Potentiometric and pHmetric Studies of Paracetamol

Swaroopa Rani N. Gupta*
Department of Chemistry, Brijlal Biyani Science College, Amravati, Maharashtra, India

Abstract

Acid-base titration of paracetamol in nonaqueous solvents was done. Procedure was followed for titration of paracetamol in different media like acetic acid, pyridine, dimethylformamide and ethyl alcohol with standard perchloric acid in glacial acetic acid, sodium ethoxide in ethyl alcohol using plantinum-calomel as well as glass-calomel electrode system. The equivalence point was located as accurately as possible by a differential graph of ΔE/ΔV or ΔpH/ΔV against V and concentration of test solution was computed. The acid-base titration of paracetamol is rapid and reproducible, and permits its determination in medicinal sample. The electrode systems vary with the solvent employed. The platinum-calomel electrode system is suitable where the solvent is glacial acetic acid in this case perchloric acid in glacial acetic acid is the titrant while the glass-calomel electrode system is suitable where the solvent is either pyridine, an alcohol or dimethylformamide, the titrant consists of sodium ethoxide in ethyl alcohol.

Keywords: Acetic acid; Dimethylformamide; Ethyl alcohol; Paracetamol; Pyridine

Introduction

Paracetamol (acetaminophen) is one of the most popular analgesic and antipyretic drugs. Paracetamol is available in different dosage forms: tablet, capsules, drops, elixirs, suspensions and suppositories. Dosage forms of paracetamol and its combinations with other drugs have been listed in various pharmacopoeias [1, 2]. The combination of paracetamol with dipyrone is used as an antipyretic, analgesic and anti-inflammatory drug. Numerous methods have been reported for the analysis of paracetamol and its combinations in pharmaceuticals or in biological fluids. Paracetamol has been determined in combination with other drugs using titrimetry [3, 4], volumetry [5], fluorimetry [6], colorimetry [7], UV-spectrophotometry [7-9], quantitative thin-layer chromatography (TLC) [10], high-performance liquid chromatography (HPLC) [11-16] and gas chromatography (GC) [17] in pharmaceutical preparations. Effect of electrophilic and electrodotic groups on the potentiometric titration of amides and other weak bases was studied [18]. Electrodotic groups enhance the potentiometric end point and electrophilic groups depress it, sometimes to the extent that the compound is not titratable. A combination of chloroform and acetic anhydride is a useful alternative medium for the titration of weak bases. A potentiometric method for determination of p-acetamidophenol was reported [19].

Analytical data are given for a representative number of amides, acetylated amines, and formylated amines [20]. In acetic acid, amides show little tendency toward salt formation with CH$_3$COOH$_2^{+}$ however, upon addition of acetic anhydride, additional acidic species become evident and measurable end points are observed [21].

\[\text{CH}_3\text{COOH}^+ + (\text{CH}_3\text{CO})_2\text{O} \rightleftharpoons (\text{CH}_3\text{CO})_2\text{O}^- + \text{CH}_3\text{COOH} \]

Considerable evidence for this equilibrium has been presented by a number of investigators [21-25].

An accurate, simple, reproducible and sensitive method for the determination of paracetamol, caffeine and dipyrone was developed and validated [26].

In present study acid-base titration of paracetamol in nonaqueous solvents was done. Procedure was followed for titration of paracetamol in different media like acetic acid, pyridine, dimethylformamide and ethyl alcohol with standard perchloric acid in glacial acetic acid, sodium ethoxide in ethyl alcohol using plantinum-calomel as well as glass-calomel electrode system. The equivalence point was located as accurately as possible by a differential graph of ΔE/ΔV or ΔH/ΔV against V and concentration of test solution was computed.
addition of a titrant. Two types of potentiometric titrations, Oxidation-
Reduction and Acid-Base titrations in nonaqueous solvents, have been
performed, and interest is focused upon changes in the e.m.f. of an
electrolytic cell as a titrant of precisely known concentration is added
to a solution of the analyte namely paracetamol.

Acid-base titration data for paracetamol against perchloric acid
and C₃H₂ONa in different media - glacial acetic acid, pyridine, dimethyl
formamide and ethyl alcohol are shown in Table 1.

An end point is located more precisely by plotting successive values
of the rate of change of cell e.m.f. vs each increment of titrant in the
vicinity of the inflection point. The position of the maximum on the
first derivative curve, Figures 1-6 corresponds to the inflection point on
the normal titration curve.

