Catalog of 5’ Fusion Partners in ALK-positive NSCLC Circa 2020

Sai-Hong Ignatius Ou, MD, PhD,a,* Viola W. Zhu, MD, PhD,a Misako Nagasaka, MDb,c

aDepartment of Medicine, Division of Hematology-Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, California
bDepartment of Oncology, Karmanos Cancer Institute/Wayne State University School of Medicine, Detroit, Michigan
cDepartment of Advanced Medical Innovations, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, Japan

Received 4 February 2020; accepted 5 February 2020
Available online - 19 February 2020

ABSTRACT

Since the discovery of anaplastic lymphoma kinase fusion-positive (ALK+) NSCLC in 2007, the methods to detect ALK+ NSCLC have evolved and expanded from fluorescence in situ hybridization and immunohistochemistry to next-generation DNA sequencing, targeted RNA sequencing, and whole transcriptome sequencing. As such, the deep sequencing methods have resulted in the expansion of distinct fusion partners identified in ALK+ NSCLC to 90 (one variant PLEKHM2-ALK is found in small cell lung cancer but included in this catalog) by the end of January 2020; about 65 of them (since 2018) and most of the recent novel fusion partners were reported from China. Thirty-four of the distinct fusion partners are located on the short arm of chromosome 2; 28 of these 34 fusion partners are located on 2p21-25, in which ALK is located on 2p23.2-p23.1. Many of these new ALK+ NSCLC fusion variants have responded to ALK tyrosine kinase inhibitors (TKIs). Several of these novel ALK fusion variants were identified as being resistant to EGFR TKIs or as dual 3’ALK fusions. In addition, at least 28 intergenic ALK rearrangements have also been reported, with three of them reported as responding to crizotinib. This review aims to serve as a central source of reference for clinicians and scientists. We aim to update and improve the list going forward.

Keywords: ALK fusion partners; Next-generation sequencing; ALK+ NSCLC; Whole transcriptome sequencing

Introduction

Since the discovery of anaplastic lymphoma kinase fusion-positive (ALK+) NSCLC (EML4-ALK, TPF-ALK) in 2007, there has been a rapid development of ALK tyrosine kinase inhibitors (TKIs) to treat ALK+ NSCLC with five ALK TKIs approved in the United States (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib) by 2018. At the same time, the detection of ALK+ NSCLC has expanded and shifted from the original methods of fluorescence in situ hybridization and immunohistochemistry (IHC) to next-generation sequencing (NGS), targeted RNA sequencing, and even whole transcriptome sequencing being offered by commercial sequencing companies. Targeted RNA sequencing and whole transcriptome sequencing have been used to supplement...
No.	Fusion Partner	Year Published in Print/Presented	Chromosomal Location	Fusion Breakpoint	Response to ALK TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/IHC	References	
1	EML4	2007	2p21	(E13, A21)	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Soda, 2007	
		2007	2p21	(E20, A21)	Not treated with ALK TKI	Cell line/Tumor	5’RACE PCR DNA sequencing	NR	ND/ND	Rikova, 2007	
2	TFG	2007	3q12.2	(T3, A20)	Not treated with ALK TKI	Tumor	5’RACE PCR DNA sequencing	PCR/Sanger sequencing	NR	ND/ND	Soda, 2007
		2007	3q12.2	NR	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Rikova, 2007	
3	KIF5B	2009	10p11.22	(K24, A20)	Not treated with ALK TKI	Tumor	RACE PCR DNA sequencing	NR	ND/ND	Takeuchi, 2009	
		2011	10p11.22	(K15, A20)	Not treated with ALK TKI	Tumor	RACE PCR DNA sequencing	NR	ND/ND	Won, 2011	
		2012	10p11.22	(K17, A20)	Not treated with ALK TKI	Tumor	RACE PCR DNA sequencing	NR	ND/ND	Takeuchi, 2012	
4	KLC1	2012	14q32.33	(K9, A20)	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Togashi, 2012	
5	STRN	2013	7q11.23	(H2, A20)	Not treated with ALK TKI	Tumor	RACE PCR DNA sequencing	NR	ND/ND	Majewski, 2013	
		2017	7q11.23	(H21, A20)	Not treated with ALK TKI	Tumor	RNA sequencing	NR	ND/ND	Yang, 2017	
		2019	7q11.23	(H30, A20)	Not treated with ALK TKI	Tumor	DNA NGS	NR/ND	ND/ND	Nakanishi, 2017	
6	HIP1	2014	1q31.1	(T15, A20)	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ouyang, 2014	
		2015	1q31.1	(T15, A20)	Not treated with ALK TKI	Tumor	RACE PCR DNA sequencing	NR	ND/ND	Ouyang, 2015	
		2016	1q31.1	(T15, A20)	Not treated with ALK TKI	Tumor	DNA NGS	NR/ND	ND/ND	Ouyang, 2016	
7	TPR	2016	17q23.1	(C31, A20)	Unknown setting not treated with ALK TKI	Tumor	Targeted RNA sequencing	NR	ND/ND	Ali, 2016	
8	BIRC6	2016	17q24.2	(P5, A20)	PR to crizotinib	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
9	DCTN1	2016	2p21	(P1, A20)	PR to crizotinib	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
10	SQSTM1	2016	5q35.3	(S5, A20)	PR to crizotinib	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
11	SOCS5	2016	2p21	NR	PR to crizotinib	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
12	SEC31A	2016	4q21.22	(S21, A20)	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
13	CRTC	2017	17q24.2	(P5, A20)	PR to crizotinib	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
14	PPM1B	2017	2p21	(P1, A20)	PR to crizotinib	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
15	EIF2AK3	2017	2p11.2	(E2, A20)	PR to crizotinib	Tumor	PCR/Sanger sequencing	NR	ND/ND	Ali, 2016	
16	CRIM1	2017	2p22.2	NR	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Tan, 2016	
17	CEBPZ	2017	2p22.2	(C2, A20)	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Li, 2017	
	CEBPZ	2019	2p22.2	NR	Not treated with ALK TKI	Tumor	PCR/Sanger sequencing	NR	ND/ND	Xu, 2019	
18	PICALM	2017	11q14.2	(P19, A20)	Not treated with ALK TKI	Tumor	Targeted RNA sequencing	NR	ND/ND	Li, 2017	
19	CLIP1	2017	12q24.31	(C22, A20)	PR to crizotinib	Tumor	Targeted RNA sequencing	NR	ND/ND	Vendrell, 2017	

