Strong openness conjecture and $L^2$ extension problem in several complex variables

关启安

Citation: 科学通报 65, 2979 (2020); doi: 10.1360/TB-2020-1055

View online: https://engine.scichina.com/doi/10.1360/TB-2020-1055

View Table of Contents: https://engine.scichina.com/publisher/scp/journal/CSB/65/27

Published by the 《中国科学》杂志社

Articles you may be interested in

Optimal constant in an $L^2$ extension problem and a proof of a conjecture of Ohsawa
SCIENCE CHINA Mathematics 58, 35 (2015);

FRACTIONAL INTEGRATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES IN $L^p$ SPACE
Chinese Science Bulletin 24, 817 (1979);

Strong openness of multiplier ideal sheaves and optimal $L^2$ extension
SCIENCE CHINA Mathematics 60, 967 (2017);

Invariant holomorphic extension in several complex variables
Science in China Series A-Mathematics 49, 1593 (2006);

A proof of a weak version of the Bieberbach conjecture in several complex variables
SCIENCE CHINA Mathematics 58, 2531 (2015);
陈嘉庚青年科学奖——数理科学奖获奖人

关启安

北京大学数学科学学院教授。2011年毕业于中国科学院数学与系统科学研究院，获博士学位。从事多复变函数论的研究。作为国内自主培养的青年学者，他与合作者的一系列研究工作给多复分析这一研究领域带来了全新认识，取得了系列令人瞩目的重要成就。

相关成果名称：多复变中的强开性猜想和相关问题的解决

关启安与周向宇院士合作发展$L^2$方法解决了具最优估计的$L^2$延拓问题，建立了具最优估计的$L^2$延拓定理，以及发现其与许多不同问题的联系并予以解决，打破了以往仅与一个问题有联系的局限；解决了法国科学院院士Demailly提出的、“被认为是相当不可及的”关于乘子理想层的强开性猜想，这是多复变与复几何发展的一个瓶颈问题，不少数学家在假定该猜想成立下得到一些重要结果；解决了Demailly与美国科学院院士Kollár提出的一个猜想及Jonsson-Mustaţă猜想等问题。
Strong openness conjecture and $L^2$ extension problem in several complex variables

Qi’an Guan

School of Mathematical Sciences, Peking University, Beijing 100871, China
E-mail: guanqian@math.pku.edu.cn
doi: 10.1360/TB-2020-1055

乘子理想层是多次和函数奇点的不变量，在多复变和复几何中扮演了重要角色。关启安和周向宇院士合作证明了Demainly提出的关于乘子理想层的强开性猜想，被美国数学评论(Mathematical Reviews)称为“近年来复分析和代数几何交叉领域最重大的成就之一”。作为应用，关启安和周向宇院士合作证明了Demainly-Ein-Lazarsfeld, Boucksom-Favre-Jonsson, Demailly-Kollár和Jonsson-Mustață等提出的多个猜想。

$L^2$解析延拓问题是多复变中一个重要前沿问题。非最优估计的$L^2$解析延拓问题被Ohsawa与Takegoshi合作解决，之后Berndtsson, Demailly, Ohsawa, Siu等都在该问题的研究与应用中做出重要的工作。关启安和周向宇院士合作得到了统一的带最优估计的$L^2$解析延拓定理，作为应用完整解决了1972年提出的Suita猜想，特别是该猜想中的不等式等号成立的充要条件的猜想，以及几个开黎曼面上的相关问题。

1 强开性猜想的解决

令$\varphi$是$n$维流形$X$上的一个多次和函数$\varphi$，定义乘子理想层$\mathcal{I}(\varphi)$：满足$|f|^2e^{-\varphi}$为局部可积的全纯函数$f$构成的层，$\varphi$称为权$\varphi$为凝聚解析层(coherent sheaves)。对于一般乘子理想层，研究的困难在于一般的具奇点的多次和函数(权)很复杂。定义$\mathcal{I}(\varphi):=U_{e^{\varphi}}$，易知$\mathcal{I}(\varphi)$包含$\mathcal{I}(\varphi)\cap U_{e^\varphi}$，由于$\mathcal{I}(\varphi)$的凝聚解析性，可在某些集上存在$\varepsilon>0$，使得$\mathcal{I}(\varphi)=\mathcal{I}(1+\varepsilon \varphi)$，故$\mathcal{I}(\varphi)$也是乘子理想层。

