EBV-associated lymphoid interstitial pneumonia in IBD patient: Case report and literature review

Thaninee Prasoppokakorn\textsuperscript{a}, Thammathorn Assanasen\textsuperscript{b}, Poonchavist Chantranuwatana\textsuperscript{b}, Chusana Suankratay\textsuperscript{c,}\textsuperscript{*}

\textsuperscript{a} Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
\textsuperscript{b} Department of Pathology, Chulalongkorn University, Bangkok, Thailand
\textsuperscript{c} Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

ARTICLE INFO

Keywords:
- Epstein-barr virus
- EBV-Associated lymphoid interstitial pneumonia
- Pulmonary lymphoproliferative disorder
- Inflammatory bowel disease

ABSTRACT

Background: Lymphoid interstitial pneumonia (LIP) is categorized as a rare form of interstitial lung disease. Most cases are associated with autoimmune disease.

Case report: A 78-year-old male with Crohn’s disease, presented with progressive dyspnea and dry cough for few weeks. The pathology of transbronchial lung biopsy was compatible with LIP and positive cells on EBER in situ hybridization. Blood EBV viral load was 85,715 copies/mL, compatible with EBV-associated LIP. All immunosuppressive agents were discontinued, but unfortunately the patient died due to hospital-acquired infections. In addition, we reviewed all reported cases of EBV-associated LIP in literature.

Conclusions: To our knowledge, we report herein the first case of EBV-associated LIP in an IBD patient. We postulate that LIP was the consequence from EBV reactivation, probably due to immunosuppressive agents and/or IBD itself. The physician should aware of this disease when taking care of immunosuppressive patients who present with acute interstitial pneumonitis.

1. Introduction

Lymphoid interstitial pneumonia (LIP) is categorized as a rare form of interstitial lung disease according to the classification of American Thoracic Society/European Respiratory Society \cite{1}. The definite diagnosis requires both imagings and pathology. Chest computed tomogram reveals the presence of ground glass attenuation, centrilobular and subpleural nodules, and thickening of bronchovascular bundles. The pathologic are characterized by the presence of dense polyclonal interstitial lymphocytic infiltrates with widening interlobular and alveolar septa \cite{2,3}. Most cases are associated with autoimmune disease or lymphoproliferative disorder \cite{4}.

EBV, a double-stranded DNA virus, belongs to the Herpesviridae family \cite{5}. EBV is able to cause latent infection, and reactivation occurs when infected individuals develop immunosuppressive state. Primary EBV infection causes infectious mononucleosis syndrome, and chronic infection/reactivation can cause lymphoma, and lymphoproliferative disorder including post transplant lymphoproliferative disease (LPD) \cite{6}. In latent phase of infection, viral protein has the ability to transform mature B lymphocyte, resulting in uncontrolled its proliferation, as LPD \cite{7}.

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, have been reported to be associated with LPD \cite{8,9}. However, to date, there have been no reports of EBV-associated LIP in IBD patients.

2. Case report

A 78-year-old male was hospitalized at King Chulalongkorn Memorial Hospital, Thailand, due to progressive dyspnea, dry cough, and fever for few weeks; and acute confusion for 1 day. He was diagnosed with Crohn’s disease 2 years prior to admission due to chronic abdominal pain with watery diarrhea, and colonoscopy revealed multiple ulcers at ileocecal valve and ascending colon with pathology compatible with Crohn’s disease. He had received prednisolone, azathioprine, and mesalazine. Prednisolone was tapered down to 7.5 mg for maintenance clinical remission.

Ten weeks prior to admission, he was hospitalized due to...
sudden onset of altered mentation, cranial computed tomogram (CT) revealed diffuse brain atrophy with small intraventricular hemorrhage old ischemic stroke. Colon despite new multiple clean-based ulcer at ileocaecal valve. The in occipital horns of lateral ventricles without evidence of obvious load suppression. The diagnosis of active Crohn’s disease was made, oral prednisolone of 60 mg/day and infliximab were then given in accompanying with azathioprine of 50 mg and mesalazine of 3000 mg.