(continued)
No.	Fusion Partner	Year Published in Print/Presented	Chromosomal Location	Fusion Breakpoint	Response to ALK TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/ IHC References
21	BCL11A	2017 2p16.1 (B4, A20)	PR to crizotinib	DNA and RNA NGS	NR 54.2% (PPFE) 14.9% (plasma)	Tumor and plasma	DNA NGS	ND/ND	Tian, 2017
	BCL11Ac	2019 2p16.1 (B2, A18)						ND/ND	Qin 2019
22	GCC2	2017 2q12.3 (G12, A20)	NR Adjunct setting, not treated with ALK TKI	Tumor RT-PCR, NGS	NR ++/+	Tumor and plasma	RT-PCR, sanger sequencing	Noh, 2017	
		2018 2q12.3 (G18, A20)	PR to crizotinib and then ceritinib	Tumor RT-PCR, NGS	NR ++/+	Tumor and plasma	RT-PCR, sanger sequencing	Vendrell, 2017	
23	LMO7	2017 13q22.2 (L15, A20)	NR	Tumor Targeted RNA sequencing	NR	Tumor and plasma	RT-PCR, sanger sequencing	Noh, 2017	
24	PHACTR1	2017 6p24.1 (P7, A20)	No with crizotinib, SD with pemetrexed	Tumor NGS	~7.5%/-/-	Tumor and plasma	RT-PCR, sanger sequencing	Jiang, 2018	
25	CMTR1	2018 6p21.2 (C2, A20)	PR to alectinib	Tumor NGS	NR ++/+	Tumor and plasma	RT-PCR, sanger sequencing	Du, 2018	
26	VIT	2018 2p22.2 (V7, A20)	Extracranial PR but intracranial progression to crizotinib	Tumor NGS	23.7%/ND	Tumor and plasma	RT-PCR, sanger sequencing	Yin, 2018	
27	DYSF	2018 2p13.2 (P15, A20)	Extracranial PR but intracranial progression to crizotinib	Tumor NGS	15.2%/ND	Tumor and plasma	RT-PCR, sanger sequencing	Yin, 2018	
28	ITGAV	2018 2q32.1 (P15, A20)	Extracranial PR but intracranial progression to crizotinib	Tumor NGS	11%/ND	Tumor and plasma	RT-PCR, sanger sequencing	Zhang, 2018	
29	PLEKHA9	2018 11p15.2-p15.1 (P26, A19)	PR to alectinib + osimertinib	Plasma NGS	ND/ND	Plasma and RNA NGS	RT-PCR, sanger sequencing	Schrock, 2018	
30	CUX1	2018 7q22.1 (C8, A20)	PR to crizotinib	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Zhang, 2018	
31	VKORC1L1	2018 7q11.21 (V1, A20)	PR with crizotinib and alectinib	Plasma NGS	ND/ND	Plasma and RNA NGS	RT-PCR, sanger sequencing	Zhu, 2018	
32	FBX036	2018 2q36.3 (P15, A19)	PR to crizotinib	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Xu, 2018	
33	SPTBN1	2018 2p16.2 (P1, A20)	PR to crizotinib	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Ramalingam, 2018	
34	EML6	2018 2p16.1 (E1, A20)	PR to crizotinib	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Lin, 2018	
35	FBX011	2018 2p16.3 (F1, A20)	PR to crizotinib	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Lin, 2018	
36	CLIP4	2018 2p23.2 (C7, A20)	PR to crizotinib	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Zhao, 2018	
37	CAMKMT	2018 2p21 (C3, A20)	Not treated with ALK TKI	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Hu, 2019	
38	NOCA1	2018 2p23.3 (P32, A20)	PR to crizotinib, PFS > 18 months	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Cao, 2019	
39	MYT1L	2019 2p25.3 (M14, A20)	PR on crizotinib, PD on ceritinib and alectinib	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Tsou, 2019	
40	SRBD1	2019 2p21 (S20, A20)	Not treated with ALK TKI	Tumor NGS	2.6%/ND	Tumor and plasma	RT-PCR, sanger sequencing	Hou, 2019	
41	SRD5A2	2019 2p23.1 (S1, A20)	Not treated with ALK TKI	Tumor NGS	ND/ND	Tumor and plasma	RT-PCR, sanger sequencing	Zhao, 2019	

