Role of gut microbiota in type 2 diabetes pathophysiology

Manoj Gurung,1, Zhipeng Li,1, Hannah You1,1, Richard Rodrigues, Donald B Jump, Andrey Morgun, Natalia Shulzhenko

1 Colleges of Veterinary Medicine, Oregon State University, 706 SW 30th street, Corvallis, OR 97331, USA
2 Colleges of Pharmacy, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA
3 Colleges of Public Health, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA

Keywords:
Type 2 diabetes
Microbiota
16S rRNA
Metagenomics
Insulin resistance

ARTICLE INFO
Article History:
Received 17 May 2019
Revised 14 November 2019
Accepted 29 November 2019
Available online xxx

A BSTRACT
A substantial body of literature has provided evidence for the role of gut microbiota in metabolic diseases including type 2 diabetes. However, reports vary regarding the association of particular taxonomic groups with disease. In this systematic review, we focused on the potential role of different bacterial taxa affecting diabetes. We have summarized evidence from 42 human studies reporting microbial associations with disease, and have identified supporting preclinical studies or clinical trials using treatments with probiotics. Among the commonly reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D. We also discussed potential molecular mechanisms of microbiota effects in the onset and progression of T2D.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The microbiome has been associated with pathophysiology of most chronic diseases. Type 2 diabetes (T2D) is no exception to this rule. Indeed, there is evidence for the effects of microbiota on glucose metabolism in both preclinical animal models of T2D and in healthy animals. Therefore, there is considerable interest in potential use of microbiota in clinical applications for understanding and treating T2D. At first glance, however, the microbiome literature on T2D appears chaotic and concerns have been raised about variability of the results. Different taxa are reported to be associated with T2D in different studies. Furthermore, a recent large study observed that different microbes were found associated with the same metabolic outcomes in different geographical areas [1]. While this might appear somewhat discouraging it is important to remember that discrepancies between results and disagreements about interpretations are common features of any emerging field in science. As a research community, we should not shy away from these problems, rather understand which aspects of the current literature are robust and which ones are not. A key issue moving forward is to identify properties of the microbiome and T2D that contribute to this apparent lack of reproducibility. In this review, we researched recent literature regarding microbiome in type 2 diabetes patients and summarize the most reliable findings.

2. Bacteria involved in T2D

Out of 42 human observational studies that investigated T2D and the bacterial microbiome, the majority of studies reported associations between specific taxa and disease or its phenotypes (see Supporting Table 1 and “Search strategy and selection criteria” below). However, only a handful reported similar results. Among the commonly and consistently reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D (Fig. 1). Lactobacillus genus, while frequently detected and reported, shows the most discrepant results among studies. Interestingly, different macro-metrics of microbial communities, such as several indexes of diversity and the Bacteroidetes/Firmicutes ratio that have been previously suggested as markers of metabolic disease did not show consistent associations with T2D (Table 1).

Bacteroides and bifidobacterium represent beneficial genera most frequently reported in studies of T2D. Bifidobacterium appears to be the most consistently supported by the literature genus containing microbes potentially protective against T2D. Indeed, nearly all papers report a negative association between this genus and T2D [2–9]; while only one paper reported opposite results [10]. Furthermore, some studies also found a
negative association between specific species such as B. adolescentis, B. bifidum, B. pseudocatenulatum, B. longum, and B. dentium and disease in patients treated with metformin or after undergoing gastric bypass surgery [6,11]. According to our literature search, Bifidobacterium has not been used alone as probiotics for T2D. However, almost all animal studies that tested several species from this genus (B. bifidum, B. longum, B. infantis, B. animalis, B. pseudocatenulatum, B. breve) showed improvement of glucose tolerance [12–16]. Thus, animal studies strengthen the idea that Bifidobacterium naturally habituating the human gut or introduced as probiotics play protective role in T2D.

The second most commonly reported genus was Bacteroides. Eight studies have reported associations between the abundance of this genus and T2D. Among these, five cross-sectional studies [3,17–20] show negative associations with disease while three other studies [5,11,21] that involved some type of treatment reported positive associations. This apparent inconsistency can be explained by previously reported antibiotic effect of metformin [22] and/or potential feedback mechanisms on gut microbiota resulting from improved human physiology. Interestingly, in He et al. [12,23] 21 out of 23 OTUs of Bacteroides detected in their study were negatively associated with T2D. Accordingly, in investigations that analyzed this genus on the species level, Bacteroides intestinalis, Bacteroides 20–3 and Bacteroides vulgatus were decreased in T2D patients and Bacteroides stercoris were enriched after sleeve gastrectomy (SG) surgery in T2D patients with diabetes remission [5,11,17,24]. We also found only two experimental animal studies testing the ability of Bacteroides to treat diet induced metabolic disease. In these studies, administration of Bacteroides acidifiacens [25] and Bacteroides uniformis [26] improved glucose intolerance and insulin resistance in diabetic mice. Together, these studies indicate that Bacteroides plays a beneficial role on glucose metabolism in humans and experimental animals.

While Roseburia, Faecalibacterium, and Akkermansia were not reported as frequently as the two genera above mentioned (Bifidobacterium, Bacteroides) in the 42 studies we reviewed, but those genera were also found to be consistently negatively associated with T2D in human studies.

