Identification of odorant-binding proteins in the reproductive system of *Athetis dissimilis* using transcriptome analysis

CURRENT STATUS: UNDER REVIEW

Yueqin Song
Henan University of Science and Technology

Huizhong Sun
huizhong66@163.com
Henan University of Science and Technology
Corresponding Author
ORCID: 0000-0002-3560-7625

Jingyun Zhao
Zhumadian Academy of Agricultural Sciences

DOI:
10.21203/rs.2.19442/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
Athetis dissimilis, reproductive organs, transcriptome, odorant-binding proteins, expression profiles
Abstract

Odorant-binding proteins (OBPs) are prevalent in the antennal transcriptomes of different orders of insects. Studies on OBPs have focused on their role in the insect chemosensory system, but knowledge of their functions in the insect testis is limited. We sequenced the transcriptomes of the Athetis dissimilis reproductive organs and analyzed the expressive of OBPs in different tissues. We identified a total of 54 OBPs including 23 OBPs in the transcriptomes of testis and ovaries, and 31 OBPs in antennal transcriptomes. Through fluorescence qPCR, the 23 identified OBPs were found to be highly expressed in both female and male antennae compared to the reproductive organs. Of the identified OBPs, 5/23 showed comparable expression in female and male antennae; 3/23 were more highly expressed in males compared to females; and 15/23 OBPs were more highly expressed in females compared to males. A total of 24 OBPs were highly expressed in the testis of A. dissimilis whilst expression in the ovaries was low. These findings highlight the functional diversity of OBPs in insects and can facilitate further studies on the OBPs in A. dissimilis and lepidopteran species.

Background

The olfactory system in insects regulates their intersex communication, host-plant interactions, oviposition, foraging, escape from predators and reproduction [1–5]. Insects have a complex chemosensory system in which pheromones and plant odors are initially recognized by odorant-binding proteins (OBPs) expressed in the antennal sensilla lymph that transfer the odorants to membrane-bound olfactory receptors (ORs) to activate olfactory receptor neurons (ORNs) and stimulate behavioral responses [6–11]. OBPs are small water soluble proteins that have six positionally conserved cysteines to form three interlocking disulphide bridges that stabilize the protein’s three-dimensional
structure [12-17]. OBPs were first discovered in the antenna of Antheraea polyphemus that distinguish [12] and bind to lipophilic odorant compounds [18-23]. However, emerging data suggests that OBPs are not restricted to the sensory organs of insect and show expression in non-sensory organs including reproductive organs. Li et al. showed that OBPs22 was highly expressed in the male reproductive organs of Aedes aegypti and transfers to females during mating as a carrier for the urine and saliva of vertebrate [24]. Sun et al. also found that OBP10 is highly abundant in seminal fluid of Helicoverpa armigera and H. assulta and transfers to female during mating. OBP10 also binds 1-dodecene, a known insect repellent [25].

Athetis dissimilis Hampson (Lepidoptera: Noctuidae) is an important agricultural pest. Li et al. distinguished A. dissimilis from A. lepigone [26] that mainly distributes to Asian countries including China, Japan, Philippines, Korea, Indonesia and India causing serious damages to maize, wheat, peanut, soybean and sweet potato [27–28]. Because of the fact that larvae of A. dissimilis live under plant residues, it is difficult to control the spread of the pest with chemical pesticides. Therefore, novel control managements are urgently needed to mitigate crop damage. We first sequenced the antennal transcriptomes of A. dissimilis [29] and characterized 5 OBPs that showed tissue-specific expression patterns [30]. Of note, AdisOBP6 was highly expressed in the testes of A. dissimilis [30]. We reasoned that the testis of insects possess a defined set of OBPs in a manner comparable to the antenna. In this study, we sequenced the transcriptomes of the A. dissimilis reproductive organs and studied the expression of the OBPs in the antenna of female and males and testis and ovaries, and provide new targets for pest management in the future.

Results

Illumina sequencing and assembly
A total of 34,565,866, 32,154,799, and 26,952,526 clean reads containing 10.35, 9.63, and 8.07 giga base (Gb) pairs of clean nucleotides respectively, were obtained from the three replicates of the *A. dissimilis* ovaries. A total of 27,752,168, 28,900,040, and 30,838,686 clean reads containing 8.29, 8.65 and 9.23 giga base (Gb) pairs of clean nucleotides respectively, were obtained from the three replicates of *A. dissimilis* testes.

The quality of the transcriptome sequences was high, with Q30 percentages of 94.03%, 94.36%, 94.21%, 94.42%, 94.27% and 94.01% for the three replicates of *A. dissimilis* ovaries and testes, with a GC content were ~ 50% (Table 1). Then 221,074 transcripts and 82,016 unigenes with N50 length of 1,350 and 1,243, were obtained from assembled using Trinity (Table 2).

