Horse-related trauma in children and adults during a two year period

Jakob Altgärde1, Stefan Redéen1*, Niclas Hilding2 and Peder Drott1

Abstract

Introduction: Horse riding, with almost 200,000 participants, is the eighth most popular sport in Sweden. Severe injuries can occur with horse riding accidents which is well documented. This study was undertaken to investigate if injuries associated with horse riding are common, which type of injuries occur, what mechanisms are involved and to estimate the costs to the society.

Material and methods: All patients attending the emergency department at Linköping University Hospital, during the years 2003-2004, due to horse related trauma were prospectively recorded. The patients were divided into two groups according to age, 147 children and 141 adults. The medical records were retrospectively scrutinized.

Results: The most common mechanism of injury was falling from the horse. Most commonly, minor sprains and soft tissue injuries were seen, but also minor head injuries and fractures, mainly located in the upper limb. In total 26 adults and 37 children were admitted. Of these 63 patients 19 were considered having a serious injury. In total, four patients needed treatment in intensive care units.

The total cost in each group was 200,000 Euro/year.

Conclusion: Horse riding is a sport with well known risks. Our results corresponds to the literature, however we have not observed the same incidence of serious injuries. In contrast we find these to be fairly uncommon. The injuries are mainly minor, with a small risk of long term morbidity. Over time regulations and safety equipment seem to have decreased the number of serious accidents.

Keywords: Accidents, Adults, Children, Costs, Fractures, Health care consumption, Horse, Trauma

Introduction

With almost 200,000 participants in Sweden (2% of the Swedish population), horse riding is the eighth most popular sport [1]. The number of horses in Sweden has increased from 70,000 in 1974 to 270,000 in 2004 [2].

The number of horses in the county of Östergötland in 2004 was 14,356, this is the fourth highest number among the counties in Sweden [2]. Linköping community hosts one third of the members of The Swedish Equestrian Federation in the county of Östergötland.

The University Hospital in Linköping was chosen because it is the only hospital in the Linköping community and handles all emergency cases.

The Swedish Equestrian Federation reports that the interest for horse riding has increased over the years. The traditional use of horses as occupational animals has decreased, nowadays horse riding is mainly for recreation and competition.

The benefits from horse riding include learning to take responsibility and in calculating a greater respect for animals, however there are risks of injuries [3]. Former studies have postulated that the risk of injury during horse riding is at the same level as for most other sports performed by children (e.g. soccer, ice hockey). However, the severities of the injuries are disproportionately greater [4]. A study with focus on severity of injuries in childhood reviled that horse riding was the second worst mechanism of injury [5].

Results from previous studies shows that the most common horse related injuries are head injuries and fractures of the long bones. Horse related trauma is also more common among women, with a peak incidence at
the age of 14 [6]. Horse-related trauma is expensive for
the society and the affected person [7].

The aims of this study were to investigate if injuries
associated with horse riding are as common as previ-
ously described, to determine the common types of in-
juries, and the mechanisms involved, and to estimate the
costs to society.

Material and methods

All patients attending the emergency department at the
Linköping University Hospital during the years 2003-
2004, due to accidents related to horse riding or horse
handling, were prospectively recorded. The patients were
divided into two groups according to age. One group
under the age of 19 years (Children) and one group
19 years of age or older (Adults). There were 157 Chil-
dren and 162 Adults. The medical records were retro-
spectively scrutinized for details about the accident, the
severity of the injuries and the given medical treatment.
Ten Children were excluded due to lack of information.
Among the Adults, a total of 21 were excluded, 19 due
to lack of information and two as they were participants
in a professional racing competition. Remaining were
147 Children and 141 Adults.

We defined serious injuries as hospitalization for ≥3 days
and/or sick leave for ≥1 month. No specific injury classifi-
cations were used.

Almost all injuries occurred during horse riding only a
few during the care of horses.

