ENAMEL PEARL
Vanishree H S,1 Anand S Tegginamani.2

1. Lecturer, SEGi University, Kota Damansara Malaysia, vanipedo2010@gmail.com, +60166867322
2. Associate Professor, SEGi University, Kota Damansara Malaysia, anandop2005@gmail.com, +60166867311

Corresponding Author:
Vanishree H S, lecturer, SEGi University,
Kota Damansara Malaysia,
Phone Number - +60166867322
E-mail ID: vanipedo2010@gmail.com.

Submitted Date :21-12-2019 Accepted Date :24-01-2020

ABSTRACT
The developmental anomaly of enamel, Enamel pearls (EPs) has been reported since 1841 with several names its origin is still unclear. They are commonly located in maxillary molars, there is a possibility to find them in any tooth in different sizes & have also seen in primary teeth as previously reported. Three types of enamel pearls have been described along with a variable prevalence and symptoms with clinical implications that must be taken into consideration. Routine exams in dental practice such as panoramic digital radiographs are useful for the detection of enamel pearls, and their exact location could be also addressed using three-dimension imagining technology (CBCT), The presence of EPs is not always associated but few EPs can be a risk factor to develop endodontic and periodontal unfavorable conditions for the affected teeth.

Keywords: Epithelial rests, Enamel pearl, root development, periodontal disease

INTRODUCTION
Enamel pearls are developmental anomalies of enamel described by Linderer in 1841 as a ‘pin’s head’ as enamel deposits mostly found on in the bifurcation areas of the root surface near the cementoenamel junction (CEJ) also has several names like enameloma, enamel globules or enamel droplets. Origin of Enamel pearl is still unclear, and the most accepted theories for its etiology a developmental localized activity of Hertwig epithelial root sheath (HERS) remnants that are adherent to the root surface during the root development. After root formation HERS eventually fragments to the epithelial cell rests of Malassez (ERMs) it suggested that ERMs could differentiate into ameloblast-like cells, producing enamel organic matrix deposits on the root. The capability of those enamel producing ameloblast-like cells might suggest their involvement in the mechanism of enamel pearl formation. Enamel the hardest tissue in the vertebrate body but the regenerative capability of this is limited due to cell apoptosis following maturation of the tissue, presence of the enamel pearls separates from the developed enamel organ. Since the enamel pearl is being nucleated in the absence of underlying mesenchyme, this phenomenon directly proves that neither collagen from dentin nor a mineral substrate for epitaxial growth is required to form the complex, mineralized enamel tissue.1-3 research by Zhan Huang et.al, concludes that the pearl is a nodule of regenerated enamel, organized by polarized ameloblast cells that surround the peptide amphiphiles (Pas) injection site. These cells are sufficiently differentiated to secrete enamel matrix proteins from their apical pole into the extracellular
Although not clearly defined as risk factors for periodontitis, anatomic factors and restorative factors that influence plaque accumulation may play a role in disease susceptibility for specific teeth. When a composite enamel pearl or enamel dentin pulp pearl is diagnosed it may have implications for endodontic treatment.

Radiographically, enamel pearls appear as well-defined, radiopaque nodules. Panoramic digital radiographs seem to be useful for the detection of asymptomatic enamel pearls. Mature internal enamel pearls appear as well-defined circular areas of radiodensity, extending from the dentin enamel junction (DEJ) into the underlying coronal dentin.

Few enamel pearls might miss in routine radiographs, as reported by Versiani. CBCT scan allowed the detection of a small enamel pearl in the furcation area and helps to confirm its presence in case of the suspect.

All the cases might not require the treatment. Odontoplasty can be performed if required to gain adequate access to the defect and to reduce or eliminate cervical enamel projections or enamel pearls.

CONCLUSION

Enamel pearls are thought to be derived from a Hertwig epithelial root sheath (HERS) remnant, with a variable prevalence. The enamel pearl is more frequently in maxillary molars, usually asymptomatic but can be associated with periodontal pockets where they are. Panoramic digital radiographs seem to be useful for the detection of asymptomatic enamel pearls. CBCT scan allowed the detection of a small enamel pearl in the furcation area and helps to confirm its presence in case of the suspect.
REFERENCES

1. Ramon Fuentes, Diego Saravia, Nicolás Ernesto Ottone Enamel pearls in different locations of the roots of mandibular and maxillary molars: Case report. Biomed Res 2017;28(3):1120-1122.

2. Zhan Huang, Christina J. Newcomb, Pablo Bringas Jr., Samuel I. Stupp, Malcolm L. Snead. Biological synthesis of tooth enamel instructed by an artificial matrix. Biomater. Res. 2010;31:9202e9211

3. Beatriz De Carvalho Silva Rocha, Johne Andrade, Claudia Scigliano Valerio, Flávio Ricardo Manzi Enamel pearl diagnosed by cone beam computed tomography: A clinical case report. Indian J Dent Res 2018;29:517-20.

4. Shinmura Y, Tsuchiya S, Hata K, et al. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol2008;217:728–38.

5. Hamamoto Y, Nakajima T, Ozawa H, et al. Production of amelogenin by enamel epithelium of Hertwig’s root sheath. Oral Surg Oral Med Oral Pathol Oral RadiolEndod1996;81:703–06

6. Keinan D, The Significance of Epithelial Rests of Malassez in the periodontal ligament. J. Endod. 2013;39(5):582-87.

7. Joseph A. Regezi, James J. Sciubba and Richard C.K. Jordan Oral Pathology, 16, 373-388.

8. Neville B D, Damm D D, Allen C M, Chi A C. Oral and Maxillofacial Pathology, 2016;2: 49-110.

9. Ghada AlZamel, Scott Odell and Mel Mupparapu Developmental Disorders Affecting Jaws Dent Clin North Am. 2016;60(1):39-90

10. Newman MG, Takei HH, Klokkevold PR, Carranza FA, editors. Newman and Carranza’s clinical periodontology.13th ed. Philadelphia: Elsevier; 2019.

11. Hinrichs, James E.; Kotsakis, Georgios A. 2019. Pp 55-79. ed6.

12. Blieden TM: Tooth-related issues. Ann Periodontol 1999; 4: Pp. 91

13. Satheesh Elangovan, Karen F. Novak and M. John Novak Newman and Carranza's Clinical Periodontology, Chapter 34, Clinical Risk Assessment Pp 410-412. ed4.

14. Versiani, Marco Aurélio, Pécora, Jesus Djalma, de Sousa-Neto, Manoel Damião, Five-rooted permanent maxillary second molar: CBCT findings of an extremely rare anatomical variant J. Endod 2012;38(7) 977-982.

15. Cristina C. Villar, David L. Cochran. Regeneration of Periodontal Tissues: Guided Tissue Regeneration Dent Clin North Am 2010;54(1) 73-92.