His past medical history included hypertension, dyslipidemia, and old ischemic stroke.

Upon admission, the patient had bitemporal throbbing headache and sudden onset of altered mentation, cranial computed tomogram (CT) revealed diffuse brain atrophy with small intraventricular hemorrhage in occipital horns of lateral ventricles without evidence of obvious aneurysm. Lumbar puncture revealed xanthochromic cerebrospinal fluid (CSF) with white blood cell (WBC) of 9 cells/μL, red blood cell (RBC) of 51,000 cells/μL, glucose of 51 mg/dL, protein of 48 mg/dL, and negative results of herpes simplex virus (HSV), varicella zoster virus (VZV), and CMV polymerase chain reaction (PCR). Chest X-ray showed bilateral interstitial infiltrates. Complete blood count analysis revealed hemoglobin (Hb) of 8.4 g/dL, WBC of 3460/μL (neutrophil 87.5%, lymphocyte 6.2%, monocyte 5.7%), and platelet of 138,000/μL. Peripheral blood smear exhibited moderate polychromasia and microspherocytes, and direct Coombs’ test was strongly positive, compatible with autoimmune hemolytic anemia (AIHA). Blood CMV and EBV viral loads were 21,709 and 85,715 copies/mL, respectively. There were negative CMV viral capsid antigen (VCA) IgM, positive CMV VCA IgG, negative EBV VCA IgM, positive EBV VCA IgG, and positive EBV nuclear antigen (EBNA) IgG in the serum. Bone marrow aspiration and biopsy showed hypocellularity, no abnormal cell infiltrates, and negative result of EBV-encoded RNA (EBER) in situ hybridization. A presumptive diagnosis of CMV syndrome was made, and intravenous ganciclovir was given. Nevertheless, during hospitalization, his clinical condition had gradually worsened and he finally developed acute respiratory failure requiring ventilator support. Chest CT revealed diffuse interstitial mixed with multifocal irregular consolidation infiltrates (Fig. 1). Bronchoscopy and bronchoalveolar lavage showing WBC of 139 cells/μL (neutrophils 53%). The pathology of transbronchial biopsy exhibited diffuse interstitial infiltrates with lymphocytes and plasma cells, without viral inclusion bodies. CMV immunohistochemistry was negative, but EBER in situ hybridization (ISH) exhibited 10 positive cells per total 100 lymphocytes by processing automated chromogenic ISH was performed using EBER Probe, known prediagnosed cases of EBER-positive cell were taken as positive controls, as well as nonneoplastic cells were taken as negative controls (Fig. 2). Two weeks after treatment, his blood CMV viral load was down to 214 copies/μL and eventually undetectable in three weeks course of ganciclovir, whereas EBV viral load was still 549,697 copies/μL. Hence, a final diagnosis of EBV-associated lymphocytic interstitial pneumonitis was made, and all immunosuppressive agents were discontinued. Unfortunately, the patient developed multiple hospital-acquired infections, including of Pneumocystis jiroveci pneumonia, pulmonary aspergillosis, and multidrug-resistant bacteria infection, and eventually expired 5 weeks after hospitalization.

3. Discussion

To our knowledge, we reported the first case of EBV-associated LIP in an IBD patient. We postulate that LIP in our patient was the consequence from EBV reactivation, probably due to immunosuppressive state from immunosuppressive agents and/or IBD itself.

