Chloroplast genome of white wild chrysanthemum, Dendranthema sp. K247003, as genetic barcode

Sang Kun Park¹, Soo-Jin Kwon², Jihye Park³, Minjee Lee³, So Youn Won², Young Chul Kim⁴,⁵, Yoon-Jung Hwang⁶, Seong-Han Sohn² and Jungho Lee³,⁶*

¹Floriculture Research Division, National Institute of Horticultural and Herbal Science (NIHHS), RDA, Jeonju 565-852, Korea
²Genomics Division, National Academy of Agricultural Science (NAAS), RDA, Jeonju 560-500, Korea
³Green Plant Institute, B-301, Heungdeok IT Valley, Giheung-gu, Yongin 446-908, Korea
⁴Korea Botanic Garden, Pyeongchang 232-953, Korea
⁵Department of Biology, Gangneung-Wonju National University, Gangneung 210-702, Korea
⁶Department of Life Science, Sahmyook University, Seoul 139-742, Korea

*Correspondent: jlee@greenplant.re.kr

Dendranthema boreale and D. indicum are easily distinguished from other Korean Dendranthema spp. by having yellow flowers. We have found a putative new taxon of Dendranthema having white flowers, except for sharing most characters with Dendranthema boreale. The chloroplast (cp) genome of the putative new taxon of Dendranthema, Dendranthema sp. K247003, registered in National Agro-Biodiversity Center (ABC), was completely characterized as a genetic barcode. The cp-genome of Dendranthema sp. K247003 was 151,175-bp in size: LSC was 82,886-bp, IR 24,971-bp, SSC 18,347-bp. The cp-genome of Dendranthema sp. K247003 contains 113 genes and 21 introns consisted of 79 protein coding genes, 4 RNA genes, and 30 tRNA genes, with 20 group II introns and one group I intron. Some of the genes and the introns were duplicated in IR. The cp-DNA of Dendranthema sp. K247003 is distinguished from that of D. boreale IT121002 by 67 SNPs in genic regions of 24 protein coding genes and by a 9-bp INDEL in ycf1. Further cp-DNA study will give us better information on genetic markers of Dendranthema species.

Keywords: Asteraceae, chloroplast genome, Compositae, Dendranthema, INDEL, SNP

© 2015 National Institute of Biological Resources
DOI:10.12651/JSR.2015.4.2.152
more than six Asteraceae genera were reported (Dempewolf et al., 2010; Doorduin et al., 2011; Nie et al., 2012; Liu et al., 2013; Walker et al., 2014). Among them, 47 cp-genomes were reported only from agriculturally important Helianthus (Shaw et al., 2007; Timme et al., 2007; Bock et al., 2014), Asteraceae. For Dendrantha, while published as Chrysanthemum, some IGS regions of chloroplast were used for genetic diversity study (Liu et al., 2012). For MAS, genetic information on generic regions is valued than that of IGS regions. Thanks to the dramatic development of Next Generation Sequencing method (NGS) in recent years, it has become possible to complete chloroplast genome sequencing at low cost. Complete cp-genomic sequences have become more useful as genetic barcode of plants (Nock et al., 2011; Li et al., 2015). Here, we report the complete genome of Dendrantha sp. K247003 as genetic barcode.

MATERIALS AND METHODS

Chloroplast DNA extraction, genome sequencing, assembly, and PCR-based validation

White flowered chrysanthemum, Dendrantha sp. K247003, was collected at the population of D. boreale in Geounri, Yeongwol of Gangwon province (N: 37°15’ 18.9” E: 128°31’39.3”). The plant was registered at Agro-Biodiversity Center (ABC), Rural Agricultural Administration (RDA), as genetic resources for vegetative clones (IT number: K247003). The plant was propagated in Floriculture Research Division, National Institute of Horticultural and Herbal Science (NIHHS), RDA. Fresh leaves of Dendrantha sp. K247003 were collected from the Floriculture Research Institute, NIHHS in Rural Development Administration (RDA), Jeonju, and stored in liquid nitrogen until usage. Total DNA was extracted using the Qiagen DNaseasy Plant Mini Kit (Qiagen, Hilden, Germany), and DNA concentration and quality were determined using a Scandrop nano-volume spectrophotometer (Analytik Jena, Germany). High quality DNA (concentration = 300 ng/μL, A260/280 ratio = 1.8-2.0, and A260/230 ratio = 1.7) was used for PCR and sequencing.

