Data Article

Experimental data on synthesis and characterization of WO$_3$/TiO$_2$ as catalyst

Augusto Arce-Sarria, Cindy Lorena Caicedo-Rosero, Jose Antonio Lara-Ramos, Jennyfer Diaz-Angulo, Fiderman Machuca-Martínez*

Escuela de Ingeniería Química, Universidad del Valle, A.A. 23360, Cali, Colombia

ABSTRACT

WO$_3$/TiO$_2$ is a composite photocatalyst that is being widely used in heterogeneous photocatalysis because it presents better photocatalytic properties than TiO$_2$. For example, the probability of recombination of the electron/hole pairs is diminished and a more range of the solar spectrum is used for its excitation. However, this depend of variables such as tungsten oxide concentration, calcination temperature and synthesis method. This work is focused in establish the effect of WO$_3$ on the morphological and structural characteristics of TiO$_2$. WO$_3$/TiO$_2$ was synthesized by sol-gel method at different calcination temperatures and at different concentrations of tungsten oxide. The surface area, the possible transition between valence band and conduction band, particle size, elemental analysis and crystallography were examined through the BET, DRS, SEM-EDS and XRD analysis.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Doping TiO$_2$ pretend to improve its photocatalytic performance, since even though it presents a great effectiveness in the degradation of recalcitrant compounds only it achieves its excite state by absorption UV energy, which correspond to 5% of solar spectrum. So more than 50% of visible radiation is being wasted [2,3]. Therefore, it is necessary the coupling of this catalyst with another compound or

* Corresponding author.
E-mail addresses: fiderman.machuca@correounivalle.edu.co, augusto.arce@correounivalle.edu.co (F. Machuca-Martínez).

https://doi.org/10.1016/j.dib.2019.104151
2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
mixed oxides and characterize the properties of the new materials product of doping. In this case WO$_3$/TiO$_2$. Some physicochemical properties of titanium oxide and tungsten oxide are shown in Table 1.

2. Experimental design, materials and methods

Calcination temperature directly affects the crystalline structure of TiO$_2$. It was found that anatase phase presents a better photocatalytic performance than rutile phase [4], so in this work three calcination temperatures 500, 600 and 700 °C were evaluated. Another parameter for improving the photocatalytic activity of TiO$_2$ is the doping percentage by weight of WO$_3$, which favor the shift in the energy absorption toward visible light region. In this case it was varied in 1, 3 and 5% w/w.

2.1. General procedure

The synthesis of WO$_3$/TiO$_2$ photocatalyst was carried out by Sol-Gel methodology using Titanium (IV) n-butoxide, 98% ACROS (CAS RN 5593-70-4) and p-Tungstate ammonium, 99.99% Aldrich (CAS 11120-25-5) as precursors of the obtained materials [5].
In order to know the morphology and composition WO$_3$/TiO$_2$ photocatalyst samples, SEM and EDS analyzes were performed. The results are shown in Fig. 1 and Table 4 respectively.

XRD analysis was performed on samples calcined at 600 °C (Fig. 2) and 700 °C (Fig. 3) because at these temperatures the crystalline transition is achieved. JCPDS 21–1272 and JCPDS 21–1276 cards were used as patterns for the anatase phase and the rutile phase respectively.

The Fig. 4 shows the relationship between the Anatasa and Rutile phase on different catalysts synthesized.
Table 4
Elemental composition according to EDS analysis, given in percentage of element in the sample.

Sample	O	Ti	W
TiO₂ - 600 °C	43.27	56.73	
TiO₂ - 700 °C	47.28	52.72	
1% WO₃/TiO₂ - 600 °C	44.29	54.82	0.89
1% WO₃/TiO₂ - 700 °C	43.07	56.05	0.88
3% WO₃/TiO₂ - 600 °C	43.09	54.27	2.64
3% WO₃/TiO₂ - 700 °C	38.76	58.54	2.71
5% WO₃/TiO₂ - 500 °C	51.08	44.08	4.84
5% WO₃/TiO₂ - 600 °C	41.91	52.95	5.14
5% WO₃/TiO₂ - 700 °C	36.77	58.46	4.78

Fig. 1. SEM for WO₃/TiO₂ materials. (a) TiO₂-600 °C, (b). TiO₂-700 °C, (c). 1% WO₃/TiO₂-600 °C, (d). 1% WO₃/TiO₂-700 °C, (e). 3% WO₃/TiO₂-600 °C, (f). 3% WO₃/TiO₂-700 °C, (g). 5% WO₃/TiO₂-500 °C, (h). 5% WO₃/TiO₂-600 °C, (i). 5% WO₃/TiO₂-700 °C.
Fig. 2. Diffractograms obtained from samples synthesized from WO$_3$/TiO$_2$ calcined at 600 °C (Anatase) and R (Rutile).

Fig. 3. Diffractograms obtained from samples synthesized from WO$_3$/TiO$_2$ calcined at 700 °C A (Anatase) and R (Rutile).
Acknowledgment

The authors thank the Universidad del Valle, Grant: 1004. Síntesis y evaluación de la actividad fotocatalítica TiO2/WO3 en el tratamiento de aguas residuales de la industria minera y la mineralización de contaminantes emergentes farmacéuticos). To Dr. Jorge E. Manrique Julio for his advice in the development of this work. The authors thanks to Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) for the doctoral scholarships 567—2012, 647—2014 and 727—2015.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] A. Arce-Sarria, F. Machuca-Martínez, C. Bustillo-Lecompte, A. Hernández-Ramírez, J. Colina-Márquez, Degradation and loss of antibacterial activity of commercial amoxicillin with TiO2/WO3-assisted solar photocatalysis, Catalysts 8 (2018) 1–14. https://doi.org/10.3390/catal8060222.

[2] R. Vinu, S. Polisetti, G. Madras, Dye sensitized visible light degradation of phenolic compounds, Chem. Eng. J. 165 (2010) 784—797. https://doi.org/10.1016/j.cej.2010.10.018.

[3] J. Díaz-Angulo, I. Gomez-Bonilla, C. Jimenez-Tohapanta, M. Mueses, M. Pinzon, F. Machuca-Martínez, Visible-light activation of TiO2 by dye-sensitization for degradation of pharmaceutical compounds, Photochem. Photobiol. Sci. 18 (2019) 897—904, https://doi.org/10.1039/C8PP00270C.

[4] Y. Djaoued, S. Badilescu, P. V Ashrit, D. Bersani, P.P. Lottici, J. Robichaud, Study of anatase to rutile phase transition in nanocrystalline titania films, J. Sol. Gel Sci. Technol. 24 (2002) 255—264. https://doi.org/10.1023/A:1015357313003.

[5] N.A. Ramos-Delgado, L. Hinojosa-Reyes, J.L. Guzman-Mar, M.A. Gracia-Pinilla, A. Hernández-Ramírez, Synthesis by Sol—Gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide, Catal. Today 209 (2013) 35—40. https://doi.org/10.1016/j.cattod.2012.11.011.