ON THE ORIGIN OF THE METALLICITY DEPENDENCE IN DYNAMICALLY FORMED EXTRAGALACTIC LOW-MASS X-RAY BINARIES

N. Ivanova1,7, T. Fragos2, D.-W. Kim3, G. Fabbiano2, J. L. Avendano Nandez1, J. C. Lombardi3, G. R. Sivakoff1, R. Voss4, and A. Jordán5,6

1 Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada; nata.ivanova@ualberta.ca
2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
3 Department of Physics, Allegheny College, Meadville, PA 16335, USA
4 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
5 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, 7820436 Macul, Santiago, Chile
6 The Milky Way Millennium Nucleus, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile

Received 2012 August 29; accepted 2012 October 22; published 2012 November 6

ABSTRACT

Globular clusters (GCs) effectively produce dynamically formed low-mass X-ray binaries (LMXBs). Observers detect ~100 times more LMXBs per stellar mass in GCs compared to stars in the fields of galaxies. Observationally, metal-rich GCs are about three times more likely to contain an X-ray source than their metal-poor counterparts. Recent observations have shown that this ratio holds in extragalactic GCs for all bright X-ray sources with \(L_X \) between \(2 \times 10^{37} \) and \(5 \times 10^{38} \) erg s\(^{-1}\). In this Letter, we propose that the observed metallicity dependence of LMXBs in extragalactic GCs can be explained by the differences in the number densities and average masses of red giants in populations of different metallicities. The preference of bright low-mass X-ray binaries (LMXBs), with \(L_X > 10^{36} \) erg s\(^{-1}\), to reside in metal-rich globular clusters (GCs) was first noted for our Galaxy and M31 (Grindlay 1993; Bellazzini et al. 1995). Extragalactic observations with a much larger sample of GCs and observed bright LMXBs, but also at a higher cut-off luminosity, \(L_X > 10^{37} \) erg s\(^{-1}\), have confirmed this tendency (e.g., Kundu et al. 2002, 2007; Maccarone et al. 2004; Jordán et al. 2004; Kim et al. 2006; Sivakoff et al. 2007). Similar, albeit weaker statistically, trends have also been seen in the GCs of M31 for LMXBs with \(L_X \geq 10^{36} \) erg s\(^{-1}\) (Trudolyubov & Priedhorsky 2004; Peacock et al. 2010). As the formation rate of bright LMXBs in GCs exceeds that of the field by a factor of about 100, it is commonly accepted that bright LMXBs in GCs are formed dynamically (Clark 1975; for an overview see Verbunt & Lewin 2006). The origin of the preference of bright LMXBs for metal-rich clusters could lie in pre-dynamical enhancements of the constituents that eventually form into LMXBs, enhancements during dynamical LMXB formation, or both. A recent set of deep observations of extragalactic LMXBs has strengthened the statement that metal-rich clusters are ~3 times more likely to have bright LMXBs (Kim et al. 2012), clarifying that this ratio holds across the range of X-ray luminosities from \(2 \times 10^{37} \) erg s\(^{-1}\) to \(5 \times 10^{38} \) erg s\(^{-1}\). For high-luminosity LMXBs, those with \(L_X > 5 \times 10^{38} \) erg s\(^{-1}\) and thus most likely to have black hole (BH) accretors, the ratio is \(2.5^{+0.9}_{-1.1} \). We show here that these observations provide the first statistically significant constraint on a type of a donor in the observed extragalactic bright GC–LMXB population.

