Measuring the impact of input data on energy consumption of software

Jeremy Morse
University of Bristol

Abstract. The amount of energy consumed during the execution of software, and the ability to predict future consumption, is an important factor in the design of embedded electronic systems. In this technical report I examine factors in the execution of software that can affect energy consumption. Taking a simple embedded software benchmark I measure to what extent input data can affect energy consumption, and propose a method for reflecting this in software energy models.

1 Introduction

Energy consumption in embedded devices is a significant challenge in system design, with slow improvement in energy storage technology checking the increasing computational demands on devices. While the research community continues to study energy-specific software optimisations, understanding how different portions of software relate to the amount of energy consumed is of interest to engineers, for example to apply Amdahl’s law to energy consumption.

Existing operational models of processors allow us to model their consumption of energy in terms of an always-present base cost, and the effect of individual instruction interpretation as the processor executes a program [10]. With sufficient information about instruction costs, a model can be built to accurately predict the energy consumption of a particular trace of instructions. These models, however, only consider an overall or average case valuation of instruction costs, with no regard for instructions that may consume different amounts of energy in different circumstances. As we shall see in this report, the variation in energy consumption caused by operands to instructions can be significant.

This limitation undermines the accuracy of energy consumption analysis techniques, used to predict the energy consumption of software. To provide a safe upper bound on the amount of energy that a particular sequence of instructions will consume, one must assume that each instruction consumes the maximum amount of energy that it possibly could. This provides an overestimate of the maximum amount of energy a piece of software may consume. Conversely, considering the average cost of each instruction may give a more realistic prediction of the software’s normal energy consumption, but gives no guarantee that consumption will not exceed that amount in other circumstances. This is a difficulty shared with the worst case execution time (WCET) problem [11], where the longest possible path through a program must be identified, although our focus is the consumption of energy rather than the consumption of time.
To provide a tighter bound on the worst case energy consumption of software, I propose the use of simple static analyses to identify instructions which can exhibit worst-case energy consumption, those that cannot, and to compute costs for each instruction appropriately. This report is organised as follows: Section 2 covers the background to energy analysis of software. Section 3 studies the energy impact of input data on a benchmark running on a XMOS XS1-L processor. Section 4 examines existing software static analysis techniques and how they can be applied to energy consumption. Section 5 draws conclusions and outlines my future work.

2 Background to energy modelling

At the lowest level, the consumption of energy by a processor is caused by the charging of internal circuitry performing calculations or moving data during the execution of an instruction. Tiwari et al. [10] characterised the costs involved by classifying three energy consuming operations: the base cost of executing a particular instruction, the cost of switching the processor from executing one kind of instruction to another, and miscellaneous other costs. Tiwari summaries computes these for a particular trace of instructions executed, as

$$E_p = \sum_i (B_i \times N_i) + \sum_{i,j} (O_{i,j} \times N_{i,j}) + \sum_k E_k$$

Where N_i is the number of times instruction i is executed, B_i the energy cost of executing that instruction, $N_{i,j}$ the number of transitions between instruction i to j and $O_{i,j}$ the cost of the same transition. E_k represents miscellaneous other costs, while E_p is the total cost for the whole trace. Within this formulation there are two distinct parts: the modelling of energy costs for actions (such as executing an instruction), and the count of how many times actions are performed. The former constitutes the energy model of the processor, allowing the calculation of an energy cost for any given trace of instructions, while the latter is derived from a particular execution of a program, the mechanisms for which are not considered here.

Such an energy model [6] has been produced for the XMOS XS1-L processor. The XCore architecture [8] centres around a RISC execution core running multiple hardware threads, connected to other cores via high-speed serial links. The XCore was designed to be predictable and deterministic, avoiding superscalar execution, branch prediction and memory caches. It schedules threads to run in a fixed (round-robin) order. It’s predictability makes the XCore particularly suitable for performing and evaluating modelling, without risk of interference.

