Hash-MAC-DSDV: Mutual Authentication for Intelligent IoT-Based Cyber-Physical Systems

Muhammad Adil (Student, Member, IEEE), Mian Ahmad Jan* (Senior Member, IEEE), Spyridon Matorakis (Member, IEEE), Houbing Song (Senior Member, IEEE), Muhammad Mohsin Jadoon (Member, IEEE), Safia Abbas, Ahmed Farouk (Member, IEEE)

Abstract—Cyber-Physical Systems (CPS) connected in the form of Internet of Things (IoT) are vulnerable to various security threats, due to the infrastructure-less deployment of IoT devices. Device-to-Device (D2D) authentication of these networks ensures the integrity, authenticity, and confidentiality of information in the deployed area. The literature suggests different approaches to address security issues in CPS technologies. However, they are mostly based on centralized techniques or specific system deployments with higher cost of computation and communication. It is therefore necessary to develop an effective scheme that can resolve the security problems in CPS technologies of IoT devices. In this paper, a lightweight Hash-MAC-DSDV (Hash Media Access Control Destination Sequence Distance Vector) routing scheme is proposed to resolve authentication issues in CPS technologies, connected in the form of IoT networks. For this purpose, a CPS of IoT devices (multi-WSNs) is developed from the local-chain and public chain, respectively. The proposed scheme ensures legitimate devices to modify their routing table and unicast the one-way hash authentication mechanism to transfer their captured data from source towards the destination. Our evaluation results demonstrate that Hash-MAC-DSDV outweighs the existing schemes in terms of attack detection, energy consumption and communication metrics.

Index Terms—Internet of Things (IoT), security, Hash-MAC-DSDV, Device to Device authentication, Local and public chains.

I. INTRODUCTION

INTERNET of Things (IoT) is the latest and emerging trend in the current era of Information and Communications Technology (ICT). IoT has numerous applications in the real world that include disaster management, military surveillance, healthcare, smart farming, and industrial automation among others [1-3]. The network architecture of IoT is mainly based on distributed and centralized communication infrastructures [4-7]. In the distributed infrastructure, the clients directly extract data from the deployed sensor devices, while in the centralized infrastructure, the sensor devices in the deployed area process the data collected via a concerned base station.

For the IoT connectivity, multiple Wireless Sensor Networks (WSNs) collaborate to deliver services to the end users. It is therefore essential for these networks to manage the identity of sensor devices in a secured environment [5-8]. In most cases, the deployment of WSN and IoT infrastructure is challenging, so Device-to-Device (D2D) authentication is a viable option in these scenarios. In the existing literature, the D2D authentication schemes used for IoT are mostly used in a centralized fashion [9, 10]. However, in a centralized D2D authentication, legitimate sensor devices rely on third parties, e.g. authentication servers, for their verification and network participation. This increases the likelihood of failures since all participating devices depend on a single point for their authentication. The distributed or decentralized authentication resolves this issue in these networks. Authentication of IoT networks connected in the form of multi-WSNs is an emerging decentralized approach used to address the issues associated with a centralized authentication [8-11].

The interconnection of multi-WSNs brings numerous challenges in terms of network security, architecture, lifetime, and communication metrics, due to its continuous emergence [11-14]. Data confidentiality and integrity are the crucial aspects of IoT networks because they ensure the legitimacy of a network. Therefore, D2D authentication of IoT networks interconnecting multi-WSNs is mainly focused on the topological structure and routing protocols to create a secured communication infrastructure. The existing techniques use the peer-to-peer authentication through nodes, servers or base stations, which is mostly based on centralized communication. In addition, the centralized communication of these sensitive networks is not reliable because failure of a centralized device may disrupt the operation of interconnected sites and may create network overhead in terms of shifting complete load to the neighboring servers or controllers, which degrades the network performance. To resolve the authentication issue in

*Corresponding author: Mian Ahmad Jan

This paper has been accepted for publication by the IEEE Internet of Things Journal. The copyright is with the IEEE.
these networks, we have proposed a decentralized approach in this research, which is effective in terms of various authentication modes. The main contributions of this research are as follow.

A. Research contributions

In this paper, we propose a Hash-MAC based mutual authentication scheme for Cyber-Physical Systems (CPS) with embedded sensor devices connected in the form of multi-WSNs topology of IoT. Unlike the existing studies, we focus on decentralized authentication, where a D2D approach is adopted to verify the authenticity of participating devices. Moreover, the proposed model uses a hash function with MAC addresses to create a secured authentication key for the deployed IoT devices. We have developed the IoT network infrastructure by interconnected multi-WSNs, which are further built into various components like base station (BS), cluster head (CH) and ordinary sensor devices. The legitimate devices of the network register their MAC addresses in a local chain with a concerned CH node followed by BS in the public chain. In the next step, the BS broadcasts the MAC addresses of registered devices in the public chain by adding a hash function. Likewise, BS(s) connected in the public chain receives this information and forwards it to the local chain through CH nodes followed by legitimate devices. Consequently, the embedded devices of CPS in the local chain update their routing table and follows this information for unicast communication or one-way authentication in the network.

The major contributions of our scheme are as follows:

1) To reduce the computation and communication costs, the CH nodes and BS(s) have been provided with sufficient power and control to manage the MAC address registration of legitimate devices, hash functioning and route advertisement for creating a congestion-free communication environment with a better lifespan of legitimate devices.

2) The authenticity of participating devices is ensured by continuously advertising their authentication information in the local and public chain. In addition, the legitimate devices in the local chain follow the advertised information with a one-way Hash MAC authentication process to ensure the legitimacy of requesting devices by matching Hash MAC with their MAC address table.

3) The D2D authentication is achieved by utilizing minimal network resources in our proposed model, because most of the computation is performed by BS and CH nodes, which improve the result statistics in terms of comparative metrics over the existing schemes. In addition, the network overhead is minimized up to a remarkable level in terms of throughput, packet lost ratio, and network lifetime, because the participating device follows only the advertised information of the concerned CH node and BS, respectively, to send their data from source to destination.

