A better bound on the largest induced forests in triangle-free planar graphs

Hung Le
Oregon State University

Abstract

It is well-known that there exists a triangle-free planar graph of n vertices such that the largest induced forest has order at most $\frac{5n}{8}$. Salavatipour [10] proved that there is a forest of order at least $\frac{5n}{9}$ in any triangle-free planar graph of n vertices. Dross, Montassier and Pinlou [6] improved Salavatipour’s bound to $\frac{5n}{9}$. In this work, we further improve the bound to $\frac{5n}{9}$. Our technique is inspired by the recent ideas from Lukot’ka, Mazák and Zhu [9].

1 Introduction

Albertson and Berman [2] conjectured that every planar graph of n vertices has an induced forest of order at least $\frac{n}{2}$. This conjecture has drawn much attention from graph theory community since it implies that there is an independent set of at least $\frac{n}{4}$ vertices in a planar graph of order n; the fact is only known through the Four Color Theorem. However, little progress has been made toward proving this conjecture. Borodin’s acyclic coloring theorem [4] for planar graphs implies the existence of a forest of order at least $\frac{2n}{5}$. To the best of our knowledge, Borodin’s result is the best bound for Albertson and Berman conjecture. In the same vein, Akiyama and Watanabe [1] conjectured that a bipartite planar graph of n vertices has an induced forest of order at least $\frac{5n}{8}$. They also presented a bipartite planar graph that has the largest induced forest of order exactly $\lceil \frac{5n}{8} \rceil$. The best bound for the Akiyama and Watanabe conjecture is $\frac{4n}{7}$ due to the recent work by Wang, Xie and Yu [11].

Salavatipour [10] asked the similar question for triangle-free planar graphs. He showed that a triangle-free planar graph of order n has an induced forest of order at least $\frac{17n+24}{32}$, which is approximately $\frac{5n}{9.44}$ (we ignore the additive constant factor as it is insignificant when n is big). Dross, Montassier and Pinlou [6] improved this bound to $\frac{6n+7}{9}$ which is approximately $\frac{5n}{9}$. In this work, we further improve this bound to $\frac{5n}{9}$ (Theorem 1.1). We note that Kowalik, Lužar and Škrekovski [8] obtained $\frac{5n}{9.01}$ bound which is very close to our bound, but there is a serious flaw in their proof, as pointed out by Dross, Montassier and Pinlou [6]. We also note that the example by Akiyama and Watanabe [1] for bipartite planar graphs implies that there exists a triangle-free planar graphs of order n that has the largest induced forest of order at most $\lceil \frac{5n}{7} \rceil$. We believe this bound is a right bound, as evidenced by the work of Alon, Mubayi and Thomas [3], who showed that if a triangle-free graph planar graph is cubic, its largest induced forest has order at least $\frac{5n}{8}$.

1.1 Previous techniques

Here in, we assume that our graph in question, denoted by G, is triangle-free. Let $n(G)$ and $m(G)$ be the number of vertices and edges of G, respectively. Let $\varphi(G)$ be the order of the largest induced
forest in G. Previous techniques use discharging to prove:

$$\varphi(G) \geq an(G) - bm(G)$$ \hspace{1cm} (1)

Since $m(G) \leq 2n(G) - 4$ when G is triangle-free planar and $n(G) \geq 3$, Inequality (1) implies the existence of an induced forest of order at least $(a - 2b)n(G) + 4b$. Salavatipour [10] proved that Inequality (1) holds when (a, b) is $(29/32, 6/32)$, thereby, obtained the bound $\frac{17n(G) + 24}{32}$. Dross, Montassier and Pinlou [6] proved that Inequality (1) holds when (a, b) is $(38/44, 7/44)$ and obtained the bound $\frac{6n(G) + 17}{11}$. Kowalik, Lužar and Škrekovski [8] tried to modify the Inequality (1) by adding an additive constant to the right-hand side, but that makes their proof erroneous as noted by Dross, Montassier and Pinlou [6].

To get a good bound on the order of the largest induced forest, one should choose a and b that maximize $(a - 2b)$. However, a and b are constrained by how many vertices one can add to the final induced forest after deleting a subset of vertices and edges of the graph. Roughly speaking, if we delete a set of α vertices, β edges from G to obtain a subgraph G' and we can add γ vertices from α deleted vertices to the largest induced forest of G' to get an induced forest in G, we should choose a and b such that:

$$a\alpha - b\beta \leq \gamma$$ \hspace{1cm} (2)

If so, we can apply the inductive proof to show that Inequality (1) is satisfied as follows:

$$\varphi(G) \geq \varphi(G') + \gamma \geq a(n(G) - \alpha) - b(m(G) - \beta) + \gamma$$

$$\geq an(G) + bm(G)$$ \hspace{1cm} (3)

This process is repeated until we get down to base cases. As a result, we get a linear program and we need to solve it for a and b that maximize $a - 2b$. For example, Linear Program [4] is from the work of Dross, Montassier and Pinlou [6].

$$b \geq 0$$ \hspace{1cm} (4a)

$$0 \leq a \leq 1$$ \hspace{1cm} (4b)

$$8a - 12b \leq 5$$ \hspace{1cm} (4c)

$$a - 6b \leq 0$$ \hspace{1cm} (4d)

$$3a - 10b \leq 1$$ \hspace{1cm} (4e)

We will not try to go into details of Linear Program [4] but we would like to make a few points that motivate our technique. To get a better bound, one could manage to relax one or more constraints in the linear program. For technical reasons, the first two constraints and the last constraint seems unavoidable. The fourth constraint allows us to only consider graphs of maximum degree at most 5. Thus, one can relax the fourth constraint by considering graphs of higher maximum degree, say 6. But this makes the number of configurations unmanageable. The third constraint, called the planar cube constraint, is due to the planar cube (see Figure 1(a)). Specifically, by deleting a planar cube component from G, we remove 8 vertices, 12 edges and we can only add 5 vertices back to the forest since the largest induced forest of the planar cube contains 5 vertices. It turns out that we can relax the planar cube constraint in a different way by introducing two other terms to the right-hand side of Inequality (1). Our idea is inspired from the ideas of Lukot’ka, Mazák and Zhu [9].
1.2 Our technique

We use $V(G)$ and $E(G)$ to denote the set of vertices and set of edges, respectively, of G. Let H be an induced subgraph of G. The degree of H, denoted by $\text{deg}_G(H)$, is the number of edges of G with exactly one endpoint in $V(H)$. We use H^d, H^{d+} and H^{d-} to denote an induced subgraph H of degree exactly d, at least d and at most d, respectively, of graph G. Two special graphs of interest in this paper are the planar cube, denoted by Q_3^1, and $K_{3,3}$ minus an edge, denoted by T_6 (see Figure 1(b)). The planar cube is a 3-regular planar graph that has 8 vertices and 12 edges (see Figure 1(a)).

Let $p(G)$ and $q(G)$ be the maximum number of Q_3^1 vertex-disjoint subgraphs and T_6 components of G, respectively. We will use discharging technique to prove:

$$\varphi(G) \geq an(G) - bm(G) - cp(G) - dq(G) \quad (5)$$

for appropriate constants a, b, c, d. Essentially, we add two terms depending on $p(G)$ and $q(G)$ to the right-hand side of Inequality 1. That would give us more room to find a and b that maximize $a - 2b$. Since $m(G) \leq 2n(G)$ for every triangle-free planar graphs, Inequality 5 gives us:

$$\varphi(G) \geq (a - 2b)n(G) - cp(G) - dq(G) \quad (6)$$

However, we need a bound that is independent of $p(G), q(G)$. This forces us to introduce another technical layer. In the ideal case, both $p(G)$ and $q(G)$ are 0, Inequality 6 gives us a good bound on $\varphi(G)$. When $p(G) + q(G)$ is at least 1, Lemma 2.1 and Lemma 2.2 allow us to reduce to the ideal case by adding a large portion of vertices from Q_3^1 subgraphs and T_6 components to the large induced forest.

1.3 Our results

Our main result is Theorem 1.1 that gives an improved bound on the order of the largest induced forest in triangle-free planar graphs.

Theorem 1.1. Every triangle-free planar graph of n vertices contains an induced forest of order at least $\frac{5n}{9}$.

We present the full proof of Theorem 1.1 in Section 2. The main tool in our proof is Theorem 1.2 whose proof is deferred to Section 3.

Theorem 1.2. If a, b, c, d are constants that satisfy all constraints in the Linear Program 7, then every triangle-free planar graph G has an induced forest of order at least $an(G) - bm(G) - cp(G) -$
Corollary 1.3. If a, b, c, d are constants that satisfy all constraints in the Linear Program 7, then every triangle-free planar graph G that contains no $Q^1_{3}-$ subgraph and T_6 component has an induced forest of order at least $(a - 2b)n(G)$.

Proof. Since $p(G)$ and $q(G)$ are both 0, Theorem 1.2 implies that G has an induced forest of order at least $an(G) - bm(G)$. Thus, the corollary follows from the fact that $m(G) \leq 2n(G)$.

1.4 Preliminaries

We define the order of G to be $|V(G)|$. Let $\delta(G)$ and $\Delta(G)$ be the minimum and maximum vertex degree of G, respectively. We denote the length of a face f by $\ell(f)$. We use ℓ-face, ℓ^+-face and ℓ^--face to refer to a face of length ℓ, a face of length at least ℓ and a face of length at most ℓ, respectively. This notation is extended naturally to ℓ-cycles, ℓ^+-cycles and ℓ^--cycles. Similarly, we use d-vertex, d^+-vertex and d^--vertex to refer to a vertex of degree d, a vertex of degree at least d and a vertex of degree at most d, respectively. We reserve $u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8$ for vertices of Q_3 and $v_1, v_2, v_3, v_4, v_5, v_6$ for vertices of T_6, as in Figure 1.

Let H be a subgraph of G. The induced embedding of H from a planar embedding of G is the planar embedding obtained by removing images of vertices and edges not in H from the embedding of G. A between vertex of H is a vertex that has at least one neighbor outside H. We use $G \setminus H$ to denote the subgraph obtained from G by deleting $V(H)$. Let X be a subset of vertices of H. We say we can collect X if we can add X to any induced forest of $G \setminus H$ to get an induced forest in G. A cut, denoted by $(V(H), V(G) \setminus V(H))$, is the set of edges with exactly one endpoint in $V(H)$. Two vertex-disjoint subgraphs of G are said adjacent if there is an edge between them. We use non-H vertex (edge) to refer to a vertex (edge) that is not in $V(H)$ ($E(H)$).
Let C be a cycle of G. By Jordan Curve Theorem, the image of C separates the plane into two regions called an external region and an internal region. The external region, denoted by $\text{ext}(C)$, is the infinite region of the plane and the internal region, denoted by $\text{int}(C)$, is the finite region of the plane. We say a vertex or an edge is embedded inside (outside) a cycle C if its image belongs to $\text{int}(C)$ ($\text{ext}(C)$).

2 Proof of Theorem 1.1

Lemma 2.1. If H is a Q_3^2 subgraph of a planar graph G, then any forest F in $G \setminus H$ can be extended to an induced forest of G of order $|F| + 5$.

