MINIMAX OPTIMAL KERNEL OPERATOR LEARNING
VIA MULTILEVEL TRAINING

Jikai Jin
School of Mathematical Sciences
Peking University
Beijing, China
jkjin@pku.edu.cn

Yiping Lu
Institute for Computational & Mathematical Engineering
Stanford University
Stanford, CA, US
yplu@stanford.edu

Jose Blanchet
Management Science and Engineering
Stanford University
Stanford, CA, US
jose.blanchet@stanford.edu

Lexing Ying
Department of Mathematics
Stanford University
Stanford, CA, US
lexing@stanford.edu

ABSTRACT

Learning mappings between infinite-dimensional function spaces have achieved empirical success in many disciplines of machine learning, including generative modeling, functional data analysis, causal inference, and multi-agent reinforcement learning. In this paper, we study the statistical limit of learning a Hilbert-Schmidt operator between two infinite-dimensional Sobolev reproducing kernel Hilbert spaces (RKHSs). We establish the information-theoretic lower bound in terms of the Sobolev Hilbert-Schmidt norm and show that a regularization that learns the spectral components below the bias contour and ignores the ones above the variance contour can achieve the optimal learning rate. At the same time, the spectral components between the bias and variance contours give us flexibility in designing computationally feasible machine learning algorithms. Based on this observation, we develop a multilevel kernel operator learning algorithm that is optimal when learning linear operators between infinite-dimensional function spaces.

1 INTRODUCTION

Supervised learning of operators between two infinite-dimensional spaces has attracted attention in several areas of application of machine learning, including, scientific computing (Lu et al., 2019; Li et al., 2020; de Hoop et al., 2021; Li et al., 2018; 2021b), functional data analysis (Crambes & Mas, 2013; Hörmann & Kidziński, 2015; Wang et al., 2020a), mean-field games (Guo et al., 2019; Wang et al., 2020b), conditional kernel mean embedding (Song et al., 2009; 2013; Muandet et al., 2017) and econometrics (Singh et al., 2019; Muandet et al., 2020; Dikkala et al., 2020; Singh et al., 2020). Despite the empirical success of operator learning, the statistical limit of learning an infinite-dimensional operator has not been investigated studied. In this paper, we study the problem of learning Hilbert-Schmidt operators between infinite-dimensional Sobolev RKHSs \mathcal{H}_K^β and \mathcal{H}_L^γ with given kernels k and l, respectively with $\beta, \gamma \in [0, 1]$ (Adams & Fournier, 2003; Christmann & Steinwart, 2008; Fischer & Steinwart, 2020). Our goal is to derive the optimal sample complexity for linear operator learning, i.e. how much data is required to achieve a certain performance level.

We first establish an information-theoretic lower bound for learning a Hilbert-Schmidt operator between Sobolev spaces with respect to a general Sobolev norm. Our information-theoretic lower bound indicates that the optimal learning rate is determined by the minimum of two polynomial rates: one is purely decided by the input Sobolev reproducing kernel Hilbert space and its evaluating norm, while the other one is purely determined by the output space along with its evaluating norm. The rate is novel in that all existing results (Fischer & Steinwart, 2020; Li et al., 2022; de Hoop et al., 2021) only establish rates that depend on the parameter of input space. The reason is all previous
works (Talwai et al., 2022; Li et al., 2022; de Hoop et al., 2021) only consider the case of the output space as a subspace of a trace bounded reproducing kernel Hilbert space but not a general Sobolev space. We refer to Remark 2.1 for detailed comparisons.

To design a learning algorithm for approximating an infinite-dimensional operator, we need to learn a finite-dimensional restriction instead of the whole operator, as the latter would result in infinite variance. The finite-dimensional selection leads to bias error but decreases the variance. A natural task is then to study the shape of regularization that can lead to the optimal bias-variance trade-off and achieve the optimal learning rate. In this paper, we consider the bias and variance contour at the scale of optimal learning. Once the regularization enables one to learn all the spectral parts above the bias contour and below the variance contour, the learning is optimal. Finally, utilizing the region between the bias contour and variance contour, we developed a multilevel training algorithm (Lye et al., 2021; Li et al., 2021a) which first learns the mapping on low frequency and then successively fine-tunes the machine learning models to fit the high-frequency output. The intuition of our algorithm aligns with the original motivation of multilevel Monte Carlo (Giles, 2008; 2015): we use the next level to reduce bias while keeping the variance at the same scale. We demonstrate that such a multilevel algorithm can achieve an optimal non-parametric rate for linear operator learning.

1.1 RELATED WORK

Machine Learning Based PDE Solver Solving partial differential equations (PDEs) plays a prominent role in many scientific and engineering disciplines, such as physics, chemistry, operation management, macro-economy, etc. The recent deep learning breakthrough has drawn attention to solving PDEs via machine learning methods (Raissi et al., 2019; Han et al., 2018; Sirignano & Spiliopoulos, 2018; Yu et al., 2018; Khoo et al., 2019; Chen et al., 2021). The statistical power and computational cost of these problem is well-studied by recent papers (Lu et al., 2021; 2022; Nickl et al., 2020; Nickl & Wang, 2020). This paper focuses on operator learning (Chen & Chen, 1995; Long et al., 2018; 2019; Feliu-Faba et al., 2020; Khoo et al., 2021; Lu et al., 2019; Li et al., 2020; Kovachki et al., 2021; Stepaniants, 2021), i.e. learning a map between two infinite-dimensional function spaces. For example, one can learn a PDE solver that maps from the boundary condition to the solution or an inverse problem that maps from the boundary measurement to the coefficient field. Regarding the mathematical foundation of operator learning, (Liu et al., 2022) considers the learning rate of non-parametric operator learning. However, non-parametric functional data analysis often suffers from slower-than-polynomial convergence rates (Mas, 2012) due to the small ball probability problem for the probability distributions in infinite dimensional spaces (Delaigle & Hall, 2010). The most relevant works are (Lin et al., 2011; Reimherr, 2015; de Hoop et al., 2021), which consider the rates for learning a linear operator. For the comparison between our work and (de Hoop et al., 2021), see Remark 2.1.

Learning with Kernel. Supervised least square regression in RKHS and its generalization capability have been thoroughly studied (Caponnetto & De Vito, 2007; Smale & Zhou, 2007; De Vito et al., 2005; Rosasco et al., 2010; Mendelson & Neeman, 2010). The minimax optimality with respect to the Sobolev norm has been discussed recently in (Fischer & Steinwart, 2020; Liu & Li, 2020; Lu et al., 2022). Our paper is highly related to recent works (Schuster et al., 2020; Mollenhauer & Koltai, 2020; Talwai et al., 2022; Li et al., 2022; Park & Muandet, 2020; Singh et al., 2019; 2020) on identifying the Sobolev norm learning rate for the kernel mean embedding (Song et al., 2009; 2013; Muandet et al., 2017), which can also formulated as learning an operator. The difference between our work and (Talwai et al., 2022; Li et al., 2022) sees Remark 2.1. A concurrent paper (Balasubramanian et al., 2022) considers a unified RKHS methodology for functional data analysis. Our paper provided a refined analysis and provided information theoretical optimal rates for this problem.

Multilevel Monte Carlo By combining biased estimators with multiple stepsizes, multilevel Monte Carlo (MLMC) (Giles, 2008; 2015) dramatically improves the rate of convergence and achieves in many settings the canonical square root convergence rate associated with unbiased Monte Carlo (Rhee & Glynn, 2015; Blanchet & Glynn, 2015). Multilevel Monte Carlo can also be used for a random variable with infinite variance (Blanchet & Liu, 2016; Chen et al., 2020). To the best of our knowledge, this is the first paper that provides optimal sample complexity for multilevel Monte Carlo type algorithm for infinite variance problems in the non-parametric regime. Very recently,
(Lye et al., 2021; Li et al., 2021a) developed a multilevel machine learning Monte Carlo algorithm (ML2MC) / multilevel fine-tuning algorithm for learning solution maps by first learning the map on the coarsest grid and then successively fine-tuning the network on samples generated at finer grids. The authors also showed that, following the telescoping in MLMC, the multilevel training procedure could reduce the generalization error without spending more time on generating training samples. (Schäfer & Owhadi, 2021; Boullé et al., 2022) consider such multi-scale algorithm for learning Green’s function. However, the statistical power of such an algorithm is still under investigation. Another difference with (Boullé et al., 2022) is that we consider the Green function in H^{-1} norm rather than the ℓ_1 norm used in (Boullé et al., 2022). In this paper, we qualify a specific setting where this multilevel procedure can and is necessary to achieve the minimax optimal learning rate.

1.2 Contribution

- We derive a novel information-theoretic lower bound of learning a linear operator between two infinite-dimensional Sobolev reproducing kernel Hilbert spaces. The optimal learning rate is a minimum of two polynomial rates, one only dependent on the parameters of the input space while the other only on the parameters of the output space. The first rate aligns with the previous works (Li et al., 2022), while the second is novel to the literature.
- We study the shape of regularization that can lead to the optimal learning rate. One should learn all the spectral parts under the bias contour at the level of the optimal learning rate but not the spectral components above the variance contour at the level of the learning rate. This enables the estimator to enjoy an optimal balance of bias-variance.
- We qualify a specific setting where a multilevel training procedure (Lye et al., 2021; Li et al., 2021a) is necessary and capable of achieving a minimax optimal learning rate for learning a linear operator. We perform the optimal learning rate via $O(\ln \ln n)$ ensemble of ridge regression models. This differs from finite-dimensional operator learning, where a single-level estimator can be optimal.

2 Problem Formulation

2.1 Preliminary

Let P_K be a distribution over the input space H_K and define covariance operator $C_{K,K} = \mathbb{E}_{u \sim P_K} u \otimes u$. Consider its spectral decomposition $C_{K,K} = \sum_{i=1}^{+\infty} \mu_i^2 e_i \otimes e_i$, where $\{\mu_i^2\}_{i=1}^{+\infty}$ is an orthogonal eigenbasis and $\{\mu_i\}$ is the corresponding eigenvalues of $C_{K,K}$ (here the $g \otimes h$ is an operator defined as $g \otimes h = gh^* : f \rightarrow \langle f, h \rangle g$). In the typical machine learning applications, the test distribution is the same as the training distribution, so we can assume that $H_K = \left\{ \sum_i a_i \mu_i^{\beta/2} e_i : \{a_i\}_{i=1}^{\infty} \in \ell^2 \right\}$ without loss of generality. Note that this automatically holds in the context of learning the conditional mean embedding (CME) (Fischer & Steinwart, 2020; Talwai et al., 2022; Li et al., 2022).

Following Christmann & Steinwart (2008); Fischer & Steinwart (2020), we define the interpolation Sobolev space $H^\beta_K = \left\{ f = \sum_i a_i (\mu_i^{\beta/2} e_i) : \{a_i\}_{i=1}^{\infty} \in \ell^2 \right\}$ for any $\beta > 0$, equipped with the Sobolev norm defined by the inner product $\left(\sum_i a_i (\mu_i^{\beta/2} e_i), \sum_i b_i (\mu_i^{\beta/2} e_i) \right)_{H^\beta_K} = \sum_i a_i b_i$. For the output space, we fix a user-specified distribution Q_L and a reproducing Kernel Hilbert Space. We can similarly define the covariance operator C_{Q_L} and Sobolev space H^γ_L. Natural choices of Q_L include some distribution on kernel functions $\{\ell(y, \cdot) : y \in Y\}$ of H_L induced by some distribution Q_L on Y, so that C_{Q_L} is a kernel integral operator with respect to Q_L and H^γ_L is an interpolation space between H_L and $L^2(Q_L)$; see Example 2.1 for a specific example.

Following Li et al. (2022), in this paper we consider the Hilbert-Schmidt norm between two Sobolev Spaces for all the operators, which is defined as following.

Definition 2.1 (β, γ)-norm Let $T : H_K \rightarrow H_L$ be a possibly unbounded linear operator. $I_{1,\beta,P_K} : H_K \rightarrow H^\beta_K$, $\beta \in (0,1)$ is the canonical embedding mapping that takes $u \in H_K$ to the same element u in the larger space H^β_K, and $I_{1,\gamma,Q_L} : H_L \rightarrow H^\gamma_L$, $\gamma < 1$ is similarly defined.
Then the \((\beta, \gamma)\)-norm of \(T\) is defined as
\[
\|T\|_{\beta, \gamma} = \left\| (I_{\gamma,Q_L}^\ast)^\dagger \circ T \circ I_{\alpha,P_K} \right\|_{\text{HS}(\mathcal{H}_K^0, \mathcal{H}_L^0)} = \left\| G_{Q_L}(1-\gamma)/2 \circ T \circ C_{K,L}^{\ast(1-\beta)/2} \right\|_{\text{HS}(\mathcal{H}_K, \mathcal{H}_L)},
\]
where we omit the dependence of \(\|\cdot\|_{\beta, \gamma}\) on \(P_K\) and \(Q_L\) since it will always be clear from context.

2.2 Problem Formulation

We consider the problem of learning an unknown linear operator \(A_0 : \mathcal{H}_K \mapsto \mathcal{H}_L\) between two reproducing kernel Hilbert spaces corresponding to kernel \(k\) and \(l\) respectively. We are given \(N\) noisy data pairs \((u_i, v_i), 1 \leq i \leq N\) related by
\[
v_i = A_0 u_i + \varepsilon_i
\]
where \(u_i \overset{i.i.d.}{\sim} P_K\) for some unknown distribution \(P_K\) and \(\varepsilon_i\) is the noise drawn from some distribution with zero mean that may depend on \(u_i\). We use \(P_{KL}\) for the joint distribution of \((u_i, v_i)\).
Denote \(C_{KK} = \mathbb{E}_{u \sim P_K} u \otimes u, C_{KL} = \mathbb{E}_{(u,v) \sim P_{KL}} u \otimes v\) and its adjoint \(C_{L,K} = C_{K,L}^\ast\) be uncentered cross-covariance operators associated with \(P_{KL}\). Then we can reformulate the ground truth operator as \(A_0 = C_{L,K} C_{KK}^\dagger\), where \(\dagger\) is the pseudo-inverse (Talwai et al., 2022; Li et al., 2022). With the goal of understanding the relative difficulty of learning different types of linear operators, we investigate the sample efficiency of learning \(A_0\) under certain source assumptions imposed on the data model (1). Source condition (Caponnetto & De Vito, 2007; Mendelson & Neeman, 2010; Steinwart et al., 2009; Rosasco et al., 2010; Fischer & Steinwart, 2020) assumes that the learning target lies in a parameterized function class and study the learning rate for different problems with different hardness. Specifically, the source condition assume that the learning target is bounded in certain Sobolev norm. In this paper, we consider learning an operator with bounded \((\beta, \gamma)\)-norm, which is the Hilbert-Schmidt norm that maps from \(\mathcal{H}_K^0\) to \(\mathcal{H}_L^0\). We consider the generalization error/convergence rate under another \((\beta', \gamma')\)-norm as in Fischer & Steinwart (2020); Lu et al. (2022); Talwai et al. (2022); Li et al. (2022).

Remark 2.1 Although recent works have considered similar problems in the context of conditional mean embedding (Talwai et al., 2022; Li et al., 2022) and functional data analysis (de Hoop et al., 2021), in all these papers, the output space is a trace bounded RKHS (de Hoop et al., 2021), Assumption 2.14 (vi) rather than the general parameterized Sobolev space in our paper.

