Single-shot coherent diffraction imaging of isolated nanosized particles has seen remarkable success in recent years, yielding in-situ measurements with ultra-high spatial and temporal resolution. The progress of high-repetition-rate sources for intense X-ray pulses has further enabled recording datasets containing millions of diffraction images, which are needed for the structure determination of specimens with greater structural variety and dynamic experiments. The size of the datasets, however, represents a monumental problem for their analysis. Here, we present an automatized approach for finding semantic similarities in coherent diffraction images without relying on human expert labeling. By introducing the concept of projection learning, we extend self-supervised contrastive learning to the context of coherent diffraction imaging and achieve a dimensionality reduction producing semantically meaningful embeddings that align with physical intuition. The method yields substantial improvements compared to previous approaches, paving the way toward real-time and large-scale analysis of coherent diffraction experiments at X-ray free-electron lasers.

INTRODUCTION

A guiding principle in fundamental condensed matter research is that for understanding function, we have to study structure. Techniques based on lensless diffractive imaging, like X-ray crystallography and coherent diffraction imaging (CDI), are powerful and widely used tools to discover structures up to atomic resolutions. In the recent past, single-particle coherent diffraction imaging using intense coherent X-ray pulses from free-electron lasers (SP-CDI) has revolutionized the field of structural characterization. SP-CDI is a technique with which in-situ measurements of isolated and non-fixed nano-scaled targets can be acquired. Depending on the experimental scheme, each recorded diffraction image is a complete and self-contained experiment that needs individual analysis. However, due to the advent of high repetition-rate sources like the European XFEL and LCLS-II, millions of images are typically recorded during one experimental campaign. Manual analysis of such amounts of data represents an enormous problem. It may leave researchers unable to analyze significant amounts of their data comparatively as they have to resort to large-scale averaging, which might wash out or conceal important information, or manually select subsets of the dataset. In this work, we present an embedding technique for diffraction images called contrastive projection learning (CPLR) based on contrastive learning. CPLR produces a dimensionality-reduced embedding space with which semantic comparisons between diffraction images become possible and, thus, enables human-level comparative analysis on big-data scale datasets.

At the very core of every comparative analysis is an assumption establishing a similarity measure between samples. However, current approaches for establishing such a measure for diffraction images cannot compete with the perception of a trained researcher. This perceived similarity, or semantic similarity, is contextually aware; we adopt this term from the domain of natural language processing. There it is used to differentiate between the semantic—contextual—and the lexicographical—word for word—similarity. The lexicographical measures are in our case pixel-wise or keypoint-based approaches. Please also compare the term interference in ref. In Human–Perceptual–Similarity, interference is the distortion that a judged truth of a property—like the length of a line—can exhibit. Meaning, the perceived length of the line is determined not only by its length, but also by its surrounding, whereas computational methods for diffraction image data currently lack such awareness.

Available strategies for comparative analysis are based on either supervised classifier schemes or unsupervised sorting methods. However, all these methods come with significant trade-offs: Supervised algorithms align with human perception and produce high-accuracy results, but are in real-world scenarios unavailable as they require time- and labor-expensive manually fabricated expert labels. Unsupervised routines work in such cases but do not reach comparable accuracy levels and introduce additional restrictions or requirements. For example, traditional cluster techniques produce a lot of unwanted predictions, threshold-based approaches act primarily as hit-finder, autocorrelation-based methods only extract particle size information and are computationally costly, auxiliary approaches rely on rarely available additional experimental data, and Fourier-inversion based techniques are only applicable to diffraction images when the single scattering approximation is valid, meaning, where reconstruction by Fourier inversion is physically meaningful.

Our CPLR method can potentially improve all strategies mentioned above; it can serve as an improved similarity measure for unsupervised methods, as in the context of regular self-supervised learning, and can act as a powerful pretraining for subsequent supervised or distillation-based training. Furthermore, CPLR directly establishes a way to find semantically similar diffraction images in a fully self-supervised fashion. In self-supervised contrastive learning, a supervised task is constructed by artificially creating label information via domain-specific augmentation strategies. In this work, we design an augmentation approach for...
Contrastive learning is about augmentation, not architecture

RESULTS

Contrastive learning is about augmentation, not architecture

In contrastive learning (CLR), we artificially create label information for supervised learning by designing augmentation pipelines that consider domain and task knowledge. Therefore, CLR is an instance of self-supervised learning. The fundamental assumption in self-supervised learning is that the input data contain more task-specific information than sparse categorical ground truth data in supervised learning. Consequently, a careful augmentation design should provide better results on downstream tasks than a supervised learning scenario. While improvements in accuracy in supervised learning are usually related to architecture modifications, regularization, or loss function, CLR is about domain-specific augmentation strategies above anything else. Formally, CLR is a technique to create an embedding space from arbitrary input modalities, enabling comparative analysis. CLR dates back to work done in the nineties but only recently has seen a renaissance, yielding State-of-the-art results in visual-16-17, audio-44, video-47-49, and text-representation[50,51] learning.

