Achalasia is a rare primary esophageal motility disorder that occurs with equal distribution irrespective of gender and race, but with increasing incidence with age and variable prevalence in different countries. Although etiology is still elusive, achalasia pathophysiology, diagnosis and treatment is relatively well understood. Achalasia is predominantly an idiopathic disease secondary to a selective loss of inhibitory neurons of the myenteric plexus, most likely due to an autoimmune phenomenon in response to unknown antigens. Similar clinical presentation, however, can occur in patients with pseudoachalasia (5% of patients with suspected achalasia) due to malignant obstruction or operations at the esophagogastric junction. Achalasia can also be secondary to a tropical disease called Chagas’ disease, characterized by degeneration of the myenteric plexus due to Trypanosoma infection.

The diagnosis of achalasia is suggested by clinical features and confirmed by further diagnostic tests, such as esophagastroduodenoscopy, barium swallow and manometry. These exams are not only used to establish the diagnosis but are also helpful to grade the disease by severity or clinical subtype. Recent advances in diagnostic methods, including high resolution manometry, even help predicting outcome or selected more appropriate procedures to treat the disease.

Conclusion: A detailed and systematic study of achalasia patients allows not only a correct diagnosis but also contributes to therapeutic decision making and prognosis.
This study aimed to review the current evaluation of esophageal achalasia and its correct comprehension.

METHOD

The literature review was based on papers published on Medline/Pubmed, SciELO and Lilacs, crossing the following headings: Esophageal achalasia; Deglutition disorders; Endoscopy; Digestive system; Manometry.

RESULTS

Clinical presentation

Dysphagia and regurgitation are the most common symptoms. Dysphagia may initially be noticed for solids only, but as many as 70-97% of patients with achalasia have dysphagia for both liquids and solids at presentation. The regurgitation of undigested, retained food occurs in about 75% of these patients.

Other symptoms include chest pain that is experienced by nearly 40% of patients with it, which must be differentiated from angina pectoris of cardiological origin. About 60% of achalasia patients may have some degree of weight loss at presentation due to poor esophageal emptying and decreased or modified food intake.

The most common extraesophageal manifestations are pulmonary complications. Structural or functional pulmonary abnormalities occur in more than half of patients, and might be due to recurrent aspiration or tracheal compression from a dilated esophagus. Chagas’ disease may affect other target organs such as the colon and the heart.

There are different scores to quantify the severity and frequency of symptoms. The Eckardt symptom score is the grading system most frequently used for the evaluation of symptoms, stages and efficacy of achalasia treatment. It attributes points (0 to 3 points) for four symptoms of the disease (dysphagia, regurgitation, chest pain and weight loss), ranging from 0 to 12. Scores of 0-1 corresponds to clinical stage 0, 2-3 to stage I, 4-6 to stage II, and a score >6 to stage III (Table 1).

TABLE 1 - Eckardt score for symptomatic evaluation in achalasia

Score	Weight loss (kg)	Dysphagia	Retrosternal Pain	Regurgitation
0	None	None	None	None
1	< 5	Occasional	Occasional	Occasional
2	5-10	Daily	Daily	Daily
3	> 10	Each meal	Each meal	Each meal

Symptoms only, however, do not reliably diagnose the disease since there is an overlap of symptoms with other esophageal diseases, particularly gastroesophageal reflux disease. Furthermore, symptoms presence or severity does not correlate with manometric findings, degree of esophageal dilatation or prognosis. A complete workup is necessary in these patients, not only for the diagnosis but for prognosis and to establish the proper therapeutic approach.

Upper digestive endoscopy

Endoscopy may suggest the diagnosis of achalasia, but has low accuracy. The esophageal body may appear dilated, atonic, and often tortuous at endoscopy in more advanced degrees of achalasia. Some resistance to trespass the cardia may be noticed. Esophageal mucosa may be normal but esophagitis with friability, thickening, and even erosions may be noticed secondary mainly to chronic stasis.

Upper endoscopy must be performed in all patients with dysphagia and suspected achalasia. The main reason is to rule out esophageal cancer, or the development of pre-malignant or malignant lesions secondary to chronic stasis. Pseudoachalasia results from tumors at the esophagogastric junction and mimic classic achalasia, although clinical differences, such as older patients, greater weight loss and shorter duration of symptoms are seen. These tumors may be missed endoscopically in up to 60% of patients with pseudoachalasia due to a submucosal presentation. Endoscopic ultrasonography and CT scan may prove useful in patients with non-diagnostic endoscopy, and high degree of clinical suspicion for pseudoachalasia, but it are not recommended as a routine tests in achalasia.

Achalasia is an important risk factor for esophageal cancer with an incidence of up to 9% of cancer developing in achalasia series or 10-50 times higher than the general population.