We then list all the assumptions imposed on the underlying kernel for our theoretical results. We follow the standard capacity assumptions and embedding properties used in kernel regression (Fischer & Steinwart, 2020; Talwai et al., 2022; Li et al., 2022).

Assumption 2.1 (Capacity Condition of the Covariance) The eigenvalues \(\{\mu_i\}_{i \geq 1}\) of the covariance operator \(C_{KK} = \mathbb{E}_{u \sim P_K} u \otimes u\) satisfies \(\mu_i \propto i^{-\frac{1}{2}}\) for some \(p \in (0, 1)\). Similarly, the eigenvalues \(\{\rho_i\}_{i \geq 1}\) of the covariance operator \(C_{KL} = \mathbb{E}_{(u,v) \sim P_{KL}} u \otimes v\) satisfies \(\rho_i \propto i^{-\frac{1}{2}}\) for some \(q \in (0, 1)\).

Assumption 2.2 (\(\ell_\infty\) Embedding Property of the Input RKHS) There exists a smallest \(A_1\) \((0, 1)\) such that \(\left\| (I_{\alpha,P_K})^\dagger f \right\|_{\mathcal{H}_K^0} \leq A_1\) a.s. under \(P_K\) for some \(A_1 < +\infty\).

Assumption 2.3 (\(\ell_\infty\) Embedding Property of the Output RKHS) There exists \(A_2 < +\infty\) such that \(\|g\|_{\mathcal{H}_L^0} \leq A_2\) holds for all \(g\) in the range of \(A_0\), except from a \(Q_L\)-null set.

Assumption 2.4 (Moment Condition) There exists an operator \(V : \mathcal{H}_L \mapsto \mathcal{H}_L\) with \(\text{tr}(V) \leq \sigma^2\) such that for every \(u \in \mathcal{H}_K\), we have \(\mathbb{E}_{v \sim P_{KL}(u)} \left[((v - A_0 u) \otimes (v - A_0 u))^k \right] \leq \frac{1}{2}(2k)!R^{2k-2}V_k\) holds for all \(k \geq 2\).

Assumption 2.5 (Source Condition) \(A_0\) is bounded under \((\beta, \gamma)\)-norm i.e. \(\|A_0\|_{\beta, \gamma} \leq B\).
2.3 Examples

In this section, we will introduce two examples of our theory. The first one is about learning a differential operator, for example inferring an advection-diffusion model Portone & Moser (2022) from observations or predicting the future Long et al. (2018); Lu et al. (2019); Li et al. (2020); Feliu-Faba et al. (2020); Huang et al. (2021). The second example is about learning conditional mean embedding Song et al. (2009; 2013); Muandet et al. (2017), which represents a conditional distribution as an RKHS element. Thus, conditional distribution regression can be reduced to kernel operator learning. Our theory can also be used for linear inverse problems such as radial electrical impedance tomography (EIT) Mueller & Siltanen (2012), and the severely ill-posed inverse boundary problem for the Helmholtz equation with unknown wave-number parameter Agapiou et al. (2014). For detailed discussion, we refer to (de Hoop et al., 2021, Section 1.3).

Example 2.1 (Learning differential operators) Suppose that the ground-truth operator \(A_0 = \Delta^t \) where \(\Delta \) is the Laplacian and \(t \in \mathbb{Z} \). Let \(\mathcal{H}_K = \mathcal{H}^{m+2t}([0,1]) \) be the Sobolev space with smoothness \(m + 2t \) on \([0,1]\) and \(\mathcal{H}_L = \mathcal{H}^m([0,1]) \), then \(A_0 \) is a bounded operator from \(\mathcal{H}_K \) to \(\mathcal{H}_L \) which corresponds to the \(\beta = \gamma = 1 \) case. However, we will see below that we can obtain a better characterization of the learning error using our theory.

Consider for example that the input has mean zero and the Matérn-type covariance operator \(C_{KK} = \sigma^2 (\Delta + \tau^2 I)^{-1} \). Its eigenvalues satisfy \(\mu_n \propto n^{-2\tau} \). On the other hand, we choose \(Q_x \) to be a distribution supported on \(\{ y : y \in [0,1] \} \) induced by a uniform distribution on \([0,1]\), where \(\ell \) is the kernel function of \(\mathcal{H}_L \). Then \(C_{Q_x} \) is essentially the kernel integral operator on \(\mathcal{H}_L \) w.r.t. the uniform distribution, and its eigenvalues are \(\rho_n \propto n^{-2m} \). The assumption \(\|A_0\|_{\beta,\gamma} < +\infty \) is satisfied if and only if \((1 - \gamma)m \leq (1 - \beta)s - \frac{1}{2} \) (i.e. \(\gamma > 1 - \frac{2(1 - \beta)s - 1}{2m} \)).

Example 2.2 (Conditional mean embedding) Suppose that we would like to learn the conditional distribution supported on \(\sigma \). \(\Delta \) and \(\tau \) are probability distributions on Hilbert spaces \(\mathcal{H}_K \) and \(\mathcal{H}_L \) respectively such that Assumptions 2.1 and 2.2 hold. Then for any estimator \(\mathcal{E} : (\mathcal{H}_K \times \mathcal{H}_L)^{\otimes N} \mapsto \mathcal{H}_K^\prime, \mathcal{H}_L^\prime \) there exists a linear operator \(A_0 \) and a joint data distribution \(P_{KL} \) with marginal distribution \(P_K \) on \(\mathcal{H}_K \) satisfying Assumptions 2.3 to 2.5, such that with probability \(\geq 0.99 \) over \((u_i, v_i) \overset{i.i.d.}{\sim} P_{KL} \), we have \(\|\mathcal{E}(\{(u_i, v_i)\}_{i=1}^N) - A_0\|_{\beta,\gamma} \geq N^{-\min \{ \max \{ \alpha, \beta \} - \beta', \gamma \}} \).

Remark 3.1 Our lower bound is a composition of a minimum of two parts. The first rate \(N^\gamma \) is the minimax optimal Sobolev learning rate for kernel regression (Fischer & Steinwart, 2020; Talwai et al., 2022; Li et al., 2022; Lu et al., 2022) and is fully determined by the parameter of the input Sobolev reproducing kernel Hilbert space. Our second rate \(N^{-\frac{\sqrt{1+\gamma}}{\beta+1}} \) is novel to the literature.

3 Information Theoretic Lower Bound

In this section, we provide an information-theoretic lower bound via the Fano method for the convergence rate of the operator learning problem formulated in Section 2.

Theorem 3.1 Suppose that \(P_K \) and \(Q_L \) are probability distributions on Hilbert spaces \(\mathcal{H}_K \) and \(\mathcal{H}_L \) respectively such that Assumptions 2.1 and 2.2 hold. Then for any estimator \(\mathcal{E} : (\mathcal{H}_K \times \mathcal{H}_L)^{\otimes N} \mapsto \mathcal{H}_K^\prime, \mathcal{H}_L^\prime \), there exists a linear operator \(A_0 \) and a joint data distribution \(P_{KL} \) with marginal distribution \(P_K \) on \(\mathcal{H}_K \) satisfying Assumptions 2.3 to 2.5, such that with probability \(\geq 0.99 \) over \((u_i, v_i) \overset{i.i.d.}{\sim} P_{KL} \), we have \(\|\mathcal{E}(\{(u_i, v_i)\}_{i=1}^N) - A_0\|_{\beta,\gamma} \geq N^{-\min \{ \max \{ \alpha, \beta \} - \beta', \gamma \}} \).
This bound shows how the infinite-dimensional problem is different from the finite-dimensional regression problem and is fully determined by the output Sobolev reproducing kernel Hilbert space parameter. Our lower bound shows that the hardness of learning a linear operator is determined by the harder part between the input and output spaces. We will explain why the lower bound has such a structure in Remark 4.2 and Figure 2.

4 On the Shape of Regularization

In this section, we aim to understand the shape of regularization so that the constructed estimator \(\hat{A} \) based on \(N \) i.i.d. data \(\{(u_i, v_i)\}_{i=1}^{N} \sim P_{KL}^{\infty} \) for \(1 \leq i \leq N \) enjoys an optimal learning rate.

Compared with existing approaches where a regularized least-squares estimator can achieve statistical optimality (Fischer & Steinwart, 2020; Talwai et al., 2022; Li et al., 2022; de Hoop et al., 2021), under \((\beta, 1)\)-norm, we study the learning rate under the \((\beta', \gamma')\)-norm \((\beta' \in (0, \beta), \gamma' \in (\gamma, 1))\) which is defined in Definition 2.1 as \(\|\hat{A} - A_0\|_{\beta', \gamma'} = \|C_{Q_L}^{\frac{\beta' - \gamma'}{2}} (\hat{A} - A_0) C_{K_K}^{\frac{1}{2} - \gamma'}\|_{\text{HS}(\mathcal{H}_K, \mathcal{H}_L)} \). The norm of the additional \(C_{Q_L}^{\frac{\beta' - \gamma'}{2}} \) term is unbounded which make our setting harder than the convergence in \((\beta, 1)\)-norm in existing works. Since \(C_{Q_L}^{\frac{\beta' - \gamma'}{2}} \) is bounded when restricted to the finite-dimensional space span \((\mu_i^\beta f_i : 1 \leq i \leq n)\), we should also include another bias-variance trade-off via regularizing in the output shape. As a result, we are interested in answering the following question

What is the optimal way to combine the regularization in the input space and regularization in the output space? i.e. What is the optimal shape of regularization?

To answer this question, we investigate the problem in the spectral space, *i.e.* considering the spectral representation of operator \(A_0 = \sum_{i,j=1}^{+\infty} a_{ij} \mu_i^\beta e_i \otimes \rho_j^{1-\gamma} f_j \). The problem of estimating \(A \) then reduces to learning the coefficients “matrix" \((a_{ij})_{i,j=1}^{+\infty}\). The source condition Assumption 2.5 enforces \(\sum_{i,j=1}^{+\infty} a_{ij}^2 \leq B \). We show in Appendix B.1.1 that regularizing the basis \(e_i \otimes f_j \) will introduce a bias of order \(\|a_{ij} \mu_i^\beta e_i \otimes \rho_j^{1-\gamma} f_j\|^2 = a_{ij}^2 \mu_i^{\beta - \beta'} \rho_j^{\gamma' - \gamma} \propto i^{-\frac{\beta' - \gamma'}{2}} j^{-\frac{\gamma' - \gamma}{2}} \) under the \((\beta', \gamma')\)-norm. On the other hand, when \(\alpha \leq \beta + p \), we show in Appendix B.1.2 that the variance of learning \((i, j)\) from noisy data scales as \(\frac{1}{N} \mu_i^{\beta - \beta'} \rho_j^{\gamma' - \gamma} \propto i^{-\frac{\beta' - \gamma'}{2}} j^{-\frac{\gamma' - \gamma}{2}} \). Since the variance would accumulate for a fixed \(j \), learning \((i, j)\) for \(i \leq i_{\text{max}} \) results in a variance of \(\propto \frac{1}{N} i_{\text{max}}^{\frac{\beta' - \gamma'}{2}} j^{-\frac{\gamma' - \gamma}{2}} \). (Similar analysis can be carried out for the \(\alpha > \beta + p \) case as well, but the variance now scales as \(\frac{1}{N} i_{\text{max}}^{\frac{\beta' - \gamma'}{2}} j^{\frac{\gamma' - \gamma}{2}} \); see Appendix B for detailed derivations.) In summary, we need to make bias-variance trade off in the \((i, j)-\)plane, *i.e.* decide whether we should learn or regularize over the basis \(e_i \otimes f_j \).

4.1 Regularization via Variance Contour

The underlying idea of regularization is that some components are intrinsically hard to learn due to large variance; these components are then neglected by adding regularization and are counted as bias. Thus, the remaining components are easy to learn due to controllable variance. This intuition works well when the estimation error results from the noise of the data and is well-studied in a line of works (Fischer & Steinwart, 2020; de Hoop et al., 2021; Talwai et al., 2022; Li et al., 2022). This idea still works in our setting, but we need to re-evaluate the bias and variance of each component. Since we work with the Hilbert-Schmidt norm, this can be done in a coordinate-wise manner, meaning that we can look at each \(a_{ij} \) separately and decide whether to neglect it (contribute to bias) or to learn it from data (contribute to variance).

Since the variance term measures the hardness of learning, we naturally introduce the notion of variance contour, which is a curve on the \(\mathbb{R}^2 \) plane on which all points induce the same order of variance (here we work with real coordinates for convenience, although we only care about integer
where $\hat{\lambda}_{\text{bias}}$ contour produces a certain level of bias i.e. the optimal learning rate in the $\alpha > \beta$ regime is an outstanding problem for decades, even without the additional problem-dependent parameters.

A reasonable regularization scheme is then to learn all coordinates $(i, j) \in \mathbb{Z}^2_+$ below the curve $\ell_{C, \text{var}}$ and `regularize out' the remaining coordinates that are difficult to learn due to large variances. This can give us the estimator with smallest estimator at give variance level. This observation motivates us to construct our estimator as

$$\hat{\lambda} = \sum_{j=1}^{\frac{BN}{\alpha}} \left(\hat{\rho}_j f_j \otimes \hat{\rho}_j f_j \right) \hat{C}_{LK} \left(\hat{C}_{KK} + \lambda_j I \right)^{-1},$$

where $\hat{C}_{LK} = \frac{1}{N} \sum_{i=1}^{\frac{BN}{\alpha}} v_i \otimes u_i$, $\lambda_j (1 \leq j \leq \gamma N_\alpha = C^{\frac{2}{1-\gamma}})$ are the regularization coefficients imposed on different dimensions of the output space. According to (2) and noting that $\mu_i \propto i^{-\frac{1}{\gamma}}$, we define

$$\lambda_j = \max \left\{ \left(j^{-1-\gamma'} \gamma N_{\alpha} \max \left\{ 1 - \frac{\beta - \beta'}{\max \{ \alpha, \beta - \gamma' \}}, \frac{\gamma' - \gamma}{1-\gamma} \right\} \right)^{-1}, c_0 \left(\frac{N}{\log N} \right)^{-\frac{1}{\gamma}} \right\},$$

with $C = N_{\max} \left\{ 1 - \frac{\beta - \beta'}{\max \{ \alpha, \beta - \gamma' \}}, \frac{\gamma' - \gamma}{1-\gamma} \right\}$ in (2). The additional $N^{-\frac{1}{\gamma}}$ term in (4) is needed for controlling the error of approximating C_{KK} via \hat{C}_{KK} (cf. Theorem D.3) which is standard in the Sobolev learning literature (Fischer & Steinwart, 2020; Talwai et al., 2022; Lu et al., 2022). The following theorem describes the convergence rate of our estimator defined by (3) and (4).

Theorem 4.1 Consider the estimator $\hat{\lambda}$ defined by (3) and (4). Suppose that Assumptions 2.1 to 2.5 hold, then there exists a universal constant C such that with probability $\geq 1 - e^{-\tau}$, we have

$$\| \hat{\lambda} - \lambda_0 \|_{\beta', \gamma'}^2 \leq C\tau^2 \left(\frac{N}{\log N} \right)^{-\frac{1}{\gamma}} \log^2 N.$$

Remark 4.1 Compared with Theorem 3.1, our upper bound is optimal up to logarithmic factors when $\alpha \leq \beta$. The optimal learning rate in the $\alpha > \beta$ regime is an outstanding problem for decades, even without the additional problem-dependent parameters γ, γ' (see e.g. the discussions following (Fischer & Steinwart, 2020, Theorem 2)). In this paper, we do not address this problem either.

