Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

Permalink
https://escholarship.org/uc/item/94r6d7z5

Journal
NUCLEAR FUSION, 57(7)

ISSN
0029-5515

Authors
Wang, Y
Tobias, B
Chang, Y-T
et al.

Publication Date
2017-07-01

DOI
10.1088/1741-4326/aa5e30

License
https://creativecommons.org/licenses/by-sa/4.0/ 4.0

Peer reviewed
Millimeter-Wave Imaging of Magnetic Fusion Plasmas: Technology Innovations Advancing Physics Understanding

Y. Wang, B. Tobiasa, Y.-T. Chang, J.-H. Yu, M. Li, F. Hu, M. Chen, T. Phan, A.-V. Pham, Y. Zhu, C.W. Domier, L. Shia, Ernest Valeoa, G. J. Kramera, D. Kuwaharab, Y. Nagayamac, A. Mased, and N. C. Luhmann Jr.

University of California at Davis, Davis, CA 95616, USA
aPrinceton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543
bTokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
cNational Institute for Fusion Science, Toki 509-5292, Japan
dKyushu University, Kasuga, Fukuoka 816-8580, Japan

Abstract: Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, AUG, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom microwave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

1 Introduction

1.1 ECEI and MIR as powerful microwave imaging diagnostic tools for fusion plasmas

Electron cyclotron emission imaging (ECEI) passively collects spontaneous emission at harmonics of the cyclotron frequency, ω_{ce}, and produces a 2D image of electron temperature, T_e, for a poloidal cross-section of optically thick plasma \cite{1, 2, 3, 4, 5, 6}. It utilizes the fact that the cyclotron frequency in a tokamak depends on the major radius, leading to a 1:1 mapping between emission intensity and the local T_e value. Along the poloidal direction, T_e is imaged onto a vertically aligned array of antennas. Fig. 1 illustrates both conventional 1-D ECE radiometry and ECEI. Microwave imaging reflectometry (MIR) is a radar technique employed to infer electron density, n_e, and electron density fluctuations by probing the density dependent plasma cutoff layer with an injected microwave beam \cite{7, 8, 9, 10, 11}. The injected beam, or probing microwave source, is reflected back to a receiving antenna and mixed with a reference signal. MIR uses quasi-optical techniques to image the plasma cutoff layer onto the receiver array, thus restoring the integrity of the phase measurement. Fig. 2 schematically depicts the MIR approach. ECEI has made a major impact on fusion research, and MIR is rapidly approaching the level of diagnostic maturity and
reliability required for it to provide the same high-quality data for detailed validation of physics models and scientific discovery.

Fig. 1 Conventional ECE radiometry and ECEI. a) 1D temperature detection using a single-point detector; b) 2D temperature profile obtained by a poloidally aligned detector array.

Fig. 2 The principles of operation for MIR reflectometry. First, the probing beam illuminates an extended region of the cutoff layer, where the curvature of the illuminating beam is matched to that of the cutoff surface (both toroidal and poloidal). Then, the cutoff layer is imaged onto a detector array at the image plane (3 example points shown), thereby eliminating the interference effects of multiple reflections. The illumination and detection systems share the common plasma-facing optics.
The earliest implementations of the ECEI technique provided paradigm-shifting insights into the nature of MHD behavior on the RTP, TEXT, and TEXTOR tokamaks [12, 13, 14, 15, 16, 17, 18, 19, 20]. As one example, ECEI provided the first opportunity to resolve localized reconnection and the formation of a narrow heat conduction channel at the time of the sawtooth crash (shown in Fig. 3). This eliminated invalid models of the physical mechanism behind sawtooth reconnection and allowed research in this area to proceed toward more sophisticated studies involving pacing of sawteeth and controlling the size of the sawtooth crash.

ECEI systems were installed on the ASDEX-Upgrade, DIII-D, EAST, and KSTAR tokamaks during the period 2010-2013 and represent the current state-of-the-art [2, 21, 22, 23]. Refinements to the optical design, new imaging array configurations, and the use of automated fabrication for improved reliability of low-frequency components allowed the technique to probe new phenomena. Diagnosis of Alfvén eigenmodes (shown in Fig. 4), their 2D and 3D mode structure, and the dependence of this structure on plasma parameters has advanced research in the areas of energetic particle drive instability and energetic particle confinement in high-performance regimes. Plasma simulation codes could be compared with experimental data and improved with unprecedented efficiency. This had a major impact on multi-code validation studies and produced many widely-cited publications. Furthermore, it has allowed EP research to advance into a new generation of predictive capability and discharge scenario optimization. ECEI data are now routinely integrated into the identification of Alfvénic modes by comparison to modeling and the design of suppression techniques based on modeling validated by detailed 2D/3D images.
When conditions are favorable, as they often are on ASDEX-Upgrade and KSTAR, ECEI produces tantalizing images of ELMs and pedestal fluctuations (see Fig. 5). Results from ASDEX-Upgrade have provided considerable insight into the poloidal propagation of turbulence, peeling-ballooning modes, and detached filaments. This, of course, is indicative of the evolving radial electric field, an important element of nonlinear MHD behavior. On KSTAR, the changes in mode structure that accompany RMP ELM mitigation and suppression are compared with MHD simulation codes to infer changes in pedestal structure and disentangle the complicated nonlinear impact of 3D fields on transport and MHD stability. Again, these data have a significant impact on fusion research and promise to

![Simultaneous emergence and growth of multiple ELM filaments (shot no. 4431). Solid curves are contour lines of the same $\delta T/\bar{T}$ value representing the approximate boundary of the filaments. The arrows follow the same filament illustrating the counterclockwise rotation. (reproduced from [25])](image)

![Simultaneous emergence and growth of multiple ELM filaments (shot no. 4431). Solid curves are contour lines of the same $\delta T/\bar{T}$ value representing the approximate boundary of the filaments. The arrows follow the same filament illustrating the counterclockwise rotation. (reproduced from [25])](image)
have an even greater impact as the new technology described in Sec. 2 will allow similar data to be obtained under increasingly ITER-relevant conditions. For example, DIII-D, with an excellent suite of complementary profile diagnostics (edge Thomson scattering, impurity and main ion CER, etc.) allows possibly the most sophisticated experiments to be performed and readily coupled with computational modeling. However, the low-collisionality of DIII-D H-mode and QH-mode plasmas, while very attractive for reproducing ITER-like conditions, also leads to bursts of radiation that are challenging for microwave diagnostics. These mm-wave bursts have been documented in some detail on DIII-D, C-Mod, MAST, and even in the very lowest collisionality discharges produced on ASDEX-Upgrade, but have not been fully described by theory or plasma simulation. Upgrading the DIII-D ECEI diagnostic will 1) reject out-of-band interference to produce the cleanest possible images, and 2) better resolve bursts which are within the bandwidth of the diagnostic, allowing them to be separated from the underlying MHD mode structure and studied in detail.

