TMPRSS3 Gene Variants With Implications for Auditory Treatment and Counseling

In Seok Moon1,2†, Andrew R. Grant3,4†, Varun Sagi5,6, Heidi L. Rehm3,7 and Konstantina M. Stankovic1,5*

1Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States, 2Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea, 3Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States, 4New York Medical College, Valhalla, NY, United States, 5Department of Otolaryngology—Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States, 6University of Minnesota Medical School, Minneapolis, MN, United States, 7Center for Genomic Medicine and Departments of Pathology and Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States

Objective: To identify and report novel variants in the TMPRSS3 gene and their clinical manifestations related to hearing loss as well as intervention outcomes. This information will be helpful for genetic counseling and treatment planning for these patients.

Methods: Literature review of previously reported TMPRSS3 variants was conducted. Reported variants and associated clinical information was compiled. Additionally, cohort data from 18 patients, and their families, with a positive result for TMPRSS3-associated hearing loss were analyzed. Genetic testing included sequencing and copy number variation (CNV) analysis of TMPRSS3 and the Laboratory for Molecular Medicine’s OtoGenome-v1, -v2, or -v3 panels. Clinical data regarding patient hearing rehabilitation was interpreted along with their genetic testing results and in the context of previously reported cochlear implant outcomes in individuals with TMPRSS3 variants.

Results: There have been 87 previously reported TMPRSS3 variants associated with non-syndromic hearing loss in more than 20 ancestral groups worldwide. Here we report occurrences of known variants as well as one novel variant: deletion of Exons 1–5 and 13 identified from our cohort of 18 patients. The hearing impairment in many of these families was consistent with that of previously reported patients with TMPRSS3 variants (i.e., typical down-sloping audiogram). Four patients from our cohort underwent cochlear implantation.

Conclusion: Bi-allelic variants of TMPRSS3 are associated with down-sloping hearing loss regardless of ancestry. The outcome following cochlear implantation in patients with variants of TMPRSS3 is excellent. Therefore, cochlear implantation is strongly recommended for hearing rehabilitation in these patients.

Keywords: TMPRSS3, cochlear implantation, sensorineural hearing loss, genetic counseling, hereditary hearing loss
1 INTRODUCTION

Autosomal recessive non-syndromic hearing loss (ARNSHL) is the most common form of hereditary hearing loss. It accounts for about 70–80% of congenital hereditary hearing loss. ARNSHL is an extremely heterogeneous condition as more than 98 loci have been mapped and 77 causative genes have been identified to date (http://hereditaryhearingloss.org/).

The TMPRSS3 gene encodes a type III transmembrane serine protease that is structurally defined by four functional domains: a transmembrane domain, low density lipoprotein receptor A domain, scavenger receptor cysteine rich domain, and a carboxyl terminal serine protease domain (Südhof et al., 1985; van Driel et al., 1987; Sarras et al., 2004; Rawlings et al., 2010). The TMPRSS3 gene is expressed in inner hair cells, spiral ganglion neurons (SGNs), the stria vascularis, and cochlear aqueducts of fetal cochlea (Guipponi et al., 2002). Four alternatively spliced transcripts have been described (DiStefano et al., 2018). The transmembrane serine protease 3 protein is thought to be involved in the development and maintenance of the inner ear, perilymph, endolymph and SGNs (Guipponi et al., 2002). While the function of the TMPRSS3 gene in the auditory system is not fully understood, its alteration has been linked with non-syndromic genetic hearing loss (DiStefano et al., 2018).

The incidence of TMPRSS3-associated ARNSHL is variable among different ancestral backgrounds but TMPRSS3 is a significant contributor in some populations. Pathogenic TMPRSS3 variants account for 0.7% of Japanese (Miyagawa et al., 2015), 3% of Pakistani (Ben-Yosef et al., 2001), 4.6% of Chinese (Gao et al., 2017), 5–6% of Tunisian (Masmoudi et al., 2001), 5.9% of Korean (Chung et al., 2014), and 11% of Turkish (Wattenhofer et al., 2005) ARNSHL cases. However, this gene has been reported in less than 1% of non-syndromic genetic deafness in White individuals (Wattenhofer et al., 2002). In contrast, pathogenic variants in the GJB2 gene are found in up to 50% of patients with ARNSHL. Despite the relatively low proportion of ARNSHL cases attributed to TMPRSS3, the gene remains a prime candidate for postlingual progressive ARNSHL in North European populations once GJB2 variants are ruled out (Seligman et al., 2021).

Patients with pathogenic variants in the TMPRSS3 gene have been described as having one of two discrete hearing phenotypes: severe, prelingual or progressive, post-lingual hearing loss. Weegerink et al. (2011) proposed that the phenotypic outcome of hearing loss is dependent on the combination and severity of TMPRSS3 variants (i.e., mild or severe). They assert that having two "severe" pathogenic variants leads to profound deafness with prelingual onset (DFNB10), whereas a single 'severe' pathogenic variant in trans with a milder TMPRSS3 pathogenic variant yields an initially less severe, but progressive and post-lingual onset hearing loss (DFNB8) (Weegerink et al., 2011). The TMPRSS3 gene encodes for a transmembrane serine protease which is expressed in SGNs (Guipponi et al., 2002). Therefore, the differential hearing phenotype may reflect the extent of loss of protease activity from a given variant.

In this study, we compile previously reported TMPRSS3 variants and present a novel variant along with their associated hearing phenotypes. We also aggregate reported outcomes and present new findings regarding the therapeutic effects of cochlear implantation (CI) in patients with pathogenic TMPRSS3 variants. Together, this information may assist with genetic counseling and treatment planning for patients with TMPRSS3 variants.

2 METHODS

2.1 Review of the Literature

Literature databases were searched using different combinations of keywords such as “transmembrane serine protease 3,” “TMPRSS3,” “ear,” “hearing loss,” “non-syndromic hearing loss,” and “cochlear implantation.” The databases searched were PubMed, Google Scholar, and two selected gene database websites (https://hereditaryhearingloss.org; https://www.ncbi.nlm.nih.gov/clinvar/). The titles and abstracts were screened using following inclusion criteria: 1) written in English, 2) dealing with non-syndromic hearing loss, and 3) reporting human data.

