ATP as a multi-target danger signal in the brain

Ricardo J. Rodrigues, Angelo R. Tomé and Rodrigo A. Cunha*

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal

ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection.

Keywords: ATP, adenosine, P2 receptors, P1 receptors, ecto-nucleotidases, P2X7 receptor, P2Y1 receptor, A2A receptor

Introduction

Intracellular adenosine 5′-triphosphate (ATP) plays several pivotal roles, namely in energy transfer (Lipmann, 1941). Hence, the proposal by Burnstock (1972) that ATP was released to function as an extracellular signal was controversial. However, this concept is supported by the identification of mechanisms of ATP release, of ecto-enzymes metabolizing ATP named ecto-nucleotidases, and of purinergic receptors. ATP can trigger biological effects per se through the activation of P2 receptors (P2R) or through its ecto-nucleotidase metabolites ADP activating some P2R and adenosine through P1R activation (Ralevic and Burnstock, 1998). Cloning identified seven P2XR subunits P2X1-7, forming functional homomeric or heteromeric ionotropic receptors activated by ATP (Khakh and North, 2012) and eight different metabotropic P2YR (P2Y1,2,4,6,11,12,13,14) exhibiting a different sensitivity to ATP (P2Y11), ADP (P2Y1,12,13), UTP/ATP (P2Y2,4), UDP (P2Y6), or UDP-glucose (P2Y14) (Abbracchio et al., 2006), whereas adenosine P1R family comprises A1, A2A, A2B, and A3 metabotropic receptors, identified by convergent molecular, biochemical and pharmacological data (Fredholm et al., 2011).

ATP is stored in synaptic and in astrocyte vesicles, but it can be released from different cell types, namely nerve terminals, dendrites, and axons from neurons...
(Pankratov et al., 2006; Fields, 2011), astrocytes (Koizumi, 2010) and microglia (Imura et al., 2013; George et al., 2015) through multiple pathways (Bodin and Burnstock, 2001). Also, purinergic receptors display a widespread brain expression both in neuronal or non-neuronal cells such as astrocytes, microglia or endothelial cells (Fredholm et al., 2005; Fields and Burnstock, 2006). Accordingly, multiple roles have been attributed to extracellular ATP. ATP can act as a neurotransmitter, since P2XR-mediated ATPergic transmission has been found in central synapses (Edwards et al., 1992; Bardoni et al., 1997; Nieber et al., 1997; Pankratov et al., 1998, 2002; Mori et al., 2001). ATP is also a controller of inflammation (Idzko et al., 2014), with multiple actions on microglia (Koizumi et al., 2013) and its consequences on astrocytes and neurons. ATP and adenosine both regulate oligodendrocyte differentiation and myelination (Agresti et al., 2005; Rivkees and Wendler, 2011) in an activity-dependent manner (Fields, 2006). Moreover, purines modulate astrocytic function and sustain Ca\(^{2+}\)-waves, the substrate of glial excitability and intercellular communication (Guthrie et al., 1999; Koizumi, 2010) to influence synaptic activity (Zhang et al., 2003; Jourdain et al., 2007; Franke et al., 2012). In fact, it is mostly concluded that ATP acts as a synaptic neuromodulator through presynaptic regulation of neurotransmitter release, by postsynaptic regulation of other receptors or of intrinsic neuronal excitability, with an impact in synaptic plasticity (Cunha and Ribeiro, 2000; Khakh, 2001; Halassa et al., 2009).

The variety of purinergic receptors and their widespread region- and cell-specific expression pattern and actions places purinergic signaling as a major system for integration of functional activity between neurons, glial and vascular cells in the brain as heralded by the role of purines (ATP and adenosine) in neuron-neuron, astrocyte-neuron, oligodendrocyte-neuron and/or microglia/neuron bi-directional communication (Fields and Burnstock, 2006; Butt, 2011). Moreover, the different sensitivities of the different receptors to their different ligands (ATP, ADP, adenosine) displaying spatial and temporal fine-tuned gradients (Zhang et al., 2003; Cunha, 2008), endows purinergic signaling with unique features adapted to control brain networks. Not surprisingly, the dysfunction of this purinergic system is closely associated with brain disorders and we will now exploit the concept that ATP acts as a danger signal, implying an abnormal and sustained elevation of extracellular ATP levels in brain dysfunction and the involvement of purine receptors, namely P2X7R (ATP), P2Y1R (ADP) and A\(_{2A}\)R (adenosine), in brain damage.

Sustained Increase of Extracellular ATP Levels in Brain Pathology

There is growing evidence for a rapid increase of the extracellular ATP levels upon noxious brain conditions such as trauma (Wang et al., 2004; Davalos et al., 2005; Franke et al., 2006; Choo et al., 2013), hypoxia/ischemia (Lutz and Kabler, 1997; Jurányi et al., 1999; Melani et al., 2005) or epilepsy-associated seizures (Wierszko et al., 1989; see Dale and Frenguelli, 2009). The sustained nature of the enhanced extracellular levels of purines (ATP and adenosine) in brain dysfunction is indicative of regulated mechanisms of ATP release rather than simple ATP leakage. However, neither the cellular source nor the mechanism of ATP release upon noxious brain conditions has yet been clarified. Neurons can release ATP either through a vesicular release (White, 1977; Pankratov et al., 2006) mostly occurring at high frequency of firing (Wierszko et al., 1989; Cunha et al., 1996a) or upon anoxic or spreading depolarization (Frenguelli et al., 2007). Astrocytes (Florian et al., 2011; Bennett et al., 2012) and microglia (Kim et al., 2007; Sanz et al., 2009) can also release purines upon brain dysfunction through vesicular release (Coco et al., 2003; Bowser and Khakh, 2007; Imura et al., 2013) and/or other mechanisms namely pannexin and/or connexin channels (Bao et al., 2004; Reigada et al., 2008; Iwabuchi and Kawahara, 2011), which have been proposed as a target for neuroprotection (Shestopalov and Slepak, 2014). In other cells, ATP release through lysosomal-dependent vesicles (Zhang et al., 2007) and/or from pannexin channels (Bennett et al., 2012) from autophagic (Wang et al., 2013) or apoptotic cells (Sandilos et al., 2012; Xiao et al., 2012) acts as a find-me signal (Elliott et al., 2009) (Figure 1).

