Sca-1 is involved in the adhesion of myosphere cells to \(\alpha V \beta 3 \) integrin

Ashley Penvose and Karen A. Westerman*

Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA

*Author for correspondence (kwest@zeus.bwh.harvard.edu)

Biology Open 000, 1–9
doi: 10.1242/bio.2012222
Received 6th March 2012
Accepted 7th June 2012

Summary

A myosphere cell is a unique type of muscle stem cell that is able to maintain its pre-myogenic state in culture over time. These cells are propagated in culture as free-floating, non-adherent spheres. We believe that the 3-dimensional adhesive cell-cell interactions involved in maintaining the sphere-like myosphere structures are also involved in maintaining their longevity in culture. We found that Sca-1, which is highly expressed by myosphere cells, plays a role in the growth and the formation of the myospheres. In comparing adhesion molecules expressed by 3-dimensionally grown myosphere cells to those expressed by 2-dimensionally grown primary myoblasts, we found that there was a distinct difference in the expression of \(\beta 3 \) integrin. Upon further investigation we discovered that there is an adhesive interaction between Sca-1\(^+\) cells and \(\alpha V \beta 3 \) integrin. Here we show that Sca-1\(^+\) cells (myosphere cells and NIH3T3 cells) adhere to \(\alpha V \beta 3 \) integrin and that Sca-1\(^-\) cells (primary myoblasts) do not adhere. The interaction between Sca-1 and \(\alpha V \beta 3 \) integrin was confirmed using antibody blocking, shRNA knockdown of Sca-1 in Sca-1\(^+\) cells, and by expressing Sca-1 cDNA in Sca-1\(^-\) cells, which demonstrated that the level of adhesion of these cells to \(\alpha V \beta 3 \) integrin was dependent on the presence of Sca-1. Additionally, we found that the co-expression of Sca-1 and \(\beta 3 \) resulted in significantly greater adhesion of Sca-1\(^+\) cells to \(\alpha V \beta 3 \) integrin. In conclusion, our data indicate that Sca-1 is involved in maintaining the 3-dimensional myosphere cell-cell contacts and that Sca-1 is involved in the binding of cells to \(\alpha V \beta 3 \) integrin.

© 2012. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Key words: \(\alpha V \beta 3 \) integrin, Sca-1, Myosphere, Muscle stem cells

Introduction

Stem cell antigen 1 (Sca-1), a member of the Ly6 family, is an 18 kD glycosyl phosphatidylinositol-anchored cell surface protein (GPI-AP) composed of a globular core, where the GPI anchor attaches, and three protruding finger loops (Gumley et al., 1995). Although the purpose of Sca-1 remains unknown it is believed to be involved in balancing stem cell self-renewal and differentiation (Epting et al., 2008b; Ito et al., 2003), stem cell homing (Bradfute et al., 2005; Oh et al., 2003), cell-cell adhesion (English et al., 2000; Pflugh et al., 2002), and concentrating other membrane proteins in lipid rafts to influence signaling (Epting et al., 2008a; Holmes and Stanford, 2007; Pflugh et al., 2002). As it relates to muscle, Sca-1 is expressed by many muscle stem cells including: muscle-derived stem cells (Jankowski et al., 2002; Qu-Petersen et al., 2002), mesoangioblasts (Cosson and Bianco, 2003), side population cells (Gussoni et al., 1999; Jackson et al., 1999), and myosphere stem cells (Sarig et al., 2006; Westerman et al., 2010). In addition, satellite cells, which typically do not express Sca-1, up-regulate Sca-1 expression upon muscle injury (Kafadar et al., 2009) indicating that there is a role for Sca-1 during muscle injury. This is interesting in that it has been proposed that the expression of Sca-1 is not static but is influenced by the microenvironment (Mitchell et al., 2005). In support of this it has been shown that the presence of cytokines such as interferon \(\gamma \) (Khan et al., 1993; Ma et al., 2001), TNF-\(\alpha \) (Long et al., 2011; Sagi-Assif et al., 1996), and TGF-\(\beta 1 \) (Long et al., 2011) can influence the expression of Sca-1 in cells, and that even the presence of crushed muscle extract resulted in an increase of Sca-1 expression in primary myoblasts (Kafadar et al., 2009).

Integrins are heterodimeric adhesion molecules composed of alpha and beta subunits. Beta 3 integrin (CD61) interacts with one of two alpha subunits, \(\alpha V \) (CD41), which is expressed primarily in platelets, and \(\alpha V \) (CD51), which is expressed by a variety of tissues including skeletal muscle (Blaschuk et al., 1997; Hynes, 2002). Because our interest in \(\beta 3 \) integrin lies in its expression in muscle our focus is on the \(\alpha V \beta 3 \) heterodimer, also known as the vitronectin receptor. \(\alpha V \beta 3 \) integrin primarily uses a RGD sequence to interact with components of the extracellular matrix (Barczyk et al., 2010); however, it has also been shown to bind some of its ligands using non-RGD sequences (Pedchenko et al., 2004; Wu et al., 2006; Ylipaasto et al., 2010). This integrin interacts with a wide variety of ligands, including: ECM components, growth factors, snake venoms, viruses, and CD31 (Stupack and Cheresh, 2004). \(\alpha V \beta 3 \) integrin is most well-known for its involvement in tissue remodeling and repair and is up-regulated in blood vessels after injury (Sajid and Stouffer, 2002). With regard to skeletal muscle, the expression of the \(\alpha V \beta 3 \) integrin has been reported to be involved in myoblast differentiation, its expression peaking during proliferation just prior to differentiation, and then dropping off during myotube formation (Blaschuk et al., 1997; Liu et al., 2011). Most recently, it has been shown that the \(\alpha V \beta 3 \) integrin, which is not normally...
expressed in adult muscle, is expressed by muscle after injury and by activated satellite cells (Liu et al., 2011). The importance of this expression during injury was further supported by the impaired ability of β3 null mice to repair injured muscle (Liu et al., 2011).

