A weak pseudo-Hermitian two band model, artificial Hawking radiation and tunneling

Bijan Bagchi and Sauvik Sen

Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 203207, India

August 2021

We examine the possibility of artificial Hawking radiation by proposing a non-\mathcal{PT}-symmetric weakly pseudo-Hermitian two band model containing a tilting parameter. We also determine the tunneling probability using our Hamiltonian through the event horizon that acts as a classically forbidden barrier.

Keywords: Hawking radiation, weak pseudo-Hermiticity, tunneling, WKB approximation

1 Introduction

Non-Hermitian quantum mechanics is an emerging field of interest with a wide range of applications [1, 2]. In particular, the sub-class embodying \mathcal{PT}-symmetry has proved to be an area of continuous activity [3, 4]. In fact, over the past two decades a large family of exactly solvable \mathcal{PT}-symmetric systems has been discovered reflecting their intriguing spectral properties. Briefly, \mathcal{PT}-symmetry addresses a complex extension of quantum mechanics that is controlled by the combined action of parity (\mathcal{P}) and time reversal (\mathcal{T}) transformations [3] namely, $\mathcal{P}: x \to -x, \ p \to -p, \ \mathcal{T}: x \to x, \ p \to -p, \ i \to -i$. Non-Hermitian Hamiltonians undergo non-unitary evolution and generally describe open quantum systems in the presence of gain and loss of particles.

Hamiltonians respecting \mathcal{PT}-symmetry may exhibit, under certain condition related to \mathcal{PT} being exact, appearance of real spectra of eigenvalues, implying balanced loss and gain. However, \mathcal{PT}-symmetry is neither necessary nor sufficient for the reality of the spectrum. An exceptional point appears where symmetry breaking takes place [5, 6]. In such a situation one finds the eigenvalues corresponding to two states to coalesce and the accompanying eigenfunctions become linearly dependent with respect to each other. However, in approaching the exceptional point, the phases of the eigenfunctions are not rigid and hence information from outside may get through to the system [7]. Exceptional points play an important role in the characterization of non-Hermitian Hamiltonians.

The idea of \mathcal{PT}-symmetry has found extension in the formulation of pseudo-Hermiticity. For the pseudo-Hermitian operators one takes recourse to the concept bi-orthogonality

E-mails: bbagchi123@gmail.com, sauviksen.physics@gmail.com
of wavefunctions [8]. The Hamiltonian H is called pseudo-Hermitian if there exists a Hermitian and invertible operator η satisfying

$$H^\dagger = \eta H \eta^{-1}$$ \hspace{1cm} (1.1)$$

where the Hermitian conjugation is taken in the Hilbert space that is endowed with a specific inner product. Imposing pseudo-Hermiticity serves as a necessary condition for the reality of the energy spectrum [9]. Like for unbroken \mathcal{PT} systems, pseudo-Hermitian systems can be constructed where one encounters full balance of loss and gain (see, for example, [10] and references therein). However, in what follows, we will focus on a weak pseudo-Hermitian operator η by not restricting it to be Hermitian [11]. Such a relaxation opens up the possibility of connecting to a wider class of non-Hermitian systems [12–15].

Lately, much interest has been focused on the issue of topological phases that are special for non-Hermitian systems and do not appear in the Hermitian setups [16–18]. In particular, \mathcal{PT}-symmetry is observed to have a subtle role to play in stable topologically protected nodal points for gapped and gapless semimetals [19, 20] where Bloch bands signalize distinct topological invariants. Of course, non-Hermitian support for stable topological phase has been in the news for sometime [21,22]. Topological photonics is gradually becoming a rich area to explore. In particular, mention may be made of the topological phases in the non-Hermitian SSH model [23]. While band crossings are prevalent in three-dimensions, because of the role of \mathcal{PT}-symmetry, stable nodal points occur in lesser dimensions which are topologically preserved. Specifically, these consist of topologically stable exceptional points in two-dimensions [24].

The aim of this note is to view the recent work of [25] in the perspective of a weak pseudo-Hermitian model. It is to be noted that the guiding Hamiltonian used in it although invariant under a special type of transformation, is not conventionally \mathcal{PT}-symmetric. However we can re-interpret it as a composition of two parts, one of which is \mathcal{PT}-weak pseudo-Hermitian by suitably identifying η, while the other is trivially Hermitian. In section 2, we review briefly the background of two-band structure and subsequently propose a weak pseudo-Hermitian Hamiltonian as a replacement of the previously used non-Hermitian form. In section 3, we calculate the contribution of such a Hamiltonian to the tunneling and show that the results of both approaches coincide because the γ-contribution is ignored in the earlier work. Finally, in section 4, some concluding remarks are presented.

