Differences in the Charge Distribution of Glycerol-Extracted Muscle Fibers in Rigor, Relaxation, and Contraction

SUZANNE M. PEMRICK and CHARLES EDWARDS

From the Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222. Dr. Pemrick's present address is the Department of Biochemistry, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19174.

ABSTRACT Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl₂ or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state.

Recently considerable attention has been devoted to correlating the molecular interactions between the contractile proteins of muscle with changes in crossbridge orientation. It is generally accepted that in the state of rigor the cross bridges of the myosin molecule (M), which are nearly free of bound nucleotide, bind to actin (A) in a chevron-like configuration (Reedy et al., 1965). In the resting state (relaxation) the cross bridges are at right angles to the thick filament and are distributed between two populations: M·ATP (Bag-
shaw and Trentham, 1973) and M.ADP.P_i (P_i = inorganic phosphate) (Taylor et al., 1970; Lynn and Taylor, 1970, 1971). Activation (contraction) leads to an increase in the rate of formation of M.ADP, M.ADP.P_A, M.ADP-A, and M-A (Lynn and Taylor, 1970, 1971). When actin and myosin are dissociated by agents which are either not hydrolyzed by myosin, such as pyrophosphate (Beinbrech et al., 1972) or are hydrolyzed at a 1,000-fold slower rate than MgATP, such as \(\alpha-\beta \)-methylene-ATP (Mannherz et al., 1973) there is some indication that the cross bridges may remain in the characteristic chevron configuration of rigor. If this observation is confirmed, the species M.ADP and M.ADP.P_i will have been assigned to particular cross-bridge configurations. Activation of the contractile system occurs when calcium binds to TN-C (calcium binding subunit of troponin) changing the precise interaction between the various subunits of troponin, tropomyosin, and actin (Ebashi et al., 1969; Hartshorne and Pyun, 1971; Margossian and Cohen, 1973) and thereby, activating the myofibrillar ATPase. X-ray diffraction studies suggest that during activation tropomyosin moves from a position overlapping the myosin binding site of actin to a position near the center of the grooves of the actin helix (Huxley, 1972; Spudich et al., 1972). This movement is thought to be independent of the presence of myosin (Vibert et al., 1972). Similarly, the cross bridges move independently of the presence of actin (Haselgrove, 1970).

In the present experiments electrophysiological techniques have been employed to investigate these interactions between the contractile proteins. Glycerinated muscle lacks a functional cell membrane (Szent-Gyorgyi, 1949). However, the thick and thin filaments provide effective electrolyte exclusion and a Donnan equilibrium operates between the immobile charged proteins and the medium (Collins and Edwards, 1971). The magnitudes of the potentials measured in glycerinated fibers during rigor, relaxation, and contraction will be compared in relation to the possible conformational states of these proteins. Brief accounts of some of these results have appeared (Penrick and Edwards, 1972, 1973).

METHODS

Principle of the Method

The difference in potential upon microelectrode “impalement” of glycerinated fibers (Naylor and Merrillees, 1964; Weiss et al., 1967) has been shown to behave as if it were a Donnan effect caused by the contractile proteins (Collins and Edwards, 1971). The observations on which this conclusion was based included: the absence of potential difference between muscle and bath when measured by a potassium electrode, the invariance of the potential when sodium was replaced by potassium, the increase in the magnitude of the potential with a decrease in ionic strength, and the reversal of the sign of the potential beyond the approximate isoelectric point of the muscle proteins.
The source of the potential may be understood better if one considers the following three-phase system: the bathing fluid, the muscle protein gel, and the electrode tip filled with 3 M KCl. The muscle proteins actually behave as a layer of fixed charge separating the two solutions. The potential between the two solutions is therefore the sum of the Donnan potentials at the two solution-protein interfaces and the potential due to the differences between the ionic concentrations in the two solutions. The latter, for the case of a single uni-univalent ion in the two solutions is identical to the liquid junction potential and would, therefore, be negligible if KCl were the principal salt (Teorell, 1953). Thus the measured potential difference is essentially the sum of the Donnan potentials at the two boundaries. However, given the likely value for the density of the fixed charge in muscle protein, the magnitude of the Donnan potential between the muscle protein and 3 M KCl is also negligible, and so the potential measured is essentially the Donnan potential between the muscle protein and the bathing fluid. The magnitude of this will, of course, depend on the density of fixed charge in the muscle protein; a reduction in this charge density will reduce the potential.