Purinergic Receptors in Brain Pathology

The concept of ATP as a danger signal implies the release of ATP but also the involvement of purinergic receptors in brain disorders, which has mostly been documented for P2X7R, P2Y1R, and A\(_{2A}\)R.

P2X7 Receptor

P2X7R have a lower affinity for ATP (0.1–1 mM) compared to other P2XR (\(EC_{50} = 1–10 \mu M\) (Surprenant and North, 2009), suggesting that their activation mostly occurs in pathological conditions associated to enhanced extracellular ATP levels. This is supported by the well-documented increase of P2X7R levels and P2X7R gain-of-function to control different brain disorders, from trauma or metabolic stress (Cavaliere et al., 2004; Franke et al., 2004; Melani et al., 2006; Arbeloa et al., 2012; Kimbler et al., 2012) to Alzheimer's disease (AD; Parvathenani et al., 2003; McLarnon et al., 2006; Diaz-Hernández et al., 2012; Murphy et al., 2012), Parkinson's disease (PD; Marcellino et al., 2010; Carmo et al., 2014a), Huntington's disease (HD; Diaz-Hernández et al., 2009) epilepsy (Solle et al., 2001; Vianna et al., 2002; Rappold et al., 2006; Avignon et al., 2008; Donà et al., 2009; Engel et al., 2012; Jimenez-Pacheco et al., 2013), prion disease (Takenouchi et al., 2007), and multiple sclerosis (MS, Matute et al., 2007; Sharp et al., 2008; Grygorowicz et al., 2011). Increased P2X7R levels have been also reported in human brain tissue of patients with temporal lobe epilepsy (Fernandes et al., 2009; Padrão et al., 2011), MS or AD (Narcisse et al., 2005; McLarnon et al., 2006; Yangou et al., 2006).

P2X7R up-regulation has been mainly associated with microgliosis, since P2X7R promote neuronal death through microglia-derived interleukin-1β (IL-1β) (Ferrari et al., 1996; Chakfe et al., 2002; Skaper et al., 2006; Bernardino et al., 2008; Takenouchi et al., 2009) or production of reactive oxygen species (Parvathenani et al., 2003; Skaper et al., 2006; Lee et al., 2011).
AD, P2X7R are predominantly up-regulated in microglia around β-amyloid (Aβ) plaques in mice (Parvathenani et al., 2003; Lee et al., 2011) and humans (McLarnon et al., 2006) and Aβ triggers IL-1β secretion from microglia in a P2X7R-dependent manner (Sanz et al., 2009). A similar gain of function of P2X7R in formatting microglia responsiveness has been observed after ischemia (Franke et al., 2004), MS (Yiangou et al., 2006), prion disease (Takenouchi et al., 2007), PD (Marcellino et al., 2010) or upon status epilepticus (Rappold et al., 2006; Avignone et al., 2008; Kim et al., 2009; Choi et al., 2012; Engel et al., 2012), where P2X7R blockade/deletion reduces seizure severity during status epilepticus (Solle et al., 2001; Engel et al., 2012; Jimenez-Pacheco et al., 2013). P2X7R have also been linked to psychiatric disorders, as heralded by the association of P2X7R polymorphisms with major depression (Lucae et al., 2006; Hejjas et al., 2009) and by the anti-depressive behavior of P2X7R KO mice (Basso et al., 2009; Csöllő et al., 2013), in line with the ability of IL-1β to induce depression-like behavioral changes (Pollak and Yirmiya, 2002; Anisman et al., 2005).

Besides this major role on overactivation of microglia, P2X7R are also up-regulated in reactive astrocytes and in neurons in the diseased brain (Franke et al., 2004; Doná et al., 2009; Engel et al., 2012). Astrocytic and neuronal P2X7R may also contribute to neuronal damage by inducing the release of glutamate and GABA from astrocytes (Wang et al., 2002; Duan et al., 2003; Fu et al., 2013) or from neurons (Wirkner et al., 2005; Marcoli et al., 2008; Cho et al., 2010; Cervetto et al., 2012), unbalancing excitability (Tian et al., 2005) and/or causing a direct neurotoxicity (Volonté et al., 2003) involving either the dilation of P2X7R pore (Di Virgilio et al., 1998; Khadra et al., 2013) or the recruitment of pannexin-1 hemichannels (Suadicani et al., 2012). Accordingly neuronal P2X7R are required for neurotoxicity in HD (Díaz-Hernández et al., 2009), PD (Carmo et al., 2014a) or ischemic conditions (Arbeloa et al., 2012). A direct toxic
action of ATP through P2X7R activation has also been shown in oligodendrocytes (Matute et al., 2007), which may be relevant to the contribution of P2X7R to MS (Amadio et al., 2011).

In summary, the observed gain of function of P2X7R in pathological conditions, suggests that P2X7R may essentially act as a danger sensor shared by different brain disorders, contributing to the progression of brain diseases through a combined neurotoxic overactivation of microglia, also involving astrocytic-mediated or direct neurotoxic actions (Figures 1, 2).

