DNA G-quadruplexes for native mass spectrometry in potassium: a database of validated structures in electrospray-compatible conditions

Anirban Ghosh, Eric Largy,* Valérie Gabelica*

Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France

eric.largy@u-bordeaux.fr, v.gabelica@iecb.u-bordeaux.fr

SUPPORTING INFORMATION
Section	Page
NMR buffers	3
2GKU	5
2JSM	6
2JPZ	7
2HY9	8
5YEY	9
2KF8	10
2KM3	11
5LQG	12
21G	13
22AG	14
2LK7	15
2LEE	16
2M4P	17
2LXQ	18
2M27	19
1XAV	20
2MGN	21
2LPW	22
2LBY	23
2O3M	24
5NYS	25
2KYP	26
2N4Y	27
5I2V	28
2KPR	29
2LOD	30
HIV-PRO1	31
6GZN	32
g4dbr manual	33
Ion mobility data	72
NMR buffers

Table S1. NMR buffer composition used to determine the structure deposited in the PDB

Oligonucleotide	[Potassium phosphate] (mM)	[KCl] (mM)	pH	reference
2GKU	20	70	7.0	(1)
2JSM	20	70	7.0	(2)
2JPZ	25	70	7.0	(3)
2HY9	25	70	7.0	(3)
5YEY	20	70	7.0	(3)
2KF8	20	70	7.0	(4)
2KM3	20	70	7.0	(5)
5LQG	5	70	7.0	(6)
21G	20	70	7.0	*
22AG	20	70	7.0	*
2LK7	10	0	7.0	(7)
2LEE	20	100	6.5	(8)
2M4P	20	30	7.0	(9)
2LXQ	5	25	7.0	(10)
2M27	20	70	7.0	(11)
1XAV	25	70	7.0	(12)
2MGN	10	35	7.0	(13, 14)
2LPW	20	70	7.5	(15)
2LBX	25	70	7.0	(16)
2O3M	20	70	7.0	(17)
5NYS	20	100	7.0	(18)
2KYP	5	20	7.0	(19)
2N4Y	20	70	7.0	(20)
5I2V	20	70	6.5	(21)
2KPR	5	50	6.8	(22)
2LOD	10	50	6.8	(23)
HIV-PRO1	20	70	7.0	(24)
6GZN	15	70	7.0	(25)

* These oligonucleotides do not have a high-resolution NMR structure deposited in the PDB. The buffer composition was defaulted to 20 mM potassium phosphate supplemented with 70 mM KCl.

1. Luu, K.N., Phan, A.T., Kuryavyi, V., Lacroix, L. and Patel, D.J. (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. *J. Am. Chem. Soc.*, **128**, 9963–70.

2. Phan, A.T., Kuryavyi, V., Luu, K.N. and Patel, D.J. (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. *Nucleic Acids Res.*, **35**, 6517–25.

3. Dai, J., Carver, M., Punchihewa, C., Jones, R. a and Yang, D. (2007) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. *Nucleic Acids Res.*, **35**, 4927–40.

4. Lim, K.W., Amrane, S., Bouaziz, S., Xu, W., Mu, Y., Patel, D.J., Luu, K.N. and Phan, A.T. (2009) Structure of the Human Telomere in K+ Solution: A Stable Basket-Type G-Quadruplex with Only Two G-Tetrad Layers. *J. Am. Chem. Soc.*, **131**, 4301–4309.

5. Lim, K.W., Alberti, P., Guédin, A., Lacroix, L., Riou, J.F., Royle, N.J., Mergny, J.L. and Phan, A.T. (2009) Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G·C·G·C tetrad. *Nucleic Acids Res.*, **37**, 6239–6248.
6. Galer,P., Wang,B., Šket,P. and Plavec,J. (2016) Reversible pH Switch of Two-Quartet G-Quadruplexes Formed by Human Telomere. Angew. Chem. Int. Ed. Engl., 55, 1993–7.

7. Do,N.Q. and Phan,A.T. (2012) Monomer-dimer equilibrium for the 5’-5’ stacking of propeller-type parallel-stranded g-quadruplexes: NMR structural study. Chemistry, 18, 14752–9.

8. Trajkovski,M., Webba Da Silva,M. and Plavec,J. (2012) Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J. Am. Chem. Soc., 134, 4132–4141.

9. Mukundan,V.T. and Phan,A.T. (2013) Bulges in G-quadruplexes: Broadening the definition of G-quadruplex-forming sequences. J. Am. Chem. Soc., 135, 5017–5028.

10. Kuryavyi,V., Cahoon,L.A., Seifert,H.S. and Patel,D.J. (2012) RecA-Binding pilE G4 Sequence Essential for Pilin Antigenic Variation Forms Monomeric and 5’ End-Stacked Dimeric Parallel G-Quadruplexes. Structure, 20, 2090–2102.

11. Agrawal,P., Hatzakis,E., Guo,K., Carver,M. and Yang,D. (2013) Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res., 41, 10584–92.

12. Ambrus,A., Chen,D., Dai,J., Jones,R.A. and Yang,D. (2005) Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry, 44, 2048–2058.

13. Phan,A.T.T.T., Kuryavyi,V., Gaw,H.Y. and Patel,D.J. (2005) Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol., 1, 167–173.

14. Chung,W.J., Heddi,B., Hamon,F., Teulade-Fichou,M.-P. and Phan,A.T. (2014) Solution Structure of a G-quadruplex Bound to the Bisquinolinium Compound Phen-DC 3. Angew. Chemie Int. Ed., 53, 999–1002.

15. Amrane,S., Adrian,M., Heddi,B., Serero,A., Nicolas,A., Mergny,J.-L. and Phan,A.T. (2012) Formation of pearl-necklace monomorphic G-quadruplexes in the human CEB25 minisatellite. J. Am. Chem. Soc., 134, 5807–5816.

16. Mathad,R.I., Hatzakis,E., Dai,J. and Yang,D. (2011) c-MYC promoter G-quadruplex formed at the 5’-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res., 39, 9023–33.

17. Phan,A.T., Kuryavyi,V., Burge,S., Neidle,S. and Patel,D.J. (2007) Structure of an Unprecedented G-Quadruplex Scaffold in the Human c-kit Promoter. J. Am. Chem. Soc., 129, 4386–4392.

18. Trajkovski,M., Endoh,T., Tateishi-Karimata,H., Ohyama,T., Tanaka,S., Plavec,J. and Sugimoto,N. (2018) Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Res., 46, 4301–4315.

19. Kuryavyi,V., Phan,A.T. and Patel,D.J. (2010) Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res., 38, 6757–73.

20. De Nicola,B., Lech,C.J., Heddi,B., Regmi,S., Frasson,I., Perrone,R., Richter,S.N. and Phan,A.T. (2016) Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome. Nucleic Acids Res., 44, 6442–51.

21. Kerkour,A., Marquevielle,J., Ivashchenko,S., Yatsunyk,L.A., Mergny,J.-L. and Salgado,G.F. (2017) High-resolution three-dimensional NMR structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation. J. Biol. Chem., 292, 8082–8091.

22. Kuryavyi,V. and Patel,D.J. (2010) Solution structure of a unique G-quadruplex scaffold adopted by a guanosine-rich human intronic sequence. Structure, 18, 73–82.

23. Marušič,M., Šket,P., Bauer,L., Viglasky,V. and Plavec,J. (2012) Solution-state structure of an intramolecular G-quadruplex with propeller, diagonal and edgewise loops. Nucleic Acids Res., 40, 6946–6956.

24. Amrane,S., Kerkour,A., Bedrat,A., Viallet,B., Andreola,M.-L. and Mergny,J.-L. (2014) Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J. Am. Chem. Soc., 136, 5249–52.

25. Lenarčič Živković,M., Rozman,J. and Plavec,J. (2018) Inside Cover: Adenine-Driven Structural Switch from a Two- to Three-Quartet DNA G-Quadruplex (Angew. Chem. Int. Ed. 47/2018). Angew. Chemie Int. Ed., 57, 15286–15286.
Table S2. Species information

Sequence (5' to 3')	$\varepsilon_{200 \text{nm}}$ ($M^{-1} \text{cm}^{-1}$)	DOI
TTGGTAGGGTTAGGGTTAGGGA	244308	10.1021/ja062793w

Figure S1. Structure diagram of 2GKU

Figure S2. Circular dichroism spectra of the 2GKU oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S3. 1H-NMR spectrum of the 2GKU oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S4. Folded fraction of the 2GKU oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S5. Native ESI-MS spectra of the 2GKU oligonucleotide (10 µM)

Figure S6. Native ESI-MS spectra of the 2GKU oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S3. Species information

Species Information	Sequence (5’ to 3’)	\(\kappa_{295 \text{nm}} \) (M\(^{-1}\)cm\(^{-1}\))	DOI
	TAGGGTTAGGGTTAGGG	236500	10.1093/nar/gkm706

Figure S7. Structure diagram of 2JSM

Figure S8. Circular dichroism spectra of the 2JSM oligonucleotide (10 \(\mu \)M), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S9. \(^1\)H-NMR spectrum of the 2JSM oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S10. Folded fraction of the 2JSM oligonucleotide as a function of temperature, determined by UV-melting (\(\lambda = 295 \) nm)

Figure S11. Native ESI-MS spectra of the 2JSM oligonucleotide (10 \(\mu \)M)

Figure S12. Native ESI-MS spectra of the 2JSM oligonucleotide (10 \(\mu \)M), focused on the 5\(^{-}\) charge state
Table S4. Species information

Sequence (5' to 3')	ε_{values} (M^{-1} cm^{-1})	DOI
TTAGGGTTAAGGTTAAGGGTT	261200	10.1093/nar/gkm522

Figure S13. Structure diagram of 2JPZ

Legend
- strand direction (5' to 3')
- nucleotide number (5' to 3')
- 5' end
- loop
- syn
- anti
- G-quartet guanine
- m6G-quartet guanine
- thymine

Figure S14. Circular dichroism spectra of the 2JPZ oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S15. 1H-NMR spectrum of the 2JPZ oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S16. Folded fraction of the 2JPZ oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S17. Native ESI-MS spectra of the 2JPZ oligonucleotide (10 µM)

Figure S18. Native ESI-MS spectra of the 2JPZ oligonucleotide (10 µM), focused on the 5' charge state
Table S5. Species information

Sequence (5' to 3')	\(\epsilon_{\text{vis}} \) (M\(^{-1}\)cm\(^{-1}\))	DOI
AAAGGGTTAGGGTTAGGGAA	278200	10.1093/nar/gkm009

Figure S19. Structure diagram of 2HY9

Figure S20. Circular dichroism spectra of the 2HY9 oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S21. \(^1\)H-NMR spectrum of the 2HY9 oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S22. Folded fraction of the 2HY9 oligonucleotide as a function of temperature, determined by UV-melting (\(\lambda = 295 \text{ nm} \))

Figure S23. Native ESI-MS spectra of the 2HY9 oligonucleotide (10 µM)

Figure S24. Native ESI-MS spectra of the 2HY9 oligonucleotide (10 µM), focused on the 5\(^{-}\) charge state
Table S6. Species information

Sequence (5’ to 3’)	𝜐_{max} (M⁻¹ cm⁻¹)	DOI
GGGTAGGGTTAGGGTTTGGG	209100	10.1039/c8sc03813a

Figure S25. Structure diagram of SYEY

Figure S26. Circular dichroism spectra of the SYEY oligonucleotide (10 µM), acquired at 25°C in 0.2-cm path-length cuvettes

Figure S27. ¹H-NMR spectrum of the SYEY oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S28. Folded fraction of the SYEY oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S29. Native ESI-MS spectra of the SYEY oligonucleotide (10 µM)

Figure S30. Native ESI-MS spectra of the SYEY oligonucleotide (10 µM), focused on the 5⁻ charge state
Table S7. Species information

Sequence (5' to 3')	$\epsilon_{260\text{nm}}$ (M$^{-1}$cm$^{-1}$)	DOI
GGGTTAGGGTTAGGGTTAGGGT	223500	10.1021/ja807503g

Figure S31. Structure diagram of 2KF8

Figure S32. Circular dichroism spectra of the 2KF8 oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S33. 1H-NMR spectrum of the 2KF8 oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S34. Folded fraction of the 2KF8 oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S35. Native ESI-MS spectra of the 2KF8 oligonucleotide (10 µM)

Figure S36. Native ESI-MS spectra of the 2KF8 oligonucleotide (10 µM), focused on the 5$^{-}$ charge state
Table S8. Species information

Sequence (5’ to 3’)	$\varepsilon_\text{ultram}$ (M$^{-1}$ cm$^{-1}$)	DOI
AGGGCTAGGGCTAGGGCTAGGG	220400	10.1093/nar/gkp630

Figure S37. Structure diagram of 2KM3

Figure S38. Circular dichroism spectra of the 2KM3 oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes.

