Functional interactions between steroid hormones and neurotrophin BDNF

Tadahiro Numakawa, Daisaku Yokomaku, Misty Richards, Hiroaki Hori, Naoki Adachi, Hiroshi Kunugi

Brain-derived neurotrophic factor (BDNF), a critical neurotrophin, regulates many neuronal aspects including cell differentiation, cell survival, neurotransmission, and synaptic plasticity in the central nervous system (CNS). Though BDNF has two types of receptors, high affinity tropomyosin-related kinase (TrkB) and low affinity p75 receptors, BDNF positively exerts its biological effects on neurons via activation of TrkB and of resultant intracellular signaling cascades including mitogen-activated protein kinase/extracellular signal-regulated protein kinase, phospholipase Cγ, and phosphoinositide 3-kinase pathways. Notably, it is possible that alteration in the expression and/or function of BDNF in the CNS is involved in the pathophysiology of various brain diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, and mental disorders. On the other hand, glucocorticoids, stress-induced steroid hormones, also putatively contribute to the pathophysiology of depression. Interestingly, in addition to the reduction in BDNF levels due to increased glucocorticoid exposure, current reports demonstrate possible interactions between glucocorticoids and BDNF-mediated neuronal functions. Other steroid hormones, such as estrogen, are involved in not only sexual differentiation in the brain, but also numerous neuronal events including cell survival and synaptic plasticity. Furthermore, it is well known that estrogen plays a role in the pathophysiology of Parkinson’s disease, Alzheimer’s disease, and mental illness, while serving to regulate BDNF expression and/or function. Here, we present a broad overview of the current knowledge concerning the association between BDNF expression/function and steroid hormones (glucocorticoids and estrogen).

© 2010 Baishideng. All rights reserved.

Key words: Brain-derived neurotrophic factor; Steroid hormones; Neurotrophin; Glucocorticoid; Estrogen; Tropomyosin-related kinase; Extracellular signal-regulated protein kinase; Phospholipase Cγ; Phosphoinositide 3-kinase

Peer reviewers: Sic L Chan, PhD, Assistant Professor of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd, BMS, Building 20, Room 136, Orlando, FL 32816, United States; Kah-Leong Lim, PhD, Associate Professor, Neurodegeneration
INTRODUCTION

Neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-3, and NT-4/5, bind to high-affinity tropomyosin-related kinase (Trk) receptors. It is known that NGF binds to TrkA, BDNF and NT-4/5 bind to TrkB, and NT-3 binds to TrkC (additionally to TrkB, weakly), although there is a common low-affinity p75 receptor for all neurotrophins. Specifically, BDNF and TrkB are broadly and strongly expressed in the mammalian brain and exert beneficial effects on central nervous system (CNS) neurons. Following activation of TrkB, due to binding with BDNF, activation of various intracellular signaling pathways, including mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK), phospholipase C (PLC)γ, and phosphoinositide 3-kinase (PI3K) pathways, are triggered. These intracellular signaling cascades have multiple roles in cell differentiation, nerve growth, neuronal survival, and synaptic plasticity in both the developing and mature nervous system. Importantly, dysfunction of BDNF may be involved in the pathophysiology of various brain diseases. A reduction in BDNF levels has also been indicated in various mental disorders.

Important stress hormones, such as glucocorticoids, are also putatively associated in the pathophysiology of depression. Glucocorticoids play an essential role in coping with stressful conditions, and are well known to regulate the expression of various target genes via the glucocorticoid receptor (GR). In general, the level of blood glucocorticoids is controlled through the hypothalamus-pituitary-adrenal (HPA)-axis. In turn, the sustained increase in glucocorticoids after prolonged exposure to stress may cause extensive damage to the CNS, resulting in the onset of depression. As both BDNF and glucocorticoids may be involved in neuronal function and the pathophysiology of depression, possible crosstalk between BDNF and glucocorticoid function is very interesting. In this review, we provide an overview of the current knowledge, including our studies, concerning the association between BDNF and glucocorticoids.

Estrogen also contributes to numerous neuronal aspects in the CNS. For example, 17β-estradiol (17β-E2), one of the estrogens, promotes cell differentiation and survival in cultured hypothalamic, amygdala, and neocortical neurons. In cortical cultures, we also reported that 17β-E2 protects neurons from cell death caused by oxidative stress via decreasing MAPK/ERK signaling activity. Furthermore, we previously showed that pretreatment of cultured hippocampal neurons with 17β-E2 enhances activity-dependent release of glutamate, the main excitatory neurotransmitter, via activation of PI3K and MAPK/ERK pathways. It is important to mention, however, that potentiation by estradiol in the release of the main inhibitory neurotransmitter, GABA, was not observed. Considering that many studies demonstrate that 17β-E2 can stimulate the same signaling pathways as BDNF, we describe relations between estrogen and BDNF in the latter part of this paper.

GLUCOCORTICOIDS AND BDNF

BDNF and intracellular signalings

The BDNF gene has at least nine exons. Specifically, exon I encodes the open reading frame for the entire BDNF protein, while the remaining exons possess their own distinct promoters. Transcription of the BDNF gene is initiated from each 5’ exon spliced onto the common 3’ exon I in response to the specific stimulus (Figure 1A). The length of the 3’ untranslated region of BDNF mRNA influences the dendritic transport of the mRNA in hippocampal neurons. Importantly, neuronal activity also impacts the transcription and secretion of BDNF. Ca2+ influx via Ca2+ channels triggers activation of cAMP-responsive element binding protein (CREB), which regulates transcription of many genes including BDNF. Such mechanisms underlying the production and/or release of BDNF are suggested to be involved in the activity-dependent maturation and modulation of synaptic connections in the adult CNS. Recently, it was reported that binding of CREB to promoter IV is necessary for experience-dependent induction of BDNF transcription in addition to facilitating inhibitory synapse development.

