ALL SL$_2$-TILINGS COME FROM INFINITE TRIANGULATIONS

CHRISTINE BESSENRODT, THORSTEN HOLM, AND PETER JØRGENSEN

ABSTRACT. An SL$_2$-tiling is a bi-infinite matrix of positive integers such that each adjacent $2 \times 2$-submatrix has determinant 1. Such tilings are infinite analogues of Conway–Coxeter friezes, and they have strong links to cluster algebras, combinatorics, mathematical physics, and representation theory.

We show that, by means of so-called Conway–Coxeter counting, every SL$_2$-tiling arises from a triangulation of the disc with two, three or four accumulation points.

This improves earlier results which only discovered SL$_2$-tilings with infinitely many entries equal to 1. Indeed, our methods show that there are large classes of tilings with only finitely many entries equal to 1, including a class of tilings with no 1’s at all. In the latter case, we show that the minimal entry of a tiling is unique.

0. Introduction

A Conway–Coxeter frieze of Dynkin type $A_n$ is an infinite strip of positive integers of the form shown in Figure 1. It consists of $n + 2$ horizontal rows with an offset between odd and even rows. It is bordered by rows of ones and satisfies the condition $ad - bc = 1$ for each “diamond” $\begin{array}{cc} b \\ a & d \\ c \end{array}$.

Conway–Coxeter friezes were introduced in [9] and [10] and inhabit a rich combinatorial theory. For instance, each frieze can be obtained by so-called Conway–Coxeter counting on a triangulation of the $(n + 3)$-gon, see (28) and (29) in [9] and [10] or Definition 2.1 below.

\[
\begin{array}{cccccccccccccccc}
\cdots & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 3 & 2 & 2 & 1 & 4 & 2 & 1 & \cdots \\
\cdots & 1 & 2 & 5 & 3 & 1 & 3 & 7 & 1 & 2 \\
3 & 1 & 3 & 7 & 1 & 2 & 5 & 3 & 1 & \cdots \\
\cdots & 2 & 1 & 4 & 2 & 1 & 3 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \cdots 
\end{array}
\]

Figure 1. A Conway-Coxeter frieze of Dynkin type $A_4$.

2010 Mathematics Subject Classification. 05E15, 13F60.

Key words and phrases. Arc, disc with accumulation points, Conway–Coxeter frieze, Igusa–Todorov cluster category, Ptolemy formula, tiling, triangulation.
SL₂-tilings are infinite analogues of Conway–Coxeter friezes. They are bi-infinite matrices of positive integers such that each adjacent 2 × 2-submatrix has determinant 1, see Figure 3. They were introduced by Assem, Reutenauer, and Smith in [3] and have turned out to be important objects with a wealth of connections to cluster algebras, combinatorics, mathematical physics, and representation theory.

Some classes of SL₂-tilings were discovered in [3] and [18], but there were examples not belonging to the classes, see [18, exa. 2.9], and there was no insight into the structure of the set of all SL₂-tilings.

We improve the results from [3] and [18] significantly by showing that every SL₂-tiling can be obtained by Conway–Coxeter counting on an infinite triangulation of the disc with two, three, or four accumulation points. We also show that the SL₂-tilings found in [3] and [18] are rather special, because they have infinitely many entries equal to 1. Our methods reveal that there are large classes of SL₂-tilings with only finitely many 1’s, and even a class of tilings with no 1’s at all, see Remark 3.10.

In the latter case, we show that the minimal entry of a tiling is unique, see Lemma 12.4.

Motivations for studying SL₂-tilings. The introduction of SL₂-tilings in [3] was motivated by applications to linear recurrence relations for certain friezes, and to formulae for cluster variables in Euclidean type, see [3, secs. 7 and 8]. There is an application by Assem and Reutenauer in [2] to formulae for cluster seeds in types A and ˜A.

SL₂-tilings were applied to the theory of cluster characters by Assem, Dupont, Schiffler, and Smith in [1] and Jørgensen and Palu in [20]. Cluster characters were introduced by Palu in [23] to formalise cluster categorification.

Di Francesco in [11], [12] and Di Francesco and Kedem in [13], [14] showed how SL₂-tilings are linked to mathematical physics, where a so-called T-system of type A₁ is simply a pair of SL₂-tilings, albeit with Laurent polynomial values.

SL₂-tilings were generalised by Bergeron and Reutenauer in [5] to SLₖ-tilings. Other types of SL₂-tilings, relaxing parts of the definition, were obtained by Baur, Parsons, and Tschabold in [4], Morier-Genoud, Ovsienko, and Tabachnikov in [22], Tschabold in [24], and also in [18] and [20].

We continue with a more detailed explanation of this paper.

Primer on Conway–Coxeter counting. Figure 2 shows a triangulation $\mathcal{T}$ of the disc with two accumulation points, $D_2$. The notches indicate marked points on the boundary of the disc, also called vertices. There are countably many vertices in each of two intervals given by the upper and lower half circles. The vertices converge clockwise and anticlockwise to two accumulation points marked with small circles. A numbering of the vertices is shown in black; the superscripts I and III are not powers but distinguish between the vertices on the two intervals. The triangulation $\mathcal{T}$ is a set of arcs between non-neighbouring vertices which divides the disc into triangular regions. The figure shows only a finite part of the infinite set $\mathcal{T}$.

Conway–Coxeter counting on $\mathcal{T}$ is the following procedure: Start with a fixed vertex $\mu$ and label it 0. If vertex $\nu$ is a neighbour of $\mu$, or linked to $\mu$ by an arc in $\mathcal{T}$, then $\nu$ is labelled 1. Now iterate the following: If a triangular region defined by $\mathcal{T}$ has precisely two labelled vertices $\pi$ and $\rho$ with labels $i$ and $j$, then its third vertex $\sigma$ is labelled $i + j$. The label which
Figure 2. A triangulation $\mathcal{T}$ of the disc with two accumulation points, $D_2$. Black numbers label the vertices, green numbers show an example of Conway–Coxeter counting starting at vertex $-3^1$.

eventually appears at $\sigma$ is denoted $\mathcal{T}(\mu, \sigma)$. The green numbers in Figure 2 show $\mathcal{T}(\mu, \sigma)$ for $\mu = -3^1$.

It follows from results by Conway and Coxeter that

$$t(b, v) = \mathcal{T}(b^1, v^{III})$$

with $b, v \in \mathbb{Z}$ defines an $\text{SL}_2$-tiling $t$, said to arise from $\mathcal{T}$ by Conway–Coxeter counting. Part of $t$ is shown on the left in Figure 3. Note that we use matrix notation so $b$ increases when going down, $v$ increases when going right.

**$\text{SL}_2$-tilings without 1’s and the main result.** Not every $\text{SL}_2$-tiling can be obtained as above. To see so, observe that if $\mathcal{T}$ contains an arc between a vertex $b^1$ on the top half circle and a vertex $v^{III}$ on the bottom half circle, then $\mathcal{T}(b^1, v^{III}) = 1$ so $t$ has at least one entry equal to 1. But the right half of Figure 3 shows part of an $\text{SL}_2$-tiling $t'$ with no entry equal to 1. One could try to obtain $t'$ by letting $\mathcal{T}$ have no arcs between the top half circle and the bottom half circle, but this will not work: If there are no such connecting arcs, then Conway–Coxeter counting does not terminate. Indeed, the procedure never reaches the bottom half circle at all, so no labels are defined there.

Figure 4 shows a more sophisticated triangulation $\mathcal{T}'$ of the disc with four accumulation points. There are now vertices in four intervals, converging clockwise and anticlockwise
Figure 3. Left: The SL$_2$-tiling $t$ obtained by Conway–Coxeter counting on $\mathcal{Y}$ from Figure 2. Right: An SL$_2$-tiling $t'$ with no entry equal to 1.

Figure 4. A triangulation $\mathcal{Y}'$ of the disc with four accumulation points, $D_4$. Black numbers label the vertices, green numbers show an example of Conway–Coxeter counting starting at vertex $-3^1$. to four accumulation points marked with small circles. The top and bottom intervals are numbered I and III as above; indeed, two of the intervals on a disc will always be numbered I and III regardless of how many accumulation points there are. A numbering of the vertices in the top and bottom intervals is shown in black, and green numbers show the $\mathcal{Y}'(\mu, \sigma)$ for
\[ \mu = -3^1. \] The SL$_2$-tiling arising from $\mathcal{T}'$ by Conway–Coxeter counting is defined as above: 
\[ t'(b, v) = \mathcal{T}'(b^l, v^{III}), \] and this is in fact the $t'$ in the right half of Figure 5.

The extra accumulation points mean that there is room in $\mathcal{T}'$ for a horizontal arc which blocks $\mathcal{T}'$ from having arcs between the top and bottom intervals. This means that $\mathcal{T}'(b^l, v^{III})$ is never equal to 1, so $t'$ has no entry equal to 1. Note that in this example, Conway–Coxeter counting does indeed terminate with labels on the bottom interval because it can progress through the side intervals.

Our main result is that four accumulation points are sufficient for every SL$_2$-tiling to arise:

**Theorem A.** Let $t$ be an SL$_2$-tiling. There exists a good triangulation $\Sigma$ of the disc with two, three, or four accumulation points, such that $t$ arises from $\Sigma$ by Conway–Coxeter counting between two of the intervals which go from one accumulation point to the next. \( \square \)

The notion of a good triangulation is made precise in Definition 1.9. The point is that Conway–Coxeter counting always terminates for these. Theorem A is a portmanteau of Theorems 6.1, 7.4, 8.2, 9.4, 10.2, and 13.8, each of which starts with an SL$_2$-tiling $t$ of a certain type and constructs a good triangulation $\Sigma$.

**On the proof of Theorem A.** The construction of $\Sigma$ is split across six theorems because the details depend strongly on $t$; specifically, on the pattern of entries equal to 1. However, the philosophy is the same in all cases as we now explain.

Let $t$ be an SL$_2$-tiling. On the one hand, $t$ gives rise to two infinite friezes in the sense of Tschabold, see [24] def. 1.1 or Definition 3.1 and Figure 5. They are defined by

\[
p(a, d) = \begin{vmatrix} t(a, w) & t(a, w + 1) \\ t(d, w) & t(d, w + 1) \end{vmatrix}, \quad q(u, x) = \begin{vmatrix} t(c, u) & t(c, x) \\ t(c + 1, u) & t(c + 1, x) \end{vmatrix}
\]

for integers $a \leq d$, $u \leq x$. Note that the integers $w$ and $c$ can be chosen freely; $p(a, d)$ and $q(u, x)$ do not depend on them. To say that $p$ is an infinite frieze means that $p(a, a) = 0$, $p(a, a + 1) = 1$, $p(a, d) \geq 1$ for $a < d$, and, when writing $p$ as a matrix, each $2 \times 2$-submatrix which makes sense has determinant 1. Note that to improve the compatibility with SL$_2$-tilings, our convention for indexing an infinite frieze differs from [24] def. 1.1.
On the other hand, a putative good triangulation $\Sigma$ gives rise not merely to the $\text{SL}_2$-tiling of Equation (0.1), but also to two infinite friezes defined by
\[(a, d) \mapsto (a^1, d^1), \quad (u, x) \mapsto \Sigma(u^\text{III}, x^\text{III})\]
for integers $a \leq d$, $u \leq x$; this again follows from results by Conway and Coxeter.

To prove Theorem A we must show that when $t$ is an $\text{SL}_2$-tiling, there is a good triangulation $\Sigma$ satisfying Equation (0.1). However, we will tackle the seemingly harder problem of also asking for
\[p(a, d) = \Sigma(a^1, d^1), \quad q(u, x) = \Sigma(u^\text{III}, x^\text{III})\]
for $a \leq d$, $u \leq x$. This actually turns out to be easier because the entries in the triple $(t, p, q)$ and the numbers $\Sigma(\mu, \nu)$ satisfy two strong sets of equations called Ptolemy relations which we do not list here, but see Lemmas 2.3(v) and 3.3. They mean that, when $\Sigma$ has been constructed, in order to prove Equations (0.1) through (0.3) in general, it is sufficient to do so in a relatively small set of special cases.

For example, suppose that $t$ has infinitely many entries equal to 1 in both the first and the third quadrant; this is the case considered in Theorem 6.1. For such a $t$, we will show that the set of arcs
\[\Theta(t) = \{\{b^1, v^\text{III}\} \mid t(b, v) = 1\} \cup \{\{a^1, d^1\} \mid a + 2 \leq d, p(a, d) = 1\} \cup \{\{u^\text{III}, x^\text{III}\} \mid u + 2 \leq x, q(u, x) = 1\}\]
is a good triangulation of $D_2$ (observe that we think of an arc as a purely combinatorial object specified by giving the end vertices). Moreover, if we set $\Sigma = \Theta(t)$ then Equations (0.1) through (0.3) hold in some special cases: If $t(b, v) = 1$ then $\{b^1, v^\text{III}\} \in \Sigma$ whence $\Sigma(b^1, v^\text{III}) = 1$, so Equation (0.1) holds. Likewise, if $p(a, d) = 1$ then Equation (0.2) holds, and if $q(u, x) = 1$ then Equation (0.3) holds. Using only this, the Ptolemy relations turn out to imply the three equations in general. In particular, Equation (0.1) holds in general, so $t$ arises from $\Sigma$ by Conway–Coxeter counting.

Before ending this discussion, let us highlight another useful phenomenon: The special cases $d = a + 2$ of Equation (0.2) and (symmetrically) $x = u + 2$ of Equation (0.3) imply the two equations in general. Indeed, this is just the easy fact that the second diagonal, or quiddity sequence, of an infinite frieze determines the whole frieze, see [21, rmk. 1.3]. When $t$ is given, it is hence important to be able to construct a good triangulation $\Sigma$ which satisfies Equations (0.2) and (0.3) in these special cases. We will use the following approach: The vertices $a^1$, $(a + 1)^1$, $(a + 2)^1$ are consecutive on the disc. It is known that hence, if $\Sigma$ can be constructed, then
$\Sigma(a^1, (a + 2)^1) = 1 + \text{(the number of arcs in } \Sigma \text{ which end at } (a + 1)^1\text{)}$.
To get Equation (0.2) for $d = a + 2$, we must construct $\Sigma$ such that
$p(a, a + 2) = 1 + \text{(the number of arcs in } \Sigma \text{ which end at } (a + 1)^1\text{)}$.
In Theorems 7.4, 8.2, 9.4 [10.2], and [13.8] this is accomplished by starting with the set of arcs $\Theta(t)$ from Equation (0.4) and adding arcs so that, eventually, there are $p(a, a + 2) - 1$ arcs ending at $(a + 1)^1$ for each $a$. See for instance Figure 21 where the arcs in $\Theta(t)$ are black and the additional arcs are red. The figure also illustrates that the additional arcs need somewhere to end. This is the reason we need more intervals than I and III. The number of arcs to be added at $(a + 1)^1$ is given by the defect $\text{def}_p(a + 1)$ introduced in Definition 5.4.
this is the rationale for defining and manipulating defects in Section 5. See also Figure 21 and its caption.

**Link to the cluster categories of Igusa and Todorov.** Let \( n \) be 2, 3, or 4, and let \( D_n \) be the disc with \( n \) accumulation points. The set of vertices of \( D_n \) is an example of a cyclic poset in the sense of Igusa and Todorov, see [19] def. 1.1.12. There is an associated cluster category \( \mathcal{C} \) with infinite clusters, see [19] thm. 2.4.1. It categorifies \( D_n \) in the sense that there is a bijection between arcs in \( D_n \) and indecomposable objects in \( \mathcal{C} \), such that crossing of arcs corresponds to existence of non-split extensions. Moreover, if \( \mathfrak{T} \) is a good triangulation of \( D_n \), then the arcs in \( \mathfrak{T} \) correspond to a set of indecomposable objects whose finite direct sums form a cluster tilting subcategory \( \mathcal{T} \) of \( \mathcal{C} \). See [16] for more details.