Proof. Let $a, b, c \in \{v_1, v_2, \ldots, v_8\}$ be three highest-degree vertices of H in G. If a, b and c are pairwise non-adjacent. By symmetry of Q_3, we can assume w.l.o.g that a, b, c are u_1, u_3, u_6, respectively. Then, $F \cup \{u_2, u_4, u_5, u_7, u_8\}$ is an induced forest in G. Thus, we can suppose that two vertices, say a, b, are adjacent. We consider two cases:

Case 1 Three vertices a, b, c induce a connected subgraph of H. Then, there is a face in any planar embedding of Q_3 that contains all a, b and c. By symmetry of Q_3, we can assume that a, b, c are u_1, u_2, u_3, respectively. Since $\deg_G(H) \leq 3$, at least one vertex in $\{u_1, u_3\}$ is a 4-vertex of G. Let x be a 4-vertex in $\{u_1, u_3\}$. Then, $F \cup \{x, u_4, u_5, u_6, u_7\}$ is an induced forest in G.

Case 2 Three vertices a, b, c induce a disconnected subgraph of H. By symmetry of Q_3, we can assume that a, b, c are u_1, u_2, u_7, respectively. Then, $F \cup \{u_3, u_4, u_5, u_6, u_8\}$ is an induced forest in G.

Lemma 2.2. If K is a T_6^3 subgraph of G, then any forest F in $G \setminus K$ can be extended to an induced forest of G of order $|F| + 4$.

Proof. By symmetry of T_6, we can assume w.l.o.g that cycle $C = v_1v_2v_3v_4v_5v_6v_7v_8$ has the highest degree among cycles inducing faces of H. Let $X = \{v_1, v_6, v_4, v_5\}$. Suppose K has a between vertex, say v, that has at least two non-K edges in G. By the degree assumption of C, v must be a vertex in C. If $v \not\in X$, then $F \cup X$ is an induced forest of G of order $|F| + 4$. If $v \in X$, then $F \cup \{v_2, v_4, v_6, v_3\}$ is an induced forest of G.

Thus, we can assume that every vertex of K has at most one non-K edge. If at most one vertex in X is a between vertex of K, then $F \cup X$ is an induced forest of G. Thus, we can assume that at least two vertices in X are between. Since $\deg_G(K) \leq 3$, at most one of two vertices v_2 and v_3 is a between vertex. Let x be the non-between vertex in $\{v_2, v_3\}$. By the degree assumption of C, at most one vertex among $\{v_4, v_6\}$ is between. We have two cases:

Case 1 No vertex in $\{v_4, v_6\}$ is between. Then, $F \cup \{v_2, v_4, v_6, v_3\}$ is an induced forest of G.

Case 2 Exactly one vertex in $\{v_4, v_6\}$ is between. Let y be the non-between vertex in $\{v_4, v_6\}$. If both v_1 and v_5 are between, then v_2 and v_3 have no non-K edge since $\deg_G(K) \leq 3$. Thus, $F \cup \{v_2, v_4, v_6, v_3\}$ is an induced forest of G. If v_1 is between and v_5 is non-between, then $F \cup \{v_5, v_4, v_6, x\}$ is an induced forest of G. Otherwise, v_5 is between and v_1 is non-between. Then, $F \cup \{v_1, x, y, v_3\}$ is an induced forest of G.

Observation 2.3. Any two Q_3^2-subgraphs of G must be vertex-disjoint.

Proof. We observe that any non-trivial cut of Q_3 has at least 3 edges. Let H and K be two Q_3^2-subgraphs of G that share a subset of vertices X. Then, the cut $(V(H) \setminus X, X)$ has at least 3 edges. Thus, $\deg_G(K) \geq 3$, contradicting that K is a Q_3^2-subgraph. \hfill \Box

Proof of Theorem 1.1 Let $\rho(G) = p(G) + q(G) + n(G)$. We prove Theorem 1.1 by induction on $\rho(G)$. The base case is when $\rho(G) = 0$, Theorem 1.1 trivially holds. We consider three cases:

Case 1 Graph G has no Q_3^1 subgraph or T_6 component. Then, $p(G) + q(G) = 0$. Using a linear programming solver\footnote{We use lp_solve package \url{http://lpsolve.sourceforge.net/5.5/index.htm}. The full implementation can be found at the author’s homepage \url{http://web.engr.oregonstate.edu/~lehu/res/lp_final.lp}.} to solve Linear Program 7, we found that $a = \frac{25}{27}$, $b = c = \frac{5}{27}$, $d = \frac{2}{27}$. Corollary 1.3 implies that if G has an induced forest F of order at least $\frac{5n(G)}{9}$.

Case 2 Graph G contains a T_6 component, then $p(G \setminus T_6) \leq p(G)$ and $q(G \setminus T_6) < q(G)$. Thus, $\rho(G \setminus T_6) < \rho(G)$. By induction, $\varphi(G \setminus T_6) \geq \frac{5n(G \setminus T_6)}{9} = \frac{5(n(G) - 6)}{9}$. By Lemma 2.2, we can collect 4 vertices from T_6. That implies:

$$\varphi(G) \geq \varphi(G \setminus T_6) + 4 \geq \frac{5(n(G) - 6)}{9} + 4 > \frac{5n(G)}{9}$$

Case 3 Graph G contains a Q_6^1-subgraph, say H. Since H has degree at most 1 in G, removing H from G can create at most one T_6 component and at most one new Q_3^1-subgraph. Thus, $p(G \setminus H) \leq p(G)$ and $q(G \setminus H) \leq q(G) + 1$. Since $n(G \setminus H) \leq n(G) - 8$, we have $\rho(G \setminus H) < \rho(G)$. By induction, we have $\varphi(G \setminus H) \geq \frac{5(n(G) - 8)}{9}$. By Lemma 2.1, we can collect 5 vertices from H. That implies:

$$\varphi(G) \geq \varphi(G \setminus H) + 5 \geq \frac{5(n(G) - 8)}{9} + 5 > \frac{5n(G)}{9}$$

3 Proof of Theorem 1.2

Let G be a counter-example of minimal order. We begin our proof with Observation 3.1 that we will frequently make use of in deriving contradiction.

Observation 3.1. Let L be a subgraph of G. Let $\alpha, \beta, \gamma, \eta$ be such that:

$$\alpha = n(G) - n(G \setminus L)$$
$$\beta = m(G) - m(G \setminus L)$$
$$\gamma = p(G) - p(G \setminus L)$$
$$\eta = q(G) - q(G \setminus L)$$

(8)

If we can collect λ vertices from L, then $\lambda - \alpha a + \beta b + c \gamma + d \eta$ must be negative.

Proof. Suppose that $\lambda - \alpha a + \beta b + c \gamma + d \eta$ is non-negative. Since G is a minimal counter-example, $G \setminus L$ has an induced forest of order at least $\alpha n(G \setminus L) - b m(G \setminus L) - c p(G \setminus L) - d q(G \setminus L)$ which is at least:

$$\alpha n(G) - b m(G) - c p(G) - d q(G) + \beta b + c \gamma + d \eta - \alpha a.$$
By collecting λ vertices from L, we get a forest in G of order at least:

$$an(G) - bm(G) - cp(G) - dq(G) + \lambda + \beta b + c\gamma + d\eta - \alpha a$$

Since $\lambda - \alpha a + \beta b + c\gamma + d\eta$ is non-negative, $\varphi(G) \geq an(G) - bm(G) - cp(G) - dq(G)$, contradicting that G is a counter-example.

Overview of the proof Our proof of Theorem 1.2 relies on the following structural theorem that was proved by Salavatipour [10].

Theorem 3.2. If G is a two-edge connected triangle-free planar graph, then, G contains (1) a 2^--vertex, or (2) a 4-face with at least one 3-vertex, or (3) a 5-face with at least four 3-vertices.

At high level, we build a linear program, called \mathcal{LP}, that initially contains trivial constraints (7a), (7b), (7c), (7d) and (7e). We then consider a finite set of subgraphs, say L, that a triangle-free planar graph can have. For each subgraph, say H, in L, by removing it from G, we reduce the number of vertices and edges of G by at least, say, α and β, respectively. Then, we show that we can add γ vertices from H to a large induced forest of $G \setminus H$ to get an induced forest of G.

Observation 3.1 tells us that if we choose a, b, c and d such that $\lambda - \alpha a + \beta b + c\gamma + d\eta \geq 0$, then G cannot be a counter-example. Thus, a counter-example graph G does not contain the subgraph H. In other words, by adding the constraint $\lambda - \alpha a + \beta b + c\gamma + d\eta \geq 0$ to \mathcal{LP}, we exclude H from G. We repeat this argument for every subgraph in L and keep adding linear constraints along the way to \mathcal{LP}. Finally, we get a linear program represented by \mathcal{LP} and we show that \mathcal{LP} is equivalent to Linear Program 7 by removing redundant constraints from \mathcal{LP}. Thus, by choosing a, b, c and d satisfies Linear Program 7, the counter-example G does not exist, thereby, proving Theorem 1.2.

In Subsection 3.2, we prove that G is two-edge connected and $\delta(G) \geq 3$. In Subsection 3.4, we prove that G has no 4-face with at least one 3-vertex. In Subsection 3.5, we prove that G has no 5-face with at least four 3-vertices. This is a contradiction by Theorem 3.2.

3.1 Excluding Q_3^d and T_6^d subgraphs

In this section, by adding more constraints to \mathcal{LP}, we will prove that the minimal counter example G cannot contain any Q_3^d or T_6^d subgraph for $d \leq 5$ if \mathcal{LP} is satisfied.

Claim 3.3. Graph G has no Q_3 component.

Proof. Let H be a Q_3 component of G. By Lemma 2.1, we can collect 5 vertices from H. Since Q_3 has 8 vertices, 12 edges, by Observation 3.1 with $L = Q_3$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 12, 1, 0, 5)$, $5 - 8a + 12b + c$ must be negative. Thus, we obtain contradiction by adding Inequality (9) to \mathcal{LP}.

$$5 - 8a + 12b + c \geq 0$$

\(\square\)

Claim 3.4. Graph G has no T_6 component.

Proof. Let H is a T_6 component of G. By Lemma 2.2, we can collect 4 vertices from H. By Observation 3.1 with $L = T_6$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (6, 8, 0, 1, 4)$, $4 - 6a + 8b + d$ must be negative. Thus, we obtain contradiction by adding Inequality (10) to \mathcal{LP}.

$$4 - 6a + 8b + d \geq 0$$

\(\square\)
Claim 3.4 implies that if $\mathcal{L}P$ is satisfied, the counter-example G has no T_6 component.

Claim 3.5. Graph G excludes Q_3^{1-} as a subgraph.

Proof. By Claim 3.3 we only need to exclude Q_3^1 from G. Let H be a Q_3^1 subgraph of G. Let $G' = G \setminus H$. If H is adjacent to a Q_3^2 subgraph of G, then $p(G') = p(G)$ and $q(G') = q(G) = 0$. By Lemma 2.1 we can collect 5 vertices from H. By applying Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 13, 0, 0, 5)$, $5 - 8a + 13b$ must be negative. Thus, we obtain contradiction by adding Inequality (11) to $\mathcal{L}P$.

$$5 - 8a + 13b \geq 0$$ (11)

If H is not adjacent to a Q_3^2 subgraph, then $p(G') = p(G) - 1$. Note that G' can has a T_6 component if H is adjacent to a T_6^1 subgraph in G. By Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 13, 1, -1.5)$, $5 - 8a + 13b + c - d$ must be negative. Thus, we obtain contradiction by adding Inequality (12) to $\mathcal{L}P$.

$$5 - 8a + 13b + c - d \geq 0$$ (12)

Claim 3.3 and 3.5 imply that if $\mathcal{L}P$ is satisfied, G has no Q_3^{1-} subgraph. Herein, we can assume that the counter-example graph G has $p(G) = q(G) = 0$.