BDNF exerts biological effects on the neuronal system following the binding to two types of transmembrane receptors. One transmembrane receptor is a high affinity TrkB receptor, and the other is a low affinity p75 neurotrophin receptor. The binding of BDNF to the extracellular domain of TrkB triggers dimerization of the receptor followed by autophosphorylation (activation) of tyrosin residues located in the intracellular kinase domain. The TrkB phosphorylation induces activation of three intracellular signaling cascades commonly referred to as the MAPK/ERK, PI3K, and PLCγ pathways (Figure 1B). Together, phosphorylation of the tyrosine 515 residue located in the juxtamembrane region and the tyrosine 816 residue in the C-terminus of TrkB accelerate recruitment of the Src homology domain-containing protein (Shc) and PLCγ, respectively. Shc phosphorylation leads to activation of the MAPK/ERK pathway, which promotes neuronal differentiation and growth, and of the PI3K/Akt pathway, which is essential for cell survival. PLCγ activation causes production of inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG). Increased IP3 stimulates...
Ca2+ release from internal Ca2+ stores, resulting in the activation of Ca2+/calmodulin-dependent protein kinases (e.g. CaMKII, CaMKK and CaMKIV). DAG activates protein kinase C23,24. Overall, BDNF affects CNS neurons through various intracellular signaling pathways triggered by activation of TrkB25.

Roles of glucocorticoid and BDNF in stress/depression

Increased glucocorticoid levels coupled with reduced BDNF levels have been implicated in the pathophysiology of depression. In general, many stressors activate the HPA axis through increasing the production and consequent release of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) from the paraventricular nucleus (PVN) of the hypothalamus. Following this, secreted CRH, in concert with AVP, stimulate the pituitary to produce adrenocorticotropic hormone (ACTH), which enters the bloodstream to stimulate the adrenal glands. Finally, the adrenal glands respond by producing and releasing glucocorticoids (cortisol in primates including humans, and corticosterone in rodents). Importantly, glucocorticoids participate in an inhibi-
tory feedback loop with the hypothalamus and pituitary glands in order to prevent excess synthesis and/or secretion of CRH and ACTH, respectively. In addition, the hippocampus exerts an inhibitory action on the HPA-axis. Glucocorticoids function as a master regulator for stress responses by targeting many genes via the GR[8].

There is evidence demonstrating that abnormalities in the HPA axis are involved in the pathophysiology of a variety of mental disorders, in particular mood disorders[25]. Specifically, a possible association between depression and HPA axis hyperactivity has been demonstrated. For example, elevated concentrations of CRH in cerebrospinal fluid[26], increased volume of adrenal[27] and pituitary glands[28], and impaired negative feedback as indicated by a higher rate of non-suppression to pharmacological challenge paradigms[9,29,30] were reported. Such HPA-axis hyperactivity in depressed patients can be improved after successful treatment[10,31]. The HPA-axis abnormalities are also observed in animals exposed to chronic stress[32]. Moreover, a large number of preclinical and clinical studies have provided evidence supporting the association between stress/depression and hippocampal abnormalities, such as a decrease of hippocampal neurogenesis as a result of stress conditions[13], the increase of hippocampal neurogenesis after antidepressant treatment[14], and the reduced hippocampal volume in depressed patients[15]. Furthermore, the suppression of hippocampal neurogenesis due to HPA-axis hyperactivity is assumed to be one of the major pathways for mood disorders including depression[16].

On the other hand, several studies demonstrate that BDNF plays a role in the pathophysiology of stress/depression. Indeed, stress modifies the expression of BDNF; immobilization stress reduces BDNF expression throughout the hippocampus[33] and increases BDNF levels in the hypothalamic PVN[34]. In a rat model of depression, BDNF exerts antidepressant-like effects[35,36]. As expected, antidepressant treatment increases BDNF levels in limbic structures, most prominently in the hippocampus[37,42]. In patients with depression, decreased serum BDNF levels[38,41] and improvement in attenuated BDNF levels through antidepressant treatment[43] were observed. Furthermore, increased hippocampal BDNF levels were documented in postmortem brains of subjects treated with antidepressants[44]. Interestingly, evidence concerning the possible involvement of BDNF in HPA axis function was shown. In animals, central administration of exogenous BDNF was shown to modify HPA axis function[45,46]. Both BDNF and glucocorticoids may be involved in the pathophysiology of depression and overall neuronal function in the CNS, though the possible interaction between glucocorticoids and BDNF is poorly understood.

Functional interaction between glucocorticoids and BDNF

Many studies indicate that BDNF is important in the regulation of synaptic proteins. In the release of neurotransmitters, synaptic proteins including synaptic vesicle-associated synaptic proteins (e.g. synapsin I, synaptotagmin and synaptophysin) and plasma membrane-associated synaptic proteins (syntaxin and synaptosomal-associated protein of 25 kDa) are critical[49]. Many studies revealed that BDNF upregulates levels of these presynaptic proteins[50,52]. In addition to regulation of presynaptic proteins, expression of postsynaptic ionotropic glutamate receptors (GluRs) are also affected by BDNF. In hippocampal cultures, BDNF increases GluR1, GluR2, and GluR3 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors[51]. Levels of N-methyl-D-aspartic acid (NMDA) receptor subunits, including NR1, NR2A and NR2B, are also increased by BDNF application[51]. We recently reported an inhibitory effect of DEX (dexamethasone, a synthetic glucocorticoid, and selective ligand for GR) on synaptic maturation[51]. In cultured cortical neurons, we previously found that BDNF increased levels of synaptic proteins via activation of the MAPK/ERK pathway[51]. In developing hippocampal neurons, BDNF upregulated levels of NR2A, NR2B, GluR1, and synapsin I through MAPK/ERK signaling. However, in the presence of DEX, the BDNF-dependent increase in expression of these synaptic proteins was inhibited via suppression of MAPK/ERK signaling[51]. The inhibitory action of DEX was reversed by RU486, a GR antagonist, suggesting that the GR is involved in the inhibition by DEX.