P2Y1 Receptor

P2Y1R is a metabotropic receptor preferentially activated by ADP, which pharmacological or genetic blockade affords neuroprotection in ischemic conditions (Sun et al., 2008; Kuboyama et al., 2011; Chin et al., 2013; Carmo et al., 2014b) or trauma (Choo et al., 2013). P2Y1R have a widespread cellular distribution and modulate neurons (Bowser and Khakh, 2004; Guzman et al., 2010), astrocytes (Fam et al., 2003; Fumagalli et al., 2003; Zheng et al., 2013) and microglia (Boucsein et al., 2003; Ballerini et al., 2005; Bianco et al., 2005). However, the pathological role of P2Y1R has been predominantly associated to reactive astrocytes since P2Y1R play a key role in entraining the propagation of calcium waves throughout the astrocyte network (Fam et al., 2003; Neary et al., 2003; Bowser and Khakh, 2007) and promote astrocytic hyperactivity and astrogliosis upon mechanical injury (Franke et al., 2001), ischemic conditions (Sun et al., 2008) or AD (Delekate et al., 2014), which is known to interfere with neuronal repair and regeneration (McKeon et al., 1999; Tian et al., 2006). The neuroprotection resulting from P2Y1R blockade might also involve the ability of P2Y1R to control GABA uptake (Jacob et al., 2014) and glutamate release (Domercq et al., 2006) impacting on synaptic function (Jourdain et al., 2007; Santello et al., 2011), and to regulate inflammatory/trophic factors expression in astrocytes (Kuboyama et al., 2011). However, in line with the existence of multiple populations of P2Y1R with different functions in astrocytes operating different transducing pathways (Fam et al., 2003; Sun et al., 2008; Kuboyama et al., 2011; Zheng et al., 2013), increased susceptibility of neurons to damage. Here, it is summarized the different mechanisms reported for each receptor that are or may be contributing to neurodegeneration. The knowledge of the precise mechanisms and the challenging characterization of the temporal and spatial hierarchy of these different actions, perhaps as a common neurodegenerative pathway to different brain disorders, will most likely unravel an opportunity for multi-drug target therapeutics.
2013), the blockade or the stimulation of P2Y1R in astrocytes can cause paradoxical effects; thus, the exogenous overactivation of P2Y1R can prevent astrocytic damage (Shinozaki et al., 2006) and protect against neuronal damage induced by oxidative stress through IL-6 release (Fujita et al., 2009). This apparently paradoxical effect might also result from the up-regulation of P2Y1R in pathological conditions, such as epilepsy (Fernandes et al., 2009; Padrão et al., 2011), mechanical injury (Franke et al., 2004), ischemia (Kuboyama et al., 2011) or AD (Moore et al., 2000), which might trigger a time-dependent gain of noxious function of P2Y1R under non-acute pathological conditions.

Neuronal P2Y1R may also directly affect brain function and damage (Carmo et al., 2014b). P2Y1R are located in central synapses, where they control glutamate release (Mendonzá-Fernández et al., 2000; Rodrigues et al., 2005) and NMDA receptors (Luthardt et al., 2003). P2Y1R also control calcium and potassium conductances (Gerevich et al., 2004; Filippov et al., 2006; Coppi et al., 2012) and inhibitory transmission (Bowser and Khakh, 2004; Kawamura et al., 2004), but it is unclear how these different effects impact on the functioning and viability of neuronal networks; in fact, brain insults trigger an up-regulation of neuronal P2Y1R (Moore et al., 2000) coupled to a noxious gain of function, as heralded by the selective ability of P2Y1R to inhibit cortical LTD only in hypoxic conditions (Guzman et al., 2010) and to normalize neurotransmission upon anoxic depolarization (Traini et al., 2011). Finally, microglia P2Y1R are also expected to be involved in the neuroprotection associated with P2Y1R blockade since P2Y1R modulate neuroinflammatory responses (Ballerini et al., 2004). Thus, the role of P2Y1R in neurodegeneration is likely to involve a trans-cellular network, as illustrated by the evidence that activated microglia is capable to modulate synaptic function through ATP release, which in turn stimulates astrocytic P2Y1R controlling glutamatergic glio transmission that feeds-back to impact on synaptic activity (Pascual et al., 2012) (Figures 1, 2).

In summary, it seems that, in addition to P2X7R, P2Y1R also contribute to brain dysfunction and damage, further arguing for the role of extracellular ATP as a danger signal in brain pathology. This is further heralded by the neurotoxicity of exogenously added ATP (Ryu et al., 2002; Amadio et al., 2005; Resta et al., 2005) and by the neuroprotection afforded by non-selective P2R antagonists (Krügel et al., 2001; Lämmer et al., 2006), supporting that P2R might be valuable targets for neuroprotection (Volonté et al., 2003; Franke et al., 2006).

