Production Spectra of $^3\text{He}(\pi, K)$ Reactions with Continuum Discretized Coupled Channels

Toru Harada1,2,* and Yoshiharu Hirabayashi3

1Osaka Electro-Communication University, Neyagawa, Osaka, 572-8530, Japan
2J-PARC Branch, KEK Theory Center, IPNS, KEK, Tokai, Ibaraki, 319-1106, Japan.
3Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan

(Dated: April 2, 2019)

Abstract

We investigate theoretically Λ production spectra of $^3\text{He}(\pi, K)$ reactions at $p_\pi = 1.05$–1.20 GeV/c in the distorted-wave impulse approximation, using the continuum-discretized coupled-channel method. The production cross section of a $^3\Lambda\text{H}(1/2^+)$ ground state is also discussed.

PACS numbers: 21.80.+a, 24.10.Ht, 27.30.+t, 27.80.+w

Keywords: Lambda hypernuclei, production, DWIA, CDCC, recoil effects

*Electronic address: harada@osakac.ac.jp
I. INTRODUCTION

It has been believed that hypertriton ($^3\Lambda\text{H}$) has lifetime within a few % of the free Λ lifetime of $\tau_\Lambda = 263.2\pm2.0$ ps because $^3\Lambda\text{H}$ ($T = 0, J^\pi = 1/2^+$) is composed of a deuteron ($I = 0, ^3S_1$) and a Λ hyperon loosely bound with the small Λ binding energy of $B_\Lambda = 130\pm50$ keV. It is supported by several theoretical calculations [1]; see however [2]. Recently, unexpected short lifetime of $^3\Lambda\text{H}$ was measured in hypernuclear production by high-energy heavy-ion collisions [3]; the world average lifetime of $\tau(\text{av})(^3\Lambda\text{H}) = 185^{+23}_{-28}$ ps is shorter than τ_Λ by about 30%. (ALICE Collaboration [4] newly reported the preliminary result of $\tau(^3\Lambda\text{H}) = 237^{+33}_{-36}$ ps which is moderately closer to τ_Λ.) To solve the hypertriton lifetime puzzle, experimental measurements of the $^3\Lambda\text{H}$ lifetime are planned by $^3\text{He}(K^-, \pi^0)$ and $^3\text{He}(\pi^-, K^0)$ reactions at J-PARC. Moreover, HypHI Collaboration [5] found a bound $nn\Lambda$ system, whereas theoretical calculations suggest that no $^3\Lambda n$ ($T = 1, J^\pi = 1/2^+$) bound state exists [6]. Therefore, it is important to investigate theoretically production of such $NN\Lambda$ systems, e.g., (π, K) reactions on a ^3He target, in order to settle the current problems related to three-body hypernuclei.

In this paper, we focus on the Λ production spectra of $^3\text{He}(\pi, K)$ reactions at $p_\pi = 1.05$–1.20 GeV/c in the distorted-wave impulse approximation (DWIA), using the continuum-discretized coupled-channel (CDCC) method [7] in order to well describe the NN continuum states above the $N + N + \Lambda$ breakup threshold. We also discuss the production cross section of $^3\Lambda\text{H}(1/2^+)$ in $^3\text{He}(\pi^-, K^0)$ reactions, considering nuclear medium effects of the $\pi N \to \Lambda K$ amplitude and recoil effects.

II. CALCULATIONS

Inclusive differential cross sections for nuclear (π, K) reactions in the laboratory frame within the DWIA [7] are given by (in units $\hbar = c = 1$)

\[
\frac{d^2\sigma}{dE_Kd\Omega_K} = \beta \frac{1}{[J_A]} \sum_{M_A} \sum_B |\langle \Psi_B | \hat{F} | \Psi_A \rangle|^2 \delta(E_K + E_B - E_\pi - E_A),
\]

(1)

where $[J] = 2J + 1$, β is a kinematical factor, and E_K, E_π, E_B and E_A are energies of outgoing K, incoming π, hypernuclear states and the target nucleus, respectively; Ψ_B and Ψ_A are wavefunctions of hypernuclear states and the target nucleus, respectively. \hat{F} is a
FIG. 1: Momentum transfer to the final state, q_{Λ}, for the (π, K) reactions on a ^3He target at scattering K angles of $\theta_{\text{lab}} = 3^\circ$, 7°, and 11° in the laboratory frame, as a function of the incident pion momentum p_π.

