INTRODUCTION
The most common cause of dementia in the elderly associated with probable Alzheimer’s disease (AD) is one of the most common types of dementia, a chronic, progressive, disabling organic brain disorder characterized by disturbance of multiple cortical functions, including memory, judgment, orientation, comprehension, learning capacity, and language [1]. Patients with AD often have cholinergic deficits in association with the disease [2]. The symptoms of all types of dementia are presumed to be related to impaired neurotransmission and degeneration of neuronal circuits in the brain areas affected [3]. Cognitive deterioration occurring in patients with probable AD is associated with a progressive loss of cholinergic neurons and a consequent decline in levels of acetylcholine in the brain. This study aimed to evaluate the acetylcholinesterase (AChE) inhibitory effects and cytotoxicity in SH-SY5Y cells of different parts of three lotus extracts.

METHODS
Objective: Cognitive deterioration occurring in patients with probable Alzheimer’s disease is associated with a progressive loss of cholinergic neurons and a consequent decline in levels of acetylcholine in the brain. This study aimed to evaluate the acetylcholinesterase (AChE) inhibitory effects and cytotoxicity in SH-SY5Y cells of different parts of three lotus extracts.

Methods: AChE activity was quantified by spectrophotometry and cytotoxicity by flow 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in SH-SY5Y cells exposed to extracts.

Results: All of the extracts had inhibitory effects to AChE at p<0.05, but Roseum Plenum stem extract could inhibit AChE more than 30% (p<0.05). The all of the extracts could be an increase SH-SY5Y cell proliferation, while Album Plenum flower extract could be cytotoxic on SH-SY5Y cells.

Conclusion: The extracts of lotus could be supplemented compound for cognitive deterioration or Alzheimer’s patients.

Keywords: Nelumbo nucifera Gaertn., Acetylcholinesterase activity, Human neuroblastoma cell line.
diphenyltetrazolium bromide (MTT) were purchased from Invitrogen (Invitrogen, USA). DMSO, phosphate-buffered saline (PBS), and dithiobisnitrobenzoic acid (DTNB) were purchased from ThermoFisher (Thermo Scientific, USA).

Determination of AChE activity

The activity of AChE in red blood cell (RBC) was determined according to slightly modified Ellman’s method as previously described [28-30]. The mixture was prepared by mixing 10 μL in each aliquot of 1:10 RBC and extracts added in 1.0 mL of 0.25 mM DTNB in phosphate buffer pH 7.4. This was pre-incubated for 5 min at room temperature, and the reaction was started with the addition 25 μL of acetylthiocholine iodide. The absorbance per minute (ΔA/min) of thiocholine product was determined by spectrometric absorption at 405 nm. The data were converted into the standardized units of nanomoles substrate hydrolyzed/min x mL, using the extinction coefficient for the yellow product (ε= 13.6 mM−1 cm−1) to find the concentration. The AChE activity was calculated and expressed as U/L (AChE factor = 76,838). The experiment was run in triplicate. The AChE activities and AChE inhibitions were calculated by the following:

\[\text{AChE activity} = \Delta A/\text{min} \times \text{factor} \]
\[\% \text{AChE inhibition} = \frac{Ac - As}{Ac} \times 100 \]

Where \(\Delta A \) = the absorbance per minute of thiocholine product

\(Ac \) = the delta absorbance per minute of control

\(As \) = the delta absorbance per minute of sample

Cell culture and treatment

Human neuronal SH-SY5Y cells were cultured in DMEM/F12 with 10% fetal bovine serum (DMEM/F12) (Invitrogen, USA), and penicillin/streptomycin (100 IU/mL) at 37°C in a humidified incubator with 5% CO₂ atmosphere. SH-SY5Y cells were allowed to adhere at the bottom of a culture dish (60 mm) for 24 h before treatment with fresh medium containing 1 mg/mL of initial stock extracts for 24 h. SH-SY5Y cells were treated with a vehicle that served as a control. For all experiments were performed in five replicates.

