Critical Independent Sets of a Graph

Vadim E. Levit
Department of Computer Science and Mathematics
Ariel University, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Department of Computer Science
Holon Institute of Technology, Israel
eugen.m@hit.ac.il

Abstract

Let G be a simple graph with vertex set $V(G)$. A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent, and by $\text{Ind}(G)$ we mean the family of all independent sets of G.

The number $d(X) = |X| - |N(X)|$ is the difference of $X \subseteq V(G)$, and a set $A \in \text{Ind}(G)$ is critical if $d(A) = \max\{d(I) : I \in \text{Ind}(G)\}$.

Let us recall the following definitions:

- $\text{core}(G) = \bigcap\{S : S \text{ is a maximum independent set}\}$.
- $\text{corona}(G) = \bigcup\{S : S \text{ is a maximum independent set}\}$.
- $\text{ker}(G) = \bigcap\{S : S \text{ is a critical independent set}\}$.
- $\text{diadem}(G) = \bigcup\{S : S \text{ is a critical independent set}\}$.

In this paper we present various structural properties of $\text{ker}(G)$, in relation with $\text{core}(G)$, $\text{corona}(G)$, and $\text{diadem}(G)$.

Keywords: independent set, critical set, ker, core, corona, diadem, matching

1 Introduction

Throughout this paper G is a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. If $X \subseteq V(G)$, then $G[X]$ is the subgraph of G induced by X. By $G - W$ we mean either the subgraph $G[V(G) - W]$, if $W \subseteq V(G)$, or the subgraph obtained by deleting the edge set W, for $W \subseteq E(G)$. In either case, we use $G - w$, whenever $W = \{w\}$. If $A, B \subseteq V(G)$, then (A, B) stands for the set $\{ab : a \in A, b \in B, ab \in E(G)\}$.

The neighborhood $N(v)$ of a vertex $v \in V(G)$ is the set $\{w : w \in V(G) \text{ and } vw \in E(G)\}$, while the closed neighborhood $N[v]$ of $v \in V(G)$ is the set $N(v) \cup \{v\}$; in order to avoid ambiguity, we use also $N_G(v)$ instead of $N(v)$.

1
The neighborhood \(N(A) \) of \(A \subseteq V(G) \) is \(\{ v \in V(G) : N(v) \cap A \neq \emptyset \} \), and \(N[A] = N(A) \cup A \). We may also use \(N_G(A) \) and \(N_G[A] \), when referring to neighborhoods in a graph \(G \).

A set \(S \subseteq V(G) \) is independent if no two vertices from \(S \) are adjacent, and by \(\text{Ind}(G) \) we mean the family of all the independent sets of \(G \). An independent set of maximum size is a maximum independent set of \(G \), and the independence number \(\alpha(G) \) of \(G \) is \(\max\{|S| : S \in \text{Ind}(G)\} \). Let \(\Omega(G) \) denote the family of all maximum independent sets, and let

\[
\text{core}(G) = \bigcap\{S : S \in \Omega(G)\} \quad \text{[10]}, \quad \text{and} \quad \text{corona}(G) = \bigcup\{S : S \in \Omega(G)\} \quad \text{[2]},
\]

Clearly, \(N(\text{core}(G)) \subseteq V(G) - \text{corona}(G) \), and there are graphs with \(N(\text{core}(G)) \neq V(G) - \text{corona}(G) \) (for an example, see Figure 1). The problem of whether \(\text{core}(G) \neq \emptyset \) is \(\text{NP}-\text{hard} \) [2].

![Figure 1: core(G) = \{a, b\} and V(G) - corona(G) = N(core(G)) \cup \{d\} = \{c, d\}.](image1)

A matching is a set \(M \) of pairwise non-incident edges of \(G \). If \(A \subseteq V(G) \), then \(M(A) \) is the set of all the vertices matched by \(M \) with vertices belonging to \(A \). A matching of maximum cardinality, denoted \(\mu(G) \), is a maximum matching.

For \(X \subseteq V(G) \), the number \(|X| - |N(X)| \) is the difference of \(X \), denoted \(d(X) \). The critical difference \(d(G) \) is \(\max\{d(X) : X \subseteq V(G)\} \). The number \(\max\{d(I) : I \in \text{Ind}(G)\} \) is the critical independence difference of \(G \), denoted \(\text{id}(G) \). Clearly, \(d(G) \geq \text{id}(G) \). It was shown in [26] that \(d(G) = \text{id}(G) \) holds for every graph \(G \). If \(A \) is an independent set in \(G \) with \(d(X) = \text{id}(G) \), then \(A \) is a critical independent set [26]. All pendant vertices not belonging to \(K_2 \) components are included in every inclusion maximal critical independent set.

For example, let \(X = \{v_1, v_2, v_3, v_4\} \) and \(I = \{v_1, v_2, v_3, v_6, v_7\} \) in the graph \(G \) of Figure 2. Note that \(X \) is a critical set, since \(N(X) = \{v_3, v_4, v_5\} \) and \(d(X) = 1 = d(G) \), while \(I \) is a critical independent set, because \(d(I) = 1 = \text{id}(G) \). Other critical sets are \(\{v_1, v_2\}, \{v_1, v_2, v_3\}, \{v_1, v_2, v_3, v_4, v_6, v_7\} \).

