Since the outbreak of coronavirus disease 2019 (COVID-19) in December 2019, millions of people have been infected and died worldwide. However, no drug has been approved for the treatment of this disease and its complications, which urges the need for finding novel therapeutic agents to combat. Among the complications due to COVID-19, lung injury has attained special attention. Besides, phytochemicals have shown prominent anti-inflammatory effects and thus possess significant effects in reducing lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, the prevailing evidence reveals the antiviral effects of those phytochemicals, including anti-SARS-CoV activity, which could pave the road in providing suitable lead compounds in the treatment of COVID-19. In the present study, candidate phytochemicals and related mechanisms of action have been shown in the treatment/protection of lung injuries induced by various methods. In terms of pharmacological mechanism, phytochemicals have shown potential inhibitory effects on inflammatory and oxidative pathways/mediators, involved in the pathogenesis of lung injury during COVID-19 infection. Also, a brief overview of phytochemicals with anti-SARS-CoV-2 compounds has been presented.

Keywords: coronaviruses, lung injury, phytochemicals, COVID-19, signaling pathway

INTRODUCTION

The complex pathophysiological mechanisms behind viral diseases, along with the associated side effects of the present conventional drugs, urge the need for introducing alternative treatments. Among viral infections, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and the newest human CoVs (HCoVs) associated with the outbreak of coronavirus disease 2019 (COVID-19) have caused acute respiratory distress syndrome (Sharma et al., 2020). Based on the pathological findings, the inflammatory cytokines/signaling pathways lead to pulmonary edema and, ultimately, lung injury in COVID-19 patients (Merad and Martin, 2020). Considering their potential effects in targeting several dysregulated mediators, phytochemicals could be auspicious agents in the treatment/management of various diseases (Mani et al., 2020). The medicinal plants and phytochemicals target multiple proinflammatory and oxidative mediators such as tumor necrosis factor-α (TNF-α),...
interleukin-1β, IL-6, IL-8, matrix metalloproteinases (MMPs), nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS). Therefore, owing to the involvement of inflammation and oxidative stress in the pathogenesis of lung injury, phytochemicals have attracted particular attention to providing novel agents in combating coronaviruses and related complications (Bellik et al., 2012; Cornélio Favarin et al., 2013b). This article presents an overview of phytochemicals, including alkaloids, coumarins, polyphenols, especially flavonoids, quinones, and terpenes to show noticeable effects against lung injury. Therefore, they could be introduced as ameliorative agents against SARS-CoV-2-induced lung injury. Moreover, based on their simultaneous antiviral and preventive effects against lung injury, some phytochemicals such as matrine, cepharnethine, osthole, wogonin, myricetin, and triptolide have been also provided as promising candidates in the management of COVID-19. In general, this review article aims to introduce phytochemicals as potential therapeutic agents against coronavirus complications, focusing on lung injury.

CORONAVIRUSES AND PATHOGENESIS: FOCUSING ON LUNG INJURY

In striking contrast to the history of HCoVs, as relatively harmless respiratory pathogens, the outbreak of SARS and the emergence of MERS pose the CoVs as important pathogens in respiratory tract infections. SARS-CoV, MERS-CoV, and SARS-CoV-2 can cause clinical complications leading to severe diseases presented as acute respiratory distress syndrome (ARDS) (Yin and Wunderink, 2018). HCoVs contain single-stranded, polyconotypic RNA genomes of positive polarity (~30 kb). These viral genomes are translated into multiple nonstructural proteins (ORF1a and ORF1b), structural proteins (S, E, M, and N), and lineage-specific accessory proteins showing differences in these viruses. For instance, in the case of SARS-CoV, accessory proteins include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8a, ORF8b, and ORF9b (Fung et al., 2020).

The most common clinical symptoms in SARS-CoV-2 include fever, cough, dyspnea, fatigue, headache, myalgia, and diarrhea. Some patients afterward suffer from shortness of breath and recurrent or ongoing fever. In nearly 13% of patients, intense care treatment (e.g., mechanical ventilation) should be applied (Lai et al., 2020; Wang D. et al., 2020). The pathobiology of SARS-CoV-2 and related molecular mechanisms behind the coronavirus-associated lung injury are not yet completely understood; however, the role of some key molecular intermediates are not deniable (Marini and Gattinoni, 2020). Among those signaling mediators, TNF-α, IL-1, IL-6, IL-8, and IL-1β, NF-κB, MMPs, MAPK, and COX-2 seem to play critical roles in the pathogenesis of COVID-19 and associated lung injury (Fakhri et al., 2020b; Liu Y. et al., 2020; Merad and Martin, 2020). In terms of ROS, iNOS, as well as nuclear factor erythroid 2-like 2 (Nrf2), autophagy-related molecules (LC-3I, Atg5, and Beclin1), and Janus kinase-signal transducers and activator of transcription (JAK/STATs) pathway have shown an important role (Seif et al., 2017). From the other point of view, the extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) signaling pathways are of the other dysregulated mediators following lung injury (Mo et al., 2014; Tsai et al., 2015; Lin et al., 2018). In COVID-19 patients, angiotensin-converting enzyme 2 (ACE2) receptor, located on alveolar epithelial cells, has attracted growing attention, as a high-affinity receptor and cotransporter for SARS-CoV-2 entrance to the lung (South et al., 2020; Ziai et al., 2020). Dysregulation of ACE2/Ang (1–7)/Mas receptor and ACE1/Ang II/Ang II type 1 receptor pathways could enhance ACE2, thereby increasing the chances of the viral entry (Rico-Mesa et al., 2020; South et al., 2020). Besides, the dysregulation of ACE2 by SARS-CoV-2 infection inhibits the degradation of Ang II into angiotensin (Ag) (1–7), exacerbates inflammation, and leads to vascular permeability, as well as cardiovascular/lung complications (Leung et al., 2020; South et al., 2020). Based on the pathological findings, an edematous lung with increased weight was also observed in this disease (Ding et al., 2003; Nicholson et al., 2003). Large multinucleated cells (macrophages and pneumocytes) and atypical enlarged pneumocytes comprise large nuclei, prominent nucleoli, and amphiphilic granular cytoplasm, which have often been observed in the lungs of SARS patients. However, none of these signs can be considered as a unique feature of SARS-related pathology. The other pathological features usually observed in SARS include squamous metaplasia of bronchial and alveolar epithelial cells; cilia loss of bronchiolar epithelial cells; subpleural multiplication of fibrogranulative tissue in small airways and airspaces; vascular injury hemophagocytosis in residing mononuclear cells in pulmonary tissue; and apoptosis in epithelial cells, lymphocytes, monocytes/macrophages, and pneumocytes (Gu and Korteweg, 2007). Apart from a respiratory infection, gastrointestinal and central nervous system (CNS) infection was also reported in some patients suffering from SARS (Fung et al., 2020). Additionally, in most SARS autopsies, both extensive necrosis of the spleen and atrophy of the white pulp were reported. Reduction of CD4+, CD8+, and CD20+ lymphocytes, dendritic cells, macrophages, and natural killer cells residing in the spleen, as well as atrophy and decrement of the lymph nodes lymphocytes, were often observed. The presence of SARS-CoV was also confirmed in circulating monocytes and T lymphocytes and to some degree in B lymphocytes and natural killer cells (Chong et al., 2004; Gu et al., 2005). The liver is another organ that is affected during the course of this disease. For example, the increment of serum alanine aminotransferase level in SARS patients was associated with some adverse outcomes. Besides, hemophagocytosis or bone marrow hypoplasia, destruction of epithelial cells in the thyroid glands, myofiber necrosis and atrophy of skeletal muscle tissue, and necrosis and vacuities of the adrenal medulla can occur in some SARS patients (Gu and Korteweg, 2007).
PHYTOCHEMICALS AGAINST CORONAVIRUSES

Since the outbreak of COVID-19 happened, several researchers have focused on the use of natural compounds for the treatment of related complications. Most of those studies are in vitro and in vivo screening of phytochemicals against coronaviruses (especially SARS-CoV-2), computer docking models studies on predicting the anti-CoVs effects of these compounds against the coronavirus family members such as SARS-CoV, MERS-CoV, and SARS-CoV-2 (Mani et al., 2020; Zhang D.-h. et al., 2020). According to those studies, natural polyphenol compounds such as quercetin (Chio et al., 2016), kaempferol (Schwarz et al., 2014), myricetin (Yu et al., 2012), apigenin (Ryu et al., 2010a), and resveratrol (Wahedi et al., 2020) have prominent activities against coronaviruses. Cho and coworkers showed that the geranylated flavonoids (tomentin A-E) isolated from Paulownia tomentosa (Thunb.) Steud. (Paulowniaceae) inhibited the papain-like protease as a vital enzyme for SARS-CoV propagation (Cho et al., 2013). In addition, three flavonoid compounds including apigenin-7-O-rhamnoglucoside, herbapectin, and pctolinarion at the concentration of 20 µM blocked the crucial enzyme for SARS-CoV replication, 3C-like protease (Jo et al., 2020). Also, 3C-like protease was inhibited with ten polyphenols isolated from Brososnetia papyrifera (L.) L’Hér. ex Vent. (Moraceae), especially with papyriflavanol A at 3.7 µM (Park et al., 2017). On the other hand, the molecular docking study on traditional Chinese medicinal compounds against SARS-CoV-2 showed that the theafлавин, as a flavonoid compound isolated from black tea, Camellia sinensis (L.) Kuntze (Theaceae), via the inhibition of the SARS-CoV-2 RNA-dependent RNA polymerase, can exert ant coronavirus activities (Lung et al., 2020). Also, hesperidin, which is abundant in citrus, has shown a potential inhibitory effect on ACE2; thereby it could be a good candidate for clinical trials on SARS-CoV-2 (Hagag et al., 2020). Besides, alkaloids have also shown antiviral effects against coronaviruses. Lycorine, as an indolizidine alkaloid isolated from Lycoris radiata (L’Hér.) Herb. (Amaryllidaceae), showed anti-SARS-CoV activities at 15.7 nM (Li et al., 2005). Gyebi and coworkers introduced the 10-(Amaryllidaceae), showed anti-SARS-CoV activities at 15.7 nM that are suggested as anti-SARS-CoV-2 agents (Bleasel and Peterson, 2020; Wink, 2020). Besides, among other anti-CoVs phytochemicals saikosaponins (A, B2, C, D) as triterpene saponin glycosides of Bupleurum spp. (Apiaceae) have shown hopeful results. The saikosaponin B2 at 6 µM, in addition to possessing an anti-CoV effect, also showed inhibitory effects on the virus propagation stages (Cheng et al., 2006). Glycyrrhizin is another triterpene saponin, obtained from Glycyrrhiza glabra L. (Fabaceae), with anti-CoV activity and blocking effects on several steps of viral replication such as permeation and adsorption (Bailly and Vergoten, 2020; Cinatil et al., 2003). Triterpenoids of Euphorbia neriifolia L. (Euphorbiaceae) also indicated anti-HCoV effects. Among these triterpenoids, friedelane derivatives showed the greatest effect (Chang et al., 2012). The phytochemicals in essential oils are among the other anti-HCoV natural compounds (Nadjib, 2020). Jensenone and 1.8-cineole, as monoterpenes in Eucalyptus spp. (Myrtaceae) essential oil, showed anti-CoV effects in docking studies (Sharma and Kaur, 2020a; Sharma and Kaur, 2020b). Savinin, a lignoid isolated from Chamomyparis obtusa (Siebold & Zucc.) Endl. (Cupressaceae), and betulinic acid, a triterpenoid of Betula spp. (Betulaceae), showed anti-SARS-CoV activities via the inhibition of 3CL protease at 25 and 10 pM, respectively (Wen et al., 2007). Also, quinones such as emodin, aloe-emodin, and Tripterygium regelii (Celastraceae) quinones including celastrol, pristimerin, tingenone, and iguesterin showed the anti-SARS-CoV effect, also showed inhibitory effects on the virus propagation stages (Cheng et al., 2006). Glycyrrhizin is another triterpene saponin, obtained from Glycyrrhiza glabra L. (Fabaceae), with anti-CoV activity and blocking effects on several steps of viral replication such as permeation and adsorption (Bailly and Vergoten, 2020; Cinatil et al., 2003). Triterpenoids of Euphorbia neriifolia L. (Euphorbiaceae) also indicated anti-HCoV effects. Among these triterpenoids, friedelane derivatives showed the greatest effect (Chang et al., 2012). The phytochemicals in essential oils are among the other anti-HCoV natural compounds (Nadjib, 2020). Jensenone and 1.8-cineole, as monoterpenes in Eucalyptus spp. (Myrtaceae) essential oil, showed anti-CoV effects in docking studies (Sharma and Kaur, 2020a; Sharma and Kaur, 2020b). Savinin, a lignoid isolated from Chamomyparis obtusa (Siebold & Zucc.) Endl. (Cupressaceae), and betulinic acid, a triterpenoid of Betula spp. (Betulaceae), showed anti-SARS-CoV activities via the inhibition of 3CL protease at 25 and 10 µM, respectively (Wen et al., 2007). Also, quinones such as emodin, aloe-emodin, and Tripterygium regelii (Celastraceae) quinones including celastrol, pristimerin, tingenone, and iguesterin showed the anti-SARS-CoV activities. The emodin, aloe-emodin, and iguesterin inhibited the 3CL protease at 20, 366, and 2.6 µM, respectively (Lin et al., 2005; Ryu et al., 2010b; Schwarz et al., 2011). In addition, emodin, isolated from Rheum officinarum Baill. and Polygonum multiflorum (Thunb.) Moldenke (Polygonaceae), inhibited interaction between ACE2 and S protein at 200 µM. With mention to the above, it can be said that phytochemicals are potential sources for the discovery of effective drugs against coronaviruses, especially anti-SARS-CoV-2. For this purpose, several clinical trials on phytochemicals such as polyphenols (NCT04400890), hesperidin and diosmin (NCT04452799), resveratrol (NCT04542993, NCT04536090, and NCT04377789), quercetin (NCT04468139 and NCT04377789), artemisinin and curcumin (NCT04382040), epigallocatechin gallate (NCT04446065), glycyrrhizin (NCT04487964), colchicine (NCT04527562, NCT04392141, NCT04375202, NCT04355143, and NCT04360980), berberine (NCT04479202), and tetrandrine (NCT04308317) have been designed and are going on. The structures of some anti-CoV phytochemicals are shown in Figure 1.

