Deformation of line bundles on coisotropic subvarieties.

Vladimir Baranovsky, Victor Ginzburg, Jeremy Pecharich

September 29, 2009

Abstract

We prove a criterion stating when a line bundle on a smooth coisotropic subvariety \(Y \) of a smooth variety \(X \) with algebraic Poisson structure, admits a first order deformation quantization.

1 Introduction

In this paper, partially motivated by [BG], we consider a smooth algebraic variety \(X \) with an algebraic Poisson structure \(P \in H^0(X, \Lambda^2 T_X) \) and a smooth subvariety \(Y \subset X \). Any line bundle \(L \) on \(Y \) defines a sheaf of \(\mathcal{O}_X \)-modules. Since \(P \) gives a first order deformation \(\mathcal{A} \) of the structure sheaf \(\mathcal{O}_X \), it is natural to ask when \(L \) can be deformed to an \(\mathcal{A} \)-module \(L \). In fact, we consider a slightly more general first order non-commutative deformation \(\mathcal{A} \) which also depends on a class in \(H^1(X, T_X) \).

Based on the standard formalism of hypercohomology and a version of the deformation complex of Gerstenhaber and Schack, cf. [GS] and [FMY], one expects three obstruction classes which should vanish if such an \(\mathcal{L} \) is to exist: these belong to the groups \(H^0(Y, \Lambda^2 N) \), \(H^1(Y, N) \) and \(H^2(Y, \mathcal{O}_Y) \), respectively, where \(N \) is the normal bundle of \(Y \) in \(X \). The first obstruction is local in nature, and according to loc. cit. its vanishing simply means that \(Y \) should be coisotropic with respect to \(P \), i.e. the natural projection of \(P \) to \(\Lambda^2 N \) should be zero. We impose this assumption on \(Y \) throughout this paper and show in Section 3.2 that in this case \(L \) always exists Zariski locally.

Next we consider the obstruction class in \(H^1(Y, N) \) formulating, cf. Theorem 7 of Section 3.3, a precise condition on \(c_1(L) \in H^1(Y, \Omega^1_Y) \) which guarantees existence of a global deformation \(\mathcal{L} \). In general, it will only be a twisted sheaf of \(\mathcal{A} \)-modules; one has an honest sheaf of modules if and only if a further class in \(H^2(Y, \mathcal{O}_Y) \) vanishes (similarly, coherent sheaves on a general algebraic variety \(X \) may be twisted by a class in \(H^2(X, \mathcal{O}_X) \)). In Section 4 we assume that \(H^2(Y, \mathcal{O}_Y) \) is trivial, but this is mostly for convenience since one could work with twisted sheaves of modules instead.

When \(X \) is algebraic symplectic, \(Y \) is Lagrangian and the class in \(H^1(X, T_X) \) vanishes, i.e. \(\mathcal{A} = \mathcal{O}_X \oplus \epsilon \mathcal{O}_X \), our condition on \(L \) simply says that \(2c_1(L) = c_1(K_Y) \) in \(H^1(Y, \Omega^1_Y) \), cf. Section 5.
If X is symplectic but Y just coisotropic, we can consider the standard null foliation $T_F \subset T_Y$ obtained by applying the Poisson bivector to the normal bundle of Y. In this case, let L_1 be a line bundle on Y admitting a first order deformation, and L_2, M two line bundles such that $L_2 = M \otimes_{\mathcal{O}_Y} L_1$. We show that L_2 admits a first order deformation if and only if M has a partial algebraic connection along the null foliation. A similar statement is expected for second order deformations if the partial connection on M is flat (we prove the “only if” part). These results are explained in Section 4.2 and 4.3, cf. Theorems 10 and 12.

Acknowledgements. The first author was partially supported by the Sloan Research Fellowship.

2 Generalities

2.1 First cohomology of a complex.

Let $\mathcal{K} = \{\mathcal{K}^0 \to \mathcal{K}^1 \to \mathcal{K}^2 \to \ldots\}$ be a complex of sheaves on X concentrated in positive degrees. We briefly recall one interpretation of the hypercohomology group $H^1(\mathcal{K})$. Let $\mathcal{H}^i = \mathcal{Z}^i/\mathcal{B}^i$ be the cohomology sheaves of \mathcal{K}. The standard spectral sequence yields

$$0 \to H^1(X, \mathcal{H}^0) \to \mathbb{H}^1(X, \mathcal{K}) \to H^0(X, \mathcal{H}^1) \to H^2(X, \mathcal{H}^0) \to \ldots$$

A class in $H^0(X, \mathcal{H}^1)$ is represented by an open covering $\{U_i\}_{i \in I}$ and sections $\alpha_i \in \Gamma(U_i, \mathcal{Z}^1)$ such that on $U_i \cap U_j$

$$\alpha_i - \alpha_j = d\beta_{ij}, \quad \beta_{ij} \in \Gamma(U_i \cap U_j, \mathcal{K}^0)$$

By definition the elements $d\beta_{ij}$ satisfy the cocycle condition on triple intersections and on $U_i \cap U_j \cap U_k$ the expression $\gamma_{ijk} = \beta_{ij} + \beta_{jk} + \beta_{ki}$ will be a section in $\Gamma(U_i \cap U_j \cap U_k, \mathcal{K}^0)$; which gives a class in $H^2(X, \mathcal{H}^0)$ as in the sequence above. If this class is zero, refining $\{U_i\}$ if necessary we can adjust β_{ij} by adding an element of $\Gamma(U_i \cap U_j, \mathcal{H}^0)$ to ensure

$$\beta_{ij} + \beta_{jk} + \beta_{ki} = 0$$

on $U_i \cap U_j \cap U_k$. Thus, a class in $H^1(\mathcal{K})$ is represented by a covering U_i, sections $\alpha_i \in \Gamma(U_i, \mathcal{Z}^1)$ and $\beta_{ij} \in \Gamma(U_i \cap U_j, \mathcal{K}^0)$ such that $\alpha_i - \alpha_j = d\beta_{ij}$ on $U_i \cap U_j$ and $\beta_{ij} + \beta_{jk} + \beta_{ki} = 0$ on $U_i \cap U_j \cap U_k$. For $\{\beta_i \in \Gamma(U_i, \mathcal{K}^0)\}_{i \in I}$ the collection $\alpha'_i = \alpha_i + d\beta_i$ and $\beta'_{ij} = \beta_{ij} + \beta_i - \beta_j$ represents the same class.

2.2 Three examples.

Let F_1, \ldots, F_n, G be sheaves of \mathcal{O}_X-modules. We will denote by $\mathcal{D}(F_1 \times \ldots \times F_n, G)$ the sheaf of algebraic differential operators (of finite order in each of the n variables). It has an increasing filtration by subsheaves $\mathcal{D}^k(F_1 \times \ldots \times F_n, G)$ of operators which have total order $\leq k$. The \mathcal{O}_X-module structure on G gives an \mathcal{O}_X-module structure on differential operators. If F_1, \ldots, F_n and G are coherent then so is $\mathcal{D}^k(F_1 \times \ldots \times F_n, G)$. We will also
write $F^{\times n}$ for the n-fold cartesian product $F \times \ldots \times F$; and $\mathcal{D}_0(\mathcal{O}_X^{\times n}, G)$ for the sheaf of differential operators which vanish if either of the arguments is a constant.

