ALT-803 in the treatment of non-muscle-invasive bladder cancer: Preclinical and clinical evidence and translational potential

Wujun Chen†, Ning Liu†, Yang Yuan1, Meng Zhu1,2, Xiaokun Hu1,3, Wenchao Hu1,4, Shuai Wang5, Chao Wang1, Binghuan Huang* and Dongming Xing1,6*

1Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China, 2Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China, 3Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China, 4Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China, 5School of Medical Imaging, Radiotherapy Department, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China, 6School of Life Sciences, Tsinghua University, Beijing, China

Bladder cancer (BCa) is one of the most common malignant tumors that cause death. Approximately 75%–85% of BCa develop into non-muscle-invasive bladder cancer (NMIBC). Bacillus Calmette-Guérin (BCG) is the gold standard for avoiding cystectomy in the treatment of NMIBC. Unfortunately, up to 30% of patients do not respond to BCG treatment, and up to 70% of BCG responders relapse. The United States Food and Drug Administration (FDA) approved valrubicin (1998) and pembrolizumab (2020) for the treatment of BCG-unresponsive (BCGu) NMIBC. However, the complete remission rate for valrubicin and pembrolizumab was only 16% and 40.6%, respectively. ALT-803 (N-803) is an IL-15 superagonist and reduces tumor burden by promoting the proliferation and activation of NK cells and CD8+ T cells. The FDA received (23 May 2022) and accepted to review (28 July 2022) the marketing submission of ALT-803 plus BCG for the treatment of BCGu NMIBC. However, the FDA previously rejected the application for oportuzumab monatox (OM) due to a lack of data comparing it with pembrolizumab on August 20, 2021. Interestingly, the clinical efficacy and safety of ALT-803 were higher than that of pembrolizumab and OM, suggesting that ALT-803 may be approved by FDA. This review aims to further knowledge of the preclinical and clinical evidence of ALT-803 in the treatment of NMIBC and discuss its translational potential.

KEYWORDS
NMIBC, ALT-803, pembrolizumab, oportuzumab monatox, BCG
1 Introduction

Bladder cancer (BCa) is the 10th most common cancer in the world and the 11th leading cause of death among solid tumors. It includes muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC), with the latter accounting for approximately 75% to 85% of cases. NMIBC includes tumors infiltrating the lamina propria (T1), carcinomas in situ (CIS), and papillary noninvasive carcinomas (Ta). Radical cystectomy is the gold standard in the treatment of high-risk NMIBC. However, many patients with NMIBC are unwilling or unable to undergo surgery due to the consequent poor quality of life. As of August 2022, the United States Food and Drug Administration (FDA) has approved only Bacillus Calmette-Guérin (BCG) (in 1976), valrubicin (in 1998), and pembrolizumab (in 2020) for the treatment of NMIBC (1–4). BCG is a live attenuated bovine tuberculosis bacillus. Intravesical BCG is used for the treatment of intermediate- and high-risk NMIBC as adjuvant therapy. BCG can prolong the progression-free interval after initial tumor resection in patients with NMIBC. It exhibits a nonspecific immune response to reduce tumor burden by increasing the number of natural killer (NK) cells and CD8⁺ T cells and by cytokine secretion, including that of interleukin (IL)-2, IL-12, IL-18, and interferon-gamma (INF-γ) (5, 6). However, there are no biomarkers for predicting the response to BCG. Furthermore, the risk of NMIBC tumor recurrence is very high (~70%), and many patients experience relapses and eventually develop resistance to BCG (i.e., they show no response) (6, 7). Such patients have to undergo cystectomy, which has a 9% mortality rate, have a poor quality of life, and bear high costs. Valrubicin is the first drug approved by the FDA to treat BCG-unresponsive (BCGu) NMIBC. However, the response rate for valrubicin was only 16%. In response to this difficult-to-treat disease, the FDA approved pembrolizumab for the treatment of BCGu NMIBC based on phase 2 clinical data. However, the complete response (CR) rate of pembrolizumab was only 40.6% in the phase 2 trial (8). Therefore, new therapies are urgently needed to prevent disease progression and allow bladder retention to maintain the patient’s quality of life.

IL-15, which is a 15-kDa cytokine, is a four-helix bundle common gamma chain cytokine and a promising target for cancer immunotherapy. The US National Cancer Institute listed IL-15 as the drug target with the greatest potential for cancer immunotherapy in 2008 (9). IL-15 is a potent stimulator of CD8⁺ T cells and NK cells via the activation of IL-15Rα, IL-2Rβ (also named CD122), and IL-2Rγ (also named CD132), which share receptors with IL-2, IL-4, IL-7, IL-9, and IL-21, and thereby reduces tumor burden (10, 11). ALT-803 [also named N-803 (nogapendekin alfa inbakicept), Anktiva, and IL-15SA], which is an IL-15 cytokine antibody fusion protein, is a complex of the IL15 superagonist N72D mutant and the dimer IL15 receptor α/Su/IgG1 Fc fusion protein. ALT-803 enhances the tumor killing activity of NK and CD8⁺ T cells and has a longer half-life than recombinant IL-15, leading to a potent antitumor effect (12). The efficacy, safety, and tolerability of ALT-803 alone or in combination with BCG for the treatment of NMIBC were good in preclinical (utilizing animal models) and clinical studies (phases 1–3) (13, 14). The FDA awarded ALT-803 fast track designation and breakthrough designation status in 2017 and 2019, respectively (14, 15). ALT-803 was originally developed by Altor Biosciences and is currently being developed by ImmunityBio. Inc. for the treatment of NMIBC. ImmunityBio. Inc. submitted a marketing submission to the FDA for ALT-803 in combination with BCG for the treatment of BCGu NMIBC CIS with or without Ta or T1 disease on 23 May 2022. The FDA accepted to review this application on 28 July 2022, and the Prescription Drug User Fee Act target action date is 23 May 2023. However, whether it will be approved is a moot point according to the news reported on the website of ImmunityBio. Inc. The FDA previously rejected the marketing application for opurtuzumab monatox (OM; also named as Vicinium, Vicinium, Vysyneum, and VB4-845) by Sesen Bio. Inc. due to a lack of data comparing it with pembrolizumab or other chemotherapeutics on 23 August 2021. The EU marketing authorization application of OM was withdrawn on 27 August 2021 (16, 17). Indeed Sesen Bio. Inc. plans to resolve the issue with OM and apply for approval again. ALT-803 may also require a phase 3 trial that compares it with pembrolizumab (18–20). In this review, we focus on the advances in the development of ALT-803 for the treatment of NMIBC at the preclinical and clinical stages to discuss its translational potential from the perspectives of pharmacology, pharmacokinetics, and toxicology.

2 The preclinical evidence of using ALT-803 in NMIBC

2.1 Pharmacology

2.1.1 Normal C57BL/6J mice

ALT-803 shows strong immunity in normal C57BL/6J mice. Subcutaneous (S.C.) and intravenous (I.V.) ALT-803 promote the serum IL-6, IFNγ, MCP-1, granzyme B (GzB), and TNFα levels but do not change the IL-10 and IL-12 levels in C57BL/6 mice. ALT-803 also promotes IFNγ and TNFα secretion but does not change the IL-6, IL-2, IL-10, IL-4, and IL-17A levels in mouse splenocytes (21). MCP-1 plays a crucial role in enhancing monocyte migration and infiltration, T cell number, and NK cell memory. Meanwhile, GzB plays a key role in NK cell cytotoxicity (22). These findings suggest that ALT-803 exhibits anti-tumor activity by enhancing the MCP-1 and GzB expression.