An estimation of the number of horses in the Linköping
community was achieved from the Swedish Equestrian
Federation in the county of Östergötland. The city of
Linköping hosts one third of the members of the
Swedish Equestrian Federation in the county. We com-
pared the ratio of members to the total numbers of
horses in the county and estimated that there are approxi-
mately 4500 horses in Linköping community. This was
compared with, and found adequate, with local registers
in the community.

To estimate the incidence of horse related injuries we
divided the mean frequency of accidents per day with the
estimated total horse handling time per day from the
questionnaire.

The hospital economists gave the current costs for in-
cluded investigations and admissions.

All data were unidentified before analysis. The study was
performed in accordance with the updated (2002)
Helsinki Declaration and was approved by the Ethics
Committee at the University Hospital in Linköping.

Results

Demographics

In total (Children/Adults) 147/141 were included. There
were 144/128 girls/women and 3/13 boys/men in the
study. Age ranged from 3.5 - 18.7/19.2-70.1 median age
was 13/33. The majority 131/97 of accidents happened
with the rider mounted on the horse and the remainder
16/44 whilst taking care of, feeding or loading the horse
onto a trailer.

Mechanism of injury

Several different mechanisms of injury were recognized.
The most common mechanism of injury was falling off
the horse 125/92. Of these 20/14 had additional mecha-
nisms of injury to the fall. These mechanisms were:
horse fell on 8/6, stepped on 6/3, kicked 3/2 and 3/3
riders got their foot stuck in a stirrup and 1/4 of these
were dragged along by the horse. Other riders were
solely kicked 11/23, stepped on 6/14, bitten 1/0, or
pushed by the horse 1/0. Another 1/0 rider was injured
when the horse suddenly stopped in front of an obstacle
and 2/1 were squeezed between the horse and a wall.
Additional 0/3 riders got a finger caught in the reins and
were pulled along by the horse. One Adult hit an obst-
acle while riding. Five Adult were hit by the horse’s
neck or head. In 1/2 the horse fell over the rider.

Injuries

The majority of injuries were minor sprains and light
soft tissue injuries. Some Children had potential serious
injuries (Table 1).

Health care consumption

On presentation to the emergency department, 82/85
patients (56/60%) were isolated orthopaedic cases, 1/1
neurosurgical, 1/0 oro-maxillofacial, 0/1 hand surgeon,
0/1 Ear Nose and Throat surgeon and the remainder
general surgical cases. Patients with multiple injuries
were treated by the trauma team.

In total 37/26 were admitted, of which 4/9 patients
were admitted for at least three days. The length of ad-
mission ranged from 1-14/1-7 days. Of these, 34/25 pa-
tients were admitted to the wards and 3/1 to the
intensive care unit (ICU) (Tables 2 and 3).

In total, 67/90 CT scans in 31/41 patients were done
and 174/183 skeletal x-rays were performed in 98/97
patients.

Operations were performed in 12/11.

In Children there was external stabilization in 24, anti-
biotics and/or tetanus booster in three, paramedical
treatment in six, suture in three and reduction of a fin-
ger in one.

In Children twelve operations were performed on 11
patients; one patient had a craniotomy with drainage of
an intracranial haemorrhage and placement of an intra-
ventricular drain. Other operations included three open
reductions, seven closed reductions, one closure of an
infraoral wound and treatment of a dental dislocation.
In Adults there were three chest drain placements, five open reductions of fractures, two closed reductions and one open re-construction of a finger tendon.

Of the total number 65/55 patients received some kind of treatment. There were in total 86/78 treatments (including admission for observation). Apart from operations and admissions, the treatments included stabilization and immobilisation 24/13, paramedical treatment (n = 6/12, suture 3/6, reduction 1/4.

No patient died.

Costs
The total cost for consultation and treatment was (Children/Adults) 210 000/200 000 Euro, which means approximately 1 400/1 400 euro per accident. The cost for radiological investigation was 24 000/29 000 Euro (CT scans 14 000/18 000 Euro and plain films 10 000/11 000 Euro). Admission and hospital stay 76 000/32 000 Euro. The Eemergency treatment cost 75 000/78 000 euro and operation costs was 36 000/58 000 Euro.

