Resveratrol Affects Protein Kinase C Activity and Promotes Apoptosis in Human Colon Carcinoma Cells

Jie-Yu Fang1,2&, Zhi-Hua Li3&, Qiang Li4, Wen-Sheng Huang4, Liang Kang2, Jian-Ping Wang2*

Abstract

Background: Resveratrol has been reported to have potential chemopreventive and apoptosis-inducing properties in a variety of tumor cell lines. Objective: In this study, to investigate the effects of resveratrol on protein kinase C (PKC) activity and apoptosis in human colon carcinoma cells, we used HT-29 cells and examined the PKCα and ERK1/2 signaling pathways. Methods: To test the effects of resveratrol on the growth of HT-29 cells, the cells were exposed to varying concentrations and assessed with the MTT cell-viability assay. Fluorescence-activated cell sorter (FACS) analysis was applied to determine the effects of resveratrol on cell apoptosis. Western blotting was performed to determine the protein levels of PKCα and ERK1/2. In inhibition experiments, HT-29 cells were treated with Gö6976 or PD98059 for 30 min, followed by exposure to 200 µM resveratrol for 72 h. Results: Resveratrol had a significant inhibitory effect on HT-29 cell growth. FACS revealed that resveratrol induced apoptosis. Western blotting showed that e phosphorylation of PKCα and ERK1/2 was significantly increased in response to resveratrol treatment. Pre-treatment with PKCα and ERK1/2 inhibitors (Gö6976 and PD98059) promoted apoptosis. Conclusion: Resveratrol has significant anti-proliferative effects on the colon cancer cell line HT-29. The PKC-ERK1/2 signaling pathway can partially mediate resveratrol-induced apoptosis of HT-29 cells.

Keywords: Resveratrol - HT-29 cells - apoptosis - PKC - ERK1/2 signaling pathway

Introduction

Colon cancer is one of the most common malignancies, which ranks as the second leading cause of cancer-related deaths in developed countries, affecting men and women equally (Lynch et al., 1998; Edwards et al., 2011). Risk factors of colon cancer include age, hereditary (e.g. familial adenomatous polyposis, hereditary nonpolyposis colorectal carcinoma, and inflammatory bowel disease), history of colorectal cancer or polyps, and a family history of colorectal cancer, et al (Kambara et al., 2004; Telang et al., 2006; Brackmann et al., 2009). Potential risk factors for the development of colorectal cancer include use of alcohol and tobacco, lack of regular physical activity and vegetable intake, and obesity (Kirkegaard et al., 2010; Schütze et al., 2011).

Resveratrol (3, 4’, 5-trihydroxy-trans-stilbene) is a polyphenol, which has been classified as a phytoalexin because it is produced in spermatophytes in response to injury, UV irradiation and fungal attack (De Silva et al., 1992; Jangm et al., 1997). Resveratrol has been found in 70 plant species, including grapes, mulberries, peanuts, et al (Yang et al., 2001; Endo et al., 2009). It has shown potential chemopreventive properties (Shih et al., 2004), and it has been proved to inhibit growth and induce apoptosis in a variety of tumor cells, including colon cancer, leukemia, breast cancer, and prostate cancer (Filomeni et al., 2007; Hope et al., 2008; Tian et al., 2009; Wang et al., 2010). In addition, resveratrol could maintain colon cancer cell line HT-29 in S phase of cell cycle. However, the mechanism of anti-cancer with resveratrol is still unknown (Wolter et al., 2004; Juan et al., 2008).

Protein kinase C (PKC) is a family of serine/threonine kinases which involved in many important cellular functions, including cell proliferation, migration, differentiation and apoptosis (Carter et al., 2000; Ling et al., 2009). PKC family has more than 12 isoforms, including the conventional PKCs (cPKCα, βI/βII, γ), novel PKCs (nPKC-δ, -ε, -η), and atypical PKCs (aPKCζ), which have been found to exist in various cells. PKCs play an important role in colon carcinogenesis (Atten et al., 2005).

