Thanatosis (pretending to be dead), sometimes called leitisimulation, is widely used as an anti-predator strategy by snakes. Herein we report six cases of death-feigning in six species of Panamanian snakes (Pacific Banded Coffee Snake, *Ninia maculata*; Dark-headed Red Falseboa, *Pseudoboa neuwiedii*; Double-banded False Coralsnake, *Erythrolamprus bizona*; Colombian Long-tailed Snake, *Enulophis sclateri*; Rufous-headed Snake, *Amastridium veliferum*; and Forest Flamesnake, *Oxyrhopus petolarius*). We also present a literature review of thanatosis in American snakes and discuss the terminology associated with this behavior.

Thanatosis (pretending to be dead), sometimes called letisimulation, is a widely used defensive behavior during which an animal feigns death to avoid predation (Gehlbach 1970; Greene 1988; Humphreys and Ruxton 2018), typically as a last resort after other anti-predator behaviors have failed (Rogers and Simpson 2014; Bauder et al. 2015). Interactions between predators and prey often can be broken down into a sequence of stages, beginning with the two individuals being in proximity, leading through detection, identification, reducing separation, contact, subjugation, and finally consumption (Endler 1991; Caro 2005; Humphreys and Ruxton 2018).

In snakes, thanatosis has been documented in taxa ranging from ancient lineages such as pythonids to advanced colubroids (Gehlbach 1970; Greene 1988; Roze 1996; dos Santos and da Silva Muniz 2012; Pineda 2013; Almeida et al. 2016; Muscat and Entiauspe-Neto 2016; Gonzales and de Oliveira 2020; Thomas et al. 2020). Herein we present the first reports of thanatosis in snakes from Panama (Figs. 1–3):

Fig. 1. Thanatosis in Panamanian snakes: Pacific Banded Coffee Snake (*Ninia maculata*) (left) and Dark-headed Red Falseboa (*Pseudoboa neuwiedii*) (right). Photographs by Abel Batista (left) and Melquiades Castillo (right).
the first reports for the Dark-headed Red Falseboa, *Pseudoboa neuwiedii* (Duméril, Bibron, and Duméril 1854); Double-banded False Coralsnake, *Erythrolamprus bizona* (Jan 1863); Forest Flamesnake, *Oxyrhopus petolarius* (Linnaeus 1758); Rufous-headed Snake, *Amastridium veliferum* Cope 1861; and the second reports for the Colombian Long-tailed Snake, *Enuliophis sclateri* (Boulenger 1894), and the Pacific Banded Coffee Snake, *Ninia maculata* (Peters 1861). We also review the literature on thanatosis in the Americas and discuss some of the relevant terminology.

Methods

Three of the six cases presented (*Pseudoboa neuwiedii, Erythrolamprus bizona, Oxyrhopus petolarius*) emanated from
Results and Discussion

The six cases of thanatosis in Panamanian snakes are described in Table 1 and descriptions and abbreviations for associated behaviors are in Table 2. All snakes presented tonic immobility (TI) and all but *A. veliferum* and *N. maculata* engaged in contortions (C). The most behaviors (C, TI, S, CH) were exhibited by E. bizona, which was the only snake that cocked its head. Both *P. neuwiedii* and *N. maculata* exhibited stiffness (ST), and *A. veliferum* was the only one that gaped (MG) and protruded its tongue (TP).

Our literature search generated reports of thanatosis for one American leptotyphlopid, one typhlopid, seven colubrids, 29 dipsadids, six elapids, nine natricids, and three viperids (Table 3). Many of the observations were made in captivity or in controlled situations, so evidence of this behavior in the wild is quite scarce (dos Santos and da Silva Muniz 2012). Stress caused by handling snakes is likely a determining factor for this process to occur (Muscat and Entiauspe-neto 2016). Of our observations, all but one of the snakes exhibited thanatosis during and after being manipulated; only in the case of *Amastridium veliferum*, which was found while feigning death, do we think that a failed predatory event or successful thanatosis occurred.

Thirty-four of the 67 reports were from North America, 19 from South America, 10 from Central America, and two from the West Indies. That over half of the reports come

Table 1. Observations of thanatosis in five species of Panamanian snakes. Abbreviations as in Table 2.

