Protein trapping leads to altered synaptic proteostasis in synucleinopathies

Patrícia I. Santos¹ and Tiago F. Outeiro¹,²,³

¹ Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
² Max Planck Institute of Experimental Medicine, Göttingen, Germany
³ Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

Keywords
alpha-synuclein; HSP10; Parkinson’s disease; proteostasis; synaptopathy

Correspondence
T. F. Outeiro, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
Tel: +495513913544
E-mail: touteiro@gwdg.de

(Received 15 February 2020, revised 1 April 2020, accepted 7 May 2020)
doi:10.1111/febs.15364

Parkinson’s disease (PD) is associated with the accumulation of alpha-synuclein (aSyn) in intracellular inclusions known as Lewy bodies and Lewy neurites. Under physiological conditions, aSyn is found at the presynaptic terminal and exists in a dynamic equilibrium between soluble, membrane-associated and aggregated forms. Emerging evidence suggests that, under pathological conditions, aSyn begins to accumulate and acquire a toxic function at the synapse, impairing their normal function and connectivity. However, the precise molecular mechanisms linking aSyn accumulation and synaptic dysfunction are still elusive. Here, we provide an overview of our current findings and discuss the hypothesis that certain aSyn aggregates may interact with proteins with whom aSyn normally does not interact with, thereby trapping them and preventing them from performing their normal functions in the cell. We posit that such abnormal interactions start to occur during the prodromal stages of PD, eventually resulting in the overt manifestation of clinical features. Therefore, understanding the nature and behaviour of toxic aSyn species and their contribution to aSyn-mediated toxicity is crucial for the development of therapeutic strategies capable of modifying disease progression in PD and other synucleinopathies.

Introduction

Parkinson’s disease (PD) and other synucleinopathies are neurodegenerative diseases characterized by the presence of intraneuronal inclusions known as Lewy bodies (LBs) and Lewy neurites (LNs). These inclusions are composed primarily of alpha-synuclein (aSyn), but they also contain neurofilaments, ubiquitin, synphilin-1, torsinA and heat shock proteins, among other components [1–3]. aSyn is a small protein of 140 amino acids that belongs to the synuclein family. It is abundant in neurons of the mammalian brain, where it localizes predominantly in presynaptic terminals [4–6]. The precise function of aSyn is still unknown but it is known to interact with various proteins, like actin [7,8], tubulin, synphilin-1, microtubule-associated protein tau, proteins, preformed fibrils; ROS, reactive oxygen species; SOD2, superoxide dismutase 2; SRC, spare respiratory capacity.

Abbreviations
aSyn, alpha-synuclein; DBL, dementia with Lewy body; ER, endoplasmic reticulum; HSP10, 10 kDa heat shock protein; HSP27, 27 kDa heat shock protein; HSP60, 60 kDa heat shock protein; HSP70, 70 kDa heat shock protein; HSP90, 90 kDa heat shock protein; HtrA2, high temperature-regulated A2; LBs, Lewy bodies; LNs, Lewy neurites; paSyn, S129-phosphorylated aSyn; PD, Parkinson’s disease; PFFs, preformed fibrils; ROS, reactive oxygen species; SOD2, superoxide dismutase 2; SRC, spare respiratory capacity.
tyrosine hydroxylase, protein kinase c or Bel-2-associated death protein [9]. aSyn is involved in the maintenance of cell structure and protein trafficking via its interactions with diverse cytoskeletal proteins [10–13]. It is also involved in transmembrane transport and in the formation of synaptic vesicles [14–16], in stabilizing the effects of SNARE-complex assembly [17,18] and in the modulation of synaptic functions [19–22]. As an intrinsically disordered protein, that can adopt different conformations, aSyn may also behave like a hub within protein interaction networks, interacting and influencing, directly or indirectly, other partners.

When overexpressed in model systems, aSyn can aggregate and affect mitochondrial calcium homeostasis [23], and protein import [24] and turnover [25]. In some models, overexpression promotes cytotoxicity, impairs autophagy and mitochondrial processes due to the generation of reactive oxygen species (ROS), increases sensitivity to oxidative stress, compromises vesicular transport and disrupts the trafficking between the endoplasmic reticulum (ER) and Golgi [26–32].

