Citation
Sirunyan, A. M. et al. "Measurement of b hadron lifetimes in pp collisions at $\sqrt{s} = 8$ TeV." The European Physical Journal C: Particles and Fields 78 (June 2018): 457 © 2018 CERN for the benefit of the CMS collaboration

As Published
https://doi.org/10.1140/epjc/s10052-018-5929-3

Publisher
Springer Berlin Heidelberg

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/116289

Terms of Use
Creative Commons Attribution

Detailed Terms
http://creativecommons.org/licenses/by/4.0/
Measurement of b hadron lifetimes in pp collisions at $\sqrt{s} = 8$ TeV

CMS Collaboration

CERN, 1211 Geneva 23, Switzerland

Abstract Measurements are presented of the lifetimes of the B^0, B_s^0, Λ_b^0, and B^+_c hadrons using the decay channels $B^0 \rightarrow J/\psi K^*(892)^0$, $B^0 \rightarrow J/\psi K^0_S$, $B_s^0 \rightarrow J/\psi \pi^+\pi^-$, $B_s^0 \rightarrow J/\psi (1020)$, $\Lambda_b^0 \rightarrow J/\psi \Lambda$, and $B^+_c \rightarrow J/\psi \pi^+$. The data sample, corresponding to an integrated luminosity of 16.2 fb$^{-1}$, was collected by the CMS detector at the LHC in proton–proton collisions at $\sqrt{s} = 8$ TeV. The B^0 lifetime is measured to be 453.0 ± 1.6 (stat) ± 1.8 (syst) μm in $J/\psi K^*(892)^0$ and 457.8 ± 2.7 (stat) ± 2.8 (syst) μm in $J/\psi K^0_S$, which results in a combined measurement of $c\tau_{B^0} = 454.1 \pm 1.4$ (stat) ± 1.7 (syst) μm. The effective lifetime of the B_s^0 meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $c\tau_{B_s^0 \rightarrow J/\psi \pi^+\pi^-} = 502.7 \pm 10.2$ (stat) ± 3.4 (syst) μm and $c\tau_{B_s^0 \rightarrow J/\psi (1020)} = 443.9 \pm 2.0$ (stat) ± 1.5 (syst) μm. The Λ_b^0 lifetime is found to be 442.9 ± 8.2 (stat) ± 2.8 (syst) μm. The precision from each of these channels is as good as or better than previous measurements. The B^+_c lifetime, measured with respect to the B^+ to reduce the systematic uncertainty, is 162.3 ± 7.8 (stat) ± 4.2 (syst) ± 0.1 ($\tau_{B^+_c}$) μm. All results are in agreement with current world-average values.

1 Introduction

Precise lifetime measurements involving the weak interaction play an important role in the study of nonperturbative aspects of quantum chromodynamics (QCD). The phenomenology is commonly described by the QCD-inspired heavy-quark expansion model, which provides estimates of the ratio of lifetimes for hadrons containing a common heavy quark [1]. In this paper, we report measurements of the lifetimes of the B^0, B^0_s, Λ_b^0, and B^+_c hadrons.

The measurements are based on the reconstruction of the transverse decay length L_{xy}, where L_{xy} is defined as the flight distance vector from the primary vertex to the decay vertex of the b hadron, projected onto the transverse component p_T.
effective lifetime of the neutral B_q meson, produced as an equal admixture of particle and antiparticle flavour eigenstates and decaying into a final state f, can be written as [4]:

$$
\tau_{\text{eff}} = \frac{R^f_H}{(R^f_H)^2 + (R^f_L)^2},
$$

(3)

Since the amplitudes R_H^f and R_L^f are specific to the decay channel, the effective lifetime depends on the final state f and is measured by fitting an exponential function to a distribution consisting of the sum of two exponential contributions. Because the B^0_s system has a small lifetime difference with respect to the average lifetime, $\Delta \Gamma_d/\Gamma_d = (-0.2 \pm 1.0)\%$ [5], the ct distribution is close to an exponential, and it is treated as such for the lifetime measurement. Following Ref. [6], the B^0 lifetimes measured in the flavour-specific channel $B^0 \to J/\psi K^*(892)^0$ and the CP eigenstate channel $B^0 \to J/\psi K^0_S$ are used to determine values for $\Delta \Gamma_d$, Γ_d, and $\Delta \Gamma_d/\Gamma_d$.

In the B^0_s system, $\Delta \Gamma_s/\Gamma_s = (13.0 \pm 0.9)\%$ [5] and the deviation from an exponential ct distribution is sizeable. In this analysis, the two lifetimes associated with the B^0_s meson are measured in the $J/\psi \pi^+\pi^-$ and $J/\psi \phi(1020)$ decay channels. The $B^0 \to J/\psi \pi^+\pi^-$ decays are reconstructed in the invariant mass range $0.9240 < M(\pi^+\pi^-) < 1.0204$ GeV, which is dominated by the $f_0(980)$ resonance [7,8], making it a CP-odd final state. Therefore, the lifetime measured in this channel is related to the inverse of the decay width of the heavy B^0_s mass eigenstate, $\tau^0_{B^0_s} \approx 1/\Gamma_H$, as CP violation in mixing is measured to be negligible [2]. The $J/\psi \phi(1020)$ decay channel is an admixture of CP-even and CP-odd states, corresponding to the light and heavy mass eigenstates, respectively, neglecting CP violation in mixing. Rewriting Eq. (3), the effective lifetime of the B^0_s meson decaying to $J/\psi \phi(1020)$ can be expressed as

$$
\tau_{\text{eff}} = f_H \tau_H + (1 - f_H) \tau_L,
$$

(4)

where τ_L and τ_H are the lifetimes of the light and heavy mass states, respectively, and f_H is the heavy-component fraction, defined as:

$$
f_H = \frac{|A_L|^2 \tau_H}{|A|^2 \tau_L + |A_L|^2 \tau_H}.
$$

(5)

Here, $|A|^2 = |A_0(0)|^2 + |A_1(0)|^2$ is the sum of the squares of the amplitudes of the two CP-even states, and $|A_L|^2 = |A_L(0)|^2$ is the square of the amplitude of the CP-odd state. The amplitudes are determined at the production time $t = 0$. Normalization constraints require $|A|^2 = 1 - |A_L|^2$ and therefore

$$
f_H = \frac{|A_L|^2 \tau_H}{(1 - |A_L|^2) \tau_L + |A_L|^2 \tau_H}.
$$

By combining the B^0_s lifetimes obtained from the final states $J/\psi \phi(1020)$ and $J/\psi \pi^+\pi^-$, it is possible to determine the lifetime of the light B^0_s mass eigenstate. The results in this paper are complementary to the CMS weak mixing phase analysis in the $B^0_s \to J/\psi \phi(1020)$ channel [9], which provided measurements of the average decay width Γ_s and the decay width difference $\Delta \Gamma_s$.

The weak decay of the B^0_s meson can occur through either the b or c quark decaying, with the other quark as a spectator, or through an annihilation process. The latter is predicted to contribute 10% of the decay width [10], and lifetime measurements can be used to test the B^0_s decay model. As fewer and less precise measurements of the B^0_s lifetime exist [11–16] compared to other b hadrons, the B^0_s lifetime measurement presented in this paper is particularly valuable.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are detected in gaseous ionization chambers embedded in the steel flux-return yoke outside the solenoid.

The main subdetectors used for this analysis are the silicon tracker and the muon detection system. The silicon tracker measures charged particles in the pseudorapidity range $|\eta| < 2.5$. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules. For charged particles of $1 < p_T < 10$ GeV and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) μm in the transverse (longitudinal) impact parameter [17]. Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers.

Events of interest are selected using a two-tiered trigger system [18]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a time interval of less than 4 μs. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage. At the HLT stage, there is
full access to the event information, and therefore selection criteria similar to those applied offline can be used.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [3].

3 Data and Monte Carlo simulated samples

The data used in this analysis were collected in 2012 from proton–proton collisions at a centre-of-mass energy of 8 TeV, and correspond to an integrated luminosity of 19.7 fb⁻¹.