Mitogen-activated protein kinases (MAPK) are serine/threonine protein kinases activated by diverse stimuli,
such as, cytokines, growth factors, neurotransmitters, hormones, cellular stress and cell adherence. MAPKs play critical roles in cell survival and apoptosis (Peyskonnanaux et al., 2001; Wu et al., 2007). The MAPK family has four members, including extracellular regulated kinases (ERKs), c-jun N-terminal or stress-activated protein kinases (JNK/SAPK), ERK 5/big MAP kinase 1 (BMK1) and the p38 group of protein kinases, which have been involved in distinct cellular processes. Activation of ERK has been considered to be involved in cell proliferation (McCubrey et al., 2007; Abrams et al., 2010); while inhibition of ERK activation with a MEK inhibitor, PD98059, induced apoptosis in a dose-dependent manner in breast cancer cells. The ERK pathway was up-regulated in human cancers, such as colon cancer (Davies et al., 2010), and blockage of the ERK pathway would enhance the induction of apoptosis in cancer cells (Kim et al., 2010).

There were no reports which have studied resveratrol-induced apoptosis via the PKCα-ERK1/2 signaling pathway in HT-29 cells. In the study, we evaluated the effects of resveratrol-induced apoptosis on HT-29 cells and investigated the phosphorylation of PKCα and ERK1/2. Inhibition of PKCα and ERK1/2 could significantly enhance HT-29 cell apoptosis which were induced by resveratrol via the decreased phosphorylation of ERK1/2.

Materials and Methods

Reagents

Resveratrol (Sigma-Aldrich, MO, USA) was solubilized in dimethyl sulfoxide (DMSO) at 10 mM and stored at -20°C. The reagents were diluted to the indicated concentration according to the experimental design. Gö6976 (Calbiochem, CA, USA) was solubilized in DMSO at 1 mM and stored at -20°C. Rabbit polyclonal antibodies phospho-PKCα, PKCα, ERK, and β-actin and a mouse monoclonal antibody phospho-ERK were obtained from Cell Signaling Technology (Beverly, MA, USA). Horseradish peroxidase-conjugated secondary antibodies were purchased from QED, Biovision, Inc (Hercules, CA, USA). The enhanced chemiluminescence (ECL) kit was purchased from GE Healthcare (USA).

Cell culture

The HT-29 cell line was obtained from ATCC. The cells were cultured in RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin, and 100 μg/ml streptomycin under standard incubator conditions (humidified atmosphere, 95% air, 5% CO₂, 37°C). Cells were passaged every 3 days with 1:3 ratio using 0.125% trypsin-0.02% EDTA. Passage three were used for all experiments, and either 5×10⁵ cells in 90-mm dish or 105 cells in 60-mm dish were grown in RPMI 1640 supplemented with 10% dextran-coated charcoal (DCC)-FBS. After culture for 24 h, the cells were starved overnight with RPMI 1640 containing 1% DCC-FCS. After culture for 24 h, the cells were treated with different concentrations of resveratrol (50 μM, 100 μM, 200 μM, 300 μM, and 400 μM) for 24 h, 48 h, and 72 h. Next the cells were detached with trypsin-EDTA, stained with trypsin blue solution (0.04% w/v) and counted using a hemocytometer. The number of dead and live cells was calculated in each group, and vehicle controls (0.1% DMSO) were included in each experiment. Each condition was repeated three times.

Detection of apoptotic cells

HT-29 cells were grown in 6-well plates with a density of 10,000 cells per well. After treatment with 100 μM of resveratrol for 24 h, the cells were fixed in 4% paraformaldehyde for 15 min at room temperature, then permeabilized with 0.1% Triton-X-100 (Sigma-Aldrich) for 30 min, rinsed with PBS, and incubated for 5 min at room temperature with 0.01% DAPI stain (Sigma-Aldrich). Excess stain was removed by washing with PBS. Stained nuclei were observed under a Leica fluorescent microscope. The cells with condensed and/or fragmented nuclei were scored as apoptotic cells.

