Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability analyses, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.

Chronic wasting disease (CWD) is unique among prion disease as the only prion disease known to infect and be naturally transmitted between both captive and free-ranging populations. Mathematical models indicate that direct and indirect horizontal transmission of CWD is the most prevalent form of transmission (1–5), but vertical transmission also contributes to CWD transmission (6–8). Infectious prions have been detected in excreted bodily fluids including saliva, urine, and feces, as well as antler velvet, blood, and reproductive tissues (6, 9–12). While CWD causes a neurological disease, CWD prions are profoundly lymphotropic, and these peripheral prions are the most likely to shed into the environment and contribute to horizontal and vertical disease transmission (13–17). Thus, it is critical to determine if any unique characteristics of extraneural prions exist that affect CWD pathogenesis and transmission.

While all prion diseases result from a misfolding of the normal host protein, PrP<sup>C</sup>, to a misfolded form, PrP<sup>Sc</sup>, different biochemical characteristics and disease phenotypes suggest a phenomenon of prion strains transmitting distinct disease characteristics epigenetically enciphered within unique prion structures (18–20). Thus, different prion strains sometimes have significant strain differences. There are multiple CWD strains that have been identified from North American isolates, including CWD-1, CWD-2, H95+, and Wisc-1 (21, 22). Importantly, the H95+ strain has been shown to emerge from white-tailed deer (Odocoileus virginianus) that have the more resistant genotype, 96SS, and this strain has been demonstrated to have an expanded host range, highlighting the importance of continued strain characterization (22). CWD-resistant PRNP polymorphisms have emerged in wild elk populations, like Rocky Mountain Elk (Cervus canadensis nelsoni), but it is unclear how these polymorphisms may affect novel and/or atypical prion strain emergence in these population (23); as happened with the emergence of the Nor98 scrapie strain in sheep expressing classical scrapie-resistant genotypes (24). Selection of CWD-resistant genotypes in white-tailed deer may also be occurring (25). These data highlight the necessity of continued strain identification and characterization from multiple sources. Understanding strain differences and potentially different transmission dynamics is of critical importance to understand CWD and control its spread.

Of particular concern, extraneural prions have been shown to have increased zoonotic potential (26). This has important implications for cross species transmission and risk for humans potentially contracting CWD from eating infected...
skeletal muscle or while cleaning a deer in the field (27). While no evidence currently supports natural xenotransmission of CWD prions from cervids to other animal species, CWD prions are infectious to cattle (28), sheep (29), swine (30), and cats (31) when experimentally inoculated intracerebrally. Cattle and cats were resistant to CWD infection after oral exposure, but pigs were susceptible at low levels (30). These data suggest that there is a risk of transmission to additional species and populations, warranting continued monitoring and surveillance of CWD prion strains.

Most of the CWD and prion research completed to date focused on brain-derived prions, likely because prion diseases are neurodegenerative, brain samples are easy to work with and contain the highest titers of prions in infected animals. However, prions shed into the environment likely are extraneural prions, such as those replicated within lymph nodes (LNs). Far less is known about the transmissibility of these peripheral prions, but research suggests LN-derived prions have similar titers to brain-derived prion titers on transgenic mouse bioassay (32). Furthermore, numerous immune receptors and different proteins involved in the complement cascade have been shown to influence prion strain selection, implicating the immune system as an important player in prion strain selection (33–39). This research suggests that lymphogenic prions likely exhibit more strain diversity than neurogenic prions (40, 41). Tissue-specific differences in strain heterogeneity, as reflected in the prion cloud hypothesis, predict different prion strains with different biochemical and structural characteristics in LNs than in the brain (40). Therefore, any differences between the brain-derived and LN-derived prions must be investigated to aid our understanding of intrahost and interspecies prion dynamics.

Based on current knowledge of CWD transmission, prion strain selection, and differential interspecies transmission, we hypothesize that LNs replicate more diverse CWD prion strains than the brain within and among individuals. While extensive research has focused on brain samples from cervid and transgenic mouse brains, less research has been dedicated to studying and characterizing peripheral prions, leaving a critical knowledge gap that this work addresses. Furthermore, very little work has characterized structural differences between brain- and LN-derived prions from a natural host prior to passage to transgenic mice or other model organisms. While bioassay is a central pillar to prion biology and strain characterization, there are other host factors and transgene expression level differences that influence strain emergence, emphasizing the importance of assessing strain characteristics of prions isolated from the natural host (42, 43).

For this study, we assessed biochemical strain differences between paired obex and LN samples from naturally exposed white-tailed deer from Arkansas, USA. These analyses reveal significant differences between brain-derived and LN-derived prion isolates in some of our biochemical assays. While we observed no conformational stability differences between brain- and the LN-derived prions, we observed electrophoretic differences and statistically significant differences in the glycoform ratio of PrPSc from brain compared to LN samples. Lymphogenic prions exhibited greater overall variance in mean glycoform ratios and conformational stability than neurogenic prions. Surprisingly, we observed greater biochemical differences among brain-derived prions than LN-derived prions across individuals. These data lead us to propose a mechanism whereby the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Assessing differences in biochemical signatures between prions from brain and LNs among individuals will inform future studies poised to assess biological differences, including zoonotic potential, between neurogenic and lymphogenic prions using bioassay and other traditional prion assays.

Results

Sample origin, preparation, and result overview

Samples used in this study were all collected from naturally exposed white-tailed deer in the state of Arkansas and shared with us from our collaborators from the Arkansas Fish and Game Commission. PRNP gene sequencing revealed that all deer shared the same amino acid sequences at known CWD susceptibility loci (95QQ, 96GG, 116AA, 132MM, 225SS, 226QQ). All deer also harbor similar prion titers as determined by two distinct in vitro assays [(44, 45); cervid prion cell assay and protein misfolding cyclic amplification, Table 1].

