Constitutive MEK/MAPK Activation Leads to p27\(^{\text{Kip1}}\) Deregulation and Antiestrogen Resistance in Human Breast Cancer Cells*

Jeffrey C. H. Donovan, Andrea Milic, and Joyce M. Slingerland‡

From Molecular and Cell Biology, Sunnybrook and Women’s College Health Science Centre, Toronto, Ontario M4N 3M5, Canada

Antiestrogens, such as the drug tamoxifen, inhibit breast cancer growth by inducing cell cycle arrest. Antiestrogens require action of the cell cycle inhibitor p27\(^{\text{Kip1}}\) to mediate G\(_1\) arrest in estrogen receptor-positive breast cancer cells. We report that constitutive activation of the mitogen-activated protein kinase (MAPK) pathway alters p27 phosphorylation, reduces p27 protein levels, reduces the cdk2 inhibitory activity of the remaining p27, and contributes to antiestrogen resistance. In two antiestrogen-resistant cell lines that showed increased MAPK activation, inhibition of the MAPK kinase (MEK) by addition of U0126 changed p27 phosphorylation and restored p27 inhibitory function and sensitivity to antiestrogens. Using antisense p27 oligonucleotides, we demonstrated that this restoration of antiestrogen-mediated cell cycle arrest required p27 function. These data suggest that oncogene-mediated MAPK activation, frequently observed in human breast cancers, contributes to antiestrogen resistance through p27 deregulation.

p27\(^{\text{Kip1}}\) is a member of the KIP\(^{1}\) (kinase inhibitory protein) family of cdk inhibitors that regulate the cyclin-cdk complexes governing cell cycle transitions (1). The importance of p27 as a G\(_1\)-to-S phase regulator is highlighted by the finding that antisense-mediated inhibition of p27 expression is sufficient to induce cell cycle entry in quiescent fibroblasts (2) and in steroid-depleted breast cancer cells (3). p27 protein levels are high in G\(_0\) and early G\(_1\) during which time p27 binds tightly and inhibits cyclin E1-cdk2. p27 translation rates decrease, and its proteolysis increases during G\(_1\)-to-S phase progression, leading to p27 protein loss as cells enter S phase (4–6). p27 proteolysis is regulated by phosphorylation of p27 on threonine 187 (Thr-187) by cyclin E1-cdk2 (7, 8). While mutations or deletions in the p27 gene are uncommon (9, 10), p27 degradation is increased in many cancers, including breast cancer (11, 12).

An increasing body of data suggests that p27 is regulated by mitogenic signal transduction pathways, including Ras-dependent activation of the mitogen-activated protein kinase (MAPK) pathway (13–17). Many mitogens increase the cellular levels of GTP-bound Ras, leading to activation of the downstream target, Raf-1. The Raf-1 kinase can phosphorylate and activate the dual specificity kinases MEK1 and MEK2, which in turn activate MAPK (also known as p42\(^{\text{ERK2}}\) and p44\(^{\text{ERK1}}\)). Once activated, MAPK can phosphorylate several nuclear transcription factors including Myc, Elk, and Rsk (for review, see Ref. 18). p27 itself has several MAPK consensus sites, and phosphorylation and restored p27 inhibitory function in immortal and cancer-derived lines, it is not clear whether MAPK directly regulates p27 during cell cycle progression in normal cell types.

Studies of p27 regulation by the Ras–MAPK pathway were initially carried out in fibroblasts (15, 19, 20). In NIH3T3 fibroblasts, Ras signaling is required for the down-regulation of p27 as cells approach the G\(_1\)-to-S phase transition (13, 20). Introduction of a dominant negative ras mutant prevented the loss of p27 in response to serum and inhibited S phase entry. Others have reported that Ras-MAPK activation reduces the ability of p27 to inhibit cdk2 through sequestration of p27 into cyclin D1-cdk4 complexes, rather than by promoting p27 protein loss (14).

Constitutive activation of the MAPK cascade may contribute to malignant progression of many human cancers (21). Although the causes of MAPK activation differ among tumors, in many cancers constitutive signaling from cell surface tyrosine kinase receptors contributes to activation of the Ras-Raf-1-MEK-MAPK pathway. For example, the epidermal growth factor receptor and HER2/c-ErbB-2, both of which activate the Ras-MAPK pathway, are overexpressed in up to 20 and 30% of breast cancers, respectively. Overexpression of these receptors has been associated with antiestrogen resistance and poor prognosis in primary breast cancers (22–27). Tissue culture models suggest that elevated MAPK activity may contribute to estrogen-independent growth of breast cancer cells (28–30).