Species	Location	Date
Pacific Banded Coffee Snake	Chiriquí Grande (8°56'56.60"N, 82°08'27.46"E; 19 m asl)	8 November 2007
(Ninia maculata)	Found during a tour, this snake was captured and relocated for photographs. During the photographic session, it began to contort (C) and invert (S) its body, partially exposing its venter while remaining immobile (TI) and stiff (ST) for 5 min before righting itself.	
Dark-headed Red Falseboa	Tocumen, Panamá (9°04'03.01"N, 79°23'59.98"E; 17 m asl)	29 March 2019
(Pseudoba neuwiedii)	This snake inverted its body (C) before becoming immobile (TI) and rigid (ST). After a few minutes of being placed in a container without any response, it was trying to escape. Before being relased about an hour later, it repeated the same behavior.	
Double-banded False Coralsnake	Las Palmeras, Santiago de Veraguas (8°06'29.20"N, 80°57'20.49"E; 106 m asl)	10 March 2020
(Erythrolamprus bizona)	Three minutes after being placed on a white background for photographs, this snake engaged in atypically abrupt movements (CH, C) before inverting its body and becoming motionless (S, TI), remaining in that position for almost 2 min until gently stimulated and resuming a normal posture.	
Colombian Long-tailed Snake	Sherman, Colón (9°20'42.39"N, 79°58'40.67"E; 74 m asl)	12 April 2021
(Enuliiophis sclateri)	Placed on bare ground for a photographic session, this snake inverted its body (C) and remained motionless (S, TI) for about 2 min before slowly moving its head and investigating its surrounding; appearing to realize that it was safe, it slowly righted its body and moved away.	
Rufous-headed Snake	Coclesito, Colón (8°48'54.14"N, 80°33'19.82"E; 61 m asl)	11 July 2021
(Amastridium veliferum)	Found immobile (TI) on a roadside with its tongue protruding (TP) and its mouth agape (MG), this snake was photographed and removed with a herpetological hook, to which it did not react; when placed back on the ground, it quickly righted itself and escaped.	
Forest Flamesnake	La Soledad, Veraguas (8°07'56.78"N, 80°58'45.98"E; 110 m asl)	21 July 2021
(Oxyrophus pletoralius)	When placed in a grassy area for photographs, this snake tried to escape; when caught and replaced in the same area, it inverted its body pretending to be dead (C, S), and remained motionless (TI) for about a minute and a half before righting itself and trying to escape again.	
Table 2. Behaviors associated with thanatosis in the literature.

Behavior (abbreviation)	Description
Mouth-gape (MG)	Mouth partially or totally open, exposing the glottis and sometimes the tongue.
Tonic immobility (TI)	Adoption of a motionless posture triggered by contact or very close proximity of — but not injury inflicted by — a predator or other threat. Assumption of this posture does not reduce the sensory ability of the predator to locate or identify the prey or reduce the vulnerability of the prey if the attack is pursued. This state of motor inhibition is maintained even after release by the predator. When in this state, the prey exhibits reduced responsiveness to external stimulation (although monitoring of the environment can occur). In the absence of mortality or injury, the prey can recover its original physiological state after emerging from TI (Humphreys and Ruxton 2018).
Tongue protrusion (TP)	Tongue partial or totally protruded, erect or hanging from one side of the mouth; usually with an open mouth, but occasionally with the mouth closed.
Stiffness (ST)	Body rigid in irregular positions, usually inverted but sometimes in a normal position and even with body extended; generally associated with tonic immobility (TI), although the latter can occur with flaccidity.
Eye-rotation (ER)	Partial or complete rotation of the eyes and exposing the sclera.
Tightly coiled tail (TCT)	Tail folded laterally or tightly curled; also exhibited while feeding and as an anti-predator behavior alone.
Salivation (Sal)	Emission of oral secretions that might be perceived chemically as well as visually by a predator.
Cocked head (CH)	Erratic side-to-side movements of the head, sometimes continuing until the body is inverted and immobile (TI).
Contortions (C)	Erratic movements of the body, generally turning on itself repeatedly, often accompanied by mouth gape (MG), defecation (D), and/or supination (S).
Defecation (D)	Generally used as a primary anti-predatory strategy but sometimes part of thanatosis; defecation releases substances with penetrating and unpleasant odors in order to be unappealing to a predator.
Cloacal extrusion (CE)	Partial projection of the cloaca, usually accompanied by defecation (D).
Mouth-bleeding (MB)	Bleeding or spraying blood from the mouth can be an anti-predator strategy in itself; thanatosis is sometimes accompanied by the production of small bloody bubbles forming a red foam in the open mouth (Golubović et al. 2021).
Supination (S)	Body partially or totally inverted, exposing the venter.
Bradycardia (B)	Reduced heart rate, a condition measurable only in the laboratory, which is why it likely is more common than currently recognized (McDonald 1974).

