INTRODUCTION

Ischemic stroke is one of the most common neurological disorders and a major cause of disability and death with limited transitional success of mounting stroke researches, posing an economic and societal burden. Under normal condition, the brain is under continuous immune surveillance and regulation. The neurovascular unit (NVU) regulates the homeostasis of brain microenvironment for normal neuronal activity. It is composed of neurons, glial cells (oligodendrocytes, microglia, and astrocytes) and vascular cells (endothelial cells, pericytes, and smooth muscle cells as well as the basal lamina matrix within brain vasculature). Compared to the concept of NVU, the notion of blood-brain barrier (BBB), which traditionally includes endothelia cells (ECs), astrocytes, pericytes, and the basal lamina matrix, tight junction proteins within the vasculature is more straightforward and more intensively studied.

BBB damage is a common pathological feature shared by stroke and a variety of neurological diseases. Notably, it is closely related to the peripheral immune response after stroke. The activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
associated with poor neurological outcomes.19–23 In response to cerebral ischemic stroke, the brain can release a variety of "danger" signals or "help me" signals, such as ATP, high-mobility group box 1 (HMGB1), hypoxia-inducible factor 1α (HIF-1α), S100B, brain-derived antigens and et al, all of which activate multiple subsets of peripheral immune cells.24,25 Once activated, these cells can migrate to the ischemic brain through detection of chemoattractant gradients.26–28 Upon BBB disruption, the components in blood including immune cells can enter into brain sequentially and interaction of neuro-immune interaction can be initiated.29–32 During their penetration through the injured BBB, these immune cells become a double edge sword, which could either exacerbate the BBB disruption or protect the integrity of BBB.33,36 Pleiotropic intracellular mechanisms and diverse secretory factors, including cytokines, proteolytic enzymes, exosomes, micro vesicles, and miRNAs, have been implicated in their interaction both in early disruption and later repair phase of the BBB.33–37 Importantly, distinct phenotypes and subsets of immune cells exhibit diverse impact on the poststroke BBB. This review will discuss the dynamic changes of BBB integrity after stroke followed by a discussion of the double-faced roles of peripheral immune activation on the BBB integrity after stroke. Finally, the newly emerged mechanisms by which the peripheral immune cells impact the BBB integrity have also been covered at the end, including exosomes and micro vesicles.

2 | DYNAMIC CHANGES OF BLOOD-BRAIN BARRIER INTEGRITY (BBB) AFTER STROKE

In response to ischemic stroke, the integrity of BBB compromises promptly and changes dynamically, which can be observed by magnetic resonance imaging (MRI) and other imaging techniques.38–42 During the early phase, cytoskeletal alterations in brain ECs can be initiated by actin polymerization followed by translocation of tight junctions (TJs) within 30–60 minutes of reperfusion through activation of the Rho-associated protein kinase (ROCK)/myosin.43 The activation of ROCK pathway may further promote the cross-linking of F-actin into force-generating linear stress fibers through the phosphorylation/activation of myosin light chains (MLC) and increase cytoskeletal tension thus lead to the disassembly of TJs. These changes can widen the paracellular space between ECs, eventually resulting in hyperpermeability.53 In addition, opening of sodium and calcium channels, endothelial connexin-43 hemichannels, the alterations in endocytotic vesicles, endothelial endocytosis/transcytosis, and transcellular vesicular trafficking, which could be mediated by caveolin-1, endothelial growth factor, or exocytotic machinery, may also account for BBB hyperpermeability as early as 6 hours after cerebral stroke.44–47 Increased expression of aquaporin 4 (AQP4) in astrocytes of the ischemic brain is also associated with the initial cerebral edema after stroke.48–50 Additionally, pericytes may separate from basement membrane and detach from endothelial cells through paracellular pathway or transcellular routes, which contributes to increased microvascular permeability via disruption of pericyte-tight junction interactions.51–53

The expression of TJ proteins may be decreased due to increased oxidative stress or matrix metalloproteinases 9 (MMP9)-mediated protein degradation after stroke, leading to a "second wave" of increased BBB permeability.54 Disruption of BBB integrity is not only a common consequence of stroke, but also contributes to the progression of stroke.54,55 Infarct size can progress with time after cerebral ischemia reperfusion, with more resident immune cells activated and more peripheral immune cells recruited to the brain and thereby further aggravates the injury of BBB.56 Cerebral ischemia upregulates the expression of adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), integrin and E-selectin in the brain, which in turn facilitate a massive "second wave" of immune cell entry into the brain parenchyma through the BBB, leading to exacerbated neuroinflammation. The inflammation in the lesioned brain also contributes to the "second wave" of BBB disruption.57,58 At 1-3 days after stroke, BBB breakdown is featured by TJ degradation, basement membrane disruption, and eventually loss of endothelial cells.59 Chronic BBB opening caused by the loss of pericytes or chronic stress can lead to neuronal uptake of multiple blood-derived neurotoxic products as well as reductions in microcirculation that in turn results in a chronic neuronal dysfunction and degenerative changes.60,61

During the late phase of stroke, the BBB dysfunction becomes less severe, in which BBB restoration possibly plays an important role.62 Multiple processes may be involved in the restoration of BBB permeability after stroke at the late phase of stroke. Neovascularization begins in the peri-infarct region, which involves the proliferation of endothelial cells and sprouting of the vessels that eventually increase vascular density.24 Astrocytes act to maintain endothelial permeability and survival after stroke through improving tight junction constituents.52,63 Pericytes can stable actin filaments in endothelial cells and preventing their death, guiding the correct location of endothelial cells, and clearing up neuronal debris during injury.52,64 The illustration of structural changes of ECs, TJs, astrocytes, and pericytes of the BBB after ischemic stroke is shown in Figure 1.