MTT reduction assay

SH-SY5Y cells were seeded in 6-well culture plate (2.5 × 10⁴ cells per well) for 24 h. After SH-SY5Y cells were pre-treated with extracts. The end of the treatment, SH-SY5Y cells were incubated with 100 μL of MTT solution (5 mg/mL in PBS) for 2 h. Then, the medium was discarded and added formazan crystal products. The formazan crystal products were dissolved in 200 μL DMSO and stirred for 10 min. Absorbance was measured at 570 nm using a microplate reader. The results were compared with the untreated control, expressed as the percentage of cell viability. The data were obtained from five replicates. The percentage of cell viability was calculated from the following:

\[\text{Cell viability} (%) = \frac{(As/Ac) \times 100}{1} \]

Where \(Ac \) = the absorbance of SH-SY5Y treated with vehicle medium

\(As \) = the absorbance of SH-SY5Y treated with sample medium

Statistical analysis

All data were analyzed with a mean ± standard deviation of three independent experiment, descriptive statistics, t-test, and one-way analysis of variance using GraphPad Prism 6 version 6.01 (GraphPad Software Inc. La Jolla, CA, USA). p=0.05 was considered a statistically significant difference.

RESULTS AND DISCUSSION

AChE inhibitory activities

The results of the AChE activity are shown in Fig. 1. The baseline AChE activity in 1:10 dilution of packed RBC was 10.32.19±379.03 U/L. At the 5 mg/mL concentration of leaf, stem, and flower ethanolic extracts of RP showed that ChE activity was 8,298.53±76.84, 6,480.02±319.90, and 9,476.72±247.00, respectively. The leaf, stem, and flower ethanolic extracts of AP showed that ChE activity was 9,579.17±117.37, 8,759.56±277.04, and 9,527.94±76.84, respectively. The leaf and stem ethanolic extracts of HL showed that ChE activity was 9,451.10±203.29 and 8,068.02±203.29, respectively. The extracts of Nelumbo nucifera (RP, AP, and HL) are shown mild AChE inhibition (14.36–27.64%) while the flower extract showed no symptoms of intoxication on AChE inhibition (10.57–28.86%), as shown in Fig. 1. The AChE activity decreased approximately to the one-third of the baseline activity (less than 33%), consistent with no symptoms of intoxication.

Cytotoxicity of SH-SY5Y cells

SH-SY5Y cells were incubated with extracts for 48 h. And then, MTT assay was carried out to determine the cell growth in response to extract treatment. The result showed that the growth of the cells was markedly inhibited from the extracts of flowers of AP and displayed a toxic response to the treatment, while the other samples could be increased SH-SY5Y cell proliferation, as shown in Fig. 2.

CONCLUSION

The extracts promoted a moderate cytotoxic effect against SH-SY5Y cell and did not show a significant AChE inhibitory activity. According to the study, we found that the ethanolic extracts of N. nucifera could be supplemented compound for cognitive deterioration or Alzheimer’s patients. However, further study on the effect of phytochemical composition in the different parts of N. nucifera on the activity of AChE and cytotoxicity on SH-SY5Y cell.
ACKNOWLEDGEMENTS

The work in this paper was supported by a Research University Grant (18RF0112600) from Rajamangala University of Technology Thanyaburi, Thailand.

CONFLICTS OF INTEREST

The authors indicate no potential conflicts of interest.