Key words: binaries: close – globular clusters: general – X-rays: binaries

Online-only material: color figure

1. INTRODUCTION

The preference of bright low-mass X-ray binaries (LMXBs), with \(L_X > 10^{36} \) erg s\(^{-1}\), to reside in metal-rich globular clusters (GCs) was first noted for our Galaxy and M31 (Grindlay 1993; Bellazzini et al. 1995). Extragalactic observations with a much larger sample of GCs and observed bright LMXBs, but also at a higher cut-off luminosity, \(L_X > 10^{37} \) erg s\(^{-1}\), have confirmed this tendency (e.g., Kundu et al. 2002, 2007; Maccarone et al. 2004; Jordán et al. 2004; Kim et al. 2006; Sivakoff et al. 2007). Similar, albeit weaker statistically, trends have also been seen in the GCs of M31 for LMXBs with \(L_X \geq 10^{36} \) erg s\(^{-1}\) (Trudolyubov & Priedhorsky 2004; Peacock et al. 2010). As the formation rate of bright LMXBs in GCs exceeds that of the field by a factor of about 100, it is commonly accepted that bright LMXBs in GCs are formed dynamically (Clark 1975; for an overview see Verbunt & Lewin 2006). The origin of the preference of bright LMXBs for metal-rich clusters could lie in pre-dynamical enhancements of the constituents that eventually form into LMXBs, enhancements during dynamical LMXB formation, or both. A recent set of deep observations of extragalactic LMXBs has strengthened the statement that metal-rich clusters are ~3 times more likely to have bright LMXBs (Kim et al. 2012), clarifying that this ratio holds across the range of X-ray luminosities from \(2 \times 10^{37} \) erg s\(^{-1}\) to \(5 \times 10^{38} \) erg s\(^{-1}\). For high-luminosity LMXBs, those with \(L_X > 5 \times 10^{38} \) erg s\(^{-1}\) and thus most likely to have black hole (BH) accretors, the ratio is \(2.5^{+0.9}_{-1.1} \). We show here that these observations provide the first statistically significant constraint on a type of a donor in the observed extragalactic bright GC–LMXB population.

1. INTRODUCTION

The preference of bright low-mass X-ray binaries (LMXBs), with \(L_X > 10^{36} \) erg s\(^{-1}\), to reside in metal-rich globular clusters (GCs) was first noted for our Galaxy and M31 (Grindlay 1993; Bellazzini et al. 1995). Extragalactic observations with a much larger sample of GCs and observed bright LMXBs, but also at a higher cut-off luminosity, \(L_X > 10^{37} \) erg s\(^{-1}\), have confirmed this tendency (e.g., Kundu et al. 2002, 2007; Maccarone et al. 2004; Jordán et al. 2004; Kim et al. 2006; Sivakoff et al. 2007). Similar, albeit weaker statistically, trends have also been seen in the GCs of M31 for LMXBs with \(L_X \geq 10^{36} \) erg s\(^{-1}\) (Trudolyubov & Priedhorsky 2004; Peacock et al. 2010). As the formation rate of bright LMXBs in GCs exceeds that of the field by a factor of about 100, it is commonly accepted that bright LMXBs in GCs are formed dynamically (Clark 1975; for an overview see Verbunt & Lewin 2006). The origin of the preference of bright LMXBs for metal-rich clusters could lie in pre-dynamical enhancements of the constituents that eventually form into LMXBs, enhancements during dynamical LMXB formation, or both. A recent set of deep observations of extragalactic LMXBs has strengthened the statement that metal-rich clusters are ~3 times more likely to have bright LMXBs (Kim et al. 2012), clarifying that this ratio holds across the range of X-ray luminosities from \(2 \times 10^{37} \) erg s\(^{-1}\) to \(5 \times 10^{38} \) erg s\(^{-1}\). For high-luminosity LMXBs, those with \(L_X > 5 \times 10^{38} \) erg s\(^{-1}\) and thus most likely to have black hole (BH) accretors, the ratio is \(2.5^{+0.9}_{-1.1} \). We show here that these observations provide the first statistically significant constraint on a type of a donor in the observed extragalactic bright GC–LMXB population.

2. DYNAMICAL FORMATION OF LMXBS IN GCS

There are three sub-populations of LMXBs, depending on the evolutionary state of the donor star, that can potentially contribute to the X-ray luminosity function of a dynamically formed LMXBs in a GC: LMXBs with main-sequence (MS) donors, LMXBs with subgiant or giant donors (hereafter, we refer to both giant and subgiant low-mass stars as red giants; RGs), and ultracompact LMXBs (UCXBs) with degenerate, white dwarf (WD) donors.

