Data Article

Prioritization of the micro-watersheds through morphometric analysis in the Vasishta Sub Basin of the Vellar River, Tamil Nadu using ASTER Digital Elevation Model (DEM) data

R. Poongodi *, S. Venkateswaran

Hydrogeology Lab, Department of Geology, Periyar University, Salem 636011, India

A R T I C L E I N F O

Article history:
Received 15 April 2018
Received in revised form 20 August 2018
Accepted 29 August 2018
Available online 5 September 2018

A B S T R A C T

The dataset for this article includes morphological analysis of the level to which groundwater potential of the Vasishta River, Salem and Perambalur districts of Tamil Nadu. The method for the computation of morphometric parameters using data Digital Elevation Model (DEM) of the Vasishta River, is also prepared using SRTM (Shuttle Radar Topographic Mission) 90 m resolution data. Morphometric parameter linear, aerial and relief limits, such as a bifurcation ratio (Rb), Drainage density (Dd) Stream Frequency (Fs) Elongation ratio (Re), Length of overland flow (Lg), Relief ratio, ruggedness number (Rn) and Slope (sb) of Vasishta Sub Basin (VSB). The relief ratio indicates that the discharge should be considered high priority given to the following micro-watersheds numbers 9, 11, 15, 11 and 10. This data could be very useful to help with sustainable groundwater planning in any similar basins.

© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specification table

Subject area	Earth Science
More specific subject area	Environmental Science, morphometry

* Corresponding author.
E-mail address: poovijigeo@gmail.com (R. Poongodi).

https://doi.org/10.1016/j.dib.2018.08.197
2352-3409 © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The morphometric parameters of all the sub basin were calculated using ArcGIS 9.3 Software. Determination of morphological factor that combines the Vasishta river.

The data includes morphometric analysis of the Vasishta River Salem and Perambalur districts of Tamil Nadu, The Survey of India toposheet (SOI) year 1973 and ASTER DEM data. Derived from mathematical formula, see Table 1 (the characteristic investigated are in Tables 2 and 3).

The quantitative morphometric analysis was carried out in seventeen micro-watersheds of VSB catchment using GIS technique for determining [1] the linear aspects, such as Stream order.