3 | THE DOUBLE-FACED ROLES OF PERIPHERAL IMMUNE ACTIVATION ON THE BBB INTEGRITY AFTER STROKE

The injured ischemic brain can release ATP, high-mobility group box 1 (HMGB1), HIF-1α, S100B, brain-derived antigens and et al as alarm signals to activate the peripheral immune system through purinergic receptors, TLRs, and the receptor for advanced glycation end products (RAGE).61 Once activated, these cells can migrate to areas of injury through detection of chemoattractant gradients.24,25 During their penetration through the injured BBB, these immune cells become a double edge sword, which could either exacerbate the BBB disruption or protect the integrity of BBB.
3.1 Activated PMNS and BBB disruption after ischemic stroke

Polymorphonuclear neutrophils (PMNs) are the most abundant cell population present at the site of injury with a peak influx between 1 and 3 days in the ischemic brain. Infiltration of PMNs is closely related to BBB disruption by a series of biological processes, such as releasing proteases, MMP, elastase, cathepsin G, and proteinase, producing reactive oxygen species (ROS), causing endothelial dysfunction and disorganization of junctional proteins, all of which are known to damage the BBB.

MMP9 is a subtype of matrix metalloproteinase. It may completely degrade the basal lamina and TJ components through attacking type IV collagen, laminin, and fibronectin and result in gross barrier disruption, brain edema, leukocyte infiltration, and hemorrhage. Under normal condition, the expression of MMPs in the brain is very low. Ischemic stroke may induce increased expression of MMPs, especially MMP9. Both brain vascular ECs and infiltrating neutrophils can produce MMP9 after focal cerebral ischemia, which can be used to predict stroke patient outcome. In ischemic stroke patients, MMP9 increases in the plasma within the first 2 to 6 hours and the MMP9 mRNA in leukocytes increased within 3 hours. Activated neutrophils may be an important source of pre-existing intracellular MMP9 pool, which can be secreted in response to middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD) insults. In addition, activated MMPs may also be triggered by increased TNF-α, IL-6, and α2-antiplasmin in the blood. The granulocyte-colony stimulating factor (G-CSF)
can stimulate the proliferation of peripheral neutrophils and thus increase the level of MMP9, leading to exacerbated BBB disruption and increased ischemic infarction.81

In addition to MMP9, the elastase secreted by neutrophils also degrades basal lamina and extracellular matrix.82 In mice lacking elastase, ischemia-induced BBB disruption is reduced, as is infarct volume and cerebral edema. Inhibiting elastase can further decrease infarct volume and BBB disruption in MMP9-null mice, suggesting an MMP9 independent mechanism of elastase on the BBB disruption.83

Besides MMP9 and elastase, neutrophils are important source of ROS in cerebral ischemia and reperfusion injury. ROS itself can disrupt the BBB through direct damage to endothelial cells, pericytes, smooth muscle cells, and astrocytes.84 In addition, activated PMNs stimulate inflammatory cytokine production, which attracts more leukocytes from the periphery and aggravates the adhesion molecule expression on ECs, thus further propagates the postischemic inflammation cascade that exacerbates BBB disruption85 and increases the risk of secondary bleeding within the ischemic focus.46,71,86

3.2 The bright side of PMNS in poststroke BBB disruption

Given the well-established negative impact of poststroke BBB disruption, PMNs may also have beneficial effects for the BBB to repair in the late phase of stroke.87 MMP9, which induces BBB disruption in the early phase, is suggested to promote BBB remodeling in the late phase of stroke by enhancing degradation of proinflammatory DAMPs and vascular remodeling.87-90 In addition, PMNs can release antiinflammatory molecules, such as annexin-1, lipoxin A4, resolvins, and protectins to alleviate the poststroke inflammatory reaction.91 PMNs also attract monocytes that clear apoptotic neutrophils and cellular debris through phagocytosis.36 Neutrophil-derived MMP9 is also involved in the regulation of the proangiogenic and release hematopoietic progenitor cells from the bone marrow.89 Like monocytes, PMNs are divided into two phenotypes, N1 and N2 phenotype. The N2 phenotype is encompassed with antiinflammatory properties that may have protective effects in stroke.92 Thus, under certain conditions neutrophils are not detrimental and may be beneficial in the progression of stroke.

3.3 Pleiotropic effects of microglia/macrophages on the BBB integrity after stroke

The function of microglia/macrophages function is complex and largely depends on the existence of varied, plastic, and multilayered macrophage phenotypes.93 The impact of microglia/macrophages activation on the ischemic BBB largely depends on the phenotype or status of these cells which can be affected by micro-environmental cues.94-96 According to distinct cues, the microglia/macrophages can differentiate into two subtypes—inflammatory and antiinflammatory phenotypes.97 In their proinflammatory phenotypes, they can aggravate the BBB injury while in their phagocytosis or antiinflammatory phenotypes they may play distinct roles toward BBB repair and regeneration.98-101

However, recent studies suggest that the terminology of microglia/macrophage polarization may be limited. Transcriptomic and proteomic profiles, regional heterogeneity, sexual dimorphism, and age could all take into account while determining the functions of microglia/macrophages.102

The destructive effects on BBB are mainly mediated by M1 phenotypes which are characterized by the production of proinflammatory mediators including IL-1β, TNF-α, IL-6, and IL-12 and MHC II,103,104 MCP1/CCL2,105,106 These effects mainly fall into several categories: (a) increased expression of inducible nitric oxide synthase (iNOS); (b) increased production of ROS; (c) synthesis of proteolytic enzymes (MMP9, MMP3)107; (d) upregulated expression of macrophage migration inhibitory factor (MIF); (v) phagocytosis of endothelial cells; and (vi) recruit other proinflammatory cells to further exacerbate the inflammatory cascade. It has been reported that proinflammatory cytokines together with nitric oxide (NO) and proteolytic enzymes can induce the increase of BBB permeability108 by downregulating TJ proteins expression in ECs and modulate the expression of adhesion molecules.109 ROS, generated by NADPH oxidase, provokes EC contractions and consequently increases permeability of the BBB.110 Both inflammatory microglia and macrophages have been suggested to produce ROS after neurological diseases, including stroke.111-114 MIF, also known as glycosylation-inhibiting factor (GIF) is an important regulator of innate immunity. It has been shown to promote leukocyte-endothelial cell interactions through promoting endothelial adhesion molecule expression.115,116 It has recently been suggested to directly degrade the BBB after ischemic brain.117 Perivascular microglia/macrophages migrate toward the disrupted blood vessels and further damage them by phagocytizing ECs.118 Simultaneously, they also attract more proinflammatory cells, such as Th1 cells by secreting CXCL9, CXCL10 and IL-6 and IL-23.119-123 The interaction between microglia/macrophages and monocytes and lymphocytes may further exacerbate the BBB damage and immune cascades.110