![Figure 2: core(G) = \{v_1, v_2, v_6, v_{10}\} is a critical set.](image2)
It is known that finding a maximum independent set is an NP-hard problem \[7\]. Zhang proved that a critical independent set can be find in polynomial time \[26\]. A sim-pler algorithm, reducing the critical independent set problem to computing a maximum independent set in a bipartite graph is given in \[1\].

Theorem 1.1 \[3\] Each critical independent set can be enlarged to a maximum independent set.

Theorem 1.1 led to an efficient way of approximating \(\alpha(G)\) \[25\]. Moreover, it has been shown that a critical independent set of maximum cardinality can be computed in polynomial time \[8\]. Recently, a parallel algorithm computing the critical independence number was developed \[5\].

Recall that if \(\alpha(G) + \mu(G) = |V(G)|\), then \(G\) is a König-Egerváry graph \[6, 24\]. As a well-known example, each bipartite graph is a König-Egerváry graph as well.

Theorem 1.2 \[11\] If \(G\) is a König-Egerváry graph, \(M\) is a maximum matching of \(G\), and \(S \in \Omega(G)\), then:

1. \(M\) matches \(V(G) - S\) into \(S\), and \(N(\text{core}(G))\) into \(\text{core}(G)\);
2. \(N(\text{core}(G)) = \cap \{V(G) - S : S \in \Omega(G)\}\), i.e., \(N(\text{core}(G)) = V(G) - \text{corona}(G)\).

The deficiency \(def(G)\) is the number of non-saturated vertices relative to a maximum matching, i.e., \(def(G) = |V(G)| - 2\mu(G)\) \[19\]. A proof of a conjecture of Graffiti.pc \[4\] yields a new characterization of König-Egerváry graphs: these are exactly the graphs, where there exists a critical maximum independent set \[9\]. In \[13\] it is proved the following.

Theorem 1.3 \[13\] For a König-Egerváry graph \(G\) the following equalities hold
\[
d(G) = |\text{core}(G)| - |N(\text{core}(G))| = \alpha(G) - \mu(G) = def(G).
\]

Using this finding, we have strengthened the characterization from \[9\].

Theorem 1.4 \[13\] \(G\) is a König-Egerváry graph if and only if each of its maximum independent sets is critical.

For a graph \(G\), let denote
\[
\ker(G) = \bigcap \{S : S \text{ is a critical independent set}\} \[12\], and
\[
\text{diadem}(G) = \bigcup \{S : S \text{ is a critical independent set}\}.
\]

In this paper we present several properties of \(\ker(G)\), in relation with \(\text{core}(G)\), \(\text{corona}(G)\), and \(\text{diadem}(G)\).
2 Preliminaries

Let G be the graph from Figure 2; the sets $X = \{v_1, v_2, v_3\}$, $Y = \{v_1, v_2, v_4\}$ are critical independent, and the sets $X \cap Y$, $X \cup Y$ are also critical, but only $X \cap Y$ is also independent. In addition, one can easily see that ker(G) is a minimal critical independent set of G. These properties of critical sets and ker(G) are true even in general.

Theorem 2.1 [12] For a graph G, the following assertions are true:

(i) the function d is supermodular, i.e., $d(A \cup B) + d(A \cap B) \geq d(A) + d(B)$ for every $A, B \subseteq V(G)$;

(ii) if A and B are critical in G, then $A \cup B$ and $A \cap B$ are critical as well;

(iii) G has a unique minimal independent critical set, namely, ker(G).

As a consequence, we have the following.

Corollary 2.2 For every graph G, diadem(G) is a critical set.

For instance, the graph G from Figure 2 has diadem(G) = \{v_1, v_2, v_3, v_4, v_6, v_7, v_10\}, which is critical, but not independent.

![Figure 3: Both G_1 and G_2 are not König-Egerváry graphs.](image)

The graph G from Figure 1 has $d(G) = 1$ and $d(\text{corona}(G)) = 0$, which means that corona(G) is not a critical set. Notice that G is not a König-Egerváry graph. Combining Theorems 1.4 and 2.1(ii), we deduce the following.

Corollary 2.3 If G is a König-Egerváry graph, then both core(G) and corona(G) are critical sets.

Let consider the graphs G_1 and G_2 from Figure 3: core(G_1) = \{a, b, c, d\} and it is a critical set, while core(G_2) = \{x, y, z, w\} and it is not critical.

Theorem 2.4 If core(G) is a critical set, then

$$\text{core}(G) \subseteq \bigcap \{A : A \text{ is an inclusion maximal critical independent set}\}.$$

Proof. Let A be an arbitrary inclusion maximal critical independent set. According to Theorem 1.4 there is some $S \in \Omega(G)$, such that $A \subseteq S$. Since core(G) \subseteq S, it follows that $A \cup \text{core}(G) \subseteq S$, and hence $A \cup \text{core}(G)$ is independent. By Theorem 2.1 we get that $A \cup \text{core}(G)$ is a critical independent set. Since $A \subseteq A \cup \text{core}(G)$ and A is an inclusion maximal critical independent set, it follows that core(G) \subseteq A, for every such set A, and this completes the proof.