Microtubules are important structures for the intracellular transport of molecules in the cytosol, and also for the integrity of cell shape. In rat, primary neurons infected with viruses encoding for aSyn [33] exhibit neurite degeneration and membrane blebbing, consistent with detrimental effects of aSyn on tubulin polymerization [34].

aSyn can also mediate the cytoplasmic retention of DNA methyltransferase 1 (Dnmt1), resulting in DNA hypomethylation and up-regulation of SNCA and other PD-related genes. In human postmortem brains of PD and/or dementia with Lewy body (DLB) patients, the reduction of nuclear levels of Dnmt1 and DNA methylation [35], the accumulation of Elk-1 (phosphorylated transcription factor) within aSyn glial cytoplasmic inclusions [36–38] and cytoplasmic aggregates of phospho-CREB [39,40] were also reported.

All of these cellular pathological events are likely to contribute to the onset and development of neurodegeneration. Nevertheless, the precise trigger(s) of pathogenesis in PD and other synucleinopathies remain unclear.

Parkinson’s disease as a synaptopathy

In PD and other neurodegenerative diseases, synaptic dysfunction is thought to be an early event that correlates with the manifestation of nonmotor symptoms [41], while later stages of the disease are characterized by neurodegeneration and cell loss [42–44]. Thus, synaptic dysfunction might be considered a prodromal stage of cellular pathologies that is then followed by axonal abnormalities, leading to the degenerative loss of neuronal somas [41,45–54].

aSyn-rich LB inclusions are present not only in neuronal cell bodies but also, and firstly, in axonal processes [55]. More recent studies reported aSyn in axonal dystrophic neurites in the striatum of PD [56] and DLB patients [57]. These studies suggest that synucleinopathy occurs in presynaptic terminals and axons, which goes in line with the predominant localization of aSyn in presynaptic terminals [4–6]. These early phenotypes can be attributed to the accumulation of toxic aSyn species within synapses, or the trapping of synaptic proteins by aSyn, ultimately leading to a process of dying back-like neurodegeneration.

Under physiological conditions, aSyn functions in its native conformation, possibly as a monomer. When the levels of aSyn start to increase, such as due to changes in its turnover, due to a decline in age-associated proteostasis or because of the effect of post-translational modifications [58,59], aSyn may gain abnormal properties and form toxic species. Among these toxic species, oligomers and fibrils are thought to play a key role in pathogenesis in synucleinopathies. These species can accumulate at presynaptic terminals, affect neurotransmitter release and synaptic transmission and, ultimately, cause synaptic dysfunction, leading to loss of neuronal connections and subsequent neuronal death (Fig. 1).

aSyn overexpression, which may potentiate the formation of toxic species, has been also shown to induce severe mitochondrial deficits, including fragmentation [31], mitophagy [60] and impaired mitochondrial protein import [24]. These are thought to be relevant for disease onset. Consistent with functional synaptic alterations at early stages of PD and other synucleinopathies, aSyn-induced mitochondrial impairment in the nigrostriatal system seems to start in synaptic mitochondria prior to the onset of generalized mitochondrial dysfunction in other parts of the neuronal cell.

aSyn interacts with the HSP10 chaperonin

In addition to the cytosol, aSyn has also been detected in mitochondria [61], where it affects, for example, respiratory chain complex activity [62,63]. aSyn interacts with several synaptic and mitochondrial proteins [64] and affects the function of these compartments [24,25,27,50,65–67].

Abnormalities in mitochondrial lipids and impairments in the electron transport chain were described in aSyn knockout mice. In addition, impairment in
mitochondrial complex I activity and increased ROS production in mitochondria are associated with the accumulation of wild-type aSyn in human dopaminergic neurons in culture and in postmortem PD brain tissue [63]. These findings suggest that both loss of function and aggregation of aSyn may affect mitochondrial function [62] and, thereby, affect neuronal homeostasis. Nevertheless, the exact impact of aSyn in striatal synaptosomal mitochondria is still unclear.

