Is obesity associated with depression in children? Systematic review and meta-analysis

Shailen Sutaria,1 Delan Devakumar,2 Silvia Shikanai Yasuda,3 Shikta Das,4 Sonia Saxena1

ABSTRACT

Objectives To compare the odds of depression in obese and overweight children with that in normal-weight children in the community.

Design Systematic review and random-effect meta-analysis of observational studies.

Data sources EMBASE, PubMed and PsychINFO electronic databases, published between January 2000 and January 2017.

Eligibility criteria for selecting studies Cross-sectional or longitudinal observational studies that recruited children (aged <18 years) drawn from the community who had their weight status classified by body mass index, using age-adjusted and sex-adjusted reference charts or the International Obesity Task Force age-sex specific cut-offs, and concurrent or prospective odds of depression were measured.

Results Twenty-two studies representing 143,603 children were included in the meta-analysis. Prevalence of depression among obese children was 10.4%. Compared with normal-weight children, odds of depression were 1.32 higher (95% CI 1.17 to 1.50) in obese children. Among obese female children, odds of depression were 1.44 (95% CI 1.20 to 1.72) higher compared with that of normal-weight female children. No association was found between overweight children and depression (OR 1.04, 95% CI 0.95 to 1.14) or among obese or overweight male subgroups and depression (OR 1.14, 95% CI 0.93 to 1.41% and 1.08, 95% CI 0.85 to 1.37, respectively). Subgroup analysis of cross-sectional and longitudinal studies separately revealed childhood obesity was associated with both concurrent (OR 1.26, 95% CI 1.09 to 1.45) and prospective odds (OR 1.51, 95% CI 1.21 to 1.88) of depression.

Conclusion We found strong evidence that obese female children have a significantly increased odds of concurrent and future depression compared with non-obese female children.

Background Childhood mental illness is poorly recognised by healthcare providers and parents, despite half of all lifetime cases of diagnosable mental illness beginning by the age of 14 years.1 Globally, depression is the leading cause of disease burden, as measured by disability-adjusted life years, in children aged 10–19 years.2 Untreated, it is associated with poor school performance and social functioning, substance misuse, recurring depression in adulthood and increased suicide risk, which is the second leading cause of preventable death among young people.3–6 The resulting cost to the National Health Service of treating depression is estimated at over £2 billion, and the wider social and economic impact of depression is likely to be considerable.7

What is already known about this topic?

- Childhood obesity is strongly associated with adverse physical health outcomes, and less is known about its association with mental health outcomes.
- The prevalence and future risk of depression in overweight and obese boys and girls in the community is unclear.

What this study adds?

- Obese female children have a significantly increased odds of concurrent and future depression compared with non-obese female children.
- Clinicians should consider screening obese female children for signs and symptoms of depression.

Overweight status and depression are closely related in children; both may develop simultaneously sharing a common aetiology and manifesting at different times or one may lead to the other.8–10 Cognitive and social factors are likely to be important mechanisms.11–13

Childhood obesity itself is a global public health crisis, threatening the health of future populations from physical health consequences,14 such as cardiovascular disease, type 2 diabetes and cancer.15–17 So far, research efforts have focused on establishing and tackling the physical consequences of childhood obesity. However, little is known about the impact of excess weight on mental health.18

Previous studies examining the excess risk of depression from being overweight as a child are equivocal. Estimates vary widely from 4% to 64%,6,19,20 due to differences in populations, study designs and measurement of weight and depression. Among overweight children drawn from specialist clinics, 23.4% are estimated to be depressed.21 However, overweight children drawn from specialist clinics are not representative of children in the community and may overestimate risk.22 Hence, the overall risk of depression in overweight children in the community remains unclear.
Understanding the risk and prevalence of depression in obese children may help guide clinicians in identifying high-risk children as well as guide policy planners to the mental health needs of obese children. We systematically identified cross-sectional and prospective studies reporting concurrent or future risk of depression and performed meta-analysis to report the overall risk of depression in overweight and obese children drawn from community settings, compared with normal-weight children.

METHODS

Study selection

Types of studies

We included observational studies with a prospective or retrospective cohort, or cross-sectional designs, where participants had been recruited from the general population, school or community setting. We excluded studies where participants were obtained from hospital or specialist settings, as they were unlikely to be representative of obese children in the population.22

Types of participants

We included studies if participants were aged 18 years or younger at the time weight was reported. In studies where only average age of participants was reported, we included if average age across all participants was 18 years or younger.

Types of measures

Weight status was defined by calculating body mass index (BMI) and using age-adjusted and sex-adjusted reference charts. Obesity was defined as ≥95th centile and overweight ≥85th centile, or using the International Obesity Task Force age-specific and sex-specific centile curves correlating to 25 and 30 kg/m² for adult overweight and obesity.23 We excluded studies that defined obesity using other methods such as waist circumference or body composition as these are rarely used in clinical practice.

Outcome measures

Our primary outcome of interest was odds (future or concurrent) of depression in obese and overweight children compared with normal-weight children.

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram. BMI, body mass index.

