Noradrenergic enhancement of motor learning, attention, and working memory in humans

Dr. Hsiao-I Kuõ¹, Dr. Feng-Xue Qi²,³, Prof. Dr. Walter Paulus⁴, Dr. Min-Fang Kuo⁵, Prof. Dr. Michael A. Nitsche⁴,⁵,⁶*¹School and graduate institute of physical therapy, National Taiwan University, No.17, Xu-Zhou Road, 10055 Taipei, Taiwan
²Key laboratory of Sport Training of General Admission of Sport of China, Beijing Sport University, No 48, Xinxin Road, Haidian District, 100084 Beijing, China
³Department of Sport Training, Sport Coaching College, Beijing Sport University, No 48, Xinxin Road, Haidian District, 100084 Beijing, China
⁴Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Robert –Koch-Straße 40, 37075 Göttingen, Germany
⁵Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, 44139 Dortmund, Germany
⁶Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany

*Corresponding author: Prof. Dr. M.A. Nitsche, Department Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund Germany.
Tel: +49 551 39 9571, Fax: +49 551 39 8126. E-mail: nitsche@ifado.de

Significance statement

Acute enhancement of noradrenergic activation via a single dose of reboxetine (RBX) can improve implicit motor learning, attention, and working memory performance in healthy humans.
Abstract

Background: Noradrenaline (NA) has an important role as a neuromodulator of the central nervous system. Noradrenergic enhancement was recently shown to enhance glutamate-dependent cortical facilitation, and long term potentiation-like plasticity. As cortical excitability and plasticity are closely linked to various cognitive processes, here we aimed to explore whether these alterations are associated with respective cognitive performance changes. Specifically, we assessed the impact of noradrenergic enhancement on motor learning (serial reaction time task), attentional processes (stroop interference task), and working memory performance (n-back letter task). **Methods:** The study was conducted in a cross-over design. Twenty-five healthy humans performed the respective cognitive tasks after a single dose of the noradrenaline reuptake inhibitor reboxetine (RBX) or placebo (PLC) administration. **Results:** The results show that motor learning, attentional processes, and working memory performance in healthy subjects were improved by RBX application, as compared to PLC. **Conclusions:** The results of the present study thus suggest that noradrenergic enhancement can improve memory formation and executive functions in healthy humans. The respective changes go in line with related effects of noradrenaline on cortical excitability and plasticity.

Key words: noradrenaline, reboxetine, motor learning, memory, attention
Main text

Introduction

Noradrenaline (NA) is a major neuromodulator of the central nervous system (Bhagya, Srikumar et al. 2000, Robinson 2012). Via its extensive connections with multiple forebrain regions and the widespread distribution of noradrenergic receptors, the noradrenergic system is involved in arousal and response to acute stress and thought to modulate cognitive functions including attention, memory, and learning (Bhagya, Srikumar et al. 2000, Robinson 2012). Noradrenergic activation alters neuronal excitability and regulates synaptic plasticity which is thought to play a key role in cognitive performance at the neurophysiological level (Rioult-Pedotti, Friedman et al. 2000, Balzarotti and Colombo 2016). Cortical excitability and plasticity, including long term potentiation (LTP) and long term depression (LTD), are modulated by noradrenergic activation by its impact on various intracellular processes, including its effects on N-methyl-D-aspartate (NMDA), and gamma-aminobutyric acid (GABA) receptors, as well as on other neuromodulators, such as the dopaminergic system (Marzo, Bai et al. 2009). Animal studies have shown that neuronal excitability is enhanced by the activation of β-adrenoreceptors via suppressing GABAergic inhibition and facilitating the activation of NMDA receptors (Lei, Deng et al. 2007). On the other hand, α-adrenoreceptors decrease neural excitability by facilitating GABAergic inhibition, possibly via down-regulation of calcium signaling. Similar results have been found in human studies (Marzo, Bai et al. 2009). Here, noradrenergic enhancement increases cortical excitability via enhancement of NMDA receptor-dependent facilitation and reduction of GABAergic inhibition, in principle accordance with a primarily β-adrenergic enhancing effect (Wojtowicz, Fidzinski et al. 2010, Kuo, Paulus et al. 2017).

Regarding synaptic plasticity, animal studies have shown that activation of β-adrenoreceptors strengthens LTP, while α-adrenoreceptors promote LTD (Linster, Nai et al. 2011, Bazzari and Parri 2019). In a study conducted in humans, enhancement of monoamine availability fostered non-invasive brain stimulation-induced LTP-like plasticity, whereas stimulation-induced plasticity was
reduced by a β-adrenergic antagonist (Nitsche, Liebetanz et al. 2004). Moreover, our foregoing study has shown that acute and chronic administration of the selective noradrenaline reuptake inhibitor (NRI) reboxetine (RBX) increased and prolonged stimulation-induced LTP-like plasticity, whereas it converted LTD-like plasticity into LTP-like plasticity (Kuo, Paulus et al. 2017). Similar to adrenergic effects on excitability, this pattern of results is in accordance with a primary impact of β-adrenoceptors on plasticity in humans.