Table 3. Reports of thanatosis in American snakes. Abbreviations as in Table 2.

Species	Locality	Source	Behavior
Leptotyphlopidae			
Rena dulcis	USA (Texas)	Gehlbach 1970	TI, ST
Typhlopidae			
Cubatyphlops binimienis	Bahamas	Richmond 1955	TI
Colubridae			
Coluber constrictor flaviventeris	Canada, USA (Missouri)	Lynch 1978; D.D. Smith et al. 1983	S, TI
Drymarchon couperi	USA (Georgia)	Stevenson 2010; Bauder et al. 2015	MG, TI
Drymarchon melanurus erebenus	USA (Texas)	Johnson et al. 2017	MG, TI
Drymobius margaritiferus	Mexico	Farr and Lazcano 2011	TI
Lampropeltis alterna	USA (Texas)	Tyron and Guese 1984	TI, CH, MG

(continued)
Species	Locality	Source	Behavior
Masticophis flagellum flagellum	USA (Oklahoma, Missouri)	Tucker 1989; Pflanz and Powell 1990	TP, C
Masticophis flagellum testaceus	USA (Texas)	Gehlbach 1970; D.D. Smith 1975	MG, TP, ER, Sal, CH, TI
Sonora episcopa	USA (Texas)	Gehlbach 1970	ST, TI, CH

Dipsadidae

Species	Locality	Source	Behavior
Amastridium veliferum	Panamá	Present study	TP, MG, TI
Carphophis vermis	USA	Wright 1986	TI
Conophis vittatus	Mexico	Ahumada-Carrillo 2013	TI, MG, S, TP
Cristanophis nevomanni	Honduras	Marineros-Sánchez 2017	TI, MG, CH, S, CE, D, MB
Cabophis cantherigerus	Cuba	Rodríguez-Cabrera et al. 2014	S
Diadophis punctatus	USA (Texas)	Gehlbach 1970	TI, ER, TCT, CH
Dipsas turgida	Paraguay	Cabral et al. 2019	S, TI, C
Dipsas ventrimaculata	Paraguay	Cabral et al. 2019	TI, ST, S
Enuliophis sclateri	Nicaragua	Salazar-Saaverdra et al. 2021	S, TI
Panamá	Present study	C, S, TI	
Erythrolamprus bizona	Panamá	Present study	CH, C, S, TI
Erythrolamprus miliaris	Brazil	Muscat et al. 2016	TI, C, S
Erythrolamprus sagittifer	Paraguay	Cabral et al. 2019	S, TI, CH, C
Farancia abacura	USA (Mississippi)	Doody et al. 1996	TI, S, D
Heterodon nasicus	USA	Edgren 1955	TI, C, TP, D, S, CE, MB
Heterodon platyrhinos	USA	Edgren 1955; Platt 1969; McDonald 1974	TI, C, TP, S, D, CE, MB, B
Heterodon simus	USA (Florida)	Myers and Arata 1961	TI, C, TP, S, D, CE
Hydrodynastes gigas	Brazil	Marques et al. 2013	MG
Hydrodynastes melanogigas	Brazil	Marques et al. 2013	MG, TI, TP
Leptodeira ashmeadii	Venezuela	Mendoza 2009	S, C
Lystrophis sp (Xenodon sp)	South America	Shaw and Campbell, 1974	—
Ninia maculata	Costa Rica	Savage 2002	TI, S, TP
Panamá	Present study	S, TI, ST	
Oxyrophus petolarius	Panamá	Present study	C, S, TI
Phalotris multipunctatus	Paraguay	Atkinson et al. 2018	S
Philodryas chamissonis	Chile	Zañartu and Urrea 2020	S, TI
Philodryas patagoniensis	Brazil	Tozetti et al. 2012	TI
Pseudoboa neuwiedii	Panamá	Present study	C, TI, ST
Rhadiniaea decorata	Costa Rica	Donini and Ussá 2016	C, MG, D, S, TI
Taeniophallus occipitalis	Brazil	Fiorillo et al. 2019	S

