ABSTRACT

The study was carried out to observe the AM fungal diversity in some important medicinal plant species of Karulai hills, Malappuram district, Kerala. The root samples of all the collected plant species showed mycorrhizal infection. The percentage of AM fungal colonization ranged from 17 to 87. The highest AM fungal infection was exhibited in Desmodium triflorum (87%) and lowest in phyllanthus amarus (17%). The maximum spore population was observed in Desmodium gangeticum (874/100g of soil) and minimum in Piper longum (171/100g of soil). Totally 13 genera of AM fungi were found to be associated with the rhizosphere soil samples. Among them AM fungal species isolated, the dominant species is Rhizophagus fasciculatus. Ethnobotanical study reveals that the Cholanaykans tribes of Karullai hills posses great knowledge about the use of various herbal medicines to cure different ailments and are also conscious about the loss of their traditional medicinal practices. They know about number of medicinal plants and their applications.

Keywords: AM fungal, diversity, Ethanobotany, Cholanaykans, Karulai hills.

1. INTRODUCTION

Limited availability of soil nitrogen and phosphorus is frequently a major factor limiting sustainable productivity of tropical tree plantations. The situation in developing countries like India, fertilizer could be applied only for a few cash crops and stable food crops such as rice and wheat and not for afforestation of waste lands. Hence, microbial technologies hold great promise in the operation of scientific forest nursery managements by inoculating containers with biofertilizers viz., nitrogen fixing organisms, phosphate solubilising organisms and mycorrhizae. Of these, inoculation of forest trees with mycorrhizal fungi could help the plants to scavenge sparingly available nutrients in soil including phosphorus and also provide protection against plant pathogens and drought Baltruschat and Schonbeck (1).

Arbuscular mycorrhizal (AM) fungal symbiosis facilitates the survival, growth and establishment of plants in extreme habitats Asmelash (2). Many factors stimulate differential spore production by AM fungi in the rhizosphere, leads to seasonal fluctuation in AM fungal colonization and spore densities Koske (3), Gemma and Koske, (4). The most wide spread symbiosis amongst plants is mycorrhizal association which involves various root inhabiting fungi and feeder roots. Among the different type of mycorrhizal fungi, the AM fungi are widely distributed in most ecosystems and associated with many plant species.

The beneficial effect of AM fungi on plant growth has been highlighted by Rafiq (5) and by several researchers. It has been found that AM fungi contributed to increased rate of nutrient absorption especially phosphorus from soil, longevity of feeder roots, increased tolerance to drought, heavy metals, soil toxins, extremes of soil pH and high temperature. Many commercially important tree species like Acacia, Eucalyptus, Teak etc. are naturally colonized by AM fungi. It is well known that AM fungi protect plants against soil and root-borne pathogens Bagyaraj (6) thereby improving plant growth and vigor.

Microorganisms are present in great number on and near the feeder roots and they play vital roles in numerous physiological processes. These dynamic processes are medicated by association of microorganisms participating in saprophytic, pathogenic and symbiotic root activities. The major symbiotic associations on tree species are mycorrhizal fungi. AM fungi, play an important role in plant survival and in the community stability of vegetation in natural ecosystems. Mycorrhizal symbiosis plays a critical role in mineral nutrition of terrestrial plants. The mycorrhizal fungi are an important part of the soil microbial system because the prevalence of these associations on plants is so common under natural soil conditions.

Plants also find innumerable uses in the human civilization since its conception. The plants...
also find their use as medicine in human healthcare. Several traditional systems have evolved in the world, which use plants to cater to needs of healthcare and are still in practice around the world. The use of plants and natural products received a fillip when World Health Organization recognized plant and natural products based medicinal systems as alternative and complimentary. The use of medicinal plants for human healthcare is well documented in India, China, Egypt and Arab world Lalrinzuali (7).

The traditional systems of medicine prescribe drug as single plant products or a mixture of several plants depending on the disease, which are mainly administrated orally. The ethnobotanical and ethanomedicinal studies have great significance in the collection traditional knowledge, preparation of recorded data and in conservation of endangered medicinal plant species Prakash (8). The present work aims, to documentation of ethanobotanical importance of medicinal plants practiced by Cholanaikkalan tribes and Enumeration of the arbuscular mycorrhizal fungal species in the rhizosphere soil samples of these plant species in Karulai, Malapuram district, Kerala.

2. MATERIALS AND METHODS

2.1. Study area

Karulai village is located in Nilambur, Malappuram district, Kerala, India. It is situated 10 km away from the sub-district headquarters Nilambur and 48 km away from district headquarters Malappuram. Total extent of Karulai range is 26560.76 hectares which is notified under two reserve notifications viz., Amarambalam Reserve and Karimpuzha reserve. Karulai is the “Gods’ own village” in Kerala state with green forest (Fig. 1). The average annual temperature in Karulai is 27.7°C in a year and the average rainfall is 2500 mm (Table-1). Karimpuzha is the largest tributary of Chaliyar River, Kerala, India. It is very near to Nilambur. Karimpuzha originates from Western slopes between Mukuthi peak and Avanlanche Dam in Nilgiri district of Tamil Nadu.