Unlike the M1 phenotype, microglia/macrophages have a distinct M2 phenotype, which is mainly protective in cerebral ischemic injury.124,125 The impact of M2 microglia/macrophage on the BBB after stroke may include (a) immunosuppressive functions; (b) phagocytosis of ischemic debris; and (c) pro-angiogenesis. Initially, M2 are the dominant cell type in the ipsilateral penumbra after stroke.126 They can not only express antiinflammatory cytokines, such as IL-4, IL-10, and TGF-β by themselves to maintain the integrity of the neurovascular unit in murine stroke models99,127-129 but also stimulate Th2 cells, which produce high levels of IL10 and IL13130 and drive Treg polarization by IL-10 and TGF-β.131 Both microglia and infiltrated macrophages can migrate into the infarction area and elicit phagocytic response, which contribute to the clearance of cell debris or hematoma in the context of ischemia and intracerebral hemorrhage.118,122 Osteopontin (OPN), an adhesive glycoprotein,132 has been suggested as a cell surface receptor associated with their phagocytosis function after ischemic stroke.133 Phagocytosis by
and TNF-α, including IL-17.136,143 To the BBB, largely through their production of cytotoxic cytokines, cells respond swiftly to ischemia and are regarded as detrimental.

Th1 cells promote BBB permeability by secreting proinflammatory cytokines (IL-2, IFN-γ, and TNF-α) and mediating a cellular immune response.137 IFN-γ activates the small GTPase RhoA and increases the expression of Rho-associated kinase (ROCK), which in turn phosphorylates and activates MLC.138 TNF-α stimulates NF-kB to increase myosin light chain kinase (MLCK) transcription, which further correlates with increased MLCK protein levels, MLC hyper-phosphorylation, and paracellular permeability. Activated MLCK phosphorylates MLC and decreases TJ protein amounts, leading to cytoskeletal rearrangement and impairment of TJ integrity.139 In addition, Th1 cells can interact with M1 phenotype through releasing soluble cytokines, which transform the microglia to M1 type and thereby increase secondary ischemic damage.140 Th17 cells release IL-17, IL-21, and IL-2234 and clear pathogens by inflammatory immunity,141 playing a proinflammatory role distinguished from Th1 cells. Th17 cells are demonstrated to disrupt the BBB by the activation of IL-17A and promote the recruitment of additional CD4+ lymphocytes.84 IL-17A induced NADPH oxidase-dependent ROS production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a downregulation of the TJ molecule occluding.84,142 As unconventional T lymphocytes, γδ T cells respond swiftly to ischemia and are regarded as detrimental to the BBB, largely through their production of cytotoxic cytokines, including IL-17.136,143 Depletion of γδ T cells reduces brain injury secondary to experimental stroke with reperfusion.144 CD8+ T cells mainly promote BBB damage and play proinflammatory roles by killing target cells directly or indirectly.145 They initiate BBB breakdown through perforin-mediated disruption of TJ.s. In turn, leakage from the vasculature into the parenchyma causes brain swelling and edema.145,146

The subtype of Th2 cells mainly exerts antiinflammatory function thus maintain the BBB integrity after stroke by releasing antinflammatory cytokines, such as IL-4, IL-5, IL-10, and IL-13, which can promote the M2 polarization.120,147,148 Regulatory T cells (Tregs) are one of the most important subtypes of Th2 cells in protecting ischemic brain injury. They release TGF-β and IL-10 to maintain immune tolerance and counteract tissue damage.149 They inhibit the activation of neutrophils, lymphocytes, and microglia, thus function as key endogenous modulators of postischemic neuroinflammation.150 The inhibition of neutrophils of Tregs through the inhibitory molecule programmed death-ligand 1 significantly reduces the level of MMP9, thus protects against BBB disruption after stroke and attenuates tPA-induced hemorrhagic transformation.152,153 Importantly, adoptive transfer of Tregs does not exacerbate poststroke immunosuppression but improves immune status after focal cerebral ischemia155 and is beneficial for protection/repair following stroke.151 However, there are also conflicting data showing that depletion of Treg in a depletion of regulatory T cell(DEREG) mouse model protects brain from acute ischemic stroke while adoptive transfer of Tregs worsens outcome after ischemic stroke.154,155 The conflict finding may be attributed to discrepancies in Treg delivery protocols used in different studies.157

The function of other immune responses after ischemic stroke

In addition to the above-mentioned immune cells that have been intensively investigated after cerebral ischemic stroke, there are also some special subsets of immune cells that gained relatively less attention in the field of poststroke BBB integrity, including mast cells, dendritic cells, B lymphocytes, and NK cells.158-160 B cells are important adaptive immune cells that have been suggested to have beneficial effects on the ischemic brain as early as 24-48 hours after MCAO.161 Lack of B cells substantially increases infiltration of various leukocyte subpopulations into the brain and exacerbates the BBB disruption.162 On the other hand, B cells may also have detrimental effects to the ischemic brain injury by eliciting antibody-mediated immune response. Since brain proteins are detected in the cerebral-spinal fluid and the peripheral blood of stroke patients, these proteins could elicit the activation of antigen-presenting cells, such as dendritic cells after stroke and later on even induce antibody production from B cells, just like what have been seen in multiple sclerosis lesions.159,160 NK cells are key members of the innate immune system, accumulating in the ischemic hemisphere.163,164 NK cells can function as very early responders to pathogen invasion through their cytolytic activity.162,164 In mice with large infarcts induced by MCAO, NK cells promote local inflammation and exacerbated brain infarction and BBB damage and determine the size of the brain infarct.164,165 In addition, the activation of the complement system, which is part of the innate immune response, has been described in clinical and experimental stroke.166 The complement system also has dual roles during the injury and recovery of ischemic stroke.167 It contributes to the recruitment and activation of immune cells, especially microglia, which may worsen BBB damage.168 It also plays a role in stroke recovery by promoting the resolution of inflammation and regeneration.169,170 Despite the above findings, the relationship between these immune cells and the poststroke BBB integrity remains largely unknown and investigation in this regard would be of interesting and worthwhile.