Elapidae

Species	Locality	Source	Behavior
Micrurus frontalis	Brazil	Roze 1996	ST, S
Micrurus hemprichii	Brazil	Almeida et al. 2016	S
Micrurus ortonii	Brazil	Gonzales and de Oliveira 2020	S, ST, MG
Micrurus paraensis	Brazil	Almeida et al. 2016	S
Micrurus remotus	Brazil	Almeida et al. 2016	S
Micrurus tener	USA (Texas)	Gehlbach 1970; Pineda 2013	TI, ST

(continued)
from North America was somewhat surprising given the latitudinal diversity gradient toward the tropics (e.g., B.T. Smith et al. 2012). We attribute this to a lack of sampling or perhaps under-reporting, as we are aware of thanatosis in snakes that had been witnessed by colleagues but was not reported.

The most frequently recorded adjunct behaviors were supination (S) and tonic immobility (TI), and the least frequently recorded behaviors were salivation (Sal), tightly coiled tail (TCT), and bradycardia (B), each reported only once. The highest number of behaviors (8) were recorded for the genus *Heterodon*, which was the only genus that displayed bradycardia (B) (*H. platyrhinos*) and only one of two genera (with *Crisantophis*) that bled from the mouth (MB). Although supination might simulate a dead snake (Myers and Arata 1961), the fact that it is the most frequently recorded behavior associated with thanatosis could reflect that showing-the-venter might serve as a defense mechanism on its own. Revealing unexpected colors or patterns could confuse an aggressor, a condition known as deimatic behavior (Leonard and Stebbins 1999; Cyriac and Kodandaramaiah 2019; Gonzalez and de Oliveira 2020). Among our reports, this could apply to *N. maculata* and *E. bizona*. Similarly, a tightly coiled tail (TCT), although recorded only once in the context of thanatosis, has been documented as a defensive behavior (a form of self-mimicry that diverts the attention of a predator away from the snake’s head) in species included in our review that are not known to associate it with thanatosis (Greene 1973, 1988; Roze 1996; Almeida et al. 2016).

Unlike authors (e.g., Rogers and Simpson 2014) who consider tonic immobility (TI) the most neutral concept to describe thanatosis, we consider TI a behavior that can be part of the thanatonic process. However, a snake may occasionally present TI outside of the context of thanatosis; for example, we have observed that *Mastigodryas alternatus* exhibits tonic immobility in the face of an imminent predator, but it is predisposed to escape at the first opportunity instead of exhibiting a reduced responsiveness to the putative threat. Similarly, behaviors such as defecation can be part of thanatosis, but snakes of many species defecate while biting or trying to escape.

Thanatosis is probably underreported across taxa (Humphreys and Ruxton 2018) and, given the wide variety of families that exhibit it, could be an ancestral trait. For example, thanatosis was reported recently in the genus *Hydrodynastes* (Marques et al. 2013), which is part of the same clade as the pseudoboinines (Grazziotin et al. 2012), a group that includes *O. petolarius* and *P. neuwiedii* in this study. If true, additional species employing thanatosis should be in clades with species known to use this anti-predator behavior.

Two of the species in this study (*E. bizona* and *O. petolarius*) are known as false coralsnakes that, by mimicking the aposematic patterns of sympatric venomous snakes, appear to reduce their risk of predation (Dunn 1954; Campbell and Lamar 1989; Buasso et al. 2006; Ray and Knight 2013; Batista and Miranda 2020). That might lead one to think that other defense mechanisms (such as thanatosis) would not be necessary. However, aposematic coloration might be part of a composition of anti-predator behaviors that, as a whole, is more effective than the sum of its parts, something suggested for coralsnakes by Roze (1982). At least for visually guided predators, both coloration and behavior are effective (Gonzalez and de Oliveira 2020), so presenting them together would appear to improve a snake’s chances of survival. Snakes that exhibit thanatosis also employ other defense mechanisms.