Fully simulated Monte Carlo (MC) samples of \(B^+ \rightarrow J/\psi K^+, B^0 \rightarrow J/\psi K^* (892)^0, B^0 \rightarrow J/\psi K^0_S, B^0 \rightarrow J/\psi \pi^+ \pi^-, B^0 \rightarrow J/\psi \phi (1020), \) and \(\Lambda^0_b \rightarrow J/\psi \Lambda^0 \) were produced with PYTHIA 6.424 [19] to simulate the proton–proton collisions, and subsequent parton shower and hadronization processes. The \(B^+ \) MC sample was produced with the dedicated generator BCVEGPy 2.0 [20,21] interfaced to PYTHIA. Decays of particles containing b or c quarks are simulated with the EVTGEN package [22], and final-state radiation is included via PHOTOS [23]. Events are passed through the CMS detector simulation based on GEANT4 [24], including additional proton–proton collisions in the same or nearby beam crossings (pileup) to match the number of multiple vertices per event in the data. Simulated events are processed with the same reconstruction and trigger algorithms as the data.

4 Reconstruction of b hadrons

The data are collected with a trigger that is designed to identify events in which a \(J/\psi \) meson decays to two oppositely charged muons. The transverse momentum of the \(J/\psi \) candidate is required to be greater than 7.9 GeV and both muons must be in the pseudorapidity region \(|\eta| < 2.2 \). The distance of closest approach of each muon to the event vertex in the transverse plane must be less than 0.5 cm and a fit of the two muons to a common vertex must have a \(\chi^2 \) probability greater than 0.5%. The invariant mass of the dimuon system must lie within \(\pm 5 \) times the experimental mass resolution (typically about 35 MeV) of the world-average \(J/\psi \) mass [2].

The offline selection starts from \(J/\psi \) candidates that are reconstructed from pairs of oppositely charged muons. The standard CMS muon reconstruction procedure [25] is used to identify the muons, which requires multiple hits in the pixel, strip, and muon detectors with a consistent trajectory throughout. The offline selection requirements on the dimuon system replicate the trigger selection. From the sample of collected \(J/\psi \) events, candidate b hadrons are reconstructed by combining a \(J/\psi \) candidate with track(s) or reconstructed neutral particles, depending on the decay mode. Only tracks that pass the standard CMS high-purity requirements [17] are used. The b hadron candidate is fitted to a common vertex with the appropriate masses assigned to the charged tracks and the dimuon invariant mass constrained to the world-average \(J/\psi \) mass [2]. In fits that include a \(K^0_S \) or \(\Lambda^0 \) hadron, the world-average mass is used for those particles. Primary vertices (PV) are fitted from the reconstructed tracks using an estimate of the proton–proton interaction region (beamspot) as a constraint. The PV having the smallest pointing angle, defined as the angle between the reconstructed b hadron momentum and the vector joining the PV with the decay vertex, is used. As the proper decay times are measured in the transverse plane, where the PV position is dominated by the beamspot, the choice of PV has little effect on the analysis and is accounted for as a systematic uncertainty.

4.1 Reconstruction of \(B^+, B^0, B^0_s, \) and \(\Lambda^0_b \) hadrons

The \(B^+, B^0, B^0_s, \) and \(\Lambda^0_b \) hadrons are reconstructed in the decays \(B^+ \rightarrow J/\psi K^+, B^0 \rightarrow J/\psi K^0_S, B^0 \rightarrow J/\psi K^* (892)^0, B^0 \rightarrow J/\psi \pi^+ \pi^-, B^0 \rightarrow J/\psi \phi (1020), \) and \(\Lambda^0_b \rightarrow J/\psi \Lambda^0 \). The \(K^+ \) (892)^0, \(K^0_S \), \(\phi \) (1020), and \(\Lambda^0 \) candidates are reconstructed from pairs of oppositely charged tracks that are consistent with originating from a common vertex. Because of the lack of charged particle identification, the labelling of tracks as pions, kaons, and protons simply means the mass that is assigned to the track. The mass assignments for the \(K^0_S \) and \(\phi \) (1020) decay products are unambiguous (either both pions or both kaons). For the kinematic region considered in this analysis, simulations show that the proton always corresponds to the track with the larger momentum (leading track) from the \(\Lambda^0 \) decay. The \(K^+ (892)^0 \) candidates are constructed from a pair of tracks with kaon and pion mass assignments.

Since two \(K^+ (892)^0 \) candidates can be formed with a single pair of tracks, we select the combination for which the mass of the \(K^+ (892)^0 \) candidate is closest to the world-average value [2]. This selects the correct combination 88% of the time.

All tracks must have a transverse momentum greater than 0.5 GeV. The decay vertices of the \(K^0_S \) and \(\Lambda^0 \) particles are required to have a transverse decay length larger than 15\(\sigma \) and their two decay products each have a transverse impact parameter of at least 2\(\sigma \), where the distances are with respect to the beamspot and \(\sigma \) is the calculated uncertainty in the relevant quantity. The intermediate candidate states \(K^+ (892)^0, K^0_S, \phi \) (1020), and \(\Lambda^0 \) are selected if they lie within the following mass regions that correspond to 1–2 times the experimental resolution or natural width around the nominal mass: \(0.7960 < M(K^+ \pi^-) < 0.9880 \) GeV, \(0.4876 < M(\pi^+ \pi^-) < 0.5076 \) GeV, \(1.0095 < M(K^- K^+) < 1.0295 \) GeV, and \(1.1096 < M(p \pi^-) < 1.1216 \) GeV. The accepted mass region of the \(\pi^+ \pi^- \) system in \(B^0 \) \(J/\psi \pi^+ \pi^- \) decay is \(0.9240 < M(\pi^+ \pi^-) < 1.0204 \) GeV. The \(K^0_S \) contamination in the \(\Lambda^0 \) sample is removed by dis-
carding candidates in which the leading particle in the \(\Lambda^0 \) decay is assigned the pion mass and the resulting \(\pi^+\pi^- \) invariant mass is in the range \(0.4876 < M(\pi^+\pi^-) < 0.5076 \text{GeV} \). Conversely, the \(\Lambda^0 \) contamination is removed from the \(K_S^0 \) sample by discarding candidates in the \(p\pi^- \) mass region \(1.1096 < M(p\pi^-) < 1.1216 \text{GeV} \), when the proton mass is assigned to the leading pion from the \(K_S^0 \) decay. The \(p_T \) of the \(K^+ \) candidate track from the \(B^+ \) decay must be larger than 1 GeV. The \(p_T \) of the \(\pi^+\pi^- \) system in \(B^0 \rightarrow J/\psi\pi^+\pi^- \) decays and the \(K^*(892)^0 \) candidates in \(B^0 \rightarrow J/\psi K^*(892)^0 \) decays must be greater than 3.5 GeV, with the leading (trailing) charged hadrons in these decays required to have a \(p_T \) greater than 2.5 (1.5) GeV. The \(p_T \) of the \(b \) hadrons must be at least 13 GeV, except for the \(B^0 \rightarrow J/\psi\phi(1020) \) decay where no requirement is imposed. The \(p_T \) of the leading track from the \(K_S^0 \) and \(\Lambda^0 \) decays must be larger than 1.8 GeV. The minimum \(p_T \) for the kaons forming a \(\phi(1020) \) candidate is 0.7 GeV.

The \(b \) hadron vertex \(\chi^2 \) probability is required to be greater than 0.1% in the \(B^0 \rightarrow J/\psi\phi(1020) \) channel only. The lifetime measurement is limited to events in which the \(b \) hadron \(ct \) is greater than 0.02 cm to avoid resolution and reconstruction effects present in the low-\(ct \) region. No attempt is made to select a single \(b \) hadron candidate in the relatively rare (\(< 1\%\)) events in which more than one \(b \) hadron candidate is found.