Based on the search strategy, 39 TMPRSS3-associated papers published from May 2000 to Aug 2021 were reviewed and summarized (Figure 1; Table 1). Among those 39 studies, eleven studies described patients who underwent cochlear implantation (Table 2).

Previously reported variants and their associated hearing phenotypes and clinical outcomes following CI, when available, were compiled. Additionally, our own cohort of patients was genetically screened as described below.

2.2 Cohort Description

Our study included genetic and phenotypic data from 18 patients and their family members (when available), who were largely White, though Family A was a consanguineous White Egyptian family, Family B was “mixed,” and Families M and I were of Hispanic or Latino ethnicity. Of the patients with characterized hearing loss, the severity ranged from moderate to profound with some individuals experiencing congenital onset and others experiencing a childhood onset or an onset in the second decade of life. Patients were referred to the Laboratory for Molecular Medicine (LMM) at Mass General Brigham Personalized Medicine (Cambridge, MA, United States) from 2009 to 2017. Patients were referred from various clinics and hospitals across the United States. The LMM collected information pertinent to the nature of the hearing loss in the patients (if available) including family history of hearing loss and/or disease, audiological testing, temporal bone CT/MRI results, and CI status. Further information was requested through physicians via the Mass General Brigham Human Research Committee's IRB protocol for the study of the genetics of hearing loss. Patients were selected based on whether they received a positive result for TMPRSS3-associated hearing loss with the intent of follow up of the outcome of CI, if received.

2.3 TMPRSS3 Screening and Otogenome Next-Generation Sequencing Testing

Patient DNA was extracted from whole blood from patients who were referred to the LMM for hearing-loss genetic testing. Our
cohort contains patients from 2009 to 2017. The genetic testing varied for each patient based on the judgment of the ordering physician and the nature of the patient’s hearing loss. Testing was performed by single gene sequencing that included TMPRSS3, or LMM’s OtoGenome-v1, -v2, or -v3 panels.

The LMM’s bioinformatics pipeline for targeted next generation sequencing (NGS) panels has been described previously (Pugh et al., 2016). Patients with hearing loss who underwent genetic testing between 2010 and 2014 were tested with the OtoGenome-v1 which included the following 71 genes: ACTG1, ATP6V1B1, BSND, CCDC50, CDH23, CLDN14, CLRN1, COCH, COL11A2, CRYM, DFNA5, DFNB31, DFNB59, DIAPH1, ESPN, ESRRB, EYA1, EYA4, GIPC3, GJB2, GJB3, GJB6, GBP98, GPSM2, GRHL2, GRXCR1, HGF, ILDR1, KCNE1, KCNQ1, KCNQ4, LHFPF5, LOXHD1, LRTOMT, MARVELD2, MIR183, MIR96, MSRB3, MTRNR1 (12S rRNA), MTTSI (tRNAser(UCN)), MYH14, MYH9, MYO1A, MYO1A, MYO3A, MYO6, MYO7A, OTOA, OTOF, PCDH15, PDZD7, POUS3F4, POUS4F3, PRPS1, RDX, SERPINB6, SLC17A8, SLC26A4 (PDS), SLC26A5, TECTA, TIMM8A, TJP2, TMCI, TMIE, TMPRSS3, TPRN, TRIOBP, USH1C, USH1G, USH2A, and WFS1.

OtoGenome-v2 was used in patients who underwent testing at the LMM from 2014 to 2015. For this iteration, PDZD7 and SLC26A5 genes were removed and the STRC gene was added. In addition, copy number variant (CNV) detection was added using VisCap as previously described (Pugh et al., 2016; Tayoun et al., 2016).

OtoGenome-v3, used from 2015 to 2017, included 87 genes but did not include the following genes included in v2: CRYM, GJB3, MIR182, MYO1A, SLC17A8, and TJP2. The following 23 genes were added CACNA1D, CATSPER2, CEACAM16, CIB2, CLPP, DIABLO, EDN3, EDNRB, HARS2, HSD17B4, KARS, LARS2, MITF, OTOG, OTOLG, P2RX2, PAX3, SIX1, SMPX, SOX10, SYNE4, TBC1D24, and TSPEAR. Parents and other unaffected/affected family members, when available, were tested for detected variants. Variants were confirmed via Sanger sequencing for single-nucleotide variants (SNVs), or droplet digital PCR for CNVs called by VisCap (Pugh et al., 2016; Tayoun et al., 2016).

2.4 LMM Variant Classification
The LMM’s early variant classification methods are as previously described (Duzkale et al., 2013) and were subsequently updated to conform to more recent professional guidelines (Richards et al., 2015). Data used to classify variants included that from population databases (e.g., Exome Aggregation Consortium (ExAC); gnomAD), internal or external disease databases (e.g., ClinVar, LOVD, HGMD), the literature, functional studies, segregation, allelic observations and in silico missense and splicing prediction tools. Variants were classified as pathogenic (P), likely pathogenic (LP), of uncertain significance (VUS), likely benign, or benign. The VUS category was further subdivided into VUS-5, -4, and -3 where VUS-5 indicated leaning towards pathogenic, and VUS-3 indicated leaning towards benign. Likely benign and benign variants are not reported in this article but were submitted to ClinVar (www.ncbi.nlm.nih.gov/clinvar/) along with all other variants observed at the LMM.

