ROSENTHAL’S SPACE REVISITED

SERGEY V. ASTASHKIN AND GUILLERMO P. CURBERA

Abstract. Let E be a rearrangement invariant (r.i.) function space on $[0,1]$, and let Z_E consist of all measurable functions f on $(0,\infty)$ such that $f^*\chi_{[0,1]} \in E$ and $f^*\chi_{[1,\infty)} \in L^2$. We reveal close connections between properties of the generalized Rosenthal’s space, corresponding to the space Z_E, and the behaviour of independent symmetrically distributed random variables in E. The results obtained are applied to consider the problem of the existence of isomorphisms between r.i. spaces on $[0,1]$ and $(0,\infty)$. Exploiting particular properties of disjoint sequences, we identify a rather wide new class of r.i. spaces on $[0,1]$ “close” to L^∞, which fail to be isomorphic to r.i. spaces on $(0,\infty)$. In particular, this property is shared by the Lorentz spaces $\Lambda_2(\log^{-\alpha}(e/u))$, with $0 < \alpha \leq 1$.

1. Introduction

Let $p > 2$. Given any sequence $w = (w_n)_{n=1}^\infty$ of positive scalars such that

(1) $\sum_{n=1}^\infty w_n^{2p/(p-2)} = \infty$ and $\lim_{n \to \infty} w_n = 0$,

we define $X_{p,w}$ to be the space of all sequences $(a_n)_{n=1}^\infty$ of scalars satisfying

$\sum_{n=1}^\infty |a_n|^p < \infty$ and $\sum_{n=1}^\infty |a_n|^2 w_n^2 < \infty$,

under the norm

$\| (a_n)_{n=1}^\infty \| := \max \left\{ \| (a_n)_{n=1}^\infty \|_p, \| (a_n w_n)_{n=1}^\infty \|_2 \right\}$,

where $\| (a_n)_{n=1}^\infty \|_r = \left(\sum_{n=1}^\infty |a_n|^r \right)^{1/r}, 1 \leq r < \infty$. Note that, up to isomorphism, the definition of the space $X_{p,w}$ does not depend on the sequence w, i.e., $X_{p,w} \approx X_{p,w'}$, as long as both w and w' satisfy (1); [26] Theorem 13]. Hence, we can denote the space $X_{p,w}$ simply by X_p.

Date: June 2, 2020.

2000 Mathematics Subject Classification. Primary 46E30, 46B15; Secondary 46B09.

Key words and phrases. rearrangement invariant space, independent functions, Lorentz space, Orlicz space, disjoint functions, disjoint homogeneous space, isomorphism, Kruglov property.

The work of the first author was supported by the Ministry of Science and Higher Education of the Russian Federation (project 1.470.2016/1.4).

The second author acknowledges the support of PGC2018-096504-B-C31, FQM-262 and Feder-US-1254600.
The space X_p, introduced by Rosenthal in 1970 (see [26]), turned out to be very useful when studying the geometric structure of L^p-spaces. Specifically, X_p is isomorphic to the complemented subspace of L^p spanned by a certain sequence of independent 3-valued symmetrically distributed random variables (r.v.’s) [26, p. 282–283]. Moreover, for each $p > 2$ and an arbitrary sequence $\{f_n\}_{n=1}^{\infty} \subseteq L^p[0, 1]$ of mean zero independent r.v.’s, the mapping $T: X_p \to L^p$, defined by

$$T(a_n) := \sum_{n=1}^{\infty} a_n f_n,$$

is an isomorphic embedding; [26 Theorem 3 and p. 280].

Later on, Johnson, Maurey, Schechtman, and Tzafriri introduced, in the memoir [16] (see p. 218), the following generalized space of Rosenthal type. Let Y be an arbitrary rearrangement invariant (r.i.) space on $(0, \infty)$. Suppose that $\{A_n\}_{n=1}^{\infty}$ is a sequence of disjoint measurable subsets of $(0, \infty)$ of positive measure such that

$$m(A_n) \leq 1, \quad m(A_n) \to 0 \ (n \to \infty), \quad \sum_{n=1}^{\infty} m(A_n) = \infty$$

(m is the Lebesgue measure). Then, the space \tilde{U}_Y is defined as a Banach space which is isomorphic to the closed linear span of the sequence $\{\chi_{A_n}\}_{n=1}^{\infty}$ in Y. It is worth to note that, up to isomorphism, the latter span does not depend on the particular choice of sequence $\{A_n\}_{n=1}^{\infty}$ satisfying conditions (2) [16, Lemma 8.7]. The sequence $\{\|\chi_{A_n}\|_Y^{-1} \chi_{A_n}\}_{n=1}^{\infty}$, clearly is equivalent to an unconditional basis in \tilde{U}_Y. Moreover, if the space $Y(0, 1)$ is not equal to $L^\infty(0, 1)$ up to an equivalent renorming, \tilde{U}_Y is isomorphic to a complemented subspace of Y.

To establish a link between the concepts so far introduced, recall a further important definition from [16] (see also [22, §2f]). Given a r.i. space E on $[0, 1]$, we define the r.i. space Z_E on $(0, \infty)$ consisting of all measurable functions f on $(0, \infty)$ such that

$$\|f\|_{Z_E} := \|f^* \chi_{[0,1]}\|_E + \|f^* \chi_{[1,\infty)}\|_{L^2} < \infty,$$

where f^* is the non-increasing left-continuous rearrangement of $|f|$ (observe that $\|\cdot\|_{Z_E}$ is a quasinorm, which is equivalent to a norm; [22 Theorem 2.f.1]).

Then, denoting $U_E := \tilde{U}_{Z_E}$, it can be checked that Rosenthal's space X_p coincides, up to equivalence of norms, with the space $U_{L^p[0,1]}$ (in particular, we choose $w_n = m(A_n)^{1/2-1/p}$, see details in [16 p. 221]).

The main aim of this paper is to reveal close connections between properties of the space U_E and the behaviour of independent r.v.’s in the corresponding r.i. space E.

Let E be a r.i. space on $[0, 1]$. According to [17 Theorem 1], if $L^q[0, 1] \subseteq E$ for some $q < \infty$, then there is a constant $C = C(q) > 0$ such that for every sequence
of independent symmetrically distributed r.v.’s from E we have

\begin{equation}
\left\| \sum_{n=1}^{\infty} x_n \right\|_E \leq C \left\| \sum_{n=1}^{\infty} \tau_n \right\|_{Z_E},
\end{equation}

where the sequence $\{\tau_n\}_{n=1}^{\infty}$ consists of pairwise disjoint measurable functions defined on $(0, \infty)$ such that τ_n and x_n are equimeasurable for each $n = 1, 2, \ldots$ (it is worth to mention that the opposite inequality holds in every r.i. space E). More recently, in [9] (for a simpler proof see [10, Theorem 25]), the latter result was sharpened; it was proved that inequality (4) holds in every r.i. space E that has the so-called Kruglov property (for definitions see the next section). Observe, for instance, that the exponential Orlicz space $\text{Exp} L^p$, generated by an Orlicz function equivalent to the function e^{u^p} for large $u > 0$, has the Kruglov property if and only if $0 < p \leq 1$ (clearly, $\text{Exp} L^p$ does not contain L^q for any $q < \infty$).

In the first part of the paper we show that inequality (4) is fulfilled for the class of independent symmetrically distributed r.v.’s in a r.i. space E with the Fatou property whenever a similar estimate holds for the subspace U_E of Z_E. More precisely, if $\{A_n\}_{n=1}^{\infty}$ is a sequence of disjoint measurable subsets of $(0, \infty)$ satisfying (2), then inequality (4) is a consequence of the following much weaker condition: there is a constant $C > 0$ such that for every set $S \subseteq \mathbb{N}$, with $\sum_{n \in S} m(A_n) \leq 1$, and all $a_n \in \mathbb{R}$

\begin{equation}
\left\| \sum_{n \in S} a_n u_n \right\|_E \leq C \left\| \sum_{n \in S} a_n \chi_{A_n} \right\|_{Z_E},
\end{equation}

where u_n are independent symmetrically distributed functions, equimeasurable with the characteristic functions χ_{A_n} (see Theorem 1). Moreover, we prove in Theorem 2 that estimate (5) combined with a certain geometrical property of the subspace $[u_n]$ of a r.i. space E ensures that $E \approx Z_E$.

Next, we apply the results obtained to consider the problem of the existence of isomorphisms between r.i. spaces on $[0, 1]$ and $(0, \infty)$, which was first posed by Mityagin in [23]. This and other closely related questions were intensively studied in the memoir [16] (see also [22]), by using the approach based on a construction of the stochastic integral with respect to a symmetrized Poisson process. In particular, it was shown that a r.i. space E is isomorphic to the space Z_E whenever $0 < \alpha_E \leq \beta_E < 1$, where α_E and β_E are the Boyd indices of E (see [16, Theorem 8.6] or [22, Theorem 2.f.1]). Later on, in [5], this result was improved: it turned out that non-triviality of the Boyd indices of E can be replaced with a weaker condition that both spaces E and its Köthe dual E' have the Kruglov property.

However, there exist r.i. spaces on $[0, 1]$ which are not isomorphic to r.i. spaces on $(0, \infty)$. Roughly speaking, this property is shared by some r.i. spaces, which are located “very close” to the extreme r.i. spaces on $[0, 1]$, L^1 and L^∞. For instance, this holds for the Orlicz space L_{F_α}, $0 < \alpha < 1/2$, where $F_\alpha(u)$ is an Orlicz function equivalent to the function $u \log^\alpha u$ for large $u > 0$ [16, p. 235]. Observe that the only r.i. space on $(0, \infty)$, which can be isomorphic to L_{F_α} is
the space $Z_{L_{F_{0}}}$ (see [10]) Corollary 8.15 and subsequent remarks)). In such a case the result follows easily from the fact that either the space E itself or its dual E^* does not contain sequences equivalent to the unit vector ℓ^2-basis, because both spaces U_E and Z_E, clearly, contain such sequences. Indeed, if we assume that $L_{F_{0}} \approx Z_{L_{F_{0}}}$, with $0 < \alpha < 1/2$, then it would imply by duality that $\text{Exp} L^{1/\alpha} \approx Z_{\text{Exp} L^{1/\alpha}}$ (see Lemma 1). But this is a contradiction because the exponential Orlicz space $\text{Exp} L^r$, for $r > 2$, contains no sequences equivalent to the unit vector ℓ^2-basis (for instance, this is a consequence of Proposition 4 with its proof combined with the well-known fact that any disjoint sequence in $\text{Exp} L^r$ contains a subsequence equivalent to the unit vector c_0-basis; see e.g. [27]).

Here, we present more non-trivial examples of r.i. spaces E of such a sort, showing that even the existence of complemented subspaces isomorphic to ℓ^2 does not guarantee that U_E is isomorphically embedded into E. Specifically, exploiting particular properties of disjoint sequences, we identify a rather wide new class of r.i. spaces on $[0, 1]$ “close” to L^∞, which fail to be isomorphic to r.i. spaces on $(0, \infty)$ (see Theorems 3, 4 and 5). Furthermore, in Corollary 2 we provide examples of Lorentz spaces $\Lambda_2(\varphi)$ containing plenty of complemented subspaces isomorphic to ℓ^2, but without subspaces isomorphic to the corresponding Rosenthal’s spaces and not isomorphic to r.i. spaces on $(0, \infty)$. In particular, these properties are shared by the Lorentz spaces $\Lambda_2(\log^{-\alpha}(e/u))$, with $0 < \alpha \leq 1$ (see Corollary 3).