4.2 Reconstruction of \(B^+_c \rightarrow J/\psi\pi^+ \)

The \(B^+_c \) lifetime is measured using the method developed by the LHCB Collaboration [12] in which the measured difference in total widths between the \(B^+_c \) and \(B^+ \) mesons is used in combination with the precisely known \(B^+ \) lifetime to obtain the \(B^+_c \) lifetime. This method does not require modelling the background \(ct \) distribution, avoiding a source of systematic uncertainty. The same reconstruction algorithm and selection criteria are used for both decays, \(B^+_c \rightarrow J/\psi\pi^+ \) and \(B^+ \rightarrow J/\psi K^+ \). As a result, the dependence of the efficiencies on the proper decay time is similar.

The charged hadron tracks are required to have at least 2 pixel hits, at least 6 tracker hits (strips and pixels together), a track fit \(\chi^2 \) less than 3 times the degrees of freedom, and \(|\eta| < 2.4 \). The dimuon invariant mass is required to lie in the range \(\pm 3\sigma \) from the nominal \(J/\psi \) meson mass, where \(\sigma \) is the average resolution for the \(J/\psi \) signal, which depends on the \(J/\psi \) pseudorapidity and ranges from 35 to 50 MeV. The \(p_T \) of the charged hadron tracks and the \(b \) hadrons are required to be greater than 3.3 and 10 GeV, respectively. The \(b \) hadrons must have a rapidity of \(|y| < 2.2 \), a vertex \(\chi^2 \) probability greater than 5\%, a dimuon vertex \(\chi^2 \) probability greater than 1\%, and \(\cos \theta > 0.98 \), where \(\cos \theta = \vec{L}_{xy} \cdot \vec{p}_{T,B} / (|\vec{L}_{xy}| \cdot |\vec{p}_{T,B}|) \) and \(\vec{L}_{xy} \) and \(\vec{p}_{T,B} \) refer to the transverse decay length and momentum of the \(B^+ \) or \(B^+_c \) mesons. The lifetime measurement is limited to events in which the \(b \) hadron has \(ct > 0.01 \) cm, which ensures that the ratio of the \(B^+_c \) to \(B^+ \) meson efficiencies is constant versus \(ct \). The analysis of the \(B^+_c \) lifetime is described in Sect. 6.

5 Measurement of the \(B^0, B^0, \) and \(A^0_b \) lifetimes

For each decay channel, we perform a simultaneous fit to three input variables, the \(b \) hadron mass, \(ct \), and \(ct \) uncertainty (\(\sigma_{ct} \)). For the \(B^+ \), \(B^0 \), and \(A^0_b \) hadrons, an unbinned maximum-likelihood fit is performed with a probability density function (PDF) given by:

\[
PDF = f_s \cdot M_s(M) \cdot T_s(ct) \cdot E_s(\sigma_{ct}) \cdot \varepsilon(ct) + (1 - f_s) \cdot M_b(M) \cdot T_b(ct) \cdot E_b(\sigma_{ct}),
\]

where \(f_s \) is the fraction of signal events, and \(M_s \), \(M_b \), \(T_s \), \(T_b \), and \(E_s \), \(E_b \) are the functions describing the signal (background) distributions of the \(b \) hadron mass, \(ct \), and \(\sigma_{ct} \), respectively, while \(\varepsilon \) is the efficiency function. These functions are derived below. For the \(B^0_s \) modes, we use an extended maximum-likelihood fit in order to correctly incorporate background sources whose yields are obtained from the fit.

5.1 Reconstruction and selection efficiency

The reconstruction and selection efficiency \(\varepsilon \) for each decay mode is determined as a function of \(ct \) by using fully simulated MC samples. This efficiency is defined as the generated \(ct \) distribution of the selected events after reconstruction and selection divided by the \(ct \) distribution obtained from an exponential decay with the lifetime set to the value used to generate the events. The efficiency for the \(B^0 \rightarrow J/\psi\phi(1020) \) channel is defined as the generated \(ct \) distribution of the selected events after reconstruction divided by the sum of the two exponentials generated with the theoretical \(B^0_s \rightarrow J/\psi\phi(1020) \) decay rate model [26]. In the theoretical model, the values of the physics parameters are set to those used in the simulated sample.

Figure 1 shows the efficiency as a function of \(ct \) for the various decay modes, with an arbitrary normalization since only the relative efficiency is relevant. The efficiencies display a sharp rise as \(ct \) increases from 0 to 0.01 cm, followed by a slow decrease as \(ct \) increases further. The \(ct \) efficiency is modelled with an inverse power function.

5.2 Data modelling

Depending on the decay channel, the invariant mass distribution for the signal \(M_s \) is modelled with one or two Gaussian functions, and a linear polynomial or an exponential
Fig. 1 The combined reconstruction and selection efficiency from simulation versus ct with a superimposed fit to an inverse power function for $B^+ \rightarrow J/\psi K^+$ (upper left), $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ (upper right), $B^0 \rightarrow J/\psi K_S^0$ (centre left), $B^0 \rightarrow J/\psi K^* (892)^0$ (centre right), $B^0 \rightarrow J/\psi \pi^+ \pi^-$ (lower left), and $B^0_s \rightarrow J/\psi \phi (1020)$ (lower right). The efficiency scale is arbitrary.

function is used to model the combinatorial background M_b. For the $B^0 \rightarrow J/\psi \pi^+ \pi^-$ decay, three additional terms are added to M_b to include specific sources of background. The $B^0 \rightarrow J/\psi \pi^+ \pi^-$ decays are modelled by a Gaussian function, the $B^+ \rightarrow J/\psi K^+$ decays by a shape taken from simulation, and the $B^0_{(d,s)} \rightarrow J/\psi h_1^+ h_2^-$ decays, where h_1^+ and h_2^- are charged hadron tracks that are not both pions, by a Gaussian function.

The signal ct distribution T_s is modelled by an exponential function convolved with the detector resolution and then multiplied by the function describing the reconstruction and selection efficiency. The resolution is described by a Gaussian function with the per-event width taken from the ct uncertainty distribution. The backgrounds T_b are described by a superposition of exponential functions convolved with the resolution. The number of exponentials...
needed to describe the background is determined from data events in the mass sideband regions for each decay mode.

The signal E_s and background $E_b \sigma_{ct}$ distributions are modelled with a sum of two gamma functions for the $B^0 \rightarrow J/\psi \phi (1020)$ channel and two exponential functions convolved with a Gaussian function for the other channels. The background parameters are obtained from a fit to the mass sideband distributions. The signal parameters are obtained from a fit to the signal region after subtracting the background contribution using the mass sideband region to estimate the background. The parameters of the efficiency function and the functions modelling the σ_{ct} distributions are kept constant in the fit. The remaining fit parameters are allowed to vary freely.

For the $B^+_s \rightarrow J/\psi K^+$ mode, the parameters of the mass model for the $B^+ \rightarrow J/\psi K^+$ contamination are taken from the simulation, and the yield and lifetime are determined by the fit. The mass of the $B^0 \rightarrow J/\psi \pi^+\pi^-$ contamination is fixed to the weighted average of the masses measured from our two B^0 decay modes, and the width of the Gaussian function is the same as the width used for the $B^0 \rightarrow J/\psi \pi^+\pi^-$ signal, corrected by a factor of $M_{J/\psi}/M_{B^0}$. The lifetime of this contamination is fixed to the world-average value, corrected by the same factor as the width, and the yield is a free parameter of the fit.