3 RESULTS
We reviewed the type, position, origin, and variant classification of 87 previously reported TMPRSS3 variants and present one novel variant identified from our cohort (Figure 1; Table 1). Compiled variants are associated with non-syndromic hearing loss in more than 20 ancestral groups worldwide. Fourteen of the identified variants were predicted loss-of-function (pLOF) (frameshift, stop-codon, or splice-site variants) with either prematurely terminated protein products or nonsense-mediated
DNA change	Protein change	Exon	Domain	Variant classification	Origin	Phenotype severity at testing	References
Deletion of E1-5 and 13	—	E1-5 and E13	—	Pathogenic	United States	Severe	This study
c.36delC	p.Pro12fs	E2			Chinese	Severe	Gao et al. (2017)
c.39delCpG	p.Phe13fs	E2			Turkish	—	Diaz-Horta et al. (2012)
c.157G>A	p.Val53ile	E3	TM		Palestinian	—	Scott et al. (2001)
c.205+38C>T	—	Intron3	—		United States	—	Lee et al. (2013)
c.207delC	p.Thr70fs	E4			Turkish	—	Weegerink et al. (2011)
c.208delC	p.Thr70fs*19	E4	Pathogenic		Slovenian	Severe	Battelino et al. (2016)
c.212T>C	p.Phe71Ser	E4	LDLRA		Japanese	—	Miyagawa et al. (2015)
c.218G>A	p.Cys73Tyr	E4	LDLRA		Polish	—	Lechowicz et al. (2017)
c.225C>T	p.Gln76X	E4			Japanese	—	Miyagawa et al. (2013)
c.238C>T	p.Arg80Cys	E4	LDLRA	Likely pathogenic	European	—	Capalbo et al. (2019)
c.239G>A	p.Arg80His	E4	LDLRA		Taiwanese	—	Wong et al. (2020)
c.236G>A	p.Ala90Thr	E4	LDLRA		UK Caucasian	—	Charif et al. (2012)
c.280G>A	p.Gly94Arg	E4	LDLRA		Japanese	—	Miyagawa et al. (2015)
c.296G>A	p.Ser99X	E4	LDLRA		Chinese	Severe	Gu et al. (2015)
c.310G>A	p.Glu104Lys	E4	LDLRA		Pakistani	—	Lee et al. (2012)
c.316C>T	p.Arg106Cys	E4	LDLRA		Japanese	Mild	Miyagawa et al. (2013)
c.323-6G>A	—	Intron4	—	Pathogenic	Polish	—	Gao et al. (2017)
c.325C>T	p.Arg109Trp	E5	SRCR	Pathogenic	Pakistani	—	Scott et al. (2001)
c.326G>A	p.Arg109Gln	E5	SRCR		Korean	—	Ahmed et al. (2004)
c.331G>A	p.Gly111Ser	E5	SRCR		Czech	—	Weegerink et al. (2011)
c.346G>A	p.Val116Met	E5	SRCR		Pakistani	Mild	Gao et al. (2017)
c.371C>T	p.Ser124Leu	E5	SRCR		United States	Severe	This study
c.390G>G	p.His130Arg	E5	SRCR		Polish	—	Ben-Yosef et al. (2001)

(Continued on following page)
DNA change	Protein change	Exon	Domain	Variant classification	Origin	Phenotype severity at testing	References
c.413C>G	p.Ala138Glu	E5	SRCR	Pathogenic	British	Mild	Weegerink et al. (2011)
					Korean		
					United States		
c.432delA	p.Gln144fs	E5	SRCR	Pathogenic	Korean	Mild	Eppsteiner et al. (2012)
c.447-13A>G			Intron 5	—	United States		Lechowicz et al. (2017)
c.453G>A	p.Val151Val	E6	SRCR		United States	Mild	Shearer et al. (2018)
c.511T>C	p.Leu184Ser	E6	SRCR		United States	Mild	Singh et al. (2020)
c.581G>T	p.Cys194Phe	E7	SRCR	Pathogenic	Polish	Severe	Ahmed et al. (2004)
c.579dupA	p.Cys194Mfs*17	E7			United States	Mild	Lechowicz et al. (2017)
c.595G>A	p.Val199Met	E7	SRCR		Dutch	Severe	Weegerink et al. (2011)
c.607C>T	p.Gln203X	E7			Japanese	Severe	Miyagawa et al. (2013)
c.617-4_-3dupAT		Intron7	—		Japanese	Mild	Miyagawa et al. (2015)
c.621T>C	p.Cys207Cys	E8	Serine protease		Korean	—	Lee et al. (2013)
c.636C>T	p.Gly212Gly	E8	Serine protease		German	Mild	Elbracht et al. (2007)
c.646C>T	p.Arg216Cys	E8	Serine protease		United States (Caucasian)	—	Eppsteiner et al. (2012)
c.647G>T	p.Arg216Leu	E8	Serine protease		Turkish	Severe	Wattenhofer et al. (2005)
c.726C>G	p.Cys242Trp	E8	Serine protease		Japanese	Mild	Miyagawa et al. (2015)
c.727G>A	p.Gly243Arg	E8	Serine protease		Indian	—	Ganapathy et al. (2014)
c.734C>T	p.Ser245Phe	E8	Serine protease		Pakistani	—	Khan et al. (2019)
c.743C>T	p.Met248Glu	E8	Serine protease		Czech	—	Safka Brozko et al. (2020)
c.753G>C	p.Trp251Cys	E8	Serine protease		Tunisian	—	Masmoudi et al. (2001)
c.757A>G	p.Ile253Val	E8	Serine protease		Pakistani	—	Ben-Yosef et al. (2001)
c.767C>T	p.Arg256Val	E8	Serine protease		Korean	—	Lee et al. (2003)
c.778G>A	p.Val260Thr	E8	Serine protease		Taiwanese	—	Wong et al. (2003)
c.782+8insT	—	Intron8	—		Pakistani	—	Lee et al. (2012)
c.782+2T>A	—	Intron8	—		Polish	—	Lechowicz et al. (2017)
c.783-1G>A	—	Intron8	—		Korean	—	Kim et al. (2017)
DNA change	Protein change	Exon	Domain	Variant classification	Origin	Phenotype severity at testing	References
------------	----------------	------	--------	------------------------	--------	-------------------------------	------------
c.809T>A	p.Ile270Asn	E9	Serine protease	Chinese	Severe	Gao et al. (2017)	
c.830C>T	p.Pro277Leu	E9	Serine protease	Turkish	—	Masmoudi et al. (2001)	
c.871G>C	p.Val291Leu	E9	Serine protease	Korean	—	Lee et al. (2013)	
c.916G>A	p.Ala306Thr	E9	Serine protease	Likely pathogenic	German	Elbracht et al. (2007)	
					Dutch	Wegerink et al. (2011)	
					United States (Caucasian)	—	Eppsteiner et al. (2012)
					Korean	—	
					Turkish	Chung et al. (2014)	
					Chinese	—	
					Korean	—	
					—	Gao et al. (2017)	
c.933C>T	p.Ala311Ala	E9	Serine protease	United States	Mild	This study	
c.941T>C	p.Leu314Pro	E9	Serine protease	Pakistani	—	Zhou et al. (2020)	
c.953-5A>G	p.Leu325Gln	E10	Serine protease	Polish	—	Lechowicz et al. (2017)	
c.974T>A	p.Leu325Gln	E9	Serine protease	Polish	—	Lechowicz et al. (2017)	
c.988delA	p.Glu330fs	E10	Serine protease	Pakistani	Severe	Walsh et al. (2006)	
c.999delC	p.Asp334Met+24	E10	Serine protease	Polish	—	Lechowicz et al. (2017)	
c.1019C>G	p.Thr340Arg	E10	Serine protease	Italian	Severe	Vozz et al. (2014)	
c.1025G>A	p.Gly342Glu	E10	Serine protease	Turkish	—	Duman et al. (2011)	
c.1028G>C	p.Trp343Ser	E10	Serine protease	Czech	—	Safka Brozko et al. (2020)	
c.1039G>T	p.Glu347X	E10	Serine protease	Korean	—	Song et al. (2020)	
c.1128C>T	p.Tyr344Tyr	E11	Serine protease	United States	—	Ben-Yosef et al. (2001)	
c.1151T>G	p.Met341Val	E11	Serine protease	Chinese	Severe	Gao et al. (2017)	
c.1156T>C	p.Cys346Arg	E11	Serine protease	Indian	—	Ganapathy et al. (2014)	
c.1159G>A	p.Ala347Thr	E11	Serine protease	Japanese	Mild	Miyagawa et al. (2013)	
c.1180_1187del8ins68	—	E11	Serine protease	Palestinian	Severe	Scott et al. (2001)	
c.1183G>C	p.Asp349His	E11	Serine protease	United States	Severe	This study	
c.1192C>T	p.Glu348X	E11	Serine protease	Turkish	Severe	Wattenhofer et al. (2005)	
c.1194+15C>A	p.Glu402Arg	E12	Serine protease	United States	Severe	This study	
c.1204G>A	p.Glu405Arg	E12	Serine protease	Taiwanese	—	Wong et al. (2020)	
c.1211C>T	p.Pro404Leu	E12	Serine protease	Pakistani	Severe	Norm et al. (2019)	
c.1219T>C	p.Cys407Arg	E12	Serine protease	United States	Severe	Bowles et al. (2021)	
c.1244T>C	p.Leu415Ser	E12	Serine protease	Chinese	Severe	Gao et al. (2017)	