2.2. Sample collection

Totally 45 plant species belonging to the 31 families were collected from Karulai during the September, 2016 - March 2017. Root samples and rhizosphere soil samples of plant species growing in and around areas of Karulai were collected. The root and soil samples were transported to the laboratory immediately after collection.

2.3. Root samples

Root samples, 5-15 cm long, were collected from the plant species during all three seasons of 2016 to 2017. During collection, care was taken to ascertain individual plants for which roots could positively identified as belonging to a particular plant species. For identification and nomenclature of the plant species the following manual was used Gamble(9) Nair and Henry (10).

2.4. Soil samples

The rhizosphere soils, dug up to a depth of 10 cm, were collected from each plant species after removing the surface of the soil and litter covering. These samples were kept in sterilized bags and were transported to the laboratory immediately after collection for the examination of arbuscular mycorrhizal fungal spore isolation.

2.5. Soil pH

The pH of soil samples was determined (soil-water suspensions 1:5) with the help of pH meter (Elico).

2.6. Sample preservation

In the laboratory, the roots were separated from the soil by wet sieving. The roots were washed with water and processed a fresh whenever possible. Otherwise the washed roots were fixed in formaldehyde-acetic acid-ethanol (FAA) solution (90:5:5 V/V/N) modified method of Phillips and Hayman (11). The soil sample was air dried and stored at 4°C until processed. Each soil samples was used for chemical analysis, spore counts and classification in to various types and multiplication, concentration and separation of AM fungal spore for identification.

2.7. Evaluation of AM infection

The root samples were cleared and stained in tryphan blue with a modified version of the Phillips and Hayman’s (12) method. Roots were cut into 1-2 pieces, heated at 90°C in 10% KOH for about 1 hour. For thicker and older roots, the duration was increased. The root segments were rinsed in water and acidified with dilute HCl. The root pieces were stained 0.05% tryphan blue in lacto phenol for 5 minutes and the excess stain was removed with clear lacto phenol.

The pigmented roots were heated at 90°C in 10% KOH for 2 hours, washed with fresh 10% KOH and immersed in an alkaline solution of H₂O₂ for 30 minutes at 25°C until bleached. They were rinsed thoroughly with water to remove the H₂O₂ acidified in dilute HCl and stained as described earlier. In some cases the modified method of Merryweather...
Arbuscular mycorrhizal infection in the roots was assessed following the grid line-intersect method of Giovannetti and Mosse (14). The stained root pieces were spread out evenly on a square plastic Petridish (10.2 x 10 cm). A grid of lines was marked on the bottom of the dish to form 1 cm inch squares. Vertical and horizontal gridlines were scanned under a dissecting microscope and the presence of infection was recorded at each point where the roots intersected a line. Four sets of observation were made, recording 100, 200, 300 and all the root gridline intersects. Each of the three replicates records was made on a fresh rearrangement of the same root sample.

The percentage of AM infection was calculated using the formula:

\[
\text{Percentage of infection} = \frac{\text{No. of root segments infected}}{\text{Total No. of root segments observed}} \times 100
\]

When sufficient root pieces are not available, the slide method Giovannetti and Mosse was followed. Root pieces, 1 cm long, were selected at random from a stained sample and mounted on microscope slide groups of 10. Presence of infection was recorded in each of the 10 pieces and present infection was calculated. To observe hyphae, vesicles and arbuscles under light microscope, the root pieces were mounted on glass slides either temporarily in lacto phenol. The cover slip was pressed gently to make the roots flattened and sealed with DPX medium.

2.8. Isolation of arbuscular mycorrhizal spores from the soil samples

Spores were recovered from the soil samples by the wet-sieving and decanting method Gerdemann and Nicolson (15). From each soil sample, 100 g of soil was taken and mixed with 1:1 of warm water in a large beaker until all the aggregates dispersed to leave a uniform suspension. Heavier particles were allowed to settle down. To remove organic matter and roots, the suspension was decanted through a 710 µm sieve. The suspension that passed through 710 µm was decanted 425 µm, 250 µm, 150 µm, 75 µm and 45 µm sieves consecutively. The residues in the respective sieves were collected in petridishes with about 10-20 mL water observed under a dissecting microscope for AM fungal spores.

The total spore count was calculated by counting the spores. Then the spores were separated using a glass pipette and segregated. The spore were mounted on clear glass slides using lacto phenol or polyvinyl alcohol lacto phenol (PVL), covered with cover slips and sealed with DPX medium.

2.9. Identification of AM fungi

Based upon microscopic characters, the AM fungal spores were identified. For identification and nomenclature, keys of the following manual authors were used: Raman and Mohankumar (16) and Redecker (17). Classification on based on color, size, shape, surface, structure, general nature of the spore contents and hyphal attachment. Photomicrographs were taken with the help of a Magnus Olympus Microscope.

2.10. Ethnobotanical study

Frequent field trips were conducted in the tribal villages located at Karulai hills, during the study period (2016-2017). Initial field trips were utilized to know about the land and people. As the tribal’s are mostly illiterate, no structural questionnaire approach was used. Ethno medicinal data were collected through conversation with beneficiaries, traditional healers and elder people. During the interviews, local names, useful plant parts, method of preparation and dosage were recorded. Subsequent field trips were conducted in different season in the same localities for confirming the data collected and also for gathering, additional medicinal information. The medicinal plant species were collected from wild and also from the tribal peoples homestead gardens for herbarium preparation. The method of gathering information was the same as suggested by Jain (18).