In the Adult group a total of 23 patients (16%) had to be home from work on sick leave after the accident, from 4-135 days and in total, 712 days. Six patients were home on sick leave for one month or more (Table 4).

No patient died.

Incidence
There are approximately 4 500 horses in the community of Linköping. Each horse is ridden approximately one hour a day and taken care of for approximately two hours a day. Institutional horses are usually ridden for 2-3 hours a day. This gives an estimated total time of at least 13 500 hours a day of horse handling time, and an accident rate of approximately 0.029/100 000 riding/caretaking hours. The numbers are an estimate achieved from the county administration board of Östergötland and the equestrian’s federation of the county.

Safety equipment
There were no significant difference between users and non-users of safety equipment.

Discussion
There was a dominance of females in our study population (98% among Children, 91% among Adults) reflecting the fact that horse riding is more common among females. There was a higher rate of Adults (31%) being injured while dismounted than Children (11%). This is likely due to the fact that adults spend more time, before and after riding, taking care of the horse than children do. These findings are in correlation with previous studies presenting a rate of 15-23% [8-11].

Comparing injury mechanisms between Children and Adults; 85% of the Children had fall accidents, 7% were kicked, while 65% of the Adults had fall accidents and 16% were kicked. Minor sprains and soft tissue injuries were the most common type of injury in both groups, corresponding to the findings of Kiss et al. [10] who stated that contusions to the body were the most common type of injury in both groups, and are the most common type of injury in both groups.

Table 1 Types and numbers of injuries among children and adults in total

Location of injury	N = Children/Adult	Contusions	Fractures	Distortions/Dislocations	Minor sprains and light soft tissue injuries	Minor head injuries	Splenic injury/traumatic liver rupture	Superficial injuries	N
N	6/9	33/42	4/16	93/68	33/11	1/1	7/19	177/169	
Trunk	3/8	4/7	1/0	16/11	1/1	0/4	25/34	16/15	
Back	0/0	2/3	0/1	14/11				1/2	49/51
Lower extremity	1/1	1/9	0/4	29/23				2/4	33/41
Upper extremity	1/0	22/18	1/11	24/20				1/2	49/51
Head and neck	1/0	4/5	2/0	10/3	33/11			4/9	54/28

In addition, three adults had hemo-/pneumothorax.

Table 2 Type of injuries, treatment and time at ward in the children group

Injury	Operation	Admission
Concussion and wounds.	No operation.	ICU 2 days + Paediatric Surgical ward 1 day → transfer to primary hospital.
Dislocation of the left sternoclavicular joint.	1. Closed reduction.	Paed. Orthopaedic ward 5 days.
	2. Open reposition and osteosuture.	
Splenic injury.	No operation.	ICU 2 days + Paed. Surgical ward 8 days.
Traumatic right fronto-temporal contusion + base of skull fracture going from the left mastoid into the inner ear with hematotympanon, discontinuity and dislocation of the ossicular chain.	Neurosurgical external ventricular drainage for ICP monitoring and ENT operation of the ear.	Neurosurgical ICU 12 days (ventilator for 10 days) + Paed. Surgical ward 2 days. Rehabilitation.
common injuries. In both groups the fractures were mainly located in the upper extremity and usually followed falling injuries.

The distribution of injuries in total corresponds to previous studies [12]. The most commonly injured sites were the extremities, head and neck. In particular, head and neck injuries were more common among Children (n = 33) than Adults (n = 11), which reflects the fact that children have more falling accidents. With exception of two cases, head injuries were minor which corresponds with previous studies. Head injuries today are less severe than previously, due to improvements in helmet technology and use [13].

In a retrospective study by Ghosh et al. [14] there were 8 deaths, 40% of patients required ICU and 39% needed surgical intervention. The higher mortality and morbidity rates probably reflects that the study only investigated admitted cases, however even if we only consider our admitted patients, we still find that only 4% of Adults and 8% of Children required ICU treatment, 8% in both groups needed surgical intervention and there were no deaths. We can’t explain this difference from the data given by Gosh et al.

