Thrombosis and Major Bleeding Risk After Primary PCI Among Patients With Multivessel Coronary Artery Disease

Xiaoxiao Zhao¹, Chen Liu¹, Peng Zhou¹, Zhaoxue Sheng¹, Jiannan Li¹, Jinying Zhou¹, Runzhen Chen¹, Ying Wang¹, Yi Chen¹, Li Song¹, Hanjun Zhao*¹ and Hongbing Yan*²

¹ Department of Cardiology, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China, ² Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China

Background and Aim: This study aimed to develop and validate separate risk prediction models for thrombosis events (TEs) and major bleeding (MB) in patients with multivessel coronary artery lesions who had undergone primary percutaneous coronary intervention (PCI).

Methods and Results: Thrombosis events (TEs) were defined as the composite of myocardial infarction recurrence or ischemic cerebrovascular events, whereas MB was defined as the occurrence of bleeding academic research consortium (BARC) three or five bleeding. The derivation and validation cohorts comprised 2,976 patients who underwent primary PCI between January 2010 and June 2017. At a median follow-up of 3.07 years (1,122 days), TEs and MB occurred in 167 and 98 patients, respectively. Independent predictors of TEs were older age, prior PCI, non-ST elevated MI (NSTEMI), and stent thrombosis (ST). Independent predictors of MB were triple therapy at discharge, coronary artery bifurcation lesions, lesion restenosis, target lesion of the left main coronary artery, stent thrombosis, non-use of IABP during primary PCI, type A/B according to the American College of Cardiology classification of the coronary lesion, and PTCA. In the derivation and validation cohorts, the areas under the curve were 0.817 and 0.82 for thrombosis and 0.886 and 0.976 for bleeding, respectively. In the derivation cohort, high thrombotic risk (n = 755) was associated with higher 3-year incidence of TEs, major adverse cardiovascular events (MACEs), and all-cause death compared to low risk (n = 1,275) (p = 0.0022, 0.019, and 0.012, respectively). High bleeding risk (n = 1,675) was associated with higher incidence of bleeding, MACEs, and cardiac death compared to low risk (n = 355) (p < 0.0001).

Conclusion: Simple risk scores can be useful in predicting risks of ischemic and bleeding events after primary PCI, thereby stratifying thrombotic or MB risks and facilitating clinical decisions.

Keywords: thrombosis, major bleeding, primary PCI, multi-vessels coronary artery disease, inflammation
INTRODUCTION

The risk of thrombotic events (TEs), such as myocardial infarction (MI) and stent thrombosis (ST), is lower in patients with the acute coronary syndrome who receive dual antiplatelet therapy (DAPT) with aspirin or who have undergone primary percutaneous coronary intervention (PCI) (1). The marginally higher mortality associated with bleeding events has been reported to be comparable to the risk associated with MI (2, 3). Hence, avoiding bleeding events is becoming increasingly important. These results suggest that clinical decision-making concerning the optimal duration of DAPT for individual patients following PCI must be predicated on balancing the long-term risks of intensive antithrombotic therapy and avoiding major bleeding (MB) (4, 5). In this context, it is essential to develop stratification tools for distinguishing high-risk ischemic patients from high-risk bleeding patients. To date, most post-PCI algorithms are single scoring systems or focused on in-hospital events or short-term risks (6–11). Although it is practicable to inform clinical decisions with respect to the short-term provision of DAPT, respective weights of underlying risk factors vary from early as opposed to later, and predicting risks of thrombotic and bleeding events is more important in the long term. Accordingly, this study aimed to explore prediction rules for long-term outcomes of TEs and MB events separately in a large Chinese observational database of patients with multivessel coronary artery lesions who had undergone primary PCI. We prepared and presented the current article in accordance with the TRIPOD reporting checklist (Appendix File)1.

MATERIALS AND METHODS

Study Population: Enrollment and Randomization

A prospective observational study was conducted on patients who had undergone primary PCI in Fuwai Hospital (National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences) in Beijing, China, between January 2010 and June 2017. This study was designed to investigate the validity of separate risk prediction models for subsequent clinical adverse events. With respect to eligibility criteria, adult patients (1) who had undergone primary PCI, including stent implantation, thrombus aspiration, and balloon dilation in the coronary artery, and (2) who provided written informed consent were included in the study. Patients (1) who refused participation, (2) who were lost to follow-up when contacted, and (3) who did not have coronary angiography parameters (coronary angiography, used to diagnose ischemic heart disease after chest pain, is a procedure that uses contrast dye and x-ray pictures to detect blockages in coronary arteries; the coronary angiography parameters mentioned above including whether patients used thrombus aspiration, stent implantation, use of IABP, percutaneous transluminal coronary angioplasty, and complex procedure) or multivessel coronary artery lesions were, however, excluded from the analysis. Following the application of the inclusion and exclusion criteria, a total of 3,976 subjects with acute myocardial infarction with multivessel lesions remained. The patients were administered aspirin 300 mg, clopidogrel 600 mg or ticagrelor 180 mg, and heparin 100 IU/kg before the procedure of intervention. The access of primary PCI was performed via radial or femoral artery. Thrombus aspiration was performed to reduce the burden of the thrombus. Duration of dual antiplatelet therapy (DAPT) consisted of oral aspirin and a P2Y12 inhibitor for at least 12 months following primary PCI.

The included patients were randomly and proportionally (70:30%) divided into the derivation cohort (n = 2,084) and the validation cohort (n = 892) (divide the training dataset into training and validation sets, ideally 7,030, and model on 70% of the training dataset; then, use the 30% validation data set for cross-validation and performance evaluation using evaluation metrics).

This study was conducted according to the principles outlined in the Declaration of Helsinki and was approved by the Ethics Committee of Fuwai Hospital. All the study subjects gave informed consent.

Study Definitions

Thrombosis events (TEs) were defined as the occurrence of coronary thrombotic complications such as ischemic cerebrovascular events or MI recurrence. Consistent with the universal definition, MI recurrence was defined as the recurrence of chest pain accompanied by either re-ST-segment elevation or ST-segment depression attributed to myocardial ischemia and re-elevation of cardiac troponin I >25% (12). MB was defined as the occurrence of Bleeding Academic Research Consortium type three or five bleeding (13) and was adjusted by a blinded committee. Multivessel coronary artery lesions, characterized by significant stenosis (diameter >1.5 mm and significant stenosis >50%) in all three major coronary arteries determined by a cardiologist. Stroke was defined as rapidly developing focal or general brain dysfunction that lasted for more than 24 h or caused death, excluding non-vascular causes (e.g., trauma, metabolic disorders, tumors, and any neurological abnormalities due to central nervous system infection). Additionally, ischemic stroke included cerebral thrombosis and cerebral embolism. Imaging data are as follows: computed tomography (CT) showed insular signs, namely, disappearance and blurring of the gray matter interface in the conduction zone, consistency of the density of the insular cortex with the outer capsule, and disappearance or narrowing of the cerebral sulci in the cortex; the abnormal high signal shadow was found in the responsible lesion area under magnetic resonance imaging (MRI) detection; major adverse cardiovascular events (MACEs) were identified as the composite of overall mortality, MI recurrence, and ischemic cerebrovascular events; events were identified using physician-reported diagnoses extracted from cardiac catheterization laboratory report, hospital discharge records, or clinical notes in the event of death. Anemia was defined as hemoglobin level <12 g/dl in men and <11 g/dl in women (14). Complex PCI procedures included bifurcation, total occlusion, thrombus, or >2 stent. Chronic kidney disease (CKD) was defined as chronic renal structural and functional impairments due to a variety of...
### TABLE 1.1 Baseline clinical characteristics of patients with vs. without thrombotic events or major bleeding events.

