The stable and the real rank of \mathcal{Z}-absorbing C^*-algebras

Mikael Rørdam

Abstract
Suppose that A is a C^*-algebra for which $A \cong A \otimes \mathcal{Z}$, where \mathcal{Z} is the Jiang–Su algebra: a unital, simple, stably finite, separable, nuclear, infinite dimensional C^*-algebra with the same Elliott invariant as the complex numbers. We show that:

(i) The Cuntz semigroup $W(A)$ of equivalence classes of positive elements in matrix algebras over A is almost unperforated\(^1\).

(ii) If A is exact, then A is purely infinite if and only if A is traceless.

(iii) If A is separable and nuclear, then $A \cong A \otimes O_\infty$ if and only if A is traceless.

(iv) If A is simple and unital, then the stable rank of A is one if and only if A is finite.

We also characterise when A is of real rank zero.

1 Introduction
Jiang and Su gave in their paper [12] a classification of simple inductive limits of direct sums of dimension drop C^*-algebras. (A dimension drop C^*-algebra is a certain sub-C^*-algebra of $M_n(C([0, 1]))$, a precise definition of which is given in the next section.) They prove that inside this class there exists a unital, simple, infinite dimensional C^*-algebra \mathcal{Z} whose Elliott invariant is isomorphic to the Elliott invariant of the complex numbers, that is,

\[(K_0(\mathcal{Z}), K_0(\mathcal{Z})^+, [1]) \cong (\mathbb{Z}, \mathbb{Z}^+, 1), \quad K_1(\mathcal{Z}) = 0, \quad T(\mathcal{Z}) = \{\tau\}, \]

\(^1\)Almost perforation is a natural extension of the notion of weak unperforation for simple ordered abelian (semi-)groups, see Section 3.
where τ is the unique tracial state on \mathcal{Z}. They proved that $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z} \cong \bigotimes_{n=1}^{\infty} \mathcal{Z}$, and that $A \otimes \mathcal{Z} \cong A$ if A is a simple, unital, infinite dimensional AF-algebra or if A is a unital Kirchberg algebra. Toms and Winter have in a paper currently under preparation extended the latter result by showing that $A \otimes \mathcal{Z} \cong A$ for all approximately divisible C^*-algebras. Toms and Winter note that upon combining results from [12] with [16, Theorem 8.2] one obtains that a separable C^*-algebra A is \mathcal{Z}-absorbing if and only if there is a unital embedding of \mathcal{Z} into the relative commutant $\mathcal{M}(A)_{\omega} \cap A'$, where $\mathcal{M}(A)_{\omega}$ is the ultrapower, associated with a free filter ω on \mathbb{N}, of the multiplier algebra, $\mathcal{M}(A)$, of A. This provides a partial answer to the question raised by Gong, Jiang, and Su in [9] if one can give an intrinsic description of which (separable, nuclear) C^*-algebras absorb \mathcal{Z}.

Gong, Jiang, and Su prove in [9] that $(K_0(A), K_0(A)^+) \cong (K_0(A \otimes \mathcal{Z}), K_0(A \otimes \mathcal{Z})^+)$ if and only if $K_0(A)$ is weakly unperforated as an ordered group, when A is a simple C^*-algebra; and hence that A and $A \otimes \mathcal{Z}$ have isomorphic Elliott invariant if A is simple with weakly unperforated K_0-group. This result indicates that $A \cong A \otimes \mathcal{Z}$ whenever A is “classifiable” in the sense of Elliott (see Elliott, [8], or [23] by the author).

The results quoted above show on the one hand that surprisingly many C^*-algebras, including for example the irrational rotation C^*-algebras, absorb the Jiang–Su algebra, but on the other hand that not all simple, unital, nuclear, separable C^*-algebras are \mathcal{Z}-absorbing. Villadsen’s example from [27] of a simple, unital AH-algebra whose K_0-group is not weakly unperforated cannot absorb \mathcal{Z}. The example by the author in [21] of a simple, unital, nuclear, separable C^*-algebra with a finite and an infinite projection is prime (i.e., is not the tensor product of two non type I C^*-algebras), and is hence not \mathcal{Z}-absorbing. Toms gave in [25] an example of a simple, unital ASH-algebra which is not \mathcal{Z}-absorbing, but which has weakly unperforated K_0-group. The latter two examples (by the author and by Toms) have the same Elliott invariant as, but are not isomorphic to, their \mathcal{Z}-absorbing counterparts; and so they serve as counterexamples to the classification conjecture of Elliott (as it is formulated in [23, Section 2.2]).

It appears plausible that the Elliott conjecture holds for all simple, unital, nuclear, separable \mathcal{Z}-absorbing C^*-algebras.

In the present paper we begin by showing that the Cuntz semigroup of equivalence classes of positive elements in a \mathcal{Z}-absorbing C^*-algebra is almost unperforated (a property that for simple ordered abelian (semi-)groups coincides with the weak unperforation property, see Section 3). We use this to show that the semigroup $V(A)$ of Murray–von Neumann equivalence classes of projections in a \mathcal{Z}-absorbing C^*-algebra A, and in some cases also $K_0(A)$, is almost (or weakly) unperforated. We show that the stable rank of A is one if A is a simple, finite, unital \mathcal{Z}-absorbing C^*-algebra, thus answering in the affirmative
2 Preliminary facts about the Jiang–Su algebra \mathcal{Z}

We establish a couple of results that more or less follow directly from Jiang and Su’s paper \cite{12} on their C^*-algebra \mathcal{Z}.

For each triple of natural numbers n, n_0, n_1, for which n_0 and n_1 divides n, the dimension drop C^*-algebra $I(n_0, n, n_1)$ is the sub-C^*-algebra of $C^*([0,1], M_n)$ consisting of all functions f such that $f(0) \in \varphi_0(M_{n_0})$ and $f(1) \in \varphi_1(M_{n_1})$, where $\varphi_j: M_{n_j} \to M_n$, $j = 0, 1$, are fixed unital *-homomorphisms. (The C^*-algebra $I(n_0, n, n_1)$ is—up to *-isomorphism— independent on the choice of the *-homomorphisms φ_j.) The dimension drop C^*-algebra $I(n_0, n, n_1)$ is said to be prime if n_0 and n_1 are relatively prime, or equivalently, if $I(n_0, n, n_1)$ has no projections other than the two trivial ones: 0 and 1, cf. \cite{12}.

The C^*-algebra $I(n, nm, m)$ can, and will in this paper, be realized as the sub-C^*-algebra of $C^*([0,1], M_n \otimes M_m)$ consisting of those functions f for which $f(0) \in M_n \otimes \mathbb{C}$ and $f(1) \in \mathbb{C} \otimes M_m$.

A unital *-homomorphism $\psi: I(n_0, n, n_1) \to \mathcal{Z}$ will here be said to be standard, if

$$\tau(\psi(f)) = \int_0^1 \text{tr}(f(t)) \, dm(t), \quad f \in I(n_0, n, n_1), \quad (2.1)$$

where τ is the unique trace on \mathcal{Z}, and where tr is the normalised trace on M_n.

The following theorem is essentially contained in Jiang and Su’s paper (\cite{12}).

\textbf{Theorem 2.1 (Jiang–Su)} Let n, n_0, n_1 be a triple of natural numbers where n_0 and n_1 divide n, and where n_0 and n_1 are relatively prime. As above, let τ denote the unique trace on \mathcal{Z}.

(i) For each faithful tracial state τ_0 on $I(n_0, n, n_1)$ there exists a unital embedding $\psi: I(n_0, n, n_1) \to \mathcal{Z}$ such that $\tau \circ \psi = \tau_0$. In particular, there is a standard unital embedding of $I(n_0, n, n_1)$ into \mathcal{Z}.

(ii) Two unital embeddings $\psi_1, \psi_2: I(n_0, n, n_1) \to \mathcal{Z}$ are approximately unitarily equivalent if and only if $\tau \circ \psi_1 = \tau \circ \psi_2$. In particular, ψ_1 and ψ_2 are approximately unitarily equivalent if they both are standard.

\textbf{Proof:} For brevity, denote the prime dimension drop C^*-algebra $I(n_0, n, n_1)$ by I.

Find an increasing sequence $B_1 \subseteq B_2 \subseteq B_3 \subseteq \cdots$ of sub-C^*-algebras of \mathcal{Z} such that each B_k is (isomorphic to) a prime dimension drop algebra of the form $I(n_0(k), n(k), n_1(k))$, and such that $\bigcup_{k=1}^{\infty} B_k$ is dense in \mathcal{Z}. Simplicity of \mathcal{Z} ensures that $n_0(k), n(k),$ and $n_1(k)$ all tend to infinity as k tends to infinity.

It is shown in \cite{12} Lemma 2.3 that $K_0(I)$ and $K_0(B_k)$ are infinite cyclic groups each generated by the class of the unit in the corresponding algebra, and $K_1(I)$ and $K_1(B_k)$ are both trivial. This entails that $KK(\psi_1) = KK(\psi_2)$ for any pair of unital *-homomorphisms $\psi_1, \psi_2: I \to B_k$.

In both parts of the proof we shall apply the uniqueness theorem, \cite{12} Corollary 5.6, in Jiang and Su’s paper. For each $x \in [0, 1]$ consider the extremal tracial state τ_x on a dimension drop C^*-algebra $I(m_0, m, m_1)$ given by $\tau_x(f) = \text{tr}(f(x))$ (where tr is the normalised trace on M_m). Each self-adjoint element f in a dimension drop C^*-algebra $I(m_0, m, m_1)$ gives rise to a function $\hat{f} \in C_\mathbb{R}([0, 1])$ defined by $\hat{f}(x) = \tau_x(f)$. If f is a self-adjoint element in the center of $I(m_0, m, m_1)$, then $\hat{f} = f$. Every *-homomorphism $\psi: I(m_0, m, m_1) \to I(m_0', m', m_1')$ between two dimension drop C^*-algebras induces a positive linear mapping $\psi_*: C_\mathbb{R}([0, 1]) \to C_\mathbb{R}([0, 1])$ given by $\psi_*(f) = \hat{\psi(f)}$ (when we identify $C_\mathbb{R}([0, 1])$ with the self-adjoint part of the center of $I(m_0, m, m_1)$). Let $h_{D,d} \in C_\mathbb{R}([0, 1])$, $d = 1, 2, \ldots, D$, be the test functions defined in \cite{12} (5.5) (and previously considered by Elliott).