ALT-803 also stimulates immune cell infiltration into the lymphoid organs in a dose-dependent manner in C57BL/6 mice.
ALT-803, but not recombinant IL-15 (rIL-15), increases the spleen weight and the CD8$^+$ T cell and NK cell counts in C57BL/6 mice, suggesting that the immune efficacy of ALT-803 is higher than that of rIL-15 (21, 22). Interestingly, the effect of S.C. ALT-803 on CD8$^+$ T, Treg, and NK cell proliferation in the spleen is similar to that of I.V. ALT-803 in C57BL/6 mice. The S.C. ALT-803-mediated upregulation of GzB expression is also similar to that observed after I.V. treatment, suggesting that both S.C. and I.V. ALT-803 have similar effects on NK cell cytotoxicity (21, 22). Many studies have shown that the immune efficacy of ALT-803 in normal animals is similar to that in tumor animal models, suggesting that ALT-803 suppresses cancer development by enhancing the activity of CD8$^+$ T and NK cells and the expression of MCP-1 and GzB (Figure 1).

2.1.2 N-Butyl-N-(4-hydroxybutyl) nitrosamine-induced C57BL/6J mice orthotopic NMIBC model

N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN) is a highly carcinogenic compound and induces orthotopic NMIBC. In a previous study involving this carcinogen-induced mouse NMIBC model, S.C. ALT-803 was found to reduce the tumor burden by 37%, which is a higher reduction than that obtained with intravesical ALT-803 (28%) or intravesical BCG (28%), suggesting that the efficacy of S.C. ALT-803 is better than that of intravesical ALT-803 or BCG (13). Although the efficacy of intravesical ALT-803 is similar to that of intravesical BCG, intravesical ALT-803 tends to outperform intravesical BCG. Additionally, S.C. or intravesical ALT-803 combined with intravesical BCG reduces tumor burden by 44% and 36% in this model, respectively, suggesting that ALT-803 enhances the efficacy of BCG. Furthermore, S.C. ALT-803 increases the population of peripheral CD8$^+$ T, NK (NKG2D$^+$), NKT (CD3$^+$/NKG2D$^+$), and splenic tissue NKT cells. However, intravesical ALT-803 alone and intravesical BCG alone did not affect these lymphocytes, suggesting that the systemic effects obtained with S.C. ALT-803 are higher than that with intravesical ALT-803 and BCG. Additionally, intravesical BCG suppresses the S.C. ALT-803-mediated induction of lymphocyte population but increases the peripheral CD8$^+$ T cell population by intravesical ALT-803, suggesting that intravesical ALT-803 combined with intravesical BCG has little to no systemic effects (13).

S.C. ALT-803 also regulates more cytokines than intravesical ALT-803 and BCG. Specifically, S.C. ALT-803 was found to increase the sera IL-5 and IL-6 levels and urine IL-13 levels, and the increase was higher than that obtained with intravesical ALT-803. Furthermore, S.C. ALT-803 combined with intravesical BCG was found to increase the sera TNFα, IL-5, IL-6, and IL-13 levels and the urine IL-13 and IFN levels. S.C. ALT-803 alone, S.C., or intravesical ALT-803 combined with intravesical BCG reduces the sera IL-1β level. However, intravesical ALT-803 combined with intravesical BCG does not affect any urine cytokines, suggesting that S.C. ALT-803 elicits a systemic immune response compared to intravesical ALT-803 (13). Taken together, S.C. ALT-803 alone or in combination with intravesical BCG was found to exhibit a potent antitumor effect compared to intravesical ALT-803 alone or BCG alone or their combined administration. S.C. administration may be the most advantageous approach due to its stronger systemic immune response than intravesical administration. However, more clinical trial studies are needed.

![Diagram](https://example.com/diagram.png)
2.1.3 BBN-induced SD rat orthotopic NMIBC model

Preclinical studies with multiple animal models are a prerequisite for the development of new drugs and subsequent clinical applications. Intravesical ALT-803 alone or in combination with intravesical BCG was reported to reduce the tumor burden by 35% and 46%, respectively, by enhancing NK cell activation in the BBN-induced SD rat orthotopic NMIBC model and was more effective than intravesical BCG alone (15%). The combination treatment reduced the tumor angiogenesis and proliferation of the tumor cells by 76% and 80%, respectively, which is higher than that observed with intravesical ALT-803 alone (59% and 52%) and intravesical BCG alone (40% and 40%) (23). These findings suggest the efficacy of intravesical ALT-803 alone or in combination with intravesical BCG than that of intravesical BGC alone in rats.

Intravesical ALT-803 alone and in combination with BCG was reported to increase the number of tumoral microenvironment CD3+ T cells but not of that found in the blood and spleen. Furthermore, the increase was higher than that obtained with intravesical BCG alone. The combination of ALT-803 and BCG enhanced the tumoral NK cell numbers to a higher extent than intravesical ALT-803 alone or BCG alone. Intravesical ALT-803 alone, intravesical BCG alone, and the combination of ALT-803 and BCG promoted the number of tumoral CD8+ T cells and NK cells in the blood and spleen (23). However, there was no statistical significance among the groups, suggesting that intravesical ALT-803 alone or in combination with BCG reduced the tumor burden of bladder cancer by increasing the infiltration and cytotoxicity of CD3+ T cells and NK cells in the tumor tissue.

IL-1α and IL-1β are secreted by macrophages and neutrophils. RANTES (also named CCL5) enhances antitumor immunity through the recruitment and activation of NK cells. Intravesical ALT-803 was found to enhance the proliferation and activation of NK cells by stimulating the secretion of IL-1α, IL-1β, and RANTES, which are Th1 cytokines. Notably, the levels of urinary Th1 cytokines (such as IFNγ, IL-2, and IL-12) were reported to be positively correlated with the BCG response, while the levels of Th2 cytokines (such as IL-10 and IL-6) showed a negative correlation (23). Based on the synergistic effect of ALT-803 and BCG, we hypothesize that Th1 cytokines may play a key role in the efficacy of intravesical ALT-803.

2.2 Pharmacokinetics

2.2.1 Mice

The hepatobiliary pathway is the dominant mechanism for clearing ALT-803, whereas the renal pathway mainly functions for clearing rIL-15 (21). ALT-803 has a serum half-life of 7.50 h after I.V. injection and 7.71 h after S.C. injection in C57BL/6 mice, suggesting that the half-life of I.V. ALT-803 is similar to that of S.C. ALT-803. The half-life of I.V. ALT-803 evaluated using anti-IL-15 Ab and anti-IgG Fc Ab was 25 and 18 h in ICR (CD-1) mice, respectively, suggesting that ALT-803 has a long half-life. Indeed rIL-15 requires daily or continuous intravenous administration due to poor bioavailability in lymphoid tissues and rapid clearance. In contrast, ALT-803 induces maximum immune cell stimulation 4 days after administration, suggesting that ALT-803 can be administered clinically once or twice a week (21, 22).

The maximum serum concentration (C_max) of I.V. ALT-803 (0.2 mg/kg) in C57BL/6 mice is 3,926 ng/ml at 0.5 h, whereas that of S.C. injection (0.2 mg/kg) is 495 ng/ml at 16 h, suggesting that the C_max of I.V. administration is higher than that of S.C. administration. I.V. administration takes less time to achieve efficacy than S.C. administration. However, the side effects of I.V. administration may be more than that of S.C. administration as I.V. administration would lead to higher serum levels (22).