Microwave Imaging Reflectometry (MIR) was conceived by Mazzucato [18, 26, 27] and explored as early as 1995 [28] as a solution to a fundamental problem in reflectometry: the interference of multiple reflections and scattered radiation that corrupt measurement of the reflected wave’s phase, and hence distort the inferred spectrum of plasma turbulence. In analytic theory and synthetic diagnostic modeling, it is easy to understand the advantages of imaging in reflectometer systems. Imaging allows the detector to reconstruct the fluctuations at a localized position in the plasma. Without some degree of imaging, there is little that can be done to prevent corruption of the diagnostic signal. This principle is underscored by the sensitivity of MIR diagnostics and the great challenge of producing consistent, reliable, high-quality data.

Under conditions when MIR diagnostics have been properly aligned to an appropriately configured discharge, the data are strikingly clear and free of artifacts such as amplitude modulation or signal phase skips. Data collected with a very simple MIR diagnostic on TEXTOR (see Fig. 6) demonstrated high-quality quadrature phase plots (proof that interference from scattered radiation could be eliminated and an example of ‘good’ reflectometer data) and directly diagnosed poloidal ExB flow though reconstruction of the turbulent dispersion diagram (a plot of fluctuation frequency versus wavenumber). A more refined implementation of MIR was deployed on DIII-D in May 2013 and began taking plasma data in July 2013 [10]. This diagnostic had significantly improved antennas and quasi-optical components for better coupling to the plasma, higher power sources for improved probing of the cutoff surfaces, and implemented a number of new microwave techniques to stabilize the system and isolate the reflected signal. This diagnostic has produced exciting 2D images of edge fluctuations and contributed to the investigation of QH-mode physics and has successfully diagnosed core Alfvén eigenmodes. However, robust diagnosis of 2D mode structures with changing and/or unpredictable plasma conditions requires a more active approach to aligning, acquiring, and tracking the discharge. This is the motivation for pursuing the advanced beamforming techniques described in Sec. 3, which will impact reflectometry more broadly, by prescribing methods that allow reflectometer data to be interpreted with a much higher degree of confidence.
1.2 Technological advancements for ECEI and MIR

A major issue confronting current tokamak ECEI systems is that noise and interference hampers efforts to image ELMs under low-collisionality conditions like those on DIII-D during ITER baseline scenario studies and which has limited measurements during LHCD on EAST. Additionally, fast and robust imaging of core and edge fluctuations, including ELMs and AEs, are difficult to achieve because current ECEI and MIR systems employ motor-controlled optical lenses that are positioned to provide focusing for particular plasma conditions essentially once per discharge.

To this end, we have pursued three major transformative technological advancements for fusion plasma diagnostics: in particular, custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM), for MIR, ECEI, and a host of other microwave diagnostic techniques that rely on the same functional sub-systems [30]. IC technology facilitates the use of a horn waveguide array configuration such as developed by Kuwahara et al. for ECEI and MIR and implemented on LHD [31, 32, 33, 34], which significantly eliminates interference through the shielding and fundamental waveguide transition. The IC technology reduces noise temperature, which enables absolute calibration and
simplifies system setup, which in turn facilitates operation in harsh environments. DBF allows finely-tuned alignment that tracks changing conditions in real time, thereby facilitating studies including disruption precursors. When complimented by new software and advanced SDM capabilities [35, 36, 37, 38, 39], these technologies will enable compact and low-noise transceiver systems with real-time, fast tracking capability (as shown in Fig. 7) to address critical fusion plasma physics issues, including the ITER baseline scenario [40, 41, 42] and QH-mode [43, 44, 45, 29]. For each development, the advanced technology finds immediate application as ‘plug-in’ modules, which can be integrated into existing mm-wave imaging systems to provide enhanced capability. Furthermore, it will do so more reliably and at lower cost, maximizing scientific productivity in the process.

This paper consists of a review of the recent hardware and software development for fusion plasma diagnostics carried out by UC Davis and PPPL together with collaborators at NIFS, Kyushu University, and Tokyo University of Agriculture and Technology. Sec. 2 and 3 provide background information concerning the fundamental technological aspects of ICs and DBF, respectively. Progress and accomplishments are presented, including the prototypes and current upgrade of the common receiver architecture for ECEI and MIR, customized CMOS transmitter IC for MIR, and digitally controlled electronic phase shifter for steerable phased arrays. Sec. 4 presents the progress for the forward 2D/3D full-wave modeling of the plasma-wave interaction for reflectometry. The use of synthetic diagnostics for forward modeling of the instrument response is discussed. Finally, the technological trend and development road maps are presented in Sec. 5.
2 Custom Microwave Circuit Integration

2.1 Mm-wave integrated circuits (ICs)

IC technology facilitates combining many bulky microwave components onto a single, tiny piece of semiconductor substrate. Such a compact “system-on-chip” (SoC) can be inexpensively customized for fully optimized instruments. For example, it has been the key enabling factor for compact and sensitive wireless transceiver systems in radar, satellites, and cellular phones, which are ubiquitous in the modern telecommunication and sensor industry [46, 47, 48]. Likewise, IC technology will bring transformative advances in microwave fusion plasma diagnostics. Current microwave imaging diagnostics are compromised by strong environmental noise and the inefficiency of signal mixing and down-conversion. As shown in Fig. 8, features such as significantly improved noise rejection, stability, and circuit protection will enable new measurement capability with absolute calibration, fast swept profile information, and unprecedented performance and survivability in harsh, high-radiation reactor environments.

An important aspect of IC technology is the way in which it transforms a microwave diagnostic. In many state-of-the-art systems, each device-level function is performed by a separate component, each of is purchased at considerable expense from a commercial vendor, already packaged and connectorized. Diagnosticians then typically assemble a functional instrument by simply connecting these packages together with short sections of fundamental waveguide resulting in the common expression of microwave waveguide “plumbing”. In doing so, compromises must be made in order to physically arrange the bulky packaged components, match one component’s gain to another’s input power handling, etc. Since most of the components are designed with a completely different application in mind (e.g. radar or communications), the diagnostician is dependent upon market forces unrelated to fusion such as an ever-changing product catalog and costly vendor warranties. Where the specializations of fusion diagnostic applications are concerned, antennas and quasi-optical local oscillator (LO) coupling schemes have to be devised ad-hoc and integrated, sometimes with great difficulty. A custom IC, on the other hand, is a game-changer; one tiny chip can contain all the essential circuit elements, perfectly optimized for fusion application. A single specialized package can be fabricated around this chip to include an optimized...
antenna, a minimum number of low frequency inputs/outputs, and a completely shielded power supply. Furthermore, the IC itself can be mass-produced, making for a bench-stock of consistent and yet inexpensive replacement circuits that can be swapped out with minimal effort—clearly an advantage in fusion where experimental resources and run-time are at a premium!