Antiestrogen drugs, such as tamoxifen, are effective in the treatment and prevention of breast cancer (31–33). However, only two-thirds of estrogen receptor (ER)-positive breast cancers respond initially to antiestrogen therapy, and even sensitive tumors invariably acquire antiestrogen resistance (34). In most cases, acquired resistance is not due to a loss or mutation of the ER (35, 36). Numerous mechanisms have been proposed to explain the phenomenon of tamoxifen-resistant ER-positive breast cancer, including altered drug metabolism (37), altered binding of co-activator and co-repressor molecules to the antiestrogen-ER complex (38), and altered signal transduction.

* This work was supported in part by grants from the United States Army Department of Defense Breast Cancer Research Program (Ideas and Career Development to J. M. S. and Pre-doctoral Award to J. C. H. D.) and by Medical Research Council (MRC) of Canada funding (to A. M.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Supported by Cancer Care Ontario and by the Burroughs Welcome Fund. To whom correspondence should be addressed: Molecular and Cell Biology, Sunnybrook and Women’s College Health Science Center, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada. Tel.: 416-480-6100 Ext. 3494; Fax: 416-480-5703; E-mail: joyce.slingerland@utoronto.ca.

1 The abbreviations used are: KIP, kinase inhibitory protein; cdk, cyclin-dependent kinase; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase; ER, estrogen receptor; BrdUrd, bromodeoxyuridine; 2D-IEF, two-dimensional isoelectric focusing; AS, antisense.

Received for publication, July 10, 2001
Published, JBC Papers in Press, August 29, 2001, DOI 10.1074/jbc.M106448200

Printed in U.S.A.

This paper is available on line at http://www.jbc.org
p27 is an essential mediator of cell cycle arrest by tamoxifen and other antiestrogens. We recently demonstrated that antiestrogen-mediated down-regulation of p27Kip1 abrogated antiestrogen-induced cell cycle arrest in the ER-positive MCF-7 breast cancer line (3). p27 protein levels are frequently reduced in primary breast cancers compared with the normal breast epithelium, and low p27 protein levels are associated with poor prognosis and hormone independence (11, 40, 41). These observations stimulated the present study to investigate the relationships between Ras-MAPK pathway activation, antiestrogen resistance, and p27 function. Our data indicate that constitutive MEK activation alters p27 phosphorylation, reduces p27 inhibitory activity, and contributes to antiestrogen resistance in breast cancer.

EXPERIMENTAL PROCEDURES

Cell Culture—MCF-7 cells (42) and LY-2 cells (43) were obtained from the laboratory of M. Lippman. The LCC2 line was a gift from C. Clarke (44). MCF-7 cells, stably transfected with full-length HER2 cDNA (MCF-7/HER2) (18), were kindly provided by C. Arteaga. All lines were grown in improved-modified essential medium (option Zn2 +) supplemented with insulin and 10% fetal calf serum.

Flow Cytometric Analysis—Cell cycle was analyzed by labeling with 10 μM bromodeoxyuridine (BrdUrd) for 2 h and then fixed, stained with anti-BrdUrd-conjugated fluorescein isothiocyanate (Becton Dickinson) and counterstained with propidium iodide as described (45). Cell cycle analysis was carried out on a Becton Dickinson FACScan and Cell Quest Software. Values given for flow cytometric analysis represent the mean of repeat assays.

Cell Cycle Effects of Antiestrogens and MEK Inhibition—For comparison of the effects of antiestrogens in MCF-7, MCF-7 transfectants, or LY-2 cell lines, cultures were treated by addition of 1 μM 4-hydroxy-tamoxifen (4-OH-TAM) (Sigma) or 10 μM ICI 182,780 (7α-9-(4,4,5,5,5-pentafluoropentyloxy)sulfonyl nonyl ester-1,3,5, (10)-trien-3,17β-diol, from Zenea Pharmaceuticals) to complete medium and samples were collected at 48 h thereafter for protein and flow cytometric analysis. The effects of MEK inhibition on the cell cycle were assayed following addition of 0.1 μM U0126 (Promega) for 2 or 24 h prior to recovery for immunoblotting or flow cytometric analysis. The effects of MEK inhibition on antiestrogen sensitivity in the antiestrogen-resistant lines, LY-2 or MCF-7/HER2–18, were assayed by treating cells with 0.1 μM U0126 for 2 h followed by an additional 48 h with either 1 μM 4-OH-TAM or 10 μM ICI 182,780 prior to recovery of cells for protein or flow cytometric analysis.

Antisense Oligonucleotide Transfections—Antisense experiments were carried out as described (3). Phosphorothioate oligonucleotide sequences were as follows: GS5422 antisense p27 (ASp27) 5'-TG-GCTCTCTGAGGCCC-3'; GS5585 mismatch p27 (MSPmp27) 5'-TG-GCTCTCTGAGGCCC-3'; X indicates the G-clamp modification of these oligonucleotides. The specificity of these oligonucleotides for p27 has been documented (2, 3). LY-2 cells were rendered quiescent by the addition of 0.1 μM U0126 (Promega) for 2 h followed by antiestrogen treatment (10 μM ICI 182,780) for 48 h. Quiescent cells were then transfected with 120 nm oligonucleotides using 2.5 μg/ml cytofectin G3815 (Gilead Scientific, Foster City, California) for 6 h, followed by replacement with complete medium supplemented by U0126 and antiestrogen. Flow cytometry and proteins were analyzed prior to transfection and at 21 h thereafter.

