Therapeutic effect of curcumin on experimental colitis mediated by inhibiting CD8\(^+\)CD11c\(^+\) cells

Hai-Mei Zhao, Fei Han, Rong Xu, Xiao-Ying Huang, Shao-Min Cheng, Min-Fang Huang, Hai-Yang Yue, Xin Wang, Yong Zou, Han-Lin Xu, Duan-Yong Liu

Hai-Mei Zhao, Shao-Min Cheng, School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China

Fei Han, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China

Fei Han, Han-Lin Xu, College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan 430065, Hubei Province, China

Rong Xu, Min-Fang Huang, Hai-Yang Yue, Xin Wang, Yong Zou, Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China

Xiao-Ying Huang, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China

Han-Lin Xu, Collaborative Innovation Center of TCM of New Products for Geriatrics, Wuhan 430065, Hubei Province, China

Duan-Yong Liu, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China

Author contributions: Zhao HM and Han F contributed equally to this work as joint first authors; Zhao HM and Liu DY designed the research; Zhao HM, Han F, Xu R, Huang XY, Cheng SM, Huang MF, Yue HY, Wang X and Zou Y performed the research; Liu DY contributed the new reagents and analytic tools; Zhao HM, Huang XY, Xu HL and Liu DY analyzed the data; Zhao HM and Liu DY wrote the paper.

Supported by the National Natural Science Foundation of China, No. 81260595 and No. 81460679; Chinese Scholarship Council and Jiangxi Province as visiting scholar, No. 201408360106 and No. 201408360110; the Traditional Chinese Medicine Project of Health Department of Jiangxi Province, No. 2015B049; and Jiangxi University of Traditional Chinese Medicine, No. JZYC15S13.

Institutional animal care and use committee statement: All animals were housed in a pathogen-free environment at the animal facilities [No. SYXX (Gan) 2005-0001] of Jiangxi University of Traditional Chinese Medicine. The experimental protocols (JZ2015-16) were approved by Biomedical Ethics Committee of Jiangxi University of Traditional Chinese Medicine, Nanchang, China.

Conflict-of-interest statement: All authors have declared that there is no conflict of interest related to this study.

Data sharing statement: No additional unpublished data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Duan-Yong Liu, Associate Professor, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 819 Xingwan Road, Nanchang 330004, Jiangxi Province, China. liuduanyong@163.com
Telephone: +86-791-83769126
Fax: +86-791-83769126

Received: October 22, 2016
Peer-review started: October 25, 2016
First decision: December 2, 2016
Revised: December 25, 2016
Accepted: January 17, 2017
Article in press: January 17, 2017
Published online: March 14, 2017
Abstract

AIM
To verify whether curcumin (Cur) can treat inflammatory bowel disease by regulating CD8⁺CD11c⁺ cells.

METHODS
We evaluated the suppressive effect of Cur on CD8⁺CD11c⁺ cells in spleen and Peyer’s patches (PPs) in colitis induced by trinitrobenzene sulfonic acid. Mice with colitis were treated by 200 mg/kg Cur for 7 d. On day 8, the therapeutic effect of Cur was evaluated by visual assessment and histological examination, while co-stimulatory molecules of CD8⁺CD11c⁺ cells in the spleen and PPs were measured by flow cytometry. The levels of interleukin (IL)-10, interferon (IFN)-γ and transforming growth factor (TGF)-β1 in spleen and colonic mucosa were determined by ELISA.

RESULTS
The disease activity index, colon weight, weight index of colon and histological score of experimental colitis were obviously decreased after Cur treatment, while the body weight and colon length recovered. After treatment with Cur, CD8⁺CD11c⁺ cells were decreased in the spleen and PPs, and the expression of major histocompatibility complex II, CD205, CD40, CD40L and intercellular adhesion molecule-1 was inhibited. IL-10, IFN-γ and TGF-β1 levels were increased compared with those in mice with untreated colitis.

CONCLUSION
Cur can effectively treat experimental colitis, which is realized by inhibiting CD8⁺CD11c⁺ cells.

Key words: CD8; CD11c; Curcumin; Experimental colitis; Therapeutic effect

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: CD11c is highly expressed in CD8⁺ and CD8⁻ dendritic cells (DCs). Overaccumulation of CD8⁺ DCs is seen in colonic mucosa in experimental colitis and patients with inflammatory bowel disease (IBD). CD8⁺CD11c⁺ cells may be a potential strategy to explore the mechanism of action of drugs in IBD. The immunosuppressant curcumin (Cur) plays a therapeutic role in various immune diseases, including IBD and rheumatoid arthritis. However, it is unclear whether Cur regulates level of CD8⁺CD11c⁺ cells to treat IBD. We found that the therapeutic effect of Cur in experimental colitis was closely related to decreased levels of CD8⁺CD11c⁺ cells.

Zhao HM et al. Curcumin inhibited CD8⁺CD11c⁺ cells in colitis

INTRODUCTION
As one of integrin family, CD11c is a type I transmembrane protein that mediates adherence between leukocytes and endothelial cells, and participates in exudation and phagocytosis of leukocytes. It is suggested that CD11c induces tissue injury and the inflammatory response[1]. Importantly, CD11c is a specific marker in dendritic cells (DCs) and is highly expressed in CD8⁺ and CD8⁻ DCs[2].

