BEREZIN SYMBOLS ON LIE GROUPS

INGRID BELITTIĂ, DANIEL BELITTIĂ, AND BENJAMIN CAHEN

Abstract. In this paper we present a general framework for Berezin covariant symbols, and we discuss a few basic properties of the corresponding symbol map, with emphasis on its injectivity in connection with some problems in representation theory of nilpotent Lie groups.

2010 MSC: Primary 22E27; Secondary 22E25, 47L15
Keywords: coherent states, Berezin calculus, coadjoint orbit

1. Introduction

Let \(V \) be a finite-dimensional complex Hilbert space and \(N \) be a second countable smooth manifold with a fixed Radon measure \(\mu \). We denote by \(L^2(N; V; \mu) \) the complex Hilbert space of (equivalence classes of) \(V \)-valued functions \(\mu \)-measurable on \(N \) that are absolutely square integrable with respect to \(\mu \). We also endow the space of smooth functions \(C^\infty(N; V) \) with the Fréchet topology of uniform convergence on compact sets together with their derivatives of arbitrarily high degree.

If \(\mathcal{H} \subseteq L^2(N, V) \) is a closed linear subspace with \(\mathcal{H} \subseteq C^\infty(N, V) \), then the inclusion map \(\mathcal{H} \hookrightarrow C^\infty(N, V) \) is continuous, hence for every \(x \in \mathcal{H} \) the evaluation map \(K_x : \mathcal{H} \rightarrow V, f \mapsto f(x) \), is continuous. The map

\[
K : N \times N \rightarrow B(V), \quad K(x, y) := K_x K_y^*
\]

is called the reproducing kernel of the Hilbert space \(\mathcal{H} \). Then for every linear operator \(A \in B(\mathcal{H}) \) we define its full symbol as

\[
K^A : N \times N \rightarrow B(V), \quad K^A(x, y) := K_x A K_y^* : V \rightarrow V
\]

and \(K^A \in C^\infty(N \times N, B(V)) \). See [Ne00, §1.2] for a detailed discussion of this construction, which goes back to [Be74] and [Be75].

Main problem. In the above setting, the full symbol map

\[
B(\mathcal{H}) \rightarrow C^\infty(N \times N, B(V)), \quad A \mapsto K^A
\]

is injective, as easily checked (see also Proposition 2.12 below). Therefore it is interesting to find sufficient conditions on a continuous map \(\iota : \Gamma \rightarrow N \times N \), ensuring that the corresponding \(\iota \)-restricted symbol map

\[
S^\iota : B(\mathcal{H}) \rightarrow C(\Gamma, B(V)), \quad A \mapsto K^A \circ \iota
\]

Date: September 21, 2016.

The research of the first two named authors has been partially supported by grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project number PN-II-IP-TE-2014-4-0370.
is still injective. The case of the diagonal embedding \(\iota: \Gamma = N \cong N \times N, x \mapsto (x, x) \), is particularly important and in this case the \(\iota \)-restricted symbol map is called the (non-normalized) Berezin covariant symbol map and is denoted simply by \(S \), hence

\[
S: B(\mathcal{H}) \to C^\infty(N, B(\mathcal{V})), \quad (S(A))(x) := K_x A K_x^* : \mathcal{V} \to \mathcal{V}.
\]

In the present paper we will discuss the above problem and we will briefly sketch an approach to that problem based on results from our forthcoming paper \[\text{BBC16}\]. This approach blends some techniques of reproducing kernels and some basic ideas of linear partial differential equations, in order to address a problem motivated by representation theory of Lie groups (see \[\text{C09}, \text{C10}, \text{C13}, \text{C14}\]). This problem is also related to some representations of infinite-dimensional Lie groups that occur in the study of magnetic fields (see \[\text{BB11}a\] and \[\text{BB12}\]). Let us also mention that linear differential operators associated to reproducing kernels have been earlier used in the literature (see for instance \[\text{BG14}\]).

2. Basic properties of the Berezin covariant symbol map

In the following we denote by \(\mathfrak{S}_p(\bullet) \) the Schatten ideals of compact operators on Hilbert spaces for \(1 \leq p < \infty \).

