An Informed Model of Personal Information Release in Social Networking Sites

Anna Squicciarini
College of Information Science and Technology
Penn State University
University Park, PA 16802
E-mail: asquicciarini@psu.edu

Christopher Griffin
Applied Research Laboratory
Penn State University
University Park, PA 16802
E-mail: griffinch@ieee.org

Abstract—The emergence of online social networks and the growing popularity of digital communication has resulted in an increasingly amount of information about individuals available on the Internet. Social network users are given the freedom to create complex digital identities, and enrich them with truthful or even fake personal information. However, this freedom has led to serious security and privacy incidents, due to the role users’ identities play in establishing social and privacy settings.

In this paper, we take a step toward a better understanding of online information exposure. Based on the detailed analysis of a sample of real-world data, we develop a deception model for online users. The model uses a game theoretic approach to characterizing a user’s willingness to release, withhold or lie about information depending on the behavior of individuals within the user’s circle of friends. In the model, we take into account both the heterogeneous nature of users and their different attitudes, as well as the different types of information they may expose online.

I. INTRODUCTION

Online social networks (OSNs) such as Facebook, Myspace, and Google+ allow individuals to present themselves and establish or maintain connections with others. Users articulate their social networks by creating and managing content, social connections, and a possibly large amount of personal information. A typical OSN in fact allows users to create connections to friends, thereby sharing with them a wide variety of personal information. These connections are often based on the alleged identities and properties of the individuals populating the OSN. Users of social media sites can, however, generate accounts containing unverified information. On the one hand, this allows the users to avoid identification and surveillance or observation of any kind. On the other one, the ability to generate unverified accounts on most of these sites, renders social relationships potentially weak, if based on fake identities. Further, unverified accounts may and are often used by malicious users to carry out disruptive activities hidden behind fake identities [10]. To date, while some work has studied the incentives behind information disclosures in OSNs [9], [18], [26], little is known about identities misrepresentations.

In this paper, we speculate that information revelation in OSN is a complex process where multiple contrasting influences are in play: not only privacy attitudes, but also social pressure and personal attitudes are at stake. Focusing on three types of users’ behavior related to information revelation: truthful information sharing, information withholding and deception, we study the effect of misrepresentation in these environments by means of a game theoretical model.

To ground our model, we conducted an extensive empirical study, collecting data about users’ common behavior and their attitude toward personal information disclosure. The study involved almost 300 subjects, all active social network users.

Our study reveals important insights on users’ attitudes and practices. In particular, our results show that users’ decisions to lie or withhold information are not strongly influenced by privacy concerns. Rather, results show strong correlations between peer-pressure and attitudes toward lying. Users who feel peer-pressured are less likely to withhold their information, especially their whereabouts. The quest for gaining or maintaining popularity also seems to play an important role, in particular with respect to the amount of information users choose to reveal. Also, we identified that users’ identity information is managed differently depending upon the perceived sensitivity of the information. For example, for basic demographic information, users tend not to lie in the main social network account, as this is typically revealed in the course of social interactions and may be easy to verify by social network peers. On the other hand, information that is closer to the users’ personal sphere, for example, social relationships, whereabouts, etc. is revealed mostly by users who are in search or popularity and/or are searching for self-affirmation in the network. In addition, we find that misrepresentation interacts with measures of morality, suggesting that users do not associate lies in social networks with unethical behavior, and that, where lying is considered unethical, they are more likely to withhold information, as a form of boundary control. Finally, we found that users’ behavior is mostly influenced by inner circles of close online friends, regardless of the actual number of social connections users have.

The analysis of the responses is used as input to inform our qualitative model of user information sharing, withholding and deception. In particular, building on the finding that users treat information differently, the model presupposes that individuals release, withhold or lie about certain classes of information differently, and that each user behaves according to an individual payoff function. The payoff function is constructed...
to take into account the identified influential decision factors: morality, peer pressure, privacy and popularity. The output of the function is also affected by the behavior of a circle of close friends - as we found strong evidence of self-validation and peer influence in our study. We provide an example model using evolutionary dynamics, which we posit influences a user’s behavior as he interacts with his OSN overtime and more accurately understands the true nature of his (personal) objective function.

The paper is organized as follows. Next section reviews relevant literature. Section [III] discusses our empirical study. Section [IV] presents our model. We illustrate the various types of users and information in our examples in Section [V]. We conclude the paper in Section [VI] with pointers to future research directions.

II. LITERATURE REVIEW

Digital identity constitutes one of the building blocks of Web 2.0 technologies, ranging from social networking to e-commerce. Problems related to digital identity management and protection have been tackled by both the computer science community and by information scientists. From the computational standpoint, a variety of digital identity and trust management mechanisms have been developed to allow users to create and maintain complex digital personas [3], [9] although there has been little work on the topic of digital identity validation and trust in the context of social computing.

From a social science perspective, various studies have explored identity sharing behavior in social network sites and the risk of over exposure (notable examples are [2], [9], [18], [26]). Research studies have shown that users in online environments rely on a variety of cues to make determinations about one another; however, all these cues are not deemed equally credible. For instance, Goffman [12] notes that identity cues can be intentionally given or unintentionally revealed, and that humans are more likely to place greater weight on those cues that are perceived to be unintentional as opposed to strategically constructed. This ability to engage in deceptive self-presentation online is compounded when users do not share a social network and therefore have less access to information triangles such as mutual friends who might confirm or deny information. Donath [10] argues that a shared social network can provide explicit or implicit verification of identity claims. Therefore, as highlighted in [18], a highly connected network such as Facebook should encourage more truthful profiles, or misrepresentations that are playful or ironic as opposed to being intentionally deceitful.