PHYTOCHEMICALS AS POTENTIAL AGENTS FOR CORONAVIRUS-ASSOCIATED LUNG INJURY

Medicinal plants and isolated phytochemicals can cover multiple therapeutic targets at the same time and lie in the fact that they are widely used in the treatment of various diseases, including viral diseases and related complications. Since infection with any of the viruses of the Coronavirusidae family, including SARS-CoV-2, can cause severe damage to the pulmonary system (Ding et al., 2003), the plant-derived secondary metabolites can play a significant role in reducing these pulmonary complications. The phytochemicals with different molecular targets and signaling mechanisms, including reducing proinflammatory and oxidant...
mediators such as TNF-α, IL-1, IL-6, IL-8, IL-1β, NF-κB, MMPs, iNOS, MAPK, COX-2, and ROS, minimize lung injury. Therefore, protective effects on lung injury, along with other effects, including antiviral (especially anti-CoVs) effects, have attracted the attention of many researchers on the use of phytochemicals as potential strategies for discovering new anti-CoV agents regarding controlling related complication (Bellik et al., 2012; Cornélio Favarin et al., 2013b).

Alkaloids

Alkaloids are one of the largest classes of natural products that are mainly found in several plant families such as Solanaceae, Ranunculaceae, Rubiaceae, Papaveraceae, Amaryllidaceae, and Fabaceae. The main feature of this group is the presence of the nitrogen atom in their structure (Yang and Stöckigt, 2010). Several studies showed that alkaloids have the potential of reducing lung injury induced by different methods. Sinomenine (Figure 2) is an isoquinoline alkaloid that is isolated from the stem and rhizome of Sinomenium acutum (Thunb.) Rehder & E.H.Wilson (Menispermaceae). It reduced the lung injury induced by lipopolysaccharides (LPS) and Escherichia coli, via regulation of inflammatory signaling pathway, including the downregulation of IL-6, IL-1β, TNF-α, NF-κB, iNOS, and COX-2 and upregulation of the protective anti-inflammatory adenosine A2A receptor. Sinomenine also inhibited oxidative stress markers, including the increase of the superoxide dismutase (SOD) and the decrease of the malondialdehyde (MDA) (Li et al., 2013; Liu S. et al., 2018). Besides, sinomenine [100 mg/kg, intraperitoneally (i.p.)] upregulated the expression of Nrf2 and autophagy-related molecules (LC-3II, Atg5, and Beclin1), as critical mediators in increasing cell resistance against oxidative stress and inflammation, 1 h after inducing lung injury by LPS (8 mg/kg) in mice. Moreover, lung wet/dry (W/D) ratio, pulmonary edema, and the protein leakage into bronchoalveolar lavage fluid (BALF), as the pathological markers of lung injury, were decreased by sinomenine (Wang X. et al., 2019). In addition, six isosteroid alkaloids (imperialine, verticinone, verticine, imperialine-3-β-D-glucoside, delavine, and peimisine) and total alkaloid extraction isolated from bulbs of Fritillaria cirrhosa D.Don (Liliaceae) showed the protective effects on lung injury, induced by LPS and cigarette smoke, increase the expression of Nrf2 and heme oxygenase (HO-1), and reduce ROS production, IL-6, and TNF-α expression in vivo and in vitro (Wang et al., 2016; Liu S. et al., 2020).

Toll-like receptor 4 (TLR4) is an inflammatory signaling pathway whose expression is increased in acute lung injury (Yang H.-Z. et al., 2012). Sophocarpine (25 and 50 mg/kg, i.p.), quinolizidine alkaloid isolated from the seeds of Sophora alopecuroides L. (Fabaceae), reduced LPS-induced lung injury in mice by the inhibition of TLR4 expression (Lu et al., 2019).
Zhang et al. reported that tabersonine, as a monoterpenoid indole alkaloid isolated from the root of *Catharanthus roseus* (L.) G.Don (Apocynaceae), has shown a protective effect on lung injury induced by LPS *in vivo* (20 mg/kg, i.p.) and *in vitro* (mouse bone marrow-derived macrophages, 10 µM). This study showed that tabersonine decreased the expression of TNF receptor-associated factor 6 (TRAF6) and thereby blocked p38MAPK-activated protein kinase 2 (MAPK/MKP2) and NF-κB activities. The amelioration of the aforementioned signaling pathways/mediators leads to the inhibition of proinflammatory mediators and the reduction of pathological indices of lung injury such as total protein concentrations in BALF ameliorated lung injury (Zhang et al., 2018).

Berberine, an isoquinoline alkaloid isolated from different species such as *Berberis vulgaris* L. (Berberidaceae) and *Coptis chinensis* Franch. (Ranunculaceae), has indicated protective effects on LPS-induced lung injury via activating Nrf2 and increasing the expression of HO-1 in C57BL/6 mice at 10 mg/kg (i.p., 24 and 2 h before injection of LPS, 2.5 mg/kg), as well as the *in vitro* manner on the human bronchial epithelial cell line at 5 and 10 µM concentrations. Berberine also reduced the pulmonary edema and the protein leakage into BALF of mice (Liang et al., 2019).

Matrine (tetracycloquinolizindine) (Li W. W. et al., 2019), antidesmone (tetrahydroquinoline) (Lu et al., 2017), cepharanthine (bisbenzylisoquinoline) (Huang et al., 2014), epigoitrin (pyrrolidine) (Luo et al., 2019), isotetrandrine (bisbenzyltetrahydroisoquinoline) (Liang et al., 2014), neferine (bisbenzylisoquinoline) (Zhao et al., 2010), and oxysophoridine (quinolizidine) (Fu et al., 2015) are other alkaloids that have shown anti-lung injury effects evaluated by *in vivo* and *in vitro* experiments. Accordingly, they regulated the proinflammation mediators and oxidative markers (Table 1). Show the chemical structures and schematic diagram of the possible mechanisms of action of some alkaloids and other phytochemicals with protective effects against lung injury, respectively. Generally, the alkaloids especially quinolines and quinazolines have shown therapeutic effects on lung injury via inhibiting the MAPKs pathway and their interconnected mediators, including TLR4, and inflammatory cytokines such as IL-1β, IL-6, and TNF-α. These agents have also been shown to enhance the Nrf2/HO-1 pathway, glutathione, and SOD as antioxidative stress markers. Therefore, this impressive role on lung injury, along with the other beneficial roles of the alkaloids especially their antiviral effects, introduces these compounds as the multitarget agents for the treatment of coronavirus infection and their complications.
TABLE 1 | Phytochemicals and their mechanisms of action against lung injury.

Phytochemical class	Compounds	Natural source	Mechanisms	Type of study	Lung injury model	Antiviral activity	References
Alkaloid	Antidesmeone	Antidesma membranaceum Mull.Arg. (Euphorbiaceae)	$[\text{TNF-}\alpha], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{COX-2}], [\text{ROS}], [\text{NF-}\kappa B], [\text{MPO}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Lu et al. (2017)
Alkaloid	Berberine	Berberis vulgaris L. (Berberidaceae)	$[\text{Nrf2}, [\text{HO-1}, [\text{MPO}], [\text{TGF-}\beta 1], [\text{ROS}], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS, radiation	Yes	Yan et al. (2018), Liang et al. (2019)
Alkaloid	Cepharanthine	Stephanium cepharanthum Hayata (Menispermaceae)	$[\text{TNF-}\alpha], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS	Yes	Zhang et al. (2005), Huang et al. (2014)
Alkaloid	Epigotrin	Isatis tinctoria L. (Brassicaceae)	$[\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}]$	In vitro/or In vivo	Influenza virus	Yes	Luo et al. (2019)
Alkaloid	Isotetrandrine	Fritillaria cirrhosa Alkaloid	$[\text{TNF-}\alpha], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Liang et al. (2014)
Alkaloid	Matrine	Sophora flavescens Alton (Fabaceae)	$[\text{TNF-}\alpha], [\text{IL-6}, [\text{HMGB1}], [\text{MPO}], [\text{NF-}\kappa B], [\text{ROS}], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS	Yes	Yang Y. et al. (2012), Li W. W. et al. (2019)
Alkaloid	Neferine	Nelumbo mucifer Laerth. (Nelumbonaceae)	$[\text{NF-}\kappa B], [\text{IFN-}\beta], [\text{TNF-}\alpha], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}]$	In vitro/or In vivo	LPS	NR	Zhao et al. (2010)
Alkaloid	Oxysophoridine	Sinomenium acutum Rehder & E.H.Wilson (Menispermaceae)	$[\text{TNF-}\alpha], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{p38}]$	In vitro/or In vivo	No	No	Fu et al. (2015), Zhang Y.-N. et al. (2020)
Alkaloid	Sinomenine	Fritillaria cinhosa D.Don (Liliaceae)	$[\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Li et al. (2013), Liu S. et al. (2018), Wang W. et al. (2020)
Alkaloid	Tabersonine	Catharanthus roseus L. (Apocynaceae)	$[\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Zhang et al. (2018)
Anthocyanin	Cyanidin	Vaccinium conybosum L. (Ericaceae)	$[\text{NF-}\kappa B], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{ROS}], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Cheng et al. (2012), Xu et al. (2015)
Anthocyanin	Malvidin	Vaccinium conybosum L. (Ericaceae)	$[\text{NF-}\kappa B], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{ROS}], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Wei et al. (2012)
Carbohydrate	Polysaccharides	Houttuynia cordata Thunb. (Saururaceae)	$[\text{TNF-}\alpha], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{ROS}], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Khan et al. (2019)
Coumarin	Anomalum	Alpinia katsumadai K.Schum. (Zingiberaceae)	$[\text{NF-}\kappa B], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{ROS}], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Yu et al. (2014), Selif et al. (2017), Shen et al. (2017)
Coumarin	Daphnetin	Fraxin chinesis subsp. (Thymelaeaceae)	$[\text{NF-}\kappa B], [\text{IL-6}, [\text{IL-1}]], [\text{NF-}\kappa B], [\text{MAPK}], [\text{MPO}], [\text{ROS}], [\text{NF-}\kappa B], [\text{ERK}], [\text{MAPK}], [\text{p38}]$	In vitro/or In vivo	LPS	NR	Li W. et al. (2019)

(Continued on following page)
TABLE 1 | (Continued) Phytochemicals and their mechanisms of action against lung injury.