The vast majority of LMXBs in GCs should be accreting onto neutron stars (NSs), which predominantly formed through either electron-capture supernovae or accretion-induced collapse (Ivanova et al. 2008); the low escape velocity in GCs leads to the loss of almost all NSs formed via normal core-collapse with a large native kick. This results in a lighter population of NSs in GCs, with initial masses of \(M_{NS} \sim 1.28 \pm 0.06 \, M_{\odot} \) (Timmes et al. 1996).

LMXBs in dense stellar systems are most efficiently formed from binaries with an NS and an MS donor (Ivanova et al. 2008). The strongest formation channels among MS donors are binary interaction exchanges with an NS or the creation of an NS–MS binary following the accretion-induced collapse of a WD in an already dynamically formed WD–MS binary. Tidal capture is significantly less efficient. Although the formation rate of NS–MS systems is estimated to be the highest among the three sub-populations of donors (Ivanova et al. 2008), the mass-transfer (MT) rate that these systems with low-mass MS donors can drive is very low. As a consequence, most NS–MS LMXBs are transient with low duty cycles and low outburst luminosities (Fragos et al. 2008, 2009; Revnivtsev et al. 2011). As such, they are not expected to have any contribution to the observed X-ray luminosity function at the luminosity range.
of interest here \(L_X > 2 \times 10^{37} \text{ erg s}^{-1} \). While persistent NS–MS LMXBs can be formed in only metal-rich GCs (for old populations systems) and still play a significant role for the metallicity dependence in our Galactic LMXBs (Ivanova 2006), their persistent luminosities are also below the limiting luminosity to which extragalactic LMXBs are usually observed. Note that the maximum luminosity of 4U 1746–37, the only bright LMXB in Galactic GCs that most likely has an MS donor, is also below this threshold (Sidoli et al. 2001).

RGs play a significant role in the dynamical formation of NS LMXBs, influencing two important formation channels. First, RGs can physically collide with NSs and form compact binaries that consist of a WD and an NS; such binary systems may later become UCXBs (Ivanova et al. 2005). Second, following the formation (via an exchange encounter) of an eccentric NS–MS binary, the MS donor may overfill its Roche lobe as it evolves to become a subgiant or giant. In both cases, these binaries will appear as persistent LMXBs with \(L_X > 2 \times 10^{37} \text{ erg s}^{-1} \) for a fraction of their MT evolution (Fragos et al. 2008, 2009).

Dynamical formation of bright LMXBs is determined by the probabilities of two events: first, some seed binary with an NS has to be formed in a dynamical encounter (see Section 3), and second, this binary must start MT that is fast enough to appear as a bright LMXB (see Section 4).

3. ENHANCEMENT OF THE DYNAMICAL ENCOUNTERS RATE

The total number of physical collisions between an NS and RGs per unit of time is \(N_{\text{PC}} = n_{\text{RG}} n_{\text{NS}} \sigma v_{\infty} \), where \(n_{\text{RG}} \) is the number density of RGs, \(v_{\infty} \) is the relative velocity at infinity, and \(\sigma_{\text{RG,NS}} \) is the cross-section of an encounter enhanced by gravitational focusing (Safronov 1969):

\[
\sigma_{\text{RG,NS}} = \pi r_{\text{max}}^2 \left(1 + \frac{2G(M_{\text{RG}} + M_{\text{NS}})}{r_{\text{max}} v_{\infty}^2} \right). \tag{1}
\]

Here \(r_{\text{max}} \) is the largest closest approach that would lead to a collision—approximately the radius of the RG. The rate of binary exchange encounters, \(N_{\text{BE}} \), is calculated similarly, replacing \(n_{\text{RG}} \) with the number density of seed binaries and setting \(r_{\text{max}} \approx 2a \), where \(a \) is the orbital separation in a pre-exchange binary containing an RG or an MS star that will evolve into an RG.