Figure S39. 1H-NMR spectrum of the 2KM3 oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl.

Figure S40. Folded fraction of the 2KM3 oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm).

Figure S41. Native ESI-MS spectra of the 2KM3 oligonucleotide (10 µM).

Figure S42. Native ESI-MS spectra of the 2KM3 oligonucleotide (10 µM), focused on the 5$^-$ charge state.
Table S9. Species information

Sequence (5' to 3')	\(\varepsilon_{260 nm} \) (M\(^{-1}\)cm\(^{-1}\))	DOI
TAGGGTTAGGTTAGGTTAGG	236400	10.1002/anie.201507569

Figure S43. Structure diagram of 5LQG

Figure S44. Circular dichroism spectra of the 5LQG oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S45. \(^1\)H-NMR spectrum of the 5LQG oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S46. Folded fraction of the 5LQG oligonucleotide as a function of temperature, determined by UV-melting (\(\lambda = 295 \) nm)

Figure S47. Native ESI-MS spectra of the 5LQG oligonucleotide (10 µM)

Figure S48. Native ESI-MS spectra of the 5LQG oligonucleotide (10 µM), focused on the 5\(^{-}\) charge state
Table S10. Species information

Sequence (5’ to 3’)	ϵ_{436nm} (M$^{-1}$ cm$^{-1}$)	DOI
GGTTAGGTTAGGTTAGGG	GGTTAGGTTAGGTTAGGG 215000	10.1021/jm301899y

Figure S49. Structure diagram of 21G

Figure S50. Circular dichroism spectra of the 21G oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S51. 1H-NMR spectrum of the 21G oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S52. Folded fraction of the 21G oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S53. Native ESI-MS spectra of the 21G oligonucleotide (10 µM)

Figure S54. Native ESI-MS spectra of the 21G oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S11. Species information

Sequence (5' to 3')	DOI
AGGGTTAGGGTTAGGGTTAGGG	10.1016/jjb98-2126/98/90015-5, 10.1038/nature755

Legend
- strand direction (5' to 3')
- nucleotide number (5' to 3')
- 5' end

Figure S55. Structure diagram of 22AG

Figure S56. Circular dichroism spectra of the 22AG oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S57. 1H-NMR spectrum of the 22AG oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S58. Folded fraction of the 22AG oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S59. Native ESI-MS spectra of the 22AG oligonucleotide (10 µM)

Figure S60. Native ESI-MS spectra of the 22AG oligonucleotide (10 µM), focused on the 5-charge state
2L7K

Table S12. Species information

Sequence (5' to 3')	ϵ (M$^{-1}$ cm$^{-1}$)	DOI
TTGGGTGGGTGGGTTG	172800	10.1002/chem.201103295

Figure S61. Structure diagram of 2L7K

Figure S62. Circular dichroism spectra of the 2L7K oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S63. 1H-NMR spectrum of the 2L7K oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S64. Folded fraction of the 2L7K oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S65. Native ESI-MS spectra of the 2L7K oligonucleotide (10 µM)

Figure S66. Native ESI-MS spectra of the 2L7K oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S13. Species information

Sequence (5' to 3')	ϵ_{max} (M$^{-1}$cm$^{-1}$)	DOI
TAGGGCGGGAGGGGAA	102800	10.1021/ja208483v

Figure S67. Structure diagram of 2LEE

Figure S68. Circular dichroism spectra of the 2LEE oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S69. H-NMR spectrum of the 2LEE oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S70. Folded fraction of the 2LEE oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S71. Native ESI-MS spectra of the 2LEE oligonucleotide (10 µM)

Figure S72. Native ESI-MS spectra of the 2LEE oligonucleotide (10 µM), focused on the 5$^\text{th}$ charge state
Table S14. Species information

Sequence (5’ to 3’)	$\kappa_{20\text{mm}}$ (M$^{-1}$ cm$^{-1}$)	DOI
TTGCTGGGTGGTTGTTG	181500	10.1038/nature755

Figure S73. Structure diagram of 2M4P

Figure S74. Circular dichroism spectra of the 2M4P oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S75. 1H-NMR spectrum of the 2M4P oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S76. Folded fraction of the 2M4P oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S77. Native ESI-MS spectra of the 2M4P oligonucleotide (20 µM)

Figure S78. Native ESI-MS spectra of the 2M4P oligonucleotide (20 µM), focused on the 5$^{-}$ charge state
Table S15. Species information

Sequence (5' to 3')	$\varepsilon_{\text{max}} \text{ (M}^{-1} \text{cm}^{-1})$	DOI
TAGGGTTGGTGGGTTGGGAT	221500	10.1016/j.str.2012.09.013

Figure S79. Structure diagram of 2LXQ

Figure S80. Circular dichroism spectra of the 2LXQ oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S81. 1H-NMR spectrum of the 2LXQ oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S82. Folded fraction of the 2LXQ oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S83. Native ESI-MS spectra of the 2LXQ oligonucleotide (10 µM)

Figure S84. Native ESI-MS spectra of the 2LXQ oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S16. Species information

Sequence (5' to 3’)	$\varepsilon_{260\text{nm}}$ (M$^{-1}$ cm$^{-1}$)	DOI
CGGGCCGGGCTTGGGCGGGG	200400	10.1093/har/gkt784

Figure S85. Structure diagram of 2M27

Figure S86. Circular dichroism spectra of the 2M27 oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S87. 1H-NMR spectrum of the 2M27 oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S88. Folded fraction of the 2M27 oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S89. Native ESI-MS spectra of the 2M27 oligonucleotide (10 µM)

Figure S90. Native ESI-MS spectra of the 2M27 oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S17. Species information
Sequence (5’ to 3’) \(\varepsilon_{\text{max}} \) (M\(^{-1}\)cm\(^{-1}\)) DOI
TGAGGGTGGGTAGGGTGGGTAA 228700 10.1021/bi048242p

Figure S91. Structure diagram of 1XAV

Figure S92. Circular dichroism spectra of the 1XAV oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S93. H-NMR spectrum of the 1XAV oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S94. Folded fraction of the 1XAV oligonucleotide as a function of temperature, determined by UV-melting (\(\lambda = 295 \) nm)

Figure S95. Native ESI-MS spectra of the 1XAV oligonucleotide (10 µM)

Figure S96. Native ESI-MS spectra of the 1XAV oligonucleotide (10 µM), focused on the 5\(^{-}\) charge state
Sequence (5' to 3')	ε_{260nm} (M⁻¹cm⁻¹)	DOI
TGAGGTGTGGGTGGGGGAAGG	248200	10.1002/anie.201308063

Table S18. Species information

Figure S97. Structure diagram of 2MGN

Figure S98. Circular dichroism spectra of the 2MGN oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S99. 1H-NMR spectrum of the 2MGN oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S100. Folded fraction of the 2MGN oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S101. Native ESI-MS spectra of the 2MGN oligonucleotide (10 µM)

Figure S102. Native ESI-MS spectra of the 2MGN oligonucleotide (10 µM), focused on the 5-charge state
Table S19. Species information

Sequence (5’ to 3’)	e_{intest} (M$^{-1}$cm$^{-1}$)	DOI
AAGGGTTGGGTGTAAGTGTGGGTG	265100	10.1021/ja208993r

Figure S103. Structure diagram of 2LPW

Figure S104. Circular dichroism spectra of the 2LPW oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S105. 1H-NMR spectrum of the 2LPW oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S106. Folded fraction of the 2LPW oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S107. Native ESI-MS spectra of the 2LPW oligonucleotide (10 µM)

Figure S108. Native ESI-MS spectra of the 2LPW oligonucleotide (10 µM), focused on the S^- charge state
Table S20. Species information

Sequence (5’ to 3’)	ε_{cm} (M$^{-1}$ cm$^{-1}$)	DOI
TAGGGAGGGT	201700	10.1093/nar/gkr8612

2LBY

Figure S109. Structure diagram of 2LBY

Figure S110. Circular dichroism spectra of the 2LBY oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S111. 1H-NMR spectrum of the 2LBY oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S112. Folded fraction of the 2LBY oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S113. Native ESI-MS spectra of the 2LBY oligonucleotide (10 µM)

Figure S114. Native ESI-MS spectra of the 2LBY oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S21. Species information

Sequence (5’ to 3’)	ε_{max} (M^{-1} cm^{-1})	DOI
AGGGAGGGCGCTGGGAGGAGGG	226700	10.1021/ja068739h

Figure S115. Structure diagram of 2O3M

Figure S116. Circular dichroism spectra of the 2O3M oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S117. 1H-NMR spectrum of the 2O3M oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S118. Folded fraction of the 2O3M oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S119. Native ESI-MS spectra of the 2O3M oligonucleotide (10 µM)

Figure S120. Native ESI-MS spectra of the 2O3M oligonucleotide (10 µM), focused on the 5− charge state
Table S22. Species information

Sequence (5’ to 3’)	ε_{340} (M⁻¹·cm⁻¹)	DOI
TAGGGACGGGCGGGGACGT	198600	10.1093/nar/gkk250

Figure S121. Structure diagram of 5NYS

Legend:
- strand direction (5’ to 3’)
- nucleotide number (5’ to 3’)
- 5’ end
- loop
- syn
- anti
- adenine
- cytosine
- G-quartet guanine
- N6-G-quartet guanine
- thymine

Figure S122. Circular dichroism spectra of the 5NYS oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S123. ¹H-NMR spectrum of the 5NYS oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S124. Folded fraction of the 5NYS oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S125. Native ESI-MS spectra of the 5NYS oligonucleotide (10 µM)

Figure S126. Native ESI-MS spectra of the 5NYS oligonucleotide (10 µM), focused on the 5⁻ charge state
Table S23. Species information

Sequence (5' to 3')	$k_{binding}$ ($M^{-1} \cdot cm^{-1}$)	DOI
CGGGGCGGCGCTAGGGAGGGT	202290	10.1093/nar/gkq558

Figure S127. Structure diagram of 2KYP

Figure S128. Circular dichroism spectra of the 2KYP oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S129. 1H-NMR spectrum of the 2KYP oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S130. Folded fraction of the 2KYP oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S131. Native ESI-MS spectra of the 2KYP oligonucleotide (10 µM)

Figure S132. Native ESI-MS spectra of the 2KYP oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S24. Species information

Sequence (5’ to 3’)	ε_{value} (M⁻¹ cm⁻¹)	DOI
CTGGCGGCGACTGGGAGTGGT	211200	10.1093/mbc/g432