One of the proteins affected by aSyn is the 10 kDa heat shock protein (HSP10). HSP10 is a major hub protein in cellular interactions [68] that also plays an important role in regulating mitochondrial functions such as respiration, removal of ROS and maintaining mitochondrial membrane potential [69]. Together with the 60 kDa heat shock protein (HSP60), HSP10 forms asymmetric or symmetric complexes in mitochondria (Fig. 2). Interestingly, the asymmetric complex has decreased folding capacity, while the formation of the symmetric complex is limited by the levels of HSP10 [70]. A reduction in the function of HSP10/HSP60

Fig. 1. Neurodegeneration associated with the accumulation of aSyn in presynaptic terminals. (A) Under physiological conditions, aSyn functions in its native conformation, possibly as a monomer, and localizes predominantly in presynaptic terminals. (B) Toxic aSyn species, generally known as oligomers and PFF, start to form and accumulate at the presynaptic terminal, leading to alterations in synaptic transmission and promoting synaptic dysfunction. (C) Ultimately, the accumulation of toxic species of aSyn leads to a process of dying back-like neurodegeneration.

Fig. 2. Schematic representation of HSP10/HSP60 complexes in mitochondria. The HSP10 forms either an asymmetric complex, assembled by one HSP10 heptameric ring (less efficient complex) (left), or a symmetric complex, assembled by two rings (right), with HSP60.
complex results in embryonic lethality [71], and a heterozygous mutation in the HSPE1 gene, encoding for HSP10, is associated with a severe, early-onset neurological disorder in humans [72]. Although the mutant protein retains some functionality, it leads to a reduction in the HSP10-to-HSP60 ratio. Since a reduction in the HSP10 levels results in the formation of asymmetric, less efficient complexes, the levels of client proteins, such as superoxide dismutase 2 (SOD2), decreased and, consequently, mitochondrial ROS levels increase [73]. Therefore, even small changes in the levels of HSP10 may alter the activity of multiple proteins and cellular functions. In the context of neurological diseases, the handling of HSP10 levels remains unclear [72,74–78]. Interestingly, we found that in either young or middle-aged aSyn transgenic animals, the levels of mitochondrial HSP10 are reduced, but the total striatal HSP10 levels were not affected by genotype or neither by age. In parallel, the levels of cytosolic HSP10 were raised in both young and middle-aged A30PaSyn mice [79]. Spare respiratory capacity (SRC), a measure of mitochondrial activity, is reduced in synaptosomes from young aSyn transgenic animals; however, the total mitochondrial fractions are not affected. Moreover, mitochondrial ROS handling, mitochondrial membrane potential and the opening of the mitochondrial permeability transition pore are also selectively compromised in the synaptic compartment of the striatum, but not in total mitochondrial fractions [79]. Both synaptosomal and total mitochondrial SRC are, however, reduced in middle-aged transgenic mice. These data suggest that age-associated decreased levels of mitochondrial HSP10 have functional implications.

Consistently, fractionation of putamen samples from PD patients and controls revealed that the levels of synaptosomal HSP10 and SOD2 are reduced in patients [79]. This causes an increase in mitochondrial

![Healthy synapse](image1)

![Unhealthy synapse](image2)

Fig. 3. aSyn interacts with the HSP10 chaperonin in presynaptic terminals. Under physiological conditions, aSyn localizes predominantly in presynaptic terminals interacting with various proteins (left). The accumulation of toxic aSyn species leads to alterations in synaptic vesicles and to sequestration of HSP10 in the cytosol, preventing it from acting in the mitochondria (right). These alterations impair mitochondrial function and result in an increase in ROS and an impairment in ATP production, and ultimately leading to synaptic dysfunction.
oxidative stress and impairment of respiration, suggesting that HSP10 may be an important player in aSyn-associated mitochondrial dysfunction in synucleinopathies (Fig. 3).

