Bone-forming perivascular cells: Cellular heterogeneity and use for tissue repair

Jiajia Xu1 | Yiyun Wang1 | Mario A. Gomez-Salazar1 | Ginny Ching-Yun Hsu1 | Stefano Negri1 | Zhao Li1 | Winters Hardy2 | Lijun Ding3,4,5 | Bruno Peault2,5 | Aaron W. James1

1Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
2UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
3Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
4Clinical Center for Stem Cell Research, Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
5Center For Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK

Correspondence
Aaron W. James, MD, PhD, Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD 21205, USA.
Email: awjames@jhmi.edu

Funding Information
American Cancer Society (Research Scholar Grant), Grant/Award Number: RSG-18-027-01-CSM; Broad Agency Announcement, Grant/Award Number: W81XWH-18-10613; Maryland Stem Cell Research Foundation; National Institute of Arthritis and Musculoskeletal and Skin Diseases, Grant/Award Number: R01 AR070773; National Institute of Dental and Craniofacial Research, Grant/Award Number: R21 DE027922; Peer Reviewed Orthopaedic Research Program, Grant/Award Number: W81XWH-20-1-0795; USAMRAA through the Peer Reviewed Medical Research Program, Grant/Award Numbers: W81XWH-18-1-0121, W81XWH-18-1-0336

Abstract
Mesenchymal progenitor cells are broadly distributed across perivascular niches—an observation conserved between species. One common histologic zone with a high frequency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of (re)generative cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, including CD10, CD107a, aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes (such as CD10+, CD107a-low, and CD140a+ cells) have stronger osteogenic potential and promote bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are also presented. A better understanding of perivascular progenitor cell subsets may represent a beneficial advance for future efforts in tissue repair and bioengineering.

KEYWORDS
adipogenesis, adipose stem cell, ALDH, CD10, CD107a, CD140a, exocytosis, LAMP1, mesenchymal stem cell, mesenchymal stromal cell, osteogenesis, perivascular stem cell, tunica adventitia

Significance statement
Perivascular cells are a heterogeneous population of mesenchymal progenitors. The outermost layer of the vessel wall is a niche with high density and diversity of progenitors, also called adventitial cells. Several antigens including CD10, CD107a, CD140a, as well as aldehyde dehydrogenase activity have been identified in adventitial cells showing distinct differentiation potential with implications for bone repair. In particular, adipose tissue holds great promise for bone tissue engineering due to its high content of mesenchymal progenitors including bone-forming subsets. This publication highlights the most relevant basic and translational research of perivascular cell biology with a focus on bone regeneration.
1 | INTRODUCTION

From her observations of chicken blastoderms within her anatomy laboratory at Johns Hopkins University, Florence Sabin concluded in 1917 that "Angioblasts and later endothelial cells give rise to red blood cells." This visionary insight into hematopoietic stem cell (HSC) biology, more than 40 years before Till & McCulloch's discovery of blood cell progenitors, received dazzling experimental confirmations from the 1970s. It has resulted in recent years in the thorough anatomic, molecular, and developmental characterization of the "hemogenic endothelium." Much later in life, endothelial cells contribute to scarring in the infarcted myocardium by transdiffering into fibroblasts in a reversible manner. Moreover, the embryonic dorsal aorta and other adult blood vessels host potent skeletal myogenic progenitors, further illustrating the developmental flexibility of some vascular cells. In a teleological perspective, physical association of progenitor cells with blood vessels should permit the ubiquitous dissemination of tissue regenerative potentials. Such a tentative correlation between anatomy and function guided the search for the native origin of mesenchymal stem cells (MSCs), the culture-derived multilineage mesodermal progenitors that can be extracted from all vascularized tissues. Markers expressed by perivascular cells had been detected on cells from the human uterus that give rise to MSC like progenitors. Then, some of us observed that pericytes, the mural cells that ensheathe capillaries and microvessels, purified by flow cytometry from all human organs tested produce MSCs in culture, establishing a perivascular distribution for the forerunners of these multipotent cells. Purified pericytes have been used experimentally to engineer blood vessels and regenerate lung, skeletal muscle, cartilage, ischemic limbs, tendon, and uterus. Besides, pericytes naturally contribute to regenerating Leydig cells in the testis, satellite cells and myofibers in skeletal muscle, white adipocytes, follicular dendritic cells, dental cells, and fibroblasts in multiple tissues. Mesodermal lineage potential is also present in the tunica media and tunica adventitia of larger arteries and veins, where it has been studied in the context of pathologic vascular remodeling. In agreement, presumptive MSCs have been described in the human and murine vascular adventitia, allowing to conclude that blood vessels of all sizes are repositories for mesodermal progenitor cells. Quantitatively, the tunica adventitia represents a substantial reserve of primitive mesodermal progenitors of undisputable pathophysiologic relevance and possible therapeutic significance. The diversity and functions of (regenerative) cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with respect to bone formation, in culture and in vivo.

