1. INTRODUCTION

Three-dimensional space motions of individual stars and stellar systems throughout the Galaxy are an important probe of the Milky Way's gravitational potential and of the kinematics of different populations within it. Most of what we know, for example, about the disk and halo of the Galaxy has come from studies of the radial velocities and proper motions of stars in the local volume of space near the Sun. In recent years, this has been steadily extended to samples throughout the Galaxy, particularly for globular clusters (Cudworth 1993; Dauphole 1996) and the Sun. In we derive the distance to NGC 6522 \([(0.91 \pm 0.04)R_0, \text{where } R_0 \text{ is the Galactocentric distance}] \) and metallicity \(([\text{Fe/H}] = -1.28 \pm 0.12) \), making use of recent revisions in the foreground extinction toward the cluster \((A_V = 1.42 \pm 0.05) \). We find the spatial velocity of the cluster and conclude that the cluster stays close to the Galactic center, and may have experienced significant bulge/disk shocking during its lifetime.

Key words: astrometry — Galaxy: abundances — globular clusters: individual (NGC 6522) — stars: kinematics
included in the computation. In his compilation of globular cluster velocities, Zinn (1985) repeats the Webbink (1981) value. Pryor & Meylan (1993) quote the radial velocity as $-10.4 \pm 1.5 \, \text{km s}^{-1}$ from an apparently unpublished paper. Recently, Rutledge et al. (1997) obtained Ca II spectra of 18 stars near the cluster and derived $v = -18.3 \pm 9.3 \, \text{km s}^{-1}$, where the uncertainty is the standard error of the mean.

In the top panel of Figure 1, we display the proper-motion vector point diagram for the complete SJW survey, while in the bottom panel we show those stars located within 2.5 of the cluster center with radial velocities statistically consistent at the 1 σ level with the Smith et al. (1976) value of $-25 \pm 16 \, \text{km s}^{-1}$. The error bars in the lower left-hand corner of each panel in Figure 1 show the mean error in proper motion for the stars in the sample. In the bottom panel, one clumping of points is present at $(\mu_l, \mu_b) \sim (1.5, -6) \, \text{mas yr}^{-1}$. As we will show, this is the most likely proper motion of the cluster, because stars near this clump lie on the giant branch for NGC 6522 and have absorption-line strengths unlike most of the stars in the bulge; other possible clumps of stars in Figure 1 do not yield this a posteriori consistency with the cluster CMD and metallicity.

To identify cluster members, we employ an iterative scheme that searches for stars in the sample that are simultaneously within 1.5 σ of the mean cluster motion (μ_l, μ_b, \bar{v}) in each proper-motion component and in radial velocity. For example, for heliocentric radial velocity component, we demand that

$$|v_i - \bar{v}_c| \leq 1.5 \sigma_i,$$ \hspace{1cm} (1)

where v_i is the velocity of an individual star, \bar{v}_c is the mean velocity of cluster members,

$$\sigma_i^2 = \epsilon_i^2 + \sigma_i^2(v),$$ \hspace{1cm} (2)

ϵ_i is the measurement error, and $\sigma_i(v)$ is the estimated scatter caused by the internal velocity dispersion of the cluster. Similar expressions are used for μ_l and μ_b. We adopt $\sigma_i(v) = 0.67 \, \text{km s}^{-1}$ (Pryor & Meylan 1993). For a distance to NGC 6522 of 7.1 kpc (see below), this corresponds to $\sigma_l(\mu_l) = \sigma_b(\mu_b) = 0.20 \, \text{mas yr}^{-1}$, which we adopt for the dispersion in each component of proper motion. (The results of this procedure are not very sensitive to the choice of σ_i, because $\epsilon_i \geq \sigma_i$ for most of the sample.)

