Innovative technologies for fruit extracts: Value-added opportunities in the meat industry

D Bursac Kovacevic1, F J Barba2, J M Lorenzo3, G Rocchetti4, L Lucini4 and P Putnik1

1 Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
2 Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Faculty of Pharmacy, Avda. Vicent Andrés Estellés, s/n, Burjassot 46100, València, Spain
3 Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain
4 Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy

E-mail: dbursac@pbf.hr

Abstract. Consumers have concerns about the safety of synthetic antioxidants, and therefore, the use of natural antioxidants is increasing. Fruits are rich sources of various antioxidants that can be used in the meat industry as replacements for synthetic antioxidants. The naturally occurring antioxidants in fruit (e.g. polyphenols, carotenoids, vitamins) have attracted interest due to their bioactivity, to which many beneficial healthy effects are prescribed. It is well known that oxidation decreases the sensory and nutritive value of food products, whereas antioxidants added to foods can preserve the lipid components from quality deterioration. Therefore, the use of naturally extracted antioxidants from fruit could be useful to meet industry and consumers’ expectations of safe and high-quality products. Recently, innovative extraction methods have been developed in order to obtain highly valued extracts for further industrial use. In particular, non-thermal technologies showed many advantages over traditional conventional methods, and therefore, much attention is paid to optimizing these lower temperature processing parameters to obtain higher yields and higher quality extracts. Incorporation of fruit extracts consisting of various bioactive compounds in processed meat will result in value-added products with associated health benefits.

1. Potential of fruit as natural antioxidants in the meat industry

In recent years, a great deal of attention has been directed towards natural and safe food products that may offer multiple health benefits. Moreover, consumers’ considerable negative attention on the widely used synthetic antioxidants suggests that it is important to identify natural (functional) antioxidants to use in meat products [1].
Chemically synthesized antioxidant additives, such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butyl hydroquinone (TBHQ), and gallates are usually added to food as antioxidants to prevent lipid peroxidation [2]. However, use of these antioxidants may lead to harmful side-effects, for example radiosensitization, increased toxicity of other chemicals, increased mutagen activity and increased risk of cancers [3, 4]. Therefore, alternative, plant-based antioxidants could have better biological and health effects in comparison to synthetic antioxidants, as the natural products exhibit better compatibility with human physiology [5].

Recent research has shown that fruits contain a wide variety of antioxidants (e.g. vitamins, polyphenols, carotenoids, chlorophylls) known for their health-promoting effects and nutritional values [6, 7]. To name a few sources, antioxidants can be extracted from plum (puree), prunes (dried plum), grape (skin, seeds, peel and pomace), berries (cakes and powder extracts), pomegranate (rind powder and juice), and most of the citrus fruits. Furthermore, agri-food waste and by-products provide a valuable source of various antioxidants. For instance, grape by-product extracts were effectively applied in the slowing down of meat discoloration and lipid oxidation [8]. When added to meat products, these molecules serve as a natural antioxidants and antimicrobial additives with the purpose of extending the quality and stability of foods [9].

The inhibitory effects of fruit extracts on meat oxidation are mainly attributed to the numerous bioactive compounds with \textit{in vitro} and \textit{in vivo} antioxidant activity. Correspondingly, a recent study highlighted the use of berry extracts, including bearberry (\textit{Arctostaphylos} sp.), blueberry (\textit{Vaccinium} sp.), blackberry (\textit{Rubus} sp.), blackcurrant (\textit{Ribes nigrum}), cranberry (\textit{Vaccinium} sp.), cloudberry (\textit{Rubus chamaemorus}), strawberry (\textit{Fragaria ananassa}), and grape berries (\textit{Vitis} sp.) for replacing/decreasing synthetic antioxidants in meat products [10]. These fruits are widely considered good sources of bioactive compounds, namely polyphenols (i.e., phenolic acids, flavonols, anthocyanins, tannins) and ascorbic acid that can act as strong antioxidants, able to decrease the damage caused by oxidative stress [11].