As professional antigen-presenting cells, DC precursors capture antigens and promote T-cell migration to regions of the draining lymph nodes where they can mature into functional DCs and present antigens to initiate T-cell-mediated immune responses[3]. Increasingly, it has been reported that DCs are critical to maintaining intestinal immunity and mucosal immune tolerance to resist the pathogenicity of commensal microorganisms, which is one of the pivotal inflammatory etiologies of induced inflammatory bowel diseases (IBD)[4].

High expression of co-stimulatory molecules and major histocompatibility complex (MHC) II of DCs, which is a known marker of DC maturation, and a “danger signal” of induced inflammatory mucosal damage in the gut, occurs in the colonic mucosa of animal models of colitis[5-6]. Moreover, DCs can develop from both myeloid and lymphoid progenitors. In mice, CD8⁻ DCs have been designated as lymphoid DCs, and CD8⁺ DCs as myeloid DCs[7]. More importantly, CD8⁺ DCs predominantly stimulate T helper (Th)1-inducing cytokines such as interleukin (IL)-12p70 and IL-12p40, which can lead to Th1 differentiation[8], and have been reported to play a key role in controlling viral infection[3,9,10]. Overaccumulation of CD8⁺ DCs induces inflammatory injury in the colonic mucosa when they migrate into Peyer’s patches (PPs) in experimental colitis and IBD patients[11,12]. Thus, CD8⁻ DCs may be a potential therapeutic target to explore the mechanisms of clinical treatment of IBD.

Many studies have indicated that CD11c expressed in DCs can promote maturation and activation of DCs; present antigen for CD4⁺ or CD8⁺ T cells; accelerate T-cell activation and proliferation; and produce various cytokines[13-16]. CD11c⁺ DCs are depleted by diphtheria toxin during treatment of experimental colitis, induced indirectly by CD4⁺ CD62L⁺ T cells, with oligodeoxynucleotides containing unmethylated cytosine-guanosine[16]. These results suggest that CD11c⁺ DCs play an important role in the pathogenetic process of IBD.

Curcumin (Cur) is the major constituent of turmeric powder that is extracted from the rhizomes of Curcuma longa L. Cur has a long history of...
effectively treating chronic colitis by blocking nuclear factor-κB signaling in human IBD and experimental colitis, including trinitrobenzene sulfonic acid (TNBS)-induced and dextran sulfate sodium (DSS)-induced experimental colitis\(^{17-19}\). Multifunctional Cur has exhibited antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic activities, as well as antiplatelet, hypoglycemic, cholesterol-lowering, antibacterial, wound-healing and antifungal effects\(^{17,20-22}\). In addition, Shirley et al\(^{23}\) have shown that Cur prevents DCs from responding to immunostimulants and DC-mediated induction of CD4\(^+\) T-cell proliferation by blocking maturation marker expression, cytokine and chemokine expression, and reducing migration and endocytosis. Shirley et al\(^{23}\) also concluded that Cur might play a therapeutic role as an immunosuppressant in the treatment of various immune diseases including IBD and rheumatoid arthritis. In our previous study, we found that Cur repaired colonic structure, decreased colonic weight and histological injury score, and recovered colon length, indicating that Cur restored damaged colonic mucosa in mice with TNBS-induced colitis\(^{24}\). However, it is unclear whether Cur can regulate the expression levels of CD8\(^+\)CD11c\(^+\) cells to treat IBD.

In the present study, we investigated the effects of Cur on CD8\(^+\)CD11c\(^+\) cells in the spleen and PPs in a murine model of TNBS-induced colitis to explore the possible therapeutic mechanisms of Cur in experimentally induced IBD.

MATERIALS AND METHODS

Mice

Nine to twelve-week-old male C57BL/6 mice (20−24 g) were purchased from the Animal Center of Peking University Health Science Center (Animal Certificate No.: SCXK 2012-0001). Mice were housed in a special room with a humidity of 50% ± 5% and an equal 12-h light/dark cycle at 20 ± 2 °C throughout the experimental period. Animals were allowed free access to a commercial diet and clean water *ad libitum*. All animals were allowed to acclimatize for 4 d before the start of the experiment. The experimental protocols (JZ2015-016) were approved by the Biomedical Ethics Committee Experimental Animal Ethics Branch of Jiangxi University of Traditional Chinese Medicine.

Induction of experimental colitis

Colitis was induced according to the procedure described previously by Huang et al\(^{25}\), Salaga et al\(^{26}\), Fina et al\(^{27}\) and Bai et al\(^{28}\). Mice were fasted for 12 h. Each mouse was anesthetized with pentobarbital sodium (40 mg/kg), following which, 100 mg/kg TNBS (Sigma-Aldrich, St. Louis, MO, United States; 100 g/L dissolved in 0.3 mL 50% ethanol) was instilled via a rubber catheter that was inserted approximately 4 cm into the colon via the anus. The rubber catheter was modified with numerous holes positioned over the final 4 cm of its length. The instillation procedure required only a few seconds, following which the mice were maintained in a head-down position for 5 min to prevent solution leakage. Mice in the Normal group received 50% ethanol of the same volume that was delivered using the same technique as described above.