4.2 Regularization via Bias Contour

We have showed that if we learn all the spectral components under certain variance contour and regularize all other component can achieve optimal rate. In this section, we introduce another scheme to design the optimal estimator via learning all the spectral component under a certain bias contour. Specifically, we consider deciding the regularization strength according to the spectral elements induce a certain level of bias i.e. the bias contour $\ell_{C', \text{bias}} = \left\{ (x, y) \in \mathbb{R}_+^2 : \frac{\beta - \beta'}{y^\gamma - x^\gamma} = C' \right\}$.

Figure 1: An illustration of our proposed regularization scheme. Left: the regularized least-squares estimator studied in previous works (Fischer & Steinwart, 2020; de Hoop et al., 2021; Talwai et al., 2022) which only regularizes on the input space. Right: our double regularization scheme via variance contour can achieve the optimal convergence rate in our setting.
The sequences are chosen in a staircase manner as plotted in Figure 3 (for formal definitions see...

Consider the estimator \hat{A} defined by (3) with λ_j defined above. Suppose that Assumptions 2.1 to 2.5 hold, then there exists a universal constant C, such that

$$
\left\| \hat{A} - A_0 \right\|_{\beta', \gamma'}^2 \leq C \tau^2 \left(\frac{N}{\log N} \right)^{\frac{\beta + \beta'}{2}} \log^2 N \text{ with probability } \geq 1 - e^{-\tau}.
$$

5 MultiLevel Kernel Operator Learning

In this section, we study a multilevel machine learning algorithm Ly et al. (2021); Li et al. (2021a); Boullé et al. (2022) but at each level we consider a cost-accuracy trade-off De Hoop et al. (2022) to control the variance at a proper scale. We show that the multilevel level algorithm can cover all the spectral component below the bias contour and achieve the optimal learning rate. Our idea is similar to the multilevel Monte Carlo Giles (2008; 2015), which reduces bias from multilevel algorithm. Our multilevel estimator differs from the DeepONet (Lu et al., 2019) and the PCA-Net (Bhattacharya et al., 2020) since we add different regularizations for each level. Our theory indicates that the multilevel approach outperforms previous ones and achieves the optimal learning rate.

The basic idea is to design a minimum number of machine learning estimators that cover all the spectral elements under the bias contour but do not exceed the variance contour at the same time. To achieve this, we choose sequences $\{x_i\}$ and $\{y_i\}$ for $1 \leq i \leq L_N$ where y_i denotes the i-th level and x_i controls the corresponding regularization via the regularization coefficient $\lambda_i^{(K)} = x_i^{-\frac{1}{2}}$. The sequences are chosen in a staircase manner as plotted in Figure 3 (for formal definitions see...
The following theorem shows that the estimator (5) can achieve the optimal convergence rate with the case
\[
\frac{\beta - \beta'}{\max\{\alpha, \beta + p\}} = \frac{\gamma - \gamma'}{1 - \gamma},
\]
where the bias and variance contours overlap and we set \(x_{n+1} = \frac{1}{2} x_n \).

Each rectangular represents a certain level of regularization.

Appendix C). The eigenbasis \(\{\rho_j^{\frac{1}{2}} f_j\} \) of the output space is divided into different levels by \(\{y_i\} \).

The main idea behind our multilevel method is that different levels of the output need to be learned with different regularization. Formally, we define our multilevel estimator as
\[
\hat{A}_{\text{ml}} = \sum_{i=0}^{L_N} \left(\sum_{y_{i-1} < y_i} \rho_j^{\frac{1}{2}} f_j \otimes \rho_j^{\frac{1}{2}} f_j \right) \hat{C}_{LK} \left(\hat{C}_{KK} + \lambda_i^{(K)} I \right)^{-1}.
\]

The following theorem shows that the estimator (5) can achieve the optimal convergence rate with \(L_N = \mathcal{O}(\ln N) \) when \(\frac{\beta - \beta'}{\max\{\alpha, \beta + p\}} \neq \frac{\gamma - \gamma'}{1 - \gamma} \). We also show that \(\mathcal{O}(\ln N) \) estimator is needed for the case when \(\frac{\beta - \beta'}{\max\{\alpha, \beta + p\}} = \frac{\gamma - \gamma'}{1 - \gamma} \) (Figure 3 Right) in Appendix C.

Theorem 5.1 Suppose that Assumptions 2.1 to 2.5 hold, then there exists a sequence \(\{y_i\}_{1 \leq i \leq L_N} \) with \(L_N = \mathcal{O}(\ln N) \) when \(\frac{\beta - \beta'}{\max\{\alpha, \beta + p\}} = \frac{\gamma - \gamma'}{1 - \gamma} \) and \(\mathcal{O}(\ln \ln N) \) otherwise, such that the estimator \(\hat{A}_{\text{ml}} \) satisfies
\[
\| \hat{A}_{\text{ml}} - A_0 \|_{\beta', \gamma'}^2 \leq C \tau^2 \left(\frac{N}{\log N} \right)^{\frac{\gamma - \gamma'}{1 - \gamma}} \min\left\{ \frac{\alpha}{\max\{\alpha, \beta + p\}}, \frac{\beta'}{\gamma'} \right\} \log^2 N \quad \text{with probability} \quad 1 - e^{-\tau},
\]
where \(C \) is a universal constant.

Remark 5.1 Our multilevel algorithm first apply the regression algorithm on low-frequency projections of the output samples with small regularization and then successively fine-tune the regression model on high-frequency projections of the output samples with stronger regularization, which matches the empirical use (Li et al., 2021a; Lye et al., 2021).

6 Conclusion and Discussion

We considered the sample complexity of learning an operator between two infinite-dimensional Sobolev kernel Hilbert spaces. We provided an information theoretical lower bound for this problem along with a multi-level machine learning algorithm. Our lower bound is determined by the harder rate of two polynomial rates: one is fully determined by the hardness of the input space, while the other is fully controlled by the hardness of the output space. The second rate is new to the literature. We explained our bound from the viewpoint of variance and bias counters in Remark 4.2 and Figure 2. The optimal estimator should learn all the spectral elements under the bias contour but learn no information above the variance contour. To meet this requirement, we combined the idea of multi-level Monte Carlo with kernel operator learning, using successive levels to fit higher frequency information while keeping the variance at the same scale to reduce the bias. Our paper is the first on the non-parametric statistical optimality for multi-level algorithms. We leave estimation from discretely observed functional covariates with noise as future work (Zhou et al., 2022).

References

Robert A Adams and John JF Fournier. *Sobolev spaces*. Elsevier, 2003.

Sergios Agapiou, Andrew M Stuart, and Yuan-Xiang Zhang. Bayesian posterior contraction rates for linear severely ill-posed inverse problems. *Journal of Inverse and Ill-posed Problems*, 22(3): 297–321, 2014.
Krishnakumar Balasubramanian, Hans-Georg Müller, and Bharath K Sriperumbudur. Unified rkhs methodology and analysis for functional linear and single-index models. arXiv preprint arXiv:2206.03975, 2022.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Jose Blanchet and Zhipeng Liu. Malliavin-based multilevel monte carlo estimators for densities of max-stable processes. In International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 75–97. Springer, 2016.

Jose H Blanchet and Peter W Glynn. Unbiased monte carlo for optimization and functions of expectations via multi-level randomization. In 2015 Winter Simulation Conference (WSC), pp. 3656–3667. IEEE, 2015.

Nicolas Boullé, Seick Kim, Tianyi Shi, and Alex Townsend. Learning green’s functions associated with time-dependent partial differential equations. Journal of Machine Learning Research, 23(218):1–34, 2022.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm. Foundations of Computational Mathematics, 7(3):331–368, 2007.

Guanting Chen, Alex Shkolnik, and Kay Giesecke. Unbiased simulation estimators for path integrals of diffusions. In 2020 Winter Simulation Conference (WSC), pp. 277–288. IEEE, 2020.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on Neural Networks, 6(4):911–917, 1995.

Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning nonlinear pdes with gaussian processes. Journal of Computational Physics, 447:110668, 2021.

Andreas Christmann and Ingo Steinwart. Support vector machines. 2008.

Christophe Crambes and André Mas. Asymptotics of prediction in functional linear regression with functional outputs. Bernoulli, pp. 2627–2651, 2013.

Maarten De Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M Stuart. The cost-accuracy trade-off in operator learning with neural networks. arXiv preprint arXiv:2203.13181, 2022.

Maarten V de Hoop, Nikola B Kovachki, Nicholas H Nelsen, and Andrew M Stuart. Convergence rates for learning linear operators from noisy data. arXiv preprint arXiv:2108.12515, 2021.

Ernesto De Vito, Lorenzo Rosasco, Andrea Caponnetto, Umberto De Giovannini, Francesca Odone, and Peter Bartlett. Learning from examples as an inverse problem. Journal of Machine Learning Research, 6(5), 2005.

Aurore Delaigle and Peter Hall. Defining probability density for a distribution of random functions. The Annals of Statistics, 38(2):1171–1193, 2010.

Nishanth Dikkala, Greg Lewis, Lester Mackey, and Vasilis Syrgkanis. Minimax estimation of conditional moment models. Advances in Neural Information Processing Systems, 33:12248–12262, 2020.

Jordi Feliu-Faba, Yuwei Fan, and Lexing Ying. Meta-learning pseudo-differential operators with deep neural networks. Journal of Computational Physics, 408:109309, 2020.

Simon Fischer and Ingo Steinwart. Sobolev norm learning rates for regularized least-squares algorithms. J. Mach. Learn. Res., 21:205–1, 2020.

Michael B Giles. Multilevel monte carlo path simulation. Operations research, 56(3):607–617, 2008.

Michael B Giles. Multilevel monte carlo methods. Acta numerica, 24:259–328, 2015.
Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. *Advances in Neural Information Processing Systems*, 32, 2019.

Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential equations using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510, 2018.

Siegfried Hörmann and Łukasz Kidziński. A note on estimation in hilbertian linear models. *Scandinavian Journal of Statistics*, 42(1):43–62, 2015.

Xiang Huang, Zhanhong Ye, Hongsheng Liu, Beiji Shi, Zidong Wang, Kang Yang, Yang Li, Bingya Weng, Min Wang, Haotian Chu, et al. Meta-auto-decoder for solving parametric partial differential equations. *arXiv preprint arXiv:2111.08823*, 2021.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving for high-dimensional committor functions using artificial neural networks. *Research in the Mathematical Sciences*, 6(1):1–13, 2019.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial neural networks. *European Journal of Applied Mathematics*, 32(3):421–435, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. *arXiv preprint arXiv:2108.08481*, 2021.

Zhi-Zhou Li, Yi-Chen Tao, Xue-Dong Wang, and Liang-Sheng Liao. Organic nanophotonics: self-assembled single-crystalline homo-/heterostructures for optical waveguides. *ACS Photonics*, 5(9):3763–3771, 2018.

Zhizhou Li, Yuwei Fan, and Lexing Ying. Multilevel fine-tuning: Closing generalization gaps in approximation of solution maps under a limited budget for training data. *Multiscale Modeling & Simulation*, 19(1):344–373, 2021a.

Zhizhou Li, Chun Yan Gao, Dingkai Su, Chuancheng Jia, and Xuefeng Guo. Principles of molecular machines at the single-molecule scale. *ACS Materials Letters*, 3(10):1484–1502, 2021b.

Zhu Li, Dimitri Meunier, Mattes Mollenhauer, and Arthur Gretton. Optimal rates for regularized conditional mean embedding learning. *arXiv preprint arXiv:2208.01711*, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. *arXiv preprint arXiv:2010.08895*, 2020.

Lin Lin, Jianfeng Lu, and Lexing Ying. Fast construction of hierarchical matrix representation from matrix–vector multiplication. *Journal of Computational Physics*, 230(10):4071–4087, 2011.

Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, and Wenjing Liao. Deep nonparametric estimation of operators between infinite dimensional spaces. *arXiv preprint arXiv:2201.00217*, 2022.

Zejian Liu and Meng Li. On the estimation of derivatives using plug-in krr estimators. *arXiv preprint arXiv:2006.01350*, 2020.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In *International Conference on Machine Learning*, pp. 3208–3216. PMLR, 2018.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-symbolic hybrid deep network. *Journal of Computational Physics*, 399:108925, 2019.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. *arXiv preprint arXiv:1910.03193*, 2019.

Yiping Lu, Haoxuan Chen, Jianfeng Lu, Lexing Ying, and Jose Blanchet. Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality. *arXiv preprint arXiv:2110.06897*, 2021.
Yiping Lu, Jose Blanchet, and Lexing Ying. Sobolev acceleration and statistical optimality for learning elliptic equations via gradient descent. *arXiv preprint arXiv:2205.07331*, 2022.

Kjetil O Lye, Siddhartha Mishra, and Roberto Molinaro. A multi-level procedure for enhancing accuracy of machine learning algorithms. *European Journal of Applied Mathematics*, 32(3):436–469, 2021.

André Mas. Lower bound in regression for functional data by representation of small ball probabilities. *Electronic Journal of Statistics*, 6:1745–1778, 2012.

Shahar Mendelson and Joseph Neeman. Regularization in kernel learning. *The Annals of Statistics*, 38(1):526–565, 2010.

Mattes Mollenhauer and Péter Koltai. Nonparametric approximation of conditional expectation operators. *arXiv preprint arXiv:2012.12917*, 2020.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, et al. Kernel mean embedding of distributions: A review and beyond. *Foundations and Trends® in Machine Learning*, 10(1-2):1–141, 2017.

Krikamol Muandet, Arash Mehrjou, Si Kai Lee, and Anant Raj. Dual instrumental variable regression. *Advances in Neural Information Processing Systems*, 33:2710–2721, 2020.

Jennifer L Mueller and Samuli Siltanen. Linear and nonlinear inverse problems with practical applications. *SIAM*, 2012.

Richard Nickl and Sven Wang. On polynomial-time computation of high-dimensional posterior measures by langevin-type algorithms. *arXiv preprint arXiv:2009.05298*, 2020.

Richard Nickl, Sara van de Geer, and Sven Wang. Convergence rates for penalized least squares estimators in pde constrained regression problems. *SIAM/ASA Journal on Uncertainty Quantification*, 8(1):374–413, 2020.

Junhyung Park and Krikamol Muandet. A measure-theoretic approach to kernel conditional mean embeddings. *Advances in neural information processing systems*, 33:21247–21259, 2020.

Teresa Portone and Robert D Moser. Bayesian inference of an uncertain generalized diffusion operator. *SIAM/ASA Journal on Uncertainty Quantification*, 10(1):151–178, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational physics*, 378:686–707, 2019.

Matthew Reimherr. Functional regression with repeated eigenvalues. *Statistics & Probability Letters*, 107:62–70, 2015.

Chang-han Rhee and Peter W Glynn. Unbiased estimation with square root convergence for sde models. *Operations Research*, 63(5):1026–1043, 2015.

Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On learning with integral operators. *Journal of Machine Learning Research*, 11(2), 2010.

Florian Schäfer and Houman Owhadi. Sparse recovery of elliptic solvers from matrix-vector products. *arXiv preprint arXiv:2110.05351*, 2021.

Ingmar Schuster, Mattes Mollenhauer, Stefan Klus, and Krikamol Muandet. Kernel conditional density operators. In *International Conference on Artificial Intelligence and Statistics*, pp. 993–1004. PMLR, 2020.

Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. *Advances in Neural Information Processing Systems*, 32, 2019.