(Continued on following page)
decay of mRNA. Fifty-eight of the identified variants were missense variants. Nearly all variants were predicted to disrupt the proteolytic activity of the protein. Both prelingual and postlingual hearing impairment was reported, with most patients showing a typical ski-slope audiogram configuration. CI outcomes were reported for 32 patients with bi-allelic variants in TMPRSS3 across 11 different studies (Table 2) (Weegerink et al., 2011; Eppsteiner et al., 2012; Miyagawa et al., 2013; Chung et al., 2020; Holder et al., 2021). While degree of hearing improvement varied between patients, the majority of those identified as Hispanic/Latino or mixed. We identified 12 different TMPRSS3 variants of which 1 has not been previously reported: deletion of Exons 1–5 and 13 (Table 3). This novel variant was classified as pathogenic as it met the criteria outlined by previous professional guidelines (Richards et al., 2015) with specifications provided by ClinGen (https://clinicalgenome.org/working-groups/sequence-variant-interpretation), specifically the combination of PVS1 (predicted loss of function), PM2 (absence in gnomAD), and PM3 (homozygous observation in an individual with phenotype matching the gene). The most commonly identified variants were p.Thr70fs*19 and p.Ala138Glu. Eight patients had congenital hearing loss, four of whom had biallelic pLOF variants. Four patients in our cohort underwent CI, and outcome information was available for two patients. The first patient, from family B, was found to have congenital profound hearing loss and was homozygous for p.Thr70fs*19. It is unclear when the patient underwent CI. However, at a follow up at 4 years of age, the patient had functional speech. Clinical records indicated that the patient had ongoing articulation errors and required speech therapy but was able to maintain adequate hearing. The second patient, from family K, was compound heterozygous for p.Glu104Lys and p.Ala306Thr. Clinical records have suggested positive CI outcome for her moderate-profound hearing loss. The remaining two patients who underwent CI were the siblings from family A who both had profound congenital hearing loss and were homozygous for a deletion of Exons 1–5 and 13. Their current hearing status is unknown.

4 DISCUSSION

The genotype-phenotype correlations of TMPRSS3 variants have not been well characterized. It has been previously shown that the frequency of TMPRSS3-induced ARSNHL was low in White

Table 1 (Continued) Overview of TMPRSS3 variants resulting in non-syndromic hearing loss, including those identified in the present study.

DNA change	Protein change	Exon	Domain	Variant classification	Origin	Phenotype severity at testing	References	
c.1250G>A	p.Gly417Glu	E12	Serine protease	Chinese	Severe	Gao et al. (2017)		
c.1253C>T	p.Ala418Val	E12	Serine protease	Taiwanese	—	Wong et al. (2020)		
c.1269C>T	p.Ile423lle	E12	Serine protease	Taiwanese	—	Wong et al. (2020)		
c.1273T>C	p.Cys425Arg	E12	Serine protease	Pakistani	—	Lee et al. (2012)		
c.1276G>A	p.Ala426Thr	E12	Serine protease	Likely pathogenic	Dutch	Mid	Weegerink et al. (2011)	
c.1291C>T	p.Pro431Ser	E12	Serine protease	Italian	Severe	This study	Vozzi et al. (2014)	
c.1306C>G	p.Arg436Gly	E12	Serine protease	Polish	—	Lechowicz et al. (2017)	Czech	
c.1343T>C	p.Met448Thr	E12	Serine protease	Likely pathogenic	United States	Severe	This study	Polish
c.1345-2A>G	—	E12	—	United States	Mild	This study	Lechowicz et al. (2017)	Czech

Table 2

Origin	Phenotype
Taiwanese	Severe
Pakistani	—
United States	—
Taiwanese	—
United States	—
United States	—