In the concluding part of the paper, in Theorem 6 we prove a partial result related to the problem if the Kruglov property of a r.i. space E is a necessary condition for the existence of an isomorphic embedding $T: U_E \to E$. We consider the case when T sends the basis functions χ_{A_n}, $n = 1, 2, \ldots$, of Z_E to some independent symmetrically distributed r.v.’s in E.

2. Preliminaries

2.1. Rearrangement invariant spaces. For a detailed account of basic properties of rearrangement invariant spaces, we refer to the monographs [11, 20, 22].

Let $I = [0, 1]$ or $(0, \infty)$. A Banach lattice E on I is said to be a rearrangement invariant (in brief, r.i.) (or symmetric) space if from the conditions: functions $x(t)$ and $y(t)$ are equimeasurable, i.e.,

$$m\{t \in I : |x(t)| > \tau\} = m\{t \in I : |y(t)| > \tau\} \text{ for all } \tau > 0$$

and $y \in E$ it follows $x \in E$ and $\|x\|_E = \|y\|_E$ (throughout, m denotes the Lebesgue measure).

In particular, every measurable on I function $x(t)$ is equimeasurable with the non-increasing, right-continuous rearrangement of $|x(t)|$ given by

$$x^*(t) := \inf\{ \tau > 0 : m\{s \in I : |x(s)| > \tau\} \leq t \} , \quad t > 0.$$

We note that for any r.i. space E on $[0, 1]$ we have: $L^\infty[0, 1] \subset E \subset L^1[0, 1]$. Denote by E_0 the closure of $L^\infty[0, 1]$ in the r.i. space E on $[0, 1]$ (the separable part of E). The space E_0 is r.i., and it is separable if $E \neq L^\infty$. The fundamental function ϕ_E of a symmetric space E is defined by $\phi_E(t) := \|\chi_{[0,t]}\|_E$, $t > 0$. In what
follows, χ_A is the characteristic function of a set A. The function ϕ_E is quasi-concave, that is, it is nonnegative and increases, $\phi_X(0) = 0$, and the function $\phi_E(t)/t$ decreases. Without loss of generality, we will assume that $\|\chi_{[0,1]}\|_E = 1$ for every r.i. space E.

It is well known that the dilation operator $\sigma_\tau x(t) := x(t/\tau)\chi_{[0,\min(1,\tau)]}(t)$, $0 \leq t \leq 1$, is bounded on every r.i. space E on $[0,1]$ and $\|\sigma_\tau\|_{E\to E} \leq \max(1,\tau)$ (see e.g. [20 Ch. II, §4.3]). The numbers α_E and β_E given by

$$\alpha_E := \lim_{\tau \to 0} \frac{\ln \|\sigma_\tau\|_E}{\ln \tau}, \quad \beta_E := \lim_{\tau \to \infty} \frac{\ln \|\sigma_\tau\|_E}{\ln \tau}$$

satisfy the inequalities $0 \leq \alpha_E \leq \beta_E \leq 1$ and are called the Boyd indices of E.

The Köthe dual E' of a r.i. space E on I consists of all measurable functions y such that

$$\|y\|_{E'} := \sup \left\{ \int_I |x(t)y(t)| \, dt : x \in E, \|x\|_E \leq 1 \right\} < \infty.$$

If E^* denotes the Banach dual of E, then $E' \subset E^*$ and $E' = E^*$ if and only if E is separable. A r.i. space E on I is said to have the Fatou property if whenever $\{x_n\}_{n=1}^\infty \subseteq E$ and x measurable on $[0,1]$ satisfy $x_n \to x$ a.e. on I and $\sup_{n=1,2,...} \|x_n\|_E < \infty$, it follows that $x \in E$ and $\|x\|_E \leq \lim \inf_{n \to \infty} \|x_n\|_E$. It is well-known that a r.i. space E has the Fatou property if and only if the natural embedding of E into its Köthe bidual E'' is a surjective isometry.

An important example of r.i. spaces are the Orlicz spaces. Let Φ be an Orlicz function, i.e., increasing convex function on $[0,\infty)$ such that $\Phi(0) = 0$. Then, the Orlicz space $L_\Phi := L_\Phi(I)$ consists of all measurable on I functions x such that the Luxemburg–Nakano norm

$$\|x\|_{L_\Phi} := \inf \{ \lambda > 0 : \int_I \Phi(|x(t)|/\lambda) \, dt \leq 1 \}$$

is finite (see e.g. [19]). In particular, if $\Phi(u) = u^p$, $1 \leq p < \infty$, then $L_\Phi = L^p$. If $\Phi(u)$ is equivalent for large $u > 0$ to the function $e^{\lambda u^p}$, $p > 0$, we obtain the exponential Orlicz space $\text{Exp} L^p[0,1]$.

Every increasing concave function on $[0,1]$, with $\varphi(0) = 0$, and $1 \leq q < \infty$ generate the Lorentz space $\Lambda_q(\varphi)$ endowed with the norm

$$\|x\|_{\Lambda_q(\varphi)} := \left(\int_0^1 x^*(t)^q \, d\varphi(t) \right)^{1/q}.$$

2.2. The Kruglov property and comparison of sums of independent functions and their disjoint copies in r.i. spaces. Let f be a measurable function on $[0,1]$. Denote by $\pi(f)$ the random variable (in brief, r.v.) $\sum_{i=1}^N f_i$, where f_i are independent copies of f (that is, independent r.v.’s equidistributed with f) and N is a r.v. independent of the sequence $\{f_i\}$ and having the Poisson distribution with parameter 1. The following property has its origin in Kruglov’s paper [21].
and was actively studied and used by Braverman [12]. We say that a r.i. space \(E \) on \([0, 1]\) has the Kruglov property if the relation \(f \in E \) implies that \(\pi(f) \in E \).

Roughly speaking, a r.i. space \(E \) has the Kruglov property if it is located sufficiently “far away” from the space \(L^\infty \). In particular, if \(E \) contains \(L^p \) with some \(p < \infty \), then \(E \) has the Kruglov property. However, the latter condition is not necessary; for instance, the exponential Orlicz space \(\text{Exp} L^p \) has the Kruglov property if and only if \(0 < p \leq 1 \) (see [12, § 2.4], [8]), but clearly \(\text{Exp} L^p \) does not contain \(L^q \) with any \(p > 0 \) and \(1 \leq q < \infty \).

The Kruglov property is closely related to the famous Rosenthal inequality [26] and more generally to the problem of the comparison of sums of independent functions and their disjoint copies in r.i. spaces.

Let \(E \) be a r.i. space on \([0, 1]\). As was already mentioned in Section 1 by [17] Theorem 1], if \(L^q[0, 1] \subseteq E \) for some \(q < \infty \), then the inequality (4) holds for some constant \(C = C(q) > 0 \) and for each sequence of independent symmetrically distributed functions \(\{x_n\}_{n=1}^\infty \subset E \). Here, \(\bar{x}_n \) are disjoint copies of \(x_n \) defined on the semi-axis \([0, \infty)\) (for instance, we may take \(\bar{x}_n(t) = x_n(t \cdot n + 1) \chi_{[n-1, n)}(t), n = 1, 2, \ldots \)). We will refer such a sequence \(\{\bar{x}_n\} \) as a disjointification of the sequence \(\{x_n\} \). Using an operator approach initiated in [8] (see also [10]), Astashkin and Sukochev have showed that inequality (4) holds for a wider class of r.i. spaces with the above-defined Kruglov property.

It is easy to check that the above r.v. \(\pi(f) \) is equidistributed with the sum

\[
Kf(t) := \sum_{n=1}^\infty \sum_{i=1}^n f_{n,i}(t)\chi_{E_n}(t), \quad 0 \leq t \leq 1,
\]

where \(E_n \) are disjoint subsets of \([0, 1] \), \(m(E_n) = 1/(en!) \), \(n = 1, 2, \ldots \), and \(f_{n,i} \) are functions identically distributed with \(f \), \(i = 1, \ldots, n, n = 1, 2, \ldots \) such that \(f_{n,1}, \ldots, f_{n,n}, \chi_{E_n} \) are independent for each positive integer \(n \). It turns out that the above mapping \(K \) can be treated as a linear operator defined on suitable r.i. spaces (see [10] p. 1029). Moreover, given a r.i. space \(E \) on \([0, 1]\), the space \(E \) has the Kruglov property if and only if the operator \(K \) is bounded in \(E \). For this reason, \(K \) is called the Kruglov operator.

We will say that subsets \(F_n \) of \([0, 1] \), \(n = 1, 2, \ldots \), are independent if the characteristic functions \(\chi_{F_n} \), \(n = 1, 2, \ldots \), are independent on \([0, 1]\).

Standard Banach space notation is used throughout. In particular, \(X \approx Y \), where \(X \) and \(Y \) are Banach spaces, means that \(X \) and \(Y \) are isomorphic. We will write \(Y \preceq X \) if there is an isomorphic embedding \(T : Y \to X \). The notation \(f \asymp g \) will mean that there exists a constant \(C > 0 \) not depending on the arguments of the quantities (norms) \(f \) and \(g \) such that \(C^{-1} f \leq g \leq C f \). Finally, in what follows, \(C, c \) etc. denote constants whose value may change from line to line.

3. Rosenthal’s space \(\mathcal{U}_E \) and comparison of sums of independent functions and their disjoint copies in r.i. spaces.

Let \(\{A_n\}_{n=1}^\infty \) be an arbitrary (fixed) sequence of disjoint measurable subsets of \((0, \infty)\) satisfying conditions (2). Denote by \(u_n \) independent symmetrically
distributed r.v.’s supported on \([0,1]\) and equimeasurable with the characteristic functions \(\chi_{A_n}, n = 1,2,\ldots\). As it was mentioned in Section 1 if a r.i. space \(E\) has the Kruglov property (see Section 2.2), then there is a constant \(C > 0\) such that for any sequence \(\{x_n\}_{n=1}^{\infty}\) of independent symmetrically distributed r.v.’s from \(E\) inequality (4) holds. Clearly, then the above r.v.’s \(u_n, n = 1,2,\ldots\), satisfy condition (5). In this section, assuming that a r.i. space \(E\) has the Fatou property, we prove the converse non-trivial implication: from (5) it follows (4). Moreover, starting with this result we will show that estimate (5) combined with a geometrical property of the closed linear span \([u_n]\) in \(E\) implies that \(E \approx Z_E\).

First, we consider independent r.v.’s \(v_n, n = 1,2,\ldots\), which are identically distributed with the characteristic functions \(\chi_{A_n}, n = 1,2,\ldots\).

Proposition 1. Let \(E\) be a r.i. space on \([0,1]\). Suppose that there exists \(C > 0\) such that for every set \(S \subseteq \mathbb{N}\) such that \(\sum_{n \in S} m(A_n) \leq 1\) and all \(a_n \in \mathbb{R}, n \in S\), we have

\[
\left\| \sum_{n \in S} a_n v_n \right\|_E \leq C \left\| \sum_{n \in S} a_n \chi_{A_n} \right\|_{Z_E}.
\]

Then, the Kruglov operator \(K\) is bounded from \(E\) into \(E''\).

