SYSTEMATIC REVIEW

Protease activity as a prognostic factor for wound healing in complex wounds

Maggie J. Westby PhD1,2,3 | Gill Norman PhD1,2 | Rachel E. B. Watson PhD2,4 | Nicky A. Cullum PhD1,2,5 | Jo C. Dumville PhD1,2

1Division of Nursing, Midwifery and Social Work, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
2NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
3Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
4Centre for Dermatology Research, Division of Musculoskeletal & Dermatological Sciences, University of Manchester, Manchester, UK
5Research and Innovation Division, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK

Correspondence
Maggie J. Westby, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
Email: maggie.westby@ndorms.ox.ac.uk

Funding information
National Institute for Health Research (NIHR), Grant/Award Number: IS-BRC-1215-20007

Abstract
Healing mechanisms are disrupted in complex wounds. Proteases may persist longer in nonhealing wounds. We sought to investigate whether protease activity, protease inhibitor activity, or their combinations are independent prognostic factors for healing of complex wounds. We searched MEDLINE, EMBASE, CINAHL, and The Cochrane Library to March 2019. Study selection comprised longitudinal studies assessing the independent effect of proteases, their inhibitors or ratios of the two, on healing of complex wounds, while controlling for confounding factors. Two reviewers independently extracted data and assessed risk of bias. We conducted meta-analyses separately for proteases, inhibitors, and ratios. We graded the evidence certainty (quality). We identified eight eligible studies in 10 cohorts involving 343 participants. Risk of bias was moderate or high. Elevated protease activity may be associated with less wound healing (standardized mean difference [SMD]: −0.41, 95% CI −0.72 to −0.11; nine cohorts); and elevated protease inhibitor activity with more healing (SMD: 0.37, 95% CI 0.06-0.68; five cohorts), this is low certainty evidence. Increased protease: inhibitor ratios may be associated with less healing (SMD −0.47, 95% CI −0.94 to −0.01; four cohorts), but this evidence is of very low certainty. Heterogeneity in protease activity was unexplained by prespecified subgroup analyses for wound type or protease activity status, but partially explained by protease class. Posthoc analysis suggested elevated levels of a particular protease, MMP-1, may be associated with more healing and other proteases with less healing. This is low/very low certainty evidence. Limitations were small included studies at moderate or high risk of bias, and the use of posthoc analyses. Elevated protease activity and protease: inhibitor ratios may be associated with less healing, and elevated inhibitor levels with more healing. There may be important differences between MMP-1 and other proteases. High quality research is needed to explore these new findings further.

Abbreviations: HNE, human neutrophil elastase; MMP, matrix metalloproteinase; SMD, standardized mean difference; TIMP, tissue inhibitor of MMPs.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2020 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of by the Wound Healing Society.
1 | INTRODUCTION

Complex wounds are open wounds that heal by the formation of new tissue, which is often described as "healing from the bottom up." In this work, we focus on four types of complex wound: venous leg ulcers (VLU), pressure ulcers (PU), diabetic foot ulcers (DFU), and surgical wounds healing by secondary intention (SWHSI). People with complex wounds report that complete wound healing is the most important outcome to them.

Wound healing is a complex process involving coordinated interactions between diverse biological systems.1 Proteases are active in all phases of wound healing, which is achieved via a cascade of precisely regulated steps and events that align with the appearance of various cell types in the wound bed during four distinct phases: haemostasis/coagulation, inflammation, proliferation/repair, and epithelialization/remodelling.2,4 The process of healing may be similar, regardless of the aetiology, or site of the wound.

Evidence from both human and animal studies suggests individual proteases may have varying roles at different times in the healing process.3,5,6 The principal proteases involved are the matrix metalloproteinases (MMPs) and the serine proteases, which in concert have the ability to break down all components of the extracellular matrix (ECM) such as collagens and elastin.2,4

MMPs are divided into seven broad subtypes on the basis of their substrates and their chemical structure:3 collagenases (MMP-1, MMP-8, and MMP-13); gelatinases (MMP-2 and MMP-9); stromelysins (MMP-3, MMP-10, and MMP-11); metalloelastase (MMP-12); matrilysins (MMP-7 and MMP-26); membrane-type MMPs (MMP-14, MMP-15, MMP-16, MMP-17, MMP-24, and MMP-25); and other MMPs which fail to sit clearly in any of the described categories. In healthy tissue, MMP expression is limited but is rapidly induced by an array of molecules, including cytokines and growth factors released on, for example, wounding.7 MMPs are released into the ECM as latent pro-enzymes, requiring activation, which is achieved via multiple mechanisms, including self-catalysis and digestion by other members of the same enzyme family.7 Control of MMP activation is complicated by the role of other molecules that inhibit the action of MMPs, most notably the tissue inhibitors of MMPs (TIMPs). These are small molecules, which are promiscuous in their stoichiometric binding of multiple MMPs to regulate the activity of the degrading enzymes, hence, the balance of proteases and their inhibitors may be important in wound healing.4

The main serine proteases are mast cell tryptase and chymase, plasmin, human neutrophil elastase (HNE), cathepsin G, urokinase-type plasminogen activators (uPA), and tissue-type plasminogen activators (t-PA).8 Other protease biomarkers include modular proteins that combine proteases with other biological species, which also break down collagen: for example, the families of A disintegrin and metalloproteinase (ADAM),9 and ADAM with thrombospondin motifs (ADAMTS).10 Complex wounds also contain proteases associated with several types of bacteria and there may be synergy between proteases from host and the skin-resident microbiome.5,11-14

In complex wounds in humans, where healing mechanisms are disrupted, some proteases are reported to persist for longer than in normally healing wounds.4,15,16 It is possible that any association of protease level with delayed wound healing may be a general wound phenomenon, although differences between wound types have been reported.4,17

This systematic prognostic factor review expands on previous work,18 and aims to investigate whether protease activity, protease inhibitor activity or combinations of the two are independent prognostic factors for wound healing in people with complex wounds. Studying prognostic factors for wound healing has a threefold purpose,17 helping us to: understand mechanisms related to healing; identify wounds at increased risk of nonhealing (which may permit selective treatment of these wounds if the prognostic factor is modifiable); and monitor response to therapy.