| Variables                                      | Multi-vessels coronary artery disease \((N = 2,976)\) | Non multi-vessels coronary artery disease \((N = 1,000)\) |
|------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| Age (years)                                    | 61.56 ± 0.84                                        | 60.03 ± 0.21                                          |
| Male [%]                                       | 131 (8.4%)                                          | 78 (79.59%)                                           |
| BMI (kg/m²)                                    | 26.06 ± 0.39                                        | 25.74 ± 0.51                                          |
| Heart rate (beats/min)                         | 74.61 ± 1.28                                        | 77.54 ± 0.30                                          |
| SBP (mmHg)                                     | 125.51 ± 1.54                                       | 124.61 ± 0.36                                        |
| DBP (mmHg)                                     | 69.42 ± 2.03                                        | 70.90 ± 0.31                                          |
| LVEF at admission                              | 52.82 ± 0.59                                        | 54.11 ± 0.29                                          |
| Hypertension [%]                               | 109 (65.3%)                                         | 66 (67.36%)                                           |
| Diabetes [%]                                   | 64 (38.3%)                                          | 1,023 (35.55%)                                       |
| Hyperlipidemia [%]                             | 143 (87.2%)                                         | 2,393 (92.07%)                                       |
| Smoking [%]                                    | 107 (65.2%)                                         | 1,701 (64.87%)                                       |
| Previous PCI [%]                               | 27 (16.2%)                                          | 421 (14.63%)                                          |
| Previous CABG [%]                              | 5 (3.0%)                                             | 39 (1.36%)                                            |
| AF [%]                                         | 14 (8.4%)                                            | 4 (12.9%)                                           |
| CKD [%]                                        | 14 (8.4%)                                            | 10 (10.20%)                                           |
| HDL (mg/dl)                                    | 1.53 ± 0.08                                         | 1.81 ± 0.10                                           |
| LDL (mg/dl)                                    | 2.67 ± 0.07                                         | 2.67 ± 0.09                                           |
| Triglycerides (mg/dl)                          | 1.07 ± 0.02                                         | 1.07 ± 0.01                                           |
| LPA (g/L)                                      | 302.53 ± 22.74                                       | 274.92 ± 24.8                                         |
| hs-CRP (mg/L)                                  | 7.49 ± 0.19                                         | 7.72 ± 0.51                                           |
| D-dimer of baseline (ug/L)                    | 0.72 ± 0.26                                         | 0.87 ± 0.03                                           |
| Peak level of D-dimer (ug/L)                   | 1.22 ± 0.38                                         | 0.94 ± 0.25                                           |
| Crea (umol/L)                                  | 80.24 ± 1.78                                        | 85.81 ± 3.24                                          |

(Continued)
| Variables                                      | Multi-vessels coronary artery disease (N = 2,976) | Non multi-vessels coronary artery disease (N = 1,000) |
|------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| eGFR (MDRD) (ml/min per 1.73 m²)             | 99.32 ± 8.28 88.61 ± 1.56 | 89.24 ± 1.58 |
| Peak level of Tni (ng/L)                     | 4.05 ± 0.27 2.22 ± 0.81 | 3.96 ± 1.69 |
| Statin [%/n]                                  | 95 (96.94%) 2.627 (93.5%) | 2.688 (93.4%) |
| Aspirin [%/n]                                 | 97 (98.98%) 2.780 (99.00%) | 2.849 (98.99%) |
| Clopidogrel [%/n]                             | 2.145 (76.4%) <0.001* | 0.036 |
| Ticagrelor [%/n]                              | 463 (23.1%) <0.001* | 7 (72.45%) |
| ACEI [%/n]                                    | 61 (60.9%) 1.710 | 1.754 (60.96%) |
| ARB [%/n]                                     | 250 (8.9%) 0.479 | 256 (8.90%) |
| ACEI/ARB [%/n]                                | 194 (69.7%) 0.307 | 2,007 (69.74%) |
| Beta-Blockers [%/n]                           | 420 (86.5%) 0.258 | 2,406 (86.73%) |
| Diuretic [%/n]                                | 794 (28.3%) 0.189 | 822 (28.56%) |
| Spironolactone [%/n]                          | 575 (20.5%) 0.123 | 600 (20.85%) |
| P2Y12 inhibitors [%/n]                        | 98 (100.00%) 0.279 | 2,856 (99.24%) |
| Total lesion length, mm                      | 28.45 ± 0.30 28.73 ± 0.67 | 24.03 ± 0.4 |
| Lesion diameter, mm                          | 3.01 ± 0.98 3.13 ± 0.03 | 3.13 ± 0.01 |
| Degree of lesion stenosis [%/n]               | 97.26 ± 0.11 97.22 ± 0.11 | 97.07 ± 0.18 |
| Bifurcation lesion [%/n]                      | 1,009 (35.06%) 0.499 | 3.04 |
| PTCA [%/n]                                    | 2,563 (89.06%) 0.123 | 817 (84.3%) |
| Thrombus aspiration [%/n]                     | 1,166 (40.51%) 0.025* | 13 (54.2%) |
| Stent implantation [%/n]                      | 2,536 (88.12%) 0.325 | 856 (88.3%) |
| IABP [%/n]                                    | 287 (10.2%) 0.558 | 7 (7.14%) |
| MACE [%/n]                                    | 171 (6.1%) <0.001* | 330 (11.47%) |

(Continued)
TABLE 1.1 | Continued

| Variables | Multi-vessels coronary artery disease (N = 2,976) | Non multi-vessels coronary artery disease (N = 1,000) |
|-----------|--------------------------------------------------|--------------------------------------------------|
|           | TEs (N = 167) | No TEs (N = 2,809) | P1 | MB (N = 98) | No MB (N = 2,878) | P2 | TEs (N = 31) | No TEs (N = 969) | MB (N = 24) | No MB (N = 976) |
| All caused mortality [% (n)] | 10 (6.0%) | 171 (6.1%) | 0.562 | 1 (1.02%) | 180 (6.25%) | 0.033* | 3 (9.7%) | 27 (2.8%) | 3 (12.5%) | 27 (2.8%) |
| Cardiovascular death [% (n)] | 7 (4.2%) | 111 (4.0%) | 0.497 | 0 (0.00%) | 118 (4.10%) | 0.041* | 1 (3.2%) | 18 (1.9%) | 0 (0.0%) | 0 (0.0%) |
| Recurrence MI [% (n)] | 111 (66.5%) | 0 (0.0%) | <0.001* | 5 (5.10%) | 106 (3.69%) | 0.847 | 13 (41.9%) | 0 (0.0%) | 0 (0.0%) | 10 (1.0%) |
| Ischemic stroke [% (n)] | 58 (34.7%) | 0 (0.0%) | <0.001* | 2 (2.04%) | 56 (1.95%) | 0.847 | 13 (41.9%) | 0 (0.0%) | 0 (0.0%) | 10 (1.0%) |
| Cerebral hemorrhage [% (n)] | 0 (0.0%) | 11 (0.4%) | 0.529 | 11 (12.2%) | 0 (0.0%) | <0.001* | 2 (6.5%) | 1 (0.1%) | 3 (12.5%) | 0 (0.0%) |

Values are expressed as mean ± standard error or number (%). BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LVEF, left ventricular ejective fraction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; LPA, lipase activator; hs-CRP, high sensitive C-reactive protein; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MACE, major adverse cardiovascular event; TEs, thrombotic events; MB, major bleeding. *p < 0.05.

