A SOBOLEV SPACE PROPERTY OF LOGARITHM OF LIPSCHITZ FUNCTIONS

YIFEI PAN

Abstract. For a Lipschitz function f on an open set in \mathbb{R}^n, we consider the L^n integrability of the quotient $\frac{|\nabla f|}{|f|}$ over its natural domain of definition.

1. Introduction and Results

In this note, we prove the following seemingly simple result concerning the logarithm of Lipschitz functions.

Theorem 1.1. Let Ω be an open set in \mathbb{R}^n, and let f be a Lipschitz function on $\overline{\Omega}$. Then the function $\log |f(x) - f(a)|$ does not belong to the Sobolev space $W^{1,n}(\Omega)$ for every $a \in \overline{\Omega}$. Furthermore, if the function $\log |f(x)|$ belongs to the Sobolev space $W^{1,n}(\Omega)$, then f never vanishes in the closure of Ω.

A natural way to view this result is to consider a (non-linear) map $T_a(f) = \log |f(x) - f(a)|$ defined on all Lipschitz functions $\text{Lip}(\Omega)$ for each $a \in \overline{\Omega}$. Then

$$T_a(\text{Lip}(\Omega)) \cap W^{1,n}(\Omega) = \emptyset.$$

The proof of this result is based on a general blow-up phenomenon, as we shall prove below, for Lipschitz functions. This phenomenon seems to reveal a competition between the sets of critical points and zeros at least for continuously differentiable functions.

Theorem 1.2. Let Ω be an open set in \mathbb{R}^n, and let f be a non-constant locally Lipschitz function on Ω. If the zero set $\{x \in \Omega : f(x) = 0\}$ of f is not empty, then

$$\int_{\Omega \setminus f^{-1}(0)} \left| \nabla f(x) \right|^n |f(x)| dx = \infty, \quad (1.1)$$

or equivalently

$$\int_{\Omega \setminus f^{-1}(0)} |\nabla \log |f(x)||^n dx = \infty. \quad (1.2)$$

2010 Mathematics Subject Classification. Primary 26B15. Secondary 26B99.

Key words and phrases. Zero set, critical points, divergent integrals.
Throughout, we denote the gradient ∇f of a Lipschitz function f, which exists a.e. by Rademacher’s theorem, and its norm $|\nabla f|^2 = f^2_1 + \ldots + f^2_n$. Also, it is a well-known fact that a (locally integrable) function is locally Lipschitz if and only if its distributional gradient ∇f is locally L^∞. On the other hand, any Lipschitz function on a set of a metric measure space can be extended to be a Lipschitz function over the whole space with the same Lipschitz constant; in particularly, for our purpose in this paper, we can always use the extension of a Lipschitz function f in Ω to one in \mathbb{R}^n with the same Lipschitz constant [4].

An immediate corollary of Theorem 1.2 is a uniqueness theorem of differential inequality of the gradient.

Corollary 1.3. Let f be a locally Lipschitz function in an open set Ω satisfying

$$|\nabla f(x)| \leq V(x)|f(x)|, \ x \in \Omega, \ a.e.,$$

where $V \in L^\infty_{loc}(\Omega)$. If there is a point $x_0 \in \Omega$ such that $f(x_0) = 0$, then $f \equiv 0$ in Ω.

Corollary 1.4. Let Ω be an open set in \mathbb{R}^n, and let f be a non-constant locally Lipschitz function on Ω. If the zero set $\{x \in \Omega : f(x) = 0\}$ of f is not empty and

$$\int_{\Omega \setminus f^{-1}(0)} |\nabla \log |f(x)||^p \, dx < \infty.$$

then, $p < n$

Corollary 1.5. Let Ω be an open set in \mathbb{R}^n, and let $f \in W^{1,n}(\Omega)$. Then the exponential e^f of f cannot be Lipschitz unless f is Lipschitz and $f \neq 0$ in $\overline{\Omega}$.

Theorem 1.2 is somehow cosmetically related to the following well-known result of J. Bourgain, H. Brezis and P. Mironescu [3].

Theorem 1.6. [3] Let Ω be a connected open set in \mathbb{R}^n, and let $f : \Omega \to \mathbb{R}$ be a non-constant measurable function. Then

$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|}{|x - y|^{n+1}} \, dx \, dy = \infty.$$

We make some remarks on the results above, which seem to be easy to state, but not exactly obvious to prove. First the integrability exponent n, the dimension of the space is the best possible for the results to hold if we take, for example, the function $f(x) = |x|^2$. Secondly, for positive functions, the integral can be arbitrarily small. In [1] A. Chang, M. Gursky, and T. Wolff proved the following calculus result, which is crucial for them to construct a counterexample of a geometric problem.