There is an arithmetic Caldero–Chapoton map \( \rho_{\mathfrak{T}} \) associated to \( \mathcal{C} \) and \( \mathfrak{T} \). As indicated by the name, the map is due to Caldero and Chapoton, but the specific version we have in mind is the one from [18] def. 3.1. It is a map

\[
\varphi_{\mathfrak{T}} : \text{obj } \mathcal{C} \to \mathbb{Z}
\]

which can be computed by Conway–Coxeter counting; this follows from [20] prop. 1.10] by the method used to prove [17] thm. 5.4. Hence if \( a_{\mu\nu} \) in \( \mathcal{C} \) is the indecomposable object corresponding to the arc \( \{\mu, \nu\} \), then

\[
\varphi_{\mathfrak{T}}(a_{\mu\nu}) = \mathfrak{T}(\mu, \nu).
\]

This means that we can view \( \mathcal{C} \) and \( \varphi_{\mathfrak{T}} \) as categorifying the SL\(_2\)-tiling arising from \( \mathfrak{T} \) by Conway–Coxeter counting.

This is of interest because there is a more general Caldero–Chapoton map

\[
\rho_{\mathfrak{T}} : \text{obj } \mathcal{C} \to \mathbb{Q}(x_t | t \text{ indecomposable in } \mathfrak{T})
\]

with Laurent polynomial values whose image generates a cluster algebra with infinite clusters, see [20] thm. 2.3 and cor. 2.5]. The SL\(_2\)-tiling arising from \( \mathfrak{T} \) by Conway–Coxeter counting can be recovered by specialising the initial cluster variables \( x_t \) to 1. Such cluster algebras have so far only been studied carefully for the disc with one accumulation point. They have several interesting properties different from cluster algebras with finite clusters, and seem likely to be of interest also for larger numbers of accumulation points. See [15] by Grabowski and Gratz.

**Structure of the paper.** Theorem A will not be proved in one go, but sums up Theorems 6.1, 7.4, 8.2, 9.4, 10.2, and 13.8. Each of these starts with an SL\(_2\)-tiling \( t \) with a certain pattern of entries equal to 1 and constructs a triangulation \( \mathfrak{T} \) of the disc with two, three, or four accumulation points.

Reading the theorems in order will make it clear that they cover every possible SL\(_2\)-tiling \( t \): They progress through SL\(_2\)-tilings \( t \) with fewer and fewer entries equal to 1, ending with no 1’s at all in Theorem 13.8.

Conversely, SL\(_2\)-tilings of the types described in the theorems do exist: In each case, they can be obtained as the SL\(_2\)-tilings arising by Conway–Coxeter counting from triangulations of the type constructed in the theorem, see Remark 3.10.

Section 1 gives formal definitions relating to triangulations of the disc with accumulation points. Section 2 recalls some properties of Conway–Coxeter counting. Section 3 shows some results on SL\(_2\)-tilings and their associated infinite friezes. Section 4 starts with an SL\(_2\)-tiling \( t \)
and constructs a partial triangulation \( \Theta(t) \). In each subsequent case, the (full) triangulation \( \mathfrak{T} \) is obtained either as \( \Theta(t) \) itself (Theorem 6.1), or is constructed by adding arcs to \( \Theta(t) \) (Theorems 7.4, 8.2, 9.4, 10.2, and 13.8). Section 4 introduces what we call defects and shows some properties. The defects provide information about how many arcs we must add to \( \Theta(t) \) to get \( \mathfrak{T} \).

Sections 6 through 10 prove Theorems 6.1, 7.4, 8.2, 9.4, 10.2. Section 11 shows a technical result on Conway–Coxeter friezes, Section 12 shows that an SL\(_2\)-tiling with no entry equal to 1 has a unique minimum, and Section 13 proves Theorem 13.8 thereby completing the proof of Theorem A.

1. **Triangulations of the disc with accumulation points and other basic definitions**

**Setup 1.1.** Throughout, \( C \) is a circle with anticlockwise orientation, \( D \) is a disc with boundary \( C \), and \( n \) is 2, 3, or 4.

**Notation 1.2.** Let \( \mu_1, \ldots, \mu_m \) be points on \( C \).

The string of inequalities \( \mu_1 < \cdots < \mu_m \) will mean that each \( \mu_i \) is different from its predecessor, and that if we start from \( \mu_1 \) and move anticlockwise on \( C \) by one full turn, then we encounter the points in precisely the order \( \mu_1, \ldots, \mu_m \).

It is straightforward to modify this to permit the inequality sign \( \leq \) as well as infinite strings of inequalities.

**Definition 1.3** (The disc with four accumulation points). Let \( D_4 \), the disc with four accumulation points, be the object sketched in Figure 6.

More formally, \( D_4 \) is the disc \( D \) along with four points \( \xi_I < \xi_{II} < \xi_{III} < \xi_{IV} \) on the boundary \( C \) called accumulation points of \( D_4 \), and infinitely many points on \( C \) called vertices of \( D_4 \), defined as follows:

For each \( J \in \{I, II, III, IV\} \), let \( \ldots, -1^J, 0^J, 1^J, \ldots \) be countably many points on \( C \) which satisfy:

- \( \xi_{J-1} < \cdots < -1^J < 0^J < 1^J < \cdots < \xi_J \),
- the sequence \( 0^J, 1^J, 2^J, \ldots \) converges to \( \xi_J \),
- the sequence \( 0^J, -1^J, -2^J, \ldots \) converges to \( \xi_{J-1} \).

Here \( J - 1 \) stands for the Roman numeral one below \( J \), or IV if \( J = I \). The vertices of \( D_4 \) are the points \( \ldots, -1^J, 0^J, 1^J, \ldots \) for \( J \in \{I, II, III, IV\} \).

The set \( \{ \omega \in C \mid \xi_{J-1} < \omega < \xi_J \} \) will be called interval \( J \) of the boundary of \( D_4 \). There is an obvious notion of when two intervals are neighbouring.

Our convention for numbering the intervals of the boundary of \( D_4 \) is shown in simplified form in Figure 7.
Definition 1.4 (The disc with two or three accumulation points). We can mimic Definition 1.3 in order to define $D_2$, the disc with two accumulation points, and $D_3$, the disc with three accumulation points. For reasons which will be explained later, in case of $D_2$ we will denote the intervals by Roman numerals I and III, and in case of $D_3$ by Roman numerals \{I, II, III\} or \{I, III, IV\}. 

**Figure 6.** This is $D_4$, the disc with four accumulation points, $\xi_1$ through $\xi_4$.

**Figure 7.** A simpler view of the disc with four accumulation points, $D_4$, and our convention for numbering the intervals of the boundary.
That is, intervals I and III are always present, but II and/or IV may be dropped; see Figures 8 and 9.

Notation 1.5. Recall that $n$ is 2, 3 or 4, so we may consider $D_n$, the disc with $n$ accumulation points.

Generic integers will often be denoted by $i$, $j$, $k$, $\ell$, $m$ and generic vertices of $D_n$ often by $\iota$, $\kappa$, $\mu$, $\nu$, $\pi$, $\rho$, $\sigma$.

If $J$ is an interval of the boundary of $D_n$ and $m$ is an integer, then the vertex $m^J$ is in $J$. Depending on whether $J$ is I, II, III, or IV, we will typically replace $m$ by one of the letters in Figure 10.

In subsequent figures, the superscripts of vertices will be omitted since it is clear from a figure when two vertices belong to different intervals. Superscripts will, however, be used in the main text.

Definition 1.6 (Edges, arcs, and crossing). Let $\mu$ be a vertex of $D_n$. There are evident notions of the previous vertex $\mu^-$ and the next vertex $\mu^+$. These are called the neighbouring vertices of $\mu$.

When $\mu$ and $\nu$ are different vertices of $D_n$, we can consider the set $\{\mu, \nu\}$. If $\mu$ and $\nu$ are neighbouring vertices then $\{\mu, \nu\}$ is called the edge between $\mu$ and $\nu$ in $D_n$, and if $\mu$ and $\nu$ are non-neighbouring vertices then $\{\mu, \nu\}$ is called the arc between $\mu$ and $\nu$ in $D_n$. In either case, we say that $\{\mu, \nu\}$ ends at $\mu$ and $\nu$ and links these two vertices.
Figure 10. Depending on the interval, we typically use these labels for the vertices.

This is a combinatorial definition, but we keep in mind the geometrical intuition to think of an edge as part of the circle $C$ bounding the disc $D$, and of an arc as an actual arc inside $D$.

The arcs $\{\mu, \nu\}$ and $\{\pi, \rho\}$ are said to cross if $\mu < \pi < \nu < \rho$ or $\pi < \mu < \rho < \nu$. This is compatible in an evident way with the geometrical intuition of the previous paragraph, see Figure 14.

**Definition 1.7** (Internal, connecting, clockwise, and anticlockwise arcs). An arc $\{\mu, \nu\}$ is called internal if $\mu$ and $\nu$ belong to the same interval. Otherwise it is called connecting (because it connects two different intervals). Note that the words peripheral and bridging are used in essentially the same sense in [4] and [24].

If $\{\mu, \nu\}$ is an internal arc or an edge, then either $\nu = \mu^{++\ldots}$ or $\nu = \mu^{--\ldots}$. In the former case, we say that $\{\mu, \nu\}$ goes anticlockwise from $\mu$, in the latter case that $\{\mu, \nu\}$ goes clockwise from $\mu$.

**Definition 1.8** (Blocking an accumulation point). Let $J$ and $K$ be neighbouring intervals of the boundary of $D_n$ separated by the accumulation point $\xi$, such that if $\iota \in J$ and $\kappa \in K$ are vertices then $\iota < \xi < \kappa$.

Let $\mathcal{F}$ be a set of arcs in $D_n$. We say that $\mathcal{F}$ blocks the accumulation point $\xi$ if it contains the configuration shown in Figure 11.

More formally, $\mathcal{F}$ must contain arcs $\{\iota_i, \kappa_i\}$ for $i \geq 1$ where the vertices $\iota_i \in J$ and $\kappa_i \in K$ satisfy $\iota_1 < \iota_2 < \ldots < \xi < \ldots < \kappa_2 < \kappa_1$. Note that the $\iota_i$ and the $\kappa_i$ converge to $\xi$ from opposite sides.
Figure 11. The arcs block the accumulation point $\xi$.

**Definition 1.9** (Triangulations). A set of pairwise non-crossing arcs in $D_n$ is called a partial triangulation of $D_n$, and a maximal set of pairwise non-crossing arcs in $D_n$ is called a triangulation of $D_n$.

A partial triangulation $\mathcal{T}$ of $D_n$ is called good if it blocks each accumulation point of $D_n$. It is called locally finite if, for each vertex $\mu$ of $D_n$, only finitely many arcs in $\mathcal{T}$ end at $\mu$.

**Definition 1.10** (Vertex sets compatible with a partial triangulation). Let $\mathcal{T}$ be a partial triangulation of $D_n$. A finite set of $m \geq 2$ vertices $\mu_1 < \mu_2 < \cdots < \mu_m$ of $D_n$ is said to be compatible with $\mathcal{T}$ if each pair $\{\mu_1, \mu_2\}, \{\mu_2, \mu_3\}, \ldots, \{\mu_m, \mu_1\}$ is either an edge or an arc in $\mathcal{T}$.

The pairs $\{\mu_1, \mu_2\}, \{\mu_2, \mu_3\}, \ldots, \{\mu_m, \mu_1\}$ can be viewed as the edges of a finite polygon $P$ with vertices equal to the $\mu_i$, and we say that the set $M = \{\mu_1, \ldots, \mu_m\}$ spans $P$.

The remaining arcs in $\mathcal{T}$ between the $\mu_i$ form a partial triangulation $\mathcal{T}_P$ of $P$, and we say that $\mathcal{T}$ restricts to $\mathcal{T}_P$. If $\mathcal{T}$ is a triangulation of $D_n$ then $\mathcal{T}_P$ is a triangulation of $P$.

The following special cases will play a prominent role.

(i) Let $J$ be an interval of the boundary of $D_n$. If $a < d$ are such that $\{a^J, d^J\} \in \mathcal{T}$ or $\{a^J, d^J\}$ is an edge, then the set of vertices $\{a^J, \ldots, d^J\}$ is compatible with $\mathcal{T}$ and spans a finite polygon $P$ called the polygon below $\{a^J, d^J\}$. See the left part of Figure 12 where $n = 4$ and $J = I$.

(ii) Let $J$ and $K$ be distinct intervals of the boundary of $D_n$. If $a \leq d$ and $u \leq x$ are such that $\{a^J, x^K\}, \{d^J, u^K\} \in \mathcal{T}$ then the set of vertices $a^J, \ldots, d^J, u^K, \ldots, x^K$ is compatible with $\mathcal{T}$ and spans a finite polygon $R$ called the polygon between $\{a^J, x^K\}$ and $\{d^J, u^K\}$. See the right part of Figure 12 where $n = 4$, $J = I$, $K = III$.

**Lemma 1.11.** Let $\mathcal{T}$ be a good triangulation of $D_n$ and let $N$ be a finite set of vertices of $D_n$. Then there exists a finite set $M$ of vertices such that $N \subseteq M$ and $M$ is compatible with $\mathcal{T}$.

The set $M$ spans a finite polygon $P$, and $\mathcal{T}$ restricts to a triangulation $\mathcal{T}_P$ of $P$.

**Proof.** Consider the following construction of a set $M$ of vertices compatible with $\mathcal{T}$:

Start by including in $M$ a vertex in interval $I$. Move anticlockwise around $D_n$ and include in $M$ the vertices in interval $I$ encountered. End with a vertex linked to interval $II$ by an arc in $\mathcal{T}$.
Figure 12. There is a finite polygon $P$ below the arc $\{a^1, d^1\}$. The vertices of $P$ are $a^1$, $(a+1)^1$, ..., $(d-1)^1$, $d^1$. Among them, $(a+1)^1$, $(a+2)^1$, ..., $(d-2)^1$, $(d-1)^1$ are said to be strictly below $\{a^1, d^1\}$. There is similar terminology for the finite polygon $R$, see Definitions 1.10 and 5.1.

Figure 13. The four arcs are elements of a good triangulation $\mathcal{T}$ of $D_4$, so the set $M$ of vertices shown in the figure is compatible with $\mathcal{T}$. The set $M$ spans a finite polygon $P$. The four arcs can be viewed as four of the edges of $P$, and $\mathcal{T}$ restricts to a triangulation $\mathcal{T}_P$ of $P$.

Continue by including in $M$ the vertex at the other end of this arc. Move anticlockwise around $D_n$ and include in $M$ the vertices in interval II encountered. End with a vertex linked to interval III by an arc in $\mathcal{T}$.

Continue in the same fashion, thereby defining a set of vertices $M$ as shown in Figure 13. The set $M$ spans a finite polygon $P$ and $\mathcal{T}$ restricts to a triangulation $\mathcal{T}_P$ of $P$; see Definition 1.10.

This proves the lemma since we can always accomplish $N \subseteq M$ by making $M$ sufficiently big. Namely, $N$ is finite, and the arcs which link different intervals in the construction of $M$ can be chosen arbitrarily close to the accumulation points because $\mathcal{T}$ is good. \qed
2. Conway–Coxeter counting

Definition 2.1 (Conway–Coxeter counting). Let \( P \) be a finite polygon with a triangulation \( \mathcal{S} \) and fix a vertex \( \mu \) of \( P \). The following procedure is due to [10, (32)], see also [7, sec. 2]. We will refer to it as Conway–Coxeter counting:

Each vertex of \( P \) is assigned a non-negative integer by the following inductive procedure. The vertex \( \mu \) is assigned 0. If \( \{\mu, \nu\} \) is an edge or an arc in \( \mathcal{S} \), then the vertex \( \nu \) is assigned 1. If there is a triangle in \( \mathcal{S} \) of which only two vertices, say \( \pi \) and \( \rho \), have been assigned integers, say \( a \) and \( b \), then the third vertex is assigned \( a + b \).

We let \( \mathcal{S}(\mu, \nu) \) denote the integer assigned to vertex \( \nu \).

Remark 2.2. Let \( \mathcal{T} \) be a good triangulation of \( D_n \) and let \( \mu, \nu \) be vertices of \( D_n \).

By Lemma 1.11, we can pick a finite set of vertices \( M \) such that \( \mu, \nu \in M \) and such that \( M \) is compatible with \( \mathcal{T} \) in the sense of Definition 1.10. The set \( M \) spans a finite polygon \( P \), and \( \mathcal{T} \) restricts to a triangulation \( \mathcal{T}_P \) of \( P \), so Conway–Coxeter counting defines a non-negative integer \( \mathcal{T}_P(\mu, \nu) \).