Table 3

DNA change	Protein change	Exon	Domain	Variant classification	Origin	Phenotype severity at testing	References	
c.1250G>A	p.Gly417Glu	E12	Serine protease	Chinese	Severe	Gao et al. (2017)		
c.1253C>T	p.Ala418Val	E12	Serine protease	Taiwanese	—	Wong et al. (2020)		
c.1269C>T	p.Ile423lle	E12	Serine protease	Taiwanese	—	Wong et al. (2020)		
c.1273T>C	p.Cys425Arg	E12	Serine protease	Pakistani	—	Lee et al. (2012)		
c.1276G>A	p.Ala426Thr	E12	Serine protease	Likely pathogenic	Dutch	Mid	Weegerink et al. (2011)	
c.1291C>T	p.Pro431Ser	E12	Serine protease	Italian	Severe	This study	Vozzi et al. (2014)	
c.1306C>G	p.Arg436Gly	E12	Serine protease	Polish	—	Lechowicz et al. (2017)	Czech	
c.1343T>C	p.Met448Thr	E12	Serine protease	Likely pathogenic	United States	Severe	This study	Polish
c.1345-2A>G	—	E12	—	United States	Mild	This study	Lechowicz et al. (2017)	Czech

References

- Richards et al. (2015)
- Shearer et al. (2018)
- Vozzi et al. (2014)
- Wong et al. (2020)
- Lee et al. (2021)
- Holder et al. (2021)

Abbreviations

- TM, transmembrane domain; LDLRA, LDL receptor-like domain; SRCR, scavenger receptor cysteine-rich domain; serine protease, trypsin-like serine protease domain.
TABLE 2 | Overview of clinical characteristics and genotypes of patients with TMPRSS3 variants who have received cochlear implantation.

Study (country)	DNA change	Protein change	Exon	Domain	Hearing loss severity	Age at CI (gender)	Age at severe-profound HL	Pre-operative hearing	CI type	CI outcomes
Weegerink et al., 2011 (Netherlands)	c.207delC	p.Thr70fs	E4	Serine protease	—	4.5 years	—	Sloping HL 40–60–100–110–110 dB (0.25, 0.5, 1, 2, 4 kHz)	Nucleus Freedom (Cochlear)	91% Phoneme (76% WRS)
	c.916G>A	p.Ala306Thr	E9	Serine protease	—	6 years	—	Sloping HL 40–50–110–110–110 dB (0.25, 0.5, 1, 2, 4 kHz)	Nucleus Freedom (Cochlear)	80% Phoneme (65% WRS)
	c.595G>A	p.Val199Met	E7	SRCR	—	29 years	—	Decreasing HL 80–90–110–110–110 dB (0.25, 0.5, 1, 2, 4 kHz); 5% Phoneme	Nucleus Contour C224R (Cochlear)	—
	c.413C>G	p.Ala138Glu	E5	SRCR	—	49 years	—	Decreasing HL 70–95–110–110–110 dB (0.25, 0.5, 1, 2, 4 kHz); 20% Phoneme	Clarion AB-5100H (Advanced Bionics)	89% Phoneme (75% WRS)
	c.207delC	p.Thr70fs	E4	Serine protease	—	45 years	—	Decreasing HL 80–90–110–110 dB (0.25, 0.5, 1, 2, 4 kHz); 5% Phoneme	Nucleus Contour C224R (Cochlear)	76% Phoneme (60% WRS)
	c.1276G>A	p.Ala426Thr	E12	Serine protease	—	46 years	—	Flat 100–100–110–110–110 dB (0.25, 0.5, 1, 2, 4 kHz); 0% Phoneme	Clarion AB-5100H (Advanced Bionics)	82% Phoneme (58% WRS)
	c.207delC	p.Thr70fs	E4	Serine protease	—	43 years	—	Flat 100–90–110–110–110 dB (0.25, 0.5, 1, 2, 4 kHz); 0% Phoneme	Clarion AB-5100H (Advanced Bionics)	83% Phoneme (62% WRS)
Eppsteiner et al., 2012 (United States)	c.413C>G	p.Ala138Glu	E5	SRCR	—	51 years	—	Decreasing HL 80–90–110–110–110 dB (0.25, 0.5, 1, 2, 4 kHz); 2.5% Phoneme	Nucleus Contour C224R (Cochlear)	88% Phoneme (68% WRS)
	c.646C>T	p.Arg216Cys	E8	Serine protease	—	30 years	—	Sloping HL 93 dB (PTA at 0.5, 1, 2, and 4 kHz)	Advanced Bionics CI	Poor performance (Combined CNC & HINT Score: 37)
Miyagawa et al., 2013 (Japan)	c.607C>T	p.Glu203X	E7	Serine protease	Mild	45 years (male)	45 years	98 dB (PTA at 0.5, 1, 2, and 4 kHz)	Advanced Bionics CI	Poor performance (Combined CNC & HINT Score: 23)
	c.1159G>A	p.Ala387Thr	E12	Serine protease	—	32 years (female)	17 years	—	—	
	c.232-6G>C	—	In4	SRCR	—	30 years	—	Sloping HL 50–90–110–110–110 dB (0.25, 0.5, 1, 2, 4 kHz); 10% Phoneme	Nucleus Freedom (Cochlear)	—
	c.916G>A	p.Ala306Thr	E9	Serine protease	Mild	45 years (male)	45 years	—	—	
	c.323-6G>C	—	In4	SRCR	—	30 years	—	—	—	
	c.607C>T	p.Glu203X	E7	Serine protease	Mild	32 years (female)	17 years	—	—	
	c.1159G>A	p.Ala387Thr	E12	Serine protease	—	40 years (female)	—	—	—	

(Continued on following page)
Study (country)	DNA change	Protein change	Exon	Domain	Hearing loss severity	Age at CI (gender)	Age at severe-profound HL	Pre-operative CI type	CI outcomes	
Chung et al., 2014 (Korea)	c.325C>T	p.Arg109Trp	E5	SRCR	12 years	female	—	Flat (−sloping)	100–110—110–110–110–110 dB (0.25, 0.5, 1, 2, 4, 8 kHz)	
	c.916G>A	p.Ala306Thr	E9	Serine protease	—	—	—	—	Mean open set sentence score at 6 months following CI was 88.5%	
	c.325C>T	p.Arg109Trp	E5	SRCR	6 years	male	—	Decreasing HL	70–80–90–100–110–110 dB (0.25, 0.5, 1, 2, 4, 8 kHz)	
Miyagawa et al., 2015 (Japan)	c.390C>G	p.His130Arg	E5	SRCR	—	45 years	male	Sloping HL	MED-EL PULSAR FLEX24	
	c.226C>T	p.Gln76X	E4	Serine protease	—	39 years	female	Flat (−Sloping)	90% discrimination score on Japanese monosyllable test at 24 months	
	c.212T>C	p.Phe71Ser	E4	LDLRA	—	51 years	female	—	80% discrimination score on Japanese monosyllable test at 12 months	
Battelino et al., 2016 (Slovenia)	c.617-4_3dupAT	—	In7	—	—	11 months	male	Sloping HL	80% discrimination score on Japanese monosyllable test at 12 months	
	c.208delC*	p.Thr70fs	E4	—	—	11 months	male	—	25 dB (unclear methodology)	
Gao et al., 2017 (China)	c.916G>A	p.Ala306Thr	E9	Serine protease	Severe	3 years	female	Decreasing HL	—	Described as “improved”
	c.1250G>A	p.Gly417Glu	E12	Serine protease	Severe	14 years	female	Sloping HL	—	Described as “improved”
Kim et al., 2017 (Korea)	c.346G>A	p.Val116Met	E5	SRCR	4 years	female	—	Decreasing HL	—	Not described, unofficially good
	c.871G>A	p.Val291Leu	E9	Serine protease	Profound	10 years	female	Sloping HL	—	Not described, unofficially good