The muscles used for these experiments were initially in a state of rigor, i.e., they were relatively inextensible and the number of "rigor complexes" between actin and nucleotide-free myosin was maximal (Bremel and Weber, 1972; Maruyama and Weber, 1972). If Mg$^{2+}$ and appropriate MgATP (5 X 10$^{-5}$ M) are added, and the free Ca$^{2+}$ level is kept below 10$^{-7}$ M, at an ionic strength (I) of 0.1, the muscles relax and become more extensible (Weber and Winicur, 1961; Portzehl et al., 1969). The number of rigor complexes for the relaxed fibril is negligible (Bremel and Weber, 1972). However, if the free Ca$^{2+}$ level is raised (10$^{-6}$ M) in the presence of Mg$^{2+}$ and MgATP, the fibers contract, and are more extensible than in rigor due to an increase in the number of force-generating complexes between actin and myosin (A ~ M) which probably contain ADP and/or P; (Maruyama and Weber, 1972).

Fiber Preparation

Strips of rabbit psoas muscle (1 mm in diameter) were tied at rest-length, or stretched 10–40% over rest-length before being tied to wooden sticks, and placed in a solution of 50% glycerol, 2 mM K$_2$EGTA, 2.5 mM DTT (dithiothreitol), pH 7.2, for 2 days at 0°C. The solution was then exchanged and the muscles were stored at -15°C for 2 wk before use. Muscles not used within 6 wk were discarded. Addition of 50 mM KCl to the glycerol solution prevented gradual extraction of the troponin-tropomyosin complex, but calcium sensitivity seemed to be reduced by storage much beyond 6 wk. To facilitate membrane destruction and extraction of soluble components, sometimes the tied fibers were shocked osmotically by bathing them alternately in the glycerol solution and a standard salt solution (100 mM KCl, 1 mM MgCl$_2$, 2 mM K$_2$EDTA, pH 7.2) for six 0.5-h intervals at 0°C as described by Rome (1972). After this treatment, the fibers remained in the glycerol solution at 0°C for 24 h before being transferred to fresh solution and stored at -15°C.

Small bundles of glycerinated fibers (diameter approximately 200 μm) were rinsed in the rigor solution and fixed with Plasticene at both ends to a glass slide. Within the Plasticene boundaries a chamber was constructed by applying from a syringe a rectangular frame of petroleum jelly on the slide.
Sarcomere lengths were determined in some experiments from the optical diffraction patterns obtained from a helium-neon gas laser (Spectra-Physics, Inc., Mountain View, Calif., model 133). Parallel monochromatic light (\(\lambda = 632.8 \) nm) was passed through the fiber bundle. The tangent of the angle \(\theta \) of the diffracted beam was calculated from the ratio of the mean distance between two diffraction lines and the length of the diffracted beam (Fig. 1). The average distance between Z-lines, \(d \), or average sarcomere length was determined from the relationship, \(d \sin \theta = \lambda \).

Potential Measurements

Glass microelectrodes (1-\(\mu \)m tip diameter, 10-20 M\(\Omega \)) filled with 3 M KCl were used for the potential measurements. The microelectrode was inserted into the fiber
Charge Distribution of Glycerinated Muscle Fibers

...
Potential measurements were then recorded for these fibers in the three solutions as described above.

The physiological solutions were designed for maintaining glycerinated fibers in either the rigor, the relaxed, or the contracted state (Table I). The rigor solution was modified from Marston and Tregear (1972). Two sets of solutions were used; one had an ionic strength of 0.069 and the other was 0.115.

Initially, to ensure the ionic similarity of the solutions, rigor solutions of slightly different compositions were used depending upon whether they were to be exchanged for the relaxation or the contraction solutions, respectively (Table I). The impalement potentials for fibers in rigor solutions A or B were identical. Therefore, to simplify the procedure, a composite solution (C) was designed with no observable difference in the measured potentials for fibers in rigor. The contraction solution contains 4 mM Na₂SO₄ to replace the Na⁺ lost in lowering Na₂EGTA from 5 (relaxation and rigor solutions) to 1 mM; the Mg²⁺ concentration has been lowered from 5 to 1 mM; and ATP was added at neutral pH as the Mg²⁺ or the Na⁺ salt. The free Mg²⁺ concentration is lower than in either of the other solutions and its possible effect on the ATP-regenerating system was not ignored. The composition of the present solutions evolved experimentally. To obtain impalement potentials of sufficient magnitude to confirm the statistical significance of the data, it was necessary to work at an ionic strength (0.069) at which the relaxed fiber was very sensitive to activation. The conditions found to be optimal for relaxation were not optimal for contraction even at 10⁻⁶ M calculated free Ca²⁺. Therefore, activation was achieved by varying the levels