Treatment protocols

To explore the effect of Cur (purity ≥ 95% by HPLC; Gangrun Biotechnology, Nanjing, China) on CD8\(^+\)CD11c\(^+\) cells in colitis mice, C57BL/6 mice (20−24 g) were randomized into four groups of eight with comparable average body weight: Normal group (receiving ethanol only, and not treated); TNBS group (received TNBS and were not treated); TNBS + Cur group [received TNBS and 100 mg/kg/d Cur intragastrically (i.g.)]; and TNBS + mesalazine (Mes) group (received TNBS and mesalazine at 300 mg/kg/d i.g.). Before administration, Cur was dissolved in 5% dimethylsulfoxide (DMSO) in physiological saline, which was used as a vehicle. Twenty-four hours after colitis was induced, mice in the TNBS + Cur group were administered Cur, and in the TNBS + Mes group, they were administered Mes for 7 d until the mice were killed. Mice in the Normal and TNBS groups received the same volume of 5% DMSO in physiological saline daily (which was the vehicle for Cur) until the end of the experiment.

Assessment of severity of colitis: disease activity index

Disease activity index (DAI) was analyzed according to the previous study\(^{29,30}\), which was the combined score of weight loss, stool consistency, and bleeding. The criteria for DAI scores are described in Table 1. The changes in growth rate, stool consistency, and gross bleeding or occult blood in the feces were scored daily from 0 to 4 for each animal after TNBS treatment.

Evaluation of colonic damage

On day 8, all mice were killed after being anesthetized with pentobarbital sodium (40 mg/kg) by intraperitoneal injection. The colon was removed rapidly and its length was measured, opened longitudinally, rinsed with phosphate-buffered saline (PBS), assessed immediately for weight, and the weight index of the colon was calculated (colonographic...
weight/body weight × 100%). Segments of the colon were fixed in 4% paraformaldehyde for at least 7 d. Subsequently, colon tissues were dehydrated, embedded in paraffin, sectioned at 5 μm and mounted onto slides. These sections were stained with hematoxylin and eosin.

A histological damage score was determined according to the criteria of Nicole and Schmidt et al.[31]. The histological score included inflammatory cell infiltration and tissue damage. Scores for infiltration were as follows: 0: no infiltration; 1: increased number of inflammatory cells in the lamina propria; 2: inflammatory cells extending into the submucosa; and 3: transmural inflammatory cell infiltration. The scores of tissue damage were as follows: 0: no mucosal damage; 1: discrete epithelial lesions; 2: erosions or focal ulcerations; and 3: severe mucosal damage with extensive ulceration extending into the bowel wall.

Isolation of lymphocyte from spleen and PPs
PPs were separated and collected from the small intestine to the terminal rectum. To prepare single-cell suspensions, spleens or PPs were minced and digested in 2 mg/mL collagenase D (Roche Diagnostics, Basel Switzerland) in 1% fetal calf serum (FCS)/RPMI 1640 for 15 min at 37 ℃. Next, 10 mM EDTA was added for the last 5 min, and the cell suspensions were then pipetted up and down several times and filtered through a fine-mesh sieve. The cell suspensions were centrifuged at 380 × g for 5 min and suspended at a density of 10^7/mL in 3% FCS/PBS. Remnant supernatants of spleen and PPs were used separately to analyze the levels of cytokines by ELISA.

Assay of CD8^+CD11c^+ cells by flow cytometry
After removal of RBC, splenic and PPs cells were labeled with V450-anti-mouse CD8a antibody (0.125 μg/100 μL; BD Biosciences, San Jose, CA, United States) and APC/Cy7 anti-mouse CD11c (eBioscience, San Diego, CA, United States), respectively, at 37 ℃ in the dark. Cells were centrifuged at 380 × g at 4 ℃ for 5 min and fixed in 1% paraformaldehyde/PBS. In addition, fluorescence-activated cell sorting analysis was performed on a FACS Calibur flow cytometer (BD Biosciences).

Measurement of co-stimulatory molecules of CD8^+CD11c^+ cells by flow cytometry
Cell suspensions were stained according to the appropriate isotypic control antibody match of different fluorochromes and incubated for 30 min with V450-anti-mouse CD8a antibody (0.125 μg/100 μL; BD Biosciences), APC/Cy7 anti-mouse CD11c (eBioscience), PerCP/Cy5.5 anti-mouse I-A/I-E (MHC II), PE anti-mouse CD40, APC anti-mouse CD154 (i.e., CD40 ligand), FITC anti-mouse CD54, and PerCP/Cy5.5 anti-mouse CD205. Limits for the quadrant markers were based on negative populations and isotype controls.

ELISA
The levels of IL-10, IFN-γ and TGF-β1 in spleen and colonic mucosa supernatants were measured using ELISA (eBioscience).

