Accelerating Tooth Movement: What Options We Have?

Abstract

With a better understanding of the molecular and cellular basis of orthodontic tooth movement, now, the focus is on surgically assisted rapid tooth movement. This requires the collective effort of orthodontists and periodontists. Clinically, corticotomies and osteotomies have been devised to fasten the orthodontic tooth movement (OTM). Besides these, this article highlights various newer methods of enhancing the rate of tooth movement, like, low level laser therapy, use of electric current, periodontal tissue activation by vibration, photobiomodulation, Pulsed electromagnetic fields etc. Recent research has shown that these methods effectively increase the rate of OTM.

Introduction

Duration of treatment is one of the main concerns of patients undergoing orthodontic treatment. Fixed orthodontic treatment lasts up to 2 to 3 years increasing the risk of external root resorption, periodontal problems and patient compliance [1]. Clinicians are constantly striving towards developing strategies to enhance the rate of orthodontic tooth movement. An increase in in-depth knowledge of the alveolar topography [2] has been a major aid in accelerating tooth movement. Corticotomies and multiple tooth osteotomies have been the mainstay of surgically assisted rapid tooth movement. Corticotomy was first described in 1892 [3]. The concept of using a “positive system” for active canine retraction using a screw was proposed by Farrar [4]. Distraction osteogenesis in tooth movement was given by Liou and Huang [5]. Wilcko and Ferguson [6] demonstrated that tensional stress on a moving tooth through a surgically healing site led to faster tooth movement periodontally accelerated osteogenic orthodontics or Wilckodontics. In a systematic review by Hu Long [7], it was concluded that corticotomy is a safe and effective means of increasing the rate of tooth movement. Following corticotomy, there is alveolar osteopenia, followed by new bone deposition and osteoid formation, which can be supplemented using a bone graft [8]. Frost [8] called it regional acceleratory phenomenon whereby, regional healing response led to accelerated tooth movement. Several newer techniques like low level laser therapy, use of electric current, periodontal tissue activation by vibration, photobiomodulation have been discussed in this article.

Corticotomy

Kole et al. [9] gave the concept of corticotomy combined with orthodontics to accelerate tooth movement in order to decrease the treatment duration. He advocated the use of interproximal corticotomy cuts extending through the cortex, which were further connected with horizontal osteotomy cuts, thereby forming bony blocks which lead to quicker tooth movement and better stability.

Wilckodontics-periodontally accelerated osteogenic orthodontics

Wilcko et al. [10] introduced a corticotomy facilitated technique which involved alveolar augmentation. The surgical technique included reflection of labial and lingual alveolar flaps which was accompanied with limited selective corticotomy. Bone grafting leads to two advantages, firstly, it lead to lateral bone augmentation and expansion, secondly, it helped in tooth movement by providing biochemical factors needed for tooth movement [11]. Accelerated tooth movement in case of corticotomy is due to increased bone turnover and decreased bone density [12].

Corticision

Park et al. [13] introduced a modified version of corticotomy, a technique named corticision in which, scalpel and mallet were used to cut the bone through the gingiva without the reflection of a surgical flap, i.e. a trans-gingival approach was used. The trauma to the bone induced regional acceleratory phenomenon leading to accelerated tooth movement. This method had several shortcomings including poor precision and it was associated with dizziness in the patients due to repeated malleting. However, Kim et al. [14] reported that corticision can be used safely for rapid tooth movement based on histology and histomorphology of parodontal tissues.

Periodontal distraction

Liu et al. [5] suggested that rapid orthodontic tooth movement is a form of distraction osteogenesis of the periodontal ligament. Liu conducted a clinical experiment in 1998 and demonstrated faster distalization of twenty six canine teeth in humans by distraction of the periodontal ligament. This technique was referred to as dental distraction. A dental distractor is placed which has a distraction screw and a sliding rod. New bony trabeculae are formed parallel to the direction of force being applied and rapid alveolar remodelling takes place [15]. A disadvantage from biomechanical perspective is the distal rotation of the canine being retracted [16].

Dentoalveolar distraction

Dentoalveolar distraction utilizes the principle of distraction osteogenesis. Corticotomy is performed only on the alveolar side.
Accelerating Tooth Movement: What Options We Have?

Sparing the palatal side to maintain adequate blood flow and
to maintain bone support. The teeth move in the alveolar bone
without any damage to the periodontal tissues [17,18].

