Gαs directly drives PDZ-RhoGEF signaling to Cdc42

Received for publication, July 12, 2020, and in revised form, September 24, 2020. Published, Papers in Press, October 6, 2020, DOI 10.1074/jbc.AC120.015204

Alejandro Castillo-Kaul1, Irving García-Jiménez1, Rodolfo Daniel Cervantes-Villagran2, Sendi Rafael Adame-García2, Yarely Mabell Beltrán-Navarro2, J. Silvio Gutkind1, Guadalupe Reyes-Cruz1, and José Vázquez-Prado2,3,4

From the Departments of 1Cell Biology and 2Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico, and 3Moores Cancer Center and the Department of Pharmacology, University of California, San Diego, La Jolla, California, USA

Edited by Henrik G. Dohlman

Gαs proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13. Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (Gαs-Q227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gαs-coupled receptors, but not by those coupled to Gq or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with Gαs-Q227L’s ability to guide PRG’s interaction with Cdc42. Endogenous Gαs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.

Migrating cells follow extracellular cues that guide dynamic protrusions and contractions (1, 2). At the plasma membrane, phosphoinositides and signaling proteins allosterically activate Rho guanine nucleotide exchange factors (RhoGEFs) exposing their catalytic DH/PH modules, composed of Dbl-homology and Pleckstrin-homology domains in tandem (3–5). RhoGEFs stimulate their cognate GTPases to exchange GDP for GTP, orchestrating cytoskeleton remodeling pathways (6, 7). RhoA promotes the assembly of stress fibers and contractile actomyosin structures, whereas Rac and Cdc42 lead the extension of actin-driven plasma membrane protrusions known as lamellipodia and filopodia, respectively (8). Although these Rho GTPases exhibit contrasting effects, they can be alternatively activated at edges of moving cells (9). Therefore, fine-tuning mechanisms are likely involved.

Several RhoGEFs are effectors of heterotrimeric G proteins (3, 10, 11). GTP-bound Gα13 and Gαq proteins stimulate RhoA, whereas Gq proteins activate Rac and Cdc42 (3, 10, 12). Gαq signaling to Rac is itself directly regulated by Gα13 and Gαq (13). GTP-Gα13 proteins allosterically activate RH-RhoGEFs (p115RhoGEF, PDZ-RhoGEF, and LARG) (3, 14, 15). The mechanism involves direct interaction of Gα13 with the RhoGEF RGS-homology (RH) domain, which in consequence exposes the catalytic DH/PH cassette (16, 17). The DH domain activates RhoA, and it is positively modulated by the PH domain (6, 18). Here, we investigated whether PRG DH/PH catalytic module is directly targeted by additional Gα proteins.

Results

Membrane-anchored PRG-DH/PH promotes cell contraction and formation of filopodia-like protrusions

RH-RhoGEFs are potent activators of RhoA, which generally counteracts cell protruding processes led by Rac and Cdc42 (3, 9). To characterize potential regulatory mechanisms directly targeting RH-RhoGEF DH/PH domains, we first analyzed the cellular effects of membrane-anchored, EGFP-tagged, p115RhoGEF-DH/PH, PRG-DH/PH, and LARG-DH/PH constructs (Fig. 1A). Their morphological effects, assessed by confocal microscopy of transfected endothelial cells (Fig. 1B), revealed the assembly of actin stress fibers, as expected for RhoA activity (8). Intriguingly, ~50% of cells expressing PRG-DH/PH also induced actin-based thin protrusions (Fig. 1, B and C), reminiscent of Cdc42-induced filopodia (19).

PRG-DH/PH catalytic module stimulates Cdc42

Consistent with its morphological effects, PRG-DH/PH significantly stimulated Cdc42 (Fig. 1E). In contrast, all three RH-RhoGEF EGFP-DH/PH-CAAX constructs stimulated RhoA (Fig. 1F). Furthermore, recombinant nucleotide-free Cdc42-G15A, used to isolate active Cdc42-GEFs (20), pulled down PRG-DH/PH, and to a lesser extent p115RhoGEF-DH/PH (Fig. 1G, left panel), whereas RhoA-G17A pulled down the three constructs (Fig. 1G, middle panel). Furthermore, cotransfected

*For correspondence: José Vázquez-Prado, jvazquez@cinvestav.mx.
into HEK293T cells, GST-PRG-DH/PH interacted with Cdc42-T17N, a dominant-negative mutant (Fig. 1H).