BDNF is recognized as a crucial regulator for basal neurotransmission and synaptic plasticity including long-term potentiation, which has been intensively studied to understand mechanisms of learning and memory[53,54]. We also reported that BDNF elicits glutamate release through activation of the PLCγ pathway[55]. Recently, we showed a functional interaction of glucocorticoids with BDNF in the release of glutamate in cultured cortical neurons. After pretreatment with DEX or corticosterone, GR expression and the BDNF-evoked glutamate release were both diminished[56] (Figure 2A and B). On the other hand, the TrkB levels were intact after exposure to glucocorticoids (Figure 2B). Interestingly, we found that the GR interacts with TrkB, and the TrkB-GR interaction may be important for the regulation of BDNF-evoked glutamate release. Following DEX treatment, the TrkB-GR interaction was reduced due to the decline in GR levels. Similarly, the BDNF-stimulated binding of PLCγ to TrkB was also declined. In contrast, GR overexpression enhanced the TrkB-GR interaction, PLCγ activation, and glutamate release. Therefore, it is possible that the TrkB-GR interaction is critical for glutamate release stimulated by BDNF via regulation of PLCγ signaling, and that the decrease in TrkB-GR interaction after chronic glucocorticoid exposure resulted in the dysfunction of the BDNF-dependent neurotransmission[56].

In general, glucocorticoids are believed to display their effects via transcriptional regulation of various genes targeted by GR. Remarkably, glucocorticoids acutely activate Trks signaling through the genomic function (via transcriptional activity) of the GR. After *in vivo* administration
in the brain and in cultures of hippocampal and cortical neurons, the glucocorticoid-stimulated activation of Trks was induced. In that system, other tyrosine kinase receptors, such as EGF and FGF receptors, were not activated by glucocorticoids. The glucocorticoid-dependent activation of Trks has a neuroprotective role. Accumulating evidence, including our study on BDNF-stimulated glutamate release, demonstrates a nongenomic (not via transcriptional activity) function of GR. Löwenberg et al. reported the functional interaction between the GR and the T-cell receptor (TCR) complex. In T cells, the GR plays an important role in TCR signaling. After the glucocorticoid is bound to the GR, the GR dissociates from the complex, resulting in inhibition of TCR signaling. Rapid action of glucocorticoids may be mediated by the activation of membrane-associated receptors. Some evidence suggests that rapid glucocorticoid actions are stimulated via membrane-associated G protein-coupled receptors and activation of downstream intracellular signaling pathways. In rat liver and hepatoma cells, feline McDonough sarcoma-like tyrosine kinase 3 was identified as a GR-interacting protein. It was revealed that Flt3 interacts with both non-liganded and liganded GR, and the DNA-binding domain of GR is sufficient for the interaction. In our cortical cultures, it is possible that the N-terminal region (including DNA binding site) of the GR interacts with TrkB, however, the C-terminal region is also required to reinforce the BDNF-stimulated PLCγ signaling. In the cytoplasm of rat liver cells, GR interaction with 14-3-3 and Raf-1 was identified, implying that the GR directly influences cytosolic signaling. To reveal detailed mechanisms underlying acute functions of GR in the CNS, it may be valuable to study possible interactions between GR and cytosolic signaling mediators.

Using in vivo experiments, Gourley et al. reported a significant decrease in NR2B, GluR2/3, as well as BDNF levels in cortical regions, but not in the dorsolateral hippocampus, after corticosterone exposure. Moreover, the effect of prenatal DEX treatment in male and female adult rat offspring has been investigated. In this system, DEX male offspring had reduced adrenal gland weight in adult life and demonstrated anxious behavior. By assessing the acoustic startle response as well as the effects of acoustic challenge in the PVN, it was revealed that BDNF and TrkB mRNA were increased after acoustic challenge in the control males and females, but not in the DEX males or females. On the other hand, an enriched environment (EE) can induce changes in stress hormone release and BDNF levels. In general, EE has beneficial neurobiological, physiological and behavioral effects. Bakos et al. showed that the EE-induced rise in hippocampal BDNF in females was more pronounced than in males. Similar sex-specific changes were confirmed in the hypothalamus. Moreover, a negative association between corticosterone and BDNF levels was observed in both sexes.

Antidepressant drugs and BDNF

As mentioned above, it is possible that upregulation in expression and/or function of BDNF is involved in antidepressant treatment. Antidepressants, including inhibitors of monoamine transporters and metabolism, activate TrkB rapidly in the rodent anterior cingulate cortex and hippocampus in vitro. Importantly, acute antidepressant treatments induce activation of PLCγ via TrkB, though no alteration in phosphorylation of MAPK or Akt was observed. Using cultured cortical neurons, we also reported that pretreatment with antidepressant drugs, including imipramine and fluvoxamine, enhanced BDNF-induced glutamate release via increasing PLCγ activation. In our system, other pathways activated by TrkB (i.e. PI3K/Akt and MAPK/ERK pathways) were not changed after imipramine pretreatment. Importantly, the potentiation of glutamate release by imipramine was inhibited by BD1047, a sigma-1 receptor antagonist, suggesting the possible involvement of sigma-1 receptor function. Recently, we have also shown that SA4503, a sigma-1 receptor agonist, has a neuroprotective effect under oxidative-stress. It is possible that a sigma-1 receptor has multiple functions in the CNS.