Additional to fruit extracts, fruit juices have also found their applications in the area of meat processing. In this regard, the addition of cornelian cherry juice as a functional additive in the production of beef burgers was found to effectively reduce lipid oxidation, and also allowed the maintenance of good sensory characteristics [12].

2. Innovative technologies for extraction of fruit antioxidants

Since liquid or dried fruit extracts are the most commonly used forms of natural antioxidants for incorporation in meat products, it is necessary to find the optimal extraction technique with respect to fruit type and targeted antioxidants [7]. The most frequently used techniques for obtaining extracts rich in antioxidants include conventional methods, due to their simplicity and wide range of applicability.

In this regard, some of the most common extraction methods from fruits using different solvent systems are based on Soxhlet, maceration, and hydrodistillation technologies. The effects of various extraction parameters in any type of extraction must be studied in order to achieve the highest yields and the highest quality extracts. In particular, the most important parameters for conventional extractions are referred to as being the solvent type, the polarity of target compounds, particle size, solid-to-solvent ratios, and extraction time [13]. However, the key disadvantages with conventional extraction techniques (compared with novel techniques) are reflected in the higher costs and environmental burden due to the use of large amounts of organic solvents, high energy consumption, extended extraction time, and higher extraction temperature, i.e., all those factors that can led to degradation of heat-sensitive antioxidants [14].

Alternative approaches to thermal processing of food started to gain importance, above all due to increased consumer demands for new methods of food manufacturing that retain the original nutritional content and overall quality of the food. Therefore, numerous new alternatives, including high pressure, ultrasound, microwave, supercritical fluid, electrotechnologies (e.g. cold plasma, pulsed
electric field, and high voltage electric discharge) have been developed in order to overcome the main drawbacks of conventional thermal techniques [15].

The basic principles of these innovative technologies for the extraction of bioactive compounds from fruits are given in Table 1. The beneficial aspects of these approaches are the elimination or reduction of organic solvents, decreased extraction time, lower operating temperatures (preventing thermal degradation), lower energy cost, high quality extracts, improved extraction yields and high product quality and purity, hence indicating their potential for energy-efficient and environmentally friendly food processing [14, 16-18]. Regardless of the extraction technique, all methods should be optimized for the best results in the economic and nutritional senses [19].

Several innovative technologies have already been applied to various industrial sectors, where the use of water and alcohol, which are well-known versatile and eco-friendly solvents, is on the rise. In particular, Pressurized Hot Water Extraction (PHWE) is gaining more attention and is recognized as the most favored environmentally friendly technology (green technology) that operates above the atmospheric boiling point of water (100°C/273 K, 0.1 MPa), but below the critical point of water (374°C/647 K, 22.1 MPa). Under these conditions, water largely changes its chemical and physical properties, which allows the dissolution of less polar compounds from fruit matrices. Hence, this technology provides the opportunity for extraction of antioxidants with various polarities that can synergistically act as additives in meat products.

Table 1. Innovative technologies for the extraction of bioactive compounds in fruits

Article I. technique	Extraction technique	Article II. Basic principles	Article III. References
High Hydrostatic Pressure (HHP)	Operates at high pressures (100-1000 MPa) at 0 °C to less than 100°C for a short period.	[20-25]	
Ultrasound assisted (UAE)	Ultrasound is a cyclic pressure wave that has a frequency of 20 kHz-10 MHz. Rapid changes of pressure in a liquid lead to the formation of small vapor-filled cavities – a phenomenon called cavitation. The production, growth, and collapse of the bubbles to form pores facilitate the extraction from the plant matrix.	[18, 26-31]	
Microwave assisted (MAE)	Microwaves are electromagnetic radiation in the range of 300 MHz to 300 GHz. This method uses microwave energy to heat the solvent and facilitates the relocation of target compounds to the solvent. Two transport phenomena occur at the same time, namely heat and mass gradients.	[32-35]	
Supercritical fluid (SFE)	Supercritical fluid extraction is characterized by changes in temperature and pressure (above its critical values) that transform a gas into a supercritical fluid.	[36-39]	
Pressurized liquid (PLE)	The extraction occurs at elevated pressures (~10 MPa) and the solvent may remain in liquid state even when used at	[40-44]	
temperatures above their boiling points

