Enhanced Distance Utilized ToA/RSS to Estimate Position using Trilateration in Outdoor

Mahmoud F Mosleh¹, Mohammed J Zaiter², Ali H Hashim³
¹²³Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.
drmahmoodfarhan@gmail.com¹, mjzaiter@yahoo.com², ali.hussain.moi2@gmail.com³

Abstract. The subject of target localization is becoming increasingly important with the recent development in science and technology. In this paper, a proposed system included simple equipment on three transmitters. The case study chosen in this work is simulated using Wireless InSite (WI) software to model the campus with its all building. Three Transmitters (TXs) are installed in selected position while twenty Receivers (RXs) are deployed randomly as a target to estimate their position utilizing Time of Arrival (ToA) and Received Signal Strength (RSS) to estimate the distance, the distance error is then obtained and utilized to get the enhanced distance. Trilateration utilizes the enhanced distance to obtain the target location and AoA. The achieved result is addressed using specific equations to estimate the target positions. The accuracy can be assessed by estimating localization error, minimal localization error was found to be 0.2178 while maximum value was 2.8522.

1. Introduction
In the recently developed world, localization ability becomes a very important part of modern life especially with the presence of the internet and smart devices for almost everyone. This development leads to the emergence of Location-Based-Services (LBS) which considered from the most important application involving tracking applications such as (animal, vehicle, and mobile), civil engineer mapping, tracking, and navigation systems... etc. all these applications aiming to the same goal which is target coordinates determination[1].

Reaching for that goal is becoming more complicated since the environment we live in becomes more complicated with too many details, so localization techniques become more affected by the surrounding environment whether indoor or outdoor.

The localization process at outdoor scenario adapting Global Positioning System (GPS) as the main localization technique which can achieve an accuracy of around 5 meters [2]. However, in the case of campus or large office, more accuracy is needed, this is not the case in the indoor environment since signal severely declined inside buildings, in addition to the high cost of GPS receiver [3, 4].

Trilateration is one of the localization technique which is a geometric method for object position determination requiring distance estimation between target and three reference points at least [5]. The distance measured indirectly utilizing Time of Arrival (ToA) or Received Signal Strength (RSS) parameters. Many researchers investigate this subject as in [6] Proposed an improved RSS – trilateration based method for Wireless Fidelity (Wi-Fi) indoor localization where trilateration is implemented for target position determination and then improve the result using a specific reference point, average error found to be 2 meters reduced to 1 meter with the improved scheme. In [7] address the problem of target localization adapting a hybrid RSS and Angle of Arrival (AoA) measurement against of set of very developed recent localization algorithms and the simulation results proved the effectiveness of the proposed algorithm, also it involves a comparison between a hybrid system versus the
classical ones (RSS – only and AoA – only) and there was clear benefit from the measurement integration. In [8] suggested a new localization estimator based on hybrid RSS-AoA measurement in three dimensions (3D) WSNs utilizing the Least – Squares (LS) criterion and resulted in low Root Mean Square Error (RMSE) of the proposed estimator. In [9] analyzed the trilateration technique with a single uncertain reference point. The object location is estimated as an area using two known reference points. The method determines an added value which represents area reduction. This proposed method required costly calculations. In this paper, utilize RSS based distance in real measurement and ToA to estimated distance via Wireless InSite (WI) software, to estimate position localization by trilateration method and measurement AoA estimated.

2. Mathematical Calculations

2.1 RSS Based Distance Measurement

RSS is the strength of a received signal measured at the receiver’s antenna and can be calculated according to Friis equation [10]:

\[P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2} \]

(1)

Where \(P_t \) is the transmitted power, \(G_t \) and \(G_r \) are the antenna gain of the Transmitter (TX) and Receiver (RX) respectively, \(d \) is the distance between TX and RX, while \(\lambda \) is the carrier wavelength [11].

The propagated signals are subjected to various types of attenuations called Free Space Path Loss (PLo) parameter which can be calculated by [12, 13]:

\[PLo = 20 \log_{10} (d) + 20 \log_{10} (f) + 20 \log_{10} \left(\frac{4\pi}{\lambda} \right) - G_t - G_r \]

(2)

To estimate the distance \((d) \) between the TX and RX coordinator can be based on the equation [14]:

\[d = 10^{-(RSS-P_t+PLo-\vartheta)/10 \gamma} \]

(3)

Where \(P_{Lo} \) is the path loss at a reference distance do (1 meter) and it is equal to (19.04 dB) according to equation (2) depending on antenna properties, the path loss exponent \(\gamma \) depends on the environment and which is in a range of 2–6, according to [15]. In this paper, \(\gamma \) is considered as 5. Also, according to [15-17] the standard deviation \(\vartheta \) depended on the environments of case study in the range of 2–14 which assumed to be 12 in this paper. these parameters achieved the most accurate results.

