Polymorphisms of folate metabolism genes in patients with cirrhosis and hepatocellular carcinoma

Nathália Perpétua Peres, Ana Lívia Silva Galbiatti-Dias, Márcia Maria Urbanin Castanhole-Nunes, Renato Ferreira da Silva, Érika Cristina Pavarino, Eny Maria Goloni-Bertollo, Mariangela Torreglosa Ruiz-Cintra

AIM
To evaluated the association of the risk factors and polymorphisms in MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G genes.

METHODS
Patients with cirrhosis (n = 116), hepatocellular carcinoma (HCC) (n = 71) and controls (n = 356) were included. Polymerase chain reaction followed by enzymatic digestion and allelic discrimination technique real-time PCR techniques were used for analysis. MINITAB-14.0
and SNPstats were utilized for statistical analysis.

RESULTS

Showed that age ≥ 46 years (OR = 10.31; 95%CI: 5.66-18.76; $P < 0.001$) and smoking (OR = 0.47; 95%CI: 0.28-0.78; $P = 0.003$) were associated with cirrhosis. Age ≥ 46 years (OR = 16.36; 95%CI: 6.68-40.05; $P < 0.001$) and alcohol habit (OR = 2.01; 95%CI: 1.03-3.89; $P = 0.039$) were associated with HCC. MTHFR A1298C in codominant model (OR = 3.37; 95%CI: 1.52-7.50; $P = 0.014$), recessive model (OR = 3.04; 95%CI: 1.43-6.47; $P = 0.0051$) and additive model (OR = 1.71; 95%CI: 1.16-2.52; $P = 0.0072$) was associated with HCC, as well as MTR A2756G in the additive model (OR = 1.68; 95%CI: 1.01-2.77; $P = 0.047$), and MTRR A66G in the codominant model (OR = 3.26; 95%CI: 1.54-6.87; $P < 0.001$), dominant model (OR = 2.55; 95%CI: 1.24-5.25; $P = 0.007$) and overdominant model (OR = 3.05; 95%CI: 1.66-5.62; $P < 0.001$). MTR A2756G in the additive model (OR = 1.54; 95%CI: 1.02-2.33; $P = 0.042$) and smokers who presented at least one polymorphic allele for MTRR A66G (OR = 1.71; 95%CI: 0.77-3.82; $P = 0.0051$) showed increased risk for cirrhosis. There was no association between clinical parameters and polymorphisms.

CONCLUSION

Age ≥ 46 years, alcohol habit and the MTR A2756G polymorphism are associated with an increased risk of HCC development; age ≥ 46 years, tobacco habit and the MTR A2756G polymorphism are associated with cirrhosis.

Key words: Polymorphism; Folate metabolism; Liver cirrhosis; Hepatocellular carcinoma

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Our study is relevant because we can get better understanding on the mechanisms involved in the development of hepatocellular and Cirrhosis Carcinoma and folate metabolism. It is already known that polymorphisms cause DNA hypomethylation, which cause abnormal changes in gene expression inactivating suppressor genes tumor. In this study we have found some positive associations which was possible to understand the carcinogenesis of this tumor and offer new possibilities for diagnosis. Throughout these results it is possible to achieve better quality of life in early treatments.

Peres NP, Galbiatti-Dias ALS, Castanhole-Nunes MMU, da Silva RF, Pavarino ÉC, Goloni-Bertollo EM, Ruiz-Cintra MT. Polymorphisms of folate metabolism genes in patients with cirrhosis and hepatocellular carcinoma. World J Hepatol 2016; 8(29): 1234-1243 Available from: URL: http://www.wjgnet.com/1948-5182/full/v8/i29/1234.htm DOI: http://dx.doi.org/10.4254/wjh.v8.i29.1234

INTRODUCTION

Liver cancer is the second most common cause of death from cancer worldwide. Hepatocellular carcinoma (HCC) is considered the major form of primary liver cancer and is responsible for 70%-85% of all liver cancers[1]. Each year, more than half a million people are diagnosed with HCC. According to the most recent data, 782000 new cases per hundred thousand inhabitants have been diagnosed, with 745000 deaths resulting from this disease. HCC is the fifth most common cancer in men (554000 cases, 7.5% of all cases) and the ninth most common cancer in women (228000, 3.4% of all cases)[2].

The major risk factor for HCC development, present in 90% of HCC patients, is liver cirrhosis, which is characterized by diffuse fibrosis, progressive and irreversible, with the presence of nodules delimited by fibrous septa[13]. There are other risk factors such as hepatitis B and C virus infection, liver disease derived from alcohol consumption, exposure to toxins such as aflatoxins and smoking, non-alcoholic fatty liver, obesity and diabetes[4,5].

Cancer is a multifactorial disease that results from complex interactions between genetic and environmental factors[6]. Some studies have been conducted using genetic polymorphisms involved in folate metabolism in various types of cancers[7-11] because folate metabolism is essential for DNA synthesis and alterations in folate levels are associated with changes in DNA synthesis, methylation and repair; promoting genomic instability that contributes to the process of carcinogenesis[12].

Several enzymes, including methylenetetrahydrofolate reductase enzyme (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR), are involved in folate metabolism[13]. Methylene tetrahydrofolate reductase (MTHFR) is a key regulatory enzyme in folate metabolism, and MTHFR can catalyse 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, which is the predominant circulating form of folate. There are two common functional polymorphisms identified in the MTHFR gene, the MTHFR C677T polymorphism and MTHFR A1298C polymorphism[14].

Moreover, 5-methyl-tetrahydrofolate donates one methyl group for homocysteine remethylation to methionine. The remethylation of this reaction is catalysed by the enzyme methionine synthase (MTR), which requires vitamin B12 as a cofactor. The enzyme methionine synthase reductase (MTRR) is responsible for maintaining the active state of the MTR enzyme. Polymorphisms MTR A2756G and MTRR A66G may cause decreased activity of the enzyme, leading to increased plasma homocysteine and DNA hypomethylation, which causes changes in gene expression, inactivating tumour suppressor genes and activate oncogenesis[16-18].