The three examples described below are sheafifications of a deformation complex considered by Gerstenhaber and Schack, cf. [GS].

Example 1. Set $\mathcal{K}^i(X) = \mathcal{D}_0(\mathcal{O}_X^{\times (i+1)}, \mathcal{O}_X)$ with the Hochschild differential. Then $H^1(\mathcal{K}(X)) = H^1(X, T_X) \oplus H^0(X, \Lambda^2 T_X)$ parameterizes flat deformations \mathcal{A} of \mathcal{O}_X over $\mathbb{C}[\epsilon]/\epsilon^2$, which locally split as $\mathcal{O}_X \oplus \epsilon \mathcal{O}_X$. Locally these are given by $\alpha_i \in \Gamma(U_i, \mathcal{D}_0(\mathcal{O}_X \times \mathcal{O}_X, \mathcal{O}_X))$ which satisfy the cocycle condition $da_i(f, g, h) = a_i(fg, h) - a_i(f, gh) + a_j(f, g)h - f a_i(g, h) = 0$ and on double intersections

$$(\alpha_i - \alpha_j)(fg) = d\beta_{ij}(fg) = \beta_{ij}(fg) - f \beta_{ij}(g) - \beta_{ij}(f)g.$$

In addition, on triple intersections $U_i \cap U_j \cap U_k$ we require $\beta_{ij} + \beta_{jk} = \beta_{ik}$. Write each $a_i(f, g)$ as a sum of its symmetric and antisymmetric part:

$$\alpha_i(f, g) = \alpha_i^+(f, g) + \alpha_i^-(f, g) = \frac{1}{2}(\alpha_i(f, g) + \alpha_i(g, f)) + \frac{1}{2}(\alpha_i(f, g) - \alpha_i(g, f))$$

Since $d\beta_{ij}$ is symmetric in f, g, we see that $\alpha_i^- = \alpha_j^-$ on $U_i \cap U_j$. Moreover, the cocycle condition implies that α_i^- is a first order operator in each of the arguments. Since α_i^- also vanish on constant functions, they glue into a section $\alpha^- \in H^0(X, \Lambda^2 T_X)$.

As for the symmetric part, since each U_i is smooth, we can write $\alpha_i^+ = d\beta_i$ for some $\beta_i \in \Gamma(U_i, \mathcal{D}_0(\mathcal{O}_X, \mathcal{O}_X))$. Then on every double intersection $\beta_i - \beta_j = \beta_{ij}$ is a derivation of \mathcal{O}_X. This defines a class in $H^1(X, T_X)$. Conversely, if β_{ij} are vector fields on $U_i \cap U_j$ representing a class in $H^1(X, T_X)$ then $a_0 + \epsilon a_1 \mapsto a_0 + \epsilon(a_1 + \beta_{ij}(a_0))$ give transition functions which allow to glue the first order deformations $\mathcal{O}_{U_i} \oplus \epsilon \mathcal{O}_{U_i}$ with cocycle α^-, into a sheaf of algebras \mathcal{A}.

We also observe that $H^0(\mathcal{K}(X)) = H^0(X, T_X)$ classifies those automorphisms of \mathcal{A} which restrict to the identity $\text{mod}(\epsilon)$.

Example 2. If F is a coherent sheaf on X consider $\mathcal{K}(F)$ with $\mathcal{K}^i(F) = \mathcal{D}_0(\mathcal{O}_X^{\times i}, \mathcal{D}(F, F))$ with the Hochschild differential corresponding to the natural \mathcal{O}_X-bimodule structure on $\mathcal{D}(F, F)$, see [We]. Then $H^1(\mathcal{K}(F)) = \text{Ext}^1(F, F)$ parameterizes flat deformations \mathcal{F} of F to a module over $\mathcal{O}_X[\epsilon]/\epsilon^2$, and $H^0(\mathcal{K}(F)) = \text{Hom}_X(F, F)$ can be identified with automorphisms of \mathcal{F} which restrict to the identity $\text{mod}(\epsilon)$.

Example 3. The \mathcal{O}_X-module structure on F gives a morphism of \mathcal{O}_X-bimodules $\mathcal{O}_X \to \mathcal{D}(F, F)$ hence a morphism of complexes $\mathcal{K}(X) \to \mathcal{K}(F)$. Set $\mathcal{K}(X, F) = \text{Cone}(\mathcal{K}(X) \to \mathcal{K}(F))(-1)$ so that $\mathcal{K}^i(X, F) = \mathcal{D}_0(\mathcal{O}_X^{\times (i+1)}, \mathcal{O}_X) \oplus \mathcal{D}_0(\mathcal{O}_X^{\times i}, \mathcal{D}(F, F))$. By the previous subsection and [GS] $H^1(\mathcal{K}(X, F))$ corresponds to isomorphism classes of flat deformations of (\mathcal{O}_X, F) to a pair $(\mathcal{A}, \mathcal{F})$ where \mathcal{F} is a left \mathcal{A}-module. Observe that in loc. cit. the deformation complex has three factors. The extra factor would correspond in our case to deforming the algebra structure of $\mathcal{D}(F, F)$ as well. Since in this paper we will not consider such deformations we omit the third factor of the Gerstenhaber-Schack deformation complex.

3
A short exact sequence of complexes $0 \to \mathcal{K}(F) \to \mathcal{K}(X,F) \to \mathcal{K}(X) \to 0$ induces a long exact sequence of cohomology

$$\cdots \to H^1(X,\mathcal{K}(F)) \to H^1(X,\mathcal{K}(X,F)) \to H^1(X,\mathcal{K}(X)) \to H^2(X,\mathcal{K}(F)) \to \cdots$$

Therefore, given an isomorphism class of \mathcal{A}, one expects that a coherent sheaf F admits a deformation to a left \mathcal{A}-module \mathcal{F} if and only if a certain class $c \in H^2(X,\mathcal{K}(F))$ vanishes.

The purpose of this note is to make this vanishing condition explicit in a particular case.

3 Line bundles on coisotropic subvarieties

From now on we fix a closed embedding $\eta : Y \to X$ of a smooth subvariety, a first order deformation \mathcal{A} of \mathcal{O}_X with a class $(\kappa, \frac{1}{2}p) \in H^1(X,T_X) \oplus H^0(X,\Lambda^2 T_X)$, and a line bundle L on Y. Any vector bundle on Y may also be viewed as \mathcal{O}_X-module by applying η_* and in such a case we abuse notation by dropping η_* to make the formulas more readable. We would like to state explicitly when L admits a deformation to a left \mathcal{A}-module. Write T_Y, N, I for the tangent bundle, normal bundle and the ideal sheaf of Y, respectively.

3.1 Cohomology

We observe that the cohomology sheaves of $\mathcal{H}^p(\mathcal{K}(X))$ are given by $\Lambda^{p+1}T_X$ due to the Hochschild-Kostant-Rosenberg isomorphism.

Proposition 1 The p-th cohomology sheaf $\mathcal{H}^p(\mathcal{K}(L))$ is isomorphic to $\Lambda^p N$.