S.No	Parameter	Formula	Previous Work													
1	Area (A)	Area of the watershed	[2]													
2	Perimeter (P)	The perimeter is the total length of the watershed boundary.	[7]													
3	Length (L_b)	Maximum length of the watershed	[2]													
4	Stream Order (N_u)	Hierarchical rank	[3]													
5	Stream Length (L_u)	Length of the stream	[2]													
6	Stream length ratio (RL)	RL = L_u / L_u - 1	[4]													
7	Mean Stream Length Ratio (Lsm)	Lsm = L_u/N_u	[2]													
8	Bifurcation ratio (R_b)	R_b = N_u/N (u + 1)	[5]													
9	Drainage density (D_d)	D_d = \sum L_u / A	[2]													
10	Stream frequency (F_s)	F_s = \sum N_u / A	[2]													
11	Elongation ratio (R_e)	R_e = 1.128 \sqrt{A/L}	[5]													
12	Length of overflow (L_a)	L_a = 1/2/2d	[2]													
13	Compactness coefficient (C_c)	C_c = 0.282P/\sqrt{A^{0.5}}	[6]													
14	Basin relief (R)	R = H - h	[5]													
15	Ruggedness number (Rn)	Rn = R x D_d	[5]													
Micro Watershed. No	A (km²)	P km	L	N	N1	Lb (km)	Rₚ	Dₛ (Km/km²)	Fₛ	D₁	Lₛ	R₁	Rₑ	Bₑ	Cₑ	
-------------------	---------	------	---	---	---	--------	----	------------	----	----	----	----	----	----	----	
1	84.36	51.39	693.01	428	343	12.08	3.54	8.21	5.07	8.33	4.11	0.58	0.60	1.73	0.40	1.58
2	84.36	46.95	393.02	203	159	12.38	3.31	4.66	2.41	4.32	2.33	0.55	0.60	1.82	0.48	1.44
3	122.78	59.56	623.75	348	256	23.15	2.76	5.08	2.83	5.84	2.54	0.23	0.73	4.36	0.43	1.52
4	144.53	70.75	692.89	380	284	20.99	3.32	4.79	2.63	5.37	2.40	0.33	0.79	3.05	0.36	1.66
5	125.15	58.02	394.09	156	111	21.91	2.63	3.15	1.25	2.69	1.57	0.26	0.74	3.84	0.47	1.46
6	133.59	63.82	618.11	321	241	23.09	2.76	4.63	2.40	5.03	2.31	0.25	0.76	3.99	0.41	1.56
7	136.45	67.41	412.63	189	142	29.04	3.09	3.02	1.39	2.80	1.51	0.16	0.77	6.18	0.38	1.63
8	107.77	61.09	236.04	116	92	25.86	3.38	2.19	1.08	1.90	1.10	0.16	0.68	6.21	0.36	1.66
9	58.7	37.28	493.32	313	248	15.23	3.26	8.40	5.33	8.40	4.20	0.25	0.50	3.95	0.53	1.37
10	88.42	41.72	543.61	316	230	13.06	3.12	6.15	3.57	7.57	3.07	0.52	0.62	1.93	0.64	1.25
11	97.71	48.1	663.29	396	307	15.88	3.35	6.79	4.05	8.23	3.39	0.39	0.65	2.58	0.53	1.37
12	83.03	41.28	498.65	275	211	11.31	3.09	6.01	3.31	6.66	3.00	0.65	0.60	1.54	0.61	1.28
13	74.57	42.72	445.99	248	195	12.8	3.08	5.98	3.33	5.81	2.99	0.46	0.57	2.20	0.51	1.40
14	32.27	32.97	205.38	115	89	11.8	2.09	6.36	3.56	3.49	3.18	0.23	0.37	4.31	0.37	1.64
15	36.26	30.63	309.63	185	144	11.74	2.97	8.54	5.10	5.62	4.27	0.26	0.40	3.80	0.42	1.54
16	40.95	33.77	252.48	139	107	11.12	2.30	6.17	3.39	4.12	3.08	0.33	0.42	3.02	0.45	1.49
17	319.88	198.3	946.03	426	319	65.21	2.59	2.96	1.33	2.15	1.48	0.08	1.18	13.29	0.10	3.13
Table 3
Micro Watersheds parameter of the VSB.

Micro watershed No	No of stream orders	Total stream Numbers						
	1st order	2nd order	3rd order	4th order	5th order	6th order	7th order	
1	343	68	12	4	1	0	0	428
2	159	34	7	1	0	2	0	203
3	256	69	15	5	2	1	0	348
4	284	73	17	5	1	0	0	380
5	111	33	8	3	1	0	0	156
6	241	58	16	4	2	0	0	321
7	142	36	6	4	1	0	0	189
8	92	21	2	1	0	0	0	116
9	248	51	10	3	1	0	0	313
10	230	65	16	4	1	0	0	316
11	307	68	16	4	1	0	0	396
12	211	46	13	3	1	1	0	275
13	195	36	12	4	1	0	0	248
14	89	18	4	4	0	0	0	115
15	144	32	6	2	1	1	0	185
16	107	23	6	2	0	0	0	139
17	319	75	19	4	0	0	1	426

Fig. 1. The Base Map of the Vasishta Sub Basin.
Bifurcation ratio, Stream length and aerial aspects such as Stream order \((U)\), Stream length \((L_u)\), Mean Stream length \((L_{sm})\), Stream length ratio \((R_l)\), Bifurcation ratio \((R_b)\), Length of overland flow \((L_g)\), drainage density \((D_d)\), stream frequency \((F_s)\), Compactness coefficient \((C_c)\), form factor \((R_f)\), circulatory ratio \((R_c)\), and elongation ratio \((R_e)\), Relief ratio \((R_h)\), Ruggedness Number. The prioritization based on different morphometric factor is time-consuming.

2. Experimental design, methods and materials

Manual extraction of drainage network, assigning the stream order from a published Survey of India \((SOI)\) topographic map and from georeferenced satellite data for a large area is a time-consuming and tedious exercise. To overcome this problem, automatic extraction techniques were used for evaluating the morphometric factor of a basin. Extraction of River basin/watershed boundary and extraction of drainage/stream the Vasistha River basin using ASTER DEM in conjunction with geocodes standard false colour composite remote sensing satellite data.

