CASE REPORT

Management of Fournier’s gangrene during the Covid-19 pandemic era: make a virtue out of necessity

Alessio Paladini, Giovanni Cochetti*, Angelica Tancredi, Matteo Mearini, Andrea Vitale, Francesca Pastore, Paolo Mangione and Ettore Mearini

Abstract

Background: Fournier’s gangrene (FG) is a necrotizing fasciitis caused by aerobic and anaerobic bacterial infection that involves genitalia and perineum. Males, in their 60 s, are more affected with 1.6 new cases/100,000/year. Main risk factors are diabetes, malignancy, inflammatory bowel disease. FG is a potentially lethal disease with a rapid and progressive involvement of subcutaneous and fascial plane. A multimodal approach with surgical debridement, antibiotic therapy, intensive support care, and hyperbaric oxygen therapy (HBOT) is often needed.

We present the inpatient management of an FG case during the Covid-19 pandemic period. A narrative review of the Literature searching “Fournier’s gangrene”, “necrotizing fasciitis” on PubMed and Scopus was performed.

Case presentation: A 60 years old man affected by diabetes mellitus, with ileostomy after colectomy for ulcerative colitis, was admitted to our Emergency Department with fever and acute pain, edema, dyschromia of right hemiscrotum, penis, and perineal region. Computed tomography revealed air-gas content and fluid-edematous thickening of these regions. Fournier’s Gangrene Severity Index was 9. A prompt broad-spectrum antibiotic therapy with Piperacillin/Tazobactam, Imipenem and Daptomycin, surgical debridement of genitalia and perineal region with vital tissue exposure, were performed. Bedside daily surgical wound medications with fibrine debridement, normal saline and povidone-iodine solutions irrigation, iodoform and fatty gauze application, were performed until discharge on the 40th postoperative day. Every 3 days office-based medication with silver dressing, after normal saline and povidone-iodine irrigation and fibrinous tissue debridement, was performed until complete re-epithelialization of the scrotum on the 60th postoperative day.

Conclusions: FG is burdened by a high mortality rate, up to 30%. In the literature, HBOT could improve wound restoration and disease-specific survival. Unfortunately, in our center, we do not have HBOT. Moreover, one of the pandemic period problems was the patient’s displacement and outpatient hospital management. For all these reasons we decided for a conservative inpatient management. Daily cleaning of the surgical wound allowed to obtain its complete restoration avoiding surgical graft and hyperbaric oxygen chamber therapy, without foregoing optimal outcomes.

Keywords: Fournier’s gangrene, Necrotizing fasciitis, Urologic emergency, Surgical debridement

*Correspondence: giovannicochetti@libero.it

Department of Medicine and Surgery, Urology Clinic, University of Perugia, 06129 Perugia, Italy

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

The Fournier’s gangrene (FG) is a necrotizing fasciitis caused by polymicrobial aerobic and anaerobic bacterial infection that involves genitalia and perineum [1]. Males, in their 60 s, are more affected with 1.6 new cases/100 000/year and the male:female ratio is 10:1. Main recognized risk factors are states of immune system impairment as oldness, alcohol and tobacco consumption, cardiovascular diseases, renal and liver impairment, diabetes mellitus, malignancy and inflammatory bowel disease [2–5].

FG is a potentially lethal disease with a rapid and progressive involvement of the skin, the subcutaneous fat tissue until fascial planes. Inflammation and oedema lead to obliterating endarteritis with thrombosis of blood subcutaneous vessels and consequent ischemia and necrosis along dartos fascial, Colle’s fascia, Scarpà’s fascia and abdominal wall [6].

FG is a potentially lethal condition with a high mortality rate of 20–30% [7]. The standard of care is a prompt multimodal approach including intravenous fluid resuscitation, broad-spectrum antibiotic therapy, surgical extensive debridement and successive wound cares [8, 9]. In this aggressive disease the time is gold.

In order to improve the knowledge on the field, we describe a case of a male affected by several predisposing factors at high risk of death for FG, immediately treated with a successful multimodal approach during the Covid-19 pandemic period.

A narrative review of the literature was performed on PubMed and Scopus using as researching terms “Fournier’s gangrene”, “necrotizing fasciitis” . All the available English language full-text original article, case series, case report of interest, published from January 2013 until December 2021, were reported in the Table 1 [10–198]. Review articles, meeting reports and congress poster and abstracts were all excluded.

