Absence of p300 induces cellular phenotypic changes characteristic of epithelial to mesenchyme transition

D Krubasik1, NG Iyer2, WR English1, AA Ahmed2, M Vias2, C Roskelley3, JD Brenton2, C Caldas2 and G Murphy*,1

1Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2XY, UK; 2Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK; 3Department of Anatomy, University of British Columbia, 2177 Westbrook Mall, Vancouver BC V66T 1Z3, UK

p300 is a transcriptional cofactor and prototype histone acetyltransferase involved in regulating multiple cellular processes. We generated p300 deficient (p300−) cells from the colon carcinoma cell line HCT116 by gene targeting. Comparison of epithelial and mesenchymal proteins in p300− with parental HCT116 cells showed that a number of genes involved in cell and extracellular matrix interactions, typical of ‘epithelial to mesenchyme transition’ were differentially regulated at both the RNA and protein level. p300− cells were found to have aggressive ‘cancer’ phenotypes, with loss of cell–cell adhesion, defects in cell–matrix adhesion and increased migration through collagen and matrigel. Although migration was shown to be metalloproteinase mediated, these cells actually showed a downregulation or no change in the level of key metalloproteinases, indicating that changes in cellular adhesion properties can be critical for cellular mobility.

British Journal of Cancer (2006) 94, 1326 – 1332. doi:10.1038/sj.bjc.6603101 www.bjcancer.com

MATERIALS AND METHODS

Cell culture, generation of p300− and rescue cells

HCT116 (ATCC, Manassas, VA, USA) and its derivatives were cultured in McCoy’s 5A medium with 10% fetal calf serum (FCS) and penicillin/streptomycin (Invitrogen, Paisley, UK). p300 gene targeting was performed as previously described (Iyer et al, 2004a). p300− in HCT116 cells results in a potentially aggressive phenotype characterised by reduced adhesion and increased migration. In addition, several critical genes involved in these pathways are differentially expressed, suggesting that p300 loss promotes EMT.
resulting in cells null for any expressed p300 protein. Three separately targeted clones were derived and used in each experiment. Rescue clones were made by co-transfecting pCD-Flag-p300 (kind gift from MA Ikeda) (Suganuma et al, 2002), with pPGK-Puro at a 1:10 ratio, and selecting with 1 μg ml⁻¹ Puromycin (Sigma, Cambridge, UK) for 24 h. Two separate EF-wt rescue clones were derived and used in each experiment. p300 expression levels in each clone were determined at the start of every experiment. Rescue cells were generated using a p300 expression construct under the control of an EF-promoter (human elongation factor 1z promoter). This was preferred as it resulted in stable expression over longer time periods (Suganuma et al, 2002).

Immunofluorescence localisation

Cells were cultured on cover slips, fixed with 4% paraformaldehyde (PFA) solution, blocked with 1% bovine serum albumin (BSA) and permeabilised for 4 min in 1% Triton. Immunofluorescent localisation was carried out with the BioVision Nuclear/Cytosol Fractionation Kit. Membrane (Matrigel; BD Biosciences, San Jose, CA, USA) in coating buffer (0.1 M NaHCO₃ (pH 9.8)) for 16 h. WT and p300 deficient HCT116 cells were dye loaded with 2 μM CMFDA cell tracker dye (Molecular Probes) from their culture vessels with 5 μM EDTA in PBS and were dye loaded with 2 μM CMFDA cell tracker dye (Molecular Probes) according to the manufacturer’s protocol. 10⁵ cells were incubated in HBSS with 1 μM Mn²⁺ at 37°C for 1.5 h in the coated wells. All samples were analysed in quadruplicate. After incubation, the fluorescence was measured in a plate reader (Tecan SpectraFluor Plus, excitation 485 nm, emission 595 nm). The wells were washed 5 × 200 μl HBSS. The fluorescent values of each sample were averaged and the mean background value was subtracted. To inhibit the adhesion mediated by integrin z₂, an integrin z₂ binding antibody (Dianova, A.1.43) was added during the adhesion phase of the assay. The antibody was used at concentrations between 1 μg ml⁻¹ and 30 μg ml⁻¹ for the inhibition of adhesion.

