In this article, we present a stochastic model predictive control approach for discrete-time LTI systems subject to bounded parameteric uncertainty and potentially unbounded stochastic additive noise. The proposed scheme makes use of homothetic tubes along the prediction horizon for a robust treatment of parameteric uncertainty. Stochastic noise is handled by tightening constraints using the concept of probabilistic reachable sets (PRS), which are typically constructed offline by exploiting noise distribution information. In order to address the presence of additional parameteric uncertainty, we introduce a strategy for generating "robustified" PRS based only on the first and second moments of the noise sequence. In the case of quadratic cost functions, and under a further independent identically distributed assumption on the noise distribution, we also provide an average asymptotic performance bound for the l_2-norm of the closed-loop state. Finally, the proposed approach is demonstrated in both an illustrative example, and for a building temperature control problem.

Index Terms—Bounded parameteric uncertainty, chance constraints, stochastic model predictive control (SMPC).

I. INTRODUCTION

MODEL predictive control (MPC) has established itself as the state-of-the-art approach for high-performance control of constrained dynamical systems. In the presence of bounded uncertainty, rigorous theoretical guarantees are provided by [1], considering worst-case scenarios of all uncertainties affecting the dynamics. A robust design may result, however, in overly conservative control strategies, particularly when additional information about the uncertainty is available, e.g., in the form of a distribution or a parameteric uncertainty. In this case, it can be beneficial to make use of a stochastic MPC (SMPC) approach, where constraints are imposed in probability, i.e., formulated as chance constraints for which a certain amount of violation is permitted, see e.g., [2]. This motivates the developments in this article, offering an MPC formulation that handles robustly the presence of parameteric uncertainty, which is assumed to be contained in a bounded polytopic set, and external disturbances modeled as additive noise, which have potentially unbounded, correlated distributions.

Previous results addressing multiple uncertainty sources can be found, for instance, in [3] and [4], addressing a state and input-dependent uncertainty, or in [5], [6], and [7] considering stochastic multiplicative and additive disturbances. While these results provide strong guarantees in terms of closed-loop chance constraint satisfaction and stability, these rely on the assumption of strict boundedness of all sources of uncertainty affecting the system. Under the same assumption, recent efforts have been made to improve control performance by including model learning [8], [9], [10]; parameter adaptation [11], [12]; or dual actions [13], [14].

In the presented article, we relax the boundedness assumption on the additive disturbance, while still allowing for a robust analysis in terms of closed-loop feasibility and performance guarantees in the presence of bounded parameteric uncertainty. The main idea builds on tube MPC concepts [5], [15], [16], and combines the use of homothetic tubes [11], [17] for handling parameteric uncertainties along the prediction horizon, together with probabilistic reachable sets (PRS) for tightening state and input constraints, building on results in [2], [18], [19], and [20]. We propose a procedure for “robustifying” the PRS design with respect to all parameteric uncertainties, by only assuming knowledge of the first and second moments of the noise sequence affecting the system. Feedback is introduced through the cost function (indirect feedback [19]), which at each time step is computed with respect to the latest state measurement and parameter update. The combined use of homothetic tubes, “robustified” PRS (RPRS), and indirect feedback is shown to offer strong closed-loop guarantees and recursive feasibility. Furthermore, for independent identically distributed (i.i.d.) noise sequences and quadratic cost functions, we derive an average asymptotic bound on the l_2-norm of the state.

A similar scenario, with both model and external uncertainties, has been tackled in the context of model-based safety filters [21], [22]. Differently from these results, we focus on exploiting the parameteric structure of the uncertainty, enabling an MPC formulation that simultaneously achieves high...
performance while providing theoretical guarantees. The computational complexity of the proposed overall control scheme is not affected by the RPRS computations since these are constructed offline. Furthermore, the flexibility of the proposed formulation allows for various extensions to accommodate practical specifications [23, 24] while preserving the analysis, e.g., by incorporating ideas from [25] and [26], where computational efficiency is improved at the expense of increased conservativeness by simplifying the homothetic tube online optimization.

The rest of this article is organized as follows. The receding-horizon stochastic optimal control problem for discrete-time LTI systems is introduced in Section II. The problem components are defined in Section III, with a particular focus on the RPRS construction procedure. The MPC formulation and its closed-loop analysis are detailed in Section IV. In Section V, numerical results are provided for both an illustrative example, and a building temperature control task. Finally, Section VI concludes this article.

I. Notation

Given a matrix X, $X_{i:j,m}$ defines a submatrix with elements from row i to j and columns j to m, while for a vector x, $[x]_i$ is the ith entry. $\mathbb{E}[]$ and $\text{Var}[]$ denote the expected value and the variance of a random variable, respectively. The convex hull of a set of points is denoted by $\text{co}\{}\cdot\text{\}$. $1_{n,m}$ and $\Theta_{n,m}$ denote matrices of ones and zeros of dimension $n \times m$, respectively, and I_n is the identity matrix of dimension n. The notation $x_{i:j}^k$ is used to refer to predicted quantities, where k identifies the time when the prediction is computed and i denotes the time step for which the prediction is made.

II. PROBLEM FORMULATION

We consider the control of uncertain linear time-invariant discrete-time dynamical systems modeled as

$$x_{k+1} = A(\theta)x_k + B(\theta)u_k + w_k$$

(1)

where the state is denoted by $x_k \in \mathbb{R}^n$, the input by $u_k \in \mathbb{R}^m$, and the additive stochastic disturbance by $w_k \in \mathbb{R}^n$. The system matrices depend affinely on an uncertain parameter vector $\theta \in \Theta \subseteq \mathbb{R}^p$

$$A(\theta) = A_0 + \sum_{i=1}^{p} A_i [\theta]_i$$

(2a)

$$B(\theta) = B_0 + \sum_{i=1}^{p} B_i [\theta]_i$$

(2b)

where $\Theta = \{ \theta \mid H_\theta \theta < \eta \}$, with $H_\theta \in \mathbb{R}^{q \times p}$, is assumed to contain the true unknown parameter vector θ_{true}.

We assume access to state measurements of the true system dynamics x_{k}^{true} resulting from θ_{true}, i.e.,

$$x_{k+1}^{\text{true}} = A(\theta_{\text{true}})x_k^{\text{true}} + B(\theta_{\text{true}})u_k + w_k.$$

(3)

The goal is to control the true system (3) for the duration T of a finite-horizon task, in the face of uncertainty on θ_{true} and the additive uncertainty w_k. The proposed strategy leverages the model in (1) and takes into account both parameteric uncertainty (2), and a potentially non-i.i.d. stochastic disturbance sequence $W = [w_0, \ldots, w_{T-1}]^\top \sim Q_W$, which may have unbounded support.

Assumption 1: We assume to have access to the first and second moments of Q_W.

System (3) is subject to constraints on both states and inputs. These are formulated as chance constraints that are required to be satisfied point-wise at each time-step $k \geq 0$—and not jointly for all time-steps—with a probability conditioned on the true initial state x_0^{true}, i.e.,

$$\Pr(x_k^{\text{true}} \in \mathcal{X} \mid x_0^{\text{true}}) \geq p_x, \ \Pr(u_k \in \mathcal{U} \mid x_0^{\text{true}}) \geq p_u$$

(4)

where $\mathcal{X} = \{ x \mid Fx \leq 1_{n,1}, \} \subseteq \mathbb{R}^{n \times n}$, and $\mathcal{U} = \{ u \mid Gu \leq 1_{n,1}, \} \subseteq \mathbb{R}^{n \times m}$. In addition, $p_x, p_u \geq 0$ are the assigned probability levels.

Using model (1), we formulate the control task subject to (4) as a constrained optimization problem to be solved in a receding horizon fashion. In order to obtain a tractable formulation that can handle the presence of chance constraints, we restrict the class of control policies over which we optimize to the following affine state feedback law:

$$u_k = Kx_k + v_k$$

(5)

where K satisfies the following commonly used assumption in robust MPC [11, 27].

Assumption 2: The state feedback gain $K \in \mathbb{R}^{m \times n}$ is chosen such that the closed-loop dynamics $A_{\text{CL}}(\theta) = A(\theta) + B(\theta)K$ is asymptotically stable $\forall \theta \in \Theta$, i.e., there exists a positive definite $P > 0$ such that

$$A_{\text{CL}}(\theta)^\top PA_{\text{CL}}(\theta) - P < 0, \ \ \forall \theta \in \Theta.$$

Furthermore, we define the auxiliary variables $z_k \in \mathbb{R}^n$ and $e_k \in \mathbb{R}^n$ as

$$e_k = x_k - z_k$$

(6)

with the aim of separating the effect of the two different uncertainty sources. Using (1), (5), and (6), we obtain

$$e_{k+1} + z_{k+1} = x_{k+1}$$

$$e_{k+1} + z_{k+1} = A(\theta)x_k + B(\theta)u_k + w_k$$

$$e_{k+1} + z_{k+1} = A_{\text{CL}}(\theta)z_k + A_{\text{CL}}(\theta)e_k + B(\theta)v_k + w_k$$

Finally, the dynamics of z_k and e_k can be split and defined as

$$z_{k+1} = A_{\text{CL}}(\theta)z_k + B(\theta)v_k$$

(7a)

$$e_{k+1} = A_{\text{CL}}(\theta)e_k + w_k.$$

(7b)

A similar split starting from the true dynamics (3) defines

$$z_{k+1}^{\text{true}} = A_{\text{CL}}(\theta_{\text{true}})z_k^{\text{true}} + B(\theta_{\text{true}})v_k$$

(8a)

$$e_{k+1}^{\text{true}} = A_{\text{CL}}(\theta_{\text{true}})e_k^{\text{true}} + w_k.$$

(8b)
hereafter an associated optimal control problem to be solved over a horizon $N < T$ in a receding horizon fashion

$$\min_{\{v_{i|k}, \bar{u}_{i|k}\}, \{Z_{i|k}\}_{i=0}^{N}} \mathbb{E}_{W_k} \left[\sum_{i=0}^{N-1} l_i(\bar{x}_{i|k}, \bar{u}_{i|k}) + l_f(\bar{x}_{N|k}) \right]$$

\text{s.t.} \quad \bar{x}_{i+1|k} = A(\bar{\theta}_k)\bar{x}_{i|k} + B(\bar{\theta}_k)\bar{u}_{i|k} + w_{i|k}

$$W_k = [w_{0|k}, \ldots, w_{N-1|k}]^\top \sim Q_{W_k}$$

$$Z_{i|k} \subseteq \mathcal{X} \ominus E_{k+i}$$

$$K Z_{i|k} \ominus v_{i|k} \subseteq \mathcal{U} \ominus E_{k+i}^u$$

$$Z_{N|k} \subseteq Z_f$$

$$A_{CL}(\theta) Z_{i|k} + B(\theta) v_{i|k} \subseteq Z_{i+1|k} \quad \forall \theta \in \Theta$$

$$\bar{x}_{0|k} = x_{k|k}^{\text{true}}$$

$$Z_k^{\text{true}} \subseteq Z_{0|k}.$$

The overall cost function to be optimized is computed as the sum of potentially time-varying stage costs $l_i(\cdot, \cdot), i \in [0, N - 1]$, and a terminal cost $l_f(\cdot)$. The cost is evaluated with respect to a point estimate of the uncertain parameter θ that we denote by $\bar{\theta}_k \in \Theta \forall k \geq 0$. In addition, due to the additive stochastic noise, the cost is defined as the expectation with respect to a predicted noise sequence W_k whose distribution Q_{W_k} is defined by the conditional distribution $p([w_{0|k}^T, \ldots, w_{N-1|k}^T] | [w_0^T, \ldots, w_{N-1|k}^T])$.