For NGS data production, purified DNA was fragmented and used to construct short-insert libraries (insert size, 200-bp), according to the manufacturer’s instructions (Illumina, USA). The short fragments were paired-end sequenced using an Illumina Hi-Seq 2500 sequencing system at NICEM of Seoul National University. NGS data (7.63 Gb of 82.97 M reads) were analyzed using CLC Genomic Workbench ver. 7.5.1 (Qiagen, Hilden, Germany), as described by Jeong et al. (2014). For Sanger sequencing, the whole cp-genome of Dendrantha sp. K247003 was PCR-amplified in ~1-2 kb fragments, and cp-genome structure was verified using Long PCR, with ~5-28 kb fragments, as described by Lee and Manhart (2002a; 2002b). Only PCR products ranging from ~1-2 kb were sequenced using Bigdye (ver. 3.1) and ABI3730 at NICEM of Seoul National University. Assembled cp-sequences were verified using Sequencher ver. 5.0 (Gencode, USA) by combining Sanger data and the assembled NGS sequence.

Genome annotation, genome comparison and sequence analysis

Protein coding and ribosomal RNA genes were annotated using DOGMA (http://dogma.ccbb.utexas.edu/; Wyman et al., 2004). The boundaries of each annotated gene were manually determined by comparison with orthologous genes from other known cp-genomes. Genes encoding tRNAs were first predicted using trNAscan (http://lowelab.ucsc.edu/ tRNAscan-SE; Lowe and Eddy, 1997) and ARAGORN, version 1.2 (http://130.235.46.10/ ARAGORN/; Laslett and Canback, 2004), and were manually verified by predicting the tRNA secondary structure. Circular genome maps were drawn using GenomeVx (Conant and Wolfe, 2008), followed by manual modification. The sequencing data and gene annotation were submitted to National Agricultural Biotechnology Information Center (NABIC), Jeonju, with accession number NG-0482-000001. The mVISTA program in ShuffLAGAN mode (Fraser et al., 2004) was used to compare the cp-genome of Dendrantha sp. K247003 with that of D. boreale IT121002 (NABIC: NG-0478-000001; unpublished).

RESULTS AND DISCUSSION

The cp-genome of Dendrantha sp. K247003, was determined (Fig. 1) and found to be 151,175 bp in length. It includes small and large single copy (SSC, LSC) regions of 18,347 bp and 82,886 bp, respectively, separated by a pair of 24,971 bp Inverted Repeats (IRs). A total of 113 genes were detected, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes (Table 1). This cp-genome was also found to contain 20 different introns, including 19 group II introns and a group I intron with a cyanobacterial origin (Besendahl et al., 2000) found within the trnL_uuu gene. Three protein coding genes, including clpP, rps12, and ycf3, contain two group II introns (clpP_i1, clpP_i2, rps12_i1, rps12_i2, ycf3_i1 and ycf3_i2), and 14 genes contain a single group II intron: rpoC1_i1, rpl2_i, rpl16_i, rps16_i, atpF_i, petB_i, petD_i, ndhA_i, ndhB_i, trnA_ugc_i, trnG_ugg_i, trnL_gau_i, trnK_uuu_i, and trnV_uac_i. Among the 20 group II introns, the intron in rps12, between exons 1 and 2, is trans-splicing, while the other 19 group II introns are cis-splicing.
Eighteen genes, five introns, and parts of two genes and an intron are found within the IR, which has two copies. These 18 genes include seven protein-coding genes (ndhB, rpl2, rpl22, rpl23, rps7, rps19, ycf2), all four rRNA genes (16S, 23S, 4.5S, 5S), and seven tRNA genes (trnA_ugc, trnL_cau, trnL_gau, trnL_caa, trnN_guu, trnR_aceg, trnV_gau). The five introns are ndhB.i, rpl2.i, trnA_ugc.i, trnL_gau.i, and rps12.i2. The IR also contains the 5' end of ycf1 at the border with the SSC, resulting in one intact ycf1 and a 612-bp ψ-ycf1 in the cp-genome. In addition, the IR contains parts of the rps12 gene. This rps12 gene consists of three exons, rps12.e1, rps12.e2, and rps12.e3 (Lee, 1997); rps12.e1 is in the LSC, but rps12.e2 and rps12.e3 are in the IR. Thus, the genome contains a single copy of rps12.e1 but has two copies of rps12.e2 and rps12.e3. A cis-splicing group II intron, rps12.i1t, intervenes between rps12.e1 and rps12.e2. The rps12.i1t is split into two pieces, rps12.i1t1 and rps12.i1t2, because the rps12 gene is transcribed in two separate operons, the clpP operon (clpP-rps12.e1-rps12.i1t1-rpl20) and the 3' rps12 operon (rps12.i1t2-rps12.e2-rps12.i2-rps12.e3-rps7-ndhB).