Burke et al. [7] studied user motivations for contributing in social networking sites, based on server log data from Facebook. They found that newcomers who see their friends contributing go on to share more content themselves. Furthermore, those who were initially inclined to contribute, receiving feedback and having a wide audience, were also predictors of increased sharing.

Complementary to the body of work on identification and information revelation, is the work on anonymity in social network sites [5], [19], [27]. The emphasis in these works is however on algorithmic approaches for non-disclosure and anonymity preservation, rather than on actual revelation. Finally, parallel to this body of work is the work on reputation [14], [29]. Reputation of digital identities and trust in online environments have been investigated by multiple research communities ranging from computer science [22] to economics [6], [24].

With respect to our methodology, our work employs analytical models. Analytical models for various security topics based on game, information and decision theories are rapidly growing in interest [15]. In particular, game theoretic approaches to reputation and trust first emerged in the economics literature (a typical example is [11]) and were then applied to online settings [1], [17], [21]. However, to the best of our knowledge, the only work analyzing social identities using analytical tools is from Alpcan and colleagues [4]. Alpcan’s work focuses on reputation and trust, where strategies are defined in terms of opinion, quantified through a simple cost function. As we discuss in the next sections, our focus is on validation and individual attitudes toward deception, rather than lies. Additionally, an interesting economically inspired work dealing with users’ privacy is discussed by Papadimitrou and colleagues [17], who propose a precise estimate of the value of the private information disclosed by a set of individuals, and a compensation for such information release that may induce users to release richer information. Yet, the model applies to a different set of applications, such as online surveys and e-commerce applications.

This work is part of our research effort on deception and information revelation in social networking sites. In [25] we studied the interaction of users and servers at the time of user registration, and used a game theoretical framework to describe a simple two-player general sum game describing the behavior of a server system (like Facebook) that provides utility to user. We showed that in the presence of a binding agreement to cooperate, most players will agree to share information. In [13], we investigated a simpler game model in which rewards for releasing information and costs for withholding information and lying were represented by arbitrarily chosen concave and convex functions. We showed for a specific instance of a payoff function that a symmetric Nash equilibria existed and was related to the automorphism class of the graph describing the interaction graph of the social network. This work substantially extends our previous work by more accurately modeling the qualitative nature of the user’s objective function through the incorporation of information in our survey. Our previous work was purely theoretical, and used a overly simplified the notion of identity. Identity was mainly considered as an atomic value, and therefore was focused on different aspects of information sharing in social networking sites (for example the registration of new users). We also incorporate a model of evolutionary dynamics to explain a user’s choices as he interacts with his social network and is exposed to his friend’s choices.
III. INFORMING THE MODEL THROUGH AN EXPLORATORY STUDY

In order to understand typical social network users’ attitudes and actions with respect to information disclosure, we conducted an exploratory study using real-world data. The specific aim of our study was to gain a deeper understanding of users identity-revealing actions, the peculiar features of average users, and the perceived understanding of identity on social sites.

A. Methods

We conducted a web-based survey, collecting a total of 296 responses. Respondents were recruited from two different undergraduate courses in the college of Information Science and Technology at the Pennsylvania State University. One extra credit point for the course was awarded for their participation in the study. The survey was constructed to study three specific aspects of users’ behavior: (1) privacy awareness, (2) attitude toward information withholding and practices (3) attitude toward lies and misrepresentation.

The respondents were aged between 20 and 35 (µ=23, sd=2.34). The respondents were 65% male and 35% female. 99.3% of them declared to have at least one account on social sites, and 12% declared to have more than one account on the same OSN. Participants were asked to indicate the social network they most often accessed: 95.3% most often accessed Facebook, while the remaining participants were distributed among Google+, Linkedin (6%) and Twitter. In terms of network usage frequency, 94% of the respondents accessed social network sites at least once a week, and 83.6% of those were daily users.

Considering that Facebook is one of the social networks that most heavily promotes personal information disclosure, our sample was deemed appropriate for this study. While the overall sample reflects a specific subset of the population, we notice that most of the active users in Facebook, according to recent statistics, are below 26 years old (and specifically in the 21-24 age range) ^.

The instrument also included five broad types of measures of perceived privacy, social pressure, and popularity (or social capital), which serve as dependent variables.

B. Measures

- **Deception** was our independent measure, and was measured by two sets of 4 items each. The first set focused on deceptive activities, and was measured on a 5 frequency rating scale (1=all of the time to 5=never). The second set of items related to the perception about deception (lies and withholding information on social networking sites). An example item is “Lying in social network is unethical”. These items were also rate using a Likert scale (5-point rating scale, where 1= strongly agree and 5=strongly disagree).

- **Usage** was measured using 6 different items. Three of the items where focused on frequency of usage and number of connections. The remaining items where added to ascertain the extent to which the participant engages in certain types of social interactions, e.g., posting images, giving feedback to other’s posts or images, sharing a url, tagging a video or an image. For these items, we used a frequency rating scale (1=never to 5=once or a few times a day)

- **Privacy Concerns**. Individual differences in privacy perceptions can be significant [30], [32]. Thus, we need to establish a baseline understanding about the awareness of and attitudes toward privacy protection by participants. In our survey, we included five questions to ask participants about their information disclosure behaviors and privacy concerns in Social Networking sites (Cronbach α = .71), rated on a Likert scale (5-point rating scale, where 1= strongly agree and 5=strongly disagree). An example item is "I have had concerns about the privacy of my data on Social Networks".