TABLE I
PHYSIOLOGICAL SOLUTIONS

	Rigor	Relaxation	Contraction	
Pipes (pH 6.8)	mM	mM	mM	
KCl*	5,50	12,62	5,50	12,62
Na₂EGTA (pH 6.8)	5	1	5	1
MgCl₂	5	1	5	1
MgSO₄	2	1	0	0
Na₂SO₄	0	5	0	0
MgATP (pH 7.0)	0	0	2	1
Na₂ATP (pH 7.0)	0	0	0	1
CaCl₂	10	10	10	10
Creatine phosphate	10	10	10	10
Creatine phosphokinase (mg/ml)	0.5	0.5	0.5	0.5
Ionic strength*	73,123	67,129	72,122	67,129
Final pH 6.8 ± 0.05	—	—	—	—
Free Ca²⁺ (mM)	<10⁻⁴	<10⁻⁴	<10⁻⁴	1.86-2.75

* The concentration of KCl was varied as indicated to give two sets of solutions of different ionic strengths.
of several components in the contraction solution which are known to alter Ca^{2+} sensitivity: MgATP, free Mg^{2+} (Weber and Bremel, 1971).

RESULTS

Egg White

As a control for the ionic similarity of the solutions, potentials were measured after impalement of hard-boiled egg white. It was found that the potential changes upon impalement do not differ significantly among the three solutions (Table II).

TABLE II

CHANGE IN POTENTIAL UPON IMPALEMENT OF HARD-BOILED EGG WHITE

	Physiological solutions (ionic strength I = 0.009)		
	Rigor	Relaxation	Contraction
	mV	mV	mV
	-13.9±0.7*	-13.5±.04	-14.8±0.5
	-14.3±0.4		

* Each potential in this table is the mean and standard error for four series of 10 impalements.

Normal Glycerol-Extracted Muscle Fibers

Potentials on impalement were measured in two sets of solutions which differed only in KCl concentration and ionic strength. As reported by Collins and Edwards (1971), the potential difference was greater at the lower ionic strength (Table III).

For solutions of either of the two ionic strengths used significant differences are found in the potentials measured from rest-length glycerinated fibers in the three solutions (Table III). The potential change upon impalement of the relaxed fibers is significantly more negative than the potential change upon impalement of fibers in either the rigor or the contracted states. However, the difference between the potentials recorded from impalements of fibers in the rigor and the contracted states is not significant. In all three solutions, decreasing the ionic strength increases the magnitude of the potential change upon fiber impalement but does not alter the 45–65% increase in the potential measured in impalements of relaxed fibers as compared to contracted fibers or fibers in rigor. The potential measurements from fibers which were glycerinated rapidly are more negative than those from fibers which were subjected to longer glycerination procedures (Table III). In addition, this treatment increases the magnitude of the difference between the potentials found for impalements of relaxed fibers and those in rigor.

The difference in the magnitudes of the potentials measured in fibers in
Ionic strength	Fiber preparation	Physiological state of myofibril	d = X₂ - X₁ where X₂ > X₁
	Rigor	Relaxed	Contracted
0.115 A	-5.7±0.3 *	-10.5±0.6 *	4.8
	-7.0±0.1	-13.0±1.1	
	-6.3±0.3	-13.9±0.4	
	-7.8±0.4	-11.2±0.5	3.4
	-6.7±0.4 (4) ‡	-12.2±0.7 (4) ‡	5.5±1.5 ‡
0.115 A	-7.3±0.3	-6.7±0.4	0.6
	-6.6±0.3	-6.6±0.6	0.0
	-7.7±0.3	-7.9±0.6	-0.2
	-8.3±0.4	-8.3±0.4	0.0
	-7.8±0.1	-7.3±0.1	0.5
	-7.4±0.7	-7.3±0.5	0.2±0.3
0.115 B	-10.8±0.1	-16.3±0.6	5.5
	-10.4±0.1	-18.2±0.7	7.8
	-8.3±0.5	-12.5±0.5	3.9
	-9.5±0.5	-13.8±0.6	4.3
	-8.8±0.7	-11.7±0.5	2.9
	-9.6±0.4	-14.5±1.1	4.9±1.7
0.069 C	-7.9±0.7	-17.5±0.5	9.6
	-10.1±0.4	-16.8±0.6	6.7
	-10.9±0.7	-15.8±0.6	4.9
	-11.0±0.8	-18.1±0.4	7.1
	-9.7±0.4	-16.6±0.6	6.9
	-10.2±0.6	-17.3±1.3	7.1
	-12.3±0.5	-19.0±0.8	6.7
	-12.7±0.6	-18.7±0.9	5.4
	-9.8±0.4	-17.7±0.5	7.8
	-8.0±0.5	-15.1±0.4	7.1
	-10.3±0.5	-17.2±0.3	6.9±1.2
0.069 D	-13.4±0.8	-31.6±2.0	18.2
	-13.3±0.5	-26.0±0.8	12.7
	-12.3±0.7	-22.6±1.0	10.3
	-14.5±0.8	-27.1±0.7	12.6
	-14.0±0.7	-25.3±0.4	11.3
	-13.5±0.3	-26.5±1.3	13.0±2.7
0.069 C	-10.2±0.6	-8.7±0.8	+1.5
	-9.4±0.7	-8.8±0.5	+0.6
	-7.2±0.5	-13.3±0.8	-6.1
	-12.3±1.5	-9.2±0.5	+3.1
	-9.7±0.9	-10.9±1.0	0.2±3.5