Remark 1. Clearly, from the condition \(\sum_{n \in S} m(A_n) \leq 1\) and definition of the norm in \(Z_E\) (see (3)) it follows that (6) can be equivalently rewritten as

\[
(6') \quad \left\| \sum_{n \in S} a_n v_n \right\|_E \leq C' \left\| \sum_{n \in S} a_n \chi_{A'_n} \right\|_E,
\]

where sets \(A'_n \subseteq [0,1]\) are pairwise disjoint and \(m(A'_n) = m(A_n), n = 1,2,\ldots\)

Proof. According to [10, Theorem 22(i)], it suffices to prove that there is a constant \(C' > 0\) such that for every sequence \(\{x_n\}_{n=1}^l \subseteq E\) of independent functions, with \(\sum_{n=1}^l m(\{t : x_n(t) \neq 0\}) \leq 1\), we have

\[
(7) \quad \left\| \sum_{n=1}^l x_n \right\|_E \leq C' \left\| \sum_{n=1}^l \mathbb{1}_{A'_n} \right\|_E,
\]

where \(\{\mathbb{1}_{A'_n}\}_{n=1}^l\) is a disjointification of the sequence \(\{x_n\}_{n=1}^l\) (we may and will assume that all the functions \(\mathbb{1}_{A'_n}\) are supported on \([0,1]\)). Moreover, without loss of generality, we suppose that \(x_n \geq 0, n = 1,\ldots,l\). For arbitrary \(\varepsilon > 0\) and \(k \in \mathbb{N}\) we set

\[
G_n^k := \{t : \varepsilon(k - 1) < x_n(t) \leq \varepsilon k\}, \quad F_n^k := \{t : \varepsilon(k - 1) < \mathbb{1}_{A'_n}(t) \leq \varepsilon k\}.
\]

Observe that, for every \(n = 1,2,\ldots,l\), the sets \(G_n^k, k = 1,2,\ldots\) (resp. \(F_n^k, k = 1,2,\ldots,n = 1,2,\ldots,l\)) are pairwise disjoint. Due to properties (2), for each \(n = 1,\ldots,l\) and all \(k \in \mathbb{N}\), we can find pairwise disjoint sets \(S_n^k \subseteq \mathbb{N}\) such that

\[
m(G_n^k) = m(F_n^k) = \sum_{i \in S_n^k} m(A_i).
\]
Define now the step-functions

\[y_n := \sum_{k=1}^{\infty} \varepsilon_k \cdot \chi_{G^k_n} \quad \text{and} \quad z_n := \sum_{k=1}^{\infty} \varepsilon_k \cdot \chi_{F^k_n}, \quad n = 1, \ldots, l. \]

Clearly, the functions \(y_n, n = 1, \ldots, l \), are independent and

\[x_n \leq y_n, \quad n = 1, \ldots, l. \]

Fix \(n = 1, 2, \ldots, l \). Then, the sets \(G^k_n, k \in \mathbb{N} \), are pairwise disjoint. Therefore, thanks to (8), we can represent the set \(G^k_n \) in the form

\[G^k_n = \bigcup_{i \in S^k_n} G^{k,i}_n, \quad k \in \mathbb{N}, \]

where \(G^{k,i}_n \subseteq [0,1] \) are pairwise disjoint for all \(i \in S^k_n, k \in \mathbb{N}, \) and \(m(G^{k,i}_n) = m(A_i), i \in S^k_n \). Furthermore, we see that

\[y_n = \sum_{k=1}^{\infty} \varepsilon_k \sum_{i \in S^k_n} \chi_{G^{k,i}_n}, \quad n = 1, \ldots, l. \]

Next, denote by \(v^{k,i}_n \) independent copies of the characteristic functions \(\chi_{G^{k,i}_n}, i \in S^k_n, k \in \mathbb{N}, n = 1, 2, \ldots, l \). Then, for each \(n = 1, 2, \ldots, l \), the sequence \(\{\varepsilon_k \cdot v^{k,i}_n\}_{i \in S^k_n, k \in \mathbb{N}} \) is a disjointification of the sequence \(\{\varepsilon_k \cdot v^{k,i}_n\}_{i \in S^k_n, k \in \mathbb{N}} \) (see Section 2.2). Therefore, if

\[f_n := \sum_{k=1}^{\infty} \varepsilon_k \sum_{i \in S^k_n} v^{k,i}_n, \quad n = 1, 2, \ldots, l, \]

then, by [15, Proposition 1] (see also [10, Proposition 7]), we have

\[m(\{t : y_n(t) > \tau\}) \leq 2m(\{t : \sup_{k \in \mathbb{N}, i \in S^k_n} \varepsilon_k \cdot v^{k,i}_n(t) > \tau\}) \]

\[\leq 2m(\{t : f_n(t) > \tau\}). \]

Since \(y_n, n = 1, \ldots, l \) (respectively, \(f_n, n = 1, \ldots, l \)) are nonnegative independent r.v.’s, the sequence \(\{y_n\}_{n=1}^l \) (resp. \(\{f_n\}_{n=1}^l \)) has the same distribution as the sequence \(\{y^*_n(t_n)\}_{n=1}^l \) (resp. \(\{f^*_n(t_n)\}_{n=1}^l \)), which is defined on the probability space \([0,1], \prod_{n=1}^l m_n \) (for each \(n = 1, \ldots, l \), \(m_n \) is the Lebesgue measure on \([0,1])\). Furthermore, from \([10]\) and definition of the rearrangement of a measurable function it follows that

\[\sigma_{1/2}(y^*_n)(t_n) = y^*_n(2t_n) \leq f^*_n(t_n), \quad 0 \leq t_n \leq 1/2. \]
It can easily be checked that the functions \(\sigma_1/2 y_n, n = 1, 2, \ldots, l, \) are independent on the interval \([0, 1/2]\). Indeed, for arbitrary intervals \(I_1, \ldots, I_l \) of \(\mathbb{R} \) we have

\[
m(\{t \in [0, 1/2] : (\sigma_1/2 y_j)(t) \in I_j, j = 1, \ldots, l\})
\]

\[
= m(\{t \in [0, 1/2] : y_j(2t) \in I_j, j = 1, \ldots, l\})
\]

\[
= \frac{1}{2} m(\{t \in [0, 1] : y_j(t) \in I_j, j = 1, \ldots, l\})
\]

\[
= \frac{1}{2} \prod_{j=1}^{l} m(\{t \in [0, 1] : y_j(t) \in I_j\})
\]

\[
= \frac{1}{2^{l+1}} \prod_{j=1}^{l} m(\{t \in [0, 1/2] : y_j(2t) \in I_j\})
\]

\[
= \frac{1}{2^{l+1}} \prod_{j=1}^{l} m(\{t \in [0, 1/2] : (\sigma_1/2 y_j)(t) \in I_j\})
\]

Hence, from (11), we have

\[
\left\| \sigma_{1/2} \left(\sum_{n=1}^{l} y_n \right) \right\|_E = \left\| \sum_{n=1}^{l} \sigma_{1/2}(y_n) \right\|_E
\]

\[
= \left\| \sum_{n=1}^{l} (\sigma_{1/2} y_n)^*(t_n) \right\|_{E([0,1]^l)}
\]

\[
\leq \left\| \sum_{n=1}^{l} f_n(t_n) \right\|_{E([0,1]^l)}
\]

\[
= \left\| \sum_{n=1}^{l} f_n \right\|_E.
\]

Since \(\|\sigma_r\|_{E \to E} \leq \max(1, \tau) \) (see Section 2.1 or [20, Ch.II, §4.3]), from this inequality it follows

\[
\left\| \sum_{n=1}^{l} y_n \right\|_E = \left\| \sigma_2 \left(\sum_{n=1}^{l} y_n \right) \right\|_E
\]

\[
\leq 2 \left\| \sigma_{1/2} \left(\sum_{n=1}^{l} y_n \right) \right\|_E \leq 2 \left\| \sum_{n=1}^{l} f_n \right\|_E.
\]

Therefore, combining this together with (9), we have

(12) \[
\left\| \sum_{n=1}^{l} x_n \right\|_E \leq 2 \left\| \sum_{n=1}^{l} f_n \right\|_E.
\]
On the other hand, from (8) it follows that there are pairwise disjoint sets
\(F_{k,i}^n \subseteq [0,1] \) such that
\[
m(F_{k,i}^n) = m(A_i), \quad i \in S_k^n, \quad k \in \mathbb{N}, \quad n = 1, \ldots, l, \quad \text{and}
\]
\[
F_k^n = \bigcup_{i \in S_k^n} F_{k,i}^n, \quad k \in \mathbb{N}, \quad n = 1, \ldots, l.
\]

Moreover, by the above definitions, \(v_{k,i}^n \) are being independent copies of the characteristic functions \(\chi_{A_i}, \quad i \in S_k^n, \quad k \in \mathbb{N}, \quad n = 1, 2, \ldots, l \). Since the sets \(A_i \) (resp. \(F_{k,i}^n \), \(i \in S_k^n, \quad k \in \mathbb{N}, \quad n = 1, 2, \ldots, l \), are pairwise disjoint and
\[
\sum_{n=1}^{l} \sum_{k=1}^{\infty} \sum_{i \in S_k^n} m(A_i) \leq \sum_{n=1}^{l} m\{|t : x_n(t) \neq 0\}) \leq 1,
\]
by the hypothesis of the proposition (see also Remark 1), we have
\[
\left\| \sum_{n=1}^{l} f_n \right\|_E \leq C \left\| \sum_{n=1}^{l} \sum_{k=1}^{\infty} \varepsilon_k \sum_{i \in S_k^n} \chi_{A_i} \right\|_E z_E
\]
\[
= C \left\| \sum_{n=1}^{l} \sum_{k=1}^{\infty} \varepsilon_k \sum_{i \in S_k^n} \chi_{F_{k,i}^n} \right\|_E
\]
\[
= C \left\| \sum_{n=1}^{l} z_n \right\|_E, \quad \text{(13)}
\]
where \(z_n := \sum_{k=1}^{\infty} \varepsilon_k \cdot \chi_{F_k^n}, \quad n = 1, 2, \ldots, l \).

Further, for every \(n = 1, \ldots, l, \quad k = 2, 3, \ldots \) and all \(t \in F_k^n \) we have
\[
\overline{x}_n(t) > \varepsilon (k - 1) \geq \frac{1}{2} \varepsilon k = \frac{1}{2} z_n(t).
\]

Hence, taking into account the disjointness of the sets \(F_k^n, \quad k \in \mathbb{N}, \quad n = 1, \ldots, l \),
we obtain
\[
\left\| \sum_{n=1}^{l} \overline{x}_n \right\|_E \geq \frac{1}{2} \left\| \sum_{n=1}^{l} z_n \sum_{k=2}^{\infty} \chi_{F_k^n} \right\|_E.
\]
Additionally, since the sets \(F_1^n \subseteq [0,1], \quad n = 1, 2, \ldots, l \), are pairwise disjoint, then
\[
\left\| \sum_{n=1}^{l} z_n \chi_{F_1^n} \right\|_E \leq \varepsilon \| \chi_{[0,1]} \|_E = \varepsilon.
\]
As a result, from inequalities (12) and (13) we get
\[
\left\| \sum_{n=1}^{l} x_n \right\|_E \leq 2C \left\| \sum_{n=1}^{l} z_n \right\|_E \\
\leq 2C \left(\left\| \sum_{n=1}^{l} z_n \sum_{k=2}^{\infty} \chi_{F_n^k} \right\|_E + \left\| \sum_{n=1}^{l} z_n \chi_{F_n^1} \right\|_E \right) \\
\leq 4C \left(\varepsilon + \left\| \sum_{n=1}^{l} x_n \right\|_E \right)
\]
Letting \(\varepsilon \to 0 \), we obtain (7) with \(C' = 4C \). \(\square \)

Next, we proceed with comparing the sequence \(\{v_i\} \) with the sequence \(\{u_i\} \) of independent symmetrically distributed r.v.’s equimeasurable with the characteristic functions \(\chi_{A_i}, i = 1, 2, \ldots \).