Sample name	Clean reads	Clean bases	GC Content (%)	Q30 (%)	
Ovaries	Repeat 1	34,565,866	10.35 G	48.00	94.03
	Repeat 2	32,154,799	9.63 G	48.35	94.36
	Repeat 3	26,952,526	8.07 G	48.27	94.42
Testis	Repeat 1	27,752,168	8.29 G	48.85	94.27
	Repeat 2	28,900,040	8.65 G	47.20	94.27
	Repeat 3	30,838,686	9.23 G	46.65	94.01

Table 1

Summary of the sequence assemblies according to the RNA-seq data of the *A. dissimilis*.

Length Range	Transcript	Rate%	Unigene	Rate%
< 300	0	0	0	0
300–500	83,670	37.85	37104	45.24
500–1000	70,088	31.70	24792	30.23
1000–2000	44,935	20.33	12864	15.68
> 2000	22,381	10.12	7256	8.85
Total Number	221,074	82.016		
Total Length	216,261,287	73,549,396		
N50 Length	1,350	1,243		
Mean Length	978.23	896.77		

Table 2

Summary of de novo assembly of the *A. dissimilis* transcriptomes.

Functional annotation

Significant matches of 33,587 unigenes (96.91%) in the NR; 29,936 (86.38%) in the eggnog; 20,134 (58.09%) in the Pfam; 15,174 (43.78%) in the Swissprot database; 14,775 (42.63%) in the KEGG; 7,797 (22.50%) in the GO; and 6,712 (19.37%) in the COG were observed. As a result, up to 34,658 putative coding sequences were identified (Table 3).

NR database queries revealed a high percentage of *A. dissimilis* sequences that closely
matched to sequences of Helicoverpa armigera (19072, 56.87%), Amyelois transitella (1936, 5.77%), Bombyx mori (1543, 4.60%), Papilio machaon (1155, 3.44%), Papilio xuthus (868, 2.59%), Plutella xylostella (844, 2.52%), Danaus plexippus (634, 1.89%), Branchiostoma belcheri (473, 1.41%), and Papilio polytes (368, 1.10%) (Fig. 1).

Table 3

Database	Number	Rate (%)	300 ≤ Length < 1000	Length ≥ 1000
COG	6,712	19.37	2,638	4,074
GO	7,797	22.50	4,453	3,344
KEGG	14,775	42.63	8,205	6,570
Pfam	20,134	58.09	8,577	11,557
Swissprot	15,174	43.78	6,987	8,187
eggNOG	29,936	86.38	16,283	13,653
NR	33,587	96.91	18,939	14,648
All	34,658		19,914	14,744

For GO analysis, 7,797 unigenes (22.50%) could be assigned to three GO terms including: cellular components (886 unigenes, 11.36%), molecular functions (5,683 unigenes, 72.89%) and biological process (1,228 unigenes, 15.75%) (Fig. 2). The “molecular functions” were highest represented (72.89% transcripts). For the “molecular functions” ontology, catalytic activity and binding were most prevalent.

Identification of putative odorant-binding proteins

In the A. dissimilis antennal and reproductive organ transcriptome, we identified 54 candidate OBPs (Genbank accession number: KR780027-KR780030, MH900289-MH900338), 31 of which were from the antennae (through the analysis of previous A. dissimilis antennal transcriptomes) and 23 from the testis and ovaries (Table 4). A total of 44 AdisOBP sequences had full-length ORFs. Their cDNAs encoded protein of 131–293 amino acids with molecular weights of 11.6–33.2 kDa and isoelectric points of 4.44–9.74. Excluding the 7 AdisOBPs (AdisOBP28, 30, 31, 35, 36, 41, 42, 52, 53 and 54) signal peptides were predicted at the N-terminus. AdisOBPs had 39–99% sequence homology with previously identified OBPs from other insect species, displaying a high level of sequence similarity. For example, AdisOBP13 has a 95% identity with Spodoptera exigua OBP9.
(Table 1). *A. dissimilis* OBPs had only 11.87% identity.

Table 4

The characteristic of candidate OBP genes in the antennae and reproductive organs of *A. dissimilis*.