Studies have confirmed that the genetic polymorphisms involved in folate metabolism may contribute to the development of HCC[16,19]. Therefore, the present
study was aimed to evaluate the association of risk factors and polymorphisms in the genes MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G involved in folate metabolism with cirrhosis and HCC development in a case control study and to investigate the association of the polymorphisms with the clinical parameters of the disease in patients with cirrhosis and HCC.

MATERIALS AND METHODS

Ethical statement

Patients at the Liver, Intestine and Pancreas Transplant Unit of a university hospital in the northwest of the state of São Paulo, Brazil were included in the study after the diagnosis of liver cirrhosis and HCC, while the control group consisted of healthy individuals without cancer diagnosis. Individuals with a cancer family history were excluded from the control group. Informed consent was obtained from all subjects in this study, and the research protocol was approved by the Research Ethics Committee of FAMERP (CAAE: 20465713.1.0000.5415).

Patients

In this case-control study, 543 subjects (116 patients with liver cirrhosis, 71 patients with HCC and 356 healthy individuals) were included regardless of sex and age, from 2013 to 2015. Patients with cirrhosis were included because it is known as a well-established risk factor in 90% of patients with HCC.[1,3]

The sample calculation was performed according to the reports of Kwak et al[21] and Chang et al[23] which presented a similar sample calculation. Furthermore, no study has evaluated polymorphisms in folate metabolism in HCC and cirrhosis development in the Brazilian population.

The diagnosis of HCC was based on the criteria of the American Association for the Study of Liver Diseases published in 2012,[20] Liver biopsy was performed when the diagnosis was not possible by imaging methods, and the diagnosis of cirrhosis was made by clinical, laboratory, ultrasound and histopathological examinations when possible.

The variables analysed in this study were age, gender, exposure to risk factors (smoking and alcohol habit) and the presence of the MTHFR A1298C, MTHFR C677T, MTR A2756G and MTRR A66G polymorphisms. We considered smokers to be those who consumed at least 100 cigarettes during their lifetime and alcohol consumers to be those who drink more than 4 drinks weekly, corresponding 30 mL of liquor, 102 mL of wine, and 340 mL of beer.[21]

Patients diagnosed with HCC were also classified according to the Barcelona Clinic Liver Cancer (BCLC) classification, which is a staging system that serves mainly for therapeutic guidance, in which the patient is ranked into five stages and includes other classifications. This classification uses variables related to tumour stage, the functional state of the liver, physical condition, and symptoms related to cancer. Patients with stage 0, very early HCC and with only a minor 2-cm tumour were nominated for liver resection. Patients with early HCC phase A with up to 3-cm nodules were eligible for curative therapies (resection, liver transplantation or percutaneous treatments). Patients in phase B with intermediate HCC and this multinodular underwent chemoembolization. Patients in advanced stage C presenting portal invasion and metastases received new agents such as sorafenib, which is a palliative treatment, and patients in stage D with end-stage disease received symptomatic treatment[22].

Methods

Genomic DNA was extracted from peripheral blood leukocytes of the cases and controls according to Miller et al[23] and was amplified by multiplex PCR-RFLP to identify the MTHFR C677T (rs1801133) and MTHFR A1298C (rs1801131), MTR A2756G (rs1805087) polymorphisms. The amplification product was subjected to digestion by the restriction enzymes Hinf I, Mbo II, and Hae III, respectively. Electrophoresis was performed in 2.5% agarose gels at 110 volts for 100 min. Allelic discrimination via the Real-Time PCR - SNP Genotyping Assay (Applied Biosystems) was used to identify the MTRR A66G (rs1801394) polymorphism, using primers and probes specific for each allele available by the manufacturer (MTRR A66G: C_3068176_10)[7].

Genotyping confirmation was accomplished in 10% random samples of each group, and 100% concordance was observed.

Statistical analysis

Hardy-Weinberg equilibrium (HWE) was performed using χ^2 test. The multiple regression logistic test by the Minitab program - Version 14.0 was used to determine the effects of variables. The model evaluated the following variables: Age (reference: < 46 years; median), smoking habits (reference: No smokers), alcohol habit (reference: Non-consumers) and gender (reference: Female). The polymorphisms were used to adjust the analysis.

The multiple logistic regression model adjusted for age, gender, smoking and alcohol habits was also used to assess the association between polymorphisms and the development of cirrhosis and HCC using the SNPSstats program. The effect of the polymorphisms was evaluated in the following models: (1) codominant (heterozygous vs homozygous wild type and polymorphic homozygous vs homozygous wild type); (2) dominant (heterozygous more polymorphic homozygous vs homozygous wild type); (3) recessive (polymorphic homozygous vs homozygous wild type more heterozygous); (4) overdominant (wild homozygous vs heterozygous more polymorphic homozygote); and (5) additive (weight polymorphic homozygote vs heterozygote 2 more homozygous wild-type).

