INTRODUCTION

Colonoscopy is the standard method for evaluating the colon. Cecal intubation and polyp detection rates are two key indicators associated with the quality of bowel cleansing prior to this procedure. Effective colonoscopy requires an adequate level of cleansing. Patients with inadequate levels of bowel cleansing may need examinations rescheduled or force practitioners to organize alternative investigations. At the same time, the discomfort from bowel preparation may affect the acceptability of colonoscopy for colon cancer screening. Although these preparations are generally safe and well-tolerated, there are potential risks associated with the use of oral bowel-cleansing agents. Harm is more likely to result from bowel preparation in patients who have definite contraindications (gastrointestinal obstruction or perforation, ileus or gastric retention, severe acute inflammatory bowel disease or toxic megacolon, reduced levels of consciousness, hypersensitivity to any of the ingredients, inability to swallow without aspiration, and ileostomy). Common complications in those without contraindications include hypovolemia and electrolyte disturbances, such as hypokalemia, hyponatremia and hypermagnesemia. The aim of this article was to review general considerations for colonoscopy bowel preparations and more focused concerns for specific patients.

GENERAL CONSIDERATIONS

Diet

A low-fiber diet on the day before colonoscopy is an independent predictor of adequate bowel preparation rather than a regular diet and is more frequent in satisfactory colon cleanliness; it is also better tolerated than a clear liquid diet. For morning colonoscopy, a split method of 4 L polyethylene glycol on the day before and the day of colonoscopy is recommended, while patients scheduled for afternoon colonoscopy typically receive a full method of 4 L polyethylene glycol on the day of the procedure. Valid alternatives are 2 L polyethylene glycol plus ascorbic acid or 2 L sodium picosulphate plus magnesium citrate. Although there are no statistically significant differences between polyethylene glycol and oral sodium phosphate for colon cleansing, polyethylene glycol-based bowel preparation is advisable in most situations because of safety concerns.
of bubbles in the colon, and it has no impact on colon cleanliness and the definite efficacy of colonoscopy for detection of lesions.14

Main oral bowel-cleansing solution and timing

Patients scheduled for a morning colonoscopy are often prescribed a split method of 4 L polyethylene glycol (PEG) on the day before and again on the day of the procedure. When compared with a full dosage of 4 L PEG on the previous day, the split method significantly improves the incidence of satisfactory colon cleanliness, significantly increases patient compliance and significantly decreases nausea.15 In the case of afternoon colonoscopy, a full dose of 4 L PEG on the day of colonoscopy provides better colon cleanliness, less sleep disturbances, and less bloating.16,17

Valid alternatives may include a split method for morning colonoscopy or a full-dose method for afternoon colonoscopy of 2 L PEG plus ascorbic acid (PEGA) or of 2 L sodium picosulphate plus magnesium citrate (SPMC), particularly for elective outpatient colonoscopy.18 The time interval between the last dose of bowel preparation agents and the colonoscopy start time should be no longer than 4 hours.19-21 SPMC provides similar colon cleansing results with less frequent adverse events, nausea, vomiting, abdominal pain, and sleep disturbances and a higher degree of willingness to repeat the same bowel preparation than PEG. However, mucosal inflammation may be more frequent with magnesium-based bowel preparations.22-24 Compared with PEG, PEGA provides similar colon cleanliness for the entire colon with a higher proportion of patients being willing to repeat the same bowel preparation.22-27 However, PEG tends to produce more satisfactory cleanliness in the right colon than PEGA.22-29