Claim 3.6. Graph G excludes T_6^{1-} as a subgraph.

Proof. By Claim 3.4 we only need to exclude T_6^1 from G. Let K be a T_6^1 subgraph of G. Let H_1, \ldots, H_t be the subgraphs of G such that H_j is a Q_3^1 subgraph of $G \setminus \{K \cup \{H_1, \ldots, H_{j-1}\}\}$ and H_j is adjacent to H_{j-1} in G. Let t be the maximum index such that $G \setminus \{K \cup H_1 \cup \ldots \cup H_t\}$ contains no Q_3^1 subgraph. It may be that none of H_j exists and we define $t = 0$ in this case. Let $KH = K \cup \{H_1, \ldots, H_t\}$. We have $\deg_G(KH) = 1$. Thus, $G \setminus KH$ cannot contain any Q_3 component, since otherwise, it would be Q_3^1 in G, contradicting Claim 3.5. Since $\deg_G(KH) = 1$, $G \setminus KH$ contains at most one T_6 component. By Lemma 2.1 and Lemma 2.2, we can collect $5t + 4$ vertices from KH. By Observation 3.1 with $L = KH$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8t + 6, 13t + 9, 0, -1, 5t + 4)$, $(5t + 4) - (8t + 6)a + (13t + 9)b - d$ must be negative. Thus, we obtain contradiction by adding Inequality (13) to $\mathcal{L}P$.

$$(5t + 4) - (8t + 6)a + (13t + 9)b - d \geq 0$$ (13)

Claim 3.7. Graph G excludes Q_3^{2-} as a subgraph.

Proof. By Claim 3.5 we only need to exclude Q_3^2 from G. Let H be a Q_3^2 subgraph of G. Suppose that $G \setminus H$ contains a T_6 component, say K. By Claim 3.6 K is the only T_6 component of $G \setminus H$. By Claim 3.5 $p(G \setminus H) = 0$. By Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 14, 0, -1, 5)$, $5 - 8a + 14b - d$ must be negative. Thus, we obtain contradiction by adding Inequality (14) to $\mathcal{L}P$.

$$5 - 8a + 14b - d \geq 0$$ (14)

Thus, we may assume that $G \setminus Q_3^2$ has no T_6 component for any Q_3^2 subgraph of G. Without loss of generality, we choose H to be a Q_3^2 subgraph such that $G \setminus H$ has the least number of Q_3^{1-} subgraphs. By Claim 3.5 $G \setminus H$ has at most two Q_3^{1-} subgraphs. If $G \setminus H$ has exactly one Q_3^{1-} subgraph, say M, then M must be adjacent to H. By Observation 3.1 with $L = H$ and
\[(\alpha, \beta, \gamma, \eta, \lambda) = (8, 14, -1, 0, 5), \quad 5 - 8a + 14b - c \text{ must be negative}. \] Thus, we obtain contradiction by adding Inequality (15) to LP.

\[5 - 8a + 14b - c \geq 0 \] (15)

If \(G \setminus H \) has two \(Q_3^{1-} \) subgraphs. By Claim 3.5, two \(Q_3^{1-} \) subgraphs are \(Q_3^1 \) subgraphs. By our choice of \(H \), we conclude that, for any \(Q_2^2 \) subgraph of \(G \), \(G \setminus Q_3^2 \) must have exactly two \(Q_3^1 \) subgraphs. Since \(G \) excludes \(Q_3^1 \) by Claim 3.5, any \(Q_3^2 \) subgraph of \(G \) must adjacent to two other \(Q_3^1 \) subgraphs. Let \(H \) be a graph such that each vertex of \(H \) corresponds to a \(Q_3^1 \) subgraph of \(G \) and each edge of \(H \) connects two adjacent \(Q_3^2 \) subgraphs of \(G \). Then, \(H \) is a 2-regular graph. In other words, \(H \) is a collection of cycles. By Lemma 2.1, we can collect \(5|V(H)| \) vertices from \(Q_3^2 \) subgraphs of \(G \). By Observation 3.1 with Corollary 3.9, we only need to exclude \(Q_3^3 \) from \(G \), contradicting Claim 3.11. Thus \((\alpha, \beta, \gamma, \eta, \lambda) = (8|V(H)|, 13|V(H)|, 0, 0, 5|V(H)|), |V(H)|5 - 8a + 13b \text{ must be negative}, \) this contradicts Inequality (15).

Claim 3.8. Graph \(G \) excludes \(Q_3^3 \) as a subgraph.

Proof. By Claim 3.7, we only need to exclude \(Q_3^3 \) from \(G \). Let \(H \) be a \(Q_3^3 \) subgraph in \(G \). By Claim 3.7, \(G \setminus H \) contains at most one \(Q_3^{1-} \) subgraph. By Claim 3.6, \(G \setminus H \) has no \(T_6^2 \) component. By Observation 3.1 with \(L = H \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (8, 15, -1, -1, 5), 5 - 8a + 13b - c \text{ must be negative}. \) Thus, we obtain contradiction by adding Inequality (15) to LP.

\[5 - 8a + 15b - c - d \geq 0 \] (16)

We obtain the following corollary of Claim 3.8.

Corollary 3.9. If \(H \) is a subgraph of degree 2 of \(G \) and LP is satisfied, then \(G \setminus H \) has no \(Q_3^{1-} \) subgraph.

Claim 3.10. Graph \(G \) excludes \(T_6^{2-} \) as a subgraph.

Proof. By Claim 3.6, we only need to exclude \(T_6^2 \) from \(G \). Let \(H \) be a \(T_6^2 \) subgraph of \(G \). By Corollary 3.9, \(G \setminus H \) has no \(Q_3^{1-} \) subgraph. By Claim 3.6, \(G \setminus H \) has at most one \(T_6^2 \) component. By Observation 3.1 with \(L = H \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (6, 10, 0, -1, 4), 4 - 6a + 10b - d \text{ must be negative}. \) Thus, we obtain contradiction by adding Inequality (17) to LP.

\[4 - 6a + 10b - d \geq 0 \] (17)

Claim 3.11. Graph \(G \) has no \(5^+ \)-vertex.

Proof. Let \(v \) be a \(5^+ \) vertex in \(G \) and \(G' = G \setminus \{v\} \). Suppose that \(G' \) has a \(Q_3^{1-} \) subgraph \(H \). By planarity, \(v \) must be embedded in one face of \(H \). Since faces of \(H \) has length 4 and \(G \) is triangle-free, \(v \) has at most two neighbors in \(H \). That implies \(H \) is a \(Q_3^{3-} \) subgraph of \(G \), contradicting Claim 3.8. Thus \(p(G') = 0 \). Suppose that \(G' \) has a \(T_6^2 \) component \(K \). By planarity, \(v \) must be embedded in one face of \(K \). Since \(G \) is triangle-free, \(v \) has at most two neighbors in \(K \). That implies \(K \) is \(T_6^{2-} \), contradicting Claim 3.10. Thus \(q(G') = 0 \). By Observation 3.1 with \(L = v \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (1, 5, 0, 0, 0), 5b - a \text{ must be negative}. \) Thus, we obtain contradiction by adding Inequality (18) to LP.

\[5b - a \geq 0 \] (18)
Lemma 3.12. If H is Q^5_3-subgraph of G and every vertex of H has degree at most 4 in G, then any forest F in $G \setminus H$ can be extended to a forest of G of order $|F| + 5$.

Proof. By Lemma 2.1 we can assume that H is Q^4_3 or Q^5_3. By symmetry of Q_3, we can choose an embedding of G such that the inner-most face $u_1u_2u_3u_4$, denoted by f, of H has the most number of 3-vertices. We have three cases:

Case 1 Face f has at least three 3-vertices, say u_1, u_2, u_3, then $F \cup \{u_1, u_2, u_3, u_6, u_8\}$ is an induced forest of G.

Case 2 Face f has only one 3-vertex, say u_1, then every face that contains u_1 on the boundary must have at least three 4-vertices by the choice of the inner-most face of H. That implies $\deg_G(H) \geq 6$; a contradiction.

Case 3 Face f has exactly two 3-vertices. By the choice of f, every face of H has at most two 3-vertices. Suppose that H has two adjacent 3-vertices. By symmetry of Q_3, we can choose an embedding of G such that two 3-vertices of f are adjacent. We can assume w.l.o.g. they are u_1 and u_2. Thus, u_5 and u_6 must be 4-vertices. Since $\deg_G(H) \leq 5$, at most one vertex in $\{u_7, u_8\}$ is a 4-vertex. Let u^* be a 3-vertex in $\{u_7, u_8\}$. Since non-H edges of u_6 and u_4 are embedded in different faces of G, $F \cup \{u_6, u_1, u_2, u_4, u^*\}$ is an induced forest of G. If H has no two adjacent 3-vertices, we can assume w.l.o.g that u_1 and u_3 are two 3-vertices of H. Thus, u_2, u_4, u_5, u_7 are 4-vertices. Since $\deg_G(H) \leq 5$, at least one vertex in $\{u_6, u_8\}$ is a 3-vertex. We define u^* to be u_2 if u_8 is a 4-vertex and $u^* = u_4$ if u_6 is a 4-vertex. Then, $F \cup \{u_1, u_3, u_6, u_8, u^*\}$ is an induced-forest in G.

Claim 3.13. Graph G excludes Q^5_3 as a subgraph.

Proof. By Claim 3.8, we only need to exclude Q^4_3 from G. Let H be a Q^4_3 subgraph of G. By Claim 3.11, between vertices of H are 4-vertices. By Claim 3.8, $G \setminus H$ has at most one Q^4_3-subgraph. By Claim 3.10, $G \setminus H$ has at most one T_6 component. By Lemma 3.12, we can collect 5 vertices from H. By Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 16, -1, -1, 5)$, $5 - 8a + 16b - c - d$ must be negative. Thus, we obtain contradiction by adding Inequality (19) to \mathcal{LP}.

$$5 - 8a + 16b - c - d \geq 0 \quad (19)$$

Claim 3.14. Graph G excludes T^5_6 as a subgraph.

Proof. By Claim 3.10, we only need to exclude T^5_6 from G. Let H be a T^5_6 subgraph of G. By Claim 3.13, $G \setminus H$ has no Q_3-like subgraph and by Claim 3.10, $G \setminus H$ has at most one T_6 component. By Lemma 2.2, we can collect 4 vertices from H. By Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (6, 11, 0, -1, 4)$, $4 - 6a + 11b - d$ must be negative. Thus, we obtain contradiction by adding Inequality (20) to \mathcal{LP}.

$$4 - 6a + 11b - d \geq 0 \quad (20)$$

Claim 3.15. Graph G excludes any T^5_6 subgraph that has all between vertices on the same face.
Proof. Suppose that G contains a T_{6}^{5-} subgraph H as in the claim. By Claim 3.14, $\deg_{G}(H) \geq 4$. By symmetry of H, we can assume w.l.o.g that the outer face $v_{1}v_{2}v_{3}v_{4}$ of H contains all between vertices. Let K be the subgraph of G induced by $\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\}$. By Claim 3.11, v_{1} has at most one non-H incident edge. Thus, we can collect $\{v_{1}, v_{4}, v_{6}\}$ from K. Since $\deg_{G}(K) \leq 5$, by Claim 3.13, $G \setminus K$ has at most one Q_{3}^{1-} subgraph. If $G \setminus K$ has exactly one Q_{3}^{1-} subgraph, the Q_{3}^{1-} subgraph in $G \setminus K$ must has three edges to K in G. That implies $G \setminus K$ has no T_{6} component, by Claim 3.14 Since $\deg_{G}(H)$ is at least 4, $m(G) - m(G \setminus K) \geq 10$. By Observation 3.1 with $L = K$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (5, 10, 0, -1, 3)$, $3 - 5a + 10b - c$ must be negative. Thus, we obtain contradiction by adding Inequality (21) to LP.

$$3 - 5a + 10b - c \geq 0$$ (21)

If $G \setminus K$ has no Q_{3}^{1-} subgraph, by Claim 3.14 $G \setminus K$ has at most one T_{6} component. By Observation 3.1 with $L = K$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (5, 10, 0, -1, 3)$, $3 - 5a + 10b - d$ must be negative. Thus, we obtain contradiction by adding Inequality (22) to LP.

$$3 - 5a + 10b - d \geq 0$$ (22)

Claim 3.16. Graph G excludes Q_{3}^{5-} as a subgraph.