(continued)

Table 1. Continued
Table 1. Continued

No.	Fusion Partner	Year Published in Print/Presented	Chromosomal Location	Fusion Breakpoint	Response to ALK TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/IHC	References	
42	NYAP2 (KIAA 1486)	2019	2q36.3	(N3, A20)	NR	Tumor	NGS	NR	ND/-	Zhao, 2019	
43	MPPIP	2019	17p11.2	(M21, A20)	PR to crizotinib	Tumor	RNA sequencing	NR	+/+	Fan, 2019	
44	ADAM17	2019	2p25.1	(A4, A20)	PR to alectinib	Plasma	DNA NGS	3.68%	NR/NR	Supplee, 2019	
45	ALK	2019	2p23.2-p23.1	(A6, A20)	NR	Plasma	DNA NGS	26.63%	NR/NR	Supplee, 2019	
46	LPIN1	2019	2p25.1	NR	Response to crizotinib + erlotinib	Tumor	NR	NR	NR/NR	Supplee 2019	
47	WDPCP	2019	2p15	(W17, A20)	PR to crizotinib	Tumor	DNA NGS	52.6%	+/+	He, 2019	
48	CEPP5	2019	10q23.3	(C3, A20)	NR	Tumor	DNA NGS	NR	NR/NR	Couëtoux du Tertr, 2019	
49	ERC1	2019	12p13.33	(E15, A20)	NR	Tumor	DNA NGS	NR	NR/NR	Couëtoux du Tertr, 2019	
	2019	12p13.33	NR	NR	Tumor / plasma	DNA NGS	NR	NR/NR	Zhou, 2019		
50	SLC16A7	2019	12q14.1	(S1, A20)	PR to crizotinib	Tumor	DNA NGS	NR	NR/NR	Couëtoux du Tertr, 2019	
51	TNIP2	2019	4p16.3	(T5, A20)	PR to crizotinib	Tumor / plasma	DNA NGS	0.1% (plasma)	ND/+	Feng, 2019	
		2019	4p16.3	(T5, A20)	PR to crizotinib	Tumor / plasma	DNA NGS	3.3% (tumor)	ND/+	Feng, 2019	
52	ATAD2B	2019	2p24.1-p23.3	(A1, A20)	Treated with crizotinib	Tumor	DNA NGS	NR	ND/+	Bai, 2019	
53	SLMAP	2019	3p14.3	(S12, A20)	Unknown, adjuvant treatment with crizotinib	Tumor	Anchored Multiplex RNA sequencing	NR	++/+	Paga, 2019	
54	FBN1	2019	15q21.1	NR	NR	Tumor / plasma	DNA NGS	NR	NR/NR	Zhou, 2019	
55	SWAP70	2019	11p15.4	NR	NR	Tumor / plasma	DNA NGS	NR	NR/NR	Zhou, 2019	
56	TCF12	2019	15q21.3	NR	NR	Tumor / plasma	DNA NGS	NR	NR/NR	Zhou, 2019	
57	TRIM66	2019	11p15.4	NR	NR	Tumor / plasma	DNA NGS	NR	NR/NR	Zhou, 2019	
58	WNK3	2019	Xp11.22	NR	NR	Tumor / plasma	DNA NGS	NR	NR/NR	Zhou, 2019	
59	AKAP8L	2019	19p13.12	NR	ensartinib	Tumor / plasma	DNA NGS	NR	NR/NR	Horn, 2019	
60	SPECC1L	2019	22q11.23	(S9, A20)	Not treated with ALK TKI	Tumor	DNA NGS	NR	NR/NR	Pan, 2019	
61	PRKCB	2019	16p12.2-p12.1	(P2, A19)	PR to crizotinib, disappearance of PRKCB-ALK fusion variant	Tumor and plasma	NGS	2.6% (tumor)	NR/NR	Luo, 2019	
								0.8% (plasma)			

References:

- Zhao, 2019
- Fan, 2019
- Supplee, 2019
- Supplee, 2019
- He, 2019
- Couëtoux du Tertr, 2019
- Zhou, 2019
- Feng, 2019
- Bai, 2019
- Paga, 2019
- Zhou, 2019
- Zhou, 2019
- Zhou, 2019
- Zhou, 2019
- Horn, 2019
- Pan, 2019
- Luo, 2019