Results and Discussion

The results of estimation of paracetamol by potentiometric method
are represented in Table 2. It is found that paracetamol can be easily
titrated by potentiometric method in nonaqueous media like glacial
acetic acid with perchloric acid and in pyridine, dimethylformamide
and ethyl alcohol with sodium ethoxide. Good inflection point is
obtained, results are reproducible and recovery is nearly 100%.

Acid-base reactions of paracetamol in nonaqueous solvents

Many acids or bases such as paracetamol that are too weak for
determination in water become susceptible to titration in appropriate
nonaqueous solvents. The major considerations in the choice of a
solvent for acidimetric reactions are its acidity and basicity, its
dielectric constant, and the physical solubility of a solute. Acidity is

Potentiometric Titration of Paracetamol in glacial acetic acid with 0.1 N HClO₄, ml Potential, Volts	Volume of 0.1 N HClO₄, ml	Potential, Volts	
5	0.49	15	0.525
5.5	0.49	16	0.525
6	0.49	17	0.53
7	0.49	18	0.53
8	0.495	19	0.53
9	0.5	20	0.535
10	0.5	21	0.535
11	0.504	22	0.535
12	0.514	23	0.535
13	0.514	24	0.535
14	0.525	25	0.535

Potentiometric Titration of Paracetamol in pyridine with 0.075 N sodium ethoxide in ethyl alcohol, ml Potential, Volts	Volume of 0.075 N C₂H₅ONa, ml	Potential, Volts	
4	0.22	15	0.279
5	0.22	16	0.293
6	0.225	17	0.305
7	0.225	18	0.314
8	0.232	19	0.317
9	0.232	20	0.317
10	0.232	21	0.326
11	0.239	22	0.326
12	0.243	23	0.326
13	0.249	24	0.326
14	0.26	25	0.326

Potentiometric Titration of Paracetamol in dimethylformamide with 0.075 N sodium ethoxide in ethyl alcohol, ml Potential, Volts	Volume of 0.075 N C₂H₅ONa, ml	Potential, Volts	
2	0.22	17	0.262
3	0.224	18	0.273
4	0.227	19	0.28
5	0.227	20	0.282
6	0.227	21	0.285
7	0.227	22	0.288
8	0.227	23	0.291
9	0.227	24	0.291
10	0.223	25	0.291
11	0.223	26	0.291
Potentiometric Titration of Paracetamol in Pyridine with 0.09 N sodium ethoxide in ethyl alcohol.

Volume of 0.09 N C2H5ONa, ml	Potential, Volts	Volume of 0.09 N C2H5ONa, ml	Potential, Volts
3	0.385	15	0.415
4	0.385	16	0.415
5	0.385	17	0.42
6	0.385	18	0.42
7	0.385	19	0.42
8	0.395	20	0.42
9	0.395	21	0.42
10	0.395	22	0.42
11	0.4	23	0.42
12	0.405	24	0.42
13	0.415	25	0.42
14	0.415		

Potentiometric Titration of Paracetamol in dimethyl formamide with 0.09 N sodium ethoxide in ethyl alcohol.

Volume of 0.09 N C2H5ONa, ml	Potential, Volts	Volume of 0.09 N C2H5ONa, ml	Potential, Volts
0.5	0.395	13	0.415
1	0.395	14	0.42
2	0.395	15	0.42
3	0.395	16	0.42
4	0.395	17	0.42
5	0.395	18	0.42
6	0.395	19	0.42
7	0.395	20	0.42
8	0.4	21	0.42
9	0.4	22	0.42
10	0.4	23	0.42
11	0.405	24	0.42
12	0.405	25	0.42
13	0.415		
14	0.415		

pH-metric Titration of Paracetamol in ethyl alcohol with 0.083 N sodium ethoxide in ethyl alcohol.

Volume of 0.083 N C2H5ONa, ml	pH	Volume of 0.083 N C2H5ONa, ml	Potential, Volts
4	12	14.5	13.3
5	12.1	15	13.4
6	12.15	16	13.5
7	12.25	17	13.6
7.5	12.3	18	13.65
8	12.4	19	13.7
9	12.5	20	13.75
10	12.6	21	13.75
11	12.7	22	13.8
12	12.8	23	13.8
13	12.9	24	13.8
14	13.2	25	13.85

Table 1: The acid-base titrations of paracetamol in nonaqueous solvents.
important because it determines to a large extent whether or not a weak acid can be titrated in the presence of a relatively high concentration of solvent molecules. Paracetamol, for example, cannot be titrated as an acid in aqueous solution because water is too acid and present in too high a concentration to permit the p-oxyacetanilide ion to be formed stoichiometrically by titration with a base. In other words the intrinsic basic strength of the p-oxyacetanilide ion and hydroxide ions are not sufficiently different for the reaction:

\[
\text{pH} - \text{metric Titration curves for Paracetamol in ethyl alcohol with 0.083 N sodium ethoxide in ethyl alcohol.}
\]

In less acid solvents, such as dimethylformamide or pyridine, this titration can be carried out readily with a stronger basic titrant, the alkoxide ion:
the acid-base titration of paracetamol is rapid and reproducible, and as follows.