* Mean and standard error for 10–15 impalements on one fiber bundle.
‡ Mean and standard error for (X) number of fiber bundles.
§ d ± SD = the average difference ± the standard deviation of the difference measurements from which the t statistic may be calculated.
‖ Fibers subjected to osmotic shock for a rapid glycerination procedure as described by Rome (1972).
solutions causing rigor or relaxation is a function of the extent of overlap between thick and thin filaments and the interfilament distance. Fibers stretched before glycerination, so there is no overlap between thick and thin filaments (sarcomere lengths >3.6 µm) showed no significant differences in the potentials measured in impalements in the rigor, the relaxation or the contraction solutions (Table IV). Furthermore, at the higher ionic strength the measured potentials from stretched fibers in the rigor solution are similar in magnitude to those obtained from rest-length fibers in rigor (Table III). In the rigor solution of lower ionic strength, the magnitude of the potentials from stretched fibers varies considerably. This is due probably to volume differences between fibers at these sarcomere lengths ($s = 3.6$ µm). However, the potential measurements do not indicate a change in charge density upon changing solutions (Table IV).

If the change in potential upon impalement of fibers in rigor is examined as a function of sarcomere length (Fig. 2 a) no obvious relationship is apparent. A least squares analysis of the data indicates a slope of $+0.202$ mV/0.1 µm change in sarcomere length which does not differ significantly from zero (t test). Therefore, it is concluded that the potential measurements are constant in the 2.7–3.6-µm range of sarcomere length. However, a similar plot of potential measurements from relaxed fibers for the same range of sarcomere lengths (Fig. 2 b) suggests a decrease in the potential as the sarcomere length (s) increases, especially between $s = 2.9–3.2$ µm. A least squares fit of the data indicates an average change of -0.96 mV/0.1-µm change in sarcomere length with 97% confidence limits that the slope differs from zero.

Table IV

Ionic strength	Fiber	Rigor	Relaxation	Contraction
0.115	1	$-7.6_{\pm}3.6^*$	$-6.8_{\pm}1.3$	
	2	$-6.7_{\pm}1.7$	$-8.4_{\pm}1.6$	
	3	$-6.2_{\pm}1.1$	$-6.5_{\pm}1.2$	
	4	$-7.4_{\pm}0.7$		$-6.6_{\pm}1.6$
	5	$-6.5_{\pm}1.3$		$-7.1_{\pm}1.8$
0.069	6	$-28.5_{\pm}4.5$	$-30.1_{\pm}4.5$	
	7	$-13.8_{\pm}3.4$	$-12.1_{\pm}5.0$	
	8	$-11.9_{\pm}2.1$	$-14.5_{\pm}4.2$	
	9	$-20.9_{\pm}5.6$		$-18.4_{\pm}3.3$
	10	$-42.7_{\pm}13.3$		$-34.4_{\pm}6.0$
	11	$-12.6_{\pm}1.5$		$-14.5_{\pm}2.7$

* Mean and SD of at least 10 impalements.
The difference between potentials measured in impalements of fibers in solutions causing relaxation and rigor is plotted as a function of sarcomere length in Fig. 3. The graphical relationship is similar to plots of the 1,0 lattice spacing (distance between myosin filaments) versus the sarcomere length for fibers which maintain a constant lattice volume: relaxed and contracted fibers, living or glycerinated from toad or rabbit striated muscle (Rome, 1972; Elliott, 1967). In these cases a plot of the inverse square of the lattice spacing versus the sarcomere length appears to be linear.

Modified Glycerol-Extracted Fibers

During these experiments various conditions were observed to have an effect on the magnitude of the potential difference measured upon impalement of
relaxed fibers and fibers in rigor (Table V). If the fibers contract in the relaxation solution or if contracted regions of the fibers are noted (i.e., the fibers have lost calcium sensitivity) the impalement potentials are lower in both the rigor and relaxation solutions than those obtained from calcium-sensitive fibers. It should be noted that the potential measurements from fibers in rigor differ from preparation (Table III preparations A-B and C-D) to preparation (Table V) but vary little within a given preparation (e.g. Table III preparation). Table V shows the effect on the impalement potential of the loss of calcium sensitivity of a particular group of fibers.

