RAPiD: Rotation-Aware People Detection in Overhead Fisheye Images

Zhihao Duan, M. Ozan Tezcan, Hayato Nakamura, Prakash Ishwar, Janusz Konrad *
Boston University
{duanzh, mtezcan, nhayato, pi, jkonrad}@bu.edu

Abstract

Recent methods for people detection in overhead, fisheye images either use radially-aligned bounding boxes to represent people, assuming people always appear along image radius or require significant pre-/post-processing which radically increases computational complexity. In this work, we develop an end-to-end rotation-aware people detection method, named RAPiD, that detects people using arbitrarily-oriented bounding boxes. Our fully-convolutional neural network directly regresses the angle of each bounding box using a periodic loss function, which accounts for angle periodicities. We have also created a new dataset1 with spatio-temporal annotations of rotated bounding boxes, for people detection as well as other vision tasks in overhead fisheye videos. We show that our simple, yet effective method outperforms state-of-the-art results on three fisheye-image datasets. The source code for RAPiD is publicly available2.

1. Introduction

Occupancy sensing is an enabling technology for smart buildings of the future; knowing where and how many people are in a building is key for saving energy, space management and security (e.g., fire, active shooter). Various approaches to counting people have been developed to date, from virtual door tripwires to WiFi signal monitoring. Among those, video cameras combined with computer vision algorithms have proven most successful [6, 18, 1]. Typically, a wide-angle, standard-lens camera is side-mounted above the scene; multiple such cameras are used for large spaces. An alternative is to use a single overhead, fisheye camera with a 360° field of view (FOV). However, people detection algorithms developed for side-view, standard-lens images do not perform well on overhead, fisheye images due to their unique radial geometry and barrel distortions.

In this paper, we introduce Rotation-Aware People Detection (RAPiD), a novel end-to-end people-detection algorithm for overhead, fisheye images. RAPiD is a single-stage convolutional neural network that predicts arbitrarily-rotated bounding boxes (Fig. 1c) of people in a fisheye image. It extends the model proposed in YOLO [21, 22, 23], one of the most successful object detection algorithms for standard images. In addition to predicting the center and

1. This work was supported in part by ARPA-E under agreement DE-AR0000944 and by the donation of Titan GPUs from NVIDIA Corp.
2. vlp.bu.edu/rapid
size of a bounding box, RAPiD also predicts its angle. This is accomplished by a periodic loss function based on an extension of a common regression loss. This allows us to predict the exact rotation of each bounding box in an image without any assumptions and additional computational complexity. Since RAPiD is an end-to-end algorithm, we can train or fine-tune its weights on annotated fisheye images. Indeed, we show that such fine-tuning of a model trained on standard images significantly increases the performance. An additional aspect of this work, motivated by its focus on people detection, is the replacement of the common regression-based loss function used in multi-class object detection algorithms [21, 15, 8, 24] with single-class object detection. The inference speed of RAPiD is nearly identical to that of YOLO since it is applied to each image only once without the need for pre-/post-processing.

We evaluate the performance of RAPiD on two publicly-available, people-detection datasets captured by overhead fisheye cameras, Mirror Worlds (MW)\(^3\) and HABBOf [12]. Although these datasets cover a range of scenarios, they lack challenging cases such as unusual body poses, wearing a hoodie or hat, holding an object, carrying a backpack, strong occlusions, or low light. Therefore, we introduce a new dataset named Challenging Events for Person Detection from Overhead Fisheye images (CEPDOF) that includes such scenarios. In our evaluations, RAPiD outperforms state-of-the-art algorithms on all three datasets.

The main contributions of this work can be summarized as follows:

- We propose an end-to-end neural network, which extends YOLO v3, for rotation-aware people detection in overhead fisheye images and demonstrate that our simple, yet effective approach, outperforms the state-of-the-art methods.

- We propose a continuous, periodic loss function for bounding-box angle that, unlike in previous methods, facilitates arbitrarily-oriented bounding boxes capable of handling a wide range of human-body poses.

- We introduce a new dataset for people detection from overhead, fisheye cameras that includes a range of challenges; it can be also useful for other tasks, such as people tracking and re-identification.

2. Related work

People detection using side-view standard-lens cameras: Among traditional people-detection algorithms for standard cameras, the most popular ones are based on the histogram of oriented gradients (HOG) [3] and aggregate channel features (ACF) [5]. Recently, deep learning algorithms have demonstrated outstanding performance in object and people detection [21, 15, 7, 8, 24, 10]. These algorithms can be divided into two categories: two-stage methods and one-stage methods. Two-stage methods, such as R-CNN and its variants [8, 24, 10], consist of a Region Proposal Network (RPN) which predicts the Region of Interest (ROI) and a network head refines the bounding boxes. One-stage methods, such as variants of SSD [15, 7] and YOLO [21, 22, 23], could be viewed as independent RPNs. Given an input image, one-stage methods directly regress bounding boxes through CNNs. Recently, attention has focused on fast one-stage detectors [33, 28] and anchor-free detectors [29, 32].