For $p = 0,1$ we can make it explicit. First, $\mathcal{H}^0(\mathcal{K}(F)) = \text{Hom}_{\mathcal{O}_X}(F,F)$ for any sheaf F of \mathcal{O}_X-modules by definition. In our case this gives $\text{End}_{\mathcal{O}_Y}(L) = \mathcal{O}_Y$. For $p = 1$ a section of \mathcal{H}^1 is represented locally by a map $\alpha_L : \mathcal{O}_X \otimes \mathcal{C} L \to L$ which satisfies

$$\alpha_L(fg,l) = \alpha_L(f,gl) + f\alpha_L(g,l).$$

This immediately gives $\alpha_L|_{I^2 \otimes \mathcal{C} L} = 0$. Restricting α_L to $(I/I^2) \otimes \mathcal{C} L$ we see that for a local section x on I and a local section f of \mathcal{O}_X we have

$$f\alpha_L(x,l) = \alpha_L(fx,l) = \alpha_L(xf,l) = \alpha_L(x,fl)$$

where the first and the third equalities follow from the cocycle condition. Recalling that $I/I^2 = N^\vee$ we can view the restriction of α_L as an \mathcal{O}_Y-bilinear map $N^\vee \otimes \mathcal{C} L \to L$. This gives a morphism $\mathcal{H}^1(L) \to N$. To show that it is an isomorphism it suffices to restrict to an affine open subset on which $L \simeq \mathcal{O}_Y$ and Y is given by vanishing of a regular sequence; then the isomorphism follows from the Koszul complex. The spectral sequence of hypercohomology for $\mathcal{K}(L)$ gives in lower degrees

$$0 \to H^1(Y,\mathcal{O}_Y) \to H^1(\mathcal{K}(L)) \to H^0(Y,N) \to H^2(Y,\mathcal{O}_Y) \to H^2(\mathcal{K}(L)) \to H^1(Y,N) \to \cdots$$
\[0 \to \hat{H}^2(\mathcal{K}(L)) \to H^2(\mathcal{K}(L)) \to H^0(Y, \Lambda^2 N) \to \ldots \]

where \(\hat{H}^2(\mathcal{K}(L)) \) is a subspace of \(H^2(\mathcal{K}(L)) \) which may be defined through the second line. Therefore existence of a deformation \(\mathcal{L} \) of \(L \) is equivalent to the vanishing of a certain class \(c \in H^2(\mathcal{K}(L)) \) and the latter can be split as a chain of conditions:

- the image of \(c \) in \(H^0(Y, \Lambda^2 N) \) is zero, and (2)
- the image of \(c \) in \(H^1(Y, N) \) is zero, and (3)
- the image of \(c \) in \(\text{Coker}(H^0(Y, N) \to H^2(Y, \mathcal{O}_Y)) \) is zero (4)

Note that (3) can be formulated only if (2) holds, and (4) can be formulated only (2), (3) hold. The following lemma follows immediately from the definitions

Lemma 2 The image of \((\kappa, \frac{1}{2} P) \in H^1(\mathcal{K}(X))\) under the composition

\[H^1(\mathcal{K}(X)) \to H^2(\mathcal{K}(L)) \to H^0(Y, \Lambda^2 N) \]

is equal to the projection of \(\frac{1}{2} P \in H^0(X, \Lambda^2 T_X) \) to \(H^0(Y, \Lambda^2 N) \). In other words, (2) holds if and only if \(Y \) is coisotropic with respect to the bivector field \(P \).

Throughout the rest of the paper we will assume that \(Y \) is coisotropic in \(X \). In this case, there is a well-defined projection of \(P \) to \(H^0(Y, N \otimes_{\mathcal{O}_Y} T_Y) \) which we denote again by \(P \).

3.2 The affine case.

When \(X = \text{Spec}(A) \) and \(Y = \text{Spec}(B) \) are affine the conditions (3) and (4) become trivial. Since \(H^1(X, T_X) \) is trivial we can assume that \(\alpha_X(f, g) = \frac{1}{2} P(df, dg) \). For \(I = \text{Ker}(A \to B) \) the \(B \)-module \(N^V = I/I^2 \) is isomorphic to the global sections of the conormal bundle to \(Y \) in \(X \). In this subsection we write \(A, B, \Omega_A \) and \(\Omega_B \) for the global sections of the sheaves \(\mathcal{O}_X, \mathcal{O}_Y, \Omega^1_X|_Y \) and \(\Omega^1_Y \), respectively. In particular, there is a short exact sequence of \(B \)-modules

\[0 \to N^V \to \Omega_A \to \Omega_B \to 0 \]

Theorem 3 For any \(Y = \text{Spec}(B) \subset X = \text{Spec}(A) \) and \(L \) as above there exists \(\alpha_L : A \otimes_C L \to L \) such that

\[\alpha_L(aa', l) - \alpha_L(a, a'l) + \alpha_X(a, a')l - a\alpha_L(a', l) = 0 \] (5)

Any such \(\alpha_L \) vanishes on \(I^2 \otimes_C L \). Moreover, it may be taken in the form

\[\alpha_L(a, l) = \psi(a)l + \rho(da, l) \]

where

\[\psi \in \mathcal{D}^0_0(A, \mathcal{D}^0(L, L)) = \mathcal{D}^0_0(A, B); \quad \rho \in \mathcal{D}^1_0(A, \mathcal{D}^1(L, L)) = \text{Hom}_B(\Omega_A, \mathcal{D}^1(L, L)) \]

and both \(\psi \) and \(\rho \), in addition to vanishing on the constants, also vanish on \(I^2 \subset A \).
Proof. The vanishing on $I^2 \otimes_C L$ is an immediate consequence of the equation imposed on α_L and the coisotropness condition $\alpha_X(I, I) \subset I$. Substituting the expression for α_L in terms of ψ and ρ and using $d(aa') = ad(a') + d(a)a'$ we get:

\[
(\psi(aa') - \psi(a)a' - a\psi(a'))l + \frac{1}{2}P(da, da')l + (a'\rho(da, l) - \rho(da, a'l)) = 0
\]

By assumption $\psi(1) = 0$ and ψ has order 2, while ρ has order 1 in the l variable. Therefore, if $\sigma_\psi \in \text{Hom}_B(\text{Sym}^2\Omega_A, B)$ and $\sigma_\rho \in \text{Hom}_B(\Omega_A \otimes_B \Omega_B, B)$ are the corresponding principal symbols, then we must ensure that

\[
\sigma_\psi(da \otimes da') + \frac{1}{2}P(da, da') + \sigma_\rho(da, d(a'|_Y)) = 0
\]

in B. Observe that all three terms may be viewed as B-linear homomorphisms

\[
\Omega_A \otimes_B \Omega_A \to B.
\]

The third term vanishes on $\Omega_A \otimes_B N^\vee$ by its definition. Hence if σ_ψ is known, existence of σ_ρ is equivalent to the condition

\[
(\sigma_\psi + \frac{1}{2}P)|_{\Omega_A \otimes_B N^\vee} = 0.
\]

