Separation of oil/water emulsions by microbubble air flotation

Sumaya L Al-dulaimi1,2, Atheer M Al-yaqoobi1

1 Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
2 E.mail: Sumayaliwa44@gmail.com

Abstract. Oil/water emulsions are one of the major threats to environment nowadays, occurs at many stages in the production and treatment of crude oil. The oil recovery process adopted will depend on how the oil is present in the water stream. Oil can be found as free oil, as an unstable oil/water emulsion and also as a highly stable oil/water emulsion. The current study was dedicated to the application of microbubble air flotation process for the removal of such oily emulsions for its characters of cost-effective, simple structure, high efficiency and no secondary pollution. The influence of several key parameters on the process removal efficiency was examined, namely, initial oil concentration, pH value of the emulsion, and the effect of adding sodium chloride. The effect of bubble size on the performance of the separation process and its impact on removal efficiency was also investigated. The results demonstrated that removal efficiency obtained by using microbubbles flotation was higher by factor of 1.72 in comparison with that achieved with fine bubbles. The removal efficiency of oil droplets was increased with the increasing of flotation time and initial oil concentration. The removal efficiency reached up 60.68% under alkaline conditions (pH≈9), and it increased to around 75% by decreasing the emulsion acidity to around (pH≈3). The addition of sodium chloride has a significant influence to the efficiency of the flotation process. The efficiency could be reached to about 84% by adding 1 gL⁻¹ of NaCl to the emulsion. While increasing the NaCl concentration to 9 gL⁻¹ resulted in reduction in removal efficiency to around 80%.

Key words: Flotation, Microbubbles, Bubble diffuser, Oily wastewater, Emulsion, Oil removal efficiency, Zeta potential.

1. Introduction
Oil wastewater refers to wastewater that has been mixed with oil at a wide variety of concentrations [1]. Pollutants in oily wastewater are classified into two categories, organic and inorganic, as tabulated in Table 1. A significant quantity of oily wastewater is generated daily from a number of sources including oil refineries, petrochemical industry, crude oil production, oil and natural gas production plants, metal processing, machining, automotive shops, oil-drilling, and many other processes [2–4]. Such waste is mostly in the form of an oil-in-water (O/W) emulsion or a water-in-oil (W/O) emulsion or a water-in-oil-in-water (W/O/W) emulsion [5]. The different forms of the emulsion are shown in Figure 1. The United States Environmental Protection Agency (USEPA) has listed emulsions of oil-in-water among the most hazardous sewers owing to excessive levels of oil and grease, aromatic compounds, heavy metals, salts and recalcitrant substances which are hard to handle naturally in the environment [6]. Huge volumes of oil/water emulsion or oily wastewater effluents are dumped into the river from industries. Once they reach the sea, they have an adverse effect on the environment and...
living aquatics. Pollution of oily wastewater impacts drinking water, groundwater and sea water as a result of the percolation of pollutants into the water supplies below the surface. This process also puts human health in risk, as it tends to contaminate the atmosphere, particularly when oil burners are included. In addition to being toxic, oily wastewater includes petroleum hydrocarbons, polyaromatic hydrocarbons, and phenols, which can limit animals and plants growth. This pollutant increases the risk of mutations and cancer for humans [7–10].

Many countries have imposed strict regulations on oily wastewater disposal as they inflict serious and long-term environmental and human health harm [11]. For example, in Canada, the approved discharge limit for dispersed oil and grease for treated produced water is 30 mg/L in daily average [12]. According to the U.S. EPA regulations, the daily maximum and monthly average limit for oil and grease are 42 and 29 mg/L, respectively [13]. The oil phase in the wastewater usually consists of at least four types depending on the size and stability of the oil droplets. These types are free floating oil with a droplet diameter larger than 150 μm, dispersed oil with droplet sizes ranging from 20 to 150 μm, emulsified oil usually has a droplet size below 20 μm, and dissolved oil that has droplets smaller than 5 μm in size [3, 12, 14]. Free oil is not a major concern, as oil can easily be separated by gravity settling; however, the emulsified oil presents a particular challenge due to presence of steric interaction or structural barriers and electrostatic repulsion between oil droplets [9, 15].

