Desiccation tolerance in the streptophyte green alga *Klebsormidium*: The role of phytohormones

A Holzinger¹,²,* and B Becker²

¹University of Innsbruck; Institute of Botany; Functional Plant Biology; Innsbruck, Austria; ²University of Cologne; Cologne, Biocenter; Botanical Institute; Cologne, Germany

The origin of phytohormones has been a puzzling question for decades; however, with the availability of large transcriptomic¹ and genomic² datasets of the early branching streptophytic green alga *Klebsormidium* this question can be addressed from a fresh perspective. *Klebsormidium* has recently been examined extensively for physiological and structural reactions to desiccation³-⁶ or cold temperatures⁷, natural factors in soil crust living algae. Ecological influences have been made responsible for fine scaled structuring of genotypes and differentiation of cryptic species⁸,⁹. But how do these organisms sense their changing environments?

In this addendum article, we explore our own data set from a transcriptomic study of severe desiccation stress in *Klebsormidium crenulatum*.¹ The cells were desiccated for 2.5 h under monitored conditions over silicagel at »10% relative humidity. The relative water content of the desiccated cells was 6.54 ± 1.89%.

For the molecular analysis we established a high-coverage reference transcriptome database which contained 24,183 contigs with a mean sequence length of 1,327b (N50 1,462). This database was used to evaluate which phytohormone pathways are present in *Klebsormidium* and might be involved for cellular response to desiccation stress. Desiccation is well studied in embryophytes, and the cytokinin, ethylene and abscisic acid (ABA) signaling pathways have been implicated in stress response. Given these facts we wondered whether ABA and/or ethylene and/or cytokinin signaling are involved in desiccation tolerance in *K. crenulatum*, and searched for the most similar transcripts to the *K. flaccidum* proteins reported to be putative orthologues of these 3 (ABA, cytokinin, ethylene) plant phytohormones signaling components. Here, we propose that at least 3 major signaling pathways for land plant hormone response are functional in Klebsormidiophyceae. Based on our transcriptomic data of severe desiccation stress auxin mediated signal transduction seem to be missing and in the case of jasmonic acid (JA) only the receptor JAR1 was found, but the further steps were absent in the analyzed *K. crenulatum* transcriptome.

Phytohormone Signaling in *Klebsormidium* and Other Streptophyte Green Algae

Using the KEGG pathway reconstruction tool we found almost complete pathways for cytokinin signaling, ABA signaling and ethylene response in *K. crenulatum*. Meanwhile the draft sequence of the *K. flaccidum* genome has become available and detected the genes for (nearly) complete signaling pathways for auxin, ABA, cytokinin, salicylic acid and JA.² The physical presence of the auxin indole-3-acetic acid, ABA, the cytokinin isopenitenyadenine, JA, and salicylic acid in *K. flaccidum* was also confirmed by mass spectrometry. While the ethylene signaling pathway was represented in the genome, no attempt was made to confirm its physical presence in *K. flaccidum*.²

Keywords: ABA, abscisic acid, cytokinin signaling, desiccation tolerance, ethylene, green algae

© A Holzinger and B Becker

*Correspondence to: A Holzinger; Email: Andreas.Holzinger@uibk.ac.at

Submitted: 05/27/2015
Revised: 06/03/2015
Accepted: 06/04/2015

http://dx.doi.org/10.1080/19420889.2015.1059978
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
conservation of the ethylene signaling pathway between conjugating green algae *Spirogyra* (representing the sister group to land plants) and embryophytes. No evidence for gibberelinic acid signaling nor the recently described ABA receptor *S. flaccidum* was observed (Table 1), the significance of these additional transcripts (that could be explained by alternative splicing or additional isoforms) remains unclear at the moment. Many *Klebsormidium crenulatum* transcripts for components of the plant signaling pathway show significant changes during desiccation with transcripts similar to components of the ABA signaling pathway upregulated up to 9-fold.

