CUSPIDAL EDGES WITH THE SAME FIRST FUNDAMENTAL FORMS ALONG A KNOT

A. HONDA, K. NAOKAWA, K. SAJI, M. UMEHARA, AND K. YAMADA

Abstract. Letting C be a compact C^ω-curve embedded in R^3 (C^ω means real analyticity), we consider a C^ω-cuspidal edge f along C. When C is non-closed, in the authors’ previous works, the local existence of three distinct cuspidal edges along C whose first fundamental forms coincide with that of f was shown, under a certain reasonable assumption on f. In this paper, if C is closed, that is, C is a knot, we show that there exist infinitely many cuspidal edges along C having the same first fundamental form as that of f such that their images are non-congruent to each other, in general.

Introduction

Let us first introduce some terminology. By ‘C^r-differentiability’ we mean C^∞-differentiability if $r = \infty$ and real analyticity if $r = \omega$.

Let $f : U \to R^3$ be a C^r-map from a domain $U(\subset R^2)$ into the Euclidean 3-space R^3. A point $p \in U$ is called a cuspidal edge if there exist

- a local C^r-diffeomorphism φ from a neighborhood $V(\subset U)$ of p to a neighborhood of the origin of R^2, and
- a local C^r-diffeomorphism Φ from an open subset of R^3 containing $f(V)$ to a neighborhood of the origin of R^3

such that $\varphi(p) = (0, 0)$, $\Phi \circ f(p) = (0, 0, 0)$ and

$$\Phi \circ f \circ \varphi^{-1}(u, v) = f_C(u, v), \quad f_C(u, v) := (u^2, u^3, v).$$

The map f_C is the standard cuspidal edge whose image is indicated in Figure 1 left.

![Figure 1: The standard cuspidal edge and two mutually congruent cuspidal edges along a helix](image)
We fix \(l > 0 \), and denote by \(I := [0, l] \) the closed interval and by \(S^1 := \mathbb{R}/l\mathbb{Z} \) the 1-dimensional torus of period \(l \). We set
\[
J := I \quad \text{or} \quad S^1,
\]
since we treat the bounded closed interval \(I \) and the one-dimensional torus \(S^1 \) uniformly. We then fix a \(C^r \)-embedded curve \(\gamma : J \to \mathbb{R}^3 \) with positive curvature function, and denote by \(C \) the image of \(\gamma \). For a positive number \(\varepsilon \), we set
\[
U_\varepsilon(J) := J \times (-\varepsilon, \varepsilon).
\]

Definition 0.1. We say that \(J_1 \) is a \(J \)-interval if \(J_1 := [0, a] \) when \(J = I \), and \(J_1 := \mathbb{R}/a\mathbb{Z} \) when \(J = S^1 \), where \(a > 0 \).

We fix a \(J \)-interval \(J_1 \). A \(C^r \)-cuspidal edge along \(C \) is a \(C^r \)-map \(\tilde{f} : U_\varepsilon(J_1) \to \mathbb{R}^3 \) such that
\[
\begin{align*}
\bullet & \quad J_1 \ni t \mapsto \tilde{f}(t, 0) \in \mathbb{R}^3 \quad \text{gives a parametrization of} \quad C, \\
\bullet & \quad (t, 0) \text{ is a cuspidal edge for each} \quad t \in J_1.
\end{align*}
\]
We denote by \(f \) the map germ along \(C \) induced by \(\tilde{f} \). For the sake of simplicity, we often identify \(f \) with \(\tilde{f} \), if it creates no confusion. (Later, we will give a special parametrization of \(f \) (cf. \(\text{[1]} \)). We denote by \(\mathcal{F}^r(C) \) the set of germs of \(C^r \)-cuspidal edges along \(C \).

Definition 0.2. Let \(g : U_{\varepsilon'}(J_2) \to \mathbb{R}^3 \) \((\varepsilon' > 0) \) be a cuspidal edge along \(C \), where \(J_2 \) is a \(J \)-interval. Then \(g \) is said to be right equivalent to \(f \) if there exists a diffeomorphism \(\varphi \) from a neighborhood \(U_1(\subseteq U_\varepsilon(J_1)) \) of \(J_1 \times \{0\} \subseteq J_1 \times \mathbb{R} \) to a neighborhood \(U_2(\subseteq U_{\varepsilon'}(J_2)) \) of \(J_2 \times \{0\} \subseteq J_2 \times \mathbb{R} \) such that \(\varphi(J_1 \times \{0\}) = J_2 \times \{0\} \) and \(f = g \circ \varphi \) holds on \(U_1 \). We denote by \([f]\) the right equivalence class containing \(f \).

Definition 0.3. The cuspidal edge germ \(g \) is said to be isometric to \(f \in \mathcal{F}^r(C) \) if there exists a diffeomorphism \(\varphi \) defined on a neighborhood \(U_1(\subseteq U_\varepsilon(J_1)) \) of \(J_1 \times \{0\} \subseteq J_1 \times \mathbb{R} \) such that \(\varphi(J_1 \times \{0\}) = J_2 \times \{0\} \) and the pull-back metric \(\varphi^*ds_E^2 \) coincides with \(ds_f^2 \), where \(ds_f^2 \) (resp. \(ds_E^2 \)) is the first fundamental form of \(f \) (resp. \(g \)), that is, it is the pull-back of the Euclidean inner product on \(\mathbb{R}^3 \) by \(f \) (resp. \(g \)). We denote this relationship by \(g \sim f \). When \(g = f \), such a \(\varphi \) is called a symmetry of \(ds_f^2 \) if \(\varphi \) is not the identity map. Moreover, if
\[
\varphi(t, 0) = (t, 0) \quad (t \in J_1)
\]
holds, \(\varphi \) is said to be non-effective. Otherwise, \(\varphi \) is called an effective symmetry.

The isometric relation defined above is an actual equivalence relation on \(\mathcal{F}^r(C) \), as well as being the right equivalence relation. The following assertion holds:

Proposition 0.4. Let \(f, g \in \mathcal{F}^r(C) \). If \(g \) is right equivalent to \(f \), then \(g \) is isometric to \(f \).

