Effectiveness of Pulmonary Rehabilitation in Patients with COPD
Zunaira Fatima1, Areeba Iftikhar1* and Muhammad Imran Yousaf2

Significance:
Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease state characterized by airflow limitation that is not completely reversible. Pulmonary rehabilitation has been well established and increasingly recommended in COPD and other chronic diseases management plans. Appropriate candidates are symptomatic patients with chronic lung disease who are aware of their disability and still motivated to actively participate in their own health care activity and program.

ABSTRACT

Background: Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. Although it is believed that longer pulmonary rehabilitation programs can provide better results, most of the evidence comes from short-term programs.

Objective: The objective of this analysis was to determine the effectiveness of respiratory services provided in the hospital or community by respiratory therapists (RTs) in reducing health care utilization and improving patient outcomes. The aim was to evaluate the outcomes of a comprehensive pulmonary rehabilitation (PR) in chronic obstructive pulmonary disease.

Methodology: All 65 Pakistani patients who met the inclusion criteria with ages between 40 to 65 years, including both male and female, with mild to severe COPD were enrolled in the study on the basis of convenient sampling. Informed consent was taken from each patient starting about the study and their rights to withdraw from study. A demographics detail (name, age, sex) was noted along with the necessary medical history. A questionnaire was made to see the effects of pulmonary rehabilitation in patients with COPD. All necessary tests were performed to evaluate the patient betterment completely.

Results: The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. Clinically there is a little effect on CXR pattern, FEV1 and FEV1/FVC after pulmonary rehabilitation. But overall quality of life improved after pulmonary rehabilitation. Mainly improvement occurs in peak expiratory flow rate, BORG dyspnea scale, 6 min walk test distance (meters) and Oxygen saturation after rehabilitation.

Conclusion: These results showed that patients with COPD had benefited from a comprehensive PR program in an out-patient setting regardless of disease severity. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity.

Introduction
Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease state characterized by airflow limitation that is not completely reversible. The airflow limitation is usually progressive and is associated with an abnormal inflammatory response of the lungs to noxious gaseous particles mainly caused by cigarette smoking. Although COPD affects the lungs and produces significant systemic consequences. (1) The most common symptoms of COPD are excessive sputum, SOB and a productive cough. (2) The pursed lip breathing, barrel chest, paradoxical movement of chest (Hoovers sign) are also common. (3) Globally tobacco smoking is primary and most important risk factor for COPD. (2) In non-smokers, passive smoke is responsible for about 20% of COPD cases. (3) The prevalence of COPD was modeled in 12 South-east Asian countries and estimated to be 6.3%, with highest prevalence in China (6.5%) and in Vietnam (6.7%). COPD has been estimated from 3.2% in France to 5.4% in the Netherlands. COPD is a major health problem across the world with its prevalence inversely proportionate to socioeconomic status. (4) Poorly ventilated cooking fires, often fueled by coal or biomass fuels such as wood and animal dung, lead to indoor air pollution and are one of the most common causes of COPD in developing countries. (5) Currently, the only inherited risk factor is alpha 1-antitrypsin deficiency (AAT). (6) COPD is the 4th leading cause of death in the world, and there are further increases in the prevalence, morbidity and mortality of the disease. (7)
Diagnosis of COPD primarily rely on a reduction of FEV1 and FVC ratio decrease <70% post bronchodilators therapy. (8) Assessment of COPD is based on the patient’s age, level of symptoms, exacerbation history, the severity of the spirometry report abnormality, and the related co-morbidities. Spirometry is now required to make a confident diagnosis of COPD. (2) Management included smoking cessation, influenza and pneumococcal vaccines, workplace health strategies, pulmonary rehabilitation, bronchodilators, corticosteroids, long term oxygen, surgery and stem cell therapy. (9) Pulmonary rehabilitation is an evidence-based, multidisciplinary, and comprehensive intervention for patients with chronic respiratory diseases who are symptomatic and often have decreased daily life activities. Focused onto the individualized treatment of the patient, pulmonary rehabilitation is designed to reduce patient symptoms, optimize functional status, increase participation, and reduce health care utilization through stabilizing or reversing systemic manifestations of the disease. The aim of pulmonary rehabilitation is to break this vicious cycle and help the COPD patients to take part in daily activities. (10) Pulmonary rehabilitation has been well established and increasingly recommended in COPD and other chronic diseases management plans. Main elements included a multidisciplinary team, focus on the individual patient, and attention to emotional, psychological, social and physical aspects of health care. Appropriate candidates are symptomatic patients with chronic lung disease who are aware of their disability and still motivated to actively participate in their own health care activity and program. Pulmonary rehabilitation program has also been recommended and useful for patients with other types of chronic lung diseases. (11) Pulmonary rehabilitation may be beneficial for all patients in whom respiratory symptoms are associated with decreased/diminished functional capacity or reduced health related quality of life (HRQL). (12) It has been known to improve exercise capacity, dyspnea and health related quality of life in COPD following COPD. (13) Pulmonary rehabilitation induces important changes on depression and anxiety independent of changes in dyspnea and health-related quality-of-life. (14) Morbidity measures traditionally include physician visits, emergency department visits, and hospitalizations time duration. Although COPD databases for these outcome parameters are less readily available and usually less authentic than mortality databases, the limited data available indicate that morbidity due to COPD increases with age and is greater in men than in women. (15)