Table 1. summarizes our results. We detected transcripts for all reported proteins of the 3 signaling pathways. For a few proteins more than one transcript was observed (Table 1, Fig. 1). However, no change in cold tolerance by ABA application (1–100 µm) was found experimentally in *K. flaccidum* by. The same discrepancy was earlier also observed in the chlorophyceae *Stigmenocladium cf. tenue*, where ABA had been detected, but exogenously applied ABA caused only a slight growth reduction and promoted senescence in some cases. Experimentally ABA was measured in numerous chlorophytes as well as in *Chlorella foetida*.

Recently, orthologues of the Arabidopsis protein kinase OST1 (*SnRK2 family protein, regulating stomata closure in guard cells*) and the S-type anion channel gene SLAC1 (required for stomata function) were found in *Klebsormidium nitens*. Interestingly, KnOST1 was able to activate AtSLAC1, while neither algal nor embryophyte OST1 were able to activate the SLAC1 protein from *K. nitens*. These data suggest that while the intracellular signaling pathway seems to be present early in plant evolution, the target as well as the receptor might have changed.

Cytokinin Signaling

Putative orthologues for cytokinin receptors CRE1/AHK in the plasma membrane, AHP in the cytoplasm as well as the transcription factor A-ARP were all up-regulated upon desiccation stress in *K. crenulatum* (Fig. 1, Table 1), while B-ARP were down-regulated. Most interesting is the up-regulation of A-ARP, which are under control of the cytokinin signaling pathway in plants (see Fig. 1), which provides direct evidence for the involvement of cytokinin signaling in the cellular response to desiccation stress.

In *K. flaccidum* the cytokinin isopenetyladenine was identified 2 although at low concentrations. detected cytokinin at very low concentrations (0.29 nmol g DW) in *K. flaccidum*. Isopenetyl adenine was previously chemically identified in the streptophyte green alga *Chara globularis*.

ABA and Stress Response in *Klebsormidium*

The ABA response is well known in abiotic stress reactions (e.g.) often in interplay with cytokinins. The *Klebsormidium* genome contained a putative ortholog to the GTG protein, which has been proposed as ABA receptor. However recent work has cast doubts, whether this protein really serves as an ABA receptor. Upon desiccation stress the transcript level for the GTG ortholog was decreased by 0.5 times. In contrast the transcripts for the ABA signaling components PP2C as well as SnRK2 were significantly increased, as well as the nuclear AREB protein (Table 1, Fig. 1). However, no change in cold tolerance by ABA application (1–100 µm) was found experimentally in *K. flaccidum* by. The same discrepancy was earlier also observed in the chlorophyceae *Stigmenocladium cf. tenue*, where ABA had been detected, but exogenously applied ABA caused only a slight growth reduction and promoted senescence in some cases. Experimentally ABA was measured in numerous chlorophytes as well as in *Chlorella foetida*.

Recently, orthologues of the Arabidopsis protein kinase OST1 (*SnRK2 family protein, regulating stomata closure in guard cells*) and the S-type anion channel gene SLAC1 (required for stomata function) were found in *Klebsormidium nitens*. Interestingly, KnOST1 was able to activate AtSLAC1, while neither algal nor embryophyte OST1 were able to activate the SLAC1 protein from *K. nitens*. These data suggest that while the intracellular signaling pathway seems to be present early in plant evolution, the target as well as the receptor might have changed.