Rahul Singh, Liyuan Xu, and Arthur Gretton. Kernel methods for causal functions: Dose, heterogeneous, and incremental response curves. *arXiv preprint arXiv:2010.04855*, 2020.
Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential equations. *Journal of computational physics*, 375:1339–1364, 2018.

Steve Smale and Ding-Xuan Zhou. Learning theory estimates via integral operators and their approximations. *Constructive approximation*, 26(2):153–172, 2007.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of conditional distributions with applications to dynamical systems. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pp. 961–968, 2009.

Le Song, Kenji Fukumizu, and Arthur Gretton. Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models. *IEEE Signal Processing Magazine*, 30(4):98–111, 2013.

Ingo Steinwart, Don R Hush, Clint Scovel, et al. Optimal rates for regularized least squares regression. In *COLT*, pp. 79–93, 2009.

George Stepaniants. Learning partial differential equations in reproducing kernel hilbert spaces. *arXiv preprint arXiv:2108.11580*, 2021.

Prem Talwai, Ali Shameli, and David Simchi-Levi. Sobolev norm learning rates for conditional mean embeddings. In *International Conference on Artificial Intelligence and Statistics*, pp. 10422–10447. PMLR, 2022.

Alexandre B Tsybakov. *Introduction to nonparametric estimation*. Springer Science & Business Media, 2008.

Daren Wang, Zifeng Zhao, Yi Yu, and Rebecca Willett. Functional linear regression with mixed predictors. *arXiv preprint arXiv:2012.00460*, 2020a.

Lingxiao Wang, Zhuoran Yang, and Zhaoran Wang. Breaking the curse of many agents: Provable mean embedding q-iteration for mean-field reinforcement learning. In *International Conference on Machine Learning*, pp. 10092–10103. PMLR, 2020b.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. *Communications in Mathematics and Statistics*, 6(1):1–12, 2018.

Hang Zhou, Fang Yao, and Huiming Zhang. Functional linear regression for discretely observed data: From ideal to reality.

Hang Zhou, Dongyi Wei, and Fang Yao. Theory of functional principal components analysis for discretely observed data. *arXiv preprint arXiv:2209.08768*, 2022.
A PROOF OF THE LOWER BOUND

In this section, we follow the lower bound proof in Fischer & Steinwart (2020) to give a lower bound of the convergence rate in our operator learning setting.

A.1 PRELIMINARIES ON TOOLS FOR LOWER BOUNDS

In this section, we repeat the standard tools we use to establish the lower bound. The main tool we use is the Fano’s inequality and the Varshamov-Gilber Lemma.

Lemma A.1 (Fano’s methods) Assume that \(\mathcal{V} \) is a uniform random variable over set \(\mathcal{V} \), then for any Markov chain \(V \rightarrow X \rightarrow \mathcal{V} \), we always have
\[
\mathbb{P}(\mathcal{V} \neq \mathcal{V}) \geq 1 - \frac{I(V;X) + \log 2}{\log(|\mathcal{V}|)}
\]

In our proof we will use a version from Fischer & Steinwart (2020).

Lemma A.2 (Fischer & Steinwart, 2020, Theorem 20) Let \(M \geq 2, (\Omega, \mathcal{A}) \) be a measurable space, \(P_0, P_1, \ldots, P_M \) be probability measures on \((\Omega, \mathcal{A}) \) with \(P_j \ll P_0 \) for all \(j = 1, \ldots, M \), and \(0 < \alpha_\star \ll 1 \) with
\[
\frac{1}{M} \sum_{j=1}^{M} KL(P_j||P_0) \ll \alpha_\star.
\]

Then, for all measurable functions \(\Psi : \Omega \rightarrow \{0,1,\ldots,M\} \), the following bound is satisfied
\[
\max_{j=0,1,\ldots,M} P_j(\omega \in \Omega : \Psi(\omega) \neq j) \geq \frac{\sqrt{M}}{1 + \sqrt{M}} \left(1 - \frac{3\alpha_\star}{\log(M)} - \frac{1}{2\log(M)} \right).
\]

Lemma A.3 (Varshamov-Gilbert Lemma, Tsybakov (2008) Theorem 2.9) Let \(D \geq 8 \). There exists a subset \(\mathcal{V} = \{\tau(0), \ldots, \tau(2^D/8)\} \) of \(D \)-dimensional hypercube \(\mathcal{H}^D = \{0,1\}^D \) such that \(\tau(0) = (0,0,\ldots,0) \) and the \(\ell_1 \) distance between every two elements is larger than \(D/8 \)
\[
\sum_{i=1}^{D} \|\tau(j) - \tau(k)\|_{\ell_1} \geq \frac{D}{8}, \text{ for all } 0 \leq j, k \leq 2^D/8
\]

A.2 PROOF OF THE LOWER BOUND

To prove our lower bound, we construct a sequence of linear operators as follows:
\[
\mathcal{A}_\omega = \sqrt{\frac{32\varepsilon}{m_1K}} \sum_{i=1}^{m_1} \sum_{j=1}^{K} \omega_{ij} \mu_{i+m_1}^{\beta/2} \rho_{j+m_2}^{1-\gamma/2} f_{j+m_2} \otimes e_{i+m_1}, \quad \omega_{ij} \in \{0,1\}
\]

where \(m_1 \) and \(m_2 \) are hyper-parameters (scale as poly(\(N \)) and will be selected later) and \(K \) is a constant that will be specified afterwards. It’s easy to check that
\[
\|\mathcal{A}_\omega - \mathcal{A}_{\omega'}\|^2_{\beta',\gamma} \leq \frac{32\varepsilon}{m_1K} \sum_{i=1}^{m_1} \sum_{j=1}^{K} (\omega_{ij} - \omega'_{ij})^2
\]

By Gilbert-Varshamov Lemma it is possible to select \(M_\varepsilon \geq 2^{m_1K/8} \) binary strings
\[
\omega^{(1)}, \omega^{(2)}, \ldots, \omega^{(M_\varepsilon)} \in \{0,1\}^{m_1K}
\]
such that \(\|\omega^{(i)} - \omega^{(j)}\|_2^2 \geq 4\varepsilon \). Let \(\Omega \) be the collection of this strings.

We now select the hyper-parameters to satisfies the assumptions made in Section 2. First we have
\[
\|\mathcal{A}_\omega\|^2_{\beta,\gamma} \leq \frac{32\varepsilon}{m_1K} \sum_{i=1}^{m_1} \sum_{j=1}^{K} \mu_{i+m_1}^{-\beta} \rho_{j+m_2}^{-(1-\gamma)} \lesssim \varepsilon (2m_1)^{\frac{\beta}{p} + \frac{\gamma}{p}} (2m_2)^{\frac{\gamma'}{p} + \frac{\gamma}{p}}
\]

Published as a conference paper at ICLR 2023
where the last step follows from Assumption 2.1. Similarly, we have \(\|A_\omega\|_{\alpha,1} \lesssim \varepsilon (2m_1)^{\frac{\alpha'}{r}} (2m_2)^{\frac{\gamma'}{r}} \). To the assumptions made in Section 2, we should make

\[
(2m_1)^{\frac{\max(\alpha,\beta)-\alpha'}{r}} (2m_2)^{\frac{\gamma'}{r}} \lesssim \varepsilon^{-1} \tag{6}
\]

be satisfied. To be specific, with the previous selection of hyper-parameters, we can have \(\|A_\omega\|_{\beta,\gamma} = O(1) \) and

\[
\sup_{g \in \text{range}(A_\omega)} \|g\|_{\mathcal{H}_L} \leq \sup_f \|A_\omega\|_{\alpha_1} \cdot \left\| \left(P_{1,\alpha,P_{\mathcal{K}}} \right)^{\dagger} f \right\|_{\mathcal{H}_{\mathcal{K}}} < +\infty
\]

where the last step follows from our assumption on the input distribution Assumption 2.2. This verifies that Assumptions 2.3 and 2.5 hold for \(A_\omega, \forall \omega \in \Omega \).

We now construct the hypothesis (probability distributions) as follows: for \(\forall \omega \in \{0,1\}^{m_1} \), define

\[
P_\omega(df, dg) = d\mathcal{N}(C_\omega f, \Sigma) \cdot dP_\mathcal{K}(f)
\]

where the covariance operator \(\Sigma = \frac{\sigma^2}{K} \sum_{j=1}^K \rho_{j+m_2} f_{j+m_2} \otimes f_{j+m_2} \) for some constant \(\sigma > 0 \).

It’s then easy to see that \(\text{tr}(\Sigma) = \sigma^2 \), which satisfies Assumption 2.4. Note that the range of \(A_\omega \) is \(\text{span}(f_{m_2}) \) and \(\Sigma \) is non-degenerate on this subspace. As a result, we can view \(P_\omega, \omega \in \Omega \) as distributions on \(\mathcal{H}_{\mathcal{K}} \times \text{span} (f_{j+m_2} : 1 \leq j \leq K) \), and we have for \(\omega, \omega' \in \Omega \)

\[
KL(P_\omega || P_{\omega'}) = E_{f \sim P_{\mathcal{K}}} [KL(P_\omega(df | f) || P_{\omega'}(df | f))] = E_{f \sim P_{\mathcal{K}}} [KL(\mathcal{N}(C_\omega f, \Sigma) || \mathcal{N}(C_{\omega'} f, \Sigma))]
\]

\[
\leq \sigma^{-2} K E_{f \sim P_{\mathcal{K}}} \langle (A_\omega - A_{\omega'}) f, \Sigma'(A_\omega - A_{\omega'}) f \rangle \leq \sigma^{-2} K E_{f \sim P_{\mathcal{K}}} \langle (A_\omega - A_{\omega'}) f, (A_\omega - A_{\omega'}) f \rangle
\]

\[
= \frac{32 \varepsilon}{m_1 \sigma^2} \sum_{j=1}^K \rho_{j+m_2} \langle (A_\omega - A_{\omega'}) f, (A_\omega - A_{\omega'}) f \rangle^2 \leq \frac{\varepsilon \sigma^{-2} m_1^{\frac{\beta'}{r}} m_2^{\frac{1-\gamma'}{r}}}{\frac{\beta'}{r} + \frac{1-\gamma'}{r}}
\]

where the last step follows from \(E_{P_{\mathcal{K}}} u \otimes u = C_{KK} = \sum_{i=1}^{\infty} m_i \mu_i^2 e_i \otimes e_i \) and recall that \(K \) is a constant. Hence we deduce that

\[
\frac{1}{M_\varepsilon} \sum_{\omega \in \Omega} KL(P_\omega^0 || P_\omega^m) \lesssim \sigma^{-2} m_1^{\beta'} m_2^{\frac{1-\gamma'}{r}} =: \alpha^*
\]

Applying Lemma A.2, we find that when

\[
\alpha^* \lesssim \log M_\varepsilon \Leftrightarrow \varepsilon \lesssim n^{-1} m_1^{\frac{\beta'}{r}} m_2^{\frac{1-\gamma'}{r}},
\]

there exists a hypothesis \(P_{\omega_0} \) such that for any estimator \(\hat{C}_{\omega_0} \),

\[
\left\{ \| \hat{A}_{\omega_0} - A_{\omega_0} \|_{\beta',\gamma'} \geq \varepsilon \right\} \supset \left\{ \omega_0 \neq \arg\min_{\omega \in \Omega} \| A_\omega - A_{\omega_0} \|_{\beta',\gamma'} \right\}
\]

holds with high probability.

Finally, we need to choose optimal \(m_1 \) and \(m_2 \) under the constraint (6). It turns out that either \(m_1 = 1 \) or \(m_2 = 1 \), and the resulting lower bound is

\[
\| \hat{A} - A \|_{\beta',\gamma'} \gtrsim n^{\min\left\{ \frac{\max(\alpha,\beta)-\alpha'}{r}, \frac{\gamma'-\gamma}{1+\gamma} \right\}}.
\]
In the following, we separately bound the bias term and the variance term. We first assume Lemma B.1
\[\|A\|_{\beta'} = \max \{1 - \beta - \beta', 1 - \gamma'\} \] are regularization coefficients that we impose on different dimensions of the output space. In this section, we consider the following two ways to select regularization coefficients in Section 4:

- We regularize all spectral component below certain variance contour, i.e. we set regularization strength \(\lambda_j = \max \left\{ \left(j \frac{1 - \gamma'}{\gamma'} \right)^{\max \left\{ 1 - \frac{\beta - \beta'}{\max(\beta, \beta')}, 1 - \gamma' \right\}} \right\} \), \(c_0 \left(\frac{N}{\log N} \right)^{-\frac{1}{2}} \) (4).

- We regularize all spectral component below certain bias contour, i.e. we set regularization strength \(\lambda_j = \max \left\{ \left(j \frac{1 - \gamma}{\gamma} \right)^{\min \left\{ 1 - \frac{\beta - \beta'}{\max(\beta, \beta')}, 1 - \gamma' \right\}} \right\} \), \(c_0 \left(\frac{N}{\log N} \right)^{-\frac{1}{2}} \) (19).

To obtain the upper bound for our estimator, we decompose the learning error \(E(\hat{A}) = \|\hat{A} - A_0\|_{\beta', \gamma'} \) in to bias and variance via

\[
E(A) \leq \underbrace{\|\hat{A} - A_\lambda\|_{\beta', \gamma'}}_{\text{variance term}} + \|A_\lambda - A_0\|_{\beta', \gamma'},
\]

where

\[
A_\lambda = \sum_{j=1}^{y_N} \left(\rho_j^\frac{1}{2} f_j \otimes \rho_j^\frac{1}{2} f_j \right) C_{KL} (C_{KK} + \lambda_j I)^{-1}.
\]

B.1 Regularization via Variance Counter

In the following, we separately bound the bias term and the variance term. We first assume \(\alpha \leq \beta + p \) in Appendix B.1.1 and Appendix B.1.2, then the case \(\alpha > \beta + p \) is treated in Appendix B.1.3. Finally in Appendix B.2, we establish the same convergence rate for regularization via bias contour.

B.1.1 Bias

Lemma B.1 \(\|A_0 - A_\lambda\|_{\beta', \gamma'}^2 \leq N^{-\min\left\{ \frac{\beta + \beta'}{\beta + p}, \frac{\gamma}{\gamma'} \right\}} \).