Immunoblotting—Cells lysates and immunoblotting were as described (45). Equal protein loading was verified by blotting for β-actin. To assay cyclin E1 complexes, cyclin E1 was immunoprecipitated from 200 μg of protein lysate. Immunoprecipitates were resolved, transferred, and blotted with cyclin E1, cdk2, and p27 antibodies. Antibody alone controls were run along side immunoprecipitates.

Antibodies—Monoclonal antibodies to p27 were obtained from Neo- mark (Transduction Laboratories). p27 rabbit polyclonal serum (pAb5588) was provided by H. Toyoshima and T. Hunter (Salk Institute). Antibodies to E1 were from Santa Cruz, to cdk2 (PSTAIRE) from S. Reed (The Scripps Research Institute), to MEK, MAPK, and phospho-MAPK from New England Biolabs, to β-actin from Sigma, and to cyclin E1 (mAbs E12 and E172) from E. Harlow (Massachusetts General). These cyclin E1 antibodies are specific for cyclin E1(46). The ER antibody H222 was provided by D. G. Greene.
MEK Deregulates p27 and Inhibits G1 Arrest by Antiestrogens

Fig. 1. Antiestrogen-resistant LY-2 show altered p27 regulation. A, asynchronously growing MCF-7 and LY-2 cell lysates were analyzed by Western blotting using the antibodies indicated. B, cyclin E1 immunoprecipitates (IP) from asynchronously proliferating and ICI 182780 (ICI)-treated cells were resolved and assayed for associated p27, p21, and cdk2 by immunoblotting or analyzed for associated histone H1 kinase activity as described under “Experimental Procedures.” The cell cycle profiles from flow cytometric analysis are shown. C, lysates from asynchronously proliferating cells were analyzed for levels of total and active phospho-MAPK.

The amount of p27 bound to cyclin E1-ck2 in asynchronously growing LY-2 was nearly 4-fold higher than that in asynchronous MCF-7. There was no compensatory decrease in p21 binding to cyclin E1 in proliferating LY-2. Levels of cyclin E1-bound p21 were similar in proliferating MCF-7 and LY-2. Cyclin E1-bound cdk2 levels were similar in the two lines and were not affected by antiestrogens. Despite the increased p27 bound to cyclin E1-ck2 in proliferating LY-2 cells, the histone H1 activity of these complexes was not reduced compared with cyclin E1-ck2 from asynchronous MCF-7 (Fig. 1B). Antiestrogen treatment of MCF-7 with either ICI 182780 (ICI) or 4-OH-TAM (data shown here for ICI) caused a 3- to 5-fold increase in p27 binding to cyclin E1-ck2, a 3-fold increase in cyclin E1-bound p21, inhibition of this kinase, and G1 cell cycle arrest. Antiestrogen treatment of LY-2 caused a minimal increase in p21 binding, no change in the amount of p27 bound to cyclin E1-ck2, no significant inhibition of cyclin E1-ck2 activity, and no change in the cell cycle profile (Fig. 1B). These data suggested a functional alteration of p27 in LY-2 cells.

Since MAPK had been shown to alter p27 function in fibroblasts (15, 19, 20), we assayed MAPK activity by Western blotting using phospho-specific antibodies that detect activated MAPK. Although total MAPK protein levels were similar in LY-2 and MCF-7 cells, the levels of phosphorylated MAPK (both p42 ERK2 and p44 ERK1) were elevated nearly 8-fold in LY-2 (Fig. 1C). We also observed elevated MAPK activity in two other MCF-7-derived antiestrogen-resistant cell lines, LCC2 and MCF-7/HER2-18 (data not shown).

MEK1-transfected MCF-7 Lines Show Antiestrogen Resistance and Altered Binding of p27 to Cyclin E1-ck2—To determine whether the increased MAPK activity observed in the antiestrogen-resistant lines was causally linked to the antiestrogen-resistant phenotype, we transfected MCF-7 cells with activated MEK1 (MEK^{RE} or an active ERK2 allele (ERK2-MEK) and assayed stable transfected cell lines for antiestrogen sensitivity. Transfectants showed MAPK activation compared with parental cells and empty vector controls (representative data shown for MEK^{RE} transfectants, labeled M1 and M2 in Fig. 2A). Of note, both p21 and p27 levels were reduced in MEK^{RE} transfectants (Fig. 2A). The level of the ER protein was not affected by the degree of MAPK activation achieved in these cells (data not shown). Asynchronously growing MAPK-activated lines and empty vector controls showed similar cell cycle profiles (Fig. 2B). Lines with constitutive MAPK activation showed partial resistance to 4-OH-TAM or ICI compared with the parental or vector alone controls (Fig. 2B).