The SNPSstats program was also used to assess the
Table 1 Relationship between risk factors and hepatocellular carcinoma and liver cirrhosis development

Variables	Controls n (%)	Cirrhosis n (%)	OR (95%CI)	P-value	HCC n (%)	OR (95%CI)	\(^2P\)
Age							
< 46 anos	238 (67)	22 (19)	10.31 (5.66-18.76)	\(P < 0.001\)	8 (11)	16.36 (6.68-40.05)	\(P < 0.001\)
\(\geq 46\) anos	118 (33)	94 (81)					
Gender							
Female	95 (26.7)	30 (25.9)	0.96 (0.54-1.72)	\(P = 0.893\)	19 (26.8)	0.59 (0.29-1.22)	\(P = 0.154\)
Male	261 (73.3)	86 (74.1)					
Alcohol habit							
Yes	191 (54)	54 (46.6)	1.55 (0.91-2.63)	\(P = 0.106\)	27 (38)	2.01 (1.03-3.89)	\(P = 0.039\)
Not	165 (46)	62 (53.4)					
Smoking habit							
Nonsmokers	199 (56)	72 (62)	0.47 (0.28-0.78)	\(P = 0.003\)	31 (43.7)	0.9 (0.48-1.67)	\(P = 0.734\)
Smokers	157 (44)	44 (38)					

\(^{1}\)Odds ratio (OR) adjusted for age, genre, alcohol consumption, smoking habits and polymorphisms; \(^{2}\)P values significant at \(P < 0.05\). HCC: Hepatocellular carcinoma.

potential interaction between the polymorphisms with variables associated with cirrhosis and HCC development (tobacco and alcohol habits) through multiple logistic regression.

The *MTHFR* haplotypes were inferred using the Haplovie 4.2 statistical program, which creates population frequency estimates of the haplotypes.

The association between the clinical parameters and polymorphisms with HCC development were also analysed by multiple logistic regression. The patients were subjected to classification and BCLC staging divided into five stages (0, A, B, C and D). The variables alpha fetoprotein dose values, hepatitis B and C, diabetes mellitus and death were utilized in the adjustment of the analysis. The models included BCLC classification (reference: 0, A, B, C and D), alpha fetoprotein (reference: < 500 ng/mL), hepatitis B (reference: No), hepatitis C virus (reference: No), diabetes (reference: Absence), death (reference: No) and the studied polymorphisms (reference: Wild-type genotype).

The Kaplan-Meier method was applied to evaluate the survival rate by considering the period between the disease diagnosis and death to be the end point.

The results were presented as ORs and 95%CIs. The level of significance was set at 5% (\(P = 0.05\)).

RESULTS

The results for HWE were similar to those expected in both the case and control groups, respectively, for the *MTHFR C677T* (\(\chi^2 = 0.8940, P = 0.3444\) and \(\chi^2 = 3.1218, P = 0.0772\)), *MTR A2756G* (\(\chi^2 = 1.1554, P = 0.2824\) and \(\chi^2 = 1.1929, P = 0.2748\)) and *MTRR A66G* polymorphisms (\(\chi^2 = 3.2227, P = 0.0726\) and \(\chi^2 = 0.0530, P = 0.8018\)). However, the *MTHFR A1298C* polymorphism showed no equilibrium (\(\chi^2 = 8.0244, P = 0.0046\) and \(\chi^2 = 8.6427, P = 0.0033\)) for patients with HCC and/or cirrhosis and controls.

Table 1 shows the results for multiple logistic regression analysis between patients with liver cirrhosis and control subjects to determine the effects of variables. Age \(\geq 46\) years (OR = 10.31; 95%CI: 5.66-18.76; \(P < 0.001\)) and smoking habit were associated with the disease (OR = 0.47; 95%CI: 0.28-0.78; \(P = 0.003\)), and the analysis of patients with HCC and control subjects showed that age \(\geq 46\) years (OR = 16.36; 95%CI: 6.68-40.05; \(P < 0.001\)) and alcohol habit (OR = 2.01; 95%CI: 1.03-3.89; \(P = 0.039\)) were associated with the disease.

Table 2 shows the association of the *MTHFR C677T*, *MTHFR A1298C*, *MTR A2756G* and *MTRR A66G* polymorphisms with HCC, adjusted for gender, age, smoking and alcohol habit according to the heritage models. The *MTHFR A1298C* polymorphism in the codominant model (OR = 3.37; 95%CI: 1.52-7.50; \(P = 0.014\)), recessive model (OR = 3.04; 95%CI: 1.43-6.47; \(P = 0.0051\)) and additive model (OR = 1.71; 95%CI: 1.1929, \(\chi^2 = 0.0033\) for patients with HCC and/or cirrhosis and controls.

The Kaplan-Meier method was applied to evaluate the survival rate by considering the period between the disease diagnosis and death to be the end point.

The results were presented as ORs and 95%CIs. The level of significance was set at 5% (\(P = 0.05\)).

RESULTS

The results for HWE were similar to those expected in both the case and control groups, respectively, for the *MTHFR C677T* (\(\chi^2 = 0.8940, P = 0.3444\) and \(\chi^2 = 3.1218, P = 0.0772\)), *MTR A2756G* (\(\chi^2 = 1.1554, P = 0.2824\) and \(\chi^2 = 1.1929, P = 0.2748\)) and *MTRR A66G* polymorphisms (\(\chi^2 = 3.2227, P = 0.0726\) and \(\chi^2 = 0.0530, P = 0.8018\)). However, the *MTHFR A1298C* polymorphism showed no equilibrium (\(\chi^2 = 8.0244, P = 0.0046\) and \(\chi^2 = 8.6427, P = 0.0033\)) for patients with HCC and/or cirrhosis and controls.

Table 1 shows the results for multiple logistic regression analysis between patients with liver cirrhosis and control subjects to determine the effects of variables. Age \(\geq 46\) years (OR = 10.31; 95%CI: 5.66-18.76; \(P < 0.001\)) and smoking habit were associated with the disease (OR = 0.47; 95%CI: 0.28-0.78; \(P = 0.003\)), and the analysis of patients with HCC and control subjects showed that age \(\geq 46\) years (OR = 16.36; 95%CI: 6.68-40.05; \(P < 0.001\)) and alcohol habit (OR = 2.01; 95%CI: 1.03-3.89; \(P = 0.039\)) were associated with the disease.