A2A Receptor
Apart from a direct effect of ATP acting through P2X7R and P2Y1R, ATP may also impact on brain dysfunction upon its extracellular catabolism by ecto-nucleotidases (Cunha, 2001; Zimmermann et al., 2012) into adenosine, followed by activation of adenosine receptors (Cunha, 2005; Chen et al., 2007, 2013; Gomes et al., 2011). In fact, there is robust evidence showing that the pharmacological or genetic deletion of adenosine A2A receptors (A2A R) diminishes neurodegeneration and brain dysfunction in animal models of aging (Prediger et al., 2005), PD (Schwartzschild et al., 2006), AD (Canas et al., 2009; Laurent et al., 2014), epilepsy (El Yacoubi et al., 2008, 2009; Cognato et al., 2010), Machado-Joseph’s disease (Gonçalves et al., 2013), chronic stress (Batalha et al., 2013) or ADHD (Pires et al., 2009; Pandolfo et al., 2013). This remarkably agrees with the impact of the regular consumption of the non-selective A2A R antagonist, caffeine, on age and AD-related memory impairment (Cunha and Agostinho, 2010), PD (Ascherio et al., 2003), and major depression (Lucas et al., 2011). The observation that A2A R are mostly located in synapses (Rebola et al., 2005a), A2A R selectively control NMDA receptor (Rebola et al., 2008) and synaptic plasticity phenomena (d’Alcantara et al., 2001; Costenla et al., 2011) and the deletion of neuronal A2A R is sufficient to afford neuroprotection (Kachroo et al., 2005; Shen et al., 2008; Wei et al., 2014), prompts the hypothesis that the control of synaptotoxicity is at the core of A2A R neuroprotection (Cunha and Agostinho, 2010). However, the possible role of A2A R in astrocytes (Matos et al., 2012a, 2015; Orr et al., 2015) and in microglia (Orr et al., 2009; Rebola et al., 2011; Gomes et al., 2013) still remains to be determined, especially since A2A R undergo a marked up-regulation in neurodegenerative and neuropsychiatric disorders in glial cells (Yu et al., 2008; Matos et al., 2012b) but mainly in synapses (Rebola et al., 2005b; Cunha et al., 2006; Duarte et al., 2012), which is associated with a shift of function of A2A R (reviewed in Cunha et al., 2008; Rial et al., 2014) (Figures 1, 2).

Notably, it has been established that the adenosine activating A2A R is derived from the activity of ecto-5′-nucleotidase (Cunha et al., 1996b; Rebola et al., 2008; Augusto et al., 2013), the final step in the ATP catabolism into adenosine. Furthermore, unpublished work from our group has documented that the blockade of ecto-5′-nucleotidase or of A2A R affords comparable neuroprotection, further heralding the concept that A2A R activation is part of the signaling operated by extracellular ATP as a danger signal.

P2X7R-P2Y1R-A2A R: an Hazardous Orchestra

The sustained increase of extracellular ATP levels upon brain dysfunction/damage together with the compelling evidence that the pharmacological blockade or genetic deletion of P2X7R or P2Y1R or A2A R prevents or attenuates neuronal injury or the onset/evolution of brain diseases, supports a role for ATP both as a warning and harmful signal in the brain. It will now be important to understand the time-dependent involvement of these three purinoceptors and their inter-play. In fact, the activation of A2A R or P2X7R may constitute an auto-stimulatory loop (Verderio and Matteoli, 2001; Cunha et al., 2012) since they can trigger ATP release from astrocytes, neurons or microglia (George et al., 2015), either directly through the P2X7R pore (Duan and Neary, 2006), through interaction with pannexin channels (Locovor et al., 2007; Iglesias et al., 2008; Bennett et al., 2012), or by exocytotic release (Gutiérrez-Martín et al., 2011).
Furthermore, P2X7R synergistically regulate P2Y1R activation (Locovei et al., 2006), particularly in pathological conditions (Traini et al., 2011; Vessey et al., 2011; Choo et al., 2013). Finally, emerging evidence indicates a synergic interplay between ATP and its metabolite adenosine (Gerwinds and Fredholm, 1992; Neary et al., 1998; Chevrier et al., 2006; Färber et al., 2008; Koizumi et al., 2013; George et al., 2015), namely between A2A R and P2X7R (Chen et al., 2004; Pellegratti et al., 2011) and P2Y1R (Stafford et al., 2007; Doengi et al., 2008; Suzuki et al., 2011), which highlights the possible key role of ectonucleotides in regulating the integration of purinergic responses. Thus, the action of individual purinergic receptors may be part of a time-dependent orchestrated response triggered by the increase of extracellular ATP levels in brain pathology (Figure 2).

The understanding of the hierarchy and integration/redundancy of their actions will be paramount to develop multi-target therapeutics to exploit this role of ATP as a danger signal in the brain.

Acknowledgments

The research activity of the authors has been supported by funding from Fundação para a Ciência e a Tecnologia (FCT; EXPL/NEU-NMC/0671/2012, Pest-C/SAU/LA0001/2013-2014), FP7-EU Marie Curie actions (M.Curie- Cycle4-2013-PT-07), QREN (CENTRO-07-ST24-FEDER-002006) and COMPETE. The authors also thank Joana M. Marques for critical reading of the manuscript.

References

Abbraccio, M. P., Burnstock, G., Boeynaems, J. M., Barnard, E. A., Boyer, J. L., Kennedy, C., et al. (2006). International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 58, 281–341. doi: 10.1124/pr.58.3.3

Agresti, C., Meomartini, M. E., Amadio, S., Ambrosini, E., Volontè, C., Aloisi, F., et al. (2005). ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabolic P2 receptors. Brain Res. Rev. 48, 157–165. doi: 10.1016/j.brainresrev.2004.12.005

Amadio, S., Apolloni, S., D’Ambrosi, N., and Volontè, C. (2011). Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. J. Neurochem. 116, 796–805. doi: 10.1111/j.1471-4119.2010.07025.x

Amadio, S., D’Ambrosi, N., Trincavelli, M. L., Tuscano, D., Sancesario, G., Bernardi, G., et al. (2005). Differences in the neurotrophicity profile induced by ATP and ATP5′ in cultured cerebellar granule neurons. Neurochem. Int. 47, 334–342. doi: 10.1016/j.neuint.2005.05.008

Anisman, H., Merali, Z., Poullier, M. O., and Hayley, S. (2005). Cytokines as a precipitant of depressive illness: animal and human studies. Curr. Pharm. Des. 11, 963–972. doi: 10.2174/138161205381701

Arbeloa, J., Pérez-Samartin, A., Gottlieb, M., and Matute, C. (2012). P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol. Dis. 45, 954–961. doi: 10.1016/j.nbd.2011.12.014

Ascherio, A., Chen, H., Schwarzhävid, M. A., Zhang, S. M., Colditz, G. A., and Speizer, F. E. (2003). Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology 60, 790–795. doi: 10.1212/01.WNL.0000046523.05125.87

Augusto, E., Matos, M., Sévigny, J., El-Tayeb, A., Bynoe, M. S., Müller, C. E., et al. (2013). Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine in cerebral microvessels of mice. J. Neurochem. 124, 509–581.