We optimized our assays to obtain the clearest, most reproducible data possible. If we employed the same proteinase K (PK) digestion and Western Blot methods for brain/obex samples and LN samples, brain-derived PrPSc signals were indistinguishable from PrPSc signals. We therefore optimized digestion conditions for each tissue type. Brain samples required PK digestion in the presence of 1% Triton-X 100, with a higher concentration of PK (100 μg/ml), and less starting total protein (5% w/v homogenate before PK digestion) electrophoresed through the gel (data not shown). LN samples ran well when more protein was loaded onto the gel (10% w/v starting homogenate) and digested with less PK (50 μg/ml) than obex samples. Of the nine animals that had paired obex and LN samples, only four of the animals gave us interpretable data from both the tissues that enabled us to compare intrahost variation (Table 1).

Conformational differences between obex and LN samples at ≥ 2.5 M GdnHCl

For this study, we assessed biochemical strain differences between paired obex and LN samples from naturally exposed white-tailed deer from Arkansas, USA. These analyses reveal significant differences between brain-derived and LN-derived prion isolates in some of our biochemical assays. While we observed no conformational stability differences between brain- and the LN-derived prions, we observed electrophoretic differences and statistically significant differences in the glycoform ratio of PrPSc from brain compared to LN samples. Lymphogenic prions exhibited greater overall variance in mean glycoform ratios and conformational stability than neurogenic prions. Surprisingly, we observed greater biochemical differences among brain-derived prions than LN-derived prions across individuals. These data lead us to propose a mechanism whereby the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Assessing differences in biochemical signatures between prions from brain and LNs among individuals will inform future studies poised to assess biological differences, including zoonotic potential, between neurogenic and lymphogenic prions using bioassay and other traditional prion assays.
was not consistently observable, and the lower migrating band may be due simply to a slight tilt in the WB image. This 17 kDa band was only observed consistently in obex samples, and these data were consistent among all four individuals.

**Greater variability in conformational stability of LN prions compared to brain prions**

Distinct prion strains can have different conformational stability in the presence of chaotropen denaturing agents like GdnHCl. We compared conformational stability of prions isolated from LN to prions isolated from brain samples to determine if this strain characteristic would reveal potentially different strains from different tissues within the same animal. We treated samples with increasing concentrations of GdnHCl and determined their [GdnHCl]1/2 values, which is the [GdnHCl] that eliminates half of the PrPSc compared to the untreated sample. While one animal trended toward statistical significance, we detected no statistical differences in conformational stability measured between paired obex-derived and LN-derived prions in any of the four individuals examined (unpaired t test, \( p < 0.05 \), Fig. 2). However, we did observe a statistical difference in the variance of mean [GdnHCl]1/2 values between the obex and LN-derived prion samples from animal 10083 (F-test, \( p < 0.05 \)). Also, brain denaturation curves fit the data better (\( R^2 \) range from 0.8272–0.9242) than the denaturation curves for LN samples (0.1991–0.6113). Differences in mean [GdnHCl]1/2 variances for animal 10023 were statistically different (ANOVA with Tukey adjustment; Fig. 5). When comparing glycoform ratios of prions in brain samples, we observed no significant differences in mean [GdnHCl]1/2 values from brain (1.9 M, 95% CI: 1.8–2M) and LN (2.2 M, 95% CI: 1.7–2.7 M; paired t test, \( p < 0.05 \)), LN prion samples exhibited statistically more variance in mean [GdnHCl]1/2 than obex samples (Fig. 4, F-test, \( p < 0.05 \)).

**PrPSc glycoform ratio differences between prions from paired brain and LNs in the same animal**

Glycoform ratios are another heritable biochemical trait of prion strains and have been used in the characterization of the prion strains causing bovine spongiform encephalopathy, Creutzfeldt-Jakob Disease, and CWD (48–52). Just as we assessed conformational stability, we compared PrPSc glycoform ratios of prions in obex and LN tissue samples from the same deer to assess whether distinct prions may reside in distinct tissues within the same host. We found significant differences in proportions of at least two glycosylations between matched brain and LN samples for all four individuals examined (unpaired t test, \( p < 0.05 \), Fig. 5). When comparing glycoform ratios of prions in tissues across individuals, we observed fewer differences in glycoform ratio in LN prions (Fig. 5 and Table 2). However, we detected many glycoform ratio differences among obex prions across individuals. In fact, only two obex samples, when we compared their PrPSc glycoform ratios to each other, were not statistically different (ANOVA with Tukey adjustment; Fig. 5 and Table 3). Finally, when comparing mean glycoform ratios calculated from aggregated individual ratios for each tissue across all individual deer, we observed statistical differences in glycoform ratio across all three glycosylation states (paired t test, \( p < 0.001 \); Fig. 5C).

**Conformation-dependent ELISA confirms conformational differences between lymphoid and obex prions**

We next address the possibility that greater background noise in our western blots combined with lower prion titers in lymphoid tissues accounted for the increased variance we observed in conformational stability and glycosylation between lymphogenic and neurogenic prions. The 7-5 ELISA is a
Tissue-specific biochemical differences in prion isolates

**Blot exposure:** Low | Obex | High | Lymph Node
--- | --- | --- | ---

**Figure 1.** Obex prions adopt an alternative conformation in the presence of ≥ 2.5 M GdnHCl compared to lymph node prions from the same animal. Western blots to the right of the animal identification number are all from the same individual. Sample obex blots imaged at a typical exposure (panels A, D, G, J) and overexposed (B, E, H, K) reveal a unique, faster-migrating PrPSC electrophoretic signature in obex samples (note the unglycosylated 19kD band* at < 2.5 M GdnHCl compared to a 17 kD band** at ≥ 2.5 M GdnHCl) absent in PrPSC from lymph node samples (C, F, I, L). Markers to the right of blots indicate the molecular weight (MW) in kilodaltons (kD). Other bands from the protein MW ladder, from top to bottom, indicate the 260, 125, 90, 70, 50, 38, 25, 15, and 8 kD (visible only in lymph node blots in panels C, F, I, L).

conformation-based, capture ELISA that preferentially detects prion forms of PrP, while virtually eliminating the noise associated with PK digestion and Western blotting. Using this assay, we observed greater variance in our lymphoid samples and significant statistical differences among our obex samples from the four deer analyzed (Fig. 6). These data confirm our conformation and glycoform data demonstrating increased variance in lymphoid prions and emergence of unique brain-derived prions in individual deer.