2 | DIFFERENT CELL TYPES

2.1 | The osteoblastogenic potential of perivascular adventitial cells

Adventitial cells (a.k.a. adventicytes), so-named as they lie in the tunica adventitia of blood vessels, have a nondescript fibroblastic morphology and at times appear to be in continuity with fascial connective tissue. Defined as a CD34+/CD146− cell population, we and others have described their multipotency. The osteoblastic potential of adventitial cells has been summarized in several recent reviews. Perivascular adventitial cells participate directly in bone formation and repair as well as indirectly induce bone repair via interaction with native skeletal cells. Implanted perivascular cells regenerate bone indirectly via pleiotropic mechanisms, including for example release of extracellular vesicles (EV) as well as nonvesicular paracrine effectors, such as bone morphogenetic proteins. For example, human perivascular EVs induce osteoprogenitor cell proliferation, migration, and osteogenic differentiation to induce bone repair. In contrast, human perivascular cells inhibit osteoclast formation and prevent bone graft resorption via nonvesicular paracrine mechanisms. Negative regulators of osteoclast differentiation were enriched within perivascular stem cells, including the decoy receptor for RANKL osteoprotegerin (TNSRF11B), the Wnt and RANKL inhibitor secreted frizzled-related protein-1 (SFRP1), anti-osteoclastic/axonal guidance molecules such as semaphorin 3A (SEMA3A), and slit guidance ligand 3 (SLIT3). The relative roles of human adventitial cells and pericytes in bone repair were described recently by our group. Here, CD34+ adventitial cells have a more prominent synthetic role in the formation of bone matrix, whereas CD146+ pericytes play a supportive role in the induction of blood vessel ingrowth. Other markers that typify adventitial cells have been described in mouse models, including stem cell antigen-1 (Sca-1), Gli1, and platelet-derived growth factor receptor (PDGFR)α. The expression of PDGFRα on most adventitial cells brings to the fore the possible overlap in terminology between fibro-adipoprogenitor cells (FAPs) and adventitial cells. Certainly soft tissue resident FAPs, like adventitial cells, have been described to ossify under appropriate contexts. Although adventitial cells have been clearly identified as an osteogenic precursor, the heterogeneity within this cell population has been increasingly documented.

3 | ROLES IN PATHOPHYSIOLOGIC PROCESSES

3.1 | Cellular heterogeneity within the tunica adventitia of mice

The functional study of subsets of adventitial cells has been possible by the generation of different mouse models that helped track the origin and contribution of these cells during injury and disease as well as tissue homeostasis. Indeed, different groups have identified subsets of adventitial cells involved in fibrosis, calcification, and regeneration. Earlier studies implicated Sca-1- and PDGFRα-expressing adventitial cells enriched for sonic hedgehog (Shh) signaling activity as cells with a stem-like identity. For instance, Gli1+ adventitial cells are myofibroblast progenitors and contribute to fibrosis in different organs. Moreover, this same population of adventitial cells expressing Gli1 can migrate to the intima, become osteoblast-like
cells and contribute to vessel calcification during chronic kidney disease (CKD).28 In the bone marrow Gli1+ mesenchymal cells contribute to bone marrow fibrosis and dysregulation of HSCs.43 In this context, Gli1 appears to be a pan-marker of fibrotic cells in different organs making it a potential therapeutic target. Nonetheless, the adventitia shows high heterogeneity and other markers have been described.