Statistical analysis
Data were expressed as mean ± SEM. The statistical significance was evaluated by analysis of variance followed by Tukey’s test for multiple comparisons using GraphPad Prism version 5.0 (La Jolla, CA, United States). Nonparametric data were analyzed with the Mann-Whitney U test. P < 0.05 was considered statistically significant.

RESULTS

Cur attenuated TNBS-induced colitis
The body weight of mice and the disease activity index of experimental colitis in the TNBS group were significantly decreased compared with the Normal, TNBS + Cur and TNBS + Mes groups (Figure 1B and C). Colonic weight and the weight index of the colon from the TNBS groups were higher than those in the Normal group, but lower than in the TNBS + Cur and TNBS + Mes groups (Figure 1D and E). However, the colonic length in the colitis mice was shorter in the TNBS group compared with the Normal, TNBS + Cur, and TNBS + Mes groups (Figure 1A and G). Histological evaluation of colonic sections from untreated mice with colitis showed that TNBS-induced colitis was characterized by a loss of mucosal architecture, thickening of the colon wall, cryptic abscesses, ulcer formation, and extensive inflammatory cell infiltration in the colonic mucosa (Figure 1F). Treatment with Cur and Mes inhibited these pathological symptoms and kept histo-progressive restoration, reduced inflammatory cell infiltration in the mucosa and submucosa, and maintained the integrity of colonic mucosa (Figure 1F). We observed visually ulceration, hyperemia and edema in the colonic mucosa in colitis mice without treatment, which were ameliorated in mice treated with Cur and Mes (Figure 1A). Moreover, the histological scores in the colon of mice from the Normal, TNBS + Cur, and TNBS + Mes groups were significantly lower than those in untreated mice with colitis (Figure 1F and H). All results demonstrated that Cur effectively treated experimental colitis.

Cur inhibited levels of CD8^+CD11c^+ cells in spleen and PPs in colitis mice
We analyzed the numbers of CD8^+CD11c^+ cells in the spleen and PPs of mice with colitis (Figure 2). Data clearly indicated a significantly increased tendency in this parameter in the spleen (Figure 2A and D) and PPs (Figure 2A and C) in the TNBS group as compared with the Normal group. Significantly, after 7 d treatment
with Cur, the numbers of CD8⁺CD11c⁺ cells in the spleen and PPs in the TNBS + Cur and TNBS + Mes groups were decreased dramatically as compared with the TNBS group.

Cur increased IL-10, IFN-γ and TGF-β1 secretion in spleen and colonic mucosa in colitis mice
To understand the effects of activated CD8⁺CD11c⁺ cells in the development of murine colitis, the secretion of IL-10, IFN-γ and TGF-β1 was determined (Figure 3). There was significantly increased expression of TGF-β1 in the colonic mucosa of untreated colitis mice (Figure 3B). In addition, the secretion of TGF-β1 in the colonic mucosa in the TNBS + Cur and TNBS + Mes groups was lower than that in the TNBS group. However, expression of TGF-β1 in the spleen of mice treated with Cur and Mes was higher than that in the TNBS group compared with the Normal group, levels of IFN-γ (Figure 3B and E) and IL-10 (Figure 3C and F) in the spleen and colonic mucosa in untreated colitis mice were decreased 7 d after TNBS-induced colitis. In the colonic mucosa and spleen, the expression of both IL-10 and IFN-γ was increased in colitis mice treated with Cur and Mes as compared with untreated colitis mice.

Cur suppressed expression of co-stimulatory molecules of CD8⁺CD11c⁺ cells in colitis mice
Expression of co-stimulatory molecules of CD8⁺CD11c⁺ cells, including CD40 (Figure 4), CD40L (Figure 5), CD54 (Figure 6), CD205 (Figure 7) and MHC II (Figure 8), was detected in normal spleen and PPs. Expression increased after TNBS-induced colitis. Treatment with Cur decreased expression of CD40 (Figure 4), CD40L (Figure 5), CD54 (Figure 6), CD205 (Figure 7) and MHC II (Figure 8) in the spleen and PPs.

DISCUSSION
In the present study, the DAI, colonic weight, weight index of the colon, and histological score of colonic experimental colitis were significantly decreased after Cur treatment, while the body weight and colonic length were recovered. The results indicate that Cur can effectively treat experimental colitis. The numbers of CD8⁺CD11c⁺ cells in the spleen and PPs were decreased, which showed that the therapeutic effect of Cur on colitis was related to the number of CD8⁺CD11c⁺ cells.

As a positive regulatory factor, CD11c, which is an adhesion molecule in the CD11/CD18 family,
Zhao HM et al. Curcumin inhibited CD8^+CD11c^+ cells in colitis

Figure 2 Typical histograms and levels of CD8^+CD11c^+ cells in the spleen and PPs. A: Typical graphs and mean fluorescence intensity (MFI) levels of CD8^+CD11c^+ cells in the spleen; B: Typical graphs and MFI levels of CD8^+CD11c^+ cells in PPs; C: MFI levels of CD8^+CD11c^+ cells in the spleen; D: MFI levels of CD8^+CD11c^+ cells in PPs. Data are shown as mean ± SEM (n = 8). *P < 0.05 and **P < 0.01 vs Normal group; †P < 0.05 and ‡P < 0.01 vs TNBS group.

