Theoretical Derivation of Σ-D Relation of Galactic SNRs

Jian-Wen Xu1, Ya-Peng Hu2 and Hui-Rong Zhang3

Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China

xjw@itp.ac.cn, yapenghu@itp.ac.cn, and zhr@itp.ac.cn

ABSTRACT

We derive the Σ-D relation of Galactic supernova remnants of shell-type separately at adiabatic-phase and at radiative-phase through two sets of different formulas, considering the different physical processes of shell-type remnants at both stages. Also statistics on Galactic shell-type remnants about 57 was made. Then we do some comparison with other results obtained before. It shows that all the best fit lines in the Σ-D relation plots newly are to some extent flatter than those derived by some authors at early time. Our theoretical and statistical outcomes are in somewhat good consistency.

Subject headings: methods: — statistical — analysis — (ISM:) supernova remnants

1. Introduction

The relation between the radio surface brightness (Σ) and the diameter (D) of SNRs has being widely discussed before (e.g., Poveda & Woltjer 1968; Clark & Caswell 1976; Green 1984; Mills et al. 1984; Huang & Thaddeus 1985; Arbutina et al. 2004, etc.). Many authors use them to determine the distance of a SNR (Poveda & Woltjer 1968; Clark & Caswell 1976; Lozinskaya 1981; Huang & Thaddeus 1985; Duric & Seaquist 1986; Guseinov et al. 2003). There are some different outcomes about the best fit line of the Σ-D relation. Despite that one straight line was derived by some workers in their statistics (e.g., Poveda & Woltjer 1968; Clark & Caswell 1976), there are some broken lines in their previous derivation. At 408 MHz Clark & Caswell (1976) have a broken line with slopes of $\beta = -2.7/ -10$ ($\Sigma \propto D^\beta$) at $D \leq 32$ pc/$D \geq 32$ pc. While at 1 GHz Allakhverdiyev et al. (1985) gave line slope of -3.0 and -6.0 with broken point at $D = 40$ pc. Theoretical analysis once made by Duric & Seaquist (1986) got following results

\[
\Sigma(D) = 4 \times 10^{-15} D^{-3.5}, D \ll 1pc \quad (1)
\]
\[
\Sigma(D) = 4 \times 10^{-14} D^{-5}, D \gg 1pc \quad (2)
\]

With the line broken at 1 pc when the remnants are far too small to be detected.

Galactic SNRs are classified into three types: Shell-type, Plerion-type and Composite-type. Merely shell-type remnants are analyzed in our work. Furthermore, shell-type SNRs usually have four evolution stages: the free expansion phase, the Sedov or adiabatic phase, the radiative or snowplough phase and the dissipation phase. Nearly all of the detected SNRs are in the adiabatic-phase, or in the 3rd. Almost none is observed in the 1st and 4th phases. Here we do a simple statistics on the Σ-D relations of some Galactic SNRs in section2 and do some theoretical reductions of Σ-D relations independently at adiabatic-phase and radiative-phase in section3 and some comments made in section4. In the last section summarizes our conclusion.

1Postdoctor, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China.

2PhD candidate, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China.

3Postdoctor, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China.
2. Statistics of Σ-D relation

We newly collected 57 shell-type remnants (table 5) in Galaxy with known distance (d) which are derived not by Σ-D relation but by some other different methods to make statistics, and get relation as follow,

$$\Sigma(D) = 5.50 \times 10^{-18} D_{pc}^{-2.15 \pm 0.38} \left(W m^{-2} Hz^{-1} sr^{-1} \right)$$

(3)

The SNR G4.5+6.8 (Kepler) in table 5 was excluded since its extremely small linear diameter (3 pc only) so as to avoid large deviation of fitting. Another source SNR G166.2+2.5 was also not used for being a false remnant. In Fig. 1 the Σ-D relation was shown. It seems that the best fit lines in plot are somewhat flatter than those derived by some authors at early time (e.g., Clark & Caswell 1976, 1979; Milne 1979; Allakhverdiyev et al. 1985; Duric & Seaquist 1986). In the following we do some theoretical works about the Σ-D relation of the remnants.