In five case-control studies Roseburia was found in lower frequencies in T2D group than in healthy controls [3,17,27–29]. Accordingly, investigations that were able to assign Roseburia to a species level also reported a negative association with disease for Roseburia inulinivorans, Roseburia_272, and one unclassified OTU from this genus [11,17,24]. Only one paper reported an opposite result for Roseburia intestinalis [17].

Two case-control studies reported lower frequencies in the disease group for Faecalibacterium [2,28]. Nevertheless, this genus was also found to be decreased after different types of antidiabetic treatments ranging from metformin and herbal medicine [30] to bariatric surgery [11]; only one study reported an opposite effect [31].

Moreover, studies that were able to analyze this genus at species level usually detected F. prausnitzii. This species was found to be negatively associated with T2D in four out five human case control studies [17,24–34]. While it is a popular probiotic for colitis [35], there were few attempts to use F. prausnitzii as a probiotic for metabolic disease.

Interestingly, in one study the administration of F. prausnitzii resulted in improvement of hepatic function and decreased liver fat inflammation in mice with diet-induced metabolic disease without affecting blood glucose [36]. Finally, it was also shown that another species of this genus, Faecalibacterium prausnitzii, was associated with remission of diabetes after bariatric surgery [11].

Akkermansia muciniphila is a relatively recently discovered member of commensal microbiota [37]. Its beneficial effect on host glucose metabolism was first reported in animal models [38,39]. In agreement with animal studies, the negative association between the abundance of this bacterium and T2D has been reported in human studies [17,38].

In summary, a decrease in at least one of these five phylogenetically distant genera (Bacteroides, Bifidobacterium, Roseburia, Faecalibacterium, and Akkermansia) in patients was found in approximately half of T2D microbiome studies suggesting their potential role beyond serving as a biomarker. Supporting this notion, the majority of these bacteria have been tested as probiotics for metabolic disease in mice, but more rarely in humans [12–16,25,26,36–42]. The potential mechanisms of interaction between these microbes and mammalian organisms are discussed later in this paper.

Lactobacillus genus presents a complex case of apparently discordant results when considering all association studies, i.e. including those that analyzed changes after treatments (Fig. 1). However, cross-sectional studies of patients versus controls reported positive association between abundances of this genus and T2D in five out of six papers [3–5,29,43]. Furthermore, several associations of this genus tend to be species-specific. For example, while L. acidophilus [34], L. gasseri [24], L. salivarius [24] were increased, L. amylovorus [29] was decreased in T2D patients suggesting a high diversity in functional impact on host metabolism by bacteria from this genus. Moreover, several species from this genus have been also tested as probiotics. Experimental studies in mice show mostly beneficial effects in the models of T2D such as L. plantarum [44–47], L. reuteri [48], L. casei [49], L. curvatus [50], L. gasseri [51], L. paracasei [52], L. rhamnosus [53], L. sakei [54]. More importantly, twenty-five human clinical trials [55–79] employed twelve different species of Lactobacillus with ten of those studies [55–62,64,79] adding other probiotics. Out of eleven studies [58–62,76,77,79] that showed some protective effect, the majority combined other genera, most frequently Bifidobacterium [58–62,64,79], suggesting that Lactobacillus and Bifidobacterium may work in a synergistic manner. Species L.
sporogenes [76,77], L. casei Shirota [63], L. reuteri [72] used as mono-
probiotics have been reported to improve T2D related symptoms in humans.

L. plantarum, bacteria found in fermented food products, is inten-
sively studied in animal systems, with many studies showing that *L. plantarum* improves glucose metabolism in diet-induced and genetic models of T2D [44–47] mice; only one reported with no significant effect of this treatment [80]. However, this species had no significant effect on glucose metabolism in four clinical trials [68–71]. Thus, it seems that *Lactobacillus* anti-diabetic effect is seen more frequently when they are a part of probiotic cocktail rather than administered

Overall, *Lactobacillus* genus is highly diverse and contains the highest number of OTUs in the human gut among potentially probi-

otic bacteria. Its effects on T2D seems to be species-specific or even strain-specific, which might explain why genus level analysis lacks consistency amongst studies using this bacteria (Fig. 1).

Fewer studies (11 out of 42) reported positive associations (increase in disease) of microbiota with T2D and/or hyperglycemia. Specifically, *Ruminococcus*, *Fusobacterium*, and *Blautia* have been reported in a positive association with T2D. On one hand, consistent findings have been reported in 5 studies on *Ruminococcus* genus [3,17,28,31,81] and 3 studies on *Fusobacterium* [2,4,6]. On the other hand, the studies reporting species levels of these bacteria reported conflicting results [6,11,34]. For example, while one study demonstrated that Ruminococcus sp. SR1/5 enriched by metformin treat-
ment [6], another found *Ruminococcus bromii* enriched and *Ruminococcus torques* decreased after bariatric surgery and diabetes remission [11]. It is possible that different types of treatments might be a major reason for the inconsistences between results of these studies.

Blautia genus has been found increased in disease groups in three out of four cross-sectional studies for T2D [17,18,82,83] and reduced after bariatric surgery [31]. Disagreeing with these reports, Blautia spp. were reported to increase after treatment with metformin in

another study [30]. Importantly, results by He et al. 2018 [1], are con-

cordant with the genus level analyses demonstrating positive associ-

ations between T2D and several OTUs of all three of these genera.

The question still remains whether these bacteria play a causal role in T2D since there are no studies investigating these potentially

harful bacteria in animal models of T2D.