(continued)
No.	Fusion Partner	Year Published in Print/Presented	Chromosomal Location	Fusion Breakpoint	Response to ALK TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/ IHC	References
62	CDK15	2019	2q33.1	(C10, A19)	NR	Tumor	DNA NGS	NR/NR	NR/NR	Wen, 2019
63	LCLAT1	2019	2p23.1	NR	NR	Tumor	DNA NGS	NR/NR	NR/NR	Wen, 2019
64	YAP1	2019	11q22.1	NR	NR	Tumor	DNANGS	NR/NR	NR/NR	Wen, 2019
65	PLEKHM2 (SCLC)	2020	1p36.21	(P7, A20)	SD to crizotinib and brigatinib	Tumor	NGS	ND/+	ND/NR	Li, 2020
66	DCHS1	2020	11p15.4	NR	PR or SD to ensartinib	Tumor	NGS	NR/NR	NR/NR	Yang, 2020
67	PPFIBP1	2020	12p11.23-11.22	NR	PR or SD to ensartinib	Tumor	NGS	NR/NR	NR/NR	Yang, 2020
68	ATP13A4	2020	3q29	(A9, A19)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
69	C12orf75	2020	12q23.3	(C1, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
70	EPAS1	2020	2p21	(E1, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
71	FAM179A (TOGARAM2)	2020	2p23.2	(F1, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
72	FUT8	2020	14q23.3	(F3, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
73	LMD1	2020	3p21.31	(L2, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
74	LINC00327	2020	13q12.12	(L2, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
75	LOC349160	2020	7q33	(L1, A20)	SD to crizotinib	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
76	LYPD1	2020	2q21.2	(L3, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
77	RBBM20	2020	10q25.2	(R1, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
78	TACR1	2020	2p12	(T1, A20)	PR to crizotinib	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
79	TANC1	2020	2q4.2	(T3, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
80	TTC27	2020	2p22.3	(T12, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
81	TUBBB	2020	6p21.33	(T3, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
82	SMPD4	2020	2q21.1	(S1, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
83	SORCS1	2020	10q25.1	(S10, A20)	NR	Tumor	NGS	NR/NR	NR/NR	Tian, 2020
84	LINC00211	2020	2p22.2	(L2, A20)	PR with crizotinib and alectinib, SD with lorlatinib	CSF	NGS	33.2%	ND/+	Li, 2020
85	SOS1	2020	2p22.1	(S2, A20)	PR to crizotinib	FFPE	NGS	ND/ND	ND/ND	Chen, 2020
86	C9orf3	2020	9q22.32	(C12, A20)	NR	FFPE	NGS	22.6%	ND/+	Zhang, 2020
87	CYBRD1	2020	2q31.1	(C21, A20)	NR	FFPE	NGS	12.5%	ND/NR	Zhang, 2020
88	MTAP	2020	2p21	(M6, A20)	SD with crizotinib, no response to alectinib	FFPE	NGS	15.3%	ND/NR	Zhang, 2020
89	THADA	2020	2p21	(T25, A20)	SD to crizotinib, PR to ceritinib	Plasma	NGS	0.3%	ND/NR	Zhang, 2020

(continued)
Fusion Partner	Year Published in Print/Presented	Chromosomal Location	Fusion Breakpoint	Response to ALK TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/ IHC	References
TSPYL6	2020	2p16.2	(T6, A20)	PR to crizotinib, SD to alectinib	FFPE	NGS	8.5%	ND/NR	Zhang, 2020
WDR37	2020	10p15.3	(W6, A20)	PR to crizotinib	FFPE	NGS	30.2%	ND/NR	Zhang, 2020
PLEKHH2	2020	2p21	(P6, A20)	PR to alectinib	FFPE	Targeted RNA sequencing	NR	ND/NR	M. Nagasaka, written communication, 2020

aThe earliest detected ALK fusion partners were not treated with crizotinib at the time of publication; but all of them have been shown to respond to ALK TKIs. The column entry is for the later discovery of ALK fusion partners.

The first report(s) are cited except when response information from ALK TKIs are from later reports on some of the rare fusion partners, or if the fusion is identified as a resistance mechanism to EGFR TKI.

bALK fusions identified as resistance to EGFR TKIs.

cDual fusion with EML4-ALK (E18, A20).

dDual fusions (EML6 and FBX011) together.

eDual fusion (ERC1 and SLC16A7) together.

fDual fusion with EML4-ALK (E6, A20).

gDual fusion with EML4-ALK (E7, A18).

