Regioselectivity of Cobalamin-Dependent Methyltransferase Can Be Tuned by Reaction Conditions and Substrate

Simona Pompei, Christopher Grimm, Judith E. Farnberger, Lukas Schober, and Wolfgang Kroutil*
Figure S1. Regioselectivity in buffer for substrates 1b-f.
Table S1. Co-solvent screening (10% v/v). [a] Conversion (conv.%) of acceptor into products after 24 hours based on the limiting reagent. *Conversion based on catechol formation. [b] The regioisomer in excess (indicated as m-2n) was calculated after 24 hours as the percentage of the one isomer out of the total of products formed (considered as 100%). Positive values indicate the m-2n to be in access, whereas negative values denote p-2n to be in access. The error was between 0.6 and 1% (average ±0.8%).

Buffer	DMSO	MeOH	THF	Dioxane	EtOH	Acetone	THT									
Substr	conv.[a]	2n[b]	conv	2n												
1b	60%	71%	60%	60%	70%	75%	6%	100%	21%	72%	52%	83%	65%	77%	50%	77%
1c	91%	70%	93%	54%	83%	54%	87%	100%	85%	83%	89%	73%	95%	63%	77%	65%
1d	66%	69%	71%	74%	70%	76%	2%	100%	41%	72%	62%	83%	79%	73%	21%	90%
1e	41%	61%	34%	59%	28%	76%	n.d.	n.d.	6%	54%	12%	62%	22%	68%	10%	61%
1f	52%	48%	80%	61%	79%	61%	70%	70%	64%	78%	74%	70%	79%	64%	40%	61%
1g	71%	50%	68%	-55%	79%	55%	2%	76%	27%	58%	58%	63%	70%	60%	75%	61%
1h	75%	-55%	81%	-56%	75%	55%	9%	68%	19%	59%	39%	50%	68%	50%	78%	52%
1i	38%	-66%	83%	-62%	75%	-53%	2%	-77%	11%	-75%	12%	-66%	22%	-70%	43%	-70%

Table S2. Co-solvent screening (5-15% v/v). [a] Conversion (conv.%) of acceptor into products after 24 hours based on the limiting reagent. *Conversion based on catechol formation. [b] The regioisomer in excess (indicated as m-2) was calculated after 24 hours as the percentage of the one isomer out of the total of products formed (considered as 100%). The error was between 0.6 and 1% (average ±0.8%).

Buffer	THF 5% v/v	THF 15% v/v	EtOH 15% v/v	MeOH 15% v/v				
Substr	conv.[a]	2n[b]	conv.[a]	2n[b]	conv.[a]	2n[b]	conv.[a]	2n[b]
1b	30%	73%	n.d.	n.d.	20%	68%	-	-
1c	90%	81%	25%	98%	-	-	-	-
1d	68%	76%	n.d.	n.d.	14%	100%	-	-
1e	n.d.	n.d.	n.d.	n.d.	-	21%	6000	
Figure S2. Regioselectivity for substrates 1b-e with different co-solvents concentrations (5-15% v/v).

pH	m-2d [b] [%]	conv. [a] [%]
7.5	92	8
9	94	6

Table S3. Additivity of pH and co-solvent (EtOH) effect. [a] Conversion (conv. [%]) of acceptor 1d into products (m-2d and p-2d) after 24 hours based on the limiting reagent. [b] Vanillin (indicated as m-2d) was calculated after 24 hours as the percentage of the one isomer out of the total of products formed (considered as 100%).

pH	conv. [a] [%]	m-2d [b] [%]	conv. [%]	p-2i [%]
6.5	67	79	77	68
7.0	70	81	45	71
7.5	66	84	50	71
8.0	66	83	46	72
9.0	60	83	43	72
10.0	56	83	28	71

Table S4. Effect of the pH. [a] Conversion (conv. [%]) of acceptor 1d into products (m-2d and p-2d) after 24 hours based on the limiting reagent. [b] Isomer (indicated as m-2d or p-2i) was calculated after 24 hours as the percentage of the one isomer out of the total of products formed (considered as 100%). The error was between 0.6 and 1% (average ±0.8%).
Table S5. LogP of water miscible co-solvents used and corresponding regioselectivity and normalized regioselectivity (% m-2 formed over % m-2 in DMSO). Positive values indicate the m-2n, whereas negative values denote p-2n. The error was between 0.6 and 1% (average ±0.8%).

