A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats

Colleen N. Bodnar,1,2 Kelly N. Roberts,1,2 Emma K. Higgins,1,2 and Adam D. Bachstetter1,2

Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.

Keywords: animal models; common data elements; concussion

Introduction
Mild traumatic brain injury (mTBI), caused by blunt trauma, acceleration, or deceleration forces, is a significant public health concern.1 In the United States, mTBI is estimated to occur in 1.6–3.8 million cases annually.2 Estimates of mTBI are under-reporting cases of mTBI attributed to the fact that many individuals who sustain a mTBI never seek medical treatment.3 Not only are incidences of mTBI on the rise—62% increase in recreation-related mTBI cases over a 10-year period4—there is also a growing appreciation that a mTBI is not benign and the brain may not fully recover from the injury with time. The Department of Veterans Affairs and the Department of Defense Clinical Practice Guidelines and the World Health Organization guidelines classify a head injury as a mTBI according to the following criteria: normal structural imaging; loss of consciousness <30 min; alteration of consciousness less than 24 h; post-traumatic amnesia of less than a day; and an initial Glasgow Coma Scale of 13–15.5 By far, the majority of mTBIs are caused by a closed head injury.6 The Centers for Disease Control and Prevention (CDC) concluded there was the need for research to understand the full magnitude of mTBI incidence, risk factors, and strategies to reduce and improve mTBI outcomes.1 Much of this research begins with understanding the pathological and mechanistic changes of mTBI in pre-clinical models.

The use of animal models in TBI research is crucial. Many animal models have been developed over the last 80 years to replicate the different unique features of mTBI (e.g., emotional or cognitive symptoms), as well as biomechanical forces (e.g., impact or rotational). Although the overall number of experimental mTBI studies are small in number, they are steadily increasing at a rate reflecting the public’s appreciation of the seriousness of mTBI. However, to paraphrase an expert in animal models of TBI, the field is a “wild west”; referring to the vast array of injury methods currently used to create a rodent model of mTBI. The aim of this systematic review is to compile a comprehensive list of TBI rodent models that are specific to mild closed head injury. Our review includes information about the methodology as well as the broad classes of outcomes. Understanding all of the different models, as well as pathologies associated with the model, is needed to propel the field forward by taming the wild west, building a framework of common data elements for future reporting of mTBI models, and uncovering gaps in our current knowledge base.

1Department of Neuroscience and 2Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky.

© Colleen N. Bodnar et al., 2019; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Methods

Search criteria

Our search criteria were established to be specific for mTBI models caused by a closed head injury. Following guidelines established by PRISMA, comprehensive searches (on May 15, 2018) of both PubMed and Web of Science were conducted using the following keyword search: mild TBI, concussion, closed head injury, rodent, mice, mouse, or rat; excluding controlled cortical impact, fluid percussion, or review articles. Using the advanced search tools on PubMed and Web of Science, both title and abstract were searched with the following Boolean search strategy: (((rodent) OR rat) OR mouse) AND ((mild TBI) OR concussion) OR closed head injury)) NOT ((CCI) OR fluid percussion)). From PubMed, 984 articles were given in the final results, and Web of Science produced 1336 articles. Both of these lists of articles were combined and duplicate references were removed, leaving 1890 articles (Fig. 1).

Inclusion/exclusion criteria

Abstracts and titles were screened by C.N.B. to include only peer-reviewed primary research reports specific for mild, closed head TBI only in rodents. All other types of articles were excluded. Blast injuries were excluded because, although military related blast injuries are a major cause of mTBI, the vast complexity of the different injury models used were beyond the scope of this review. All repeat injury models (85) were also considered beyond the scope of this review and were thus excluded (Fig. 1).

Retrieval of information from full-text articles

For collection of information on methods of each of these articles, a GoogleForm was used by C.N.B., K.N.R., and E.K.H. The

FIG. 1. Methods flow chart. Identification through searches on two separate web-based platforms yielded 1,890 articles which were screened by abstract and then eligibility was determined via full text examination to exclude 1,403 articles. Removing mTBI articles in which repeat injuries were sustained, a total of 402 single mTBI articles were included in our review. mTBI, mild traumatic brain injury.

title, first author, last author, publication date, name of model, and references cited for the model were collected as general identifiers. For the method of injury induction, the following information was collected: injury device used, anesthesia use, surgery indicator, injury device type, head fixed with method of fixation, animal stabilization method, impact tip size, impact tip shape, impact tip material, impact surface, impact location, weight for drop, height for drop, tube composition, and the type of impact absorbent materials used (if any). Species, sex, and age of animals were also recorded. Finally, injury outcomes were collected, including mortality rate, righting reflex latency, neuroscore, motor deficits (open field, balance beam, rotarod, etc.), cognitive deficits (novel object, Morris water maze, radial arm water maze, Y/T maze, etc.), affective behavior deficits (elevated plus, social, sucrose preferences, etc.), and histology (cell and tissue changes, axonal injury markers, myelin markers, gliosis markers, etc.). Information on outcome variables was collected only between sham and control animals, not with any treatments done within the publication. If any treatments were done in the publications, the effects observed with treatment were not considered as content for this review.

Results

From searches on both PubMed and Web of Science, a total of 1890 articles were initially included. From this list, articles were screened for inclusion and exclusion criteria (Fig. 1). From this screening, the following articles were excluded: not including a TBI (n = 293); any article in which the skull was open and the brain surface was impacted (controlled cortical injury [CCI]/fluid percussion injury/or open skull; n = 125); any injury that was reported as moderate or severe (n = 237); duplicates missed in the original removal (n = 21); non-rodent models (n = 54); articles that used an in vitro or computational method (n = 63); blast injuries (n = 160); book chapters and reviews that were missed in the initial identification (n = 96); articles in another language (n = 24); articles with no explanation of their method, no sham animals, or not a full article (n = 20); and repeat injuries (n = 85). Finally, 402 articles were determined to be single, mild, TBIs to rodents. These 402 articles were then examined in full text and the common data elements were compiled (Fig. 1).

Of the 402 articles identified three main groups of injury models emerged. The largest group was weight drop models (n = 335), followed by piston-driven models (n = 43), and then all “other” models (n = 25) (Fig. 2A). Please note that one article used both a weight drop model and a piston-driven model and was thus included in both of these groups. Within the piston-driven models and the “other” models, there was a wide variety of methods used (Fig. 2B,C). We compared how often the different categories of models were used over time to identify trends in usage (Fig. 2D). Weight drop models have featured prominently in the literature since the early 1990s. Piston-driven models gained popularity beginning in 2002. The “other” models were typically used early (1941–1987) and used more unconventional methods to induce mild brain injury. Once the weight drop models became more popular in the 1990s, this model became the dominant model in use during this time. Beginning in the mid-2000s, new models besides weight drop began to emerge, each attempting to model different aspects of mild TBI and increase the reproducibility of the injury model. At the same time, the number of weight drop publications plateaued.

From each article, the time post-injury at which the dependent variables were measured was collected (up to 1 day, up to 1 week, up to 1 month, over 1 month, or over 1 year). A vast majority were
recorded under a month, with 39% reporting up to 1 day post-injury, 35% reporting up to a week after injury, and 19% reporting up to 1 month after mTBI (Supplementary Appendix [SA] 0.1). Only 24 articles reported dependent variable measurements over a month, and only two publications reported measurements after a year (SA 0.1) (see online supplementary material).

Weight drop model

The weight drop model consists of dropping a projectile of specified characteristics through a tube at a specified height onto the head of the animal (Fig. 3A). We found considerable variation in the reported weight of the projectile (Figs. 3A and 4A) and drop height of the projectile (Figs. 3A and 4B) between different publications. Additional model-specific common data elements that we captured and varied between different publications included: 1) if the mice were anesthetized at the time of impact; 2) if surgery was performed; 3) direct versus indirect impact to the skull (Figs. 3F and 4C); 4) impact location; 5) if the head was immobilized (Figs. 3G and 4D); 6) the surface the animal was placed on (Fig. 3A,H); 7) projectile shape; and 8) projectile material. Animal-specific common data elements that we captured included 1) sex of the animals (Fig. 4E) and 2) age of the animals (Fig. 4F).

Weight drop model: animal-specific common data elements. The reported animal-specific common data elements for the weight drop method showed remarkably little variation in sex or age of the animals used. The use of rats and mice occurred at an
approximately equal ratio—57% used rats (SA 1.1), 43% used mice (SA 1.2), and two publications used both rats and mice (SA 1.3). In the 8% of publications that used female animals (SA 1.4), 17 of those articles used both males and females and only eight analyzed data by sex for sex differences (Fig. 4E; SA 1.5). Adult animals were the most common age reported (Fig. 4F; SA 1.7). At the young age range, P7 was a typical age used for mice, whereas P17–48 was common for rats (SA 1.6) (see online supplementary material). Only two publications specifically reported using aged mice, as defined by the authors of the publication (SA 1.8).

Weight drop model: model-specific common data elements. Our review of the model-specific common data elements for the weight drop method was informative for both the intermodel similarities, but also for the degree of variations that have been used. For 98% of the publications using the weight drop method, animals were anesthetized at the time of the impact, leaving six publications that did not use anesthesia (SA 1.9). The majority (72%) of articles created an incision to expose the skull (SA 1.10). Of the publications that exposed the skull, metal disc helmet was placed on the skull in 40% of publications to diffuse the blow and reduce skull fractures and focal lesions (Figs. 3F and 4C; SA 1.11). The scalp was the surface of impact in 26% of articles (SA 1.12) (see online supplementary material), and a helmet on the scalp was used in 2% of articles (SA 1.13). There was an even split on the location of the injury, with 49% reporting a midline injury,

FIG. 3. Example experimental set-up for weight drop and piston mTBI models. In the weight drop model (A), a variable weight is dropped from a variable height, onto the head of the animal and the animal can be on either a hard surface or a foam pad. Piston driven models (B), use either an electromagnetic (C) or a pneumatic (D) driven piston that is set to a specified velocity and impact depth and strikes the head of the animal. In piston driven models, the impact angle (E) can vary between study designs. In both the weight drop and the piston driven models the impact surface can vary with either a helmet or no helmet on the intact scalp or the exposed skull (F). Further, the head can be either fixed or free to rotate after the impact (G). The impact tip which contacts the head of the animal to induce injury can be either flexible or rigid (H) causing different injury biomechanics. An emerging model utilizes rotation following impact by placing the animal on a thin sheet following impact the animal falls through the sheet onto a foam pad (I). Color image is available online.
typically located in the midcoronal plane between bregma and lambda on the sagittal suture, and 48% reporting a lateral injury, typically located 1–2 mm lateral of midline in the midcoronal plane. In 56% of publications, the head was not secured and 19% of publications did not report this essential common data element (Fig. 4D). In 24% of publications, the head was held in place by methods that ranged from the heads being fixed rigidly with ear bars in a stereotactic frame (35%; SA 1.14), loosely between two blocks (6%; SA 1.15), or within the hand of the experimenter (17%; Fig. 3G; SA 1.16). (see online supplementary material). Similarly, 53% of publications did not report what the animal’s head was resting on when it received the impact. Of those that reported resting surface of the head, a foam pad was used in 79% of publications (SA 1.17). We noted that few publications described the type and source of the foam pad, the spring constant of the foam, or how often it was replaced. Other surfaces that animals were placed on included, but were not limited to, foil (SA 1.18) see online supplementary material at (http://www.liebertpub.com), rubber (SA 1.19), or spring-loaded platforms (SA 1.20). Fifty-three percent of weight drop publications did not specifically describe the surface that the animal rested on during injury induction.

The two major weight drop–specific common data elements where we observed significant variability was in the weight of the projectile, and the projectile drop height (Fig. 4A,B). The majority of publications that reported impactor material used a rigid projectile, which was most often a brass weight (75%; Fig. 3I; SA 1.21). Whereas 25% of publications used a non-rigid projectile, which was most often a silicone tipped metal rod (SA 1.22), a few publications reported using a specific diameter projectile, but most did not report this common data element. Of the 57% of the total articles that used rats, the weight of the projectile used was most often 400 g or heavier (Fig. 4A). Also, projectiles were dropped from greater heights, on average, in the studies that used rats compared to experiments with mice (Fig. 4B). Seventy-six publications cited Marmarou and colleagues for the methods of the weight drop model.179 The investigators used a few variations on

FIG. 4. Common data elements for the weight drop model. Weight drop models have been used with a variety of different weights (A) and heights (B). Mice were injured typically using lower weights and heights, while rats were injured using heavier weights and heights. Injuries were induced on different surfaces (C) with the head either fixed or unfixed (D). A majority of papers used male (E), adult animals (F). Total numbers for (E) and (F) are greater than the 335 total publications because several publications reported using more than one sex or age of animals. N.R., not reported. Color image is available online.
the name of the model (e.g., Marmarou, modified Marmarou, or impact-acceleration injury model), but most of the common data elements associated with the model were consistent. For instance, a 450-g brass weight was dropped from a height of 200 or 100 cm. The use of a 450-g weight with a 100-cm height was reported in 13 publications (SA 1.23), whereas a 200-cm drop height was reported in 44 publications (SA 1.24). Another aspect associated with these 57 publications was the use of a steel disk placed midline on the exposed skull as a “helmet.” Animals were anesthetized and often intubated. The head was generally free to move, but was supported on a foam pad.