Proof. By Claim 3.13, we only need to exclude Q_{3}^{5} from G. Let H be a Q_{3}^{5} subgraph of G. By Claim 3.11 between vertices of H has degree exactly 4. By Claim 3.13, $G \setminus H$ has at most one Q_{3}^{1-} subgraph. By Claim 3.14, $G \setminus H$ has at most one T_{6} component. By Lemma 3.12, we can collect 5 vertices from H. By Observation 3.1 with $L = K$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 17, -1, -1, 5)$, $5 - 8a + 17b - c - d$ must be negative. Thus, we obtain contradiction by adding Inequality (23) to LP.

$$5 - 8a + 17b - c - d \geq 0$$ (23)

Claim 3.17. If H is a connected subgraph of G, then $G \setminus H$ has no Q_{3}^{1-} subgraph and T_{6} component.

Proof. Suppose that $G \setminus H$ contains a Q_{3}^{1-} subgraph K. Since H is connected, its vertices are embedded in on face of K, say the infinite face. Thus, G has at most 4 edges connecting vertices of H and vertices of K. Since K has degree at most one in $G \setminus H$, K has degree at most 5 in G, contradicting Claim 3.16. Suppose that $G \setminus H$ contains a T_{6} component M. Since H is connected, their vertices are embedded inside one face of M. Thus, there exists one face of M contains all of its between vertices. Since G only has 4^{-}-vertices, $\deg_{G}(M) \leq 5$, contradicting Claim 3.15.

3.2 Excluding low degree vertices

As shown in Section 3.1 if LP is satisfied, G has $p(G) = 0$ and $q(G) = 0$. Thus, we only need to prove $\varphi(G) \geq an(G) - bm(G)$ to obtain contradiction.

Claim 3.18. G is two-edge connected.

Proof. Suppose that the claim fails, then either G is disconnected or G is connected and has a bridge e. If G is disconnected, let G_{1} be any connected component of G and $G_{2} = G \setminus G_{1}$. If G is connected and has a bridge e, let G_{1}, G_{2} be two components of $G \setminus \{e\}$. Since $\deg_{G}(G_{1}) \leq 1$, by Claim 3.16, $p(G_{1}) = p(G_{2}) = 0$. By Claim 3.14, $q(G_{1}) = q(G_{2}) = 0$. Since G_{1}, G_{2} has strictly smaller order than
Thus, by adding Inequality (25) to \mathcal{LP}, we deduce that $\varphi(G) \geq an(G) - bm(G)$, contradicts that G is a counter-example.

A direct corollary of Claim 3.18 is that $\delta(G) \geq 2$.

Claim 3.19. If v is a 2-vertex, then its neighbors must have another common neighbor.

Proof. Let G' be the graph obtained from G by contracting an incident edge of v. Suppose that v is the only common neighbor of its neighbors, then, G' is triangle-free. Let u be the vertex obtained after the contraction. Any Q_3^{1-} subgraph and T_6 component of G' must contain u. Thus, $p(G') + q(G') \leq 1$. Since G' has strictly smaller order than G, G' has a forest F' of order at least $an(G') - bm(G') - cp(G') - dq(G')$. We note that $n'(G) = n(G) - 1$ and $m(G') = m(G) - 1$. If $p(G') = 1$, $F' \cup \{v\}$ is an induced forest in G of order at least:

$$1 + a(n(G) - 1) - b(m(G) - 1) - c = an(G) - bm(G) + 1 - a + b - c$$

Thus, by adding Inequality (24) to \mathcal{LP}, we deduce that $\varphi(G) \geq an(G) - bm(G)$, contradicts that G is a counter-example.

$$1 - a + b - c \geq 0 \tag{24}$$

If $q(G') = 1$, $F' \cup \{v\}$ is an induced forest in G of order at least:

$$1 + a(n(G) - 1) - b(m(G) - 1) - d = an(G) - bm(G) + 1 - a + b - d$$

Thus, by adding Inequality (25) to \mathcal{LP}, we obtain a contradiction.

$$1 - a + b - d \geq 0 \tag{25}$$

Claim 3.20. None neighbor of a 2-vertex is a 4-vertex.

Proof. Suppose that a neighbor u of a 2-vertex v is a 4-vertex. Let $G' = G - \{u, v\}$. By Claim 3.17, $p(G') = q(G') = 0$. Observe that we can add v to any induced forest of G' to get an induced forest of G. By Observation 3.1 with $L = uv$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (2, 5, 0, 0, 1)$, $1 - 2a + 5b$ must be negative. Thus, we obtain contradiction by adding Inequality (26) to \mathcal{LP}.

$$1 - 2a + 5b \geq 0 \tag{26}$$

Claim 3.21. None neighbor of a 2-vertex is a 2-vertex.

Proof. Suppose that a neighbor u of a 2-vertex v is a 2-vertex. Let w and w' be other neighbors of u and v, respectively. By Claim 3.20, w and w' are 3-vertices. By Claim 3.19, w and w' must be adjacent. If both w and w' are 2-vertices, then G is a cycle of 4 vertices. Since G has a forest of order 3, by Observation 3.1 with $L = G$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (4, 4, 0, 0, 3)$, $3 - 4a + 4b$ must be negative. Thus, we obtain contradiction by adding Inequality (27) to \mathcal{LP}.

$$3 - 4a + 4b \geq 0 \tag{27}$$
Claim 3.22. Any 3-vertex in G is adjacent to at most one 2-vertex.

Proof. Suppose otherwise. Let w be a 3-vertex that is adjacent to two 2-vertices u and v. Let $G' = G - \{u, v, w\}$. By Claim 3.17, $p(G') = q(G') = 0$. Since we can collect $\{u, v\}$, by Observation 3.1 with $L = \{u, v, w\}$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (3, 5, 0, 0, 2)$, $2 - 3a + 5b$ must be negative. Thus, we obtain contradiction by adding Inequality (28) to \mathcal{LP}.

$$2 - 3a + 5b \geq 0 \tag{28}$$

Lemma 3.23. Every vertex of G has degree at least 3.

Proof. Let w_1 be a 2-vertex of G with two neighbors w_2, w_4. By Claim 3.19, w_2 and w_4 must have another common neighbor, say w_3. Let C be the cycle $w_1w_2w_3w_4$. By Claim 3.21 and 3.20, w_2 and w_4 are 3-vertices. Let u be the non-C neighbor of w_2. By Claim 3.22, u and w_3 are a 3$^+$-vertices. Since G is triangle free, u cannot be a neighbor of w_3. Let H be the induced subgraph of G induced by $\{w_1, w_2, w_3, w_4, u\}$. We can collect 3 vertices w_4, w_1, w_3 from H. By Claim 3.17, $p(G \setminus H) = q(G \setminus H) = 0$. If $m(G) - m(G \setminus H)$ is at least 9, by Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (5, 9, 0, 0, 3)$, $3 - 5a + 9b$ must be negative. Thus, we obtain contradiction by adding Inequality (29) to \mathcal{LP}.

$$3 - 5a + 9b \geq 0 \tag{29}$$

Thus, we can assume $m(G) - m(G \setminus H) \leq 8$. That implies u must be a neighbor of w_4 and w_2 is a 3-vertex (see Figure 2(a)). Since G is two connected, the non-H neighbor of u must be embedded in the same side with the non-H neighbor of w_3 with respect to the cycle $uw_4w_3w_2$. Let v be the non-H neighbor of w_3. Let K be the subgraph of G induced by $\{w_1, w_2, w_3, w_4, u, v\}$. If u and v are adjacent, K is $T_6^{3^-}$, contradicting Claim 3.10. Thus, u and v are not adjacent and hence, we can collect $\{u, w_1, w_2, w_3\}$ from K. By Observation 3.1 with $L = K$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (6, 9, 0, 0, 4)$, $4 - 6a + 9b$ must be negative. Thus, we obtain contradiction by adding Inequality (30) to \mathcal{LP}.

$$4 - 6a + 9b \geq 0 \tag{30}$$

![Figure 2: (a) A configuration in the proof of Lemma 3.22 (b) A configuration in the proof of Claim 3.23](image-url)
3.3 Avoiding small cut

A separating cycle is a cycle that separates the plane into two regions, each has non-empty interior.

Claim 3.24. Let \(v \) be a 3-vertex that is adjacent to a 4-vertex \(u \). Then two neighbors of \(v \) other than \(u \) must share a neighbor other than \(v \).

Proof. Suppose otherwise. Let \(x, y \) be neighbors of \(v \) such that \(x \neq u \) and \(y \neq u \). Let \(G' \) be the graph obtained from \(G \) by deleting \(u, v \) and adding an edge between \(x \) and \(y \). We now show that \(q(G') = 0 \).

By Claim 3.17, \(G - \{u, v\} \) contains no \(T_6 \) component. If \(G' \) contains a \(T_6 \) component \(K \), then \(K \) must contain edge \(xy \). Since \(\delta(G) \geq 3 \), \(x \) and \(y \) must be 3-vertices in \(K \). By symmetry of \(T_6 \), we can assume w.l.o.g that \(x \equiv v_4 \) and \(y \equiv v_2 \). If \(u \) is embedded inside the cycle \(v_1v_2v_4v_3 \), then \(v_5 \) must be a 2-vertex in \(G \). Otherwise, \(v_6 \) must be a 2-vertex in \(G \). Both cases contradict that \(\delta(G) \geq 3 \).

Suppose that \(G' \) contains a \(Q_3^+ \) component \(H \). Edge \(xy \) must belongs to \(H \). We assume w.l.o.g that \(x \equiv u_1 \) and \(y \equiv u_2 \). Let \(M \) be the subgraph of \(G \) induced by \(\{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, v\} \). By Claim 3.17, \(p(G \setminus M) = q(G \setminus M) = 0 \). By the symmetry of \(H \), we can assume that \(u \) is embedded inside the cycle \(u_1vu_2v_3u_4 \) (see Figure 2(b)). Since \(\deg_{G'}(H) \leq 1 \), at most one vertex in \(\{u_1, u_2\} \) is a 4-vertex. Let \(z \) be a 3-vertex in \(\{u_1, u_2\} \). Since \(G \) is triangle-free, \(u \) can have at most one neighbor in \(\{u_3, u_4\} \). If \(u_3 \) is a 3-vertex, then we can collect \(\{v, z, u_3, u_5, u_7, u_8\} \) from \(M \). If \(u_4 \) is a 3-vertex, then we can collect \(\{v, z, u_4, u_6, u_7, u_8\} \) from \(M \). Thus, in any case, we can collect 6 vertices from \(M \). By Observation 3.1 with \(L = M \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (9, 14, 0, 0, 6) \), \(6 - 9a + 14b \) must be negative. We obtain contradiction by adding Inequality (31) to \(LP \).

\[
6 - 9a + 14b \geq 0 \tag{31}
\]

Thus, we can assume \(p(G') = 0 \). Hence, \(G' \) has a forest \(F' \) of order at least \(an(G') - bm(G') \). We recall that \(xy \) is a non-edge of \(G \). Thus, \(V(F') \cup \{v\} \) induces a forest of \(G \). Since \(n(G') = n(G) - 2 \) and \(m(G') = m(G) - 5 \), \(G \) has a forest on order at least:

\[
a(n(G) - 2) - b(m(G) - 5) + 1 = an(G) - bm(G) + 1 + 5b - 2a
\]

Thus, we obtain contradiction by adding Inequality (32) to \(LP \).

\[
1 + 5b - 2a \geq 0 \tag{32}
\]

\[
\]

Claim 3.25. Let \(C \) be a 4-cycle of \(G \) that has at least one 3-vertex and at most two 3-vertices. Then, (i) any two 3-vertices of \(C \) must be adjacent and two non-C edges adjacent to two 3-vertices must be embedded in the same side of \(C \) and (ii) two non-C edges of a 4-vertex which is not adjacent to a 3-vertex of \(C \) must be embedded in the same side of \(C \).