Phytochemical class	Compounds	Natural source	Mechanisms	Type of study	Lung injury model	Antiviral activity	References
Coumarin	Isoferadin	Sarcandra glabra (Thunb.) Nakai (Chloranthaceae)	↓ [PGE2], ↓ [COX-2], ↓ [NF-κB], ↓ IL-1β, ↓ IL-6, ↓ MP-2, [wet/dry ratio of lungs, [MPO], ↓ MAPK, ↓ Akt]	In vitro/in vivo	LPS, influenza virus	Yes	Jin et al. (2020), Majnooni et al. (2020)
Coumarin	Osthole	Cnidium monnieri (L.) Cusson (Apoaceae)	↓ IL-1β, ↓ IL-6, ↓ TNF-α, ↓ NF-κB, ↓ ERK, ↓ Akt, [wet/dry ratio of lungs]	In vitro/in vivo	LPS, neutrophil oxidative stress, hemorrhagic shock, intestinal ischemia reperfusion	Yes	Shi et al. (2013), Shokochina et al. (2014)
Coumarin	Praeruptorin D and E	Peucedanum praeruptorum Dunn (Apoaceae)	↓ [NF-κB], ↓ IL-6, ↓ TNF-α, ↓ IL-6, ↓ AKT, ↓ cells infiltration in BALF, ↓ [MPO]	In vivo	LPS, hydrophobic acid	NR	Yu et al. (2013)
Coumarin	Psoraladin	Cullen corylfolium (L.) medik. (syn. Psoralea corylfolia L.) (Fabaceae)	↓ [COX-2], ↓ [LOX], ↓ IL-1β, ↓ IL-6, ↓ TNF-α, ↓ TGF-β	In vitro	Ionizing radiation	Yes	Yang H. J. et al., (2011), Kim et al., (2014)
Coumarin	Scoparone	Artemisia capillaris Thunb. (Asteraceae)	↓ [wet/dry ratio of lungs, ↓ TLR4, ↓ IL-1β, ↓ IL-6, ↓ TNF-α, ↓ MPO]	In vitro/in vivo	LPS	NR	Niu et al. (2014)
Coumarin	Umbelliferone	Petroselinum crispum (Mill) Fuss (Apiaceae)	↓ [wet/dry ratio of lungs]	In vivo	LPS	NR	Wang D. et al. (2019)
Flavonoid	Apigenin	Citrus × aurantium L. [syn. Citrus sinensis (L.) Osbeck (Rutaceae)	↓ [TNF-α, ↓ [wet/dry ratio of lungs, ↓ IL-1β, ↓ IL-6, ↓ IL-β], ↓ NF-κB, ↓ [TLR4, ↓ MPO]	In vivo	LPS	Yes	Shibata et al. (2014), Li et al. (2018)
Flavonoid	Breviscapine	Erigeron breviscapus (Vaniot) Hand.-Mazz. (Asteraceae)	↓ [ICAM-1, ↓ IL-18]	In vivo	Left heart ischemic reperfusion	NR	Wang et al. (2013)
Flavoneid	Daidzein	Glycine max (L.) Merr (Fabaceae)	↓ [TLR4, ↓ [MyD88], ↓ NF-κB, ↓ [MPO, ↓ wet/dry ratio of lungs, ↓ IL-6, ↓ TNF-α, ↓ IL-1β]]	In vitro/in vivo	LPS	Yes	Feng et al. (2015), Seo et al. (2016)
Flavonoid	Ergocornum	Dacrococcus supplecrus Hance (Lamiaceae)	↓ [MIP-2, ↓ [wet/dry ratio of lungs]	In vivo	LPS	NR	Zhu et al. (2015)
Flavonoid	Fisetin	Fragraeris x ananassa [Duchesne ex Westen] Duchesne ex Rozier (Rutaceae)	↓ [Neutrophils, ↓ [macrophages, ↓ IL-1β, ↓ IL-6, ↓ [TNF-α, ↓ [MIF, ↓ [GPx, ↓ [SOD, ↓ [MAPK, ↓ [CAT, ↓ [MPO]]]]]]]	In vivo	Cigarette smoke	Yes	Lin et al. (2012), Hussain et al. (2019)
Flavonoid	Hesperetin	Citrus × aurantium L. [syn. Citrus sinensis (L.) Osbeck (Rutaceae)	↓ [TNF-α, ↓ IL-6, ↓ [MPO, ↓ LDH, ↓ [SOD, ↓ [TLR4, ↓ [MyD88], ↓ NF-κB]]]	In vivo	LPS	NR	Wang X. et al. (2019)
Flavonoid	Hyperin	Abeimesocossus manihot (L.) medik (Malvaceae)	↓ [inflammatory cell infiltration, ↓ [MPO activity, ↓ [TNF-α, ↓ IL-6, ↓ IL-1β, ↓ [NF-κB, ↓ [wet/dry ratio of lungs]]]	In vivo	LPS	Yes	Wu et al. (2007), Hu et al. (2019)
Flavonoid	Isonhamnetin	Hippophae rhamnoides L. (Elagagnaceae)	↓ Pulmonary edema, ↓ [TNF-α, ↓ IL-6, ↓ IL-1β, ↓ ERK, ↓ [Nf-κB, ↓ [Pulmonary edema, ↓ IL-1β, ↓ [alveolar wall thickness, ↓ [alveolar hemorhage, ↓ [leukocytes infiltration, ↓ [SOD, ↓ [NF-κB, ↓ [MAPKs, ↓ [MPO, ↓ [wet/dry ratio of lungs]]]]]]]	In vitro/in vivo	LPS	Yes	Dayem et al. (2015), Chi et al. (2016)
Flavonoid	Kaempferol	Malus domestica (Suckow) Borkh. (Rosaceae)	↓ Pulmonary edema, ↓ [TNF-α, ↓ IL-6, ↓ IL-1β, ↓ [alveolar wall thickness, ↓ [alveolar hemorhage, ↓ [leukocytes infiltration, ↓ [SOD, ↓ [NF-κB, ↓ [MAPKs, ↓ [MPO, ↓ [wet/dry ratio of lungs]]]]]]]	In vivo	LPS	Yes	Guan et al. (2012), Schwarz et al. (2014)
Flavonoid	Luteolin	Lonicera japonica Thunb. (Caprifoliaceae)	↓ Neutrophil chemotaxis, ↓ [MPO, ↓ respiratory, ↓ [Akt, ↓ [ERK, ↓ [Nf-κB, ↓ [SOD, ↓ [GPx, ↓ [CAT]]]]]	In vivo	Mercuric chloride, LPS	Yes	Lee et al. (2010), Liu B. et al. (2018), Yan et al. (2019)
Flavonoid	Myricetin	Solanum lycopersicum L. (Solanaceae)	↓ Pulmonary edema, ↓ [TNF-α, ↓ IL-6, ↓ IL-1β, ↓ [ERK, ↓ [Nf-κB, ↓ [Pulmonary edema, ↓ IL-1β, ↓ [alveolar wall thickness, ↓ [alveolar hemorhage, ↓ [leukocytes infiltration, ↓ [SOD, ↓ [NF-κB, ↓ [MAPKs, ↓ [MPO, ↓ [wet/dry ratio of lungs, ↓ [IL-6, ↓ [TNF-α]]]]]]]	In vivo	LPS	Yes	Ong and Khoo (1997), Mao and Huang (2017)
Flavonoid	Naringenin	Citrus × aurantium L. [syn. Citrus paradisi Macfady.] (Rutaceae)	↓ [P3K, ↓ Akt, ↓ [MAPK, ↓ pulmonary edema, ↓ [ROS, ↓ [TNF-α, ↓ [MPO, ↓ IL-6, ↓ [IL-1β]]]	In vitro/in vivo	LPS, acid	Yes	Lee et al. (1999), Mao and Huang (2017), Zhao et al. (2017), Yu et al. (2020)

(Continued on following page)
TABLE 1 | (Continued) Phytochemicals and their mechanisms of action against lung injury.

Phytochemical class	Compounds	Natural source	Mechanisms	Type of study	Lung injury model	Antiviral activity	References
Flavonoid	Quercetin	Myrsine melanophloeos (L.) R.Br. ex Sweet (syn. Rrapanea melanophloeos (L.) Mez) (Primulaceae)	NF-κB, JNK/SAPK, p38, JNK/SAPK, caspase-3	In vivo	Radiation	Yes	Wang J. et al. (2015), Chiow et al. (2016)
Flavonoid	Rutin	Fagopyrum esculentum Moench (Polygonaceae)	NF-κB, JNK/SAPK, MAPK, GTP, SOD, GTP, JNK/SAPK, MAPK, MMP-9, MAPK, NF-κB, JNK/SAPK, MAPK, GTP, SOD	In vivo	LPS	Yes	Lin et al. (2012), Chen et al. (2014), Yeh et al. (2014)
Flavonoid	Silymarin	Silibum marianum (L.) Gaertn (Asteraceae)	MPO	In vitro	Paraquat	Yes	Özçelik et al. (2011), Zhao et al. (2015)
Flavonoid	Wogonin	Scutellaria baicalensis Georgi (Lamiaceae)	NO, TNF-α, IL-6, IL-1β, INOS, NF-κB, MPO	In vitro	LPS	Yes	Guo et al. (2007), Yao et al. (2014)
Iridoid	Geniposide	Gardenia jasminoides J.Ellis (Rubiaiceae)	NF-κB, MAPKs, TNF-α, IL-6, alveolar hemorrhage, MPO	In vivo	LPS	Yes	Xiaofeng et al. (2012), Zhang et al. (2017b)
Isothiocyanate	Sulforaphane	Brassica spp. (Brassicaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS	Yes	Qi et al. (2016), Yu et al. (2016)
Phenolic acid	Caffeic acid	Coffea arabica L. (Rubiaceae)	MDA, SOD, CAT	In vivo	Radiation	Yes	Yildiz et al. (2008), Özçelik et al. (2011)
Phenolic acid	Chicoric acid	Echinacea purpurea (L.) Moench (Asteraceae)	NRtF-α, NO, Leukocytes, MPO	In vivo	LPS, hydrochloric acid	Yes	Zhang et al. (2010), Özçelik et al. (2011)
Phenolic acid	Chlorogenic acid	Coffea arabica L. (Rubiaceae)	MDA, SOD, NO, Leukocytes, MPO	In vivo	LPS	Yes	Comilío Favaran et al. (2013a), Park et al. (2014), Guan et al. (2017)
Phenolic acid	Ellagic acid	Camellia sinensis (L.) Kuntze (Theaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS, paraquat	Yes	Petersen and Simmonds (2003), Chu et al. (2012)
Phenolic acid	Rosmarinic acid	Rosmarinus officinalis Spenn. (Lamiaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS	Yes	Wang et al. (2009), Guan et al. (2012), Zhang et al. (2014)
Phenolic acid	Apocynin	Picrorhiza kurroa Royle ex Benth. (Plantaginaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS	Yes	Ribeiro et al. (2012), Ribeiro et al. (2015), Lowe et al. (2017)
Phenolic acid	Salsolide	Rhodiola rosea L. (Crassulaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS, paraquat	Yes	Sun et al. (2008), Smith et al. (2010), Suresh et al. (2012), Zorofchian Moghadamfousi et al. (2014), Zhang et al. (2015)
Phenolic acid	Cannabidiol	Cannabis sativa L. (Cannabaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS	Yes	Liu Z. et al. (2013), Chu et al. (2012)
Polyphenol	Curcumin	Curcuma longa L. (Zingiberaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS, paraquat	Yes	Wang et al. (2009), Guan et al. (2012), Zhang et al. (2014)
Polyphenol	Gossypol	Gossypium herbaceum L. (Malvaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS	Yes	Sun et al. (2008), Smith et al. (2010), Suresh et al. (2012), Zorofchian Moghadamfousi et al. (2014), Zhang et al. (2015)
Polyphenol	Magnolol	Magnolia officinalis Rehder & E.H.Wilson (Magnoliaceae)	NF-κB, NO, Leukocytes, MPO	In vivo	LPS	Yes	Yunhe et al. (2012), Singla (2014)