Boyden chamber migration assay

The relative migration of wild-type (WT) and p300⁺ cells was studied with an in vitro migration assay, conducted in Boyden chambers (Becton Dickinson, 8 μm pores). The membrane of the cell culture insert was coated with 100 μl collagen I (100 μg ml⁻¹, Sigma) or growth factor-reduced matrigel (200 μl ml⁻¹, BD Biosciences, San Jose, CA, USA) in coating buffer (0.1 M NaHCO₃ (pH 9.8)) for 16 h. WT and p300⁺ HCT116 cells were dye loaded with 2 μM CMFDA cell tracker dye (Molecular Probes). Cells, 2.5 × 10⁵, were added to the cell culture insert and incubated for 22 h. Membranes were then fixed for 5 min in methanol at −20°C, mounted on a slide and 15 randomly chosen fields of view were photographed at 40 × magnification. Cells were counted, averaged over the three membranes and expressed in relation to the WT.

cDNA Synthesis and qPCR

RNA was isolated with the Promega kit according to the manufacturer’s protocol. In all, 1 μg of total RNA was reverse transcribed using 2 μg random hexamers (Amersham Biosciences, Amersham, UK) and 200 Units of Superscript II reverse transcriptase (Invitrogen Life Technologies, Paisley, UK), according to the supplier’s instructions. Quantitative polymerase chain reaction (PCR) reactions were performed on an ABI Prism 7700 (Applied Biosystems, Warrington, UK; (Nuttall et al, 2003), with each reaction containing 5 ng of reverse-transcribed RNA. Primers and fluorogenic probes for a selection of matrix metalloproteinase (MMPs) and a disintegrin and metalloproteinase (ADAMs) were determined of integrin cell surface levels

Determination of integrin cell surface levels

Cell surface levels of integrins were quantified by flow cytometry. Cells, 2.5 × 10⁶, were detached using 5 mM EDTA in PBS, centrifuged at 200 × g for 4 min and washed in ice-cold PBS three times. All reagents used from this stage on were precooled on ice. Cells were incubated in 100 μl PBS containing 0.5% BSA and the primary antibody to α1 μg ml⁻¹ for 1 h on ice (integrin z₂ was purchased from Dianova, integrin z₁ from Serotec, integrin z₃ from DAKO, integrin z₆ from BD Pharmingen, integrin z₁ from Chemicon, integrin β₁ from BD Pharmingen, integrin β₃ from Serotec). Cells were washed in PBS/BSA and incubated in 100 μl PBS/BSA solution containing the secondary antibody (AlexaFluor 488 goat anti-mouse, AlexaFluor 488 goat anti-rat 1:500) in the PBS/BSA solution). The cells were fixed in 2% PFA for 20 min and washed once in PBS. Experiments were conducted in duplicate.

Western blots

Cells were harvested in protein lysis buffer (50 mM Tris/HCl, 150 mM NaCl, 1% NP-40 v v⁻¹, 10 mM EDTA, Complete Inhibitor Cocktail 1 tablet 10 ml⁻¹ (Roche Diagnostics, Welwyn Garden City, UK)). Samples were subjected to reducing SDS-PAGE and transferred to nitrocellulose using a semidry blotter. The membranes were blocked in 5% fat-free milk and subsequently incubated in the primary and secondary antibody solution for 1 h each. Blots were visualised using the Enhanced chemi-luminescence detection system from Amersham. All experiments and blots were performed in triplicate and representative examples are shown in the figures. Cytosolic and nuclear fractions were obtained with the BioVision Nuclear/Cytosol Fractionation Kit. Membrane fractionation was performed as previously described (Smith et al, 2005). Primary antibodies were mouse monoclonal E-cadherin (Zymed; 1:500), Vimentin (DAKO; 1:250), ZO-1(Zymed; 1:500), β-catenin (Transduction Laboratories, 1:50), Vimentin (DAKO, 1:50). The AlexaFluor 488 conjugated anti-mouse antibody (Invitrogen, Molecular Probes, Paisley, UK, 1:500) was the secondary antibody in all cases. Pictures were taken with a × 63 objective.

Matrigel growth

For three-dimensional (3-D) cultures, cells were plated at a density of 1 × 10⁶ cm⁻² onto reconstituted (pre-gelled) basement membrane (Matrigel; BD Biosciences, San Jose, CA, USA) in DMEM/F12 media with 2% FCS. Cells were incubated for 18 h and photographed live by phase microscopy. For quantification of cluster sizes, cells were subsequently fixed in 4% PFA in PBS for 10 min and nuclei stained with 0.5 μg ml⁻¹ DAPI for 5 min. Cells were mounted, and cluster sizes were determined by counting nuclei using a Zeiss Axiphot microscope equipped for epifluorescence. For immunofluorescence, 3-D basement membrane cultures of cells were maintained on glass coverslips and grown to subconfluence. Cells were fixed with methanol for 15 min, rinsed three times with PBS and blocked in PBS with 1% bovine serum albumin (BSA).
obtained by courtesy of D Edwards, UEA, Norwich (Koshy et al, 2002; Nuttall et al, 2003).