The XS1-L energy model [6] is comprised of attributes for a core set of instructions for which the measurements prescribed by Tiwari et al. have been made. These core instructions have then been characterised and the costs fitted to other instructions for which measurements cannot be made. Accommodation is also made for inter-instruction costs ($O_{i,j}$ in the formulation above) and the effects of concurrently executing instructions from different threads.
This energy model has been leveraged in [7] to allow energy consumption analysis of instruction traces, providing a metric for use with software cost analysis as provided by the Ciao framework [5]. The result is a formula for calculating the average energy consumption of the program, given a particular size of input. While there is much research on the topic of generic resource analysis, very little work has been done in the field of energy analysis, specifically with regard to analysis for worst case energy consumption (WCEC), the discovery of safe upper bounds on the programs energy consumption. In particular, I am not aware of any work on the energy consumption of programs with specific regard to the data that they operate upon. This will be studied further in Section 3.

A substantial amount of work has gone into the study of the WCET problem [11], which does vary with the input data provided to programs. The distinguishing feature is one of size: inputs provided to a program that affect the amount of code run (such as number of loop iterations or instructions executed) affect the runtime of the program. Discovering the “largest” input corresponds to finding the longest that the program can run. In contrast, WCEC considers the variation in input data that does not affect the length of program paths, but instead affects the amount of energy consumed by instructions along those paths.

Within the WCET community itself, numerous techniques have been used to identify the longest program path. A full treatment is given in [11], however notable techniques include implicit path enumeration where the longest paths from a branch are identified locally and composed to build a worst-case path, without any explicit path exploration. Abstract interpretation [4] can be used to statically analyse potential paths through the program and reason about how different code paths compose.

3 Impact of data on energy consumption

To correctly model the effect of input data on energy consumption, we must better understand the effects of variations in input data. At the lowest level, the hamming distance between two values is the number of bits that must charge or discharge across the processor pipeline. We would expect consecutive operations on values with large hamming distances to result in higher energy consumption than when the values have small hamming distances. The actual impact such distances can have on a particular processors energy consumption can only be measured by experimentation, however.

The work of Tiwari et al. has already established that some instructions cost more than others during execution. This could be because different instructions have differing base costs—it could also be because different amounts of circuitry are switched by each instruction, in which case energy consumption will scale with hamming distance by different constants for different instructions. The energy of input data, compared to base costs, are unknown.

To resolve this matter, I took a simple benchmark for the XMOS XS1-L processor that computed a finite impulse response (FIR) over a pre-determined set of input data, and altered it in a number of ways. In all cases I measured the
average energy consumption of the processor during execution of the benchmark.
Firstly, I fed several different patterns of input data into the algorithm with
different hamming distances. Secondly, I altered the core operation of the FIR
benchmark to measure how different instructions scale energy consumption with
input data.

3.1 Finite impulse response benchmark
The finite impulse response (FIR) is a basic DSP algorithm to filter an input
signal for certain frequencies, according to it’s configuration. The core of the
algorithm is a window of input samples, each sample of which is multiplied by a
coefficient according to it’s position in the window. The results of all multiplica-
tions are summed to produce the output signal sample. For each output sample
calculated, the window of input samples is shifted by one.

This core part is shown in Figure 3.1 written in XC. The \(x_n \) argument contains
the newest input sample to be processed, \(\text{state} \) is the window of input samples
currently being processed, \(\text{coeffs} \) the values by which samples are multiplied,
\(\text{ELEMENTS} \) the length of the input window and \(y_{nh, ynl} \) are the high and low parts
of a 64 bit integer. XC supports multiple values being returned from functions,
which are enclosed in curly braces in the function signature, return statement,
and call site. The main multiply-and-accumulate function of the algorithm is
performed by the \text{macs} intrinsic.

\[
\{\text{int, int, int}\} \text{fir(}\text{int} x_n, \text{const int} \text{coeffs}[\], \text{int} \text{state}[\],
\text{int} \text{ELEMENTS}, \text{int} y_{nh, ynl}\}
\{
\text{int} o = \text{state}[\text{ELEMENTS}-1];
\text{for(}\text{int} j=\text{ELEMENTS}-1; j!=0; j--) \{
 \text{state}[j] = \text{state}[j-1];
 \{y_{nh, ynl}\} = \text{macs} (\text{coeffs}[j], \text{state}[j], y_{nh, ynl});
\}
\text{state}[0] = x_n;
\{y_{nh, ynl}\} = \text{macs} (\text{coeffs}[0], x_n, y_{nh, ynl});
\}
\text{return} \{o, y_{nh, ynl}\};
\]