Recent studies have shown that noradrenergic enhancement can increase synaptic plasticity as well as spatial learning in the animal model (Bhagya, Srikumar et al. 2015). Similarly, a single dose of RBX increased cortical excitability and improved the speed of motor task performance (rapid elbow flexion) in healthy subjects (Plewnia, Hoppe et al. 2002, Plewnia, Hoppe et al. 2004). For depressed subjects, noradrenergic enhancement increased memory and attention performance (Ferguson, Wesnes et al. 2003, Chamberlain, Müller et al. 2006). Nevertheless, inconsistent results have also been reported (Kerr, Powell et al. 1996, Lange, Weiller et al. 2007). The partially heterogeneous effects on cognitive performance might be explained by the complex effects of NA on brain physiology, dosage-dependent effects, and task characteristics. Importantly, there is strong evidence linking dysfunctions of the noradrenergic system to different neurological and psychiatric diseases including depression, attention-deficit hyperactivity disorder (ADHD), Parkinson’s disease, Alzheimer’s disease, and age-related decline of memory function (Ferguson, Wesnes et al. 2003, Marzo, Bai et al. 2009, Amano, Tsunoda et al. 2013, Gannon, Che et al. 2015). Taken together, the results of these studies suggest that the noradrenergic system significantly alters cortical excitability and plasticity both in animals and humans, which might be a foundation for the effects of NA on various cognitive functions.

These studies suggest that noradrenergic modulation of brain physiology might be an important foundation of cognitive performance. Generally, faster, and more accurate performance might be due to enhanced cortical excitability, whereas learning, and memory formation might be improved
by plasticity enhancement in humans. Our previous studies have found that both, acute and chronic RBX increased cortical excitability and LTP-like plasticity, which might be a relevant physiological mechanism for the functional effects of RBX. Here, we aimed to directly explore the impact of NA on cognitive functions in humans (Kuo, Paulus et al. 2017, Kuo, Paulus et al. 2017). Specifically, we explored the impact of NA enhancement on motor sequence learning. We hypothesized that the NA-generated strengthening of LTP should result in improved learning, and memory formation. Moreover, we explored the impact of NA enhancement on executive functions, namely working memory, and attention. We hypothesized that the NA-dependent enhancement of glutamatergic, and reduction of GABAergic activity will improve respective cognitive processes.

Methods

Subjects

Twenty-five healthy right-handed and non-smoking subjects (12 females) aged 28.4±3.02 (mean ± SD) years were recruited. None of them had a history of neurological or psychiatric diseases, pregnancy or metallic head implants, nor did they take any medication during the study period. Written informed consent was obtained from all participants before inclusion. The investigation was approved by the Ethics Committee of the University Medical Center Goettingen, and conforms to the Declaration of Helsinki.

Pharmacological intervention

Subjects were asked to take reboxetine (RBX) (8mg) or equivalent placebo (PLC) drugs 2 hours before the start of each experimental session, allowing the verum to reach peak plasma level to produce prominent effects in the central nervous system (Pellizzoni, Poggessi et al. 1996, Dostert,
Benedetti et al. 1997). The specific dosage was chosen because it elicited prominent effects in the central nervous system in previous studies (Plewnia, Hoppe et al. 2002, Ferguson, Wesnes et al. 2003, Kuo, Paulus et al. 2017).

Serial reaction time task (SRTT)

The SRTT is a standard paradigm to test implicit motor learning (Nissen and Bullemer 1987, Exner, Weniger et al. 2001). Participants were seated in front of a computer screen at eye level and a response pad placed on a table with four buttons numbered 1–4. They were instructed to push each button with a different finger of the right hand (index finger for button 1, middle finger for button 2, ring finger for button 3, and little finger for button 4). In each trial, an asterisk appeared in one of 4 positions that were horizontally spaced on a computer screen and permanently marked by dots. The participants were instructed to press the key corresponding to the position of the asterisks as fast and correct as possible. After a button was pushed, the go signal (asterisk) disappeared. The next go signal was displayed 500ms after the participant pushed the button, without informing the participants about the correctness of the answer (Kuo, Unger et al. 2008). A test session consisted of 8 blocks of 120 trials each. In blocks 1 and 6, the sequence of asterisks followed a pseudo-random order. Asterisks were presented equally frequently in each position and never in the same position in two subsequent trials. In blocks 2–5, and 7 and 8, the same 12-trial sequence of asterisk positions was repeated for 10 times (Nitsche, Jakoubkova et al. 2010). Two versions of sequences, which otherwise fulfilled the same criteria as the random stimulus order, were generated, and each participant received each version only in one session in counterbalanced order to avoid interference effects. Participants were not told about a repeating sequence.
The Stroop color-word test

The Stroop task is a neuropsychological test that measures cognitive flexibility, selective attention, cognitive inhibition, and information processing speed (Bryan and Luszcz 2000, Peña-Casanova, Quiñones-Ubeda et al. 2009, Grundey, Amu et al. 2015). The test includes three different sections in which the subject is asked to perform the task as quickly as possible. Stimuli were presented on a computer screen on a black background. The size of stimuli was 2.4 cm at approximately 50 cm eye distance. The first section is the Stroop Word task. Here, subjects were presented with four different words (red, blue, green, yellow) written in black ink. A keyboard with 4 keys, colored in red, blue, yellow and green, was placed in front of the subjects. The participants were asked to press the appropriate response key (word: green; green key, etc.) as fast and accurate as possible. The second section is the Stroop Color. Here four “X”s were presented in red, green, yellow and blue ink, and again participants were asked to press the corresponding key on the keyboard as fast and accurate as possible. The third and last section is the Stroop Color-Word task (incongruent session). In this section the color of the ink in which the word was written was different from the meaning of the word (for example: the word “red” was written in blue). Participants had to press the corresponding key of the color in which the word was written. The inter-stimulus interval was 500ms. Participants were not informed if the task was performed correctly or not. Two versions of sequences were generated, and each participant received each version only in one session in counterbalanced order to avoid interference effects. The resulting increase in reaction time, as compared to the other conditions, in the color-word condition, is the color-word interference effect or Stroop effect. One section consisted of all three conditions with 15 trials each, resulting in 45 stimuli per section. This section was conducted 3 times.
3-back letter task