It is easy to see that \( \mathcal{T}_P(\mu, \nu) \) does not depend on the choice of vertex set \( M \). Indeed, \( \mathcal{T}_P(\mu, \nu) \) can be computed by following the inductive procedure of Definition 2.1 on \( \mathcal{T} \) itself. Accordingly, we drop the subscript \( P \) and write \( \mathcal{T}(\mu, \nu) \).

Lemma 2.3 (Basic properties of Conway–Coxeter counting). Let \( \mathcal{T} \) be a triangulation of a finite polygon \( P \) or a good triangulation of \( D_n \). Then Conway–Coxeter counting has the following properties.

(i) Each \( \mathcal{T}(\mu, \nu) \) is a well-defined non-negative integer.
(ii) \( \mathcal{T}(\mu, \nu) = 0 \) if and only if \( \mu = \nu \).
(iii) \( \mathcal{T}(\mu, \nu) = 1 \) if and only if \( \mu \) and \( \nu \) are consecutive vertices or \( \{\mu, \nu\} \in \mathcal{T} \).
(iv) \( \mathcal{T}(\mu, \nu) = \mathcal{T}(\nu, \mu) \).
(v) If the arcs \( \{\mu, \nu\} \) and \( \{\pi, \rho\} \) cross, then we have the following Ptolemy relation illustrated by Figure 14:

\[
\mathcal{T}(\mu, \nu)\mathcal{T}(\pi, \rho) = \mathcal{T}(\mu, \pi)\mathcal{T}(\nu, \rho) + \mathcal{T}(\mu, \rho)\mathcal{T}(\nu, \pi).
\]

(vi) If \( \mu^-, \mu, \mu^+ \) are three consecutive vertices then

\[
\mathcal{T}(\mu^-, \mu^+) = 1 + (\text{the number of arcs in } \mathcal{T} \text{ ending at } \mu)\).
\]

Proof. By Remark 2.2, the case of a good triangulation of \( D_n \) reduces to the case of a triangulation of a finite polygon. In this case, all the properties are well-known; indeed, (i) through (iii) are clear from Definition 2.1 and Remark 2.2. For (iv) see [7, cor. 1], for (v) see [21, sec. 4.2], and for (vi) see (27) in [9] and [10] or [21, thm. 4.3].
3. SL$_2$-tilings in the abstract and SL$_2$-tilings arising from triangulations of the disc

**Definition 3.1.** Let $A \subseteq \mathbb{Z} \times \mathbb{Z}$ be given. A partial SL$_2$-tiling defined on $A$ is a map $t: A \rightarrow \{1, 2, 3, \ldots\}$ such that

$$\begin{vmatrix} t(i,j) & t(i,j+1) \\ t(i+1,j) & t(i+1,j+1) \end{vmatrix} = 1$$

whenever the determinant makes sense.

The values of $t$ are called entries of the partial SL$_2$-tiling. We always write the entries $t(i,j)$ in matrix style, so $i$ increases when we move down, $j$ increases when we move right. Compass directions and words like row, column, first quadrant, and third quadrant are to be interpreted in this context, see Figure 15.

If $A = \mathbb{Z} \times \mathbb{Z}$ then $t$ is simply called an SL$_2$-tiling, see Figure 3.

If $A = \{(i,j) \mid i < j\}$ and $t(i,i+1) = 1$ for each $i$, then $t$ is called an infinite frieze, see Figure 5. Infinite friezes were introduced in [24, def. 1.1]. Note that we index them differently from [24] to improve compatibility with SL$_2$-tilings. When $t$ is an infinite frieze, we set $t(i,i) = 0$.

If $A$ is a diagonal band running northwest to southeast and $t$ is equal to 1 on both edges of the band, then $t$ is called a Conway–Coxeter frieze. These were introduced in [9] and [10] where the band is typeset horizontally, that is, rotated by 45 degrees anticlockwise compared to our notation, see Figure 1.

By (21) in [9] and [10], a Conway–Coxeter frieze has a fundamental domain which is the restriction $t|_F$ of the frieze $t$ to a triangle $F$ as shown in Figure 17. The lower edge of the frieze is the diagonal with all entries equal to 1. The upper edge of the frieze contains the 1 at the upper right corner of the triangle. The entries of the whole frieze are obtained by tiling the diagonal band $A$ with translations of $t|_F$ and its reflection in a line running northwest to southeast.
Figure 15. When writing the entries $t(i, j)$ of an $SL_2$-tiling $t$, we use matrix style so $i$ increases downwards, $j$ increases to the right.

Setup 3.2. Throughout, $t$ is an $SL_2$-tiling. Recall from [18, sec. 5] that there are associated infinite friezes $p$ and $q$ defined by

$$p(a, d) = \begin{vmatrix} t(a, w) & t(a, w + 1) \\ t(d, w) & t(d, w + 1) \end{vmatrix}, \quad q(u, x) = \begin{vmatrix} t(c, u) & t(c, x) \\ t(c + 1, u) & t(c + 1, x) \end{vmatrix}$$

for integers $a \leq d$, $u \leq x$. Note that the integers $w$ and $c$ can be chosen freely by [18, rmk. 5.2], and that $p(a, d)$ and $q(u, x)$ are indeed positive for $a < d$ and $u < x$ by [18, prop. 5.6].

Lemma 3.3. We have the following Ptolemy relations.

(i) Let $a < b < c < d$ be integers. Then

$$p(a, c)p(b, d) = p(a, b)p(c, d) + p(a, d)p(b, c) \quad \text{and} \quad q(a, c)q(b, d) = q(a, b)q(c, d) + q(a, d)q(b, c).$$

(ii) Let $v$ and $a < b < c$ be integers. Then

$$p(a, c)t(b, v) = p(b, c)t(a, v) + p(a, b)t(c, v) \quad \text{and} \quad q(a, c)t(v, b) = q(b, c)t(v, a) + q(a, b)t(v, c).$$

(iii) Let $b < c$ and $v < w$ be integers. Then

$$t(b, v)t(c, w) = t(b, w)t(c, v) + p(b, c)q(v, w).$$

Proof. See [18], propositions 5.4, 5.5, and 5.7. □

Lemma 3.4. Let $i, m$ be integers with $m > 0$. The entry $m$ occurs only finitely many times in each of the following (half-)rows and (half-)columns:

$$t(i, -), \ t(-, i), \ p(i, -), \ p(-, i), \ q(i, -), \ q(-, i).$$

Proof. The statements about $t(i, -)$ and $t(-, i)$ are [18, prop. 6.1]. The proof of that result can be modified as follows to show the remaining statements:
Suppose that \( i < j < k \) are integers with \( p(i, j) = p(i, k) = m \). The Ptolemy relation \([3.3](i)\) gives

\[
p(i - 1, j)p(i, k) = p(i - 1, i)p(j, k) + p(i - 1, k)p(i, j)
\]

whence

\[
p(j, k) = \begin{vmatrix} p(i - 1, j) & p(i - 1, k) \\ p(i, j) & p(i, k) \end{vmatrix} = \begin{vmatrix} p(i - 1, j) & p(i - 1, k) \\ m & m \end{vmatrix} = m \cdot (p(i - 1, j) - p(i - 1, k)).
\]

Since \( p(j, k) > 0 \) we learn \( p(i - 1, j) > p(i - 1, k) \).

Hence if there is a sequence of integers \( i < j < k < \cdots \) with \( p(i, j) = p(i, k) = \cdots = m \), then \( p(i - 1, j) > p(i - 1, k) > \cdots \). Since the entries of \( p \) are non-negative, this implies that the sequence is finite, so the half-row \( p(i, -) \) has only finitely many entries equal to \( m \).

The remaining claims are proved symmetrically. \( \square \)

**Proposition 3.5.** Let \( \mathcal{T} \) be a good triangulation of \( D_n \), the disc with \( n \) accumulation points where \( n \in \{2, 3, 4\} \).

\( (i) \) The map \( (b, v) \mapsto \mathcal{T}(b^I, v^III) \) is an \( \text{SL}_2 \)-tiling.

\( (ii) \) The map \( (a, d) \mapsto \mathcal{T}(a^I, d^I) \) is an infinite frieze defined in the half plane \( \{(a, d) \mid a \leq d\} \).

\( (iii) \) The map \( (u, x) \mapsto \mathcal{T}(u^III, x^III) \) is an infinite frieze defined in the half plane \( \{(u, x) \mid u \leq x\} \).

**Proof.** (i) We have

\[
\begin{vmatrix}
\mathcal{T}(b^I, v^III) & \mathcal{T}(b^I, (v + 1)^III) \\
\mathcal{T}((b + 1)^I, v^III) & \mathcal{T}((b + 1)^I, (v + 1)^III)
\end{vmatrix}
= \mathcal{T}(b^I, v^III)\mathcal{T}((b + 1)^I, (v + 1)^III) - \mathcal{T}(b^I, (v + 1)^III)\mathcal{T}((b + 1)^I, v^III)
= \mathcal{T}(b^I, (b + 1)^I)\mathcal{T}(v^III, (v + 1)^III)
= 1,
\]

where the second equality is by the Ptolemy relation in Lemma \([2.3](v)\) and the last equality is by Lemma \([2.3](iii)\).

(ii) and (iii) are analogous to (i). \( \square \)

**Remark 3.6.** As explained, the point of the paper is to show that every \( \text{SL}_2 \)-tiling arises as in Proposition \(3.5(i)\).

**Definition 3.7.** The \( \text{SL}_2 \)-tiling \( (b, v) \mapsto \mathcal{T}(b^I, v^III) \) from Proposition \(3.5(i)\) is said to arise from \( \mathcal{T} \) by Conway–Coxeter counting. It will be denoted \( \Phi(\mathcal{T}) \).

**Lemma 3.8.** Let \( t \) be an \( \text{SL}_2 \)-tiling with associated infinite friezes \( p, q \). Let \( \mathcal{T} \) be a good triangulation of \( D_n \).

On the one hand, assume \( t = \Phi(\mathcal{T}) \), that is, \( t(b, v) = \mathcal{T}(b^I, v^III) \) for all integers \( b, v \). Then

\( (i) \) \( p(b - 1, b + 1) = \mathcal{T}((b - 1)^I, (b + 1)^I) \) for each \( b \),

\( (ii) \) \( q(v - 1, v + 1) = \mathcal{T}((v - 1)^III, (v + 1)^III) \) for each \( v \).
On the other hand, assume that (i) and (ii) hold along with at least one of the following two conditions.

(iii) There are integers \(e < f\) and \(g < h\) such that
\[
 t(e, g) = \mathfrak{T}(e^I, g^{III}), \quad t(f, g) = \mathfrak{T}(f^I, g^{III}), \quad t(f, h) = \mathfrak{T}(f^I, h^{III}).
\]

(iii)' There are integers \(e < f\) and \(g < h\) such that
\[
 t(e, h) = \mathfrak{T}(e^I, h^{III}), \quad t(f, g) = \mathfrak{T}(f^I, g^{III}), \quad t(f, h) = \mathfrak{T}(f^I, h^{III}).
\]

Then \(t = \Phi(\mathfrak{T})\), that is, \(t(b, v) = \mathfrak{T}(b^I, v^{III})\) for all \(b\) and \(v\).

Proof. “On the one hand”: Let \(b\) be a given integer and pick an arbitrary integer \(v\). Then
\[
 p(b - 1, b + 1)t(b, v) = p(b - 1, b)t(b + 1, v) + p(b, b + 1)t(b - 1, v)
 = t(b + 1, v) + t(b - 1, v)
\]
where the first equality is by the Ptolemy relation in Lemma 3.3(ii). Moreover,
\[
 \mathfrak{T}((b - 1)^I, (b + 1)^I) \mathfrak{T}(b^I, v^{III})
 = \mathfrak{T}((b - 1)^I, b^I) \mathfrak{T}((b + 1)^I, v^{III}) + \mathfrak{T}(b^I, (b + 1)^I) \mathfrak{T}((b - 1)^I, v^{III})
 = \mathfrak{T}((b + 1)^I, v^{III}) + \mathfrak{T}((b - 1)^I, v^{III})
\]
where the first equality is by the Ptolemy relation in Lemma 2.3(v) and the second equality is by Lemma 2.3(iii).

By assumption, we have \(t(c, v) = \mathfrak{T}(c^I, v^{III})\) for each \(c\). In particular this holds for \(c\) equal to \(b - 1\), \(b\), or \(b + 1\). The two displayed equations therefore combine to give \(p(b - 1, b + 1) = \mathfrak{T}((b - 1)^I, (b + 1)^I)\). This shows (i), and (ii) follows by symmetry.

“On the other hand”: Consider the infinite friezes \(p\) and \((a, d) \mapsto \mathfrak{T}(a^I, d^I)\), see Proposition 3.5(ii). Condition (i) says that they agree on the diagonal \(\{(b - 1, b + 1) \mid b \in \mathbb{Z}\}\). However, it is easy to see that an infinite frieze is determined entirely by its values on this diagonal which is also known as its quiddity sequence; see [24, rmk. 1.3]. So the two infinite friezes agree:
\[
 p(a, d) = \mathfrak{T}(a^I, d^I) \quad \text{for } a \leq d. \tag{3.1}
\]

Similarly, condition (ii) implies
\[
 q(u, x) = \mathfrak{T}(u^{III}, x^{III}) \quad \text{for } u \leq x. \tag{3.2}
\]

Now suppose condition (iii) holds. If \(b < e\) then the Ptolemy relation in 3.3(ii) says
\[
 p(b, f)t(e, g) = p(b, e)t(f, g) + p(e, f)t(b, g) \tag{3.3}
\]
while the Ptolemy relation in Lemma 2.3(v) says
\[
 \mathfrak{T}(b^I, f^I)\mathfrak{T}(e^I, g^{III}) = \mathfrak{T}(b^I, e^I)\mathfrak{T}(f^I, g^{III}) + \mathfrak{T}(e^I, f^I)\mathfrak{T}(b^I, g^{III}). \tag{3.4}
\]
Equations (3.1) and (3.2) and condition (iii) say that the first five of the six factors in Equation (3.3) are equal to the corresponding factors in Equation (3.4). Hence the last factors are also equal, so
\[
 t(b, g) = \mathfrak{T}(b^I, g^{III}) \quad \text{for } b < e.
\]
Figure 16. The entries of $t$ which are equal to 1 occur on a zig-zag which can be bounded or unbounded to each side.

Similar arguments can be applied for $e < b < f$ and $f < b$, and the cases $b = e$ and $b = f$ are handled by condition (iii) itself, so we get

$$t(b, g) = \mathcal{T}(b^I, g^{III})$$

for each $b$.

Similar arguments prove that

$$t(f, v) = \mathcal{T}(f^I, v^{III})$$

for each $v$.

Hence the SL$_2$-tilings $t$ and $t(b, v) \mapsto \mathcal{T}(b^I, v^{III})$ match on column number $g$ and row number $f$. However, it is easy to see that an SL$_2$-tiling is determined entirely by its values on a column and a row, so the two SL$_2$-tilings must agree everywhere as claimed.

If condition (iii)' holds then we proceed symmetrically.

**Lemma 3.9.** If $t$ has entries which are equal to 1, then they occur on a zig-zag as shown in Figure 16. The zig-zag is bounded or unbounded to each side.

More formally, there is an interval $K \subseteq \mathbb{Z}$ which is bounded or unbounded to each side, along with coordinate pairs $(b_k, v_k)$ for $k \in K$ such that the following hold.

(i) $t(b, v) = 1$ if and only if $(b, v) = (b_k, v_k)$ for some $k \in K$.

(ii) For each $k \neq \max(K)$, we have precisely one of the following two options:

(a) $b_{k+1} < b_k$ and $v_{k+1} = v_k$ or

(b) $b_{k+1} = b_k$ and $v_{k+1} > v_k$.

(iii) If $K$ is unbounded above, then there are infinitely many shifts between options (a) and (b) when $k$ increases.

(iv) If $K$ is unbounded below, then there are infinitely many shifts between options (a) and (b) when $k$ decreases.

**Proof.** The proof of [18, prop. 8.2] works.

□
Remark 3.10. Lemma 3.9 says that the zig-zag of 1’s in \( t \), shown in Figure 16, is bounded or unbounded to each side. There are hence four possibilities which can all be realised, as one can see in the \( SL_2 \)-tilings \( t = \Phi(\mathcal{T}) \) for various choices of the triangulation \( \mathcal{T} \).

Namely, by Lemma 2.3(iii), the 1’s in \( t \) correspond to the arcs in \( \mathcal{T} \) which connect intervals I and III.