Contrastive baseline and contrastive projection learning

In this study, we use the experimental design presented in ref. 17, called SimCLRv2, as a baseline to compare our results. A large encoder and a smaller transformation neural network produce the representations in two stages. First, the encoder acts as a feature extractor; then, the transformation network learns an optimized representation that minimizes the CLR loss, termed normalized temperature-scaled cross-entropy loss (NT-Xent). Conceptually, a duplicate is produced for each input image where both images are heavily augmented. All duplicates form so-called positive pairs with their originals, while all images with all other images but their duplicates form negative pairs. Then, the network learns to discriminate between positive and negative pairs during training.

In contrastive projection learning (CPLR), we produce the positive pairs not from the same image, as in refs. 16,17, but project the diffraction images, which are naturally recorded in Polar coordinates, to Cartesian coordinates. Figure 2 provides a schematic overview of the network design and the conceptual idea. Using coordinate projections as an augmentation strategy implicitly penalizes that trivial Polar symmetries are learned and explicitly enforces that learned representations are invariant under rotational and translational changes. A simple example can be constructed with the help of Fig. 2. There, example images for every class in the dataset are shown. While Fig. 2 is fully explained in the following subsection, here, we concentrate on the Polar and Cartesian projection of the Elliptical class – the first column. The Polar form shows the characteristic Airy rings typical for single-laser-shot and single-particle imaging data. Usually, learning rotational invariance in arbitrary image data is achieved via random rotational transformations during the augmentation stage of training a network. However, such a transformation would yield no, or very little, change with such diffraction images due to the high degree of rotational symmetry. Therefore, we encourage the network to decouple the learned representation from rotational symmetries by associating the Polar form with the Cartesian form. Conceptually, this establishes a causal relation between two fundamentally dissimilar images. In addition, after the coordinate transformation, we leverage a stochastic augmentation pipeline. More details can be found in the Methods section Augmentation strategy.

The dataset

Helium nanodroplets were imaged at XUV photon energies in a single-shot single-particle experiment at the FERMI free-electron laser. The scattering images were recorded using a non-linear MCP-type detector in a so-called wide-angle setting where each diffraction image contains 3D-structural information and cannot be reconstructed via Fourier inversion. The publicly available and hand-curated dataset contains 7264 diffraction images and is, to the best of our knowledge, the only dataset with semantically sensitive labels. It has been extensively benchmarked in a supervised classification task. We discarded 6000 diffraction
images as they either exhibited strictly round or no Airy patterns at all. The round Airy patterns are by far the most common class, and we removed them to create a more balanced dataset since they can be reliably sorted using radial slices and a classical peakfinder (see the section Size distribution of helium nanodroplets in the supplemental material of ref. [1]). However, more research should go toward adapting recent advances in few- or single-shot learning[56–58] for diffraction imaging as a preprocessing step to tackle inherent class imbalances that such datasets often have with minimal labeling effort.