We used the 3-back letter task to explore working memory performance. This task is sensitive to medication effects (Loughead, Wileyto et al. 2009, Grundey, Amu et al. 2015). Subjects were seated in front of a computer monitor with 50 cm eye distance, and presented with a pseudo-random set of 10 letters (A-J). Each letter was displayed on the computer monitor (14.1 in.) for 30ms. Black letters were presented on a white background and subtended 2.4 cm (when viewed at 50 cm eye distance). A new letter was displayed every 2 seconds. Participants were required to press a response pad (key press) only if the 3rd-last stimulus was identical. Altogether 143 letters were presented, and a total of 30 correct responses were possible, depending on the version of the test. We applied different versions of the test to avoid learning effects. Before each session, subjects were allowed to practice the task for 20 minutes or until they obtained an accuracy of 50 percent, to exclude an impact of unspecific learning effects on performance. Participants were not informed about wrong, and correct answers.

Experimental course

This experiment was performed in a cross-over and double-blind design, with randomized and counter-balanced order. Each subject took part in 2 experimental sessions (one PLC session and one RBX session). Two hours after RBX or PLC intake, the SRTT, STROOP test, and 3-back letter task were conducted in randomized order. These tasks were selected due to their sensitivity to medication effects, their wide application in the previous literature, and because they cover different domains of cognitive functions, which are thought to be affected by NA (Ferguson, Wesnes et al. 2003, Chamberlain, Müller et al. 2006, Loughead, Wileyto et al. 2009). Participants were allowed to take breaks between each cognitive task. The duration of the respective breaks was chosen freely by the participants to enable an appropriate break
to keep attention constant. Each psychological test took 15 minutes in average, and it took about one hour to finish all tests. To avoid medication, or task interference effects, an one week break between sessions was obligatory.

Data analysis

For the SRTT, in each trial, response time (RT) was recorded from the appearance of the go signal until the first button was pushed by the participant. For each block of trials of a given experimental session, mean RT was calculated for each subject separately. Incorrect responses, response times of less than 200 ms, more than 3000 ms, or those that were above 3 standard deviations of the individual mean response time were discarded. Mean RT were standardized to block 1 for each subject in each medication condition separately, to control for initial RT differences. Furthermore, the standard deviation of response time for each subject in every block was calculated as an index of variability. Error rate (ER) was calculated to assess the number of incorrect responses for each block and each subject in each session. Statistical analysis was performed for the absolute and standardized values of RT, ER, and variability of RT via repeated measures analyses of variance (ANOVA) (level of significance 0.05), and the within-subject factors medication (PLC vs. RBX), and block. The Mauchly test was performed to test for sphericity, and the Greenhouse-Geisser correction applied when necessary, for these, and the following ANOVAs. Dependent on significant results in the ANOVAs, RT, ER, and variability value differences between the respective medication conditions were compared by paired samples two-tailed Student’s t-tests (level of significance 0.05) for each block of the task, and between blocks for a given medication condition. Since RT differences between block 5 and 6 are thought to represent an exclusive measure of implicit sequence motor learning, interactive Student’s t tests were conducted to compare differences of respective RTs between these intervention conditions (blocks 5 and 6.
of the SRTT under PLC and RBX).

In the Stroop color-word test, the respective individual means of the corresponding reaction times, percentage (percentage of right answers), and errors were calculated for each session, for the conditions word, color, and incongruent. Repeated-measures ANOVAs were conducted for the respective dependent variables. Within-subject factors were drug (PLC vs. RBX) and sequence (word, color, incongruent). The Mauchly test was performed to test for sphericity and the Greenhouse-Geisser correction applied when necessary, for these, and the following ANOVAs. Conditional on significant results of the ANOVA, paired-sample two-tailed t tests (comparing subjects under PLC or RBX) were performed for post hoc analysis.

For the 3-back letter task, the primary outcomes were hits, misses, correct rejections, false alarms, and reaction time. Furthermore, the sensitivity index d' was calculated for both conditions (Haatveit, Sundet et al. 2010). The index d' is derived from signal detection theory and reflects the ability to discriminate targets from non-targets. d' was calculated with the following formula: Z (hit rate) - Z (false alarm rate); where Z represents the z-scores of both rates (Macmillan and Creelman 1991). Perfect scores were adjusted using these formulas: $1 - 1/ (2n)$ for perfect (e.g., hit rate) and $1/ (2n)$ for zero false alarms. For each participant, an individual mean was calculated for each of these variables. Paired-sample two-tailed tests were applied to compare outcomes under RBX and PLC for the respective variables. A p value of < 0.05 was considered significant for all statistical analysis. Exploratory post hoc tests were not corrected for multiple comparisons. All data are expressed as mean±standard of error of means (SEM). Analysis were performed with IBM SPSS Statistics Version 22.
Results

All subjects completed the entire study. Only two participants complained about mild dizziness (under the RBX condition), which was well controlled by taking a rest for 30 minutes.