Table 2 shows the association of the *MTHFR C677T*, *MTHFR A1298C*, *MTR A2756G* and *MTRR A66G* polymorphisms with HCC, adjusted for gender, age, smoking and alcohol habit according to the heritage models. The *MTHFR A1298C* polymorphism in the codominant model (OR = 3.37; 95%CI: 1.52-7.50; \(P = 0.014\)), recessive model (OR = 3.04; 95%CI: 1.43-6.47; \(P = 0.0051\)) and additive model (OR = 1.71; 95%CI: 1.1929, \(\chi^2 = 0.0033\) for patients with HCC and/or cirrhosis and controls.

The Kaplan-Meier method was applied to evaluate the survival rate by considering the period between the disease diagnosis and death to be the end point.

The results were presented as ORs and 95%CIs. The level of significance was set at 5% (\(P = 0.05\)).
Table 2: Association of MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G polymorphisms with hepatocellular carcinoma, adjusted for gender, age, smoking and alcohol consumption

Model	Genotipe	Control n (%)	Case n (%)	1OR (95%CI)	P-value	Genotipe	Control n (%)	Case n (%)	1OR (95%CI)	P-value
MTHFR	C677T					A1298C				
Codominant	C/C	149 (41.9)	28 (39.4)	1	0.91	A/A	205 (57.6)	32 (45.1)	1	0.014
	C/T	174 (48.9)	36 (50.7)	0.93 (0.51-1.68)	0.01	A/C	116 (32.6)	24 (33.8)	1.29 (0.69-2.42)	0.569
	T/T	33 (9.3)	7 (9.9)	1.13 (0.41-3.09)	0.01	C/C	35 (9.8)	15 (21.1)	3.37 (1.52-7.50)	0.014
Dominant	C/C	149 (41.9)	28 (39.4)	1	0.91	A/A	205 (57.6)	32 (45.1)	1	0.014
	C/T	174 (48.9)	36 (50.7)	0.93 (0.51-1.68)	0.01	A/C	116 (32.6)	24 (33.8)	1.29 (0.69-2.42)	0.569
	T/T	33 (9.3)	7 (9.9)	1.13 (0.41-3.09)	0.01	C/C	35 (9.8)	15 (21.1)	3.37 (1.52-7.50)	0.014
recessive	C/C	207 (58.1)	43 (60.6)	0.96 (0.54-1.70)	0.08	A/C/C/C	151 (42.4)	39 (54.1)	1.71 (0.98-2.99)	0.06
	C/C/C/T	323 (90.7)	64 (90.1)	1	0.91	A/A/A/C	321 (90.2)	56 (78.9)	1	0.051
	C/C/T/T	33 (9.3)	7 (9.9)	1.18 (0.46-3.05)	0.73	C/C/C/C/C	35 (9.8)	15 (21.1)	3.04 (1.43-6.47)	0.0051
Overdominant	C/C/T	182 (51.1)	35 (49.3)	1	0.91	A/A/C/C	240 (67.4)	47 (66.2)	1	0.0071
	C/T	174 (48.9)	36 (50.7)	0.91 (0.52-1.59)	0.73	A/C	116 (32.6)	24 (33.8)	0.99 (0.55-1.78)	0.98
additive	--	--	--	1.01 (0.64-1.58)	0.97	--	--	--	1.71 (1.16-2.52)	0.007

*Odds ratio (OR) adjusted for age, gender and alcohol consumption and smoking habits; *P* values significant at *P* ≤ 0.05.

Table 3: Association of MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G polymorphisms with Liver Cirrhosis, adjusted for gender, age, smoking and alcohol consumption

Model	Genotipe	Control n (%)	Case n (%)	1OR (95%CI)	P-value	Genotipe	Control n (%)	Case n (%)	1OR (95%CI)	P-value
MTHFR	C677T					A1298C				
Codominant	C/C	149 (41.9)	48 (64.8)	1	0.91	A/A	105 (29.5)	12 (16.9)	1	0.014
	C/T	174 (48.9)	55 (74.7)	1.58 (0.84-2.98)	0.13	A/G	179 (50.3)	50 (70.4)	3.26 (1.54-6.87)	< 0.001
	T/T	33 (9.3)	13 (11.2)	3.29 (0.81-13.30)	0.56	G/G	72 (20.2)	9 (12.7)	1.16 (0.44-3.11)	0.569
Dominant	C/C	205 (57.6)	46 (64.8)	1	0.91	A/A	105 (29.5)	12 (16.9)	1	0.014
	C/T	251 (70.5)	25 (32.5)	1.73 (0.95-3.15)	0.078	A/G/G/G	251 (70.5)	59 (83.1)	2.55 (1.24-5.25)	0.0072
	T/T	346 (97.2)	67 (94.4)	1	0.91	A/G/G/G	346 (97.2)	67 (94.4)	1	0.0072
recessive	C/G	10 (2.8)	4 (5.6)	2.91 (0.73-11.59)	0.15	G/G	72 (20.2)	9 (12.7)	0.51 (0.23-1.12)	0.077
	T/T	273 (76.7)	70 (74.0)	1	0.91	A/G/G/G	273 (76.7)	70 (74.0)	1	0.077
	A/G	83 (23.3)	21 (26.6)	1.49 (0.80-2.79)	0.22	G/G	179 (50.3)	50 (70.4)	3.05 (1.66-5.62)	< 0.001
additive	--	--	--	1.68 (1.01-2.77)	0.047	--	--	--	1.16 (0.77-1.73)	0.48

*Odds ratio (OR) adjusted for age, gender and alcohol consumption and smoking habits; *P* values significant at *P* ≤ 0.05.