2.2 Transformation of ECEI and MIR common receiver architecture

A critical component enabling ECEI and MIR is the heterodyne imaging array that collects and down-converts radiated emission and/or reflected signals (currently 50 to 150 GHz) to an intermediate frequency (IF) band (e.g., 0 to 18 GHz) that can be transmitted by shielded coaxial cable to additional modules for further filtering and detection. New front-end circuitry based on the “system-on-substrate” topology shown in Fig. 9, has been developed for this task [49]. Compared to the current state-of-the-art receiver system, this new design offers both device and system-level advancements. On the device level, the receiver employs commercially available gallium arsenide (GaAs) MMICs, which offer low-noise and high gain performance compared to the current single-ended Schottky diode mixer based systems. On the system level, it employs liquid crystal polymer (LCP) as the integration substrate with excellent electrical and mechanical properties [50, 51, 52, 53, 54].

Fig. 9 A single-channel heterodyne GaAs MMIC based receiver circuit on LCP substrate. Primary components of the circuit are shown.

One striking advantage of this approach is the resulting simplification of the system layout as shown in Fig. 10 -- the reduction of real-estate required for an ECEI or MIR diagnostic. In the case of ECEI on DIII-D, the on-board LO eliminates the need for nearly 40 meters of low-loss, corrugated waveguide and eliminates the vacuum tubes (BWOs) used to generate high-frequency LO power.

Current tokamak imaging systems, like that shown in Fig. 11, consist of Schottky diodes mounted on printed antennas
with dielectric substrate lenses (visible in Fig. 11a). These lenses are mounted inside a conducting box; however, large apertures are necessary to optically couple LO power and the radiation from the plasma. Considerable effort is made to isolate the antennas from stray radiation, including the use of dichroic plates, but this has proven to be of limited utility. With so much system gain, even a tiny amount of stray radiation (such as from a wireless computer network router) can overwhelm the signal. In addition, there are numerous opportunities for leakage, such as the couplings of discrete amplifiers and power supplies (c.f. Fig. 11b). In contrast, the system-on-substrate approach allows the entire receiver to be packaged in a hermetically sealed structure that not only performs better, but is more compact, more reliable, and far simpler to service in the worst case scenario of microchip failure.

Of equal importance is the impact of an improved architecture on system performance and data quality. As noted above, the existing ECEI and MIR receiver systems employ a single-ended diode mixer directly at the antenna for RF signal down conversion. In contrast, the new receiver approach places a low-noise amplifier before a balanced mixer, which significantly improves electromagnetic isolation from out-of-band interference, and leads to 10x improvement in the signal-to-noise ratio compared to the current ECEI receiver. This signal-to-noise ratio can be further increased to 30x if a single GaAs system-on-chip (SoC) receiver is utilized instead of integrating the receiver system-on-substrate with individual MMICs. The noise temperature comparison between the current and new heterodyne architecture is quantified in Fig. 12.
A proof-of-principle design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated > 20 dB conversion gain in V-band (60-75 GHz) in the laboratory. Implementation of the circuit in a multi-channel ECEI waveguide horn array configuration as developed for LHD [31, 32, 33, 34] will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal. However, the availability of individual commercial MMICs covering the frequency range of interest for current tokamaks is limited. Integration and packaging at such high frequencies also introduce additional challenges and losses.

These issues are solved with system-on-chip integration of the heterodyne architecture, where the entire receiver is fabricated on a single chip and each building block is optimized and matched at the frequency of interest. SoC integration delivers the advantages of on-board LO delivery and eliminates packaging losses as well as further reducing noise temperature. This approach is being demonstrated through a DIII-D ECEI system upgrade illustrated in Fig. 13, where commercially-available chip receivers produced by Gotmic AB in Sweden are employed. Although these are limited to the E-band designation (71 - 76 GHz), a strategy has been developed for compensating their performance over a slightly wider range (70 - 80 GHz) so that they will support ELM imaging in the most common ITER 15 MA scenario development discharges on DIII-D. Diagnosing ELM structure in those discharges has been frustrated by high-power bursts of microwave emission near the ELM times—power that saturates the diagnostic and corrupts the image [55, 56]. These and similar bursts have been observed on DIII-D, EAST, ASDEX-Upgrade, and even MAST [57], and are interesting in their own right; they occur at ITER-relevant collisionality and have damaged diagnostic systems in the past (e.g. the ORNL Q-band SOL reflectometer on DIII-D). We believe that much of the power is radiated outside the primary band of the ECEI diagnostic and therefore are confident that ELM imaging will be improved by greater out-of-band rejection through SoC integration.
Fig. 13 RF and LO mixing configuration in the horn waveguide system. Each channel is completely modularized and shielded. The E-band GaAs chip consists of a complete receiver front-end, which occupies an area of only 3 mm x 3 mm.

The upgraded ECEI system will significantly surpass the current state-of-the-art ECEI imaging array. In the package illustrated in Fig. 13, each channel is completely modularized and individually shielded. A horn antenna array with fundamental waveguide transitions provides enormous attenuation for out-of-band interference [32]. In addition, there are only a limited number of low-frequency and DC power connections required. These features are critical for eliminating the mm-wave bursting that has contaminated ELM data in the most interesting and most ITER-relevant low-collisionality regimes, allowing for a wealth of new images to be obtained and facilitating a wide range of pedestal stability studies. It also provides a path forward for high-quality imaging on steady-state tokamaks such as EAST where RF heating systems such as ECCD and LHCD pose an enormous challenge for the current state-of-the-art. Finally, note that reduced noise temperature, combined with the fast-tuning capability that comes with using a low-frequency synthesizer source to generate the LO power, allows the diagnostic to be operated as a calibrated, fast-sweeping profile diagnostic for high-resolution 2D characterization of the absolute electron temperature across the pedestal. In fact, new synthetic diagnostic capabilities discussed briefly in Sec. 4 have been developed with the prospect of this new measurement capability in mind.