So far, several researchers from around the world have suggested a large number of methods for treating such forms of oil in water, including gravity separation [16], centrifugation [17], the use of skimmers [18], adsorption [19], coagulation-flocculation [20], membrane processes [21], ultrafiltration [22], Microfiltration [23], reverse osmosis [24], Chemical demulsification [25], biological media [26], activated sludge [27], hydrocyclone [28], Coalescing media [29] and combinations of the above. Between them, air flotation technology was pretty widely used to remove oil from oily rejections in the whole world and still presents remarkably high potential related to its high separation efficiency and throughput, energy-efficient, simple process from an operational viewpoint, cost-effective, applicable to a wide range of oily wastewater and no by-product [30–32].

Air flotation is a method of gravity separation [14, 33]. It can be used to obtain higher separation efficiency (up to 80%) even at high loading rates with low retention times [34]. Air flotation is practiced in many fields such as wastewater treatment, mineral beneficiation, fermentation, ink removal, plastic recycling, protein separation, odor removal, harvesting or removal of algae, separation or harvesting of micro-organisms [35, 36]. In this method, components such as small particulate matter, oil droplets and contaminants are removed from the mixture depending on their hydrophobic or hydrophilic surface properties [33, 36]. Air bubbles are used to pick up hydrophobic molecules and transport them to the liquid surface, thereby creating a foaming layer where it can be removed, while hydrophilic particles are released from the bottom section like waste [37].

Generally, the technique of air flotation is divided into dissolved air flotation (DAF) and induced air flotation (IAF). Both techniques vary according to the way air bubbles are produced and the resulting bubble sizes [38]. In DAF units, air is pumped into the flotation chamber which is filled with a fully saturated solution. The air is expelled inside the chamber by applying a vacuum, or by attempting to create a rapid pressure drop. IAF technology uses mechanical shear or propellers to produce bubbles that are presented to the lower part of the flotation chamber [39, 40].

Numerous researches have been done on the treatment of oily wastewater by using flotation process. [41] studied the use of air flotation technique to separate crude oil from polymer-produced water. Approximately 99% of the oil was effectively removed at optimum experimental condition and in the presence of an anionic polymer (GLP-100). [42] used a bubble column of 15.6 cm diameter and 120 cm height to separate emulsified kerosene in water and found that the removal rate improved at a higher air velocity and a lower water height. [43] investigated the ability of separation of pollutants from oil-containing restaurant wastewater by applying Novel microbubble air flotation (MAF), comparing the results with traditional dissolved air flotation (DAF) systems. The maximum oil removal efficiency was achieved in the MAF system when the microbubbles and oil-droplets were similar sizes. [44] studied the separation of oil-in-water emulsions by the flotation method under three
cases: MB treatment only, MB treatment with polyaluminium chloride (PAC) as a coagulant (MB–PAC), and MB treatment with cetyltrimethylammonium chloride (CTAC) as a cationic surfactant (MB–CTAC). MB treatment with PAC and MB treatment with CTAC were seen to be more effective in the separation of emulsified oil than the MB treatment alone.

The essential goal of the current work was to investigate the possibility and efficiency of microbubble air flotation method for oil/water emulsion removal. This study investigated influence of some of key parameters which include initial oil concentration, pH, and effect of adding sodium chloride on the process removal efficiency. Also, the effect of bubble size on the performance of the separation process and its impact on removal efficiency was studied.

Table 1. Classification of oily wastewater pollutants [45].

Properties	Organic Pollutants	Inorganic Pollutants
Major component	Petroleum hydrocarbons	Inorganic oils
Types	Aliphatic, aromatic, asphaltenes	Hydraulic, turbine, lubricating, cutting, motor oil
Major element	Oxygen, nitrogen, Sulfur	-
Accompanying element	Nickel, cadmium, lead, vanadium organometallic complexes	Gasoline, heavy metals, oily sludge, solvents, particulate matters
Distribution in oily wastewater	Dispersed, emulsified, or dissolved	Floatable or settleable

Figure 1. Forms of emulsions [46].