(40.6%) of the AC haplotype observed in both groups (Case group: 0.403, Control group: 0.407; *χ*² = 0.01, *P* = 0.9194). The haplotype frequencies of AT (Case group: 0.283, Control group: 0.312; *χ*² = 0.843, *P* = 0.3584), haplotype frequencies of CC (Case group: 0.269, Control group: 0.247; *χ*² = 0.573, *P* = 0.4491), and haplotype frequencies of CT (Case group: 0.045, Control group: 0.035; *χ*² = 0.569, *P* = 0.4505) did not show significant
results.
There was no association in the multiple logistic regression analysis of the analysed clinical parameters and polymorphisms in patients with HCC stratified into tumours in stages 0 and A, and in tumours in stages B, C and D, according to the BCLC criteria (Table 6).

The Kaplan-Meier survival curves for genotype showed no association of polymorphisms and overall survival with HCC development. No polymorphism was associated with overall survival.

DISCUSSION

The results showed that age \geq 46 years and alcohol habits were associated with an increased risk of HCC development, similar to the results of Fassio et al., Munaka et al., Carrilho et al., Donato et al., Hamed et al. and Mittal et al.

Brazilian publications have reported that the mean age of the HCC patients is 54.6 years[3], in Latin
America, the average age in one published study was 64 years[24]; in another multicentre study in Spain, the reported average age was 65.6 years[25], and Mittal et al[1] concluded that a more recent increase in the incidence of HCC in the United States population was seen in Hispanics and blacks between the ages of 45 and 65 years, results that are similar to ours.

Regarding the result that alcohol consumption was also significant and more frequent in patients with HCC, a prospective case-control study from Japan has observed that heavy alcohol drinkers had a five-fold increase in the risk of HCC compared with non-drinkers[26]. Donato et al[27] 2002 in Italy, with a sample size of 464 cases and 824 controls individuals, found a positive relationship between alcohol consumption and HCC. The latter findings were confirmed in review of Hamed et al[28].

Evidence of a positive association between heavy alcohol drinking and liver cancer is derived mainly from case-control studies. The increased risk of those drinking 6 or more drinks per day compared with non-drinkers was 22%. Alcohol was the only cause present in 14% of cases in the 2010 Brazilian study by Carrilho et al[3]. Thus, the significance indexes are increased because drinking alcohol causes poor absorption of vitamin B complex, changing the folate metabolism and causing oxidative damage and breaks in the DNA strands[29]. In our study we found the association between alcohol and HCC development, this may be due the fact described above.

Regarding cirrhosis, we found that age ≥ 46 years and smoking habit was associated with risk of cirrhosis. As previously mentioned, 85%-90% of primary liver cirrhosis causes cancer, and multiple nonviral factors that are concerned with the development of liver cancer include iron overload syndromes, alcohol use, tobacco, oral contraceptives, aflatoxin, and pesticide exposure, which is prevalent in the developing world[28]. Regarding the tobacco habit, the data showed that 38% of individuals with cirrhosis had a tobacco habit. In addition to the liver, which is the target of chemical compounds in tobacco that can progress to cirrhosis, it was also observed in the literature that the development of diseases related to the progression to cirrhosis occurs more frequently in older individuals[30].

In addition to the association that we found between tobacco habit and cirrhosis development, there can be a relationship of tobacco with the dysfunction of genes as

Variables	Stage 0 e A Pacientes n (%)	Stage B, C e D Pacientes n (%)	OR (95%CI)¹	P
Alpha fetoprotein				
> 500 ng/mL	22 (84.6)	21 (46.7)	Reference	Reference
< 500 ng/mL	4 (15.4)	24 (53.3)	2.66 (0.55-12.72)	0.22
Hepatitis B virus				
Absence	25 (96.2)	38 (84.4)	Reference	Reference
Presence	1 (3.85)	7 (15.6)	4.06 (0.34-48.29)	0.27
Hepatitis C virus				
Absence	12 (46.2)	22 (48.9)	Reference	Reference
Presence	14 (53.8)	23 (41.1)	1.43 (0.35-5.78)	0.61
Steatohepatitis				
Absence	26 (100)	42 (93.3)	Reference	Reference
Presence	00 (00)	3 (6.7)	Reference	Reference
Diabetes				
Absence	18 (69.2)	32 (71.1)	Reference	Reference
Presence	8 (30.8)	13 (28.9)	0.25 (0.03-1.63)	0.15
Death				
No	24 (92.3)	17 (37.8)	Reference	Reference
Yes	2 (7.7)	28 (62.2)	25.3 (0.67-174.38)	0.09²
MTHFR A1298C				
AA	10 (38.5)	22 (48.9)	Reference	Reference
AC/CC	16 (61.5)	23 (51.1)	0.93 (0.22-3.86)	0.92
MTHFR C677T				
CC	11 (42.3)	17 (37.8)	Reference	Reference
CT/TT	15 (57.7)	28 (62.2)	1.65 (0.34-7.97)	0.53
MTR A2756G				
AA	18 (69.2)	28 (62.2)	Reference	Reference
AG/GG	8 (30.8)	17 (37.8)	0.78 (0.18-3.43)	0.75
MTRRA666G				
AA	4 (15.4)	8 (17.8)	Reference	Reference
AG/GG	22 (84.6)	37 (82.2)	1.09 (0.16-7.30)	0.93

¹OR: Odds ratio, CI: Confidence interval; ²Statistically significant at P ≤ 0.05; ³Could not calculate due to numerical proximity.

Table 6 Regression analysis of data from multiple logistic analyzed clinical parameters and polymorphisms in patients with hepatocellular carcinoma tumors divided into stages 0 and tumore in stages A and B, C and D according barcelona clinic liver cancer criteria
well as enzymes involved in the detoxification of nicotine, consequences that generate various types of liver-related diseases such as fibrosis, alcoholic hepatitis, cirrhosis and HCC\[^{33}\]. Although alcohol habit is a well-established risk factor for cirrhosis development\[^{22}\], our study did not find this association. However, 53.4% of cirrhosis patients in the present study were alcohol consumers.