3. Theoretical reduction

The physical processes of supernova remnants at Sedov-phase are rather different with that at radiative-phase. Therefore we do theoretical derivation of the Σ-D relation of remnants separately for both stages, since SNR at both free-expansion phase and last phase are practically undetectable.

3.1. Σ-D relation at Sedov-phase

Assuming the remnants linear diameter (D) in pc, SNe initial explosion energy (E_{51}) in the unit of 10^{51} ergs, and ISM electron density (n_0) in cm^{-3}, from the standard Sedov solution we have the following well-known equation for remnants at second stage (Itoh 1978, Bignami & Caraveo 1988, Zaninetti 2000, Völk et al. 2002, Ptuskin & Zirakashvili 2003)

$$D(t) = 4.3 \times 10^{-11} \left(\frac{E_{51}}{n_0} \right)^{1/5} t^{2/5}$$

(4)

After making differentiation $\frac{dD(t)}{dt}$ (Duric & Seaquist 1986), one has

$$v(t) = \frac{2}{5} A_0 t^{-3/5}$$

(5)

where

$$A_0 = 4.3 \times 10^{-11} \left(\frac{E_{51}}{n_0} \right)^{1/5}$$

(6)

At adiabatic phase the remnants thicknesses are proportional to D (Milne 1970). Then we have the shell volume as

$$V(D) = C_0 D^3$$

(7)

Here

$$C_0 = \frac{\pi}{6} \left(1 - \left(\frac{D_i}{D_o} \right)^3 \right) \simeq 0.37$$

(8)

when we approximately assume $D_i/D_o \sim 2/3$. $D_i(D_o)$ is the inner(outer) diameter of the remnant shell. Combining (3) and (6), one gets

$$V(t) = C_0 A_0^3 t^{6/5}$$

(9)

As the remnants shock waves travel at the Sedov-phase, the ambient magnetic field B will decrease with D according to (Padmanabhan 2000)

$$B(D) = B_0 \left(\frac{D_o}{D} \right)^2$$

(10)

Substituting (3) to it, we have

$$B(t) = B_0 D_o^2 A_0^2 t^{-4/5}$$

(11)
While Duric (2000) shows that at the adiabatic phase of remnants evolution, their radio emissivity $\epsilon(B, v)$ is expressed as

$$\epsilon(B, v) = 3 \times 10^{-34} n_0 \left(\frac{B}{10^{-2}\text{G}} \right)^{\alpha+1} \times \left(\frac{\nu}{7000\text{KHz}} \right)^{-2\alpha} \left(\frac{\nu}{G\text{Hz}} \right)^{-\alpha} \left(WH\text{z}^{-1}\text{m}^{-3} \right)$$

Where, the magnetic field B is expressed in units of 10^{-4} G, the velocity of shock wave in units of 7000 km s$^{-1}$, and radiation frequency in GHz. by (4), (10) and taking the average value of the remnants spectral index $\alpha = 0.5$, we can get

$$\epsilon(t) = 0.1714 \times 10^{-40} n_0 D_0 \left(\frac{B_0}{10^{-4}\text{G}} \right)^{1/2} t^{-1}$$

when the shell volume is taken to be the radiating electrons encompassing volume, the remnants surface brightness can be given by

$$\Sigma(t) = \frac{\epsilon(t) V(t)}{\pi^2 D^2(t)} = 0.1714 \times 10^{-40} n_0 D_0 \times \left(\frac{B_0}{10^{-4}\text{G}} \right) C_0 A_0 t^{-3/5}$$

combining (3) and above formula, one gets the final form

$$\Sigma(D) = m_\alpha D^{-1.5} \left(Wm^{-2}Hz^{-1}sr^{-1} \right)$$

where

$$m_\alpha = 0.1714 \times 10^{-40} n_0 D_0 \left(\frac{B_0}{10^{-4}\text{G}} \right) \frac{C_0 A_0^{-0.5}}{7.56 \times 10^{-19}}$$