It follows that if \( \mathcal{T} \) has the form in Figure 20, then the zig-zag of 1’s in \( t \) is unbounded to both sides. That is, \( t \) has infinitely many 1’s in both the first and the third quadrant.

If \( \mathcal{T} \) has the form in Figure 21, then the zig-zag is bounded to the left and unbounded to the right. That is, \( t \) has infinitely many 1’s in the first, but not the third quadrant. The opposite situation can be obtained by reflecting \( \mathcal{T} \) in a vertical line.

If \( \mathcal{T} \) has the form in Figure 22, then the zig-zag is bounded to the left and to the right. That is, \( t \) has only finitely many 1’s.

Finally, note that if \( \mathcal{T} \) has the form in Figure 29, then \( t \) has no entries equal to 1. This corresponds to \( K = \emptyset \) in Lemma 3.9.

4. The partial triangulation \( \Theta(t) \) of an \( SL_2 \)-tiling \( t \)

Recall that \( t \) is a fixed \( SL_2 \)-tiling with associated infinite friezes \( p \) and \( q \), see Setup 3.2.

Definition 4.1 (The partial triangulation \( \Theta(t) \)). We define a set of arcs in \( D_n \) as follows.

\[
\Theta(t) = \left\{ \{b^I, v^{III}\} \mid t(b, v) = 1 \right\} \cup \left\{ \{a^I, d^I\} \mid a + 2 \leq d, p(a, d) = 1 \right\} \\
\quad \cup \left\{ \{u^{III}, x^{III}\} \mid u + 2 \leq x, q(u, x) = 1 \right\}.
\]

The definition makes sense since intervals I and III are always present on the boundary of \( D_n \); see Definitions 1.3 and 1.4.

Remark 4.2. We remind the reader that when \( t \) is given and we seek to construct a good triangulation \( \mathcal{T} \) of \( D_n \) such that \( t = \Phi(\mathcal{T}) \), we will do so by adding arcs to \( \Theta(t) \).

Lemma 4.3. The set \( \Theta(t) \) is a partial triangulation of \( D_n \).

Proof. If the internal arcs \( \{a^I, c^I\} \) and \( \{b^I, d^I\} \) cross, then we can suppose \( a < b < c < d \). Then the Ptolemy relation in Lemma 3.3(i) says

\[
p(a, c)p(b, d) = p(a, b)p(c, d) + p(a, d)p(b, c) \geq 2,
\]

where the inequality holds since each of \( p(a, b) \), \( p(c, d) \), \( p(a, d) \), \( p(b, c) \) is a positive integer. Hence \( p(a, c) \) and \( p(b, d) \) cannot both be equal to 1, so \( \{a^I, c^I\} \) and \( \{b^I, d^I\} \) cannot both be in \( \Theta(t) \).

A crossing of an internal arc and a connecting arc is handled similarly by means of Lemma 3.3(ii), and a crossing of two connecting arcs is handled by means of Lemma 3.3(iii). \( \square \)

Lemma 4.4. The partial triangulation \( \Theta(t) \) is locally finite in the sense of Definition 1.4.

Proof. Consider the arcs in \( \Theta(t) \) which end at the vertex \( \mu = b^I \) in interval I. By Definition 4.1 they correspond to the entries which are equal to 1 in the row \( t(b, -) \) and the half-rows \( p(b, -) \) and \( p(-, b) \). By Lemma 3.4 there are only finitely many such entries.

The arcs in \( \Theta(t) \) which end at the vertex \( \mu = v^{III} \) in interval III are handled by symmetry. \( \square \)
Figure 17. Assume that $d \geq a + 2$ and that the entry at position $(a, d)$ in the infinite frieze $p$ is equal to 1. Then the restriction of $p$ to the triangle $F$ is the fundamental domain of a Conway–Coxeter frieze.

Lemma 4.5. Let $a < d$ be such that \{a$^1$, d$^1$\} $\in \Theta(t)$ or \{a$^1$, d$^1$\} is an edge, and let $P$ denote the finite polygon below \{a$^1$, d$^1$\}, see Definition 1.10 and the left half of Figure 12.

(i) The restriction $\Theta(t)_P$ is a triangulation of $P$.

(ii) Conway-Coxeter counting on $\Theta(t)_P$ agrees with a certain part of the infinite frieze $p$ in the following sense: If $a \leq b \leq c \leq d$, then

$$p(b, c) = \Theta(t)_P(b^1, c^1).$$

Proof. If \{a$^1$, d$^1$\} is an edge then $P$ is a 2-gon and the lemma is trivial, so suppose \{a$^1$, d$^1$\} $\in \Theta(t)$. In particular \{a$^1$, d$^1$\} is an arc so $d \geq a + 2$.

The infinite frieze $p$ is defined on the half plane \{(b, c) $\in \mathbb{Z} \times \mathbb{Z} \mid b < c$\} and we have $p(b, b + 1) = 1$ for each $b$. Recall that we set $p(b, b) = 0$ so $p$ is as shown in Figure 17. The condition \{a$^1$, d$^1$\} $\in \Theta(t)$ means $p(a, d) = 1$. In the figure, this entry is at the upper right corner of the triangle

$$F = \{(b, c) \mid a \leq b < c \leq d\},$$

and it implies that the restriction $p|_F$ coincides with the fundamental domain of a Conway–Coxeter frieze $s$. This follows from (10) in [9] and [10]; see also [13 lem. 7.1].

The elements $(b, c)$ of $F$ correspond to the edges and arcs \{b$^1$, c$^1$\} of the polygon with vertices $a^1, \ldots, d^1$, that is, the polygon $P$. Hence the frieze $s$ corresponds to a triangulation $\mathcal{S}$ of $P$; specifically,

$$\mathcal{S} = \{\{b^1, c^1\} \text{ is an arc of } P \mid s(b, c) = 1\}.$$
This is due to [9, 10], and more details are given in [7, sec. 2]. Since $s$ and $p$ agree on $F$, the equation shows that $\mathcal{S}$ consists of some of the arcs in $\Theta(t)$. Indeed, $\mathcal{S}$ is precisely the restriction $\Theta(t)_p$ of $\Theta(t)$ to $P$. Hence $\Theta(t)_p$ is a triangulation of $P$, proving part (i) of the lemma.

The same references show that, conversely, the fundamental region of the frieze $s$ can be obtained by Conway–Coxeter counting on $\mathcal{S}$, namely if $\{b^I, c^I\}$ is an edge or an arc of $P$ then

$$s(b, c) = \mathcal{S}(b^I, c^I).$$

This gives part (ii) of the lemma for $b < c$ because $s$ and $p$ agree on $F$ while $\mathcal{S} = \Theta(t)_p$. If $b = c$ then part (ii) of the lemma is trivially true. \hfill \Box

Lemma 4.6. Let $u < x$ be such that $\{u^{III}, x^{III}\} \in \Theta(t)$ or $\{u^{III}, x^{III}\}$ is an edge, and let $Q$ denote the finite polygon below $\{u^{III}, x^{III}\}$.

(i) The restriction $\Theta(t)_Q$ is a triangulation of $Q$.

(ii) Conway–Coxeter counting on $\Theta(t)_Q$ agrees with a certain part of the infinite frieze $q$ in the following sense: If $u \leq v \leq w \leq x$, then

$$q(v, w) = \Theta(t)_Q(v^{III}, w^{III}).$$

Proof. Follows from Lemma 4.5 by symmetry. \hfill \Box

Lemma 4.7. Let $a \leq d$ and $u \leq x$ be such that $\{a^I, x^{III}\}, \{d^I, u^{III}\} \in \Theta(t)$ and let $R$ denote the finite polygon between the arcs $\{a^I, x^{III}\}$ and $\{d^I, u^{III}\}$, see the right half of Figure 12.

(i) The restriction $\Theta(t)_R$ is a triangulation of $R$.

(ii) Conway–Coxeter counting on $\Theta(t)_R$ agrees with certain parts of the $\text{SL}_2$-tiling $t$ and the infinite friezes $p, q$ in the following sense: If $a \leq b \leq c \leq d$ and $u \leq v \leq w \leq x$, then

$$t(b, v) = \Theta(t)_R(b^I, v^{III}), \quad p(b, c) = \Theta(t)_R(b^I, c^I), \quad q(v, w) = \Theta(t)_R(v^{III}, w^{III}).$$

Proof. If $\{a^I, x^{III}\} = \{d^I, u^{III}\}$ then $R$ is a 2-gon and the lemma is trivial, so suppose that $\{a^I, x^{III}\}$ and $\{d^I, u^{III}\}$ are distinct.

Then the proof is analogous to that of Lemma 4.5 except that a more sophisticated method is needed to obtain a fundamental region of a Conway–Coxeter frieze. Specifically, $\{a^I, x^{III}\}, \{d^I, u^{III}\} \in \Theta(t)$ implies $t(a, x) = t(d, u) = 1$, and these two entries of $t$ span a rectangle in the plane to which $t$ can be restricted. It is shown in [18, prop. 7.2 and fig. 15] how to position suitable restrictions of $p$ and $q$ next to the rectangle in order to obtain a partial $\text{SL}_2$-tiling defined on a triangle $F$. As in the proof of Lemma 4.5 this tiling coincides with the fundamental region of a Conway–Coxeter frieze, and the proof then proceeds as for Lemma 4.5. \hfill \Box

5. Saturated vertices and defects associated to an $\text{SL}_2$-tiling

Recall that $t$ is a fixed $\text{SL}_2$-tiling with associated infinite friezes $p$ and $q$, see Setup 3.2.

Definition 5.1 (Vertices strictly below and strictly between arcs). Let $J, K \in \{I, II, III, IV\}$ be intervals of the boundary of $D_n$. 

Figure 18. This sketch shows Θ(t) when it has no connecting arcs ending at \( b_0^I \). There are \( i \) internal arcs in Θ(t) which go anticlockwise from \( b_0^I \) and the longest is \( b_0^I = \{ b_0^I, b_1^I \} \). There are \( k \) internal arcs in Θ(t) which go clockwise from \( b_0^I \) and the longest is \( b_0^- = \{ b_0^I, b_0^- \} \).

(i) If \( a \leq d - 2 \) then the vertices \( (a+1)^I, \ldots, (d-1)^I \) are said to be strictly below the (internal) arc \( \{a^I, d^I \} \), see the left half of Figure 12.

(ii) If \( a \leq d \) and \( u \leq x \) are such that \( \{a^I, x^K \}, \{d^I, u^K \} \) are distinct arcs, then the vertices \( (a+1)^I, \ldots, (d-1)^I, (u+1)^K, \ldots, (x-1)^K \) are said to be strictly between the (connecting) arcs \( \{a^I, x^K \}, \{d^I, u^K \} \), see the right half of Figure 12.

**Definition 5.2** (Saturated vertices). A vertex of intervals I or III is called saturated if it is strictly below an internal arc \( \{a^I, d^I \} \) or \( \{u^III, x^III \} \) in Θ(t); see Definition 5.1.

A vertex of intervals I or III which is not saturated is called non-saturated.

**Remark 5.3.** Suppose \( \{a^I, d^I \} \in \Theta(t) \) and let \( P \) denote the finite polygon below the internal arc \( \{a^I, d^I \} \). If \( a < b < d \) then

\[
p(b-1, b+1) = 1 + (\text{the number of arcs in } \Theta(t) \text{ ending at } b^I).
\]

This follows from Lemmas [4.5 and 2.3(vi)]. A similar equality holds for \( q \). In general, there is no such equality, and this is captured by the defects introduced in the next definition.

In due course, the defects will be used to augment the partial triangulation Θ(t) to a triangulation \( \mathcal{T} \) which satisfies

\[
p(a, d) = \mathcal{T}(a^I, d^I)
\]

for all \( a \leq d \). In turn, this will permit us to use Lemma 3.8 to prove

\[
t(b, v) = \mathcal{T}(b^I, v^III)
\]

for all \( b, v \), that is, to prove \( t = \Phi(\mathcal{T}) \).

**Definition 5.4.** The \( p \)-defect of an integer \( b \) is

\[
def_p(b) = p(b-1, b+1) - 1 - (\text{the number of arcs in } \Theta(t) \text{ ending at } b^I)
\]

and the \( q \)-defect of an integer \( v \) is

\[
def_q(v) = q(v-1, v+1) - 1 - (\text{the number of arcs in } \Theta(t) \text{ ending at } v^III).
\]

**Lemma 5.5.** Suppose that Θ(t) has no connecting arcs which end at the vertex \( b_0^I \). We use the following notation, illustrated by Figure 18, which makes sense because Θ(t) is locally finite by Lemma 4.4.
Let $b_0 = \{b_0^1, b_0^1\}$ be either the longest internal arc in $\Theta(t)$ going anticlockwise from $b_0^1$, or, if there are no such arcs, the edge going anticlockwise from $b_0^0$.

Let $b_{-1} = \{b_{-1}^1, b_0^1\}$ be either the longest internal arc in $\Theta(t)$ going clockwise from $b_0^1$, or, if there are no such arcs, the edge going clockwise from $b_0^0$.

Then

$$\text{def}_p(b_0) = p(b_{-1}, b_1) - 1.$$  

**Proof.** The special cases where $b_0$ or $b_{-1}$ is an edge are omitted since they are easy. We assume that $b_0$ and $b_{-1}$ are arcs.

We let $i$, respectively $k$, denote the number of internal arcs in $\Theta(t)$ going anticlockwise, respectively clockwise, from $b_0^1$, see Figure 18.

First, consider the finite polygon $P$ below $b_0$. Lemma 4.5 says that $\Theta(t)$ restricts to a triangulation $\Theta(t)_P$ of $P$ and that

$$p(b_0 + 1, b_1) = \Theta(t)_P((b_0 + 1)^t, b_1^1) = (*).$$

Viewed in $P$, the vertices $(b_0 + 1)^t$, $b_0^1$, $b_1^1$ are consecutive so Lemma 2.3(vi) gives

$$(*) = 1 + (\text{the number of arcs in } \Theta(t)_P \text{ ending at } b_0^1) = (**).$$

The arcs in $\Theta(t)_P$ ending at $b_0^1$ are precisely the arcs in $\Theta(t)$ going anticlockwise from $b_0^1$, except for $b_0$ which is an edge of $P$. Hence

$$(**) = i.$$ 

This proves the first of the following equalities, and the second follows by symmetry.

$$p(b_0 + 1, b_1) = i, \quad (5.1)$$

$$p(b_{-1}, b_0 - 1) = k. \quad (5.2)$$

Secondly, we show two consequences of the Ptolemy relations in Lemma 3.3.

- Since $b_0 = \{b_0^1, b_1^1\}$ is in $\Theta(t)$, we have

  $$p(b_0, b_1) = 1. \quad (5.3)$$

  This gives the first equality in the following computation,

  $$p(b_0 - 1, b_0 + 1) = p(b_0 - 1, b_0 + 1)p(b_0, b_1)$$

  $$= p(b_0 - 1, b_0)p(b_0 + 1, b_1) + p(b_0 - 1, b_1)p(b_0, b_0 + 1)$$

  $$= i + p(b_0 - 1, b_1), \quad (5.4)$$

  where the second equality is by the Ptolemy relation in Lemma 3.3(i) and the third equality uses Equation (5.1).

- Since $b_{-1} = \{b_{-1}^1, b_0^1\}$ is in $\Theta(t)$, we have $p(b_{-1}, b_0) = 1$. This gives the first equality in the following computation,

  $$p(b_0 - 1, b_1) = p(b_{-1}, b_0)p(b_0 - 1, b_1)$$

  $$= p(b_{-1}, b_0 - 1)p(b_0, b_1) + p(b_{-1}, b_1)p(b_0 - 1, b_0)$$

  $$= k + p(b_{-1}, b_1), \quad (5.5)$$

  where the second equality is by the Ptolemy relation in Lemma 3.3(i) and the third equality uses Equations (5.2) and (5.3).
Finally, the previous equations combine as follows.

\[ p(b_0 - 1, b_0 + 1) = i + p(b_0 - 1, b_1) = i + k + p(b_{-1}, b_1) \]

Subtracting \( i + k + 1 \) from this equation turns the left hand side into \( \text{def}_p(b_0) \) because there are a total of \( i + k \) arcs in \( \Theta(t) \) which end at \( b_0 \); see Figure 18 and Definition 5.4. This proves the lemma. \( \square \)

**Lemma 5.6.** Suppose that \( \Theta(t) \) has at least one connecting arc which ends at the vertex \( b_0 \).

We use the following notation, illustrated by Figure 19, which makes sense because \( \Theta(t) \) is locally finite by Lemma 4.4.