The tissue distribution and residence time of I.V. and S.C. ALT-803 in lymphoid tissues are higher than that of rIL-15, suggesting that ALT-803 not only has a longer serum half-life but also has a higher distribution and residence time in the lymphoid organs than rIL15. Specifically, ALT-803 level has been detected in a variety of tissues in female C57BL/6N Hsd (B6) mice and C57BL/6 mice, including in the spleen, lymph nodes, bone, liver, stomach, lung, heart, kidney, blood, brain, intestine, muscle, pancreas, thymus, skin, and tail, whereas IL-15 level by I.V. rIL-15 was detected only in the liver, kidney, and lymph nodes, with very low levels observed in other organs (21, 22). Moreover, the ALT-803 levels by S.C. administration in the spleen, lymph nodes, bone, and kidney were higher than that by I.V. administration, whereas its level in the liver, lung, stomach, intestine, and heart was lower than that by I.V. administration, suggesting that S.C. administration may have high immune cell stimulation than I.V. administration although I.V. administration has a higher C_max (21, 22). Taken together, ALT-803 has a long blood circulation time and low kidney uptake and accumulates over a wide area and for a long time in multiple tissues.

2.2.2 Monkeys

ALT-803 also has a longer half-life in monkeys. I.V. ALT-803 (0.1 and 0.03 mg/kg) showed a non-dose-dependent plasma half-life (7.2–8 h) in cynomolgus monkeys. The plasma C_max of 0.1 mg/kg ALT-803 was 30 nmol/L in cynomolgus monkeys, whereas the C_max of 0.03 mg/kg ALT-803 was 6 nmol/L and enhanced the immune cell proliferation and activation by 60-fold compared to that in vitro (concentration of 0.1 nmol/L). These data suggest that a low dose could enhance immune cell proliferation and activation. However, I.V. rIL-15 (10, 20, and 50 μg/kg/day) has a short plasma half-life ranging from 0.907 to 2.159 h in rhesus macaques and macaques. The C_max of IL-15 by I.V. rIL-15 ranged from 450.7 to 2,085 ng/ml in rhesus macaques, suggesting that the half-life and efficacy of ALT-803...
are higher than that of rIL-15 in monkeys. ALT-803 also increases the count of white blood cells (WBCs; such as monocytes) and lymphocytes (such as NK cells, CD4+ T cell (including naive, central memory, and effector memory subtype), and CD8+ T cells) in a dose-dependent manner in monkeys as well as the lymphocytic infiltration and hyperplasia in the liver, kidneys, and lungs. However, ALT-803 did not affect the blood IFNγ, TNFα, IL-6, IL-5, IL-4, and IL-2 levels, suggesting that ALT-803 does not trigger a cytokine storm in monkeys (21, 24, 25).

2.3 Toxicology

2.3.1 Murine

2.3.1.1 S.C. ALT-803

S.C. ALT-803 has no dose-limiting toxicity in B6 mice. A high dose of ALT-803 (1.0 mg/kg/week, S.C., 4 weeks) did not have obvious side effects in female B6 mice (21, 22). There was a trend of weight loss and side effects of arching at the beginning of the treatment. However, these side effects disappeared as the treatment progressed. S.C. ALT-803 reduced the blood alkaline phosphatase (ALP) and creatinine levels but did not affect the aspartate, alanine aminotransferases, and blood urea nitrogen levels, suggesting that ALT-803 shows no hepatotoxicity and nephrotoxicity (21, 22). Phosphate ester prodrugs (such as etoposide phosphate and fosamprenavir) are rapidly cleaved into the active compound by human ALP (26), suggesting that ALT-803 cannot be combined with phosphate ester prodrugs.

S.C. ALT-803 altered the weight and hematology of the tissues, including the weight of the spleen (by 5.5-fold), lymph node (by threefold), and the liver (by approximately 0.2-fold), enhancing erythropoiesis to leukocyte conversion and multiple cell counts such as that of WBCs (by ninefold), lymphocytes (by ninefold), neutrophils (by eightfold), monocytes (by sevenfold), eosinophils (by sixfold), and basophils (by fourfold). The liver tissue contains many NK cells, suggesting that the ALT-803-induced increase in the liver weight may be due to ALT-803-mediated NK cell proliferation and activation (21, 22).

2.3.1.2 I.V. ALT-803

A high dose of I.V. ALT-803 promoted weight loss and death in C57BL/6 mice. The dead mice presented with pulmonary edema and enlarged lymph nodes and spleen. I.V. ALT-803 also increased the tissue weights and hematological counts, which were higher than those obtained with S.C. ALT-803 [spleen (by 6.5-fold), WBCs (by 15-fold), lymphocytes (by 18-fold), neutrophils (by 10-fold), monocytes (by 11-fold), eosinophils (by sevenfold), and basophils (by sixfold)] (21, 22). Cytokines promote these symptoms by inducing inflammatory responses, suggesting that a high dose of ALT-803 induced systemic inflammatory responses. Taken together, I.V. ALT-803 may show systemic toxicity due to its higher ALT-803 peak serum concentration, which could trigger higher inflammatory cell counts and a cytokine storm.

2.3.1.3 Intravesical ALT-803

Intravesical ALT-803 has no dose-limiting toxicity in SD rats. Intravesical ALT-803 alone or in combination with BCG is safe and well tolerated (23).

2.3.2 Monkeys

I.V. ALT-803 was reported to induce liver necrosis and bone marrow hyperplasia in monkeys. Indeed I.V. IL15:IL15Rα/Fc complex (0.5 mg/kg/4 days) promoted mice death by enhancing acute hepatocellular injury by NK cells, suggesting that I.V. ALT-803 may cause liver injury in clinical practice. Additionally, I.V. ALT-803 reduced the serum albumin but did not affect the serum levels of liver enzymes in monkeys (21). Albumin is the main protein causing hypoalbuminemia. Furthermore, the serum-albumin-to-globulin ratio levels can independently predict the risk of disease progression in patients with NMIBC (27). Thus, one must be wary of the risk of hypoproteinemia by I.V. ALT-803 when used for treating NMIBC. Meanwhile, the side effects of I.V. rIL-15 include loss of appetite, diarrhea, vomiting, weight loss (ranging from 11% to 12%), high levels of triglycerides, and low levels of phosphorus in rhesus macaques. rIL-15 also promotes the enlargement of the liver (lymphocytes and neutrophils) and spleen, bone marrow hyperplasia, loss of adipocyte number, pulmonary edema, and moderate thrombosis in rhesus macaques (24, 25). As LT-803 and rIL-15 have the same target, one should consider these side effects when administering I.V. ALT-803. Based on the pharmacokinetic (PK) profiles and safety of ALT-803 in mice and monkeys, S.C. ALT-803 is superior to I.V. ALT-803.

Indeed there are no adverse effects of I.V. 0.1 mg/kg ALT-803 in mice and I.V. 0.03 mg/kg ALT-803 in cynomolagus monkeys, suggesting that approximately 10 µg/kg ALT-803 is reasonable for human administration according to the efficacy conversion factors from animal to human. In addition, the serum Cmax of ALT-803 after 5 µg/kg administration is 1 nmo/L, which is a sufficient dose to promote the proliferation and activation of human T and NK cells in vitro. Based on the therapeutic dose window of ALT-803 results, a dose of 1.0 to 5.0 mg/kg ALT-803 in humans may be sufficient to stimulate immune cells and have no toxicologic effects (21).