Proposition 1.7. [1, page 144] Suppose $n \geq 3$. Then for any $R > 0, A, B > 0, \epsilon > 0$, there are $\delta > 0$ and a smooth radial function $\psi : \mathbb{R}^n \to (0, +\infty)$ such that $\psi(x) = A$ when $|x| \geq R, \psi(x) = B$ when $|x| \leq \delta$, $\min(A, B) \leq \psi \leq \max(A, B)$, and

$$\int_{|x| \leq R} \left| \psi^{-1} \frac{d\psi}{dx^i} \right|^n < \epsilon \quad 1 \leq i \leq n.$$
This example is, equivalently, saying that there are positive functions for which the integral
\[\int_{|x|<R} |\nabla \log |\psi(x)||^n \, dx \]
can be made arbitrarily small. On the other hand, Theorem 4.1 has the following interesting interpretation as an extension result: for every Lipschitz \(f \) and every \(a \in \Omega \), the function \(\frac{\nabla f(x)}{|f(x)-f(a)|} \) cannot be extended to a function in \(L^n(\Omega) \). We will actually prove that the integral in (4.1) diverges around any point of the boundary of \(f^{-1}(f(a)) \). Hence \(\frac{\nabla f(x)}{|f(x)-f(a)|} \) cannot be extended to an \(L^n \) function beyond its natural domain of definition \(\Omega \setminus f^{-1}(f(a)) \).

As a curious consequence, given any closed set \(A \subset \mathbb{R}^n \), it is possible to construct a continuous function on \(\mathbb{R}^n \setminus A \) that cannot be extended locally to a \(L^n \) function past any point of the boundary of \(A \). Indeed, one just needs to consider the quotient \(\frac{\nabla f}{|f|} \), where \(f \) is a smooth function in \(\mathbb{R}^n \) whose zeroset is \(A \). Note that such an \(f \) exists by the Whitney extension theorem [2].

2. Proof of Theorem 1.2

We first begin with a uniqueness theorem for Lipschitz functions in one real variable over intervals which is tailored for applications in polar coordinates in order to prove the results in this paper. Recall that a Lipschitz function in \([0,1]\) is differentiable almost everywhere and satisfies \(f(b) - f(a) = \int_a^b f'(x) \, dx \) for any \(a,b \in [0,1] \).

Lemma 2.1. Let \(\varphi \) be a Lipschitz function over \([0,1]\) with \(\varphi(0) = 0 \). Assume that there exists \(p \geq 1 \) and a non-negative function \(\lambda \in L^p(0,1) \) such that
\[|\varphi'(x)| \leq \lambda(x) |\varphi(x)| \frac{x^{1-p}}{x^p} \quad \forall x \in (0,1), \text{a.e.} \quad (2.1) \]
Then \(\varphi \equiv 0 \) in \([0,1]\).