RESULTS

Comparison of HCT116 and p300- cells reveals an expression profile associated with EMT and a disruption in cell–cell adhesion

HCT116 derivatives null for p300 (p300-) cells were generated as previously described (Iyer et al, 2004a), and three independently targeted p300- clones (p3001, p3002, p3003) were used for all subsequent experiments. p300 expression was tested by Western blot (Figure 1). To characterise the effect of p300 loss on gene expression, cDNA microarray profiling was initially performed using the 6 K genomewide cDNA microarrays (from ICR, Sutton, UK) as previously described (Ahmed et al, 2004). Data from these experiments showed that p300- cells have a gene expression profile characteristic of EMT. These include a reduced expression of several members of the cadherin and integrin families and CD44. Downregulation of E-cadherin and upregulation of Vimentin was observed in two of the three clones, but overall neither were statistically significant (G Iyer and C Caldas, unpublished).

We therefore carried out an analysis of key adhesion molecules using more reliable techniques. Immunostaining showed that E-cadherin levels at adherens junctions were significantly lower in p300- cells (Figure 2A). Reverse transcription–polymerase chain reaction (RT–PCR) analyses (data not shown) and Western blot (Figure 3A) confirmed reduced transcription of the E-cadherin gene and reduced protein levels. \(\beta\)-Catenin and ZO-1 were found to be redistributed in p300- cells (Figure 2A); decreased staining of \(\beta\)-catenin and ZO-1 at cell–cell junctions and increased nuclear \(\beta\)-catenin staining (Figure 2B). The increase in nuclear \(\beta\)-catenin levels was verified by cellular fractionation and Western blot (Figure 4A), while no change in cytosolic \(\beta\)-catenin was observed (Figure 4B). Densitometry of three separate experiments showed that the increase in nuclear \(\beta\)-catenin was statistically significant (P-value < 0.05, Figure 4B). Membrane fractionation confirmed the reduced levels of ZO-1 localising to the membrane in the p300- cells in comparison to the WT cells (Figure 4C). Total cellular levels of both proteins, determined by Western blots, remained unchanged (data not shown). Immunostaining (Figure 2A) and Western blots (Figure 3B) for the mesenchymal intermediate filament Vimentin, showed that all three p300- clones expressed significant amounts of the mesenchymal marker Vimentin (albeit with varying degrees of heterogeneity), while levels were undetectable in HCT116 cells. These results suggest that loss of p300 is associated with changes characteristic of EMT in this colorectal cancer cell line.

Loss of cell–cell junctions coincides with reduced clustering in matrigel

To identify abnormalities in cell–cell adhesion, cells were grown in reconstituted basement membrane (matrigel) based 3-D cultures. Under these conditions, p300- cells grew in small, loosely adherent clusters with ragged edges characteristic of cells with defects in cell–cell adhesion compared to parental HCT116 (Figure 5A).
Reintroduction of p300 in ET-wt rescue clones could reverse this phenotype. Expression of p300 in the rescue clones was confirmed by Western blot (Figure 1). Quantification of this defect confirmed that WT and ET-wt rescue clones indeed formed larger cell clusters than p300- cells (Figure 5B). The difference between p300- clones and WT or ET-wt rescue clones was significant for clusters up to five cells (P-value <0.05) as well as for clusters above 10 cells (P-value <0.005).

p300- cells have reduced levels of \(\alpha_2 \)-integrin and reduced adhesion to collagen-I and IV

