Complete chloroplast genome of a wild-type Gardenia jasminoides ellis (rubiaceae) adapted to island climate

Min Zhanga**, Wan-Dong Chenb,*, Yuan-Yuan Lía, Cheng Zhangb, Zi-Han Chai, Yong-Fu Lia, Shang-Wei Xieb, Shao-Yong Dengb, Yi-Fan Duanb and Xian-Rong Wanga

aCo-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Jiangsu, Nanjing, China; bNanji Islands National Marine Natural Reserve Administration, Zhejiang, Pingyang, China; cJiangxi Academy of Forestry, Jiangxi, Nanchang, China

Gardenia jasminoides Ells is a traditional aromatic and medicinal plant in China. Here, the complete chloroplast genome of a wild-type gardenia adapted to island climate was assembled. The assembled genome was 155,247 bp in length, with four typical regions, i.e., a large single-copy (LSC) region (85,414 bp), a small single-copy (SSC) region (18,235 bp) and two inverted repeats (IRs) regions (25,799 bp each). In total, 138 genes were predicted, including 90 protein-coding genes, 40 tRNA genes and eight rRNA genes. The overall GC content of the chloroplast genome was 37.5%. The chloroplast genome would provide more information for the phylogeography and phylogeny study of G. jasminoides.

**CONTACT Xian-Rong Wang wangxianrong66@njfu.edu.cn Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Jiangsu, Nanjing, China

**Co-first authors.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
conducted by MAFFT 7.158 (Katoh and Standley 2013). Then phylogenetic inference was performed in RAxML-VI-HPC (Stamatakis 2006) software under the GTR-gamma model. To assess the confidence of each internal node, rapid bootstrap method was applied with 1000 replications. The result showed that phylogenetic positions of all the taxa were successfully resolved (Figure 1). *Gardenia jasminoides* was placed in Rubiaceae clade and classed together with *Coffea arabica*, which indicated that *Gardenia* is more closely related to *Coffea* than other studied genera.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was funded by China Postdoctoral Science Foundation [Grant No. 2019M651839], Postdoctoral Fund of Nanji Islands National Marine Natural Reserve Administration [Grant No. NJX2019004] and Innovation Fund for Young Scholars of Nanjing Forestry University [Grant No. CX2019029].

Data availability statement

The raw sequence data supporting this study are deposited in the National Center for Biotechnology Information Short Read Archive under BioProject ID PRJNA678106 (accession number SRP292439). The assembled genome and its annotation are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MW160432.

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 27(4):578–579.

Boetzer M, Pirovano W. 2012. Toward almost closed genomes with GapFiller. Genome Biol. 13(6):R56.

Chen S, Zhao S, Wang X, Zhang L, Jiang E, Gu Y, Shangguan AJ, Zhao H, Lv T, Yu Z. 2015. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res. 4(6):775–783.

Chen SC, Zhao X, Yi RK, Qian J, Shi YH, Wang R. 2017. Anticancer effects of *Gardenia jasminoides* in HepG2 human hepatoma cells. Biomed Res. 28:716–726.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Qin FM, Meng LJ, Zou HL, Zhou GX. 2013. Three new iridoid glycosides from the fruit of *Gardenia jasminoides* var. radicans. Chem Pharm Bull. 61(10):1071–1074.

Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15:50.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22(21):2688–2690.

Zhao K, Zhou Y. 2020. The chloroplast genome of *Gardenia jasminoides* and related phylogenetic analysis (Rubiaceae). Mitochondrial DNA Part B. 5(2):1743–1745.

![Figure 1.](image) Maximum-likelihood tree based on the sequences of 21 chloroplast genomes from Gentianales. Numbers at tree nodes represent bootstrap values for 1000 replications. Number after ‘j’ shows the accession number in GenBank for each accession. The position of the wild-type *Gardenia jasminoides* reported in this study is marked in bold.