(Continued on following page)
TABLE 2 | Overview of clinical characteristics and genotypes of patients with TMPRSS3 variants who have received cochlear implantation.

Study (country)	DNA change	Protein change	Exon	Domain	Hearing loss severity	Age at CI (gender)	Pre-operative hearing	CI type	CI outcomes
Shearer et al., 2018 (United States)	c.208delC	p.Thr70fs	E4	—	64 years	—	—	Nucleus Hybrid CI L24 Array	80–90–110–110–110 dB (0.125, 0.25, 0.5, 1, 2 kHz)
	c.1276G>A	p.Ala426Thr	E12	Serine protease SRCR	53 years	—	—	Nucleus Hybrid CI S8 Array	50–60–90–110–110 dB (0.125, 0.25, 0.5, 1, 2 kHz)
	c.1345–2A>G	—	In12	—	38 years	—	—	Nucleus Hybrid CI L24 Array	35–30–55–110–110 dB (0.125, 0.25, 0.5, 1, 2 kHz)
Song et al., 2020 (Korea)	c.916G>A	p.Ala306Thr	E9	Serine protease	17 years (female)	3–5 years	Stopping HL	—	86% WRS at 12 months following implantation
	c.1039G>T	p.Glu347Ter	E10	Serine protease	—	40–90–100–110–110 dB (0.25, 0.5, 1, 2, 4, 8 kHz)			
Holder et al., 2021 (United States)	c.208delC	p.Thr70fs	E4	—	54 months (female)	—	Stopping HL	Cochlear Nucleus 522/522 (left/right)	CNC 84%; BabyBio Quiet 94%/92% (left/right)
	c.916G>A	p.Ala306Thr	E9	Serine protease	47 months (female)	—	Stopping HL	Cochlear Nucleus 522/522 (left/right)	CNC 72%; BabyBio Quiet 55%
	c.208delC	p.Thr70fs	E4	—	43 months (female)	—	Stopping HL	Cochlear Nucleus 522/522 (left/right)	LNT 92%/82% (left/right); HINT 62%

HL, hearing loss; CI, cochlear implant; LDLRA, LDL receptor-like domain; dB, decibel; WRS, word-recognition score; SRCR, scavenger receptor cysteine-rich domain; serine protease, trypsin-like serine protease domain; PTA, pure tone average; CNC, consonant-nucleus-consonant; HINT, hearing in noise test; HA, hearing aid; LNT, lexical neighborhood test. Naming of variants and labeling of domains and exons are based on the NM_001256317.3 transcript. Of note, the phenotype severity is provided at the time of testing. While some patients may initially have milder phenotypes, the hearing loss can progress and become more severe.

*Patient is homozygous for the specified variant.
FIGURE 2 Pedigree chart for enrolled patient families (A–N). Age at genetic testing, age at onset of hearing loss, and other relevant clinical information is provided, when available, for patients and family members. CI, cochlear implant; HL, hearing loss; HA, hearing aid.

TABLE 3 Genotype and phenotype overview of our patient cohort.

Family	Age (in years)	Gender	DNA change	Protein change	Configuration	HL onset	HL severity
A	16 months	F	Deletion of Exons 1–5 and 13^a	—	Congenital	—	—
	6 years	M	Deletion of Exons 1–5 and 13^a	—	Congenital	—	—
B	3 months	M	c.208delC^a	p.Thr70fs*19	Congenital	Profound	—
C	9 months	F	c.208delC; c.1192C>T	p.Thr70fs*19; p.Gln398X	Congenital	Profound	—
D	8 years	M	c.208delC; c.1276G>A	p.Thr70fs*19; p.Ala426Thr	—	—	Profound
	13 years	F	—	—	Sloping sensorineural hearing loss	—	—
	15 years	M	—	—	—	10 years old	Progressive sloping, moderate left, severe right
E	13 years	F	c.208delC; c.413G>G	p.Thr70fs*19; p.Ala138Glu	—	—	Progressive, sloping, severe
F	11 years	F	c.208delC; c.413G>G	p.Thr70fs*19; p.Ala138Glu	—	9 years old	Sloping, profound
G	22 years	F	c.208delC; c.413G>G	p.Thr70fs*19; p.Ala138Glu	—	19 years old	—
H	6 years	M	c.323-6G>A; c.325C>T	p.Arg109Trp	—	Trans Congenital	Moderately severe to profound
I	1 year	M	c.579dupA; c.1183G>C	p.Cys194MetfsX17; p.Asp396His	Trans Congenital	Severe to profound	—
J	22 years	M	c.238C>T; c.1343T>C	p.Arg80Cys; p.Met448Thr	12 years old	Progressive, moderate-severe left, severe right	—
	24 years	M	c.238C>T; c.1343T>C	p.Arg80Cys; p.Met448Thr	10–12 years old	—	—
K	3 years	F	c.310G>A; c.916G>A	p.Glu104Lys; p.Ala306Thr	—	—	Moderately severe at low frequencies, profound at high frequencies
L	17 years	M	c.325C>T; c.413G>G	p.Arg109Trp; p.Ala138Glu	4 years old	Moderate-severe	—
M	12 years	M	c.413G>G; c.916G>A	p.Ala138Glu; p.Ala306Thr	Congenital	Progressive, high frequency, moderate	
N	36 years	M	c.208delC; c.1306C>T	p.Thr70fs*19; p.Arg436Gly	Congenital	Progressive, profound	

HL, hearing loss. Novel variant is bolded. Naming of variants is based on the NM_001256317.3 transcript.