Proof. Let \(\delta = \sup\{d \in [0,1] | \varphi \equiv 0 \text{ in } [0,d]\} \). By the fundamental theorem for Lipschitz functions and Hölder’s inequality, we have
\[|\varphi(x)| \leq \int_\delta^x |\varphi'(t)| \, dt \leq \left(\int_\delta^x |\varphi'(t)|^p \, dt \right)^{\frac{1}{p}} \left(\int_\delta^x 1^q \, dt \right)^{\frac{1}{q}}, \quad \frac{1}{p} + \frac{1}{q} = 1. \quad (2.2) \]
Hence
\[|\varphi(x)|^p \leq x^\frac{p}{q} \int_\delta^x |\varphi'(t)|^p \, dt = x^{p-1} \int_\delta^x |\varphi'(t)|^p \, dt. \quad (2.3) \]
We multiply both sides of (2.3) by the function \(\lambda^p(x) \). Note that we can assume without loss of generality that \(\lambda \) is non-vanishing. Indeed, if that is not the case, we can just replace \(\lambda \) with \(1 + \lambda \). We obtain
\[\lambda^p(x) |\varphi(x)|^p \leq x^{p-1} \lambda^p(x) \int_\delta^x |\varphi'(t)|^p \, dt. \quad (2.4) \]
Let $s \in (\delta, 1)$. Integrating in the variable x on both sides of (2.4) gives
\[
\int_\delta^s \lambda^p(x) |\varphi(x)|^p x^{1-p} \, dx \leq \int_\delta^s \left(\lambda^p(x) \int_\delta^x |\varphi'(t)|^p \, dt \right) \, dx.
\]
(2.5)
Since $x \leq s$, then (2.5) implies
\[
\int_\delta^s \lambda^p(x) |\varphi(x)|^p x^{1-p} \, dx \leq \left(\int_\delta^s \lambda^p(x) \, dx \right) \left(\int_\delta^s |\varphi'(x)|^p \, dx \right).
\]
(2.6)
By (2.1), we have that
\[
\int_\delta^s \lambda^p(x) |\varphi(x)|^p x^{1-p} \, dx \leq \left(\int_\delta^s \lambda^p(x) \, dx \right) \left(\int_\delta^s \lambda^p(x) |\varphi(x)|^p x^{1-p} \, dx \right).
\]
(2.7)
Since φ is Lipschitz and $\varphi(0) = 0$, we have that $|\varphi(x)| \leq C|x|$ for some C for $x \in [0, 1]$, and therefore the function $|\varphi(x)|^p x^{1-p}$ is bounded. Since $\lambda \in L^p(0, 1)$, we conclude that
\[
\int_\delta^s \lambda^p(x) |\varphi(x)|^p x^{1-p} \, dx < \infty \quad \forall s \in (\delta, 1).
\]
(2.8)
and we can find a sequence of points $s_j \in (\delta, 1), s_j \to \delta$, such that
\[
\int_{s_j}^s \lambda^p(x) |\varphi(x)|^p x^{1-p} \, dx \neq 0 \quad \forall j.
\]
(2.9)
Equation (2.7) then yields
\[
1 \leq \int_{s_j}^s \lambda^p(x) \, dx \quad \forall j.
\]
(2.10)
Since $\lambda \in L^p(0, 1)$, then letting $s_j \to \delta$ in (2.10) leads to a contradiction. \qed

Rademacher’s theorem says φ is Lipschitz function is differentiable almost everywhere. The following simple, but useful lemma tells where the square of a Lipschitz function could be differentiable.

Lemma 2.2. Let f be a locally Lipschitz function in a domain. Then the square function $g = f^2$ is differentiable wherever f vanishes and in fact $\nabla g(x) = 0$ there.

Proof. Let x_0 be such that $f(x_0) = 0$. We claim that $g = f^2$ is differentiable at x_0 and $\nabla g(x_0) = 0$. Indeed, by the definition of differentiability,
\[
\lim_{x \to x_0} \frac{g(x) - g(x_0) - 0 \cdot (x - x_0)}{|x - x_0|} = \lim_{x \to x_0} \frac{f^2(x)}{|x - x_0|} = 0,
\]
where we have used $f(x) = f(x) - f(x_0) = O(|x - x_0|)$ because of f being locally Lipschitz at x_0. \qed