LIP is a rare interstitial lung disease. It represents a nonspecific response to stimuli, and has been reported to be associated with systemic disorders including autoimmune, lymphoproliferative, and infectious diseases [2]. To date, there have been handful cases of EBV-associated LIP. Our case had both CT and pathological findings compatible with LIP. CT revealed diffuse interstitial mixed with multifocal irregular consolidation infiltrates, and the pathology exhibited diffuse interstitial infiltrates of lymphocytes and plasma cells. There were also 10 positive cells per total 100 lymphocytes on EBER in situ hybridization testing which are very high in comparison with normal individuals. In addition, blood EBV viral load was persistently high during the course of his illness. We postulate that LIP in our case should be in association with EBV infection. The immunopathogenesis of EBV-associated LIP has been

![Fig. 1. Chest computed tomography revealed diffuse interstitial mixed with multifocal irregular consolidation infiltrates.](image-url)
proposed [4]. Chronic EBV infection can drive the proliferation and probably transformation of B lymphocytes in bronchus-associated lymphoid tissue which subsequently progresses to LIP [4]. Among normal individuals, EBV is in the latency phase of infection due to the host’s immune surveillance against the virus. In contrast, latent EBV infection can be reactivated to become chronic infection leading to LPD in individuals with immunosuppressive state [5]. Notably, the prototype of pathogenesis in EBV-driven LPD is PTLD [10]. In our case, there had been many immunosuppressive agents. CMV colitis, one of the opportunistic infection, is the strong evidence that our case had immunosuppressive state.

To our knowledge, the association between EBV infection and AIHA has not been reported. We postulate that the development of AIHA in our case should be due to the dysregulation of host immune response driven by chronic EBV infection.

4. Literature review

We reviewed all 16 patients with EBV-associated LIP published in English literature from 1986 to 2019 (Table 1 [11–20]). There were 5 males and 11 females with the mean age of 39.9 ± 17.3 (range: 17–78) years; our patient was the oldest patient in the literature. There were 5 Asians and 11 Caucasians. Of 16 patients, AIDS was the most common comorbidity (5 patients, 31.2%), followed by post splenectomy (2, 12.5%), and heart/lung transplantation, bone marrow transplantation, systemic lupus erythematosus, Sjogren’s syndrome, polymyositis, chronic active EBV disease, and Crohn’s disease (1 each, 6.2%). Cough was the most common clinical presentation (10, 62.5%), followed by fever (8, 50.0%), dyspnea (3, 18.7%), pleurisy (2, 12.5%), and respiratory failure (1, 6.2%). The duration of symptoms ranged from 5 days to 18 months. Of 16 patients, tachypnea was the most common signs (9, 56.2%), followed by abnormal lung sounds (5, 31.2%), lymphadenopathy (4, 25.0%), hepatomegaly, splenomegaly, hepatosplenomegaly (2 each, 12.5%). Of 5 patients with abnormal lung sounds, crepitation was the most common signs (3, 60.0%), followed by wheezing and decreased breath sound (1 each, 20.0%). In addition, the findings from imagerings either chest X-ray or computed tomogram, reticulonodular pattern was the common pattern in infiltration (5, 31.2%), followed by interstitial pattern (4, 25.0%), consolidation (3, 18.7%), septal thickening (3, 18.7%), and pleural effusion (1, 6.2%). All 16 patients had bilateral lung infiltrates, predominantly at the lower lung zone (10, 62.5%). Regarding the pathology, of 13 patients, diffuse interstitial lymphocytic infiltrate was the common finding (12, 92.3%), followed by peribronchial infiltration (6, 46.1%), vasculitis (2, 15.4%), and granulomatous inflammation (1, 7.7%). Of 13 patients, EBER hybridization was positive in 3 (23.0%) patients including our patient. Regarding EBV serology, 1 (6.2%), 12 (75.0%), 0 (0%), and 12 (75.5%) patients had positive VCA IgM, VCA IgG, early antigen-diffuse component (EA-D) IgM, and EA-D IgG, respectively. From the evidence of EBV serology, EBV-associated LIP develops from EBV reactivation. Due to no specific antiviral treatment for EBV infection/disease, discontinuation or dose reduction of immunosuppressive agents was done in 1 (6.5%) patients. Four (25.0%) patients had received immunomodulating agent including corticosteroid, cyclophosphamide, rituximab, subcutaneous interferon alpha. Complications reported acute respiratory distress syndrome, pulmonary hypertension, and bacterial septicemia (1 each, 6.2%). Of 10 patients, there were complete resolution (5, 50%), partial resolution (2, 20.0%), and fatal outcome (3, 30.0%); 6 patients had unknown outcome (37.5%).