5.3 Fit results

The invariant mass and ct distributions obtained from data are shown with the fit results superimposed in Figs. 2, 3 and 4. The ct distributions are fitted in the range 0.02–0.50 cm for all modes except the $B^0_s \rightarrow J/\psi \phi (1020)$ channel, where the upper limit is increased to 0.60 cm. The average lifetimes times the speed of light obtained from the fits are: $c \tau_{B^+} = 490.9 \pm 0.8 \mu m$, $c \tau_{B^0 \rightarrow J/\psi K^+(892)} = 453.0 \pm 1.6 \mu m$, $c \tau_{B^0 \rightarrow J/\psi K^0_S} = 457.8 \pm 2.7 \mu m$, $c \tau_{B^0 \rightarrow J/\psi \pi^+\pi^-} = 502.7 \pm 10.2 \mu m$, $c \tau_{B^0_s \rightarrow J/\psi \phi (1020)} = 445.2 \pm 2.0 \mu m$, and $c \tau_{A^0_s} = 442.9 \pm 8.2 \mu m$, where all uncertainties are statistical only. The $B^0 \rightarrow J/\psi \phi (1020)$ value given here is uncorrected for two offsets described in Sect. 7. There is good agreement of the figures on the right show the difference between the observed data and the fit divided by the data uncertainty. The vertical bars on the data points represent the statistical uncertainties.
between the fitted functions and the data. The probabilities calculated from the χ^2 of the ct distributions in Figs. 2, 3 and 4 all exceed 25%.

6 Measurement of the B^+_c lifetime

The decay time distribution for the signal $N_B(ct)$ can be expressed as the product of an efficiency function $\varepsilon_B(ct)$ and an exponential decay function $E_B(ct) = \exp(-ct/\tau_B)$, convolved with the time resolution function of the detector $r(\Delta t)$. The ratio of B^+_c to B^+ events at a given proper time can be expressed as

$$\frac{N_{B^+_c}(ct)}{N_{B^+}(ct)} = R(\Delta t) \approx \frac{\varepsilon_{B^+_c}(ct)[r(\Delta t) \otimes E_{B^+_c}(ct)]}{\varepsilon_{B^+}(ct)[r(\Delta t) \otimes E_{B^+}(ct)]}. \quad (8)$$

We have verified through studies of simulated pseudo-events that Eq. (8) is not significantly affected by the time resolution, and therefore this equation can be simplified to

$$R(\Delta t) \approx R_B(\Delta t) \exp(-\Delta \Gamma t), \quad (9)$$

where the small effect from the time resolution is evaluated from MC simulations and is included in $R_B(\Delta t)$, which denotes the ratio of the B^+_c and B^+ efficiency functions. The quantity $\Delta \Gamma$ is defined as

$$\Delta \Gamma \equiv \Gamma_{B^+_c} - \Gamma_{B^+} = \frac{1}{\tau_{B^+_c}} - \frac{1}{\tau_{B^+}}. \quad (10)$$

The $B^+_c \to J/\psi \pi^+$ and $B^+ \to J/\psi K^+$ invariant mass distributions, shown in Fig. 5, are each fit with an unbinned maximum-likelihood estimator. The $J/\psi \pi^+$ invariant mass distribution is fitted with a Gaussian function for the B^+_c signal and an exponential function for the background. An additional background contribution from $B^+_c \to J/\psi K^+$ decays is modelled from a simulated sample of $B^+_c \to J/\psi K^+$ events, and its contribution is constrained using the value of the branching fraction relative to $J/\psi \pi^+$. The $B^+_c \to J/\psi \pi^+$ signal yield is 1128 ± 60 events, where the uncertainty is sta-
6.1 The fit model and results

The B_c^+ lifetime is extracted through a binned χ^2 fit to the ratio of the efficiency-corrected ct distributions of the $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ channels. The B_c^+ and $B^+ ct$ signal distributions from data are obtained by dividing the data sample into ct bins and performing an unbinned maximum-likelihood fit to the $J/\psi \pi^+$ and $J/\psi K^+$ invariant mass distribution in each bin, in the same manner as the fit to the full samples, except that the peak position and resolution are fixed to the values obtained by the fits to the full samples. Varied ct bin widths are used to ensure a similar statistical uncertainty in the B_c^+ signal yield among the bins. The bin edges are defined by requiring a relative statistical uncertainty of 12% or better in each bin. The same binning scheme as for the data, is shown in Fig. 6, where the number of signal events is normalized by the bin width. Efficiencies are obtained from the MC samples and are defined as the ct distribution of the selected events after reconstruction divided by the ct distribution of the events after reconstruction divided by the lifetime set to the same value used to generate each MC sample. The ratio of the two efficiency distributions, using the same binning scheme as for the data, is shown in the right plot of Fig. 6.

The ratio of the B_c^+ to B^+ efficiency-corrected ct distributions, R/R_s, is shown in Fig. 7, along with the result of a fit to an exponential function. The fit returns $\Delta \Gamma = 1.24 \pm 0.09$ ps$^{-1}$. Using the known lifetime of the B^+ meson, $\tau_{B^+} = 491.1 \pm 1.2$ μm [5], a measurement of the B_c^+ meson life-
time, $c_{\tau_{B^+}} = 162.3 \pm 7.8$ µm, is extracted, where the uncertainty is statistical only.

7 Systematic uncertainties

The systematic uncertainties can be divided into uncertainties common to all the measurements, and uncertainties specific to a decay channel. Table 1 summarizes the systematic uncertainties for the sources considered below and the total systematic uncertainty in the B^+_c, B^0, and Λ^0_b lifetime measurements. The systematic uncertainties in $\Delta \Gamma$ and the B^+_c meson lifetime are collected in Table 2. Using the known lifetime of the B^+ meson, the uncertainties in $\Delta \Gamma$ are converted into uncertainties in the B^+_c meson lifetime measurement. The uncertainty in the B^+_c meson lifetime due to the uncertainty in the B^+ meson lifetime [5] is quoted separately.

We have verified that the results are stable against changes in the selection requirements on the quality of the tracks and vertices, the kinematic variables, and ct, as well as in detector
Table 1 Summary of the sources and values of systematic uncertainties in the lifetime measurements (in \(\mu m\)). The total systematic uncertainty is the sum in quadrature of the individual uncertainties.

Source	\(B^0 \to \psi K^* (892)^0\)	\(B^0 \to \psi K^0_S\)	\(B^0 \to \psi K^+\pi^-\)	\(B^0 \to \psi \phi\)	\(A^0 \to \psi A^0\)
MC statistical uncertainty	1.1	2.4	2.0	0.6	2.3
Mass modelling	0.3	0.4	0.2	0.4	0.9
\(ct\) modelling	0.1	0.1	0.4	0.0	0.1
\(B^+\) contamination	–	–	1.4	–	–
Mass window of \(\pi^+\pi^-\)	–	–	1.8	–	–
\(K^\pm\pi^\mp\) mass assignment	0.3	–	–	0.1	–
\(ct\) range	–	–	–	0.4	–
S-wave contamination	–	–	–	–	–
Absolute \(ct\) accuracy	1.3	1.3	1.4	1.3	1.3
Total (\(\mu m\))	1.8	2.8	3.4	1.5	2.8

Table 2 Summary of the systematic uncertainties in the \(\Delta \Gamma\) and \(ct_{B^+}\) measurements.

Source	\(\Delta \Gamma\) (ps\(^{-1}\))	\(ct_{B^+}\) (\(\mu m\))
MC statistical uncertainty	0.01	1.2
Mass modelling	0.04	3.4
PV selection	0.02	2.0
Detector alignment	0.01	0.6
Total uncertainty	0.05	4.2

7.1 Common systematic uncertainties

1. Statistical uncertainty in the MC samples
 The number of events in the simulation directly affects the accuracy of the efficiency determination. In the case of the \(B^0\), \(B^0_s\), and \(A^0_b\) lifetime measurements, 1000 efficiency curves are generated with variations of the parameter values. The parameter values are sampled using a multivariate Gaussian PDF that is constructed from the covariance matrix of the efficiency fit. The analysis is performed 1000 times, varying the parameters of the efficiency function. The distribution of the measured lifetimes is fitted with a Gaussian function, whose width is taken as the systematic uncertainty associated with the finite size of the simulated samples. In the measurement of the \(B^+_c\) lifetime, the bin-by-bin statistical uncertainty in the efficiency determination is propagated to the \(R(ct)\) distribution, the fit is performed, and the difference in quadrature of the uncertainty in \(\Delta \Gamma\) with respect to the nominal value is taken as the systematic uncertainty.