Barium swallow

It is important to define the morphology of the esophagus (diameter and axis) and associated conditions, such as epiphrenic diverticula or cancer. Classical findings are the distal esophagus tapering in a “bird’s beak” configuration with proximal dilation of the organ, sometimes with an air-fluid level, and absence of intra-gastric air. In more advanced cases, severe dilatation with stasis of food and a sigmoid-like appearance can occur. Dilation of the esophagus may be absent, and the organ may appear normal, especially during the early stages of the disease.

A classification for the degree of esophageal dilatation is in use by Latin American surgeons due to the frequent finding of dilatation in Chagas’ disease (Table 2).

TABLE 2 - Classification for esophageal dilatation based on barium esophagogram according to Rezende

Maximum esophageal diameter (cm)	Grade
<4	I
4-7	II
7-10	III
>10	IV

Timed barium swallow can be performed to assess emptying of the esophagus, by measuring the height of the barium column 5 min after ingestion of diluted barium.

Image
Manometry

Esophageal manometry defines the diagnosis of the disease with a very high level of certainty, even in the very early stages of the disease. The manometric picture of achalasia is characterized by failure of the lower esophageal sphincter (LES) to relax during swallowing and aperistalsis.

Conventional manometry has some technical limitations that allow the measurement of LES relaxation based on the nadir pressure during swallow. In this setting, about 70-80% have absent or incomplete LES relaxation with wet swallows, while the remainder will have a nadir pressure within normal limits but with short duration relaxation (<6 s). Aperistalsis is usually noticed as simultaneous mirrored contractions with complete loss of propagation of the contractions (Figure 2). In advanced cases, pressurization of the esophagus from incomplete evacuation of air and retained food may be seen. Hypertonic LES was considered one of the criteria for the diagnosis although this is found in only half of patients with achalasia. A subset of patients presented with high amplitude simultaneous waves, defined as vigorous achalasia.

![Manometry Image]

TABLE 3 - Manometric Chicago Classification for achalasia

Type	Lower esophageal sphincter	Esophageal body
I	Incomplete relaxation	Aperistalsis and absence of esophageal pressurization
II	Incomplete relaxation	Aperistalsis and panesophageal pressurization in at least 20% of swallows
III	Incomplete relaxation	Premature (spastic) contractions with distal contractility integral (DCI) >450 mmHg·s·cm with ≥20% of swallows

![Manometric Classification Image]

FIGURE 2 - Conventional manometry in a case of achalasia

The introduction of high resolution manometry has improved the ability to diagnose achalasia and identify newer variants. More detailed parameters were created based on technological improvements. LES relaxation is measured more precisely by the Integrated Relaxation Pressure that corresponds to the mean pressure of 4 s of greatest post-deglutitive relaxation in a 10 s gap, triggered at the beginning of a swallow. Esophageal body analysis allowed to categorize achalasia into three groups (or variants), a classification known as the Chicago Criteria, now in its 3.0 version (Table 3). These groups are characterized by pressurization of the esophageal body or not, and the presence of spastic contractions (Figure 3).

REFERENCES

1. Boeckxstaens GE, Zaninotto G, Richter JE. Achalasia. Lancet. 2014 Jan 4;383(9911):83-93.
2. Chaber-Copinska A, Kripian D, Kawecki A, Kaminski MF. Surveillance of patients at high-risk of squamous cell esophageal cancer. Best Pract Res Clin Gastroenterol. 2016 Dec;30(6):893-900. doi: 10.1016/j. bpg.2016.10.003. Epub 2016 Oct 21.
3. de Oliveira JM, Birgisson S, Doinoff C, et al. Timed barium swallow: a simple technique for evaluating esophageal emptying in patients with achalasia. AJR Am J Roentgenol. 1997 Aug;169(2):473-9.
4. Eckardt AJ, Eckardt VF. Current clinical approach to achalasia. World J Gastroenterol. 2009 Aug 28;15(32):3969-75.
5. Gockel I, Junginger T. The value of scoring achalasia: a comparison of current systems and the impact on treatment—the surgeon’s viewpoint. Am Surg. 2007 Apr;73(4):327-31.
6. Herbelin FA, Aquino JL, Stefani-Nakanjo S, Artifon EL, Sakai P, Crema E, Andreollo NA, Lopes LR, de Castro Pochini C, Corsi PR, Gagliardi D, Del Grande JC. Treatment of achalasia: lessons learned with Chagas’ disease. Dis Esophagus. 2008;21(5):461-7.
7. Eckardt AJ, Eckardt VF. Current clinical approach to achalasia. World J Gastroenterol. 2009 Aug 28;15(32):3969-75.
8. Gockel I, Junginger T. The value of scoring achalasia: a comparison of current systems and the impact on treatment—the surgeon’s viewpoint. Am Surg. 2007 Apr;73(4):327-31.
9. Herbelin FA, Moura EG, Patti MG. Achalasia 2016: Treatment Alternatives. J Laparoendosc Adv Surg Tech A. 2017 Jan;27(1):6-11.
10. Herbelin FA, Oliveira DR, Del Grande JC. Are idiopathic and Chagasic achalasia two different diseases? Dig Dis Sci. 2004 Mar;49(3):533-60.
11. Kahrihas PI, Bredenoord AJ, Fox M, et al. International High Resolution Manometry Working Group. The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil. 2015 Feb;27(2):E10-74.
12. Kahrihas PI, Pandolfini E. Treatments for achalasia in 2017: how to choose among them. Curr Opin Gastroenterol. 2017 Apr 19. [Epub ahead of print]

