Current status of ε_K with lattice QCD inputs

Jon A. Bailey,1 Yong-Chull Jang,1 Weonjong Lee,1 and Sungwoo Park1
(SWME Collaboration)

1Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, South Korea
(Dated: April 14, 2015)

We present the Standard Model evaluation of the indirect CP violation parameter ε_K using inputs determined from lattice QCD together with experiment: $|V_{us}|$, $|V_{cb}|$, ξ_0, and \tilde{B}_K. We use the Wolfenstein parametrization ($|V_{cb}|$, λ, $\tilde{\rho}$, $\tilde{\eta}$) for the CKM matrix elements. For the central value, we take the angle-only fit of the UTfit collaboration, and use $|V_{us}|$ from the K_{L2} and $K_{L\Lambda}$ decays as an independent input to fix λ. For the error estimate, we use results of the global unitarity triangle from the CKMfitter and UTfit collaborations. We find that the Standard Model (SM) prediction of ε_K with exclusive V_{cb} (lattice QCD results) is lower than the experimental value by 3.6(2)σ. However, with inclusive V_{cb} (results of the heavy quark expansion), the tension between the SM prediction of ε_K and its experimental value disappears.

CP violation in nature was first discovered in 1964 [1]. The neutral kaon system has two kinds of CP violation: one is the indirect CP violation due to CP-asymmetric impurity in the kaon eigenstates in nature, and the other is the direct CP violation due to the CP violating nature of the weak interaction [2, 3]. Here, we focus on the indirect CP violation, which is parametrized by ε_K.

$$\varepsilon_K = A(K_L \to \pi\pi(I = 0)) / A(K_S \to \pi\pi(I = 0)),$$

where K_L and K_S are the neutral kaon eigenstates in nature, and $I = 0$ is the isospin of the final two-pion state. In experiment [4],

$$\varepsilon_K = (2.228 \pm 0.011) \times 10^{-3} \times e^{i\phi_\varepsilon},$$

$$\phi_\varepsilon = 43.52 \pm 0.05^\circ.$$ (2)

In the Standard Model (SM), the CP violation comes solely from a single phase in the CKM matrix elements [5]. The mixing of neutral kaons is allowed through the box diagrams which describe the mass splitting ΔM_K and ε_K [6] [7]. In the SM, the master formula for ε_K is

$$\varepsilon_K = e^{i\theta} \sqrt{2} \sin \theta \left(C_e \tilde{B}_K X_{SD} + \xi_0 + \xi_{LD}\right) + O(\omega\varepsilon') + O(\xi_0\Gamma_2/\Gamma_1),$$ (3)

where C_e and X_{SD} are defined as follows.

$$C_e = \frac{G_F^2 F_K^2 m_{K^0} M_W^2}{6\sqrt{2}\pi^2 \Delta M_K},$$

$$X_{SD} = \tilde{\eta} \lambda^2 |V_{cb}|^2 \left[|V_{cb}|^2 (1 - \tilde{\rho}) \eta_{tt} S_0(x_t)(1 + \bar{r}) + \left(1 - \frac{\lambda^4}{8}\right) \left\{\eta_{cc} S_0(x_c, x_t) - \eta_{cs} S_0(x_c) - 2\eta_{ct} S_0(x_c, x_t)\right\}/\{\eta_{tt} S_0(x_t)\}\right].$$ (5)

where S_0's are the Inami-Lim functions [8], and $x_i \equiv m_i^2/M_W^2$ with $i = c, t$. Here, $r = \{\eta_{cc} S_0(x_c) - 2\eta_{ct} S_0(x_c, x_t)\}/\{\eta_{tt} S_0(x_t)\}$. λ, $\tilde{\rho}$, and $\tilde{\eta}$ are the Wolfenstein parameters of the CKM matrix elements [7]. Here, we replace B by V_{cb}, using the relation $|V_{cb}| = \lambda^2 + O(\lambda^4)$. η_{ij} with $i, j = c, t$ represents the QCD corrections to the box diagrams. $\xi_0 = \Im A_{0}/Re A_0$ represents the long distance effect from the absorptive part, and ξ_{LD} corresponds to the long distance effect from the dispersive part [9]. The correction terms $O(\omega\varepsilon')$ and $O(\xi_0\Gamma_2/\Gamma_1)$ are of order 10^{-7}, which we neglect in this paper. The master formula of Eq. (3) is essentially the same as that of Ref. [10]. Details on how to derive Eq. (3) from the SM are given in our companion paper [11].

