Brief Communication

A study on metabolic variables and its association with high sensitive C-reactive protein in obese children and adolescents

Rajendra Prasad Namburi, Amaresh Reedy Ponnala, T. S. Karthik, P. Radha Rani, Rushikesh Maheshwari
Department of Endocrinology and Metabolism, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India

ABSTRACT

Obesity in children and adolescents predispose to the development of obesity in adulthood and subsequent cardiovascular disease. High-sensitivity C-reactive protein (hsCRP) is a marker of low grade inflammatory state, which characterizes an atherosclerotic process. The aim of this study was to assess the metabolic abnormalities and its association with hsCRP in obese children and adolescents. A total of 62 obese children and adolescents and 24 healthy children and adolescents with a normal weight were recruited. In all subjects, anthropometric and biochemical parameters were measured. Body mass index (BMI) and blood pressure were significantly higher in the obese children and adolescents than the control. Obese children had significantly higher hsCRP levels ($P < 0.001$), total cholesterol, triglyceride, low-density lipoprotein-cholesterol (LDL-C) and lower high-density lipoprotein-cholesterol than the control group. Furthermore, homeostatic model assessment-insulin resistance (HOMA-IR) was significantly higher in obese children compared with the normal weight children. Furthermore, hsCRP showed a positive correlation with BMI ($r = 0.357; P = 0.028$), total cholesterol ($r = 0.367; P = 0.008$) and LDL-C ($r = 0.356; P = 0.01$), insulin ($r = 0.311; P = 0.026$) and not with HOMA-IR ($r = 0.244; P = 0.084$). In conclusion, obese children and adolescents have significantly increased hsCRP compared with a normal weight group. Early intervention and prevention of obesity in children and adolescents decreases cardiovascular disease in later life.

Key words: Cardiovascular risk, high sensitive C-reactive protein, obesity

INTRODUCTION

The global prevalence of overweight and obesity in children and adolescents has increased substantially over the past several decades.[1] These trends are also visible in developing countries like India. Many studies done previously,[2,3] suggest that children and adolescents with risk factors such as obesity, dyslipidemia, elevated blood pressure and impaired glucose metabolism are at increased risk of developing atherosclerosis in adulthood.

High-sensitivity C-reactive protein (hsCRP) has been emerged as a novel biomarker for vascular inflammation associated with atherosclerosis.[4] Accumulating evidence suggests that hsCRP, which is also found within macrophages of atheromatous plaques.[5] However, there is no much data available that guarantee its utility as a marker of cardiovascular risk in obese children and adolescents. Hence, the present study was taken up to assess the metabolic abnormalities and its association with hsCRP in obese children and adolescents.

MATERIALS AND METHODS

A total of 62 obese children and adolescents were consecutively recruited from our Department of Endocrinology and Metabolism, Nellore, Andhra Pradesh, India over a period of 14 months (October 2011 to December 2012).

Corresponding Author: Dr. P. Amaresh Reddy, Department of Endocrinology and Metabolism, Narayana Medical College and Hospital, Chinthareddy Palem, Nellore - 524 003, Andhra Pradesh, India. E-mail: amareshreddy7@gmail.com
Obesity was defined based on reference values stated in the Centers for Disease Control and Prevention growth chart (CDC charts). Children with body mass index (BMI) greater than the 95th percentile for age and gender were classified as obese. Those with BMI equal to or exceeding 85th percentile but, below the 95th percentile are defined as overweight. Secondary causes of obesity such as hypothyroidism, Cushing’s disease and other causes were excluded. Children with other chronic disease, hereditary disease or systemic inflammation were also excluded. None of the patients was taking any medication at the time of evaluation for the presence of insulin resistance (IR) and impaired glucose tolerance/diabetes mellitus. 24 age-matched healthy children were taken as controls. The criteria for healthy control group were no major medical illness and normal glucose tolerance test according to the American Diabetes Association criteria. The study was approved by the Institutional Ethical Committee and informed consent was taken from parents.