In conclusion, the peripheral immune response is a double edge sword for the poststroke BBB. Distinct subtypes or phenotypes of immune cells may have diverse effects on the BBB disruption or repair at distinct phases after stroke (Figure 2). Understanding...
the roles of immune cells and their underlying mechanisms in BBB damage may help the development of promising BBB protective strategies for ischemic stroke patients.

4. OTHER RELEASED SIGNALING FROM PERIPHERAL IMMUNE CELLS THAT MEDIATE BBB DISRUPTION OR PROTECTION AFTER STROKE

Over the past decades, enormous efforts have been put in exploring the mechanisms underlying the BBB disruption or protection afforded by peripheral immune cells after stroke. The immune cells may impact the integrity of the BBB by direct contact of the endothelial cells, through their cell surface molecules. For example, the regulatory T cells (Tregs) are able to be recruited to the ischemic BBB through the chemokine receptor, CCR5,153 and inhibit neutrophil-derived MMP9 production through the programmed death-ligand 1 (PD-L1) molecule, and meanwhile inhibit CCL2 expression in endothelial cells, thereby exert protective effect on BBB.152,154,155 Releasing proteins, proteinases, cytokines, and chemokines constitutes as another important mechanism to impact the BBB, in which some of the cytokines and chemokines propagate the inflammatory cascade and degrade the BBB structure as discussed above while others promote the BBB recovery (Table 1). In addition, the peripheral immune cells may also affect the BBB disruption after stroke through releasing exosomes, microvesicles, and miRNAs.

4.1 | Exosomes

Emerging evidence is showing that activation of peripheral immune cells may release exosomes and microvesicles, both of which have been implicated in the evolving of BBB damage after stroke.195 Exosomes are endosome-derived small membrane vesicles. They carry proteins, lipids, and genetic materials and play essential roles in intercellular communication between source and target cells under physiological and pathophysiological conditions.196,197 Both immune cells and nonimmune cells can secret exosomes. It is recently suggested that exosomes released from activated immune cells are responsible for carrying proinflammatory contents including miRNAs to the brain via the brain endothelium.195 These exosomes alone can activate human brain microvascular endothelial cells to increase the expression of adhesion molecules such as CCL2, ICAM1, VCAM1, and cytokines such as IL-1β and IL-6.195,198 Preventing exosome release from activated monocytes could completely inhibit the expression of inflammatory molecules on brain endothelial cells and therefore regulate the BBB function under different diseases.195,198 Exosomes from different cell types may have diverse functions on the BBB integrity. It has been shown that exosomes from circulating endothelia progenitor cells and stem cells may transfer miRNAs into cerebral endothelial cells and pericytes, thus activate PI3K/Akt signaling pathway and notch signaling pathway to mediate angiogenesis and to maintain BBB integrity.199-201 Thus, it is highly possible that there are specific subtypes of peripheral immune cells may release exosomes carrying BBB protective properties. However, studies in this regard are still warranted.

4.2 | Microvesicles

Microvesicles (MVs) are small membranous vesicles released from various cells in response to diverse biochemical agents or mechanical stresses.202 Leukocyte-derived microvesicles (LMVs) are one of microvesicles, which act as proinflammatory mediators implicated in some diseases.203,204 LMVs originate from mature leukocytes, including monocyte, lymphocyte, and granulocytes.205 It is suggested that LMVs are involved in the vascular inflammation in cardiovascular diseases and cerebrovascular diseases including stroke.206,207 LMVs can increase the production of TNF-α, IL-6, IF-8, activated protein C, and IF-1p206 and induce the translocation of NF-κp into the nucleus, leading to increased production of IL-8 and monocyte chemotactic protein 1 (MCP1),208 both of which can promote the inflammatory response, leading to vascular endothelial cell dysfunction and vascular permeability. During cerebral ischemia, circulating MVs increase significantly and cause a large increase in barrier permeability and reduce trans-epithelial electrical resistance (TEER) in vitro endothelial barriers.209 MVs themselves contain pro-TNF-α, RhoA, and Rho-associated protein kinase (ROCK), increasing the permeability of barriers in rat brain microvascular endothelial cells (RBVMECs) by activating caspase 3 and Rho/ROCK signaling pathways.209

4.3 | MicroRNAs

MicroRNAs are small noncoding RNAs that broadly affect cellular and physiological function in all multicellular organisms. More than 5000 miRNAs likely exist in humans and each miRNA binds an average of 200 RNAs.210 MicroRNAs are divided into three categories, for example, proinflammatory, antiinflammatory, and mixed immunomodulatory. All of these regulate neuroinflammation in various pathologies, including spinal cord injury, multiple sclerosis, and ischemic stroke.211 After ischemic stroke, miRNAs can also mediate BBB disruption by regulating gene expression at transcriptional and posttranscriptional levels.212,213 MI‐130a aggravates BBB leakage and brain edema via various ways.214 It executes its damaging effects on BBB by downregulating HoxA5 and thereby reducing occludin expressions.211 Besides HoxA5, microRNA-130a might act as a suppressor of aquaporin 4 by targeting its transcripts.215 MiR-130a can also reduce the expression of caveolin-1 and increase the level of MMP-2/9, which contributes to the increased permeability of BBB and increased perihematomal edema after intracerebral hemorrhage.214 MiRNA-15a (miR-15a) has recently been shown to contribute to the pathogenesis of ischemic vascular injury through direct inhibition of the antiapoptotic gene bcl-2.216 Of particular interest, miR-15a itself was found to be transcriptionally regulated by peroxisome proliferator-activated receptor (PPARα). Administration of PPARα agonist significantly reduced ischemia-induced miR-15a expression, increased bcl-2 protein levels, and attenuated caspase-3 activity, leading to decreased BBB disruption and reduced cerebral
infarction in mice after transient focal cerebral ischemia. In addition, miR-15a can suppress the angiogenesis in the peri-infarct region by decreasing FGF2 and VEGF levels, thus downregulation miR-15a can promote angiogenesis and maintain BBB integrity. Overexpression of let-7 and miR-98 in vitro and in vivo resulted in reduced leukocyte adhesion to and migration across endothelium, diminished expression of proinflammatory cytokines, and increased BBB tightness, attenuating barrier "leakiness" in neuroinflammation.
Therefore, a variety of miRNAs could be used as a therapeutic tool to prevent neuroinflammation and BBB dysfunction.

