Land capability classification and suitability assessment for selected crops in Gateno watershed, Ethiopia

Gebrehana Girmay, Workat Sebnie and Yonas Reda

Cogent Food & Agriculture (2018), 4: 1532863
SOIL & CROP SCIENCES | RESEARCH ARTICLE

Land capability classification and suitability assessment for selected crops in Gateno watershed, Ethiopia

Gebrehana Girmay¹*, Workat Sebnie¹ and Yonas Reda¹

Abstract: The aim of the study was to evaluate the capability and suitability of the land for rain-fed major crop production. The study was conducted in Woleh Kebele of Sekota Woreda Wag-Himira administration zone in Ethiopia. In this study area, four homogeneous land units were identified based on topography. Soil survey was conducted on each land unit to observe the physical and chemical properties of the soil. The soil property analysis results indicate that the area is highly susceptible to erosion and low fertility that limit the land capability for various cultivated lands. The land capability assessment was undertaken based on USDA criteria. The results showed that three land unit maps were rated as capable for rain-fed crop production, whereas the fourth land unit was not capable due to permanent limitations associated with slope and soil depth. The land suitability assessment for rain-fed major crops was performed by using the maximum limitation method. The results showed that three land unit maps were marginally suitable for wheat and faba bean and not suitable for barley, due to poor soil fertility, slope, and high erosion. The potential land suitability results showed that 7.05% of land is highly suitable for barley and wheat but moderately suitable for faba bean, 25.04% moderately suitable for barley and wheat but marginally suitable for faba bean, 58.65% marginally suitable for barley and wheat but not suitable for faba bean, and 9.3% not suitable. The land suitability of the area can be enhanced by implementing appropriate

ABOUT THE AUTHORS

Gebrehana Girmay is a full-time researcher in Sekota Dryland Agricultural Research Center. He had conducted research activity related to soil and water conservation and irrigation. He has an interest to conduct research related to natural resource management.

Workat Sebnie is a full-time researcher in Sekota Dryland Agricultural Research Center. He has conducted different research activities related to soil fertility and plant nutrition, and soil characterization and classification. He has an interest to conduct research in soil fertility, watershed management, and soil and water conservation relation.

Yonas Reda is a full-time researcher in Sekota Dryland Agricultural Research Center. He had conducted different research activities related to soil fertility. He has an interest to conduct research related to soil fertility.

PUBLIC INTEREST STATEMENT

In Ethiopia, national economic development is highly dependent on agriculture. Wheat, barley, maize, teff, and sorghum are major cereals and faba bean and pea are major pulses, which are essential for the national economy. Currently, most of these crops are cultivated in less suitable and degraded areas due to mismanagement of the land, shortage of fertile land, and pressing demand for food. Accordingly, low productivity has become a challenge in most parts of the semi-arid lowland area of North Ethiopia. This work evaluates the land capability and suitability of mostly the hilly terrain in Ethiopia. It is important to modify the land use and select and grow crops based on land suitability to get better crop production and to alleviate land degradation.
interventions such as soil and water conservation, improving soil fertility, and agronomic practices.

Subjects: Agriculture; Agriculture and Food; Soil Conservation Technology; Agronomy; Conservation – Environment Studies

Keywords: land capability; land suitability; land unit map; Gateno major crops

1. **Introduction**

Worldwide, the quantity of agricultural land is diminishing, and most part of the land has been degraded as irreversible and has become unsuitable for agricultural production (Verheye, 2008). Land evaluation is the basis for sustainable land resource scheduling and managing since it assists us to know whether the resources are degraded or improved in quality (Dumanski et al., 2010; Mohana, Mariappan, & Manoharan, 2009). The land capability is determined by different land characteristics such as the types of soil, which is critical for productivity, fundamental geology, topography, and hydrology. These characteristics limit the extent of land accessible for various purposes (Bizuwerk, Peden, Taddese, & Getahun, 2005). The final aim of land capability classification is to predict the agricultural capability of the land development units in utility of the land resources (Sys, Van Ranst, & Debaveye, 1991). FAO (1993) defines land suitability as “the fitness of a given parcel of land for specific uses”. As a result, land assessment is done to determine the specific land use for a specific location and classify the limiting factors for a specific crop production (AbdelRahman, Natarajan, & Hegde, 2016; Mu, 2006). The evaluation of land suitability depends on land capability as well as other factors such as land quality, proximity to different accesses, landowners, customer demand, and economic values (Counsel, 1999). Ethiopia’s economic development is greatly dependent on agricultural production since agriculture constitutes 46.6% of the national gross domestic product (CSA, 2008). Expansion of cultivated areas to compensate for low yields and exploitation of soils without restoration of soil fertility are common features in semi-arid lowland area of North Ethiopia, which is not sustainable. The principal purpose of agricultural land suitability assessment is to predict the potential and limitations of the land for crop production (Pan & Pan, 2011). Geographic Information Systems (GIS) techniques have been used to identify spatially and evaluate the physical land capability and suitability. They have been proved to be helpful and successful tools in studying, mapping, processing, and presenting certain problems (Abdel-Motaleb, 1997). For this reason, the assessment of land characteristics for the present and potential capability and suitability of crop production are necessary. Therefore, the objective of this study was to assess the capability and suitability of the land for rain-fed major crops in Gateno watershed, Ethiopia.