Quantification of apoptosis by flow cytometry

HT-29 cells were treated with 50 μM, 100 μM, 200 μM, 300 μM resveratrol, or 0.1% DMSO for 72 h. Adherent cells were harvested and fixed in 70% cold ethanol overnight. The cells were subsequently treated with propidium iodide (50 mg/ml) and RNase (20 mg/ml) for 15 min and protected from light, until analysis using a flow cytometer (Beckman) equipped with an air-cooled argon ion laser emitting at a wavelength of 488 nm at 15 mw. DNA histograms were assessed using the Beckman Coulter cytometry software from a minimum of 10,000 events per sample. In addition, the cells were pre-treated with 100 nM Gö6976 or 20 μM PD98059 for 1 h, then treated with or without 100, 200, or 300 μM resveratrol for 72 h and harvested for flow cytometry. All of the experiments were performed in triplicate.

Western blot of PKCα and ERK

In our study, PKCα and ERK expression and phosphorylation were detected by Western blot. HT-29 cells were incubated with resveratrol (200 μM, 300 μM, or 400 μM) for 24 h. PKCα and ERK expression was detected after incubating with 200 μM resveratrol for 5 to 120 min. The treated cells were lysed and western blot was performed using a standard protocol. Briefly, protein were extracted by lysis 5×10⁵ cells in buffer A (20 mM Hepes, pH 7.4, 2 mM EDTA, 50 mM β-glycerophosphate, 1 mM dithiothreitol, 1 mM Na₂VO₃, 200 μM streptomycin under standard incubator conditions, and stored at -70°C. The reagents were diluted to the indicated concentration according to the experimental design. Gö6976 (Calbiochem, CA, USA) was solubilized in dimethyl sulfoxide (DMSO) at 10 mM and stored at -20°C. Rabbit polyclonal antibodies phospho-PKCα, PKCα, ERK, and β-actin and a mouse monoclonal antibody phospho-ERK were purchased from Cell Signaling Technology (Beverly, MA, USA). Horseradish peroxidase-conjugated secondary antibodies were purchased from QED, Biovision, Inc (Hercules, CA, USA). The enhanced chemiluminescence (ECL) kit was used for DAPI staining (Sigma-Aldrich). Excess stain was removed by washing with PBS. Stained nuclei were observed under a Leica fluorescent microscope. The cells with condensed and/or fragmented nuclei were scored as apoptotic cells.

Quantification of apoptosis by flow cytometry

HT-29 cells were treated with 50 μM, 100 μM, 200 μM, 300 μM resveratrol, or 0.1% DMSO for 72 h. Adherent cells were harvested and fixed in 70% cold ethanol overnight. The cells were subsequently treated with propidium iodide (50 mg/ml) and RNase (20 mg/ml) for 15 min and protected from light, until analysis using a flow cytometer (Beckman) equipped with an air-cooled argon ion laser emitting at a wavelength of 488 nm at 15 mw. DNA histograms were assessed using the Beckman Coulter cytometry software from a minimum of 10,000 events per sample. In addition, the cells were pre-treated with 100 nM Gö6976 or 20 μM PD98059 for 1 h, then treated with or without 100, 200, or 300 μM resveratrol for 72 h and harvested for flow cytometry. All of the experiments were performed in triplicate.
1% Triton, 10% glycerol) supplemented with protease inhibitors (4%) for 15 min on ice followed by sonication for 10 seconds. The protein concentration was determined with the Bio-Rad DC protein assay (Bio-Rad Laboratories, Hercules, CA, USA). 60 μg proteins were boiled for 10 min and electrophoresed on 12% SDS–polyacrylamide gel, then transferred onto nitrocellulose membranes (Pall Corporation, Ann Arbor, MI, USA) by electrophoretic blotting. Membranes were probed with antibodies as indicated (non-specific binding was blocked in TBS with 5% non-fat dry milk), then incubated with HRP-conjugated rabbit or mouse secondary antibodies. Antibody binding was detected using enhanced chemiluminescence (Amersham) on Hyperfilm (Fuji, Japan) according to the manufacturer’s instructions. The same blots were subsequently stripped and re-blotted with corresponding pan antibodies, and the membranes were re-probed with a β-actin antibody as a loading control. Band intensities were quantified using GeneSnap software and normalized to the corresponding total ERK or β-actin levels.

Statistical analysis
Each experiment was performed in triplicate and the data were expressed as mean values ± standard errors (mean ± SEM). Statistical analysis was performed with the SPSS 11.5 software for one-way analysis of variance (ANOVA) and Student’s t-tests at each time or concentration point. Differences were considered significant when p<0.05.