Remark 2.5 By Theorem 1.4 the following inclusion holds for every graph G.

$$\text{corona}(G) \supseteq \bigcup \{A : A \text{ is an inclusion maximal critical independent set}\}.$$
3 Structural properties of $\ker(G)$

Deleting a vertex from a graph may change its critical difference. For instance, $d(G - v_1) = d(G) - 1$, $d(G - v_13) = d(G)$, while $d(G - v_3) = d(G) + 1$, where G is the graph of Figure 2.

Proposition 3.1 [10] For a vertex v in a graph G, the following assertions hold:

(i) $d(G - v) = d(G) - 1$ if and only if $v \in \ker(G)$;
(ii) if $v \in \ker(G)$, then $\ker(G - v) \subseteq \ker(G) - \{v\}$.

Note that $\ker(G - v)$ may differ from $\ker(G) - \{v\}$. For example, $\ker(K_{3,2})$ is equal to the partite set of size 3, but $\ker(K_{3,2} - v) = \emptyset$ whenever v is in that set. Also, if $G = C_4$, then $\ker(G) - \{v\} = \emptyset - \{v\} = \emptyset$, while $\ker(G - v) = N_G(v)$ for every $v \in V(G)$.

Theorem 3.2 [8] There is a matching from $N(S)$ into S for every critical independent set S.

In the graph G of Figure 2, let $S = \{v_1, v_2, v_3\}$. By Theorem 3.2 there is a matching from $N(S)$ into $S = \{v_1, v_2, v_3\}$, for instance, $M = \{v_2v_5, v_3v_4\}$, since S is critical independent. On the other hand, there is no matching from $N(S)$ into $S - v_3$.

Theorem 3.3 [10] For a critical independent set A in a graph G, the following statements are equivalent:

(i) $A = \ker(G)$;
(ii) there is no set $B \subseteq N(A), B \neq \emptyset$ such that $|N(B) \cap A| = |B|$;
(iii) for each $v \in A$ there exists a matching from $N(A)$ into $A - v$.

The graphs G_1 and G_2 in Figure 4 satisfy $\ker(G_1) = \core(G_1)$, $\ker(G_2) = \{x, y, z\} \subset \core(G_2)$, and both $\core(G_1)$ and $\core(G_2)$ are critical sets of maximum size. The graph G_3 in Figure 4 has $\ker(G_3) = \{u, v\}$, the set $\{t, u, v\}$ as a critical independent set of maximum size, while $\core(G_3) = \{t, u, v, w\}$ is not a critical set.

![Graphs G1, G2, and G3](image)

Figure 4: $\core(G_1) = \{a, b\}$, $\core(G_2) = \{q, x, y, z\}$, $\core(G_3) = \{t, u, v, w\}$.

An independent set S is *inclusion minimal* with $d(S) > 0$ if no proper subset of S has positive difference. For example, in Figure 4 one can see that $\ker(G_1)$ is an inclusion minimal independent set with positive difference, while for the graph G_2 the sets $\{x, y\}, \{x, z\}, \{y, z\}$ are inclusion minimal independent with positive difference, and $\ker(G_2) = \{x, y\} \cup \{x, z\} \cup \{y, z\}$.

5
Theorem 3.4 [16] If \(\ker(G) \neq \emptyset \), then

\[
\ker(G) = \bigcup \{ S_0 : S_0 \text{ is an inclusion minimal independent set with } d(S_0) = 1 \}
= \bigcup \{ S_0 : S_0 \text{ is an inclusion minimal independent set with } d(S_0) > 0 \}.
\]

In a graph \(G \), the union of all minimum cardinality independent sets \(S \) with \(d(S) > 0 \) may be a proper subset of \(\ker(G) \). For example, consider the graph \(G \) in Figure 5, where \(\{x, y\} \subset \ker(G) = \{x, y, v, w\} \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{Both \(S_1 = \{x, y\} \) and \(S_2 = \{u, v, w\} \) are inclusion minimal independent sets satisfying \(d(S) > 0 \).}
\end{figure}

Actually, all inclusion minimal independent sets \(S \) with \(d(S) > 0 \) are of the same difference.

Proposition 3.5 [16] If \(S_0 \) is an inclusion minimal independent set with \(d(S_0) > 0 \), then \(d(S_0) = 1 \). In other words,

\[
\{ S_0 : S_0 \text{ is an inclusion minimal independent set with } d(S_0) > 0 \} = \\
\{ S_0 : S_0 \text{ is an inclusion minimal independent set with } d(S_0) = 1 \}.
\]

The converse of Proposition 3.5 is not true. For instance, \(S = \{x, y, u\} \) is independent in the graph \(G \) of Figure 5 and \(d(S) = 1 \), but \(S \) is not minimal with this property.

Proposition 3.6 [16] \(\min \{|S_0| : d(S_0) > 0, S_0 \in \text{Ind}(G)\} \leq |\ker(G)| - d(G) + 1 \) is true for every graph \(G \).

4 Relationships between \(\ker(G) \) and \(\text{core}(G) \)

Let us consider again the graph \(G_2 \) from Figure 8: \(\text{core}(G_2) = \{x, y, z, w\} \) and it is not critical, but \(\ker(G_2) = \{x, y, z\} \subseteq \text{core}(G_2) \). Clearly, the same inclusion holds for \(G_1 \), whose \(\text{core}(G_1) \) is a critical set.