Fibers which had lost calcium sensitivity (Table V) were extracted with Hasselbach and Schneider’s solution (sodium pyrophosphate + MgCl₂) or Guba-Straub’s solution plus MgATP (46–72 h at 4°C). These solutions are expected to dissociate the actin and myosin filaments and then to extract the myosin and M-band proteins. Protein analysis indicates that even after 72 h only one-half of the available myosin has been extracted. However, after 48 h the treated fibers do not have a striated appearance and do not contract in the contraction solution. The magnitude of the potential change upon impalement of these fibers in the rigor solution is similar to that obtained upon impalement of the calcium-sensitive fibers in the relaxation solution (Table V, line 1).

Table V

Effect of Various Conditions on the Magnitude of the Potential Difference in Relaxed and Rigor Fibers at Rest-Length

Fiber condition	Physiological solutions (ionic strength $I = 0.069$)	
	Rigor	Relaxation
	mV	mV
Ca²⁺-sensitive fibers	$-7.1 \pm 0.3^*$	$-11.3 \pm 0.4^*$
Ca²⁺-insensitive fibers†	-6.4 ± 0.9	-8.8 ± 1.1
	-5.5 ± 1.8	-8.2 ± 1.3
After extraction in H and S§ solution (48 h at 4°C)	-13.5 ± 3.7	-9.6 ± 0.8
	-10.8 ± 1.9	
After extraction in H and S solution (72 h at 4°C)	-8.5 ± 1.7	-4.9 ± 1.2
	-8.4 ± 1.2	
Extraction in Guba-Straub + MgATP solution (48 h at 4°C)	-12.3 ± 3.3	-11.7 ± 1.3
	-12.1 ± 1.5	

Mean and SD of a minimum of 10 impalements unless otherwise indicated.

* Mean and SE for four sets of 10 impalements.
† Calcium-insensitive fibers contract in the relaxing solution.
§ Hasselbach and Schneider’s solution plus MgCl₂.
‖ Two sets of rigor measurements on the same fiber to show the effect of rinsing on the impalement potential.
magnitude of the potential change upon impalement of the treated fibers in the rigor solution does not decrease significantly with repeated rinses or a 24-h equilibration in the rigor solution (no pyrophosphate). Furthermore, upon exchanging the rigor solution for the relaxation solution the measured potentials do not differ from those obtained in the rigor solutions. An exception is observed after 72 h in Hasselbach and Schneider's solution, in which case the potential measurements from fibers in the rigor solution are lower than those obtained after a 48-h extraction period (in either Hasselbach and Schneider's or Guba-Straub's solution) and decrease further upon exchanging the rigor for the relaxation solution (Table V).

DISCUSSION

The negative charge on the contractile proteins may be estimated from the Donnan equation (Collins and Edwards, 1971). For rest-length fibers at an ionic strength of 0.115 where KCl is the principal electrolyte, the negative charge (zC) on the contractile protein is about 40 meq/liter (Collins and Edwards, 1971; Elliott, 1973).

The total negative charge at pH 7 for the proteins within rat muscle has been estimated at 100 meq/liter (Conway, 1957). This value includes both the soluble sarcoplasmic proteins and the contractile proteins. In calculating zC for the contractile proteins it is assumed that glycerinated muscle is 12% contractile protein with a density of 1. Myosin at 45% of the contractile protein contributes 105 charges/mol (Kominz, 1966) and 12.1 meq/liter to the zC of glycerinated muscle. Values for the myosin fragments (LMM, HMM, and S-1) are more difficult to determine. However, by comparing the data of Kominz (1966) for myosin and the 3-S subunit (LMM) with the data for LMM, HMM, and S-1 (Lowey et al., 1969), it is possible to estimate values: LMM, 6.5; HMM, 8.1; and S-1, 2.3 meq/liter. Actin comprises 28% of the contractile protein and from the amino acid sequence (Elzinga et al., 1973) a value of 24 charges/mol and 19.2 meq/liter is obtained. The values of tropomyosin and troponin are estimated from the amino acid compositions of Cohen et al. (1972) and only tropomyosin is corrected for amide NH$_3$ (Kominz, 1966). Tropomyosin comprising approximately 4.2% of the myofibrillar protein (Hartshorne and Pyun, 1971) has a charge density of 60/mol and a zC of 4.3. The charge density of troponin at 5.6% of the myofibrillar protein (Hartshorne and Pyun, 1971) is between 33/mol (assuming 22% of the Glu and Asp are Gln and Asn) and 79/mol (assuming no Gln and Asn) from which zC is estimated to be between 3 and 7 meq/liter. Therefore, the total zC for the contractile proteins is approximately 39–43 meq/liter.