Improved air quality can prevent COPD or slow down the worsening of existing disease. Annual influenza vaccinations in COPD reduce exacerbations, hospitalizations and death. (16) Keeping away people from starting smoking is a key aspect of preventing COPD as well as use of medications such as nicotine replacement therapy, bupropion (17). The rationale of this research was to see the effectiveness of pulmonary rehabilitation in stable COPD patients. The research was aimed to reduce disability and handicap in people with chronic lung disease and to improve their quality of life.

Materials and Methods

Study Design: It was a Randomized clinical trial.
Setting: The data was collected from Gulab Devi Hospital Lahore
Duration: The study was conducted in 4 months from November 2015 to February 2016
Sample Size: We included 70 patients of COPD. Sample size was calculated based on COPD prevalence i.e., 11.8%. Samples were divided in two groups A and B. Group A comprised of patients with conventional treatment while Group B patients comprised of patients taking pulmonary rehabilitation in addition to conventional treatment.
Sampling Technique: Convenient sampling
Inclusion Criteria: COPD patients with mild to severe COPD, stable patients with age 40-65, FEV1 40-80%, FEV1/FVC >65%, FCV 35-70%, paO2 >55% were included in this study.
Exclusion criteria: Exclusion criteria include significant orthopedic or neurologic problems that reduce mobility or cooperation with physical training. In addition, poorly controlled coexisting medical conditions, especially psychiatric or unstable cardiac disease, may limit participation, thereby making the patient an unsuitable candidate. Patients with very severe COPD and Cor-pulmonale were also excluded.
Statistical Analysis: Both descriptive and inferential statistics were done in Statistical Package for Social Sciences (SPSS) version 16.00.

Results
Mean age of patients was 53.96 + 6.471 with maximum age of 66 and minimum age of 45 years. In our study 32 (45.71%) patients were male; 3 (4.29%) patients were female in group A; 33(47.14%) patients were male and 2 (2.86%) patients were female in group B as shown in Figure 1.
In our study, 32 (45.71%) were smoker in group A, and 33 (47.14%) were smoker in group B. 3 (4.29%) were non-smoker in group A and 2 (2.86%) were non-smoker in group B as shown in Figure 2.

Table 1 showing chi-square value at baseline is 2.132 and P-value 0.545. Chi-square value after 10 days is 1.701 and P-value is 0.129. Chi-square value after 20 days is 0.058 and P-value is 0.810.