+, positive; -, negative; ALK, anaplastic lymphoma kinase; CF, cerebrospinal fluid; FISH, fluorescence in situ hybridization; FFPE, formalin-fixed paraffin embedded; FNA, fine-needle aspiration; IHC, immunohistochemistry; ND, not done; NGS, next-generation sequencing; NR, not reported; PFS, progression-free survival; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor; ADAM17, ADAM metallopeptidase domain 17; AKAPB1, A-kinase anchoring protein 8 like; ATAD2B, ATPase family AAA domain containing 2B; ATP13A4, ATPase 13A4; BCL11A, BAF chromatin remodeling complex subunit; BIRC6, baculoviral IAP repeat containing 6; C12orf75, chromosome 12 open reading frame 75; CAMKMT, calmodulin-lysine N-methyltransferase; CDK15, cyclin dependent kinase 15; CEBPZ, c-Myb; CCAAT enhancer binding protein zeta; CLIP1, CAP-Gly domain containing linker protein family member; CLIP4, CAP-Gly domain containing linker protein family member 4; CMTR1, cap methyltransferase 1; CRIM1, cysteine rich transmembrane BMP regulator 1; CUX1, cut like homeobox 1; CYB5R1D1, cytochrome b reductase 1; DACH1, dachous cadherin-related; DCTN1, dynactin subunit 1; DYSF, dysferlin; ERC1, ELKS/RAB6-interacting/CAST family member 1; FAM179A, family with sequence similarity 179 member A; FBX011, F-box protein 11; FABP1, f-box protein 36; FUT8, fucosyltransferase 8; GCC2, GCP and coiled-coil domain containing 2; HIP1, huntingtin interacting protein; ITPG, integrin subunit alpha V; KLC1, kinesin light chain 1; LINC00211, long intergenic non-protein coding RNA 211; LINC00327, long intergenic non-protein coding RNA 327; LMO7, LIM domain 7; LOC349160, uncharacterized LOC349160; LPIN1, lipin 1; LYPD1, LYPD6/PLAUR domain containing 1; NCOA1, nuclear receptor coactivator 1; PLEKHA7, pleckstrin homology, MyTH4 and FERM domain containing 2; PLK2, pleckstrin homology and RUN domain containing 2; PPFIBP1, Liprin-beta-1/PPF1A; PRKAR1A, protein kinase CAMP-dependent type 1 regulatory subunit alpha; PRKCB, protein kinase C beta; RBM20, RNA binding motif protein 20; SEC31A, SEC31 homolog A; TACR1, tachykinin receptor 1; TAC1, tetranectinpeptide repeat, ankyrin repeat and coiled-coil containing 1; TCF12, transcription factor 12; TFG, trafficking from ER to golgi regulator; THADA, THADA (thyroid adenoma associated) armadillo repeat containing; TNIP2, TNFAIP3 interacting protein 2; TOGARAM2, TOG array regulator of axonemal microtubules 2; TRAP, translocated promoter region, nuclear basket protein; TRIM66, tripartite motif containing 66; TSPYL6, TSPY like 6; TACC1, tetratricopeptide repeat domain 27; TUBB, tubulin beta class 1; VANKL, vitamin K epoxide reductase complex subunit 1 like 1; WDR37, WD repeat domain 37; WDPCP, WD repeat containing planar cell polarity effector; WNK3, WNK lysine deficient protein kinase 3; YAP1, Yes associated transcriptional regulator.
Table 2. List of Chromosomal Locations of Intergenic Translocations With Potential Fusion Partners

No.	Year	Chromosomal Location	Potential Fusion Partner Gene	Response to ALK TKI at the Time of Publication	Tumor Source	Method of Detection	Variant Frequency in Tumor	FISH/IHC References	
1	2019	12q23.3	*RIC8B*	NR	Tumor	NGS	NR	ND/NR	Zhao, 2019 [44]
2	2019	2p21	*LOC388942* (LINCO1913)	NR	Tumor	NGS	NR	ND/NR	Zhao, 2019 [44]
	2020	2p21	*LOC388942* (LINCO1913)	NR	Tumor	NGS	NR	ND/NR	Tian, 2020 [59]
3	2019	2p21	*LOC388942* (LINC01913)	NR	Tumor	NGS	NR	ND/NR	Tian, 2020 [59]
4	2019	2p23.3	*CENPA*	PR to crizotinib	Tumor	NGS	+/+	Fei, 2019 [53]	
5	2019	2p16.11	*CDH2*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
6	2019	2p16.2	*MIR4431*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
7	2020	2p12.11	*MIR548AD*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
8	2020	2p23.3	*CENPA*	PR to crizotinib	Tumor	NGS	NR	Tian, 2020 [59]	
9	2020	2q11.3	*CHRNA7*	PR to crizotinib	Tumor	NGS	NR	Tian, 2020 [59]	
10	2020	2q14.3	*CNTNAP5*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
11	2020	2p21	*CENPA*	PR to crizotinib	Tumor	NGS	NR	Tian, 2020 [59]	
12	2020	2p13.2	*COX7A2L*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
13	2020	2p23.3	*CDH2*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
14	2020	2p12.11	*CENPA*	PR to crizotinib	Tumor	NGS	NR	Tian, 2020 [59]	
15	2020	2q22.3	*LRP1B*	NR	Tumor	NGS	NR	Zhao, 2019 [44]	
16	2020	2p22.3	*MEMO1*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
17	2020	2p22.3	*CELF4*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
18	2020	2p22.3	*CENPA*	PR to crizotinib	Tumor	NGS	NR	Tian, 2020 [59]	
19	2020	2q22.1-q22.2	*CELF4*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
20	2020	2q11.2	*PDCL3*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
21	2020	2p22.2	*QPCRT*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
22	2020	2p23.3	*RAB10*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
23	2020	2p22.1	*SLC8A1*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
24	2020	2q32.3	*STK17B*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
25	2020	6q24.1-q24.2	*VTA1*	NR	Tumor	NGS	NR	Tian, 2020 [59]	
26	2020	19q13.42	*CDC42EP3*	No response to crizotinib and alectinib	Plasma	NGS	13.0%	ND/+	Zhang, 2020 [60]
27	2020	3p22.1	*RPSA*	NR	Tumor	NGS	7.9%	ND/+	Zhang, 2020 [60]
28	2020	2p23.3	*UBXN2A*	NR	Tumor	NGS	25.4%	ND/NR	Zhang, 2020 [60]