**Immunoreactivity scanning reveals structural differences between neurogenic and lymphogenic prions**

We also noted several differences in immunoreactivity when we probed prion samples with a panel of antibodies spanning residues 95 to 197 (Fig. 7). Specifically, antibody D13, whose epitope lies within the PK cleavage zone, recognized lymphogenic but not neurogenic prions, including our E2 control isolate. While lymphogenic prions exhibited nearly identical banding patterns across all antibodies used, neurogenic prions exhibited many differences in banding patterns and intensities across all antibodies.

**Discussion**

CWD is an invariably fatal disease infecting cervids worldwide. This disease is devastating to the individual animals that become infected and has resulted in substantial population-level effects in free-ranging animals, including population decline and herd culling as a method of disease control. (23,
The unique nature of prions and prion diseases, coupled with extremely facile animal-to-animal transmission, necessitates a thorough understanding of the pathogen causing disease.

Because CWD and other prion diseases are neurological, and the nervous system harbors the highest prion titers, most prion research has focused on brain-derived prions. While these pivotal studies are critical to our current understanding of prion disease, the profound lymphotropism and presence of infectious prions in extraneural sites should be considered when investigating environmental CWD prion contamination and indirect CWD transmission. Furthermore, most studies

![Figure 2. No differences in conformational stability between obex- and lymph node-derived prions in paired samples from the same deer.](image)
focused on prion strain characterization utilized mouse bioassay, where prion isolates are passaged into transgenic mice expressing PrP^C from another species. The resulting disease phenotype in the mouse and the biochemical characteristics of the prions from the brains of infected mice are assessed to give a set of disease characteristics that are then defined as a prion strain (18, 19). However, prion strains biologically cloned via mouse passage may be quite different than prions originally isolated from the natural host. Indeed, biological cloning of prions, by definition, results in stabilization of a set of biological and biochemical traits that may be different than those of the original isolates. Biochemical analyses of primary CWD prions isolated from different tissues in the same natural host are essential to understand critical features of prion strains and the diseases they cause. However, scant research so far has investigated thoroughly the biophysical and biochemical characteristics of prion strain isolated from different tissues within and among hosts before passing these isolates into mice. In most cases, biologically cloning CWD strains by serial passage in the natural host is logistically and financially impossible. Here, we compare biochemical, conformational, and stability traits between LN and brain-derived prions within and among natural hosts before passing these isolates into mice. Any differences we find may have important implications for horizontal, indirect, and even zoonotic CWD transmission and disease progression.

Of the paired samples received for analyses from nine deer, we obtained interpretable data from only four pairs of obex and LN tissues for intra-animal comparison (Table 1). We optimized our tissue preparation and Western blotting methods to obtain comparable, interpretable data, highlighting an important note about strain differences observed between the obex and LN samples. The central nervous system expresses the most PrP^C, followed by lymphoid tissues and to a much lesser extent other peripheral tissues (8, 58–67). PK may fail to fully digest high PrP^C levels in the brain to give accurate results if not more aggressively digested. Cervid PrP^Sc also may aggregate into denser plaques that protect cerPrP^Sc, necessitating extra dilution, detergent, and/or PK for complete PrP^C solubilization and digestion from brain samples.

We had incomplete data for samples from deer 07416 and 10030 because we detected cerPrP^Sc only in LN, not obex samples. CWD prions often replicate to detectable levels in lymphoid tissues before the brain (8, 13, 17). So, these two brains likely contain too few prions, or perhaps nascent, protease-sensitive oligomeric prions that PK and WB fail to detect. Mouse bioassay could determine the prion titer, if any, and the biological characteristics of these prions, if present, in the brains of these two animals. Surprisingly, we detected cerPrP^Sc in obex and LN from a male deer aged just 1.5 years (10083). This rare occurrence of prions in the central nervous system (CNS) in this young cervid may indicate an early, perhaps vertical transmission event (6, 7, 68). We were less surprised to detect cerPrP^Sc in LN but not brains than our converse discovery. We detected cerPrP^Sc consistently in the brain of deer 14707, but inconsistently in the paired LN sample. Difficulty with tissue homogenization and Western blotting likely contributed to the inconsistent results with that sample. Finally, samples from two deer (10080 and 07415) did not yield interpretable data for either the brain or the LN. These samples likely had prion levels that were below the limit of detection by Western blot and were not able to be analyzed in this study.

For the four samples that we did have interpretable, reproducible data in both tissues (10023, 10074, 10083, and 07415), we observed no significant differences in the mean
[GdnHCl]_{1/2} values between the obex- and LN-derived prion samples (Fig. 2), suggesting similar conformational stability of each isolate. We and others have shown that CWD prion strains are among the more conformationally stable prions, compared to mouse and hamster prions, for example (8, 49, 50, 64, 68). An emerging characteristic of CWD overall, then, seems to be relatively high conformational stability in the presence of GdnHCl (69–72). These data presented here
significant difference in another (10074), indicating more variability in the presence of denaturing agents transverse tissue origin.

We did observe differences in electrophoretic mobility of the obex and the LN samples treated with ≥2.5 M GdnHCl that suggest more subtle differences in prion structural dynamics between prions present in these two tissues. All obex samples shift farther down the gel than LN samples when treated with 2.5 M or greater of GdnHCl, indicating that neurogenic prions adopt a unique conformation at these chaotrope concentrations, allowing PK differential access to these prions compared to lymphogenic prions. Whether these apparent biochemical differences between neurogenic and lymphogenic prions in conformational stability and structural dynamics translate to biological significance remains to be determined. We also detected numerous high-molecular weight species staining for PrP, which may represent prion oligomers, in both obex and LN samples.

