1. INTRODUCTION

Since the pioneering suggestion of Gell-Mann and Zweig, that hadrons are composed of fractionally charged constituents, the quark model has achieved a remarkable success. Chromo-electric charge (color) of \(s = 1/2 \) quarks, naturally leads to the concept of chromo-magnetic moments, which are responsible for the “hyperfine” splitting of hadronic masses. Quarks, possessing the electric charge, should also exhibit the “hyperfine” splitting of hadronic masses. Quarks, chromo-magnetic moments, which are responsible for the strong magnetic fields, behaviour of pseudoscalar \(J^P = 0^- \) mesons is discussed. We speculate on the existence of an induced magnetic moment of quark meson.

One is tempted to ask then, whether quark-antiquark states (mesons) also have magnetic moments. For charged \(J^P = 1^- \) mesons composed of different-flavour quark pairs \(q \bar{q} \) the answer is simple and positive: Yes, such mesons should have a magnetic moment. In the case of vector mesons with hidden flavour \((J^P, Y, \phi) \) a more detailed quantum approach is necessary. For pseudoscalar \(J^P = 0^- \) mesons \((\pi, K, \eta) \) the situation is even less clear. Can quantum system with zero angular momentum have a magnetic moment?

Based on the analogy with magnetic behavior of positronium \((e^+e^-) \) and muonium \((\mu^+\mu^-) \) triplet and singlet ground states, we investigate here magnetic moments and polarizability of vector mesons \(J^P = 1^- \) and magnetic polarizability of pseudoscalar mesons \(\eta, \eta' \) and \(\eta(547) \). Quenching of \(J^P = 0^- \) mesons in very strong magnetic fields (created in heavy ion collisions) naturally appears if our analogy with ortho-positronium is justified.

Can \(\eta \) Mesons Have a Magnetic Moment?\(^1\)

P. Filip
Institute of Physics, Slovak Academy of Sciences Dúbravská cesta 9, Bratislava 845 11, Slovakia

Abstract—The response of pseudoscalar and vector mesons to strong magnetic fields is studied within a simple constituent quark model using analogy with bound states of Positronium. Magnetic moments of charged vector mesons \(K^0, D^0, B^0 \) are predicted and it is found that \(\eta \) mesons have magnetic polarizability. In extremely strong magnetic fields, behaviour of \(J^P = 1^- \) mesons is discussed. We speculate on the existence of an induced magnetic moment of \(\eta \) meson.

DOI: 10.1134/S1063779614010286

1. INTRODUCTION

Assuming that each constituent quark has magnetic moment \(\mu_q = \hbar Q/2m^* \) (where \(m^* \) is the effective quark mass), magnetic moments of baryons can be calculated \(^1\) as: \(\mu_s = \Sigma \mu_q \) for \(s = 3/2 \) baryons (e.g. \(\Omega^- \) and \(\Lambda^{++}, \Lambda^+ \)); \(\mu_s = \mu_{u,c,b} \) for baryons of type \(\Lambda, \Lambda_c, \Lambda_b \) containing \((ud) \) diquark and different quark \((s, c, b)\); and \(\mu_q = (4\mu_u - \mu_b)/3 \) for type \((q_d q_b)q_s \) baryons (e.g. \(n, p, \Xi \)). Magnetic moments \(\mu_q \) of quarks \(u, d, s \) and their effective masses inferred from the measured magnetic moments of hyperons, \(p \) and \(n \) are shown in the upper three rows of table.

Observing that effective \((m^* \) and constituent masses \(m_q \) of \(s, d, u \) quarks are similar, one may predict magnetic moments of heavy \(c, b, t \) quarks for which the corresponding strong heavy hyperon magnetic moments are not measured.

3. MAGNETIC PROPERTIES OF MESONS

Bound states of quark-antiquark pairs (mesons) in the ground \(S \)-state can have parallel or antiparallel spins of their constituents resulting in vector \((J^P = 1^-) \) or pseudoscalar \((J^P = 0^-) \) mesons. We shall assume

Quark	\(Q \)	\(\mu_q [\mu_B] \)	\(m^* [\text{MeV}] \)	\(m_M [\text{MeV}] \)
\(u \)	2/3	1.852	338	350
\(d \)	-1/3	-0.972	322	370
\(s \)	-1/3	-0.613	510	500
\(c \)	2/3	0.404	1550	1600
\(b \)	-1/3	-0.066	4730	4770
\(t \)	2/3	0.004	172900	

\(^1\) The article is published in the original.
here, that response of these mesons to strong magnetic fields is similar to behavior of positronium (e^+e^-) and muonium ($e^–\mu^+$) in the magnetic field. For example, triplet S-state of positronium (with parallel e^+e^- spins) is analogous to the quantum state of vector mesons $\varphi(1020)$, Y or J/Ψ with $J^P=1^–$, while the singlet state of positronium (antiparallel e^+e^- spins) resembles the structure of pseudoscalar η_ρ, η_ρ mesons.

For vector mesons composed of unlike-flavour quark-antiquark pair with parallel spins e.g. $\rho^+(u\bar{d})$, $K^+(s\bar{u})$ or $D^+(c\bar{u})$, one can use analogy with muonium ($e^–\mu^+$) and add the magnetic moment of quark and antiquark $\mu_{q\bar{q}} = |\mu_q| + |\mu_{\bar{q}}|$. This approach gives $\mu = -2.82\mu_N$ and $2.46\mu_N$, $-1.37\mu_N$, $-1.02\mu_N$, $-1.92\mu_N$ for mesons $\rho^–(d\bar{u})$ and $K^{*+}(u\bar{s})$, $D^*+(c\bar{d})$, $D^{**}(s\bar{c})$, $B^*–(b\bar{u})$. Our obtained value $\mu_\rho = -2.82\mu_N$ agrees well with lattice calculations [3].