Fig. 2. Haematoxylin and eosin stain pathology of transbronchial biopsy (left) low power field revealed diffuse interstitial infiltrates with lymphocytes and plasma cells, and (right) high power field revealed florid lymphocytic interstitial infiltrates predominantly.
| Patient | Gender/age (year) | Race | Other medical problems | Clinical presentations | Duration | Physical findings | Imaging/chest X-ray/CT | Histological finding | Anti VCA IgM/IgG, anti EA-D IgM/IgG | Treatment | Complication | Outcome |
|---------|------------------|------|------------------------|-----------------------|----------|------------------|----------------------|---------------------|-------------------------------|-----------|--------------|---------|
| 1       | F/18             | Caucasian | None | Nonproductive cough, pleuritic chest pain | 5 days | Lymphadenopathy, splenomegaly | CXR - Bilateral interstitial infiltrates of lower lungs | NA | 1:160/1:40,960, 1:40/1:10,240 | IV acyclovir | Mild restrictive lung disease, pulmonary hypertension | Complete resolution |
| 2       | F/17             | India | None | Fever, pharyngitis | 18 months | Splenomegaly | CXR - Bilateral patchy, nodular infiltrates | Intersitial infiltrate of mature lymphocytes in interalveolar septa, no EBV by DNA hybridization | NA/1:10,240, NA/1:640 | IV acyclovir | Vitritis, Pseudomonas septicaemia | Died |
| 3       | M/33             | Haitian | AIDS | Nonproductive cough | NA | Tachypnea | CXR - Bilateral diffuse reticulomodular infiltrates prominent at basal lungs | Diffuse lymphocytic infiltrates in interstitium, peribronchial infiltration | –/+ , −/+ | NA | NA | NA |
| 4       | F/28             | Haitian | AIDS | Nonproductive cough | NA | Tachypnea | CXR - Bilateral diffuse reticulomodular infiltrates prominent at basal lungs | Diffuse lymphocytic infiltrates in interstitium, peribronchial infiltration, vasculitis | –/+ , −/+ | NA | NA | NA |
| 5       | F/36             | Caucasian | AIDS | Nonproductive cough | NA | Tachypnea | CXR - Bilateral diffuse reticulomodular infiltrates prominent at basal lungs | Diffuse lymphocytic infiltrates in interstitium, peribronchial infiltration | –/+ , −/+ | NA | NA | NA |
| 6       | M/35             | Caucasian | AIDS | Nonproductive cough | NA | Tachypnea | CXR - Bilateral diffuse reticulomodular infiltrates prominent at basal lungs | Diffuse lymphocytic infiltrates in interstitium, peribronchial infiltration | –/+ , −/+ | NA | NA | NA |
| 7       | F/48             | Caucasian | AIDS | Nonproductive cough | NA | Tachypnea | CXR - Bilateral diffuse reticulomodular infiltrates prominent at basal lungs | Diffuse lymphocytic infiltrates in interstitium, peribronchial infiltration | –/+ , −/+ | NA | NA | NA |
| 8       | F/39             | Caucasian | Heart-lung transplant | NA | N | NA | CT - Multiple nodules and distributed consolidation, pleural and septal thickening | Polyclonal LPD, perivascular lymphocytic infiltrate extends into interstitium of alveolar walls, a typical large lymphoid cells | NA | Decrease in immunosuppression | NA | Partial resolution |