2. **Materials and methods**

2.1. **Description of the study area**

Gateno watershed is situated 720 km north of Addis Ababa and is approximately 15 km southeast of Sekota town adjacent to the Sekota-Lalibelle highway. The study was conducted in Woleh Kebele of Sekota Woreda Wag-Himira administration zone in Ethiopia. The coverage of the study area is 823.8 ha, which is located at 39°0’25” to 39°2’50” E longitudes to 12°31’0” to 12°32’35” N latitudes (Figure 1). The study area was characterized by a unimodal rainfall pattern, which extends from late June to late August or early September, where crops are cultivated in the summer season. As shown in Figure 2, eight years (2010–2017) data obtained from the Combelcha Meteorology Agency indicate that the study area has a mean annual rainfall of 675 mm and the mean minimum and maximum annual temperatures are 10°C and 22°C, respectively. The altitude of this study area ranges from 2100 to 2410 m a.s.l. According to Dejene (2003), the climatic zone classifications in Ethiopia are based on the altitude, rainfall, average annual temperature, and length of growing season; the study area belongs to dry semi-arid lowland.
3. Identification and characterization of land unit maps

Land unit is a unit of lands that have similar characteristics. In this study area, the land unit is classified into four homogeneous land unit maps (LUMs) based on topography (Table 1), in accordance with Ethiopia land use guideline (MOA/LAUD, 2012). The slope was extracted from the Digital Elevation Model using ARCGIS 10.2.1. The land unit maps were used as a guide in the field survey (Figure 3).

Measurements and soil samples are a re-interpretation of field observation and soil analysis (Table 2). Based on the measurement of the slope check by clinometers, the study area was found to be flat, sloppy, hilly, and steep sloppy, and the coverage area was 28.18%, 21.68%, 25.12%, and 25.01%, respectively.
Table 1. Topography distribution and area coverage of land unit maps

Land unit maps	Slope	Topography distribution	Area (ha)
LUM1	0–8	Flat	58.123
LUM2	8–15	Sloppy	206.28
LUM3	15–30	Hilly	483.165
LUM4	>30	Steep sloppy	76.302
Total			**823.8**
Table 2. Soil characteristics of land unit map of study area

Land units	Slope %	Soil depth (cm)	Texture	Stoniness %	Past erosion	Drainage	pH 1:1.25	EC ds m⁻¹	OC %	OM %	TN %
LUM1	0-8	101	C	15	Mo	WM	5.6	0.16	1.22	2.09	0.052
LUM2	8-15	68	SiL	35	Sev	Well	5.4	0.2	0.87	1.5	0.053
LUM3	15-30	47	CL	48	Sev	Well	5.5	0.21	0.6	0.94	0.058
LUM4	>30	23	L	50	VSev	Well	5.7	0.15	0.53	0.91	0.042
4. Determination of soil physical and chemical properties
The soil samples were collected from each land unit, and soil profiles were opened to measure soil depth and drainage conditions. Besides, representative soil samples from a depth of 0 to 20 cm were collected to examine the soil physical and chemical properties. For the determination of total N and organic carbon (OC), a 0.5-mm sieve was used. Analysis of the physicochemical properties of the soil samples was performed based on the standard laboratory procedures. Particle size distribution was analyzed by using the ratio method. Soil pH was determined in H$_2$O using the 1:2.5 soils to solution ratio using a combined glass electrode pH meter (Carter and Gregorich, 2006). Total N was analyzed by the Kjeldahl digestion and distillation procedure, electrical conductivity by Sahlemedin and Taye (2000), whereas OC and organic matter (OM) were determined by the wet combustion method of Walkley and Black as outlined by Van Ranst et al. (1999).

SiL = silt loam; L = loam; CL = clay loam; L = loam; LUM = land unit map; MW = moderately well drained; VSev = very severe; Sev = severe; Mo = moderate.