Here the typical value of some SNRs physical parameters is taken: ISM density $n_0 = 0.1$ cm$^{-3}$, SNe initial explosion energy E_{51}, the remnants diameter and ISM magnetic field at the beginning of Sedov phase $D_0 = 2$ pc and $B_0 = 10^{-4}$ G, etc. The derived line in Σ-D relation plot of the SNRs in second phase is somewhat flat

$$\Sigma(D) = 7.56 \times 10^{-19} D_0^{-1.5} \left(Wm^{-2}Hz^{-1}sr^{-1} \right)$$

3.2. Σ-D relation at radiative-phase

Similarly assuming the remnants linear diameter (D) in pc, SNe initial explosion energy (E_{51}) in the unit of 10^{51} ergs, and ISM electron density (n_0) in cm$^{-3}$, we have the following equations for remnants at third stage (Itoh 1978)

$$D(t) = 1.42 \left(\frac{E_{51}}{n_0} \right)^{5/21} t^{2/7}$$

Which is rather deferent from formula (3). After making differentiation $\frac{dD(t)}{dt}$, we have

$$v(t) = \frac{2}{7} A_0 t^{-5/7}$$

where

$$A_0 = 1.42 \left(\frac{E_{51}}{n_0} \right)^{5/21}$$

the same as that in Sedov phase

$$V(D) = C_0 D^3$$

when we approximately take $D_i/D_o \sim 3/4$, then

$$C_0 = \frac{\pi}{6} \left(1 - \left(\frac{D_i}{D_o} \right)^3 \right) \simeq 0.3$$

Here, $D_i(D_o)$ is defined as before. Changing the variant D to t, one have the form

$$V(t) = C_0 A_0 t^{6/7}$$

Because that as the remnants shock waves travel at Sedov-phase the ambient magnetic field B of a remnant decreases with the diameter D according to (10) and at dissipation-phase according to $B(D) = B_0(D_0/D)^3$, one can moderately suppose that at radiative-phase the magnetic field B will decrease with D as follow

$$B(D) = \frac{D_0}{D} B_0$$

which obviously is not the same as the formula (9). After substituting (7) to it, one has

$$B(t) = \left(\frac{B_0 D_0^2}{A_0} \right) t^{-2/7}$$

At the radiative phase of remnants evolution we could assume $B_0 \sim 10^{-6}$ Gauss, and $v_0 \sim 220$ Km s$^{-1}$ for the formula in Duric (2000)

$$\epsilon(t) = 3 \times 10^{-34} n_0 D_0 \left(\frac{B}{10^{-2}\text{G}} \right)^{\alpha+1} D_0^{\alpha+1} \times A_0^{-\alpha-1} t^{-\frac{\alpha}{2}+1+1} \times \left(\frac{\nu}{GHz} \right)^{-\alpha}$$

(26)
Where, the magnetic field \(B \) is expressed in units of \(10^{-6} \) G, the velocity of shock wave in units of 220 km \(s^{-1} \), and radiation frequency in GHz. Therefore the remnants surface brightness is expressed as

\[
\Sigma(t) = \frac{\epsilon(t)V(t)}{\pi^2 D^2(t)}
\]

\[
= 3 \times 10^{-34} \left(\frac{7}{2} \right)^{2\alpha} \frac{n_0}{\pi^2} \left(\frac{B_0}{10^{-6} G} \right) D_0^{\alpha+1}
\times A_0^{-3\alpha} C_0 \left(\frac{\nu_0}{220 K m s^{-1}} \right)^{\alpha}
\times \left(\frac{n_0}{G H_2} \right)^{\alpha} t^{-8\alpha/7}
\]

(27)

changing the variant \(t \) to \(D \), we have the form

\[
\Sigma(D) = m_r D^{-2.0} \left(W m^{-2} H z^{-1} s r^{-1} \right)
\]

(28)

where

\[
m_r = 3 \times 10^{-34} \left(\frac{7}{2} \right)^{2\alpha} \frac{n_0}{\pi^2} \left(\frac{B_0}{10^{-6} G} \right) D_0^{\alpha+1}
\times C_0 A_0^{-6\alpha} = 4.63 \times 10^{-18}
\]

(29)

Here we have used the typical values for the physical initial parameters as that in section 3.2.