Levels of cyclin E1-associated p21 and p27 were assayed in asynchronous MEK^{RE} transfected lines and in the empty vector controls (Fig. 2C). Although densitometric analysis showed that total p27 levels in asynchronously growing MEK^{RE} transfектants were reduced by up to 3-fold compared with controls, the amount of p27 detected in cyclin E1-ck2 complexes was not reduced (Fig. 2, C and D). Despite the similar amounts of both p27 and p21 bound to cyclin E1 in proliferating MEK^{RE} and control lines, equal amounts of cyclin E1-ck2 showed approximately 2-fold higher kinase activity in MEK^{RE} transfecteds compared with empty vector controls (Fig. 2, C and D). There was no change in cdk2 binding to cyclin E1, and the subtle increase in the proportion of the faster mobility, Cdk-activated cdk2 bound to cyclin E1 would not suffice to mediate the 2-fold increase in cyclin E1-ck2 activity in the MEK^{RE} lines (Fig. 2C). MCF-7 lines with constitutive MEK1 activation showed no increase in p27 binding to cyclin E1 following antiestrogens compared with that in parental MCF-7 or in the empty vector controls (representative data in Fig. 2D). The modest increase of p21 binding to cyclin E1-ck2 may mediate the partial cell cycle inhibition after antiestrogen treatment of the M2 clone. Earlier work has established that increased KIP binding to cyclin E1-ck2 in MCF-7 is essential for G1 arrest by antiestrogens (3, 48). Thus, MAPK activation via MEK^{RE} or ERK2-MEK transfection may contribute to antiestrogen resistance, at least in part, by impairing the antiestrogen-mediated increase in p27 binding to cyclin E1-ck2.

Altered p27 Phosphorylation in Antiestrogen-resistant Lines—The MAPK-activated transfectants and LY-2 cells show a number of similarities. Both showed more abundant p27 binding to cyclin E1-ck2 in asynchronously proliferating cells than would have been predicted from the respective total cellular abundance of p27, and antiestrogens failed to cause an accumulation of p27 in cyclin E1-ck2 complexes. We postulated that differences in p27 phosphorylation may be associated with these differences in p27 function. Under most one-dimensional SDS-polyacrylamide gel electrophoresis conditions, p27 does not show reproducible differences in gel mobility. 2D-IEF allowed resolution of different p27 phospho-isofoms that are not apparent on single dimension gel electrophoresis. 2D-IEF showed a reproducible difference between the phosphorylation profile of p27 in the antiestrogen-sensitive and -resistant lines. 2D-IEF of p27, using an amphoteric carrier with a non-linear pH range of 3–10, showed five p27 isoforms present in all three lines (labeled 1–5 in Fig. 2E). Form 1 migrates at the predicted isoelectric focusing point for p27 (pH = 6.54). Phosphatase treatment of the p27 immunoprecipitates confirmed that most of these different isoforms represent different phosphoforms of p27 (Fig. 2E). The minor amount of form 2 remaining after phosphatase treatment may reflect incomplete dephosphorylation. Alternatively, this may represent a hypophosphorylated form of p27 in which post-translational modification (e.g. myristylation) confers a more negative charge. When cells were ³²Porthophosphate-labeled prior to p27 immunoprecipita-
MEK Deregulates p27 and Inhibits G₁ Arrest by Antiestrogens

Fig. 2. MAPK activation contributes to p27 deregulation and antiestrogen resistance. A, the levels of active phospho-MAPK, p27, and p21 were analyzed in two control cell lines transfected with empty vector (C1, C2) and in two MEK overexpressing MCF-7 clones (M1, M2). B, the cell cycle profiles of asynchronously proliferating and antiestrogen-treated MEK transfectants were compared with empty vector controls. C, cyclin E1-bound p27 and cdK2 and cyclin E1-associated kinase activities were assayed as in Fig. 1B. D, cyclin E1-bound p21 and p27 were assayed before (−) and after (+) ICI treatment. E, p27 immunoprecipitates from asynchronously proliferating MCF-7, LY-2, and MEK10-transfectant and (M2), were analyzed by 2D-IEF. The 2D-IEF of phosphatase-treated p27 from MCF-7 cells is shown in the upper panel. The different p27 isoforms were quantitated by densitometry.

The relative abundance of the different isoforms of p27 differed between MCF-7 and the MAPK-activated lines, LY-2 and MCF-7/MEK10. In MCF-7, most of the p27 focused as isoform 1 with a lesser amount as isoform 3, and the ratio of these two forms (isoform 1:isoform 3) quantitated by densitometry was 3:1. The 2D-IEF patterns of p27 from LY-2 and the MEK transfectants were similar, and both differed from that seen in MCF-7. In these antiestrogen-resistant lines, form 3 showed greater relative abundance and the ratios of form 1 to form 3 were similar (−1:1 in MEK10 clone M2 and LY-2, Fig. 2E). These observations support the notion that MEK/MAPK activation modulates p27 phosphorylation in these resistant cell lines.