5. Land capability and suitability evaluation
The land characteristics used in capability rating systems can impose limitations to the use of land through their effects on productivity and management and in the production of hazards (Figure 4); because land features are important to determine the capability (Rowe, Howe, Alley, & Authority, 1981).
Land capability classification was done based on inherent soil characteristics, land features, and environmental factors that permanently limit land use (Table 3). It was also undertaken based on the capability or limitations (United States Department of Agriculture [USDA] 2014). The land qualities and characteristics used for capability and suitability evaluation in this study are climate, soil characteristics, and topography. In accordance with the US Soil Resources & Conservation Service, which consists of matching (maximum limitation method) land characteristics against crop requirements and assigning a suitability rate for each land characteristic, land capability evaluation for the major crops produced in the study area was performed. The major crops grown in the study area (barley, wheat, and faba bean) were identified by focus group discussion with the watershed team and community. The selection of these crops was based on their dominance (area coverage) and economic importance in the area.

Climatic and land parameters were assigned to each factor affecting the suitability for each crop. Land use requirements of each crop were established using FAO (1976, 1983), FAO/UNDP (1984) and Sys et al. (1991). Generally, in the study area, the land unit map of soil nutrient level classifications and ratings was determined based on Cottenie (1980), Tekalign (1991), Jones (2003), and Hazelton and Murphy (2007). The crop requirements were compared with climate (temperature and rainfall) and landform attributes such as depth, slope, surface stoniness, and drainage, and with soil parameters such as texture, EC, pH, TN, OC, and OM. The soil characteristic values were matched with crop requirements for each land unit map.

6. Results and discussion

6.1. Land quality analyses

Textural class of the area was coarse (loam) to fine (clay). The soil depth ranges from shallow (23 cm) to deep (101 cm), stoniness coverage ranges from 15% to 50%, past erosion occurred from moderate to very high, and there was no any drainage problem. Besides, the soil properties of the study area were organic matter (OM) content (<2.09%), OC (<1.22%), and total nitrogen (0.058%) which indicated very low fertility status (Murphy, 1968 and Tekalign, 1991). According to Murphy’s (1968) and Tekalign’s (1991) pH classification method, the soil laboratory analysis results showed that the soil pH of the area was moderately (medium) acidic. The chemical soil analysis showed that it has low electrical conductivity (EC) (<0.21 ds m$^{-1}$) indicating that the area was free from salt.

6.2. Land capability classification

Based on USDA and Gizachew and Ndoo (2008), land capability classes IIet, IIIe, and IVLs were capable for crop cultivation with some limitations of slope (L), erosion (e), texture (t), and soil fertility (s). Therefore, these land unit maps required intervention in integrated soil fertility management and soil and water conservation practice like contour cropping, strip cropping, grass strips, alley cropping waterways, cutoff drains, and moisture harvesting structures (USDA, 2014). LUM4 has severe limitations related to slope (>30%), soil depth (<25 cm), and stoniness (68%) coverage. Hence, VIL was completely not capable for crop production, but can be suitable for perennial crops or forage production with rehabilitation activities and forestry with care and proper conservation plantation and area enclosure (Tesfay, Biedemariam, Haqazi, & Gebretinsae, 2017). Three land unit maps were capable for rain-fed crop production, whereas LUM4 was incapable due to slope, soil depth, erosion, and stoniness; as a result, out of the total area (823.8 ha), 9.26% was not suitable for rain-fed crop production. The result supported by Tesfay et al. (2017) reports that out of the total study area, 11.89% was not capable for rain-fed cultivated land in semi-arid lowland area of North Ethiopia.

6.3. Land suitability evaluation

Climatic suitability: The average growth length of barley, wheat, and faba bean was 90–120, 100–130, and 100–120 days, respectively (Raemaekers, 2001). The study area was characterized by a unimodal rainfall pattern, which extends from June to mid-September with a mean annual rainfall of 675 mm. The total growth period of the area was 115 days. The results indicated that
Table 3. Land capability parameters and thresholds (Gizachew & Ndoo, 2008)

Parameters	Land capability class						
	I (0-8)	II (8-16)	III (16-30)	IV (30-50)	V (>50)	VI (>50)	VII (>50)
Slope (L) %	0-8	8-16	16-30	30-50	>50	>50	>50
Erosion (e)	No sign to slightly	Moderate	High	Very high	Extremely high		
Stoniness (% area coverage)	0-40	>40	>40	>40			
Soil depth (cm)	>60	45-60	15-45	<15	>15		
Soil drainage	Never saturated	Rarely saturated	Saturated for short period	Saturated for long period			
Soil texture (t)	L, LS, SL	SL, SCL	SC, SCL	SC, SCL	Any		
Organic carbon (%)	>1	0.8-1	0.6-0.8	0.4-0.6	0.2-0.4		
Carbonates (%)	<25	25-40	>40				
pH	5.5-7.9	4.5-5.5	><4.5 or >8.4	<4.5 or >8.4			

L = loam; SL = sandy loam; LS = loamy sand; Si = silt; SCL = sandy clay loam; SL = silty loam; CL = clay loam; SiC = silty clay; SC = sandy clay; S = sand; C = clay.
the agroclimatic characteristic of Gateno watershed was highly suitable for both barley and wheat and moderately suitable for faba bean for the rain-fed crop cultivation in the area (Table 4). The climatic suitability for faba bean was limited by rainfall due to its mean annual rainfall requirement (Nahusenay & Kibebew, 2015).