Using the analogy with triplet and singlet states of Positronium in magnetic field [4], one can predict that J/Ψ and η_c mesons do not have magnetic moment (see Fig. 1), which applies also to $Y(b\bar{b})$, $\phi(s\bar{s})$, η_ρ, and η_ρ mesons. A possibility of the magnetic quenching of J/Ψ decay (as observed for ortho-positronium [5]) is very interesting and it deserves a detailed study. Energy of the singlet muonium state in magnetic field behaves as [6]

$$E_{\mu^–e^+} = -\frac{\Delta E_{hf}}{2} \left[1 + \frac{B^2}{\Delta E_{hf}} \right],$$

which decreases as $E^– \approx -\Delta E_{hf}/2 - (\tilde{\mu} B)^2/\Delta E_{hf}$ for small B fields (here $\tilde{\mu} = (|\mu_u| + |\mu_d|)/2$). Muonium singlet state thus achieves induced magnetic moment $\tilde{\mu}[B] = \tilde{\mu} B/\Delta E_{hf}$ and $\Delta E_{hf} = 1.8 \times 10^{-5}$ eV.

Replacing magnetic moments and masses of $e^–$ and μ^+ in Eq. (1) by corresponding quark values (from table) and using $\Delta E_{hf} = 45.8$ MeV, one can predict also the magnetic behavior of $B^*–$ and $B^–(b\bar{u})$ mesons (see Fig. 2).

Two $(m_c = \pm 1)$ components of $B^*–$ triplet state do have magnetic moment $\tilde{\mu} = \pm(|\mu_u| + |\mu_d|)$, while $m_c = 0$ component of $B^*–$ and the meson $B^–(b\bar{u})$ have magnetic polarizability β. Using $\Delta E = -\beta B(2\pi/\mu_\rho)$ from [7] and comparing to Eq. (1) one has $\beta_\rho = \mu_\rho/2\pi(|\mu_u| - |\mu_d|)^2/4/\Delta E_{hf}$, which gives $\beta = 22.0 \times 10^{-4}$ fm3 for $B^–$.

Quadratic energy response of η_c(2981) to magnetic field (Fig. 1) suggests magnetic polarizability $\beta = 1.78 \times 10^{-4}$ fm3, obtained using $\Delta E_{hf} = 116.6$ MeV. For η_c(9391) one can predict $\beta = 0.08 \times 10^{-4}$ fm3 (here $\Delta E_{hf} = 69.3$ MeV).

4. INDUCED MAGNETIC MOMENT OF η MESON

We may now suggest, that η(547) also has magnetic polarizability, due to the similarity of its quantum structure with η_c. Assuming $\omega(782)$ meson to be spin-triplet partner of η(547) one has $\Delta E_{hf} = 235$ MeV and this gives magnetic polarizability $1.3 \times 10^{-4} < \beta < 4.6 \times 10^{-4}$ fm3 for η(547), depending on the exact nature of its $(c\bar{u}u + c\bar{d}d\bar{d})$ quantum state. Analogously to positronium (see text below Eq. (1)), meson η(547) in magnetic fields should behave as having an induced magnetic moment $\tilde{\mu}[B] = \tilde{\mu} B/\Delta E_{hf}$ and $\Delta E_{hf} = 1.8 \times 10^{-5}$ eV. From nuclear physics we may expect, that in H^3 nucleus two neutrons form $S = 0$ scalar state (similar to singlet-positronium) and the magnetic moment of

Fig. 1. Energy of η and J/Ψ in very strong magnetic fields.

Fig. 2. Energy of $B^–(b\bar{u})$ and $B^*–$ in very strong magnetic fields.
H3 is to be generated by the proton with $\mu_p = 2.79 \mu_N$. However, $\mu_{H^3} = 2.98 \mu_N$, which is 7% larger compared to μ_p. Where does 7% increase come from?

Since two neutrons in $S = 0$ state are located in the magnetic field of the proton in H3, one can speculate, that the bound state of two neutrons does have magnetic polarizability β, and that induced magnetic moment μ^* of scalar di-neutron contributes by 7% to the magnetic moment of H3 nucleus.

If such picture is correct, then induced magnetic moment μ^* of $\eta(547)$ meson can produce its own magnetic field—it is real.

Consequently, also scalar diquarks in baryons, e.g. (ud) diquark in Λ, Λ_c hyperons or Nucleon, may contribute to the total observed magnetic moment.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and Development Agency under the contract no. APVV-0177-11 and by VEGA project (1/0171/11) and by JINR Dubna.

REFERENCES

1. Particle Data Group, J. Phys. G 37, 075021 (2010).
2. K.-T. Chao, Phys. Rev. D 41, 920 (1990).
3. J. N. Hedditch et al., Phys. Rev. D 75, 094504 (2007).
4. M. A. Stroscio, Phys. Rep. 22, 215 (1975).
5. W. V. Hughes, S. Marder, and C. S. Wu, Phys. Rev. 98, 1840 (1955).
6. F. Scheck, Quantum Physics (Springer-Verlag, 2007), pp. 296–299.
7. M. Schumacher, Prog. Part. Nucl. Phys. 55, 567 (2005).