Supporting Information:

Systematic inference of indirect transcriptional regulation by protein kinases and phosphatases

Christian Degnbol Madsen¹,², Jotun Hein², Christopher T. Workman¹*

¹ Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
² Department of Statistics, University of Oxford, Oxford OX1, UK

Method details

Modeling of transcription regulation

Transcription regulation in GeneNetWeaverPhos is modeled by the proportion of maximum transcription (activation) for gene i as term f_i, (1), which is used in Eq (9a) in the main text. A similar f_i term is mentioned in supplementary material of [1], and was originally developed on the basis of [2]. In GeneNetWeaver, f_i is a function of protein level, p, however in GeneNetWeaverPhos it is a function of activated protein ψ. f_i takes into account different types of transcriptional regulation, both regulator competition and cooperation for any combination of activators and repressors. A gene could be regulated as exemplified in Fig S1. The activation level $f_i(\psi)$ of gene i is controlled by a number of regulatory modules. A (regulatory) module are groupings of TF regulators for which either competitive or cooperative binding dynamics are at play. A module may be thought of as a binding site. Each regulatory module m groups a number of TFs controlling its fraction of activation $\mu_m \in [0, 1]$. In this modeling framework there exist two discreet states for a module; either it is activated or inactivated, where μ_m can be considered the activated fraction over a short duration of time or the fraction of cells in a culture. From this we can realize that a given gene i will be in one of 2^N possible states, where N is the number of regulatory modules and a state is a unique combination of each module as either activated or inactivated.

Fig S1. Example of transcriptional regulation in simulation. A gene regulated by $N = 3$ regulatory modules, where module 1 is regulated by a single activator TF, module 2 is bound by a complex of two TFs, which both have to be present for activation of the module, and activating and repressing TFs compete to bind the third module. Green: activation, red: repression.
\[f_i(\psi) = \sum_{x=1}^{s} \alpha_s P(S = s|\psi) \]

\[\alpha_s = \text{clamp}(0, \alpha'_0 + \sum_{m \in C_s} \alpha'_m, 1) \]

\[P(S = s|\psi) = \prod_{m \in C_s} \mu_m \cdot \prod_{m \notin C_s} (1 - \mu_m) \]

\[\mu_m = \begin{cases} \frac{\prod_{i \in C_m} x_i}{\prod_{i \in C_m} x_i + \psi}, & \text{if } m \notin C \\ \frac{\prod_{i \in C_m} x_i}{\prod_{i \in C_m} x_i + 1}, & \text{if } m \in C \\ 1, & \text{if } R_m = 0 \end{cases} \]

\[\chi_j = \frac{\psi_j^{\nu_j}}{k_j} \]

\(\psi \) are nondimensionalized active protein concentrations. All parameters in \(f_i \) are specific to gene \(i \), so subscript \(i \) is omitted here for clarity. \(\alpha_s \) is the fraction of maximum gene transcription for state \(s \). \(\alpha'_0 \) is a baseline activation of gene \(i \), i.e. the activation of gene \(i \) when none of its regulatory modules are active. \(\alpha'_m \) is the relative activation of gene \(i \) by an active module \(m \). A regulatory module can be repressing if \(\alpha'_m < 0 \). We constrain \(\alpha_s \in [0, 1] \) by using clamp\((l, x, u) = \max(l, \min(x, u)) \). \(\sigma_s \) is the set of modules active for gene \(i \) in state \(s \).

\(P(S = s|\psi) \) is the probability that gene \(i \) is in state \(s \) given the current active protein concentrations \(\psi \), or equivalently the expected fraction of gene \(i \) in state \(s \). \(P(S = s|\psi) \) is defined by the probability that modules in \(\sigma_s \), are active and the rest are inactive. The probability that a module is active, is equivalent to \(\mu_m \); the expected fraction of active module \(m \) (given \(\psi \)). \(\mu_m \) is defined in three separate ways depending on whether the module is bound by a TF complex (\(m \in C \)), if some of the TFs that bind to module \(m \) are repressors (\(\exists j \in R_m \)) or if all are activators (\(R_m = 0 \)). The formulation for \(\mu_m \) is a generalization of the well known Hill equations, which describe binding site activation as a function of a single regulator concentration. The formulation of \(\mu_m \) simplifies to a Hill equation when there is only a single activator or a single repressor regulating gene \(i \). \(k_j \) is a dissociation constant for TF \(j \), and \(\nu_j \) is the Hill coefficient, which represents the degree of cooperativity in binding, i.e. to which degree binding affinity will increase or decrease with the presence of bound regulator.

