Chinese clinical guidelines for continuous glucose monitoring (2018 edition)

Yuqian Bao | Li Chen | Liming Chen | Jingtao Dou | Zhengnan Gao | Leili Gao | Lixin Guo | Xiaohui Guo | Linong Ji | Qiuhe Ji | Weiping Jia | Hongyu Kuang | Qifu Li | Qiang Li | Xiaoying Li | Yanbing Li | Ling Li | Jing Liu | Jianhua Ma | Xingwu Ran | Lixin Shi | Guangyao Song | Yufei Wang | Jianping Weng | Xinhua Xiao | Yun Xie | Guangxia Xi | Liyong Yang | Zhigang Zhao | Jian Zhou | Zhiguang Zhou | Dalong Zhu | Dajin Zou | On behalf of Chinese Diabetes Society

1 Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
2 Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
3 Tianjin Medical University Metabolic Disease Hospital, Tianjin, China
4 Chinese People's Liberation Army General Hospital, Beijing, China
5 Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, China
6 Peking University People's Hospital, Beijing, China
7 Beijing Hospital of the Ministry of Health, Beijing, China
8 Peking University First Hospital, Beijing, China
9 Xijing Hospital of the Fourth Military Medical University, Xi'an City, Shaanxi Province, China
10 The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
11 The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
12 The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
13 Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
14 The First Affiliated Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
15 Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
16 Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
17 Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing City, Jiangsu Province, China
18 West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China
19 The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
20 Hebei General Hospital, Shijiazhuang City, Hebei Province, China
21 The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, China
22 Peking Union Medical College Hospital, Beijing, China
23 Shanxi Dayi Hospital, Taiyuan City, Shanxi Province, China
24 The First Affiliated Hospital of Fujian Medical University, Fuzhou City, Fujian Province, China
25 Zhengzhou Yihe Hospital Affiliated to Henan University, Zhengzhou City, Henan Province, China
26 The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
27 Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing City, Jiangsu Province, China
28 Changzhou Hospital Affiliated to the Second Military Medical University, Shanghai, China

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2019 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons, Ltd.

Diabetes Metab Res Rev. 2019;35:e3152. https://doi.org/10.1002/dmrr.3152
1 | BACKGROUND

Blood glucose monitoring is an important part of diabetes management. The results of glucose monitoring are crucial for glycemic status assessment, prescription of the optimal treatment regimen, follow-up of patients’ glucose status, and timely therapy adjustment. Self-monitoring of blood glucose (SMBG) is the basic form of blood glucose monitoring, whereas HbA1c is known as the gold standard for assessing long-term glycemic control.\(^1\) However, both HbA1c and SMBG have limitations. HbA1c reflects the average glucose levels over the previous 2 to 3 months and, thus, does not capture important short-term aspects of glycemic control, such as the time in the target range or the severity, frequency, and duration of hyper- and hypoglycemia. In addition, there is a “delayed effect” when using it to guide therapy adjustments. Moreover, SMBG cannot capture fluctuations in blood glucose throughout the day and night because of practical limitations on the number and timing of finger sticks. Instead, continuous glucose monitoring (CGM) technology demonstrates clinical details that cannot be disclosed by conventional fasting plasma glucose and HbA1c\(^2\) and has been widely applied in clinical practice. More importantly, innovative technologies related to CGM, such as wearables, implants, mobile applications, and cloud technology with professional medical intervention, are emerging, which is promising in changing diabetic patients’ lives dramatically.\(^3\)

To take maximum advantage of CGM technology, the indications for its use, requisite accuracy of the data that are generated, interpretation of the results, and how those results should guide clinical practice must be standardized. In December 2009, the Chinese Diabetes Society (CDS) drafted and published the first Chinese Clinical Guideline for Continuous Glucose Monitoring (2009 edition),\(^4\) providing a basis for the standardization of CGM in clinical application. Over the next 3 years, real-time CGM technology began to be applied in clinical practice, and domestic scholars published a few clinically significant, peer-reviewed research reports. Therefore, the guideline was updated in 2012 as the Chinese Clinical Guideline for Continuous Glucose Monitoring (2012 edition).\(^5\) The 2012 edition of the CGM guidelines added the latest evidence from retrospective and real-time CGM in the Chinese population and highlighted the need for an accurate clinical diagnosis and rigorous indications when using CGM technology. The guideline also emphasized that the monitoring results should be presented as a formal, standardized report, and the report should be used to guide clinical practice. The publication and revision of all the guidelines have effectively promoted the standardized application and clinical research of CGM technology in China.

In October 2010, the American Association of Clinical Endocrinologists (AACE) released an expert consensus statement on CGM technology.\(^6\) Subsequently, in October 2011, the Endocrine Society (ES), together with the European Society of Endocrinology (ESE), published Continuous Glucose Monitoring: an Endocrine Society Clinical Practice Guideline.\(^7\) As more CGM-related clinical evidence emerged, international guidelines and consensus statements have been continually updated, such as the Continuous Glucose Monitoring: a Consensus Conference of the American Association of Clinical Endocrinologists and American College of Endocrinology\(^8\) and American Association of Clinical Endocrinologists and American College of Endocrinology 2016 Outpatient Glucose Monitoring Consensus Statement\(^9\) in February 2016. Subsequently, the Diabetes Technology-Continuous Subcutaneous Insulin Infusion Therapy and Continuous Glucose Monitoring in Adults: An Endocrine Society Clinical Practice Guideline\(^10\) was issued by the ES and ESE in November 2016. Finally, an international panel issued International
Consensus on Use of Continuous Glucose Monitoring in December 2017 following a multinational conference at the Advances in Technology and Therapy of Diabetes (ATTD) meeting in February 2017. Therefore, based on the updates of international guidelines and the increasing evidence of domestic studies, it is necessary to revise the CGM guidelines in China so that the latest clinical evidence can be effectively translated into clinical benefit for our patients. To this end, the CDS revised the Chinese Clinical Guideline for Continuous Glucose Monitoring (2012 Edition) based on the most recent evidence from international and domestic studies.