Recent findings in exosomes, microvesicles, and miRNAs have evidenced that their releases from peripheral immune cells play critical roles in the evolution of BBB pathology after stroke. Notably, exosomes, microvesicles, and miRNAs released from distinct immune cells under distinct contexts may exert divergent roles on the BBB integrity after stroke.

5 | SUMMARY AND CONCLUSION

Targeting the highly dynamic events that occur during stroke in the relatively inaccessible brain microenvironment is challenging. Emerging evidence suggests that peripheral immune cells could provide promising therapeutic targets to rescuing BBB after stroke. In clinical, some drugs with translational potential to target the peripheral immune response in order to preserve the BBB integrity after stroke are being tested in clinical settings, such as minocycline, adjuvant, and curcumin. Further understanding of the interactions between the immune system and the BBB disruption and repair process could move the translation of promising preclinical results forward. Recent studies suggest that the peripheral immune response is a double edge sword both for the disruption and repair of BBB after stroke. Distinct subtypes or phenotypes of immune cells may have diverse impacts on the BBB integrity at distinct phases after stroke. Considering the double facet roles of immune cells and their pleiotropic underlying mechanisms in BBB damage and repair, we envision that researches regarding the interaction between peripheral immune cells and BBB may gain increasing attention in the pursuit of developing effective and easy accessible therapeutic targets of stroke.

TABLE 1 Immune cell produced factors that impact blood-brain barrier (BBB) integrity after stroke

Name	Source cells	Mechanisms	Effects	References
IL-1	Mononuclear cells	TJ disruption; upregulation of ICAM-1; activation of MMPs	Disruption	171,172
IL-6	Macrophages, T cells, endothelia cells	TJ protein loss; PKC-dependent cytoskeletal rearrangement;	Disruption	173,174
IL-9	Mononuclear cells and T cells	Induce eNOS production; downregulation phosphorylated pkβ/ptk3k signaling; TJ protein loss	Disruption	175,176
IL-17	Th17 cells and γδT cells	Induce ROS production	Disruption	174,176
IFN-γ	T cells	Activate the small GTPase RhoA and activate myosin light chains	Disruption	138
MIF	Endothelia cells and macrophages	Disruption TJs	Disruption	117
TNF-α	CD4+ T cells, NK cells, neutrophils, astrocytes, and neurons	Downregulation of TJ proteins	Disruption	174,177
CCR5	Microglia and astrocytes	Enhance MMP9 activity, regulate the migration and activity of T cells, monocytes, and dendritic cells	Disruption	24,178
CCL2	Astrocytes, microglia, EC, and macrophages	Redistribute the TJs and AJs and reorganization of actin cytoskeleton	Disruption	179,180
HMGB1	Neurons	Induces a contractile response in pericytes and vascular ECs	Disruption	181-187
TGF-β	Microglia/macrophages	Inhibit MMPs	Recovery	184,185
IL-1α	Macrophages	Induce angiogenic mediator expression and promote formation of tube-like structures	Recovery	186,187
IL-10	Th2 cells	Promote the M2 polarization and maintain immune tolerance	Recovery	27,148,150
LCN-2	Neutrophils and neurons	Enhance angiogenesis and induce tube formation and migration	Recovery	188,189
HIF-1α	Lymphocytes	Regulate VEGF and control MMPs induce BBB damage or promote angiogenesis	Disruption/recovery	190-192
MMP9	Neutrophils and ECs	Degrade the TJ proteins and basal lamina proteins and active proinflammatory agents: CXCL-8, IL-1β or TNF-α	Disruption/recovery	36,69,89,193,194

TJ, tight junction; **ICAM-1**, intercellular adhesion molecule; **MMP**, matrix metalloprotease enzymes; **PKC**, protein kinase C; **eNOS**, endothelial nitric oxide synthase; **ROS**, reactive oxygen species; **GTPase**, guanosine triphosphatase; **RhoA**, Ras homolog gene family, member A; **MIF**, macrophage migration inhibitory factor; **IFN-γ**, interferon gamma; **TNF-α**, tumor necrosis factor alpha; **NK**, natural killer cell; **CCR5**, C-C chemokine receptor type 5; **CCL2**, chemokine (C-C motif) ligand 2; **HMGB1**, high-mobility group box-1 protein; **TGF-β**, transforming growth factor beta; **EC**, endothelial cell; **LCN-2**, lipocalin-2; **VEGF**, vascular endothelial growth factor; **HIF-1α**, hypoxia-inducible factor-1
ACKNOWLEDGMENTS

P.L is supported by the National Natural Science Foundation of China (NSFC) grant 81400956 and 81722017, the Shanghai Rising-Star Program (16QA1402600), the Shanghai Natural Science Program (13ZR1452200) by the Science and Technology Commission of Shanghai Municipality and the Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (20181805).

W. Y is supported by the NSFC (81370513, 81571048). This work is also supported by the Shanghai Municipal commission of Health and Family Planning Funding for Key Developing Disciplines (2015ZB0101).

CONFLICT OF INTEREST

None.