We found a cluster of publications in mice (n = 29) that used a drop height of 80 cm (SA 1.25). Of these 29 publications, 76% used a 30-g metal weight, commonly with a lateral impact (79%). In these 29 articles, the impact was most often (83%) to the scalp. A helmet was used in one publication. A second cluster of 32 reports (22% of mouse publications) used a drop height of 2.5 cm or less (SA 1.26). Of these 32 reports, 47% used a 333-g projectile (SA 1.27), 75% induced a lateral injury to one hemisphere of the brain (SA 1.28), and 88% delivered the impact directly to the skull (SA 1.29). Most of these (23 of 32) articles were referencing Flierl and colleagues and/or Chen and colleagues for the methods.85,412

We also identified a few additional model-specific common data elements that were associated with either preventing rebound impacts or to cause a rotational injury. Specifically, some publications report methods to prevent rebound impacts from the projectile, including attaching a rope to the projectile (SA 1.30); however, a majority of the publications did not report this common data element. There are 12 publications of a modified version of the weight drop model where the animals are placed either on a Kimwipe or a piece of scored tin foil. Placement of the mice on the non-rigid material allows the animal to fall through the material and lands on a foam pad underneath from the force of the projectile impacting the head (Fig. 3H; SA 1.31).

Weight drop model: injury-induced functional and histopathological changes. In addition to the animal- and weight drop–specific common data elements, we also collected information about the previously assessed functional and histological endpoints in the model. We collected data for the presence or absence of an injury-induced change only. It was beyond the scope of this review to describe specifics of when the injury-induced changes occurred, if they resolved with time, and which endpoints showed the most significant injury effect. Our goal in summarizing the common endpoint measurements was to identify regularly reported endpoints that would be useful for comparisons between studies and highlight areas that are understudied.

Weight drop model: motor skills assays. The Neurological Scale Score (NSS) is a measurement used to test sensorimotor skills and involves a battery of tests.379 This test has been used and described for a mild (<10 points), moderate (11–14 points), or severe injury (14 points).48 From our search, we found that of the 335 weight drop publications, only 31% reported doing the NSS. Of these articles, 87% reported a deficit and 13% reported no deficits after mTBI (SA 1.32). Further, righting reflex, a measure that is commonly used as a surrogate for loss of consciousness,5 was only reported in 10% of articles (SA 1.33). The most common latency for righting reflex was between 1 and 10 min (81% of those who reported). Mortality rate was reported in 24% of publications. Low mortality (0–5%) was found in 39% of these articles (SA 1.34), a moderate mortality (5–30%) was found in 51% of articles (SA 1.35), and a high mortality rate (30%+) was found in 10% of those articles who reported (SA 1.36).

An assessment of motor skills was most often done by one of three tests—balance beam, rotarod, and open field—and reported in 19% of weight drop publications (Fig. 5A). Specifically, the balance beam test was reported in 50% of publications with a deficit in 84% of those studies (SA 1.37). In the open field and rotarod assay, 67% (SA 1.38) (see online supplementary material) and 45% (SA 1.39) of the studies found a deficit, respectively. In addition to these three tests, nine additional motor skills tests were measured, including: foot placement (4/0), grid walking (1/0), grip test (3/1), tape removal (1/0), general activity (2/1), staircase test (0/1), whisker test (2/0), seizure susceptibility (1/0), and thermal or mechanical withdrawal (1/0; n = deficit/no deficit; SA 1.40).

Weight drop model: learning and memory assays. Cognitive tasks typically involve learning in some capacity on the part of the animal, and common tests we found included passive avoidance, Y/T maze, radial arm water maze, novel object

Motor function	Other Behavioral	Open Field	Rotarod	Balance Beam
	15 / 3	12 / 6	5 / 6	27 / 5

Cognitive function	Other Cognitive	Passive Avoidance	Y/T Maze	Radial Arm Water Maze	Novel Object	Fear Conditioning	Morris Water Maze	Barnes Maze
	6 / 2	6 / 1	11 / 2	2 / 0	27 / 3	2 / 2	24 / 5	32 / 0

Affective behavior function	Other	Social	Elevated Plus Maze
	11 / 5	0	8 / 6

Histopathology	Other	Edema	Myelin	Gliosis	Blood Brain Barrier	Axonal Injury	Cell or Tissue Changes
	16 / 0	4 / 2	15 / 1	36 / 1	74 / 4	57 / 14	

FIG. 5. Functional and Pathological deficits observed in the weight drop models of mTBI. Outcome measures collected included motor function (A), cognitive function (B), affective behaviors (C), and histology measures (D). Numbers indicate the number of studies with / without deficits. mTBI, mild traumatic brain injury.
recognition, fear conditioning, Morris water maze, and Barnes maze. Twenty-one percent of weight drop articles reported doing some sort of cognitive testing. Of the articles reporting cognitive testing, deficits were recorded in 84% of cases (Fig. 5B). All of the publications that used either the Barnes maze or the radial arm water maze found deficits after mTBI (SA 1.41–42). In the Y/T maze (85%; SA 1.43), novel object (90%; SA 1.44) (see online supplementary material), and Morris water maze (83%; SA 1.45), a majority of publications found a weight drop–induced deficits. When fear conditioning was tested, 50% found deficits (SA 1.46). Passive avoidance was reported in two publications, and both found deficits (SA 1.47). Other cognitive testing identified, included the water finding test (2/2), location discrimination test (1/0), go/no-go testing (1/0), closed circle exiting (1/0), and novel context mismatch (1/0; n = deficit/no deficit; SA 1.48).

Weight drop model: affective behavior testing. Affective behavior tests are designed to be used as a surrogate for more complex emotions like anxiety (and other affective behaviors). Of the 335 articles that used the weight drop method, only 7% reported affective behavior tests. The elevated plus or zero maze and social testing were commonly used in these publications (Fig. 5C). In the two publications that tested social behaviors, both found deficits compared to sham (SA 1.49). In the elevated plus maze tests, eight publications found deficits whereas six other publications did not find any deficits (SA 1.50). Other affective behavior tests that were reported included temperature sensitivity (1/0), tail suspension (1/2), olfactory avoidance (1/0), nicotine (1/1), forced swim (6/1), fear conditioning (0/1), and acoustic startle reflexes (1/0; n = deficit/no deficit; SA 1.51).

Weight drop model: histopathology. In addition to behavioral tests, we collected information on which articles reported common histological changes that have been cited in the literature on brain injury. Cell or tissue changes are typically looked at by hematoxylin and eosin, cresyl violet, neuronal nuclei, or Nissl staining. Other categories of histological interest included axonal injury (shown by amyloid precursor protein, silver staining, or neurofilament stains), gliosis (shown by glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, CB68, or CD11b staining), myelin changes (shown by luxol fast blue or myelin basic protein staining), and blood–brain barrier disruption (Evans blue). Other staining was noted even if it was not within these categories.

Histology was more commonly reported as compared to behavioral changes in the articles included in our final analysis of weight drop models. Of the 335 articles, 55% reported using histology of these major categories and, of those, 88% found there to be a significant change after mTBI compared to sham animals (Fig. 5D). Changes to cellular and tissue makeup were reported as significantly different from sham in 80% of publications whereas 14 publications did not find a deficit (SA 1.52). Deficits were also more common in axonal injury (95%; SA 1.53); blood–brain barrier disruption (94%; SA 1.54); edema (100%; SA 1.55); gliosis (93%; SA 1.56); and myelin staining (67%; SA 1.57). Many other histological measures were done for specific proteins of interest for the experimental design. A few of these include terminal deoxynucleotidyl transferase dUTP nick end labeling or apoptosis staining (11/1), inflammation/immune activation (10/0), caspase activation (3/0), complement activation (3/0), as well as many others (SA 1.58).

Piston-driven closed head injury models

Injuries caused by a piston are typically induced by zeroing the piston on the surface of the skull or scalp and then delivering an injury at a specific depth, velocity, or impact force (Fig. 3B). There are a few variations of the piston devices (Fig. 2B), including compressed nitrogen, electromagnetic, or pneumatically driven pistons (Fig. 3C–D). Another variation within this category is location of the injury and placement of the animal. For example, in the CHIMERA model, the animal is placed on its back within the device, and the injury is induced from below, thus allowing the head to flex after impact. In order to induce an injury using this particular model, the animal is hung from a string by the incisors, allowing a piston to strike the side of the head. This approach allows the animal to freely move after the impact. Other models use lateral angle for impact; however, in these models, animals lie on a flat surface and move laterally after the impact (Fig. 5E).

Most articles using piston-driven injury utilized mice (74%) as opposed to rats (26%; SA 2.1). Of the articles that reported the sex of the animals, males (72%) were most common (Fig. 6A; SA 2.2). When females were used, 94% of the articles also included males; and only half of the time were data separated by sex to determine sex differences (SA 2.3). Adult animals were most prevalent (79%), followed by pups (19%; SA 2.4), with no studies reporting the use of aged animals (Fig. 6B).
A common reference was not used for this configuration. Publications using rats ($n = 11$) reported using faster velocities of ranging from 5 to 10 m/s (SA 2.14). A large number of publications did not report the material of the impact tip (37%; SA 2.17). The shape of the impact tip was most often flat (60%) or round (35%) when reported (SA 2.18).

Piston-driven closed head injury model: injury-induced functional changes. We found for the piston-driven model that mortality was under-reported (only 23% of articles reporting), with most (90%) reporting a mortality rate of 0–5% (SA 2.19). Moderate mortality was reported in one publication, and no publications reported high mortality (SA 2.19). Righting reflex was reported in 33% of the piston-driven closed head injury (CHI) models, with most having a latency of 1–10 min (79%; SA 2.20).

Piston-driven closed head injury model: motor skills assays. The NSS was not commonly reported in the piston-driven CHI model, with only one publication reporting no deficit (365) and two finding a significant change from sham after injury (202, 354). Deficits were found in five publications after piston-driven injury in the balance beam, with one publication finding no deficits (SA 2.21). Rotarod was tested in 10 publications, and nine found deficits with one publication finding no change after injury (SA 2.22). Open field was tested in six publications, and in five, deficits after mTBI were found and one found no deficit (SA 2.23). Other motor tests assessed in the piston-driven CHI included wheel running and wire hanging, with deficits observed in both assays (Fig. 7A; SA 2.24).

Piston-driven closed head injury model: learning and memory assays. Fortye-seven percent of piston-driven CHI publications reported cognitive testing. The Morris water maze was the most commonly used cognitive test after the piston-driven CHI, and deficits were commonly found (88%; SA 2.25). All three of the publications using fear conditioning after a piston-driven CHI reported an injury-induced deficit, whereas two of three publications using novel object recognition found an injury-induced deficit (SA 2.26). The Y/T maze (2/0), radial arm water maze (1/1), and Barnes maze (1/1) were each run in two publications ($n = $ deficit/no deficit; SA 2.26). The passive avoidance test with no deficit and a labyrinth maze test with a deficit were reported only once (Fig. 7B; SA 2.26).

Piston-driven closed head injury model: affective behavior testing. Affective behavior changes in different affective behaviors were reported in 19% of the piston-driven models ($n = 8$). When these tests were conducted, three of four found deficits in the elevated plus maze (3/1; SA 2.27) and two of three found social deficits (Fig. 7C; SA 2.28). One other affective behavior test was conducted in this group, a sucrose preference task, in which a deficit was found after injury (385).

Piston-driven closed head injury model: histopathology. Histopathology was reported in 74% of the piston-driven CHI publications we reviewed. Cell or tissue changes were reported in 9 of 10 publications (SA 2.29). Axonal injury was reported in 13 of 14 publications (SA 2.30). Gliosis was reported in 19 of 19 publications (SA 2.31). Three publications reported injury-induced alterations in myelin (SA 2.32). The other histopathological endpoints that we noted included blood–brain barrier alterations (1/
was the reflex hammer model. Although some of these models, which follows, will go from the most to the least used models, we organized these models based on the biomechanical mechanism or type of device used to cause the injury. As shown in Figure 2C, the most commonly used of these “other” models was the rotational injury models (SA 3.1), whereas the least widely used was the reflex hammer model. Although some of these models date back to the 1940s, it is still important to consider these older and less-used methods given that these studies are informative on how mTBIs have been modeled over time. Our review of these models, which follows, will go from the most to the least used (Fig. 2C).

The group of “other” models with the most publications are those that used a modified rat trap to induce mTBI. Two models were developed that we defined as projectile models. The Walter Reed Army Institute of Research developed a Fall-type injury model (SA 3.1) produced an injury by using a spring-loaded launching arm that strikes a moment arm. This moment arm causes the device to rotate with the animal’s head in it, thus causing the injury. The head is fixed after induction of anesthesia, and no incision is made to the scalp. In a similar model, Rostami and colleagues induced a rotational injury in anesthetized rats by placing the animal with an exposed skull in the injury device and hitting a bar within the device to cause rotation of the animal’s head (SA 3.1). Of the rotational injury models, two publications used females, whereas four used males. All six publications used adult rats. When reported, both models resulted in low mortality when reported with long righting reflex latencies of over 10 min.588,389 NSS was performed in one publication, and no deficits were found after injury.

Spring-loaded injury devices—used pre-1990s—are another method used to induce mTBI. One of these models uses a modified rat trap to induce injury. No anesthesia was used in this model, and the injury was induced onto the intact scalp of the rat. The injury used the spring-loaded rat trap with a modified knob on the end to hit the midline of the adult male rat head. Mortality with this model was reported in one publication between 0% and 5%, and in another 5–30%, and when a righting reflex was reported, it was between 1 and 10 min. Another model used a coiled spring-loaded gun to induce mTBI. With this model, a helmet was secured to the skull of the adult male rats. Mortality in this model was 5–30%, with a righting reflex of 1–10 min.