2 | METHODS

2.1 | Criteria for considering studies for this review

We included reports of prospective and retrospective longitudinal studies in humans that measured, or gave sufficient data, to assess the independent effect of individual proteases on the healing outcome while controlling for key confounding factors. We determined these following both consideration of pathophysiological processes and possible pathways to nonhealing at the cellular level, and also from a review of the literature (see methods in Westby et al19). Key confounders were considered to be age, sex, BMI, infection, and smoking. Controlling for confounders meant either taking account of these factors in the analysis or in the design of the study. For example, the study design could involve matching or stratification or limited study eligibility (such as having a narrow age range). Alternatively, the analysis could involve multivariable regression with adjustment for the key confounding factors or their omission from the analysis because they are not significantly associated with the outcome in univariate analyses. We included studies reporting multivariable analyses regardless of the adjusting factors involved. In the absence of formal matching or regression analysis, we also included studies with data on univariate associations of protease activity with wound healing, provided the study also reported data for healing and nonhealing groups for at least some of the key confounding factors. We did not include studies that solely reported univariate associations between the prognostic factor and the outcome, with no consideration of key confounding factors.

We included studies with any follow-up period. The study design could be cohort studies or randomized controlled trials (RCTs) analyzed as cohort studies. We excluded cross-sectional studies because the prognostic association under study is inherently longitudinal and there is likely to be a substantial risk of bias associated with reverse causation. We did not include case-control studies...
wound size, either reported as continuous outcomes or dichotomised,
we included data on the change (and percentage change) in
complete wound healing data reported for a particular associa-
of both active and bound forms): activation of proteases is needed for
enzymatic action.7,11 We assigned low risk of bias only when the
active form of protease was measured and more than one measure-
ment method was used. If total protease levels were reported we
assigned moderate risk of bias. For the study confounding domain, we
considered whether the study measured solely the active
form of protease, or reported ‘total’ protease levels (the combination
of both active and bound forms); activation of proteases is needed for
enzymatic action.7,11

Our primary outcomes were: (a) time to healing (analyzed by
time-to-event analysis) and (b) the proportion of people with wounds
completely healed, at any follow-up duration. If there were insuffi-
cient complete wound healing data reported for a particular associa-
tion, we included data on the change (and percentage change) in
wound size, either reported as continuous outcomes or dichotomised
with any cut-off point. We termed changes in wound size or area as
“partial healing.”

2.2 | Search strategy

We used a search strategy developed for a scoping review of all
wound biomarkers, based only on population terms and bio-
marker terms. One review author conducted a preliminary assess-
ment of the titles and abstracts of retrieved records and then two
authors assessed the filtered abstracts and titles for protease bio-
markers. We searched MEDLINE, EMBASE, CINAHL, and the
Cochrane Central Register of Controlled Trials (CENTRAL) up to
March 18, 2019; the MEDLINE search strategy is shown in
Appendix 4.

2.3 | Data extraction and assessment of risk of bias

Data were extracted by one reviewer into a piloted data extraction
spreadsheet, and checked by a second. Data extracted included the
following: study design, participant details (especially those of the key
confounding factors); ulcer type, size and duration; details of each
prognostic factor (measurement methods, whether the active form
was measured, type of data (eg, continuous/any cut-off points);
details of each outcome; type of analysis and how the study
accounted for the key confounding factors; duration of follow-up and
loss to follow-up; association statistics or raw data where no regres-
sion analysis was conducted.

Two reviewers independently appraised the included studies
using an approach based on the Quality In Prognosis Studies (QUIPS)
tool, which is appropriate for prognostic factor review questions.21,22
We assessed risk of bias per study for each protease-outcome combi-
nation, considering six domains: study participation, study attrition,
prognostic factor measurement, outcome measurement, study con-
 founding, and statistical analysis and reporting. Each domain was
rated as having high, moderate, or low risk of bias. For the study par-
ticipation domain, we assessed representativeness of the population,
also assigning studies with fewer than 8 weeks’ follow-up to be at
high risk of bias, a duration set a priori based on clinical experience
of healing times for complex wounds, alongside evidence from time to
healing plots (eg, Ashby et al.23 2014): this duration is expected to be
insufficient to capture healing, such that any population that did heal
within that time would not be representative. For the outcome mea-
surement domain, we considered the validity of partial healing mea-
sures (such as 50% reduction in size), but were careful to avoid double
counting with study participation (because these measures typically
had short follow-up times). For the prognostic factor measurement
domain, we considered whether the study measured solely the active
form of protease, or reported ‘total’ protease levels (the combination
of both active and bound forms); activation of proteases is needed for
enzymatic action.7,11

We assigned low risk of bias only when the active form of protease was measured and more than one measure-
ment method was used. If total protease levels were reported we
assigned moderate risk of bias. For the study confounding domain, we
considered how studies had taken account of the following key con-
 founding factors (identified on the basis of literature risk factors
and/or clinical or basic science experience): age, sex, BMI, smoking,
and infection. We assessed risk of bias in this domain in terms of the
proportion of key confounding factors accounted for, taking into con-
ideration how accounting had been done (which could include
regression analysis; reporting a lack of difference between unhealed
and healed groups; stratification; and a narrow inclusion criterion). For
multivariable analyses, we reported all adjusting factors included in
the regression analysis. To assess the “statistical analysis and
reporting” domain, we considered whether the analyses took into
account treatment type (protease modulating vs not protease modu-
lating). We also assigned moderate risk of bias when the study only
reported the median and IQR for the t-test analysis (see Section 2.4).
We defined an all-domain risk of bias per study for each prognostic factor, taking into account all the above domains. We assigned all-domain low risk of bias if all domains had low risk of bias; moderate if there was high risk of bias for one domain or moderate risk of bias for at least two domains (with the rest as low risk of bias); and high risk of bias if there was high risk of bias for at least two key domains. This assessment of overall risk of bias is based on guidance in the literature.

2.4 Data synthesis

At the outset, we stratified the analyses into three protease groups, recognizing that (a) proteases, (b) their inhibitors, and (c) ratios of proteases to inhibitors were very different potential biomarkers. We also initially separated complete and partial healing (dichotomous) outcomes, but investigated the appropriateness of this separation in subgroup analyses.