In Eq. (3), the major contribution to ε_K comes from the B_K term, and a minor contribution of about -7% comes from the ξ_0 term. The remaining contribution of ξ_{LD} is about 2%, coming from the long distance effect on ε_K [11] [12]. In this paper, we neglect ξ_{LD} without affecting our conclusion.

The Wolfenstein parameters λ, $\tilde{\rho}$, $\tilde{\eta}$ and A can be obtained from the global unitarity triangle (UT) fit. Here, we use λ, $\tilde{\rho}$, $\tilde{\eta}$ from the CKMFitter [13] [14] and UTfit collaborations [15] [16]. They are summarized in Table I.

The parameters ε_K, \tilde{B}_K, and V_{cb} are inputs to the global UT fit. Hence, the λ, $\tilde{\rho}$, $\tilde{\eta}$ parameters extracted from the global UT fit of the CKMFitter and UTfit groups contain unwanted dependence on ε_K, \tilde{B}_K, and V_{cb}. Therefore, in order to determine ε_K self-consistently, we take another input set from the angle-only-fit (AOF) in Ref. [17]. Here the advantage is that the AOF does not use ε_K, \tilde{B}_K, and V_{cb} as inputs to determine the UT apex parameters $\tilde{\rho}$ and $\tilde{\eta}$. The AOF gives the UT apex ($\tilde{\rho}, \tilde{\eta}$) but not λ. We can take λ independently from the CKM matrix element V_{us}, using the relation: $|V_{us}| = \lambda + O(\lambda^3)$. Here, the K_{L3} and $K_{L\Lambda}$ decays are used to set V_{us} [4].

In Table I, we summarize the input values for V_{cb}. In the inclusive channel, they use $B \to X_s l\nu$, and $B \to X_s \gamma$ decays. They also use moments of outgoing lepton energy, hadron masses, and photon energy and fit them to the theoretical expressions which come from the op-
We use the results of the kinetic scheme to calculate \(\varepsilon_K \) and the 1S scheme \([4]\). Here, we follow the renormalization group (RG) evolution for \(\eta_{cc} \) given in Ref. \([32]\). Hence, in order to check the claim, we follow the renormalization group (RG) evolution for \(\eta_{cc} \) described in Ref. \([32]\) to produce the NNLO value of \(\eta_{cc} \). The results are summarized in Table \(\text{V} \). In this table, note that the results are consistent with one another within the systematic errors, but our \(\eta_{cc} \) value is essentially identical to that of Ref. \([33]\). Details of the SWME result are explained in Ref. \([9]\). In this paper, we use the SWME result for \(\eta_{cc} \) to obtain \(\varepsilon_K \).

The input values for \(\eta_{ij} \) that we use in this paper are summarized in Table \(\text{V} \).

The remaining input parameters are summarized in Table \(\text{VI} \).

Let us define \(\varepsilon_K^{\text{SM}} \) as the theoretical evaluation of \(|\varepsilon_K| \) obtained using the master formula Eq. \([3]\) directly from

TABLE I. Wolfenstein Parameters
CKMfitter
\(\lambda \)
\(\rho \)
\(\eta \)

For the kaon bag parameter \(B_K \), we use the FLAG average \([24]\) and the SWME results \([25]\) which are summarized in Table \(\text{III} \). The SWME result for \(B_K \) with \(N_f = 2 + 1 \) \([26,29]\) to obtain the average. The SWME result \([25]\) has a larger error, and its value deviates most from the FLAG average.

| TABLE II. Inclusive and exclusive \(|V_{cb}| \) in units of \(10^{-3} \). Here, Kin. represents the kinetic scheme in heavy quark expansion, and 1S the 1S scheme. |
|----------------------------------|
| Inclusive (Kin.) | Inclusive (1S) | Exclusive |
| \(42.21(78) \) \([15]\) | 41.96(45)(07) \([4]\) | 39.04(49)(53)(19) \([28]\) |

The RBC/UKQCD collaboration provides lattice results for \(\text{Im}A_2 \) and \(\xi_0 \) in Ref. \([30]\). Here, we use their result of \(\xi_0 = -1.63(19)(20) \times 10^{-4} \) obtained using the experimental value of \(\varepsilon'/\varepsilon \).