Let \( v_1 < \cdots < v_j \) be such that \( a_1 = \{ b_0^l, v_1^{III} \}, \ldots, a_j = \{ b_0^l, v_j^{III} \} \) are all the connecting arcs in \( \Theta(t) \) which end at \( b_0 \).

Let \( b_0 = \{ b_0^l, b_1^l \} \) be either the longest internal arc in \( \Theta(t) \) going anticlockwise from \( b_0^l \), or, if there are no such arcs, the edge going anticlockwise from \( b_0^l \).

Let \( b_{-1} = \{ b_{-1}^l, b_0^l \} \) be either the longest internal arc in \( \Theta(t) \) going clockwise from \( b_0^l \), or, if there are no such arcs, the edge going clockwise from \( b_0^l \).
Then
\[
def_p(b_0) = t(b_{-1}, v_j) + t(b_1, v_1) - 2.
\]

Proof. The special cases where \( b_0 \) or \( b_{-1} \) is an edge or where \( j = 1 \) are omitted since they are easy. We assume that \( b_0 \) and \( b_{-1} \) are arcs and that \( j \geq 2 \).

We let \( i \), respectively \( k \), denote the number of internal arcs in \( \Theta(t) \) going anticlockwise, respectively clockwise, from \( b_0^I \). The choice of \( v_1 < \cdots < v_j \) means that there are \( j \) connecting arcs in \( \Theta(t) \) ending at \( b_0^I \). See Figure 19.

First, an argument like the one used to prove Equation (5.1) shows
\[
q(v_1, v_j) = j - 1.
\]

Secondly, the same arguments as in the proof of Lemma 5.5 show that Equations (5.2), (5.3), and (5.4) remain valid. We collect three other consequences of the Ptolemy relations from Lemma 3.3.

- Since \( a_1 = \{b_0^I, v_1^{III}\} \) is in \( \Theta(t) \), we have \( t(b_0, v_1) = 1 \). This gives the first equality in the following computation,
\[
p(b_0 - 1, b_1) = p(b_0 - 1, b_1)t(b_0, v_1) \\
= p(b_0 - 1, b_0)t(b_1, v_1) + p(b_0, b_1)t(b_0 - 1, v_1) \\
= t(b_1, v_1) + t(b_0 - 1, v_1),
\]
where the second equality is by the Ptolemy relation in Lemma 3.3(ii) and the third equality uses Equation (5.6).

- Since \( a_j = \{b_0^I, v_j^{III}\} \) is in \( \Theta(t) \), we have \( t(b_0, v_j) = 1 \). This gives the first equality in the following computation,
\[
t(b_0 - 1, v_1) = t(b_0 - 1, v_1)t(b_0, v_j) \\
= t(b_0 - 1, v_j)t(b_0, v_1) + p(b_0 - 1, b_0)q(v_1, v_j) \\
= t(b_0 - 1, v_1) + j - 1,
\]
where the second equality is by the Ptolemy relation in Lemma 3.3(iii) and the third equality uses \( t(b_0, v_1) = 1 \) and Equation (5.6).

- Since \( b_{-1} = \{b_{-1}^I, b_0^I\} \) is in \( \Theta(t) \), we have \( p(b_{-1}, b_0) = 1 \). This gives the first equality in the following computation,
\[
t(b_0 - 1, v_j) = p(b_{-1}, b_0)t(b_0 - 1, v_j) \\
= p(b_0 - 1, b_0)t(b_{-1}, v_j) + p(b_{-1}, b_0 - 1)t(b_0, v_j) \\
= t(b_{-1}, v_j) + k,
\]
where the second equality is by the Ptolemy relation in Lemma 3.3(ii) and the third equality uses \( t(b_0, v_j) = 1 \) and Equation (5.2).
Finally, the previous equations combine as follows.

\[ p(b_0 - 1, b_0 + 1) \leq i + p(b_0 - 1, b_1) \]
\[ \leq i + t(b_1, v_1) + t(b_0 - 1, v_1) \]
\[ \leq i + t(b_1, v_1) + t(b_0 - 1, v_j) + j - 1 \]
\[ \leq i + t(b_1, v_1) + t(b_{-1}, v_j) + k + j - 1 \]

Subtracting \( i + j + k + 1 \) from this equation turns the left hand side into \( \text{def}_p(b_0) \) because there are a total of \( i + j + k \) arcs in \( \Theta(t) \) which end at \( b_0 \); see Figure 19 and Definition 5.4. This proves the lemma.

**Lemma 5.7.**

(i) \( b^1 \) is saturated if and only if \( \text{def}_p(b) = 0 \).

(ii) \( b^1 \) is non-saturated if and only if \( \text{def}_p(b) > 0 \).

(iii) \( v^{III} \) is saturated if and only if \( \text{def}_q(v) = 0 \).

(iv) \( v^{III} \) is non-saturated if and only if \( \text{def}_q(v) > 0 \).

**Proof.** To prove parts (i) and (ii), it is enough to prove “only if” in each part.

Part (i), “only if”: Let \( b^1 \) be a saturated vertex, see Definition 5.2. There are two cases.

The first case is that \( b^1 \) is strictly below the internal arc \( \{a^1, d^1\} \in \Theta(t) \), whence \( a < b < d \). Let \( P \) denote the finite polygon below \( \{a^1, d^1\} \). Lemma 4.5 says that the restriction \( \Theta(t)_P \) is a triangulation of \( P \) and that

\[ p(b - 1, b + 1) = \Theta(t)_P((b - 1)^1, (b + 1)^1) = (*) \]

Lemma 2.3 (vi) gives

\[ (*) = 1 + (\text{the number of arcs in } \Theta(t)_P \text{ ending at } b^1) = (**) \]

However, \( \Theta(t) \) is a partial triangulation of \( D_n \) so none of its arcs can cross \( \{a^1, d^1\} \). It follows that

\[ (**) = 1 + (\text{the number of arcs in } \Theta(t) \text{ ending at } b^1) \]

This shows \( \text{def}_p(b) = 0 \).

The second case is that \( b^1 \) is strictly between the connecting arcs \( \{a^1, x^{III}\}, \{d^1, u^{III}\} \in \Theta(t) \). This is handled similarly, replacing Lemma 4.5 by Lemma 4.7.

Part (ii), “only if”: Let \( b^1 \) be a non-saturated vertex. There are two cases.

The first case is that there are no connecting arcs in \( \Theta(t) \) which end at \( b^1 \). Set \( b_0 = b \) and apply Lemma 5.5 in the notation of the lemma, \( \Theta(t) \) at \( b_0^1 \) looks like Figure 18. The lemma gives

\[ \text{def}_p(b) = \text{def}_p(b_0) = p(b_{-1}, b_1) - 1 = (\dagger) \]

However, since \( b^1 \) is non-saturated, the arc \( \{b_{-1}^1, b_1^1\} \) cannot be in \( \Theta(t) \). It follows that \( p(b_{-1}, b_1) > 1 \) so \( (\dagger) > 0 \) as desired.

The second case is that there are connecting arcs in \( \Theta(t) \) which end at \( b^1 \). Set \( b_0 = b \) and apply Lemma 5.6 in the notation of the lemma, \( \Theta(t) \) at \( b_0^1 \) looks like Figure 19. The lemma gives

\[ \text{def}_p(b) = \text{def}_p(b_0) = t(b_{-1}, v_j) + t(b_1, v_1) - 2 = (\ddagger) \]
However, since $b^j$ is non-saturated, it cannot be that both arcs $\{b_{l-1}^j, v_{j}^{\text{III}}\}$ and $\{b_{l}^j, v_{j}^{\text{III}}\}$ are in $\Theta(t)$. It follows that $t(b_{-1}, v_j) > 1$ or $t(b_1, v_1) > 1$ so $(\frac{1}{t}) > 0$ as desired.

(iii) and (iv) follow by symmetry. $\square$

Lemma 5.8. Let $\mathcal{T}$ be a good triangulation of $D_n$ such that $\Theta(t) \subseteq \mathcal{T}$.

(i) $b^l$ is saturated $\Rightarrow \mathcal{T}((b-1)^l, (b+1)^l) = p(b-1, b+1)$.  
(ii) $v^{\text{III}}$ is saturated $\Rightarrow \mathcal{T}((v-1)^{\text{III}}, (v+1)^{\text{III}}) = q(b-1, b+1)$.

Proof. (i) Since $b^l$ is saturated, Lemma 5.7(i) says $\text{def}_p(b) = 0$ which means 
\[ p(b-1, b+1) = 1 + (\text{the number of arcs in } \Theta(t) \text{ ending at } b^l) = (*) \]
by Definition 5.4. There are two cases.

The first case is that $b^l$ is strictly below an internal arc $\{a^l, d^l\} \in \Theta(t)$, whence $a < b < d$. Let $P$ be the finite polygon below $\{a^l, d^l\}$. The restriction $\Theta(t)_P$ is a triangulation of $P$ by Lemma 4.5. Since no arc in $\Theta(t)$ crosses $\{a^l, d^l\}$, we have
\[ (\ast) = 1 + (\text{the number of arcs in } \Theta(t)_P \text{ ending at } b^l) = (**) . \]

The inclusion $\Theta(t) \subseteq \mathcal{T}$ implies $\Theta(t)_P = \mathcal{T}_P$ so we get the first of the following equalities,
\[ (**) = 1 + (\text{the number of arcs in } \mathcal{T}_P \text{ ending at } b^l) \]
\[ = 1 + (\text{the number of arcs in } \mathcal{T} \text{ ending at } b^l) = (***) , \]
where the second equality holds since $a < b < d$ and since no arc in $\mathcal{T}$ crosses $\{a^l, d^l\} \in \mathcal{T}$.

Finally,
\[ (***) = \mathcal{T}((b-1)^l, (b+1)^l) \]
by Lemma 2.3(vi).

The second case is that $b^l$ is strictly between the connecting arcs $\{a^l, x^{\text{III}}\}$, $\{d^l, u^{\text{III}}\} \in \Theta(t)$. This is handled similarly, replacing Lemma 4.5 by Lemma 4.7.

(ii) follows by symmetry. $\square$

6. Case 1: $\text{SL}_2$-tilings with infinitely many entries equal to 1 in each of the first and third quadrants

Theorem 6.1. Let $t$ be an $\text{SL}_2$-tiling with infinitely many entries equal to 1 in each of the first and third quadrants.

Consider $D_2$, the disc with two accumulation points and intervals denoted I and III, see Figure 8.

Then $\mathcal{T} = \Theta(t)$ is a good triangulation of $D_2$ which satisfies $\Phi(\mathcal{T}) = t$; see Figure 20.

Proof. Since $t$ has infinitely many 1’s in the first and the third quadrant, Lemma 3.9 implies that there are integers $\cdots < b_{-1} < b_0 < b_1 < \cdots$ and $\cdots < v_{-1} < v_0 < v_1 < \cdots$ such that $t(b_m, v_m) = 1$ for each integer $m$. There are corresponding (connecting) arcs $a_m = \{b_m^l, v_m^{\text{III}}\}$ in $\mathcal{T} = \Theta(t)$. By Definition 1.10, the arcs $a_m$ can be viewed as dividing $D_2$ into finite polygons $R_m$, see Figure 20. For each $m$, Lemma 4.7 says that the arcs in $\mathcal{T}$ between the vertices of $R_m$ form a triangulation $\mathcal{T}_{R_m}$ of $R_m$. It follows that the whole of $\mathcal{T}$ is a triangulation
Figure 20. Outline of the triangulation $\mathcal{T} = \Theta(t)$ of $D_2$ corresponding to an SL$_2$-tiling $t$ with infinitely many entries equal to 1 in the first and the third quadrant, giving the connecting arcs $a_m$. Between the $a_m$ are the finite polygons $R_m$. The triangulation is good because the arcs $a_m$ block both accumulation points, see Definition 1.8.

To show $\Phi(\mathcal{T}) = t$ we use Lemma 3.8: Lemma 3.9 implies that there are integers $e < f$ and $g < h$ such that $t(e, h) = t(f, g) = t(f, h) = 1$. Hence the arcs $\{e^I, h^III\}$, $\{f^I, g^III\}$, $\{f^I, h^III\}$ are in $\mathcal{T}$ whence $\mathcal{T}(e^I, h^III) = \mathcal{T}(f^I, g^III) = \mathcal{T}(f^I, h^III) = 1$. This verifies condition (iii)' in Lemma 3.8.

The arcs $a_m$ mean that each vertex in intervals I and III is saturated. If $b^I$ and $v^III$ are given, Lemma 5.8 hence confirms conditions (i) and (ii) in Lemma 3.8.

□

7. Case 2: SL$_2$-tilings with infinitely many entries equal to 1 only in the first or the third quadrant

By symmetry, it is enough to let $t$ be an SL$_2$-tiling with infinitely many entries equal to 1 in the first quadrant, but not in the third quadrant.

Remark 7.1. Consider $D_3$, the disc with three accumulation points and intervals denoted I, II, and III as in the left part of Figure 9. We will construct a good triangulation $\mathcal{T}$ of $D_3$ such that $\Phi(\mathcal{T}) = t$. The overall structure of $\mathcal{T}$ is shown in Figure 21.

Note that if $t$ had infinitely many ones in the third quadrant, but not in the first quadrant, then we would instead use the disc with three accumulation points and intervals denoted I,
III, and IV as in the right part of Figure 9. The overall structure of $\Sigma$ would be the mirror image in a vertical line of Figure 21.

**Description 7.2** (The partial triangulation $\Theta(t)$). The black arcs in Figure 21 show the overall structure of $\Theta(t)$ in $D_3$ which we now describe:

Using Lemma 3.9 we can suppose that among the entries in $t$ which are equal to 1, the one which is furthest southwest is $t(b_0, v_0) = 1$. We can also choose integers $\cdots < b_{-1} < b_0$ and $v_0 < v_1 < \cdots$ such that $t(b_m, v_{-m}) = 1$ for $m \leq 0$. There are corresponding (connecting) arcs $a_m = \{b_m^I, v_{-m}^{III}\}$ in $\Theta(t)$.

The vertices $(b_0 - 1)^I$, $(b_0 - 2)^I$, $\ldots$ and $(v_0 + 1)^{III}$, $(v_0 + 2)^{III}$, $\ldots$ are saturated because of the arcs $a_m$. On the other hand, $b_0^I$ is non-saturated: It is not strictly between two connecting arcs in $\Theta(t)$, nor is it strictly below an internal arc in $\Theta(t)$ because such an arc would have to cross $\{b_0^I, v_0^{III}\} \in \Theta(t)$. 

**Figure 21.** Outline of the triangulation $\Sigma$ of $D_3$ corresponding to an $SL_2$-tiling $t$ with infinitely many entries equal to 1 only in the first quadrant. The arcs in $\Theta(t)$ are black. We add red arcs from the non-saturated vertices to define $\Sigma$. They connect each non-saturated vertex in intervals I and III to a block of consecutive vertices in interval II. The number of red arcs added at vertex $b^I$ is $def_p(b)$, and the number of red arcs added at vertex $v^{III}$ is $def_q(v)$. 

III, and IV as in the right part of Figure 9. The overall structure of $\Sigma$ would be the mirror image in a vertical line of Figure 21.
Let \( b_0 = \{ b_0^1, b_1^1 \} \) be either the longest internal arc in \( \Theta(t) \) going anticlockwise from \( b_0^1 \), or, if there are no such arcs, the edge going anticlockwise from \( b_0^1 \). This makes sense because \( \Theta(t) \) is locally finite by Lemma 4.4. It is easy to see that \( b_1^1 \) is also non-saturated, while the vertices strictly below \( b_0 \) are saturated.

We can repeat this and thereby get integers \( b_0 < b_1 < \cdots \) such that the non-saturated vertices in interval I are precisely \( b_0^1, b_1^1, \ldots \). A similar treatment provides integers \( \cdots < v_{-1} < v_0 \) such that the non-saturated vertices in interval III are precisely \( \ldots, v_{-1}^{III}, v_0^{III} \).