Theorem 4.1 [12] For every graph \(G \), \(\ker(G) \subseteq \text{core}(G) \).

Let \(I_c \) be a maximum critical independent set of \(G \), and \(X = I_c \cup N(I_c) \). In [23] it is proved that \(\text{core}(G[X]) \subseteq \text{core}(G) \). Moreover, in [12], we showed that the chain of relationships \(\ker(G) = \ker(G[X]) \subseteq \text{core}(G[X]) \subseteq \text{core}(G) \) holds for every graph \(G \). Theorem 4.1 allows an alternative proof of the following inequality due to Lorentzen.

Corollary 4.2 [18, 22, 12] The inequality \(d(G) \geq \alpha(G) - \mu(G) \) holds for every graph.
Following Ore \cite{20,21}, the number $\delta(X) = d(X) = |X| - |N(X)|$ is the deficiency of X, where $X \subseteq A$ or $X \subseteq B$ and $G = (A, B, E)$ is a bipartite graph. Let

$$\delta_0(A) = \max \{\delta(X) : X \subseteq A\}, \quad \delta_0(B) = \max \{\delta(Y) : Y \subseteq B\}.$$

A subset $X \subseteq A$ having $\delta(X) = \delta_0(A)$ is A-critical, while $Y \subseteq B$ having $\delta(B) = \delta_0(B)$ is B-critical. For a bipartite graph $G = (A, B, E)$ let us denote $\ker_A(G) = \cap \{S : S \text{ is } A\text{-critical}\}$ and $\text{diadem}_A(G) = \cup \{S : S \text{ is } A\text{-critical}\}$. Similarly, $\ker_B(G) = \cap \{S : S \text{ is } B\text{-critical}\}$ and $\text{diadem}_B(G) = \cup \{S : S \text{ is } B\text{-critical}\}$.

It is convenient to define $d(\emptyset) = \delta(\emptyset) = 0$.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure6}
\caption{G is a bipartite graph without perfect matchings.}
\end{figure}

For instance, the graph $G = (A, B, E)$ from Figure 6 has: $X = \{a_1, a_2, a_3, a_4\}$ as an A-critical set, $\ker_A(G) = \{a_1, a_2\}$, $\text{diadem}_A(G) = \{a_1 : i = 1, \ldots, 5\}$ and $\delta_0(A) = 1$, while $Y = \{b_i : i = 4, 5, 6, 7\}$ is a B-critical set, $\ker_B(G) = \{b_4, b_5, b_6\}$, $\text{diadem}_B(G) = \{b_i : i = 2, \ldots, 7\}$ and $\delta_0(B) = 2$.

As expected, there is a close relationship between critical independent sets and A-critical or B-critical sets.

Theorem 4.3 \cite{13} Let $G = (A, B, E)$ be a bipartite graph. Then the following assertions are true:

(i) $d(G) = \delta_0(A) + \delta_0(B)$;

(ii) $\alpha(G) = |A| + \delta_0(A) = |B| + \delta_0(B) = \mu(G) + \delta_0(A) + \delta_0(B) = \mu(G) + d(G)$;

(iii) if X is an A-critical set and Y is a B-critical set, then $X \cup Y$ is a critical set;

(iv) if Z is a critical independent set, then $Z \cap A$ is an A-critical set and $Z \cap B$ is a B-critical set;

(v) if X is either an A-critical set or a B-critical set, then there is a matching from $N(X)$ into X.

The following lemma will be used further to give an alternative proof for the assertion that $\ker(G) = \text{core}(G)$ holds for every bipartite graph G.

Lemma 4.4 If $G = (A, B, E)$ is a bipartite graph with a perfect matching, say M, $S \in \Omega(G)$, $X \in \text{Ind}(G)$, $X \subseteq V(G) - S$, and $G[X \cup M(X)]$ is connected, then

$$X^1 = X \cup M((N(X) \cap S) - M(X))$$

is an independent set, and $G[X^1 \cup M(X^1)]$ is connected.

Proof. Let us show that the set $M((N(X) \cap S) - M(X))$ is independent. Suppose, to the contrary, that there exist $v_1, v_2 \in M((N(X) \cap S) - M(X))$ such that $v_1v_2 \in E(G)$. Hence $M(v_1), M(v_2) \in (N(X) \cap S) - M(X)$. Hence $M(v_1), M(v_2) \in (N(X) \cap S) - M(X)$. Therefore, $G[X^1 \cup M(X^1)]$ is connected.
If \(M(v_1) \) and \(M(v_2) \) have a common neighbor \(w \in X \), then \(\{v_1, v_2, M(v_2), w, M(v_1)\} \) spans \(C_5 \), which is forbidden for bipartite graphs.

Otherwise, let \(w_1, w_2 \in X \) be neighbors of \(M(v_1) \) and \(M(v_2) \), respectively. Since \(G[X \cup M(X)] \) is connected, there is a path with even number of edges connecting \(w_1 \) and \(w_2 \). Together with \(\{w_1, M(v_1), v_1, v_2, M(v_2), w_2\} \) this path produces a cycle of odd length in contradiction with the hypothesis on \(G \) being a bipartite graph.