Case presentation

A 60 years old man affected by diabetes mellitus, Ler-iche syndrome, with ileostomy after emicolectomy for ulcerative colitis (RCU), was admitted to our Emergency Department with fever, acute pain, oedema, dyschromia of right hemiscrotum, penis, and perineal region (Fig. 1).
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Septi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
Bensardi FZ et al. [10]	2021	70 M, 14 F	84	49	ND	13	ND	0	ND	6
Vargo E et al. [11]	2021	M	1	64	1	9	0	0	ND	0
Trama F et al. [12]	2021	M	1	56	1	ND	0	1	Escherichia coli, Bacteroides caccae	0
Elahabadi I et al. [13]	2021	M	1	25	1	30	1	ND	ND	0
De La Torre M et al. [14]	2021	M	1	24	1	24	1	ND	Streptococcus pyogenes (Group A)	0
Winyard JC et al. [15]	2021	M	1	16	1	ND	0	ND	ND	0
Gul MO et al. [16]	2021	13 M, 9 F	22	56.7 ± 12	1.7 ± 2.4	24.1 ± 189	10	ND	E. Coli(6) + S. aureus (1) / Proteus (1) / + Corynebacterium (1) / + Enterococcus (1) / + Acinetobacter (2) / P. Mirabilis (1) / A. baumannii (1) / P. Aeruginosa (1) / K. pneumoniae + Acinetobacter (1) / S. Agalactiae (1) / E. faecium (3) / S. Epidermidis (1) / B. fragilis (1) / Pseudomonas + E. Faecium (1)	6
Rivera-Alvarez F et al. [17]	2021	M	1	65	1	ND	ND	ND	E. Coli, E. Faecalis, and Bacteroides species	ND
Michalczyk Ł et al. [18]	2021	M	35	58	3 (13) / 2 (22)	26 (13) / 23 (22)	ND	13	E. Coli, P. Aeruginosa, E. Faecalis	4
Moon JY et al. [19]	2021	M	1	66	2	15	1	0	ND	0
Lahourar R et al. [20]	2021	M	1	35	1	15	1	ND	S. Aureus	0
Shah T et al. [21]	2021	M	1	62	1	17	0	0	ND	0
Tsuge I et al. [22]	2021	M	1	64	3	ND	0	0	E. tarda and S. anginosus, E. Coli, E. Faecalis	0
Duarte I et al. [23]	2021	M	1	65	1	ND	1	0	E. Coli, E. Faecalis, K. Pneumoniae, P. Mirabilis, C. albicans	1
Wong R et al. [24]	2021	65 M, 14 F	79	60	1 (62), 2 (17)	5	13	ND	ND	13
Beecroft NJ et al. [25]	2021	33 F, 110 M	143	55 F, 53.5 M	2	11 (M), 13 (F)	ND	ND	Gram positive, gram negative, fungal	2, 8 M
Oyelowo N et al. [26]	2021	M	31	60 ± 12	1–2 (24), 3–4 (5), > 4 (2)	15 (2), 20–30 (19), 35–42 (8), > 42 (2)	4	ND	Polymicrobial flora (most common: E. coli)	3
Kundan M et al. [27]	2021	M	1	50	> 1	ND	ND	ND	ND	0
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
---------------------------	------	--------	-------------	----------	----------------------	-----------------------	-------------	--------------------------	---	-------------
Parkin CJ et al. [28]	2021	M	1	51	> 2	20	1	ND	ND	0
Grabińska A et al. [29]	2021	M	1	60	> 1	46	1	ND	E. Coli, P. Aeruginosa	0
Sahra S et al. [30]	2021	M	1	45	2	ND	0	0	A. schaali	0
Provenzano D et al. [31]	2021	M	1	66	3	20	ND	0	E. coli	0
Elbeddini A et al. [32]	2021	F	1	71	4	ND	ND	ND	Gram-positive cocci (S. anginosus), bacilli Gram-negative, Gram-positive	0
Kostovski O et al. [33]	2021	F	1	59	2	35	1	ND	ND	0
El Hasbani G et al. [34]	2021	M	1	69	1	ND	ND	0	K. pneumoniae, C. albicans	1
Voordeckers M et al. [35]	2020	M	1	53	2	ND	ND	0	P. aeruginosa	1
Sihombing AT et al. [36]	2020	M	1	80	2	ND	1	ND	ND	1
Maghsoudi LH et al. [37]	2020	M	1	30	1	21	ND	ND	ND	0
Zhang N et al. [38]	2020	M, F	12	60	ND	ND	3	10	E. coli, Paeruginosa, E. Faecalis, S.aureus, Acinetobacter	1
Rakusic Z et al. [39]	2020	M	1	76	3	49	ND	ND	P. mirabilis, P. aeruginosa, E. faecalis	1
Kasbawala K et al. [40]	2020	F	1	37	6	28	1	ND	ND	0
Barone M et al. [41]	2020	M	1	80	1	7	1	ND	ND	0
Batmaz O et al. [42]	2020	M	1	70	3	ND	1	ND	Klebsiella pneumoniae spp	1
Syllaios A et al. [43]	2020	M	1	66	3	25	ND	1	S. anginosus, S. aureus e C. koserii	0
Padilla ME et al. [44]	2020	M	1	5	1	56	ND	1	S. Marcences	0
Creta M et al. [45]	2020	M, F	161	66.5 ± 15.2	139	ND	ND	72	ND	46
Hatipoglu E et al. [46]	2020	M, F	35	58.1 ± 12.71	> 1	ND	12	2	ND	2
Elbeddini A et al. [47]	2020	M	1	72	3	30	ND	1	Bacteroides ovatus, Prevotella denticola e Actinomyces species	0
Ellegård L et al. [48]	2020	F	1	52	4	18	1	1	Mixed flora (aerob e anaerobi)	0
Lindsay PJ et al. [49]	2020	M	1	51	6	30	1	ND	ND	0
Hyun DW et al. [50]	2020	M	1	62	> 3	84	1	1	ND	0
Dowd K et al. [51]	2019	M	1	43	2	ND	1	0	ND	0
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Septi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
----------------------------	-------	--------	-------------	----------	----------------------	-----------------------	-------------	---------------------------	--	-------------
Del Zingaro M et al. [52]	2019	M	1	52	1	17	0	ND	S. lugdunensis	0
Zhang C et al. [53]	2019	F	13 M 3 F	16	30–76	29.6	ND	16	ND	0
Del Zingaro M et al. [6]	2019	M	1	76	1	ND	0	1	P. Puttia, S. Maltophilia, S. Haemolyticus, S. Warneri	0
Amin A et al. [54]	2019	M	1	45	4	40	1	ND	S. aureus, F. magna, C. amycolatum	0
Nagano Y et al. [55]	2019	M	1	34	1	41	0	ND	Staphylococcus aureus (MRSA)	0
Kus NJ et al. [56]	2019	F	1	84	1	ND	1	1	Mixed flora, A. europaeus and A. schaalii	0
Rodler S et al. [57]	2019	M	1	39	2	27	1	1	Peptostreptococcus anaerobius, C. Albicans	0
Çalışkan S et al. [58]	2019	M	35 M 1 F	36	59.27±1.291	>1	19±1044	ND	ND	ND
Magdaleno-TapiaJ et al. [59]	2019	M	1	38	2	ND	ND	ND	ND	ND
Joury A et al. [60]	2019	M	1	51	1	ND	1	1	S. aureus (MRSA), Edwadiella tarda, K. oxytoa, anaerobic Gram-negative bacteria, Prevotella	ND
Sparenborg JD et al. [61]	2019	M	41 M 1 F	42	53.45	32	19.6	11	ND	3
Elshtemy Get al. [62]	2019	M	1	57	2	ND	ND	1	ND	ND
Lin HC et al. [63]	2019	M	56 M 4 F	60	53.0±15.9	1 (51), 28(1), 3(1)	ND	2	E. Coli, E. Faecalis, P. Mirabilis, K. Pneumoniae, Peptostreptococcus, P. Aeruginosa	1
Rachana K et al. [64]	2019	M	1	50	1	18	0	ND	E. Coli, B. Fragilis, F. varium, P. aeruginosa	0
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsis / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
----------------------	------	--------	-------------	----------	----------------------	-----------------------	--------------	---------------------------	--	-------------
Louro JM et al. [65]	2019	14 M, 1 F	15	66.9	3.3	46.8	ND	ND	mixed flora (7), negative results (2). MO found: S. aureus, E. faecalis, E. coli, A. baumannii, P. aeruginosa, S. pyogenes, E. faecium, E. cloacae, K. pneumoniae, S. epidermidis, B. fragilis, Corynebacterium, Candida albicans, A. fumigatus. Multidrug resistant S. aureus (1)	ND
Escobar-Vidarte MF et al. [66]	2019	F	1	80	1	ND	ND	1	ND	ND
Onder CE et al. [67]	2019	M	1	64	3	30	ND	ND	ND	ND
Heijkoop B et al. [68]	2019	ND	14	ND	6	36	8	3	ND	1
Mostaghim A et al. [69]	2019	M	1	38	1	ND	0	1	ND	0
Zhou Z et al. [70]	2019	M	1	58	1	ND	1	ND	ND	0
Majdoub W et al. [71]	2019	F	1	70	0	0	1	0	E. coli, Bacteroides spp	1
Aslan N et al. [72]	2019	M	1	12	1	8 h	1	0	P. Aeruginosa	1
AlShehri YA et al. [73]	2019	M	1	58	1	60	ND	1	ND	0
Moussa et al. [74]	2019	M	1	58	1	18	0	0	S. aureus, E. coli	0
Hahn et al. [75]	2018	33 M, 11 F	44	54.4	3.3	47	18	ND	Polymicrobial flora (Escherichia coli, Enterococcus, Staphylococcus, Klebsiella) (7), Monomicrobial flora (Staphylococcus, Escherichia coli, Klebsiella, Streptococcus, Enterococcus, Candida) (22)	9
Overholt et al. [76]	2018	M	1	44	2	13	0	0	Escherichia coli, Enterococcus avium, Gemella morbillorum	0
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
--------------------	------	--------	-------------	----------	----------------------	-----------------------	-------------	----------------------------	---	-------------
Pehlivanli et al. [77]	2018	M/F	23	65.9	6	18	ND	ND	Escherichia coli, Klebsiella, Staphylococci, Enterobacter	5
Kranz et al.[78]	2018	M	154	62.7	4.2	26.6	104	13	mixed flora (73), Streptococci (12), Staphylococci (10), Enterococcus (10), Citrobacter (1), Pseudomonas (1), Candida (2)	17
Kobayashi et al. [79]	2018	M	1	68	1	59	1	0	Escherichia coli	0
Pandey et al. [80]	2018	M	1	65	1	ND	ND	ND	ND	ND
Matsuura et al. [81]	2018	M	1	88	ND	ND	ND	0	ND	1
Sen et al. [82]	2018	M	1	47	1	18	0	0	Rhizobium radiobacter	0
Elsaket et al. [83]	2018	M/F	44	51	1.33	26	6	ND	Staphylococcus aureus, Acinetobacter, Streptococcus pyogenes, Proteus mirabilis	5
Takano et al. [84]	2018	F	1	44	1	ND	ND	0	Streptococcus constellatus, Clostridium ramosum	1
Semenič et al. [85]	2018	M	1	30	2	16	1	0	Escherichia coli, Bacteroides fragilis, Prevotella oralis, Streptococcus anginosus	0
Abbas-Shereef et al. [86]	2018	M	1	71	>1	30	1	0	Pseudomonas aeruginosa, Klebsiella pneumoniae, Candida albicans, Staphylococci, Group A Streptococcus	0
Wetterauer et al. [87]	2018	M	20	66	4	ND	15	0	Escherichia coli, Klebsiella, Pseudomonas aeruginosa	3
Demir et al. [88]	2018	M/F	74	57.6	187	23.18	ND	ND	Escherichia coli, Staphylococcus aureus, Streptococcus, Enterobacter, Pseudomonas aeruginosa, Bacteroides, Proteus, Clostridium	6
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
-------------------------	------	--------	-------------	----------	----------------------	-----------------------	-------------	---------------------------	--	-------------
Chen et al. [89]	2018	M	1	29	2	11	1	0	Streptococcus Agalactiae, Staphylococcus haemolyticus, Escherichia coli, peptostreptococci, Prevotella corporis	0
Yuan et al. [90]	2018	M	1	62	1	ND	1	ND	Enterococcus avium, Escherichia coli	ND
Katsimantas et al. [91]	2018	M	1	68	2	17	0	0	Enterococcus faecalis, Streptococcus gordonii, Prevotella melaninogenica	0
Althunayyan et al. [92]	2018	F	1	36	2	31	1	0	Escherichia coli, Acinetobacter baumannii	0
Pittaka et al. [93]	2018	F	1	24	>1	14	ND	ND	Bacteroides fragilis, Clostridium ramosum, Gram positive cocci	1
Taylor et al. [94]	2018	F	1	58	1	ND	1	ND	Streptococcus dysgalactiae, Escherichia coli, Staphylococcus	0
Dos Santos et al. [95]	2018	29 M 11 F	40	51.7	1.8	19.6	9	ND	Enterobacteriaceae, Bacteroides, Parabacteroides, Klebsiella, Staphylococcus, Lactobacillus acidophilus, Escherichia coli	9
Fukui et al. [96]	2018	M	1	85	1	104	1	0	ND	0
Kuzaka et al. [97]	2018	13 M	13	59.6	>1	31.9	0	ND	Escherichia coli, Proteus, Klebsiella, Pseudomonas, Staphylococcus, Enterococcus, Clostridium	32
Goel et al. [98]	2018	M	1	60	1	14	0	0	ND	0
Ghodoussipour et al. [99]	2018	54 M	54	49.3	39	37.5	53	ND	Escherichia coli, Proteus, Klebsiella, Pseudomonas, Staphylococcus, Enterococcus, Clostridium	3
Tenório et al. [100]	2018	99 M 25 F	124	50.8	ND	21.7	ND	1	Parabacteroides distasonis, Prevotella melaninogenica, Fusobacterium nucleatum, Bacteroides	0
Weimer et al. [101]	2017	M	1	55	>1	90	1	0	Streptococci, Enterobacter, gram +, Klebsiella pneumoniae	0
Wähmann et al. [102]	2017	F	1	46	3	ND	1	ND	Streptococci, Enterobacter, gram +, Klebsiella pneumoniae	0
Wanget al. [103]	2017	M	1	61	1	ND	ND	ND	Streptococci, Enterobacter, gram +, Klebsiella pneumoniae	0
Table 1 (continued)

Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
Yücel et al. [104]	2017	11 M, 14F	25	54.3	2.4	21.4	ND	0	Escherichia coli, Acinetobacter, Streptococci, Staphylococcus aureus, Pseudomonas, Klebsiella	1
Üreyen et al. [105]	2017	18 M, 11F	29	51.5	1.8	11.5	17	ND	Escherichia coli, Pseudomonas, Staphylococcus aureus	6
Dell’Atti et al. [106]	2017	M	1	75	1	3	ND	0		
Yanaral et al. [107]	2017	54 M	54	58.3	1.4	15.3	ND	0	Streptococci, Escherichia coli, Pseudomonas	4
Chia et al. [108]	2017	42 M, 17F	59	56	>1	19	11	ND		
Kordahi et al. [109]	2017	M	1	57	>1	ND	ND	ND	Streptococci, Escherichia coli, Pseudomonas	9
Hong et al. [110]	2017	18 M, 2F	20	61.8	1.55	36.9	15	0	Escherichia coli, Streptococcus, Pseudomonas aeruginosa	5
Sanders et al. [111]	2017	M	1	70	2	ND	1	0	Escherichia coli, P. mirabilis	
Ferretti et al. [112]	2017	19 M, 1F	20	56	4	31.7	17	4	ND	3
Kumar et al. [113]	2017	M	1	41	2	15	1	0	Streptococcus anginosus, anaerobes, Gram -	0
Ioannidis et al. [9]	2017	20 M, 4F	24	58.9	1	16	18	3	Escherichia coli (11), Klebsiella pneumoniae (3), Pseudomonas aeruginosa (3), Acinetobacter baumannii (2), Proteus mirabilis (2), Providencia stuartii (1)	5
Bocchiotti et al. [114]	2017	M	1	40	3	ND	0	0	Escherichia coli, Streptococcus pyogenes, Prevotella loeschei	0
Choi et al. [115]	2017	F	1	31	1	17	0	0	Streptococcus anginosus, Pseudomonas, Clostridium	0
Sawayama et al. [116]	2017	M	1	66	1	ND	0	0	Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis	0
Lauerman et al. [117]	2017	125 M, 43F	168	ND	>1	ND	92	0		6
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsis / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
--------------------	------	--------	-------------	----------	-----------------------	-----------------------	--------------	----------------------------	--	-------------
Smith et al. [118]	2017	M	1	50	> 1	ND	1	0	ND	0
Baek et al. [119]	2017	F	1	57	1	ND	1	ND	ND	0
Huang et al. [120]	2017	M	1	46	1	ND	1	0	ND	0
Morais et al. [121]	2017	12 M, 3 F	15	70	ND	32	ND	0	Escherichia coli, Proteus, Staphylococcus aureus, Enterococcus faecalis	4
Okumura et al. [122]	2017	M	1	70	1	39	1	0	Klebsiella pneumoniae, Group G Streptococcus	0
Osbun et al. [123]	2017	ND	165	53.4	1.97	16.6	43	ND	ND	11
Kahn et al. [124]	2017	M	147	52	2.5	19	112	ND	ND	11
Misiakos et al. [125]	2017	47 M, 15F	62	63.7	4.8	19.7	32	0	ND	11
Obi [126]	2017	M	4	34.3	1	17.3	0	0	Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis	0
Pernetti et al. [127]	2016	M	1	70	1	21	1	ND	ND	0
Faria et al. [128]	2016	M	1	46	1	4	1	0	ND	0
Ozkan et al. [129]	2016	7 M, 5 F	12	62.4	5.7	19.6	ND	0	Polymicrobial flora (6), monomicrobial (6)	0
Yoshino et al. [130]	2016	M	1	64	1	33	1	0	Streptococcus. alpha-emolitico	0
Crowell et al. [131]	2016	M	1	54	3	18	1	0	Rhizopus (zygomycosis)	1
Taken et al. [132]	2016	57 M, 8 F	65	52.5	2.5	9.2	13	0	Escherichia coli, Streptococcus, Staphylococcus aureus, Enterobact. Bacteriaes, Pseudomonas aeruginosa, Proteus, Clostridium	6
Wanis et al. [133]	2016	M	1	28	1	14	1	0	ND	0
Sheehy et al. [134]	2016	M	1	48	2	ND	1	0	Polymicrobial flora	0
Sarkut et al. [135]	2016	32 M, 32F	64	57	3	16.6	ND	ND	ND	18
Sinha et al. [136]	2015	F	1	30	1	ND	1	ND	ND	0
Chalya et al. [137]	2015	82 M, 2 F	84	34	ND	28	ND	ND	ND	24
Namkoong et al. [138]	2015	M	1	61	1	ND	1	0	ND	0
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
-------------------	------	--------	-------------	----------	----------------------	----------------------	-------------	---------------------------	---	-------------
Mohor et al. [139]	2015	M	1	59	> 1	ND	1	0	ND	0
McCormack et al. [140]	2015	25 M	25	56.6	1.4	ND	3	ND	Polymicrobial flora	5
Tarchouli et al. [141]	2015	64 M, 8F	72	51	3.2	28.7	17	56	Polymicrobial flora (57), Monomicrobial flora (1)	12
Paonam et al. [142]	2015	M	1	65	1	ND	1	0	Escherichia coli, Enterococcus	0
Oguz et al. [143]	2015	34 M, 9F	43	52	> 1	ND	43	0	Polymicrobial flora (Escherichia coli 48%)	6
Asahata et al. [144]	2015	M	1	70	1	ND	0	0	Listeria monocytogenes, Escherichia coli	0
Ye et al. [145]	2015	M	1	47	1	21	0	0	Pseudomonas aeruginosa	0
Danesh et al. [146]	2015	8 M	8	44	> 1	ND	ND	0	Enterococcus, Pseudomonas, Staphylococcus haemolyticus, Proteus, Clostridium	3
Ossibi et al. [147]	2015	M	1	60	1	ND	0	0	ND	0
Grassi et al. [8]	2015	2 M	2	42.5	0.5	ND	2	1	Staphylococcus warneri	1
Sarmah et al. [148]	2015	M	1	68	1	1	1	0	Bacteroides fragilis	1
Papadimitriou et al. [149]	2015	M	1	56	1	90	1	0	Polymicrobial flora	0
Ozsaker et al. [150]	2015	M	1	69	1	ND	0	0	ND	0
Toh et al. [151]	2014	M	1	61	6	ND	1	0	Polymicrobial flora	0
Parry et al. [152]	2014	M	1	48	1	ND	0	0	ND	0
Tena et al. [153]	2014	M	1	73	1	55	1	0	Actinomyces funkei, Clostridium hathewayi, Fusobacterium necrophorum	0
Matilsky et al. [154]	2014	M	1	51	4	30	1	0	Polymicrobial flora	0
Lee et al. [155]	2014	3 M	3	50.7	ND	ND	ND	ND	Polymicrobial flora	0
Di Serafino et al. [156]	2014	M	1	63	1	ND	ND	ND	ND	0
Galukande et al. [157]	2014	2 M	2	35.5	2.5	ND	0	0	ND	0
Tattersall et al. [158]	2014	M	1	61	2	47	1	ND	Escherichia coli	0
Omisanjo et al. [159]	2014	11 M	11	51.9	>1	22.7	7	0	Klebsiella (10), Escherichia coli, Pseudomonas aeruginosa, no microbes (1)	0
Rubegni et al. [160]	2014	2 M	2	58.5	1	ND	1	0	ND	1
Table 1 (continued)

Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	SepsI / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
Dinc et al. [161]	2014	M	1	51	> 1	16	0	0	ND	0
Dayan et al. [162]	2014	M	1	27	> 1	ND	0	0	ND	0
Ludolph et al. [163]	2014	M	3	48.7	> 1	ND	0	0	ND	0
Ozkan et al. [129]	2014	M, F	12	62.4	5.7	19.6	ND	0	ND	0
Dinc et al. [161]	2014	M	1	74	2	ND	0	0	Proteus vulgaris, Prevotella denticola, Peptostreptococcus species	ND
Ho et al. [165]	2014	F	1	78	1	14	0	0	ND	1
Aslanidis et al. [166]	2014	F	1	23	> 1	ND	1	0	Candida albicans, Staphylococcus epidermidis, Klebsiella pneumoniae	0
D’Arena et al. [167]	2014	M	1	66	1	ND	0	0	ND	0
Perkins et al. [168]	2014	M	1	73	1	ND	0	0	Candida albicans	0
Sliwinski et al. [169]	2014	M	1	24	> 1	ND	1	0	ND	0
Agostini et al. [170]	2014	M	1	64	2	58	1	1	Staphylococcus epidermidis, Proteus mirabilis, Enterococcus faecalis	0
Oymaci et al. [171]	2014	M, F	16	61.2	444	25.5	ND	0	Escherichia coli, Acinetobacter baumanii, Proteus mirabilis, Staphylococcus aureus, Enterococcus	3
Eskitascioglu et al. [172]	2014	M, F	80	53.5	155	34.78	ND	0	Polymicrobial flora (14), Escherichia coli, Staphylococcus aureus, Enterococcus, Acinetobacter baumanii, Staphylococcus epidermidis, Proteus, etc	3
Yilmazlar et al. [173]	2014	M, F	120	58	3	14.5	48	0	Escherichia coli, Streptococci, Enterococci, Staphylococci, Klebsiella, Pseudomonas, Proteus, fungi	25
Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Septi / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
---------------------------------	------	--------	-------------	----------	----------------------	-----------------------	-------------	---------------------------	---	-------------
Akbulut et al. [174]	2014	M	1	77	1	20	0	0	Escherichia coli	0
Coyne et al. [175]	2014	M	1	48	1	ND	0	0	ND	0
Li et al. [176]	2014	48 M, 3 F	51	49.7	> 1	17	ND	0	Escherichia coli, Streptococcus, Staphylococcus aureus, Pseudomonas, Proteus, Clostridium, Bacteroides	6
Oyaert et al. [177]	2014	M	1	43	1	63	1	0	Atopobium	0
Lee et al. [178]	2013	M	1	47	> 1	ND	0	0	Enterococcus, Enterobacter	0
Abate et al. [179]	2013	M	1	63	1	21	0	0	Enterococcus faecalis, Citrobacter freundii, Pseudomonas aeruginosa, Escherichia coli, Bacteroides fragilis, Bacteroides ovatus	0
Anantha et al. [180]	2013	M	1	59	1	16	1	0	Streptococcus anginosus	0
Benjelloun et al. [181]	2013	44 M, 6 F	50	48	2.5	21	11	0	Escherichia coli, Klebsiella	12
Pastore et al. [182]	2013	M	1	60	> 1	34	0	1	Streptococcus A	0
Eray et al. [183]	2013	34 M, 14 F	48	53.7	ND	25.3	ND	0	ND	9
Bjurlin et al. [184]	2013	40 M, 1 F	41	49	ND	ND	ND	ND	Polymicrobial flora (34), Bacteroides (43.9%), Escherichia coli (36.6%), Prevotella, Streptococci, Staphylococcus aureus	2
Park et al. [185]	2013	M	1	59	> 1	ND	0	0	ND	0
Subramaniam et al. [186]	2013	M	1	80	3	ND	1	0	Escherichia coli, Anaerobes	0
Sabz Sarvestani et al. [187]	2013	28 M	28	44.6	2.2	17.22	ND	0	Escherichia coli, Bacteroides, Streptococci, Enterococci, Staphylococcus, Pseudomonas, Klebsiella, Proteus	10
Katib et al. [188]	2013	20 M	20	55.95	1.7	22.3	1	0	Acinetobacter spp. (most common)	0
Table 1 (continued)