(a) Oil-in-water (O/W) (b) Water-in-oil (W/O) (c) Double emulsion of water-in-oil-in-water (W/O/W)
2. Materials and methods

2.1. Crude oil
In this study, a sample of Kirkuk crude oil was used in the preparation of emulsion provided by a local oil refinery (Al-Dura Refinery, Iraq) and some of its physical properties are summarized in Table 2.

2.2. Chemicals
Surfactant type span 85 supplied by Fluka AG (USA), surfactant type tween 80 supplied by Alpha Chemika (India), Hydrochloric acid (HCl, 38%) from Central Drug House (P) Ltd. (India), Sodium hydroxide (NaOH, 99%) from Applichem GmbH Olloweg D-64291 Darmastdt (Germany), Sodium chloride (NaCl, 99%) from HiMedia Laboratories Private Limited (India), n-Hexane (C₆H₁₄, 95 %) from Alpha Chemika (India), Xylene (C₈H₁₀, 99.8 %) from Sisco Research Laboratories Pvt. Ltd. (India), Ethanol (C₂H₅OH) from AAG (India) and tap water were used in this work.

2.3. Preparation of Oil/Water Emulsion
Oil/water emulsion was prepared from a petroleum crude oil, 1%wt of surfactants and tap water. Non-ionic surfactants span 85 and tween 80, were used (60% span and 40% tween) to obtain hydrophilic lipophilic balance (HLB) value about 7, that made the emulsion stable for several days [47, 48]. Firstly, adding a measured amount of untreated crude oil and mixed it with surfactants and tap water in a mixing tank. Thereafter this mixture was agitated for ten minutes using 10,000 rpm homogenizer. After agitating, the pH of prepared emulsion was adjusted by adding (0.1 M) HCl or (0.1 M) NaOH and measured by using HM digital pH-200 Waterproof Professional Series pH/Temp Meter. The oil content in oil/water emulsion was determined by TD-500D Oil in Water Meter from Turner Designs Hydrocarbon Instruments (USA).

2.4. Equipment and procedure
The experiments were performed using the laboratory setup shown in Figure 2, which consisted of a cylindrical flotation column made from transparent acrylic resin with a capacity of 50 L and with dimensions (160 cm in height, 20 cm in diameter). The column equipped with five sampling ports placed equally spaced along the column. An air compressor was used to supply a constant air stream to the flotation column. The air introduced to the column through submerged sparger consists of a ceramic micrombubble diffuser (MBD) (type Point Four) with dimensions (16 cm in length, 6 cm in width and 1 cm in height) with an average pores size less than 20µm. This type of diffuser is capable of producing micro scale bubbles. The sparger set at the lower part of the flotation column used for producing the air microbubbles. In case of studying different bubble size, the diffuser was replaced by a perforated Teflon plate with pores size equal to 0.5 mm.

The oil/water emulsion was introduced to the flotation column from the top after the emulsion was adjusted for the desired concentration, volume, and acidity according to the experimental conditions. An initial sample was taken from the emulsion before the air is pumped to the system. Air was introduced from the bottom of the flotation column through the submerged diffuser at the required flow rate. The flotation time was 4 h for all experiment. Samples were taken through the sampling point every 15 minutes and they were immediately tested using the TD-500D UV-fluorescence analyzer for determining the final oil concentration. Then the oil removal efficiency is calculated according to equation (1)

\[
\text{Oil Removal Efficiency} = \frac{c_i - c_f}{c_i} \times 100 \%
\]

Where \(c_i\) is the initial oil concentration before the treatment (ppm) and \(c_f\) is the final oil concentration after the treatment (ppm). At the end of flotation process, the remained liquid was drained out from the system. The top oily layer which is composed of oil, bubble, oil-bubble complex was skimmed off and removed. Column, mixer, and diffuser were cleaned carefully to remove any oil contaminations.
Figure 2. Schematic diagram of microbubble air flotation system. (1) Flotation column, (2) Sampling ports, (3) Air compressor, (4) MB diffuser, (5) Pressure gauge, (6) Air rotameter, (7) Emulsion tank, (8) Feed pump, (9) Discharge pump, (10) Pressure control valve, (11) Regulating valve, and (12) Drain valve.
Table 2. Physical properties of Kirkuk crude oil.