The estimated values for the total zC (vide supra) are similar to the value of 46 meq/liter which can be calculated from the change in potential observed upon impalement of relaxed fibers at a sarcomere length of 2.7 μm (Table
III). This is important since for the relaxed fiber the value of zC calculated from the Donnan relation is approximately equal to that estimated from the net charge on the proteins. This suggests the negative and the positive charges are more or less entirely available in the relaxed state. For at least one of the myofibrillar proteins, troponin A (TN-C), the net negative charge is important in regulating interactions between troponin subunits. This can be inferred from the observation of Hartshorne (1970) that certain polyanions can substitute for troponin A in a nonspecific interaction with troponin B (inhibitory protein). In addition, McCubbin and Kay (1973) have implicated carboxylate groups in the binding of calcium to troponin A. However, except for troponin A, there is no evidence for the other contractile proteins that the conformational changes involved in going from rigor to relaxation are associated with a change in charge. Although considerable care was taken to design, within experimental limits, solutions of similar ionic composition, it should be remembered that this was accomplished by adjusting the concentration of physiologically neutral ions. The binding affinities of MgSO$_4$ and MgATP for the catalytic site of myosin may be quite dissimilar and the structural changes associated with binding may not be equivalent for MgSO$_4$ and MgATP. The increase in the negative potential upon going from rigor to relaxation may be due in part to the potential difference between bath and protein due to a change in the amount of bound ions (MgADP, P$_i$, Mg$^{2+}$, MgATP, etc.). However, this can be shown not to be the only explanation for the more negative charge on the relaxed filaments. Assuming, in the relaxed condition there is the addition of 2 mol each of MgADP and P$_i$ per mole of myosin, this could contribute 12 charges/mol of myosin (the maximum number possible) and the change in zC should be about 2.7 meq/liter. This is equivalent to a change in potential of approximately 0.78 mV, which would not be detected. It is concluded, therefore, that the more negative potential observed upon impalement of relaxed fibers over those in rigor must include an alteration in the conformation of the contractile proteins.

Conformational changes associated with going from rigor to relaxation are: a maximal decrease in the number of rigor links (Bremer and Weber, 1972; Rome, 1972), a change from the chevron to right-angle cross-bridge configuration (Reedy et al., 1965), and a reorientation of tropomyosin from the center of the grooves of the actin helix to a position which sterically blocks myosin attachment to actin (Huxley, 1972; Spudich et al., 1972). In the contracted fiber, there would be an intermediate number of "rigor-like" links (Bremer and Weber, 1972; Bremer et al., 1972), a cycling between the chevron and right-angle cross-bridge configuration (Huxley and Brown, 1967), and tropomyosin would be in the same position as in the rigor state. Therefore, the major difference between rigor and contracted fibers would be the steady-state range of orientations of the cross bridges. Although the "relaxed"
X-ray pattern is missing from contracted muscle (Huxley and Brown, 1967), the lifetime of the relaxed conformation of the cross bridges is not known. It is unlikely that the present technique is sensitive enough to register the small steady-state level of cross bridges which are at right angles to the thick filament (relaxed configuration) during contraction.

It is suggested that the more negative potential found in relaxed fibers over those in rigor is due to a conformational change unique to the relaxed state. This would include an increase in the number of cross bridges at right angles to the thick filament, and the steric blocking by tropomyosin of myosin binding to actin. For the simplest case, it can be assumed that tropomyosin, troponin, and HMM are changing from a conformation where all the charged residues are buried (in rigor) to one in which all the positive and the negative charges are distributed equally along the surface of the molecules (in relaxation). In terms of the estimated zC tropomyosin contributes 4.3 meq/liter, troponin between 3 and 7 meq/liter; and HMM approximately 8.1 meq/liter. The total zC contribution of these three components is between 15–19 meq/liter, in excellent agreement with the observed difference of 20 meq/liter between the two states. For this calculation, conformational changes in myosin (associated with the cross bridge assuming the relaxed configuration) are restricted to the HMM portion of the molecule. In support of this assumption are studies of fluorescence polarization by Mendelson et al. (1973) which indicate considerable flexibility within HMM near the (S-1)-(S-2) connection and the small contribution in charge of the S-1 moieties (2.3 meq/liter) to the total charge of HMM (8.1 meq/liter).

Several aspects of the present results appear to be at variance with the results of recent volume determinations for relaxed glycerinated fibers (Rome, 1972), and for those in rigor (Rome, 1967) as a function of the sarcomere length. For example, it is expected that in a constant-volume system (i.e., relaxed glycerinated fibers) the charge density of the contractile proteins would not change as a function of sarcomere length (Matsubara and Elliott, 1972). The present data suggest the opposite (Fig. 2 b). Similarly, glycerinated fibers in rigor do not maintain a constant-volume relationship with changes in sarcomere length in salt solutions of physiological concentrations (Rome 1967); however, the impalement potentials for these fibers do not indicate a significant decrease in the charge density in the 2.7–3.6-μm range of sarcomere lengths (Fig. 2 a). One obvious explanation is that the fibers in the present experiment behave as a constant-volume system in the rigor and not in the relaxed state. However, we have no other evidence to support this explanation. An alternative conclusion is that the charge density of the thick and thin filaments in the relaxed condition is decreasing in the 2.7–3.6-μm range of sarcomere lengths without a change in volume. Although recent evidence suggests that the conformations of the thick and thin filaments are independent
of the degree of overlap (Haselgrove, 1970; Vibert et al., 1972), the present results can be explained if the degree of ionization of the myofilaments is altered as the sarcomere length increases from 2.7–3.6 μm (negating assumption 4 in the Appendix of Matsubara and Elliott, 1972). The X-ray data of Elliott et al. (1963) indicate that in the absence of a sarcolemma, the I band has less structural coherence than the A band. Therefore, as Elliott (1973) has suggested, the effective phase boundary of fibers that are not constant-volume systems may be around each A band.