The XCore architecture features multiple hardware threads. The processor
contains a single execution pipeline, which executes instructions from each ac-
tive hardware thread in a round robin schedule. To make full use of the available
resources (see [6] for a full explanation), the FIR benchmark used here splits it’s
calculation into seven stages of equal length, which are then chained together
across seven concurrent threads. The Tiwari energy model explained in Section 2
still applies to concurrent execution on the XCore, however the transitions be-
tween instructions are now also transitions between threads.
3.2 Input data and algorithm changes

Within the FIR benchmark, I vary the values of input samples fed into the sampling window and used as the multiplication coefficients. The different sets of values have different hamming distances, controlled by keeping a fixed number of leading zero bits in each value. The first set is of random 8 bit numbers, with the preceding 24 bits in each integer clamped to zero. The same approach is used to produce sets of random 16, 24 and 32 bit numbers. Two other special input sets are used: a set of all-zero values, and a set of samples from a sine wave with a period that repeats every 24 samples. Each input set should provide insight into how different hamming distances affects energy consumption, with the sine wave signal providing a reference for normal operation of the benchmark.

To measure how different instructions scale their energy consumption with input samples, I also alter the main operation of the FIR benchmark to use different instructions. This alteration occurs at the assembly level, to avoid any unwanted changes introduced by the compiler. By default as shown in Figure 3.1, the FIR benchmark multiplies an input sample with a coefficient and accumulates it into a sum variable. This translates to a single instruction, `maccs`. For these measurements, I replace the `maccs` instruction with `nop`, `add`, `sub`, `xor` and `lmul`, representing some common processor operations that have different instruction costs in the energy model [6]. According to that model, we would expect `nop` to not change energy consumption with input data at all; `add`, `sub` and `xor` to scale to a lesser extent than the multiply-and-accumulate instruction, and `lmul` to use an equivalent or possibly more energy than `maccs`.

In addition to replacing the base operation of the algorithm, I also varied two other factors. First, I repeated the main operation several times, duplicating the `maccs` instruction (or otherwise) from one to seven times. I also repeated all my tests with the core instruction operands rewritten to operate on a fixed, low hamming distance piece of data, in this case the loop iterator. These tests will allow comparison between instructions executing on high hamming distance constantly changing input and low range operands.

3.3 Test setup

All tests were run on a SliceKit Analogue development board [12], with connected XTag programmer board. Energy consumption was measured in the usual way, with current-sense samples directly recorded by the XTag programmer. The average current draw was determined by sampling a 40us period during the middle of the benchmark execution and taking the average amount of current over that period. All readings are reported in milliWatts. Each result is averaged over 3 individual test-runs, to reduce the effect of any noise introduced during current readings.

The SliceKit itself was configured to run at 400Mhz and with default 3.3 Volt supply. This report does not consider DVFS, and so these parameters are not

1 which ranges from 1 to 18
modified. With the XCore idling (one thread blocking on a never-triggered event) the processor consumes 200mW in this configuration. This should be considered to be the baseline amount of power consumption: the amount over this rate represents the contribution of software to the processors energy consumption.

3.4 Results

The results of the first experiment are presented in Figure 1. Each row represents the average power consumption (in milliwatts) of the FIR benchmark using the instruction given in the leftmost column. The other columns represents the energy readings for each input pattern.

Instruction	zeros	rand8	rand16	rand24	rand32	signal
maccs	218.79	223.24	228.93	233.65	238.28	234.65
lmul	219.95	224.29	229.49	233.95	239.09	234.69
sub	220.07	226.28	231.12	233.50	234.69	230.81
add	220.30	223.15	228.72	231.12	233.49	234.17
xor	219.63	223.57	228.94	232.91	237.49	234.17
nops	218.52	219.84	220.83	221.88	223.68	222.41

Fig. 1. Milliwatt consumption of Analogue SliceKit XCore running FIR benchmark with the given instruction and input pattern

Figure 2 and Figure 3 present the results of the additional tests I ran, increasing the number of times the main instruction of the algorithm are executed per iteration. Figure 2 shows that as we increase the number of times the core operation of the algorithm executes, the energy consumption of the benchmark increases. This is in line with expectations, as the more frequently an expensive instruction is executed, the greater the amount of energy consumed.