2 INTRODUCTION OF CGM

Blood flows from the arteries to the capillaries to the veins. Glucose in the capillaries diffuses through the interstitial fluid to the cells of a tissue. The glucose concentration in the interstitial fluid accurately reflects the capillary glucose concentration in patients with diabetes mellitus. Understanding the intraday and interday interstitial fluid glucose patterns is extremely important for studying the pathogenesis of short-term and long-term diabetes complications. Therefore, accurately and continuously measuring interstitial fluid glucose concentrations is a milestone representing the ability to closely monitor glycemic control in patients with diabetes. CGM monitors the glucose concentrations in subcutaneous interstitial fluid through a glucose sensor. Compared with SMBG, CGM systems can provide continuous and comprehensive all-day glucose profiles, thereby allowing an understanding of trends in blood glucose fluctuations and the detection of occult hyper- and hypoglycemia that cannot be detected by traditional blood glucose monitoring methods (Table 1). In 1999, the first CGM system was approved by the US Food and Drug Administration (FDA) and it was later approved by the China Food and Drug Administration (CFDA) in 2001 for clinical application and research. CGM systems mainly consist of a glucose sensor, a data transmitter, a data receiver/display, a sensor introducer device, and analysis software. Different CGM systems have different monitoring principles. Currently, most glucose sensors are designed based on an electrochemical principle. The sensor is implanted into the subcutaneous tissue, and an enzyme on the sensor, such as glucose oxidase, interacts with the interstitial fluid glucose to generate electrical signals. These signals are converted into glucose concentrations through the CGM data receiver/display after calculation by a specific algorithm resulting in interstitial glucose levels that can be displayed analytically and graphically.

CGM technology can be divided into retrospective and real-time CGM according to whether the user is able to see the data as it is being collected. Retrospective CGM is the equivalent of "Holter"-style glucose monitoring, and the results can be obtained after the completion of CGM monitoring. Patients are "blinded" to the data and cannot obtain the results until the end of the monitoring period. Thus, it can more objectively record the glucose patterns and reflect the actual effect of intervention treatment.

Compared with retrospective CGM, real-time CGM provides immediate blood glucose readings as well as glucose alarms and predictive alerts, facilitating immediate glucose adjustment. However, the blood glucose should be rechecked with a glucose meter prior to decision making on treatment adjustment. The existing evidence has suggested that patients can achieve better hypoglycemic management under the guidance of a real-time CGM system. Moreover, the improvement in HbA1c level was found to be positively correlated with the frequency of sensor use, which suggests that better control of blood glucose is related to the frequent use of CGM. Retrospective CGM and real-time CGM both exhibit their own features in clinical application (Table 2).

Personal real-time CGM was originally accepted only for adjunctive use, meaning the results must be verified by glucose meters before acting. In 2016, a kind of CGM device was accepted and recommended by FDA for nonadjunctive use. In China, the CFDA approved a flash glucose monitoring system in 2016, which consists of a sensor, scanner, and analysis software and combines the functions of the retrospective and real-time CGM systems with a glucose sensor.

| TABLE 1 | Comparison of the characteristics of self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM) in terms of performance, features, and measurement methods |
| SMBG | CGM |
| **Performance** | 1. Glucose detection using disposable test strips
2. Some glucose analyzers have data storage function, and the glycemic data can be uploaded to a computer through software | 1. Continuous 24-h monitoring through implantation of a glucose sensor
2. Data can be read through a CGM data display, and glycemic profiles can be downloaded through a computer |
| **Features** | 1. Reflects glucose value at a certain time point, like a "snapshot"
2. Sporadic glycemic data, partially reflecting glycemic changes with diet, drugs, exercise, etc.
3. Retrospective analysis based on the output of sporadic glucose values | 1. Reflects continuous glycemic changes, like a "movie"
2. Continuous glycemic data, fully reflecting the glycemic changes with diet, drugs, exercise, etc.
3. Reflects the direction or speed of glucose changes and helps users understand the overall trends and individualized features of glucose changes |
| **Measurement methods** | 1. Measures capillary blood glucose
2. Uses test strips and a pricker, mostly at the fingertip or other sites | 1. Measures glucose concentration in subcutaneous interstitial fluid
2. Sensors are mostly implanted in the subcutaneous tissue in the abdomen or arm |
designed to be worn for up to 14 days, during which glucose calibration is not required. By monitoring the interstitial fluid glucose levels, the flash glucose monitoring system can qualitatively and quantitatively reflect the blood glucose levels as well as the characteristics of glucose fluctuations. Currently, there are no data from domestic large-scale clinical trials of this kind of CGM, and its clinical value remains to be further studied.

3 | ACCURACY ASSESSMENT FOR CGM TECHNOLOGY

CGM technology detects the glucose concentration in the interstitial fluid. Both the point and trend accuracy of CGM measurements should be assessed in comparison with those of venous blood glucose values. To determine the point and trend accuracy of a sensor system, frequent venous blood sampling at intervals of 15 minutes for 7 hours should be performed. The samples must be measured on qualified analytical instruments such as a Yellow Springs Instrument (YSI) glucose analyser and paired with the sensor glucose value at the time of sampling. The main indicators for evaluation include consistency analysis of reference values, mean absolute relative difference (MARD), Clarke error grid analysis, and consensus error grid analysis.

4 | CLINICAL INDICATIONS FOR CGM TECHNOLOGY

1. Retrospective CGM is mainly applicable to the following patients or conditions:
 1. type 1 diabetes patients;
 2. type 2 diabetes patients who need intensive insulin therapy (eg. subcutaneous insulin injection three times or more per day or use of an insulin pump);

2. Real-time CGM
 1. Timeliness; real-time glucose monitoring and display
 2. High- and low-glucose alerts
 3. Data storage; retrospective analysis after data download
 4. "Major events" function, records glucose-related events
 5. Integration with subcutaneous continuous insulin infusion system
 6. Not applicable for diabetes patients with depression or anxiety
 7. Requirement of educational background

 1. Good patient adherence
 2. Ability to intervene in rapid blood glucose fluctuations and manage extreme high- and low-glucose levels in a timely manner based on real-time glucose data
 3. Monitor blood glucose as required during use; ability to manage high-/low-glucose alerts
 4. Record life events related to blood glucose fluctuations
 5. For patients using a real-time CGM and insulin pump integration system, if they have experienced large glucose fluctuation or high-/low-glucose alerts, the hypoglycemic regimen should be adjusted under the guidance of a clinician after rechecking patients’ finger-stick glucose level

3. type 2 diabetes patients who use hypoglycemic therapy under the guidance of SMBG but still have one of the following situations:
 - unexplainable severe hypoglycemia or recurrent hypoglycemia, asymptomatic hypoglycemia or nocturnal hypoglycemia;
 - unexplainable hyperglycemia, especially fasting hyperglycemia;
 - dramatic glycemic variability;
 - those patients who deliberately maintain their blood glucose at high levels due to fear of hypoglycemia;

4. gestational diabetes patients and women with diabetes during pregnancy;

5. diabetes education. CGM facilitates the understanding of glucose changes resulting from diet, exercise, drinking, stress, sleep, and hypoglycemic treatment, thus motivating patients to establish a healthy lifestyle, improving patients’ adherence to treatment, and leading to effective communication between clinicians and patients.