Since Y is coisotropic, P vanishes on $N^\vee \otimes_B N^\vee$ and therefore we should look for σ_ψ in the submodule $S \subset \text{Hom}_B(\text{Sym}^2\Omega_A, B)$ of homomorphisms which vanish on Sym^2N^\vee. For this submodule we can write a short exact sequence

\[
0 \to \text{Hom}_B(\text{Sym}^2\Omega_B, B) \to S \to \text{Hom}_B(\Omega_B \otimes_B N^\vee, B) \to 0
\]

Since Y is affine and smooth, this sequence splits, and the image of $-\frac{1}{2}P$ in its quotient term may be lifted to some $\sigma_\psi \in S \subset \text{Hom}_B(\text{Sym}^2\Omega_A, B)$. This will ensure the vanishing condition for $\sigma_\psi + \frac{1}{2}P$ and therefore existence of σ_ρ. Finally, since X, Y are affine and smooth, symbols can be lifted to differential operators. This finishes the proof. \square

Theorem 4 Let α_L and α'_L be two maps $(A/I^2) \otimes_C L \to L$ satisfying the first equation of the previous theorem. Then $(\alpha_L - \alpha'_L)$ vanishes on $(I/I^2) \otimes_C L$ if and only if there exists C-linear $\beta : L \to L$ such that

\[
\alpha_L(a, l) - \alpha'_L(a, l) = \beta(al) - a\beta(l).
\]

This condition means precisely that the two left A-module structures on $\mathcal{L} = L \oplus \epsilon L$ defined by α_L and α'_L, respectively, are equivalent via the isomorphism

\[
l_1 + \epsilon l_2 \mapsto l_1 + \epsilon(\beta(l_1) + l_2).
\]

Moreover, if both α_L and α'_L are bidifferential operators as in the previous theorem then $\beta \in D^2(L, L)$.
First we need the following lemma

Lemma 5 Let \(R : A \otimes_C L \to L \) be a \(C \)-linear map. Then
\[
R(a,l) = \beta(al) - a\beta(l)
\]
for some \(\beta \in \text{Hom}_C(L,L) \) if and only if \(R \) vanishes on \(I \otimes_C A \) and also satisfies
\[
R(ab,l) - R(a,bl) + aR(b,l) = 0
\]

Proof. Then “only if” part is obvious. Suppose that \(R \) vanishes on \(I \otimes L \), i.e. descends to a linear map \(B \otimes L \to L \) which we denote again by \(R \). Then the equation imposed on \(R \) means that \(R \) gives a 1-cocycle in the Hochschild complex of the \(B \)-bimodule \(\text{End}_C(L) \). By Lemma 9.1.9 of [We] we have
\[
HH^i(B, \text{End}_C(L)) = \text{Ext}^i_B(L, L).
\]
Since \(L \) is projective over \(B \) we have \(\text{Ext}^i_B(L, L) = 0 \). Therefore, \(R \) is a coboundary, which means precisely \(R(al) = \beta(al) - a\beta(l) \) for \(\beta \in \text{End}_C(L) \).

Proof of the theorem. The three-term equation of the previous lemma obviously holds for \(\alpha_L - \alpha'_L \). Hence by previous lemma a required \(\xi \) exists but apriori it may be just a linear map. However, by our choice of \(\alpha_L, \alpha'_L \) the difference is a bidifferential operator which has order \(\leq 1 \) in \(l \). Therefore \(\beta(l) \) is a differential operator of order \(\leq 2 \).

Finally, we would like to identify those maps \(\gamma : N^\vee \otimes_C L \to L \) which locally extend to \(\alpha_L \) satisfying (5). Observe that this equation implies
\[
\gamma(ax,l) + \alpha_X(a,x)l - a\gamma(x,l) = 0; \quad a \in A, x \in N^\vee, l \in L
\]
\[
\gamma(xa',l) - \gamma(x,a'l) + \alpha_X(x,a')l = 0; \quad x \in N^\vee, a' \in A, l \in L
\]

Proposition 6 Any \(\gamma : N^\vee \otimes_C B \to B \) satisfying (6) and (7) extends to \(\alpha_L : (A/I^2) \otimes_C L \to L \) satisfying (5). Moreover, \(\alpha_L \) may be taken in the form \(\psi(a)l + \rho(da,l) \) if and only if \(\gamma \) has the form \(\psi'(x)l + \rho'(x,l) \) where \(\psi' \in \mathcal{D}^1(N^\vee, B) \) and \(\rho' \in \text{Hom}_B(I, \mathcal{D}^1(L, L)) \).

Proof. Observe that the conormal sequence \(0 \to N^\vee \to \Omega_A \to \Omega_B \to 0 \) admits a \(B \)-linear splitting since its terms are projective \(B \)-modules. Let \(p, \) resp. \(q, \) be the projectors \(\Omega_A \to \Omega_A \) such that their images are identified with \(N^\vee \) and \(\Omega_B \), respectively.
\[
\alpha_B(a,l) = \gamma(p(da),l) + t(a,l)
\]
where \(t \in \mathcal{D}^1_0(A, \mathcal{D}^1(L, L)) \) is such that \(t(a,bl) - bt(a,l) = \alpha_X(q(da), q(db))l \). Such \(t \) may be found e.g. by choosing a connection on \(L \), which is possible on any smooth affine variety.

An easy computation shows that (6) and (7) imply (5), and that \(\gamma \) of the form \(\psi'(x)b + \rho'(x,b) \) gets lifted to \(\alpha_L \) of the form \(\psi(a)b + \rho(da,b) \). Conversely, if \(\alpha_L \) is represented in such a form then we can take \(\psi' \) and \(\rho' \) to be the restrictions of \(\psi \) and \(\rho \) to \(N^\vee = I/I^2 \subset A/I^2 \), respectively. For the orders of these operators, we observe that whenever \(I \) annihilates an \(A \)-module \(M \), any degree \(\leq k \) operator \(A \to M \) restricts to a degree \(\leq (k - 1) \) operator \(I \to M \) by an easy induction involving the definition of degree.
3.3 The obstruction in $H^1(Y,N)$.

We consider the general situation when the first order deformation A of \mathcal{O}_X is non split, i.e. both classes $P \in H^0(X, \Lambda^2 T_X)$ and $\kappa \in H^1(X, T_X)$ are nonzero. Thus, we have an open covering $\{U_i\}$ of X and $A|_{U_i} \simeq \mathcal{O}_X \oplus \epsilon \mathcal{O}_X$, while the collection of vector fields $\beta_{X,ij}$ on $U_i \cap U_j$, representing the class κ, gives transition functions between the two trivializations of $A|_{U_i \cap U_j}$: $f_0 + \epsilon f_1 \mapsto f_0 + \epsilon (f_1 + \beta_{X,ij}(f_0))$. The Leibniz rule for $\beta_{X,ij}$ ensures that the transition function agrees with the product

$$(f_0 + \epsilon f_1) \ast (g_0 + \epsilon g_1) = f_0 g_0 + \epsilon (f_0 g_1 + f_1 g_0 + \alpha_X(f_0, g_0))$$

where $\alpha_X(f_0, g_0) = \frac{1}{2} P(df_0, dg_0)$. We will also assume that N and L are trivial on each $Y \cap U_i$.