6.4. Soil and landscape suitability evaluation

The results of the soil and landscape suitability evaluation showed that LUM1 is marginally suitable (S3) for wheat and faba bean, but not suitable (N) for barley for rain-fed crop production. LUM2 is marginally suitable (S3) for faba bean and not suitable (N) for both barley and wheat for rain-fed crop production in the land unit. LUM3 is only marginally suitable (S3) for wheat and not suitable (N) for both barley and faba bean. The limiting factors of the land units are presented in Table 5. Because of one or more limitations of the land qualities fall in to highly, moderately, or marginally suitable class for the selected major crops.

6.5. Overall land suitability evaluation

LUM1 was found to be well-drained, deep soil and less stony as compared to LUM2 and LUM3 (Table 6). However, erosion, climate, and soil fertility are common problems in all topographic positions (LUMs). Currently, LUM1 is marginally suitable (S3) for wheat and faba bean, but not suitable (N1) for barley for rain-fed crop production, the main cause of the area that amplified erosion and low fertility such as OC, OM and total nitrogen.

Hailu, Kibret, and Gebrekidan (2015) also reported that OM content and total nitrogen were found to be the limiting factors for wheat and barley crop production. It is improved by applying appropriate soil and water conservation, integrated soil fertility management, agro-forestry as well as agronomic practices such as intercropping and crop rotation (Tesfay, 2017; USDA, 2014). LUM2 was, compared to LUM1, very sloppy, had moderate soil depth, and was moderately stony. LUM2 is marginally suitable (S3) for faba bean and not suitable (N) for both barley and wheat for rain-fed crop production in the land unit. The limiting factors are erosion and topography (slope).

Soil fertilities (OM content (1.5%) and total nitrogen (0.053%)) and soil depth. Hailu et al. (2015) also reported that OM content and total nitrogen were found to be the limiting factors for wheat and barley crop production. Therefore, applying appropriate soil and water conservation, integrated soil fertility management, agro-forestry as well as agronomic practices such as Grass strip; alley cropping; combination of grass strip and bunds; Fanya Juu + waterways, cutoff drains (USDA (United States Department of Agriculture), 2014). It enhanced to moderate suitability (Tesfay et al., 2017). LUM3 result showed that it is only marginally suitable (S3) for wheat and not suitable (N) for both barley and faba bean. The limiting factors are climate, topographic position; shallow soil, severe erosion, and high cover surface stoniness. Similar to this, Nahusenay and Kibebe (2015) have reported that climate, fertility (OM, total N, and available P), rooting conditions (depth), physical (stoniness), and topography occur to be limiting factors for faba bean rain-fed crop production. The management option and the conservation measure of the study area improve the suitability of land units, particularly for marginally and not suitable lands. Alemu et al. (2013) reported that soil conservation measures are playing an important role in enhancing the

Table 4. Climatic suitability for the major crops

Climate characteristics	Factor value	Land utilization type
Growing season mean TO	16	Wheat: S1, Barley: S1, Faba bean: S1
Total growing season rainfall (mm)	675	Wheat: S1, Barley: S1, Faba bean: S2
Overall climatic suitability	S1	Wheat: S1, Barley: N, Faba bean: S2

S1 = highly suitable; S2 = moderately suitable.
Land quality/characteristics	LUM1	LUM2	LUM3					
Wheat	Barely	Faba bean	Wheat	Barely	Faba bean	Wheat	Barely	Faba bean
Topography								
Slope (%)	S1	S1	S1	S2	S2	S2	S3	S3
Altitude (m)	S1							
Wetness (w)								
Drainage	S1							
Flooding								
Physical characteristics (s)								
Textural class of soil	S1							
Soil depth (cm)								
Surface stoniness								
Fertility status (f)								
H:O	S3	S2	S3	S3	S3	S3	S3	S3
Soil organic matter (%)	S1	S1	S1	S2	S2	S2	S3	S3
Soil organic carbon (%)	S1	S1	S1	S2	S2	S2	S3	S3
Total nitrogen (%)								
Salinity and alkalinity (n)								
Electrical conductivity (dS m⁻¹)								
Overall rating of soil and landscape	S3	S3	S3	N	S3	S3	S3	S3