ORCID

Pei-Ying Li http://orcid.org/0000-0002-5721-9914

REFERENCES

1. Lecoffre C, de Peretti C, Gabet A, et al. National trends in patients hospitalized for stroke and stroke mortality in France, 2008 to 2014. Stroke. 2017;48(11):2939-2945.
2. Neuhaus AA, Couch Y, Hadley G, Buchan AM. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain. 2017;140(8):2079-2092.
3. Dirmagl U. Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann Y Acad Sci. 2012;1268:21-25.
4. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8(12):711-716.
5. Chapouly C, Tadesse Argaw A, Horng S, et al. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain. 2015;138(6):1548-1567.
6. Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann. Neurol. 2015;78(6):887-900.
7. Podjaski C, Alvarez JI, Bourbonniere L, et al. Ntrin 1 regulates blood-brain barrier function and neuroinflammation. Brain. 2015;138(6):1598-1612.
8. Schoknecht K, David Y, Heinemann U. The blood-brain barrier/gatekeeper to neuronal homeostasis: clinical implications in the setting of stroke. Semin Cell Dev Biol. 2015;38:35-42.
9. Shindo T, Maki M, Mandeville ET, et al. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke. 2016;47(4):1094-1100.
10. Yao Y. Basement membrane and stroke. J. Cereb. Blood Flow Metab. 2018;27678X18801467.
11. Maggi P, Macri S, Gaitán MI, et al. The formation of inflammatory demyelinated lesions in cerebral white matter. Ann. Neurol. 2014;76(4):594-608.
12. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584-1596.
13. Bar-Klein G, Klee R, Brandt C, et al. Isoflurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Ann. Neurol. 2016;80(6):896-908.
14. Bar-Klein G, Lublinsky S, Kamintsny L, et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain. 2017;140(6):1692-1705.
15. Chang J, Mancuso MR, Maier, et al. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat Med. 2017;23(4):450-460.
16. Lee MJ, Cha J, Choi HA, et al. Blood-brain barrier breakdown in reversible cerebral vasostenosis syndrome: Implications for pathophysiology and diagnosis. Ann. Neurol. 2017;81(3):454-466.
17. Paul R, Koedel U, Winkler F, et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain. 2003;126(1 Pt) 1873-1882.
18. Cai W, Zhang K, Li P, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res Rev. 2017;34:77-87.
19. Rost NS, Cougo P, Lorenzano S, et al. Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J. Cereb. Blood Flow Metab. 2018;38(1):75-86.
20. Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke. 2015;46(6):1681-1689.
21. Shi H, Wang H-L, Pu H-J, et al. Ethyl pyruvate protects against blood-brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury. CNS Neurosci Ther. 2015;21(4):374-384.
22. Wardlaw JM, Doublau FN, Valdes-Hernandez M, et al. Blood-brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke. 2013;44(2):525-527.
23. Renù A, Amaro S, Laredo C, et al. Relevance of blood-brain barrier disruption after endovascular treatment of ischemic stroke: dual-energy computed tomographic study. Stroke. 2015;46(3):673-679.
24. An C, Shi Y, Li P, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6-24.
25. Liu ZJ, Chen C, Li F-W, et al. Splenic responses in ischemic stroke: new insights into stroke pathology. CNS Neurosci Ther. 2015;21(4):320-326.
26. Boscia F, Esposito CL, Casamassa A, de Franciscis V, Annunziato L, Cerchìa L. The isolecitin IB4 binds RET receptor tyrosine kinase in microglia. J Neurochem. 2013;126(4):428-436.
27. Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38(3):1097-1103.
28. Du Y, Deng W, Wang Z, et al. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation. J. Cereb. Blood Flow Metab. 2017;37(4):1425-1434.
29. Ferrari L. An astrocyte call to arms after brain injury. Science. 2017;356(6333):37-39.
30. Ifergan I, Kebir H, Terezou S, et al. Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann. Neurol. 2011;70(5):751-763.
31. Ifergan I, Wosik K, Cayrol R, et al. Statins reduce human blood-brain barrier permeability and restrict leukocyte migration: relevance to multiple sclerosis. Ann. Neurol. 2006;60(1):45-55.
32. Kebir H, Ifergan I, Alvarez JI, et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 2009;66(3):390-402.
33. Kuo P-C, Scofield BA, Yu I-C, Chang F-L, Ganea D, Yen J-H. Interferon-β modulates inflammatory response in cerebral ischemia. J Am Heart Assoc. 2016; 5(1).
34. Brait VH, Arumugam TV, Drummond GR, Sobey CG. Importance of T lymphocytes in brain injury, immunodeficiency, and
53. Zhang G-S, Tian Y, Huang J-Y, et al. The γ-secretase blocker DAPT reduces the permeability of the blood-brain barrier by decreasing the ubiquitination and degradation of occludin during permanent brain ischemia. CNS Neurosci Ther. 2013;19(1):53-60.

54. Bai Y, Zhu X, Chao J et al. Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One. 2015;10(4):e0124362.

55. Liu W, Wang ZB, Wang Y, et al. Increasing the permeability of the blood-brain barrier in three different models in vivo. CNS Neurosci Ther. 2015;21(7):568-574.

56. Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40(5):1849-1857.

57. Roberts J, de Hoog L, Bix GJ. Mice deficient in endothelial alpha5 integrin are profoundly resistant to experimental ischemic stroke. J Cereb Blood Flow Metab. 2017;37(1):85-96.

58. Ransohoff RM. In the beginning. Nature. 2009;462:41-42.

59. Krueger M, Bechmann I, Immig K, Reichenbach A, Härtwig W, Michalski D. Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(2):292-303.

60. Bell RD, Winkler EA, Sagare AP, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409-427.

61. Zhao Z, Ong LK, Johnson S, Nilsson M, Walker FR. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothermotrophic stroke. J Cereb Blood Flow Metab. 2017;37(12):3709-3724.

62. Liu H-S, Chung H-W, Chou M-C, et al. Effects of microvascular permeability changes on contrast-enhanced T1 and pharmacokinetic MR imagings after ischemia. Stroke. 2013;44(7):1872-1877.

63. Kondo T, Kinouchi H, Kawase M, Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci Lett. 1996;208(2):101-104.

64. Virgintino D, Girolamo F, Errede M, et al. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis. 2007;10(1):35-45.

65. Gronberg NV, Johansen FF, Kristiansen U, Hasseldam H. Leukocyte infiltration in experimental stroke. J Neuroinflamm. 2013;10:115.

66. Price C, Menon D, Peters A, et al. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke. 2004;35(7):1659-1664.

67. Bao Dang Q, Lapergue B, Tran-Dinh A, et al. High-density lipoproteins limit neutrophil-induced damage to the blood-brain barrier in vitro. J Cereb Blood Flow Metab. 2013;33(4):575-582.

68. Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129(2):239-257.

69. Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci. 2012;32(9):3044-3057.

70. Suofu Y, Clark Y, Broderick J, Kurosawa Y, Wagner K, Lu A. Matrix metalloproteinase-2 or -9 deletions protect against hemorrhagic transformation during early stage of cerebral ischemia and reperfusion. Neuroscience. 2012;212:180-189.

71. Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci. 2014;124(10):707-716.

72. Wang J, Töriska S. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128(Pt 7):1622-1633.

73. Zhang H-T, Zhang P, Gao Y, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15(1):57-64.
74. Gori AM, Giusti B, Piccardi B, et al. Inflammatory and metalloproteinases profiles predict three-month poor outcomes in ischemic stroke treated with thrombolysis. J Cereb Blood Flow Metab. 2017;37(9):3253-3261.