While we observed no differences between mean [GdnHCl]_{1/2} values between prions isolated from LNs compared to obex, we witnessed more variable conformational stability in LN-derived prion samples, as evidenced by large variances observed at each [GdnHCl] (Fig. 2). Moreover, we observed unequal variances between the brain and LN mean [GdnHCl]_{1/2} value of one animal (10083) and a nearly significant difference in another (10074), indicating more variability in lymphogenic prion conformation. However, we did observe differences in the best-fit denaturation curves between brain and LN samples. Denaturation curves generated from LN samples exhibited far more variance, lower R^2 values, and wider 95% CI bands than curves from brain samples. These data potentially reveal biochemical differences between the two prion sources that aren’t entirely represented in the sample means (Fig. 4).

We also found significant differences in glycoform ratios between the paired obex and LN-derived prions in all four animals tested. Glycoform ratio differences are an important indicator of different prion strains and another line of evidence that the prions present in the LN differ somewhat to those in the obex of the same animal. These differences could signify a biochemical strain difference between these animals; however, there is no systematic assessment of the glycosylation pattern of PrP_C in the LN or brain of white-tailed deer, and it is possible there are different pools of differentially glycosylated PrP between these two tissues. In rodent models of scrapie, investigations of PrP_C glycosylation profiles in the brain suggest that glycosylation influences neuroinvasion, PrP_C deposition and neuropathological lesion profiles (26, 73). Similar studies with mouse models of CWD or observational studies of infected deer could determine the biological relevance of our observed cerPrP_C glycosylation differences.

### Table 2

**PrP<sup>C</sup> glycoform comparison in prions across all paired lymph node samples**

| Samples compared<sup>a</sup> | Diglycosylated |  | Monoglycosylated |  | Unglycosylated |  |
|-----------------------------|---------------|----------------|-----------------|---------------|----------------|---------------|
| p value | Significance | p value | Significance | p value | Significance |
| 07:399 versus 10083 | 0.9514 | ns | 0.9369 | ns | 0.9996 | ns |
| 07:399 versus 10023 | 0.7472 | ns | 0.1899 | ns | 0.5652 | ns |
| 07:399 versus 07416 | 0.0124 | * | 0.0107 | * | 0.9990 | ns |
| 07:399 versus 10033 | >0.9999 | ns | 0.9204 | ns | 0.2456 | ns |
| 07:399 versus 10074 | 0.9979 | ns | >0.9999 | ns | 0.8841 | ns |
| 10083 versus 10023 | 0.9991 | ns | 0.8572 | ns | 0.8754 | ns |
| 10083 versus 07416 | 0.2354 | ns | 0.2354 | ns | 0.9926 | ns |
| 10083 versus 10033 | 0.9900 | ns | >0.9999 | ns | 0.5846 | ns |
| 10083 versus 10074 | 0.8418 | ns | 0.8949 | Ns | 0.9922 | ns |
| 10023 versus 07416 | 0.3617 | ns | 0.8279 | ns | 0.5411 | ns |
| 10023 versus 10033 | 0.9168 | ns | 0.8781 | ns | 0.9907 | ns |
| 10023 versus 10074 | 0.5528 | ns | 0.1598 | ns | 0.9798 | ns |
| 07416 versus 10033 | 0.0687 | ns | 0.2556 | ns | 0.2635 | ns |
| 07416 versus 10074 | 0.0065 | * | 0.0092 | ** | 0.8289 | ns |
| 10033 versus 10074 | 0.9964 | ns | 0.8735 | ns | 0.7688 | ns |

<sup>a</sup> One-way ANOVA with Tukey adjustment.
<sup>b</sup> significant, ns, not significant.

### Table 3

**PrP<sup>C</sup> glycoform comparison in prions across all paired obex samples**

| Sample comparison<sup>a</sup> | Diglycosylated |  | Monoglycosylated |  | Unglycosylated |  |
|-----------------------------|---------------|----------------|-----------------|---------------|----------------|---------------|
| p value | Significance | p value | Significance | p value | Significance |
| 07:399 versus 14707 | 0.0066 | ** | 0.0456 | * | 0.0176 | * |
| 07:399 versus 10083 | 0.0173 | * | 0.0251 | * | 0.3450 | Ns |
| 07:399 versus 10074 | 0.3187 | ns | 0.9244 | Ns | 0.0678 | Ns |
| 07:399 versus 10023 | <0.0001 | **** | 0.0011 | *** | <0.0001 | **** |
| 14707 versus 10083 | 0.9968 | ns | 0.9993 | Ns | 0.6447 | Ns |
| 14707 versus 10074 | <0.0001 | **** | 0.0051 | ** | <0.0001 | **** |
| 14707 versus 10023 | <0.0001 | **** | <0.0001 | **** | <0.0001 | **** |
| 10083 versus 10074 | <0.0001 | **** | 0.0025 | ** | <0.0001 | **** |
| 10083 versus 10023 | <0.0001 | **** | <0.0001 | **** | <0.0001 | **** |
| 10074 versus 10023 | 0.0022 | * | 0.0119 | * | 0.1001 | Ns |

<sup>a</sup> One-way ANOVA with Tukey adjustment.
<sup>b</sup> p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant.
Samples from individual animals were then averaged together to assess any tissue differences between the obex and LN samples across animals. We found no statistical differences in conformational stability (Fig. 3), but the variances between the samples differed significantly. We also observed significant differences in glycoform ratios between brain and LN-derived cerPrPSc (Fig. 5, Tables 2 and 3). These results mirrored the results observed in individual deer, reinforcing that biochemical strain differences exist between obex and LN samples across animals. We observed many differences in obex PrPSc glycoform ratios among individual deer (Fig. 5 and Table 3).