Previously we characterized a unique type of muscle stem cell that can be cultured non-adherently as free-floating spheres (referred to as myospheres). Myosphere cells express Sca-1, β1 integrin, CD34 and CD90, and do not express CD31 or CD45 (Westerman et al., 2010). These cells are easily isolated and can be maintained in a primitive “pre-myogenic” state in culture. Myosphere cells do not express myogenic markers Pax7, Myf5, or MyoD; however, upon differentiation, which is induced by the addition of serum, myosphere cells grow adherently, express Pax7, Myf5, and MyoD, and are able to form multinucleated myotubes (Westerman et al., 2010). In addition, our previous in vivo studies showed myosphere cells are able to contribute to regenerating myofibers as well as to mononuclear cells that reside immediately adjacent to, but within the basal lamina of the myofibers (Westerman et al., 2010). Currently the exact source of myosphere cells is unknown; however, because myosphere cells express Sca-1, which is associated with interstitial cells (Asakura et al., 2002), and because myosphere cells have characteristics similar to other interstitial muscle stem cells such as: muscle SP cells (Asakura et al., 2002; Frank et al., 2006) mesoangioblasts (De Angelis et al., 1999), myoendothelial cells (Zheng et al., 2007), pericytes (Dellavalle et al., 2007), perivascular cells (Crisan et al., 2008), PW1+/Pax7− interstitial cells (PICs) (Mitchell et al., 2010), and B4 integrin+ cells (Liadaki et al., 2012), we expect that, like these muscle stem cells, myosphere cells reside within the interstitial space. In this study we show that the expression of Sca-1 by myosphere stem cells plays a role in maintaining the cell-cell adhesive nature necessary for the formation and maintenance of the sphere-like structures in culture. In further examining the adhesive nature of myosphere cells, we discovered that there is an adhesive interaction that occurs between these muscle stem cells and αVβ3 integrin, and more importantly that this interaction involves Sca-1, indicating that a possible purpose behind the expression of Sca-1 by stem cells is to aid in the repair of injured tissue by interacting with αVβ3 integrin.

Results
Sca-1 is involved in maintaining sphere-like structures formed by myosphere cells

To determine if Sca-1 was involved in the formation and growth of myospheres in culture we isolated myosphere cells from the hind limbs of 4–8 week old C57BL6 mice, FACS sorted these cells for the Sca-1+ and Sca-1− populations (both CD31−/CD45−), and then monitored their growth overtime. After sorting the Sca-1+ and Sca-1− cells were plated at equal densities into 12 well dishes and then monitored daily for the formation and growth of myospheres. In observing 10 independent sorts we found that the cells in the Sca-1+ population were able to form and maintain myospheres more readily than their Sca-1− counterparts. Myospheres generated by the Sca-1− cell population were found to be visually tighter and more compact than those generated by the Sca-1+ cell population, Fig. 1A,B. This adheriveness was further indicated during the passaging of the myosphere cultures; we found that when we dissociated myospheres into their single cell components using dispase/collagenase it took approximately 30 minutes to dissociate the Sca-1+ myospheres whereas the Sca-1− myospheres took less than 10 minutes. We also monitored the population doublings of the Sca-1+ and Sca-1− sorted cells over the course of 5 weeks. Sca-1− sorted cells are represented in white and Sca-1+ in black. These results were pooled from ten independent sorts. Error bars display ± s.e.m (*P<0.04 by unpaired Student’s t test. Measure bars shown in A,B represent 100 μm.

Fig. 1. Myosphere formation and Population doublings. Myospheres generated by sorted (A) Sca-1− and (B) Sca-1+ cells. (C) Population doublings for Sca-1− and Sca-1+ sorted cell populations are shown over the course of 5 weeks. Sca-1− sorted cells are represented in white and Sca-1+ in black. These results were pooled from ten independent sorts. Error bars display ± s.e.m. *P<0.04 by unpaired Student’s t test. Measure bars shown in A,B represent 100 μm.
Biology Open

2

similar to the Sca-1 from the Sca-1 null mice did not propagate well in culture. Additionally, we found that the myosphere cells isolated from mysopheres but its presence significantly enhances the formation of mysopheres. It was expected that because myosphere cells maintain 3-dimensional cell-cell contacts in culture, they would express a greater variety of adhesion molecules than conventionally cultured adherent primary myoblasts. In using reverse transcriptase PCR to examine adhesion molecules expressed by cultured adherent primary myoblasts, we found a distinct difference in the expression of β3 integrin between the two types of cells (Fig. 3A). As a control the expression of β1 integrin is shown for these same samples (Fig. 3B). β3 integrin expression was also confirmed by FACS, in which we saw that there was not only a greater percentage of myosphere cells expressing β3 integrin (89.8±2.4%, n=10) than primary myoblasts (31.4±5.7%, n=8), but there was also a greater shift in the fluorescence peak, indicating the myosphere cells express a higher level of β3 integrin per cell (Fig. 3C,D).

To determine if αVβ3 integrin could be involved in the adhesive contacts that maintain mysopheres in culture, we compared the adhesion of myosphere cells and primary myoblasts to αVβ3 integrin protein using a static adhesion assay. Maxisorb 96 well plates were coated with 3 μg/ml of functionally active αVβ3 integrin protein after which 4×10⁴ primary myoblasts or myosphere cells were placed into the coated wells for 1 hr at 37°C. We found significantly more myosphere cells (285.6±13.6) adhered to the αVβ3 integrin coated wells compared to primary myoblasts (11.1±2.4) (Fig. 3E). As a control some wells were coated using an equal amount of BSA; no cells adhered to these wells. To ensure that the difference in adhesion between myosphere cells and primary myoblasts was not due to cell number, we also examined the adhesion of myoblasts to αVβ3 integrin when an excess of cells was added to the wells (8×10⁴ and 1×10⁵). We found that there was an increase in the number of myoblasts adhering; however, the adhesion of myoblasts to the αVβ3 integrin protein remained significantly lower than the adhesion of the myosphere cells, even when an excess of cells were used in this assay (Fig. 3E).