Assumption 3: We assume to have access to either the density function or samples of the distribution Q_{W_k} in order to compute the cost function expectation in (9a).

Problem (9) deals with the presence of parametric model uncertainty by optimizing over a sequence of bounded sets $\{Z_{i|k}\}_{i=0}^{N}$ along the prediction horizon that we refer to as nominal tube, ensuring robust containment of z_k for all $\theta \in \Theta$ (see, e.g., the tube for z_k in Fig. 2). Furthermore, we design a sequence of confidence regions E_k containing e_k^T, which we use to tighten state constraints. We refer to $\{E_k\}_{k=1}^N$ as the stochastic error tube, for which containment holds for all $\theta \in \Theta$ with a probability dictated by the distribution of the sequence W (see, e.g., the tube for e_k in Fig. 2). Similarly, we construct sets E_k^v containing in probability $e_k^v = K e_k$, which are used to tighten input constraints. The following sections provide details on how to design both the nominal tube and the confidence regions needed for state and input constraint tightening (9e) and (9f). Further clarifications are also given regarding the construction of an appropriate terminal set Z_f (9g), and the reformulation of the nominal tube containment condition (9h), such that ultimately the overall problem is recursively feasible, and guarantees closed-loop chance constraint satisfaction (4). Note that recursive feasibility also requires that condition (9j) is
guaranteed despite not having access to the true nominal system dynamics (8a).

Remark 1 (Parameter estimate update): We do not make any assumption on the learning scheme chosen to update the point estimate \(\hat{\theta}_k \). The only condition to be satisfied is containment in the bounded set \(\Theta \), which can be always guaranteed by adding a projection step to any update scheme. An example is to use a recursive least squares update [28], with added set projection.

III. TRACTABLE FORMULATION OF SMPC WITH BOUNDED PARAMETRIC UNCERTAINTY

In the following section, we provide details regarding the nominal tube, and how its structure can be exploited for reformulating the containment condition along the prediction horizon. Then, we focus on the procedure for constructing confidence regions for any noise sequence affecting the system, and for determining an appropriate constraint tightening despite the presence of parametric uncertainty. Finally, the overall SMPC problem is defined, expanding the formulation provided in (9).

A. Nominal Tube

The nominal tube predicted along a horizon of length \(N \) is defined as a sequence of sets \(Z_{i|k}, i \in [0:N] \). In order to ease computations, these sets are restricted to be translations and scalings of a given convex set \(Z \), which are typically referred to as homothetic tubes [27]

\[
Z_{i|k} = \{ s_{i|k} \} \oplus \alpha_{i|k} Z \tag{10}
\]

where \(s_{i|k} \in \mathbb{R}^n, \alpha_{i|k} \in \mathbb{R} \). By choosing the base set \(Z \) to be a polytope defined as \(\{ \bar{z} \mid H_z \bar{z} \leq \mathbf{1}_{r,1} \} = \text{co}\{ \bar{z}^1, \ldots, \bar{z}^m \} \), the containment condition (9h) can be reformulated similarly to [11] as

\[
H_z(A_{\text{CL}}(\theta)(s_{i|k} + \alpha_{i|k} \bar{z}) + B(\theta)v_{i|k} - s_{i+1|k}) - \alpha_{i+1|k} \mathbf{1}_{r,1} \leq \mathbf{0}_{r,1} \quad \forall \bar{z} \in Z, \theta \in \Theta \iff \\
H_z(A_{\text{CL}}(\theta)(s_{i|k} + \alpha_{i|k} \bar{z})^j) + B(\theta)v_{i|k} - s_{i+1|k}) - \alpha_{i+1|k} \mathbf{1}_{r,1} \leq \mathbf{0}_{r,1} \quad \forall j \in \{1, \ldots, v_1\}, \theta \in \Theta \iff \\
\max_{\theta \in \Theta} \{ H_z D_{i|k}^j \theta \} + H_z d_{i|k}^j \leq \alpha_{i+1|k} \mathbf{1}_{r,1} \quad \forall j \in \{1, \ldots, v_1\} \tag{11}
\]

where the last expression is obtained by using (2), and by introducing the following terms for all \(j \in \{1, \ldots, v_1\} \)

\[
p_{i|k}^j = s_{i|k} + \alpha_{i|k} \bar{z}^j \\
r_{i|k}^j = K(s_{i|k} + \alpha_{i|k} \bar{z}^j) + v_{i|k} \\
D_{i|k}^j = D(p_{i|k}^j, r_{i|k}^j) \\
d_{i|k}^j = (A_0 + B_0 K)(s_{i|k} + \alpha_{i|k} \bar{z}^j) + B_0 v_{i|k} - s_{i+1|k}
\]

where the function \(D(a, b) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^{n \times p} \) maps vectors \(a \) and \(b \) to a matrix whose columns are defined with respect to \(\{A_i\}_{i=1}^p \) and \(\{B_i\}_{i=1}^p \) (2), resulting in

\[
D(a, b) = [A_0 a + B_0 b, \ldots, A_p a + B_p b]. \tag{12}
\]

Finally, maximization in (11) can be cast as its corresponding dual problem, i.e., minimization with respect to the dual variables \(\{A_i^j\}_{j=1}^v \). We can therefore reformulate (9h) following a procedure similar to [11] as follows:

\[
A_i^j h_\theta + H_z d_{i|k}^j \leq \alpha_{i+1|k} \mathbf{1}_{r,1} \tag{13a} \\
H_z D_{i|k}^j = A_i^j H_\theta \tag{13b} \\
A_i^j \in \mathbb{R}_{\geq 0}^{r \times p} \tag{13c}
\]

where we include positivity conditions (13c) and Lagrangian stationarity, thus, ensuring optimality.

B. Stochastic Error Tube

The purpose of the stochastic error tube is to bound in probability \(e_k \), and consequently the true error state \(e_k^\text{true} \) at each time-step \(k \). A procedure that makes use of the first and second moments of \(e_k^\text{true} \) for constructing such confidence regions, i.e., k-step PRS, is given in [19]. Since the matrix \(A_{\text{CL}}(\theta^\text{true}) \) determining the dynamics of \(e_k^\text{true} \) is unknown in the considered setup, these sets cannot be directly constructed. The idea is to formally define a “bound” on the moments of \(e_k^\text{true} \) that can be used to construct a sequence of confidence regions, which we refer to as k-step RPRS \(E_k \), satisfying the following condition for \(k \in [1:T] \)

\[
\Pr(e_k \in E_k \mid e^0_k) \geq p \quad \forall \theta \in \Theta. \tag{14}
\]

The rest of this section is devoted to detailing a procedure for synthesizing k-step RPRS both in the case of i.i.d., and correlated noise sequences affecting the system dynamics.

Note that, given \(e^0_k = 0_{n,1} \), and \(E[W] = 0_{n,T} \), then \(E[e_k] = 0_{n,1} \forall k \geq 0 \) and \(\forall \theta \in \Theta \). Therefore, each confidence region associated with a particular value of \(\theta \) remains centered at the origin (see, e.g., [29]).

Remark 2 (Noise sequence with nonzero mean): Disturbance sequences with first moment different from zero, \(W = E[W] \), can be considered by defining a stochastic sequence \(\hat{W} = W - W \), with \(E[W] = 0_{n,T} \), and \(Var[W] = Var[W] \). Then, the sequence \(\hat{W} \) can be directly included in the dynamics (7a), and handled by the nominal tube.

In order to compute the stochastic error tube \(\{E_k\}_{k=1}^T \), the aim is to “bound” at each time-step \(k \) the marginal variance \(\{Var[e_k]\}_{k=1}^T \), corresponding to the \(n \)-dimensional block diagonal entries of \(Var[E] \in \mathbb{R}^{n^2 \times nT} \), i.e., the variance of the sequence \(E = [e^1, \ldots, e^T] \) defined as

\[
Var[E] = \overline{A_{\text{CL}}(\theta)} \text{Var}[W] \overline{A_{\text{CL}}(\theta)}^T
\]

where

\[
\overline{A_{\text{CL}}(\theta)} = \begin{bmatrix}
I_n & 0_{n,n} & \ldots & 0_{n,n} \\
A_{\text{CL}}(\theta) & I_n & \ldots & 0_{n,n} \\
A_{\text{CL}}(\theta)^2 & A_{\text{CL}}(\theta) & \ldots & 0_{n,n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{\text{CL}}(\theta)^{N-1} & A_{\text{CL}}(\theta)^{N-2} & \ldots & I_n
\end{bmatrix}
\]

Note that for each \(\theta \in \Theta \), \(Var[E] \) is a well-defined covariance matrix. We formalize a bound in terms of the Loewner order,
which minimizes the variance spread in the direction of its principal components [30], [31]. The associated optimization problem can be formulated as

\[
(\text{Var}[e_k])^{-1} = \arg \min_{X^{-1}} - \log \det X^{-1}
\]

\[
\text{s.t. } X - \text{Var}[e_k] \succeq 0 \ \forall \theta \in \Theta \tag{15b}
\]

to be solved for \(k \in [1:T]\). In the following sections, we describe reformulations of problem (15) determining the bounding sequence \(\{\text{Var}[e_k]\}_k^{T=1}\), both for i.i.d. and correlated noise sequences.