The provided expert labels can be used for multiclass and multilabel analysis, meaning every diffraction image has binary label information for multiple classes that are often mutually non-exclusive. Figure 2(iii) shows this dataset’s seven possible classes and their absolute and relative occurrence. For every class, one example is given in Polar and Cartesian form. To illustrate the multilabel property: The characteristic streak-like feature that defines the Streak class can also be found, for example, in the image for the Layered class. For this reason, the given percentages do not add up to 100%, as multiple images belong to multiple classes and most classes are very rare, with three out of seven classes appearing in under 7% of all images. In these cases, accuracy would produce very high scores for classifying every image as not being part of any class. Moreover, we calculate an additional metric called overlap score in order to compare our method with metrics operating on raw images, such as the structural similarity (SSIM) index[39], the complex wavelet SSIM (CWSSIM) index[40], and the keypoint-based scale-invariant feature transform (SIFT) distance[41]. Let S_{Input} and S_{Neighbor} be the sets of labels for the input image and for an image for which the overlap should be calculated. Then, the overlap is the ratio between the cardinality of the intersection of these two sets ($|S_{\text{Input}} \cap S_{\text{Neighbor}}|$) and the minimum of the individual cardinalities (min($|S_{\text{Input}}|$, |S_{Neighbor}|)). Therefore, overlap is a measure of agreement between two images. However, it is based directly on the label information for the given images and not on the actual distance in embedding space. The reported values in Tables 1 and 2 are the global average in overlap for every image and its 13 closest images according to the pairwise-calculated distances. 13 was chosen as it corresponds to 1% of all images in the dataset. We call this global overlap the so-called linear evaluation protocol[16,17,38], which is carried out as follows: After self-supervised training, we freeze the feature extractor network and use the first layer of the transformation network (this is indicated by the green layer in Fig. 2(i)) as embedding space. Then, for every ground truth class in the dataset, we train a linear classifier on top of the learned representations and calculate the precision and recall score. Both metrics are obtained for every class via 5-fold stratified cross-validation to account for statistical fluctuations from sampling and the dataset’s class imbalance. Precision is a metric for how many of the non-zero predictions are actually correct and recall gives the percentage how many labels were missed. So, if 5 out of 10 samples have a label of 1 and the rest a label of 0, and we predict one of the five to be 1 but the rest as 0, then precision is 100%, but recall is only 20%, we refer the reader to section 11.1 in[66] for further details. It has turned out to be important to use precision and recall as most classes are very rare, with three out of seven classes appearing in under 7% of all images. In these cases, accuracy would produce very high scores for classifiers predicting every image as not being part of any class. Moreover, we calculate an additional metric called overlap score in order to compare our method with metrics operating on raw images, such as the structural similarity (SSIM) index[39], the complex wavelet SSIM (CWSSIM) index[40], and the keypoint-based scale-invariant feature transform (SIFT) distance[41]. Let S_{Input} and S_{Neighbor} be the sets of labels for the input image and for an image for which the overlap should be calculated. Then, the overlap is the ratio between the cardinality of the intersection of these two sets ($|S_{\text{Input}} \cap S_{\text{Neighbor}}|$) and the minimum of the individual cardinalities (min($|S_{\text{Input}}|$, |S_{Neighbor}|)). Therefore, overlap is a measure of agreement between two images. However, it is based directly on the label information for the given images and not on the actual distance in embedding space. The reported values in Tables 1 and 2 are the global average in overlap for every image and its 13 closest images according to the pairwise-calculated distances. 13 was chosen as it corresponds to 1% of all images in the dataset. We call this global overlap the so-called linear evaluation protocol[16,17,38], which is carried out as follows: After self-supervised training, we freeze the feature extractor network and use the first layer of the transformation network (this is indicated by the green layer in Fig. 2(i)) as embedding space. Then, for every ground truth class in the dataset, we train a linear classifier on top of the learned representations and calculate the precision and recall score. Both metrics are obtained for every class via 5-fold stratified cross-validation to account for statistical fluctuations from sampling and the dataset’s class imbalance.
average the overlap score, opposed to simply overlap, and consider it to be a local-neighborhood evaluation of disentanglement in the embedding space. Consequently, an overlap score of 0.5 corresponds to: On average, the 13 most similar images shared 50% of the original image’s labels.

We compare our method to the SimCLRv2 baseline and other approaches that have been used in the past with diffraction images in the following sections. More details on training and evaluation can be found in the Methods section Training and linear evaluation strategy.

The embedding space is linearly separable into semantic features

The evaluation scores after training are provided in Table 1. The second and third columns show the precision and recall score of the linear evaluation protocol, and the last two columns show the overlap score, which is given in the last column. Contrastive-based shows the results for the CLR baseline and our CPLR method. The arrows indicate the coordinate projections used, where the first term is used for inference and the second is used for constructing the contrastive task. Consequently, Polar ⇔ Polar and Cartesian ⇔ Cartesian are cases of the standard CLR framework with either purely unmodified (Polar) or purely projected (Cartesian) diffraction images. Cartesian ⇔ Polar and Polar ⇔ Cartesian are cases of our CPLR method, where the difference between the two is that we changed the input for inference at evaluation time to either the Cartesian or the Polar form. Continuous latent variables and variational Bayesian methods are techniques used previously in the context of diffraction images. More details are given in the Methods section Non-contrastive-based methods. Random baseline gives the result for an artificial embedding space built from uniform noise; this is the lowest possible score. This baseline is equivalent to a random guesser with no learned information about the dataset. Direct measures are methods applied directly to the images, which cannot be evaluated using the linear evaluation protocol.

All methods except for the Direct measures are trained/run five times using five different integer random_state keys where the evaluation scores were each time obtained via 5-fold stratified cross-validation. The macro average (see section 13.6 in ref. 68) over all classes for all train and cross-validation runs is given in the table. The standard deviation of all methods is equal to or below 0.01.

Compared to the CLR baseline, the CPLR method yields significant improvements on all metrics improving precision relative by 6% (from 0.49 to 0.52) and recall by 10% (from 0.50 to 0.55). Relative to the best non-CLR methods (VAE for precision and all but UMAP for recall), the CPLR method improves precision by 35% (from 0.34 to 0.52) and recall by 36% (from 0.35 to 0.55). In addition, the overlap score is relatively improved by about 6% (from 0.49 to 0.52) compared to the CLR baseline and 17% (from 0.49 to 0.52) compared to the two best PCA-based approaches. CPLR is the only method that achieves precision and overlap scores above 0.50. To put these results into perspective, a fully supervised ResNet architecture can achieve a global Precision score of 0.922 and a Recall of 0.870 on this dataset. 22 So, while the CPLR method provides a significant improvement over all other methods, the gap in performance highlights the difficulty that diffraction imaging datasets represent, as contrastive learning using non-scientific data already achieves accuracies comparable to supervised learning scenarios 16,17.

