Alain Kraus

Quartic points on the Fermat quintic

Volume 25, n° 1 (2018), p. 199-205.

<http://ambp.cedram.org/item?id=AMBP_2018__25_1_199_0>

© Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal, 2018, Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/).

Publication éditée par le laboratoire de mathématiques Blaise Pascal de l’université Clermont Auvergne, UMR 6620 du CNRS
Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
Quartic points on the Fermat quintic

Alain Kraus

Abstract

We study the algebraic points of degree 4 over \mathbb{Q} on the Fermat curve F_5/\mathbb{Q} of equation $x^5+y^5+z^5 = 0$. A geometrical description of these points has been given in 1997 by Klassen and Tzermias. Using their result, as well as Bruin’s work about diophantine equations of signature $(5, 5, 2)$, we give here an algebraic description of these points. In particular, we prove there is only one Galois extension of \mathbb{Q} of degree 4 that arises as the field of definition of a non-trivial point of F_5.

1. Introduction

Let us denote by F_5 the quintic Fermat curve over \mathbb{Q} given by the equation

$$x^5 + y^5 + z^5 = 0.$$

Let P be a point in $F_5(\overline{\mathbb{Q}})$. The degree of P is the degree of its field of definition over \mathbb{Q}. Write $P = (x, y, z)$ for the projective coordinates of P. It is said to be non-trivial if $xyz \neq 0$. Let ζ be a primitive cubic root of unity and

$$a = (0, -1, 1), \quad b = (-1, 0, 1), \quad c = (-1, 1, 0)$$

$$w = (\zeta, \zeta^2, 1), \quad \overline{w} = (\zeta^2, \zeta, 1).$$

It is well known that $F_5(\mathbb{Q}) = \{a, b, c\}$. In 1978, Gross and Rohrlich have proved that the only quadratic points of F_5 are w and \overline{w} [2, Theorem 5.1]. In 1997, by proving that the group of \mathbb{Q}-rational points of the Jacobian of F_5 is isomorphic to $(\mathbb{Z}/5\mathbb{Z})^2$, and by explicit generators, Klassen and Tzermias have described geometrically all the points of F_5 whose degrees are less than 6 in [4, Theorem 1]. I mention that Top and Sall have

I thank D. Bernardi for his remarks during the writing of this paper, as well as the referee for his suggestions.

Keywords: Fermat quintic, number fields, rational points.

2010 Mathematics Subject Classification: 11D41, 11G30.

199
A. Kraus

pushed further this description for points of F_5 of degrees less than 12 in [5]. In particular, Klassen and Tzermias have proved that F_5 has no cubic points and they have established the following statement:

Theorem 1.1. The points of degree 4 of F_5 arise as the intersection of F_5 with a rational line passing through exactly one of points a, b, c.

Using this result, and Bruin’s work about the diophantine equations $16x^5 + y^5 = z^2$ and $4x^5 + y^5 = z^2$ [1, 3], we propose in this paper to give an algebraic description of the non-trivial quartic points of F_5.

2. **Statement of the results**

Let K be a number field of degree 4 over \mathbb{Q}.

Theorem 2.1. Suppose that $F_5(K)$ has a non-trivial point of degree 4. One of the following conditions is satisfied:

1. the Galois closure of K is a dihedral extension of \mathbb{Q} of degree 8.

2. One has

\[K = \mathbb{Q}(\alpha) \quad \text{with} \quad 31\alpha^4 - 36\alpha^3 + 26\alpha^2 - 36\alpha + 31 = 0. \]

The extension K/\mathbb{Q} is cyclic. Up to Galois conjugation and permutation, $(2, 2\alpha, -\alpha - 1)$ is the only non-trivial point in $F_5(K)$.

As a direct consequence of [2, Theorem 5.1] and the previous Theorem, we obtain:

Corollary 2.2. Suppose that K does not satisfy one of the two conditions above. The set of non-trivial points of $F_5(K)$ is contained in $\{w, w\}$.

All that follows is devoted to the proof of Theorem 2.1.