Myosphere cells adhere to αVβ3 integrin

It was expected that because myosphere cells maintain 3-dimensional cell-cell contacts in culture, they would express a greater variety of adhesion molecules than conventionally cultured adherent primary myoblasts. In using reverse transcriptase PCR to examine adhesion molecules expressed by myosphere cells versus those expressed by 2-dimensionally grown primary myoblasts, we found a distinct difference in the expression of β3 integrin between the two types of cells (Fig. 3A). As a control the expression of β1 integrin is shown for these same samples (Fig. 3B). β3 integrin expression was also confirmed by FACS, in which we saw that there was not only a greater percentage of myosphere cells expressing β3 integrin (89.8±2.4%, n=10) than primary myoblasts (31.4±5.7%, n=8), but there was also a greater shift in the fluorescence peak, indicating the myosphere cells express a higher level of β3 integrin per cell (Fig. 3C,D).

To determine if αVβ3 integrin could be involved in the adhesive contacts that maintain mysopheres in culture, we compared the adhesion of myosphere cells and primary myoblasts to αVβ3 integrin protein using a static adhesion assay. Maxisorb 96 well plates were coated with 3 μg/ml of functionally active αVβ3 integrin protein after which 4×10⁴ primary myoblasts or myosphere cells were placed into the coated wells for 1 hr at 37°C. We found significantly more myosphere cells (285.6±13.6) adhered to the αVβ3 integrin coated wells compared to primary myoblasts (11.1±2.4) (Fig. 3E). As a control some wells were coated using an equal amount of BSA; no cells adhered to these wells. To ensure that the difference in adhesion between myosphere cells and primary myoblasts was not due to cell number, we also examined the adhesion of myoblasts to αVβ3 integrin when an excess of cells was added to the wells (8×10⁴ and 1×10⁵). We found that there was an increase in the number of myoblasts adhering; however, the adhesion of myoblasts to the αVβ3 integrin protein remained significantly lower than the adhesion of the myosphere cells, even when an excess of cells were used in this assay (Fig. 3E).

Adhesion of myosphere cells to αVβ3 integrin is reduced by functionally blocking Sca-1 antibodies

Since the results presented in Fig. 3 suggest that Sca-1 plays a role in myosphere cell-cell contact, as well as their maintenance
in culture, and because myosphere cells express considerably more Sca-1 than myoblasts (79.6±3.1%, n=18 versus 32.3±7.9%, n=10) (Fig. 4A,B), we examined if Sca-1 could be involved in the adhesion of myosphere cells to \(\alpha V \beta 3 \) integrin. To do this we repeated the adhesion assay in the presence of two different functional blocking Sca-1 antibodies (clones E13-161.7 and D7) (Fig. 4C). In these assays we incubated myosphere cells for 30 minutes on ice with varying concentrations of the Sca-1 antibodies (18, 24, and 30 \(\mu g/ml \)) and samples were washed to remove excess antibody prior to placing the mAb treated cells in the \(\alpha V \beta 3 \) integrin protein coated wells. To assure uniformity, those samples that were not incubated with an antibody were handled in an identical fashion as those samples incubated with antibodies. We found that there was a significant dose dependent decrease in the adhesion of myosphere cells to the \(\alpha V \beta 3 \) integrin coated wells when myosphere cells were incubated with either E13 or D7 Sca-1 antibodies. The percent of myosphere cells adhering dropped from 104.5±3.1% (myosphere cells incubated without antibody) to 36.4±2.6% (for the E13-161.7 Sca-1 antibody) and 31.2±2.1% (for the D7 Sca-1 antibody). The percent of primary myoblasts adhering was 4.0±0.6%. As an additional control and to show that the loss of adhesion by the cells incubated with Sca-1 antibody was not due to structural interference caused by steric hindrance (the binding of the antibody to the cells), we incubated cells with an isotype-matched antibody directed to \(\beta 1 \) integrin, which is another cell surface marker highly expressed by myosphere cells (Westerman et al., 2010). We found that there was a slight reduction in myosphere cell adhesion after incubation with 30 \(\mu g \) of \(\beta 1 \) integrin antibody (95.9±2.4%), indicating that the loss of myosphere cell adhesion to \(\alpha V \beta 3 \) integrin after incubation with a Sca-1 antibody was not simply due to structural interference caused by the antibody.

Knockdown of Sca-1 expression by shRNA reduces adhesion to \(\alpha V \beta 3 \) integrin

In addition to myosphere cells we also examined the adhesion of a second cell type to \(\alpha V \beta 3 \) integrin. The cells chosen were NIH3T3 because these cells express Sca-1 (86.5±1.0%, n=7) (Fig. 5A) and are easily maintained and passed in culture. To determine if the NIH3T3 cells adhered to \(\alpha V \beta 3 \) integrin we repeated the adhesion assay. We found that NIH3T3 cells adhere significantly more to \(\alpha V \beta 3 \) integrin (53.3±1.9%) than do primary myoblasts (4.0±0.6%); however, to a lesser extent than the myosphere cells (104.5±3.1%). Additionally, when NIH3T3 cells were incubated with Sca-1 blocking antibody (E13 – 30 \(\mu g \)) prior to the adhesion assay we detected a significant reduction in the adhesion of these cells to \(\alpha V \beta 3 \) integrin (20.3±1.1%) (Fig. 5B), which was similar to myosphere cells. In order to further demonstrate that Sca-1 is involved in the adhesion of the NIH3T3 cells to \(\alpha V \beta 3 \) integrin, we knocked down the expression of Sca-1 in these cells using the bicistronic lentiviral vector shown in Fig. 2A. After verifying the loss of Sca-1 expression by FACSs and sorting for the Sca-1/\(^*\)GFP\(^*\) cells (Fig. 5C), we then repeated the adhesion assay. As a control we also transduced NIH3T3 cells with same vector, containing a random shRNA sequence (Fig. 5D). We found that there was a significant reduction in the adhesion of the NIH3T3 cells expressing the Sca-1 shRNA (8.8±0.5%), and that the loss of adhesion was significantly greater than that of NIH3T3 cells expressing the Sca-1 random shRNA (18.8±0.5%).