In this setup, we would like to find a condition which guarantees existence of a collection $\{\alpha_{L,i}, \beta_{L,ij}\}$ where

- $\alpha_{L,i} \in \Gamma(U_i, D(\mathcal{O}_X \otimes \mathcal{C} L, L))$ satisfies the condition
 $$\alpha_{L,i}(f, g, l) - \alpha_{L,i}(f, gl) + \alpha_X(f, g)l - f \alpha_{L,i}(g, l) = 0$$
 which means that $\mathcal{L} = (L \oplus \epsilon L)|_{U_i}$ is a module over $A|_{U_i}$ with respect to the module structure
 $$(f_0 + \epsilon f_1) \ast (l_0 + \epsilon l_1) = f_0 l_0 + \epsilon (f_1 l_0 + f_0 l_1 + \alpha_{L,i}(f_0, l_0))$$

- $\beta_{L,ij} \in \Gamma(U_i \cap U_j, D(L, L))$ satisfy
 $$\alpha_{L,i}(f, l) - \alpha_{L,j}(f, l) = \beta_{L,ij}(fl) - f \beta_{L,ij}(l) - \beta_{X,ij}(f)l$$
 which means that the transition functions $(l_0 + \epsilon l_1) \mapsto (l_0 + \epsilon (l_1 + \beta_{L,ij}(l_0)))$ agree with the module structure.

- $\beta_{L,ij}$ satisfy the cocycle condition on triple intersections, which guarantees that the modules over U_i may be glued into a left A-module \mathcal{L}.

Theorem 7 Let $at(N) \in H^1(Y, End(N) \otimes \Omega_Y^1)$ be the Atiyah class of N. Then existence of $(\alpha_{L,i}, \beta_{L,ij})$ satisfying the first two of the three conditions stated above, is equivalent to the equation in $H^1(Y, N)$:

$$[- at(N) + 2Id_N \otimes c_1(L)] \cup P + \pi = 0$$

where π stands is the image of $\kappa \in H^1(X, T_X)$ in $H^1(Y, N)$ and $(\epsilon) \cup P$ stands for the Yoneda product of a class in $H^1(Y, End(N) \otimes \Omega_Y^1)$ $\simeq Ext_Y^1(N \otimes T_Y, N)$ with the image of $P \in H^0(X, \Lambda^2 T_X)$ in $H^0(Y, N \otimes T_Y)$.

8
Proof. By Theorem 3 we can always find $\alpha_{L,i}$ satisfying the first equation. To find $\beta_{L,ij}$ with
\[
\alpha_{L,i}(f, l) - \alpha_{L,j}(f, l) + \beta_{X,ij}(f)l = \beta_{L,ij}(fl) - f\beta_{L,ij}(l),
\]
first observe that existence of $\beta_{L,ij}$ does not depend on the choice of $\alpha_{L,i}$ since any other choice will be given by adding $\eta_i(f, l)$ such that $\eta_i(fg, l) - \eta_i(f, gl) + f\eta_i(g, l) = 0$. We have assumed that L is identified with O_Y on U_i and hence for any section l of L on U_i we can find a \mathbb{C}-linear splitting $l \mapsto \hat{l}$ of the surjection $O_X \to O_Y \simeq L$ on U_i. Then
\[
\eta_i(f, l) = \eta_i(f, \hat{l} \cdot 1) = \eta_i(f\hat{l}, 1) - f\eta_i(\hat{l}, 1)
\]
tells us that if $\{\beta_{L,ij}\}$ solve (8) for $\alpha_{L,i}$ then $\beta_{L,ij} + \eta_i(\hat{l}, 1) - \eta_j(\hat{l}, 1)$ solve the same equation for $\alpha_{L,i} + \eta_i$.

Denote by $R(f, l)$ the right hand side of (8). If $R|_{I \otimes L} = 0$ then we can apply Lemma 5 and find $\beta_{L,ij}$. It remains to establish whether we can replace $\alpha_{L,i}$ by $\alpha_{L,i} + \eta_i$ so that the right hand side of (8) vanishes on $I \otimes_C L$. In other words, we would like to have equality of maps $I \otimes_C L \to L$:
\[
\alpha_{L,j}(f, l) - \alpha_{L,i}(f, l) + \beta_{X,ij}(f)l = \eta_i(f, l) - \eta_j(f, l)
\]
Since Y is coisotropic, each term on the left hand side vanishes on $I^2 \otimes_C L$. Therefore recalling $I/I^2 \simeq N^\vee$ we can view the above equality as equality of functions on $N^\vee \otimes_C L$. We observe that if η_i are found as functions on $N^\vee \otimes_C L$ we can always extend them to $(O_X/I^2) \otimes_C L$ as in Proposition 6.

We will show that the left hand side is an O_Y-bilinear map $N^\vee \otimes L \to L$ for a particular choice of $\alpha_{L,i}$. The condition $\eta_i(fg, l) - \eta_i(f, gl) + f\eta_i(g, l) = 0$ implies that η_i also must be O_Y-bilinear on $N^\vee \otimes_C L$. Hence existence of $\{\eta_i\}$ will be equivalent to vanishing of a class in $H^1(Y, N)$.

To calculate the class in $H^1(Y, N)$ explicitly, let x_1^i, \ldots, x_r^i be the basis of $N^\vee|_{U_i}$ and e^i a section spanning $L|_{U_i}$. On $N^\vee \otimes_C L$ we can set $\alpha_{L,i}(x^i_s, e^i) = 0$ which implies
\[
\alpha_{L,i}(\sum_s a_s x^i_s, b e^i) = (\sum_s \alpha_X(x^i_s, a_s)b + 2\alpha_X(\sum_s a_s x^i_s, b))e^i.
\]
On a double intersection we have $x^i_s = \sum_s A^{ij}_{sp} x^j_p$ where A^{ij} is the transition matrix. Similarly $e^i = B^{ij} e^j$. Rewriting $\alpha_{L,j}$ in the basis x^i_s we find that
\[
(\alpha_{L,j} - \alpha_{L,i})(\sum_s a_s x^i_s, b e^i) = (\sum_s a_s \alpha_X(x^i_s, A^{ij}_{sp} A^{ij}_{pr}) + 2\alpha_X(\sum_s a_s x^i_s, B^{ij})B^{ij}))b e^i
\]
By a similar calculation involving lifts of vector fields to elements of Atiyah algebras we find that $dA^{ij} \cdot A^{il}$ represents minus the Atiyah class of N and $dB^{ij} \cdot B^{il}$ the first Chern class of L. It is clear that the term $\beta_{X,ij}(f)l$ in (8) represents the class π as in the statement of the theorem. This finishes the proof. \qed
Remark. Even if the class in $H^1(Y, N)$ vanishes and $\beta_{L,ij}$ exist, they may not satisfy the cocycle condition on triple intersections. However, equation (3) implies that on $U_i \cap U_j \cap U_k$ the expression $\beta_{L,ij} + \beta_{L,jk} + \beta_{L,ki}$ is O_Y-linear and thus defines a class in $H^2(Y, O_Y)$. The vanishing of this class, or a weaker condition (4), is needed to ensure that L exists.