Proof. If \(g \) is right equivalent to \(f \), then there exists a local diffeomorphism \(\varphi \) such that \(f = g \circ \varphi \). If we denote by \(ds_E^2 \) the Euclidean inner product of \(\mathbb{R}^3 \), then we have that
\[
ds_f^2 = f^*ds_E^2 = (g \circ \varphi)^*ds_E^2 = \varphi^*(g^*ds_E^2) = \varphi^*ds_f^2,
\]
which proves the assertion. \(\square \)

We then define an “isomer” of \(f \in \mathcal{F}^r(C) \) as follows.

Definition 0.5. For a given \(f \in \mathcal{F}^r(C) \), a cuspidal edge \(g \in \mathcal{F}^r(C) \) is called an isomer of \(f \) (cf. \(\text{[2]} \)) if it satisfies the following conditions:

1. \(g \) is isometric to \(f \) (i.e. \(g \sim f \)), but
A subset A of \mathbb{R}^3 is said to be congruent to a subset $B \subset \mathbb{R}^3$ if there exists an isometry T in \mathbb{R}^3 such that $B = T(A)$. Moreover, we give the following definition:

Definition 0.6. The image of a germ $g \in F^r(C)$ is said to have the same image as a given germ $f \in F^r(C)$ if there exist open subsets U_i ($i = 1, 2$) containing $J_i \times \{0\}$ such that $g(U_1) = f(U_2)$. On the other hand, g is said to be congruent to f if there exists an isometry T of the Euclidean space \mathbb{R}^3 such that $T \circ g$ has the same image as f, as a map germ.

Remark 0.7. Here, we consider the case $J = I$, that is, C is non-closed. Consider an “admissible” C^∞-germ of a cuspidal edge f (i.e. f belongs to the class $F^\infty(C)$ defined in (1.4)). If the first fundamental form of f has no effective symmetries, then there exist three distinct isomers $\tilde{f}, f^*, \tilde{f}^* \in F^\infty(C)$ such that (cf. [3])

- $\tilde{f}(t, v), f^*(t, v)$ and $\tilde{f}^*(t, v)$ have the same parameters as $f(t, v)$, and
- the coefficients of the first fundamental forms of $\tilde{f}, f^*, \tilde{f}^*$ with respect to the coordinate system (t, v) coincide with those of f.

In fact,

- \tilde{f} (called the dual of f) is the isomer whose cuspidal angle (cf. Definition 1.1) takes the opposite sign of that of f,
- f^* (called the inverse of f) is the isomer which is obtained by reversing the orientation of the parametrization γ of C. The sign of the cuspidal angle of f^* takes the same sign as that of f,
- \tilde{f}^* (called the inverse dual of f) is the dual of the inverse f^*,
- if g is an isomer of f, then g is right equivalent to one of $\tilde{f}, f^*, \tilde{f}^*$.

The four maps $f, \tilde{f}, f^*, \tilde{f}^*$ in \mathbb{R}^3 are non-congruent in general. However, if C admits a symmetry, this is not true. For example, consider a helix C_0 and fix a point P_0 on C_0. Then there exists an orientation preserving isometry T of \mathbb{R}^3 (which is not the identity map) satisfying $T(C_0) = C_0$ and $T(P_0) = P_0$. Then, we can construct a cuspidal edge along C_0 (cf. Remark 2.3) such that $g := T \circ f$ is an isomer of f.

From now on, we consider the case that $J = S^1$, that is, C is a knot in \mathbb{R}^3, and show that each $f \in F^\infty(C)$ has infinitely many isomers which are mutually non-congruent, in general.

![Figure 2. Cuspidal edges along the curves γ_1 (left) and γ_2 (right) (cf. Example 0.6)](image_url)
1. Results

We set $J := S^1$ and consider the case that $C(=\gamma(S^1))$ is a closed C^α-embedded curve with positive curvature function $\kappa(t)$. We let $\mathbf{n}(t)$ (resp. $\mathbf{b}(t)$) be the unit principal normal (resp. unit bi-normal) vector of $\gamma(t)$. We set

$$P_0 := \gamma(0),$$

which is considered as a base point of C. The parametrization γ of C gives an orientation of C. For this fixed base point P_0 and this fixed orientation of C, we would like to show that any cuspidal edge germ along C can be uniquely represented using a normal form given as follows:

For sufficiently small $\varepsilon > 0$, consider a C^α-map (called Fukui’s formula, cf. [2] and [3]) $f(t, v) ((t, v) \in U_\varepsilon(S^1))$ expressed by

$$(1.1) \quad f(t, v) := \gamma(t) + (A(t, v), B(t, v)) \begin{pmatrix} \cos \theta(t) & - \sin \theta(t) \\ \sin \theta(t) & \cos \theta(t) \end{pmatrix} \begin{pmatrix} \mathbf{n}(t) \\ \mathbf{b}(t) \end{pmatrix}$$

such that

(a) $f(0, 0) = P_0,$

(b) $A(t, v), B(t, v)$ and $\theta(t)$ are C^α-functions, and

(c) for each $t \in S^1$, $A_{vv}(t, 0), B_{vv}(t, 0)$ are not equal to zero.

In this setting, the angle $\theta(t)$ in f is called the cuspidal angle at $\gamma(t)$.

Definition 1.1. A map $f(t, v)$ satisfying (a), (b) and (c) is called a normal form of the cuspidal edge along C with respect to the base point P_0 if

(d) t is an arc-length parameter of C,

(e) for each $t \in S^1$, v is the normalized half-arc-length parameter of the sectional cusp $v \mapsto (A(t, v), B(t, v))$ (see [3] Appendix A) for the definition of normalized half-arc-length parameters), that is, there exists a C^α-function $m(t, v)$ satisfying $m(t, 0) \neq 0$ such that $A(t, v)$ and $B(t, v)$ have the following expressions:

$$A(t, v), B(t, v) := \int_0^v w \left(\cos \lambda(t, w), \sin \lambda(t, w) \right) dw, \quad \lambda(t, v) := \int_0^v m(t, w)dw.$$

The function $m(t, v)$ is called the extended half-cuspidal curvature function (cf. [3]).