Results
Resveratrol inducing HT-29 cell death
To explore the possibility of colon cancer cell death occurrence after resveratrol treatment, HT-29 cells were incubated with 50 µM, 100 µM, 200 µM, 300 µM, or 400 µM resveratrol for 24 h, 48 h, or 72 h. Trypan blue exclusion assay showed both inhibition of cell growth and the induction of cell death occurred in a dose and time-dependent manner (Figure 1). Machines were re-probed with corresponding pan antibodies, and the membranes were re-blotted with a β-actin antibody as a loading control. Band intensities were quantified using GeneSnap software and normalized to the corresponding total ERK or β-actin levels.

Resveratrol inducing HT-29 cell apoptosis
It has been shown that resveratrol included cell necrosis and apoptosis. To determine whether resveratrol induces HT-29 cell death via the apoptosis pathway, FACS was used. Typical apoptotic bodies were observed in cells with DAPI staining after treated with 100 µM resveratrol for 24 h. FACS showed that resveratrol (100 µM, 200 µM, or 300 µM) induced significant apoptosis at 72 h (p<0.05; Figure 2), suggesting HT-29 cell death induced by resveratrol was via apoptosis pathway.

PKCα and ERK levels and phosphorylation
Western blot results showed that PKCα phosphorylation was significantly increased in a time- and dose-dependent manner with resveratrol treatment. The increasing phosphorylation of PKCα was initially detected in HT-29 cells treated with 200 µM resveratrol for 5 min, and up to 120 min (Figure 3). This result suggests that PKCα activation was involved in resveratrol-induced apoptosis.

Inhibition of PKCα enhancing resveratrol-induced apoptosis
To explore the relationship between resveratrol-induced apoptosis and PKCα activation, HT-29 cells were treated with PKCα inhibitor G66976 before incubation with resveratrol. G66976 significantly enhanced resveratrol-induced apoptosis. The percentage of apoptosis was increased from 15.0% to 24.9% (100 µM resveratrol,
Inhibition of ERK1/2 enhancing resveratrol-induced apoptosis

To understand the role of ERK1/2 in resveratrol-induced HT-29 cell apoptosis, we investigated the relationship between ERK1/2 activity and resveratrol-induced apoptosis. HT-29 cells were treated with PD98059, an inhibitor of ERK1/2, prior to resveratrol incubation, and then apoptosis was analyzed by FACS. The inhibition of ERK1/2 significantly enhanced resveratrol-induced cell apoptosis compared to resveratrol alone (Figure 5), indicating that ERK1/2 plays a negative regulatory role in resveratrol–induced cell apoptosis. Inhibition of PKCα or ERK1/2 reduced the phosphorylation of ERK1/2.

HT-29 cells were treated with G66976 or PD98059 prior to resveratrol and the cell lysates were analyzed by FACS to reveal the relationship between resveratrol-induced apoptosis and PKCα/ERK1/2 activation. ERK1/2 phosphorylation was significantly inhibited by either inhibitor, though it was increased during long-term resveratrol treatment, even in the presence of the inhibitors, suggesting a partial effect of the two inhibitors on ERK1/2. The results suggest that ERK1/2 may be one of the downstream intermediates in the PKCα signaling pathway.

Discussion

In the study, resveratrol was shown to have significant anti-proliferative effects on the colon cancer cell line HT-29. The PKC- ERK1/2 signaling pathway could partially mediate resveratrol-induced HT-29 cell apoptosis. Resveratrol induced the apoptosis and anti-apoptosis pathways simultaneously. Both PKC inhibitor G66976 and ERK1/2 inhibitor PD98059 could promote resveratrol-induced apoptosis. These findings may offer a therapeutic benefit in resveratrol treatment.