Constitutively active Gαs-Q227L increases PRG-DH/PH activity toward Cdc42

The mechanistic basis of p63RhoGEF and TRIO activation by Gαq (21, 22) inspired us to assess whether GTPase-deficient Gα-QL mutants bind PRG DH/PH to stimulate Cdc42 activation by Gαs-Q227L significantly increased PRG-DH/PH interaction with Cdc42-G15A (Fig. 2B) without affecting its interaction with RhoA-G17A (Fig. 2C). Gαs-Q227L was also detected in the pulldown assay (Fig. 2B), depending on the presence of PRG-DH/PH (Fig. 2D). In HEK293T cells, Gαs-QL interacted with PRG-DH/PH (Fig. 2E), as well as with other RH-
RhoGEFs (Fig. 2F), as revealed by pulldown assays using GST-DH/PH constructs. In contrast, Gαs-QL, known to interact with RGS-like domain of RH-RhoGEFs (14, 23), was absent in the GST-DH/PH pulldowns (Fig. 2F). We also found that Gαs-QL interacted with PRG-DH/PH (Fig. 2E); however, it did not affect PRG-DH/PH:Cdc42 binding (Fig. 2B). Consistent with a functional effect, Gαs-QL stimulated PRG-DH/PH to activate Cdc42 (Fig. 2G, top panel and graph) and remained bound to the PRG-DH/PH construct pulled down with nucleotide-free Cdc42 (Fig. 2B, D, and G, middle panel). Furthermore, the interaction of PRG-DH/PH with Cdc42-T17N was further stimulated by Gαs-QL (Fig. 2H).

Figure 2. Gαs-Q227L binds PRG DH/PH enabling this prototypical RhoA-specific GEF to directly activate Cdc42. **A**, hypothetic model postulating Gα subunits as potential regulators of PRG DH/PH catalytic module. **B** and **C**, the effect of GTPase-deficient Gα subunits on the interaction of EGFP-PRG-DH/PH-CAXX with Cdc42-G15A (**B**) and RhoA-G17A (**C**) was analyzed by pulldown (PD) using lysates from HEK293T cells transfected with HA-tagged Gαs, Gαi, Gαq, or Gα13 QL mutants and EGFP-PRG-DH/PH-CAXX. The graph in **B** represents the means ± S.E. (n = 3). **D**, to address whether Gαs-QL detected in the PRG-DH/PH Cdc42-G15A pulldown was part of a ternary complex, pulldown experiments were done in the presence or absence of PRG-DH/PH. The graph represents the means ± S.E. (n = 3). **E**, the potential interaction between active Gα subunits and PRG DH/PH was analyzed in HEK293T cells transfected with GST-PRG-DH/PH and HA-tagged GTPase-deficient Gα subunits subjected to pulldown assays. **F**, the effect of Gαs-QL on the activation of Cdc42 by PRG-DH/PH was assessed by pulldown using lysates of transfected HEK293T cells. The graph represents the means ± S.E. (n = 3). **G**, the effect of Gαs-QL on full-length PRG affinity for Cdc42 was analyzed in HEK293T cells that were transfected with full-length AU1-PRG (I) without or with HA-Gαs-QL or only with HA-Gαs-QL to address its effect on endogenous PRG. The active fraction of full-length PRG with affinity for Cdc42-G15A was isolated by pulldown and revealed by immunoblotting with anti-PRG antibodies. The graphs represents the means ± S.E. (n = 3). *, p = 0.01 in H and 0.04 in I, t test.
Gaαs-Q227L drives full-length PRG to interact with Cdc42

To address whether full-length PRG is sensitive to be driven by Gaαs-QL to gain affinity for Cdc42, we used lysates from transfected HEK293T cells. We found that Gaαs-QL stimulated full-length PRG, either transfected (Fig. 2I) or endogenous (Fig. 2J), to bind Cdc42. Furthermore, Gaαs-QL remained bound to PRG pulled down with nucleotide-free Cdc42. Expression of transfected and endogenous proteins was confirmed in total cell lysates (Fig. 2, C–J, TCL).

Gaαs-Q227L interaction interface at PRG involves the DH and PH domains and the linker region joining them

To characterize how Gaαs-Q227L binds PRG-DH/PH guiding this prototypic RhoA-specific GEF to interact with Cdc42, we cotransfected Gaαs-Q227L with different PRG constructs spanning the DH/PH module, fused to GST (Fig. 3A), and addressed by pulldown their potential interaction. As shown in Fig. 3B, Gaαs-QL interacted with the three PRG-DH/PH constructs that had in common the linker region that joins the DH and PH domains.