Generation of random adjacency matrices given to GeneNetWeaverPhos

Simulated data was created from a gene regulation network defined not only by nodes and edges, but also by specific regulation parameters (rate constants) and configurations of regulatory modules, see Eq (9) in the main text. Network constants such as decay rates and \(\alpha'_m \) were set randomly based on a graph with vertices \(V = P \cup T \cup O \) and edges defined as an adjacency matrix \(D \) with elements \(d_{ij} \in [-1, 0, 1] \). \(d_{ij} = -1 \) indicates repression if node \(j \in T \) or deactivation if \(j \in P \), \(d_{ij} = 1 \) indicates transcriptional activation by a member of \(T \) or activation by a member of \(P \), and \(d_{ij} = 0 \) indicates the absence of an edge.

Graphs were constructed from the adjacency matrices used for the "gold standard" networks in the DREAM4 challenge in order to relate our inference performance to that achieved in the DREAM4 competition. The DREAM4 adjacency matrices were originally built from known biological networks to resemble a realistic transcription regulatory network. Edges in these networks could be organized into an adjacency matrix \(G \) with elements \(g_{ij} \in [0, 1] \) indicating absence or presence of transcriptional regulation. Therefore, \(G \) readily describes \(d(T, V) \), but not \(d(P, R) \). The latter were designed by considering \(G \) as an indicator of edges in \(B \), i.e. \(g_{ij} = \text{sgn}(b_{ij}) \). As the desired adjacency matrix \(D \) has the same relationship to \(W \) (i.e.
were assigned to wildtype and a knockout in Fig S2. Values can be described for values observed from the simulation (for reasons of dependencies between terms), they were removed by setting this change does not increase the transcriptional influence of node time.

Perturbation experiment measurements were reported as log

Derivation of inference model

Simulation of the network in Fig 2 in the main text using GeneNetWeaverPhos is illustrated for wildtype and a knockout in Fig S2.

The initial concentrations for the wildtype simulation were estimated from assuming steady-state, which meant setting the differentials Eq (9a) and Eq (9b) in the main text to zero and approximating solutions for \(r \) and \(p \). Although the resulting values were not the steady-state values observed from the simulation (for reasons of dependencies between terms), they were assumed to be close enough to the correct steady-state concentrations to converge during simulation. In all knockout examples tested, the same steady-state were reached whether the knockout initial conditions were the wildtype initial conditions or wildtype steady-state. In general we used the simulated steady-state values from wildtype as initial conditions for perturbation simulation. In knockout simulation the maximum transcription rate of the deleted gene is set to \(1 \times 10^{-3} \) (setting it to zero will result in NaN log fold-change values). The knockout simulation is terminated when it reached a new steady-state. Log fold-change values are then calculated as a measure of the mRNA concentrations of the knockout simulation relative to the wildtype simulation. PhosTF is only given these final log fold-change values and tries to reverse-engineer the protein interactions of the network.

GeneNetWeaverPhos simulation

Simulation of the network in Fig 2 in the main text using GeneNetWeaverPhos is illustrated for wildtype and a knockout in Fig S2.

The initial concentrations for the wildtype simulation were estimated from assuming steady-state, which meant setting the differentials Eq (9a) and Eq (9b) in the main text to zero and approximating solutions for \(r \) and \(p \). Although the resulting values were not the steady-state values observed from the simulation (for reasons of dependencies between terms), they were assumed to be close enough to the correct steady-state concentrations to converge during simulation. In all knockout examples tested, the same steady-state were reached whether the knockout initial conditions were the wildtype initial conditions or wildtype steady-state. In general we used the simulated steady-state values from wildtype as initial conditions for perturbation simulation. In knockout simulation the maximum transcription rate of the deleted gene is set to \(1 \times 10^{-3} \) (setting it to zero will result in NaN log fold-change values). The knockout simulation is terminated when it reached a new steady-state. Log fold-change values are then calculated as a measure of the mRNA concentrations of the knockout simulation relative to the wildtype simulation. PhosTF is only given these final log fold-change values and tries to reverse-engineer the protein interactions of the network.

Derivation of inference model

Perturbation experiment measurements were reported as log

\[
\frac{\text{ Derivation of inference model }}{\text{ the measurement is } x_i(t) = \log_2 \frac{x_i^{(\text{mut})(t)}}{x_i^{(\text{wt})(t)}}}
\]

\(x_i^{(\text{mut})(t)} \) and \(x_i^{(\text{wt})(t)} \) are absolute mRNA measurements for a mutant and wildtype. Equivalent values can be described for \(y_i(t) \) and \(a_i(t) \). We consider \(y_i^{(\text{mut})(t)} \) and \(y_i^{(\text{wt})(t)} \) to be the fractions of
Fig S2. Simulation until steady state. Simulation of network in Fig 2 in the main text until convergence. Comparing wildtype and a mutant where P_1 has been knocked out. The values at convergence are seen in Fig 2D.