Order	Gene name	GenBanRF access no.	Molecular weight (kDa)	Full length (aa)	Gene annotation	Species ID	Protein ID	Score	E-value	Identity (%)
c6904	AdisPB P1	KR780 029	166	17.32	5.19	Yes	Yes	PBP1	AAC05 702	79
c6504	AdisPB P2	KR780 030	162	18.08	5.30	Yes	Yes	PBP2	AAC05 701	81
c6514	AdisPB P3	MH900 289	164	18.71	5.25	Yes	Yes	PBP3	AFM36 758	82
c4764	AdisG OBP1	KR780 027	163	18.89	5.19	Yes	Yes	GOBP1	AGS36 742	99
c6002	AdisG OBP2	KR780 028	161	18.09	5.09	Yes	Yes	GOBP2	AFM36 760	88
c6878	AdisOB P1	MH900 290	293	33.20	5.76	Yes	Yes	OBP	NP 11145	63
c6995	AdisOB P2	MH900 291	246	27.36	5.40	Yes	Yes	OBP10	BAV56 797	66
c6009	AdisOB P3	MH900 292	145	16.22	8.37	Yes	Yes	OBP	ADY17 886	51
c6585	AdisOB P5	MH900 293	242	26.78	6.33	Yes	Yes	OBP35	ARO70 194	46
c7271	AdisOB P8	MH900 294	240	27.01	6.53	Yes	Yes	OBP25	AKT26 502	63
c6115	AdisOB P9	MH900 295	167	18.50	4.51	Yes	Yes	OBP10	AGS36 751	79
c6004	AdisOB P10	MH900 296	141	16.38	4.47	Yes	Yes	OBP8	AGH70 104	86
c6540	AdisOB P11	MH900 297	133	15.14	9.01	Yes	Yes	OBP9	AGH70 105	95
c5830	AdisOB P12	MH900 298	185	20.13	6.04	Yes	Yes	OBP1	AGR39 564	74
c6405	AdisOB P13	MH900 299	146	16.43	6.29	Yes	Yes	OBP6	AGR39 569	88
c5362	AdisOB P14	MH900 300	118	-	-	Yes	Yes	OBP18	AGR39 568	48
c6816	AdisOB P15	MH900 301	252	28.95	6.19	Yes	Yes	OBP23	AKT26 496	81
c6791	AdisOB P16	MH900 302	203	22.50	5.69	Yes	Yes	OBP19	AGR92 793	81
c6088	AdisOB P17	MH900 303	139	14.55	8.58	Yes	Yes	OBP5	AGR39 568	62
c7171	AdisOB P18	MH900 304	139	15.69	7.52	Yes	Yes	OBP8	AKI879 69	87
Accession	Organism	Species	Length	E values	Expression	Protein	Length	E values	Expression	Protein
-----------	----------	---------	--------	----------	------------	---------	--------	----------	------------	---------
c6503	AdisOB	MH9000	305		Yes	OBP5				
c6312	AdisOB	MH9000	306		Yes, yes	OBP23	238	2e-78		
c5733	AdisOB	MH9000	307		Yes, yes	OBP26	233	1e-76		
c6470	AdisOB	MH9000	308		Yes, yes	OBP7	187	5e-57		
c8104	AdisOB	MH9000	309							
c5370	AdisOB	MH9000	310							
c2887	AdisOB	MH9000	311							
c6711	AdisOB	MH9000	312							
c5758	AdisOB	MH9000	313							
c6252	AdisOB	MH9000	314							
c6383	AdisOB	MH9000	315							
Gene.5	AdisOB	MH9000	316							
Gene.7	AdisOB	MH9000	317							
Gene.6	AdisOB	MH9000	318							
Gene.3	AdisOB	MH9000	319							
Gene.4	AdisOB	MH9000	320							
Gene.3	AdisOB	MH9000	321							
Gene.5	AdisOB	MH9000	322							
Gene.7	AdisOB	MH9000	323							
Gene.1	AdisOB	MH9000	324							
Multiple sequence alignments of the A. dissimilis OBPs revealed the presence of expected conserved cysteines (Fig. 3). The phylogenetic tree of A. dissimilis and other lepidopteran OBPs constructed using the neighbor-joining method, indicated five clades that contained four possible protein subfamilies (Fig. 4). In addition, the tree showed low levels of clustering highlighting the diversity of the lepidopteran OBPs. Five (AdisPBP1-3, GOBP1-2) AdisOBPs belonged to PBP/GOBP. A total of 35 OBPs (AdisOBP1, 3-5, 6-10, 12-17, 19-22) were ‘Classic’ OBPs that contained six positionally-conserved cysteine residues. Seven