Fall-type injury models have the animals fall onto an immovable surface. The authors of these models speculate that this model may more closely mimic certain head trauma cases in humans with the head moving and hitting a stationary object. These injuries were induced both with and without anesthesia, but always to the scalp. The injury was induced when the animal’s head (midline) hit the stationary object at the bottom of the fall. Male (n = 2) and female (n = 1) adult rats were used with these models. Mortality and NSS were not reported with this model. Righting reflex 1–10 min was reported in two publications.

A pendulum injury model is another older model used to induce mTBI. In all of these publications, the animals were anesthetized. One publication did not fix the head whereas the other two used a bite bar to secure the head. All injuries were to the scalp of rats, and only adult males were used. No mortality rates were reported, and when a righting reflex was reported, the latency was 1–10 min. NSS was reported with deficits after mTBI in one publication.

Two models were developed that we defined as projectile models. The Walter Reed Army Institute of Research developed a model called the WRAIR Projectile Concussive Impact model. In this model, anesthetized animals are placed on their back on a movable platform above a heating unit. Within the heating unit, they place a microcentrifuge tube filled with dry ice with a secure cap, causing the ice to sublime, and the pressure causes the cap to be shot off and hit the helmet from below. The head is not fixed, but the body of the animal is held in place with an elastic band. This model used adult, male rats that were anesthetized and impacted laterally on the intact skull with a helmet. One other model from 1984 used a projectile to induce mTBI in adult male rats. In this model, a dart was shot at midline of the exposed scalp of an anesthetized animal. Mortality rates and the NSS were not reported for these models. Only one publication reported a righting reflex latency of 1–10 min.

FIG. 7. Outcome measures for piston driven injury models. Common tests typically reported for motor function (A), cognitive function (B), affective behaviors (C), and histological measures (D) were reported. Numbers indicate the number of studies with / without deficits.

1), inflammation (2/0), caspase activation (1/0), and complement activation (1/0; n = deficit/no deficit; Fig. 7D; SA 2.33).

“Other” models

The last broad class of mTBI models we defined as “other” models. We organized these models based on the biomechanical mechanism or type of device used to cause the injury. As shown in Figure 2C, the most commonly used of these “other” models was the rotational injury models (SA 3.1), whereas the least widely used was the reflex hammer model. Although some of these models date back to the 1940s, it is still important to consider these older and less-used methods given that these studies are informative on how mild TBIs have been modeled over time. Our review of these models, which follows, will go from the most to the least used (Fig. 2C).

The group of “other” models with the most publications are associated with a rotational biomechanical mechanism. Two models have been developed that utilized rotation to induce mTBI.
MicroTBI is a unique surgical technique used to cause increased pressure to the surface of the brain. This technique first surgically thins the skull of the mice and then applies pressure for a certain period to cause a brain injury. The head is fixed within a stereotactic frame through the injury procedure. Animals are anesthetized, the injury is caused laterally on the left somatosensory cortex of adult male mice. Mortality, righting reflex, and the NSS were not reported with this model.

The Maryland model of mTBI uses the energy of steel ball rolling down a 2.1-m track, hitting a coupling device that causes the impact to be centered on the malar processes to impact the front of the head. Rats are anesthetized and taped in place to reduce movement. The skull is not exposed in this model; however, surgery is done in order to expose the malar processes in which the injury device is positioned. The head is fixed in place within the device and is not free to move after the impact. Both publications with this model used adult male rats. One publication reported a mortality rate of 0–5% and the other reported no deficit in the NSS. Righting reflex was not reported for this model.

Finally, one model from 1997 used a rubber reflex hammer that is fixed to a pivot for injury production. This injury was induced onto the intact scalp of adult of anesthetized adult male rats. Mortality, righting reflex, and the NSS were not reported with this model.

“Other” model: model and animal-specific common data elements. In this group as a whole, anesthesia was used in 80% of publications (Fig. 8A; SA 3.2), and the head was fixed in 84% of publications (SA 3.3). Different impact locations were used; 24% scalp with a helmet; 12% on the skull with a helmet; 44% to the intact scalp; and 20% to the skull (Fig. 8B; SA 3.4–3.7). Rats were used in 88% of publications (Fig. 8C; SA 3.8). A majority of the publications (76%) used male animals, regardless of species (Fig. 8D; SA 3.9). Of the publications that used females, one used both males and females and they did look at sex differences in their outcomes. All of these publications used adult animals.

“Other” model: injury-induced functional and histopathological changes. Behavioral outcomes were collected for these models as well. Motor behaviors were reported in 28% of these “other” models. The balance beam test commonly found deficits (3/2) (n = deficit/no deficit), and in one publication in the open field test (Fig. 8E; SA 3.10). Rotarod was tested in one publication, and no deficits were found (SA 3.11). Other behavioral tests conducted included incline plane (1/0), gait analysis (1/0), and vision changes (1/0; n = deficit/no deficit; SA 3.12). Cognitive outcomes were reported in 24% of these publications (Fig. 8F). Testing in the main measurements was only observed for the Morris water maze (0/4), the radial arm maze (1/0), and novel object recognition (1/0; n = deficit/no deficit; SA 3.13). No other cognitive testing was reported in any of these “other” models. Of the common affective behavior tests, only the elevated plus maze was reported (2/1; n = deficit/no deficit; Fig. 8G; SA 3.14).

Histology, much more common in this category as compared to behavioral testing, was reported in 52% of publications (Fig. 8H). Cell and tissue changes were found in six publications, with one publication finding no deficits (SA 3.15). Similarly, axonal injury histological marker deficits were found in five publications, with two finding no deficits (SA 3.16). Gliosis activation was tested in five publications, and four found deficits while one found none.

FIG. 8. “Other” models common data elements. Most publications used anesthesia (A). Impact locations varied between models (B). However, most publications used males (C), and rats (D). Motor function (E), cognitive function (F), affective behaviors (G), and histological changes (H) were recorded for all “other” models. Numbers indicate the number of studies with / without deficits. Total numbers are greater than the 25 total publications in (C) and (D) because several publications reported using more than one sex and species. N.R., not reported. Color image is available online.
Discussion

In this systematic review, we identified and screened 1890 publications and summarized 402 original scientific reports of rodent CHI models of mTBI. We provide a summary of the common data elements used in these mTBI models to help define the current state of the field of rodent pre-clinical mTBI models. Identifying the common data elements is essential for big data efforts, such as the Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system (fitbir.nih.gov). We believe that our review will provide a framework for future research by summarizing the similarities and differences between models of CHI for mTBI, in both the ways the models were conducted and major classes of outcomes that were measured. Moreover, this review highlights the need for a consensus agreement on the best practices for pre-clinical models of mTBI CHI to both help new investigators move into the field and provide some degree of standardization of the common data elements used across laboratories. In addition to our review of the common data elements and outcome variables, excellent past reviews have discussed the TBI models of all severity types and comprehensively looked specifically at strengths and weaknesses of the different TBI models. We recommend that the interested reader consider the following reviews,5,414–422

In comparison to pre-clinical models of moderate-to-severe TBI, the number of publications attempting to model mild TBI is much smaller in number. At the same time, there is currently increased excitement in the field for developing mTBI models, in part because of the alarming number of people that suffer a mTBI, and the appreciation that an mTBI can have a lasting negative impact on the health of the brain. As new models are developed and characterized, they will add significantly to our understanding of the natural history of mTBI and how different biomechanical forces alter that history. Our review will help place emerging data into a historical context. By comparing how the values of injury model common data elements vary, and thus result in similar or disparate outcomes, can help to identify the most important aspects of the model that are leading to increased variability or are critical for causing a particular histopathological or functional outcome.

Before the early 1980s, there were no commercially available experimental models of TBI, which accounts for many of the “other” models found from our search criteria (Fig. 2D). Further, during this time period, many researchers were using cats and dogs to study TBI423 and therefore would have been excluded from this review that pertains specifically to rodent models: a potential limitation of our review.

In 1989, a model was produced and marketed by General Motors Research Laboratory that changed the trajectory of TBI research.514 The production of this piston-driven model was the early precursor to the CCI model—described initially in ferrets and later adapted for use in rodents.724 We mention the General Motors model here because of its contribution to commercially available models. In 2007, the Impact OneTM was introduced to the market as a cheaper, user-friendly, and more space economical version of a piston impactor, which again changed the trajectory of TBI research.525 Introduced by Marmarou and colleagues in 1994,179 the weight drop model was another major advancement in the field of CHI, given that the device itself was easily producible in individual labs and continues to be widely used in the TBI field.

The presence of many different models can be a strength given that the differences between each one provides an opportunity to study varying mechanics of injury. We recognized that common data elements, which we currently view as important, were left out of many publications. For example, weight drop publications often did not include all details about the foam used to support the animals. It is known that specific foams can be used a finite number of times with a specific amount of time between use before the mechanical properties change.426 Thus, the understanding of the mechanical properties of the foam are important to report for future studies to ensure reproducibility. Similarly, within the piston-driven models, not all articles reported the impactor tip shape. In the CCI model, use of a flat or a rounded impact tip was found to change the progression and severity of the injury427; thus, the shape of the impact tip is important to know for understanding the injury produced. Although the surface of the brain is not exposed for the injury models in this review, it is reasonable to assume that the same principle will apply to CHIs. We mention these examples not to suggest that publications we reviewed which failed to report foam properties or impactor tip shape are flawed studies. For many of these studies, it was unknown at the time that foam properties or impactor tip shape were important. Nevertheless, having well-defined reporting standards for future studies will improve our ability to make cross-study comparisons. Along with ongoing efforts such as FITBIR, which will define national common data element reporting standards, this review will also help in providing context to the standards.

Future directions

A striking finding from this work is the general lack of female animals used in mTBI models. This creates a huge gap in the understanding of brain injury responses specific to females. In 2000, a meta-analysis was conducted on clinical TBI studies which indicated poorer outcomes for females after a TBI.428 Differences between sex hold true also with pre-clinical animal model TBI.429 Many studies are not statistically powered to analyze the data by sex, given that the effect of sex may not be a specific aspect of their hypothesis. Nevertheless, for studies that include both male and female animals, future big data efforts of merging studies to look for effects of sex will only be possible if more researchers include both sexes in their studies.

Another major gap identified by this systematic review is the lack of both models of pediatric and geriatric mTBI. The CDC indicates that the rates of mTBI are at least several times higher in children compared to adults.1 Further, higher rates of mTBI are noted in the geriatric population (>65 years of age) compared to adults.3 Future studies addressing similarities and dissimilarities between adult animals and animals at the opposite ends of the aging spectrum will be useful to understand what aspects, if any, of the adult preclinical mTBI models are relevant to these two most at-risk patient populations.

Of the various dependent variables measured and collected in our review, we also collected the time point at which each publication looked at their variable. From this information, we found that very few of the 403 publications looked further than 1 month after mTBI. With the CDC reporting that around 5.3 million individuals live with a permanent TBI-related disability, the lack of long-term studies in the literature is a major gap that needs to be filled in the field.1
Limitations

Not only within the context of this review, but in the TBI field as a whole, the definition of mTBI can vary from study to study. Most often, mTBI and concussion are used interchangeably. Experts have attempted to establish universal guidelines, but they have only been able to agree on the fact that mTBI represents a “change in brain activity from a traumatic force.” Changes in brain function can be so subtle that they may be difficult to detect, as observed in some of the publications included in this review in which no deficits in behavior or histological measures could be found after a traumatic blow to the head of a rodent. While we attempted to only include publications that were mild, we relied on the author’s criteria for a mild injury, which can be rather varied.

The guideline for systematic reviews published by PRISMA includes a section to address bias within and between the articles used for the review. We did not address the quality of the publications included in the final analysis. The aim of this review was to compile a list of closed head mTBI rodent models and simply provide which tests have been done within those publications. Future work may use the models found from this review and retrieve information from the publications about the time course of pathology or behavior changes noted and compare across studies.

When outcome measures were recorded from the 402 publications, certain tests, such as the open field and the passive avoidance test, were kept within one category, either motor or cognitive respectively. These tests have multiple aspects, however, that can measure different parts of rather complex behaviors. Further investigation to determine which factor was the main purpose of the test for each article’s experimental design is warranted.

Conclusion

We have compiled over 400 articles all using a closed head mild injury model to study TBI in rodents. Not only are all of these articles now in one place, but further information about the common data elements of the injury protocol, the animals used, and the outcomes measured have also been compiled and summarized. We believe that this review will be helpful for understanding where the closed head mTBI field has been, where gaps are present that need to be addressed, and what the future holds for the field.

Acknowledgments

C.N.B. was supported, in part, by a Kentucky Spinal and Head Injury Trust trainee fellowship. Research reported in this publication was supported by the National Institutes of Health under award numbers R00 AG044445 (to A.D.B.) and P30 GM110787 (to A.D.B.). The content is solely the responsibility of the authors and does not represent the official views of the funding organizations.

Supplementary Material

Supplementary Appendix

Author Disclosure Statement

No competing financial interests exist.