Difficulties in lymphoid tissue preparation and low prion titers in these tissues may contribute to the variance we observed in the conformational stability and glycosylation patterns of lymphogenic prions. To address this, we employed a novel ELISA-based assay to probe structural differences among prions (44). The 7-5 ELISA specifically captures PrP and virtually eliminates background noise introduced by Western blotting. This approach allows us to assess differences in prion conformations in the central region of PrP that converts from predominantly alpha helical to beta sheet conformation, as well as the overall stability of that conformation. This technique again shows greater conformational variance in lymphogenic prions compared to neurogenic prions, which exhibited significant differences in prion conformation and stability among cervid brain prion isolates across individual deer. Structural profiling using a panel of antibodies scanning most of the PK-resistant prion core revealed consistent banding patterns among the lymphogenic prion samples but much greater variability in reactivity and banding patterns among neurogenic prions from individual deer. Interestingly, the D13 antibody did not react to any neurogenic prions, including our reference E2 brain isolate, but did react with lymphogenic prions, revealing a potential pool of prions in LNs not present in brains of these animals.

Based on our hypothesis of greater strain diversity of lymphogenic prions, we propose a model in which diverse prion strains present in the lymphoid organs may traffic to the brain, where different PrPSc glycoforms present in different neuroanatomical regions select specific cerPrPSc isoforms and propagate specific of prion strains in those regions (Fig. 8). This relatively more homogeneous group of prions produces predominant neurogenic prion strains that may be quite distinct among individual deer, like we observed in this study. The more variability that we see in LN prions may be due to a larger and more diverse population of prion strains in this extraneural site. We previously identified Complement proteins CD21/35 and Factor H as high-affinity prion receptors in extraneural sites (34–37). Since the CNS express neither CD21/35 nor Factor H, but express far more PrPSc than the lymphoid system, PrPSc likely acts as the dominant prion receptor in the CNS and selects a more restricted set of prions, perhaps influenced by PrPSc glycosylation and more restricted templating of PrPSc. Increased numbers and diversity of prion receptors outside the CNS may result in increased diversity of prion strains in extraneural tissues, as our biochemical data presented here indicates. Extraneural prions have been shown to have a wider species tropism that CNS prions (72). We propose that the increased prion diversity we measured biochemically in this work potentially increases their zoonotic potential as well.

Taken together, the data presented here provide strong evidence for biochemical strain differences between obex- and LN-
derived prions in these cervids. Mouse bioassays are underway to see if these biochemical differences translate to biological differences and greater species tropism with zoonotic potential. If so, these results suggest that research should focus on extraneural prions and prion strains as they differ from neurogenic prions, are more likely to be shed into the environment, and expose other cervids and humans to prions with greater zoonotic potential. This proposed increased zoonotic potential of lymphogenic brain and lymph node prion samples were PK digested (except E2-PK sample in lane three of brain blots and lane two of lymph node blots) and Western blotted using the indicated antibodies. Blots were probed, stripped, and re-probed with antibodies in order from top (D13) to bottom (Sha 31). Blots shown are representative of at least three experiments. Differential binding, electrophoretic mobility, and banding patterns reveal structural differences between lymphogenic and neurogenic prions and among neurogenic prions in individual cervid brains. Markers to the right of blots indicate the molecular weight (MW) in kilodaltons (kD). PK, proteinase K.

Figure 7. Immunoreactivity scanning reveal structural differences between neurogenic and lymphogenic prions. A, schematic representation of the prion protein primary sequence with relevant structural features identified. Double-ended arrows below the schematic depict epitopes for the indicated antibodies used in B and in the 7-S ELISA. B, brain and lymph node prion samples were PK digested (except E2-PK sample in lane three of brain blots and lane two of lymph node blots) and Western blotted using the indicated antibodies. Blots were probed, stripped, and re-probed with antibodies in order from top (D13) to bottom (Sha 31). Blots shown are representative of at least three experiments. Differential binding, electrophoretic mobility, and banding patterns reveal structural differences between lymphogenic and neurogenic prions and among neurogenic prions in individual cervid brains. Markers to the right of blots indicate the molecular weight (MW) in kilodaltons (kD). PK, proteinase K.
prions also has implications for best practices and policies regarding what tissues hunters and producers provide to agencies and what diagnostic tests those agencies perform on those tissues to assess not just prion positivity but also strain properties that may indicate zoonotic potential.

**Experimental procedures**

**Sample homogenization**

LN and obex samples from white-tailed deer that tested positive for CWD by ELISA performed in a National Animal Laboratory Network lab were provided frozen from the Arkansas Game and Fish Commission. Samples were stored at −20 °C until processing. We implemented several measures to minimize sample cross-contamination. Samples were trimmed with disposable scalpel blades on a half of a Petri dish. Both were discarded after a single use. Gloves and lab bench paper were also changed between each sample. LN samples were then placed in homogenizing tubes with 7 to 10 zinc zirconium homogenizing beads (2.3 mm diameter) and homogenized to 20% w/v in protein misfolding cyclic amplification (PMCA) I buffer (1x PBS 150 mM NaCl, 4 mM EDTA) with complete protease inhibitor (Roche). Samples were homogenized on a BeadBlaster for 10 rounds, with each round consisting of three cycles of a 30 s pulse at 6 m/s followed by a 10 s rest on ice between each pulse. Samples were rested on ice for 5 min between each of the 10 rounds. Once samples were homogenized, samples were aliquoted and stored at −20 °C until further use. Obex samples were also processed to 20% w/v homogenate in PMCA I buffer and protease inhibitor as described above, but obex samples were homogenized with 7 to 10 glass beads (2.7 mm diameter) and for 2 to 3 rounds with a 5 min rest on ice between each round on the BeadBlaster. Samples were then aliquoted and stored at −20 °C until use.
**Tissue-specific biochemical differences in prion isolates**

**Prion titer determination**

The cervid prion cell assay and PMCA were performed as previously described (44, 45). We used $10^{-3}$, $10^{-4}$, and $10^{-5}$ dilutions of brain samples and $10^{-1}$, $10^{-2}$, and $10^{-3}$ dilutions of LNs in each assay.