Fluoxetine, which is a widely prescribed medication...
for depression, improves neuronal function in the visual system of rats. In the adult rat visual cortex following chronic administration of fluoxetine, BDNF levels were increased. In addition, a similar increase in BDNF levels in the hippocampus was also indicated[83]. Antidepressants, including monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, noradrenaline reuptake inhibitors, and tricyclic, noradrenergic, serotonergic antidepressants, all cause upregulation of BDNF[83]. Russo-Neustadt et al[84] reported that reboxetine (for 2 d) caused an increase in BDNF transcription in several hippocampal regions. The same increase was also induced after reboxetine application was combined with voluntary physical activity for 2 wk. On the other hand, citalopram (for 2 d) induced upregulation of BDNF in only the CA2 region of the hippocampus, and when combined with voluntary physical activity, the CA4 and dentate gyrus exhibited increased BDNF levels after 2 wk[86]. Recently, O'Leary et al[85] demonstrated that fluoxetine increases Phospho-Synapsin, postsynaptic density 95 (PSD-95), and synaptic GluR1 in the hippocampus of ovariectomized rats. Furthermore, they clarified that fluoxetine caused an increase in PSD-95 levels in ovariectomized wildtype mice but not in ovariectomized TrkB T1 (a truncated form of the TrkB receptor) transgenic mice, suggesting an involvement of TrkB signaling in fluoxetine action[83]. The influence of chronic antidepressant treatment on BDNF expression under stressful conditions has been investigated. After male rats were treated for 21 d with vehicle or with duloxetine and exposed to an acute swim stress (for 5 min) 24 h after the last injection, the chronic duloxetine modulated the rapid transcriptional changes of BDNF isoforms induced by swim stress[86]. In their system, a significant increase of exon VI and exon IX of BDNF was only found in rats that were pretreated with duloxetine, though exon IV was upregulated by stress in vehicle- and duloxetine-treated rats. As shown, the effect of antidepressants on BDNF expression and function is gradually becoming more clear, though further studies are needed to understand the molecular mechanisms associated with each BDNF exon and their effect on clinical depression.

Modulation of synaptic plasticity, learning and memory, and neuroprotection by estrogen

Sexual dimorphism in the brain is determined during critical perinatal periods[87,88]. It is well known that the determination is influenced by genetic background and sex steroid exposure. In the male brain during the perinatal stage, testosterone is converted to estrogen by cytochrome P450, and, in turn, the converted estrogen plays a role in brain differentiation. On the other hand, in the female brain, maternal estrogen does not affect sexual dimorphism because the estrogen in the serum binds to an estrogen-specific binding protein called α-fetoprotein. Therefore, the estrogen complex is not able to access the brain. In summary, estrogen converted from testosterone causes differentiation to a male brain, while brains that are not exposed to such steroids become female brains.

In addition to contributing to sex differentiation in the brain, estrogen is associated with brain functions including learning and memory[89-98]. Ovariectomy impairs spatial memory formation, synaptogenesis and LTP in rodents[99,100]. Estrogen administration inversely enhances spatial memory formation, spinogenesis, and LTP in rats[101-103]. Within the in vitro system, positive regulation of estrogen on synaptic function is also observed. 17β-E2 treatment enhances spine formation in cultured hippocampal neurons[104], suggesting that postsynaptic modulation by estrogen is occurring. Additionally, we previously reported that 17β-E2 potentiated the depolarization-dependent release of glutamate, the main excitatory neurotransmitter, in cultured hippocampal neurons[105]. In our system, activation of MAPK/ERK and PI3K signaling is required for potentiation by 17β-E2. Importantly, the memory deficit in patients suffering from Alzheimer's disease is recovered by postmenopausal estrogen replacement therapy[105].

Estrogen has a protective effect on neurons, preventing cell death caused by oxidative-stress or excessive glutamate treatment[106-112]. We also found 17β-E2 treatment to be protective[113]. Exposure of cortical neurons to oxidative stress induced overactivation of MAPK/ERK and intracellular Ca²⁺ accumulation, resulting in apoptotic-like cell death. However, pretreatment with 17β-E2 demonstrated an inhibitory effect on MAPK/ERK overactivation, Ca²⁺ accumulation, and cell death. Furthermore, estrogen is a potent neuroprotective agent in animal models of neuronal death[109]. Chen et al[114] demonstrated a protective effect of 17β-E2 on CA1 hippocampal cells after ischemia in gerbils. 17β-E2 treatment has been shown to improve neurological outcomes following traumatic injury in male rats, although no effect was seen in intact females. Neuronal loss due to administration of dopaminergic toxins and kainic acid can be attenuated with 17β-E2 treatment[111].

Interaction between estrogen and BDNF-in vitro studies

As described above, estrogen has multiple functions in the brain. Some reports suggest involvement of BDNF in modulating estrogen actions[114]. Sohrabji et al[115] showed that estrogen can regulate the expression of BDNF via...
the estrogen response element on the BDNF gene. They searched motifs resembling the canonical ERE (GGT-CANNTGACC) in the BDNF gene by using a computerized gene homology program. One ERE-like motif was confirmed in the currently known sequence for the BDNF gene, which consisted of a set of pentameric sequences with near perfect nucleotide homology (1-bp mismatch). The motif lies at the 5’ end of exon IX (was exon V) that codes for the BDNF protein. They also showed that estrogen receptor-ligand complexes bind to and protect the BDNF ERE-like motif from DNase cleavage. Therefore, it is possible that BDNF levels are regulated by estrogen. In dissociated hippocampal cultures, 17β-E2 downregulates the expression of BDNF in GABAergic neurons to 40% of control within 24 h of exposure, and the downregulation returns to basal levels within 48 h. This GABAergic dysfunction results in an increase in excitatory tone in pyramidal neurons, and leads to a 2-fold increase in dendritic spine density. Interestingly, exogenous BDNF blocks the effects of 17β-E2 on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of 17β-E2. This group demonstrated that 17β-E2 increases spine density via changing the degree of excitation/inhibition balance to favor excitation. Recently, it was reported that 17β-E2 increases protein levels of BDNF in hippocampal slice cultures. In contrast, another group reported that 17β-E2 does not change the expression of BDNF in cultured hippocampal neurons. In hypothalamic slice cultures, levels of BDNF mRNA were not changed by either acute or chronic treatment of 17β-E2[119]. In midbrain cultures, 17β-E2 increased BDNF protein levels[128]. Remarkably, 17β-E2 induces the release of BDNF in dentate gyrus granule cells in hippocampal slice cultures, and 17β-E2-dependent synaptogenesis was induced via the secreted BDNF[118].