Proposition 2.1. In the above setting, if \(A \in B(\mathcal{H}) \), then one has:

1. If \(A \geq 0 \), then \(S(A) \geq 0 \), and moreover \(S(A) = 0 \) if and only if \(A = 0 \).
2. For all \(f \in \mathcal{H} \) and \(x \in N \) one has

\[
(Af)(x) = \int_N K^A(x, y) f(y) d\mu(y).
\]

3. If \(\{e_j\}_{j \in J} \) is an orthonormal basis of \(\mathcal{H} \), then for all \(x, y \in N \) one has

\[
K^A(x, y) = \sum_{j \in J} K_x e_j \otimes K_y A^* e_{j} = \sum_{j \in J} e_j(x) \otimes (A^* e_{j})(y) \in B(\mathcal{V}),
\]

where for any \(v, w \in \mathcal{V} \) we define their corresponding rank-one operator

\[
v \otimes w := (\cdot | w)v \in B(\mathcal{V}).
\]

4. If \(A \in \mathfrak{S}_2(\mathcal{H}) \), then

\[
\|A\|_{\mathfrak{S}_2(\mathcal{H})}^2 = \int_{N \times N} \|K^A(x, y)\|_{\mathfrak{S}_2(\mathcal{V})}^2 d\mu(x) d\mu(y)
\]

and if \(A \in \mathfrak{S}_1(\mathcal{H}) \), then

\[
\text{Tr } A = \int_N \text{Tr } K^A(x, x) d\mu(x).
\]

Proof. See \[\text{BBC16}\] for more general versions of these assertions, in which in particular the Hilbert space \(\mathcal{V} \) is infinite-dimensional. Assertion (2) is a generalization of \[\text{Ne00} \text{ Ex. I.2.3(c)}\], Assertion (3) is a generalization of \[\text{Ne00} \text{ Prop. I.1.8(b)}\], while Assertion (4) is a generalization of \[\text{Ne00} \text{ Cor. A.1.12}\]. \(\square \)
3. Examples of Berezin symbols and specific applications

Here we specialize to the following setting:

1. \(G \) is a connected, simply connected, nilpotent Lie group with its Lie algebra \(\mathfrak{g} \), whose center is denoted by \(\mathfrak{z} \), and \(\mathfrak{g}^* \) is the linear dual space of \(\mathfrak{g} \), with the corresponding duality pairing \(\langle \cdot, \cdot \rangle : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R} \).
2. \(\pi : G \to \mathcal{B}(\mathcal{H}) \) be a unitary irreducible representation associated with the coadjoint orbit \(O \subseteq \mathfrak{g}^* \).

The group \(G \) will be identified with \(\mathfrak{g} \) via the exponential map, so that \(G = (\mathfrak{g}, \cdot_G) \), where \(\cdot_G \) is the Baker-Campbell-Hausdorff multiplication.

We use the notation \(\mathcal{H}_\infty = \mathcal{H}_\infty(\pi) \) for the nuclear Fréchet space of smooth vectors of \(\pi \). Let then \(\mathcal{H}_{-\infty} \) be the space of antilinear continuous functionals on \(\mathcal{H}_\infty \). \(\mathcal{B}(\mathcal{H}_\infty, \mathcal{H}_{-\infty}) \) be the space of continuous linear operators between the above space (these operators are thought of as possibly unbounded linear operators in \(\mathcal{H} \)), and \(S(\bullet) \) and \(S'(\bullet) \) for the spaces of Schwartz functions and tempered distributions, respectively. Then we have that

\[\mathcal{H}_\infty \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{H}_{-\infty}. \]

Let \(X_1, \ldots, X_m \) be a Jordan-Hölder basis in \(\mathfrak{g} \) and \(e \subseteq \{1, \ldots, m\} \) be the set of jump indices of the coadjoint orbit \(O \). Select \(\xi_0 \in O \) and let \(\mathfrak{g} = \mathfrak{g}_{\xi_0} + \mathfrak{g}_e \) be its corresponding direct sum decomposition, where \(\mathfrak{g}_e \) is the linear span of \(\{X_j \mid j \in e\} \) and \(\mathfrak{g}_{\xi_0} := \{x \in \mathfrak{g} \mid [x, \mathfrak{g}] \subseteq \text{Ker} \xi_0\} \).

We need the notation for the Fourier transform. For \(a \in S(O) \) we set

\[\hat{a}(x) = \int_{O} e^{-i\langle \xi, x \rangle} a(\xi) d\xi, \]

where on \(O \) we consider the Liouville measure normalized such that the Fourier transform is unitary when extended to \(L^2(O) \to L^2(\mathfrak{g}_e) \). We denote by \(\hat{F} \) the inverse Fourier transform of \(F \in L^2(\mathfrak{g}_{\xi_0}). \)

Definition 3.1.