3 The clinical evidence of using ALT-803 in NMIBC

3.1 Pharmacology

3.1.1 In vitro

ALT-803 shows strong immune efficacy in human cells in vitro. Specifically, ALT-803 was found to increase the
lymphocyte counts (by 2.1-fold) in 7-day cultures of human peripheral blood mononuclear cells (PBMCs) in vitro, including that of CD8+ T cells by (3.0-fold), CD4+ T cells by (1.8-fold), and NK by (2.8-fold) cells, and exhibit nanomolar efficacy (0.5 nM). ALT-803 also increased the cell surface activation marker CD69 (NK and CD8+ T cells) and CD25 expression (NK and CD4+ T cells) in a dose-dependent manner (21). GzB and perforin play a key role in the cytotoxic activity of NK cells and CD8+ T cells on tumor cells. ALT-803 increased the expression of GzB and perforin in NK cells and CD8+ T cells in a dose-dependent manner, suggesting that ALT-803 kills tumor cells by enhancing GzB and perforin expression and the subsequent activation of NK and CD8+ T cells (21). Indeed 0.07 nM ALT-803 can increase the CD8+ T cell population by more than 1.5-fold, and 0.01 nM ALT-803 can promote GzB and perforin expression in NK cells and CD8+ T cells, suggesting that ALT-803 has strong immune efficacy. In addition, ALT-803 promotes IFNγ and IL-6 secretion but does not alter the levels of TNFα, IL-4, IL-10, and IL-17A in human PBMCs (21). As mentioned above, ALT-803 also promotes IFNγ expression and lymphocyte proliferation in mice, suggesting that IFNγ and lymphocytes play a key role in the immune efficacy of ALT-803 in mice as well as humans.

3.1.2 Phase 1 trial (healthy human volunteers)

S.C. ALT-803 demonstrated a strong immune effect and good tolerance in healthy human volunteers (N = 20). Specifically, S.C. ALT-803 promoted the proliferation of NK cells, CD8+ T cells, CD4+ T cells, and γδ T cells from the PBMCs of volunteers, particularly NK cells. S.C. ALT-803 also promotes NK cells and CD8+ T cells to kill tumor cells by enhancing NKG2D, NKp30, and GzB expression. S.C. ALT-803 promotes the serum IFN-γ, IL-6, and IL-10 levels but does not change the TNFα, IL-4, and IL-2 levels in these healthy volunteers. The immunological effect of S.C. ALT-803 in healthy human volunteers is similar to that observed in patients with cancer, suggesting that S.C. ALT-803 may have the potential to inhibit cancer development (28). However, more studies are needed to confirm this view.

3.1.3 Phases 1b/IIb trial (QUILT-2.005, NCT02138734)

The phase 1b trial with intravesical ALT-803 combined with intravesical BCG for the treatment of BCG-naive NMIBC CIS with or without Ta or T1 disease has been completed (N = 9). The CR rates of the combined administration after 3 and 6 months of treatment were 78% and 88.9%, respectively. This combination achieved a 100% CR rate at 24 months, with no disease recurrence. However, BCG alone showed only a 50% response rate. Additionally, all participants had complete bladders and no disease recurrence 6 years after this combination treatment, suggesting that intravesical ALT-803 and BCG show long-term effective antitumor activity (29, 30). These data suggest that intravesical ALT-803 and BCG exhibit strong antitumor activity. However, as the number of patients treated with intravesical ALT-803 and BCG was small in the phase 1 trial, there was a need to conduct phases 2 and 3 clinical studies to validate the findings.

3.1.4 Phases 2/3 trial (QUILT-3.032, NCT03022825)

Phase 2 and 3 trials for the combined use of intravesical ALT-803 and intravesical BCG for the treatment of BCGu NMIBC have been completed (N = 83 CIS, 77 papillary). The recommended dose of ALT-803 and BCG was 400 μg/instillation and 50 mg/instillation, respectively. This combination suppressed disease progression in patients with BCGu NMIBC. Approximately 71% (59/83) of patients with CIS treated with the combination achieved CR at any time. The median duration time of CR in these patients was 26.6 months. Approximately 96% of patients with CIS had a 24-month survival rate of not progressing to MIBC. Approximately 91% of patients with CIS who responded avoided cystectomy within 24 months. The patients in the papillary group achieved a disease-free survival rate of 57% in 12 months and 48% in 24 months with the combination treatment. Approximately 95% of the patients in the papillary group avoided cystectomy. Among the patients who did not avoid cystectomy, the median time to cystectomy was 5.1 months later in those who responded (N = 4, 12.9 months) than in those who did not respond (N = 8). The BCA-specific overall survival rate in 160 patients with BCGu NMIBC at 24 months was 99%. More than 90% of patients avoided cystectomy at 24 months of follow-up (31–34). The combination treatment also showed safety and tolerability in these patients, suggesting that intravesical ALT-803 combined with BCG has a good response rate and is safe. Additionally, ALT-803 in combination with BCG may induce a good response in patients with BCGu NMIBC in an immunosuppressive environment, such as in patients with low expression of CTLA4, CD39, and CCL2–CCR2 axis (35). Taken together, ALT-803 combined with BCG treatment has a better curative effect.

3.2 Pharmacokinetics

3.2.1 Phase 1 trial (healthy human volunteers)

S.C. ALT-803 has a longer half-life than I.V. administration. Indeed ALT-803’s concentration remained above baseline at 3 days after a single S.C. dose and promoted the number of NK cells for at least 15 days. The half-life of S.C. ALT-803 is approximately 20 h, and its half-life and tissue exposure are, respectively, 20- and 2.3-fold higher than that of rhIL-15 (28), suggesting that the efficacy of ALT-803 is higher than that of rhIL-15 in humans. The serum ALT-803 levels peaked 4 h after
S.C. ALT-803 in healthy human volunteers. The exposure and AUC of ALT-803 increased in a dose-dependent manner. The C_{max} of S.C. ALT-803 was found to range from 1,000 to 1,700 pg/ml. The PK profile of I.V. ALT-803, such as C_{max} and half-life, is higher (100-fold higher) and shorter (10-fold lower), respectively, than that of S.C. ALT-803. However, I.V. ALT-803 concentration easily induces fever and tachycardia compared with S.C. administration. The PK profiles and safety of ALT-803 in healthy human volunteers were similar to those in patients with cancer (28). Therefore, S.C. administration is preferable.

3.2.2 Phases 1b/IIb trial (QUILT-2.005, NCT02138734)

In phases 1b/IIb trial, the PK analysis demonstrated serum ALT-803 in 30 min, 2 h, 4 h, and 24 h after intravesical ALT-803 administration (100, 200, and 400 µg per/instillation) in combination with intravesical BCG for the treatment of patients with BCG-naïve NMIBC (N = 9). ALT-803 was detected in only three patients in 24 h after intravesical ALT-803 and BCG administration. However, its level was below or near the detection limit, suggesting that intravesical ALT-803 administration is not metabolized by the whole body (30).

3.2.3 Phases 2/3 trial (QUILT-3.032, NCT03022825)

The PK data of the phases 2/3 trial were similar to that of the phases 1b/IIb trial. No systemic ALT-803 was detected by intravesical ALT-803 and BCG administration in patients. Furthermore, the activity of ALT-803 was limited to the bladder and did not cause a systemic reaction (31, 32).