(i). Let τ_0 be a faithful trace on $I = I(n_0, n, n_1)$. Let $F_1 \subseteq F_2 \subseteq \cdots$ be an increasing sequence of finite subsets of I with dense union. By a one-sided approximate intertwining argument (after Elliott, see eg. \cite{17} Theorem 1.10.14) it suffices to find a sequence $1 \leq m(1) < m(2) < m(3) < \cdots$ of integers, a sequence $\psi_j: I \to B_{m(j)}$ of unital *-homomorphisms, and unitaries $u_j \in B_{m(j)}$ such that

$$\|u_{j+1}^* \psi_j(f) u_{j+1} - \psi_{j+1}(f)\| \leq 2^{-j}, \quad |\tau(\psi_j(f)) - \tau_0(f)| \leq 1/j, \quad f \in F_j,$$

for all $j \in \mathbb{N}$. It will then follow that there exist a *-homomorphism $\psi: I \to \mathcal{Z}$ and unitaries $v_j \in \mathcal{Z}$ such that $\|v_j^* \psi(f)v_j - \psi(f)\|$ tends to zero as j tends to infinity for all $f \in I$. This will imply that $\tau \circ \psi = \tau_0$.

For each j choose a natural number D_j such that $\|f(s) - f(t)\| \leq 2^{-j}$ for all $f \in F_j$ and for all $s, t \in [0, 1]$ with $|s - t| \leq 6/D_j$. Let G_j be the finite set that contains F_j and the test functions $h_{D_j,d}$, $d = 1, \ldots, D_j$. Put

$$c_j = \frac{2}{3} \min \{\tau_0(h_{D_j,d-1} - h_{D_j,d}) \mid d = 2, 3, \ldots, D_j\} > 0.$$
By [12, Corollary 4.4] — if $m(j)$ are chosen large enough — there exists for each j a unital *-homomorphism $\psi_j : I \to B_{m(j)}$ such that $|\tau'(\psi_j(f)) - \tau_0(f)| < \min\{1/j, c_j/2, c_{j-1}/2\}$ for all tracial states τ' on $B_{m(j)}$ and for all $f \in G_j$. In particular, $|\tau(\psi_j(f)) - \tau_0(f)| < 1/j$ for $f \in F_j$, and

$$(\psi_j)_*(h_{D_j,d-1} - h_{D_j,d}) \geq c_j,$$

$$(\psi_{j+1})_*(h_{D_j,d-1} - h_{D_j,d}) \geq c_j,$$

$$\|(\psi_{j+1})_*(h_{D_j,d}) - (\psi_j)_*(h_{D_j,d})\|_\infty < c_j,$$

for $d = (1), 2, 3, \ldots, D_j$. It now follows from [12, Corollary 5.6] that there exists a unitary u_{j+1} in $B_{m(j+1)}$ such that $\|u_{j+1}^*\psi_j(f)u_{j+1} - \psi_{j+1}(f)\| \leq 2^{-j}$.

(ii). The “only if” part is trivial. Assume that $\tau \circ \psi_1 = \tau \circ \psi_2$. Take a finite subset F of I and let $\varepsilon > 0$. It is shown in [12] (and in [6]) that the dimension drop C^*-algebra $I = I(n_0, n, n_1)$ is semiprojective. We can therefore, for some large enough k_0, find unital *-homomorphisms $\psi_1^{(k)}, \psi_2^{(k)} : I \to B_k$ for each $k \geq k_0$ such that

$$\lim_{k \to \infty} \|\psi_j(f) - \psi_j^{(k)}(f)\| = 0, \quad f \in I, \ j = 1, 2. \quad (2.2)$$

We assert that

$$\lim_{k \to \infty} \|(\psi_j^{(k)})_*(h) - (\tau \circ \psi_j)(h)1\|_\infty = 0, \quad j = 1, 2, \quad h \in C_\mathbb{R}([0, 1]), \quad (2.3)$$

when we identify $C_\mathbb{R}([0, 1])$ with the self-adjoint portion of the center of $I = I(n_0, n, n_1)$. Indeed, because τ is the unique trace on \mathcal{Z}, the quantity

$$\sup_{\tau' \in T(B_\ell)} |\tau'(b) - \tau(b)|, \quad b \in B_\ell,$$

tends to zero as k tends to infinity (with $k \geq \ell$). Hence, if we let $\iota_{k,\ell}$ denote the inclusion mapping $B_\ell \to B_k$, then $\|(\iota_{k,\ell})_*(h) - \tau(h)1\|_\infty$ tends to zero as k tends to infinity ($k \geq \ell$). It follows from (2.2) that $\|(\iota_{k,\ell} \circ \psi_j^{(k)})(h) - (\psi_j^{(k)})_*(h)\|_\infty$ is small if ℓ is large (and $k \geq \ell$). The claim in (2.3) follows from these facts and the identity $$(\iota_{k,\ell} \circ \psi_j^{(k)})_* = (\iota_{k,\ell})_* \circ (\psi_j^{(k)})_*.$$ Choose an integer D such that $\|f(s) - f(t)\| < \varepsilon/9$ for all $f \in F$ and for all $s, t \in [0, 1]$ with $|s - t| \leq 6/D$. Each $\psi_j(h_{D,d-1} - h_{D,d})$ is a non-zero and positive element in \mathcal{Z}, and we can therefore find $c > 0$ such that $\|\psi_j(h_{D,d-1} - h_{D,d})\| \geq 2c$ for $d = 2, 3, \ldots, D$ and $j = 1, 2$. Use (2.2) and the assumption $\tau \circ \psi_1 = \tau \circ \psi_2$ to find $k \geq k_0$ such that
\[\| \psi_j(f) - \psi_j^{(k)}(f) \| < \varepsilon/3 \text{ and } \\
(\psi_j^{(k)})_*(h_{D,d-1} - h_{D,d}) \geq c, \quad \|(\psi_1^{(k)})_*(h_{D,d}) - (\psi_2^{(k)})_*(h_{D,d})\|_{\infty} < c, \]

for all \(f \in F \), for \(d = (1), 2, \ldots, D \), and for \(j = 1, 2 \). It then follows from [12, Corollary 5.6] that there is a unitary element \(u \) in \(B_k \) such that \(\|\psi_2^{(k)}(f) - u^*\psi_1^{(k)}(f)u\| \leq \varepsilon/3 \) for all \(f \in F \); whence \(\|\psi_2(f) - u^*\psi_1(f)u\| \leq \varepsilon \) for all \(f \in F \). This proves that \(\psi_1 \) and \(\psi_2 \) are approximately unitarily equivalent. \(\square \)

For any natural numbers \(n \) and \(m \) let \(E(n,m) \) be the \(C^* \)-algebra that consists of all functions \(f \) in \(C([0, 1], M_{n,\infty} \otimes M_{m,\infty}) \) for which \(f(0) \in M_{n,\infty} \otimes \mathbb{C} \) and \(f(1) \in \mathbb{C} \otimes M_{m,\infty} \).

Proposition 2.2 There is a unital embedding of \(E(n,m) \) into \(\mathcal{Z} \) for every pair of natural numbers \(n, m \) that are relatively prime.

Proof: For each \(k \) there is a unital embedding \(\sigma_k : M_{n,k} \otimes M_{m,k} \to M_{n,k+1} \otimes M_{m,k+1} \) which satisfies

\[\sigma_k(M_{n,k} \otimes \mathbb{C}) \subseteq M_{n,k+1} \otimes \mathbb{C}, \quad \sigma_k(\mathbb{C} \otimes M_{m,k}) \subseteq \mathbb{C} \otimes M_{m,k+1}. \]

Thus \(f \mapsto \sigma_k \circ f \) defines a \(*\)-homomorphism \(\rho_k : I(n^k, n^km^k, m^k) \to I(n^{k+1}, n^{k+1}m^{k+1}, m^{k+1}) \), and \(E(n,m) \) is the inductive limit of the sequence

\[I(n, nm, m) \xrightarrow{\rho_1} I(n^2, n^2m^2, m^2) \xrightarrow{\rho_2} I(n^3, n^3m^3, m^3) \xrightarrow{\rho_3} \cdots \to E(n, m). \]

Take standard unital embeddings \(\psi_k : I(n^k, n^km^k, m^k) \to \mathcal{Z} \) (cf. Theorem 2.1 (i)). Then \(\psi_k \) and \(\psi_{k+1} \circ \rho_k \) are both standard unital embedding of \(I(n^k, n^km^k, m^k) \) into \(\mathcal{Z} \), so they are approximately unitarily equivalent by Theorem 2.1 (ii). We obtain the desired embedding of \(E(n,m) \) into \(\mathcal{Z} \) from this fact combined with a one-sided approximate intertwining (after Elliott), see for example [17, Theorem 1.10.14]. \(\square \)

3 Almost unperforation

Consider an ordered abelian semigroup \((W, +, \leq) \). An element \(x \in W \) is called **positive** if \(y + x \geq y \) for all \(y \in W \), and \(W \) is said to be positive if all elements in \(W \) are positive. If \(W \) has a zero-element 0, then \(W \) is positive if and only if \(0 \leq x \) for all \(x \in W \). An abelian semigroup equipped with the **algebraic order:** \(x \leq y \) iff \(y = x + z \) for some \(z \in W \), is positive.
Definition 3.1 A positive ordered abelian semigroup W is said to be almost unperforated if for all $x,y \in W$ and all $n,m \in \mathbb{N}$, with $nx \leq my$ and $n > m$, one has $x \leq y$.

