Publisher Correction: Trapping Phenomenon Attenuates the Consequences of Tipping Points for Limit Cycles

Everton S. Medeiros¹, Iberê L. Caldas¹, Murilo S. Baptista² & Ulrike Feudel³

Correction to: Scientific Reports https://doi.org/10.1038/srep42351, published online 09 February 2017

This Article contains errors in Figure 2 where the labelling of the yellow and blue lines is incorrect and should read ‘S₁’ and ‘S₂’ respectively.

In addition,

“Amplitude (A)”

should read:

“Forcing Amplitude (A)”

Furthermore, a display error resulted in the blue S₂ lines being truncated on the right-hand side of the Figure.

The correct Figure 2 appears below as Figure 1.

¹Institute of Physics, University of São Paulo, São Paulo, Brazil. ²Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom. ³Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. Correspondence and requests for materials should be addressed to E.S.M. (email: esm@if.usp.br)
Figure 1. (Upper) Bifurcation diagram of the noise-free ($\sigma = 0$) Duffing oscillator showing a bistability of limit cycles. The different colors, blue and yellow, represent each limit cycle, S_2 and S_1, respectively. The state variable $\dot{x} (nT)$ is the T-shift map of the limit cycle variable, x. The points F_1 and F_2 mark the parameters where catastrophic shift occurs. $A_{1c} = 17.2295$ and $A_{2c} = 8.2250$ are the corresponding critical parameter values. The other system parameters are settled in $d = 0.3, \omega = 0.5$. (Bottom) The asymptotic generalized winding numbers, w_∞, of each limit cycle in the parameter interval. The colors correspond to the respective limit cycles.