In this situation, the singular curvature $\kappa_s(t)$ and the limiting normal curvature $\kappa_v(t)$ (cf. [3]) along the singular set of $f \in \mathcal{F}^\alpha(C)$ are given by (cf. [3])

$$(1.2) \quad \kappa_s(t) = \kappa(t) \cos \theta(t), \quad \kappa_v(t) = \kappa(t) \sin \theta(t).$$

The following assertion holds:

Proposition 1.2. For each $f \in \mathcal{F}^\alpha(C)$, there exists a unique normal form $\hat{f} \in \mathcal{F}^\alpha(C)$ with respect to the base point $f(0, 0)$ such that

- $[f] = [\hat{f}]$, and
- the orientation of C given by the parametrization $t \mapsto \hat{f}(t, 0)$ coincides with that induced by the parametrization $t \mapsto f(t, 0)$.

Proof. The uniqueness of such an \hat{f} follows from the fact that $\hat{f}(0, 0) = f(0, 0)$ and $\hat{f}(t, 0) = \gamma(t)$, since t is an arc-length parameter of γ and v is the normalized half-arc-length parameter of the sectional cusps of \hat{f}. \hfill \Box

We prepare a lemma:

Lemma 1.3. Let $f, g \in \mathcal{F}^\alpha(C)$ be two normal forms of cuspidal edges along C. If the image of f coincides with that of g and $f(t, 0) = g(t, 0)$ holds for $t \in S^1$, then either $f(t, v) = g(t, v)$ or $f(t, v) = g(t, -v)$ holds.
Proof. Suppose that the images of the two maps coincide. Since \(f \) and \(g \) are written in normal forms, the fact that \(t \) is an arc-length parameter and \(v \) is a half-arc-length parameter implies
\[
g(t, v) = f(\sigma t + a, \sigma' v) \quad (t \in S^1),
\]
where \(a \in S^1 \) and \(\sigma, \sigma' \in \{1, -1\} \). Since \(f(t, 0) = g(t, 0) \) holds for \(t \in S^1 \), we have \(\sigma = 1 \) and \(a = 0 \), proving the assertion. \(\square \)

As a consequence, the following assertion holds:

Proposition 1.4. Let \(f, g \in F^r(C) \) be two cuspidal edge germs. Then \(g \) is right equivalent to \(f \) if and only if \(g \) has the same image as \(f \).

Proof. The “if”-part is obvious. So it is sufficient to show the “only if”-part. By Proposition 1.2, there exist normal forms \(f \) and \(\hat{g} \) of cuspidal edges along \(C \) such that
\[
[f] = [\hat{f}], \quad [g] = [\hat{g}], \quad \hat{f}(0, 0) = \hat{g}(0, 0).
\]
We suppose that \(g \) has the same image as \(f \). Then \(\hat{g} \) also has the same image as \(\hat{f} \). Replacing \(\hat{g}(t, v) \) by \(\hat{g}(-t, v) \) if necessary, we may assume that \(\hat{g}(t, 0) = \hat{f}(t, 0) \) for \(t \in S^1 \). Thus, by Lemma 1.3, we have \(\hat{g}(t, v) = \hat{f}(t, \pm v) \), which implies \([g] = [f] \). \(\square \)

Corollary 1.5. Let \(f, g \in F^r(C) \) be two cuspidal edge germs. If \(g \) is congruent to \(f \), then there exists an isometry \(T \) of \(\mathbb{R}^3 \) such that \(T \circ g \) is right equivalent to \(f \).

Proof. Suppose that \(g \) is congruent to \(f \). Then, there exists an isometry \(T \) of \(\mathbb{R}^3 \) such that \(T \circ g \) has the same image as \(f \). By Proposition 1.4, we can conclude that \(T \circ g \) is right equivalent to \(f \). \(\square \)

We fix \(f \in F^r(C) \). Then there exists a normal form \(\hat{f} \) of the cuspidal edge along \(C \) such that \([\hat{f}] = [f] \). The expression \(\hat{f}(t, v) \) means that \(t \) is the arc-length parameter of \(C \) and \(v \) is the normalized half-arc-length parameter of the sectional cusps. Let \(\kappa_s : S^1 \to \mathbb{R} \) be the singular curvature function of \(\hat{f} \) along \(C \). By (1.2), \(|\kappa_s(t)| \leq \kappa(t) \) holds, and \(\kappa_s(t) \) depends only on the first fundamental form of \(f \) (cf. (2.1) and (3)). We then consider the condition
\[
(1.3) \quad \max_{t \in S^1} |\kappa_s(t)| < \min_{t \in S^1} \kappa(t),
\]
and define the subclass
\[
F^*_r(C) := \{ f \in F^r(C) ; \text{ \(f \) satisfies (1.3) } \}
\]
of \(F^r(C) \). A germ of a cuspidal edge \(f \in F^r(C) \) is called admissible if it belongs to this subclass \(F^*_r(C) \). For \(f \in F^*_r(C) \), we may assume that its cuspidal angle \(\theta(t) \) satisfies
\[
(1.5) \quad 0 < |\theta(t)| < \pi \quad (t \in S^1).
\]
It should be remarked that cuspidal edges with constant Gaussian curvature satisfy \(\kappa_s = 0 \), that is, \(|\kappa_s| = \kappa \) on \(S^1 \). In particular, such surfaces do not belong to \(F^*_r(C) \). (If \(f \) is of constant Gaussian curvature, then \(\kappa_s \) vanishes identically. For such a case, see (1).)

Example 1.6. Consider the following \(2\pi \)-periodic curves giving a series of torus knots \((n := 2m - 1, m = 1, 2, 3, \ldots) \):
\[
(1.6) \quad \gamma_m(t) := \left(2 + \cos nt \cos 2t, (2 + \cos nt) \sin 2t, \sin nt \right) \quad (t \in \mathbb{R}),
\]
and denote by \(C_m \) their images. The curve \(C_2 \) gives a trefoil knot. The cuspidal edges \(f_m \) for \(m = 1, 2 \) along \(C_m \) obtained from (1.1) by substituting
\[
A(t, v) = t^2, \quad B(t, v) = t^3, \quad \theta = \pi/4
\]
are indicated in Figure 2. Each of f_m ($m \geq 1$) belongs to the class $F^*_r(C_m)$ as a map germ, since we have chosen θ so that $0 < \theta < \pi/2$.