2.3 High-power, multi-tone custom CMOS transmitter IC for enhanced DIII-D, EAST, and NSTX-Upgrade MIR diagnostics

The explosive growth of high-speed wireless communications has led to a proliferation of commercially available ICs, although often limited to specific applications (and thus frequencies) that do not cover the range for fusion plasma diagnostics. Therefore, developing customized ICs that are targeted specifically for fusion plasmas is imperative for developing optimized microwave imaging capabilities for comprehensive fusion physics studies.
To this end, we have successfully designed, fabricated, and tested a multi-frequency (8-tone) illumination transmitter IC chip based on the CMOS technology for simultaneously probing the radially dependent cutoff surfaces [58]. This represents a major step in developing customized ICs for fusion plasma diagnostics. It will be integrated in the upgraded DIII-D MIR system. The system architecture of the transmitter chip is illustrated in Fig. 14a), which features four mixers and four power amplifiers for double-sided up-conversion and power boosting at eight separate frequencies. Each output signal is optimized with a narrowband buffer and a power amplifier to maximize the gain and efficiency. The first working prototype of the CMOS multi-frequency transmitter has been fabricated which measures only 1.7 mm x 1.3 mm (see Fig. 14b), and delivers more than 1 mW of power at each of 8 frequencies and is tunable from 62-78 GHz (see Fig. 14c). The new system-on-chip (SoC) CMOS transmitter expands the capabilities of microwave reflectometry as a fusion plasma diagnostic while at the same time making systems dramatically less expensive, more compact, and more reliable. Currently costing less than $50 to fabricate\(^2\), each SoC makes for a hot-swappable sub-system replacing as much as $40,000 worth of discrete components. In the near future, further integration of the 2D microwave imaging reflectometer (MIR) will make for even greater cost savings.

Fig. 14 The V-band 8-tone CMOS transmitter IC. a) System architecture; b) Layout and footprint of the chip (1.66 mm x 1.29 mm); c) Measured result of the 8-tone output power.

\(^1\) For comparison purposes, the current DIII-D four frequency MIR transmitter provides 4.5 mW/frequency

\(^2\) In production mode, rather than R&D mode, this would drop to much less than $1/chip.
3 Electronically and Digitally Controlled Active Focusing and Alignment

3.1 Electronic and digital beamforming

Phased array and synthetic aperture technologies allow the antenna pattern (the field of view, viewing angle, focal length, and gain) to be controlled electronically or by digital processing, making for systems that are fast-tracking and remotely tunable without the need for bulky lenses and meticulous, slow, mechanical alignment. They are often comprised of multiple, identical radiators (shown in Fig. 15), where the far-field array pattern is the product of each element’s field pattern and the array’s spatial factor. Intelligent design of these systems using the latest techniques can provide flexible systems with the low side-lobe levels required for imaging fusion plasmas, and enable the next generation of auto-tracking and feedback-controlled imaging diagnostics.

There are two major categories of phased arrays. One is the analog phased array where the phase shaping and steering are provided with analog phase shifters. Another approach that has advantages is digital beamforming (DBF), where the phase shifting and amplitude scaling are accomplished by mathematical operations in a low-frequency baseband. Compared to the traditional analog beamforming, digital beamforming is more accurate and allows faster control of the phase and amplitude. It also provides the ability to form multiple beams simultaneously.

A field programmable gate array (FPGA), as illustrated in Fig. 16, is used to generate digital control signals for phased array beam shaping and steering. It’s a convenient, mature, and robust approach to achieve digital beamforming, and maintain active control of the optimal focusing with advanced algorithms.

Fig. 15 Phased arrays for beam shaping and steering, and their application in fusion plasma diagnostics.

Fig. 16 Diagram for digital beamforming receiver module employing an FPGA.
For plasma diagnostic systems, actively maintaining optimal focus and alignment is critical to localizing the measurement, achieving adequate signal-to-noise ratio, and selecting the desired fluctuation wavenumber; it is essential for the robust diagnosis of density fluctuations, as shown in Fig. 17. Without proper alignment, scattered radiation interferes at the receiver, mixing both the amplitude and phase of the signal. The spectrum shown in part (a) is poorly resolved, and the raw signal, represented as temporal points plotted in a complex plane, is an indistinct cloud. As the discharge evolves and comes into alignment with the diagnostic, as in part (b), the data cloud begins to form an annulus of time-dependent phase, but uniform amplitude. This is indicative of good coupling to the plasma cutoff surface, and the corresponding fluctuation spectrum becomes a clear representation of the local density fluctuation.

Intelligent control of the alignment in real-time with electronic beam steering can solve problems in obtaining alignment between transmit and receive systems with accurate coupling of the plasma cutoff surfaces with active diagnostic feedback. Furthermore, the enhanced tracking capability will allow robust diagnosis of unknown, changing, even unpredictable conditions. Therefore, phased-array antennas with digital beamforming capabilities are the key to characterizing, understanding, and monitoring scientifically interesting phenomena and important topics, such as tokamak disruptions. The scientific benefit of this development is summarized in Fig. 18.
Fig. 18 The FPGA enabled digital beamforming development facilitates fast, flexible, and reliable tracking of cutoff surfaces and data collection during a single plasma discharge.

3.2 Phased arrays for digitally-controlled electronic beam steering and active tracking

Dynamically maintaining optimal focus and alignment is critical to localizing the measurement, achieving adequate signal-to-noise ratio, and selecting the desired fluctuation wavenumber. However, current reflectometry and radiometry systems are not able to provide such features because the antenna far-field radiation is controlled quasi-optically using dielectric lenses and/or mirrors. On the other hand, electronic phased arrays utilize multiple antennas to transmit/receive signals instead of a single radiator. Therefore, their far-field array pattern can be actively steered rapidly by controlling the phase offset for each constituent antenna through electronic phase shifters.

A digitally-controlled electronic phase shifter board has been designed and tested for employment in an eight-channel transmitter phased array to facilitate dynamic beamforming. The block diagram of the transmitter phased array is shown in Fig. 19, where a photograph of the electronic phase shifter board is also presented. The system is comprised of eight channels, and the phase shifter chip in each channel is digitally controlled to provide desired phase offset from each other. The output signals from the phase shifter board are connected to the RF board, where further up-conversion and beamforming are facilitated. In this design, the signal phase from each channel can be controlled with 1.4 degrees resolution and 360 degrees full scan range.
4 Forward Modeling the Diagnostic Response

4.1 Synthetic diagnostics

Synthetic diagnostics are advanced numerical analysis tools that interpret large datasets, refine and optimize the diagnostic response, and couple directly with plasma simulation codes for forward modeling of diagnostic data. They are useful for validation exercises and the training of advanced prediction/control strategies. A comparison of synthetic diagnostic and experimental approaches for fusion plasma data acquisition is shown in Fig. 20. Synthetic diagnostics are invaluable for interpretation of new data from edge regions of high-performance discharges. Fully self-consistent 2D and 3D models of microwave propagation are equally important for optimizing electronic and digital beamforming antenna arrays. Coupling these synthetic diagnostics with plasma simulation codes will inevitably lead to measurement innovation and important new experimental methods. In the foreseeable future, synthetic diagnostic data may even be integrated with machine learning methods such as deep neural networks for the intelligent automation of diagnostic alignment and plasma control.

