Твердотельные электрохимические источники ЭДС являются наиболее востребованными источниками энергии для микродетекционной промышленности. В связи с этим интерес исследователей направлен на поиск новых более эффективных механизмов и способов генерации электрической энергии. В работе [8] описан термовольтный эффект, заключающийся в возникновении электрического напряжения между противоположными гранями полупроводникового образца сульфида самария SmS при его нагреве до 400–500 К. Эффект проявлялся при наличии градиента концентрации донорной примеси, направленного в направлении расположения этих граней. Электрическое напряжение возникало при отсутствии градиента температуры вдоль направления расположения электродов на образце при нагреве, и поэтому не может быть объяснено классическим термозелектрическим эффектом Зеебека. Известен целый ряд таких неравновесных явлений в сегнетоэлектриках, которые не имеют однозначного теоретического объяснения. В частности, авторы [7] привлекают микроскопические механизмы существования неравновесных токов в сегнетоэлектриках, которые могут существовать долговременно. В работах [1, 2, 6, 9] описана термостимулированная ЭДС, возникающая только в высокооколоного теплорегуляции кристалле нобата лития с напыленными электродами из пары различных металлов. Знам термЭДС определяется положением электродов, нанесенных напылением в вакууме на противоположные грани кристалла, и не зависит от ориентации кристаллографических осей образца относительно электродов.

В данной работе приведены результаты экспериментального исследования термостимулированых токов в тонкослойной структуре металлический – нобата лития – металлический – металл.
В отличие от классического пироэлектрического эффекта, величина наблюдаемого термоотклика пропорциональна увеличению температуры кристалла и не зависит от скорости ее изменения. Формула для термониндукционного напряжения на сопротивлении нагрузки \(R_n \) выглядит в общем случае как

\[
U_n = \gamma SR_0 \frac{dT}{dt} + U_{n0} + P_{d}SR_0\Delta T \exp\left(-t/\tau\right),
\]

где \(S \) – площадь поверхности кристалла, покрытой нанесенным электродом;

\[P_{d} = \left(R_sS\right)^{-1} \frac{\Delta U_n}{\Delta T} \]

– коэффициент, характеризующий величину термоЭДС в режиме измерения \(U_n (\text{A/K \times cm}^2) \);

\(\Delta U_n \) – изменение напряжения на \(R_n \) при изменении температуры образца на \(\Delta T \);

\(\Delta T \) – разность начальной и конечной температур образца;

\(U \) – первоначальное напряжение при \(T_0 \) (\(T_0 \) – начальная температура кристалла);

\(\gamma \) – время релаксации термоотклика;

\(\tau \) – время релаксации термоотклика;

\(\Delta T \) – разность начальной и конечной температур образца;

\(\Delta U_n \) – изменение напряжения на \(R_n \) при изменении температуры образца на \(\Delta T \);

\(\gamma \) – электрический коэффициент;

\(t \) – время. Первый член в (1) соответствует классическому пироэлектрическому эффекту, а второй описывает собственный неравновесный термовольтальный эффект, значительно выделяющийся из общего сигнала благодаря большему времени релаксации (\(\tau \geq 105 \text{ с} \)). Изучение эффекта проводилось с помощью медленной модуляции температуры кристалла в условиях термостата, термоЭДС фиксировалась в том числе в стационарных условиях.

В экспериментах использовались беспримесные и легированные железом кристаллы НЛ с толщиной от 0,1 до 2 мм и площадью от 1 мм² до 3 см². Металлические электроды наносились напылением в вакууме (толщиной от 0,1 до 1 мкм).

Были исследованы образцы с различными парами электродов: алюминий (Al) – хром (Cr), индий (In) – хром (Cr), алюминий (Al) – акведак (C), алюминий (Al) – медь (Cu), серебро (Ag) – алюминий (Al). Исходя из требований экономичности, износостойкости и максимально наблюдаемой величины термоотклика в основном использовались пары электродов: алюминий (Al) – хром (Cr), медь (Cu) – алюминий (Al).