Figure S133. Structure diagram of 2N4Y

Figure S134. Circular dichroism spectra of the 2N4Y oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S135. ¹H-NMR spectrum of the 2N4Y oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S136. Folded fraction of the 2N4Y oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S137. Native ESI-MS spectra of the 2N4Y oligonucleotide (10 µM)

Figure S138. Native ESI-MS spectra of the 2N4Y oligonucleotide (10 µM), focused on the 5[−] charge state
Table S25. Species information

Sequence (5' to 3')	k_{on} (M$^{-1}$ cm$^{-1}$)	DOI
AGGGCGGTGAGAAATAGGGA	233100	10.1074/jbc.M117.781906

Figure S129. Structure diagram of 5I2V

Legend
- strand direction (5' to 3')
- nucleotide number (5' to 3')
- 5' end
- loop
- syn
- anti
- G-quartet guanine
- anti-G-quartet guanine
- ligand
- thymine

Figure S130. Circular dichroism spectra of the 5I2V oligonucleotide (10 µM), acquired at 25°C in 0.4 cm path-length cuvettes

Figure S131. 1H-NMR spectrum of the 5I2V oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S132. Folded fraction of the 5I2V oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S133. Native ESI-MS spectra of the 5I2V oligonucleotide (20 µM)

Figure S134. Native ESI-MS spectra of the 5I2V oligonucleotide (20 µM), focused on the 5$^-$ charge state
Table S26. Species information

Sequence (5’ to 3’)	ε_{max} (M⁻¹cm⁻¹)	DOI
GGGTGGGAGGGGTTGGGT	193900	10.1016/j.str.2009.10.015

Figures:

- **Figure S145.** Structure diagram of 2KPR
- **Figure S146.** Circular dichroism spectra of the 2KPR oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes
- **Figure S147.** 1H-NMR spectrum of the 2KPR oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl
- **Figure S148.** Folded fraction of the 2KPR oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)
- **Figure S149.** Native ESI-MS spectra of the 2KPR oligonucleotide (10 µM)
- **Figure S150.** Native ESI-MS spectra of the 2KPR oligonucleotide (10 µM), focused on the 5⁻ charge state
2LOD

Table S27. Species information

Sequence (5’ to 3’)	$\epsilon_{260\text{nm}}$ (M$^{-1}$cm$^{-1}$)	DOI
GGATGGGACACAGGGGACGGG	256400	10.1093/nar/gks329

Figure S151. Structure diagram of 2LOD

Figure S152. Circular dichroism spectra of the 2LOD oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S153. 1H-NMR spectrum of the 2LOD oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S154. Folded fraction of the 2LOD oligonucleotide as a function of temperature, determined by UV-melting (λ = 295 nm)

Figure S155. Native ESI-MS spectra of the 2LOD oligonucleotide (10 µM)

Figure S156. Native ESI-MS spectra of the 2LOD oligonucleotide (10 µM), focused on the 5$^-$ charge state
Table S28. Species information

Sequence (5’ to 3’)	$\epsilon_{260\text{nm}}$ (M$^{-1}$ cm$^{-1}$)	DOI
TGCCCTGGGCGGGACTGGG	163900	10.1021/ja501590c

Figure S157. Structure diagram of HIV-PRO1

Figure S158. Circular dichroism spectra of the HIV-PRO1 oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S159. 1H-NMR spectrum of the HIV-PRO1 oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S160. Folded fraction of the HIV-PRO1 oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S161. Native ESI-MS spectra of the HIV-PRO1 oligonucleotide (10 µM)

Figure S162. Native ESI-MS spectra of the HIV-PRO1 oligonucleotide (10 µM), focused on the 5$^\text{th}$ charge state
Table S29. Species information

Sequence (5’ to 3’)	$\varepsilon_{\text{molar}}$ (M$^{-1}$·cm$^{-1}$)	DOI
GGGTAGGGAGCGGGAGAGGG	211700	10.1002/anie.201809328

Figure S163. Structure diagram of 6GZN

Figure S164. Circular dichroism spectra of the 6GZN oligonucleotide (10 µM), acquired at 25°C in 0.4-cm path-length cuvettes

Figure S165. 1H-NMR spectrum of the 6GZN oligonucleotide, acquired at 25°C in 100 mM TMAA (pH 7.0) + 1 mM KCl

Figure S166. Folded fraction of the 6GZN oligonucleotide as a function of temperature, determined by UV-melting ($\lambda = 295$ nm)

Figure S167. Native ESI-MS spectra of the 6GZN oligonucleotide (10 µM)

Figure S168. Native ESI-MS spectra of the 6GZN oligonucleotide (10 µM), focused on the S$^-$ charge state
1 General overview

1.1 Intended and less-intended uses

\textit{g4dbr} is an R package containing the Shiny app \textit{g4db} that is dedicated to the creation, visualization, and reporting of curated circular dichroism (CD), 1H-NMR, UV-melting and native mass spectrometry (MS) data from oligonucleotides. Although specifically developed for G-quadruplex forming sequences deposited in the PDB, \textit{g4dbr} can be used with any nucleic acid sequence.

Users can either employ the app to visualize a database generated by \textit{g4db}, visualize data pasted into a templated Excel file (provided in the package), and create/edit/complete a \textit{g4db} database from data supplied in said template.

The long-term goal is to provide tools for the robust deposition of raw experimental data, and processed data derived from them, while allowing for easy and versatile visualisation and reporting.

Raw data pasted in the supplied Excel template can be deposited, and visualized in several ways, which are open to other scientists without the need for proprietary software. The approach is two-fold:

1.1.1 Templated .xlsx file deposition as is

Once pasted into the input template, the data can be deposited as is. It can then be explored natively in Excel or any open-source equivalent. The data is formatted in a non-ambiguous layout, provided it is properly labeled in the header cells.

The template is also amenable to software allowing header cell import/management, such as Origin, in which import scripts can be used.

Of course, the template can be natively imported in the \textit{g4db} app. The advantages over Excel/Origin for this particular application are numerous in terms of both ease and speed of use (e.g. data filtering, automated figure plotting), and functionalities (e.g. peak labeling, normalization/calculation, selective data export). See the Main features section for more details.

Any data treatment and filtering performed within \textit{g4db} is not saved into the input .xlsx file. To save this into a new or existing database file, the second approach must be used:

1.1.2 Rdata file

\textit{g4db} allows exporting selected datasets into an RData (.Rda) file where the data is consolidated and all calculation has already been performed. This leads to faster figure display, smaller file size, and is amenable to host very large datasets (where Excel is limited in row numbers, which is particularly problematic for mass spectrometry data).

The downside of this approach is that it cannot be handled outside of R. Note, however, that \textit{g4db} is not required to open and use the data, it can be natively loaded in base R, which is free and open source. To do so, use the \texttt{load} function, for instance below for a demo database provided in the package:

\begin{verbatim}
load(system.file("extdata/demo_database.Rda", package = 'g4dbr'))
\end{verbatim}

1.2 Extended scope

\textit{g4dbr} includes a number of functionalities that will be described here within the context of their intended use, but that can be utilized outside of this scope, \textit{i.e.}

\begin{itemize}
 \item automated or semi-automated data filtering, treatment and labeling,
\end{itemize}
• computation of molar extinction coefficient (\(\lambda = 260\) nm) of oligonucleotides (epsilon.calculator),
• UV-melting data treatment (meltR),
• MS data size reduction (mass.diet)
• Database selective data deletion (database.eraser)

1.3 Main features

Below is a list of the main features of g4dbr.

• Visualization of CD, UV-melting, ¹H-NMR and native MS data gathered in a database (.Rda format)
 – Collapsible and tabulated interface
 – Quick and user-friendly data filtering in tables and figures (e.g. oligonucleotide, buffer, cation, x-axis range,…)
 * Automated buffer list collection
 * Automated tune and replicate collection
 – Control over the database content, display, and reporting (see below)

• Robust database creation and edition
 – Data imported from a templated Excel file
 – Selective data importing (by e.g. technique/oligo/buffer/data range)
 – Duplicate detection/suppression
 – Automated deposition date and DOI link generation for traceability purpose
 – Replication management for MS and UV-melting data
 – Different tune management for MS data

• Automated data treatment
 – Conversion of CD to molar ellipticities
 – MS data normalization
 – ¹H-NMR and MS peak labeling
 – UV-melting data normalization and conversion to folded fraction
 – UV-melting thermodynamic quantities determination
 – UV-melting Tm labeling

• Custom figures
 – Control over colors, size, and transparency of figures
 – Color palettes adapted to qualitative, sequential, and diverging data
 – Switch between overlaid and paneled figures for quick comparisons
 – Control over variables mapped in paneled figures
 – Automated colour mapping to non-paneled variables
 – Automated figure dimension change to accommodate multiple rows

• Automated report generation
 – Full or Supporting information dedicated reports
 – pdf, HTML and docx formats
 – All data, figure captions, figure sizing, file name, etc. generated dynamically without user input

• Open
 – Coded in R
 – Easy-to-export data tables (practical for standalone data treatment)
 – Import template easy to read in other software
 – Full code and experimental data hosted openly on GitHub
1.4 Workflow

For raw data import, the data must be pasted into a templated Excel file, then read in the importR module of g4db. In this module, the data can be filtered, processed, and selected for writing into a database file (.Rda). The .Rda file can be opened in the database module for visualization and reporting purposes. It can also simply be loaded in base R for further processing or reporting steps that may not be possible in g4db.

![Application workflow diagram](image)

Figure S169: Application workflow

2 Installation and setup

2.1 Installation

Install from Github using:

```r
install.packages("devtools")
devtools::install_github('EricLar04/g4db')
```

Alternatively, download the .zip archive from GitHub then run:
install.packages("devtools")
develtools::install_local("XXX/g4dbr-master.zip")

Where XXX is the file path to the zip archive.

2.2 Setup

Load the package with:

library(g4dbr)

3 g4db

3.1 Running the app

Only one function must be called to use all functionalities from g4db:

g4db()

This function opens a Shiny app in either the currently used IDE (e.g. RStudio), or a web browser.

Other functions used in g4db are packaged in g4dbr, and can be used as standalone tools. Refer to the Other functions and reference files section.

3.2 Interface overview

The interface is divided in 3 tabs that can be selected at the top of the screen, and are used to accomplished specific tasks:

- database, to visualize, report, and remove data from a database file.
- importR, to visualize and process raw data, and export all or part of it to a database file,
- meltR, to visualize and treat UV-melting data, and export all or part of it to the a database (via importR).

The tabs make use of various sidebars, mainly to perform data importing, filtering, processing, exporting and reporting.

3.2.1 Figures and tables

In the main area of the interface are the figures and tables, within collapsible and closable boxes, letting the user select what data to display.

All tables are sortable and filterable to assist in exploring rich data sets, and find specific data points rapidly. The data is presented in long format, which makes it easier to filter through, and to map variables into figures, because each variable is contained in its own column. Columns can be selectively hidden, and some of the less relevant ones are hidden by default.

Data presented in figures and tables reflects the values given to the different filters. On the contrary, filtering the tables does not alter the figures, it is only a mean of accessing and/or exporting a subset of the data.

All tables can be exported as .csv, .xlsx, or in the clipboard. All columns will be exported, regardless of their visibility in the app.
3.2.2 Sidebars and panels

3.2.2.1 Left sidebars and panels Each tab has a sidebar on the left-hand side, which contains a number of tools for data importing, exporting, filtering, and formatting. This left sidebar is collapsible to release some space for figures and tables on smaller screens. Each tab has a specific and independent left sidebar, and the values from those left sidebar modifies the data for all the content of the tab (and almost always only this tab). Drop-down menus contain select all/deselect all buttons for quick data selection.