The strangeness-exchange external operator given by

$$\hat{F} = \int d\mathbf{r} \chi_K^{(-)*}(p_K, \mathbf{r})\chi_\pi^{(+)}(p_\pi, \mathbf{r}) \sum_{j=1}^A \overline{f}_{\pi N \rightarrow \Lambda K} \delta(\mathbf{r} - \mathbf{r}_j) \hat{O}_j,$$

where $\chi_K^{(-)*}$ and $\chi_\pi^{(+)}$ are distorted waves for outgoing K and incoming π, respectively, which are calculated with the help of the eikonal approximation. \hat{O}_j is a baryon operator changing jth nucleon into a Λ hyperon in the nucleus. Figure 1 displays the momentum transfer to the final state, $q_{\Lambda} = |p_\pi - p_K|$, as a function of the incident pion momentum p_π, where p_π and p_K are the laboratory momenta of π and K in the nuclear reaction, respectively. $\overline{f}_{\pi N \rightarrow \Lambda K}$ is the $\pi N \rightarrow \Lambda K$ amplitude in nuclear medium, which is obtained by the optimal Fermi-averaging method [8]. It should be noticed that strong E_Λ dependence appears in $\overline{f}_{\pi N \rightarrow \Lambda K}$ because the elementary cross sections for the $\pi N \rightarrow \Lambda K$ reactions depend on the incident pion momentum [9]; we confirm that the optimal Fermi-averaged cross sections of $d\sigma/d\Omega = \beta |\overline{f}_{\pi N \rightarrow \Lambda K}|^2$ at $p_\pi = 1.05$ and 1.20 GeV/c have strong E_Λ dependence [8], as shown
FIG. 2: Calculated laboratory cross sections for the $\pi N \rightarrow \Lambda K$ reactions in nuclear medium at $p_\pi = 1.05$ and 1.20 GeV/c with $\theta_{\text{lab}} = 3^\circ$, 7$^\circ$, and 11$^\circ$, as a function of E_Λ. The optimal Fermi averaging 8 is used.

Hypernuclear final states are considered as three-body $NN\Lambda$ systems in the $^3\text{He}(\pi, K)$ reactions, involving continuum states above the $N + N + \Lambda$ threshold. Here we employ the CDCC method 10 in order to well describe the NN continuum states as breakup channels. Thus the wavefunctions Ψ_B with J^π in the LS-coupling scheme can be written as

$$
\Psi_B \simeq \Psi_B^{\text{CDCC}}(r, R) = \sum_{\alpha=1}^{N_{\text{max}}} \sum_{\ell_2=0}^{\ell_{\text{max}}} \left[\tilde{\phi}^{(2N)}_{\alpha,\ell_2}(r) \otimes \varphi_{\alpha,\ell_\Lambda}^{(A)}(R) \right]_{LB} \otimes X_{I_{\alpha},S_{\alpha}}^{B} \gamma_{MB},
$$

where $\tilde{\phi}^{(2N)}_{\alpha,\ell_2}(r)$ is the NN wavefunction having bound and continuum-discretized states for angular momentum ℓ_2, spin 1S_0 or 3S_1 in channel α, $\varphi_{\alpha,\ell_\Lambda}^{(A)}(R)$ is the relative wavefunction between NN and Λ with ℓ_Λ, and $X_{I_{\alpha},S_{\alpha}}^{B}$ is the isospin-spin function for $NN\Lambda$. Because we omit spin-flip processes in the (π, K) reactions on the $^3\text{He} (1/2^+)$ target, the final states on $J^\pi = |L^\pi \pm 1/2|$ with $L^\pi = 0^+, 1^-, 2^+, \cdots$, and $S = 1/2$ can be populated. We obtain $\varphi_{\alpha,\ell_\Lambda}$, solving a coupled-channel equation with the potential $U_{\alpha\alpha'}$ given by the microscopic $2N$-Λ
FIG. 3: Calculated inclusive K^+ spectrum in the $^3\text{He}(\pi^+,K^+)$ reaction at 1.20 GeV/c, $\theta_{\text{lab}} = 3^\circ$, together with partial-wave components L^π and $S = 1/2$, as a function of the missing mass M_x. The spectrum is taken into account a detector resolution of 4 MeV FWHM.