While titrating with perchloric acid/sodium ethoxide can be represented sodium ethoxide. Acid-base reaction involved in case of paracetamol pyridine, and alcohol or dimethylformamide, the titrant consists of the glass-calomel electrode system is suitable where the solvent is either pyridine, an alcohol or dimethylformamide, the titrant consists of sodium ethoxide in ethyl alcohol.

Acid-base reaction involved in case of paracetamol while titrating with perchloric acid/sodium ethoxide can be represented as follows.

\[
\text{OH} + \text{RO}^- \rightarrow \text{O}^+ + \text{ROH}
\]

The platinum-calomel electrode system is suitable where the solvent is pyridine, an alcohol or dimethylformamide. The titrant is sodium ethoxide. The platinum-calomel electrode system is suitable where the solvent is pyridine or an alcohol or dimethylformamide, the titrant consists of sodium ethoxide. Acid-base reaction involved in case of paracetamol while titrating with perchloric acid/sodium ethoxide can be represented as follows.

\[
\text{OH} + \text{CH}_3\text{COO}^- \rightarrow \text{CH}_3\text{COOH} + \text{Na}^+
\]

\[
\text{OH} + \text{HClO}_4 \rightarrow \text{H}^+ + \text{ClO}_4^- + \text{H}_2\text{O}
\]

\[
\text{OH} + \text{H}^+ + (\text{H}_2\text{C}_2\text{N})_2\text{N}^- + \text{HCHO} \rightarrow \text{NH}_3\text{COOH}^+ + \text{H}_2\text{O}
\]

\[
\text{OH} + \text{H}_2\text{O} \rightarrow \text{OH}^- + \text{H}_3\text{O}^+
\]

\[
\text{OH} + \text{Na}^+ + \text{C}_2\text{H}_5\text{OSO}_2\text{Na} \rightarrow \text{Na}^+ + \text{C}_2\text{H}_5\text{OSO}_2^- + \text{H}_2\text{O}
\]

\[
\text{OH} + \text{H}_2\text{O} \rightarrow \text{OH}^- + \text{H}_3\text{O}^+
\]

\[
\text{OH} + \text{CH}_3\text{COO}^- \rightarrow \text{CH}_3\text{COOH} + \text{Na}^+
\]

\[
\text{OH} + \text{HClO}_4 \rightarrow \text{H}^+ + \text{ClO}_4^- + \text{H}_2\text{O}
\]

\[
\text{OH} + \text{H}^+ + (\text{H}_2\text{C}_2\text{N})_2\text{N}^- + \text{HCHO} \rightarrow \text{NH}_3\text{COOH}^+ + \text{H}_2\text{O}
\]

\[
\text{OH} + \text{H}_2\text{O} \rightarrow \text{OH}^- + \text{H}_3\text{O}^+
\]

\[
\text{OH} + \text{Na}^+ + \text{C}_2\text{H}_5\text{OSO}_2\text{Na} \rightarrow \text{Na}^+ + \text{C}_2\text{H}_5\text{OSO}_2^- + \text{H}_2\text{O}
\]

\[
\text{OH} + \text{H}_2\text{O} \rightarrow \text{OH}^- + \text{H}_3\text{O}^+
\]

\[
\text{OH} + \text{CH}_3\text{COO}^- \rightarrow \text{CH}_3\text{COOH} + \text{Na}^+
\]

Conclusion

Based on potentiometric studies of paracetamol it is concluded that the acid-base titration of paracetamol is rapid and reproducible, and permits its determination in medicinal sample. The electrode systems vary with the solvent employed. The platinum-calomel electrode system is suitable where the solvent is glacial acetic acid in this case perchloric acid in glacial acetic acid is the titrant while the glass-calomel electrode system is suitable where the solvent is either pyridine, an alcohol or dimethylformamide, the titrant consists of sodium ethoxide in ethyl alcohol.