2.10.1. Cholanaikkan tribes

The Cholanaikkans are an ethnic group and primarily inhabit the southern Kerala state, especially silent valley national park. The Cholanaikkkan traditionally reside Karulai and Chunkathara forest ranges near Nilambur, Malappuram district. Until the 1960s, they were leading a secluded life with very limited contact with mainstream urban society. Since then, the Cholanaikkans traditional lifestyle has been altered. They currently have a 16% literacy rate. The Cholanaikkkan call themselves as ‘Malanaikan’ or ‘Sholanaikan’. They are called Cholanaikkan because they inhabit the interior forests. ‘Chola’ or ‘sholas’ means deep ever green forests. And ‘naikan’ means king. The Cholanaikkkan numbered 360 individuals in the 1991 but only 191 members today. They are found widely scattered in the forest ranges. They subsist on food-gathering, hunting and minor forest produce collection. Their language is a mixture of Kannada, Tamil and Malayalam. They use rice as
their staple food, also use wild tubers, roots, seeds, fruits, and meat.

Table 1. Temperature and rain fall data of Malappuram, District, during the September 2016 to March 2017

Year	Month	Temperature(0°C)	Rainfall (mm)	Humidity (%)	
		Maximum	Minimum		
2016	September	29.5	24.0	253.2	84
	October	30.6	24.0	280.8	81
	November	31.3	23.6	68.6	77
	December	31.6	22.7	82.7	74
2017	January	31.9	22.9	19.4	67
	February	32.2	23.3	7.8	71
	March	33.1	24.9	1.5	74

Table 2. AM Fungal spore population and root colonization of plants species in Karulai, Malappuram district, Kerala.

S. No	Plant name	Family	Habit	Soil pH	Type of colonization	% of Root Infection	Spore Population/100g of soil
1	Abrus precatorius L.	Leguminosae	Climber	5	+ - + +	58	693
2	Andrographis paniculata	Acanthaceae	Herb	5.8	+ - -	27	372
	(Burm.f) Nees						
3	Asparagus racemosus	Asparagaceae	Armed vine	5.1	+ - -	22	329
	Wild	Oxalidaceae	Herb	-	+ + -	27	268
4	Calotropis gigantea (L.) DC.	Asclepiadaceae	Shrub	4.8	+ - -	18	325
5	Canavalia gladiate (Jacq.)	Leguminosae	Twinig herb	4.6	+ + +	75	693
6	Cassia auriculata (L.)	Caesalpiniae	Shrub	5.6	+ + -	58	683
7	Catharanthus roseus	Aponynaeae	Shrub	5.9	+ - -	19	427
8	Centella asiatica (L.) Urb.	Apiaceae	Herb	4.2	+ - -	27	276
9	Cheilocostus speciosus	Costaceae	Herb	5.5	- - -		197
	(J.Koenig C.D.Specht)						
10	Clitoria ternatea (L.)	Leguminosae	Climber	6	+ - +	57	572
11	Costus pictus D.Don.	Costaceae	Herb	5.1	- - -	213	231
12	Crotalaria pallida	Leguminosae	Shrub	5.2	+ + +	73	842
13	Aiton.						
14	Curculigo orchoides	Hypoxidaceae	Herb	5.3	- - -		174
15	Curcuma aromatic Salisb	Zingiberaceae	Herb	4.8	- - -		266
16	Cymbopogon flexuosus	Poaceae	Herb	5.4	+ + -	38	372
	(Nees ex steud) W.Watson						
17	Desmodium L.	Leguminosae	Climber	5.6	+ + +	64	874
18	Datura metal L.	Solanaceae	Subshrub	5.9	+ + +	72	624
19	Derris pilulifera	Leguminosae	Herb	5.6	+ + +		874
Table 3. Identified AM fungal spore species list from Karulai, Malappuram district, Kerala.

S. No.	Genera	Species
1	Acaulospora	Aca. alpine, Aca. foveat, Aca. tuberculata, Aca. undulate
2	Ambispora	Ambispora callosa
3	Archaeospora	Archaeospora trappei
4	Claroideoglomus	Claroideoglomus claroideum