6. other clinical situations such as diabetes patients with gastroparesis, special types of diabetes, or endocrine disorders accompanied by dramatic glycemic variability.
2. Real-time CGM is mainly applicable to the following patients or conditions:
 1. children and adolescents with type 1 diabetes whose HbA1c is less than 7%. The use of real-time CGM can help maintain good glycemic control persistently without increasing the risk of hypoglycemia.
 2. children and adolescents with type 1 diabetes whose HbA1c is greater than or equal to 7% and who are capable of using CGM daily.
 3. adult patients with type 1 diabetes who are capable of using CGM daily.
 4. hospitalized patients with type 2 diabetes on insulin therapy in a non-intensive care unit. The use of real-time CGM can reduce glucose fluctuations, allowing rapid and stable achievement of glycemic targets without increasing the risk of hypoglycemia.
 5. perioperative glycemic control in type 2 diabetes patients. The use of real-time CGM can help patients to better control their blood glucose.

CGM technology is widely used in patients with type 1 diabetes. In type 2 diabetes, studies have also suggested that both retrospective and real-time CGM are powerful device to change patients’ lifestyle and to improve their glycemic variability. Women with diabetes during pregnancy and gestational diabetes may also benefit from CGM. On the other hand, CGM is probably not suitable for those who are not interested or willing to learn the basic mechanical skills of the equipment since optimal CGM use requires ongoing education and learning. For inpatient use, using CGM in the intensive care units is not recommended for various reasons. For example, the interstitial fluid glucose in patients who suffer from skin edema might be diluted, which causes inaccurate result. Also, the use of vasoconstrictor drugs decreases blood flow to the skin and results in a slower shift of glucose from capillaries to the interstitial fluid compartment. Some other clinical conditions include hypotension, hypoxemia, and the use of high-dose acetaminophen in intensive care units adversely affect the accuracy of CGM sensors as well.

5 | OPERATION SPECIFICATIONS FOR CGM

The quality of CGM monitoring results is influenced by many factors (eg, the effectiveness of the sensor, aseptic operation or not, instrument failure, etc) in actual practice. Therefore, CGM systems should be managed by specialized staff during operation and nursing. Medical personnel should apply CGM in accordance with standard operation specifications and eliminate various alarms in a timely manner to ensure the accuracy and validity of CGM results.

1. Capillary blood glucose monitoring during CGM

At present, most CGM systems require at least 1 to 4 capillary blood glucose measurements for calibration daily. The following points should be noted:

 1. Blood glucose concentration should be obtained using the same glucose meter and same batch of test strips.
 2. Capillary blood glucose concentrations should be obtained at different time points throughout the day, preferably during a period when blood glucose is relatively stable (such as before meals and before bedtime).
 3. When using a CGM system that requires the input of a capillary blood glucose concentration for calibration, the glucose value should be entered immediately after the result is displayed on the meter.
 4. If the user incorrectly enters the blood glucose value for calibration, one should re-enter the correct glucose value as soon as possible.

2. Recording diet and glucose-related events

 During CGM monitoring, diet, exercise, medication, and other events should be recorded in detail.

3. Daily device maintenance

 When wearing a CGM system, the patient should avoid exposure to any strong magnetic field and imaging examinations such as magnetic resonance imaging (MRI). In addition, conventional X-ray imaging and Computed Tomography (CT) scanning should be avoided. Some types of CGM devices are not water-resistant. The use of a mobile phone does not affect the CGM device.

4. Criteria for assessing the validation of real-time CGM data

 1. The real-time CGM system should have been worn for at least 12 hours, since it is sometimes inaccurate during the initial 12 hours.
 2. The real-time CGM system should have been adequately calibrated, with a good match between the most recent CGM sensor glucose value and the meter glucose value (difference < 15%).
 3. The real-time CGM readings have no false alarms.

6 | METHODS FOR INTERPRETING CGM GRAPHS

The following points should be noted for interpreting CGM graphs:

 1. CGM data can be used to guide treatment regimens when they are accurate. Clinicians should interpret CGM results by illustrating statistical reports or charts, which facilitates optimal communication between clinicians and patients.
 2. Downloading CGM data before each follow-up visit is time-saving. In addition, it is necessary to confirm that the time on the recorder is correct. If the time is not correct, the downloaded results will be wrong, especially for postprandial blood glucose data judged based on a “meal event” icon on the report.
3. Through the interpretation of CGM graphs, clinicians and patients should communicate and analyse the short-term glycemic profiles together. The interpretation should focus on the trend and regularity of glucose fluctuations rather than on a single, specific glucose value. The discussion between the patient and physician should identify factors that cause abnormal glucose fluctuations, such as the relationship between fasting hyperglycemia and snacks or between hypoglycemia and excessive exercise.

4. For beginners, the practical method to interpret CGM graphs and profiles is “three-step method.” For 3-day CGM data, the first step is to analyse the nocturnal blood glucose; the second step is to analyse the preprandial glucose levels; and the third step is to analyse the postprandial glucose levels. In each step, hypoglycemia should be noted first, followed by hyperglycemia, and then the underlying reasons causing abnormal glucose should be identified to guide treatment adjustment. For 14-day CGM data, the first step is to analyse the time interval to achieve the target; the second step is to analyse glucose fluctuations; and the third step is to analyse the risk of hypoglycemia.

5. On the real-time CGM display, the user can view 3, 12, and 24-hour trends in glucose changes. The 3-hour trend graph is used for the analysis of preprandial and postprandial glucose levels, the 12-hour trend graph is for the analysis of night-time glucose levels, and the 24-h trend graph is for the analysis of a full day of glucose levels.