Given the amount of menus necessary for the meltR tab, a large portion is hosted in two collapsible and movable “hovering” panels.

The sidebar from the database and importR tabs, and a panel of meltR also contain a color palette selection menu, and submenu for certain palettes having variations (Figure S170). The available palettes include:

- The well known Brewer palettes that include qualitative, diverging, and sequential palettes,
- Some discrete palettes from D3.js, a JavaScript library for producing interactive data visualizations (imported from the ggsci package),
- Several palettes inspired by the colors used by scientific journals/publishers (NPG, AAAS, NEJM, Lancet, JAMA, JCO, etc.; imported from the ggsci package).

The selected colour palette is applied to all the figures of the tab, but does not affect other tabs.

![Colour palette selection](image)

Figure S170: Colour palette selection. Some palette families (1) containing several palette variations (2)

3.2.2.2 Right sidebars Figure boxes feature a right sidebar. They contain filtering and data formatting filters that are applied only on the corresponding figure (contrary to the left sidebars that affect entire tabs). These sidebars are collapsible as well, and hidden by default.

3.3 Consulting a database: the database tab

The database tab is dedicated to visualizing, exporting, and reporting on the data of a curated database file.

3.3.1 Database input

The data from a given database must be gathered in a single .Rda file generated in the importR tab. It contains five dataframes: one dedicated to the general oligonucleotide information (db.info), and the four other ones to each analytical technique (db.CD, db.NMR, db.MS, db.UV).

g4db extracts automatically all the data, but it can also be loaded in the global environment (i.e. without using g4db) using load(). For instance, to load the demo database, run:
load(system.file("extdata/demo_database.Rda", package = 'g4dbr'))

The global environment should now contain five dataframes that can be opened and worked with. When using `g4db()`, the data will be loaded in the package environment and will therefore not appear in the global environment.

3.3.2 Database use

3.3.2.1 Data loading

Upon opening the database file, the interface should be devoid of data. The first step is to import a database file:

1. Click on *Browse* in the *Load* section of the *left sidebar* (Figure S171),
2. Select a .Rda file that has been prepared in *importR*.

![Figure S171: Empty database view](image)

Figure S171: Empty database view

The *General information and oligonucleotide selection* table should now be populated by a list of the oligonucleotides for which the database file contains at least information data (Figure S172-1).

The content of this table is controlled by a drop-down menu in the *left sidebar*, and by the oligonucleotide column filter (in that order) (Figure S172-2). By default, all oligonucleotides are shown, but none are selected for analytical result display (to avoid wait times when the table content is changed).
Figure S172: Demo database loaded in the database tab: the general oligonucleotide information should be displayed (1). The visible oligonucleotides can be filtered in the table or from the dropdown menu in the left sidebar (2). The table (1), and other tables in g4db, can be exported (a), their column visibility changed (b), and their content sorted, filtered or searched through (c).

3.3.2.2 Data display

To start visualizing data, the oligonucleotide(s) of interest must be selected from the General information table, by clicking on one or several rows (Figure S173-1). Clicking again on a row deselects it. The CD, NMR and UV-melting data should now be displayed (Figures S173-2 and S174-1). By default, the data acquired for all buffer conditions (i.e. all cation + electrolyte) are shown, but it can be restricted to only certain buffers, electrolytes or cations, using the menus from the left sidebar (Figure S173-3). Individual cation and electrolyte selections supersede the buffer selection. For instance, if the buffers “TMAA + KCl” and “Kp + KCl” are selected, but the “Kp” electrolyte is excluded, then only “TMAA + KCl” will effectively be selected.

Note that the buffers, electrolytes and cations are not a static list, but are automatically collected from the CD and UV-melting data. It is therefore important to keep their naming consistent across the entire database.
Figure S173: Database data display: both oligonucleotides have been selected (1). Their data is displayed (2) but was buffer-filtered (3): only KCl-containing solutions are selected (a). Using the right sidebar, the CD data was panelled by oligonucleotide (b).

The UV-melting data is displayed in two separate figures (S174-1): on the left is shown the raw data with the fit line, and on the right is processed data. Depending on whether the data was processed by non-linear fitting or not, the processed data will either be the folded fraction or the absorbance normalized in [0,1]. This allows to plot the data of highly stable or unstable species on the same figure as those for which the Tm could be determined.

To also display MS data (S174-2), the Plot MS button must be used S174-3. This avoid long refresh times when selecting oligonucleotides. Any change in the oligonucleotide, buffer, tunes, replicates, and m/z selections will only be effective if the figure is replotted.
Figure S174: Database data display: UV-melting (1) and native MS (2) display. To display the MS data, the Plot MS button must be used (3).

For all these analytical methods, all data points are gathered in tables, collapsed by default. These data points can be sorted, filtered, and exported in .xlsx or .csv files, or copied in the clipboard (Figure S172). Again, filtering data in the tables does **not** affects the figures, only the left and right sidebars do.

3.3.3 Data content and customization

3.3.3.1 General information

This table gathers all the general information on the deposited oligonucleotides. By default, the following variables are displayed:

- **Oligonucleotide name**, preferably a PDB code where available
- **DOI**, with a hyperlink that is automatically generated upon importing with `importR`
- **Submitted by**, the initials or full name of the data submission author
- **Deposition date**, which is generated automatically by `g4db`
- **Sequence**, the 5’ to 3’ oligonucleotide sequence
- **Length**, the number of nucleotides, generated automatically by `g4db`
- **Average mass** and **Monoisotopic mass** of the oligonucleotide, generated automatically by `g4db`, and used for the native MS peak labelling
- **Extinction coefficient (260 nm)**, the molar extinction coefficient of the oligonucleotide (in M⁻¹cm⁻¹), calculated automatically by `g4db` (via the `epsilon_calculator`)
- **Topology**, a short user-supplied description of the oligonucleotide structure (*e.g.* parallel quadruplex)

The fields hidden by default (nucleotide and atom numbers) are not of direct interest to the general user, but can be displayed using the **column visibility** button.

Importantly, this table is used to select the oligonucleotide for which the analytical data should be displayed, as shown in Figure S173. It is possible to quickly filter through entries by e.g. topology or length, to select all oligonucleotides falling in a given category.
3.3.3.2 Circular dichroism The data is shown as points and lines, colored by buffer. The oligonucleotides are differentiated by point shape.

The right sidebar contain the following settings:

- normalized switch: choose to display molar ellipticities (as automatically calculated in importR; default) or raw data (i.e. in mdeg).
- superimposition dropdown menu: choose to display all data superimposed (default), grouped in panels by oligonucleotide or buffer, or not superimposed at all.
 - The figure size will automatically adjust with the number of panels
- scale dropdown menu: select whether all panels must have the same y-axis scale (not free) or can be rescaled to better fit their content (free)
- Wavelength slider: select the wavelength range to display (default: 220-330)
- point size and line size sliders: adjust the size of points and lines
- transparency slider: adjust the transparency of both points and lines

The data is gathered in the CD data table below, which can be sorted, filtered, and exported. The fields displayed by default are Oligonucleotide, Buffer, Wavelength (nm), CD (mdeg), and Delta epsilon (M^-1cm^-1). The other fields hidden by default can be displayed using the column visibility button.

3.3.3.3 ^1^H NMR The data is shown as a line, colored by oligonucleotide, and is normalized so that all spectra will share the same y-axis range. By default, each spectrum is shown in its own panel. Peak numbers are shown above their peaks and linked by a segment.

The right sidebar contains some settings identical to the CD one (superimposition, scale, line size). In addition, it contains a chemical shift (ppm) slider to select the chemical shift range to display (default: 9.5-12.5 ppm).

The data is gathered in the NMR data table below, which can be sorted, filtered, and exported. The fields displayed by default are Oligonucleotide, Buffer, Chemical shift (ppm), and Intensity. The other fields hidden by default can be displayed using the column visibility button.

3.3.3.4 UV-melting UV-melting data is plotted with points, and in the case of the raw data with an additional fit line.

The right sidebar contains some settings identical to some described above (point size, line size, line transparency). In addition, it contains a Temperature (K) slider to select the temperature range to display (default: 278-368 K).

The data is gathered in the UV-melting data table below, which can be sorted, filtered, and exported. The fields displayed by default are Oligonucleotide, Buffer, ramp, T (K), Folded fraction, and Absorbance. The other fields hidden by default can be displayed using the column visibility button.

3.3.3.5 Native mass spectrometry There are two distinct plots to visualize MS data, i.e. one full scale and one charge-state focused, to better see the potassium adduct distribution.

In both cases, the data is shown as line, with labels to name the visible species (Figure S175). By default, spectra are paneled by oligonucleotide (columns) and buffer (rows), which should typically lead to a single spectrum per panel. Peak labels appear above their corresponding peak. The focused plot displays the 5- charge state by default, but this can be changed by the user.

Besided a line size slider, the right sidebar of the full-scale plot contains:

- m/z slider: select the m/z range to display (default: 800-2500 m/z).
- Tunes dropdown menu: select the tunes to display.
- tunes are collected automatically from the data
- Replicates dropdown menu: select the replicates to display
 - replicates are collected automatically from the data
- Layout dropdown menu: select a panel layout among all combinations of oligonucleotide, tune, buffer, and replicate
 - Six unique combinations can be selected, and the six other ones are accessed using the transpose grid switch
 - If more than one spectrum appears on a panel, the two variables that are not mapped by the layout are combined to be mapped as colours
- labels slider: choose whether to show (default) or hide labels

Figure S175: Detail of native MS data panelled with oligonucleotides in columns (a) and tunes in row (b). Because several spectra are superimposed, the remaining variables (replicate and buffer) are combined to map colors (c)

The charge-state focused plot sidebar only contains a charge selection menu.

The data is gathered in the native ESI-MS data table above, which can be sorted, filtered, and exported. The fields displayed by default are Oligonucleotide, Buffer, Tune, Replicate, m/z, Normalized intensity, and Intensity. The other fields hidden by default can be displayed using the column visibility button.

The table may take some time to load given the large number of data points.

3.3.4 Reporting

3.3.4.1 Report generation

Reports can be generated from the displayed data, either full (with traceability features, titles,…) or SI (with minimal information to avoid redundancy when reports are collated into a supporting information document), in Word, pdf, and HTML formats, in a few simple steps:

1. Select the oligonucleotide(s) for which the report must be generated,
2. Plot the MS data, if they are to be included in the report. If not, the section will not appear in the report,
3. Customize, where necessary, the figures (e.g. colours, scales),
4. Select the report type (full or SI) with the Report type switch,
5. Select a document format (Word, pdf, HTML), in the left sidebar (Report section)
6. Click on the Download button and save the document.
3.3.4.2 Word formatting

The Word format uses a template file to define its appearance (i.e. the styles). This template file can be changed by the user to generate reports directly with the desired appearance, to avoid additional work outside of g4db.

The template is located in the markdown folder of the g4dbr package. To locate the template, run:

```r
system.file("rmarkdown/word-styles-reference.docx", package = "g4dbr")
```

Then, modify the styles as desired. Local text modifications will not be taken into account.

It is also advised to back up this file in another location, because any new install or update will overwrite it.

3.3.5 Data deletion

It is possible to selectively remove data from the database, by oligonucleotide and analytical method, using the database.eraser function implemented within g4db.

Several oligonucleotides can be processed at once, if the same analytical methods to remove are selected. If all analytical methods are selected, the selected oligonucleotide entries will be entirely purged (including the general information).