Batalha, V. L., Pego, J. M., Fontinha, B. M., Costena, A. R., Valadas, J. S., Buqi, Y., et al. (2013). Adenosine A2A receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Psychiatry 186, 320–331. doi: 10.1088/mp/10.2012.8.01

Bennett, M. V., Garré, J. M., Orellana, J. A., Bukauskas, F. K., Nedergard, M., Gaume, C., et al. (2012). Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res. 1487, 3–15. doi: 10.1016/j.brainres.2012.08.042

Bernardino, L., Balosso, S., Ravizza, T., Marchi, N., Ku, G., Randle, J. C., et al. (2008). Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X7 receptor-mediated IL-1β release. J. Neurochem. 106, 271–280. doi: 10.1111/j.1471-4159.2008.05387.x

Bianco, F., Fumagalli, M., Pravettoni, E., D’Ambrosi, N., Volontè, C., Matteoli, M., et al. (2005). Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res. Rev. 48, 144–156. doi: 10.1016/j.brainresrev.2004.12.004

Bodin, P., and Burnstock, G. (2001). Purinergic signalling: ATP release. Neurochem. Rev. 26, 959–969. doi: 10.1023/A:1012388618693

Bouscsein, C., Zacharias, R., Färber, K., Pavlovic, S., Hanisch, U. K., and Kettenmann, H. (2003). Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur. J. Neurosci. 17, 2267–2276. doi: 10.1046/j.1460-9568.2003.02663.x

Bowser, D. N., and Khakh, B. S. (2004). ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J. Neurosci. 24, 8606–8620. doi: 10.1523/JNEUROSCI.2660-04.2004

Bowser, D. N., and Khakh, B. S. (2007). Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J. Gen. Physiol. 129, 485–491. doi: 10.1085/jgp.200709780

Burnstock, G. (1972). Purinergic nerves. Pharmacol. Rev. 24, 509–581.

But, A.M. (2011). ATP: a ubiquitous gliotransmitter integrating neuron-glial network. Semin. Cell Dev. Biol. 22, 205–213. doi: 10.1016/j.semcdb.2011.02.023

Carmo, M. R., Menezes, A. P., Nunes, A. C., Píassova, A., Rolo, A. P., Palmere, C. M., et al. (2014). The P2X7 receptor antagonist Brilliant Blue G attenuates contratralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology 81, 142–152. doi: 10.1016/j.neuropharm.2014.01.045

Cavaliere, F., Amadio, S., Sancesario, G., Bernardi, G., and Volontè, C. (2004). Synaptic P2X7 and oxygen-glucose deprivation in organotypic hippocampal cultures. J. Cereb. Blood Flow Metab. 24, 392–398. doi: 10.1097/00004647-200404000-00004

Rodrigues et al. | ATP as a danger signal in the brain
Edwards, F. A., Gibb, A. J., and Colquhoun, D. (1992). ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147. doi: 10.1038/359144a0

Elliott, M. R., Chekeni, F. B., Trampont, P. C., Lazarowski, E. R., Kadil, A., Walk, S. F., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to immune cells. Nature 461, 282–286. doi: 10.1038/nature08296

El Yacoubi, M., Ledent, C., Parmentier, M., Costentin, J., and Vaugeois, J. M. (2008). Evidence for the involvement of the adenosine A2A receptor in the lowered susceptibility to penetylentetrazol-induced seizures produced in mice by long-term treatment with caffeine. Neuropharmacology 55, 35–40. doi: 10.1016/j.neuropharm.2008.04.007

Engel, T., Gómez-Villafuertes, R., Tanaka, K., Mesuret, G., Sanz-Rodríguez, A., Garcia-Huerta, P., et al. (2012). Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J. 26, 1616–1628. doi: 10.1096/fj.11-196089

Fam, S. R., Gallagher, C. J., Kalia, L. V., and Salter, M. W. (2003). Differential frequency dependence of P2Y1- and P2Y2-mediated Ca2+ signaling in astrocytes. J. Neurosci. 23, 4437–4444.

Färber, K., Markworth, S., Pannasch, U., Nolte, C., Prinz, V., Kronenberg, G., et al. (2004). P2X7 receptor expression after ischemia in the mammalian hippocampus. J. Neurochem. 91, 1400–1413. doi: 10.1111/j.1471-4159.2006.04425.x

Fu, W., Ruangkittisakul, A., MacTavish, D., Baker, G. B., Ballanyi, K., and.Jhamandas, J. H. (2013). Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes. Neuroscience 250, 520–535. doi: 10.1016/j.neuroscience.2013.07.029

Fujita, T., Tozaki-Saitoh, H., and Inoue, K. (2009). P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 57, 244–257. doi: 10.1002/glia.20749

Fumagalli, M., Brambilla, R., D’Ambrosi, N., Volonté, C., Matteoli, M., Verderio, C., et al. (2003). Nucleotide-mediated calcium signalling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43, 218–303. doi: 10.1002/glia.10248

George, J., Gonçalves, F. Q., Cristovão, G., Rodrigues, L., Fernandes, J. R. M., Gonçalves, T., et al. (2015). Different danger signals differently impact on microglial proliferation through alterations of ATP release and extracellular metabolism. Glia. doi: 10.1002/glia.23833. [Epub ahead of print].