References

1. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. (2003). Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem. CDC: Atlanta, GA.
2. McKee, A.C., and Daneshvar, D.H. (2015). The neuropathology of traumatic brain injury. Handb Clin. Neurol. 127, 45–66.
3. Voss, J.D., Connolly, J., Schwab, K.A., and Scher, A.I. (2015). Update on the epidemiology of concussion/mild traumatic brain injury. Curr. Pain Headache Rep. 19, 32.
4. Coronado, V.G., Haileyesus, T., Cheng, T.A., Bell, J.M., Haarbaeur-Knudsen, J., Lionbarger, J.M., Flores-Herrera, J., McGuire, L.C., and Gilchrist, J. (2015). Trends in sports- and recreation-related traumatic brain injuries treated in US emergency departments: the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) 2001–2012. J. Head Trauma Rehabil. 30, 185–197.
5. DeWitt, D.S., Perez-Polo, R., Hulsebosch, C.E., Dash, P.K., and Robertson, C.S. (2013). Challenges in the development of relevant models of mild traumatic brain injury. J. Neurotrauma 30, 688–701.
6. Nokkari, A., Mouhieddine, T.H., Itani, M.M., Abu-Bheir, W., Daoud, G., Zhu, R., Mechref, Y., Soueid, J., Al Hariri, M., Mondello, S., Jaffa, A.A., and Kohiessy, F. (2015). Characterization of the Kalikrein-Kinin system post chemical neuronal injury: an in vitro biochemical and neuroproteomics assessment. PLoS One 10, e1012601.
7. Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G.: PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097.
8. Courtney, A., and Courtfey, M. (2015). The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanicalizing factors. Front. Neurol. 6, 221.
9. Abookasis, D., Shochat, A., and Mathews, M.S. (2013). Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy. J. Biomed. Opt. 18, 045003.
10. Abookasis, D., Volkov, B., and Mathews, M.S. (2013). Closed head injury-induced changes in brain pathophysiology assessed with near-infrared structured illumination in a mouse model. J. Biomed. Opt. 18, 116007.
11. Adeleye, A., Shohami, E., Nachman, D., Alexandrovich, A., Trembovler, V., Yaka, R., Shoshan, Y., Dhawan, J., and Biegon, A. (2010). D-Cycloserine improves functional outcome after traumatic brain injury with wide therapeutic window. Eur. J. Pharmacol. 629, 25–30.
12. Adelson, P.D., Jenkins, L.W., Hamilton, R.L., Robichaud, P., Tran, M.P., and Kochanek, P.M. (2001). Histopathologic response of the immature rat to diffuse traumatic brain injury. J. Neurotrauma 18, 967–976.
13. Al-Samsam, R.H., Alessandri, B., and Bullock, R. (2000). Extra-cerebral N-acetyl-aspartate as a biochemical marker of the severity of neuronal damage following experimental acute traumatic brain injury. J. Neurotrauma 17, 31–39.
14. Albert-Weissenberger, C., Stetter, C., Meuth, S.G., Gobel, K., Bader, M., Siren, A.L., and Kleinschmit, C. (2012). Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation. J. Cereb. Blood Flow Metab. 32, 1747–1756.
15. Ali, A., Konakondla, S., Zwagerman, N.T., Peng, C.Y., Schafer, S., Ding, J.Y., Dornbos, D., Sikharam, C., Geng, X.K., Guthikonda, M., Kreipke, C.W., Rafols, J.A., and Ding, Y.C. (2012). Glycerol accumulation in edema formation following diffuse traumatic brain injury. Neurol. Res. 34, 462–468.
16. Allitt, B.J., Johnstone, V.P.A., Richards, K., Yan, E.B., and Rajan, R. (2016). Progesterone exacerbates short-term effects of traumatic brain injury on supragranular responses in sensory cortex and overexcites infragranular responses in the long term. J. Neurotrauma 33, 375–389.
17. Arakawa, S., Nakamura, S., Kawashima, N., Nishiike, S., and Okayama, S. (1995). Antagonizing effects of VA-4045 on reduced activity of rat locus coeruleus neurons following head injury or intravenous injection of clonidine. Life Sci. 57, 1803–1810.
18. Arican, N., Kaya, M., Yorulmaz, C., Kalayci, R., Ince, H., Cuckuc, M., Financi, S.K., and Elmas, I. (2006). Effect of hypothermia on blood-brain barrier permeability following traumatic brain injury in chemically ethanol-treated rats. Int. J. Neurosci. 116, 1249–1261.
19. Arien-Zakay, H., Gincberg, G., Nagler, A., Cohen, G., Liraz-Zaltsman, S., Trembovler, V., Alexandrovich, A.G., Matok, L., Galski, H., Elchalal, U., Lelkes, P.I., Lazarovici, P., and Shohami, E. (2014). Neurotherapeutic effect of cord blood derived CD45(+) hematopoietic cells in mice after traumatic brain injury. J. Neurotrauma 31, 1405–1416.
Bodjarian, N., Jamali, S., Boisset, N., and Tadie, M. (1997). Strong
tumoral mitochondrial succinate dehydroge-
nase activity after brain trauma. Int. J. Neurosci. 114, 217–227.

Bouaz, P., Millet, A., Boue, Y., Pernet-Gallay, K., Trouve-Buisson,
T., Gaide-Chevronnay, L., Barbier, E.L., and Payen, J.F. (2013).
Changes in brain tissue oxygenation after treatment of diffuse trau-
matic brain injury by erythropoietin. Crit. Care Med. 41, 1316–1324.

Bree, D., and Levy, D. (2018). Development of CGRP-dependent
pains and headache related to behaviours in a rat model of concussion:
implications for mechanisms of post-traumatic headache. Cepha-
lalgia 38, 246–258.

Buchele, F., Moraw ska, M.M., Schregelm, S.R., Penner, M.,
Muser, M., Baumann, C.R., and Noain, D. (2016). Novel rat model of
weight drop-induced closed diffuse traumatic brain injury compatible
with electrophysiological recordings of vigilance states. J. Neuro-
trauma 33, 1171–1180.

Buki, A., Koizumi, H., and Povlishock, J.T. (1999). Moderate post-
traumatic hypothermia decreases early calpain-mediated proteolysis
and concomitant cytoskeletal compromise in traumatic axonal injury.
Exp. Neurol. 159, 319–328.

Byer, N., Habgood, M.D., Callaway, J.K., Malakooti, N., Potser, A.,
Kossman, T., and Morganti-Kossmann, M.C. (2007). Transient
neuroprotection by minocycline following traumatic brain injury is
associated with attenuated microglial activation but no changes in
cell apoptosis or neutrophil infiltration. Exp. Neurol. 204, 220–233.

Caner, H., Can, A., Atalay, B., Baturad, A.H., Kilinc, K., Bawke, M.,
and Atinons, N. (2004). Early effects of mild brain trauma on the
cytoskeletal proteins neurofilament(160) and MAP(2), and
the preventive effects of mexilinate. Acta Neurochirurg. 146, 611–621.

Carron, A.M., and Stephenson, R. (2015). Sleep deprivation does not
affect neuronal susceptibility to mild traumatic brain injury in the rat.
Nat. Sci. Sleep 7, 63–72.

Carron, S.F., Yan, E.B., Alwis, D.S., and Rajan, R. (2016). Differential
susceptibility of cortical and subcortical inhibitory neurons and
astrocytes in the long term following diffuse traumatic brain injury. J.
Comp. Neurol. 524, 3530–3560.

Chen, Y., Lomnitski, L., Michaelson, D.M., and Shohami, E. (1997).
Motor and cognitive deficits in apolipoprotein E- deficient mice after
closed head injury. Neuroscience 80, 1255–1262.

Chen, M.F., Huang, T.Y., Kuo, Y.M., Yu, L., Chen, H.I., and Jen,
C.Y.J. (2013). Early postinjury exercise reverses memory deficits and
retards the progression of closed-head injury in mice. J. Physiol. 591, 985–1000.

Chorny, I., Bsaorai, R., Artru, A.A., Talmor, D., Benkoviz, V., Roy-
blat, L., and Shapira, Y. (1999). Albumin or hetastarch improves
neurological outcome and decreases volume of brain tissue necrosis
but not brain edema following closed-head trauma in rats. J. Neuro-
surg. Anesthesiol. 11, 273–281.

Cohen-Yeshurun, A., Tremblovler, V., Alexandrovich, A., Ryberg,
E., Greasley, P.J., Mechoulam, R., Shohami, E., and Leker, R.R. (2011).
N-arachidonoyl-L-serine is neuroprotective after traumatic brain
injury by reducing apoptosis. J. Cereb. Blood Flow Metab. 31, 1768–1777.

Çoşak, T., Duman, C., Baman, B., Aydin, A., Özbek, A., Yildiz, K., and
Bicer, U. (2010). Ischemia modified albumin levels following
mild closed head trauma in the rat. Turkiye Klinikleri Tip Bilimleri
Dergisi 30, 1171–1176.

Collins-Praino, I.E., Arulsamy, A., Katharesan, V., and Corrigan, F. (2018).
The effect of an acute systemic inflammatory insult on the chronic
effects of a single mild traumatic brain injury. Behav. Brain
Res. 336, 22–31.

Corrigan, F., Vink, R., Blumcrbergs, P.C., Masters, C.L., Caparr, R.,
and van den Heuvel, C. (2012). Characterisation of the effect of
knockout of the amyloid precursor protein on outcome following
mild traumatic brain injury. Brain Res. 1451, 87–99.

Costa, T., Constantino, L.C., Mendonca, B.P., Pereira, J.G., Hercu-
lano, B., Tasca, C.I., and Boeck, C.R. (2010). N-Methyl-D-aspartate
preconditioning improves short-term motor deficits outcome after
mild traumatic brain injury in mice. J. Neurosci. Res. 88, 1329–1337.

Dorgel, N., Jamali, S., Boisset, N., and Tadie, M. (1997). Strong
effect of GFAP mRNA in rat hippocampus after a closed-head
injury. Neuropore 8, 3951–3956.
56. Crack, P., Gould, J., Bye, N., Ross, S., Ali, U., Habgood, M., Morganti-Kossman, C., Saunders, N., and Hertzog, P.; Victorian Neurotrauma Research Group. (2009). The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline. J. Neural Transm. 116, 1–12.

57. Cereley, C.E., Wozniak, D.F., Bayly, P.V., Olney, J.W., and Lewis, L.J. (2006). Multiple episodes of mild traumatic brain injury result in impaired cognitive performance in mice. Acad. Emerg. Med. 11, 809–819.

58. Cui, C.M., Gao, J.L., Cui, Y., Sun, L.Q., Wang, Y.C., Wang, K.J., Li, R., Tian, Y.X., and Cui, J.Z. (2015). Chloroquine exerts neuroprotection following traumatic brain injury via suppression of inflammation and neuronal autopagic death. Mol. Med. Rep. 12, 2323–2328.

59. Czigner, A., Mihaly, A., Farkas, O., Buki, A., Krisztin-Peva, B., Dobo, E., and Barzo, P. (2004). Dynamics and regional distribution of c-fos protein expression in rat brain after a closed head injury. Int. J. Mol. Med. 14, 247–252.

60. Czigner, A., Mihaly, A., Farkas, O., Buki, A., Krisztin-Peva, B., Dobo, E., and Barzo, P. (2007). Kinetics of the cellular immune response following closed head injury. Acta Neurochirurg. 149, 281–289.

61. De Oliveira, P.A., Ben, J., Matheus, F.C., Schwarzbold, M.L., Moreira, E.L.G., Rial, D., Walz, R., and Prediger, R.D. (2017). Moderate traumatic brain injury increases the vulnerability to neuroroxygenosis induced by systemic administration of 6-hydroxydopamine in mice. Brain Res. 1663, 78–86.

62. Dehghan, F., Hadad, M.K., Asadikram, G., Najafipour, H., and Shahrokhi, N. (2013). Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: role of oxidative stresses. Arch. Med. Res. 44, 251–258.

63. Ding, J.Y., Kreipke, C.W., Schafer, P., Schafer, S., Speirs, S.L., and Rafols, J.A. (2009). Synapse loss regulated by matrix metalloproteinasises in traumatic brain injury is associated with hypoxia inducible factor-1 alpha expression. Brain Res. 1268, 125–134.

64. Ding, J.Y., Kreipke, C.W., Speirs, S.L., Schafer, P., Schafer, S., and Rafols, J.A. (2009). Hypoxia-inducible factor-1 alpha signaling in aquaporin upregulation after traumatic brain injury. Neurosci. Lett. 453, 68–72.

65. Ding, K., Wang, H.D., Xu, J.G., Li, T., Zhang, L., Ding, Y., Zhu, L., He, J., and Zhou, M.L. (2014). Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the NrF2-ARE signaling pathway as a potential mechanism. Free Radic. Biol. Med. 73, 1–11.

66. Ding, K., Wang, H.D., Wu, Y., Zhang, L., Xu, J.G., Li, T., Ding, Y., Zhu, L., and He, J. (2015). Rapamycin protects against apoptotic neuronal death and improves neurologic function after traumatic brain injury in mice via modulation of the mTOR-p53-Bax axis. J. Surg. Res. 194, 239–247.

67. Dick, T., Tal-Orr, P., Erlich, S., Mizrahi, L., Alexandrovich, A., Shohami, E., and Pinkas-Kramarski, R. (2005). Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J. Neurotrauma 22, 750–762.

68. Dore-Duffy, P., Owen, C., Balabanan, R., Murphy, S., Beaumont, T., and Rafols, J.A. (2000). Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res. 60, 55–69.

69. Doulames, V.M., Vilcans, M., Lee, S., and Shea, T.B. (2015). Social stressors following closed head injury in mice: a model of indirect traumatic optic neuropathy. PLos One 13, e0197346.