Corollary 8 Let Y be a coisotropic smooth subvariety in X with $H^2(Y, O_Y) = 0$, A a first order deformation of O_X with class (κ, P), and L a line bundle on Y such that

$$[- at(N) + 2 Id_N \otimes c_1(L)] \cup P + \pi = 0$$

in $H^1(Y, N)$. Then L admits a first order deformation L to a left A-module. If $H^1(Y, O_Y) = 0$ the set of isomorphism classes of such L is parameterized by $H^0(Y, N)$. In general, the group of automorphisms (restricting to the identity mod(ϵ)) of each L is isomorphic to $H^0(Y, O_Y)$.

Proof. For the isomorphism classes we recall the sequence (1). By section 3.1

$$\mathbb{H}^0(K(L)) = H^0(Y, O_Y), \quad \mathbb{H}^1(K(L)) = H^0(Y, N)$$

Recall that $\mathbb{H}^0(K(X)) = H^0(X, T_X)$. It follows from the definitions that $\mathbb{H}^1(K(X, L))$ is the vector space of all pairs ∂_L, ∂, where $\partial_L \in D^1(L, L)$ and ∂ is an extension of the symbol of ∂_L to a vector field on X. It follows that

$$0 \to \mathbb{H}^0(K(L)) \to \mathbb{H}^0(K(X, L)) \to \mathbb{H}^0(K(X)) \to 0$$

is exact. Therefore

$$0 \to \mathbb{H}^1(K(L)) \to \mathbb{H}^1(K(X, L)) \to \mathbb{H}^1(K(X)) \to \ldots$$

is also exact, and a lift of any element in $\mathbb{H}^1(K(X))$ is well defined up to an element of $\mathbb{H}^1(K(L)) = H^0(Y, N)$. More explicitly, a section of $H^0(Y, N)$ restricted to U_i may be lifted to a derivation $\delta_i : O_X \to O_Y$ and we can adjust $\alpha_{L,i}(a, l)$ replacing it by $\alpha_{L,i}(a, l) + \delta_i(a)l$. On a double intersection the difference $\zeta_{ij} = \delta_i - \delta_j$ is a derivation $O_Y \to O_Y$ which we can view as an operator from L to itself, since L is trivialized on $U_i \cap U_j$. Thus the data $(\alpha_{L,i}, \beta_{L,ij})$ will be replaced by the data $(\alpha_{L,i} + \delta_i \cdot Id_L, \beta_{L,ij} + \zeta_{ij})$.

To prove the assertion about automorphisms of L: let x be such automorphism, then $Id_L - x$ is an endomorphism of L which takes values on $L/eL \simeq L$ and vanishes on $eL \simeq L$, i.e. a morphism of sheaves $L \to L$. It is easy to see that such morphism must be O_X-linear, i.e. given by an element of $H^0(Y, O_Y)$.

Remark It follows from the definitions that for a deformation A constructed from a pair $(\kappa, {1 \over 2}P)$ the deformation A^{op} corresponds to the pair $(\kappa, -{1 \over 2}P)$. Therefore a line bundle L admits a deformation to a right A-module precisely when

$$[- at(N) + 2 Id_N \otimes c_1(L)] \cup P - \pi = 0.$$
4 The case $\kappa = 0$.

In this section we assume that $\kappa = 0$, i.e. there exists a global splitting $\mathcal{A} = \mathcal{O}_X \oplus \epsilon \mathcal{O}_X$, and that $H^1(Y, \mathcal{O}_Y) = H^2(Y, \mathcal{O}_Y) = 0$. The last condition automatically ensures (\[\text{4}\]).

Remark. With some minor modifications, the arguments below can be adjusted to the slightly more general case when $\pi = 0$. This means that vector fields $\beta_{X,ij}$ representing the class κ, may be chosen to satisfy $\beta_{X,ij}(I) \subset I$. We leave the details to the motivated reader.

4.1 Equivalence classes via a global operator.

Assume that L admits a (non-split) first order deformation \mathcal{L} to a left \mathcal{A}-module. Embedding $I \subset \mathcal{O}_X \subset A$ we get a globally defined map $\gamma : I \otimes \mathbb{C} L \to L$ given by

$$x \ast l = 0 + \epsilon \gamma(x, l)$$

Repeating the reasoning of Section 3.2 we see that γ descends to $(I/I^2) \otimes \mathbb{C} L \simeq N^\vee \otimes \mathbb{C} L$ and satisfies (\[\text{6}\]) and (\[\text{7}\]). However, since

$$\mathcal{D}^1(N^\vee, \mathcal{O}_Y) \cap Hom_{\mathcal{O}_Y}(N^\vee, \mathcal{D}^1(L, L)) = Hom_{\mathcal{O}_Y}(I/I^2, \mathcal{O}_Y) \simeq N,$$

the splitting $\psi(x)l + \rho(x, l)$ will in general exist only on the open sets U_i but not globally. Thus, we can only say that γ_i glue into a global section

$$\gamma \in \Gamma(Y, \mathcal{D}^1(N^\vee \times L, L)),$$

i.e. γ has the total order ≤ 1 in its two arguments.

Proposition 9 Suppose a line bundle L on Y satisfies the condition on $c_1(L)$ stated in Theorem \[\text{7}\]. In the assumption of this section, the set of equivalence classes of \mathcal{A}-modules \mathcal{L} deforming L is in bijective correspondence with the set of globally defined differential operators

$$\gamma \in \Gamma(Y, \mathcal{D}^1(N^\vee \times L, L)),$$

satisfying (\[\text{6}\]) and (\[\text{7}\]).

Proof. We have seen above that any \mathcal{L} leads to $\gamma(x, l)$ as in the statement of the theorem. Conversely, suppose that $\gamma(x, l)$ exists. Taking an affine open covering $\{U_i\}$ and using the first formula in the proof of Proposition \[\text{6}\] we can extend $\gamma|_{U_i}$ to an operator $\alpha_L(a,l) : \mathcal{O}_X \otimes L \to L$ defined on U_i and satisfying (\[\text{5}\]). On double intersections $U_i \cap U_j$ the two operators $\alpha_{L,i}$ and $\alpha_{L,j}$ both extend $\gamma|_{U_i \cap U_j}$ thus their difference satisfies the condition of Theorem \[\text{4}\] and we can find appropriate transition functions $\beta_{L,ij}$ which automatically satisfy the cocycle condition on triple intersections due to the assumption $H^2(Y, \mathcal{O}_Y) = 0$. This shows that the map from equivalence classes to the set of γ is onto.
To show that this map is also injective, assume that two deformations \(\mathcal{L} \) and \(\mathcal{\hat{L}} \) are given. We can choose a common refinement of the open coverings on which these deformations split, and assume that they are given by the data \(\{ \alpha_{L,i}, \beta_{L,ij} \} \) and \(\{ \hat{\alpha}_{L,i}, \hat{\beta}_{L,ij} \} \), respectively. By assumption, on each \(U_i \) both \(\alpha_{L,i} \) and \(\hat{\alpha}_{L,i} \) extend \(\gamma(x,l) \) on \(U_i \) and invoking Theorem 4 again we can find \(\beta_{L,i} \in \Gamma(U_i, \mathcal{D}^2(L, L)) \) which allows to change the splitting of \(\hat{\mathcal{L}} \) in such a way that \(\alpha_{L,i} = \hat{\alpha}_{L,j} \). Then on double intersections both \(\beta_{L,ij} \) and \(\hat{\beta}_{L,ij} \) solve the equation