Synthetic diagnostics support both the design of new systems and the interpretation of new data. Individual synthetic diagnostic modules simulate the response of a given diagnostic (e.g. FWR2D/3D for modeling reflectometry or ECEI2D [39] for modeling cyclotron radiometry [1]). Other modules process the output of plasma simulation codes (e.g. M3D-C1 [59], XGC0 [2], and GTC [61]) to produce background plasma profiles and time-dependent fluctuations. A synthetic diagnostic platform combines these modules so that one can determine how a given diagnostic system will respond to a given plasma behavior. Within the model, that diagnostic can be modified until the synthetic response properly resolves the crucial aspects of the mode structure or plasma behavior—this is how diagnostic design is aided by a synthetic diagnostic platform. Once the diagnostic is installed and
has provided data, a comparison of real and synthetic data provides the understanding that is required to interpret complex imaging data. Enhancements to the synthetic diagnostic capability therefore lead to enhanced measurement capability. The scientific benefit of synthetic diagnostics is summarized in Fig. 21.

4.2 2D/3D synthetic diagnostic modeling and integration of an open-source platform including equilibrium reconstruction and plasma simulation codes

As shown in Fig. 22, the synthetic diagnostics analysis couples quasi-optical modeling of the antennas and lens system, plasma simulation codes generating linear and nonlinear time-dependent plasma fluctuations, and 2D/3D full-wave modeling of the plasma-wave interaction at the microwave reflection layer. This capability has been used extensively in the design of MIR diagnostics [37, 38]. Furthermore, it has been used to make a comparison between linear, time-dependent M3D-C1 simulations of the edge harmonic oscillation (EHO) on DIII-D and recently collected MIR data [3]. This comparison has confirmed expectations, that the MIR optical design, characterized in detail during first-ever in-vessel measurements, readily distinguishes the poloidal wavenumber of the mode. Measurement of the mode structure helps to validate the physical picture for EHO stability and control, an important aspect of QH-mode development for ELM avoidance.

In addition to FWR2D/3D codes for modeling reflectometry, a new code, ECEI2D, for modeling ECEI data has been developed [1]. This code implements a first-of-kind self-consistent reciprocal model that includes not only the emission, reabsorption, and radiation transport, but also simultaneously models refraction and diffraction of the quasi-optical imaging system. This new capability allows for realistic forward modeling of the diagnostic response under a variety of conditions and will be enormously valuable for interpreting data from the plasma edge, where optical thickness varies rapidly along with the plasma’s refractive index. This code has been incorporated into an open-source Python software package, which includes modules for reading the time-dependent output of plasma simulation codes such as M3D-C1, XGC0, and GTC.
5 Discussion

For initial studies, commercial E-band low-noise GaAs receiver chips, are being employed in the ECEI array upgrade at DIII-D. This will provide valuable data for ITER 15 MA scenario development discharges with toroidal field on axis in the vicinity of 1.7 T. Further IC advancements can similarly benefit other areas, such as QH-mode development for naturally ELM-free operation and advanced tokamak (AT) scenarios, including high poloidal plasma beta, for steady-state operation. However, far greater flexibility is necessary in order to cover all these various operating conditions at DIII-D as well as other major tokamaks, such as W-, F-, and D-band for ECEI (75-110, 90-140 and 110-170 GHz) and V- and W-band for MIR (50-75 and 75-110 GHz). Therefore, designing custom MMICs that are free of the constraints from commercial vendor supplies is the key to enable precise coverage of relevant frequencies for fusion plasmas. Fortunately, in a number of semiconductor foundries, custom IC production can reach beyond 150 GHz (and trending even higher!), and thus may become a driving force in the advancement of fusion plasma diagnostics.

In terms of available IC technologies, CMOS is well suited for implementation at frequencies below W-band, because it can support a high level of integration and thus many functionalities. This makes CMOS perfect for MIR applications, including the design of high-power multi-tone transmitters and multi-channel receivers. For higher frequencies from W-band up to 200 GHz (e.g. F-and D-Band as required by higher field devices such as EAST), III-V semiconductor processes (such as InP) provide superior performance in terms of significantly lower noise temperature, higher dynamic range, and higher conversion gain. It has been demonstrated that an InP low noise amplifier (LNA) can achieve a noise temperature of around 400 K at 90 GHz to 600 K at 600 GHz [62, 63]. For these reasons, we believe InP technology to be essential for the future of ECE-Imaging.

We envision single chip receivers for ECEI and integrated transceivers for MIR, extending from 50 GHz to 200 GHz and beyond. Highly integrated and unparalleled signal processing capabilities of IC technologies leads to greatly reduced size, power consumption, and cost of reflectometer and radiometer systems, while improving their performance and flexibility. Our roadmap for incorporating state-of-the-art IC transceivers for fusion plasma diagnostics is illustrated in Fig. 23.
DBF eliminates the need for mechanical alignment of the motor-controlled optical lenses in the current ECEI and MIR systems, which provide focusing for particular plasma conditions essentially only once per discharge. In contrast, microwave diagnostic systems, enabled by the fast processing speed of FPGA and feedback-controlled algorithms, will be capable of automatic alignment with high accuracy between shots or even during a particular discharge to track phenomena of interest.

Currently, FPGA controlled DBFs are being developed for both transmitter and receiver phased arrays. Fig. 24a) illustrates the overall transmitter architecture, which is comprised of a PC, a FPGA chip, and 16 up-conversion channels. First, a programmable FPGA provides the digital signal with controlled amplitude and phase. Then, a digital-to-analog converter (DAC) changes the signal from the digital to the analog domain. Second, the transmitter MMICs up-convert the signals and transmit them through the antenna array. In this way, multi-frequency phased arrays are realized. The complimentary receiver architecture shown in Fig. 24b) features the same antennas, followed by the receiver MMICs. A second down-conversion stage selects individual cutoff layers within the plasma. Ultimately, custom ICs are incorporated to achieve low-noise temperature, efficient signal processing, and out-of-band interference rejection. Synthetic diagnostic modeling will also provide data for developing the feedback control algorithm for the FPGA.
6 Acknowledgements

This work is supported by US DoE grants DE-AC02-09CH11466 and DE-FG02-99ER54531. This paper has described our fusion plasma imaging technology developments. Here, we wish to acknowledge A. J. H. Donné, H. K. Park, I. G. J. Classen, T. Munsat, E. Mazzucato, and G. S. Yun, with whom we collaborated with physics measurements using these instruments.