70. Esen, F., Erdem, T., Aktan, D., Kaya, M., and Telci, L. (2003). Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. J. Neurosurg. Anesthesiol. 15, 119–125.

71. Esquivel, A.O., Sherman, S.S., Bir, C.A., and Lemos, S.E. (2017). The interaction of intramuscular ketorolac (toradol) and concussion in a rat model. Ann. Biomed. Eng. 45, 1581–1588.

72. Evanson, N.K., Guilhame-Correa, F., Herman, J.P., and Goodman, M.D. (2018). Optic tract injury after closed head traumatic brain injury in mice: a model of indirect traumatic optic neuropathy. PLoS One 13, e0197346.

73. Ezaki, J., Shimada, R., Shihuya, M., and Kibayashi, K. (2016). Hippocampal neuronal degeneration in the traumatic brain injury mouse: non-trivial effect of scalp incision. Neuror. Res. 38, 994–1002.

74. Engelborghs, K., Verlroy, J., Van Deuren, B., Van Reempts, J., and Borgers, M. (1997). Intracranial pressure in a modified experimental model of closed head injury. Acta Neurochir. Suppl. 70, 123–125.

75. Engelborghs, K., Haseldonkx, M., Van Reempts, J., Van Rossem, K., Wouters, L., Borgers, M., and Verlroy, J. (2000). Impaired autoregulation of cerebral blood flow in an experimental model of traumatic brain injury. J. Neurotrauma 17, 667–677.

76. Erlich, S., Shohami, E., and Pinkas-Kramarski, R. (2000). Closed head injury induces up-regulation of ErBb-4 receptor at the site of injury. Mol. Cell. Neurosci. 16, 597–608.

77. Erlich, S., Alexandrovich, A., Shohami, E., and Pinkas-Kramarski, R. (2007). Rapamycin is a neuroprotective treatment for traumatic brain injury in mice. J. Neurotrauma 24, 973–979.

78. Foda, M.A.A., and Marmarou, A. (1994). A new model of diffuse axonal injury in rats 2: morphological characterization. J. Neurosurg. 80, 301–313.

79. Forschner, P., Reinman, R., Anastasiadou, S., Haffner-Luntzer, M., Matsumura, Y., Bolognesi, A., and Inagaki, N. (2005). Optic tract injury after closed head traumatic brain injury in mice: effect of early versus delayed conservative fluid therapy. J. Trauma 43, 667–672.

80. Flierl, M.A., Stahel, P.F., Beauchamp, K.M., Morgan, S.J., Smith, W.R., and Shohami, E. (2009). Mouse closed head injury model induced by a weight-drop device. Nat. Protoc. 4, 1328–1337.

81. Foda, M.A.A., and Marmarou, A. (1994). A new model of diffuse brain injury in rats 2: morphological characterization. J. Neurosurg. 80, 301–313.

82. Forstner, P., Oggelli, S., Smeraldi, A., and Bonaccorso, F. (2005). Differential effects of glucocorticoid and mineralocorticoid antagonism on anxiety behavior in mild traumatic brain injury. Behav. Brain Res. 312, 362–365.

83. Fujiki, M., Kubo, T., Katakura, T., Kaga, K., Iwashita, T., Abe, T., Ishii, K., and Kobayashi, H. (2008). Neurprotective effect of donepezil, a nicotinic acetylcholine-receptor agonist, on rats with concussive mild traumatic brain injury. J. Clin. Neurosci. 15, 791–796.

84. Gao, M., Dong, Q., Yao, H., Lu, Y.Z., Yang, Z.J., Xu, M.H., and Xu, R.X. (2017). Systemic administration of melatonin 1 hour after head trauma on brain edema and neurological outcome. J. Neurosurg. 85, 131–137.

85. Gao, M., Dong, Q., Yao, H., Lu, Y.Z., Xu, M.H., and Xu, R.X. (2018). Induced neural stem cells regulates complement activation in mouse traumatic brain injury. Mol. Immunol. 125.

86. Gao, M., Dong, Q., Yao, H., Lu, Y.Z., Ji, X.C., Zou, M.M., Yang, Z.J., Xu, M.H., and Xu, R.X. (2017). Induced neural stem cells regulates complement activation in mouse traumatic brain injury. Mol. Immunol. 125.

87. Gao, M., Dong, Q., Yao, H., Lu, Y.Z., Ji, X.C., Zou, M.M., Yang, Z.J., Xu, M.H., and Xu, R.X. (2018). Induced neural stem cells regulates complement activation in mouse traumatic brain injury. Mol. Immunol. 125.

88. Gao, M., Dong, Q., Yao, H., Lu, Y.Z., Ji, X.C., Zou, M.M., Yang, Z.J., Xu, M.H., and Xu, R.X. (2017). Induced neural stem cells regulates complement activation in mouse traumatic brain injury. Mol. Immunol. 125.

89. Gao, M., Dong, Q., Yao, H., Lu, Y.Z., Ji, X.C., Zou, M.M., Yang, Z.J., Xu, M.H., and Xu, R.X. (2017). Induced neural stem cells regulates complement activation in mouse traumatic brain injury. Mol. Immunol. 125.

90. Gao, M., Dong, Q., Yao, H., Lu, Y.Z., Ji, X.C., Zou, M.M., Yang, Z.J., Xu, M.H., and Xu, R.X. (2017). Induced neural stem cells regulates complement activation in mouse traumatic brain injury. Mol. Immunol. 125.
93. Girgis, H., Palmier, B., Crocì, N., Soustrau, M., Plotkin, M., and Marchand-Leroux, C. (2013). Effects of selective and non-selective cyclooxygenase inhibition against neurologically deficit and brain oedema following closed head injury in mice. Brain Res. 1491, 78–87.

94. Goodman, M.D., Makley, A.T., Huber, N.L., Clarke, C.N., Friend, L.A.W., Schuster, R.M., Bailey, S.R., Barnes, S.L., Dorlac, W.C., Johansson, M.A., Lentsch, A.B., and Drants, T.A. (2011). Hypoxic hypoxia exacerbates the neuroinflammatory response to traumatic brain injury. J. Surg. Res. 165, 30–37.

95. Griesemer, D., and Mautes, A.M. (2007). Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells. J. Neurotrauma 24, 1823–1832.

96. Gregorianta, O.O., Pravdenkova, S.V., Andersen, B.J., and Desiderio, D.M. (1995). Distribution of opioid peptide concentrations in the rat pituitary following survivable closed head injury. Neurochem. Res. 20, 827–831.

97. Gu, Y., Zhao, Y., Qian, K., and Sun, M. (2015). Taurine attenuates hippocampal and corpus callosum damage, and enchances neurologic recovery after closed head injury in rats. Neuroscience 291, 331–340.

98. Guida, F., Boccella, S., Iannotta, M., De Gregorio, D., Giordano, C., Belardo, C., Romano, R., Palazzo, E., Scafuro, M.A., Serra, N., de Novellis, V., Rossi, F., Maione, S., and Luongo, L. (2017). Palmitoylethanolamide reduces neuroprotective behaviors by restoring cortical electrophysiological activity in a mouse model of mild traumatic brain injury. J. Neurotrauma 34, 2518–2528.

99. Gupta, R.K., and Prasad, S. (2016). Age-dependent alterations in the pattern of cerebral edema volume, and neurological status with rapid infusion of 0.45% saline or 5% dextrose in 0.9% saline after closed head trauma in rats. Anesth. Analg. 84, 554–559.

100. Guerrier, B., Talmor, D., Artru, A.A., Katchko, L., Geva, D., Gurman, G., and Shapira, Y. (1997). Brain edema, hemorrhagic necrosis volume, and neurological status with rapid infusion of 0.45% saline or 5% dextrose in 0.9% saline after closed head trauma in rats. Anesth. Analg. 84, 554–559.

101. Hakan, T., Toklu, H.Z., Biber, N., Ozevren, H., Solakoglu, S., Démirtürk, P., and Aker, F.V. (2010). Effect of COX-2 inhibitor, against closed head injury in the mouse. Eur. J. Pharmacol. 566, 127–135.

102. Heffernan, M.E., Huang, W., Sicard, K.M., Bratane, B.T., Sikoglu, Hayasaki, K., Marmarou, A., Barzo, P., Fatouros, P., and Corwin, F. (2015). Impulsivity and concussion in juvenile rats: examining molecular changes indicating inflammatory responses. J. Neurotrauma 32, 629–635.

103. Hehar, H., Yeates, K., Kolb, B., Escher, M.J. and Mychasiuk, R. (2015). Impulsivity and concussion in juvenile rats: examining molecular and structural aspects of the frontostriatal pathway. Plos One 10, e0139842.

104. Henninger, N., Dutzmann, S., Sicard, K.M., Rolland, R., Bardutzky, J., and Schwab, S. (2005). Impaired spatial learning in a novel rat model of mild cerebral concussion injury. Exp. Neurol. 195, 447–457.

105. Henninger, N., Dutzmann, S., Sicard, K.M., Kollmar, R., Bardutzky, J., and Schwab, S. (2005). Impaired spatial learning in a novel rat model of mild cerebral concussion injury. Exp. Neurol. 195, 447–457.
161. Liu, P., Li, Y.S., Quattermain, D., Boutajangout, A., and Ji, Y. (2013). Inhaled nitric oxide improves short term memory and reduces the inflammatory reaction in a mouse model of mild traumatic brain injury. Brain Res. 1522, 67–75.

162. Liu, Z.W., Wang, H.D., Shi, X.F., Li, L.W., Zhou, M.L., Ding, H., Yang, Y.Q., Li, X., and Ding, K. (2017). DL-3-n-butylthiophalide (NBPI) provides neuroprotection in the mice models after traumatic brain injury via Nrf2-ARE signaling pathway. Neurochem. Res. 42, 1375–1386.

163. Lomnitski, L., Kohen, R., Chen, Y., Shohami, E., Trembrovler, V., Vogel, T., and Michaelson, D.M. (2000). Increased levels of intracellular iron in the brains of ApoE-deficient mice with closed head injury. Exp. Toxicol. Pathol. 52, 177–183.

164. Lopez-Rodriguez, A.B., Acaz-Fonseca, E., Giatti, S., Caruso, D., Viveros, M.P., Melcangi, R.C., and Garcia-Segura, L.M. (2015). Changes in cannabisin receptor, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit. PLoS One 10, e0128782.

165. Lopez-Rodriguez, A.B., Acaz-Fonseca, E., Giatti, S., Viveros, M.P., Melcangi, R.C., and Garcia-Segura, L.M. (2016). Profiling neuroactive steroid levels after traumatic brain injury in male mice. Endocrinology 157, 3983–3993.

166. Lopez-Rodriguez, A.B., Acaz-Fonseca, E., Garcia-Segura, L.M., and Viveros, M.P. (2015). CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb. Cortex 25, 35–45.

167. Lopez-Rodriguez, A.B., Acaz-Fonseca, E., Spezzano, R., Giatti, S., Caruso, D., Viveros, M.P., Melcangi, R.C., and Garcia-Segura, L.M. (2016). Profiling neuroactive steroid levels after traumatic brain injury in male mice. Endocrinology 157, 3983–3993.

168. Libby, P., Libby, W., and Steinberg, G. (2014). Atherosclerosis: current concepts. Circulation 129, 2898–2914.

169. Lomnitski, L., Kohen, R., Chen, Y., Shohami, E., Trembrovler, V., Vogel, T., and Michaelson, D.M. (2000). Reduced levels of antioxidants in brains of apolipoprotein E-deficient mice following closed head injury. Pharmacol. Biochem. Behav. 56, 669–673.

170. Lomnitski, L., Chapman, S., Hochman, A., Kohen, R., Shohami, E., Chen, Y., Trembrovler, V., and Michaelson, D.M. (1999). Anti-oxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. Biochem. Biophys. Acta Mol. Basis Dis. 1453, 359–368.

171. Lomnitski, L., Nykska, A., Shohami, E., Chen, Y., and Michaelson, D.M. (2000). Increased levels of intracellular iron in the brains of ApoE-deficient mice with closed head injury. Exp. Toxicol. Pathol. 52, 177–183.

172. Lomnitski, L., Chapman, S., Hochman, A., Kohen, R., Shohami, E., Chen, Y., Trembrovler, V., and Michaelson, D.M. (1999). Anti-oxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. Biochem. Biophys. Acta Mol. Basis Dis. 1453, 359–368.

173. Lu, J., Moochhala, S., Kaur, C., and Ling, E.A. (2001). Cellular stress in mice after traumatic brain injury. J. Neuroimmune Pharmacol. 10, 356–363.

174. Lu, J., Moochhala, S., Kaur, C., and Ling, E.A. (2000). Changes in regional energy metabolism and regional blood flow in the brains of rats after mild traumatic brain injury via Nrf2-ARE signaling pathway. Neurochem. Res. 42, 1375–1386.

175. Lu, X.Y., Wang, H.D., Xu, Y.Q., Ding, K., and Li, T. (2014). Preclinical model of diffuse brain injury in rats 1: pathophysiology and biomechanics. J. Neurosurg. 80, 291–300.

176. Marschner, L., Schreurs, A., Lechat, B., Van Leuven, F., Mogensen, J., and Balschun, D. (2016). Mild traumatic brain injury of the TiaP301L mice results in an impairment of neural plasticity. Arch. Neurosci. 3, e38039.