Understanding of the mechanisms by which perivascular cells contribute during the regeneration process is crucial to develop new strategies to treat diseases such as fibrosis. In specific, the identification of functional subsets is important to either inhibit or promote a given cell fate and improve tissue regeneration. For example, Rafael Kramann's group has recently reported a cell atlas of both human and mouse kidney in which they identified subpopulations of mesenchymal cells including perivascular cells as likely contributors to kidney fibrosis and furthermore described Naked Cuticle Homolog 2 (Nkd2) as a specific myofibroblast target.44

PDGFR\textsubscript{α} and PDGFR\textsubscript{β} play key roles in mesenchymal biology. Both of these receptors are involved in cellular proliferation, migration, and differentiation.45 Moreover, subsets of cells expressing PDGFR\textsubscript{α}, PDGFR\textsubscript{β}, or both have divergent functions in regeneration. For example, PDGFR\textsubscript{α}+/PDGFR\textsubscript{β}+ perivascular cells within skeletal muscle have been observed to have fibroadipogenic properties, whereas PDGFR\textsubscript{α}− perivascular cells have regenerative/myogenic features.32 In skeletal muscle and cardiac tissue, \(\alpha\)v integrins on PDGFR\textsubscript{β}+ perivascular cells promote the formation of fibrotic tissue.24 In adipose tissue, PDGFR\textsubscript{α}/PDGFR\textsubscript{β} regulate cell differentiation into white or brown adipocytes as well as transition into myofibroblasts.46,47

The use of PDGFR\textsubscript{α} reporter activity within mouse white adipose tissue to differentiate subsets of adventitial cells has been recently described32 (Figure 1). PDGFR\textsubscript{α} reporter cells are located predominantly in the inner layer of the adventitia, while the cell surface marker CD34 highlights the majority of this layer.32 Using fluorescence-activated cell sorting (FACS) isolation of adventitial cell subsets, PDGFR\textsubscript{α} and CD34 coexpressing adventicytes showed greater osteogenic potential than PDGFR\textsubscript{α}+ only or CD34/PDGFR\textsubscript{α} cells.32 Indeed PDGFR\textsubscript{α}+ perivascular cells demonstrated more stem cell features than other cell fractions. In addition to higher proliferation rate, PDGFR\textsubscript{α}+ cells repopulated the tunica adventitia more effectively than PDGFR\textsubscript{α}− perivascular cells upon isolation and retransplantation. However, the stem-like identity of PDGFR\textsubscript{α}-expressing adventitial cells was restricted to bone and adipose lineages. For example, long-term lineage tracing failed to reveal any contribution of PDGFR\textsubscript{α}-expressing adventicytes to the smooth muscle medial layer in homeostatic conditions.32 When implanted with bone graft material, PDGFR\textsubscript{α}− cells participated in osteoblastogenesis to a greater degree than PDGFR\textsubscript{α}− perivascular cells. Finally, upon stimulation with BMP2, endogenous PDGFR\textsubscript{α}+ reporter cells and their cellular descendants became osteoblasts, adipocytes, and new perivascular cells within new-formed ossicles.32 These results parallel experimental studies in skeletal muscle where a large portion of PDGFR\textsubscript{α}-expressing cells give rise to dystrophic calcification and ossification during heterotopic bone formation (Table 1).41

3.2 | Cellular heterogeneity of the human adventitia

Less is known about the mechanism regulating vascular stem cells in the human adventitia, and whether the subsets described in mice have analogous counterparts in the human vasculature. In vitro studies of FACS sorted perivascular cells, transcriptomic analysis, and immunohistochemistry on tissue samples from healthy and diseased individuals can help us understand the mechanisms by which these cells contribute to regeneration and link findings from mouse models to human pathobiology. For example, Kramann et al extended their findings on vascular calcification during mouse CKD by performing Gli1 immunohistochemistry on human arteries obtained from dialysis-dependent and non-CKD subjects. Expression of Gli1 in non-CKD patients was mainly found in the

![Figure 1](image-url)

Figure 1. PDGFR\textsubscript{α} marks a population of cells within the tunica adventitia. A, PDGFR\textsubscript{α}mT/mG reporter mice contain green PDGFR\textsubscript{α}+ cells within the tunica adventitia in the inguinal fat pad. All other cells are red. Nuclear counterstain appears in blue. B, High magnification of the tunica adventitia.
Phenotypes and functionalities of arterial adventitial cells in man and mice