Co-solvent	logP	m-2b [%]	m-2b - normalized	m-2c [%]	m-2c - normalized	m-2d [%]	m-2d - normalized
DMSO	-1.35	60	1	54	1	74	1
methanol	-0.69	75	1.25	54	1	76	1.027027
dioxane	-0.27	72	1.2	72	1.333333	72	0.972973
acetone	-0.24	77	1.283333	68	1.259259	73	0.986486
ethanol	-0.18	83	1.383333	73	1.351852	83	1.121622
THF	0.46	100	1.666667	100	1.851852	100	1.351351

Co-solvent	logP	m-2e [%]	m-2f [%]	m-p-2g [%]	m-p-2h [%]	p-2i [%]
DMSO	-1.35	59	59	-55	-56	-62
methanol	-0.69	76	61	55	55	-53
dioxane	-0.27	54	78	58	59	-75
acetone	-0.24	68	64	60	50	-70
ethanol	-0.18	62	70	63	50	-66
THF	0.46	-	70	76	68	-77

For Hydroxytyrosol 1f: (3,4-Dihydroxyphenyl)acetic methyl ester 5f.

2-(2,2-Dimethylbenzo[1,3]dioxol-5-yl)acetic methyl ester 4f.

2-(2,2-Dimethylbenzo[1,3]dioxol-5-yl)ethanol 2f.
Reference material: 5-(2-hydroxyethyl)-2-methoxyphenol p-$2f$.

Reference material: 5-(1-hydroxyethyl)-2-methoxyphenol p-$3h$.

5-ethyl-2-methoxyphenol p-$2h$.

Scheme S1. Synthesis of reference and starting material (for procedures see main paper)
Figure S3. (3,4-Dihydroxyphenyl)acetic methyl ester 5f \(^1\)H NMR.

\(^1\)H NMR (300 MHz, MeOD) \(\delta \) 6.70 – 6.68 (m, 2H), 6.58 – 6.52 (m, 1H), 3.66 (s, 3H), 3.46 (s, 2H).
Figure S4. 3,4-Dihydroxyphenylacetic methyl ester 5f 13C NMR.

13C NMR (75 MHz, MeOD) δ 174.53, 146.27, 145.42, 126.89, 121.60, 117.30, 116.26, 52.36, 41.15.
Figure S5. 2-(2,2-Dimethylbenzo[1,3]dioxol-5-yl)acetic methyl ester 4f 1H NMR.

1H NMR (300 MHz, MeOD) δ 6.65 (d, $J = 5.3$ Hz, 3H), 3.66 (s, 3H), 3.52 (s, 2H), 1.63 (s, 6H).
Figure S6. 2-(2,2-Dimethylbenzo[1,3]dioxol-5-yl)acetic methyl ester 4f 13C NMR.

13C NMR (75 MHz, MeOD) δ 174.17, 148.91, 147.89, 128.51, 122.90, 119.02, 110.40, 108.86, 52.42, 41.32, 25.91.
Figure S7. 2-(2,2-Dimethylbenzo[1,3]dioxol-5-yl)ethanol 3f 1H NMR.

1H NMR (300 MHz, CDCl$_3$) δ 6.69 – 6.56 (m, 3H), 3.79 (t, 2H), 2.75 (t, 2H), 1.64 (s, 6H).
Figure S8. 2-(2,2-Dimethylbenzo[1,3]dioxol-5-yl)ethanol 3f 13C NMR.

13C NMR (75 MHz, CDCl$_3$) δ 147.83, 146.25, 131.55, 121.42, 117.90, 109.25, 108.29, 63.95, 39.07, 26.02.
Figure S9. Hydroxytyrosol 1f 1H NMR.

1H NMR (300 MHz, MeOD) δ 6.66 (m, $J = 7.3$, 5.0 Hz, 1H), 6.52 (m, $J = 8.0$, 2.1 Hz, 2H), 3.67 (t, $J = 7.3$ Hz, 2H), 2.66 (t, $J = 7.2$ Hz, 2H).
Figure S10. Hydroxytyrosol 1f 13C NMR.
13C NMR (75 MHz, MeOD) δ 146.14, 144.62, 131.77, 121.19, 117.05, 116.29, 64.60, 39.67.
Figure S11. 5-(2-hydroxyethyl)-2-methoxyphenol p-2f 1H NMR.
1H NMR (300 MHz, MeOD) δ 6.90 – 6.81 (m, 1H), 6.76 – 6.63 (m, 2H), 3.84 (s, 3H), 3.73 (t, $J = 7.2$ Hz, 2H), 2.73 (t, $J = 7.2$ Hz, 2H).
Figure S12. 5-(2-hydroxyethyl)-2-methoxyphenol ρ-2f 13C NMR.

13C NMR (75 MHz, MeOD) δ 147.50, 147.40, 133.19, 121.09, 116.99, 112.84, 64.46, 56.47, 39.63.
Figure S13. 5-(1-hydroxyethyl)-2-methoxyphenol p-3h 1H NMR.