Gerlievich, Z., Borvendeg, S. J., Körner, W., Winkler, K., Nörenberg, W., et al. (2004). Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y2 receptors is a possible mechanism of ADP-induced analgesia. J. Neurosci. 24, 797–807. doi: 10.1523/JNEUROSCI.4019-03.2004

Gerwins, P. and Fredholm, B. B. (1992). ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of 1,4,5-trisphosphate in a smooth muscle cell line. J. Biol. Chem. 267, 16081–16087.

Gomes, C., Ferreira, R., George, J., Sanches, R., Rodrigues, D. I., Gonçalves, N., et al. (2013). Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J. Neuroinflammation 10, 16. doi: 10.1186/1742-2094-10-16

Gomes, C. V., Kaster, M. P., Tomé, A. R., Agostinho, P. M., and Cunha, R. A. (2011). Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim. Biophys. Acta 1808, 1380–1399. doi: 10.1016/j.bbamem.2010.12.001

Gonçalves, N., Simões, A. T., Cunha, R. A., and de Almeida, L. P. (2013). Caffeine and adenosine A1 receptor inactivation decrease striatal neuropathology in a lentiviral-based model of Machado-Joseph disease. Ann. Neurol. 73, 655–666. doi: 10.1002/ana.23866

Grygorowicz, T., Sulejczak, D., and Struzynska, L. (2011). Expression of purinergic P2X7 receptor in rat brain during the symptomatic phase of experimental autoimmune encephalomyelitis and after recovery of neurological deficits. Acta Neuropathol. Exp. (Wars.) 71, 65–73.

Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles, A. C., and George, J., Gonçalves, F. Q., Cristovão, G., Rodrigues, L., Fernandes, J. R. M., and Jhamandas, J. H. (2013). Activity and metabolism-related Ca2+ signaling in astrocytes. J. Neurochem. 129, 406–415. doi: 10.1111/j.1471-4159.2010.05153

Halassa, M. M., Fellin, T., and Haydon, P. G. (2009). Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57, 343–346. doi: 10.1016/j.neuropharm.2009.06.031

Heijas, K., Szekely, A., Domotor, E., Halmai, Z., Balogh, G., Schilling, B., et al. (2009). Association between depression and the Glnt460Arg polymorphism of P2RX7 gene: a dimensional approach. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150B, 295–299. doi: 10.1002/ajmg.b.30799

Idzkó, M., Ferrari, D., and Eltzschig, H. K. (2014). Nucleotide signalling during inflammation. Nature 509, 310–317. doi: 10.1038/nature13085

Iglesias, R., Locovei, S., Roque, A., Alberti, A. P., Dahl, G., Spray, D. C., et al. (2008). P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am. J. Physiol. Cell Physiol. 295, C752–C760. doi: 10.1152/ajpcell.00228.2008
Imura, Y., Morizawa, Y., Komatsu, R., Shibata, K., Shinozaki, Y., Kasai, H., et al. (2013). Microglia release ATP by exocytosis. GLIA 61, 1320–1330. doi: 10.1002/glia.22517

Iwabuchi, S., and Kawahara, K. (2011). Functional significance of the negative-feedback regulation of ATP release via panxillin-1 hemichannels under ischemic straint in astrocytes. Neurochem. Int. 58, 376–384. doi: 10.1016/j.neuint.2010.12.013

Jacob, P. F., Vaz, S. H., Ribeiro, J. A., and Sebastião, A. M. (2014). P2Y1 receptor energy. Adv. Enzymol. 1, 99–162.

Locovei, S., Scemes, E., Qiu, F., Spray, D. C., and Dahl, G. (2007). Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 581, 483–488. doi: 10.1016/j.febslet.2006.12.056

Lu, C., Salyakina, D., Barden, N., Harvey, M., Gagné, B., Labbé, M., et al. (2006). P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum. Mol. Genet. 15, 2438–2445. doi: 10.1093/hmg/ddl166

Lutz, P. L., and Kabler, S. (1997). Release of adenosine and ATP in the brain of the freshwater turtle (Trachemys scripta) during long-term anaesthesia. Brain Res. 769, 281–286. doi: 10.1016/S0006-8993(97)00719-1

Khakh, B. S., and North, R. A. (2012). Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76, 581–592. doi: 10.1016/j.neuron.2012.09.024

Kimbler, D. E., Shields, J., Yanasak, N., Vender, J. R., and Dhandapani, K. M., et al. (2007). Glutamate exocytosis from astrocytes controls synaptic strength. J. Neurosci. 31, 988–988. doi: 10.1177/1743132009X388911

Kim, Y. S., Moon, J. H., Lee, H. G., Kim, S. U., and Lee, Y. B. (2007). ATP released from β-amylod-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp. Mol. Med. 39, 820–827. doi: 10.1038/emm.2007.89

Kimbler, D. E., Shields, J., Vanasak, N., Vender, J. R., and Dhandapani, K. M. (2012). Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS ONE 7:e41229. doi: 10.1371/journal.pone.0041229

Kozumihara, S., Ohawa, K., Inoue, K., and Kohsaka, S. (2013). Purinergic receptors in microglia: functional modals shifts of microglia mediated by P2 and P1 receptors. GLIA 61, 47–54. doi: 10.1002/glia.22558