Object detection using rotated bounding boxes: Detection of rotated bounding boxes has been widely studied in text detection and aerial image analysis [16, 4, 31, 20]. RRPN [16] is a two-stage object detection algorithm which uses rotated anchor boxes and a rotated region-of-interest (RRoI) layer. RoI-Transformer [4] extended this idea by first computing a horizontal region of interest (HRoI) and then learning the warping from HRoI to RRoI. R^3Det [31] proposed a single-stage rotated bounding box detector by using a feature refinement layer to solve feature misalignment occurring between the region of interest and the feature, a common problem of single-stage methods. In an alternative approach, Nosaka et al. [19] used orientation-aware convolutional layers [34] to handle the bounding box orientation and a smooth $L1$ loss for angle regression. All of these methods use a 5-component vector for rotated bounding boxes (coordinates of the center, width, height and rotation angle) with the angle defined in $[-\pi, 0]$ range and a traditional regression loss. Due to symmetry, a rectangular bounding box having width b_w, height b_h and angle θ is indistinguishable from one having width b_h, height b_w and angle $(\theta - \pi/2)$. Hence a standard regression loss, which does not account for this, may incur a large cost even when the prediction is close to the ground truth, e.g., if the ground-truth annotation is $(b_x, b_y, b_h, b_w, \pi/10)$, a prediction $(b_x, b_y, b_w, b_h, 0)$ may seem far from the ground truth, but is not so since the ground truth is equivalent to $(b_x, b_y, b_w, b_h, \pi/10)$. RSDet [20] addresses this by introducing a modulated rotation loss.

People detection in overhead, fisheye images: People detection using overhead, fisheye cameras is an emerging area with sparse literature. In some approaches, traditional people-detection algorithms such as HOG and LBP have been applied to fisheye images with slight modifications to account for fisheye geometry [30, 2, 25, 11]. For example, Chiang and Wang [2] rotated each fisheye image in small angular steps and extracted HOG features from the top-center part of the image. Subsequently, they applied SVM classifier to detect people. In another algorithm, Krams and Kiryati [11] trained an ACF classifier on side-view images and dewarped the ACF features extracted from the fisheye images.
image for person detection.

Recently, CNN-based algorithms have been applied to this problem as well. Tamura et al. introduced a rotation-invariant version of YOLO [21] by training the network on a rotated version of the COCO dataset [14]. The inference stage in their method relies on the assumption that bounding boxes in a fisheye image are aligned with the image radius. Another YOLO-based algorithm [26] applies YOLO to de-warped versions of overlapping windows extracted from a fisheye image. Li et al. [12] rotate each fisheye image in 15° steps and apply YOLO only to the upper-center part of the image where people usually appear upright. Subsequently, they apply post-processing to remove multiple detections of the same person. Although their algorithm is very accurate, it is computationally complex as it applies YOLO 24 times to each image.

In this work, we introduce an angle-aware loss function to predict the exact angle of bounding boxes without any additional assumptions. We also change the commonly-used representation of rotated bounding boxes to overcome the symmetry problem (Section 3.2.2).

3. Rotation-Aware People Detection (RAPiD)

We propose RAPiD, a new CNN that, in addition to the location and size, also estimates the angle of each bounding box in an overhead, fisheye image. During training, RAPiD includes a rotation-aware regression loss to account for these angles. RAPiD’s design has been largely motivated by YOLO. Below, we explain this design in detail and we highlight the concepts we borrowed from YOLO as well as novel ideas that we proposed.

Notation: We use \(\hat{b} = (b_x, b_y, b_w, b_h, b_{\text{conf}}) \in \mathbb{R}^6 \) to denote a ground-truth bounding box, where \(b_x, b_y \) are the coordinates of the bounding box center; \(b_w, b_h \) are the width and height and \(b_{\text{conf}} \) is the angle by which the bounding box is rotated clockwise. Similarly \(\hat{\hat{b}} = (\hat{b}_x, \hat{b}_y, \hat{b}_w, \hat{b}_h, \hat{b}_{\text{conf}}) \in \mathbb{R}^6 \) denotes a predicted bounding box, where the additional element \(\hat{b}_{\text{conf}} \) denotes the confidence score of the prediction. All the angles used in the paper are in radians.