MEK Inhibition Restores Sensitivity to Antiestrogen-mediated Cell Cycle Arrest—Treatment of the LY-2 line with 0.1 μM of the MEK inhibitor, U0126, caused a 2.5-fold reduction of phospho-MAPK levels without affecting the total MAPK protein levels (Fig. 3A). Although this low dose of U0126 alone did not affect the cell cycle profile of the LY-2 cells, treatment with the combination of 0.1 μM U0126 and either 1 μM 4-OH-TAM or 10 nM ICI led to a G₁ arrest (data shown for ICI treatment, Fig. 3B and C). MEK inhibition by 0.1 μM U0126 also restored 4-OH-TAM or ICI-mediated G₁ arrest in the antiestrogen-resistant HER2/ErB-2 overexpressing line, MCF-7/HER2–18 (Fig. 3B). The G₁ arrest following the combination of MEK inhibition and antiestrogen treatment in LY-2 (U+ICI) was accompanied by a 5-fold increase in the binding of p27 to cyclin E1-ckd2 complexes (Fig. 3C) and inhibition of cyclin E1-ckd2 activity (data not shown). p21 binding to cyclin E1-ckd2 was also modestly increased, and the proportion of CAK-phosphorylated cdK2 (faster mobility) bound to cyclin E1 was modestly reduced by the combined ICI 182780 and U0126 treatment.

The Arrest of LY-2 by MEK Inhibition and Antiestrogens Is p27-dependent—The increase in p27 association with cyclin E1-ckd2 in LY-2 cells treated by the combination of 0.1 μM U0126 and 10 nM ICI was similar to that seen following antiestrogen treatment in the sensitive MCF-7 line (see Figs. 1B and 3C). We postulated that MAPK inhibition in LY-2 enhanced the cdk2 inhibitory function of p27 to facilitate cell cycle arrest by antiestrogens. If this were the case, then antisense-mediated inhibition of p27 expression in the U0126/ICI-treated cells should abrogate this drug-mediated arrest. U0126/ICI-arrested LY-2 cells were transfected with either antisense p27 (ASp27) oligonucleotides or mismatch control oligonucleotides (MSp27) or mock transfected with lipid only (control, C), and cells were recovered for flow cytometry and protein analysis at 21 h following completion of ASp27 transfection. The inhibition of p27 expression in ASp27-treated cells lead to cell cycle re-entry with ~23% cells in S phase at 21 h, in contrast to 8 and 9% of cells in S phase following lipid only (control, C, or mismatch (MSp27) transfection (Fig. 3D). The ASp27-mediated cell cycle re-entry was associated with loss of cyclin E1-bound p27 and cyclin E1-associated kinase activation (Fig. 3D). Control (lipid alone) and MSp27-transfected groups showed no cyclin E1-ckd2 activation. We also observed a similar result using the combination of 0.1 μM U0126 and 1 μM 4-OH-TAM (data not shown). Thus, in the LY-2 line, p27 became an essential mediator of G₁ arrest by antiestrogens following partial MEK/MAPK inhibition.

p27-immunoprecipitable Kinase Activity in Antiestrogen-treated LY-2 Cells—Proliferating LY-2 cells, with and without antiestrogen treatment, showed more abundant p27 association with active cyclin E1-ckd2 than was detected in inhibited cyclin E1-ckd2 complexes from antiestrogen-arrested MCF-7 cells (Fig. 1B). These data suggested impaired inhibitory function of cyclin E1-bound p27 in LY-2 cells. p27 immunoprecipitates were tested for associated histone H1 kinase activity in
MEK Deregulates p27 and Inhibits G₁ Arrest by Antiestrogens

FIG. 3. Inhibition of MAPK restores sensitivity to antiestrogens in LY-2. A, asynchronously growing LY-2 or LY-2 cells treated with 0.1 μM U0126 were assayed for levels of total and active MAPK by immunoblotting. B, the cell cycle profile of LY-2 and MCF-7/HER2 cells were measured in asynchronously proliferating, ICI-treated and 0.1 μM U0126 + ICI (U + ICI)-treated cells. C, LY-2 cells treated for 48 h with ICI, U0126 (U) or the combination of U0126 + ICI (U + ICI) and cell cycle profiles assayed by flow cytometry. Cyclin E1 immunoprecipitates were resolved and analyzed by immunoblotting with the indicated antibodies. D, LY-2 cells treated with the combination of U0126 + ICI were lysed before (0 h) or 21 h after transfection with lipid only (control group), ASp27 oligonucleotides (ASp27), or MSp27 oligonucleotides (MSp27). Cyclin E1 immunoprecipitates were resolved and associated proteins detected by immunoblotting. The % S phase cells and cyclin E1-associated kinase activities in each treatment group are shown.