![Fig. 4. Sca-1 antibodies block adhesion to \(\alpha V \beta 3 \) integrin.](http://bio.biologists.org/)

![Fig. 5. NIH3T3 cells adhere to \(\alpha V \beta 3 \) integrin.](http://bio.biologists.org/)
incubated with the Sca-1 antibody, indicating that Sca-1 is not only involved in the adhesion of these cells but may also be influencing the adhesion of other adhesion molecules expressed by these cells. The adhesion of the control shRNA cells (54.5±2.8%) was the same as the adhesion of the untransduced NIH3T3 cells.

Primary myoblasts expressing Sca-1 adhere to αVβ3 integrin
In addition to examining what would happen to cell adhesion to αVβ3 integrin upon the loss of Sca-1 expression, we also examined what would happen to cell adhesion in cells with a gain in Sca-1 expression. To do this we transduced cells with a bicistronic lentiviral vector that constitutively expresses Sca-1 and neomycin resistance (Fig. 6A), and as a control we also transduced cells with a vector containing the same backbone but without the Sca-1 cDNA cassette. For these studies we chose to use primary myoblasts because these cells do not adhere well to NIH3T3 cells because NIH3T3 cells expressing Sca-1 were able to bind significantly more to αVβ3 integrin (33.5±1.3%) than myoblasts transduced by the control vector (2.8±0.2%) or untransduced myoblasts (2.8±0.2%) (Fig. 6D). We also found that even after using concentrated virus to transduce the primary myoblasts we were not able to match the extent of adhesion by the myosphere stem cells interacting with αVβ3 integrin (96.7±2.5%), indicating that other factors that are cell type specific may also be playing a role in the adhesion (such as differences in the expression or activation of other adhesion molecules).

Adhesion to αVβ3 integrin is enhanced by the co-expression of Sca-1 and β3 integrin
Because myosphere cells express both Sca-1 and β3 integrin we examined if the co-expression of β3 integrin and Sca-1 within the same cell would enhance the adhesion of those cells to αVβ3 integrin. For this experiment we used NIH3T3 cells because these cells express αV integrin (88.8%, n=13) (Fig. 7A), but do not express β3 integrin (0%, n=15) (Fig. 7B). We transduced NIH3T3 (Sca-1+β3−) cells with a bicistronic lentiviral vector constitutively expressing mouse β3 integrin (Cluzel et al., 2005) and neomycin resistance. As a control we transduced cells with a vector containing the same backbone but without the β3 integrin cDNA cassette. After selection with neomycin, FACs was used to confirm the expression β3 integrin (Fig. 7C). We repeated the adhesion assay, this time using trypsin to lift the NIH3T3 cells because NIH3T3 cells expressing β3 integrin remained adherent to the plates when dispase/collagenase was used. We found there was a significant increase in the adhesion of the cells that co-expressed Sca-1 and β3 integrin (67.5±2.5%) to the αVβ3 integrin protein versus those expressing Sca-1 alone (27.9±1.3%) (Fig. 7D). In addition, NIH3T3 cells that expressed neither Sca-1 nor β3 integrin had significantly lower adhesion than all of the other NIH3T3 cells tested (10.8±0.4%). The adhesion of cells transduced with the control vectors was the same as the adhesion of untransduced NIH3T3 cells (32.2±1.6%). To further confirm these results, prior to the adhesion assay we incubated the NIH3T3 cells expressing both αV integrin and β3 integrin antibodies. (C) FACs profile of NIH3T3 cells after transduction with the β3 integrin vector. Empty peak represents the untransduced control; filled peak represents cells incubated with APC conjugated β3 integrin antibody. (D) Graph showing the percent of cells adhering/field to αVβ3 integrin versus cells tested, represented are myoblasts (white), myoblasts transduced by the control vector (light gray), myoblasts transduced by the Sca-1 vector (medium gray, MOI=5) and (dark gray, MOI=50), and myosphere cells (black). Results were pooled from 6 independent adhesion assays (3 for cell transduced at an MOI=5; and 3 for those transduced at a MOI=50). Error bars display ± s.e.m. ***P<0.0001 by unpaired Student’s t test.

Adhesion to αVβ3 integrin is enhanced by the co-expression of Sca-1 and β3 integrin
Because myosphere cells express both Sca-1 and β3 integrin we examined if the co-expression of β3 integrin and Sca-1 within the same cell would enhance the adhesion of those cells to αVβ3 integrin. For this experiment we used NIH3T3 cells because these cells express αV integrin (88.8%, n=13) (Fig. 7A), but do not express β3 integrin (0%, n=15) (Fig. 7B). We transduced NIH3T3 (Sca-1+β3−) cells with a bicistronic lentiviral vector constitutively expressing mouse β3 integrin (Cluzel et al., 2005) and neomycin resistance. As a control we transduced cells with a vector containing the same backbone but without the β3 integrin cDNA cassette. After selection with neomycin, FACs was used to confirm the expression β3 integrin (Fig. 7C). We repeated the adhesion assay, this time using trypsin to lift the NIH3T3 cells because NIH3T3 cells expressing β3 integrin remained adherent to the plates when dispase/collagenase was used. We found there was a significant increase in the adhesion of the cells that co-expressed Sca-1 and β3 integrin (67.5±2.5%) to the αVβ3 integrin protein versus those expressing Sca-1 alone (27.9±1.3%) (Fig. 7D). In addition, NIH3T3 cells that expressed neither Sca-1 nor β3 integrin had significantly lower adhesion than all of the other NIH3T3 cells tested (10.8±0.4%). The adhesion of cells transduced with the control vectors was the same as the adhesion of untransduced NIH3T3 cells (32.2±1.6%). To further confirm these results, prior to the adhesion assay we incubated the NIH3T3 cells expressing both αV integrin and β3 integrin antibodies. (C) FACs profile of NIH3T3 cells after transduction with the β3 integrin vector. Empty peak represents the untransduced control; filled peak represents cells incubated with APC conjugated β3 integrin antibody. (D) Graph showing the percent of cells adhering/field to αVβ3 integrin versus cells tested, represented are NIH3T3 cells (black), NIH3T3 cells expressing β3 integrin (dark gray), NIH3T3 cells expressing neither Sca-1 or β3 integrin (white). (E) Graph showing the percent of cells adhering/field to αVβ3 integrin versus cells tested, represented are NIH3T3 cells expressing both Sca-1 and β3 integrin incubated with: no antibodies (black), Sca-1 antibody (dark gray), β3 integrin antibody (light gray), both Sca-1 and β3 integrin antibodies (white). The results in D,E were pooled from 3 independent experiments. Error bars display ± s.e.m. ***P<0.0001 by unpaired Student’s t test.
Sca-1 and β3 integrin with antibodies that functionally block Sca-1, β3 integrin, or both Sca-1 and β3 integrin. We found that there was a significant reduction in the adhesion the cells incubated with the Sca-1 (22.6±0.7%) and β3 integrin (21.3±0.6%) antibodies and that the reduction in adhesion was greater still when cells were incubated with both antibodies (7.5±0.3%) (Fig. 7E). In addition, to show that the adhesion of the NIH3T3 cells was specific for the αVβ3 integrin protein we blocked some of the wells that were coated with the αVβ3 integrin protein with a functionally blocking antibody (αVβ3 integrin clone LM609); there was very little binding of both NIH3T3 cells (1.9±0.2%, n=60, β3- cells) and β3 expressing NIH3T3 cells (4.5±0.2%, n=60) to these wells. Additionally, we noted that the adhesion of the NIH3T3 cells in this study (27.9±1.3%) was lower than in the previous adhesion study (53.3±1.9%) (Fig. 5), we suspect the change in the adhesiveness may possibly be due to cleavage of adhesion molecules by trypsin which was used in place of dispase/collagenase.