The authors are indebted to Dr. Gerald F. Elliott for his helpful discussions during the course of this work, and to both him and Dr. David Gayton for reading the manuscript critically. A discussion with Dr. George Eisenman on the basis of the measured potentials was most enlightening and useful. This investigation was supported by grants from the Heart Association of Eastern New York and the National Institutes of Health (NS 07681).

Received for publication 7 December 1973.

REFERENCES

Bagshaw, C. R., and D. R. Trentham. 1973. The reversibility of adenosine triphosphate cleavage by myosin. Biochem. J. 133:323.
Beinbrech, G., H. J. Kuhn, and J. C. Ruegg. 1972. Electron microscope and optical diffraction studies on glycerol-extracted insect flight muscle fibers relaxed by pyrophosphate. Experientia (Basel). 28:511.
Bremel, R. D., J. M. Murray, and A. Weber. 1972. Manifestations of cooperative behavior in the regulated actin filament during actin-activated ATP hydrolysis in the presence of calcium. Cold Spring Harbor Symp. Quant. Biol. 37:267.
Bremel, R. D., and A. Weber. 1972. Cooperation within actin filament in vertebrate skeletal muscle. Nat. New Biol. 238:97.
Cohen, C., D. L. D. Caspar, J. P. Johnson, K. Nauss, S. S. Margossian, and D. A. D. Parry. 1972. Tropomyosin-troponin assembly. Cold Spring Harbor Symp. Quant. Biol. 37:287.
Collins, E. W., and C. Edwards. 1971. Role of Donnan equilibrium in the resting potentials in glycerol-extracted muscle. Am. J. Physiol. 221:1130.
Conway, E. J. 1957. Nature and significance of concentrations of potassium and sodium ions in skeletal muscle. Physiol. Rev. 37:84.
Ebashi, S., M. Endo, and I. Ohtsuki. 1969. Control of muscle contraction. Q. Rev. Biophys. 2:351.
Elliott, G. F. 1967. Variations of the contractile apparatus in smooth and striated muscles. X-ray diffraction studies at rest and in contraction. J. Gen. Physiol. 50(6, Pt. 2):171.
Elliott, G. F., J. Lowy, and C. R. Worthington. 1963. An X-ray and light-diffraction of the filament lattice of striated muscle in the living state and in rigor. J. Mol. Biol. 6:295.
Elliott, G. F. 1973. Donnan and osmotic effects in muscle fibers without membranes. J. Mechanochem. Cell Motility. 2:83.
Elzinga, M., J. H. Collins, W. M. Kuehl, and R. S. Adelstein. 1973. Complete amino-acid sequence of actin of rabbit skeletal muscle. Proc. Nat. Acad. Sci. U.S.A. 70:2687.
Hamson, J., and H. E. Huxley. 1955. The structural basis of contraction in striated muscle. In Symp. Soc. Exp. Biol. 9:228.
Hartshorne, D. J. 1970. Interactions of desensitized actomyosin with tropomyosin, troponin A, troponin B, and polyanions. J. Gen. Physiol. 55:585.
Hartshorne, D. J., and H. Y. Pyun. 1971. Calcium binding by the troponin complex and the purification and properties of troponin A. Biochim. Biophys. Acta. 229:698.
Haselgrove, J. C. 1970. X-ray diffraction studies on muscle. Ph.D. Thesis. University of Cambridge, Cambridge, England.
Huxley, H. E. 1972. Structural changes in the actin and myosin containing filaments during contraction. *Cold Spring Harbor Symp. Quant. Biol.* 37:361.

Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. *J. Mol. Biol.* 30:583.

Itzhaki, R. F., and D. M. Gill. 1964. A micro-biuret method for estimating proteins. *Anal. Biochem.* 9:401.

Kominz, D. R. 1966. Phylogenetic studies of muscle proteins. In *Phylogeny of Immunity*, Chapter 5. University of Florida Press, Gainesville, Fla. 49.

Lowey, S. H. Slayter, A. G. Weeds, and H. Baker. 1969. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. *J. Mol. Biol.* 42:1.