In summary, our review of literature regarding overall diversity and other macro-metrics of microbial communities failed to show a relation to diabetes (Table 1). However, some taxa have been system-

atically implicated in T2D. Surprisingly, some taxa are consistently associated with protection from T2D at genus level (e.g. *Bacteroides*, *Fusobacterium*, etc.) or even phylogenetically at higher levels (e.g. *Actinobacteria* [7,17]) whereas others (e.g. *Lactobacillus*) show only species- or strain-specific effects. This phenomenon might be to be associated with a diversity of a given genus habituating the human gut (i.e. the larger a number of strains of a given genus found in human gut, the more strain-specific effects are observed). Importantly, several of these microbes are currently tested as probiotics in mouse and human studies.

3. Potential mechanisms of microbiota effects on metabolism in the T2D patient

Multiple molecular mechanisms of gut microbiota contribution to metabolic disease and T2D have been recently reviewed elsewhere [84]. Microbiota modulates inflammation, interacts with dietary con-
stituents, affects gut permeability, glucose and lipid metabolism, insulin sensitivity and overall energy homeostasis in the mammalian host (Fig. 2). Herein, we summarize the mechanisms whereby specific taxa highlighted earlier in this review can affect T2D.

3.1. Modulation of inflammation

Overall, T2D is associated with elevated levels of pro-inflammatory cytokines, chemokines and inflammatory proteins. While some
gut microbes and microbial products especially lipopolysaccharides (LPS) promote metabolic endotoxemia and low-grade inflammation, others stimulate anti-inflammatory cytokines and chemokines. For example, induction of IL-10 by species of *Roseburia intestinalis*, *Bacteroides fragilis*, *Akkermansia muciniphila*, *Lactobacillus plantarum*, *L. casei* [37,85/88] may contribute to improvement of glucose metabolism since overexpression of this cytokine in the muscle protects from ageing-related insulin resistance [89]. *R. intestinalis* can also increase IL-22 production, an anti-inflammatory cytokine [90,91] known to restore insulin sensitivity and alleviate diabetes [92]. It can also promote T regulatory cell differentiation, induce TGF-β and suppress intestinal inflammation [85,90,91]. Likewise, *Bacteroides thetaiotaomicron* induces expression of T regulatory cell gene expression [90]. Inhibition of pro-inflammatory cytokines and chemokines is another route used by beneficial microbes to prevent inflammation. Various species of *Lactobacillus* (*L. plantarum*, *L. paracasei*, *L. casei*) can decrease IL-1β, Monocyte Chemoattractant Protein-1, Intercellular adhesion molecule-1, IL-8, CD36 and C-reactive protein [93,94]. *L. paracasei* and *B. fragilis* inhibit expression of IL-6 [86,95]. Similarly, *Lactobacillus*, Bacteroides and Akkermansia have been found to suppress TNF-α [96,86–88,95,97,98]. *L. paracasei* and microbial anti-inflammatory molecule from *F. prausnitzii* inhibit the activity of NF-kB [95,99]. Similarly, *Roseburia* and Faecalibacterium are butyrate producing bacteria and butyrate is also known to inhibit the activity of NF-kB [100,101]. *Lactobacillus casei* and *Roseburia intestinalis* decrease another pro-inflammatory cytokine IFN-γ [90,91,102] whereas *Roseburia intestinalis* can inhibit IL-17 production [90,91]. *Bacteroides thetaiotaomicron* reduces Th1, Th2 and Th17 cytokines in mono-associated mice [90].

3.2. Gut permeability

Increased intestinal permeability is a characteristic of human T2D. It results in translocation of gut microbial products into the blood and causes metabolic endotoxemia [105]. Two species (*Bacteroides vulgatus* and *B. dorei*) from the potentially beneficial for T2D genera have been found to upregulate the expression of tight junction genes in the colon leading to reduction in gut permeability, reduction of LPS production and amelioration of endotoxemia in a mouse model [106]. Another probiotic bacterium, *Akkermansia muciniphila*, decreased gut permeability using extracellular vesicles which improve intestinal tight junctions via AMPK activation in epithelium [42]. The outer membrane protein (Amuc_1100) of this bacterium enhances the expression of occludin and tight junction protein-1 [37]. Amuc_1100 also inhibits cannabinoid receptor type 1 (CB1) in the gut, which in turn, reduces gut permeability and systemic LPS levels [37]. While a specific bacterial component was not determined for *Faecalibacterium prausnitzii*, it was shown that the supernatant from the cultured bacterium enhances the expression of tight junction proteins improving intestinal barrier functions in colitis model [107]. Finally, butyrate, produced by *Faecalibacterium*, *Roseburia*, also have potential to reduce gut permeability through serotonin transporters and PPAR-γ pathways [101].

3.3. Glucose metabolism

Gut microbiota may also affect T2D by influencing glucose homeostasis and insulin resistance in major metabolic organs such as liver, muscle and fat, as well as by affecting digestion of sugars and production of gut hormones that control this process. For example, one of the potential probiotics discussed above (*Bifidobacterium lactis*) can increase glycogen synthesis and decrease expression of hepatic gluconeogenesis-related genes [108]. In the same report, *B. lactis*...
improved the translocation of glucose transporter-4 (GLUT4) and insulin-stimulated glucose uptake.