Beside that, we want to acknowledge that our proposed model presents a secured communication environment with robust MAC address registration to ensure their legitimacy. Thus, the proposed HASH MAC scheme applies to any IoT application that has legitimate device authentication and secure communication requirements e.g. industrial automation, military, internet of vehicles (IoV), agriculture, smart homes etc.

The rest of the paper is organized as follows. Section 2 presents the related work followed by the proposed model of authenticating the IoT devices in CPS in Section 3. Section 4 presents the formal security analysis followed by experimental results in Section 5. Finally, section 6 concludes our paper.

II. Literature Review

Wireless Sensor Networks (WSNs) and Internet of Things (IoT) are susceptible to various security threats, due to the deployed environment and their dynamic communication behavior. Therefore, security of these networks is considered as primary concerns for research community that needs to be implemented at the deployment stage [15] [16]. In order to combat security threats faced by these networks, the limited resources and critical applications of IoT require the research community to devise new techniques or modify existing techniques. Therefore, the literature suggests different schemes for countering various type of attacks faced by these networks.

Khalid et al. [17] proposed a decentralized authentication scheme for IoT-based communication infrastructure of multi-WSNs, where they used fog computing as a public authentication process to verify the legitimacy of participating sensor devices. Tonyali et al. [18] proposed a privacy preserved protocol for wireless mesh networks of Smart Grid to collect data in a secured communication environment. Moreover, they used Fully Homomorphic Encryption (FHE) and Secure multiparty Computation (SMPC) techniques in their model to aggregate data in a secured communication environment. A comprehensive survey of secure services composition and data aggregation for WSNs was carried out by Aloqaily et al. [19]. Baker et al. [20] proposed the toolbox authentication scheme for blockchain wireless sensor networks. In the proposed model, they used a key feature for the authenticity and identity of communicating sensor devices. Moreover, they used the signature and cryptographic approaches in their cloud-based infrastructure of blockchain wireless networks. Rathee et al. [21] proposed a blockchain authentication scheme for autonomous vehicular communication infrastructure.

The challenges associated with the security of IoT network communication infrastructure was expansively overviewed by Tariq et al. [22] in their survey article. Moreover, the authors comprehensively discussed the well-established approaches to counter these threats in an operational network. However, the survey was adopted specifically against fog computing IoT network communication environment. The two-factor lightweight privacy-preserving authentication scheme for IoT devices connected in the form of multi-WSNs was proposed by Gope et al. [23]. The authors used the physical functionality of IoT devices as an authentication factor to verify the legitimacy of participating devices. However, later on, their scheme was flawed, because every time the assessment of the physical properties of IoT devices is not possible. Feng et al. [24]
was proposed the lightweight attestation and authentication scheme for the IoT network. They used the memory and clone-able functions of sensor devices with the help of software-define infrastructure to verify the authenticity of participating devices in the network. The CreditCoin based authentication scheme for blockchain vehicular wireless sensor networks was proposed by Li et al. [25]. The limitation of this scheme was its specific system implementation with a complex model.

Cui et al. [26] used a deep learning technique to identify malware variants in the deployed WSNs. In the proposed scheme, the authors used malicious codes in the conversion of grayscale images to verify the legitimacy of their scheme. The scheme was effective to identify malware variants in the network, but it was limited to homogeneous networks, which minimizes its use in the real deployment. Aitzhan et al. [27] proposed a third party decentralized authentication scheme for smart grid energy system. Moreover, the authors used blockchain technology infrastructure in their model with multi-signature anonymous encryption message streams to ensure the security of deployed IoT. A detailed survey on blockchain technology in coordination of a centralized approach to overview the security performance of deployed WSNs infrastructure is carried out by Salman et al. [28]. Cui et al. [29] was proposed the ensemble bat algorithm (BA) approach for large scale optimization problems by integrating ideas. Edge Chain named blockchain communication environment for IoT networks was proposed by Pan et al. [30]. The basic idea of the proposed model was to integrate the blockchain of WSNs and link them through edge cloud for secure information exchange. The three-tier security architecture for IoT networks was suggested by Bao et al. [31]. The authors used the blockchain layer, authentication layer, and application layer in combination to resolve the security issues of IoT networks. Won et al. [32] was proposed the Certificateless Signcryption Tag Key Encapsulation Mechanism (eCLSC-TKEM) to resolve the security issue of city-based drone communication infrastructure. The proposed model was capable to verify the authenticity of participating devices in terms of relationships such as one-to-one authentication, one to many, and many to one.

A. Limitation of Existing Schemes.

CPS is extremely vulnerable to a variety of internal and external attacks, due to their unrestricted area deployment and complex communication activities. As a consequence, efficient use of CPS networks enriches their productivity and adaptability. CPS is made up of hundreds of thousands of sensor nodes that are exposed to numerous forms of attacks, i.e. jamming, black hole attacks, Sybil attacks, server-side attacks, and so on. Various methodologies had been demonstrated in the recent past to mitigate these types of attacks and resolve the authentication problem in CPS, but the majority of them are specific to the communication environment, system deployment, or software relevancy. The following are some of the major disadvantages correlated with the current literature:

1) The majority of the authentication approaches discussed in the literature are difficult to execute in a real deployment, due to their complexity.
2) Some of the discussed techniques are successful for unique network attacks, which limits their use in real-world applications because CPS is susceptible to numerous network attacks.
3) Some present literature employs a convoluted authentication mechanism, which adds to network overhead and reduces network capability in terms of computation and communication costs.

III. PROPOSED METHODOLOGY: HASH-MAC-DSDV SCHEME

A. Assumptions and System Model

Let us assume an IoT network of sensor devices, CH nodes, and BSs. The sensor devices have limited resources in terms of storage, transmission, processing, and onboard power. Such resources require efficient utilization for better results and prolonged network lifetime. To this end, in our proposed model, most computation is performed by CH nodes and BS(s) to maximize the lifetime of sensor devices. The sensor devices are components of CPS connected in the form of IoT networks. Moreover, these devices are deployed at a designated location to collect and process information in the network according to their assigned task. The CH nodes process the gathered information of sensor devices in the local chain and transmit it to the BS(s) for further processing. Each CH is a special device with higher processing and memory capabilities, as well as onboard power. Therefore, they process the data in an effective way in the local chain as well as in the public chain associated with the BS. The BS connects multi-WSNs of CPS to form a heterogeneous network. Moreover, the BS works as a point of interest for sub-networks, because it manages the sub-networks in terms of security and data processing.