2.2 ToA based Distance Measurement

ToA based distance was estimated using WI software according to the speed of electromagnetic wave propagation, the distance \(d \) is obtained by [18]:

\[d = c \times t \]

(4)

Where \(c \) is velocity of light “3×10^8 ms-1”, \(t \) is the propagation time in one way signal with maximum power received with multipath propagation; the time is taken as \(\overline{t} \) value of \(t \) can be calculated as [18]:

\[\overline{t} = \frac{\sum N_p \tau_{t_k}}{N_p} \]

(5)
Where \(N_p \) is the number of the paths and \(P_i \) is the time averaged power in watts of the ith path, \(P_R \) is total power receive, \(t_i \) is the ToA for each propagation path which can be calculated from:

\[
t_i = \frac{L_i}{c}
\]

(6)

Where \(L_i \) is the total geometrical path length [18].

2.3 Trilateration Method

The trilateration method utilizes measured distance between TX and RX which is calculated based on ToA/RSS value for RX coordinates determination. This method needs the presence of three nonlinear reference points that represented by three TXs in this paper. The distance from each TX to RX form a three intersected circles. Distance between each TX and target is equal to the radius \(r \) of the corresponding circle. The point at which all the three circles intersect with each other represents our target which is RX position as shown in figure 1. Target coordinates \((x_t, y_t)\) can be estimated based on equation (7) [1, 19].

\[
\begin{align*}
r_1^2 &= (x_t - x_1)^2 + (y_t - y_1)^2 \\
r_2^2 &= (x_t - x_2)^2 + (y_t - y_2)^2 \\
r_3^2 &= (x_t - x_3)^2 + (y_t - y_3)^2
\end{align*}
\]

(7)

\[\text{Figure 1. Trilateration Technique}\]

Where \((x_1, y_1), (x_2, y_2)\) and \((x_3, y_3)\) represent coordinates of TX1, TX2, and TX3 consecutively.

Thus, AoA \((\theta_i) \) can be determined to utilize target coordinates according to equation (8):

\[
\theta_i = tan^{-1} \frac{y_t - y_i}{x_t - x_i}
\]

(8)

Where \((x_t, y_t)\) represents reference points (TXs) coordinates [11].

2.4 Distance Error and Enhanced Distance

By comparing RSS based distance estimation and ToA based distance estimation, distance error \((E_d) \) can be determined.
Where d_{RSS} estimated distance in Rss, d_{ToA} estimated distance in ToA.

The average Distance Error (E_i) for each TX was calculated in order to enhance accuracy according to the equation:

$$E_i = |d_{RSS} - d_{ToA}|$$

(9)

Where E_i is the average Distance Error (E_i) for each TX, d_{RSS} is the estimated distance in RSS, and d_{ToA} is the estimated distance in ToA.

$$E_i = \frac{1}{n} \sum_{i=1}^{n} E_{RX}$$

(10)

Where $i = 1, 2, 3...$ is the number of RXs, n number of RXs, E_{RX} summation of RXs error. Each E_d is estimated and their average was calculated. The average E_i the value was subtracted from estimated RSS based distance in order to obtain enhanced distance.

The enhanced distance is adapted to obtain target location and AoA measurement in the real scene.

3. Proposed Model

A simulated case study has been designed using WI software, which represents the campus of the Electrical Engineering Technical College composed of multiple buildings. All of these buildings simulated based on real dimensions with multiple floors and 3.5m height for each one.

Three TXs were deployed in preplanned locations with 2.5m height and highlighted with blue color while twenty RXs scattered randomly over the work area at 1.3m height coded with red color. The location of TXs was determined to cover all the study area based on [19]. The distribution of TXs and RXs are illustrated in figure 2. All properties of both TX and RX are listed in table 1.