Statistical Analysis

Normal distribution of outcome variables was conducted using the method of Kolmogorov-Smirnov test. Baseline clinical and procedural characteristics of primary PCI according to the presence or absence of TEs and MB were compared between patients with and without multivessel lesions, and between low-risk and high-risk groups according to the best cutoff value of the prognostic index. Triple therapy on discharge, body mass index (<35 kg/m²), smoking, diabetes mellitus, prior hyperlipidemia, hypertension, killer classification, length of the lesion, complex procedure, and prior PCI were considered candidate covariates for each model. The health status of the enrolled patients was confirmed via telephone calls and review of health records, laboratory reports, and clinical notes in the event of death by physicians who in charge of follow-up.
TABLE 1.2 | Baseline clinical characteristics of subgroup patients with vs. without thrombotic events or major bleeding.

| Variables                              | Derivation cohort | Validation cohort | P1    | P2    |
|----------------------------------------|-------------------|-------------------|-------|-------|
|                                        | TEs               | MB                | TEs   | MB    |       |
| Age (years)                            | 61.88 ± 1.12      | 59.75 ± 1.24      | 61.05 ± 1.27 | 60.69 ± 2.61 | 0.626 | 0.714 |
| Male [% (n)]                           | 79 (77.5%)        | 57 (82.6%)        | 52 (80.0%) | 21 (72.4%) | 0.425 | 0.191 |
| Hypertension [% (n)]                   | 66 (63.7%)        | 43 (62.3%)        | 44 (67.7%) | 23 (79.3%) | 0.361 | 0.078 |
| Diabetes [% (n)]                       | 39 (38.2%)        | 23 (33.3%)        | 25 (38.5%) | 9 (31.0%)  | 0.552 | 0.510 |
| Hyperlipidemia [% (n)]                 | 86 (86.9%)        | 58 (93.5%)        | 57 (87.7%) | 21 (87.5%) | 0.539 | 0.301 |
| Smoking [% (n)]                        | 66 (66.0%)        | 45 (72.6%)        | 41 (63.1%) | 15 (82.5%) | 0.413 | 0.255 |
| Previous PCI [% (n)]                   | 18 (17.6%)        | 11 (15.9%)        | 9 (13.8%)  | 6 (20.7%)  | 0.335 | 0.383 |
| Malignancy [% (n)]                     | 2 (2.0%)          | 1 (1.4%)          | 3 (4.6%)   | 1 (3.4%)   | 0.297 | 0.506 |
| Anemia [Hb <11 g/dL [% (n)]            | 11 (10.8%)        | 5 (7.2%)          | 3 (4.6%)   | 1 (3.4%)   | 0.131 | 0.424 |
| CKD [% (n)]                            | 10 (9.8%)         | 7 (10.1%)         | 4 (6.2%)   | 3 (10.3%)  | 0.299 | 0.616 |

Laboratory examinations

|                      | TEs               | MB                | TEs   | MB    |       |
|----------------------|-------------------|-------------------|-------|-------|-------|
| HDL-C [% (n)]        | 9 (8.8%)          | 6 (8.7%)          | 8 (12.3%) | 5 (17.2%) | 0.318 | 0.189 |
| LDL-C [% (n)]        | 25 (24.5%)        | 20 (29.0%)        | 21 (32.3%) | 6 (20.7%) | 0.178 | 0.279 |
| Triglycerides >1.7 (mg/dL) [% (n)] | 3 (2.9%)          | 1 (1.4%)          | 2 (3.1%)   | 0 (0.0%)   | 0.647 | 0.704 |
| LPA >300 (g/L) [% (n)] | 38 (37.3%)        | 24 (34.8%)        | 22 (22.8%) | 9 (31.0%)  | 0.390 | 0.455 |
| hs-CRP >10 (mg/L) [% (n)]   | 39 (38.2%)        | 28 (40.6%)        | 31 (47.7%) | 11 (37.9%) | 0.148 | 0.496 |
| D-dimer >0.5 (ug/L) [% (n)]  | 23 (22.5%)        | 14 (20.3%)        | 10 (15.4%) | 9 (31.0%)  | 0.175 | 0.187 |
| eGFR >90 (ml/min per 1.73 m²) [% (n)] | 61 (59.8%)        | 35 (50.7%)        | 42 (64.6%) | 20 (69.0%) | 0.324 | 0.074 |

Procedural characteristics

|                      | TEs               | MB                | TEs   | MB    |       |
|----------------------|-------------------|-------------------|-------|-------|-------|
| PTCA [% (n)]         | 88 (86.3%)        | 67 (97.1)         | 56 (86.2) | 26 (89.7) | 0.578 | 0.152 |
| Thrombus aspiration [% (n)] | 36 (35.3%)        | 22 (31.9%)        | 19 (29.2%) | 15 (51.7%) | 0.261 | 0.053 |
| Stent implantation [% (n)] | 89 (87.3%)        | 61 (88.4%)        | 56 (86.2%) | 27 (93.1%) | 0.507 | 0.384 |
| Use of IABP [% (n)]  | 7 (6.9%)          | 3 (4.3%)          | 10 (15.4%) | 2 (6.9%)   | 0.067 | 0.465 |
| LM lesion [% (n)]    | 4 (3.9%)          | 9 (12.0%)         | 6 (9.2%)   | 2 (6.9%)   | 0.142 | 0.310 |
| Complex procedure (bifurcation, total occlusion, thrombus) [% (n)] | 88 (86.3%) | 55 (79.7%) | 54 (83.1%) | 25 (86.2%) | 0.362 | 0.326 |
| Total occlusion [% (n)] | 67 (65.7%)        | 33 (47.8%)        | 42 (64.8%) | 17 (58.6%) | 0.508 | 0.226 |
| Triple therapy on discharge | 0 (0%)            | 2 (2.9%)          | 0 (0%)     | 0 (0%)     | -     | -     |

Other characteristics

|                      | TEs               | MB                | TEs   | MB    |       |
|----------------------|-------------------|-------------------|-------|-------|-------|
| Abnormal liverfunction [% (n)] | 7 (6.9%)          | 3 (4.3%)          | 1 (1.5%)   | 2 (6.9%)   | 0.112 | 0.465 |
| Malignancy [% (n)]   | 1 (1.0%)          | 1 (1.4%)          | 0 (0.0%)   | 1 (3.4%)   | 0.611 | 0.506 |
| Anemia [Hb <11 g/dL] [% (n)] | 3 (2.9%)          | 1 (1.4%)          | 1 (1.5%)   | 2 (6.9%)   | 0.493 | 0.208 |
| Platelet count <100,000/μL [% (n)] | 1 (1.0%)          | 1 (1.4%)          | 2 (3.1%)   | 0 (0.0%)   | 0.326 | 0.704 |

Values are expressed as mean ± standard error or number (%). BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; PTCA, percutaneous transluminal coronary angioplasty; CKD, chronic kidney disease; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; LPA, lipase activator; hs-CRP, high sensitive C-reactive protein; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MACE, major adverse cardiovascular event; TEs, thrombotic events; MB, major bleeding.
### TABLE 2 | Univariate Cox analysis for major bleeding events and thrombotic events in the derivation cohort.