SRTT

As displayed in Table 1, for absolute RT, the repeated measures ANOVA revealed significant main effects for the factor block ($F(7) = 18.286; P < 0.001$), drug ($F(1) = 37.409; p < 0.001$), and drug x block interaction ($F(7) = 3.161; P = 0.021$). For standardized RT, significant main effects for the factor block ($F(7) = 17.705; p < 0.001$) and drug ($F(1) = 29.714; p < 0.001$) emerged. For absolute RT, the main effect of block is caused by reduced RTs, as compared with random block 1, in the later sequences (Fig. 1), with the exception of the random block 6, which did not contain the learned sequence. The main effect of the factor drug was caused by the fact that for the RBX condition, RTs were significantly smaller as compared to the PLC condition for all blocks (block 1: t-value 7.759, $p < 0.001$; block 2: t-value 5.986, $p < 0.001$; block 3: t-value 6.319, $p < 0.001$; block 4 t-value 5.064, $p < 0.001$; block 5: t-value 2.784, $p = 0.011$; block 6: t-value 2.966, $p = 0.001$; block 7: t-value 2.996, $p = 0.007$; block 8: t-value 5.886, $p < 0.001$) as shown in Fig. 1A. Similar results were obtained for standardized RT. Standardized RTs were significantly smaller under RBX as compared to the PLC condition for most of the blocks (block 2: t-value 1.856, $p = 0.046$; block 3: t-value 1.916, $p = 0.038$; block 4: t-value 1.841, $p = 0.049$; block 5: t-value 2.435, $p = 0.023$; block 6: t-value 2.090 $p = 0.038$; block 7: t-value: 2.086, $p = 0.038$; block 8: t-value 3.153, $p = 0.004$) (Fig. 1B). With respect to the significant interaction, as revealed by the post hoc t-tests, the difference in absolute and standardized RT between block 6 and 5 (RT6-RT5) under RBX was significantly larger than that under PLC, reflecting learning in both conditions, but improved learning under RBX.
(absolute RT: t-value 3.987, p= 0.001; standardized RT: t-value 3.103, p=0.004). For ER and variability, the repeated measures ANOVAs show no significant main effects of drug, block or the respective interactions (all P>0.05).

Stroop task

Regarding reaction time (see also Table 1), the repeated measures ANOVA revealed significant main effects of condition (F(2)=5.532; P=0.039), and drug (F(1)=5.653; P=0.049). The post hoc t tests (paired-sample t-tests) show that under RBX participants were significantly faster, as compared to the PLC condition in the color-word incongruent condition (t-value 5.877, p<0.001) (Fig. 2). For errors, the repeated measures ANOVA yielded significant results for the main effect condition (F(2)=15.613; p<0.001), and the interaction between drug x condition (F(2)=3.118; p=0.045). The post hoc t-tests show that RBX significantly decreased the number of errors in the color-word incongruent condition (t-value -5.007, p<0.001) (Fig. 2).

3-back letter task

The paired-samples t-test revealed a significant effect of reaction time (reduced reaction time) (t-value 6.333, p<0.001) and misses (reduced misses) (t-value 2.922, p=0.008). Hits, correct rejections, false alarms, and d’ did not differ between intervention conditions (all>0.05) (Fig. 3). Under RBX, subjects thus improved significantly in terms of reaction time, and misses, but not in other performance parameters (Table 2).

Discussion

The results of this study show that at the dosage applied in the present experiments, RBX improved various cognitive functions, including learning, and executive functions. Specifically, RBX enhanced motor sequence learning, as shown by SRTT, and flexibility/
selective attention as shown by the STROOP task results. It furthermore improved reaction
time and reduced the number of misses in the working memory task.

For the SRTT, the results of our study show that RT was significantly shortened in all blocks under
RBX, as compared with the PLC condition. This shows that RBX improved performance
independently from sequence learning. More importantly however, RBX additionally improved
performance in the sequence block, when the impact of the learning-unspecific RT improvement
was excluded, and thus enhanced sequence learning performance. This result is in accordance with
related animal experiments, where it was shown that RBX has a beneficial effect on five-choice serial
reaction time task (5-CSRTT) performance in rats (Robinson 2012). In contrast, ER and variability
were not modified by the intervention. Thus the RT effects reflect true performance improvements,
which were not achieved on the cost of error, or variability enhancement. These effects might be
casted by the excitability-enhancing effect of RBX, which might bring task-activated synaptic
connections nearer to their synaptic modification threshold, thus facilitating LTP. More specifically,
this process might be driven by NMDA receptor activity enhancement, and gated by GABA activity
reduction, both induced by RBX, which are relevant for motor learning, and memory formation
(Hasan, Hemández-González et al. 2013, Kolasinski, Hinson et al. 2019). Indeed, animal studies have
shown that NA enhancement induces glutamatergic and calcium–dependent LTP (Maity, Rah et al.
2015, Jedrzejewska-Szmeek, Luczak et al. 2017). This is furthermore in accordance with previous
studies from our and other groups, which describe enhanced cortical excitability and LTP-like
plasticity after application of RBX in humans (Plewnia, Hoppe et al. 2002, Kuo, Paulus et al. 2017).
Therefore, RBX-driven cortical excitability and plasticity enhancement might be an important
neurophysiological foundation for the improvement of motor learning observed in this experiment.