Parameters	Value
API	31
Density	0.8504 g/cm3 (at 15.6 °C)
Sp. Gr	0.8509 (at 15.6 °C)
Salt content (wt%)	0.0009
Asphaltene (wt%)	1.29
Kin. Viscosity	11.6 at (15°C)
Sulfur content (wt%)	2.33
Nickel content, ppm	10.25
Vanadium content, ppm	30.8

3. Result and Discussion

3.1. Effect of Bubble size

Effect of bubble size on oil removal efficiency was conducted by using two bubble diffusers of different pore size, microbubble ($< 100 \mu m$) and fine bubble ($< 1 mm$) sizes. Compared the results of these two diffusers with gravitational separation (no bubbles). Experimental conditions were kept the same (initial oil concentration = 200 ppm, pH = 7.32, air flow rate 0.5 L/min, air pressure = 0.2 bar and liquid height = 55 cm).

Figure 3 shows the oil removal efficiency with time for the case of microbubble, fine bubbles, and with no bubbles. After 240 minutes of flotation time, the removal efficiency of microbubble flotation was 68.89% which is significantly higher compared with that obtained with fine bubbles which was 40.9 % and no bubbles (5.14%).

Microbubbles are needed for an efficient separation process due to their high collision rates with oil droplets [49]. Microbubbles have several remarkable features which make them superior to fine bubbles. For example, microbubbles have lower buoyancies, meaning that they slowly rise to the surface of the liquid, offering longer residence periods in the liquid. Microbubbles can either have negative or positive zeta potentials, which is a key factor in preventing bubble agglomeration or coalescence, maintaining a relatively monodisperse size distributions of microbubbles. In addition, the smaller the bubble, the greater the specific interfacial area, which promotes the effective physical adsorption of impurities dissolved in the solution, on the surface of the bubble. Moreover, the smaller the bubble is, the greater its inner pressure. Consequently, the driving force of mass transfer from gas phase to surrounding liquid increases with the decreased bubble size [34, 50, 51]. While fine bubbles have lower surface to volume ratios, lower residence time and large buoyant force. These properties of fine bubbles make them ineffective in the separation of colloidal substances from aqueous solutions [39, 52].
3.2. Effect of initial oil concentration

The effect of initial oil concentration on the oil removal efficiency was studied by preparing an emulsion with two oil concentrations (200, and 300) ppm while maintaining the other parameters constant (pH=7.32, air flow rate 0.5 L/min, air pressure=0.2 bar and liquid height= 55 cm).

The results demonstrate in Figure 4 show the impact of oil concentrations on oil removal efficiency. It can be observed that by increasing the oil concentrations, the removal efficiency of oil was improved. The oil removal efficiency after 165 min, were 46.29% and 73.12% for initial oil concentrations 200 and 300 ppm respectively. The enhancement in oil removal may be due to an increase in the opportunity of air bubbles to attach to floating oil drops in the emulsion. Furthermore, the results show that for both initial oil concentrations, the trend of removal efficiency curve starts to level off after specific time of approximately 210 min. That could be attributed to the distribution of
oil drops size inside the emulsion, once the largest drops are removed; the efficiency of the process slows down, this result is in agreement with the results obtained with other researches [53, 54].