Proposition 2. Let \(E \) be a r.i. space on \([0, 1]\). Then, for every \(S \subseteq \mathbb{N} \) such that \(\sum_{i \in S} m(A_i) \leq 1 \) and all \(a_i \in \mathbb{R}, i \in S \), we have
\[
\left\| \sum_{i \in S} a_i v_i \right\|_E \leq 16 e \cdot \left\| \sum_{i \in S} a_i u_i \right\|_E.
\]

Proof. First, since \(u_i, i = 1, 2, \ldots \), are independent symmetrically distributed r.v.’s, the sequence \(\{u_n\}_{n=1}^{\infty} \) is 1-unconditional in \(E \) (see, e.g., [12, Proposition 1.14]). Therefore, we may (and will) assume that coefficients \(a_i, i \in S \), are nonnegative.

For each \(i \in S \), recalling that \(m(A_i) > 0 \), we denote by \(\alpha_i \) the least root of the equation
\[
2t(1 - t) = \frac{1}{4} m(A_i).
\]
Straightforward calculations show that
\[
\frac{1}{8} m(A_i) < \alpha_i < \frac{1}{2} m(A_i), \quad i \in S.
\]

Let \(\{G_i, H_i\}_{i \in S} \) be a family of independent subsets of \([0, 1]\) such that \(m(G_i) = m(H_i) = \alpha_i, i \in S \). Then, clearly, \(h_i := \chi_{H_i} - \chi_{G_i}, i \in S \), are independent symmetrically distributed r.v.’s. Moreover, since \(m(\{t : |u_i(t)| = 1\}) = m(A_i) \) for each \(i \in S \), and, due to independence,
\[
m(\{t : |h_i(t)| = 1\}) = 2\alpha_i(1 - \alpha_i) = \frac{1}{4} m(A_i), \quad i \in S,
\]
we have
\[
m(\{t : |h_i(t)| > \tau\}) \leq m(\{t : |u_i(t)| > \tau\}), \quad \tau > 0.
\]
Hence, by the well-known Kwapien-Rychlik inequality (see e.g. [28, Ch. V, Theorem 4.4]), for all \(a_i \geq 0 \) and \(\tau > 0 \), we get
\[
m\left(\left\{ t : \left| \sum_{i \in S} a_i h_i(t) \right| > \tau \right\} \right) \leq 2m\left(\left\{ t : \left| \sum_{i \in S} a_i u_i(t) \right| > \tau \right\} \right).
\]
Next, denoting $h := \sum_{i \in S} a_i h_i$, we represent $h = h' - h''$, where

$$h' := \sum_{i \in S} a_i \chi_{H_i}, \quad h'' := \sum_{i \in S} a_i \chi_{G_i}.$$

Since h' and h'' are independent, for each $\tau > 0$ it follows

$$m(\{t : |h(t)| > \tau\}) \geq m(\{t : |h'(t)| > \tau\} \cap \{t : h''(t) = 0\})$$
(17)

$$= m(\{t : |h'(t)| > \tau\}) \cdot m(\{t : h''(t) = 0\}).$$

Further, since G_i are independent, by (15), we have

$$m(\{t : h''(t) = 0\}) \geq m(\bigcap_{i \in S} ([0, 1] \setminus G_i)) = \prod_{i \in S} (1 - m(G_i))$$
(18)

$$= \prod_{i \in S} (1 - \alpha_i) \geq \prod_{i \in S} \left(1 - \frac{1}{2} m(A_i)\right).$$

Finally, from the elementary inequality

$$\log(1 - x) \geq -\frac{x}{1 - x}, \quad 0 \leq x < 1,$$

and the assumption that $\sum_{i \in S} m(A_i) \leq 1$ it follows

$$\log \left(\prod_{i \in S} \left(1 - \frac{1}{2} m(A_i)\right)\right) = \sum_{i \in S} \log \left(1 - \frac{1}{2} m(A_i)\right)$$

$$\geq -\frac{1}{2} \sum_{i \in S} \frac{m(A_i)}{1 - \frac{1}{2} m(A_i)}$$

$$\geq -\sum_{i \in S} m(A_i) \geq -1.$$

Combining the latter inequality with (17) and (18), we obtain

$$m(\left\{t : \left|\sum_{i \in S} a_i h_i(t)\right| > \tau\right\}) \geq \frac{1}{e} m(\left\{t : \left|\sum_{i \in S} a_i \chi_{H_i}(t)\right| > \tau\right\}).$$
(19)

On the other hand, one can easy see that, by (15), for all $i \in S$

$$m(\{t : v_i(t) > \tau\}) \leq 8m(\{t : \chi_{H_i}(t)(t) > \tau\}), \quad \tau > 0.$$

Therefore, by passing to the rearrangements of r.v.’s v_i and χ_{H_i}, $i \in S$, in the same way as in the proof of Proposition 11 we deduce that for all $\tau > 0$ and $a_i \geq 0$

$$m(\left\{t : \left|\sum_{i \in S} a_i \chi_{H_i}(t)\right| > \tau\right\}) \geq \frac{1}{8} m(\left\{t : \left|\sum_{i \in S} a_i v_i(t)\right| > \tau\right\}).$$

Summing up this inequality, (16) and (19), we arrive at the estimate

$$m(\left\{t : \left|\sum_{i \in S} a_i v_i(t)\right| > \tau\right\}) \leq 16 e \cdot m(\left\{t : \left|\sum_{i \in S} a_i u_i(t)\right| > \tau\right\}), \quad \tau > 0.$$

As a result, applying 20, Ch.II, §4.3, Corollary 2, we obtain (14).

□
Now, from Propositions [12][2][9] (or [10] Theorem 25), and [3] Theorem 2.4 it follows the first main result of the paper.

Theorem 1. Let E be a r.i. space on $[0,1]$. Suppose there is a constant $C > 0$ such that for every set $S \subseteq \mathbb{N}$, with $\sum_{n \in S} m(A_n) \leq 1$, and all $a_n \in \mathbb{R}$, $n \in S$, we have (5), that is,

$$\left\| \sum_{n \in S} a_n u_n \right\|_E \leq C \left\| \sum_{n \in S} a_n \chi_{A_n} \right\|_{Z_E},$$

where u_n are independent symmetrically distributed functions, equimeasurable with χ_{A_n}. Then, the Kruglov operator K is bounded from E into E''.

Therefore, if E has the Fatou property, then it possesses the Kruglov property and hence there is a constant $C > 0$, depending only on E, such that for every sequence $\{x_n\}_{n=1}^{\infty}$ of independent symmetrically distributed r.v.'s from E inequality (1) holds, that is,

$$\left\| \sum_{n=1}^{\infty} x_n \right\|_E \leq C \left\| \sum_{n=1}^{\infty} \beta_n \right\|_{Z_E},$$

where $\{\beta_n\}_{n=1}^{\infty}$ is a disjointification of $\{x_n\}_{n=1}^{\infty}$.

If we assume that, additionally, for some constant $C > 0$ and every $S \subseteq \mathbb{N}$ such that $\sum_{n \in S} m(A_n) \leq 1$ and all $a_n \in \mathbb{R}$, $n \in S$,

$$\left\| \sum_{n \in S} a_n u_n \right\|_{E'} \leq C \left\| \sum_{n \in S} a_n \chi_{A_n} \right\|_{Z_{E'}},$$

then the spaces E and Z_E are isomorphic.

Theorem [11] asserts that $E \approx Z_E$ under some conditions related to both spaces E and E'. Next, we prove a statement, showing that the same result holds provided that, along with inequality (5), the subspace $\{u_n\}$ of E has a certain geometrical property.

We will repeatedly use the following auxiliary result.

Lemma 1. For every r.i. space E on $[0,1]$, we have $(Z_E)' = Z_{E'}$. Moreover, if E has the Fatou property (resp. is separable), then so has (resp. is) Z_E.

Proof. Since Z_E is a r.i. space on $[0,\infty)$, then

$$\|y\|_{(Z_E)'} = \sup_{\|x\|_{Z_E} \leq 1} \int_0^\infty x^*(t)y^*(t) \, dt$$

(see, for instance, [20] Ch.II, §2.2, property 140)). Hence, by definition of the norm in Z_E, we have

$$\|y\|_{(Z_E)'} \leq \sup_{\|x\|_{E} \leq 1} \int_0^1 x^*(t)y^*(t) \, dt + \sup_{\|(x^*(k))\|_{E'} \leq 1} \sum_{k=1}^{\infty} x^*(k)y^*(k)$$

$$= \|y\chi_{[0,1]}\|_{E'} + \left(\sum_{k=1}^{\infty} y^*(k)^2 \right)^{1/2}$$

$$\leq \|y\|_{Z_{E'}},$$
and the first assertion of the lemma follows.

Next, suppose that E has the Fatou property. Let a sequence $\{x_n\}_{n=1}^{\infty} \subseteq Z_E$ satisfy the conditions $0 \leq x_n \uparrow x$ and $\sup_n \|x_n\|_{Z_E} < \infty$. Observe that then $x_n \uparrow x$ a.e. on $[0,1]$ (see e.g. [20 Ch.II, §2.2, property 11]). Therefore, by the hypothesis and the inequality

$$\max \left\{ \sup_n \|x_n^*\chi_{[0,1]}\|_{E}, \sup_n \|x_n^*\chi_{[1,\infty)}\|_{L^2} \right\} \leq \sup_n \|x_n\|_{Z_E} < \infty,$$

we have $x_n^*\chi_{[0,1]} \in E$ and $x_n^*\chi_{[1,\infty)} \in L^2(0,\infty)$. As a result, $x \in Z_E$ and $\|x\|_{Z_E} = \lim_{n \to \infty} \|x_n\|_{Z_E}$. This means that Z_E has the Fatou property.

It remains to prove that Z_E is separable provided if E is. To this end, in view of [20 Ch.II, §4.5, Theorem 4.8], it suffices to show that each nonnegative function $x \in Z_E$ can be approximated in Z_E by its truncations, i.e., we need to deduce that $\|x - x_n\|_{Z_E} \to 0$ and $\|x - x^n\|_{Z_E} \to 0$ as $n \to \infty$, where $x_n := x\chi_{[0,n]}$ and $x^n := \min(x,n)$, $n \in \mathbb{N}$.