*Together with EML4-ALK (E6, A20) and breakpoint is 3′UTR of CDC43EP3 to exon 20 of ALK. +, positive. ALK, anaplastic lymphoma kinase; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; ND, not done; NGS, next-generation sequencing; NR, not reported; PR, partial response; SD, stable disease; CENPA, centromere protein A; CDC42EP3, CDC42 effector protein 3; CDH2, cadherin 2; CELF4, CUGBP Elav-like family member 4; CNTNAP5, contactin associated protein family member 5; COX7A2L, cytochrome c oxidase subunit 7A2 like; DPYSLS, dihydropyrimidinase like 5; DYF, dysferlin; FSHR, follicle stimulating hormone receptor; GJB6, gap junction protein beta 6; LINCO1210, long intergenic non-protein coding RNA 1210; LINCO1913, long intergenic non-protein coding RNA 1913; LRPS1, LDL receptor related protein 18; MEMO1, mediator of cell motility 1; MIR4431, microRNA 4431; MIR548AD, microRNA 548ad; MGST2, microsomal glutathione S-transferase 2; PDCL3, phosducin like 3; PRPF31, pre-mRNA processing factor 31; QPCRT, glutaminyl-peptide cyclotransferase; RAB10, RAB10, member RAS oncogene family; RIC8B, RIC8 guanine nucleotide exchange factor B; RPSA, ribosomal protein SA; SLC8A1, solute carrier family 8 member A1; STK17B, serine/threonine kinase 17b; UBXN2A, UBX domain protein 2A; VTA1, vesicle trafficking 1.
DNA NGS to detect even rare actionable driver mutations such as NTRK and NRG1. Although EML4-ALK (with multiple fusion breakpoints in EML4) remains the major fusion variant in ALK+ NSCLC (accounting for approximately 95% of ALK fusion variants), multiple case reports have reported novel ALK fusion partners in ALK+ NSCLC. In this article, we have compiled a list of the ALK fusion partners including intergenic rearrangements identified in the literature for easy reference.

Methods and Results
We searched PubMed publications, conference/congress abstracts, and presentations extensively to identify novel ALK fusion partners (including noncoding RNAs). We included only those fusion partners that retained the 3’ALK kinase domain. Reciprocal/nonreciprocal ALK translocations involving 5-ALK gene rearrangements (most frequently ALK exons 1-19 fused to a 3’-truncated gene [ALK-XX]) were not listed although these nonfunctional 5’-ALK fusion variants are usually listed as ALK fusion variants in the literature. Overall, a total of 90 distinct ALK fusion partners (including noncoding RNAs) have been identified in the literature (by the end of January 2020) (Table 1).

Many of these novel ALK fusion variants have been reported to respond to ALK TKIs or shown to be ALK IHC positive. Twenty-five intergenic rearrangements to exon 20 of ALK have also been identified and listed separately in Table 2. Three of these intergenic ALK rearrangements have been shown to respond to crizotinib, but the significance of these intergenic rearrangements remains to be determined, including whether functional fusion RNAs are translated from these intergenic rearrangements.

Discussion
With the increasing adoption of NGS for molecular profiling of NSCLC, especially in China, the pace at which new fusion partners are being identified and reported has rapidly increased since 2018. In particular, from 2018 onwards, approximately 65 of the 90 fusion partners reported in the literature (calculated at the time page numbers were assigned for this publication) were almost exclusively identified from China, indicating the widespread use of NGS there. Dual in-frame 3’-ALK fusion variants with different 5’ fusion partners are now being recognized; however, whether the relative contribution of each of the dual ALK fusion variant to oncogenesis depends on the allele frequency of each fusion variant remains to be elucidated. We identified at least 28 intergenic 3’-ALK rearrangements. Whether these translate to a functional (and truncated)? ALK RNA fusion transcript and whether these intergenic rearrangements are related to the isolated 3’-ALK fusion signals remain to be determined.

The concluding perspectives are as follows:
1. ALK+ NSCLC is a heterogeneous disease with at least 90 distinct fusion partners identified in the literature by January 2020;
2. It is likely that many more fusion partners and intergenic rearrangements will continue to be identified with the ever-increasing adoption of targeted RNA sequencing and whole transcriptome sequencing owing to the need to identify rare actionable fusions such as NTRK and NRG1 fusions;
3. The role of individual 3’-ALK fusion variant in a dual 3’-ALK fusion variants will need to be elucidated; and
4. The functional significance of intergenic rearrangements remains to be determined.

We recommend that clinicians from around the world to continue to report these novel fusions or intergenic rearrangements with information on the exon or fusion breakpoints, response to ALK TKIs, allele frequency, and if possible, whether the tumor is ALK fluorescence in situ hybridization and IHC positive.