CONCLUSION

Patients with suspected achalasia must be evaluated with a complete work-up. Symptoms are not sufficient to distinguish achalasia from other esophageal disease. Furthermore, a detailed and systematic study of these patients allows not only a fast and correct diagnosis but also contributes to therapeutic decision making and prognosis.
11. Kumbhari V, Tieu AH, Onimaru M, et al. Peroral endoscopic myotomy (POEM) vs laparoscopic Heller myotomy (LHM) for the treatment of Type III achalasia in 75 patients: a multicenter comparative study. Endosc Int Open. 2015 Jun;3(3):E195-201.

12. Lafraia FM, Herbellia FAM, Calluf JR, Patti MG. A pictorial presentation of esophageal high resolution manometry current parameters. Arq Bras Cir Dig. 2017 Jan-Mar;30(1):69-71.

13. Lin Z, Kahrilas PJ, Roman S, et al. Refining the criterion for an abnormal Integrated Relaxation Pressure in esophageal pressure topography based on the pattern of esophageal contractility using a classification and regression tree model. Neurogastroenterol Motil. 2012 Aug;24(8):e356-63.

14. Moonen A, Boeckxstaens G. Current diagnosis and management of achalasia. J Clin Gastroenterol. 2014 Jul;48(6):484-90.

15. Niebisch S, Hadziyusufi E, Mehdom M, et al. Achalasia - an unnecessary long way to diagnosis. Dis Esophagus. 2017 May 1;30(5):1-6.

16. Ou YH, Nie XM, Li LF, Wei ZJ, Jiang B. High-resolution manometric subtypes as a predictive factor for the treatment of achalasia: A meta-analysis and systematic review. J Dig Dis. 2016 Apr;17(4):222-35.

17. Pandolfino JE, Kwiatek MA, Nealis T, et al. Achalasia: a new clinically relevant classification by high-resolution manometry. Gastroenterology. 2008 Nov;135(5):1526-33.

18. Patti MG, Herbellia FA. Achalasia and other esophageal motility disorders. J Gastroint Surg. 2011 May;15(5):703-7. doi: 10.1007/s11605-011-1478-x. Epub 2011 Mar 11.

19. Ponds FA, van Raath MI, Mohamed SMM, Smout AJP, Bredenoord AJ. Diagnostic features of malignancy-associated pseudoachalasia. Aliment Pharmacol Ther. 2017 Jun;45(11):1449-1458. doi: 10.1111/apt.14057. Epub 2017 Apr 6.

20. Ravi K, Sweetser S, Katzka DA. Pseudoachalasia secondary to bariatric surgery. Dis Esophagus. 2016 Nov;29(8):992-995.

21. Rezende JM. Classificação radiológica do megaesôfago. Rev Goiana Med. 1982;28:187-91.

22. Richter JE. Achalasia - an update. J Neurogastroenterol Motil. 2010 Jul;16(3):232-42.

23. Rohof WO, Salvador R, Annese V, et al. Outcomes of treatment for achalasia depend on manometric subtype. Gastroenterology. 2013 Apr;144(4):718-25; quiz e13-4.

24. Roman S, Gyawali CP, Xiao Y, Pandolfino JE, Kahrilas PJ. The Chicago Classification of motility disorders, an update. Gastrointest Endosc Clin N Am. 2014 Oct;24(4):545-61.

25. Torresan F, Ioannou A, Azzaroli F, Bazzoli F. Treatment of achalasia in the era of high-resolution manometry. Ann Gastroenterol. 2015 Jul-Sep;28(3):301-308.

26. Tracey JP, Traube M. Difficulties in the diagnosis of pseudoachalasia. Am J Gastroenterol 1994;89:2014-8.

27. Vaezi MF, Richter JE. Diagnosis and management of achalasia. American College of Gastroenterology Practice Parameter Committee. Am J Gastroenterol. 1999 Dec;94(12):3406-12.

28. Van Dam J, Falk GW, Sivak MV, et al. Endosonographic evaluation of the patient with achalasia: Appearance of the esophagus using the echoendoscope. Endoscopy 1995;27: 185-90.