Studies reported their available data in different ways: outcomes and protease activity could each be presented as dichotomous or continuous data, and combinations of these required different analytical approaches, detailed in Table 1. We would have preferred to synthesize the data by meta-analyzing the results from multivariable logistic regression or Cox regression analyses, in which the independent variable is continuous protease activity and the dependent variable is the dichotomous healing outcome, and account is taken of confounders. However, this analysis was rarely reported by the studies and we did not have individual participant data to allow us to perform regression analyses. Consequently, we took an alternative analytical approach: all included studies summarized protease activity as the mean and SD for each of the healing and nonhealing outcome ‘groups’. Therefore, we conducted a t-test analysis for each study, with the continuous prognostic factor (protease activity) as the dependent variable and the dichotomous healing outcome as the independent variable, and then we meta-analyzed the results as appropriate. The t-test determines whether the mean protease activity differs between people with healing and nonhealing wounds. Statistically, when considering univariate associations, the t-test and logistic regression models can be shown to be compatible. We also note the use by other studies of the t-test in comparing baseline characteristics by outcome category for continuous predictors, and in identifying candidate prognostic factors for multivariable logistic regression analysis (eg, Antwi et al.26 2017). Our application of the statistical t-test enabled data synthesis, but the results require careful interpretation: a negative mean difference in the protease levels indicates that lower baseline levels of protease are associated with higher proportions of healing wounds at follow-up (compared with nonhealing).

We conducted a random effects meta-analysis for the t-test analysis. When protease levels were reported differently in studies (eg, as concentration per quantity of total protein or as activity per milliliter), we analyzed the t-test results as standardized mean differences (SMD), and reported the meta-analysis findings as the summary SMD with its 95% confidence interval. Where studies reported results for more than one protease, we included all results, recognizing the limitation that there may have been multiple counting. Where protease level data were reported as median and IQR, we converted the data to mean and SD using the method of Wan et al.27 We planned to apply the Cohen interpretation of the size of the association according to the SMD numerical value, such that 0.2 represents a small association, 0.5 a moderate association, and 0.8 a large association, but in this exploratory study, we were more concerned with investigating the direction and heterogeneity of association.

We presented individual study findings on forest plots, stratifying by protease type and outcome definition; we grouped study data across all wound types, protease activity measurements, individual proteases and types of sample. The decision on whether to pool data was based on clinical and methodological heterogeneity in these variables.

We assessed heterogeneity by visually inspecting the forest plots, examining the overlap of confidence intervals and the variation of point estimates, as well as statistical measures (Chi-squared test and the I^2 measure), taking into consideration the fact that some studies reported results for more than one protease. We considered whether the definition of healing (complete or partial) gave important differences and combined these data where results were similar, reassessing the overall heterogeneity.

2.5 Subgroup analyses and sensitivity analyses

First, we carried out sensitivity analyses to explore the impact of all-domain risk of bias, restricting the analyses to studies rated as having moderate or low risk of bias. If this did not explain any observed heterogeneity, we conducted a number of a priori subgroup analyses by: (a) type of wound (DFU, VLU, PU, and SWHSI); (b) type of protease-MMP collagenases (MMP 1 and MMP-8), MMP gelatinases (MMP-2

TABLE 1 Summary of analyses undertaken based on available data

Healing measure	Protease measure	Dichotomous	Continuous
Dichotomous (including categorical which had been dichotomized)*	Logistic or Cox regression	Logistic or Cox regression	
	Chi-squared test using raw data (calculated from sensitivity and specificity)*	t-test using raw data (mean and standard deviation for healed and unhealed groups)	
Continuous	Linear regression	Linear regression; Correlation	

*Where healing data were reported as categorical data, we dichotomized them, selecting the highest cut-off point (in order to approximate more closely complete healing).

*Where studies reported sensitivity and specificity data for a protease cut-off level, we transformed these data into 2×2 tables allowing us to calculate the risk ratio and its 95% confidence interval.
and MMP-9), other MMPs, and serine proteases; (c) protease activity (active only, and mixed active and latent); (d) presence or absence of infection at baseline; (e) type of sample (wound fluid or wound tissue); and (f) type of treatment (protease modulating or other). We explored all of these subgroup analyses, provided there was at least one study per subgroup, applying the test for subgroup differences to determine whether splitting explained any observed heterogeneity (including the absence of residual heterogeneity in subgroups).29

One of the heterogeneity assessments suggested possible differences in the direction of association for one individual protease and we conducted an exploratory posthoc subgroup analysis by individual proteases to investigate this.

2.6 Summary of findings table and GRADE assessment

We used an approach modified from the GRADE framework to assess the summarized evidence for overall quality (certainty) for each protease-outcome combination.22,24,25 GRADE defines the certainty of a body of evidence as the extent to which one can be confident that an association is close to the true quantity of specific interest. We rated the overall strength of evidence as high, moderate, low or very low, considering within-study risk of bias, indirectness of the evidence, inconsistency, imprecision of association estimates and risk of publication bias.24,29,30

We also considered two "upgrading" factors, large association and "dose effect", although we note that high risk of bias may artificially lead to larger recorded associations. For assessing overall risk of bias in a meta-analysis, we considered the weight of each study and its risk of bias. For imprecision, we considered the total number of events (dichotomous outcomes) or participants (continuous) across all relevant studies, and also noted whether the summary CI included no effect and clinically meaningful benefits or harms. For assessing inconsistency, we considered the variation in the direction and magnitude of the point estimates, alongside heterogeneity statistics of I^2 and the P-value.

We present the main results of the review in 'Summary of findings' tables, which give key information concerning the certainty of the evidence, the magnitude of the associations examined and the sum of the available data, and include an overall grading of the evidence.29,30 For completeness, we included different types of analyses as separate rows in the Summary of findings tables, even though they are reporting different approaches to the same association.

3 RESULTS

The search generated 14,737 records (for all biomarkers): we obtained 93 full papers; 10 studies had two reports, leaving 83 possible studies (see Figure 1). Eight studies (described in 11 reports) were deemed to meet the study inclusion criteria (Appendix 1). We excluded, and listed separately a further eight studies which reported only univariate results and took no account of key confounding factors and so were not considered further (Table A2 in Appendix 1). We excluded

8 studies included
(in 11 journal articles)

71 journal articles excluded (64 studies):
• 19 protease not linked with healing
• 10 not prognosis
• 10 with n<10
• 7 blood sample
• 5 case control
• 3 not active protease
• 10 other
8 studies with univariate results only
3 articles not obtainable

FIGURE 1 Flow of studies

64 studies (see Figure 1 for reasons). Nine of the 11 studies in our earlier review focusing on protease activity in VLUs were excluded, either because of more stringent inclusion criteria in the current review (five studies) or because they did not take account of confounders (four studies).18

3.1 Included studies

Eight studies, with 343 participants, met the inclusion criteria for the review.31-38 One study split the participants into two cohorts;22 (a) a “discovery” set formed from people with “rapidly healing” wounds (healed after 6 months) and an age and sex-matched set of people with non-healing (deteriorating) wounds, and (b) a “validation” set formed from the remaining participants. One RCT combined the results for two randomized arms (protease modulating matrix and placebo)35 and another reported results separately for each randomized group (doxycycline and placebo)37, giving a total of 10 cohorts. The size of the cohorts was small, with a median (overall range) of 31.5 (16-62) participants.