The factor \(\eta_{tt} \) is given at next-to-leading order (NLO) in Ref. \([10]\). The factor \(\eta_{ct} \) is given at next-to-next-to-leading order (NNLO) in Ref. \([31]\). The factor \(\eta_{cc} \) is given at NNLO in Ref. \([32]\). In Ref. \([33]\), they claim that the error is overestimated for the NNLO value of \(\eta_{cc} \) given in Ref. \([32]\). Hence, in order to check the claim, they use perturbative expansion, and 1S the 1S scheme.

\[
\begin{align*}
\varepsilon_K &= 0.766(99) \quad \text{FLAG} \\
\varepsilon_K &= 0.7379(47)(365) \quad \text{SWME}
\end{align*}
\]

TABLE III. \(B_K \)
\(\text{FLAG} \)
\(\text{SWME} \)

\[
\begin{align*}
\frac{\text{Input}}{\text{Value}} & \quad \text{Ref.} \\
\eta_{cc} & \quad 1.72(27) \quad [9] \\
\eta_{tt} & \quad 0.5765(65) \quad [10] \\
\eta_{ct} & \quad 0.496(47) \quad [33]
\end{align*}
\]

The input values for \(\eta_{ij} \) that we use in this paper are summarized in Table \(\text{V} \).
the SM. We define $\varepsilon_{K}^{\text{Exp}}$ as the experimental value of $|\varepsilon_{K}|$ given in Eq. (2). We define $\Delta \varepsilon_{K}$ as the difference between $\varepsilon_{K}^{\text{Exp}}$ and $\varepsilon_{K}^{\text{SM}}$:

$$\Delta \varepsilon_{K} \equiv \varepsilon_{K}^{\text{Exp}} - \varepsilon_{K}^{\text{SM}}.$$

(6)

Here, we assume that the theoretical phase θ in Eq. (3) is equal to the experimental phase ϕ_{c} in Eq. (2) [9].

In Table VII we present results for $\varepsilon_{K}^{\text{SM}}$ obtained using the FLAG average for B_{K} together with V_{cb} in both inclusive and exclusive channels. The corresponding probability distributions for $\varepsilon_{K}^{\text{SM}}$ and $\varepsilon_{K}^{\text{Exp}}$ are presented in Fig. 1 for the AOF case. The corresponding results for $\Delta \varepsilon_{K}$ are presented in Table VIII.

TABLE VII. $\varepsilon_{K}^{\text{SM}}$ in the unit of 1.0×10^{-3}. Here, we use the FLAG average for B_{K} in Table III. The input methods of CKMfitter, UTfit, and AOF represent different inputs for the Wolfenstein parameters $\lambda, \rho, \bar{\eta}$.

Input Method	Inclusive V_{cb}	Exclusive V_{cb}
CKMfitter	2.17(23)	1.62(18)
UTfit	2.18(22)	1.63(18)
AOF	2.13(23)	1.58(18)

TABLE VIII. $\Delta \varepsilon_{K}$. Here, we use $\varepsilon_{K}^{\text{SM}}$ from Table VII. We obtain σ by combining the errors of $\varepsilon_{K}^{\text{SM}}$ and $\varepsilon_{K}^{\text{Exp}}$ in quadrature.

Input Method	Inclusive V_{cb}	Exclusive V_{cb}
CKMfitter	0.24σ	3.4σ
UTfit	0.20σ	3.4σ
AOF	0.44σ	3.6σ

From Table VIII, we observe no tension between $\varepsilon_{K}^{\text{Exp}}$ and $\varepsilon_{K}^{\text{SM}}$ with inclusive V_{cb}.