Lemma 2.3. Let A be a measurable set of measure zero in the unit ball in \mathbb{R}^n. Then for almost all $\omega \in S^{n-1}$, the unit sphere, the set of intersection of A with the ray $\{r\omega : 0 \leq r \leq 1\}$ is of measure zero in the line measure.
Proof. Let χ_A be the characteristic function of the set A. We have $0 = |A| = \int_{|x|<1} \chi_A(x)dx = \int_{S^{n-1}} \int_0^1 \chi_A(r\omega) r^{n-1}drd\omega$. By Fubini’s theorem, we conclude that for almost all $\omega \in S^{n-1}$, \[
abla f(x) = 0\] whenever the function is 0. For the rest of the proof we assume $\nabla f(x) = 0$ whenever $f = 0$. Let \[V(x) = \begin{cases} \frac{\nabla f(x)}{f(x)} & x \in \Omega \setminus Z \\ 0 & x \in Z. \end{cases} \] (2.12)
Note that V is a measurable function in Ω. Assume now by contradiction that (2.11) is false. Then \[
abla f(x) \text{ is the origin and the radius } r_0 \text{ is equal to } 1. \] Hence \[
abla f(x) \text{ is the origin and the radius } r_0 \text{ is equal to } 1. \] Hence \[
abla f(x) = 0 \text{ whenever } f = 0. \]
Let \[
abla f(x) = 0 \text{ whenever } f = 0. \]
and therefore \[V \in L^n(\Omega). \] Choose a point $x_0 \in \partial Z$ and a ball $B(x_0, r_0)$ of radius $r_0 > 0$ centered at x_0 such that $B(x_0, r_0) \subset \Omega$. We assume, after a translation and scaling, that x_0 is the origin and the radius r_0 is equal to 1. Hence \[
abla f(x) = 0 \text{ whenever } f = 0. \]
(2.14)
Since the integral (2.14) is finite, then Fubini’s theorem implies that for almost all $\omega \in S^{n-1}$ we have
\[
abla f(x) = 0 \text{ whenever } f = 0. \]
(2.15)
By Rademacher’s theorem, we set A to be the set where $\nabla f(x)$ does not exist at x so that A is of measure zero. Choose $\omega_0 \in S^{n-1}$ is such that (2.15) holds, that is, $V(r\omega)r^{n-1} \in L^d(0, 1)$. and at the same time, by Lemma 2.3 we can choose the same $\omega_0 \in S^{n-1}$ such that $\nabla f(x)$ exists a.e. on the line (ray) $\{r\omega_0\}$. Let \[\varphi(t) := f(t\omega_0), \quad t \in [0, 1]. \]
It is evident that $\varphi(t)$ is Lipschitz in t because of f locally Lipschitz. Then for differential points of f, and applying the chain rule there we have
\[\varphi'(t) = \nabla f(t_0) \cdot \omega_0 \]
which implies, for a.e. t,
\[|\varphi'(t)| \leq |\nabla f(t_0)|. \]
(2.16)
By the definition of V, we have
\[|\varphi'(t)| \leq V(t_0)|f(t_0)| = V(t_0)|\varphi(t)| \quad \text{for } f(t_0) \neq 0. \]
(2.17)
However, when $f(t_0) = 0$, we have by the observation at the beginning of the proof, $\nabla f(r_0) = 0$ and therefore $\varphi'(t) = 0$. Hence we have shown that
\[|\varphi'(t)| \leq V(t_0)|\varphi(t)| = V(t_0)t^{-\frac{n-1}{n}} \]
holds for a.e. t. By Lemma 2.1, with $\lambda(t) = V(t_0)t^{\frac{n-1}{n}}$ and $p = n$, $\varphi(t) \equiv 0$, and it implies $f \equiv 0$ since ω_0 is arbitrary off a measure zero and x_0 in the boundary of Z, a contradiction.

3. Proof of Theorem 1.1

Here before we prove Theorem 1.1, which is a simple consequence of Theorem 1.2, we recall that a function belongs to $W^{1,p}(\Omega)$ if $f \in L^p(\Omega)$ and its weak derivative ∇f belongs to $L^p(\Omega)$. Now we prove Theorem 1.1. If $\log|f(x) - f(a)|$ does not belong to $L^n(\Omega)$, we are done. If $\log|f(x) - f(a)|$ belongs to $L^n(\Omega)$, then apply Theorem 1.2 to conclude $\nabla \log|f(x) - f(a)|$ does not belong to $L^n(\Omega)$.

For the second part, first we extend f to be a Lipschitz function defined in \mathbb{R}^n. If $f(x)$ vanishes at an point in the closure of Ω, we apply Theorem 1.2 to the extended function to get a contradiction.

4. Generalization to Lipschitz mappings

All results proved so far can be generalized to Lipschitz mappings. First we say $f : \Omega \rightarrow \mathbb{R}^m$ is a Lipschitz mapping if each of the components is a Lipschitz function. Now we can state the mapping version of Theorem 1.2.

Theorem 4.1. Let Ω be an open set in \mathbb{R}^n, and let $f : \Omega \rightarrow \mathbb{R}^m$ be a non-constant locally Lipschitz mapping on Ω. If the common zero set $\{x \in \Omega : f(x) = 0\}$ of the mapping f is not empty, then
\[\int_{\Omega \setminus f^{-1}(0)} \left| \frac{\nabla f(x)}{f(x)} \right|^n dx = \infty, \]
(4.1)
where we have $|\nabla f|^2 = |\nabla f_1|^2 + \ldots + |\nabla f_m|^2$ if $f = (f_1, \ldots, f_m)$.
References

[1] S.-Y. A. Chang, M. Gursky, and T. Wolff, Lack of compactness in conformal metrics with $L^{d/2}$ curvature, *J. Geom. Anal.* 4 (1994), no. 2, 143-153.

[2] H. Whitney, Analytic extensions of differentiable functions defined in closed sets. *Trans. Amer. Math. Soc.* 36 (1934), no. 1, 63–89.

[3] J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces, *J. Analyse Math.* 80 (2000), 37-86.

[4] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag New York, 2001.

*Department of Mathematical Sciences, Purdue University Fort Wayne, 2101 East Coliseum Boulevard, Fort Wayne, IN 46805, USA

Email address: pan@pfw.edu*