While no statistically significant differences between PEG and oral sodium phosphate (OSP) for overall colon cleansing have been reported, the routine use of OSP for bowel preparation should be avoided because of safety concerns.30,31 Although no meta-analysis found no statistically significant association between OSP and kidney injury, 121 cases of renal failure were reported between 2006 and 2007 with the use of OSP. Only 10 were identified with PEG.32,33 Furthermore, an Iceland ure were reported between 2006 and 2007 with the use of OSP. The time interval between OSP and kidney injury, 171 cases of renal failure should be avoided because of safety concerns.30,31 Although a meta-analysis found no statistically significant association between OSP and kidney injury, 171 cases of renal failure were reported between 2006 and 2007 with the use of OSP. Only 10 were identified with PEG.32,33 Furthermore, an Iceland

specific considerations

Previous failure of adequate bowel preparation

Inadequate bowel preparation has been reported in up to one third of colonoscopies. Therefore, identification of its risk factors could be very important. However, a model based on risk factors, such as male gender, inpatient status, and older age, correctly predicted inadequate bowel preparation in only 60% of patients.39 An intensive bowel preparation should be prescribed for patients scheduled for a colonoscopy who have experienced previous inadequate bowel preparation, which might be a predictor of inadequate bowel preparation.40,41

Pregnancy and breastfeeding

PEG is considered safe during pregnancy.42 During and after the bowel preparation, it may be advisable to pause breastfeeding.

In conditions of suspicious inflammatory bowel disease

With OSP and SPMC, preparation-induced mucosal inflammation has been reported 10 times more frequently than with PEG.43 Erosion, aphthoid lesions, and ulcers are often multiple and occur primarily in the distal sigmoid colon and rectum.44
Lower gastrointestinal bleeding

In emergent colonoscopy to evaluate a patient with lower gastrointestinal bleeding, PEG is advisable. Urgent colonoscopy following a rapid colon preparation performed within 24 hours of admission is safe and may facilitate the detection and management of bleeding lesions. In a report regarding patients with acute lower intestinal bleeding, the cecal intubation rate was 41% without full bowel preparation compared with 74% in the PEG group.44,45

Situations bring out hypovolemia

Comorbidities bring out hypovolemia such as diarrhea, vomiting, dysphagia, hyperglycemia, and diuretics use, which should be evaluated before the administration of bowel preparation agents. Isotonic electrolyte-mixed fluid is advisable for intravenous fluid replacement.46 Fluid intake should continue until 2 hours before the colonoscopy, and isotonic electrolyte oral rehydration solutions may be of more benefit than plain water.47 With SPMC or OSP, isotonic electrolyte oral rehydration solutions should be taken to prevent hyponatremia rather than plain water. Some patients receiving PEG may achieve adequate bowel preparation without consuming the full 4 L. Therefore, patients should discontinue the oral bowel-cleansing agent if their diarrhea becomes clear.48

Chronic kidney disease

Information about renal function in patients is important in order to identify an appropriate bowel preparation agent. The most important factor in acute phosphate nephropathy after OSP use is pre-existing chronic kidney disease. Kidney function should be evaluated in patients with any of the known predisposing conditions of kidney disease. With chronic kidney disease, OSP should be avoided. For early chronic kidney disease, OSP or SPMC are acceptable. Cases with late chronic kidney disease without dialysis should be prescribed with PEG or PEGA. SPMC have a risk of hypermagnesemia in patients with kidney disease without dialysis. Thrombosis through arteriovenous fistulae for hemodialysis could be accompanied with dehydration and hypotension. Because PEG may expand intravascular volume, the schedule of dialysis should be adjusted according to the intravascular volume status. In order to preserve the residual renal function, intravascular volume depletion should be avoided in patients with peritoneal dialysis.

Heart failure

PEG is the best oral bowel preparation agent for patients with heart failure. Because heart failure, a risk factor of acute phosphate nephropathy, is accompanied by a reduction in GFR, patients with significant heart failure should not receive OSP.

Liver cirrhosis

Because liver cirrhosis is a risk factor for acute phosphate nephropathy by OSP, PEG is the best oral bowel preparation agent.