In many cases, it is not good practice to ever delete data from a database. If the use of g4db lies within these cases do not use the data deletion tool as it permanently deletes data. Here, the data deletion tool was mostly provided as a mean to correct and update data cleanly, as the new data might not be written to the database if a duplicate record already exists. It is also a way to generate lighter, sub-databases for specific uses, by discarding all irrelevant entries.

By default, a new file will be generated, named `Modified database-YYYY-MM-DD.Rda`, where YYYY-MM-DD is the date of the day, so as to avoid accidental file overwriting.

To delete one or several entries:

1. Select the oligonucleotide(s) to delete from the dropdown menu in the left sidebar (not from the general info table),
2. Select the methods for which the data must be removed, by flipping the switches on,
3. Click on Erase to a db file
4. Save the file (with a different name than the one in use)
5. Optional: load the new database file for verification and further use

For more details on the database.eraser function, refer to the Other functions and reference files section.

3.4 Importing data in the database: the `importR` tab

3.4.1 Templated-Excel file

Before importing data into a database file using g4db, it is necessary to paste this data into a provided Excel template file. Once filled, this file doubles as a data repository that can be explored in other pieces of software. Note, however, that such files can become quite heavy (in particular with MS data), leading to very slow loading and saving times, and high memory use.

The Excel file is divided into seven tabs that contain raw data (UV, CD, NMR, MS), general oligonucleotide information (info), or peak labeling data (NMR and MS labels). It is essential to maintain consistency throughout the file to ensure that the data and labels are read and associated correctly: oligonucleotide, electrolyte, cations, tunes and replicate must be named identically across columns and tabs. If the data is to be appended to an existing database, the
naming scheme must be extended to the new data. In particular, attention should be paid about capitalization (e.g. ‘TMAA’ vs ‘tmaa’ vs ‘Tmaa’) and typical name variants (e.g. ‘Kp’ vs. ‘Kpi’).

The template is installed with the package. Its location can be obtained by running:

```r
system.file("extdata/demo_input.xlsx", package = "g4db")
```

After adding data, do not save the file in this folder, as it would be overwritten by a package update, and deleted upon package removal.

3.4.1.1 Info

The first tab gathers essential data on the entries to submit (Figure S176). Five fields must be filled, i.e.:

- `oligo`, the name of the oligonucleotide, preferably a PDB code where available,
- `sequence`, in the 5’ to 3’ direction, without spaces or dashes,
- `submitted_by`, the initials or full name of the data submission author,
- `DOI` is the DOI of the paper linked to the PDB deposition. Paste the DOI only, and not a full link, which will be automatically generated by `importR`
- `Topology`, a short user-supplied description of the oligonucleotide structure (e.g. `parallel quadruplex`).

![Figure S176: Info template](image)

All the other fields that can be seen in the corresponding tables in `g4db` are calculated automatically.

3.4.1.2 CD

The CD data must be pasted in two columns, below the header, with the `wavelength` in the first column and the `ellipticity` in mdeg in the second column (Figure S177).

The oligonucleotide, buffer and cation names, the cuvette `pathlength` in cm, and the oligonucleotide concentration (in µM) must be supplied in the header rows.

For every new data set (new `oligonucleotide/buffer/cation` combination), the next two columns must be used and so forth. Even if the wavelength axis is the same, it must be specified again; this allows dealing with mismatched axes (see the right-hand side columns in Figure S177).

![Figure S177: CD template. Four spectra are shown. Note that one of the x-axis is mismatched](image)
3.4.1.3 UV-melting

The UV-melting tab is the only one where three columns must be filled for each oligonucleotide/buffer/cation combination:

- Temperature, is the solution temperature, in °C or K (importR determines which automatically),
- Absorbance, is the absorbance of the solution, with or without blank subtraction (blank subtraction can be performed in importR)
- Blank, is the absorbance of the reference blank solution to subtract, where necessary.

Besides the oligonucleotide, buffer and cation names, the header contains a replicate field, to increment when several experiments for the same oligonucleotide/buffer/cation combination are submitted.

![Figure S178: UV-melting template. Case where the data is already blank-subtracted](image)

The melting data must be pasted as is, in particular if both cooling and heating ramps are recorded successively. MeltR uses the changes in temperature (increase or decrease) from successive rows to assess whether it deals with a heating or cooling ramps, and eventually dissociates both for further processing.

3.4.1.4 NMR

The 1H-NMR template follows the same principle as the CD one: two columns (per oligonucleotide/buffer/cation combination) for the chemical shift and intensity, and three header rows for the oligonucleotide, buffer and cation names (Figure S179).

![Figure S179: NMR template](image)

3.4.1.5 NMR labels

This tab is used to submit 1H NMR peak labelling information (Figure S180). The header structure is the same than in the NMR data tab. The first column must be filled with peak numbers, in any order,
with the corresponding chemical shifts in the second column. The labels are handled as text, and therefore several numbers can be submitted for a single chemical shift value.

As a sidenote, it is possible to keep cells empty if a given peak number is in the list but there is no corresponding peak in the spectrum. This is practical when several spectra are being labelled and a common peak number list is used. Note that the peak list must be repeated for all spectra, even if they are identical.

![Figure S180: NMR labels template. Note that both oligonucleotides have completely different labellings](image)

Make sure to mirror the header from the NMR data tab, so that all spectra are labelled.

3.4.1.6 MS

The MS template shares the same structure as NMR and CD, with m/z and the intensity as columns one and two (Figure S181). The intensity can be supplied normalized or not, it will eventually be normalized in `importR`. Two additional header rows must be filled:

- `tune`, a short name identifying the MS parameters. The name must be linked to said parameters along the database file (e.g. publication, readme file).
- `replicate`, a number to increment when several experiments for the same oligonucleotide/buffer/cation/tune combination are submitted.

![Figure S181: MS template](image)
It is advised to be relatively conservative with data-heavy spectra to cut on processing time in \textit{importR}, e.g. irrelevant m/z ranges can be discarded. In case of doubt, everything can be kept at this stage and filtered later on in \textit{importR}.

\textbf{3.4.1.7 MS labels} This tab is aimed at providing the database with the \textbf{nature} of the species to label in the MS spectrum, not their m/z. It therefore differs from the NMR label tab, where one must supply the \textbf{chemical shift} of each label.

The first column contains the charge state numbers, to label different charge states independently (Figure S182). The second column contains the name of the species to be labelled, which must be supplied using the following syntax: \textit{M} for the non-adducted oligonucleotide, \textit{MK} for a single-potassium-adduct species, \textit{MK2} for a two-potassium-adduct species, and so forth (up to ten).

charge	label	m/z	intensity
4	M	4	MK2
5	M	5	MK2
6	M	6	MK2

Figure S182: MS labels template. Note the difference in labelling between oligonucleotides and buffer.

Make sure to mirror the header from the MS data tab, so that all spectra are labelled.

\textbf{3.4.2 Populating a database}

Once the template file is ready, the data can be loaded in \textit{g4db}, processed, filtered, and written into a new or existing database file. All of these steps can be performed in the \textit{importR} tab, except for the \textit{UV-melting} data treatment that is carried out in \textit{meltR} (see the Importing UV-melting data: the \textit{meltR} tab section).

Essentially, \textit{importR} works just like \textit{database}. The main window hosts the same data tables and figures than database (except \textit{UV-melting} figures, which are in \textit{meltR}, and the charge-focused MS plot), with the same functioning (data filtering, figure customization). In the same vein, the left \textit{sidebar} also contains the filters and color palette selection menus. All these common features are described in the \textit{Interface overview} and \textit{Consulting a database: the database tab} sections, and will not be discussed below.

The key aspect of \textit{importR} is that it is a \textbf{selective} database writing tool. In that context:

- \textbf{What you see is what you write} to the database. Any data point filtered out (whether by oligonucleotide, buffer composition, x-axis range), will \textbf{not} be written in the database file.
- Duplicated data points (same technique, oligonucleotide, buffer composition, x-axis position,…) are discarded. For instance, resubmitting data with a wider x-axis range will have the effect of completing the
database (without doubling the already existing points), but resubmitting corrected data on the same range might not replace the initial data. It is therefore better to first remove the erroneous entry (see the Data deletion section).

- Individual oligonucleotides and analytical methods can be included or excluded from the database writing.

3.4.2.1 Template file input

The data is imported by selecting a file via the *Browse…* button in the *left sidebar.*

3.4.2.2 Data filtering and processing

Oligonucleotides are selected from the *General information* table. Further buffer composition filtering can be performed in the *left sidebar.*

The *CD* and *NMR* calculations (e.g. normalization, labeling) and plotting are automatically performed, without any user input. The MS data is processed and plotted when the *plot MS* button is clicked. Note that if the MS data is not plotted, it cannot be exported to a database.

Method-dependent *filtering* is performed in the corresponding *right sidebars,* as described for the *database* tab.

3.4.2.3 Importing UV-melting data: the *meltR* tab

The processing of UV-melting data is performed in *meltR,* a distinct tab from *importR,* to avoid overcrowding the interface and allow its use outside of the database frame.

The data is sourced from the template file loaded in *importR,* and once the data is processed in *meltR* it can be sent back to *importR* to include in the database. Note that the filtering of temperature range and buffer composition must be performed directly in *meltR.*

The use of *meltR* itself is described below.

3.4.3 Writing a database file

Once the data has been selected and properly filtered (including or not UV-melting data from *meltR*), it can be written into a database file in three simple steps:

1. Select a database file, either an existing one (to add new entries) or an empty one (to create a new database). This file can be opened in the *Export* section of the *left sidebar* of *importR,* or from the *database* tab. In either way, the data can be consulted in the *database* tab. An empty file is available in the package, and can be found by running:

   ```r
   system.file("extdata/empty_database.Rda", package = 'g4dbr')
   ```

2. Select the methods to write to the database file, using the switches. The MS and UV-melting data must be generated to be exported.
3. Click on *Write to db file.* By default, the file will be named following the *Database-YYYY-MM-DD.Rda* template. Rename where necessary. If the database in use was generated the same day than the deletion operation, there is a risk of it being overwritten: make sure to name the new file with a different name.
4. Optional: load the new/updated database to verify that the import worked correctly.