1) I.I.D. Noise Sequences: We consider the particular case

\[
\text{Var}[W] = \begin{bmatrix}
\Sigma_w & 0_{n,n} & \cdots & 0_{n,n} \\
0_{n,n} & \Sigma_w & \cdots & 0_{n,n} \\
\vdots & \vdots & \ddots & \vdots \\
0_{n,n} & 0_{n,n} & \cdots & \Sigma_w
\end{bmatrix}
\]

i.e., the only nonzero entries of \(\text{Var}[W]\) are its identical block-diagonal entries \(\Sigma_w \in \mathbb{R}^{n \times n}\). This means that the marginal variances can be iteratively computed for \(k = 1, \ldots, T\) as

\[
\text{Var}[e_{k+1}] = \text{A}_{\text{CL}}(\theta)\text{Var}[e_k]\text{A}_{\text{CL}}(\theta)^\top + \Sigma_w \ \forall \theta \in \Theta. \tag{16}
\]

Since \(e_0^{\text{true}}\) is known, we can directly infer that \(\text{Var}[e_1] = \Sigma_w\). For \(k = 2, \ldots, T\), we can use (16) in problem (15), to obtain

\[
(\text{Var}[e_{k+1}])^{-1} = \arg \min_{X^{-1}} - \log \det X^{-1}
\]

\[
\text{s.t. } X - \text{A}_{\text{CL}}(\theta)\text{Var}[e_k]\text{A}_{\text{CL}}(\theta)^\top - \Sigma_w \succeq 0
\]

\[
\forall \theta \in \Theta \tag{17}
\]

where we iteratively use the solution at time-step \(k\) to obtain the solution at \(k+1\). Since by construction \(\Sigma_w > 0\), and \(\text{Var}[e_k] \succeq 0 \ \forall k > 0\), problem (17) admits a convex reformulation following Lemma 3 in Appendix-B as

\[
(\text{Var}[e_{k+1}])^{-1} = \arg \min_{X^{-1}} - \log \det X^{-1}
\]

\[
\text{s.t. } X - \text{A}_{\text{CL}}(\theta)X^{-1}\Sigma_w X^{-1}\text{A}_{\text{CL}}(\theta)^\top - \Sigma_w \succeq 0
\]

\[
\forall j \in \{1, \ldots, v_2\} \tag{18}
\]

where \(\{\theta_j^0\}_{j=1}^{v_2}\) are the vertices of \(\Theta\).

2) Correlated Noise Sequences: For correlated noise sequences with full covariance matrix \(\text{Var}[W]\), we cannot sequentially compute the bounding matrix sequence as in the i.i.d. case. The marginal variance \(\text{Var}[e_k]\) depends on all previous time steps and therefore contains a series of nonlinear terms, i.e., powers of \(\text{A}_{\text{CL}}(\theta)\)

\[
\text{Var}[e_k] = [A_{\text{CL}}^{-1}(\theta) \times I_n] \text{Var}[W]_{1:k,n:1:n} [A_{\text{CL}}^{-1}(\theta) \times I_n]^\top
\]

which cause problem (15) to be intractable. In the following, we propose a procedure summarized in Algorithm 1 where (15) is broken down into a sequence of tractable subproblems that admit convex reformulations similar to problem (18). As for the i.i.d. case, \(\text{Var}[e_1]\) is initialized to \(\text{Var}[W]_{1,n:1:n}\). For each time-step \(k \in [2:T]\), the idea is to sequentially factorize the matrix product (19) such that at each iteration \(i \in [1:k-1]\) two subproblems, defined as \(\text{bound1}\) and \(\text{bound2}\) problems, provide tractable intermediate solutions \(\bar{Y}(i), i = 1, \ldots, k,\) with \(\bar{Y}(k)\) corresponding to the final bound \(\text{Var}[e_k]\). Further details regarding these subproblems are provided in the rest of this section. First, note that the following relation holds for each \(k \in [2:T]\):

\[
[\text{A}_{\text{CL}}^{-1}(\theta) \ A_{\text{CL}}^{-2}(\theta) \ \ldots] = [\text{A}_{\text{CL}}^{-2}(\theta) \ [\text{A}_{\text{CL}}(\theta) \ I_n] \ \ldots]
\]

and that by setting \(A_I(\theta) = [\text{A}_{\text{CL}}(\theta) \ I_n]\), we obtain the reformulation in (22) shown at the bottom of the next page, that determines the first subproblem at iteration \(i = 1, i.e.,\), the \text{bound1} problem defined as

\[
\min_{\bar{Y}(1)} - \log \det \bar{Y}(1)^{-1}
\]

\[
\text{s.t. } \bar{Y}(1) - A_I(\theta)\bar{Y}(1)_{1:2n,1:2n}A_I(\theta)^\top \succeq 0 \ \forall \theta \in \Theta \tag{20}
\]

Using \(D(1)\), we construct the matrix \(Y_1(\theta)\) defined in (22), which depends affinely on the parameter \(\theta\). Therefore, this can be again bounded as

\[
\min_{\bar{Y}(2)} - \log \det \bar{Y}(2)^{-1}
\]

\[
\text{s.t. } \bar{Y}(2) - Y_1(\theta) \succeq 0 \ \forall \theta \in \Theta \tag{21}
\]

which we refer to as the \text{bound2} problem. Matrix \(\bar{Y}(2)\) can now be used to proceed with the recursion, i.e., we again isolate a block \(A_I(\theta)\) from \([A_{\text{CL}}^{-2}(\theta) \ \ldots \ I_n]\), and solve the associated problem (20) to obtain \(D(2)\), and (21) to obtain \(\bar{Y}(3)\). This factorization is repeated for all \(i\) until we reach the final step returning \(\bar{Y}(k)\), which provides a bound for \(\text{Var}[e_k]\) [see (22)]. Note that \text{bound1} problem in (20) admits a convex reformulation, provided that the following matrix:

\[
\tilde{X}(\theta) = \text{A}_{\text{CL}}(\theta)\bar{Y}(1)_{1:n,1:n,1:2n}
\]

\[
+ \bar{Y}(1)_{n+1:2n,1:n} \text{A}_{\text{CL}}(\theta)^\top + \bar{Y}(1)_{n+1:2n,n+1:2n}
\]

is positive definite. Then, Lemma 3 in Appendix-B can be applied, and (20) becomes for each \text{bound1} problem at step \(i \in [1:k-1]\)

\[
\min_{\bar{Y}(i)} - \log \det \bar{Y}(i)^{-1}
\]

\[
\text{s.t. } [\bar{Y}(i)_{1:n,1:n,1:2n} A_{\text{CL}}(\theta)^\top \bar{Y}(i)^{-1} 0 \ (\bar{Y}(1)_{1:n,1:n,1:2n})^{-1}] \geq 0
\]

\[
\forall j \in \{1, \ldots, v_2\}. \tag{23}
\]

Finally, by pre- and post-multiplying by \(\bar{Y}(1)^{-1}(2)\) in (21), and making use of the Schur complement together with Lemma 1,
we obtain the following convex reformulation:

\[
\begin{align*}
& \min_{\bar{Y}^{-1}(2)} \ - \ \log \det \bar{Y}^{-1}(2) \\
& \text{s.t. } \begin{bmatrix} \bar{Y}^{-1}(2) & \bar{Y}^{-1}(2)Y(\theta^j) \\ Y(\theta^j)\bar{Y}^{-1}(2) & Y(\theta^j) \end{bmatrix} \succ 0 \\
& \forall j \in \{1, \ldots, v_2\}, \tag{24}
\end{align*}
\]

which is used for each bound problem at step \(i \in [1: k-1]\).

Remark 3 (Positive definiteness requirement): Satisfaction of the requirement \(\bar{X}(\theta^j) \succ 0\) for each \(i \in [1: k-1]\), \(k \geq 2\), and \(j \in \{1, \ldots, v_2\}\), needed for applying Lemma 3, will typically depend on how strong correlations are in the noise sequence \(W\) that affects the evolution of the system dynamics. Alternatively, one can compute a positive definite upper bound for \(\bar{X}(\theta^j)\), which may ultimately generate more conservative \(k\)-step RPRS. Note that a similar condition can be found in [32], referred to as correlation bound.

Remark 4 (Scalability of Algorithm 1): While all \(k\)-step RPRS are precomputed offline and, therefore, do not increase the complexity of the associated control problem, the procedure outlined in Algorithm 1 can become computationally expensive for high-dimensional systems, and for long noise sequences, as it requires to solve \(2(k-2)+1\) semidefinite programs for each time-step \(k \geq 2\). One way to improve scalability is to replace the linear matrix inequalities with diagonal dominance constraints, i.e., a sufficient condition that allows for reformulating all optimization problems involved as linear programs (see, e.g., Th. 6.1.10).

Remark 5: While in this article we do not consider parameteric uncertainty in \(B_n\), the computation of \(k\)-step RPRS can similarly address the case, in which the matrix \(B_n\) depends affinely on an uncertain parameter \(\theta\), as for the dynamics matrices in (2), since Lemma 1 can be applied.

C. Variance-Based \(k\)-Step RPRS

Once the sequence \([\text{Var}[e_1], \ldots, \text{Var}[e_T]]^T\) is available, the uncertainty of \(e_k\) at each time-step \(k\) is fully specified for all \(\theta \in \Theta\). We can then construct different types of confidence regions based on Chebychev’s bound: one option is to generate ellipsoidal \(k\)-step RPRS as

\[
E^{Ell}_k = \{e | e^\top (\text{Var}[e_k])^{-1} e \leq \hat{\rho}\}
\]

where \(\hat{\rho} = \frac{n}{1-p}\) with \(p\) being the probability level, and \(n\) is the dimension of \(e_k\). If the distribution of the error sequence is Gaussian, then we can set \(\hat{\rho} = \chi^2_n(\rho)\), i.e., the quantile function of the chi-squared distribution with \(n\) degrees of freedom. Alternatively, one can consider half-spaces

\[
E^{hh}_k = \{e | h^\top e \leq \sqrt{\hat{\rho}h^\top \text{Var}[e_k]h}\}
\]

which is a \(k\)-step RPRS of probability level \(p\) with \(\hat{\rho} = \frac{1}{1-p}\), or \(\hat{\rho} = \chi^2_n(2p-1)\) for Gaussian distributions (further details can be found in [19] and [34]).