Nevertheless, a former study describes no effect of RBX on motor skill acquisition (finger tapping)
(Lange, Weiller et al. 2007). This deviating effect is however most likely explained by the relevantly
lower dosage of RBX (2mg) applied in that study.
For Stroop task performance, the results revealed a positive overall effect on reaction time under RBX, but – similar to the SRTT results - an additional specific effect on selective attention. Our findings go in line with results of previous studies showing that blockade of NA receptors impairs selective attention in animal models (Ma, Qi et al. 2003, Ma, Arnsten et al. 2005). Similarly, in studies conducted in humans, RBX improved attention in major depression (Ferguson, Wesnes et al. 2003). Probable mechanisms of action include NMDA receptor activity enhancement, as accomplished by RBX. Stroop task performance has been shown to be prominently affected by glutamatergic activation (Stoet and Snyder 2006, Kühn, Schubert et al. 2016). These results imply moreover that RBX works most prominently in demanding attentional processes, which might require a larger amount of glutamatergic activation (Adleman, Menon et al. 2002). Alternatively, it cannot be ruled out that for the easier task conditions, only a somewhat smaller effect of RBX emerged in the present study because of a ceiling effect.

For working memory performance, noradrenergic activation improves working memory in rats and monkeys (Birnbaum, Podell et al. 2000, Ramos and Arnsten 2007). In accordance, human studies have found that a single dose of RBX improved working memory in healthy and depressed subjects (Ferguson, Wesnes et al. 2003, Chamberlain, Müller et al. 2006). However, one study found no effects on RBX applied in relatively low dosages (0.5/1/4 mg) on Sternberg test performance (recognition probe for previously memorized digit sequences) in healthy subjects (Kerr, Powell et al. 1996). These partially inconsistent effects between studies might thus be caused by different dosages of RBX and task characteristics. In the present study, participants showed improved working memory performance (reduced reaction time and number of misses) under RBX. NMDA-Rs and the glutamate system are critically involved in working memory performance (Driesen, McCaarthy et al. 2013). RBX enhances glutamatergic activity. In healthy humans, it was shown that RBX increases intracortical facilitation (ICF), which is known to primarily controlled by the glutamatergic system (Kuo, Paulus et al. 2017). These neurophysiological mechanisms of RBX provide thus a plausible explanation for its enhancing effects on working memory performance.
Beneath RBX, also other substances have been shown to have cognition-enhancing effects in healthy humans, although not always to the same extent. Regarding indirect agonists, caffeine has been shown to increase the accuracy, but not reaction time of working memory task performance (3-back letter task), whereas it had no effects on STROOP task performance in healthy subjects (Edwards, Brice et al. 1996, Ueda and Nakao 2019). Furthermore, psychostimulants such as modafinil and methylphenidate improved response time and error rates of STROOP task performance in the incongruent condition, but had no significant effects on choice reaction time, and 3-back letter task performance in healthy humans (Minzenberg and Carter 2008, Campbell-Meiklejohn, Simonsen et al. 2012, Wood, Sage et al. 2014, Turner, Robbins et al. 2019). However, due to experimental differences, it is difficult to compare directly the magnitude of effects achieved by RBX, caffeine, and the respective psychostimulants. Moreover, no studies are available which compared directly different substances with respect to identical tasks in the same subject groups, which would be ideal for such a comparison. One explanation for the performance-improving effect of noradrenergic enhancement in our participants, which is not seen for all cognitive enhancers, is that young healthy subjects do not reach their maximum possible performance level in each case under normal conditions. There is a well-known performance reserve, which is stress-related, and can improve performance further (Robertson 2013, Cabral, Veleda et al. 2016). Activation of this performance reserve is associated with NA enhancement (Robertson 2013).

Some limitations of the present study should be taken into account. First of all, the cognitive performance measurements, and related neurophysiological studies conducted by our group, and others in previous experiments were conducted in different groups of subjects. Thus, statements about causal relations of respective effects are speculative at present. However, similar demographic characteristic of the groups explored in the physiological and cognitive studies conducted by our group allow preliminary conclusions to be drawn. Secondly, the results of our study partly differ from those of former cognitive studies with
noradrenergic agents. Inconsistent results might be based on different noradrenergic receptor activation, medication dosages, and task characteristics. There is increasing evidence that neuromodulators may operate non-linearly, such as dopamine, where under- or over-activity impairs cognitive processes, while medium activity leads to optimized performance (Cools and D’Esposito 2011, Monte-Silva, Liebetanz et al. 2011, Fresnoza, Paulus et al. 2014). No studies so far systematically explored the non-linear effects of NA, but for amphetamine, which has NA activating effects, respective non-linearities have been described. Nevertheless, specific titration studies might be required. Furthermore, we did not ask the participants if they thought they received real or placebo medication after the end of the experiment. Since previous studies described that participants cannot distinguish between placebo and real medication with 8 mg RBX (Wang, Fink et al. 2009), we assumed that the double blind design was reliable. Direct exploration of the integrity of blinding might however be advantageous in future studies. Finally, the present study was conducted in healthy subjects. In neuropsychiatric diseases, transmitter availability and other features of brain functions might be different. Future studies are thus needed to explore the transferability of these results to patients. Some technical limitations of our study are that we did not obtain plasma levels of RBX, and did not conduct peripheral measures of drug effects, such as blood pressure and pulse frequency, which might have further helped to establish respective dose-effect relationships.

Conclusion

In the present study, we examined the impact of noradrenergic enhancement with the noradrenaline reuptake inhibitor RBX on cognitive performance with regard to learning and memory formation, and executive functions, namely attention and working memory performance. Beyond a general unspecific beneficial effect on reaction time, the results
provide evidence for a prominent involvement of noradrenergic system activation in implicit motor learning, attention, and working memory performance in healthy humans. When associated with the results of related neurophysiological studies, these cognitive effects are most likely caused by respective NA-related effects on cortical plasticity and excitability. The results of these studies provide a potential mechanism to explain the improvement of daily functioning observed in patients treated by noradrenergic agents, and might also offer opportunities to exploit respective agents to counteract cognitive decline, or improve rehabilitation results.
Funding

None

Acknowledgements

Michael A. Nitsche is supported by the German Federal Ministry of Education and Research project “Netzwerk psychische Erkrankungen” grant 01EE1403C. Hsiao-I Kuo is supported by a government scholarship, Taiwan.