- **Pressure** was measured using 5 items (Cronbach α = .823), focusing on pressure of updating information (e.g. “I feel peer pressured to constantly update my Social Network profile”) and uploading content. The items measured perceived pressure from the social networking and from peers (e.g., “I need to update my profile often to be popular among my friends”)

- **Perceived Popularity** was measured by 6 items (Cronbach α = .732), focusing on the impact on one’s popularity (or social capital) upon passively being involved in the social interactions listed in the usage measures.

C. Findings

The main purpose of this study was to examine users attitudes towards deception in social networking sites.

Leveraging results from previous research studies [10], [18], we hypothesized that (h1) users in fact deceive in social networks.
networking sites, but mostly choose to portray truthful portions of their basic identity, which could be validated offline (e.g. the name or gender), and deceive or withhold information which may be deemed too personal or inappropriate for disclosure to the social network audience. We also hypothesized that participants decision to withhold information or lie would be influenced by (h2) their privacy inclination, (h3) their perceived pressure to be active on the social network site and (h4) their wish to be popular among peers. Finally, we were interested in learning whether users’ decision to withhold or lie would be connected with ethical choices. Here, we did not have an initial hypothesis, but were interested in exploring the correlations between morality and deception. We discuss our results in a detailed manner in the following.

1) h1: Frequency of Deception: We began with identifying whether deception is in fact significant. Table I presents the descriptive statistics of some of the study’s variables related to deception. As reported, a vast majority of the participants admit to having lied at least once, and also chose to withhold information (94% of respondents either agree or strongly agreed to have lied -the exact statistics are reported in the table). Figure 1 highlights the specific types of attributes users most often lie about. We further determined that users who are more likely to be involved in discussions and are therefore active in the social networking site report a lower frequency of lying (Pearson r=0.277, p=0.033), therefore reinforcing the well-known signaling theory identified by Donath [10]. The relationship with the “withholding question” shows a similar trend, but it is not statistically significant, therefore a conclusive statement on this relationship is not possible. Users also report it is easy to detect lies of their close social connections with whom they often interact with (µ = 2.61, sd. 0.912), again confirming that self-validation is effective in social networking sites.

2) h1: Types of Information Revealed: To further explore which pieces of information users are likely to withhold or lie about, we asked users to indicate their preferred action for six different personal pieces of information: location, gender, GPA, relationship status, telephone number, current occupation. We select properties that would be considered important and potentially sensitive for our participants, who were mostly students. Users were given the option to indicate for each attribute one of three choices: tell the truth, provide false information, do not put anything.

The responses, organized by attribute, are reported in Figure 2. In our survey, most of the participants claimed to misrepresent only specific pieces of information. In particular, our analysis confirms that highly interconnected users are likely to reveal basic identity properties, such as gender, age, etc. truthfully (Pearson .436, r=0.012). Information commonly deemed as private, such as telephone number and GPA, is instead mostly withheld, or misrepresented. Finally, there is some interesting variability with respect to location, current occupation and relationship status, where there is not a predominant choice. These results confirm our hypothesis (h1).

3) Influential factors of information sharing: The analysis of the factors influencing information sharing activities resulted in the following findings.

- h2: Privacy We first analyzed the responses related to privacy awareness, to get a sense of the respondents attitude toward information revelation and leakage in social networking sites. An initial notable result is that, despite the fact that most respondents maintained a detailed profile on their favorite social network site, many of them also demonstrated relatively high levels of privacy concern. The responses to the statement “I maintain a detailed profile on my main social network account” confirm that they maintain rich profiles (µ=1.97, std=0.96), and that they reveal their main identity for the most part (µ=2.01, std=0.45). Nevertheless, their responses to the statement “There is a high potential for loss involved in sharing personal information on Social Networks like Facebook” indicate their awareness of potential information leakage (µ = 1.80, std=0.81). We then tested our first hypothesis, i.e. whether lying or withholding information was related at all to the respondents level of privacy awareness. We conducted an exploratory least-squares multiple regression analysis, regressing their responses to question Q1, with their responses related to privacy concerns as predictors. None of these appeared to be strongly related.
The results lead to interesting findings. First, in general participants are concerned with their privacy on social networking sites and are aware of the potential loss of privacy; second, the results confirm the existence of phenomenon known as the privacy paradox [31], in which individuals state that they have privacy concerns, but behave in ways that seemingly contradict these statements by providing detailed information about themselves. Finally, our results show that privacy is not indicative of their choice to deceive, or withhold information.

- **h3: Pressure** Next, we investigated whether participants feeling peer pressured are more likely to deceive or withhold information. We first tested whether feeling peer pressured would be correlated with the amount of personal information displayed on the social networking site. We conducted a simple regression analysis, using the answer to the question “I feel peer pressured to constantly update my profile” as an independent variable, and their self-declared level of detailed social network profile as a dependent variable. The test shows that the more users agree to feeling pressured to update their profile, the more they claim to display a detailed profile (Pearson r=0.433, p=0.034). We then studied whether the information being revealed upon being pressured is truthful or not. We correlated Q1 and Q2 with our items related to popularity. Our results show that there is not a significant correlation between users’ perceived peer-pressure and their choice to deceive. However, there is a clear correlation between their choice to withhold information and their feeling of being peer pressured (Pearson r=0.163, p=0.03). That is to say, the more users feel peer pressured, the less likely they are to withhold information.