Специальные измерения показали, что эффект термоотклика имеет примерно одинаковую величину в кристаллах как \(Y \), так и \(Z \)-срезов. Поскольку в установке применялись достаточно большие скорости нагрева (около 0,1 град. в с), то для кристаллов \(Z \)-среза пироток достигал значительной величины. Поэтому основные измерения проводились для кристаллов НЛ \(Y \)-среза, где можно наблюдать термоотток в чистом виде. Однако полностью избежать от пироэффекта не удается – даже для об разцов \(Y \)-среза характерная зависимость напряжения \(R_n \) от \(t \) обнаруживает начальный выброс (в момент включения нагрева). Выброс, по-видимому, связан с неточным срезом кристалла, а также ближней структурой кристалла и, следовательно, является компонентой пиротока. Произведенные оценки дают величину отклонения от чистого \(Y \)-среза в 1–3°, что вполне реально.

Рис. 1. Блок-схема экспериментальной установки:
1 – кристаллодержатель (КР – кристалл; M1, M2 – нанесенные электроды из разных металлов; ТП – термопара; 2 – усилитель постоянного тока УП – 9; 3 – графопостроитель И 306; 4 – электрическая печь.
Для изучения зависимости величины термоотклика от концентрации примеси использовались кристаллы НЛ с одинаковыми площадью и толщиной \(S = 0.5 \text{ см}^2, d = 1 \text{ мм} \). Концентрация железа варьировалась в пределах от \(1,3 \cdot 10^{-2} \) до 0,7 вес. %.

Результаты представлены на рис. 2. Для концентрации примеси менее 0,25 вес. % эффект термоотклика не наблюдается.

Начиная с концентрации примеси 0,25 вес. %, коэффициент \(\Pi \) резко возрастает и достигает максимума \(\left(\Pi_{\text{max}}^{\text{НЛ}} = 5 \cdot 10^{-12} \text{ А/К·см}^2 \right) \) при концентрации 0,3–0,4 вес. % Fe.

На этой же установке исследовалась зависимость величины коэффициента \(\Pi \) от геометрии образца. Были получены следующие результаты: величина \(\Pi \) резко возрастает с уменьшением толщины кристалла (рис. 3). \(\Pi \) нелинейно зависит от площади образца (рис. 4).

При детальном изучении термоотклика было обнаружено, что \(\Pi \) не является константой, а зависит от температуры образца, т.е. \(\Pi = \Pi_0(\Delta T) = J-R_0 \) (рис. 5).
Измерения показали, что термовольтный эффект имеет примерно одинаковую величину в кристаллах как Y-, так и Z-срезов. Поскольку в установке применялись достаточно большие скорости нагрева (около 0,1 К/с), то для кристаллов полярного Z-среза пироток достигал значительной величины. Поэтому основные измерения проводились для кристаллов ниобата лития Y-среза, где можно наблюдать термоотклик в чистом виде.

Металлические электроды наносились напылением в вакууме (толщиной от 0,1 до 1 мкм). Были исследованы образцы с различными парами электродов: алюминий – хром, индий – хром, алюминий – медь, серебро – алюминий.

Для изучения зависимости величины термоЭДС от концентрации примеси использовались кристаллы ниобата лития с одинаковыми площадью и толщиной (S = 0,5 см², d = 1 мм). Концентрация
железа варьировалась в пределах от 1,3·10^{-2} до 0,6 вес. %. Результаты представлены на рис. 1. Для концентрации примеси менее 0,25 вес. % термовольтальный эффект не наблюдается. Начиная с концентрации примеси 0,25 вес. %, коэффициент P_{d} резко возрастает и достигает максимума ($P_{d} = 5·10^{-12}$ А/см·К) при концентрации 0,3–0,4 вес. % Fe. Таким образом, из результатов исследования следует, что в тонкослойной системе металл – сегнетоэлектрик – металл термовольтальный отклик значительно возрастает при уменьшении толщины кристалла, что позволяет говорить о приконтактом механизме эффекта (связанном, например, с диффузией электротного металла в кристалл).