Figure 1 represents the architectural diagram of our proposed approach. The connectivity between legitimate devices and cluster heads is shown by light blue lines whereas, the green lines show intra-connectivity among the BSs, while the orange lines represent the connectivity of BSs and network cloud. The black lines in the figure show the D2D communication among different clusters. The sensor devices in each cluster gather data according to their designated task and process it via the concerned CH in the network. Similarly, each CH node uses an associated BS to transmit the gathered information to remote destinations within the network. Moreover, as shown in the figure, the legitimate devices of one cluster can communicate with another cluster’s device, if they verify the security parameters of the proposed model by matching the MAC addresses. The multi-WSNs of CPS, as shown in the figure, establish a heterogeneous IoT network.

B. Authentication Mechanism

The authentication mechanism adopted in the proposed model includes the following phases: initialization, registration, and authentication.
1) Initialization and Registration Phases: The initialization phase is mainly concerned with the BSs as they initiate the Hash-MAC-DSDV mutual authentication scheme on sub-networks using the local and public chain connectivity. All the participating sub-network devices first register their MAC addresses with a BS in an offline phase within the public chain via a concerned CH (local chain). The BS adds MD5 Hash function with the registered MAC address and broadcasts it within the public chain following the Hash-MAC-DSDV routing scheme. The CH connected with the BS passes on this information to the local chain, where the legitimate devices update their routing table according to the advertised information. Similarly, the connected devices in the network follow their routing table information to transmit data from source to destination via concerned CH and BS. However, before transmission, a one-way-authentication process is carried out to verify the legitimacy of each requesting device by matching its MAC address in the device MAC table, CH, or BS, respectively.

Theorem-1: An ordinary device D_i generates a MAC address registration request with concerned S_j through CH, where D_j is the specified BS. D_i communicate in the network, if D_i MAC address $\in (D_j)$ public chain.

Proof: Let us assume that an attacker device A_k generates a registration request directly with BS by sending its MAC address. D_j checks the MAC address of requesting device by triggering a lookup with connected CH or local chain network. After, a through check, the MAC-address of A_k did not match with any local chain of S_j. Hence, the MAC address of A_k cannot be registered by concerned D_j in the public chain. Moreover, the registration request of A_k is denied by D_j. Conversely, if the legitimate device D_i generated a registration request with the concerned D_j through CH or local chain, then its MAC address will be verified successfully in terms of $D_i \in member(D_j, i)$, where the i^{th} term in D_j, i denotes the total number of registered MAC addresses of legitimate devices in D_j, which is further classified as $i=(1,2,3,4,\ldots,n-1)$, in our proposed multi-WSNs network. Hence, D_j registers only those devices that approached through local chain or CH in the initial phase of registration (offline phase).

Algorithm describes the registration phase of the proposed model. Initially, D_i devices generate RREQ messages to register their MAC addresses with D_j that checks the local chain of requesting device. If the local chain (CH) $\in D_j$, then, the D_j registers the MAC addresses of requesting devices, else they deny the registration request of these devices. Likewise, the D_j advertises the information of registered devices in public chain through connected D_j and local chain through CH nodes for other legitimate connected devices. All connected devices in the local chain and public chain update their routing table for communication in the network. Finally, D_j represents the list of registered MAC Addresses. Please note that only registered
Algorithm 1 Registration of ordinary devices \(D_i\) with \(D_j\) via the specified CH

Require: Registration of legitimate \(D_i\) with concerned \(D_j\).

Ensure: Registration of legitimate \(D_i\) in the local and public chains.

1. \(D_i\) generate registration RREQ with \(D_j\)
2. \(D_i\) forward registration RREQ \(\leftarrow\) through CH
3. \(D_j\) \(\leftarrow\) Receives \(D_i\) RREQ through CH, where, \(i = 1, 2, 3, \ldots, n-1\)
4. for \(i = 0; i = n-1; i++\)
5. \(D_j\) check local chain (CH) \(\leftarrow\) of \(D_i\)
6. if
7. \(D_i\) RREQ \(\in\) local chain of \(D_j\)
8. then
9. \(D_j\) registers \(D_i\) MAC address in their MAC table
10. Else
11. \(D_j\) Denies \(D_i\) registration request
12. end if
13. \(D_j\) broadcast the registered MAC address in the public chain
14. CH \(\leftarrow\) Share information of public chain in local chain
15. ordinary devices update their routing table according to \(D_j\)
16. return : List of registered \(D_i\) devices MAC addresses

Devices can process their request through concerned CH in the public chain.

The flow chart of Figure 2 depicts the registration process of our proposed Hash-MAC-DSDV algorithm. The participating devices \(D_i\) share their MAC addresses with \(D_j\) through a CH, which we call local chain in the proposed model. However, once \(D_j\) receives a registration request from a CH for an ordinary device \(D_i\), the \(D_j\) registers the MAC address of requesting \(D_i\) and uses the MD5 hash algorithm to broadcast the MAC address of \(D_i\) in the network via other \(D_j\) interconnected small WSNs, consequently, the \(D_j\) further broadcast this information to connected CH nodes in the local chains. When the participating devices in the local chain receive the CH broadcast message, they update their routing table. Similarly, these devices follow their routing information to transmit messages in the network and make authentication possible between D2D in the local chains, device to CH, and CH to \(D_j\) by means of the proposed scheme. To elaborate further, the devices connected in the local chain follow their routing table information to forward or receive communication requests. Moreover, these information contains the adjacent devices hop-count, distance, and MAC address etc. which ensures the effectiveness of proposed scheme. Likewise, the \(D_j\) maintains a record of the local chains in terms of clusters (CH) with their \(D_i\) devices MAC address information and the CH maintains a record of legitimate devices. Consequently, the connected \(D_i\) of the network follows the rule of Hash-MAC-DSDV protocol for communication in the network.