D. Chance Constraint Reformulation

Using the stochastic error tube, we can now define a time-varying state constraint tightening \(Z_k = X \ominus E_k\), and input constraint tightening \(\mathcal{V}_k = \mathcal{U} \ominus E^b_k\). A \(k\)-step RPRS \(E^b_k\) for the

\[
\text{Algorithm 1: Marginal Variance Bound for Correlated Noise.}
\]

Require: \(A_{CL}(\theta)\), \(\text{Var}[W], \Theta\)

\[
\text{Var}[e_1] = \text{Var}[W]_{1:n,1:n}
\]

for \(k \in \{2, \ldots, T\}\) do

\[
\bar{Y}(1) = \text{Var}[W]_{1:kn,1:kn}
\]

for \(i \in \{1, \ldots, k-1\}\) do

\[
D(i) \text{ computed with bound} 1 \text{ problem in (20)}
\]

Define \(Y_i(\theta)\) as in (22)

\[
\text{if } Y_i(\theta) \neq D(i) \text{ then}
\]

\[
\bar{Y}(i+1) \text{ computed with bound} 2 \text{ problem in (21)}
\]

else if \(Y_i(\theta) == D(i)\) then

\[
\bar{Y}(i+1) = D(i)
\]

end if

return \(\text{Var}[e_k] = \bar{Y}(k)\)

end for

return \([\text{Var}[e_1] \ldots \text{Var}[e_T]]^T\)

(22)
input can be easily obtained based on the variance propagation of $e_k^i = K e_k$, and reusing the computations from the procedure outlined in Section III-B such that $\nabla \var e_k^i = K \nabla \var e_k K^\top$ for each time-step k.

Starting from the options provided in Section III-C, there are two possibilities: one, is to first generate ellipsoidal sets $\mathbf{E}_{\mathbf{K}}^{\mathbf{m,n}}(25)$, and then tighten the constraints using the support function of an ellipsoid. An alternative approach is to make use of Boole’s inequality for defining the single half-spaces $\mathbf{E}_{\mathbf{K}}^{\mathbf{m,n}}$ and $\mathbf{E}_{\mathbf{K}}^{\mathbf{m,n}}(26)$, whose intersection determines the overall polytopic k-step RPRS (see e.g., [34]). Either option provides tightened sets of the form $\mathbf{Z}_k = \{z \mid F z \leq \mathbf{1}_{n_z,1} - f_k \}$, and $\mathbf{V}_k = \{u \mid G u \leq \mathbf{1}_{n_u,1} - g_k \}$, which enable the following state and input containment conditions:

$$Z_{ij,k} \subseteq Z_{k+i} \Leftrightarrow F s_{ik} \leq \mathbf{1}_{n_z,1} - f_{k+i} - \alpha_{ij} \max_{z \in Z} F z$$

$$K Z_{ij,k} + \mathbf{V}_{ij,k} \subseteq \mathbf{V}_{k+i} \Leftrightarrow G (K s_{ij} + v_{ij}) \leq \mathbf{1}_{n_z,1} - g_{k+i} - \alpha_{ij} \max_{z \in Z} G K z$$

where we define $f = \max_{z \in Z} F z$, and $g = \max_{z \in Z} G K z$.

Remark 6 (Nonconservative constraint tightening): Since constraint tightening guarantees should ideally hold jointly for the entire \mathcal{X} and \mathcal{U}, either approach for generating k-step RPRS presented above can introduce conservatism. However, in case either the state constraints are aligned with the nominal tube $\mathbf{Z}_{ij,k}$, or the input constraints are aligned with $K \mathbf{Z}_{ij,k}$, due to the particular choice of the base set \mathbf{Z}, one can construct—for either state or input—a nonconservative tightening for each half-space independently (see e.g., [19]).

E. Final Problem

Before stating the final MPC problem, we provide conditions for an appropriate terminal set design analogously to [11, 27].

Assumption 4 (Terminal set for nominal tube): There exists a nonempty terminal set $\mathbf{Z}_f = \{(s, \alpha) \in \mathbb{R}^{n_\alpha+1} \mid H_T s + s + \alpha \leq \mathbf{1}_{n_j,1} \}$, with $s + \alpha \mathbf{Z} \subseteq \mathcal{Z}_\infty = \bigcap_{k=1}^\infty \mathbf{Z}_k \forall (s, \alpha) \in \mathbf{Z}_f$, that is robustly invariant for the set dynamics $(9h)$ under the zero terminal control law contained in $\mathcal{V}_\infty = \bigcap_{k=1}^\infty \mathcal{V}_k$, i.e., we have $\forall \vartheta \in \Theta$

$$(s, \alpha) \in \mathbf{Z}_f \Rightarrow \exists (s^+, \alpha^+) \in \mathbf{Z}_f \text{s.t.}$$

$$A_{C_\ell}(\vartheta)(\{s\} \oplus \alpha \mathbf{Z}) \subseteq \{s^+\} \oplus \alpha^+ \mathbf{Z}.$$}

Introducing the components derived in sections III-A, III-B, and III-D in problem (9), and following Assumption 4, we state the overall problem to be solved in a receding horizon fashion, assuming to start from a known initial condition, i.e., $x^\text{true}_0 = \tilde{x}_0$, $\tilde{s}_0 = 0$, and $\alpha_{0\alpha} = 0$

$$W_k = [w^\top_{0|k}, \ldots, w^\top_{N-1|k}] \sim Q W_k$$

$$\begin{align}
F s_{ik} & \leq \mathbf{1}_{n_z,1} - f_{k+i} - \alpha_{ij} f_i \\
G (K s_{ij} + v_{ij}) & \leq \mathbf{1}_{n_z,1} - g_{k+i} - \alpha_{ij} g_i \\
H_T s_{N|k} & \leq \mathbf{1}_{n_j,1} - \alpha_{ij} H_T \\
\Lambda^j_{ij} h_{ij} + H z d_{ij}^1 - \alpha_{i+1} 1_{r,1} & \leq 0, \quad j = 1, \ldots, v_1 \\
\Lambda^j_{ij} h_{ij} - H z d_{ij}^1 - \alpha_{i} 1_{r,1} & \leq 0, \quad j = 1, \ldots, v_1 \\
\alpha_{i+1} & \geq 0
\end{align}$$

where we optimize over the internal sequence $v = \{v_0, \ldots, v_{N-1|k}\}$, and the variables determining the nominal tube $\mathbf{Z}_{ij,k}$, i.e., $s = \{s_{1|k}, \ldots, s_{N|k}\}$, and $\alpha = \{\alpha_{1\alpha}, \ldots, \alpha_{N\alpha}\}$. In addition, we optimize over the dual variables $\Lambda = \{\Lambda^j_{ij}, \ldots, \Lambda^j_{N-1|k}\}$ needed for nominal tube containment $(9h)$, which is expressed by constraints $(27h)-(27j)$ (see Section III-A). The cost function expectation $(27a)$ is taken with respect to a predicted noise sequence W_k, whose distribution $Q W_k$ is defined by the conditional distribution $p((w_{0|k}, \ldots, w_{N-1|k})^\top | (w_{0|k}, \ldots, w_{k-1|k})^\top)$ (see Assumption 3). Conditions $(9c)$ and $(9f)$ are expressed via $(27e)$ and $(27f)$, ensuring that the sequences s and α are constrained to lie within the tightened state and input constraints. At each time step the first element of the sequence is initialized at the shifted solution from the previously optimized predicted trajectory $(27f)$. This ensures that initial containment of the true unknown nominal state \tilde{x}_0 in $(9j)$ is always guaranteed by construction. The measured state x^true_k only enters constraints $(27b)$ and $(27c)$, which are the predicted state and input sequences computed with the current parameter estimate $\tilde{\theta}_k$ at time k used to evaluate the cost function along the horizon, and therefore, introduce indirect feedback in the MPC optimization problem [19]. Condition $(27g)$ implies containment in the terminal set see $(9g)$ satisfying Assumption 4. Finally, the nonnegativity constraint in $(27k)$ guarantees a sequence of well-defined sets determining the nominal tube.

Note that the computational complexity of the proposed formulation is similar to [11] since the RPRS computations are all carried out offline. While the choice of homothetic tubes increases the number of optimization variables with respect to [19], the proposed approach can handle the presence of model mismatch and therefore guarantees constraints to be fulfilled within the prescribed probability level.

IV. ANALYSIS OF CLOSED-LOOP PROPERTIES

The theorems presented in this section establish recursive feasibility of the control scheme based on (27), and closed-loop chance constraint satisfaction of the true unknown system thanks to a combined use of homothetic tubes for handling parameter uncertainty and of indirect feedback. Furthermore, we derive
an average asymptotic performance bound on the l2-norm of the state in the case of quadratic cost functions and i.i.d. noise sequences.

A. Recursive Feasibility and Closed-Loop Properties

Theorem 1 (Recursive feasibility and closed-loop chance constraint satisfaction): Consider system (1) under the control law (5) using the optimal input sequence v^* resulting from (27). If Assumptions 2 and 4 hold, $\theta_{\text{true}} \in \Theta$, and the optimization problem (27) is feasible for $x_0 = x_{\text{true}} = x_0$, then

1) problem (27) is recursively feasible;
2) the true state x_k and input u_k satisfy the closed-loop chance constraints (4).

Proof:

1) Let $v^* = \{v_{0k}, \ldots, v_{N-1k}\}$ be the optimal solution of optimization problem (27) at step-time k, with $s^* = \{s_{0k}, \ldots, s_{N-1k}\}$ and $\alpha^* = \{\alpha_{0k}, \ldots, \alpha_{N-1k}\}$ satisfying stage-wise constraints (27e) and (27f), nominal state constraint (27h)–(27j), and terminal condition (27g).

We can construct the following admissible nominal state $\hat{v} = \{\hat{v}_{0k}, \ldots, \hat{v}_{N-1k}\}$, which similarly satisfies stage-wise and terminal constraints for the next time-step $k + 1$. We choose the following candidate solution by shifting v^*, and applying the terminal admissible control input $\hat{v}_{N-1k+1} = 0$, obtaining $\hat{x} = \{\hat{x}_{0k}, \ldots, \hat{x}_{N-1k}\}$, with the resulting candidate state at time-step $k + 1$ is admissible since the first $N - 1$ steps are the shifted solution $\{s_{0k}^\ast\} \oplus \alpha_{0k}^\ast Z_i$, $i = 0, \ldots, N$, and the Nth step $A_{CL}(\{s_{Nk}^\ast\} \oplus \alpha_{Nk}^\ast Z_i)$ satisfies constraint (27g) due to Assumption 4.

