Introduction
Alzheimer’s disease (AD) is a clinico-pathological diagnosis in which progressive neurodegenerative disease is associated with the dementia syndrome. Neurologically, AD is generally characterised as including deposits of amyloid beta protein (Aβ) in senile and neuritic plaques [1] and neurofibrillary tangles of paired helical filaments of hyperphosphorylated tau [2,3]. Currently, AD is classified as familial AD, which has an early age of onset and is associated with mutations in either the amyloid precursor protein (APP) or the presenilins (PSs), and sporadic AD, which has a later age of onset and a less clear aetiology [4,5]. Down’s syndrome, with an extra copy of APP on chromosome 21, also leads to a form of AD with increasing age. The genetic data associated with familial AD [6] strongly suggest that PS, APP and its proteolytic fragment Aβ are involved in AD disease progression but exactly how they contribute to both normal cognition and dementia is the focus of much debate.

Many non-genetic factors also appear to affect disease initiation and progression, including diet, exercise and education, and many models have been proposed to account for their roles in AD. Population studies (for example, the Medical Research Council Cognitive Function and Aging Study [7]) demonstrate that vascular and AD-associated pathologies are common in people with and without any clinical manifestation of dementia. Coupled with data suggesting that the relationship between amyloid pathology and dementia attenuates with age [8], this suggests that sporadic AD especially has a complex disease aetiology [9].

Many models of disease progression have been proposed to account for the accumulating data on AD. These models form the basis of experimental design and affect how findings are interpreted. Data relevant to disease progression in AD are accumulating from many diverse fields, including neuropsychology, brain imaging, molecular biology and genetics. Integrating these data is becoming harder as expertise is required in so many areas.

The pre-eminent model of the last few decades has been the amyloid cascade hypothesis [10-12], based on genetic data and the role of PS in the proteolysis of APP to release the 39 to 43 residue Aβ. This model proposes that overproduction of Aβ, or an increase in Aβ(1-43) relative to Aβ(1-40), is causal in the disease process. In this model, Aβ, perhaps in a specific aggregation state, is proposed as neurotoxic. An alternative interpretation of data relating to APP, PS and Aβ is the presenilin hypothesis [13], where loss or altered function of PS is proposed as the causal factor in disease progression.
Other models suggest different initiating factors, such as cholesterol [14], mitochondria and apoptosis [15], insulin signalling and energy metabolism [16,17], cholinergic insufficiency [18], Ca²⁺ deregulation [19,20], signalling decoherence [21] or a combination of multiple factors (for example, [22,23]). No single model adequately explains how APP, PS, cholesterol and other factors interact with synaptic plasticity, learning and memory in normal and disease states. This suggests that models currently in use in AD research require re-evaluation.

Recent approaches to integrating the data relevant to AD have involved the use of text mining, bioinformatic databases and network analysis for gene co-expression and protein-protein interactions [24-33]. Studies using automated interrogation of genomic and proteomic databases, such as UNIPROTKB [34], NCBI Entrez Gene [35], and IntAct [36], and text mining in literature databases such as Pubmed [37] have confirmed the involvement of many previously highlighted neurological processes, extended the connectivity between known molecular targets and revealed new targets for investigation (summarised in Table 1).

Understanding how APP contributes to synaptic plasticity is important in understanding normal cognition and disease progression in AD. Here, we approach the process of integrating the available data relating to the relationships between APP and its proteolytic fragments and neuronal processes based on a systems biology approach and build a map of relationships. We are not aiming to define protein interactions nor find new targets for investigation, but to highlight relationships in the existing literature that illustrate the complexity involved and how this relates to our current understanding of the role of APP in AD. We highlight areas where data are missing and predict relationships that may confound current disease models.

Building the map

Relationships involving APP and each of its proteolytic fragments were identified from literature searches using relevant key words. Each interaction identified was manually entered into a non-hierarchical network using the mapping software Compendium [38]. This software allowed each molecule or neuronal system to be represented as a node within the map. Each node in the map could contain further networks of nodes, leading to a multi-dimensional organisation of information. These further nodes represented information relevant to the molecule of the parent node and could include notes describing possible relevance, questions raised and links to relevant entries on various bioinformatic databases. The map is not meant to be read as a protein-protein interaction network (PPI), but rather was designed to summarise and collate information relevant to the APP system in a more general way. Physiological outcomes, such as changes in signalling, were included, even though the precise molecular interactions are not clear. Any additional details, such as new biological relationships or new molecular interactions, can be added as they arise. Relationships between molecules are represented by connectors, with annotation if required. Figure 1 shows a limited map built in this way from references cited in the text, with additional references listed in Table 2.

Unlike more automated network studies such as that by Perreau and colleagues [25] where nodes were included in the network only if there was direct evidence of molecular interaction, or various studies [30-33] where co-expression criteria were applied, no specific criteria were imposed and any relationship found was included. Known differences in peptide behaviour (for example, [39,40]) necessitated separate nodes for Aβ(1-40) and Aβ(1-42). This was extended systematically to include all the peptide fragments, including P3(17-40), P3(17-42) secreted APP (sAPP)α and sAPPβ (the extracellular amino-terminal fragments following α- and β-cleavage, respectively), C31, and so on to take account of any potential behavioural differences. This is in contrast to various network constructions where the various proteolytic fragments are collapsed into an APP parental node, possibly reflecting the UNIPROTKB identifier (P05067) being the same for each peptide. Additionally, different aggregation states of each of the peptides (monomers, dimers, oligomers or fibrils) were considered separately. These additional details have been omitted from Figure 1 for clarity. Since there was little or no evidence for many of the Aβ-type peptides [41], these were collapsed into a separate node (not shown).

The relationships in Figure 1 were analysed manually by identifying feedback loops. Direct feedback loops were defined as relationships between APP, any of its proteolytic fragments and any other molecule or functional change that was represented at more than one point in the map. Possible indirect feedback loops between any neural system, such as neurotransmitter signalling, Ca²⁺ homeostasis or the inflammation cascade, were also investigated by looking for molecules or functional change in these systems that interact with APP or any of its proteolytic fragments at more than one point in the map.

Following a brief summary of APP cleavage, two examples of the relationships between APP pathways and neuronal processes, looking at the extracellular matrix (ECM) and endocytosis, serve to illustrate the implications of the complexity involved.

The amyloid precursor protein

Overview

APP is a type I transmembrane protein [42] with a large extracellular amino-terminal domain, a transmembrane
domain and an intracellular carboxy-terminal domain that resembles a cell surface receptor [43]. It is expressed in several isoforms, with APP_{770} the main isoform expressed by neurons. APP has a high turnover, with a half life ranging from approximately 1 hour [44-46] to approximately 4 hours [47-49]. In addition to its functions at the cell surface, full length mature APP is also processed via competing pathways that release proteolytic fragments [5,43,50] (recently reviewed in [51]). In effect there are four possible routes: APP may remain functionally active at the cell surface; it may be internalised and recycled or degraded; it may be cleaved via the α-pathway, releasing the sAPPα fragment, leaving the membrane bound C83 carboxy-terminal fragment that is further processed to the P3 fragment; or it may be cleaved via the β-pathway releasing sAPPβ, leaving the membrane bound C99 carboxy-terminal fragment that is further processed to the Aβ fragment.