Six cohorts (five studies) took account of at least half the prespecified confounding factors either in the study design or analysis31-34,36 and four cohorts (three studies) considered less than half of the key confounding factors.35,37,38 Three studies conducted a multivariable analysis.31,32,34

Seven cohorts (six studies) involved people with DFUs and three cohorts (two studies) involved people with VLU3,37,38 No studies were identified in people with PUs or SWHSI. See Table A1 (Appendix 1) for more detail.
Seven studies (eight cohorts) measured wound protease levels; some examining more than one protease: MMP-1,2,31,33,35 MMP-2,31,34 MMP-8,31 MMP-9,31,33,35,37,38 the serine protease, HNE,35,36 and a combination of proteases, MMP-9 plus HNE.35 Five cohorts (four studies) investigated protease inhibitors: TIMP-1,31,33,34 and the serine protease inhibitor, Serpin B3.32 Four cohorts (four studies) investigated ratios of proteases with protease inhibitors: MMP-1:TIMP-1,31,33 MMP-2:TIMP-1,34 MMP-9:TIMP-1,33-35 giving a total of 27 cohort-protease combinations.

Four cohorts31,33-35 reported results separately for the active form of at least some proteases (MMP-9,31,33 HNE,35 MMP-2, and MMP-934) and the remainder reported total levels of proteases or used ELISA analysis, which we assumed measured the total level unless stated otherwise. See Table A1 for more detail.

Three cohorts in 112 people reported complete healing as a dichotomous measure;32-34 and three cohorts reported partial healing as a dichotomous outcome.31,32,35 Three further included cohorts (two studies) compared two different degrees of healing,36,37 and one reported categorical healing (high, low, and no healing)38 which we dichotomised into high healing vs low and no healing combined. See Table A1 for more detail. Three studies additionally reported the outcome as a continuous measure, the percentage change in size from baseline.31,33,34

3.2 Risk of bias

Figure 2 shows risk of bias judgements for each cohort-protease combination, also indicating differences according to analysis approach; full details are given in Table A3, Appendix 1.

For four cohorts (three studies) we assigned high all-domain risk of bias for each protease35,37,38 and two cohorts had high all-domain risk of bias for one protease.31,34 Otherwise, the all-domain risk of bias was moderate; no cohorts had low all-domain risk of bias.

3.3 Summary of data and investigation of heterogeneity

All cohorts reported continuous protease data and accompanying dichotomous healing data, and this formed our main analysis (using the t-test approach). Results are shown in Figure 3, stratified into proteases, protease inhibitors and ratios of proteases: inhibitors, and, in terms of outcomes, initially separated into complete healing vs non-healing and partial healing vs nonhealing. Three cohorts (three studies) had results for more than one protease31,33,35 and one cohort (one study) investigated more than one ratio of protease to inhibitor.33

3.3.1 Protease activity as a prognostic factor for healing

t-test analysis

For the t-test analysis, eight cohorts (266 participants) investigated whether there was any difference in protease activity (continuous) for each healing status group (dichotomous; Figure 3). For each of the complete healing and partial healing outcomes, the pooled results suggested, on average, that higher levels of protease at study baseline may be linked with less healing, but estimates were imprecise.

The statistical test for subgroup differences suggested there is no significant difference between complete and partial healing outcomes ($I^2 = 0\%$, $P = 0.94$), so these studies were pooled for subsequent sensitivity analyses and prespecified subgroup analyses.

The random effects summary statistics for the meta-analysis with pooled complete and partial healing were, SMD: -0.41 (95% CI -0.72 to -0.11), with I^2 inconsistency of 48% ($P = .02$) (Figure A1 in Appendix 2 and Table 2). The negative SMD indicates that lower baseline levels of protease may be associated with higher proportions of healing wounds at follow-up (compared with nonhealing). The evidence certainty is low, downgraded once for risk of bias and once for inconsistency and some imprecision. Sensitivity analysis by risk of bias (restricting to low and moderate all-domain risk of bias) did not explain the heterogeneity amongst the protease associations: the summary estimate decreased, SMD (random effects) was -0.29 (95% CI -0.79 to 0.20) and I^2 increased to 64% ($P = .007$; Table 2).
Prespecified subgroup analyses undertaken for associations of proteases with healing are described in Table 3. None of the subgroup analyses completely explained the observed heterogeneity in direction of association: the results for DFU and VLU wound types, and the results for active and total protease activity subgroups were qualitatively in the same direction; there was also residual heterogeneity in one of the subgroups for each subgroup analysis. The subgroup analysis by protease class partly explained the observed heterogeneity, with increased collagenase activity mainly favoring healing in these data and the opposite direction of association for the other protease classes. Some residual heterogeneity in the direction of association remained within the collagenase class ($I^2 = 36\%$), which may be...
Table 2: Summary of findings table for all proteases, all protease inhibitors, and all ratios of proteases-to-inhibitors

Outcomes/analysis	Associations (95% CI): random effects	Participants (studies)	Evidence quality (GRADE)	Comments	
Proteases					
Design part-adjusted for confounders; t-test investigation of protease level and “healing” (dichotomous) association.					
Outcomes: (a) high healing vs no healing at 8 weeks (b) at least 50% reduction in size of 50% at 4 weeks (c) complete healing at 12 weeks				Most studies suggested higher levels of proteases at baseline may be associated with less healing, but there is some heterogeneity in the direction of association. Overall, $I^2 = 48\%$, $P = .02$ For the sensitivity analysis by risk of bias, $I^2 = 64\%$, $P = .007$ Prespecified subgroup analyses only partly explained the inconsistency	Figure A1
Design part-adjusted for confounders; association of healing (dichotomous) with elevated protease level (dichotomous):					
Outcome: complete healing at 12 weeks				High vs low levels of proteases at baseline may be associated with healing in 467 fewer wounds per 1000 (from 654 to 32 fewer)	Figure A2
Design part-adjusted for confounders; Correlation coefficients:				Higher levels of proteases may be associated with less healing (% reduction in area at 4 weeks)	Figure A3
Outcome: % change in area per day at 4 weeks				Very Low	
MULTIVARIABLE logistic regression:				Higher levels of Serpin B3 may be associated with more healing. Adjusted for coronary artery disease (only significant factor)	Figure A1
Outcome: “healing” (improved versus not improved at 6 months; reference 32, cohort 2)				Most studies suggested higher levels of protease inhibitors at baseline may be associated with more healing, but there is some heterogeneity in the direction of association. Overall, $I^2 = 0\%$, $P = .47$	Figure A2