\[
(\alpha_{L,i} - \alpha_{L,j})(f, l) = \beta_{L,ij}(fl) - f\beta_{L,ij}(l)
\]

to \(\beta_{L,ij}(l) \). Hence the difference \(\beta_{L,ij} \) and \(\hat{\beta}_{L,ij} \) is \(O_Y \)-linear, i.e. given by multiplication of \(l \) by a regular function \(\tilde{\beta}_{L,ij} \). By definition such functions satisfy the cocycle condition on triple intersections. By our assumption \(H^1(Y, \mathcal{O}_Y) = 0 \) and we can find \(\tilde{\beta}_{L,i} \in \Gamma(U_i, \mathcal{O}_Y) \) such that \(\tilde{\beta}_{L,ij} = \tilde{\beta}_{L,i} - \tilde{\beta}_{L,j} \) on \(U_i \cap U_j \). Using \(\tilde{\beta}_{L,i} \) to adjust the splitting of \(\hat{\mathcal{L}}|_{U_i} \) one more time, we achieve \(\beta_{L,ij} = \hat{\beta}_{L,ij} \). This means that the deformations \(\mathcal{L} \) and \(\mathcal{\hat{L}} \) are equivalent. \(\square \).

4.2 The case of non-degenerate bivector.

In this subsection we assume that the bivector \(P \) is non-degenerate, i.e. gives an isomorphism \(\Omega_X \to T_X \). If in addition the Schouten-Nijenhuis bracket \(\{ P, P \} \) vanishes, this means that \(X \) has algebraic symplectic structure (but we only need this condition when discussing the second order deformations).

By non-degeneracy the restriction of \(P \) to \(Y \) embeds \(N^\circ \) as a subbundle into \(T_Y \). We will denote the image by \(T_F \) and call it the null foliation subbundle. Coisotropness of \(Y \) means that \(T_F \) is involutive, i.e. a sheaf of Lie subalgebras with respect to the bracket of vector fields. We define the null foliation Atiyah algebra \(\mathcal{A}_n(L) \) to be the preimage of \(T_F \subset T_Y \) in \(\mathcal{D}^1(L, L) \) with respect to the symbol map \(\sigma : \mathcal{D}^1(L, L) \to T_Y \), i.e. first order operators from \(L \) to itself with symbol in \(T_F \). Thus we have an extension

\[
0 \to \mathcal{O}_Y \to \mathcal{A}_n(L) \to T_F \to 0
\]

Note that \(\mathcal{A}_n(L) \) is a sheaf of Lie algebras with respect to the commutator of differential operators. Applying the isomorphism \(N^\circ \cong T_F \) we can view \(\gamma \) as a map \(T_F \to \mathcal{D}^1(L, L) \) and equations (6) and (7) - (6) become

\[
\gamma(ax, l) - a\gamma(x, l) = 1/2 x(a)l
\]

(9)

\[
\gamma(x, al) - a\gamma(x, l) = x(a)l.
\]

(10)

The second equation simply says that \(\sigma \circ \gamma = Id_{T_F} \). However, \(\gamma \) is not \(\mathcal{O}_Y \)-linear, as can be seen from the first equation. The meaning of the first equation can be seen from the following theorem

Theorem 10 For a non-degenerate \(P \) the following conditions on the line bundle \(L \) are equivalent:
The equation
\[- at(N) + 2Id_N \otimes c_1(L) \cup P = 0;\]
holds in \(H^1(Y, N);\)

2. There exists \(\mathbb{C}\)-linear splitting \(\gamma : T_F \to \text{At}_n(L)\) satisfying (9) and (10).

3. There exists an anti-involution \(\partial \mapsto \partial^*\) on \(\text{At}_n(L)\) such that
\[\sigma(\partial^*) = -\sigma(\partial), \quad f^* = f, \quad (f\partial)^* = \partial^* f\]
where \(f \in \mathcal{O}_Y \subset \text{At}_n(L)\).

If \(H^2(Y, \mathcal{O}_Y) = 0\) then either of these conditions is equivalent to existence of a first order deformation \(\mathcal{L}\) of \(L\). If in addition \(H^1(Y, \mathcal{O}_Y) = 0\) the equivalence class of \(\mathcal{L}\) is uniquely determined by \(\gamma\).

Proof. Since (9) and (10) are simply reformulations of (6) and (7) the equivalence 1 \(\Leftrightarrow\) 2 is essentially proved in Proposition 9 (note that the vanishing of a class in \(H^2(Y, \mathcal{O}_Y)\) is irrelevant to this equivalence).

To prove equivalence 2 \(\Leftrightarrow\) 3 first assume that \(\gamma\) exists and define the *-involution to be +1 on \(\mathcal{O}_Y \subset \text{At}_n(L)\) and -1 on the image of \(\gamma\). Conversely, if the *-involution exists then its \((-1)\)-eigensheaf projects isomorphically onto \(T_F\) and there is a unique \(\gamma\) such that \(\gamma\sigma\) is the projection on the \((-1)\)-eigensheaf. A direct easy computation shows that the conditions imposed on \(\gamma\) and * are equivalent. \(\square\)

Suppose that the first order deformation \(\mathcal{A} = \mathcal{O}_X \oplus \epsilon \mathcal{O}_X\) extends to a second order deformation \(\mathcal{A}'\) over \(\mathbb{C}[\epsilon]/\epsilon^3\). Then on affine open subsets the product in \(\mathcal{A}'\) will be given by
\[f \ast g = fg + \epsilon \alpha_X(f, g) + \epsilon^2 \alpha'_X(f, g)\]
with the usual associativity condition
\[\alpha_X(a, \alpha_X(b, c)) - \alpha_X(\alpha_X(a, b), c) = d\alpha'_X(a, b, c)\]
By the explicit formula of Section 1.4.2 of [Ko] the locally defined operator \(\alpha'_X(f, g)\) may be taken symmetric (after a local choice of an algebraic connection on the tangent bundle).

Proposition 11 In the notation the previous theorem, assume that \(L\) admits a second order deformation to a left \(\mathcal{A}'\)-module \(\mathcal{L}'\). Then the operator \(\gamma\) agrees with the Lie brackets:
\[\gamma(\partial_1), \gamma(\partial_2) - \gamma([\partial_1, \partial_2]) = 0\]

Proof. Locally the second order deformation \(\mathcal{L}'\) is given by
\[a \ast l = al + \epsilon \alpha_L(a, l) + \epsilon^2 \alpha'_L(a, l)\]
for some bidifferential operator \(\alpha'_L : \mathcal{O}_X \times L \to L\). The usual associativity equation reads
\[\alpha_L(\alpha_X(a_1, a_2), l) - \alpha_L(a_1, \alpha_L(a_2, l)) + \alpha'_X(a_1, a_2) = \alpha'_L(a_1, a_2) + a_1 \alpha'_L(a_2, l) - \alpha'_L(a_1a_2, l)\] (11)
If \(a_1, a_2\) are sections in \(I\) then the first two terms on the right disappear. Antisymmetrizing in \(a_1\) and \(a_2\) and using the fact that \(2\alpha_X : I \times I \to I\) descends to the bracket of vector fields on \(T_F \simeq I/I^2\), we obtain the result. \(\square\)
4.3 Deformations and connections.