Kriegl, U., Kettner, H., Frank, H., and Illes, P. (2001). Accelerated functional recovery after neuronal injury by P2 receptor blockade. Eur. J. Pharmacol. 420, R3–R4. doi: 10.1016/S0014-2999(01)01001-9

Kuboyama, K., Harada, H., Tozaki-Saitoh, H., Tsuda, M., Ushijima, K., and Inoue, K. (2011). Astrocytic P2Y1 receptor is involved in the regulation of cytokine/chemokine transcription and cerebral injury in a rat model of cerebral ischemia. J. Cereb. Blood Flow Metab. 31, 1930–1941. doi: 10.1038/jcbfm.2011.49

Lämmer, A., Günther, A., Beck, A., Krügel, U., Kettner, H., Schneider, D., et al. (2006). Neuroprotective effects of the P2 receptor antagonist PPADS on focal cerebral ischemia-injured injury in rats. Eur. J. Pharmacol. 523, 2824–2828. doi: 10.1016/j.ejphar.2005.05.005

Laurent, C., Burns, F., Berry, B., Batalla, V. L., Coelho, J. E., Baqi, Y., et al. (2014). A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol. Psychiatry. doi: 10.1038/mp.2014.151. [Epub ahead of print].

Lee, H. G., Won, S. M., Gwag, B. J., and Lee, Y. B. (2011). Microglial P2X7 receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPsw/PSE1D9 mouse model of Alzheimer's disease. Exp. Mol. Med. 43, 7–14. doi: 10.3858/emm.2011.43.1.001

Lippmann, F. (1941). Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1, 99–162.

Locovei, S., Scemes, E., Qiu, F., Spray, D. C., and Dahl, G. (2007). Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 581, 483–488. doi: 10.1016/j.febslet.2006.12.056

Lutz, P. L., and Kabler, S. (1997). Release of adenosine and ATP in the brain of the freshwater turtle (Trachemys scripta) during long-term anaesthesia. Brain Res. 769, 281–286. doi: 10.1016/S0006-8993(97)00719-1

Larsson, M., Märtä, F., Pannier, O. I., Willett, W. C., O’Reilly, E., et al. (2011). Coffee, caffeine, and risk of depression among women. Arch. Intern. Med. 171, 1571–1578. doi: 10.1001/archinternmed.2011.393

Luthardt, J., Borveneged, S. J., Sperlbaqgh, B., Poelchen, W., Wirkner, K., and Illes, P. (2008). P2Y1 receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem. Int. 42, 161–172. doi: 10.1016/j.neuroci.2006.12.004

Marcellino, D., Suárez-Boomgaard, D., Sánchez-Reina, M. D., Aguirre, J., Yoshikate, T., Yoshikate, S., et al. (2010). On the role of P2X receptors in dopamine neuron cell degeneration in a rat model of Parkinson’s disease: studies with the P2X7 receptor antagonist A-438079. J. Neural Transm. 117, 681–687. doi: 10.1007/s00702-010-0400-0

Marcoli, M., Cervetto, C., Paluzzi, P., Guarinieri, S., Alloisio, S., Theiling, S., et al. (2008). P2X7 pre-synaptic receptors in adult rat cerebrocortical nerve terminals: a role in ATP-induced glutamate release. J. Neurochem. 105, 2330–2342. doi: 10.1111/j.1471-4159.2008.05322.x

Matos, M., Augusto, E., Machado, N. J., dos Santos-Rodrigues, A., Cunha, R. A., and Agostinho, P. (2012b). Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J. Alzheimers Dis. 31, 555–567. doi: 10.3233/JAD-2012-120469

Matos, M., Augusto, E., Santos-Rodrigues, A. D., Schwarzhild, M. A., Chen, J. F., Cunha, R. A., et al. (2012a). Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and glosomes. GLIA 60, 702–716. doi: 10.1002/glia.22290

McKeon, R., Jurney, M. J., and Buck, C. R. (1999). The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19, 10778–10788.

McLarnon, J. G., Ryu, J. K., Walker, D. G., and Choi, H. B. (2006). Uregulated expression of purinergic P2X receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J. Neuropathol. Exp. Neuro. 65, 1090–1097. doi: 10.1097/01.jnp.0000204207.97295.d3

Melani, A., Amadio, S., Gianfriddo, M., Vannucchi, M. G., Volonté, C., and Bernardi, G., et al. (2006). P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral arterial occlusion in rat. J. Cereb. Blood Flow Metab. 26, 974–982. doi: 10.1038/jcbfm.6000250