3.1. Network Architecture

Our object-detection network can be divided into three stages: backbone network, feature pyramid network (FPN) [13], and bounding box regression network, also known as the detection head:

\[
P_1, P_2, P_3 = \text{Backbone}(I) \quad P_{\text{fpn}}^{P_1}, P_{\text{fpn}}^{P_2}, P_{\text{fpn}}^{P_3} = \text{FPN}(P_1, P_2, P_3) \quad \hat{T}_k = \text{Head}_k(P_{\text{fpn}}^{P_k}) \quad \forall k = 1, 2, 3
\]

where \(I \in [0, 1]^{3 \times h \times w} \) is the input image. \(\{P_{\text{fpn}}^{P_k}\}_{k=1}^3 \) denotes a multi-dimensional feature matrix and \(\{\hat{T}_k\}_{k=1}^3 \) denotes a list of predicted bounding boxes in transformed notation (the relationship between \(\hat{T} \) and \(\hat{\hat{b}} \) will be defined soon – see equation (2)) at three levels of resolution. Fig. 2 shows the overall RAPiD architecture, while below we describe each stage in some depth. For more details, interested readers are referred to [23].

Backbone: The backbone network, also known as the feature extractor, takes an input image \(I \) and outputs a list of features \(\{P_k\}_{k=1}^3 \) from different parts of the network. The main goal is to extract features at different spatial resolutions (\(P_1 \) being the highest and \(P_3 \) being the lowest). By using this multi-resolution pyramid, we expect to leverage both the low-level and high-level information extracted from the image.

Feature Pyramid Network (FPN): The multi-resolution features computed by the backbone are fed into FPN in order to extract features related to object detection, denoted \(\{P_{\text{fpn}}^{P_1}, P_{\text{fpn}}^{P_2}, P_{\text{fpn}}^{P_3}\} \). We expect \(P_{\text{fpn}}^{P_1} \) to contain information about small objects and \(P_{\text{fpn}}^{P_3} \) about large objects.
Detection Head: After FPN, a separate CNN is applied to each feature vector \(f_k^{\text{FPN}} \), \(k \in \{1, 2, 3\} \) to produce a transformed version of bounding-box predictions, denoted \(\hat{T}_k \) – a 4-dimensional matrix with \(\langle 3, h/s_k, w/s_k, 6 \rangle \) dimensions. The first dimension indicates that there are three anchor boxes being used in \(\hat{T}_k \), the second and third dimensions denote the prediction grid, where \(h \times w \) is the resolution of the input image and \(s_k \) is the stride at resolution level \(k \) as shown in Fig. 2, and the last dimension denotes a transformed version of the predicted bounding box for each grid cell. We denote the \(n^{th} \) transformed bounding box prediction of \(\text{Head}_k \) in grid cell \((i, j)\) as \(\hat{T}_k[i, j] = (\hat{t}_x, \hat{t}_y, \hat{t}_w, \hat{t}_h, \hat{t}_\theta, \hat{t}_\text{conf}) \) from which a bounding-box prediction can be computed as follows:

\[
\hat{b}_x = s_k (j + \text{Sig}(\hat{t}_x)) , \quad \hat{b}_w = w_{k,n}^{\text{anchor}} e^{\hat{t}_w} \\
\hat{b}_y = s_k (i + \text{Sig}(\hat{t}_y)) , \quad \hat{b}_h = h_{k,n}^{\text{anchor}} e^{\hat{t}_h} \\
\hat{t}_\theta = \alpha \text{Sig}(\hat{t}_\theta) - \beta , \quad \hat{t}_\text{conf} = \text{Sig}(\hat{t}_\text{conf})
\]

where \(\text{Sig}(\cdot) \) is the logistic (sigmoid) activation function and \(w_{k,n}^{\text{anchor}} \) and \(h_{k,n}^{\text{anchor}} \) are the width and height of the \(n^{th} \) anchor box for \(\text{Head}_k \). Note, that angle prediction \(\hat{\theta}_k \) is limited to range \([-\beta, \alpha - \beta]\). In Section 3.2.2 below, we discuss the selection of \(\alpha \) and \(\beta \) values.

3.2. Angle-Aware Loss Function

Our loss function is inspired by that used in YOLOv3 [23], with an additional bounding-box rotation-angle loss:

\[
\mathcal{L} = \sum_{\hat{T} \in \hat{T}^{\text{pos}}} \text{BCE}(\text{Sig}(\hat{t}_x), t_x) + \text{BCE}(\text{Sig}(\hat{t}_y), t_y) + \sum_{\hat{T} \in \hat{T}^{\text{neg}}} \sum_{\hat{t} \in \hat{T}^{\text{neg}}} \ell_{\text{angle}}(\hat{\theta}, \theta) \\
+ \sum_{\hat{T} \in \hat{T}^{\text{pos}}} (\text{Sig}(\hat{t}_w) - t_w)^2 + (\text{Sig}(\hat{t}_h) - t_h)^2 \\
+ \sum_{\hat{T} \in \hat{T}^{\text{pos}}} \sum_{\hat{t} \in \hat{T}^{\text{neg}}} \text{BCE}(\text{Sig}(\hat{t}_\text{conf}), 1) + \sum_{\hat{T} \in \hat{T}^{\text{neg}}} \text{BCE}(\text{Sig}(\hat{t}_\text{conf}), 0)
\]