177. Mayzler, O., Leon, A., Eilig, I., Fuxman, X., Benifla, M., Freixo, P.C., Gurevich, B., Agassi, R., Artru, A.A., and Shapira, Y. (2006). The effect of hypotonic (3%) saline with and without furosemide on plasma osmolality, sodium concentration, and brain water content after closed head trauma in rats. J. Neurosurg. Anesthesiol. 18, 24–31.

178. Michelson, A.M., Jadot, G., and Puget, K. (1988). Treatment of brain trauma with liposomal superoxide dismutase. Free Radic. Res. Commun. 4, 209–224.

179. Milman, A., Rosenberg, A., Weizman, R., and Pick, C.G. (2005). Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. J. Neurotrauma 22, 1003–1010.

180. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.

181. Marschner, L., Schreurs, A., Lechat, B., Mogensen, J., Roebroek, A., Ahmad, T., and Balschun, D. (2018). Single mild traumatic brain injury results in transiently impaired spatial long-term memory and altered search strategies. Behav. Brain Res. Feb 27. pii: S0166-4328(18)30269-4. doi: 10.1016/j.bbr.2018.02.040. [Epub ahead of print]

182. Marschner, L., Schreurs, A., Lechat, B., Mogensen, J., Roebroek, A., Ahmad, T., and Balschun, D. (2016). Mild traumatic brain injury of the TiaP301L mice results in an impairment of neural plasticity. Arch. Neurosci. 3, e38039.

183. Mayzler, O., Leon, A., Eilig, I., Fuxman, X., Benifla, M., Freixo, P.C., Gurevich, B., Agassi, R., Artru, A.A., and Shapira, Y. (2006). The effect of hypotonic (3%) saline with and without furosemide on plasma osmolality, sodium concentration, and brain water content after closed head trauma in rats. J. Neurosurg. Anesthesiol. 18, 24–31.

184. Michelson, A.M., Jadot, G., and Puget, K. (1988). Treatment of brain trauma with liposomal superoxide dismutase. Free Radic. Res. Commun. 4, 209–224.

185. Milman, A., Rosenberg, A., Weizman, R., and Pick, C.G. (2005). Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. J. Neurotrauma 22, 1003–1010.

186. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.

187. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.

188. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.

189. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.

190. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.

191. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.

192. Milman, A., Zohar, O., Maayan, R., Weizman, R., and Pick, C.G. (2008). DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur. Neuropsychopharmacol. 18, 181–187.
197. Mychasiuk, R., Hehar, H., Ma, I., Kolb, B., and Esser, M.J. (2015). The development of lasting impairments: a mild pediatric brain injury alters gene expression, dendritic morphology, and synaptic connectivity in the prefrontal cortex of rats. Neuroscience 288, 145–155.

198. Mychasiuk, R., Hehar, H., van Waes, L., and Esser, M.J. (2015). Direct age and prior injury status differentially alter behavioral outcomes following concussion in rats. Neurobiol. Dis. 73, 1–11.

199. Mychasiuk, R., Hehar, H., Candy, S., Ma, I., and Esser, M.J. (2016). The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. J. Neurosci. Methods 257, 168–178.

200. Nadler, V., Biegov, A., Beit-Yannai, E., Adamchik, J., and Shohami, E. (1995). 4SCa accumulation in rat brain after closed head injury: attenuation by the novel neuroprotective agent HU-211. Brain Res. 685, 1–11.

201. Nadler, Y., Alexandrovich, A., Grigorladis, N., Hartmann, T., Rao, K.S.J., Shohami, E., and Stein, R. (2008). Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia 56, 552–567.

202. Namjoshi, D.R., Cheng, W.H., Bashir, A., Wilkinson, A., Stukas, S., Martens, K.M., Whyte, T., Abeza, Z.A., McInnes, K.A., Crompt, P.A., and Wellington, C.L. (2017). Defining the biomechanical and biological threshold of murine mild traumatic brain injury using CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration). Exp. Neurol. 292, 80–91.

203. Nawashiro, H., Shima, K., and Chigasaki, H. (1995). Immediate cerebrovascular responses to closed-head injury in the rat. J. Neurotrauma 12, 189–197.

204. Nichols, J.N., Hagan, K.L., and Floyd, C.L. (2017). Evaluation of touchscreen chambers to assess cognition in adult mice: effect of training and mild traumatic brain injury. J. Neurotrauma 34, 2481–2494.

205. Nilsson, B., and Nordstrom, C.H. (1977). Rate of cerebral energy consumption in concussive head injury in the rat. J. Neurosurg. 47, 274–281.

206. Okuyama, S., Imagawa, Y., Ogawa, S., Araki, H., Otomo, S., Sakagawa, T., Yamada, S., and Shima, K. (1993). Effect of VA-045 on a closed head injury model in rats. Life Sci. 53, P273–P278.

207. Okuyama, S., Kawashima, N., Araki, H., Otomo, S., and Shima, K. (1994). Effects of an apovincaminic acid-derivative VA-045 on neuronal-activity in rat-brain stem reticular-formation. Life Sci. 55, 1577–1584.

208. Okuyama, S., Yamada, S., Ogawa, S., Kawashima, N., Tomisaka, S., Shima, K., and Kamata, K. (1996). Effect of VA-045 on central noradrenergic neuronal system in rats. Gen. Pharmacol. 27, 1013–1017.

209. Okuyama, S., Yamada, S., Ogawa, S., Shima, K., Kamata, K., and Tomisaka, K. (1997). Effect of VA-045, a novel apovincaminic acid derivative, on closed head injury-induced neurological dysfunction in aged rats. Neurosci. Res. 19, 300–304.

210. Ommaya, A.K., Geller, A., and Parsons, L.C. (1971). The effect of 4SCa accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res. 118, 1–11.

211. Otto, V.I., Stahel, P.F., and Morgan, M.C. (2001). Regulation of chemokines and chemokine receptors by H-1 NMR spectroscopy. J. Neurotrauma 24, 944–959.

212. Petronilho, F., Feier, G., de Souza, B., Gugelmi, C., Constantino, L.S., Walz, R., Quevedo, J., and Dall-Pizzol, F. (2010). Oxidative stress in brain according to traumatic brain injury intensity. J. Surg. Res. 164, 316–320.

213. Petrov, T., and Rafols, J.A. (2001). Acute alterations of endothelin-1 and iNOS expression and control of the brain microcirculation after head trauma. Neurol. Res. 23, 139–143.

214. Petrov, T., Underwood, B.D., Braun, B., Alousi, S.S., and Rafols, J.A. (2001). Upregulation of iNOS expression and phosphorylation of ε2alpha alpha are paralleled by suppression of protein synthesis in rat hypothalamus in a closed head trauma model. J. Neurotrauma 18, 799–812.

215. Pruneau, D., Chorny, I., Benkovitz, V., Artru, A., Roitblat, L., and Shapira, Y. (1999). Effect of LF 16-0687MS, a new nonpeptide bradykinin B-2 receptor antagonist, in a rat model of closed head trauma. J. Neurotrauma 16, 1057–1065.

216. Qian, G., Wang, J.-Y., Li, Z.Z., and Sun, M. (2014). Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain overactivation. Neuropsychopharmacol. Biol. Psychiatry 29, 922–927.

217. Qian, G., Wang, J.-Y., Li, Z.Z., Li, G.J., Gao, F., and Sun, M. (2014). Cognitive impairments accompanying rodent mild traumatic brain injury involve p53-dependent neuronal cell death and are ameliorated by the tetrahydrobenzothiazole PPT-alpha. PLoS One 8, e79837.

218. Rancan, M., Otto, V.I., Hans, V.H.J., Gerlach, L., Jork, R., Trentz, O., Kossmann, T., and Morganti-Kossmann, M.C. (2001). Upregulation of ICAM-1 and MCP-1 but not of MIP-2 and sensorimotor deficit in response to traumatic axonal injury in rats. J. Neurosci. Res. 63, 438–446.

219. Rachinsky, M., Pruneau, D., Artru, A.A., Kapuler, V., Alonchin, A., Smolanezki, Y., and Shapira, Y. (2001). The importance of kinin antagonist treatment timing in closed head trauma. J. Trauma 51, 944–948.

220. Rachmany, L., Tweedie, D., Rubovitch, V., Yu, Q.S., Li, Y.Z., Wang, J.Y., Pick, C.G., and Greig, N.H. (2013). Cognitive impairments accompanying rodent mild traumatic brain injury involve p53-dependent neuronal cell death and are ameliorated by the tetrahydrobenzothiazole PPT-alpha. PLoS One 8, e79837.

221. Rascouli, J., Leckhrajr, R., White, N.M., Findlay, E.S., Pilla, A.A., Strachan, B., and Casper, D. (2012). Attenuation of interleukin-1beta by pulsed electromagnetic fields after traumatic brain injury. Neurosci. Lett. 519, 4–8.

222. Ruozi, B., Belletti, D., Forni, F., Muresanu, D., Mossler, I., Shabet, A., and Pick, C.G. (2011). The effect of 4SCa accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res. 1364, 234–241.

223. Rosahl, S.K., Schuhmann, M.U., Thomas, S., Brinker, T., and Samii, M. (2001). Regulation of chemokines and chemokine receptors by H-1 NMR spectroscopy. J. Neurotrauma 24, 944–959.

224. Rosahl, S.K., Schuhmann, M.U., Thomas, S., Brinker, T., and Samii, M. (1998). Brain-stem auditory evoked potential monitoring in experimental diffuse brain injury. Acta Neurochir. Suppl. 71, 88–90.

225. Rooker, S., Jander, S., Stoll, G., Jorens, P.G., and Van Reempts, J. (2003). Continuous measurement of intracranial pressure in awake rats after experimental closed head injury. J. Neurosci. Methods 131, 75–81.

226. Roukoor, S., Jander, S., Stoll, G., Jorens, P.G., and Verlooy, J. (2003). Continuous measurement of intracranial pressure in awake rats after experimental closed head injury. J. Neurosci. Methods 131, 75–81.

227. Rozga, J., and Krupa, J. (2001). Upregulation of ICAM-1 and MCP-1 but not of MIP-2 and sensorimotor deficit in response to traumatic axonal injury in rats. J. Neurosci. Res. 63, 438–446.

228. Rubovitch, V., Shachar, A., Werner, H., and Pick, C.G. (2011). Does IGF-1 administration after a mild traumatic brain injury in rodents attenuate neuroinflammation? J. Neurotrauma 28, 446–455.

229. Schapira, Y. (1999). Effect of LF 16-0687MS, a new nonpeptide bradykinin B-2 receptor antagonist, in a rat model of closed head trauma. J. Neurotrauma 16, 1057–1065.

230. Stein, R., and Shohami, E. (2005). CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J. Cereb Blood Flow Metab. 25, 477–484.
L-lactide-co-glycolide) nanoparticles loaded with cerebrolysin display neuroprotective activity in a rat model of concussive head injury. CNS Neurol. Disord. Drug Targets 13, 1475–1482.

235. Sabir, M., Gaudreault, P.O., Freyburger, M., Massart, R., Blanchet-Cohen, A., Jaber, M., Gosselin, N., and Mongrain, V. (2015). Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice. Brain Behav. Immun. 47, 118–130.

236. Salberg, S., Yamakawa, G., Christensen, J., Kolb, B., and Mychasiuk, R. (2017). Assessment of a nutritional supplement containing resveratrol, prebiotic fiber, and omega-3 fatty acids for the prevention and treatment of mild traumatic brain injury in rats. Nutrioscience 365, 146–157.

237. Semple, B.D., Byrne, N., Ziebell, J.M., and Morganti-Kossmann, M.C. (2010). Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol. Dis. 34, 394–403.

238. Sen, S., Goldman, H., Morehead, M., Murphy, S., and Phillis, J.W. (1993). Oxypurinol inhibits free-radical release from the cerebral cortex of closed-head injured rats. Neurosci. Lett. 162, 117–120.

239. Shapira, Y., Artur, A.A., and Lam, A.M. (1992). Ketamine decreases nitric oxide in the plasma and brain regions in rats. J. Neurosurg. Anesthesiol. 10, 94–100.

240. Shapira, M., Licht, A., Milman, A., Pick, C.G., Shohami, E., and Eldar-Finkelman, H. (2007). Role of glycogen synthase kinase-3 beta in early depressive behavior induced by mild traumatic brain injury. Mol. Cell. Neurosci. 34, 571–577.

241. Sharma, A.C., Misra, N., Patr, R., Alden, K., Sam, A.D., Markiv, V.Z., Dujovny, M., and Ferguson, J.L. (1998). A differential response of diffuse brain injury on the concentrations of endothelin and nitric oxide in the plasma and brain regions in rats. Neurol. Res. 20, 632–636.

242. Sharma, H.S., Patnaik, R., Patnaik, S., Mohanty, S., Sharma, A., and Vannemreddy, P. (2007). Antibodies to serotonin attenuate closed head injury induced blood brain barrier disruption and brain pathology. Ann. N. Y. Acad. Sci. 1122, 295–312.

243. Sharma, H.S., Patnaik, R., Patnaik, S., Sharma, A., Mohanty, S., and Vannemreddy, P. (2010). Antibodies to dynorphin a (1-17) attenuate closed head injury induced blood-brain barrier disruption, brain edema formation and brain pathology in the rat. Acta Neurochir. Suppl. 106, 301–306.