3.3. Effect of pH value of emulsion

The effect of pH on the oil removal efficiency was studied by preparing an emulsion with different pH values (3.32, 5.26, 7.22, and 9) while keeping the other operation parameters unchanged (initial oil concentration= 200 ppm, air flow rate 0.5 L/min, air pressure=0.2 bar and liquid height= 55 cm). The results plotted in Figure 5 showing the oil the removal efficiency (%) with different pH values. From Figure 5, it is evident that lowering the pH from alkaline to neutral and acidic medium significantly increases the efficiency of the oil. The lowest removal efficiency of 60.68% was achieved at pH= 9 after flotation time of 240 minutes. The removal efficiency was obviously higher when the pH become 7.22, where the removal efficiency become 69%. The highest removal efficiency of 75.19% was achieved at pH= 3.32, that results comes in line with the results obtained by [55]. Another crucial factor in determining oil removal is the pH. This is due to changes in pH impact zeta potential of microbubbles and oil droplets. Its indicated that oil droplets have a negative zeta potential under a wide range of pH conditions and the negative value increased as pH rises. The negative potential is thought to result from adsorption of hydroxyl ions at the oil–water interface. As the pH becomes lower, the zeta potential of droplets increases and approaches zero. The zeta potential of microbubbles also increases with decreasing pH and can be potential changes from negative to positive at acidic conditions [56–58]. Since the zeta potential of droplets and microbubbles have negative and positive values, respectively, the oil removal efficiency rapidly increases with increasing positive zeta potential of microbubbles.

![Figure 5](image)

Figure 5. Effect of pH value on the oil removal efficiency.

3.4. Effect of adding Sodium chloride

The effect of sodium chloride addition on the oil removal efficiency was studied with different concentrations of NaCl (0, 0.05, 1, 3, and 9) gL−1 while keeping the other parameters constant (initial oil concentration= 200 ppm, pH= 7.32, air flow rate 0.5 L/min, air pressure=0.2 bar and liquid height= 55 cm). This effect is shown in Figure 6 by plotting oil removal efficiency (%) against flotation time at different NaCl concentrations. From this figure, it can be noticed that the addition of NaCl leads to a significant increase in the removal efficiency of oil. Approximately 84% of oil was removed at a
concentration of 1 gL⁻¹ NaCl. The explanation for this increase is that the addition of sodium chloride modified the surface charge of the air bubbles and oil droplets. NaCl caused a reduction in the zeta potential, depending on its concentration. The Cl⁻ anion tended to remain longer at the gas-water interface than the Na⁺ cation [59]. In addition, adding NaCl reduced the air bubbles size and raised the bubbles density [60, 61]. Since small bubbles have less buoyancy than large bubbles, they rise slowly to the surface with high chances of colliding with oil droplets. This improves the method of oil removal [62]. However, adding more NaCl (9 gL⁻¹) reduced the efficiency of oil removal due to collapsed double layers (high ion concentration) around the bubble and oil droplets [63].

![Figure 6. Effect of sodium chloride on the oil removal efficiency.](image)

4. Conclusion
In this work, separation of o/w emulsions with air flotation method was investigated. Based on the results, the following can be concluded:

- The O/W emulsion were successfully prepared using crude oil samples of Al-Dura Refinery in the presence of span 85 and tween 80 surfactants.
- O/W emulsion with oil concentrations (200-300 ppm) could be effectively removed by microbubble air flotation method; High percentage of oil removal (84.03%) was achieved after 4 hours of treatment with oil concentrations of 300 ppm.
- Oil removal efficiency appears to be increased in the acidic to neutral pH range and deceased under high pH condition. More than 75% oil could be removed at pH= 3.32.
- The removal efficiency was found to be improved significantly by adding NaCl, and then decreased with further increased in NaCl concentration due to collapsed double layers of ions.
- Microbubbles showed high removal efficiencies compared with fine bubbles and no-bubbles.

References
[1] Goh P S, Ong C S, Ng B C, Ismail A F 2018 Applications of emerging nanomaterials for oily wastewater treatment Nanotechnol. Water Wastewater Treat. Theory Appl. 101–113.
[2] Ong C S, Al-anzi B S and Lau W J 2018 Recent developments of carbon nanomaterials-incorporated membranes, carbon nanofibers and carbon membranes for oily wastewater treatment Carbon-based Polym. Nanocomposites Environ. Energy Appl. 261–280.
[3] Changmai M, Pasawan M and Purkait M K 2018 Treatment of oily wastewater from drilling site using electrocoagulation followed by microfiltration Sep. Purif. Technol. 210 463–472.
[4] Obaid M, Mohamed H O, Yasin A S, Yassin M A, Fadali O A, Kim H-Y and Barakat N A M
2017 Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux Water Res. 123 524–535.