Figure 3 compares a similar scaling of the number of times the core instruction is executed, but comparing the energy consumption when the instruction operates on a fixed piece of data, and when it operates upon the input samples. This is signified by “not in dpath” and “in dpath” in the instruction description, respectively. We can clearly see that energy consumption is higher when the instructions operate on the input data rather than data of limited range.

3.5 Discussion

As expected, an increasing hamming distance between values (corresponding to smaller zero-bit prefixes for the random samples) results in higher energy consumption in all operations. The greatest increase is for the lmul instructions, rising from 219mW when operating on all-zero inputs to 239mW when fed random 32 bit values. This represents only 10% of the overall energy consumption.
of the system, but increases the software contribution to energy consumption by 100%.

The nop instruction exhibits the smallest increase in energy consumption as input patterns change. This is no surprise, as the instruction does not actually manipulate any data. Examining the assembly of the core loop in the FIR benchmark, shown in Figure 4, where r4 references the state array and r2 the coeffs array, we see that the only instructions accessing the input data are load and store instructions. It is logical to assume that the 6mW difference between the all-zeros and rand32 input patterns when using nop as the benchmark operation is due to those loads and stores.

```
.LBB0_1:
    sub r9, r8, 1
    ldw r10, r4[r9]
    stw r10, r4[r8]
    ldw r8, r2[r8]
    nop
    mov r8, r9
    bt r9, .LBB0_1
```

Fig. 4. Core loop of FIR benchmark when using nop instruction instead of maccs

Taking 200mW as the base cost, as discussed in Section [3,3]
We see that the “signal” input to the FIR benchmark, representing a typical input for the algorithm in a real application, consistently results in a lower rate of energy consumption than the random 32-bit samples. This too meets with expectations: the sine wave follows an oscillating pattern that slowly moves from high integer values to low (crossing zero into the negative range) over the period of the wave. This keeps some of the higher order bits of each sample the same for several samples, reducing the hamming distance.

The base cost of each instruction when no data is operated upon (i.e., all inputs are zero) are roughly equal. There is a small difference between certain instruction (\texttt{maccs} and \texttt{nop} being 1.5mW lower than \texttt{add} and \texttt{sub} for example), however these differences are less than 1% of the overall energy cost of the processor. This seems to confirm that there is little or no base cost to each instruction itself, and the increased consumption scales up with increased hamming distance of data. The scale-up appears linear with instructions such as \texttt{maccs}, \texttt{lmul}, \texttt{add} and \texttt{xor}, but not for \texttt{sub}. This is because the second operand to subtracts in twos-compliment arithmetic are inverted, increasing the hamming distance between operands.

Considering the results in Figure 2, we see that as more instructions operating on data are added to the core loop of the algorithm, the energy consumption increases, in line with expectations. The increase is not linear, and flattens out when the instruction reaches 7 repetitions. This is presumably because the data operation instruction occurs as frequently as the other instructions in the loop, see Figure 4.

Figure 3 also shows that a substantial portion of the instruction energy cost depends on the data that it operates on, as performing an operation on the low-range data (the loop iterator, ranging from 1 to 18) consumes less than operating on the random 32 bit input data. There is a discrepancy with the previous results however, as we would expect the energy consumption when each instruction is repeated once to match the “rand8” consumption reading from Figure 1. Instead, more energy is consumed in this setup. This amounts to approximately 2% of the total reading. One potential explanation is that the load and store operations around the operation instruction, which are still loading and storing the random 32-bit data, may contribute the additional energy cost. Regardless, the difference between operating on data in the datapath and not, is shown to be significant.