2) Due to probabilistic containment ensured by the sets in the stochastic error tube, we have that $Pr(\varepsilon_k \in E_k | e_{\text{true}} \geq p_k \vee \theta \in \Theta | k \in [1 : T])$, and therefore, this condition holds also for the true error state e_{true}, which is bounded with respect to the unknown true parameter θ_{true}. Then, due to feasibility of problem (27), the nominal state tube Z_{0k} contains the true nominal state x_{true}, i.e., $z_{\text{true}} \in Z_{0k} \subseteq \mathcal{X} \ominus E_k$, and therefore, the true state $x_{\text{true}} = e_{\text{true}} + z_{\text{true}}$ satisfies $Pr(x_{\text{true}} \in \mathcal{X} | x_{\text{true}} \geq p_k)$. The same result can be derived for the input.

B. Average Asymptotic Cost Bound

We now consider the particular case in which the cost function (27a) is quadratic, i.e.,

$$l_k(x, u) = ||x||_Q^2 + ||u||_R^2$$
$$l_f(x) = ||x||_P^2$$

where $Q \succeq 0$, $R \succ 0$, and P satisfies the following condition:

$$A_{CL}(\theta)^\top P A_{CL}(\theta) - P \preceq -Q - K^\top RK \vee \theta \in \Theta.$$ (28a)

Furthermore, we assume that the system is affected by zero-mean i.i.d. noise sequences, i.e., $E[w_k] = 0$, $\text{Var}[w_k] = \Sigma_w \forall k \geq 0$, and therefore, the expected value of the overall objective can be explicitly computed in closed form. This enables an analysis of the closed-loop true state x_k in terms of its l2-norm, which reflects its energy, and for which we provide an average performance asymptotic bound.

Theorem 2 (Average asymptotic l2-norm bound): Consider system (1) subject to i.i.d. disturbances under the control law (5), resulting from problem (27) using cost function (28) and (29).

There exist constants $c_0, c_1 \in \mathbb{R}_{> 0}$ such that for given $\epsilon_0, \epsilon_1 \in \mathbb{R}$

$$\lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{k=0}^{T} ||x_k||_2^2 \right] \leq \frac{(1 + 1/\epsilon_1) (1 + 1/\epsilon_0)}{\mu} ||\Delta \theta_{\text{max}}||_2^2 + tr(\Sigma)$$

where $1/\epsilon_0 > \sup_{(z, K, z + v) \in \mathcal{Z}_T \times \mathcal{Y}_T} ||D(z, K, z + v)||_2^2$, with $D(\cdot, \cdot)$ defined in (12), and $\Delta \theta_{\text{max}}$ is the diameter of the set Θ. The term Σ is defined as $\Sigma = P \Sigma_w + \epsilon_0 \Sigma_0 + (1 + 1/\epsilon_1) \Sigma_1$, where $P \Sigma_w$ is the cost incurred under no model mismatch. Conversely, $\Sigma_0, \Sigma_1 \geq 0$ arise due to parameter uncertainty and are functions of the variance matrix Σ_w [see (33) and (34) in the Appendix for definitions]. Finally, $\lambda_{\text{min}}(\Sigma)$ denotes the maximum eigenvalue of $\Sigma = Q + K R K^\top$, and c_0 is chosen such that $\lambda_{\text{min}}(\Sigma) - c_0 > 0$, while c_1 can be chosen to be arbitrarily small.

Proof: Proof details are given in Appendix-A.

The two terms in the performance bound provide an explicit characterization of the unavoidable cost incurred due to model mismatch, and due to the presence of stochastic noise.

Remark 7 (Case with no model mismatch): The development in Appendix-A shows that in the absence of model mismatch, we recover the same expected cost decrease bound shown in [19]. As a consequence, we also obtain the same average asymptotic cost bound with cost matrices (28).

Remark 8 (Effect of parameter learning scheme): Note that in the proof details in Appendix-A, we construct based on the properties of Θ a worst-case bound for the term

$$\lim_{T \to \infty} \frac{1}{T} \sum_{k=0}^{T} ||\theta_{\text{true}} - \hat{\theta}_k||_2^2.$$ (29a)

In doing so, we do not leverage the properties of the learning scheme chosen to update the point estimate of θ that can potentially provide conditions for convergence, and therefore, improve the performance bound.

V. NUMERICAL RESULTS

A. Illustrative Example

We first make use of an illustrative example for demonstrating the properties of the presented control approach. The considered model is of the form

$$x_{k+1} = A x_k + B (\theta) u_k + w_k$$ (30a)

where $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Uncertainty affects only the input matrix, i.e., we consider the case of misspecified actuator gains.
where $B = B_0 + \theta B_1$, and $B_0 = B_1 = [0.5 \ 1]^T$. The additive stochastic disturbance affecting the system is i.i.d. Gaussian distributed as $w_k \sim \mathcal{N}(0, \begin{bmatrix} 0.3 & 0.5 \\ 0.5 & 1 \end{bmatrix})$. We study the behavior of our proposed approach in terms of constraint violation by varying both the level of chance constraint satisfaction and the amount of model mismatch. The system is subject to state chance constraints on the second dimension $Pr(\{x_k \leq 3\}) \geq p_x$, such that the probability level p_x belongs to the set $\{0.85, 0.9, 0.95\}$. The model mismatch is bounded and contained in the interval $\Theta_{\alpha} := [-\alpha, 0]$, where $\alpha \in \{0.04, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4\}$ is a parameter, which we use to vary the magnitude of the considered model mismatch.

The associated MPC problem in (27) is solved in a receding horizon fashion, where we choose the prediction horizon to have length $N = 30$. The cost function is chosen to be quadratic in the state and in the input as in (28), and the weights are set as $Q = I_p$, and $R = 1$. The objective is computed by fixing the parameter estimate to $\hat{\theta}_0 = -\alpha$, while the unknown true parameter is $\theta_{true} = 0$. Constraints are tightened, by constructing k-step PRS based on marginal distributions following the procedure outlined in Section III-B1, and with respect to which we compute a polytopic terminal set as in [11], satisfying Assumption 4.

We conduct numerical simulations comparing our approach (RSMPC) with the nominal SMPC scheme in [19] that is not designed to handle the presence of a model mismatch. In this framework, we define the nominal model with respect to θ_0, and therefore as α increases so does the unaccounted amount of model mismatch. For each pair α and p_x, we run simulations for $N_s = 1000$ i.i.d. noise realizations, for a time horizon of length $T = 100$, and we compute the empirical constraint satisfaction $N_c(k)$ for each time-step $k \in [0, T]$ as

$$N_c(k) = \frac{\#(\{|x_{k,m}^c|_2 \leq 3\})}{N_s \cdot 100 \ \%}$$

i.e., the percentage of times the true simulated trajectory satisfies the constraint at time-step k divided by the total number of simulations. Then, N_c is obtained as the minimum over all time-steps $N_c = \min_{k \in [0,T]} N_c(k)$.

Fig. 3 depicts N_c against the percentage of model mismatch, defined as $100\alpha \ [%]$. Each plot shows the behavior of the proposed scheme compared with the SMPC scheme for a fixed value of p_x. We observe that as model mismatch increases, the ability of SMPC to satisfy the imposed probability level decreases until it falls below the satisfaction threshold. On the other hand, the proposed approach has similar behavior to the SMPC scheme for small mismatch and becomes slightly more conservative only for larger values of α.

In addition, we investigate the case in which we consider the system in (30) to be affected by correlated noise \tilde{w}_k that we obtain via the following linear dynamics:

$$\tilde{w}_{k+1} = A_w \tilde{w}_k + w_k$$

where w_k is i.i.d. Gaussian noise as defined for system (30), and $A_w = \begin{bmatrix} 0.3 & 0.001 \\ 0 & 0.5 \end{bmatrix}$. In Fig. 4, we show again a comparison with respect to SMPC where the k-step PRS take into account the correlation, but whose construction is again unaware of parameter uncertainty. For this example, the introduced correlation via the dynamics A_w did not introduce any further conservatism in the construction of the robustified k-step PRS, and therefore the behavior of RSMPC is similar to the i.i.d. case.

B. Building Temperature Control

Motivated by the increasing interest as an application for MPC [35], [36], the case of a building temperature control problem is considered in the following. The goal is to maintain a predefined temperature in four adjacent rooms, for which fluctuations are controlled by heating/cooling units and vary according to the interaction between rooms and the outside. The system dynamics depends on physical parameters that are often not precisely known, and therefore we conduct robustness tests with respect to parameters of interest, e.g., thermal conductance. The dynamics is also subject to the effect of the uncertain outside temperature, which we model as an additive disturbance sequence, correlated in time. The system has the following form:

$$x_{k+1} = A(\theta)x_k + Bu_k + B_w w_k$$

FIG. 3. Minimum empirical constraint satisfaction N_c computed for $N_s = 1000$ i.i.d. noise realizations, for different levels of model mismatch and imposed chance constraint probability level.

FIG. 4. Minimum empirical constraint satisfaction N_c computed for $N_s = 1000$ correlated noise realizations, for different levels of model mismatch and imposed chance constraint probability level.
where the state $x_k \in \mathbb{R}^4$ captures the room temperatures, the input $u_k \in \mathbb{R}^4$ controls each room, and the disturbance sequence representing outdoor temperature fluctuations $W = [w_1, \ldots, w_p] \sim \mathcal{N}(\mu_W, \Sigma_W)$ is Gaussian distributed. Following Remark 2, we split it into a deterministic sequence $\overline{W} = \mu_W$, and a zero-mean stochastic sequence $\tilde{W} = W - \overline{W}$. Model uncertainty is represented by the parameter $\theta = [\theta_1, \theta_2]^T \in \Theta_{\text{nom}} \subseteq \mathbb{R}^2$, with $\Theta_{\text{nom}} = \{ \theta \mid ||\theta||_{\infty} \leq 1 \}$. By considering an error on the thermal conductance between rooms 1 and 2, and 1 and 3, uncertainty only affects matrix A, while B and B_w are assumed to be known. Therefore, we have that $A(\theta) = A_0 + \theta_1 A_1 + \theta_2 A_2$, where A_0 is the nominal matrix, and A_1 and A_2 are computed by perturbing A_0 by $\pm 10\%$. Nominal matrices A_0, B, and B_w are defined as in [19].