Reference	Year	Gender	N. of cases	Mean age	Surgical debridement	Days of hospital stay	Sepsis / ICU	Hyperbaric oxygen therapy	Pathogen	N. of death
Czymek et al. [189]	2013	M, F	86	57.9	4	52	52	ND	Polymicrobial flora (71), Escherichia coli, Enterococci, Streptococci, Pseudomonas, Staphylococci, etc	14
Akilov et al. [190]	2013	M	28	47.1	3.5	24.4	8	0	Monomicrobial flora (18), Staphylococci, Streptococci, Enterobacter, Pseudomonas	0
Bakari et al. [191]	2013	M	10	50.5	ND	ND	ND	ND	ND	ND
Avakoudjo et al. [192]	2013	M	72	ND	ND	72	ND	ND	Escherichia coli, Staphylococci, Pseudomonas aeruginosa, Klebsiella	7
Chan et al. [193]	2013	M	1	78	1	ND	1	0	Escherichia coli	0
Chan et al. [194]	2013	M	1	49	15	ND	0	0	Escherichia coli, Streptococci, Arcanobacterium	0
Aliyu et al. [195]	2013	M	43	37.82	>1	28	ND	0	Polymicrobial flora (27)	6
Ozkan et al. [196]	2013	F	1	43	4	ND	1	0	ND	0
Khan et al. [197]	2013	M	1	47	3	ND	1	0	ND	0
Kumar et al. [198]	2013	M	30	39.6	2.2	9.7	ND	0	Escherichia coli, anaerobes, Streptococci, Pseudomonas, Staphylococci	6

Total 2463 M 456 F 3423 - - - 894 212 - 455

Legend: M = male, F = female, h = hours, ICU = intensive care unit, ND = not defined.
At the level of the scrotum a visible suppuration was present and vivid pain was evocable. The blood exams revealed a neutrophilic leukocytosis with 19.1×10^9 white blood cells 83.2% of which neutrophiles, hemoglobin 9.3 g/dl, glucose 314 mg/dl, creatinine 1.2 mg/dl, C-reactive protein 42.7 mg/L, procalcitonin 29.44 ng/ml. The modified Laboratory Risk Indicator for Necrotizing Fasciitis score (LRINEC score) was 7, suspicion for necrotizing fasciitis [61]. The Charlson Comorbidity Index score was of 6, the Fournier’s Gangrene Severity Index was 9 with a risk of death $>75\%$ [199, 200].

The emergency ultrasound exam revealed a marked thickening of the scrotal wall associated with intrafascial anechogen film and multiple hyperechoic spots with posterior echoes as for aerial component.

Computed Tomography revealed an abundant air-gas content in the context of the soft and peripheral tissues at the level of the right scrotal lodge reached the cutaneous plane at the lower pole and more cranially, further gas was localized at the base of the root of the penis, in the paramedian perineum homolaterally up to floor below the ischium pubic branch (Fig. 2). A marked fluid-edematous thickening of the tunics and scrotal walls were present bilaterally but more evident on the right side of the scrotum.

Intravenous fluid resuscitation and broad-spectrum antibiotics such as Piperacillin/Tazobactam (4.5 gr iv q8h), Imipenem/Cilastatin (500 mg iv q8h) and Daptomycin (700 mg iv q24h) were administered.

A prompt surgical debridement of genitalia and perineal region with an accurate necrotic tissue removal up to exposure of healthy tissue was performed (Fig. 3). A Penrose drain was left in place anterior to the rectum where a more destructive debridement was performed. It was removed on the 4th postoperative day after daily withdrawal due to granulated tissue formation. A single blood transfusion was performed for anemia.

Based on intra-operative scrotal ulcer swab, positive for Escherichia coli, Enterococcus faecium, Streptococcus oralis, Candida albicans, Bacteroides fragilis e Staphylococcus lugdunensis, on the 5th postoperative day, the antibiotic therapy was switched to Piperacillin/Tazobactam (4.5 gr iv q8h), Teicoplanin (600 mg iv q24H) and Fluconazole (400 mg iv q24h). Hemocultures and urinocultures were negative.

High-intensity care was carried on in the next days with a bedside daily surgical wound medications with fibrine debridement, normal saline and povidone-iodine.
solutions irrigation, iodoform and fatty gauze application, until discharge on the 40th postoperative day (Fig. 4).