To determine if αVβ3 integrin could also be involved in the cell-cell adhesion of myospheres we isolated myosphere stem cells from β3 integrin null mice. We monitored the growth of the β3 integrin null cells and found that these cells could easily form and be propagated as myospheres in culture forming very large myospheres that were greater than 200 μm in size (Fig. 8A), indicating that β3 integrin is not essential for myosphere cell-cell adhesion. These results also suggest that the formation of myospheres is not simply due to a receptor-ligand interaction of αVβ3 integrin to Sca-1 but that perhaps there is one or more factors involved in the adhesion of Sca-1+ cells to the αVβ3 integrin protein. Additionally, we confirmed the lack of β3 integrin expression (Fig. 8B), as well as the presence of Sca-1 (Fig. 8C), in the myospheres that were isolated from the β3 integrin null mice.

To further demonstrate that the dual expression of Sca-1 and β3 integrin enhances the adhesion of cells to αVβ3 integrin protein, we isolated myosphere stem cells from Sca-1 null and β3 integrin null mice and then repeated the adhesion assay. We found that there was a significant decrease in the adhesion by myosphere cells isolated from either the Sca-1 null mice (19.5±0.9%) or β3 integrin null mice (30.3±1.4%) to αVβ3 integrin protein compared to myosphere cells isolated from wt mice (103.5±2.7%) (Fig. 8D).

Discussion

Myosphere cells are a unique type of muscle stem cell that is capable of maintaining a pre-myogenic state in culture over time (Westerman et al., 2010). We believe that the 3-dimensional cell-cell contacts resulting from the formation of the myospheres aids in their longevity in culture. To determine if Sca-1 was playing a role in these cell-cell interactions, we monitored the formation and growth of myospheres generated from Sca-1+ and Sca-1- cell populations. We found that the expression of Sca-1 is important for the formation of adhering cells, in that we were not able to generate myospheres from the Sca-1- sorted cell populations or in myosphere cell populations in which Sca-1 was knocked down. We were able to generate some myospheres from Sca-1 null mice, but only after a significant delay and the spheres generated were smaller than myospheres generated from wt mice. The correlation between the expression of Sca-1 and the ability to form myospheres in culture supports our theory that Sca-1 is involved in the cell-cell contacts that maintain these sphere-like structures in culture. However, the ability of the Sca-1 null cells to generate myospheres after a significant delay indicates that there are other factors involved in this adhesion. Additionally, because Sca-1+ myosphere cells could be propagated and maintained more readily in culture than the Sca-1- cells, we believe that Sca-1 is also involved in the proliferation of myosphere cells further indicating the importance of Sca-1 in maintaining these cells in culture.

To determine what other factors were involved in maintaining the 3-dimensional cell-cell contacts of myospheres, we explored the differences in the expression of adhesion molecules in myospheres compared to 2-dimensionally grown primary myoblasts. We found there was a very significant difference in the level of expression of β3 integrin and that myosphere cells were able to adhesively interact with αVβ3 integrin protein whereas primary myoblasts did not. Knowing that Sca-1 has some involvement in myosphere cell-cell contacts we began to examine Sca-1 as a possible ligand for αVβ3 integrin. Using four independent approaches we were able to demonstrate that Sca-1 is involved in the adhesion of myosphere cells to αVβ3 integrin. These methods include: (1) incubating myosphere cells with Sca-1 blocking antibodies, which resulted in a significant reduction in their adhesion to αVβ3 integrin protein, (2) using a second Sca-1 expressing cell type (NIH3T3 cells) to confirm the loss of adhesion to αVβ3 integrin protein when the expression of Sca-1 is knocked down by shRNA, (3) constitutively expressing Sca-1 in primary myoblasts, which normally do not adhere to αVβ3 integrin protein, and demonstrating a significant increase in their adhesion to αVβ3 integrin protein and finally (4) testing the adhesion of myosphere cells isolated from Sca-1 null mice in
which we found there was a significant reduction in the adhesion of these cells to the αVβ3 integrin protein compared to myosphere cells isolated from wt mice.

We also noted that depending on the cell type used (myosphere stem cells, myoblasts, or NIH3T3 cells) there are different degrees of adhesion to αVβ3 integrin. An example of this is the over expression of Sca-1 in myoblasts. Even though their adhesion to αVβ3 integrin significantly increased, these cells did not adhere at the same frequency as myosphere cells. This indicated to us that Sca-1 is not acting alone and that there are additional adhesion molecules involved in maintaining the adhesive nature of the myosphere cells. This hypothesis correlates with our blocking antibody studies in which we could significantly reduce the adhesion to αVβ3 integrin by incubating myosphere cells with the Sca-1 antibody but could not completely eliminate the adhesion.