A multi criteria assessment was used to assimilate all the thematic layers. Individual themes and their consistent groups allocated a knowledge base weightages given depending on their suitability to grip groundwater and their weightages calculated. The process of visually interpreting digitally enhanced imagery attempts to optimize the complementary abilities of the human mind and the computer.

Fig. 2. The Priority Map of the Vasistha Sub Basin.
2.1. Study area

The Vasistha River lies between 11° 24’0.347” and 11° 53’0.26496” N latitudes and 78° 13’55.211”E to 78° 58’9.969”E longitudes. The area was bounded by Toposheet numbers (58 I/5, 6, 7, 9, 10, 11, 12, 14, and 15) survey of India. Having scale of 1:50000. Toposheet published the year 1973. The Vasistha River study area lies in the Salem and Perambalur districts of Tamil Nadu comprises the part of Vellar River. The main river Vasishta originates from the southern slope of the Kalrayan hills and flows through kurchi, Belur, Pethanaickenpalayam, Attur, Pattuthurai, Thalaivasal, Aragalur, Sitheri, Villages of Salem and Perambalur districts of Tamil Nadu.

It covers an area of 1770.78 km², consisting of the Vasistha Nadi and Sweata Nadi, which drain two parallel valleys running east and west in Attur taluk. Vasistha River runs for a distance of 73 km in Salem, Perambalur and Cuddalore districts and drains into the Bay of Bengal. The climate of the Vasistha River area is mainly sub-tropical climate with moderate humidity and temperature. The VSB is underlaid by the Archaean crystalline rocks surrounded by denudation hills and structural hills. The Base map of the VSB is given in the Fig. 1.

3. Compound factor and ranking

Compound factor is calculated by summing all the ranks of linear, aerial and relief parameter, the shape parameter and then dividing by the number of parameter. From the group of these micro watersheds, highest rank was assigned to the micro watershed having the lowest compound factor and so on. Depending upon the value of compound factor, ranking to each micro watershed assigned in the micro-watershed no. 9 is given as a rank 1 with least compound factor value at 5.2 and it is followed by micro-watersheds no. 1 and 15 as second and third respectively. The values of compound factor and respective rank of all micro- watersheds. The Priority value of the VSB is given in the Fig. 2 and Table 4.

Acknowledgements

The first author is highly thankful to DST-INSPIRE Fellowship, Government of India, Ministry of Science and Technology, Department of Science and Technology for the financial support to carry out this research work and also thankful to Professor and Head, Department of Geology, Periyar
University, Salem-11 for giving this opportunity. We also thank the anonymous reviewers and editors for their constructive comments.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.08.197.

References

[1] Sarita Gajbhiye Meshram, S.K. Sharma, Prioritization of watershed through morphometric parameters: a PCA-based approach, Appl. Water Sci. 7 (2017) 1505–1519.
[2] R.E. Horton, Erosional development of streams and their drainage basins: Hydro physical approach to quantitative morphology, Geol. Soc. Am. Bull. 56 (3) (1945) 275–370.
[3] A.N. Strahler, Watershed geomorphology, Trans.- Am. Geo-Phys. Union 38 (6) (1957) 913–920.
[4] P.D. Sreedevi, K. Subrahmanyam, A. Shakeel, The significance of morphometric analysis for obtaining groundwater potential zones in a structural-ly controlled terrain, Environ. Geol. 47 (3) (2005) 412–442.
[5] S.A. Schumn, Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey, Bull. Geol. Soc. Am. 67 (1956) 597–646.
[6] H. Gravelius, Grundrifi der gestamten Gewcisserkunde Band I: Fluufikunde(compendium of hydrology, Grundrifi der gestamten Gewcisserkunde Band I: Fluufikunde(compendium of hydrology, Vol.I, Goschen, Berlin, Germany, 1914 (Rivers, in German).
[7] V. Miller, CA quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch, Mountain Area, Virginia and Tennessee Project. NR 389-042. Technical report 3, Columbia University, Department of Geology, ONR, Geography Branch, New York, 1953.