LMU = land mapping unit; S1 = highly suitable; S2 = moderately suitable; S3 = marginally suitable; N = not suitable.
Table 6. Overall land suitability evaluation for LUMs

Crop type	LUM	Climate suitability	Topography	Soil physical	Soil chemical	Erosion status	Wetness	Level of suitability
	1	S1	S1	S1	N1	S2 (e)	S1	S1
Barley	2	S1	S1	S3 (e)	S2 (t)	S2 (e)	S1	S1
	3	S1	S1	S3 (e)	53 (t)	S3 (e)	S1	S1
Wheat	1	S1	S1	S1	S3 (f)	S3 (e, f)	S1	S1
	2	S1	S1	S3 (e)	S2 (t)	S3 (e, f)	S1	S1
	3	S1	S1	S3 (e)	53 (t)	S3 (e, t, s, f)	S1	S1
Faba bean	1	S2 (c)	S1	S2 (e)	S1	S3 (c, e, f)	S2 (c)	S2 (c)
	2	S2 (c)	S1	S3 (e)	S2 (t)	S3 (c, e, t, s, f)	S2 (c)	S2 (c)
	3	S2 (c)	S1	S3 (e)	53 (t)	S3 (c, e, t, s, f)	S2 (c)	S2 (c)

LMU = land mapping unit. Limitation factors: c = climate (amount of rainfall); e = erosion; f = fertility (OM, total N, and OC); s = physical (stoniness); t = topography (altitude/elevation).
ecosystem services in the form of improving the suitability of the soils for most crops. Consequently, different soil and water conservation measures are important to reduce further degradation.

7. Conclusion
Based on land capability or limitation, the study area is grouped into two such as capability of agricultural land (class II covers an area of 7.05% and the limiting factors are erosion and texture; class III covers 25.04% and the limiting factor is erosion; class IV covers 58.65% and the limiting factors are slope and stoniness; class V covers 9.3% and the limiting factors are slope, stoniness, soil depth, and erosion) of the total area. According to FAO (1976, 1983, 1984), soils of the study area are classified from the suitability point of view: suitable or not suitable. The results of the soil and landscape suitability evaluations are topographic position, erosion, low soil fertilities, and surface stoniness the limiting factors of land suitability. Some of the limitations are the results of anthropogenic activities related to inappropriate land use. Because one or more limitations of the land qualities fall into highly, moderately, or marginally suitable class for the selected major crops. The current land suitability of the study area can be enhanced by applying appropriate interventions such as soil and water conservation, integrated soil fertility management, moisture harvesting structures, and agronomic practices.

Funding
The authors received no direct funding for this research.

Competing interest
The authors declare no competing interests.

Author details
Gebrehana Girmay
E-mail: geberhanagirmay@gmail.com
Workat Sebnie
Workat71@yahoo.com
Yonas Reda
E-mail: yonasnimro@gmail.com
1 Department of soil and water management, Sekota Dry Land Agricultural Research Center, Sekota, Ethiopia.

Citation information
Cite this article as: Land capability classification and suitability assessment for selected crops in Gateno watershed, Ethiopia, Gebrehana Girmay, Workat Sebnie & Yonas Reda, Cogent Food & Agriculture (2018), 4:1532863.