Definition 1.7. We say that C has a symmetry if there exists an isometry T of the Euclidean space \mathbb{R}^3 such that $T(C) = C$ and T is not the identity map. On the other hand, a C^∞-function $\mu : S^3(= \mathbb{R}/(\mathbb{Z})) \to \mathbb{R}$ is said to have a symmetry if there exists a constant $c \in (0, l)$ or $c' \in [0, l)$ such that

$$\mu(t) = \mu(t + c) \quad \text{or} \quad \mu(t) = \mu(c' - t)$$

holds for $t \in \mathbb{R}$.

If C has a symmetry T, and if there is a point $P \in C$ such that $T(P) \neq P$, then $\kappa(t)$ also admits a symmetry. Our main result is as follows:

Theorem 1.8. Let C be the image of a closed C^ω-curve embedded in \mathbb{R}^3, and let g be a cuspidal edge germ belonging to $F^*_r(C)$. Then there are four continuous 1-parameter families of real analytic cuspidal edges $\{f_p\}_{P \in C}$ ($i = 1, 2, 3, 4$) which satisfy the following properties:

(i) Each f^*_p ($i \in \{1, 2, 3, 4\}$, $P \in C$) belongs to $F^*_r(C)$ and is isometric to g.

Moreover, there exist $t_0 \in \{1, 2, 3, 4\}$ and $P_0 \in C$ such that $f^*_{P_0}$ is right equivalent to g.

(ii) If $h \in F^*_r(C)$ is an isomer of g, then h is right equivalent to a cuspidal edge germ belonging to one of these four families.

(iii) Suppose that C is not a circle. If the first fundamental form ds^2 of g admits at most finitely many effective symmetries (in particular, this assumption follows if the singular curvature function κ_s of g is not constant, see Remark 1.10), then for each choice of f^*_P ($i \in \{1, 2, 3, 4\}$, $P \in C$),

$$\Lambda^*_P := \{(j, Q) \in \{1, 2, 3, 4\} \times C : f^*_Q \text{ is congruent to } f^*_P\}$$

is a finite set. In particular, there are uncountably many mutually non-congruent isomers of g.

(iv) Suppose C has no symmetries. If ds^2 does not admit any effective symmetries (in particular, this assumption follows if κ_s has no symmetries, see Remark 1.10), then the set Λ^*_P is a one-point-set for each $(i, P) \in \{1, 2, 3, 4\} \times C$.

Remark 1.9. To show the existence of f as an isomer of $f \in F^*_r(C)$, the assumption (1.5) is needed to apply the Cauchy-Kowalevski theorem (see [3, Theorem 1]). (On the other hand, if (1.5) fails, one can find cuspidal edges whose isomers do not exist, see [3, Corollary 4.13] for details.) However, to construct infinitely many isomers of $f \in F^*_r(C)$, the condition (1.5) is not sufficient, and we need to assume that f must belong to the class $F^*_r(C)$, see (2.6) in the proof of Theorem 1.8 below.

Remark 1.10. We may assume that the initially given $g \in F^*_r(C)$ is a normal form. Suppose that ds^2 admits an effective symmetry φ. (Later, we will show that any symmetry of ds^2 is effective, see Corollary 1.2.) Then it induces a symmetry of the singular curvature function κ_s of g. Hence,

(1) the conclusion of (iv) follows if κ_s has no symmetries.

Moreover,

(2) the conclusion of (iii) follows if κ_s is non-constant.

In fact, if ds^2 admits infinitely many distinct effective symmetries, then they give infinitely many symmetries of κ_s. Since κ_s is real analytic, it must be constant.
To construct \(f_0 \) along the knot \(C \), the real analyticity of \(f \) and the condition (1.3) are required, because we need to apply the Cauchy-Kowalevski theorem inductively (cf. Lemma 2.1).

Since the curvature function of the curve \(\gamma_m \) \((m \geq 1)\) given in (1.4) is non-constant, the cuspidal edges \(f_m \) as in Example 1.9 satisfy the condition (iii) in Theorem 1.8 and each \(f_m \) has infinitely many isomers. On the other hand, \(f_m \) does not satisfy the condition (iv), since \(C \) admits a symmetry. We can show the existence of an example satisfying (iv), as follows:

Example 1.11. We consider a closed convex \(C^\infty \)-regular curve \(C \), lying in the 2-plane \(\mathbb{R}^2 := \{ (x, y, 0) \in \mathbb{R}^3 ; x, y \in \mathbb{R} \} \). We can choose \(C \) so that it has no symmetries as a plane curve. Considering the approximation of \(C \) by Fourier series, by Lemma A.4 in the appendix, we may assume that \(C \) is real analytic. Let \(\pi : S^2 \setminus \{(0,0,1)\} \to \mathbb{R}^2 \) be the stereographic projection. We let \(\gamma(t) \) \((0 \leq t \leq l)\) be the arc-length parameterization of \(C \) and set

\[
\tilde{\gamma}_u(t) := \frac{\pi^{-1}(u \gamma(t)) + (0,0,1)}{2u},
\]

which is a real analytic 1-parameter deformation of \(\tilde{\gamma}_0 := \gamma \) for sufficiently small \(|u|\). We denote by \(\tilde{C}_u \) the image of \(\tilde{\gamma}_u(t) \). Then \(\tilde{C}_0 = C \). Since the length \(L(u) \) of \(\tilde{C}_0 \) depends real analytically on \(u \), it is a real analytic function of \(u \). So we set

\[
\gamma_u(t) := \frac{l}{L(u)} \tilde{\gamma}_u(t),
\]

which gives a 1-parameter family of \(C^\infty \)-embedded space curves of period \(l \) satisfying \(\gamma_0 = \gamma \). Since \(C \) has no symmetries, the curvature function \(\kappa_u \) of \(\gamma_u \) also has no symmetries for sufficiently small \(|u|\) (cf. Lemma A.4). Since \(\gamma_u(u \neq 0) \) lies on a sphere, and its curvature function as a space curve is not constant, it cannot be a part of any circle, and so its torsion function never vanishes identically. In particular, it does not lie in any plane. As a consequence, the image of \(\gamma_u(u \neq 0) \) has no symmetries. We fix \(u \), and parametrize \(\gamma_u \) by arc-length. Then by Fukui’s formula (cf. (1.3)), we can construct a \(C^\infty \)-cuspidal edge \(f_u \) with constant cuspidal angle \(\theta_0 \in (0, \pi/2) \) and with \((A(t,v),B(t,v)) = (t^2,t^3)\). Since the singular curvature function \(\kappa_u \cos \theta_0 \) of \(f_u \) along the \(t \)-axis has no symmetries, part (1) of Remark 1.10 implies that \(f_u \) satisfies (iv) of Theorem 1.8.