Because Sca-1 and β3 integrin are both highly expressed by myosphere cells we decided to examine if the dual expression of these molecules was responsible for the enhanced adhesion of these cells to αVβ3 integrin. We found that there was a significant increase in the adhesion of the Sca-1+ NIH3T3 cells to αVβ3 integrin when these cells also expressed β3 integrin, and that myosphere cells expressing both Sca-1 and β3 integrin had much greater adhesion to αVβ3 integrin than myosphere cells that were generated from either Sca-1 null or β3 integrin null mice. Interestingly, even though the addition of β3 integrin enhances the adhesion of the Sca-1+ cells to αVβ3 integrin protein we found that β3 integrin itself is not needed to form or maintain myosphere cells in culture. Taken together these data indicate that β3 integrin is not interacting with Sca-1 by a trans mechanism but may be influencing the adhesion of these cells through a cis mechanism. Additionally, these data indicate that it is likely there are other unknown component(s) involved in the adhesion of the Sca-1+ cells to αVβ3 integrin, and that the/these component(s) interact with both Sca-1 and αVβ3 integrin.

It is intriguing that even though Sca-1 has been used for years as a marker for stem cells its function remains unknown (Holmes and Stanford, 2007). The possibility that Sca-1 acts as an adhesion molecule has been reported (English et al., 2000; Pfugh et al., 2002); however, a ligand for Sca-1 has never been identified. Here we report that Sca-1 is involved in cell adhesion, possibly acting as an adhesion molecule itself. These data demonstrate that the expression of Sca-1 by cells is involved in the adhesion of those cells to αVβ3 integrin. Interestingly, this is not the first suggestion that a Ly6 family member interacts with αVβ3 integrin. Previous studies by Wu et al. showed Ly6 protein cobra cardiotoxin A5 binds to αVβ3 integrin using a non-RGD binding site (Wu et al., 2006). In addition, urokine-type plasminogen activator receptor (uPAR), another Ly6 protein, has been reported to co-immunoprecipitate with αVβ3 integrin (Maupas-Schwalm et al., 2009) and is also believed to influence the activation and adhesion of αVβ3 integrin resulting in the migration of cells by promoting the degradation of the ECM (Madsen and Sidenius, 2008; Smith and Marshall, 2010). We propose that like these other Ly6 proteins Sca-1 is interacting with αVβ3 integrin and that perhaps the purpose of Sca-1 expression is to enhance the adhesion and migration of cells needed to repair injured tissues by interacting with αVβ3 integrin. In a recent study, Sca-1 null mice were shown to exhibit impaired muscle regeneration due to an inability to remodel the extracellular matrix (Kafadar et al., 2009).

our hypothesis, in that αVβ3 integrin is involved in the activation of matrix metalloproteinases (MMPs), which are needed to remodel the matrix (Brooks et al., 1996; Deryugina et al., 2001; Maupas-Schwalm et al., 2009; Rupp et al., 2008).

In summary, here we present data demonstrating for the first time that Sca-1+ cells adhere to αVβ3 integrin and that this adhesion is enhanced by the presence of β3 integrin. We believe that the interaction of Sca-1 with αVβ3 integrin is important in that it gives a view into possible mechanisms of how stem cells are involved in the repair of injured tissue. Further studies will be needed in order to determine if the relationship between Sca-1 and αVβ3 integrin is a direct ligand to receptor interaction and/or if the expression of Sca-1 is influencing the binding of other adhesion molecules that are direct ligands of αVβ3 integrin.

Materials and Methods

Cells and cell culture

Hind limb muscles from 4–12 week old wild type C57BL/6 mice (Charles River Laboratories; Wilmington, MA, USA), and β3 null mice (B6;129S2-tgβ3哲学/ymJ, Jackson Laboratories; Bar Harbor, ME, USA) were used to isolate primary myoblasts and myospheres. Sca-1 null mice were also used to isolate myospheres, these were backcrossed for >10 generations on the C57BL/6J background and were provided by Dr. William Stanford (Stanford et al., 1997). All experimental procedures were conducted in accordance with the Harvard Medical School Standing Committee on Animals. Primary myoblasts were isolated using the protocol described by Richtler and Yaffe (Richler and Yaffe, 1970; Yaffe, 1968) in combination with the pre-plating technique described by Qu-Peterson et al. (Qu-Peterson et al., 2002). Primary myoblasts were cultured in F10 medium (Invitrogen; Grand Island, NY, USA) containing 20% FCS (HyClone; Waltham, MA, USA), 100 U/ml Pen/Strep (Invitrogen), and 5 ng/ml bFGF (PeproTech; Rocky Hill, NJ, USA) on collagen coated dishes. Myospheres were isolated and maintained as we previously described in (Westerman et al., 2009). Briefly, hind limb muscles were minced and then enzymatically dissociated by a mixture of 2.4 U/ml dispase and 10 mg/ml collagenase A (both from Roche; Indianapolis, IN, USA) for 1 hour at 37°C. After digestion the slurry was dissociated further using a scalpel and then F10 medium containing 20% FCS was added to inactivate the dispase/collagenase. The slurry was passed through a 70 μm cell strainer (BD Falcon; Franklin Lakes, NJ, USA) and centrifuged for 15 minutes at 156 × g. Cell pellets were resuspended in 1 ml of red blood cell lysis buffer (0.15 M ammonium chloride/0.01 M potassium bicarbonate solution, pH 7.4) for 2½ minutes on ice. After lysis 20 ml of DMEM:F12 (1:1) was added and the cells were pelleted and then resuspended in 5 ml of B27 medium (1:1 DMEM:F12 medium containing B27 supplement and 100 U/ml Pen/Strep (all from Invitrogen)), triturated, filtered through 40 μm cell strainer (BD Falcon), and then brought up and cultured in B27 medium supplemented with 20 ng/ml bFGF, 20 ng/ml hEGF (both from PeproTech), and 2 μg/ml heparin (Stem Cell Technologies; Vancouver, BC, Canada). NIH3T3 cells were cultured in DMEM containing 10% CS and 100 U/ml Pen/Strep (all from Invitrogen).