1. For \(f \in \mathcal{H} \) and \(\phi \in \mathcal{H} \), or \(f \in \mathcal{H}_{-\infty} \) and \(\phi \in \mathcal{H}_\infty \), let \(\mathcal{A} \in C(\mathfrak{g}_e) \cap S'(\mathfrak{g}_e) \) be the coefficient mapping for \(\pi \), defined by

\[\mathcal{A}_\phi f(x) = \mathcal{A}(f, \phi)(x) := (f \mid \pi(x)\phi), \ x \in \mathfrak{g}_e. \]

2. For \(f \in \mathcal{H} \) and \(\phi \in \mathcal{H} \), or \(f \in \mathcal{H}_{-\infty} \) and \(\phi \in \mathcal{H}_\infty \), the cross-Wigner distribution \(\mathcal{W}(f, \phi) \in S'(O) \) is defined by the formula

\[\mathcal{W}(f, \phi) = \mathcal{A}_\phi f. \]

Proposition 3.2. For \(f, \phi \in \mathcal{H} \) we have that \(\mathcal{A}(f, \phi) \in L^2(\mathfrak{g}_{\xi_0}), \mathcal{W}(f, \phi) \in L^2(O) \). Moreover

\[(\mathcal{A}(f_1, \phi_1) \mid \mathcal{A}(f_2, \phi_2))_{L^2(\mathfrak{g}_{\xi_0})} = (f_1 \mid f_2)(\phi_1 \mid \phi_2), \]

\[(\mathcal{W}(f_1, \phi_1) \mid \mathcal{W}(f_2, \phi_2))_{L^2(O)} = (f_1 \mid f_2)(\phi_1 \mid \phi_2) \]

for all \(f_1, f_2, \phi_1, \phi_2 \in \mathcal{H} \).

Proof: This follows from \[\text{[Berezin 1987]}\text{ Prop. 2.8(i)}.\]

From now on we assume that

\[\phi \in \mathcal{H}_\infty \text{ with } \|\phi\| = 1 \text{ is fixed.} \]
We let $V : \mathcal{H} \to L^2(\mathfrak{g}_e)$ be the isometry defined by
$$(V f)(x) := (f \mid \phi_x) \text{ for all } x \in \mathfrak{g}_e$$
where $\phi_x := \pi(x)\phi$. We denote
$$\mathcal{K} := \text{Ran } V \subset L^2(\mathfrak{g}_0).$$
Then \mathcal{K} is a reproducing kernel Hilbert space of smooth functions, with inner product equal to the $L^2(\mathfrak{g}_0)$-inner product, so the present construction is a special instance of the general framework of Section III with $\mathcal{V} = \mathbb{C}$.

The reproducing kernel of \mathcal{K} is given by
$$K(x, y) = (\pi(x)\phi \mid \pi(y)\phi) = (\phi_x \mid \phi_y),$$
and $K_y(\cdot) := K(\cdot, y) \in \text{Ran } V$, for all $y \in \mathfrak{g}_0$. We also note that
$$(\forall x \in \mathfrak{g}_0) \quad K_x = V\phi_x.$$

The Berezin covariant symbol of an operator $T \in \mathcal{B}(\mathcal{K})$ is then the bounded continuous function
$$S(T) : \mathfrak{g}_e \to \mathbb{C}, \quad S(T)(x) = (TK_x \mid K_x)_{\mathcal{K}}.$$ One thus obtains a well-defined bounded linear operator
$$S : \mathcal{B}(\mathcal{K}) \to C^\infty(\mathfrak{g}_e) \cap L^\infty(\mathfrak{g}_e)$$
which also gives by restriction a bounded linear operator
$$S : \mathcal{S}(\mathcal{K}) \to L^2(\mathfrak{g}_0).$$

To find accurate descriptions of the kernels of the above operators is a very important problem for many reasons, as explained in [C09], [C10], [C13], and [C14] also for other classes of Lie groups than the nilpotent ones.

The case of flat coadjoint orbits of nilpotent Lie groups. We now assume that the coadjoint orbit \mathcal{O} is flat, hence its corresponding representation π is square integrable modulo the center of G.

Remark 3.3. Consider the representation $\rho : G \to \mathcal{B}(\mathcal{K})$,
$$\rho(g) = V\pi(g)V^*,$$
that is a unitary representation of G equivalent to π, thus it corresponds to the same coadjoint orbit \mathcal{O}. We denote by Op_ρ the Weyl calculus corresponding to this representation. The following then holds:

(1) For $a \in S'(\mathcal{O})$ one has $\text{Op}_\rho(a) = V\text{Op}(a)V^* = T_a$.
(2) For $T \in \mathcal{B}(\mathcal{K})$ and $X \in \mathfrak{g}_0$, one has
$$S(\rho(x)^{-1}T\rho(x))(z) = S(T)(x \cdot z), \quad \text{for all } z \in \mathfrak{g}_0. \quad (3.1)$$

Theorem 3.4. Assume that in the constructions above,
$$\phi \in \mathcal{H}_\infty \quad \text{is such that } \mathcal{W}(\phi, \phi) \text{ is a cyclic vector for } \alpha. \quad (3.2)$$
Then $S : \mathcal{S}(\mathcal{K}) \to L^2(\mathfrak{g}_0)$ is injective.