Proof. Let \(\{w_1, w_2, w_3, w_4\} \) be clockwise ordered vertices of \(C \). Without loss of generality, we assume \(w_1 \) is a 3-vertex of \(C \) and its non-C edge is embedded outside \(C \). Suppose the claim fails. We show that we can collect 2 vertices from \(C \). If (i) fails, the other 3-vertex of \(C \), denoted by \(x \), is \(w_3 \) or a neighbor of \(w_1 \) such that its non-C edge is embedded inside \(C \). Then, we can collect \(\{x, w_1\} \) from \(C \). If (ii) fails, let \(w_i \) and \(w_j \) be two non-adjacent vertices of \(C \) such that \(w_i \) is a 3-vertex and \(w_j \) has two non-C edges that are embedded in different sides of \(C \). Then, we can collect \(\{w_i, w_j\} \) from \(C \). By Claim 3.17, \(p(G \setminus C) = q(G \setminus C) = 0 \). Since \(m(G \setminus C) \leq m(C) - 10 \), by Observation 3.1 with \(L = C \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (4, 10, 0, 0, 2) \), \(2 - 4a + 10b \) must be negative, contradicting Inequality (32). □
Claim 3.26. **Graph G excludes any separating 4-cycle that has four 3-vertices.**

Proof. Let \(w_1, w_2, w_3, w_4 \) be 3-vertices of a separating 4-cycle \(C \). Since \(C \) is separating and \(G \) is two-edge connected, two non-\(C \) edges of \(C \) must be embedded inside \(C \) and two other non-\(C \) edges must be embedded outside \(C \). We assume w.l.o.g that the non-\(C \) edge of \(w_1 \) is embedded outside \(C \). Let \(u \) be the non-\(C \) neighbor of \(w_1 \). Let \(w_i, i \neq 1 \), be a vertex of \(C \) that has its non-\(C \) edge embedded outside \(C \) and \(w_j \) be a vertex of \(C \) that has its non-\(C \) edge embedded inside \(C \). Let \(H \) be the subgraph of \(G \) induced by \(\{w_1, w_2, w_3, w_4, u\} \). We can collect \(\{w_1, w_i, w_j\} \) from \(H \). We now argue that \(m(G \setminus H) \leq m(G) - 10 \). Since \(G \) is triangle-free, \(u \) has at most two neighbors in \(C \). If \(u \) has only one neighbor in \(G \) which is \(w_1 \), then \(m(G \setminus H) \leq m(G) - 10 \) since \(\delta(G) \geq 3 \). If \(u \) has exactly two neighbors in \(G \), they must be \(w_1 \) and \(w_3 \). That means the non-\(C \) edge of \(w_3 \) is embedded outside \(C \). Since \(C \) is separating, two non-\(C \) edges incident to \(w_2 \) and \(w_4 \) must be embedded inside \(C \). Thus, \(u \) must have two non-\(H \) incident edges since \(G \) is two-edge connected and \(\delta(G) \geq 3 \). That implies \(m(G \setminus H) \leq m(G) - 10 \).

By Observation 3.1 with \(L = H \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (5, 10, 0, 0, 3) \), \(3 - 5a + 10b \) must be negative, contradicting Inequality (29) since \(b \) is non-negative. \(\square \)

Claim 3.27. **Any separating cycle of length 4 of \(G \) must have at most two 3-vertices.**

Proof. Let \(C \) be a separating 4-cycle of \(G \) that has at least three 3-vertices. By Claim 3.26, \(C \) must have exactly three 3-vertices. Let \(w_1, w_2, w_3, w_4 \) be vertices in the clock-wise order of \(C \) such that \(w_1, w_2, w_3 \) are three 3-vertices. Let \(x, y, z \) be the non-\(C \) neighbors of \(w_1, w_2, w_3 \), respectively. Note that \(x \) and \(z \) may be the same vertex. We assume that \(x \) is embedded outside \(C \). By Claim 3.24, two vertices \(w_2 \) and \(z \) must have a non-\(C \) common neighbor and two vertices \(w_2 \) and \(z \) must also have a non-\(C \) common neighbor. That implies \(xy \) and \(yz \) are edges of \(G \). By planarity, \(y \) and \(z \) must also be embedded outside \(C \). Since \(C \) is separating and \(G \) is two-edge connected, two edges of \(w_4 \) must be embedded inside \(C \). If \(x \) and \(z \) are the same vertex (see Figure 3(a)), then we can collect \(\{w_1, w_2, w_3\} \) from the subgraph \(H \) that is induced by \(\{w_1, w_2, w_3, w_4, x\} \). By Observation 3.1 with \(L = H \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (5, 10, 0, 0, 3) \), \(3 - 5a + 10b \) must be negative, contradicting Inequality (29).

Thus, we can assume that \(x \) and \(z \) are different vertices (see Figure 3(b)). If \(x, y, z \) are 3-vertices, then we can collect \(\{w_2, w_3, x, y, z\} \) from the subgraph \(K \) of \(G \) that is induced by \(\{w_1, w_2, w_3, x, y, z\} \). Since \(m(G \setminus K) = m(G) - 11 \), by Observation 3.1 with \(L = K \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (6, 11, 0, 0, 4) \), \(4 - 6a + 11b \) must be negative, contradicting Inequality (30) Thus, at least one vertex in \(\{x, y, z\} \) is a 4-vertex. Let \(M \) be the subgraph induced by \(\{w_1, w_2, w_3, w_4, x, y, z\} \). Observe that we can collect \(\{y, w_1, w_2, w_3\} \) from \(M \). Since \(m(G \setminus M) \leq m(G) - 14 \), by Observation 3.1 with \(L = M \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (7, 14, 0, 0, 4) \), \(4 - 7a + 14b \) must be negative. Thus, we obtain contradiction by adding Inequality (33) to \(LP \).

\[4 - 7a + 14b \geq 0 \quad (33) \]

\(\square \)

Claim 3.28. **Any separating 4-cycle of \(G \) must have at most one 3-vertex.**

Proof. Let \(w_2w_3w_4 \) be a separating 4-cycle, denoted by \(C \), of \(G \) that has at least two 3-vertices. By Claim 3.27, \(C \) has exactly two 3-vertices. By (i) of Claim 3.25, we assume that \(w_1, w_2 \) are two 3-vertices of \(C \) and their non-\(C \) edges are embedded outside \(C \). Since \(C \) is separating and \(G \) is two-edge connected, at least two non-\(C \) edges of \(C \) must be embedded inside \(C \). By (ii) of Claim 3.25,
two non-C edges of any 4-vertex of C must be embedded in the same side of C. We assume w.l.o.g that two non-C edges of w_3 are embedded inside C. Let u and v be non-C neighbors of w_1 and w_2, respectively. By Claim 3.24, v must be a common neighbor of u and w_2. If v is a 4-vertex, let H be the subgraph of G induced by $\{w_1, w_2, v, w_4\}$. Observe that we can collect $\{w_1, w_2\}$ from H. Since v may be a neighbor of w_1, $m(G \setminus H) \leq m(G) - 10$. By Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (4, 10, 0, 0, 2)$, $2 - 4a + 10b$ must be negative, contradicting Inequality (26). Thus, we can assume that v is a 3-vertex. Let K be a subgraph of G induced by $\{u, v, w_1, w_2, w_4\}$. We can collect $\{v, w_2, w_1\}$ from K. Since v may be a neighbor of w_4, $m(G \setminus K) \leq m(G) - 10$. By Observation 3.1 with $L = K$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (5, 10, 0, 0, 3)$, $3 - 5a + 10b$ must be negative, contradicting Inequality (29). \hfill \square

3.4 Excluding a 4-face with at least one 3-vertex

3.4.1 Excluding a 4-face with exactly four 3-vertices

In this subsection, we denote $C = w_0w_1w_2w_3$ to be a 4-face of G such that each w_i is a 3-vertex, $0 \leq i \leq 3$. Let $X = \{x_0, x_1, x_2, x_3\}$ where each x_i is the non-C neighbor of w_i. All indices in this subsection are mod 4 and to simplify the presentation, we write $w_j \ (x_j)$ instead of writing $w_{j \mod 4} \ (x_j \mod 4)$.

Claim 3.29. Vertices in X are pairwise distinct and x_j is not adjacent to x_{j+2} for any $j \in \{0, 1\}$.

Proof. To prove that vertices in X are pairwise distinct, we only need to prove that $x_j \neq x_{j+2}$ since G is triangle-free. If $x_0 = x_2$, then $w_0w_1w_2x_0$ is a separating 4-cycle with at least three 3-vertices. If $x_1 = x_3$, then $w_0w_1x_1w_3$ is a separating 4-cycle with at least three 3-vertices. Both cases contradict Claim 3.28.

We now show that x_j and x_{j+2} are non-adjacent. By symmetry, it suffices to show the non-adjacency of x_0 and x_2. Suppose otherwise. By planarity, x_1 and x_3 cannot be adjacent and if they have a common neighbor, it must be x_0 or x_2. Since G is triangle-free, both $\{x_0, x_2\}$ cannot be common neighbors of x_1 and x_3. We assume w.l.o.g that x_2 is a non-common neighbor of x_1 and x_3. We consider two cases:

Case 1 Vertex x_0 is a 3-vertex. Then, x_1 and x_3 has no common neighbor. Let H be the subgraph induced by $\{w_0, w_1, w_2, w_3, x_2\}$. We can collect $\{w_1, w_2, w_3\}$ from H. By Claim 3.17, $p(G \setminus K) = q(G \setminus K) = 0$. Since $m(G \setminus K) \leq m(G) - 10$, by Observation 3.1 with $L = K$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (5, 10, 0, 0, 3)$, $3 - 5a + 10b$ must be negative, contradicting Inequality (29).