CPLR is more robust with fewer samples

The general idea of using the linear evaluation protocol for evaluation is to look for linearly separable regions in the embedding space. Therefore, this method only applies to one-hot (a multinomial distribution where the number of trials (n) is equal to the number of possible labels (n_labels) and with probabilities p_n = 1/n_labels) ground truth data, meaning multiclass but single label. However, the helium nanodroplets dataset has multiclass and multilabel (a categorical distribution with number of categories k = 1, and with probabilities p_k = 1/n_labels) ground truth data, where each image has multiple associated labels. Moreover, as typical in datasets on helium nanodroplets, the dataset is heavily unbalanced, where simpler shapes, like Elliptical, dominate other classes 9.

It is, therefore, instructive to look at the individual averages for every class, which are given in Table 2. The CPLR method performs significantly better than the CLR baseline and non-contrastive methods in linear evaluation. The most significant improvement is with rarely occurring classes that appear only in ≤2% of all images. VAE and PCA-based techniques fail entirely to place these diffraction images in a linearly separable region of the embedding space, resulting in poor precision and recall scores. However, the CLR baseline also yields limited success in the case of radial symmetry-breaking features like the Newton Rings and Layered class. There, the diffraction images contain features that either break radial symmetry (Layered) or introduce a second radially

Table 1. Macroaverage results (see section 13.6 in ref. 68.) on the helium nanodroplets dataset.

Method	Linear evaluation	Local similarity		
	Precision	Recall	Measure	Overlap
Contrastive-based				
CLR	0.49	0.50	Cosine	0.49
Cartesian ⇔ Cartesian	0.49	0.48	Cosine	0.43
CPLR	0.51	0.54	Cosine	0.52
Polar ⇔ Cartesian	0.52	0.55	Cosine	0.52
Continuous latent variables methods				
Factor Analysis	0.28	0.35	Euclidean	0.28
PCA	0.29	0.35	Euclidean	0.40
Kernel PCA	0.28	0.35	Euclidean	0.43
UMAP 73	0.30	0.31	Euclidean	0.41
Variational Bayesian methods				
VAE 66,77	0.34	0.35	Wasserstein	W₂ 0.42
Uniform Noise	0.23	0.27	Euclidean	0.28
Direct measures				
SSIM 39	N/A	N/A	Custom	0.37
CWSSIM 67	N/A	N/A	Custom	0.36
SIFT 70	N/A	N/A	Euclidean	0.32

Contrastive-based are the results for the CLR baseline and the CPLR method, where the arrows indicate with which projections the contrastive task was constructed. Continuous latent variables or variational Bayesian methods list techniques that have been used with diffraction data in the past. Random baseline gives the result for an artificial embedding space built from uniform noise, this is the lowest possible score. Direct measures are applied directly to the images, and cannot be evaluated using the linear evaluation protocol. All methods except for the Direct measures are trained/run for five times were each time the evaluation scores were obtained via 5-fold stratified cross-validation. The standard deviation of all methods is equal or below 0.01. The best result for each score is given in bold letters.
Elliptical results presented above, show conclusively that the CPLR method the CLR and the VAE method, respectively. an average overlap score of 0.58, compared to 0.54 and 0.38 for given in Fig.3 symmetry-breaking projection of the CPLR method helps in those ground truth data and, for all images but the input image, by the augmented in the top left corner by the class names given in the embeddings in the embedding space. Additionally, every image is image are the four diffraction images belonging to the four closest three classes, namely our CPLR (Polar symmetry, such as in X-ray crystallography. improving a wide range of long-established working routines in the EMC method can be applied to datasets on the order of millions of images15,27. However, the similarity calculation is currently done using the cross-correlation between radial intensity the EMC method can be applied to all three frameworks, where the averages of the shown four nearest neighbors are 1.00 for CPLR, 0.92 for CLR, and 0.79 for VAE. However, only the contrastive-based methods place those embeddings of images next to each other where the characteristic Streak feature is oriented and elongated differently than in the input image. We consider this a strength highlighting that both contrastive methods focus more on the semantics within a diffraction image than the pixel-wise similarity. This can also be seen in the Streak/ Bent/Layered class combination in the second row of Fig. 3, where the direction of the characteristic Streak and Bent features vary substantially in size and orientation for both CLR-based methods but are identically aligned within the nearest neighbors of the VAE framework.

As already discussed above, our CPLR method outperforms the baseline CLR methods, especially in scenarios with low sample counts and symmetry-breaking features. This behavior is best seen in the second row for the Streak/Bent/Layered class combination. Only 27 images in the dataset have a Bent label assigned to them, and the CLR method fails to learn this characteristic having an average overlap score of 0.25 for this example and only placing one additional image with a Layered label near the input image in the embedding space. On the other hand, the CPLR method performs significantly better, with an average overlap score of 0.67 and placing two images with a Layered label, two with a Streak, and one with a Bent label next to the input image.