Thus a little steeper line of \(\Sigma-D \) relation of SNRs at 3rd phase is obtained.

\[
\Sigma(D) = 4.63 \times 10^{-18} D^{-2.0}_{pc} \left(W m^{-2} H z^{-1} s r^{-1} \right)
\]

(30)

3.3. Transition from Sedov-phase to radiative-phase

Assuming \(D_t \), the diameter of remnant when SNR physical state transfers from Sedov phase to radiative phase, according to formulae (14) and (27), we know

\[
m_\alpha D_t^{-1.5} = m_r D_t^{-2.0}
\]

(31)

Thus, one gets \(D_t \approx 38 \) pc which is also shown in Fig. 2.

Through statistics, Clark & Caswell (1976) got the diameter at broken point about 32 pc for 29 galactic SNRs at 408 MHz, and also 32 pc at 5000 MHz. Allakhverdiyev et al. (1983) got \(D_t \approx 30 \) pc at 408 MHz for 15 shell-type remnants, and \(\sim 32 \) pc at 1 GHz. For a larger number of samples of 146 all-sort galactic objects including plerion, shell and composite-type remnants, Allakhverdiyev et al. (1985) obtained \(D_t \sim 40 \) pc at 1 GHz. Our result by theoretical analysis method is in somewhat good consistency with theirs. But some authors plotted only a straight line by their statistics early (Duric & Seaquist 1986; Guseinov et al. 2003).

Obviously the \(D_t \) value is the average one of the diameter of all galactic SNRs. When the density \(n_0 \) of interstellar media or magnetic field strength \((B) \) is somewhat larger than usual, or so, then the transformation diameter \(D_t \) may be smaller, and vice-versa.

Fig. 2.— Comparison plots of some results derived from Case & Bhattacharya (1998), Xu et al. (2005) and on theoretical and statistical ones in this paper. The best fit values are \(\beta = -2.64, -1.6, -1.5/ -2.0 \) (for Sedov/radiative phase) and \(-2.15 (\Sigma \propto D^3) \), respectively. All of the fit lines are somewhat flatter than those derived by some authors at early time.

4. Discussion

4.1. Results comparison

Comparison of some results derived from Case & Bhattacharya (1998), Xu et al. (2005) and on theoretical and statistical ones in this paper was made in Fig. 2. The best fit values are \(\beta = -2.64, -1.6, -1.5/ -2.0 \) (for Sedov/radiative phase) and \(-2.15 (\Sigma \propto D^3) \), respectively. All of the fit lines are somewhat flatter than those derived by some authors at early time.

Case & Bhattacharya (1998) got one straight
slightly steeper line
\[\Sigma(D) = 5.43 \times 10^{-17} D^{-2.64} \]
\[(W m^{-2} H z^{-1} s r^{-1}) \] (32)

And Xu et al. (2005) derived a straight flatter line
\[\Sigma(D) = 1.21 \times 10^{-18} D^{-1.60} \]
\[(W m^{-2} H z^{-1} s r^{-1}) \] (33)

The best fit line also shows no broken in our new statistics of this paper. Broken in our theoretical analysis is to some extent very small.

4.2. SNR total fluxes increase with age at Sedov-phase?

The radio surface brightness of a remnant defined as
\[\Sigma = \frac{S_{1 \text{GHz}}}{\theta^2} \] (34)

Here, \(S_{1 \text{GHz}} \) is the detected flux of a remnant at 1 GHz, \(\theta \) is the observational angle.

And we know
\[\theta^2 \propto D^2 \] (35)

Therefore one has
\[\Sigma \propto S_{1 \text{GHz}} D^{-2} \] (36)

Let us suppose that
\[S_{1 \text{GHz}} = S_{0,1 \text{GHz}} D^{\beta'} \] (37)

Where, \(S_{0,1 \text{GHz}} \) is the SNR original flux at 1 GHz, \(\beta' \) is an index of the formula above.