Figure 3 Levels of TGF-β1, IFN-γ and IL-10 in spleen and colonic mucosal supernatants. A-C: Concentration of TGF-β1, IFN-γ and IL-10 in the spleen from different groups; D-F: Concentration of TGF-β1, IFN-γ and IL-10 in the colonic mucosa from different groups. Data are shown as mean ± SEM (n = 8). *P < 0.05 and †P < 0.01 vs Normal group; †P < 0.05 and ‡P < 0.01 vs TNBS group.
Zhao HM et al. Curcumin inhibited CD8^+CD11c^+ cells in colitis

Figure 4 Typical histograms and levels of CD11c^+CD40^+ cells in spleen and PPs. A: Typical graphs of CD11c^+CD40^+ cells in the spleen; B: Typical graphs of CD11c^+CD40^+ cells in the PPs; C: MFI levels of CD11c^+CD40^+ cells in the spleen; D: MFI levels of CD11c^+CD40^+ cells in the PPs. Data are described as mean ± SEM (n = 8). ^aP < 0.05 vs Normal control group; ^cP < 0.05 vs TNBS group.

Figure 5 Typical histograms and levels of CD11c^+CD40L^+ cell in spleen and PPs. A: Typical graphs of CD11c^+CD40L^+ cells in the spleen; B: Typical graphs of CD11c^+CD40L^+ cells in the PPs; C: Levels (MFI) of CD11c^+CD40L^+ cells in the spleen; D: Levels (MFI) of CD11c^+CD40L^+ cells in the PPs. Data are described as mean ± SEM (n = 8). ^aP < 0.05 vs Normal control group; ^cP < 0.05 vs TNBS group.
Zhao HM et al. Curcumin inhibited CD8⁺CD11c⁺ cells in colitis

Figure 6 Typical histograms and levels of CD11c⁺ICAM-1⁺ cells in spleen and PPs. A: Typical graphs of CD11c⁺ICAM-1⁺ cells in the spleen; B: Typical graphs of CD11c⁺ICAM-1⁺ cells in PPs; C: Levels (MFI) of CD11c⁺ICAM-1⁺ cells in the spleen; D: Levels (MFI) of CD11c⁺ICAM-1⁺ cells in the PPs. Data are shown as mean ± SEM (n = 8). *P < 0.05 vs Normal control group; †P < 0.05 and ‡P < 0.01 vs TNBS group.

Figure 7 Typical histograms and levels of CD11c⁺CD205⁺ cells in spleen and PPs. A: Typical graphs of CD11c⁺CD205⁺ cells in the spleen; B: Typical graphs of CD11c⁺CD205⁺ cells in PPs; C: Levels (MFI) of CD11c⁺CD205⁺ cells in the spleen; D: Levels (MFI) of CD11c⁺CD205⁺ cells in the PPs. Data are mean ± SEM (n = 8). *P < 0.05 and †P < 0.01 vs Normal group; ‡P < 0.05 vs TNBS group.
CD40L and CD54 (ICAM-1) in CD8+ co-stimulatory molecules of DCs were increased in the levels of CD8+ DSS Cur can treat experimental colitis induced by TNBS or and PPs. Our previous and present studies show that attenuated expression of MHC the spleen and PPs in untreated colitis mice, and Cur alleviated inflammatory injury in the colonic participates in conglutination, migration, antigenic recognition and presence of DCs, and activates CD4+, CD8+ T cells to regulate the immune response. CD11c can promote DC activation and maturity by elevating expression of co-stimulatory molecules[12,33]. Activated CD11c+ DCs secrete a large number of inflammatory factors (including IL-1β, IL-6, IL-12 and IL-20) and promote CD4+ T cells transformation into Th 1 cells, DCs play an important role in the development of experimental colitis[11,12]. Our study showed that CD4+ T-cell immune responses[42,43]. The complex pathway includes activation of Toll-like receptor 3[44], MHC and co-stimulatory molecule expression. MHC can promote DCs to migrate into lymphoid tissues such as the spleen and PPs, and accelerate antigen presentation, activation and maturation of DCs.

Figure 8 Typical histograms and levels of CD11c+MHC II cells in the spleen and PPs. A: Typical graphs of CD11c+ MHC II cells in the spleen; B: Typical graphs of CD11c+ MHC II cells in the spleen; C: Levels (MFI) of CD11c+ MHC II cells in the spleen; D: Levels (MFI) of CD11c+ MHC II cells in the PPs. Data are mean ± SEM (n = 8). *P < 0.05 vs Normal control group; **P < 0.05 and ***P < 0.01 vs TNBS group.

DCs are essential in the activation of the adaptive immune system[37], and can be distinguished into myeloid and lymphoid DCs based on the cell-surface expression of CD8[8,9], which is one of the most important DC subset markers. Research has previously demonstrated that lymphoid DCs express CD8 in mice, whereas myeloid DCs do not[38-40]. Thus, DCs in the spleen and PPs of mice are considered to be CD8+ DCs, which were identified in the present study[39,41].