| 9       | M/65             | Caucasian | Chronic lymphocytic leukemia | Fever, nonproductive cough | NA | Lymphadenopathy, hepatosplenomegaly | CT - Diffuse interstitial pneumonia in both lungs | In situ hybridization disclosed EBV-encoded small RNA in lymphoma cells (Richter’s syndrome) | NA/1:2,560, NA/1:640 | Chemotherapy | None | Died |
| 10      | F/50             | Korean | SLE, Sjögren’s syndrome | 20 days | CXR - Bilateral consolidations in | NA | Diffuse interstitial pneumonitis in both lungs | Lymphoplasmacytic infiltrates in interstitium, | In situ | Corticosteroid cyclophosphamide | None | Complete resolution (continued on next page) |
| Patient | Gender/age | Race | Other medical problems | Clinical presentation | Duration | Physical findings | Imaging/chest X-rays/CT | Histological finding | Treatment | Complication | Outcome |
|---------|------------|------|-------------------------|----------------------|----------|------------------|------------------------|----------------------|-----------|-------------|---------|
| 11 [18] (2005) | F/27 | Caucasian | Post splenectomy | Fever, dyspnea, cough, pleuritic chest pain | 1 day | Unremarkable | Bilateral lower lungs, pleural effusion | Pleura foaming reactive lymphoid follicles with germinal centers and areas of vacuolization | Anti VCA IgM, anti EA-D IgM/IgG positive | Supportive | None | NA |
| 12 [17] (2007) | M/53 | Japanese | AML post bone marrow transplantation | Fever, fatigue, nonproductive cough | 14 days | Unremarkable | Bilateral lower lungs | Diffuse nonspecific interstitial pneumonitis with poorly defined granulomatous inflammation | Large lymphocytes infiltrate sub-bronchial lesion, in situ hybridization for EBER positive | Rituximab | None | Complete resolution |
| 13 [18] (2009) | F/62 | Caucasian | Polymyositis | Dyspnea | 1 month | Tachypnea, crepitation middle lungs | CT - Widespread marked ground glass opacity with intra and interlobular septal thickening | NA | NA detectable copy number 28,420/ml on quantitative PCR | IV acyclovir | None | Complete resolution |
| 14 [19] (2011) | F/28 | Korean | None | Fever, flu-like symptoms | 21 days | Fever, flu-like symptoms | CT - Diffuse multifocal irregular consolidation and ground glass opacities scattered in both lungs | Large amount of usual lung parenchymal cells, several foamy materials, without viral inclusion, in situ hybridization for EBER positive | NA, viral load 549,697 copies/mL (log 5.74) | IV acyclovir, supportive | Subcutaneous interferon alpha | Partial resolution |
| 15 [20] (2018) | F/22 | Caucasian | Chronic active EBV disease, post splenectomy | Fever, productive cough, weakness | 1 month | Tachypnea, wheezing middle and lower lungs | CT - Disseminated maculate infiltrates both lungs | NA | NA, viral load 946 copies/5μl | Subcutaneous interferon alpha | None | Partial resolution |
| 16 (our case, 2019) | M/78 | Thai | Crohn's disease, CMV colitis | Fever, respiratory failure | 14 days | Tachypnea, coarse crackles lower lungs | CT - Diffuse irregular consolidation and ground glass opacities scattered in both lungs | NA, viral load 6800 copies/10^6 cells | IV acyclovir, supportive | NA, viral load 946 copies/5μl | ARDS, Died | Died |