| Variables                       | Major bleeding events | Thrombotic events |
|---------------------------------|-----------------------|-------------------|
|                                 | HR (95% CI)           | HR (95% CI)       |
|                                 | P Value               | P Value           |
|                                 |                       |                   |
| Age, per year increase          | 1.000 (0.980, 1.021)  | 1.022 (1.005, 1.040) |
| Male                            | 1.332 (0.715, 2.483)  | 0.919 (0.577, 1.464) |
| Triple therapy on discharge     | 15.525 (3.725, 64.242) | 0.050 (0.000, 1.843) |
| BMI <25.0                       | 1.079 (0.657, 1.773)  | 1.307 (0.872, 1.958) |
| BMI >35.0                       | 0.986 (0.159, 6.115)  | 1.320 (0.361, 4.829) |
| Hyperlipidemia                  | 1.738 (0.627, 4.814)  | 0.900 (0.494, 1.539) |
| Hypertension                    | 0.902 (0.554, 1.468)  | 1.003 (0.667, 1.507) |
| Diabetes mellitus               | 1.030 (0.624, 1.700)  | 1.312 (0.877, 1.963) |
| Current smoking                 | 1.319 (0.768, 2.267)  | 0.960 (0.635, 1.453) |
| Prior CABG                      | 1.968 (0.272, 14.218) | 3.721 (0.913, 15.157) |
| Prior PCI                        | 1.587 (0.828, 3.044)  | 2.449 (1.458, 4.112) |
| CKD                             | 1.435 (0.666, 3.136)  | 1.461 (0.760, 2.811) |
| AF                              | 1.061 (0.426, 2.642)  | 1.477 (0.787, 2.771) |
| Abnormal liver function         | 0.619 (0.193, 1.979)  | 1.509 (0.695, 3.280) |
| Malignancy                      | 1.894 (0.262, 13.683) | 1.699 (0.236, 12.224) |
| KILLIP II                       | 1.233 (0.611, 2.489)  | 0.906 (0.471, 1.745) |
| KILLIP III                      | 1.046 (0.145, 7.556)  | 1.517 (0.373, 6.171) |
| KILLIP IV                       | 0.567 (0.078, 14.101) | 0.977 (0.309, 3.094) |
| Anemia (Hb <11 g/dL)            | 0.494 (0.068, 3.570)  | 1.463 (0.461, 4.650) |
| Platelet count <100 000/IL      | 1.928 (0.267, 13.910) | 1.424 (0.198, 10.231) |
| LDL-C (mg/dL) <3.12             | 0.882 (0.054, 1.485)  | 0.671 (0.426, 1.056) |
| Hs-CRP (mg/l) >10                | 0.882 (0.054, 1.427)  | 0.742 (0.496, 1.110) |
| HDL-C (mg/dL) <0.7               | 1.084 (0.488, 2.510)  | 1.252 (0.629, 2.493) |
| TG (mg/dL) >1.7                 | 0.620 (0.086, 4.464)  | 1.269 (0.402, 4.006) |
| Lpa (mg/dL) >300                 | 1.176 (0.716, 1.933)  | 1.444 (0.964, 2.163) |
| D2B time (90 min)               | 1.014 (0.543, 1.895)  | 0.647 (0.402, 1.043) |
| Target of LM                    | 2.108 (1.045, 2.545)  | 0.647 (0.238, 1.762) |
| Target of RCA                   | 1.081 (0.673, 1.735)  | 1.329 (0.838, 1.830) |
| Target of LCX                   | 1.418 (0.788, 2.550)  | 1.184 (0.703, 1.996) |
| Target of LAD                   | 1.518 (0.902, 2.555)  | 0.776 (0.513, 1.172) |
| Total lesion length, mm         | ref                   | ref               |
| 20–40                           | 0.937 (0.548, 1.603)  | 0.813              |
| >40                             | 1.031 (0.519, 2.049)  | 0.930              |
| Complex procedure (bifurcation, total occlusion, thrombus) | 0.615 (0.341, 1.107) | 0.105* |
| Target of bifurcation           | 1.405 (0.873, 2.262)  | 0.162* |
| PTCA                            | 5.238 (1.282, 21.450) | 0.021* |
| Thrombus aspiration             | 0.736 (0.441, 1.228)  | 0.240* |
| Stent implantation              | 0.806 (0.384, 1.693)  | 0.569              |
| Use of IABP                     | 0.394 (0.124, 1.255)  | 0.115* |
| No reflow phenomenon            | 0.361 (0.056, 2.603)  | 0.312* |
| Revascularization after discharge | 1.266 (0.646, 2.478)  | 0.492* |
| Restenosis of the lesion        | 5.624 (2.019, 15.668) | 0.001* |
| Stent thrombosis                | 0.048 (0.000, 29.282) | 0.350* |
| Type of ACC = C1                | 0.575 (0.328, 1.007)  | 0.053* |

Values are expressed as mean ± standard error or number (%). BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; LPA, lipase activator; Hs-CRP, high sensitive C-reactive protein; eGFR, estimated glomerular filtration rate; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MACE, major adverse cardiovascular event; TEs, thrombotic events; MB, major bleeding. *p < 0.5.
Integer risk scores for the outcomes of TEs and MB were generated using fully adjusted regression coefficients, as described by Sullivan et al. (16). The survival receiver operating characteristic (ROC) curve for prognostic index (PI) was fitted using the Kaplan–Meier method, and the best cutoff value was obtained. The patients were subsequently divided into the low-risk and high-risk groups according to the best cutoff value of the prognostic index (PI). Observed event rates were calculated as Kaplan–Meier (K–M) estimates of time to the first event. Predicted event rates were estimated using fully adjusted Cox regression models. The main software used for statistical analysis in this study used survival and rms package in R language version 1.386.3.6. Other analyses were performed using SPSS version 20.0 (IBM Corp., Armonk, NY, United States). All p-values were two-tailed, and statistical significance was set at p < 0.05.

Performance and Internal Validation
Cohort
External validation of each score was performed. Each subject in the validation cohort was assigned to a TE risk score and MB event risk score in the same manner as in the derivation cohort. The patients were subsequently categorized into subjects with low and high thrombotic and bleeding risks using the same thresholds as in the derivation cohort. The 3-year adverse event rates were counted for each risk division using the K-M method, and the difference was determined by the method of the log-rank test. Discriminations of both the derivation and validation cohorts were assessed by calculating the area under the ROC curve (AUC) and expressed as c-statistic with the use of the MedCalc software for Windows, version 18.2.1.0 (MedCalc Software, Mariakerke, Belgium). The accuracy of the new model and acuity (bleeding model)/autar (thrombosis model) risk score model predicting MACEs among patients with MI who underwent PPCI was compared according to the area under the ROC (AUC) curve by a non-parametric test developed. MedCalc for Windows version 18.2.1 (MedCalc Software, Mariakerke, Belgium) was used for comparison.

RESULTS
Baseline Characteristics
Among 4,151 enrolled patients who had undergone PCI in Fuwai Hospital (Beijing, China) between January 2010 and June 2017, those who were lost to follow-up (n = 97), had no coronary angiography parameters (n = 78), and had no multivessel coronary artery lesions (n = 1,000) were excluded. Hence, the study population comprised 2,976 patients in total. At a median follow-up of 3.07 years (1,122 days), 167 patients sustained TEs, whereas 98 patients experienced MB.