3.3 Toxicology

3.3.1 Phase 1 trial (healthy human volunteers)

There were no serious adverse events (AEs) or grade ≥3 AEs reported after the administration of S.C. ALT-803 in 20 healthy human volunteers (11 male and nine female). The common side effects included injection site reactions (redness, hardness, pain, and itching), chills, fever, fatigue, hypoalbuminemia, abdominal pain, and headache. All the treatment-related side effects were resolved with supportive care. The degree of severity and frequency of AEs by S.C. ALT-903 was far less than that by I.V. administration in the clinical trial (NCT01885897), suggesting that S.C. administration may be more advantageous than I.V. administration (28).

3.3.2 Phases 1b/IIb trial (QUILT-2.005, NCT02138734)

The AEs triggered by intravesical ALT-803 (100, 200, and 400 µg per instillation) in combination with intravesical BCG during the treatment of nine patients with NMIBC were less than grade 3 (30). The common AEs included fatigue (33%), urinary tract infection (22%), urinary tract pain (22%), urinary urgency (22%), urinary frequency (33%), headache (33%), hematuria (33%), dyspnea (22%), and hypertension (67%). ALT-803 has no dose-limiting toxicities and a maximum tolerated dose, suggesting that ALT-803 is well tolerated in patients. Serum ALT-803 was detected in 33.3% of patients (3/9). Furthermore, the serum did not contain any anti-ALT-803 antibodies in all the patients, suggesting that ALT-803 has no immunogenicity. Intravesical ALT-803 in combination with BCG in a non-dose-dependent manner increased urinary levels of IL-6, IL-2, IL-10, TNF-α, and IFN-γ but not of IL-4. This combination therapy did not alter the plasma cytokines, suggesting that intravesical ALT-803 did not cause any systemic cytokine storm (30).

3.3.3 Phases 2/3 trial (QUILT-3.032, NCT03022825)

No serious treatment-related toxicities occurred in 99% of patients with BCGu NMIBC (160 patients) by intravesical ALT-803 combined with BCG treatment. The low AEs (grades 1 and 2) triggered by ALT-803 included dysuria (22%), hematuria (18%), pollakiuria (19%), urinary urgency (12%), and fatigue (16%); the occurrence of other low AEs was 7% or less. No immunogen-related side effects, serious AEs, and grade 4 or 5 AEs were observed (31–33). Thus, intravesical ALT-803 combined with BCG treatment is relatively well tolerated and safe (Table 1).

4 Translational potential of ALT-803: Phases 1–3 clinical comparison of pembrolizumab, OM, and ALT-803

As mentioned at the beginning, the FDA rejected the marketing application for OM for the treatment of BCGu NMIBC due to a lack of data comparing it with pembrolizumab. Therefore, we compared the clinical data of ALT-903, pembrolizumab, and OM. Pembrolizumab is an anti-PD1 monoclonal antibody (mAb). OM is a recombinant fusion protein that contains an anti-epithelial cell adhesion molecule antibody and Pseudomonas exotoxin A. Indeed OM also received an FDA fast-track designation in August 2018 and a priority review in February 2021 (36). The CR rates of I.V. pembrolizumab plus intravesical BCG after 3 months of treatment of nine patients with BCGu NMIBC was 56% in the phase 1 trial (37). The CR rate of intravesical OM after 3 months of treatment of 45 patients with BCGu NMIBC was 45% in a phase 2 trial (38). Thus, the CR rate of OM after 3 months is lower than that of ALT-803 (78%) and pembrolizumab (56%). The phase 3 data of I.V. pembrolizumab for the treatment of 96 patients with BCGu NMIBC have shown that the 3- and 12-month CRs are
TABLE 1 The preclinical and clinical evidence uses of ALT-803 in NMIBC.

Property	Administration	Doses	Model	Effect	References
Pharmacology	S.C. ALT-803	0.2 mg/kg/week, 6 weeks	BBN-induced orthotopic NMIBC C57BL/6J mouse model	Reduced tumor burden 37%	(13)
Pharmacology	S.C. ALT-803 plus intravesical BCG	0.2 mg/kg/week, plus 135 μg per/instillation/week, 6 weeks		44% (13)	
Pharmacokinetics	S.C. ALT-803	0.2 mg/kg/week, plus 135 μg per/instillation/week, 6 weeks		28% (13)	
Pharmacokinetics	Intravesical BCG	0.1 μg per/instillation/week, 6 weeks		28% (13)	
Pharmacokinetics	Intravesical ALT-803	0.1 μg per/instillation/week, 6 weeks		44% (13)	
Pharmacokinetics	Intravesical ALT-803 plus BCG	0.1 μg per/instillation/week, plus 135 μg per/instillation/week, 6 weeks		35%, 59%, 52%, 25% (23)	
Pharmacokinetics	Intravesical ALT-803	1 μg per/instillation/week, 6 weeks		46%, 76%, 80%, 30% (23)	
Pharmacokinetics	Intravesical ALT-803 plus BCG	1 μg per/instillation/week, plus 135 μg per/instillation/week, 6 weeks		15%, 40%, 40%, 30% (23)	
Pharmacokinetics	Intravesical BCG	135 mg per/instillation/week, 6 weeks		15%, 40%, 40%, 30% (23)	
Pharmacokinetics	Intravesical ALT-803 plus BCG (phase 1b)	100, 200, and 400 μg per/instillation/week, plus 50 mg per/instillation/week, 6 weeks		78% (3 months), 88.9% (6 months), 100% (24 months) (29, 30)	
Pharmacokinetics	Intravesical ALT-803 plus BCG (phase 2/3)	400 μg per/instillation/week, plus 50 mg per/instillation/week		26.6 months (31–34)	
Pharmacokinetics	Intravesical ALT-803 plus BCG (phase 2/3)		Patients with BCG-naive NMIBC (N = 9)	CR rate 71% (any time)	(29, 30)
Pharmacokinetics	Intravesical ALT-803 plus BCG (phase 2/3)		Patients with BCGu NMIBC CIS (N = 83)	Median duration time 96% (24 months)	(29, 30)
Pharmacokinetics	Intravesical ALT-803 plus BCG (phase 2/3)		Patients with BCGu NMIBC - Papillary (N = 77)	Avoided cystectomy rate 91% (24 months)	(29, 30)
Pharmacokinetics	Intravesical ALT-803 plus BCG (phase 2/3)			Overall survival rate 12.9 months	(29, 30)
Pharmacokinetics	Intravesical ALT-803 plus BCG (phase 2/3)			Overall avoided cystectomy rate 95%	(29, 30)
Pharmacokinetics	S.C. ALT-803	0.2 mg/kg, 6 weeks	B6 mice	T1/2 7.5 h	(22)
Pharmacokinetics	S.C. ALT-803	0.2 mg/kg, 6 weeks	B6 mice	Cmax 495 ng/ml at 16 h	(22)
Pharmacokinetics	S.C. ALT-803	3–7 MBq	Tissue distribution	Spleen, lymph nodes, bone, liver, stomach, lung, heart, kidney, blood,	(22)