Figure 2 Funnel plot.
Table 1 Systematic review table of 26 observational studies examining obese weight status and depression, ordered by study type and gender

Study	Country of study/year of study/follow-up (years)	Study population	Method of diagnosis depression used (and name of tool)	Prevalence of depression in obese % (n/N)	OR (95%CI) obese vs normal weight	OR (95%CI) overweight vs normal weight	Variables used in adjustment
Prospective studies							
Anderson et al 2007	USA 2007	342 14.6 100 9	Structured psychiatric interview (DISC)	40 (4/10)	1.3 (0.5 to 3.5)†	0.9 (0.3 to 2.4)†	Socioeconomic status index (combination of family occupational status, family income, parental education), race/ethnicity, smoking, parental psychopathology
Herva et al 2006	Finland 1980	3524	Depression symptoms rating scale (HSCL)	8.4 (3/155)	1.55 (0.93 to 2.59)	1.18 (0.78 to 1.78)	Father's social class, family type, smoking, alcohol use, chronic somatic disease at age 14
Girls							
Anderson et al 2007	USA 1980	332 14.7 0 3	Structured psychiatric interview (DISC)	15.6 (5/32)	3.9 (1.3 to 11.8)†	0.9 (0.5 to 1.8)†	Socioeconomic status index (combination of family occupational status, family income, parental education), race/ethnicity, smoking, parental psychopathology
Anderson et al 2011	USA 2003	482 (white) 13.9 0 7.9	Depression symptoms rating scale (CES-D)	26.3 (10/38)	2.50 (1.57 to 3.98)	0.98 (0.16 to 5.97)	Age, free lunch, time spent home alone after school
Anderson et al 2011	USA 2003	134 (black)	Depression symptoms rating scale (CES-D)	10.3 (4/39)	0.98 (0.16 to 5.97)	–	Age, free lunch, time spent home alone after school
Anderson et al 2011	USA 2003	171 (Hispanic)	Depression symptoms rating scale (CES-D)	16.7 (9/26)	0.72 (0.26 to 1.95)	–	Age, free lunch, time spent home alone after school, BMI appropriate
Bouteille et al 2010	USA 2010	495	Structured psychiatric interview (K-SADS)	–	1.62 (0.77 to 3.38)	0.61 (0.24 to 1.57)	Age, early puberty, previous depression, BMI appropriate
Frisco et al 2013	USA 1996 6	5243 13–19	Depression symptoms rating scale (HSCL)	11.5 (18/157)	1.97 (1.19 to 3.26)	0.97 (0.54 to 1.77)	Age, socioeconomic status index (combination of family occupational status, family income, parental education), family type, smoking, alcohol use, chronic somatic disease at age 14
Herva et al 2006	Finland 1980	3988	Depression symptoms rating scale (HSCL)	11.5 (18/157)	1.97 (1.16 to 3.26)	0.67 (0.33 to 1.34)	Father's social class, family type, smoking, alcohol use, chronic somatic disease at age 14
Boys and girls							
Clark et al 2007	England 2006	1513	Depression symptoms rating scale (SMFQ)	–	0.92 (0.57 to 1.48)	1.2 (0.91 to 1.57)	Age, gender, ethnicity, free school meals, general health, long-standing illness, smoking, alcohol use, drug use
Marmorstein et al 2014	USA 1988	308	Structured psychiatric interview (DISC)	–	0.70 (0.33 to 1.48)	–	Undiag
Roberts and Duong 2013	USA 2000	3134	Structured psychiatric interview (DISC)	–	1.90 (0.85 to 4.25)	0.93 (0.31 to 2.80)	Age, gender, family income, diet, physical activity
Sanderson et al 2011	Australia 1985	2242	Depression symptoms rating scale (HSCL)	–	15.4 (6/219)	0.91 (0.30 to 2.74)	Age, sex
Sveding et al 2005	Scotland	2146	Structured psychiatric interview (DISC)	1.8 (42/19)	0.91 (0.30 to 2.74)	–	Undiag
Cross-sectional studies:							
Assor and Goldfeld 2015	USA	563 (black)	Structured psychiatric interview (CIDI)	–	0.67 (0.54 to 2.68)	–	Age, family income
Flores et al 2011	Norway 100	925	Depression symptoms rating scale (HSCL)	30 (6/08)	0.8 (0.4 to 1.3)‡†	–	Age, school bullying, pubertal development, physical activity
Haare et al 2014	Australia 2012	360	Depression symptoms rating scale (SMFQ)	–	1.83 (0.67 to 4.95)‡†	–	Age, school, parental level of education
Jari et al 2014	Iran 2009	2715	Single-item response in non-depression-specific questionnaire (GSRS)	63.7 (170/263)	0.99 (0.91 to 1.1)††	1.0 (0.76 to 1.32)††	Unadjusted
Table 1 Continued

Study	Country of study/ year of study/ follow-up (years)	Study population	Method of diagnosis depression used (and name of tool)	Prevalence of depression in obese % (n/N)	OR (95%CI) obese vs normal weight	OR (95%CI) overweight vs normal weight	Variables used in adjustment			
Sutaria et al 2012	USA 2003	67	50.7	11.9	Depression symptoms rating scale (CES-D)	22.6 (21/93)	1.68 (0.93 to 3.02†)	2.23 (1.3 to 3.82)†	Age, gender, parental education	
Schiefelbein et al 2012	USA 2003	3189	16.5	100	41§	Single-item response in non-depression-specific questionnaire	1.45 (0.88 to 2.38)	–	–	Age, race/ethnicity, urbanisation, border, SES, weight-loss attempts, physical activity, TV usage
Zakeri et al 2012	Iran 2006	4524	13.8	100	7.5	Single-item response in non-depression-specific questionnaire (GSHS)	30.9 (166/538)	1.00 (0.78 to 1.29)	0.89 (0.71 to 1.2)	School grade
Assari and Caldwell 2015	USA 2003	605	15	0	24.08	Structured psychiatric interview (CIDI)	–	0.85 (0.34 to 3.14)	–	Age, family income
Hoare et al 2014	Australia 2012	440	13.1	0	26.3	Depression symptoms rating scale (SMFQ)	–	0.99 (0.64 to 1.52)	–	Age, school bullying, pubertal development, physical activity
Jari et al 2014	Iran 2009	2691	14.7	0	7.5	Single-item response in non-depression-specific questionnaire	63.7 (128/201)	1.12 (0.83 to 1.55)	1.06 (0.77 to 1.48)	Unadjusted
Schiefelbein et al 2012	USA 2003	473	13.5	0	38.4§	Single-item response in non-depression-specific questionnaire	–	1.70 (1.07 to 2.69)	–	Age, race/ethnicity, urbanisation, border, SES, weight-loss attempts, physical activity, TV usage
Seyedamini 2012	Iran 2008	200	9.0	0	–	Depression symptoms rating scale (CBCL)	–	1.12 (0.94 to 1.31)	–	Israel, gender, age, country of origin
BeLue et al 2009	USA 2003	35 18	12–17	50	13.2	Reported health professional diagnosis	11.1 (486/4379)	1.6 (1.2 to 2.0)**	–	Gender, age, poverty level, family educational level, family composition
Halfan et al 2013	USA 2007	43 21	13.8	52.2	16	Reported health professional diagnosis	4 (27/614)	1.41 (1.04 to 1.93)	1.33 (0.98 to 1.82)	Age, gender, race/ethnicity, parental education, household income, family structure
Jansen et al 2008	Netherlands 2000	1900	9.5	51	7	Depression symptoms rating scale (CDI)	26.6 (381/14)	0.96 (0.64 to 1.44)	0.86 (0.66 to 1.11)	Gender and country of origin
Ting et al 2012	Taiwan 2010	859	15.7§§	53.7	11.9	Depression symptoms rating Scale (CES-D)	22.6 (21/93)	1.68 (0.93 to 3.02)	2.23 (1.3 to 3.82)	Age, gender, parental education
Ting et al 2012	Taiwan 2010	859	15.7§§	53.7	11.9	Depression symptoms rating Scale (CES-D)	22.6 (21/93)	1.68 (0.93 to 3.02)	2.23 (1.3 to 3.82)	Age, gender, parental education