Although there were no changes in soluble aSyn levels, HSP10 interacts with monomeric, oligomeric and preformed fibrils (PFFs) of aSyn with affinities in the micromolar range [79]. Considering that HSP10 is synthesized in the cytosol and that aSyn is also primarily a cytosolic protein, the primary site for the interaction between these proteins would be the cytosol. In our study, we showed that pre-incubation of PFFs with HSP10 reduces the folding activity of the HSP10/HSP60 complex. However, the folding activity of complexes already formed does not change [79]. Our study suggests conformation-specific interactions between aSyn and HSP10, given that we did not observe effects with aSyn monomers or PFFs.

Restoring the levels of HSP10 reduces aSyn pathology

As highlighted above, the link between aSyn pathology and mitochondrial dysfunction in PD is complex. Dysfunctional mitochondria produce less ATP and more ROS. If this takes place in the synapse, it likely leads to synaptic dysfunction [80] and, in turn, to the accumulation of aggregated aSyn [81–83] (Fig. 4). Mitochondrial health is essential for axonal transport, regeneration [84] and, consequently, to the clearance of aSyn [85]. This indicates that enhancing mitochondrial health might lead to delayed aSyn pathology and, as a consequence, to reduced aSyn-associated mitochondrial dysfunction.

Other chaperones, such as HSP27 [86,87], HSP70 [88–90] and HSP90 [91,92], have already been shown to play a role in aSyn aggregation and toxicity. Upon aSyn overexpression, the levels of HSP10 are reduced,
and overexpressing HSP10 restores the detrimental effects of WTaSyn, such as impairments in mitochondrial respiration and ROS handling. In WTaSyn-expressing cells, HSP10 overexpression results in increased levels of SOD2 and, consequently, in improved elimination of mitochondrial ROS. In addition, the mitochondrial serine protease high temperature-regulated A2 (HtrA2) levels and SRC are also normalized, suggesting an overall improvement in mitochondrial health. Interestingly, overexpression of HSP10 in cells expressing truncated forms of aSyn, thought to represent disease-relevant forms, improves mitochondrial ROS removal, but does not modify SOD2 and HtrA2 levels, nor does it improve SRC. This suggests that increasing the levels of HSP10 may enhance certain aSyn-associated mitochondrial impairments.

HSP10 overexpression also delays the relocalization of S129-phosphorylated aSyn (paSyn) from neurites towards the soma, consistently reducing the levels of insoluble aSyn [79]. These findings were confirmed in neuronal cells and also in vitro, using the real-time quaking-induced conversion assay [93,94]. Similarly, in aSyn transgenic mice, expression of HSP10 restores the levels of SOD2, decreases ER stress and reduces aSyn aggregation.

Conclusion

Herein, we provide our viewpoint on the hypothesis of the accumulation of toxic aSyn-aggregated species in synapses and axons prior to the onset of cellular pathologies associated with PD and other LB diseases. These aSyn aggregates promote neuronal dysfunction that can result in both intra- and extracellular toxicities. Intracellular mechanisms cause axonal degeneration, which progresses towards the cell body, eventually leading to neurodegeneration. Extracellular mechanisms may contribute to the spreading of aSyn species along synaptic connections and, ultimately, to the progression of synucleinopathy. Neither of these mechanisms is fully understood. One hypothesis, which we put forward, is that aSyn promotes the trapping of synaptic proteins, such as HSP10, as highlighted in our recent study. We propose that, like HSP10, other proteins may also be trapped by aSyn, promoting a vicious cycle, compromising their normal function and, thereby, destabilizing the normal neuronal physiology. In fact, and consistently with our viewpoint, recent studies have demonstrated that LBs may contain a variety of proteins and components that had not been previously appreciated [95], and that may be relevant for the alterations that result in neurodegeneration. Although we are still missing important information to fully understand the molecular mechanisms involved, studies focused on the idea that aggregated aSyn species may trap other biomolecules may bring new ideas that free us from older concepts that have failed, at least thus far, informing on novel targets that may lead to future therapies.

Acknowledgement

TFO is supported by SFB1286 (project B8).

Conflict of interest

The authors declare no conflict of interest.

Author contributions

PIS and TFO wrote the manuscript.

References

1 Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. *Mov Disord* 27, 8–30.