Assuming all stars in a GC are coeval, all RGs in a GC have about the same mass, which only varies by a few percent compared to the MS turnover mass of the specific GC. This mass range is metallicity dependent since the lifetimes of metal-rich stars are longer than those of metal-poor stars, both for their MS lifetime, \(\tau_{\text{MS}} \), and their lifetime as an RG, \(\tau_{\text{RG}} \). Figure 1 shows the ages of a star when it exhausts the hydrogen at its center (end of MS) and when it reaches a radius of 30 \(R_{\odot} \) as a function of its zero-age MS mass, for two metallicity values (\(Z = 0.01 \) and \(Z = 0.0002 \)), typical of red (metal-rich) and blue (metal-poor) GCs, respectively. The MESA stellar evolution code (Paxton et al. 2011) was used to calculate these results.

Although the choice of 30 \(R_{\odot} \) in Figure 1 is not strictly rigid, it is justified by two reasons. First, it is approximately the maximum radius that an RG can have as part of a binary system in a GC environment. The characteristic collision time for a binary is

\[
\tau_{\text{coll}} = \frac{1}{n_{\text{SF}} v_{\infty}} \approx 0.8 \text{ Gyr} \frac{v_{10}}{n_{S} a_{100} (M_{\text{bin}} + \langle M \rangle)}, \tag{2}
\]

Figure 1. Age of star when it exhausts the hydrogen at its center (solid lines) and when it reaches a radius of 30 \(R_{\odot} \) (dotted lines) as a function of its zero-age main-sequence mass, for two metallicity values, \(Z = 0.01 \) (red lines) and \(Z = 0.0002 \) (blue lines), typical of red and blue GCs, respectively.

Here \(n_{S} = n/(10^5 \text{ pc}^{-3}) \), where \(n \) is the stellar number density, \(\sigma \) is an encounter cross-section, \(M_{\text{bin}} \) is the total binary mass in \(M_{\odot} \), \(\langle M \rangle \) is the mass of an average single star in \(M_{\odot} \), \(v_{10} = v_{\infty}/(10 \text{ km s}^{-1}) \), and \(a_{100} = a/(100 R_{\odot}) \), where \(a \) is the binary separation. In a typical dense cluster, a binary with \(a \sim 100 R_{\odot} \) (i.e., about the size of the Roche lobe radius for an RG of \(\sim 30 R_{\odot} \)) will be perturbed by a collision during its \(\tau_{\text{RG}} \). This likely leads to an increased eccentricity that starts MT before the RG reaches \(\sim 30 R_{\odot} \). Larger orbital separations would correspond to very wide (soft) binaries that would be quickly disrupted via strong dynamical interactions. Second, larger RGs are unlikely to form a compact binary after a physical collision (Ivanova et al. 2005; Lombardi et al. 2006). Since any RG evolution from \(R_{\text{RG}} \sim 30 R_{\odot} \) through the tip of an RG branch takes less than 1\% of \(\tau_{\text{RG}} \), the exact upper limit of \(R_{\text{RG}} \) beyond 30 \(R_{\odot} \) that can make an LMXB/UCXB does not significantly change \(\tau_{\text{RG}} \).

Figure 1 shows that the mass range at which a giant star can exist in a metal-rich GC is significantly larger than the one corresponding to a metal-poor GC of the same age. For a typical age of a Milky Way GC, 11 Gyr, a red cluster has RGs with masses \(M_{\text{RG,red}} \approx 0.946–0.972 M_{\odot} \), while a metal-poor GC had RGs with masses \(M_{\text{RG,blue}} \approx 0.826–0.838 M_{\odot} \). Assuming a Kroupa (2001) initial mass function, this difference in mass ranges of RGs translates to a number density of giant stars \(n_{\text{RG}} \) that is \(\sim 60\% \) higher in red clusters compared to blue clusters. If extragalactic red GC have a younger stellar population (see, e.g., Woodley et al. 2010), the difference in number density can be increased even further: e.g., RG in a metal-rich GC of \(\sim 8 \) Gyr will be about twice more abundant than in a \(\sim 11 \) Gyr metal-poor GC.\footnote{The determination of an exact GC age is not possible due to a number of observational uncertainties (for a review, see Brodie & Strader 2006) and theoretical uncertainties (e.g., the presence of binaries also changes theoretical ages estimate; Fan & de Grijs 2012).} The total number of dynamical encounters leading to LMXBs formation in red GCs is \(\sim 1.6–2 \) higher compared to blue GCs due to the increase in \(n_{\text{RG}} \).