Conflict of Interest

H-I.K., F-X.Q and M-F.K. received no financial support or compensation from any individual or corporate entity over the past three years for research or professional service and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest. W.P. is member of the Advisory Boards of GSK, UCB and Desitin. M.A.N. is member of the Advisory Boards of Neuroelectrics, and NeuroDevice.
References

Adleman, N., V. Menon, C. Blasey, C. White, I. Warsofsky and G. Glover (2002). "A developmental fMRI study of the Stroop color-word task." _Neuroimage_ **16**: 61-75.

Amano, A., M. Tsunoda, T. Aigaki, N. Maruyama and A. Ishigami (2013). "Age-related changes of dopamine, noradrenaline, and adrenaline in adrenal glands of mice." _Geriatr Gerontol_ **13**: 490-496.

Balzarotti, S. and B. Colombo (2016). "Effects of unilateral transcranial direct current stimulation of left prefrontal cortex on processing and memory of emotional visual stimuli." _PLoS One_ **19**: 11.

Bazzari, A. and H. Parri (2019). "Neuromodulators and long-term synaptic plasticity in learning and memory: a steered glutamatergic perspective." _Brain Sci_ **31**: 300.

Bhagya, V., B. Srikumar, T. Traju and B. Rao (2000). "The selective noradrenergic reuptake inhibitor reboxetine resores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression." _J Neurosci Res_ **93**: 104-120.

Bhagya, V., B. Srikumar, T. Traju and B. Rao (2015). "The selective noradrenergic reuptake inhibitor reboxetine resores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression." _J Neurosci Res_ **93**: 104-120.

Birnbaum, S., D. Podell and A. Arnsten (2000). "Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG142, in rats." _Pharmacol Biochem Behav_ **67**: 397-403.
Bryan, J. and M. Luszcz (2000). "Measures of fluency as predictors of incidental memory among older adults." Psychol Aging 15: 483-489.

Cabral, J., G. Veleda, M. Mazzoleni, E. Colares, L. Neiva-Silva and V. Neves (2016). "Stress and Cognitive Reserve as independent factors of neuropsychological performance in healthy elderly." Cien Saude Colet 21: 3499-3508.

Campbell-Meiklejohn, D., A. Simonsen, J. Scheel-Krüger, V. Wohlert, T. Gjerlof, C. Frith, R. Rogers, A. Roepstorff and A. Møller (2012). "In for a Penny, in for a Pound: Methylphenidate Reduces the Inhibitory Effect of High Stakes on Persistent Risky Choice." J Neurosci 32: 13032-13038.

Chamberlain, S., U. Müller, D. Blackwell, T. Robbins and B. Sahakian (2006). "Noradrenergic modulation of working memory and emotional memory in humans." Psychopharmacology 188: 397-407.

Cools, R. and M. D'Esposito (2011). "Inverted-U-shaped dopamine actions on human working memory and cognitive control." Biol Psychiatry 69: 113-125.

Dostert, P., M. Benedetti and I. Poggesi (1997). "Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor." European Neuropsychopharmacology 1: 23-35.

Driesen, N., G. McCaarty, Z. Bhagwagar, M. Bloch, V. Calhoun and D. D'Souza (2013). "The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity." Neuropsychopharmacology 38: 2613-2622.

Edwards, S., C. Brice and C. Graic (1996). "Effects of caffeine, practice, and mode of presentation on stroop task performance." Pharmacology Biochemistry and Behavior 54: 309-315.

Exner, C., G. Weniger and E. Irle (2001). "Implicit and explicit memory after focal thalamic lesions." Neurology 57: 2054-2063.
Ferguson, J., K. Wesnes and G. Schwartz (2003). "Reboxetine versus paroxetine versus placebo: effects on cognitive functioning in depressed patients." International Clinical Psychopharmacology 18: 9-13.

Fresnoza, S., W. Paulus, M. Nitsche and M. Kuo (2014). "Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans." J Neurosci 34: 2744-2753.

Gannon, M., P. Che, Y. Chen, K. Jiao, E. D. Roberson and Q. Wang (2015). "Noradrenergic dysfunction in Alzheimer's disease." Front Neurosci 9: 220.

Grundey, J., R. Amu, G. Ambrus, G. Batsikadze, W. Paulus and M. Nitsche (2015). "Double dissociation of working memory and attentional processes in smokers and non-smokers with and without nicotine." Psychopharmacology 232: 2491-2501.

Haatveit, B., K. Sundet, K. Hugdahl, T. Ueland, I. Melle and O. Anderassen (2010). "The validity of d prime as a working memory index: results from the "Bergan n-back task"." J Clin Exp Neuropsychol 32(8): 871-880.

Hasan, M., S. Hemández-González, G. Doqbevia, M. Treviño, I. Bertocchi, A. Gruart and J. Delgado-Garcia (2013). "Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice." Nat Commun 4: 2831.

Jedrzejewska-Szmek, J., V. Luczak, T. Abel and K. Blackwell (2017). "Beta-adrenergic signaling broadly contributes to LTP induction." PLoS Comput Biol 24: e1005657.