A two year prospective study by Berg et al. [15] in another hospital in Östergötland during 1978-80 reported a rate of 29% for admissions between 2-30 days and 33% requiring sick leave ≥30 days. This can be compared with our findings of 5% for admissions ≥3 days, and 4% for those requiring sick leave ≥30 days among Adults. The decreased need for sick leave and admission rate possibly reflects the changes in management of these patients over the years. It might even reflect an increased use of safety equipment. Cuenca et al. [16] find an admission rate of 43% which differs from the literature of 5-15% [9,17,18]. In our study we find an overall admission of 63 patients (21%).

The rate of treatment in Children and Adults is about the same (44%/39%), showing that the majority of accidents results in minor injuries without need for treatment. Serious injuries were defined as cases involving hospitalization for ≥3 days (n = 13) and sick leave for ≥1 month (n = 6). We observed 19 (7%) severe. In comparison this is a low figure.

A limitation in this study is that there is no official registry of the number of horses. The incidence rate that we have calculated reflects the fact that our study includes all accidents. When investigating racing sports for instance eventing figures are much higher [19].

Horse riding is the eighth most popular sport in Sweden, the number of accidents is less than expected and the severity less than previously stated.

Since the University Hospital in Linköping is the only hospital in the Linköping community (population of 150,000) that takes care of emergency cases, including horse accidents, we assume that the cases of horse related trauma in our study represents the typical horse riding population.

The total cost for medical treatment of horse riding related injury was approximately 400,000 Euro/year. In

| Table 3 Types of injuries, treatment and time at ward in the adult group |
|-----------------------------|-----------------------------|-----------------------------|
| Injury | Operation | Admission |
| Distal humerus fracture. | Open reduction + plate fixation + osteosynthesis. | Orthopaedic ward 4 days. |
| Subtrochanteric femoral fracture. | Open reposition + fixation nail. | Orthopaedic ward 4 days. |
| Pneumothorax + multiple rib fractures. | Chest drain placement. | Acute surgical ward 4 days. |
| Mandibular fracture, superficial oral wound, alveolar process fracture. | Open reduction and osteosynthesis of the mandible + five tooth extractions. | ENT ward 5 days. |
| Multiple facial fractures and lacerations. | Open reduction, internal fixation and suture of soft tissue injury. | ENT ward 5 days. |
| Multiple rib fractures. Pneumothorax, contusion of thorax. | Chest drain placement. | ICU 1 day + Acute surgical ward 6 days. |
| Traumatic hemo-pneumothorax, contusion of thorax, multiple rib fractures. | Chest drain placement. | Acute surgical ward 7 days. |
| Traumatic liver rupture. | No operation. | Acute surgical ward 7 days. |
| Sacral fracture. | No operation. | Orthopaedic ward 7 days. |

| N = 9. |

| Table 4 Number of patients and reasons for sick leave ≥ 30 days |
|-----------------------------|-----------------------------|
| Injury | Days of sick leave |
| Pneumothorax + multiple rib fractures. | 30 |
| Calcaneal fracture. | 30 |
| Hip distortion. | 35 |
| Fracture of the lateral malleolus + injury to the syndesmosis. | 56 |
| Distal humeral fracture. | 115 |
| Multiple facial fractures and lacerations. | 135 |

| N = 6. |
addition to this, Adults were on sick leave for a total of 712 days.

There was an estimated incidence of horse related injuries of 0.029/100 000 riding/caretaking hours. Further we found that falling from the horse was the most common mechanism of injury. Most injuries were located in the extremities but common also in the head and neck, which is in correlation with the literature.

Conclusions

Horse riding is a sport with well-known risks [4,20]. Our results are in line with the literature in many instances, however we have not seen the same incidence of serious injuries, and find these to be fairly uncommon. The injuries are mainly minor with small risk of long term morbidity. Over time, regulations and safety equipment seems to have decreased the number of accidents, especially the serious injuries and made horse riding a relatively safe sport to perform.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JA: Carried out the collection of data, contact and logistics with all participants read and approved the final manuscript. PD Planning, statistics and drafted the manuscript.