References

1. Reynolds JEF (1996) Martindale the Extra Pharmacopoeia. Pharmaceutical Press, London 31: 27-28.
2. The United States Pharmacopoeia (2000) US Pharmacopeial Convention, Rockville, MD, USA. 24th Revision. pp: 17-39.
3. British Pharmacopoeia (1998) Compact Disc, Version 2. The Stationery Oce Ltd., Norwich.
4. European Pharmacopoeia (1997) Convention on the Elaboration of a European Pharmacopoeia (European Treaty Series No. 50), Strasbourg. 3rd edn. pp: 746-749.
5. Lau OW, Luk SF, Cheung YM (1989) Simultaneous determination of ascorbic acid, caffeine and paracetamol in drug formulations by differential-pulse voltammetry using a glassy carbon electrode. Analyst 114: 1047-1051.
6. El-Obeid HA, Al-Badr AA (1985) Analytical Proles of Drug Substances. American Pharmaceutical Association 14: 551-596.
7. Chan HK, Grant DJV (1989) Influence of compaction on the intrinsic dissolution rate of modified acetaminophen and adic acid crystals. Int J Pharm 57: 117-124.
8. Erik N, Onur F (1997) Simultaneous Determination of Analgine and Paracetamol in Tablets by Spectrophotometric Methods. Anal Lett 30: 1201-1210.
9. Doğan HN (1996) Simultaneous determination of acetaminophen, dipyrone and caffeine in pharmaceutical preparations by the absorbance ratio technique. Pharmazie 51: 773-774.
10. Kahela P, Laine E, Anttila M (1987) A Comparison of the Bioavailability of Paracetamol from a Fatty and a Hydrous Suppository Base and the Effect of Storage on the Absorption in Man. Drug Dev Ind Pharm 13: 213-224.
11. Suzen S, Akay C, Tart S, Erdol RS, Onal A, et al. (1998) J Faculty of Pharm Ankara Univ 27: 93-100.
12. Sisco WR, Rittenhouse CT, Everhart LA, McLaughlin AM (1986) Simultaneous high-performance liquid chromatographic stability-indicating analysis of acetaminophen, codeine phosphate and sodium benzoate in elixirs. J Chromatogr 354: 355-366.
13. Hossain M, Ayres JW (1996) Relative bioavailability of a novel sustained-release acetaminophen molded tablet. Int J Pharm 133: 223-235.
14. Ali HM, Honeida MMA, Ford J, Truman CA, Roberts CJC, et al. (1988) Paracetamol bioavailability from an elixir, a suspension and a new alcohol-free liquid dosage form in humans. Int J Pharm 42: 155-159.
15. Yuen KH, Peh KK, Quah YL, Chan KL (1997) A Novel Simultaneous HPLC Assay for Serum Paracetamol and Sulfapyridine as Markers of Gastric Emptying and Orocecal Transit. Drug Dev Ind Pharm 23: 225-228.
16. Orsi DD, Gagliardi L, Bolasco A, Tonelli D (1996) Simultaneous determination of triprolidine, pseudoephedrine, paracetamol and dextromethorphan by HPLC. Chromatographia 43: 496-500.
17. Bergh JJ, Lotter AP (1984) A Stability-Indicating Gas-Liquid Chromatographic Method for the Determination of Acetaminophen and Aspirin in Suppositories. Drug Dev Ind Pharm 10: 127-136.

18. Chatten LG, Orbeck CK (1964) Effect of electrophilic and electrodotic groups on the titration of amides and other weak bases. J Pharm Sci 53: 1306-1308.

19. Keim AN, Sterescu M (1960) Rev Chim 11: 49.

20. Wimer DC (1958) Anal Chem 30: 77.

21. Mackenzie HAE, Winter ERS (1948) Trans Faraday Soc 44: 243.

22. Burton H, Praill PFG (1950) Acylation reactions catalysed by strong acids. Part I. Evidence for the existence of acetylum (the acetyl cation), (CH₃·CO)+, in solutions of concentrated aqueous perchloric acid in acetic anhydride. J Chem Soc 1203-1206.

23. Burton H, Praill PFG (1950) Acylation reactions catalysed by strong acids. Part II. “Acetyl perchlorate” as a C-acetylating agent. J Chem Soc 2034-2038.

24. Mackenzie HAE, Winter ERS (1948) Kinetic studies in the solvents acetic acid and acetic anhydride. Part II. The Thiele acetylation of benzoquinone and toluquinone (experimental). Trans Faraday Soc 44: 171-181.

25. Mackenzie HAE, Winter ERS (1948) Kinetic studies in the solvents acetic acid and acetic anhydride. Part I. Properties of the solvo-system. Trans Faraday Soc 44: 159-171.

26. Levent M (2002) HPLC Method for the Analysis of Paracetamol, Caffeine and Dipyrone. Turk J Chem 26: 521-528.