2 Olanow CW, Perl DP, DeMartino GN & McNaught KSP (2004) Lewy-body formation is an aggresome-related process: a hypothesis. *Lancet Neurol* 3, 496–503.

3 Spillantini MG, Crowther RA, Jakes R, Hasegawa M & Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. *Proc Natl Acad Sci USA* 95, 6469–6473.

4 Lücking CB & Brice A (2000) Alpha-synuclein and Parkinson’s disease. *Cell Mol Life Sci* 57, 1894–1908.

5 Maroteaux L, Campanelli JT & Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. *J Neurosci* 8, 2804–2815.

6 Yang ML, Hasadri L, Woods WS & George JM (2010) Dynamic transport and localization of alpha-synuclein in primary hippocampal neurons. *Mol Neurodegener* 1, 9.

7 Esposito A, Dohm CP, Kerner P, Bähr M & Wouters FS (2007) alpha-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. *Neurobiol Dis* 26, 521–531.

8 Sousa VL, Bellani S, Giannandrea M, Chieregatti E, Youssuf M, Meldolesi J & Valtorta F (2009) alpha-Synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. *Mol Biol Cell* 20, 3725–3739.
9 Huang Y, Cheung L, Rowe D & Halliday G (2004) Genetic contributions to Parkinson’s disease. *Brain Res Rev* 46, 44–70.

10 Alim MA, Hossain MS, Arima K, Takeda K, Izumiyama Y, Nakamura M, Kaji H, Shinoda T, Hisanaga S & Ueda K (2002) Tubulin seeds α-synuclein fibril formation. *J Biol Chem* 277, 2112–2117.

11 Jensen PH, Li JY, Dahlstrom A & Dotti CG (1999) Axonal transport of synucleins is mediated by all rate components. *Eur J Neurosci* 11, 3369–3376.

12 Prots I, Veber V, Brey S, Campioni S, Buder K, Riek A, Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA & Edwards RH (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. *Neuron* 65, 66–79.

23 Cali T, Ottolini D, Negro A & Brini M (2012) α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. *J Biol Chem* 287, 17914–17929.

24 Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharkov A, Borah A, Hu X, McCoy J, Chu CT, Burton EA et al. (2016) α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. *Sci Transl Med* 8, 342ra78.

25 Hu D, Sun X, Liao X, Zhang X, Zarebi S, Schimmer A, Hong Y, Ford C, Luo Y & Qi X (2019) Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. *Acta Neuropathol* 137, 939–960.

26 Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathern KE, Liu F et al. (2006) α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. *Science* 313, 324–328.

27 Guardia-Laguarta C, Area-Gomez E, Rub C, Liu Y, Magrane J, Becker D, Voos W, Schon EA & Prezdelborski S (2014) alpha-Synuclein is localized to mitochondria-associated ER membranes. *J Neurosci* 34, 249–259.

28 Hernández-Vargas R, Fonseca-Ornelas L, López-González I, Riesco-Escovar J, Zurita M & Reynaud E (2011) Synphilin suppresses α-synuclein neurotoxicity in a Parkinson’s disease Drosophila model. *Genesis* 49, 392–402.

29 Klucken J, Poehler AM, Ebrahimi-Fakhari D, Schneider J, Nuber S, Rockenstein E, Schlötzer-Schrehardt U, Hyman BT, McLean PJ, Masliah E et al. (2012) alpha-Synuclein aggregation involves a baflomycin A1-sensitive autophagy pathway. *Autophagy* 8, 754–766.

30 Martin LJ (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. *J Neurosci* 26, 41–50.

31 Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B, Wakabayashi J et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. *J Biol Chem* 286, 20710–20726.

32 Outeiro TF & Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. *Science* 302, 1772–1775.

33 Lee HJ, Khoshaghideh F, Lee S & Lee SJ (2006) Impairment of microtubule-dependent trafficking by overexpression of α-synuclein. *Eur J Neurosci* 24, 3153–3162.