Demailly提出的关于乘子理想层的强开性猜想，被美国数学评论(Mathematical Reviews)称为“近年来复分析和代数几何交叉领域最重大的成就之一”。作为应用，关启安和周向宇院士合作证明了Demailly-Ein-Lazarsfeld, Boucksom-Favre-Jonsson, Demailly-Kollár和Jonsson-Mustață等提出的多个猜想，L^2解析延拓问题在多复变中一个重要前沿问题。非最优估计的$L^2$解析延拓问题被Ohsawa与Takegoshi合作解决，之后Berndtsson, Demailly, Ohsawa, Siu等都在该问题的研究与应用中做出重要的工作。关启安和周向宇院士合作得到了统一的带最优估计的$L^2$解析延拓定理，作为应用完整解决了1972年提出的Suita猜想，特别是该猜想中的不等式等号成立的充要条件的猜想，以及几个开黎曼面上的相关问题。回答了Ohsawa的若干公开问题，发现了关启安和周向宇院士的最优$L^2$延拓定理的几何意义及该定理蕴含Berndtsson关于相对Bergman核的对数多次调和性的重要定理。

1.1 强开性猜想的解决

令$\varphi$是$n$维流形$X$上的一个多次和函数$\varphi$，定义乘子理想层$\mathcal{I}(\varphi)$：满足$|f|^2e^{-\varphi}$为局部可积的全纯函数$f$构成的层，$\varphi$称为权$\varphi$为凝聚解析层(coherent sheaves)。对于一般乘子理想层，研究的困难在于一般的具奇点的多次和函数(权)很复杂。定义$\mathcal{I}(\varphi):=U_{e^{\varphi}}$，易知$\mathcal{I}(\varphi)$包含$\mathcal{I}(\varphi)\cap U_{e^\varphi}$，由于$\mathcal{I}(\varphi)$的凝聚解析性，可在某些集上存在$\varepsilon>0$，使得$\mathcal{I}(\varphi)=\mathcal{I}(1+\varepsilon \varphi)$，故$\mathcal{I}(\varphi)$也是乘子理想层。

Demailly提出的关于乘子理想层的强开性猜想，被美国数学评论(Mathematical Reviews)称为“近年来复分析和代数几何交叉领域最重大的成就之一”。作为应用，关启安和周向宇院士合作证明了Demailly-Ein-Lazarsfeld, Boucksom-Favre-Jonsson, Demailly-Kollár和Jonsson-Mustață等提出的多个猜想，L^2解析延拓问题在多复变中一个重要前沿问题。非最优估计的$L^2$解析延拓问题被Ohsawa与Takegoshi合作解决，之后Berndtsson, Demailly, Ohsawa, Siu等都在该问题的研究与应用中做出重要的工作。关启安和周向宇院士合作得到了统一的带最优估计的$L^2$解析延拓定理，作为应用完整解决了1972年提出的Suita猜想，特别是该猜想中的不等式等号成立的充要条件的猜想，以及几个开黎曼面上的相关问题。回答了Ohsawa的若干公开问题，发现了关启安和周向宇院士的最优$L^2$延拓定理的几何意义及该定理蕴含Berndtsson关于相对Bergman核的对数多次调和性的重要定理。
体积渐进性的猜想(参见文献[7,注4.4],也可参见文献[11,Conjecture B])。

注1.4 在文献[17]中,应用定理1.1和一些新的想法,解决了Jonsson-Mustaq(ICM邀请报告人)提出的关于
u-log|f|形式函数的奇点附近次水平集的体积渐进性的猜想(参见文献[11,Conjecture B]),其中u和f分别为多次调和函数和全纯函数。

1.2 强开性猜想的应用

应用定理1.1,关启安和周向宇院士合作解决了如下
Demajl-Ein(1996年ICM邀请报告人)-Lazarsfeld(1996年ICM邀请报告人)和Boucksom(1996年ICM邀请报告人)-Favre-Jonsson提出的两个猜想和其他一些相关未解决的问题。

猜想DEL 对于一个射影代数流形上的big线丛L,渐近乘子理想(asymptotic multiplier ideal)I(\|L\|)等于I(\|h_{max}\|),对任意正整数m成立[18,19]

上述猜想参见文献[18]中定理1.10之前的讨论。收录于文集Dedicated to William Fulton on the Occasion of His 60th Birthday，并且在文献[19]的第275页注11.1.11中再次将上述猜想列为未解决的问题。

推论1.5 猜想DEL成立[16]。

猜想BFJ 令u, v为n维复数维空腔C^n的原点o上两个多次调和函数。如下命题(1), (2)等价[20]:
(1) 对任意虚数的变形x, X_o > C^n和所有属于o点的原像的点,有u和关于
x的拉回在o点的Lelong数相同
(2) 对任意的t>0,有等式I(u(t))=I(v(t))成立

上述猜想参见文献[20]中定理A之后的讨论。收录于文集Dedicated to Heisuke Hironaka on the Occasion of His Seventy-seventh Birthday。

推论1.6 猜想BFJ成立[16]。

设(L,\varphi)为pseudo-effective的线丛,记nd(L,\varphi)为numerical dimension[21],利用定理1.1,建立了紧Kahler流
形X上的乘子理想层I(\varphi)的Nadel消灭定理的推广。