2. Modelling of the mass distribution shape
 Biases related to the modelling of the shapes of the \(b\) hadron mass signal and background PDFs are quantified by changing the signal and background PDFs individually and using the new models to fit the data. For the \(B^0\), \(B^0_s\), and \(A^0_b\) lifetime measurements, the background model is changed to a higher-degree polynomial, a Chebyshev polynomial, or an exponential function, and the signal model is changed from two Gaussian functions to a single Gaussian function or a sum of three Gaussian functions. Differences in the measured lifetime between the results of the nominal and alternative models are used to estimate the systematic uncertainty, with the variations due to the modelling of signal and background components evaluated separately and added in quadrature. For the \(B^+_c\) lifetime measurement, the signal peak is alternatively modelled with a Crystal Ball distribution [28]. The alternative description for the background is a first-order Chebyshev distribution. The removal of the Cabibbo-suppressed \(B^+_c \to \psi K^+\) contribution is also considered. The maximum deviation of the signal yield in each \(ct\) bin from the nominal value is propagated to the statistical uncertainty in the per-bin yield. The fit to \(R(ct)\) is performed and the difference in quadrature between the uncertainty from this fit and the nominal measurement is taken as the systematic uncertainty.

7.2 Channel-specific systematic uncertainties

1. Modelling of the background \(ct\) shape in the \(B^0\), \(B^0_s\), and \(A^0_b\) channels
 To estimate a systematic uncertainty due to the \(ct\) background model, we add an additional background contribution modelled with its own lifetime, and compare the result to that obtained with the nominal fit model. The
difference between the results of the nominal and alternative fit models is used as the systematic uncertainty from the $c\tau$ shape modelling.

2. The B^+ contamination in the $B^+_s \rightarrow J/\psi \pi^+ \pi^- \pi^-$ sample

In the nominal fit, the yield and lifetime of the $B^+ \rightarrow J/\psi K^+$ contamination are determined from the fit with the mass shape obtained from simulation. An alternative estimate of the $J/\psi K^+$ contamination is obtained from data by taking the leading pion of the $B^0 \rightarrow J/\psi \pi^+ \pi^-$ decay to be the kaon. The lifetime and yield of the $B^+ \rightarrow J/\psi K^+$ contaminating the $B^+_s \rightarrow J/\psi \pi^+ \pi^- \pi^-$ sample are determined from a fit of the B^+ signal candidates in the $B^0_s \rightarrow J/\psi \pi^+ \pi^-$ sample, with the mass shape also obtained from the data. The difference between the B^+_s lifetime found with this model and the nominal model is considered as the systematic uncertainty due to B^+ contamination.

3. Invariant mass window of the $\pi^+ \pi^-$ in the $B^0_s \rightarrow J/\psi \pi^+ \pi^- \pi^-$ channel

Although the events selected by the $\pi^+ \pi^-$ mass window are dominated by the $f_0(980)$, its width is not well known and possible backgrounds under the $f_0(980)$ peak could be increased or decreased, depending on the mass window. The effect on the lifetime is studied by using mass windows of ±30 and ±80 MeV around the signal peak, compared to the nominal fit result with a ±50 MeV window. The maximum variation of the lifetime is taken as the systematic uncertainty.

4. The $K^+ \pi^- \pi^-$ mass assignments for $K^*(892)^0$ candidates in the $B^0 \rightarrow J/\psi K^*(892)^0$ channel

The $K^*(892)^0$ candidates are constructed from a pair of tracks with kaon and pion mass assignments. The combination with invariant mass closest to the world-average $K^*(892)^0$ mass is chosen to reconstruct the B^0 candidate. To estimate the effect on the lifetime due to a possible misassignment of kaon and pion, both combinations are discarded if both are within the natural width of the $K^*(892)^0$ mass, and the difference between the lifetime obtained with this sample and the nominal sample is taken as the systematic uncertainty.

5. The $c\tau$ range in the $B^+_s \rightarrow J/\psi \phi(1020)$ channel

Since the $c\tau > 0.02$ cm requirement distorts the fractions of heavy and light mass eigenstates, the measured B^0 effective lifetime must be corrected. The correction and systematic uncertainty are quantified analytically. The correction to the effective lifetime is

$$
\delta c\tau = c\tau_{\text{cut}} - c\tau_{\text{eff}} =
\frac{(1 - |A|^2)(c\tau_H)^2 e^{-a/c\tau_H} + |A|^2(c\tau_L)^2 e^{-a/c\tau_L}}{(1 - |A|^2)c\tau_L e^{-a/c\tau_L} + |A|^2 c\tau_H e^{-a/c\tau_H}}
- \frac{(1 - |A|^2)(c\tau_L)^2 + |A|^2(c\tau_H)^2}{(1 - |A|^2)c\tau_L + |A|^2 c\tau_H},
$$

where the first term represents the effective lifetime in the presence of a $c\tau > a$ requirement and the latter term is the unbiased effective lifetime. In this analysis, a is equal to 0.02 cm. The world-average values [2] for $c\tau_H = 482.7 \pm 3.6 \mu$m, $c\tau_L = 426.3 \pm 2.4 \mu$m, and $|A|^2 = 0.250 \pm 0.006$ are used to obtain the correction $\delta c\tau = 0.62 \pm 0.10 \mu$m.

6. The S-wave contamination in the $B^0_s \rightarrow J/\psi \phi(1020)$ channel

The B^0_s candidates reconstructed in the $J/\psi \phi(1020)$ final state contain a small fraction of nonresonant and CP-odd $B^0_s \rightarrow J/\psi K^+ K^-$ decays, where the invariant mass of the two kaons happens to be near the ϕ meson mass. The fraction of $B^0_s \rightarrow J/\psi K^+ K^-$ decays among the selected events is measured in the weak mixing phase analysis [9] to be $f_S = (1.21^{+0.09}_{-0.07})\%$. Because of the different trigger and signal selection criteria of the present analysis, the S-wave fraction is corrected according to the simulation to be $(1.5^{+1.1}_{-0.9})\%$. The bias caused by the contamination of nonresonant $B^0_s \rightarrow J/\psi K^+ K^-$ decays is estimated by generating two sets of pseudo-experiments, one with just $B^0_s \rightarrow J/\psi \phi(1020)$ events and one with a fraction of S-wave events based on the measured S-wave fraction and its uncertainty. The difference in the average of the measured lifetimes of these two samples is 0.74μm, which is used to correct the measured lifetime. The systematic uncertainty associated with this correction is obtained by taking the difference in quadrature between the standard deviation of the distribution of lifetime results from the pseudo-experiments with and without the S-wave contribution.

7. PV selection in the $B^+_c \rightarrow J/\psi \pi^+$ channel

From the multiple reconstructed PVs in an event, one is selected to compute the $c\tau$ value of the candidate. Two alternative methods to select the PV position are studied: using the centre of the beamspot and selecting the PV with the largest sum of track p_T. While all three methods are found to be effective and unbiased, there were small differences, and the maximum deviation with respect to the nominal choice is taken as the systematic uncertainty. The B^+ and B^+_c primary vertex choices were changed coherently.

8. Detector alignment in the $B^+_c \rightarrow J/\psi \pi^+$ channel

Possible effects on the lifetime due to uncertainties in the detector alignment [29] are investigated for each decay topology using 20 different simulated samples with distorted geometries. These distortions include expansions in the radial and longitudinal dimensions, rotations, twists, offsets, etc. The amount of misalignment is chosen such that it is large enough to be detected and corrected by the alignment procedure. The standard deviation of the lifetimes for the tested scenarios is taken as the sys-
9. Absolute ct accuracy in the B_0^0, B_s^0, and Λ_b^0 lifetime measurements

The lifetime of the most statistically precise mode ($B^+ \rightarrow J/\psi K^+$) is used to validate the accuracy of the simulation and various detector calibrations. The difference between our measurement of $490.9 \pm 0.8 \mu m$ (statistical uncertainty only) and the world-average value of $491.1 \pm 1.2 \mu m$ [5] is $0.2 \pm 1.4 \mu m$. This implies a limit to the validation of $1.4/491 = 0.3\%$. Four systematic effects that we expect to be included were checked independently. The systematic uncertainties from PV selection and detector alignment were found to be $0.7 \mu m$ and $0.3–0.7 \mu m$, respectively. Varying the efficiency functional form changed the lifetimes by $0.3–0.6 \mu m$, while varying σ_{bc} by factors of 0.5 and 2.0 resulted in lifetime differences of no more than $0.2 \mu m$. As the sum in quadrature of these uncertainties is less than that obtained from the B^+ lifetime comparison, we assign a value of 0.3% as the systematic uncertainty for the absolute ct accuracy.