3. **Preliminary results**

Let $P = (x, y, z) \in F_5(K)$ be a non-trivial point of degree 4. By permuting x, y, z if necessary, we can suppose that P belongs to a \mathbb{Q}-rational line \mathcal{L} passing through $a = (0, -1, 1)$ (Theorem 1.1). Moreover, P being non-trivial we shall assume

\[z = 1. \]

(3.1)
Lemma 3.1. One has $K = \mathbb{Q}(y)$. There exists $t \in \mathbb{Q}$, $t \neq -1$, such that
\[y^4 + uy^3 + (u + 2)y^2 + uy + 1 = 0 \quad \text{with} \quad u = \frac{4t^5 - 1}{t^5 + 1}, \] (3.2)
\[x = t(y + 1). \] (3.3)

Proof. The equation of the tangent line to F_5 at the point a is $Y + Z = 0$. Since $x \neq 0$, it is distinct from \mathcal{L}. According to (3.1), it follows there exists $t \in \mathbb{Q}$ such that
\[x = t(y + 1). \]

In particular, one has $K = \mathbb{Q}(y)$. Furthermore, one has
\[t \neq -1. \] (3.4)

Indeed, if $t = -1$, the equalities $x + y + 1 = 0$ and $x^5 + y^5 + 1 = 0$ imply
\[x(x + 1)(x^2 + x + 1) = 0. \]

Since P is non-trivial, one has $x(x + 1) \neq 0$, so $x^2 + x + 1 = 0$. This leads to $P = w$ or $P = \overline{w}$, which contradicts the fact that P is not a quadratic point, and proves (3.4).

From the equalities (3.3) and $x^5 + y^5 + 1 = 0$, as well as the condition $y \neq -1$, we then deduce the Lemma. \hfill \Box

Let G be the Galois group of the Galois closure of K over \mathbb{Q}. Let us denote by $|G|$ the order of G.

Lemma 3.2.

(1) One has $|G| \in \{4, 8\}$.

(2) Suppose that $|G| = 4$. One of the two following conditions is satisfied:
\[5(16t^5 + 1) \text{ is a square in } \mathbb{Q}. \] (3.5)
\[(1 - 4t^5)(16t^5 + 1) \text{ is a square in } \mathbb{Q}. \] (3.6)

Proof. Let us denote
\[f = X^4 + uX^3 + (u + 2)X^2 + uX + 1 \]

in $\mathbb{Q}[X]$. One has $f(y) = 0$ (Lemma 3.1). Let $\varepsilon \in \overline{\mathbb{Q}}$ such that
\[\varepsilon^2 = u^2 - 4u. \]

The element $y + \frac{1}{\varepsilon}$ is a root of the polynomial $X^2 + uX + u$. So we have the inclusion
\[\mathbb{Q}(\varepsilon) \subseteq K. \] (3.7)
Moreover, we have the equality

\[f = \left(X^2 + \frac{u - \varepsilon}{2} X + 1 \right) \left(X^2 + \frac{u + \varepsilon}{2} X + 1 \right). \]

(3.8)

Since \(K = \mathbb{Q}(y) \) and \([K : \mathbb{Q}] = 4\), we have

\[[\mathbb{Q}(\varepsilon) : \mathbb{Q}] = 2. \]

(3.9)

From (3.8), we deduce that the roots of \(f \) belong to at most two quadratic extensions of \(\mathbb{Q}(\varepsilon) \). The equality (3.9) then implies \(|G| \leq 8\). Since 4 divides \(|G|\), this proves the first assertion.

