SUPPLEMENTARY MATERIAL

A New Piperidine Alkaloid from the Leaves of Microcos paniculata L.

Gang Zhang a, b, Na Zhang a, Li Xu a, Hong-Tan Wu c, Dan Chen a, Qi-Huang Lin b and Lian-Zhong Luo a

a Technology and Engineering Center for Marine Biomedical Resource Utilization, Fujian Province University, Xiamen Medical College, Xiamen 361008, People's Republic of China; b Pharmacy Department of Xiamen Medical College, Xiamen 361008, People's Republic of China; c Medical Technology Department of Xiamen Medical College, Xiamen 361008, People's Republic of China.

Correspondence
Dr. Gang Zhang
Technology and Engineering Center for Marine Biomedical Resource Utilization, Fujian Province University, Xiamen Medical College, Xiamen 361008, People's Republic of China, 8 Yanqian Road, Xiamen 361008, Fujian, P. R. China
Tel: +86-592-5953529
Fax: +86-592-2070806
Email: zg@xmmc.edu.cn

1 These authors contributed equally to this paper.
* Corresponding author. Email: zg@xmmc.edu.cn; lzluo@xmu.edu.cn;
Abstract

A new piperidine alkaloid, microcosamine C (1), and one known compound, microcosamine A (2) were isolated from the leaves of *Microcos paniculata*. Structure elucidation was carried out using HR-ESI-MS, 1D and 2D NMR spectroscopic methods and by comparison to data reported in the literature. The absolute configuration at the C-3 hydroxy group of 1 was established by a Mosher esterification procedure. Both of the isolates (1–2) were evaluated for cytotoxicity against four selected tumor cell lines and showed only weak activity against RAW 264.7 cell line.

Keywords: piperidine alkaloids; *Microcos paniculata*; cytotoxicity
List of Supplementary Material

Figure S1. 1H-1H COSY, 1H-13C HMBC and NOESY correlations for compound 1.
Figure S2. HR-ESI-MS of compound 1.
Figure S3. 1H NMR spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S4. 13C NMR spectrum (150 MHz, CD$_3$OD) of compound 1.
Figure S5. DEPT spectrum (150 MHz, CD$_3$OD) of compound 1.
Figure S6. 1H-1H COSY spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S7. 1H-13C HMQC spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S8. 1H-13C HMBC spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S9. 1H NMR spectrum (600 MHz, CDCl$_3$) of compound 1.
Figure S10. 1H-1H COSY spectrum (600 MHz, CDCl$_3$) of compound 1.
Figure S11. NOESY spectrum (600 MHz, CDCl$_3$) of compound 1.
Figure S12. Overlaid proton spectra of the (R)- and (S)-MTPA esters of 1
(pyridine-d_5, 600 MHz).
Figure S13. 1H-1H COSY spectrum of (R)-MTPA ester of 1 (pyridine-d_5, 600 MHz).
Figure S14. (R)- and (S)-MTPA derivatives of 1 with chemical shift values used in the
determination of the absolute configuration of the 3-hydroxy position by
a Mosher ester procedure.

Table S1. 1H and 13C NMR data for compounds 1 and 2.

Table S2. Cytotoxicity data for compounds 1 and 2.
Figure S1. 1H-1H COSY, 1H-13C HMBC and NOESY correlations observed for compound 1.
Figure S2. HR-ESI-MS of compound 1.
Figure S3. 1H NMR spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S4. 13C NMR spectrum (150 MHz, CD$_3$OD) of compound 1.
Figure S5. DEPT spectrum (150 MHz, CD3OD) of compound 1.
Figure S6. 1H-1H COSY spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S7. 1H-13C HMOC spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S8. 1H-1C HMBC spectrum (600 MHz, CD$_3$OD) of compound 1.
Figure S9. 1H NMR spectrum (600 MHz, CDCl$_3$) of compound 1.
Figure S10. 1H-1H COSY spectrum (600 MHz, CDCl$_3$) of compound 1.
Figure S11. NOESY spectrum (600 MHz, CDCl₃) of compound 1.
Figure S12. Overlaid proton spectra of the (R)- and (S)-MTPA esters of 1 (pyridine-d_5, 600 MHz).
Figure S13. 1H–1H COSY spectrum of (R)-MTPA ester of 1 (pyridine-d_5, 600 MHz).
(A) 1H NMR data of S-MTPA ester of 1
(B) 1H NMR data of R-MTPA ester of 1
(C) $\Delta \delta_H (\delta_S - \delta_R)$ values of derivatized products
(D) S-configuration of C-3 in 1

Figure S14. (R)- and (S)-MTPA derivatives of 1 with chemical shift values used in the determination of the absolute configuration of the 3-hydroxy position by a Mosher ester procedure.
Table S1 1H (600 MHz) and 13C NMR (150 MHz) data (J value in Hz, δ in ppm) of compound 1 in CD$_3$OD and 2 in CDCl$_3$.

position	1	2		
2	1.99 (m)	67.4	2.60 (m)	58.3
3	3.19 (m)	72.3	3.23 (m)	73.4
4α	2.01 (m)	67.4	2.05 (m)	34.0
4β	1.40 (m)	33.9	1.47 (m)	34.0
5α	1.51 (m)	31.7	1.62 (m)	32.5
5β	1.68 (m)	1.75 (m)	32.5	
6	2.69 (m)	69.1	3.26 (m)	58.6
1'	5.51 (dd, 15.1, 8.9)	135.2	5.52 (dd, 15.6, 7.2)	136.0
2'	6.26 (m)	134.5	6.21 (m)	129.7-131.2 a
3'	6.15-6.23 a	131.7-134.9 a	6.06-6.22 a	129.7-131.2 a
4'	6.15-6.23 a	131.7-134.9 a	6.06-6.22 a	129.7-131.2 a
5'	6.15-6.23 a	131.7-134.9 a	6.04 (m)	129.7-131.2 a
6'	6.15-6.23 a	131.7-134.9 a	5.70 (dt, 15.1, 7.2)	135.9
7'	6.09 (m)	131.0	2.10 (q, 7.0)	32.9
8'	5.76 (dt, 15.1, 6.7)	138.2	1.38 (m)	31.4
9'	2.12 (q, 7.0)	26.9	1.36 (m)	22.2
10'	1.01 (t, 7.4)	14.0	0.86 (t, 7.2)	13.9
2-CH$_3$	1.28 (d, 6.2)	15.9	1.24 (d, 7.0)	18.5
N-CH$_3$	2.30 (s)	40.3		

a Multiplicity patterns unclear due to signal overlapping.
Table S16. Cytotoxicity data against HeLa, HepG2, A-549 and RAW 264.7 Cell Lines of Compounds 1–2.

compound	IC$_{50}$ (μM)			
	HeLa	HepG2	A-549	RAW 264.7
1	Inactivea	Inactive	Inactive	31.5
2	Inactive	Inactive	Inactive	39.8
Adriamycin	0.7	0.6	0.3	0.8

a Inactive: indicates <50% inhibition of cell proliferation at 100 μM.