- **h4: Popularity** When correlated with measures relative to popularity, we obtained the following results. First, we correlated participants’ frequency of sharing content (e.g., images) in the social networking site with their perceived popularity gain by doing so. We obtained a significant correlation (Pearsons r=0.272, p=0.032). In line with previous studies in this space [18], this finding shows that the more users perceive certain social interactions to benefit their social capital, the more likely they are to pursue them. With respect to deception, the majority of participants disagreed to have lied to gain popularity or portray a different “self” (only 25% of respondents either agreed or strongly agreed to the question “I have put false information to appear different from my original self”). However, we discovered a significant correlation between their quest for popularity and their deceptive activities (Pearson r=0.2449, r=0.015), therefore confirming our hypothesis.

In summary, this study confirms that a social network user’s tendency to deceive for certain data types is highly correlated with his or her desire to portray a successful social image, and not statistically related to privacy concerns. In other terms, the perceived usefulness of the social network service increases online users willingness to disclose their personal information.

4) **Morality in Social Networking Sites:** Our results show non-obvious relation between lying or withholding information on a social networking site and morality.

The results of correlating social network lying (corresponding to Q1) with Q4 and Q5 are interesting, as they show opposite effects of thinking that lying on a social network is unethical and withholding information on a social network is unethical. A higher value for Q4 (meaning an individual disagrees that lying is unethical) predicts a higher frequency of putting up false information on a social networking site (Q1). However, a higher value for the withholding information questions (Q5) predicts a lower frequency of putting up false information. The linear equations obtained through regression analysis are reported in Figure 3. This result seems to reinforce the notion that lying on a social networking website and withholding information function as two completely different actions and that a user will choose one or the other based on an internal utility function.

5) **Inner Circles:** Some other interesting findings were related to the existence and importance users give to inner circles within their social network. Despite the complex social connections tying users together, users are most strongly influenced by a small set of connections with whom they interact regularly and whose opinion counts to them. By correlating Q7 and Q8 (Table III), we discovered that regardless of the number of social connections users have, most users check and believe their profile is checked by a parallel number of users (Pearson r=.521, p<0.001). Most of the actions (e.g., comments and feedback) users perform involve inner-circle users, who are the ones influencing users decisions about lying
IV. GAME THEORETIC MODEL OF USER BEHAVIOR

We build on the game theoretic approach to modeling users’ actions in a social network begun in [13], [25] to qualitatively explain the behavior observed in our experimental results.

We have identified that users treat types of information differently with respect to whether they disclose, withhold or deceive. Furthermore, we know that the behavior of users is highly dependent on the behavior of a small group of their immediate network neighbors.

Let $G = (V, E)$ be a user graph for a social network and suppose we have several classes of information $I = \{1, \ldots, m\}$. Let $x_i^{(j)} \in [0, 1]$ be the proportion of information type i that Player j will release and let $y_i^{(j)} \in [0, 1]$ be the proportion of information type i about which Player j withholds. Then $z_i^{(j)} \in [0, 1]$ is the proportion of information type i that Player j lies about. Then we have:

$$ x_i^{(j)} + y_i^{(j)} + z_i^{(j)} = 1 \quad (1) $$

Let:

$$ \bar{x}_i^{(j)} = \frac{1}{|N(j)|} \sum_{k \in N(j)} x_i^{(k)} \quad (2) $$

where $N(i)$ is the neighborhood of Player j in G. We make similar definitions for $\bar{y}_i^{(j)}$ and $\bar{z}_i^{(j)}$. These are the average network level of releasing, withholding and lying about information type i. In the presence of popularity measures (with respect to a given user’s circle of friends) Equation 2 can be modified to be a popularity weighted average with form:

$$ \bar{x}_i^{(j)} = \frac{1}{\sum_{k \in N(j)} p_k} \sum_{k \in N(j)} p_k x_i^{(k)} $$

Here p_k is the popularity weight for player k.

In [13], we assumed the existence of functions returning the reward for releasing information and costs for group deception and individual deception. We assumed these functions were concave, convex and convex (respectively), but provided no way to isolate their structure. We propose a richer model than the one in [13], which incorporates our observations from the empirical evaluation:

1) The more users interact with the network, the less likely they are to deceive (see Sect. III-C1).
2) Users perceive interactions with their social network as a mechanism for gaining popularity, a form of social capital (see Sect. III-C3).

For the remainder of this section, assume that we’ve fixed an information type (e.g. location, interest, age etc). Again leveraging our analysis (Section III-C3), we assume that five elements make up each user’s objective function:

1) Social capital gained from sharing information within the group,
2) Personal benefit gained from maintaining information privacy,
3) Personal cost from the discovery of deceptive information,
4) Moral cost from deceiving a group and
5) The cost associated with admitting information (in exchange for social capital).