Table 1

Pathway/Gene	K. flaccidum gene	Closest A. thaliana homologue	Most similar K. crenulatum Transcript	Differential expressed (control cells vs. desiccation: xfold change/padj)	Additional K. crenulatum transcripts
Cytokinin signaling					
CRE1/AHK	KZ0058_0040	AT1G27320	—	—	—
AHP	KZ0059_0020	AT1G03430	UN031179	0.7/0.08	0
A-ARR	KZ0060_0050	AT3G57040	UN038317	2.1/5.0e-06	0
B-ARR	KZ0061_0040	AT4G16110	UN038143	0.5/6.2e-05	0
Abscisic acid signaling					
GTG	KZ0032_0060	AT4G27630	UN039964	5.9/1.7e-26	2
PYR	No Blast Hit	—	—	—	—
PP2C	KZ0072_0050	AT1G72770	UN029018	5.9/1.7e-26	2
AnRK2	KZ0097_0360	AT4G33950	UN031491	2.5/1.5e-09	1
AREB	KZ0015_0390	AT3G56850	UN032996	1.5/0.02	0
EREB	KZ0016_0080	AT3G56850	UN039695	7.8/9.8e-30	2
Ethylene signaling					
ETR/ERS/EIN4	KZ0019_0020	AT1G6539	UN031665	0.6/0.001	1
EIN3	No definite counterpart	—	—	—	—
EIN4	KZ0021_0020	AT2G5490	UN037105	0.7/0.18	0
EIN5	KZ0004_0150	AT3G00770	UN042380	0.1/6.7e-12	0
by combined GC/MS and appears to be the most common cytokinin in lower green plants including the moss Physcomitrella.16 No evidence for zeatin, the most common cytokinin of flowering plants has been found in green algae so far.

Highly Conserved Ethylene Response

Ethylene appears to be a highly conserved plant hormone for the last 450 mio years10 and the evolution of the ethylene receptor family in relation to land plant evolution has recently been summarized.17 EST sequences for subfamily I ethylene receptors of \textit{K. flaccidum} are available18 and homologues to both plant ethylene receptors subfamilies are encoded in the \textit{Klebsormidium} genome.18 However, it is currently not clear how the ethylene signal is transmitted in \textit{Klebsormidium} as the EIN2 protein has not been found in the genome of \textit{Klebsormidium}.2 In \textit{K. crenulatum} an upregulation of ETR and ERS transcripts (ethylene receptor subfamily 1) were found upon desiccation stress (Fig. 1, Table 1). Interestingly, the EIN4 homolog (ethylene receptor subfamily 2) was downregulated, suggesting that in \textit{Klebsormidium} the 2 receptor subfamilies serve different functions. All other components of the ethylene signaling machinery showed no or only slight changes in the expression level.

In plants the response to abiotic stress is modulated by changes in ethylene receptor transcript levels,19 suggesting that the observed changes in ethylene receptor transcripts levels serve similar function in \textit{K. crenulatum}.

Conclusions and Outlook

In terrestrialization events, mechanisms to sense the external environmental situation that might fluctuate and allow cells to react immediately are crucial. Here, we demonstrate that the abiotic stress of...
severe desiccation regulates the expression of 3 classical phytohormone pathways in the early branching streptophyte algae K. crenulatum. Cytokinin, ABA and ethylene signaling. These data further support that Klebsormidiophyceae have the hormonal prerequisites for living on land. The interplay between the different pathways needs further examination, as well as possible roles of e.g., the jasmonic acid receptor JAR1, which is present and upregulated – whereas the further pathway is completely missing. Similar is the case of the salicylic acid pathway where only the transcription factor TGA is found upregulated in our transcripts. Taken together, we are convinced that plant phytohormone research in streptophyte algae will receive a renewed interest over the next years. Important signaling pathways were already established early in the evolution of plants, which might have been crucial for the colonization of land.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

The study was supported by FWF project P24242-B16 to A.H.