Markers	Organisms	Function	Reference
ALDH1high	Human	Osteogenic and adipogenic potential (predicted)	Hardy et al.29
PDGFRα+	Mice	Osteogenic and adipogenic potential	Wang et al.32
CD107ahigh	Human	Adipogenic potential	Xu et al.33
CD10+	Human	Osteogenic potential	Ding et al.48
cells. Human CD107alow cells also increased posterolateral lumbar spine fusion in athymic rats. Analyses performed after 8 weeks demonstrated 62.5% spine fusion among CD107alow cell-treated animals, whereas CD107ahigh cell-transplanted animals only showed 37.5% fusion. In summary, these studies pointed to CD107alow mesenchymal cells as a cell subset with higher osteogenic potential. Interestingly, and as expected from functional differences, zones of expression of CD10 and CD107a within the tunica adventitia of vessels are distinct (Figure 2).

4 | CLINICAL APPLICATION AND PERSPECTIVES

Despite the high number of preclinical studies showing positive results with the use of mesenchymal progenitor cells, their use in the clinical setting is limited.64 Among the factors affecting efficiency is the use of total cell preparations containing subsets that may hinder the efficacy of regeneration, resulting in inconsistent clinical outcomes. Moreover, clonal selection within total cell preparations may further reduce numbers of highly regenerative progenitor cells. Our group specially focused on elucidating functional heterogeneity of perivascular cells that may contribute to standardizing cell preparations and improving clinical outcomes. For instance, we have shown that CD10+ cell preparations have increased osteogenic potential, which will likely enhance regeneration in skeletal injuries. Tailoring of cell therapies for specific pathologies may represent a step forward in realizing the potential of multipotent progenitor cells for tissue engineering.7

Not discussed here, the vehicle or scaffold for cell deployment is also vitally important for efforts in skeletal tissue regeneration. Progenitor cells are highly influenced by their microenvironment, and the physical and molecular characteristics of a given scaffold will result in shifts in cell phenotype and functional outcomes in terms of tissue formed. One such example using human perivascular cells was recently reported, where tunable supramolecular hydrogels along with different stiffnesses exert changes in pericyte differentiation toward osteogenic and chondrogenic lineages.65

5 | CONCLUSION

Despite its relatively unremarkable histologic appearance, the tunica adventitia houses a wealth of cell types—some of which have mesenchymal progenitor cell attributes. This brief review covered only some of the established and emerging markers in mouse and human tissues that resolve functionally relevant subsets of perivascular cells. In addition to harboring progenitor cells, the adventitial layer is a major site of accumulation of immune cells including macrophages, lymphocytes, mast cells, and dendritic cells that carry out important surveillance and innate immune functions in response to foreign antigens and play a role in vascular pathologies including atherosclerosis and tissue fibrosis.66 Whether a specific subset of mesenchymal progenitor cells in this perivascular niche is involved in immune regulation and subsequent tissue remodeling is yet to be investigated. A critical point is that many markers used to purify cells within the tunica adventitia are also present in minor degrees in other cellular locations, such as the perineural tissues or fascia of white adipose tissue. The fascia is a

![Image of CD10 and CD107a staining within the tunica adventitia](https://example.com/image.png)

FIGURE 2 CD10 and CD107a mark distinct subpopulations within the tunica adventitia. A-E, Immunofluorescent staining for CD107a, CD10, and CD34 in an artery within human subcutaneous white adipose tissue. A, Whole vessel in cross-section showing CD34 expression in the endothelial and adventitial layers. CD10 and CD107a expression are seen on different subsets in the inner and outer adventitia. B-E, High magnification of the tunica adventitia.
framework of connective tissue that envelops and separates organs and tissues. In adipose tissue, the fascia contains preadipocytes with high differentiation potential. Cells in the fascia express markers shared with perivascular cells such as CD34 and CD44. In a similar manner, perineural cells express markers also found in mesenchymal cells such as vimentin, CD34, and α-SMA. Moreover, during development in zebrafish and mouse, Schwann cell precursors give rise to mesenchymal progenitors that subsequently differentiate into chondrocytes and osteocytes, describing a common developmental origin that may explain why they share similar expression patterns with adventitial cells. All this exemplifies the complexity of purifying and studying perivascular progenitor cells. Until we have more specific markers for adventitial cells, purification of perivascular progenitors will be prone to contain a fraction of other cell types. Importantly, the inherent regenerative potential of specific subsets of adventitial cells will further improve efficiency and consistency when used in bioengineering approaches.