(Continued)
Property	Administration	Doses	Model	Effect	References
Toxicology	S.C. ALT-803	1.0 mg/kg/week, 4 weeks	B6 mice	Decreased weight of the spleen, lymph node, and liver	ALP and creatinine (22)
				Increased injection site reactions (redness, hardness, pain, and itching), chills, fever, fatigue, hypoalbuminemia, abdominal pain, and headache	(28)
I.V. ALT-803	0.1 and 0.03 mg/kg/week, 4 weeks	Cynomolgus monkeys	Increased	Mild liver necrosis	(21)
	0.1 mg/kg/week, 4 weeks	C57BL/6 mice	Well tolerated and safe		(21)
	4.0 mg/kg/week, 4 weeks	C57BL/6 mice	Increased	Weight loss	(21)
				Death	(21)
				Pulmonary edema	(21)
				The weight of spleen, lymph node	(21)
Intravesical ALT-803	1 µg per/instillation/week plus 135 mg per/instillation/week, 6 weeks	BBN-induced orthotopic NMIBC SD rat model	No dose-limiting toxicity		(23)
Intravesical ALT-803	100, 200, and 400 µg per/instillation	Patients with BCG-naive NMIBC (N = 9)	Increased fatigue, urinary tract infection, urinary tract pain, urinary urgency, urinary		(30)
Intravesical ALT-803	0.1 and 0.03 mg/kg/week, 4 weeks	Cynomolgus monkeys	Increased	Albumin	(21)
Intravesical ALT-803	10 µg/kg, 20 µg/kg	Healthy humans	T_{1/2}	~20 h	(28)
			C_{max}	1,000–1,700 pg/ml at 4 h	(28)
L.V. ALT-803	0.2 mg/kg	B6 mice	T_{1/2}	7.71 h	(22)
			C_{max}	3,926 ng/ml at 0.5 h	(22)
	3–7 MBq	B6 mice or C57BL/6 mice	Tissue distribution	Spleen, lymph nodes, bone, liver, stomach, lung, heart, kidney, blood, brain, intestine, muscle, pancreas, thymus, skin, tail	(21, 22)
Intravesical ALT-803 plus BCG (phase 1b)	100, 200, and 400 µg per/instillation/week plus 50 mg per/instillation/week	Patients with BCG-naive NMIBC (N = 9)	No	Systemic level of ALT-803	(30)
Intravesical ALT-803 plus BCG (phases 2/3)	400 µg per/instillation/week plus 50 mg per/instillation/week	Patients with BCGu NMIBC (N = 160)	No	Systemic level of ALT-803	(31, 32)
However, 12.9% of these patients develop severe AEs, including fatigue (10.9%), pruritus (10.9%), and diarrhea (10.9%). The majority of AEs of pembrolizumab are grades 1 and 2 and not higher than that of ALT-803. These results suggest that the AEs of pembrolizumab are similar to that of pembrolizumab but are lower than that of ALT-803. Thus, ALT-803 has a strong clinical efficacy and safety of OM may be lower than that of ALT-803 except for the median duration time of responders in papillary disease. The clinical efficacy of OM may be similar to that of pembrolizumab, but the safety of OM may be higher than that of pembrolizumab (Table 2). Therefore, ALT-803 has a strong clinical application value. However, more studies are needed to further validate its clinical use.

5 Future perspectives

ALT-803 is a promising drug for the treatment of NMIBC as it not only reduces tumor burden but also enhances the efficacy of BCG (Figure 2). However, several interesting and critical tasks remain to be explored, namely:

1. The preclinical models of BCA include in vitro 2D models, such as cell lines from human, mouse, rat, dog, and conditionally reprogrammed cell cultures, in vitro 3D models, such as organoids and three-dimensional (3D) printing, in vivo models, such as carcinogen (such as BBN, amines, anthracenes, formamide FANFT)-induced model, genetically engineered mouse models, patient-derived xenograft models, and humanized models. However, the efficacy of ALT-803 has only been revealed in the BBN-induced rat and mouse models.
2. S.C. ALT-803 in combination with intravesical BCG was more effective than intravesical ALT-803 and BCG in the preclinical trial. The PK and the safety of S.C. ALT-803 are similar to that of intravesical administration in the preclinical and phase 1 trial. However, the efficacy of S.C. ALT-803 in combination with intravesical BCG for the treatment of NMIBC has not been investigated.

3. The biomarkers for predicting the response to ALT-803 remain unclear.

4. I.V. ALT-803 at 1.0 mg/kg/week is well tolerated and shows strong immune cell stimulation in C57BL/6 mice. Interestingly, I.V. ALT-803 at 0.05 mg/kg exhibits a strong antitumor effect in the 5T33 myeloma mouse model, suggesting that the therapeutic dose window for ALT-803 spans over a 20-fold range (21). However, the dose window of ALT-803 for the treatment of NMIBC still needs to be investigated.

5. I.V. ALT-803 takes less time to achieve efficacy than S.C. and intravesical administration, suggesting that I.V. administration is more appropriate for acute complications. However, some side effects should be noted, such as fever and tachycardia. Therefore, further studies are needed to verify the efficacy of I.V. ALT-803.

6. Toxicology indicated that ALT-803 is relatively safe. However, S.C. ALT-803 reduced the blood ALP in mice. I.V. ALT-803 promoted pulmonary edema and even death in mice. I.V. ALT-803 induced liver necrosis and reduced serum albumin in monkeys. Therefore, clinical attention should be paid to these side effects even though they have not been observed so far.

7. The systemic immune response and the efficacy of intradermal BCG before intravesical administration for the treatment of NMIBC are being examined in a phase 3 trial (NCT03091660). It is speculated that intradermal BCG injection before intravesical BCG injection may improve the BCG relapse-free survival rates (42). However, the final results are not yet available. The efficacy and the safety of this therapy

TABLE 2 Phases 1–3 clinical comparison of ALT-803, pembrolizumab, and oportuzumab monatox (OM) for the treatment of Bacillus Calmette–Gueurin-unresponsive NMIBC.

Study	Property	ALT-803	Pembrolizumab	OM		
		NMBIC CIS	NMBIC papillary	NMBIC CIS	NMBIC CIS	NMBIC papillary
Number	9	9	45			
CR rates	78% (3 months)	56% (3 months)	40% (3 months)			
Number	83	96	89			
Administration	Intravesical	Intravesical	Intravesical			
Therapeutic dose	400 µg, one time/week	200 mg, three times/week	30 mg, two times/week			
CR rates	71% (12 months), 48%	40.6% (3 months), 18% (12 months)	40% (3 months), 71% (3 months), 58% (6 months), 50% (12 months)			
CR duration time	26.6 months	16.2 months	9.4 months			
No disease rate	96% (24 months)	83% (12 months)	52% (12 months)			
Avoided cystectomy time	12.9 months		34 months			
Avoided cystectomy rate	90%		90%			
Overall survival 99%		98%	96%			
AEs grades 1 and 2	Dysuria (22%), hematuria (18%), pollakiuria (19%), urinary urgency (12%), fatigue (16%)	Fatigue (10.9%), pruritus (10.9%), diarrhea (10.9%)	52%			
Severe AEs	No grades 3–5, serious AEs, immunogen-related side effects	12.9%, including immune-related AEs (21.8%), grades 3 and 4 (3.0%)	2%, including pyrexia, acute kidney injury, cholestatic hepatitis, renal failure			

I.V., intravenous; NMIBC, non-muscle-invasive bladder cancer; CIS, carcinomas in situ; CR, complete response; AEs, adverse events.
in combination with S.C. or intravesical ALT-803 also remain unclear.

8. ALT-803 enhanced the antibody-dependent cell-mediated cytotoxicity (ADCC) capacity mediated by avelumab (anti-PD-L1 monoclonal antibody), which is being developed for the treatment of bladder carcinomas in a phase 2 trial (43). However, the efficacy of ALT-803 in combination with avelumab for the treatment of NMIBC has not been investigated.