Direct comparison of chloroplast genomes of Dendranthema sp. K247003 and D. boreale TT121002 using mVISTA program is shown in Figure 2. In the analysis, 97 IGS regions showed variation. In genes, 24 genes have variations. There were no variation in 30 tRNA and 4 rRNA genes. Among 79 protein coding genes, 24 genes had variation. There were two kinds of variations (Table 2). One was Single Nucleotide Polymorphism (SNP) and the other was INDEL. SNPs were found at 67 sites in 24 protein coding genes. The protein coding genes include 6 genetic system genes and 18 photosynthesis
Table 1. Gene list in chloroplast genome of *Dendranthema* sp. K247003.

Gene	Genetic system genes	Conserved orf	ycf1	ycf2 × 2	ycf3**	ycf4
matK	RNA polymerase	matK				
rpoA	Ribosomal protein	rpoA				
rpoB	Large subunits	rpl14				
rpoC1*		rpl16*				
rpoC2		rpl20				
rps2		rpl22				
rps3		rpl23 × 2				
rps4		rpl32				
rps7 × 2		rpl33				
rps8		rpl36				
rps11						
rps12**α × 2						
rps14						
rps15						
Photosynthesis genes						
Acetyl-CoA carboxylase		accD				
ATP-dependent Clp protease		clpP**				
ATP synthase		atpA			atpE	atpF*
Cytochrome b		atpB				
Cytochrome b/f		atpE				
Cytochrome f		petA				
Cytochrome C biogenesis		petB*				
Membrane protein		petD*				
NADH dehydrogenase		petG				
Photosystem I		petL				
Photosystem II		petN				
Rubisco						
Translation initiation factor 1						
Ribosomal RNA						
Transfer RNA						
rm16S × 2						
rm23S × 2						
rm4.5S × 2						
rm5S × 2						
rmE_UUC						
tmC_GCA						
tmD_GUC						
tmL_GAU* × 2						
tmL_UAU*						
tmL_GUU* × 2						
tmL_UAA*						
tmL_CAU × 2						
tmL_UAG						
tmL_CAUA × 2						
tmL_GCA						
tmL_GUA						
tmM_CAU						
tmM_CAUA						
tmM_GCA						
tmM_GUA						
tmN_GAU* × 2						
tmN_GUA						
tmN_UAU*						
tmN_UAA*						
tmN_GUU* × 2						
tmN_UUA*						
tmN_UUA						
tmN_GUA* × 2						
tmN_GUA*						
tmP_UUA*						
tmP_UUU						
tmP_UUA						
tmP_UUU* × 2						
tmP_UUA*						
tmP_UUG						
tmP_UUG						
Pseudo gene						
ψ-ycf1						
ψ-rps19						

*αintrong-copy genome contains a copy of rps12 exon 1 in LSC and two copies of rps12 exon 2 and 3 in IR.
Fig. 2. Comparison of chloroplast genomes of *Dendranthema* sp. K247003 and *D. boreale* IT121002 using mVISTA program. Grey arrows and thick black lines above the alignment indicate genes with their orientation and the position of the IRs, respectively. The Y-scale represents the percent identity between 50-100%. Genome regions are color-coded: Coding regions in blue; noncoding sequences (CNS) in red.
Table 2. Variation in cp-genic regions between Dendranthema sp. K247003 and D. boreale IT121002. SNP: Single Nucleotide Polymorphism.