Also, the impact of serious effects on wave propagation causes by different building materials (Concrete, Wood, Brick, and Glass,) with a frequency of 2.4GHz band and 1MHz bandwidth [19] . Such impacts were taken into consideration for the entire investigation, where each material thickness, conductivity (σ), and relative permittivity (η) were determined based on the recommendation of the International Telecommunication Union (ITU) [20, 21]. The results of σ and η calculations at a frequency of 2.4 GHz are listed in table 2. Twenty out of fifty RXs were involved in calculations.
Figure 2. Simulation model of the case study (a) 3D view
Simulation model of case study (b) Distribution of TXs and RXs

Table 1. TX and RX antenna properties

Antenna properties	TX Antenna	RX Antenna
Antenna type	Directional	Omni-Directional
Gain (dBi)	19	2
Input Power (dBm)	30	-
Polarization	V	V
Waveform	Sinusoid	Sinusoid
(VSWR)	1	1

Where (VSWR) is the Value for the antenna’s voltage standing wave ratio.

Table 2. Material thickness, conductivity and permittivity values

Materials	Thickness (m)	σ	η'
Wood	0.030	0.012	1.99
Brick	0.30	0.038	3.75
Glass	0.003	0.012	6.27
Concrete	0.125	0.066	5.31

4. Results and Discussion

4.1 Estimated Distance-Based ToA / RSS
A simulated case study via WI tool utilizes mean ToA for estimating distance depending on equation (4). RSS measured through the Wi-Fi meter application is used for estimating real distance using equation (3). Trilateration method adapting mean ToA based distance used for Rx position determination according to equation (7). All these parameters obtained from TX1 located at (58, 38), TX2 located at (163, 163), and TX3 located at (286, 74) in coordinates system are listed in table 3, 4, and 5 respectively.

The distance error is the difference between estimated distance based ToA (virtual measurement) and distance-based RSS (real measurement), the result of distance error is listed in 5th column in table 3 and 4 and table 5, and it was considered for enhanced distance measurements obtained from all the three TXs. The average distance error for each TX is obtained and subtracted from each RSS based distance to get the enhanced distance. The ToA /RSS based distances and enhanced distance measurement obtained from all the three TXs are represented in figure 3.
Table 3. The enhanced distance with RX position and error obtained from TX1

RXs	Distance/ToA	RSS	Distance/RSS	Distance Error	Enhanced Distance
RX1	53.92088	-61	54.842	0.9214	52.6423
RX2	90.29682	-72	91.016	0.7187	88.8155
RX3	111.06238	-77	114.582	3.5194	112.3818
RX4	122.15514	-79	125.636	3.4813	123.4364
RX5	124.96301	-79	125.636	0.6734	123.4364
RX6	142.21768	-82	144.250	2.0322	142.0499
RX7	127.92662	-80	131.557	3.6308	129.3575
RX8	136.09029	-81	137.758	1.6673	135.5576
RX9	84.66734	-71	86.919	2.2518	84.7192
RX10	122.77119	-79	125.636	2.8652	123.4364
RX11	117.09386	-78	119.982	2.888	117.7818
RX12	85.96945	-71	86.919	0.9497	84.7192
RX13	70.65002	-67	72.296	1.6462	70.0962
RX14	100.1225	-74	99.797	0.2157	97.5965
RX15	83.4929	-71	86.919	3.4263	84.7192
RX16	97.66844	-74	99.797	2.1281	97.5965
RX17	100.03051	-75	104.500	4.4693	102.2998
RX18	135.06541	-81	137.758	2.6922	135.5576
RX19	45.56361	-58	47.766	2.202	45.5636
RX20	100.11492	-74	99.797	0.31	97.5965

Table 4. The enhanced distance with RX position and error obtained from TX2

RXs	Distance/ToA	RSS	Distance/RSS	Distance Error	Enhanced Distance
RX1	110.1573	-77	114.5817638	4.4244	112.5018
RX2	106.4476	-76	109.424735	2.9772	107.3447
RX3	81.74002	-70	83.0071501	1.2671	80.92715
RX4	47.67736	-59	50.01675401	2.3394	47.93675
RX5	69.53046	-67	72.29620544	2.7657	70.21621
RX6	31.65794	-50	33.04574166	1.3878	30.96574
RX7	34.7677	-52	36.23393521	1.4662	34.1594
RX8	45.18409	-58	47.76562925	2.5815	45.68563
RX9	77.99229	-69	79.27121293	1.2789	77.19121
RX10	40.84727	-56	43.56277163	2.7155	41.48277
RX11	91.714	-73	95.30496	3.591	93.22496
RX12	78.91759	-69	79.27121293	0.3536	77.19121
RX13	97.48213	-74	99.79654438	2.3144	97.71654
RX14	64.11269	-65	65.93492301	1.8222	63.85492
RX15	82.83985	-70	83.0071501	0.1673	80.92715
RX16	73.53422	-68	75.70342063	2.1692	73.62342
RX17	63.15675	-64	62.96736263	0.1894	60.88736
RX18	60.2214	-63	60.13336448	0.088	58.05336
RX19	117.5697	-78	119.981836	2.4121	117.9018
RX20	66.28248	-66	69.0423402	2.7599	66.96234
Table 5. The enhanced distance with RX position and error obtained from TX3