8 Lifetime measurement results

Our final results for the B^0, B_s^0, and Λ_b^0 hadron lifetimes are:

\begin{align*}
c t_{B^0 \rightarrow J/\psi K^+} & = 453.0 \pm 1.6 \ (stat) \pm 1.8 \ (syst) \ \mu m, \quad (12) \\
c t_{B^0 \rightarrow J/\psi K^0_s} & = 457.8 \pm 2.7 \ (stat) \pm 2.8 \ (syst) \ \mu m, \quad (13) \\
c t_{B^0_s \rightarrow J/\psi \pi^+ \pi^-} & = 502.7 \pm 10.2 \ (stat) \pm 3.4 \ (syst) \ \mu m, \quad (14) \\
c t_{B^0_s \rightarrow J/\psi f(1020)} & = 443.9 \pm 2.0 \ (stat) \pm 1.5 \ (syst) \ \mu m, \quad (15) \\
c t_{\Lambda_b^0} & = 442.9 \pm 8.2 \ (stat) \pm 2.8 \ (syst) \ \mu m. \quad (16)
\end{align*}

The value of the B^0_s lifetime using the $J/\psi f(1020)$ decay has been corrected for the ct range and S-wave contamination effects described in Sect. 7. The lifetime ratios $\tau_{B^0_s}/\tau_{B^0}$ and $\tau_{\Lambda_b^0}/\tau_{B^0}$ have been determined using the decay channels $B^0 \rightarrow J/\psi K^+ (892)^0$, $B_s^0 \rightarrow J/\psi (1020)$, and $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$. Including the statistical and correlated and uncorrelated systematic uncertainties, the results are:

\begin{align*}
\frac{\tau_{B^0_s}}{\tau_{B^0}} & = 0.978 \pm 0.018 \ (stat) \pm 0.006 \ (syst), \quad (17) \\
\frac{\tau_{\Lambda_b^0}}{\tau_{B^0}} & = 0.978 \pm 0.018 \ (stat) \pm 0.006 \ (syst). \quad (18)
\end{align*}

These ratios are compatible with the current world-average values.

The measured lifetimes for the B^0 meson in the two different channels are in agreement. Combining the two results, including the statistical and the correlated and uncorrelated systematic uncertainties, gives $ct_{B^0} = 454.1 \pm 1.4 \ (stat) \pm 1.7 \ (syst) \ \mu m$. The lifetime measurements can also be used to estimate Γ_d and $\Delta \Gamma_d$ [6]. In the standard model, the effective lifetimes of the two B^0 decay modes can be written as:

\begin{align*}
\tau_{B^0 \rightarrow J/\psi K^+ (892)^0} & = \frac{1}{\Gamma_d} \left(\frac{1}{1 - \frac{1}{2} y_d^2} \right) \left(\frac{\Gamma_1 + 2 \cos (2 \beta) \Gamma_d + \frac{1}{2} \Gamma_2}{1 + \cos (2 \beta) \Gamma_d} \right), \quad (19) \\
\tau_{B^0_s \rightarrow J/\psi K^0_s} & = \frac{1}{\Gamma_d} \left(\frac{1 + \frac{1}{2} y_d^2}{1 - \frac{1}{2} y_d^2} \right), \quad (20)
\end{align*}

where $y_d = \Delta \Gamma_d / 2 \Gamma_d$, and $\beta = (21.9 \pm 0.7)^\circ$ [5] is one of the CKM unitarity triangle angles. Using our measured values for the two B^0 lifetimes, we fit for Γ_d and $\Delta \Gamma_d$ and use the values to determine $\Delta \Gamma_d / \Gamma_d$. The results are:

\begin{align*}
\Gamma_d & = 0.662 \pm 0.003 \ (stat) \pm 0.003 \ (syst) \ \text{ps}^{-1}, \quad (21) \\
\Delta \Gamma_d & = 0.023 \pm 0.015 \ (stat) \pm 0.016 \ (syst) \ \text{ps}^{-1}, \quad (22) \\
\Delta \Gamma_d / \Gamma_d & = 0.034 \pm 0.023 \ (stat) \pm 0.024. \quad (23)
\end{align*}

Neglecting CP violation in mixing, the measured $B^0_s \rightarrow J/\psi \pi^+ \pi^-$ lifetime can be translated into the width of the heavy B^0_s mass eigenstate:

$$\Gamma_H = 1 / \tau_{B^0_s} = 0.596 \pm 0.012 \ (stat) \pm 0.004 \ (syst) \ \text{ps}^{-1}. \quad (24)$$

Solving for $c t_L$ from Eq. (4) gives

$$c t_L = \frac{1}{2} c t_{\text{eff}} + \frac{1}{4} (c t_{\text{eff}})^2 - \frac{|A_{\perp}|^2}{1 - |A_{\perp}|^2} c t_H (c t_{\text{eff}} - c t_{\text{eff}}). \quad (25)$$

Using the $B^0_s \rightarrow J/\psi \pi^+ \pi^-$ result in Eq. (14), the measured B^0_s effective lifetime in Eq. (15), and the world-average value of the magnitude squared of the CP-odd amplitude $|A_{\perp}|^2 = 0.250 \pm 0.006$ [2], the lifetime of the light component is found to be $c t_L = 420.4 \pm 6.2 \ \mu m$. The uncertainty includes all statistical and systematic uncertainties, taking into account the correlated uncertainties. The result is consistent with the world-average value of $423.6 \pm 1.8 \ \mu m$ [5].

Our measured lifetimes for B^0, $B^0_s \rightarrow J/\psi f(1020)$, and Λ_b^0 are compatible with the current world-average values [5] of 455.7 ± 1.2, 443.4 ± 3.6, and $440.7 \pm 3.0 \ \mu m$, respectively. In addition, our measurement of the B^0_s lifetime in the $B^0_s \rightarrow J/\psi \pi^+ \pi^-$ channel is in agreement with the results from CDF, LHCB, and D0: $510^{+36}_{-33} \ (stat) \pm 9 \ (syst) \ \mu m$ [30], $495.3 \pm 7.2 \ (stat) \pm 7.2 \ (syst) \ \mu m$ [31], and $508 \pm 42 \ (stat) \pm 16 \ (syst) \ \mu m$ [32], respectively.
Our final result for the B_c^+ lifetime using the $J/\psi \pi^+$ mode is:

$$c\tau_{B_c^+} = 162.3 \pm 7.8 \text{ (stat)} \pm 4.2 \text{ (syst)} \pm 0.1 \text{ (lumi)} \text{ \mu m},$$

where the systematic uncertainty from the B^+ lifetime uncertainty [5] is quoted separately in the result. This measurement is in agreement with the world-average value ($152.0 \pm 2.7 \text{ \mu m}$) [5]. Precise measurements of the B_c^+ lifetime allow tests of various theoretical models, which predict values ranging from 90 to 210 \mu m [33–36]. Furthermore, they provide new constraints on possible physics beyond the standard model from the observed anomalies in $B \rightarrow D^{(*)} \tau \nu$ decays [37].

