Supplemental information for

Isolation of antibiotic 3R,5R-dihydroxyhexanoate polymers from endophytic fungi

Nicholas J. Morehousea, Andrew J. Flewellinga, John A. Johnsona, and Christopher A. Graya,b,*

aDepartment of Biological Sciences, University of New Brunswick, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada

bDepartment of Chemistry, University of New Brunswick, 30 Dineen Dr, Fredericton, NB, E3B 5A3, Canada
Table of contents

Table S1. Positive mode ESI HRMS peaks corresponding to the increasing lengths of poly(3\textit{R},5\textit{R}-dihydroxyhexanoic acid) (1).

Figure S1. Inhibition of *Mycobacterium tuberculosis* and *Staphylococcus aureus* growth by poly(3\textit{R},5\textit{R}-dihydroxyhexanoic acid).

Figure S2. 1H NMR spectrum (400 MHz) of poly(3\textit{R},5\textit{R}-dihydroxyhexanoic acid) (1) in CD$_3$OD.

Figure S3. 13C NMR spectrum (100 MHz) of poly(3\textit{R},5\textit{R}-dihydroxyhexanoic acid) (1) in CD$_3$OD.

Figure S4. 1H NMR spectrum (400 MHz) of 4\textit{R}-hydroxy-6\textit{R}-methyltetrahydropyran-2-one (2) in CDCl$_3$.

Figure S5. 13C NMR spectrum (100 MHz) of 4\textit{R}-hydroxy-6\textit{R}-methyltetrahydropyran-2-one (2) in CDCl$_3$.
Table S1. Positive mode ESI HRMS peaks corresponding to the increasing lengths of poly($3R,5R$-dihydroxyhexanoic acid) (1).

Oligomer	Observed adduct	calcd m/z	Observed m/z	Δppm
Trimer	C_{18}H_{32}O_{10}Na^+	431.1909	431.1888	-4.9
Tetramer	C_{24}H_{42}O_{13}Na^+	561.2545	561.2521	4.3
Pentamer	C_{30}H_{52}O_{16}Na^+	691.3180	691.3153	-3.9
Hexamer	C_{36}H_{62}O_{19}Na^+	821.3816	821.3807	-1.1
Heptamer	C_{42}H_{72}O_{22}Na^+	951.4451	951.4454	0.3
Octamer	C_{48}H_{82}O_{25}Na^+	1081.5087	1081.5090	0.3
Nonamer	C_{54}H_{92}O_{28}Na^+	1211.5722	1211.5691	-2.6
Decamer	C_{60}H_{102}O_{31}Na^+	1341.6357	1341.6306	-3.8
Undecamer	C_{66}H_{112}O_{34}Na^+	1471.6993	1471.6965	-1.9
Dodecamer	C_{72}H_{122}O_{37}Na^+	1601.7628	1601.7612	-1.0
13-mer	C_{78}H_{132}O_{40}Na^+	1731.8264	1731.8251	-0.8
14-mer	C_{84}H_{142}O_{43}Na^+	1861.8899	1861.8906	0.4
15-mer	C_{90}H_{152}O_{46}Na^{2+}	1007.4713	1007.4708	-0.5
16-mer	C_{96}H_{162}O_{49}Na^{2+}	1072.5031	1072.5005	-2.4
17-mer	C_{102}H_{172}O_{52}Na^{2+}	1137.5349	1137.5343	-0.5
18-mer	C_{108}H_{182}O_{55}Na^{2+}	1202.5666	1202.5655	-0.9
19-mer	C_{114}H_{192}O_{68}Na^{2+}	1267.5984	1267.5942	-3.3
20-mer	C_{120}H_{202}O_{61}Na^{2+}	1332.6302	1332.6275	-2.0
21-mer	C_{126}H_{212}O_{64}Na^{2+}	1397.6620	1397.6582	-2.7
22-mer	C_{132}H_{222}O_{67}Na^{2+}	1462.6937	1462.6910	-1.8
23-mer	C_{138}H_{232}O_{70}Na^{2+}	1527.7255	1527.7245	-0.7
24-mer	C_{144}H_{242}O_{73}Na^{2+}	1592.7573	1592.7521	-3.3
25-mer	C_{150}H_{252}O_{76}Na^{2+}	1657.7890	1657.7924	2.1
26-mer	C_{156}H_{262}O_{79}Na^{2+}	1722.8208	1722.8258	2.9
27-mer	C_{162}H_{272}O_{82}Na^{2+}	1787.8526	1787.8442	-4.7
28-mer	C_{168}H_{282}O_{85}^{2+}	1830.9052	1830.8999	-2.9
29-mer	C_{174}H_{294}O_{88}^{2+}	1895.9369	1895.9455	4.5
Figure S1. Inhibition of *Mycobacterium tuberculosis* (circles, dotted line) and *Staphylococcus aureus* (squares, dashed line) growth by poly(3R,5R-dihydroxyhexanoic acid. Data are shown as means of triplicate values (error bars represent standard deviations) with dose-response curves calculated by four parameter logistic regression.
Figure S2. 1H NMR spectrum (400 MHz) of poly(3R,5R-dihydroxyhexanoic acid) (1) in CD$_3$OD.
Figure S3. 13C NMR spectrum (100 MHz) of poly(3R,5R-dihydroxyhexanoic acid) (1) in CD$_3$OD.
Figure S4. 1H NMR spectrum (400 MHz) of 4R-hydroxy-6R-methyltetrahydropyran-2-one (2) in CDCl$_3$.
Figure S5. 13C NMR spectrum (100 MHz) of 4R-hydroxy-6R-methyltetrahydropyran-2-one (2) in CDCl$_3$.