Case 2 Vertex x_0 is a 4-vertex. Let G' be the graph obtained by removing $\{x_0, w_0, w_1, w_2, w_3\}$ from G and adding edge x_1x_3. G' is triangle-free since common neighbors of x_1 and x_3 are...
all removed. By Claim 3.17, \(G \setminus C \) contains no \(Q^1_3 \) subgraph and \(T_6 \) component. Thus,
\(p(G') + q(G') \leq 1 \). Let \(F' \) be the largest induced forest in \(G' \). Observe that we can add
\(\{w_0, w_1, w_3\} \) to \(F' \) to get an induced forest in \(G \). Since \(G' \) has strictly smaller order than
\(G \), \(F' \) has order at least \(an(G') - bm(G') - cp(G') - dq(G') \). Since \(n(G') = n(G) - 5 \) and
m\((G') \leq m(G) - 10 \), by adding \(\{w_0, w_1, w_3\} \) to \(F' \), we get an induced forest in \(G \) of order at least:

\[
an(G') - bm(G') - cp(G') - dq(G') \geq an(G) - bm(G) + 3 - 5a + 10b - cp(G') - dq(G')
\]

By Inequality (21) and Inequality (22), \(3 - 5a + 10b - c \) and \(3 - 5a + 10b - d \) are both non-negative. Since \(p(G') + q(G') \leq 1 \), \(3 - 5a + 10b - cp(G') - dq(G') \) is non-negative. Thus, \(G \) has
an induced forest of order at least \(an(G) - bm(G) \), contradicting that \(G \) is a counter-example.

\(\square \)

Claim 3.30. At least one of two edges \(w_jw_{j+1} \) and \(w_{j+1}w_{j+2} \), for any \(j \) in \(\{0, 1, 2, 3\} \), is not on the boundary of a \(5^+ \)-face.

Proof. Suppose that there exists \(j \in \{0, 1, 2, 3\} \) such that \(w_jw_{j+1} \) and \(w_{j+1}w_{j+2} \) are on the boundaries of \(5^+ \)-faces. We assume w.l.o.g that \(j = 0 \). Let \(G' \) be the graph obtained from \(G \) by removing
\(\{w_0, w_2, w_3\} \) and adding two edges \(x_0w_1, w_1x_2 \). We observe that, by construction, \(x_3 \) is the only possible 2-vertex of \(G' \). Thus, \(G' \) contains no \(T_6 \) component. We consider two cases:

Case 1 Graph \(G' \) contains no \(Q^1_3 \) subgraph. Then \(G' \) has an induced forest \(F' \) of order at least
\(an(G') - bm(G') \). Since \(n(G') = n(G) - 3 \) and \(m(G') = m(G) - 5 \), by adding \(\{w_0, w_2\} \) to \(F' \),
we get an induced forest of \(G \) of order at least:

\[a(n(G) - 3) - b(m(G) - 5) + 2 = an(G) - bm(G) + 2 - 3a + 5b \]

Since \(2 - 3a + 5b \geq 0 \) by Inequality (28), \(G \) has an induced forest of order at least \(an(G) - bm(G) \), contradicting that \(G \) is a counter-example.

Case 2 Graph \(G' \) contains at least one \(Q^1_3 \) subgraph. By Claim 3.17, \(G\setminus\{w_0, w_2, w_3\} \) contains
no \(Q^1_3 \) subgraph. Thus, any \(Q^1_3 \) subgraph of \(G \) must contain \(w_1 \). By Observation 2.3,
\(G' \) has exactly one \(Q^1_3 \) subgraph. If \(G' \) contains \(Q_3 \), then the subgraph of \(G \) induced by
\(V(Q_3) \cup \{w_0, w_2, w_3\} \) has degree 1 in \(G \), contradicting that \(G \) is two-edge connected. Thus,
we can assume that \(G' \) contains a \(Q^1_3 \) subgraph \(K \). Let \(G'' = G' \setminus K \). We observe that \(G'' \) can
also be obtained from \(G \) by removing \(V(K) \cup \{w_0, w_2, w_3\} \). Since \(V(K) \cup \{w_0, w_2, w_3\} \) induces
a connected subgraph of \(G \), \(p(G'') = q(G'') = 0 \) by Claim 3.17. Thus, \(G'' \) has a forest \(F'' \) of
order at least \(an(G'') - bm(G'') \). By Lemma 2.1, we can collect 5 vertices from \(K \) to obtain an
induced forest \(F' \) of \(G' \) of order at least \(an(G'') - bm(G'') + 5 \). By adding \(\{w_0, w_2\} \) to \(F' \),
we get an induced forest \(F \) of \(G \) of order at least \(an(G'') - bm(G'') + 7 \). Since \(n(G'') = n(G) - 11 \)
and \(m(G'') = m(G) - 18 \), \(F \) has order at least:

\[an(G) - bm(G) + 7 - 11a + 18b \]

We obtain contradiction by adding Inequality (34) to \(LP \).

\(7 - 11a + 18b \geq 0 \) (34)

\(\square \)
Claim 3.31. At least one of two vertices x_j, x_{j+2} is a 3-vertex, for any j in $\{0, 1\}$.

Proof. Suppose that x_j and x_{j+2} are two 4-vertices for some $j \in \{0, 1\}$. Let H be the graph induced by $V(C) \cup \{x_j, x_{j+2}\}$. Observe that we can collect $\{w_j, w_{j+1}, w_{j+2}\}$ from H. Since $m(G \setminus H) \leq m(G) - 14$, by Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (6, 14, 0, 0, 3)$, $3 - 6a + 14b$ must be negative. Thus, we obtain contradiction by adding Inequality (35) to $L_\mathcal{P}$.

$$3 - 6a + 14b \geq 0$$ (35)

Lemma 3.32. Graph G has no 4-face with four 3-vertices.

Proof. Let H be the subgraph of G induced by $V(C) \cup X$. If no edge of C is on the boundary of a 5^+-face, then H is a Q_4^- subgraph of G, contradicting Claim 3.30. Thus, we can assume at least one edge of C is on the boundary of a 5^+-face. By Claim 3.30, C has at most two edges on the boundaries of 5^+-faces and they cannot be incident to the same vertex of C. Thus, there exists $j \in \{0, 1\}$ such that two edges $w_j w_{j+1}$ and $w_{j+2} w_{j+3}$ are only on the boundary of 4-faces. Without loss of generality, we assume that $j = 0$. Thus, $x_0 x_1$ and $x_2 x_3$ are edges of G (see Figure 3(c)). By symmetry, we can assume that x_0 is the highest degree vertex of X. By Claim 3.31, x_2 is a 3-vertex.

We claim that (i) x_1 is a 4-vertex and (ii) $x_1 x_2$ and $x_3 x_0$ are non-edges of G. Suppose that at least one of two claims fails, we show that we can collect 5 vertices from H. If $x_1 x_2$ is an edge of G, then we can collect $\{x_1, w_1, w_0, w_3, x_2\}$ from H. If $x_0 x_3$ is an edge of G, then we can collect $\{x_0, w_0, w_1, w_3, x_2\}$ from H. If x_1 is a 3-vertex, then we can collect $\{w_0, w_2, w_3, x_2, x_1\}$ from H. Since $m(G \setminus H) \leq m(G) - 13$, by Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 13, 0, 0, 5)$, $5 - 8a + 13b$ must be negative, contradicting Inequality (11). Thus, both claims hold.

Let K be the subgraph induced by $V(C) \cup \{x_0, x_2, x_3\}$. By Claim 3.31, x_3 is a 3-vertex. Thus, we can collect $\{x_3, w_0, w_2, w_3\}$ from K. Since x_0 is the highest degree vertex of C, x_0 is a 4-vertex. Thus, $m(G \setminus K) \leq m(G) - 14$. By Observation 3.1 with $L = K$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (7, 14, 0, 0, 4)$, $4 - 7a + 14b$ must be negative, contradicting Inequality (33).

By combining Lemma 3.32 and Claim 3.28, we get:

Corollary 3.33. Graph G has no 4-cycle with four 3-vertices.

3.4.2 Excluding a 4-face with at least two 3-vertices

Lemma 3.34. Graph G has no 4-face with three 3-vertices.

Proof. Let $C = w_0 w_1 w_2 w_3$ be a 4-face of G that has three 3-vertices, say w_0, w_1, w_2. Suppose that w_i and w_{i+2} share a neighbor, say x, for some $i \in \{0, 1\}$. Then, the cycle $x w_i w_{i+1} w_{i+2}$ is a separating 4-cycle that has at least two 3-vertices, contradicting Claim 3.28. Thus, w_i and w_{i+2} have no common neighbor for any $i \in \{0, 1\}$. Let x_0, x_1, x_2 be the neighbors of w_0, w_1, w_2, respectively. By Claim 3.24, $x_0 x_1$ and $x_1 x_2$ are edges of G (see Figure 3(d)). Let H be the subgraph of G induced by $V(C) \cup \{x_0, x_1, x_2\}$. By Corollary 3.33, at least one vertex in $\{x_0, x_1, x_2\}$ is a 4-vertex. Thus, $m(G \setminus H) \leq m(G) - 14$. Observe that we can collect $\{x_1, w_0, w_1, w_2\}$ from H. By Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (7, 14, 0, 0, 4)$, $4 - 7a + 14b$ must be negative, contradicting Inequality (33).

By Lemma 3.34 and Claim 3.28, we have:
Corollary 3.35. Graph G has no 4-cycle with at least three 3-vertices.

Lemma 3.36. Graph G has no 4-face with exactly two 3-vertices.

Proof. Let w_0, w_1, w_2, w_3 be vertices in clock-wise order of a 4-face C of G that has exactly two 3-vertices. By Claim 3.25, two 3-vertices of C must be adjacent. Without loss of generality, we assume that w_0, w_1, w_2, w_3 are 3-vertices. By Claim 3.24, x_0x_1 is an edge of G. By Corollary 3.35, x_0 and x_1 are 4-vertices. We now show that x_j and w_{j+2} are non-adjacent for any $j \in \{0, 1\}$. If x_0 and w_2 are adjacent, then the cycle $x_0w_0w_1w_2$ is a separating 4-cycle that has at least two 3-vertices. If x_1 and w_3 are adjacent, then the cycle $x_1w_1w_0w_3$ is a separating 4-cycle that has at least two 3-vertices. Both cases contradict Claim 3.28.

Thus, x_j and x_{j+2} are non-adjacent.

If x_0 and w_2 share a common neighbor and x_1 and w_3 share a common neighbor, by planarity, they all share a common neighbor, contradicting that G is triangle-free. Thus, by symmetry (see Figure 4(a)), we can assume that x_0 and w_2 share no common neighbor. Let G' be the graph obtained by removing $\{x_1, w_0, w_1, w_3\}$ from G and adding edge x_0w_2. Then, G' is a triangle-free planar graph. By Claim 3.17, the graph obtained by removing $\{x_1, w_0, w_1, w_3\}$ from G has no T_6 component and Q_3^{-1} subgraph. Thus, any T_6 component or Q_3^{-1} subgraph of G' must contains edge x_0w_2. That implies $p(G') + q(G') = 1$. We consider three cases:

Case 1 $p(G') = q(G') = 0$. Then G' has an induced forest F' of order at least $an(G') - bm(G')$.

By adding $\{w_0, w_1\}$ to F', we obtain a forest of order at least $an(G') - bm(G') + 2$. Since $n(G') = n(G) - 4$ and $m(G') = m(G) - 10$, we have:

$$an(G') - bm(G') + 2 = an(G) - bm(G) + 2 - 4a + 10b$$

Since $2 - 4a + 10b$ is non-negative by Inequality (26), G has an induced forest of order at least $an(G) - bm(G)$, contradicting that G is a counter-example.