Lactobacillus gasseri BNR17 also increases GLUT-4 expression in the muscle with potential anti-diabetes effect [109]. *Akkermansia muciniphila* and *Lactobacillus plantarum* reduce the expression of hepatic flavin monoxygenase 3 (Fmo3) [37,93], a key enzyme of xenobiotic metabolism, whose knockdown has been found to prevent development of hyperglycemia and hyperlipidemia in insulin resistant mice [110]. *Lactobacillus casei* can ameliorate insulin resistance by increasing the mRNA level of phosphatidylinositol-3-kinase (PI3K), insulin receptor substrate 2 (IRS2), AMPK, Akt2 and glycogen synthesis in the liver [97,111]. The effect of this particular microbe is not limited to the effects on liver. Indeed, *L. casei* also reduces hyperglycemia via a bile acid-chloride exchange mechanism involving the up regulation of multiple genes, i.e., CIC-1, GlyR1, SLC26A3, SLC26A6, GABAAe1, Bestrophin-3 and CFTR [112]. It also decreases the insulin-degrading enzyme (IDE) in the caco-2 cells and insulin-like growth factor binding proteins-3 (IGFBP-3) in the white adipose tissue [97,111,113]. *L. rhamnosus*, another lactobacillus species, increases adiponectin level in the epididymal fat, thus, improving insulin sensitization [98].

Some species of Lactobacilli and *Akkermansia muciniphila* possess potent alpha-glucosidase inhibitory activity that prevents the breakdown of complex carbohydrates and reduces postprandial hyperglycemia [52]. Microbiota and their products can modulate gut hormones and enzymes and improve insulin resistance and glucose tolerance. Butyrate can act as ligand for G-protein coupled receptors (GPCR41 and GPCR43) in the gut and promotes the release of gut hormones GLP-1, PYY and GLP-2 from entero-endocrine v-cells (reviewed in [114,115]). *Bifidobacterium* and *Lactobacillus* produce bile salt hydrolases, which convert primary conjugated bile salts into deconjugated bile acids (BA) that are subsequently converted into secondary BA. Secondary BAs activate the membrane bile acid receptor (TGR5) to induce the production of GLP-1 (reviewed in [114]).

3.4. Fatty acid oxidation, synthesis and energy expenditure

Increasing fatty acid oxidation and energy expenditure and reducing synthesis of fatty acids ameliorates obesity and consequently T2D [116], *Akkermansia muciniphila*, *Bacteroides acidifaciens*, *Lactobacillus gasseri* and short chain fatty acids have been reported to increase fatty acid oxidation in the adipose tissue.

For example, *Akkermansia muciniphila* has been found to increase the levels of 2-oxyglcerol (2-OG), 2-palmitoylglycerol (2-PG), 2-acylglycerol (2-AG) in the adipose tissue which increase the fatty acid oxidation and adipocyte differentiation [39]. Furthermore, *Bacteroides acidifaciens* also improves fatty acid oxidation in the adipose tissue via TGR5-PPAR-α pathway [25]. Likewise, butyrate can promote fatty acid oxidation and thermogenesis by inhibiting the histone deacetylation process in the muscle which increases energy expenditure partially by promoting mitochondrial functions in the muscle [117]. In liver and adipose tissue, butyrate and other two SCFAs, propionate and acetate, decrease the expression of PPAR-γ [118] which in turns increases fatty acid oxidation. *Lactobacillus gasseri* has been shown to reduce obesity by increasing the fatty acid oxidation genes and reducing fatty acid synthesis related genes [109]. Serum level of malondialdehyde, a marker of oxidative damage of lipids, has been found to be reduced by *Akkermansia muciniphila* and *Lactobacillus casei* in diabetic rodents [87,96]. Hence, members of microbiota with beneficial effect on T2D modulate fatty acid metabolism and associated energy expenditure in the host that results in alleviation of obesity and accompanying T2D.

3.5. Combined effects of bacteria

Besides the above-mentioned mechanisms, some microbes can also affect the host physiology by increasing other potential beneficial microbiota or by cross-feeding. Several species of Bifidobacterium were shown to have cross feeding interaction with other microbiota like Faecalibacterium and Roseburia [119,120], *Lactobacillus rhamnosus* can increase Bifidobacterium abundance in the cecum of rats [98]. *L. casei* has been found to increase the butyrate producing bacteria [97,111].

4. Contribution of microbiota to the success of drug therapy for T2D

The interplay of gut and microbiota is receiving much-deserved interest (reviewed in [121]). It is well known that antibiotics [122,123], non-antibiotic drugs [124] and anti-diabetic drugs (Table 2) can modulate microbiota and improve diabetes. Similarly, the baseline microbiota can positively and negatively affect the pharmacokinetics and pharmacodynamics of drugs and numerous chemicals via a variety of mechanisms (reviewed in [125]). Fewer studies, however, have examined how altering gut microbiota (via pre- and/or probiotics) changes the effects of anti-diabetic drugs.

One recent study examined effects of a probiotic *Bifidobacterium animalis* ssp. *lactis* 420, prebiotic polydextrose and their combination with sitagliptin in diabetic mice [126]. The combination of sitagliptin with pre- and probiotics was effective in reducing several T2D parameters. A similar study in Zucker diabetic rats observed that combining probiotic polysaccharide with the antidiabetic drugs metformin and sitagliptin reduced hyperglycemia and adiposity compared to using only the drugs [127]. In another study, streptozotocin-induced diabetic mice were treated with a combination of a prebiotic and metformin. Improvements in fasting blood glucose, glucose tolerance and insulin resistance were observed with the combined therapy, as compared to metformin or MOS alone [128]. Thus, a new direction in the microbiome research has emerged focused on the interaction between anti-diabetic drugs and microbiota. These studies should answer important questions such as (1) how different anti-diabetic drugs affect microbiota; (2) which characteristics of gut microbiota are underlying different responses to anti-diabetic drugs; and (3) which co- pre- and probiotics are needed to improve response to medication.