2. Proof of Theorem 1.8

A positive semi-definite \(C^\infty \)-metric \(ds^2 = Edt^2 + 2Fdt dv + Gdv^2 \) defined on \(U_{\varepsilon}(S^1) \) is called a periodic Kossowski metric (cf. [4] or [5]) if it satisfies the following:

\begin{itemize}
 \item[(a)] \(F(t,0) = G(t,0) = 0 \), \(E_v(t,0) = 2F_t(t,0) \) and \(G_t(t,0) = G_v(t,0) = 0 \),
 \item[(b)] there exists a \(C^\infty \)-function \(\lambda \) defined on \(U_{\varepsilon}(S^1) \) satisfying \(EG - F^2 = \lambda^2 \), \(\lambda(t,0) = 0 \) and \(\lambda_v(t,0) \neq 0 \) for each \(t \in S^1 \).
\end{itemize}

Under the assumption that \(\lambda_v(t,0) > 0 \), the singular curvature \(\kappa_v \) of \(ds^2 \) is defined by (cf. [3] Remark 3.5)]

\[
\kappa_v(t) := \frac{-F_v(t,0)E_t(t,0) + 2E(t,0)F_{tv}(t,0) - E(t,0)E_{vv}(t,0)}{2E^{3/2}(t,0)\lambda_v(t,0)}
\]

for each \(t \in S^1 \). If \(ds^2 \) is the first fundamental form of \(f \in \mathcal{F}^\infty(C) \), it is a periodic Kossowski metric (cf. [3] Lemma 2.9)), and the singular curvature of \(f \) has the above expression.
Lemma 2.1. Let \(\gamma(t) \) (\(t \in S^1 \)) be a closed \(C^\omega \)-curve embedded in \(\mathbb{R}^3 \) parametrized by arc-length whose curvature function \(\kappa(t) \) is positive everywhere. Let \(ds^2 \) be a periodic Kossowski metric on \(U_\delta(S^1) \) satisfying

\[
E(t, 0) = 1, \quad F(t, 0) = G(t, 0) = 0 \quad (t \in S^1).
\]

Suppose that the singular curvature \(\kappa_s \) along the singular curve \(S^1 \ni t \mapsto (t, 0) \in U_\varepsilon(S^1) \) satisfies

\[
(2.2) \quad |\kappa_s(t)| < \kappa(t) \quad (t \in S^1).
\]

Then there exists a cuspidal edge \(f_+ \) (resp. \(f_- \)) along \(C := \gamma(S^1) \) satisfying

1. \(f_+ \) (resp. \(f_- \)) is defined on \(U_\delta(S^1) \) for some \(\delta \in (0, \varepsilon) \),
2. \(f_+(t, 0) = \gamma(t) \) (resp. \(f_-(t, 0) = \gamma(t) \)) for each \(t \in S^1 \),
3. the first fundamental form of \(f_+ \) (resp. \(f_- \)) is \(ds^2 \),
4. the limiting normal curvature of \(f_+ \) (resp. \(f_- \)) is positive-valued (resp. negative-valued) and is equal to

\[
\sqrt{\kappa(t)^2 - \kappa_s(t)^2}, \quad (\text{resp. } -\sqrt{\kappa(t)^2 - \kappa_s(t)^2}),
\]

and

5. \(f_+ \) and \(f_- \) belong to \(\mathcal{F}^\omega(C) \).

Moreover, if there exists a cuspidal edge \(g \) defined on an open subset \(V(\subset U_\varepsilon(S^1)) \) containing \(S^1 \times \{0\} \) such that \(g(t, 0) = \gamma(t) \) holds for \(t \in S^1 \) and the first fundamental form of \(g \) is \(ds^2 \), then \(g \) is right equivalent to \(f_+ \) or \(f_- \).

Proof. We can find a partition \(0 = t_0 < t_1 < \cdots < t_n = l \) for \(S^1 = \mathbb{R}/\mathbb{Z} \) such that there exist local coordinate systems \((U_i; x_i, y_i) \) (\(i = 1, \ldots, n \)) of \(U_\varepsilon(S^1) \) containing \([t_{i-1}, t_i] \times \{0\} \), where \(n \) is a certain positive integer. For each \(i \in \{1, \ldots, n\} \), the metric has the expression \(ds^2 = E_i(dx_i)^2 + G_i(dy_i)^2 \) on \(U_i \). Since \(ds^2 \) satisfies \((2.2) \), we can apply [3, Theorem 3.9] by setting \(U := U_i \) for each \(i \), and obtain a map \(g_{+i} : U_i \to \mathbb{R}^2 \) (resp. \(g_{-i} : U_i \to \mathbb{R}^2 \)) \(i = 1, \ldots, n \) satisfying (2) and (3) on \(U_i \), and the limiting normal curvature of \(g_{\pm i} \) is equal to

\[
\sqrt{\kappa(t)^2 - \kappa_s(t)^2}, \quad (\text{resp. } -\sqrt{\kappa(t)^2 - \kappa_s(t)^2}).
\]

In other words, the cuspidal angles \(\theta_{\pm i} \) of \(g_{\pm i} \) satisfy (cf. \((1.2) \) and also \((3.6) \))

\[
(2.3) \quad \kappa(t)\sin \theta_{\pm i}(t) = \pm \sqrt{\kappa(t)^2 - \kappa_s(t)^2}, \quad \theta_{-i}(t) = -\theta_{+i}(t).
\]