1H NMR (300 MHz, MeOD) δ 6.85 (dd, $J = 5.3$, 2.9 Hz, 2H), 6.78 (dd, $J = 8.3$, 2.0 Hz, 1H), 4.70 (q, $J = 6.5$ Hz, 1H), 3.82 (s, 3H), 1.39 (d, $J = 6.5$ Hz, 3H).
Figure S14. 5-(1-hydroxyethyl)-2-methoxyphenol \(\rho \text{-}3h \) \(^{13} \text{C} \) NMR.

\(^{13} \text{C} \) NMR (75 MHz, MeOD) \(\delta \) 148.10, 147.36, 140.49, 117.81, 113.67, 112.46, 70.53, 56.43, 25.46.
Figure S15. 5-ethyl-2-methoxyphenol p-2h 1H NMR.

1H NMR (300 MHz, MeOD) δ 6.77 (d, J = 8.1 Hz, 1H), 6.69 – 6.52 (m, 2H), 3.78 (s, 3H), 2.48 (q, J = 7.6 Hz, 2H), 1.15 (t, J = 7.6 Hz, 3H).
Figure S16. 5-ethyl-2-methoxyphenol p-2h 13C NMR.

13C NMR (75 MHz, MeOD) δ 147.32, 147.00, 138.55, 119.78, 115.89, 112.85, 56.49, 29.19, 16.36.
Figure S17. Example of HPLC chromatograms. Commercially available references.
Figure S18. Example of HPLC chromatograms of biotransformations. Top chromatogram: biotransformation in the presence of 10% v/v of MeOH analyzed after 24 h; a) catechol, b) substrate 1b, c) product m-2b, d) product p-2b, e) guaiacol; Bottom chromatogram: biotransformation in the presence of 10% v/v of THF analyzed after 24 h; a) catechol, b) substrate 1b, c) product m-2b, e) guaiacol
Figure S19. Example of HPLC chromatograms of biotransformations with XXXYX.
Figure S20. (A) HPLC chromatogram of biotransformation and (B) spiked chromatogram with the commercial available reference isomer 4-(tert-butyl)-2-methoxyphenol.

Figure S21. 1H NMR of 24 mL scale methylation of 4-tert-butylcatechol. The extracted mixture from the biotransformation is reported in red. The three singlet reported at 3.82, 3.80 and 3.78 ppm belong respectively to 4-(tert-butyl)-2-methoxyphenol, guaiacol and 5-(tert-butyl)-2-methoxyphenol, according to the reference material NMRs (reported in the different colors).
Figure S22. Example of HPLC calibration curve.

Compound	RT [min] method A	RT [min] method B	RT [min] method C	RT [min] method D
Guaiacol	17.7	20.0	14.2	21.9
Catechol	13.3	15.0	11.6	14.1
Vanillic acid	14.2	17.0	n.d.	n.d.
Isovanillic acid	14.5	14.4	n.d.	n.d.
3,4-dihydroxybenzoic acid	11.8	13.5	n.d.	n.d.
Vanillin	15.9	18.2	n.d.	n.d.
Isovanillin	15.7	17.9	n.d.	n.d.
3,4-dihydroxybenzaldehyde	13.2	14.4	n.d.	n.d.
Ferulic acid	16.6	19.6	n.d.	n.d.
Isoferulic acid	16.8	20.1	n.d.	n.d.
Caffeic acid	14.3	16.3	n.d.	n.d.
Vanillyl alcohol	11.8	n.d.	n.d.	n.d.
Substance	Retention Time	Method 1	Method 2	Method 3
---	----------------	----------	----------	----------
Isovanillyl alcohol	12.4	n.d.	n.d.	n.d.
3,4-dihydroxybenzyl alcohol	9.6	n.d.	n.d.	n.d.
3-Hydroxytyrosol	10.9	n.d.	n.d.	n.d.
5-(2-hydroxyethyl)-2-methoxyphenol	13.9	n.d.	n.d.	n.d.
Homovanillyl alcohol	12.6	n.d.	n.d.	n.d.
4-methylcatechol	15.9	n.d.	n.d.	n.d.
2-methoxy-5-methylphenol	19.6	n.d.	n.d.	n.d.
2-methoxy-4-methylphenol	19.7	n.d.	n.d.	n.d.
4-ethylcatechol	18.7	21.9	14.4	n.d.
2-methoxy-5-ethylphenol	20.7	n.d.	16.6	n.d.
2-methoxy-4-ethylphenol	20.8	n.d.	16.5	n.d.
4-tbutylcatechol	20.5	22.9	n.d.	29.6
2-methoxy-5-tbutylphenol	n.d.	n.d.	n.d.	35.1
2-methoxy-4-tbutylphenol	n.d.	n.d.	n.d.	34.9

Table S4. HPLC retention times and used methods for the screened substrates and products.

References

[1] A. Gambacorta, D. Tofani, R. Bernini, A. Migliorini, *J. Agr. Food. Chem.* **2007**, *55*, 3386-3391.