Protein i which were actively eliciting their regulatory role, which gives the levels of active protein i, $a^{(\text{mat})}_i(t) = y^{(\text{mat})}_i(t) \cdot x^{(\text{mat})}_i(t)$ and $a^{(\text{wt})}_i(t) = y^{(\text{wt})}_i(t) \cdot x^{(\text{wt})}_i(t)$. It then follows that:

\[
a_i(t) = \log_2 \frac{y^{(\text{mat})}_i(t) \cdot x^{(\text{mat})}_i(t)}{y^{(\text{wt})}_i(t) \cdot x^{(\text{wt})}_i(t)} = \log_2 \frac{y^{(\text{mat})}_i(t)}{y^{(\text{wt})}_i(t)} + \log_2 \frac{x^{(\text{mat})}_i(t)}{x^{(\text{wt})}_i(t)} = x_i(t) + y_i(t)
\]

In vector notation the expressions for $x(t)$ and $y(t)$ were then inserted:

\[
a(t) = x(t) + y(t) = (W_T + W_P)a(t-1) + e_x + e_y
\]

\[
= (W_T + W_P)a(0) + \sum_{i=0}^{t-1} (W_T + W_P)\gamma(e_x + e_y)
\]

\[
= W' a(0) + \sum_{i=0}^{t-1} W'(e_x + e_y) \quad \text{(If $P \cap T = \emptyset$)}
\]

Similar assumptions to those made for B in LLC were imposed on W: $\lim_{t \to \infty}(W_T + W_P)^t = 0$ and $\sum_{i=0}^{t-1}(W_T + W_P)^t$ converges for $t \to \infty$. This allows $a(t)$ to converge and therefore $x(t)$ and $y(t)$ also converge, see Eq (4) in the main text. Time parameter t is omitted for values at
equilibrium:

\[a = x + y = x + W_p a + e_y \]

\[(I - W_p) a = x + e_y \]

\[a = (I - W_p)^{-1} (x + e_y) \]

\[x = W_T (I - W_P)^{-1} (x + e_Y) + e_x \]

\[= W_T (I - W_P)^{-1} x + e \]

\[= Bx + e, \quad B = W_T (I - W_P)^{-1} \]

Enhancing relative expression of genetically perturbed genes

Knocked out genes should ideally have expression rates of zero, generating log fold-change (logFC) values of \(-\infty\). This was not the case in the perturbation data, where log fold-change values typically ranged from \(-2\) to \(-5\) (due to aspects of microarray technologies), although a few were unexpectedly observed to be positive. Overexpressed genes were expected to have higher expression rates than wildtype, and logFC values were typically in the range \(0.5\) to \(3\), although a few were close to 0 or slightly negative. For these reasons, measurements on the perturbed genes were artificially enhanced (Fig S3) (shifted by constant values) to ensure appropriate concentration parameters for these genes.

Fig S3. Enhancing perturbations Histogram of log fold-change values for the perturbation data. Gene measurements for mutated genes are shown before ("KO" and "OE") and after enhancement ("enhanced KO" and "enhanced OE"). "Others" refers to measurements of any gene that was not perturbed in a given experiment. The number of measurements for "KO", "OE", "enhanced KO", "enhanced OE", and "others" are 1326, 100, 1343, 110, and 8578196 respectively.

Regularization strength on 4 type example

This section visualizes the impact on inference when choosing PhosTF regularization strength applied to the example in Fig 1, where 4 different edge combinations are present. Regularization strength is adjusted by setting the regularization factor \(\lambda\) in the loss function, see Eq (8) in the main text. Inferences using all relevant magnitudes are shown in Fig S4. The true network is fully recovered for \(\lambda = 1\) and \(\lambda = 0.1\), while \(\lambda = 10\) is too strong a regularization, resulting in a missed (false negative) secondary regulation edge. \(\lambda = 0.01\) and no regularization (\(\lambda = 0\)) was found to represent too little regularization, resulting in densely connected secondary regulatory networks with many false positives.
Fig S4. Regularization strength True network (A), and networks inferred from simulated log fold-change data (B-F). Regularization strength is determined by λ, which is set to 10 (B), 1 (C), 0.1 (D), 0.01 (E), and 0 (F).

References

1. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(14):6286–6291. doi:10.1073/pnas.0913357107.

2. Von Dassow G, Meir E, Munro EM, Odell GM. Formulation of a model of the segment polarity network as a system of first-order ordinary differential equations using Ingeneue Supplementary Information for "The Segment Polarity Network is a Robust Developmental Module"; 2000. Available from: http://rusty.fhl.washington.edu/ingeneue/downloads/NatureSupplement.pdf