H- Hyphae, A- Arbuscules, V- Vescicle, +- Present, - - Absent
S. No.	Plant name	Family	Spores name		
1	Abrus precatorius L.	Leguminosae	Acaulospora alpine, Gigaspora albida, Glomus arboresce, Rhizophagus fasciculatus		
2	Andrographis paniculata (Burm.f.) Nees	Acanthaceae	Ambispora callosa, Diversispora arenaria, Pacispora scintillans		
3	Asparagus racemosus Willd	Asparagaceae	Acaulospora foveat, Gigaspora ramisporophora, Glomus multicaule, Rhizophagus fasciculatus		
4	Biophytmum sensitivum (L.) DC.	Oxalidaceae	Acaulospora undulate, Dentiscutata erythropus, Pacispora scintillans, Rhizophagus fasciculatus		
5	Calotropis gigantean (L.) R.Br	Asclepiadaceae	Ambispora callosa, Funneliformis coronatum, Rhizophagus fasciculatus		
6	Canavalia gladiate (Jacq.) DC.	Leguminosae	Acaulospora alpine, Glomus albium, Glomus multicaule, Scutellospora striata		
7	Cassia auriculata L.	Caesalpinaceae	Claraideoglomus clarioideum, Glomus ambisporum, Rhizophagus fasciculatus		
8	Catharanthus roseus (L.) G.Don.	Apocynaceae	Acaulospora foveat, Diversispora celata, Glomus arboresce		
9	Centella asiatica (L.) Urb.	Apiaceae	Acaulospora undulate, Gigaspora albida, Pacispora scintillans		
10	Cheilocostus speciosus (J.Koenig) C.D.Specht	Costaceae	Acaulospora undulate, Glomus albium, Glomus multicaule		
11	Clitoria ternatae L.	Leguminosae	Acaulospora undulate, Glomus albium, Glomus multicaule, Rhizophagus fasciculatus		
12	Costus pictus D.Don	Costaceae	Acaulospora alpine, Diversispora arenaria, Glomus arboresce, Rhizophagus fasciculatus		
13	Crotalaria pallida Aiton.	Leguminosae	Claraideoglomus clarioideum, Glomus ambisporum, Rhizophagus fasciculatus		
14	Curculigo orchideoides Gaertn	Hypoxidaceae	Acaulospora tuberculata, Funneliformis coronatum, Rhizophagus fasciculatus		
15	Curcuma aromatic Salisb.	Zingiberaceae	Claraideoglomus clarioideum, Gigaspora		
16	Cyclea peltata (Lam.) Hook.f.&Thomson	Menispermacae	ramisporophora		
17	Cymbopogon flexuosus (Nees ex steud) W.Watson	Poaceae	Dentiscutata erythropus, Glomus albium, Glomus arboresce		
18	Datura mental	Solanaceae	Acaulospora foveat, Entrophospora infrequens, Glomus globiferum, Rhizophagus fasciculatus		
19	Desmodium gangeticum (L.) DC.	Leguminosae	Acaulospora undulate, Glomus albium		
20	Desmodium triflorum (L.) DC.	Leguminosae	Claraideoglomus clarioideum, Entrophospora infrequens, Rhizophagus fasciculatus		
21	Elephantopus scaber L.	Compositae	Diversispora arenaria, Funneliformis coronatum, Rhizophagus fasciculatus		
22	Emilia sonchifolia (L.) DC.ex	Compositae	Archaeospora trappe, Gigaspora albida, Glomus canadense		
S. No.	Botanical Name	Family	Local Name	Habit	Part used
-------	----------------	--------	------------	--------	-------------------
23	Eute superbum (Roxb.) Cheesm.	Musaceae			
24	Euphorbia hirta L.	Euphorbiaceae			
25	Gliricidia sepium (Jacq.) Walp.	Leguminosae			
26	Gloriosa superb L.	Liliaceae			
27	Helicertes isora L.	Malvaceae			
28	Hemidesmus indicus (L.) R.Br.ex Schult	Apocynaceae			
29	Hydnocarpus pentandra (Buch-Ham)	Flacouriaceae			
30	Justicia adhatoda L	Acanthaceae			
31	Justicia gendarussa Burm.f	Acanthaceae			
32	Leucas aspera (Willd.) Link	Lamiaceae			
33	Maranda arundinacea L.	Marandaceae			
34	Microsorum diversifolium G.Forst	Polypodiaceae			
35	Mimosa pudica L.	Mimosaceae			
36	Oscimum sanctum L.	Lamiaceae			
37	Pandanus odoratissimus L.F	Areaceae			
38	Phyllanthus amarus Schumach & Thonn.	Euphorbiaceae			
39	Phyllanthus emblica L.	Euphorbiaceae			
40	Piper longum L.	Piperaceae			
41	Plumbago zeylanica L.	Plumbaginaceae			
42	Pseudarthria viscida (L.) Wight & Arn.	Leguminosae			
43	Psidium guajava L.	Myrtaceae			
44	Rotala aquatica Lour	Euphorbiaceae			
45	Scoparia dulcis L.	Scrophulariaceae			