2) Authentication Phase: Let us assume that a legitimate device \(D_i\), where \(D_i \in\) local chain of the CH, initiates an authentication request with \(D_j\) to process the collected data in the public chain. \(D_i\) processes its data through the local chain using the CH, which checks and matches the requesting device ID in terms of MAC addresses in their MAC table to verify its authenticity in the local chain. If MAC address of \((D_i) \in\) CH list, then the CH processes the \(D_i\)’s request for further processing in the network. Once \(D_j\) receives \(D_i\)’s request for communication in the network, \(D_j\) matches \(D_i\)’s MAC address in its routing table by following the public chain mechanism for the specified CH (local chain). \(D_j\) matches the requesting \(D_i\)’s MAC address in its routing table, if \(D_i\)’s MAC address \(\in\) \(D_j\) MAC address list for a specified local chain, \(D_j\) allows \(D_i\) to communicate through the public chain. Hence, \(D_j\) verifies the authenticity of requesting \(D_i\) devices and processes their information in the network.

Figure 3 illustrates the step by step authentication for a device registered in the network. The proposed model works on the basis of chains: local and public. Similarly, a number of small WSNs of CPS are interconnected in the network to form a heterogeneous IoT network. \(D_i\) initiates a message exchange request in the network. \(D_i\) needs an authentication in the local chain to move forward in the public chain. Therefore, \(D_i\)’s message contains information such as device ID and MAC address. This information is checked by the CH in the local chain to verify its authenticity. The \(D_i\)’s message is verified by the CH via matching its MAC address in the local chain. If \(D_i\)’s MAC address \(\in\) CH’s MAC address list, then the CH successfully authenticates \(D_i\) and processes \(D_i\)’s request in the public chain. Likewise, \(D_i\)’s message request goes to the public chain, where \(D_j\) checks and matches the MAC address of \(D_i\) in its MAC address table. If \(D_i\)’s MAC address \(\in\) \(D_j\) MAC address table, the authentication of \(D_i\) is completed successfully and it is allowed to communicate in the network.

C. Device to Device Authentication in Local Chain

The proposed model is effective in D2D authentication because all the MAC addresses of legitimate \(D_i\) are broadcast by the respective \(D_j\) in the public chain. The connected CH nodes pass this information to the local chain and the participating devices in the local chain update their routing table according to the advertised information of \(D_j\). The devices follow their routing information to communicate with neighboring devices or process their collected data through these devices and CH nodes, if they are at the next hop.

Let us assume that \(D_i\) devices generate an authentication or message exchange request with another \(D_i \in D_{n-1}\), where the \(i^{th}\) term represents the number of legitimate devices in the local chain such that, \(i = (1, 2, 3, 4, \ldots, n-1)\) devices. The receiving device checks the MAC address of \(D_i\) in its MAC address table. If \(D_i\)’s MAC address \(\in D_{n-1}\) MAC address list, the receiving device will process \(D_i\) request in the local chain. Otherwise, \(D_{n-1}\) device denies \(D_i\)’s authentication request and broadcasts an alarm message in the network to acknowledge the existence of a malicious device \(A_k\) in the network.
D. Authentication of Attacker Devices

The authentication of an attacker device in an operational network ensures the reliability and performance of a protocol or security scheme. Therefore, the proposed Hash-MAC-DSDV scheme is effective in terms of identifying malicious devices in the network.

1) Authentication of attackers in the local chain in terms of D2D:

Let us assume that an attacker A_k initiates an authentication request. A_k’s request is received by a legitimate device D_i in the cluster (local chain), where the i^{th} term $i = (1,2,3,4,.....,n-1)$, represents the legitimate devices in the cluster. Once D_i receives A_k’s message request, it matches the MAC address of A_i in their MAC address table. Likewise, if A_k’s MAC address $\notin D_i$’s MAC address, D_i denies A_k’s authentication request in the local chain and avoid attacks in the local chain.

2) Authentication of attackers in the local chain by CH:

It is a major concern when A_k initiates a message request with a CH node in the local chain to compromise its security. However, in case of direct communication with CH nodes, when a CH receives A_k’s message request, it checks the MAC address of A_k in its MAC address list. If A_k’s MAC address \in CH MAC address list, the CH allows A_k to communicate in the network. Otherwise, CH denies A_k’s request and advertises an alarm message to notify others about the existence of an attacker in the network.

3) Authentication of attackers in the local chain by D_j:

There is a possibility that A_k will compromise the security of the public chain by communicating directly with a D_j. The proposed model is effective to combat a direct connectivity request from A_k to D_j through accurate identification. Once the A_k generates an authentication request to D_j directly in public chain, D_j matches A_k’s MAC address in their MAC address list. If A_k’s MAC address $\notin D_j$ MAC address list, A_k is accurately identified and detected by D_j. At this stage, D_j broadcasts an alarm message in the local chain through CH nodes to acknowledge the existence of a malicious device in the network’s public and local chains.
IV. Evaluation

The feasibility of Hash-MAC-DSDV scheme was evaluated using OMNeT++. The parameters used to implement our scheme are shown in Table I. Although, we have evaluated our scheme in a simulation environment, the results of OMNeT++ are an approximation of the real environment in terms of operation. Throughout our simulation study, we tested numerous criteria for the proposed scheme to check its feasibility for the real-world implementation. Moreover, the results are validated through formal safety analysis in the context of different threats to the network. We computed the computation and communication cost, packet losses, and latency, respectively. In addition, we compared the energy consumption of Hash-MAC-DSDV to the legacy DSDV routing protocol. A description of our findings is presented in the following subsections.

TABLE I: Parameters used for Hash-MAC-DSDV setup.