BMI, body mass index; CBCL, Child Behaviour Checklist; CES-D, Centre for Epidemiological Studies Depression Scale; CDI, Composite International Diagnostic Interview; DRS, Diagnostic Interview Schedule for Children; DSRS, Diagnostic Self-Rating Scale; GSHS, Global School-based Health Survey; HSL, Hopkins Symptom Check List; I-ADS, Schedule for Affective Disorders and Schizophrenia for School-age Children; SB, Short Depression Inventory for Children; SDI, self-efficacy status; SMFQ, Short Moods and Feeling Questionnaire; TV video usage.
Table 2 Quality assessment of 22 included studies

Study (cohort studies)	Selection (maximum three stars)	Comparability (maximum two stars)	Outcome (maximum two stars)	Total/maximum
Anderson et al49 2007	★	2★	1★	5/7
Anderson et al39 2011	★	2★	1★	6/7
Boutilier et al45 2010	3★	2★	1★	6/7
Clark et al39 2007	3★	2★	1★	6/7
Frisco et al49 2013	3★	2★	1★	6/7
Herva et al13 2006	1★	2★	1★	4/7
Marmostein et al12 2014	3★	0★	2★	5/7
Roberts and Duong15 2013	2★	2★	1★	5/7
Sanderson et al18 2011	2★	1★	1★	4/7
Sweeting et al9 2005	2★	0★	2★	4/7

Study (cross-sectional studies)

Assari and Caldwell16 2015	0★	2★	1★	3/5
BeLue et al9 2009	1★	2★	1★	4/5
Flottes et al12 2011	2★	2★	1★	5/5
Halton 2013	1★	2★	0★	3/5
Hoare et al9 2014	2★	2★	1★	5/5
Jansen et al9 2008	2★	1★	1★	4/5
Jain et al9 2014	2★	0★	1★	3/5
Schiefeleben et al15 2012	2★	2★	0★	4/5
Seyyedamini 2012	2★	1★	1★	4/5
Sjoberg et al6 2005	1★	0★	1★	2/5
Ting et al12 2012	1★	2★	1★	4/5
Zakeni et al5 2012	2★	0★	0★	2/5

A maximum of seven stars for cohort studies and five for cross-sectional studies could be obtained.

We included any study where depression had been measured either by standardised psychiatric interview, physician-reported diagnosis, single-item or multiple-item questions in questionnaire or by use of rating scales based on the presence of depressive symptoms above a threshold value determined by the study. We excluded studies that reported depression scores only due to lack of patient-level data to allow calculation of depression prevalence.

We also examined subgroups and odds of depression, including boys and girls and odds of concurrent and future risk of depression separately.

Search method for identification of studies

We searched the following databases: EMBASE, MEDLINE via PubMed and PsychINFO. We combined search terms relating to children under 18 years and obesity with those for depression and related MeSH headings, truncated with wildcard characters if necessary (online supplementary appendix 2). Results were limited to human subjects. Search terms not covered under the MeSH tree were searched as keywords. Finally, we hand-searched reference lists of the identified articles for further studies and authoritative reviews. To obtain estimates relevant for current practice, searches were limited to being published from 2000 (online supplementary appendix 2). Prior to publication, SS updated searches to identify any new studies.

Using Endnote (V.7), duplicates were removed, SS reviewed titles for eligibility and studies that clearly did not meet the inclusion criteria were excluded. Two reviewers (SS and SY) independently reviewed the abstracts of the remaining studies and removed any that did not meet the inclusion criteria. Potentially eligible or unclear abstracts were obtained as full articles. SS and DD screened all full articles for inclusion; two reviewers (SS and DD) read the full texts of the papers and extracted the data from the studies that met the inclusion criteria (figure 1). This process was then repeated with the same reviewers to update searches. We resolved any disagreements regarding the inclusion or exclusion of papers through discussion with a third reviewer (SSax).

Data collection and analysis

We analysed data from included studies descriptively and combined by meta-analysis. A data extraction form was prepared a priori to extract information on study design, year of study publication, year participants were enrolled, follow-up duration and country of study. We extracted information on the study population including number of participants in analysis, average age, sex and the numbers of obese, overweight and normal-weight individuals. For outcomes, we extracted the number of individuals reported as depressed per weight category, adjusted and unadjusted odds of depression, and variables used in adjustment.