Lynn, R. W., and E. W. Taylor. 1970. Transient state phosphate production in the hydrolysis of nucleoside triphosphate by myosin. *Biochemistry.* 9:2975.

Lynn, R. W., and E. W. Taylor. 1971. Mechanism of adenosine triphosphate hydrolysis by actomyosin. *Biochemistry.* 10:4617.

Mannherz, H. G., J. B. Leigh, K. C. Holmes, and G. Rosenbaum. 1973. Identification of the transitory complex myosin-ATP by the use of methylene-ATP. *Nat. New Biol.* 241:226.

Margossian, S. S., and C. Cohen. 1973. Troponin subunit interactions. *J. Mol. Biol.* 81:409.

Mathebula, L., and G. F. Elliott. 1972. X-ray diffraction studies on skinned single fibres of frog skeletal muscle. *J. Mol. Biol.* 72:457.

Marston, S. B., and R. T. Tregear. 1972. Evidence for a complex between myosin and ADP in relaxed muscle fibers. *Nat. New Biol.* 235:23.

Maruyama, D., and A. Weber. 1972. Binding of adenosine triphosphate to myofibrils during contraction and relaxation. *Biochemistry.* 11:2990.

McCubbin, W. D., and C. M. Kay. 1973. Physiochemical and biological studies on the metal-induced conformational change in troponin A. Implication of carboxyl groups in the binding of calcium ions. *Biochemistry.* 12:4228.

Mendelson, R. A., M. F. Morales, and J. Botts. 1973. Segmental flexibility of the S-I moiety of myosin. *Biochemistry.* 12:2250.

Naylor, W. G., and N. C. R. Merrilees. 1964. Some observations on the fine structure and metabolic activity of normal and glycerinated ventricular muscle of toad. *J. Cell Biol.* 22:533.

Pempick, S. M., and C. Edwards. 1972. Comparison of the Donnan potential of glycerol-extracted muscle fibers during rigor, relaxation, and contraction. *J. Cell Biol.* 55(2, Pt. 2): 201 a.

Pempick, S. M., and C. Edwards. 1973. Differences in the charge distribution of normal and stretched glycerol-extracted muscle fibers in rigor, relaxation and contraction. *Biophys. Soc. Ann. Meet. Abstr.* 13:186 a.

Portzehl, H., P. Zaborlek, and J. Gaudin. 1969. The activation by Ca+ of the ATPase of extracted muscle fibrils with variation of ionic strength, pH and concentration of MgATP. *Biochim. Biophys. Acta.* 189:440.

Purple, R. L. 1964. The integration of excitatory and inhibitory influences in eccentric cell in the eye of *Limulus*. Ph.D. Thesis. The Rockefeller University, New York.

Purple, R. L., and F. A. Dove. 1966. Self-inhibition in the eye of *Limulus*. In *The Functional Organization of the Compound Eye*. C. G. Bernhard, editor. Pergamon Press Ltd., Oxford, England. 451.

Reedy, M. K., K. C. Holmes, and R. T. Tregear. 1965. Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. *Nature (Lond.)*. 207:1276.

Rome, E. 1967. Light and X-ray diffraction studies of the filament lattice of glycerol-extracted rabbit psoas muscle. *J. Mol. Biol.* 27:591.

Rome, E. 1972. Relaxation of glycerinated muscle: low-angle X-ray diffraction studies. *J. Mol. Biol.* 65:331.

Sokal, R. R., and F. J. Rohlf. 1969. *Biometry*. W. H. Freeman and Company Publishers, San Francisco, Calif.

Spudich, J. A., J. C. Huxley, and J. T. Finch. 1972. Regulation of skeletal muscle contraction.
II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J. Mol. Biol. 72:619.

Szent-Gyorgyi, A. 1949. Free-energy relations and contraction of actomyosin. Biol. Bull. 96:140.

Taylor, E. W., R. W. Lymn, and G. Moll. 1970. Myosin-product complex and its effect on the steady-state rate of nucleoside triphosphate hydrolysis. Biochemistry. 9:2984.

Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes. Prog. Biophys. Biophys. Chem. 3:305.

Vibert, P. J., J. C. Haselgrove, J. Lowy, and F. R. Poulsen. 1972. Structural changes in actin-containing filaments of muscle. J. Mol. Biol. 71:757.

Weber, A., and R. D. Bremel. 1971. Regulation of contraction and relaxation in the myofibril. In Contractility of Muscle Cells and Related Processes. R. J. Podolsky, editor. Prentice Hall, Inc., Englewood Cliffs, N. J. 37.

Weber, A., and S. Winicur. 1961. The role of calcium in the superprecipitation of actomyosin. J. Biol. Chem. 236:3198.

Weiss, R. M., R. Lazzara, and B. F. Hoffman. 1967. Potentials measured from glycerinated cardiac muscle. Nature (Lond.). 215:1305.