2 Pseudo-Hermitian Hamiltonian

We begin with a tilted Weyl Hamiltonian distorted in the x-direction [25, 26]

$$H = \xi p_x I + \vec{p} \cdot \vec{\sigma}$$ \hspace{1cm} (2.1)$$

where $\xi \in \mathbb{R}$ is the tilting parameter, I is the three-dimensional identity matrix, \vec{p} is the three-dimensional momentum with components (p_x, p_y, p_z), $\vec{\sigma}$’s are a set of Pauli matrices $(\sigma_x, \sigma_y, \sigma_z)$ which are Hermitian and unitary and we have set the fermi velocity to be 1. The accompanying energy eigenvalues are

$$E_{\pm} = \xi p_x \pm \sqrt{p_x^2 + p_y^2 + p_z^2}$$ \hspace{1cm} (2.2)$$

where the two signs reflect two zones of a cone, the upper and lower, in the energy-momentum space. The study of the Hamiltonian H reveals that the Weyl cones touch when the two energies become equal and actually cross the Fermi level as Weyl node is
overtilted ($|\xi| > 1$). The existence of strongly tilted Weyl cones has been proposed to exist in layered transition metals [20].

Adopting the tetrad representation

$$H = e^i_a p_i \sigma^a + e_i^\alpha p_{\alpha}$$

(2.3)

where e^i_a are the vielbiens satisfying the orthnormality condition $e^a_\mu e^{\mu}_b = \delta^a_b$. $\mu, \alpha = (0, x, y, z)$ and $i, a = (x, y, z)$ subject to the inner product-signature constraint

$$g^{\mu\nu} = e^\mu_\alpha e^{\nu}_\alpha \eta^{\alpha\beta}$$

(2.4)

where $\eta^{\alpha\beta} = diag(-1, 1, 1, 1)$ is the Minkowski metric of flat spacetime, and comparing with (2.1) yields for the line element

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -(1 - \xi^2) dt^2 + 2\xi dx dt + dx^2$$

(2.5)

There is no singularity at $|\xi| = 1$ which represents the event horizon. Stalhammar et al [25] tried to explore the topology of an exceptional nodal structure by invoking \mathcal{PT}-symmetry. They found a connection between the exceptional cone and the light cone of an observer placed around a Schwarzschild black hole\(^1\). By enacting a scenario of critical-tilting of the cone, where \mathcal{PT} phase transition takes place, emission of Hawking-like radiation is envisaged through pair production involving light-like particle-anti-particle pair. By exploiting the results of the Hermitian counterpart, they could derive a relation between the exceptional cone and the light cone of a radially infalling observer. Note that Hawking radiation [27] refers to thermal radiation\(^2\), emitted by a black hole off its event horizon if the quantum effects are taken into account. The contention is that pair production leads to one of the particles escaping the boundary of the black hole to infinite space leaving the other of negative energy returning into it. Incessant transitions of negative energy particles back into the black hole inevitably reduces its mass until the whole black hole disappears leaving a cloud of radiation. In the literature, an analogy has been drawn between Weyl semimetals with inhomogeneous tilting and spacetime conforming to black holes. This triggers off the idea of an artificial Hawking radiation in Weyl semimetals [28–31]. Very recently, a study of the reasonableness of connecting (over-)tilted Weyl nodes with the manifestation of black holes, along with an overall experimental viability, has received further attention [26]

Consider the following non-Hermitian Hamiltonian of a topologically insulating two band model

$$\mathcal{H} = p_x \sigma^x + p_y \sigma^y + \iota(p_z - \lambda p_x) \sigma^z$$

(2.6)

where the third term in the right specifies the presence of non-Hermiticity which contains tilting in the x-direction, and λ signifies the coupling strength taken to be real. (2.6) has been studied in relation to an exceptional cone tilted in the x-direction. \mathcal{H} was claimed to be \mathcal{PT}-symmetric according to the prescription

$$\mathcal{H} = (\mathcal{PT}) \mathcal{H}^* (\mathcal{PT})^{-1}$$

(2.7)

under the representations $\mathcal{P} = \sigma^z$, $\mathcal{T} = \sigma^y$ but note that while \mathcal{P}^2 is unity, \mathcal{T}^2 is not -1. One can easily check that \mathcal{H} does not commute with the \mathcal{PT} operator. Actually, the explicit presence of the p_y term in (2.6) spoils the \mathcal{PT} character of \mathcal{H}.