Proof sketch: Since \(\|A_0\|_{\beta, \gamma} \leq B \), we can write \(A_0 := \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{ij} \mu_i^{\frac{1}{2}} \rho_j^{1 - \frac{1}{2}} f_j \otimes e_i \) where the coefficient matrix \(A_0 = (a_{ij})_{1 \leq i, j \leq +\infty} \) satisfies \(\|A_0\|_{F}^2 \leq B^2 \). The definition (8) implies that for \(1 \leq j \leq y_N \) and \(i \geq 1 \) we have

\[
\left\langle \rho_j^{\frac{1}{2}} f_j, A_\lambda \mu_i^{\frac{1}{2}} e_i \right\rangle = \left\langle \rho_j^{\frac{1}{2}} f_j, C_{KL} (C_{KK} + \lambda_j I)^{-1} \mu_i^{\frac{1}{2}} e_i \right\rangle
\]

\[
= \left\langle \rho_j^{\frac{1}{2}} f_j, A_0 C_{KL} (C_{KK} + \lambda_j I)^{-1} \mu_i^{\frac{1}{2}} e_i \right\rangle = \frac{\mu_i^{\frac{1}{2} + \frac{\beta}{2}}}{\mu_i + \lambda_j} \rho_j^{1 - \frac{1}{2}} a_{ij}.
\]
The bias term can be bounded as follows:

\[
\|A_0 - A_\lambda\|^2_{\beta', \gamma'} = \sum_{j,i=1}^{+\infty} \left(\int_{\mathbb{R}^d} \frac{1}{\gamma'} f_j(x) \mathcal{C}_K^{-\beta'} (A_0 - A_\lambda) \mathcal{C}_K^{1-\beta'} \mu_1 \frac{1}{\gamma'} e_i \right)^2
\]

\[
= \sum_{j=1}^{y_N} \sum_{i=1}^{+\infty} \mu_i^{\beta-\beta'} \rho_j \lambda_j \rho_j' \gamma' \left(\frac{\lambda_j^2}{(\mu_i + \lambda_j)^2} a_{ij} \right)
\]

\[
\leq \sum_{j=1}^{y_N} \rho_j \gamma' \max_{i \neq 1} \left(\frac{\lambda_j^2}{(\mu_i + \lambda_j)^2} \right) \cdot \sum_{i=1}^{+\infty} a_{ij}^2
\]

\[
\leq \sum_{j=1}^{y_N} j^{-\frac{\gamma'}{2}} \lambda_j^{-\beta-\beta'} \sum_{i=1}^{+\infty} a_{ij}^2 \leq B^2 \max_{1 \leq j \leq y_N} j^{-\frac{\gamma'}{2}} \lambda_j^{-\beta-\beta'} .
\]

We now prove that

\[
j^{\frac{\gamma'}{2}} \lambda_j^{\beta-\beta'} \geq N^{\min \left\{ \frac{\beta_p}{\beta + p}, \frac{1}{\gamma'} \right\}} , \quad \forall 1 \leq j \leq y_N .
\]

Case 1. If \(\lambda_j = c_0 \left(\frac{N}{\log N} \right)^{\frac{1}{\gamma}} \), then

\[
j^{\frac{\gamma'}{2}} \lambda_j^{\beta-\beta'} \geq \lambda_j^{\beta-\beta'} \geq N^{\frac{\beta-\beta'}{\beta + p}} \geq N^{\frac{\beta-\beta'}{\beta + p}}
\]

where we use \(\alpha \leq \beta + p \) in the final step.

Case 2. If \(\lambda_j = \left(N^{\max \left\{ \frac{\gamma}{\beta + p}, \frac{1}{\gamma'} \right\}} j^{-\frac{1}{\gamma'}} \right)^{\frac{1}{\beta + p}} \), we need to consider two sub-cases:

- If \(\frac{\beta_p + p}{\beta + p} > \frac{1-\gamma'}{1-\gamma} \), then we have \(\lambda_j = \left(N^{\frac{\gamma}{\beta + p}} j^{-\frac{1}{\gamma'}} \right)^{\frac{1}{\beta + p}} \) and thus

\[
j^{\frac{\gamma'}{2}} \lambda_j^{\beta-\beta'} = j^{\frac{\gamma'}{2}} \left(N^{\frac{\gamma}{\beta + p}} j^{-\frac{1}{\gamma'}} \right)^{\frac{\beta-\beta'}{\beta + p}} = N^{\frac{\beta-\beta'}{\beta + p}} j^{\frac{1}{\gamma'}} \left(\frac{\gamma'}{\beta + p} \right) \geq N^{\frac{\beta-\beta'}{\beta + p}} .
\]

- If \(\frac{\beta_p + p}{\beta + p} < \frac{1-\gamma'}{1-\gamma} \), then similarly we have \(\lambda_j = \left(N^{\frac{1-\gamma'}{\beta + p}} j^{-\frac{1}{\gamma'}} \right)^{\frac{1}{\beta + p}} \) and

\[
j^{\frac{\gamma'}{2}} \lambda_j^{\beta-\beta'} = j^{\frac{\gamma'}{2}} \left(N^{\frac{1-\gamma'}{\beta + p}} j^{-\frac{1}{\gamma'}} \right)^{\frac{\beta-\beta'}{\beta + p}} \geq j^{\frac{\gamma'}{2}} \left(N^{\frac{1-\gamma'}{\beta + p}} j^{-\frac{1}{\gamma'}} \right)^{\frac{\beta-\beta'}{\beta + p}} = N^{\frac{\beta-\beta'}{\beta + p}} .
\]

Hence, in all cases (10) holds and we have that

\[
\|A_0 - A_\lambda\|^2_{\beta', \gamma'} \lesssim N^{-\min \left\{ \frac{\beta_p}{\beta + p}, \frac{1}{\gamma'} \right\}} .
\]
B.1.2 Variance

The variance term can be rewritten in the following way:

\[
\mathcal{V} = \left\| \hat{A} - A_\lambda \right\|_{\beta', \gamma'}^2 = \left\| C_{KK}^{\frac{1}{2} \gamma'} \left(\hat{A} - A_\lambda \right) C_{KK}^{\frac{1}{2} \beta'} \right\|_{\text{HS}}^2
\]

\[
= \sum_{i,j=1}^{+\infty} \left\langle \rho_j^{\frac{1}{2}} f_j, C_{KK}^{\frac{1}{2} \gamma'} \left(\hat{A} - A_\lambda \right) C_{KK}^{\frac{1}{2} \beta'} \mu_i \frac{1}{2} e_i \right\rangle^2
\]

\[
= \sum_{j=1}^{n_N} \rho_j^{-(1-\gamma')} \sum_{i=1}^{+\infty} \left\langle \rho_j^{\frac{1}{2}} f_j, \left[\hat{C}_{KL} \left(\hat{C}_{KK} + \lambda_j I \right)^{-1} - C_{KL} \left(C_{KK} + \lambda_j I \right)^{-1} \right] \mu_i^{1-\beta'} e_i \right\rangle^2
\]

\[
= \sum_{j=1}^{n_N} \rho_j^{-(1-\gamma')} \sum_{i=1}^{+\infty} \left(C_{KK} + \lambda_j I \right)^{-\frac{1}{2}} \left(\hat{C}_{KL} - \left(\hat{C}_{KK} + \lambda_j I \right) \left(C_{KK} + \lambda_j I \right)^{-1} C_{KL} \right) \rho_j^{\frac{1}{2}} f_j,
\]

\[
= \sum_{j=1}^{n_N} \rho_j^{-(1-\gamma')} \left(G_j \rho_j^{\frac{1}{2}} f_j, G_j \left(\sum_{i=1}^{+\infty} \frac{\mu_i^{2-\beta'}}{\mu_i + \lambda_j} e_i \otimes e_i \right) G_j \right) \rho_j^{\frac{1}{2}} f_j
\]

\[
\leq \sum_{j=1}^{n_N} \rho_j^{-(1-\gamma')} \left\| G_j \right\|^2 \left\| \rho_j^{\frac{1}{2}} f_j \right\|^2
\]

In (12), (12a) uses the definition of the Hilbert-Schmidt norm; (12b) follows from the definition of \(\hat{A} \) (cf.(3)) and the fact that for any \(j \geq y_N \), we have \(\left\langle \rho_j^{\frac{1}{2}} f_j, \left(\hat{A} - A_\lambda \right) \mu_i^2 e_i \right\rangle = 0 \); (12c) is obtained from re-arranging and (12d) follows from \(\left\| \sum_{i=1}^{+\infty} \frac{\mu_i^{2-\beta'}}{\mu_i + \lambda_j} e_i \otimes e_i \right\| = \max_{i \geq 1} \frac{\mu_i^{2-\beta'}}{\mu_i + \lambda_j} \lesssim \lambda_j^{-\beta''} \) and \(\rho_j \lesssim j^{-\frac{1}{2}} \).

Note that

\[
U_j = \left(C_{KK} + \lambda_j I \right)^{-\frac{1}{2}} \left[\hat{C}_{KL} - C_{KL} - \left(\hat{C}_{KK} - C_{KK} \right) \left(C_{KK} + \lambda_j I \right)^{-1} C_{KL} \right]
\]

\[
= \frac{1}{N} \sum_{k=1}^{N} \left(C_{KK} + \lambda_j I \right)^{-\frac{1}{2}} \left[u_k \otimes v_k - \mathbb{E}_{P_{KL}} u_k \otimes A_0 u_k - (u_k \otimes u_k - \mathbb{E}_{P_{KL}} u_k \otimes u_k) \left(C_{KK} + \lambda_j I \right)^{-1} C_{KK} A_0 \right]
\]

\[
= \frac{1}{N} \sum_{k=1}^{N} \left(C_{KK} + \lambda_j I \right)^{-\frac{1}{2}} (u_k \otimes (v_k - A_0 u_k))
\]

\[
\leq U^{1}_j
\]

\[
\leq U^{1}_j = \lambda_j^{-\frac{1}{2}} \sum_{k=1}^{N} \left(C_{KK} + \lambda_j I \right)^{-\frac{1}{2}} \left[u_k \otimes A_0 (C_{KK} + \lambda_j I)^{-1} u_k - \mathbb{E}_{P_{KL}} u_k \otimes A_0 (C_{KK} + \lambda_j I)^{-1} u_k \right]
\]

The \(U^{1}_j \) term is the variance of observational noise and \(U^{2}_j \) term is the variance of regularized bias. Thus the \(U^{1}_j \) term is the dominating term. Plugging the above decomposition into (12), we deduce
that $V \leq 2 (V_1 + V_2)$ where

$$V_1 \lesssim \max_{1 \leq j \leq n_N} \|G_j\|^2 \sum_{j=1}^{n_N} \frac{1}{\lambda_j^{-\beta'}} \left\| \frac{1}{N} \sum_{k=1}^{N} \left[\langle v_k - A_0 u_k, \rho_j^{\frac{1}{2}} f_j \rangle (C_{KK} + \lambda_j I)^{-\frac{1}{2}} u_k \right] \right\|^2 \eqqcolon V_{i,j}^2,$$

$$V_2 \lesssim \max_{1 \leq j \leq n_N} \|G_j\|^2 \sum_{j=1}^{n_N} \frac{1}{\lambda_j^{-\beta'}} \left\| \left(\hat{E} - \mathbb{E} \right) \left[\langle A_0 (C_{KK} + \lambda_j I)^{-1} u_k, \rho_j^{\frac{1}{2}} f_j \rangle (C_{KK} + \lambda_j I)^{-\frac{1}{2}} u_k \right] \right\|^2 \eqqcolon V_{i,j}^2,$$

where $\hat{E}[X] = \frac{1}{N} \sum_{k=1}^{N} X_k$ denotes the empirical mean. Define the event

$$E_{1,j} = \left\{ G_j = \left[\left[P_{ij} (C_{KK}) \right]^{\frac{1}{2}} \left[P_{ij} (\hat{C}_{KK}) \right]^{\frac{1}{2}} \right] \right\} \leq 2 \sqrt{a_{1,j}} \right\}.$$

Recall that $m_N \leq c_0 \left(\frac{N}{\log N} \right)^{\frac{p}{2}}$, by Theorem D.3, we know that $E_{1,j}$ holds with probability $\geq 1 - 2 e^{-\alpha_1}$. As a result $E_{1} = \cap_{j=1}^{n_N} E_{1,j}$ holds with probability $\geq 1 - 2 m_N e^{-\alpha_1}$. We assume event E_{1} holds in all the following proof.

Bounding V_1. Let

$$X_{j,k} = j^{\frac{1}{2} - \beta'} \lambda_j^{-\frac{1}{2}} \langle v_k - A_0 u_k, \rho_j^{\frac{1}{2}} f_j \rangle (C_{KK} + \lambda_j I)^{-\frac{1}{2}} u_k \in \mathcal{H}_K$$

and $X_k = (X_{j,k} : 1 \leq j \leq n_N) \in \mathcal{H}_K^{n_N}$. Then we have $V_1 \lesssim \left\| \frac{1}{N} \sum_{k=1}^{n_N} X_k \right\|^2$ where the norm here defined for $\mathcal{H}_K^{n_N}$ is induced by $\langle a, b \rangle = \sum_{i=1}^{n_N} \langle a_i, b_i \rangle_{\mathcal{H}_K}$. Note that $X_k, k = 1, 2, \cdots, N$ are i.i.d. random variables with mean zero, and

$$\mathbb{E} \|X_i\|^{2t} = \mathbb{E}_{P_{KL}} \left[\left(\sum_{j=1}^{n_N} \|X_{j,k}\|^2 \right)^t \right]
$$

$$= \mathbb{E}_{P_{KL}} \left[\left(\sum_{j=1}^{n_N} j^{\frac{1}{2} - \beta'} \lambda_j^{-\frac{1}{2}} \langle v_k - A_0 u_k, \rho_j^{\frac{1}{2}} f_j \rangle (C_{KK} + \lambda_j I)^{-\frac{1}{2}} u \right)^2 \right]^{\frac{t-1}{2}}
$$

$$\leq \max_{1 \leq j \leq n_N} \sup_{u \in \text{supp}(P_{KL})} \left(j^{\frac{1}{2} - \beta'} \lambda_j^{-\frac{1}{2}} \right) \left(\sum_{j=1}^{n_N} \frac{1}{\lambda_j^{-\beta'}} \left\| (C_{KK} + \lambda_j I)^{-\frac{1}{2}} u \right\|^2 \right)^{t-1}
$$

$$\leq \left(\mathbb{E}_{(u,v) \sim P_{KL}} \left[\|v - A_0 u\|^{2t-2} \left(\sum_{j=1}^{n_N} j^{\frac{1}{2} - \beta'} \lambda_j^{-\beta'} \left\| (v - A_0 u, \rho_j^{\frac{1}{2}} f_j) \right\|^2 \left((C_{KK} + \lambda_j I)^{-\frac{1}{2}} u \right) \right)^{t-1} \right] \right).$$

By Lemma D.2 we have

$$G_1 \lesssim j^{\frac{1}{2} - \beta'} \lambda_j^{-(\beta' + \alpha)}.$$

For G_2, note that for fixed u, Assumption 2.4 implies that

$$\mathbb{E}_{v \mid u} \left[\|v - A_0 u\|^{2t-2} \left(\sum_{j=1}^{n_N} j^{\frac{1}{2} - \beta'} \lambda_j^{-\beta'} \left\| (v - A_0 u, \rho_j^{\frac{1}{2}} f_j) \right\|^2 \left((C_{KK} + \lambda_j I)^{-\frac{1}{2}} u \right) \right) \right]
$$

$$\leq \frac{1}{2} (2t)! R^{2t-2} \sum_{j=1}^{n_N} \sigma_j^{2} j^{\frac{1}{2} - \beta'} \lambda_j^{-(\beta' + \alpha)} \left((C_{KK} + \lambda_j I)^{-\frac{1}{2}} u \right)^2.$$
where \(\sigma_j^2 = \langle \rho_j^2 f_j, V \rho_j^2 f_j \rangle \). As a result, we have

\[
G_2 \leq \mathbb{E}_{P_K} \left[\frac{1}{2}(2t)!R^{2t-2} \sum_{j=1}^{N} \sigma_j^2 j^{\frac{j-1}{2}} \| (C_{KK} + \lambda_j I)^{-1/2} u \|_2^2 \right] \leq \frac{1}{2}(2t)!R^{2t-2} \sigma^2 \max_{1 \leq j \leq n_N} j^{\frac{j-1}{2}} \lambda_j^{-(p+\beta')},
\]

where in the second step we use \(\sum_{j=1}^{+\infty} \sigma_j^2 = \text{tr} (V) = \sigma^2 \) and

\[
\mathbb{E}_{P_K} \left[\| (C_{KK} + \lambda_j I)^{-1/2} u \|_2^2 \right] \leq \text{tr} \left(\mathbb{E}_{P_K} \left[(C_{KK} + \lambda_j I)^{-1/2} u \otimes (C_{KK} + \lambda_j I)^{-1/2} u \right] \right) = \text{tr} \left(\sum_{i=1}^{+\infty} \frac{\mu_i}{\mu_i + \lambda_j} e_i \otimes e_i \right) = \sum_{i=1}^{+\infty} \frac{\mu_i}{\mu_i + \lambda_j} \lesssim \lambda_j^{-p}.
\]