The easiest way to understand the relationship of these elements is as a token based model in which each action, causes a token (or fraction thereof) to be deposited into a specific revenue or cost bucket. The proposed model for this system is illustrated in the Petri net [8] shown in Figure 4. Given space constraints, we cannot formally define Petri nets. In short, they are graphical token models in which transitions move and spread within the vertices of a graph structure. The interested reader should see Chapter 1 of [8].

In general, we can think of the Truth, Withhold and

![Fig. 4. A Petri net model of the accumulation of various components of the payoff associated to interacting in an online setting.](image)

Table III

ID	Question	Scale	Avg	St. Dev.
Q7	How many friends do you think typically check your profile	$1=\geq 150^\circ$, $2=\{100,150\}$, $3=\{50,100\}$, $4=\leq 50$	3.63	.658
Q8	How many friends do you check typically	$1=\geq 150^\circ$, $2=\{100,150\}$, $3=\{50,100\}$, $4=\leq 50$	3.53	.760
Q9	How many social connections do you have?	$1=\geq 150^\circ$, $2=\{100,150\}$, $3=\{50,100\}$, $4=\leq 50$	1.48	.901
Q10	How often do you visit your favorite social network site?	$1=\text{Once or a few times a day}$ $2=\text{Once or a few times a week}$ $3=\text{Once or a few times a month}$ $4=\text{Never}$	1.21	.464

TABLE III

SOCIAL NETWORK USAGE

...
transitions being uncontrolled or controlled by nature. (Moody [20] discusses control in Petri nets.) Alternatively, as shown in Figure 4, we can think of the user controlling the fractional weights on the transitions leading to the Truth, Withhold and Lie transitions. If the Petri net is continuous, then we can think of the weightings leaving the controlled transitions as providing the benefit or cost for each token (or fraction thereof). We let \(X^{(j)}, Y^{(j)} \) and \(Z^{(j)} \) be correlated random variables whose dynamics are chosen by Player \(j \). In general, \(X^{(j)} \) is 1 only if Player \(j \) releases a piece of information, \(Y^{(j)} \) is 1 only if Player \(j \) withholds information a piece of information and \(Z^{(j)} \) is 1 only if Player \(j \) deceives about a piece of information. Naturally, only one of these elements can be 1 at any given time \(t \) (thus we can think of these as being the outputs of a single discrete distribution) chosen by the player. At time \(t \), Player \(j \)'s stochastic payoff function is:

\[
\Pi^{(j)}(t) = w_1 \alpha(X^{(j)}(t), Z^{(j)}(t), x^{(j)}(t),t, \tau(t)) + w_2 \left(\beta(Y^{(j)}(t), y^{(j)}(t), tY^{(j)}(t) + \eta Z^{(j)}(t)) \right) - w_3 \gamma(Z^{(j)}(t), z^{(j)}(t), t, \tau(t)) - w_4 \zeta(Z^{(j)}(t)) - w_5 \theta(X^{(j)}(t)) \tag{3}
\]

In this expression:

- \(\alpha(X^{(j)}, Z^{(j)}, \bar{x}^{(j)}, \bar{z}^{(j)}, t) \) is a social capital function that provides the reward obtained by releasing a piece of information (true or false).
- \(\beta(Y^{(j)}, \bar{y}^{(j)}, t) \) is privacy capital function that provides the reward obtained by keeping a piece of information private.
- \(\gamma(Z^{(j)}, \bar{z}^{(j)}, t) \) is a cost function that yields the social price of lying about a piece of information.
- \(\theta \) is an admissions cost function for each piece of true information revealed.
- \(\zeta \) is a moral cost function associated with each lie told.
- \(\eta \) is a privacy gain function associated to each lie (since a lie may protect privacy irrespective of any other moral judgement).
- Finally \(\tau(t) \) is the probability that a lie will be discovered by the social group.

Over a period of time, the complete stochastic payoff function for Player \(j \) is:

\[
\Pi^{(j)} = \sum_{t=0}^{T} \rho^t \Pi^{(j)}(t) \tag{4}
\]

The variables \(w_i \ (i = 1, \ldots, 5) \) are the relative weights Player \(j \) places on each component of his objective function. We can also think of \(\tau \) as being a function of the total quantity of information (true and false) that has been released to the network:

\[
Q^{(j)}(s) = \sum_{t=0}^{s} X^{(j)}(t) + Z^{(j)}(t) \tag{5}
\]

This provides consistency with two observations reported in Section II-C.

1) Users who engage in their social network more frequently, tend to deceive less and.

2) The more information available about a user, the easier it is for him to be trapped in a lie.

The parameter \(\rho \) in Equation 4 is a discount factor chosen in the set \((0, 1)\). It is worth noting that \(\rho \) is only important if we wish to consider the limiting dynamics as \(T \to \infty \). When \(\rho < 1 \), the user recognizes that future rewards have less value than rewards more immediately. To relate the parameters \(x^{(j)}, y^{(j)} \) and \(z^{(j)} \) to Equation 4, we need to compute the expected value \(\mathbb{E} (\Pi^{(j)}) \). In the form given, this may be complex, since the functions defined in Equation 3 maybe non-linear, meaning we cannot pass the expectation operator through the expression.