**Construction 7.3** (The triangulation \( \mathfrak{T} \)). We add arcs to \( \Theta(t) \) as follows to create a triangulation \( \mathfrak{T} \) of \( D_3 \); see Figure 21 where the added arcs are shown in red:

From the non-saturated vertex \( b_0^1 \), add def\(_p\)(\( b_0 \)) arcs ending at the consecutive vertices \( 0^{II}, -1^{II}, \ldots, \beta^{II} \) in interval II. Note that def\(_p\)(\( b_0 \)) > 0 by Lemma 5.7(ii). Then, from the non-saturated vertex \( b_1^1 \), add def\(_p\)(\( b_1 \)) arcs ending at the next block of consecutive vertices \( \beta^{II}, (\beta - 1)^{II}, \ldots \) in interval II. Continue in the same way with the non-saturated vertices \( b_2^1, b_3^1, \ldots \).

Finally, add arcs by a similar recipe from the non-saturated vertices \( v_0^{III}, v_{-1}^{III}, \ldots \), using def\(_q\) instead of def\(_p\).

**Theorem 7.4.** Let \( t \) be an SL\(_2\)-tiling with infinitely many entries equal to 1 only in the first or the third quadrant.

Then there is a good triangulation \( \mathfrak{T} \) of \( D_3 \) such that \( \Phi(\mathfrak{T}) = t \).

**Proof.** As remarked at the start of the section, it is enough by symmetry to let \( t \) be an SL\(_2\)-tiling with infinitely many entries equal to 1 in the first quadrant, but not in the third quadrant. Let \( \mathfrak{T} \) be as in Construction 7.3, see Figure 21.

Consider the finite polygons between the arcs \( a_m \) and below the arcs \( b_{-m} \) and \( v_m \) shown in Figure 21, see Definition 1.10. In each such polygon, \( \Theta(t) \) and hence \( \mathfrak{T} \) restricts to a triangulation by Lemmas 4.5 through 4.7. The arcs added at the end of Construction 7.3 (red in Figure 21) clearly complete \( \mathfrak{T} \) to a triangulation of \( D_3 \).

The arcs \( a_m \) block the accumulation point between intervals I and III, see Definition 1.8. The arcs added at the end of Construction 7.3 block the accumulation points between interval II and the other intervals. Hence \( \mathfrak{T} \) is a good triangulation of \( D_3 \).

To show \( \Phi(\mathfrak{T}) = t \) we use Lemma 3.8.

Lemma 3.3 implies that there are integers \( e < f \) and \( g < h \) so that \( t(e, h) = t(f, g) = t(f, h) = 1 \). Hence the arcs \( \{ e^1, h^{III} \}, \{ f^1, g^{III} \}, \{ f^1, h^{III} \} \) are in \( \mathfrak{T} \) whence \( \mathfrak{T}(e^1, h^{III}) = \mathfrak{T}(f^1, g^{III}) = \mathfrak{T}(f^1, h^{III}) = 1 \). This verifies condition (iii) in Lemma 3.8.

To verify Lemma 3.8 condition (i), note that if \( b \) is given such that \( b^1 \) is saturated, then the condition holds by Lemma 5.3(i). If \( b^1 \) is non-saturated, then \( b = b_m \) for some \( m \geq 0 \). Definition 5.4 gives

\[
(\text{the number of arcs in } \Theta(t) \text{ ending at } b^1) = p(b - 1, b + 1) - \text{def}_p(b) - 1.
\]

Compared to \( \Theta(t) \), the triangulation \( \mathfrak{T} \) has an additional def\(_p\)(\( b \)) arcs ending at \( b^1 \) by Construction 7.3 so

\[
(\text{the number of arcs in } \mathfrak{T} \text{ ending at } b^1) = p(b - 1, b + 1) - 1.
\]
On the other hand, $\mathfrak{T}$ is a good triangulation of $D_3$ so
\[(\text{the number of arcs in } \mathfrak{T} \text{ ending at } b^j) = \mathfrak{T}((b-1)^j, (b+1)^j) - 1\]
by Lemma 2.3(vi). The last two equations imply $p(b-1, b+1) = \mathfrak{T}((b-1)^j, (b+1)^j)$, verifying Lemma 3.8 condition (i).

Lemma 3.8 condition (ii) is verified by symmetry. □

8. Case 3: SL$_2$-tilings with entries equal to 1 only in a proper rectangle

Let $t$ be an SL$_2$-tiling with entries equal to 1 only in a proper rectangle. We do not permit all the entries equal to 1 to occur in a single row or a single column; these cases are handled separately in Section 9.

Construction 8.1 (The triangulation $\mathfrak{T}$). To construct $\mathfrak{T}$, proceed similarly to Construction 7.3.

The difference is that there are now only finitely many connecting arcs between intervals I and III. There will consequently be non-saturated vertices at both ends of each of intervals I and III, so to go from $\Theta(t)$ to a triangulation $\mathfrak{T}$ we will need two intervals in addition to I and III. Hence $\mathfrak{T}$ will be a triangulation of $D_4$.

This is shown in Figure 22 where the black arcs show the overall structure of $\Theta(t)$ and the red arcs are added to $\Theta(t)$ in order to obtain $\mathfrak{T}$. At the vertex $b^j$ we add $\text{def}_p(b)$ red arcs. At the vertex $v^{III}$ we add $\text{def}_q(v)$ red arcs.

Theorem 8.2. Let $t$ be an SL$_2$-tiling with entries equal to 1 only in a proper rectangle. We do not permit all the entries equal to 1 to occur in a single row or a single column.

Then there is a good triangulation $\mathfrak{T}$ of $D_4$ such that $\Phi(\mathfrak{T}) = t$.

Proof. Using $\mathfrak{T}$ from Construction 8.1 (see Figure 22) the proof is similar to the proof of Theorem 7.4 □

9. Case 4: SL$_2$-tilings with entries equal to 1 only in a single row or column

By symmetry, it is enough to let $t$ be an SL$_2$-tiling with entries equal to 1 only in a single row. We do not permit $t$ to have fewer than two entries equal to 1. The case of a unique entry equal to 1 is handled in Section 10. The case of no entries equal to 1 is handled in Section 13.

By Lemma 3.4 only finitely many entries of $t$ are equal to 1. Let them be $t(b_0, v_1) = \cdots = t(b_0, v_j) = 1$ with $j \geq 2$.

Description 9.1 (The partial triangulation $\Theta(t)$). The black arcs in Figure 23 show the overall structure of $\Theta(t)$ which we now describe:

The only connecting arcs in $\Theta(t)$ are $a_\ell = \{b_0^{\text{III}}, v_\ell\}$ for $\ell \in \{1, \ldots, j\}$. The vertices $(v_1+1)^{\text{III}}, \ldots, (v_j - 1)^{\text{III}}$ strictly between $a_1$ and $a_j$ are saturated, see Definition 5.2.
Figure 22. Outline of the triangulation $\mathcal{T}$ of $D_4$ corresponding to an $SL_2$-tiling $t$ with entries equal to 1 only in a proper rectangle. The arcs in $\Theta(t)$ are black. We add red arcs from the non-saturated vertices to define $\mathcal{T}$. They connect each non-saturated vertex in intervals I and III to a block of consecutive vertices in interval II or IV. The number of red arcs added at the vertex $b^I$ is $def_p(b)$, and the number of red arcs added at the vertex $v^{III}$ is $def_q(v)$.

On the other hand, $b^I_0$ is non-saturated: It is not strictly between two connecting arcs in $\Theta(t)$, nor is it strictly below an internal arc in $\Theta(t)$ because such an arc would have to cross $\{b^I_0, v^{III}_1\} \in \Theta(t)$. Similarly, $v^{III}_1$ and $v^{III}_{j+1}$ are non-saturated.

Let $b_0 = \{b^I_0, b^I_1\}$ be either the longest internal arc in $\Theta(t)$ going anticlockwise from $b^I_0$ or, if there are no such arcs, the edge going anticlockwise from $b^I_0$. This makes sense because $\Theta(t)$ is locally finite by Lemma 4.4. It is easy to see that $b^I_1$ is also non-saturated, while the vertices strictly below $b_0$ are saturated.

We can repeat this to both sides of $b_0$ and thereby get integers $\ldots < b_{-1} < b_0 < b_1 < \ldots$ such that the non-saturated vertices in interval I are precisely the $b^I_\ell$.

A similar treatment provides integers $\ldots < v_{-1} < v_0 < v_1$ and $v_j < v_{j+1} < v_{j+2} \ldots$ such that the non-saturated vertices in interval III are precisely $\ldots, v^{III}_{-1}, v^{III}_0, v^{III}_1, v^{III}_j, v^{III}_{j+1}, v^{III}_{j+2}, \ldots$.

**Lemma 9.2.** With the notation of Description 9.1 and Figure 22, we have

$$def_p(b_0) - (t(b_{-1}, v_j) - 1) > 0.$$ 

**Proof.** We have

$$def_p(b_0) - (t(b_{-1}, v_j) - 1) = t(b_1, v_1) - 1 > 0$$
where the equality is by Lemma 5.6 and the inequality is because \( t(b_1, v_1) \neq 1 \) by assumption.

\[ \square \]

**Construction 9.3** (The triangulation \( T \)). We add arcs to \( \Theta(t) \) as follows to create a triangulation \( T \) of \( D_4 \); see Figure 23 where the added arcs are shown in red:

From vertex \( b_0^t \), add \( t(b_0, v_j) - 1 \) arcs ending at the consecutive vertices \( 0^IV, 1^IV, \ldots, \phi^IV \). Note that \( t(b_0, v_j) - 1 > 0 \) since \( b_0 \neq b_0 \).

From vertex \( b_1^t \), add \( \text{def}_p(b_1) \) arcs ending at the next block of consecutive vertices in interval IV. Note that \( \text{def}_p(b_1) > 0 \) by Lemma 5.7(ii). Continue in the same fashion with vertices \( b_1^t, b_3^t, \ldots \).

Going back to vertex \( b_0^t \), add \( \text{def}_p(b_0) - (t(b_0, v_j) - 1) \) arcs ending at the consecutive vertices \( 0^II, -1^II, \ldots, \beta^II \). This makes sense because \( \text{def}_p(b_0) - (t(b_0, v_j) - 1) > 0 \) by Lemma 5.2.

From vertex \( b_1^t \), add \( \text{def}_p(b_1) \) arcs ending at the next block of consecutive vertices in interval II. Continue in the same fashion with vertices \( b_1^t, b_3^t, \ldots \).

Finally, add arcs by a similar recipe from vertices \( \ldots, v^III, v^III_0, v^III_1, v^III_j, v^III_{j+1}, v^III_{j+2}, \ldots \)

using \( \text{def}_q \) instead of \( \text{def}_p \).

**Theorem 9.4.** Let \( t \) be an \( SL_2 \)-tiling with at least two entries equal to 1, and assume these occur only in a single row or in a single column.

Then there is a good triangulation \( T \) of \( D_4 \) such that \( \Phi(T) = t \).

**Proof.** As remarked at the start of the section, it is enough by symmetry to let \( t \) be an \( SL_2 \)-tiling with entries equal to 1 only in a single row. Let \( T \) be as in Construction 9.3, see Figure 23.

Consider the finite polygons between the arcs \( a_1 \) and \( a_j \) and below the arcs \( b_m \) and \( v_m \) shown in Figure 23 see Definition 5.1. In each such polygon, \( \Theta(t) \) and hence \( T \) restricts to a triangulation by Lemmas 4.5 through 4.7. The arcs added at the end of Construction 9.3 (red in Figure 23) clearly complete \( T \) to a triangulation of \( D_4 \). These arcs also block all four accumulation points so \( T \) is a good triangulation.

To show \( \Phi(T) = t \) we use Lemma 3.8.

Since \( a_1, a_1 \in T \) we have

\[
t(b_0, v_1) = 1 = T(b_0^I, v^III_1), \quad t(b_0, v_j) = 1 = T(b_0^I, v^III_j), \quad (9.1)
\]

Moreover, the vertices \( b^I_{-1}, b_0^I, v^III_j, 0^IV, \ldots, \phi^IV \) can be viewed as the vertices of a finite polygon \( P \) inside which \( T \) restricts to a triangulation \( T_P \). In \( P \), the vertices \( b^I_{-1}, b_0^I, v^III_j \), are consecutive whence

\[
T_P(b^I_{-1}, v^III_j) = 1 + (\text{the number of arcs in } T_P \text{ ending at } b_0^I) = t(b_{-1}, v_j)
\]

where the first equality is by Lemma 2.3(vi) and the second equality is by the construction of \( T \), see Construction 9.3 and Figure 23. It follows that

\[
t(b_{-1}, v_j) = T_P(b^I_{-1}, v^III_j) = T(b^I_{-1}, v^III_j), \quad (9.2)
\]

where the second equality is by Remark 2.2. Equations (9.1) and (9.2) verify condition (iii)’ in Lemma 3.8 with \( e = b_{-1}, f = b_0, g = v_1, h = v_j \).
Let $t$ be an SL₂-tiling in which $t(b_0, v_1) = 1$ is the unique entry equal to 1.

**Construction 10.1** (The triangulation $\mathcal{T}$). To construct $\mathcal{T}$, proceed similarly to Construction 9.3 with a small tweak.

The black arcs in Figure 24 show the overall structure of $\Theta(t)$ which can be obtained by the method used in Description 9.1. However, there is now only a single connecting arc $a = \{b_0^I, v_1^{III}\}$.

When adding red arcs to obtain the triangulation $\mathcal{T}$ of $D_4$, the red arcs go to interval II or interval IV, depending on which side of $a$ they are on. We always add as many red arcs at a vertex as dictated by the defect at that vertex.
At vertices $b_0^I$ and $v_1^{III}$ only, there are red arcs to both intervals $II$ and $IV$.

From $b_0^I$ there are $t(b_{-1}, v_1) - 1$ arcs to $IV$. Note that by Lemma 5.6, this number is strictly smaller than $\text{def}_p(b_0)$, so there will also be at least one arc from $b_0^I$ to $II$.

From $v_1^{III}$ there are $t(b_0, v_2) - 1$ arcs to $IV$. Again, this number is strictly smaller than $\text{def}_q(v_1)$, so there will also be at least one arc from $v_1^{III}$ to $II$.

**Theorem 10.2.** Let $t$ be an $SL_2$-tiling with a unique entry equal to 1. Then there is a good triangulation $\mathcal{X}$ of $D_4$ such that $\Phi(\mathcal{X}) = t$.

**Proof.** We suppose $t(b_0, v_1) = 1$ and let $\mathcal{X}$ be as in Construction 10.1, see Figure 24.

Arguing like the proof of Theorem 9.3, the choices at the end of Construction 10.1 imply that $\mathcal{X}$ satisfies

$$t(b_{-1}, v_1) = \mathcal{X}(b_{-1}^I, v_1^{III}), \quad t(b_0, v_2) = \mathcal{X}(b_0^I, v_2^{III}).$$
We also have
\[ t(b_0, v_1) = 1 = \mathfrak{T}(b_0, v_1^{III}) \]
so condition (iii) of Lemma 3.8 holds with \( e = b_{-1}, f = b_0, g = v_1, h = v_2 \). Now proceed like the proof of Theorem 9.4. \( \square \)

11. A lemma on Conway–Coxeter friezes

Definition 11.1. In this section we will write \( \mathcal{S} = \left\{ \begin{pmatrix} i & j \\ k & \ell \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid i, j, k, \ell \geq 0 \right\} \).

The following lemma was proved in [6, thm. 6.2] and [8, lem. 4.1].

Lemma 11.2. Each \( X \) in \( \mathcal{S} \) can be obtained by starting with the \( 2 \times 2 \) identity matrix \( E \) and performing a sequence of operations of the form: add one of the rows to the other row, or add one of the columns to the other column.

Lemma 11.3. Let \( r \) and \( m \) be coprime integers with \( 0 < r < m \). There exists \( \begin{pmatrix} i & j \\ k & \ell \end{pmatrix} \) in \( \mathcal{S} \) such that \( r = i + j, m = i + j + k + \ell \).

Proof. Set \( n = m - r \). Then \( r \) and \( n \) are coprime so there are integers \( s, p \) with \( sr - pn = 1 \).

We can replace \( s, p \) with \( s + tn, p + tr \) so may assume \( 0 \leq p < r \). It follows that \( 0 \leq pn < rn \), and since \( pn = rs - 1 \) this reads \( 0 \leq rs - 1 < rn \), that is \( 1 \leq rs < rn + 1 \), that is \( 1 \leq rs \leq rn \). Hence \( 1 \leq s \leq n \).