Figure 3. Gaαs-Q227L binds PRG DH and PH domains and the linker region joining them. A, model showing GST-tagged PRG-DH/PH constructs used to map Gaαs-PRG-DH/PH interaction. B and C, interaction between HA-Gaαs-QL and the indicated GST-PRG-DH/PH constructs was analyzed by pulldown using lysates of transfected HEK293T cells. HA-Gaαs-QL and HA-Gaαs-QL (used as control) were revealed with anti-HA antibodies. D, multiple alignment of p115Rho-GEF, LARG, and PRG-linker regions. E, structure of PRG-DH/PH RhoA complex (24). F, model showing Gaαs-GTP-PRG-DH/PH complex; hypothetically, active Gaαs constrains PRGDH/PH to bind Cdc42. G, model showing the potential inhibitory effect of the EGFP–PRG-linker construct on PRG activation by Gaαs-QL. H, HEK293T cells transfected with EGFP-tagged PRG-linker construct (or EGFP) together with HA-Gaαs-QL and GST-PRG-DH/PH (or GST) were subjected to GST pulldown assays. I, Gaαs-dependent PRG Cdc42 interaction was analyzed in HEK293T cells transfected with HA-Gaαs-QL (or control plasmid) and AU1-PRG together with EGFP–PRG-linker or EGFP and subjected to Cdc42-G15A pulldown. The graph represents the means ± S.E. (n = 3). **, p = 0.001; ***, p = 0.0001; ns, no significance, one-way ANOVA followed Tukey.
AGONIST-DEPENDENT STIMULATION OF G_a-COUPLED RECEPTORS DRIVES PRG TO GAIN AFFINITY FOR CDC42

To investigate whether G_a-coupled receptors stimulate PRG to acquire affinity for Cdc42, we first used PAE and HT29 cells as models of endogenous prostaglandin-dependent G_a signaling. As an initial readout of agonist-driven G_a-dependent effect on PRG, we stimulated PAE and HT29 cells with PGE2 and butaprost, respectively, and assessed PRG recruitment to membrane fractions. In both cases, PRG exhibited a significant time-dependent association to membrane fractions (Fig. 4, A and B, respectively). We then used COS7 cells expressing Gs-DREADDs to test the effect of endogenous G_a on PRG-cdc42 interaction. In these cells, clozapine N-oxide (CNO), the agonist of G_a-DREADDs, enabled PRG to bind nucleotide-free Cdc42 in a time-dependent manner (Fig. 4C). This effect was elicited by G_a-coupled, but not by G_i- or G_q-coupled DREADDs (Fig. 4D), and was inhibited by the PRG-linker peptide (Fig. 4E), which also interfered on CREB phosphorylation (Fig. 4F). Endogenous G_a-coupled endothelial EP2 receptors signaling to cAMP/PKA pathway was also inhibited by the PRG-linker construct, as indicated by a decrease on butaprost-dependent phosphorylation of PKA substrates (Fig. 4G).

Discussion

R_H-RhoGGEFs link heterotrimeric G proteins to Rho GTPases (25–27). They are activated by G₁₂/13 proteins, which bind the RH domains unleashing the catalytic DH/PH region, known as specific for RhoA (14, 23). Here we demonstrate that active G_a directly constrains the PRG DH/PH catalytic module to activate Cdc42, whereas its effect on RhoA is unaltered. Although future work using purified proteins is guaranteed, our results suggest that RhoGGEF DH/PH domains can be allosterically controlled to expand their specificity.

Direct activation of RhoGGEF DH/PH domains by active G_a subunits of heterotrimeric G proteins has been described. Specifically, G_q stimulates p63RhoGEF and TRIO (21, 28). Physiological control of this system is lost by GNAQ mutation, causing the G_qTRIO signaling system to drive uveal melanoma progression (28, 29). Similarly, mutant GNAS is a driving oncogene in neuroendocrine cancers (30); however, a pathological link to Rho GTPases has not been established. Our results are reminiscent of the regulation of p63RhoGEF and TRIO by G_a (21, 22, 28) but differ in the fact that G_a expands PRG specificity directing the DH/PH module to gain affinity for Cdc42 without an apparent effect on RhoA. We speculate that G_a pulls the PRG DH/PH module to accommodate Cdc42. Consistent with this possibility, conserved residues that directly bind the GTPase are more distant in intersectin-1, a Cdc42-specific GEF compared with the PRG DH/PH module in complex with RhoA (31–33).