Estrogen has been found to produce acute effects in which specific membrane receptor actions may be involved[120-125]. As mentioned above briefly, estrogen activates MAPK/ERK, PI3K, and CREB pathways[126,127]. Interestingly, BDNF also stimulates the same intracellular signaling pathways. These signaling cascades induced by estrogen are recognized as an acute cellular response, inferring that upregulation of BDNF may not be involved[126].

Interaction between estrogen and BDNF-in vivo studies

Most studies demonstrate that estrogen upregulates mRNA and/or protein expression of BDNF throughout the brain, though some groups have shown that estrogen downregulates or has no influence on BDNF levels in some brain regions[127,128]. Importantly, it was reported that 17β-E2 administration in ovariectomized female rats increased BDNF expression in the hippocampus by reverse transcriptase-polymerase chain reaction (RT-PCR)[129], in the cerebral cortex by in situ hybridization[128,130], RT-PCR[131] and ELISA[128], and in the olfactory bulb by RT-PCR[129] and ELISA[129]. Some groups report that exogenous estrogen application decreases BDNF levels in the cerebral cortex by ELISA[133]. In addition, BDNF mRNA levels in the hippocampus and cerebral cortex have been shown to fluctuate by estrous cycles in female rats[128,131]. Although there are many studies addressing the relationship between estrogen and BDNF expression levels, future studies should clarify the detailed interactions between estrogen and BDNF-mediated neuronal function in addition to elucidating the molecular mechanisms underlying estrogen-controlled BDNF expression.

Interaction between other sex steroids and BDNF

Progesterone and testosterone also regulate BDNF expression. Recently, Aguirre et al[134] reported that, in hippocampal slice cultures, progesterone upregulates BDNF proteins. 17β-E2 was also shown to protect hippocampal neurons from NMDA induced cell death. In their report, long-term progesterone treatment following 17β-E2 application attenuates 17β-E2-induced neuroprotection in hippocampal slice cultures. Moreover, Kaur et al[134] demonstrated that progesterone upregulates both BDNF mRNA and protein levels in cerebral cortical explants. In their system, K252a, an inhibitor for TrkB, inhibits progesterone-induced protection against glutamate toxicity, suggesting that BDNF upregulation is required for the progesterone action in neuroprotection. Interestingly, this progesterone-dependent protection is mediated via MAPK/ERK and PI3K pathways. In contrast, two independent groups provided evidence that progesterone-dependent neuroprotection is not through BDNF in rodents[135-137]. Collectively, the evidence concerning the interaction between progesterone and BDNF remains mixed, warranting further study. On the other hand, testosterone administration was shown to increase BDNF protein levels in castrated male rats[138]. Another group also indicated that BDNF mediates the effects of testosterone on neuronal survival[139]. It is also possible that BDNF contributes to testosterone function in the brain.

CONCLUSION

In addition to BDNF, steroid hormones such as glucocorticoids and estrogen regulate cell survival and neuronal function in the CNS. Several studies demonstrate that glucocorticoids and estrogen regulate the expression levels of BDNF in many brain regions. As upregulation of BDNF is putatively involved in the beneficial effects of several antidepressants, further investigation concerning the detailed mechanisms underlying such hormone-dependent production of BDNF is critical. Furthermore, it is well known that production and secretion of BDNF is affected by neuronal activity, though the detailed mechanisms concerning hormone-stimulated intracellular signaling and how this regulates BDNF dynamics remains to be investigated.
be elucidated. Considering that neuronal activity and/or Ca2+ signaling regulate BDNF expression, it is possible that decreases in BDNF-stimulated intracellular signaling and neuronal function occur before reduction in BDNF levels in patients with depression is confirmed. Further studies concerning how these factors (steroid hormones and BDNF) influence each other and consequent intracellular signaling is required. Recently, the neuronal roles of microRNAs (miRs), that regulate diverse gene expression via targeting mRNAs to cleavage or to inhibit translation, have been proposed in BDNF function. For example, miR-132 is increased by BDNF and has a role in neuronal outgrowth[15]. We currently found that glucocorticoid reduced BDNF-dependent upregulation of glutamate receptors and decreasing of levels of the miR-132[16]. As a possible crosstalk point of steroid hormones and BDNF, the regulation of brain-specific miRs may be interesting.