5. Outstanding questions

T2D is a multi-organ, heterogeneous, multi-factorial disease making the dissection of causative microbes from the gut microbiome challenging. In human studies, confounding factors like geographic location, race, culture, health status and drug-use lead to inconsistency in identifying microbiota associated with T2D [1]. Moreover, due to challenges in sampling from the intestine of humans, most studies use stool samples for microbiota analysis. However, the stool microbiota profile does not fully reflect the gut microbiome. Furthermore, most studies focused on genomics, rarely studying the transcriptome, proteome or metabolome. Even at the genomic level, deep shotgun sequencing is expensive, making marker-based amplicon sequencing such as 16S rRNA gene prevalence. Further, the existing sequencing and analysis technologies rarely identify (annotate) microbes at species or strain levels. Considering that the functional capacity varies between strains from the same species, identification of microbes and microbial genes associated with disease is challenging.

A significant problem in the field is that the majority of human association studies do not attempt to infer microbes that may have contributing and/or causal role in T2D. Although inference of causality is a complex statistical problem, it is possible for host-microbiome interactions. Indeed, new approaches, such as Transkingdom Network Analysis [122] and novel application of Mendelian Randomization methods [129], have been recently developed and validated to answer which microbes and microbial genes/pathways are in control of host physiological processes.
Finally, challenges related to animal studies testing effects of microbiota on diabetes hamper progress. First, discrepancies between results caused by differences between microorganisms of otherwise genetically identical animals is one problem. Second, current advanced technologies in gnotobiology such as studies of germfree and mono/oligo-colonized animals are currently incompatible with functional metabolic studies employing metabolic cages and hyperinsulinemic-euglycemic clamp techniques. Our research community should overcome these technical challenges and develop robust clinically humanized microbiota, will become a main field is in early stage. Currently, we have reached a point in our understanding that some microbial redundancies regarding the application of the selection criteria were abstract that the study failed to meet the inclusion criteria. Any ambiguities regarding the application of the selection criteria were

Table 2

Contribution of microbiota to the success of therapy of T2D.

Anti-diabetic Drug	Effects on Microbiota Promotes	References (PMID)	Reduces	References (PMID)
Biguanides (Metformin)	Akkermansia muciniphila, Escherichia, Bifidobacterium adolescentis, Lactobacillus, Butyryrivibrio, Bifidobacterium bifidum, Megasphaera, Prevotella, Escherichi-Shigelia, Erysipelotrichaceae incertae sedis, Fusobacterium, Flavonifractor, Lachnospiraceae, Lachnospiraceae incertae sedis, and Clostridium XVIII and IV	23804561, 25030702, 253038099, 27999002, 29056513, 30261008, 30815546, 29789365	Intestinibacter, Romboutsia, Peptostreptococcaceae_unclassified, Clostridiaceae_1_unclassified, Asaccharospora, Alastipes, Oscillibacter, Bacteroides, Parabacteroides, and Ruminococcaceae	2830702, 30261008, 29789365
Alpha-glucosidase Inhibitors (eg. Acarbose, voglibose, miglitol)	Akkermansia muciniphila, Bacteroides, Faecalibacterium, Dialister, Subdoligranulum, Allisonella, Megasphaera, Bifidobacterium, Enterococcus, faecalis	28130771, 29176714, 25327485	Butyricicoccus, Phascolarctobac terium, Ruminococcus, Enterococcus, Erysipelotrichaceae, and Bacteroides	28130771, 28349245, 29176714, 25327485
GLP-1 Receptor agonist (eg. Liraglutide)	Akkermansia muciniphila, Bacteroides acidificiens, Lachnospiraceae, Flavonifractor, Ruminococcus_gnavus, Allobaculum, Turicibacter, Anarosipes, Lactobacillus, Butyricimonas, Desulfovibrion	30815546, 30292107, 29171288, 27633081	Helicobacter, Prevotella, Ruminococcaceae, Christensenellaceae, Roseburia, Candidatus Arthromitus, Marvinbryantia, Incertae Sedis	30292,107,29171288, 27633081
Thiazolidinediones (Pioglitazone, DPP-4 Inhibitors (Vildagliptin, sitagliptin, saxagliptin)	Lactobacillus, Strep tococcus, Bacteroides acidificiens, Strep tococcus_hyointestinalis, Erysipelotrichaceae, Allobaculum, Turicibacter, Roseburia	29797022, 29903623, 29733081, 27631013	Proteobacteria, Ruminoclostridi um_6, Anaerotruncus, Kor thia, Christensenellaceae, Prevotellaceae, Bacteroides, Prevotella, Bia tuia, Oscillospira	29797022, 29903623, 27633081, 27631013
SGLT2 Inhibitors (eg. Dapagliflozin)	Akkermansia, Enterococcus	29703207		29703207

6. Conclusion

Despite multiple studies supporting the importance of gut microbiota in pathophysiology of T2D, the field is in early stage. Currently, we have reached a point in our understanding that some microbial taxa and related molecular mechanisms may be involved in glucose metabolism related to T2D. However, the heterogeneity of T2D and redundancy of gut microbiota do not promise simple interpretations (e.g. low diversity) and easy solutions (such as fecal transplant from non-diabetic/non-obese donor). In contrast, we should work towards precision/personalized medicine selecting anti-diabetics and probiotics for a given patient based on the combination of her/his mammalian and microbial genomes.