Quality assessment

We assessed study quality by modifying the Newcastle-Ottawa Scale for assessing the quality of non-randomised studies in meta-analysis examining three potential areas of bias in participant selection, comparability and ascertainment of exposure and outcome (online supplementary appendix 3). A priori, we considered studies to be high quality if they scored greater than four stars in cohort studies or greater than three stars in cross-sectional studies.

Statistical analysis

For meta-analysis, we used extracted ORs and calculated SEs from CIs reported. Where relative risks or HRs were reported, OR and 95% CIs were calculated from absolute numbers of depressed children in different weight categories. Where multiple odds or risk ratios were reported, we selected the most highly adjusted odds or risk ratio. When in the same study or using the same study population, we selected prospective data with the longest follow-up period. SE was calculated from reported CIs or p value if CIs were not reported using previously described methods.

Where sufficient data were reported, meta-analysis was performed using a random-effects model. Heterogeneity was examined using the I² statistic, with an I² of over 75% indicating considerable heterogeneity. Small study effect was assessed visually using funnel plots (figure 2) and statistically by performing Egger’s test. We conducted subgroup analysis by sex, weight status and study type (cross-sectional and longitudinal) enabling us to report the sex-specific and comorbid and prospective odds of depression.

Sensitivity analysis

Through the review process, we identified several factors that may have influenced our results. To examine the robustness of our findings, we performed sensitivity analyses to examine the impact of excluding studies that use child-reported or parent-reported weight, studies that include underweight children in their normal-weight comparator group, low-quality studies, studies where participants had their weight status measured before 2000 and studies that diagnosed depression based on standardised psychiatric interview.
Figure 3 Meta-analysis (22 unique studies) odds of current or future depression in obese children versus normal-weight children*. *Multiple ORs for same studies reflect ORs for different subgroups (eg, male, female, ethnic group).

All analysis was performed using Stata (V14).

We reported our findings following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement for reporting systematic reviews and meta-analysis (online supplementary appendix 1).26

RESULTS

Twenty-two studies, including 143,603 children, met our inclusion criteria (figure 1). One study met our inclusion criteria but was excluded after review due to the age of the study.27 Among included studies, average age was 14.2 years, 48% were male children and overall prevalence of obesity was 15.5%. Overall, prevalence of depression among obese children was 10.4%.

Study characteristics

Of the 22 studies included, 10 were prospective cohorts and 12 were cross-sectional. The length of follow-up ranged from 1 to 20 years in the cohort studies, with half of studies having a follow-up period of 2 years or fewer. The number of participants in studies ranged from 200 to 43,211. Ten studies were from populations based in the USA. Twelve studies reported gender-specific OR and two studies reported gender-specific and ethnicity-specific OR (table 1).

Quality assessment

Studies varied in quality with no study obtaining maximum star rating across the three domains of participant selection, comparability of groups and outcome (table 2).

The majority of studies (20/22) selected participants from a community setting, representative of the wider population, and two studies purposely selected a high proportion of ethnic minorities.28 29 Over half of studies (14/22) calculated BMI using independently measured height and weight, and the remaining eight studies used self-reported (parent or child) measures of weight and/or height to determine weight status. Some measure of socioeconomic status was adjusted for in 14/22 studies.

A variety of methods were used to identify depression. The most frequent method was the use of depression symptom rating scales (10/22) of which the most frequently used (three studies) was the Centre for Epidemiological Studies Depression Scale. Other methods included structured psychiatric interview (7/22) and previous reported health professional diagnosis (2/22). The remaining three studies inferred a diagnosis of depression based on single item answer in non-depression-specific questionnaires.

META-ANALYSIS

Meta-analysis of 22 studies, comparing odds of depression in obese children versus normal-weight children, yielded an OR of 1.32 (95% CI 1.17 to 1.50). There was substantial statistical
Table 1: Meta-analysis of odds of depression in overweight and normal-weight children

Study ID	Odds ratio (95% CI)	Weight
ANDERSON (2007)	1.06 (0.40, 2.82)	0.85
FLOTNES (2011)	0.93 (0.44, 1.97)	1.44
HERVA (2008)	1.18 (0.78, 1.78)	4.43
JARI (2014)	1.00 (0.76, 1.32)	8.87
TING (2012)	2.55 (1.28, 5.08)	1.69
ZAKERI (2012)	0.89 (0.71, 1.12)	11.96
Subtotal (I-squared = 42.7%, p = 0.121)	1.08 (0.85, 1.37)	29.25

Figure 4: Meta-analysis (13 unique studies) odds of depression in overweight children versus normal-weight children*. *Multiple ORs for same studies reflect ORs for different subgroups (eg, male, female, ethnic group).

Table 2: Meta-analysis of odds of developing depression in obese and normal-weight children

Study ID	Odds ratio (95% CI)	Weight
ANDERSON (2007)	0.95 (0.46, 1.98)	1.49
BOUTELLE (2010)	0.61 (0.24, 1.56)	0.93
FLOTNES (2011)	1.41 (0.93, 2.15)	4.27
FRISCO (2013)	0.97 (0.54, 1.74)	2.31
HERVA (2006)	0.67 (0.33, 1.35)	1.64
JARI (2014)	1.08 (0.77, 1.49)	6.94
TING (2012)	0.80 (0.28, 2.28)	0.75
ZAKERI (2012)	1.11 (0.90, 1.37)	13.15
Subtotal (I-squared = 0.0%, p = 0.616)	1.07 (0.92, 1.24)	31.47

Figure 5: Meta-analysis of 10 longitudinal studies examining odds of developing depression in obese children versus normal-weight children, by gender*. *Multiple ORs for same studies reflect ORs for different subgroups (eg, male, female, ethnic group).