MEK Inhibition Modulates p27 Phosphorylation—Our antisense experiments showed that p27 was essential for the antiestrogen arrest of LY-2 following partial MEK inhibition (Fig. 3D). Since MEK inhibition restored antiestrogen arrest, we postulated that MEK inhibition might alter p27 phosphorylation. As seen in asynchronously proliferating cells (Fig. 2E), the 2-DEP of p27 from antiestrogen-treated MCF-7 and LY-2 cells showed five distinct p27 isoforms (labeled 1–5 in Fig. 5A) with isoforms 1 and 3 again being the most abundant. p27 from antiestrogen-arrested MCF-7 showed a predominance of isoform 1, with the ratio of isoforms 1 to 3 being 2:1. In antiestrogen-treated LY-2 cells, form 3 was the predominant form, with the isoform 1:isoform 3 ratio at 1:2. Treatment with 0.1 μM U0126 together with either 4-OH-TAM or ICI changed the p27 phosphorylation profile in LY-2 cells to one that more closely resembled that in antiestrogen-arrested MCF-7 cells, with the p27 isoform 1 more abundant than isoform 3 at a ratio of 2:1 (data shown for ICI treatment in Fig. 5A). In all cell types, ICI treatment increased the relative abundance of isoforms 4 and 5 compared with that of untreated cells.

We tested whether the changes in total cellular p27 phosphorylation were reflected by changes in the phosphorylation of cyclin E1-bound p27 (Fig. 5B). Cyclin E1-bound p27 in the ICI-treated LY-2 line showed a predominance of isoform 3 (the ratio of isoform 1:isoform 3 was 1:6 by densitometry), whereas LY-2 cells arrested by the combination of MEK inhibition and antiestrogen showed a cyclin E1-associated p27 phosphorylation pattern more closely resembling that in antiestrogen-arrested MCF-7 (isoform 1:isoform 3 ratio nearly 1:1 in both). These data suggest that the combination of MEK inhibition and antiestrogen treatment may restore the cyclin E1-cdk2 inhibitory function of p27 in LY-2, at least in part, by altering p27 phosphorylation.
DISCUSSION

The key roles of p21 and p27 in antiestrogen arrest have been demonstrated in earlier studies (3, 48). Antiestrogens increase cyclin E1-cdk2-KIP binding, and immunodepletion of p21 and p27 from steroid-depleted or tamoxifen-arrested cells removes essentially all cellular cyclin E1-cdk2 (49–51), suggesting that these cyclin complexes are fully saturated by p21 or p27 in arrested cells. Recent work with antisense (AS) p27 demonstrated that inhibition of expression of either KIP from antiestrogen-arrested cells leads to cell cycle re-entry (3, 48). In addition to increased KIP-cdk binding, other cell cycle effectors contribute to G1 arrest by antiestrogens. These include reductions in c-Myc and cyclin D1 and Cdc25A, increased p15, and potentially, the accumulation of cdk2 in a non-CAK-activated form (3, 50–53). However, while induction of cell cycle arrest by antiestrogens has multiple effectors, the antisense studies demonstrate that KIP function is required for maintenance of arrest. Moreover, the present work indicates that deregulation of p27 inhibits antiestrogen responsiveness. Our data suggest that constitutive MEK/MAPK activation contributes to the development of antiestrogen resistance in ER-positive breast cancer cells, at least in part, by compromising the inhibitory function of p27. We show here that a non-cytostatic and non-cytotoxic dose of the MEK inhibitor, U0126, restored sensitivity to G1 arrest by antiestrogens in the widely used LY-2 model of antiestrogen resistance. Moreover, transfection of HER2 or MEKEX into MCF-7 impaired antiestrogen responses. In antiestrogen-treated LY-2 and MCF-7/MEK transfectants, p27 failed to accumulate in cyclin E1-cdk2 complexes and did not inhibit this kinase. MEK inhibition by
U0126 in these antiestrogen-resistant lines altered p27 phosphorylation and restored the inhibitory binding of p27 to cdk2 following antiestrogen treatment. Thus, MEK/MAPK-dependent p27 phosphorylation events are associated with a reduced ability to inhibit cdk2.