3.5 Automated processing of UV-melting data: the *meltR* tab

3.5.1 Principle

Purpose *meltR* is an automated UV-melting data processing software. It determines the melting temperatures (T_m), ΔG^0, ΔH^0 and ΔS^0 by non linear fitting, and converts the absorbances into folded fractions.
Folded fractions are a good way to assess to which extent an oligonucleotide is structured (1: all molecules folded, 0: all molecules unfolded), visually observe the T_m (folded fraction = 0.5), and normalize the data of different samples (and therefore different absorbances) to a common y-scale.\footnote{For the non-linear fitting and the folded fraction calculation to work, the data must contain both a lower and higher baseline. In other words, the oligonucleotide must not be too stable or too unstable. In such cases, meltR allows to normalize the data to [0;1] to at least bring all data to a common y-scale.}

In a melting experiment, changes in the solution temperature lead to changes in the amount of folded (decreases with increasing temperatures) and unfolded species (increases with increasing temperatures). The model relies on the expression of the measured absorbance A_T as the sum of the absorbances from the folded (F) and unfolded (U) forms, weighted by their abundance expressed from the folded fraction θ_T.

$$A_T = A_F^T \times \theta_T + A_U^T \times (1 - \theta_T)$$

Herein, the absorbances measured at 295 nm were converted to molar extinction coefficient (in $M^{-1}cm^{-1}$) using $\varepsilon = A/lC$, where l is a path length (in cm) and C the oligonucleotide concentration (in M).

$$\varepsilon_T = \varepsilon_F^T \times \theta_T + \varepsilon_U^T \times (1 - \theta_T)$$

The folded fraction is defined by $\theta = \frac{[F]}{[F] + [U]}$. Assuming a simple two-state model $F \rightleftharpoons U$ with an equilibrium constant K, θ can be expressed as:

$$\theta = \frac{1}{1 + K}$$

This leads to:

$$\varepsilon_T = \varepsilon_F^T \times \frac{1}{1 + K} + \varepsilon_U^T \times \frac{K}{1 + K}$$

ε_F^T and ε_U^T can be modeled as a linear function of the temperature, where a is the slope and b the intercept of these baselines:

$$\varepsilon_T = (a^F T + b^F) \times \frac{1}{1 + K} + (a^U T + b^U) \times \frac{K}{1 + K}$$

K can be expressed by thermodynamic quantities of interest: $\Delta G^0, \Delta H^0$ and ΔS^0.

$$-RT\ln K = \Delta G^0 = \Delta H^0 - T \Delta S^0$$

Note that in meltR, potential changes in heat capacity changes in the evaluated temperature range are not taken into account to avoid over-paramaterization. At the melting temperature:

$$\Delta G_m^0 = \Delta H_m^0 - T \Delta S_m^0 = 0$$

Which leads to:

$$\Delta S_m^0 = \frac{\Delta H_m^0}{T_m}$$
And therefore:

\[\Delta G^0 = \Delta H^0_m (1 - \frac{T}{T_m}) \]

Finally, K can be expressed as \(\exp(-\frac{\Delta H^0_m (1 - \frac{T}{T_m})}{RT}) \), yielding:

\[A_T = (a^F T + b^F) \times \frac{1}{1 + \exp(-\frac{\Delta H^0_m (1 - \frac{T}{T_m})}{RT})} + (a^U T + b^U) \times \frac{\exp(-\frac{\Delta H^0_m (1 - \frac{T}{T_m})}{RT})}{1 + \exp(-\frac{\Delta H^0_m (1 - \frac{T}{T_m})}{RT})} \]

3.5.1.3 Data modeling: Implementation and derived values
In meltR, the absorbance is converted to molar extinction coefficients before fitting with the following model:

```r
# code simplified for readability
epsilon = (P3+P4*T)*1/(1+exp(-P1*(1-T/P2)/(8.31451*T))) + (P5+P6*T)*exp(-P1*(1-T/P2)/(8.31451*T))/(1+exp(-P1*(1-T/P2)/(8.31451*T)))
```

where \(\epsilon \) is the molar extinction coefficient, \(T \) is the temperature (in Kelvin), \(P1 \) is \(\Delta H^0 \), \(P2 \) is the \(T_m \), \(P3/P5 \) and \(P4/P6 \) are respectively the origins and slopes of the baselines. The optimized parameters are summarized in the `meltR` tab, and can be later consulted in the `database` tab.

The non-linear fitting is performed with the base function `nls()`. Below is a more detailed view of the fitting model, applied on a demo data melting curve of 1XAV (Figure S183). Note that some user inputs have been hard-coded hereafter:

```r
#libraries
library(tidyverse)
library(ggthemes)

# Experimental conditions
melt.c <- 10 # oligo concentration (micromolars)
melt.l <- 1 # cuvette of 1.0-cm path length

# Loading the demo data
load(system.file('extdata/demo_database.Rda', package = 'g4dbr'))

# Selection of a melting curve from the demo data
data.to.fit <- db.UV %>%
  select(oligo, buffer, cation, rep, comment, ramp, id, T.K, abs.melt) %>%
  filter(oligo == '1XAV' & buffer == '100 mM TMAA (pH 7.0)' & ramp == 'cooling')

# Plot
data.to.fit %>%
ggplot() +
  geom_point(aes(x = T.K, y = abs.melt), color = 'steelblue') +
  theme_pander() +
  xlab("T (K)") +
  ylab(expression(epsilon~(M⁻¹*cm⁻¹)))
```
Figure S183: Melting curve of 1XAV (cooling ramp) in 100 mM TMAA + 1 mM KCl, from the demo database

Fit initialization (automated in the application)
P1s <- 130000
P2s <- 325 # Automatically extracted from the first derivative in the application
P3s <- 1/(melt.c/1E6 * melt.l) # Denominator converts initial parameters to molar abs coeff.
P4s <- 0.30/(melt.c/1E6 * melt.l)
P5s <- 0/(melt.c/1E6 * melt.l)
P6s <- -0.2/(melt.c/1E6 * melt.l)

Non-linear fitting using the base nls() function
ms <- nls(
data=data.to.fit,
data.to.fit$abs.melt~(P3+P4*data.to.fit$T.K)*1 /
(1+exp(-P1*(1-data.to.fit$T.K)/P2) / (8.31451*data.to.fit$T.K)) +
(P5+P6*data.to.fit$T.K)*exp(-P1*(1-data.to.fit$T.K)/P2) / (8.31451*data.to.fit$T.K))

start = list(P1 = P1s, P2 = P2s, P3=P3s, P4=P4s, P5=P5s, P6=P6s), # Initial parameters
nls.control(maxiter = 5000, # Default value, hard-coded here but users can modify it
warnOnly = T)

Optimized parameters
fit.output <- data.frame(
nb.data.pt = nobs(ms),
RSS = sum(residuals(ms)^2),
SE.residual = sigma(ms),
P1 = as.vector(coef(ms))[1],
P2 = as.vector(coef(ms))[2],
P3 = as.vector(coef(ms))[3],
P4 = as.vector(coef(ms))[4],
P5 = as.vector(coef(ms))[5],
P6 = as.vector(coef(ms))[6]
Note that the residual sum of squares (RSS) and standard error of residuals (RMSE) are computed. After the fitting is complete, a number of derived values are calculated. The ΔH° and ΔS° of the folding reaction are obtained from P1 and P2.

```r
# Temperature at which the free energy is calculated
# User input in the app

temp = 293

DeltaH = -as.vector(coef(ms))[1]
DeltaS = -as.vector(coef(ms))[1]/as.vector(coef(ms))[2]

DeltaG = DeltaH - temp * DeltaS

data.frame(DeltaH, DeltaS, DeltaG)

#> DeltaH  DeltaS  DeltaG
#>       1 -218057.5 -669.474 -21901.57
```

The baselines (in M$^{-1}$cm$^{-1}$) are obtained with P3+P4*T and P5+P6*T (Figure S184):

```r
mutate(low.T.baseline = fit.output$P3+fit.output$P4*T.K, # low temperature baseline
        high.T.baseline = fit.output$P5+fit.output$P6*T.K) %>%
        ggplot() +
        geom_point(aes(x = T.K, y = abs.melt), color = "steelblue") +
        geom_line(aes(x = T.K, y = low.T.baseline), color = "coral", size = 1) +
        geom_line(aes(x = T.K, y = high.T.baseline), color = "coral", size = 1) +
        theme_pander() +
        xlab("T (K)") +
        ylab(expression(epsilon-(M^{-1}*cm^{-1})))
```
Figure S184: The baselines are not determined manually, but computed from the fitting parameters.

The folded fraction (Figure S185) is calculated by deconvoluting the baseline contributions:

\[
\theta = \frac{P6T + P5 - \varepsilon}{P6T + P5 - (P4T + P3)}
\]

```R
data.to.fit %>%
  mutate(folded.fraction.model = (fit.output$P5+fit.output$P6*T.K-abs.melt)/(fit.output$P5+fit.output$P6*T.K - fit.output$P3-fit.output$P4*T.K)) %>%
  ggplot(aes(x = T.K, y = folded.fraction.model)) +
  geom_point(color = "steelblue") +
  theme_pander() +
  xlab("T (K)") +
  ylab(expression(epsilon~(M^-1*cm^-1)))
```
The modeled folded fraction (Figure S186) is also derived from the fit, using:

\[\theta_{\text{model}} = \frac{1}{1 + e^{\frac{-P_1(1 - T/K)}{RT}}} \]

```
data.to.fit %>%
  mutate(folded.fraction =
    (1/(1+exp(-fit.output$P1*(1-T.K)/fit.output$P2)/(8.31451*T.K)))) %>%
  ggplot(aes(x = T.K, y = folded.fraction)) +
  geom_point(color = "steelblue") +
  theme_pander() +
  xlab("T (K)") +
  ylab(expression(epsilon~(M^{-1}cm^{-1})))
```
3.5.1.4 Workflow The data is processed following this workflow:

1. Detection of the temperature unit, and conversion to Kelvin where necessary,
2. Generation of a unique id for each oligonucleotides, ramps, buffers, and replicates combinations. From then on, all data is processed by id (in particular cooling and heating ramps are processed separately).
3. Blank subtraction, if blank data is submitted (can be turned off),
4. Conversion of the absorbance data to molar extinction coefficient,
5. Determination and separation of the ramps (cooling and heating). The ramps are always processed separately.
6. Data selection from user input: oligonucleotides, ramps, buffers, replicates, or individual id.

The steps 7–9 are only carried out if the data can be fitted (presence of both lower and upper baselines):

7. Non linear fitting initialization
 a. P2 (the Tm) is initialized as the maximum of the first derivative (\(\frac{\Delta \epsilon}{\Delta T} \))
 b. All other parameters initial values are hard-coded, and modulated by the oligonucleotide concentration and cell path length
 c. User modifications, where necessary
8. Non linear fitting (see model above),
9. Calculation of the folded fractions (from experimental data and from the model) and baselines (see equations above)

Step 10 is only carried out for non-fittable data:

10. The \(\epsilon \) values are normalized in the [0;1] range, to be displayed alongside folded fraction data (same y-scale).

Figure S186: The modeled folded fraction of 1XAV (cooling ramp) in 100 mM TMAA + 1 mM KCl
3.5.2 Data loading and filtering

The data must be loaded from the Excel template into importR. All of the UV-melting data is automatically imported into meltR, regardless of the oligonucleotides selected in importR (to facilitate the standalone use). However, only the processed data for the oligonucleotides selected in importR is sent back to that tab.

The meltR interface has a slightly different organization than importR and database: the filtering of data to process is carried out in the hovering Filter panel (Figure S187).

1. Where necessary, refine the temperature range (default: 276-363 K, or ~ 3-90 °C),
2. Select the oligonucleotides to process (default to all). It is possible to process several oligonucleotides at once. Remember however that, in the context of g4db, these different oligonucleotides need to be selected in importR to be sent to that tab.
3. Select the ramps (heating or cooling) to process (default: both). The nature of the ramps is determined automatically, and the ramps are processed separately.
4. Select the buffers to process (default: all),
5. Select the replicates to process (default: all)
6. If the steps 2-5 do not allow to specifically select the desired data, it is possible to directly filter the data by id.

Figure S187: The UV-melting data from the demo input, where the Kp+KCl buffer was filtered off

The Filter panel can be minimized by clicking on the header.

3.5.3 Data fitting

This section can be carried out only for data that can be fitted. For non-fittable data, skip this section.

1. Click on the Plot derivative button, located in the left sidebar.
 a. The Input data box will automatically switch to display $\Delta\varepsilon/\Delta T$ (Figure S188)
 b. The Approximate Tm table is filled with the maxima from the derivatives, in the Fit box.
 c. Artifactual points (e.g. caused by important local data variations) may lead to erroneous approximated Tm: increase the smooth window and click on the button again. If the results are still not satisfactory, continue anyway to step 2 (Figures S188 and S189).
Figure S188: First derivative data was obtained by clicking on Plot derivatives. Note the presence of artifacts at high temperature that will cause an erroneous initialization to the Tm for 1XAV-TMAA + KCl-heating-1.

Figure S189: Tm initialization from first derivative data. Here, the second entry is erroneous and must be corrected either by increasing the derivative smoothing, or manually at the next step.