NOTE: Weights are from random effects analysis

Overall (I-squared = 11.7%, p = 0.312) 1.04 (0.95, 1.14) 100.00
heterogeneity (χ^2 p<0.001), with an I^2 of 72.1% (figure 3). Subgroup analysis by gender yielded an OR of 1.44 (95% CI 1.20 to 1.72) of depression in obese female children versus normal-weight female children. In male children, the OR was 1.14 (95% CI 0.93 to 1.41) (figure 3). Both female ($I^2=50.2\%$) and male ($I^2=49\%$) children subgroups showed lower moderate heterogeneity.

Meta-analysis of 13 studies comparing odds of depression in overweight children versus normal-weight children yielded an OR of 1.04 (95 CI 0.95 to 1.14) with an I^2 of 34.2% (figure 4). Further subgroup analysis by gender yielded an OR of 1.07 (95% CI 0.92 to 1.24) of depression in overweight female versus normal-weight female children. In male children, the OR was 1.08 (95% CI 0.85 to 1.37) (figure 4).

Subgroup meta-analysis of 10 longitudinal studies comparing odds of depression in obese children versus normal-weight children yielded an OR of 1.51 (95% CI 1.21 to 1.88; I^2 30.6%) (figure 5). Subgroup meta-analysis of cross-sectional studies comparing odds of depression in obese children versus normal-weight children yielded an OR of 1.26 (95% CI 1.09 to 1.45; I^2=79.2%) (figure 6).

SENSITIVITY ANALYSIS

Multiple sensitivity analyses were performed (table 3). All except one demonstrated a similar trend of results to the main analysis. Meta-analysis of studies restricted to those studies that diagnose depression using a standardised psychiatric interview yielded an OR of 1.27 (95% CI 1.01 to 1.50) increased odds of current or future depression, with greatest odds among obese female children (OR 1.44 95%CI 1.20 to 1.72). We found clear evidence that this risk persists over time, whereby in a subgroup meta-analysis of longitudinal studies, obese children had a 51% (95% CI 1.21 to 1.88) increased odds of developing depression in the future compared with normal-weight children.

No association was found between being overweight and depressed in male or female children.

The size of the study and wide inclusion criteria of all international literature make it unlikely that the effect sizes arose by chance.

Findings in relation to previous studies

Our findings are consistent with the association between obesity and depression reported in adults (OR 1.18 95%CI 1.01 to 0.98 (95% CI 0.42 to 2.33)) or female (OR 1.53 (95% CI 0.88 to 2.65)) children.

DISCUSSION

To date, this is the largest study examining weight status and depression in childhood with over 140 000 children drawn from the community and the first to include both concurrent and prospective odds of depression. We found, compared with normal-weight children, obese children have a 32% (95% CI 1.17 to 1.50) increased odds of current or future depression, with greatest odds among obese female children (OR 1.44 95%CI 1.20 to 1.72).
1.57), with a greater effect seen in adult women; however, the magnitude of the association appears stronger in children than adults.

Interestingly, in subgroup analysis, we only found a significant association with depression among obese female children. We found no such association exists among obese male or among overweight male or female children. Plausibly, psychosocial factors such as weight perception and body dissatisfaction that mediate between weight and depression do not correlate well with BMI.

Only those children who recognise themselves as being overweight, which tends to be those with the highest BMI, may then develop the negative body image leading to depression. Among male children, the relationship is more complicated, as there is no linear relationship between body dissatisfaction and increasing BMI, unlike in female children. Higher BMI in male children may be associated with strength and athleticism, and male children are more likely to underestimate their weight compared with female children, hence many overweight male children may not perceive their weight negatively.

Policy implications and future research

We found overall prevalence of depression among obese children at 10%. This is of concern as the UK National Child Measurement Programme estimates for obesity prevalence in year 6 (aged 10/11 years) is 20%; hence, of the estimated 6.5 million children aged 10–18 years in the UK, as many as 1.3 million are obese. Our findings suggest 130,000 of these obese children may be living with depression in the UK. Depression in childhood has serious consequences; it is a major risk factor for suicide, which is one of the leading causes of death in this age group as well as having an impact on educational and social attainment.

It is therefore important to recognise and treat depression in children. Yet, current clinical guidelines on the management of obesity on depression. It is also plausible that those children identified with higher weights continue to gain weight over their lives, and hence the psychological and social impact of the excess weight continues to increase. However, studies varied in their inclusion and measurement of known confounders, hence further research is needed to know to what degree obesity is an independent risk factor for depression.

Limitations of study

We acknowledge several important limitations to our study. First, in common with all systematic reviews, potentially eligible studies where BMI has been independently measured. Only studies with >3 stars in cross-sectional studies or >3 stars in cohort/case-control studies included in this meta-analysis. The longitudinal relationship between obesity and depression adds evidence to the potential causal effect of obesity on depression. It is plausible that those children identified with higher weights continue to gain weight over their lives, and hence the psychological and social impact of the excess weight continues to increase. However, studies varied in their inclusion and measurement of known confounders, hence further research is needed to know to what degree obesity is an independent risk factor for depression.