As can be seen in Figure 1, α- and β-cleavage pathways (numbered 1 and 2, respectively) converge on a further intramembrane γ-cleavage (numbered 3) by the P5-containing γ-secretase complex to release the variable length Aβ and P3 peptides and the variable length APP intracellular domain (AICD). Additional cleavages, including caspase cleavage of the carboxyl terminus at residue D664 of APP_{695}, producing the alternative length Aβ and P3 peptides and the variable length APP intracellular domain (AICD). Additional cleavages, including caspase cleavage of the carboxyl terminus at residue D664 of APP_{695}, producing the alternative length Aβ and P3 peptides and the variable length APP intracellular domain (AICD).
promoting expression or cleavage have been collapsed into summary boxes in Figure 1 for simplicity.

Complex feedback pathways involving APP and its proteolytic fragments; the extracellular matrix and endocytosis

The extracellular matrix

APP interacts with itself and its own proteolytic fragments at many points in the network with various functional consequences. At the cell surface, the large amino-terminal domain of full length APP interacts with many components of the ECM, including heparins and heparin sulphate proteoglycans [42], laminin, collagen [53,54] and β-1-integrin [43,55,56], and contributes to early neuronal development, axon and neurite growth, cell adhesion and synaptic plasticity [43,57]. Many of these interactions are now represented in MatrixDB [58], an ECM interaction database.

The amino-terminal domain of APP binds heparin in a pH- and zinc-dependant manner and this binding promotes the formation of APP homodimers [42,59-61]. Depending on various factors, including cell compartment and pH, this dimerisation may influence APP proteolysis via α- or β-cleavages due to conformational changes [59], though this requires further investigation.

The large amino-terminal fragment released by α-cleavage, sAPPα, is a soluble monomer. It retains two heparin binding sites and has been shown to bind heparin as a dimer [60]. The ability of sAPPα to disrupt APP dimerisation at the cell surface is thought to contribute to
Table 2. Additional references supporting the network diagram in Figure 1

Factor	Details	Reference
Akt	Aβ increases Akt phosphorylation in the short term via a mechanism involving α7-nAChR and NMDARs, with phosphorylation levels returning to baseline over the long term	[99]
AMPA receptors	AMPA glutamate receptor density is reduced by Aβ oligomers via reduction of CamKII	[100,101]
ApoE	Decreased levels of ApoE lead to increased β-cleavage	[102]
	ApoE promotes polymerisation of Aβ into fibrils and enhances fibrillar Aβ deposition in neuritic plaques. The high affinity binding of Aβ to ApoE reduces ability of ApoE to bind lipids	[103-105]
Ca\(^{2+}\)	sAPPα modulates Ca\(^{2+}\) signalling by activating high conductance K\(^+\) channels via a mechanism dependent on cGMP	[106]
CD74	Interacts with APP and reduces expression of Aβ	[107]
Cholesterol	Interactions of cholesterol and APP may allow APP to react to cholesterol status of the cell	[108]
	Membrane cholesterol correlates with β-secretase activity and inhibition of β-secretase activity leads to increased membrane cholesterol levels. Moderate reductions in cholesterol enhance the co-expression of APP and BACE1 and promote the production of Aβ	[109,110]
	Aβ binds lipids and has high affinity for cholesterol. Aggregated Aβ\(_{[42]}\) may affect lipid transport. Aβ binds 24-hydroxycholesterol and affects membrane choline carriers	[111,112]
Complement cascade	Aβ activates neuronal complement cascade to induce the membrane attack complex and reduces complement regulatory proteins, increasing complement-mediated cytotoxicity	[113]
Dishevelled	Dvl-1 increases sAPPα production mediated via JNK and PKC/MAPK but not via p38 MAPK	[114]
Electrophysiology	Hippocampal and cortical electrophysiological processes are modulated by sAPPα	[115]
Fe65	APP binds Fe65 at the YENPTY sequence with effects on gene transcription, cytoskeleton and cell motility. Binding of Fe65 to APP is dependent on phosphorylation state of Y\(_{682}\). Phosphorylation of T\(_{668}\) reduces the binding of Fe65 to YENPTY. Binding of Fe65 reduces Aβ	[117-121]
Furin	Furin enhances cleavage to active forms of ADAM10 and ADAM17, leading to enhanced α-cleavage	[116]
Glucose/glutamate transport	sAPPα enhances transport of glucose and glutamate in synapses and protects from oxidative stress via a mechanism involving cGMP	[117]
Glutamate signalling	sAPPα suppresses NMDA currents rapidly and reversibly at concentrations of approximately 0.011 nM, possibly involving cGMP and a protein phosphatase. Reductions in sAPPα lead to reduced tetanically induced NMDA currents while increased sAPPα increased these currents and enhanced LTP	[124,125]
G-protein signalling	Aβ directly increases TNF-α at high levels and at low levels increases TNF-α release by altering GPCR signalling at early stages of disease progression by indirect effects on GPCR kinase 2/5	[126]
	Full length and processed APP can potentially interact with G proteins via the cytoplasmic tail and this can be altered by APP mutations around the G protein binding site. This interaction has the potential to alter G protein signalling with wide ranging effects, including Ca\(^{2+}\) regulation and cell cycle pathways	[127-129]
HDL	Aβ binds ApoA-I, ApoA-II, ApoE and ApoJ; binding modulates Aβ solubility	[130]
Heparins	Proteolysis of immature BACE1 to its mature active form is promoted by low concentrations of heparin and inhibited at higher concentrations. Certain heparin derivatives may act as inhibitors of BACE1 and have therapeutic potential	[70,131,132]
IL-1β	Enhanced α-cleavage by ADAM10/17 via up-regulation of P2Y2 receptors and may increase levels of ADAM10/17 by approximately threefold	[133,134]
	Increases expression of APP and β-cleavage in astrocytes	[135]
Insulin degrading enzyme	sAPPα competes with insulin for IDE and reduced IDE availability may contribute to dementia	[136]
Integrons	sAPPα competes with APP for binding sites on integrin-β-1 and promotes neurite outgrowth	[137]
	Aβ binds focal adhesion molecules and integrins and modulates integrin/FA signalling pathways involved in cell cycle activation and cell death. The αv integrin subunit is required for Aβ-associated suppression of LTP	[138,139]
Lipids	Binding of Aβ to acidic lipid molecules promotes Aβ aggregation. Aβ binds membrane gangliosides, sphingolipids and cholesterol, which enhance Aβ aggregation	[140-142]
	Association of APP and BACE1 with lipid rafts increases Aβ	[143]
	Aβ endocytosis may also involve lipid rafts	[144]
	Sphingolipids enhance α-cleavage via MAPK/ERK signalling	[145]