Table 5. Details of enumerated plants used by the Cholanaikkan tribes from Karulai.
No.	Scientific Name	Family	Common Names	Description
3.	*Asparagus racemosus* Willd.	Asparagaceae	Sathavari.	Armed vine Herb Tuberous root.
4.	*Biophytum sensitivum* (L.) DC.	Oxalidaceae	Mukkutthi	Herb Aerial part
5.	*Calotropis gigantea* (L.) R.Br	Asclepiadaceae	Erikkku	Shrub Leaves
6.	*Canavalia gladiata* (Jacq.) DC.	Leguminosae	Valpayar	Twinig herb Seed
7.	*Cassia auriculata* L.	Caesalpiniaceae	Avara	Shrub Whole plant
8.	*Catharanthus roseus* (L.) G.Don	Apocynaceae	Shavam Naari	Shrub Whole plant
9.	*Centella asiatica* (L.) U.	Costaceae	Kudangal,Mutthil.	Herb Whole plant
10.	*Cheilocostus speciosus* (J.Koenig) C.D.Specht	Costaceae	Anakuva	Herb Rhizome
11.	*Clitoria ternatea* L.	Leguminosae	Sangu pushpam	Climber Leaves
12.	*Costus pictus* D.Don.	Costaceae	Insulin chedi	Herb Leaves
13.	*Crotalaria pallida* Aiton.	Leguminosae	Kilukkachedi	Shrub Roots
14.	*Curculigo orchioides* Gaertn	Hypoxidaceae	Nelappana	Herb Rhizome
15.	*Curcuma aromatica* Salisb.	Zingiberaceae	Kasthurimanjal	Herb Rhizome, oil
16.	*Cyclea peltata* (Lam.) Hook.f.&Thomson	Menispermacae	Padathali,Pattiechevian	Climber Leaves,Roots
17.	*Cymbopogon flexuosus* (Nees ex steud) W.Watson	Poaceae	Inchipullu, Thilappulu	Herb Leaves
18.	*Datura* metal L.	Solanaceae	Ummathu	Subshrub Fruit
19.	*Desmodium gangeticum* (L.) DC.	Fabaceae	Orila	Herb Leaves
20.	*Desmodium triflorum* (L.) DC.	Leguminosae	Nilamparanda	Herb Leaves
21.	*Elephantopus scaber* L.	Compositae	Anachuvadi	Herb Leaves, Root
22.	*Emilia sonchifolia* (L.) DC.ex Hook.f.&Thomson	Compositae	Mualchevian	Diffuse herb Whole plant.
23.	*Ensete superba* (Roxb.) Cheesman	Musaceae	Kalluvazha, Malavazha	Erect Rhizome
24.	*Euphorbia hirta* L.	Euphorbiaceae	Nilappala	Herb Root, Leaf
25.	*Gliricidia sepium* (Jacq.) Walp.	Leguminosae	Simakkonna	Short tree Leaves
26.	*Gloriosa superb* L.	Liliaceae	Menthonnii	Climber Leaves
27.	*Heliceres isora* L.	Malvaceae	Edampiri-valampiri	Large shrub Fruit
28.	*Hemidesmus indicus* (L.) R.Br.ex Schult	Asclepiadaceae	Nannari	Climber Root, Leaves
29.	*Hydrangea arborescens* (Buch-Ham)	Flacourtiaceae	Marrotti	Tree Seed
30.	*Justicia adhatoda* L.	Acanthaceae	Aadalodakam	Shrub Leaves
31.	*Justicia gendarussa* Burm.f	Acanthaceae	Vathakkodi	Shrub Leaves
32.	*Leucas aspera* (Willd.) Link	Lamiaeceae	Thumba	Herb whole plant
33.	*Maranda arundinacea* L.	Marandaceae	Kuvva	Shrub Rhizome
34.	*Microsorum diversifolium* G.Forst	Polypodiaece	Panal chedi	Shrub Tuber
35.	*Mimosa pudica* L.	Mimosaceae	Thottavadi	Sub shrub Whole plant
36.	*Ocimum sanctum* L.	Lamiaeceae	Tulsi	Herb Leaves
37.	*Pandanus odoratissimus* L.F.	Pandanaceae	Kaitha	shrub Inflorescence
38.	*Phyllanthus amarus* Schumach & Thonn.	Euphorbiaceae	Keezharnelli	Erect herb Whole plant
39.	*Phyllanthus emblica* L.	Euphorbiaceae	Nelli	Tree Fruit
40.	*Piper longum* L.	Piperaceae	Thippali	Scadent Fruit
Table 6. Mode of administration for the ailments of the medicinal plants used by the Cholanaikkan tribes from Karulai.

S. No.	Botanical Name	Ailments	Mode of administration
1.	Abrus precatorius L.	Swelling	The leaves and seed powder is made paste with water, applied externally to relieve, joint pains, swelling.
2.	Andrographis paniculata (Burm.f.) Nees	Diarrhea, Bronchitis, Chicken Pox and Coughs	Leaves and root decoction used for diarrhea, bronchitis, chicken pox, coughs, headaches and ear infection
3.	Asparagus racemosus Willd.	Stomach pain	Cooked tubers are eaten for stomach pain.
4.	Biophytum sensitivum (L.) DC.	Eye diseases	Juice taken from crushed plant parts is applied for eye itching and other eye problems
5.	Calotropis gigantea (L.) R.Br	Earache	The juice from the heated leaves of the plant is applied in to ear for earache.
6.	Canavalia gladiata (Jacq.) DC.	As a vegetable	The ripe seed can be eaten after cooking.
7.	Cassia auriculata L.	Diabetes	Grind the dried bark, flowers, leaves and fruits in qualities boil with water. It is used to treat diabetes.
8.	Catharanthus roseus (L.) G.Don	Eye diseases	The extract of the plant is useful for eye infection and irritation.
9.	Centella asiatica (L.) Urb.	Memory power	Consumption of whole plant juice can improves memory power
10.	Cheilocostus speciosus (J.Koenig) C.D.Specht	Intestinal worms	Rhizome has been used to treat fever, rash, and intestinal worms.
11.	Clitoria ternatea L.	Head ache, Inflammation	Leaf juice is used as a nasal drops in headache. The leaf can be grind in to fine paste and applied any kind of inflammation.
12.	Costus pictus D.Don.	Diabetes	Juice prepared from the leaves is used to treat diabetes.
13.	Costus pallida Aiton.	Swelling	The poultice made of the root applied in painful swelling of joint
14.	Curculigo orchioidees Gaertn	Blood purifier	Crushed tubers are mixed with milk is used as blood purifier.
15.	Curcuma aromatica Salisb.	Skin diseases	The oil is used to reduce pain and inflammation associated with snake bite.
16.	Cyclea peltata (Lam.) Hook.f.&Thomson	Hair cleaner, Stomach pain	Leaves crushed with water and it is applied over the hair as hair cleaner. Powder obtained from dried tubers are mixed with hot water used for stomach pain
17.	Desmodium gangeticum (L.) DC.	Headache, Stomachache	The oil extracted from the leaves is used directly to the skin for headache, stomachache, muscle pain
18.	Desmodium triflorum (L.) DC.	Snake poison	Fruit paste applied for snake poison
19.	Desmodium triflorum (L.) DC.	Kidney stones, Fever	A decoction of the leaves is used against kidney stones. The decoction of the root is employed to treat fever.
20.	Desmodium triflorum (L.) DC.	Skin problems, Digestion.	The crushed leaves are applied externally on wounds and skin problems. The whole plant is used to promoting