Henceforth let us suppose \(|G| = 4\), i.e. the extension \(K/\mathbb{Q} \) is Galois. Let \(\Delta \) be the discriminant of \(f \). One has the equalities

\[\Delta = -u^2(u - 4)^3(3u + 4) = 5^3 \frac{(4t^5 - 1)^2(16t^5 + 1)}{(t^5 + 1)^6}. \]

(3.10)

Let us prove that

\[\Delta \text{ is a square in } \mathbb{Q}(\varepsilon). \]

(3.11)

From (3.8) and our assumption, the roots of the polynomials

\[X^2 + \frac{u - \varepsilon}{2} X + 1 \quad \text{and} \quad X^2 + \frac{u + \varepsilon}{2} X + 1 \]

belong to \(K \), which is a quadratic extension of \(\mathbb{Q}(\varepsilon) \) ((3.7) and (3.9)). Therefore, the product of their discriminants

\[\left(\left(\frac{u - \varepsilon}{2} \right)^2 - 4 \right) \left(\left(\frac{u + \varepsilon}{2} \right)^2 - 4 \right) \quad \text{i.e.} \quad -(u - 4)(3u + 4) \]

must be a square in \(\mathbb{Q}(\varepsilon) \). The first equality of (3.10) then implies (3.11).

Suppose that the condition (3.5) is not satisfied. From the second equality of (3.10), we deduce that \(\Delta \) is not a square in \(\mathbb{Q} \). It follows from (3.11) that we have

\[\mathbb{Q} \left(\sqrt{\Delta} \right) = \mathbb{Q}(\varepsilon). \]

Therefore, \(\Delta(u^2 - 4u) \) is a square in \(\mathbb{Q} \), in other words, such is the case for \(-u(3u + 4)\). One has the equality

\[-u(3u + 4) = \frac{(1 - 4t^5)(16t^5 + 1)}{(t^5 + 1)^2}. \]

This implies the condition (3.6) and proves the Lemma. \(\square \)
4. **The curve C_1/\mathbb{Q}**

Let us denote by C_1/\mathbb{Q} the curve, of genus 2, given by the equation

$$Y^2 = 5(16X^5 + 1).$$

Proposition 4.1. The set $C_1(\mathbb{Q})$ is empty.

Proof. Suppose there exists a point $(X, Y) \in C_1(\mathbb{Q})$. Let $Z = \frac{Y}{5}$. We obtain

$$5Z^2 = 16X^5 + 1. \quad (4.1)$$

Let a and b be coprime integers, with $b \in \mathbb{N}$, such that

$$X = \frac{a}{b}. \quad (4.2)$$

Let us prove there exists $c \in \mathbb{N}$ such that

$$b = 5c^2. \quad (4.3)$$

For every prime number p, let v_p be the p-adic valuation over \mathbb{Q}. If p is a prime number dividing b, distinct from 2, 5, one has

$$2v_p(Z) = -5v_p(b),$$

consequently

$$v_p(b) \equiv 0 \mod 2. \quad (4.3)$$

Moreover, one has $v_2(X) < 0$ (5 is not a square modulo 8), so

$$4 - 5v_2(b) = 2v_2(Z).$$

In particular, one has

$$v_2(b) \equiv 0 \mod 2. \quad (4.4)$$

Let us verify the congruence

$$v_5(b) \equiv 1 \mod 2. \quad (4.5)$$

One has $v_5(X) \leq 0$. Suppose $v_5(X) = 0$. In this case, one has $X^5 \equiv \pm 1, \pm 7 \mod 25$. The equality (4.1) implies $X^5 \equiv -1 \mod 25$ and $Z^2 \equiv 2 \mod 5$, which leads to a contradiction. Therefore, we have $1 + 2v_5(Z) = -5v_5(b)$, which proves (4.5).

The conditions (4.3), (4.4) and (4.5) then imply (4.2).

We deduce from (4.1) and (4.2) the equality

$$16a^5 + b^5 = d^2 \quad \text{with} \quad d = 5^3c^5Z.$$

One has $ab \neq 0$. From the informations given in the Appendix of [3], this implies

$$(a, b, d) = (-1, 2, \pm 4).$$

We obtain $X = -1/2$, which is not the abscissa of a point of $C_1(\mathbb{Q})$, hence the result. \(\square\)
5. The curve C_2/\mathbb{Q}

