Commentary

Epithelial Signaling through the RUNX1/AKT Pathway: A New Therapeutic Target in Kidney Fibrosis

Pierre Galichon *

Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

Treatment of chronic kidney disease is a major health challenge worldwide. Current treatments aim to control blood pressure and proteinuria, especially through renin angiotensin aldosterone system inhibition [1]. Unfortunately, these treatments targeting the vascular and glomerular compartments of the kidney often fail to stop the progression of the disease. Another major contributor to chronic kidney disease is tubular cells. Specific activation of the renal tubular cells is sufficient to cause kidney fibrosis [2]. Changes in the pattern of gene expression in the renal epithelium is a hallmark of renal fibrosis in animal models and in human pathology. This process is named partial epithelial to mesenchymal transition (pEMT), as opposed to full EMT observed in carcinoma, where cells also acquire the ability to migrate out of their initial environment, thus facilitating metastatic dissemination of the disease [3]. Induction in the renal tubule of one master EMT regulator, SNAI1, is sufficient to cause kidney fibrosis, and reversal of pEMT by SNAI1 inhibition is protective [4].

In this issue of EBioMedicine, Zhou and coworkers show that RUNX1 is induced in the renal tubule in 2 different models of chronic kidney disease, and causes kidney fibrosis through P110δ/AKT activation [5]. They show that the tubular-specific inhibition of this pathway is sufficient to control chronic structural damage, and in one model, to improve kidney function. They also use pharmaceutical compounds to target this pathway and block EMT in renal tubular cells in vitro. Interestingly, although the mRNA expression of the master EMT gene SNAI1 preceded the induction of RUNX1, it needed RUNX1 expression for signal transduction, highlighting RUNX1 as a switch controlling the downstream fibrotic process. The fact that there is no significant basal expression of RUNX1 or P110δ in the kidney, and that inhibitors of both P110δ and PI3K are clinically tested for treatment of cancer is very encouraging in terms of potential therapeutic applications.

P110δ inhibition is being evaluated in hematological malignancies (e.g., NCT02457598). These ongoing studies will provide important safety data for this drug, and inform its potential clinical use for nonmalignant diseases. Also, RUNX1 expression was found to be associated to tumors derived from renal proximal tubular cells, clear renal cell carcinoma [6], and targeting the PI3K/AKT pathway with inhibitors of the rapalog family has shown some (although limited) efficiency in these tumors. Considering the lack of efficient treatments for these tumors when complete surgical removal is not possible, upstream targeting of the RUNX1/P110δ/AKT pathway is a promising strategy.

Important developments are needed before these findings can be implemented to the clinical setting: is this RUNX1/AKT instrumental in other models of chronic kidney disease and in humans? In particular, Akt is induced in models of diabetic nephropathy, a major contributor to chronic kidney disease [7]. It will be important to assess the efficiency and the safety of inhibiting the p110δ/AKT pathway in these situations on the long term. Chronic kidney disease is often multifactorial, and superimposed episodes of acute kidney injury are frequent. Because chronic diseases require long-term treatment, it is needed to evaluate the time-dependent cumulative toxicity of such therapies, and to assess potential interactions with other medical conditions occurring in the population of patients with chronic kidney disease.

Disclosure

The author declares no conflicts of interest.

References

[1] Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3(1):1–150.

[2] Sugimoto H, et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 2012;18:396–404.

[3] Galichon P, Finianos S, Hertig A. EMT-MET in renal disease: Should we curb our enthusiasm? Cancer Lett 2013;341:24–9.

[4] Grandje MT, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 2015;21:989–97.

[5] Zhou T, et al. Run-related transcription factor 1 (RUNX1) promotes TGF-β-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ. E-biomed 2018;31:217–25.

[6] Xiong Z, et al. RNA sequencing reveals upregulation of RUNX1-RUNX1T1 gene signatures in clear cell renal cell carcinoma. Biomed Res Int 2014;2014:450621.

[7] Lan A, Du J. Potential role of Akt signaling in chronic kidney disease. Nephrol Dial Transplant 2015;30:385–94.