We choose the temperature to be tracked as $T_{\text{ref}} = 21^\circ$ for each room, and define the cost function as $l(x, u) = ||x - T_{\text{ref}} 1.4 I||_2^2 + ||u||_1$, where $Q = 50 I_4$. The system is subject to the following state chance constraints for dimensions $\{j\}_{j=1}^4$:

$$
\Pr(||x_j||_2 \geq 20) \geq p_x, \quad \Pr(||x_j||_2 \leq 22) \geq p_x
$$

where $p_x = 0.9$. By choosing base set \mathcal{Z} aligned with the state constraints, we can design a nonconservative constraint tightening by constructing a half-space k-step RPRS for each dimension $j = 1, \ldots, 4$ at probability level p_x (see Remark 6). The system is also subject to input chance constraints for dimensions $j = 1, \ldots, 4$

$$
\Pr(||u_j||_2 \geq 4.5 kW) \geq p_u, \quad \Pr(||u_j||_2 \leq 4.5 kW) \geq p_u
$$

where $p_u = 0.99$. In this case, the half-space input constraint tightening of probability level p_u will determine, according to Boole’s inequality, a joint chance constraint satisfaction level of at least 0.96. Furthermore, the polytopic terminal set is computed with respect to the tightened state and input constraints similar to the illustrative example in Section V-A.

Simulations depicted in Figs. 5 and 6 are carried out over a period of $T = 29$ h, for which we show the closed-loop behavior and the prediction at the last time-step. We average results over 10 000 outdoor temperature sequence realizations that are shown in terms of mean and two standard deviations in the top subplot of Fig. 5. A similar representation of the state corresponding to room 4 and the input is given in the two subplots in the following, where the 100%-quantiles contain all closed-loop and predicted trajectories. Constraint violations are visible particularly when the input action tries to counteract low outdoor temperature fluctuations. We compute the minimum empirical constraint satisfaction out of the 10 000 simulation scenarios and obtain 91.01% for the closed-loop state and 100% for the closed-loop input, falling close to the predefined levels p_x and p_u. In Fig. 6 we observe the behavior of the state and input nominal tube boundaries corresponding to room 4, for which we plot the median behavior and the 100%-quantiles to show that for all simulated noise realizations, the tightened constraints are always satisfied. The closed-loop nominal tube boundaries are in median nonconservative and tend to grow in prediction when approaching the terminal set, which is constructed to guarantee containment of the reference temperature.

Finally, we provide a study of the behavior of the RSMPC scheme in terms of closed-loop cost for different combinations of parameter uncertainty and of probability level of chance constraint satisfaction. In Fig. 7, we depict the percentage of cost increase with respect to a nominal SMPC scheme simulated with no model mismatch. For each pair of $\alpha \Theta_{\text{rooms}}, \alpha \in \{0.2, 0.6, 1\}$ and $p_x = p_u \in \{0.8, 0.85, 0.9, 0.92, 0.95, 0.97\}$, we show mean and two standard deviations computed with respect to 1000 simulations. While the influence of parameter uncertainty is particularly noticeable for large values of α, the relative cost increase is generally very small.

![Image](image-url)
The combined effect of parametric uncertainty and additive noise

![Graph showing the combined effect of parametric uncertainty and additive noise.](image-url)

Fig. 7. Percentage of overall closed-loop cost increase expressed in terms of mean and two standard deviations computed over 1000 outdoor temperature realizations for each pair of α and p_0. The graph shows how the cost changes with varying values of α and p_0.**

VI. CONCLUSION

A model predictive control scheme for the control of systems affected by bounded parameteric uncertainty and additive stochastic noise—with potentially unbounded support—was presented in this article. The effects of the sources of uncertainty are separated by splitting the dynamics into two components: the first is only affected by bounded parameteric uncertainty, dealt with by constructing a homothetic tube along the MPC prediction horizon, which we refer to as the nominal tube. The second evolves autonomously with uncertain dynamics and is perturbed by additive stochastic noise that is handled by means of the stochastic error tube, i.e., a sequence of k-step RPRS for which we present a synthesis procedure both for i.i.d. and correlated noise sequences. The tubes, and the additional use of indirect feedback, provide recursive feasibility and closed-loop chance constraint satisfaction of the proposed control scheme while allowing for using point-wise estimate updates of the uncertain parameters to compute the cost function. Potential future research involves a formal integration of an online learning scheme while maintaining probabilistic constraint satisfaction guarantees. Finally, we compute a bound for the average asymptotic l_2-norm of the state, under the assumption of i.i.d. additive noise sequences affecting the system, and quadratic cost functions. Results are demonstrated on both an illustrative example, and on a building temperature control problem.

APPENDIX

A. PROOF OF THEOREM 2

In the following, a performance analysis of the l_2-norm of the closed-loop state x_k^{true} is carried out by means of an asymptotic analysis of its average behavior. The idea is to first quantify the expected cost difference between two consecutive time steps k and $k+1$ by providing a bound in expectation, which in turn is used to show that the average asymptotic l_2-norm is bounded.

We assume that at time-step $k+1$ the system evolves under a shifted sequence $\tilde{V} = \{\tilde{v}_0, \ldots, \tilde{v}_{N-1}\} = \{\tilde{v}_0, \ldots, \tilde{v}_{N-1}, 0\}$, where $\{\tilde{v}_i\}_{i=0}^{N-1}$ is the optimal control sequence at time-step k, obtained by solving problem (27). We then define the predicted state sequence at time k as $\{\tilde{x}_0, \ldots, \tilde{x}_N\}$, and at time $k+1$ as $\{\bar{x}_0, \ldots, \bar{x}_N\}$, evolving under \bar{V}. Furthermore, it holds that $u_k = \bar{d}_0\tilde{u}_0$, i.e., the closed and open-loop disturbance realizations are drawn from the same distribution, therefore

$$
\bar{x}_0 = \tilde{x}_0 + (A(\theta^{\text{true}}) - A(\bar{\theta}))\tilde{x}_k^{\text{true}} + (B(\theta^{\text{true}}) - B(\bar{\theta}))\bar{u}_k^{\text{true}} = \tilde{x}_0 + \bar{d}_x \tilde{x}_1.
$$

The predicted states sequences at, respectively, time-step k and $k+1$ have the following relation for $i = 0, \ldots, N-1$:

$$
\tilde{x}_i = \tilde{x}_{i+1} + \delta \bar{x}_i
$$

and at the last predicted time-step $i = N$ we have $\tilde{x}_N = d_{\bar{}\theta} \tilde{x}_N + \bar{\delta}_N$. The terms $\{\delta \bar{x}_i\}_{i=0}^N$ represent the cumulated prediction error due to model mismatch, and evolve according to the following dynamics:

$$
\delta \bar{x}_0 = \delta \tilde{x}_k
$$

$$
\delta \bar{x}_{i+1} = A_{CL}(\bar{\theta}_{k+1})\delta \tilde{x}_i + (A_{CL}(\bar{\theta}_{k+1}) - A_{CL}(\tilde{\theta}_k))\tilde{x}_{i+1} + (B(\bar{\theta}_{k+1}) - B(\tilde{\theta}_k))\tilde{u}_i + \bar{\delta}.
$$

In the following, a performance analysis of the l_2-norm of the state, under the assumption of i.i.d. additive noise sequences affecting the system, and quadratic cost functions. Results are demonstrated on both an illustrative example, and on a building temperature control problem.

We observe two sources of model mismatch propagated along the horizon, as the model parameters are updated from time-step k to $k+1$. The initial prediction error $\delta \tilde{x}_k$, depending on the difference between the true unknown model parameter θ^{true} and the previous estimate $\bar{\theta}_k$, and the propagation error in $\delta \bar{x}_k$, which also entails that $\delta \tilde{x}_{i+1}$ and $\delta \bar{x}_i$ are independent given the initial condition x_k^{true}, and therefore, allows for applying Lemma 2. We now analyze each term independently, starting from (1)

$$
\mathbb{E} \left[||A_{CL}(\tilde{\theta})\tilde{x}_N||^2_P + ||\tilde{x}_N||^2_Q + ||\tilde{u}_i||^2_R - ||\tilde{x}_N||^2_R \right]
$$

$$
= \mathbb{E} \left[||\tilde{x}_N||^2_{P \bar{A}_{CL}(\tilde{\theta})^\top P A_{CL}(\tilde{\theta}) + Q + K R K^\top} \right] \leq 0
$$

which holds, thanks to (29). Then, the second term (2) vanishes since we are subtracting the shifted sequence

$$
\sum_{i=0}^{N-2} ||\tilde{x}_{i+1}||^2_Q + ||\tilde{u}_{i+1}||^2_R - \sum_{i=1}^{N-1} ||\tilde{x}_i||^2_Q + ||\tilde{u}_i||^2_R = 0.
$$

For the third term (3), we can explicitly evaluate the expected value since x_k and u_k are given and the disturbance distribution is known

$$
\mathbb{E} \left[-||x_k^{\text{true}}||^2_Q - ||\bar{x}_k^{\text{true}}||^2_Q + ||\bar{u}_N||^2_P \right] = \text{tr}(P \Sigma_w - ||x_k^{\text{true}}||^2_Q - ||\bar{u}_k^{\text{true}}||^2_P).
$$

The last two terms are costs incurred due to the presence of a model mismatch. The expected value of the quadratic form (4)
is explicitly evaluated

\[
\mathbb{E} \left[\| A_{\text{CL}}(\hat{\theta}) \hat{x}_N \|_P^2 + \sum_{i=0}^{N-1} \| \hat{x}_{i+1} \|_Q^2 + \| \hat{u}_{i+1} \|_R^2 \right] \\
= \mathbb{E} \left[\| \hat{x}_N \|_P^2 + \| \hat{x}_N \|_Q^2 + \sum_{i=1}^{N-1} \| \hat{x}_i \|_Q^2 + \| \hat{u}_i \|_R^2 \right] \\
\leq \| \mathbb{E} \| \hat{x}_N \|_P^2 + \sum_{i=1}^{N-1} \| \mathbb{E} [x_i] \|_Q^2 + \| \mathbb{E} [u_i] \|_R^2 \\
+ \text{tr}(P \text{Var}(\hat{x}_N)) + \sum_{i=1}^{N-1} \text{tr}(Q \text{Var}(\hat{x}_i)) + \text{tr}(R \text{Var}(\hat{u}_i)) \\
\leq c_0 \| x_{\text{true}} \|_P^2 + \text{tr}(P \Sigma_{\text{true}}^N) + \text{tr} \left(R K \sum_{i=1}^{N-1} \Sigma_{\text{true}}^i K^T \right) \\
= c_0 \| x_{\text{true}} \|_P^2 + \text{tr}(\Sigma_0)
\]

where the first inequality uses \(\hat{P} \leq 0 \). The second inequality uses the same argument used in [11], i.e., the cost associated with the expected values of the predicted states is a continuous, piecewise quadratic function in \(x_0 \forall \theta \in \Theta \) [37]. Therefore, it can be upper bounded with a quadratic function of the initial condition for some \(c_0 > 0 \). The variances can be expressed exactly as a function of \(\Sigma_{\text{true}} = \sum_{i=0}^{t-1} A_{\text{CL}}(\hat{\theta}_k)^T \Sigma_{\text{true}} A_{\text{CL}}(\hat{\theta}_k)^T \), and we define

\[
\Sigma_0 = P \Sigma_{\text{true}}^N + Q \sum_{i=1}^{N-1} \Sigma_{\text{true}}^i + RK \sum_{i=1}^{N-1} \Sigma_{\text{true}}^i K^T.
\]