(3)

where \(\text{BCE} \) denotes binary cross-entropy, \(\ell_{\text{angle}} \) is a new angle loss function that we propose in the next section, \(\hat{T}^{\text{pos}} \) and \(\hat{T}^{\text{neg}} \) are positive and negative samples from the predictions, respectively, as described in YOLOv3, \(\hat{\theta}_k \) is calculated in equation (2) and \(t_x, t_y, \hat{t}_x, \hat{t}_y, t_w, t_h \) are calculated from the ground truth as follows:

\[
t_x = \frac{b_x}{s_k} - \frac{b_x}{s_k}, \quad t_w = \ln \left(\frac{b_w}{w_{k,n}^{\text{anchor}}} \right) \\
t_y = \frac{b_y}{s_k} - \frac{b_y}{s_k}, \quad t_h = \ln \left(\frac{b_h}{h_{k,n}^{\text{anchor}}} \right)
\]

(4)

Note, that we do not use the category-classification loss since we use only one class (person) in our problem.

Traditionally, regression functions based on \(L1 \) or \(L2 \) distance are used for angle prediction [16, 4, 31]. However, these metrics do not consider the periodicity of the angle and might result in misleading cost values due to symmetry in the parameterization of rotated bounding boxes. We solve these issues by using a periodic loss function and changing the parameterization, respectively.

3.2.1 Periodic Loss for Angle Prediction

Since a bounding box remains identical after rotation by \(\pi \), the angle loss function must satisfy \(\ell_{\text{angle}}(\hat{\theta}, \theta) = \ell_{\text{angle}}(\hat{\theta} + \pi, \theta) \), i.e., must be a \(\pi \)-periodic function with respect to \(\hat{\theta} \).

We propose a new, periodic angle loss function:

\[
\ell_{\text{angle}}(\hat{\theta}, \theta) = f(\text{mod}(\hat{\theta} - \theta - \frac{\pi}{2}, \pi) - \frac{\pi}{2}) \\
\]

(5)

where \(\text{mod}(\cdot) \) denotes the modulo operation and \(f \) is any symmetric regression function such as \(L1 \) or \(L2 \) norm. Since \(\frac{d}{d\theta} \text{mod}(x, \cdot) = 1 \), the derivative of this loss function with respect to \(\hat{\theta} \) can be calculated as follows,

\[
\ell'_{\text{angle}}(\hat{\theta}, \theta) = f' \left(\text{mod}(\hat{\theta} - \theta - \frac{\pi}{2}, \pi) - \frac{\pi}{2} \right) \\
\]

(6)

except for angles such that \(\hat{\theta} - \theta = (k\pi + \pi/2) \) for integer \(k \), where \(\ell_{\text{angle}} \) is non-differentiable. However, we can ignore these angles during backpropagation as is commonly done for other non-smooth functions, such as \(L1 \) distance. Fig. 3 shows an example plot of \(\ell_{\text{angle}}(\hat{\theta}, \theta) \) with \(L2 \) distance as well as its derivative with respect to \(\Delta \theta = \hat{\theta} - \theta \).

3.2.2 Parameterization of Rotated Bounding Boxes

In most of the previous work on rotated bounding-box (RBB) detection, \([-\frac{\pi}{2}, 0]\) range is used for angle representation. This ensures that all RBBs can be uniquely expressed
as \((b_x, b_y, b_w, b_h, b_\theta)\) where \(b_\theta \in [-\pi, 0]\). However, as discussed in Section 2 and also in [20], this approach might lead to a large cost even when the prediction is close to the ground truth due to the symmetry of the representation, i.e., \((b_x, b_y, b_w, b_h, b_\theta) = (b_x, b_y, b_h, b_w, b_\theta - \pi/2)\). We address this by enforcing the following rule in our ground-truth annotations: \(b_w < b_h\) and extending the ground-truth angle range to \([-\pi, \pi]\) to be able represent all possible RBBs. For bounding boxes that are exact squares, a rare situation, we simply decrease a random side by 1 pixel. Under this rule, each bounding box will correspond to a unique 5-D vector representation.

Given the fact that the ground-truth angle \(\theta\) is defined in \([-\pi/2, \pi/2]\) range, it seems logical to force the predicted angle \(\hat{\theta}\) to be in the same range by assigning \((\alpha, \beta) = (\pi, \pi/2)\) in equation (2). However, this creates a problem for gradient descent when \(\pi/2 < \hat{\theta} - \theta < \pi\) since the derivative of angle loss (6) will be negative (Fig. 3). In this case, gradient descent will tend to increase \(\hat{\theta}\) which will move it further away from the actual angle \(\theta\). Clearly, the network should learn to estimate the angle as \(\theta + \pi\) instead of \(\theta\) (Fig. 4). To allow this kind of behavior, we extend the range of allowed angle predictions to \([-\pi, \pi]\) by assigning \((\alpha, \beta) = (2\pi, \pi)\).