The solution to the game is then defined by the simultaneous optimization problem:

\[
\forall j \quad \max \mathbb{E} \left(\Pi^{(j)}(x(t), y(t), z(t)) \right) \tag{6}
\]

subject to:

\[
x^{(j)}(t), y^{(j)}(t), z^{(j)}(t) \geq 0 \quad \forall t
\]

where \(x(t), y(t), z(t) \) are the vectors of decision variables for the players. Let

\[
\Omega = \prod_{j,t} \{ (x^{(j)}(t), y^{(j)}(t), z^{(j)}(t)) \in [0, 1]^3 : \begin{align*}
x^{(j)}(t) + y^{(j)}(t) + z^{(j)}(t) &= 1, \\
x^{(j)}(t), y^{(j)}(t), z^{(j)}(t) &\geq 0 \end{align*}\}
\]

This is the complete strategy space for all players over the course of time \(t \in [0, T] \). Any Nash equilibrium will be chosen from this strategy space. Theorem I of [23] provides the following (uninteresting) result:

Proposition IV.1. Suppose that \(\mathbb{E} (\Pi^{(j)}(x(t), y(t), z(t))) \) is concave for all \(j \) then there is a Nash equilibrium in \(\Omega \) for this game.

Remark IV.2. The uniqueness of a Nash equilibrium in this case is completely a function of the structure of specific objective functions.

We noted above that the structure of \(\mathbb{E} (\Pi^{(j)}(x(t), y(t), z(t))) \) maybe complex. By way of simplification, we can write a specific form of Equation 3 as:

\[
\Pi^{(j)}(t) = w_1 \alpha(x^{(j)}, z^{(j)}, \bar{x}^{(j)}, \bar{z}^{(j)}, t) \left(X^{(j)}(t) + (1 - \tau(t))Z^{(j)}(t) \right)
+ w_2 \left(\beta(y^{(j)}, \bar{y}^{(j)}, tY^{(j)}(t) + \eta Z^{(j)}(t)) \right) - w_3 \gamma(z^{(j)}, \bar{z}^{(j)}, t)\tau(t)Z^{(j)}(t) - w_4 \zeta(Z^{(j)}(t)) - w_5 \theta(X^{(j)}(t)) \tag{8}
\]

Here we replace the functions from Equation 3 with piecewise constant multipliers. We can then relate Equation 4 to the...
parameters \(x^{(j)}, y^{(j)} \) and \(z^{(j)} \), we note that:

\[
\mathbb{E} \left(\Pi^{(j)} \right) = \sum_{t=0}^{T} \rho^t, \]

\[
= w_1 \alpha(x^{(j)}, z^{(j)}, \bar{x}^{(j)}, \bar{z}^{(j)}, t) \left(x^{(j)}(t) + (1 - \tau(t))z^{(j)}(t) \right) + w_2 \left(\beta(y^{(j)}, \bar{y}^{(j)}, t)y^{(j)}(t) + \eta_2^{(j)}(t) \right) - w_3 \gamma(z^{(j)}, \bar{z}^{(j)}, t)\tau(t)z^{(j)}(t) - w_4 \zeta z^{(j)}(t) - w_5 \theta x^{(j)}(t) \]

That is, a user’s expected payoff after engaging in this game, is a function of the proportion of time he releases information, withholds information and lies about information. Moreover, because we assume the reward/cost multipliers \((\alpha, \beta \) and \(\gamma)\) are dependent on the group average rates of releasing, withholding and lying about information, the payoff to Player \(j\) is dependent on the choices of all other players in his circle of friends. Thus, a game dynamic is established. We study this simplified game form in the remainder of the paper.

V. EVOLUTIONARY DYNAMICS AND EXAMPLE

A critical problem with the game defined in the previous section is that individuals will never optimize their behavior according to it. An individual can estimate many of the parameters in the model, but will never make decisions based on the long run objective of maximizing his utility function. It will simply be impossible for an individual to choose an optimizing strategy ab initio, particularly without having a clear understanding of the strategies of other players. This is especially true if (as is likely the case) multiple Nash equilibria exist.

However, a user may engage in a more evolutionary model of decision making [25]:

1. At any time \(t \), Player \(j \) has a strategy \((x^{(j)}(t), y^{(j)}(t), z^{(j)}(t))\) with an initial strategy \((x^{(j)}(0), y^{(j)}(0), z^{(j)}(0))\).

2. At each time \(t \), Player \(j \) will solve the one-stage game derived from Equation [9] by finding a maximizing strategy \((\bar{x}^{(j)}, \bar{y}^{(j)}, \bar{z}^{(j)})\) with respect to the current observed strategies of the other players and the current parameters in the model.

3. Each player’s strategy is updated by the rule:

\[
x^{(j)}(t+1) = x^{(j)}(t) + \epsilon^{(j)} \left(\bar{x}^{(j)} - x^{(j)}(t) \right) \tag{10}
\]

\[
y^{(j)}(t+1) = y^{(j)}(t) + \epsilon^{(j)} \left(\bar{y}^{(j)} - y^{(j)}(t) \right) \tag{11}
\]

\[
z^{(j)}(t+1) = z^{(j)}(t) + \epsilon^{(j)} \left(\bar{z}^{(j)} - z^{(j)}(t) \right) \tag{12}
\]

Here \(\epsilon^{(j)}\) is a learning rate associated to the player, and is assumed to be small – that is, \(\epsilon^{(j)} \ll 1\). The dynamics given in Equations [10] - [12] are a discrete variation of the Jacobi iteration for finding equilibria in games (see e.g., [16]). At its core, this is just a form of gradient ascent.