\(^1\)The (3+1)-dimensional spherically symmetric Schwarzschild metric is an elegant platform to addresses curved spacetime around a black hole singularity.

\(^2\)Although approximately so because with radiation continuously taking place, the mass of the black hole varies.
Note that for the Hamiltonian H we can solve for p_z from the indicial equation to get

$$p_z^\pm = \lambda p_x \pm \sqrt{p_x^2 + p_y^2} \tag{2.8}$$

On comparing with its Hermitian counterpart, namely

$$H = \lambda p_x \sigma^x + p_y \sigma^y \tag{2.9}$$

whose energy eigenvalues read

$$E_{\pm} = \lambda p_x \pm \sqrt{p_x^2 + p_y^2} \tag{2.10}$$

one easily observes that E_{\pm} and p_z^\pm are interchangeable entities affording p_z^\pm to be interpreted as a Hamiltonian-like operator.

We offer an interesting interpretation here. Although H is not entirely \mathcal{PT}-symmetric by itself, we can treat it as a combination3 of two Hamiltonians one of which is Hermitian (H_h) while the other is weak pseudo-Hermitian (H_w) with respect to \mathcal{PT}. Indeed we can write it as

$$H = H_h + H_w \tag{2.11}$$

where

$$H_h = p_y \sigma^y \tag{2.12}$$

$$H_w = p_x \sigma^x + \imath (p_z - \lambda p_x) \sigma^z \tag{2.13}$$

While the Hermiticity of H_h is trivial, the weak pseudo-Hermiticity of H_w follows from the condition

$$H_w^\dag = \rho H_w \rho^{-1} \tag{2.14}$$

as is evident on employing $\rho = -\imath \sigma^x (\neq \rho^\dag)$. However, it should be borne in mind that H_w is not ρ-symmetric. The operator ρ is not invariant under the conventional transformation of \mathcal{PT}. Examples of Hamiltonians endowed with the property of weak pseudo-Hermiticity but not being \mathcal{PT}-symmetric have been explicitly constructed before [12].

The secular equation for (2.13) furnishes the simpler form

$$p_x^2 - (p_z - \lambda p_x)^2 = 0 \tag{2.15}$$

implying

$$p_x^\pm = p_z \pm \lambda p_x \tag{2.16}$$

For H_w the corresponding Hermitian Hamiltonian is

$$H_h = p_x \sigma^x + \lambda p_x \sigma^z \tag{2.17}$$

which supports the energy eigenvalues

$$E_{\pm} = p_z \pm \lambda p_z \tag{2.18}$$

3Interfacing the Hermitian and non-Hermitian systems has been a topic of interest in the literature [32,33].
The forms of E_\pm and p^\pm_z are similar. Check that (2.16) and (2.18) are respectively the reduced versions of (2.8) and (2.10) when p_y is absent.

Employing the same arguments leading to (2.5), here too with the Hamiltonian H results in a similar metric containing the coupling parameter λ and with an additional presence of a term dy^2. If we consider a slice of $y = \text{constant}$, then the latter contribution drops out and the metric transforms to the Schwarzschild black hole in Painlevé-Gullstrand coordinates [34, 35]

$$ds^2 = -\left(1 - \frac{2M}{r}\right)d\tau^2 + 2\sqrt{\frac{2M}{r}}drd\tau + dr^2$$ (2.19)

with evident identifications of x with r, t with τ, the Painlevé time and fixing λ as the quantity $\sqrt{\frac{2M}{r}}$, M denoting the mass of the black hole. We now turn to the process of tunneling concerning the Hawking radiation across the black hole horizon.

3 Tunneling probability

The tunneling probability of the Hawking radiation is simple to compute. Before that, we want to note that in [25], the spatial dependence was assumed to be carried entirely by the x or the radial r coordinate: in other words, the influence of the y-coordinate was suppressed. Hence the contribution comes from the first and third terms of the right side of H. In our case, we evaluate the tunneling from the weak pseudo-Hermitian part (2.13) which is our guiding Hamiltonian. In fact, the y-component cannot be present in H_w to preserve its weak pseudo-Hermiticity.