We have shown that for some constant \(c_1 > 0 \),

\[
\mathbb{E} \| X_1 \|^{2t} \leq \frac{1}{2}(2t)! \sigma^2 \max_{1 \leq j \leq n_N} \frac{j^{1/2}}{N} \lambda_j^{-(p+\beta')} \cdot \left(c_1 R^2 \max_{1 \leq j \leq n_N} \frac{j^{1/2}}{N} \lambda_j^{-(\beta' + p)} \right)^{t-1}.
\]

By Bernstein’s inequality, the event

\[
E_2 := \left\{ \left\| \frac{1}{N} \sum_{k=1}^{N} X_k \right\|^2 \leq 6 \alpha_2 \left(\frac{\sigma^2 \max_{1 \leq j \leq n_N} \frac{j^{1/2}}{N} \lambda_j^{-(p+\beta')}}{N} + \frac{c_1 R^2 \max_{1 \leq j \leq n_N} \frac{j^{1/2}}{N} \lambda_j^{-(\beta' + p)}}{N^2} \right) \right\}
\]

holds with probability \(\geq 1 - 2e^{-a_2} \). By our definition of \(\lambda_j \), we have

\[
\max_{1 \leq j \leq n_N} \frac{j^{1/2}}{N} \lambda_j^{-(\beta' + p)} \lesssim N^{\max\left\{ \frac{\beta' + p}{\beta' + 1}, \frac{1}{4} \right\}}
\]

and \(\lambda_j \gtrsim N^{-\frac{1}{2}} \) (which implies that the \(\frac{1}{N} \) term is dominated by the \(\frac{1}{N} \) term). Hence, under \(E_1 \cap E_2 \) we have

\[
\mathcal{V}_1 \lesssim a_1 a_2 \sigma^2 N^{-\min\left\{ \frac{\beta' + p}{\beta' + 1}, \frac{1}{4} \right\}}
\]

with probability \(\geq 1 - 2a_1 a_2 N e^{-a_2} \).

Bounding \(\mathcal{V}_2 \). For any \(j \in \mathbb{Z}_+ \) we have

\[
\mathbb{E}_{u \sim P_K} \left[\left\langle A_0 (C_{KK} + \lambda_j I)^{-1} u, \rho_j^2 f_j \right\rangle^2 \right] = \mathbb{E}_{u \sim P_K} \left[\left\langle \rho_j^2 f_j, A_0 (C_{KK} + \lambda_j I)^{-1} u \otimes A_0 (C_{KK} + \lambda_j I)^{-1} u \right\rangle \rho_j^2 f_j \right]
\]

\[
= \left\langle \rho_j^2 f_j, A_0 (C_{KK} + \lambda_j I)^{-1} A_0^* (C_{KK} + \lambda_j I)^{-1} A_0^* \rho_j^2 f_j \right\rangle
\]

\[
= \rho_j^{-1} \left\langle \left(C_{Q_{KK}} \frac{1}{\alpha} A_0 C_{KK} \right)^* \rho_j^2 f_j, (C_{KK} + \lambda_j I)^{-1} C_{Q_{KK}} (C_{KK} + \lambda_j I)^{-1} \left(C_{Q_{KK}} \frac{1}{\alpha} A_0 C_{KK} \right)^* \rho_j^2 f_j \right\rangle
\]

\[
\lesssim j^{-\frac{1-\gamma}{4} \lambda_j^{-(2-\beta)}} \left\| \left(C_{Q_{KK}} \frac{1}{\alpha} A_0 C_{KK} \right)^* \rho_j^2 f_j \right\|_2
\]

\[
=: \mathcal{D}_{j,2}
\]

where (15a) follows from \(\mathbb{E}_{P_K} u \otimes u = C_{KK} \), (15b) uses the fact that \(C_{KK} \) and \(C_{KK} + \lambda_j I \) commute, and lastly (15c) follows from \(\left\| (C_{KK} + \lambda_j I)^{-1} C_{Q_{KK}} (C_{KK} + \lambda_j I)^{-1} \right\|_{\mathcal{H}_K} \propto \lambda_j^{-(2-\beta)}. \)
For any $\text{Plugging into (16), we deduce that}$

$$Y_{j,k} = \left \langle A_0 (C_{KK} + \lambda_j I)^{-1} u_k, \rho_j^\frac{1}{2} f_j \right \rangle (C_{KK} + \lambda_j I)^{-\frac{1}{2}} u_k \in \mathcal{H}_K$$

and

$$Y_k = (Y_{j,k} : 1 \leq j \leq y_N) \in \mathcal{H}_K^{n_N}.$$

Then we have

$$V_2 \lesssim \left \| \frac{1}{N} \sum_{k=1}^N Y_k \right \|^2_{\mathcal{H}_K^{n_N}}.$$

Note that $Y_k, k = 1, 2, \ldots, N$ are i.i.d. random variables, and

$$E \|Y_1\|^{2t} = E \left \| \left (\sum_{j=1}^{N} \|Y_{j,k}\|^2 \right)^t \right \|$$

$$= E_{P_K} \left \| \left (\sum_{j=1}^{N} \|Y_{j,k}\|^2 \right)^t \right \|$$

$$\leq \sup_{u \in \text{supp}(P_K)} \left \{ \sum_{j=1}^{N} \frac{1}{N} \|Y_{j,k}\|^2 \right \} \leq \sup_{u \in \text{supp}(P_K)} \left \{ \sum_{j=1}^{N} \frac{1}{N} \|Y_{j,k}\|^2 \right \}^{t-1} \sum_{j=1}^{N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} D_{j,2}.$$

(16)

For any $j \in \mathbb{Z}_+$ and $u \in \text{supp}(P_K)$ we have

$$\sum_{j=1}^{N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} \left \langle A_0 (C_{KK} + \lambda_j I)^{-1} \lambda_j u, \rho_j^\frac{1}{2} f_j \right \rangle^2$$

$$\leq \sum_{j=1}^{N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} \left \langle 2 \left \langle A_0 u, \rho_j^\frac{1}{2} f_j \right \rangle^2 + 2 \rho_j^{1-\gamma} \left \langle C_{QK}^{-\frac{1}{2}} A_0 (C_{KK} + \lambda_j I)^{-1} C_{KK} u, \rho_j^\frac{1}{2} f_j \right \rangle^2 \right \rangle$$

$$\lesssim \max_{1 \leq j \leq N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} + \sum_{j=1}^{N} \lambda_j^{-(\beta+\alpha)} \lambda_j^{-(\alpha-\max \{\alpha,0\})} \left \langle C_{QK}^{-\frac{1}{2}} A_0 C_{KK}^{-\frac{1}{2}} \rho_j^\frac{1}{2} f_j \right \rangle^2$$

(17a)

$$\lesssim \max_{1 \leq j \leq N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} + \max_{1 \leq j \leq N} \lambda_j^{-(\beta+\alpha)-\max \{\alpha,0\}}.$$

(17b)

$$\lesssim \max_{1 \leq j \leq N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} - \max \{\alpha,0\}.$$

(17c)

where (17a) uses the AM-GM inequality, (17b) follows from the assumption that $\|A_0 u\| \leq A_2$ is uniformly bounded, and that

$$\left \langle C_{KK}^{-\frac{1}{2}} (C_{KK} + \lambda_j I)^{-1} C_{KK} u \right \rangle = \left \langle C_{KK}^{-\frac{1}{2}} (C_{KK} + \lambda_j I)^{-1} C_{KK} u \right \rangle \lesssim \lambda_j^{\max \{\alpha,0\}}.$$

by Assumption 2.2, and lastly (17c) follows from $\|A_0\|_{\beta, \gamma} \leq B$.

Plugging into (16), we deduce that

$$E \|Y_1\|^{2t} \lesssim \sup_{u \in \text{supp}(P_K)} \left \{ \max_{1 \leq j \leq N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} + \max_{1 \leq j \leq N} \lambda_j^{-(\beta+\alpha)-\max \{\alpha,0\}} \right \}^{t-1} \sum_{j=1}^{N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} D_{j,2}.$$

$$\lesssim \sup_{u \in \text{supp}(P_K)} \left \{ \max_{1 \leq j \leq N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} + \max_{1 \leq j \leq N} \lambda_j^{-(\beta+\alpha)-\max \{\alpha,0\}} \right \}^{t-1} \max_{1 \leq j \leq N} \frac{1}{N} \lambda_j^{-(\beta+\alpha)} D_{j,2}.$$

21
where the last step follows from $\sum_{j=1}^{\infty} D_j \| A_0 \|_{\beta, \gamma}^2$.

By Bernstein’s inequality, there exists a constant C_3 such that the event

$$E_3 = \left\{ \mathcal{V}_2 \leq 6a_3 C_3 \left(\frac{j^{i-a} \lambda_j^{-i-a+\beta}}{N} + \max_{1 \leq j \leq n} \lambda_j^{-(\beta+\alpha)} \left(\frac{j^{i-a} + \lambda_j^{\min(\alpha, \alpha)'}}{N^2} \right) \right) \right\}$$

holds with probability $\geq 1 - 2e^{-a_3}$.

The definition of λ_N implies that the $\frac{1}{N^2}$ term is dominated by the $\frac{1}{N}$ term, so

$$\mathcal{V}_2 \leq a_1 a_3 \frac{1}{N} \max_{1 \leq j \leq n} \left(\frac{j^{i-a} \lambda_j^{-i-a+\beta}}{N} \right) \lesssim N^{-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}}$$

holds under $E_1 \cap E_3$. To summarize, under $E_1 \cap E_2 \cap E_3$ which holds with probability $\geq 1 - 2n_N e^{-a_3} - 2e^{-a_2} - 2e^{-a_3}$, we have

$$\mathcal{V} \leq 2a_1 \max\{a_2, a_3\} (\mathcal{V}_1 + \mathcal{V}_2) \lesssim N^{-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}}.$$

Recall that the bias term is upper bounded in (11). This gives the final upper bound

$$\left\| \hat{A} - A_0 \right\|_{\beta', \gamma'} \lesssim N^{-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}}.$$

B.1.3 The hard-learning regime

In the previous sections, we focus on the case where $\alpha \leq \beta + p$ and establish an upper bound for the convergence rate via an optimal bias-variance trade-off. The opposite case, $\alpha > \beta + p$ is referred to as the hard-learning regime, for which the optimal rate is not known for several decades even in the case of $\gamma = 1$ (cf. the discussion following (Fischer & Steinwart, 2020, Theorem 2)). In the hard learning regime the \mathcal{V}_2 term becomes the leading terms.

In this section, we use the technique developed in previous sections to obtain an upper bound in the hard-learning regime. To do this, we need to re-define the truncation set S_N as follows:

$$S_N = \left\{ (x, y) \in \mathbb{Z}^2 \mid x^{\beta+\alpha-p} y^{1-a'} \leq N^{1-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}} \text{ and } x \leq c_0 \left(\frac{N}{\log N} \right)^{\frac{p}{q}} \right\}.$$

The definition implies that the variance can be controlled by $N^{-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}}$ and it remains to focus on the bias term.

Similar to the derivations in Appendix B.1.1, we have

$$\left\| A_0 - T_N (A_0) \right\|_{\beta', \gamma'} \lesssim \max_{(i,j) \notin S_N} i^{-\frac{\alpha-a'}{p}} j^{-\frac{1-a'}{q}}.$$

The maximum value of the right hand side can be achieved in either of the following two cases:

- $i = O(1)$. Then we have $j \gtrsim N^{\frac{\alpha-a'}{p}} \left(1-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\} \right)$ so that
 $$i^{-\frac{\alpha-a'}{p}} j^{-\frac{1-a'}{q}} \lesssim N^{-\frac{\alpha-a'}{p}} \left(1-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\} \right) \lesssim N^{-\frac{\alpha-a'}{p}}.$$

- $j = O(1)$. In this case we must have $i \lesssim N^{\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}}$, otherwise it falls into S_N by definition. Hence we have
 $$i^{-\frac{\alpha-a'}{p}} j^{-\frac{1-a'}{q}} \lesssim i^{-\frac{\alpha-a'}{p}} \lesssim N^{-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}}.$$

On the other hand, for the variance term we still have $\mathcal{V}_1 \lesssim \frac{1}{N} \max_{1 \leq j \leq n} j^{1-a'} i_j^{\frac{\beta+\alpha}{p}}$ and $\mathcal{V}_2 \leq \frac{1}{N} \max_{1 \leq j \leq n} j^{1-a'} i_j^{\frac{\beta+\alpha}{p}} \lesssim N^{-\min\left\{ \frac{\alpha-a'}{2\alpha-o}, \frac{1-a'}{1-o} \right\}}$.

As a result, we can obtain the following convergence rate:
\[
\|\hat{A} - A_0\|_{\beta', \gamma'} \lesssim N^{-\min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\}}.
\]

B.2 Regularization via bias contour

In this subsection, we analyze the convergence rate of regularization via bias contour (cf. Figure 2). Specifically, we consider the estimator (3) with the choice
\[
\lambda_j = \max \left\{ \left(j - \frac{\gamma - \gamma'}{\gamma + \gamma'} N \min\left\{ \frac{-\beta - \beta'}{\max\{\alpha, \beta + p\}}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\} \right)^{-\frac{1}{\beta + \beta'}}, c_0 \left(\frac{N}{\log N} \right)^{-\frac{1}{\beta + \beta'}} \right\}. (19)
\]

It now remains to plug the above \(\lambda_j\) into our bounds for bias and variance derived in the previous subsections.

Bounding the bias term. It follows from (9) that
\[
\|A_0 - A_\lambda\|^2_{\beta', \gamma'} \lesssim \max_{1 \leq j \leq y_N} j^{-\frac{\gamma - \gamma'}{\gamma + \gamma'}} \lambda_j^{-\beta - \beta'}
\]
\[
\lesssim \max \left\{ N^{-\min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\}}, c_0 \left(\frac{N}{\log N} \right)^{-\frac{\beta - \beta'}{\beta + \beta'}} \right\}
\]
\[
\lesssim N^{-\min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\}}.
\]

Bounding the variance term It follows from (14) and (18) that the variance is bounded by
\[
\|\hat{A} - A_\lambda\|^2_{\beta', \gamma'} \lesssim \frac{1}{N} \max_{1 \leq j \leq y_N} j^{-\frac{\gamma - \gamma'}{\gamma + \gamma'}} (\beta' + \max\{\alpha - \beta, p\}).
\]

As before, we consider the cases \(\alpha \leq \beta + p\) and \(\alpha > \beta + p\) separately.