Overwhelming evidence suggests that activation of CD8+ DCs is a significant pathway to generate specific CD8+ T-cell immune responses[42,43]. Previous research has shown that CD8+ DCs play an important role in the development of experimental colitis and human IBD[11,12]. Our study showed that co-stimulatory molecules of DCs play an important role in the development of experimental colitis and human IBD[11,12]. Our study showed that co-stimulatory molecules of DCs were increased in the spleen and PPs in untreated colitis mice, and Cur attenuated expression of MHC II, CD205, CD40, CD40L and CD54 (ICAM-1) in CD8+ DCs in the spleen and PPs. Our previous and present studies show that Cur can treat experimental colitis induced by TNBS or DSS[35,36]. The present study proves that Cur regulates the levels of CD8+ DCs to treat TNBS-induced colitis.

Researchers have previously incorporated MHC II as a phenotypic segregation marker for ex vivo analysis of DCs under inflammatory settings such as influenza[44]. Waithman et al[45] have shown that many of the CD8+ DC subpopulations undergo a phenotypic change from CD11chigh MHC II+ in naïve mice to CD11cint MHC IIhigh mice infected with influenza A virus. According to MHC II and CD11c expression levels, CD8+ DCs, which are a classic migratory DC phenotype, could be segregated into both lymphoid-resident DC subsets and migratory subsets found at
inflammatory zones [46-48]. Based on the high expression of MHC II, CD8+ DCs capture antigens and promote T-cell migration at regions of the draining lymph nodes where they mature into functional DCs and present antigens to initiate primary immune responses [49,50]. In the process of maturation and activation of CD8+ DCs, co-stimulatory molecules are highly expressed and include expression of CD205, CD24, CD40 and CD40L [2].

As a symbol of maturation and activation, DCs express co-stimulatory molecules including members of the tumor necrosis factor (TNF)/TNF receptor family, CD40/CD40L and OX40/OX40L, and members of the immunoglobulin superfamily including ICAM-1/lymphocyte function-associated antigen (LFA-1), and CD28/cytotoxic T lymphocyte associated antigen 4/B7. Collectively, these cell-surface expressed protein receptors and their cognate ligands regulate the balance between Th1 and Th2 responses, and were found to be highly expressed in human and animal colitis [51]. For example, CD40/CD40L signaling can stimulate DCs to secrete IL-12, and direct the differentiation of CD4+ T cells into Th1 cells. Similar functions are present in the context of ICAM-1/LFA-1 signaling and the B7-1 molecular signaling pathway (i.e., the B7/CD28 signal) [52,53].

More importantly, CD8+ DCs predominantly produce Th1-promoting cytokines like IL-12 p70 and IL-12 p40, while CD8+ DCs lead to Th1 differentiation with reduced secretion of IFN-γ and IL-10 [8,54,55], and enhanced secretion of the proinflammatory cytokine IL-6, which is associated with autoimmunity and chronic inflammatory diseases [56]. These cytokines were previously shown to be closely related to the pathogenesis of IBD [57,58]. Therefore, we have experimental evidence to believe that CD8+ DCs played a critical role in the development of TNBS-induced colitis in our study. This was confirmed by the increased numbers of CD8+ DCs in the spleen and PPs in untreated colitis mice. The results showed high expression of MHC II, CD205, CD40, CD40L and ICAM-1. These co-stimulatory molecules and MHC II promoted CD8+ DCs to migrate into the colonic mucosa. Here, CD8+ DCs secreted proinflammatory cytokines and suppressed anti-inflammatory cytokine production, and ultimately induced inflammatory injury in the colonic mucosa.

Seven days after administration of Cur, the total number of CD8+CD11c+ cells was decreased, and the expression of these co-stimulatory molecules of DCs was inhibited. Although it is uncertain that Cur regulated the function of CD8+CD11c+ cells, Shirley et al [53] indicated that Cur prevented DCs from inducing CD4+ T-cell proliferation by blocking maturation marker expression, cytokine and chemokine secretion, and reducing migration and endocytosis of DCs.

The present study suggested that Cur restricted the quantity and activation of CD8+CD11c+ cells by downregulating the expression of the co-stimulatory molecules of DCs in an attempt to improve the level of anti-inflammatory cytokines (i.e., IL-10, IFN-γ and TGF-β1). These data suggest a therapeutic role for Cur as an immunosuppressant in the treatment of IBD. However, the level of TGF-β1 in the colonic mucosa was decreased by Cur, which is contrary to that seen in the spleen. We speculated that overproduction of TGF-β1 in the colonic mucosa was related to the chronicity and fibrosis of experimental colitis. Thus, Cur might inhibit fibroplasia at the base of the colonic ulcer. However, the signaling pathway remains unknown under conditions in which Cur controls maturation and migration of CD8+ DCs. Future work is important in this area in an attempt to explore the pathway that regulates the function of CD8+ DCs by TGF-β1 signaling.