Gene.	AdisOB	MH900	141	16.29	9.12	No	Yes	OBP19	Helicoverpa assulta	AGC92 793	115	2e-29	44
7158	P41	325											
Gene.	AdisOB	MH900	102	11.15	5.44	No	Yes	OBP23	Spodoptera litura	ALD65 897	98.6	3e-24	49
4505	P42	326											
Gene.	AdisOB	MH900	76	-	-	-	5’ lose	OBP23	Spodoptera litura	AEX07 280	87.8	1e-20	59
4039	P43	327											
Gene.	AdisOB	MH900	76	-	-	-	5’ lose	OBP19	Helicoverpa armiger a	AGC92 793	71.6	6e-14	48
8201	P44	328											
Gene.	AdisOB	MH900	150	16.43	4.77	Yes	Yes	OBP2	Agrotis ipsilon	AGR39 565	119	1e-31	42
2531	P45	329											
Gene.	AdisOB	MH900	70	-	-	-	5’ lose	OBP14	Spodoptera exigua	AGP03 460	117	2e-32	81
319	P46	330											
Gene.	AdisOB	MH900	120	-	-	-	5’ lose	OBP13	Sesamia inferens	AGS36 753	137	8e-39	53
6678	P47	331											
Gene.	AdisOB	MH900	106	12.10	6.95	No	Yes	OBP39	Dendrolimus punctatus	ARO70 198	183	4e-57	82
41496	P48	332											
Gene.	AdisOB	MH900	157	17.96	9.74	Yes	Yes	OBP18	Dendrolimus punctatus	ARO70 177	119	3e-31	51
42856	P49	333											
Gene.	AdisOB	MH900	144	16.21	4.44	Yes	Yes	OBP9	Helicoverpa armiger a	AEB54 592	163	5e-49	54
7592	P50	334											
Gene.	AdisOB	MH900	84	-	-	-	5’ lose	OBP39	Dendrolimus punctatus	ARO70 198	140	1e-40	86
4647	P51	335											
Gene.	AdisOB	MH900	105	11.60	4.71	No	Yes	OBP	Spodoptera litura	ALD65 897	111	4e-29	52
6032	P52	336											
Gene.	AdisOB	MH900	105	12.28	8.21	No	yes	OBP	Operophtera brumata	KOB73 304	194	1e-61	88
11996	P53	337											
Gene.	AdisOB	MH900	131	14.34	4.86	No	yes	OBP11	Spodoptera exigua	AGP03 457	226	3e-74	79
OBPs (AdisOBP14-16, 18, 33, 36 and 41) belonged to ‘Plus-C’ subclass OBP genes. Nine OBPs belonged to ‘Minus-C’ subclass OBP genes. Interestingly, AdisOBP1, AdisOBP17 and AdisOBP40 did not belong to any of the four protein subfamilies (Fig. 4). The transcription abundance of A. dissimilis OBPs in antennae of female and males, ovary and testis are profiled in Fig. 5.

Expression of the OBPs in the antennae, ovaries and testis of A. dissimilis

To understand the functions of the identified OBPs in A. dissimilis, we measured the relative expression levels of OBPs in different tissues of A. dissimilis via fluorescence qRT-PCR (Fig. 6). A total of 23 OBPs (AdisGOBP1-2, PBP1-3, OBP1-2, 8–9, 11, 17, 20–22, 24, 26–31, 50 and 54) were highly expressed in both female and male antennae compared to the reproductive organs of females and males. A total of 5/23 OBPs (Adis GOBP1, OBP8-9, 24 and 29) showed comparable expression in the male and female antennae of A. dissimilis; 3/23 (AdisPBP1, OBP17 and OBP26) were higher in males; and 15/23 were higher in females.

A total of 24 OBPs (AdisOBP3, 5, 15, 18–19, 23, 25, 33-41, 44-45, 47-49 and 51–53) were highly expressed in the testis of A. dissimilis compared to other tissues. The expressive of the OBPs were low in the ovaries of A. dissimilis.

Discussion

Insects rely on peripheral sensilla on the antennae to distinguish plant odorants and pheromones [31], a knowledge of the molecular mechanisms of olfaction is essential for better using olfactory-based pest management strategies and the development of novel strategies. OBPs are more accessible targets for research, considering they are small, soluble, stable and easier to manipulate and modify. About exact functions of the OBPs are unclear, but it is widely believed that their function is to capture and transfer outside
odorants to ORs located on the membranes of ORNs [8, 11, 32]. Insect OBPs are present on the antennae where they execute odorant functions [11, 33–36]. In this study, we identified 31 novel OBPs through the analysis of A. dissimilis antennal transcriptomes, expressing five previously reported AdisOBPs [30]. The number of OBPs in A. dissimilis antennae were similar to the antennal transcriptomes of S. littura (33) [37] and S. littoralis (36) [38] but more abundant than S. exigua (11) [39], M. sexta (18) [40] and H. armigera (26) [41]. We additionally sequenced the transcriptomes of A. dissimilis ovaries and testis. The alignments against the Nr database showed that 56.87% of the A. dissimilis unigenes were comparable to Helicoverpa armigera sequences. A total of 24 OBPs were identified in the transcriptomes of A. dissimilis reproduction organs.

Based on the cluster analysis of the phylogenetic trees, five AdisOBPs belonged to PBP/GOBP; 35 AdisOBPs belonged to ‘Classic’ OBPs; 7 AdisOBPs belonged to ‘Plus-C’ OBPs; and 9 AdisOBPs belonged to ‘Minus-C’ OBPs. These results were similar to the classifications of most insect OBPs [25, 37, 42]. Interestingly, AdisOBP1, AdisOBP17 and AdisOBP40 did not cluster into these 4 protein subfamilies, but multiple sequence alignments of the A. dissimilis OBPs revealed that 3 of the OBPs contain no conserved cysteines. Their construction requires further to verification.