This review focused on adipose tissue perivascular cells, but similar cells within the bone marrow are also well characterized as multipotent progenitors, termed CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells or leptin-receptor-positive (LepR+) stromal cells. LepR+ cells are the major source of bone and adipocytes in adult bone marrow. Short-term ablation of CAR cells in vivo impairs osteogenesis from marrow cells. Furthermore, CAR cells and LepR+ stromal cells have been implicated in maintaining the quiescent HSC pool and appear to be a key component of HSC niches. Mechanistically, Foxc1, expressed in CAR cells, is essential for HSC maintenance and promotes CAR cell development by upregulating CXCL12 and stem cell factor expression. In addition, the transcription factor early B-cell factor 3 (Ebf3) is preferentially expressed in CAR/LepR+ cells, required to create HSC niches and maintain spaces for HSCs. In contrast to adipose tissue as discussed above, bone marrow perivascular cells are primarily housed within microvessels and have a perivascular position consistent with pericytes. To our knowledge, adventitial cells have not been isolated or characterized from skeletal sources.

Several unanswered questions regarding these recent findings are most notable. For example, distribution of novel markers such as CD10 and CD107a suggests a microarchitectural spatial organization of the tunica adventitia within fat tissue that had been previously under-recognized. Yet, the broader spatial relations between adventitial cells, and whether these are conserved across organ systems remain unknown. Most obviously, the hunt for a definitive stem cell within the tunica adventitia—one with self-renewal potential—is a matter of considerable interest. Certainly, identification of more primitive/progenitor cell types within vessel walls has broad implications for vascular biology, but also usefulness in the field of tissue engineering and regenerative medicine.

ACKNOWLEDGMENTS

A.W.J. is funded by NIH/NIAMS (R01 AR070773), NIH/NIDCR (R21 DE027922), USAMRAA through the Peer Reviewed Medical Research Program (W81XWH-18-1-0121, W81XWH-18-1-0336), Broad Agency Announcement (W81XWH-18-10613), Peer Reviewed Orthopaedic Research Program (W81XWH-20-1-0795), American Cancer Society (Research Scholar Grant, RSG-18-027-01-CSM), and the Maryland Stem Cell Research Foundation.

CONFLICT OF INTEREST

A.W.J. is a paid consultant for Novadip LLC and Lifesprout LLC. This arrangement has been reviewed and approved by the JHU in accordance with its conflict of interest polices. A.W.J. receives funding for unrelated research from MTF Biologics and Novadip, and is on the editorial board of American Journal of Pathology and Bone Research. A.W.J. is the inventor of methods to purify CD107a progenitor cells held by the Johns Hopkins University. B.P. is the inventor of perivascular stem cell related patents held by the UC Regents and is on the editorial board of Stem Cells. The other authors declared no potential conflicts of interest.

AUTHOR CONTRIBUTIONS

J.X., Y.W., M.G., A.W.J.: conceptualization; G.H., S.N., Z.L., W.H., L.D.: visualization; J.X., Y.W., M.G., A.W.J.: writing—original draft; B.P., A.W.J.: writing—review & editing.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Jiajia Xu https://orcid.org/0000-0002-6084-2029
Yiyun Wang https://orcid.org/0000-0003-0775-4377
Ginny Ching-Yun Hsu https://orcid.org/0000-0001-5923-3413
Lilian Ding https://orcid.org/0000-0002-6330-7945
Aaron W. James https://orcid.org/0000-0002-2002-622X

REFERENCES

1. Sabin FR. Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma and red blood-cells as seen in the living chick. 1917. J Hematother Stem Cell Res. 2002;11(1):5-7.
2. Dieterlen-Lievre F. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol. 1975;33(3):607-619.
3. Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci. 2016;73(8):1547-1567.
4. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952-961.
5. Ubil E, Duan J, Pillai IC, et al. Endothelial-to-mesenchymal transition contributes to cardiac neovascularization. Nature. 2014;514(7524):585-590.
6. Zheng B, Cao B, Crisan M, et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol. 2007;25(9):1025-1034.
7. Pittenger MF, Discher DE, Peault BM, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22.
8. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903-2911.
9. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193-215.