^a patient is homozygous for the specified variant.
individuals (Wattenhofer et al., 2002). However, a recent epidemiological study of patients undergoing CI revealed that 10% (13) of patients with positive genetic testing had TMPRSS3 gene variants (Seligmans et al., 2021). As adoption of genetic testing in clinical practice continues to grow, it is important to be aware of common TMPRSS3 variants and associated phenotypes to best counsel patients.

In our cohort of 18 patients, 15 of whom were White, the most frequently observed variants were p.Thr70fs*19 and p.Ala138Glu implying that those were either hot spots or founder variants. The combination of the p.Thr70fs*19 frameshift variant with a missense variant appeared to cause sloping hearing loss that varied in severity. Biallelic pLOF variants appeared to cause congenital profound hearing loss. This phenotype information is valuable when trying to understand potential patient prognosis based on genetic testing results. Previous studies on the role of CI in patients with TMPRSS3 variants have reported variable results. In one study, poor outcomes following CI in patients with TMPRSS3 variants were attributed to the expression of the TMPRSS3 gene in SGNs as opposed to other locations in the cochlea such as the membranous labyrinth (Eppsteiner et al., 2012). These authors also suggested that patients with pathogenic TMPRSS3 variants may have continued loss of SGNs over time which could contribute to ongoing hearing deterioration even after CI. However, recent studies have shown predominantly positive outcomes following CI in patients with TMPRSS3 variants (Weegerink et al., 2011; Miyagawa et al., 2013; Chung et al., 2014; Miyagawa et al., 2015; Battelino et al., 2016; Gao et al., 2017; Shearer et al., 2018; Song et al., 2020; Holder et al., 2021). This discrepancy might be related to the large duration of deafness and older age of the two patients in Eppsteiner et al. (2012) and Holder et al. (2021). In addition, a study of CI outcomes in pediatric patients with TMPRSS3 variants reported positive outcomes with no evidence of SGN degeneration leading to decreased performance over time (Holder et al., 2021). Furthermore, it was suggested that even if SGN degeneration does contribute to a longitudinal decline in performance, early CI may help slow or reverse this process (Holder et al., 2021). Even so, many clinics do not implant patients with precipitously sloping hearing loss as they do not meet labeled indications for CI. However, off-label implantation has been shown to be beneficial and is being employed more frequently at major academic medical centers (Carlson et al., 2015; Leigh et al., 2016; Carlson et al., 2018).

Taken together with the positive clinical outcomes following CI in two patients from our cohort, it is evident that CI is a promising treatment strategy for patients with TMPRSS3 variants. Active intervention with CI is likely to be beneficial, particularly in patients in whom residual hearing is preserved. It is imperative that the benefits of CI are made clear when counseling patients on their potential treatment options.

DATA AVAILABILITY STATEMENT

The evidence for all variants classified by the authors is included in submissions to ClinVar by the Laboratory for Molecular Medicine (Organization ID: 21766). All other data supporting the conclusions of this article, if not directly included in the paper, will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Mass General Brigham Human Research Committee’s IRB. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

IM and AG co-wrote the manuscript and prepared the tables and figures, VS edited the manuscript and prepared the tables and figures for submission, HR edited the manuscript and provided technical feedback, KS conceived, designed, and supervised the manuscript writing and editing.

FUNDING

We gratefully acknowledge support from the National Institutes of Health grant R01 DC015824 (KMS) and Jennifer and Louis Hernandez (KMS).

REFERENCES

Ahmed, Z. M., Cindy Li, X., Powell, S. D., Riazuddin, S., Young, T.-L., Ramzan, K., et al. (2004). Characterization of a New Full Length TMPRSS3 Isoform and Identification of Mutant Alleles Responsible for Nonsyndromic Recessive Deafness in Newfoundland and Pakistan. BMC Med. Genet. 5, 24. doi:10.1186/1471-2350-5-24

Battelino, S., Klancar, G., Kovac, J., Battelino, T., and Trebusak Podkrajsek, K. (2016). TMPRSS3 Mutations in Autosomal Recessive Nonsyndromic Hearing Loss. Eur. Arch. Otorhinolaryngol. 273 (5), 1151–1154. doi:10.1007/s00405-015-3671-0

Ben-Yosef, T., Wattenhofer, M., Riazuddin, S., Ahmed, Z. M., Scott, H. S., Kudoh, J., et al. (2001). Novel Mutations of TMPRSS3 in Four DFNB8/B10 Families Segregating Congenital Autosomal Recessive Deafness. J. Med. Genet. 38 (6), 396–400. doi:10.1136/jmg.38.6.396

Bowles, B., Ferrer, A., Nishimura, C. J., Pinto E Vairo, F., Rey, T., Leheup, B., et al. (2021). TSPEAR Variants Are Primarily Associated with Ectodermal Dysplasia and Tooth Agenesis but Not Hearing Loss: A Novel Cohort Study. Am. J. Med. Genet. 185 (8), 2417–2433. doi:10.1002/ajmg.a.26347

Capalbo, A., Valero, R. A., Jimenez-Almazan, J., Pardo, P. M., Fabiani, M., Jimenez, D., et al. (2019). Optimizing Clinical Exome Design and Parallel Gene-Testing for Recessive Genetic Conditions in Preconception Carrier Screening: Translational Research Genomic Data from 14,125 Exomes. Plos Genet. 15 (10), e1008409. doi:10.1371/journal.pgen.1008409

Carlson, M. L., Sladen, D. P., Gurgel, R. K., Tombers, N. M., Lohse, C. M., and Tooth Agenesis but Not Hearing Loss: A Novel Cohort Study. Am. J. Med. Genet. 39 (1), e12–e19.