(Continued on following page)
Phytochemicals and their mechanisms of action against lung injury.

Phytochemical class	Compounds	Natural source	Mechanisms	Type of study	Lung injury model	Antiviral activity	References
Polyphenol	Resveratrol	Vitis spp. (Vitaceae)	[MAPK, P38, JAK, MyD88, TLR4, NfκB, HO-1, wet/dry ratio of lungs, NF-κB, IL-1β, IL-6, TNF-α, ROS, iNOS, SOD, MDA, MIP-2, IL-1β, MPO]	In vivo	LPS, hypoxia, sepsis, staphylococcal enterotoxin B, nickel, methamphetamine, bleomycin, chest trauma, cigarette smoke	Yes	Sovak (2001), Koligazi et al. (2006), Şener et al. (2007), Cao et al. (2011), Reider et al. (2012), Bao et al. (2013), Mo et al. (2014), Yu et al. (2014), Jiang et al. (2016), Lin et al. (2017), Liu S. et al. (2018), Wang et al. (2018), Yang et al. (2018), de Oliveira et al. (2019), Zhu et al. (2019), Özdemir et al. (2019), Cao et al. (2020), Wang X. et al. (2020)
Polyphenol	Tannic acid	Camellia sinensis (L.) Kuntze (Theaceae)	[Wet/dry ratio of lungs, MPO, IL-6, TNF-α, NF-κB, PGE2]	In vivo	LPS, sepsis	Yes	Orlowski et al. (2014), Zhang et al. (2017a)
Quinone	Emodin	Rheum palmatum L. (Polygonaceae)	Activating autophagy, TNF-α, IL-1β, MPO, NO	In vivo	LPS	Yes	Schwarz et al. (2011), Dong et al. (2019)
Quinone	Shikonin	Lithospermum erythrorhizon Siebold & Zucc. (Boraginaceae)	[NF-κB, IL-6, TNF-α, NO, COX 2, neutrophil infiltration, wet/dry ratio of lungs]	In vivo	LPS	Yes	Bai et al. (2013), Liang et al. (2013), Zhang et al. (2017a)
Quinone	Tanshinone IIa	Salvia miltiorrhiza Bunge (Lamiaceae)	[NLRP3, wet/dry ratio of lungs, CO2 partial pressure, O2 partial pressure]	In vivo	Oleic acid	Yes	Chen T. et al. (2019), Sun et al. (2019)
Quinone	Thymoquinone	Nigella sativa L. (Ranunculaceae)	[Alveolar infiltration, alveolar edema, iNOS]	In vivo	Chronic toluene	Yes	Kanter (2011), Fröhlich et al. (2017)
Saponin	Dioscin	Dioscorea spp. (Dioscoreaceae)	[TNF-α, IL-6, IL-1β, MPO, NF-κB]	In vivo	LPS	Yes	Liu C. et al. (2013), Zeng et al. (2018)
Saponin	Ginsenoside Rg1	Panax ginseng C.A. Mey. (Araliaceae)	[Wet/dry ratio of lungs, proteins, M2 macrophage, pulmonary edema, NF-κB, TNF-α, IL-6, IL-1β]	In vivo	LPS	Yes	Song et al. (2014), Bao et al. (2015)
Saponin	Ginsenoside Rg3	Panax ginseng C.A. Mey. (Araliaceae)	[NF-κB, COX-2, TNF-α, IL-6, IL-1β, wet/dry ratio of lungs]	In vivo	LPS	Yes	Song et al. (2014), Cheng and Li (2016)
Saponin	Sodium aescinate	Aesculus hippocastanum L. (Sapindaceae)	[Wet/dry ratio of lungs, TSO, MDA, MMP2]	In vivo	Oleic acid	NR	Menegazzi et al. (2008)
Saponin	Soyasaponin	Glycine max (L.) Merr (Fabaceae)	[COX-2, iNOS, TNF-α, IL-6, IL-1β, NO]	In vivo	LPS	Yes	Hayashi et al. (1997), Lin et al. (2016)
Terpenoid	Andrographolide	Andrographis paniculata (Burm.f.) nees (Acanthaceae)	[IL-6, IL-1β, GPx, TNF-α, SOD]	In vivo	Cigarette smoke	NR	Guan et al. (2013), Gupta et al. (2017)
Terpenoid	Artemisinene	Artemisia annua L. (Asteraceae)	[TNF-α, TGF-β1, MCP-1, IL-6, IL-1β, MPO, IL-6, IL-1β]	In vivo	Bleomycin	Yes	Chen et al. (2016)
Terpenoid	Betulinic acid	Betula spp. (Betulaceae)	[CAT, SOD, iNOS, NO]	In vivo	Sepsis	Yes	Aiken and Chen (2005), Lingaraju et al. (2015)
Terpenoid	Costunolide	Lactuca sativa L. (Asteraceae)	[TNF-α, IL-6, IL-1β, iNOS, MAPKs]	In vivo	Heat-killed S. aureus (HKSA)	Yes	Chen et al. (1995), Chen Y.-t. et al. (2019)
Terpenoid	Eugenol	Syzygium aromaticum (L.) Merr. & L.M.Perry (Myrtaceae)	[Wet/dry ratio, TSO, CAT, GPx1, TGF, NF-κB, MPO, IL-6, TNF-α]	In vivo	LPS	Yes	Frumol et al. (2010), Huang et al. (2015)
Terpenoid	Farnesol	Prunus persica (L.) Batsch (Rosaceae)	[TNF-α, IL-1β, MAPKs, IL-6, IL-1β, GSH, H2O2, MPO]	In vivo	Cigarette smoke	Yes	Qamar and Sultana (2008), Ryabchenko et al. (2008)

(Continued on following page)
Phytochemical class	Compounds	Natural source	Mechanisms	Type of study	Lung injury model	Antiviral activity	References
Terpenoid	Geraniol	Rosa × damascena Herm. (Rosaceae)	↓ Wet/dry ratio of lungs, ↓ MPO, ↓ IL-6, ↓ TNF-α, ↓ INF-α, ↓ COX-2, ↓ TLR4, ↓ NF-κB, ↓ Bax/Bcl-2 ratio	In vitro/in vivo	LPS	NR	Jiang et al. (2017)
Terpenoid	Glycyrrhizin	Glycyrrhiza glabra L. (Fabaceae)	↓ ICAM-1, ↓ Tnf-α, ↓ MPO, ↓ LPO, ↓ NF-κB	In vivo	Carrageenan	Yes	Menegazzi et al. (2008), Ashfaq et al. (2011)
Terpenoid	Isosforskolin	Plectranthus hadiensis (Forssk.) Schweinf. ex Sprenger (syn. Coleus forskohlii (Wild.) Briq.) (Lamiaceae)	↓ IL-6, ↓ TNF-α, ↓ wet/dry ratio of lungs, ↓ MPO, ↑ SOD	In vitro	LPS	NR	Yang W. et al. (2011)
Terpenoid	Linalool	Citrus x aurantium L. (Rutaceae)	↓ IL-6, ↓ TNF-α, ↓ MAPK, ↓ JNK	In vitro/in vivo	LPS	Yes	Guo et al. (2013), Yang et al. (2019)
Terpenoid	Oridonin	Isodon rubescens (Hemsl.) H.Hara (syn. Rabdosia rubescens (Hemsl.) H.Hara) (Lamiaceae)	↓ NLRP3, ↓ NF-KB, ↑ TNF-α, ↓ NO, ↑ GSH	In vitro/in vivo	LPS	Yes	Xie et al. (2012), Sharifi-Rad et al. (2017)
Terpenoid	p-Cymene	Protum spp. (Burseraceae)	↓ IL-6, ↓ TNF-α, ↓ INF-α, ↓ NF-κB, ↓ MAPKs	In vivo	LPS	Yes	Cassels and Assencio (2011), Lingaraju et al. (2015)
Terpenoid	Rubrifordilactone A	Schisandra sphenanthera Rehder & E.H.Wilson (syn. Schisandra rubriflora Rehder & E.H.Wilson) (Schisandraceae)	↓ TNF-α, ↓ INF-α, ↓ NF-κB, ↓ P38, ↓ P65, ↓ MAPK, ↓ JNK	In vitro/in vivo	LPS	Yes	Chowdhury et al. (1990), San et al. (2014)
Terpenoid	Taraxasterol	Taraxacum officinale F.H.Wigg. (Asteraceae)	↑ MPO, ↓ TNF-α, ↓ IL-6, ↑ TNF-β, ↓ INF-β, ↓ P38, ↓ P65, ↓ ERK, ↓ JNK, ↓ NF-κB	In vivo	LPS	Yes	Sharifi-Rad et al. (2017), Wan et al. (2018)
Terpenoid	Thymol	Thymus vulgaris L. (Lamiaceae)	↓ NF-KB, ↓ IL-6, ↓ TNF-α, ↓ INF-α, ↓ SOd, ↓ MDA, ↓ MPO	In vivo	LPS	Yes	Wan and Chen (2014), Wang et al. (2014)
Terpenoid	Triptolide	Tripterygium wilfordii Hook.f. (Celastraceae)	↓ TNF-α, ↓ INF-α, ↓ MAPKs, ↓ MPO, ↓ NF-κB	In vivo	LPS	Yes	Dai et al. (1997), Leung et al. (2017)
Terpenoid	Zerumbone	Zingiber zerumbet (L.) Roscoe ex Sm (Zingiberaceae)	↓ TNF-α, ↓ INF-α, ↓ NF-κB, ↓ MAPKs, ↓ MMP-9, ↓ SOD, ↓ GPx, ↑ CAT	In vivo	LPS	Yes	