Lentiviral constructs

The shRNA vector was subcloned into a modified version of the lentiviral vector described earlier in (Westerman et al., 2007). The modified vector contained a U6 promoter, a multiple cloning site for inserting the shRNA (BamHI, EcoRI, SalI, and MluI), a central polyuridine tract, and an EF1α promoter driving GFP. We used the BamHI and MluI sites to insert an oligo (from Invitrogen) containing the shRNA sequence (GAA CAA TCT TGT CCT ACC CAT), which had been reported previously to knock down Sca-1 (Upadhyay et al., 2011). The final shRNA lentiviral vector is shown in Fig. 2A. As a control we inserted a scrambled shRNA sequence into the same vector (GAA CAA TCT GTG CCT ACC CAT).

The Sca-1 cDNA lentiviral vector was also made by subcloning into a modified version of the lentivector described in (Westerman et al., 2007). The Sca-1 cDNA was obtained from Origene (pCMV6-Kan/Neo; Rockville, MD, USA). This modified vector contained an EF1α promoter, a multiple cloning site for inserting the Sca-1 cDNA (EcoRI, HpaI, SalI, and MluI), a central polyuridine tract, and a PGK promoter driving neomycin. The Origene Sca-1 plasmid was digested with EcoRI, blunted, and ligated to a blunted XhoI site in a modified pUC19 plasmid containing cloning sites for MluI, XhoI, and EcoRI. The Sca-1 cDNA was then removed from the pUC19 plasmid and placed into the lentivector using the EcoRI and MluI sites. The final Sca-1 lentiviral vector is shown in Fig. 6A. The β3 integrin lentiviral vector was made in a similar fashion as the Sca-1 vector. Dr. Bernhard Wehrle-Haller (Chuzel et al., 2005) provided us with a β3 integrin-GFP fusion plasmid. This plasmid was digested with BamHI and EcoRI and then β3 integrin-GFP cassette was ligated into a pUC19 plasmid. The β3 integrin-GFP
fusion cassette was then removed from the puC19 plasmid and placed into the lentiviral vector for using the EcoR1 and Sal1 restriction sites. The backbone lentiviral vector without the cDNA of Sca-1 or β3 integrin was used as a negative control (referred to as “empty vector”).

Lentiviral infection

Virus was produced by transient transfection of 293T cells with 3.2 μg of lentiviral vector, 4.0 μg Gag-Pol-Vif plasmid, and 0.4 μg of each Rev, Tat, and VSV-G using Fugene (Roche: Indianapolis, IN, USA) as described earlier in (Westerman et al., 2007). Supernatants were collected 48 hours after transfection and cells (primary myoblasts or NIH3T3) were transduced using 1 ml virus/10 cm dish in the presence of 6 μg/ml proteamine sulfate (Sigma; Saint Louis, MO, USA) for 3 hours. For cells transduced with neomycin resistant vectors, two days after transduction cells were split in medium containing 500 μg/ml G418 (Invitrogen).

Flow cytometry

Myosphere cells were sorted into Sca-1 + and Sca-1 - cells populations using a BD FACSAria (BD Biosciences; Franklin Lakes, NJ, USA), cells were labeled with PE conjugated to CD31 (e-Bioscience; San Diego, CA, USA) according to the manufactures protocol. Flow cytometry was performed using GraphPad Prism 5 software (GraphPad Software; La Jolla, CA, USA).

RNA Isolation, RT-PCR

Total RNA was extracted from myoblasts and myosphere cells using the RNeasy Plus RNA isolation kit (Qiagen; Germantown, MD, USA). GeneAMP RNA PCR kit (Applied Biosystems; Carlsbad, CA, USA) was used for reverse transcription of RNA and amplification of cDNA. Primers used for β3 Integrin were GGT ACC AAG TTG GCC TCT CA and GAT TAC GGG ACA CGC TCT GT (244 bp). The primers used for Integrin were TGG GAC ATT TGA GTG AAG TTG GCC TCT CA and GAT TAC GGG ACA CGC TCT GT (244 bp).

Immunoblotting

Protein was extracted using MEM-PER Eukaryotic Membrane Protein Extraction Reagent Kit (Pierce; Rockford, IL, USA) according to the manufacturers protocol. Membrane and cytosolic fractions were collected separately and Slide-A-Lyzer Dialysis Cassettes (10,000 MWCQ Pierce) were used to dialyze the samples overnight against 3 changes of 0.5% CHAPS buffer (200 ml). Protein concentrations were measured using the BCA Protein Assay Kit (Pierce) or BCA kit (Applied Biosystems; Carlsbad, CA, USA) was used for reverse transcription of RNA and amplification of cDNA. Primers used for β3 Integrin were GQT ACC AAG TTG GCC TCT CA and GAT TAC GGG ACA CGC TCT GT (244 bp). The primers used for Integrin were TGG GAC ATT TGA GTG AAG TTG GCC TCT CA and GAT TAC GGG ACA CGC TCT GT (244 bp).

Statistical analysis

In all experiments, results are expressed as means ± s.e.m. Statistical differences between two sets of data were determined using the unpaired Student’s t test; P<0.05 was considered statistically different. All statistical calculations were performed using GraphPad Prism 5 software (GraphPad Software; La Jolla, CA, USA).

Acknowledgements

We thank Charles A. Vacanti for his encouragement and support of this research. We thank William Stanford for generously providing the Sca-1 null mice and Bernhard Wehrle-Haller for kindly providing the mouse β3 integrin cDNA. We also thank Emanuela Gussoni, Paul D. Allen, and Francis W. Lusinskas for their critical reading of the manuscript. This work was supported by a grant from NIH-NIAMS (K01AR52372) to K.A.W. and by the Brigham and Women’s Hospital Department of Anesthesia, Perioperative and Pain Medicine research fund.

Competing Interests

The authors have no competing interests to declare.

