"WE FEEL THAT YOU JUST DON'T APPRECIATE THE IMPORTANCE OF WHAT WE DO HERE"
3. Nuclear Behaviour
Properties of the N-N Force

- The force is *charge symmetric*
- The force is (nearly) *charge independent*
- The force is *spin dependent*
- The force has a *non-central component*
- The force depends on the *relative velocity or momentum* of the nucleons
- The force has a *repulsive core*

- 'Exchange model': force mediated by pion exchange

- See *Phys490_latex.pdf* for more details
Isospin

Isospin was introduced by German theoretical physicist Werner Karl Heisenberg in 1932 as a way to distinguish between protons and neutrons.

- The quantum mathematics of spinors (spin up – spin down entities) can also be applied to nucleons

- In an abstract “isospace” neutrons are spin up and protons spin down!
Isospin and Nuclides

- Given a nucleus with A nucleons (combined of Z and N nucleons):

- The third component of isospin T_z describes a particular nuclide with specific Z and N values

- Simply: $T_z = \frac{1}{2} (N - Z)$

- Isospin I is conserved in nuclear interactions
Isospin Substates Of Isobars

- By analogy with spin, an isospin T state has $(2T+1)$ substates
- The T_z substates correspond to states in different nuclei
Isobaric Analogue States

- **Isodoublet** states occur in odd-A nuclei
- **Isotriplet** states occur in even-A (even-even and odd-odd) nuclei

Isodoublets	Isotriplets
2.87	3.55
2.79	4.65
1.75	1.98
0.35	3.06
0	1.89
$^1\!^9\text{Ne}_{11}$	$^18\text{O}_{10}$
$^1\!^1\text{Na}_{10}$	$^{18}\text{Ne}_{8}$
$T_z=+1/2$	$T_z=0$
$T_z=-1/2$	$T_z=+1$

- $T=0$ states are isosinglets.
A=51 Mirror Nuclei

\(^{51}_{26} \text{Fe}_{25} \)

\[\tau = 2.87 \text{ ns} \]

\(^{51}_{25} \text{Mn}_{26} \)

\[\tau = 2.07 \text{ ns} \]
Mirror Nuclei: $f_{7/2}$ Shell

		28		
27	$f_{7/2}$-shell			
26				
25				
24	45Cr	46Cr	47Cr	48Cr
23	44V	45V	46V	47V
22	42Ti	43Ti	44Ti	45Ti
21	41Sc	42Sc	43Sc	44Sc
20	40Ca	41Ca	42Ca	43Ca

$N=Z$ Line

Complete isobaric multiplets in $f_{7/2}$-shell…

$T=1/2$ mirror-pairs

$T=1$ isobaric triplets

$T_z = -3/2 (N=Z-3)$ members of the $T=3/2$ quadruplet - no excited states known…
Mirror Nuclei

- The force between two nucleons has the property of charge symmetry and charge independence.
- The two nuclei ^{20}Na and ^{20}F are examples of mirror nuclei.
- The numbers of protons and neutrons are exchanged.
- Reflection about the $N = Z$ line.
Independent Particle Model

- In principle, if the form of the nucleon-nucleon potential is known for bare nucleons, then the energy of a nucleon moving inside a nucleus can be calculated.

- This is a very difficult problem to solve as the nucleon interacts simultaneously with all the other nucleons.

- Use an average potential

Energy as a function of separation

\[V_{ij} \]

repulsive core

short range attraction

\[r = r_i - r_j \]
Independent Particle Model

- The Hamiltonian is of the form:
 \[H = \sum (T_i + V_{ij}) \]
- It has \(3A \) degrees of freedom and is too complicated to solve except for the lightest nuclei \((A < 12) \)

- Instead we use an average “mean-field” potential:
 \[H = H_{\text{mean field}} + H_{\text{residual}} \]
 where \(H_{\text{residual}} \) contains interactions between nucleons that are not accounted for by the average potential, especially interactions among valence nucleons
Nuclear Mean Free Path

- Why is it that the Independent Particle picture of nuclear motion works?

- The Pauli Exclusion Principle (PEP) gives nucleons essentially infinite mean free path.

- However, if the range of the nuclear force was 2 to 3 times longer, then nuclei could have been crystalline.
Particles in a (Potential) Box

- The short range interaction between nucleons means that each nucleon moves in an average potential
- The average separation (~ 2.4 fm) is larger than the range of the nuclear force (1.4 ~ fm)
- Nuclei cannot easily change state unless close to the Fermi surface (PEP)

Energy levels up to the 'Fermi level'
Degenerate Fermi Gas Model

- This is a simple model in which nucleons are placed in a volume $V = \frac{4\pi R^3}{3}$ and the interactions between them are ignored.

- A Fermi sea is formed, filled up to the energy corresponding to the Fermi momentum:
 \[E_F = \frac{p_F^2}{2m} = \frac{\hbar^2 k_F^2}{2m} \]

- The binding energy per nucleon is:
 \[B = -\frac{E}{A} = -\frac{3}{5} T_F + \frac{1}{2} V_0 \]
 where T_F is the kinetic energy at the Fermi surface.
Nucleon Effective Mass

- The nuclear force has the property of **saturation** so that \(B(A,Z) \) is independent of \(A \) caused by the Pauli Exclusion Principle (PEP), its spin and isospin dependence, and (less importantly) the repulsive core.

- The nuclear separation energy \(S \) is the difference between the energy of a nucleon outside the nucleus and the energy of the Fermi level \(E_F \):

\[
S = B = -\frac{1}{5} T_F
\]

- Wrong! \((S > 0) \) - the nucleon has an effective mass \((m^* > m_n) \) when moving in a nucleus.
Some Nuclear Quantities

- Number density \((A/V)\) measured:
 \[\rho \sim 0.17 \text{ fm}^{-3} (\sim 1.5 \times 10^{18} \text{ kg/m}^3) \]

- Fermi momentum:
 \[k_F = \frac{p_F}{\hbar} \sim 1.4 \text{ fm}^{-1} \]

- Fermi energy:
 \[E_F \sim 10 \text{ MeV} \]

- Kinetic energy of a nucleon in the nucleus:
 \[\frac{3}{5}E_F \sim 6 \text{ MeV} \]
 corresponding to a velocity \(v/c \sim 0.14\)
Nuclear Potentials

There are two approaches:

1. An empirical form of the potential is assumed, e.g. square well, harmonic oscillator, Woods-Saxon

2. The mean field is generated self-consistently from the nucleon-nucleon interaction
Summary

- Isospin (mirror nuclei)
- Nuclear Potentials (particle in a box)