7 | CGM PARAMETERS

7.1 | Introduction of CGM parameters

Glycemic variability refers to the unstable state of blood glucose levels fluctuating from peaks to nadirs and is an important aspect of glycemic control in addition to HbA1c. 80-85 Glycemic variability includes short-term glycemic variability such as postprandial hyperglycemia and long-term glycemic variability as assessed by HbA1c variability. Studies have shown that both short-term and long-term glycemic variability may be an important factor in the development of diabetes complications. 86-99 CGM continuously captures patterns of hypoglycemia, hyperglycemia, and the short-term glucose variability. Retrospective analysis of CGM data quantifies the time in target range and the time in hypoglycemia and hyperglycemia. The calculation methods and clinical significance of glycemic parameters are presented in Table 3 and the Supplementary Table. These parameters are mostly used for research, and their clinical significance and role in guiding diabetes treatment are still under investigation.

Among the CGM metrics, time in range (TIR) generally refers to the time spent in a patient’s target glucose range (usually 3.9-10 mmol/L). TIR measurements add valuable information to evaluate the glycemic control and were found to be associated with the prevalence of diabetic complications in type 2 diabetes. 100 In recent years, TIRs are recommended as key metrics of glycemic control for evaluating and comparing different glucose-lowering interventions 11 and were used in domestic clinical trial as well. 101

When assessing hypoglycemia using CGM, the accuracy of the device should be considered first. In the International Consensus on Use of Continuous Glucose Monitoring, 11 the classifications of hypoglycemia are presented as the following: (a) level 1: a hypoglycemia alert glucose value of less than 3.9-3.0 mmol/L with or without symptoms; (b) level 2: a glucose level of less than 3.0 mmol/L with or without symptoms; and (c) level 3: severe hypoglycemia requiring external assistance. A prolonged hypoglycemic event was defined as the CGM levels less than 3.0 mmol/L lasting more than 120 minutes. At

Variables	Calculation Method	Features/Clinical Significance
Mean glucose (MG)	Mean of daily continuous 24-h blood glucose	Reflects overall blood glucose level
Premeal 1-h MG	MG within 1-60 min before three meals	Reflects the characteristics of preprandial or postprandial glucose, that is, the impact of eating on blood glucose
Postmeal 3-h MG	MG within 1-180 min after three meals	
Percentage of time	Percentage of time above, below and within the target range of blood glucose values	Reflects the time characteristics of blood glucose changes; simple and easy to understand, suitable for clinical application
Area under the curve	Area between the target blood glucose curve and CGM measurement curve	Analyzes the time and amplitude of glucose excursions by a comprehensive statistical analysis method
Coefficient of variation (CV)	The ratio of SD to MG	Reflects the standardized measure of variation or dispersion from the MG
Standard deviation (SD)	The standard deviation of blood glucose	Reflects the amount of variation or dispersion of a series of glucose values
Mean amplitude of glycemic excursion (MAGE)	The average value of all valid glycemic excursions, which are calculated based on the direction of first valid excursion. Valid glycemic excursion is defined as more than 1 SDBG during 24-h CGM	Removes small amplitudes that do not exceed a certain threshold and therefore truly reflects the degree of blood glucose fluctuations rather than discrete features
this moment, Chinese patients were required to verify the CGM result with a confirmatory fingerstick glucose meter prior to any intervention when experiencing hypoglycemia.

7.2 | Normal reference values for CGM parameters

There has been considerable interest in the study of normal reference values for CGM parameters since the development of CGM technology. Based on the results of a national multicenter study conducted in China, the normal reference ranges of CGM parameters for subjects between 20 and 69 years old in China are shown in Table 4. In addition, a preliminary analysis showed that the 24-hour mean glucose value had a good correlation with HbA1c and that these values could be converted into one another using the following equation: 24-hour mean glucose = 1.198 × HbA1c – 0.582. When HbA1c levels were 6.0%, 6.5%, and 7.0%, the corresponding CGM 24-hour mean glucose levels were 6.6, 7.2, and 7.8 mmol/L, respectively.

7.3 | Glucose management indicator

Modern CGM technology lasting for 10 days or more of CGM data is usually sufficient for an estimate of mean glucose, time in target range, and time in hyperglycemia, while 14 days or more of CGM data provide a better estimate for time in hypoglycemia and glucose variability. Using a standard formula, a value called "estimated HbA1c" was generated from the mean glucose, and the term was later replaced by "glucose management indicator" (GMI). Many patients and clinicians find the GMI to be a helpful educational tool in understanding the CGM-generated glucose profiles and will facilitate optimal diabetes management and the adjustment of anti-diabetic therapy.

Table 4

Parameter type	Parameters	Normal Reference Value
Glycemic level	Mean glucose (MG)	<6.6 mmol/L
	Percentage of time when glucose ≥7.8 mmol/L	<17% (4 h)
	Percentage of time when glucose ≤3.9 mmol/L	<12% (3 h)
Glycemic variability	Standard deviation (SD) of blood glucose	<1.4 mmol/L
	Mean amplitude of glycemic excursion (MAGE)	<3.9 mmol/L

Table 5

Items	Normal reference value (24 h)	Month/day	Month/day	Month/day	Month/day
Number of measurements					
Mean glucose (MG, mmol/L)	<6.6				
Standard deviation (SD, mmol/L)	<1.4				
Coefficient of variation (CV, %)					
Maximum glucose (mmol/L)					
Minimum glucose (mmol/L)					
Percentage of time in hyperglycemic ranges (≥13.9 mmol/L)					
Percentage of time in hyperglycemic ranges (≥10.0 mmol/L)					
Percentage of time in hyperglycemic ranges (≥7.8 mmol/L)					
Percentage of time in hypoglycemic ranges (≤3.9 mmol/L)					
Percentage of time in hypoglycemic ranges (≤2.8 mmol/L)					
Percentage of time in target range (3.9-10 mmol/L)					

Record: measurements in total:; MG: mmol/L; SD: mmol/L; CV: %; maximum and minimum glucose were mmol/L and mmol/L; percentage of time in target range (3.9-10 mmol/L) was %; Percentage of time in hyperglycemic ranges greater than or equal to 7.8 mmol/L greater than or equal to 10 mmol/L and greater than or equal to 13.9 mmol/L were %, %, and %, respectively; Percentage of time in hypoglycemic ranges less than or equal to 3.9 mmol/L and less than or equal to 2.8 mmol/L were h min (%) and h min (%).
8 | CGM REPORT

The lack of unified content and format of the CGM report limits the clinical interpretation and application of CGM monitoring results. Therefore, standardization of CGM reports is extremely important.114 Currently, CGM monitoring reports generally include three parts: (a) general items: basic information about the subject, clinical diagnosis, inspection date, medical staff signature and date; (b) CGM data; and (c) clinical implications of the results. An example of a CGM report is shown in Table 5. At present, some scholars have developed CGM management software to reduce the clinical workload and to facilitate the optimal management of CGM results.115

Ambulatory Glucose Profile (AGP) is one of the standardized visualization tools of CGM data that are now available.11 Key metrics include target range, glucose exposure, glycemic variability, hypoglycemia, and hyperglycemia. The visual display of the AGP pools glucose data as if the data were recorded during a 24-hour period. The result is a single curve representing average glucose values, with interquartile and interdecile ranges shaded to demonstrate glycemic variability.116 As a standardized report form, AGP is useful in translating glucose data into more actionable information both for clinicians and patients.