To assess whether the absence of p300- results in abnormal cellular expression of integrins, flow cytometry analyses of surface integrins were performed. These experiments showed a decrease in \(\alpha_2 \)-integrin (Figure 6), with no significant change in \(\alpha_1 \), \(\alpha_5 \), \(\alpha_6 \), \(\alpha_7 \), \(\beta_1 \) and \(\beta_3 \)-integrin levels (data not shown). Major ligands of \(\alpha_2 \beta_1 \)-integrin are type-I and IV collagen. Therefore, we tested if reduced integrin \(\alpha_2 \) levels affected cell–matrix adhesion in p300- cells. In vitro adhesion assays showed that p300- cells adhered less to collagen I and matrigel, compared to HCT116 cells (P-value <0.05). In contrast, no significant difference in adhesion could be detected for fibronectin (P-value >0.05), which is not a ligand of integrin \(\alpha_2 \) (Figure 7A). Inhibition of integrin \(\alpha_2 \)-mediated adhesion by addition of an integrin \(\alpha_2 \) blocking antibody reduced adhesion of WT and p300- cells to collagen I and matrigel significantly (for the highest antibody concentration \(P<0.05 \)), however, as expected not the adhesion to fibronectin (Figure 7B and C).

These results show that HCT116 cells rely primarily on \(\alpha_2 \)-integrins for adhesion to collagen I and IV and suggest that the decrease in cell surface integrin \(\alpha_2 \) levels seen in p300- cells results in reduced adhesion.

p300- cells show increased migration through collagen-I and matrigel-coated membranes

Defects in adhesion are frequently associated with increased ECM invasion and migration in cancer cells. To compare the motility of HCT116 and p300- cells we used a transwell assay with type-I collagen or matrigel-coated membranes. Migration through the membrane was followed for 22 h in response to a chemotactic
Molecular Diagnostics

ECM and cellular invasion is believed to be primarily dependent on the proteolytic activity of metalloproteinase (MP) and serine protease activity, either by direct degradation of the ECM or as part of a protease activation cascade (DeClerck et al, 2004). We showed that migration through type-1 collagen was more dependent on MP activity than serine protease activity: GM6001 or Galardin (a broad spectrum MP inhibitor) was more efficient in inhibiting migration through type-1 collagen, compared to aprotinin (a general serine protease inhibitor) (Figure 8A). The inhibitor solvent DMSO alone did not affect invasion (data not shown). In contrast, migration through matrigel was inhibited to a similar extent by both aprotinin and Galardin (Figure 8B). In both cases the combination of Galardin and aprotinin significantly inhibited cell migration, but could not abrogate it completely. The motility of the cells on plastic in a wounding assay was not affected by the p300 disruption (data not shown).

Characterisation of MP and TIMP expression in HCT116 and p300 cells

Our results suggest that increased migration of p300 cells through type-1 collagen, could be MP dependent. We therefore proceeded to quantify mRNA levels of known MMP, ADAM, their inhibitors, the tissue inhibitor of metalloproteinase (TIMPs) and members of the serine protease uPA cascade, to assess whether altered expression of these proteins could account for the invasive phenotype observed. Table 1 summarises the results of the real-time RT-PCR analyses. The majority of MPs, TIMP-2 and -3, as well as components of the uPA system were unchanged. However, the mRNA levels of MMP-7, -15 and ADAM15 were significantly decreased in p300 cells (Figure 9). MMP-7 and ADAM15 were found to be below the limits of detection by Western blot (data not shown).

Figure 6 Comparison of integrin α2 cell surface levels in WT and p300- cells. The samples were measured in duplicate by flow cytometry. The background fluorescence of the secondary antibody was subtracted from the values. The experiment was repeated three times.

Figure 7 Adhesion of WT and p300- cells. (A) Adhesion to different ECM components. (B and C) show the inhibition of integrin α2-mediated adhesion in the WT (B) and p300- cells (C). The concentrations in the legend indicate the concentration of the adhesion blocking integrin α2 antibody present. Samples were measured in triplicate and experiments repeated three times.

Figure 8 Migration through matrigel (A) and collagen-I (B) coated membranes in a chemotactic FCS gradient. Experiments were conducted in triplicate and repeated three times. Where indicated metalloproteinase- (Galardin at 25 μM) or the serine protease inhibitor (aprotinin at 100 μM) were added to the medium in the well and the insert.

gradient of FCS. In these assays, p300- cells demonstrated markedly increased migration through both type-I collagen and matrigel when compared to the WT HCT116 cells. Degradation of ECM and cellular invasion is believed to be primarily dependent
DISCUSSION

Table 1 Summary of the effect of p300 ablation on MP, serine protease and TIMP mRNA levels