Peizocision

Peizocision was introduced by Dibart et al. [19]. It involves
peizoelectric microincisions with concomitant tunneling for
placement of alveolar bone grafts. This leads to surgical stimulation
of local inflammatory processes, additionally placement of grafts
results in a rapid orthodontic response.

Low level laser therapy

The effects of low level therapy were tested by Kim et al. [20]
in a study comparing the rate of orthodontic tooth movement in
groups which were divided on the basis of corticotomy; low level
laser therapy and conventional methods. It was observed that the
ratio of second premolar to canine movement was greater by 2.08
fold in groups in which low level laser therapy was given compared
to conventional treatment. A number of human trials have been
conducted using low intensity diode lasers during orthodontic
treatment. These studies have shown an increased rate of tooth
movement along with reduced pain when orthodontic forces were
applied [21,22].

Periodontal tissue activation by vibration

Nishimura et al. [23] evaluated the effect of application of
vibratory forces adjunctive to orthodontic forces. They performed
his study on an animal model, rate of orthodontic tooth movement
in maxillary molars of wistar rats was observed. It was observed
that there was greater tooth movement in experimental groups
as compared to conventional groups and the difference was
statistically significant. Any additional damage to periodontal
tissues such as root resorption and bone loss was not reported.
On the basis of effect of vibratory cyclical forces a device has been
developed to accelerate tooth movement which enhances the rate
of bone remodelling [24].

Electrical currents

Electrical currents have been tested experimentally on animal
models and have been found to show accelerated tooth movement
response [25]. Electrical currents generated peizoelectrically or
direct currents have been shown to enhance the rate of tooth
movement. The bulkiness of the devices used to generate electric
currents is a major shortcoming of these procedures resulting in
their lack of application during routine practice.

Pulsed electromagnetic fields

An integrated circuit produces pulsed electromagnetic fields
which is placed in a removable denture (1Hz, 0.5 mT, 8 hours
day overnight). It was reported by Showkatbakhsh et al. [26]
that Pulsed electromagnetic fields significantly enhance tooth
movement.

Photobiomodulation

A low level light therapy also referred to as photobiomodulation
has been used in the form of near infrared light with specific
wavelength and intensity. The low intensity light leads to
increased ATP at the site which in turn would enhance the cell
turnover and vascularisation increasing the remodelling process.
A clinical trial [27] was conducted using this therapy in which low
intensity light was directed at the cheeks of orthodontic patients.
The results showed better tooth movement response measured in
the form of little’s irregularity index.

Molecular methods

Biological factors like prostaglandins, RANKL, vascular
endothelial factors etc have been tested in various experimental
models as non invasive means of enhancing tooth movement. An
increased rate of tooth movement has been shown in animals
on exogenous administration of prostaglandin highlighting its
role in bone resorption during alveolar bone remodelling [28].
Recently human trials have been conducted showing greater
tooth movement in extraction cases when prostaglandin was
administered [29]. Gene therapy has also been proved to be
useful during orthodontic treatment. It was demonstrated that
the transfer of RANKL gene to the periodontal tissue induced
prolonged gene expression for the enhancement of osteoclastic
activity and acceleration of tooth movements in rats [30]. RANKL
is a membrane-bound protein on the osteoblasts that bind to the
RANK on the osteoclasts and causes osteoclastogenesis [31].

Conclusion

Rapid orthodontics is still in its initial phase of development
and requires further research in the form of clinical trials. Of
the various methods surgical means provide better results but
have the drawback of being invasive in nature. The scope for the
non-invasive methods including molecular therapies is vast and
further explorations in this field would prove to be beneficial for
both the clinicians and the patients.