Let W be a positive ordered abelian semigroup. Write $x \propto y$ if x,y are elements in W and $x \leq ny$ for some natural number n (i.e., x belongs to the ideal in W generated by the element y). The element y is said to be an order unit for W if $x \propto y$ for all $x \in W$.

For each positive element x in W let $S(W,x)$ be the set of order preserving additive maps $f: W \to [0,\infty]$ such that $f(x) = 1$. Although we shall not use this fact, we mention that $S(W,x)$ is non-empty if and only if for all natural numbers n and m, with $nx \leq mx$, one has $n \leq m$. This follows from \cite{10} Corollary 2.7 and the following observation that also will be used in the proof of the proposition below. For any element $x \in W$ the set $W_0 = \{z \in W \mid z \propto x\}$ is an order ideal in W, and x is an order unit for W_0. Moreover, any state f in $S(W_0,x)$ extends to a state \overline{f} in $S(W,x)$ by setting $\overline{f}(z) = \infty$ for $z \in W \setminus W_0$.

Proposition 3.2 Let W be a positive ordered abelian semigroup. Then W is almost unperforated if and only if the following condition holds: For all elements x,y in W, with $x \propto y$ and $f(x) < f(y)$ for all $f \in S(W,y)$, one has $x \leq y$.

Proof: Following the argument above we can—if necessary by passing to an order ideal of W—assume that y is an order unit for W. The “only if” part now follows from \cite{22} Proposition 3.1], which again uses Goodearl and Handelman’s extension result \cite{10} Lemma 4.1].

To prove the “if” part, take elements $x,y \in W$ and $n \in \mathbb{N}$ such that $(n+1)x \leq ny$. Then $x \propto y$ because $x \leq (n+1)x \leq ny$; and $f(x) \leq n(n+1)^{-1} < 1 = f(y)$ for all $f \in S(W,y)$, whence $x \leq y$. \hfill \Box

Definition 3.3 An ordered abelian group (G,G°) is said to be almost unperforated if for all $g \in G$ and for all $n \in \mathbb{N}$, with $ng,(n+1)g \in G^\circ$, one has $g \in G^\circ$.

Lemma 3.4 Let (G,G°) be an ordered abelian group. Then G is almost unperforated if and only if the positive semigroup G° is almost unperforated.

Proof: Suppose that G is almost unperforated and that $x,y \in G^\circ$ satisfy $(n+1)x \leq ny$ for some natural number n. Then $n(y-x) \geq x \geq 0$ and $(n+1)(y-x) \geq y \geq 0$, whence $y-x \geq 0$ and $y \geq x$. Conversely, suppose that G° is almost unperforated and that $ng,(n+1)g \in G^\circ$ for some $n \in \mathbb{N}$. Since $(n+1)ng = n(n+1)g$, we get $ng \leq (n+1)g$, which implies that $g = (n+1)g - ng$ belongs to G°. \hfill \Box

A simple ordered abelian group is almost unperforated if and only if it is weakly unperforated. Indeed, if $n \in \mathbb{N}$ and $g \in G$ are such that $ng \in G^\circ \setminus \{0\}$, then, by simplicity of
there is a natural number \(k \) such that \(kn g \geq g \). Thus \((kn - 1)g \) and \(kn g \) are positive, so \(g \) is positive if \(G \) is almost unperforated (cf. Lemma 3.2). Conversely, if \(G \) is weakly unperforated and \(ng, (n + 1)g \in G^+ \), then \(g \in G^+ \) if \(ng \neq 0 \), and \(g = (n + 1)g \in G^+ \) if \(ng = 0 \).

Elliott considered in [7] a notion of what he called weak unperforation of (non-simple) ordered abelian groups with torsion. (We have refrained from using the term “weak unperforation” in Definition 3.3 to avoid conflict with Elliott’s definition.) A torsion free group is weakly unperforated in the sense of Elliott if and only if it is unperforated: \((2, -2) \in G^+ \) but \((1, -1) \notin G^+ \), so it is not weakly unperforated in the sense of Elliott. However, the group \((G, G^+)\) is almost unperforated, as the reader can verify.

In the converse direction, any weakly unperforated group is almost unperforated. Indeed, if \(G \) is weakly unperforated and \(g \in G \) and \(n \in \mathbb{N} \) are such that \(ng, (n + 1)g \) are positive, then \(g \) is positive modulo torsion, i.e., \(g + t \) is positive for some \(t \in G_{\text{tor}} \). Let \(k \in \mathbb{N} \) be the order of \(t \), find natural numbers \(\ell_1, \ell_2 \) such that \(N = \ell_1 n + \ell_2(n + 1) \) is congruent with -1 modulo \(k \). Then \(Ng = Ng + (N + 1)t \) is positive, whence \(-t \leq N(g + t) \), which by the hypothesis of weak unperforation implies that \(g = (g + t) + (-t) \) is positive.

4 Weak and almost unperforation of \(\mathcal{Z} \)-absorbing \(C^* \)-algebras

Cuntz associates in [5] to each \(C^* \)-algebra \(A \) a positive ordered abelian semigroup \(W(A) \) as follows. Let \(M_*(A)^+ \) denote the (disjoint) union \(\bigcup_{n=1}^{\infty} M_n(A)^+ \). For \(a \in M_n(A)^+ \) and \(b \in M_m(A)^+ \) set \(a \oplus b = \text{diag}(a, b) \in M_{n+m}(A)^+ \), and write \(a \preceq b \) if there is a sequence \(\{x_k\} \) in \(M_{m,n}(A) \) such that \(x_k^* b x_k \to a \). Write \(a \sim b \) if \(a \preceq b \) and \(b \preceq a \). Put \(W(A) = M_*(A)^+/\sim \), and let \(\langle a \rangle \in W(A) \) be the equivalence class containing \(a \) (so that \(W(A) = \{ \langle a \rangle \mid a \in M_*(A)^+ \} \)). Then \(W(A) \) is a positive ordered abelian semigroup when equipped with the relations:

\[
\langle a \rangle + \langle b \rangle = \langle a \oplus b \rangle, \quad \langle a \rangle \leq \langle b \rangle \iff a \preceq b, \quad a, b \in M_*(A)^+.
\]

Following the standard convention, for each positive element \(a \in A \) and for each \(\varepsilon \geq 0 \), write \((a - \varepsilon)_+ \) for the positive element in \(A \) given by \(h_\varepsilon(a) \), where \(h_\varepsilon(t) = \max\{t - \varepsilon, 0\} \). We recall below some facts about the comparison of two positive elements \(a, b \) in a \(C^* \)-algebra.
A (see [5] Proposition 1.1 and [22] Section 2):

(a) \(a \preceq b \) if and only if \((a - \varepsilon)_+ \preceq b \) for all \(\varepsilon > 0 \).

(b) \(a \preceq b \) if and only if for each \(\varepsilon > 0 \) there exists \(x \in A \) such that \(x^* bx = (a - \varepsilon)_+ \).

(c) If \(\|a - b\| < \varepsilon \), then \((a - \varepsilon)_+ \preceq b \).

(d) \(((a - \varepsilon_1)_+ - \varepsilon_2)_+ = (a - (\varepsilon_1 + \varepsilon_2))_+ \).

(e) \(a + b \preceq a \oplus b \); and if \(a \perp b \), then \(a + b \sim a \oplus b \).

If \(a \) belongs to the closed two-sided ideal, \(\overline{AbA} \), generated by \(b \), then \((a - \varepsilon)_+ \) belongs to the algebraic two-sided ideal, \(AbA \), generated by \(b \) for all \(\varepsilon > 0 \), in which case \((a - \varepsilon)_+ = \sum_{i=1}^n x_i^* bx_i \) for some \(n \in \mathbb{N} \) and some \(x_i \in A \). This shows that

\[
a \in \overline{AbA} \iff \forall \varepsilon > 0 \exists n \in \mathbb{N} : \langle (a - \varepsilon)_+ \rangle \leq n \langle b \rangle.
\]

(4.1)

Lemma 4.1 Let \(A \) and \(B \) be two \(C^* \)-algebras, let \(a, a' \in A \) and \(b, b' \in B \) be positive elements, and let \(n,m \) be natural numbers.

(i) If \(n \langle a \rangle \leq m \langle a' \rangle \) in \(W(A) \), then \(n \langle a \otimes b \rangle \leq m \langle a' \otimes b' \rangle \) in \(W(A \otimes B) \).

(ii) If \(n \langle b \rangle \leq m \langle b' \rangle \) in \(W(B) \), then \(n \langle a \otimes b \rangle \leq m \langle a \otimes b' \rangle \) in \(W(A \otimes B) \).

Proof: (i). Assume that \(n \langle a \rangle \leq m \langle a' \rangle \) in \(W(A) \). Then there is a sequence \(x_k = \{x_k(i,j)\} \) in \(M_{m,n}(A) \) such that \(x_k^* (a' \otimes 1_m) x_k \to a \otimes 1_n \) (or, equivalently, such that \(\sum_{i=1}^n x_{k}(l,i)^* a' x_k(l,j) \to \delta_{ij} a \) for all \(i,j = 1, \ldots, n \)). Let \(\{e_k\} \) be a sequence of positive contractions in \(B \) such that \(e_k b e_k \to b \). Put \(y_k(i,j) = x_k(i,j) \otimes e_k \in A \otimes B \), and put \(y_k = \{y_k(i,j)\} \in M_{m,n}(A \otimes B) \). Then \(y_k^* ((a' \otimes b) \otimes 1_m) y_k \to (a \otimes b) \otimes 1_n \) (or, equivalently, \(\sum_{l=1}^m y_k(l,i)^* (a' \otimes b) y_k(l,j) \to \delta_{ij} (a \otimes b) \) for all \(i,j = 1, \ldots, n \)). This shows that \(n \langle a \otimes b \rangle \leq m \langle a' \otimes b' \rangle \).