In recent years, many studies have been carried out to investigate the inhibitory effects of resveratrol on growth of cancer cells. Resveratrol induced apoptosis in a number of cell types, including human prostate cancer cells (Hsieh et al., 2011), colon cancer cells (Marel et al., 2008), gastric cancer cells, and breast cancer cells (Atten et al., 2005). Resveratrol has been proposed not only as a chemopreventive reagent, but also an adjuvant therapy in the treatment of cancer (Fukui et al., 2010). In previous studies, PKCα was considered as a PKC isoform which was associated with proliferation in many cell types, and many reports have indicated that the inhibition of PKCα was sufficient for apoptosis induction, suggesting that PKCα could suppress apoptosis in some cells (McMillan et al., 2003; Wen-Sheng et al., 2006). We also found that PKCα was stimulated by resveratrol.

Although extensive studies have been conducted on the apoptosis–inducing in several cancer cell lines with resveratrol, however, the mechanism of phosphorylation has not been adequately investigated in HT-29 cells. To the best of our knowledge, we provide the first evidence that resveratrol induces remarkable PKCα phosphorylation in a time- and dose-dependent manner. The PKCα-ERK1/2 signaling pathway could partially mediate the inhibition of resveratrol-induced HT-29 cell apoptosis.

Signal transduction pathways play an important role in cancer cell proliferation, apoptosis, oncogenic transformation, and tumor progression (MurrayNR et al., 2011). These pathways involved protein kinase at multiple levels. In this study, ERK1/2 levels were changed substantially when cells were treated with...
resveratrol; treatment with ERK inhibitor PD98059 further promoted cell apoptosis, which are consistent with other studies (Komatsu et al., 2006; Keller et al., 2007). The results suggest that resveratrol interfered with the phosphorylation of ERK.

We also showed for the first time that resveratrol simultaneously evoked the apoptosis and anti-angiogenesis pathways. By activating the downstream pathway, PKCα played a role in drug resistance in HT-29 cells. Both G66976 and PD98059 promoted resveratrol-induced apoptosis through inhibiting ERK phosphorylation.

Activation of PKCα-ERK1/2 signal pathway might be one of mechanisms of resveratrol-induced HT-29 cells apoptosis. However, the molecular mechanisms involved in resveratrol-induced apoptosis have been reported to be different, Fas/Fas ligand mediated apoptosis, p53 and cyclins A, B1 and cyclin-dependent kinases cdk 1 and 2. In addition, resveratrol also possesses antioxidant and anti-angiogenic properties.

Resveratrol selectively antagonizes PKCα activation in association with the suppression of ERK1/2 activation in HT-29 cells. Our results provide evidence that resveratrol may have potential value as an adjuvant therapy in the treatment of colon cancer.

Acknowledgements

The author(s) declare that they have no competing interests.

References

Abrams SL, Steelman LS, Shelton JG, et al (2010). The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle, 9, 1781-91.

Atten MJ, Godoy-Romero E, Attar BM, et al (2005). Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs, 23, 111-9.

Brackmann S, Andersen SN, Aamodt G, et al (2009). Relationship between clinical parameters and the colitis-colorectal cancer interval in a cohort of patients with colorectal cancer in inflammatory bowel disease. Scand J Gastroenterol, 44, 46-55.

Carter CA (2000). Protein kinase C as a drug target: implications for drug or diet prevention and treatment of cancer. Curr Drug Targets, 1, 163-83.

Davies CC, Chakraborty A, Cipriani F, et al (2010). Identification of a co-activator that links growth factor signalling to e-Jun/AP-1 activation. Nat Cell Biol, 12, 963-72.

De Silva WI (1992). Relationships of desire for more children and socioeconomic and demographic factors in Sri Lankan women. J Biosoc Sci, 24, 185-99.

Edwards BK, Ward E, Kohler BA, et al (2010). Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer, 116, 544-73.

Endo H, Hosono K, Fujisawa T, et al (2009). Involvement of JNK pathway in the promotion of the early stage of colorectal carcinogenesis under high-fat dietary conditions. Gut, 58, 1637-43.

Filomeni G, Graziani I, Rotilio G, et al (2007). Trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr, 2, 295-305.

Fukui M, Yamabe N, Zhu BT (2010). Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. Eur J Cancer, 46, 1882-91.

Hope C, Planutis K, Planuiente M, et al (2008). Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res, 52, 552-61.

Hsieh TC, Huang YC, Wu JM (2011). Control of prostate cell growth, DNA damage and repair and gene expression by resveratrol analogues, in vitro. Carcinogenesis, 32, 93-101.