We then obtain a bound for (5)

\[
\mathbb{E} \left[\| \delta \hat{x}_N \|_P^2 + \sum_{i=0}^{N-1} \| \delta \hat{x}_i \|_Q^2 \right] = \| \mathbb{E} [\delta \hat{x}_N] \|_P^2 + \sum_{i=0}^{N-1} \| \mathbb{E} [\delta \hat{x}_i] \|_Q^2 \\
+ \text{tr}(P \text{Var}(\delta \hat{x}_N)) + \sum_{i=0}^{N-1} \text{tr}(Q \text{Var}(\delta \hat{x}_i)) \\
\leq c_1 \| \delta \hat{x}_N \|_P^2 + \text{tr}(P \Sigma_{\text{true}}^N) + \sum_{i=0}^{N-1} \text{tr}(Q \Sigma_{\text{true}}^i) \\
= c_1 \| \delta \hat{x}_N \|_P^2 + \text{tr}(\bar{Q} \sum_{i=0}^{N-1} \Sigma_{\text{true}}^i) \\
= c_1 \| \delta \hat{x}_N \|_P^2 + \text{tr}(\Sigma_1)
\]

where again we make use of the bound on the cost of the expected values of \(\delta \hat{x}_i \), which is a function of the initial condition \(\hat{x}_N \) (31a). The variances can be expressed as a function of \(\Sigma_{\text{true}} \), and therefore depend on the known noise variance \(\Sigma_{\text{true}} \), resulting in the following relation: \(\Sigma_{\text{true}} = \sum_{i=1}^{\infty} A_{\text{CL}}(\hat{\theta}_k+1) \Sigma_{\text{true}} A_{\text{CL}}(\hat{\theta}_k+1) \). Finally,
we define
\[
\Sigma_1 = P_{\Sigma_w}^N + \bar{Q} \sum_{i=0}^{N-1} \bar{S}_i.
\]

(34)

Putting everything together and rearranging terms, we obtain that there exists an \(\epsilon_0 > 0 \) such that
\[
\mathbb{E} \left[J^*(x_{k+1}^{true}, \bar{\theta}_{k+1}) \mid x_k^{true} \right] - J^*(x_{k}^{true}, \bar{\theta}_k)
\leq \text{tr}(P_{\Sigma_w} - \|x_k^{true}\|_2^2 - \|v_k\|_2^2 R)
+ \epsilon_0 (c_0 \|x_k^{true}\|_2^2 + \text{tr}(\Sigma_0)) + \left(1 + \frac{1}{\epsilon_0}\right) (c_1 \|\bar{x}_k\|_2^2 + \text{tr}(\Sigma_1))
\leq - (\lambda_{\min}(\bar{Q}) - \epsilon_0 c_0) \|x_k^{true}\|_2^2 + \left(1 + \frac{1}{\epsilon_0}\right) c_1 \|\bar{x}_k\|_2^2 + \text{tr}(\Sigma)
\]

with \(\lambda_{\min}(\bar{Q}) - \epsilon_0 c_0 > 0 \). We can now proceed with an analysis of the asymptotic behavior of the \(l_2 \)-norm of \(x_k^{true} \). We start by using a standard argument in SMPC, i.e., repeatedly applying the law of iterated expectations, and using the expected cost difference bound
\[
\mathbb{E} \left[J^*(x_{T+1}^{true}, \bar{\theta}_T) \mid x_0^{true} \right] - \mathbb{E} \left[J^*(x_{0}^{true}, \bar{\theta}_0) \right]
\leq \left(\sum_{k=0}^{T} -C \|x_k^{true}\|_2^2 + \left(1 + \frac{1}{\epsilon_0}\right) c_1 \|\bar{x}_k\|_2^2 + \text{tr}(\Sigma) \right) \frac{1}{T}
\]

where \(C = (\lambda_{\min}(\bar{Q}) - \epsilon_0 c_0). \) Taking the limit for \(T \to \infty \)
\[
0 \leq \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[J^*(x_{T+1}^{true}, \bar{\theta}_T) \mid x_0^{true} \right] - \mathbb{E} \left[J^*(x_{0}^{true}, \bar{\theta}_0) \right]
\]

Then, we can derive the \(l_2 \)-norm bound on \(x_k^{true} \)
\[
\lim_{T \to \infty} \frac{1}{T} \left(\mathbb{E} \left[\sum_{k=0}^{T} \|x_k^{true}\|_2^2 \right] \right) \leq \text{tr}(\Sigma) + \left(1 + \frac{1}{\epsilon_0}\right) c_1 \|\bar{x}_k\|_2^2 + \text{tr}(\Sigma)
\]

This limit can be explicitly computed: in (35) shown at the bottom of this page, we express the state as \(x_k^{true} = z_k^{true} + \epsilon_k^{true} \), and apply Lemma 2. The split allows for bounding \(D(z_k^{true}, K z_k^{true} + v_k^{true}) \) (12) using its supremum, which exists since \(Z_\infty \), \(V_\infty \) are compact sets. We then exploit the boundedness of \(\Theta \) so that we can isolate the expected norm of the error state \(\epsilon_k^{true} \), for which we know that \(\mathbb{E}[\epsilon_k^{true} \mid x_0^{true}] = 0 \), \(\forall k \geq 0 \) due to the assumption on the additive noise and since \(\epsilon_0^{true} = 0 \). Furthermore, since \(A_{CL}(\theta^{true}) \) is Hurwitz, we know that under the i.i.d. noise distribution assumption, the variance \(\text{Var}(\epsilon_k \mid x_0^{true}) \) converges to some matrix \(\Sigma_{\infty} \) that satisfies the following Lyapunov equation \(\Sigma_{\infty} = A_{CL}(\theta^{true}) \Sigma_{\infty} A_{CL}(\theta^{true})^\top + \Sigma_w \).
B. Lemmas

Lemma 1 (Vertex property [38]): Let \(F(\theta, x) > 0 \) be an inequality of the form
\[
F(\theta, x) = F_0(\theta) + \sum_{j=0}^{m} x_j F_j(\theta) > 0
\]
where the functions \(F_j(\theta) \) are affine in \(\theta \in \Theta \) and \(\Theta \) is a convex polytope of \(r \) vertices defined as \(\Theta = \text{co}\{\theta_1, \ldots, \theta^r\} \). Then, the infinite set of LMIs \(F(\theta, x) > 0 \) holds \(\forall \theta \in \Theta \) if and only if \(F(\theta, x) > 0 \) holds at each vertex of \(\Theta \), i.e.,
\[
F(\theta, x) > 0, \forall \theta \in \Theta \iff F(\theta^i, x) > 0, i=1, \ldots, r.
\]

Lemma 2 (Fenchel-Young inequality in expectation): Consider \(x, y \) independent random variables, then for all matrices \(R=R^\top > 0 \), and \(\forall \epsilon > 0 \)
\[
\mathbb{E}[\|x+y\|^2_{R^\top}] \leq (1+\epsilon)\mathbb{E}[\|x\|^2_{R^\top}] + (1+\frac{1}{\epsilon})\mathbb{E}[\|y\|^2_{R^\top}] + \epsilon \mathbb{E}[\text{tr} (R \text{Var}(x)) + \text{tr}(R \text{Var}(y))]
\]
Proof:
\[
\mathbb{E}[\|x+y\|^2_{R^\top}] = \mathbb{E}[\|x\|^2_{R^\top} + \|y\|^2_{R^\top} + \text{tr}(R \text{Var}(x)) + \text{tr}(R \text{Var}(y))]
\]
\[
= (1+\epsilon)\mathbb{E}[\|x\|^2_{R^\top}] + (1+\frac{1}{\epsilon})\mathbb{E}[\|y\|^2_{R^\top}] + \epsilon \mathbb{E}[\text{tr}(R \text{Var}(x)) - \frac{1}{\epsilon} \text{tr}(R \text{Var}(y))]
\]
where the first inequality makes use of a combination of the Cauchy–Schwarz inequality and of Fenchel–Young’s inequality on the norm of the expected values of \(x \) and \(y \) (see [31, Section 3.3.2]). The second inequality uses the fact that for all \(X, Y \) symmetric, and positive (semi-) definite, \(\text{tr}(XY) \geq 0 \).

Lemma 3 (Convex reformulation): An optimization problem of the form
\[
\min_{X^{-1}} - \log \det X^{-1}
\]
\[
\text{s.t. } X = Z - A(\theta)Y A(\theta)^\top \succeq 0 \forall \theta \in \Theta
\]
is equivalent to the following convex reformulation:
\[
\min_{X^{-1}} - \log \det X^{-1}
\]
\[
\text{s.t. } \begin{bmatrix} X^{-1} & X^{-1}Z & X^{-1}A(\theta)^\top \\ ZX^{-1} & Z & 0 \\ A(\theta)^\top X^{-1} & 0 & Y^{-1} \end{bmatrix} \succeq 0
\]
\[
\forall j \in \{1, \ldots, r\}
\]
provided that \(Y, Z > 0 \), \(Z = Z^\top \), and \(A(\theta) \) is of the form \(A(\theta) = A_0 + \sum_{i=1}^{r} A_i [\theta]_i \), with \(\theta \in \Theta := \text{co}\{\theta_1, \ldots, \theta^r\} \).

Proof: Pre- and post-multiply the matrix inequality by \(X^{-1} \) to obtain
\[
X^{-1} - X^{-1}ZX^{-1} - X^{-1}A(\theta)Y A(\theta)^\top X^{-1} \succeq 0
\]
and use the following condition for positive semidefinite matrices based on the Schur complement, i.e., if
\[
Y > 0, \text{ then } \begin{bmatrix} X^{-1} - X^{-1}ZX^{-1} & X^{-1}A(\theta)^\top X^{-1} \\ A(\theta)^\top X^{-1} & Y^{-1} \end{bmatrix} \succeq 0
\]
\[
\iff X^{-1} - X^{-1}ZX^{-1} - X^{-1}A(\theta)Y A(\theta)^\top X^{-1} \succeq 0.
\]
Applying again the Schur complement to the first diagonal block
\[
Z > 0, X^{-1} - X^{-1}ZX^{-1} \succeq 0 \iff \begin{bmatrix} X^{-1} & X^{-1}Z & X^{-1}A(\theta) \\ ZX^{-1} & Z & 0 \\ A(\theta)^\top X^{-1} & 0 & Y^{-1} \end{bmatrix} \succeq 0 \forall \theta \in \Theta
\]
to which we can apply Lemma 1 since the linear matrix inequality is affine in \(\theta \), and \(\theta \) belongs to a convex set \(\Theta \).