References

1. Holzinger A, Kaplan F, Blas K, Zechmann B, Komischke-Buchmann K, Becker B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 2014; 9:e106030; PMID:2540847; http://dx.doi.org/10.1371/journal.pone.0106030
2. Hori K, Maruyama F, Fujisawa T, Togashi T, Yamanoto N, Sato M, Sato Y, Yamada T, Mori H, Tajima N, et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nature Comm 2014; 5:3978; PMID:23465297; http://dx.doi.org/10.1038/ncomms4978
3. Karsten U, Lütz C, Holzinger A. Ecophysiologica performance of the aeroterrestrial green alga Klebsormidium crenulatum (Charophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J Phycol 2010; 46:1187-97; http://dx.doi.org/10.1111/j.1529-8817.2010.00921.x
4. Holzinger A, Lütz C, Karsten U. Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J Phycol 2011; 47:591-600; http://dx.doi.org/10.1111/j.1529-8817.2011.00980.x
5. Karsten U, Holzinger A. Light, temperature and desiccation effects on photosynthetic activity and drought-induced ultrastructural changes in the green algae Klebsormidium dissecum (Streptophyta) from a high alpine soil microcrust. Microb Ecol 2012; 63:51-63; PMID:21811791; http://dx.doi.org/10.1007/s00248-011-9924-6
6. Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 2013; 4:327; PMID:23986769; http://dx.doi.org/10.3389/fpls.2013.00327
7. Nagao M, Matsui K, Uemura M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation in response to paracryleae. Life Sci 2008; 83:1872-85; PMID:18315534; http://dx.doi.org/10.1016/j.lfs.2008.01.067
8. Skaloud P, Rindi F. Ecological differentiation of cryptic species within a sexual protist morphospecies: A case study of filamentous green alga Klebsormidium (Streptophyta). Eukar Microbiol 2013; 60:350-62; PMID:23648118; http://dx.doi.org/10.1111/j.1365-3040.2008.01804.x
9. Ryšánková K, Skyllas-Kazacos M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation to paracryleae. Life Sci 2008; 83:1872-85; PMID:18315534; http://dx.doi.org/10.1016/j.lfs.2008.01.067
10. Rynáček D, Hříčková K, Skaloud P. Global ubiquity and local endemism of free-living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium. Environ Microbiol 2015; 17:689-94; PMID:24803402; http://dx.doi.org/10.1111/1462-2920.12501
11. Hubbard KE, Nishimura N, Hitomi K, Gerzso ED, Schroeder JI. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Gen Dev 2010; 24:1695-708; PMID:20713515; http://dx.doi.org/10.1101/gad.1953910
12. O’Brien JA, Benková E. Cytokinin cross-talking during biotic and abiotic responses. Plant Physiol 2015; 4:451; PMID:24321053
13. Tierf T, Runtkowski U, Kohler R, Kaspr W. Further investigations on the occurrence and the effects of abscisic acid in algae. Biochem Physiol Pfl 1988; 184:259-66; http://dx.doi.org/10.1016/0014-5793(88)90210-1
14. Lind C, Dreyer I, Lopez-Sanjurjo EJ, Mayer K, Iuchi K, Kohchi T, Lang D, Zhao Y, Kreuzer I, Al-Rashied KAS, et al. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr Biol 2015; 25:928-38; PMID:25802151; http://dx.doi.org/10.1016/j.cub.2015.01.067
15. Strick WA, Orlov V, Novák O, Rolek J, Strnad M, Bárta P, Staden J. Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 2013; 49:459-67; http://dx.doi.org/10.1111/j.1749-498X.2012.00206.x
16. Zhang W, Yamane H, Takahashi N, Chapman DJ, Phinney BO. Identification of a cytokinin in the green alga Chara globularis. Phytochemistry 1989; 28:337-8; http://dx.doi.org/10.1016/0031-9422(89)80007-X
17. Gallie DR. Appearance and elaboration of the ethylene receptor during land plant evolution. Plant Mol Biol 2015; 87:521-39; PMID:25682121; http://dx.doi.org/10.1007/s11103-015-0296-z
18. Yasumura Y, Pierik R, Fricker MD, Voesenek LACJ, Phinney BO. Identification of a cytokinin in the green alga Chara globularis. Phytochemistry 1989; 28:337-8; http://dx.doi.org/10.1006/pscs.2001.0296-z
19. Sliwka WA, Orlov V, Novák O, Rolek J, Strnad M, Bárta P, Staden J. Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 2013; 49:459-67; http://dx.doi.org/10.1111/j.1749-498X.2012.00206.x
20. Yasumura Y, Pierik R, Fricker MD, Voesenek LACJ, Phinney BO. Identification of a cytokinin in the green alga Chara globularis. Phytochemistry 1989; 28:337-8; http://dx.doi.org/10.1006/pscs.2001.0296-z
21. Zhao XC, Schaller GE. Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 2004; 562:189-92; PMID:15044023; http://dx.doi.org/10.1016/S0014-5793(04)00238-8