In conclusion, to standardize the application of CGM technology in clinical practice, the following elements are required: a clear clinical purpose, strict indications, a standardized reporting system, and appropriate treatment adjustment(s) based on CGM results.

CONFLICT OF INTEREST

No competing financial interests exist.

AUTHOR CONTRIBUTIONS

All authors discussed and drafted the manuscript. WJ, LC and JZ wrote and revised the paper and all authors have read and approved the final manuscript.

ORCID

Weiping Jia https://orcid.org/0000-0002-6244-2168

REFERENCES

1. Chinese Diabetes Society. Chinese clinical guideline for continuous glucose monitoring (2015). Chin J Diabetes Mellitus. 2015;7(10):603-613.
2. Colas A, Vigil L, Rodríguez de Castro C, Vargas B, Varela M. New insights from continuous glucose monitoring into the route to dia- betes. Diabetes Metab Res Rev. 2018;34:e3002.
3. Maurizi AR, Piemonte V, Pozzilli P. Diabetes on demand and novel technologies. Diabetes Metab Res Rev. 2018;34(2):e2985.
4. Chinese Diabetes Society. Chinese clinical guideline for continuous glucose monitoring (2009). Chin Med J (Engl). 2009;89(48):3388-3392.
5. Chinese Diabetes Society. Chinese clinical guideline for continuous glucose monitoring (2012). Chin J Diabetes Mellitus. 2012;4(10):582-590.
6. Blevins TC, Bode BW, Garg SK, et al. Statement by the American Association of Clinical Endocrinologists Consensus Panel on continuous glucose monitoring. Endocr Pract. 2010;16(5):730-745.
7. Klonoff DC, Buckingham B, Christiansen JS, et al. Continuous glucose monitoring: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(10):2968-2979.
8. Fonseca VA, Grunberger G, Anhalt H, et al. Continuous glucose mon- itoring: a consensus conference of the American Association of Clinical Endocrinologists and American College of endocrinology. Endocr Pract. 2016;22(8):1008-1021.
9. Bailey TS, Grunberger G, Bode BW, et al. American Association of Clinical Endocrinologists and American College of endocrinology 2016 outpatient glucose monitoring consensus statement. Endocr Pract. 2016;22(2):231-261.
10. Peters AL, Ahmann AJ, Battelino T, et al. Diabetes technology—continuous subcutaneous insulin infusion therapy and continuous glucose monitoring in adults: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(11):3922-3937.
11. Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40(12):1631-1640.
12. Weiping J. Continuous glucose monitoring. Shanghai: Shanghai Sci Technol Press. 2017:1-2.
13. Xie Y, Li B, Luan X, et al. Study on the distinction of glycemic variabil- ity among different glucose regulation populations by phase space reconstruction of time series. Chin J Diabetes Mellitus. 2012;28(9):722-725.
14. Ginsberg BH. The FDA panel advises approval of the first continuous glucose sensor. Diabetes Technol Ther. 1999;1(2):203-204.
15. Zhou J, Jia WP. Real-time dynamic blood glucose monitoring: accurate control and normative application. Chin J Diabetes Mellitus. 2013;5(1):4-6.
16. Li Q, Wang YY, Yu P, et al. Correlation of real-time continuous mon- itoring system with venous glucose and capillary glucose values. Natl Med J China. 2010;90(42):2971-2975.
17. Wang YY, Li Q, Yu P, et al. The accuracy of real-time continuous moni- toring system at different stages and its association with glucose excursion. Clin J Endocrinol Metab. 2011;27(3):224-228.
18. Tamborlane WV, Beck RW, Bode BW, et al. Continuous glucose mon- itoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359(14):1464-1476.
19. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care. 2009;32(8):1378-1383.
20. Ran XW. The accuracy evaluation of dynamic blood glucose monitor- ing system. Chin J Diabetes Mellitus. 2011;3(3):196-200.
21. Zhou J, Lv X, Mu Y, et al. The accuracy and efficacy of real-time con- tinuous glucose monitoring sensor in Chinese diabetes patients: a multicenter study. Diabetes Technol Ther. 2012;14(8):710-718.
22. Zhou J, Bao YQ, Ma XJ, et al. Accuracy assessment of continuous glu- cose monitoring by frequent venous blood collection in patients with type 2 diabetes mellitus. Chin J Diabetes Mellitus. 2012;4(9):523-528.
23. Luo P, Chen QP, Wu JX, Zhang M, Lü X. Assessment of the accuracy of real-time continuous glucose monitoring system and its correlated factors. Clin J Endocrinol Metab. 2013;29(11):954-958.
24. Ji L, Guo X, Guo L, Ren Q, Yu N, Zhang J. A multicenter evaluation of the performance and usability of a novel glucose monitoring system in Chinese adults with diabetes. J Diabetes Sci Technol. 2017;11(2):290-295.
25. Zhou J, Zhang S, Li L, et al. Performance of a new real-time continuous glucose monitoring system: a multicenter pilot study. J Diabetes Investig. 2017.

26. Murphy HR, Rayman G, Duffield K, et al. Changes in the glycemic profiles of women with type 1 and type 2 diabetes during pregnancy. Diabetes Care. 2007;30(11):2785-2791.

27. Yuan T, Zhao WG, Fu Y, Dong Y, Tang Y. Application of continuous glucose monitoring system in the gestational patients with impaired glucose regulation. Chin J Clinical Nutrition. 2010;18(2):80-83.

28. Petrovski G, Dimitrovski C, Bogoev M, Milenkovic T, Ahmeti I, Bitovska I. Is there a difference in pregnancy and glycemic outcome in patients with type 1 diabetes on insulin pump with constant or intermittent glucose monitoring? A pilot study. Diabetes Technol Ther. 2011;13(11):1109-1113.