推论1.7 典例从K_X和L的张量积的乘子理想层I(\varphi)的
大于等于n-nd(L,\varphi)+1阶上同调群为0[16]。

若\varphi,可以局部表示为clog(|f_1|^2+...+|f_s|^2)+O(1),则称\varphi,为解析权,其中f_i(1\leq i \leq N)为全纯函数, c为非负实数。利
用定理1.1,建立了一般的I(\varphi)的解析权存在性。

推论1.8 局部存在一个解析权\varphi,使得等式I(\varphi)=I(\varphi,成立[16]。

公开评价1.1 美国数学通讯(MR3418526)指出: 强开性猜想“被认为是相当不可及的”(was thought to be rather inaccessible for n>2), 强开性猜想的证明即定理1.1是“近年来多复变与代数几何交叉领域中最重要的成就之一”。

应用定理1.1和一些新的想法,建立了线的LeLong数
(一个基本的全纯不变量)(22,23)是1的乘子理想层的结构。

定理1.9 若\varphi在o点的LeLong数等于1,则I(\varphi),为平凡
或由某个过o的正则超曲面的全纯定义函数在原点的函
数族生成[23]。

定理1.9完全解决了两个公开问题[26],维数n=2的情形
参见文献[13,27]。最近的后续工作参见Guan和Li[28]的工作。

公开评价1.2 定理1.9被美国数学通讯(MR3406538)
称为“an important theorem”,被Ohsawa[29]称为“a basic result on LeLong numbers”。

2 最优L^2延拓定理

著名的Ohsawa-Takegoshi L^2延拓定理的研究和应用参
见文献[5,10,30-39],带最优估计的L^2延拓定理的研究参见文献[40-45]等。

关启安和周向宇院士合作建立了一个宽泛的带最优估
计的L^2延拓定理,作为应用给出了文献[5,34-37,39,46-48]等中的L^2延拓定理的最优L^2估计及统一版本[49]。结合一些新思想,解决了Suita猜想[50]和相关问题,给出了Ohsawa[51]提出的一个公开问题的肯定回答,发现文献[49]中的最优L^2延拓定理蕴含Berndtsson的Bergman核的对数次调和性[52-54]。

公开评价1.2 Ohsawa[29]介绍了部分关启安和周向宇
院士合作的工作[41-49]“Q. Guan and X.-Y. Zhou proved
generalized variants and characterized those surfaces on
which the inequality is strict”之后,称“Their work gave the
author a decisive impetus to start writing a survey to cover
these remarkable achievements”。

公开评价1.2 关启安和周向宇院士的合作的发现(最优
L^2延拓定理蕴含Berndtsson的Bergman核的对数次调和性)
被Ohsawa[29]称为“Guan-Zhou Method”,并作为章节标题。

参考文献

1 Kiselman C O. Plurisubharmonic functions and potential theory in several complex variables. In: Pier J P, ed. Development of Mathematics 1950–2000. Basel: Birkhäuser Verlag, 2000. 655–714
2 Siibony N. Some extension problems for currents in complex analysis. Duke Math J, 1985, 52: 157–197
3 Tian G. On Kähler-Einstein metrics on certain Kähler manifolds with C(M)>0. Invent Math, 1987, 89: 225–246
4 Nadel A. Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature. Ann Math, 1990, 132: 549–596
5 Siu Y T. The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi. In: Noguchi J, Fujimoto H, Kajiwara J, et al., eds.
Siu Y T. Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent Math, 1974, 27: 53–156

Cao J Y. Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds. Compos Math,

Boucksom S, Favre C, Jonsson M. Valuations and plurisubharmonic singularities. Publ Res Inst Math Sci, 2008, 44: 449–494

Lazarsfeld R. Positivity in Algebraic Geometry. I. Classical Setting: Line Bundles and Linear Series; II. Positivity for Vector Bundles, and Multiplier Ideals. A Series of Modern Surveys in Mathematics. Berlin: Springer-Verlag, 2004

Demailly J P, Ein L, Lazarsfeld R. A subadditivity property of multiplier ideals. Mich Math J, 2000, 48: 137–156

Guan Q A, Zhou X Y. Effectiveness of Demailly’s strong openness conjecture and related problems. Invent Math, 2015, 202: 635–676

Guan Q A, Zhou X Y. A proof of Demailly’s strong openness conjecture. Ann Math, 2015, 182: 605–616

Siu Y T. Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent Math, 1974, 27: 53–156

Boucksom S, Favre C, Jonsson M. Valuations and plurisubharmonic singularities. Publ Res Inst Math Sci, 2008, 44: 449–494

Cao J Y. Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds. Compos Math, 2014, 150: 1869–1902