REFERENCES

1. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. *Ann Rev Biochem* 2003; 72: 609-642
2. Numakawa T, Suzuki S, Kunamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. *Histol Histopathol* 2010; 25: 237-258
3. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. *Mol Psychiatry* 2004; 9: 609-620, 544
4. Geravasoni N, Aubry JM, Bondolfi G, Osiek C, Schward M, Bertschy G, Karege F. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. *Neuropsychobiology* 2005; 51: 234-238
5. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychiatric drugs. *Brain Res Mol Brain Res* 2005; 136: 29-37
6. McEwen BS. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. *Metabolism* 2005; 54: 20-23
7. Smook KA, Cidlowski JA. Mechanisms of glucocorticoid receptor signaling during inflammation. *Mammalian D„建军 Suvevo 2004; 125: 697-706.
8. de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from signal transduction.
9. Numakawa T, Iida, I. Owashita T, Kimura M, Inoue Y, Nakagawa S, Yabana T, Urahishita T, Kanai R, Aihara M, Yuuki N, Otsubo T, Oshima A, Kudo K, Inoue T, Itake Y, Shirakawa O, Isogawa K, Nagayama H, Kamijima K, Nanko S, Kanba S, Higuchi T, Mikuni M. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a Multicenter Study. *Neuropsychopharmacology* 2006; 31: 212-220
10. Chowen JA, Torres-Alemán I. Garcia-Segura LM. Trophic effects of estradiol on fetal rat hypothalamic neurons. *Neuroendocrinology* 1992; 56: 895-901
11. Akanatsu Y, Hatana H. Estradiol treatment enhances survival of cultured fetal rat amygdala neurons in a defined medium. *Brain Res* 1986; 391: 151-159
12. Brinton RD, Tran J, Profitt P, Montoya M. 17 beta-Estradiol enhances the outgrowth and survival of neocortical neurons in culture. *Neurochem Res* 1997; 22: 1339-1351
13. Numakawa T, Matsumoto T, Yokomaku D, Taguchi T, Niki E, Hatana H, Kunugi H, Numakawa T. 17beta-estradiol protects cortical neurons against oxidative stress-induced cell death through reduction in the activity of mitogen-activated protein kinase and in the accumulation of intracellular calcium. *Endocrinology* 2007; 148: 627-637
14. Yokomaku D, Numakawa T, Numakawa Y, Suzuki S, Matsumoto T, Adachi N, Nishio C, Taguchi T, Hatana H. Estragon enhances depolarization-induced glutamate release through activation of phosphatididylinositol 3-kinase and mitogen-activated protein kinase in cultured hippocampal neurons. *Mol Endocrinol* 2003; 17: 831-844
15. Aid T, Kazantseva A, Pirsoo M, Palm K, Timmusk T. Mouse and rat BDNF gene structure and expression revisited. *J Neurosci* 2007; 27: 525-535
16. An J, Gharami K, Liao GY, Wong NH, Lau AG, Vaneski F, Torres ER, Jones KR, Feng Y, Lu B, Xu B. Distinct role of long 3' UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. *Cell* 2008; 134: 175-187
17. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. *Neuron* 2002; 35: 605-623
18. Greenberg ME, Xu B, Lu B, Hempstead BL. New insights in the biology of BDNF synthesis and release: implications in CNS function. *J Neurosci* 2009; 29: 12764-12767
19. Flavell SW, Greenberg ME. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. *Annu Rev Neurosci* 2008; 31: 563-590
20. Hong EJ, McCord AE, Greenberg ME. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. *Neuron* 2008; 60: 610-624
21. Reichardt LF. Neurotrophin-regulated signalling pathways. *Philos Trans R Soc Lond B Biol Sci* 2006; 361: 1545-1564
22. Kavanagh WM, Williams LT. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. *Science* 1994; 266: 1862-1865
23. Minichiello L. TrkB signalling pathways in LTP and learning. *Nat Rev Neurosci* 2009; 10: 850-860
24. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ. Neurotrophic factors and structural plasticity in addiction. *Neuropsychopharmacology* 2009; 34: Suppl 1: 73-82
25. Holsboer F. The corticosterone receptor hypothesis of depression. *Neuropsychopharmacology* 2000; 23: 477-501
26. Nemeroff CB, Widerlov E, Bissette G, Wallèus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. *Science* 1984; 226: 1342-1344
27. Rubin RT, Phillips JJ, Sadow TF, McCraken JT. Adrenal gland volume in major depression. Increase during the depressive episode and decrease with successful treatment. *Arch Gen Psychiatry* 1995; 52: 213-218
28. MacMaster FP, Kusumakar V. MRI study of the pituitary gland in adolescent depression. *J Psychiatry Res* 2004; 38: 231-236
29. Carroll BJ. The dexamethasone suppression test for melancholia. *Br J Psychiatry* 1982; 140: 292-304
30. Heuser I, Yassouridis A, Holsboer F. The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. *J Psychiatry Res* 1994; 28: 341-356
31. Baghai TC, Schüle C, Zwanzger P, Minow C, Holme C, Padberg F, Biddingmaier M, Strasburger CJ, Ruepprecht R. Evaluation of a salivary based combined dexamethasone/CRH test in patients with major depression. *Psychoneuroendocrinology* 2002; 27: 362-379
32. Pariente CM. Depression, stress and the adrenal axis. *J Neuroendocrinol* 2003; 15: 811-812
33. Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. *Proc Natl Acad Sci USA* 1998; 95: 3168-3171
34. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic an-
tidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104-9110

35 MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Niamhias C, Young LT. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003; 100: 1387-1392

36 Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry 2000; 48: 732-739

37 Smith MA, Makino S, Kvetcansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1768-1777

38 Smith MA, Makino S, Kim SY, Kvetcansky R. Stress increases brain-derived neurotrophic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology 1995; 136: 3743-3750

39 Siuciak JA, Lewis DR, Wiegdan SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56: 131-137

40 Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251-3261

41 Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7559-7567

42 Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109: 143-148

43 Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Amano S, Joffe RT, Nahmias C, Young LT, Kandel ER. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 1996; 16: 1137-1145

44 Li YX, Xu Y, Ju D, Lester HA, Davidson N, Schuman EM. Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cortical neurons. J Neurosci 2002; 22: 86-98

45 Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260-265

46 Givalois L, Naert G, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L. A single brain-derived neurotrophic factor injection modifies hypothalamic-pituitary-adrenocortical axis activity in adult male rats. Mol Cell Neurosci 2004; 27: 280-295

47 Naert G, Ixart G, Tapia-Arancibia L, Givalois L. Continuous i.v. infusion of brain-derived neurotrophic factor modifies hypothalamic-pituitary-adrenal axis activity, locomotor activity and body temperature rhythms in adult male rats. Neuroscience 2006; 139: 779-789

48 Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 1995; 375: 645-653

49 Tartaglia N, Du J, Tyler WJ, Neale E, Pozzo-Miller L, Lu B. Protein synthesis-dependent and independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J Biol Chem 2001; 276: 37585-37593

50 Takei N, Sasaoka K, Itoe K, Takahashi M, Endo Y, Hatana H. Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats. J Neurochem 1997; 68: 370-375