Jang M, Cai L, Udeani GO, et al (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218-20.

Juan ME, Wenzel U, Daniel H, et al (2008). Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells. J Agric Food Chem, 56, 4813-8.

Kambara T, Simms LA, Whitehall VL, et al (2004). BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut, 53, 1137-44.

Keller JW, Franklin JL, Graves-Deal R, et al (2007). Oncogenic KRAS provides a uniquely powerful and variable oncogenic contribution among RAS family members in the colonic epithelium. J Cell Physiol, 2103, 740-9.

Kim MJ, Park JI, Yun H, et al (2010). AMP-activated protein kinase antagonizes pro-apoptotic extracellular signal-regulated kinase activation by inducing dual-specificity protein phosphatases in response to glucose deprivation in HCT116 carcinoma. J Biol Chem, 285, 14617-27.

Kirkegaard H, Johnsen NF, Christensen J, et al (2010). Association of adherence to lifestyle recommendations and risk of colorectal cancer: a prospective Danish cohort study. BMJ, 341, 5504.

Komatsu K, Buchanan FG, Otaka M, et al (2006). Gene expression profiling following constitutive activation of MEK1 and transformation of rat intestinal epithelial cells. Mol Cancer, 5, 63.

Ling LU, Lin H, Tan KB, et al (2009). The role of protein kinase C in the synergistic interaction of salinagli and irinotecan in colon cancer cells. Int J Oncol, 35, 1463-71.

Lynch HT, Lynch JF (1998). Genetics of colonic cancer. Digestion, 59, 481-92.

Marel AK, Lizard G, Izard JC, et al (2008). Inhibitory effects of trans-resveratrol analogues on the proliferation and the cell cycle progression of human colon tumoral cells. Mol Nutr Food Res, 52, 538-48.

McCubrey JA, Steelman LS, Chappell WH, et al (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta, 1773, 1263-84.

McMillan L, Butcher SK, Pongracz J, et al (2003). Opposing effects of butyrate and bile acids on apoptosis of human colon adenoma cells: differential activation of PKC and MAP kinases. Br J Cancer, 88, 748-53.

Murray NR, Kalari KR, Fields AP (2011). Protein kinase Cota expression and oncogenic signaling mechanisms in cancer. J Cell Physiol, 226, 879-87.

Peysonnaux C, Eychene A (2001). Eychene, The Raf/MEK/ERK pathway: new concepts of activation. J Biosoc Sci, 93, 54.

Peyssonnaux C, Eychène A (2001). Eychene, The Raf/MEK/ERK pathway: new concepts of activation. J Biosoc Sci, 544-73.

Shih A, Zhang S, Cao HJ, et al (2004). Inhibitory effect of epidermal growth factor on resveratrol-induced apoptosis in human colon carcinoma cells. Mol Nutr Food Res, 48, S52-61.

Schütze M, Boeing H, Pischon T, et al (2011). Alcohol attributable burden of incidence of cancer in eight European countries based on results from prospective cohort study. BMJ, 342, 1584.
prostate cancer cells is mediated by protein kinase C-alpha. 

*Mol Cancer Ther*, 3, 1355-64.

Telang NT, Li G, Katdare M (2006). Prevention of early-onset familial/hereditary colon cancer: new models and mechanistic biomarkers. *Int J Oncol*, 28, 1523-9.

Tian F, Wu H, Li Z, et al (2009). Activated PKCalpha/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells. *Cancer Invest*, 27, 802-8.

Wang TT, Schoene NW, Kim YS, et al (2010). Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. *Mol Nutr Food Res*, 54, 335-44.

Wen-Sheng W (2006). Protein kinase C alpha trigger Ras and Raf-independent MEK/ERK activation for TPA-induced growth inhibition of human hepatoma cell HepG2. *Cancer Lett*, 239, 27-35.

Wolter F, Ulrich S, Stein J (2004). Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in colorectal cancer: key role of polyamines? *J Nutr*, 134, 3219-22.

Wu GS (2007). Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. *Cancer Metastasis Rev*, 26, 579-85.

Yang CS, Landau JM, Huang MT, et al (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. *Annu Rev Nutr*, 21, 381-406.