MMP	Effect of p300 ablation	ADAM	Effect of p300 ablation
1	Low expression	8	Low expression
2	Low expression	9	No change
3	No expression	10	No change
4	Downregulation**	12	No regulation
5	No expression	15	Downregulation**
6	No expression	17	No change
7	No change	19	No change
8	No change	28	No expression
9	No change	33	No expression
10	No change	1	No expression
11	No change	2	No change
12	Change	3	No change
13	Change	4	No expression
14	Change	7	No change
15	Change	12	No change
16	Change	3	No change
17	Change	4	No expression
18	Change	23	No change
19	Change	25	No change

MP, serine protease and TIMP mRNA levels were determined in triplicate by qPCR and repeated three times. Low expression signifies a Ctratio value < 0.35, where quantification becomes inaccurate. Downregulation* corresponds to a P-value < 0.001 when a mean of the three p300 clones is calculated vs the WT.

Figure 9 The effect of p300 on the mRNA levels of MMP-7, MMP-15 and ADAM15. MP and TIMP mRNA levels were determined by qPCR in three separate experiments that were conducted in triplicate. The relative expression values were obtained by normalising the Ctratio values using the Ctratio values of the 18S in the samples as reference, compensated for the exponential fluorescence increase and set in relation to the WT values. Ctratio values of MPs in WT: MMP-7: 30; MMP-15: 25; ADAM15: 24.

p300 deficiency induces EMT

D Krubasik et al

p300 cells had significant cell–cell adhesion defects, with downregulation of E-cadherin, a major component of the epithelial adherens junctions, and reduced aggregation in matrigel cultures. Reintroduction of p300 could restore the aggregation phenotype. In addition β-catenin was found to be increased in nuclear fractions of p300 cells, which may contribute to intracellular signalling inducing EMT. In colorectal tumours, tumour cells at the invasion front display strong nuclear β-catenin, and the Tcf4-β-catenin transcription factor complex is thought to be involved in EMT (Brabletz et al, 2005). p300 cells also showed reduced adhesion to the basement membrane components collagen I and IV consequent to reduced cell surface levels of integrin α2. The effect of integrin cell surface levels on the invasiveness of cancer cells is debatable and probably dependent on the system that is used and relative surface levels and activation status of integrins. Sun et al (1998) reported that reexpression of the α2β1-integrin in a poorly differentiated breast carcinoma cell line, Mm5MT, resulted in reversion of a malignant phenotype to a differentiated epithelial phenotype. Reduction of integrin α2β1 via siRNA in MDA_MB_231 breast cancer cells resulted in decreased invasion on a laminin-coated surface (Lipscomb et al, 2003).

Epithelial to mesenchyme transition is often characterised by an increase in invasive potential in vitro, and this is believed to foster the invasive and metastatic potential of tumour cells (Thiery, 2002). Comparing the migrative potential of parental HCT116 and p300 cells in vitro, we found that p300 cells showed increased migration through collagen I and matrigel-coated membranes. It was not possible to assess migration through a thicker layer of either gel (which would be more representative of cellular invasion), since invasion rates were too low to obtain statistically significant results. Nonetheless, we showed that migration through matrigel was serine- and metalloproteinase dependent, whereas the invasion through collagen I was metalloproteinase and only marginally serine protease dependent.

Interestingly, increased migration was found to be independent of expression levels of proteases involved in collagen or matrigel degradation. Cell surface levels of MMP-14 (determined by flow cytometry) and MMP-2 and MMP-9 activity (determined by zymography) were not affected by the p300 disruption (data not shown). Previous studies have shown that MMP-7 and MMP-14 can be upregulated as a consequence of the movement of β-catenin to the nucleus and the increase in the Tcf4-β-catenin transcription factor complex. Previous studies have shown that factors other than β-catenin can also affect the MMP-7 and MMP-14 promoter activity and the nature of such effectors in this system remain to be elucidated (Crawford et al, 2001; Takahashi et al, 2002). Other targets of this gene complex include CD44, which was also shown to be downregulated in the microarray analysis of p300 cells. We also noted that MMP-15 was significantly downregulated in p300 cells. Wound healing experiments did not show increased motility of the p300 cells on a plastic culture dish (data not shown). These data indicate that the migration in a chemotactic gradient is supported by the degradation of the ECM coat. However, since protease levels are largely unaffected by the p300 ablation, the increased migration of the p300 cells is most likely due to decreased cell–cell interactions and cell–extracellular matrix adhesion. The disruption of cell–cell junctions may allow single p300 cells to migrate more readily through the 8μm pores of the membrane compared to the clusters of the HCT116 WT cells, as many colon cancer cell lines migrate as cohorts rather than single cells.