In relation to the genetic characteristics, the present study was the first to be performed in a Brazilian population with HCC and cirrhosis and revealed that the MTR A2756G, MTHFR A1298C and MTRR A66G polymorphisms were associated with an increased risk of HCC development, results similar to the studies of Kwak et al\[^{37}\] and Yu et al\[^{33}\].

Chang et al\[^{39}\], with a sample of 204 patients with liver cancer and 415 controls found an association between MTR A2756G and increased risk for the disease, as well the meta-analysis performed by Yu et al\[^{33}\] that reported a significantly higher association between the genotype and 2756GG cancer risk in Asian populations.

There are studies involving other cancers that have found a positive association with at least one polymorphic allele 2756G and an increased risk of the development of disease. For example, the Hosseini et al\[^{8}\] that evaluated 592 individuals in Iran found an association between MTR GG genotype and breast cancer; Galbiatti et al\[^{33}\] also concluded that MTR A2765G polymorphism is involved in the risk of head and neck cancer; de Lima et al\[^{38}\] suggested an association between the MTR A2756G polymorphism and retinoblastoma susceptibility in a northeast population of Brazil, Ouerhani et al\[^{39}\] found that MTR A2756G affecting bladder cancer risk.

Regarding the MTRR A66G polymorphism, Kwak et al\[^{37}\] studied 96 patients and 201 controls and observed an association between the polymorphism and an increased risk of HCC, a finding that has also been found in other types of cancer; the Wu et al\[^{11}\] study demonstrated a positive relationship with the MTRR A66G polymorphism and breast cancer, and a meta-analysis performed by Zhou et al\[^{30}\] also found an association between this polymorphism and colorectal cancer, which is in agreement with our study. However, the study of Zhang et al\[^{35}\] did not find an association of this polymorphism with HCC development.

We also found an association between the MTHFR A1298C polymorphism and an increased risk of HCC development. Two meta-analyses reported an association of this polymorphism with a decreased risk of HCC, demonstrating a protective effect\[^{36,37}\]. However, Liang et al\[^{39}\] meta-analysis of a total of seven studies showed that the homozygote genotype CC of the MTHFR rs1801131 polymorphism was significantly associated with a decreased risk of liver cancer (for CC vs AA: OR = 0.65, 95%CI: 0.47-0.89, P = 0.007; for CC vs AA + AC: OR = 0.65, 95%CI: 0.48-0.89, P = 0.006), similar our study.

Our results for cirrhosis and polymorphisms showed an association between MTR A2756G and an increased risk of the disease. There are no studies in the literature that have evaluated the association between the MTR A2756G polymorphism and cirrhosis development. The present study is the first to investigate the MTRA A2756G polymorphism and cirrhosis development, and the association that was found can be related to alteration of the MTR enzyme that occurs due to the presence of the MTR A2756G polymorphism. The alteration of the MTR enzyme causes elevation in the homocysteine levels and DNA hypomethylation, leading to chromosomal instability, mutations and the overexpression of proto-oncogenes that can be associated with the development of several types of diseases, including cirrhosis. However, more studies in different populations of individuals with cirrhosis are needed\[^{39}\].

Regarding the potential interaction among the polymorphisms with variables associated with the diseases, we found that smoking in those with the heterozygote genotype (AG) or polymorphic homozygote genotype (GG) for MTRR gene was associated with liver cirrhosis. There are no studies that have investigated this interaction, however, tobacco habit can be related to cirrhosis because the chemical compounds can modify the liver and lead to cirrhosis\[^{39}\] independently of the MTRR A66G polymorphism.

Regarding BCLC classification, we did not find an association with the polymorphisms evaluated. Our data showed that 7% of patients in stage 0, 29.6% in stage A, 22.5% in stage B, 31% in stage C and 9.8% in stage D. The study of Varela et al\[^{25}\] reported that 49.8% of 705 cases were in the initial stage (A), 19.8% in the intermediate stage (B), 18.8% in the advanced stage (C) and 11.6% in the terminal phase (D). Additionally, the study of Raphe et al\[^{30}\] reported that 32.7% were in stage A, 22% in stage B, 30.4% in stage C, 14% in stage D. Current published data show that patients who are in stage A are asymptomatic and have preserved liver function have a 5-year survival of 50%-75%. Patients who are in stage B have a median survival of 20 mo; those who are already in the C and D stages have severe liver dysfunction and extrahepatic metastases reach an 11-mo survival, and only 10% of patients in the D stage survive more than a year with an average survival of 3-4 mo\[^{26}\].

In conclusion, age \(\geq 46\) years, alcohol habit and the MTR A2756G, MTHFR A1298C and MTRR A66G polymorphisms are associated with an increased risk of HCC development; age \(\geq 46\) years, tobacco habit and the MTR A2756G polymorphism are associated with cirrhosis development. There is an interaction between the MTRR A66G polymorphism and tobacco consumers with liver cirrhosis. The present study can collaborate to establish the etiologic factors related to HCC and cirrhosis development and to contribute to strategies related to health care.

ACKNOWLEDGMENTS

We greatly appreciate the Faculdade de Medicina de

Peres NP et al. Polymorphisms in patients with liver diseases
São José do Rio Preto, FAMERP and Medical School Foundation, FUNFARME for their institutional support and UPGEM-Genetics and Molecular Biology Research Unit.