9 Summary

The lifetimes of the B^0, B^{0_s}, A^0_s, and B^+_c hadrons have been measured using fully reconstructed decays with a J/ψ meson. The data were collected by the CMS detector in proton–proton collision events at a centre-of-mass energy of 8 TeV, and correspond to an integrated luminosity of 19.7 fb$^{-1}$. The B^0 and B^{0_s} meson lifetimes have each been measured in two channels: $J/\psi K^*(892)^0$, $J/\psi K^0_s$ for B^0 and $J/\psi \pi^+ \pi^-$, $J/\psi \phi(1020)$ for B^{0_s}. The precision from each channel is as good as or better than previous measurements in the respective channel. The B^0 lifetime results are used to obtain an average lifetime and to measure the decay width difference between the two mass eigenstates. The B^{0_s} lifetime results are used to obtain the lifetimes of the heavy and light B^0_s mass eigenstates. The precision of the A^0_s lifetime measurement is also as good as any previous measurement in the $J/\psi \Lambda^0$ channel. The measured B^+_c lifetime measurement is in agreement with the results from LHCb and significantly more precise than the CDF and D0 measurements. All measured lifetimes are compatible with the current world-average values.

Acknowledgements We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RMS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract no. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds voor Wetenschappelijk Onderzoek (FWO) of Belgium; the Foundation for Science and Technology, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. A. Lenz, Lifetimes and heavy quark expansion. Int. J. Mod. Phys. A 30, 1543005 (2015). https://doi.org/10.1142/S0217751X15430058.
2. Particle Data Group, C. Patrignani et al., Review of particle physics. Chin. Phys. C 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001.
3. CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004.
4. R. Fleischer, R. Kneigrans, Effective lifetimes of B_c decays and their constraints on the $B_c^0 - B_c^-$ mixing parameters. Eur. Phys. J. C 71, 1789 (2011). https://doi.org/10.1140/epjc/s10052-011-1789-9, arXiv:1109.5115.
5. Heavy Flavor Averaging Group, Y. Amhis et al., Averages of B hadron, c-hadron, and t-lepton properties as of summer 2016. Eur. Phys. J. C 77, 895 (2017). https://doi.org/10.1140/epjc/s10052-017-5058-4, arXiv:1612.07233.
6. T. Gershon, δy_d: a forgotten null test of the standard model. J. Phys. G 38 (2011). https://doi.org/10.1088/0954-3899/38/1/015007, arXiv:1007.5135.
7. LHCb Collaboration, Analysis of the resonant components in $B_{c, s} \rightarrow J/\psi \pi^+ \pi^-$. Phys. Rev. D 86, 052006 (2012). https://doi.org/10.1103/PhysRevD.86.052006, arXiv:1301.5347.
8. LHCb Collaboration, Measurement of resonant and CP components in $B^{0}_s \rightarrow J/\psi \pi^+\pi^-$. Phys. Rev. D 89, 092006 (2014). https://doi.org/10.1103/PhysRevD.89.092006, arXiv:1402.6248

9. CMS Collaboration, Measurement of the CP-violating weak phase ϕ_s and the decay width difference $\Delta \Gamma_s$ using the $B^{0}_s \rightarrow J/\psi(1020)$ decay channel in pp collisions at $\sqrt{s} = 8$ TeV. Phys. Lett. B 757, 97 (2016). https://doi.org/10.1016/j.physletb.2016.03.046, arXiv:1507.05727

10. V.V. Kiselev, Exclusive decays and lifetime of B_c meson in QCD sum rules (2002), arXiv:hep-ph/0211021

11. LHCb Collaboration, “Measurement of the B_c^+ meson lifetime using $B_c^+ \rightarrow J/\psi\mu^+\mu$ decays”, Eur. Phys. J. C 74, 2839, (2014) https://doi.org/10.1140/epjc/s10052-014-2839-x, arXiv:1401.6932

12. LHCb Collaboration, Measurement of the lifetime of the B_c^+ meson using the $B_c^+ \rightarrow J/\psi\pi^+$ decay mode. Phys. Lett. B 742, 29 (2015), https://doi.org/10.1016/j.physletb.2015.01.010, arXiv:1411.6899

13. CDF Collaboration, Observation of the B_c meson in pp collisions at $\sqrt{s} = 1.8$ TeV. Phys. Rev. Lett. 81, 2432 (1998). https://doi.org/10.1103/PhysRevLett.81.2432, arXiv:hep-ex/9805034

14. CDF Collaboration, Measurement of the B_c^+ meson lifetime using the decay mode $B_c^+ \rightarrow J/\psi\pi^+$ decay mode. Phys. Rev. Lett. 97, 012002 (2006), https://doi.org/10.1103/PhysRevLett.97.012002, arXiv:hep-ex/0603027

15. D0 Collaboration, Measurement of the lifetime of the B^{+}_c meson in the semileptonic decay channel. Phys. Rev. Lett. 102, 092001 (2009), https://doi.org/10.1103/PhysRevLett.102.092001, arXiv:0805.2614

16. C.D.F. Collaboration, Measurement of the B^{+}_c meson lifetime in the decay $B^{+}_c \rightarrow J/\psi\pi^+$. Phys. Rev. D 87, 011101 (2013), https://doi.org/10.1103/PhysRevD.87.011101. arXiv:1210.2366

17. CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014), https://doi.org/10.1088/1748-0221/9/10/P10009, arXiv:1405.6569

18. CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017), https://doi.org/10.1088/1748-0221/12/01/P01020, arXiv:1609.02366

19. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006), https://doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175

20. C. Chang, C. Drijouci, P. Eerola, X. Wu, BCVEGPY: an event generator for hadronic production of the B_s meson. Comput. Phys. Commun. 159, 192 (2004), https://doi.org/10.1016/j.cpc.2004.02.005, arXiv:hep-ph/0309120

21. C. Chang, J. Wang, X. Wu, BCVEGPY2.0: an upgraded version of the generator BCVEGPY with the addition of hadroproduction of the P-wave B_s states. Comput. Phys. Commun. 174, 241 (2006), https://doi.org/10.1016/j.cpc.2005.09.008, arXiv:hep-ph/0504017

22. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152 (2001). https://doi.org/10.1016/S0168-9002(01)00089-4

23. P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays. Eur. Phys. J. C 45, 97 (2006). https://doi.org/10.1103/epjc/s2005-02396-4, arXiv:hep-ph/0506026

24. GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

25. CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV. JINST 7, P10002 (2012), https://doi.org/10.1088/1748-0221/7/10/P10002, arXiv:1206.4071

26. A.S. Dighe, I. Dunietz, R. Fleischer, Extracting CKM phases and $B_s - \bar{B}_s$ mixing parameters from angular distributions of non-leptonic B decays. Eur. Phys. J. C 6, 647 (1999), https://doi.org/10.1007/s100529900954. arXiv:hep-ph/9804253

27. LHCb Collaboration, First observation of the decay $B^+ \rightarrow J/\psi K^+$. JHEP 09, 075 (2013). https://doi.org/10.1007/JHEP09(2013)075, arXiv:1306.6723

28. M.J. Oreglia, A study of the reactions $\gamma \gamma \rightarrow J/\psi K^+$, Ph.D. Thesis, Stanford University (1980). SLAC Report SLAC-R-236, see Appendix D

29. CMS Collaboration, Alignment of the CMS tracker with LHC and cosmic ray data. JINST 9, P06009 (2014), https://doi.org/10.1088/1748-0221/9/06/P06009, arXiv:1403.2286

30. CDF Collaboration, Measurement of branching ratio and B^{0}_s lifetime in the decay $B^{0}_s \rightarrow J/\psi f_0(980)$ at CDF. Phys. Rev. D 84, 052012 (2011), https://doi.org/10.1103/PhysRevD.84.052012, arXiv:1106.3682

31. LHCb Collaboration, Measurement of CP violation and the B^{0}_s meson decay width difference with $B^{0}_s \rightarrow J/\psi K^+ K^-$ and $B^{0}_s \rightarrow J/\psi \pi^+ \pi^-$ decays. Phys. Rev. D 87, 112010 (2013), https://doi.org/10.1103/PhysRevD.87.112010, arXiv:1304.2600