Through the course of selection of the antiestrogen-resistant LY-2, p27 regulation has been altered such that its binding to cyclin E1-cdk2 is increased without a commensurate reduction in cyclin E1-cdk2 activity. In antiestrogen-mediated arrest of MCF-7, a 3-fold increase in p27 binding to cyclin E1-cdk2 is sufficient for cdk2 inactivation and cell cycle arrest (3). The approximately 4-fold increase in cyclin E1-bound p27 in asynchronously growing LY-2 cells relative to that in proliferating MCF-7 cells, increasing the relative amounts of p27 isoforms 3, 5, and 6. We also showed an association between altered p27 inhibitory function and altered phosphorylation in LY-2 and MCF-7/MEK cells, suggesting that deregulated p27 phosphorylation may be causally linked to antiestrogen resistance. Although MAPK can phosphorylate p27 in vitro (15–17), it is not known at present whether direct phosphorylation of p27 by MAPK occurs in vivo. The effects of MAPK on the p27 phosphorylation profile may be indirect. p27 contains several potential MAPK consensus sites, including serine 10 (Ser-10), Ser-178, and Thr-187. Ser-10 has recently been shown to be a major p27 phosphorylation site in Go-arrested cells, although it may not be a physiological MAPK target site (16). Since a p27 mutation converting Ser-10 to alanine or aspartate did not affect the ability of p27 to inhibit cyclin E1-cdk2 in vitro (16), the MAPK-dependent pathway that modulates both p27 phosphorylation and its ability to inhibit cdk2 cannot uniquely affect Ser-10. Moreover, the phosphorylation of p27 at Thr-187 that regulates its recognition by the F box protein Skp-2, does not affect the cdk2 inhibitory function of p27 (8). Thus, phosphorylation at sites other than Ser-10 and Thr-187 may be required for the MEK/MAPK-dependent phosphorylation of p27 that modulates its cdk2 inhibitory function. The identity of the different 2D-IEF phospho-isoforms of p27 observed by 2D-IEF warrants further investigation.

The causes of MAPK activation in human cancers differ among different tumors. MAPK activation is increased in up to 50% of breast cancers compared with normal breast epithelium and is associated with poor patient prognosis (58–60). HER-2/ErbB-2 overexpression, seen in up to 30% of breast cancers is often associated with antiestrogen resistance (27). HER-2/ErbB-2 signaling has been shown to decrease p27 stability via MAPK activation (56). In the HER-2 overexpressing MCF-7/Herb-2–18, MEK inhibition by U0126 restored sensitivity to antiestrogens. Taken together, the present study links HER-2/ErbB-2 activation and antiestrogen resistance through MAPK-dependent alterations in p27 function.

In addition to its mechanistic relevance to breast cancer, the observed link between p27 dysfunction and MAPK activation has implications for many types of cancers. The reduced levels of p27 observed in many cancers (colon, lung, prostate, gastric) may reflect oncogenic activation of the Ras/MEK/MAPK pathway (12). For example, the increased p27 proteolytic activity observed in colon cancer lysates may result from oncogenic activation of K-Ras in these cancers (61). There is a strong molecular rationale supporting the continued development of MEK/MAPK inhibitory drugs. A number of MEK inhibitors have shown good oral bioavailability and efficacy in preclinical trials (62). Tumor-specific MEK inhibitors may have the potential to restore p27 protein levels and inhibitory function and thereby restrain tumor growth.
MEK Deregulates p27 and Inhibits G1 Arrest by Antiestrogens

Acknowledgments—we thank Drs. T. Hunter and H. Toyoshima for the pAb5588 p27 antibody, Dr. G. Greene for the ER (H222) antibody, Dr. D. Templeton and Dr. M. Cobb for the EE-CMV MEK2A and ERK2MEK1 plasmids, respectively, and Dr. M. Flanagan and Gilead Sciences for providing the p27 oligonucleotides. We also thank Drs. W. Hung, V. Subramanium and J.-H. Lee for expertise in 2D-IEF and Dr. J. Liang for useful discussions regarding MEK inhibitors.