(ii) follows from (i) by symmetry. \(\square\)

Lemma 4.2 For all natural numbers \(n \) there exists a positive element \(e_n \) in \(\mathcal{Z} \) such that \(n \langle e_n \rangle \leq \langle 1_\mathcal{Z} \rangle \leq (n + 1) \langle e_n \rangle \).

Proof: By Theorem 2.1 (a fact which follows easily from from Jiang and Su’s paper [12]) the \(C^* \)-algebra \(I = I(n, n(n + 1), n + 1) \) admits a unital embedding into \(\mathcal{Z} \), so it suffices to find a positive element \(e_n \) in \(I \) such that \(n \langle e_n \rangle \leq \langle 1_I \rangle \leq (n + 1) \langle e_n \rangle \) in \(W(I) \).

The idea of the proof is simple (but verifying the details requires some effort): There are positive functions \(f_1, f_2, \ldots, f_{n+1} \) in \(I \) such that

9
(i) \[f_i(0) = \begin{cases} \begin{array}{ll} e_{ii}^{(n)} \otimes 1, & i = 1, \ldots, n, \\ 0, & i = n + 1, \end{array} \end{cases} \quad f_i(t) = 1 \otimes e_{ii}^{(n+1)}, \quad t \in [1/2, 1], \]

(where \(\{e_{ij}^{(m)}\}_{i,j=1}^m \) denotes the canonical set of matrix units for \(M_m(\mathbb{C}) \)),

(ii) \(f_1, f_2, \ldots, f_n \) are pairwise orthogonal,

(iii) \(\sum_{i=1}^{n+1} f_i = 1 \), and

(iv) \(f_{n+1} \preceq f_1 \sim f_2 \sim \cdots \sim f_n \).

It will follow from (iii) and (e) that \(\sum_{i=1}^{n+1} \langle f_i \rangle \geq \langle 1 \rangle \); and (ii) and (e) imply that \(\sum_{i=1}^{n} \langle f_i \rangle \leq \langle 1 \rangle \). It therefore follows from (iv) that \(e_n = f_1 \) has the desired property.

We proceed to construct the functions \(f_1, \ldots, f_{n+1} \). Put

\[W = \sum_{i,j=1}^{n} e_{ij}^{(n)} \otimes e_{ji}^{(n+1)} + 1 \otimes e_{n+1,n+1}^{(n+1)}. \tag{4.2} \]

Then \(W \) is a self-adjoint unitary element in \(M_n \otimes M_{n+1} \), and

\[W(1 \otimes e_{ii}^{(n+1)})W^* = e_{ii}^{(n)} \otimes (1 - e_{n+1,n+1}^{(n+1)}) \leq e_{ii}^{(n)} \otimes 1, \tag{4.3} \]

for \(1 \leq i \leq n \). Choose a continuous path of unitaries \(t \mapsto V_t \) in \(M_n \otimes M_{n+1}, t \in [0, 1] \), such that \(V_0 = 1 \) and \(V_t = W \) for \(t \in [1/2, 1] \). Put \(V_t = V_t W \). Choose a continuous path \(t \mapsto \gamma_t \in [0, 1] \) such that \(\gamma_0 = 0 \) and \(\gamma_t = 1 \) for \(t \in [1/2, 1] \). Define \(f_i : [0, 1] \to M_n \otimes M_{n+1} \) by

\[f_i(t) = \gamma_t W_t(1 \otimes e_{ii}^{(n+1)})W_t^* + (1 - \gamma_t) V_t(e_{ii}^{(n)} \otimes 1)V_t^*, \quad i = 1, \ldots, n, \]

\[f_{n+1}(t) = \gamma_t W_t(1 \otimes e_{n+1,n+1}^{(n+1)})W_t^*, \]

where \(t \in [0, 1] \). It is easy to check that (i) and (iii) above hold. From (i) we see that all \(f_i \) belong to \(I \). Use (4.3) to see that \(f_i(t) \leq V_t(e_{ii}^{(n)} \otimes 1)V_t^* \) for all \(t \) and all \(i = 1, \ldots, n \), and use again this to see that (ii) holds.

We proceed to show that (iv) holds. Let \(S \in M_n \) and \(T \in M_{n+1} \) be the permutation unitaries for which \(S^{i-1} e_{11}^{(n)} S^{-(i-1)} = e_{ii}^{(n)} \) and \(T^{i-1} e_{11}^{(n+1)} T^{-(i-1)} = e_{ii}^{(n+1)} \) for \(i = 1, \ldots, n, (n+1) \). Put

\[R_i(t) = V_t(S^{i-1} \otimes 1)V_t^*, \quad t \in [0, 1/2], \quad i = 1, \ldots, n. \]
Brief calculations show that \(R_t(0) = S_t^{-1} \otimes 1 \in M_n \otimes \mathbb{C} \), \(f_i(t) = R_t(i)f_i(t)R_t(t)^* \) for \(t \in [0, 1/2] \), and

\[
R_t(1/2)(1 \otimes e_{11}^{(n+1)}) R_t(1/2)^* \quad = \quad R_t(1/2)f_i(1/2) R_t(1/2)^* = f_i(1/2) = 1 \otimes e_{ii}^{(n+1)}
\]

\[
= (1 \otimes T(i-1))(1 \otimes e_{11}^{(n+1)})(1 \otimes T^{-i-1}),
\]

for \(i = 1, \ldots, n \). The unitary group of the relative commutant \(M_n \otimes M_{n+1} \cap \{ 1 \otimes e_{11}^{(n+1)} \}' \) is connected, so we can extend the paths \(t \mapsto R_t(t), t \in [0, 1/2] \), to continuous path \(t \mapsto R_t(t), t \in [0, 1] \), such that \(R_t(1) = 1 \otimes T^{-i-1} \in \mathbb{C} \otimes M_{n+1} \) and \(R_t(t)f_i(t)R_t(t)^* = 1 \otimes e_{ii}^{(n+1)} = f_i(t) \) for \(t \in [1/2, 1] \) and for \(i = 2, \ldots, n \). Thus \(R_t \) is a unitary element in \(I \) and \(R_t f_1 R_t^* = f_i \) for \(i = 2, \ldots, n \). This proves that \(f_1 \sim f_2 \sim \cdots \sim f_n \).

We must also show that \(f_{n+1} \not\sim f_1 \). Let \(g_i \in I \) be given by \(g_i(t) = \gamma_i W_t(1 \otimes e_{ii}^{(n+1)}) W_t^* \) for \(i = 1, \ldots, n+1 \) (so that \(f_{n+1} = g_{n+1} \)). A calculation then shows that \(R_t g_i R_t^* = g_i \) so that \(g_1, \ldots, g_n \) are unitarily equivalent. By symmetry, \(f_{n+1} = g_{n+1} \) is unitarily equivalent to \(g_1 \), and as \(g_1 \leq f_1 \), we conclude that \(f_{n+1} \not\sim f_1 \).

Lemma 4.3 Let \(A \) be any \(C^* \)-algebra, and let \(a, a' \) be positive elements in \(A \) for which \((n+1)a \leq n(a') \) in \(W(A) \) for some natural number \(n \). Then \(a \otimes 1_Z \leq a' \otimes 1_Z \) in \(W(A \otimes Z) \).

Proof: Take \(e_n \) in \(Z \) as in Lemma 4.2. Then, by Lemma 4.1

\[
(a \otimes 1_Z) \leq (n+1)(a \otimes e_n) \leq n(a' \otimes e_n) \leq (a' \otimes 1_Z)
\]

in \(W(A \otimes Z) \).

Lemma 4.4 Let \(A \) be a \(Z \)-absorbing \(C^* \)-algebra. Then there is a sequence of isomorphisms \(\sigma_n : A \otimes Z \to A \) such that

\[
\lim_{n \to \infty} \| \sigma_n(a \otimes 1) - a \| = 0, \quad a \in A.
\]

Proof: It is shown in [12] that \(Z \) is isomorphic to \(\bigotimes_{k=1}^\infty Z \). We may therefore identify \(A \) with \(A \otimes (\bigotimes_{k=1}^\infty Z) \). With this identification we define \(\sigma_n : A \otimes (\bigotimes_{k=1}^\infty Z) \otimes Z \to A \otimes (\bigotimes_{k=1}^\infty Z) \) to be the isomorphism that fixes \(A \) and the first \(n \) copies of \(Z \), which sends the last copy of \(Z \) to the copy of \(Z \) at position “\(n+1 \)”, and which shifts the remaining copies of \(Z \) one place to the right.

Theorem 4.5 Let \(A \) be a \(Z \)-absorbing \(C^* \)-algebra. Then \(W(A) \) is almost unperforated.
Proof: Let a, a' be positive elements in $M_\infty(A)$ for which $(n+1)a \leq n(a')$. Upon replacing A by a matrix algebra over A (which still is \mathcal{Z}-absorbing) we may assume that a and a' both belong to A. Let $\varepsilon > 0$. It follows from Lemma 4.3 that $a \otimes 1 \preceq a' \otimes 1$ in $A \otimes \mathcal{Z}$, so there exists $x \in A \otimes \mathcal{Z}$ with $\|x^*(a' \otimes 1)x - a \otimes 1\| < \varepsilon$. Let $\sigma_k: A \otimes \mathcal{Z} \to A$ be as in Lemma 4.4 and put $x_k = \sigma_k(x)$. Then $\|x_k^*\sigma_k(a' \otimes 1)x_k - \sigma_k(a \otimes 1)\| < \varepsilon$, whence $\|x_k^*a'x_k - a\| < \varepsilon$ if k is chosen large enough. This shows that $\langle a \rangle \leq \langle a' \rangle$ in $W(A)$. □

A C^*-algebra A where $W(A)$ is almost unperforated has nice comparability properties, as we shall proceed to illustrate in the remaining part of this section, and in the later sections of this paper.