Continued overleaf
Table 2. Continued

Factor	Details	Reference
LTP	Aβ suppresses LTP in hippocampal neurons via a mechanism involving α4β2 nAChRs; Aβ affects cascades downstream of NMDA GluR signalling	[146,147]
Muscarinic Ach signalling	Increases in mAChR-M1 and -M3 activation upregulate α-cleavage via PKC activation. Muscarinic upregulation of sAPPα secretion may involve the activation of a Src tyrosine kinase, leading to activation of PKCα and ERK1/2. Increased M2 activation decreases sAPPα secretion	[75,148-151]
MAPK/ERK signalling	MAPK cascade may mediate the independent effects of PKC and tyrosine kinase in human astrocytes	[154]
Neurite outgrowth	APP enhances neurite outgrowth independently from sAPPα	[155]
NF-κB	May reduce expression of BACE1	[156]
Nicotinic Ach signalling	Aβ has high affinity for the α7 nAChR and this may be associated with increased Aβ accumulation. Differential effects of Aβ on α7 nAChR as seen by different effects on ACh release and Ca²⁺ influx. Disruption of signalling by α7 nAChR may be associated with Aβ-mediated increases in pre-synaptic Ca²⁺. Aβ has approximately 5,000-fold greater affinity for α7 nAChR than for α4β2 nAChR	[161]
NMDA GluR	Aβ promotes endocytosis of NMDARs in cortical neurons with the involvement of protein phosphatase 2B and the tyrosine phosphatase STEP	[162]
Nucleotide signalling	G-protein-coupled purine receptor, P2Y2 enhanced the release of sAPPα in a time- and dose-dependent manner; probably mediated via ADAM10 and ADAM17	[163]
Numb	APP binds numb when Y₆₈₂ is unphosphorylated and inhibits Notch signalling	[164]
PKA/CREB	Aβ inhibits PKA via increased persistence of its regulatory subunit PKAlα, resulting in reduced CREB phosphorylation in response to glutamate	[73]
PKC	PKC activators enhance α-cleavage	[165,166]
Reelin	Reelin interacts with APP and A3/β1-integrins and promotes neurite extension; APP endocytosis is reduced. Reelin signalling opposes the actions of Aβ	[56,168]
Src, Abl, Lyn, JNK/JIP1	These tyrosine kinases bind to APP when phosphorylated at Y₆₈₂ with affinity increased by phosphorylation of T₆₆₈. JNK phosphorylation of APP at T₆₆₈ modulated by JIP1	[169,170]
TIMP-3	Increases in TIMP-3 led to decreased surface expression of ADAM10 and APP. The production of Aβ and CTF is increased. TIMP-3 promotes endocytosis and β-secretase cleavage	[171]
Transthyretin	Neuroprotection in transgenic mice over-expressing mutant APP is associated with elevated levels of transthyretin and sAPPα and may be linked to increased proteolysis of Aβ	[172,173]

Aβ, amyloid beta protein; ACh, acetylcholine; ADAM, a disintegrin and metalloprotease domain-containing protein; Akt, RAC alpha serine/threonine-protein kinase; AMPA, 2-amino-3-(S-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid; ApoE, apolipoprotein E; APP, amyloid precursor protein; CamKII, calcium/calmodulin-dependent protein kinase type II; CD74, HLA class II histocompatibility antigen gamma chain; CREB, cyclic adenosine monophosphate response element-binding; CTF, carboxy-terminal fragment; ERK, extracellular signal-regulated kinase; FAK, fatty acids; GluR, glutamate receptor; GPCR, G-protein-coupled receptor; HDL, high-density lipoprotein; IDE, insulin degrading enzyme; JIP1, J-C-Jun-amino-terminal kinase-interacting protein 1; JNK, C-Jun-amino-terminal kinase; LTD, long-term depression; LTP, long-term potentiation; Lyn, tyrosine-protein kinase Lyn; MAPK, mitogen-activated protein kinase; mAChR, muscarinic acetylcholine receptor; MEK, ERK activator kinase; nAChR, nicotinic acetylcholine receptor; NMDAR, NMDA receptor; P2Y2, P2Y purinoceptor 2; PKA, protein kinase A; PKC, protein kinase C; sAPP, secreted amyloid precursor protein; Src, proto-oncogene tyrosine-protein kinase Src; TIMP, tissue inhibitor of metalloproteinasises.

its neuroprotective actions [62-64] and may partly explain why sAPPα is approximately 100 times more neuroprotective against excitotoxicity, glucose deprivation and the addition of Aβ in hippocampal cultures than sAPPβ, which lacks the second carboxy-terminal heparin binding site [63]. Dementia status has been associated with both reduced sAPPα levels in cerebrospinal fluid [65] and an increased half life of sAPPα [49].

Differing by only 16 carboxy-terminal residues, sAPPα and sAPPβ share a high degree of sequence homology and have the potential to compete with each other for binding sites. Since both sAPPβ and sAPPα are constantly present in the ECM in dynamically changing ratios, we predict that sAPPβ could act as an antagonist of sAPPα/APP (shown in Figure 2 as competitive inhibition (line 1)), with the potential to modulate various interactions between APP and sAPPα and the ECM. We predict, therefore, that any functional outcome from the interactions of the APP pathway will depend on the synergy between APP and its amino-terminal fragments.
Aβ interacts with heparins in the ECM and at high levels may prevent the catabolism of proteoglycans and promote amyloid formation [66]. Reciprocally, heparins modulate many of the interactions involving Aβ. Heparins enhance both nucleation and elongation processes in the aggregation of Aβ [67] and modulate interactions of Aβ; for example, heparins can limit the neurotoxic and pro-inflammatory activity of Aβ in a dose-dependent manner [68]. Additionally, heparins contribute to the uptake of Aβ by a pathway shared with apolipoprotein E [69] and also contribute to the regulation of the β-secretase BACE in a dose-dependent manner, with low concentrations promoting and high concentrations inhibiting the activation of BACE1 [70].

In terms of direct feedback, Aβ may be part of a negative feedback loop involved in the regulation of APP expression and the promotion of α-cleavage. Fibrillar forms of various proteins, including Aβ, interact with amino-terminal APP and increase APP expression [71] (Figure 2, line 2) and Aβ(1-40) may up-regulate expression of α-secretase via integrin receptors and matrix metalloproteinase-9 activity [72] (Figure 2, line 3). Additionally, Aβ has many indirect negative feedback relationships with α-cleavage - for example, Aβ inhibits protein kinase C [73] and insulin signalling [74], both involved in up-regulation of α-cleavage [75] (Figure 2, line 5) - and additionally may negatively feedback on APP expression and its own production via a pathway involving Fe65 and glycogen synthase kinase 3 [76]. Reciprocally, changes to gene expression by sAPPα via the activation of NF-κB may attenuate the interactions of Aβ [77] and this can be understood as reciprocal indirect feedback from the α-pathway on the β-pathway (Figure 2, line 4).