The average mass of the RGs in a cluster also produces a secondary enhancement through cross-section of encounters, \(\sigma_{\text{RG,NS}} \). For physical collisions, the second term in the brackets of Equation (1) is much larger than one, leading to the mass-dependence increase in the cross-sections of encounters in red
compared to blue GCs by a factor of \((M_{\text{RG, red}} + M_{\text{NS}})/(M_{\text{RG, blue}} + M_{\text{NS}})\). For a typical GC age of \(11\) Gyr, the average mass of a giant star in a metal-rich GC is higher \((M_{\text{RG, red}} \sim 0.96 \, M_\odot)\) compared to a metal-poor cluster \((M_{\text{RG, blue}} \sim 0.83 \, M_\odot)\). In a younger stellar population, \(~8\) Gyr, \(M_{\text{RG, red}} \sim 1.05 \, M_\odot\). The increased cross-section provides a mild increase in \(N_{\text{PC}}\) of \(5\%–15\%\). For binary-exchange encounters, this mass dependence is present, but weaker.

In simulations of GCs, Ivanova et al. (2008) found a factor of three difference in the number of UCXBs formed via physical collisions and present at \(11\) Gyr in GCs that are dynamical twins but have different metallicity (see their Table 7, where the ratio is \(2.8\)). In that study, which did not separate LMXBs as bright as extragalactic LMXBs from quiescent LMXBs that are detectable only in Milky Way GCs, the importance of this channel was not emphasized as it produces a relatively small fraction of all LMXBs. However, this channel is significant if one only considers bright LMXBs for comparison to extragalactic studies. The reason behind the factor of three difference was not identified, but re-analysis of the simulations showed that this may be due to the different number of giants in the stellar populations that are present in coeval GCs. The number of RGs at \(11\) Gyr in the population of a whole cluster of “standard” (metal-rich) model is \(1.85 \pm 0.05\) times bigger than that of their “metal-poor” model. At the same time, we found that the mass segregation of RGs in the core may play an additional role: in the cores of the clusters, the enhancement of RGs was a factor of \(2.1 \pm 0.1\), likely due to different turnoff masses. This suggests the number density enhancement in the core of a younger red GC may be a factor of \(2.6\), since mass segregation is likely underestimated in these simulations that are not fully dynamically self-consistent (Fregeau et al. 2009).

Formation channels of LMXBs with a BH accretor differ from those with an NS accretor (Kalogera et al. 2004; Ivanova et al. 2010). BH LMXBs are likely formed via sequences of multiple encounters occurring with seed BH–WD binaries that were formed in an initiating dynamical encounter (Ivanova et al. 2010). Since physical collisions with RGs provide at least half of all these seed BH–WD binaries, the above metallicity-dependent enrichment of RGs will also lead to the production of more BH–WD LMXBs in red GCs; an exact prediction of this overproduction is beyond the scope of current dynamical codes.

4. ENHANCEMENT OF APPEARANCE PROBABILITY

4.1. UCXBs

The formation of an UCXB via physical collision between an NS and an RG depends not only on the probability of such a collision to occur, but also on the capacity of that formed binary to shrink sufficiently via gravitational wave radiation to start MT. The latter, for each set of companion masses and post-collisional eccentricity and separation, can be determined using equations from Peters (1964). Here, we denote the maximum post-collisional separation in a post-collisional binary as a function of eccentricity that is capable of making an UCXB as \(a_{\text{UCXB}}(e)\): only physical collisions where \(a_{\text{PC}} < a_{\text{UCXB}}(e_{\text{PC}})\) lead to UCXB formation.