Melani, A., Turchi, D., Vannucchi, M. G., Cipriani, S., Gianfriddo, M., and Pedata, F. (2005). ATP extracellular concentrations are increased in the
rat striatum during in vivo ischemia. Neurochem. Int. 47, 442–448. doi: 10.1016/j.neuint.2005.03.014
Mendonza-Fernández, V., Andrew, R. D., and Barajas-López, C. (2000). ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J. Pharmacol. Exp. Ther. 293, 172–179.
Mora, D., Iritani, S., Chambers, J., and Emson, P. (2000). Immunohistochemical localization of the P2Y1 purinergic receptor in Alzheimer’s disease. Neuroreport 11, 3799–3803. doi: 10.1097/00001756-2000112700-00041
Mori, M., Heuss, C., Gähwiler, B. H., and Gerber, U. (2001). Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J. Physiol. 535, 115–123. doi: 10.1111/j.1469-7793.2001.00115.x
Murphy, N., Cowley, T. R., Richardson, J. C., Virley, D., Upton, N., Walter, D., et al. (2012). The neuroprotective effect of a specific P2X7 receptor antagonist derives from its ability to inhibit assembly of the NLRP3 inflammasome in glial cells. Brain Pathol. 22, 295–306. doi: 10.1111/j.1750-3639.2011.00531.x
Narcisse, L., Scemes, E., Zhao, Y., Lee, S. C., and Brosnan, C. F. (2005). The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49, 245–258. doi: 10.1002/glia.20110
Neary, J. T., Kang, Y., Willoughby, K. A., and Ellis, E. F. (2003). Activation of extracellular signal-regulated kinase by stretch-injured in astrocytes involves extracellular ATP and P2 purinergic receptors. J. Neurosci. 23, 2348–2356.
Neary, J. T., McCarthy, M., Kang, Y., and Zuniga, S. (1998). Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci. Lett. 242, 159–162. doi: 10.1016/S0304-3908(98)00067-6
Nieber, K., Poelchen, W., and Illes, P. (1997). Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurones of the rat. Br. J. Pharmacol. 122, 423–430. doi: 10.1038/bjp.0701386
Orr, A. G., Hsiao, E. C., Wang, M. M., Ho, K., Kim, D. H., Wang, X., et al. (2015). Astrocytic adenosine receptor A2A and G coupled signaling regulate memory. Nat. Neurosci. 18, 423–434. doi: 10.1038/nmn.3930
Orr, A. G., Orr, A. L., Li, X. J., Gross, R. E., and Traynelis, S. F. (2009). Adenosine A2A receptor mediates microglial process retraction. Nat. Neurosci. 12, 872–878. doi: 10.1038/nn.2341
Padrão, R. A., Ariza, C. B., Canzian, M., Porcionatto, M., Arafljo, M. G. L., Cavalheiro, E. A., et al. (2011). The P2 purinergic receptors are increased in the hippocampus of patients with temporal lobe epilepsy: what is the relevance to the epileptogenesis? Purinergic Signal. 7, 127. doi: 10.1007/s11130-010-9208-5
Pandolfo, P., Machado, N. J., Köflaví, A., Takahashi, R. N., and Cunha, R. A. (2013). Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur. J. Pharmacol. 737, 589–597. doi: 10.1016/j.eurpharm.2013.12.008
Pires, V. A., Pamplona, F. A., Pandolfo, P., Fernandes, D., Prediger, R. D., and Takahashi, R. N. (2009). Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav. Pharmacol. 20, 134–145. doi: 10.1097/FBP.0b013e32833b7ed9
Pollaert, Y., and Yirmiya, R. (2002). Cytokine-induced changes in mood and behaviour: implications for “depression due to a general medical condition”, immunotherapy and antidepressive treatment. Int. J. Neuropsychopharmacol. 5, 389–399. doi: 10.1017/S1461457003003152
Prediger, R. D., Batista, L. C., and Takahashi, R. N. (2005). Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol. Aging 26, 957–964. doi: 10.1016/j.neurobiolaging.2004.08.012
Ralevic, V., and Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492.
Rappold, P. M., Lynd-Balta, E., and Joseph, S. A. (2006). P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain. Brain Res. 1089, 171–178. doi: 10.1016/j.brainres.2006.03.040
Rebola, N., Canas, P. M., Oliveira, C. R., and Cunha, R. A. (2005a). Different synaptic and sub synaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132, 893–903. doi: 10.1016/j.neuroscience.2005.01.014
Rebola, N., Lujan, R., Cunha, R. A., and Mulle, C. (2008). Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57, 121–134. doi: 10.1016/j.neuron.2007.11.023
Rebola, N., Porciúncula, L. O., Lopes, L. V., Oliveira, C. R., Soares-da-Silva, P., and Cunha, R. A. (2005b). Long-term effect of convulsive behavior on the density of adenosine A1 and A2A receptors in the rat cerebral cortex. Epilepsia 46(Suppl. 5), 159–165. doi: 10.1111/j.1528-1167.2005.01026.x
Rebola, N., Simões, A. P., Canas, P. M., Tomé, A. R., Andrade, G. M., Barry, C. E., et al. (2011). Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J. Neurochem. 117, 100–111. doi: 10.1111/j.1471-4159.2011.07178.x
Reigada, D., Lu, W., Zhang, M., and Mitchell, C. H. (2008). Elevated pressure triggers a physiological release of ATP from the retina: Possible role for pannexin hemichannels. Neuroscience 157, 396–404. doi: 10.1016/j.neuroscience.2008.08.036
Resta, V., Novelli, E., Di Virgilio, F., and Galli-Resta, L. (2005). Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development 132, 2873–2882. doi: 10.1242/dev.01855
Rial, D., Lara, D. R., and Cunha, R. A. (2014). The adenosine neuromodulation system in schizophrenia. Int. Rev. Neurobiol. 119, 395–449. doi: 10.1016/B978-0-12-801022-8-00016-7
Rivkees, S. A., and Wendel, C. C. (2011). Adverse and protective influences of adenosine on the newborn and embryo: implications for preterm white matter injury and embryo protection. Pediatr. Res. 69, 271–278. doi: 10.1203/PDR.0b013e318202e0bcf
Rodrigues et al.
Effects of P2Y1 receptor on glial fibrillary

ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes.

ATP release of adenosine triphosphate from hippocampal slices.

Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J. Neurosci. Res. 84, 1053–1063. doi:10.1002/jnr.20999

P2X7 receptor agonists pre- and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2X7 channels. Ann. Neurol. 63, 855–863. doi:10.1002/ana.21313

Regulated ATP release from astrocytes through lysosome exocytosis. J. Cereb. Blood Flow Metab. 33, 600–611. doi:10.1038/jcfb.2012.214

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Rodrigues, Tomé and Cunha. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.