SMD: Outcome: complete healing at 12 weeks

- **Proteases**
 - MMP-1, MMP-2, MMP-8, MMP-9, HNE, sum of HNE, and MMP-9
 - SMD for all proteases: $-0.41 (-0.72$ to $-0.11)$
 - One cohort had results from four proteases, one from three proteases, and one from two proteases
 - Sensitivity analysis (restricted to moderate all-domain risk of bias), SMD: $-0.29 (95\% CI -0.79$ to $0.20)$
 - Separating the combination of proteases:
 - for sum of HNE and MMP-9 (one study)
 - SMD: $-0.96 (-1.84$ to $-0.08)$
 - for the remainder (MMP-1, MMP-2, MMP-8, HNE): SMD: $-0.37 (-0.69$ to $-0.06)$

- **Protease inhibitors**
 - TIMP-1 and Serpin B3:
 - SMD: $0.37 (0.06-0.68)$
 - One result per cohort
 - Serpin B3; threshold above 1.13 ng ml$^{-1}$: 26 (1 study)
 - Odds ratio per unit increase in Serpin B3 total protein (ng ml$^{-1}$ μg$^{-1}$): 3.51 (1.1-11.9)
 - Serpin B3: threshold above 1.13 ng ml$^{-1}$
 - RR: 2.9 (1.7-7.6)
 - Probability of healing below the threshold: 174 per 1000 wounds

Outcomes	Analysis	Participants (studies)	Evidence quality (GRADE)	Comments
Healing (improved versus not improved at 6 months; reference 32, cohort 2)	Serpin B3; threshold above 1.13 ng ml$^{-1}$			
 - RR: 2.9 (1.7-7.6)
 - Probability of healing below the threshold: 174 per 1000 wounds | 47 (1) 16 healed | VERY LOW | Higher vs low levels of Serpin B3 at baseline may be associated with healing in 327 more wounds per 1000 (from 15 to 826 more) | Figure A2 |
TABLE 2 (Continued)

Elevated activity of proteases, protease inhibitors and ratios of protease: inhibitor, and their associations with healing.

Population: people with complex wounds. Setting: any. Prognostic factor: Protease activity. Outcome: healing.

Outcomes/analysis	Associations (95% CI): random effects	Participants (studies)	Evidence quality (GRADE)	Comments
Probability of healing above the threshold: 501 per 1000 (189-1000)				
Ratio of proteases to inhibitors				
Design part-adjusted for confounders; t-test association of protease/inhibitor ratio and "healing" (dichotomous); Outcomes:	MMP-1/TIMP-1, MMP-2/TIMP-1 and MMP-9/TIMP-1: SMD: −0.47 (−0.94 to −0.01)	126 (four studies with six results for different ratios, two without numerical data)		Most studies suggested higher levels of protease/inhibitor ratios may be associated with less healing, but there may be heterogeneity in the direction of association, represented by one study. Overall I² = 35%, P = .20
	One study contributed results for two protease-to-inhibitor ratios			Figure A1
	Additional studies without numerical data:			
	Threefold higher MMP-2/TIMP-1 ratio for unhealed (compared with healed)			
	No significant difference for MMP-1/TIMP-1			
				VERY LOW
MULTIVARIABLE logistic regression: Outcome: "healing" (at least 82% reduction in size at 4 weeks)	MMP-1/TIMP-1 ratio: No numerical data	16 (1)		Insufficient information
	Study stated that "ratio is a predictive factor of healing independent of wound area and depth"	7 healed		VERY LOW
Design part-adjusted for confounders; association of healing (dichotomous) with elevated protease/inhibitor ratio (dichotomous): Outcomes:	MMP-1/TIMP-1; threshold above 0.056 and above 0.39 and above 9.06; MMP-9/TIMP-1; threshold above 0.056 and above 0.39 and above 9.06; Wide range of findings:	38 (two studies, one with two proteases)		Very serious inconsistency precludes summarizing the findings. There may be a large difference between MMP-1/TIMP-1 ratio and MMP-9/TIMP-1 ratio findings
		18 healed		Figure A2
Design part-adjusted for confounders; Correlation coefficients: Outcome: % reduction in area at 4 weeks	MPM-1/TIMP-1 and MMP-9/TIMP-1	38 (two studies, one with two proteases)		Very serious inconsistency precludes summarizing the findings. There may be a large difference between MMP-1/TIMP-1 ratio and MMP-9/TIMP-1 ratio findings
	Correlation coefficients:			Figure A3
	MMP-1/TIMP-1: 0.33 (0.14-0.78) and 0.65 (0.17 to 1.13)	38 (two studies, one with two proteases)		
	MMP-9/TIMP-1: −0.33 (−0.66 to −0.01)	38 (two studies, one with two proteases)		

Abbreviations: HNE, human neutrophil elastase; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of MMP; SMD, standardized mean difference.

aSerious risk of bias, some inconsistency and some imprecision.
bSerious risk of bias, very serious imprecision.
cVery serious risk of bias, very serious imprecision.
dSerious risk of bias, serious imprecision.
eSerious risk of bias, very serious inconsistency.
fSerious risk of bias, very serious imprecision, very serious inconsistency.
gSerious risk of bias, very serious imprecision, very serious inconsistency.
Complete and partial healing were, SMD: 0.37 (95% CI 0.06 to 0.68), with variability in point estimates; Heterogeneity within subgroups: 0.21 (P = .01; N = 5, 1 with no data).

Other analyses: chi-squared test and correlation
The evidence for other types of analysis (chi-squared test and correlation) for protease activity involves one study in 22 participants, the evidence is of very low certainty (downgraded for risk of bias and twice for imprecision). One study in 62 participants conducted multiple linear regression for the percentage change in wound area per day at 4 weeks: no results were reported, but the model (which included active MMP-9, pro-MMP-9, and TIMP-1) accounted for 32% of the variance. The evidence is of very low quality (downgraded twice each for risk of bias and imprecision). Full details are given in Table 2 and Appendix 2.