Of the patients suffering MB, the incidence of cerebral hemorrhage, fundus bleeding, gastrointestinal bleeding, urogenital bleeding, nasal mucosa bleeding was 11.22 (11), 19.39 (19), 53.06 (52), 7.14 (7), and 9.18% (9), respectively. The baseline characteristics are summarized in Tables 1.1, 1.2. Patients with TEs more frequently presented with MACEs (p < 0.001) and showed a higher incidence of hyperlipidemia (p = 0.017) than those without TEs. Patients with MB had lower degree of lesion stenosis (p = 0.034) and showed higher incidence of all-cause death (p = 0.033), cardiac death (p = 0.041), and cerebral hemorrhage (p < 0.001) than their counterparts without MB.

There was no significant difference in baseline characteristics between the derivation cohort and the validation cohort with respect to several aspects, such as clinical variables, laboratory examination, and procedural characteristics (Table 1.2). For the purpose of assessing the strength of association between 39

| Parameter                        | Category of parameter | Score |
|----------------------------------|-----------------------|-------|
| PTCA                             | YES                   | +30.8 |
|                                  | NO                    | +0    |
| The use of IABP during primary PCI| YES                   | +0    |
|                                  | NO                    | +22.1 |
| Target lesion of the LM coronary artery | YES      | +16.8 |
|                                  | NO                    | +0    |
| Triple therapy on discharge#     | YES                   | +55   |
|                                  | NO                    | +0    |
| Restenosis of the lesion         | YES                   | +29.6 |
|                                  | NO                    | +0    |
| C type of ACC classification of coronary | YES   | +0    |
|                                  | NO                    | +8.25 |
| Stent thrombosis                 | YES                   | +0    |
|                                  | NO                    | +100  |
| Bifurcation lesions of coronary artery | YES   | +6.47 |
|                                  | NO                    | +0    |

Total point: 0–240

#Triple therapy on discharge was defined as a combination of dual antiplatelet therapy (DAPT) (aspirin plus thienopyridine) and oral anticoagulation therapy. PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; ACC, American College of Cardiology; LM, left main coronary artery.

| Parameter                        | Category of parameter | Score |
|----------------------------------|-----------------------|-------|
| Age                              | <50 yr                | +0    |
|                                  | 50–59                 | +25   |
|                                  | 60–69                 | +50   |
|                                  | 70–79                 | +70   |
|                                  | ≥80                   | +100  |
| Prior PCI                        | YES                   | +78.1 |
|                                  | NO                    | +0    |
| NSTEMI                           | YES                   | +66.6 |
|                                  | NO                    | +0    |
| Stent thrombosis                 | YES                   | +0    |
|                                  | NO                    | +76.5 |

Total point: 0–350

PCI, percutaneous coronary intervention; NSTEMI, non-ST-segment elevation myocardial infarction.
potential predictors and TEs or MB events in the derivation cohort, we constructed univariate Cox regression models and presented the results as hazard ratios (95% CI) with $p$-values. Variables identified to show association (with $p < 0.5$) in the univariate logistic regression models were included in the multivariate models (Table 2).

**Predictors of Thrombotic Risk Scores and MB Risk Scores**

Point estimates for each predictive covariate in the final prediction models are shown in Tables 3.1, 3.2. The strongest predictors of TEs, quantified and ranked using the values in the nomogram, were older age, history of prior PCI, non-ST-elevation MI, and stent thrombosis status. Correspondingly, the strongest contributors to MB were percutaneous transluminal coronary angioplasty, non-use of IABP during primary PCI, target lesion of the left main coronary artery, triple therapy at discharge, lesion restenosis, and type A/B according to the American College of Cardiology classification of coronary lesions, without stent thrombosis and coronary artery bifurcation lesions. The coronary TE prediction model had a moderate level of discrimination, with a c-index of 0.616 and adequate calibration for the entire population. Analogous parameters of model performance for MB in the
Figure 2: Continued

A

Thrombotic events in the derivation cohort

MACE in the derivation cohort

Cardiac-caused death in the derivation cohort

All-caused death in the derivation cohort

B

Thrombotic events in the validation cohort

MACE in the validation cohort

Cardiac-caused death in the validation cohort

All-caused death in the validation cohort

FIGURE 2 | Continued
FIGURE 2 | (A) Cumulative 3-year incidence of thrombotic events ($p = 0.0022$), MACEs ($p = 0.019$), cardiac-caused death ($p = 0.076$), and all-caused death ($p = 0.012$) according to the thrombotic risk score categories in the derivation cohort ($N = 2,084$). (B) Cumulative 3-year incidence of thrombotic events ($p = 0.023$), MACEs ($p = 0.00057$), cardiac-caused death ($p = 0.0024$), and all-caused death ($p = 0.00057$) according to the thrombotic risk score categories in the validation cohort.
entire cohort had a c-statistic of 0.676. Using the fully adjusted regression coefficients and nomogram graph, we developed integer-based risk projects for both MB and TEs (Tables 3.1, 3.2, respectively).

Furthermore, 627 (83%) out of 755 subjects with high TEs risk scores in the derivation cohort and 258 (51.7%) out of 499 subjects with high TEs risk scores in the validation cohort also had high MB risk scores; mortality and MB rates for these subjects were very high (Figure 1). Among those with high thrombotic risk scores, only 128 patients (17.0%) in the derivation cohort and 258 (51.7%) out of 499 subjects with high thrombotic risk scores in the validation cohort had low bleeding risk scores (Figure 1). The majority of patients with low thrombotic risk scores had high bleeding risk scores (Figure 1). Within each thrombotic risk level, the frequency of high MB risk increased in the majority of patients as the thrombotic risk increased.

**Clinical Outcomes of Thrombosis and Clinically Relevant Bleeding in the Derivation and Validation Cohorts**

The 3-year cumulative incidences of TEs/MB, MACEs, cardiac death, and all-cause death according to the thrombotic risk score categories and MB risk score categories in the derivation and validation cohorts are presented in Figures 2A–D. In the derivation cohort, TEs ($p = 0.0022$), MACEs ($p = 0.019$), and all-cause death ($p = 0.012$) were significantly different between the low-risk and high-risk groups divided by the PI of thrombotic risk score categories (Figure 2A). Analogously, in the validation cohort, TEs ($p = 0.023$), MACEs ($p = 0.00057$), cardiac death ($p = 0.024$), and all-cause death ($p = 0.00057$) were significantly different between the low-risk and high-risk groups divided by the PI of thrombotic risk score categories (Figure 2B). Similar results are presented in Figures 2C,D.

**Evaluation of the Risk Prediction Model**

Appendix Figure 1 illustrates the evaluation performed, including the calibration curve (Appendix Figures 1A,B) and decision curve analysis (DCA) curve (Appendix Figure 1C) for TEs and MB, respectively, in the derivation and validation cohorts. It is comparable between the observed and predicted risks projects, illustrating that the model calibration was excellent for both predicting scores. Figure 4A shows a pairwise comparison of ROC curves between the new bleeding model and acuity risk score model. The AUC of the new bleeding model is 0.743, and the AUC of acuity score is 0.721. Figure 4B shows a pairwise comparison of ROC curves between the new thrombotic model and autar risk score model. The AUC of the new thrombotic model is 0.818, and the AUC of acuity score is 0.829.