References

[1] B. J. Tobias, M. E. Austin, J. E. Boom, K. H. Burrell, I. G. J. Classen, C. W. Domier, N. C. Luhmann Jr., R. Nazikian and P. B. Snyder, "ECE-imaging of the H-mode pedestal," Rev. Sci. Instrum., vol. 83, no. 10E329, 2012.
[2] B. Tobias, C. W. Domier, T. Liang, X. Kong, L. Yu, G. S. Yun, H. K. Park, I. G. J. Classen, J. E. Boom, A. J. H. Donné, T. Munsat, R. Nazikian, M. Van Zeelang, R. L. Boivin and N. C. Luhmann Jr., "Commissioning of electron cyclotron emission imaging instrument on the DIII-D tokamak and first data," Rev. Sci. Instrum., vol. 81, no. 10D928, 2010.
[3] B. Tobias, X. Kong, T. Liang, A. Spear, C. W. Domier, N. C. Luhmann, I. G. J. Classen, J. E. Boom, M. J. van de Pol, R. Jaspers, A. J. H. Donné, H. K. Park and T. Munsat, "Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade," Rev. Sci. Instrum., vol. 80, no. 093502, 2009.
[4] I. G. J. Classen, C. W. Domier, N. C. Luhmann Jr., A. A. Bogomolov, W. Suttrop, J. E. Boom, B. J. Tobias, A. J. H. Donné and ASDEX Upgrade Team, "Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade," Rev. Sci. Instrum., vol. 85, no. 11D833, 2014.
[5] L. Yu, C. W. Domier, X. Kong, S. Che, B. Tobias, H. Park, C. X. Yu and N. C. Luhmann Jr., "Recent advances in ECE imaging performance," Journal of Instrumentation, vol. 7, 2012.
[6] T. Munsat, H. K. Park, I. G. J. Classen, C. W. Domier, A. J. H. Donné, N. C. Luhmann Jr., E. Mazzucato, M. J. van de Pol and the TEXTOR Team, "Localization of the magnetic reconnection zone during sawtooth crashes in tokamak plasmas," Nucl. Fusion, vol. 47, no. 11, p. L31–L35, 2007.

[7] B. Tobias, G. Kramer, E. J. Valeo, C. M. Muscatello, X. Ren, M. Chen, A. G. Spear, A. V. Pham, T. Phan, M. A. Mamidanna, J. Lai, M. Li, D. Fu, F. Hu, C. Domier, N. Luhmann, Jr., Z. Zemedkun, T. Munsat and Y. Zhu, "Microwave Imaging Reflectometry On Diii-D," in 1st EPS conference on Plasma Diagnostics, Frascati, Italy, 2015.

[8] B. Tobias, N. C. Luhmann Jr., C. W. Domier, X. Kong, T. Liang, S. Che, R. Nazikian, L. Chen, G. Yun, W. Lee, H. K. Park, G. J. Classen, J. E. Boom, A. J. H. Donné, M. A. V. Zeeland, R. Boivin, Y. Nagayama, T. Yoshinaga, D. Kuwahara, S. Yamaguchi, Y. Kogi, A. Mase and T. L. Munsat, "Recent Progress on Microwave Imaging Technology and New Physics Results," Plasma Fusion Res., vol. 6, no. 2106042, 2011.

[9] B. Tobias, A. J. H. Donné, H. K. Park, J. E. Boom, M. J. Choi, G. J. Classen, C. W. Domier, X. Kong, W. Lee, T. Liang, N. C. Luhmann Jr., T. Munsat, L. Yu and G. S. Yun, "Imaging Techniques for Microwave Diagnostics," Contributions to plasma physics, vol. 51, no. 2-3, 2011.

[10] C. M. Muscatello, C. W. Domier, X. Hu, G. J. Kramer, N. C. Luhmann Jr., X. Ren, P. Riemenschneider, A. Spear, B. J. Tobias, E. Valeo and L. Yu, "Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak," Rev. Sci. Instrum., vol. 85, no. 11D702, 2014.

[11] C. M. Muscatello, C. W. Domier, X. Hu, N. C. Luhmann, Jr., X. Ren, P. Riemenschneider, A. Spear, L. Yu and B. Tobias, "Multidimensional Visualization of MHD and Turbulence in Fusion Plasmas," IEEE Transactions on Plasma Science, vol. 42, no. 10, 2014.

[12] R. P. Hsia, W. R. Geck, S. Cheng, W.-M. Zhang, C. W. Domier and N. C. Luhmann Jr., "ECE imaging array diagnostic development of TEXT-U," Rev. Sci. Instrum., vol. 66, no. 834, 1995.

[13] G. Cima, B. Deng, C. W. Domier, W. R. Geck, R. P. Hsia, C. Liang, F. Jiang, N. C. Luhmann Jr and D. Brower, "ECE imaging on TEXT-U," Fusion Engineering and Design, Vols. 34-35, 1997.

[14] B. H. Deng, D. L. Brower, G. Cima, C. W. Domier, N. C. Luhmann Jr. and C. Watts, "Mode structure of turbulent electron temperature fluctuations in the Texas Experimental Tokamak Upgrade," Phys. Plasmas, vol. 5, no. 12, 1998.

[15] G. Cima, K. W. Gentle, A. Wootton, D. L. Brower, L. Zeng, B. H. Deng, C. W. Domier and N. C. Luhmann Jr., "Electron heat diffusivity in the sawtoothing tokamak core," Plasma Physics and Controlled Fusion, vol. 40, no. 6, 1998.

[16] B. H. Deng, R. P. Hsia, C. W. Domier, S. R. Burns, T. R. Hillyer, N. C. Luhmann Jr., T. Oyevaar, A. J. H. Donné and RTP team, "Electron cyclotron emission imaging diagnostic system for Rijnhuizen Tokamak Project," Rev. Sci. Instrum., vol. 70, no. 1, 1999.

[17] B. H. Deng, C. W. Domier, N. C. Luhmann Jr., D. L. Brower, G. Cima, A. J. H. Donné, T. Oyevaar and M. J. van de Pol, "ECE imaging of electron temperature and electron temperature fluctuations (invited)," Rev. Sci. Instrum., vol. 72, no. 1, 2001.

[18] T. Munsat, E. Mazzucato, H. Park, B. H. Deng, C. W. Domier, N. C. Luhmann Jr., J. Wang, Z. G. Xia, A. J. H. Donné and M. van de Pol, "Microwave imaging reflectometer for TEXTOR (invited)," Rev. Sci. Instrum., vol. 74, no. 3, 2003.
[19] H. Park, C. C. Chang, B. H. Deng, C. W. Domier, A. J. H. Donné, K. Kawahata, C. Liang, X. P. Liang, H. J. Lu, N. C. Luhmann Jr., A. Mase, H. Matsuura, E. Mazzucato, A. Miura, K. Mizuno, T. Munsat, Y. Nagayama, M. J. van de Pol, J. Wang, Z. G. Xia and W.-K. Zhang, "Recent advancements in microwave imaging plasma diagnostics," Rev. Sci. Instrum., vol. 74, no. 10, 2003.