The post-collisional binary parameters \(a_{\text{PC}}\) and \(e_{\text{PC}}\) are functions of the stellar masses involved in the physical collision, the radius of the RG, \(R_{\text{RG}}\), the initial closest approach during the physical collision, \(r_p\), and \(v_{\infty}\) (the latter parameter does not influence outcomes in GCs). Hydrodynamical studies of physical collisions in GCs between RGs and NSs for various \(R_{\text{RG}}\) and \(r_p\) have been performed by Lombardi et al. (2006); the parameterization of their results, \((a_{\text{PC}}; e_{\text{PC}}) = F(r_p, R_{\text{RG}})\), was used as the underlying physics in population studies of LMXB formations in Ivanova et al. (2008).

However, Lombardi et al. (2006) only investigated two RG masses, 0.8 \(M_\odot\) and 0.9 \(M_\odot\). Thus, any mass dependence was not thoroughly explored, although their Figure 16 suggests that for larger \(r_p\) more massive RGs would form somewhat closer binaries. Indeed, energy conservation implies that the formation of close binaries will be a function of the RG’s envelope mass \(M_{\text{env}}\) as its binding energy determines how much energy has to be spent on its ejection, \(E_{\text{bind}} \propto M_{\text{env}}/R\) (see, e.g., Ivanova et al. 2012), while the available orbital energy \(E \propto M_{\text{core}} M_{\text{NS}}/a_{\text{PC}}\). Neglecting the kinetic energy at infinity before and after the collision, a simplified estimate leads to \(1/a_{\text{PC}} \propto M_{\text{env}}\).

Using Equation (1), we compare here encounters with the same \(r_{\text{max}} = R_{\text{RG}}\). Since \(R_{\text{RG}}\) depends primarily on \(M_{\text{core}}\) (Joss et al. 1987) and the total masses of RGs in coeval GCs differ with metallicity, RGs located in blue and red GCs of the same age would have different envelope masses—e.g., for a core of \(0.3 \, M_\odot\), \(M_{\text{env}}\) differs by \(50\%\). The resulting formed binaries are expected to be more compact in the case of a red cluster. Hence RGs in red GCs can form a binary (potentially an UCXB) in encounters that have a larger initial closest approach \(r_{\text{UCXB, red}}\) than RGs in blue clusters. The ratio of these maximum closest approaches leading to an UCXB formation is \(r_{\text{UCXB, red}}/r_{\text{UCXB, blue}} \sim M_{\text{env, red}}/M_{\text{env, blue}}\).

We tested this dependence by performing several physical collision simulations between an NS and RGs of different masses, \(0.8 \, M_\odot\) and \(1.1 \, M_\odot\), but the same \(R_{\text{RG}}\) and \(M_{\text{core}}\), using the three-dimensional smoothed particle hydrodynamics code \texttt{StarCrash} (Gaburov et al. 2010; Lombardi et al. 2011). RGs’ stellar structures were first calculated using the \texttt{STARS/ev} code and then relaxed in \texttt{StarCrash} (see Glebbeek et al. 2008 and references therein). The comparison of physical collision outcomes with the same \(r_p\) but different \(M_{\text{env}}\) confirmed that post-collisional binary separation is a function of \(M_{\text{env}}\) in the expected way—smaller for larger \(M_{\text{env}}\), although the dependence is a bit weaker than a strictly linear proportionality (we obtain ratios of post-collisional orbital separations being \(~10\%\) different from \(M_{\text{env, red}}/M_{\text{env, blue}}\)).

Hence, the ratio of encounter cross-sections resulting in UCXB formation in red and blue clusters is

\[
\frac{\sigma_{\text{UCXB, red}}}{\sigma_{\text{UCXB, blue}}} \sim \frac{M_{\text{env, red}}}{M_{\text{env, blue}}} \left(\frac{M_{\text{RG, red}} + M_{\text{NS}}}{M_{\text{RG, blue}} + M_{\text{NS}}} \right) \sim 1.3–1.6. \tag{3}
\]

Combined with the difference in the RG number density in cores of GCs by a factor of \(2.1\), this predicts that metal-rich GCs should contain a factor of \(\geq 2.7\) more UCXBs than coeval metal-poor GCs, comparable to observations.