The data reviewed above suggest that Aβ may contribute to both direct and indirect feedback loops in the ECM at multiple points, with consequences for the interactions of APP, sAPPα, Aβ and sAPPβ that may ultimately affect cell adhesion, neurite outgrowth and synaptic plasticity. These effects will depend on the specific sequence length, concentration and aggregation state of the Aβ-type peptides, which may dynamically change in response to the neuronal environment.

Endocytosis

Increases in endocytosis, often associated with synaptic activity, lead to both an increase in Aβ [78] and a reduction in α-cleavage and lower secreted sAPPα levels [79]. This may reflect the regulatory role of compartmentation in APP proteolysis, where α-cleavage occurs at the cell surface and Aβ production is associated with factors that promote endocytosis. No studies could be found investigating the role of endocytosis on P3 production, so this cannot be discussed specifically. Endocytosis allows a degree of dissociation between the α- and β-cleavages and γ-cleavage, resulting in levels of sAPPα and sAPPβ that may be independent of Aβ(1-40/42) and P3 levels, respectively. This means that in terms of function, APP processing via the β-pathway has the potential to either: modulate actions of sAPPα via competition with sAPPβ; or modulate the actions of sAPPα and initiate actions mediated by Aβ.

P3 corresponds to Aβ(1-40/42), and we predict that this shared sequence could allow P3 to modulate the interactions of Aβ (shown in Figure 2 as competitive inhibition), especially where those interactions involve the carboxy-terminal amino acids. While no studies can be found that address this particular question directly, various amino-terminal truncated forms of Aβ have been associated with diffuse plaques [80,81] and the Aβ(1-40) fragment, corresponding to P3, has been studied in terms of aggregation [82]. It is clear that amino-truncated Aβ peptides, including P3, have potential for aggregation and can interact with Aβ, but how this affects the physiological behaviour of neuronal systems is not clear. In terms of functional flow through the APP pathway, processing via the α-pathway to release sAPPα and P3 could either: initiate actions of sAPPα; or initiate actions of sAPPα and modulate actions mediated by Aβ.

In terms of modelling these interactions in functional contexts, PPI networks may require a more detailed approach, where each sequence length and aggregation state is represented as an individual node.

The effects of concentration, sequence length aggregation state and affinity

Aβ is produced in a range of sequence lengths [41] and can form monomers, dimers, oligomers and fibrils. The amount of Aβ produced is regulated and can dynamically change in response to many factors, including increased cholesterol [83], increased synaptotic activity [84], heparins via activation of BACE1 [70], reduced acetylcholine (Ach) signalling via muscarinic receptors [70], sustained increased cytosolic Ca²⁺ [85], and hypoxia [86]. Changes in concentration are a well recognised mechanism of regulation in cellular processes; for example, Aβ(1-40) and Aβ(1-42), both promote angiogenesis at nanomolar concentrations but inhibit it at higher micromolar concentrations [87].

Different sequence lengths show different behaviours; for example, Aβ(1-42) is more prone to aggregation than Aβ(1-40) due to a more rigid carboxyl terminus [88]. Aβ monomers appear to have structured and unstructured regions, with differences in aqueous conformations between Aβ(1-40) and Aβ(1-42) [89]. While both Aβ(1-40) and Aβ(1-42), reduced currents via α7 and α4β2 ACh receptors (AChRs), only Aβ(1-40) increased glutamatergic signalling via AMPA receptors [40]. Another study found that the
Figure 2. Feedback between amyloid precursor protein and its proteolytic fragments. Inhibition is shown in red, enhancement in green; numbers are referred to in the text. Functionally different aggregation states for the Aβ-type peptides are collapsed into P3 and Aβ nodes for clarity. Aβ, amyloid beta protein; AICD, APP intracellular domain; APP, amyloid precursor protein; PKC, protein kinase C; sAPP, secreted amyloid precursor protein.
effects of Aβ(1-40) and Aβ(1-42) on α7 AChRs, as measured by ACh release and Ca2+ influx, were different [39]. Additionally, Aβ may protect neurons from the effects of Aβ(1-40) by disrupting the aggregation of Aβ(1-42) [90] and this raises the possibility that P3-type peptides may act in similar ways. The functional effects of sequence length are only just beginning to be elucidated and should be expanded to include all the Aβ-type peptides, including P3. In addition to differences in peptide sequence and concentration, aggregation state also modulates function. Aβ oligomers appear to be spherical [91,92] and Aβ fibrils appear as fine fibres [92]. Aβ oligomers, but not monomers or fibrils, enhance lipid release [93] and at low concentrations enhance neuronal differentiation [92] whereas Aβ fibrils, but not monomers or oligomers, may interact with APP and increase its expression [71]. While both soluble and aggregated forms of Aβ(1-40) inhibit long-term potentiation, the fibrillar forms may additionally affect neurotransmitter release [94].

Within a specific cellular compartment, whether one interaction is more likely to occur than another depends on the relative affinities of the reactants involved. While dissociation constants have been measured for some reactions in rodent models (for example, K(i) values of Aβ(1-40) for α7 nicotinic AChRs from rat and guinea pig are 4.1 and 5.0 pM, respectively, and the K(i) of Aβ(1-42) with α4β2 AChRs is approximately 5,000-fold lower at 30 and 23 nM, respectively [95]), we are missing dissociation constants for most interactions in humans.

Taken together, the data discussed above suggest that the interactions of APP and its proteolytic fragments with synaptic systems are complex and involve subtle changes in the relative ratios between APP and all its fragments. Given the complexity of the APP system, multiple neuronal systems have the potential to regulate the expression and proteolysis of APP and could also initiate imbalance within this system, leading to multiple possible disease pathways.

This complexity has the potential to confound purely empirical studies into the behaviour of the peptides in model systems. Over-expressing Aβ peptides in, for example, mouse models without knowing their concentrations, sequences and aggregation states and the background concentrations, sequences and aggregation states of the other relevant peptides in the experimental system that is being studied means that we do not know if the experimental results obtained are due to the properties of the Aβ peptides themselves or reflect a disrupted balance in a complex system over time, or perhaps both. While this distinction may seem subtle, given the self-organising and self-referencing properties of the human brain, an approach based on the principles in systems biology may better represent the roles of the APP pathway in functional contexts.

Discussion
It is not possible to include the full extent of the known interaction of APP and its proteolytic fragments here and further interactions may yet be discovered. Data relating to the roles of APP and its proteolytic fragments in synaptic plasticity and AD have accumulated from many diverse fields and these need to be placed into context. One way of doing this is to investigate the relationships between APP, its proteolytic fragments and wider neuronal systems by mapping networks of interactions.