We began the iteration with a few stars near the clump in the bottom panel of Figure 1. Then, at each step the list of stars near the mean cluster motion was used to compute the weighted means $(\bar{\mu}_l, \bar{\mu}_b, \bar{v})$, with weights $1/\sigma_i^2$ in each component. This process quickly converged on seven stars, which are listed in Table 1. The star names in the first column are from Arp (1965). Columns (2)–(7) show the radial velocity and photometry (Terndrup et al. 1995). The next four columns contain the proper motion and errors from SJW, where the units are mas yr$^{-1}$. The last column shows the angular distance of each star in arcminutes from the center of NGC 6522.

![Figure 1](image-url)

Figure 1.—Proper-motion vector point diagrams for all stars in the Baade’s window survey (SJW; top) and those stars located within 2.5 of the cluster center that have radial velocities near that of NGC 6522 (bottom). The units are milliarcseconds per year. The error bar in the lower left-hand corner of each panel shows the mean error of measurement in μ_l and μ_b, plotted as though they were independent. Because the proper motions in l and b were obtained from the proper motion in right ascension and declination through a coordinate rotation, the errors in μ_l and μ_b are in fact correlated.

Star (1)	v_j (2)	$\epsilon(v_j)$ (3)	V (4)	ΔV (5)	$V - I$ (6)	$\Delta(V - I)$ (7)	μ_l (8)	$\epsilon(\mu_l)$ (9)	μ_b (10)	$\epsilon(\mu_b)$ (11)	d (12)
1-264 ...	-35	13	14.414	0.004	1.871	0.008	2.0	0.8	-5.7	1.2	1.47
2-069 ...	-59	41	17.022	0.027	1.630	0.031	0.4	0.7	-6.4	0.5	1.01
2-086 ...	-46	48	16.911	0.024	1.672	0.026	1.0	0.6	-6.5	0.6	1.42
2-101 ...	-22	13	15.862	0.007	1.762	0.010	1.3	0.4	-6.1	0.3	2.04
2-187 ...	-27	12	16.075	0.007	1.694	0.011	1.9	0.7	-5.3	0.4	2.22
3-266 ...	-56	36	16.770	0.013	1.588	0.018	1.7	0.7	-6.1	0.5	1.64
4-258 ...	-21	14	17.028	0.017	1.493	0.041	0.2	0.8	-6.0	0.5	1.54

Table 1: Probable Members of NGC 6522
licity et al. reveals that this explanation is (Sadler 1996) an overestimate of the error because of the resulting mismatch between these stars and the velocity standards. An examination of the estimated errors as a function of metallicity (Sadler et al. 1996) reveals that this explanation is plausible; the mean estimated error in radial velocity for stars with [Fe/H] < −0.7 is 25 km s⁻¹, compared with 15 km s⁻¹ for stars with [Fe/H] > −0.7.

We then scaled the radial velocity errors downward by a factor of 1.7 (but not below a reasonable minimum value of 7 km s⁻¹) and repeated the iterations, obtaining the same list of candidate members of NGC 6522. The weighted mean cluster motion and standard errors of the mean from this sample are

\[\mu_{i,c} = +1.2 \pm 0.2 \text{ mas yr}^{-1}, \]
\[\mu_{b,c} = -6.0 \pm 0.2 \text{ mas yr}^{-1}, \]
\[v_c = -28.5 \pm 6.5 \text{ km s}^{-1}. \] (3)

The radial velocity we derive is in statistical agreement with the value of −18.3 ± 9.3 km s⁻¹ from spectra of 18 stars near the cluster reported by Rutledge et al. (1997).