References
Abdel-Motaleb, M. H. (1997). Studies on monitoring desertification and land degradation processes at El Fayoum depression, Egypt. (M.Sc. Thesis), Faculty of Agriculture, El Fayoum, Cairo University, Egypt.
Abdel-Talilahman, M. A. E., Natarajan, A., & Hegde, R. (2016). Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. The Egyptian Journal of Remote Sensing and Space, 19(1), 125-141.
Alemu, W. G, Amare, T, Yitafu, B, Selassie, Y. G, Wolfgamm, B, & Hurni, H. (2013). Impacts of soil and water conservation on land suitability to crops: the case of anjeni watershed, northwest ethiopia. Journal of Agricultural Science, 5(2), 95–109. doi: 10.5539/jas.v5n2p95
Bizuwerk, A., Peden, D., Toddeese, G., & Getahun, Y. (2005). GIS application for analysis of land suitability and determination of grazing pressure in upland of the Awash River Basin, Ethiopia. Addis Ababa, Ethiopia: International Livestock Research Institute (ILRI).
Carter, M. R., & Gregorich, E. G. (2006). Soil Sampling and Methods of Analysis, Canadian Society of Soil Science.
Cottenie, A. (1980). Soil and plant testing as a basis of fertilizer recommendations (No. 38/2).
Counsel, A. P. (1999). Land capability assessment guidelines. Retrieved from http://apps.actpla.act.gov.au/plan/planingregister/register_docs/landcapabilityg5spdf
CSA. (2008). Summary and statistical report of the 2007 population and housing census, _population size by age and sex. Addis Ababa: Federal Democratic Republic of Ethiopia, Population Census Commission.
Dejene, A. (2003). Integrated natural resources management to enhance food security. The case for community-based approaches in Ethiopia. Environment and natural resources working paper, p. 16.
Dumanski, J., Bindraban, P. S, Pettapiece, W. W, Bullock, P, Jones, R. J. A., & Thomasson, A. (2010). Land classification, sustainable land management, and ecosystem health. Interdisciplinary and Sustainability Issues in Food and Agriculture, 3, 244-266.
FAO. (1976). A framework for land evaluation. In Food and agriculture organization of the United Nations, Soils Bulletin 32. FAO, Rome.
FAO. (1983). Guidelines: Land evaluation for rainfed agriculture. Rome, Italy: Food and Agriculture Organization of the United Nations, Soils Bulletin 52.
FAO. (1993). Guidelines for land use planning. FAO Development Series 1, Rome, ISBN: 1020-0819.
FAO/UNDP (1986). Land evaluation: Technical report 5, Part III. Crop environmental requirements; Report prepared for the Government of Ethiopia by FAO acting as executing agency for the UNDP, Rome, Italy.
Gizachew, A. A., & Ndao, M. (2008). Land evaluation in the Enderta District-Tigray-Ethiopia. 28th Course Professional Master, Geomatics and Natural Resources Evaluation, 5, November 2007–27 June 2008. IAO, Florence, Italy.
Hallu, A. H., Kibret, K., & Gebrekidan, H. (2015). Land suitability evaluation for rainfed production of barley and wheat at Kobe Subwatershed, Northeastern Ethiopia. African Journal of Soil Science, 17(7), 147–156. ISSN 2375-088X.
Hozelton, P., & Murphy, B., 2007. Interpreting soil test results: what do all the numbers mean. 2nd Edition. CSIRO publishing, Sydney, Australia. 169p.
Jones, J.B., 2003. Agronomic handbook: management of crops, soils, and their fertility. CRC Press LLC, Boca Raton, Florida, USA. 482p.
Landon, J. R. (2014). Booker tropical soil manual: a handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Routledge.

MOA/LAUD. (2012). Ministry of Agriculture (MoA)/Land Administration and Use (LAUD). Local Level Participatory Land Use Planning Manual.

Mohana, P., Mariappan, N. V. E., & Manoharan, N. (2009). Land suitability analysis for the part of Parambikulam Aliyar command area, Udumalpet Taluk using remote sensing and GIS techniques. International Journal on Design and Manufacturing Technologies, 3(2), 98–102. doi:10.18000/ijodam.70069

Mu, Y. (2006). Developing a suitability index for residential land use: A case study in Dianchi drainage area. Canada: University of Waterloo.

Murphy, B. E, & Jachan, C. (1968). Clinical evaluation of urinary cortisol determinations by competitive protein-binding radioassay. The journal of Clinical Endocrinology & Metabolism, 28(3), 343-348.

Nahusenay, A., & Kibebew, K. (2015). Land suitability evaluation in Wadla Delanta Massif of north central highlands of Ethiopia for rainfed crop production. African Journal of Agricultural Research, 10(13), 1595–1611. doi:10.5897/AJAR2014.9248

Pan, G., & Pan, J. (2011, October). Research in crop land suitability analysis based on GIS. In International Conference on Computer and Computing Technologies in Agriculture (pp. 314–325). Springer, Berlin, Heidelberg.

Raemaekers, R. (2001). Crop production in tropical Africa: Brussels, Belgium: Directorate General for International Co-operation (DGIS): Ministry of Foreign Affairs, External Trade and International Co-operation.

Rowe, R. K., Howe, D. F., Alley, N. F., & Authority, S. C. (1981). Guidelines for land capability assessment in Victoria. Soil Conservation Authority.

Sertsu, Sahlemedhin, & Bekele, Taye. (2000). For soil and plant analysis. National Soil Research center, Ethiopian Agricultural Research organization.

Sys, C., Van Ranst, E., & Debaveye, J. (1991). Land evaluation. Part I: Principles in land evaluation and crop production calculations. Brussels, Belgium: Agricultural Publications nr. 7, GADC.

Sys, C., Van Ranst, E., Debaveye, J., & Beernaert, F., 1993. Land evaluation, part III. Crop requirements. Agricultural publication, No.7, General Administration for Development Cooperation. Brussels, Belgium.