32. D0 Collaboration, B^{0}_s lifetime measurement in the CP-odd decay channel $B^{0}_s \rightarrow J/\psi f_0(980)$. Phys. Rev. D 94, 012001 (2016), https://doi.org/10.1103/PhysRevD.94.012001, arXiv:1603.01302

33. C.-H. Chang, S.-L. Chen, T.-F. Feng, X.-Q. Li, Lifetime of the B_s meson and some relevant problems. Phys. Rev. D 64, 014003 (2001). https://doi.org/10.1103/PhysRevD.64.014003, arXiv:hep-ph/0007162

34. M. Beneke, G. Buchalla, B_s meson lifetime. Phys. Rev. D 53, 4991 (1996). https://doi.org/10.1103/PhysRevD.53.4991, arXiv:hep-ph/9601249

35. AYu. Anisimov, I.M. Narodetskii, C. Semay, B. Silvestre-Brac, The B_c meson lifetime in the light-front constituent quark model. Phys. Lett. B 452, 129 (1999), https://doi.org/10.1016/S0370-2693(99)00273-7, arXiv:hep-ph/9812514

36. V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, “Decays and lifetime of B_c in QCD sum rules”, in 5th International Workshop on Heavy Quark Physics, Dubna, Russia, April 6-8, (2000), arXiv:hep-ph/0006104

37. R. Alonso, B. Grinstein, J. Martin Camalich, Lifetime of B^+_c constrains explanations for anomalies in $B \rightarrow D^{(*)}\tau\nu$. Phys. Rev. Lett. 118, 081802 (2017). https://doi.org/10.1103/PhysRevLett.118.081802, arXiv:1611.06676
University of Ioánnina, Ioannina, Greece
I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F. A. Triantis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor, O. Surániyi, G. I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horváth, Á. Hunyadi, F. Sikler, V. Veszpremi, A. J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnár, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z. L. Trocsányi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J. R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati, S. Bhownik, P. Mal, K. Mandal, A. Nayak, D. K. Sahoo, N. Sahoo, S. K. Swain

Panjab University, Chandigarh, India
S. Bansal, S. B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A. K. Kalsi, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, A. Mehta, J. B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B. C. Choudhary, R. B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P. K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A. K. Mohanty, P. K. Netrakanti, L. M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G. B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity, G. Majumder, K. Mazumdar, T. Sarkar, N. Wickramage

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S. M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Nasiri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, F. Errico, L. Fiore, G. Isacelli, S. Lezzi, G. Maggi, M. Maggi, G. Miniello, S. Miyoshi, S. Nuzzo, A. Pompli, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen
Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J. R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J. M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I. J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A. H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban18, J. Kieseler, V. Knünz, A. Kornmayer, M. J. Kortelainen, C. Lange, P. Lecoq, C. Lorenzen, M. T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J. A. Merlin, S. Mersi, E. Meschi, P. Milenovic44, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfieffer, M. Pierini, D. Rabady, A. Racz, T. Reis, G. Rolandi45, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Spichas46, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns47, M. Verweij, W. D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl†, L. Caminada48, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S. A. Wiederkehr

ETH Zurich-Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, L. Bäni, P. Berger, L. Bianchini, B. Casal, M. Dittmar, M. Donegà, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M. T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nesi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Reichmann, D. A. Sanz Becerra, M. Schönenberger, L. Shchutska, V. R. Tavolaro, K. Theofilatos, M. L. Vesterbacka Olsson, R. Wallny, D. H. Zhu

Universität Zürich, Zurich, Switzerland
T. K. Aarrestad, C. Amsler49, M. F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan
V. Candelise, T. H. Doan, Sh. Jain, R. Khurana, C. M. Kuo, W. Lin, A. Pozdnyakov, S. S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K. F. Chen, P. H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y. F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J. F. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kavitanggoon, G. Singh, N. Srivanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Cerci50, S. Damaseckin, Z. S. Demiroglu, C. Dozen, I. Dumanoglu, S. Gokbulut, Y. Guler, I. Hos51, E. E. Kangal52, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut53, K. Ozdemir54, D. Sunar Cerci50, B. Tali50, S. Turkcapar, I. S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar55, K. Ocalan56, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya57, E. Kaya58, S. Tekten, E. A. Yetkin59

Istanbul Technical University, Istanbul, Turkey
M. N. Agaras, S. Atay, A. Cakir, K. Cankocak

Springer
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, UK
F. Ball, L. Beck, J. J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G. P. Heath, H. F. Heath, J. Jacob, L. Kreczko, D. M. Newbold, S. Paramesvaran, T. Sakuma, S. Seif ElNasr-storey, D. Smith, V. J. Smith

Rutherford Appleton Laboratory, Didcot, UK
K. W. Bell, A. Belyaev, C. Brew, R. M. Brown, L. Calligaris, D. Cieri, D. J. A. Cockerill, J. A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C. H. Shepherd-Themistocleous, A. Thea, I. R. Tomalin, T. Williams

Imperial College, London, UK
G. Auzinger, R. Bainbridge, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko, V. Palladino, M. Pesaresi, D. M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shipiliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, N. Wardle, D. Winterbottom, J. Wright, S. C. Zenz

Brunel University, Uxbridge, UK
J. E. Cole, P. R. Hobson, A. Khan, P. Kyberd, I. D. Reid, P. Symonds, L. Teodorescu, M. Turner, S. Zahid

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S. I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, M. Hadley, J. Hakala, U. Heintz, J. M. Hogan, K. H. M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P. T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J. W. Gary, S. M. A. Ghiasi Shirazi, G. Hanson, J. Heilman, E. Kennedy, F. Lacroix, O. R. Long, M. Olmedo Negrete, M. I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J. G. Branson, S. Cittolin, M. Derdzinski, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, J. Wood, F. Wührthein, A. Yagil, G. Zevi Della Porta
Purdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, Z. Chen, K. M. Ecklund, S. Freed, F. J. M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, M. Northup, B. P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y. T. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K. H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J. P. Chou, Y. Gershtein, T. A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
A. G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A & M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Permié, D. Rathjens, A. Safonov, A. Tatarinov, K. A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P. R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamicchane, S. W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M. W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P. E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin-Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G. Polese, T. Ruggles, A. Savin, N. Smith, W. H. Smith, D. Taylor, N. Woods

† Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
5: Also at Université Libre de Bruxelles, Brussels, Belgium
6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7: Also at Joint Institute for Nuclear Research, Dubna, Russia
8: Also at Suez University, Suez, Egypt
9: Now at British University in Egypt, Cairo, Egypt
10: Now at Helwan University, Cairo, Egypt
11: Also at Université de Haute Alsace, Mulhouse, France
12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
13: Also at Tbilisi State University, Tbilisi, Georgia
14: Also at Ilia State University, Tbilisi, Georgia
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at University of Visva-Bharati, Santiniketan, India
25: Also at University of Ruhuna, Matara, Sri Lanka
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at Yazd University, Yazd, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTL, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at California Institute of Technology, Pasadena, USA
42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
45: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Universität Zürich, Zurich, Switzerland
49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
50: Also at Adiyaman University, Adiyaman, Turkey
51: Also at Istanbul Aydin University, Istanbul, Turkey
52: Also at Mersin University, Mersin, Turkey
53: Also at Cag University, Mersin, Turkey
54: Also at Piri Reis University, Istanbul, Turkey
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Necmettin Erbakan University, Konya, Turkey
57: Also at Marmara University, Istanbul, Turkey
58: Also at Kafkas University, Kars, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Rutherford Appleton Laboratory, Didcot, UK
61: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
62: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
63: Also at Utah Valley University, Orem, USA
64: Also at Beykent University, Istanbul, Turkey
65: Also at Bingol University, Bingöl, Turkey
66: Also at Erzincan University, Erzincan, Turkey
67: Also at Sinop University, Sinop, Turkey
68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
69: Also at Texas A&M University at Qatar, Doha, Qatar
70: Also at Kyungpook National University, Daegu, Korea