34 Chen L, Jin J, Davis J, Zhou Y, Wang Y, Liu J, Lockhart PJ & Zhang J (2007) Oligomeric α-synuclein inhibits tubulin polymerization. *Biochem Biophys Res Commun* 356, 548–553.
P. I. Santos and T. F. Outeiro

Synaptic alterations in synucleinopathies

35 Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adam C, Rockenstein E & Masliah E (2011) α-Synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286, 9031–9037.

36 Iwata A, Miura S, Kanazawa I, Sawada M & Nukina N (2001) α-Synuclein forms a complex with transcription factor Elk-1. J Neurochem 77, 239–252.

37 Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133.

38 Ranganathan S, Scudiere S & Bowser R (2001) Hyperphosphorylation of the retinoblastoma gene product and altered subcellular distribution of E2F-1 during Alzheimer’s disease and amyotrophic lateral sclerosis. J Alzheimer’s Dis 3, 377–385.

39 Chalovich EM, Zhu JH, Caltagirone J, Bowser R & Chu CT (2006) Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells. J Biol Chem 281, 17870–17881.

40 Papadeas ST, Blake BL, Knapp DJ & Breece GR (2004) Sustained extracellular signal-regulated kinase 1/2 phosphorylation in neonate 6-hydroxydopamine-lesioned rats after repeated D1-dopamine receptor agonist administration: implications for NMDA receptor involvement. J Neurosci 24, 5863–5876.

41 Bae JR & Kim SH (2017) Synapses in neurodegenerative diseases. BMB Rep 50, 237–246.

42 Milnerwood AJ & Raymond LA (2010) Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 33, 513–523.

43 Schulz-Schaeffer WJ (2010) The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120, 131–143.

44 Picconi B, Piccoli G & Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970, 553–572.

45 Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E & Roy S (2010) A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J Neurosci 30, 8083–8095.

46 Roy S (2017) Synuclein and dopamine: the Bonnie and Clyde of Parkinson’s disease. Nat Neurosci 20, 1514–1515.

47 Lu X, Kim-Han JS, Haroon S, Sakiyama-Elbert SE & O’Malley KL (2014) The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol Neurodegener 9, 17.

48 Morales I, Sanchez A, Rodriguez-Sabate C & Rodriguez M (2015) The degeneration of dopaminergic synapses in Parkinson’s disease: a selective animal model. Behav Brain Res 289, 19–28.

49 Schulz-Schaeffer WJ (2015) Is cell death primary or secondary in the pathophysiology of idiopathic Parkinson’s disease? Biomolecules 5, 1467–1479.

50 Calo L, Wegrzynowicz M, Santivanez-Perez J & Grazi Spillantini M (2016) Synaptic failure and α-synuclein. Mov Disord 31, 169–177.

51 Grosch J, Winkler J & Kohl Z (2016) Early degeneration of both dopaminergic and serotonergic axons – a common mechanism in parkinson’s disease. Front Cell Neurosci 10, 239.

52 Tagliaferro P & Barke RE (2016) Retrograde axonal degeneration in Parkinson disease. J Parkinsons Dis 6, 1–15.

53 Fang F, Yang W, Florio JB, Rockenstein E, Spencer B, Orair XM, Dong SX, Li H, Chen X, Sun G & et al. (2017) Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson’s disease. Sci Rep 7, 3868.

54 Kouroupi G, Taoufik E, Vlahos IS, Tsioras K, Antoniou N, Papapetanaki F, Chroni-Tzartou D, Wrasidlo W, Bohl D, Stellas D et al. (2017) Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson’s disease. Proc Natl Acad Sci USA 114, E3679–E3688.

55 Braak H, Sandmann-Keil D, Gai W & Braak E (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by α-synuclein immunocytochemistry. Neurosci Lett 265, 67–69.

56 Duda JE, Giasson BI, Mabon ME, Lee VMY & Trojanowski JQ (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 52, 205–210.

57 Galvin JE, Uryu K, Lee VM & Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc Natl Acad Sci USA 96, 13450–13455.

58 de Oliveira RM, Vicente Miranda H, Francelle L, Pinho R, Szegő ÉM, Martinho R, Munari F, Lázaro DF, Moniot S, Guerreiro P et al. (2017) The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol 15, e2000374.