We recall a few facts about dimension function, introduced by Cuntz in [5]. A dimension function on a C^*-algebra A is an additive order preserving function $d: W(A) \to [0, \infty]$. (We can also regard d as a function $M_\infty(A)^+ \to [0, \infty]$ that respects the rules $d(a \oplus b) = d(a) + d(b)$ and $a \preceq b \Rightarrow d(a) \leq d(b)$ for all $a, b \in M_\infty(A)^+$.) A dimension function d is said to be lower semi-continuous if $\overline{d} = \overline{d}$, where

$$\overline{d}(a) \overset{\text{def}}{=} \lim_{\varepsilon \to 0^+} d((a-\varepsilon)_+), \quad a \in M_\infty(A)^+. \tag{4.4}$$

Moreover, \overline{d} is a lower semi-continuous dimension function on A for each dimension function d, cf. [22, Proposition 4.1]. Note that $d((a-\varepsilon)_+) \leq \overline{d}(a) \leq d(a)$ for every dimension function d and for every $\varepsilon > 0$, and that $\overline{d}(p) = d(p)$ for every projection p.

By an extended trace on a C^*-algebra A we shall mean a function $\tau: A^+ \to [0, \infty]$ which is additive, homogeneous, and has the trace property: $\tau(x^*x) = \tau(xx^*)$ for all $x \in A$. If τ is an extended trace on A, then

$$d_\tau(a) \overset{\text{def}}{=} \lim_{\varepsilon \to 0^+} \tau(f_\varepsilon(a)) \left(= \lim_{n \to \infty} \tau(a^{1/n})\right), \quad a \in M_\infty(A)^+, \tag{4.5}$$

where $f_\varepsilon: \mathbb{R}^+ \to \mathbb{R}^+$ is given by $f_\varepsilon(t) = \min\{\varepsilon^{-1}t, 1\}$, defines a lower semi-continuous dimension function on A. If A is exact, then every lower semi-continuous dimension function on A is of the form d_τ for some extended trace τ on A. (This follows from Blackadar and Handelman, [2, Theorem II.2.2], who show that one can lift d to a quasitrace, and from Haagerup, [11], and Kirchberg, [14], who show that quasitraces are traces on exact C^*-algebras).

With the characterization of lower semi-continuous dimension functions above and with Theorem 4.5 at hand one can apply the proof of [22, Theorem 5.2] to obtain:
Corollary 4.6 Let A be a C^*-algebra for which $W(A)$ is almost unperforated (in particular, A could be a \mathbb{Z}-absorbing C^*-algebra), and suppose in addition that A is exact, simple and unital. Let a, b be positive elements in A. If $d_\tau(a) < d_\tau(b)$ for every tracial state τ on A, then $a \preceq b$.

We also have the following “non-simple” version of the result above.

Corollary 4.7 Let A be a C^*-algebra for which $W(A)$ is almost unperforated (in particular, A could be a \mathbb{Z}-absorbing C^*-algebra). Let a, b be positive elements in A. Suppose that a belongs to AbA and that $d(a) < d(b)$ for every dimension function d on A with $d(b) = 1$. Then $a \preceq b$.

Proof: It follows from (4.1) that $\langle (a - \varepsilon)_+ \rangle \propto \langle b \rangle$ in $W(A)$ for each $\varepsilon > 0$; and by assumption, $d(\langle (a - \varepsilon)_+ \rangle) \leq d(\langle a \rangle) < d(\langle b \rangle)$ for every $d \in S(W(A), \langle b \rangle)$. Thus $\langle (a - \varepsilon)_+ \rangle \leq \langle b \rangle$ by Proposition 3.2 and this proves the corollary as $\varepsilon > 0$ was arbitrary. □

Gong, Jiang and Su proved in [9] that the K_0-group of a simple unital \mathbb{Z}-absorbing C^*-algebra is weakly unperforated. At the level of semigroups, we can extend this result to the non-simple case, as explained below.

Let $V(A)$ denote the semigroup of Murray-von Neumann equivalence classes of projections in matrix algebras over A equipped with the algebraic order: $x \leq y$ if there exists z such that $y = x + z$. The relation “\preceq”, defined in the beginning of this section, agrees with the usual comparison relation when applied to projections p and q, i.e., $p \preceq q$ if and only if p is equivalent to a subprojection of q. The corollary below is thus an immediate consequence of Theorem 4.5.

Corollary 4.8 The semigroup $V(A)$ is almost unperforated for every \mathbb{Z}-absorbing C^*-algebra A.

It follows from Lemma 3.2 that if A is a stably finite C^*-algebra with an approximate unit consisting of projections, then $K_0(A)$ is almost unperforated if and only if $K_0(A)^+$ is almost unperforated. It seems plausible that $K_0(A)^+$ is almost unperforated whenever $V(A)$ is almost unperforated; and this is trivially the case when $V(A)$ has the cancellation property. This implication also holds when $V(A)$ is simple. Indeed, let $\gamma: V(A) \to K_0(A)$ be the Grothendieck map, so that $K_0(A)^+ = \gamma(V(A))$. Take $x, y \in V(A)$ and $n \in \mathbb{N}$ such that $(n + 1)\gamma(x) \leq n\gamma(y)$. Then $(n + 1)x + u \leq ny + u$ for some $u \in V(A)$. Repeated use of this inequality yields $N(n + 1)x + u \leq Nny + u$ for all natural numbers N. That $V(A)$ is simple means that every non-zero element, and hence y, is an order unit for $V(A)$, so there is a
natural number \(k \) with \(u \leq ky \). Now, \(N(n+1)x \leq N(n+1)x+u \leq Nny+u \leq (Nn+k)y \), which for \(N \geq k+1 \) yields \(x \leq y \) and hence \(\gamma(x) \leq \gamma(y) \).

We thus have the following result, that slightly extends [9, Theorem 1].

Corollary 4.9 Let \(A \) be a stably finite \(\mathcal{Z} \)-absorbing \(C^* \)-algebra with an approximate unit consisting of projections. If \(V(A) \) has the cancellation property or if \(V(A) \) is simple, then \(K_0(A) \) is almost unperforated.

Corollary 4.10 Let \(A \) be an exact \(C^* \)-algebra for which \(W(A) \) is almost unperforated (in particular, \(A \) could be an exact \(\mathcal{Z} \)-absorbing \(C^* \)-algebra). Let \(p \) and \(q \) be projections in \(A \) such that \(p \) belongs to \(\overline{AqA} \). Suppose that \(\tau(p) < \tau(q) \) for every extended trace \(\tau \) on \(A \) with \(\tau(q) = 1 \). Then \(p \preceq q \).

Proof: We show that \(d(p) < d(q) \) for every dimension function \(d \) on \(A \) with \(d(q) = 1 \), and the result will then follow from Corollary 4.7. Let \(\overline{d} \) be the lower semi-continuous dimension function associated with \(d \) in (4.4). As remarked above, by Haagerup’s theorem on quasitraces, \(\overline{d} = d_\tau \) for some extended trace \(\tau \), cf. (4.5). Because \(d, \overline{d} \) and \(\tau \) agree on projections, we have \(\tau(q) = d(q) = 1 \) and \(d(p) = \tau(p) < \tau(q) = d(q) \) as desired. \(\square \)

5 Applications to purely infinite \(C^* \)-algebras

In this short section we derive two results that say when a \(\mathcal{Z} \)-absorbing \(C^* \)-algebra is purely infinite and \(\mathcal{O}_\infty \)-absorbing. Similar results were obtained in [16] for approximately divisible \(C^* \)-algebras. An exact \(C^* \)-algebra is said to be *traceless* when it admits no extended trace (see Section 3) that takes values other than 0 and \(\infty \).

Corollary 5.1 Let \(A \) be an exact \(C^* \)-algebra for which \(W(A) \) is almost unperforated (in particular, \(A \) could be an exact \(\mathcal{Z} \)-absorbing \(C^* \)-algebra). Then \(A \) is purely infinite if and only if \(A \) is traceless.

Proof: Note first that \(A \), being traceless, can have no abelian quotients. Each lower semi-continuous dimension function on \(A \) arises from an extended trace on \(A \) (as remarked above Corollary 4.6), and must therefore take values in \(\{0, \infty \} \), again because \(A \) is traceless.

Take positive elements \(a, b \) in \(A \) such that \(a \) belongs to \(\overline{AbA} \). We must show that \(a \preceq b \) (cf. [15]), and it suffices to show that \((a - \varepsilon)_+ \preceq b \) for all \(\varepsilon > 0 \). Take \(\varepsilon > 0 \). Let \(d \) be a dimension function on \(A \) such that \(d(b) = 1 \) (if such a dimension function exists), and let \(\overline{d} \) be its associated lower semi-continuous dimension function, cf. (4.4). Then \(\overline{d}(b) = 0 \) (as
remarked above). Use \((4.1)\) to see that
\(\bar{d}((a - \varepsilon/2)_+) = 0\), and hence that
\(d((a - \varepsilon)_+) = 0\). Thus \((a - \varepsilon)_+ \not\succeq b \) by Corollary \(4.7\) □

Theorem 5.2 Let \(A \) be a nuclear separable \(\mathcal{Z} \)-absorbing \(C^* \)-algebra. Then \(A \) absorbs \(\mathcal{O}_\infty \) (i.e., \(A \cong A \otimes \mathcal{O}_\infty \)) if and only if \(A \) is traceless.

Proof: If \(A \) absorbs \(\mathcal{O}_\infty \), then \(A \) is traceless (see [16, Theorem 9.1]). Suppose conversely that \(A \) is traceless. We then know from Corollary \(5.1\) that \(A \) is purely infinite. It follows from [16, Theorem 9.1] (in the unital or the stable case) and from [13, Corollary 8.1] (in the general case) that \(A \) absorbs \(\mathcal{O}_\infty \) if \(A \) is strongly purely infinite, cf. [16, Definition 5.1].