Consistent with their reported effects (25, 27, 32, 34–36), RH-RhoGGEF DH/PH catalytic modules strongly activated RhoA and promoted the assembly of actin stress fibers and cell contraction. These results confirmed that DH/PH constructs maintain catalysis and specificity (36–44). However, we found that PRG DH/PH also exhibited a previously unrecognized ability to stimulate Cdc42 and filopodia formation. Thus, we addressed the possibility that PRG directly activates Cdc42. We used pulldown assays to isolate active RhoGGEFs based on their affinity for nucleotide-free GTPases (20, 45) and revealed that G_a stimulates PRG to gain affinity for Cdc42, pointing to a direct effect (attenuated by PKA; Fig. S1). We demonstrated that GTPase-deficient G_a binds the DH/PH module. The linker region joining these domains strengthen their interaction with active G_a. Our evidence arguing for a functional relevance of this interaction derives from the inhibitory effect of the PRG-linker construct, which prevented PRG response to

![Figure 4. Agonist-dependent stimulation of G_a-coupled receptors enables PRG to bind Cdc42. A and B, membrane recruitment of endogenous PRG promoted by G_a-coupled GPCR signaling was assessed in PAE (A) and HT29 (B) cells stimulated with 1 μM PGE2 or butaprost, respectively. PRG in membrane fractions was revealed by Western blotting. GLUT1 and AKT1 were used as membrane and cytosolic markers, respectively. The graphs represent the means ± S.E. (n = 3), *, p < 0.05 in A; and n = 4, **, p < 0.01 in B; t test). C, time course of PRG-cdc42 interaction was assessed in COS7 expressing G_a-DREADD receptors. The cells were stimulated with 1 μM CNO and subjected to Cdc42-G15A pulldown. The graph represents the means ± S.E. (n = 3), *, p < 0.05, one-way ANOVA followed Tukey. D, effect of different endogenous heterotrimeric G proteins on PRG affinity for Cdc42 was studied in COS7 cells transfected with AU1-PRG and G_a, G_i, or G_q-DREADDs. The cells were stimulated with CNO for 15 min and subjected to Cdc42-G15A pulldown assays. The graph represents the means ± S.E. (n = 3), *, p < 0.05, one-way ANOVA followed Tukey. E, effect of the PRG-linker construct on agonist-stimulated interaction between PRG and Cdc42 was assessed in COS7 cells transfected with Gs-DREADD, AU1-PRG, and EGFP–PRG-linker or EGFP. The cells were stimulated with CNO for 15 and 30 min and subjected to Cdc42-G15A pulldown. The graph represents the means ± S.E. (n = 3), *, p = 0.0342; **, p = 0.0056, t test, F, effect of PRG-linker on agonist-dependent phosphorylation of CREB was assessed in COS7 cells expressing G_a-DREADDs and stimulated with CNO. The graph represents the means ± S.E. (n = 5), **, p < 0.01, t test. G, agonist-dependent phosphorylation of PKA substrates was assessed using PAE cells expressing EGFP or EGFP–PRG-linker and stimulated with butaprost. Lysates from EGFP–PKA-cua–transfected cells served as control to detect PKA substrates. The graph represents the means ± S.E. (n = 4), **, p = 0.0009; ***, p < 0.001; n.s., no significance, one-way ANOVA followed Tukey. H, model depicts the canonical G₁₃-PRG signaling axis to Rho and the emerging RH-RhoGEF link heterotrimeric G proteins to Rho GTPases (25–27). They are activated by G₁₂/13 proteins, which bind the RH domains unleashing the catalytic DH/PH region, known as specific for RhoA (14, 23). Here we demonstrate that active G_a directly constrains the PRG DH/PH catalytic module to activate Cdc42, whereas its effect on RhoA is unaltered. Although future work using purified proteins is guaranteed, our results suggest that RhoGGEF DH/PH domains can be allosterically controlled to expand their specificity. Direct activation of RhoGGEF DH/PH domains by active G_a subunits of heterotrimeric G proteins has been described.
agonist-dependent stimulation of Gs-DREADDs and to GTPase-deficient Gαs coexpression. Our results not only indicate that Gαs guides PRG to bind Cdc42 but also suggest that this effector competes with other Gαs-dependent effectors. The Gs/PKA pathway activates Rho GTPases and regulates cytoskeletal dynamics at multiple levels. Recent evidence documented a role for PKA R1α subunit as a Camp-dependent activator of P-REX1, a RacGEF (46), whereas kinase activity of PKA is linked to cytoskeletal dynamics at cell edges and is reciprocally regulated during cell migration (47–49). Our findings showing that Gαs activates a PRG/Cdc42 pathway expand the mechanisms of Gαs signaling to Rho GTPases.