Use of ACEI or ARB, diuretics, and NSAID

ACEI or ARB use should be discontinued on the day of administration of oral bowel preparation agents and until 3 days following the colonoscopy. Renal function during ACEI use is prone to aggravate during hypovolemia. ARB intensifies bicarbonaturia by promoting calcium and phosphate precipitation, the risk of acute phosphate nephropathy with OSP. PEG is advisable in patients who use diuretics. In patients taking diuretics, intravascular volume status and electrolyte balance may be imbalanced. Therefore, discontinuation of diuretics should be considered with bowel preparation agent. NSAIDs should be discontinued on the day of administration of oral bowel preparation agents and until 3 days after the colonoscopy.49

CONCLUSIONS

Effective colonoscopy requires an adequate level of cleansing as a basic component. A low-fiber diet is an independent predictor of adequate bowel preparation. Improved bowel cleansing does not result from the routine use of enemas or prokinetics in addition to oral bowel preparation. Generally, a split method of 4 L PEG on the day before and the day of colonoscopy is recommended and valid alternatives are 2 L PEGA or 2 L SPMC. PEG-based bowel preparation is advisable in most situations in terms of safety concerns.

Conflicts of Interest

The author has no financial conflicts of interest.

REFERENCES

1. Harewood GC, Sharma VK, de Garmo P. Impact of colonoscopy preparation quality on detection of suspected colonic neoplasia. Gastrointest Endosc 2003;58:76-79.
2. Froehlich F, Wielisbach V, Gonvers JJ, Burnand B, Vader JP. Impact of colonic cleansing on quality and diagnostic yield of colonoscopy: the European Panel of Appropriateness of Gastrointestinal Endoscopy European multicenter study. Gastrointest Endosc 2000;61:378-384.
3. Rex DK, Imperiale TF, Lavinovitch DR, Bratcher LL. Impact of bowel preparation on efficiency and cost of colonoscopy. Am J Gastroenterol 2002;91:1696-1700.
4. Senore C, Ederle A, Fantin A, et al. Acceptability and side-effects of colonoscopy and sigmoidoscopy in a screening setting. J MedScreen 2011;18:128-134.
5. Connor A, Tolan D, Hughes S, Carr N, Tomson C. Consensus guidelines for the safe prescription and administration of oral bowel-cleansing agents. Gut 2012;61:1525-1532.
6. Wu KL, Rayner CK, Chuaik SK, Chiu KW, Lu CC, Chiu YC. Impact of low-residue diet on bowel preparation for colonoscopy. Dis Colon Rectum 2011;54:107-112.
7. Adams WF, Meagher AP, Lubowski DZ, King DW. Bisacodyl reduces...
Bowel Preparation for Colonoscopy

the volume of polyethylene glycol solution required for bowel preparation: a randomized controlled trial comparing different regimens of oral sodium phosphate and polyethylene glycol. Gastrointest Endosc 2004;64:544-552.

29. Hassan C, Fuccio L, Bruno M, et al. A predictive model identifies patients most likely to have inadequate bowel preparation for colonoscopy. Clin Gastroenterol Hepatol 2004;2:455-458.

30. Ben-Horin S, Bar-Meir S, Aviad B. The outcome of a second preparation for oral sodium phosphate and polyethylene glycol. Aliment Pharmacol Ther 2007;26:1521-1524.

31. Belsey J, Crosta C, Epstein O, et al. Meta-analysis: the relative efficacy of different bowel cleansing strategies for repeat colonoscopy. Aliment Pharmacol Ther 2009;29:201-210.

32. Bruni SM. Association between oral sodium phosphate bowel preparation regimens and radiation injury: a systematic review and meta-analysis. Am J Kidney Dis 2009;53:448-456.

33. Church JM. Effectiveness of polyethylene glycol enema: a blinded, prospective, randomized trial. Dis Colon Rectum 1995;38:594-599.

34. Church JM. Effectiveness of polyethylene glycol enema: a blinded, prospective, randomized trial. Dis Colon Rectum 1995;38:594-599.

35. Hookey LC, Vann S. Recognizing the clinical contraindications to the use of oral sodium phosphate for colon cleansing: a case study. Can J Gastroenterol 2004;18:455-458.