Species	Locality	Source	Behavior
Haldea striatula	USA (Texas)	Thomas and Hendricks 1976	C, TP, MG, ST, S
Nerodia erythrogaster	USA (Texas)	Everitt and Phillips 2019	S
Nerodia fasciata	USA (Texas)	Everitt and Phillips 2019	S
Regina septemvittata	USA (Kentucky)	Oldham et al. 2015	TI, S
Storeria dekayi limnetes	USA (Michigan, Louisiana)	Hayes 1987; Liner 1977	TI, C, TP, MG, ST, S
Storeria occipitomaculata	USA (Alabama)	Jordan 1970	C, MG, TP, ST, S
Thamnophis elegans	Canada	Gregory and Gregory 2006	TI, S
Thamnophis sauritus	USA (Florida)	Enge 2015	ST
Thamnophis sirtalis	Canadá	Gregory and Gregory 2006	S
Bothrops erythromelas	Brazil	dos Santos and da Silva Muniz 2012	MG, S
Bothrops jararacussu	Brazil	Muscat and Entiauspe-Neto 2016	S
Crotalus cerastes	USA (Nevada)	Thomas et al. 2020	S, MG
that include neck-twisting, non-locomotive body undulations, jumping (Davis Rabosky 2021), and tail flipping (N.G. Smith 1969). The strategy or strategies deployed and their duration may depend on factors such as the type of predator (Moore et al. 2020), size of the snake (Gerald 2008), or state of pregnancy (Gregory and Gregory 2006). Likewise, within the same species or population, behaviors can be employed to various degrees and with differing frequencies (Golubović et al. 2021).

Acknowledgements
We thank SIN of SENACYT for support and Drs. Abel Batista and Alonso Santos for help in structuring this manuscript.

Literature Cited
Ahumada-Carrillo, I.T. 2013. Conusphus vittatus (Striped Road Guarder). Defensive behavior/death feigning. Herpetological Review 44: 152. Almeida, P.C.R., A.D.C. Prudente, F.F. Curcio, and M.T.U. Rodrigues. 2016. Biologia e história natural das cobras-corais, pp. 168–215. In: N.S. Silva-Jr. (ed), As Cobras-Corais do Brasil: Biologia, Taxonomia e Envenenamentos, PUC Goiás, Goiania, Brazil.
Atkinson, K., P. Smith, J.K. Dickens, and C. Lee-Zuck. 2018. Rediscovery of the Conophis vittatus (Striped Road Guarder). Defensive behavior/death feigning. Herpetological Review 49: 598. Farr, W.L. and D. Lazzaro. 2011. Drymobius marginatus (Speckled Racer). Defensive behavior: thanatosis. Herpetological Review 42: 613. Fiorillo, B.F., G.N. Rossi, and M. Martins. 2019. Additional defensive behaviours of Diphas mikanii (Schlegel, 1837) and Taenophallus occipitalis jan (1863) (Serpentes: Dipsadidae). Herpetology Notes 12: 359–362. Gehlbach, F.R. 1970. Death-feigning and erratic behavior in leptopsyllophilid, colubrid and elapid snakes. Herpetological Review 26: 24–34. Gerald, G.W. 2008. Feign versus flight: influences of temperature, body size and locomotor abilities on death feigning in natrix snakes. Animal Behaviour 75: 647–654. https://doi.org/10.1016/j.anbehav.2007.07.018. Golubović, A., M. Andelkić, L. Tomović, D. Arsovski, S. Gvozdenović, G. Šukalo, R. Ajić, and X. Bonnet. 2021. Death-feigning propensity varies within dice snake populations but not with sex or colour morph. Journal of Zoology 314: 203–210. https://doi.org/10.1111/jzo.12882. Gonzales, R.C. and U.S. de Oliveira. 2020. Death-feigning behaviour in Micrurus orontius (Schmidt, 1953) (Elapidae) in northern Brazil. Herpetology Notes 13: 603–606. Grazzioti, F.G., H. Zahir, R.W. Murphy, G. Scroccii, M.A. Benavides, Y.P. Zhang, and S.L. Bonatto. 2012. Molecular phylogeny of the New World Dipsadidae (Serpentes: Colubroidea): A reevaluation. Cladistics 1: 1–23. https://doi.org/10.1111/j.1096-3652.2012.00395.x. Greene, H.W. 1973. Defensive tail display by snakes and amphisbaenians. Journal of Herpetology 7: 143–161. https://doi.org/10.2307/1563000. Greene, H.W. 1988. Antipredator mechanisms in reptiles, pp. 1–152. In: C. Gans and R.B. Huey (eds.), Biology of the Reptilia, Vol. 16, Ecology B. Defense and Life History, Alan R. Liss, Inc., New York, New York, USA.
Gregory, P.T. and L.A. Gregory. 2006. Immobility and supination in garter snakes (Thamnophis elegans) following handling by human predators. Journal of Comparative Psychology 120: 262–268. https://doi.org/10.1037/0735-7036.120.3.262. Hayes, F.E. 1987. Storeria dekayi dekayi (Northern Brown Snake). Behavior. Herpetological Review 18: 16–17. Humphreys, R.K. and G.D. Ruston. 2018. A review of thanatosis (death feigning) as an anti-predator behaviour. Behavioural Ecology and Sociobiology 72: 1–16. https://doi.org/10.1007/s00265-017-2436-8. Johnson, W.E., M. Oyervides, and M.R.J. Forstner. 2017. Thamnophis elegans (Texas Indigo Snake). Defensive behavior/death feigning. Herpetological Review 48: 448. Johnson, R.J. 1970. Death-feigning in a captive Red-Bellied Snake, Storeria occipitomaculata (Storer). Herpetological Review 26: 466–468. Leonard, W.P. and R.C. Stebbins. 1999. Observations of antipredator tactics of the sharp-tailed snake (Contia tenuis). Northwestern Naturalist 80: 74–77. https://doi.org/10.3203/nn801920. Liner, E.A. 1977. Letisimulation in Storeria dekayi dekayi Anderson. Transactions of the Kansas Academy of Sciences 80: 81–82. https://doi.org/10.2307/3536933. Liner, E.A. 1977. Letisimulation in Storeria dekayi dekayi Anderson. Transactions of the Kansas Academy of Sciences 80: 81–82. https://doi.org/10.2307/3536933.
Lynch, W. 1978. Death-feigning in the eastern yellow-bellied racer. Blue Jay 36: 92–93. https://doi.org/10.29173/bluejay4405. Marineros-Sánchez, L. 2017. Primer registro de tanatosis en la serpiente coral Snakes: Effects of coloration and ring pattern on coral and false coral snakes. Studies on Neotropical Fauna and Environment 41: 183–188. https://doi.org/10.1007/s13362-015-0206-0. Moore, T.Y., S.M. Danforth, J.G. Larson, and A.R. Davis Rabosky. 2020. A quantitative analysis of Micrurus coral snakes reveals unexpected variation in stereotyped anti-predator displays within a mimicry system. Integrative Organismal Biology 2: obaa006. https://doi.org/10.1093/ibo/obaa006.
Muscat, E. and O.M. Enriusae-Neto. 2016. *Bothrops jararacussu* (Atlantic Forest Jararacussu). Defensive behavior. *Herpetological Review* 47: 474.