This observation also holds for the third example with the Elliptical/Double Rings example, where the CPLR method reaches an average overlap score of 0.58, compared to 0.54 and 0.38 for the CLR and the VAE method, respectively. These qualitative observations, along with the quantitative results presented above, show conclusively that the CPLR method is introducing significant improvements compared to previous methods for finding the semantic similarity in diffraction images and the baseline CLR method.

DISCUSSION

We have introduced a method for finding the semantic similarities in diffraction images without relying on expert labeling. Based on contrastive learning (CLR), we introduced contrastive projection learning (CPLR), where the contrastive learning task is constructed from coordinate-projections of an input diffraction image and not from the same image as in CLR. This relatively easy alternation of the learning scenario substantially improves the quality of the learned embedding space on all metrics and scores. CPLR, therefore, provides a much-needed pathway for the upcoming big-data challenges within the coherent diffraction imaging (CDI) community since similarity calculations are at the core of almost every segmentation, classification, and clustering algorithm. Consequently, CPLR can be implemented as a stand-in-replacement for other similarity metrics in all so far published classification and clustering approaches for diffraction images21–27,69–71, potentially improving a wide range of long-established working routines in research groups.

In addition, our method can, theoretically, also be applied to all data that inherit Polar symmetry, such as in X-ray crystallography. Our results have the potential to enable multiple future possibilities. For example, currently, 3D reconstruction via CDI methods can either be done in the small-angle regime, where reconstruction by Fourier inversion is possible10,31, using the Expand-Maximize-Compress (EMC) algorithm72, or in the wide-angle regime, via a recursive forward-fitting Multi-Slice-Fourier-Transform (MSFT) approach10,31,55. In both cases, the similarity between diffraction images needs to be calculated. As of today, the EMC method can be applied to datasets on the order of millions of images15,27. However, the similarity calculation is currently done using the cross-correlation between radial intensity profile lines of the diffraction images at different angles15,27, which is computationally costly, and, as the authors in27 pointed out, may not be sufficient for more complex patterns. As with the MSFT method, similarity calculations are currently done using either the MSE or even manual estimation by researchers10,12,31,73.

Ultimately, CPLR can provide a path to apply the EMC algorithm on more complex datasets, get better results on simpler datasets, and replace the MSE metric in MSFT-based approaches.

Table 2. Results for every class in the helium nanodroplets dataset.

Class	CPLR	VAE	Kernel PCA						
	Linear Eval		Linear eval		Linear eval				
	Precision	Recall	Similarity	Precision	Recall	Similarity	Precision	Recall	Similarity
	0.79	0.77	0.65	0.78	0.77	0.65	0.71	0.71	0.66
Elliptical	793	62.9%		793	62.9%		793	62.9%	
Streak	228	18.1%		228	18.1%		228	18.1%	
Bent	367	29.1%		367	29.1%		367	29.1%	
Asymmetric	358	28.4%		358	28.4%		358	28.4%	
Newton Rings	78	6.2%		78	6.2%		78	6.2%	
Double Rings	38	3.0%		38	3.0%		38	3.0%	
Layered	27	2.1%		27	2.1%		27	2.1%	

Compared to table 1, we only show the four best-performing methods, namely our CPLR (Polar ⇔ Cartesian) method along with the CLR (Polar ⇔ Polar) baseline, and the VAE, and Kernel PCA (Using the euclidean metric) approaches. All methods have been trained/run for five times where each time the evaluation scores where obtained via 5-fold stratified cross validation. The standard deviation of all methods and for all classes is equal or below 0.01. The best result for each score is highlighted in bold letters.

Figure 3: Shows the difference between the three methods, where CPLR, CLR, and VAE are given in (i), (ii), and (iii), respectively. In each example, the column Input image shows the three same diffraction images, randomly chosen out of the three classes Streak, Layered, and Double Rings. Next to each input image are the four diffraction images belonging to the four closest embeddings in the embedding space. Additionally, every image is augmented in the top left corner by the class names given in the ground truth data and, for all images but the input image, by the overlap score with its corresponding input image.

DISCUSSION

We have introduced a method for finding the semantic similarities in diffraction images without relying on expert labeling. Based on contrastive learning (CLR), we introduced contrastive projection learning (CPLR), where the contrastive learning task is constructed from coordinate-projections of an input diffraction image and not from the same image as in CLR. This relatively easy alternation of the learning scenario substantially improves the quality of the learned embedding space on all metrics and scores. CPLR, therefore, provides a much-needed pathway for the upcoming big-data challenges within the coherent diffraction imaging (CDI) community since similarity calculations are at the core of almost every segmentation, classification, and clustering algorithm. Consequently, CPLR can be implemented as a stand-in-replacement for other similarity metrics in all so far published classification and clustering approaches for diffraction images21–27,69–71, potentially improving a wide range of long-established working routines in research groups.