It is now straightforward to check that
\[ \begin{pmatrix} i & j \\ k & \ell \end{pmatrix} = \begin{pmatrix} r - p & p \\ n - s & s \end{pmatrix} \]
can be used in the lemma. \( \square \)

Lemma 11.4. Let \( r \) and \( m \) be coprime integers with \( 0 < r < m \).

There exists a finite polygon \( R \) which has two adjacent vertices \( \chi \) and \( \chi^+ = \beta \), two adjacent vertices \( \gamma \) and \( \gamma^+ = \varphi \), and a triangulation \( \mathcal{G} \) such that
\[ r = \mathcal{G}(\chi, \gamma) + \mathcal{G}(\chi, \varphi), \]
\[ m = \mathcal{G}(\chi, \gamma) + \mathcal{G}(\chi, \varphi) + \mathcal{G}(\beta, \gamma) + \mathcal{G}(\beta, \varphi). \]

Proof. By Lemma 11.3 there is
\[ X = \begin{pmatrix} i & j \\ k & \ell \end{pmatrix} \]
in \( \mathcal{S} \) with \( r = i + j, m = i + j + k + \ell \). It is hence enough to show the following:

(a) There exists a finite polygon \( R \) which has two adjacent vertices \( \chi \) and \( \chi^+ = \beta \), two adjacent vertices \( \gamma \) and \( \gamma^+ = \varphi \), and a triangulation \( \mathcal{G} \) such that \( X \) is equal to
\[ Y = \begin{pmatrix} \mathcal{G}(\chi, \gamma) & \mathcal{G}(\chi, \varphi) \\ \mathcal{G}(\beta, \gamma) & \mathcal{G}(\beta, \varphi) \end{pmatrix}. \] (11.1)
To show that (a) holds for each $X$ in $\mathcal{S}$, it is enough to show the following by Lemma 11.2.

(i) If $X = E$ then (a) holds.

(ii) If (a) holds for a matrix $X$ in $\mathcal{S}$, then it also holds for the matrices $X'$ obtained from $X$ by operations of the form: add one of the rows to the other row, or add one of the columns to the other column.

(i) is true since for $X = E$, we can let $R$ be the 2-gon with $\chi = \varphi$ equal to one of the vertices, $\beta = \gamma$ equal to the other, and $\mathcal{G}$ empty.

(ii): Suppose that (a) holds for $X$ in $\mathcal{S}$ with the polygon $R$ and triangulation $\mathcal{G}$. Let $\Psi$ denote one of the operations described in (ii) and perform $\Psi$ on $X$ to obtain a new matrix $X'$. To show that (a) holds for $X'$, it is enough to show that there is a way to change $R$ and $\mathcal{G}$ to $R'$ and $\mathcal{G}'$ such that $\Psi$ is performed on the matrix $Y$ in equation (11.1).

We specialise to $\Psi$ being the operation of adding the first row to the second, since the other operations have similar proofs. To go from $R$ and $\mathcal{G}$ to $R'$ and $\mathcal{G}'$, it turns out that we can glue an “ear” as illustrated by going from Figure 25 to Figure 26. That is, $R'$ keeps the vertices of $R$, with $\beta$ renamed $\beta_{\text{old}}$, and acquires a new vertex, $\beta_{\text{new}}$, between $\beta_{\text{old}}$ and $\chi$. And $\mathcal{G}'$ keeps the arcs of $\mathcal{G}$ and acquires a new arc, $\{\chi, \beta_{\text{old}}\}$.

It is clear from Definition 2.1 that for an arbitrary pair of the vertices $\chi, \beta_{\text{old}}, \gamma, \varphi$ in Figure 26 Conway–Coxeter counting on $\mathcal{G}$ and $\mathcal{G}'$ gives the same result. Hence the first row of $Y$ is unchanged by going to $R'$ and $\mathcal{G}'$.

If $\gamma$ is not equal to $\beta_{\text{old}}$ or $\chi$ then the arcs $\{\beta_{\text{old}}, \chi\}$ and $\{\beta_{\text{new}}, \gamma\}$ in $R'$ cross, so the Ptolemy formula in Lemma 2.3(v) gives

$$\mathcal{G}'(\beta_{\text{old}}, \chi) \mathcal{G}'(\beta_{\text{new}}, \gamma) = \mathcal{G}'(\beta_{\text{old}}, \gamma) \mathcal{G}'(\beta_{\text{new}}, \chi) + \mathcal{G}'(\beta_{\text{old}}, \beta_{\text{new}}) \mathcal{G}'(\chi, \gamma).$$

Since $\{\beta_{\text{old}}, \chi\}$ is in $\mathcal{G}'$ and $\{\beta_{\text{new}}, \gamma\}$, $\{\beta_{\text{old}}, \beta_{\text{new}}\}$ are edges, the corresponding factors in the equation are equal to 1. This gives the first of the following equalities:

$$\mathcal{G}'(\beta_{\text{new}}, \gamma) = \mathcal{G}'(\beta_{\text{old}}, \gamma) + \mathcal{G}'(\chi, \gamma) = \mathcal{G}(\beta_{\text{old}}, \gamma) + \mathcal{G}(\chi, \gamma).$$
Figure 26. Compared to Figure 25, an “ear” has been glued to the triangulated polygon $R$, resulting in a new triangulated polygon $R'$.

This also holds trivially for $\gamma$ equal to $\beta_{\text{old}}$ or $\chi$, and the same computation works with $\varphi$ instead of $\gamma$. Hence the first row of $Y$ is added to the second by going to $R'$ and $\mathcal{G}'$. □

12. An SL$_2$-tiling with no entry equal to 1 has a unique minimum

The following lemma is obvious.

**Lemma 12.1.** Suppose that $\begin{pmatrix} i & j \\ k & \ell \end{pmatrix}$ is in SL$_2(\mathbb{Z})$ and that each entry is $\geq 1$. If two entries which are horizontal or vertical neighbours are equal, then they are equal to 1.

**Lemma 12.2.** Suppose that $\begin{pmatrix} i & j \\ k & \ell \end{pmatrix}$ is in SL$_2(\mathbb{Z})$, has each entry $\geq 2$, and that $j < \ell$, $k < \ell$. Then $i < j$, $i < k$.

*Proof.* Lemma 12.1 implies that we cannot have $i = j$. If we had $i > j$ then we would have $i\ell > j\ell$. But we know $\ell > k$ whence $j\ell > jk$. Combining the inequalities would give $i\ell > j\ell > jk$ so the determinant of the matrix would be $i\ell - jk \geq 2$ which is false.

It follows that $i < j$, and $i < k$ is proved by considering the transpose. □

**Lemma 12.3.**

(i) If $t(b, v)$ is a local maximum in the $b$’th row of $t$ in the sense that

$$t(b, v - 1) < t(b, v) > t(b, v + 1),$$

then deleting the $v$’th column from $t$ gives a new SL$_2$-tiling.

(ii) If $t(b, v)$ is a local maximum in the $v$’th column of $t$ in the sense that

$$t(b - 1, v) < t(b, v) > t(b + 1, v),$$

then deleting the $b$’th row from $t$ gives a new SL$_2$-tiling.
Figure 27. A minimal entry $m$ appearing twice in an $SL_2$-tiling would have to do so in one of these patterns.

Proof. (i): The second Ptolemy relation of Lemma 3.3(ii) gives \(q(v - 1, v + 1)t(c, v) = q(v - 1, v)t(c, v + 1) + q(v, v + 1)t(c, v - 1)\) for each $c$, that is

\[ q(v - 1, v + 1)t(c, v) = t(c, v + 1) + t(c, v - 1) \]

for each $c$. It is elementary from this that deleting from $t$ the $v$’th column with entries $t(-, v)$ gives a new $SL_2$-tiling.

(ii) follows by symmetry. □

Lemma 12.4. Let $t$ be an $SL_2$-tiling with no entry equal to 1. Then $t$ has a unique minimal entry.

Proof. If the minimal entry $m \geq 2$ occurred twice in $t$, then it would do so in one of the patterns shown in Figure 27. We treat the cases separately.

(i): Suppose that the $b$’th row of $t$ has at least two entries equal to $m$. Pick two such entries which have no entries between them equal to $m$. Then either the two $m$’s are neighbours, or each entry between them is $> m$.

In the latter case, somewhere between the two $m$’s is a local maximum $t(b, v)$ in the sense of Equation (12.1). By Lemma 12.3(i), we can delete column number $v$ and get a new $SL_2$-tiling. If we iterate this process, then all entries between the two $m$’s will eventually be deleted, giving an $SL_2$-tiling where the two $m$’s are neighbours.

However, two neighbouring $m$’s would contradict Lemma 12.1.

(ii): Symmetric to (i), replacing Lemma 12.3(i) with Lemma 12.3(ii).

(iii): Suppose that the two entries equal to $m$ are $t(b, v) = t(c, w) = m$ with $b < c$, $v < w$. Then the Ptolemy relation in Lemma 3.3(iii) implies

\[ m^2 = t(b, w)t(c, v) + p(b, c)q(v, w). \]

However, this contradicts that $t(b, w), t(c, v) \geq m$ while $p(b, c), q(v, w) \geq 1$.

(iv): Suppose that the two entries equal to $m$ are $t(b, v) = t(c, w) = m$ with $b > c$, $v < w$. Repeat as many times as possible the process of seeking out local maxima among the entries $t(b, v + 1), \ldots, t(b, w - 1)$ and $t(c, v + 1), \ldots, t(c, w - 1)$ and deleting the corresponding columns using Lemma 12.3(i). Then repeat as many times as possible the process of seeking
Figure 28. If an SL$_2$-tiling $t$ has no entries equal to 1 but has minimal entry $m$ occurring twice in the pattern from Figure 27(iv), then we can achieve the inequalities shown here by deleting rows and columns from $t$.

out local maxima among the entries $t(c+1,v), \ldots, t(b-1,v)$ and $t(c+1,w), \ldots, t(b-1,w)$ and deleting the corresponding rows using Lemma [12.3(ii)].

The resulting SL$_2$-tiling $t'$ still contains the two entries equal to $m$ which we started with, and they are still minimal. Since the local maxima are gone, the entries of $t'$ satisfy the inequalities in Figure 28. Note that the inequalities are sharp by Lemma [12.1] because each entry of $t'$ is $\geq 2$.

Starting from the lower right corner of Figure 28 and moving left using Lemma [12.2] repeatedly would give that the two lower rows of Figure 28 satisfied the following inequalities.

$$\begin{align*}
* & < * < \cdots < * \\
\wedge & < \wedge \\
m & < * < \cdots < *
\end{align*}$$

However, the leftmost inequality contradicts Figure 28. □

13. Case 6: SL$_2$-tilings with no entry equal to 1

Let $t$ be an SL$_2$-tiling with no entry equal to 1 and unique minimal entry $t(b,v)$, see Lemma [12.4].

**Notation 13.1.** Let us describe part of what is shown with black arcs in Figure 29. Since $\Theta(t)$ is locally finite by Lemma [4.4] we can let $a < b < c$ be such that

- $b' = \{b', a\}$ is the longest internal arc in $\Theta(t)$ going clockwise from $b'$, or, if there are no such arcs, the edge going clockwise from $b'$,
- $b'' = \{b', c\}$ is the longest internal arc in $\Theta(t)$ going anticlockwise from $b'$, or, if there are no such arcs, the edge going anticlockwise from $b'$.

Likewise, we can let $v < w$ be such that

- $v'' = \{v', w''\}$ is the longest internal arc in $\Theta(t)$ going anticlockwise from $v''$, or, if there are no such arcs, the edge going anticlockwise from $v''$. 

\[ \begin{array}{c}
* > * > \cdots > m \\
\vee \quad \wedge \\
\vdots \quad \vdots \\
\vee \quad \wedge \\
* \quad * \\
\vee \quad \wedge \\
m < * < \cdots < *
\end{array} \]
Lemma 13.2. Consider the following divisions with remainders:
\[ t(a, v) = \ell t(b, v) + r, \quad 0 \leq r < t(b, v), \]
\[ t(b, w) = mt(b, v) + s, \quad 0 \leq s < t(b, v). \]

Then
\[ (i) \quad 0 < \ell < \text{def}_p(b), \]
\[ (ii) \quad 0 < m < \text{def}_q(v), \]
\[ (iii) \quad rs \equiv 1 \mod t(b, v). \] Note that since \( 0 \leq r, s < t(b, v) \) by definition, it follows that \( 0 < r, s < t(b, v) \) and that \( r, s \) are inverses modulo \( t(b, v) \).

Proof. (i): Since \( t \) has no entries equal to 1, there are no connecting arcs in \( \Theta(t) \). In particular, \( \Theta(t) \) has no connecting arcs ending at \( b^1 \), so Lemma [5.5] can be applied; see also Figure [18]. In the lemma and the figure, we must set \( b_{-1} = a, b_0 = b, b_1 = c \) to match the notation of this section. The lemma gives
\[ p(a, c) = \text{def}_p(b) + 1. \]

The Ptolemy relation in Lemma [3.3] implies
\[ p(a, c)t(b, v) = p(a, b)t(c, v) + p(b, c)t(a, v). \]

Here \( p(a, b) = p(b, c) = 1 \) since \( \{a^1, b^1\}, \{b^1, c^1\} \in \Theta(t) \), so combining the displayed equations shows \( (\text{def}_p(b) + 1)t(b, v) = t(c, v) + t(a, v) \), that is,
\[ t(a, v) = (\text{def}_p(b) + 1)t(b, v) - t(c, v) < \text{def}_p(b)t(b, v) \]

where the inequality holds since \( t(b, v) \) is the unique minimal entry of \( t \). This implies part (i).

(ii): Follows by symmetry.

(iii): The Ptolemy relation in Lemma [3.3] implies
\[ t(a, v)t(b, w) = t(a, w)t(b, v) + p(a, b)q(v, w). \]

Here \( p(a, b) = q(v, w) = 1 \) since \( \{a^1, b^1\}, \{v^\text{III}, w^\text{III}\} \in \Theta(t) \) so
\[ t(a, v)t(b, w) \equiv 1 \mod t(b, v). \]

Since \( t(a, v) \equiv r \mod t(b, v) \) and \( t(b, w) \equiv s \mod t(b, v) \) by definition of \( r \) and \( s \), part (iii) follows. \( \square \)

Remark 13.3. Parts (i) and (ii) of the lemma imply \( \text{def}_p(b) \geq 2 \) and \( \text{def}_q(v) \geq 2 \) so \( b^1 \) and \( v^\text{III} \) are non-saturated vertices by Lemma [5.7].

Description 13.4 (The partial triangulation \( \Theta(t) \)). The black arcs in Figure [29] show the overall structure of \( \Theta(t) \) which we now describe:

We will set \( b_0 = b \) and \( v_0 = v \). The vertex \( b^1_0 \) is non-saturated by Remark [13.3]. Let \( b_0 = \{b^1_0, b^1_1\} \) be either the longest internal arc in \( \Theta(t) \) going anticlockwise from \( b^1_0 \), or, if there are no such arcs, the edge going anticlockwise from \( b^1_0 \). This makes sense because \( \Theta(t) \) is locally finite by Lemma [14]. It is easy to see that \( b^1_1 \) is also non-saturated, while the vertices strictly below \( b_0 \) are saturated.

We can repeat this to both sides of \( b_0 \) and thereby get integers \( \ldots < b_{-1} < b_0 < b_1 < \ldots \) such that the non-saturated vertices in interval I are precisely \( \ldots, b^1_{-1}, b^1_0, b^1_1, \ldots \).
Figure 29. Outline of the triangulation $\mathcal{T}$ of $D_4$ corresponding to an SL$_2$-tiling $t$ with no entry equal to 1. The arcs in $\Theta(t)$ are black. We add red arcs from the non-saturated vertices to define $\mathcal{T}$. The total number of red arcs added is given by the defect at the relevant vertex. The vertices $b_0$ and $v_0^{\text{III}}$ are the only ones with red arcs both to intervals II and IV. These vertices are chosen by $t(b_0, v_0)$ being the unique minimal entry in $t$.

A similar treatment provides integers $\cdots < v_{-1} < v_0 < v_1 < \cdots$ such that the non-saturated vertices in interval III are precisely $\cdots, v_{-1}^{\text{III}}, v_0^{\text{III}}, v_1^{\text{III}}, \cdots$.