Although further experiments are needed to define the spatiotemporal conditions in which PRG is guided to activate Cdc42, our current model (Fig. 4H) illustrates the potential of Gαs-coupled receptors to activate this pathway. Our work raises new questions and research avenues on how Gα and G13 signaling pathways are integrated to fine-tune Cdc42 activity in the context of strong RhoA activation to regulate cytoskeletal dynamics and set the basis to further investigate how the Gs/PRG/Cdc42 pathway guides polarized cell migration and its potential pathological implications, particularly in cancers in which mutant GNAS is a driving oncogene.

Experimental procedures

Plasmids and cDNA constructs

RH-RhoGEF DH/PH catalytic modules and PRG DH/PH fragments were amplified by PCR and cloned into pCEFL-EGFP-CAAX, pCEFL-EGFP, and pCEFL-GST. Primer sequences are available upon request. Other constructs have been previously described (13, 46).

Cell culture, transfection, immunoblotting, and GST pulldown

HEK293T, PAE, HT29, and COS7 cells were maintained and transfected as described (46). The cells were serum-starved for 16 h before experiments and were all done 48 h after transfection. GST fusion proteins and their interactors were detected by pulldown (13, 46). The cell lysates and pulldowns were analyzed by Western blotting, together with GLUT1 and AKT1, as membrane and cytosol markers, respectively. Bilayers were washed with PBS containing 10 mM MgCl₂ and lysed with 1 ml of ice-cold lysis buffer (50 mM Tris, 150 mM NaCl, pH 7.5, containing 1% Triton X-100, 5 mM EDTA, and protease and phosphatase inhibitors (13)). Lysates were subjected to GST pulldowns as described (13, 46). COS7 cells were transfected with DREADDs exclusively coupled to Gαs, Gq, or Gq and stimulated with CNO (Tocris) (13).

Membrane and cytoplasmic fractionation of PAE and HT29 cells

Serum-starved PAE and HT29 cells, grown in 10-cm Petri dishes, were stimulated with 1 μM prostaglandin E2 or butaprost, as indicated in Fig. 4. The cells were washed with cold PBS, scraped into 1 ml of cold PBS containing protease and phosphatase inhibitors, and subjected to three freeze/thaw cycles. The lysates were centrifuged at low speed (1,400 rpm for 10 min at 4°C). Supernatants were centrifuged at 13,000 rpm for 10 min at 4°C. Cytosol-enriched supernatants were prepared with Laemmli buffer. The pellets were washed once with cold PBS, centrifuged again, incubated with 250 μl of lysis buffer containing 1% Triton X-100 for 20 min, and centrifuged at 13,000 rpm for 10 min at 4°C. Supernatants containing solubilized membranes were prepared with Laemmli buffer. PRG was analyzed by Western blotting, together with GLUT1 and AKT1, as membrane and cytosol markers, respectively.

Cytoskeletal effects of RH-RhoGEF DH/PH constructs

PAE cells were seeded at low density on gelatin-coated coverslips. Transfected cells were starved for 16 h with serum-free medium. Subsequently, the cells were fixed in 4% paraformaldehyde in PBS for 20 min, washed twice with PBS, and prepared for conventional phalloidin staining. The cell images were visualized in a Leica confocal laser scanning microscope TCS SP8 using a 63×1.4 oil immersion objective. The images were analyzed with FIJI-ImageJ software. The cells were counted as having filopodia-like structures when they had at least nine of these finger-like protrusions containing F-actin (19).

Statistical analysis

The data are presented as means ± S.E. of at least three independent experiments. Densitometric quantitation of Western blots was done with ImageJ. Active proteins and interactions in pulldowns were normalized respect to total proteins and pull-down efficiency. Statistical analysis was performed using SigmaPlot 11.0, and graphs were prepared with Prism software V8.0. Statistical tests are indicated at the figure legends.

Data availability

All the described data are contained within this article.