Insect OBPs are expressed in the sensory organs [22, 25, 37, 43–45]. Our result showed that 23 AdisOBPs were significantly expressed in both female and male antennae compared to other tissues. Only the expression of 3 AdisOBPs were significantly higher in the antennae’s of males compared to females, suggesting that females require more abundant OBPs for spawning. OBPs are also expressed in the non-olfactory organs, such as those required for reproduction [24-25, 46-48]. In this study, 24
AdisOBPs showed significant expression in the testis of A. dissimilis compared to other tissues, but the expression of AdisOBPs in the ovaries were low. It was previously speculated that OBPs expressed in the testis deliver compounds to the females during mating [24–25]. Hence, it is understandable to presume that such stable proteins could be used in the testis of insect where there is need for transportation of hydrophobic molecules in aqueous media or protection of chemicals from degradation, as well as to assure a gradual release of semiochemicals in the environment. So these proteins have been named for “encapsulins”, to imply the common role of encapsulating small ligands [49].

Conclusions

In summary, we demonstrate that the A. dissimilis chemosensory genes show functional diversity. These findings enhance our knowledge of the roles of OBPs in A. dissimilis and lepidopteran species and provide a base for studying OBPs novel targets of pest management strategies.

Methods

Insect rearing and sample preparation

The A. dissimilis strain was collected from Luoyang (province of Henan, China) corn fields (112°26’ E, 34°43’ N) in 2014 and maintained at the Henan Science and Technology University. Colonies were reared on an artificial diet at 25 ± 1 °C, 80 ± 5% relative humidity and a 16-h/8-h light/dark cycle.

Based on preliminary data, we found that the A. dissimilis sperm and eggs began to mature 3 days after emergence. We respectively collected the ovaries and testes of 3-day old virgin females and male adults (n = 40 per treatment) from three biological replications. Dissections were performed in sterile PBS-DEPC and immediately frozen in
liquid nitrogen until RNA isolation.

cDNA library preparation and sequencing

Total RNA from the *A. dissimilis* ovaries and testis tissues were extracted using RNAiso Plus kit (TaKaRa, Dalian, China) and treated with DNase I (TaKaRa, Dalian, China) as per the manufacturer’s protocols. RNA was assessed through 1% agarose gel electrophoresis and Nanodrop 2000 ® (Thermo Scientific, Waltham, MA, USA), Qubit 2.0 (Life Technologies, Carlsbad, CA, USA) and Agilent 2100 (Agilent, Santa Clara, CA, USA) analysis.

Following the TruSeq RNA Sample Preparation Guide v2 (Illumina, San Diego, CA, USA), mRNA was enriched using magnetic beads crosslinked with Oligo (dT). Enriched RNA was then fragmented using fragmentation buffer and first-strand cDNA synthesis was used to produce small mRNA fragments, random primers, reverse transcriptase, and second-strand cDNA synthesis through the addition of dNTPs, DNA polymerase I, and RNase H. Double-stranded cDNA was purified with AMPure XP beads (Beckman Coulter, Brea, CA, USA) and treated to repair ends, remove poly(-A) tails, and link sequencing adapters. Fragment sizes were selected using AMPure XP beads and cDNA libraries were constructed through PCR amplification (Veriti™ 96-Well Thermal Cycle, Applied Biosystems, Foster City, USA). The concentration and insert size of the cDNA libraries were detected using Qubit 2.0 and Agilent 2100 and quantified via q-PCR (CFX-96, Bio-Rad, Hercules, CA, USA).

Finally, sequencing was performed using the Illumina HiSeq™ 4000 platform to generate 150-bp paired-end reads. Sequencing analyses were performed by the Genomics Services of the Beijing Biomarker Technologies Co., Ltd. (Beijing, China). Raw data processing and base calling were performed using Illumina software.

Assembly and Functional annotation
Raw data (raw reads) in the FASTQ format were first modified into clean data (clean reads) through Perl scripts. This was performed through the removal of reads containing adapter sequences, > 10% unknown nucleotides and quality values ≤ 20. The Q20, Q30, and GC content were then calculated using high-quality data.

Transcriptomes were assembled using Trinity (version trinityrnaseq_r20131110) with default settings, except for min_kmer_cov set to 2 [50]. Unigene functions were annotated based on NCBI non-redundant protein sequences (NR, NCBI blast 2.2.28+, e-value = 1e-5), NCBI nucleotide sequences (NT, NCBI blast 2.2.28+, e-value = 1e-5), Protein family (Pfam, HMMER 3.0 package, hmmscan, e-value = 0.01), eukaryotic Ortholog Groups (KOG, NCBI blast 2.2.28+, e-value = 1e-3), SwissProt (NCBI blast 2.2.28+, e-value = 1e-5), the Kyoto Encyclopedia of Genes and Genomes (KEGG; KEGG Automatic Annotation Server [KASS], e-value = 1e-10) and Gene Ontology (GO, Blast2GO v2.5, e-value = 1e-6). Coding sequences (CDS) were predicted through aligning transcriptome sequences to the Nr and Swiss-Prot database or using estscan 3.0.3 [51].