9. M7824 (MSB0011359C) is a bifunctional fusion protein that contains anti-PD-L1 monoclonal antibody (the structure is similar to that of avelumab) and TGFβR2. ALT-803 also enhanced the ADCC capacity mediated by M7824. The tumor cell lysis activity of ALT-803 was similar to that of M7824 in H441 (lung carcinoma), HCC4006 (lung carcinoma), MDA-MB-231 (breast carcinoma), and CaSkI (cervical carcinoma) cells (43). Phase 1 trials for the treatment of advanced non-small cell lung cancer and advanced solid tumors using M7824 have been completed (44, 45). M7824 promotes human urothelial carcinoma cell lysis by increasing the CXCL11, TRAIL, and CD8+ T cell activity in HTB-1/4/5 cells, suggesting that M7824 may also promote tumor cell lysis in NMIBC (46). However, the efficacy of ALT-803 in combination with M7824 for the treatment of NMIBC has not been investigated. Whether ALT-803 is better than M7824 for the treatment of NMIBC has also not been investigated.

10. Intravesical liposomal IL-15 reduced the tumor burden by 52% by activating CD8+ T cell in MB49-induced mouse orthotopic BCa models. Upon liposomal IL-15 treatment, these mice also displayed immunologic memory that resisted the growth of the BCa, suggesting that the efficacy of liposomal IL-15 is higher than that of BCG (47). However, the efficacy of ALT-803 in this model has not been investigated. It is not clear whether ALT-803 is better than liposomal IL-15 even though their targets are the same.

Finally, although the IL-15 superagonist ALT-803 showed high safety in preclinical and clinical studies, one needs to be
IL-15 can be considered a double-edged sword, as it stimulates the wound-healing migration and invasion of bladder cancer 5637 cells by stimulating the p21WAF1/ERK1/2/NF-κB/MMP-9 signaling pathway. Furthermore, IL-15 promotes the growth, migration, and invasion of tumor cells, including prostate cancer cells, colon cancer cells, and trophoblast cells (48). ALT-803 is also a double-edged sword in haplo-NK therapy (49). Indeed IL-15 has antitumor effects based on its ability to enhance the proliferation and anti-apoptotic effect of immune cells. Thus, we should be aware of the risks posed by super-excited IL-15.

6 Conclusion

In the present review, we summarize and discuss the translational potential of ALT803 for the treatment of NMIBC from the perspective of pharmacology, pharmacokinetics, and toxicology based on preclinical and clinical evidence. ALT-803 increases the proliferation and activation of NK cells and CD8+ T cells by serving as a superagonist of IL-15, leading to a reduction of tumor burden. ALT-803 alone or in combination with BCG exhibits good tolerability, pharmacology, pharmacodynamics, pharmacokinetics, and safety. The phases 2 and 3 data of ALT-803 are better than that of BCG, valrubicin, pembrolizumab, and OM. It is expected that ALT-803 will be on the market soon and become the best therapy for the treatment of NMIBC in the near future. OM may also be marketed. However, no robust head-to-head preclinical and clinical trials have been conducted to compare ALT-803 with valrubicin, pembrolizumab, and OM. More further studies are needed. Overall, we sincerely hope that many more scientists will focus on ALT-803 and its target IL-15 to develop more new drugs that can be used in the treatment of NMIBC.

Author contributions

WC and NL conducted the literature review, drafted the initial manuscript, designed the figure, and approved the final manuscript as submitted. YY and MZ designed the figure, reviewed the initial manuscript, and approved the final manuscript as submitted. XH and WH reviewed the initial manuscript and approved the final manuscript as submitted. SW and CW conceptualized the study, reviewed the initial manuscript, and approved the final manuscript as submitted. BH and DX conceptualized and supervised the study, obtained funding, conducted the literature review, drafted the initial manuscript, designed the figure, and approved the final manuscript as submitted. All authors contributed to the article and approved the submitted version.

Funding

The authors are grateful for the financial support provided by the Qingdao Major Scientific and Technological Project for Distinguished Scholars (20170103), the Laoshan Major Scientific and Technological Project for Distinguished Scholars (20181030), and the Natural Science Foundation of Shandong Province (ZR2020MH369, ZR2020MH242).

Acknowledgments

We thank colleagues in Dr. DX’s laboratory for their technical help and stimulating discussions during this investigation. We thank Bullet Edits Limited for linguistic editing and proofreading of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Pfau JL, Katims AB, Alerasool P, Sfakianos JP. Immunotherapy in non-Muscle-Invasive bladder cancer: Current status and future directions. World J Urol (2021) 39(5):1319–29. doi: 10.1007/s00345-020-02374-8
3. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER). Bacillus calmette-Guérin-Unresponsive nonmuscle invasive bladder cancer: Developing drugs and biologics for treatment guidance for industry (2018). Available at: https://www.fda.gov/media/101468/download.
14

elements of the normal immune system of recombinant human il-15 in rhesus macaques. Blood (2011) 119(16):4262–7. doi: 10.1182/blood-2011-04-319153

25. Berger C, Berger M, Hackman RG, Gough M, Elliott C, Jensen MC, et al. Safety and immunologic effects of il-15 administration in nonhuman primates. Blood (2009) 114(12):2417–26. doi: 10.1182/blood-2008-12-189266

26. Fullam A BS. Phosphate moiety in fda-approved pharmaceutical salts and products. Drug Dev Res (2002) 56:47–58. doi: 10.1002/ddr.20160

27. Qahal F, Pradars B, Lahtikia E, Sari Mostafaloh R, Mostafach R, Mortk B, et al. Prognostic value of albumin to globulin ratio in non-Muscle-Invasive bladder cancer. World J Urol (2021) 39(9):3345–52. doi: 10.1007/s00345-020-03586-1

28. Rubinstein MP, Williams C, Mart C, Beall J, MacPherson L, Azar J, et al. Phase I trial characterizing the pharmacokinetic profile of n-803, a chimeric il-15 superagonist, in healthy volunteers. J Immunol (2022) 208(6):1162–70. doi: 10.4049/jimmunol.20210066

29. Rosser CJ NJ, Ferguson L, Wong HC. Mpi-12 phase 1b trial of alt-803, an il-15 superagonist, plus bacillus calmette guerin (Bcg) for the treatment of bcg-naive patients with non-muscle-invasive bladder cancer (Nmibc). J Immunol (2017) 197(4):1175–80. doi: 10.1101/jti.2017.02.497

30. Rosser CJ, Tikhonenkov S, Nix JW, Chan OTM, Ianculescu I, Reddy S, et al. Safety, tolerability, and long-term clinical outcomes of an il-15 analogue (N-803) admixed with bacillus calmette-guiner (Bcg) for the treatment of bladder cancer. Oncoimmunology (2021) 10(1):1248–58. doi: 10.1080/20411337.2021.1912885

31. Chamie K, Chang SS, Gonzalez M, Kranowitz EV, Sexton WJ, Bhar P, et al. Final clinical results of pivotal trial of il-15r fc superagonist n-803 with bcg in bcg-unresponsive cis and papillary non-muscle-invasive bladder cancer (Nmibc). J Clin Oncol (2022) 40(16_suppl):458. doi: 10.1200/JCO.2022.40.16_suppl.458