Acknowledgments—We acknowledge technical assistance provided by Estanislao Escobar-Islas, Margarita Valadez, Jaime Escobar Herrera, David Pérez, Omar Hernández, and Jaime Estrada Trejo.

Author contributions—A. C.-K., I. G.-J., and J. V.-P. conceptualization; A. C.-K., I. G.-J., R. D. C.-V., S. R. A.-G., Y. M. B.-N., J. S. G., G. R.-C.
ACCELERATED COMMUNICATION: \textit{Ga}$_\alpha$, activates Cdc42 via PDZ-RhoGEF

and J. V.-P. formal analysis; A. C.-K., I. G.-J., R. D. C.-V., S. R. A.-G., Y. M. B.-N., and J. V.-P. investigation; A. C.-K., I. G.-J., R. D. C.-V., S. R. A.-G., and J. V.-P. methodology; J. S. G., G. R.-C., and J. V.-P. resources; J. S. G., R. C.-., and J. V.-P. writing-review and editing; G. R.-C. and J. V.-P. supervision; G. R.-C. and J. V.-P. funding acquisition; J. V.-P. data curation; J. V.-P. validation; J. V.-P. writing-original draft; J. V.-P. project administration.

Funding and additional information—This work was supported by Consejo Nacional de Ciencia y Tecnología (Mexico) Grants 286274 (to J. V.-P.) and 1794 (to G. R.-C.) and fellowships awarded to A. C.-K., I. G.-J., R. D. C.-V., S. R. A.-G., and Y. M. B.-N. (to J. V.-P.) and 1794 (to G. R.-C.) and fellowships awarded to A. C.-K., I. G.-J., R. D. C.-V., S. R. A.-G., and Y. M. B.-N.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviated uses are: RH, RGS homology; DH, Dbl homology; PH, pleckstrin homology; GEF, guanine nucleotide-exchange factor; PRG, PDZ-RhoGEF; EGFP, enhanced GFP; CNO, clozapine N-oxide; GST, glutathione S-transferase; HA, hemagglutinin; ANOVA, analysis of variance; GPCR, G protein-coupled receptor.

References

1. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003) Cell migration: integrating signals from front to back. \textit{Science} \textbf{302}, 1704–1709 \textit{CrossRef Medline}

2. Pollard, T. D., and Borisy, G. G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. \textit{Cell} \textbf{112}, 453–465 \textit{CrossRef Medline}

3. Aittaleb, M., Boguth, C. A., and Tesmer, J. J. (2010) Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. \textit{Mol. Pharmacol.} \textbf{77}, 111–125 \textit{CrossRef Medline}

4. Cook, D. R., Rossman, K. L., and Der, C. J. (2014) Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. \textit{Oncogene} \textbf{33}, 4021–4035 \textit{CrossRef Medline}

5. Lawson, C. D., and Ridley, A. J. (2018) Rho GTPase signaling complexes in cell migration and invasion. \textit{J. Cell Biol.} \textbf{217}, 447–457 \textit{CrossRef Medline}

6. Rossman, K. L., Der, C. J., and Sondek, J. (2005) GEF means go: turning on Rho GTPase signaling circuitry. \textit{Cell Biol. Chem} \textbf{292}, 989–1003 \textit{CrossRef Medline}

7. Etienne-Manneville, S., and Hall, A. (2002) Rho GTPases in cell biology. \textit{Nat. Rev. Mol. Cell Biol.} \textbf{6}, 167–180 \textit{CrossRef Medline}

8. Lutz, S., Shankaranarayanan, A., Cocco, C., Ridilla, M., Nance, M. R., Vettel, C., Baltus, D., Evelyn, C. R., Neubig, R. R., Wieland, T., and Tesmer, J. J. (2007) Structure of G$_{q,p}$-p63RhoGEO-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. \textit{Science} \textbf{318}, 1923–1927 \textit{CrossRef Medline}

9. Rojas, R. J., Yoho, M. E., Gershburg, S., Kawano, T., Kozasa, T., and Sondek, J. (2007) G$_{q,p}$ directly activates p63RhoGEO and Trio via a conserved extension of the Dbl homology–associated pleckstrin homology domain. \textit{J. Biol. Chem} \textbf{282}, 29201–29210 \textit{CrossRef Medline}

10. Fukuhara, S., Chikumi, H., and Gutkind, J. S. (2001) RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho. \textit{Oncogene} \textbf{20}, 1661–1668 \textit{CrossRef Medline}