[5] Zolfaghari R, Fakhrul’-Razi A, Abdullah L C, Elashraie S S E H and Pendashteh A 2016 Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry Sep. Purif. Technol. 170 377–407.

[6] Sheikhi M, Arzani M, Mahdavi H R and Mohammad T 2019 Kaolinitic clay-based ceramic microfiltration membrane for oily wastewater treatment: assessment of coagulant addition Ceram. Int. 45 17826–36.

[7] Ismail N H, Salleh W N W, Ismail A F, Hashbullah H, Yusof N, Aziz F, Jaafar J 2019 Hydrophilic polymer-based membrane for oily wastewater treatment: a review Sep. Purif. Technol. 233 116007.

[8] Lee W J, Goh P S, Lau W J, Ong C S and Ismail A F 2018 Antifouling zwitterion embedded forward osmosis thin film composite membrane for highly concentrated oily wastewater treatment Sep. Purif. Technol. 214 40–50.

[9] Han Q and Kang Y 2017 Separation of water-in-oil emulsion with microfiber glass coalescing bed J. Dispers. Sci. Technol. 38 1523–29.

[10] Lu D, Liu Q, Zhao Y, Liu H and Ma J 2017 Treatment and energy utilization of oily water via integrated ultrafiltration-forward osmosis–membrane distillation (UF-FO-MD) system J. Memb. Sci. 548 275–287.

[11] Li Y, Wang M, Sun D, Li Y and Wu T 2018 Effective removal of emulsified oil from oily wastewater using surfactant-modified sepiolite Appl. Clay Sci. 157 227–236.

[12] An C, Huang G, Yao Y and Zhao S 2016 Emerging usage of electrocoagulation technology for oil removal from wastewater: a review Sci. Total Environ. 579 537–556.

[13] Etchepare R, Oliveira H, Azevedo A and Rubio J 2017 Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles Sep. Purif. Technol. 186 326–332.

[14] e Silva F C P R, e Silva N M P R, Luna J M, Rufino R D, Santos V A and Sarubbo L A 2018 Dissolved air flotation combined to biosurfactants: a clean and efficient alternative to treat industrial oily water Rev. Environ. Sci. Biotechnol. 17 591–602.

[15] Xu H, Jia W, Ren S and Wang J 2017 Novel and recyclable demulsifier of expanded perlite grafted by magnetic nanoparticles for oil separation from emulsified oil wastewaters Chem. Eng. J. 337 10–18.

[16] Aleem W and Mellon N 2017 Model for the prediction of separation profile of oil-in-water emulsion J. Dispers. Sci. Technol. 39 8–17.

[17] Gil A, Siles J A, Toledo M and Martín M A 2019 Effect of microwave pretreatment on centrifuged and floated sewage sludge derived from wastewater treatment plants Process Saf. Environ. Prot. 128 251–258.

[18] Liu D H F 1997 Environmental Engineering’s Handbook ed D H F Liu and B G Liptak (U.S.) p 1419.

[19] Sharma M, Joshi M, Nigam S, Avasthi D K, Adelung R, Srivastava S K and Mishra K 2019 Efficient oil removal from wastewater based on polymer coated superhydrophobic tetrapodal magnetic nanocomposite adsorbent Appl. Mater. Today 17 130–141.

[20] Cui H, Huang X, Yu Z, Chen P and Cao X 2020 Application progress of enhanced coagulation in water treatment RSC Adv. 10 20231–44.

[21] Ong C, Shi Y, Chang J, Alduraiei F, Wehbe N, Ahmed Z and Wang P 2019 Tannin-inspired robust fabrication of superwettability membranes for highly efficient separation of oil-in-water emulsions and immiscible oil/water mixtures Sep. Purif. Technol. 227 115657.