Physical examination included measurements of height (by a stadiometer measuring with accuracy of 0.1 cm), weight (by electronic weighing machine) and blood pressure were obtained. BMI was calculated as the weight in kilograms divided by the height in meters squared. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured at the right arm after 15-min rest in sitting position using manual sphygmomanometer.

Biochemical measurements

After a 10-h overnight fast, venous blood samples were collected for laboratory evaluation of fasting glucose and insulin, triglycerides, total cholesterol and high-density lipoprotein (HDL) cholesterol and hsCRP. Glucose levels were measured by glucose oxidase and peroxidase method; triglycerides, total cholesterol were measured by enzymatic and cholesterol oxidase peroxidase method; triglycerides, total cholesterol were measured by commercial available in vitro assay kits from Human GmbH on HUMASTAR 600 (fully automated chemistry analyzer), Max-Planck-Ring 21, Wiesbaden, Germany. hsCRP was measured by immunoturbidimetric method (APTEC technologies) on HUMASTAR 600 (fully automated chemistry analyzer). Insulin was measured by chemiluminescence using Beckman immunoassays on Beckman Coulter Access 2, CA, USA. Both intra-assay and inter-assay coefficient of variations were lesser than 3.6% and 4.8% respectively. IR was calculated using homeostatic model assessment-IR (HOMA-IR) according to the formula (HOMA-IR = plasma glucose [mg/dL] × insulin [mIU/L]/405).

Statistical analysis

All data were expressed as mean ± standard deviation. Statistical analysis was performed with SPSS 20.0. A statistically significant difference between two groups was assessed by the Student's unpaired two tailed t-test. Pearson’s correlation analysis was performed to assess the relationship between hsCRP and other metabolic variables. A *P* < 0.05 was considered to be statistically significant.

RESULTS

Table 1 shows anthropometrical and biochemical characteristics of the study subjects. There is no significant difference between the study groups in terms of age and fasting plasma glucose. BMI, SBP and DBP were significantly elevated in obese children and adolescents compared to healthy controls. Fasting insulin levels (*P* < 0.001) and IR calculated by HOMA-IR (*P* < 0.001) and hsCRP (*P* < 0.001) were significantly higher in obese children and adolescents when compared with the healthy control group. Obese children and adolescents had significantly higher serum total cholesterol (*P* = 0.005), triglycerides (*P* < 0.001), LDL-cholesterol (LDL-C) (*P* = 0.006) and decreased HDL-C (*P* < 0.001) compared to control group.

Table 2 shows Pearson’s correlation analysis between hsCRP and metabolic variables. hsCRP showed a positive correlation with BMI (*r* = 0.357; *P* = 0.028), total cholesterol (*r* = 0.367; *P* = 0.008), LDL-C (*r* = 0.356; *P* = 0.01), insulin (*r* = 0.311; *P* = 0.026) and not with HOMA-IR (*r* = 0.244; *P* = 0.084). No significant association was found with BMI, triglycerides, HDL-C and HOMA-IR.

DISCUSSION

This study is first of its kind from the Indian subcontinent, which shows the evidence for the presence of early

| Table 1: Anthropometric and biochemical variables of the study subjects |
|--------------------------|--------------------------|--------------------------|--------------------------|
| Variable | Obese (N=62) | Controls (N=24) | *P* value |
| Age (years) | 11.6±3.03 | 11.9±2.16 | 0.694 |
| BMI (kg/m²) | 26.79±5.40 | 16.77±1.83 | <0.001* |
| SBP (mm Hg) | 115.9±15.09 | 102.9±8.52 | <0.001* |
| DBP (mm Hg) | 76.6±9.97 | 70.5±3.69 | 0.008* |
| FBS (mg/dl) | 90.14±9.01 | 87.92±7.63 | 0.28 |
| Insulin (mIU/L) | 22.26±9.51 | 11.23±4.29 | <0.001* |
| HOMA-IR | 4.99±2.22 | 2.43±1.01 | <0.001* |
| Total cholesterol (mg/dl)| 165.33±31.61 | 141.29±21.45 | 0.005* |
| Triglycerides (mg/dl) | 113.33±37.15 | 73.29±21.08 | <0.001* |
| HDL-C (mg/dl) | 38.62±2.64 | 44.29±2.23 | <0.001* |
| LDL-C (mg/dl) | 104.15±29.13 | 82.25±19.98 | 0.006* |
| hsCRP (mg/L) | 0.42±0.063 | 0.058±0.067 | <0.001* |

BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, FBS: Fasting blood sugar, HDL-C: High-density lipoprotein-cholesterol, LDL-C: Low-density lipoprotein-cholesterol, HOMA-IR: Homeostatic model assessment of insulin resistance, hsCRP: High sensitive reactive protein
positive correlation with SBP and DBP and triglycerides. However, in our study, there is no significant association between hsCRP and blood pressure, triglycerides and HDL-C. In another study done by Weiss et al., showed that there exists no statistical relationship between hsCRP levels and metabolic risk factors.[11] The limitations of this study are: (1) Small sample size, (2) measurement of IR by HOMA-IR, not by the gold standard euglycemic glucose clamp technique.

CONCLUSION

Obese children and adolescents have significantly increased hsCRP compared with a normal weight group. Therefore, hsCRP seems to be an excellent cardiovascular marker in obese children and adolescents and could be a useful tool for the early diagnosis of cardiovascular risk factors among this population. Early intervention in these obese individuals can reduce the incidence of comorbidities in adulthood.

REFERENCES

1. Wang Y, Lobstein T. Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes 2006;1:11-25.
2. Raitakari OT, Juonala M, Kähönen M, Taittonen L, Laatinen T, Mäki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: The cardiovascular risk in young finns study. JAMA 2003;290:2277-83.
3. Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: The Bogalusa heart study. JAMA 2003;290:2271-6.
4. Ridker PM. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: Moving an inflammatory hypothesis toward consensus. J Am Coll Cardiol 2007;49:2129-38.
5. Capuzzi DM, Freeman JS. CRP and cardiovascular risk in the metabolic syndrome. Clin Diabetes 2007;25:16-22.
6. Meyer AA, Kundt G, Steiner M, Schuff-Werner P, Kienast W. Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: The impact of cardiovascular risk factors. Pediatrics 2006;117:1560-7.
7. Kaptiots S, Holzer G, Schaller G, Haumer M, Wighuber D, et al. A proinflammatory state is detectable in obese children and is accompanied by functional and morphological vascular changes. Arterioscler Thromb Vasc Biol 2006;26:2541-6.
8. Schiel R, Beltschikow W, Kramer G, Stein G. Overweight, obesity and elevated blood pressure in children and adolescents. Eur J Med Res 2006;11:97-101.
9. Iannuzzi A, Licenziati MR, Acampora C, Salvatore V, De Marco D, Mayer MC, et al. Preclinical changes in the mechanical properties of abdominal aorta in obese children. Metabolism 2004;53:1243-6.
10. Hatem HE, Ibraheem AG. High-sensitivity C-reactive protein as a marker of cardiovascular risk in obese children and adolescents. Health 2010;2:1078-84.
11. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yee CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004;350:2362-74.

Table 2: Pearson’s correlation analysis between hsCRP and metabolic variable

Variable	r	P value
Age	0.267	0.058
BMI	0.357*	0.028
SBP	0.273	0.053
DBP	0.204	0.150
FBS	−0.150	0.295
Total cholesterol	0.367**	0.008
Triglycerides	0.103	0.474
HDL-C	0.080	0.575
LDL-C	0.356*	0.01
Insulin	0.311*	0.026
HOMA-IR	0.244	0.084

BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, FBS: Fasting blood sugar, HDL-C: High-density lipoprotein-cholesterol, LDL-C: Low-density lipoprotein-cholesterol, HOMA-IR: Homeostatic model assessment of insulin resistance, hsCRP: High-sensitive C-reactive protein.