Note that our new RBB parameterization will not have the symmetry problem explained above if the network eventually learns to predict the parametrization rule, \(\hat{b}_w \leq \hat{b}_h\), which is very likely considering the fact that all ground-truth RBBs satisfy \(b_w \leq b_h\). Indeed, based on our experiments in Section 4.4.3 we show that nearly all RBBs predicted by RAPiD satisfy \(\hat{b}_w \leq \hat{b}_h\).

In summary, by 1) defining \([-\pi, \pi]\) as the ground truth angle range and forcing ground truth \(b_w < b_h, 2)\) using our proposed periodic angle loss function, and 3) setting predicted angle range to be \((-\pi, \pi)\), our network can learn to predict arbitrarily-oriented RBBs without problems experienced by previous RBB methods. Based on the experimental results in Section 4.4.2, we choose periodic L1 to be our angle loss function \(\ell_{\text{angle}}\).

3.3. Inference

During inference, an image \(I \in \mathbb{R}^{3 \times h \times w}\) is fed into the network, and three groups of bounding boxes (from three feature resolutions) are obtained. A confidence threshold is applied to select the best bounding box predictions. After that, non-maximum suppression (NMS) is applied to remove redundant detections of the same person.

4. Experimental Results

4.1. Dataset

Although there are several existing datasets for people detection from overhead, fisheye images, either they are not annotated with rotated bounding boxes [17], or the number of frames and people are limited [12]. Therefore, we collected and labeled a new dataset named Challenging Events for Person Detection from Overhead Fisheye images (CEPDOF), and made it publicly available. We also manually annotated a subset of the MW dataset with rotated bounding-box labels, that we refer to as MW-R. We use MW-R, HABBOF, and CEPDOF to evaluate our method and compare it to previous state-of-the-art methods. Table 1 shows various statistics of these three datasets, and Table 2 shows the details of CEPDOF. Clearly, the new CEPDOF dataset contains many more frames and human objects, and also includes challenging scenarios such as crowded room, various body poses, and low-light scenarios, which do not exist in the other two datasets. Furthermore, CEPDOF is annotated spatio-temporally, i.e., bounding boxes of the same person carry the same ID in consecutive frames, and thus can be also used for additional vision tasks using overhead, fisheye images, such as video-object tracking and human re-identification.

4.2. Performance Metrics

Following the MS COCO challenge [14], we adopt Average Precision (AP), i.e., the area under the Precision-Recall curve, as one of our evaluation metrics. However, we only consider AP at IoU = 0.5 (AP50) since even a perfect people-detection algorithm could have a relatively low IoU due to the non-uniqueness of ground truth: for the same person there could be multiple equally good bounding boxes at different angles, but only one of them will be selected by a
Table 1: Statistics of our new CEPDOF dataset in comparison with existing overhead fisheye image datasets. Since all fisheye images have a field of view with 1:1 aspect ratio, we only list one dimension (i.e., “1,056 to 1,488” means frame resolution for different videos is between 1,056 × 1,056 and 1,488 × 1,488). Note that the MW-R dataset in this table is a subset of the original MW dataset that we annotated with bounding-box rotation angles.

Dataset	# of videos	Avg. # of people	Max # of people	# of frames	Resolution	FPS
MW-R	19	2.6	6	8,752	1,056 to 1,488	15
HABBOF	4	3.5	5	5,837	2,048	30
CEPDOF	8	6.8	13	25,504	1,080 to 2,048	1-10

Table 2: Scenario details and statistics of individual videos in CEPDOF.

Video Scenario	Video Sequence	Description/Challenges	Max # of people	# of frames	Resolution	FPS
Common activities	Lunch meeting 1	People walking and sitting.	11	1,201	2,048	1
	Lunch meeting 3	People walking and sitting.	10	900	2,048	1
Crowded scene	Lunch meeting 2	More than 10 people sitting and having lunch.	13	3,000	2,048	10
Edge Cases	Edge cases	People walking and sitting, extreme body poses, head camouflage, severe body occlusions.	8	4,201	2,048	10
Walking activity	High activity	People frequently walking in through one door and leaving through the other door.	9	7,202	1,080	10
Low light	All-off	People walking and sitting, overhead lights off, camera IR filter removed, no IR illumination	7	3,000	1,080	10
	IRfilter	People walking and sitting, overhead lights off, with camera IR filter, no IR illumination	8	3,000	1,080	10
	IRill	People walking and sitting, overhead lights off, camera IR filter removed, with IR illumination	8	3,000	1,080	10