To complete the proof of independence of the set

\[
X^1 = X \cup M((N(X) \cap S) - M(X))
\]

it is enough to demonstrate that there are no edges connecting vertices of \(X \) and \(M((N(X) \cap S) - M(X)) \).

Assume, to the contrary, that there is \(vw \in E \), such that \(v \in M((N(X) \cap S) - M(X)) \) and \(w \in X \). Since \(M(v) \in (N(X) \cap S) - M(X) \) and \(G[X \cup M(X)] \) is connected, it follows that there exists a path with an odd number of edges connecting \(M(v) \) to \(w \). This path together with the edges \(vw \) and \(vM(v) \) produces cycle of odd length, in contradiction with the bipartiteness of \(G \).

Finally, since \(G[X \cup M(X)] \) is connected, \(G[X^1 \cup M(X^1)] \) is connected as well, by definitions of set functions \(N \) and \(M \).

Theorem 4.1 claims that \(\ker(G) \subseteq \text{core}(G) \) for every graph.

Theorem 4.5 [13] If \(G \) is a bipartite graph, then \(\ker(G) = \text{core}(G) \).

Alternative Proof. The assertions are clearly true, whenever \(\ker(G) = \emptyset \), i.e., for \(G \) having a perfect matching. Assume that \(\ker(G) \neq \emptyset \).

Let \(S \in \Omega(G) \) and \(M \) be a maximum matching. By Theorem 1.2(i), \(M \) matches \(V(G) - S \) into \(S \), and \(N(\text{core}(G)) \) into \(\text{core}(G) \).

According to Theorem 3.3(ii), it is sufficient to show that there is no set \(Z \subseteq N(\text{core}(G)) \), \(Z \neq \emptyset \), such that \(|N(Z) \cap \text{core}(G)| = |Z| \).

Suppose, to the contrary, that there exists a non-empty set \(Z \subseteq N(\text{core}(G)) \) such that \(|N(Z) \cap \text{core}(G)| = |Z| \). Let \(Z_0 \) be a minimal non-empty subset of \(N(\text{core}(G)) \) enjoying this equality.

Clearly, \(H = G[Z_0 \cup M(Z_0)] \) is bipartite, because it is a subgraph of a bipartite graph. Moreover, the restriction of \(M \) on \(H \) is a perfect matching.
Claim 1. Z_0 is independent.

Since H is a bipartite graph with a perfect matching it has two maximum independent sets at least. Hence there exists $W \in \Omega (H)$ different from $M (Z_0)$. Thus $W \cap Z_0 \neq \emptyset$. Therefore, $N (W \cap Z_0) \cap \text{core}(G) = M (W \cap Z_0)$. Consequently,

$$|N (W \cap Z_0) \cap \text{core}(G)| = |M (W \cap Z_0)| = |W \cap Z_0|.$$

Finally, $W \cap Z_0 = Z_0$, because Z_0 has been chosen as a minimal subset of $N (\text{core}(G))$ such that $|N (Z_0) \cap \text{core}(G)| = |Z_0|$. Since $|Z_0| = \alpha (H) = |W|$ we conclude with $W = Z_0$, which means, in particular, that Z_0 is independent.

Claim 2. H is a connected graph.

Otherwise, for any connected component of H, say \hat{H}, the set $V (\hat{H}) \cap Z_0$ contradicts the minimality property of Z_0.

Claim 3. $Z_0 \cup (\text{core}(G) - M (Z_0))$ is independent.

By Claim 1 Z_0 is independent. The equality $|N (Z_0) \cap \text{core}(G)| = |Z_0|$ implies $N (Z_0) \cap \text{core}(G) = M (Z_0)$, which means that there are no edges connecting Z_0 and $\text{core}(G) - M (Z_0)$. Consequently, $Z_0 \cup (\text{core}(G) - M (Z_0))$ is independent.

Claim 4. $Z_0 \cup (\text{core}(G) - M (Z_0))$ is included in a maximum independent set.

Let $Z_i = M ((N (Z_{i-1}) \cap S) - M (Z_{i-1}))$, $1 \leq i < \infty$. By Lemma 4.4 all the sets $Z^i = \bigcup_{0 \leq j \leq i} Z_j$, $1 \leq i < \infty$ are independent. Define

$$Z^\infty = \bigcup_{0 \leq i \leq \infty} Z_i,$$

which is, actually, the largest set in the sequence $\{Z^i, 1 \leq i < \infty\}$.

Figure 8: $S \in \Omega (G)$, $Q = \text{core}(G) - M (Z_0)$, $Y_0 = M (Z_0)$, $Y_1 = (N (Z_0) - M (Z_0)) \cap S$, $Y_2 = \ldots$, and $Z_i = M (Y_i)$, $i = 1, 2, \ldots$.

The inclusion

$$Z_0 \cup (\text{core}(G) - M (Z_0)) \subseteq (S - M (Z^\infty)) \cup Z^\infty$$

is justified by the definition of Z^∞.