2. Click on the **Initialize fitting button**, located in the **left sidebar** (Figure S190).
 a. The **Fit** box will automatically switch to the **Fit initialization** table.
 b. If step 1. was not satisfactory, manually correct the Tm.init variable. Correctly initialized Tm are critical for the success of the fitting process. The other initial fitting parameter values can also be modified.
 c. If desired, change the legend; by default it is the id.
Figure S190: Fitting initialization. All parameters are initialized. Note that the Tm initialization is being manually corrected.

3. Click on the *Launch fitting* button, and the data will be processed and the result displayed in several figures and tables (Figure S191).

 a. The *Fit* box will automatically switch to the fit result tab, showing the fit lines and calculated baselines. Baselines can be toggled off using the corresponding switch in the *left sidebar*.

 b. The folded fractions (and modeled folded fraction) are shown in the *Fit results* box.

 c. The melting temperatures and other thermodynamic values are accessible in the *Melting temperatures* box. The temperature at which the Free energy is calculated can be adjusted from a slider in the *left sidebar*. The Tm values are also plotted in the *Plot* tab (box plot grouped by *oligonucleotide* and *buffers*, with distinctive colors per ramp).

 d. If the fit fails, it is likely that the data was not correctly initialized. Change the parameters, and click again on *Launch fitting*.

 e. Where necessary, the maximum number of iterations can be increased (slider in the *left sidebar*; default: 5000).

Figure S191: Fitting results: Fitted data (top right), folded fraction (bottom left), data table and Tm plot (bottom right)
3.5.4 Sending data to *importR*

To send data to *importR* for database edition:

1. If not already done, select the oligonucleotides to import in *importR* from the *General information* table of that tab,
2. Select whether the data was fitted or not with the *select data* switch, in the *left sidebar*,
3. Click on the *send to importR* button,
4. In *importR*, verify that the data has correctly been sent into the *UV-melting data* box.

3.5.5 Figure customization

The choice of colour palettes, lines and points size and transparency, can be made from the hovering *Customisation* panel. The panel can be minimized by clicking on the header.

4 Other functions and reference files

4.1 epsilon.calculator

4.1.1 Principle

The oligonucleotide molar extinction coefficients at 260 nm are calculated using the nearest-neighbor model in its traditional format,\(^1,2\) where \(\varepsilon_i\) is the molar extinction coefficient (in M\(^{-1}\)cm\(^{-1}\)) of the nucleotide in position \(i\) (in the 5’ to 3’ direction), \(\varepsilon_{i,i+1}\) is the extinction coefficients for doublets of nucleotides in positions \(i\) and \(i+1\), and \(N_o\) is the number of nucleotides in the oligonucleotide.

\[
\varepsilon_{260\text{nm}} = \sum_{i=1}^{N_o-1} \varepsilon_{i,i+1} - \sum_{i=2}^{N_o-1} \varepsilon_i
\]

To that effect, it uses *epsilondb*, a database of reference \(\varepsilon_{260\text{nm}}\) contributions from the individual nucleobases, and couples of nucleobases (neighboring effects):

```r
epsilondb # A tibble: 4 x 6
#> base epsilon Acorr Ccorr Gcorr Tcorr
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 A    15400 27400 21200 25000 22800
#> 2 C    7400  21200 14600 18000 15200
#> 3 G    11500 25200 17600 21600 20000
#> 4 T    8700  23400 16200 19000 16800
```

epsilondb is contained within the [installpath]/data/Rdata.rds file after the package is built. The value may be modified from the [installpath]/extdata/referencedb.xlsx but requires to rebuild the package.

4.1.2 Code

The code of epsilon.calculator is contained in R/EpsilonCalc.R

First, the list of nucleobases and their nearest 3’ neighbor are extracted from the user-supplied sequence (here 5’-GCAT-3’):
library(stringr)
library(tidyverse)

#sequence provided by the user
sequence <- 'GCAT'

#initialization of result data frame
espsilon.calc <- data.frame()
buffer <- data.frame()
result <- data.frame()

#extraction of individual bases and their 3' nearest neighbor
for (i in 1:length(sequence)) {
 buffer <- data.frame(position = i,
 nucleo = substr(sequence, i, i),
 nn = substr(sequence, i+1, i+1))
 epsilon.calc <- rbind(epsilon.calc, buffer)
}

epsilon.calc
#> position nucleo nn
#> 1 1 G C
#> 2 2 C A
#> 3 3 A T
#> 4 4 T

Their contribution are then attributed by matching their one letter code to the database, and both the 5' and 3' ends have their individual contributions set to zero.

#attribution of individual and nearest neighbor contributions
epsilon.calc <- epsilon.calc %>%
 mutate(
 indiv.base.cont = case_when(#individual
 nucleo == 'G' ~ epsilondb$epsilon[epsilondb$base == 'G'],
 nucleo == 'C' ~ epsilondb$epsilon[epsilondb$base == 'C'],
 nucleo == 'T' ~ epsilondb$epsilon[epsilondb$base == 'T'],
 nucleo == 'A' ~ epsilondb$epsilon[epsilondb$base == 'A']
),
 nn.cont = case_when(#nearest neighbor
 nucleo == 'G' ~ case_when(
 nn == 'G' ~ epsilondb$Gcorr[epsilondb$base == 'G'],
 nn == 'C' ~ epsilondb$Gcorr[epsilondb$base == 'C'],
 nn == 'T' ~ epsilondb$Gcorr[epsilondb$base == 'T'],
 nn == 'A' ~ epsilondb$Gcorr[epsilondb$base == 'A']
),
 nucleo == 'C' ~ case_when(
 nn == 'G' ~ epsilondb$Ccorr[epsilondb$base == 'G'],
 nn == 'C' ~ epsilondb$Ccorr[epsilondb$base == 'C'],
 nn == 'T' ~ epsilondb$Ccorr[epsilondb$base == 'T'],
 nn == 'A' ~ epsilondb$Ccorr[epsilondb$base == 'A']
),
 nucleo == 'T' ~ case_when(
 nn == 'G' ~ epsilondb$Tcorr[epsilondb$base == 'G'],
 nn == 'C' ~ epsilondb$Tcorr[epsilondb$base == 'C'],
 nn == 'T' ~ epsilondb$Tcorr[epsilondb$base == 'T'],
 nn == 'A' ~ epsilondb$Tcorr[epsilondb$base == 'A']
),
 nucleo == 'A' ~ case_when(
 nn == 'G' ~ epsilondb$Acorr[epsilondb$base == 'G'],
 nn == 'C' ~ epsilondb$Acorr[epsilondb$base == 'C'],
 nn == 'T' ~ epsilondb$Acorr[epsilondb$base == 'T'],
 nn == 'A' ~ epsilondb$Acorr[epsilondb$base == 'A']
),
)
\[\text{nn} == \text{'G'} \sim \text{epsilondb$Gcorr[epsilondb$base == 'T']}, \text{nn} == \text{'C'} \sim \text{epsilondb$Ccorr[epsilondb$base == 'T']}, \text{nn} == \text{'T'} \sim \text{epsilondb$Tcorr[epsilondb$base == 'T']}, \text{nn} == \text{'A'} \sim \text{epsilondb$Acorr[epsilondb$base == 'T']} \]

\]

\[\text{nucleo} == \text{case_when(} \text{nn} == \text{'G'} \sim \text{epsilondb$Gcorr[epsilondb$base == 'A']}, \text{nn} == \text{'C'} \sim \text{epsilondb$Ccorr[epsilondb$base == 'A']}, \text{nn} == \text{'T'} \sim \text{epsilondb$Tcorr[epsilondb$base == 'A']}, \text{nn} == \text{'A'} \sim \text{epsilondb$Acorr[epsilondb$base == 'A']} \) \]

\]

#attributes 0 to the first nucleobase individual contribution
epsilon.calc$s indiv.base.cont[1] = 0
#attributes 0 to the last nucleobase individual contribution
epsilon.calc$s indiv.base.cont[str_length(sequence)] = 0

epsilon.calc

\[
\begin{array}{cccc}
\text{position} & \text{nucleo} & \text{nn} & \text{indiv.base.cont} & \text{nn.cont} \\
1 & G & C & 0 & 17600 \\
2 & C & A & 7400 & 21200 \\
3 & A & T & 15400 & 22800 \\
4 & T & 0 & NA & \\
\end{array}
\]

Finally, the sum of individual contributions are subtracted from the nearest neighbor contributions:

\[
\#\text{sum of indiv cont subtracted from sum of nn cont.}
result \leftarrow \text{sum(epsilon.calc$nn.cont, na.rm = T)} - \text{sum(epsilon.calc$indiv.base.cont, na.rm = T)}
\]

result

\[
\begin{array}{c}
[1] 38800
\end{array}
\]

4.1.3 Use

epsilon.calculator computes the molar extinction coefficient at 260 nm of oligonucleotides from their sequences. So far, it only works for DNA oligonucleotides, using the four canonical nucleotides.

Below is an example for a single sequence:

epsilon.calculator("GGGTTAGGTTAGGTTAGGG")

\[
\begin{array}{c}
[1] 215000
\end{array}
\]

The sequence must be provided as a string, and must be written with upper case letters (to allow the implementation of RNA calculation in the future):

epsilon.calculator("GGGTTAGGTTAGGTTAGGG")

\[
\begin{array}{c}
[1] 0
\end{array}
\]

epsilon.calculator can be applied on a list of sequence (here, oligo.list) using the base function lapply:
oligo.list <- c('oligo name 1' = 'GGGTTAGGGTTAGGGTTAGGG', 'oligo name 2' = 'TGGGGT', 'oligo name 3' = 'GCAT', 'oligo name 4' = 'TACG')

epsilon.list <- lapply(oligo.list, epsilon.calculator)

epsilon.list
#
$"oligo name 1"
[1] 215000
#>
$"oligo name 2"
[1] 57800
#>
$"oligo name 3"
[1] 38800
#>
$"oligo name 4"
[1] 39800

or on a data frame (here, df) to directly associate the results to other variables, as is performed within g4db.

df <- data.frame(
 oligo = c('name 1', 'name 2', 'name 3', 'name 4'),
 something = c('a', 'b', 'c', 'd'),
 sequence = c('GGGTTAGGGTTAGGGTTAGGG', 'TGGGGT', 'GCAT', 'TACG'))

df$epsilon <- lapply(df$sequence, epsilon.calculator)

df
#> oligo something sequence epsilon
#> 1 name 1 a GGGTTAGGGTTAGGGTTAGGG 215000
#> 2 name 2 b TGGGGT 57800
#> 3 name 3 c GCAT 38800
#> 4 name 4 d TACG 39800

4.2 mass.diet

4.2.1 Principle

The importR tab includes an optional mass spectrometric data reduction step, performed by the mass.diet function. It applies two different filters:

- An m/z filter, which exclude all data points above or below a user-supplied m/z range,
- An intensity filter, which excludes data points whose intensity is below a threshold. This intensity threshold is calculated as the mean intensity of a user-supplied m/z baseline range of length n, multiplied by a user-supplied coefficient.

\[
\text{threshold} = \frac{\sum_{\text{baseline start}}^{\text{baseline end}} \text{intensity}}{n} \times \text{coefficient}
\]

When submitting several spectra, the intensity thresholds are computed for each individual spectrum to avoid issues with different signal-to-noise ratios.
4.2.2 Code

The code of `mass.diet` is contained in `R/massdiet.R`. `mass.diet` requires that the data is formatted as a dataframe with the following columns:

- `mz`, the m/z axis,
- `int`, the intensity,
- `oligo`, the oligonucleotide names,
- `buffer.id`, the buffer name,
- `tune`, the MS tune name,
- `rep`, the replicate number

The last four columns are used as grouping variables to calculate individual intensity thresholds.