7. Search strategy and selection criteria

PubMed and Google Scholar literature searches were performed. To identify gut microbiome composition of T2D patients, articles between 2006 and 2018 were included with combinations of the terms “T2D”, “Glucose”, “gut” “Microbiome” “16S rRNA”, “metagenomics”, and “sequencing”. Additional papers relevant to our research were manually sought through bibliography search. Inclusion criteria in our review were (1) Human case-controlled studies; (2) articles focused on T2D (3) gut microbiota quantified from stool samples; (4) Glucose testing performed during the study (5) Either 16S rRNA gene sequencing or metagenomic sequencing performed in stool samples.

Google scholar and PubMed found 42 papers relevant to our focus. Articles were rejected if it was determined from the title and the abstract that the study failed to meet the inclusion criteria. Any ambiguities regarding the application of the selection criteria were
resolved through discussions between at least 3 researchers involved. Each publication was an academic and peer-reviewed study.

Majority (79%) of studies utilized 16S rRNA gene sequencing with V3 and V4 regions most frequently (33% and 42%, respectively) targeted for sequencing (Supporting Table 1). Human subjects across all studies had mean age of 53 years (standard deviation 10 years) and were equivalently distributed between sexes. On average, patients had body mass index 28.3 ± 3 whereas controls 25.8 ± 4.

We searched for mouse colonization studies for the top 8 microbes found in the human-case studies. Articles between 1997 and 2018 were included with combinations of the terms “Mouse”, “Gluco”, “[selected microbe]”. Selected microbes included: Bacteroides, Bifidobacterium, Lactobacillus, Blautia, Faecalibacterium, Ruminococcus, Roseburia, and Fusobacterium. Inclusion criteria were (1) Mouse colonization studies; (2) Articles focused on T2D; (3) Glucose testing performed during the study. We also analyzed the literature on Akkermansia muciniphila, though it is in the species level, because of its recent emergence as an important potential probiotic microbe.

Similar to the mouse colonization study literature search, we searched for results from clinical trials with microbes/probiotic supplementation. Inclusion criteria were: (1) Human Clinical study w/microbes/probiotic supplementation; (2) Glucose testing performed during the study; and (3) Microbes or Probiotics from genera identified in our papers as frequently found in human association studies.

Acknowledgements

This work was partially supported by NIH R01 DK103761 (NS) and DK112360 (DB). The funding source had no involvement in study design, analysis, writing of the report, and in the decision to submit the paper for publication. The corresponding authors confirm to have full access to all the data and have final responsibility for the decision to submit for publication. The authors declare no conflict of interest.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.ebiom.2019.11.051.

References

[1] He Y, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 2018;24(10):1532–5.
[2] Gao R, et al. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity (Silver Spring) 2018;26(5):351–61.
[3] Candela M, et al. Modulation of gut microbiota dysbiosis in type 2 diabetic patients by macronutrient Ma–Pi diet. Br J Nutr 2016;116(1):80–93.
[4] Sedghi M, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog 2017;111:362–9.
[5] Wu X, et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 2010;61(1):69–78.
[6] Wu H, et al. Metformin alters the gut microbiota of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017;23(7):850–8.
[7] Barenholz E, et al. Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS ONE 2018;13(3):e0191471.
[8] Xu J, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J 2015;9(4):1–15.
[9] Zhang X, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013;8(8):e71108.
[10] Chelakkot C, et al. Akkermansia muciniphila-derived extracellular vesicles in an in vivo mouse model of type 2 diabetes. Microbiome 2018;6(2):172.
[11] Larsen N, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010;5(2):e9085.
[12] Gammon D, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med 2016;126(6):336–43.
[13] Forslund K, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015;528(7581):262–6.
[14] Song X, et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula: a multicenter, randomized, open label clinical trial. MBio 2018;9(3): pii: e02392–17.
[15] Patrone V, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing biliointestinal bypass. Front Microbiol 2016;7:200.
[16] Remely M, et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of PPARβ in type 2 diabetes and obesity. Gene 2014;537(1):85–92.
[17] Furet JP, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010;59(12):3049–57.
[18] Graessler J, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 2013;13(6):514–22.
[19] Rossi O, et al. Faecalibacterium prausnitzii strain HTT-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-Induced colitis. PLoS ONE 2015;10(4):e0123013.
[20] Mäkelä M, et al. Identification of the selected microbe (11):1869–78.
[21] Lippert K, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes 2017;8:454–56.
[22] Lippert K, et al. Microbiota dysbiosis, glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes 2017;8:454–56.
[23] Yamaguchi Y, et al. Association of intestinal microbiota with metabolic markers and dietary habits in patients with type 2 diabetes. Diabetes Metab Res Rev 2016;32(2):66–72.
[24] Munukka E, et al. Women with and without metabolic disorder differ in their gut microbiota composition. Obesity 2012;20(5):1082–7.
[25] Sun L, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018;24(12):1919–25.
[26] Malik F, et al. Is metformin poised for a second career as an antiobesity? Diabet Metab Res Rev 2018;34(4):e2975.
[27] He Y, et al. Linking gut microbiota, metabolic syndrome and economic status markers. Microbiome 2018;6(1):172.
[28] Lippert K, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498(7452):99–103.
[29] Yang JY, et al. Gut commensal bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 2017;10(1):104–16.
[30] Cao G, et al. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS ONE 2012;7(7):e41079.
[31] Patrone V, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing biliointestinal bypass. Front Microbiol 2016;7:200.
[32] Remely M, et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of PPARβ in type 2 diabetes and obesity. Gene 2014;537(1):85–92.
[33] Furet JP, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010;59(12):3049–57.
[34] Graessler J, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 2013;13(6):514–22.
[35] Rossi O, et al. Faecalibacterium prausnitzii strain HTT-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-Induced colitis. PLoS ONE 2015;10(4):e0123013.
[36] Mäkelä M, et al. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME J 2017;11(7):1667–79.
[37] Furet JP, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017;23(1):107–13.
[38] Greer RL, et al. Akkermansia muciniphila mediates negative effects of IFNgamma on glucose metabolite alterations. ISME J 2016;10(7):1332–42.
[39] Everard A, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelial cells controls diet-induced obesity. Proc Natl Acad Sci U S A 2013;110(22):9066–71.
[40] Zhao S, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol 2017;58(1):1–14.
[41] Hanninen A, et al. Akkermansia muciniphila induces gut microbiota remodeling and controls ileal autonomic innervation in nude mice. Gut 2018;67(8):1445–53.
[42] Helgaker C, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability and tight junctions. Exp Mol Med 2018;50(2):e450.
[43] Ni Y, et al. Characteristics of gut microbiota and its response to a Chinese herbal formula in elder patients with metabolic syndrome. Drug Discov Ther 2018;12(8):79–86.
M. Gurung et al. / EBioMedicine 51 (2020) 102590