We need therefore only show that any \(\mathcal{Z} \)-absorbing purely infinite \(C^* \)-algebra is strongly purely infinite. Let
\[
\begin{pmatrix} a & x \\ x^* & b \end{pmatrix} \in M_2(A)^+,
\]
and let \(\varepsilon > 0 \) be given. Take pairwise orthogonal non-zero positive contractions \(h_1, h_2 \) in the simple \(C^* \)-algebra \(\mathcal{Z} \). Then
\[
a \otimes 1 \in (A \otimes \mathcal{Z})(a \otimes h_1)(A \otimes \mathcal{Z}), \quad b \otimes 1 \in (A \otimes \mathcal{Z})(b \otimes h_2)(A \otimes \mathcal{Z}).
\]

Since \(A \otimes \mathcal{Z} \cong A \) is purely infinite there are elements \(c_1, c_2 \) in \(A \otimes \mathcal{Z} \) such that
\[
\| c_1^*(a \otimes h_1)c_1 - a \otimes 1 \| < \varepsilon, \quad \| c_2^*(b \otimes h_2)c_2 - b \otimes 1 \| < \varepsilon.
\]

Let \(\sigma_n : A \otimes \mathcal{Z} \to A \) be as in Lemma \(4.4\) and put \(d_{1,n} = \sigma_n((1 \otimes h_1^{1/2})c_1) \) and \(d_{2,n} = \sigma_n((1 \otimes h_2^{1/2})c_2) \). Then
\[
\| d_{1,n}^* \sigma_n(a \otimes 1)d_{1,n} - \sigma_n(a \otimes 1) \| < \varepsilon, \quad \| d_{2,n}^* \sigma_n(b \otimes 1)d_{2,n} - \sigma_n(b \otimes 1) \| < \varepsilon,
\]
\[
d_{2,n}^* \sigma_n(x \otimes 1)d_{1,n} = 0.
\]

The norm of \(d_{j,n} \) does not dependent on \(n \). Thus, if we take \(d_1 = d_{1,n} \) and \(d_2 = d_{2,n} \) for some large enough \(n \), then we obtain the desired estimates: \(\| d_1^* ad_1 - a \| < \varepsilon, \| d_2^* bd_2 - b \| < \varepsilon \), and \(\| d_2^* xd_1 \| < \varepsilon \). □

6 The stable rank of \(\mathcal{Z} \)-absorbing \(C^* \)-algebras

We shall in this section show that simple, finite \(\mathcal{Z} \)-absorbing \(C^* \)-algebras have stable rank one.
Definition 6.1 A unital C^*-algebra A is said to be *strongly K_1-surjective* if the canonical mapping $\mathcal{U}(A_0 + \mathbb{C}1_A) \to K_1(A)$ is surjective for every full hereditary sub-C^*-algebra A_0 of A. If the canonical mapping $\mathcal{U}(A_0 + \mathbb{C}1_A)/\mathcal{U}_0(A_0 + \mathbb{C}1_A) \to K_1(A)$ is injective for every full hereditary sub-C^*-algebra A_0, then we say that A is *strongly K_1-injective*.

Note that we do not assume simplicity in the two next lemmas.

Lemma 6.2 Every full hereditary sub-C^*-algebra in a unital approximately divisible C^*-algebra contains a full projection.

Proof: Let B be a full hereditary sub-C^*-algebra of a unital approximately divisible C^*-algebra A. Take a full positive element b in B. Then $n(b) \geq \langle 1_A \rangle$ in $W(A)$ for some natural number n (by (4.1)). Since A is approximately divisible, there is a unital embedding of $M_{n+1} \oplus M_{n+2}$ into A, and, as shown in [26], A is \mathcal{Z}-absorbing. (We shall only apply this lemma in the case where A is the tensor product of a unital C^*-algebra with a UHF-algebra, and in this case we can conclude that A is \mathcal{Z}-absorbing by the result in [12] that any non-elementary simple AF-algebra, and in particular, every UHF-algebra, is \mathcal{Z}-absorbing.)

Let e and f be one-dimensional projections in M_{n+1} and M_{n+2}, respectively, and let $p \in A$ be the image of (e, f) under the inclusion mapping $M_{n+1} \oplus M_{n+2} \to A$. Then p is a full projection that satisfies $(n + 1)\langle p \rangle \leq \langle 1 \rangle \leq n\langle b \rangle$. Hence, by Theorem 4.3, $\langle p \rangle \leq \langle b \rangle$, i.e., $p \precsim b$. It follows that $p = x^*bx$ for some $x \in A$. Put $v = b^{1/2}x$. Then $p = v^*v$ and $p \sim vv^* = b^{1/2}x^*xb^{1/2} \in B$, so vv^* is a full projection in B. □

Lemma 6.3 Every unital approximately divisible C^*-algebra is strongly K_1-surjective.

Proof: Let B be a full hereditary sub-C^*-algebra of A. We must show that the canonical map $\mathcal{U}(B + \mathbb{C}1_A) \to K_1(A)$ is surjective. Use Lemma 6.2 to find a full projection p in B. It suffices to show that the canonical map $\mathcal{U}(pAp + \mathbb{C}(1_A - p)) \to K_1(A)$ is surjective. Take an element g in $K_1(A)$, and represent g as the class of a unitary element u in $M_n(A)$ for some large enough natural number n. Upon replacing $M_n(A)$ by A we can assume that $n = 1$.

Let \mathcal{P} be the set of projections $q \in A$ such that there exists a unitary element $v \in qAq$ for which $g = [v + (1_A - q)]_1$ in $K_1(A)$. We must show that \mathcal{P} contains all full projections in A. Note first that if q_1, q_2 are projections in A with $q_1 \precsim q_2$ and $q_1 \in \mathcal{P}$, then $q_2 \in \mathcal{P}$. Indeed, if $v_1 \in q_1Aq_1$ is unitary with $g = [v_1 + (1_A - q_1)]_1$ and if $s^*s = q_1$, $ss^* \preceq q_2$, then v_2 given by $sv_1s^*+(q_2-ss^*)$ is a unitary element in q_2Aq_2, and $[v_2 + (1_A - q_2)]_1 = [v_2 + (1_A - q_2)]_1$.

Let $p \in A$ be a full projection. Then $(n - 1)\langle p \rangle \geq \langle 1_A \rangle$ in $W(A)$ for some large enough natural number n, cf. (4.1). By approximate divisibility of A there is a unitary element
Proposition 6.5
Given a pull-back diagram

\[\begin{array}{ccc}
\varphi_1 & \mathbf{A} & \varphi_2 \\
A_1 \searrow & \pi & \swarrow A_2 \\
\psi_1 & B & \psi_2
\end{array} \]

(6.1)

Proof: The first claim follows from the fact that \(x a_\varepsilon = 0 \) for every \(x \in A^0 \). Suppose that \(w \) is a unitary element in \(A \) with \(w a_{\varepsilon'} = a_{\varepsilon'} \). Then \(a_{\varepsilon'} w = a_{\varepsilon'} \), so \(w - 1_A \) is orthogonal to \(a_{\varepsilon'} \). But the orthogonal complement of \(a_{\varepsilon'} \) is contained in \(A^0 \). □

Lemma 6.4 Let \(A \) be a unital \(C^* \)-algebra, let \(a \) be a positive element in \(A \), let \(0 < \varepsilon' < \varepsilon \) be given, and set \(A^0 = g_\varepsilon(a) A g_\varepsilon(a) \), where \(g_\varepsilon : \mathbb{R}^+ \to \mathbb{R}^+ \) is given by \(g_\varepsilon(t) = \max \{ 1 - t/\varepsilon, 0 \} \). Then \(w a_\varepsilon = a_{\varepsilon'} \) for every \(w \in A^0 + 1_A \); and if \(w \) is a unitary element in \(A \) that satisfies \(w a_{\varepsilon'} = a_{\varepsilon'} \), then \(w \) belongs to \(A^0 + 1_A \).

Proof: The first claim follows from the fact that \(x a_\varepsilon = 0 \) for every \(x \in A^0 \). Suppose that \(w \) is a unitary element in \(A \) with \(w a_{\varepsilon'} = a_{\varepsilon'} \). Then \(a_{\varepsilon'} w = a_{\varepsilon'} \), so \(w - 1_A \) is orthogonal to \(a_{\varepsilon'} \). But the orthogonal complement of \(a_{\varepsilon'} \) is contained in \(A^0 \). □

Rieffel proved in [19] that if \(A \) is a unital \(C^* \)-algebra of stable rank one, then the canonical map \(\mathcal{U}(A) / \mathcal{U}_0(A) \to K_1(A) \) is an isomorphism, and hence injective. Rieffel also showed for any such \(C^* \)-algebra \(A \) and any hereditary sub-\(C^* \)-algebra \(B \) of \(A \) (full or not) that the stable rank of \(B + \mathbb{C}1_A \) is one.

Take now a full hereditary sub-\(C^* \)-algebra \(B \) of \(A \), where \(A \) is unital and of stable rank one. Then

\[\mathcal{U}(B + \mathbb{C}1_A) / \mathcal{U}_0(B + \mathbb{C}1_A) \to K_1(B) \to K_1(A) \]

is an isomorphism (the second map is an isomorphism by Brown’s theorem, which guarantees that \(A \otimes \mathcal{K} \cong B \otimes \mathcal{K} \)).

This shows that any unital \(C^* \)-algebra of stable rank one is strongly \(K_1 \)-injective.

For each element \(x \) in a \(C^* \)-algebra \(A \) we can write \(x = v|\overline{x}|_+ \), where \(v \) is a partial isometry in \(A^{**} \). The element \(x_\varepsilon \overset{\text{def}}{=} v(|\overline{x}| - \varepsilon)_+ \) belongs to \(A \) for every \(\varepsilon > 0 \), and \(\| x - x_\varepsilon \| \leq \varepsilon \). If \(x \) is positive, then \(x_\varepsilon = (x - \varepsilon)_+ \).