This study also showed baseline CXR of group A had 17 (24.29%) patients with hyperinflation, 8 (11.43%) hyper translucency, 6 (3.57%) patchy shadows, 4 (5.71%) other abnormalities. While baseline CXR of group B had 20 (28.57%) hyperinflation, 10 (14.29%) hyper translucency, 3 (4.29%) patchy shadows, 2 (2.86%) other abnormality. After 10 days, CXR improvement of group A was 8 (11.43%) and group B CXR improvement was 13 (18.57%). After 20 days, group A improvement was 19 (27.14%) and improvement in group B CXR was 20 (28.57%).

Table 2. Comparison of FEV1/FVC of group A (conventional treatment) and group B (conventional treatment + PR)

Severity	Group A	Group B	Chi-square	P-value	
FEV1/FVC	Mild	8	8	0.076	0.963
	Moderate	15	16	1.289	0.525
	Severe	12	11		
FEV1/FVC	Mild	7	10		
	Moderate	15	16		
	Severe	13	9		
FEV1/FVC	Mild	4	11	4.933	0.085
	Moderate	17	16		
	Severe	14	8		

Table 2 showing chi-square value at baseline is 0.076 and P-value is 0.963. Chi-square value after 10 days is 1.289 and P-value is 0.525. Chi-square value after 20 days is 4.933 and P-value is 0.085. Baseline Group A FEV1/FVC was mild in 8 (11.43%), moderate 15 (21.43%) and severe was 12 (17.14%), while group B FEV1/FVC was mild in 8 (11.43%), moderate 16 (22.86%) and severe 11 (15.17%). After 10 days, Group A FEV1/FVC was mild in 7 (14.29%), moderate 15 (2.43%) and severe was 13 (18.57%), while group B FEV1/FVC was mild in 10 (14.29%), moderate 16 (22.86%) and severe 9 (12.86%). After 20 days, group A
FEV1/FVC was mild in 4 (5.71%), moderate in 17 (24.29%) and severe in 14 (20%), while group B FEV1/FVC was mild in 11 (15.71%), moderate in 16 (22.86%) and severe in 8 (11.43%).

Table 3 explained PEFR: chi-square value at baseline is 1.465 and P-value is 0.690. Chi-square value after 10 days is 5.921 and P-value is 0.116. Chi-square value after 20 days is 14.396 and P-value is 0.002.

As described in table 5, chi-square value at baseline is 2.819 and P-value is 0.420, chi-square value after 10 days is 12.65 and P-value is 0.005 and chi-square value after 20 days is 16.389 and P-value is 0.001. (Table 4) Mild FEV1 limitation in 1 baseline group A patient was reported, moderate limitation was in 17 patients, severe limitation was in 15 patients and very severe limitation in 2 patients while FEV1 group B reported mild limitation in 8 patients, moderate limitation in 16 patients and severe limitation in 11 patients. After 10 days, group A patients reported mild FEV1 in 2, moderate limitation in 20, severe limitation in 12 and very severe limitation in 1 while group B patients reported mild FEV1 in 7, moderate limitation in 21 and severe limitation in 7. After 20 days, group A patients reported FEV1 with mild limitation in 1, moderate limitation was in 17, severe limitation was in 15 and very severe limitation in 2 while group B mild limitation in 14, moderate limitation in 15 and severe limitation was in 6.