- If \(\alpha \leq \beta + p\), then it follows that
\[
\|\hat{A} - A_\lambda\|^2_{\beta', \gamma'} \lesssim \frac{1}{N} \max_{1 \leq j \leq y_N} j^{-\frac{\gamma - \gamma'}{\gamma + \gamma'}} \lambda_j^{-\beta' + p}
\]
\[
\lesssim \frac{1}{N} \max_{1 \leq j \leq y_N} j^{-\frac{\gamma - \gamma'}{\gamma + \gamma'}} \left(j - \frac{\gamma - \gamma'}{\gamma + \gamma'} N \min\left\{ \frac{-\beta - \beta'}{\max\{\alpha, \beta + p\}}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\} \right)^{-\frac{\beta' + p}{\beta + \beta'}}
\]
\[
\lesssim \frac{1}{N} \max_{1 \leq j \leq y_N} j^{-\frac{\gamma - \gamma'}{\gamma + \gamma'}} \left(\frac{1 - \gamma - \gamma'}{\gamma + \gamma'} N \min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\} \right)^{-\frac{\beta' + p}{\beta + \beta'}}
\]
\[
= \frac{1}{N} \max_{j \in \{1, y_N\}} \left(\frac{1 - \gamma - \gamma'}{\gamma + \gamma'} N \min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\} \right)^{-\frac{\beta' + p}{\beta + \beta'}}
\]
\[
= N^{-\min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\}},
\]

where we use \(y_N^{\gamma' - \gamma} = N^{\min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\}}\) by definition.

- If \(\alpha > \beta + p\), then similarly we have
\[
\|\hat{A} - A_\lambda\|^2_{\beta', \gamma'} \lesssim \frac{1}{N} \max_{1 \leq j \leq y_N} j^{-\frac{\gamma - \gamma'}{\gamma + \gamma'}} \lambda_j^{-\beta' + \alpha - \beta}
\]
\[
\lesssim \frac{1}{N} \max_{1 \leq j \leq y_N} j^{-\frac{\gamma - \gamma'}{\gamma + \gamma'}} \left(j - \frac{\gamma - \gamma'}{\gamma + \gamma'} N \min\left\{ \frac{-\beta - \beta'}{\alpha}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\} \right)^{-\frac{\beta' + \alpha - \beta}{\beta + \beta'}}
\]
\[
= \frac{1}{N} \max_{j \in \{1, y_N\}} \left(\frac{1 - \gamma - \gamma'}{\gamma + \gamma'} N \min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\} \right)^{-\frac{\beta' + \alpha - \beta}{\beta + \beta'}}
\]
\[
\lesssim N^{-\min\left\{ \frac{\gamma - \gamma'}{\gamma + \gamma'}, \frac{\gamma - \gamma'}{\gamma + \gamma'} \right\}}.
\]
Hence we deduce that
\[\left\| \hat{A} - A_h \right\|_{\beta', \gamma'}^2 \lesssim N^{-\min\left\{ \frac{\beta - \beta'}{\alpha}, \frac{\gamma - \gamma'}{1 - \gamma} \right\}}, \]
as desired.

B.3 Implication of the Upper Bound

In this section, we discuss the implications of our upper bounds under the \((\beta', \gamma')\)-norm.

Note that \(\left\| C_{Q_K}^{-\frac{1}{2}} v \right\|_{\mathcal{H}^2_{L^{-\gamma}}(v)} = \left\| v \right\|_{\mathcal{H}^2_{L^{-\gamma}}} \) for all \(v \in L_2(Q_K) \) (if one side of the equation is \(+\infty \) then so is the other), we have that
\[
\mathbb{E}_{u \sim P_K} \left\| \left(\hat{A} - A_0 \right) u \right\|_{\mathcal{H}^2_{L^{-\gamma}}}^2 = \mathbb{E}_{u \sim P_K} \left\| C_{Q_K}^{-\frac{1}{2}} \left(\hat{A} - A_0 \right) u \right\|_{\mathcal{H}^2_{L^{-\gamma}}}^2
\]
\[= \text{tr} \left(C_{Q_K}^{-\frac{1}{2}} \left(\hat{A} - A_0 \right) \mathbb{E}_{u \sim P_K} u \otimes u \left(C_{Q_K}^{-\frac{1}{2}} \left(\hat{A} - A_0 \right) \right)^* \right) \]
\[\lesssim \left\| \hat{A} - A_0 \right\|_{\beta', \gamma'}^2,
\]
where the last step follows from \(\mathbb{E}_{u \sim P_K} u \otimes u = C_{P_K}. \) Note that the above derivations hold for any \(0 \leq \beta' < \beta \), so choosing \(\beta' = 0 \) yields the best upper bound. We can see from (20) that our analysis implies an upper bound of the expected error of the learned solution evaluated under the \(\mathcal{H}^2_{L^{-\gamma}} \)-norm. On the other hand, it is also possible to obtain a uniform convergence rate when \(\beta' \geq \alpha \):
\[
\left\| \left(\hat{A} - A_0 \right) u \right\|_{\mathcal{H}^2_{L^{-\gamma}}} \leq \left\| C_{Q_K}^{-\frac{1}{2}} \left(\hat{A} - A_0 \right) u \right\|_{\mathcal{H}^2_{L^{-\gamma}}} \leq \left\| \hat{A} - A_0 \right\|_{\beta', \gamma'} \left\| C_{P_K}^{-\frac{1}{2}} u \right\|_{\mathcal{H}^2_{L^{-\gamma}}} \lesssim \left\| \hat{A} - A_0 \right\|_{\beta', \gamma'}.
\]

C Proofs for the Multi-level Operator Learning Algorithm

In this section, we analyze the convergence rate of our multi-level algorithm described in Section 5. We define \(\eta_1 = \min \left\{ \frac{\beta - \beta'}{\max\{\alpha, \beta + p\}}, \frac{\gamma - \gamma'}{1 - \gamma} \right\} \) and \(\eta_2 = \max \left\{ 1 - \frac{\beta - \beta'}{\max\{\alpha, \beta + p\}}, \frac{1 - \gamma'}{1 - \gamma} \right\} = 1 - \eta_1. \) We first restrict ourselves to the case when \(\frac{\beta - \beta'}{\max\{\alpha, \beta + p\}} \neq \frac{\gamma - \gamma'}{1 - \gamma}; \) the special case when the two terms are equal will be separately treated in Appendix C.1. For the optimal bias and variance contours \(\ell_{C_{1, \text{bias}}} \) and \(\ell_{C_{2, \text{var}}} \) with \(C_1 = N^{\eta_1} \) and \(C_2 = N^{\eta_2} \), we define a sequence \(\{x_n\} \) as follows:
\[
x_0 = \max \left\{ \frac{1}{2} N^{\frac{\alpha - \beta'}{p}}, c_0 \left(\frac{N}{\log N} \right)^{-\frac{1}{2}} \right\},
\]
\[
y_n = \text{the solution of } x_n^{\frac{\beta' + \max\{\alpha - \beta, p\}}{p}} y_n^{\gamma - \gamma'} = N^{\eta_2}, \quad n \geq 0
\]
\[
x_{n+1} = \text{the solution of } x_n^{\frac{\beta' + \max\{\alpha - \beta, p\}}{p}} y_n^{\gamma - \gamma'} = N^{\eta_1}, \quad n \geq 0.
\]

We first derive an explicit recursive formula for \(\{x_n\} \).

Lemma C.1 Let \(u = \left(x + \max\{\alpha - \beta, p\} \right) \frac{\gamma - \gamma'}{1 - \gamma} > 0 \), then
\[(1). \text{if } u > 1, \text{ then } \quad N^{-\frac{\alpha - \beta'}{p}} x_{n+1} = \left(N^{-\frac{\alpha - \beta'}{p}} x_n \right)^u.
\]
\[(2). \text{if } u < 1, \text{ then } \quad x_{n+1} = x_n^u.
\]
Proof:

(1). Suppose that $u > 1$, then we have $\eta_1 = \frac{\beta' - \beta}{\max\{\alpha, \beta + p\}}$ and $\eta_2 = 1 - \eta_1$. It follows from (21b) and (21c) that

$$x_{n+1} = N \frac{p}{\max\{\alpha, \beta + p\}} y_n - \frac{\gamma' \gamma}{\beta - \beta'} p$$

$$= N \frac{p}{\max\{\alpha, \beta + p\}} \left(N^{\eta_2} x_n - \frac{\beta' + \max\{\alpha - \beta, p\}}{p} \right) - \frac{\gamma' \gamma}{\beta - \beta'} p$$

$$= N \frac{p}{\max\{\alpha, \beta + p\}} \left(N^{-\eta_2} x_n \right)^u.$$

(2). Suppose that $u < 1$, then we have $\eta_1 = \frac{1 - \gamma'}{1 - \eta'}$, and $\eta_2 = \frac{1 - \gamma}{1 - \eta}$, so that $\frac{\eta_1}{\eta_2} = \frac{1 - \gamma'}{1 - \eta'}$, and it follows from (21b) and (21c) that $x_n = x_{n+1}^u$, thus $x_{n+1}^u = x_n^u$.

\square

Lemma C.1 implies that when $u \neq 1$, the sequence $\{x_n\}$ decreases super-exponentially. Thus, there exists $L_N = O(\log \log N)$ such that $x_n \leq 2$ for all $n \geq L_N$.

Let $\lambda_i^{(K)} = x_i^{-\frac{1}{2}}$ and $\lambda_i^{(L)} = y_i^{-\frac{1}{2}}$, then we construct the following estimator:

$$\hat{A}_{m1} = \sum_{i=0}^{L_N} \left(\sum_{y_{i-1} \leq j < y_i} \rho_j^2 f_j \otimes \rho_j^2 f_j \right) \hat{C}_{X} \left(\hat{C}_{KK} + \lambda_i^{(K)} I \right)^{-1}$$

where $y_{-1} := 0$. Note that each summand in the above equation is essentially a regularized least-squares estimator and learns a rectangular region. The following theorem states that the estimator \hat{A}_{m1} can achieve minimax optimal convergence rate.

Theorem 5.1 Consider the estimator \hat{A}_{m1} defined by (5). Suppose that Assumptions 2.1 to 2.5 hold, then there exists a universal constant C, such that

$$\left\| \hat{A}_{m1} - A_0 \right\|_{\beta', \gamma'}^2 \leq C \tau^2 \left(\frac{N}{\log N} \right)^{-\min\left\{ \frac{\beta - \beta'}{\max\{\alpha, \beta + p\}}, \frac{\gamma' \gamma}{\beta - \beta'} \right\}} \log^2 N$$

holds with probability $\geq 1 - e^{-\tau}$.

Proof: The proof of Theorem 5.1 is similar to that of Theorems 4.1 and 4.2. We consider the bias-variance decomposition of the estimation error

$$\| \hat{A}_{m1} - A_0 \|_{\beta', \gamma'} \leq \| \hat{A}_{m1} - \hat{A}_{m1} \|_{\beta', \gamma'} + \| \hat{A}_{m1} - \hat{A}_{m1} \|_{\beta', \gamma'}$$

where

$$\hat{A}_{m1} = \sum_{i=1}^{L_N} \left(\sum_{y_i \leq j < y_{i+1}} \rho_j^2 f_j \otimes \rho_j^2 f_j \right) \hat{C}_{X} \left(\hat{C}_{KK} + \lambda_i^{(K)} I \right)^{-1}.$$

Bounding the bias term. Since $\| A_0 \|_{\beta, \gamma} \leq B$, we can write

$$A_0 := \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{ij} \mu_i^2 \rho_j^{\frac{1}{2}} f_j \otimes e_i$$

where the coefficient matrix $A_0 = (a_{ij})_{1 \leq i, j \leq +\infty}$ satisfies $\| A_0 \|_{\beta, \gamma}^2 \leq B^2$. We fix $(i, j) \in Z^2_+$ and assume WLOG that $y_{m_{j-1}} \leq j < y_{m_j}$ for some $m \geq 0$, where $y_{L_N+1} = +\infty$. It follows from (23) that

$$\left\langle \rho_j^{\frac{1}{2}} f_j, A_{m1} \mu_i^\frac{1}{2} e_i \right\rangle = \sum_{k=0}^{L_N} \left(\sum_{y_{k-1} \leq j < y_k} \rho_j^2 f_j \otimes \rho_j^2 f_j \right) \rho_j^{\frac{1}{2}} f_j, \hat{C}_{X} \left(\hat{C}_{KK} + \lambda_k^{(K)} I \right)^{-1} \mu_i^{\frac{1}{2}} e_i$$

$$= \frac{\mu_i + \lambda_m}{\mu_i + \lambda_m} \frac{1}{2} \frac{1 - \beta}{\mu_i + \lambda_m} a_{ij}.$$
Thus
\[
\| A_0 - \hat{A}_n \|_{\beta', \gamma'}^2 = \left\| C_{Q_L}^{\frac{1 - \beta'}{\beta'}} \left(\hat{A}_n - A_0 \right) C_{KK}^{\frac{1 - \beta'}{\beta'}} \right\|_{HS}^2
= \sum_{i,j=1}^{+\infty} \left(\rho_j^{\frac{1}{2}} f_j, C_{Q_L}^{\frac{1 - \beta'}{\beta'}} \left(\hat{A}_n - A_0 \right) C_{KK}^{\frac{1 - \beta'}{\beta'}} \mu_i^{\frac{1}{2}} e_i \right)^2
= \sum_{i,j=1}^{+\infty} \mu_i^{\frac{1}{2}} \rho_j^{\frac{1}{2}} \left(\frac{\lambda_{m_j}^{(K)}}{\mu_i + \lambda_{m_j}^{(K)}} \right)^{\frac{1}{2}} \mu_i^{\beta - \beta'} \rho_j^{\beta - \beta'} (\lambda_{m_j}^{(K)})^{\frac{1}{2}} \left(\frac{\lambda_{m_j}^{(K)}}{\mu_i + \lambda_{m_j}^{(K)}} \right)^{\frac{1}{2}}
\leq B^2 \max_{j \geq 1} \rho_j^{\beta - \beta'} x_{m_j}^p \leq B^2 \max_{j \geq 1} j^{-\beta - \beta'} x_{m_j}^p \leq B^2 \sum_{j=1}^{+\infty} j^{-\beta - \beta'} \leq B^2 N^{-\eta_1}
\]
(24)

where we recall that \(\eta_1 = \min \left\{ \frac{\beta - \beta'}{\max(\alpha, \beta + p)}, \frac{\gamma' - \gamma}{\alpha} \right\} \) and the last step follows from (21c).