Let $\varepsilon > 0$ be arbitrary. Since E and $L^2(0,\infty)$ are separable r.i. spaces, there is $\delta > 0$ such that

$$\max \left\{ \|x^*\chi_{[0,\delta]}\|_{E}, \|x^*\chi_{[1,1+\delta]}\|_{L^2} \right\} < \varepsilon. \quad (20)$$

On the other hand, taking into account that $m\{t > 0 : x(t) > \varepsilon\} < \infty$ and $\|x^*\chi_{[n,\infty)}\|_{L^2(0,\infty)} \to 0$ as $n \to \infty$, we can find a positive integer N satisfying the conditions:

$$m(\{t > N : x(t) > \varepsilon\}) < \delta \quad (21)$$

and

$$\|x^*\chi_{[N,\infty)}\|_{L^2(0,\infty)} < \varepsilon. \quad (22)$$

From definition of the rearrangement of a measurable function and inequality (21) it follows that, for all $n \geq N$,

$$m(\{t > 0 : (x\chi_{[n,\infty)})^*(t) > \varepsilon\}) = m(\{t > n : x(t) > \varepsilon\}) < \delta.$$

Combining this inequality with (20), we have

$$\|(x\chi_{[n,\infty)})^*\chi_{[0,1]}\|_E \leq \|x^*\chi_{[0,\delta]}\|_E + \|(x\chi_{[n,\infty)})^*\chi_{[\delta,1]}\|_E \leq \varepsilon (1 + \|\chi_{[0,1]}\|_E) = 2\varepsilon \quad (23)$$

(because $\|\chi_{[0,1]}\|_E = 1$; see Section 2.1). Moreover, since

$$m(\{t > 0 : x(t)\chi_{[n,\infty)}(t) > x^*(N)\}) \to 0 \quad \text{as} \quad n \to \infty,$$

there exists a positive integer $M > N$ such that for all $n \geq M$

$$m(\{t > 0 : (x\chi_{[n,\infty)})^*(t) > x^*(N)\}) = m(\{t > 0 : x(t)\chi_{[n,\infty)}(t) > x^*(N)\}) < \delta.$$

Hence, from (20) it follows that

$$\|(x\chi_{[n,\infty)})^*\chi_{[1,\infty)}(x\chi_{[n,\infty)})^* > x^*(N)\|_{L^2} \leq \|x^*\chi_{[1,1+\delta]}\|_{L^2} < \varepsilon, \quad n \geq M.$$
On the other hand, in view of (22),
\[\| (x\chi_{[n,\infty)})^* \chi_{[x\chi_{[n,\infty)})^* \leq x^*(N)} \|_{L^2} \leq \| x^* \chi_{[x^*(N)} \|_{L^2} \leq \| x^* \chi_{[N,\infty)} \|_{L^2} < \varepsilon, \quad n \geq M. \]
Summing up the last inequalities, we have that for all \(n \geq M \)
\[\| (x\chi_{[n,\infty)})^* \chi_{[1,\infty)} \|_{L^2} \leq \| (x\chi_{[n,\infty)})^* \chi_{[1,\infty)} \chi_{[x\chi_{[n,\infty)})^* > x^*(N)} \|_{L^2} \]
\[+ \| (x\chi_{[n,\infty)})^* \chi_{[x\chi_{[n,\infty)})^* \leq x^*(N)} \|_{L^2} \leq 2\varepsilon. \]
This inequality and (23) imply that \(\| x\chi_{[n,\infty)} \|_{Z_E} \leq 4\varepsilon \) for all \(n \geq M \). Since \(\varepsilon > 0 \) is arbitrary, this yields \(\| x - x_n \|_{Z_E} \to 0 \) as \(n \to \infty \).

Finally, we prove a similar assertion for the upper truncations \(x^n, \quad n \in \mathbb{N} \). Suppose that, as above, \(\delta > 0 \) satisfies condition (20). Then, if a positive integer \(N' \) is sufficiently large, we have \(m(\{ t > 0 : x(t) > N' \}) < \delta \). Combining this inequality with (20), for all \(n \geq N' \) we get
\[\| x - x^n \|_{Z_E} = \| x\chi_{[x^n]} \|_{Z_E} \leq \| x^* \chi_{[0,\delta]} \|_E < \varepsilon, \]
whence \(\| x - x^n \|_{Z_E} \to 0 \) as \(n \to \infty \). \(\square \)

Let \(\{ A_n \}_{n=1}^\infty \) be a sequence of pairwise disjoint measurable subsets of \((0, \infty) \) satisfying conditions (2). Moreover, let \(E \) be a r.i. space on \([0,1]\) and \(\phi_E \) its fundamental function. Denoting by \(u_n, \quad n = 1, 2, \ldots \), supported on \([0,1]\) independent symmetrically distributed r.v.’s, which are equimeasurable with the characteristic functions \(\chi_{A_n}, \quad n = 1, 2, \ldots \), we set
\[f_n := \frac{\chi_{A_n}}{\phi_E(m(A_n))}, \quad g_n := \frac{\chi_{A_n}}{\phi_E'(m(A_n))}, \]
\[\tilde{f}_n := \frac{u_n}{\phi_E(m(A_n))}, \quad \tilde{g}_n := \frac{u_n}{\phi_E'(m(A_n))}, \quad n = 1, 2, \ldots \]
Since \(\phi_{E'}(t) = t/\phi_E(t), \quad 0 < t \leq 1 \) [20 Ch.II, §4.6], then \(\{ f_n, g_n \} \) and \(\{ \tilde{f}_n, \tilde{g}_n \} \) are biorthogonal systems in \(E \). Also, we denote
\[\langle f, g \rangle := \int_0^1 f(t)g(t) \, dt, \quad f \in E, g \in E'. \]

Proposition 3. Let \(E \) be a r.i. space on \([0,1]\), and let \(S \subseteq \mathbb{N} \) be such that \(\sum_{i \in S} m(A_i) \leq 1 \). Suppose that the mapping
\[Pf := \sum_{n \in S} \langle f, g_n \rangle \tilde{f}_n \]
is a bounded projection on \(E \). Then, there is a constant \(C > 0 \), which depends only on \(E \) and \(\| P \| \), such that for all \(a_n \in \mathbb{R} \)
\[\left\| \sum_{n \in S} a_n u_n \right\|_{E'} \leq C \left\| \sum_{n \in S} a_n \chi_{A_n} \right\|_{Z_{E'}}, \]

(26)
Proof. First, we estimate
\[
\left\| \sum_{n \in S} a_n \tilde{g}_n \right\|_{E'} = \sup \left\{ \left\langle \sum_{n \in S} a_n \tilde{g}_n, f \right\rangle : \|f\|_E \leq 1 \right\}
= \sup \left\{ \left\langle \sum_{n \in S} a_n \tilde{g}_n, Pf \right\rangle : \|P\| \leq 1 \right\}
\leq \sup \left\{ \left\langle \sum_{n \in S} a_n \tilde{g}_n, Pf \right\rangle : \|Pf\|_E \leq 1 \right\}.
\]
Moreover,
\[
\left\langle \sum_{n \in S} a_n \tilde{g}_n, Pf \right\rangle = \sum_{n \in S} a_n \left\langle f, \tilde{g}_n \right\rangle = \int_0^\infty \left(\sum_{n \in S} a_n g_n \right) \cdot \left(\sum_{m \in S} \left\langle f, \tilde{g}_m \right\rangle f_m \right) dt,
\]
and since \(f_m\) are disjoint copies of the functions \(\tilde{f}_m, m \in S\), by [17, Theorem 1], there is \(C' > 0\), depending only on \(E\), such that
\[
\left\| \sum_{n \in S} \left\langle f, \tilde{g}_m \right\rangle f_m \right\|_{Z_E} \leq C' \left\| \sum_{m \in S} \left\langle f, \tilde{g}_m \right\rangle \tilde{f}_m \right\|_E = C' \|Pf\|_E.
\]
Hence,
\[
\left\| \sum_{n \in S} a_n \tilde{g}_n \right\|_{E'} \leq \sup \left\{ \int_0^\infty \left(\sum_{n \in S} a_n g_n \right) \cdot \left(\sum_{m \in S} \left\langle f, \tilde{g}_m \right\rangle f_m \right) dt : \left\| \sum_{n \in S} \left\langle f, \tilde{g}_m \right\rangle f_m \right\|_{Z_E} \leq C' \|P\| \right\}.
\]
Since \((Z_E)' = Z_{E'}\), by Lemma 11 the latter inequality yields that for all \(a_n \in \mathbb{R}\) we obtain the inequality
\[
\left\| \sum_{n \in S} a_n \tilde{g}_n \right\|_{E'} \leq C' \|P\| \left\| \sum_{n \in S} a_n g_n \right\|_{Z_{E'}},
\]
which is equivalent to desired estimate (26). □

From Theorem 11 and Proposition 3 it follows

Theorem 2. Let \(E\) be a r.i. space on \([0, 1]\) with the Fatou property. Suppose that there exists \(C > 0\) such that for every set \(S \subseteq \mathbb{N}\), with \(\sum_{n \in S} m(A_n) \leq 1\), and all \(a_n \in \mathbb{R}, n \in S\), inequality (3) holds and the projection \(P\) corresponding to such a set \(S \subseteq \mathbb{N}\) (see (24) and (25)) is bounded on \(E\). Then, \(E \approx Z_E\).

4. **Existence of an isomorphic embedding** \(T : U_E \to E\): the case when \(T(\chi_{A_n}), n = 1, 2, \ldots\), are ”almost” disjoint.

As was said in Section 11 if a r.i. space \(E\) and its Köthe dual \(E'\) possess the Kruglov property, then the spaces \(E\) and \(Z_E\) are isomorphic (see [11]). In turn, according to Theorem 11 a r.i. space \(E\) with the Fatou property has the Kruglov property whenever there is an isomorphic embedding of Rosenthal’s space \(U_E\) into \(E\). Moreover, in the proof of the latter result the functions \(T(\chi_{A_n})(= u_n)\),
\[n = 1, 2, \ldots, \text{ were independent, symmetrically distributed and equimeasurable with the characteristic functions } \chi_{A_n}, n = 1, 2, \ldots. \text{ A natural question appears: Let } T \text{ be an isomorphic embedding of Rosenthal’s space } U_E \text{ into } E. \text{ What we can say about the functions } T(\chi_{A_n}), n = 1, 2, \ldots? \text{ Further, we consider two different cases, when these functions are ”almost” disjoint and independent. As a consequence, we will obtain new examples of r.i. spaces } E \text{ such that } E \not\cong Z_E. \]

We begin with an auxiliary result, which was proved earlier in the separable case by Raynaud (see [25, Proposition 1]). However, for the reader’s convenience we provide here a simple alternative proof of this fact. Let \(G \) denote the separable part of the exponential Orlicz space \(\text{Exp} L^2 \) (i.e., the closure of \(L^\infty \) in \(\text{Exp} L^2 \)).

Proposition 4. Let \(E \) be a r.i. space on \([0, 1]\). Suppose that there exists a sequence \(\{x_n\}_{n=1}^\infty \subseteq E \) with \(\|x_n\|_E \simeq \|x_n\|_{L^1}, n = 1, 2, \ldots, \) which is equivalent in \(E \) to the unit vector \(\ell^2 \)-basis. Then, \(E \supseteq G. \)

Proof. Clearly, it can be assumed that \(E \not\cong L^1 \). Since \(\{x_n\}_{n=1}^\infty \) is equivalent in \(E \) to the unit \(\ell^2 \)-basis, we have \(x_n \to 0 \) weakly in \(E \) and so \(x_n \to 0 \) weakly in \(L^1 \). Hence, \(\{x_n\}_{n=1}^\infty \) has no convergent subsequences in \(L^1 \). Applying then the well-known result by Aldous and Fremlin [2], we select a subsequence \(\{x_{n_k}\} \subseteq \{x_n\} \) such that for some \(c > 0 \) and all \(a_k \in \mathbb{R} \)

\[
\left\| \sum_{k=1}^\infty a_k x_{n_k} \right\|_{L^1} \geq c \left\| (a_k) \right\|_2.
\]

Combining this inequality with the assumptions and with the embedding \(E \subseteq L^1 \), we conclude that the norms of \(E \) and \(L^1 \) are equivalent on the infinite-dimensional subspace \(\{x_{n_k}\} \) in \(E \).