**Conformational stability assay and glycoform ratio**

To assess the conformational stability of the prions from the brain and the LN, samples were thawed, and 15 μl of sample was added to 15 μl of GdnHCl in 0.5 M increments from 0 to 4 M, briefly vortexed, and incubated at room temperature for 1 h. After the 1 h denaturation, samples were precipitated in ice-cold methanol overnight at −20 °C. The following day, samples were removed from the −20 °C, centrifuged at 13,000 rcf for 30 min at 4 °C. Then, GdnHCl and methanol were removed, and the protein pellet was resuspended in either 18 μl of PMCA 1 buffer (LN samples) or 36 μl of PMCA conversion buffer (1x PBS 150 mM NaCl, 4 mM EDTA, 1% Triton-X 100, obex samples). LN samples then had 2 μl of 500 μg/ml of PK (Roche) (diluted in 1x PBS and 0.5 M EDTA) added for a final PK concentration of 50 μg/ml in each sample. Obex samples had 4 μl of 1000 μg/ml of PK (Roche) (diluted in 1x PBS and 0.5 M EDTA) added for a final PK concentration of 100 μg/ml. Samples were then incubated on a shaking heat block for 30 min at 37 °C and 800 rpm. Twenty microliters of each sample were denatured in the presence of 10 μl of 3x loading buffer (2.5 volumes of 4x sample loading buffer [Invitrogen] per one volume of 10x sample reducing agent [Invitrogen]) for 10 min at 95 °C. Samples were then either saved at −20 °C or immediately run by Western blot and analyzed for conformational stability and glycoform ratio.

**Western blotting**

Samples were run on 12% bis-tris gels [NuPage] in 1x MOPS running buffer and transferred to polyvinylidene difluoride membranes. Nonspecific binding was reduced by blocking the membranes in 5% nonfat dry milk and 1% Tween-20 in 1x PBS (NFDM) for 1 h with rocking at room temperature. Membranes were then incubated in HRP-conjugated anti-PrP monoclonal antibody Bar224 (Cayman Chemical) diluted to 1:20,000 in SuperBlock (Thermo Fischer) overnight at 4 °C. Blots were washed the following day in PBST (0.2% Tween20 in 1x PBS) six times for 5 min each wash. Membranes were developed using enhanced chemiluminescent substrate (Millipore) for 5 min before imaging on ImageQuant LAS 4000 (GE).

**7-5 ELISA**

Conformation-based capture ELISA using capture antibody PRC7 and detection antibody PRC5 was performed as previously described (44) on tissue samples treated with increasing concentrations of GdnHCl.

**Data analysis**

Densitometric analyses were completed in ImageJ. Conformational stability was determined by calculating the concentration at which the signal was half of the input ([GdnHCl]$_{1/2}$) after fitting the data to a four-parameter linear regression curve in GraphPad Prism as previously described (71, 74, 75). Glycoform ratio was calculated in ImageJ by determining what percentage of the total signal was contributed by each glycosylation state. Glycoform ratio data were arcsine transformed before statistical analysis so percent data would fit a normal distribution. Only samples that had at least three successful replicates (conformational stability) or had results replicated on at least two blots with three samples each (glycoform ratio) were included for analysis. For the 7-5 ELISA, we calculated mean light absorbance measured at 450 nm for three independent experiments. Statistical analysis and graphing were performed in GraphPad Prism (version 8.30).

**Data availability**

All data are contained within the manuscript. Raw data can be shared upon request to Dr Mark Zabel (mzabel@colostate.edu).

**Acknowledgments**—The authors thanks Mr Stacey Clark from the Arkansas Game and Fish Commission, who personally collected all the paired samples we analyzed.

**Author contributions**—K. W., G. C. T., J. R. B., and M. D. Z. conceptualization; K. W., R. P., E. G., A. H., G. C. T., and M. D. Z. methodology; K. W., R. P., E. G., A. H., G. C. T., and M. D. Z. validation; K. W., E. G., A. H., and M. D. Z. formal analysis; K. W., R. P., E. G., A. H., A. L., and M. D. Z. investigation; K. W., E. G., A. L., and M. D. Z. data curation; K. W. and M. D. Z. writing-original draft; K. W., G. C. T., J. R. B., and M. D. Z. writing-review and editing; K. W. and M. D. Z. supervision; J. R. B. resources; M. D. Z. project administration; M. D. Z. funding acquisition.

**Funding and additional information**—The United States Fish and Wildlife Service Grant 008732-00002 and the CSU CVMBS funded this research.

**Conflict of interest**—The authors declare that they have no conflicts of interest with the contents of this article.

**Abbreviations**—The abbreviations used are: CNS, central nervous system; CWD, chronic wasting disease; LN, lymph node; PK, proteinase K; PMCA, protein misfolding cyclic amplification; rpu, relative PMCA units.

