 Tool steel of sample size 200 x 200 x 23 mm using the Taguchi L27 orthogonal array method and ANOVA regression analysis.

II. Experimentation Work

D3 tool steel used as a sample size of 200 x 200 x 23 mm has excellent strength and is also suitable for high-temperature machining operations. Table 1. Indicates the chemical composition of D3 tool steel. In the present work, L27 orthogonal array experiments were performed with the Abrasive Water Jet Machining Setup (Machine Model S3015) seen in Fig. 1. Table 2. indicates Specifications for AWJ Machine. Three machining parameters, such as abrasive flow rate \(A_f\), standoff distance \(Sod\) and jet traverse Speed \(T_s\), are considered for experimental purposes. Table 3. displays Standard machining parameters with different levels. There are three input parameters and three ranges have been assumed for each parameter. For three reasons, three stage experiments, Taguchi specified the L27 orthogonal array for experimentation. The response obtained from the trails of the L27 array experiments was documented and further analyzed.
Table 1: Chemical composition of the work piece.

	C	Mn	Si	Cr	Ni	W	V	P	S	Cu
	2-2.35	0.6	0.6	11-13	0.3	1.0	1.0	0.03	0.03	0.25

Fig. 1: Abrasive Water Jet Machining System (Model S3015)

D3 tool steel used as a sample size of 200 x 200 x 23 mm before machining shown in Fig.2.a. The L27 array experiments were performed with 8mm hole diameter shown in Fig.2.b. The surface roughness (Rₐ) of the hole is assessed by the Talysurf SJ-201P instrument shown in the Fig.2.c. The MRR may describe the "instantaneous" removal speed as the rate at which the cross-section area of the material being removed moves through the work piece. The MRR is determined using the relationship shown in equation below.

\[MRR = h t \times d n \times V t \]

(1)
Table 2: Specifications for AWJ Machine

Item	Identification
Machine model	S3015
Intensifier	KMT – SLV 50 HP
Table size	3 x 1.5 m
Nozzle diameter	1.1 mm
Jet Impingement/Impact Angle	90°
Max. Pressure	4200 bar
Table size	3 x 1.5 m
Max. Feed	4000 mm/min
Max. Abrasive Flow Rate	700 g/min
Stand-Off Distance	More than 1 mm
Vertical Cut Height	300 mm
Abrasive type	Garnet Sand
Abrasive size	80 Mesh
Average diameter of abrasives	0.20 mm

Table 3: Cutting parameters with different levels

S.No.	Input Parameters	Levels	Units		
		1	2	3	
1.	Abrasive mass flow rate	250	325	400	g/min
2.	Standoff distance	1	1.5	2	Sod
3.	Jet traverse speed	80	100	120	mm

Fig. 2.a.: D3 tool steel before machining

Fig. 2.b.: D3 tool steel after machining

Fig. 2.c.: Measuring Ra with Talysurf SJ-201P
III. Results and Discussion

AWJM carried out on D3 tool steel using the L27 experiments tabulated in Table 4. Present analysis for the effect of control parameters on outputs. MRR and Ra are taken as output responses. Ts, Sod and A_f increase, the temperature between the electrode and work-piece increases due to MRR and Ra increases. To get maximum MRR, Transverse speeds influenced primarily lead A_f because of S/N ratio larger is the best shown in Fig.3.a. To get maximum Ra, Sod influenced primarily leads A_f S/N ratio smaller is the best shown in Fig.3.a.

![Fig. 3.a: Material removal rate (MRR): Mean of S/N ratios](image1)

![Fig. 3.b: Surface Roughness (Ra): Mean of S/N ratios](image2)

Table 4: Series of experiments performed with processing parameters along output responses presented

Trial No.	Jet traverse speed (mm/min)	Abrasive flow rate (g/min)	Standoff distance (mm)	MRR	R_a
1.	80	250	1	20.6	2.716
2.	80	250	1	20.6	2.716
3.	80	250	1	20.6	2.754
4.	80	325	1.5	21.4	3.373
5.	80	325	1.5	21.4	3.203
6.	80	325	1.5	21.4	3.353
7.	80	400	2	22.6	4.193
8.	80	400	2	22.6	3.780
9.	80	400	2	22.6	3.740
10.	100	250	1.5	23.5	3.490
11.	100	250	1.5	23.5	2.963
III.i. Evaluation of MRR

The surface plot for the output response MRR of the steel tool D3 along the y axis, process parameters Af and sod on the horizontal plane as shown in Fig.1. In the surface graph, the MRR increased by 9 percent due to the increase in Af and Sod. Af dominant variable led by Sod on the MRR.