[22] Zhang Y, Wei S, Hu Y and Sun S 2018 Membrane technology in wastewater treatment enhanced by functional nanomaterials J. Clean. Prod. 197 339–348.

[23] Motta A, Borges C, Esquerre K and Kiperstok A 2014 Oil produced water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes J. Memb.
Zhang X, Tian J, Gao S, Zhang Z, Cui F and Tang C Y 2017 In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly(Arylene Ether Sulfone) for anti-fouling in emulsified oil/water separation J. Membr. Sci. 527 26–34.

Mohammed S A M 2014 Microwave assisted demulsification of iraqi crude oil emulsions using tri-octyl methyl ammonium chloride (TOMAC) ionic liquid *Iraqi J. Chem. Pet. Eng.* 15 27–35.

Pendashteh A R, Abdullah L C, Fakhr‘ul-Razi A, Madaeni S S, Zainal Abidin Z and Biak D R A 2011 Evaluation of membrane bioreactor for hypersaline oily wastewater treatment *Process Saf. Environ. Prot.* 90 45–55.

Zhang H, Xiang H, Zhang G, Cao X and Meng Q 2008 Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution *J. Hazard. Mater.* 167 217–223.

Owens N and Lee D W 2007 The use of micro-bubble flotation technology in secondary & tertiary produced water treatment a technical comparison with other separation technologies *Prod. Water Work.* 1–19.

Ma S, Kang Y and Cui S 2013 oil and water separation using a glass microfiber coalescing bed *J. Dispers. Sci. Technol.* 35 103–110.

Wang L K, Shammas N K, Selke W A and Aulenbach D B *Flotation Technology* vol 12, ed L K Wang et al (New York: Humana Press) p 680.

Cai X, Chen J, Liu M, Ji Y, Ding G D and Zhang L 2017 CFD simulation of oil-water separation characteristics in a compact flotation unit by population balance modeling xiaolei *J. Dispers. Sci. Technol.* 38 1435–47.

Bolto B and Xie Z 2019 The use of polymers in the flotation treatment of wastewater *Processes* 7 374.

Chalermsinsuwan T, Romphophak P, Chawaloephonsiya N and Painmanakul P 2016 Prediction model for the treatment of stabilized oily wastewater by modified induced air flotation (MIAF) *Eng. J.* 20 11–21.

Yao K, Chi Y, Wang F, Yan J, Ni M and Cen K 2016 The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment *Water Sci. Technol.* 73 1969–77.

Rubio J, Souza M L and Smith R W 2001 Overview of flotation as a wastewater treatment technique *Miner. Eng.* 15 139–155.

Albijanìc B, Zhou Y, Tadesse B, Dyer L, Xu G and Yang X 2018 Influence of bubble approach velocity on liquid film drainage between a bubble and a spherical particle *Powder Technol.* 338.

Prakash R, Majumder S K and Singh A 2018 Flotation technique: its mechanisms and design parameters *Chem. Eng. Process.* - *Process Intensif.* 127 249–270.

Kumar A and Selvam P 2018 Removal of Dispersed Oil Drops by Induced Gas Flotation *Materials Sci.* 59.

Satthasivam J, Loganathan K and Sarp S 2016 An overview of oil-water separation using gas flotation systems *Chemosphere* 144 671–680.

Hedar Y and Budiyono 2018 Pollution impact and alternative treatment for produced water *E3S Web Conf.* 31 1–12.

Ku Ishak K E H and Ayoub M A 2019 Removal of oil from polymer-produced water by using flotation process and statistical modelling *J. Pet. Explor. Prod. Technol.* 9 2927–32.

Sulaymon A H and Mohammed A A 2010 Separation and hydrodynamic performance of air-keroseine-water system by bubble column nt. *J. Chem. React. Eng.* 8.

Zheng T, Wang Q, Shi Z, Huang P, Li J, Zhang J and Wang J 2015 Separation of pollutants from oil-containing restaurant wastewater by novel microbubble air flotation and traditional dissolved air flotation *Sep. Sci. Technol.* 50 2568–77.