Acknowledgements

A special thanks to Agneta Rehnefors for her excellent assistance in collecting the material and thanks to Anette Tolf for her support.

Author details

1Department of Clinical and Experimental Medicine, Faculty of Health Sciences, University Hospital, Linköping University, 581 85 Linköping, Sweden. 2Emergency Department, County Council of Östergötland, 581 85 Linköping, Sweden.

Received: 18 February 2014 Accepted: 1 July 2014

References

1. Statistik Arbok: Central Bureau of Statistics, Stockholm.; 2008. Swedish.
2. Hästen i Östergötland: Inn: Fälby kommun.; 2009. Swedish.
3. Jagodzinski T, DeMuri GP: Horse-related injuries in children: A review. WMJ 2005, 104(2):50–54.
4. Gierup J, Larsson M, Lennquist S: Incidence and nature of horse-riding injuries. A one-year prospective study. Acta Chir Scand 1976, 142(1):57–61.
5. Bond GR, Christoph RA, Rodgers BM: Pediatric equestrian injuries: Assessing the impact of helmet use. Paediatrics 1995, 95(4):487–489.
6. Cripps R: Horse-related Injury in Australia, Australian Injury Prevention Bulletin 24. Adelaide: Research Centre for Injury Studies, Flinders University; 2000. Report No: AIHW.
7. Guyton K, Houchen-Wise E, Peck E, Mayberry J: Equestrian injury is costly, disabling, and frequently preventable: The imperative for improved safety awareness. Am J Surg 2013, 23(1):76–83.
8. Barone GW, Rodgers BM: Pediatric equestrian injuries: A 14-year review. J Trauma 1989, 29(2):245–247.
9. Hobbs GD, Yealy DM, Rivas J: Equestrian injuries: A five-year review. J Emerg Med 1994, 12(2):143–145.
10. Bixby-Hammett DM: Accidents in equestrian sports. Am Fam Physician 1987, 36(6):209–214.

11. Kiss K, Svaterek P, Lenárt I, Mayr J, Schmidt B, Pintér A, Hollwarth ME: Analysis of horse-related injuries in children. Pediatr Surg Int 2008, 24(10):1165–1169.
12. Lim J, Puttaswamy V, Gozi M, Christie L, Croker W, Crowe P: Pattern of equestrian injuries presenting to a Sydney teaching hospital. ANZ J Surg 2003, 73(8):567–571.
13. Moos PS, Wan A, Whistlock MR: A changing pattern of injuries to horse riders. Emerg Med J 2002, 19(5):412–414.
14. Ghosh A, Di Scala C, Drew C, Lessin M, Feins N: Horse-related injuries in paediatric patients. J Pediatr Surg 2000, 35(12):1766–1770.
15. Bötte L, Skau A: Horse-riding accidents in western Östergötland - a prospective study 1978-1980. Lakartidningen 1981, 78(24):2356–2357. Swedish.
16. Cuenca AG, Wiggins A, Chen MK, Kays DW, Islam S, Beelee EA: Equestrian injuries in children. J Pediatr Surg 2009, 44(1):148–150.
17. Thomas KE, Annest JL, Gilchrist J, Bixby-Hammett DM: Non-fatal horse related injuries treated in emergency departments in the United States, 2001-2003. Br J Sports Med 2006, 40(7):619–626.
18. Campbell-Hewson GL, Robinson SM, Egleston CV: Equestrian injuries in the paediatric age group: A two centre study. Eur J Emerg Med 1999, 6(1):37–40.
19. Ekberg J, Timpka T, Ramel H, Valter L: Injury rates and risk-factors associated with eventing: A total cohort study of injury events among adult Swedish eventing athletes. Int J Environ Res Public Health 2011, 18(4):261–267.
20. Chitravis JP, Gibbons CL, Heygroven M, Lloyd Panzy J, Simpson AH: Accidents with horses: What has changed in 20 years? Injury 1996, 27(2):103–105.