244. Shatkaya, A., Chandran, R., Barry, E.S., Bhomia, M., Hutchinson, M.A., Balakathiresan, N.S., Grunberg, N.E., and Maheshwari, R.K. (2014). Identification of serum microRNA signatures for diagnosis of mild traumatic brain injury in a closed head injury model. PLoS One 9, e112019.

245. Shaw, N.A. (1985). A simple device for experimentally concussing the rat. Physiol. Behav. 35, 637–639.

246. Shein, N.A., Horowitz, M., Alexandrovich, A.G., Tsenter, J., and Shohami, E. (2005). Heat acclimation increases hypoxia-inducible factor 1 alpha and erythropoietin receptor expression: implication for neuroprotection after closed head injury in mice. J. Cereb. Blood Flow Metab. 25, 1456–1465.

247. Shein, N.A., Grigoriadou, N., Alexandrovich, A.G., Simeonidou, C., Spandou, E., Tsenter, J., Yatsis, I., Horowitz, M., and Shohami, E. (2008). Differential neuroprotective properties of endogenous and exogenous erythropoietin in a mouse model of traumatic brain injury. J. Neurotrauma 25, 112–123.

248. Shenag, M., Kassem, H., Peng, C., Schafer, S., Ding, Y.J., Fredrickson, V., Guthikonda, M., Kripke, C.W., Rafols, I.A., and Ding, Y. (2012). Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1alpha after traumatic brain injury (TBI). J. Neurol. Sci. 323, 134–140.

249. Sherman, M., Liu, M.M., Birnbaum, S., Wolf, S.E., Minej, J.P., and Gatson, J.W. (2016). Adult obese mice suffer from chronic secondary brain injury after mild TBI. J. Neuroinflammation 13, 171.
an alpha-secretase activator, reduces neuroinflammation and offers persistent neuroprotection following traumatic brain injury in mice. Neuropharmacology 67, 183–192.

272. Smith, D.W., Bailes, J.E., Fisher, J.A., Robles, J., Turner, R.C., and Mills, J.D. (2012). Internal jugular vein compression mitigates traumatic axonal injury in a rat model by reducing the intracranial slow wave. J. Neurotrauma 29, 740–746.

273. Song, Q., Xie, D.J., Pan, S.Y., and Xu, W.J. (2015). Rapamycin protects neurons from brain contusion-induced inflammatory reaction via modulation of microglial activation. Mol. Med. Rep. 12, 7203–7210.

274. Stahel, P.F., Kossmann, T., Margonti-Kossmann, M.C., Hans, V.H.I., and Barnum, S.R. (1997). Experimental diffuse axonal injury induces enhanced neuronal C3a receptor mRNA expression in rats. Mol. Brain Res. 50, 205–212.

275. Stahel, P.F., Kossmann, T., Margonti-Kossmann, M.C. (1997). A synergistic interaction between dopamine D1 and D2 receptor subtypes in the memory impairments induced by concussive brain injury (CBI) in mice. Behav. Brain Res. 83, 189–193.

276. Stahel, P.F., Kossmann, T., Margonti-Kossmann, M.C. (2000). Intracerebral complement C3a receptor (CD88) expression is regulated by TNF and lymphotixin-alpha following closed head injury in mice. J. Neuroimmunol. 109, 164–172.

277. Stahel, P.F., Kossmann, T., Margonti-Kossmann, M.C. (1997). Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J. Cereb. Blood Flow Metab. 20, 360–380.

278. Stepmann, B.D., Shah, A.S., Chiariello, R., Olsen, C.M., Budde, M.D., Stemper, B.D., and Kossmann, T. (2000). Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J. Cereb. Blood Flow Metab. 20, 360–380.

279. Stepmann, B.D., Shah, A.S., Chiariello, R., Olsen, C.M., Budde, M.D., and Stemper, B.D. (1999). Predictive value of injury volume as a biomarker of outcome following traumatic brain injury. J. Neurotrauma 16, 863–873.

280. Stone, J.R., Nolker, S.A., and Pavlischok, J.T. (1999). The visualization of a new class of traumatically injured axons through the use of a modified method of microwave antigen retrieval. Acta Neurobiol. 97, 335–345.

281. Sun, M., Zhao, Y.M., Gu, Y., and Zhang, Y.Z. (2015). Protective effects of taurine against closed head injury in rats. J. Neurotrauma 32, 66–74.

282. Suzuki, M., Nishina, M., Endo, M., Matsushita, K., Tetsuka, M., Shima, K., and Okuyama, S. (1997). Decrease in cerebral free magnesium concentration following closed head injury and effects of VA-045 in rats. Gen. Pharmacol. 28, 119–121.

283. Talmor, D., Royblat, L., Artru, A.A., Yuri, O., Koyfman, L., Lengvari, I., Povlishock, J.T., and Doczi, T. (2006). Postinjury administration of pituitary adenylate cyclase activating polypeptide (PACAP) attenuates traumatically induced axonal injury in rats. J. Neurotrauma 23, 686–695.

284. Tamas, A., Zsombok, A., Farkas, O., Reglodi, D., Pal, J., and Nabeshima, T. (1997). Effects of VA-045 on learning and memory deficits in traumatic brain injury (TBI)-induced retrograde and anterograde amnesia in mice. Br. J. Pharmacol. 122, 257–264.

285. Tang, Y.P., Noda, Y., and Nabeshima, T. (1997). A synergistic interaction between dopamine D1 and D2 receptor subtypes in the memory impairments induced by concussive brain injury (CBI) in mice. Behav. Brain Res. 83, 189–193.

286. Topçu, I., Gümuş, H., and Koyfman, L. (2013). The effects of lornoxicam on brain edema and blood brain barrier following diffuse traumatic brain injury in rats. Ulus. Travma Acil Cerrahi Derg. 19, 294–298.

287. Tu, T.W., Williams, R.A., Brechent, J., Kojika, N., and Frank, J.A. (2016). Radiological-pathological correlation of diffusion tensor and magnetization transfer imaging in a closed head traumatic brain injury model. Ann. Neurol. 79, 907–920.

288. Tu, T.W., Brechent, J., Williams, R.A., Kojika, N., and Frank, J.A. (2017). Abnormal injury response in spontaneous mild ventilucinealomyelag Wistar rat brains: a pathological correlation study of diffusion tensor and magnetization transfer imaging in mild traumatic brain injury. J. Neurotrauma 34, 248–256.

289. Tu, T.W., Ibrahim, W.G., Kojika, N., Munasinghe, J.P., Witko, J.A., Hammond, D.A., and Frank, J.A. (2018). On the detection of cerebral metabolic depression in experimental traumatic brain injury using Chemical Exchange Saturation Transfer (CEST)-weighted MRSI. Sci. Rep. 8, 669.

290. Tweedie, D., Rachmany, L., Rubovich, V., Lehrmann, E., Zhang, Y.Q., Becker, K.G., Perez, E., Miller, J., Hoffer, B.J., Greig, N.H., Pick, C.G. (2013). Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampal gene expression and memory deficits in mice. Exp. Neurol. 239, 170–182.

291. Tweedie, D., Rachmany, L., Kim, D.S., Rubovich, V., Lehrmann, E., Zhang, Y.Q., Becker, K.G., Perez, E., Pick, C.G., and Greig, N.H. (2016). Mild traumatic brain injury-induced hippocampal gene expressions: the identification of target cellular processes for drug development. J. Neurosci. Methods 272, 4–18.

292. Umschwerf, G., Alexandrović, A.G., Tremblov, V., Horowitz, M., and Shohami, E. (2013). The role and dynamics of beta-catenin in precondition induced neuroprotection after traumatic brain injury. PLoS One 8, e76129.

293. Umschwerf, G., Lira-Zaltsman, S., Shabashov, D., Alexandrović, A., Tremblov, V., Horowitz, M., and Shohami, E. (2014). Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 11, 665–678.

294. Vagnonzi, R., Marinaro, A., Tavazzi, B., Signoretti, S., Di Pierro, D., Del Božia, F., Amorini, A.M., Fazinna, G., Sherkat, S., and Lazzarino, G. (1999). Changes of cerebral energy metabolism and
lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J. Neurotrauma 16, 903–913.

306. Vagnozzi, R., Signoretti, S., Tavazzi, B., Cimatti, M., Amorini, A.M., Donzelli, S., Delfini, R., and Lazzarin, G. (2005). Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence. Neurosurgery 57, 164–171.

307. Valler, G.A., Otte, A., Diercks, H., and Doornin, J. (2016). Three month follow-up of rat mild traumatic brain injury: a combined F-18 FDG and C-11 PK11195 positron emission study. J. Neurotrauma 33, 1855–1865.

308. van Rosse, K., Garcia-Martinez, S., De Mulder, G., Van Deur, B., Engelbohrs, K., Van Reempts, J., and Borgers, M. (1999). Brain oxygenation after experimental closed head injury. A NIRS study. Adv. Exp. Med. Biol. 471, 209–215.

309. Vannenreddy, P., Ray, A.K., Patnaik, S., Mohnat, S., and Sharma, H.S. (2006). Zinc protoporphyrin IX attenuates closed head injury-induced edema formation, blood-brain barrier disruption, and serotonin levels in the rat. Acta Neurochir. Suppl. 96, 151–156.

310. Venketesan, C., Chraszcz, M., Choi, N., and Wainwright, M.S. (2013). Chronic upregulation of activated microglia immunoreactive for galactin-3/Mac-2 and nerve growth factor following diffuse axonal injury. J. Neuroinflammation 7, 32.

311. Vernej, J.D., Asami, H., Fluter, K., Roelos, J.J., van den Bergh, W.M., Juffermans, N.P., Schultz, M.J., Van der Sluijs, K., van de Beek, D., and van Westerloo, D.J. (2013). Traumatic brain injury in rats induced by injury and systemic immune suppression. J. Neurotrauma 30, 2073–2079.

312. Villasana, L.E., Westbrook, G.L., and Schnell, E. (2014). Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp. Neurol. 261, 156–162.

313. Wang, H.C., Gao, J.L., Lassiter, T.F., McDonagh, D.L., Sheng, H.X., Warner, D.S., Lynch, J.R., and Laskowitz, D.T. (2006). Levetiracetam is neuroprotective in murine models of closed head injury and subarachnoid hemorrhage. Neurocrit. Care 5, 71–78.

314. Wang, Y., Guo, F., Pan, C.F., Lou, Y.L., Zhang, P.Q., Guo, S.C., Yin, J.H., and Deng, Z.F. (2012). Effects of low temperatures on proliferation-related signaling pathways in the hippocampus after traumatic brain injury. Exp. Biol. Med. 237, 1424–1432.

315. Wang, Y.C., Cui, Y., Cui, J.Z., Sun, L.Q., Cui, C.M., Zhang, H.A., Zhu, H.X., Li, R., Tian, Y.X., and Gao, J.L. (2015). Neuroprotective effects of brilliant blue G on the brain following traumatic brain injury in rats. Mol. Med. Rep. 12, 2149–2154.

316. Wang, C.X., Hu, Z.Y., Zou, Y., Xiang, M.J., Jiang, Y.T., Botchway, B.O.A., Huo, X., Du, X.X., and Fang, M.R. (2017). The post-therapeutic effect of rapamycin in mild traumatic brain-injured rats ensuing in the upregulation of autophagy and mitochondria. Cell. Biol. Int. 41, 1039–1047.

317. Watts, L.T., Sprague, S., Zheng, W., Garling, R.J., Jimenez, D., Digicaylioglu, M., and Lechleiter, J. (2013). Purinergic 2Y(1) receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model. J. Neurotrauma 30, 55–66.

318. Weckbach, S., Neher, M., Losacco, J.T., Bolden, A.L., Kulik, L., Flierl, M.A., Bellander, B.M., Botchway, S., Stahel, P.F., Schmidt, O.L., Alexandrovitch, A.G., Tsenter, J., and Shohami, E. (2005). Inhibition of myeloid differentiation factor 88 (MyD88) by ST2825 provides neuroprotection after experimental traumatic brain injury in mice. Brain Res. 1063, 130–139.

319. Zhang, S., Kojic, L., Tsang, M., Grewal, P., Liu, J., Namjoshi, D., Wellington, C.L., Tetzlaff, W., Cynader, M.S., and Jia, W. (2016). Distinct roles for metalloproteases during traumatic brain injury. Neurochem. Int. 96, 45–55.

320. Zhang, J., Huang, P., Wang, Y.Z., and Dong, H.M. (2017). Application of FTIR spectroscopy for traumatic axonal injury: a possible tool for estimating injury interval. Biosci. Rep. 37. pii: BSR20170720. doi: 10.1042/BSR20170720. Print 2017 Aug 31.

321. Zhou, Y., and Riccio, D.C. (1995). Concussion-induced retrograde amnesia in rats. Physiol. Behav. 57, 1107–1115.

322. Zhu, X.X., Park, J., Golinski, J., Qiu, J.H., Khuman, J., Lee, C.C.H., Lo, E.H., Degterev, A., and Whalen, M.J. (2014). Role of Akt and mammalian target of rapamycin in functional outcome after concussive brain injury in mice. J. Cereb. Blood Flow Metab. 34, 1531–1539.

323. Zlotnik, A., Sinelnikov, I., Gruenbaum, B.F., Gruenbaum, S.E., Ohayon, S., Boyko, M., Shapiro, Y., and Teichberg, V.I. (2011). Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res. 1414, 94–105.

324. Zlotnik, A., Klin, Y., Kotz, R., Dublet, M., Boyko, M., Ohayon, S., Shapiro, Y., and Teichberg, V.I. (2010). Regulation of blood L-glutamate levels by stress as a possible brain defense mechanism. Exp. Neurol. 224, 465–471.