Muscat, E., E.L. Rotenberg, and I.F. Machado. 2016. Death-feigning behaviour in an *Erythromopus miliaris* (Linnaeus 1758) water snake in Ubatuba, São Paulo, southeastern Brazil (Dipsadidae). *Herpetology Notes* 9: 95–97.

Myers, C.W. and A.A. Arata. 1961. Remarks on “defensive” behavior in the hognose snake *Heterodon nasicus* (Linnaeus). *Quarterly Journal of the Florida Academy of Sciences* 24: 108–110.

Oldham, C.R., S.J. Price, W.A. Boys, and L.J. Fleckenstein. 2015. *Regina septemvittata* (Queensnake). Defensive behavior/death-feigning. *Herpetological Review* 46: 276–277.

Pflanz, D.J. and R. Powell. 1990. Death feigning by a coachwhip from Missouri. *Missouri Herpetological Association Newsletter* 3: 12.

Platt, D.W. 1969. Natural history of the hognose snakes *Heterodon platyrhinos* and *Heterodon nasicus*. *University of Kansas Publication, Museum of Natural History* 18: 253–420.

Pineda, D. 2013. *Reptiles Venenosos de América*. Bilincata Publishing, Bogotá, Colombia.

Ray, J.M. and J.L Knight. 2013. *The Venomous Snakes and their Mimics of Panama and Costa Rica. Las Culebras Venenosas y sus Mímicas de Panamá y Costa Rica*. Team Snake Panama, CreateSpace Independent Publishing Platform, Scotts Valley, California, USA.