9
Since $|M(Z^\infty)| = |Z^\infty|$ we obtain $|(S - M(Z^\infty)) \cup Z^\infty| = |S|$. According to the definition of Z^∞ the set

$$(N(Z^\infty) \cap S) - M(Z^\infty)$$

is empty. In other words, the set $(S - M(Z^\infty)) \cup Z^\infty$ is independent. Therefore, we arrive at

$$(S - M(Z^\infty)) \cup Z^\infty \in \Omega(G).$$

Consequently, $(S - M(Z^\infty)) \cup Z^\infty$ is a desired enlargement of $Z_0 \cup (\text{core}(G) - M(Z_0))$.

Claim 5. $\text{core}(G) \cap ((S - M(Z^\infty)) \cup Z^\infty) = \text{core}(G) - M(Z_0)$.

The only part of $(S - M(Z^\infty)) \cup Z^\infty$ that interacts with $\text{core}(G)$ is the subset

$$Z_0 \cup (\text{core}(G) - M(Z_0)).$$

Hence we obtain

$$\text{core}(G) \cap ((S - M(Z^\infty)) \cup Z^\infty) = \text{core}(G) \cap (Z_0 \cup (\text{core}(G) - M(Z_0))) = \text{core}(G) - M(Z_0).$$

Since Z_0 is non-empty, by Claim 5 we arrive at the following contradiction

$$\text{core}(G) \notin (S - M(Z^\infty)) \cup Z^\infty \in \Omega(G).$$

Finally, we conclude with the fact there is no set $Z \subseteq N(\text{core}(G)), Z \neq \emptyset$ such that $|N(Z) \cap \text{core}(G)| = |Z|$, which, by Theorem [3,3] means that $\text{core}(G)$ and $\text{ker}(G)$ coincide.

Notice that there are non-bipartite graphs enjoying the equality $\text{ker}(G) = \text{core}(G)$; e.g., the graphs from Figure 9 where only G_1 is a König-Egerváry graph.

![Figure 9](image)

Figure 9: $\text{core}(G_1) = \text{ker}(G_1) = \{x, y\}$ and $\text{core}(G_2) = \text{ker}(G_2) = \{a, b\}$.

There is a non-bipartite König-Egerváry graph G, such that $\text{ker}(G) \neq \text{core}(G)$. For instance, the graph G_1 from Figure 10 has $\text{ker}(G_1) = \{x, y\}$, while $\text{core}(G_1) = \{x, y, u, v\}$. The graph G_2 from Figure 10 has $\text{ker}(G_2) = \emptyset$, while $\text{core}(G_2) = \{w\}$.

![Figure 10](image)

Figure 10: Both G_1 and G_2 are König-Egerváry graphs. Only G_2 has a perfect matching.
5 \(\ker(G) \) and \(\text{diadem}(G) \) in König-Egerváry graphs

There is a non-König-Egerváry graph \(G \) with \(V(G) = N(\text{core}(G)) \cup \text{corona}(G) \); e.g., the graph \(G \) from Figure 11.

Theorem 5.1 If \(G \) is a König-Egerváry graph, then

(i) \(|\text{corona}(G)| + |\text{core}(G)| = 2\alpha(G)|; \)
(ii) \(\text{diadem}(G) = \text{corona}(G) \), while \(\text{diadem}(G) \subseteq \text{corona}(G) \) is true for every graph;
(iii) \(|\ker(G)| + |\text{diadem}(G)| \leq 2\alpha(G)|.

Proof. (i) Using Theorems 1.2 and 1.3, we infer that
\[
|\text{corona}(G)| + |\text{core}(G)| = |\text{corona}(G)| + |N(\text{core}(G))| + |\text{core}(G)| - |N(\text{core}(G))| = |V(G)| + d(G) = \alpha(G) + \mu(G) + d(G) = 2\alpha(G).
\]
as claimed.

(ii) Every \(S \in \Omega(G) \) is a critical set, by Theorem 1.4. Hence we deduce that \(\text{corona}(G) \subseteq \text{diadem}(G) \). On the other hand, for every graph each critical independent set is included in a maximum independent set, according to Theorem 1.1. Thus, we infer that \(\text{diadem}(G) \subseteq \text{corona}(G) \). Consequently, the equality \(\text{diadem}(G) = \text{corona}(G) \) holds.

(iii) It follows by combining parts (i),(ii) and Theorem 4.1.

Notice that the graph from Figure 11 has \(|\text{corona}(G)| + |\text{core}(G)| = 13 > 12 = 2\alpha(G) \).

For a König-Egerváry graph with \(|\ker(G)| + |\text{diadem}(G)| < 2\alpha(G)|\) see Figure 11.

Figure 11 shows that it is possible for a graph to have diadem(\(G \)) \(\not\subseteq \) corona(\(G \)) and ker(\(G \)) \(\not\subseteq \) core(\(G \)).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure11.png}
\caption{\(G \) is not a König-Egerváry graph, and core(\(G \)) = \{x, y, z\}.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure12.png}
\caption{\(G_1 \) is a non-bipartite König-Egerváry graph, such that \(\ker(G_1) = \text{core}(G_1) \) and \(\text{diadem}(G_1) = \text{corona}(G_1) \); \(G_2 \) is a non-König-Egerváry graph, such that \(\ker(G_2) = \text{core}(G_2) = \{x, y\}; \text{diadem}(G_2) \cup \{z, t, v, w\} = \text{corona}(G_2) \).}
\end{figure}

Proposition 5.2 Let \(G = (A, B, E) \) be a bipartite graph.