We keep the previous assumptions running: $\kappa = 0$, $H^1(Y, \mathcal{O}_Y) = H^2(Y, \mathcal{O}_Y) = 0$ and P is non-degenerate.

Theorem 12 Let L_1, L_2 be two line bundles on Y admitting first order deformations $\mathcal{L}_1, \mathcal{L}_2$ corresponding to the operators $\gamma_1 : T_F \otimes L_1 \to L_1$ and $\gamma_2 : T_F \otimes L_2 \to L_2$. Then the bundle $M = \mathcal{H}om_{\mathcal{O}_Y}(L_1, L_2)$ admits a partial algebraic connection $\gamma_M : T_F \otimes M \to M$ defined by

$$\gamma_M(\partial, \phi)(l_1) = \gamma_2(\partial, \phi_2(l_1)) - \phi(\gamma_1(\partial, l_1))$$

Conversely, if M is a bundle with a partial connection $\gamma : T_F \times M \to M$ and L_1 is a line bundle admitting a first order deformation \mathcal{L}_1 then the line bundle $L_2 = M \otimes_{\mathcal{O}_Y} L_1$ also admits a first order deformation \mathcal{L}_2 with $\gamma_2 : T_F \times L_2 \to L_2$ defined by the formula

$$\gamma_2(\partial, m \otimes l_1) = \gamma_M(\partial, m) \otimes l_1 + m \otimes \gamma_1(\partial, l_1).$$

In addition, suppose that \mathcal{A} extends to a second order deformation \mathcal{A}'. If $\mathcal{L}_1, \mathcal{L}_2$ admit second order deformations to left \mathcal{A}'-modules $\mathcal{L}'_1, \mathcal{L}'_2$ then the partial connection γ_M is flat, i.e. its curvature in $H^0(Y, \Lambda^2 T_F^\vee)$ is zero.

Proof. One needs to show that the first formula indeed defines an \mathcal{O}_Y-linear operator and that the second formula is well-defined on the tensor product over \mathcal{O}_Y, i.e. $\gamma_2(m \otimes al) = \gamma_2(ma \otimes l)$. These assertions and the assertions about first order deformations follow from (9) and (10) by a straightforward computation.

For the second order deformation, let ∂_1, ∂_2 be two sections of T_F. We need to show that

$$\gamma_M(\partial_1, \gamma_M(\partial_2, \phi)) - \gamma_M(\partial_2, \gamma_M(\partial_1, \phi)) - \gamma_M([\partial_1, \partial_2], \phi) = 0$$

for any section ϕ of $M = \mathcal{H}om_{\mathcal{O}_Y}(L_1, L_2)$. This follows immediately from the formula of previous proposition and definition of γ_M. □

Remark. We also expect that, conversely, if γ_M is a flat algebraic connection along the null foliation and L_1 admits a second order deformation, then $L_2 = M \otimes L_1$ also admits a second order deformation. In fancier terms, the category of second order deformations of line bundles on Y should be a gerbe over the Picard category of line bundles with a flat algebraic connection along the null-foliation.

5 The Lagrangian case.

In this section we assume that the bivector $P \in H^0(X, \Lambda^2 T_X)$ is non-degenerate everywhere on X and that Y is Lagrangian, i.e. its dimension is half the dimension of X. Since at this moment we work with first order deformations, we will not need the condition that the
algebraic 2-form defined by P is closed. The restriction of P to Y defines an isomorphism $N \simeq \Omega^1_Y$. Therefore we can write

$$\text{at}(N) \in H^1(Y, \text{End}(N) \otimes \Omega^1_Y) = H^1(Y, \Omega^1 \otimes T_Y \otimes \Omega^1_Y)$$

where we agree that the first two factors in the last expression represent $\text{End}(\Omega^1_Y)$.

Corollary 13 If $Y \subset X$ is Lagrangian, $H^2(Y, \mathcal{O}_Y) = 0$ and L is a line bundle on Y then L admits a first order deformation to a left \mathcal{A}-module is and only if

$$-c_1(K_Y) + 2c_1(L) + \kappa = 0$$

in $H^1(Y, \Omega^1)$. In particular, if $\kappa = 0$ the deformation exists if and only if $2c_1(L) = c_1(K_Y)$.

Proof. Since in the Lagrangian case $P \in H^0(Y, N \otimes T_Y) \simeq H^0(Y, \Omega^1_Y \otimes T_Y)$ is simply the canonical identity element, the cup product $[- \text{at}(N) + 2\text{Id}_N \otimes c_1(L)] \cup P$ of the Theorem (7) simply amounts to the contraction of a class in $H^1(Y, \Omega^1 \otimes T_Y \otimes \Omega^1_Y)$ in the last two factors. For $2\text{Id}_N \otimes c_1(L)$ this immediately gives $2c_1(L)$. For $\text{at}(N)$ this would give $c_1(N) = c_1(\Omega^1_Y) = c_1(K_Y)$ by one of the equivalent definitions of c_1 if we were contracting in the first two factors. However, by Proposition 2.1.1 in [Ka] the Atiyah class $\text{at}(N) = \text{at}(\Omega^1_Y) = -\text{at}(T_Y)$ is symmetric with respect to the first and the third factors of $\Omega^1 \otimes T_Y \otimes \Omega^1_Y$. This finishes the proof. \square

We also remark that in the Lagrangian case the null foliation bundle T_F is equal to the full tangent bundle T_Y, and the partial connections considered in Section 4.3 become connections in the usual sense.

References

[BG] Baranovsky, V.; Ginzburg, V.: Gerstenhaber-Batalin-Vilkoviski structures on coisotropic intersections, to appear in Math. Res. Lett., also preprint arXiv:0907.0037.

[CF] Cattaneo A., Felder, G.: Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math. 208 (2007), no. 2, 521–548.

[GS] Gerstenhaber, M.; Schack S.D.: On the cohomology of an algebra morphism. J. Algebra 95 (1985), no. 1, 245–262.

[Ka] Kapranov, M: Rozansky-Witten invariants via Atiyah classes. Compositio Math. 115 (1999), no. 1, 71–113.

[Ko] Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (2003), no. 3, 157–216.
[FMY] Frégier, Y.; Markl, M.; Yau, D.: The L_∞-deformation complex of diagrams of algebras. New York Journal of Math. 15 (2009), 353-392.

[We] Weibel, C.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.

[Ye] Yekutilei, A.: Deformation quantization in algebraic geometry. Adv. Math. 198 (2005), no. 1, 383–432.

Addresses:
VB and JP: 340 Rowland Hall, University of California - Irvine, Irvine, CA 92697, USA
VG: 5734 S. University Avenue, University of Chicago, Chicago, IL 60637, USA

Email:
vbaranov@math.uci.edu, ginzburg@math.uchicago.edu, jpechari@math.uci.edu