3.3.2 Protease activity as a prognostic factor for healing

T-test analysis
For the t-test analysis, five cohorts (four studies: 175 participants) investigated possible associations between continuous protease inhibitor activity and dichotomous healing data (Figure 3 and Table 2). The random effects summary statistics for the meta-analysis across complete and partial healing were, SMD: 0.37 (95% CI 0.06 to 0.68), with I^2 inconsistency of 0% (P = .47; Figure A1 in Appendix 2). The positive SMD result indicates that, on average, higher baseline levels of protease may be associated with higher proportions of healing wounds at follow-up (compared with nonhealing). The evidence certainty is low, downgraded once for risk of bias and once for imprecision.

Other analyses: logistic regression and chi-squared test
One study (47 participants) conducted a multivariable logistic regression analysis to investigate the serine protease inhibitor Serpin B3 as a prognostic factor for healing (improved vs not improved) at 6 months. While the study findings suggest higher levels of Serpin B3 may be associated with more healing after adjustment for coronary artery disease (odds ratio per unit increase in Serpin B3/protein [ng mL$^{-1}$ μg$^{-1}$]: 3.5, 95% CI 1.1-11.9), this is very low evidence certainty (downgraded once for risk of bias and twice for imprecision), meaning we are highly uncertain about any potential relationship. The evidence for the chi-squared test is also of very low certainty for the same reasons (see Table 2).

3.3.3 Ratio of protease to inhibitor as a prognostic factor for healing
t-test analysis
For the t-test analysis, there is very low certainty evidence on associations between continuous protease to inhibitor ratios and dichotomous healing data, but there was heterogeneity within subgroups: (P = .04; N = 6, 2 with no data).

Table 3 Subgroup analyses for protease associations with healing

Subgroup analysis	Results (random effects) SMD (95% CI)	Heterogeneity and test for subgroup differences
Protease class		
Collagenases (MMP-1 and MMP-8)	Subgroup analysis may account for the overall heterogeneity	Test for subgroup differences: $I^2 = 66\%, P = .03$
Gelatinases (MMP-2 and MMP-9)	Collagenases showed a trend for increased protease activity being associated with more healing, SMD: 0.42 (−0.28 to 1.12)	Heterogeneity within subgroups:
Elastases	Gelatinases, serine protease HNE, and sum of MMP-9 and HNE showed a trend for increased protease activity being associated with less healing, o Gelatinases, SMD: −0.52 (−0.82 to −0.21) o HNE, SMD: −0.80 (−1.33 to −0.26) o Sum of MMP-9 and HNE, SMD: −0.96 (−1.84 to −0.08)	
Sum MMP-9 and HNE		

Wound type		
DFU	Results for both wound types are qualitatively in the same direction (increased protease associated with less healing) o DFU, SMD: −0.48 (−0.87 to −0.10) o VLU, SMD: −0.17 (−0.58 to 0.23)	Test for subgroup differences: $I^2 = 15\%, P = .28$
VLU	The magnitude of association was smaller for VLU, which had wide CIs crossing zero o VLU studies all at high risk of bias	Heterogeneity within subgroups:
Active/total protease	Results for both active and total protease level subgroups are qualitatively in the same direction (increased protease associated with less healing) o Active, SMD: −0.85 (−1.25 to −0.44) o Total or unclear, SMD: −0.27 (−0.62 to 0.07)	Test for subgroup differences: $I^2 = 77\%, P = .04$

Type of sample Infection Treatment	Insufficient evidence for these subgroup analyses

Abbreviations: HNE, human neutrophil elastase; MMP, matrix metalloproteinase; SMD, standardized mean difference.

The evidence for other types of analysis (chi-squared test and correlation) for protease activity involves one study in 22 participants, the evidence is of very low certainty (downgraded for risk of bias and twice for imprecision). One study in 62 participants conducted multiple linear regression for the percentage change in wound area per day at 4 weeks: no results were reported, but the model (which included active MMP-9, pro-MMP-9, and TIMP-1) accounted for 32% of the variance. The evidence is of very low quality (downgraded twice each for risk of bias and imprecision). Full details are given in Table 2 and Appendix 2.
healing from four cohorts (126 participants). Random effects meta-analysis summary statistics across complete and partial healing were: SMD -0.47 (95% CI -0.94 to -0.01; Figure A1), meaning that, on average, lower baseline levels of protease to inhibitor ratios may be associated with higher proportions of healing wounds at follow-up (compared with nonhealing). The evidence certainty is very low (downgraded once for risk of bias, once for inconsistency and once for imprecision). We note that one study contributes two results to the meta-analysis of the protease to inhibitor ratio (MMP-1:TIMP-1 and MMP-9:TIMP-1) and there is inconsistency in the direction of the results within this study ($I^2 = 32\%$).33

Other analyses: logistic regression, chi-squared test, and correlation

One study (16 participants31) conducted a multivariable logistic regression analysis to investigate the ratio MMP-1:TIMP-1 as a prognostic factor for healing (at least 82% reduction in size) at 4 weeks, but gave no numerical data, stating that the "ratio is a predictive factor of healing independent of wound area and depth". This is very low certainty evidence (downgraded once for risk of bias and twice for imprecision). Two studies in 38 participants (one with data for two ratios) reported results for the chi-squared test and correlation.31,33 In each analysis, very serious inconsistency in the direction of association (between the results for MMP-1:TIMP-1 and MMP-9:TIMP-1) precluded meta-analysis. The evidence is very low certainty (downgraded once for risk of bias, twice for inconsistency and twice for imprecision). Further details are in Table 2 and Figures A2 and A3.

3.4 | Post-hoc subgroup analyses by individual proteases

3.4.1 | Protease activity

Our qualitative assessment of the t-test analysis of protease activity suggested differences between MMP-1 (a particular collagenase) and other proteases (including another collagenase, MMP-8) in terms of direction of association with healing, so we conducted two related posthoc subgroup analyses (see Appendix 3). We present the final analyses of MMP-1 vs all other proteases and across healing outcomes (Figure 4 and Table A4). For the 'other protease' subgroup, some studies reported data for more than one protease, so we selected results for MMP-9 to minimize multiple counting. We also conducted a risk of bias sensitivity analysis (Table A4).