Intuitively, each time a user makes a decision about a piece of information, he considers his knowledge of the other players and computes an optimal move for this time period. However, instead of changing his strategy completely, he modifies his strategy (learns) by a small amount in the direction of optimality. This is consistent with an individual who learns the average behavior of the social network.

A. Example

By way of example, assume we have a small clique of three friends on a social network (this is the graph governing Equation [2]). Consider the following multiplier definitions for use in Equation [9]. These functions are derived from a qualitative analysis of the data collected in the experiment described in the previous sections, and are intended to be simple token counting margin functions.

\[
\alpha(x^{(j)}, z^{(j)}, \bar{x}^{(j)}, \bar{z}^{(j)}) = \begin{cases} 1 & x^{(j)} + z^{(j)} \leq \bar{x}^{(j)} + \bar{z}^{(j)} \\ 0 & \text{otherwise} \end{cases} \tag{13}
\]

In this case, the social value of information is non-zero only if the information provided is in some way lower than the mean information provided by the group. That is to say, you can social capital only if you’re not posting more information than the group average. However, if the group average is high, you will accrue social capital the more you post.

\[
\beta(y^{(j)}, \bar{y}^{(j)}) = \begin{cases} 1 & y^{(j)} \geq \bar{y}^{(j)} \\ 0 & \text{otherwise} \end{cases} \tag{14}
\]

Here, the privacy value is non-zero only if the amount of information that is to be admitted is larger than average amount of information being admitted. Similarly, we can define:

\[
\gamma(z^{(j)}, \bar{z}^{(j)}) = \begin{cases} 1 & z^{(j)} \geq \bar{z}^{(j)} \\ 0 & \text{otherwise} \end{cases} \tag{15}
\]

In this case, the cost of a lie is only non-zero if the lie is in some sense more egregious than the average level of dishonesty. Finally, we can set: \(\zeta = 1\) and \(\theta = 1\).

Variations in the players behavior can then be created by modifying \(w_1, \ldots, w_5\) in Equation [9]. Finally, we assume that \(\tau\) increases linearly in time from \(0.1\) to \(0.9\). Recall, \(\tau\) is the probability that a lie can be detected by the social network. Thus, as time proceeds, it becomes more likely that a falsehood is detected because more information is available about each player [3].

We study three specific examples of the dynamics produced by this model to illustrate that even these (simple) dynamics are capable of qualitatively reproducing behavior observed in our study. In the first example, social capital is deemed more important than privacy \((w_1 = 1, w_2 = 0.25\) and \(w_5 = 0.125)\), but there is a stronger sense of morality \((w_3 = 0.5, w_4 = 1)\).

[1] Weibull’s book, [23] is an introduction to evolutionary game theory, which inspires the approach described herein. We are not proposing a classical evolutionary game. Instead, we are proposing an evolutionary mechanism applied to a game theoretic context that describes user learning.

[2] In a fully formalized model, we believe that \(\tau\) will be a function of \(Q\) (defined in Equation [5]), however for our simple studies, this is sufficient.
We assume three identical players connected by a complete graph with three vertices. Player evolution is illustrated in Figure 5. When we start the game with three players, each playing the strategy $x^{(j)} = 0.7$, $y^{(j)} = 0.2$ and $z^{(j)} = 0.1$, we see deception is removed from the system relatively quickly, while information hiding increases (replacing deception in the system). Notice the system converges to a stationary strategy near $x^{(j)} = 2/3$, $y^{(j)} = 1/3$ and $z^{(j)} = 0$. In simpler terms, these equilibrium points are consistent with our findings that social capital is much more important than the gain associated with privacy, because we see that there is a preference toward sharing information truthfully. This was observed in Section III-C3. It is also worth noting, that it can be shown numerically these are limiting Nash equilibria for this example.

By way of comparison, we can construct a game with less morality and even more importance associated to social capital (being obtained by any means necessary) with $w_1 = 2$, $w_2 = 0.25$, $w_3 = 0.25$, $w_4 = 0.125$ and $w_5 = 0.125$. Note, $w_4 = 0.125$ indicates a low moral penalty for lying. The evolution of the players is illustrated in Figure 6.

The dynamics in this game are different, than those of the first game. There is an initial, substantial, increase in the level of deception (when it is easy to lie) in order to obtain social capital. As it becomes more difficult to lie, the players return to a more truthful scenario that is easier to support. This example confirms the identified effects of the signaling theory in our dataset: users are less likely to deceive when they are heavily involved in social interactions (Section III-C1 and III-C2).

In our final example, we consider a highly moral player who puts less emphasis on social capital and substantial emphasis on information privacy. In this case, we have: $w_1 = 0.5$, $w_2 = 5$, $w_3 = 2$, $w_4 = 100$ and $w_5 = 3$. The results are illustrated in Figure 7. This objective function models a user who is highly moral deciding whether to release an information type that may be sensitive, such as GPA or dating status and illustrates the ability of the model to capture the various qualitative results observed in the survey. In particular, this result is consistent with the finding reported in Section III-C4. Withholding is used as a form of control when deception is considered unethical.

The proposed approach can also be used to study richer scenarios, including those with players that begin with different strategies and games that are played on distinct graph structures as was discussed in [13].

VI. FUTURE DIRECTIONS

In this work, we have shown an informed model on deception and misrepresentation in OSNs. The model is derived from a token counting approach modeled in a stochastic, continuous Petri net. This net is then used to derive an objective function for each player in which the payoff to a given player is a function not only of his decisions but also the decisions of his circle of friends. This leads to a game theoretic framework. We show that while this game has at least one Nash equilibria, it is more interesting to consider an evolutionary game dynamic in which players learn over time.
and converge to a stationary strategy.