Gene name	Size (D. sp / D. boreale)	No of SNP	INDEL	Gene name	Size (D. sp / D. boreale)	No of SNP	INDEL
1 psbA	1062	1	–	13 accD	1503	4	–
2 matK	1518	2	–	14 cemA	690	1	–
3 rpoB	3183	1	–	15 rpoA	1008	2	–
4 rpoC2	4152	10	–	16 rpl22	468	2	–
5 atpF	744	1	–	17 ycf2	6849	1	–
6 atpF	555	2	–	18 ndhF	2226	1	–
7 psbD	1062	1	–	19 ccsA	975	3	–
8 psaA	2205	1	–	20 ndhD	1503	3	–
9 psaA	2253	2	–	21 ndhI	561	1	–
10 ndhI	477	1	–	22 ndhA	1092	3	–
11 atpB	1479	1	–	23 ndhH	1236	2	–
12 rbcL	1479	1	–	24 ycfI	5016 / 5007	19	9-bp INDEL

genes. As the genetic system genes, two conserved open reading frames (ycf1 and ycf2), maturase K gene (matK), 3 RNA polymerase genes (rpoA, rpoB and rpoC2) and ribosomal protein large subunit gene (rpl22) are included. Among photosynthesis genes, six genes of NADH dehydrogenase (ndhA, ndhD, ndhF, ndhF, ndhH, ndhI and ndhJ), three genes of ATP synthase (atpB, atpF and atpI), two photosystem I genes (psaA and psaB), two photosystem II genes (psbA and psbD), a rubisco gene (rbcL), a membrane protein gene (cemA), cytochrome C biogenesis gene (ccsA), and a Acetyl-CoA carboxylase gene (accD) were variable. In addition to SNP, 9-bp INDEL was found in ycf1 gene containing 19 SNPs.

CONCLUSION

This is the first report of chloroplast genome in Dendranthema, Asteraceae. As genetic barcode of Dendranthema sp. K247003, a possible new species, 151,175-bp of chloroplast genomic sequence was registered to NABIC (NG-0482-000001). The chloroplast genome is distinguished from that of D. boreale IT121002, by 67 SNPs and an INDEL in coding regions, in addition to 97 variable IGS sites. As suggested by Dong et al. (2015) in land plants, ycf1 would be useful for plant identification as having 19 SNPs and an INDEL in the comparison of Dendranthema sp. K247003 and D. boreale IT121002. In addition, as suggested by Li et al. (2015), we show that chloroplast genomic information is useful for genetic barcode in Dendranthema. Further characterization of organellar genomes using NGS data would facilitate our phylogenomic study and molecular marker developments in Dendranthema at low cost. Finally, further morphological and cytological studies on Dendranthema sp. K247003 are remained for the taxonomic treatment of this taxon.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Agricultural Genome Center (project No. PJI0104562015), Rural Development Administration, Republic of Korea.

REFERENCES

Besendahl, A., Y.L. Qiu, J. Lee, J.D. Palmer and D. Bhattacharya. 2000. The endosymbiotic origin and vertical evolution of the plastid tRNA Leu group I intron. Curr. Genet. 37:12-23.

Bock, D.G., N.C. Kane, D.P. Ebert and L.H. Rieseberg. 2014. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201(3):1021-1030.

Conant, G.C. and K.H. Wolfe. 2008. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24:861-862.

Dempewolf, H., N.C. Kane, K.L. Ostevik, M. Geleta, M.S. Barker, Z. Lai, M.L. Stewart, E. Bekele, J.M.M. Engels, Q. Cronk and L.H. Rieseberg. 2010. Establishing genomic tools and resources for *Guizotia abyssinica* (L.f.) Cass.-the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Mol. Ecol. Resour. 10(6):1048-1058.