Le T V, Imai T, Higuchi T, Doi R, Teeka J, Xiaofeng S and Teerakun M 2012 Separation of oil-in-water emulsions by microbubble treatment and the effect of adding coagulant or cationic

Sci. 469 371–8.
surfactant on removal efficiency Water Sci. Technol. 66 1036–43.

[45] Ismail A F, Salleh W N W and Yusof N 2020 Synthetic polymeric membranes for advanced water treatment, gas separation, and energy sustainability ed A F Ismail, W N W Salleh and N Yusof (United States: Elsevier) p 484.

[46] Saad M A, Kamil M, Abdurahman N H, Yunus R M and Awad O I 2019 An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions Processes 7 1–26.

[47] Al-Ameri M K and Al-Alawy A F 2016 Ultrafiltration of simulated oily wastewater using the method of tauguchi Int. J. Sci. Eng. Res. 7 503–508.

[48] Jawad A S and Al-Alawy A F 2020 Synthesis and characterization of coated magnetic nanoparticles and its application as coagulant for removal of oil droplets from oilfield produced water AIP Conf. Proc. 2213.

[49] Tsai J C, Kumar M, Chen S Y and Lin J G 2007 Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater Sep. Purif. Technol. 58 61–67.

[50] Xu Q, Nakajima M, Ichikawa S, Nakamura N and Shiina T 2008 A comparative study of microbubble generation by mechanical agitation and sonication Innov. Food Sci. Emerg. Technol. 9 489–494.

[51] Kaushik G and Chel A 2014 Microbubble technology: emerging field for water treatment Bubble Sci. Eng. Technol. 5 33–38.

[52] Hanotu J, Bandulasena H C H, Chiu T Y and Zimmerman W B 2013 Oil emulsion separation with fluidic oscillator generated microbubbles Int. J. Multiph. Flow 56 119–125.

[53] Mohammed D T J, Mohammed S S and Khalaf Z 2013 Treatment of oily wastewater by induced air flotation Eng. &Tech. Journal 31 87–98.

[54] Alawy A p A and Faraj N S 2015 Coagulation - flotation process for removing oil from wastewater using sawdust + Bentonite J. of Eng. 21 62–76.

[55] Yasuda K and Haneda K 2015 Separation of oil droplets from oil-in-water emulsion using a microbubble generator J. Chem. Eng. Japan 48 175–180.

[56] Li X, Liu J, Wang Y, Xu H, Cao Y and Deng X 2007 Separation of oil from wastewater by coal adsorption-column flotation J. China Univ. Min. Technol. 17 547–577.

[57] Al-shamrani A A, James A and Xiao H 2002 Destabilisation of oil-water emulsions and separation by dissolved air flotation Water Res. 36 1503–12.

[58] Takahashi M 2005 ζ Potential of microbubbles in aqueous solutions: electrical properties of the gas - water interface J. Phys. Chem. B 109 21858–64.

[59] Moosai R and Dawe R A 2003 Gas attachment of oil droplets for gas flotation for oily wastewater cleanup Sep. Technol. 33 303–314.

[60] Rajak V K, Relish K K, Kumar S and Mandal A 2015 Mechanism and kinetics of separation of oil from oil-in-water emulsion by air flotation Pet. Sci. Technol. 33 1861–8.

[61] El-Kayar A, Hussein M, Zatout A A, Hosny A Y and Amer A A 1992 Removal of oil from stable oil-water emulsion by induced air flotation technique Sep. Technol. 3 25–31.

[62] Bande R M, Prasad B, Mishra I M and Wasewar K L 2007 Oil field effluent water treatment for safe disposal by electro flotation Chem. Eng. J. 137 503–9.

[63] Sulaymon A H and Mohammed A A 2010 Separation and hydrodynamic performance of air-kerosene-water system by bubble column Int. J. Chem. React. Eng. 8 16.

Acknowledgement
The authors wished to express their gratitude to the University of Baghdad and the Iraqi Ministry of Education and Scientific Research. They also thanked the Chemical Engineering Department - College of Engineering for its support and help.