Tadese, Tekalign, 1991. Soil, plant, water, fertilizer, animal manure and compost analysis. Working Document No. 13. International Livestock Research Center for Africa, Addis Ababa, Ethiopia.

Tesfay, T., Biedemariam, M., Hagazi, M., & Gebretinsae, T. (2017). Land capability and suitability evaluation for rain-fed crops in semi-arid lowland area of North Ethiopia. Vegetos—An International Journal of Plant Research, 30(3), 18–22. doi:10.5958/2229-4473.2017.00160.4

Teshome, Y, & Verheye, W (1994). An approach towards a macroscale land evaluation as a basis to identify resource management options in central Ethiopia. Doctoral Dissertation, University of Ghent, faculty of sciences. International training center for post graduate soil scientist and Ghent University, Ghent.

Van Ranst, E., Verloo, M., Demeyer, A., & Pauwels, J.M., 1999. Manual for the soil chemistry and fertility laboratory: Analytical methods for soils and plants equipment, and management of consumables. University of Ghent, Belgium. pp. 96-105.

Verheye, W. (2008). Land evaluation. In Land use and Land Cover (II). Belgium: UNESCO-EOLSS, Ghent University Library.
Table A1. Land suitability ratings for agroclimatic characteristic requirements for rain-fed (barley, wheat, and faba bean) crops

LUT	Rating	Rainfall (mm)	Temperature (°C)	LGP (day)	Frost (months)	
	S1	0	400–650	16–18	120–135	None
		1	500–750	14–18	110–155	None in Oct. to Nov., slight in Dec.
		2	300–400 or 750–850	12–14 or 18–20	90–110 or 155–180	None in Oct., slight in Nov. to Dec.
		N1	150–200 or 1000–1250	8–10 or 22.5–28	<75 or >230	Any frost in Oct., severe in Nov., Dec.
		N2	40	8–10 or 27–30	80 or >230	Any frost in Oct., severe in Nov., Dec.
	S2	2	250–350 or 1250–1500	12–15 or 20–25	100–120 or 155–180	None in Oct., slight in Nov. to Dec.
		S3	250–200 or 1500–1750	10–12 or 25–27	80–100 or 180–230	Slight in Oct. to Dec.
	N1	4	200–500	17.5–20	135–155	None
		2	400–600	15–20	130–180	None in Oct. to Nov.
		2	300–400 or 600–1000	12.5–15 or 20–24	100–130 or 180–265	None in Oct. to Nov., slight in Dec.
		3	250–300 or 1000–1200	10–12.5 or 24–27	75–100 or 265–305	None in Oct., slight in Nov. to Dec.
	N2	4	250–500	8–10 or 27–30	<75 or >305	Slight in Oct. to Dec.
		2	60	8–10 or 27–30	75–100 or 265–305	Slight in Oct. to Dec.

Source: Adapted from FAO (1976, 1983), FAO/UNDP (1984), Sys et al. (1991; 1993), and Teshome and Verehye (1994). LGP = length of growing period.
Table A2. Land suitability ratings for physical characteristic requirements for rain-fed (barley, wheat, and faba bean) crops

LUT	Rating	Slope %	Elevation (m)	Drainage	Flood	Texture	Stoniness °	Depth (cm)	
Barley S1	0	100	0-4	2000-3000	Good	C < 60s, Ca, SiCs, SiCL, Si, SiL, CL	0-3		
	1	95	4-8	-	Moderate	F0	C < 60v, SC, C > 60s, L	3-15	
	S2	2	85	8-16	1500-2000 or 3000-3300	Imperfect/good	F0	C > 60v, SCL	15-35
	S3	3	60	16-24	3300-3800	Poor and aeric	F1	SL, Lfs	35-55
	N1	4	40	24-30	<1500 or >3800	Poor but drainable	F2	-	10-25
	N2	25	>30	-	-	Poor not drainable	F3+	Cm, Si, Ls, F, F, s, s	>55
Wheat S1	0	100	<2	2000-2600	Good	F0	C < 60s, Ca, SiCs, SiCL, Si, SiL, CL	0-3	
	1	95	2-8	-	Moderate	-	C < 60v, SC, C > 60s, L	3-15	
	S2	2	85	8-16	1500-2000 or 2600-3000	Imperfect/good	F1	C > 60v, SCL	15-35
	S3	3	60	16-30	3000-3300	Poor and aeric	F2	SL, Lfs	35-55
	N1	4	40	<1500 or >3300	Poor but drainable	-	-	10-20	
	N2	25	>30	-	Poor not drainable	F3+	Cm, Si, Ls, F, F, s, s	>55	
Faba bean S1	0	100	0-4	2100-2400	Good	F0	C < 60s, SiCs, SCl, CL, Si, SiL	0-3	
	1	95	4-8	2000-3000	Moderate	-	C < 60s, SC, C < 60v, L, SCL	3-15	
	S2	2	85	8-16	1800-2000 or 3000-3200	Imperfect/good	-	C > 60v, SL, Lfs, LS	15-35
	S3	3	60	16-24	1500-1800 or 3200-3400	Poor and aeric	F1	Ls, F, s	35-55
	N1	4	40	24-30	<1500 or >3400	Poor but drainable	-	-	20-50
	N2	25	>30	-	Poor not drainable	F2+	Cm, Si, cm, s	>55	