Finally, in order to explore the sensitivity of our selection method, we compute membership probabilities for the SJW stars with radial velocities, assuming a Gaussian distribution for the cluster and field (mostly the bulge) and taking into account the errors in the individual measurements (see Dinescu et al. 1996). We write the mean apparent motion of the field as \(\langle \mu_{i,f}, \mu_{b,f}, v_f \rangle \) and the dispersion as \(\sigma_{\mu_i}, \sigma_{\mu_b}, \sigma_f(v) \). Denoting with the subscript \(c \) the equivalent quantities for the cluster, determined above, we define the membership probability for star \(i \) as

\[P_i = \frac{\rho_{i,c}}{\rho_{i,c} + \rho_{i,f}}, \] (4)

where the densities \(\rho_{i,c} \) and \(\rho_{i,f} \) of cluster and field stars are represented as the Gaussian distributions

\[\rho_{i,c} = \frac{N_c}{(2\pi)^{3/2}\sigma_{\mu_i}\sigma_{\mu_b}\sigma_f(v)} \times \exp \left[-\frac{(\mu_{i,c} - \mu_{i,f})^2}{2\sigma_{\mu_i}^2} - \frac{(\mu_{b,c} - \mu_{b,f})^2}{2\sigma_{\mu_b}^2} - \frac{(v_c - v_f)^2}{2\sigma_f^2(v)} \right], \] (5)
\[\rho_{i,f} = \frac{N_f}{(2\pi)^{3/2}\sigma_{\mu_i}\sigma_{\mu_b}\sigma_f(v)} \times \exp \left[-\frac{(\mu_{i,f} - \mu_{i,c})^2}{2\sigma_{\mu_i}^2} - \frac{(\mu_{b,f} - \mu_{b,c})^2}{2\sigma_{\mu_b}^2} - \frac{(v_f - v_c)^2}{2\sigma_f^2(v)} \right]. \] (6)

Note that in the expression for the cluster density function we combined the errors of the individual stars and the adopted cluster dispersion as in equation (2). The values for the field were derived from the SJW stars with velocities excluding the seven stars in Table 1, and were \(\mu_{i,f} = 0.04 \text{ mas yr}^{-1}, \sigma_{\mu_i} = 3.1 \text{ mas yr}^{-1}, \mu_{b,f} = 0.18 \text{ mas yr}^{-1}, \sigma_{\mu_b} = 2.7 \text{ mas yr}^{-1}, \sigma_f(v) = -2.1 \text{ km s}^{-1}, \text{ and } \sigma_f(v) = 105 \text{ km s}^{-1}. \) As opposed to the cluster members, the field stars’ dispersions are dominated by the intrinsic velocity dispersions and not observational errors. Figure 2 displays the membership probabilities, expressed as percentages, against the distance from the center of NGC 6522 (top) and the \(V \) magnitude (bottom). The stars in Table 1 are those seven stars with the highest membership probabilities; all seven have \(P \geq 85\% \). There are only three other stars with \(P \geq 10\% \), and most of the sample has \(P \) very nearly zero. (The SJW sample contains almost no stars within 1′ of the cluster, because this region was deliberately avoided in their survey.) The stars with the highest membership probabilities are all within 2.5 of the cluster center; this is well within the tidal radius of the cluster, which is not accurately measured but is on the order of 10–15′ (Peterson & Reed 1987; Harris 1996).
3. DISTANCE TO NGC 6522

To support our claim that we have found members of NGC 6522 in the SJW survey, we now examine photometry and line-strength indexes et al. for the stars (Terndrup et al. 1995) for the stars in Table 1. We also derive the distance to NGC 6522, needed for the conversion of proper motion into a space velocity, from its CMD and by direct comparison of its horizontal-branch magnitude with that of RR Lyrae stars in Baade’s window. In this process, we obtain a photometric metallicity estimate for comparison with recent results from spectroscopy.

