The incidence of post-TBI cognitive problems is known—what should be done to offer effective treatment solutions?—this is the question the panelists consisting of a diverse group of experts. To address this, a diagnostic scale becomes a requisite. Nevertheless, such an application would work if machine learning algorithms adapt to the difficulty of different tasks, for example, through supervised learning, to monitor the patients from a long-term perspective, identify the need for intervention and the type of reasonable, affordable, and necessary interventions and, to achieve this, a diagnostic scale becomes a requisite.

Marina Zeldovich, also supported by Nicole von Steinbüchel, presents a diagnostic scale that is under development in Germany, consisting of the following stages:

- Identify and access the problem;
- Provide a differential diagnosis, i.e., if it is TBI related or depression-related, or related to other causes;
- Treat the problem.

Still, in order to build a diagnostic scale, the two address the lack of a summary of all the findings in research, so it is very important to merge central findings from CENTER-TBI [3] and CAPTAIN studies, for example, in order to generate sensitive assessments, validate them and consolidate the results. Or, in Nicole von Steinbüchel's words, to identify sensitive instruments and validate them in order to treat TBI. The latter underlines the fact that there is no integrated information on neuropsychological data in observational studies—what kind of therapy is used, how often, and at what intensity, all of these remaining questions without a clear answer.

Nada Andelic states that there should definitely be developed follow-up programs [4,5], e.g., for community integration, and Johannes Vester contextualizes the entire problem as having financing as an important bottleneck, becoming thus a burden for society and the economy. Volker Hömberg states that a part of the problems could be resolved with digital technologies by developing applications [6,7] that could increase awareness by simultaneously generating data from the patients using a dedicated application. More than that, digital technologies are easily applicable, highly accessible, and trackable.

To support the idea launched by the previous panelist, Peter Lackner presents the work developed by a team he is also part of, namely an application for speech rehabilitation constructed on machine learning algorithms that can detect if the patient is progressive and, subsequently, assign heavier or easier tasks for the patient to deal with at home. Peter Lackner adds that the application is still in a study phase and is currently used only in hospitals under supervised learning.

However, such an application would work if machine learning algorithms would adapt to the difficulty of different tasks...
automatically and a central read-out would be obtained, thus placing all the results in a database, with the patients being remotely controlled.

Prof. Dafin F. Muresanu brings together under an innovative umbrella all opinions presented and brings forward the idea of a workgroup/task force, with representatives from and support of AMN, WFNR, EFNR, to be organized to work on various projects focused on developing digital products. Furthermore, NEUROTECH,EU – The European University of Brain and Technology, would be extremely interested in benefiting from digital products developed in this medical field.

REFERENCES

1. Shin MK, Vázquez-Rosa E, Koh Y, Dhar M, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021 May 13;184(10):2715-2732.e23. doi: 10.1016/j.cell.2021.03.032

2. Pluta R, Januszekowski S, Cucuowar SJ. Myricetin as a Promising Molecule for the Treatment of Post-Ichemic Brain Neurodegeneration. Nutrients. 2021 Jan 24;13(2):342. doi: 10.3390/nu13020342

3. Cnossen MC, Polinder S, Lingua HF, Maas AIR, et al. Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study. PLoS ONE. 2016;11(8): e0161367. doi: 10.1371/journal.pone.0161367

4. Seabury SA, Gazette E, Goldman DP, Markowitz AJ, et al. Assessment of Follow-up Care After Emergency Department Presentation for Mild Traumatic Brain Injury and Concussion Results From the TRACK-TBI Study. JAMA Network Open. 2018; 1(1):e180210. doi: 10.1001/jamanetworkopen.2018.0210

5. Andelic N, Howel EI, Hellstrom T, Sanchez MF, et al. Disability and quality of life 20 years after traumatic brain injury, Brain and Behavior. 2018; 8(7):e01018. https://doi.org/10.1002/brb3.1018

6. Evald L, (2018) Prospective memory rehabilitation using smartphones in patients with TBI, Disability and Rehabilitation, 40(19), 2250-2259, doi: https://doi.org/10.1080/09638288.2017.1333633

7. Berthauer LM, Stearns-Yoder KA, McGarry S, Smith V et al. Mobile App for Mental Health Monitoring and Clinical Outreach in Veterans: Mixed Methods Feasibility and Acceptability Study, J Med Internet Res 2020;22(8):e15506, doi:10.2196/15506