5-LOX, 5-Lipoxygenase; Akt, protein kinase B; BALF, bronchoalveolar lavage fluid; Bcl-2/Bax, B-cell lymphoma protein 2/associated X; CAT, catalase; CO2, carbon dioxide; COX-2, cyclooxygenase-2; ERK, extracellular signal-regulated kinase; GPx, glutathione peroxidase; GSH, glutathione; GST, glutathione S-transferase; HMGB1, high mobility group box 1 protein; HO-1, heme oxygenase-1; ICAM-1, intercellular adhesion molecule 1; IFITM3, interferon-induced transmembrane protein 3; IFN-β, interferon Beta 1; IL, interleukin; INF-α, inducible nitric oxide synthase; iNOS, inhibitor of nuclear factor-kappa B α; JAK/STATs, janus kinase-signal transducers and activator of transduction; JNK, jun N-terminal kinases; JNK/ERK, JNK/stress-activated protein kinases; LDH, lactate dehydrogenase; LPS, lipopolysaccharides; MAPK, mitogen-activated protein kinase; MDA, malondialdehyde; MIP-2, macrophage inflammatory protein 2; MIPs, matrix metalloproteinases; MPO, myeloperoxidase; MyD88, myeloid differentiation factor 88; NADPH, nicotinamide adenine dinucleotide phosphate; NF-κB, nuclear factor-κB; NF-kB, nuclear factor-kB; NLRP3, nucleotide-binding oligomerization domain-like receptors; Nrf2, nuclear factor erythroid 2-related factor 2; O2, oxygen; PGE2, prostaglandin E2; PI3K, phosphoinositide 3-kinases; ROS, reactive oxygen species; SOD, superoxide dismutase; TGF-β1, transforming growth factor β1; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-α; TRAF6, TNF receptor-associated factor six.
FIGURE 3 | Selected chemical structures of alkaloids, coumarins, terpenes, quinones, and other phytochemicals with potential protective effects against lung injury.
Coumarins

Coumarins are the heterocyclic phytochemicals with 2H-1-benzopyran-2-one chemical structure. The Apiaceae is one of the greatest plant families that coumarins are isolated from its species (Ribeiro and Kaplan, 2002). Anti-inflammatory and antioxidant properties are two prominent effects of coumarins along with other pharmacological and biological activities such as cytotoxic and anticaner, antiviral, antiangiogenic, anticoagulant, edema-protective, and anxiolytic effect (Fylaktakidou et al., 2004; Venugopala et al., 2013; Srikrishna et al., 2018). The downregulation of inflammatory mediators, including NF-κB, TNF-α, iNOS, and MAPKs pathway, and inhibiting oxidative factors such as ROS and free radicals are critical mechanisms of coumarins. Therefore, coumarinic compounds are thought to exert anti-inflammatory effects on therapeutic applications against lung injury induced by LPS and other destructive inducers (Fylaktakidou et al., 2004; Bansal et al., 2013).

Daphnetin, as a hydroxy coumarin isolated from Daphne spp., showed protective effects on lung injury that are induced by LPS in vivo and in vitro. Daphnetin downregulated the NF-κB pathway via increasing the expression of NF-κB, and TNF-α-induced protein 3, in lung tissues of the C57BL/6 mice (5 mg/kg, i.p.) and the murine peritoneal macrophages (RAW264.7, 160 μM). In another study, pretreatment of mice with 5 mg/kg i.p. of daphnetin significantly reduced protein and cytokines (TNF-α, IL-6, and IL-1β) leakage into BALF that is stimulated with LPS (1 mg/kg). Consequently, daphnetin (80 and 160 μM) suppressed the expression of IL-6 and TNF-α in adenocarcinoma human lung epithelial cell lines (A549), which is induced by LPS (100 ng/ml) (Yu et al., 2014). Also, the regulation of JAK/STATs pathway has a critical role in the production of proinflammatory mediators such as TNF-α, iNOS, COX-2, IL6, and IL-1β (Seif et al., 2017). Daphnetin inhibited the LPS-induced cytokines expression through downregulating the JAK/STATs signaling in C57/BL6 mice (5 mg/kg, i.p.) and RAW264.7 cells (5, 10, and 20 μM). Daphnetin also reduced ROS production in these doses (Shen et al., 2017).

Another study showed that the praeruptorins D and E (80 mg/kg, gavage), as pyranocoumarins found in Kitagawia praeruptora (Dunn) Pimenov (syn. Peucedanum praeruptorum) roots, similar to daphnetin inhibited NF-κB and interconnected inflammatory cytokines (IL-6 and TNF-α) in male BALB/c mice with lung injury induced by intranasal administration of LPS (40 μg/ml) and hydrochloric acid (0.1 N). The total protein level, neutrophils, and cell infiltration in BALF were also reduced at 40 and 80 mg/kg of daphnetin (Yu et al., 2013). IL-17 as one of the prominent inflammatory cytokines is produced by T lymphocyte helper cells whose production is
regulated by retinoic acid-related orphan receptor gamma t (RORyt). Esculetin (20 and 40 mg/kg, i.p.) as a hydroxycoumarin is widely found in Fraxinus spp., with the potential of reducing lung injury via inhibiting the RORyt and then the suppression of IL-17 in mice. At the same doses, esculetin also inhibited MAPKs and neutrophils/macrophages entry in mice lung (Lee et al., 2020).

Besides, the protective effects of osthole, as prenylated coumarins purified first from the fruit of Cnidium monnieri (L.) Cusson (Apiaceae), were reported in several in vivo and in vitro studies (Table 1). Reducing the expression of cytokines (IL-1β, IL-6, and TNF-a) and blocking the NF-κB and ERK and Akt signaling pathway are of the critical protective mechanisms of osthole on lung injury (Mo et al., 2014; Tsai et al., 2015; Jin et al., 2018). Also, Shi and coworkers proposed that inhibition of ACE2 and Ag (1–7) depletion in lung tissues are other protective mechanisms of osthole (40 mg/kg, gavage) against the lung injury induced by LPS (Shi et al., 2013). Also, ACE2 has shown ameliorating effects on lung injury complications induced by acid, LPS, and viruses, including SARS coronavirus and influenza (Gu et al., 2016).

Isofraxidin is another hydroxycoumarin, isolated from Fraxinus spp., with prominent anti-inflammatory effects, especially pulmonary inflammations induced by influenza virus (Jin et al., 2020; Majnooni et al., 2020). Also, isofraxidin (5, 10, and 15 mg/kg, i.p.) showed improving effects on LPS-induced lung injury via reducing the production of inflammatory cytokines (IL-6 and TNF-a) and prostaglandin E2 (PGE2). Consequently, it blocked the secretion of PGE2 in mice serum and BALF, also reduced COX-2 gene expression, and led to further improvement of lung damage (Niu et al., 2015).

Consistently, anomalin (Khan et al., 2019), fraxin (Li W. et al., 2019), psoralidin (Yang H. J. et al., 2011), scoparone (Niu et al., 2014), and umbelliferone (Wang D. et al., 2019) are other coumarin compounds which have ameliorating effects on lung injury (Table 1).

According to the prominent anti-inflammatory effects of natural coumarins, along with their other pharmacological effects, these compounds can be introduced as one of the new sources of drug discovery for the protection and treatment of lung injury.

Flavonoids and Other Polyphenol Compounds

Structurally, polyphenols are divided into several categories, including flavonoids (flavonols, flavones, flavanones, flavonals, anthocyanins, and isoflavones), phenolic acids (hydroxybenzoic acid and hydroxycinnamic acids), stilbenes, catechins, tannins, and lignans (Pietta et al., 2003) provided in Figure 2. From the mechanistic point of view, the inhibition of MAPKs cascade, phosphatidylinositol 3-kinase (PI3K)/Akt, Src family kinase-Bruton’s tyrosine kinase-Vav, myeloid differentiation factor 88-TLR4, Nrf2/HO-1, and NF-κB (Yu et al., 2014; Liu S. et al., 2018; Wang et al., 2018; de Oliveira et al., 2019; Tsai et al., 2019; Cao et al., 2020), enzymes involved in the arachidonic acid pathway, inflammatory cytokines, and NF-κB signaling pathway are among the main targets of polyphenols in combating inflammation (Santangelo et al., 2007; Guo et al., 2009). They have also shown to suppress the expression of macrophage inflammatory proteins 1a and 2, IL-1β, IL-6, and TNF-α as inflammatory cytokines (Yang et al., 2018; de Oliveira et al., 2019), decrease ROS production and iNOS expression (Cao et al., 2011; Zhu et al., 2019), decrease SOD activity and MDA levels (Mo et al., 2014), and increase the activity of sirtuin 1 as an antioxidant and anti-inflammatory factor (Wang X. et al., 2020), in in vitro and in vivo studies at different doses and routes of administration. Resveratrol is a stilbenoid widely found in Vitis vinifera L. (Vitaceae) fruits and has shown prominent protective effects on lung injury, induced by various methods such as LPS (Cao et al., 2011; Jiang et al., 2016), hypoxia (Özdemir et al., 2014), sepsis (Kolgazi et al., 2006), staphylococcal enterotoxin B (Rieder et al., 2012), nickel (Cao et al., 2020), methamphetamine (Wang X. et al., 2020), bleomycin (Sener et al., 2007), chest trauma (Torun et al., 2017), and cigarette smoke (Bao et al., 2013). Wang and coworkers showed that resveratrol ameliorated sepsis-induced lung injury after 30 mg/kg dose of i.p. administration. In their study, the level of Nrf-2, HO-1, p-Akt, IL-10, SOD, and caspase-3 activities as antioxidant and anti-inflammatory markers increased in lung tissue after treatment by resveratrol. Resveratrol was also able to decrease MIP-2, IL-18, and neutrophil leakage in BALF (Wang et al., 2018).

Flavonoids are another class of polyphenolic compounds whose effects on lung injuries have been extensively studied. Li et al. reported that apigenin C-glycoside, a trihydroxyflavone extracted from Microcos paniculata L. (Malvaceae), showed protective effects against LPS-induced lung injury in BALB/c mice at 20 and 40 mg/kg oral doses. In their study, the inhibition of inflammatory cytokines and NF-κB signaling pathway were found as the main mechanisms of apigenin (Li et al., 2018). Daidzein (2, 4, and 8 mg/kg, i.p.), an isoflavone widely found in Glycine max (L.) Merr. (soybeans, Fabaceae), and myricetin (10, 20, and 40 mg/kg, i.p.), a hexahydroxyflavone widely found in black tea, inhibited TLR4/MyD88/NF-κB cascade and thereby showed protective effects against LPS-induced lung injury in rats (Feng et al., 2015; Mao and Huang, 2017). Also, naringenin and its inhalation pharmaceutical dosage form improved the LPS-induced lung injury in rats. This trihydroxyflavone compound showed protective effects at 100 mg/kg oral administration and 3 mg/rat inhalant administration doses via downregulating the PI3K/Akt and MAPKs pathways (Zhao et al., 2017; Yu et al., 2020). Besides, anthocyanins such as malvidin derivatives and cyanidin-3-O-glucoside, with similar structures to flavonoids, have also shown protective effects on lung injuries (Liu et al., 2015; Yan et al., 2015). Also, wogonin (Yao et al., 2014), rutin (Yeh et al., 2014), quercetin (Wang J. et al., 2015), luteolin (Liu B. et al., 2018), kaempferol (Chen et al., 2012), isorhamnetin (Chi et al., 2016), hyperin (Hu et al., 2019), hesperetin (Wang N. et al., 2019), fisetin (Hussain et al., 2019), breviscapine (Wang et al., 2013), eriodictyol (Zhu et al., 2015), and cardamom (Wei et al., 2012) are other flavonoid compounds with protective effects on lung injury through different mechanisms (Table 1). Besides, such aforementioned flavonoids, as kaempferol (Schwarz et al., 2014), quercetin (Yang et al., 2020), and myricetin (Yu et al., 2015)
2012), in addition to possessing a protective effect on lung injuries, have shown antitumor effects, which increases the importance of their use in the treatment of COVID-19.