RXs	Distance/ToA	RSS	Distance/RSS	Distance Error	Enhanced Distance
RX1	185.3954	-88	190.1584	4.763	187.5584
RX2	140.0944	-82	144.2499	4.156	141.8499
RX3	125.197	-79	125.6364	0.439	123.2364
RX4	181.3463	-87	181.5999	0.254	179.1999
RX5	117.1647	-78	119.9818	2.817	117.5818
RX6	133.0669	-81	137.7576	4.691	135.3576
RX7	155.5861	-84	158.1669	2.581	155.7669
RX8	125.2937	-79	125.6364	0.343	123.2364
RX9	173.0658	-87	173.4265	0.361	171.0265
RX10	115.1149	-78	119.9818	4.867	117.5818
RX11	187.4647	-88	190.1584	2.694	187.7584
RX12	158.7159	-84	158.1669	0.549	155.7669
RX13	167.8795	-86	173.4265	5.547	171.0265
RX14	162.2423	-85	165.621	3.379	163.221
RX15	147.9684	-83	151.0482	3.08	148.6482
RX16	113.6788	-86	114.5818	0.903	112.1818
RX17	203.1067	-90	208.5045	5.398	206.1045
RX18	167.4593	-85	165.621	1.838	163.221
RX19	158.7159	-84	158.1669	0.549	155.7669
RX20	125.197	-79	125.6364	0.343	123.2364

Utilizing enhanced distance, the target position was determined via trilateration, localization error was estimated by comparing estimated and actual target coordinates as shown in table 6. By obtaining the target location by trilateration, AoA can be estimated according to equation (8).

Table 6. Target location from trilateration method with localization error and AoA measurements

X-Axis trilateration in RSS	Y-Axis trilateration in RSS	x- Actual	y- Actual	Localization Error X-axis	Localization Error Y-axis	AoA Related in to TX1
98.5665	70.9824	100	71.5	1.4335	0.5176	58.286
145.0206	56.9639	147	57.5	1.9794	0.5361	35.91
162.4096	81.2178	161	81	1.4906	0.2178	85.15
121.214	143.2546	119	144	2.214	0.7454	78.37
169.3665	92.2771	170	93	0.6335	0.7229	270.20
164.0026	132.435	166	131	1.9974	1.435	297.10
142.9302	135.5262	142.5	134.5	0.4302	1.0262	276.85
169.5046	116.0909	168	118	1.5046	1.9091	88.97
116.609	100.2438	115	101	1.609	0.7562	282.67
134.6275	134.2958	132	137	2.6275	2.7042	279.604
169.6494	71.5412	171	71.5	1.3506	0.0412	318.92
101.4312	112.9933	102.5	113	1.0688	0.0067	73.05
115.1478	78.0556	118	76	2.8522	2.0556	58.701
132.0737	104.1686	130	107	2.0737	2.8314	273.39
123.6355	91.9788	124.5	89.5	0.8645	2.4788	45.44
138.5306	93.373	139.5	93.5	0.9694	0.127	314.98
127.4849	113.2646	128	111	0.5151	2.2646	284.05
Table

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
Location	0	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380
Distance	0	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380

Diagram

(a) Distance/ToF
(b) Distance/RSS
(c) Enhanced Distance
4.2 AoA Measurement
After obtaining enhanced distance and application of the trilateration method to obtain target position, AoA can be estimated according to equation (8).

5. Conclusion
In this paper, a case study of selected work area is simulated using WI packages in order to estimate the locations of many targets. For such experiment, 20 RX represent such targets are deployed randomly in the case study area. The distance between the TX and target are estimated in two methods ToA and RSS, the difference between the two represents distance error which is utilized to estimate enhanced distance. the results showed that more accurate results can be obtained with less TX-RX distance and if there is no barrier between TX and the target. The accuracy can be assessed by estimating localization error, minimal localization error was found to be 0.2178 while maximum value was 2.8522.