Parameter Description	Value of the parameters
Sensor Devices	300, 600, 1000, 1500, 2000
Number of Base Stations	3, 6, 10, 15, 20
Routing Protocol	Hash-MAC-DSDV
Number of Cluster Heads	15, 30, 50, 60, 90
Initial Energy of devices (E_i)	60,000 mAh
Simulation Tool	OMNeT ++
Energy Consumption during Normal state	1.03 mW
Energy Consumption during transmission	70.1 mW
Energy Consumption during Sleep mode	0.50 µW
Transmission interval of devices	14 µSec
Energy Consumption during reception	44.6 mW
Residual Energy of a device (E_r)	E_i - E_c
Network Traffic type	UDP
Packet Size	128 Bytes
Communication Pattern	broadcast/unicast

A. Formal Security Analysis of Hash-MAC-DSDV

In this section, we first evaluate different threats and analyze our scheme by comparing against the existing ones. A brief overview of formal security analysis is shown in Table II.

1) Eavesdropping Attack: In an eavesdropping attack, an adversary A_k steals sensitive data transmitted through an insecure communication channel. Assume that a legitimate device D_i ∈ D_{n-1} transmits data through the local chain. A_k tries to capture this data over the communication channel and access the information. In our model, A_k needs 2^{256} iterations to access a message digest and 2^{256} iterations to access the block of messages, which is virtually impossible for sensor devices due to their limited computing and memory resources, as well as onboard power. Therefore, the Hash-MAC-DSDV scheme efficiently safeguard against the eavesdropping attack.

2) Sensing Device Impersonation Attack: In this form of attack, A_k impersonates as a valid device on the network. However, our Hash-MAC-ASDV scheme is effective against this attack because the one-way authentication model does not allow A_k to usurp the security of an individual legitimate device in the network. Let us assume that A_k initiates an authentication request to D_i in its close vicinity. Once D_i receives A_k’s authentication request, it checks the MAC address of A_k in its MAC address list. If A_k’s MAC address ∉ D_i MAC-Address list, D_i will not respond to A_k’s authentication request. In other words, D_i will deny A_k’s authentication request in an operational network to avoid impersonation attack.

3) Sybil Attacks: Our Hash-MAC-DSDV scheme is highly resilient against Sybil attacks, since each device has a distinct MAC address recorded in the local chain as well as in the public chain. Therefore, the usurpation of the protection of the D_i device needs to define its MAC-Address with MD5 hash function, but sensor device as an adversary has limited resources to identify the MAC address of legitimate devices by following 2^{128} iterations. Therefore, our model protects against Sybil attacks.

4) Spoofing Attacks: Spoofing attack is another disruptive assault intended to compromise the security of a network. Assume that A_k tries to spoof the MAC address of D_i by launching an attack. For that, A_k needs to know the MAC address of D_i. Likewise, A_k needs to know the MAC address of any D_j ∉ D_{n-1} in the network. Consequently, A_k will need to hijack an individual device (CH_i or D_j) to get the MAC address of a legitimate device. This is not possible in the proposed model, due to D2D, local chain, and public chain authentication. The authentication request of A_k in the proposed scheme will always be identified successfully to prevent spoofing attacks against the deployed network.

5) Denial of Service Attack (DoS): To elaborate on our scheme against DoS, assume that A_k launches a DoS attack towards D_i in the network. Once D_i receives A_k’s first message request, it matches the MAC address of A_k in its registered MAC address list. If the MAC address of A_k ∉ D_i’s MAC address list, D_i will deny A_k’s request and blacklist A_k in its directory.

6) Forward and backward secrecy: Hash-MAC-DSDV can offer forward and backward secrecy because the legitimate D_i, CH_i and D_j react only to those devices listed in the local and the public chains. These devices first match the MAC addresses of the requesting devices in their MAC address list. Consequently, the tests of our scheme against this type of attack allow access to only legitimate devices.

7) Base Station (BS) Impersonation Attacks: The Hash-MAC-DSDV scheme also showed effectiveness against BS impersonation attacks. Assume A_k tries to communicate directly with BS and compromise its security. A_k generates communication request with the nearest D_j. Upon reception of A_k message request, D_j checks the MAC address of requesting device in its local chain MAC-Address list. The MAC address of A_k ∉ D_j’s local chain MAC-Address list. So, D_j will identify A_k successfully and will avoid BS impersonation attacks in the network. Therefore, our scheme has better results against the impersonation attack.

B. Computation Cost Comparative Analysis

The computation results can easily be evaluated from the proposed model execution time in terms of processing, energy...
TABLE II: Statistical results analysis for different security threats

Type of Attack	Our Scheme	[17]	[23]	[30]
Eavesdropping Attack	Yes	Yes	No	Yes
Sensing Device Impersonate Attack	Yes	Yes	Yes	Yes
Sybil Attacks	Yes	No	Yes	No
Spoofing Attacks	Yes	Yes	No	Yes
Denial of Service Attack (DoS)	Yes	Yes	Yes	No
Spoofing Attacks	Yes	Yes	Yes	Yes
Perfect forward and backward secrecy	Yes	Yes	No	Yes
Base Station (BS) impersonate Attacks	Yes	Yes	Yes	Yes

consumption and memory utilization. The operation of the model, furthermore, depicts that most of the computation is performed at the cluster head and base station, which have higher processing power. Similarly, upon registration of MAC addresses at the base station D_j, each D_j advertises the information in the public chain followed by CH nodes in the local chain. Consequently, the legitimate devices in the local chain update their routing table according to CH advertised information. The legitimate devices follow routing table information to transmit their collected data in the network. However, this is a one-way process, because the legitimate devices transmit their data in a unicast fashion following their routing table information, which not only minimizes the energy consumption, but also minimizes the calculation or processing of legitimate devices and as a whole, improves the network performance. Therefore, the computation cost of the proposed model is better than the existing schemes of [17], [23], and [30]. Khalid et al. [17] scheme has high computation because the next hop update is the responsibility of an individual participating device. Therefore, it consumes more energy with network overhead and higher computation cost. Likewise, Gope et al. [23], scheme has also higher computation cost in comparison to our scheme, because they used two factor authentication model in their scheme with physical assessment of IoT devices. Moreover, the participating devices of the network updated their routing table after define interval of time, which also creates contention with higher computation cost. The complex model implementation of [30] increases its computation cost in an operational environment.