folding model;

$$U_{\alpha\alpha'}(R) = \int \rho_{\alpha\alpha'}(r) \left(\bar{v}_{\Lambda N}(R - r/2) + \bar{v}_{\Lambda N}(R + r/2) \right) dr,$$

where $\rho_{\alpha\alpha'}(r)$ is the nucleon or transition density, and $\bar{v}_{\Lambda N}$ is the spin-averaged ΛN potential. For the ΛN potential $v_{\Lambda N}$, we assume a single Gaussian form which reproduces the scattering length and the effective range in Λp scattering at low energies, fitting into those of NSC97f. We can also reproduce the experimental value of $B_\Lambda = 0.13$ MeV for $^3\Lambda\text{H}(1/2^+)$ when we slightly modify the strengths of $v_{\Lambda N}$ by a factor of 0.92. We rewrite a sum over the final states in Eq. (1) as

$$\sum_B |\Psi_B\rangle \langle \Psi_B| \delta(E_B - E_A - \omega) = -\frac{1}{\pi} \text{Im} \hat{G}(\omega),$$

where $\hat{G}(\omega)$ is a complete Green’s function for the $2N$-$(\Lambda\Lambda)$ systems given by CDCC wavefunctions. Therefore, the inclusive differential cross sections are obtained by the Green’s function method [11].
FIG. 4: Calculated inclusive K^0 spectrum in the 3He (π^-, K^0) reaction at 1.20 GeV/c, $\theta_{\text{lab}} = 3^\circ$. The bin with a finite width of 1 MeV at $M_x = 2991.2$ MeV/c2 denotes the integrated cross section of $^3\Lambda H (1/2^+)$, which is denoted by $d + \Lambda$ in the figure. See also the caption of Fig. 3.

III. RESULTS AND DISCUSSION

In the 3He(π^+, K^+) reactions, we consider the production of the $pp\Lambda$ states with only NN, 1S_0 components. Figure 3 displays the calculated inclusive K^+ spectrum of the 3He(π^+, K^+) reaction at $p_\pi = 1.20$ GeV/c, $\theta_{\text{lab}} = 3^\circ$, together with partial-wave components of the spectrum. Considering large momentum transfer of $q_\Lambda \simeq 360$ MeV/c in exothermic (π, K) reactions, we find that many partial waves moderately contribute to the spectrum; there appears an enhancement of the $T = 1, J^\pi = 1/2^+$ ($L^\pi = 0^+, S = 1/2$) component just above the $p + p + \Lambda$ threshold. This enhancement may indicate that a pole of the s-wave $pp\Lambda$ resonance or virtual state resides near the $p + p + \Lambda$ threshold, as suggested by several three-body calculations.

In the 3He(π^-, K^0) reactions, we study the production of the $pn\Lambda$ states with NN, 3S_1 and 1S_0 components, which include the $^3\Lambda H (T = 0, J^\pi = 1/2^+)$ ground state. Figure 4
TABLE I: Calculated results of the integrated production cross sections of the \(^3\text{Λ}H\) ground state, \(d\sigma/d\Omega (\text{\(^3\text{Λ}H\)})\), in the \(^3\text{He}(\pi^-, K^0)\) reactions at \(p_\pi = 1.05\) and 1.20 GeV/c.

\(p_\pi\) (GeV/c)	\(\theta_{\text{lab}}\) (degree)	\((d\sigma/d\Omega)_{\pi^N\rightarrow\Lambda K}^{\text{\(3\text{Λ}H\)}}\) \((\text{µb/sr})\)	\(q_\Lambda\) \((\text{MeV/c})\)	\(q_{\text{eff}}^{\Lambda}\) \((\text{MeV/c})\)	\(d\sigma/d\Omega (\text{\(^3\text{Λ}H\)})\) \((\text{µb/sr})\)		
1.05	3	463	344	354	236	0.15	3.07
	7	459	340	369	246	0.10	2.42
	11	450	332	393	262	0.05	1.59
1.20	3	292	225	326	217	0.22	3.13
	7	287	235	350	233	0.13	2.24
	11	277	236	383	255	0.05	1.33

\(^a\beta|f_{\pi^-p\rightarrow\Lambda K}\nu|^2\) is used.

\(^b\beta|\bar{f}_{\pi^-p\rightarrow\Lambda K}\nu|^2\) is used.