32. Singleton Smimunitybio Inc. Immunitybio announces quill trial results for bcg-unresponsive bladder cancer and advanced metastatic pancreatic cancer at the 2022 American society of clinical oncology annual meeting (2022). Available at: https://www.immunitybio.com/news/home/2022060605434/en/ImmunityBio-Announces-QUILT-Trial-Results-for-BCG-Unresponsive-Bladder-Cancer-and-Advanced-Metastatic-Pancreatic-Cancer-at-the-2022-American-Society-of-Clinical-Oncology-Annual-Meeting-Feedref=J-AuyiNHNStsCbo_bq_h_L_R_L_41_g_a_z_FQFNv衰uVH_eEdP-D-P_D-UWv88d85TYSY4vTICj1gL0UAkCavnvN7v87b0P4n4HvK35T3WsPfEm_b3W77F87CeT

33. Chamie K, Chang SS, Gonzalez M, Kranowitz EV, Sexton WJ, Bhar P, et al. Phase II clinical results of il-15r fc superagonist in bcg-unresponsive non-muscle invasive bladder cancer (Nmibc) carcinoma in situ (Cis) patients. J Clin Oncol (2021) 39(suppl 6):510. doi: 120.120/ jco.2021.39.6_suppl510

34. Virgil H. Novel il-15 superagonist in n-803 hits high complete response rate in bcg-unresponsive nmibc[2021]. Available at: https://www.urontimes.com/view/novel-il-15-supergonist-n-803-nhits-high-complete-response-rate-in-bcg-unresponsive-nmibc

35. Huang J, Shiao SL, Furuya H, Rosser CJ. Immunogenicomic analysis of exceptional responder to alt-803 (il-15 analogue) in bcg-unresponsive non-muscle invasive bladder cancer: A case series and review of the literature. J Immunother (2021) 42(9):354–8. doi: 10.1007/JCI92000000000000269

36. Beinfeld M AS, Touchette D, McKenna A, Rind D, Pearson SD. The effectiveness and value of nonadjuvant fidarenone, oportuzumab monatox, and pembrolizumab for bcg-unresponsive non-Muscle-Invasive bladder cancer. J Manag Care Spec Pharm (2021) 27(6):797–804. doi: 10.18553/mcp.2021.27.6797

37. Packiam VT, Richards J, Schmautz M, Heidenreich A, Boorjian SA. The extended follow-up of keynote-057 cohort a. J Clin Oncol (2021) 39(24):1451–52. doi: 10.1200/JCO.2021.39.24_suppl451

38. Balar AV KA, Kulkarni GS, Uchio EM, Boormans JL, Roumiguie radenovec, oportuzumab monatox, and pembrolizumab for bcg-nonmuscle invasive-bladder-cancer. J Urol (2021) 208(6):1362–70. doi: 10.1097/JU.0000000000002646

39. Shore N, O'Donnell M, Keane T, Jewett MAS, Kulkarni GS, Dickstein R, et al. Pembrovlizumab monotherapy for the treatment of high-risk non-Muscle-Invasive bladder cancer unresponsive to bcg (Keynote-057): An open-label, single-arm, multicentre, phase 2 study. Lancet Oncol (2021) 22(7):919–30. doi: 10.1016/s1470-2241(21)00104-7

40. Shore N, O'Donnell M, Keane T, Jewett MAS, Kulkarni GS, Dickstein R, et al. Pembrovlizumab phase 2 results of vebin in bcg-unresponsive non-muscle-invasive bladder cancer. J Urol (2020) 203(Suppl 4):e72 – e70. doi: 10.1097/JU.00000000000082302

41. Zhu S ZZ, Ma AH, Sonpavde GP, Cheng F, Pan CX. Preclinical models for bladder cancer research. Hematol Oncol Clin North Am (2021) 35(3):613–32. doi: 10.1016/j.hinon.2021.02.007

42. Satwik RS, Tangen C, Delacroix S, Lowenger L, Werner SP. Background and update for S1602 a phase iiib randomized trial to evaluate the influence of bg strat
differences and T cell priming with intradermal BCG before intravesical therapy for BCG-naive high-grade non-Muscle-Invasive bladder cancer. *Eur Urol Focus* (2018) 4 (4):522–4. doi: 10.1016/j.euf.2018.08.015

43. Jochems C, Tritsch SR, Pellom ST, Su Z, Soon-Shiong P, Wong HC, et al. Analyses of functions of an anti-Pd-L1/TGFβetar2 bispecific fusion protein (M7824). *Oncotarget* (2017) 8(43):75217–31. doi: 10.18632/oncotarget.20680

44. Paz-Ares L, Kim TM, Vicente D, Felip E, Lee DH, Lee KH, et al. Bintafusp Alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in second-line treatment of patients with NSCLC: Results from an expansion cohort of a phase 1 trial. *J Thorac Oncol* (2020) 15(7):1210–22. doi: 10.1016/j.jtho.2020.03.003

45. Strauss J, Heery CR, Schloem J, Madan RA, Cao L, Kang Z, et al. Phase I trial of M7824 (Msb0011359c), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. *Clin Cancer Res* (2018) 24(6):1287–95. doi: 10.1158/1078-0432.CCR-17-2653

46. Grenga I, Donahue RN, Gargalák ML, Lepone LM, Roselli M, Bilusic M, et al. Anti-Pd-L1/TGFbeta2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. *Urol Oncol* (2018) 36 (3):83 e1–e11. doi: 10.1016/j.urolonc.2017.09.027

47. Matsumoto K, Kikuchi E, Hornaga M, Takeda T, Miyajima A, Nakagawa K, et al. Intravesical interleukin-15 gene therapy in an orthotopic bladder cancer model. *Hum Gene Ther* (2011) 22(11):1423–32. doi: 10.1089/hum.2011.013

48. Park SL, Kim WJ, Moon SK. P21WAF1 mediates the IL-15-induced migration and invasion of human bladder cancer 5637 cells via the ERK1/2/NF-κB/MMP-9 pathway. *Int Immunopharmacol* (2014) 22(1):59–65. doi: 10.1016/j.intimp.2014.06.008

49. Pende D, Meazza R. N-803: A double-edged sword in haplo-nk therapy. *Blood* (2022) 139(8):1122–4. doi: 10.1182/blood.2021014789
Glossary

Acronym	Definition
BCa	Bladder cancer
NMIBC	Non-muscle-invasive bladder cancer
BCG	Bacillus Calmette–Guérin
BCGu	BCG-unresponsive
CR	Complete remission
OM	Oportuzumab monatox
PDUFA	Prescription Drug User Fee Act
MIBC	Muscle-invasive bladder cancer
T1	Lamina propria
CIS	Carcinomas in situ
Ta	Papillary noninvasive carcinomas
FDA	United States Food and Drug Administration
NK	Natural killer
IL-2	Interleukin-2
INF-γ	Interferon-gamma
FTD	Fast track designation
BTD	Breakthrough designation status
S.C.	Subcutaneous
I.V.	Intravenous
GzB	Granzyme B
rIL-15	Recombinant IL-15
BBN	N-Butyl-N-(4-hydroxybutyl) nitrosamine
Cmax	Maximum serum concentration
B6	C57BL/6NHsd
CM	Central memory
EM	Effector memory
ALP	Alkaline phosphatase
PBMCs	Peripheral blood mononuclear cells
DFS	Disease-free survival
PK	Pharmacokinetic
AEs	Adverse events
DLTs	Dose-limiting toxicities
MTD	Maximum tolerated dose
mAb	Monoclonal antibody
EpCAM	Epithelial cell adhesion molecule
ETA	*Pseudomonas* exotoxin A
CRC	Conditionally reprogrammed cell
3D	Three-dimensional
GEMM	Genetically engineered mouse models
PDX	Patient-derived xenograft
ADCC	Antibody-dependent cell-mediated cytotoxicity
NSCLC	Non-small cell lung cancer