75. Justicia C, Panés J, Solé S, et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab. 2003;23(12):1430-1440.

76. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. 1998;29(5):1020-1030.

77. Yang Y, Hill JW, Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders. Prog Mol Biol Transl Sci. 2011;99:241-263.

78. Stamova B, Xu H, Jickling G, et al. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke. 2010;41(10):2171-2177.

79. Reed GL, Houng AK, Singh S, Wang D. alpha2-Antiplasmin: New Insights and Opportunities for Ischemic Stroke. Semin Thromb Hemost. 2017;43(2):191-199.

80. Singh S, Houng AK, Reed GL. Matrix metalloproteinase-9 mediates the deleterious effects of alpha2-antiplasmin on blood-brain barrier breakdown and ischemic brain injury in experimental stroke. Neuroscienc. 2018;376:40-47.

81. Gautier S, Ouk T, Tagzirt M, et al. Impact of the neutrophil response to granulocyte colony-stimulating factor on the risk of hemorrhage when used in combination with tissue plasminogen activator during the acute phase of experimental stroke. J Neuroinflamm. 2014;11:96.

82. Ikegame Y, Yamashita K, Hayashi S-I, Yoshimura S-I, Nakashima S, Iwama T. Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res. 2010;33(7):703-707.

83. Stowe AM, Adair-Kirk TL, Gonzales ER, et al. Neutrophil elastase and neurovascular injury following focal stroke and reperfusion. Neurobiol Dis. 2009;35(1):82-90.

84. Huppert J, Closhen D, Croxford A, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J. 2010;24(4):1023-1034.

85. Enzmann G, Mysiorek C, Gorina R, et al. The neurovascular unit for the myeloid receptor Mincle in central nervous system injury. J Cereb Blood Flow Metab. 2017;37(6):2098-2111.

86. Arumugam TV, Manzano S, Furtado M, et al. An atypical role for the myeloid receptor Mincle in central nervous system injury. J Cereb Blood Flow Metab. 2017;37(6):2938-2951.

87. Rempe R, Hartz A, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1553-1569.

88. Aksoy D, Bammer R, Mlynash M, et al. Magnetic resonance imaging profile of blood-brain barrier injury in patients with acute intracerebral hemorrhage. J Am Heart Assoc. 2017;6(9):e000161.

89. Rempe R, Hartz A, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481-1507.

90. Cauwe B, Martens E, Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr Biol (Camb). 2009;1(5-6):404-426.

91. Christoffersson G, Vagoes J, Vandooren J, et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 2012;120(23):4653-4662.

92. Gong Y, Koh D. Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell Tissue Res. 2010;339(2):437-448.

93. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787-795.

94. Arumugam TV, Manzano S, Furtado M, et al. An atypical role for the myeloid receptor Mincle in central nervous system injury. J Cereb Blood Flow Metab. 2017;37(6):2098-2111.

95. He Y, Ma X, Li D, Hao J. Thiamebt G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling. J Cereb Blood Flow Metab. 2017;38(8):2938-2951.

96. Huang M, Wan Y, Mao L, et al. Inhibiting the migration of M1-microglia at hyperacute period could improve outcome of tMCAO rats. CNS Neurosci Ther. 2017;23(3):222-232.

97. Amici SA, Dong J, Guerou-de-Arellano M. Molecular mechanisms modulating the phenotype of macrophages and microglia. Front Immunol. 2017;8(1520).

98. Fan Y, Xiong X, Zhang Y, et al. MKEY, a peptide inhibitor of CXCL4-CCL5 heterodimer formation, protects against stroke in mice. J Am Heart Assoc. 2016;5(9).

99. Gilem M, Mausberg AK, Lee J-I, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann. Neurol. 2012;71(6):743-752.

100. Xiong X, Liu L, Yang Q. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23-44.

101. Xu H, Wang Z, Li J, et al. The polarization states of microglia in TBI: a new paradigm for pharmacological intervention. Neural Plast. 2017;2017:5405104.

102. Ransohoff RM, A polarization question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987-991.

103. Boede D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neupathol Appl Neurobiol. 2013;39(1):3-18.

104. Strecker J-K, Minnerup J, Schütte-Nütgen K, Gess B, Schätzl W-R, Schilling M. Monocyte chemoattractant protein-1-deficiency results in altered blood-brain barrier breakdown after experimental stroke. Stroke. 2013;44(9):2536-2544.

105. Hu X, Leak RK, Shi Y, et al. Microglial and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5(2):73-90.

106. Madsen PM, Clausen BH, Degen M, et al. Genetic ablation of soluble tumor necrosis factor with preservation of membrane tumor necrosis factor is associated with neuroprotection after focal cerebral ischemia. J Cereb Blood Flow Metab. 2016;36(9):1553-1569.

107. Arumugam TV, Manzano S, Furtado M, et al. An atypical role for the myeloid receptor Mincle in central nervous system injury. J Cereb Blood Flow Metab. 2017;37(6):2098-2111.

108. Liu F-T, Xu S-M, Xiang Z-H, et al. Molecular hydrogen suppresses microglial activation and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1553-1569.

109. Liu F-T, Xu S-M, Xiang Z-H, et al. Molecular hydrogen suppresses microglial activation and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1553-1569.
112. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophages promotes blood vessel disintegration in the ischemic penumbra. Acta Neuropatol. 2015;129(2):279-295.

113. Biswas S, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 2010;11(10):889-896.

114. Korhonen P, Kanninen KM, Lehtonen Š, et al. Immunomodulation by interleukin-33 is protective in stroke through modulation of inflammation. Brain Behav. Immun. 2015;49:322-336.

115. Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016;144:103-120.

116. Zis O, Zhang Si, Dorovini-Zis K, Wang L, Song W. Hypoxia signaling regulates macrophage migration inhibitory factor (MIF) expression in stroke. Mol Neurobiol. 2015;51(1):155-167.

117. Liu Y, Tsai YH, Tang SC, et al. Cytokine MIF enhances blood-brain barrier permeability: Impact for therapy in ischemic stroke. Sci Rep. 2018;8(1):743.