[45] Lee E, et al. Lactobacillus plantarum strain Lm4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid metabolism. Nutrients 2018;10(5): pii: E643.

[46] Balakumar M, et al. Improvement in glucose tolerance and insulin sensitivity in probiotic strains of Lactobacillus rhamnosus origin in high-fat diet-fed C57BL/6 mice. Eur J Nutr 2018;57(1):279–95.

[47] Okubo T, et al. Kfla mice administered lactobacillus plantarum strain no. 14 have lower adiposity and lower insulin sensitivity. BioSci Microbiot Food Health 2013;32(3):93–100.

[48] Falk F, Backhed F. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. PLoS ONE 2012;7(10):e45377.

[49] Naito E, et al. Beneficial effect of oral administration of lactobacillus casei strain shirota on insulin resistance in diet-induced obese mice. J Appl Microbiol 2011;110(3):650–7.

[50] Park KY, et al. Synergism of lactobacillus curvatus HY7601 and lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbia changes and reduction in obesity. PLoS ONE 2013;8(3):e59470.

[51] Yun SL, Park HO, Kang JH. Effect of lactobacillus gasseri BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes. J Appl Microbiol 2009;107(5):1681–6.

[52] Deng F, et al. Administration of lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct 2016;7(9):3660–9.

[53] Lim SM, et al. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood markers in patients with type 2 diabetes: a clinical trial. Iran J Med Sci 2013;38(10):1827–33.

[54] Naito E, et al. Effect of multispecies probiotic supplements on metabolic pro-

[55] markers in patients with type 2 diabetes. Bioimpacts 2014;4(2):83–9.

[56] Kijmanawat A, et al. Effects of probiotic supplements on insulin resistance in patients with type 2 diabetes mellitus: a double-blind, randomized cross-over controlled clinical trial. Clin Nutr 2014;33(2):198–203.

[57] Assem Z, et al. Effects of beta-carotene fortified symbiotic food on metabolic control of patients with type 2 diabetes mellitus: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 2016;35(4):819–25.

[58] Hsieh MC, et al. The beneficial effects of lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: a randomized, double-blinded, pla-

[59] cebo-controlled trial. Sci Rep 2018;8(1):16791.

[60] Vajro P, et al. Effects of lactobacillus rhamnosus strain gg in pediatric obesity-

[61] related liver disease. J Gastroenterol Nutr 2011;52(6):740–3.

[62] Asemi Z, et al. Effects of synbiotic food consumption on metabolic status of dia-

[63] betic patients: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 2014;33(2):198–203.

[64] Shakeri H, et al. Consumption of symbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type 2 dia-

[65] betes. Lipids 2014;49(7):695–701.

[66] Hoffmann TW, et al. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J Gastroenterol Hep-

[67] atol 2018;33(10):1751–60.

[68] Egashiyama L, et al. Gut microbiota and diet in patients with different glucose toler-

[69] ance. Endocr Connect 2016;5(1):1–9.

[70] Inan MS, et al. The luminal short-chain fatty acid butyrate modulates nf-kappab

[71] –

[72] inflammation, and normalization of intestine microbiota in db/db mice. J Appl Microbiol 2015;119(3):602–6.

[73] Inoue R, et al. Prediction of functional pro-

[74] cesses using machine learning and discovery of novel genetically related liver disease. J Pediatr Gastroenterol Nutr 2011;52(6):740–3.

[75] Vajro P, et al. Beneficial effects of lactobacillus reuteri in type 2 diabetes patients: randomized clinical trial. Diabetes Metab Syndr 2018;12(5):617–24.

[76] Asemi Z, et al. Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial. Iran J Med Sci 2013;38(1):38–43.