Then
\[\Sigma \propto D^{-(2-\beta')} = D^{-\beta} \] (38)

Namely \(\beta = 2 - \beta' \)

Now we can see that

1. If \(\beta' = 0 \), then \(\Sigma \propto D^{-2}, \beta = 2, S_{1 \text{GHz}} = S_{0,1 \text{GHz}} \) and \(\Sigma \propto D^{-2} \). It means that the radio flux of a evolved SNR remains a constance.

2. If \(\beta' < 0 \), then \(\beta > 2, S_{1 \text{GHz}} < S_{0,1 \text{GHz}} \). In the case, the flux of a evolved remnant decreases with age.

3. But if \(\beta' > 0 \), then \(\beta < 2, S_{1 \text{GHz}} > S_{0,1 \text{GHz}} \). The evolved remnant flux increases against time.

Our theoretical outcome and a statistical result (Xu et al. 2005) (\(\beta' = 0.50 \) and \(0.40 \)) are belong to the last case, i.e. the SNR radio flux increases with age. But our statistics in the paper shows \(\beta' < 0 \). In summary, we are not very certain whether the SNR total fluxes increase or decrease with age at Sedov-phase. In other words, the \(\Sigma-D \) relation is not significantly sensitive to be used to determine the variety of SNR radio fluxes.

5. Conclusion

From the basic publicly accepted formulae and some simple reasonable physical suggestions, we derived mathematically the relation between surface brightness and linear diameter of Galactic shell-type SNRs. Firstly, we did a simple statistics about the \(\Sigma-D \) relation of 57 Galactic remnants. The diameter at phase-transition from adiabatic-stage to radiative-stage is also arithmetically obtained and ultimately in agreement with the statistical results gained before. The line slope values in theoretical relation plot are \(\beta = -1.5/-2.0 \) for Sedov/radiative phase (\(\Sigma \propto D^{\beta} \)) respectively. Different statistical results derived now and before were compared with our theoretical one. It shows that all the best fit lines in plots are somewhat flatter than those derived by some authors earlier. One can guess that even the undertook samples of galactic SNRs increase in the future, our statistical outcome of the \(\Sigma-D \) relation will alter a rather little. And also our theoretical result on the relation can by and large remain valuable. Moreover, newly better methods to determine the distance of a common supernova remnant are greatly needed.

JWX likes to thank J. S. Deng and Y. Z. Ma for their assistance and help during the paper work.
Table 1

Some physical parameters of 57 shell-type Galactic SNRs.