References
[1] Marjan Moradi Zaniani, Aftanasar Md. Shahar and Ishak Abdul Azid, "Trilateration Target Estimation Improvement using New Error Correction Algorithm", IEEE, 2010.
[2] Ayad M. H. Khalel. "Position Location Techniques in Wireless Communication Systems", Electrical Engineering Emphasis on Telecommunications, thesis, 2010.
[3] Yanbin Hou, Xiaodong Yang, and Qammer H. Abbasi, "Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Device", sensors; Published: 30 October 2018.
[4] K. Ozsoy, A. Bozkurt, and I. Tekin, “2D Indoor Positioning System Using GPS Signals,” 2010 Int. Conf. Indoor Position. Indoor Navig., no. September, pp. 15–17, 2010.
[5] N. Mahiddin, N. Safie, E. Nadia, S. Safei and E. Fadzli, "Indoor Position Detection Using Wifi And Trilateration Technique", International Conference on Informatics and Applications, Malaysia, pp. 362-366, 2012.
[6] Mohd E. Rusli1, Mohammad Ali, Norziana Jamil and Marina Md Din," An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration technique for Internet of Things (IOT)", International Conference on Computer & Communication Engineering,IEEE, 2016.
[7] Mohamed A. Landolsi and Razan Shuhair," TOA/AOA/RSS Maximum Likelihood Data Fusion for Efficient Localization in Wireless Networks", International Multi-Conference on
Qinke Qi, Youming Li, Yongqing Wu, Yong Wang, Yin Yue, and Xupeng Wang, "RSS-AOA-Based Localization via Mixed Semi-Definite and Second-Order Cone Relaxation in 3-D Wireless Sensor Networks", IEEE, 2019.

Enre Teoman and Tolga Ovatman, "Trilateration In Indoor Positioning with an Uncertain Reference Point", International Conference on Network, Sensing and Control, IEEE, 2019.

Sa-e, S.; Chamchoy, M.; promwong, S, "Study on Propagation Path Loss and Performance for Fixed Broadband WiMax", IEEE conferences, 2007.

Ayad M. H. Khalel. "Position Location Techniques in Wireless Communication Systems", 2010.

M. Malajner, K. Benkic, P. Planinsic, and Z. Cucej, "The Accuracy of Propagation Models for Distance Measurement between WSN Nodes", IEEE, International Conference, pp. 1-4, 2009.

L. Cheng, C. -D. Wu, Y. -Z. Zhang, "Indoor Robot Localization Based on Wireless Sensor Networks", IEEE , vol. 57, pp. 1099 1104, 2011.

Salim Latif Mohammed, "Distance Estimation Based on RSSI and Log-Normal Shadowing Models for ZigBee Wireless Sensor Network", College of Electrical and Electronic Engineering Techniques, Middle Technical University/Baghdad, Eng. &Tech.Journal, Vol.34,Part (A), No.15, 2016.

T. Xiaoyuan, M. Guoqiang, B. D. O. Anderson, "On the Giant Component of Wireless Multihop Networks in the Presence of Shadowing", IEEE Transactions on Vehicular Technology, vol. 58, pp. 5152-5163, 2009.

Salim Latif Mohammed,"Distance Estimation Based on RSSI and Log-Normal Shadowing Models for ZigBee Wireless Sensor Network" , Eng. &Tech.Journal, Vol.34, No.15, 2016.

K. S. Pratap, H.-K. W. Eric, S. Jagruti, "Dual RSSI Trend Based Localization for Wireless Sensor Networks", IEEE Sensors Journal, vol. 13, pp.3115 3123, 2013.

REMCOM Inc, "The Wireless InSite user's manual", version 2.6.3, romcom inc., 315 s. allen st., 2012.

Oras A. Al-Ani Karrar Shakir Muttair and Mahmood Farhan Mosleh, "Outdoor Transmitter Localization using Multiscale Algorithm", ISSN: 1473-804x August, 2019.

Maan M. Abdulwahid, Oras A. Shareef Al-Ani, Mahmood F. Mosleh and Raed A. Abd-Allmeed,"Optimal access point location algorithm based real measurement for indoor communication",International Conference on Information and Communication Technology ICICT, 2019.

“Effects of building materials and structures on radio wave propagation above about 100 MHz,” Recommendation ITU-R P.2040-1, pp. 22–23, July 2015.