Sequence and phylogenetic analysis

Sequence similarities were assessed using the NCBI-Blast network server (http://blast.ncbi.nlm.nih.gov/). The signal peptides of OBPs were predicted using SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/) [52]. Multiple sequence alignments were assessed using DNAMAN 6.0. Sequence alignments of the candidate OBPs were performed using ClustalX 2.1 [53] and used to construct phylogenetic trees with PhyML in Seaview v.4 based on the Jones–Taylor–Thornton (JTT) model with nearest-neighbor interchanges. Trees were viewed and edited using FigTree v.1.3.1.

Transcript expression profiling

Sequencing Reads were compared to the Unigene libraries using Bowtie, and expression
levels were estimated by combining RSEM. FPKM values are used to represent the expression abundance of the corresponding Unigenes [54]. Averages of three biological replicates as the actual expression values for each transcript were obtained. Based on the RNA-seq data, tissue-specific expression of the OBPs were profiled.

Expression analysis through quantitative real-time polymerase chain reaction

Male antennae, female antennae, ovaries and testes tissue from adults at 3 post-eclosion were excised and frozen in liquid nitrogen. Total RNA was extracted using RNAiso Plus kits (TaKaRa, Dalian, China) and isolated RNA was transcribed to first-strand cDNA using PrimeScript™ RT reagent with gDNA Eraser (TaKaRa, Dalian, China) following the manufacturer’s protocols. Real-time quantitative PCR (RT-qPCR) was performed with SYBR® Premix Ex Taq™ II (TaKaRa). The A. dissimilis GADPH gene was used as an endogenous control to correct for sample-to-sample variations. A 200 ng/µL cDNA sample was used for per tissue. Primers were designed using Primer Premier 5.0 software and are listed in supportment Table 1. RT-qPCR reactions contained: 10 µL of SYBR Premix Ex Taq II, 20 ng of cDNA template, 0.2 µM of each primer and nuclease-free water. The cycling conditions were 1 cycle of 95 °C for 5 min, followed by 40 cycles of 95 °C for 5 s and 55 °C for 30 s. Melt curve conditions were 95 °C for 10 s and 65 °C for 30 s. No-template controls (NTC) were included to detect possible contamination. Three biological replicates were analyzed and the relative expression of the OBP genes across the samples were measured using the $2^{-\Delta\Delta CT}$ method [55]. Expression was calculated relative to levels in the female antennae, which were arbitrarily set to 1. Differences in the expression of AdisOBP genes between the different tissues were compared using a one-way nested analysis of variance (ANOVA), followed by a Tukey’s honestly significance difference (HSD)
test using SPSS (SPSS Institute 17.0, SPSS Inc, Chicago, IL, USA).

Abbreviations

CO: Carbon dioxide; FPKM: Fragments per kb per million fragments; GO: Gene ontology;
GR: Glutamate receptor; iGluR: Ionotropic glutamate receptor; IR: Ionotropic receptor;
JTT: Jones-Taylor-Thornton amino acid substitution model; OR: Odorant receptor; ORF: Open reading frame; TMD: Transmembrane domain.

Declarations

Funding

This study is supported by the National Natural Science Foundation of China (31701788 to YS) and the Natural Science Foundation of Henan Province of China (182300410024 to HS).

Availability of data and materials

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Authors’ contributions

All authors contributed to research design and manuscript preparation. Conceived and designed the experiments: YS, HS, JZ. Performed the experiments: YS, HS, JZ. Analyzed the data: YS, HS, JZ. Contributed reagents/materials/analysis tools: YS, JZ. Wrote the paper: YS, HS. All authors read and approved the final manuscript.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.
Author details

1Forestry College, Henan University of Science and Technology, Luoyang 471000, China.

2Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China

References

1. Field LM, Pickett JA, Wadhams LJ. Molecular studies in insect olfaction. Insect Mol Biol. 2000; 9: 545–51.

2. Zhan S, Merlin C, Boore JL, Reppert SM. The monarch butterfly genome yields insights into long-distance migration. Cell. 2011; 147: 1171–85.

3. Suh E, Bohbot J, Zwiebel LJ. Peripheral olfactory signaling in insects. Curr Opin Insect Sci. 2014; 6: 86–92.

4. Sun L, Xiao HJ, Gu SH, Guo YY, Liu ZW, Zhang YJ. Perception of potential sex pheromones and host-associated volatiles in the cotton plant bug, *Adelphocoris fasciaticollis* (Hemiptera: Miridae): morphology and electrophysiology. Appl Entomol Zool. 2014; 49: 43–57.

5. Zhang J, Walker WB, Wang G. Pheromone reception in moths: from molecules to behaviors. Prog Mol Biol Transl Sci. 2015; 130: 109–28.