[77] Naito E, et al. Beneficial effect of oral administration of lactobacillus casei strain

[78] shirota on insulin resistance in diet-induced obese mice. J Appl Microbiol 2011;110(3):650–7.

[79] Patel DA, et al. Synergism of lactobacillus curvatus HY7601 and lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbia changes and reduction in obesity. PLoS ONE 2013;8(3):e59470.

[80] Ivey KL, et al. The effects of probiotic bacteria on glycemic control in overweight men and women: a randomised controlled trial. Eur J Clin Nutr 2014;68(4):447–52.

[81] Guo W, et al. Probiotic yogurt improves antioxidants status in type 2 diabetic patients. Nutrition 2012;28(5):539–43.

[82] Egashiyama L, et al. Gut microbiota and diet in patients with different glucose toler-

[83] ance. Endocr Connect 2016;5(1):1–9.

[84] Inan MS, et al. The luminal short-chain fatty acid butyrate modulates nf-kappab

[85] –

[86] inflammation, and normalization of intestine microbiota in db/db mice. J Appl Microbiol 2015;119(3):602–6.

[87] Inoue R, et al. Prediction of functional pro-

[88] cesses using machine learning and discovery of novel genetically related liver disease. J Pediatr Gastroenterol Nutr 2011;52(6):740–3.

[89] Hoffmann TW, et al. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J Gastroenterol Hep-

[90] atol 2018;33(10):1751–60.

[91] Egashiyama L, et al. Gut microbiota and diet in patients with different glucose toler-

[92] ance. Endocr Connect 2016;5(1):1–9.

[93] Inan MS, et al. The luminal short-chain fatty acid butyrate modulates nf-kappab

[94] –

[95] inflammation, and normalization of intestine microbiota in db/db mice. J Appl Microbiol 2015;119(3):602–6.

[96] Inoue R, et al. Prediction of functional pro-

[97] cesses using machine learning and discovery of novel genetically related liver disease. J Pediatr Gastroenterol Nutr 2011;52(6):740–3.

[98] Hoffmann TW, et al. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J Gastroenterol Hep-

[99] atol 2018;33(10):1751–60.

[100] Egashiyama L, et al. Gut microbiota and diet in patients with different glucose toler-

[101] ance. Endocr Connect 2016;5(1):1–9.

[102] Inan MS, et al. The luminal short-chain fatty acid butyrate modulates nf-kappab

[103] –

[104] inflammation, and normalization of intestine microbiota in db/db mice. J Appl Microbiol 2015;119(3):602–6.
signaling to nuclear factor-kappaB, and up-regulating expression of microRNA-21. Gastroenterology 2017;152(4):851–66 e24.

[104] Hall AB, et al. A novel ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 2017;9(1):103.

[105] Cani PD, et al. Metabolic endotoxia initiates obesity and insulin resistance. Diabetes 2007;56(7):1761–72.

[106] Yoshida N, et al. Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018;138(22):2486–98.

[107] Carlson AH, et al. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol 2013;48(10):1136–44.

[108] Kim SH, et al. The anti-diabetic activity of bifidobacterium lactis HY8101 in vitro and in vivo. J Appl Microbiol 2014;117(3):834–45.

[109] Kang JH, et al. Anti-obesity effect of lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE 2013;8(1):e54617.

[110] Miao J, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015;6:6498.

[111] Li X, et al. Effects of lactobacillus cases CCPM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes 2017;8(3):421–32.

[112] Zhang Y, et al. Lactobacillus cases reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. Sci Rep 2014;4:5654.

[113] Neyazi N, et al. Potential efficacy of lactobacillus cases IBRC_M10711 on expression and activity of insulin degrading enzyme but not insulin degradation. In Vitro Cell Dev Biol Anim 2017;53(1):12–9.

[114] Allin KH, Nielsen T, Pedersen O. Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol 2015;172(4):R167–77.

[115] Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 2016;280(4):339–49.

[116] Houmard JA. Intramuscular lipid oxidation and obesity. Am J Physiol Regul Integr Comp Physiol 2008;294(4):R1111–6.

[117] Gao Z, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009;58(7):1509–17.

[118] den Besten G, et al. Short-Chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-Dependent switch from lipogenesis to fat oxidation. Diabetes 2015;64(7):2398–408.

[119] Moens F, Weckx S, De Vuyst L. Bifidobacterial insulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and faecalibacterium prausnitzii. Int J Food Microbiol 2016;231:76–85.

[120] Rios-Covian D, et al. Enhanced butyrate formation by cross-feeding between faecalibacterium prausnitzii and bifidobacterium adolescentes. FEMS Microbiol Lett 2015;362(21).

[121] Whang A, Nagpal R, Yadav H. Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine 2019;39:591–602.

[122] Morgan A, et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 2015;64(11):1732–43.

[123] Rodrigues RR, et al. Antibiotic-Induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front Microbiol 2017;8:2306.

[124] Maier L, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018;555(7698):623–8.

[125] Klaassen CD, Cui JY. Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos 2015;43(10):1505–21.

[126] Stensrud IK, et al. Probiotic B420 and prebiotic polydextrose improve efficacy of anti-diabetic drugs in mice. Diabetol Metab Syndr 2015;7:75.

[127] Reimer RA, et al. Combining sitagliptin/metformin with a functional fiber delays diabetes progression in zucker rats. J Endocrinol 2014;220(3):361–73.

[128] Zheng J, et al. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J Agric Food Chem 2018;66(23):5821–31.

[129] Sanna S, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 2019;51(4):600–5.