It is interesting that the networks generated in the various studies reviewed in Table 1 do not always overlap and different studies highlight different pathways or biological processes, for example, Fe2+ [28], apoptosis [96], or cardiovascular disease/diabetes [31]. Each study has different starting points, inclusion/exclusion criteria and network construction methods, so this lack of agreement is no surprise. It is difficult to assess the degree to which the various starting points, criteria and network construction methods bias results towards an outcome.

The study by Soler-Lopez and colleagues [33] may not model the interactions of full length APP in the membrane adequately, as many of the ECM proteins that might be expected to interact are excluded due to difficulties involved in expressing them in the experimental microarray used. This may shift the focus of their network more towards intracellular interactions. Given the importance of the various interactions of APP with components of the ECM, any study excluding such proteins and proteoglycans could be seriously confounded.

While the study by Perreau and colleagues [25] maps PPIs to specific domains of full length APP, they do not distinguish between the different proteolytic peptides. Additionally, transient interactions and biologically essential post-translational modifications, such as glycosylation and phosphorylation, cannot yet be fully represented in PPI networks [27], severely limiting the modelling of regulation and control in these models.

Studies comparing mouse and human gene expression networks [32] or aging and AD pathways [30] have revealed interesting results. Perhaps most striking is the study revealing a human-specific network for PS function in oligodendrocytes and myelination, with the potential to confound the current approach to modelling AD in rodents [32]. Miller and colleagues [30,32] also show important contributions from both neuronal and glial pathways, perhaps reflecting the contributions of glia to disease pathways found in humans [97,98]. The differences found in networks between glia and neurons could be extended to differentiate between specific neuronal types and future network models may usefully investigate why cholinergic neurons in AD appear more susceptible to degeneration than others.
We do not yet have totally inclusive, gene co-expression or PPI models of APP and related pathways to the level of detail required and this places limitations on their interpretation. Given the limitations, however, network studies do show the usefulness of the systems biology approach in integrating huge volumes of data and a simple search of patents in Google with the terms ‘protein interaction network Alzheimer disease’ retrieves more than 700 applications based on this approach. Network studies highlight the idea that multiple processes are involved in AD disease pathways, reveal new targets for further investigation and have generated new hypotheses. Network models have the potential to avoid biases inherent in other approaches, such as the emphasis on Aβ in animal models based on the more reductionist amyloid cascade hypothesis, and allow multiple disease pathways to be represented in a single model, perhaps better relating to the processes involved in human disease.

We have suggested that APP and its proteolytic fragments appear to dynamically modulate each other by multiple mechanisms with evidence for both direct and indirect feedback loops between Aβ, sAPPα, sAPPβ and full length APP. Additionally, the fragments derived from γ-cleavage, including the variable length fragments, P3 and Aβ, have the potential to interact with each other and modulate multiple neuronal processes in subtle and dynamic ways. Unfortunately, evidence for the role(s) of P3 is almost entirely missing from the literature and that for sAPPβ is limited. Without this information, we cannot have a full picture of the contributions of the APP proteolytic system to normal neuronal processes and how these change during disease progression.

Given the number and range of reciprocal feedback relationships that APP and its proteolytic fragments are involved in, the effects of perturbing the APP proteolytic system may be better understood as dynamic, synergistic actions involving multiple players. A wide range of neuronal processes have the potential to interact with and regulate APP processing, allowing APP to monitor the current state of the cell. The multiple proteolytic pathways allow APP to assimilate signals from wide-ranging cellular systems and pass these signals on via the ratios of APP fragments. The constant turnover of APP contributes to the ability of neurons to sense the current state of the cell and use this information to set in motion future responses. The potential for subtly different signals both from the α- and β-pathways via alternative peptides and the complex feedback relationships between them described above fits well with the fine control required for integrating neuronal systems.

The predicted synergy between APP and all its proteolytic fragments implies that the ratios of full length APP and all the various fragments, not just Aβ1-40 and Aβ1-42, are more important than absolute levels in coordinating neuronal responses. The complexity of the relationships described here has the potential to confound purely empirical investigations into the activities of any one proteolytic fragment studied in isolation. To avoid these predicted confounding effects, experimental approaches should be extended to account for the different concentrations, affinities and aggregation states of each peptide length, and experimental systems should be followed over time for each biological process in a systematic manner. With over 40 Aβ-type peptides [41], this presents a challenge.

Generating useful network models will require a more detailed and comprehensive approach to experimental design, involving a range of experimental controls to account for all the confounding factors. These data will be essential for generating network models that are truly relevant to our understanding of normal and abnormal processes in the context of the human population.

Abbreviations
Aβ, amyloid beta protein; ACh, acetylcholine; AChR, acetylcholine receptor; AD, Alzheimer’s disease; APP, amyloid precursor protein; BACE, beta-site amyloid precursor protein cleaving enzyme; ECM, extracellular matrix; IL, interleukin; NF, nuclear factor; PPI, protein-protein interaction; P5, presenilin; sAPP, secreted amyloid precursor protein.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported by funding from the Cambridge and Peterborough CLAHRC.

Author contributions
SH wrote the paper in discussion and with contributions from CB.