36. Wexner SD, Beck DE, Baron TH, et al. A consensus document on bowel preparation before colonoscopy: prepared by a task force from the American Society of Colon and Rectal Surgeons (ASCRS), the American Society for Gastrointestinal Endoscopy (ASGE), and the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES). Gastrointest Endosc 2006;63:894-909.

37. Markowitz GS, Perazella MA. Acute phosphate nephropathy. Kidney Int 2009;76:1027-1034.

38. Rostom A, Lolscoeur E, Dubé C, et al. A randomized prospective trial comparing different regimens of oral sodium phosphate and polyethylene glycol-based lavage solution in the preparation of patients for colonoscopy. Gastrointest Endosc 2006;64:544-552.

39. Hussain C, Fuccio L, Bruno M, et al. A predictive model identifies patients most likely to have inadequate bowel preparation for colonoscopy. Clin Gastroenterol Hepatol 2012;10:501-506.

40. Ben-Horin S, Bar-Meir S, Aviad B. The outcome of a second preparation for oral sodium phosphate and polyethylene glycol. Aliment Pharmacol Ther 2004;18:455-458.

41. Balsamopoulou TK, Vassilakopoulou M, Koutsoukos A, Maglidou K, Paspatsis D, Ntiziou P, et al. A prospective, observational study of colonic mucosal abnormalities associated with orally administered sodium phosphate for colon cleansing before colonoscopy. Gastrointest Endosc 2004;59:651-654.

42. Colacchio TA, Forde KA, Patsos TJ, Nunez D. Impact of modern diagnostic methods on the management of active rectal bleeding. Ten year experience. Am J Surg 1982;143:607-610.

43. Saiko K, Inamori M, Sekino Y, et al. Management of acute lower intestinal bleeding: what bowel preparation should be required for urgent colonoscopy? Hepatogastroenterology 2009;56:1331-1334.

44. Powell-Tuck J, Gosling P, Lobo DN, et al. British Consensus Guidelines on intravenous fluid therapy for adult surgical patients [Internet]. Petersfield: The Renal Association; 2009 [cited 2009 Aug 10]. Available from: http://www.renal.org/pages/media/Guidelines/GIFTASUP%20

45. Briggs GG, Freeman RK, Yaffe SJ. Drugs in Pregnancy and Lactation. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

46. Rechert S, Bures J, Siroky M, Kopáč M, Šlezák L, Langr F. A prospective, observational study of colonic mucosal abnormalities associated with orally administered sodium phosphate for colon cleansing before colonoscopy. Gastrointest Endosc 2004;59:651-654.

47. Colacchio TA, Forde KA, Patsos TJ, Nunez D. Impact of modern diagnostic methods on the management of active rectal bleeding. Ten year experience. Am J Surg 1982;143:607-610.

48. Saiko K, Inamori M, Sekino Y, et al. Management of acute lower intestinal bleeding: what bowel preparation should be required for urgent colonoscopy? Hepatogastroenterology 2009;56:1331-1334.

49. Powell-Tuck J, Gosling P, Lobo DN, et al. British Consensus Guidelines on intravenous fluid therapy for adult surgical patients [Internet]. Petersfield: The Renal Association; 2009 [cited 2009 Aug 10]. Available from: http://www.renal.org/pages/media/Guidelines/GIFTASUP%20

50. Briggs GG, Freeman RK, Yaffe SJ. Drugs in Pregnancy and Lactation. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.
47. Tjandra JJ, Tagkalidis P. Carbohydrate-electrolyte (E-Lyte) solution enhances bowel preparation with oral fleet phospho-soda. Dis Colon Rectum 2004;47:1181-1186.

48. Hookey LC, Depew WT, Vanner SJ. Combined low volume polyethylene glycol solution plus stimulant laxatives versus standard volume polyethylene glycol solution: a prospective, randomized study of colon cleansing before colonoscopy. Can J Gastroenterol 2006;20:101-105.