Richmond, N.D. 1955. The blind snakes (*Typhlopidae*) of Bimini, Bahama Islands, British West Indies, with description of a new species. *American Museum Novitates* 1734: 1–7.

Rodríguez-Cabrera, T.M., J. Torres, and R. Marrero-Romero. 2014. Body inversion in the Cuban Racer, *Cubophis cantherigerus* (Serpentes: Dipsadidae): Death-feigning or warning signal? *Reptiles & Amphibians* 14: 253–420.

Rodriguez-Cabrera, T.M., J. Torres, and R. Marrero-Romero. 2014. Body inversion in the Cuban Racer, *Cubophis cantherigerus* (Serpentes: Dipsadidae): Possible death-feigning. *Herpetological Review* 45: 108–110.

Rogers, S.M. and S.J. Simpson. 2014. Thanatosis. *Current Biology* 24: PR1031–R1033. https://doi.org/10.1016/j.cub.2014.08.051.

Roze, J.A. 1982. New World coral snakes (Elapidae): A taxonomic and biological summary. *Memórias do Instituto Butantan* 46: 305–338.

Roze, J.A. 1996. *Coral Snakes of the Americas: Biology, Identification, and Venom*. Krieger Publishing Company. Malabar, Florida, USA.

Salazar-Saavedra, M., A. Núñez, J.A Campos-Gúzman, and H.I. Téllez-Corea. 2021. Primer caso de tanatosis en Serpiente colombiana de cola larga, *Enhydris chibagana* (Boulenger, 1894) (Serpentes: Dipsadidae) en Reserva de Biosfera BOSAWAS, Jinotega, Nicaragua. *Revista Nicaragüense de Biodiversidad* 70: 1–9.

dos Santos, E.M. and S.I. da Silva Muniz. 2012. *Bothropoides erythromelas* (Jaracara). Defensive behavior: death-feigning. *Herpetological Review* 43: 340–341.

Savage, J.M. 2002. *The Amphibians and Reptiles of Costa Rica: A Herpetofauna Between Two Continents, Between Two Seas*. University of Chicago Press, Chicago, Illinois, USA.

Shaw C.E. and S. Campbell. 1974. *Snakes of the American West*. A.A. Knopf, New York, New York, USA.

Smith, B.T., R.W. Bryson, Jr., D.D. Houston, and J. Klicka. 2012. An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. *Ecology Letters* 15: 1318–1325. https://doi.org/10.1111/j.1461-0248.2012.01855.x.

Smith, D.D. 1975. Death feigning by the Western Coachwhip Snake. *Herpetological Review* 6: 126.

Smith, D.D., R. Powell, T.R. Johnson, and H.L. Gregory. 1983. Life history observations of Missouri amphibians and reptiles with recommendations for standardized data collection. *Transactions of the Missouri Academy of Science* 17: 37–58.

Smith, N.G. 1969. Avian predation on coral snakes. *Copeia* 1969: 402–404. https://doi.org/10.2307/1442098.

Stevenson, D.J. 2010. *Drymarchon couperi* (Eastern Indigo Snake). Death feigning. *Herpetological Review* 41: 92–93.

Thomas, R.A. and F.S. Hendricks. 1976. Letisimulation in *Virginia striolata* (Linnaeus). *The Southwestern Naturalist* 21: 123–124. https://doi.org/10.2307/3670331.

Tozetti, A.M., R.B. Oliveira, and G.M.F. Pontes. 2012. *Philodryas patagoniensis*. Defensive behavior/thanatosis. *Herpetological Review* 43: 661.

Tryon, B.W. and R.K. Guese. 1984. Death-feigning in the Gray-banded Kingsnake *Lampropeltis alterna*. *Herpetological Review* 15: 108–109.

Tucker, M. 1989. *Masticophis flagellum* (Coachwhip). Behavior. *Herpetological Review* 20: 72.

Wright, A. 1986. Notes on defensive postures observed in captive specimens of the Western Worm Snake *Carphophis amoenus vermis* (Kennicott). *Litteratura Serpentium* 6: 167–170.

Zaffarut, N. and F.A. Urra. 2020. Death-feigning behaviour (thanatosis) in Chilean green racer, *Philodryas chilensis* (Wiegmann, 1835) (Serpentes: Dipsadidae). *Herpetology Notes* 13: 731–732.