In conclusion, we demonstrated that Cur effectively treated experimental colitis, which was realized by inhibiting CD8+CD11c+ cells.

COMMENTS

Background

CD11c is a specific marker of dendritic cells (DCs) and is highly expressed in CD8+ and CD8- DCs. Overaccumulation of CD8+ DCs is seen in colonic mucosa in experimental colitis and patients with inflammatory bowel disease (IBD).

Research frontiers

CD8+ DCs predominantly stimulate T helper (Th)1-inducing cytokines like interleukin (IL)-12p70 and IL-12p40, which can lead to Th1 differentiation, and have been reported to play a key role in controlling viral infection. Overaccumulation of CD8+ DCs induces inflammatory injury in the colonic mucosa when they migrate into Peyer’s patches in experimental colitis and in patients with IBD. Thus, CD8+ DCs may be a potential therapeutic target to explore the mechanisms of clinical treatment of IBD.

Innovations and breakthroughs

The present study is believed to be the first to show that curcumin (Cur) can effectively treat experimental colitis, which was realized by inhibiting CD8+CD11c+ cells.

Applications

It is known that Cur has a long history of effectively treating human IBD and experimental colitis. Cur prevents DC-mediated induction of CD4+ T-cell proliferation by blocking expression of maturation markers, cytokines and chemokines. However, it is unclear whether Cur can regulate expression of CD8+CD11c+ cells to treat IBD. The present study suggests that Cur can treat experimental colitis, via inhibition of CD8+CD11c+ cells.

Terminology

CD11c is a type I transmembrane protein that mediates adherence between leukocytes and endothelial cells, and participates in exudation and phagocytosis of leukocytes.

Peer-review

The manuscript is presented in an easy understandable manner. The topic in the manuscript is very well explained. But it requires substantial corrections for the acceptance. According to detailed experimental data and reliable results, the present study had proved that Cur effectively treated experimental colitis, which was realized by inhibiting CD8+CD11c+ cells.
REFERENCES

1 Plow EF, Haas TA, Zhang L, Luftus J, Smith JW. Ligand binding to integrins. *J Biol Chem* 2000; 275: 21785-21788 [PMID: 10704209, DOI: 10.1074/jbc.275.28.21785]

2 Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. *Nat Rev Immunol* 2007; 7: 543-555 [PMID: 17589544 DOI: 10.1038/ nri2103]

3 Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G, Carbone FR, Heath WR. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. *J Immunol* 2004; 172: 1996-2000 [PMID: 14764661 DOI: 10.4049/jimmunol.172.4.1996]

4 Stagg AJ, Hart AL, Knight SC, Kam M. The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. *Gut* 2003; 52: 1522-1529 [PMID: 12970149]

5 Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. *Annu Rev Immunol* 1998; 16: 111-135 [PMID: 9597126 DOI: 10.1146/annurev.immunol.16.1.111]

6 Theil LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. *Annu Rev Immunol* 2002; 20: 795-823 [PMID: 11866168]

7 Vremec D, Pooley J, Hocheun H, Wu L, Shortman K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. *J Immunol* 2000; 164: 2978-2986 [PMID: 10706685 DOI: 10.4049/jimmunol.164.6.2978]

8 Maldonado-López R, Maliszewski C, Urbain J, Moser M. Cytokines regulate the capacity of D6DHapl(−) and D6DHapl(+) dendritic cells to prime Th1/Th2 cells in vivo. *J Immunol* 2001; 167: 4345-4350 [PMID: 11591758 DOI: 10.4049/jimmunol.167.8.4345]

9 Vogt A, Mahé B, Costagliola D, Bondouelle O, Hadam S, Schaefer G, Schaefer H, Katlama C, Sterry W, Autran B, Blume-Peytavi U, Combadiere B. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. *J Immunol* 2000; 164: 1482-1489 [PMID: 18209043 DOI: 10.4049/jimmunol.180.3.1482]

10 Smith CM, Belz GT, Wilson NS, Villadangos JA, Shortman K, Carbone FR, Heath WR. Cutting edge: conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. *J Immunol* 2003; 170: 4437-4440 [PMID: 12707318 DOI: 10.4049/jimmunol.170.9.4437]

11 Sabado RL, Bhardwaj N. Directing dendritic cell immunotherapy towards successful cancer treatment. *Immunotherapy* 2010; 2: 75-86 [PMID: 20473346 DOI: 10.2217/imt.09.43]

12 Evel-Kabler K, Song XT, Aldrich K, Sun XF, Chen SY. SOCS1 restricts dendritic cells’ ability to break self-tolerance and induce anti-immunogenic immunity by regulating IL-12 production and signaling. *J Clin Invest* 2006; 116: 90-100 [PMID: 16357940 DOI: 10.1172/JCI26169]

13 Guo YM, Hirokawa M, Takahashi N, Fujishima M, Fujishima N, Komatsuda A, Tagawa H, Ohaygi H, Michishita Y, Ube K, Ichinose K, Xiaow X, Sawada K. Delayed addition of tumor necrosis factor (TNF) antagonists inhibits the generation of Th17 cells in experimental colitis. *J Crohns Colitis* 2014; 8: 1038-1048 [PMID: 24440986 DOI: 10.1016/j.jcc.2013-05168]