10. Crisan M, Yap S, Castellá L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301-313.

11. He W, Nieponice A, Soletti L, et al. Pericyte-based human tissue engineered vascular grafts. Biomaterials. 2010;31(32):8235-8244.

12. Montemurro T, Andriolo G, Montelatici E, et al. Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. J Cell Mol Med. 2011;15(4):796-808.

13. Park TS, Gavina M, Chen CW, et al. Placental perivascular cells for human muscle regeneration. Stem Cells Dev. 2011;20(3):451-463.

14. Alakpa EV, Jayawarna V, Burgess KEV, et al. Improving cartilage phenotype from differentiated pericytes in tunable peptide hydrogels. Sci Rep. 2017;7(1):6895.

15. Dar A, Domey H, Ben-Yosef O, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125(1):87-99.

16. Devana SK, Kelley BV, McBride OJ, et al. Adipose-derived human perivascular stem cells may improve Achilles tendon healing in rats. Clin Orthop Relat Res. 2018;476(10):2091-2100.

17. Li Z, Yan G, Diao Q, et al. Transplantation of human endometrial perivascular cells with elevated CYP61 expression induces angiogenesis and promotes repair of a full-thickness uterine injury in rat. Stem Cell Res Ther. 2019;10(1):179.

18. Curley M, Gonzalez ZN, Milne L, et al. Human adipose-derived pericytes display steroidogenic lineage potential in vitro and influence Leydig cell regeneration in vivo in rats. Sci Rep. 2019;9(1):15037.

19. Delvalle A, Maroli G, Covarelli D, et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun. 2011;2:499.

20. Tang W, Zve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583-586.

21. Krautler NJ, Kana V, Kranich J, et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell. 2012;150(1):194-206.

22. Zhao H, Feng J, Seidel K, et al. Secretion of Shh by a neurovascular unit supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2014;14(2):160-173.

23. Dulauroy S, Di Carlo SE, Langa F, et al. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 2012;18(8):1262-1270.

24. Murray IR, Gonzalez ZN, Baily J, et al. Activin-dependent signaling in fibro/adipogenic progenitors causes fibroadiposia ossificans progressiva. Nat Commun. 2018;9(1):471.

25. Kramann R, Schneider RK, DiRocco DP, et al. Perivascular Gli1(+) progenitors are key contributors to injury-induced organ fibrosis. J Bone Miner Res. 2015;30(5):1525-1534.

26. Lees-Shepard JB, Yamamoto M, Biswas AA, et al. Activin-dependent signaling in fibro/adipogenic progenitors causes fibroadiposia ossificans progressiva. Nat Commun. 2018;9(1):471.

27. Kramann R, Schneider RK, DiRocco DP, et al. Perivascular Gli1(+) progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16(1):51-66.

28. Schneider RK, Mullally A, Dugourd A, et al. Gli1(+) mesenchymal stromal cells are key drivers of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800.e788.

29. Kuppe C, Ibrahim MM, Kranz J, et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2020;589(7894):281-286.

30. Chen PH, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta. 2013;1834(10):2176-2186.

31. Dani C, Pfeifer A. The complexity of PDGF signaling: regulation of adipose progenitor maintenance and adipocyte-myofibroblast transition. Stem Cell Investig. 2017;4:28.

32. Gao Z, Daquinag AC, Su F, et al. PDGF-Ralpha+ fibro-adipogenic progenitors spontaneously acquire osteogenic phenotype in an altered inflammatory environment. J Bone Miner Res. 2020;35(8):1525-1534.

33. Kramann R, Schneider RK, DiRocco DP, et al. Perivascular Gli1(+) progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16(1):51-66.

34. Schneider RK, Mullally A, Dugourd A, et al. Gli1(+) mesenchymal stromal cells are key drivers of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800.e788.

35. Kuppe C, Ibrahim MM, Kranz J, et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2020;589(7894):281-286.

36. Chen PH, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta. 2013;1834(10):2176-2186.

37. Dani C, Pfeifer A. The complexity of PDGF signaling: regulation of adipose progenitor maintenance and adipocyte-myofibroblast transition. Stem Cell Investig. 2017;4:28.

38. Gao Z, Daquinag AC, Su F, et al. PDGF-Ralpha+ fibro-adipogenic progenitors spontaneously acquire osteogenic phenotype in an altered inflammatory environment. J Bone Miner Res. 2020;35(8):1525-1534.