In other words, the canonical embedding \(I: E \to L^1 \) is not strictly singular. Assuming that \(E \not\supseteq G \), by [7, Theorem 2], we obtain that this embedding is not disjointly strictly singular. This means that there is a sequence of pairwise disjoint functions \(\{h_i\}_{i=1}^\infty \) from \(E \) such that the norms of \(E \) and \(L^1 \) are equivalent on the closed linear span \([h_i]\). But this is a contradiction. Indeed, if the norms of \(E \) and \(L^1 \) were equivalent on the span \([h_i]\) of pairwise disjoint functions \(h_i, i = 1, 2, \ldots \), one can easily check that there exists \(\delta > 0 \) such that for every \(i = 1, 2, \ldots \)

\[
m(\{t \in [0, 1] : |h_i(t)| > \delta \|h_i\|_E\}) > \delta
\]

(see also [18, Theorem 1]). Clearly, the sets

\[
U_i(\delta) := \{t \in [0, 1] : |h_i(t)| > \delta \|h_i\|_E\}, \quad i = 1, 2, \ldots,
\]

are pairwise disjoint and \(m(U_i(\delta)) > \delta \). Hence,

\[
m\left(\bigcup_{i=1}^\infty U_i(\delta) \right) = \sum_{i=1}^\infty m(U_i(\delta)) = \infty,
\]

which is not possible because the union \(\bigcup_{i=1}^\infty U_i(\delta) \) is contained in \([0, 1]\) (other proofs of this and some close results see in [24] and [4, Corollary 3]). \(\square \)
Corollary 1. Suppose E is a separable r.i. space on $[0,1]$ such that $E \not\approx G$. Then, if E contains a sequence $\{x_n\}_{n=1}^{\infty}$ equivalent in E to the unit vector ℓ^2-basis, there is a disjoint sequence $\{x_n\}_{n=1}^{\infty} \subset E$ with the same property.

Proof. By Proposition 11, we may assume that $\|x_n\|_E/\|x_n\|_{L^1} \to \infty$ as $n \to \infty$. Then, by the Kadec-Pełczyński alternative [18], there is a subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that for some disjoint sequence $\{z_j\} \subset E$ we have

$$\|x_{n_j} - z_j\|_E \to 0 \quad \text{as} \quad j \to \infty.$$

Since $\{x_n\}$ is equivalent in E to the unit vector ℓ^2-basis, applying now the principle of small perturbations (see e.g. [11, Theorem 1.3.9]), we can assume that $\{z_j\}_{j=1}^{\infty}$ is equivalent in E to the ℓ^2-basis as well. \qed

It is clear that for every r.i. space E on $[0,1]$ Rosenthal’s space U_E (as a subspace of Z_E) contains a subspace isomorphic to ℓ^2. Hence, if $U_E \subsetneq E$, the space E must share the above property. So, if a r.i. space E does not contain a subspace isomorphic to ℓ^2, U_E cannot be embedded isomorphically into E, which implies that $E \not\approx Z_E$. So, if E is a separable r.i. space such that $E \not\approx G$ and it does not contain disjoint sequences equivalent to the unit vector basis of ℓ^2, then $U_E \subsetneq E$ (see Corollary 1). In particular, if $p > 2$, the separable part $(\exp L^p)_0$ of the exponential Orlicz space $\exp L^p$ has the latter properties since each disjoint sequence of this space contains a subsequence equivalent to the unit vector basis of c_0 (see, e.g., [27]). As a result, we obtain the simplest examples of r.i. spaces E such that $E \not\approx Z_E$.

Further, it is known that, if a r.i. space E is not equal to $L^\infty(0,1)$ up to an equivalent renorming, Rosenthal’s space U_E contains a complemented subspace of Z_E isomorphic to ℓ^2 [16, Lemma 8.7 and subsequent Remark]. Therefore, if we know that $E \approx Z_E$, then E must contain a complemented subspace, which is isomorphic to ℓ^2 as well. According to [16, Proposition 8.17], there are some Orlicz spaces, “close” to L^1, that fail to contain such subspaces and hence that are not isomorphic to Z_E (in fact, they are not isomorphic to any r.i. space on $(0,\infty)$; see [16, Corollary 8.15]). The simplest example of such a space is the Orlicz space L_{F_α}, where $F_\alpha(u)$ is an Orlicz function equivalent to the function $u \log^\alpha u$ for large $u > 0$, where $0 < \alpha < 1/2$ (see also a discussion in the concluding part of Section 1).

Here, we prove results showing that the existence of complemented subspaces isomorphic to ℓ^2 does not guarantee that U_E is isomorphically embedded into E and, a fortiori, that $E \approx Z_E$. Specifically, we will provide examples of Lorentz spaces containing plenty of complemented subspaces isomorphic to ℓ^2, but without subspaces isomorphic to the corresponding Rosenthal’s spaces.

First, we introduce a lattice version of a notion from [26, see p. 293]. We say that a Banach lattice E has the disjoint Q_2-property (in brief, $E \in DQ_2$) whenever there is a constant $C_E > 0$ (depending only on E) such that given a disjoint sequence $\{h_n\}$ in E with $\|h_n\|_E = 1$, which is equivalent to the unit vector ℓ^2-basis, there exists a subsequence $\{h_n\} \subset \{h_n\}$ that is C_E-equivalent to the unit vector ℓ^2-basis.
Let a Banach lattice E have the $\mathcal{D}Q_2$-property (with the constant C_E). Suppose that $\{x_n\}_{n=1}^{\infty} \subset E$ is a disjoint sequence, which is equivalent to the unit ℓ^2-basis and semi-normalized (i.e., $C^{-1} \leq \|x_n\|_E \leq C$ for some $C > 0$ and all $n = 1, 2, \ldots$). Then, it is obvious that $\{x_n\}_{n=1}^{\infty}$ contains a subsequence, which is C'_E-equivalent to the unit vector ℓ^2-basis, where $C'_E := C_F \cdot C$.

Theorem 3. Let E be a separable r.i. space, $E \in \mathcal{D}Q_2$. If $U_E \subset \subset E$, then $E \supseteq G$.

Proof. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of disjoint subsets of $(0, \infty)$ satisfying conditions (2). Then, for every $l \in \mathbb{N}$, there are pairwise disjoint sets $S_i^l \subset \mathbb{N}$, $i = 1, 2, \ldots$, such that

$$\sum_{n \in S_i^l} m(A_n) = \frac{1}{l}.$$

Denote $B_i^l := \bigcup_{n \in S_i^l} A_n$, $i = 1, 2, \ldots$. Consider the block-basis $\{\chi_{B_i^l}\}_{i=1}^{\infty}$ of $\{\chi_{A_n}\}_{n=1}^{\infty}$. According to definition of the norm in Z_E (see (3)), each set consisting of l distinct functions $\chi_{B_i^l}$ is isometrically equivalent in Z_E to the set $\{\chi((i-1)/l, i/l)\}_{i=1}^{l}$ in E, i.e., for all distinct $i_1, \ldots, i_l \in \mathbb{N}$ and $a_j \in \mathbb{R}$

$$\sum_{j=1}^{l} a_j \chi_{B_j^l} \bigg\|_{Z_E} = \left\| \sum_{i=1}^{l} a_i \chi((i-1)/l, i/l) \right\|_E$$

(cf. [26] Corollary 8).

On the other hand, the sequence $\{\chi_{B_i^l}\}_{i=1}^{\infty}$ is C_l-equivalent in Z_E to the unit vector ℓ^2-basis. Indeed, for arbitrary $a_i \in \mathbb{R}$ there is a set $S'_i \subset \mathbb{N}$ with card $S'_i = l$, such that, with constants depending of l, we have

$$\sum_{i=1}^{\infty} a_i \chi_{B_i^l} \bigg\|_{Z_E} = \sum_{i \in S'_i} a_i \chi_{B_i^l} \bigg\|_E + \sum_{i \not\in S'_i} a_i \chi_{B_i^l} \bigg\|_{L^2} < C_l \left(\sum_{i \in S'_i} a_i \chi_{B_i^l} \bigg\|_{L^2} + \sum_{i \not\in S'_i} a_i \chi_{B_i^l} \bigg\|_{L^2} \right)$$

$$2C_l \sum_{i=1}^{\infty} a_i \chi((i-1)/l, i/l) \bigg\|_{L^2} = \frac{1}{\sqrt{l}} \| (a_i) \|_2.$$

From the hypothesis, there exists an isomorphism $T: U_E \to E$. Then, if $y_i^l := T(\chi_{B_i^l})$, $i = 1, 2, \ldots$, by (28), we have

$$\sum_{i=1}^{\infty} a_i y_i^l \bigg\|_E \|T\| \sum_{i=1}^{\infty} a_i \chi_{B_i^l} \bigg\|_{Z_E} \simeq \frac{1}{\sqrt{l}} \| (a_i) \|_2,$$

with constants depending on l and $\|T\|$.

In the case when $\|y_i^l\|_E \simeq \|y_i^l\|_{L_1}$, $i = 1, 2, \ldots$, for some $l \in \mathbb{N}$, all the conditions of Proposition 4 are satisfied, and so the desired result follows.
Assume, conversely, that for each \(l \in \mathbb{N} \) we have
\[
\lim \inf_{i \to \infty} \frac{\|y_i^l\|_{L^1}}{\|y_i^l\|_E} = 0.
\]
Denoting \(u_i^l := (1/\phi_E(1/l))y_i^l \), \(i, l = 1, 2, \ldots \), where \(\phi_E \) is the fundamental function of the space \(E \), we get
\[
\|T\|^{-1} \leq \|u_i^l\|_E \leq \|T\|, \quad i, l = 1, 2, \ldots,
\]
and clearly for every \(l = 1, 2, \ldots \)
\[
\lim \inf_{i \to \infty} \frac{\|u_i^l\|_{L^1}}{\|u_i^l\|_E} = 0.
\]
Then again, by the Kadec-Pelczyński alternative \[18\], for each \(l = 1, 2, \ldots \) there is subsequence \(\{u_i^l\} \subseteq \{u_i^l\} \), where a sequence \(\{i_j\} \) depends on \(l \in \mathbb{N} \), such that for some disjoint sequence \(\{z_j^l\} \subseteq E \) it holds
\[
\|u_{i_j}^l - z_j^l\|_E \to 0 \quad \text{as} \quad j \to \infty.
\]
Applying the principle of small perturbations (see e.g. \[1\] Theorem 1.3.9), we can assume that \(\{z_j^l\}_{j=1}^\infty \) is 2-equivalent in \(E \) to the sequence \(\{u_{i_j}^l\}_{j=1}^\infty \), and so, by \[30\],
\[
(2\|T\|)^{-1} \leq \|z_j^l\|_E \leq 2\|T\|, \quad j, l = 1, 2, \ldots,
\]
which means that for every \(l = 1, 2, \ldots \) the sequence \(\{z_j^l\}_{j=1}^\infty \) is semi-normalized with a constant independent of \(l \). Moreover, taking into account \[29\], we see that \(\{z_j^l\}_{j=1}^\infty \) is equivalent in \(E \) to the unit vector \(\ell^2 \)-basis (with constants depending on \(l = 1, 2, \ldots \)). Since \(E \in \mathcal{D}Q_2 \), for each \(l \in \mathbb{N} \) the sequence \(\{z_j^l\}_{j=1}^\infty \) contains a further subsequence \(\{z_{j_k}^l\}_{k=1}^\infty \) (where \(\{j_k\} \) also depends on \(l \in \mathbb{N} \)) that is \(C'_E \)-equivalent to the unit vector \(\ell^2 \)-basis. Clearly, then the sequence \(\{u_{i_{j_k}}^l\}_{k=1}^\infty \) is \(2C'_E \)-equivalent to the same basis, i.e.,
\[
\sum_{k=1}^\infty a_k u_{i_{j_k}}^l \bigg|_E \lesssim 2C'_E \|a_k\|_2.
\]
Moreover, from \[27\] and the above notation it follows that
\[
\sum_{k=1}^l a_k u_{i_{j_k}}^l \bigg|_E \lesssim \frac{\|T\|}{\phi_E(1/l)} \sum_{k=1}^l a_k \chi_{B_{i_{j_k}}^l} \bigg|_{Z_E} = \frac{1}{\phi_E(1/l)} \sum_{j=1}^l a_j \chi_{((j-1)/l, j/l)} \bigg|_E
\]
for all \(a_j \in \mathbb{R} \). Combining this with \[31\], we obtain
\[
\sum_{j=1}^l a_j \chi_{((j-1)/l, j/l)} \bigg|_E \asymp \phi_E(1/l) \left(\sum_{j=1}^l a_j^2 \right)^{1/2}, \quad l \in \mathbb{N},
\]
with constants independent of \(l \in \mathbb{N} \) and \(a_j \in \mathbb{R} \).
Next, one can easily check that equivalence (32) implies that \(\phi_E(t) \approx t^{1/2}, 0 < t \leq 1 \). Indeed, for every \(l \in \mathbb{N} \) we have

\[
\chi(0,1) = \sum_{i=1}^{l} \chi((i-1)/l, i/l],
\]

whence, by (32),

\[
(33) \quad 1 = \left\| \chi(0,1) \right\|_E \approx \sqrt{l} \phi_E(1/l).
\]