Table 3 Sensitivity analysis

Study types included in meta-analysis	Number of included studies (n/N)	Meta-analysis (odds of depression in obese children vs normal-weight children)	Overall	Boys	Girls	Studies included					
		OR	95% CI	I²	OR	95% CI	I²	OR	95% CI	I²	All studies
All studies—odds of depression if obese vs normal weight	22/22	1.32	1.17 to 1.50	72.1%	1.14	0.93 to 1.41	49.0%	1.44	1.20 to 1.72	50.2%	Anderson et al 2011, Boutelle et al 2009, Clark et al 2007, Flotnes et al 2011, frisco et al 2013, Hoare et al 2014, Jansen et al 2008, Marmorstein et al 2014, Roberts and Duong 2013, Sjoberg et al 2012, Sweeting et al 2005, Zakeri et al 2012
Studies where BMI has been independently measured	14/22	1.25	1.09 to 1.44	44.5%	1.12	0.77 to 1.63	54.5%	1.42	1.15 to 1.75	52.7%	Anderson et al 2011, Boutelle et al 2009, Clark et al 2007, frisco et al 2013, Hoare et al 2014, Jansen et al 2008, Marmorstein et al 2014, Roberts and Duong 2013, Sjoberg et al 2012, Sweeting et al 2005, Zakeri et al 2012
Studies where comparator group does not include underweight or overweight individuals	7/22	1.22	1.03 to 1.45	84.3%	1.05	0.85 to 1.30	45.5%	1.14	1.06 to 1.22	0.0	BeLue et al 2009, Flotnes et al 2011, Hoare et al 2014, Jari et al 2014, Sjoberg et al 2012, Seydamini et al 2012, Sweeting et al 2005, Zakeri et al 2012
Studies where effect estimate was adjusted by some measure of socioeconomic deprivation	11/22	1.44	1.20 to 1.72	75.7%	1.33	0.88 to 2.02	58.1%	1.51	1.15 to 1.98	56.2%	Anderson et al 2007, BeLue et al 2009, frisco et al 2009, Clark et al 2007, Flotnes et al 2011, frisco et al 2013, Hoare et al 2014, Jansen et al 2008, Marmorstein et al 2014, Roberts and Duong 2013, Sjoberg et al 2012, Seydamini et al 2012, Zakeri et al 2012
High-quality studies (>3 stars in cohort/case-control studies or >3 stars in cross-section studies)	13/22	1.39	1.14 to 1.69	77.9%	1.33	0.80 to 2.20	60.5%	1.51	1.16 to 1.95	50.7%	Anderson et al 2007, BeLue et al 2009, frisco et al 2009, Clark et al 2007, Flotnes et al 2011, frisco et al 2013, Hoare et al 2014, Jansen et al 2008, Marmorstein et al 2014, Roberts and Duong 2013, Sjoberg et al 2012, Seydamini et al 2012, Zakeri et al 2012
Studies including populations where weight has been measured after the year 2000 onwards	17/22	1.28	1.12 to 1.46	75.4%	1.08	0.87 to 1.35	50.7%	1.34	1.12 to 1.60	44.7%	Anderson et al 2011, Assari and Caldwell 2015, BeLue et al 2009, Boutelle et al 2009, friso et al 2013, Flotnes et al 2011, Hoare et al 2014, Jansen et al 2008, Marmorstein et al 2014, Roberts and Duong 2013, Schiefelbein et al 2012, Seydamini et al 2012, Zakeri et al 2012
Studies where depression is diagnosed using structured psychiatric interview	7/22	1.27	0.94 to 1.70	18.1%	0.98	0.42 to 2.33	45.5%	1.53	0.88 to 2.65	0.0	Anderson et al 2007, Assari and Caldwell 2015, BeLue et al 2009, Boutelle et al 2009, friso et al 2013, Flotnes 2011, Hoare et al 2014, Jansen et al 2008, Marmorstein et al 2014, Roberts and Duong 2013, Sjoberg et al 2005
Only studies with population drawn from USA	10/22	1.47	1.23 to 1.77	46.3%	1.11	0.61 to 2.04	66.2%	1.72	1.37 to 2.15	6.1%	Anderson et al 2007, Anderson et al 2011, Assari and Caldwell 2015, BeLue et al 2009, Boutelle et al 2009, friso et al 2013, Flotnes et al 2011, Hoare et al 2014, Marmorstein et al 2014, Roberts and Duong 2013, Schiefelbein et al 2012

BMI, body mass index.
studies may have been missed. However, searches of citations in included studies and reviews made it unlikely that larger studies were missed.

Second, we found considerable heterogeneity between studies despite our defined inclusion criteria. Heterogeneity may have occurred due to differences in study designs or as a result of genuine differences in the odds of depression in obese children across different populations.

Third, most of our studies were from high-income countries, of which nearly half (10/22) were from the USA. Hence, our findings may not be generalisable to low-income and middle-income countries, where the perception of obesity may be different.

We considered whether other factors might have affected our results and performed multiple sensitivity analysis to examine the robustness of our findings. We considered whether misclassification of underweight individuals into normal weight categories as comparator group, and underestimating of weight due to the use of self-reported weight might have reduced the effect size seen. Meta-analysis of seven studies where the comparison group did not include underweight children (OR 1.22, 95% CI 1.03 to 1.45) and meta-analysis of 14 studies where BMI was objectively measured (OR 1.25, 95% CI 1.09 to 1.44) did not substantially alter the results.

Of the sensitivity analysis performed (table 3), only one would have substantially altered our findings. We found restricting meta-analysis to only those 7/22 studies that diagnosed depression using structured psychiatric interviews revealed no association between obesity and depression (OR 1.27, 95% CI 0.94 to 1.70). It is plausible that obese children exhibit symptoms of depression detected on depression rating scales; however, they do not cause significant functional impairment to meet stricter diagnostic criteria of major depression. The lack of functional impairment does not mean that obese children with significant depressed symptoms should be ignored, as children with depressive symptoms have elevated risk of later depression and suicidal behaviour and share similar future mental health risk as those experienced by children with a diagnosis of depression.

CONCLUSIONS

Compared with normal-weight female children, we found obese female children have a 44% (95% CI 1.20 to 1.72) increase odds of depression. Further research is needed to understand why they are vulnerable to the negative mental health effects of obesity, and clinicians should consider screening obese female children for symptoms of depression.

Correction notice This paper has been corrected since it was published Online First. In the last line of the conclusion of the abstract, there was some text missing and this has now been reinstated.