Published: 13 April 2012

References
1. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991, 41:479-486.
2. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991, 82:239-259.
3. Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 1997, 18(4 Suppl):S85-88.
4. Rossor MN, Fox NC, Freeborough PA, Harvey RJ. Clinical features of sporadic and familial Alzheimer’s disease. Neurodegeneration 1996, 5:393-397.
5. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001, 81:741-766.
6. Zekanowski C, Religa D, Graft F, Filipc K, Kuznicki J. Genetic aspects of Alzheimer’s disease. Acta Neurobiol Exp (Wars) 2004, 64:19-31.
7. Neuropathology Group. Medical Research Council Cognitive Function and Ageing Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 2001, 357:169-75.
8. Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C. Medical Research Council Cognitive Function and Ageing Study: Age, neuropathology, and dementia. N Engl J Med 2009, 360:2302-2309.
9. Jellinger KA, Attias J. Neuropathological evaluation of mixed dementia. J Neurol Sci 2007, 257:80-87.
10. Hardy JA, Higgins GA: Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992, 256:184-185.
11. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353-356.
12. Selkoe DJ: Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimer Dis 2001, 6:75-80.
13. Shen J, Kelleher RJ 3rd: The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A 2007, 104:403-409.
14. Koudinov AR, Koudinova NV: Cholesterol homeostasis failure as a unifying cause of synaptic degeneration. J Neurosci 2005, 22:230-240.
15. Eckert A, Kel L, Marques CA, Bonert A, Frey C, Schüssel K, Müller WE: Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 2003, 66:1627-1634.
16. Hoyer S: The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. J Neurotransm 2002, 109:991-1002.
17. Hoyer S: Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer’s disease: therapeutic implications. Adv Exp Med Biol 2004, 541:135-152.
18. Bartus RT, Dean RL 3rd, Beer B, Lipps AS: The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217:408-414.
19. Mattson MP: Calcium and neurodegeneration. Aging Cell 2007, 6:337-350.
20. Bogarst L, Hemm J, Kuznicki J: Calcium dysregulation in Alzheimer’s disease. Neurochem Int 2008, 52:521-533.
21. Arendt T: Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 2003, 71:83-248.
22. Fotuhi M, Hachinski V, Whitehouse PJ: Transcriptional changes in Alzheimer’s disease and normal aging. Neurosci Biobehav Rev 2003, 27:349-375.
23. Selkoe DJ: The cholinergic hypothesis of Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimer Dis 2001, 6:75-80.
24. Lee DH, Wang HY: Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid-40 and beta-amyloid-42. J Neurobiol 2003, 55:25-30.
25. Tozaki H, Matsumoto A, Kanno T, Nagai K, Naiga T, Yamamoto S, Nishizaki T: The inhibitory and facilitatory actions of amyloid-beta peptides on nicotinic ACh receptors and AMPA receptors. Biochem Biophys Res Commun 2002, 294:42-45.
26. Wang R, Sweeney D, Gandy SE, Siodia SS: The profile of soluble amyloid beta protein in cultured cell media. Detection and quantification of amyloid beta protein and variants by immunoprecipitation-mass spectrometry. J Biol Chem 1996, 271:13894-13902.
27. Bush AL, Pettingell WH Jr, de Parades M, Tanzi RE, Wasco W: The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J Biol Chem 1994, 269:26618-26621.
28. Turner PR, O’Connor K, Tate WP, Abraham WC: Roles of amyloid protein precursor and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003, 70:1-52.
29. Perez RG, Soriano S, Hayes JD, Ostraszewski B, Xi W, Selkoe DJ, Chen X, Stokin GB, Koo EH: Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. J Biol Chem 1999, 274:18851-18856.
30. Petrozik CU, Busse T, Memrion DE, Weggem S, Koo EH: The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in the endosomal processing. EMBO J 2002, 21:5691-5700.
31. Koo EH, Squazzo SL, Selkoe DJ, Koo CH: Trafficking of cell-surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as detected by labeled monoclonal antibody. J Cell Biol 1996, 109:991-998.
32. Savage MJ, Trusko SP, Howland DS, Pinker LR, Mistretta S, Reaume AG, Greenberg BD, Sman R, Scott RW: Turnover of amyloid beta-protein in mouse brain and acute reduction of its level by phorbol esters. J Neurosci 1998, 18:743-752.
33. Lyckman AW, Confalon AM, Thenakan S, Siodia SS, Moya KL: Post-translational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system. J Biol Chem 1998, 273:11100-11106.
34. Morales-Conraliza J, Mazzella MJ, Berger JD, Diaz NS, Choi JH, Levy E, Matsuoka X, Planel E, Mathews PM: In vivo turnover of tau and APP metabolites in the brains of wild-type and Tg2576 mice: greater stability of SAPP in the beta-amyloid depositing mice. Plos ONE 2009, 4:e67134.
35. Selkoe DJ: Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 1994, 10:73-403.
36. Zhang YW, Thompson R, Zhang H, Xu H: APP processing in Alzheimer’s disease. Mol Brain 2011, 4:5.
37. Sun X, He G, Song W, BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 2006, 20:1369-1376.
38. Behre D, Hesse L, Masters CL, Multhaup G: Regulation of amyloid protein precursor (APP) binding to collagen and mapping of the binding sites on APP and collagen type I. J Biol Chem 1996, 271:16163-1620.
39. Breen KC: APP-collagen interaction is mediated by a heparin bridge mechanism. Mol Chem Neuropathol 1992, 16:109-121.
40. Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW: DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 2006, 281:35176-35185.
41. Hoe HS, Lee KJ, Carney RS, Lee J, Markova A, Lee JY, Howell BW, Hyman BT, Pak DT, Bu G, Rebeck GW: Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J Neurosci 2009, 29:7459-7473.
42. Gralle M, Ferreira ST: Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 2007, 82:1-32.
43. Chaurat E, Fatoux-Argode M, Ballut L, Thierry-Mieg N, Ricard-Blum S: MatrixDB, the extracellular matrix interaction database. Nucleic Acids Res 2011, 39(Database issue):D323-324.
44. Dahms SQ, Hoefgen S, Roeser D, Schott B, Gührs KH, Than ME: Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Proc Natl Acad Sci U S A 2010, 107:5381-5386.
45. Gralle M, Oliveira CL, Guerreiro LH, McInstry WH, Galantis D, Masters CL, Cappai R, Parker M, Ramos CH, Torrani I, Ferreira ST: Solution conformation and heparin-induced dimerization of the full-length extracellular domain of the human amyloid precursor protein. J Biol Chem 2006, 335:49-508.
61. Multhaup G. Amyloid precursor protein and BACE function as oligomers. Neurodegener Dis 2006, 3:270-274.

62. Graile M, Botelho MG, Wouters FS. Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J Biol Chem 2009, 284:15016-15025.

63. Furukawa K, Topher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M, Mattson MP. Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 1996, 67:1882-1896.

64. Copani E, Chang S, Vlachos A, Tschäpe JA, Müller UC, Kögel D, Deller T. sAPPAlpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Mol Cell Neurosci 2010, 44:386-393.

65. Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikt E. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 2000, 278:169-172.

66. Bame KJ, Danda J, Hassall A, Turmo S. Abeta(1-40) prevents heparanase-catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. A role for heparan sulfate proteoglycan turnover in Alzheimer’s disease. J Biol Chem 1997, 272:7005-17011.

67. Klajnert B, Cortijo-Arellano M, Byszewska M, Cladera J. Levels of heparan sulfated heparanase and heparanase on the aggregation of two amyloid peptides related to Alzheimer’s and prion diseases. Biochem Biophys Res Comm 2006, 339:577-582.

68. Bergmanström L, Donnarini C, Rossi E, De Luigi A, Vergani D, Ce Simoni MG. Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiol Aging 2002, 23:531-536.

69. Winkler K, Schnarh H, Tiszai L, Hochsztuhl H, Friedlich I, Hoffmann MW, Hüttiger M, Wieland H, Marz W. Competition of Abeta amyloid peptide and apolipoprotein E for receptor-mediated endocytosis. J Lipid Res 1999, 40:447-455.

70. Beckman M, Holsinger RM, Small DH. Heparin activates beta-secretase (BACE) of Alzheimer’s disease and increases autophagy of the cell. Biochemistry 2006, 45:6703-6714.