REFERENCES

1. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. *J Clin Gastroenterol* 2013; 47 Suppl: S2-S6 [PMID: 23632345 DOI: 10.1097/MCG.0b013e3182872f29]

2. Ferlay J, Soerjomataram I, Dikshit R, Mathers C, Parkin DM. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer* 2015; 136: E359-E386 [PMID: 25220842 DOI: 10.1002/ijc.29210]

3. Carrilho FJ, Kitucchi L, Branco F, Goncalves CS, Mattos AA. Clinical and epidemiological aspects of hepatocellular carcinoma in Brazil. *Clinics (Sao Paulo)* 2010; 65: 1285-1290 [PMID: 21340216 DOI: 10.1590/S1807-59322010001200010]

4. Jemal A, Bray F, Center MM, Ferlay J, Ward E. Global cancer statistics. *CA Cancer J Clin* 2011; 61: 69-90 [PMID: 21296855 DOI: 10.3322/caac.20107]

5. Bosetti C, Turati F, La Vecchia C. Hepatocellular carcinoma epidemiology. *Best Pract Res Clin Gastroenterol* 2014; 28: 753-770 [PMID: 25260306 DOI: 10.1016/j.bpcg.2014.08.007]

6. Pharoah PD, Dunning AM, Pender BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants. *Nat Rev Cancer* 2004; 4: 850-860 [PMID: 15516958 DOI: 10.1038/ncr4176]

7. Galbiatti AL, da Silva LM, Ruiz-Cintra MT, Raposo LS, Maniglia JV, Pavarino EC, Goloni-Bertoletto EM. Association between 11 genetic polymorphisms in folate-metabolising genes and head and neck cancer risk. *Eur J Cancer* 2012; 48: 1525-1531 [PMID: 22051736 DOI: 10.1016/j.ejca.2011.09.025]

8. Hosseini M. Role of polymorphism of methyltetrahydrofolate-homocysteine methyltransferase (MTR) A2756G and breast cancer risk. *Pol J Pathol* 2013; 64: 191-195 [PMID: 24166605 DOI: 10.5141/pjp.2013.38138]

9. de Lima EL, da Silva VC, da Silva HD, Bezerra AM, de Morais VL, de Morais AL, Cruz RV, Barros MH, Hassan R, de Freitas AC, Muniz MT. MTR polymorphic variant A2756G and retinoblastoma risk in Brazilian children. *Pediatr Blood Cancer* 2010; 54: 904-908 [PMID: 20330066 DOI: 10.1002/pbc.224772]

10. Ouerhani S, Rouissi K, Marrakchi R, Ben Slama MR, Sfaxi M, Chebil M, ElGaiad AB. Combined effect of NAT2, MTR and MTHFR genotypes and tobacco on bladder cancer susceptibility in Tunisian population. *Cancer Detect Prev* 2009; 32: 395-402 [PMID: 19588544 DOI: 10.1016/j.cndp.2009.04.005]

11. Wu X, Zou T, Cao N, Ni J, Xu W, Zhou T, Wang X. Plasma homocysteine levels and genetic polymorphisms in folate metabolism are associated with breast cancer risk in Chinese women. *Hered Cancer Clin Pract* 2014; 12: 2 [PMID: 24559276 DOI: 10.1186/1897-4287-12-2]

12. Duthe SJ. Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. *J Inherit Metab Dis* 2011; 34: 101-109 [PMID: 20544289 DOI: 10.1016/j.jimd.2010-9128-0]

13. Taflin H, Wettergren Y, Odin E, Carlsson G, Derwinger K. Folate Levels and Polymorphisms in the Genes MTHFR, MTR, and TS in Colorectal Cancer. *Clin Med Insights Oncol* 2014; 8: 15-20 [PMID: 24596472 DOI: 10.4137/CMO.S12701]

14. Födinger M, Hörl WH, Sandler-Plassmann G. Molecular biology of 5,10-methylenetetrahydrofolate reductase. *J Nephrol* 2000; 13: 20-33 [PMID: 10720211]

15. Jiang-Hua Q, De-Chuang J, Zhen-Duo L, Shu-de C, Zhenhuan L. Association of methylenetetrahydrofolate reductase and methionine synthase polymorphisms with breast cancer risk and interaction with folate, vitamin B6, and vitamin B12 intakes. *Tumour Biol* 2014; 35: 11895-11901 [PMID: 25217320 DOI: 10.1007/s13277-014-2456-1]

16. Mu LN, Cao W, Zhang ZF, Cai L, Jiang QW, You NC, Goldstein BY, Wei GR, Chen CW, Lu QY, Zhou XF, Ding BG, Chang J, Yu SZ. Methyleneetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and the risk of primary hepatocellular carcinoma (HCC) in a Chinese population. *Cancer Causes Control* 2007; 18: 665-675 [PMID: 17503006 DOI: 10.1007/s10552-007-9012-x]

17. Kwak SY, Kim UK, Cho HJ, Lee HK, Kim HJ, Kim NK, Hwang SG. Methyleneetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population. *Anticancer Res* 2008; 28: 2807-2811 [PMID: 19035314]

18. Sun H, Han B, Zhai H, Cheng X, Ma K. Significant association between MTHFR C677T polymorphism and hepatocellular carcinoma risk: a meta-analysis. *Tumour Biol* 2014; 35: 189-193 [PMID: 24132589 DOI: 10.1007/s13277-013-1023-5]

19. Chang SC, Chang PY, Butler B, Goldstein BY, Mu L, Cui L, You NC, Baecker A, Yu SZ, Heber D, Lu QY, Li L, Greeneland S, Zhang ZF. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. *PLoS One* 2014; 9: e109235 [PMID: 25337902 DOI: 10.1371/journal.pone.0109235]

20. Méndez-Sánchez N, Ridueto E, Alves de Mattos A, Chávez-Tapia NC, Zapata R, Parañá R, Mastai R, Strauss E, Guevara-Casallas LG, Durauich J, Gadano A, Parise ER, Uribe M, Aguilar-Olivos NE, Dagher L, Ferraz-Neto BH, Valdés-Sánchez M, Sánchez-Avila JF. Latin American Association for the Study of the Liver (LAASL) clinical practice guidelines: management of hepatocellular carcinoma. *Ann Hepatol* 2013; 13 Suppl 1: S4-S40 [PMID: 24998696]