The distance to NGC 6522 is not known accurately: although there are several RR Lyrae stars near the cluster, it is difficult to determine which are members and which are in the bulge (Blanco 1984; Walker & Mack 1986; Walker & Terndrup 1991; Carney et al. 1995). Consequently, the only distance estimates have come from analysis of the cluster’s CMD, and these are sensitive to the assumed metallicity of and extinction toward the cluster. For example, Terndrup & Walker (1994) derived \([\text{Fe}/\text{H}] = -1.6 \pm 0.2\) and \((m-M)_0 = 14.8 \pm 0.3\) \((d = 9.1 \pm 1.4\) kpc) from comparison of the cluster CMD with the giant branches of globular clusters in Da Costa & Armandroff (1990). This derivation was for \(E(V-I) = 0.65 \pm 0.07\), and the Da Costa & Armandroff sequences were tied to the Lee, Demarque, & Zinn (1990) calibration of RR Lyrae absolute magnitudes of \(M_V(\text{RR}) = 0.82 + 0.17[\text{Fe}/\text{H}]\). The metallicity that Terndrup & Walker (1994) derived was in agreement within the errors to the Zinn & West (1984) value, \([\text{Fe}/\text{H}] = -1.44\), from integrated colors.

Nearly simultaneously with Terndrup & Walker (1994), Barbuy, Ortolani, & Bica (1994) presented their own CMD of the cluster and derived extinction values and metallicity by comparison with the CMD of NGC 6752, which has \([\text{Fe}/\text{H}] = -1.54\) (Da Costa & Armandroff 1990 and references therein). They find \(E(B-V) = 0.55 \pm 0.05\), which corresponds to \(E(V-I) = 0.68 \pm 0.06\) (i.e., close to the Terndrup & Walker 1994 value) and a distance modulus of \((m-M)_0 = 13.96\) \((d = 6.2\) kpc). They assume a horizontal-branch luminosity of \(M_V = 0.6\) and obtain a very approximate metallicity estimate of \([\text{Fe}/\text{H}] \approx -1.0\). Together, these two estimates imply that they were using a horizontal-branch luminosity scale that is slightly (0.05 mag) more luminous than the Lee et al. (1990) scale employed by Terndrup & Walker (1994). Note, however, that the difference in horizontal-branch luminosity scale is far too small to explain the 0.8 mag difference in the distance determinations; the largest effect comes from the choice of horizontal-branch magnitudes on the CMD in the two analyses.

To derive the metallicity of the cluster, we reanalyze the photometry of Terndrup & Walker (1994) using the method outlined by Sarajedini (1994). Their method uses polynomial fits to the Da Costa & Armandroff (1990) giant branch sequences to measure simultaneously the metallicity of and extinction toward a cluster from CMDs in \((V, V-I)\). In using this method, we make two changes to reflect recent developments. First, we use the Stanek (1996) reddening map for Baade’s window, which allows us to correct the photometry of the cluster (and of the probable cluster members in Table 1) for the considerable variation in extinction with position. Second, we adopt the Carney, Storm, & Jones (1992) calibration of the RR Lyrae luminosity \((M_V = 1.01 + 0.16[\text{Fe}/\text{H}])\) instead of the Lee et al. (1990) scale implicit in the Sarajedini (1994) approach; since the metallicity slope is almost the same for both calibrations, this has the effect of reducing the derived distance by 0.2 mag. We adopt the Carney et al. (1992) scale so that our distance for NGC 6522 is on the same system as Galactic center distance from RR Lyrae stars in Baade’s window (Carney et al. 1995). This way, the relative distance between the cluster and the Galactic center can be found independently of the zero point in the calibration of RR Lyrae luminosity.

In employing the Stanek (1996) map, we first add an offset of \(-0.10\) to \(A_V\) (i.e., the reddening is less than in Stanek’s map), as discussed by Gould, Popowski, & Terndrup (1998) and confirmed by Alcock et al. (1998a). Next we interpolate across a region of radius 2’ around NGC 6522, which is not included in the map. An inspection of photographs of Baade’s window (see, e.g., Blanco 1984) shows that, at least near the cluster, the gradient in extinction is primarily north-south, with the extinction lower to the north of the cluster. In Figure 3, we show the Stanek reddenings (with the corrected zero point) for the stars in the SJW survey as a function of the declination difference between each star and the cluster center (positive values indicate stars north of the cluster center). The straight line shows a linear fit to the reddenings; the rms scatter about this line is 0.06 in \(A_V\). From this plot and the Stanek (1996) relation \(A_V = 2.49(E(V-I))\), we conclude that the total and selective extinctions toward the center of the cluster are \(A_V = 1.42 \pm 0.05\) and \(E(V-I) = 0.57 \pm 0.02\).