Since conditions (2) and (3) do not depend on coordinates, the uniqueness of such a pair of maps yields that \(g_{\pm i} = g_{\pm i-1} \) holds on \(U_i \cap U_{i-1} \). So we obtain a map \(f_+ \) (resp. \(f_- \)) defined on \(U_\delta([0, l]) \) for a certain \(\delta \in (0, \varepsilon) \) such that each \(g_{\pm i} \) (resp. \(g_{-i} \)) coincides with \(f_+ \) (resp. \(f_- \)) on \(U_\delta([0, l]) \cap U_i \) for \(i = 1, \ldots, n \). In particular, the cuspidal angle functions \(\theta_{\pm i}(t) \) of \(f_{\pm} \) satisfy (cf. \((1.3) \) and \((1.5) \))

\[
\theta_{-i}(t) = -\theta_{+i}(t), \quad \kappa(t)\sin \theta_{+i}(t) = \kappa_s(t), \quad \kappa(t)\sin \theta_{+i}(t) = \sqrt{\kappa(t)^2 - \kappa_s(t)^2}
\]

for \(t \in S^1 \). Then, we obtain \(f_+ = g_{+1} \) and \(f_- = g_{-1} \) on \(U_n \cap U_1 \). In fact, if not, we have \(g_{\pm n} = g_{\pm 1} \) and the function \(\theta_{i}(t) \) takes different signs at \(t = 0 \) and \(t = l \). Then by the continuity of \(\theta_{i}(t) \), it has a zero on \([0, l] \), a contradiction. So \(f_{\pm} \) are \(l \)-periodic. Moreover, \(f_+ \) and \(f_- \) belong to \(\mathcal{F}^\omega(C) \), because of \((1.3) \). The last statement of Lemma 2.1 follows from the last assertion of [3, Theorem 3.9].

As an application of this lemma, we can prove the following important conclusion:

Corollary 2.2. Let \(f \in \mathcal{F}^\omega(C) \). If the first fundamental form \(ds_f^2 \) of \(f \) has a symmetry \(\varphi \), then \(\varphi \) is effective.
Suppose that g is a non-effective symmetry of ds_f^2. Then $\varphi(t, 0) = (t, 0)$ holds. If we set $g = f \circ \varphi$, then $f(t, 0) = g(t, 0)$ and g has the same first fundamental form as f. Applying Lemma 2.1 to ds_f^2, we obtain two cuspidal edges f_{\pm} whose first fundamental forms are ds^2 such that $f_{\pm}(t, 0) = f(t, 0)$. Then the last assertion of Lemma 2.1 yields that either $f = f_+ = f_-$ holds. Moreover, applying the last assertion of Lemma 2.1 again, we can conclude that g coincides with f_+ or f_-. Since g has the same image as f, the cuspidal angle of g at each point of C coincides with that of f. Thus, g must coincide with f, which implies $f \circ \varphi = f$. Since f is a cuspidal edge, it is an injective map. So φ must be the identity map. □

Proof of Theorem 1.8. Without loss of generality, we may assume that $g(t, v)$ itself is expressed in a normal form and that $\gamma(t)$ is parametrized by arc-length. Replacing $\gamma(t)$ by $\gamma(\sigma t + b)$ for suitable $\sigma \in \{1, -1\}$ and $b \in S^1$, we may assume that

\[g(t, 0) = \gamma(t) \quad (t \in S^1). \]

We denote by ds^2 the first fundamental form of g. We now construct the four families $f^i_{\gamma(a)}$ for each $a \in [0, 1]$. Since f satisfies (1.3), it holds that

\[\kappa_s(t) \leq \max_{u \in S^1} |\kappa_s(u)| < \min_{u \in S^1} \kappa(u) \leq \kappa(\sigma t + a) \quad (\sigma \in \{1, -1\}) \]

for $t \in S^1$. In particular, we can apply Lemma 2.1 for the closed C^∞-curves

\[t \mapsto \gamma(t) \quad \text{and} \quad t \mapsto \gamma(-t) \quad (a \in [0, 1]). \]

Thus, we obtain four isomers $f^i_{\gamma(a)}$ associated with g ($i = 1, 2, 3, 4$) such that

1. each $f^i_{\gamma(a)}$ belongs to $F^\infty(C)$ whose first fundamental form is ds^2,
2. $f^i_{\gamma(a)}(t, 0) = (t + a) (t \in S^1)$ holds for $j = 1, 2$, and $f^k_{\gamma(a)}(t, 0) = (t - a)$ ($t \in S^1)$ holds for $k = 3, 4$, and
3. the limiting normal curvature of $f^i_{\gamma(a)}$ ($i = 1, 2, 3, 4$) is equal to

\[\sigma_i^2 \sqrt{\kappa(\sigma t + a)^2 - \kappa_s(t)^2}, \]

where κ_s is the singular curvature of g along γ and

\[\sigma_i := \begin{cases} 1 & \text{if } i = 1, 2, \\ -1 & \text{if } i = 3, 4 \end{cases} \quad \text{and} \quad \sigma'_i := \begin{cases} 1 & \text{if } i = 1, 3, \\ -1 & \text{if } i = 2, 4. \end{cases} \]

Remark 2.3. In the above construction, each $f^i_{\gamma(a)}$ might not be expressed as a normal form. We give here such an example. We consider the helix (cf. [3] Example 5.4)

\[\gamma(t) := \left(\cos \left(\frac{t}{\sqrt{2}} \right), \sin \left(\frac{t}{\sqrt{2}} \right), \frac{t}{\sqrt{2}} \right) \]

parametrized by arc-length defined on a certain bounded closed interval containing $t = 0$. We set

\[(A(v), B(v)) := \int_0^v w(\cos w, \sin w)dw = (v \sin v + \cos v - 1, \sin v - v \cos v), \]

and fix a constant $\theta \in (0, \pi/2)$. Then the map $f(t, v)$ induced by Fukui’s formula (1.1) gives a normal form of a cuspidal edge along the helix. As shown in [3] Example 5.4, we can express the first fundamental form ds_f^2 of f in the following form