REFERENCES

1. Sherr, C. J., and Roberts, J. M. (1999) Genes Dev. 13, 1501–1512
2. Coats, S., Flanagan, M., Neure, J., and Roberts, J. M. (1996) Science 272, 877–880
3. Cariou, S., Donovan, J., Flanagan, W., Milic, A., Bhattacharya, N., and Slingerland, J. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 9042–9046
4. Hengst, L., and Reed, S. I. (1996) Science 271, 1861–1864
5. Pagano, M., Tan, S. W., Theodoras, A. M., Beer-Romero, P., Del Sal, G., Chau, V., Yew, P. R., Draetta, G. F., and Rolfe, M. (1995) Science 269, 682–685
6. Millard, S. S., Yan, J. S., Nguyen, H., Pagano, M., Kiyokawa, H., and Koff, A. (1997) J. Biol. Chem. 272, 7083–7086
7. Slingerland, J., Cordon, M., Roberts, J. M., and Clurman, B. E. (1997) Genes Dev. 11, 1444–1478
8. Vlach, J., Hennecke, S., and Amati, B. (1997) EMBO J. 16, 5334–5344
9. Funke-Castaneda, M. V., Lee, M.-H., Laetres, I., Polak, Y., Lacombe, L., Montgomery, K., Mathew, S., Kraatz, K., Sheinfeld, J., Massague, J., and Cordon-Cardo, C. (1995) Cancer Res. 55, 1211–1214
10. Pietenpol, J. A., Bohlander, S. K., Yato, Y., Papadopoulos, N., Liu, B., Fried, C., Troak, B. J., Roberts, J. M., Kinzler, K. W., Rowe, J. D., and Vogelstein, B. (1995) Cancer Res. 55, 1206–1210
11. Tan, P., Cady, B., Wanner, M., Worland, P., Cukor, B., Magi-Galluzzi, C., Lavin, P., Draetta, G., Pagano, M., and Lodish, H. M. (1997) Cancer Res. 57, 1259–1263
12. Slingerland, J., and Pagano, M. (2000) J. Cell. Physiol. 183, 10–17
13. Aktas, H., Cai, H., and Cooper, G. M. (1997) Mol. Cell. Biol. 17, 3850–3857
14. Cheng, M., Seal, V., Sherr, C. J., and Roussel, M. F. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 1091–1096
15. Kawada, M., Yamagoe, S., Murakami, Y., Suzuki, K., Mizuno, S., and Uchida, Y. (1997) Oncogene 15, 629–637
16. Naumann, U., Weit, S., Rieger, L., Meyermann, R., and Weller, M. (1999) Nature 394, 251–254
17. Leopold, W. R., and Saltiel, A. R. (1999) Mol. Biol. Cell 10, 2323–2336
18. Cobb, M. H. (1999) Mol. Cell. Biol. 19, 4970–4981
19. Slingerland, J., and Pagano, M. (1999) J. Biol. Chem. 274, 38223–38229
20. Foster, J., and Wimalasena, J. (1999) Mol. Endocrinol. 13, 488–496
21. Lauper, N., Beck, A. R., Cariou, S., Richman, L., Hofmann, K., Reith, W., Slingerland, M. M., and Amati, B. (1998) Oncogene 17, 2637–2643
22. Slingerland, J. M., Hengst, L., Pan, C.-H., Alexander, D., Stampley, M. R., and Reed, S. I. (1994) Mol. Cell. Biol. 14, 3683–3694
23. Carroll, J. S., Prall, O. W., Musgrove, E. A., and Sutherland, R. L. (2000) J. Biol. Chem. 275, 38221–38229
24. Foster, J., and Wimalasena, J. (1996) Mol. Endocrinol. 10, 488–496
25. Prall, O. W., Sarccevic, B., Musgrove, E. A., Watts, C. K., and Sutherland, R. L. (1997) J. Biol. Chem. 272, 10882–10894
26. Plumas-Silva, M. D., and Weinberg, R. A. (1997) Mol. Cell. Biol. 17, 4095–4099
27. Prall, O. W. J., Rogan, E. M., Musgrove, E. A., Watts, C. K., and Sutherland, R. L. (1998) Mol. Cell. Biol. 18, 4499–4508
28. Foster, J. S., Henley, D. C., Bukovsky, A., Seth, P., and Wimalasena, J. (2001) Mol. Cell. Biol. 21, 794–819
29. LaBaer, J., Garrett, M., Steenman, S., Slingerland, J., Sandhu, C., Chou, H., Fattaey, A., and Harlow, H. (1997) Genes Dev. 11, 847–862
30. Florence, V. A., Bhattacharya, N., Bus, M. R., Ben-David, J., Kerbel, R. S., and Slingerland, J. M. (1996) Oncogene 13, 2447–2457
31. Yang, H.-Y., Zhou, B. P., Hung, M.-C., and Lee, M.-H. (2000) J. Biol. Chem. 275, 24735–24739
32. Badve, G., Petrorelli, T., Behrend, E., Leung-Hagesteijn, C., Filmus, J., Slingerland, J., and Dedhar, S. (1997) J. Biol. Chem. 272, 13937–13944
33. Hori, M., Inagawa, S., Shimazaki, J., and Itabashi, M. (2000) Pathol. Res. Pract. 196, 817–826
34. Mueller, H., Flury, N., Eppenberger-Castori, S., Kueng, W., David, F., and Eppenberger, U. (2000) Int. J. Cancer 89, 384–388
35. Salih, B., Marotta, A., Matthews, C., Ahluwalia, M., Flint, J., Owen, D., and Leopold, W. R. (1999) Nature Med. 5, 810–816
Constitutive MEK/MAPK Activation Leads to p27Kip1 Deregression and Antiestrogen Resistance in Human Breast Cancer Cells
Jeffrey C. H. Donovan, Andrea Milic and Joyce M. Slingerland

J. Biol. Chem. 2001, 276:40888-40895.
doi: 10.1074/jbc.M106448200 originally published online August 29, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M106448200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 62 references, 30 of which can be accessed free at http://www.jbc.org/content/276/44/40888.full.html#ref-list-1