4.3. Main Results

Implementation details: Unless otherwise specified, we first train our network on the MS COCO 2017 [14] training images for 100,000 iterations and fine-tune the network on single or multiple datasets from Table 1 for 6,000 iterations (one iteration contains 128 images). On COCO images, the network weights are updated by Stochastic Gradient Descent (SGD) with the following parameters: step size 0.001, momentum 0.9, and weight decay 0.0005. For datasets in Table 1, we use standard SGD with a step size of 0.0001. Rotation, flipping, resizing, and color augmentation are used in both training stages. All results have been computed based on a single run of training and inference.

Table 3 compares RAPiD with other competing algorithms. In order to evaluate AA and AB algorithms from Li et al. [12], we used the authors’ publicly-available implementation. Since the code of Tamura et al. [27] is not publicly available, we implemented their algorithm based on our best understanding. Since there is no predefined train-test split in these three datasets, we cross-validate RAPiD on these datasets, i.e., two datasets are used for training and the remaining one for testing, and this is repeated so that each dataset is used once as the test set. For example, RAPiD is trained on MW-R + HABBOF, and tested on CEPDOF, and similarly for other permutations. We use vip.bu.edu/projects/vsns/cossy/fisheye
Table 3: Performance comparison of RAPiD and previous state-of-the-art methods. P, R, and F denote Precision, Recall, and F-measure, respectively. All metrics are averaged over all the videos in each dataset. Therefore, the F-measure in the table is not equal to the harmonic mean of Precision and Recall results in the table. The inference speed (FPS) is estimated from a single run on the Edge cases video in CEPDOF at confidence threshold $\hat{b}_{confl} = 0.3$, using Nvidia GTX 1650 GPU.

	MW-R	HABBOF	CEPDOF										
	FPS	AP$_{50}$	P	R	F	AP$_{50}$	P	R	F	AP$_{50}$	P	R	F
Tamura et al. [27]	6.8	78.2	0.863	0.759	0.807	87.3	0.970	0.827	0.892	61.0	0.884	0.526	0.634
Li et al. AA [12]	0.3	88.4	0.939	0.819	0.874	87.7	0.922	0.867	0.892	73.9	0.896	0.638	0.683
Li et al. AB [12]	0.2	95.6	0.895	0.902	0.898	93.7	0.881	0.935	0.907	76.9	0.884	0.694	0.743
RAPiD (608)	7.0	96.6	0.951	0.931	0.941	97.3	0.984	0.935	0.958	82.4	0.921	0.719	0.793
RAPiD (1,024)	3.7	96.7	0.919	0.951	0.935	98.1	0.975	0.963	0.969	85.8	0.902	0.795	0.836

Figure 5: Qualitative results of RAPiD on videos from MW-R (a–c), HABBOF (d) and CEPDOF (e–h). Green boxes are true positives, red boxes are false positives, and yellow boxes are false negatives. Images (a–d) are for relatively easy cases, (e–f) are for challenging cases, and (g–h) are failure examples. As shown in (a–f), RAPiD works very well in most scenarios, including various poses, orientations, occupancy levels, and background scenes. However, it produces false positives in (g) on a projection screen (images of people who should not be counted) and in (h). It also misses people in low-light conditions, such as in (h).

only one Low-light video (with infra-red illumination) during training, as other videos have extremely low contrast, but we use all of them in testing. Since neither Li et al. [12] nor Tamura et al. [27] are designed to be trained on rotated bounding boxes, we just trained them on COCO as described in their papers. Tamura et al. used a top-view standard-lens image dataset called DPI-T [9] for training in addition to COCO, however currently this dataset is not accessible. In the ablation study (Section 4.4.1), we show the effect of fine-tuning Tamura et al. with overhead, fisheye frames as well. We use 0.3 as the confidence threshold for all the methods to calculate Precision, Recall, and F-measure. All methods are tested without test-time augmentation.

Results in Table 3 show that RAPiD at 608 × 608 resolution achieves the best performance and the fastest execution speed among all the methods tested. Our method is tens of times faster than Li et al.’s method and slightly faster than the method of Tamura et al. We note that RAPiD’s performance is slightly better, in terms of AP, than that of Li et al.’s AB algorithm on the MW-R dataset in which most human objects appear in an upright pose (walking). This
is encouraging since people walking or standing appear radially oriented in overhead, fisheye images, a scenario for which Tamura et al.'s and Li et al.'s algorithms have been designed. However, RAPiD outperforms the other algorithms by a large margin on both HABBOF, which is relatively easy, and CEPDOF, which includes challenging scenarios, such as various body poses and occlusions. We conclude that RAPiD works well in both simple and challenging cases while maintaining high computational efficiency. Furthermore, it achieves even better performance when the input image resolution is raised to $1,024 \times 1,024$ but at the cost of a doubled inference time. Fig. 5 shows sample results of RAPiD applied to the three datasets; the detections are nearly perfect in a range of scenarios, such as various body poses, orientations, and diverse background scenes. However, some scenarios, such as people’s images on a projection screen (Fig. 5g), low light, and hard shadows, remain challenging.