C. Communication Cost Comparative Analysis

The communication cost is another important aspect to consider while designing a new protocol or modifying existing protocols. Therefore, the communication cost of any IoT network determines its capacity, performance, and reliability. The communication cost of the proposed model shall be assessed with a pricing structure based on the following statement:

1) The identity of legitimate device as its MAC address
2) MD5 Hash function with message digest
3) Time stamp for key sharing via CH and base station

D. Comparative Analysis on the Accuracy of Threat Detection

The proposed model was assessed with its competitor schemes based on accurate threat detection in an operational network. The Hash-MAC-DSDV scheme’s utmost objective is to detect and report malicious activity in the deployed network. Although the competitor schemes resolve the legitimate device authentication issue to some extent, they were flawed in addressing issues like D2D, device-to-CH, device-to-BS, and CH-to-BS authentication at the same time. In our scheme’s simulation environment, we have evaluated the proposed model for aforementioned attacks. Moreover, we have also launched attacks on legitimate devices, CH(s) and BS(s) to verify the effectiveness of our scheme. The detection rate of malicious device in the proposed model was 98.2%, which showed an average 15% improvement over the existing schemes. Likewise, during simulation analysis, we have changed the number of malicious devices, fake packets, target area such as participating devices, CH nodes, and BS(s) to overview our scheme’s reliability. Overall, the performance of the proposed model was significant compared to existing rival schemes to combat malicious attacks in IoT networks connected in the form of multi-WSNs. Results for our scheme and other schemes are presented in Figure 4. In addition, in Figures 5, 6, and 7, the results for individual network components such as devices, CH and BS against malicious activity in an operating network are presented.

![Average Attack Detection (%) Ratio](image)

Fig. 4: Comparative statistical analysis of our scheme with rival schemes for threat detections

E. Energy Consumption

Sensor devices are sensitive and have limited resources memory, and energy, therefore, efficient utilization of these
devices increases its productivity in terms of network lifespan. Therefore, while designing Hash-MAC-DSDV mutual authentication scheme for multi-WSNs connected in the form of IoT network, we considered limited resources of sensor devices. The proposed model’s energy consumption was evaluated with ordinary DSDV protocol in simulation environment. The results statistics captured during Hash-MAC-DSDV protocol simulation showed improvement in the lifetime of ordinary devices working in the network over the ordinary DSDV protocol. Likewise, while evaluating DSDV protocol, participating devices consume more energy as compared to our scheme, due to continued route update with neighbor devices. Conversely, in our scheme, the legitimate device updates its routing table to local and public chain information to exchange data in the network. Therefore, device participation in our scheme surpasses ordinary DSDV protocol by 11% improvement in an operational network as observed during simulation analysis. The results of both routing protocols are shown in Figure 8.

F. Latency Results Statistical Analysis

Latency is an important aspect of wireless networks when designing protocols. We therefore considered consistency in time during the design stage of our scheme in order to exchange information effectively throughout the network. In the simulation environment, the number of devices and local chains is gradually increased to overview the duration of the exchange of messages in the network. Subsequently, malicious devices were introduced in the network with a fake authentication request in the local chain as well as in the public chain to observe the latency of legitimate device messages. Although, during the presence of malicious devices, network traffic was at its peak, the legitimate device showed consistency while exchanging data on the network. The unique pattern of communication among the legitimate devices in the proposed model played a vital role in ensuring time-consistency during the exchange of messages. The results of the proposed scheme are compared with competing schemes and are presented in Figure 9.

G. Packet lost Ratio Statistical Results Analysis

Wireless communication is susceptible to various attacks and environmental factors. Therefore, packet lost ratio is given
preference to define the performance reliability of any wireless network. During simulation of Hash-MAC-DSDV protocol the PLR was quantified through the following formula:

\[
PLR = \frac{\text{Packet sent}}{\text{Packet received}} \times 100\%
\]

The network traffic was increased in simulation and we quantified the ratio between packets sent and received, which showed reliable results during analysis. Moreover, the consistency of PLR was verified by targeting devices during traffic congestion in an operational network. Our results showed only 7% PLR for the proposed model during peak traffic, verifying the significance of our scheme over the compared schemes. The statistical analysis for PLR is shown in Figure 10.

![Fig. 10: PLR Results statistical analysis for Hash-MAC-DSDV scheme with competitors schemes](image)

V. CONCLUSION

In this paper, we proposed Hash-MAC-DSDV, a mutual authentication scheme for CPS connected to form an IoT network. We modified the DSDV protocol to enable mutual authentication among participating devices via hop count communication. Initially, all legitimate devices registered their MAC addresses with the base stations via concerned cluster heads to form local and public chains, respectively. Upon registration, the base station applies MD5 hash algorithm to the registered MAC addresses for advertisement in the public chain, where a number of cluster heads are involved. These cluster heads advertise the base station information in the local chain and the devices update their routing table according to the advertised information. Likewise, each legitimate device uses its routing table information to send data to a destination. However, to verify the legitimacy of adjacent devices or cluster head during hop-count authentication, matching of MAC addresses is followed by each device. Our proposed scheme outperforms existing approaches in terms of attack detection rate, computation cost, communication cost, energy consumption, PLR, and latency. The unicast communication and one-way-hash authentication of our model increases its applicability in real deployments with minimal resource consumption overhead.

In the future, we are looking to implement the proposed model in the real environment, where a number of local and public chains network should be interconnect to verify the performance reliability and consistency ratio.

ACKNOWLEDGMENT

This work is partially supported by the NIH (P20GM109090), NSF (CNS-2016714), the Nebraska University Collaboration Initiative, and the Nebraska Tobacco Settlement Biomedical Research Development Funds. This research is also partially funded by the Deanship of Scientific Research at Princess Nourah Bint Abdul Rahman University through the Fast-track Research Funding Program.

REFERENCES

[1] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marinathu Palaniswami. Internet of things (IOT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7):1645–1660, 2013.

[2] Fazlullah Khan, Mian Ahmad Jan, Ateeq Ur Rehman, Spyridon Mastorakis, Manoun Alazab, and Paul Watters. A secured and intelligent communication scheme for iiot-enabled pervasive edge computing. IEEE Transactions on Industrial Informatics, 2020.

