Efficient Segmentation of ultrasound images of abnormal kidney

Haidar J. Ismail
1- Department of Physics, College of Education, Salahaddin University, Erbil, Kurdistan Region, Iraq.

ARTICLE INFO

Article History:
Received: 01/06/2017
Accepted: 05/08/2017
Published: 20/12/2017

Keywords:
Hybrid segmenting
Kidney abnormalities
Matlab

*Corresponding Author:
Haidar J. Ismail
haidar.ismail@su.edu.krd

ABSTRACT

Image processing has large applications in the medical diagnosing, especially in Ultrasound Imaging (UI) that for its' safety. UI suffer from low resolution and noises, so, became a target for a lot of investigations. Three US images which represent Cyst, Benign, and Stone used in this study. Five contrast enhancement techniques and three denoising filter applied on them and best of them chose according to their PSNR and MSE values. It's found that best contrast enhancement methods were Contrast adjustment, for Benign and Cyst images, and sharpening for the Stone image. Then, the images denoised by Median filtering due to found it as better denoising filter than others studied here. Three segmenting methods (one ordinary and two hybrid techniques) were used here: thresholding, kmean with intensity selector, and bilateral filter with intensity selector. All techniques were segmented nearly same area of the cases. But thresholding needs a large of trial and error to obtain their segmenting. The kmean with intensity selector method was found better for the Benign case than other for its higher PSNR (16.68), lower MSE (1394.1), and small time of running (22.1 sec). But for Cyst and Stone images, Bilateral filter with intensity selector was found better than other according to same parameters. So, techniques of hybrid segmentation provided more efficient segmenting.

1. INTRODUCTION

Ultrasound is the standard method for first intentional evaluation of kidney. But, it sometimes couldn't differentiate between renal cysts and mixed solid tumors, so, another medical imaging techniques were used such as computed tomography, magnetic resonance imaging, and contrast-enhanced ultrasonography (Prakash and Wansaicheong, 2011).

Image segmentation divides an image into multiple parts that have homogeneity in pixel intensity, color or texture (Ahmed et al., 2015). Akhtaruzzaman et al. (2016) make an automated threshold to segment lower limbs from several image frames of human walking. That to overcome threshold strategy which
based on trial and error method. Another work uses a 3D bilateral filter to smooth spurious artifacts while preserving the strong edges of the cortical bone tissue (Nguyen et al., 2016). Sahadevan et al. (2016) use Bilateral filter as first step smoothing and maintaining edges and the support vector machine (SVM) classifier as second step to test benchmark hyperspectral image taken from the airborne spectrometer. Lee et al. (2016) use bilateral filter as first step to produced binarized image and extract edges using Canny edge algorithm. They compared their results with result of the normalized cut algorithm using kmeans. Their method needs smaller time of running. They used PSNR to compute objective evaluation of images produced by their proposed method.

The aim of the present study is to investigate different techniques of enhancements (denoising and contrast) for abnormal kidney (cyst, benign, stone) that given from 2D ultrasound. Also, performance of two stage segmenting on the three cases will be evaluated subjectively and objectively.

2. MATERIALS AND METHODS

Three ultrasound images for each of kidney abnormalities (benign, cyst, stone) studied in this work taken from ultrasound cases (Ultrasoundcases.info., 2017). They cropped to show only region interested region. Then, images contrast enhanced by using Histogram equalization (HE), Adaptive histogram equalization (AHE), Contrast adjustment, Image Sharpening, and Decorrelation stretch. Different input parameters of mentioned techniques optimized for maximum PSNR. Also, the images denoised as second enhancement step by optimizing three methods (Median filter, Wiener filter, Bilateral filter). The largest PSNR among these techniques listed in Table 1.

The enhanced images were segmented by two methods which going through two segmentation steps and thresholding segmentation used for comparison (see Figure 1). The first hybrid techniques use the Bilateral filter for smoothing ultrasound images with preserving their edges, then, use Intensity selector step to choosing interested region. While in the second hybrid technique Kmeans divide images to multi-regions and the interested region will choose by Intensity selector technique.