Pulmonary Rehabilitation in COPD
Pulmonary Rehabilitation in COPD

Table 5. Comparison of SpO2 of group A (conventional treatment) and group B (conventional treatment + PR)

SpO2 baseline	Group A	Group B	Chi-square	P-value
Normal	4	3	2.819	0.420
Mild hypoxia	16	21		
Moderate hypoxia	15	10		
Severe hypoxia	0	1		

Table 6. Comparison of BORG dyspnea scale of group A (conventional treatment) and group B (conventional treatment + PR)

Borg Dyspnea scale	Severity	Group A	Group B	Chi-square	P-value
baseline	Very slight	0	0	4.597	0.467
	Slight	2	1		
	Moderate	4	9		
	Somewhat severe	8	11		
	Severe	19	13		
	V severe	2	1		
after 10 days	Very slight	0	2	20.897	0.002
	Slight	0	5		
	Moderate	6	11		
	Somewhat severe	6	11		
	Severe	22	6		
	V severe	1	0		
after 20 days	Very slight	0	2	20.010	0.003
	Slight	0	6		
	Moderate	6	13		
	Somewhat severe	7	8		
	Severe	21	6		
	V severe	1	0		

Discussion

The results of the study suggested small but statistically and clinically significant improvements of health-related quality of life in patients with COPD and immediately after participation. Mainly improvement occurs in Peak expiratory flow rate, BORG dyspnea scale, 6 mint walk test distance (meters) and Oxygen saturation after rehabilitation. Walking distance also improved in 6MWT, but the effect was too small to be considered clinically relevant. Clinically there is a little effect on CXR pattern, FEV1 and FEV1/FVC after pulmonary rehabilitation. But overall quality of life improved after pulmonary rehabilitation.

Group A 6 minutes-walk test baseline t-value is -0.595 and P-value is 0.554 with mean 53.63±7.276. Group B 6 minutes-walk test baseline t-value is -0.595 and P-value is 0.554 with mean 54.857±9.81938. Group A 6 minutes-walk test baseline t-value is -0.595 and P-value is 0.554 with mean 54.857±9.81938. Group A 6 minutes-
As compared to another research Exercise capacity, muscle force, quality of life, and functional status improved significantly after 3 months of pulmonary rehabilitation (all \(p < 0.05 \)). Movement intensity during walking improved significantly after 3 months (\(p = 0.046 \)) with further improvements after 6 months (\(p = 0.0002 \)). Walking time in daily life did not improve significantly at 3 months (mean improvement, 7 ± 35%; \(p = 0.21 \)), but only after 6 months (mean improvement, 20 ± 36%; \(p = 0.008 \). No significant changes occurred in other activities or in the pattern of the time spent walking in daily life. Changes in dyspnea after the program were significantly related to changes in walking time in daily life (\(r = 0.43; p = 0.02 \)) (21).

As compared to another research Overall, patient health-related quality of life (HRQoL) and Exercise capacity assessed by a 6-min walking distance test (6MWD) was similarly significantly improved. However, there was some fall-off in terms of the distance walked 12 months after pulmonary rehabilitation. The improvements in exercise capacity, dyspnoea, and HRQoL did not differ between the two groups, with the exception that the 6MWD (\(p < 0.01 \)) at 3 months post-pulmonary rehabilitation were significantly higher in the old-elderly group (22) while in our study P value after PR for 6MWD is 0.009 and for dyspnea scale P value is 0.003.

Education of workers about the risks, smoking cessation, checking workers for early signs of COPD, use of respirators, and dust control (23). A number of measures have been taken to reduce the incidence that workers in at-risk industries such as coal mining, construction and stonemasonry will develop COPD.

Conclusions

Pulmonary rehabilitation proposed where patients who feel a loss of control as their disease advances may find that pulmonary rehabilitation offers them the opportunity to regain control. These results showed that patients with COPD had benefited from a comprehensive PR program in an out-patient setting regardless of disease severity. Even patients with earlier...
stage of disease should be referred and encouraged to participate in a PR program. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity.

Conflict of Interest: This study has no conflict of interest to declare by any author.