However, from Tables VII and VIII, we find that $\varepsilon_{K}^{\text{SM}}$ with exclusive V_{cb} is only 71% of $\varepsilon_{K}^{\text{Exp}}$. For this case, with the most reliable input method (AOF), $\Delta \varepsilon_{K}$ is 3.6σ. The largest contribution in this estimate of $\varepsilon_{K}^{\text{SM}}$ that we have neglected is $\xi_{LD} \approx 2\%$. Hence, the neglected contributions cannot explain the gap $\Delta \varepsilon_{K}$ of 29% with exclusive V_{cb}. Hence, our final results for $\Delta \varepsilon_{K}$ are

$$\Delta \varepsilon_{K} = 3.6(2)\sigma \quad \text{(exclusive } V_{cb} \text{)}$$

(7)

$$\Delta \varepsilon_{K} = 0.44(24)\sigma \quad \text{(inclusive } V_{cb} \text{)}$$

(8)

where we take the AOF result as the central value and the systematic error is obtained by taking the maximum difference among the input methods in Table VIII.

In the case of the FLAG B_{K}, the BMW result of B_{K} dominates the FLAG average, and the gauge ensembles used for the BMW calculation are independent of those used for the exclusive V_{cb} [20]. Hence, we assume that we may neglect the correlation between the FLAG B_{K} and the exclusive V_{cb}. However, the SWME calculation of B_{K} in Ref. [23] shares the same MILC gauge ensembles with the exclusive V_{cb} determination in Ref. [20]. Hence, there exists a substantial correlation between the SWME B_{K} and the exclusive V_{cb}. We introduce $+50\%$ correlation and -50% anti-correlation between the SWME B_{K} and the exclusive V_{cb} and take the maximum deviation from the uncorrelated case as the systematic error due to the unknown correlation between them. Details of this analysis are explained in Ref. [9]. However, this analysis shows that the size of the ambiguity due to the correlation between the SWME B_{K} and the exclusive V_{cb} is much larger than the systematic error in $\Delta \varepsilon_{K}$ with the FLAG B_{K}. Therefore, we use the results obtained with the SWME B_{K} only to cross-check those obtained with the FLAG B_{K} [9].

In Fig. 2 we present $\Delta \varepsilon_{K}/\sigma$ as a function of time starting from 2012. In 2012, the RBC/UKQCD collaboration...
reported ξ_0 in Ref. [30]. In addition to this, using the LLV average for B_K [25], we reported $\Delta\varepsilon_K = 2.7(2)\sigma$ in Ref. [30] in 2012. In 2014 FNAL/MILC reported an updated V_{cb} from the exclusive channel [20]. Using the FLAG average for B_K [24] and the NNLO value of η_{ct} [31], we reported the updated $\Delta\varepsilon_K = 3.3(2)\sigma$ in Ref. [37]. In Ref. [9], we investigate issues in the NNLO calculation of η_{ct} [32, 33], and in this paper we use the SWME result in Table IV to report the updated $\Delta\varepsilon_K = 3.6(2)\sigma$ in Eq. [7].

In summary, we find that there is a substantial $3.6(2)\sigma$ tension in ε_K between the experiment and the SM theory with lattice QCD inputs. For this claim, we choose the angle-only fit (AOF), the exclusive V_{cb} (lattice QCD results), and the FLAG \hat{B}_K (lattice QCD results) to determine the central value. The systematic uncertainty is obtained by taking the maximum deviation from the central value by choosing other input methods from the global fits of the CKMfitter and UTfit. We choose the AOF method to determine the central value because the Wolfenstein parameters of AOF do not have unwanted correlation with ε_K, \hat{B}_K, and $|V_{cb}|$. However, the tension disappears in the case of inclusive V_{cb} (results of the heavy quark expansion based on the OPE).

In Table IX, we present the error budget for ε_K^{SM} for the central value. This is obtained using the error propagation method explained in Ref. [9]. From this error budget, we observe that V_{cb} dominates the error in ε_K^{SM}. Hence, it is essential to reduce the error of V_{cb} as much as possible (see also Refs. [38, 39]). To achieve this goal, there have been a lot of on-going efforts in the lattice community [40, 45].

It is true that there is an issue with the convergence of the perturbative expansion of η_{ct} [32]. This could be resolved with lattice QCD calculations such as those envisioned by the RBC/UKQCD collaboration [11].

We expect that our results for ε_K would be consistent with those from a global UT analysis, such as that in Ref. [35].