In Figure 4 (left), we display a CMD in \((V, V-I)\) for stars within 1.5 of NGC 6522 (dots) along with the photometry for the cluster members in Table 1 (circles). The right panel shows the photometry for stars farther than 2.5 from the cluster.
cluster center. In this figure, the photometry is from the sources listed in Terndrup & Walker (1994) and Terndrup et al. (1995); all the colors and magnitudes have been corrected to the reddening adopted for the cluster center using the linear fit to the reddening with position in Figure 3. The curved line is a quadratic fit to giant branch stars in the left panel of Figure 4 (not only the possible proper-motion members) using a 3 σ rejection criterion. Note that, in support of our selection method, the possible cluster members are near the cluster’s giant branch and well away from the majority of bulge stars (the scatter about mean giant branch is significantly worse without the use of the Stanek 1996 reddening map).

Returning to the distance determination for the cluster, we note that the level of the horizontal branch at a representative color for RR Lyrae stars ($B - V = 0.80$, at the reddening to the cluster) is $V = 16.50 \pm 0.15$. This is consistent with the horizontal-branch level on the much better CMD of NGC 6522 from the Hubble Space Telescope in Sosin et al. (1997); interpolating from their CMD, we find $V_{\text{HB}} = 16.52 \pm 0.07$. Using this value for V_{HB}, we apply the Sarajedini (1994) method and derive $[\text{Fe/H}] = -1.28 \pm 0.12$. The metallicity we derive agrees with the Rutledge et al. (1997) value of $[\text{Fe/H}] = -1.21 \pm 0.04$, derived from infrared Ca II triplet measures transformed to the high-resolution abundance scale of Carretta & Gratton (1997).

The method simultaneously returns an estimate of the cluster reddening of $E(V - I) = 0.58 \pm 0.03$, in excellent agreement with the value $E(V - I) = 0.57 \pm 0.02$ derived above from the corrected Stanek (1996) extinction map, and an estimate of the cluster distance modulus of 14.3 ± 0.1 on the Carney et al. scale (see also below).

In Figure 5, we plot the Lick Mg$_2$ indexes as a function of color for the Baade’s window sample (Terndrup et al. 1995). The circles with error bars are for the stars in Table 1. With the possible exception of Arp 2-069, which has a value of Mg$_2$ about 1.8 σ above that of the others, all the possible cluster members have low Mg$_2$ indexes at a given color, unlike those for the bulge stars in the SJW sample. Since the calibration of the Lick indexes with metallicity is uncertain for stars of low metallicity (Sadler et al. 1996), we do not attempt to measure the abundance of NGC 6522 from these Mg$_2$ indexes—we simply note that the probable members are among the lowest metallicity stars in Baade’s window, consistent with both the photometric and spectroscopic determinations of the abundance of NGC 6522.

A direct calculation of the relative distance between the cluster and the Galactic center is as follows: An analysis of the magnitudes of RR Lyrae stars in Baade’s window shows that the dereddened visual magnitude of the horizontal branch at typical colors of RR Lyrae stars is $V_{0,\text{BW}} = 15.33 \pm 0.03$ (Alcock et al. 1998b); there is an additional error from the uncertainty in extinction that does not enter here, because we are comparing the cluster horizontal branch and the bulge horizontal branch in the same field. Taking the dependence of the horizontal-branch level as

$$M_{V,\text{HB}} = a + b[\text{Fe/H}]$$

and using the definition of distance modulus, we write the difference in distance moduli between the cluster and the Galactic center as

$$\Delta_{c,\text{BW}} = (V_{\text{HB},c} - A_V - M_{V,c}) - (V_{0,\text{BW}} - M_{V,\text{BW}})$$