Kerr, J., J. Powell and I. Hindmarch (1996). "The effects of reboxetine and amitriptyline, with and without alcohol on cognitive function and psychomotor performance." Br J Clin Pharmacol 42: 239-241.

Kolasinski, J., E. Hinson, A. DivanbeighiZand, A. Rizov and C. Stagg (2019). "The dynamics of cortical GABA in human motor learning." J Physiol 9: 271-282.
Kühn, S., F. Schubert, R. Mekle, E. Wenger, B. Ittermann, U. Lindenberger and J. Gallint (2016). "Neurotransmitter changes during interference task in anterior cingulate cortex: evidence from fMRI-guided function MRS at 3 T." Brain Struct Funct 221: 2541-2551.

Kuo, H., W. Paulus, G. Batsikadze, A. Jamil, M. Kuo and M. Nitsche (2017). "Acute and chronic noradrenergic effects on cortical excitability in healthy humans." Int J Neuropsychopharmacology 20: 634-643.

Kuo, H., W. Paulus, G. Batsikadze, A. Jamil, M. Kuo and M. Nitsche (2017). "Acute and chronic noradrenergic enhancement on transcranial direct current stimulation-induced neuroplasticity in humans." J Physiol 15: 1305-1314.

Kuo, M., M. Unger, D. Liebetanz, N. Lang, F. Tergau, W. Paulus and M. Nitsche (2008). "Limited impact of homeostatic plasticity on motor learning in humans." Neuropsychologia 46: 2122-2128.

Lange, R., C. Weiller and J. Liepert (2007). "Chronic dose effects of reboxetine on motor skill acquisition and cortical excitability." J Neural Transm 114: 1085-1089.

Lei, S., P. Deng, J. Porter and H. Shin (2007). "Adrenergic facilitation of GABAergic transmission in rat entorhinal cortex." J Neurophysiol. 98: 1868-1877.

Linster, C., Q. Nai and M. Ennis (2011). "Nonlinear effects of noradrenergic modulation of olfactory bulb function in adult rodents." J Neurophysiol 105: 1432-1443.

Loughead, J., E. Wileyto, J. Valdez, P. Sanborn, K. Tang and A. Strasser (2009). "Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype." Mol Psychiatry 14: 820-826.

Ma, C., A. Arnsten and B. Li (2005). "Locomotor hyoeractivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys." Biol Psychiatry 15: 192-195.
Ma, C., X. Qi, J. Peng and B. Li (2003). "Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys." Neuroreport 23: 1013-1016.

Macmillan, N. and C. Creelman (1991). Detection theory: a user’s guide. Cambridge, Cambridge University Press.

Maity, S., S. Rah, N. Sonenberg, C. Gkogkas and P. Nguyen (2015). "Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs." Learn. Mem. 22: 499-508.

Marzo, A., J. Bai and S. Otani (2009). "Neuroplasticity regulation by noradrenaline in mammalian brain." Current Neuropsychopharmacology 7: 286-295.

Minzenberg, M. and C. Carter (2008). "Modafinil: a review of neurochemical actions and effects on cognition." Neuropsychopharmacology 33: 1477-1502.

Monte-Silva, K., D. Liebetanz, J. Grundey, W. Paulus and M. Nitsche (2011). "Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity." J Physiol 588: 3415-3424.

Nissen, M. and P. Bullemer (1987). "Attentional requirements of learning: evidence from performance measures." Cognitive psychology 19: 1-32.

Nitsche, M., M. Jakoubkova, N. Thirugnanasambandam, L. Schmalfuss, S. Hullemann, K. Sonka and W. Paulus (2010). "Contribution of the premotor cortex to consolidation of motor sequence learning in human during sleep." J Neurophysiol 104: 2603-2614.

Nitsche, M., D. Liebetanz, A. Schlitterlau, U. Henschke, K. Fricke, K. Frommann, N. Lang, S. Henning, W. Paulus and F. Tergau (2004). "GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans." Eur J Neurosci 19: 2720-2726.
Pellizzoni, C., I. Poggessi, N. Jøgensen, D. Edwards, E. Paus and M. Benedetti (1996). "Pharmacokinetics of reboxetine in healthy volunteers. Single against repeated oral doses and lack of enzymatic alterations." Biopharm Drug Dispos 17: 623-633.

Peña-Casanova, J., S. Quiñones-Ubeda, N. Gramunt-Fombuena, M. Quintana, M. Arguilar and J. Molinuevo (2009). "NURONORMA Study Team. Spanish Multicenter Normative Studies (NEURONORMA Project); norms for the STROOP color-word interference test and the Tower of London-Drexel." Arch Clin Neuropsychol 24: 413-429.

Plewnia, C., J. Hoppe, L. Cohen and C. Gerloff (2004). "Improved motor skill acquisition after selective stimulation of central norepinephrine." Neurology 62: 2124-2126.

Plewnia, C., J. Hoppe, C. Heimke, M. Bartles, L. Cohen and C. Gerloff (2002). "Enhancement of human cortico-motoneural excitability by the selective norepinephrine reuptake inhibitor reboxetine." Neurosci Lett 330: 231-234.

Ramos, B. and A. Arnsten (2007). "Adrenergic pharmacology and cognition: focus on the prefrontal cortex." Pharmacology and Therapeutics 113: 523-536.

Riout-Pedotti, M., D. Friedman, G. Hess and J. Donoghue (2000). "Learning-induced LTP in neocortex." Science 290: 533-536.