Table 6. Mode of administration for the ailments of the medicinal plants used by the Cholanaikkan tribes from Karulai.
No.	Plant Name	Part Used	Uses
21.	*Elephantopus scaber* L.	Fresh roots	Remedy for kidney stone.
22.	*Emilia sonchifolia* (L.) DC.ex DC.	Juice of the root	Used against head lice.
23.	*Ensete superba* (Roxb.) Cheesman	Flower heads	Chewed and kept in the mouth for about 10 minutes to protect teeth from decay.
24.	*Euphorbia hirta* L.	Fresh roots	Used to prepare a blend which is best for combating vomiting.
25.	*Gliricidia sepium* (Jacq.) Walp.	Insect repellent	The leaves paste is used as a sedative and insecticides.
26.	*Gloriosa superba* L.	Root paste	Used in the treatment of chronic rheumatism and used for bathing during child birth.
27.	*Helicteres isora* L.	Ear drops	Crushed pods heated with castor oil used as an ear drop.
28.	*Hemidesmus indicus* (L.) R.Br.ex Schult	Skin diseases	Crushed inflorescence is mixed with water and sprayed over mosquito affected areas.
29.	*Hemidesmus pentandra* (Buch-Ham)	Cough & cold	Oral administration of leaf juice is used for cough and cold.
30.	*Hemidesmus pentandra* (Buch-Ham)	Headache	Chewing of crushed fruits can reduce tooth ache.
31.	*Hemidesmus pentandra* (Buch-Ham)	Skin diseases	Leaves paste is used for curing stomachache, headache, skin diseases, insect bites and itching.
32.	*Justicia gendarussa* Burm.f	Cuts and wounds	Crushed leaf juice is applied over cuts and wounds.
33.	*Maranda arundinacea* L.	Mosquito repellent	Crushed inflorescence is mixed with water and sprayed over mosquito affected areas.
34.	*Microsorum diversifolium* G.Forst	Mosquito repellent	The root juice along with milk consumed in the morning is good to cure jaundice.
35.	*Mimosa pudica* L.	Eye diseases & Diabetes	Amla juice used to treat eye disease, diabetes, common cold and cough.
36.	*Ocimum sanctum* L.	Skin diseases	Leaves paste is used for curing stomachache, headache, skin diseases, insect bites and itching.
37.	*Pandanus odoratissimus* L.F	Mosquito repellent	Crushed inflorescence is mixed with water and sprayed over mosquito affected areas.
38.	*Phyllanthus amarus* Schumach & Thonn.	Jaundice	The root juice along with milk consumed in the morning is good to cure jaundice.
39.	*Phyllanthus emblica* L.	Cuts and wounds	Crushed leaf juice is applied over cuts and wounds.
40.	*Piper longum* L.	Headache	Leaves paste is used for curing stomachache, headache, skin diseases, insect bites and itching.
41.	*Plumbago zeylanica* L.	Internal bleeding	Oral administration of leaf paste is used for internal bleeding.
42.	*Pseudarthria viscosa* (L.) Wight & Arn.	Stomach problems	Leaves paste is used to the treatment of diarrhea and stomachache.
43.	*Psidium guajava* L.	Stomach ache	Consumption of root decoction is used for stomach ulcer.
44.	*Rotala aquatica* Lour	Kidney stones	Consumption of whole plant juice along with milk is remedy for kidney stone.
Their livelihood is totally dependent on the forest. The collection and selling of minor forest produce is the major source of income. The tribes, unlike any other tribes, under the leadership of the Mooppan (Elder) are willing to come out of the deep forest (Fig. 2).

3. RESULTS

AM fungal infection and spore population 45 plant species belongs to the 31 families and pH of the rhizosphere soil samples present in the Table 2 to 4. Totally 13 genera of AM fungi belonging to Acaulospora, Ambispora, Archaeospora, Claroideoglomus, Dentiscutata, Diversispora, Entrophospora, Funneliformis, Gigaspora, Glomus, Pacispora, Rhizophagus and Scutellispora were found to be associated with the rhizosphere soil samples (Fig. 3). Among them AM fungal species isolated, the Glomus is dominant genera and Rhizophagus fasciculatus is dominant species.
Totally 45 plant species belongs to 31 families were analyzed for AM fungal infection and spore population. Of these, the maximum spore population was observed in Leguminosae member of Desmodium gangeticum (874/100 g of soil) and minimum spore population was noticed in Piper longum (171/100 g of soil) belongs to the family Piperaceae.