Guan Q A, Zhou X Y. A proof of Demailly’s strong openness conjecture. Ann Math, 2015, 182: 605–616

Skoda H. Sous-ensembles analytiques d’ordre fini ou infini dans C^n. Bull Soc Math France, 1972, 100: 353–408

Guan Q A, Zhou X Y. Characterization of multiplier ideal sheaves with weights of Lelong number one. Adv Math, 2015, 285: 1563–1580

Rashkovskii A. Alexander Extremal cases for the log canonical threshold. C R Math Acad Sci Paris, 2005, 336: 397–402

Guan Q A, Li Z Q. Multiplier ideal sheaves associated with weights of log canonical threshold one. Adv Math, 2016, 302: 40–47

Ohsawa T. L^2 Approaches in Several Complex Variables. Development of Oka-Cartan Theory by L^2 Estimates for the ∂ Operator. Springer Monographs in Mathematics. Tokyo: Springer, 2015

Ohsawa T. On the extension of L^2 holomorphic functions. III. Negligible weights. Math Z, 1995, 219: 215–225

Ohsawa T. On the extension of L^2 holomorphic functions. V. Effects of generalization. Nagoya Math J, 2001, 161: 1–21

Erratum to: “On the extension of L^2 holomorphic functions. V. Effects of generalization” [Nagoya Math. J. 161 (2001), 1–21]. Nagoya Math J, 2001, 163: 229

Ohsawa T, Takegoshi K. On the extension of L^2 holomorphic functions. Math Z, 1987, 195: 197–204

Bridgeland T. The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Ann Inst Fourier, 1996, 46: 1083–1094

Manivel L. Un théorème de prolongement L^2 de sections holomorphes d’un fibré vectoriel. Math Z, 1993, 212: 107–122

Demailly J P. On the Ohsawa-Takegoshi-Manivel L^2 extension theorem. In: Dolbeault P, Iordan A, Henkin G, et al., eds. Complex Analysis and Geometry: Proceedings of the Conference in Honour of the 85th Birthday of Pierre Lelong, Paris, 1997. Progress in Mathematics. Basel: Birkhäuser Verlag, 2000

McNeal J, Varolin D. Analytic inversion of adjuction: L^2 extension theorems with gain. Ann Inst Fourier, 2007, 57: 703–718

Siu Y T. Invariance of Plurigenera. Invent Math, 1998, 134: 661–673

Siu Y T. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type. In: Bauer I, Catanese F, Peternell T, et al., eds. Complex Geometry (Göttingen, 2000). Berlin: Springer, 2002, 223–277

Guan Q A, Zhou X Y. On the Ohsawa-Takegoshi L^2 extension theorem and the twisted Bochner-Kodaira identity. C R Acad Sci Paris Ser I, 2011, 349: 797–800

Guan Q A, Zhou X Y. Optimal constant problem in the L^2 extension theorem. C R Acad Sci Paris Ser I, 2012, 350: 753–756

https://engine.scichina.com/doi/10.1360/TB-2020-1055
Blocki Z. On the Ohsawa-Takegoshi extension theorem. Univ Iag Acta Math, 2012, 50: 53–61
Blocki Z. Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent Math, 2013, 193: 149–158
Guan Q A, Zhou X Y. Optimal constant in an $L^1$ extension problem and a proof of a conjecture of Ohsawa. Sci China Math, 2015, 58: 35–59
Zhou X Y. A survey on $L^2$ extension problem. In: Fornæss J, Irgens M, Wold E, eds. Complex Geometry and Dynamics. Abel Symposia, Vol 10. Cham: Springer, 2015, 291–309
Ohsawa T. On the extension of $L^2$ holomorphic functions. II. Publ Res Inst Math Sci, 1988, 24: 265–275
Păun M. Siu’s invariance of plurigenera: A one-tower proof. J Diff Geom, 2007, 76: 485–493
Demay J P, Hacon C D, Păun M. Extension theorems, non-vanishing and the existence of good minimal models. Acta Math, 2013, 210: 203–259
Guan Q A, Zhou X Y. A solution of an $L^2$ extension problem with an optimal estimate and applications. Ann Math, 2015, 181: 1139–1208
Suita N. Capacities and kernels on Riemann surfaces. Arch Ration Mech Anal, 1972, 46: 212–217
Ohsawa T. On the extension of $L^2$ holomorphic functions. VI. A limiting case. Contemp Math, 2003, 332: 235–239
Berndtsson B. Prekopa’s theorem and Kiselman’s minimal principle for plurisubharmonic functions. Math Ann, 1998, 312: 785–792
Berndtsson B. Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains. Ann Inst Fourier, 2006, 56: 1633–1662
Berndtsson B. Curvature of vector bundles associated to holomorphic fibrations. Ann Math, 2009, 169: 531–560

https://engine.scichina.com/doi/10.1360/TB-2020-1055