59 Vicente Miranda H, Szegő ÉM, Oliveira LMA, Breda C, Darendelioğlu E, De Oliveira RM, Ferreira DG, Gomes MA, Rott R, Oliveira M et al. (2017) Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain 140, 1399–1419.

60 Chinta SJ, Mallajosyula JK, Rane A & Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486, 235–239.
Synaptic alterations in synucleinopathies

P. I. Santos and T. F. Outeiro

Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS & Cai DF (2007) Localization of α-synuclein to mitochondria within midbrain of mice. NeuroReport 18, 1543–1546.

Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barcelo-Coblijn GC & Nussbaum RL (2005) Mitochondrial lipid abnormalities and electron transport chain impairment in mice lacking alpha-synuclein. Mol Cell Biol 25, 10190–10201.

Devi L, Raghavendra V, Prabhu BM, Avadhani NG & Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283, 9089–9100.

Betzer C, Movius AJ, Shi M, Gai WP, Zhang J & Jensen PH (2015) Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS One 10, e0116473.

Faustini G, Bonito F, Valero A, Pizzi M, Spano P & Bellucci A (2017) Mitochondria and α-synuclein: friends or foes in the pathogenesis of Parkinson’s disease? Genes (Basel) 8, pii: E377.

Wang X, Becker K, Levine N, Zhang M, Lieberman AP, Moore DJ & Ma J (2019) Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol Commun 7, 41.

Zambon F, Cherubini M, Fernandes HJR, Lang C, Ryan BJ, Volpato V, Bengoa-Vergniory N, Vingill S, Attar M, Booth HDE et al. (2019) Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum Mol Genet 28, 2001–2013.

Rizzolo K, Kumar A, Kukihara Y, Phanse S, Minic Z, Snider J, Stagljar I, Zilles S, Babu M & Houry WA (2018) Systems analysis of the genetic interaction network of yeast molecular chaperones. Mol Omics 14, 82–94.

David S, Buccheri F, Corrao S, Czarnecka AM, Campanella C, Farina F, Peri G, Tomasello G, Sciumè C, Modica G et al. (2013) Hsp10: anatomic distribution, functions, and involvement in human disease. Front Biosci (Elite Ed) 5, 768–778.

Nisemblat S, Yaniv O, Parnas A, Frolov F & Azem A (2015) Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci USA 112, 6044–6049.

Christensen JH, Nielsen MN, Hansen J, Füchtbauer A, Füchtbauer EM, West M, Corydon TJ, Gregersen N & Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hsp11 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15, 851–863.

Bie AS, Fernandez-Guerra P, Birkler RID, Nisemblat S, Pelena D, Lu X, Deignan JL, Lee H, Dorrani N, Corydon TJ et al. (2016) Effects of a mutation in the HSP11 gene encoding the mitochondrial co-chaperonin HSP10 and its potential association with a neurological and developmental disorder. Front Mol Biosci 3, 65.

Azem A, Diamant S, Kessel M, Weiss C & Goloubinoff P (1995) The protein-folding activity of chaperonins correlates with the symmetric GroEL14/GroES72 heterooligomer. Proc Natl Acad Sci USA 92, 12021–12025.

Hickey RW, Zhu RL, Alexander HL, Jin KL, Stetler RA, Chen J, Kochnanek PM & Graham SH (2000) 10 kD mitochondrial matrix heat shock protein mRNA is induced following global brain ischemia in the rat. Mol Brain Res 79, 169–173.

Bross P, Li Z, Hansen J, Hansen JJ, Nielsen MN, Corydon TJ, Georgopoulos C, Ang D, Lundemose JB, Niezen-Koning K et al. (2007) Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. J Hum Genet 52, 56–65.

Kim SW & Lee JK (2007) NO-induced downregulation of HSP10 and HSP60 expression in the postischemic brain. J Neurosci Res 85, 1252–1259.

Bross P & Fernandez-Guerra P (2016) Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial Hsp60/Hsp10 chaperonin complex. Front Mol Biosci 3, 49.