The particle escaping from the black hole has an energy ω and so the mass of black hole is reduced from $M \to M - \omega$. Likewise, for the antiparticle, the mass of the black hole is enhanced from $M \to M + \omega'$, for energy ω'. More precisely, when the pair production is happening inside the event horizon, the positive energy particle will tunnel out and when the pair production takes place outside the event horizon, the negative energy particle tunnels in [36, 37]. For our calculation of the tunneling corresponding to the weak pseudo-Hermitian component H_w of H, the procedure is standard. The situation that we encounter resembles a contrived scenario of Hawking radiation, where the pair production of particles occurs near the event horizon of the black hole, which is given by the metric (2.19), the event horizon playing a potential barrier for the outgoing particle. Here the action ζ is imaginary and we can profitably use the semi-classical WKB approximation to estimate the tunneling probability.

Using the Legendre transformation, the Lagrangian for H_w reads

$$L_w = (1 + \iota) \ p_r \cdot \dot{r} - H_w$$ (3.1)

It implies for the action the form

$$\zeta = \int L_w dt = \int (1 + \iota) \ \left(\frac{-\sqrt{2Mrp_z \pm rp_z}}{r - 2M}\right) \cdot dr - \int H_w \ dt$$ (3.2)

where because of the exceptional points coalescing at the origin the second term in the right side has no role to play. The action eventually takes the form

$$\zeta = (1 + \iota) \left[\int_0^{2\omega} dr_* \left(\frac{-4Mp_z}{r_*}\right) + \int_0^{2\omega'} dr_* \left(\frac{4Mp_z}{r_*}\right) \right]$$ (3.3)
where \(r^* = r - 2M \), whose imaginary part contributes in the tunneling. In arriving at (3.3) we assumed \(\omega = \omega' \). Applying Plemelj-Sokhotski formulae for the Cauchy principal value, the result for the tunneling probability to leading order in \(\omega \) turns out to be

\[
\Gamma \approx e^{-2\Im(\zeta)} \approx e^{-8\pi M|p_z|}
\]

(3.4)

This result is in standard form\(^4\) and in tune with the description of Hawking radiation in terms of quantum tunneling across a black hole horizon and analogous to the Boltzmann factor for a particle of energy \(\omega \) corresponding to the inverse value of the Hawking temperature \(8\pi M \) \([36]\).

4 Concluding remarks

Against the background of some recent works seeking analogues of black holes in Weyl semimetals coming from the mapping of the Weyl Hamiltonian to the Schwarzschild metric in Painlevé-Gullstrand coordinates, we have set up, in this paper, a Hamiltonian relevant for a tilted two band model much in the spirit of modeling a Weyl semimetal. The Hamiltonian is constructed to be weakly pseudo-Hermitian. The notion of weak pseudo-Hermiticity extends the definition of pseudo-Hermitian operators to exclude the constraint of the operator \(\eta \) to be Hermitian. However, our Hamiltonian is not \(\mathcal{PT} \)-symmetric and different in spirit from a recent proposal of a toy model for the same. Our scheme reflects similar features of a Schwarzschild black hole when translated to Painlevé-Gullstrand coordinates. By writing down the action whose imaginary part contributes to the tunneling effect, we provide an estimate of the tunneling probability that matches with the expected result.

References

[1] Y. Ashida, Z. Gong and M. Ueda, Non-Hermitian Physics, Adv. Phys. 69, 3 (2020).

[2] N. Moiseyev, Non-Hermitian quantum mechanics, Cambridge University Press (2011).

[3] C.M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having \(\mathcal{PT} \)-symmetry, Phys. Rev. Lett. 80, 5243 (1998).

[4] C. M. Bender, P. E. Dorey, C. Dunning, D. W. Hook, A. Fring, H. F. Jones, S. Kuzhel, G. Lévai, and R. Tateo. \(\mathcal{PT} \)-Symmetry: In Quantum and Classical physics. World Scientific Publishing Company (2019).

[5] W. D. Heiss, The physics of exceptional points, J. Phys. A: Math. Theor. 45, 444016 (2012).

[6] F. Correa and M. L. Plyushchay, Spectral singularities in \(\mathcal{PT} \)-symmetric periodic finite-gap systems, Phys. Rev. D 86, 085028 (2012).

[7] H. Eleuch and I. Rotter, Open quantum systems with loss and gain, Int. J. Theor. Phys. 54, 3877 (2015).

[8] A. Mostafazadeh, Pseudo-Hermiticity versus \(\mathcal{PT} \)-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002).