[3] Mian Ahmad Jan, Jinjin Cai, Xiang-Chuan Gao, Fazlullah Khan, Spyridon Mastorakis, Muhammad Usman, Manoun Alazab, and Paul Watters. Security and blockchain convergence with internet of multimedia things: Current trends, research challenges and future directions. Journal of Network and Computer Applications, page 102918, 2020.

[4] Spyridon Mastorakis, Abderrahmen Mtibaa, Jonathan Lee, and Satyajayant Misra. Icedge: When edge computing meets information-centric networking. IEEE Internet of Things Journal, 7(5):4203–4217, 2020.

[5] Minhaj Ahmad Khan and Khaled Salah. Iot security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82:395–411, 2018.

[6] Xin Zhong, Pei-Chi Huang, Spyridon Mastorakis, and Frank Y Shih. An automated and robust image watermarking scheme based on deep neural networks. arXiv preprint arXiv:2007.02460, 2020.

[7] Mian Ahmad Jan, Fazlullah Khan, Rahim Khan, Spyridon Mastorakis, Varun G Menon, Paul Watters, and Manoun Alazab. A lightweight mutual authentication and privacy-preservation scheme for intelligent wearable devices in industrial-cps. IEEE Transactions on Industrial Informatics, 2020.

[8] Susmit Shannigrahi, Spyridon Mastorakis, and Francisco R Ortega. Next-generation networking and edge computing for mixed reality real-time interactive systems. In 2020 IEEE International Conference on Communications Workshops (ICC Workshops), pages 1–6. IEEE, 2020.

[9] Md Jubayer al Mahmud and Ujjwal Guin. A robust, low-cost and secure authentication scheme for iot applications. Cryptography, 4(1):8, 2020.

[10] Mohamed Amine Ferrag, Leandros Maglaras, and Ahmed Alhmim. Privacy-preserving schemes for ad hoc social networks: A survey. IEEE Communications Surveys & Tutorials, 19(4):3015–3045, 2017.

[11] Rehmat Ullah, Muhammad Atif Ur Rehman, Muhammad Ali Naeem, Byung-Seo Kim, and Spyridon Mastorakis. Icn with edge for 5g: Exploiting in-network caching in icn-based edge computing for 5g networks. Future Generation Computer Systems, 111:159–174, 2020.

[12] Spyridon Mastorakis, Tianxiang Li, and Lixia Zhang. DAPES: Named Data for Off-the-Grid File Sharing with Peer-to-Peer Interactions. 40th IEEE International Conference on Distributed Computing Systems (ICDCS), 2020.

[13] Muhammad Atif Ur Rehman, Rehmat Ullah, Byung-Seo Kim, Boubak Nour, and Spyridon Mastorakis. Ccic-wsn: An architecture for single channel cluster-based information-centric wireless sensor networks. IEEE Internet of Things Journal, 2020.

[14] Tianxiang Li, Zhaoning Kong, Spyridon Mastorakis, and Lixia Zhang. Distributed dataset synchronization in disruptive networks. In 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 428–437. IEEE, 2019.

[15] A Yu, Jia-Jia Ji, Yuan Wang, Hong-Bing Sun, et al. Wireless monitoring system for corrosion degree of reinforcement in concrete. Journal of Nanoelectronics and Optoelectronics, 14(6):887–893, 2019.

[16] Muhammad Adil, Mohammed Amin Almaiah, Alhuseen Omar Alsayed, and Omar Almomanli. An anonymous channel categorization scheme of edge nodes to detect jamming attacks in wireless sensor networks. Sensors, 20(8):2311, 2020.

[17] Umair Khalid, Muhammad Asim, Thar Baker, Patrick CK Hung, Muhammad Adnan Tariq, and Laura Rafferty. A decentralized lightweight blockchain-based authentication mechanism for iot systems. Cluster Computing, pages 1–21, 2020.
Samet Tonyali, Kemal Akkaya, Nico Saputro, A Selcuk Uluguc, and Mehrdad Nojoumian. Privacy-preserving protocols for secure and reliable data aggregation in iot-enabled smart metering systems. Future Generation Computer Systems, 78:547–557, 2018.

Moayad Aloqaily, Ismaeel Al Ridhawi, Haythem Bany Salameh, and Yaser Jararweh. Data and service management in densely crowded environments: Challenges, opportunities, and recent developments. IEEE Communications Magazine, 57(4):81–87, 2019.

Thar Baker, Muhammad Asim, Aine MacDermott, Farrukh Iqbal, Faouzi Kamoun, Babar Shah, Omar Alfandi, and Mohammad Hammoudeh. A secure fog-based platform for scada-based iot critical infrastructure. Software: Practice and Experience, 50(5):503–518, 2020.

Geetanjali Rathee, Ashutosh Sharma, Razi Iqbal, Moayd Alaqaily, Naveed Jlagian, and Rajiv Kumar. A blockchain framework for securing connected and autonomous vehicles. Sensors, 19(14):3165, 2019.

Noshina Tariq, Muhammad Asim, Feras Al-Obeidat, Muhammad Zubair Farooqi, Thar Baker, Mohammad Hammoudeh, and Ibrahim Ghaifir. The security of big data in fog-enabled iot applications including blockchain: a survey. Sensors, 19(8):1788, 2019.

Prosanta Gope and Biplab Sikdar. Lightweight and privacy-preserving two-factor authentication scheme for iot devices. IEEE Internet of Things Journal, 6(1):580–589, 2018.

Wei Feng, Yu Qin, Shijun Zhao, and Dengguo Fong. Aaot: Lightweight attestation and authentication of low-resource things in iot and cps. Computer Networks, 134:167–182, 2018.

Lun Li, Jiqiang Liu, Lichen Cheng, Shuo Qiu, Wei Wang, Xiangliang Zhang, and Zonghua Zhang. Creditchain: A privacy-preserving blockchain-based incentive announcement network for communications of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 19(7):2204–2220, 2018.

Zhihua Cui, Fei Xue, Xingjuan Cai, Yang Cao, Gai-ge Wang, and Jinjun Chen. Detection of malicious code variants based on deep learning. IEEE Transactions on Industrial Informatics, 14(7):3187–3196, 2018.