Fig. 4.a: Surface plot of MRR, Af and Sod on steel machine

Fig. 4.b.: Surface plot of MRR, Ts and Sod on steel machine tool D3 tool D3.

Ts and sod combined effect of the MRR shown in Fig.2. The surface plot for the output response MRR of the steel tool D3 along the y axis, the process parameters
T and sod on the horizontal axis shown in Fig.1. In the surface graph, MRR increased by 27.30 per cent due to increases in Ts. Ts primary element led by Sod on the MRR.

Fig. 4.c.: Surface plot of MRR, Af and Ts on steel machine tool D3.

Ts and Af combined influence on the MRR shown in Fig.3. The surface plot for production response MRR of the steel tool D3 along the vertical axis, process parameters Ts and Af on the horizontal axis shown in Fig.1. In the surface plot MRR increased by 37.50% because of increases of Ts and Af. Ts dominant factor followed by Af on MRR. The equation of regression for MRR given below.

\[
\text{MRR} = 5.889 + 0.13750 \, \text{T}_s + 0.013556 \, \text{A}_f + 0.267 \, \text{Sod} \quad (2)
\]

III.ii. Evaluation of Ra

Fig.5.a.Indicates R_a influenced by A_f and Sod
Fig. 5.b.: Indicates Ra influenced by Ts influenced by Ts and Sod

Fig. 5.c.: Indicates Ra and Sod

The dominant element A_f led by Sod on R_a is shown in Fig. 5.a. R_a started at 2.766μm and increased by 33 percent. Sod had a minor impact on R_a. The dominant variable T_s followed by Sod on R_a shown in Fig. 5.b. Sod has a minor impact on the R_a. T_s impact factor followed by A_f on R_a shown in Fig. 5.c. R_a has risen by 50.25%. T_s and A_f had a great influence on R_a. Table.5 indicates lead cutting factors are presented through ANOVA for MRR. The transverse speed itself contributes almost 87.51% whereas A_f and Sod contributes 11.85% and 0.31%. Table.6 indicates lead cutting factors are presented through ANOVA for R_a. The transverse speed itself contributes almost 31.57% whereas A_f and Sod contributes 63.84% and 4.13%. R_a affected by A_f. The equation of regression for R_a given below.

$$R_a = -1.743 + 0.02507 T_s + 0.008781 A_f + 0.211 Sod$$ \hspace{1cm} (3)

Table 5: Presence of Analysis of variance for MRR

Source	DF	Seq SS	Contribution	Adj SS	Adj MS
T_s	2	137.527	87.58%	137.527	68.7633
A_f	2	18.607	11.85%	18.607	457.54
Sod	2	0.487	0.31%	0.487	11.97
Error	20	0.407	0.26%	0.407	0.407
Lack-Of-Fit	2	0.407	0.26%	0.407	0.407
Pure Error	18	0.000	0.00%	0.000	0.000
Total	26	157.02	100.00%		

R-sq = 99.74%; R-sq(adj)= 99.66%; R-sq(pred)= 99.53%
Table 6: Presence of Analysis of variance for R_a

Source	DF	Seq SS	Contribution	Adj SS	Adj MS
Ts	2	4.5671	31.57%	2.2835	68.763
Af	2	9.2368	63.84%	4.6184	457.54
Sod	2	0.5981	4.13%	0.2990	11.97
Error	20	0.0656	0.45%	0.0032	
Lack-Of-Fit	2	0.407	0.26%	0.0020	
Pure Error	18	0.0614	0.03%	0.0034	
Total	26	14.467	100.00%		

R-sq = 99.55%; R-sq(adj)= 99.41%; R-sq(pred)= 99.17%

IV. Conclusion

AWJM is performed using L27 set, which displays output responses such as material extraction and surface roughness with different system parameters such a Jet traverse speed, Abrasive flow rate and standoff range.

- Jet traverse speed has the greatest impact on the level of material removal; abrasive flow rate has the strongest effect on surface roughness.
- For material removal and surface roughness regression equations are created.
- The transverse speed contributes almost 31.57% while A_f and Sod contribute 63.84% and 4.13%. R_a has been affected by A_f.
- R_a has risen by 50.25%. Ts and Af had a great influence on R_a.

Copyright reserved © J. Mech. Cont.& Math. Sci.
P. Sneha et al
References

I Geethapriyan T., Manoj Samson R., Arun Raj A.C., Senkathi S., Gunasekar C. (2019) Parametric Optimization of Abrasive Water jet Machining Process on Inconel 600 Using Two Different Abrasive Grain Sizes. In: Vijay Sekar K., Gupta M., Arockiarajan A. (eds) Advances in Manufacturing Processes. Lecture Notes in Mechanical Engineering. Springer, Singapore.