4.4. Design Evaluation

We conducted several experiments to analyze the effects of the novel elements we introduced in RAPiD. Specifically, we conducted an ablation study and compared different angle loss functions. Due to the limited amount of GPU resources we have, we did not run a full cross-validation for these experiments. Instead, we trained all of these algorithms on COCO and then fine-tuned them on MW-R using the same optimization parameters as reported in Section 4.3. Then, we tested each algorithm on every video in the HABBOF and CEPDOF datasets at $1,024 \times 1,024$ resolution. The resulting AP was averaged over all videos.

4.4.1 Ablation Experiments

In this section, we present various ablation experiments to analyze how each part of RAPiD individually contributes to the overall performance. As the baseline, we use Tamura et al. [27] with NMS and analyze the differences between this baseline and RAPiD one-by-one. Tamura et al. use standard YOLO [23] trained on 80-classes of COCO with rotation-invariant training [27] in which the object’s angle is uniquely determined by its location. The first row of Table 4 shows the result of this baseline algorithm. Note that, the baseline algorithm is not trained or fine-tuned on overhead, fisheye frames.

Multi-class vs. single-class: In RAPiD, we remove the category classification part of YOLO since we are dealing with a single object category, namely, person (see Section 3.2). As can be seen from the second row of Table 4, this results in a slight performance drop, which is to be expected since training on 80 classes of objects can benefit from multi-task learning. However, removing the category-classification branch reduces the number of parameters by 0.5M and slightly increases the inference speed (FPS in Table 3 and Table 4).

Fine-tuning with overhead, fisheye images: To analyze this effect, we fine-tuned the single-class algorithm trained on COCO with images from MW-R. As shown in the third row of Table 4, this results in a significant performance increase. Recall that the test set used in Table 4 does not include any frames from the MW-R dataset.

Rotation-aware people detection: As discussed in Section 3.2, we introduced a novel loss function to make RAPiD rotation-aware. Instead of setting the object’s angle to be along the FOV radius, we add a parameter, b_θ, to each predicted bounding box and train the network using periodic L1 loss. As shown in the last row of Table 4, the angle prediction further improves the performance of RAPiD.

4.4.2 Comparison of Different Angle Loss Functions

To analyze the impact of the loss functions on angle prediction, we ablate the angle value range and angle loss in RAPiD while keeping the other parts unchanged. We compare our proposed periodic loss with two baselines: standard unbounded regression loss and bounded regression loss. We perform the same experiment for both L1 and L2 loss. As can be seen in Table 5, the periodic L1 loss achieves the best performance, and both the periodic L1 and periodic L2 losses outperform their non-periodic counterparts.

4.4.3 Analysis of the Prediction Aspect Ratio

As discussed in Section 3.2.2, we relax the angle range to be inside $[-\pi/2, \pi/2]$ and force $w < h$ in ground-truth

Table 4: Ablation study of RAPiD. Fine-tuning is applied using the MW-R dataset.

No. of classes	Angle prediction	Fine-tuning	AP50	FPS
80	Rotation-invariant		81.4	3.7
1	Rotation-invariant	✓	81.2	3.8
1	Rotation-invariant	✓	85.9	3.8
1	Rotation-aware	✗	88.9	3.7

Table 5: Comparison of RAPiD’s performance for different angle ranges and loss functions.

Prediction range	Angle loss	AP50
$(-\infty, \infty)$	L1	86.0
$(-\pi, \pi)$	L1	87.0
$(-\pi, \pi)$	Periodic L1	88.9
$(-\infty, \infty)$	L2	86.1
$(-\pi, \pi)$	L2	86.1
$(-\pi, \pi)$	Periodic L2	88.1
annotations so that every bounding box corresponds to a unique representation. In the same section, in order to handle the bounding-box symmetry problem, we assumed that the network can learn to predict bounding boxes such that \(\hat{b}_w < \hat{b}_h \). To demonstrate that this is indeed the case, we analyze the output of our network on both HABBOF and CEPDOF datasets. Fig. 6 shows the histogram of the height-width ratio of the predicted bounding boxes. We observe that nearly all predicted bounding boxes satisfy \(\hat{b}_w < \hat{b}_h \) (i.e., \(\hat{b}_h / \hat{b}_w > 1 \)), which validates our assumption.