Case 2 $p(G') = 1$ and $q(G') = 0$. Let G'' be the graph obtained from G' by removing the T_6 component of G'. Since G'' can also be obtained from G by removing $V(T_6) \cup \{x_1, w_0, w_1, w_3\}$ which induces a connected subgraph of G, by Claim 3.17, $p(G'') = q(G'') = 0$. Thus, G'' has a forest F'' of order at least $an(G'') - bm(G'')$. By Lemma 2.2, we can add 4 vertices from the T_6 component to F'' to get an induced forest \hat{F} of G' of order at least $an(G'') - bm(G'') + 4$. By adding w_0 and w_1 to \hat{F}, we get an induced forest of order at least $an(G'') - bm(G'') + 6$ in G. Since $n(G'') = n(G) - 10$ and $m(G'') = m(G) - 18$, we have:

$$an(G'') - bm(G'') + 6 = an(G) - bm(G) + 6 - 10a + 18b$$

Since $6 - 10a + 18b$ is non-negative by Inequality (29), G has an induced forest of order at least $an(G) - bm(G)$, contradicting that G is a counter-example.

Case 3 $p(G') = 0$ and $q(G') = 1$. Let M be the Q_3^{-1} subgraph of G'. We consider two subcases:

Subcase 1 M is Q_3^{-1} in G'. Let $G''' = G' \setminus M$. Then, G''' can also be obtained from G by removing $V(M) \cup \{x_1, w_0, w_1, w_3\}$ which induces a connected subgraph of G. Thus, by Claim 3.17, $p(G''') = q(G''') = 0$. Let F''' be a forest of G''' of order at least $an(G''') - bm(G''')$. By Lemma 2.1, we can add 5 vertices of M to F''' to get an induced forest \hat{F} in G' of order at least $an(G''') - bm(G''') + 5$. By adding w_0 and w_1 to \hat{F}, we get an induced forest of order at least $an(G''') - bm(G''') + 7$ in G. Since $n(G''') = n(G) - 12$ and $m(G''') = m(G) - 23$, we have:

$$an(G''') - bm(G''') + 6 = an(G) - bm(G) + 7 - 12a + 23b$$
Thus, we obtain contradiction by adding Inequality (36) to LP.

$$7 - 12a + 23b \geq 0$$

(36)

Subcase 2 M is Q_3 in G'. Recall that x_0w_2 must be an edge of M. By symmetry of Q_3, we can assume w.l.o.g that $x_0 = u_1$ and $w_2 = u_2$ (see Figure 4(b)). Consider the cycle $\hat{C} = x_0u_5u_6w_3u_4$ of M. \hat{C} is also the cycle of G. Thus, x_1, w_0, w_1, w_3 is embedded inside \hat{C} in G. That implies u_7 and u_8 are 3-vertices in G. Observe that the path $x_0w_0w_1$ separate the internal part of \hat{C} into two parts, one contains x_1 and another contains w_3. Let $C' = x_0w_0w_1w_6u_5$ and $C'' = x_0w_0w_1w_2u_3u_4$ be two cycles of G. We consider C as a 4-cycle of G instead of a 4-face so that we can speak of the symmetry of the subgraph induced by $\{x_0, x_1, w_0, w_1, w_2, w_3\}$. By symmetry, we can assume w.l.o.g that x_1 is inside C' and w_3 is inside C''. Since G is triangle free, x_1 and u_5 are non-adjacent. Thus, u_5 is a 3-vertex in G. That implies 4-cycle $u_5u_6u_7u_8$ has three 3-vertices, contradicting Corollary 3.35.

\[\square \]

Figure 4: (a) A configuration in the proof of Lemma 3.36 (b) A configuration in the proof of Subcase 2 in Lemma 3.36

3.4.3 Excluding a 4-face with exactly one 3-vertices

In this subsection, we denote $C = w_0w_1w_2w_3$ to be a 4-face of G such that w_0 is a 3-vertex and w_1, w_2, w_3 are 4-vertices. From Lemma 3.32, 3.34 and 3.36 and Claim 3.28 we have:

Corollary 3.37. Any 4-cycle of G has at most one 3-vertex.

Claim 3.38. Graph G has no 3-vertex that has a 3-vertex and a 4-vertex as neighbors.

Proof. Suppose that G has a 3-vertex u that has a 3-vertex v and a 4-vertex w as neighbors. Let x be a neighbor of u such that $x \notin \{v, w\}$. By Claim 3.24, x and v has a neighbor y such that $y \neq u$. Thus, 4-cycle $uxyw$ has two 3-vertices, contradicting Corollary 3.37. \[\square \]

Let x_0 be the non-C neighbor of w_0. By Claim 3.24, x_0 and w_1 have a common neighbor, say x_1, and x_0 and w_3 have a common neighbor, say x_3. Since $x_0x_1w_1w_0$ is a 4-cycle that has w_0 as a 3-vertex, by Corollary 3.37, x_0 must be a 4-vertex.

Claim 3.39. Two vertices x_0, w_2 are non-adjacent.
Proof. Suppose otherwise. Let \(x_2 \) be the non-\(C \) neighbor of \(w_2 \) such that \(x_2 \neq x_0 \). Let \(C_1 = x_0w_0w_3w_2 \) and \(C_2 = x_0w_0w_1w_2 \) be two 4-cycles of \(G \). By (ii) of Claim 3.25, two edges \(w_2x_2 \) and \(w_2w_1 \) must be embedded in the same side of \(C_1 \). That implies two edges \(w_2x_2 \) and \(w_2w_3 \) are embedded in different sides of \(C_2 \), contradicting (ii) of Claim 3.25.

Claim 3.40. There is no common neighbor between \(w_1 \) and \(w_3 \).

Proof. We note that \(w_1 \) and \(w_3 \) can have up to 4 common neighbors. Let \(x \) be a non-\(C \) common neighbor of \(w_1 \) and \(w_3 \). Since \(w_0 \) is a 3-vertex in 4-cycle \(w_1w_0w_3x \), by Corollary 3.37\(x \) must be a 4-vertex. We consider two cases:

Case 1 Three vertices \(x_0, w_1, w_3 \) share a common neighbor, that we assume w.l.o.g to be \(x \) (see Figure 5(a)). Let \(C_3 = x_0w_0w_1x, C_4 = x_0w_0w_3x \) and \(C_5 = x_3w_0w_1 \). By (ii) of Claim 3.25, two non-\(C_3 \) edges incident to \(x \) must be embedded in the same side of \(C_3 \) and two non-\(C_4 \) edges incident to \(x \) must be embedded in the same side of \(C_4 \). That implies two non-\(C_5 \) edges incident to \(x \) are embedded in different side of \(C_5 \), contradicting (ii) of Claim 3.25.

Case 2 Three vertices \(x_0, w_1, w_3 \) do not share a common neighbor. Then, \(x, x_1 \) and \(x_3 \) are pair-wise distinct (see Figure 5(b)). Let \(H \) be the subgraph of \(G \) induced by \(V(C) \cup \{x, x_0, x_1, x_3\} \). Observe that we can collect \(\{x_0, w_0, w_1, w_3\} \) from \(H \). Since \(G \) is triangle-free, \(xw_2, x_3x_1, x_1x_3 \) are non-edges of \(G \). Thus, \(n(H) = n(G) - 8 \) and \(m(H) = m(G) - 20 \). By Observation 3.1 with \(L = H \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (8, 20, 0, 0, 4) \), \(4 - 8a + 20b \) must be negative, contradicting Inequality (26).

Let \(y_1 \) and \(y_3 \) be the non-\(C \) neighbors of \(w_1 \) and \(w_3 \), respectively, such that \(y_1 \neq x_1 \) and \(y_3 \neq x_3 \). Let \(y_0 \) be the non-\(C \) neighbor of \(x_0 \) such that \(y_0 \notin \{x_1, x_3\} \). Let \(Z = V(C) \cup \{x_0, x_1, x_3, y_0, y_1, y_3\} \).

Claim 3.41. Vertices in \(Z \) are pairwise distinct.

Proof. By Claim 3.40\(x_1 \) and \(x_3 \) are distinct and two vertices \(y_1 \) and \(y_3 \) are distinct. Since \(G \) is triangle-free, \(y_0 \neq x_3 \) and \(y_0 \neq x_1 \). To prove the claim, we only need to prove that \(y_0 \neq y_1 \) and \(y_0 \neq y_3 \). By symmetry, it suffices to prove \(y_0 \neq y_1 \). Suppose otherwise. Let \(H \) be the subgraph of \(G \) induced by \(V(C) \cup \{x_0, x_1, x_3, y_0\} \) (see Figure 5(c)). Since \(G \) is triangle-free, \(y_0 \) and \(x_3 \) are non-adjacent and \(y_0 \) and \(w_2 \) are non-adjacent. By Claim 3.40\(y_0 \) and \(w_3 \) are non-adjacent. Thus, \(m(G \setminus H) = m(G) - 20 \). Since we can collect \(\{x_0, w_0, w_1, w_3\} \) from \(H \), by Observation 3.1 with \(L = H \) and \((\alpha, \beta, \gamma, \eta, \lambda) = (8, 20, 0, 0, 4) \), \(4 - 8a + 20b \) must be negative, contradicting Inequality (26).

Claim 3.42. At least one of \(y_0y_1, y_1y_3, y_0y_3 \) is an edge of \(G \).
Proof. Suppose that y_0y_1, y_1y_3, y_0y_3 are non-edges of G. Let $N = \{x_0, x_1, x_3, w_1, w_2, w_3\}$. Let G' be the graph obtained from G by removing vertices in N and adding edges \{w_0y_0, w_0y_1, w_0y_3\} (see Figure 6(a)). By Claim 3.17, the graph obtained from G by removing vertices in N has no T_6 component and Q_6^1 subgraph. Thus, any T_6 component and Q_6^1 subgraph of G' must contain w_0. That implies $p(G') + q(G') \leq 1$. If $q(G') = 1$, let H be a T_6 component of G. Then w_0 must be a 3-vertex of H. Since any 3-vertex of a T_6 component is adjacent to a 2-vertex, at least one neighbor of w_0 must be a 2-vertex in G'. However, w_0’s neighbors all are 3^+-vertices in G'. Thus, $q(G') = 0$. Since G is a counter-example of minimal order, G' has an induced forest F' of order at least $an(G') - bm(G') - cp(G')$. By adding x_0, w_1, w_3 to F', we obtain an induced forest F of order at least $an(G') - bm(G') - cp(G') + 3$ in G. Since $n(G') = n(G) - 6$ and $m(G') = m(G) - 15$, we have:

$$an(G') - bm(G') - cp(G') + 3 \geq an(G) - bm(G) + 3 - 6a + 15b - c$$

Thus, we obtain contradiction by adding Inequality (37) to \mathcal{LP}.

$$3 - 6a + 15b - c \geq 0 \quad (37)$$

\[\square\]

![Figure 6: (a) A configuration in the proof of Claim 3.42. (b) A configuration in the proof of Claim 3.43. (c) A configuration in the proof of Claim 3.44. (d) A configuration in the proof of Lemma 3.45.](image)

Herein, we regard 4-face C as a 4-cycle so that we can speak of the symmetry of neighbors of w_0 in G (see Figure 6(a)). By symmetry, we can assume w.l.o.g that y_1y_3 is an edge of G.

Claim 3.43. Two vertices y_1 and y_3 are 4-vertices.