References
1. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561-566.
2. Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190-1203.
3. Benayed R, Offin M, Mullaney K, et al. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin Cancer Res. 2019;25:4712-4722.
4. Jonna S, Feldman RA, Swensen J, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25:4966-4972.
5. Ross JS, Ali SM, Fasan O, et al. ALK. Fusions in a Wide Variety of Tumor Types Respond to Anti-ALK Targeted Therapy. Oncologist. 2017;22:1444-1450.
6. Takeuchi K, Choi YL, Tagoshi Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15:3143-3149.
7. Wong DW, Leung EL, Wong SK, et al. A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer. 2011;117:2709-2718.
8. Takeuchi K, Soda M, Tagoshi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378-381.
9. Tagoshi Y, Soda M, Sakata S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One. 2012;7:e31323.
10. Majewski IJ, Mittempergher L, Davidson NM, et al. Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J Pathol. 2013;230:270-276.

11. Yang Y, Qin SK, Zhu J, et al. A rare STRN-ALK fusion in lung adenocarcinoma identified using next-generation sequencing-based circulating tumor DNA profiling exhibits excellent response to crizotinib. Mayo Clin Proc Innov Qual Outcomes. 2017;1:111-116.

12. Nakanishi Y, Masuda S, Iida Y, Takahashi N, Hashimoto S. Case report of non-small cell lung cancer with STRN-ALK translocation: a nonresponder to alectinib. J Thorac Oncol. 2017;12:e202-e204.

13. Hu S, Li Q, Peng W, Feng C, Zhang S, Li C. VIT-ALK, a novel ALK fusion variant in lung adenocarcinoma. J Thorac Oncol. 2014;9:419-422.

14. Ou SH, Klempern SJ, Greenbowe JR, et al. Identification of a novel HIP1-ALK fusion variant in non-small-cell lung cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to alectinib. J Thorac Oncol. 2014;9:1821-1825.

15. Choi YL, Lira ME, Hong M, et al. A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol. 2014;9:563-566.

16. Shao Y, Gao H, et al. CMTR1-ALK: an ALK fusion in a patient with no response to ALK inhibitor crizotinib. Cancer Biol Ther. 2018;19:962-966.

17. Zhu VW, Schrock AB, Bosemani T, Benn BS, Ali SM, Ou SI. Mechanisms of actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. Cancer Manag Res. 2019;11:6343-6351.

18. Xu H, Shen J, Xiang J, et al. Characterization of acquired receptor tyrosine-kinase fusions as mechanisms of resistance to EGFR tyrosine-kinase inhibitors. Cancer Manag Res. 2019;11:6343-6351.

19. Fang DD, Zhang B, Gu Q, et al. A HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 2014;9:285-294.

20. Hong M, Kim RN, Song JY, et al. HIP1-ALK, a novel fusion protein identified in lung adenocarcinoma. J Thorac Oncol. 2014;9:419-422.

21. Ou SH, Klempern SJ, Greenbowe JR, et al. Identification of a novel HIP1-ALK fusion variant in non-small-cell lung cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to alectinib. J Thorac Oncol. 2014;9:1821-1825.

22. Hu S, Li Q, Peng W, Feng C, Zhang S, Li C. VIT-ALK, a novel alectinib-sensitive fusion gene in lung adenocarcinoma. J Thorac Oncol. 2018;13:e72-e74.

23. Yin J, Zhang Y, Zhang Y, F Feng, F Yu Yu. Reporting on two novel fusions, DYSF-ALK and ITGAV-ALK, coexisting in one patient with adenocarcinoma of lung, sensitive to crizotinib. J Thorac Oncol. 2018;13:e43-e45.

24. Schrock AB, Zhu VW, Hsieh WS, et al. Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2018;13:1312-1323.

25. Zhang M, Wang Q, Ding Y, et al. CUX1-ALK, a novel ALK rearrangement that responds to crizotinib in non-small cell lung cancer. J Thorac Oncol. 2018;13:1792-1797.

26. Zhu VW, Schrock AB, Bosemani T, Benn BS, Ali SM, Ou SI. Dramatic response to alectinib in a lung cancer patient with a novel VKORC1-L1-ALK fusion and an acquired ALK T1151K mutation. Lung Cancer (Auckl). 2018;9:111-116.

27. Xu CW, Wang WX, Chen YP, et al. Simultaneous VENTANA D5F3 IHC and RT-PCR testing of ALK status in Chinese non-small cell lung cancer patients and response to crizotinib. J Transl Med. 2018;16:93.

28. Ramalingam SS, Cheng Y, Zhou C, et al. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol. LBA50. 2018;29(suppl 8):viii740.

29. Lin H, Ren G, Liang X. A novel EML4-ALK FBXL11-ALK double fusion variant in lung adenocarcinoma and response to crizotinib. J Thorac Oncol. 2018;13:e234-e236.

30. Zhao J, Li Q, Lin G, et al. Distribution, differences in clinical characteristics and resistance mechanism of ALK variants in Chinese lung cancer patients. J Thorac Oncol. 2018;13:5584.