Plastic surgeons decide to not perform a skin graft due to an excellent wound improvement with local medication. Every 3 days office-based medication with silver dressing, after normal saline and povidone-iodine irrigation and fibrinous tissue debridement, was performed until complete re-epithelialization of the scrotum on the 60th postoperative day.

Discussion

Predisposing factors to Fournier’s gangrene include all conditions with an impaired micro-circulation and immunosuppression such as diabetes mellitus, obesity, chronic alcoholism, smoking habit, renal and liver failure, malignancies, bowel inflammatory diseases and HIV infection [201–204]. In our case the patient suffered from diabetes, chronic arteriopathy, RCU for which he carried a colostomy following intestinal resection. The presence of a fecal diversion has certainly improved the wound management and therefore promoted its healing, reducing the contamination of the same with fecal material, ensuring a more accurate hygiene of the scrotal and perineal region [183]. The fact that ileostomy was already well established probably allowed to enjoy the benefits described above without exposing the patient to the typical complications of the creation of a neo-stoma, such as parastomal hernia, incisional hernia, colostomy prolapse, necrosis and stenosis which may necessitate additional surgery [183].

Once described as idiopathic, the FG is secondary to aerobic and anaerobic bacterial infection that involves genitalia and perineum and the cause is recognizable in more than 90% of the cases. In most cases the origin site infection is the ano-rectum (30–50%), urogenitalia (20–40%) and genital surface (20%) [52]. In an immunodeficient host a polymicrobial flora are usually involved with a synergic mechanism of aggressiveness. The latter was present also in our case with several single-management not aggressive pathogens developing a synergism. Polymicrobial infection is reported as cause in 54% of cases [205].

The onset of this necrotizing fasciitis is insidious with up to 40% of cases asymptomatic. When signs and symptoms are the reason of emergency access, they are characterized by genital and perineal regions pain with little to no visible cutaneous damage in the early stage and erythematous and dusky skin, crepitus of subcutaneous tissue, maleodorant and purulent exudates of perineal and genital regions [206].

A successful management of the Fournier’s gangrene is challenging. The risk of death in about 20% of patients makes FG an emergency health condition [68, 99]. Fluid resuscitation for adequate systemic perfusion, empiric intravenous broad-spectrum antibiotic therapy to reduce the risk of septic shock and a prompt extensive surgical debridement ensured an improvement in prognosis in accordance with current guidelines [207]. The surgery plays a cardinal role because a delay in surgical debridement is associated with a significant increase in mortality [208]. From the review of the literature, a risk of death up-to-date is of 14.3% (Table).

In addition, the necrotizing fasciitis could benefit from hyperbaric oxygen therapy (HBOT) to reduce the spread of anaerobic germs, from the vacuum-assisted closure (VAC) that can be used to promote wound healing physiologically reducing the need for reconstructive surgery with skin graft in the setting of a personalized medicine [206, 209–211], HBOT has been related to a better wound control as an adjuvant treatment by promoting wound healing. It acts as bactericide and bacteriostatic especially over anaerobic bacteria, almost always involved in this necrotizing fasciitis. HBOT increases local circulation and tissue oxygenation which prevents the progression of necrosis; furthermore, HBOT seems have synergism with certain antibiotics [18, 45, 209]. In our case the patient hospitalization was long due to the difficulties related to the COVID pandemic era, the choice to not perform a skin graft and the need for daily medications in order to obtain a natural restitutio of the lesion as possible. This type of management made it possible to avoid the use of common tools for resolving Fournier’s gangrene such as HBOT, VAC and surgical graft. In our hospital there is not the HBOT so it would have been necessary to transfer the patient to another hospital and one of the COVID-19 pandemic period problem was the patient’s displacement and outpatient hospital management. For all these reasons we decided for a conservative inpatient management.
Conclusions
FG is burdened of high risk of death and a prompt multimodal approach is mandatory. This necrotizing fasciitis also needs a post-operative rigid management to reduce a risk of relapse and allow a complete restoration. In our case, for reason of necessity, an immediate multimodal approach and a daily cleaning of the surgical wound allowed to obtain its complete restoration avoiding HBOT, VAC or surgical graft without foregoing optimal outcomes.

Abbreviations
FG: Fournier’s gangrene; HBOT: Hyperbaric oxygen therapy; RCU: Ulcerative colitis; VAC: Vacuum-assisted closure; iv q8h: Intravenously every 8 h.

Acknowledgements
We are thankful to the patient for his cooperation and allowing us to use his medical records in our case report.

Authors’ contributions
AP, GC and EM were responsible for conception and design, PM and MM acquired the clinical data. FP and GF independently performed online bibliographic searches in order to identify titles and abstracts of interest and GC select full-text to be included. AT, AV, AP and GC took part in either drafting the article and revising it critically for important intellectual content. All authors gave final approval of the version to be published, agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors have read and approved the final manuscript.

Funding
This study was not supported by any external sources of funding.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
The patient has given the consent for publication.

Competing interests
The authors declare that they have no competing interests.