11. Bielnicki, J. A., Shkumatov, A. V., Derewenda, U., Somlyo, A. V., Svergun, D. I., and Derewenda, Z. S. (2011) Insights into the molecular activation mechanism of the RhoA-specific guanine nucleotide exchange factor, PDZD7RhoGEF. \textit{J. Biol. Chem} \textbf{286}, 35163–35175 \textit{CrossRef Medline}

12. Hart, M. I., Jiang, X., Kozasa, T., Roscoe, W., Singer, W. D., Gilman, A. G., Sternweis, P. C., and Bollag, G. (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by G$_{12,13}$. \textit{Science} \textbf{280}, 2112–2114 \textit{CrossRef Medline}

13. Fukuhara, S., Muruga, C., Zohar, M., Igiishi, T., and Gutkind, J. S. (1999) A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. \textit{J. Biol. Chem} \textbf{274}, 5868–5879 \textit{CrossRef Medline}

14. Fukuhara, S., Chikumi, H., and Gutkind, J. S. (2000) Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G$_{12,13}$ family to Rho. \textit{FEBS Lett.} \textbf{485}, 183–188 \textit{CrossRef Medline}

15. Bandekar, S. J., Arang, N., Tully, E. S., Tang, B. A., Barton, B. L., Li, S., Gutkind, J. S., and Tesmer, I. J. G. (2019) Structure of the C-terminal guanine nucleotide exchange factor module of Trio in an autoinhibited conformation reveals its oncogenic potential. \textit{Sci. Signal.} \textbf{12}, eaav2449 \textit{CrossRef Medline}

16. Feng, X., Degese, M. S., Iglésias-Bartolome, R., Vaque, J. P., Molinolo, A. A., Rodrigues, M., Zaidi, M. R., Ksander, B. R., Merlino, G., Sodhi, A., Chen, Q., and Gutkind, J. S. (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuit. \textit{Cancer Cell} \textbf{25}, 831–845 \textit{CrossRef Medline}