Therefore, \(\phi_E(1/l) \approx 1/\sqrt{l}, l \in \mathbb{N} \). Combining this together with the quasi-concavity of \(\phi_E \), we obtain that \(\phi_E(t) \approx \sqrt{t}, 0 < t \leq 1 \). As a consequence, from (32) it follows that

\[
\left\| \sum_{j=1}^{l} a_j \chi((j-1)/l, j/l) \right\|_E \approx \frac{1}{\sqrt{l}} \left(\sum_{j=1}^{l} a_j^2 \right)^{1/2}
\]

\[= \left\| \sum_{j=1}^{l} a_j \chi((j-1)/l, j/l) \right\|_{L^2}, \quad l \in \mathbb{N},\]

with constants independent of \(l \in \mathbb{N} \) and \(a_j \in \mathbb{R} \). Clearly, this implies that \(E \approx L^2 \), and the desired result follows. \(\Box \)

Theorem 4. Let \(E \) be a separable r.i. space on \([0,1]\) such that both \(E \) and \(E' \) have the \(DQ_2 \)-property. If \(E \approx Z_E \), then \(G \subseteq E \subseteq G' \).

Proof. It follows from Theorem 3 that we need only to prove that \(E \subseteq G' \).

Suppose that \(T \) is an isomorphism from \(Z_E \) onto \(E \). Clearly, then \(T^* \) is an isomorphism from \(E^* \) onto \((Z_E)^* \). Since \(E \) is separable, we have \(E^* = E' \) and, by Lemma 1, \(Z_E \) is a separable space with \((Z_E)^* = (Z_E)' = Z_{E'} \). Thus, \(E' \approx Z_{E'} \), and hence, by Theorem 3, \(E' \supseteq G \), which implies \(E \subseteq E'' \subseteq G' \). \(\Box \)

Let \(1 \leq p \leq \infty \). Recall that a Banach lattice \(E \) is said to be \(p \)-disjointly homogeneous (\(p \text{-DH} \)) if every disjoint normalized sequence contains a subsequence equivalent to the unit vector \(\ell^p \)-basis (\(c_0 \)-basis if \(p = \infty \)). Moreover, \(E \) is called uniformly \(p \text{-DH} \) if there is a constant \(C_E \), which depends only on \(E \), such that from every disjoint normalized sequence \(\{x_n\} \) we can select a subsequence \(\{x_{n_k}\} \subseteq \{x_n\} \), which is \(C_E \)-equivalent to the \(\ell^p \)-basis (for a detailed account of these properties see the survey \([13]\) and references therein).

Every \(p \text{-DH} \) Banach lattice for \(1 < p < \infty \) is reflexive \([3]\). Also, it is obvious that each uniformly \(2 \text{-DH} \) lattice has the \(DQ_2 \)-property.

Theorem 5. Let \(E \) be a uniformly \(2 \text{-DH} \) r.i. space on \([0,1]\). Suppose that at least one of the following conditions holds:

(i) Rosenthal’s space \(\mathcal{U}_E \) is isomorphically embedded into the space \(E \);
(ii) \(E \) is isomorphic to a r.i. space on \((0, \infty)\).

Then, \(E \supseteq G \).

Moreover, if additionally the Köthe dual \(E' \) is uniformly \(2 \text{-DH} \) and \(E' \) satisfies at least one of the conditions (i) and (ii), then \(G \subseteq E \subseteq G' \).
Proof. Since E is a uniformly 2-$\mathcal{D}\mathcal{H}$, then the condition (i) implies the embedding $E \supseteq G$ by Theorem 3.

Let now E be isomorphic to a r.i. space Y on $(0, \infty)$. Denote $x_{n,i} := \chi_{[(i-1)/n,i/n)}$, $n, i \in \mathbb{N}$, and assume first that, for every $n \in \mathbb{N}$, the sequence $\{x_{n,i}\}_{i=1}^{\infty}$ is equivalent in Y to the unit vector ℓ^2-basis. Then, if T is an isomorphism of Y onto E, each sequence $\{y_{n,i}\}_{i=1}^{\infty}$, $n \in \mathbb{N}$, where $y_{n,i} := T(x_{n,i})$, $n, i \in \mathbb{N}$, is equivalent in E to the unit vector ℓ^2-basis as well. In the case when $\|y_{n,i}\|_E \approx \|y_{n,i}\|_{L^1}$, $i = 1, 2, \ldots$, for some $n \in \mathbb{N}$, the desired result follows, as above, by Proposition 4. Hence, it remains to consider the case when for each $n \in \mathbb{N}$ we have

$$\liminf_{i \to \infty} \frac{\|y_{n,i}\|_{L^1}}{\|y_{n,i}\|_E} = 0.$$

Then, denoting $u_{n,i} := (1/\phi_E(1/n))y_{n,i}$, $i, n = 1, 2, \ldots$ and reasoning as in the proof of Theorem 4 we can find, for every $n \in \mathbb{N}$, a subsequence $\{u_{n,i}\}_{i=1}^{\infty}$, which is 2-equivalent in E to some disjoint semi-normalized (with a constant independent of n) sequence $\{z_{n,j}\}_{j=1}^{\infty}$. Thanks to the uniform 2-$\mathcal{D}\mathcal{H}$ property of E, passing if it necessary to a further subsequence, we can assume that there is a constant $D' > 0$ such that for every $n \in \mathbb{N}$ the sequence $\{u_{n,i}\}_{i=1}^{\infty}$ is D'-equivalent in Y to the unit vector ℓ^2-basis. On the other hand, for every $n \in \mathbb{N}$ the sequence $\{y_{n,i}\}_{i=1}^{\infty}$ (together with $\{x_{n,i}\}_{i=1}^{\infty}$ in Y) is B-symmetric in E for some $B > 0$. Hence, for every $n \in \mathbb{N}$ the sequence $\{u_{n,i}\}_{i=1}^{\infty}$ and hence the sequence $\{(1/\phi_E(1/n))x_{n,i}\}_{i=1}^{\infty}$ is D-equivalent in Y to the unit vector ℓ^2-basis for some $D > 0$, i.e.,

$$D^{-1}\phi_E(1/n)\|(a_i)\|_2 \leq \left\| \sum_{i=1}^{\infty} a_ix_{n,i} \right\|_Y \leq D\phi_E(1/n)\|(a_i)\|_2$$

for all $n \in \mathbb{N}$ and $(a_i) \in \ell^2$. Clearly, this implies that $Y = L^2(0, \infty)$ (see the concluding part of the proof of Theorem 4). Since $E \approx Y$ by condition, we infer that $E = L^2[0, 1]$ (with equivalence of norms), and so in this case everything is done.

Conversely, suppose that the sequence $\{y_{1,i}\}_{i=1}^{\infty}$ is not equivalent in Y to the unit vector ℓ^2-basis; then, the same is true also for all sequences $\{y_{n,i}\}_{i=1}^{\infty}$, $n \in \mathbb{N}$. As was said above, for every $n \in \mathbb{N}$ the sequence $\{y_{n,i}\}_{i=1}^{\infty}$ is B-symmetric in E for some $B > 0$. Moreover, since $\{x_{n,i}\}_{i=1}^{\infty}$, $n \in \mathbb{N}$, spans an 1-complemented subspace in Y (see e.g. [20] Ch. II, §3.2]), we can assume that, for every $n \in \mathbb{N}$, the span $[y_{n,i}, i \in \mathbb{N}]$ is a B-complemented subspace in E. Then, according to [16] Lemma 8.10, there is a constant $A' > 0$ such that for every $n \in \mathbb{N}$ the sequence $\{y_{n,i}\}_{i=1}^{\infty}$ is A'-equivalent in E to a disjoint sequence in E. Since the latter space is uniformly 2-$\mathcal{D}\mathcal{H}$ and $\{x_{n,i}\}_{i=1}^{\infty}$ is a B-symmetric sequence in E, we conclude that there is a constant $A > 0$ such that for every $n \in \mathbb{N}$ the sequence $\{(1/\phi_E(1/n))x_{n,i}\}_{i=1}^{\infty}$ is A-equivalent in Y to the unit vector ℓ^2-basis. As above, this yields that $Y = L^2(0, \infty)$ and hence $E = L^2[0, 1]$ (with equivalence of norms), which completes the proof. \qed
It is well known that every Lorentz space \(\Lambda_2(\varphi) \) has the uniform 2-\(\mathcal{D} \mathcal{H} \) property (see e.g. [13, Theorem 5.1]). Therefore, since the embedding \(\Lambda_2(\varphi) \supseteq G \) is equivalent to the condition \(\sum_{k=1}^{\infty} \varphi(e^{-k}) < \infty \) (see e.g. [6, Lemma 3]), we get the following consequence of Theorem 5.

Corollary 2. Let \(\varphi \) be an increasing concave function on \([0,1]\) with \(\varphi(0) = 0 \). Suppose that at least one of the following conditions holds:

(i) Rosenthal’s space \(U_{\Lambda_2(\varphi)} \) is isomorphically embedded into the space \(\Lambda_2(\varphi) \);

(ii) the space \(\Lambda_2(\varphi) \) isomorphic to a r.i. space on \((0, \infty)\).

Then, \(\sum_{k=1}^{\infty} \varphi(e^{-k}) < \infty \).

In particular, we get the following new examples of r.i. spaces on \([0,1]\) that are not equivalent to any r.i. spaces on \((0, \infty)\).

Corollary 3. Let \(0 < \alpha \leq 1 \). Then, the Lorentz space \(\Lambda_2(\log^{-\alpha}(e/u)) \) has the following properties:

(a) any disjoint sequence in \(\Lambda_2(\log^{-\alpha}(e/u)) \) contains a subsequence 2-equivalent to the unit vector basis of \(l^2 \), which spans a 2-complemented subspace in \(\Lambda_2(\log^{-\alpha}(e/u)) \);

(b) Rosenthal’s space \(U_{\Lambda_2(\log^{-\alpha}(e/u))} \) fails to be isomorphically embedded into \(\Lambda_2(\log^{-\alpha}(e/u)) \) and \(\Lambda_2(\log^{-\alpha}(e/u)) \) is not isomorphic to any r.i. space on \((0, \infty)\).

5. **Existence of an isomorphic embedding** \(T: U_E \to E \): the case when \(T(\chi_{A_n}), n = 1, 2, \ldots, \) are independent.

In the final section, we treat the special case when there is an isomorphic embedding \(T: U_E \to E \) such that the functions \(T(\chi_{A_n}), n = 1, 2, \ldots, \) are independent symmetrically distributed r.v.’s.