Two cohorts (38 participants, plus one cohort without results in 26 participants29) explored whether MMP-1 was prognostic for healing (over 12 weeks29 or 4 weeks23). Random effects meta-analysis summary statistics were: SMD 0.73 (95% CI 0.06-1.39), meaning that, on average, higher baseline levels of protease may be associated with higher proportions of healing. The evidence is rated as very low certainty for the MMP-1 subgroup (downgraded once for risk of bias and twice for imprecision). In contrast, for the eight cohorts (266 participants) that investigated whether proteases other than MMP-1 were prognostic for healing, the random effects meta-analysis results were: SMD -0.57 (95% CI 0.86 to -0.29), indicating that, on average, lower baseline levels of protease may be associated with higher proportions of healing. The evidence is rated as low/very low certainty for the other proteases (downgraded once each for risk of bias and imprecision, together with some uncertainty about the posthoc subgroup analysis). The test for subgroup differences gave $I^2 = 92\%$ and $P = .0005$; there was an even greater distinction in the sensitivity analysis: $I^2 = 94\%, P < .0001$, with no heterogeneity in either subgroup.

3.4.2 | Ratio of proteases to protease inhibitors

We observed similar differences between ratios involving MMP-1 and those involving MMP-9 for the t-test, chi-squared test, and correlation analyses, although sample sizes were small and the evidence is of very low certainty for the MMP-9:TIMP analyses (downgraded for risk of bias and very serious imprecision); results for MMP-1:TIMP-1 may be in a different direction to those for ratios involving MMP-9 (Figures A1–A3).

4 | DISCUSSION

We sought to investigate whether protease activity was an independent prognostic factor for wound healing in people with complex wounds. We had broad inclusion criteria, permitting studies that considered at least one key confounding factor in the analysis or study design, but we also took account of this potential confounding in risk of bias assessment, assigning high risk of bias to those studies accounting for less than half the key confounding factors. The inclusion criteria were met by 10 cohorts (eight studies) in 343 participants; however, all cohorts were small (median 32 participants, overall range 16-62) and there was clinical heterogeneity around the type of protease, measurement of protease activity and cut-off points, definition of healing and the analysis type. Most studies did not conduct regression analyses, but all reported continuous protease data linked to dichotomous healing data, and we were able to conduct a meta-analysis using standardized mean differences and a t-test approach.

All evidence is of low or very low certainty. A GRADE rating of low certainty means that our confidence in the association is limited: the true association may be substantially different. The evidence suggests that elevated protease levels may be associated with less wound healing; elevated protease inhibitor levels with more healing; and increases in the ratio of protease to inhibitor may also be associated with less healing. However, there was also statistical heterogeneity that was not fully explained by our prespecified subgroup analyses of wound type, protease class or protease activity status.

In an exploratory posthoc subgroup analysis, the evidence suggests different directions of association with healing for MMP-1 or ratios including MMP-1 (increased protease activity associated with more healing) compared with other proteases (association with less healing). This posthoc evidence is of low or very low certainty. The exploratory nature of the analysis together with the clinical and
methodological heterogeneity and small studies means that any conclusions are tentative and should only be used to inform further research. However, further research would only be appropriate if there is a biological hypothesis regarding the different types of proteases.

The Muller et al. 2008 study suggests a biological rationale for different protease findings. MMP-1 is the major collagenase implicated in wound healing: its specific role involves initial proteolysis of type I collagen, which enables keratinocyte migration leading to re-epithelialization.31 The authors hypothesize that the higher level of MMP-1 in healing wounds permits the proliferative phase to be completed and allows progression of the healing process. Additionally, the association of healing with TIMP-1 suggests regulation of MMP-1 activity. On the other hand, MMP-9 and MMP-8 are synthesized by inflammatory cells, which if present in excess may impact the healing process.31

There are a number of limitations. The included studies were small and had moderate or high risk of bias. Few studies reported the primary outcome of complete healing and we consequently also included data on partial healing. Although the results were not different for partial and complete healing, there is an implicit assumption that partial healing is an adequate surrogate, which it may not be.

The preferred data synthesis would have been to meta-analyze results from multivariable regression analyses that took account of key confounding factors, or to conduct individual patient data meta-analyses. However, there were no large cohort studies reporting multivariable regression analyses, and studies that did report multivariable analyses were too small to give reliable results. We therefore synthesized the data in a different way using an application of the t-test; we note that the t-test assumption of approximately normal distributions may not have been met for some studies. Most of the evidence is from studies that took account of confounding factors only in the study design and in an unplanned way, which decreases their reliability. The main analysis (t-test) involved multiple counting when individual studies reported results for more than one protease; this occurred for three studies. Only three studies clearly reported the active form of protease.

The observed heterogeneity may have been explained by the post-hoc subgroup analysis comparing MMP-1 and other proteases, but this proposed explanation should be treated with caution. Apart from being post-hoc, all subgroup analyses are nonrandomized comparisons and may be confounded by other factors that we have and have not examined. In addition, the subgroup analysis relies on two very small studies that did not take full account of confounding factors, for one of which we transformed the median (IQR) data.

5 | CONCLUSIONS

This is the first systematic review of protease activity as a prognostic factor for healing across all wound types. We restricted the review to the better-conducted studies and applied rigorous systematic review methods. However, the evidence base is poor, our certainty about the findings is low or very low, and our conclusions are necessarily tentative. Higher levels of proteases may be associated with less healing, and higher levels of protease inhibitors may be associated with more healing. There may be a place for the ratio of protease to inhibitor as a predictor of healing. There may be important differences between MMP-1 and other proteases, a finding that our review has investigated explicitly, following earlier indications in two included studies.31,33
This is an important review because there is much interest, both commercially and in health services, in identifying wounds at greatest risk of nonhealing and in developing targeted treatments. There are already point-of-care tests for protease activity commercially available and a number of protease modulating matrix dressings have been tested in trials and are marketed widely, but the evidence for their effectiveness is uncertain. If the various proteases indeed have qualitatively different predictive abilities for healing, there will be an even greater need for highly targeted predictive tests and treatments; it is unclear whether current protease modulating dressings can distinguish between proteases.

The tentative evidence from this work should be confirmed (or otherwise) by a large cohort study that measures protease activity appropriately, explores the role of different proteases, considers different wound types and chronicity, and measures the time to healing (survival analysis). Only then can we develop effective treatments to improve the quality of life for the many people with complex wounds.

ACKNOWLEDGMENTS
We would like to thank Dr Su Golder (information specialist, University of York) for devising the searches. This research was funded by the National Institute for Health Research (NIHR) Manchester Biomedical Research Centre (Award: IS-BRC-1215-20007).