39. Kramann R, Schneider RK, DiRocco DP, et al. Perivascular Gli1(+) progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16(1):51-66.

40. Schneider RK, Mullally A, Dugourd A, et al. Gli1(+) mesenchymal stromal cells are key drivers of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800.e788.

41. Kuppe C, Ibrahim MM, Kranz J, et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2020;589(7894):281-286.

42. Chen PH, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta. 2013;1834(10):2176-2186.

43. Dani C, Pfeifer A. The complexity of PDGF signaling: regulation of adipose progenitor maintenance and adipocyte-myofibroblast transition. Stem Cell Investig. 2017;4:28.
53. Awad O, Yustein JT, Shah P, et al. High ALDH activity identifies chemotherapy-resistant Ewing’s sarcoma stem cells that retain sensitivity to EWS-FLI1 inhibition. PLoS One. 2010;5(11):e13943.

54. van den Hoogen C, van der Horst G, Cheung H, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 2010;70(12):5163-5173.

55. Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018-11032.

56. Kenny AJ, O’Hare MJ, Gusterson BA. Cell-surface peptidases as modulators of growth and differentiation. Lancet. 1989;2(8666):785-787.

57. Sumitomo M, Shen R, Nanus DM. Involvement of neutral endopeptidase in neoplastic progression. Biochim Biophys Acta. 2005;1751(1):52-59.

58. Goodman OB Jr, Febbraio M, Simantov R, et al. Neprilysin inhibits angiogenesis via proteolysis of fibroblast growth factor-2. J Biol Chem. 2006;281(44):33597-33605.

59. Pilkington GR, Pallesen G. Phenotypic characterization of non-haemopoietic small cell tumours of childhood with monoclonal antibodies to leucocytes, epithelial cells and cytoskeletal proteins. Histopathology. 1989;14(4):347-357.

60. Dakka N, Bellaoui H, Bouzid N, Khattab M, Bakri Y, Benjouad A. CD10 AND CD34 expression in childhood acute lymphoblastic leukaemia: clinical relevance and outcome. Pediatr Hematol Oncol. 2009;26(4):216-231.

61. Buhring HJ, Battula VL, Treml S, et al. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci. 2007;1106:262-271.

62. Bachelard-Cascales E, Chapellier M, Delay E, et al. The CD10 enzyme is a key player to identify and regulate human mammary stem cells. Stem Cells. 2010;28(6):1081-1088.

63. Defays A, David A, de Gassart A, et al. BAD-LAMP is a novel biomarker of nonactivated human plasmacytoid dendritic cells. Blood. 2011;118(3):609-617.

64. Gomez-Salazar M, Gonzalez-Galofre ZN, Casamitjana J, Crisan M, James AW, Péault B. Five decades later, are mesenchymal stem cells still relevant? Front Bioeng Biotechnol. 2020;8:148.

65. Alakpa EV, Jayawarna V, Lampel A, et al. Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures. Chem. 2016;12(2):298-319.

66. Zhu X, Zhang HW, Chen HN, et al. Perivascular adipose tissue dys-function aggravates adventitial remodeling in obese mini pigs via NLRP3 inflammasome/IL-1 signaling pathway. Acta Pharmacol Sin. 2019;40(1):46-54.

67. Schleip R, Jager H, Klingler W. What is ‘fascia’? A review of different nomenclatures. J Bodyw Mov Ther. 2012;16(4):496-502.

68. Su X, Lyu Y, Wang W, et al. Fascia origin of adipose cells. Stem Cells. 2016;34(5):1407-1419.

69. Correa-Gallegos D, Jiang D, Christ S, et al. Patch repair of deep wounds by mobilized fascia. Nature. 2019;576(7786):287-292.

70. Triolo D, Dina G, Tavaggia C, et al. Vimentin regulates peripheral nerve myelination. Development. 2012;139(7):1359-1367.

71. Cizkova D, Soukup T, Mokry J. Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles. Histochem Cell Biol. 2009;131(2):197-206.

72. Xie M, Kamenev D, Kaucka M, et al. Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc Natl Acad Sci USA. 2019;116(30):15068-15073.

73. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154-168.

74. Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipose-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387-399.

75. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977-988.

76. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457-462.

77. Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T, Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature. 2014;508(7497):536-540.

78. Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018;32(5–6):359-372.