**References**

1. Miller, M. W., and Wild, M. A. (2004) Epidemiology of chronic wasting disease in captive white-tailed and mule deer. *J. Wildl. Dis.* 40, 320–327
2. Miller, M. W., and Williams, E. S. (2003) Horizontal prion transmission in captive white-tailed and mule deer. *Nature* 425, 35–36
3. Miller, M. W., and Conner, M. M. (2005) Epidemiology of chronic wasting disease in free-ranging mule deer: Spatial, temporal, and
13. Sigurdson, C. J., Williams, E. S., Miller, M. W., Spraker, T. R., O
11. Mathiason, C. K. (2015) Silent prions and covert prion transmission.
18. Bartz, J. C. (2016) Prion strain diversity.
16. Mabbott, N. A., and MacPherson, G. G. (2006) Prions and their lethal
environment of chronic wasting disease-infected reeves muntjac deer. J. Virol.
21. Angers, R. C., Kang, H. E., Napier, D., Browning, S., Seward, T.,
19. Morales, R. (2017) Prion strains in mammals: Different conformations
leading to disease strain variation in prion diseases. PLoS Pathog. 13, e1006323
20. Morales, R., Abid, K., and Soto, C. (2007) The prion strain phenomenon: Molecular basis and unprecedented features. Biochim. Biophys. Acta 1772, 681–691
21. Angers, R. C., Kang, H. E., Napier, D., Browning, S., Seward, T., Mathiason, C., Balachandran, A., McKenzie, D., Castilla, J., Soto, C., Jewell, J., Graham, C., Hoover, E. A., and Telling, G. C. (2010) Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154–1158
22. Herbst, A., Velásquez, C. D., Triscott, E., Aiken, J. M., and McKenzie, D. (2017) Chronic wasting disease prion emergence and host range expansion. Emerg. Infect. Dis. 23, 1598–1600
23. Monello, R. I., Galloway, N. L., Powers, J. G., Madsen-Bouterse, S. A., Edwards, W. H., Wood, M. E., O'Rourke, K. L., and Wild, M. A. (2017) Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease. Proc. Natl. Acad. Sci. U. S. A. 114, 12208–12212
24. Benestad, S. L., Sarradin, P., Thu, B., Schönheit, J., Tranulis, M. A., and Bratberg, B. (2003) Cases of scrapie with unusual features in Norway and designation of a new type, Nor98. Vet. Rec. 153, 202–208
25. Chafin, T. K., Douglas, M. R., Martin, B. T., Zbinden, Z. D., Middaugh, C. R., Ballard, J. R., Gray, M. C., Don White, Jr., and Douglas, M. E. (2020) Age structuring and spatial heterogeneity in prion protein gene (PRNP) polymorphism in white-tailed deer. Prion 14, 238–248
26. Béringue, Y., Herzog, L., Jaumain, E., Reine, F., Sibille, P., Le Dur, A., Vilotte, J. L., and Laude, H. (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335, 472–475
27. Angers, R. C., Browning, S. R., Seward, T. S., Sigurdson, C. J., Miller, M. W., Hoover, E. A., and Telling, G. C. (2006) Prions in skeletal muscles of deer with chronic wasting disease. Science 311, 1117
28. Greenlee, J. I., Nicholson, E. M., Smith, J. D., Kunkle, R. A., and Hamir, A. N. (2012) Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation. J. Vet. Diagn. Invest. 24, 1087–1093
29. Hamir, A. N., Kunkle, R. A., Cutlip, R. C., Miller, J. M., Williams, E. S., and Richt, J. A. (2006) Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation. J. Vet. Diagn. Invest. 18, 558–565
30. Moore, S. J., West Greenlee, M. H., Kondru, N., Manne, S., Smith, J. D., Kunkle, R. A., Kathnasamy, A., and Greenlee, J. J. (2017) Experimental transmission of the chronic wasting disease agent to swine after oral or intracranial inoculation. J. Virol. 91, e00926–17
31. Mathiason, C. K., Nalls, A.v., Seelig, D. M., Kraft, S. L., Carnes, K., Anderson, K. R., Hayes-Klug, J., and Hoover, E. A. (2013) Susceptibility of domestic cats to chronic wasting disease. J. Virol. 87, 1947–1956
32. Davenport, K. A., Christiansen, J. R., Bja, J., Young, M., Gallegos, J., Kim, S., Balachandran, A., Mathiason, C. K., Hoover, E. A., and Telling, G. C. (2018) Comparative analysis of prions in nervous and lymphoid tissues of chronic wasting disease-infected cervids. J. Gen. Virol. 99, 753–758
33. Michel, B., Ferguson, A., Johnson, T., Bender, H., Meyerett-Reid, C., Wyckoff, A. C., Pulford, B., Telling, G. C., and Zabel, M. D. (2013) Complement protein C3 exacerbates prion disease in a mouse model of chronic wasting disease. Int. Immunol. 25, 697–702
34. Zabel, M. D., Heikenwalder, M., Prinz, M., Arrighi, L., Schwarz, P., Kra
nich, J., von Teichman, A., Haas, K. M., Zeller, N., Tedder, T. F., Weis, J. J., and Aguzzi, A. (2007) Stromal complement receptor CD21/35 facilitates lymphoid prion colonization and pathogenesis. J. Immunol. 179, 6144–6152
35. Michel, B., Ferguson, A., Johnson, T., Bender, H., Meyerett-Reid, C., Pulford, B., von Teichman, A., Seelig, D., Weis, J. J., Telling, G. C., Aguzzi, A., and Zabel, M. D. (2012) Genetic depletion of complement receptors CD21/35 prevents terminal prion disease in a mouse model of chronic wasting disease. J. Immunol. 189, 4520–4527
36. Kane, S. J., Farley, T. K., Gordon, E. O., Estep, J., Bender, H. R., Moreno, J. A., Barta, J., Telling, G. C., Pickering, M. C., and Zabel, M. D. (2017) Complement regulatory protein factor H is a soluble prion receptor that potentiates peripheral prion pathogenesis. J. Immunol. 199, 3821–3827
37. Kane, S. J., Swanson, E., Gordon, E. O., Rocha, S., Bender, H. R., Donius, L. R., Aguzzi, A., Hannan, J. P., and Zabel, M. D. (2017) Relative impact of complement receptors CD21/35 (C3r/2) on scrapie pathogenesis in mice. mSphere 2, e00493–17
38. Mabbott, N. A., and Bruce, M. E. (2004) Complement component C5 is not involved in scrapie pathogenesis. Immunobiology 209, 545–549
39. Bradford, B. M., Crocker, P. R., and Mabbott, N. A. (2014) Peripheral prion disease pathogenesis is unaltered in the absence of sialoadhesin (Siglec-1/CD169). Immunology 143, 120–129
Tissue-specific biochemical differences in prion isolates