\(^4\)It also justified the neglect of the \(y \)-contribution on enforcing the radial coordinate to coincide with \(x \) \([25]\).
[9] A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7 1191 (2010).

[10] L. Luo, J. Luo, H. Chu and Y. Lai, Pseudo-Hermitian systems constructed by transformation optics with robustly balanced loss and gain, arXiv:2009.12581 [physics.optics].

[11] L. Solombrino, Weak pseudo-Hermiticity and antilinear commutant, J. Math. Phys. 43, 5439 (2002)

[12] B. Bagchi and C. Quesne, Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition, Phys. Lett. A 301, 173 (2002).

[13] Z. Ahmed, Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: Real spectrum of non-Hermitian Hamiltonians, Phys. Lett. A 294, 287 (2002).

[14] M. Znojil, Strengthened \(\mathcal{PT} \)-symmetry with \(\mathcal{P} \neq \mathcal{P}^\dagger \), Phys. Lett. A 353, 463 (2006).

[15] A. Mostafazadeh, Is weak pseudo-Hermiticity weaker than pseudo-Hermiticity?, J. Math. Phys. 47, 092101 (2006).

[16] E. J. Bergholtz, J. C. Budich and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).

[17] X. Yong, F. Zhang, and C. Zhang, Structured Weyl points in spin-orbit coupled fermionic superfluids, Phys. Rev. Lett. 115, 265304 (2015).

[18] Y. Xu, S. T. Wang and L. M. Duan, Weyl Exceptional rings in a three-dimensional dissipative cold atomic gas, Phys. Rev. Lett. 118, 045701 (2017).

[19] M.O. Goerbig, Electronic properties of graphene in strong magnetic field, Rev. Mod. Phys. 83, 1193 (2011).

[20] N.P. Armitage, E.J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 (2018).

[21] S. Weimann et al. Topologically protected bound states in photonic parity-time-symmetric crystals, Nat. Mater. 16, 433 (2017).

[22] C. Yuce and Z. Oztas, \(\mathcal{PT} \)-symmetry protected non-Hermitian topological systems, Scientific Reports 8, 17416 (2018).

[23] S. Lieu, Topological phases in the non-Hermitian Su-Schrieffer-Heeger model, Phys. Rev. B 97, 045106 (2018).

[24] M. Berry, Physics of Nonhermitian Degeneracies, Czechoslovak Journal of Physics 54, 1039 (2004).

[25] M. Stalhammar, J. Larana-Aragon1, L. Rødland and F. K. Kunst, Artificial Hawking radiation in non-Hermitian parity-time symmetric systems, arXiv:2106.05030 (cond-mat.mes-hall).

[26] D. Sabovich, P. Wunderlich, V. Fleurov, D. I. Pikulin, R. Ilan and Tobias Meng, Hawking fragmentation and Hawking attenuation in Weyl semimetals, arXiv:2106.14553 (cond-mat.mes-hall).
[27] S. W. Hawking, Particle creation by Black Holes, Commun. Math. Phys. 43, 199-220 (1975); ibid. 46, 206 (1976) [erratum].

[28] G.E. Volovik and M.A. Zubkov, Emergent weyl spinors in multi-fermion systems, Nucl. Phys. B 881, 514–538 (2014).

[29] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature 527, 495 (2015).

[30] P. Huhtala and G. E. Volovik, Fermionic microstates within the Painlevé-Gullstrand black hole, J. Exp. Theor. Phys. 94, 853–861 (2002).

[31] G. E. Volovik, Black hole and Hawking radiation by type-II Weyl fermions, JETP Letters 104, 645–648 (2016).

[32] C. M. Bender and H. F. Jones, Interactions of Hermitian and non-Hermitian Hamiltonians, J.Phys. A41 (Math. Theor.) 244006, 2008.

[33] M. Znojil, Hermitian–non-Hermitian interfaces in quantum theory, Adv. High Eng. Phys., 2018, 7906536 (2018).

[34] P. Painlevé, La mécanique classique et la théorie de la relativité, C. R. Acad. Sci. (Paris) 173, (1921).

[35] A. Gullstrand, Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie, Arkiv für Matematik, Astronomi och Fysik, 16, 1 (1922)

[36] M. K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85, 5042 (2000).

[37] C. H. Fleming, Hawking radiation as tunneling, http://www.physics.umd.edu/grt/taj/776b/fleming.pdf.