Fig. 4.—CMDs in Baade’s window. Left, photometry for stars within 1.5 of NGC 6522; right, photometry for stars farther than 2.5 from the cluster center. The large circles are for the probable cluster members in Table 1. All photometry has been corrected to $A_V = 1.42$, a value appropriate for the cluster center, as described in the text. The curved line is a quadratic fit to the cluster giant branch.
We now estimate \(\Delta \mu \), the mean proper motion of bulge stars relative to the proper-motion frame of the SJW stars. There are two distinct sources of contamination that lead to an offset: foreground disk stars and the cluster stars themselves. To estimate the offset due to foreground disk stars, we focus on the subsample of 310 stars (out of a total of 427) with spectroscopic distance estimates from Sadler et al. (1996). We compare the 241 stars with distances greater than 4 kpc with the full subsample of 310 stars and find an offset \((\Delta \mu_l, \Delta \mu_b) = (0.16, -0.05) \) mas yr\(^{-1}\). We assume that this offset is representative of all 427 stars. The full SJW sample contains \(\sim 330 \) stars at distances greater than 4 kpc, of which about seven are cluster members. The offset due to cluster stars is therefore \(7/330 \sim 2\% \) of the value given in equation (3), or \((\Delta \mu_l, \Delta \mu_b) = (0.02, -0.12) \) mas yr\(^{-1}\). Within the accuracy of our determinations, the combined offset from these two sources of bias is therefore

\[
(\Delta \mu_l, \Delta \mu_b) = (0.2, -0.2) \text{ mas yr}^{-1}.
\]

The distance to the Galactic center is uncertain (see, e.g., Reid 1993), but for present purposes, we treat it as being fixed at the distance given by the Carney et al. (1992, 1995) scale, 7.8 kpc, and scale all results to this value. Recall that we have also estimated the distance to the cluster on this scale. Since Baade’s window is very close to the minor axis of the bulge (at \(l = +1^\circ \)), a fair sample of bulge stars should have \(v_{f, \perp} = 0 \). However, there are two competing biases that can cause a deviation from this expected value. First, the underlying SJW sample is biased toward brighter stars and hence toward stars on the near side of the bulge. Second, the cone of observation is wider on the far side of the bulge than the near side and so contains more far-side stars. By examining the distribution of spectroscopic distances, we estimate that the median of the distribution lies 0.3 \pm 0.3 kpc behind the peak, which we identify with the Galactocentric distance. The SJW sample is therefore slightly biased toward the kinematics of far-side stars. Since there are \(\sim 20 \) stars between the peak and the median, we estimate this bias as \(\sim 20/241 \) of the difference in mean proper motion of the near-side and far-side subsamples, which we evaluate as \((\Delta \mu_l, \Delta \mu_b) = (-0.02, 0.02) \) mas yr\(^{-1}\). Since this correction is an order of magnitude smaller than the observational errors, we ignore it and adopt \(v_{f, \perp} = 0 \).

We use equation (11) and apply the correction derived in equation (13) to the values of the observed (relative) proper motion given in equation (3) to obtain the proper motion with respect to a star at rest in the nuclear bulge,

\[
(\mu_{cl, l}, \mu_{cl, b}) = (1.4 \pm 0.2, -6.2 \pm 0.2) \text{ mas yr}^{-1}.
\]