Nurzhan Zhumbakuly Aitzhan and Davor Svetinovic. Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging system. IEEE Transactions on Dependable and Secure Computing, 15(5):840–852, 2016.

Tara Salman, Maede Zolanvari, Aiman Erbad, Raj Jain, and Mohammad Samaka. Security services using blockchains: A state of the art survey. IEEE Communications Surveys & Tutorials, 21(1):858–880, 2018.

Xingjuan Cai, Jiangjiang Zhang, Hao Liang, Lei Wang, and Qidi Wu. An ensemble bat algorithm for large-scale optimization. International Journal of Machine Learning and Cybernetics, 10(11):3099–3113, 2019.

Jianli Pan, Jiayu Wang, Austin Hester, Ismail Alqerm, Yuanni Liu, and Ying Zhao. Edgechain: An edge-iot framework and prototype based on blockchain and smart contracts. IEEE Internet of Things Journal, 6(3):4719–4732, 2018.

Zijian Bao, Wenbo Shi, Dibiao He, and Kim-Kwang Raymond Choo. Iotchain: A three-tier blockchain-based iot security architecture. arXiv preprint arXiv:1806.02088, 2018.

Jongho Won, Seung-Hyun Seo, and Elisa Bertino. Certificateless cryptographic protocols for efficient drone-based smart city applications. IEEE Access, 5:3721–3749, 2017.

Mian Ahmad Jan (Senior Member, IEEE) received the Ph.D. degree in computer systems from the University of Technology Sydney (UTS), Australia, in 2016. He is an Assistant Professor with Abdul Wali Khan University Mardan, Pakistan. His research articles have been published in various prestigious IEEE TRANSACTIONS and journals (Elsevier). His research interests include security and privacy in the Internet of Things and wire-less sensor networks. He has been the recipient of various prestigious scholarships during his studies, notably the International Research Scholarship (IRS) from the UTS, Australia, and the Commonwealth Scientific Industrial Research Organization (CSIRO) Scholarships. He was awarded the Best Researcher Award from the UTS in 2014. He was the General Co-Chair of Springer/EA1 Second International Conference on Future Intelligent Vehicular Technologies in 2017. He has been a Guest Editor of numerous special issues in various prestigious journals such as Future Generation Computing Systems (Elsevier), Mobile Networks and Applications (MONET) (Springer), Ad Hoc and Sensor Wireless Networks, and Information and Communication Networking (MDPI).

Spyridon Mastorakis (Member, IEEE) is an Assis-tant Professor in Computer Science at the University of Nebraska Omaha. He received his Ph.D. in Computer Science from the University of California, Los Angeles (UCLA) in 2019. He also received an M.S. in Computer Science from UCLA in 2017 and a 5-year diploma (equivalent to M.Eng.) in Electrical and Computer Engineering from the National Technical University of Athens (NTUA) in 2014. His research interests include network systems and protocols, Internet architectures (such as Information-Centric Networking and Named-Data Networking), edge computing, and IoT.

Houbing Song (Senior Member, IEEE) received the M.S. degree in civil engineering from the University of Texas, El Paso, TX, USA, in December 2006, and the Ph.D. degree in electrical engineering from the University of Virginia, Charlottesville, VA, USA, in August 2012. In August 2017, he joined the Department of Electrical, Computer, Software, and Systems Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, where he is currently an Assistant Professor and the Director of the Security and Optimization for Networked Globe Laboratory. His research has been featured by popular news media outlets, including IEEE GlobalSpec’s Engineering360, USA Today, U.S. News & World Report, Fox News, the Association for Unmanned Vehicle Systems International, Forbes, WFTV, and New Atlas. His research interests include cyber-physical systems, cyber security and privacy, Internet of Things, edge computing, AI/machine learning, big data analytics, unmanned aircraft systems, connected vehicle, smart and connected health, and wireless communications and networking.

Muhammad Mohsin Jadoon received his B.S. and M.S. degrees in Electronic Engineering from COMSATS University Islamabad, and Interna-tional Islamic University Islamabad (IIUI), Pakistan, in 2007 and 2011, respectively. Dr. M Mohsin Jadoon did PhD in Split degree programs i.e. course work from IIUI and research from Queen Merry University (QMU) London, UK in 2018. Currently, he is post-doctorate research fellow at Department of Radiology and Imaging processing, Yale university, New Haven, CT, USA. He is also Lecturer with the Electrical Engineering Department, International Islamic University Islamabad. His research interests include Signal & Processing, Sensors and biomedical Imaging.
Safia Abbas works as associate professor with the Department of Computer Science, Faculty of Computer and Information Sciences, Princess Nourah-bintAbdulrahman University, KSA, during 2019-2021, and University of Ain Shams, Cairo, Egypt during 2016-2018. During 2006-2011, she received the Ph.D. from the Graduate School of Science and Technology, Niigata University, Japan. A strong theme of her work is in the swarm optimizers, and security in cloud, Medical Diagnosis using machine learning and Data mining.

Ahmed Farouk (Member, IEEE) is currently assistant professor, before that he was a Postdoctoral Research Fellow at Wilfrid Laurier University and Ryerson University, Canada. He received his M.Sc. and Ph.D. degrees from Mansoura University, Egypt. He is one of the Top 20 technical co-founders of the Quantum Machine Learning Program by Creative Destruction Lab at the University of Toronto. Furthermore, he is selected as Top 25 of Innovate TO 150 Canada to showcase the best of Toronto's next generation of change-makers, innovators, and entrepreneurs. He is exceptionally well known for his seminal contributions to theories of Quantum Information, Communication, and Cryptography. He published 62 papers in reputed and high impact journals like Nature Scientific Reports and Physical Review A. The exceptional quality of his research is recognized nationally and internationally. He selected by the scientific review panel of the Council for the Lindau Nobel Laureate Meetings to participate in the 70th Lindau Nobel Laureate Meeting. His volunteering work is apparent since he appointed as chair of the IEEE computer chapter for the Waterloo-Kitchener area and editorial board for many reputed journals like Nature Scientific Reports, IET Quantum Communication, and IEEE Access.