**DISCUSSION**

This study, which involved 2,976 real-world patients with multivessel coronary artery disease who had undergone primary PCI in China, yielded the following main findings: first, we reported the development of separate models for predicting the risks of TEs and MB, which demonstrated moderate accuracy in discrimination concordant and stratified the risk in the derivation and validation cohorts; second, we showed that subjects with high thrombotic risk also had high bleeding risk in a large proportion of the study population.

The objective of this study was to identify readily available characteristics that were independently correlated with TEs and MB in patients with multivessel lesions who had undergone primary PCI. The study described risk indicators (e.g., clinical characteristics, angiography). While various tools have been developed to stratify risk after undergoing PCI, the majority of them are focused on peri-procedural short-term outcomes (6–9, 11, 17–19). We modeled events occurring after discharge and found that clinical risk factors and procedural parameters could predict the risk of TEs. This result is consistent with the findings of previous studies that emphasized the importance of the complexity of coronary artery lesions with respect to the risk of TEs (6, 20). Nevertheless, this result differs from the finding of a previous study that highlighted the importance of clinical risk factors alone (21). These discrepancies may be because thrombotic risk factors are not static but dynamic over time. A thrombotic risk score was proposed in the Thrombin Receptor Antagonist in Secondary Prevention of
FIGURE 3 | Continued

A

Thrombotic Events / derivation

Sensitivity: 95.71
Specificity: 64.53

AUC = 0.817  P < 0.001
95% CI: 0.766-0.835

MACE / derivation

Sensitivity: 70.41
Specificity: 73.58

AUC = 0.771  P < 0.001
95% CI: 0.751-0.791

Cardiac caused death / derivation

Sensitivity: 90.00
Specificity: 63.24

AUC = 0.927  P < 0.001
95% CI: 0.914-0.939

All caused death / derivation

Sensitivity: 83.64
Specificity: 74.05

AUC = 0.893  P < 0.001
95% CI: 0.877-0.907

B

Thrombotic Events / validation

Sensitivity: 85.33
Specificity: 63.19

AUC = 0.923  P < 0.001
95% CI: 0.871-0.967

MACE / validation

Sensitivity: 72.33
Specificity: 70.95

AUC = 0.782  P < 0.001
95% CI: 0.659-0.965

Cardiac caused death / validation

Sensitivity: 92.00
Specificity: 91.26

AUC = 0.973  P < 0.001
95% CI: 0.959-0.985

All caused death / validation

Sensitivity: 92.16
Specificity: 72.24

AUC = 0.958  P < 0.001
95% CI: 0.883-0.932
FIGURE 3 | (A) ROC curve of thrombotic events ($p < 0.001$), MACEs ($p < 0.001$), cardiac-caused death ($p < 0.001$), and all-caused death ($p < 0.001$) according to the thrombotic risk score categories in the derivation cohort ($N = 2,084$). (B) Cumulative 3-year incidence of thrombotic events ($p < 0.001$), MACEs ($p < 0.001$), cardiac-caused death ($p < 0.001$), and all-caused death ($p < 0.001$) according to the thrombotic risk score categories in the validation cohort ($N = 892$). (Continued)
Atherothrombotic Ischemic Events–Thrombolysis in Myocardial Infarction 50 trial (22), which included ischemic stroke as a TE; age was the common independent predictor of TEs in that previous study. According to the most recent ESC guidelines for the management of patients presenting with NSTEMI, based on the result of the ISAR-REACT 5 trial, prasugrel is the recommended drug in patients who proceed to PCI. No patient in this study assumed prasugrel, because this was not the antithrombotic drug of choice during the period in which the patients were enrolled. Analogously, we identified older age as an independent determinant of long-term TEs, which is consistent with the previously observed association between parameters and thrombosis. It is plausible to include ischemic stroke as one of the components of the TE composite endpoint. Among subjects who underwent PCI, ischemic stroke, which demands intensive antithrombotic therapy, is as clinically important as MI and stent thrombosis.

The risk factors constituting the bleeding risk score established in our study were consistent with those in previous studies generally (2, 7, 23). Not surprisingly, we identified triple therapy [defined as a combination of oral anticoagulant therapy and DAPT (aspirin plus thienopyridine)] at discharge as an independent determinant of long-term bleeding, which is consistent with previous observations (21). Nonetheless, female sex, older age, and renal dysfunction were absent in our final bleeding model. It is possible that earlier studies that focused on shorter-term events accounted for these discrepancies and that underlying risk factors for bleeding were not constant but variable over time resulting in differences. Analogously, the hypothesis is similar to the findings of Genereux et al. (2) and Ducrocq et al. (24), who reported that bifurcation lesions were associated with post-discharge bleeding. However, no prospective study has indicated clinical utility to guide treatment decisions. The use of proton pump inhibitors has been shown to reduce the incidence of gastrointestinal bleeding in patients undergoing PCI, and liberal prophylactic use is essential for the prognosis of these patients. The present prediction project assessing bleeding events was generally consistent with previous studies, and the difference in the risk factors identified might be attributable to the selected population, race, and study design. Therefore, it is preferable to practice the prediction rule derived from the cohort with homologous characteristics of the race. The present prediction project evaluating MB risks showed modest accuracy in both the derivation and validation cohorts. AUCs ranged from 0.791 to 0.976, indicating that the risk score was helpful for discrimination in the clinical prediction models. We performed a pairwise comparison of the new bleeding model with the acuity risk score model, and the new thrombotic model with the autar risk score model. The AUC of the new bleeding model is larger than the acuity score, which showed excellent performance. Although the AUC of the new thrombotic model is similar to the autar risk score, it still simplified the model of predicting thrombosis events and is of benefit for application in clinical assessment.

It is recommended and well-validated by guidelines that risk stratification tools assist with therapeutic decision-making.
for patients with acute coronary syndrome (25–28). This study included more complex patients than previous trials, that is, this study included patients with two-vessel and triple-vessel diseases. In the context of the growing trend toward individualization and evidence-based therapy, risk stratification could meet patient preferences and enhance patient compliance while balancing against the adverse effects of some therapies (e.g., thrombosis and bleeding) in patients with multivessel disease. The risk stratification strategy outlined in this study provides clinic doctors with an opportunity to select potential candidates with the greatest absolute gains, and it is important to offer therapeutic interventions for secondary prevention of acute MI. We did not include the type of stent used, because previous trials had reported no significant discrepancy in the incidence of TEs between bare-metal stents and first-generation drug-eluting stents (29, 30).

Out-of-hospital stroke results in substantial mortality and morbidity. Considering that substantial mortality and morbidity are correlated with post-PCI ischemic stroke, more studies evaluating risk factors are required to prevent post-PCI ischemic stroke. The Organization to Assess Strategies for Ischemic Syndromes I and II studies (31) reported that stroke in subjects with the coronary disease was correlated with a 6-month mortality rate of 27%. Therefore, we assessed the incidence of stroke in patients who underwent primary PCI. Ischemic stroke and hemorrhagic stroke were categorized as a TE and an MB event, respectively. IABP use and cerebral hemodynamic impairment, especially ischemic stroke, have potential associations. This study assessed risk factors for TEs after primary PCI; however, no association was identified. According to the most recent ESC guideline for the management of patients presenting with NSTEMI, triple antithrombotic therapy is suggested only for 1 week; this recent recommendation has probably reduced the incidence of bleeding.