\(^c q_{\text{eff}}^{\Lambda} \approx (M_C/M_\Lambda)q_\Lambda\) where a recoil factor of \(M_C/M_\Lambda\) is equal to 2/3 for the \(^3\text{He}\) target.

displays the calculated inclusive \(K^0\) spectrum of the \(^3\text{He}(\pi^-, K^0)\) reaction at \(p_\pi = 1.20\) GeV/c, \(\theta_{\text{lab}} = 3^\circ\), together with partial-wave components of the spectrum. We find that the integrated production cross section of \(^3\text{Λ}H\) amounts to \(d\sigma/d\Omega (\text{\(^3\text{Λ}H\)}) = 3.13\) µb/sr. In Table II we show the values of \(d\sigma/d\Omega (\text{\(^3\text{Λ}H\)})\) at \(p_\pi = 1.05\) and 1.20 GeV/c with \(\theta_{\text{lab}} = 3^\circ, 7^\circ,\) and \(11^\circ\) in order to see the sensitivity to the in-medium \(\pi N \rightarrow \Lambda K\) amplitudes and to momentum transfers. We find that the values of \(d\sigma/d\Omega (\text{\(^3\text{Λ}H\)})\) at 1.05 and 1.20 GeV/c are similar, although the values of \((d\sigma/d\Omega)_{\pi^N\rightarrow\Lambda K}^{\text{\(3\text{Λ}H\)}}\) near the \(\Lambda\) threshold at 1.05 GeV/c are about 1.5 times as large as those at 1.20 GeV/c. This is caused by the fact that the former is larger than the latter in terms of \(q_{\text{eff}}^{\Lambda}\). If the recoil effects are switched off \((M_C/M_\Lambda = 2/3\) is replaced by 1), the values of \(d\sigma/d\Omega (\text{\(^3\text{Λ}H\)})\) are reduced by an order of magnitude or more. Hence we recognize that the recoil effects for production on the light target as \(^3\text{He}\) are important in the nuclear \((\pi, K)\) reactions.

IV. SUMMARY

We have shown the calculated \(\Lambda\) production spectra of the \(NN\Lambda\) systems in the \(^3\text{He}(\pi, K)\) reactions at 1.05–1.20 GeV/c with CDCC which describes the \(NN\) continuum states above
the $N+N+\Lambda$ breakup threshold. The production cross section of $^3\Lambda H(1/2^+)$ in the (π^-, K^0) reaction is evaluated, e.g., $d\sigma/d\Omega (^3\Lambda H) \simeq 3 \mu b/sr$ at 1.05–1.20 GeV/c, $\theta_{\text{lab}} = 3^\circ$. The recoil effects are very important to the production with the light nuclear target as ^3He, as well as the medium effects of the $\pi N \rightarrow \Lambda K$ amplitudes for nuclear (π, K) reactions. More precise analysis on convergence of the CDCC model space depending on $(k_{\text{max}}, \ell_{\text{max}})$ should be needed. This investigation is in progress.

The authors would like to thank H. Tamura and A. Gal for valuable comments. This work was supported by JSPS KAKENHI Grant Numbers JP16K05363.

[1] H. Kamada, et al.: Phys. Rev. C 57,1595 (1998), and references therein.
[2] A. Gal and H. Garcilazo: Phys. Lett. B 791, 48 (2019).
[3] C. Rappold, et al., HypHI Collaboration: Nucl. Phys. A 913, 170 (2013); J. Adam, et al., ALICE Collaboration: Phys. Lett. B 754, 360 (2016); L. Adamczyk, et al., STAR Collaboration: Phys. Rev. C 97, 054909 (2018).
[4] S. Trogolo, ALICE Collaboration: Nucl. Phys. A 982, 815 (2019).
[5] C. Rappold, et al., HypHI Collaboration: Phys. Rev. C 88, 041001(R) (2013).
[6] A. Gal and H. Garcilazo: Phys. Lett. B 736, 93 (2014).
[7] T. Harada and Y. Hirabayashi: Nucl. Phys. A 934, 8 (2015), and references therein.
[8] T. Harada and Y. Hirabayashi: Nucl. Phys. A 744, 323 (2004).
[9] M. Sotona and J. Žofka, Prog. Theor. Phys. 81, 160 (1989).
[10] M. Kamimura, et al.: Prog. Theor. Phys. Suppl. 89, 1 (1986), and references therein.
[11] O. Morimatsu and K. Yazaki: Nucl. Phys. A 435, 727 (1985); Nucl. Phys. A 483, 493 (1988).