The data is processed in three simple steps. First the m/z range filter is applied, then the intensity threshold is calculated for each spectrum from the average noise in the defined baseline, and finally the intensity thresholds are applied to their respective spectrum. If the user lets the coefficient to its default value, i.e. 0, no intensity filtering will happen.

```r
mass.diet <- function(fat.mass, base.start, base.end, range.start, range.end, baseline.int){

library(tidyverse)

#m/z range filtering----
losing.mass <- fat.mass %>%
  filter(mz > min(range.start)) %>%
  filter(mz < max(range.end))

#intensity filtering----
#intensity threshold determination
if (baseline.int > 0) {
  #filters by intensity if the coefficient is not 0
  baseline.filter <- losing.mass %>%
    group_by(oligo, buffer.id, tune, rep) %>%
    filter(mz < base.end) %>%
    filter(mz > base.start) %>%
    summarise(basemean = mean(int)*baseline.int)
  #removal of noise
  fit.mass <- losing.mass %>%
    left_join(baseline.filter, by = c("oligo", "buffer.id", "tune", 'rep')) %>%
    group_by(oligo, buffer.id, tune, rep) %>%
    filter(int > basemean) %>%
    select(-c(basemean))
} else {
  #does nothing if coefficient at 0
  fit.mass <- losing.mass
}

return(fit.mass)
}
```

4.2.3 Use

`mass.diet` can be used outside of `g4db`, provided the input data contains the above-mentioned columns.
Here, we will use the data from the demo input file. In g4db it is loaded as follows:

```r
library(readxl)
library(hablar)

wide.input <- read_excel(system.file("extdata/demo_input.xlsx", package = 'g4db'),
                         sheet = "MS")

#extract descriptors
descriptors <- wide.input %>%
slice(1:6)

#extract data
wide.input <- wide.input %>%
slice(-1:-6)

data.collector <- data.frame()
for (i in 1:ncol(wide.input)-1) {
  if (i %% 2 != 0) { #runs on uneven columns only
    buffer <- wide.input %>%
      select(i, i+1) %>%
      mutate(descriptors[[1, i+1]], #adds columns for descriptors
descriptors[[2, i+1]],
descriptors[[3, i+1]],
descriptors[[4, i+1]],
descriptors[[5, i+1]]) %>%
    magrittr::set_colnames(c('mz', 'int', 'oligo', 'buffer', 'cation', 'tune', 'rep'))
    mutate(buffer.id = ifelse(is.na(cation), buffer, paste(buffer, '+', cation))) %>%
    convert(num('mz', 'int')) #converts some columns to numeric type

    #binds data
    data.collector <- rbind(data.collector, buffer,
                            make.row.names = F)
  }
}

wide.input <- data.frame() #empty for memory
buffer <- data.frame() #same

data.collector
```

```
#> # A tibble: 1,268,904 x 8
#>    mz  int oligo  buffer cation   tune  rep buffer.id
#>   <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 300. 0  1XAV TMAA <NA>  tune1 1 TMAA
#> 2 300. 1  1XAV TMAA <NA>  tune1 1 TMAA
#> 3 300. 5  1XAV TMAA <NA>  tune1 1 TMAA
#> 4 300. 0  1XAV TMAA <NA>  tune1 1 TMAA
#> 5 300. 10 1XAV TMAA <NA>  tune1 1 TMAA
#> 6 300. 38 1XAV TMAA <NA>  tune1 1 TMAA
#> 7 300. 72 1XAV TMAA <NA>  tune1 1 TMAA
#> 8 300. 72 1XAV TMAA <NA>  tune1 1 TMAA
#> 9 300. 53 1XAV TMAA <NA>  tune1 1 TMAA
```

mass.diet is applied as shown below, by specifying the m/z range with range.start and range.end, the baseline for noise with base.start and base.end, and the coefficient with baseline.int.

```r
reduced.data <- mass.diet(fat.mass = data.collector, base.start = 1250, base.end = 1350, range.start = 1000, range.end = 2000, baseline.int = 2)
```

Here, the 1250-1350 m/z region was picked for the baseline with a coefficient of 2, and the m/z was restricted to 1000-2000. This reduced the number of data points to 7% of its original value (from 1,268,904 to 98,998). That being said, mass.diet should be used conservatively and the size-reduced data must be inspected visually for excess removal.

Below are the four mass spectra from the demo file after running mass.diet.

```r
library(ggthemes)

reduced.data %>%
  group_by(oligo, buffer.id) %>%
  mutate(int.min = min(int), int.max = max(int)) %>%
  mutate(norm.int = (int - int.min)/(int.max - int.min)) %>%
  # plot
  ggplot(aes(x = mz, y = norm.int, color = paste(oligo, buffer.id))) +
  geom_line() +
  xlab("m/z") +
  ylab("intensity") +
  facet_grid(buffer.id~oligo) +
  theme_pander() +
  theme(legend.position = 'none')
```
4.3 database.eraser

4.3.1 Principle

The database.eraser function reads a user-specified database, remove the data for the indicated oligonucleotides and analytical methods, and returns a list of dataframe (one dataframe per method). Specifically, the erase.db function, which filters off the data of the indicated oligos, is applied method per method, and only on those specified by logical values erase.CD, erase.NMR, erase.MS, and erase.UV. This way, it maintains the data frames structures even if all data is removed, which allows to reuse the file in g4db.

4.3.2 Code

database.eraser <- function(db.to.erase = NULL, remove.oligos = NULL, erase.CD, erase.NMR, erase.MS, erase.UV) {
 #operator definition
 '%notin%' <- Negate('%in%')

 #data to remove
 remove.oligos <- remove.oligos

 #if all exp data is removed, remove the oligo info as well
 if (erase.CD == TRUE & erase.NMR == TRUE & erase.MS == TRUE & erase.UV == TRUE) {
 erase.info <- TRUE
 }
}

Figure S192: Normalized native MS spectra from the demo input file data reduced to a fraction of its original size using 'mass.diet'
} else {
 erase.info <- FALSE
}

file loading
load(file = db.to.erase)

erasing function
erase.db <- function(dataset = NULL, remove.oligos){
 dataset <- dataset %>%
 filter(oligo %notin% remove.oligos)
 return(dataset)
}

Data removal (per method, if selected for removal)
if (erase.CD == TRUE) {
 db.CD <- as.data.frame(erase.db(dataset = db.CD, remove.oligos))
}

if (erase.info == TRUE) {
 db.info <- as.data.frame(erase.db(db.info, remove.oligos))
}

if (erase.MS == TRUE) {
 db.MS <- as.data.frame(erase.db(db.MS, remove.oligos))
}

if (erase.UV == TRUE) {
 db.UV <- as.data.frame(erase.db(db.UV, remove.oligos))
}

if (erase.NMR == TRUE) {
 db.NMR <- as.data.frame(erase.db(db.NMR, remove.oligos))
}

Rest of data collected back in a list
db.collection <- list('db.info' = db.info,
 'db.CD' = db.CD,
 'db.NMR' = db.NMR,
 'db.MS' = db.MS,
 'db.UV' = db.UV)

return(db.collection)
}

4.3.3 Use

Below is an example for the demo database, for which the MS and NMR data will be removed for both entries.
modified.db <- database.eraser(db.to.erase = system.file("extdata/demo_database.Rda", package = 'g4dbr'),
remove.oligos = c("1XAV", "2LOD"),
erase.CD = FALSE, erase.NMR = TRUE, erase.MS = TRUE, erase.UV = FALSE)

Both entries are still present in the database:

head(modified.db["db.info"],)
#> oligo DOI submitted_by depo.date sequence nbN averagemw monomw ext.coeff.260 Topology nbA nbC nbG nbT nP nC nH nO nN
#> 1 1XAV 10.1021/bi048242p AG 2020-06-26 TGAGGGTGGGTAGGGTGGGTAA 22 6991.511 6988.188 228700 Parallel 4 0 13 5 21 220 270 131 95
#> 2 2LOD 10.1093/nar/gks329 AG 2020-06-26 GGGATGGGACACAGGGGACGGG 22 6955.491 6952.200 226400 Hybrid 5 3 13 1 21 217 266 126 101

And the UV and CD data are still present:

db.UV <- modified.db["db.UV"]
head(db.UV)
#> T.unk abs.raw abs.blk oligo buffer cation rep melt.l melt.c comment ramp id T.K blk.sub abs.melt nb.data.pt init.Tm ... P6 P6SD fit.Tm.K fit.Tm.C DeltaH DeltaS folded.fraction folded.fraction.base raw.fit.y low.T.baseline high.T.baseline
#> 1 4.2 0.2711 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.35 1 27110 NA 0.2727273 NA NA NA
#> 2 4.4 0.2711 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.55 1 27110 NA 0.2727273 NA NA NA
#> 3 4.6 0.2715 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.75 1 27150 NA 0.2840909 NA NA NA
#> 4 4.8 0.2717 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.95 1 27170 NA 0.2897727 NA NA NA
#> 5 5.0 0.2718 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 278.15 1 27180 NA 0.2926136 NA NA NA
#> 6 5.3 0.2717 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 278.45 1 27170 NA 0.2897727 NA NA NA

db.CD <- modified.db["db.CD"]
head(db.CD)
#> 329.8 0.0274670185 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) 0.208209661 0.208209661
#> 329.6 0.0096042216 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) 0.072803378 0.072803378
#> 329.4 -0.0002250792 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.001706179 -0.001706179
#> 329.2 -0.0025197889 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.019100886 -0.019100886
#> 329.0 -0.0108839050 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.082503828 -0.082503828
#> 328.8 -0.0103693931 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.078603647 -0.078603647

But the MS and NMR data have been removed for both oligonucleotides. Note that the dataframe structure is conserved:

db.NMR <- modified.db["db.NMR"]
db.MS <- modified.db["db.MS"]
head(db.MS)
#> mz int oligo buffer cation tune rep buffer.id int.min int.max norm.int rmz charge species
#> 1 1250.003 103 oligo 100 mM TMAA (pH 7.0) 1 mM KCl tune99 99 100 mM TMAA (pH 7.0) + 1 mM KCl 0 0 0 0 0 A

To save the modified database, use the save function:
db.info <- modified.db[["db.info"]]

save(db.info,
 db.CD,
 db.NMR,
 db.MS,
 db.UV,
 file = 'filepath/filename.rda')

References

(1) Tataurov, A. V.; You, Y.; Owczarzy, R. Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. *Biophysical Chemistry* **2008**, *133* (1-3), 66–70. https://doi.org/10.1016/j.bpc.2007.12.004.

(2) Cantor, C. R.; Warshaw, M. M.; Shapiro, H. Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleolides. *Biopolymers* **1970**, *9* (9), 1059–1077. https://doi.org/10.1002/bip.1970.3600909099.

(3) Mergny, J.-L.; Lacroix, L. Analysis of Thermal Melting Curves. *Oligonucleotides* **2003**, *13* (6), 515–537. https://doi.org/10.1089/154545703322860825.
Figure S193. Native ESI-MS and arrival time distributions from ion mobility data of antiparallel and polymorphic human telomeric quadruplex-forming oligonucleotides (10 µM), for the 5- charge state. Left Panel: native ESI-MS in 100 mM TMAA + 1 mM KCl, where 0, 1 and 2 denote the K⁺ stoichiometry. Right Panel: arrival time distribution of the folded form with 2 K⁺ and 1 K⁺ (blue and red; recorded in 1 mM KCl + 100 mM TMAA) and the unfolded form with 0 K⁺ (light grey; recorded in 100 mM TMAA).