Bounding the variance term. The variance term can be rewritten in the following way:
\[
\mathcal{V} = \left\| \hat{A}_n - A_n^\lambda \right\|_{\beta', \gamma'}^2
= \left\| C_{Q_L}^{\frac{1 - \gamma'}{\gamma'}} \left(\hat{A}_n - A_n^\lambda \right) C_{KK}^{\frac{1 - \gamma'}{\gamma'}} \right\|_{HS}^2
= \sum_{i,j=1}^{+\infty} \left(\rho_j^{\frac{1}{2}} f_j, C_{Q_L}^{\frac{1 - \gamma'}{\gamma'}} \left(\hat{A}_n - A_n^\lambda \right) C_{KK}^{\frac{1 - \gamma'}{\gamma'}} \mu_i^{\frac{1}{2}} e_i \right)^2
= \sum_{j=1}^{+\infty} \rho_j^{1-(\gamma' - \gamma)} \left(\sum_{i=1}^{+\infty} \rho_j^{\frac{1}{2}} f_j, \left[\hat{C}_{KK} + \lambda_{m_j} I \right]^{-1} - \hat{C}_{KY} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} \right) \mu_i^{\beta - \beta'} e_i \right)^2
= \sum_{j=1}^{+\infty} \rho_j^{1-(\gamma' - \gamma)} \left(\sum_{i=1}^{+\infty} \mu_i^{\frac{1}{2}} \left[\left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} - \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{\frac{1}{2}} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{\frac{1}{2}} \mu_i^{1 - \beta'} \right] \mu_i^{\frac{1}{2}} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} \right) \rho_j^{\frac{1}{2}} f_j
= \sum_{j=1}^{+\infty} \rho_j^{1-(\gamma' - \gamma)} \left(\sum_{i=1}^{\infty} \mu_i^{2 - \beta'} \mu_i^{\frac{1}{2}} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{\frac{1}{2}} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} \mu_i^{\frac{1}{2}} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} \left(\hat{C}_{KK} + \lambda_{m_j} I \right)^{-1} \mu_i^{1 - \beta'} \right) \rho_j^{\frac{1}{2}} f_j
\]

for reasons similar to (12). It now remains to bound \(\| G_{m_j} \| \) and \(\| U_{m_j} \rho_j^{\frac{1}{2}} f_j \| \) for \(1 \leq j \leq L_N \). Note that these quantities have already been bounded in Appendix B.1.2 with \(\lambda_{m_j} \) replaced with \(\lambda_j \) (there we use a different regularization for each \(j \)). Hence, those bounds can be directly applied here, so there exists a constant \(C > 0 \) such that
\[
\mathcal{V} \leq C a^2 \frac{1}{N} \max_{1 \leq j \leq L_N} j^{-\gamma' - \beta} \lambda_{m_j}^{1 - \beta' - \gamma - \alpha} \leq C a^2 \frac{1}{N} \max_{1 \leq j \leq L_N} j^{-\gamma' - \beta} \lambda_{m_j}^{1 - \beta' - \gamma - \alpha} \leq C a^2 \frac{1}{N} \max_{1 \leq j \leq L_N} j^{-\gamma' - \beta} \lambda_{m_j}^{1 - \beta' - \gamma - \alpha}
\]
with probability $\geq 1 - N e^{-a}$. Since $j \leq y_{m_j}$, by (21b) we have
\[
\eta_j \leq \frac{1}{N} \eta_{m_j} \leq \frac{1}{N} \frac{\eta_{N-1}}{2} = N^{\eta_2}.
\]
Hence
\[
\eta \leq \frac{1}{N} \max_{1 \leq j \leq L_N} \eta_j \leq \frac{1}{N} \frac{\eta_{N-1}}{2} = N^{\eta_2}.
\]
Combining the bias and variance bounds, the conclusion directly follows. \qed

C.1 Special Case

Consider the estimator \hat{A}_{m_1} defined by (26). Suppose that Assumptions 2.1 to 2.5 hold, then there exists a universal constant C, such that
\[
\|\hat{A}_{m_1} - A_0\|_{\beta, \gamma'} \leq C \tau^2 \left(\frac{N}{\log N} \right)^{-\min\left\{ \frac{\beta - \beta'}{\max(\alpha, \beta' + p)}, \frac{\gamma' - \gamma}{1 - \gamma} \right\}} \log^2 N
\]
holds with probability $\geq 1 - e^{-\tau}$.

Proof: The proof of Theorem C.2 is similar to that of Theorems 4.1 and 4.2. We consider the bias-variance decomposition
\[
\|\hat{A}_{m_1} - A_0\|_{\beta, \gamma'} \leq \|\hat{A}_{m_1} - \hat{A}_{m_1}\|_{\beta, \gamma'} + \|\hat{A}_{m_1} - A_0\|_{\beta, \gamma'}
\]
where
\[
\hat{A}_{m_1} = \sum_{i=0}^{L_N} \left(\sum_{1 \leq j < y_i} \rho_j^\frac{1}{2} f_j \otimes \rho_j^\frac{1}{2} f_j \right) C_{KL} \left(C_{KK} + \lambda_i^\lambda (K) I \right)^{-1}.
\]

Bounding the bias term. Let $A_0 := \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{ij} \mu_i^\beta \rho_j^\gamma f_j \otimes e_i$ with coefficient matrix $A_0 = (a_{ij})_{i,j=1}^{+\infty}$ such that $\|A_0\|_F \leq B^2$. We fix $(i, j) \in \mathbb{Z}_2^2$ and assume WLOG that $y_{m_j-1} \leq j < y_{m_j}$ for some $m_j \geq 0$, where $y_{L_N+1} = +\infty$. It follows from (27) that
\[
\left(\mu_i^\beta f_j, \hat{A}_{m_1} \mu_i^\beta e_i \right) = \frac{\mu_i}{\mu_i + \lambda_i^\lambda (K) \rho_j^\gamma} \frac{1}{\mu_i + \frac{1}{\gamma} - \frac{1}{\gamma} \lambda_i^\lambda (K) \rho_j^\gamma} a_{ij}.
\]
Thus we can proceed as in (24) to deduce that
\[
\|A_0 - A_{\delta_1}\|_{\beta', \gamma'}^2 \leq \max_{j \geq 1} \rho_j^{1 - \gamma} \left(\lambda_m^{(K)} \right)^{\beta - \beta'}
\]
\[
\leq \max_{1 \leq j \leq N} \left\{ \max_j \left(- \frac{\gamma - \alpha}{q} \frac{y_{m_j}}{x_{m_j}^p}, y_{L_N} \right) \right\}
\]
\[
\leq \max_{1 \leq j \leq N} \left\{ \max_j \left(- \frac{\gamma - \alpha}{q} \frac{y_{m_j}}{x_{m_j}^p}, y_{L_N} \right) \right\}
\]

The definition (25) implies that
\[
y_{m_j - 1} \frac{\gamma - \alpha}{q} \frac{y_{m_j}}{x_{m_j}^p} \leq 2 \frac{\gamma - \alpha}{q} y_{m_j} \frac{y_{m_j}}{x_{m_j}^p} \leq 2 \frac{\gamma - \alpha}{q} N^{-\eta}.
\]

On the other hand, since \(x_{L_N} < 1 \), by (25) implies that \(\frac{\gamma - \alpha}{q} \leq N^{-\eta} \). Therefore, for the bias term \(\|A_0 - A_{\delta_1}\|_{\beta', \gamma'}^2 \leq N^{-\eta} \).

Bounding the variance term. Repeating the arguments in (25), we can deduce that there exists a constant \(C > 0 \) such that
\[
\mathcal{V} \leq C a^2 \frac{1}{N} \max_{1 \leq j \leq N} \left\{ \frac{1}{y_{m_j}} \left(\beta' + \max(\alpha - \beta, p) \right) \right\} \leq C a^2 \frac{1}{N} \max_{1 \leq j \leq N} \left\{ \frac{1}{y_{m_j}} \left(\beta' + \max(\alpha - \beta, p) \right) \right\} \leq N^{-\eta}
\]

with probability \(\geq 1 - Ne^{-a} \).

Combining the bias and variance bounds, we arrive at the desired conclusion. \(\square \)

The conclusion of Theorem 5.1 then follows from Theorems C.1 and C.2.

D Auxiliary Results

Lemma D.1 We have \(\|T\|_{\beta, \gamma} = \left\| C_{Q_L}^{-(1-\gamma)/2} \circ T \circ C_{KK}^{(1-\beta)/2} \right\|_{HS(H_k, H_L)} \).

Proof: We recall from the definition that \(\|T\|_{\beta, \gamma} = \left\| (I_{1, \gamma, Q_L})^\dagger \circ T \circ I_{1, \beta, P, K} \right\|_{HS(H_k, H_L)} \), so that
\[
\|T\|_{\beta, \gamma}^2 = \left\| (I_{1, \gamma, Q_L})^\dagger \circ T \circ I_{1, \beta, P, K} \right\|_{HS(H_k, H_L)}^2
\]
\[
= \sum_{i,j=1}^{+\infty} \left\langle \rho_j^2 f_j, (I_{1, \gamma, Q_L})^\dagger \circ T \circ I_{1, \beta, P, K} \frac{1}{\mu_i} e_i \right\rangle_{H_k}^2
\]
\[
= \sum_{i,j=1}^{+\infty} \left\langle \rho_j^2 f_j, (I_{1, \gamma, Q_L})^\dagger \circ T \mu_i^\frac{1}{\beta} e_i \right\rangle_{H_k}^2
\]
\[
= \sum_{i,j=1}^{+\infty} \left\langle \rho_j^2 f_j, T \mu_i^\frac{1}{\beta} e_i \right\rangle_{H_k}^2
\]
\[
= \sum_{i,j=1}^{+\infty} \left\langle \rho_j^2 f_j, C_{Q_L}^{-(1-\gamma)/2} \circ T \circ C_{KK}^{(1-\beta)/2} \frac{1}{\mu_i} e_i \right\rangle_{H_L}^2
\]
\[
= \left\| C_{Q_L}^{-(1-\gamma)/2} \circ T \circ C_{KK}^{(1-\beta)/2} \right\|_{HS}^2
\]
as desired. \(\square \)

Lemma D.2 Under Assumption 2.2, we have
\[
\left\| (C_{KK} + \lambda I)^{-\frac{1}{2}} u \right\| \leq \lambda^{-\frac{1}{2}} \cdot A_1 \text{ P}\text{-a.s.}
\]
Proof: By Assumption 2.2 we have $\|C_{KK}^{-\frac{1}{2}} u\|_{HK} \leq A_1$, so that
$$\left\|\left(C_{KK} + \lambda I\right)^{-\frac{1}{2}} u\right\| \leq \left\|\left(C_{KK} + \lambda I\right)^{-\frac{1}{2}}\right\| \cdot \left\|C_{KK}^{-\frac{1}{2}} u\right\| \leq \lambda^{-\frac{1}{2}} \cdot A_1$$
as desired. □

D.1 CONCENTRATION INEQUALITIES

Theorem D.1 (Fischer & Steinwart, 2020, Theorem 27) Let (Ω, B, P) be a probability space, H be a separable Hilbert space and $X : \Omega \to \text{HS}(H; H)$ be a random variable with self-adjoint values. Furthermore, assume that $\|X\|_F \leq B, P - \text{a.s.}$ and V be a positive semi-definite matrix with $\mathbb{E}_P\left(X^2\right) \preceq V$, i.e. $V - \mathbb{E}_P\left(X^2\right)$ is positive semi-definite. Then, for $g(V) := \log \left(2e \text{tr}(V)\|V\|^{-1}\right), \tau \geq 1$, and $n \geq 1$, the following concentration inequality is satisfied
$$P^n \left(\left(\omega_1, \ldots, \omega_n\right) \in \Omega^n : \frac{1}{n} \sum_{i=1}^{n} X(\omega_i) - \mathbb{E}_P X(\omega) \right) \geq \frac{4\tau Bg(V)}{3n} + \sqrt{\frac{2\tau \|V\|g(V)}{n}} \leq 2e^{-\tau}.
$$

Theorem D.2 (Fischer & Steinwart, 2020, Theorem 26) Let (Ω, B, P) be a probability space, H be a separable Hilbert space, and $\xi : \Omega \to H$ be a random variable with
$$\mathbb{E}_P \|\xi\|_H^m \leq \frac{1}{2} m! \sigma^2 L^{m-2}$$
for all $m \geq 2$, then, for $\tau \geq 1$ and $n \geq 1$, the following concentration inequality is satisfied
$$P^n \left(\left(\omega_1, \ldots, \omega_n\right) \in \Omega^n : \frac{1}{n} \sum_{i=1}^{n} \left|\xi(\omega_i) - \mathbb{E}_P \xi\right| \right) \leq 2e^{-\tau}\left(\sigma^2 + \frac{\tau^2}{n}\right).$$

The following theorem shows that the regularized covariance $C_{KK} = C_{KK} + \lambda I$ can be estimated with small error when λ is above a certain threshold. Although it is well-known (Fischer & Steinwart, 2020; Talwai et al., 2022), we still recall it below for completeness.

Theorem D.3 Recall that $C_{KK} = \mathbb{E}_{P_K} u \otimes u$ and $\hat{C}_{KK} = \frac{1}{N} \sum_{i=1}^{N} u_i \otimes u_i$ where $u_i \overset{\text{i.i.d.}}{\sim} P_K$. Suppose that Assumption 2.2 holds and $N \geq A_1^2 \tau g_\lambda \lambda^{-\alpha}$, where $g_\lambda = \log \left(2e N p_K \left(\left\|C_{KK} + \lambda I\right\|_{F}\right)^{2}\right)$ and $N p_K (\lambda) = \text{tr}\left((C_{KK} + \lambda I)^{-1} C_{KK}\right)$ is the effective dimension, then with probability at least $1 - e^{-\tau}$, we have
$$\left\|\left(C_{KK} + \lambda I\right)^{-\frac{1}{2}} \left(C_{KK} - \hat{C}_{KK}\right) \left(C_{KK} + \lambda I\right)^{-\frac{1}{2}}\right\| \leq \frac{A_1^2 \tau g_\lambda}{N \lambda_0} \leq 0.1. \quad (28)$$

Proof: Let $X(u) = \left(C_{KK} + \lambda I\right)^{-\frac{1}{2}} u \otimes u \left(C_{KK} + \lambda I\right)^{-\frac{1}{2}}$ where $u \in \mathcal{H}_K$, then the LHS of (28) can be expressed as $\left\|\frac{1}{N} \sum_{i=1}^{N} X(u_i) - \mathbb{E}_{u \sim P_K} X(u)\right\|$. We hope to apply Theorem D.1 and start with verifying the assumptions.

Since $\mathbb{E}_{P_K} X = \left(C_{KK} + \lambda I\right)^{-\frac{1}{2}} X(u) \left(C_{KK} + \lambda I\right)^{-\frac{1}{2}}$ and $\|X(u)\| = \|X(u)\|_F = \left\|\left(C_{KK} + \lambda I\right)^{-\frac{1}{2}} u\right\|^2 \leq A_1^2 \left\|\left(C_{KK} + \lambda I\right)^{-\frac{1}{2}} \right\|^2 \leq A_1^2 \lambda_{-\alpha}$, so that there exists $V = O\left(\lambda^{-\alpha} \left(C_{KK} + \lambda I\right)^{-\frac{1}{2}} C_{KK} \left(C_{KK} + \lambda I\right)^{-\frac{1}{2}}\right)$ such that $\mathbb{E}_{P_K} X^2 \preceq V$. It’s easy to see that $\|V\| \lesssim \lambda^{-\alpha}$ and $\text{tr}(V) \lesssim N p_K (\lambda)$. The conclusion then follows from Theorem D.1 with $B = O(\lambda^{-\alpha})$ and $g(V) = g_\lambda$. □

Corollary D.1 Under the notations and assumptions of Theorem D.3, there exists a constant $C_1 > 0$ with probability $\geq 1 - e^{-\tau}$ we have
$$\left\|\left(C_{KK} + \lambda I\right)^{\frac{1}{2}} \left(C_{KK} + \lambda I\right)^{-1} \left(C_{KK} + \lambda I\right)^{\frac{1}{2}}\right\| \leq C_1. \quad (29)$$
Proof: By Theorem D.3 we have

\[
\left\| (C_{KK} + \lambda I)^{\frac{1}{2}} \left(\hat{C}_{KK} - C_{KK} \right)^{-1} (C_{KK} + \lambda I)^{\frac{1}{2}} \right\| \\
= \left\| \left(I - (C_{KK} + \lambda I)^{-\frac{1}{2}} (C_{KK} - \hat{C}_{KK})(C_{KK} + \lambda I)^{-\frac{1}{2}} \right)^{-1} \right\| \\
\leq 2
\]

with probability \(\geq 1 - e^{-\lambda} \), as desired. \(\square \)