Figure 1: Shows steps of segmentation methods.

Thresholding is a technique of selecting optimum gray level value which separates the region of interest from other regions. Thresholding produced binary images from grey-level by making pixels below or upper a gray level value to zero and other remaining pixels to one. If \(g(x, y) \) is a threshold of \(f(x, y) \) at threshold value \(T \), it can be described as:

\[
g(x, y) = \begin{cases}
1 & f(x, y) \geq T \\
0 & \text{otherwise}
\end{cases}
\]

(1)

K-Means method divide pixels into a number of separate clusters. Its algorithm consists of two steps. First, it finds k centroid (k number of clusters) for pixels of the image and secondly relate each pixel to a centroid through using different methods of computing distance between them. One method for computing distance is the Euclidean distance which defined as follow:

\[
d = |p(x, y) - c_k|
\]

(2)

Where \(p(x, y) \) is an input pixel to be cluster and \(c_k \) is the cluster centers. After grouping pixels into k sets (i.e. clusters) new Euclidean distance evaluated between each center and
pixels, so pixels assigned to the minimum Euclidean distance (Dhanachandra et al., 2015).

The Bilateral filtering is a technique for smoothing and sharpening edges of an image. It is obtained by applying two Gaussian filters. One applied for finding spatial domain and other for intensity domain. The output of the filter for a pixel \(s \) is given by using following equation:

\[
J(s) = \frac{1}{K(s)} \sum_{p \in B} (p - s)(I_p - I_s)I_p
\]

(3)

Where \(K(s) \) is a normalization term:

\[
K(s) = \sum_{p \in B} f(p - s)g(I_p - I_s)
\]

(4)

Where \(f \) uses a Gaussian in the spatial domain which represents the domain filter and \(g \) uses a Gaussian in the intensity domain which represents the range filter (Agarwal and Kumar, 2016).

Intensity selector method uses roicolor command in Matlab which Select wanted region according to color or intensity levels in grayscale image.

2.1. Performance Measurement

The quality of image segmentation can be done by using MSE and PSNR parameters which defined as follow (Lee et al., 2016):

\[
MSE = \frac{\sum_{m,n}(I_{m,n} - I_{ref})^2}{m \times n}
\]

(5)

\[
PSNR = 10 \log_{10} \left(\frac{R^2}{MSE} \right)
\]

(6)

where \(m, n \) are matrix dimension and \(R \) dynamic range of the image (i.e. their bits).

3. RESULTS AND DISCUSSION

Best methods of contrast enhancement among five techniques were Contrast adjustment, for Benign and Cyst image, and image sharpening techniques, for Stone image, according to values of MSE and PSNR. Generally, Median filter had better values of MSE (lower) and PSNR (higher) according to Table 1.

Technique	Benign	Cyst	Stone
Contrast adjustment	74	77	-
Image Sharpening	-	-	108
Median filter	47	48	50

Table 1- Shows PSNR for enhancement methods for the three cases.

Figure 2 shows input, cropped, enhanced and segmented images for all three cases. The images were cropped to just enhance and segmented the region of interest. The enhanced images through contrast and denoising didn’t show any difference by comparing with cropped images visually. That may be due the degree of enhancement didn’t receive to a level which can be seen visually. All three segment methods for benign just segment about 70% of total area as estimated visually from Figure 2a. More areas (~90%) were segmented for cyst (Figure 2b) and nearly 40% of stone were segmented as shown in Figure 2c.

These differences of segmenting of region of interest belong to the difference of percent of inhomogeneity of intensity levels for all cases. Lee et al. (2016) through using their method, Bilateral filter with Canny edge, segment all area of region of interest that due to their clear image.