Pulsed electric field (PEF) Method uses short pulses of electricity (µs to ms) under high intensity electric fields (0.1-20 kV/cm), number of pulses <100, which leads to the formation of pores (temporary or permanent) on the cell membranes, thereby improving the extraction and diffusion processes (a phenomenon called electroporation). [23, 31, 45-47]

High voltage electrical discharges (HVED) Electrotechnology that damages the cell structure and promotes the extraction of valuable cellular compounds, based on the phenomenon of electrical breakdown in water. Operates at electric pulse 40 kV/10 kA and number of pulses >100. [48-52]

3. Conclusions
In conclusion, addition of mixed (synergetic) polar/nonpolar antioxidants extracted from fruits to processed meat will result in less perishable but healthier products, due to decreased oxidation and associated health benefits. With some application of savvy food engineering, such products can be easily labeled as functional. These products are expected to aid in improving consumer health while providing economic benefits that follow from placing such high demand foods on the market.

References
[1] Atta E M, Mohamed N H and Abdelgawad A A M 2017 Antioxidants: An overview on the natural and synthetic types European Chemical Bulletin 6 365
[2] Kumar Y, Yadav D N, Ahmad T and Narsaiah K 2015 Recent trends in the use of natural antioxidants for meat and meat products Compr. Rev. Food Sci. i F 14 796–12
[3] Sen S and Chakraborty R 2011 Oxidative Stress: Diagnostics, Prevention, and Therapy, pp 1–37
[4] Koutros S, Cross A J, Sandler D P, Hoppin J A, Ma X, Zheng T, Alavanja M C R and Sinha R 2008 Meat and meat mutagens and risk of prostate cancer in the agricultural health study Cancer Epidem. Biomar. 17 80–7
[5] Kasote D M, Katyare S S, Hegde M V and Bae H 2015 Significance of antioxidant potential of plants and its relevance to therapeutic applications Int. J. Biol. Sci. 11 982–1
[6] Putnik P, Bursać Kovačević D, Režek Jambrak A, Barba F, Cravotto G, Binello A, Lorenzo J and Shpigelman A 2017 Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes-A Review Molecules 22 680
[7] Putnik P, Lorenzo J, Barba F, Roohinejad S, Režek Jambrak A, Granato D, Montesano D and Bursać Kovačević D 2018 Novel food processing and extraction technologies of high-added value compounds from plant materials Foods 7 106
[8] Andrés A I, Petrón M J, Adámez J D, López M and Timón M L 2017 Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties Meat Sci. 129 62–70
[9] Ahmad S R, Gokulakrishnan P, Giriprasad R and Yatoo M A 2013 Fruit-based natural antioxidants in meat and meat products: A review Crit. Rev. Food Sci. 55 1503–13
[10] Lorenzo J M, Pateiro M, Domínguez R, Barba F J, Putnik P, Kovačević D B, Shpigelman A, Granato D and Franco D 2018 Berries extracts as natural antioxidants in meat products: A review Food Res. Int. 106 1095–104
[11] Skrovankova S, Sumczynski D, Mlcek J, Jurikova T and Sochor J 2015 Bioactive compounds and antioxidant activity in different types of berries Int. J. Mol. Sci. 16 24673–706

[12] Salejda A M, Kucharska A Z and Krasnowska G 2018 Effect of cornelian cherry (Cornus mas L.) juice on selected quality properties of beef burgers J. Food Qual. 2018 1–8

[13] Da Porto C, Porretto E and Decorti D 2013 Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds Ultrason Sonochem 20 1076–80