Phenolic acid derivatives such as curcumin, chlorogenic acid, caffeic acid, salidroside, rosmarinic acid, and apocynin are other compounds with protective effects on lung injury with various mechanisms (Yildiz et al., 2008; Zhang et al., 2010; Chu et al., 2012; Suresh et al., 2012; Xu et al., 2014; Zhang et al., 2014). Zhang and colleagues showed that curcumin, isolated from Curcuma longa L. (Zingiberaceae), at 200 mg/kg, i.p. dose, protected the LPS-induced lung injury in diabetic rats through suppressing NF-κB pathway (Zhang et al., 2015). Also, chlorogenic acid (50 mg/kg) and rosmarinic acid (5, 10, and 20 mg/kg), found in many herbs, decreased LPS-induced lung injury complications via inhibiting neutrophils and cells infiltration in BALF and downregulating ERK/MAPK pathway and increasing antioxidant activities (Zhang et al., 2010; Chu et al., 2012). Salidroside, isolated from Rhodiola rosea L. (Crassulaceae), is another phenolic acid compound that showed the protective effects on lung injury. Salidroside at 10 and 120 mg/kg, i.p., inhibited the expression of proinflammatory cytokines, including IL-6, TNF-α, IL-1β, and transforming growth factor-β1 through suppressing LPS-induced lung injury in mice, and paraquat-induced lung injury in rats, respectively (Guan et al., 2012; Zhang et al., 2014). Also, silibinin, as a flavonolignan mixture found in Silybum marianum L, showed a potential effect in blocking STAT pathway and reducing proinflammatory cytokines; thereby it could be a promising agent for the treatment of lung injuries in patients with COVID-19 (Bosch-Barrera et al., 2020). Silimarin, magnolol, thearubigin, gossypol, tannic acid, chicoric acid, and ellagic acid are other polyphenol compounds with protective effects on lung injury. The mechanisms, main natural source, and other related information are presented in Table 1. In summary, silimarin, thearubigin, and chicoric acid via upregulating the Nrf2/HO-1 (Zhao et al., 2015; Ding et al., 2019; Wang X. et al., 2019) and magnolol, tannic acid, gossypol, and ellagic acid through downregulating NF-κB pathways improved lung injury (Yunhe et al., 2012; Liu Z. et al., 2013; Guan et al., 2017; Zhang et al., 2019). In addition, silimarin is an undergoing clinical trial study for the treatment of SARS-CoV-2 lung injury (NCT04394208).

In general, due to the anti-inflammatory and antioxidant effects of polyphenol compounds, as well as their antiviral effects (Table 1), this category of secondary metabolisms of plants has the potential to treat COVID-19 and its complications, including lung injuries. However, the pharmacokinetic parameters of these compounds should be considered (Yu et al., 2020).

Quinones
Quinones are another class of phytochemicals with an aromatic ring attached to two carbonyl groups in their structure, including anthraquinones, benzoxquinones, napthoquinones, phenanthrenequinones, and polycyclic quinones derivatives (Figure 3). Several investigations showed that the quinones derivatives have demonstrated protective effects on lung injury by various mechanisms. Chen and coworkers reported that a phenanthrenequinone isolated from Salvia miltiorrhiza Bunge (Lamiaceae), Tanshinone IIA, suppressed the nucleotide-binding oligomerization domain-like receptors pyrin domain-containing protein 3 (NLRP3), as an inflammatory signaling pathway, at 10 mg/kg i.v. in rats, thereby reducing the oleic acid-induced lung injury (Chen T. et al., 2019). Also, emodin, an anthraquinone found in different laxative plants such as Rheum rhabarbarum L. (Polygonaceae), showed protective effects on LPS-lung injury via activating autophagy pathways at 20 mg/kg i.p. in rats (Dong et al., 2019). Shikonin (a napthoquinone) and thymoquinone (a benzoquinone) are other quinones with protective effects on lung injury (Kanter, 2011; Liang et al., 2013) (Table 1).

Table 1

Name	Source	Biological Activity
Curcumin	Curcuma longa L. (Zingiberaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Chlorogenic acid	Salvia miltiorrhiza Bunge (Lamiaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Rosmarinic acid	Salvia miltiorrhiza Bunge (Lamiaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Salidroside	Rhodiola rosea L. (Crassulaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Silibinin	Silybum marianum L.	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect

Table 2

Name	Source	Biological Activity
Eucalyptol	Eucalyptus spp.	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Thymol	Thymus vulgaris	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Linalool	Lavandula angustifolia	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Eugenol	Syzygium aromaticum	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Eucalyptol	Eucalyptus spp.	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Thymol	Thymus vulgaris	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Linalool	Lavandula angustifolia	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Eugenol	Syzygium aromaticum	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect

Table 3

Name	Source	Biological Activity
Curcumin	Curcuma longa L. (Zingiberaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Chlorogenic acid	Salvia miltiorrhiza Bunge (Lamiaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Rosmarinic acid	Salvia miltiorrhiza Bunge (Lamiaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Salidroside	Rhodiola rosea L. (Crassulaceae)	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect
Silibinin	Silybum marianum L.	Anti-inflammatory, antioxidant, anticancer, antiviral, and anti-Alzheimer disease effect

Table 4

Name	Source	Biological Activity
Eucalyptol	Eucalyptus spp.	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Thymol	Thymus vulgaris	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Linalool	Lavandula angustifolia	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
Eugenol	Syzygium aromaticum	Anti-inflammatory, analgesic, antimicrobial, and anti-Alzheimer disease effect
showed protective effects against lung damage by activating Nrf2/ HO-1 pathway and inhibiting MAPKs pathway and suppressing TNF-α, IL-6, and IL-1β expression. In addition, parthenolide as *Tanacetum parthenium* sesquiterpene lactones inhibited the cytokine storm in inflammatory conditions. Therefore, it can be a good candidate for clinical trial studies of lung injuries induced by SARS-CoV-2 (Bahrami et al., 2020). On the other hand, triterpenoids such as rubriflorilactones A, betulinic acid, and taraxasterol also have shown ameliorating effects on lung injuries induced by LPS and sepsis (San et al., 2014; Lingaraju et al., 2015; Wang Y.-Y. et al., 2015) (Table 1). Wang and coworkers showed that the rubriflorilactone, isolated from *Schisandra sphenanthera* Rehder & E.H.Wilson (syn. *Schisandra rubriflora* Rehder & E.H.Wilson) (Schisandraceae), improved the LPS-lung injury at 10 nM/kg in rats and 10 nM/ml on mouse lung epithelial cell lines (MLE-15) through increasing the expression of sirtuin 1 and suppressing inflammatory markers expression, including MMP9, iNOS, and IL-6 (Wang Y.-Y. et al., 2015). Saponins are other natural compounds, which are classified in the category of terpenoids. Ginsenoside Rg3 (20 and 30 mg/kg) and Rg1 (40 and 200 mg/kg) are two triterpenes saponins, isolated from *Panax ginseng* C.A.Mey. (Araliaceae), with improving effects on LPS-lung injury in mice. These compounds inhibited the infiltration of neutrophils and proteins and M2 macrophage in BALFs and reduced pulmonary edema. Their main mechanism of action is through the suppression of NF-κB (Bao et al., 2015; Cheng and Li, 2016). Increasing the expression of heat shock protein 70 leads to the inhibition of TLR4/MyD88 pathway. The later mechanism is the main protective mechanism of dioscin against lung injury as a steroidal saponin from *Dioscorea* spp. (Dioscoreaceae) (Zeng et al., 2018). Soyasaponin (Lin et al., 2016), glycyrrhizin (Menegazzi et al., 2008), and sodium aescinate (Menegazzi et al., 2008) are other saponin compounds with improving effects on lung injury (Table 1).

Miscellaneous Natural Compounds

Geniposide (20, 40, or 80 mg/Kg, i.p., mice), as an iridoid found in *Gardenia jasminoides* J.Ellis (Rubiaceae), improved the LPS-induced lung injury via suppressing the NF-κB and MAPKs (Xiaofeng et al., 2012). Sulforaphane, as an isothiocyanate isolated from *Brassica oleracea* L. (Brassicaceae), activated the Nrf2 pathway and inhibited the PGE2, COX-2, and MMP-2 at 50 mg/kg, i.p., in BALB/c mice, thereby ameliorating LPS-induced lung injury (Qi et al., 2016). Consequently, cannabidiol (Figure 3), as cannabinoid derivative of *Cannabis sativa* L. (Cannabaceae), and polysaccharides of *Houttuynia cordata* Thunb. (Saururaceae) showed similar effects through inhibiting the expression of proinflammatory cytokines (TNF-α and IL-6) and reducing the infiltration of cells and proteins in BALF (Ribeiro et al., 2015; Xu et al., 2015). Also, cannabidiol inhibited the cytokines storm-induced by viral infection at 5 mg/kg in C57BL/6 mice (Khodadadi et al., 2020). Besides, a clinical trial is underway on cannabidiol and its derivatives for the treatment of lung injury in patients with COVID-19 (NCT04467918).

In general, due to the protective effects of the aforementioned phytochemicals on lung injuries, these compounds can be used as a protector and treatment in lung injuries leftover from coronavirus activity, including COVID-19. Given the antiviral effects (especially anticonvirus) of some of the compounds listed in Table 1, this role could lead researchers to find much more effective multitarget compounds in the treatment of patients with COVID-19 and its complications.

CONCLUSION

Since the World Health Organization (WHO) announced the pandemic of COVID-19 disease (March 11, 2020), no effective treatment or vaccine has been introduced to treat this disease. Besides, to eliminate the SARS-CoV-2, conventional medications have either failed or been used taking them in doses higher than their therapeutic index leading to side effects (Janevski et al., 2020; Sharma et al., 2020). On the other hand, due to their multitarget character, phytochemicals have always been of the options for discovering drug molecules to treat complicated diseases, including viral diseases and their complications. On the other hand, lung injury is the main COVID-19 complication that happens with inflammatory cascades by SARS-CoV-2 (Fakhri et al., 2020b; Merad and Martin, 2020). In the present review, we described the candidate phytochemicals with protective effects on lung injuries induced by various methods, as well as their pharmacological mechanisms (Figure 4). In addition, we showed some phytochemicals possessing protective effects against lung injury, with a focus on cephapharine, epiogisin, isofraxidin, osthole, resveratrol, apigenin, kaempferol, myricetin, quercetin, chlorogenic acid, chloric acid, emdoin, thymoquinone, betulinic acid, eucalyptol, oridonin, zerumbone, glycyrrhizin, and sulforaphane and their antiviral activities (Table 1). On the other hand, despite the effectiveness of natural secondary metabolites in combating viral diseases, providing the novel drug delivery systems helps to drawback their pharmacokinetic limitations (Abbaszadeh et al., 2020; Fakhri et al., 2020a). Such reports could pave the way for discovering alternative drugs with anti-CoV effects and the potential in controlling the complication of COVID-19. Additional studies are needed to reveal the precise dysregulated pathways in COVID-19 and clarify the potential effects of phytochemicals on humans.

AUTHOR CONTRIBUTIONS

MM and MF contributed to conceptualization; MM, SF, and MF contributed to designing the structure of the paper; MM and SF contributed to software; MM, SF, YS, NK, KS, PM, MG, MF, and JE contributed to drafting the manuscript; and MM, SF, MF, and JE contributed to reviewing and editing the paper.