The kmean with Intensity selector method was found better for the Benign case than other for its higher PSNR (16.68), lower MSE (1394.1), and small time of running (22.1 sec) according to Table 2. But for Cyst and Stone images, Bilateral filter with Intensity selector was found better than other according to same parameters. The MSE and PSNR show quality of segmented images rather than the percent of segmenting.
Figure 2: Show input, cropped, enhanced, and different image segmentation for (a) Benign, (b) Cyst with septa, and (c) Stone.
Table 2- Show MSE, PSNR and time consuming for different segment methods for the three cases.

Segment type	Benign								
	MSE	PSNR	t(s)	MSE	PSNR	t(s)	MSE	PSNR	t(s)
Threshold	1671.8	15.89	3.1	92.48	27.54	2.7	499.36	21.15	2.3
Kmean+	1394.1	16.68	22.1	100.37	27.18	21.8	538.18	20.82	16.1
Intensity selector									
Bilateral filter+	1702.6	15.81	37.8	92.26	27.55	31.7	499.36	21.15	25.5
Intensity selector									

The minimum time of processing for all three cases (average 2.7 s) was for thresholding segmenting if trial and error are neglected for obtaining optimum threshold value. Bilateral filter with Intensity selector technique takes maximum time for running (average 31.6 s). So, best method, for time considering, was kmeans with Intensity selector technique.

4. CONCLUSIONS

Generally, 2D ultrasound images are noisy that makes difficulty for good segmenting interest region even using denoising techniques which reduce level of noise. The thresholding method was segmenting nearly same area of the cases as other two methods. It consumes small time of running but needs a large number of trial and error to get optimum threshold value. So, it neglected from the comparison. The kmean with Intensity selector technique better than Bilateral filter with Intensity selector for the Benign case due to higher PSNR, lower MSE, smaller time of running, even it segments nearly same area of three cases as other methods. The other technique more suitable for Cyst and stone cases due to same parameters. The other technique is more suitable for Cyst and stone cases due to same parameters.

Conflict of Interest

The author would like to express his acknowledgment to the Salahaddin University for supporting him with available tools.

REFERENCES

Agarwal, S.K. and Kumar, P., 2016. Denoising of A Mixed Noise Color Image Through Special Filter. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(1), pp.159-176.

Ahmed, M., Abd El-attySoliman, S. and Adamkani, J. (2015). PERFORMANCE STUDY OF INNOVATIVE AND ADVANCED IMAGE SEGMENTATION TECHNIQUES. Singaporean Journal of Scientific Research, 7(1), pp.320-326.

Akhtaruzzaman, M., Shafie, A.A. and Khan, M.R., 2016. Automated Threshold Detection for Object Segmentation in Colour Image. ARPN Journal of Engineering and Applied Sciences, Asian Research Publishing Network (ARPN), 11(6), pp.4100-4104.

Dhanachandra, N., Manglem, K. and Chau, Y.J., 2015. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Computer Science, 54, pp.764-771.

Lee, S., Lee, G., Hong, Y. and Kim, J., 2016. A study on the improved normalized cut algorithm using a bilateral filter for efficient object extraction from image. Wireless Personal Communications, 86(1), pp.77-90.

Nguyen, C., Havlicek, J., Duong, Q., Vesely, S., Gress, R., Lindenberg, L., Choyke, P., Chakrabarty, J.H. and Williams, K., 2016, September. An automatic 3D CT/PET segmentation framework for bone marrow proliferation assessment. In Image Processing (ICIP), 2016 IEEE International Conference on (pp. 4126-4130). IEEE.
Prakash, A., Tan, G.J.S. and Wansaicheong, G.K.L., 2011. Contrast enhanced ultrasound of kidneys. Pictorial essay. Medical ultrasonography, 13(2), pp.150-156.

Sahadevan, A.S., Routray, A., Das, B.S. and Ahmad, S., 2016. Hyperspectral image preprocessing with bilateral filter for improving the classification accuracy of support vector machines. Journal of Applied Remote Sensing, 10(2), pp.025004-025004.

Ultrasoundcases.info. (2017). Ultrasound Cases | Ultrasound Cases. [online] Available at: http://Ultrasoundcases.info [Accessed 9 Jun. 2017].