Let \(A \) be a unital \(C^* \)-algebra, let \(a \) be a positive element in \(A \), let \(0 < \varepsilon' < \varepsilon \) be given, and set \(A^0 = g_\varepsilon(a) A g_\varepsilon(a) \), where \(g_\varepsilon : \mathbb{R}^+ \to \mathbb{R}^+ \) is given by \(g_\varepsilon(t) = \max \{ 1 - t/\varepsilon, 0 \} \). Then \(w a_\varepsilon = a_{\varepsilon'} \) for every \(w \in A^0 + 1_A \); and if \(w \) is a unitary element in \(A \) that satisfies \(w a_{\varepsilon'} = a_{\varepsilon'} \), then \(w \) belongs to \(A^0 + 1_A \).
with surjective *-homomorphisms ψ_1 and ψ_2. Suppose that A, A_1, A_2 and B are unital C^*-algebras and that $a \in A$ are such that

(i) A_1 and A_2 are strongly K_1-surjective,

(ii) B is strongly K_1-injective,

(iii) $\text{Im}(K_1(\psi_1)) + \text{Im}(K_1(\psi_2)) = K_1(B)$,

(iv) a^*a is non-invertible in every non-zero quotient of A.

Then a belongs to the closure of $\text{GL}(A)$ if and only if $\varphi_j(a)$ belongs to the closure of $\text{GL}(A_j)$ for $j = 1, 2$.

The pull-back diagram (6.1) can, given $\psi : A_j \to B$, $j = 1, 2$, be realized with $A = \{(a_1, a_2) \in A_1 \oplus A_2 \mid \psi_1(a_1) = \psi_2(a_2)\}$ and with $\varphi_j(a_1, a_2) = a_j$.

Proof: The “only if” part is trivial. Assume now that $\varphi_j(a)$ belongs to the closure of $\text{GL}(A_j)$ for $j = 1, 2$. Let $\varepsilon > 0$ be given. It then follows from [20, Theorem 2.2] that there are unitary elements u_j in A_j such that $\varphi_j(a_{\varepsilon/2}) = u_j|\varphi_j(a_{\varepsilon/2})|$ for $j = 1, 2$. We show below that there are unitary elements v_j in A_j, $j = 1, 2$, such that $\varphi_j(a_{\varepsilon}) = v_j|\varphi_j(a_{\varepsilon})|$, $j = 1, 2$, and $\psi_1(v_1) = \psi_2(v_2)$. It follows that $v = (v_1, v_2)$ is a unitary element in A and that $a_{\varepsilon} = v|a_{\varepsilon}|$. This shows that a belongs to the closure of the invertibles in A (because $\varepsilon > 0$ was arbitrary).

Let $g_\varepsilon : \mathbb{R}^+ \to \mathbb{R}^+$ be as in Lemma 6.4 and put $A_0^0 = g_\varepsilon(|a|)A_0g_\varepsilon(|a|)$. Put

$$A_j^0 = \varphi_j(A_0^0) = g_\varepsilon(|\varphi_j(a)|)A_0g_\varepsilon(|\varphi_j(a)|), \quad B_0^0 = \pi(A_0^0) = g_\varepsilon(|\pi(a)|)B_0g_\varepsilon(|\pi(a)|).$$

Assumption (iv) implies that A_0^0 is full in A. It follows that the hereditary subalgebras A_1^0, A_2^0, B_0^0 are full in A_1, A_2 and B, respectively.

It follows from the identity

$$\pi(a_{\varepsilon/2}) = \psi_1(u_1)|\pi(a_{\varepsilon/2})| = \psi_2(u_2)|\pi(a_{\varepsilon/2})|,$$

that $\psi_2(u_2)^*\psi_1(u_1)|\pi(a_{\varepsilon/2})| = |\pi(a_{\varepsilon/2})|$, and so $z \overset{\text{def}}{=} \psi_2(u_2)^*\psi_1(u_1)$ belongs to $B_0^0 + 1_B$ (cf. Lemma 6.4). We show below that $z = \psi_2(w_2)\psi_1(w_1^*)$ for some unitaries w_j in $A_0^0 + \mathbb{C}1_{A_j}$, $j = 1, 2$.

Use conditions (i) and (iii) to find unitaries $y_j \in A_j^0 + \mathbb{C}1_{A_j}$ such that $[\psi_2(y_2)\psi_1(y_1)^*]_1 = [z]_1$ in $K_1(B)$. By condition (ii), the unitary element $(z_0 =) z\psi_1(y_1)\psi_2(y_2^*)$ is homotopic to
1 in the unitary group of $B^0 + C1_B$. Hence $z_0 = \psi_2(y_0)$ for some unitary y_0 in $A^0_2 + C1_{A_2}$. Now, $w_1 = y_1$ and $w_2 = y_0y_2$ are as desired.

Upon replacing w_1 and w_2 by λw_1 and λw_2 for a suitable $\lambda \in \mathbb{C}$ with $|\lambda| = 1$, we can assume that $w_j \in A^0_j + 1_A$. Then, by Lemma 6.4, $w_j|\varphi_j(a_\varepsilon)| = |\varphi_j(a_\varepsilon)|$, $j = 1, 2$. It follows that $(v_j =) u_jw_j$ is a unitary in A_j, that $v_j|\varphi_j(a_\varepsilon)| = u_j|\varphi_j(a_\varepsilon)| = \varphi_j(a_\varepsilon)$ for $j = 1, 2$, and $\psi_1(v_1) = \psi_1(u_1)\psi_1(w_1) = \psi_2(u_2)\psi_2(w_2) = \psi_2(v_2)$, as desired. □

Lemma 6.6 Let A be a simple, unital, finite C^*-algebra. Then $a \otimes 1$ belongs to the closure of the invertibles in $A \otimes Z$ for every $a \in A$.

Proof: Let $E_{2,3}$ be the C^*-algebra which in Proposition 6.4 is shown to have a unital embedding into Z. It suffices to show that $a \otimes 1$ belongs to the invertibles in $A \otimes E_{2,3}$. If $a^*a \otimes 1$ is invertible in some non-zero quotient of $A \otimes E_{2,3}$, then a^*a is invertible in A by simplicity of A, which again implies that a is invertible, because A is finite. The claim of the lemma is trivial in this case. Suppose now that there is no non-zero quotient of $A \otimes E_{2,3}$ in which $a^*a \otimes 1$ is invertible.

Identify $A \otimes E_{2,3}$ with

$$\{ f \in C([0, 1], A \otimes B) \mid f(0) \in A \otimes B_1, f(1) \in A \otimes B_2 \},$$

where B, B_1, B_2 are UHF algebras of type 6^∞, 2^∞, and 3^∞, respectively, with $B_j \subseteq B$. We have a pull-back diagram

$$\begin{array}{ccc}
D_1 & \xrightarrow{\text{ev}_1} & D_2 \\
\varphi_1 & \downarrow & \varphi_2 \\
A \otimes B & \xrightarrow{\text{ev}_1} & A \otimes E_{2,3} \\
\varphi_1 & \downarrow & \varphi_2 \\
D_1 & \xleftarrow{\text{ev}_1} & D_2 \\
\end{array}$$

(6.2)

where

$D_1 = \{ f \in C([0, 1], A \otimes B) \mid f(0) \in A \otimes B_1 \}, \quad D_2 = \{ f \in C([1/2, 1], A \otimes B) \mid f(1) \in A \otimes B_2 \},$

and where φ_1 and φ_2 are the restriction mappings.

We shall now use Proposition 6.5 to prove that $a \otimes 1$ belongs to the closure of the invertibles in $A \otimes E_{2,3}$. Condition (iv) of Proposition 6.5 is satisfied by the assumption on a made in the first paragraph of the proof. The C^*-algebras D_1 and D_2 are approximately
divisible because $D_j \cong D_j \otimes B_j$. It thus follows from Lemma 6.3 that condition (i) of Proposition 6.5 is satisfied. The C^*-algebra $A \otimes B$ is of stable rank one (cf. [21]), whence $A \otimes B$ is strongly K_1-injective (cf. the remarks below Lemma 6.3).

We have natural inclusions $A \otimes B_j \subseteq D_j$ (identifying an element in $A \otimes B_j$ with a constant function), and the composition $A \otimes B_j \to D_j \to A \otimes B$ is the inclusion mapping. Hence, to prove that (iii) of Proposition 6.5 is satisfied, it suffices to show that $K_1(A \otimes B)$ is generated by the images of the two mappings $K_1(A \otimes B_j) \to K_1(A \otimes B)$, $j = 1, 2$. We have natural identifications:

$$K_1(A \otimes B_1) = K_1(A) \otimes \mathbb{Z}[1/2], \quad K_1(A \otimes B_2) = K_1(A) \otimes \mathbb{Z}[1/3],$$

$$K_1(A \otimes B) = K_1(A) \otimes \mathbb{Z}[1/6].$$

The desired identity now follows from the elementary fact that $\mathbb{Z}[1/2] + \mathbb{Z}[1/3] = \mathbb{Z}[1/6].$

Retaining the inclusion $A \otimes B_j \subseteq D_j$ from the previous paragraph, $\varphi_j(a \otimes 1_{E_{2,3}}) = a \otimes 1_{B_j}$. Following [21], $a \otimes 1_{B_j}$ belongs to the closure of the invertibles in $A \otimes B_j$ (and hence to the closure of the invertibles in D_j) if (and only if) $\alpha_s(a) = 0$; and $\alpha_s(a) = 0$ for every element a in any unital, finite, simple C^*-algebra A. It thus follows that $\varphi_j(a)$ belongs to the closure of $\text{GL}(D_j)$, $j = 1, 2$. (If we had assumed that A is stably finite, then we could have used [21, Corollary 6.6] to conclude that the stable rank of $A \otimes B_j$ is one, which would have given us a more direct route to the conclusion above.)

Theorem 6.7 Every simple, unital, finite \mathcal{Z}-absorbing C^*-algebra has stable rank one.