FUNDING

JE gratefully acknowledges funding from CONICYT (PAI/ ACADEMIA No. 79160109).
de Oliveira, M. T. P., de Sá Coutinho, D., de Souza, É. T., Guterres, S. S., Pohlmann, A. R., Silva, P. M. R., et al. (2019). Orally delivered resveratrol-loaded lipid-core nanoparticles ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways. Int. J. Nanomed. 14, 5215. doi:10.2147/IJN.2019.666666

Ding, H., Ci, X., Cheng, H., Yu, Q., and Li, D. (2019). Chicoric acid alleviates lipopolysaccharide-induced acute lung injury in mice through anti-inflammatory and anti-oxidant activities. Int. Immunopharmac. 66, 169–176. doi:10.1016/j.intimp.2018.10.042

Ding, Y., Wang, H., Shen, H., Li, Z., Geng, J., Han, H., et al. (2003). The clinical use of the antiviral eugenol in the prevention of the coronavirus-associated in pneumonia. J. Pathol. 200 (3), 282–289. doi:10.1002/path.1440

Dong, Y., Zhang, L., Jiang, D., Dui, J., Tang, L., and Liu, G. (2019). Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia. Exp. Anim. 68 (4), 559–568. doi:10.1538/expandin.19-0004

Fakhri, S., Nouri, Z., Moradi, S. Z., and Farzaei, M. H. (2020b). Astaxanthin, an antioxidant carotenoid, alleviates lipopolysaccharide-induced acute lung injury in mice via activating Nrf2 activity. Int. Immunopharmac. 17 (4), 1148–1154. doi:10.1016/j.intimp.2019.10.023

Gupta, S., Mishra, K., and Ganju, L. (2017). Broad-spectrum antiviral properties of andrographolide. Arch. Virol. 162 (3), 611–623. doi:10.1007/s00705-016-3166-3

Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogungbemi, O. M., and Afolabi, S. O. (2020). Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaldoids and terpenoids from African medicinal plants. J. Biomat. Struct. Dyn., 1–19. doi:10.1007/s007391102.2020.176468

Haggag, Y. A., El-Ashmawy, N. E., and Okasha, K. M. (2020). Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med. Hypotheses 144, 109957. doi:10.1016/j.mehy.2020.109957

Hayashi, K., Hayashi, H., Hiraoka, N., and Ikeshiro, Y. (1997). Inhibitory activity of soyasaponin II on virus replication in vitro. Planta Med. 63 (2), 102–105. doi:10.1055/s-2006-957622

Hu, X., Li, H., Fu, L., Liu, F., Wang, H., Li, M., et al. (2019). The protective effect of hyperin on LPS-induced acute lung injury in mice. Microb. Pathog. 127, 116–120. doi:10.1016/j.micpath.2018.11.048

Huang, H., Hu, W., Wang, C., Xu, H., Chen, X., and Qian, A. (2014). Cepharanthine, an alkaloid from Stephania cepharanthoid Hayata, inhibits the inflammatory response in the RAW 264.7 cell and mouse models. Inflammation 37 (1), 235–246. doi:10.1007/s10753-013-9734-8

Huang, X., Liu, Y., Lu, Y., and Ma, C. (2015). Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status. Int. Immunopharmac. 26 (1), 265–271. doi:10.1016/j.intimp.2015.03.026

Huo, M., Cui, X., Xue, J., Chi, G., Gao, R., Deng, X., et al. (2013). Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res. 180 (1), e47–e54. doi:10.1016/j.jss.2012.10.050

Hussain, T., Al-Attas, O. S., Alamery, S., Ahmed, M., Odehbat, H. A., and Alrokayan, S. (2019). The plant flavonoid, fisetin alleviates cigarette smoke-induced oxidative stress, and inflammation in Wistar rat lungs. J. Food Biochem. 43 (8), e12962. doi:10.1111/jfbc.12962

Janeski, A., Yao, R., Fenstad, M. H., Biza, S., Zusnaiite, E., Reisberg, T., et al. (2020). Potential antiviral options against SARS-CoV-2 infection. Viruses 12 (6), 642. doi:10.3390/v12060642

Jaeger, R., and Cuny, E. (2016). Terpenoids with special pharmacological activity: a review. Nat. Prod. Commun. 11, 1373–1390. doi:10.1177/1934578X1601109946

Jiang, K., Zhang, T., Yin, N., Ma, X., Zhao, G., Wu, H., et al. (2017). Geraniol alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis. Oncotarget 8 (41), 71038. doi:10.18632/oncotarget.20298

Jiang, L., Zhang, L., Kang, K., Fei, D., Gong, R., Cao, Y., et al. (2016). Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed. Pharmacother. 84, 130–138. doi:10.1016/j.biopha.2016.09.020

Jin, L., Ying, Z.-H., Yu, C.-H., Zhang, H.-H., Wu, Y.-W., and Wu, X.-N. (2020). Isoflavonoid ameliorated influenza viral inflammation in rodents via inhibiting platelet aggregation. Int. Immunopharmac. 84, 106521. doi:10.1016/j.intimp.2020.106521

Jin, Y., Qian, J., Ju, X., Bao, X., Li, L., Zheng, S., et al. (2018). Osthole protects against the acute lung injury by suppressing NF-κB-dependent inflammation. Mediat. Inflamm. 2018, 4934592. doi:10.1155/2018/4934592

Jo, S., Kim, S., Shin, D. H., and Kim, M.-S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzym. Inhib. Med. Chem. 35 (1), 145–151. doi:10.1080/14756366.2019.1690480

Kanter, M. (2011). Thymoquinone attenuates lung injury induced by chronic toluene exposure in rats. Toxicol. Ind. Health 27 (5), 387–395. doi:10.1177/0748233710387630

Keshmiri-Neghab, H., and Goliaei, B. (2014). Therapeutic potential of gossypol: an overview. Pharmaceut. Biol. 52 (1), 124–128. doi:10.3109/13880209.2013.832776
Majnooni et al. (2020). Phytochemicals Against Coronavirus-Associated Lung Injury.

Pharmacokinetic and pharmacological properties. Molecules 25 (9), 2040. doi:10.3390/molecules25092040

Mansi, J. S., Johnson, J. B., Stiel, J. C., Broszczak, D. A., Neilen, P. M., Walsh, K. B., et al. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res. 284, 197989. doi:10.1016/j.virusres.2019.197989

Mao, M., and Huang, M. (2017). Myrcitin attenuates lung inflammation and provides protection against lipopolysaccharide-induced acute lung injury by inhibition of NF-κB pathway in rats. Trop. J. Pharmacol. Res. 16 (11), 2585–2593. doi:10.4314/tjphr.v16i11.3

Marini, J. J., and Gattinoni, L. (2020). Management of COVID-19 respiratory distress. J. Am. Med. Assoc. 1126. doi:10.1001/jama.2020.1126

Mo, L.-Q., Chen, Y., Song, L., Wu, G.-M., Tang, N., Zhang, Y.-Y., et al. (2014). Protective effects of resveratrol on hyperoxia-induced lung injury in neonatal rats. Pediatr. Res. 78 (2), 171–179. doi:10.1007/s11063-013-1341-7

Niu, N., Li, B., Hu, Y., Li, X., Li, J., and Zhang, H. (2014). Protective effects of isofraxidin against lipopolysaccharide-induced acute lung injury in mice. Immunopharmacol. Immunotoxicol. 37 (1), 35–41. doi:10.3109/01626880.2014.976794

Pramod, K., Ansari, S. H., and Ali, J. (2010). Eugenol: a natural compound with versatile pharmacological actions. Natl. Prod. Commun. 5 (12), 1999–2006. doi:10.1717/1934578x100501236

Qamar, W., and Sultana, S. (2008). Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: an initial step in lung chemoprevention. Chem. Biol. Interact. 176 (2-3), 79–87. doi:10.1016/j.cbi.2008.08.011

Qi, T., Xu, F., Yan, X., Li, S., and Li, H. (2016). Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway. Int. J. Mol. Med. 37 (1), 182–188. doi:10.3892/imj.2015.2396

Ribeiro, A., Almeida, V., Costola-de-Souza, C., Ferraz-de-Paula, V., Pinheiro, M., Vittoretti, L., et al. (2015). Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacol. Immunotoxicol. 37 (1), 35–41. doi:10.3109/01626880.2014.976794

Ribeiro, A., Ferraz-de-Paula, V., Pinheiro, M. L., Vittoretti, L. B., Mariano-Souza, D. P., Quinteiro-Filho, W. M., et al. (2012). Cannabidiol, a non-psychoptic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A2A receptor. Eur. J. Pharmacol. 678 (1–3), 78–85. doi:10.1016/j.ejphar.2011.12.043

Ribeiro, C. V. C., and Kaplan, M. A. C. (2002). Tendências evolutivas de famílias produtoras de cumarinas em angiospermas. Quim. Nova 25 (4), 533–538. doi:10.1590/S0100-40422002000000004

Rico-Mesa, J. S., White, A., and Anderson, A. S. (2020). Outcomes in patients with COVID-19 infection taking ACEI/ARB. Curr. Cardiol. Rep. 22 (5), 31. doi:10.1007/s11886-020-01291-4

Rieder, S. A., Nagarkatti, P., and Nagarkatti, M. (2012). Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury. Br. J. Pharmacol. 167 (6), 1244–1258. doi:10.1111/j.1476-5381.2012.02063.x

Ryabchenko, B., Tulupova, E., Schmidt, E., Wlek, K., Buhbauer, G., and Jirovetz, L. (2008). Investigation of anticancer and antiviral properties of selected aroma samples. Natl. Prod. Commun. 3 (7), 1085–1088. doi:10.1177/1934578x080030710

Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J.-Y., Kim, D., et al. (2010a). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Biogro. Med. Chem. 18 (22), 7940–7947. doi:10.1016/j.bmc.2010.09.035

Ryu, Y. B., Park, S.-J., Kim, Y. M., Lee, J.-Y., Seo, W. D., Chang, J. S., et al. (2010b). SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett. 20 (6), 1873–1876. doi:10.1016/j.bmcl.2010.01.152

San, Z., Pu, Y., Li, W., Zhou, E., Li, Y., Song, X., et al. (2014). Protective effect of taxasterol on acute lung injury induced by lipopolysaccharide in mice. Int. Immunopharmacol. 19 (2), 342–350. doi:10.1016/j.intimp.2014.01.031

Santangelo, C., Vare, R., Scassacchio, B., Di Benedetto, R., Filesi, C., and Masella, R. (2007). Polyphenols, intracellular signalling and inflammation. Ann. Ist. Super. Sanita 43 (4), 394–405.