In this study, we have found that a lower degree of lesion stenosis contributed to MB. After reviewing the literature, we did not find a reasonable explanation for this result. Therefore, basic research on this aspect should be carried out accordingly in the future to carry out relevant research from the perspective of the mechanism. The study of Marco Zimarino et al. (32) has made the conclusion that PCI of bifurcation lesions is associated with increased risk of thrombotic events and investigated the theme of the duration of DAPT after PCI of bifurcation lesion. The literature has exposed the state of art concerning the choice of antithrombotic drugs, timing of initiation, the DAPT duration, risk stratification and overall the identification of patients at high bleeding risk, with a decision-making algorithm for DAPT duration in PCI in coronary bifurcation.

The PRECISE-DAPT score, which has been validated in two large independent patient populations with ACS, is a five-item bleeding risk prediction model developed to estimate the bleeding risk in patients who receive DAPT after stent implantation (4). Based on the PRECISE-DAPT score, categorization of patients has been proved to be valuable to inform decision-making for the duration of DAPT in stented patients (33, 34). There are two retrospective analyses (35, 36) that showed an absolute bigger reduction of ischemic risk in patients who are receiving long-term DAPT after the complex intervention. Furthermore, patients who have undergone complex intervention simultaneously carry features that greatly increase their bleeding risk, including renal disease, multiple comorbidities, and previous bleeding.

**STUDY LIMITATIONS**

This study has several important limitations that should not be ignored. First of all, it has an observational and prospective design, which precludes causal inference and carries inherent limitations. Second, information on the history of previous bleeding events, which could be significantly correlated with exceedingly great risk for MB events, has not been collected. Third, potential reporting bias might have been introduced, accounting for the fact that bleeding events were not adjudicated by a blinded clinical event committee independently. Fourth, the study is derived between 2010 and 2017, and early-generation drug-eluting stents are not distinguished from new-generation drug-eluting stents. Fifth, follow-up information is prospectively recorded according to prespecified definitions, which may limit the power to identify other predictors of stroke. Additionally, genetic characteristics and unidentified biochemical parameters should be considered to provide additional optimization of antithrombotic benefit and reduce bleeding risk. The study population was mainly male, which induced an obvious gender bias. Therefore, a larger prospective study should be needed to explore the separate models for predicting the risks of TEs and MB. This study did not find any correlation between CKD, which is considered as a dichotomous variable in this study, and incidence of bleeding. However, different scores developed in other studies (7, 23) examined not only the presence of renal impairment but also the grade of the dysfunction. Therefore, we might discriminate the grades of chronic kidney disease (stages 3, 4, and 5) in further larger studies. Finally, the cohort in this study was derived from patients who agreed to participate, which might have resulted in unaccounted selection pressures that affect the generalizability of the total cohort.

**CONCLUSION**

This study reported the development of separate models for predicting the risks of TEs and MB in subjects with multivessel coronary artery disease who had undergone primary PCI, which demonstrated moderate accuracy in discrimination concordant and stratified the risk in the derivation and validation cohorts. Furthermore, this study showed that subjects with a high incidence of thrombotic risk had greater bleeding risk in a large proportion of the study population.

**DATA AVAILABILITY STATEMENT**

The datasets used and/or analyzed during this study are available from the corresponding author on reasonable request. Requests to access these datasets should be directed to hbyanfuwai2018@163.com.
ETICS STATEMENT

The studies involving human participants were reviewed and approved by Ethics Committee of Fuwai Hospital. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

HY, XZ, CL, PZ, ZS, JL, JZ, RC, YW, YC, LS, and HZ: substantial contributions to conception and design, data acquisition, or data analysis and interpretation, drafting the article or critically revising it for important intellectual content, final approval of the version to be published, and agreement to be accountable for all aspects of the study in ensuring that questions related to the accuracy or integrity of the study are appropriately investigated and resolved. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Capodanno D, Alfons F, Levine NG, Valgimigli M, Angiolillo DJ. Acc/AHA versus esc guidelines on dual antiplatelet therapy. J Am Coll Cardiol. (2018). 72:2915–31. doi: 10.1016/j.jacc.2018.09.057
2. Généreux P, Giustino G, Witzenbichler B, Weisz G, Stuckey TD, Rinaldi MJ, et al. Incidence, predictors, and impact of post-discharge bleeding after percutaneous coronary intervention. J Am Coll Cardiol. (2015) 66:1036–45. doi: 10.1016/j.jacc.2015.06.1323
3. Valgimigli M, Costa F, Lokhnygina Y, Clare MR, Wallentin L, Moliterno DJ, et al. Trade-off of myocardial infarction vs bleeding type and mortality after acute coronary syndrome: analysis from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) randomized trial. Eur Heart J. (2017) 38:804–10. doi: 10.1093/eurheartj/ehw525
4. Costa F, Klaveren DV, James S, Heg K, Räber L, Feres F, et al. Derivation and validation of the prediction bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT). J. score: a pooled analysis of individual patient datasets from clinical trials. Lancet. (2017) 389:1025–34. doi: 10.1016/S0140-6736(17)30397-5
5. Robert WY, Eric AS, Dean JK, Sharon-Lise TN, Anthony HG, David JC, et al. Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention. JAMA. (2016) 315:1735–49. doi: 10.1001/jama.2016.3775
6. Palmerini T, Généreux P, Caixeta A, Cristina E, Lansky A, Mehran R, et al. A new score for risk stratification of patients with acute coronary syndromes undergoing percutaneous coronary intervention: the ACUITY-PCI (Acute Catheterization and Urgent Intervention Triage Strategy-Percutaneous Coronary Intervention) risk score. JACC Cardiovasc Interv. (2012) 5:1108–16. doi: 10.1016/j.jcin.2012.07.011
7. Subherwal S, Rach RG, Chen AY, Gage BF, Rao SV, Newby LK, et al. Baseline risk of major bleeding inon-ST-segment elevation myocardial infarction: the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines) bleeding score. Circulation. (2009) 119:1873–82. doi: 10.1161/CIRCULATIONAHA.108.28541
8. Peterson ED, Dai D, DeLong ER, Brennan JM, Singh M, Rao SV, et al. Contemporary mortality risk prediction for percutaneous coronary intervention: results from 588, 398 procedures in the national cardiovascular data registry. J Am Coll Cardiol. (2010). 55:1923–32. doi: 10.1016/j.jacc.2010.02.005
9. Boersma E, Pieper KS, Steyerberg EW, Wilcox RG, Chang WC, Lee KL, et al. Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation: Results from an international trial of 9461 patients. Circulation. (2000) 101:2557–67. doi: 10.1161/01.CIR.101.22.2557
10. Morrow DA, Antman EM, Charlesworth A, Cairns A, Murphy SA, de Lemos JA, et al. TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation: an intravenous nPA for treatment of infarcting myocardium early II substudy. Circulation. (2000) 102:2031–7. doi: 10.1161/01.CIR.102.17.2031
11. Rao SV, McCoy LA, Spertus JA, Krone RJ, Singh M, Fitzgerald S, et al. An updated bleeding scale to model the risk of post-procedure bleeding among patients undergoing percutaneous coronary intervention: report using an expanded bleeding definition from the National Cardiovascular Data Registry CathPCI Registry. JACC Cardiovasc Interv. (2013) 6:897–904. doi: 10.1016/j.jcin.2013.04.016
12. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. (2012) 60:1581–98. doi: 10.1016/j.jacc.2012.08.001
13. Mehran R, Rao SV, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the bleeding academic research consortium. Circulation. (2011). 123:2736–47. doi: 10.1161/CIRCULATIONAHA.110.009449
14. Astor BC, Muntner P, Levin A, Eustace JA, Coresh J. Association of kidney function with anemia: the third national health and nutrition examination survey (1988–1994). Arch Intern Med. (2002) 162:1401–8. doi: 10.1001/archinte.162.12.1401
15. Ines R, Gray AM, Crispin J, Murray DW, Oliver RA. Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level. BMC Med Res Methodol. (2018). 18:87. doi: 10.1186/s12874-018-0542-6

FUNDING

This study was supported by the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2016-12M-1-009), National Natural Science Funds (Number: 81970308), the Fund of Nanjing Project of Medicine in Shenzhen (Number: SZSM201911017) and Shenzhen Key Medical Discipline Construction Fund (number: SZXXK001).