The data presented here proposes a novel mechanism through which p300 could function as a tumour suppressor: p300 disruption promotes EMT and an aggressive cancer phenotype. It has been suggested that histone deacetylase (HDAC) inhibitors, which are currently being tested in clinical trials for cancer therapy, function to selectively promote the expression of tumour-suppressor genes. We propose an additional anticancer mechanism, where HDAC inhibitors could promote p300 histone acetylase deacetylation.
activity, hence inhibiting EMT and increased invasiveness seen in cancer cells.

ACKNOWLEDGEMENTS

We thank MA Ikeda for providing the p300 rescue construct. We are indebted to Caroline Pennington and Dylan Edwards, University of East Anglia, Norwich for guidance and reagents for mRNA analysis by QRT–PCR. DK was supported by the DAAD and Trinity College. NGI was the recipient of an NMRC (Singapore) Medical Research Fellowship. WRE was supported by the British Heart Foundation and GM by Cancer Research UK and the European Union framework 5 programme (QLK3-CT-2002-021360 and framework 6 programme (LSHC-CT-2003-503297). CC was supported by Cancer Research UK.

REFERENCES

Ahmed AA, Vias M, Iyer NG, Caldas C, Brenton JD (2004) Microarray segmentation methods significantly influence data precision. Nucleic Acids Res 32: e50

Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlymeyer E, Jung A, Kirchner T (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179: 56–65

Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Biol 144: 2363–2373

Crawford HC, Fingleton B, Gustavson MD, Kurpios N, Wagenaar RA, Hassell JA, Matrisian LM (2001) The PEA3 subfamily of Ets transcription factors synergizes with beta-catenin-LEF-1 to activate mattrylisin transcription in intestinal tumors. Mol Cell Biol 21: 1370–1383

DeClerck YA, Mercurio AM, Stack MS, Chapman HA, Zutter MM, Muschel RJ, Raz A, Matrisian LM, Sloane BF, Noel A, Hendrix MJ, Coussens L, Padarathsingh M (2004) Proteases, extracellular matrix, and cancer: a workshop of the path B study section. Am J Pathol 164: 1131–1139

Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sower HM, Delhanty JD, Ponder BA, Kourzarides T, Caldas C (2004) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24: 300–303

Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553–1557

Iyer NG, Chin SF, Ozdag H, Daigo Y, Hu DE, Cariati M, Brindle K, Aparicio S, Caldas C (2004a) p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 101: 7386–7391

Iyer NG, Ozdag H, Caldas C (2004b) p300/CBP and cancer. Oncogene 23: 4225–4231

Koshy PJ, Lundy CJ, Rowan AD, Porter S, Edwards DR, Hogan A, Clark IM, Cawston TE (2002) The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum 46: 961–967

Lipscomb EA, Dugan AS, Rabinovitz I, Mercurio AM (2003) Use of RNA interference to inhibit integrin (alpha6beta1)-mediated invasion and migration of breast carcinoma cells. Clin Exp Metast 20: 569–576

Muraoa M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12: 1565–1569

Nuttall RK, Pennington CJ, Taplin J, Wheal A, Yong VW, Forsyth PA, Edwards DR (2003) Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells. Mol Cancer Res 1: 333–345

Ozdag H, Batley SJ, Forsti A, Iyer NG, Daigo Y, Boutell J, Arends MJ, Ponder BA, Kourzarides T, Caldas C (2002) Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours. Br J Cancer 87: 1162–1165

Roghi C, Allan VJ (1999) Dynamic association of cytoplasmic dynein heavy chain 1α with the Golgi apparatus and intermediate compartment. J Cell Sci 112(Part 24): 4673–4685

Smith JM, Dornish M, Wood EJ (2005) Involvement of protein kinase C in suppression of human carcinoma cells by reintroduction of the p300 coactivator. Proc Natl Acad Sci USA 99: 13073–13078

Sun H, Santoro SA, Zutter MM (1998) Downstream events in mammary gland morphogenesis mediated by re-expression of the a2β1 integrin: the role of the a6 and β4 integrin subunits. Cancer Res 58: 2224–2233

Takahashi M, Tsuonoda T, Seiki M, Nakamura Y, Furukawa Y (2002) Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21: 5861–5867

Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–445