\[ds_f^2 = E(v)dt^2 + 2F(v)dtdv + G(v)dv^2, \]

where $F(v) = v(v - \sin v)/2$, $G(v) = v^2$, and $E(v)$ is a certain positive valued C^∞-function of t which depends on θ (one can compute $E(v)$ explicitly using the formula given in [3] Proposition 4.8].)
Also, as shown in [3] Example 5.4, an isomer (the dual) \tilde{f} of f can be written as (the figures of the images of f and \tilde{f} are indicated in Figure 1, right)

$$\tilde{f} = T \circ f \circ \varphi,$$

where T is the 180°-rotation with respect to the principal normal line at $\gamma(0)$ of the helix γ, and φ is an effective symmetry of ds^2 fixing $(0,0)$. (The inverse and the inverse dual of f are given by $f_* = T \circ f$ and $\tilde{f}_* = T \circ \tilde{f}$, respectively.) Such a symmetry φ must be uniquely determined by [3] Proposition 3.15. If $\tilde{f}(t, v)$ is also a normal form, then the map φ must have the expression $\varphi(t, v) = (-t, v)$. However, this contradicts the fact that $\varphi(x, y) = (-x, y)$ holds for the local coordinate system at $(0, 0)$ given by (cf. [3] (5.2))

$$x(t, v) := t + \int_0^v \frac{w(w - \sin w) - (w - \sin w)^2}{2E(w)} dw, \quad y(t, v) := \int_0^v \sqrt{\frac{4E(w) - (w - \sin w)^2}{4E(w)}} dw.$$

We return to the proof of Theorem 1.8 and prove (i). By (1), each $f^i_{\gamma(a)} (i = 1, 2, 3, 4, a \in S^1)$ has the same first fundamental form as g. In particular, the singular curvature function of $f^1_{\gamma(a)}$ coincides with that of g. Thus, $f^i_{\gamma(a)}$ satisfies \cite{13} and belongs to $F^\omega(C)$. By \cite{24} and (3), we have $g = f^4_{\gamma(0)}$ (resp. $g = f^2_{\gamma(0)}$) if the cuspidal angle of g is positive (resp. negative), proving all assertions in (i).

We next prove (ii): Suppose that h is an isomer of g. Then, there exists a local diffeomorphism φ such that $\varphi^*ds^2_h = ds^2$, where ds^2_h is the first fundamental form of h. Then $h \circ \varphi$ has the same first fundamental form as g. Since $t \mapsto h \circ \varphi(t, 0)$ gives an arc-length parametrization of C, we can write

$$h \circ \varphi(t, 0) = \gamma(\sigma_1 t + b)$$

for some $\sigma_1 \in \{1, -1\}$ and $b \in S^1$. By the last statement of Lemma 2.1 $h \circ \varphi$ coincides with $f^j_{\gamma(b)}$ for some $j \in \{1, 2, 3, 4\}$, proving (ii).

We then prove (iii): Let $f_n := f^n_{\gamma(a_n)} (n = 1, 2, \ldots)$ be mutually distinct isomers of g which are congruent to each other, where $f_n \in \{1, 2, 3, 4\}$ and $a_n \in [0, 1)$. Replacing $\{f_n\}$ by a suitable subsequence if necessary, we may assume that the sequence $\{a_n\}$ consists of distinct values. By Corollary 1.5 there exist an isometry T_n of R^3 and a local diffeomorphism φ_n such that

\begin{equation}
(2.8) \quad f_n = T_n \circ f_1 \circ \varphi_n
\end{equation}

holds (i.e. T_1 and φ_1 are identity maps), which implies $\varphi_n^*ds^2 = ds^2$. By Corollary 2.2 φ_n is effective unless it is the identity map. Since ds^2 admits only finitely many effective symmetries, we may assume that $\varphi := \varphi_n$ does not depend on n. Then we have

$$T_n^{-1} \circ f_n = f_1 \circ \varphi = T_2^{-1} \circ f_2$$

for $n \geq 3$. Substituting $v = 0$ and using the fact that $f_n = f^n_{\gamma(a_n)}$, we have

$$\gamma(\sigma_{n_1} t + a_n) = f_n(t, 0) = T_n \circ T_2^{-1} \circ f_2(t, 0) = T_n \circ T_2^{-1} \circ \gamma(\sigma_{n_2} t + a_2),$$

where $\sigma_k (k = 1, 2, 3, \ldots)$ are defined in [27]. In particular,

$$\kappa(\sigma_{n_1} t + a_n) = \kappa(\sigma_{n_2} t + a_2), \quad \sigma_{n_1}^\tau(\sigma_{n_1} t + a_n) = \tau(\sigma_{n_2} t + a_2)$$

hold, where (“det” denotes the determinant of square matrices)

$$\sigma_{n}^\tau := \det(T_n \circ T_2^{-1}) \in \{1, -1\}$$

and $\tau(t)$ is the torsion function of $\gamma(t)$. Substituting $t = 0$, we have

$$\kappa(a_n) = \kappa(a_2), \quad \sigma_{n}^\tau(a_n) = \tau(a_2).$$
Since the sequence \(\{a_n\} \) takes distinct values, this accumulates to a value \(a_\infty \in S^1 \). Since \(\kappa(t) \) and \(\tau(t) \) are real analytic functions, they must be constant. Since \(C \) is a knot, it must be a circle lying in a plane, a contradiction.

Finally, we show (iv): We fix \(f_0 := f_{\gamma(a_i)}^j (i \in \{1, 2, 3, 4\}) \), where \(a \in [0, l] \). Suppose that \(f_1 = f_{\gamma(b)}^j \) \((\gamma \neq (a, b))\) is congruent to \(f_0 \), where \(j \in \{1, 2, 3, 4\} \) and \(b \in [0, l] \). By Corollary 2.2 there exist an isometry \(T \) of \(R^3 \) and a local diffeomorphism \(\varphi \) such that \(f_1(t, \tau) = T \circ f_0 \circ \varphi \). Since \(C \) has no symmetries, \(T \) must be the identity map. Moreover, since \(f_1 \) and \(f_0 \) have the same first fundamental form, \(\varphi^*ds^2 = ds^2 \) holds. Since \(ds^2 \) does not admit any effective symmetries, Corollary 2.2 yields that \(\varphi \) is the identity map. Hence \(f_1 = f_0 \), and \(\Lambda_{\gamma(a)}^i (a \in [0, l]) \) is a one-point set.