[14] Giacometti J, Bursač Kovačević D, Putnik P, Gabrić D, Bilušić T, Krešić G, Stulić V, Barba F J, Chemat F, Barbosa-Cánovas G and Režek Jambrak A 2018 Extraction of bioactive compounds and essential oils from Mediterranean herbs by conventional and green innovative techniques: A review Food Res. Int. 113 245–62

[15] Barba F J, Zhu Z, Koubaa M, de Souza Sant’Ana A and Orlien V 2016 Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review Trends Food Sci. Tech. 49 96–109

[16] García-Parra J, González-Cébrino F, Delgado-Adámez J, Cava R, Martín-Belloso O, Elez-Martínez P and Ramírez R 2018 Application of innovative technologies, moderate-intensity pulsed electric fields and high-pressure thermal treatment, to preserve and/or improve the bioactive compounds content of pumpkin Innov. Food Sci. Emerg. 45 53–61

[17] Bursač Kovačević D, Maras M, Barba F J, Granato D, Roohinejad S, Mallikarjunan K, Montesano D, Lorenzo J M and Putnik P 2018 Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review Food Chem. 268 513–21

[18] Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier A-S and Aberti-Vian M 2017 Review of green food processing techniques. Preservation, transformation, and extraction Innov. Food Sci. Emerg. 41 357–77

[19] Franco D, Rodríguez-Amado I, Agregán R, Munekata P E S, Vázquez J A, Barba F J and Lorenzo J M 2018 Optimization of antioxidants extraction from peanut skin to prevent oxidative processes during soybean oil storage Lwt-Food Sci. Technol. 88 1–8

[20] Putnik P, Bursač Kovačević D, Ježek D, Šustić I, Zorić Z and Dragović-Uzelac V 2017 High-pressure recovery of anthocyanins from grape skin pomace (Vitis vinifera cv. Teran) at moderate temperature J. Food Process. Preserv. 42 e13342

[21] Alexandre E M C, Araújo P, Duarte M F, de Freitas V, Pintado M and Saraiva J A 2017 Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel Food Bioprocess. Tech. 10 886–900

[22] Strati I F, Gogou E and Oreopoulos V 2015 Enzyme and high pressure assisted extraction of carotenoids from tomato waste Food Bioprod. Process 94 668–74

[23] Moussa-Ayoub T E, Jäger H, Knorr D, El-Samahy S K, Kroh L W and Rohn S 2017 Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice Lwt-Food Sci. Technol. 79 534–42

[24] Alexandre E M C, Castro L M G, Moreira S A, Pintado M and Saraiva J A 2017 Comparison of emerging technologies to extract high-added value compounds from fruit residues: Pressure- and electro-based technologies Food Eng. Rev. 9 190–212

[25] Morata A, Loira I, Vejarano R, Banuelos M A, Sanz P D, Otero L and Suarez-Lepe J A 2015 Grape processing by high hydrostatic pressure: Effect on microbial populations, phenol extraction and wine quality Food Bioprocess. Tech. 8 277–86

[26] Goldsmith C D, Vuong Q V, Stathopoulos C E, Roach P D and Scarlett C J 2018 Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace Lwt-Food Sci. Technol. 89 284–90

[27] Swamy G J, Muthukumarappan K and Asokapandian S 2018 Fruit juices extraction, composition, quality and analysis, ed G Rajauria and B Tiwari: Academic Press) pp 451–61
[28] Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S and Abert-Vian M 2017 Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications A review Ultrason Sonochem 34 540–60

[29] Dedousi M, Mamoudaki V, Grigorakis S and Makris D 2017 Ultrasound-assisted extraction of polyphenolic antioxidants from olive (Olea europaea) leaves using a novel glycerol/sodium-potassium tartrate low-transition temperature mixture (LTTM) Environments 4 31

[30] Shirzad H, Niknam V, Taheri M and Ebrahimzadeh H 2017 Ultrasound-assisted extraction process of phenolic antioxidants from Olive leaves: a nutraceutical study using RSM and LC–ESI–DAD–MS J. Food Sci. Technol. 54 2361–71