CONFLICT OF INTEREST
Rachel E. B. Watson is in receipt of research funding from Walgreens Boots Alliance, Unilever R&D Colworth and CG Skin Ltd. The other authors have no conflicts of interest.

REFERENCES
1. Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4(4):411-420.
2. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-1542.
3. Martins VL, Caley M, O’Toole EA. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res. 2013;351(2):255-268.
4. McCarty SM, Percival SL. Proteases and delayed wound healing. Adv Wound Care. 2013;2(8):438-447.
5. Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res. 1998;242(1):201-210.
6. Moses MA, Markovskiy M, Harper JW, et al. Temporal study of the activity of matrix metalloproteinases and their endogenous inhibitors during wound healing. J Cell Biochem. 1996;60(3):379-386.
7. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem. 2003;253:269-285.
8. Grendahl-Hansen J, Lund LR, Ralfkiaer E, Ottevanger V, Dane K. Urokinase- and tissue-type plasminogen activators in keratinocytes during wound reepithelialization in vivo. J Invest Dermatol. 1988;90(6):790-795.
9. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008;29(5):258-289.
10. Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (a Disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol. 2015;16:113-113.
11. McCarty SM, Cochrane CA, Clegg PD, Percival SL. The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen. 2012;20(2):125-136.
12. Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20(5):647-657.
13. Sibbald RG, Contreras-Ruiz J, Coutts P, Fierheller M, Rothman A, Woo K. Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv Skin Wound Care. 2007;20(10):549-558.
14. Suleman L. Extracellular bacterial proteases in chronic wounds: a potential therapeutic target? Adv Wound Care. 2016;5(10):455-463.
15. Cullen B, Smith R, McCulloch E, Silcock D, Morrisson L. Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen. 2002;10(1):16-23.
16. Harding K, Armstrong DG, Barrett S, Kaufman H, Lázaro-Martínez JL, Mayer D, et al. International consensus. The role of proteases in wound diagnostics: an expert working group review. Wounds International. woundchek.com/uploads/downloads/consensus_documents/Role-of-proteases-in-wound-diagnostics-International.pdf. 2018;
17. Lazorl JL, Izoo V, Meaume S, Davies AH, Lobmann R, Uccloili L. Elevated levels of matrix metalloproteinases and chronic wound healing: an updated review of clinical evidence. J Wound Care. 2016;25(5):277-287.
18. Westby MJ, Dumville JC, Stubbs N, Norman G, Wong JK, Cullum N, Riley RD. Protease activity as a prognostic factor for wound healing in venous leg ulcers. Cochrane Wounds Group, editor. Cochrane Database of Systematic Reviews [Internet]. http://doi.wiley.com/10.1002/14651858.CD012841.pub2. 2018.
19. Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380.
20. Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol. 2015;68(6):627-636.
21. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280-286.
22. Hayden JA, Tougas ME, Riley R, Iles R, Pincus T. Individual recovery expectations and prognosis of outcomes in non-specific low back pain: prognostic factor exemplar review. Cochrane Database Syst Rev. 2014;9:CD011284.
23. Ashby RL, Gabe R, Ali S, et al. Clinical and cost-effectiveness of compression hosiery versus compression bandages in treatment of venous leg ulcers (venous leg ulcer study IV, VenUS IV): a randomised controlled trial. Lancet. 2014;383(9920):871-879.
24. Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ. 2015;350:h870-h870.
25. Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CTTME. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2:71-71.
26. Antwi E, Groenwold RHH, Browne JL, et al. Development and validation of a prediction model for gestational hypertension in a Ghanaian cohort. BMJ Open. 2017;7(1):e012670.
27. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135-148. http://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-135.
28. Cohen J. The t-test for means. Statistical Power Analysis for the Behavioral Sciences. 2nd edition. Hillsdale (New Jersey): Lawrence Erlbaum.
29. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). *Cochrane Handbook for Systematic Reviews of Interventions*. 2nd edition. Chichester (UK): John Wiley & Sons; version 6.0. 2019. www.training.cochrane.org/handbook

30. Schunemann H, Brozek J, Guyatt G, Oxman A (editors). *GRADE Handbook (online)*. https://gdt.gradepro.org/app/handbook/handbook. html. Updated October 2013

31. Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY. Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. *Diabet Med*. 2008; 25(4):419-426.

32. Fadini GP, Albiero M, Millioni R, et al. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker. *Diabetologia*. 2014;57(9):1947-1956.

33. Luanraksa S, Jindatanmanusan P, Boonsiri T, Nimmanon T, Chaovanalikit T, Arnutti P. An MMP/TIMP ratio scoring system as a potential predictive marker of diabetic foot ulcer healing. *J Wound Care*. 2018;27(12):849-855.

34. Liu Y, Min D, Bolton T, et al. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. *Diabetes Care*. 2009;32(1):117-119.

35. Gottrup F, Cullen BM, Karlsmark T, Bischoff-Mikkelsen M, Nisbet L, Gibson MC. Randomized controlled trial on collagen/oxidized regenerated cellulose/silver treatment: RCT on collagen/ORC/silver in diabetic foot ulcers. *Wound Repair Regen*. 2013;21(2):216-225.

36. Fadini GP, Menegazzo L, Rigato M, et al. NETosis delays diabetic wound healing in mice and humans. *Diabetes*. 2016;65(4):1061-1071.

37. Serra R, Gallelli L, Buffone G, et al. Doxycycline speeds up healing of chronic venous ulcers. *Int Wound J*. 2015;12(2):179-184.

38. Serra R, Buffone G, Falcone D, et al. Chronic venous leg ulcers are associated with high levels of metalloproteinases-9 and neutrophil gelatinase-associated lipocalin. *Wound Repair Regen*. 2013;21(3):395-401.

39. National Institute for Health and Care Excellence (NICE). Woundcheck Protease Status for assessing elevated protease status in chronic wounds. Medtech innovation briefing [MIB83]. www.nice.org.uk/ advice/mib83. 2018

40. Westby MJ, Norman G, Dumville JC, Stubbs N, Cullum N. Protease-modulating matrix treatments for healing venous leg ulcers. *Cochrane Database Syst Rev*. 2016;12:CD011918.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Westby MJ, Norman G, Watson REB, Cullum NA, Dumville JC. Protease activity as a prognostic factor for wound healing in complex wounds. *Wound Rep Reg*. 2020;28:631–644. https://doi.org/10.1111/wrr.12835