4.2. LMXBs with RG Donors

Given \(M_{\text{RG, red}}\) and \(M_{\text{RG, blue}}\), the mass ratio of the dynamically formed LMXBs at the onset of the Roche lobe overflow (RLOF) will be close to unity \((q = M_2/M_1 \simeq 0.65–0.85)\). The MT rate that these binaries will drive depends strongly on the mass ratio of the binary. Specifically, the higher the mass ratio, the higher the MT rate that the binary will drive. Hence, LMXBs in red GCs, which have higher mass ratios at the onset of the RLOF compared to those in blue GCs, are expected to drive overall higher MT rates.

To more properly study this effect, we used the \texttt{MESA} code to calculate three indicative MT sequences between a giant donor.
star and an NS accretor, corresponding to a typical LMXB with a giant donor in an 11 Gyr old GC, in an 8 Gyr old red GC, and in an 11 Gyr old blue GC. Figure 2 shows these calculated MT rates as a function of time since the onset of RLOF. The RLOF always began when the donor star reached a radius of \(\sim 3 R_\odot \). MT below which the accretion disk becomes thermally unstable, as a function of time passed from the onset of RLOF for three indicative MT sequences. In all cases, the onset of the RLOF happened when the donor star reached a radius of \(\sim 3 R_\odot \). MT was treated as conservative up to the Eddington limit. Only the higher metallicity systems undergo periods of persistent MT.

Figure 2 shows that the MT rate in the two high-metallicity cases reaches peak values of 2.5–5 times higher than the low-metallicity case, right after the onset of the RLOF. During this initial phase, LMXBs with giant donors become persistent X-ray sources in red GCs, while they always remain transient sources in blue GCs. As a result, for the same total number of LMXBs with giant donors we expect to be able to detect more bright X-ray sources in red GCs than blue GCs.9

5. CONCLUSIONS

In this Letter, we attempted to explain the observed ratio of bright LMXBs in extragalactic GCs of different metallicities. We identified that the RG population capable of forming close binaries is both more abundant (as a fraction among all of the stars) and more massive in metal-rich clusters than in metal-poor clusters. We propose that these properties lead to strong consequences on the number of bright LMXBs that can be formed and observed in otherwise dynamically similar clusters (total GC mass, star’s number density and velocity dispersion). First, more close binary systems are formed, both via physical collision and via exchange encounters—the increase is a factor of 1.6–2.6 (their fraction among all the stars). Second, a higher fraction of formed NS–WD will be able to start MT as bright UCXBs, as their post-collisional configurations are more compact. Finally, LMXBs with high-metallicity giant donors drive higher MT rates and can appear as persistent systems, while low-metallicity LMXBs with giant donors are transient. The combination of these factors is capable of producing the observed overabundance of bright LMXBs in red compared to blue GCs, although a full population synthesis study that includes proper physics of both collisions and MT with RGs is necessary to quantitatively account for the combined effect.

N.I. and G.R.S. acknowledge support by NSERC Discovery Grants. T.F. acknowledges support from the CfA and the ITC prize fellowship programs. D.-W.K. and G.F. acknowledge support from NASA contract NAS8-39073 (CXC). J.L.A.N. acknowledges support from CONACyT. A.J. is supported by the Chilean Ministry for the Economy, Development, and Tourism’s Programa Iniciativa Científica Milenio through grant P07-021-F, awarded to The Milky Way Millennium Nucleus. This material is based on work supported in part by the National Science Foundation under grant No. 1066293 and the hospitality of the Aspen Center for Physics.