W. Lee is supported by the Creative Research Initiatives program (No. 2014001852) of the NRF grant funded by the Korean government (MEST). W. Lee acknowledges support from the KISTI supercomputing center through the strategic support program (No. KSC-2013-G2-005). J.A.B. is supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2014027937).
[15] M. Bona et al. (UTfit Collaboration), JHEP 0507, 028 (2005), hep-ph/0501199.
[16] M. Bona et al. (UTfit Collaboration), JHEP 0803, 049 (2008), 0707.0636.
[17] A. Bevan, M. Bona, M. Ciuchini, D. Derkach, E. Franco, et al., Nucl.Phys.Proc.Suppl. 241-242, 89 (2013).
[18] A. Alberti, P. Gambino, K. J. Healey, and S. Nandi, Phys.Rev.Lett. 114, 061802 (2015), 1411.6560.
[19] P. Gambino and C. Schwanda, Phys.Rev. D89, 014022 (2014), 1307.4551.
[20] J. A. Bailey, A. Bazavov, C. Bernard, et al., Phys.Rev. D89, 114504 (2014), 1403.0635.
[21] A. Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. DeTar, et al., Rev.Mod.Phys. 82, 1349 (2010), 0903.3598.
[22] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, Phys. Rev. D55, 3933 (1997), hep-lat/9604004.
[23] Y. Amhis et al. (Heavy Flavor Averaging Group) (2012), 1207.1158.
[24] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, et al. (2013), 1310.8555.
[25] T. Bae et al. (SWME Collaboration), Phys.Rev. D89, 074504 (2014), 1402.0048.
[26] T. Bae et al., Phys.Rev.Lett. 109, 041601 (2012), 1111.5698.
[27] Y. Aoki, R. Arthur, T. Blum, et al., Phys.Rev. D84, 014503 (2011), 1012.4178.
[28] C. Aubin, J. Laiho, and R. S. Van de Water, Phys.Rev. D81, 014507 (2010), 0905.3947.
[29] S. Durr, Z. Fodor, C. Hoelbling, et al., Phys.Lett. B705, 477 (2011), 1106.3230.
[30] T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode, et al., Phys.Rev.Lett. 108, 141601 (2012), 1111.1699.
[31] J. Brod and M. Gorbahn, Phys.Rev. D82, 094026 (2010), 1007.0684.
[32] J. Brod and M. Gorbahn, Phys.Rev.Lett. 108, 121801 (2012), 1108.2036.
[33] A. J. Buras and J. Girrbach, Eur.Phys.J. C73, 2560 (2013), 1304.6835.
[34] S. Alekhin, A. Djouadi, and S. Moch, Phys.Lett. B716, 214 (2012), 1207.0980.
[35] J. Laiho, E. Lunghi, and R. S. Van de Water, Phys.Rev. D81, 034503 (2010), http://latticeaverages.org/0910.2928.
[36] Y.-C. Jang and W. Lee, PoS LATTICE2012, 269 (2012), 1211.0792.
[37] J. A. Bailey, Y.-C. Jang, and W. Lee (SWME Collaboration), PoS LATTICE2014, 371 (2014), 1410.6995.
[38] A. J. Buras, F. De Fazio, and J. Girrbach, Eur.Phys.J. C74, 2950 (2014), 1404.3824.
[39] A. J. Buras and J. Girrbach, Rept.Prog.Phys. 77, 086201 (2014), 1306.3775.
[40] M. B. Oktay and A. S. Kronfeld, Phys.Rev. D78, 014504 (2008), 0803.0523.
[41] Y.-C. Jang et al. (SWME, MILC, Fermilab Lattice), PoS LATTICE2013, 030 (2014), 1311.5029.
[42] J. A. Bailey, Y.-C. Jang, W. Lee, and J. Leem (SWME Collaboration), PoS LATTICE2014, 389 (2014), 1411.4227.
[43] J. A. Bailey, Y.-C. Jang, W. Lee, C. DeTar, A. S. Kronfeld, et al., PoS LATTICE2014, 097 (2014), 1411.1823.
[44] M. Atoui, V. Mornas, D. Beirevic, and F. Sanfilippo, Eur.Phys.J. C74, 2861 (2014), 1310.5238.
[45] C. Monahan, J. Shigemitsu, and R. Horgan, Phys.Rev. D87, 034017 (2013), 1211.6966.