The highest AM fungal infection was found in Desmodium triflorum (87%) belongs to Leguminosae and the least infection was recorded in Euphorbiaceae member of Phyllanthus amarus (17%). The plant species like Andrographis paniculata (27%), Acanthaceae, Asparagus racemosus (22%), Asparagusaceae, Biophyrum sensitivum (27%), Oxlalidaceae, Calotropis gigantea (18%), Asclepiadaceae, Catharanthus roseus (19%), Apocyanaeaceae, Centella asiatica (27%), Apiceae, Cycla peltata (26%), Menispermacese, Gloriosa superba (21%), Liliaceae, Justicia adhatoda (22%), J. gendarussa (28%) both species belong to Acaentaceae member, Maranda arundinacea (27%), Phyllanthus amarus (17%), Euphorbiaceae, Scoparia dulcis (19%), Scrophulariaceae, Hydrocarpus pentandra (25%), Flacourtiaaceae, Piper longum (18%), Costaceae, Rotula aquatic (27%), Boraginaceae, Psidium guajava (26%), Myrtaceae showed 10 to less than 30% of AM fungal infection.

The other species like Abrus precatorius (58%), Leguminosae, Cassia auriculata (58%), Caesalpiniaceae, Clitoria ternatea (57%), Leguminosae, Cymbopogon flexuosus (38%), Poaceae, Ensete superbum (47%), Musaceae, Gliriciadia sepium (48%), Leguminosae, Helicteruse isora (58%), Malvaceae, Hemidesmus indicus (32%), Apcieae, Leucas aspera (4%), Lamiaceae, Mimosa pudica (38%), Leguminosae, Osmium sanctum (47%), Lamiaceae, Microsorum diversifolium (31%), Polypodiaceae, showed 30 to less than 60% of AM fungal infection.

The rest of the species like Canavalia gladiate (75%), Crotalaria pellida (73%), Desmodium triflorum (87%), Desmodium gangeticum (64%) all the four species belongs to Leguminosae, the Compositae members of Elephantobus scaber, Emilia sonchifolia infected 63 and 69% respectively, and one species Pseuderthria viscida (58%) the member of Fabaceae showed 60 to less than 90% of AM fungal infection was found in the Costaceae members of Costus pictus and Cheilocostus speciosus. The species Curculigo orchioides belongs to Hypoxidaceae, Cureuma aromatic belongs to Zingiberaceae, the Areaceae member Pandanus odoratissimus, the Euphorbiaceae member Phyllanthus emblica and Plumbago zeylanica the member of Plumbaginaceae, also there is no hyphae, vesicles and arbuscular infection surprisingly these all the plant species rhizosphere soil simply showed the spore population.

In ethanobotanical study, 45 medicinal plant species belonging to 31 families used traditionally as herbal medicines for curing various diseases (Table 5). The study as carried out related to Cholnayyan tribes. Medicinal plants used in folk herbal remedies are prepared and administered in various forms in the Karulai hills.

Among these medicinal plants, herbs (40%) were found to be most used plants followed by shrub (24.4%), climber (8.8%), sub shrub (8.8%), erect shrub (4.4%), large shrub (4.4%), tree (4.4%) and scendent shrub (2.2%) (Fig. 4). Similar pattern of life form was reported by Giday et al., (2014). The most frequently utilized medicinal plant parts were leaves (53.3%) used for the preparation of medicines solely or mixed with other plant parts. It was followed by roots (26.6%), whole plant (17.7%), fruit (8.8%), rhizome (8.8%), seed (6.6%), stem (4.4%), and inflorescence (2.2%) (Fig. 5).

Medicinal plants used in folk herbal remedies are prepared and administered in various forms in the Karulai hills. Majority of the plant remedies were prepared by decoction and juice. The paste was prepared by grinding the fresh or dried plant parts with oil or water. Powder was prepared by the grinding of shade dried parts. The most frequently used mode of remedy administration is oral ingestion, followed by tropical uses, nasal drops, face crams, hair cleaners, and bath. The most treated illness of the Karulai hills using a number of medicinal plants are grouped in to several disorders. We found the highest number of plant species are used against cold, followed by cough, diabetes, kidney stones, stomachache, swelling, headache, eye diseases, ageist intestinal worms, toothache, snake and scorpion bites, mosquito repellent, vomiting, jaundice and rheumatism (Table 6). The present study noticed that, single disease can be cured with infusions of more than one plant. Similarly, the single plant can be utilized to cure more than one disease.

4. DISCUSSION

The arbuscular mycorrhizae are reported to be ubiquitous both geographically and ecologically (Mosse14). Seasonal fluctuations in moisture, temperature, pH and soil nutrient status show high and dramatic effects on arbuscular mycorrhizal spore population and percentage of root colonization. Soil physiological characters played an important role in distribution and density of mycorrhizal fungi. All the plant species 45 belongs to 31 families of rhizosphere soil samples observed the AM fungal spores. Among the AM fungal species
Glomus is most common. All the plant species colonized by AM fungi. The plant species infected by hyphae, vesicles and arbuscules. Grasses they have evolved the fibrous root system or an alternative phosphate acquisition strategy which enables them to do without mycorrhiza.