(i) \([21]\) If \(X = \ker_A(G) \) and \(Y \) is a \(B \)-critical set, then \(X \cap N(Y) = N(X) \cap Y = \emptyset \);\n(ii) \([20]\) \(\ker_A(G) \cap N(\ker_B(G)) = N(\ker_A(G)) \cap \ker_B(G) = \emptyset \).
Now we are ready to describe both \(\ker \) and \(\text{diadem} \) of a bipartite graph in terms of its bipartition.

Theorem 5.3 Let \(G = (A, B, E) \) be a bipartite graph. Then the following assertions are true:

(i) \(\ker(A) \cup \ker(B) = \ker(G) \);
(ii) \(|\ker(G)| + |\text{diadem}(G)| = 2\alpha(G) \);
(iii) \(|\ker(A)| + |\text{diadem}_B(G)| = |\ker(B)| + |\text{diadem}_A(G)| = \alpha(G) \);
(iv) \(\text{diadem}_A(G) \cup \text{diadem}_B(G) = \text{diadem}(G) \).

Proof. (i) By Theorem 4.3, \(\ker(A) \cup \ker(B) \) is critical in \(G \). Moreover, the set \(\ker(A) \cup \ker(B) \) is independent in accordance with Proposition 4.2(ii). Assume that \(\ker(A) \cup \ker(B) \) is not minimal. Hence the unique minimal \(d \)-critical set of \(G \), say \(Z \), is a proper subset of \(\ker(A) \cup \ker(B) \), by Theorem 2.1(iii). According to Theorem 4.3(iv), \(Z_A = Z \cap A \) is an \(A \)-critical set, which implies \(\ker(A) \subseteq Z_A \), and similarly, \(\ker(B) \subseteq Z_B \). Consequently, we get that \(\ker(A) \cup \ker(B) \subseteq Z \), in contradiction with the fact that \(\ker(A) \cup \ker(B) \neq Z \subseteq \ker(A) \cup \ker(B) \).

(ii), (iii), (iv) By Proposition 5.2(i), we have
\[
|\ker(A)| - \delta_0(A) + |\text{diadem}_B(G)| = |N(\ker(A))| + |\text{diadem}_B(G)| \leq |B|.
\]
Hence, according to Theorem 4.3(ii), it follows that
\[
|\ker(A)| + |\text{diadem}_B(G)| \leq |B| + \delta_0(G) = \alpha(G).
\]
Changing the roles of \(A \) and \(B \), we obtain
\[
|\ker(B)| + |\text{diadem}_A(G)| \leq \alpha(G).
\]

By Theorem 4.3(iv), \(\text{diadem}(G) \cap A \) is \(A \)-critical and \(\text{diadem}(G) \cap B \) is \(B \)-critical. Hence \(\text{diadem}(G) \cap A \subseteq \text{diadem}_A(G) \) and \(\text{diadem}(G) \cap B \subseteq \text{diadem}_B(G) \). It implies both the inclusion \(\text{diadem}(G) \subseteq \text{diadem}_A(G) \cup \text{diadem}_B(G) \), and the inequality
\[
|\text{diadem}(G)| \leq |\text{diadem}_A(G)| + |\text{diadem}_B(G)|.
\]

Combining Theorem 4.3 Theorem 6.1(i),(ii), and part (i) with the above inequalities, we deduce
\[
2\alpha(G) \geq |\ker(A)| + |\ker(B)| + |\text{diadem}_A(G)| + |\text{diadem}_B(G)| \geq |\ker(G)| + |\text{diadem}(G)| = |\text{core}(G)| + |\text{corona}(G)| = 2\alpha(G).
\]

Consequently, we infer that
\[
|\text{diadem}_A(G)| + |\text{diadem}_B(G)| = |\text{diadem}(G)|,
|\ker(G)| + |\text{diadem}(G)| = 2\alpha(G),
|\ker(A)| + |\text{diadem}_A(G)| = |\ker(B)| + |\text{diadem}_A(G)| = \alpha(G).
\]
Since \(\text{diadem}(G) \subseteq \text{diadem}_A(G) \cup \text{diadem}_B(G) \) and \(\text{diadem}_A(G) \cap \text{diadem}_B(G) = \emptyset \), we finally obtain that
\[
\text{diadem}_A(G) \cup \text{diadem}_B(G) = \text{diadem}(G),
\]
as claimed. ☐
6 Conclusions

In this paper we focus on interconnections between ker, core, diadem, and corona. In [15] we showed that $2\alpha(G) \leq |\text{core}(G)| + |\text{corona}(G)|$ is true for every graph, while the equality holds whenever G is a König-Egerváry graph, by Theorem 5.1(i).

According to Theorem 4.1, $\ker(G) \subseteq \text{core}(G)$ for every graph. On the other hand, Theorem 1.1 implies the inclusion $\text{diadem}(G) \subseteq \text{corona}(G)$. Hence

$$|\ker(G)| + |\text{diadem}(G)| \leq |\text{core}(G)| + |\text{corona}(G)|$$

for each graph G. These remarks together with Theorem 5.1(iii) motivate the following.