We note that the zero point of the frame is uncertain by 0.17 mas yr\(^{-1}\) in each direction because of the shot noise of the \(\sim 330 \) stars, with scatter \(\sim 3 \) mas yr\(^{-1}\) each. Assuming that the total solar motion is \(v_\odot = (9, 232, 7) \) km s\(^{-1}\) in the \((U, V, W)\) reference frame \((U\) being positive inward\), we evaluate equation (12) and find

\[
(v_{cl, l}, v_{cl, b}) = (68 \pm 18, -208 \pm 23) \text{ km s}^{-1},
\]

where we have included the distance errors but not the uncertainty in the overall distance scale. Finally, we evaluate the 3-space motion in the \((U, V, W)\) reference frame,

\[
v_{cl} = (-30 \pm 7, 68 \pm 18, -208 \pm 23) \text{ km s}^{-1}.
\]

That NGC 6522 has a significant motion away from the Galactic plane indicates immediately that it is on a halo...
orbit (Cudworth & Hanson 1993), consistent with most other globular clusters that have \([\text{Fe/H}] < -1\) (Zinn 1985; Armandroff 1989). The cluster’s current distance on the Carney et al. (1995) scale (7.1 \pm 0.3 kpc) is very close to the fixed Galactocentric distance of 7.8 kpc, so the cluster must be on an orbit that takes it quite near \((<1 \text{ kpc})\) the center of the Galaxy.

We explore possible past orbits for NGC 6522 using our measurements of the cluster’s position and spatial motion. For the inner Galaxy, we assume an oblate logarithmic potential of the form

\[
\Phi(x, y, z) = \frac{1}{2} v_c^2 \ln \left[x^2 + y^2 + (kz)^2 \right] + \text{const},
\]

where \(v_c\) is the circular velocity in the equatorial plane (taken as 220 km s\(^{-1}\)) and \(k\) is a flattening term that we set in the range \(k = 1-3\). We find that about \(2 \times 10^6\) yr ago, the cluster passed the Galactic center at a distance as close as 400–550 pc, and that it generally does not achieve an apogalactic distance in excess of 1500 pc. Our calculation also shows that the timescale for significant changes to the potential of the form

\[
\Phi(x, y, z) = \frac{1}{2} v_c^2 \ln \left[x^2 + y^2 + (kz)^2 \right] + \text{const},
\]

where \(v_c\) is the circular velocity in the equatorial plane (taken as 220 km s\(^{-1}\)) and \(k\) is a flattening term that we set in the range \(k = 1-3\). We find that about \(2 \times 10^6\) yr ago, the cluster passed the Galactic center at a distance as close as 400–550 pc, and that it generally does not achieve an apogalactic distance in excess of 1500 pc. Our calculation also shows that the timescale for significant changes to the orbital energy through dynamical friction is at least a few times \(10^{10}\) yr.

Clusters that pass within a few hundred parsecs of the Galactic center are likely to experience significant shocking from the time-variable gravitational potential of the bulge and inner disk (see, most recently, Gnedin & Ostriker 1997; Murali & Weinberg 1997) and are unlikely to survive much longer than another Hubble time. NGC 6522 is also a core-collapsed cluster (see, e.g., Djorgovski & King 1986; Lugger, Cohn, & Grindlay 1995), another sign that the cluster may have experienced significant shocks (see, e.g., Gnedin & Ostriker 1997 and references therein). We therefore suggest that NGC 6522 would be a good target for detailed kinematic studies of high accuracy, to increase the number of velocity-selected members and to obtain better estimates of the mass and velocity dispersion.

Work by A. G. and P. P. was supported in part by grant AST 94-20746 from the NSF. D. M. T. thanks Ruth C. Peterson for her helpful insights.