In the present finding the Poaceae member Cymbopogon flexuosus infected by arbuscular mycorrhizae. The infection in the plant species has 38%. Mycorrhizal association occurred naturally with many important forest trees. Ectomycorrhizae mostly occur in temperate forest whereas in tropics endomycorrhizae are more common. The present finding is in agreement with the results obtained by seasonal workers.

Brundrett and Abbott (20) analyzed the most of the plant species in tropical rain forests and the members of Leguminosae and the subfamilies of Papilomaceae and Mimosaceae. The same results was obtained in the present investigation that the Leguminosae members of Abrus precatorius, clitoria pictus, crotalaria pallida infected by AM fungal infection. Arbuscular micorrhiza is most common in Angiosperms, Gymnosperms, Pteridophytes and Bryophytes. The association of AM fungi with all the plants studies confirms the ubiquitous nature of AM Hayman (11) although the extent of root infection and number of AM spores found in the rhizosphere were different.

In this investigation, the mycorrhizal colonization was vary this may be the host specificity. The major ecosystem function of mycorrhizae is to assist host plants in the acquisition of resources from soil. This study displays the different degrees of AM fungi in plant host specificity. Such as mycorrhizal symbioses play fundamental roles in shaping plant communities, terrestrial ecosystems and high value for sustainability of this ecosystem.

REFERENCES

1. Baltruschat, H. and F. Schonbeck, (1972). The influence of endotrophic mycorrhiza on the infestation of tobacco by Thielaviopsis basicola. Phytopathology, 84: 172-188.
2. Asmelash, F., T. Bekele and E. Birhane, (2016). The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol. 7: 1095.
3. Koske, R.E. (1987). Distribution of mycorrhizal fungi along the latitudinal temperature gradient. Mycologia. 79: 55-68.
4. Gemma, J.N. and R.E. Koske, (1988). Seasonal variation in spore abundance and dormancy of Gigaspora gigantea and in mycorrhizal inoculum potential of a dune soil. Mycologia. 80: 211-216.
5. Rafiq, L., S. Razia, A.M. Nazir, K.G. Ajay and K.K. Koul, (2016). Beneficial effects of arbuscular mycorrhizal fungi on underground modified stem propagule plants. J. New Biol. Rep. 5(1): 41-51
6. Bagyaraj, D.J. (2014). Mycorrhizal Fungi. Proc Indian Natn. Sci. Acad. 80(2): 415-428.
7. Lalrinzuali, K., M. Vabeiryureilai and J. Ganesh Chandra, (2015). Ethnomedicinal use and phytochemical analysis of selected medicinal plants of Mizoram, India. Trends in Green Chemistry. 1(18): 1-9.
8. Prakash, J.W., R.D. Anpin Raja, N. Asbin Anderson, Christhudhas Williams, G.S. Regini, K. Bensar (2008). Ethnomedicinal plants used by Kani tribes of Agasthiyarmalai biosphere reserve southern Western Ghats. Indian J. Trad. Know. 7(3): 410-413.
9. Gamble, J.S. (1957). (Repr. Ed.). The Flora of the Presidency of Madras, Vol. 1. Botanical Survey of India, Calcutta.
10. Nair, N.C. and A.N. Henry, (1983). Flora of Tamil Nadu, India, Series 1. Analysis Vol. 1. Botanical Survey of India, Coimbatore.
11. Hayman, D.S. (1982). Influence of soils and fertility of activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology 72: 1119-1125.
12. Arias, I., M.J. Sainz, C.A. Grace and D.S. Hayman, (1987). Direct observation of vesicular Arbuscular mycorrhizal infection in fresh unstained roots. Trans. Br. Mycol. Soc. 89: 128-131.
13. Merryweather, J.W. and J.H. Fitter, (1991). A modified methods for elucidating the structure of the fungal partner in a vesicular arbuscular mycorrhiza. Mycol. Res. 95: 1435-1437.
14. Giovannetti, M. and B. Mosse, (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84: 489-500.
15. Gerardmann, J.W. and T.H. Nicolson, (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, Trans. Br. Mycol. Soc. 46: 35-244.
16. Raman, N. and V. Mohankumar, (1988). Techniques in mycorrhizal research. University of Madras, Madras, p. 279.
17. Redecker, D., A. Schubler, H. Stockinger, S.L. Sturmer, J.B. Morton and C. Walker, (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). *Mycorrhiza*. **23**: 515-531.

18. Jain, S.K. (1989). Methods and Approaches in Ethnobotany. Society of Ethnobotanists, CDRI, Lucknow, p.192.

19. Mosse, B., D.P. Stribley and F. Le Tacon, (1981). Ecology of mycorrhizae and mycorrhizal fungi. *Adv. Microb. Ecol.* **5**: 137-210.

20. Brundrett, M.C. and L.K. Abbott, (1991). Roots of Jarrah Forest Plants I. Mycorrhizal Associations of Shrubs and Herbaceous Plants. *Australian J. Botany*. **39**(5): 445-457.