Fan W, Fan SS, Feng J, Xiao D, Fan S & Luo J (2017) Elevated expression of HSP10 protein inhibits apoptosis and associates with poor prognosis of astrocytoma. PLoS One 12, e0185563.

Szegő ÉM, Dominguez-Mejide A, Gerhardt E, König A, Koss DJ, Li W, Pinho R, Fahlbusch C, Johnson M, Santos P et al. (2019) Cytosolic trapping of a mitochondrial heat shock protein is an early pathological event in synucleinopathies. Cell Rep 28, 65–77.e6.

Rangaraju V, Calloway N & Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835.

Nakata Y, Yasuda T, Fukaya M, Yamamori S, Itakura M, Nihira T, Hayakawa H, Kawanami A, Kataoka M, Nagai M et al. (2012) Accumulation of α-synuclein triggered by presynaptic dysfunction. J Neurosci 32, 17186–17196.

Tabner BJ, Turnbull S, King JE, Benson FE, El-Agnaf OMA & Allsop D (2006) A spectroscopic study of some of the peptidyl radicals formed following hydroxyl radical attack on β-amyloid and α-synuclein. Free Radic Res 40, 731–739.

Fernandes JTS, Tenreiro S, Gameiro A, Chu V, Outeiro TF & Conde JP (2014) Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-
based gradient generator. *Lab Chip* **14**, 3949–3957.

84 Smith GM & Gallo G (2018) The role of mitochondria in axon development and regeneration. *Dev Neurobiol* **78**, 221–237.

85 Oh SH, Lee SC, Kim DY, Kim HN, Shin JY, Ye BS & Lee PH (2017) Mesenchymal stem cells stabilize axonal transports for autophagic clearance of α-synuclein in Parkinsonian models. *Stem Cells* **35**, 1934–1947.

86 Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet JC, Hyman BT & McLean PJ (2006) Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation. *Biochem Biophys Res Commun* **351**, 631–638.

87 Cox D, Whiten DR, Brown JWP, Horrocks MH, Gil RS, Dobson CM, Klenerman D, Van Oijen AM & Ecroyd H (2018) The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity. *J Biol Chem* **293**, 4486–4497.

88 Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT & McLean PJ (2008) Formation of toxic oligomeric α-synuclein species in living cells. *PLoS One* **3**, e1867.

89 Gao X, Carroni M, Nussbaum-Krammer C, Mogk A, Nillegoda NB, Szlachcic A, Guilbride DL, Saibil HR, Mayer MP & Bukau B (2015) Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. *Mol Cell* **59**, 781–793.

90 Apriile FA, Källstig E, Limorenko G, Vendruscolo M, Ron D & Hansen C (2017) The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. *Sci Rep* **7**, 9039.

91 Du Y, Wang F, Zou J, Le W, Dong Q, Wang Z, Shen F, Yu L & Li Y (2014) Histone deacetylase 6 regulates cytotoxic α-synuclein accumulation through induction of the heat shock response. *Neurobiol Aging* **35**, 2316–2328.

92 Xiong R, Zhou W, Siegel D, Kitson RRA, Freed CR, Moody CJ & Ross D (2015) A novel Hsp90 inhibitor activates compensatory heat shock protein responses and autophagy and alleviates mutant A53T α-synuclein toxicity. *Mol Pharmacol* **88**, 1045–1054.

93 Candelise N, Schmitz M, Llorens F, Villar-Piqué A, Cramm M, Thom T, da Silva Correia SM, da Cunha JEG, Möbius W, Outeiro TF *et al.* (2019) Seeding variability of different alpha synuclein strains in synucleinopathies. *Ann Neurol* **85**, 691–703.

94 van Rumund A, Green AJE, Fairfoul G, Esselink RAJ, Bloem BR & Verbeek MM (2019) α-Synuclein real-time quaking-induced conversion in the cerebrospinal fluid of uncertain cases of parkinsonism. *Ann Neurol* **85**, 777–781.

95 Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, Castaño-Diez D, Schweighauser G, Graff-Meyer A, Goldie KN *et al.* (2019) Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. *Nat Neurosci* **22**, 1099–1109.