Известные контактные явления в сэндвичных структурах с сегнетоэлектриками не объясняют наблюдаемые квазистационарные токи [4, 5]. Наличие начального напряжения U_{ad} на образце позволяет говорить о неравновесной природе термостимулированного тока. При исследовании зависимости величины коэффициента P_{d} от геометрии образца было выявлено, что величина P_{d} резко возрастает при уменьшении толщины кристалла (рис. 2).

В данной работе предложена термомеханическая модель исследуемого явления, обусловленного полем контактной разности потенциалов на границах раздела металл – сегнетоэлектрик. Предполагается, что появление тока вызвано появление разности потенциалов в области контакта электрод – кристалл. В случае одинаковых материалов электродов контактные разности потенциалов равны и противоположно направлены. Тогда результирующая ЭДС равна нулю.

В аналогичном эксперименте из-за высоких электрических полей (более 10³ В/см) наблюдалась окраска центров, подтверждающая наличие электрохимических реакций в кристаллах. Модель предполагает, что электрохимическая окислительная реакция происходит в области контакта металл – сегнетоэлектрик, что приводит к появлению электрохимического потенциала.

Полученные результаты можно использовать для разработки приемников излучения [3–5], а также при интерпретации экспериментальных результатов по изучению свойств сэндвичных пироэлектрических структур [1, 2, 6, 9, 10].

Список литературы
1. Здоровцев Г.Г. Термостимулированная ЭДС в сэндвичной структуре металл – ионит – металл / Г.Г. Здоровцев, В.И. Иванов, Н.В. Марченков // Информатика и системы управления. – 2005. – № 1 (09). – С. 55–60.
2. Здоровцев Г.Г. Термозеллектрические свойства несимметричной сэндвичной структуры металл–ионит–металл / Г.Г. Здоровцев, В.И. Иванов, Ю.М. Карпец, С.В. Климентьев // Известия Томского политехнического университета. – 2007. – Т. 311. – № 2. – С. 102–105.
3. Здоровцев Г.Г. Характеристики приемника излучения на основе структуры металл–сэндвич–металл / Г.Г. Здоровцев, В.И. Иванов, С.В. Климентьев, В.В. Кривошап / Известия ВУЗов ПОВ. Приборостроение. – 2006. – Т. 49. – № 8. – С. 45–46.
4. Иванов В.И. Использование динамического пироэффекта в термовольтном приемнике излучения / В.И. Иванов, С.В. Климентьев, В.В. Корчевский // Вестник Тихоокеанского государственного университета. – 2010. – № 2 (17). – С. 13–18.
5. Иванов В.И. Тепловые приемники излучения на основе тонкослойных структур металл – сегнетоэлектрик – металл: монография / В.И. Иванов, Ю.М. Карпец, С.В. Климентьев. – Хабаровск: Изд-во ДВГУПС, 2008. – 80 с.
6. Иванов В.И. Термостимулированные токи в несимметричной сэндвичной структуре металл – сегнетоэлектрик – металл: монография / В.И. Иванов, Ю.М. Карпец, С.В. Климентьев. – Хабаровск: Изд-во ДВГУПС, 2007. – 67 с.
7. Иванов В.И. Термодинамика легированных кристаллов в ионитах и с различными электродами / В.И. Иванов, Ю.М. Карпец, С.В. Климентьев // Известия высших учебных заведений. Физика. – 2001. – № 1. – С. 96–97.
8. Казанин М.М. Термовольтальный эффект в поликристаллическом SnS / М.М. Казанин, В.В. Каменский, С.М. Соловьев // ЖТФ. – 2009. – Т. 35. – В. 21. – С. 16–18.
9. Канаев И.Ф. Аномально сильное влияние электродов на фотогальванический ток в ионитах LiNbO₃ / И.Ф. Канаев, В.К. Малиновский // Автометрология. – 1995. – № 5. – С. 3–9.
10. Ivanov V.I. Thermo-emf in doped lithium niobate crystals with electrodes made of different metals // V.I. Ivanov, Yu.M. Karpets, S.V. Kliment'ev // Russian Physics Journal. – 2001. – Vol. 44. – № 1. – P. 119–121.