REFERENCES

Alcock, C., et al. 1998a, ApJ, 494, 396
Alcock, C., et al. 1998b, ApJ, in preparation
Armandroff, T. E. 1989, AJ, 97, 375
Arp, H. 1965, ApJ, 141, 45
Barbuy, B., Oortlaan, S., & Bica, E. 1994, A&A, 285, 871
Blanco, B. M. 1984, AJ, 89, 1836
Carney, B. W., Fulbright, J. P., Terndrup, D. M., Suntzeff, N. B., & Walker, A. R. 1995, AJ, 110, 1674
Carney, B. W., Storm, J., & Jones, R. V. 1992, ApJ, 386, 663
Carretta, E., & Gratton, R. G. 1997, A&AS, 121, 95
Cudworth, K. M., & Hanson, R. B. 1993, AJ, 105, Cudworth, K. M., & Hanson, R. B. 1993, AJ, 105, 168
Da Costa, G. S., & Armandroff, T. E. 1990, AJ, 100, 162
Dauphane, B., Geertler, M., Colin, J., Ducourant, C., Odenkirchen, M., & Tucholke, H.-J. 1996, A&A, 313, 119
Dinescu, D. I., Girard, T. M., van Altena, W. F., Yang, T.-G., & Lee, Y.-W. 1996, AJ, 111, 1205
Djorgovski, S., & King, I. R. 1986, ApJ, 305, L61
Gnedin, O. Y., & Ostriker, J. P. 1997, ApJ, 474, 223
Gould, A., Popowski, P., & Terndrup, D. M. 1998, ApJ, 492, 778
Harris, W. E. 1996, AJ, 112, 1487
Hata, T., Wyse, R. F., Gilmore, G., Irwin, M. J., & Suntzeff, N. B. 1997, AJ, 113, 634
Jones, B. F., Klemola, A. R., & Lin, D. N. C. 1994, AJ, 107, 1333
Lee, Y.-W., Demarque, P., & Zinn, R. 1990, ApJ, 350, 155
Lugger, P. M., Cohn, H. N., & Grindlay, J. E. 1995, ApJ, 439, 191
Murali, C., & Weinberg, M. D. 1997, MNRAS, 288, 749
Peterson, C. J., & Reed, B. C. 1987, PASP, 99, 20
Pryor, C., & Meylan, G. 1993, in ASP Conf. Ser. 50, Structure and Dynamics of Globular Clusters, ed. S. G. Djorgovski & G. Meylan (San Francisco: ASP), 357
Rich, R. M. 1990, ApJ, 362, 604
Rich, R. M., Terndrup, D. M., & Sadler, E. M. 1998, in preparation
Rutledge, G. A., Hesser, J. E., Stetson, P. B., Mateo, M., Simard, L., Bolte, M., Friel, E. D., & Copin, Y. 1997, PASP, 109, 883
Sadler, E. M., Rich, R. M., & Terndrup, D. M. 1996, AJ, 112, 171
Sarajedini, A. 1994, AJ, 107, 618
Schweitzer, A. M., & Cudworth, K. M. 1996, in ASP Conf. Ser. 92, Formation of the Galactic Halo—Inside and Out, ed. H. L. Morrison & A. Sarajedini (San Francisco: ASP), 352
Smith, M. G., Hesser, J. E., & Shawl, S. J. 1976, ApJ, 206, 66
Sosin, C., Rich, R. M., Piotto, G., Djorgovski, S. G., King, I. R., Dorman, B., Liebert, J., & Renzini, A. 1997, in Abundances in Stellar Evolution, ed. R. T. Rood & A. Renzini (Cambridge: Cambridge Univ. Press), in press
Spaenhauer, A., Jones, B. F., & Whitford, A. E. 1992, AJ, 103, 297 (SJW)
Steele, K. Z. 1996, ApJ, 460, L37
Terndrup, D. M., Sadler, E. M., & Rich, R. M. 1995, AJ, 110, 1774
Terndrup, D. M., & Walker, A. R. 1994, AJ, 107, 1786
Walker, A. R., & Mack, P. 1986, MNRAS, 220, 69
Walker, A. R., & Terndrup, D. M. 1991, ApJ, 378, 119
Webbink, R. F. 1981, ApJS, 45, 259
Zinn, R. 1985, ApJ, 293, 424
Zinn, R., & West, M. J. 1984, ApJS, 55, 45