71. White AR, Maher F, Brazier MW, Jobling MF, Thyer J, Stewart LR, Thompson A, Gibson R, Masters CL, Multhaup G, Beyreuther K, Barrow CJ, Collins SJ, Cappai R. Calmodulin-dependent protein kinase II and AMPA receptor activation antagonize Abeta40 and 42 effects on synaptic distribution. Neurobiol Dis 2007, 28:284-296.

72. Talamagas AA, Efthimiopoulos S, Figueiredo-Pereira ME, Tzinia AK. A novel sorting nexin modulates intracellular amyloid beta-protein. Mol Membr Biol 2009, 26:205-216.

73. Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid beta-protein oligomers. J Biol Chem 2006, 281:4946-4953.

74. Ling X, Martins RN, Tashjian AH. Apolipoprotein E alters the activity of the amyloid beta-protein precursor. J Biol Chem 2002, 277:24551-24557.

75. Canet-Aviles RM, Anderton M, Hooper NM, Turner AJ, Vaughan PF. Effects of the monomeric, oligomeric, and fibrillar Abeta42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J Neurochem 2007, 102:493-500.

76. Schmit AW, Freir DB, Herrera CE. Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states. Brain Res 2008, 1197:135-142.

77. Yang H, Lee DH, Davis GB, Shank RP. Amyloid Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 2000, 75:1155-1161.

78. Alberghina L, Colangeli AM. The modular systems biology approach to investigate the control of apoptosis in Alzheimer’s disease. Neurodegeneation. BMC Neurosci 2006, 7 Suppl 2:1153-1157.

79. Simpson JE, Ince PG, Haynes LJ, Theaker R, Gelthorpe C, Baxter L, Forster G, Lace GS, Shaw PJ, Matthews FE, Savva GM, Brayne C, Wharton SB, MRC Cognitive Function and Ageing Neurodepathology Study Group. Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Appl Neurobiol 2010, 36:25-40.

80. Baumeister R, Haass C, Lichtenthal SF. Infl uence of heparin on the formation of Alzheimer’s plaques. J Neurosci 2010, 34:1786-1792.

81. van Gool SL, Liu HY, Yang H, Iglesias C, Vives-Corrons JL, Mucke L. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 2004, 92:2853-2863.

82. Dodart JC, Bales KR, Johnston DM, Little SP, Paul SM. Apolipoprotein E alters phosphorylation during hippocampal long-term potentiation. J Neurophysiol 2005, 93:471-479.
the processing of the beta-amyloid precursor protein in APP(V717F) transgenic mice. *Brain Res* 2002, 955:191-199.

103. Zlokovic BV, Yamada S, Holtzman D, Grigoriev B, Frangione B: Clearance of amyloid-beta peptide from brain: transport or metabolism? *Nat Med* 2000, 6:718-719.

104. Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorus I, Paul SM, Bales K, Ashe KH, Iziracy MC, Hyman BT. Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. *Ann Neurol* 2000, 47:739-747.

105. Tamazuni-Kato S, Cohen JK, Drake CB, Kosaragi MG, Drury J, Narayanaswamy V. Interaction with amyloid beta peptide compromises the lipid binding function of apolipoprotein E. *Biochemistry* 2008, 47:5225-5234.

106. Furukawa K, Bang SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted beta-amylloid precursor protein. *Nature* 1996, 379:74-78.

107. Matsuda S, Matsuda Y, D’Adamo L. CD74 interacts with APP and suppresses the production of Abeta. *Mol Neurodegener* 2009, 4:41.

108. Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanden CH. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? *Biochemistry* 2008, 47:9428-9446.

109. Liu WW, Todd S, Coulson DT, Irvine GB, Passmore AP, McGuinness B, McCarville M, Craig D, Johnston JA. A novel reciprocal and biphasic relationship between membrane cholesterol and beta-secretase activity in SH-SY5Y cells and in human platelets. *J Neurochem* 2009, 108:341-349.

110. Abad-Rodriguez J, Ledemana MD, Cozsaerts K, Periga S, Medina SA, Delacourte A, Dingwall C, De Strooper B, Dotti CG. Neuronal membrane cholesterol loss enhances amyloid peptide generation. *J Cell Biol* 2004, 167:953-960.

111. Avdulov NA, Chochina SV, Igavbovo U, Warden CS, Vassiliev AV, Wood WG. Lipid binding to amyloid-beta peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. *J Neurochem* 1997, 69:1746-1752.

112. Kristofik Z, Kopecký J, Hofbauerová K, Hovorková P, Ripová D. Complex of amyloid beta peptides with 24-hydroxycholesterol and its effect on hemicholinium-3 sensitive carriers. *Neurochem Res* 2008, 33:412-421.

113. Sheng Y, Sullivan T, Lee CM, Meni S, Shiosaki K, Lin CW. Induced expression of neuronal membrane attack complex and cell death by Alzheimer’s beta-amyloid peptide. *Brain Res* 1998, 796:187-197.

114. Mudher A, Chapman S, Richardson J, Asuni A, Gibb G, Pollard C, Killick R, Lewis P, Murphy M, Golde TE, Rupniak NH, Anderton BH. Lovestone S. Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase. *J Neurosci* 2001, 21:9487-9495.

115. Sánchez-Alavea M, Chan SL, Mattson MP, Criadó JR. Electrophysiological and cerebrovascular effects of the alpha-secretase-derived form of amyloid precursor protein in young and middle-aged rats. *Brain Res* 2007, 1131:112-117.

116. Sepulveda FJ, Opazo C, Aguayo LG. Alzheimer beta-amyloid blocks epileptiform activity in hippocampal neurons. *Mol Cell Neurosci* 2009, 41:420-428.

117. Sabo SL, Ikin AF, Buxbaum JD, Greengard P. Inhibition of the beta-amyloid precursor protein complexes with brain GTP-binding protein Go. *Nature* 1993, 362:75-79.

118. Okamoto T, Takeda S, Murayama Y, Ogata E, Nishimoto I. Lipid-dependent G protein coupling function of amyloid precursor protein. *J Biol Chem* 1995, 270:4205-4208.

119. Shankel GM, Chauv S, Ulibi K, Hansen LA, Masliah E. Interactions between the amyloid precursor protein C-terminal domain and G proteins mediate calcium dysregulation and amyloid beta toxicity in Alzheimer’s disease. *FEBS J* 2009, 276:2736-2751.

120. Koudinov AR, Berezov TT, Kumar A, Koudinova NV. Alzheimer’s amyloid beta interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. *Clin Acta Gastroenterol* 1998, 270:75-84.

121. Patel SJ, Edwards EA, Yates EA, Turnbull JE. Heparin derivatives as inhibitors of BACE-1, the Alzheimer’s beta-secretase, with reduced activity against factor Xa and other heparins. *J Med Chem* 2006, 49:129-161.

122. Patel SJ, Edwards EA, Yates EA, Turnbull JE. Engineered heparins: novel beta-secretase inhibitors as potential Alzheimer’s disease therapeutics. *Mol Neurodegener* 2008, 5:197-199.