Dong, W., C. Xu, C. Li, J. Sun, Y. Zuo, S. Shi, T. Chang, J. Guo and S. Zhou. 2015. ycf1, the most promising plastid DNA barcode of land plants. Sientific Report 5:8348.

Doorduin, L., B. Gravendeel, Y. Lammers, Y. Ariyurek, T. Chin-A-Woeng and K. Vrieling. 2011. The Complete Chloroplast Genome of 17 Individuals of Pest Species *Jacobaea vulgaris*: SNPs, Microsatellites and Barcoding Markers for Population and Phylogenetic Studies. DNA Res. 18(2):93-105.
Fraser, K.A., L. Pachter, A. Poliakov, E.M. Rubin and I. Dubchak. 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Research 32:W273-W279.

Hwang, Y.-J., A. Younis, K.B. Ryu, K.-B. Lim, C.-H. Eun, J. Lee, S.-H. Sohn and S.-J. Kwon. 2014. Karyomorphological Analysis of Wild Chrysanthemum boreale Collected from Four Natural Habitats in Korea. Flower Res. J. 21(4):182-189.

Jeong, H., J.M. Lim, J. Park, Y.M. Sim, H.G. Choi, J. Lee and W.J. Jeong. 2014. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B. BMC Genomics 15:286-299.

Laslett, D. and B. Canback. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32:11-16.

Lee, J. 1997. Gene clusters and introns of Spirogyra maxima chloroplast and other charophytes and their phylogenetic implications in green plants. Texas A&M University Ph.D. Thesis.

Lee, J. and J.R. Manhart. 2002a. Four embryophyte introns and psbB operon explains Chlorokybus as a basal lineage of streptophytes. Algae 17(1):53-58.

Lee, J. and J.R. Manhart. 2002b. The Chloroplast rpl23 gene cluster of Spirogyra maxima (Charophyceae) shares many similarities with the angiosperm rpl23 operon. Algae 17(1):59-68.

Li, X., Y. Yang, R.J. Henry, M. Rosseto, Y. Wang and S. Chen. 2015. Plant DNA barcoding: from gene to genome. Biol. Rev. 90:157-166.

Liu, P.-L., Q. Wan, Y.-P. Guo, J. Yang and G.-Y. Rao. 2012. Phylogeny of the Genus Chrysanthemum L.: Evidence from Single-Copy Nuclear Gene and Chloroplast DNA Sequences. PLoS One 7(11):e48970.

Liu, Y., N. Huo, L. Dong, Y. Wang, S. Zhang, H.A. Young, X. Feng and Y.Q. Gu. 2013. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants. PLoS One 8(2):e57533.

Lowe, T.M. and S.R. Eddy. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955-964.

Nie, X., S. Lv, Y. Zhang, X. Du, L. Wang, S.S. Biradar, X. Tan, F. Wan and S. Weinig. 2012. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS One 7(5):e36869.

Nock, C.J., D.L. Waters, M.A. Edward, S.G. Bowen, N. Rice, G.M. Cordeiro and R.J. Henry. 2011. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol. J. 9(3):328-333.

Park, C.-W. 2007. The Genera of Vascular Plants of Korea. Academy Publishing Co., Seoul.

Park, J.-H. 2007. Dendranthema (DC.) Des Moul., Actes. Linn. Bordeaux 20: 561, 1855. In: C.-W. Park (ed.), The Genera of Vascular Plants of Korea. Academy Publishing Co., Seoul, pp. 1024-1026.

Shaw, J., B.L. Edgar, E.S. Edward and L.S. Randall. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany 94(3):275-288.

Timme, R.E., V.K. Jennifer, L.B. Jefferey and K.J. Robert. 2007. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. American Journal of Botany 94(3):302-312.

Walker, J.F., M.J. Zanis and N.C. Emery. 2014. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Am. J. Bot. 101(4):722-729.

Wyman, S.K., R.K. Jansen and J.L. Boore. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252-3255.

Submitted: July 1, 2015
Revised: July 24, 2015
Accepted: July 27, 2015