Schwarz, S., Sauter, D., Wang, K., Zhang, R., Sun, B., Karioti, A., et al. (2014). Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 80 (2/3), 177–182. doi:10.1055/s-0033-1360277

Schwarz, S., Wang, K., Yu, W., Sun, B., and Schwarz, W. (2011). Emoin inhibits current through SARS-associated coronavirus 3a protein. Antivir. Res. 90 (1), 64–69. doi:10.1016/j.antiviral.2011.02.008

Seif, F., Khoshmirsa, M., Azam, H., Mohsenzadegan, M., Sedighi, G., and Bahar, M. (2017). The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal. 15 (1), 23. doi:10.1186/s12964-017-0177-y

Sener, G., Topaloglu, N., Ozter Sehirli, A., Erkan, F., and Gedik, N. (2007). Resveratrol alleviates bleomycin-induced lung injury in rats. Palm. Pharmacol. Therapeut. 20, 642–649. doi:10.1016/j.pupt.2006.07.003

Seo, D. J., Jeon, S. B., Oh, H., Lee, B.-H., Lee, S.-Y., Oh, S. H., et al. (2016). Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control 60, 25–30. doi:10.1016/j.foodcont.2015.07.023

Sharifi-Rad, J., Salehi, B., Schnitzius, P., Ayatollahi, S., Kobarfard, F., Fathi, M., et al. (2017). Susceptibility ofppers simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemandia.
Sharma, A. D., and Kaur, I. (2020a). Eucalyptol (1,8-cineole) from eucalyptus essential oil a potential inhibitor of COVID 19 corona virus infection by molecular docking studies. Preprints 2020, 2020030455. doi:10.20944/preprints202003.0455v1

Sun, N., Sun, P., Yao, M., Khan, A., Sun, Y., Fan, K., et al. (2019). Autophagy reduces severity of acute lung injury. Cell Prolif. 52 (1), e12773. doi:10.1111/cpr.12773

Tsai, Y.-F., Yu, H.-P., Chung, P.-J., Lee, Y.-L., Kuo, L.-M., Chen, C.-Y., et al. (2015). Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4. Free Radic. Biol. Med. 89, 387–400. doi:10.1016/j.freeradbiomed.2015.08.008

Venugopala, K. N., Rashmi, V., and Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int. 2013, 963248. doi:10.1155/2013/963248

Wahedi, H. M., Ahmad, S., and Abbasi, S. W. (2020). Stilbene-based natural compounds as promoting drug candidates against COVID-19. J. Biomol. Struct. Dyn., 1–10. doi:10.1080/07391102.2020.1762743

Wan, L., Meng, D., Wang, H., Wan, S., Jiang, S., Huang, S., et al. (2018). Preventive and therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice model. Inflammation 41 (1), 183–192. doi:10.1007/s10753-017-0767-4

Wan, Z., and Chen, X. (2014). Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology 11 (1), 88. doi:10.1186/s12977-014-0088-6

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J. Am. Med. Assoc. 323 (11), 1061–1069. doi:10.1001/jama.2020.1585

Wang, D., Wang, X., Tong, W., Cui, Y., Li, X., and Sun, H. (2019). Umbelliferone alleviates lipopolysaccharide-induced inflammatory responses in acute lung injury by down-regulating TLR4/MyD88/NF-κB signaling. Inflammation 42 (2), 440–448. doi:10.1007/s10753-018-09593-4

Wang, D., Yang, J., Du, Q., Li, H., and Wang, S. (2016). The total alkaloid fraction of bulbs of Frullania cinnosula displays anti-inflammatory activity and attenuates acute lung injury. J. Ethnopharmacol. 193, 150–158. doi:10.1016/j.jep.2016.08.009

Wang, H., Ding, Y., Zhou, J., Sun, X., and Wang, S. (2009). The in vitro and in vivo antiviral effects of salidrose from Rhodiolaster laevis against coxsackievirus B3. PLoS medicine 6 (2), 146–155. doi:10.1371/journal.pmed.0080703

Wang, J., Zhang, Y.-Z., Cheng, J., Zhang, J.-L., and Li, B.-S. (2015). Preventive and therapeutic effects of quercetin on experimental radiation induced lung injury in mice. Asian Pac. J. Cancer Prev. 16 (7), 2909–2914. doi:10.13189/ajpcr.2015.16.7.2909

Wang, N., Geng, C., Sun, H., Wang, X., Li, F., and Liu, X. (2019). Hesperetin ameliorates lipopolysaccharide-induced acute lung injury in mice through regulating the TLR4–MyD88–NF-κB signaling pathway. Arch. Pharm. Res. 42 (12), 1063–1070. doi:10.1007/s12272-019-01200-6

Wang, W., Yang, X., Chen, Q., Guo, M., Liu, S., Liu, J., et al. (2020). Sinomenine reduces severity of acute lung injury in rats with the potential role of endocan as a biomarker of inflammation. Inflammation 40 (5), 1803–1810. doi:10.1007/s10753-017-0624-3

Wang, Y., Ji, M., Chen, L., Wu, X., and Wang, L. (2013). Breviscapine reduces acute lung injury induced by left heart ischemic reperfusion in rats by inhibiting the expression of ICAM-1 and IL-18. Exp. Ther. Med. 6 (5), 1322–1326. doi:10.3892/etm.2013.1287

Wang, Y., Wang, X., Zhang, L., and Zhang, R. (2018). Alleviation of acute lung injury in rats with sepsis by resveratrol via the phosphatidylinositol 3-kinase/nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (PI3K/NIr2/HO-1) pathway. Med. Sci. Mon. 24, 3604–3611. doi:10.12659/MSM.910245
Yao, J., Pan, D., Zhao, Y., Zhao, L., Sun, J., Wang, Y., et al. (2014). Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway. *Immunology* 143 (2), 241–257. doi:10.1111/imm.12305

Yeh, C.-H., Yang, J.-I., Yang, M.-L., Li, Y.-C., and Kuan, Y.-H. (2014). Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK-NF-kB pathway. *Free Radic. Biol. Med.* 69, 249–257. doi:10.1016/j.freeradbiomed.2014.01.028

Yildiz, O. G., Soyuer, S., Saraymen, R., and Eroglu, C. (2008). Protective effects of caffeic acid phenethyl ester on radiation induced lung injury in rats. *Clin. Invest.* 31, E242–E247. doi:10.25011/cim.v31i5.4870

Yin, Y., and Wunderink, R. G. (2018). SARS, SARS-CoV-2 and other coronaviruses as causes of pneumonia. *Respirology* 23 (2), 130–137. doi:10.1111/rsp.13196

Yu, J.-S., Chen, W.-C., Tseng, C.-K., Lin, C.-K., Hsu, Y.-C., Chen, Y.-H., et al. (2016). Sulforaphane suppresses hepatitis C virus replication by up-regulating heem oxygenase-1 expression through PI3K/NF-κB pathway. *PLoS One* 11 (3), e0152236. doi:10.1371/journal.pone.0152236

Yu, M.-S., Lee, J.-J., Lee, J.-I., Kim, Y., Chiu, W.-Y., Lee, J.-G., et al. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS-CoV coronavirus helicase, nsp13. *Bioorg. Med. Chem. Lett.* 22 (12), 4049–4054. doi:10.1016/j.bmcl.2012.04.081

Yu, P.-J., Li, J.-R., Zhu, Z.-G., Kong, H.-Y., Jin, H., Zhang, J.-Y., et al. (2013). Praeruptor D and E attenuate lipopolysaccharide/hydrochloric acid induced acute lung injury in mice. *Eur. J. Pharmacol.* 710 (1-3), 39–48. doi:10.1016/j.ejphar.2013.03.050

Yu, W.-w., Lu, Z., Zhang, H., Kang, Y.-h., Mao, Y., Wang, H.-h., et al. (2014). Anti-inflammatory and protective properties of daphnetin in endotoxin-induced acute lung injury. *J. Agric. Food Chem.* 62 (51), 12315–12325. doi:10.1021/ ja503667v

Yu, Z., Liu, X., Chen, H., and Zhu, L. (2020). Naringin-Loaded dipalmitoylphosphatidylcholine phytose dry powders for inhalated treatment of acute lung injury. *J. Aerosol Med. Pulm. Drug Deliv.* 33 (4), 194–204. doi:10.1089/jamp.2019.1569

Yunhe, F., Bo, L., Xiaosheng, F., Fengyang, L., Dejie, L., Zhicheng, L., et al. (2012). The effect of magnolol on the toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced acute lung injury in mice. *Eur. J. Pharmacol.* 689 (1-3), 255–267. doi:10.1016/j.ejphar.2012.05.038

Zeng, H., Yang, L., Zhang, X., Chen, Y., and Cai, Y. (2018). Dioscin prevents LPS-induced acute lung injury through inhibiting the TLR4/MyD88 signaling pathway via upregulation of HSP70. *Mol. Med. Rep.* 17 (5), 6752–6758. doi:10.4299/nnmr.2018.8667

Zhang, C.-H., Wang, Y.-F., Liu, X.-J., Lu, J.-H., Qian, C.-W., Wan, Z.-Y., et al. (2005). Anti-inflammatory activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. *Chin. Med. J.* 118 (6) 493–496.

Zhang, D., Li, X., Hu, Y., Jiang, H., Wu, Y., Ding, Y., et al. (2018). Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. *Biochem. Pharmacol.* 154, 183–192. doi:10.1016/j.bcp.2018.05.004

Zhang, D.-h., Wu, K.-L., Zhang, X., Deng, S.-q., and Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. *Integr. Med. 18* (2), 152–158. doi:10.26324/imj.2020.02.005

Zhang, F., Yang, F., Zhao, H., and An, Y. (2015). Curcumin alleviates lung injury in diabetic rats by inhibiting nuclear factor-kB pathway. *Clin. Exp. Pharmacol. Physiol.* 42 (9), 956–963. doi:10.1111/1440-1681.12438

Zhang, R., Dang, M., Qiu, S., Gu, H., He, P., Guo, G., et al. (2019). Ameliorative effects of tannic acid on lipopolysaccharide-induced sepsis and acute lung injury in mice. *Pharmacogn. Mag.* 15 (61), 238–243. doi:10.4103/pm.pm_364_18

Zhang, X., Huang, H., Yang, T., Ye, Y., Shan, J., Yin, Z., et al. (2010). Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury. *Injury* 41 (7), 746–752. doi:10.1016/j.injury.2010.02.029

Zhang, Y., Han, H., Qiu, H., Lin, H., Yu, L., Zhu, W., et al. (2017a). Antiviral activity of a synthesized shikonin ester against influenza (H1N1) virus and insights
into its mechanism. *Biomed. Pharmacother.* 93, 636–645. doi:10.1016/j.biopharmas.2017.06.076

Zhang, Y., Yao, J., Qi, X., Liu, X., Lu, X., and Feng, G. (2017b). Geniposide demonstrates anti-inflammatory and antiviral activity against pandemic A/H1N1 influenza virus infection in vitro and in vivo. *Antivir. Ther.* 22 (7), 599–611. doi:10.3851/IMP3152

Zhang, Y.-N., Zhang, Q.-Y., Li, X.-D., Xiong, J., Xiao, S.-Q., Wang, Z., et al. (2020). Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. *Emerg. Microb. Infect.* 12 (6), 1170–1173. doi:10.1080/22221751.2020.1772676

Zhang, Z., Ding, L., Wu, L., Xu, L., Zheng, L., and Huang, X. (2014). Salidroside alleviates paraquat-induced rat acute lung injury by repressing TGF-β1 expression. *Int. J. Clin. Exp. Pathol.* 7 (12), 8841–8847.

Zhao, F., Shi, D., Li, T., Li, L., and Zhao, M. (2015). Silimarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitro. *Clin. Exp. Pharmacol. Physiol.* 42 (9), 988–998. doi:10.1111/1440-1681.12448

Zhao, L., Wang, X., Chang, Q., Xu, J., Huang, Y., Guo, Q., et al. (2010). Neferine, a bisbenzylisoquinoline alkaloid attenuates bleomycin-induced pulmonary fibrosis. *Eur. J. Pharmacol.* 627 (1-3), 304–312. doi:10.1016/j.ejphar.2009.11.007

Zhu, X., Lei, X., Wang, J., and Dong, W. (2019). Protective effects of resveratrol on hyperoxia-induced lung injury in neonatal rats by alleviating apoptosis and ROS production. *J. Matern. Fetal Neonatal Med.*, 1–9. doi:10.1080/14767058.2019.1597846

Zai, S. A., Rezaei, M., Fakhri, S., and Pouriran, R. (2020). ACE2: its potential role and regulation in severe acute respiratory syndrome and COVID-19. *J. Cell. Physiol.* [Epub ahead of print]. doi:10.1002/jcp.30041.

Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., and Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. *BioMed Res. Int.* 2014, 186864. doi:10.1155/2014/186864

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Majnooni, Fakhri, Shokoohinia, Kiyan, Stage, Mohammadi, Gravand, Farzaei and Echeverria. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.