118. Bolós V, Bicker F, Binamé F, et al. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropatol. 2015;129(2):279-295.

119. Saijo K, Glass C. Microglial cell origin and phenotypes in health and disease. Nat. Immunol. 2011;11(10):775-787.

120. Shu Z-M, Shu X-D, Li H-Q, et al. Ginkgolide B protects against ischemic damage. Brain Res. 2016;1629(9):771-781.

121. Meng H-L, Li X-X, Chen Y-T, et al. Stereotactic administration of edaravone ameliorates intracerebral hemorrhage in rats. J Neurosci. 2016;22(10):824-835.

122. Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063-3070.

123. Liesz A, Suri-Payer E, Veltkamp C, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33(44):17350-17362.

124. Li P, Mao L, Liu X, et al. Essential role of program death 1-ligand 1 in regulatory T-cell-aided protection against blood-brain barrier damage after stroke. Stroke. 2014;45(3):857-864.

125. Johnson HL, Willenbring RC, Jin F, et al. Perforin expression by CD8 T Cells is sufficient to cause fatal brain edema during experimental cerebral malaria. Infect. Immun. 2011;27:485-517.

126. Johnson HL, Willenbring RC, Jin F, et al. Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption. PLoS ONE. 2014;9(10):e111401.

127. Liesz A, Zeman B, Jones L, et al. C-fos induction in cytokine-stimulated microglia is dependent on p38 MAPK. J Neurosci. 2014;34(44):14309-14323.

128. Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. J Neurosci. 2015;35(1):576-586.

129. Zheng Y, Zhong D, Chen H, et al. Pivotal role of cerebral interleukin-23 during immunologic injury in delayed cerebral ischemia in mice. Neuroscience. 2015;290:321-331.

130. Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192-199.

131. Shu Z-M, Shu X-D, Li H-Q, et al. Ginkgolide B protects against ischemic stroke via modulating microglia polarization in mice. CNS Neurosci Ther. 2016;22(9):729-739.

132. Amantea D, Micieli G, Tassorelli C, et al. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci. 2015;9:147.

133. Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. J Neurosci. 2015;35(1):576-586.

134. Liesz A, Zhou W, Na S, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33(44):17350-17362.

135. Li P, Mao L, Liu X, et al. Essential role of program death 1-ligand 1 in regulatory T-cell-aided protection against blood-brain barrier damage after stroke. Stroke. 2014;45(3):857-864.

136. Li P, Mao L, Zhou G, et al. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke. 2013;44(12):3509-3515.

137. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis. 2011;26(1):87-90.
157. Hu X, Li P, Chen J. Pro: Regulatory T cells are protective in ischemic stroke. Stroke. 2013;44(8):e85-e86.
158. McKittrick C, Lawrence C, Carswell H. Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(4):638-647.
159. Iferganci J, Kebir H, Bernard M, et al. The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain. 2008;131(Pt 3):785-799.
160. Urra X, Miró F, Chamorro A, Planas AM, Urra X, van de Beek D, Veitkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401-410.
161. Chu HX, Kim HA, Lee S, et al. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab. 2014;34(3):450-459.
162. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veitkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401-410.
163. Robins RK, Hinks SP, Mawson GM, et al. The blood-brain barrier: an emerging target for ischemic stroke. Stroke. 2013;44(1):1-9.
164. Li et al. CNS Neuroscience & Therapeutics. Wiley.
165. Alawieh A, Elvington A, Tomlinson S. Complement activation in the injured central nervous system: implications for brain angiogenesis after acute injury. J Neurochem. 2016;136(3):573-580.
166. Alawieh A, Elvington A, Tomlinson S. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation. 2012;9:137.
167. Wang G, Zhang J, Hu X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2015;35(4):638-647.
168. Cai Y, Liu X, Chen W, et al. TGF-beta1 prevents blood-brain barrier damage and hemorrhagic transformation after thrombolysis in rats. Exp Neurol. 2015;266:120-126.
169. Wu L, Wu Q, Duan Y, et al. Thrombolytic therapy can induce the expression of neuroinflammatory and neurodegenerative markers in cerebral ischemia. Cerebrovasc BrainMetab. 2016;36(8):1116-1122.
170. Okuma Y, Liu K, Wake H, et al. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. 2012;72(3):373-384.
171. Zhang J, Takahashi HK, Liu K, et al. Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke. 2011;42(5):1420-1428.
172. Saini MG, Pinteaux E, Lee B, Bix GJ. Oxygen-glucose deprivation and interleukin-1alpha trigger the release of perlecan LG3 by cells of neurovascular unit. J Neurochem. 2011;119(4):760-771.
173. Salmeron K, Alhara T, Redondo-Castro E, Pinteaux E, Bix G. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury. J Neurochem. 2016;136(3):573-580.
174. Wu L, Du Y, Lok J, Lo EH, Xing C. Lipocalin-2 enhances angiogenesis in rat brain endothelial cells via reactive oxygen species and iron-dependent mechanisms. J Neurochem. 2015;132(6):622-628.
175. Xing C, Wang X, Cheng C, et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke. 2014;45(7):2085-2092.
176. Jin X, Liu J, Liu KJ, Rosenberg GA, Yang Yi, Liu W. Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia. Exp Neurol. 2013;240:9-16.
177. McMame EN, Korns Johnson D, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. ImmunoL Res. 2013;55(1–3):58-70.
178. Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47-71.
179. Kuzepia J, Bielewicz J, Grabska A, Stelmiasiak Z, Strzyjecka-Zimmer M, Bartosik-Pusiej H. Matrix metalloproteinase-9 contributes to the increase of tau protein in serum during acute ischemic stroke. J Clin Neurosci. 2010;17(8):997-999.
180. Yang Y, Rosenberg GA. MMP-mediated disruption of claudin-5 in the blood-brain barrier of rat brain after cerebral ischemia. Methods Mol Biol. 2011;762:333-345.
181. Dong P, Sun B, Tang N, Pullam L. Immune activated monocyte exosomes alter microRNAs in brain endothelial cells and initiate an inflammatory response through the TLR4/MYD88 pathway. Sci Rep. 2017;7(1):9954.
182. Gyorgyi B, Hung ME, Breakefield XO. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439-464.
183. Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012;3:228.