Source	Agea	Dist.a	Dia.b size	S_{1GHz}^c	Ref.	
G4.5+6.8	380	2900	3	3	19	H90, G04a
G7.7−3.7	−	4500	29	22	11	M86
G8.7−0.1	15800	3900	51	45	80	G96
G18.8+0.3	16000	14000	57	17x11	33	D99, G04a
G27.4−0.0	2700	6800	8	4	6	C82, G04a
G31.9−0.0	4500	7200	13	7x5	24	CS01
G32.8−0.1	−	7100	35	17	11	K98b
G33.6+0.1	9000	7800	23	10	22	S03, SV95, G04a
G39.2−0.3	1000	11000	22	8x6	18	C82
G41.1−0.3	1400	8000	8	4.5x2.5	22	C82, B82, C99
G43.3−0.2	3000	10000	10	4x3	38	L01
G49.2−0.7	30000	6000	52	30	160	KK95, G04a
G53.6−2.2	15000	2800	24	33x28	8	S95, G04a
G55.0+0.3	110000	14000	71	20x15?	0.5	MWT98
G65.3+5.7	14000	1000	78	310x240	52	LRH80, R81
G73.9+0.9	10000	1300	8	22	9	L89, LLC98
G74.0−8.5	14000	400	23	230x160	210	LGS99, SI01, G04a
G78.2+2.1	50000	15000	26	60	340	LLC98, KH91
G84.2−0.8	11000	4500	23	20x16	11	MS80, M77, G04a
G89.0+4.7	19000	800	24	120x90	220	LA96
G93.3+6.9	5000	2200	15	27x20	9	L99, G04a
G93.7−0.2	−	1500	35	80	65	UKB02
G109.1−1.0	17000	3000	24	28	20	FH95, HHv81, G04a
G111.7−2.1	320	3400	5	5	2720	TFv01
G111.4+0.3	41000	700	15	90x55	6	MBP02, G04a
G116.5+1.1	280000	16000	32	80x60	11	RB81, G04a
G116.9+0.2	44000	1600	16	34	9	KH91, G04a
G119.5+10.2	24500	1400	37	90?	36	M00
G120.1+1.4	410	2300	5	8	56	H90, G04a
G127.1+0.5	85000	5250	69	45	13	FRS84
G132.7+1.3	21000	2200	51	80	45	GTG80, G04a
G156.2+5.7	26000	2000	64	110	5	RFA92
G160.9+2.6	7700	1000	38	140x120	110	LA95
G166.0+4.3	81000	4500	57	55x35	7	L89, KH91, G04a
G166.2+2.5	150000	8000	186	90x70	11	RLV86
G182.4+4.3	3800	3000	44	50	1.2	KFR98
G205.5+0.5	50000	1600	102	220	160	CB99
G206.9+2.3	60000	7000	102	60x40	6	L86
G206.3−3.4	3400	2200	35	60x50	130	B94, RG81
G266.2−1.2	680	1500	52	120	50	K02, AIS99
G272.2−3.2	6000	1800	8	15?	0.4	D97
G284.3−1.8	10000	2900	20	24?	11	RM86
Source	Age\(^a\) yr	Dist.\(^a\) pc	Dia.\(^b\) pc	size	\(S_{1GHz}\) Jy	Ref.
-------------	-------------	----------------	--------------	-------	----------------	---------
G296.5+10.0	20000	2000	44	90x65	48	MLT88
G296.8−0.3	1600000	9600	47	20x14	9	GJ95, G04a
G299.2−2.9	5000	500	2	18x11	0.5	SVH96
G309.2−0.6	2500	4000	16	15x12	7	RHS01
G315.4−2.3	2000	2300	28	42	49	DSM01, G04a
G321.9−0.3	2000000	9000	70	28	13	SFS89, S89
G327.4+0.4	–	4800	29	21	30	SKR96, WS88, G04a
G327.6+14.6	980	2200	19	30	19	SBD84, G04a
G330.0+15.0	–	1200	63	180?	350	K96
G332.4−0.4	2000	3100	9	10	28	CDB97, MA86, G04a
G337.2−0.7	3250	15000	26	6	2	RHS01
G337.8−0.1	–	12300	27	9x6	18	K98b
G346.6−0.2	–	8200	19	8	8	K98b, D93
G349.7+0.2	14000	14800	9	2.5x2	20	RM01, G04a
G352.7−0.1	2200	8500	17	8x6	4	K98a

\(^a\)Notes: Many of the radio SNRs have more than one published value for distance and age. For these, we either chose the most recent estimates or used an average of the available estimates, or the most commonly adopted value.

\(^b\)Notes: Diameters were calculated using from distances together with the angular sizes in Green (2006) catalogue.
REFERENCES

Allakhverdiyev A.O., Amnuel P.R., Guseinov O.H., Kasumov F.K., 1983, Ap&SS, 97, 287

Allakhverdiyev A.O., Guseinov O.H., Kasumov F.K., Yusifov I.M., 1985, Ap&SS, 121, 21

Arbutina B., Urosevic D., Stankovic M., Tesic Lj., 2004, MNRAS, 350, 346

Aschenbach B., Iyudin A.F., Schönfelder V., 1999, A&A, 350, 997 (AIS99);

Berthiaume G.D., Burrows D.N., Garmire G.P., Nousek J.A., 1994, ApJ, 425, 132 (B94)

Binette L., Dopita M.A., Dodorico S., Benvenuti P., 1982, A&A, 115, 315 (B82)

Carter L.M., Dickel J.R., Bonans D.J., 1997, PASJ, 109, 990 (CB99)