VCA, Viral capsid antigen; EBV, early antigen-diffuse component; EBER, Epstein-Barr virus-encoded RNA; LPS, lymphoproliferative disease; AIDS, acquired immune deficiency syndrome; SLE, systemic lupus erythematosus; ARDS, acute respiratory distress syndrome; CT, computed tomography; IV, intravenous; NA, not applicable; F, female; M, male.
5. Conclusions

To date, EBV has rarely been reported as a causative agent or an association of LIP. To our knowledge, we report the first case of EBV-associated LIP in an IBD patient. We postulate that LIP was the consequence from EBV reactivation probably due to immunosuppressive state from immunosuppressive agents and/or IBD itself. The physician should aware of EBV-associated LIP when taking care of immunosuppressive patients presenting with interstitial pneumonitis.

Financial disclosure

None declared.

Declaration of competing interest

None declared.

References

[1] W.D. Travis, U. Costabel, D.M. Hansell, et al., An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias, Am. J. Respir. Crit. Care Med. 188 (6) (2013) 733–748.

[2] T.S. Panchabhai, C. Farver, K.B. Highland, Lymphocytic interstitial pneumonia, Clin. Chest Med. 37 (3) (2016) 463–474.

[3] S.I. Cha, M.B. Fessler, C.D. Cool, et al., Lymphoid interstitial pneumonia: clinical features, associations and prognosis, Eur. Respir. J. 28 (2) (2006) 364–369.

[4] J.J. Swigris, G.J. Berry, T.A. Raffin, et al., Lymphoid interstitial pneumonia: a narrative review, Chest 122 (6) (2002) 2150–2164.

[5] J.I. Cohen, Epstein-Barr virus infection, N. Engl. J. Med. 343 (7) (2000) 481–492.

[6] Hem C. Jha, Yonggang Pei, A.C. Peters, et al., Lymphoproliferative disorders in inflammatory bowel disease patients on immunosuppression: lesson from other inflammatory disorders, World J. Gastrointest. Pathophysiol. 6 (4) (2015) 181–192.

[7] C. Bernardes, P. Russo, D. Carvalho, et al., Lymphoproliferative disorders in inflammatory bowel disease patients: is it the drugs or the disease, GE Port Gastroenterol 25 (4) (2018) 175–178.

[8] R. Bone, W. Wislez, M. Antoine, et al., Lymphoproliferative disorders of the lung, Respiration 94 (2) (2017) 157–175.

[9] D. Dierickx, T.M. Habermann, Post-transplantation lymphoproliferative disorders in adults, N. Engl. J. Med. 378 (6) (2018) 549–562.

[10] R.T. Schooley, R.W. Carey, G. Miller, et al., Chronic Epstein-Barr virus infection associated with fever and interstitial pneumonitis. Clinical and serologic features and response to antiviral chemotherapy, Ann. Intern. Med. 104 (5) (1986) 636–643.

[11] R. Borie, M. Wislez, M. Antoine, et al., Lymphoproliferative disorders of the lung, Respiration 94 (2) (2017) 157–175.

[12] D. Dierickx, T.M. Habermann, Post-transplantation lymphoproliferative disorders in adults, N. Engl. J. Med. 378 (6) (2018) 549–562.

[13] J. Collins, N.L. Müller, A.N. Leung, et al., Epstein-Barr-virus-associated lymphoproliferative disease of the lung: CT and histologic findings, Radiology 208 (3) (1998) 749–759.

[14] E. Otsuka, Y. Miyazaki, K. Moriyama, et al., Epstein-Barr virus associated Richter’s syndrome accompanied by interstitial pneumonia, Rinsho Ketsueki The Japanese journal of clinical hematology 40 (5) (1999) 402–407.

[15] H.K. Yum, E.S. Kim, K.S. Ok, et al., Lymphoproliferative interstitial pneumonitis associated with Epstein-Barr virus in systemic lupus erythematosus and Sjogren’s syndrome. Complete remission with corticosteroid and cyclophosphamide, Korean J Intern Med 17 (3) (2002) 198–203.

[16] K. Marzouk, L. Corate, S. Saleh, et al., Epstein-Barr-virus-induced interstitial lung disease, Curr. Opin. Pulm. Med. 11 (5) (2005) 456–460.

[17] A. Kunitomi, N. Arima, T. Ishikawa, Epstein-Barr virus-associated post-transplant lymphoproliferative disorders presented as interstitial pneumonia; successful recovery with rituximab, Haematologica 92 (4) (2007) e49–52.

[18] T.E. McManus, P.V. Coyle, J. Lawson, et al., Epstein-Barr virus pneumonitis, Ulster Med. J. 78 (2) (2009) 137–138.

[19] E.I. Jos, Y.E. Ha, D.S. Jung, et al., An adult case of chronic active Epstein-Barr virus infection with interstitial pneumonitis, Kor. J. Intern. Med. 26 (4) (2011) 466–469.