Received: 23 March 2022 Accepted: 24 May 2022
Published online: 19 July 2022

References
1. Rad J, Foreman J. Fournier Gangrene. StatPearls [Internet]. 2021. Treasure Island (FL): StatPearls Publishing; 2022.
2. Chernyadyev SA, Ulmtseva MA, Vishnevskaya IF, Bochkarev YM, Ushakov AA, Beresneva TA, et al. Fournier’s Gangrene: Literature Review and Clinical Cases. Urol Int. 2018;101(1):91–7.
3. Cochetti G, Cottini E, Ciocchi S, Pansadoro A, Corsi A, et al. Laparoscopic conservative surgery for colovesical fistula: is it the right way? Wideodchir Inne Tech Maloinwazyjne. 2013;8(2):162–5.
4. Del Zingaro M, Cochetti G, Gaudio G, Tiezzi A, Paladini A, Rossi de Vermandois JA, et al. Robotic conservative treatment for prostate-touretthoretrectal fistula: original technique step by step. Int Braz J Urol. 2020;46(3):481–2.
5. Rossi de Vermandois JA, Cochetti G, Zingaro MD, Santoro A, Pancirolla M, Boni A, et al. Evaluation of surgical site infection in mini-invasive urological surgery. Open Med (Wars). 2019;14:711–8.
6. Del Zingaro M, Boni A, Paladini A, Rossi de Vermandois JA, Ciarletti S, Felici G, et al. Fournier’s gangrene secondary to locally advanced prostate cancer: case report and review of the Literature. G Chir. 40(6):481–96.
7. Singh A, Ahmed K, Aydin A, Khan MS, Dasgupta P. Fournier’s gangrene. A clinical review. Arch Ital Urol Androl. 2016;88(3):157–64.
8. Grassi V, Pansadoro A, Cochetti G, Barillaro F, Cotti E, D’Amico F, et al. Pneumocostum: report of two different cases and review of the literature. Ther Clin Risk Manag. 2015;9(11):581–7.
9. Ioanidis O, Kitsiosta L, Tatsis D, Skandalos I, Cheva A, Gkiotis A, et al. Fournier’s Gangrene: Lessons Learned from Multimodal and Multidisciplinary Management of Perineal Necrotizing Fasciitis. FrontSurg. 2017;10(4):36.
10. Bensardi FZ, Hajri A, Kabura S, Bouali M, el Bakouri A, el habtai K, et al. Fournier’s gangrene: Seven years of experience in the emergencies service of vesical surgery at Ibn Rochd University Hospital Center. Ann Med Surg (Lond). 2021;30(71):102821.
11. Vargo E, Leone G, Barat O, Yunker A, Parekh N. A case of Fournier’s gangrene following a large-volume hydroceleectomy in a diabetic patient managed with SGLT-2 inhibitor therapy. Urol Case Rep. 2021;29:101834.
12. Trama F, Illiano E, Bertuzzi G, Chiummariello S, Costantini E. Multimodal approach in a patient with Fournier’s gangrene during the coronavirus pandemic. Urol Case Rep. 2021;39:101825.
13. Elahabadi I, Bazmandegan G, Salehi H, Jafari A, Ahmadzi J, Kamaiz B. Fournier’s gangrene after missed acute perforated appendicitis: A case report. Clin Case Rep. 2021;9(10):e04989.
14. de La Torre M, Solé C, Fanjul M, Berenguer B, Arriaga-redondo M, de Tomás E, et al. Neonatal Fournier’s Gangrene. Pediatr Infect Dis J. 2021;40(10):e384–7.
15. Winyard JC, Wong A, Rashed H, Mellon JK. Undiagnosed Behçet’s Disease Presenting as Fournier’s Gangrene in a Young Male. Case Rep Urol. 2021;21(2021):1–2.
16. Gul MO, Sunamak O, Kina U, Gunay E, Akyuz C. Fournier’s Gangrene: Our Five-Year Series and the Role of Vacuum-Assisted Closure in the Treatment. Niger J Clin Pract. 2024;24(9):1277–82.
17. Rivera-Alvarez F, George A, Ganti L. Massive necrotizing Fournier’s gangrene. Urol Case Rep. 2021;38:101689.
18. Michalczyk L, Grabiriska A, Banaczyk B, Braszko M, Andrychowicz A, Ząbkowski T. Efficiency of hyperbaric oxygen therapy combined with negative-pressure wound therapy in the treatment strategy of fournier’s gangrene - a retrospective study. Urol J. 2021;18:e6797.
19. Moon JY, Lee MR, Kim JH, Ha GW. Fournier Gangrene in a Patient With Type 2 Diabetes Mellitus Treated With Dapagliflozin: A Case Report. Ann Coloproctol. 2021;37(Suppl 1):S48–50.
20. Lahouar R, Nenaou S, Ben Khalfa B, Gazzah W, Braiek S, El Kamel R, et al. Fournier’s gangrene secondary to locally advanced prostate cancer: case report and review of the Literature. G Chir. 2021;18:e6797.
21. Shah T, Raji Josh B, Kumar A, Simkhada G, Kumar Gupta R. Isolated duodenal injury presenting as Fournier’s gangrene: a case report. Clin Case Rep. 2021;9(6):e04232.
22. Tsuge I, Matsui M, Kanno T, Ikasho J, Takahashi T, Yamana H, et al. Fournier’s Gangrene with Edwardsiella tarda: A Gas Production Case by Bacterial Synergism with Streptococcus anginosus. Plast Reconstr Surg Glob Open. 2021;9(6):e3625.
23. Duarte J, Outeiro C, Santana A, Guerra J. Fournier Gangrene as a Complication of a Perinephric Abscess After Kidney Transplant: A Case Report. Transplant Proc. 2021;53(4):1281–3.
24. Wong R, Blachman-braun R, Mann U, Eng A, Lother S, Patel P. Location of residence and mortality for patients diagnosed with Fournier’s gangrene. Can Urol Assoc J. 2021;15(5):E267–71.
25. Beerlcf JN, Jaeger CD, Rose JR, Becerra CMc, Shah NC, Paletta MS, et al. Fournier’s Gangrene in Females: Presentation and Management at a Tertiary Center. Urology. 2021;151:113–7.
26. Oyelowo N, Ahmed M, Lawal AT, Sudi A, Adeolokolosu AAM, Fidelis L, et al. Fournier’s gangrene: Presentation and predictors of mortality in Zaria, Nigeria. Ann Afr Med. 2020;105–10.
27. Kundan M, Priyadarshi V, Chintamani. Sliding inguinal hernia in a case of Fournier’s gangrene: A rare case. Int J Appl Basic Med R. 2021;11(2):106.

Cochetti G, Pansadoro A, Corsi A, et al. Laparoscopic conservative surgery for colovesical fistula: is it the right way? Wideodchir Inne Tech Maloinwazyjne. 2013;8(2):162–5.
123. Osbun N, Hampson LA, Holt SK, Gore JL, Wessells H, Voelzke BB. Low-Volume vs High-Volume Centers and Management of Fournier's Gangrene in Washington State. J Am Coll Surg. 2017;224(3):270-275.e1.

124. Kahn BE, Tatem AJ, Mazur DJ, Wren J, Hehemann M, Desai AS, et al. PMPS-24 CONTEMPORARY REPORT OF A MULT-INSTITUTIONAL EXPERIENCE WITH FOURNIER'S GANGRENE. J Urol. 2017;197(4):e1074.

125. Misiakos EP, Bagias G, Papadopoulos I, Danias N, Patapis P, Machairas N, et al. Early Diagnosis and Surgical Treatment for Necrotizing Fasciitis: A Multicenter Study. Front Surg. 2017;7(4):5.

126. Ogi H, Kawai K, Yoshino G, Sawada K. Case of anal fistula with Fournier's gangrene. J Urol. 2016;195(3):e436–e440.

127. Perrnett R, Palmieri F, Sagnini E, Negri M, Morisi C, Carbone A, et al. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

128. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

129. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

130. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

131. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

132. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

133. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

134. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

135. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

136. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

137. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

138. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

139. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

140. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

141. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

142. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

143. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

144. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

145. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

146. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

147. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

148. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

149. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

150. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

151. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

152. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

153. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

154. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

155. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

156. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

157. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

158. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.

159. Fournier's gangrene: Clinical case and review of the literature. Arch Ital Urol Androl. 2016;88(3):237–8.

160. Fournier's gangrene: Clinical case and review of the literature. J Urol. 2016;195(3):426–30.
173. Yilmazlar T, Isik O, Ozturk E, Ozer A, Gulcu B, Erkan I. Fournier's Gangrene: Review of 120 Patients and Predictors of Mortality. Turkish Journal of Trauma and Emergency Surgery. Ulus Travma Acil Cerrahi Derg. 2014;20(5):333–7.

174. Akbulut F, Kucuktopcu O, Sommezay E, Simsek A, Ozgor F, Gurubaz ZG. Partial penectomy after debridement of a Fournier's Gangrene progressing with an isolated penile necrosis. Ulus Travma Acil Cerrahi Derg. 2014;20(5):385–8.