29. Murphy HR, Eleri D, Allen JM, et al. Closed-loop insulin delivery during pregnancy complicated by type 1 diabetes. Diabetes Care. 2011;34(2):406-411.

30. Voormolen DN, DeVries JH, Franx A, Mol BW, Evers IM. Effectiveness of continuous glucose monitoring during diabetic pregnancy (GlucoMOMS trial); a randomised controlled trial. BMC Pregnancy Childbirth. 2012;12(1):164.

31. Dalfra MG, Chillici NC, Di Cianni G, et al. Glycemic fluctuations during gestation: an additional tool for monitoring pregnancy complicated by diabetes. Int J Endocrinol. 2013;2013:279021.

32. Hernandez TL, Barbour LA. A standard approach to continuous glucose monitor data in pregnancy for the study of fetal growth and infant outcomes. Diabetes Technol Ther. 2013;15(2):172-179.

33. Secher AL, Stage E, Ringholm L, Barfod C, Damm P, Mathiesen ER. Real-time continuous glucose monitoring as a tool to prevent severe hypoglycaemia in selected pregnant women with type 1 diabetes—an observational study. Diabet Med. 2014;31(3):352-356.

34. He XX, Ma XJ, Zhou J. The clinical application of dynamic glucose monitoring in pregnant patients with diabetes mellitus. Chin J Diabetes Mellitus. 2015;7(10):649-651.

35. Wei Q, Sun Z, Yang Y, Yu H, Ding H, Wang S. Effect of a CGMS and SMBG on maternal and neonatal outcomes in gestational diabetes mellitus: a randomized controlled trial. Sci Rep. 2016;6(1):19920.

36. Yu F, Lu L, Liang Z, et al. Continuous glucose monitoring effects on maternal glycemic control and pregnancy outcomes in patients with gestational diabetes mellitus: a prospective cohort study. J Clin Endocrinol Metab. 2014;99(12):4674-4682.

37. Wang XL, Lu JM, Pan CY, et al. Evaluation of the superiority of insulin glargine as basal insulin replacement by continuous glucose monitoring system. Diabetes Res Clin Pract. 2007;76(1):30-36.

38. Li Y, Liang J, Liang Y, et al. Comparison of efficacy and safety of three regiments of transient intensive insulin therapy. Clin J Endocrinol Metab. 2008;24(6):620-622.

39. Kang X, Wang C, Lifang L, et al. Effects of different proportion of carbohydrate in breakfast on postprandial glucose excursion in normal glucose tolerance and impaired glucose regulation subjects. Diabetes Technol Ther. 2013;15(7):569-574.

40. Wu QX, Jiang LL, Shen Z, et al. Effect of moderate alcohol intake on acute glycemic excursion in insulin-treated type 2 diabetics. Clin J Endocrinol Metab. 2014;30(7):569-572.

41. Ren H, Chen L, Shan C, et al. Association between sleep disorders and dawn phenomenon in patients with type 2 diabetes mellitus. Natl Med J China. 2015;95(16):1209-1213.

42. Yu H, Zhou J, Bao Y, Pin Zhang, Lu W, Jia W. “dual-remission” after roux-en-Y gastric bypass surgery: glycemic variability cannot always be improved in Chinese obese patients with type 2 diabetes. Surg Obes Relat Dis. 2016;12(7):1312-1319.

43. Wang J, Yan R, Wen J, et al. Association of lower body mass index with increased glycemic variability in patients with newly diagnosed type 2 diabetes: a cross-sectional study in China. Oncotarget. 2017;8(42):73133-73143.

44. Huang Y, Wang H, Li Y, Tao X, Sun J. Poor sleep quality is associated with dawn phenomenon and impaired circadian clock gene expression in subjects with type 2 diabetes mellitus. Int J Endocrinol. 2017;2017:4578973.

45. Lu W, Zhou J, Jia WP, et al. Characteristics and clinical significance of daily blood glucose profiles of glucocorticoid-related diabetes by continuous glucose monitoring system. J Shanghai Jiaotong Univ Med Sci. 2007;27(7):788-790.

46. Zeng WH, He XW, Shen J, Gu W. Continuous glucose monitoring in type 2 diabetes with gastroparesis. Chin J Intern Med. 2008;47(5):397-400.

47. Zhou J, Jia WP, Li M, et al. Continuous blood glucose monitoring in insulinoma: report of one case and literature review. Shanghai Med J. 2006;29(4):211-213.

48. Zhou J, Jia WP, Bao YQ, et al. Characteristics and clinical significance of daily blood glucose profiles of insulinoma detected by continuous glucose monitoring system. J Shanghai Jiaotong Univ Med Sci. 2007;27(7):781-784.

49. Munir A, Choudhary P, Harrison B, Heller S, Newell-Price J. Continuous glucose monitoring in patients with insulinoma. Clin Endocrinol (Oxf). 2008;68(6):912-918.

50. Han JF, Zhang F, Bao YQ, et al. A case with insulinoma localized by combined use of various means. Chin Med J (Engl). 2011;124(3):476-479.

51. Xie H, Kuang HY. Applications of continuous glucose monitoring system in diseases beyond diabetes mellitus. Med Rec. 2015;19:3578-3580.

52. Gu W, Liu Y, Liu H, et al. Characteristics of glucose metabolism indexes and continuous glucose monitoring system (CGMS) in patients with insulinoma. Diabetol Metab Syndr. 2017;9(1):17.

53. McNally PG, Dean JD, Morris AD, Wilkinson PD, Compion G, Heller SR. Using continuous glucose monitoring to measure the frequency of low glucose values when using biphasic insulin aspart 30 compared with biphasic human insulin 30: a double-blind crossover study in individuals with type 2 diabetes. Diabetes Care. 2007;30(5):1044-1048.

54. Zhou J, Jia W, Bao Y, et al. Glycemic variability and its responses to intensive insulin treatment in newly diagnosed type 2 diabetes. Med Sci Monit. 2008;14(11):CR552-CR558.

55. Bao YQ, Zhou J, Zhou M, et al. Glipizide controlled-release tablets, with or without acarbose, improve glycaemic variability in newly diagnosed type 2 diabetes. Clin Exp Pharmacol Physiol. 2010;37(5-6):564-568.

56. Marfella R, Barbieri M, Grella R, Rizzo MR, Nicoletti GF, Paolizzo G. Effects of vildagliptin twice daily vs. sitagliptin once daily on 24-hour acute glucose fluctuations. J Diabetes Complications. 2010;24(2):79-83.