4 Worst and average case energy models

These results illustrating how energy consumption scales with input data provide a basis for refining the processor energy model. The main observation is that almost all the increase in energy consumption as input data hamming distance increases, is controlled by which instruction is used for the FIR calculation. If \texttt{maccs} is used, consumption scales up significantly, which if \texttt{nop} is used, it does not. This can be generalised into the observation that we only need to consider

\footnote{Repetitions past 7 are not presented here}
the worst case energy consumption for instructions that may operate on data with the greatest hamming distance.

We can then classify instructions into two broad classes: those that operate on data with the greatest hamming distance, and those that do not. The naive approach would be to explore every path through the program with every possible input, and compute the hamming distance for every instruction. This would immediately result in state space explosion [3], making analysis of any non-trivial programs infeasible. The corollary is that we cannot compute the most energy-consuming data that a particular instruction in a program may operate upon, as that would require exploring the program to find the input that leads to that situation [11].

To feasibly analyse a program, we must make approximations of it’s inputs and reason about whether they may lead to worst-case operands for an instruction [11]. Rather than explicitly explore all the inputs to a program, we may instead classify any input data at all[4] as potentially having a worst-case value, for any instruction that operates upon it. This reduces accuracy, as some operations of the analysed program may reduce the hamming distance of an input, but means that we can use static analysis techniques to identify instructions that operate on input data.

Specifically, we may use existing data flow analyses [1] such as abstract interpretation [4] or taint analysis [9] to identify instructions that read in input data, track where that data flows through the rest of the program, and which instructions operate upon the data. These instructions may consume the worst-case amount of energy. At the same time, however, the instructions that do not operate on input data must also be classified. Not operating on data, these instructions all maintain state internal to the program, for example counters and loop iterators, ringbuffer pointers, and so forth. These pieces of data may possess a significant range of values, however as they are entirely internal to the program we can statically determine their values, for example through an interval analysis that identifies upper and lower bounds on data values.

This instruction classification would allow us to identify the approximate inputs to each instruction in the program, and as a result we could select an appropriate energy cost valuation for each—assuming such an energy model is available. While this analysis would not be completely precise, it avoids having to use the worst case energy cost for every instruction, and would thus lead to a tighter worst-case bound on energy consumption.

5 Conclusions and future work

This technical report has studied the relation between input data to a software algorithm and the energy consumption of that algorithm, showing that energy consumption of software grows as the hamming distance of inputs grows. In certain cases the contribution of data to the dynamic energy consumption of

\[4 \text{ i.e., values read from a peripheral, communication stream, or other external source} \]
the program can be 100%. I make observations about how input data affects different sets of instructions in a program, and propose analyses to classify instructions into sets that may consume the worst-case amount of data, and those that consume less.

In future work, I will fully implement the proposed analyses and evaluate their impact on making predictions about the energy consumption of software. To date I have used a taint analysis within the KLEE [2] symbolic execution tool to identify input data manipulating instructions, with promising results on some simple benchmarks. The interval analysis of internal state manipulating instructions is yet to be implemented.

References

1. F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun. ACM, 19(3):137–, 1976.
2. Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.
3. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, Cambridge, MA, USA, 1999.
4. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.
5. M. V. Hermenegildo, F. Bueno, M. Carro, P. López-García, E. Mera, J. F. Morales, and G. Puebla. An overview of ciao and its design philosophy. Theory Pract. Log. Program., 12(1-2):219–252, January 2012.
6. Steven Kerrison and Kerstin Eder. Energy modelling of software for a hardware multi-threaded embedded microprocessor. 2013.
7. U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V. Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on XMOS ISA-level Models. In Pre-proceedings of the 23rd International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR’13), September 2013.
8. D. May. XMOS XS1 Instruction Set Architecture, 2009.
9. Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask). In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 317–331, Washington, DC, USA, 2010. IEEE Computer Society.
10. Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. Instruction level power analysis and optimization of software. The Journal of VLSI Signal Processing, 13:223–238, 1996. 10.1007/BF01130407.
11. Reinhard Wilhelm, Jakob Engholm, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-time problem—overview of methods and survey of tools. *ACM Trans. Embed. Comput. Syst.*, 7(3):36:1–36:53, May 2008.

12. XMOS. xcore-analog slice kit. https://www.xmos.com/products/xkits/slicekit