Source: Adapted from FAO (1976, 1983), FAO/UNDP (1984), Sys et al. (1991, 1993), and Teshome and Verehye (1994). Textural range: Cm = massive clay; SiCm = massive silty clay; C + 60,v = fineclay, vertical structure; C + 60,s = fine clay, blocky structure; C-60,v = clay, vertical structure; C-60,s = clay, blocky structure; SiCs = silty clay, blocky structure; SiCL = silty clay loam; CL = clay loam; Si = silt; SiL = silt loam; SL = sandy loam; L = loam; SCL = sandy clay loam; SL = sandy loam; Lfs = loamy fine sand; LS = loamy sand; LcS = loamy coarse sand; F = fine sand; S = sand; cS = coarse sand; Co = clay, oxisol structure.
Table A3. Land suitability ratings for soil chemical characteristic requirements for rain-fed (barley, wheat, and faba bean) crops

LUP	Rating	pH – H₂O	Soil OC (%)	Total N (%)	Avail. P₁ (mg kg⁻¹)	EC (dS m⁻¹)	CaCO₃ (%)	Gypsum (%)	Cations²⁺ (cmol (+) kg⁻¹)	CEC	PBS (%)	EPS (%)
Barley	S1 0	7–7.5	>2.0	>0.2	0–8	3–20	0–3	>8	>24	>80	0–15	
	1 95	6.2–8.0	1.2–2	0.15–0.2	>10	8–12	3–5	5–8	24–16	50–80	15–25	
	S2 2	6.2–5.8 or	0.8–1.2	0.1–0.15	5–10	12–16	5–10	3.5–5.0	<16 (⁺)	35–50	25–35	
	3 60	5.8–5.5 or	0.4–0.8	<0.1	3–5	16–20	40–60	10–20	2.0–3.5	<16 (⁺)	<35	35–45
	N1 4	<5.5 or >8.5	0.4–0.8	<0.1	3–5	>25	>60	>20	<2	-	>65	
	N2 25	-	-	-	>25	>60	>20	<2	-	-	-	
Wheat	S1 0	6.5–7.5	>2.5	1–3	20–30 or 0–3	3–5	5–8	24–16	50–80	15–25		
	1 95	6.2–8.0	1.5–2.5	>0.2	>10	1–3	20–30 or 0–3	3–5	5–8	24–16	50–80	15–25
	S2 2	6.5–6.6 or	1.0–1.5	0.15–0.2	5–10	3–5	30–40	5–10	3.5–5.0	<16 (⁺)	35–50	25–35
	3 60	5.6–5.2 or	0.5–1.0	0.1–0.15	3–5	5–6	40–60	10–20	2.0–3.5	<16 (⁺)	<35	35–45
	N1 4	<5.2 or >8.5	0.5–0.8	0.08–0.1	3	6–10	-	-	-	-	-	
	N2 25	-	<0.08	-	>10	>60	>20	<2	-	-	>65	
Faba bean	S1 0	6.0–7.0	>2.0	>0.2	0	0–6	0.1	>5	>24	>80	0–2	
	1 95	5.6–7.6	1.2–2	0.15–0.2	0–1	1–6	0.1–0.5	3.5–5.0	24–16	50–80	2–5	
	S2 2	5.6–5.4 or	0.8–1.2	0.1–0.15	5–10	1–1.5	12–20	0.5–1	2.0–3.5	<16 (⁺)	35–50	5–8
	3 60	5.4–5.2 or	<0.8	<0.1	3–5	1.5–2	20–25	1–3	<2	<16 (⁺)	<35	8–12
	N1 4	<5.2	-	<3	-	-	-	-	-	-	-	
	N2 25	>8.2	-	>2	>25	>3	-	-	-	-	-	

Source: Adapted from FAO (1976, 1983), FAO/UNDP (1984), Sys et al. (1991, 1993), and Teshome and Verehye (1994). ¹Olsen method analysis; ²sum of cations; PBS = % base saturation; EPS = exchangeable sodium percentage.