Disclosure: None

Human and Animal Rights: No rights violated

References

1. Celli B, MacNee W, Agusti A, Anzueto A, Berg B, Buist A, et al. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. European Respiratory Journal. 2004;23(6):932-46.
2. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American journal of respiratory and critical care medicine. 2013;187(4):347-65.
3. Sagar AV, Divya C. World Journal of Pharmaceutical Research. 2014.
4. Halbert R, Natoli J, Gano A, Badamgarav E, Buist A, Mannino DM. Global burden of COPD: systematic review and meta-analysis. European Respiratory Journal. 2006;28(3):523-32.
5. Kennedy SM, Chambers R, Du W, Dimich-Ward H. Environmental and occupational exposures: do they affect chronic obstructive pulmonary disease differently in women and men? Proceedings of the American Thoracic Society. 2007;4(8):692-4.
6. Brode SK, Ling SC, Chapman KR. Alpha-1 antitrypsin deficiency: a commonly overlooked cause of lung disease. Canadian Medical Association Journal. 2012;184(12):1365-71.
7. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2012.
8. Romagnoli M, Fabbri L. [Chronic obstructive pulmonary disease: definition and classification of severity]. Annali dell’Istituto superiore di sanità. 2002;39(4):461-6.
9. Roche N, Huchon G. [Treatment of COPD]. La Revue du praticien. 2011;61(6):775-80.

10. Singh S, Singh V. Pulmonary rehabilitation in COPD. J Assoc Physicians India. 2012;60:48-52.
11. Ries AL, editor Pulmonary rehabilitation and COPD. Seminars in respiratory and critical care medicine. 2005.
12. Nici L, Donner C, Wouters E, Zuwallack R, Ambrosino N, Bourbeau J, et al. American thoracic society/European respiratory society statement on pulmonary rehabilitation. American journal of respiratory and critical care medicine. 2006;173(12):1390-413.
13. Sheetu S, Virendra S. Pulmonary Rehabilitation in COPD. Supplement to JAPI Februray. 2012;60.
14. Paz-Díaz H, De Oca MM, López JM, Celli BR. Pulmonary rehabilitation improves depression, anxiety, dyspnea and health status in patients with COPD. American Journal of Physical Medicine & Rehabilitation. 2007;86(1):30-6.
15. Lung NH, Institute B. Morbidity and Mortality: 2007 Chartbook on Cardiovascular, Lung and Blood Diseases. 2008.
16. Mackay AJ, Hurst JR. COPD exacerbations: causes, prevention, and treatment. Medical Clinics of North America. 2012;96(4):789-809.
17. Camm A, Bunce N. Cardiovascular disease. Kumar P, Clark M, 6th ed Kumar & Clark Clinical Medicine Edinburgh: ElsevierSaunders. 2005:725-872.
18. Rugbjerg M, Iepsen UW, Jørgensen KJ, Lange P. Effectiveness of pulmonary rehabilitation in COPD with mild symptoms: a systematic review with meta-analyses. International journal of chronic obstructive pulmonary disease. 2015;10:791.
19. Lan C-C, Chu W-H, Yang M-C, Lee C-H, Wu Y-K, Wu C-P. Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity. Respiratory care. 2013;58(9):1482-8.
20. Ergün P, Kaymaz D, Gınay E, Ergüden Y, Tuzay UV, Demir N, et al. Comprehensive out-patient pulmonary rehabilitation: treatment outcomes in early and late stages of chronic obstructive pulmonary disease. Annals of thoracic medicine. 2011;6(2):70.
21. Pitta F, Troosters T, Probst VS, Langer D, Decramer M, Gosselink R. Are patients with COPD more active after pulmonary rehabilitation? Chest Journal. 2008;134(2):273-80.
22. Katsura H, Kanemaru A, Yamada K, Motegi T, Wakabayashi R, Kida K. Long-term effectiveness of an inpatient pulmonary rehabilitation program for elderly COPD patients: Comparison between young-elderly and old-elderly groups. Respirology. 2004;9(2):230-6.
23. Pirozzi C, Scholand MB. Smoking cessation and environmental hygiene. Medical Clinics of North America. 2012;96(4):849.