In addition, our method can, theoretically, also be applied to all data that inherit Polar symmetry, such as in X-ray crystallography. Our results have the potential to enable multiple future possibilities. For example, currently, 3D reconstruction via CDI methods can either be done in the small-angle regime, where reconstruction by Fourier inversion is possible10,31, using the Expand-Maximize-Compress (EMC) algorithm72, or in the wide-angle regime, via a recursive forward-fitting Multi-Slice-Fourier-Transform (MSFT) approach10,31,55. In both cases, the similarity between diffraction images needs to be calculated. As of today, the EMC method can be applied to datasets on the order of millions of images15,27. However, the similarity calculation is currently done using the cross-correlation between radial intensity profile lines of the diffraction images at different angles15,27, which is computationally costly, and, as the authors in27 pointed out, may not be sufficient for more complex patterns. As with the MSFT method, similarity calculations are currently done using either the MSE or even manual estimation by researchers10,12,31,73.

Ultimately, CPLR can provide a path to apply the EMC algorithm on more complex datasets, get better results on simpler datasets, and replace the MSE metric in MSFT-based approaches.
i) The most similar images using the CPLR framework

Input image | Closest images in the CPLR embedding space

![Images showing the most similar images using the CPLR framework](image1)

ii) The most similar images using the CLR framework

Input image | Closest images in the CLR embedding space

![Images showing the most similar images using the CLR framework](image2)

iii) The most similar images using the VAE framework

Input image | Closest images in the VAE embedding space

![Images showing the most similar images using the VAE framework](image3)

Fig. 3 Qualitative results on the helium nanodroplets dataset. In i) to iii) the column input image shows three randomly chosen images —from a pre-defined class combination. Next to the input images are the four closest diffraction images according to calculated pairwise distances for the CPLR, CLR, and VAE method using the metric given in Table 1. Every image is augmented in the top left corner by the class names given in the ground truth data and—corresponding input image. all images but the input image to

```markdown
METHODS
Augmentation strategy
```

A well-defined augmentation strategy is critical in contrastive learning\(^\text{16}\). As pointed out by\(^\text{16,17}\), the essential parts of constructing this strategy are random cropping and random color distortion transformations. The latter is targeted towards histogram and color-channel correlation-based overfitting of the network. Since diffraction data is monochrome, we replace the channel-independent RGB distortion with a single-channel jitter distortion. Furthermore, as in\(^\text{16,17}\), we use a probabilistic augmentation strategy that includes flip, rotation, crop & resize, jitter, fill, and translation transformations on all input patches, see also figure 4 in ref.\(^\text{16}\). However, our crop & resize routine is not changing the aspect ratio, as is usually done in other contrastive learning augmentation pipelines. Changing the aspect ratio would break the causal relation between the Polar and Cartesian projections. Every transformation has a fixed probability of 50% for being applied at every invocation. We found that no single augmentation strategy is sufficient for achieving the here presented performance, but the composition of all operations is needed, which is in line with the findings in\(^\text{16}\).

We implemented the entire pipeline using TensorFlow augmentation layers placed on the GPU itself. Code is available in the official repository at https://gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning.

Training and linear evaluation strategy

The NT-Xent loss that is minimized during training is given by:

\[
I_j = -\log \frac{\exp(\langle z_i, z_j \rangle / \tau)}{\sum_{k=1}^{2N} 1_{k \neq j} \exp(\langle z_i, z_k \rangle / \tau)}. \tag{1}
\]

where \(\langle u, v \rangle = u^T v / ||u|| ||v||\) denotes the cosine similarity between two vectors \(u\) and \(v\), \(1_{k \neq j} \in \{0, 1\}\) is an indicator function evaluating to 1 if, and only if, \(k \neq j\), and \(\tau\) denotes a temperature parameter. We performed extensive hyper-parameter optimization to obtain the best possible values for the temperature parameter \(\tau\), which are 0.200 for Polar ⇔ Polar, 0.200 for Cartesian ⇔ Cartesian, 0.075 for Cartesian ⇔ Polar, 0.100 for Polar ⇔ Cartesian. The results of this hyper-search, as well as scripts to re-run it, can be found in the official repository at https://gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning.

The linear classifier we used for linear evaluation was a single-layer perceptron with an inverse-scaling learning rate schedule and a 12 penalty of 0.0001. We used the implementation provided by the `sklearn` Python package. Code is available in the official repository at https://gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning.

Non-contrastive-based methods

Listed in Table 1 are the Factor-Analysis (FA), the Principal-Component-Analysis (PCA), the Kernel-PCA, the Uniform Manifold Approximation & Projection (UMAP)\(^\text{73}\), and the Variational Autoencoder (VAE)\(^{76,77}\) methods. All of these have been used with various forms of spectrogrophic image data. FA- and PCA-based methods are parameter-free dimensionality reduction techniques that are regularly used within all scientific disciplines; while FA considers the dataset’s variance, PCA considers the covariance of the data. FA and PCA-based methods have been used with powder diffraction data\(^{76,79}\) and X-ray diffraction phase.

All code for the discussed experiments, pretrained models, and extracted embedding spaces are available at our ETH Gitlab repository at https://gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning.
analysis and as a dimensionality reduction for subsequent classification and clustering.