II K. Balamurugan, M. Uthayakumar, S. Gowthamam, R. Pandurangan, “A study on the compressive residual stress due to water jet cavitation peening”, Engineering Failure Analysis, (2018).

III Rishi Pahuja, M. Ramulu, Mohamed Hashish,” Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks” Composites Part B 175(2019).

IV Ketan Verma, Anandakrishnan V., Sathish S. “Modelling and analysis of abrasive water jet machining of AA2014 alloy with Al₂O₃ abrasive using fuzzy logic” Material Today: Proceedings (2019).

V M Douiri, M Boujelbene, E Bayrakta, “A Study of the Surface Integrity of Titanium Alloy Ti-6Al-4V in the Abrasive Water Jet Machining Process” Mechanics of Composite (2019) Springer.

VI Deepak Doreswamy, Akash V, Natt Winitthumkul, Anjaiah Devineni “ Machining of D2 heat treated steel using Abrasive water jet: The effect of standoff distance and feed rate on kerf width and surface roughness” International Journal of Research in Engineering and Technology (2014).

VII D. Sidda Reddy, A. Seshu Kumar, M. Sreenivasa Rao, “ Parametric optimization of Abrasive water jet machining of Inconel 800H using Taguchi Methodology” Universal Journal of Mechanical Engineering (2014) 158-162.

VIII P. Shanmugasundaram,” Influence of abrasive water jet machining parameters on the surface roughness of eutectic Al-Si alloy- graphite composites” Journal of materials physics and mechanics19 (2014) 1-8.

IX Derzija Begic Hajdarevic, Ahmet Cekic, Muhamed Mehtedovic, Almina Djelmic,”Experimental study on surface roughness in abrasive water jet cutting” Proceeding Engineering (2015) 394-399.

X MS Rao, S Ravinder, AS Kumar, “Parametric optimization of abrasive water jet machining for Mild Steel: Taguchi Approach” International Journal of Current Engineering and Technology,“ (2014) P-ISSN 2347-5161.

XI E Azarsa, L Cinco, M Papini, “Fabricated of high aspect ratio free-standing structures using abrasive water jet micro-machining” Journal of material processing Technology (2019) Volume 275.
XII K Balamurugan, M. Uthaya Kumar, S. Sankar, U.S. Hareesh & G.K. Warrier, ”Modeling and Surface Texturing on surface roughness in machining LaPO₄-Y₂O₃ Composite” Materials and Manufacturing Processes, (2017).

XIII L Nagdeve, V Chaturvedi, J Vimal, “Implementation of Taguchi approach for optimization of abrasive water jet machining process parameters” International Journal of Instrumentation control and Automation, (2012) ISSN:2231-1890.

XIV T.P. Latchoumi, K. Balamurugan,, K. Dinesh, T.P. Ezhilarasi,”Particle Swarm Optimization approach for water jet cavitation peening” Measurement, (2019),184-189.

XV K.Balamurugan,M.Uthayakumar,S.Sankar,U.S.Hareesh,K.G.K.Warrier,” Predicting correlations in abrasive water jet cutting parameters of Lanthanum Phosphate/ Yttria composite by response surface methodology”, Measurement (2019), 309-318.

XVI Sener Karabulut, “Optimization of surface roughness and cutting force during AA7039/Al₂O₃ metal matrix composites milling using neural networks and Taguchi method”, Measurement (2015), 139-149.

XVII Pandu R. Vundavilli, M.B. Parappagoudar, S.P. Kodali, Surekha Benguluri, ”Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process”, Knowledge-Based Systems (2012), 456-464.

XVIII KSK Sasikumar, KP Arulshri, K Ponappa,“ A study on kerf characteristics of hybrid aluminum 7075 metal matrix composites machined using abrasive water jet machining technology”, Journal of Engineering Manufacture, (2016).

XIX S. Vigneshwaran, M. Uthaya Kumar, V Arumugaprabu, “Abrasive water jet machining of fiber-reinforced composite materials”, Journal of Reinforced plastics and composites, (2017).

XX John Kechagias, George Petropoulos, Nikolaos Vaxevanidis, ”Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels.” The international Journal of advanced manufacturing technology, (2012).

XXI K Balamurugan , A. chinnamahammad bhasha, Fabrication and property evaluation of Al 6061 + x% (RHA + TiC) hybrid metal matrix composite”, Sn applied science,(2019),1:997.