175. Coyne C, Mailhot T, Perera P. Diagnosis of Fournier's Gangrene on Bedside Ultrason. West J Emerg Med. 2014;15(2):122.

176. Li YD, Zhu W, Qiao J, Lin J. Enterostomy can decrease the mortality of patients with Fournier gangrene. World J Gastroenterol. 2014;20(24):7950–4.

177. Oyaert M, Cools P, Breyne J, Heyvaert G, Vandewiele A, Vaneechoutte M, et al. Sepsis with an Ateplobin-Like Species in a Patient with Fournier’s Gangrene. J Clin Microbiol. 2014;52(1):364–6.

178. Lee G, Hong JH. Fournier Gangrene: An Unusual Presentation Involving the Bulbous Urethra and Forming Free Gas in the Urinary Bladder. J Emerg Med. 2013;44(1):166–8.

179. Abate G, Shirin M, Kandanati V. Fournier Gangrene from a Thirty-Two-Centimeter Rectosigmoid Foreign Body. J Emerg Med. 2013;44(2):e247–9.

180. Anantha RV, Kasper KJ, Patterson KG, Zeppa JJ, Delport J, McCormick JK. Fournier’s gangrene of the penis caused by Streptococcus dysgalactiae subspecies equisimilis: case report and incidence study in a tertiary-care hospital. BMC Infect Dis. 2013;13:381.

181. Benjelloun EB, Souici T, Yakla N, Ousadden A, Mazaz K, Louchi A, et al. Fournier’s gangrene: our experience with 50 patients and analysis of factors affecting mortality. World J Emerg Surg. 2013;8(1):13.

182. Pastore AL, Palleschi G, Ripoli A, Silvestri L, Leto A, Autieri D, et al. A multistep approach to manage Fournier’s gangrene in a patient with unknown type II diabetes: surgery, hyperbaric oxygen, and vacuum-assisted closure therapy: a case report. J Med Case Rep. 2013;7(7):1.

183. Eray K, Alabaz O, Akcam AT, Ulku A, Parnak CK, Sakman G, et al. Comparison of Diverting Colostomy and Bowel Management Catheter Applications in Fournier Gangrene Cases Requiring Fecal Diversion. Indian J Surg. 2013;75(Suppl 2):438–41.

184. Bjurlin MA, O’Grady T, Kim DY, Divakaruni N, Drago A, Blumetti J, et al. Causative Pathogens, Antibiotic Sensitivity, Resistance Patterns, and Severity in a Contemporary Series of Fournier’s Gangrene. Urology. 2013;81(4):752–9.

185. Park KR, Kim TG, Lee J, Ha JH, Kim YH. Single-Stage Reconstruction of Extensive Defects after Fournier’s Gangrene with an Exposed Iliac Crest and Testes. Arch Plast Surg. 2013;40(1):74–6.

186. Subramaniam D, Hureibi K, Al-Duwairi A, Falah A. The development of Fournier's gangrene following rubber band ligation of haemorrhoids. J Emerg Med. 2013;44(2):e247–9.

187. Sabzi Sarvestani A, Zamiri M, Sabouri M. Prognostic Factors for Fournier’s Gangrene. J Clin Med. 2013;2(4):1184–6.

188. Chan CC, Shahrouk K, Collier RD, Welch M, Chang S, Williams M. Abdominal Implantation of Testicles in the Management of Intractable Testicular Pain in Fournier Gangrene. Int Surg. 2013;98(4):367–71.

189. Alyu S, Ibrahim AG, Ali N, Wazin AW. Fournier’s Gangrene as Seen in University of Maiduguri Teaching Hospital. ISRN Urol. 2013;2013:673121.

190. Ozkan OF, Altinyildiz E, Koksal N, Senger S, Celik A. Combining Flexi-Seal and negative pressure wound therapy for wound management in Fournier’s gangrene. Int Wound J. 2015;12(3):364–5.

191. Khan F, Mukhtar S, Anjum F, Tipathi B, Sriradas S, Dickinson IK, et al. Fournier’s Gangrene Associated with Intradermal Injection of Cocaine. J Sex Med. 2013 Apr;10(4):1184–6.

192. Kumar A, Kumar N, Jain A, Kumar R, Vyas H, Bhandari V. Prospective evaluation of risk factors for mortality in patients of Fournier’s gangrene: A single center experience. Indian J Urol. 2013;29(3):161–5.

193. Charlton ME, Pompei P, Alex KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83.

194. Laor E, Palmer LS, Tolia BM, Reid RE, Winter H. Outcome prediction in patients with Fournier’s gangrene. J Urol. 1995;154(1):89–92.

195. Hagedorn JC, Wessells H. A contemporary update on Fournier’s gangrene. Urol Clin North Am. 2017;44(4):205–14.

196. Volottilini L, Lapicetta C, Luzzi L, Paladini P, Ghiribelli C, Scelotta S, et al. Lung resection for non-small cell lung cancer after prophylactic coronary angioplasty and stenting: Short- and long-term results. Minerva Chir. 2012;67(1):77–85.

197. Cocheti G, Lepri E, Cottini E, Cirocchi R, Corsi A, Barillaro F, et al. Laparoscopic conservative treatment of colo-vesical fistulas following trauma and diverticulitis: report of two different cases. Cent Eur J Med. 2013;8(6):790–4.

198. Cocheti G, Abrahà L, Randolph J, Montedori A, Boni A, Azzero A, et al. Surgical wound closure by staples or sutures?: Systematic review. Medicine (Baltimore). 2020;99(25):e20573.

199. Tang LM, Su YJ, Lai YC. The evaluation of microbiology and prognosis of fournier's gangrene in past five years. Springerplus. 2015;4(1):14.

200. Lewis GD, Majed M, Olang CA, Patel A, Gorantla VR, Davis N, et al. Fournier’s Gangrene Diagnosis and Treatment: A Systematic Review. Cureus. 2021;13(10):e18948.

201. EAU Guidelines. Edn. presented at the EAU Annual Congress Milan Italy 2021. ISBN 978–94–92671–13–4, 2021.

202. Kabay S, Yucel M, Yaliik F, Algin MC, Hacioglu A, Kabay B, et al. The clinical features of Fournier’s gangrene and the predictivity of the Fournier’s Gangrene Severity Index on the outcomes. Int Urol Nephrol. 2008;40(4):997–1004.

203. Schindelevand L, Anheuser P, Schönburg S, Wagenlehner FM, Kranz J. Hyperbaric Oxygenation in the Treatment of Fournier’s Gangrene: A Systematic Review. Urol Int. 2021;105(3–4):247–56.

204. Franco-Buenaventura D, Garcia-Perdomo HA. Vacuum-assisted closure device in the postoperative wound care for Fournier’s gangrene: a systematic review. Int Urol Nephrol. 2021;53(4):641–53.

205. Baldassarri M, Fallerini C, Geta F, Ghisalberti M, Bellan C, Furini S, et al. Omic Approach in Non-smoker Female with Lung Squamous Cell Carcinoma: Pinpoints to Germline Susceptibility and Personalized Medicine. Cancer Res Treat. 2018;50(2):356–65.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.