A VAE is a generative variational Bayesian model where the input information is encoded to a low dimensional representation via an encoder function and then recreated by a decoder function. The loss function, called the evidence lower bound, is a lower bound on the marginal likelihood. VAEs have been used with diffusion images in various tasks, such as anomaly-detection, dimensionality reduction, phase reconstruction, and modeling the continuous 3D shape transition in heterogeneous samples. We train a β-VAE with $\beta = 1$ and with a controlled capacity increase to $C = 25$, as described in Fig. 2, using the code from https://gitlab.ethz.ch/nux/machine-learning/disenangling-vae.

UMAP is a dimensionality reduction technique based on manifold learning and topological data analysis and has been used with other spectrographic image data, such as Ronchigrams and Audio spectrograms. We use the default parameters and a fixed integer random state for reproducibility.

The size of the low-dimensional representation for all methods was set to 1024, identical to the dimensionality of the CLR-based representation space.

DATA AVAILABILITY
All code for the discussed experiments, pretrained models, data for the figures, and extracted embedding spaces of all models are available at our ETH Gitlab repository at https://gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning.

CODE AVAILABILITY
The code, pretrained models, and training results are openly available at https://gitlab.ethz.ch/nux/machine-learning/contrastive_projection_learning.

REFERENCES
1. Crick, F. & Anderson, P. W. What Mad Pursuit: A Personal View of Scientific Discovery (Purnyang, 1991).
2. Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffusive imaging with coherent x-ray light sources. Science 348, 530–535 (2015).
3. Chapman, H. N. & Nugent, K. A. Coherent lensless x-ray imaging. Nat. Photonics 4, 833–839 (2010).
4. Seibert, M. M. et al. Single mimivirus particles interrogated and imaged with an x-ray laser. Nature 470, 78–81 (2011).
5. Bostedt, C. et al. Clusters in intense FLASH pulses: ultrafast ionization dynamics and electron emission studied with spectroscopic and scattering techniques. J. Phys. B At. Mol. Opt. Phys. 43, 194011 (2010).
6. Loh, N. D. et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 486, 513–517 (2012).
7. Xu, R. et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond x-ray free-electron laser pulses. Nat. Commun. 5, 4061 (2014).
8. Gorkhover, T. et al. Nanoplasma dynamics of single large xenon clusters irradiated with superintense x-ray pulses from the linac coherent light source free-electron laser. Phys. Rev. Lett. 108, 245005 (2012).
9. Gomez, L. F. et al. Helium superfluidity: shapes and vorticities of superfluid helium nanodroplets. Science 345, 906–909 (2014).
10. Barke, I. et al. The 3D-architecture of individual free silver nanoparticles captured by x-ray scattering. Nat. Commun. 6, 6187 (2015).
11. Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).
12. Langbehn, B. et al. Three-dimensional shapes of spinning helium nanodroplets. Phys. Rev. Lett. 121, 255301 (2018).
13. Tschentscher, T. et al. Photon beam transport and scientific instruments at the European XFEL. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 7, 592 (2017).
42. Becker, S. & Hinton, G. E. Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355, 161–163 (1992).
43. Tomasev, N. et al. Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? Preprint at https://arxiv.org/abs/2201.05119 (2022).
44. Al-Tahan, H. & Mohsenzadeh, Y. CLAR: Contrastive learning of auditory representations. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3875–3879 (2021).
45. Wang, L. & van den Oord, A. Multi-Format contrastive learning of audio representations. Preprint at https://arxiv.org/abs/2103.06508 (2021).
46. Saeed, A., Grangier, D. & Zechgäuder, N. Contrastive learning of General-Purpose audio representations. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8731–8735 (2021).
47. Liu, Y., Wang, K., Liu, L., Han, H. & Lin, T. TGCL: temporal contrastive graph for Self-Supervised video representation learning. IEEE Trans. Image Process. 31, 1978–1993 (2022).
48. Dave, I., Gupta, R., Rizve, M. N. & Shah, M. TCLR: temporal contrastive learning for video representation. Comput. Vis. Image Underst. 219, 103–406 (2022).
49. Pan, T., Song, Y., Yang, T., Jiang, W. & Liu, W. VideoMoCo: Contrastive video representation learning with temporally adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11205–11214) (2021).
50. Gao, T., Yao, X. & Chen, D. SimCSE: Simple contrastive learning of sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 6894–6910 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2021).
51. Rethmeier, N. & Augenstein, I. A primer on contrastive pretraining in language processing: Methods, lessons learned and perspectives. Preprint at https://arxiv.org/abs/2102.12982 (2021).