[31] Koubaa M, Barba F J, Grimi N, Mhemdi H, Koubaa W, Boussetta N and Vorobiev E 2016 Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound Innov. Food Sci. Emerg. 37 336–44

[32] Barba F J, Zhu Z, Koubaa M, Sant’Ana A S and Orlien V 2016 Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review Trends in Food Sci. Technol. 49 96–109

[33] Kala H K, Mehta R, Sen K K, Tandey R and Mandal V 2016 Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough TrAC-Trend Anal. Chem. 85 140–52

[34] Florez N, Conde E and Dominguez H 2015 Microwave assisted water extraction of plant compounds J. Chem. Tech. Biotech. 90 590–607

[35] Valdes A, Vidal L, Beltran A, Canals A and Garrigos M C 2015 Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach J. Agr. Food Chem. 63 5395–402

[36] Mojzer E B, Hrncic M K, Skerget M, Knez Z and Bren U 2016 Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects Molecules 21

[37] Reverchon E and De Marco I 2006 Supercritical fluid extraction and fractionation of natural matter J Supercrit. Fluid. 38 146–66

[38] Tyśkiewicz K, Konkol M and Rój E 2018 The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials Molecules 23 2625

[39] Kheirkhah H, Baroutian S and Quek S Y 2019 Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction Food Bioprod Process 115 143–53

[40] Plaza M and Turner C 2015 Pressurized hot water extraction of bioactives TrAC-Trend Anal. Chem. 71 39–54

[41] Vergara-Salinas J R, Bulnes P, Zuniga M C, Perez-Jimenez J, Torres J L, Mateos-Martin M L, Agosin E and Perez-Correa J R 2013 Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation J. Agr. Food Chem. 61 6929–36

[42] Skalicka-Woźniak K and Glowniak K 2012 Pressurized liquid extraction of coumarins from fruits of Heracleum leskowii with application of solvents with different polarity under increasing temperature Molecules 17 4133–41

[43] Ballesteros-Vivas D, Álvarez-Rivera G, Ibáñez E, Parada-Alfonso F and Cifuentes A 2019 A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques J. Chromatogr. A 1584 144–54

[44] Espada-Bellido E, Ferreiro-González M, Barbero G F, Carrera C, Palma M and Barroso C G 2018 Alternative extraction method of bioactive compounds from mulberry (Morus nigra L.) pulp using pressurized-liquid extraction Food Anal. Method. 11 2384–95
[45] Bobinaitė R, Pataro G, Lamanuskas N, Šatkauskas S, Viškelis P and Ferrari G 2015 Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products J. Food Sci. Tech. 52 5898–905

[46] Sotelo K A G, Hamid N, Oey I, Gutierrez-Maddox N, Ma Q and Leong S Y 2015 Effect of pulsed electric fields on the flavour profile of red-fleshed sweet cherries (Prunus avium var. Stella) Molecules (Basel, Switzerland) 20 5223–38

[47] Medina-Meza I G and Barbosa-Cánovas G V 2015 Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields J. Food Eng. 166 268–75

[48] Barba F J, Galanakis C M, Esteve M J, Frigola A and Vorobiev E 2015 Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries J. Food Eng. 167 38–44

[49] Rosello-Soto E, Barba F J, Parniakov O, Galanakis C M, Lebovka N, Grimi N and Vorobiev E 2015 High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel Food Bioprocess. Tech. 8 885–94

[50] Parniakov O, Barba F J, Grimi N, Lebovka N and Vorobiev E N 2014 Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels Food Res. Int. 65 337–43

[51] Boussetta N and Vorobiev E 2014 Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review Comptes. Rendus. Chimie. 17 197–203

[52] Parniakov O, Barba F J, Grimi N, Lebovka N and Vorobiev E 2016 Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels Food Chem 192 842–8