31. Hu X, Cui Q, Wang M. A novel CAMKMT exon3-ALK exon20 fusion variant was identified in a primary pulmonary mucinous adenocarcinoma. J Thorac Oncol. 2019;14:e11-e12.
41. Cao Q, Liu Z, Huang Y, Qi C, Yin X. NCOA1-ALK: a novel ALK rearrangement in one lung adenocarcinoma patient responding to crizotinib treatment. Oncotargets Ther. 2019;12:1071-1074.

42. Tsou TC, Gowen K, Ali SM, et al. Variable response to ALK inhibitors in NSCLC with a novel MYT1L-ALK fusion. J Thorac Oncol. 2019;14:e29-e30.

43. Hou X, Xu H, Chen L. SRBD1-ALK, a novel ALK fusion gene identified in an adenocarcinoma patient by next-generation sequencing. J Thorac Oncol. 2019;14:e72-e73.

44. Zhao R, Zhang J, Han Y, et al. Clinicopathological features of ALK expression in 9889 cases of non-small-Cell lung cancer and genomic rearrangements identified by capture-based next-generation sequencing: A Chinese retrospective analysis. Mol Diagn Ther. 2019;23:395-405.

45. Fang W, Gan J, Hong S, Lu F, Zhang L. MPRIP-ALK, a novel ALK rearrangement that responds to ALK inhibition in NSCLC. J Thorac Oncol. 2019;14:e148-e151.

46. Supplee JG, Milan MSD, Lim LP, et al. Sensitivity of next-generation sequencing assays detecting oncogenic fusions in plasma cell-free DNA. Lung Cancer. 2019;134:96-99.

47. He Z, Wu X, Ma S, et al. Next-generation sequencing identified a novel WDPCP-ALK fusion sensitive to crizotinib in lung adenocarcinoma. Clin Lung Cancer. 2019;20:e548-e551.

48. Couëtoux du Tertre M, Marques M, Tremblay L, et al. Analysis of the genomic landscape in ALK-positive patients: identification of novel aberrations associated with clinical outcomes. Mol Cancer Ther. 2019;18:1628-1636.

49. Zhou X, Shou J, Sheng J, et al. Molecular and clinical analysis of Chinese patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. Cancer Sci. 2019;110:3382-3390.

50. Feng T, Chen Z, Gu J, Wang Y, Zhang J, Min L. The clinical responses of TNIP2-ALK fusion variants to crizotinib in ALK-rearranged lung adenocarcinoma. Lung Cancer. 2019;137:19-22.

51. Bai H, Jia X, Jin X, et al. ATAD2B-ALK, a novel fusion in lung adenocarcinoma identified using next-generation sequencing (NGS). J Thorac Oncol. 2019;14:5844.

52. Pagan C, Barua S, Hsiao SJ, et al. Targeting SLMAP-ALK-a novel gene fusion in lung adenocarcinoma. Cold Spring Harb Mol Case Stud. 2019;5:a003939.

53. Horn L, Whisenant JG, Wakelee H, et al. Monitoring therapeutic response and resistance: analysis of circulating tumor DNA in patients with ALK+ lung cancer. J Thorac Oncol. 2019;14:1901-1911.

54. Pan Y, Zhang Y, Ye T, et al. Detection of novel NRG1, EGFR, and MET Fusions in lung adenocarcinomas in the Chinese population. J Thorac Oncol. 2019;14:2003-2008.

55. Luo J, Gu D, Lu H, Liu S, Kong J. Coexistence of a novel PRKCB-ALK, EML4-ALK double-fusion in a lung adenocarcinoma patient and response to crizotinib. J Thorac Oncol. 2019;14:e266-e268.

56. Wen S, Dai L, Wang L, et al. Genomic signature of driver genes identified by target next-generation sequencing in Chinese non-small cell lung cancer. Oncologist. 2019;24:e1070-e1081.

57. Li T, Zhang F, Wu Z, et al. PLEKHM2-ALK: A novel fusion in small-cell lung cancer and durable response to ALK inhibitors. Lung Cancer. 2020;139:146-150.

58. Yang Y, Zhou J, Zhou J, et al. Efficacy, safety, and biomarker analysis of ensartinib in crizotinib-resistant, ALK-positive non-small-cell lung cancer: a multicentre, phase 2 trial. Lancet Respir Med. 2020;8:45-53.

59. Tian P, Liu Y, Zeng H, et al. Unique molecular features and clinical outcomes in young patients with non-small cell lung cancer harboring ALK fusion genes [epub ahead of print] J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-019-03116-6, accessed January 21, 2020.

60. Zhang Y, Zeng L, Zhou C, et al. Detection of non-reciprocal/reciprocal ALK translocation as poor predictive marker in first-line crizotinib-treated ALK-rearranged non-small cell lung cancer patients. J Thorac Oncol. 2020. https://doi.org/10.1016/j.jtho.2020.02.007.

61. Li Z, Li P, Yan B, et al. Sequential ALK inhibitor treatment benefits patient with leptomeningeal metastasis harboring non-EML4-ALK rearrangements detected from cerebrospinal fluid: A case report. Thorac Cancer. 2020;11:176-180.

62. Chen HF, Wang WX, Xu CW, et al. A novel SOS1-ALK fusion in an adenocarcinoma patient by next-generation sequencing (NGS). Harb Mol Case Stud. 2019;5:a003939.