Conjecture 6.1 $|\ker(G)| + |\text{diadem}(G)| \leq 2\alpha(G)$ is true for every graph G.

When it is proved one can conclude that the following inequalities:

$$|\ker(G)| + |\text{diadem}(G)| \leq 2\alpha(G) \leq |\text{core}(G)| + |\text{corona}(G)|$$

hold for every graph G.

By Corollary 2.3, $\text{core}(G)$ is critical for every König-Egerváry graph. It justifies the following.

Problem 6.2 Characterize graphs such that $\text{core}(G)$ is a critical set.

Theorem 4.5 claims that the sets $\ker(G)$ and $\text{core}(G)$ coincide for bipartite graphs. On the other hand, there are examples showing that this equality holds even for some non-König-Egerváry graphs (see Figure 9). We propose the following.

Problem 6.3 Characterize graphs with $\ker(G) = \text{core}(G)$.

7 Acknowledgments

The authors would like to thank the organizers of the International Conference in Discrete Mathematics (ICDM 2013) for an opportunity to give a special invited talk including their recent findings.

References

[1] A. A. Ageev, *On finding critical independent and vertex sets*, SIAM Journal on Discrete Mathematics 7 (1994) 293-295.

[2] E. Boros, M. C. Golumbic, V. E. Levit, *On the number of vertices belonging to all maximum stable sets of a graph*, Discrete Applied Mathematics 124 (2002) 17-25.

[3] S. Butenko, S. Trukhanov, *Using critical sets to solve the maximum independent set problem*, Operations Research Letters 35 (2007) 519-524.
[4] E. DeLaVina, *Written on the Wall II, Conjectures of Graffiti*, pc http://cms.dt.uh.edu/faculty/delavinae/research/wowII/

[5] E. DeLaVina, C. E. Larson, *A parallel algorithm for computing the critical independence number and related sets*, Ars Mathematica Contemporanea 6 (2013) 237-245.

[6] R. W. Deming, *Independence numbers of graphs - an extension of the König-Egerváry theorem*, Discrete Mathematics 27 (1979) 23-33.

[7] M. Garey, D. Johnson, *Computers and intractability*, W. H. Freeman and Company, New York, 1979.

[8] C. E. Larson, *A note on critical independence reductions*, Bulletin of the Institute of Combinatorics and its Applications 5 (2007) 34-46.

[9] C. E. Larson, *The critical independence number and an independence decomposition*, European Journal of Combinatorics 32 (2011) 294-300.

[10] V. E. Levit, E. Mandrescu, *Combinatorial properties of the family of maximum stable sets of a graph*, Discrete Applied Mathematics 117 (2002) 149-161.

[11] V. E. Levit, E. Mandrescu, *On α+-stable König-Egerváry graphs*, Discrete Mathematics 263 (2003) 179-190.

[12] V. E. Levit, E. Mandrescu, *Vertices belonging to all critical independent sets of a graph*, SIAM Journal on Discrete Mathematics 26 (2012) 399-403.

[13] V. E. Levit, E. Mandrescu, *Critical independent sets and König-Egerváry graphs*, Graphs and Combinatorics 28 (2012) 243-250.

[14] V. E. Levit, E. Mandrescu, *Critical sets in bipartite graphs*, Annals of Combinatorics 17 (2013) 543-548.

[15] V. E. Levit, E. Mandrescu, *A set and collection lemma*, The Electronic Journal of Combinatorics 21 (2014) #P1.40.

[16] V. E. Levit, E. Mandrescu, *On the structure of the minimum critical independent set of a graph*, Discrete Mathematics 313 (2013) 605-610.

[17] V. E. Levit, E. Mandrescu, *On maximum matchings in König-Egerváry graphs*, Discrete Applied Mathematics 161 (2013) 1635-1638.

[18] L. C. Lorentzen. *Notes on covering of arcs by nodes in an undirected graph*, Technical report ORC 66-16, Operations Research Center, University of California, Berkeley, California, 1966.

[19] L. Lovász, M. D. Plummer, *Matching Theory*, Annals of Discrete Mathematics 29 (1986) North-Holland.

[20] O. Ore, *Graphs and matching theorems*, Duke Mathematical Journal 22 (1955) 625-639.
[21] O. Ore, *Theory of Graphs*, AMS Colloquium Publications 38 (1962) AMS.

[22] A. Schrijver, *Combinatorial Optimization*, Springer, Berlin, 2003.

[23] T. M. Short, *KE Theory & the number of vertices belonging to all maximum independent sets in a graph*, M.Sc. Thesis, Virginia Commonwealth University, 2011. http://digarchive.library.vcu.edu/dspace/bitstream/10156/3232/1/thesis.pdf

[24] F. Sterboul, *A characterization of the graphs in which the transversal number equals the matching number*, Journal of Combinatorial Theory B 27 (1979) 228-229.

[25] S. Trukhanov, *Novel approaches for solving large-scale optimization problems on graphs*, Ph.D. Thesis, University of Texas, 2008. http://repository.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2986/TRUKHANOV-DISSERTATION.pdf

[26] C. Q. Zhang, *Finding critical independent sets and critical vertex subsets are polynomial problems*, SIAM Journal on Discrete Mathematics 3 (1990) 431-438.