57. Liu J, Li YB. Application of continuous glucose monitoring system in diabetic patients with insulin intensive treatment. Chin J Diabetes Mellitus. 2011;3(3):201-204.

58. Zhou J, Li H, Zhang X, et al. Nateglinide and acarbose are comparatively effective reducers of postprandial glycemic excursions in Chinese antihyperglycemic agent-naive subjects with type 2 diabetes. Diabetes Technol Ther. 2013;15(6):481-488.
59. Ma ZJ, Chen Y, Lv L, et al. Evaluation of efficacy and safety of lixogludate in newly diagnosed type 2 diabetic patients with continuous glucose monitoring system. Chin J Diabetes Mellitus. 2014;6(12):898-901.

60. Ma Z, Chen R, Liu Y, Yu P, Chen L. Effect of lixogludate vs. NPH in combination with metformin on blood glucose fluctuations assessed using continuous glucose monitoring in patients with newly diagnosed type 2 diabetes. Int J Clin Pharmacol Ther. 2015;53(11):933-939.

61. Tosaka Y, Kanazawa A, Ikeda F, et al. Switching from twice-daily basal insulin injections to once-daily insulin degludec injection for basal-bolus insulin regimen in Japanese patients with type 1 diabetes: a pilot study. Int J Endocrinol. 2015;2015:176261.

62. Nishimura R, Omiya H, Sugio K, Ubukata M, Sakai S, Samukawa Y. Sodium-glucose co-transporter 2 inhibitor luseogliflozin improves glycemic control, assessed by continuous glucose monitoring, even on a low-carbohydrate diet. Diabetes Obes Metab. 2016;18(7):702-706.

63. Zhou J, Zheng F, Guo X, et al. Glargine insulin/gliclazide MR combination therapy is more effective than premixed insulin monotherapy in Chinese patients with type 2 diabetes inadequately controlled on oral antidiabetic drugs. Diabetes Metab Res Rev. 2013;31(7):725-733.

64. Li FF, Xu XH, Fu LY, et al. Influence of acarbose on plasma glucose fluctuations in insulin-treated patients with type 2 diabetes: a pilot study. Int J Endocrinol. 2015;2015:903524.

65. Li FF, Fu LY, Zhang WL, et al. Blood glucose fluctuations in type 2 diabetes patients treated with multiple daily injections. J Diabetes Res. 2016;2016:1028945.

66. Li FF, Jiang LL, Yan RN, et al. Effects of saxagliptin add-on therapy to insulin on blood glucose fluctuations in patients with type 2 diabetes: a randomized, control, open-labeled trial. Medicine (Baltimore). 2016;95(43):e5229.

67. Wan H, Zhao D, Shen J, et al. Comparison of the effects of continuous subcutaneous insulin infusion and add-on therapy with sitagliptin in patients with newly diagnosed type 2 diabetes mellitus. J Diabetes. 2016;2016:9849328.

68. Jia W. Continuous glucose monitoring in China: then, now and in the future. J Diabetes Investig. 2017;8(1):3-5.

69. Gu W, Liu Y, Chen Y, et al. Multicentre randomised controlled trial with sensor-augmented pump vs multiple daily injections in hospitalised patients with type 2 diabetes in China: time to reach target glucose. Diabetes Metab. 2017;43(4):359-363.

70. Li HQ, Lu CF, Wang J, et al. A comparison of clinical efficacy and economic value in basalin-and lantus-treated patients with type 2 diabetes using continuous glucose monitoring system. J Endocrinol Invest. 2018;41(2):179-184.

71. Li FF, Jiang L, Fu L, et al. Exenatide add-on to continuous subcutaneous insulin infusion therapy reduces bolus insulin doses in patients with type 2 diabetes: a randomized, controlled, open-label trial. Diabetes Ther. 2017;8(1):177-187.

72. Zhang Y, Zhao Z, Wang S, et al. Intensive insulin therapy combined with metformin is associated with reduction in both glucose variability and nocturnal hypoglycemia in patients with type 2 diabetes. Diabetes Metab Res Rev. 2017;33(7):e2913.

73. Schnell O, Barnard K, Bergenstal R, et al. Role of continuous glucose monitoring in clinical trials: recommendations on reporting. Diabetes Technol Ther. 2017;19(7):391-399.

74. Maurizi AR, Pozzilli P. Do we need continuous glucose monitoring in type 2 diabetes? Diabetes Metab Res Rev. Epub ahead of print 24 Aug 2013. https://doi.org/10.1002/dmrr.2450

75. Klonoff DC, Ahn D, Drinic A. Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Res Clin Pract. 2017;133:178-192.

76. Goldberg PA, Siegel MD, Russell RR, et al. Experience with the continuous glucose monitoring system in a medical intensive care unit. Diabetes Technol Ther. 2004;6(3):339-347.

77. Zheng XP, Shao Y, Zou CC, et al. The application and nursing of dynamic glucose monitoring system in type 1 diabetes. Chin J Nurs. 2008;43(3):235-236.

78. Lu W, Zhou J, Bao YQ, et al. Analysis of the failure cause of continuous glucose monitoring system and nursing care. Chin J Nurs. 2008;43(6):561-562.

79. Lu W, Zhou J, Bao YQ, et al. Nursing care of 2 children with type 1 diabetes during continuous glucose monitoring. Chin J Nurs. 2009;44(8):713-714.

80. Zhou J, Ming Y, Jia WP, et al. Application of continuous glucose monitoring system in the assessment of within-day and day-to-day blood glucose excursions in type 2 diabetic patients. Clin J Endocrinol Metab. 2006;22(3):286-288.

81. Zhou J, Jia WP, Yu M, et al. The features of postprandial glucose state in type 2 diabetes mellitus. Natt Med J China. 2006;86(14):970-975.

82. Monnier L, Colette C, Boegner C, Pham TC, Lapinski H, Boniface H. Continuous glucose monitoring in patients with type 2 diabetes: why? When? Whom? Diabetes Metab. 2007;33(4):247-252.

83. Zhou J, Jia WP, Yu M, et al. Characteristics of glycemic stability in subjects with different glucose tolerance: the results of continuous glucose monitoring. Shanghai Med J. 2008;31(1):10-13.

84. Mo Y, Zhou J, Jia WP, et al. Indicator of blood glucose fluctuation: the clinical significance and research progress of mean amplitude of glycemic excursions. Chin J Diabetes Mellitus. 2011;3(3):259-263.