Acknowledgment

The authors would like to thank Dr. Johannes Koehler for the technical discussions and for providing valuable feedback.

References

[1] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in Proc. Robustness Identification Control, 1999, pp. 207–226.

[2] A. Mesbah, “Stochastic model predictive control: An overview and perspectives for future research,” IEEE Control Syst. Mag., vol. 36, no. 6, pp. 30–44, Dec. 2016.

[3] D. M. Raimondo, D. Limon, M. Lazar, L. Magni, and E. F. N. Camacho, “Min-max model predictive control of nonlinear systems: A unifying overview on stability,” Eur. J. Control, vol. 25, no. 1, pp. 5–21, 2009.

[4] G. Pin, D. M. Raimondo, L. Magni, and T. Parisini, “Robust model predictive control of nonlinear systems with bounded and state-dependent uncertainties,” IEEE Trans. Autom. Control, vol. 54, no. 7, pp. 1681–1687, Jul. 2009.

[5] B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical, Robust and Stochastic. Berlin, Germany: Springer, 2015.

[6] M. Cannon, B. Kouvaritakis, and X. Wu, “Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty,” IEEE Trans. Autom. Control, vol. 54, no. 7, pp. 1626–1632, Jul. 2009.

[7] J. Fleming and M. Cannon, “Stochastic MPC for additive and multiplicative uncertainty using sample approximations,” IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3883–3888, Sep. 2019.

[8] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust learning-based model predictive control,” Automatica, vol. 49, no. 5, pp. 1216–1226, 2013.

[9] R. Soloperto, M. A. Müller, S. Trimpe, and F. Allgöwer, “Learning-based robust model predictive control with state-dependent uncertainty,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 442–447, 2018.
[10] J. M. Manzano, D. Limon, D. Muñoz de la Peña, and J.-P. Calliess, “Robust learning-based MPC for non-linear constrained systems,” *Automatica*, vol. 117, 2020, Art. no. 108948.

[11] M. Lorenzen, M. Cannon, and F. Allgöwer, “Robust MPC with recursive model update,” *Automatica*, vol. 103, pp. 461–471, 2019.

[12] J. Koehler, P. Kötting, R. Soloperto, F. Allgöwer, and M. Müller, “A robust adaptive model predictive control framework for nonlinear uncertain systems,” *Int. J. Robust Nonlinear Control*, vol. 31, pp. 8725–8749, 2020.

[13] A. Pari, A. Iannelli, and R. S. Smith, “An explicit dual approach for constrained reference tracking of uncertain linear systems,” *IEEE Trans. Autom. Control*, vol. 68, no. 5, pp. 2652–2666, May 2023.

[14] R. Soloperto, J. Köhler, and F. Allgöwer, “Augmenting schemes with active learning: Intuitive tuning and guaranteed performance,” *IEEE Contr. Syst. Lett.*, vol. 4, no. 3, pp. 713–718, Jul. 2020.

[15] L. Chisci, J. Rossiter, and G. Zappa, “Systems with persistent disturbances: Predictive control with restricted constraints,” *Automatica*, vol. 37, pp. 1019–1028, 2001.

[16] D. Mayne, M. Seron, and S. Raković, “Robust model predictive control of constrained linear systems with bounded disturbances,” *Automatica*, vol. 41, pp. 219–224, 2005.

[17] S. V. Raković, B. Kouvaritakis, R. Findeisen, and M. Cannon, “Homothetic tube model predictive control,” *Automatica*, vol. 48, pp. 1631–1638, 2012.

[18] M. Lorenzen, F. Dubbene, R. Tempo, and F. Allgöwer, “Constraint-tightening and stability in stochastic model predictive control,” *IEEE Trans. Autom. Control*, vol. 62, no. 7, pp. 3165–3177, Jul. 2017.

[19] L. Hewing, K. P. Wabersich, and M. N. Zeilinger, “Recursively feasible stochastic model predictive control using indirect feedback,” *Automatica*, vol. 119, 2020, Art. no. 109005.

[20] M. Lorenzen, M. A. Müller, and F. Allgöwer, “Stochastic model predictive control without terminal constraints,” *Int. J. Robust Nonlinear Control*, vol. 29, pp. 4987–5001, 2019.

[21] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, “Probabilistic model predictive safety certification for learning-based control,” *IEEE Trans. Autom. Control*, vol. 67, no. 1, pp. 176–188, Jan. 2022.

[22] A. Didier, K. P. Wabersich, and M. N. Zeilinger, “Adaptive model predictive safety certification for learning-based control,” in *Proc. IEEE 60th Conf. Decis. Control*, 2021, pp. 809–815.

[23] D. Mayne, “Robust and stochastic model predictive control: Are we going in the right direction?,” *Annu. Rev. Control*, vol. 41, pp. 184–192, 2016.

[24] M. B. Saltuk, L. Ozkan, J. H. Ludlage, S. Weiland, and P. M. Van den Hof, “An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects,” *J. Process Control*, vol. 61, pp. 77–102, 2018.

[25] J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems,” *IEEE Trans. Autom. Control*, vol. 66, no. 2, pp. 794–801, Feb. 2021.

[26] J. Köhler, E. Andina, R. Soloperto, M. A. Müller, and F. Allgöwer, “Linear robust adaptive model predictive control: Computational complexity and conservatism,” in *Proc. IEEE 58th Conf. Decis. Control*, 2019, pp. 1383–1388.

[27] S. V. Raković and Q. Cheng, “Homothetic tube MPC for constrained linear difference inclusions,” in *Proc. 25th Chin. Ctrl. Decis. Conf.*, 2013, pp. 754–761.

[28] C. M. Bishop, *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Berlin, Germany: Springer, 2006.

[29] L. Hewing, A. Carron, K. P. Wabersich, and M. N. Zeilinger, “On a correspondence between probabilistic and robust invariant sets for linear systems,” in *Proc. Eur. Control Conf.*, 2018, pp. 1642–1647.

[30] K. Löwner, “Über monotone matrixfunktionen,” *Mathematische Zeitschrift*, vol. 38, pp. 177–216, 1934.

[31] S. Boyd and L. Vandenberghe, *Convex Optimization*. New York, NY, USA: Cambridge Univ. Press, 2004.

[32] M. Fiacchini and T. Alamo, “Probabilistic reachable and invariant sets for linear systems with correlated disturbance,” *Automatica*, vol. 132, 2021, Art. no. 109908.

[33] R. A. Horn and C. R. Johnson, *Matrix Analysis*, 2nd ed. New York, NY, USA: Cambridge Univ. Press, 2012.

[34] L. Hewing and M. Zeilinger, “Cautious model predictive control using gaussian process regression,” *IEEE Trans. Control Syst. Technol.*, vol. 28, no. 6, pp. 2736–2743, Nov. 2020.

[35] F. Oldebergen, C. N. Jones, A. Parisio, and M. Morari, “Stochastic model predictive control for building climate control,” *IEEE Trans. Control Syst. Technol.*, vol. 22, no. 3, pp. 1198–1205, May 2014.

[36] J. Drgoňa et al., “All you need to know about model predictive control for buildings,” *Annu. Rev. Control*, vol. 50, pp. 190–232, 2020.

[37] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic regulator for constrained systems,” *Automatica*, vol. 38, pp. 3–20, 2002.

[38] P. Apkarian and H. D. Tuan, “Parameterized LMIs in control theory,” *SIAM J. Control Optim.*, vol. 1, pp. 152–157, 1998.

Elena Arcari received the B.Sc. degree in engineering sciences from the University of Rome Tor Vergata, Rome, Italy, in 2014, and the M.Sc. degree in robotics, systems and control in 2017 from ETH Zurich, Zurich, Switzerland, where she is currently working toward the doctoral degree in learning-based control with the Institute for Dynamic Systems and Control. Her research interests include active learning for model-based control and data-driven control.

Andrea Iannelli (Member, IEEE) received the B.Sc. and M.Sc. degrees in aerospace engineering from the University of Pisa, Pisa, Italy, in 2011 and 2014, respectively, and the Ph.D. degree in control and dynamical systems from the University of Bristol, Bristol, U.K., in 2019. He is currently an Assistant Professor with the University of Stuttgart, Stuttgart, Germany. During his doctoral studies, he worked on the reconciliation between robust control and dynamical systems theory, with application to linear and nonlinear aerospace systems. He was a Postdoctoral Researcher with the Automatic Control Laboratory, ETH Zurich, Zürich, Switzerland, where he investigated topics at the intersection between control theory and learning, such as system identification, adaptive optimization-based control, and online learning. His research interests include centered around principled techniques for modeling, analysis, and control of uncertain dynamical systems.

Andrea Carron (Member, IEEE) received the B.Sc., M.Sc., and Ph.D. degrees in control engineering from the University of Padova, Padua, Italy, in 2010, 2012, and 2016, respectively. He is currently a Senior Lecturer with ETH Zurich, Zürich, Switzerland. During the master’s and Ph.D. studies, he spent three stays abroad as a Visiting Researcher: the first with the University of California at Riverside, Riverside, CA, USA, the second with Max Planck Institute, Tübingen, Germany and the third with the University of California, Santa Barbara, CA, USA. From 2016 to 2019, he was a Postdoctoral Fellow with the Intelligent Control Systems Group, ETH Zurich, Zurich, Germany. His research interests include safe learning, learning-based control, multiagent systems, and robotics.

Melanie N. Zeilinger (Member, IEEE) received the diploma degree in engineering cybernetics from the University of Stuttgart, Stuttgart, Germany, in 2006, and the Ph.D. degree with honors in electrical engineering from ETH Zurich, Zurich, Switzerland, in 2011. She is currently an Associate Professor with ETH Zurich, Zurich, Switzerland. From 2011 to 2012, she was a Postdoctoral Fellow with the Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland. From 2012 to 2017, she was a Research Scientist with the University of California at Berkeley, Berkeley, CA, USA. From 2018 to 2019, she was a Professor with the University of Freiburg, Freiburg, Germany. Her current research interests include safe learning-based control, as well as optimization-based control under uncertainties, with applications to robotics and human-in-the-loop control.