4.5. Impact of illumination

Table 6 shows RAPiD’s performance for each video in the CEPDOF dataset. Clearly, when running at 1,024 × 1,024-pixel resolution, RAPiD performs extremely well on normal-light videos (Lunch meeting 1/2/3, Edge cases, and High activity) with \(AP_{50} \geq 94.0 \). However, both \(AP_{50} \) and F-measure drop significantly for All-off and IRfilter videos. We observe that RAPiD has a relatively high Precision but very low Recall on these two videos, i.e., it misses many people. By comparing RAPiD’s output with ground-truth annotations, we find that the people RAPiD misses are usually indistinguishable from the background (see Fig. 5h for an example). Detecting such barely-visible people from a single video frame is a very challenging task even for humans. Notably, when IR illumination is turned on (IR-ill video), RAPiD’s performance vastly improves to levels only slightly sub-par compared to that for normal-light videos.

5. Conclusions

In this paper, we proposed RAPiD, a novel people detection algorithm for overhead, fisheye images. Our algorithm extends object-detection algorithms which use axis-aligned bounding boxes, such as YOLO, to the case of person detection using human-aligned bounding boxes. We show that our proposed periodic loss function outperforms traditional regression loss functions in angle prediction. With rotation-aware bounding box prediction, RAPiD outperforms previous state-of-the-art methods by a large margin without introducing additional computational complexity. Unsurprisingly, RAPiD’s performance drops significantly for videos captured in extremely low-light scenarios, where people are barely distinguishable from the background. Further research is needed to address such scenarios. We also introduced a new dataset, that consists of 25K frames and 173K people annotations. We believe both our method and dataset will be beneficial for various real-world applications and research using overhead, fisheye images and videos.

References

[1] Antonio Brunetti, Domenico Buongiorno, Gianpaolo Francesco Trotta, and Vitantonio Bevilacqua. Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing, 300:17–33, 2018.
[2] An-Ti Chiang and Yao Wang. Human detection in fisheye images using hog-based detectors over rotated windows. Proc. IEEE Intern. Conf. on Multimedia and Expo Workshops, pages 1–6, 2014.
[3] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In Proc. IEEE Conf. Computer Vision Pattern Recognition, volume 1, pages 886–893. IEEE, 2005.
[4] Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai Lu. Learning roi transformer for oriented object detection in aerial images. In Proc. IEEE Conf. Computer Vision Pattern Recognition, pages 2849–2858, 2019.
[5] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona. Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Machine Intell., 36(8):1532–1545, 2014.
[6] Markus Enzweiler and Dariu M Gavrila. Monocular pedestrian detection: Survey and experiments. IEEE Trans. Pattern Anal. Machine Intell., 31(12):2179–2195, 2008.
[7] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg. DSSD: Deconvolutional Single Shot Detector. arXiv e-prints, page arXiv:1701.06659, Jan 2017.
[8] Ross Girshick. Fast r-cnn. In Proc. IEEE Int. Conf. Computer Vision, December 2015.
[9] Albert Haque, Alexandre Alahi, and Li Fei-Fei. Recurrent attention models for depth-based person identification. In Proc. IEEE Conf. Computer Vision Pattern Recognition, pages 1229–1238, 2017.
[10] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proc. IEEE Int. Conf. Computer Vision, Oct 2017.
[11] O. Krams and N. Kiryati. People detection in top-view fisheye imaging. In Proc. IEEE Int. Conf. Advanced Video and Signal-Based Surveillance, pages 1–6, Aug 2017.
[12] S. Li, M. O. Tezcan, P. Ishwar, and J. Konrad. Supervised people counting using an overhead fisheye camera. In Proc.
	Lunch meeting 1	Lunch meeting 1	Lunch meeting 1	Lunch meeting 1	Edge cases								
	AP50	P	R	F	AP50	P	R	F	AP50	P	R	F	
RAPiD (608)	96.7	0.945	0.920	0.933	95.7	0.931	0.870	0.900	91.3	0.905	0.794	0.846	
RAPiD (1024)	97.6	0.968	0.957	0.962	97.4	0.952	0.945	0.948	95.3	0.896	0.885	0.891	
	RAPiD (608)	93.2	0.966	0.884	0.923	52.8	0.853	0.428	0.570	51.4	0.875	0.346	0.496
	RAPiD (1024)	94.2	0.964	0.913	0.938	65.6	0.798	0.532	0.638	54.5	0.803	0.400	0.534
	High activity	All-off	IRfilter	IRfilter									
	RAPiD (608)	94.2	0.966	0.884	0.923	52.8	0.853	0.428	0.570	51.4	0.875	0.346	0.496
	RAPiD (1024)	94.2	0.964	0.913	0.938	65.6	0.798	0.532	0.638	54.5	0.803	0.400	0.534

Table 6: RAPiD’s performance on individual videos in the CEPDOF dataset.