ACKNOWLEDGMENTS

The authors gratefully acknowledge all the individuals who participated in this study. We would like to thank Editage (www.editage.cn) for the English language editing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2021.729432/full#supplementary-material
Zhao et al.

Predictive Score for STEMI Patients

16. Sullivan LM, Massaro JM, D’Agostino RB Sr. Presentation of multivariate data for clinical use: the framingham study risk score functions. StatMed. (2004) 23:1631–60. doi: 10.1002/sim.1742

17. Dangas GD, Claessen BE, Mehran R, Xu K, Fahy M, Parise H, et al. Development and validation of a stent thrombosis risk score in patients with acute coronary syndromes. JACC Cardiovasc Interv. (2012) 5:1097–105. doi: 10.1016/j.jcin.2012.07.012

18. Bohula EA, Aylward PE, Bonaca MP, Corbalan RL, Kiss RG, Murphy SA, et al. Efficacy and safety of vorapaxar with and without a thienopyridine for secondary prevention in patients with previous myocardial infarction and no history of stroke or transient ischemic attack: results from TRA 2P-TIMI 50. Circulation. (2015) 132:1871–9. doi: 10.1161/CIRCULATIONAHA.114.015042

19. Morrow DA. Cardiovascular risk prediction in patients with stable and unstable coronary heart disease. Circulation. (2010) 121:2681–91. doi: 10.1161/CIRCULATIONAHA.109.852749

20. Généreux P, Madhavan MV, Mintz GS, Maehara A, Palmerini T, Lasalle L, et al. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) and ACUTY (Acute Catheterization and Urgent Intervention Triage Strategy). TRIALS. J Am Coll Cardiol. (2014) 63:1845–54. doi: 10.1016/j.jacc.2014.01.034

21. Baber U, Mehran R, Giustino G, Cohen DJ, Henry TD, Sartori S, et al. Coronary thrombosis and major bleeding after PCI with drug-eluting stent risk scores from PARIS. J Am Coll Cardiol. (2016) 67:2224–34. doi: 10.1016/j.jacc.2016.02.064

22. Bohula EA, Bonaca MP, Braunwald E, Aylward PE, Corbalan R, De Ferrari GM, et al. Atherothrombotic risk stratification and the efficacy and safety of vorapaxar inpatients with stable ischemic heart disease and previous myocardialinfarction. Circulation. (2016) 134:304–13. doi: 10.1161/CIRCULATIONAHA.115.019861

23. Mehran R, Pocock SJ, Nikolsky E, Clayton T, Dangas GD, Kirtane AJ, et al. A risk score to predict bleeding in patients with acute coronary syndromes. J Am Coll Cardiol. (2010) 55:2556–66. doi: 10.1016/j.jacc.2009.09.076

24. Ducrocq G, Wallace JS, Baron G, Ravaud P, Alberts MK, Wilson PW, et al. Riskscore to predict serious bleeding in stable outpatients with or at risk of atherothrombosis. Eur Heart J. (2010) 31:1257–65. doi: 10.1093/eurheartj/ehq021

25. Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al. Global registry of acute coronary events investigators. Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med. (2003) 163:2345–53. doi: 10.1001/archinte.163.19.2345

26. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Giang J, Holmes DR Jr, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. (2014) 130:2354–94. doi: 10.1161/CIR.0000000000000133

27. O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, Lemos JA, et al. CF/AHA Task Force. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. (2013) 127:529–55. doi: 10.1161/CIR.0b013e3182742c84

28. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. (2016) 37:267–315. doi: 10.1093/eurheartj/ehv520

29. Aoki J, Lanský AJ, Mehran R, Moses J, Bertrand ME, MacLaurin BT, et al. Early stent thrombosis in patients with acute coronary syndromes treated with drug-eluting and baremetal stents: the acute catheterization and urgent intervention triage strategy trial. Circulation. (2009) 119:687–98. doi: 10.1161/CIRCULATIONAHA.108.804203

30. Kukreja N, Onuma Y, Garcia-Garcia HM, Daemen J, Domburg RV, Serruys PW. The risk of stent thrombosis in patients with acute coronary syndromes treated with bare-metal and drug-eluting stents. JACC Cardiovasc Interv. (2009) 2:534–41. doi: 10.1016/j.jcin.2009.04.003

31. Cronin L, Mehta SR, Zhao F, Pogue J, Budaj A, Hunt D, et al. Stroke in relation to cardiac procedures in patients with non-ST-elevation acute coronary syndrome: astudy involving 18,000 patients. Circulation. (2001) 104:269–74. doi: 10.1161/01.CIR.104.3.269

32. Zimarino M, Angiolillo DJ, Dangas G, Capodanno D, Barbato E, Hahn JY, et al. Anti-thrombotic therapy after percutaneous coronary intervention of bifurcation lesions. EuroIntervention. (2021) 17:59–66. doi: 10.4244/EIJ-D-20-00885

33. Costa F, Van Klaveren D, Feres F, James S, Råber L, Pilgrim T, et al. Dual antiplatelet therapy duration basedon ischemic and bleeding risks after coronary stenting. J Am Coll Cardiol. (2019) 73:741–54. doi: 10.1016/j.jacc.2018.11.048

34. Mehta SR, Rainey KR, Cantor WJ, Lordkipanidzé M, Marquis-Gravel G, Robinson SD, et al. 2018 Canadian Cardiovascular Society (CCS) Canadian Association of Interventional Cardiology (CAIC) focused update of the guidelines for the use of antiplatelet therapy. Can J Cardiol. (2018) 34:214–33. doi: 10.1016/j.cjca.2017.12.012

35. Giustino G, Chieffi A, Palmerini T, Valgimigli M, Feres F, Abizaid A, et al. Efficacy and safety of dual antiplatelet therapy after complex PCI. J Am Coll Cardiol. (2016) 68:1851–64. doi: 10.1016/j.jacc.2016.07.760

36. Yeh RW, Kereakesi DJ, Steg PG, Cutlip DE, Croce KJ, Massaro JM, et al. Lesioncomplexity and outcomes of extended dual antiplatelet therapy after percutaneous coronary intervention. J Am Coll Cardiol. (2017) 70:2213–23. doi: 10.1016/j.jacc.2017.09.011

37. Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, et al. The TIMI risk score for unstable angina/non-ST elevationMI: a method for prognostication and therapeuticdecisicnation making. JAMA. (2000) 284:835–42. doi: 10.1001/jama.284.7.835

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhao, Liu, Zhou, Zheng, Li, Zhou, Chen, Wang, Chen, Song, Zhao and Yan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.