Clark D.H., Caswell J.L., 1976, MNRAS, 174, 267

Case G.L., Bhattacharya D., 1998, ApJ, 504, 761

Case G., Bhattacharya D., 1999, ApJ, 521, 246 (CB99)

Caswell J.L., Haynes R.F., Milne D.K., Wellington K.J., 1982, MNRAS, 200, 1143 (C82)

Chen Y., Slane P.O., 2001, ApJ, 563, 202 (CS01)

Chen Y., Sun M., Wang Z.R., Yin Q.F., 1999, ApJ, 520, 737 (C99)

Dickel J.R., Strom R.G., Milne D.K., 2001, ApJ, 546, 447 (DSM01)

Dubner G.M., Moffett D.A., Goss W.M., Winkler P.F., 1993, AJ, 105, 225 (D93)

Duncan A.R., Stewart R.T., Campbell-Wilson D., Haynes R.F., Aschenbach B., Jones K.L., 1997, MNRAS, 289, 97 (D97)

Duric N., Proceeding 232. WE-Heraeus-Seminar 22-25 May 2000, Bad Honnef, Germany. 179D

Duric N., Seaquist E.R., 1986, ApJ, 301, 308

Fesen R.A., Horford A.P., 1995, AJ, 110, 747 (FH95)

Fürst E., Reich W., Steube R., 1984, A&A, 133, 11 (FR84)

Gaensler B.M., Johnston S., 1995, MNRAS, 277, 1243 (GJ95)

Galas C.M.F., Tuohy L.R., Garmire G.P., 1980, ApJ, 236, L13 (GTG80)

Gorham P.M., Ray P.S., Anderson S.B., Kulkarni S.R., Prince T.A., 1996, ApJ, 458, 257 (G96)

Green D.A., 1984, MNRAS, 209, 449

Green D.A., 2004, arXiv:astro-ph/0411083v1, 3 (G04a)

Green D.A., VizieR On-line Data Catalog 7th/227. Mullard Radio Astronomy observatory, Cambridge, United Kingdom (2004), 2002vCat7227, OG (G04b)

Guseinov O.H., AnKay A., Sezer A., Tagieva S.O., 2003, A&AT, 22, 273G(G03)

Hatsukade I., Tsunemi H., Yamashita K., Koyama K., Asaoka Y., Asaoka I., 1990, PASJ, 42, 279 (H90)

Huang Y.-L., Thaddeus P., 1985, ApJ, 295, L13

Hughes V.A., Harten R.H., van den Bergh S., 1981, ApJ, 246, L127 (HHv81)

Itoh H., 1978, PASJ, 30, 489

Kargaltsev O., Pavlov G.G., Sanwal D., Garmire G.P., 2002, ApJ, 580, 1060 (K02)

Kinugasa K., Torii K., Tsunemi H., Yamauchi S., Koyama K., Dotani T., 1998, PASJ, 50, 249 (K98a)

Knödlseder J., Oberlack U., Diehl R., Chen W., Gehrels N., 1996, A&AS, 120, 339 (K96)

Koo B.C., Heiles C., 1991, ApJ, 382, 204 (KH91)

Koo B.C., Kim K.T., Seward F.D., 1995, ApJ, 447, 211 (KKS95)

Koralesky B., Frail D.A., Goss W.M., Claussen M.J., Green A.J., 1998, ApJ, 116, 1323 (K98b)

Kothes R., Fürst E., Reich W, 1998, A&A, 331, 661 (KFR98)