52. Sohn, K. Improved deep metric learning with multi-class n-pair loss objective. vol. 29, 1857–1865 (Curnan Associates, Inc., 2016).
53. Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699–704 (2012).
54. Bostedt, C. et al. Ultrafast x-ray scattering of xenon nanoparticles: imaging transient states of matter. Phys. Rev. Lett. 108, 093401 (2012).
55. Rupp, D. et al. Coherent diffusive imaging of single helium nanodroplets with a high harmonic generation source. Nat. Commun. 8, 493 (2017).
56. Hu, S. X., Li, D., Stühmer, J., Kim, M. & Hosapedes, T. M. Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9068–9077) (2022).
57. Singh, A. & Jamali-Rad, H. Transductive decoupled variational inference for Few-Shot classification. Preprint at https://arxiv.org/abs/2208.10559 (2022).
58. Chen, X. & Wang, G. Few-shot learning by integrating spatial and frequency representation. In 2021 18th Conference on Robots and Vision (CRV) (pp. 49–50). IEEE, (2021, May).
59. Zagoruyko, S. & Komodakis, N. Wide residual networks. In Richard C. Wilson, E. R. H. & Smith, W. A. P. (eds.) Proceedings of the British Machine Vision Conference 2016, 87, 871–8712 (British Machine Vision Association, 2016).
60. Li, X., Wang, W., Hu, X. & Yang, J. Selective kernel networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), vol. II, June 2019, 510–519 (2019).
61. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J. & Li, M. Bag of tricks for image classification with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 558–567) (2019).
62. Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141) (2018).
63. You, Y., Gitman, I. & Ginsburg, B. Large batch training of convolutional networks. Preprint at https://arxiv.org/abs/1708.03888 (2017).
64. Loshchilov, I. & Hutter, F.SGDR: Stochastic gradient descent with warm restarts. International Conference on Learning Representations (2017).
65. Goyal, P. et al. Accurate, large minibatch SGD: Training ImageNet in 1 hour. Preprint at https://arxiv.org/abs/1706.02677 (2017).
66. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
67. Wang, Z. & Simoncelli, E. P. Translation insensitive image similarity in complex wavelet domain. In Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 2, ii/573–ii/576 Vol. 2 (2005).
68. Manning, C. D., Raghavan, P. & Schütze, H. Introduction to Information Retrieval (Cambridge University Press, 2008).
69. Martinet, B. H., Johnstone, D. N., van Helvoort, A. T. J., Midgley, P. A. & Eggeman, A. S. Unsupervised machine learning applied to scanning precession electron diffraction data. Advanced Structural and Chemical Imaging 5, 1–14 (2019).
70. Agar, J. C. et al. Machine detection of enhanced electromechanical energy conversion in Pb2Zr0.2Ti0.83 thin films. Adv. Mater. 30, e1800701 (2018).
71. Shi, C. et al. Uncovering material deficiencies via machine learning combined with four-dimensional scanning transmission electron microscopy. npj Comput. Mater. 8, 1–9 (2022).
72. Loh, N.-T. D. & Elser, V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 026705 (2009).
73. Colombo, A. et al. Three-Dimensional coherent diffractive imaging of isolated faceted nanocrystals. Preprint at https://arxiv.org/abs/2208.04044 (2022).
74. Grill, J.-B. et al. Bootstrap your own latent a new approach to self-supervised learning. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Article 1786 in NIPS’20, 21271–21284 (Curran Associates Inc., Red Hook, NY, USA, 2020).
75. McNes, L., Healy, J., Saul, N. & Großlberger, L. UMAP: Uniform Manifold Approximation and Projection. J. open source softw. 3, B61 (2018).
76. Kingma, D. P. & Welling, M. Auto-Encoding variational bayes. Preprint at https://arxiv.org/abs/1312.1172 (2013).
77. Burgess, C. P. et al. Understanding disentangling in β-VAE. Preprint at https://arxiv.org/abs/1804.03599 (2018).
78. Westphal, T., Bier, T. A., Takahashi, K. & Wahab, M. Using exploratory factor analysis to examine consecutive in-situ x-ray diffraction measurements. Powder Diff. 30, 340–348 (2015).
79. Chernyshov, D., Dovgaluik, I., Dyadkin, V. & van Beek, W. Principal component analysis (PCA) for powder diffraction data: towards unblinded applications. Crystals 10, 581 (2020).
80. Camara, A. H. The importance of factor analysis in quantitative and qualitative x-ray diffraction phase analysis. XOM – Corrosion and Material Protection Journal 58, 52–58 (2014).
81. Matos, C. R. S., Xavier, M. J., Barreto, L. S., Costa Jr, N. B. & Gimenez, I. F. Principal component analysis of r-xray diffraction patterns to yield morphological classification of brittle particles. Anal. Chem. 79, 2091–2095 (2007).
82. Banko, L., Maffettone, P. M., Naujoks, D., Olds, D. & Ludwig, A. Deep learning for visualization and novelty detection in large x-ray diffraction datasets. npj Comput. Mater. 7, 1–6 (2021).
83. Ruiz Vargas, J. C. et al. Shedding light on variational autoencoders. In 2018 XLIV Latin American Computer Conference (CILE), 294-298 (Institute of Electrical and Electronics Engineers Inc., 2018).