Let us denote by C_2/\mathbb{Q} the curve, of genus 4, given by the equation

$$Y^2 = (1 - 4X^5)(16X^5 + 1).$$

Proposition 5.1. One has

$$C_2(\mathbb{Q}) = \{(0, \pm 1), (-1/2, \pm 3/4)\}.$$

Proof. Let (X, Y) be a point of $C_2(\mathbb{Q})$. Let a and b be coprime integers such that

$$X = \frac{a}{b}.$$

We obtain the equality

$$(Yb^5)^2 = (b^5 - 4a^5)(16a^5 + b^5). \tag{5.1}$$

Therefore, $(b^5 - 4a^5)(16a^5 + b^5)$ is the square of an integer. Moreover, $b^5 - 4a^5$ and $16a^5 + b^5$ are coprime apart from 2 and 5. So, changing (a, b) by $(-a, -b)$ if necessary, there exists $d \in \mathbb{N}$ such that

$$b^5 - 4a^5 \in \{d^2, 2d^2, 5d^2, 10d^2\}.$$

Suppose $b^5 - 4a^5 \in \{2d^2, 10d^2\}$. In this case, b must be even, therefore $v_2(2d^2) = 2$, which is not.

Suppose $b^5 - 4a^5 = d^2$. One has $b \neq 0$. It then comes from [3] that

$$a = 0 \quad \text{or} \quad (a, b, d) = (-1, 2, \pm 6).$$

We obtain $X = 0$ or $X = -1/2$, which leads to the announced points in the statement.

Suppose $b^5 - 4a^5 = 5d^2$. It follows from (5.1) that there exists $c \in \mathbb{N}$ such that

$$16a^5 + b^5 = 5c^2.$$ Since a and b are coprime, 5 does not divide ab. We then directly verify that the two equalities $b^5 - 4a^5 = 5d^2$ and $16a^5 + b^5 = 5c^2$ do not have simultaneously any solutions modulo 25, hence the result. \hfill \square

6. End of the proof of Theorem 2.1

The group G is isomorphic to a subgroup of the symmetric group S_4 and one has $|G| = 4$ or $|G| = 8$ (Lemma 3.2). In case $|G| = 8$, G is isomorphic to a 2-Sylow subgroup of S_4, that is dihedral.

Suppose $|G| = 4$ and let us prove the assertion 2 of the Theorem.

First, we directly verify that the extension K/\mathbb{Q} defined by the condition (2.1) is cyclic of degree 4, and that the point $(2, 2\alpha, -\alpha - 1)$ belongs to $F_5(K)$.

204
Conversely, from the Proposition 4.1, the condition (3.5) of the Lemma 3.2 is not satisfied. The condition (3.6) and the Proposition 5.1 imply that \(t = 0 \) or \(t = -1/2 \). The case \(t = 0 \) is excluded because \(P \) is non-trivial. With the condition (3.2), we obtain

\[
u = -\frac{36}{31}.
\]

Thus, necessarily \(y \) is a root of the polynomial \(31X^4 - 36X^3 + 26X^2 - 36X + 31 \), in other words \(y \) is a conjugate over \(\mathbb{Q} \) of \(\alpha \). The equality (3.3),

\[
x = -\frac{y + 1}{2}
\]

then implies the result.

References

[1] Nils Bruin. *Chabauty methods and covering techniques applied to generalised Fermat equations*. PhD thesis, Leiden University, Nederland, 1999.

[2] Benedict H. Gross and David E. Rohrlich. Some results on the Mordell-Weil group of the Jacobian of the Fermat curve. *Invent. Math.*, 44(3):201–224, 1978.

[3] Wilfrid Ivorra. Sur les équations \(x^p + 2\beta y^p = z^2 \) et \(x^p + 2\beta y^p = 2z^2 \). *Acta Arith.*, 108(4):327–338, 2003.

[4] Matthew Klassen and Pavlos Tzermias. Algebraic points of low degree on the Fermat quintic. *Acta Arith.*, 82(4):393–401, 1997.

[5] Thiéyacine Top and Oumar Sall. Points algébriques de degrés au plus 12 sur la quintique de Fermat. *Acta Arith.*, 169(4):385–395, 2015.