325. Zlotnik, A., Klin, Y., Gruenbaum, B.F., Gruenbaum, S.E., Ohayon, S., Leibowitz, A., Kotz, R., Dublet, M., Boyko, M., Shapiro, Y., and Teichberg, V.I. (2012). Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on blood glutamate levels and improved neurological outcome after traumatic brain injury in rats. J. Neurosurg. Anesthesiol. 24, 30–38.

326. Zlotnik, A., Sinelnikov, I., Gruenbaum, B.F., Gruenbaum, S.E., Dublet, M., Dublet, E., Leibowitz, A., Ohayon, S., Regev, A., Boyko, M., Shapiro, Y., and Teichberg, V.I. (2012). Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology 116, 73–83.

327. Zohar, O., Schreiber, S., Geltsev, V., Schwartz, J.P., Mullins, P.G., and Pick, C.G. (2003). Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118, 949–955.
341. Zohar, O., Getselev, V., Miller, A.L., Schreiber, S., and Pick, C.G. (2006). Morphine protects for head trauma induced cognitive deficits in mice. Neurosci. Lett. 394, 239–242.

342. Zohar, O., Lavy, R., Zi, X.M., Nelson, T.J., Hongpaisan, J., Pick, C.G., and Alkon, D.L. (2011). PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol. Dis. 41, 329–337.

343. Zohar, O., Rubovitch, V., Milman, A., Schreiber, S., and Pick, C.G. (2011). Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol. Exp. (Wars.) 71, 36–45.

344. Bachstetter, A.D., Webster, S.J., Goulding, D.S., Morton, J.E., Watters, D.M., and Van Eldik, L.J. (2015). Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. J. Neuroinflammation 12, 69.

345. Bayly, P.V., Dikranian, K.T., Black, E.E., Young, C., Qin, Y.Q., Labruyere, J., and Olney, J.W. (2006). Spatiotemporal evolution of apoptotic neurodegeneration following traumatic injury to the developing rat brain. Brain Res. 1107, 70–81.

346. Browning, J.R., Whitman, A.C., Leung, L.Y., Lu, X.M., and Shear, D.A. (2017). Air-puff induced vocalizations: a novel approach to detecting negative affective state following concussion in rats. J. Neurosci. Methods. 275, 45–49.

347. Chrzaszcz, M., Venkatesan, C., Dragisic, T., Watterson, D.M., and Van Eldik, L.J. (2015). Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. J. Neuroinflammation 12, 69.

348. Zohar, O., Lavy, R., Zi, X.M., Nelson, T.J., Hongpaisan, J., Pick, C.G., and Alkon, D.L. (2011). PKC activator therapeutic for mild traumatic brain injury in mice. Acta Neurobiol. Exp. (Wars.) 71, 36–45.

349. Hesseli, A., Donovan, V., Grinberg, Y.Y., Obenaus, A., and Laco, J.K. (2016). Morphine protects for head trauma induced cognitive deficits in mice. Neurosci. Lett. 394, 239–242.

350. Hanlon, L.A., Raghupathi, R., and Huh, J.W. (2017). Differential detection of impact site versus rotational site injury by magnetic resonance imaging and microglial morphology in an unrestrained mild closed head injury model. J. Neurochem. 136, 18–28.

351. Zohar, O., Getselev, V., Miller, A.L., Schreiber, S., and Pick, C.G. (2006). Morphine protects for head trauma induced cognitive deficits in mice. Neurosci. Lett. 394, 239–242.

352. Zohar, O., Lavy, R., Zi, X.M., Nelson, T.J., Hongpaisan, J., Pick, C.G., and Alkon, D.L. (2011). PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol. Dis. 41, 329–337.

353. Zohar, O., Rubovitch, V., Milman, A., Schreiber, S., and Pick, C.G. (2011). Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol. Exp. (Wars.) 71, 36–45.

354. Goodus, M.T., Kerr, N.A., Talwar, R., Buziashvili, D., Fragale, G.S., Crynen, G., Evans, J.E., Reed, J., Mullan, M., and Crawford, F. (2016). Mild TBI results in a long-term decrease in circulating phospholipids in a mouse model of injury. Neuromolecular Med. 19, 1–5.

355. Erturk, A., Mentz, S., Stout, E.E., Hedehus, M., Dominguez, S.L., Neumaier, L., Kranmer, F., Llovera, G., Srinivasan, K., Hansen, D.D., J. Neuroinflammation 12, 69.

356. Laskowitz, D.T., McKenna, S.E., Song, P.P., Wang, H.C., Durham, L., Yeung, N., Christensen, D., and Vitek, M.P. (2007). COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. J. Neurotrauma 24, 1093–1107.

357. Laskowitz, D.T., Song, P.P., Wang, H.C., Mace, B., Sullivan, P.M., Vitek, M.P., and Dawson, H.N. (2010). Traumatic brain injury exacerbates neurodegenerative pathology: improvement with an apolipoprotein E-based therapeutic. J. Neurotrauma 27, 1983–1995.

358. Hanlon, L.A., Raghupathi, R., and Huh, J.W. (2017). Differential detection of impact site versus rotational site injury by magnetic resonance imaging and microglial morphology in an unrestrained mild closed head injury model. J. Neurochem. 136, 18–28.

359. Jeong, S., Lei, B.L., Wang, H.C., Dawson, H.N., and James, M.L. (2014). Intravenous immunoglobulin G improves neurobehavioral and histological outcomes after traumatic brain injury in mice. J. Neuroimmunol. 276, 112–118.

360. Karelina, K., Gaier, K.R., Prabhu, M., Weng, V., Corrigan, T.E.D., and Weil, Z.M. (2017). Binge ethanol in adulthood exacerbates negative outcomes following juvenile traumatic brain injury. Brain Behav. Immun. 60, 304–311.

361. Zohar, O., Lavy, R., Zi, X.M., Nelson, T.J., Hongpaisan, J., Pick, C.G., and Alkon, D.L. (2011). PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol. Dis. 41, 329–337.

362. Bennett, E.R., Vitek, M.P., McKenna, S.E., and Laskowitz, D.T. (2013). The terminal pathway of the complement system is activated in focal penetrating but not in mild diffuse traumatic brain injury. J. Neurotrauma 30, 261–267.

363. Reshef, A., Shirvan, A., Shohami, E., Grimberg, H., Levin, G., Cohen, A., Trembovler, V., and Ziv, I. (2008). Targeting cell death and calpain activity independently mediate the effects of closed head injury in mice. Behav. Brain Res. 340, 29–40.
Leung, L.Y., Larimore, Z., Holmes, L., Cartagena, C., Mountney, A., Kmieciak-Kolada, K., Felinska, W., Stachura, Z., Majchrzak, H. and Herrera, J.J., Bockhorst, K., Kondraganti, S., Stertz, L., Quevedo, J., Henry, J.M., Talukder, N.K., Lee, A.B., and Walker, M.L. (1997). Fijalkowski, R.J., Stemper, B.D., Pintar, F.A., Yoganandan, N., Weil, Z.M., Karelina, K., Gaier, K.R., Corrigan, T.E.D., and Corrigan, Webster, S.J., Van Eldik, L.J., Watterson, D.M., and Bachstetter, Wang, H.C., Lynch, J.R., Song, P.P., Yang, H.J., Yales, R.B., Mace, Herman, Z.S. (1987). Concentration of biogenic amines and their receptor subtypes. J. Invest. Surg. 10, 281–286.

Wendel, K.M., Lee, J.B., Affeldt, B., Hamer, M., Harahap-Carrillo, I.S., Parido, A.C., and Obenaus, A. (2018). Corpus callosum vascularity predicts white matter microstructure abnormalities following pediatric mild traumatic brain injury. J. Neurosurg. 11, 390–396.

Webster, S.J., Van Eldik, L.J., Watterson, D.M., and Bachstetter, A.D. (2015). Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment. J. Neurosci. 35, 6554–6569.

Weil, Z.M., Kareлина, K., Gaier, K., Corrigan, T.E.D., and Corrigan, J.D. (2016). Juvenile traumatic brain injury increases alcohol consumption and reward in female mice. J. Neurotrauma 33, 895–903.

Wing, T., Chou, D.Y.T., Ding, J.Y., Fredrickson, V., Peng, C.Y., Schafer, S., Guthikonda, M., Kreipke, C., Rafols, J.A., and Ding, Y.C. (2013). Reduction of brain edema and expression of aquaporins with acute ethanol treatment after traumatic brain injury. J. Neurosurg. 119, 390–396.

Wong, N.K., Staudinger, U., and Culver, J. (2010). Blood-brain barrier in the brain injury: re-design, testing and preclinical validation. Ann. Biomed. Eng. 42, 1618–1630.

Wirth, P., Y., Wu W.L., Kimball, A.L., Liao, J., Berkner, P., and Glenn, M.J. (2017). New model to induce mild traumatic brain injury in rodents produces differential outcomes in female and male Sprague Dawley rats. J. Neurosci. Methods 290, 1071–1088.

Wirth, P., Wu W.L., Kimball, A.L., Liao, J., Berkner, P., and Glenn, M.J. (2017). New method to induce mild traumatic brain injury in rodents produces differential outcomes in female and male Sprague Dawley rats. J. Neurosci. Methods 290, 1071–1088.
414. Lighthall, J.W., Dixon, C.E., and Anderson, T.E. (1989). Experimental models of brain injury. J. Neurotrauma 6, 83–97.
415. Xiong, Y., Mahmood, A., and Chopp, M. (2013). Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14, 128–142.
416. Bolouri, H., and Zetterberg, H. (2015). Animal models for concussion: molecular and cognitive assessments—relevance to sport and military concussions, in: Brain Neurotrauma. F.H. Kobeissy (ed). Taylor & Francis: Boca Raton, FL.
417. Petraglia, A.L., Dashnaw, M.L., Turner, R.C. .and Bailes, J.E. (2014). Models of mild traumatic brain injury: translation of physiological and anatomic injury. Neurosurgery 75, Suppl. 4, S34–S49.
418. Cernak, I., Stein, D.G., Elder, G.A., Ahlers, S., Curley, K., DePalma, R.G., Duda, J., Ikonomovic, M., Iverson, G.L., Kobeissy, F., Kellatsos, V.E., Leggieri, M.J., Jr., Pacifico, A.M., Smith, D.H., Swanson, R., Thompson, F.J., and Tortella, F.C. (2017). Preclinical modelling of militarily relevant traumatic brain injuries: challenges and recommendations for future directions. Brain Inj. 31, 1168–1176.
419. Gennarelli, T.A. (1994). Animate models of human head injury. J. Neurotrauma 11, 357–368.
420. DeWitt, D.S., Hawkins, B.E., Dixon, C.E., Kochanek, P.M., Armstead, W., Bass, C.R., Bramlett, H.M., Buki, A., Dietrich, W.D., Ferguson, A.R., Hall, E.D., Hayes, R.L., Hinds, S.R., LaPlaca, M.C., Long, J.B., Meanev, D.F., Mondello, S., Noble-Haeusslein, L.J., Poloyac, S.M., Prough, D.S., Robertson, C.S., Saatman, K.E., Shultz, S.R., Shear, D.A., Smith, D.H., Valadka, A.B., VandeVord, P., and Zhang, L. (2018). Preclinical testing of therapiest for traumatic brain injury. J. Neurotrauma 35, 2737–2754.
421. Johnson, V.E., Meanev, D.F., Cullen, D.K., and Smith, D.H. (2015). Animal models of traumatic brain injury. Handb. Clin. Neurol. 127, 115–128.
422. Morales, D.M., Marklund, N., Lembold, D., Thompson, H.J., Pitkanen, A., Maxwell, W.L., Longhi, L., Laurer, H., Maegle, M., Neugebauer, E., Graham, D.I., Stocchetti, N., and McIntosh, T.K. (2005). Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 136, 971–989.
423. Morganti-Kossmann, M.C., Yan, E., and Bye, N. (2010). Animal models of traumatic brain injury: Is there an optimal model to reproduce human brain injury in the laboratory? Injury 41, Suppl. 1, S10–S13.
424. Dixon, C.E., Clifton, G.L., Lighthall, J.W., Yaghmai, A.A., and Hayes, R.L. (1991). A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 39, 253–262.
425. Brody, D.L., Mac Donald, C., Kessens, C.C., Yuede, C., Parsadanian, M., Spinner, M., Kim, E., Schwetye, K.E., Holtzman, D.M., and Bayly, P.V. (2007). Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J. Neurotrauma 24, 657–673.
426. Zhang, L., Giurao, M., Yang, K.H., and King, A.I. (2011). Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model. J. Neurosci. Methods 198, 93–98.
427. Pleasant, J.M., Carlson, S.W., Mao, H., Scheff, S.W., Yang, K.H., and Saatman, K.E. (2011). Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J. Neurotrauma 28, 2245–2262.
428. Farace, E., and Alves, W.M. (2000). Do women fare worse: a metaanalysis of gender differences in traumatic brain injury outcome. J. Neurosurg. 93, 539–545.
429. Herson, P.S., Koerner, I.P., and Hurn, P.D. (2009). Sex, sex steroids, and brain injury. Semin. Reprod. Med. 27, 229–239.

Address correspondence to:
Adam D. Bachstetter, PhD
Department of Neuroscience
University of Kentucky
741 S. Limestone Street
Lexington, KY 40536

E-mail: adam.bachstetter@uky.edu