Robertson, I. (2013). "A noradrenergic theory of cognitive reserve: implications for Alzheimer's disease." Neurobiology of aging 34: 298-308.

Robinson, E. (2012). "Blockade of noradrenaline re-uptake improves accuracy and impulse control in rat performing a five-choice serial reaction time task." Psychopharmacology 219: 303-312.

Stoet, G. and L. Snyder (2006). "Effects of the NMDA antagonist ketamine on task-switching performance: evidence for specific impairments of executive control." Neuropsychopharmacology 31: 1675-1681.
Turner, D., T. Robbins, L. Clark, A. Aron, J. Dowson and B. Sahakian (2019). "Cognitive enhancing effects of modafinil in healthy volunteers." *Psychopharmacology* **165**: 260-269.

Ueda, K. and M. Nakao (2019). "Effects of Transpulmonary Administration of Caffeine on Brain Activity in Healthy Men." *Brain sciences* **9**: 222.

Wang, L., G. Fink, M. Dafotakis and C. Grefeks (2009). "Noradrenergic stimulation and motor performance: differential effects of reboxetine on movement kinetics and visuomotor abilities in healthy human subjects." *Neuropsychologia* **47**: 1302-1312.

Wojtowicz, A., P. Fidzinski, U. Heinemann and J. Behr (2010). "Beta-adrenergic receptor activation induces long-lasting potentiation in burst-spiking but not regular-spiking cells at CA1-ambiculum synapses." *Neuroscience* **171**: 367-372.

Wood, S., J. Sage, T. Shuman and S. Anagnostaras (2014). "Psychostimulants and cognition: a continuum of behavioral and cognitive activation." *Pharmacol Rev* **66**: 193-221.
Fig. 1 SRTT performance (reaction time). Depicted are the (A) mean absolute reaction time (ms) and (B) standardized reaction time for each intervention condition (blocks 1-8). In blocks 1 and 6, random stimuli, and in the remaining blocks, the sequence was presented. The results show that participants became faster during learning in both, PLC and RBX conditions. In addition, reaction time is generally significantly shorter in the RBX condition over all blocks. For both, A and B, the reaction time difference between block 5 and 6, which is a pure index of motor learning, is larger for the RBX, as compared to the PLC condition, indicating improved learning under RBX. Filled symbols indicate significant reaction time differences of RBX/PLC conditions relative to the respective block 1, the asterisks indicate significant differences between PLC/RBX conditions for a single block (2-tailed t-tests, paired samples, p<0.05). Hash symbols indicate a significant difference of the RT difference between block 5 and 6 with respect to the RBX/PLC condition (2-tailed, t-test, paired samples, p<0.05). Error bars in this and the following figures represent standard error of the mean (SEM).

Fig. 2 Results of the Stroop test under RBX and PLC conditions for reaction time in ms (A) and averaged number of errors (B). Compared to the PLC condition, administration of RBX improves performance in terms of reaction time and number of errors in the incongruent condition. Asterisks represent significant differences between PLC and RBX conditions (two-tailed, t-tests, paired samples, p<0.05). Vertical bars depict standard error of mean (SEM).

Fig. 3 The results of the 3-back letter task for (A) averaged hits, (B) averaged misses, (C) d’, and (D) reaction time after administration of RBX or PLC. RBX shortened reaction times and reduced misses compared to the PLC condition. Asterisks represent significant differences between PLC and RBX (2-tailed, t-tests, paired samples, p<0.05). Vertical bars depict standard error of mean (SEM).
Table 1. Repeated-Measures ANOVAs performed for the SRTT and STROOP color-word test

Test	Parameters	Conditions	df	F value	P value
SRTT	RT (absolute)	Block	7	18.286	<0.001*
	Medication		1	37.409	<0.001*
	Medication x Block		7	3.161	0.021
SRTT	RT (standardized)	Block	7	17.705	<0.001*
	Medication		1	29.714	<0.001*
	Medication x Block		7	1.823	0.082
SRTT	Variability of RT	Block	7	2.505	0.18
	Medication		1	0.732	0.425
	Medication x Block		7	0.93	0.494
SRTT	Errors	Block	7	6.063	0.748
	Medication		1	0.113	0.748
	Medication x Block		7	1.168	0.342
Stroop	Reaction time	Sequence	2	5.532	0.039*
	Medication		1	5.653	0.049*
	Medication x Sequence		2	0.022	0.925
Stroop	Errors	Sequence	2	15.613	<0.001*
	Medication		1	2.896	0.102
	Medication x Sequence		2	3.118	0.045*
Stroop	Percentage	Sequence	2	1.011	0.377
	Medication		1	1.004	0.333
	Medication x Sequence		2	1	0.381

Abbreviations: RT, reaction time. * the bold font indicates significant results at p<0.05, d.f., degrees of freedom.
Table 2 Results of the paired t-tests conducted for the 3-back letter task;

	t-value	p
Reaction time	6.333	<0.001*
Hits	1.088	0.318
Misses	2.922	0.008
Correct rejections	0.773	0.469
False alarms	0.027	0.979
d'	0.877	0.409

* The bold font highlights significant results at p<0.05
Fig 1.

a.

b.
Fig. 2

a.

![Bar chart showing reaction time in ms for Colors, Words, and Incongruent conditions. The chart compares PLC and RBX groups.](image)

b.

![Bar chart showing average errors in numbers for Colors, Words, and Incongruent conditions. The chart compares PLC and RBX groups.](image)
Fig. 3

(a) Average hits in numbers

(b) Average misses in numbers

(c) δ_{PLC} vs δ_{RBX}