21. Carpenter CL, Morgenstern H, London SJ. Alcoholic beverage consumption and lung cancer risk among residents of Los Angeles County. *J Nutr* 1998; 128: 694-700 [PMID: 9521630]

22. European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. *J Hepatol* 2012; 56: 908-943 [PMID: 22424438 DOI: 10.1016/j.jhep.2011.12.001]

23. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. *Nucleic Acids Res* 1988; 16: 1215 [PMID: 3344216]

24. Fassio E, Díaz S, Santa C, Reign ME, Martinez Artola Y, Alves de...
25 Varela M, Reig M, de la Mata M, Matilla A, Bustamante J, Pascual S, Torres J, Ansíl C, Del Val A, Pascasio JM, Rodríguez M, Bruix J. Treatment approach of hepatocellular carcinoma in Spain. Analysis of 705 patients from 62 centers. Med Clin (Barc) 2010; 134: 569-576 [PMID: 20036398 DOI: 10.1016/j.medcli.2009.10.042]

26 Munaka M, Kohshi K, Kawamoto T, Takasawa S, Nagata N, Inoh H, Oda S, Kato T. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and the risk of hepatocellular carcinoma. J Cancer Res Clin Oncol 2003; 129: 355-360 [PMID: 12759747 DOI: 10.1007/s00432-003-0439-5]

27 Donato F, Tagger A, Gelatti U, Farrinillo G, Boffetta P, Albertini A, Decarli A, Trevisi P, Ribero ML, Martelli C, Porru S, Nardi G. Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am J Epidemiol 2002; 155: 323-331 [PMID: 11836196 DOI: 10.1093/aje/155.4.323]

28 Hamed MA, Ali SA. Non-viral factors contributing to hepatocellular carcinoma. World J Hepatol 2013; 5: 311-322 [PMID: 23805355 DOI: 10.4245/wjh.v5.i6.311]

29 Sellers TA, Kushi LH, Cerhan JR, Vierkant RA, Gapstur SM, Vachon CM, Olson JE, Therneau TM, Folsom AR. Dietary folate intake, alcohol, and risk of breast cancer in a prospective study of postmenopausal women. Epidemiology 2001; 12: 420-428 [PMID: 11416780]

30 Clark JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 2006; 40 Suppl 1: S5-S10 [PMID: 16540768 DOI: 10.1097/01.mcg.0000168638.84840.ff]

31 Su CH, Lin Y, Cai L. Genetic factors, viral infection, other factors and liver cancer: an update on current progress. Asian Pac J Cancer Prev 2013; 14: 4923-4960 [PMID: 24175578]

32 Méndez-Sánchez N, Aguilar-Ramirez JR, Reyes A, Dehesa M, Juárez A, Castaeda B, Sánchez-Avila F, Poo JL, Guevara González L, Lizardi J, Valdivinos MA, Uribe M, Contreras AM, Tirado P, Aguirre J, Rivera-Benítez C, Santiago-Santiago R, Bosques-Padilla F, Muñoz L, Guerrero A, Ramos M, Rodríguez-Hernández H, Jacobo-Karam J. Etiology of liver cirrhosis in Mexico. Ann Hepatol 2004; 3: 30-33 [PMID: 15118577]

33 Yu K, Zhang J, Zhang J, Dou C, Gu S, Xie Y, Mao Y, Ji C. Methionine synthase A2756G polymorphism and cancer risk: a meta-analysis. Eur J Hum Genet 2010; 18: 370-378 [PMID: 19826453 DOI: 10.1038/ejhg.2009.131]

34 Zhou D, Mei Q, Luo H, Tang B, Yu P. The polymorphisms in methylentetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int J Biol Sci 2012; 8: 819-830 [PMID: 22719222 DOI: 10.7150/ijbs.4462]

35 Zhang H, Liu C, Han YC, Ma Z, Zhang H, Ma Y, Liu X. Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case-control study. Tumour Biol 2015; 36: 997-1002 [PMID: 25318605 DOI: 10.1007/s13277-014-2725-z]

36 Qin X, Peng Q, Chen Z, Deng Y, Huang S, Xu J, Li H, Li S, Zhao J. The association between MTHFR gene polymorphisms and hepatocellular carcinoma risk: a meta-analysis. PLoS One 2013; 8: e56070 [PMID: 23457501 DOI: 10.1371/journal.pone.0056070]

37 Qi X, Sun X, Xu J, Wang Z, Zhang J, Peng Z. Associations between methylenetetrahydrofolate reductase polymorphisms and hepatocellular carcinoma risk in Chinese population. Tumour Biol 2013; 34: 1757-1762 [PMID: 24385382 DOI: 10.1007/s13277-013-1529-x]

38 Liang TJ, Liu H, Zhao XQ, Tan YR, Jing K, Qiu CY. Quantitative assessment of the association between MTHFR rs1801131 polymorphism and risk of liver cancer. Tumour Biol 2014; 35: 339-343 [PMID: 24014085 DOI: 10.1007/s13277-014-1046-y]

39 Simon S. Study: Smoking Dramatically Increases Liver Cancer Risk. Liver Cancer, American Cancer Society 2011. [Access on: November 15, 2015]. Available from: URL: http://www.cancer.org/cancer/news/study-smoking-dramatically-increases-liver-cancer-risk

40 Raphe R, Duca WJ, Arroyo PCJ, Silva RC, Silva RF. Hepatocellular Carcinoma: Risk Factors, Diagnosis, Staging and Treatment in a Referral Centre. Journal of Cancer Therapy 2013; 4: 384-393 [DOI: 10.4236/jct.2013.42A046]