Proof. The method of proof is based on specific properties of the Weyl-Pedersen calculus from [BB11b]. □

We refer to [BBC16] for a more complete discussion and for proofs of the above assertions in a much more general setting. To conclude this paper we will just briefly discuss an important example.
The special case of the Heisenberg groups. Let G be the Heisenberg group of dimension $2n + 1$ and H be the center of G. Let \(\{X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z\} \) be a basis of \mathfrak{g} in which the only non trivial brackets are \([X_k, Y_k] = Z, 1 \leq k \leq n \) and let \(\{X^*_1, \ldots, X^*_n, Y^*_1, \ldots, Y^*_n, Z^*\} \) be the corresponding dual basis of \mathfrak{g}^*.

For $a = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$, $b = (b_1, b_2, \ldots, b_n) \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we denote by \([a, b, c]\) the element $\exp_G(\sum_{k=1}^n a_k X_k + \sum_{k=1}^n b_k Y_k + cZ)$ of G. Then the multiplication of G is given by

\[
[a, b, c][a', b', c'] = [a + a', b + b', c + c' + \frac{1}{2}(ab' - a'b)]
\]

and H consists of all elements of the form $[0, 0, c]$ with $c \in \mathbb{R}$.

The coadjoint action of G is then given by

\[
\text{Ad}^*([a, b, c])(\sum_{k=1}^n \alpha_k X^*_k + \sum_{k=1}^n \beta_k Y^*_k + \gamma Z^*) = \sum_{k=1}^n (\alpha_k + \gamma b_k) X^*_k + \sum_{k=1}^n (\beta_k - \gamma a_k) Y^*_k + \gamma Z^*.
\]

Fix a real number $\lambda > 0$. By the Stone-von Neumann theorem, there exists a unique (up to unitary equivalence) unitary irreducible representation π_0 of G whose restriction to H is the character $\chi : [0, 0, c] \rightarrow e^{i\lambda c}$. This representation is realized on $\mathcal{H}_0 = L^2(\mathbb{R}^n)$ as

\[
\pi_0([a, b, c])(f)(x) = e^{i\lambda(c - bx + \frac{1}{2}ab)}f(x - a).
\]

Here we take ϕ to be the function $\phi(x) = (\frac{\lambda}{2})^{1/4} e^{-\lambda x^2/2}$. Then we have $\|\phi\|_2 = 1$.

Theorem 3.4 gives a new proof of the following known fact:

Corollary 3.5. The map S is a bounded linear operator from $\mathcal{S}(\mathcal{H}_0)$ to $L^2(\mathbb{R}^{2n})$ which is one-to-one and has dense range.

References

[BB11a] I. Beltiță, D. Beltiță, Continuity of magnetic Weyl calculus. J. Funct. Anal. 260 (2011), no. 7, 1944–1968.

[BB11b] I. Beltiță, D. Beltiță, Modulation spaces of symbols for representations of nilpotent Lie groups. J. Fourier Anal. Appl. 17 (2011), no. 2, 290–319.

[BB12] I. Beltiță, D. Beltiță, Algebras of symbols associated with the Weyl calculus for Lie group representations. Monatsh. Math. 167 (2012), no. 1, 13–33.

[BBC16] I. Beltiță, D. Beltiță, B. Cahen, Berezin quantization for representations of nilpotent Lie groups. Preprint, 2016.

[BG14] D. Beltiță, J. Galé, Linear connections for reproducing kernels on vector bundles. Math. Z. 277 (2014), no. 1–2, 29–62.

[Be74] F.A. Berezin, Quantization (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116-1175. Transl. in Math. USSR Izv. 8 (1974), no. 5, 1109-1165.

[Be75] F.A. Berezin, Quantization in complex symmetric spaces. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472. Transl. in Math. USSR Izv. 9 (1975), no. 2, 341–379.

[C09] B. Cahen, Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84.

[C10] B. Cahen, Stratonovich-Weyl correspondence for compact semisimple Lie groups. Rend. Circ. Mat. Palermo 59 (2010), 331–354.

[C13] B. Cahen, Berezin quantization and holomorphic representations. Rend. Sem. Mat. Univ. Padova 129 (2013), 277–297.
[C14] B. Cahen, *Stratonovich-Weyl correspondence via Berezin quantization*. Rend. Istit. Mat. Univ. Trieste 46 (2014), 157–180.

[Ne00] K.-H. Neeb, *Holomorphy and Convexity in Lie Theory*. de Gruyter Expositions in Mathematics, 28. Walter de Gruyter & Co., Berlin, 2000.

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania
E-mail address: ingrid.beltita@gmail.com

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania
E-mail address: beltita@gmail.com

Laboratoire de Mathématiques et Applications de Metz, UMR 7122, Université de Lorraine (campus de Metz) et CNRS, Bât. A, Ile du Saulcy, F-57045 Metz Cedex 1, France
E-mail address: benjamin.cahen@univ-lorraine.fr