Proof: Let A be a simple, unital, finite C^*-algebra such that A is isomorphic to $A \otimes \mathcal{Z}$. Let $a \in A$ and $\varepsilon > 0$ be given. It follows from Lemma 6.6 that there is an invertible element $b \in A \otimes \mathcal{Z}$ such that $\|a \otimes 1 - b\| < \varepsilon/2$. Let $\sigma_n : A \otimes \mathcal{Z} \to A$ be as in Lemma 4.3 and choose n such that $\|\sigma_n(a \otimes 1) - a\| < \varepsilon/2$. Then $\|a - \sigma_n(b)\| < \varepsilon$, and $\sigma_n(b)$ is an invertible element in A.

7 The real rank of \mathcal{Z}-absorbing C^*-algebras

We conclude this paper with a result that describes when a simple \mathcal{Z}-absorbing C^*-algebra is of real rank zero. A simple approximately divisible C^*-algebra is of real rank zero if and only if projections separate quasitraces, as shown in [3] (and, as remarked earlier, each quasitrace on an exact C^*-algebra is a trace by [11] and [14]). It is not true that any \mathcal{Z}-absorbing C^*-algebra, where quasitraces are being separated by projections, is of real
rank zero. The Jiang–Su \(Z \) itself is a counterexample. We must therefore require some further properties, for example that the \(K_0 \)-group is \emph{weakly divisible}: for each \(g \in K_0^+ \) and for each \(n \in \mathbb{N} \) there are \(h_1, h_2 \in K_0^+ \) such that \(g = nh_1 + (n+1)h_2 \).

Let \(A \) be a unital \(C^* \)-algebra. Let \(T(A) \) denote the simplex of tracial states on \(A \), and let \(\text{Aff}(T(A)) \) denote the normed space of real valued affine continuous functions on \(T(A) \). Let \(\rho : K_0(A) \to \text{Aff}(T(A)) \) be the canonical map defined by \(\rho(g)(\tau) = K_0(\tau)(g) \).

The result below is essentially contained in [22, Theorem 7.2] (see also [3]).

Proposition 7.1 Let \(A \) be an exact unital simple \(C^* \)-algebra of stable rank one for which \(W(A) \) is almost unperforated. Then \(A \) is of real rank zero if and only if \(\rho(K_0(A)) \) is uniformly dense in the normed space \(\text{Aff}(T(A)) \).

The proof of [22, Theorem 7.2] applies almost verbatim. (At the point where we have a positive element \(x \in A \) and \(\delta > 0 \) such that \(d_{\tau}(\langle f_{\delta/2}(x) \rangle) < d_{\tau}(\langle f_{\delta/4}(x) \rangle) \) for all \(\tau \in T(A) \), then, because \(\tau \mapsto d_{\tau}(y) \) defines an element in \(\text{Aff}(T(A)) \) for every \(y \in A^+ \), it follows by density of \(\rho(K_0(A)) \) in \(\text{Aff}(T(A)) \) that there is an element \(g \in K_0(A) \) such that \(d_{\tau}(\langle f_{\delta/2}(x) \rangle) < K_0(\tau)(g) < d_{\tau}(\langle f_{\delta/4}(x) \rangle) \) for all \(\tau \in T(A) \). One next uses weak unperforation of \(K_0(A) \) ([9] or Corollary 4.9) to conclude that \(g \) is positive, i.e., that \(g = [q] \) for some projection \(q \) in a matrix algebra over \(A \).)

Theorem 7.2 The following conditions are equivalent for each unital, simple, exact, finite, \(Z \)-absorbing \(C^* \)-algebra \(A \).

(i) \(\text{RR}(A) = 0 \),

(ii) \(\rho(K_0(A)) \) is uniformly dense in \(\text{Aff}(T(A)) \),

(iii) \(K_0(A) \) is weakly divisible and projections in \(A \) separate traces on \(A \).

If \(A \) is a simple, \emph{infinite}, \(Z \)-absorbing \(C^* \)-algebra, then \(A \) is purely infinite by [9]; and purely infinite \(C^* \)-algebras are of real rank zero by [28].

Proof: It follows from Theorem 6.7 that \(W(A) \) is almost unperforated, and from Theorem 6.1 that the stable rank of \(A \) is one. We therefore get (ii) \(\Rightarrow \) (i) from Proposition 7.1

If (iii) holds, then for each element \(g \) in \(K_0(A)^+ \) and for each natural number \(n \) there exists \(h \in K_0(A)^+ \) such that \(nh \leq g \leq (n+1)h \). This implies that the uniform closure of \(\rho(K_0(A)) \) in \(\text{Aff}(T(A)) \) is a closed subspace which separates points. Thus, by Kadison’s Representation Theorem (see [1, II.1.8]), \(\rho(K_0(A)) \) is uniformly dense in \(\text{Aff}(T(A)) \), so (ii) holds. If (i) holds, then \(A \) is weakly divisible by [18] and traces on \(A \) are separated by projections. \(\square \)
A C^*-algebra is said to have property (SP) ("small projections") if each non-zero hereditary sub-C^*-algebra contains a non-zero projection.

Corollary 7.3 Let A be a simple, unital, exact \mathbb{Z}-absorbing C^*-algebra with a unique trace τ. Then the following conditions are equivalent:

(i) $\text{RR}(A) = 0$,

(ii) $K_0(\tau)(K_0(A))$ is dense in \mathbb{R},

(iii) $K_0(A)$ is weakly divisible,

(iv) A has property (SP).

Proof: The equivalence of (i), (ii), and (iii) follows immediately from Theorem 7.2. The implication (i) \Rightarrow (iv) is trivial, and one easily sees that (iv) implies (ii). \hfill \Box

References

[1] E. Alfsen, *Compact convex sets and boundary integrals*, Springer-Verlag, New York, 1971, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57.

[2] B. Blackadar and D. Handelman, *Dimension functions and traces on C^*-algebras*, J. Funct. Anal. **45** (1982), 297–340.

[3] B. Blackadar, A. Kumjian, and M. Rørdam, *Approximately central matrix units and the structure of non-commutative tori*, K-theory **6** (1992), 267–284.

[4] B. Blackadar and M. Rørdam, *Extending states on Preordered semigroups and the existence of quasitraces on C^*-algebras*, J. Algebra **152** (1992), 240–247.

[5] J. Cuntz, *Dimension functions on simple C^*-algebras*, Math. Ann. **233** (1978), 145–153.

[6] S. Eilers, T. Loring, and G. K. Pedersen, *Stability of anticommutation relations. An application of non-commutative CW complexes*, J. Reine Angew. Math. **499** (1998), 101–143.

[7] G. A. Elliott, *Dimension groups with torsion*, Int. J. Math. **1** (1990), 361–380.
[8] ———, *The classification problem for amenable C*-algebras*, Proceedings of the International Congress of Mathematicians (Basel), vol. 1,2, Birkhäuser, 1995, pp. 922–932.

[9] G. Gong, X. Jiang, and H. Su, *Obstructions to \mathbb{Z}-stability for unital simple C*-algebras*, Canadian Math. Bull. **43** (2000), no. 4, 418–426.

[10] K. R. Goodearl and D. Handelman, *Rank functions and K_0 of regular rings*, J. Pure Appl. Algebra **7** (1976), 195–216.

[11] U. Haagerup, *Every quasi-trace on an exact C*-algebra is a trace*, preprint, 1991.

[12] X. Jiang and H. Su, *On a simple unital projectionless C*-algebra*, American J. Math. **121** (1999), no. 2, 359–413.

[13] E. Kirchberg, *Permanence properties of purely infinite C*-algebras*, in preparation.

[14] ———, *On the existence of traces on exact stably projectionless simple C*-algebras*, Operator Algebras and their Applications (P. A. Fillmore and J. A. Mingo, eds.), Fields Institute Communications, vol. 13, Amer. Math. Soc., 1995, pp. 171–172.

[15] E. Kirchberg and M. Rørdam, *Non-simple purely infinite C*-algebras*, American J. Math. **122** (2000), 637–666.

[16] ———, *Infinite non-simple C*-algebras: absorbing the Cuntz algebra \mathcal{O}_∞*, Advances in Math. **167** (2002), no. 2, 195–264.

[17] H. Lin, *An introduction to the classification of amenable C*-algebras*, World Scientific Publishing Co. Inc., River Edge, NJ, 2001.

[18] F. Perera and M. Rørdam, *AF-embeddings into C*-algebras of real rank zero*, to appear in J. Funct. Anal.

[19] M. Rieffel, *Dimension and stable rank in the K-theory of C*-algebras*, Proc. London Math. Soc. **46** (1983), no. (3), 301–333.

[20] M. Rørdam, *Advances in the theory of unitary rank and regular approximation*, Ann. of Math. **128** (1988), 153–172.

[21] ———, *On the Structure of Simple C*-algebras Tensored with a UHF-Algebra*, J. Funct. Anal. **100** (1991), 1–17.
[22] __________, *On the Structure of Simple C*-algebras Tensored with a UHF-Algebra, II*, J. Funct. Anal. **107** (1992), 255–269.

[23] __________, *Classification of Nuclear, Simple C*-algebras*, Classification of Nuclear C*-Algebras. Entropy in Operator Algebras (J. Cuntz and V. Jones, eds.), vol. 126, Encyclopaedia of Mathematical Sciences. Subseries: Operator Algebras and Non-commutative Geometry, no. VII, Springer Verlag, Berlin, Heidelberg, 2001, pp. 1–145.

[24] __________, *A simple C*-algebra with a finite and an infinite projection*, Acta Math. **191** (2003), 109–142.

[25] A. Toms, *On the Independence of K-theory and Stable Rank for Simple C*-algebras*, preprint.

[26] A. Toms and W. Winter, in preparation.

[27] J. Villadsen, *Simple C*-algebras with perforation*, J. Funct. Anal. **154** (1998), no. 1, 110–116.

[28] S. Zhang, *A property of purely infinite simple C*-algebras*, Proc. Amer. Math. Soc. **109** (1990), 717–720.

Department of Mathematics, University of Southern Denmark, Odense, Campusvej 55, 5230 Odense M, Denmark

E-mail address: mikael@imada.sdu.dk

Internet home page: www.imada.sdu.dk/~mikael/welcome