6. Getchell TV, Margolis FL, Getchell ML. Perireceptor and receptor events in vertebrate olfaction. Prog Neurobiol. 1984; 23: 317–45.

7. Du G, Prestwich GD. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry. 1995; 34: 8726–32.

8. Pelosi P, Zhou JJ, Ban L, Calvello M. Soluble proteins in insect chemical communication. Cell Mol Life Sci. 2006; 63: 1658–76.

9. Fan J, Francis F, Liu Y, Chen JL, Cheng DF. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res. 2011; 10: 3056–69.
10. Tunstall NE, Warr CG. Chemical communication in insects: the peripheral odor coding system of *Drosophila melanogaster*. Adv Exp Med Biol. 2012; 739: 59–77.

11. Leal WS. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013; 58: 373–91.

12. Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature, 1981; 293: 161–3.

13. Pelosi P, Maida R. Odorant-binding proteins in insects. Comp Biochem Phys B. 1995; 111: 503-14.

14. Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, et al. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from *Schistocerca gregaria*. Eur J Biochem. 1999; 262:745–54.

15. Leal WS, Nikonova L, Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, *Bombyx mori*. FEBS Letters. 1999; 464: 85–90.

16. Zhou JJ. Odorant-binding proteins in insects. Vitamins & Hormones. 2010; 83: 241-72.

17. Lagarde A, Spinelli S, Tegoni M, He X, Field L, Zhou JJ, et al. The crystal structure of odorant binding protein 7 from *Anopheles gambiae* exhibits an outstanding adaptability of its binding site. J Mol Biol. 2011; 414: 401-12.

18. Cao DP, Liu Y, Wei JJ, Liao XY, Walker WB, Li JH, et al. Identification of candidate olfactory genes in *Chilo suppressalis* by antennal transcriptome analysis. Int J Biol Sci. 2014; 10: 846.

19. Zhang SF, Zhang Z, Wang HB, Kong XB. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, *Dendrolimus houi* and *Dendrolimus kikuchii* (Lepidoptera: Lasiocampidae). Insect Biochem Molec. 2014; 52: 69-81.
20. Jia XJ, Wang HX, Yan ZG, Zhang MZ, Wei CH, Qin XC, et al. Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Sci Rep. 2016; 6: 29067.

21. Pregitzer P, Zielonka M, Eichhorn AS, Jiang X, Krieger J, Breer H. Expression of odorant-binding proteins in mouthpart palps of the desert locust Schistocerca gregaria. Insect Mol Biol. 2019; 28: 264-76.

22. Cheng WN, Zhang YD, Liu W, Li GW, Zhu-Salzman K. Molecular and functional characterization of three odorant-binding proteins from the wheat blossom midge, Sitodiplosis mosellana. Insect Sci. 2019; 98: e21456.

23. Yin J, Wang CQ, Fang CQ, Zhang S, Cao YZ, Li KB, et al. Functional characterization of odorant-binding proteins from the scarab beetle Holotrichia obrita based on semiochemical-induced expression alteration and gene silencing. Insect Biochem Molec. 2019; 104: 11-9.

24. Li S, Picimbon JF, Ji SD, Kan YC, Qiao CL, Zhou JJ, et al. Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochem Bioph Res Co. 2008; 372(3): 464-8.

25. Sun YL, Huang LQ, Pelosi P, Wang CZ. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species. PLoS ONE. 2012; 7: e30040.

26. Li JW, Yu Y, Zhang AS, Men XY, Zhou XH, Zhai YF, et al. Morphologically a like species of Athetis lepigone (Möschler) — A. dissimilis (Hampson) found in Shandong Province of China. Plant Prot. 2014; 40(6): 193-5.

27. Takahashi M. Athetis dissimilis Hampson, a new nuisance? Jpn Soc Med Entomol Zool. 1975; 26: 66.

28. Li NG. Relationships between cold hardiness and ice nucleating activity, glycerol and
protein contents in the hemolymph of caterpillars, Aporia crataegi L. CryoLetters. 2012; 33: 134–42.

29. Dong J, Song Y, Li W, Shi J, Wang Z. Identification of putative chemosensory receptor genes from the *Athetis dissimilis* antennal transcriptome. PLoS ONE. 2016; 11(1): e0147768.

30. Sun HZ, Song YQ, Du J, Wang XD, Cheng ZJ. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in *Athetis dissimilis* (Lepidoptera: Noctuidae). Appl Entomol Zool. 2016; 51(3): 409–20.

31. Olsson POC, Anderbrant O, Löfstedt C, Borg-Karlson AK, Liblikas I. Electrophysiological and behavioral responses to chocolate volatiles in both sexes of the pyralid moths *Ephestia cautella* and *Plodia interpunctella*. J Chem Ecol. 2005; 31: 2947–61.

32. Liu Z, Smagghe G, Lei ZR, Wang JJ. Identification of male-and female-specific olfaction genes in antennae of the oriental fruit fly (*Bactrocera dorsalis*). PloS ONE. 2016; 11: e0147783.