Lacey C.K., Joseph T., Lazio W., Kassim N.E., Duric N., Briggs D.S., Dyer K.K., 2001, ApJ, 559, 954 (L01)
Landecker T.L., Routledge D., Reynolds S.P., Smegal R.J., Borkowski K.J., Seward F.D., 1999, ApJ, 527, 866 (L99)
Leahy D.A., 1986, A&A, 156, 191 (L86)
Leahy D.A., 1989, A&A, 216, 193 (L89)
Leahy D.A., Aschenbach B., 1996, A&A, 315, 260 (LA96)
Leahy D.A., Aschenbach B., 1995, A&A, 293, 853 (LA95)
Levenson N.A., Graham J.R., Snowden S.L., 1999, ApJ, 526, 874 (LGS99)
Lorimer D.R., Lyne A.G., Camilo F., 1998, A&A, 331, 1002 (LLC98)
Lozinskaya T.A., 1981, Soviet Astron. Lett., 7, 17
Matthews H.E., Baars J.W.M., Wendker H.J., Goss W.M., 1977, A&A, 55, 1 (M77)
Matthews H.E., Shafer P.A., 1980, A&A, 87, 255 (MS80)
Matthews B.C., Wallace B.J., Taylor A.R., 1998, ApJ, 493, 312 (MWT98)
Mavromatakis F., Bounis P., Paleologou E.V., 2002, A&A, 383, 1011 (MBP02)
Mavromatakis F., Papamastorakis J., Paleologou E.V., Ventura J., 2000, A&A, 353, 371 (M00)
Meaburn J., Allan P.M., 1986, MNRAS, 222, 593 (MA86)
Mills B.Y., Turtle A.J., Little A.G., Durding J.M., 1984, Austral. J. Phys., 37, 321
Milne D.K., 1979, Australian J. Phys., 32, 83
Milne D.K., Roger R.S., Kesteven M.J., Haynes R.F., Wellington K.J., Stewart R.T., 1986, MNRAS, 223, 487 (M86)
Poveda A., Waltjer L., 1968, AJ, 73, 65
Ptuskin V.S., Zirakashvili V.N., 2003, A&A, 403, 1
Rakowski C.E., Hughes J.P., Slane P., 2001, ApJ, 548, 258 (RHS01)
Reich W., Braunsfurth E., 1981, A&A, 99, 17 (RB81)
Reich W., Fürst F., Arnal E.M., 1992, A&A, 256, 214 (RFA92)
Reynoso E.M., Mangum J.G., 2001, ApJ, 121, 347 (RM01)
Rosado M., 1981, ApJ, 250, 222 (R81)
Rosado M., González J., 1981, Rev. Mexicana. Astron. Astrophys., 5, 93 (RG81)
Routledge D., Landecker T.L., Vaneldick J.F., 1986, MNRAS, 221, 809 (RLV86)
Ruiz M.T., May J., 1986, ApJ, 309, 667 (RM86)
Saken J.M., Long K.S., Blair W.P., Winkler P.F., 1995, ApJ, 443, 231 (S95)
Salter C.J., Reynolds S.P., Hogg D.E., Payne J.M., Rhodes P.J., 1989, ApJ, 338, 171 (S89)
Seward F.D., Kearns K.E., Rhode K.L., 1996, ApJ, 471, 887 (SKR96)
Seward F.D., Slane P.O., Smith R.K., Sun M., 2003, ApJ, 584, 414 (S03)
Seward F.D., Velusamy T., 1995, ApJ, 439, 715 (SV95)
Shull J.M., Fesen R.A., Saken J.M., 1989, ApJ, 346, 860 (SFS89)
Slane P., Vancura O., Hughes J.P., 1996, ApJ, 465, 840 (SVH96)
Srinivasan G., Bhattacharya D., Dwarakanath K.S., 1984, J. Astrophys. Astr., 5, 403 (SBD84)
Stil J.M., Irwin J.A., 2001, ApJ, 563, 816 (SI01)
Thorstensen J.R., Fesen R.A., van den Bergh S., 2001, AJ, 122, 297 (TFv01)
Uyaniker B., Kothes R., Brunt C.M., 2002, ApJ, 565, 1022 (UKB02)
Völk H.J., Berezhko E.G., Ksenofontov L.T., Rovell G.P., 2002, A&A, 396, 649
Weiler K.W., Sramek R.A., 1988, ARA&A, 26, 295 (WS88)

Xu J. W., Zhang X. Z., Han J. L., 2005, Chinese J. Astron. Astrophys., 5, 165

Zaninetti L., 2000, A&A, 356, 1023