[20] H. Park, E. Mazzucato, T. Munsat, C. W. Domier, M. Johnson, N. C. Luhmann Jr., J. Wang, Z. Xia, I. G. J. Classen, A. J. H. Donné and M. J. van de Pol, "Simultaneous microwave imaging system for density and temperature fluctuation measurements on TEXTOR (invited)," Rev. Sci. Instrum., vol. 75, no. 10, 2004.

[21] I. G. J. Classen, J. E. Boom, W. Suttrop, E. Schmid, B. Tobias, C. W. Domier, N. C. Luhmann Jr., A. J. H. Donné, R. J. E. Jaspers, P. C. de Vries, H. K. Park, T. Munsat, M. García-Munoz and P. A. Schneider, "2D electron cyclotron emission imaging at ASDEX Upgrade (invited)," Rev. Sci. Instrum., vol. 81, no. 6, 2010.

[22] T. Liang, B. Tobias, X. Kong, C. W. Domier, N. C. Luhmann Jr, W. Lee, G. S. Yun and H. K. Park, "Innovations in optical coupling of the KSTAR electron cyclotron emission imaging diagnostic," Rev. Sci. Instrum., vol. 81, no. 10, 2010.

[23] G. S. Yun, W. Lee, M. J. Choi, J. B. Kim, H. K. Park, C. W. Domier, B. Tobias, T. Liang, X. Kong, N. C. Luhmann Jr. and A. J. Donné, "Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations," Rev Sci Instrum., vol. 81, no. 10, 2010.

[24] B. J. Tobias, G. J. Classen, C. W. Domier, W. W. Heidbrink, N. C. Luhmann Jr., R. Naikian, H. K. Park, D. A. Spong and M. A. Van Zeeland, "Fast Ion Induced Shearing of 2D Alfvén Eigenmodes Measured by Electron Cyclotron Emission Imaging," Phy. Rev. Lett., vol. 106, no. 075003, 2011.

[25] G. S. Yun, W. Lee, M. J. Choi, J. Lee, H. K. Park, B. Tobias, C. W. Domier, N. C. Luhmann Jr., A. J. H. Donné, J. H. Lee and the KSTAR Team, "Two-Dimensional Visualization of Growth and Burst of the Edge-Localized Filaments in KSTAR H-Mode Plasmas," Phy. Rev. Lett., vol. 107, no. 045004, 2011.

[26] E. Mazzucato, "Microwave imaging reflectometry for the visualization of turbulence in tokamaks," Nuclear Fusion, vol. 41, no. 2, 2001.

[27] E. Mazzucato, T. Munsat, H. Park, B. H. Deng, C. W. Domier, N. C. Luhmann Jr., A. J. H. Donné and M. J. van de Pol, "Fluctuation measurements in tokamaks with microwave imaging reflectometry," Phys. Plasmas, vol. 9, no. 5, 2002.

[28] R. Nazikian and E. Mazzucato, "Reflectometer measurements of density fluctuations in tokamak plasmas (invited)," Rev. Sci. Instrum., vol. 66, no. 1, 1995.

[29] X. Ren, M. Chen, X. Chen, C. W. Domier, N. M. Ferraro, G. J. Kramer, N. C. Luhmann Jr., C. M. Muscatello, R. Nazikian and L. Shi, "Microwave Imaging Reflectometry for the study of Edge Harmonic Oscillations on DIII-D," in Journal of Instruments: 1st EPS Conference on plasma diagnostics (1st ECPD), Rome, Italy, 2015.

[30] N. C. Luhmann Jr., H. Bindsley, H. Park, J. Sanchez, G. Taylor and C. X. Yu, "Chapter 3 Microwave Diagnostics," Special Issue of Fusion Science and Technology on MFE Diagnostics, vol. 53, no. 2, 2008.

[31] D. Kuwahara, S. Tseji-Ilo, Y. Nagayama, T. Yoshinaga, M. Sugito, Z. Shi, S. Yamaguchi, Y. Kogi and A. Mase, "Development of 2-D Antenna Array for Microwave," J. Plasma Fusion Res. SERIES, vol. 8, 2009.
[32] D. Kuwahara, S. Tsuji-Ilo, Y. Nagayama, T. Yoshinaga, Z. Shi, S. Yamaguchi, M. Sugito, Y. Kogi and A. Mase, "Upgrade of 2-D Antenna Array for Microwave Imaging Reflectometry and ECE Imaging," J. Plasma Fusion Res. SERIES, vol. 9, 2010.

[33] D. Kuwahara, N. Ito, Y. Nagayama, T. Yoshinaga, S. Yamaguchi, M. Yoshikawa, J. Kohagura, S. Sugito, Y. Kogi and A. Mase, "Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics," Review of Scientific Instruments, vol. 85, no. 11D805, 2014.

[34] D. Kuwahara, N. Ito, Y. Nagayama, H. Tsuchiya, M. Yoshikawa, J. Kohagura, T. Yoshinaga, S. Yamaguchi, Y. Kogi and A. Mase, "Development of local oscillator integrated antenna array for microwave imaging diagnostics," Journal of Instrumentation, 17th International Symposium on Laser-Aided Plasma Diagnostics (LAPD17), vol. 10, 2015.

[35] X. Ren, C. W. Domier, G. Kramer, N. C. Luhmann Jr., C. M. Muscatello, L. Shi, B. J. Tobias and E. Valeo, "Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D," Rev. Sci. Instrum., vol. 85, no. 11D863, 2014.

[36] L. Shi, E. J. Valeo, B. J. Tobias, G. J. Kramer, L. Hausammann, W. M. Tang and M. Chen, "Synthetic diagnostics platform for fusion plasmas," Rev. Sci. Instrum., vol. 87, no. 11D303, 2016.

[37] X. Ren, B. J. Tobias, S. Che, C. W. Domier, N. C. Luhmann Jr., C. M. Muscatello, G. Kramer and E. Valeo, "Evaluation of the operating space for density fluctuation measurements employing 2D imaging reflectometry," Rev. Sci. Instrum., vol. 83, no. 10E338, 2012.

[38] L. Lei, B. Tobias, C. W. Domier, N. C. Luhmann Jr., G. J. Kramer, E. J. Valeo, W. Lee, G. S. Yun and H. K. Park, "A synthetic diagnostic for the evaluation of new microwave imaging reflectometry diagnostics for DIII-D and KSTAR," Rev. Sci. Instrum., vol. 81, no. 10D904, 2010.