Let \(\{A_n\}_{n=1}^{\infty} \) be a sequence of disjoint measurable subsets of \((0, \infty)\) satisfying conditions (2). In the same way as in the beginning of the proof of Theorem 3 for every \(m \in \mathbb{N} \), we find pairwise disjoint sets \(S^i \subseteq \mathbb{N}, i = 1, 2, \ldots, \) such that \(\sum_{m \in S^i} m(A_n) = 1/l \) and denote \(B^i = \bigcup_{m \in S^i} A_n, i = 1, 2, \ldots \).

Next, suppose that \(E \) is a r.i. space such that \(U_E \) is isomorphically embedded into \(E, T: U_E \to E \) is an isomorphism, \(y^i_l := T(\chi_{B^i}) \), \(i, l \in \mathbb{N} \). In contrast to the preceding section, we assume that sequences \(\{y^i_l\}_{l=1}^{\infty}, l \in \mathbb{N} \), do not contain “almost” disjoint subsequences, which means (see the proof of Theorem 3) that \(\| y^i_l \|_E \asymp \| y^i_l \|_{L^1}, i = 1, 2, \ldots, \) for each \(l \in \mathbb{N} \). Then, it is easy to check (see also [15]) that for every \(l \in \mathbb{N} \) there exists a constant \(\varepsilon_l > 0 \) such that

\[
m\left(\{ t : |y^i_l(t)| > \varepsilon_l \| y^i_l \|_E \} \right) \geq \varepsilon_l.
\]

However, we will need the following stronger condition: there are \(\alpha, \beta, \gamma > 0 \), an infinite sequence \(\{l_k\}_{k=1}^{\infty} \subset \mathbb{N} \), and a sequence of sets \(F_k \subseteq \mathbb{N}, k = 1, 2, \ldots, \) such that \(\gamma l_k \leq \text{card} F_k \leq l_k \) and for each \(i \in F_k \)

\[
m\left(\{ t : |y^i_{l_k}(t)| > \alpha \} \right) \geq \frac{\beta}{l_k}.
\]

Furthermore, let us consider the family \(\{B^i_{l_k}, i \in F_k, k \in \mathbb{N} \} \). One can readily check now that definition of the sets \(B^i_l, i, l \in \mathbb{N} \), and the conditions imposed on
the sets F_k, $k \in \mathbb{N}$, assure that the latter family satisfies requirements (2). Since Rosenthal’s space \mathcal{U}_E is invariant (up to isomorphism) on the particular choice of a sequence of sets satisfying (2)\cite{16} Lemma 8.7, without loss of generality, we can replace the initial sequence $\{A_n\}_{n=1}^\infty$ with the family $\{B_{i_k}^k, i \in F_k, k \in \mathbb{N}\}$.

Theorem 6. Let E be a r.i. space on $[0, 1]$ such that there exists an isomorphic embedding $T: \mathcal{U}_E \to E$. Suppose that there is a sequence $\{l_k\}_{k=1}^\infty \subset \mathbb{N}$ such that the functions $y_{i_k}^k := T(\chi_{B_{i_k}^k})$, $k, i \in \mathbb{N}$, are independent symmetrically distributed r.v.’s satisfying the above conditions (34). Then, the Kruglov operator K is bounded from E into E''.

Moreover, there is a constant $C > 0$ such that

$$(35) \quad \varphi_E \left(\frac{\beta}{2l_k} \right) \leq \frac{C}{l_k}, \quad k = 1, 2, \ldots,$$

where φ_E is the fundamental function of the space E.

Proof. First, for each $k = 1, 2, \ldots$, we compare the finite sequences $\{y_{i_k}^k\}_{i \in F_k}$ and $\{u_{i_k}^k\}_{i \in F_k}$, where $u_{i_k}^k$ are, as above, independent symmetrically distributed r.v.’s equimeasurable with the characteristic functions $\chi_{B_{i_k}^k}$, $k, i = 1, 2, \ldots$. From (34) it follows that for all $\tau > 0$

$$m \left(\{ t : |y_{i_k}^k(t)| > \tau \} \right) \geq \beta m \left(\{ t : |u_{i_k}^k(t)| > \tau \} \right), \quad i \in F_k, k = 1, 2, \ldots$$

Hence, applying the result of Kwapien-Rychlik,\cite{28} Ch.V, Theorem 4.4.], for all $\tau > 0$ and $a_{i_k}^k \in \mathbb{R}$, we get

$$m \left(\left\{ t : \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k u_{i_k}^k(t) > \tau \right\} \right) \leq \frac{2}{\beta} m \left(\left\{ t : \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k y_{i_k}^k(t) > \beta \alpha \tau \right\} \right).$$

So, by\cite{20} Ch.II, §4.3, Corollary 2],

$$\left\| \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k u_{i_k}^k \right\|_E \leq \frac{2}{\beta^2 \alpha} \left\| \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k l_{i_k} \right\|_E.$$

On the other hand, since T is an isomorphism, we have

$$(36) \quad \left\| \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k y_{i_k}^k \right\|_E \leq \frac{\|T\|}{\beta} \left\| \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k \chi_{B_{i_k}^k} \right\|_{Z_E}.$$

Combining the last inequalities, we infer that

$$\left\| \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k u_{i_k}^k \right\|_E \leq \frac{2\|T\|}{\beta^2 \alpha} \left\| \sum_{k=1}^\infty \sum_{i \in F_k} a_{i_k}^k \chi_{B_{i_k}^k} \right\|_{Z_E}.$$

Applying now Theorem I (to the family $\{B_{i_k}^k, i \in F_k, k \in \mathbb{N}\}$), we complete the proof of the first assertion.
Further, since card $F_k \leq l_k$ and $m(B^k_i) = 1/l_k$, from (36) it follows that
\[
\left\| \sum_{i \in F_k} y^k_i \right\|_E \leq C' \left\| \sum_{i \in F_k} \chi_{B^k_i} \right\|_E \leq C', \quad k = 1, 2, \ldots
\]
Moreover, taking into account the fact that y^k_i, $i \in F_k$, are independent symmetrically distributed r.v.’s, the inequality card $F_k \geq \gamma l_k$ and (34), we obtain
\[
\left\| \sum_{i \in F_k} y^m_k \right\|_E \geq \alpha m_k \cdot \left\| \chi_{\bigcap_{i \in F_k} \{y^m_k \geq \alpha\}} \right\|_E
\]
\[
= \alpha \gamma m_k \cdot \varphi_E \left(\prod_{i \in F_k} m(\{y^m_k \geq \alpha\}) \right)
\]
\[
\geq \alpha \gamma m_k \cdot \varphi_E \left(\left(\frac{\beta}{2m_k} \right)^{\gamma m_k} \right).
\]
Combining these inequalities, we obtain (35).

\[\square \]

Corollary 4. Let E be the exponential Orlicz space $\text{Exp}L^p$, $p > 0$. Then, there exists an isomorphic embedding $T: U_E \to E$, satisfying the conditions of Theorem 6 if and only if $0 < p \leq 1$.

Proof. One can easily check that, for $E = \text{Exp}L^p$, we have $\varphi_E(u) \asymp \log^{-1/p}(e/u)$, $0 < u \leq 1$. Therefore, a direct calculation shows that (35) is fulfilled in this case if and only if $0 < p \leq 1$. Moreover, if $0 < p \leq 1$, the space $\text{Exp}L^p$ has the Kruglov property (see [12, the beginning of §2.4] and [10, 4.3.1]), which implies that there exists an isomorphic embedding $T: U_E \to E$, satisfying the conditions of Theorem 6 (indeed, we take u^m_i for y^m_i, an arbitrary sequence of positive integers $\{m_k\}_{k=1}^\infty$ and any set of cardinality m_k for F_k, $k = 1, 2, \ldots$). Thus, the desired result follows.

\[\square \]

References

[1] F. Albiac, N. J. Kalton, Topics in Banach space theory (Springer, New York, 2006).
[2] D. Aldous and D. Fremlin, Colacunary sequences in L-spaces, Studia Math. 71 (1982), 297–304.
[3] C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, 2006.
[4] S. V. Astashkin, Disjointly strictly singular inclusions of symmetric spaces, Math. Notes 65 (1999), 3–12.
[5] S. V. Astashkin, Rademacher series and isomorphisms of rearrangement invariant spaces on the semi-axis, J. Funct. Anal. 260 (2010), 195–207.
[6] S. V. Astashkin, Compact and strictly singular operators in rearrangement invariant spaces and Rademacher functions, Positivity (to appear).
[7] S. V. Astashkin, F. L. Hernández, and E. M. Semenov, Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces, Studia Math. 193 (2009), 269–283.
[8] S. V. Astashkin and F. A. Sukochev, Sums of independent random variables in rearrangement invariant spaces: an operator approach, Isr. J. Math., 145 (2005), 125–156.
[9] S. V. Astashkin and F. A. Sukochev, Series of independent, mean zero random variables in rearrangement-invariant spaces having the Kruglov property, J. Math. Sci. (N.Y.) 148 (2008), 795–809.
[10] S. V. Astashkin and F. A. Sukochev, *Independent functions and the geometry of Banach spaces*, Russian Math. Surveys 65 (2010), 1003–1081.

[11] C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, Boston, 1988.

[12] M. Sh. Braverman, *Independent random variables and rearrangement invariant spaces*, London Math. Soc. Lecture Note Ser., 194, Cambridge Univ. Press, Cambridge 1994.

[13] T. Fiegel, W. B. Johnson, and L. Tzafriri, *On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces*, J. Approx. Theory 13 (1975), 395–412.

[14] J. Flores, F. L. Hernández, and P. Tradacete, *Disjointly homogeneous Banach lattices and applications*. Ordered Structures and Applications: Positivity VII. Trends in Mathematics, Springer, 179–201 (2016).

[15] P. Hitczenko and S. Montgomery-Smith, *Measuring the magnitude of sums of independent random variables*, Ann. Probab. 29 (2001), 447–466.

[16] W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, *Symmetric structures in Banach spaces*, Mem. Amer. Math. Soc., 19 (1979) 298 pp.

[17] W. B. Johnson and G. Schechtman, *Sums of independent random variables in rearrangement invariant function spaces*, Ann. Probab. 17 (1989), 789–808.

[18] M. I. Kadec and A. Pelczyński, *Bases, lacunary sequences and complemented subspaces in the spaces L_p*, Studia Math. 21 (1961/1962), 161–176.

[19] M. A. Krasnoselskii and Ya. B. Rutikii, *Convex Functions and Orlicz Spaces*, Noordhoff, Groningen, 1961.

[20] S. G. Krein, Ju. I. Petunin and E. M. Semenov, *Interpolation of Linear Operators* (Amer. Math. Soc., Providence R. I., 1982).

[21] V. M. Kruglov, *A remark on the theory of infinitely divisible laws*, Teor. Veroyatn. i Primezn. 15 (1970), 331–336 (in Russian).

[22] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces vol. II* (Springer-Verlag, Berlin, 1979).

[23] B. S. Mityagin, *The homotopy structure of the linear group of a Banach space*, Russian Math. Surveys 25 (1970), 59–103.

[24] S. Ya. Novikov, *A characteristic of subspaces of a symmetric space*, in: Studies in the Theory of Functions of Several Variables (in Russian), Yaroslavl State Univ. (1980), 140–148.

[25] Y. Raynaud, *Complemented Hilbertian subspaces in rearrangement invariant function spaces*, Illinois J. Math. 39 (1995), 212–250.

[26] H. P. Rosenthal, *On the subspaces of L_p (p > 2) spanned by sequences of independent random variables*, Israel J. Math. 8 (1970), 273–303.

[27] E. V. Tokarev, *On subspaces of some symmetric spaces*, Teor. Funkcii, Functional. Anal. i Prilozhen. 24(1975), 156–161 (in Russian).

[28] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, *Probability distributions in Banach spaces*, Kluwer Academic Publ. (1991).