Note that we already considered some "longest arcs" in Notation 13.1 and that hence, $a = b_{-1}, b = b_0, c = b_1, v = v_0, w = v_1$.

Construction 13.5 (The triangulation $\mathcal{T}$). We add arcs to $\Theta(t)$ as follows to create a triangulation $\mathcal{T}$ of $D_4$; see Figure 29 where the added arcs are shown in red:

The vertices $\beta^{\text{II}}, \gamma^{\text{II}}, \varphi^{\text{IV}}, \chi^{\text{IV}}$ will be explained at the end; for the time being, consider them fixed and add the arcs $\{\chi^{\text{IV}}, \beta^{\text{II}}\}$ and $\{\gamma^{\text{II}}, \varphi^{\text{IV}}\}$.

Recall the numbers $\ell, m, r$ from Lemma 13.2.

From vertex $b_0^I$, add $\ell$ arcs ending at the consecutive vertices $\chi^{\text{IV}}, (\chi + 1)^{\text{IV}}, \ldots, \psi^{\text{IV}}$. Also from vertex $b_0^I$, add $\text{def}_\rho(b_0) - \ell$ arcs ending at the consecutive vertices $\beta^{\text{II}}, (\beta - 1)^{\text{II}}, \ldots$. This makes sense because $\ell$ and $\text{def}_\rho(b_0) - \ell$ are both positive by Lemma 13.2(i).

From vertex $b_1^I$, add $\text{def}_\rho(b_1)$ arcs ending at the next block of consecutive vertices in interval II. Continue in the same fashion with vertices $b_2^I, b_3^I, \ldots$. 
From vertex $b^l_{-1}$, add def$_p(b_{-1})$ arcs ending at the next block of consecutive vertices in interval IV. Continue in the same fashion with vertices $b^l_{-2}$, $b^l_{-3}$, ... 

Add arcs by a similar recipe from the vertices $\ldots, \nu^m_{\text{III}}, \nu^m_{\text{IV}}, \nu^m_{\text{V}}, \ldots$ using $m$, def$_q$, $\gamma^m$, $\varphi^m$, instead of $\ell$, def$_p$, $\beta^m$, $\chi^m$.

Now consider the finite polygon $R$ between the arcs $\{\chi^m, \beta^m\}$ and $\{\gamma^m, \varphi^m\}$. Viewed in $R$, each of $\chi^m$, $\beta^m$ and $\gamma^m$, $\varphi^m$ is a pair of adjacent vertices. By Lemma 13.2(iii) we may apply Lemma 11.4, and thus, if we space each pair $\beta^m$, $\gamma^m$ and $\varphi^m$, $\chi^m$ suitably, then there is a triangulation $\mathcal{S}$ of $R$ which satisfies

$$r = \mathcal{S}(\chi^m, \gamma^m) + \mathcal{S}(\chi^m, \varphi^m),$$

$$t(b, v) = \mathcal{S}(\chi^m, \gamma^m) + \mathcal{S}(\chi^m, \varphi^m) + \mathcal{S}(\beta^m, \gamma^m) + \mathcal{S}(\beta^m, \varphi^m).$$ (13.1)

The final step in constructing $\mathfrak{T}$ is to add to it the arcs in $\mathcal{S}$.

**Proposition 13.6.** The $\mathfrak{T}$ of Construction 13.5 is a good triangulation of $D_4$.

**Proof.** Consider the finite polygons below the arcs $b_j$ and $v_j$ shown in Figure 29. In each such polygon, $\Theta(t)$ and hence $\mathfrak{T}$ restricts to a triangulation by Lemmas 4.5 through 4.7. The arcs added in Construction 13.5 (red in Figure 29) clearly complete $\mathfrak{T}$ to a triangulation of $D_4$. The added arcs also block the accumulation points of $\mathfrak{T}$ to a triangulation of $D_4$ so $\mathfrak{T}$ is a good triangulation. □

The following lemma collects several consequences of the Ptolemy relation in Lemma 2.3(v) applied to $\mathfrak{T}$.

**Lemma 13.7.** The numbers $\ell$ and $m$ from Lemma 13.2 and the triangulation $\mathfrak{T}$ from Construction 13.5 satisfy the following.

(i) (a) $\mathfrak{T}(a^i, \beta^m) = \ell + 1$.  
    (b) $\mathfrak{T}(v^m, \gamma^m) = m + 1$.  
(ii) $\mathfrak{T}(\chi^m, v^m) = \mathfrak{T}(\varphi^m, b^m) \equiv 1 \mod \mathfrak{T}(b^m, v^m)$.  
(iii) (a) $\mathfrak{T}(\chi^m, \gamma^m) + \mathfrak{T}(\chi^m, \varphi^m) = \mathfrak{T}(\chi^m, v^m)$.  
    (b) $\mathfrak{T}(\varphi^m, \beta^m) + \mathfrak{T}(\varphi^m, \chi^m) = \mathfrak{T}(\varphi^m, b^m)$.  
    (c) $\mathfrak{T}(\beta^m, \gamma^m) + \mathfrak{T}(\beta^m, \varphi^m) = \mathfrak{T}(\beta^m, v^m)$.  
(iv) (a) $\mathfrak{T}(\beta^m, v^m) + \mathfrak{T}(\chi^m, v^m) = \mathfrak{T}(b^m, v^m)$.  
    (b) $\mathfrak{T}(\gamma^m, b^m) + \mathfrak{T}(\varphi^m, b^m) = \mathfrak{T}(b^m, v^m)$.  
(v) $\mathfrak{T}(b^m, v^m) = \mathfrak{T}(\chi^m, \gamma^m) + \mathfrak{T}(\chi^m, \varphi^m) + \mathfrak{T}(\beta^m, \gamma^m) + \mathfrak{T}(\beta^m, \varphi^m)$.  
(vi) (a) $(\mathfrak{T}(a^i, \beta^m) - 1)\mathfrak{T}(b^m, v^m) + \mathfrak{T}(\chi^m, v^m) = \mathfrak{T}(a^i, v^m)$.  
    (b) $(\mathfrak{T}(w^m, \gamma^m) - 1)\mathfrak{T}(b^m, v^m) + \mathfrak{T}(\varphi^m, b^m) = \mathfrak{T}(b^m, w^m)$.  

**Proof.** (i) Figure 29 shows that the vertex set $\{a^i, b^j, \beta^m, \chi^m, \ldots, v^m\}$ is compatible with $\mathfrak{T}$ in the sense of Definition 1.10. These vertices span a finite polygon $P$ and $\mathfrak{T}$ restricts to a triangulation $\mathfrak{T}_P$ of $P$. In $P$, the vertices $a^i, b^j, \beta^m$ are consecutive, so Lemma 2.3(vi) gives

$\mathfrak{T}_P(a^i, \beta^m) = 1 + \text{(the number of arcs in } \mathfrak{T}_P \text{ ending at } b^j) = 1 + \ell$.

By Remark 2.2 this implies part (i)(a), and part (i)(b) follows by symmetry.
We have by construction, in the finite polygon that

\[ T \]

Let

\[ \text{Proof.} \]

(v) Combine parts (iii)(a), (iii)(c), and (iv)(a).

(iv) The arcs

\[ \text{Combining with part (iv)(a) gives} \]

\[ \text{This proves (iv)(a) because} \]

\[ T \]

\[ (v) \text{Combine parts (iii)(a), (iii)(c), and (iv)(a).} \]

\[ (v) \text{The arcs} \{\beta^I, \chi^I\} \text{and} \{b^I, v^II\} \text{cross so the Ptolemy relation gives} \]

\[ \text{Combining with part (iv)(b) (c) follow by symmetry.} \]

\[ (vi) \text{The arcs} \{a^I, \beta^II\} \text{and} \{b^I, v^III\} \text{cross so the Ptolemy relation gives} \]

\[ \text{Combining with part (iv)(a) gives} \]

\[ \text{which can be reorganised into (vi)(a). Part (vi)(b) follows by symmetry.} \]

\[ \text{Theorem 13.8. Let} \ t \ \text{be an SL}_2\text{-tiling with no entry equal to} \ 1. \]

Then there is a good triangulation \( \mathcal{T} \) of \( D_4 \) such that \( \Phi(\mathcal{T}) = t \).

\[ \text{Proof.} \]

\[ \text{Let} \ \mathcal{T} \ \text{be as in Construction 13.3, see Figure 29. It was proved in Proposition 13.6 that} \ \mathcal{T} \ \text{is a good triangulation of} \ D_4. \ \text{To show} \ \Phi(\mathcal{T}) = t \ \text{we use Lemma 3.8 in which we first verify condition (iii).} \]

\[ \text{By construction, in the finite polygon} \ R \ \text{between the arcs} \ \{\chi^I, \beta^II\} \ \text{and} \ \{\gamma^I, \phi^IV\}, \ \text{the triangulation} \ \mathcal{T} \ \text{agrees with the triangulation} \ \mathcal{G} \ \text{featured in Equations (13.1)} \ \text{which can hence be rewritten with} \ \mathcal{T} \ \text{instead of} \ \mathcal{G}. \ \text{Combining with Lemma 13.7}(iii)(a) \ \text{gives} \]

\[ r = \mathcal{T}(\chi^I, v^III), \]

\[ t(b, v) = \mathcal{T}(\chi^I, \gamma^II) + \mathcal{T}(\chi^I, \phi^IV) + \mathcal{T}(\beta^II, \gamma^II) + \mathcal{T}(\beta^II, \phi^IV). \]
Combining Equation (13.3) with Lemma 13.7(v) shows
\[ t(b, v) = \mathcal{T}(b^I, v^{III}). \] (13.4)
Combining this with Lemma 13.2, Lemma 13.7(i)(a), and Equation (13.2) shows
\[ t(a, v) = \ell t(b, v) + r = (\mathcal{T}(a^I, \beta^{II}) - 1)\mathcal{T}(b^I, v^{III}) + \mathcal{T}(\varphi^{IV}, v^{III}) = (*) \]
and Lemma 13.7 vii) gives
\[ (*) = \mathcal{T}(a^I, v^{III}). \]

Now, on the one hand, Lemma 13.2 (iii) says that \( 0 < r, s < t(b, v) \) and that \( r \) and \( s \) are inverses modulo \( t(b, v) \). On the other hand, Lemma 13.7 (iii)(a), (iii)(b), and (v), imply that \( 0 < \mathcal{T}(\chi^{IV}, v^{III}), \mathcal{T}(\varphi^{IV}, b^I) < \mathcal{T}(b^I, v^{III}) \) and Lemma 13.7 ii) says that \( \mathcal{T}(\chi^{IV}, v^{III}) \) and \( \mathcal{T}(\varphi^{IV}, b^I) \) are inverses modulo \( \mathcal{T}(b^I, v^{III}) \). Combining with Equations (13.2) and (13.4) shows \( s = \mathcal{T}(\varphi^{IV}, b^I) \). We can now proceed as above, combining this with Lemma 13.2 and Lemma 13.7 i)(b) to get
\[ t(b, w) = mt(b, v) + s = (\mathcal{T}(w^{III}, \gamma^{II}) - 1)\mathcal{T}(b^I, v^{III}) + \mathcal{T}(\varphi^{IV}, b^I) = (**), \]
and Lemma 13.7 vi) says
\[ (** = \mathcal{T}(b^I, w^{III}). \]
Combining the last five displayed equations verifies Lemma 3.8 condition (iii), with \( e = a, f = b, g = v, h = w. \)
Finally, Lemma 3.8 conditions (i) and (ii) are verified by the same method as in the second half of the proof of Theorem 7.4

Acknowledgement. This work was carried out while Peter Jørgensen was visiting the Leibniz Universität Hannover. He thanks Thorsten Holm and the Institut für Algebra, Zahlentheorie und Diskrete Mathematik for their hospitality. He also gratefully acknowledges financial support from Thorsten Holm’s grant HO 1880/5-1, which is part of the research priority programme SPP 1388 Darstellungstheorie of the Deutsche Forschungsgemeinschaft (DFG).

References
[1] I. Assem, G. Dupont, R. Schiffler, and D. Smith, Friezes, strings and cluster variables, Glasg. Math. J. 54 (2012), 27–60.
[2] I. Assem and C. Reutenauer, Mutating seeds: types A and \( \bar{A} \), Ann. Math. Blaise Pascal 19 (2012), 29–73.
[3] I. Assem, C. Reutenauer, and D. Smith, Friezes, Adv. Math. 225 (2010), 3134–3165.
[4] K. Baur, M. J. Parsons, and M. Tschabold, Infinite friezes, to appear in European J. Combin.
[5] F. Bergeron and C. Reutenauer, SL_k-tilings of the plane, Illinois J. Math. 54 (2010), 263–300.
[6] A. Blass and Y. Gurevich, Matrix transformation is complete for the average case, SIAM J. Comput. 24 (1995), 3–29.
[7] D. Broline, D. W. Crowe, and I. M. Isaacs, The geometry of frieze patterns, Geom. Dedicata 3 (1974), 171–176.
[8] J. Cai and J. Liu, The bounded membership problem of the monoid SL_2(N), Mathematical Systems Theory 29 (1996), 573–587.
[9] J. H. Conway and H. S. M. Coxeter, Triangulated polygons and frieze patterns, The Mathematical Gazette 57 (1973), 87–94.
[10] J. H. Conway and H. S. M. Coxeter, Triangulated polygons and frieze patterns (continued from p. 94), The Mathematical Gazette 57 (1973), 175–183.
[11] P. Di Francesco, *The non-commutative $A_1$ T-system and its positive Laurent property*, Comm. Math. Phys. **335** (2015), 935–953.

[12] P. Di Francesco, *The solution of the $A_r$ T-system for arbitrary boundary*, Electron. J. Combin. **17** (2010), #R89.

[13] P. Di Francesco and R. Kedem, *T-systems with boundaries from network solutions*, Electron. J. Combin. **20** (2013), Paper 3, 62 pp.

[14] P. Di Francesco and R. Kedem, *The solution of the quantum $A_1$ T-system for arbitrary boundary*, Comm. Math. Phys. **313** (2012), 329–350.

[15] J. Grabowski and S. Gratz, *Cluster algebras of infinite rank*, with an appendix by M. Groechenig, J. London Math. Soc. (2) **89** (2014), 337–363.

[16] S. Gratz, T. Holm, and P. Jørgensen, *Torsion pairs in infinite discrete cluster categories of Dynkin type A*, in preparation.

[17] T. Holm and P. Jørgensen, *Generalised friezes and a modified Caldero-Chapoton map depending on a rigid object*, Nagoya Math. J. **218** (2015), 101–124.

[18] T. Holm and P. Jørgensen, *SL$_2$-tilings and triangulations of the strip*, J. Combin. Theory Ser. A **120** (2013), 1817–1834.

[19] K. Igusa and G. Todorov, *Cluster categories coming from cyclic posets*, Comm. Algebra **43** (2015), 4367–4402.

[20] P. Jørgensen and Y. Palu, *A Caldero-Chapoton map for infinite clusters*, Trans. Amer. Math. Soc. **365** (2013), 1125–1147.

[21] S. Morier-Genoud, *Coxeter’s frieze patterns at the crossroads of algebra, geometry and combinatorics*, Bull. London Math. Soc. **47** (2015), 895–938.

[22] S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, *SL$_2$($\mathbb{Z}$)-tilings of the torus, Coxeter-Conway friezes and Farey triangulations*, Enseign. Math. **61** (2015), 71–92.

[23] Y. Palu, *Cluster characters for 2-Calabi–Yau triangulated categories*, Ann. Inst. Fourier (Grenoble) **58** (2008), 2221–2248.

[24] M. Tschabold, *Arithmetic infinite friezes from punctured discs*, preprint (2015). [arXiv:1503.04352v3](http://arxiv.org/abs/1503.04352v3).

Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

*E-mail address*: bessen@math.uni-hannover.de

*URL*: [http://www2.iazd.uni-hannover.de/~bessen](http://www2.iazd.uni-hannover.de/~bessen)

Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

*E-mail address*: holm@math.uni-hannover.de

*URL*: [http://www.iazd.uni-hannover.de/~holm](http://www.iazd.uni-hannover.de/~holm)

School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

*E-mail address*: peter.jorgensen@ncl.ac.uk

*URL*: [http://www.staff.ncl.ac.uk/peter.jorgensen](http://www.staff.ncl.ac.uk/peter.jorgensen)