[39] E. J. Valeo, G. J. Kramer and R. Nazikian, "Two-dimensional simulations of correlation reflectometry in fusion plasmas," Plasma Phys. Control. Fusion, vol. 44, no. L1-L10, 2002.

[40] B. LaBombard, E. Marmar, J. Irby, J. L. Terry, R. Vieira, G. Wallace, D. G. Whyte, S. Wolfe, S. Wukitch and S. Baek, "ADX: a high field, high power density, advanced divertor and RF tokamak," Nuclear Fusion, vol. 55, no. 5, 2015.

[41] C. E. Kessel, F. Koechl and S. H. Kim, "Examination of the entry to burn and burn control for the ITER 15 MA baseline and hybrid scenarios," Nuclear Fusion, vol. 55, no. 6, 2015.

[42] T. Casper, Y. Gribov, A. Kavin, V. Lukash, R. Khayrutdinov, H. Fujieda and KesselC, "Development of the ITER baseline inductive scenario," Nuclear Fusion, vol. 54, no. 1, 2013.

[43] K. H. Burrell, M. E. Austin, D. P. Brennan, J. C. DeBoo, E. J. Doyle, C. Fenzi, C. Fuchs, P. Gohil, C. M. Greenfield, R. J. Groebner, L. L. Lao, T. C. Luce, M. A. Makowski, G. R. McKee, R. A. Moyer, C. C. Petty, M. Porkolab, C. L. Rettig, T. L. Rhodes, J. C. Rost, B. W. Stallard, E. J. Strait, E. J. Synakowski, M. R. Wade, J. G. Watkins and W. P. West, "Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak," Phys. Plasmas, vol. 8, no. 2153, 2001.

[44] A. M. Garofalo, W. M. Solomon, J. K. Park, K. H. Burrell, J. C. DeBoo, M. J. Lanctot, G. R. McKee, H. Reimerdes, L. Schmitz and M. J. Schaffer, "Advances towards QH-mode viability for ELM-stable operation in ITER," Nuclear Fusion, vol. 51, no. 8, 2011.

[45] X. Chen, K. H. Burrell, N. M. Ferraro, T. H. Osborne, M. E. Austin, A. M. Garofalo, R. J. Groebner, G. J. Kramer, N. C. Luhmann Jr. and G. R. McKee, "Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges," Nuclear Fusion, vol. 56, no. 7, 2016.
[46] J. C. Scheytt, Y. Sun, S. Beer, T. Zwich and M. Kaynak, "Mm-Wave System-On-Chip & System-in-Package Design," in 12th International Symposium on RF MEMS and RF Microsystems, Athens, Greece, 2011.

[47] R. Feger and A. Stelzer, "Millimeter-wave radar systems on-chip and in package: Current status and future challenges," in IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), San Diego, CA, 2015.

[48] J. C. Scheytt, Y. Sun, K. Schmatz, Y. Mao, R. Wang, W. Debski and W. Winkler, "Towards mm-wave System-On-Chip with integrated antennas for low-cost 122 and 245 GHz radar sensors," in IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, 2013.

[49] B. Tobias, C. W. Domier, N. C. Luhmann Jr., C. Luo, M. Mamidanna, T. Phan, A. -V. Pham and Y. Wang, "Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry," in Rev. Sci. Instrum. Proceedings of the 21st Topical Conference on High-Temperature Plasma Diagnostics, Madison, WI, 2016.

[50] J. C. Chieh, A.-V. Pham, A. Pidwerbestky and G. Kannell, "A Low Cost 8 x 8 W-Band Substrate Integrated Waveguide Antenna Array Detector on LCP," Microwave and Optical Technology Letters, vol. 55, no. 8, 2013.

[51] M. J. Chen, A. Pham, N. A. Evers, C. Kapusta, J. Iannotti, W. Kornrumpf, J. Maciel and N. Karabudak, "Design and Development of a package using LCP for RF/Microwave MEMS switches," IEEE Transaction on Microwave Theory and Techniques, vol. 54, no. 11, 2006.

[52] M. Chen, N. Evers, C. Kapusta, J. Iannotti, W. Kornrumpf, A. Pham, J. Maciel and N. Karabuda, "Reliability of a hermetic LCP package for RF MEMS switches," in Proceedings of GOMAC, Orlando, FL, 2007.

[53] M. P. McGrath, K. Aihara, A. Pham and S. Nelson, "Development of LCP surface mount package with a bandpass feedthrough at K-band," in IEEE International Microwave Symposium, Boston, MA, 2008.

[54] A.-V. Pham, M. J. Chen and K. Aihara, LCP for Microwave Packages and Modules, Cambridge, UK: Cambridge University Press, 2012.

[55] C. Fuchs and M. E. Austin, "Measurements of edge-localized-mode induced electron cyclotron emission bursts in DIII-D," Phys. Plasmas, vol. 8, no. 5, 2001.

[56] B. J. Tobias, M. E. Austin, J. E. Boom, I. G. J. Classen, C. W. Domier, N. C. Luhmann Jr., R. Nazikian and L. Yu, "Intense millimeter wave radiation from the h-mode pedestal in DIII-D at ITER relevant collisionality," in 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics, Stockholm, 2012.

[57] S. Freethy, V. Shevchenko, B. Huang and R. Vann, "Localised Microwave Bursts During ELMs on MAST," EPJ Web of Conferences, vol. 87, no. 03008, 2015.

[58] Y. T. Chang, Y. Ye, G. J. Gu, C. W. Domier and N. C. Luhmann Jr., "The V-band CMOS multi-frequency transmitter for plasma imaging radar reflectometric diagnostics," in IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016.

[59] N. M. Ferraro, S. C. Jardin and P. B. Snyder, "Ideal and resistive edge stability calculations with M3D-C," Phys. Plasmas, vol. 17, no. 102508, 2010.

[60] S. Ku, H. Baek and C. S. Chang, "Property of an XX-point generated velocity-space hole in a diverted tokamak plasma edge," Phys. Plasmas, vol. 11, no. 5626, 2004.
[61] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. B. White, "Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations," *Science*, vol. 281, no. 1835, 1998.

[62] G. Chattopadhyay, T. Reck, E. Schlecht, W. Deal and I. Mehdi, "Cryogenic amplifier based sideband separating receivers," in *2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)*, Hong Kong, 2015.

[63] A. Tang, T. Reck, R. Shu, L. Samoska, Y. Kim, Y. Ye, Q. Gu, B. J. Drouin, J. Truettel, R. Al Hadi, Y. Xu, S. Sarkozy, R. Lai, M.-C. F. Chang and I. Mehdi, "A W-Band 65nm CMOS/InP-hybrid radiometer & passive imager," in *IEEE MTT-S International Microwave Symposium (IMS)*, San Francisco, CA, 2016.