Carlson, M. L., Sladen, D. P., Haynes, D. S., Driscoll, C. L., DeLong, M. D., Erickson, H. C., et al. (2015). Evidence for the Expansion of Pediatric

Chung et al., 2014; Miyagawa et al., 2015; Battelino et al., 2016; Gao et al., 2017; Shearer et al., 2018; Song et al., 2020; Holder et al., 2021). This discrepancy might be related to the large duration of deafness and older age of the two patients in Eppsteiner et al. (2012) and Holder et al. (2021). In addition, a study of CI outcomes in pediatric patients with TMPRSS3 variants reported positive outcomes with no evidence of SGN degeneration leading to decreased performance over time (Holder et al., 2021). Furthermore, it was suggested that even if SGN degeneration does contribute to a longitudinal decline in performance, early CI may help slow or reverse this process (Holder et al., 2021). Even so, many clinics do not implant patients with precipitously sloping hearing loss as they do not meet labeled indications for CI. However, off-label implantation has been shown to be beneficial and is being employed more frequently at major academic medical centers (Carlson et al., 2015; Leigh et al., 2016; Carlson et al., 2018).
Charif, M., Abidi, O., Boulozou, R., Nahili, H., Rouba, H., Kandil, M., et al. (2012). Molecular Analysis of the TMPRSS3 Gene in Moroccan Families with Non-syndromic Hearing Loss. *Biochem. Biophys. Res. Commun.* 419(4), 643–647. doi:10.1016/j.bbrc.2012.02.066

Chung, J., Park, S. M., Chang, S. O., Chung, T., Lee, K. Y., Kim, A. R., et al. (2014). Genetic Analysis of the TMPRSS3 Gene in Korean Population with Autosomal Recessive Non-syndromic Hearing Loss. *Gene* 532 (2), 276–280. doi:10.1016/j.gene.2013.07.108
Shafique, S., Siddiqi, S., Schraders, M., Oostrik, J., Ayub, H., Bilal, A., et al. (2014). Genetic Spectrum of Autosomal Recessive Non-syndromic Hearing Loss in Pakistani Families. PLoS One 9 (6), e100146. doi:10.1371/journal.pone.0100146

Shearer, A. E., Tejani, V. D., Brown, C. J., Abbas, P. J., Hansen, M. R., Gantz, B. J., et al. (2018). In Vivo Electrocochleography in Hybrid Cochlear Implant Users Implicates TMPRSS3 in Spiral Ganglion Function. Sci. Rep. 8 (1), 14165. doi:10.1038/s41598-018-32630-9

Singh, K., Bijnarnia-Mahay, S., Ramprasad, V. L., Puri, R. D., Nair, S., Sharda, S., et al. (2020). NGS-based Expanded Carrier Screening for Genetic Disorders in North Indian Population Reveals Unexpected Results - a Pilot Study. BMC Med. Genet. 21 (1), 216. doi:10.1186/s12881-020-01153-4

Song, M.-H., Jung, J., Rim, J. H., Choi, H. J., Lee, H. J., Noh, R., et al. (2020). Genetic Inheritance of Late-Onset, Down-Sloping Hearing Loss and its Implications for Auditory Rehabilitation. Ear Hear 41 (3), 114–124. doi:10.1097/EUA.0000000000000734

Südhof, T. C., Goldstein, J. L., Brown, M. S., and Russell, D. W. (1985). The LDL Receptor Gene: a Mosaic of Exons Shared with Different Proteins. Science 228 (4701), 815–822. doi:10.1126/science.2988123

Tayoun, A. N. A., Mason-Suares, H., Frisella, A. L., Bowser, M., Duffy, E., Mahanta, L., et al. (2016). Targeted Droplet-Digital PCR as a Tool for Novel Deletion Discovery at the DFNB1 Locus. Hum. Mutat. 37 (1), 119–126. doi:10.1002/humu.22912

van Driel, I. R., Goldstein, J. L., Südhof, T. C., and Brown, M. S. (1987). First Cysteine-Rich Repeat in Ligand-Binding Domain of Low Density Lipoprotein Receptor Binds Ca2+ and Monoclonal Antibodies, but Not Lipoproteins. J. Biol. Chem. 262 (36), 17443–17449. doi:10.1016/0021-9258(87)93599-9

Vozzi, D., Morgan, A., Vuckovic, D., E’ustacchio, A., Abdulhadi, K., Rubinato, E., et al. (2014). Hereditary Hearing Loss: a 96 Gene Targeted Sequencing Protocol Reveals Novel Alleles in a Series of Italian and Qatari Patients. Gene 542 (2), 209–216. doi:10.1016/j.gene.2014.03.033

Walsh, T., Rayan, A. A., Sa’ed, J. A., Shahin, H., Shephelovich, J., Lee, M. K., et al. (2006). Genomic Analysis of a Mendelian Phenotype: Multiple Novel Alleles for Inherited Hearing Loss in the Palestinian Population. Hum. Genomics 2 (4), 203–211. doi:10.1186/1479-7364-2-4-203

Wattenhofer, M., Sahin-Calapoglu, N., Andreasen, D., Kalay, E., Caylan, R., Bruijlard, B., et al. (2005). A Novel TMPRSS3 Missense Mutation in a DFNB8/10 Family Prevents Proteolytic Activation of the Protein. Hum. Genet. 117 (6), 528–535. doi:10.1007/s00439-005-1332-x

Weegerink, N. J. D., Schraders, M., Oostrik, J., Huysgen, P. L. M., Strom, T. M., Granneman, S., et al. (2011). Genotype-phenotype Correlation in DFNB8/10 Families with TMPRSS3 Mutations. Jaro 12 (6), 753–766. doi:10.1017/s10162-011-0282-3

Wong, S.-H., Yen, Y.-C., Li, S.-Y., and Yang, J.-J. (2020). Novel Mutations in the TMPRSS3 Gene May Contribute to Taiwanese Patients with Nonsyndromic Hearing Loss. Joms 21 (7), 2382. doi:10.3390/joms21072382

Zafar, S., Shahzad, M., Ishaq, R., Yousaf, A., Shaikh, R. S., Akram, J., et al. (2020). Novel Mutations in CLPP, LARS2, CDH23, and COL4A5 Identified in Familial Cases of Prelingual Hearing Loss. Genes 11 (9), 978. doi:10.3390/genes11090978

Zhou, Y., Tariq, M., He, S., Abdullah, U., Zhang, J., and Baig, S. M. (2020). Whole Exome Sequencing Identified Mutations Causing Hearing Loss in Five Consanguineous Pakistani Families. BMC Med. Genet. 21 (1), 151. doi:10.1186/s12881-020-01087-x

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Moon, Grant, Sagi, Rehm and Stankovic. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.