33. Qiao H, Tuccori E, He X, Gazzano A, Field L, Zhou JJ, et al. Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem Molec. 2009; 39(5-6): 414–19.

34. Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, et al. Characterisation of *Bombyx mori* Odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol. 2009; 389(3): 529–45.

35. Larter NK, Sun JS, Carlson JR. Organization and function of *Drosophila* odorant binding proteins. Elife. 2106; 5: e20242.

36. Jia X, Zhang X, Liu H, Wang R, Zhang T. Identification of chemosensory genes from the antennal transcriptome of Indianmeal moth *Plodia interpunctella*. PLoS ONE.
2018; 13: e0189889.

37. Gu SH, Zhou JJ, Gao S, Wang DH, Li XC, Guo YY. et al. Identification and comparative expression analysis of odorant binding protein genes in the tobacco cutworm Spodoptera litura. Sci Rep-UK. 2015; 5: 13800.

38. Poivet E, Gallot A, Montagné N, Glaser N, Legeai F, Jacquin-Joly E. A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PLoS ONE. 2013; 8: e60263.

39. Zhu JY, Zhang LF, Ze SZ, Wang DW, Yang B. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua. J Insect Physiol. 2013; 59(7): 722–8.

40. Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS. Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci. 2011; 108: 7449–54.

41. Liu Y, Gu SH, Zhang YJ, Guo YY, Wang GR. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PloS ONE. 2012; 7: e48260.

42. Chang H, Ai D, Zhang J, Dong S, Liu Y, Wang G. Candidate odorant binding proteins and chemosensory proteins in the larval chemosensory tissues of two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS ONE. 2017; 12(6): e0179243.

43. Feng B, Guo QS, Zheng KD, Qin YX, Du YJ. Antennal transcriptome analysis of the piercing moth Oraesia emarginata (Lepidoptera: Noctuidae). PloS ONE. 2017; 12(6): e0179433.

44. Wei HS, Li KB, Zhang S, Cao YZ, Yin J. Identification of candidate chemosensory genes by transcriptome analysis in Loxostege sticticalis Linnaeus. PloS ONE. 2017; 12(4): e0174036.

45. Tian ZQ, Sun LN, Li YY, Quan LF, Zhang HJ, Yan WT, et al. Antennal transcriptome
analysis of the chemosensory gene families in *Carposina sasakii* (Lepidoptera: Carposinidae). BMC Genomics. 2018; 19: 544.

46. Zhang TT, Coates BS, Ge X, Bai SX, He KL, Wang ZY. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer, *Ostrinia furnacalis* (Guene´e) (Lepidoptera: Crambidae). PloS ONE. 2015; 10(6): e0128550.

47. Song LM, Jiang X, Wang XM, Li JD, Zhu F, Tu XB, et al. Male tarsi specific odorant-binding proteins in the diving beetle *Cybister japonicus* sharp. Sci Rep-UK. 2016; 6: 31848.

48. Chen XF, Xu L, Zhang YX, Wei D, Wang JJ, Jiang HB. Genome-wide identification and expression profiling of odorant-binding proteins in the oriental fruit fly, *Bactrocera dorsalis*. Comp Biochem Phys D. 2019; 31: 100605.

49. Leal WS. Molecular-based chemical propecting of mosquito attractants and repellents. In: Debboun MF, Strickman D (Eds.), Insect Repellents: Principles, Methods, and Uses. CRC Press. 2006; pp. 229–244.

50. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7): 644–52.

51. Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999; 7: 138–48.

52. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011; 8: 785–6.

53. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21): 2947–48.

54. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying
mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5: 621–8.

55. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-ΔΔC) method. Methods. 2001; 25: 402–8.

Figures

The Blastx results of A. dissimilis reproductive organs unigenes in NR database.
Gene Ontology (GO) classifications of A. dissimilis reproductive organs unigenes according to their involvement in biological processes, cellular component and molecular function.
Figure 3
Sequence alignments of A. dissimilis OBPs.
Figure 4

Phylogenetic relationships of candidate OBP proteins from A. dissimilis and Lepidoptera species.
Figure 5

Heat map showing the abundance of unigenes encoding OBPs in the A. dissimilis different tissues transcriptomes presented as normalized reads in reads per kilobase per million mapped reads (RPKM). In the figure each column represents 1 samples; each line represents 1 OBP gene. The color depth represents the number of reads contained in OBPs; red means more; blue means less. FA: female antennae; MA: male antennae; Ov: ovaries; Te: testis.
Figure 6

Expression profiles of the candidate OBPs in different tissues of *A. dissimilis*. FA: female antennae; MA: male antennae; Ov: ovaries; Te: testis. The standard errors are represented by the error bars; different lowercase letters (a, b, c) above the bars denote significant differences at \(p < 0.05 \).

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

S2.txt
S1.docx