40. Barria, M. A., Telling, G. C., Gambetti, P., Mastronardi, J. A., and Soto, C. (2011) Generation of a new form of human PrPSc in vitro by interspecies transmission from cervid prions. J. Biol. Chem. 286, 7490–7495

41. Barria, M. A., Balachandran, A., Morita, M., Kitamoto, T., Barron, R., Manson, J., Knight, R., Ironside, J. W., and Head, M. W. (2014) Molecular barriers to zoonotic transmission of prions. Emerg. Infect. Dis. 20, 88–97

42. Crowell, J., Hughson, A., Caughhey, B., and Bessen, R. A. (2015) Host determinants of prion strain diversity independent of prion protein genotype. J. Virol. 89, 10427–10441

43. de Boni, L., Saverioni, D., Cohen, M. L., Ferrer, I., Gambetti, P., Edmunds, D. R., Kauffman, M. J., Schumaker, B. A., Lindzey, F. G., Cook, W. E., Kreeger, T. J., Grogan, R. G., and Cornish, T. E. (2016) Chronic wasting disease prevalence in white-tailed deer populations in North America. BMC Vet. Res. 12, 173

44. Bendheim, P. E., Brown, H. R., Rudelli, R. D., Scala, L. J., Goller, N. L., Wen, G. Y., Kascak, R. J., Cashman, N. R., and Bolton, D. C. (1992) Nearly ubiquitous tissue distribution of the scrapie agent prion. Neurology 42, 149–156

45. Ford, M. J., Burton, L. J., Morris, R. J., and Hall, S. M. (2002) Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 113, 177–192

46. Bessen, R. A., and Marsh, R. F. (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101

47. Pulford, B. A., Spraker, T. J., Christy Wyckoff, A., Meyerett, C., Bender, H., Ferguson, A., Wyatt, R., Lockwood, K., Powers, J., Telling, G. C., Wild, M. A., and Zabel, M. D. (2017) Expression of prion protein polymorphisms. J. Gen. Virol. 98, 655–668

48. Kang, H. E., Bán, J., Kane, S. J., Kim, S., Selwyn, V., Crowell, J., Bartz, J. C., le Dur, A., Laï, T. L., Stinnakre, M. G., Laisné, A., Chenais, N., Rakotobe, A., Béringue, V., Vilott, J. L., and Laude, H. (2017) Divergent prion strain evolution driven by PrP C expression level in transgenic mice. Nat. Commun. 8, 14170

49. Bessen, R. A., and Marsh, R. F. (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101

50. Hill, A. F., Desbruslais, M., Joiner, S., Sidie, K. C. L., Gowland, I., Collinge, J., Doey, L. J., and Lantos, P. (1997) The same prion strain causes vCJD and BSE. Nature 389, 448–500

51. Meyerett, C., Michel, B., Pulford, B., Spraker, T. R., Nichols, T. A., Johnson, T., Kurt, T., Hoover, E. A., Telling, G. C., and Zabel, M. D. (2008) In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification. Virology 382, 267–276

52. Meyerett-Reid, C., Wyckoff, A., Spraker, T., Pulford, B., Bender, H., and Zabel, M. D. (2017) De novo generation of a unique cervid prion strain using protein misfolding cyclic amplification. mSphere 2, e00372-16

53. Veláquez, C. D., Chae, K., Tracy, H., Chiyé, K., Allen, H., Judd, A., Safar, J. G., and McKenzie, D. (2020) Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J. Biol. Chem. 295, 4985–5001

54. Parchi, P., de Boni, L., Saverioni, D., Cohen, M. L., Ferrer, I., Gambetti, P., Gelpi, E., Giacone, G., Hauw, J. J., Höftberger, R., Ironside, J. W., Jansen, C., Kovacs, G. G., Rozemuller, A., Seilhean, D., et al. (2012) Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: An inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 124, 517–529

55. Edwards, D. R., Kaufmann, M. J., Schumaker, B. A., Binfet, J., Kreeger, T. J., Richards, B. J., Schätzl, H. M., and Cornish, T. E. (2017) Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS One 12, e0186512

56. Manjorovic, M. B., Green, M. L., Mateus-Pinilla, N., and Novakofski, J. (2014) The importance of localized culling in stabilizing chronic wasting disease prevalence in white-tailed deer populations. Prev. Vet. Med. 113, 139–145

57. Almberg, E. S., Cross, P. C., Johnson, C. J., Heissey, D. M., and Richards, B. J. (2011) Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction. PLoS One 6, e19896

58. Uehlinger, F. D., Johnston, A. C., Bollinger, T. K., and Waldner, C. L. (2016) Systematic review of management strategies to control chronic wasting disease in wild deer populations in North America. BMC Vet. Res. 12, 173

59. Bensdorp, P. E., Brown, H. R., Rudelli, R. D., Scala, L. J., Goller, N. L., Wen, G. Y., Kascak, R. J., Cashman, N. R., and Bolton, D. C. (1992) Nearly ubiquitous tissue distribution of the scrapie agent prion. Neurology 42, 149–156

60. Ford, M. J., Burton, L. J., Morris, R. J., and Hall, S. M. (2002) Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 113, 177–192

61. Devi, M. T., Edwards, D. R., Kaufmann, M. J., Schumaker, B. A., Binfet, J., Kreeger, T. J., Richards, B. J., and Cornish, T. E. (2017) Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS One 12, e0186512

62. Almberg, E. S., Cross, P. C., Johnson, C. J., Heissey, D. M., and Richards, B. J. (2011) Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction. PLoS One 6, e19896