123. Mattson MP, Guo ZH, Geiger JD, Furukawa K, Mattson MP. Secreted amyloid precursor protein alpha selectively suppresses N-methyl-D-aspartate currents in hippocampal neurons: involvement of cyclic GMP. *Neuroscience* 1998, 83:429-438.

124. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NW, Turner PR, Bilkey DK, Tate WR, Abraham WC. Endogenous secreted amyloid precursor protein-alpah regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. *Neurobiol Dis* 2008, 31:250-260.

125. Suo Z, Wu M, Citron BA, Wong GT, Festoff BW. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer’s disease: an association with early beta-amyloid accumulation. *J Neurosci* 2004, 24:3444-3452.

126. Nishimoto I, Okamoto T, Matsuya Y, Takashashi S, Okamoto T, Murayama Y, Ogata E. Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o). *Nature* 1993, 362:75-79.

127. Shaked GM, Chauv S, Ulibi K, Hansen LA, Masliah E. Interactions between the amyloid precursor protein C-terminal domain and G proteins mediate calcium dysregulation and amyloid beta toxicity in Alzheimer’s disease. *FEBS J* 2009, 276:2736-2751.

128. Pérez A, Morelli L, Creato JC, Castaño EM. Degradation of soluble amyloid beta-1-42, 1-42, and the Dutch variant 1-40/42 by insulin degrading enzyme from Alzheimer disease and control brains. *Neurobiol Dis* 2005, 25:247-255.

129. Young-Pearse TL, Chen AC, Chang R, Marquez C, Selkoe DJ. Interleukin-1beta potentiates and spatial memory. *Neurobiol Aging* 2002, 23:597-608.

130. Wang Q, Klyubin I, Wright S, Griswold-Prenner I, Rowan MJ, Anwyl R. Interleukin-1beta enhances nucleotide-induced and alpha-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y(2) receptor. *J Neurochem* 2009, 109:1300-1310.

131. Tachida Y, Nakagawa K, Saito T, Saicd TC, Honda T, Sato Y, Murayama S, Endo T, Sakaguchi G, Kato A, Kitazume S, Hashimoto Y. Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. *J Neurochem* 2008, 104:1397-1393.

132. Sheng JS, Ito K, Skinner RD, Maek SK, Rovnaghi CR, Van Eldik LJ, Griffin WS. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. *Neurobiol Aging* 1996, 17:761-766.

133. Pérez A, Morelli L, Creato JC, Castaño EM. Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40/42 by insulin degrading enzyme from Alzheimer disease and control brains. *Neurobiol Dis* 2005, 25:247-255.

134. Caliargone J, Jring Z, Bowser R. Focal adhesions regulate Abeta signaling and cell death in Alzheimer’s disease. *Biochim Biophys Acta 2007, 1772:438-445.

135. Wang Q, Kyubin I, Wright S, Griswold-Prenner I, Rowan MJ, Arwry L, Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. *Neurobiol Aging* 2008, 29:1485-1495.

136. Terzic E, Holzmann G, Seelig J. Interaction of Alzheimer beta-amyloid peptide with the neuronal death-inducing receptor CD47(1-40) with lipid membranes. *Biochemistry* 1997, 36:14845-14852.

137. Hetzel C, Terz E, Hauser N, Jakob-Rotne R, Seelig J, Kemp JA. Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity. *Proc Natl Acad Sci U S A 1997, 94:9412-9416.

138. Gerl M, Zarandi M, Penke B. Amyloid-beta peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. *J Pept Sci* 2004, 10:229-248.
145. Yamin G: Amyloid precursor protein family members is shaped by phosphorylation of their isoforms are regulators of alpha-secretory proteolytic processing of amyloid precursor protein in vivo. Eur J Neurosci 2001, 13:1644-1648.

146. Favit A, Grimaldi M, Nelson TJ, Alkon DL: Regulation of BACE1 expression – implications for Alzheimer’s disease. J Neurosci 2006, 26:10895-10905.

147. Fawzi A, Gershenfeld A, Zuniga A, Zuniga T, Gershenfeld P: Regulated secretion of beta-amyloid protein precursor and apolipoprotein E receptor protect in human fibroblasts. Proc Natl Acad Sci U S A 1998, 95:5562-5567.

148. Dourakoglou MS, Chen Y, White CL, Kavalali ET, Herz J: Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci U S A 2009, 106:15938-15943.

149. Tamayur R, Zhou D, D’Amadico L: The interactome of the amyloid beta precursor protein family members is shaped by phosphorylation of their intracellular domains. Mol Neurodegener 2009, 4:28.

150. Schenfield MH, Gershon E, Davies P, D’Amadico L: Amyloid beta protein precursor is phosphorylated by JNK-1 independent of, yet facilitated by, JNK-interacting protein (JIP)-1. J Biol Chem 2003, 278:42058-42063.

151. Hoe HS, Cooper MJ, Burns MP, Lewis PA, van der Brug M, Chakraborty G, Lombroso PI, Gouras GK, Greengard P: Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2003, 5:1103-1108.

152. Sannoff S, Schliebs R, Akaike A: M1 muscarinic agonists target major hallmarks of Alzheimer’s disease – the pivotal role of brain M1 receptors. Neurodegener Dis 2008, 5:237-240.

153. Zuchner T, Perez-Polo JR, Schliebs R: Beta-secretase BACE1 is differentially controlled through muscarinic acetylcholine receptor signaling. J Neurosci Res 2004, 77:250-257.

154. Kim C, Jang CH, Bang JH, Jung MW, Joo I, Kim SU, Hong KS, Yang Y: Amyloid precursor protein processing is separately regulated by protein kinase C and tyrosine kinase in human astrocytes. Neurosci Lett 2002, 324:185-188.

155. Liu WQ, Ferreira A, Miller C, Koo EH, Selkoe DJ: Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner. J Neurosci 1995, 15:2157-2167.

156. Rosner S, Sattore M, Bourne K, Lichtenthaler SF: Transcriptional regulation of BACE1 expression – implications for Alzheimer’s disease. Prog Neurobiol 2006, 79:95-111.

157. Choi S, Kim JH, Roh EJ, Ko MJ, Jung JE, Kim HJ: Nuclear factor-kappaB activated by capacitative Ca2+ entry enhances muscarinic receptor-mediated soluble amyloid precursor protein (sAPPalpha) release in SH-SYSY cells. J Biol Chem 2006, 281:12722-12728.

158. Kihara T, Shimohama S, Ushihata M, Sawada H, Kimura J, Kume T, Maeda T, Akaike A: Stimulation of alpha/beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res 1998, 792:231-234.

159. Nagel RG, D’Andrea MR, Anderson WJ, Wang HY: Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 2000, 110:199-211.

160. Dougherty JJ, Wu J, Nichols RA: Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci 2003, 23:6740-6747.