Contributors SS and SSax designed the study. SS conducted the searches and data extraction with help from DD and SSY. SS and SD conducted statistical analysis and all authors contributed to data interpretation and revising drafts produced by SS. All authors had full access to all the data collected in this systematic review, have checked for accuracy and have approved the final version of this manuscript.

Funding SSax was funded by the National Institute for Health Research (Career Development Fellowship CDF-2011-04-048). This article presents independent research commissioned by the National Institute for Health Research (NIHR). The Department of Primary Care and Public Health at Imperial College is grateful for support from the National Institute for Health Research Biomedical Research Centre Funding scheme and the National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care scheme.

Disclaimer The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. DD receives salary support from NIHR.

Competing interests DD receives salary support from NIHR.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Extracted data from individual studies are available on request. Please contact the corresponding author (SS).

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

1. Kessler RC, Amminger GP, Aguilar-Gaxiola S, et al. Age of onset of mental disorders: a review of recent literature. Curr Opin Psychiatry. 2007;20:359–64.

2. Gore FM, Bloom PJN, Patton GC, et al. Global burden of disease in young people aged 10–24 years: a systematic analysis. The Lancet. 2017;389:2093–102.

3. Cook MN, Peterson J, Sheldon C. Adolescent depression: an update and guide to clinical decision making. Psychiatry. 2009;6:17–31.

4. Merry S, McDowell H, Hetrick S, et al. Psychological and/or educational interventions for the prevention of depression in children and adolescents. Cochrane Database Syst Rev 2004:CD003380.

5. World Health Organisation. Preventing suicide: a global imperative. Geneva: World Health Organisation, 2014.

6. World Health Organisation. Global Accelerated Action for the Health of Adolescents (AA-HA!): guidance to support country implementation. Geneva: World Health Organisation, 2017.

7. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.

8. Mühlig Y, Antel J, Föcker M, et al. Are bidirectional associations of obesity and depression already apparent in childhood and adolescence as based on high-quality studies? A systematic review. Obes Rev 2016;17:235–49.

9. Reeves GM, Postolache TT, Sniker S. Childhood obesity and depression: connection between these growing problems in growing children. Int J Child Health Hum Dev. 2008;1:103–14.

10. Preiss K, Brennan L, Clarke D. A systematic review of variables associated with the relationship between obesity and depression. Obes Rev 2013;14:906–18.

11. Atlantis E, Ball K. Association between weight perception and psychological distress. Int J Obes. 2008;32:715–21.

12. Roberts RE, Duong HT. Perceived weight, not obesity, increases risk for major depression among adolescents. J Psychiartr Res 2013;47:1110–7.

13. Frisco ML, Houle JN, Martin MA. The image in the mirror and the number on the scale: weight, weight perceptions, and adolescent depressive symptoms. Journal of Health and Social Behavior. 2010;51:215–28.

14. Mushar-Eizenman DR, Holub SC, Miller AB, et al. Body size stigmatization in preschool children: the role of control attributions. J Pediatr Psychol. 2004;29:613–20.

15. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35:891–8.

16. Park MH, Souli O, Viner RM, et al. Overweight in childhood, adolescence and adulthood and cardiovascular risk in later life: pooled analysis of three British birth cohorts. PLoS One 2013;8:e70684.

17. Friedemann C, Heneghan C, Mahtani K, et al. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ 2012;345:e4759.

18. WHO. Childhood overweight and obesity. Geneva: WHO, 2017.

19. Jari M, Qorbani M, Motlagh ME, et al. Association of overweight and obesity with mental distress in Iranian adolescents: The CASPIAN-III Study. Int J Prev Med. 2014;5:256–61.

20. Halton N, Larson K, Slusser W. Associations between obesity and comorbid mental health, developmental, and physical health conditions in a nationally representative sample of US children aged 10 to 17. Acad Pediatr. 2013;13:6–13.

21. Britz B, Siegfried W, Ziegler A, et al. Rates of psychiatric disorders in a clinical study group of adolescents with extreme obesity and in obese adolescents ascertained via a population based study. Int J Obes Relat Metab Disord 2003;27:396–403.

22. Fitzgibbon ML, Stolley MR, Kirschenbaum DS. Obese people who seek treatment for symptoms of depression and other major mental disorders. J AAFP. 2007;20:359–64.

23. Britz B, Siegfried W, Ziegler A, et al. Rates of psychiatric disorders in a clinical study group of adolescents with extreme obesity and in obese adolescents ascertained via a population based study. Int J Obes Relat Metab Disord 2003;27:396–403.

24. Britz B, Siegfried W, Ziegler A, et al. Rates of psychiatric disorders in a clinical study group of adolescents with extreme obesity and in obese adolescents ascertained via a population based study. Int J Obes Relat Metab Disord 2003;27:396–403.

25. Higgins JG, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0: The Cochrane Collaboration, 2011.

26. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med 2009;151:264–9.

27. Jeffery R, Neumark-Sztainer D. Eating behaviours and obesity among youth age 10-24 years: a systematic analysis. J Adolesc. 2007;30:1257–69.

28. Jeffery R, Neumark-Sztainer D. Eating behaviours and obesity among youth age 10-24 years: a systematic analysis. J Adolesc. 2007;30:1257–69.

29. Jeffery R, Neumark-Sztainer D. Eating behaviours and obesity among youth age 10-24 years: a systematic analysis. J Adolesc. 2007;30:1257–69.

30. Jeffery R, Neumark-Sztainer D. Eating behaviours and obesity among youth age 10-24 years: a systematic analysis. J Adolesc. 2007;30:1257–69.

31. Jeffery R, Neumark-Sztainer D. Eating behaviours and obesity among youth age 10-24 years: a systematic analysis. J Adolesc. 2007;30:1257–69.