Proof. Suppose otherwise. We can assume w.l.o.g that y_1 is a 3-vertex. By Claim 3.38, y_3 must be a 4-vertex (see Figure 6(b)). Let H be the subgraph of G induced by \{w_0, w_1, w_3, x_0, x_1, x_3, y_1, y_3\}. Since G is triangle-free, two vertices y_1 and x_1 are non-adjacent and two vertices x_3 and y_3 are non-adjacent. By planarity, if y_1x_3 is an edge of G, then x_1y_3 is non-edge of G and vice versa. Thus, $m(G \setminus H) \leq m(G) - 19$. Since we can collect \{y_1, x_0, w_0, w_3\} from H, by Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 19, 0, 0, 4)$, $4 - 8a + 19b$ must be negative. Thus, we obtain contradiction by adding Inequality (38) to \mathcal{LP}.

$$4 - 8a + 19b \geq 0 \quad (38)$$

\[\square\]

Claim 3.44. Two vertices y_3, x_1 are non-adjacent and two vertices x_3, y_1 are non-adjacent.
Proof. By symmetry, we only need to prove y_3 and x_1 are non-adjacent. Suppose that y_3x_1 is an edge of G(see Figure 6(c)). Let C_6 be cycle $x_1w_1w_2y_3$. Two vertices y_1 and x_3 are embedded in different sides of C_6. Let H be the subgraph induced by $\{w_0, w_1, w_2, x_0, x_1, x_3, y_3\}$. Observe that we can collect x_0, w_0, w_1, w_3 from H. Since $m(G \setminus H) \leq m(G) - 20$, by Observation 3.1 with $L = H$ and $(\alpha, \beta, \gamma, \eta, \lambda) = (8, 20, 0, 0, 4)$, $4 - 8a + 20b$ must be negative, contradicting Inequality (26). □

Lemma 3.45. Graph G has no 4-face with exactly one 3-vertex.

Proof. Since G is triangle-free, at most one of y_0y_1, y_0y_3 is an edge of G. By symmetry, we can assume w.l.o.g that y_0 and y_1 are non-adjacent. Let $J = \{w_0, w_1, w_2, x_1, x_3, y_3\}$. Let G' be the graph obtained from G by removing vertices in J and adding edge x_0y_1 (see Figure 6(d)). Since two vertices y_0, y_1 are non-adjacent and two vertices y_1, x_3 are non-adjacent by Claim 3.44, G' is triangle-free. By Claim 3.46, the graph obtained by removing J from G has no T_6 component and Q_3^1 subgraph. Thus, any T_6 and Q_3^1 - subgraph of G' must contains edge x_0y_1. Since x_0 is a 2-vertex of G', G' has no Q_3^1 - subgraph. We now argue that G' contains no T_6 component.

Suppose that G' contains a T_6 component. Then, x_0 must be one of two 2-vertices of T_6. By symmetry of T_6, we can assume w.l.o.g that x_0 is v_3. Thus, edge x_0y_1 is v_2v_5 or v_3v_5. Let C_7 be cycle $v_1v_2v_3v_4v_5$. By Claim 3.47, the graph obtained by removing J from G has no T_6 component and Q_3^1 - subgraph. Thus, any T_6 and Q_3^1 - subgraph of G' must contains edge x_0y_1. Since x_0 is a 2-vertex of G', G' has no Q_3^1 - subgraph. We now argue that G' contains no T_6 component.

Since G is a minimal counter-example, G' has an induced forest F' of order at least $an(G') - bm(G')$. Let $F = F' \cup \{w_0, w_1, w_3\}$, F is an induced forest of G of order at least $an(G') - bm(G') + 3$. Since $n(G') = n(G) - 7$ and $m(G') = m(G) - 19$, we have:

$$|F| \geq an(G) - bm(G) + 3 - 7a + 19b$$

Thus, we obtain contradiction by adding Inequality (39) to LP.

$$3 - 7a + 19b \geq 0 \quad (39)$$

□

3.5 Excluding a 5-face with at least four 3-vertices

Let w_0, w_1, w_2, w_3, w_4 be vertices in clock-wise order of a 5-face C of G such that C has at most one 4-vertex. Let $X = \{x_0, x_1, x_2, x_3, x_4\}$ be a set of vertices such that x_i is a non-C neighbor of w_i for all $0 \leq i \leq 4$.

Claim 3.46. Face C has no 4-vertex.

Proof. Suppose that w_i is a 4-vertex in G. Recall that C has at least four 3-vertices. Thus, w_{i+1} is a 3-vertex that has a 3-vertex and a 4-vertex as neighbors, contradicting Claim 3.38 □

Observation 3.47. Vertices in X are 3-vertices and pairwise distinct.

Proof. Suppose that $x_i = x_{i+2}$ for some $i \in \{0, 1, 2, 3, 4\}$ (indices are mod 5). Then, $w_iw_{i+1}w_{i+2}x_i$ is a 4-cycle that has at least three 3-vertices, contradicting Corollary 3.37. The fact that vertices in X are 3-vertices follows directly from Claim 3.38. □

Lemma 3.48. Any 5-face of G has at least two 4-vertices.
Proof. By Claim 3.46, a 5-face C that has at most one 4-vertex actually has no 4-vertex. By Corollary 3.37, x_i and x_{i+1} are non-adjacent, for any i such that $0 \leq i \leq 4$. Let G' be the graph obtained from G by removing $\{w_0, w_3, w_4\}$ and adding edges x_0w_1, x_3w_2. G' has no T_6 component since only u_4 is a 2-vertex in G'. Suppose that G' contains a Q_{13}^1 subgraph, say H, of G. Since the graph obtained from G by removing $\{w_0, w_3, w_4\}$ has no Q_{13}^1 subgraph, H must contain at least one of two new edges x_0w_1, x_3w_2. Since H has six 4-faces, there is at least 4-face, say C_0, of H that contains no new edge. Thus, C_0 is also a 4-cycle in G. Except x_4, all vertices in G' has the same degree as in G. Thus, C_0 has at least two 3-vertices, contradicting Corollary 3.37. In summary, $p(G') = q(G') = 0$. Hence, G' has an induced forest F' of order at least $an(G') - bm(G')$. Let $F = F' \cup \{w_0, w_3\}$. F is an induced forest of G of order at least $an(G') - bm(G') + 2$. Since $n(G') = n(G) - 3$ and $m(G') = m(G) - 5$, we have:

$$|F| \geq an(G) - bm(G) + 2 - 3a + 5b$$

Since $2 - 3a + 5b$ is non-negative by Inequality (28), $|F| \geq an(G) - bm(G)$, contradicting that G is a counter-example.

Proof of Theorem 1.2. We have shown that if a, b, c, d satisfy all constraints in LP, a counter-example graph G must be two-connected, have $\delta(G) \geq 3$, have no 4-face with at least one 3-vertex and have no 5-face with at least four vertices, contradicting Theorem 3.2. To finish the proof of Theorem 1.2, we only need to show that Linear Program LP that consists of constraints from (9) to (39) is equivalent to Linear Program (7). We observe that the set of constraints in Linear Program (7) is a subset of the set of constraints in LP since:

$$\begin{align*}
(7i) &= (24), (7g) = (25), (7h) = (18), (7k) = (9), (7j) = (10), (7k) = (11), (7l) = (12),
(7m) &= (13), (7n) = (14), (7o) = (15), (7p) = (16), (7q) = (21), (7r) = (22), (7s) = (27)\end{align*}$$

Here we note that Inequality (7m) is equivalent to Inequality (13) when $t = 0$. Remaining constraints of LP, we express as linear combinations of constraints in Linear Program (7) as follows:

$$\begin{align*}
(5t + 4) - (8t + 6)a + (13t + 9)b - d &= (13) = (7m) + t(7k) \\
4 - 6a + 10b - d &= (17) = (7m) + (7c) \\
5 - 6a + 16b - c - d &= (19) = (7p) + (7c) \\
4 - 6a + 11b - d &= (20) = (7m) + 2(7c) \\
5 - 8a + 17b - c - d &= (23) = (7p) + 2(7c) \\
1 - 2a + 5b &= (25) = (7h) + (7b) \\
2 - 3a + 5b &= (28) = (7h) + (7l) \\
3 - 5a + 9b &= (29) = (7s) + (7h) \\
4 - 6a + 9b &= (30) = (7m) + (7c) \\
6 - 9a + 14b &= (31) = (7k) + (7c) + (7b) \\
1 + 5b - 2a &= (32) = (7h) + (7b) \\
4 - 7a + 14b &= (33) = (7b) + 2(7h) + (7s) \\
7 - 11a + 18b &= (34) = (7b) + 2(7h) + (7s) \\
3 - 6a + 14b &= (35) = (7s) + 2(7h) \\
7 - 12a + 23b &= (36) = 2(7s) + 3(7h) + (7b)
\end{align*}$$
Large induced forests in triangle-free planar graphs

\[3 - 6a + 15b - c \overset{(37)}{=} 7h + 7q \]
\[4 - 8a + 19b \overset{(38)}{=} 3(7h) + 7s + 7b \]
\[3 - 7a + 19b \overset{(39)}{=} 7s + 3(7h) \]

4 Conclusion

We have introduced a new approach that can handle special graphs of small order separately to find an induced forest of order at least \(\frac{5n}{9} \) in triangle-free planar graphs of order \(n \). It would be very interesting to see whether our method can be employed to give a better bound on the order of the largest induced forest in girth-5 planar graphs \([6]\) and the order of the induced forest in subcubic (non-planar) graphs of girth at least four and five \([7]\). Another direction is to improve our analysis to obtain \(\frac{4n}{7} \) bound. This would match the bound obtained by Wang, Xie, and Yu \([11]\) for bipartite planar graphs and would possibly give a simpler and more general proof than the proof by Wang, Xie, and Yu. The ultimate goal is to resolve the conjecture of Akiyama and Watanabe and we would like to see if our method can be extended to resolve this conjecture as well.

Acknowledgment. We thank Baigong Zheng for proofreading this paper. We thank conversations with Glencora Borradaile and Melissa Sherman-Bennett during the development of this work. We also would like to thank Bojan Mohar for pointing out mistakes in the statement of Theorem 1.1 in earlier versions of this paper. This material is based upon work supported by the National Science Foundation under Grant No. CCF-1252833.

References

[1] J. Akiyama and M. Watanabe. Maximum induced forests of planar graphs. *Graphs and Combinatorics*, 1(3):201–202, 1987.
[2] M. O. Albertson and D. M. Berman. A conjecture on planar graphs. *Graph Theory and Related Topics*, page 357, 1979.
[3] N. Alon, D. Mubayi, and R. Thomas. Large induced forests in sparse graphs. *Journal of Graph Theory*, 38(3):113–123, 2001.
[4] O. V. Borodin. On acyclic colorings of planar graphs. *Discrete Mathematics*, 25(3):211–236, 1979.
[5] D. W. Cranston and D. B. West. A guide to the discharging method. *arXiv:1306.4434*, 2013.
[6] F. Dross, M. Montassier, and A. Pinlou. Large induced forests in planar graphs with girth 4 or 5. *arXiv:1409.1348*, 2014.
[7] T. Kelly and C. Liu. Size of the largest induced forest in subcubic graphs of girth at least four and five. *arXiv:1603.03855*, 2016.
[8] L. Kowalik, B. Lužar, and R. Škrekovski. An improved bound on the largest induced forests for triangle-free planar graphs. *Discrete Mathematics and Theoretical Computer Science*, 12(1):87–100, 2010.
[9] R. Lukot’ka, J. Mazák, and X. Zhu. Maximum 4-degenerate subgraph of a planar graph. *The Electronic Journal of Combinatorics*, 22(1):P1–11, 2015.
[10] M. R. Salavatipour. Large induced forests in triangle-free planar graphs. *Graphs and Combinatorics*, 22(1):113–126, 2006.

[11] Y. Wang, Q. Xie, and X. Yu. Induced forests in bipartite planar graphs. *arXiv:1605.00047*, 2016.