51 Takei N, Sasaoka K, Itoe K, Takahashi M, Endo Y, Hatana H. Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats. J Neurochem 1997; 68: 370-375

52 Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama Y, Matsuiki N. Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 2002; 22: 7580-7585

53 Califera MV, Camps J, Porretta DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB. Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 2007; 282: 12619-12628

54 Califera MV, Melo CV, Pereira DB, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 2007; 35: 208-219

55 Kumamaru E, Numakawa T, Adachi N, Yagasaki Y, Izumi A, Niizaw M, Kudo M, Kunugi H. Glucocortioid prevents brain-derived neurotrophic factor-mediated modulation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol 2008; 22: 546-558

56 Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995; 267: 1658-1662

57 Thoenen H. Neurotrophins and neuronal plasticity. Science 1995; 270: 593-598

58 Berninger B, Poo M. Fast actions of neurotrophic factors. Curr Opin Neurobiol 1996; 6: 324-330

59 Korte M, Grisbeck O, Gravel C, Carroll P, Staiger V, Thoenen H, Bonhoeffer T. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci USA 1996; 93: 12547-12552

60 Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 1996; 16: 1137-1145

61 Li YX, Xu Y, Ju D, Lester HA, Davidson N, Schuman EM. Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc Natl Acad Sci USA 1998; 95: 10884-10889

62 Lu B. BDNF and activity-dependent synaptic modulation. Learn Mem 2003; 10: 86-98

63 Numakawa T, Yamagishi S, Adachi N, Matsumoto T, Yokomaku D, Adachi N, Yamada M, Hataoka H. Brain-derived neurotrophic factor-induced Ca(2+)-oscillations in developing cortical neurons. J Biol Chem 2002; 277: 6520-6529

64 Numakawa T, Yokomaku D, Kiyosue K, Adachi N, Matsuo T, Numakawa Y, Taguchi T, Hataoka H, Yamada M. Basic fibroblast growth factor evokes a rapid glutamate release via a glutamate transporter. J Biol Chem 2002; 277: 41259-41269
Molteni R, Calabrese F, Cattaneo A, Mancini M, Gennarelli M, Racagni G, Riva MA. Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. *Neuropsychopharmacology* 2009; 34: 1522-1532.

Tobet S, Knoll JC, Hartlhorn C, Aurand E, Stratton M, Kumar P, Scacey B, McClellan K. Brain sex differences and hormone influences: a moving experience? *J Neuroendocrinol* 2009; 21: 387-392.

Brinton RD. Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer's disease: recent insights and remaining challenges. *Learn Ment 2001;* 8: 121-133.

Green PS, Simpkins JW. Neuroprotective effects of estrogens: potential mechanisms of action. *Int J Dev Neurosci* 2000; 18: 347-358.

Lee AW, Pfaff DW. Hormone effects on specific and global brain functions. *J Physiol Sci* 2008; 58: 213-220.

Nelson LR, Bulun SE. Estrogen production and action. *J Am Acad Dermatol* 2001; 45: S116-S124.

Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Ogike-Ikedo M, Ishii H, Kimoto T, Kawato S. Estrogen synthesis in the brain—role in synaptic plasticity and memory. *Mol Cell Endocrinol* 2008; 290: 31-43.

Tsutsui K. Neurosteroids in the Purkinje cell: biosynthesis, mode of action and functional significance. *Mol Neurobiol* 2008; 37: 116-125.

McCarthy MM. Estradiol and the developing brain. *Physiol Rev* 2008; 88: 91-124.

Murphy DD, Andrews SB. Culture models for the study of estradiol-induced synaptic plasticity. *J Neurocytol* 2000; 29: 411-417.

Ogike-Ikedo M, Tanabe N, Mukai H, Hojo Y, Murakami G, Tsurugizawa T, Takata N, Kitamoto T, Kawato S. Rapid modulation of synaptic plasticity by estrogens as well as endocrine disruptors in hippocampal neurons. *Brain Res Rev* 2008; 57: 363-375.

Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS. Uncovering the mechanisms of estrogen effects on hippocampal function. *Front Neuroendocrinol* 2008; 29: 219-237.

Brinton RD. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. *Trends Pharmacol Sci* 2009; 30: 212-222.

Wallace M, Luine V, Arellanos A, Frankfort M. Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. *Brain Res* 2006; 1126: 176-182.

Małkusy NJ, Luine VN, Hajsanz T, Lenarth C. The 17alpha and 17beta isomers of estradiol both induce rapid spine synapse formation in the CA1 hippocampal subfield of ovariectomized female rats. *Endocrinology* 2005; 146: 287-293.

Lewis C, McEwen BS, Frankfort M. Estrogen-induction of dendritic spines in ventromedial hypothalamus and hippocampus: effects of neonatal aromatase blockade and adult GDX. *Brain Res Dev Brain Res* 1995; 87: 91-95.

Xu X, Zhang Z. Effects of estradiol benzoate on learning-memory behavior and synaptic structure in ovariectomized mice. *Life Sci* 2006; 75: 1533-1545.

Li C, Brake WG, Romeo RD, Dunlop JC, Gordon M, Buzescu R, Magarinos AM, Allen PB, Greenard P, Luine V, McEwen BS. Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoactivity and spatial memory in female mice. *Proc Natl Acad Sci USA* 2004; 101: 2185-2190.

Murphy DD, Segal M. Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. *J Neurosci* 1996; 16: 4059-4068.