32. Jeffery R, Neumark-Sztainer D. Eating behaviours and obesity among youth age 10-24 years: a systematic analysis. J Adolesc. 2007;30:1257–69.

33. Jeffery R, Neumark-Sztainer D. Eating behaviours and obesity among youth age 10-24 years: a systematic analysis. J Adolesc. 2007;30:1257–69.
Original article

28 Assari S, Caldwell CH. Gender and ethnic differences in the association between obesity and depression among black adolescents. *J Racial Ethn Health Disparities* 2015;2:48–1–9.

29 Anderson SE, Murray DM, Johnson CC, et al. Obesity and depressed mood associations differ by race/ethnicity in adolescent girls. *Int J Pediatr Obes* 2011;6:69–78.

30 de Wit L, Luppinu F, van Straten A, et al. Depression and obesity: a meta-analysis of community-based studies. *Psychiatry Res* 2010;178:230–5.

31 Frisco ML, Houle JN, Martin MA. The image in the mirror and the number on the scale. *Journal of Health and Social Behavior* 2010;51:215–28.

32 Austin SB, Haines J, Veugelers PJ. Body satisfaction and body weight: gender differences and sociodemographic determinants. *BMC Public Health* 2009;9:313.

33 Martin MA, Frisco ML, May AL. Gender and race/ethnic differences in inaccurate weight perceptions among U.S. adolescents. *Womens Health Issues* 2009;19:292–9.

34 Obesity and ethnicity. 2011 https://www. noo. org. uk/ uploads/ doc/ vid_ 9444_ Obesity_...

35 Martin MA, Frisco ML, Houle JN, May AL. The image in the mirror and the number on the scale. *Arch Gen Psychiatry* 2005;62:e38–6–2.

36 Scottish Intercollegiate Guidelines Network (SIGN). Management of obesity: a national clinical guideline. *Guidelines Scotland: Scottish Intercollegiate Guidelines Network (SIGN)*, 2010.

37 Kirby JB, Liang L, Chen HJ, et al. Race, place, and obesity: the complex relationships among community racial/ethnic composition, individual race/ethnicity, and obesity in the United States. *Am J Public Health* 2012;102:1572–8.

38 Vine M, Hargreaves MB, Briefel RR, et al. Expanding the role of primary care in the prevention and treatment of childhood obesity: a review of clinic- and community-based recommendations and interventions. *J Obes* 2013;2013:1–17.

39 de Wit LM, van Straten A, van Herten M, et al. Depression and body mass index, a u-shaped association. *BMC Public Health* 2009;9:14.

40 Schiefelbein EI, Mirchandani GG, George GC, et al. Association between depressed mood and perceived weight in middle and high school age students: Texas 2004-2005. *Matern Child Health J* 2012;16:169–76.

41 Ferguson DM, Horwood LJ, Ridder EM, et al. Subthreshold depression in adolescence and mental health outcomes in adulthood. *Arch Gen Psychiatry* 2005;62:e66–72.

42 Anderson SE, Cohen P, Naumova EN, et al. Adolescent obesity and risk for subsequent major depressive disorder and anxiety disorder: prospective evidence. *Psychosom Med* 2007;69:740–7.

43 Herva A, Laitinen J, Miettunen J, et al. Obesity and depression: results from the longitudinal Northern Finland 1966 Birth Cohort Study. *Int J Obes* 2006;30:520–7.

44 Bouteille KN, Hannon P, Fullerson IA, et al. Obesity as a prospective predictor of depression in adolescent females. *Health Psychol* 2010;29:293–8.

45 Frisco ML, Houle JN, Lippert AM. Weight change and depression among US young women during the transition to adulthood. *Am J Epidemiol* 2013;178:22–30.

46 Clark C, Haines MM, Head J, et al. Psychological symptoms and physical health and health behaviours in adolescents: a prospective 2-year study in East London. *Addiction* 2007;102:126–35.

47 Marmo anderson NR, Lacson WG, Legrand L. Obesity and depression in adolescence and beyond: reciprocal risks. *Int J Obes* 2014;38:906–11.

48 Sanderson K, Patton GC, McKercher C, et al. Overweight and obesity in childhood and risk of mental disorder: a 20-year cohort study. *Aust N Z J Psychiatry* 2011;45:384–92.

49 Sweeting H, Wright C, Minnis H. Psychosocial correlates of adolescent obesity, ‘slimming down’ and ‘becoming obese’. *J Adolesc Health* 2005;37:409.e9–17.

50 Flemmings IS, Nilsen TI, Augustad LB. Norwegian adolescents, physical activity and mental health: The Young-HUNT study. *Norsk Epidemiologi* 2011;20:513–61.

51 Hoare E, Millar L, Fuller-Tyszkwicz M, et al. Associations between obesogenic risk and depressive symptomatology in Australian adolescents: a cross-sectional study. *J Epidemiol Community Health* 2014;68:767–72.

52 Zakeri M, Sedaghati M, Motlagh ME, et al. BMI correlation with psychiatric problems among 10–18 years Iranian students. *Acta Med Iran* 2012;50:177–84.

53 Seyyedamini B, Malek A, Ebrahimi-Mameghani M, et al. Correlation of obesity and overweight with emotional-behavioral problems in primary school age girls in tabriz, iran. *Iran J Pediatr* 2012;22:15–22.

54 BeLue R, Francis LA, Colaco B. Mental health problems and overweight in a nationally representative sample of adolescents: effects of race and ethnicity. *Pediatrics* 2009;123:697–702.

55 Arsani W, van de Looij-Jansen PM, de Wilde EJ, et al. Feeling fat rather than being fat may be associated with psychological well-being in young dutch adolescents. *Am J Epidemiol* 2005;62:45–52.

56 Sutaria S, et al. Arch Dis Child* 2019;104:64–74. doi:10.1136/archdischild-2017-314608