References

1. Asakura, A., Seale, P., Girgis-Gabardo, A. and Rudnicki, M. A. (2002). Myogenic specification of side population cells in skeletal muscle. J Cell Biol. 159: 123-134.
2. Barczyk, M., Carracedo, S. and Gullberg, D. (2010). Integrins. Cell Tissue Res. 339, 269-280.
3. Blaschuk, K. L., Guerin, C. and Holland, P. C. (1997). Myoblast β3 integrin levels are controlled by transcriptional regulation of expression of the β3 subunit and down-regulation of β3 subunit expression is required for skeletal muscle cell differentiation. Dev. Biol. 184, 266-277.
4. Bradlute, B. S., Graubert, T. A. and Goodell, M. A. (2005). Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp. Hematol. 33, 836-843.
5. Brooks, P. C., Strömblad, S., Sanders, L. C., von Schalbach, T. L., Aimes, R. T., Stetler-Stevenson, W. G., Quigley, J. P. and Chreesh, D. A. (1996). Localization of matrix metalloproteinase-MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85, 683-692.
6. Cuelz, C., Sattel, F., Lussi, J., Paulhe, F., Imhof, B. A. and Wehrle-Haller, B. (2005). The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol. 171, 383-392.
7. Cossu, G. and Bianco, P. (2003). Mesoangioblasts–vascular progenitors for extravascular mesodermal tissues. Curr. Opin. Genet. Dev. 13, 537-542.
8. Crisan, M., Yap, S., Castiglia, L., Chen, C. W., Corselli, M., Park, T. S., Andriolo, G., Sun, B., Zheng, B., Zhang, L. et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301-313.
9. De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Cuella-De Angelis, M. G., Ponzeletti, C. and Cossu, G. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol. 147, 869-878.
10. Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., I., Tagliafico, E., Sacchetti, B., Perani, L., Innocenzi, A., Galvez, B. G., Messina, G., Morosetti, R. et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 9, 255-267.
Sca-1 is involved in adhesion

Mitchell, P. O., Mills, T., O’Connor, R. S., Kline, E. R., Graubert, T., Dzierzak, E. and Pavlath, G. K. (2005). Sca-1 negatively regulates proliferation and differentiation of muscle cells. Dev. Biol. 283, 240-252.

Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gausin, V., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Garry, D. J. et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 100, 12313-12318.

Pedicenkov, V., Zent, R. and Hudson, B. G. (2004). tvβ3 and tvβ5 integrins bind both the proximal RGD site and non-RGD motifs within noncollagenous (NC1) domain of the α3 chain of type IV collagen. Implication for the mechanism of endothelial cell adhesion. J. Biol. Chem. 279, 2772-2780.

Plough, D. L., Maher, S. E. and Bothwell, A. L. (2002). Ly-6 superfamily members Ly-6E/E, Ly-6C, and Ly-6E recognize two potential ligands expressed by B lymphocytes. J. Immunol. 169, 5130-5136.

Qu-Petersen, Z., Deasy, B., Jankowski, R., Hezawa, M., Cummins, J., Pruchnic, R., Myttinger, J., Cao, B., Gates, C., Wernig, A. et al. (2002). Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J. Cell Biol. 157, 851-864.

Richter, C. and Yaffe, D. (1970). The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev. Biol. 23, 1-22.

Rupp, P. A., Visconti, R. P., Cizrók, A., Cheres, D. A. and Little, C. D. (2008). Matrical metalloproteinase 2-integrin tvβ3 binding is required for mesenchymal cell invasive activity but not epithelial locomotion: a computational time-lapse study. Mol. Biol. Cell 19, 5529-5540.

Sagi-Assif, O., Traister, A., Katz, B. Z., Anavi, R., Ekenasy, M. and Witz, I. P. (1996). TNFα and anti-Fas antibodies regulate Ly-6E.1 expression by tumor cells: a possible link between angiogenesis and Ly-6E.1. Immunol. Lett. 54, 207-213.

Sajid, M. and Stouffer, G. A. (2002). The role of tvβ3 integrins in vascular healing. Thromb. Haemost. 87, 183-193.

Sarig, R., Baruchi, Z., Fuchs, O., Nudel, U. and Yaffe, D. (2006). Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem Cells 24, 1769-1778.

Smith, H. W. and Marshall, C. J. (2010). Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. 11, 23-36.

Stanford, W. L., Haque, S., Alexander, R., Liu, X., Latour, A. M., Snodgrass, H. R., Keller, B. H. and Flood, P. M. (1997). Altered proliferative response by T lymphocytes of Ly-6A (Sca-1) null mice. J. Exp. Med. 186, 705-717.

Stupack, D. G. and Cheresh, D. A. (2004). Integrins and angiogenesis. Curr. Top. Dev. Biol. 64, 207-238.

Upadhya, G., Yin, Y., Yuan, H., Li, X., Derynck, R. and Glazer, R. I. (2011). Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-β signaling. Proc. Natl. Acad. Sci. USA 108, 7820-7825.

Westerman, K. A., Ao, Z., Cohen, E. A. and Leboulch, P. (2007). Design of a trans protease lentiviral packaging system that produces high titer virus. Retrovirology 4, 96.

Westerman, K. A., Penvose, A., Yang, Z., Allen, P. D. and Vacanti, C. A. (2010). Adult muscle ‘stem’ cells can be sustained in culture as free-floating myospheres. Exp. Cell Res. 316, 1966-1976.

Wu, P. L., Lee, S. C., Chuang, C. C., Mori, S., Akakura, N., Wu, W. G. and Takada, Y. (2006). Non-cytotoxic cobra cardiotoxin A5 binds to tvβ3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J. Biol. Chem. 281, 7937-7945.

Yaffe, D. (1968). Retention of differentiation potentials during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61, 477-483.

Vilaplana, P., Eskenilien, M., Salmela, K., Hovi, T. and Roivainen, M. (2010). VX-710 integrin receptors, tv integrins, are recognized by several non-RGD-containing echoviruses in a continuous laboratory cell line and also in primary human lung syncytial endothelial cells. J. Gen. Virol. 91, 155-165.

Zheng, B., Cao, B., Crisman, M., Sun, B., Li, G., Logar, A., Yap, S., Pollett, J. B., Drowley, L., Cassigno, T. et al. (2007). Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat. Biotechnol. 25, 1025-1034.