REFERENCES

Bellazzini, M., Pasquali, A., Federici, L., Ferraro, F. R., & Pecci, F. F. 1995, ApJ, 439, 687
Brodie, J. P., & Strader, J. 2006, ARA&A, 44, 193
Clark, G. W. 1975, ApJ, 199, L143
Dubus, G., Lasota, J.-P., Hameury, J.-M., & Charles, P. 1999, MNRAS, 303, 139
Fan, Z., & de Grijs, R. 2012, MNRAS, 424, 2009
Fragos, T., Kalogera, V., Belczynski, K., et al. 2008, ApJ, 683, 346
Fragos, T., Kalogera, V., Willems, B., et al. 2009, ApJ, 702, L143
Froegeau, J. M., Ivanova, N., & Rasio, F. A. 2000, ApJ, 707, 1533
Gaburov, E., Lombardi, J. C., Jr., & Portegies Zwart, S. 2010, MNRAS, 402, 105
Glebbeek, E., Pols, O. R., & Hurley, J. R. 2008, A&A, 488, 1007
Grindlay, J. E. 1993, in ASP Conf. Ser. 48, The Globular Cluster–Galaxy Connection, ed. G. H. Smith & J. F. Brodie (San Francisco, CA: ASP), 156
Ivanova, N. 2006, ApJ, 636, 979
Ivanova, N., Chaichenets, S., Fregue, J., et al. 2010, ApJ, 717, 948
Ivanova, N., Heinke, C. O., Rasio, F. A., Belczynski, K., & Fregeau, J. M. 2008, MNRAS, 386, 553
Ivanova, N., Justham, S., Chen, X., et al. 2012, arXiv:1209.4302
Ivanova, N., Rasio, F. A., Lombardi, J. C., Jr., Dooley, K. L., & Proulx, Z. F. 2005, ApJ, 621, L109
Jordán, A., Côté, P., Ferrarese, L., et al. 2004, ApJ, 613, 279
Joss, P. C., Rappaport, S., & Lewis, W. 1987, ApJ, 319, 180
Kalogera, V., King, A. R., & Rasio, F. A. 2004, ApJ, 601, L171
Kim, D.-W., Fabbiano, G., Ivanova, N., et al. 2012, ApJ, submitted (arXiv:1208.5952)
Kim, E., Kim, D.-W., Fabbiano, G., et al. 2006, ApJ, 647, 274
Kroupa, P. 2001, MNRAS, 322, 231
Kundu, A., Maccarone, T. J., & Zepf, S. E. 2002, ApJ, 574, L5
Kundu, A., Maccarone, T. J., & Zepf, S. E. 2007, ApJ, 662, 525
Lombardi, J. C., Jr., Holtzman, W., Dooley, K. L., et al. 2011, ApJ, 737, 49
Lombardi, J. C., Jr., Proulx, Z. F., Dooley, K. L., et al. 2006, ApJ, 640, 441
Maccarone, T. J., Kundu, A., & Zepf, S. E. 2004, ApJ, 606, 430
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Peacock, M. B., Maccarone, T. J., Kundu, A., & Zepf, S. E. 2010, MNRAS, 407, 2611
Peters, P. C. 1964, Phys. Rev., 136, 1224
Revnivtsev, M., Postnov, K., Karanov, A., & Ritter, H. 2011, A&A, 526, A94
Safronov, V. S. 1969, Evolution of the Protoplanetary Cloud and Formation of Earth and the Planets (Jerusalem: Israel Program for Scientific Translations, Keter Publishing House), 212
Sidoli, L., Parmar, A. N., Oosterbroek, T., et al. 2001, A&A, 368, 451
Sivakoff, G. R., Jordán, A., Sarazin, C. L., et al. 2007, ApJ, 660, 1246
Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1996, ApJ, 457, 834
Trudolyubov, S., & Priedhorsky, W. 2004, ApJ, 616, 821
Vembhurt, F., & Lewin, W. H. G. 2006, in Global Cluster X-ray Sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 341
Woodley, K. A., Harris, W. E., Puzia, T. H., et al. 2010, ApJ, 708, 1335

9 We note that outburst durations are not firmly established from observations. Our statement is valid within the frame of the theoretical model for transient sources discussed in Fragos et al. (2009).