85. Bao YQ, Zhou M, Zhou J, et al. Relationship between serum osteocalcin and glycaemic variability in type 2 diabetes. Clin Exp Pharmacol Physiol. 2011;38(1):50-54.

86. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681-1687.

87. Zhou J, Jia WP, Ma XJ, et al. Relationship between blood glucose variability and microalbuminuria in type 2 diabetic patients with well-controlled glycosylated hemoglobin. Natl Med J China. 2008;88(42):2977-2981.

88. Kohnert KD, Augstein P, Zander E, et al. Glycemic variability correlates strongly with postprandial beta-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care. 2009;32(6):1058-1062.

89. Chen XM, Zhang Y, Shen XP, et al. Correlation between glucose fluctuations and carotid intima-media thickness in type 2 diabetes. Diabetes Res Clin Pract. 2010;90(1):95-99.

90. Su G, Mi S, Tao H, et al. Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc Diabetol. 2011;10(1):19.

91. Xu W, Zhu Y, Yang X, et al. Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients. Int J Cardiol. 2016;215:263-268.

92. Sartore G, Chilelli NC, Burlina S, Lapolla A. Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 2013;50(3):437-442.
93. Mo Y, Zhou J, Li M, et al. Glycemic variability is associated with subclinical atherosclerosis in Chinese type 2 diabetic patients. *Cardiovasc Diabetol*. 2013;12(1):15.

94. Su G, Mi SH, Tao H, et al. Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction. *Diabetes Care*. 2013;36(4):1026-1032.

95. Wang X, Zhao X, Dorje T, Yan H, Qian J, Ge J. Glycemic variability predicts cardiovascular complications in acute myocardial infarction patients with type 2 diabetes mellitus. *Int J Cardiol*. 2014;172(2):498-500.

96. Soupal J, Škrha J, Fajmon M, et al. Glycemic variability is higher in type 1 diabetes patients with microvascular complications irrespective of glycemic control. *Diabetes Technol Ther*. 2014;16(4):198-203.

97. Xu F, Zhao LH, Su JB, et al. The relationship between glycemic variability and diabetic peripheral neuropathy in type 2 diabetes with well-controlled HbA1c. *Diabetol Metab Syndr*. 2014;6(1):139.

98. Mo Y, Zhou J, Ma X, et al. Haemoglobin A1c variability as an independent correlate of atherosclerosis and cardiovascular disease in Chinese type 2 diabetes. *Diab Vasc Dis Res*. 2018;15(5):402-408.

99. Lu J, Ma X, Zhang L, et al. Glycemic variability assessed by continuous glucose monitoring and the risk of diabetic retinopathy in latent autoimmune diabetes of the adult and type 2 diabetes. *J Diabetes Investig*. Epub ahead of print 10 Oct 2018. https://doi.org/10.1111/dji.12957

100. Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose monitoring and ambulatory glucose profile analysis. *Diabetes Technol Ther*. 2008;10(3):149-159.

101. Tsujino D, Nishimura R, Taki K, Miyashita Y, Morimoto A, Tajima N. Daily glucose profiles in Japanese people with normal glucose tolerance as assessed by continuous glucose monitoring. *Diabetes Technol Ther*. 2009;11(7):457-460.

102. Borg R, Kuenen JC, Carstensen B, et al. Real-life glycaemic profiles in non-diabetic individuals with low fasting glucose and normal HbA1c: the A1C-derived average glucose (ADAG) study. *Diabetologia*. 2010;53(8):1608-1611.

103. Su G, Mi SH, Tao H, et al. Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction. *Diabetes Care*. 2013;36(4):1026-1032.

104. Zhou J, Mo Y, Li H, et al. Relationship between glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. *Diabetes Technol Ther*. 2011;13(9):921-928.

105. Zhou J, Li H, Ran X, et al. Reference values for continuous glucose monitoring in Chinese subjects. *Diabetes Care*. 2009;32(7):1188-1193.

106. Mazze RS, Strock E, Wesley D, et al. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. *Diabetes Technol Ther*. 2008;10(3):149-159.

107. Tsujino D, Nishimura R, Taki K, Miyashita Y, Morimoto A, Tajima N. Daily glucose profiles in Japanese people with normal glucose tolerance as assessed by continuous glucose monitoring. *Diabetes Technol Ther*. 2009;11(7):457-460.

108. Deroga G, Salvadeo SA, Mereu R, et al. Continuous glucose monitoring system in free-living healthy subjects: results from a pilot study. *Diabetes Technol Ther*. 2009;11(3):159-169.

109. Borg R, Kuenen JC, Carstensen B, et al. Real-life glycaemic profiles in non-diabetic individuals with low fasting glucose and normal HbA1c: the A1C-derived average glucose (ADAG) study. *Diabetologia*. 2010;53(8):1608-1611.

110. Xu W, Zhu YH, Yan JH. Characteristics of real-life glucose profiles monitored by continuous glucose monitoring system in persons with normal glucose tolerance. *Natl Med J China*. 2012;26(26):1820-1823.

111. Wijisman CA, van Heemst D, Hoogeveen ES, et al. Ambulant 24-h glucose rhythms mark calendar and biological age in apparently healthy individuals. *Aging Cell*. 2013;12(2):207-213.

112. Zhou J, Mo Y, Li H, et al. Relationship between HbA1c and continuous glucose monitoring in Chinese population: a multicenter study. *PloS ONE*. 2013;8(12):e83827.

113. Bergenstal RM, Beck RW, Close KL, et al. Glucose management Indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. *Diabetes Care*. 2018;41(11):2275-2280.

114. Bergenstal RM, Ahmann AJ, Bailey T, et al. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the ambulatory glucose profile (AGP). *Diabetes Technol Ther*. 2013;15(3):198-211.

115. Zhang L, Zhou L, Lu W, et al. The establishment and clinical application of dynamic blood glucose monitoring report management system. *Chin J Diabetes Mellitus*. 2012;4(12):754-755.

116. Hirsch IB. Professional flash continuous glucose monitoring as a supplement to A1C in primary care. *Postgrad Med*. 2017;129(8):781-790.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Bao Y, Chen L, Chen L, et al. Chinese clinical guidelines for continuous glucose monitoring (2018 edition). *Diabetes Metab Res Rev*. 2019;35:e3152. https://doi.org/10.1002/dmrr.3152