14 Belza GT, Wei X, Xiao W, Sawada K. Delayed addition of tumor necrosis factor (TNF) antagonists inhibits the generation of Th17 cells in experimental colitis. *J Crohns Colitis* 2014; 8: 1038-1048 [PMID: 24440986 DOI: 10.1016/j.jcc.2013-05168]

15 Castello JF, Bollenbacher P, El-Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. *Am J Physiol Gastrointest Liver Physiol* 2007; 293: G711-G718 [PMID: 17673544 DOI: 10.1152/ajpgi.00240.2007]

16 Chen Y, Ji MM, Liu WL, Cai JT, Du Q, Wang LJ, Gao M. Induction of experimental acute ulcerative colitis in rats by administration of dextran sulfate sodium at low concentration
followed by intracolonic administration of 30% ethanol. *J Zhejiang Univ Sci B* 2007; 8: 632-637 [PMID: 17726744 DOI: 10.1631/jzus.2007.B0632]

31 Schmidt N, Gonzalez E, Visekruna A, Kühn AA, Loddenkemper C, Mollenkopf H, Kaufmann SH, Steinhoff U, Joeris T. Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. *Gut* 2010; 59: 896-906 [PMID: 20581238 DOI: 10.1136/gut.2009.193554]

32 Lin Y, Roberts TJ, Siriram V, Cho S, Brutkiewicz RR. Myeloid marker expression on antiviral CD8+ T cells following an acute virus infection. *Eur J Immunol* 2003; 33: 2736-2743 [PMID: 14515257 DOI: 10.1002/eji.200232487]

33 Singh-Jasuja H, Thiolat A, Ribon M, Boissier MC, Bessis N, Rammansee HG, Decker P. The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering. *Immunobiology* 2013; 218: 28-39 [PMID: 22445076 DOI: 10.1016/j.imbio.2012.01.021]

34 Fujimura D, Chen L, Wei B, Braun J. Small intestine CD11c+ CD8+ T cells suppress CD4+ T cell-induced immune colitis. *Am J Physiol Gastrointest Liver Physiol* 2011; 300: G389-G397 [PMID: 21436311 DOI: 10.1152/ajpgi.00302.2010]

35 Zhang M, Deng C, Zheng J, Xia J, Sheng D. Curcumin inhibits trinitrobenzene sulfonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma. *Int Immunopharmacol* 2006; 6: 1233-1242 [PMID: 16782535 DOI: 10.1016/j.intimp.2006.02.013]

36 Liu L, Liu YL, Liu GX, Chen X, Yang YK, Yang XY, Xie Q, Gan HK, Huang XL, Gan HT. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. *Int Immunopharmacol* 2013; 17: 314-320 [PMID: 23856612 DOI: 10.1016/j.intimp.2013.06.020]

37 Mackern-Oberti JP, LLanos C, Vega F, Salazar-Onfray F, Riedel CA, Bueno SM, Kaleris AM. Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases. *Autoimmun Rev* 2015; 14: 127-139 [PMID: 25449681]

38 Beijer MR, Molenaar R, Gouverse G, Mebus RE, Kraal G, den Haan JM. A crucial role for retinoic acid in the development of Notch-dependent murine splenic CD8- CD4- and CD4+ dendritic cells. *Eur J Immunol* 2013; 43: 1608-1615 [PMID: 23519987]

39 Rutella S, Locatelli F. Intestinal dendritic cells in the pathogenesis of inflammatory bowel disease. *World J Gastroenterol* 2011; 17: 3761-3775 [PMID: 21986718 DOI: 10.3745/wjg.v17.i37.3761]

40 Ardavin C, Wu L, Li CL, Shortman K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. *Nature* 1993; 362: 761-763 [PMID: 8469208 DOI: 10.1038/362761a0]

41 Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. *Nat Rev Immunol* 2007; 7: 19-30 [PMID: 17107056 DOI: 10.1038/nri1996]

42 Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan M, Llanos C, Vega F, Salazar-Onfray F, Gonzalez E, Visekruna A, Kühl AA, Loddenkemper C, Mollenkopf H, Kaufmann SH, Steinhoff U, Joeris T. Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. *Gut* 2010; 59: 896-906 [PMID: 20581238 DOI: 10.1136/gut.2009.193554]

43 Li L, Liu YL, Liu GX, Chen X, Yang YK, Yang XY, Xie Q, Gan HK, Huang XL, Gan HT. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. *Int Immunopharmacol* 2013; 17: 314-320 [PMID: 23856612 DOI: 10.1016/j.intimp.2013.06.020]

44 Zhao HM et al. Curcumin inhibited CD8+CD11c+ cells in colitis

WJG | www.wjgnet.com

1815

March 14, 2017 | Volume 23 | Issue 10 |

P-Reviewer: Bolboaca SD, Gogu B, Sharaf JA S-Editor: Yu J L-Editor: Ma JY E-Editor: Wang CH