Simpkins JW, Green FS, Gridley KE, Singh M, de Fiebre NC, Rajakumar G. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associ-
posed with Alzheimer’s disease. *Am J Med* 1997; 103: 195-205

Singer CA, Rogers KL, Strickland TM, Dorsa DM. Estrogen protects primary cortical neurons from glutamate toxicity. *Neurosci Lett* 1998; 212: 13-16

Behl C, Skutella T, Lezoualch F, Post A, Widmann M, Newton CJ, Holsboer F. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. *Mol Pharmacol* 1997; 51: 535-541

Wise PM, Dubal DB, Wilson ME, Rau SW, Liu Y. Estrogens: trophic and protective factors in the adult brain. *Front Neuroendocrinol* 2001; 22: 33-66

Amaneta D, Russo R, Bagetta G, Corasaniti MT. From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens. *Pharmacol Res* 2005; 52: 119-132

Brann DW, Dhadapani K, Wakade C, Mahesh VB, Khan MM. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. *Stem Cells* 2007; 25: 381-405

Simpkins JW, Singh M. More than a decade of estrogen neuroprotection. *Alzheimers Dement* 2008; 4: S131-S136

Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer’s disease. *Front Neuroendocrinol* 2009; 30: 239-258

Chen J, Adachi N, Liu K, Arai T. The effects of 17beta-estradiol on ischemia-induced neuronal damage in the gerbil hippocampus. *Neuroscience* 1998; 87: 817-822

Scharffman HE, MacLusky NJ. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. *Front Neuroendocrinol* 2006; 27: 415-435

Sohrabji F, Miranda RC, Toran-Allerand CD. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. *Proc Natl Acad Sci USA* 1995; 92: 11110-11114

Murphy DD, Cole NB, Segal M. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. *Proc Natl Acad Sci USA* 1998; 95: 11412-11417

Aguirre CC, Baudry M. Progesterone reverses 17beta-estradiol-mediated neuroprotection and BDNF induction in cultured hippocampal slices. *Eur J Neurosci* 2009; 29: 447-454

Sato K, Akashi T, Matsuki N, Ohno Y, Nakazawa K. beta-Estradiol induces synaptogenesis in the hippocampus by enhancing brain-derived neurotrophic factor release from dentate gyrus granule cells. *Brain Res* 2007; 1150: 108-120

Viant MR, Millman JR, Delany ME, Fry DM. Regulation of brain-derived neurotrophic factor messenger RNA levels in avian hypothalamic slice cultures. *Neuroscience* 2000; 99: 373-380

Ivanova T, Köppers E, Engle J, Beyer C. Estrogen stimulates brain-derived neurotrophic factor expression in embryonic mouse midbrain neurons through a membrane-mediated and calcium-dependent mechanism. *J Neurosci Res* 2001; 66: 221-230

Wong M, Moss RL. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. *J Neurosci* 1992; 12: 3217-3225

Gu Q, Moss RL. Novel mechanism for non-genomic action of 17 beta-estradiol on kainate-induced currents in isolated rat CA1 hippocampal neurons. *J Physiol* 1998; 506 (Pt 3): 745-754

Foy MR, Xu J, Xie X, Brinton RD, Thompson RF, Berger TW. 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. *J Neurophysiol* 1999; 81: 925-929

Foy MR. 17beta-estradiol: effect on CA1 hippocampal synaptic plasticity. *Neurobiol Learn Mem* 2001; 76: 239-252

Woolley CS. Acute effects of estrogen on neuronal physiological, Axon Res Pharmacol Toxicol 2007; 47: 657-680

Raz L, Khan MM, Mahesh VB, Vadlamudi RK, Brann DW. Rapid estrogen signaling in the brain. *Neurosignals* 2008; 16: 140-153

Sohrabji F, Lewis DK. Estrogen-BDNF interactions: implications for neurodegenerative diseases. *Front Neuroendocrinol* 2006; 27: 404-414

Gibbs RB. Levels of trkA and BDNF mRNA, but not NGF mRNA, fluctuate across the estrous cycle and increase in response to acute hormone replacement. *Brain Res* 1998; 787: 259-268

Gibbs RB. Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. *Brain Res* 1999; 844: 20-27

Jezierski MK, Sohrabji F. Neurotrophin expression in the reproductive senescent forebrain is refractory to estrogen stimulation. *Neurobiol Aging* 2001; 22: 309-319

Cavus I, Duman RS. Influence of estradiol, stress, and 5-HT1A agonist treatment on brain-derived neurotrophic factor expression in female rats. *Biol Psychiatry* 2003; 54: 59-69

Singh M, Meyer EM, Simpkins JW. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonuclease acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. *Endocrinology* 1995; 136: 2320-2324

Jezierski MK, Sohrabji F. Region- and peptide-specific regulation of the neurotrophins by estrogen. *Brain Res Mol Brain Res* 2000; 85: 77-84

Kaur P, Jodhka PK, Underwood WA, Bowles CA, de Fiebre NC, de Fiebre CM, Singh M. Progesterone increases brain-derived neurotrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants. *J Neurosci Res* 2007; 85: 2441-2449

Jones NC, Constantin D, Prior MJ, Morris PG, Marsden CA, Murphy S. The neuroprotective effect of progesterone after traumatic brain injury in male mice is independent of both the inflammatory response and growth factor expression. *Eur J Neurosci* 2005; 21: 1547-1554

Gonzalez Deniselle MC, Garay L, Gonzalez S, Saravía F, Labombarda F, Guennoun R, Schumacher M, De Nicola AF. Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motor neurons. *Exp Neurol* 2007; 205: 406-414

González SL, Labombarda F, González Deniselle MC, Guennoun R, Schumacher M, De Nicola AF. Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. *Neuroscience* 2004; 125: 605-614

Verhovshek T, Cai Y, Osborne MC, Sengelaub DR. Androgen regulates brain-derived neurotrophic factor in spinal motoneurons and their target musculature. *Endocrinology* 2010; 151: 253-261

Rasika S, Alvarez-Buylla A, Nottebohm F. BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. *Neuron* 1999; 22: 53-62

Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. *Proc Natl Acad Sci USA* 2005; 102: 16426-16431

Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, Kunugi H, Hashido K. Glucocorticoids attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. *Neuroscience* 2010; 165: 1301-1311

S-Editor Cheng JX L-Editor Lutze M E-Editor Zheng XM