REFERENCES

1. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 1998;88:1337-42.
2. Ellis JM. Cholinesterase inhibitors in the treatment of dementia. J Am Osteopath Assoc 2005;105:145-58.
3. Poirier J. Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action. Int J Clin Pract Suppl 2002;127:6-19.
4. Patelas MA, Gartner LP. A Textbook of Neuroanatomy. New York: John Wiley and Sons; 2016.
5. Mesulam M, Guillozet A, Shaw P, Quinn B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol Dis 2002:9:88-93.
6. Kashiwada Y, Aoshima A, Ikesiro Y, Chen YP, Furukawa H, Itoigawa M, et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg Med Chem 2005;13:443-8.
7. Bhardwaj A, Modi KP. A review on therapeutic potential of Nelumbo nucifera (Gaertn): The sacred lotus. Int J Pharm Sci Res 2016;7:42-54.
8. He LS, Meng FL, Diao XJ, Li YW, Meng R, Xi BD, et al. Allelopathic effect of Nelumbo nucifera stem and leaf tissue extract on the growth of Microcystis aeruginosa and Scenedesmus quadricauda. Huan Jing Ke Xue 2013:34:2637-41.
9. You JS, Lee YJ, Kim KS, Kim SH, Chang KJ. Anti-obesity and hypolipidaemic effects of Nelumbo nucifera seed ethanol extract in human pre-adipocytes and rats fed a high-fat diet. J Sci Food Agric 2014:94:568-75.
10. Rai S, Wahile A, Mukherjee K, Saha BP, Mukherjee PK. Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol 2006;104:122-7.
11. Ahn YJ, Park SJ, Woo H, Lee HE, Kim HJ, Kwon G, et al. Effects of allantoin on cognitive function and hippocampal neurogenesis. Food Chem Toxicol 2014:64:210-6.
12. Ohkoshi E, Miyazaki H, Shindo K, Watanabe H, Yoshida A, Yajima H, et al. Constituents from the leaves of Nelumbo nucifera stimulate lipolysis in the white adipose tissue of mice. Planta Med 2007;73:1255-9.
13. Tho NT, An TN, Tri MD, Sreekanth TV, Lee JS, Nagayothi PC, et al. Green synthesis of silver nanoparticles using Nelumbo nucifera seed extract and its antibacterial activity. Acta Chim Slov 2013:60:673-8.
14. Sohn DH, Kim YC, Oh SH, Park EJ, Li X, Lee BH, et al. Hepatoprotective and free radical scavenging effects of Nelumbo nucifera. Phytomedicine 2003;10:165-9.
15. Tsuruta Y, Nagao K, Kai T, Tsuge K, Yoshimura T, Koganebaru K, et al. Polyphenolic extract of lotus root (edible rhizome of Nelumbo nucifera) alleviates hepatic steatosis in obese diabetic db/db mice. Lipids Health Dis 2011;10:202.
16. Zhou YJ, Xiang JZ, Yuan H, Liu H, Tang Q, Hao HZ, et al. Neferine exerts its antithrombotic effect by inhibiting platelet aggregation and promoting dissociation of platelet aggregates. Thromb Res 2013;122:202-10.
17. Zhou M, Jiang M, Ying X, Cui Q, Han Y, Hou Y, et al. Identification and comparison of anti-inflammatory ingredients from different organs of lotus Nelumbo by UPLC-Q-TOF and PCA coupled with a NF-xB reporter gene assay. PLOS One 2013:8:e81971.
18. Yoon JS, Kim HM, Yadunandam AK, Kim NH, Jung HA, Choi JS, et al. Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in hepG2 cells: Molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 2013;20:1013-22.
19. Liu S, Li D, Huang B, Chen Y, Lu X, Wang Y, et al. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J Ethnopharmacol 2013;149:263-9.
20. Niu CH, Wang Y, Liu JD, Wang JL, Xiao JH. Protective effects of neferine on amiodarone-induced pulmonary fibrosis in mice. Eur J Pharmacol 2013;714:112-9.
21. Mukherjee PK, Mukherjee D, Maje AK, Rai S, Heinrich M. The sacred lotus (Nelumbo nucifera) phytochemical and therapeutic profile. J Pharm Pharmacol 2009;61:407-22.
22. Arjun P, Priya SM, Sivan PS, Krishnamoorthy M, Balasubramanian K. Antioxidant and antimicrobial activity of Nelumbo nucifera Gaertn. leaf extracts. J Acad Ind Res 2012;1:15-8.
23. Yang D, Zhang Q, Ren G, Ying T. A comparative study on antioxidant activity of different parts of lotus (Nelumbo nucifera Gaertn) rhizome. Food Sci Technol (Campanas) 2017:37:135-8.
24. Liu CP, Tsai WJ, Lin YL, Liao JF, Chen CF, Kuo VC, et al. The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral mononuclear cells. Life Sci 2004;75:699-716.
25. Hu M, Skibsted LH. Antioxidative capacity of rhizome extract and rhizome knob extract of edible lotus (Nelumbo nucifera). Food Chem 2002;76:327-33.
26. Wang QZ, Pen GH, Jin Y, Li J, Yan SL. Extraction of polyphenol from lotus roots and its enzymatic browning substrate. J Anal Sci 2004:20:38-40.
27. Sridhar KR, Rajeev B. Lotus a potential nutraceutical source. J Agric Technol 2007:3:143-55.
28. Ellman GL, Courtney KD, Andres V Jr., Feather-Stone RM. A new colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95.
29. Santillo MF, Liu Y. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y). J Pharmocol Toxicol Methods 2015;76:15-22.
30. Sun W, Chen L, Zheng W, Wei X, Wu W, Duyens EG, et al. Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol. Toxicology 2017;384:33-9.