17. O’Hayre, M., Vázquez-Prado, J., Kufareva, I., Stawiski, E. W., Handel, T. M., Seshagiri, S., and Gutkind, J. S. (2013) The emerging mutational
landscape of G proteins and G-protein–coupled receptors in cancer. Nat.
Rev. Cancer 13, 412–424 CrossRef Medline
31. Kapp, G. T., Liu, S., Stein, A., Wong, D. T., Remenyi, A., Yeh, B. J., Fraser,
J. S., Taunton, J., Lim, W. A., and Kortemme, T. (2012) Control of protein
signaling using a computationally designed GTPase/GEF orthogonal pair.
Proc. Natl. Acad. Sci. U.S.A. 109, 5277–5282 CrossRef Medline
32. Derewenda, U., Oleksy, A., Stevenson, A. S., Korczynska, J., Dauter, Z.,
Somlyo, A. P., Otlewski, J., Somlyo, A. V., and Derewenda, Z. S. (2004) The
crystal structure of RhoA in complex with the DH/PH fragment of
PDZRhoGEF, an activator of the Ca(2+)+ sensitization pathway in smooth
muscle. Structure 12, 1955–1965 CrossRef Medline
33. Hernández-García, R., Iruela-Arispe, M. L., Reyes-Cruz, G., and Vázquez-
Prado, J. (2015) Endothelial RhoGEFs: a systematic analysis of their expres-
sion profiles in VEGF-stimulated and tumor endothelial cells. Vascul.
Pharmacol. 74, 60–72 CrossRef Medline
34. Rümenapp, U., Blomquist, A., Schröer, G., Schabowski, H., Psoma, A.,
and Jakobs, K. H. (1999) Rho-specific binding and guanine nucleotide
exchange catalysis by KIAA0380, a dbl family member. FEBS Lett. 459,
313–318 CrossRef Medline
35. Dubash, A. D., Wennerberg, K., García-Mata, R., Menold, M. M., Arthur,
W. T., and Burridge, K. (2007) A novel role for Lsc/p115 RhoGEF and
LARG in regulating RhoA activity downstream of adhesion to fibroconnect.
J. Cell Sci. 120, 3989–3998 CrossRef Medline
36. Jaiswal, M., Gremer, L., Dvorsky, R., Haessler, L. C., Cirstea, I. C., Uhlen-
brock, K., and Ahmadian, M. R. (2011) Mechanistic insights into specific-
ity, activity, and regulatory elements of the regulator of G-protein
signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors
(GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF
(LARG). J. Biol. Chem. 286, 18202–18212 CrossRef Medline
37. Solski, P. A., Wilder, R. S., Rossman, K. L., Sondek, J., Cox, A. D., Campbell,
S. L., and Der, C. J. (2004) Requirement for C-terminal sequences in regu-
lation of Ect2 guanine nucleotide exchange specificity and transformation.
J. Biol. Chem. 279, 25226–25233 CrossRef Medline
38. Worthylake, D. K., Rossman, K. L., and Sondek, J. (2000) Crystal structure
of Rac1 in complex with the guanine nucleotide exchange region of
Tiam1. Nature 408, 682–688 CrossRef Medline
39. Reuther, G. W., Lambert, Q. T., Booden, M. A., Wennerberg, K., Becknell,
B., Marcucci, G., Sondek, J., Caligiuri, M. A., and Der, C. J. (2001) Leuke-
mia-associated Rho guanine nucleotide exchange factor, a Dbl family pro-
tein found mutated in leukemia, causes transformation by activation of
RhoA. J. Biol. Chem. 276, 27145–27151 CrossRef Medline
40. Rossman, K. L., Worthylake, D. K., Snyder, J. T., Siderovski, D. P., Camp-
bell, S. L., and Sondek, J. (2002) A crystallographic view of interactions
between Dbs and Cdc42: PH domain-assisted guanine nucleotide
exchange. EMBO J. 21, 1315–1326 CrossRef Medline
41. Snyder, J. T., Worthylake, D. K., Rossman, K. L., Betts, L., Pruitt, W. M.,
Siderovski, D. P., Der, C. J., and Sondek, J. (2002) Structural basis for the
selective activation of Rho GTPases by Dbl exchange factors. Nat. Struct.
Biol. 9, 468–475 CrossRef Medline
42. Kristelley, R., Gao, G., and Tesmer, J. J. (2004) Structural determinants of
RhoA binding and nucleotide exchange in leukemia-associated Rho
guanine-nucleotide exchange factor. J. Biol. Chem. 279, 47352–47362
CrossRef Medline
43. Cash, J. N., Davis, E. M., and Tesmer, J. J. (2016) Structural and biochemi-
cal characterization of the catalytic core of the metastatic factor P-Rex1
and its regulation by PtdIns(3,4,5)Ps. Structure 24, 730–740 CrossRef Medline
44. Lucato, C. M., Halls, M. L., Ooms, L. M., Liu, H. J., Mitchell, C. A., Whis-
stock, J. C., and Elisdon, A. M. (2015) The phosphatidylinositol (3,4,5)-tri-
phosphate-dependent Rac exchanger 1-Ras-related C3 botulinum toxin
substrate 1 (P-Rex1-Rac1) complex reveals the basis of Rac1 activation in
breast cancer cells. J. Biol. Chem. 290, 20827–20840 CrossRef Medline
45. Guilley, C., Dubash, A. D., and García-Mata, R. (2011) Analysis of RhoA
and Rho GEF activity in whole cells and the cell nucleus. Nat. Protoc. 6,
2050–2060 CrossRef Medline
46. Adame-García, S. R., Cervantes-Villagran, R. D., Orduña-Castillo, L. B.,
Del Rio, I. C., Gutkind, J. S., Reyes-Cruz, G., Taylor, S. S., and Vázquez-
Prado, J. (2019) cAMP-dependent activation of the Rac guanine exchange
factor P-REX1 by type I protein kinase A (PKA) regulatory subunits. J.
Biol. Chem. 294, 2232–2246 CrossRef Medline
47. McKenzie, A. J., Svec, K. V., Williams, T. F., and Howe, A. K. (2020) Pro-
tein kinase A activity is regulated by actomyosin contractility during cell
migration and is required for durotaxis. Mol. Biol. Cell 31, 45–58 CrossRef Medline
48. Howe, A. K., Baldor, L. C., and Hogan, B. P. (2005) Spatial regulation of the
cAMP-dependent protein kinase during chemotactic cell migration. Proc.
Natl. Acad. Sci. U.S.A. 102, 14320–14325 CrossRef Medline
49. Lim, C. J., Han, J., Yousefi, N., Ma, Y., Amieux, P. S., McKnight, G. S., Tay-
lor, S. S., and Ginsberg, M. H. (2007) β4 integrins are type I cAMP-de-
pendent protein kinase-anchoring proteins. Nat. Cell Biol. 9, 415–421
CrossRef Medline