References

1. Roblee DR, Bolding LS, Landers MJ (2009) Surgical facilitated
orthodontic therapy: a new tool for optimal interdisciplinary results.
Compend Contin Educ Dent 30(5): 264-275.
2. Murphy CN (1980) In vivo tissue engineering for orthodontists:
a modest first step. Davidovitch Z, Mah J, Suthanarak S, (Eds).
Biological mechanism of tooth eruption, resorption and movement
385-341.
3. Fitzpatrick BN (1980) Corticotomy. Aust Dent J 25(5): 255-258.
4. Farrar JN (1876) An injury into physiological and pathological
changes in animal tissues in regulating teeth. Dent Cosmos 18: 19
5. Liou, EJ, Huang CS (1998) Rapid canine retraction through
distraction of the periodontal ligament. Am J Orthod Dentofacial
Orthop 114: 372-382.
6. Ferguson DJ, Wlisco WM, Wlisco MT (2001) Accelerating
orthodontics by altering alveolar bone density. Good practise 127:
533-541.
7. Long H, Pyakurel U, Wang Y, Liao L, Zhou Y, et al. (2013) Interventions
for accelerating orthodontic tooth movement: A systematic review.
Angle Orthod 83: 164-171.
8. Frost HM (1981) The regional accelerated phenomenon. Orthop Clin
N Am 12: 725-726.
9. Kole H (1959) Surgical operations on the alveolar ridge to correct
Accelerating Tooth Movement: What Options We Have?

10. Wilcko WM, Wilcko T, Bouquet JE, Ferguson DJ (2001) Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent 21(1): 9-19.

11. Hassan AH, Al-Fraidi AA, Al-saeed SH (2010) Corticotomy-assisted orthodontic treatment. Review. Open Dent J 4: 159-164.

12. Wilcko MW, Wilcko T, Marquez M (2007) The contributions of periodontics to 2orthodontic therapy. In: Dilbart S (Ed). Practical Advanced Periodontal Surgery. Wiley Blackwell, Ames, Lowa, USA, pp. 23-50.

13. Park YG, Kang SG, Kim SJ (2006) Accelerated tooth movement by corticision as an osseous orthodontic paradigm. Kinki Tokai Kyosei Shika Gakkai Gakujyutsu taikai Sokai 48: 6.

14. Kim SJ, Park YG, Kang SJ (2009) Effects of Corticision on Paradental Remodeling in Orthodontic Tooth Movement. Angle Orthod 79(2): 284-291.

15. Liu EJ, Figueroa AA, Polley JW (2000) Rapid orthodontic tooth movement into newly distracted bone after mandibular distraction osteogenesis in a canine model. Am J Orthod Dentofacial Orthop 117(4): 391-398.

16. Kumar P, Saxena R, Patil S, Keluskar KM, Nagaraj K, et al. (2009) Clinical investigation of periodontal ligament distortion osteogenesis for rapid orthodontic canine retraction. Aust Orthod J 25(2): 1-6.

17. Kisinisci RS, Iseri H, Tuz HH, Altug AT (2002) Dentoalveolar distraction osteogenesis for rapid orthodontic canine retraction. J Oral Maxillofac Surg 60(4): 389-394.

18. Iseri H, Kisinici R, Bzizi N, Tuz HH (2005) Rapid canine retraction and orthodontic treatment with dentoalveolar distraction osteogenesis. Am J Orthod Dentofacial Orthop 127(5): 533-541.

19. Dibart S, Sebaoun JD, Surmenian J (2009) Piezocision: a minimally invasive, periodontally accelerated orthodontic tooth movement procedure. Compend Contin Educ Dent 30(6): 342-450.

20. Kim SJ, Moon SU, Kang SG, Park YG (2009) Effects of low-level laser therapy after corticision on tooth movement and paradental remodeling. Lasers surg med 41(7): 524-533.

21. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35(2): 117-120.

22. Youss F, Ashkar S, Hamade F, Gutknecht N, Lampert F, et al. (2008) The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 23(1): 27-33.

23. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, et al. (2008) Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 133(4): 572-583.

24. Kau CH (2011) A radiographic analysis of tooth morphology following the use of a novel cyclical force device in orthodontics. Head Face Med 7: 14.

25. Davidovitch Z, Finnelson MD, Steigman S, Shankelf JD, Montgomery PC, et al. (1980) Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod 77(1): 33-47.

26. Showkatbakhsh R, Jamilian A, Showkatbakhsh M (2010) The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod 11(4): e52-e56.

27. Kau CH (2013) Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Progress in Orthodontics 14: 30.

28. Yamasaki K, Miura F, Suda T (1980) Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res 59(10): 1635-1642.

29. Yamasaki K, Shibuta Y, Imai S, Tani Y, Shibasaki, (1984) Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am. J. Orthod 85(6): 508-518.

30. Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, et al. (2006) Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther 13(0): 678-685.

31. Yamaguchi M (2009) RANK/RANKL/OPG during orthodontic tooth movement.Orthod Craniofac Res 12(2): 113-119.