Remark 2.4. When \(J = I \), that is, \(C \) is non-closed, the authors showed in [3] that for each germ of a cuspidal edge \(f \) satisfying

\[
(2.9) \quad \max_{t \in I} |\kappa_s(t)| < \min_{t \in I} \kappa(t),
\]

there exist three isomers \(\hat{f}, \tilde{f}, \text{and } \ddot{f} \) of \(f \) (see Remark 0.7). If we set \(I_a := [a - \delta, a + \delta] \) for sufficiently small \(\delta > 0 \), the restrictions \((f^j_{\gamma(a)})(j = 2, 3, 4) \) of \(f^j_{\gamma(a)} \) (constructed in the above proof) to the interval \(I_a \subset S^1 \) coincide with these three isomers (cf. (2.7)).

Appendix A. A Property of Non-symmetric Functions

We prove the following assertion:

Lemma A.1. Let \(\{\mu_s(t)\}_{s \in [0, l]} \) be a continuous one-parameter family of \(C^\infty \)-functions on \(R \) satisfying \(\mu_s(t + l) = \mu_s(t) \) for each \(s \). If \(\mu_0 \) has no symmetries (cf. Definition 1.7), then \(\mu_s \) also has no symmetries for sufficiently small \(s(> 0) \).

Proof. If the assertion fails, then there exists a monotone decreasing sequence \(\{s_n\} \) converging to 0 such that \(\mu_{s_n} := \mu_{s_n} \) has a certain symmetry, that is, there exist a constant \(c_n \in [0, l] \) and a sign \(\sigma_n \in \{1, -1\} \) such that

\[
(\text{A.1}) \quad \mu_{s_n}(\sigma_n t + c_n) = \mu_{s_n}(t).
\]

Since \(\sigma_n = \pm 1 \), by replacing \(\{s_n\} \) by some subsequence if necessary, we may assume that \(\sigma := \sigma_n \) does not depend on \(n \). Since \(R/\mathbb{Z} \) is compact, replacing \(\{s_n\} \) by some subsequence if necessary, we may assume that \(c_n \) converges to \(c_0 \). Then taking the limit \(n \to \infty \), we have \(\mu_0(\sigma t + c_0) = \mu_0(t) \). Since \(\mu_0 \) is non-symmetric, we have \(\sigma = 1 \) and \(c_0 \in [0, l] \). Then, we may assume that \(c_0 = 0 \) without loss of generality. If \(c_n \) is an irrational number, then \(\{\sigma m + c_n\}_{m \in \mathbb{Z}} \) is dense in \(S^1 \), and (A.1) yields that \(\mu_n \) is a constant function. Since \(\mu_0 \) has no symmetries, we may assume that \(c_n \) is a rational number for sufficiently large \(n \), and we can write \(c_n := q_n/p_n \), where \(p_n \) and \(q_n \) are relatively prime integers. Then there is a pair \((a, b) \) of integers such that \(ap_n + bq_n = 1 \) and

\[
(\text{A.2}) \quad \mu_n(t) \equiv \mu_n(t + bc_n) = \mu_n(t + b) = \mu_n(t + 1 - \frac{ap_n}{p_n}) = \mu_n(t + \frac{1}{p_n}).
\]

Fix an irrational number \(x_0 \in (0, 1) \). Then there exist integers \(r_n \) \((n = 1, 2, 3, \ldots)\) so that \(x_n := r_n/p_n \) converges to \(x_0 \). Since \(\mu_n(t) = \mu_n(t + x_n) \) by (A.2), taking the limit as \(n \to \infty \), we have \(\mu_0(t) = \mu_0(t + x_0) \), contradicting the assumption that \(\mu_0(t) \) has no symmetries. \(\square \)

Acknowledgments. The authors thank the referee for valuable comments.
References

[1] D. Brander, *Spherical surfaces*, Experimental Mathematics **25** (2016), 257–272.

[2] T. Fukui, *Local differential geometry of cuspidal edge and swallowtail*, to appear in Osaka J. Math. (www.rimath.saitama-u.ac.jp/lab.jp/Fukui/preprint/CEST.pdf).

[3] A. Honda, K. Naokawa, K. Saji, M. Umehara, and K. Yamada, *Duality on generalized cuspidal edges preserving singular set images and first fundamental forms*, preprint [arXiv:1906.02556](https://arxiv.org/abs/1906.02556).

[4] A. Honda, K. Naokawa, M. Umehara, and K. Yamada, *Isometric deformations of wave fronts at non-degenerate singular points*, to appear in Hiroshima Math. J. [arXiv:1710.02999](https://arxiv.org/abs/1710.02999).

[5] L. Martins, K. Saji, M. Umehara and K. Yamada, *Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts*, Geometry and Topology of Manifolds, 247–281, Springer Proc. Math. Stat., **154**, Springer, Shanghai, (2016).

[6] K. Saji, M. Umehara, and K. Yamada, *The geometry of fronts*, Ann. of Math. **169** (2009), 491–529.

(Atsufumi Honda) Department of Applied Mathematics, Faculty of Engineering, Yoko-
hama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
E-mail address: honda-atufumi-ky@ynu.ac.jp

(Kosuke Naokawa) Department of Computer Science, Faculty of Applied Information
Science, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki, Hiroshima, 731-5193, Japan
E-mail address: k.naokawa.ec@cc.it-hiroshima.ac.jp

(Kentaro Saji) Department of Mathematics, Faculty of Science, Kobe University,
Rokko, Kobe 657-8501, Japan
E-mail address: saji@math.kobe-u.ac.jp

(Masaaki Umehara) Department of Mathematical and Computing Sciences, Tokyo In-
stitute of Technology, Tokyo 152-8552, Japan
E-mail address: umehara@is.titech.ac.jp

(Kotaro Yamada) Department of Mathematics, Tokyo Institute of Technology, Tokyo
152-8551, Japan
E-mail address: kotaro@math.titech.ac.jp