We are left with a number of unsolved questions, that we plan to explore in the near future. First, we are interested in collecting more detailed data from real-world users, to deepen our understanding of users’ interactions and identity revelation processes. For example, in the current study we did not focus on the users’ actions, that result in identity disclosure. What are the typical passive social transactions (post an item on your page which may be silently consumed by those who’ve been given access to it) or active transactions (sharing, commenting on other’s content or status updates, give feedback) that lead to information revelation and/or to deception? How do different outcomes of such transactions affect social capital, and therefore result in truthful and untruthful information sharing? How do secondary (friend-of-friend, triad) relationships influence information sharing? Results obtained from these studies will guide the next step of our research on the model.

For example, using this information, we would like to determine the structural characteristics of the benefit and cost functions in Equation [4]. In addition to this, it would be useful to identify whether the dynamics described force the players to converge to an equilibrium of some type. We expect that convergence to an equilibrium point should occur, but it is not clear if this is a global property of all well-behaved payoff functions. As noted in [13] there can be an interaction between the properties of the graph on which the game is played and the number and type of symmetric equilibria. We have not explored this using the model presented in this paper, but we believe this is a necessary step in understanding the behavior of user dynamics in information expression in social networks.

ACKNOWLEDGEMENT

Portions of Dr. Griffin’s work were supported by the Army Research Office under Grant W911NF-11-1-0487.

REFERENCES

[1] K. Aberer and Z. Despotovic. On reputation in game theory application on online settings. 2004.
[2] S. Ahern, D. Eckles, N. S. Good, S. King, M. Naaman, and R. Nair. Over-exposed?: privacy patterns and considerations in online and mobile photo sharing. In CHI ’07: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 357–366. ACM, 2007.
[3] G.-J. Ahn, M. Ko, and M. Shehab. Privacy-enhanced user-centric identity management. In IEEE International Conference on Communications, pages 1–5, 2009.
[4] T. Alpcan, C. Örencik, A. Levi, and E. Savas. A game theoretic model for digital identity and trust in online communities. In AISACCS ’10: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pages 341–344. ACM, 2010.
[5] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Privacy in dynamic social networks. In WWW ’10: Proceedings of the 19th international conference on World wide web, pages 1059–1060. ACM, 2010.
[6] G. Bolton, E. Katok, and A. Ockenfels. How effective are online reputation mechanisms? Papers on Strategic Interaction 2002-25, Max Planck Institute of Economics, Strategic Interaction Group, May 2002.
[7] M. Burke, C. Marlow, and T. Lento. Feed me: motivating newcomer contribution in social network sites. In Proceedings of the 27th international conference on Human factors in computing systems, CHI ’09, pages 945–954. ACM, 2009.
[8] R. David and H. Alla. Discrete, Continuous, And Hybrid Petri Nets. Springer, 2005.
[9] J. DiMicco and D. Millen. Identity management: multiple presentations of self in facebook. In GROUP ’07: Proceedings of the 2007 international ACM conference on Supporting group work, pages 383–386, New York, NY, USA, 2007. ACM.
[10] J. Donath. Signals, truth and design. Forthcoming. (http://smg.media.mit.edu/people/judith/signalsTruthDesign.html), 2011.
[11] J. Ely, D. Furnenberg, and D. Levine. When is reputation bad? Games and Economic Behavior, pages 498–526, 2008.
[12] E. Goffman. The Presentation of Self in Everyday Life. 1959.
[13] C. Griffin and A. Squicciarini. Toward a game theoretic model of information release in social media with experimental results. In Proc. 2nd Workshop on Semantic Computing and Security, San Francisco, CA, USA, May 28 2012.
[14] T. Hogg and L. Adamic. Enhancing reputation mechanisms via online social networks. In EC ’04: Proceedings of the 5th ACM conference on Electronic commerce, pages 236–237, New York, NY, USA, 2004. ACM.
[15] IEEE. Third IEEE Conference on Decision theory and Game for Security, 2012. www.gamesec-conf.org.
[16] Y. Jin and G. Kesidis. Equilibria of a noncooperative game for heterogeneous users of an aloha network. IEEE Commun. Lett. Communications Letters, 6(7):282–284, 2002.
[17] J. Kleinberg, C. H. Papadimitriou, and P. Raghavan. On the value of private information. In Proc. of the 8th conference on Theoretical aspects of rationality and knowledge. TARK ’01, pages 249–257, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.
[18] C. A. Lampe, N. Ellison, and C. Steinfield. A familiar face(book): profile elements as signals in an online social network. In Proceedings of the SIGCHI conference on Human factors in computing systems, CHI ’07, pages 435–444. ACM, 2007.
[19] K. Liu and E. Terzi. Towards identity anonymization on graphs. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 93–106, New York, NY, USA, 2008. ACM.
[20] J. Moody. Petri Net Supervisors for Discrete Event Systems, PhD thesis, Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA, 1998.
[21] K. C. Nguyen, T. Alpcan, and T. Basar. Stochastic games for security in networks with interdependent nodes. CoRR, abs/1003.2440, 2010.
[22] P. Nurni. A bayesian framework for online reputation systems. In Telecommunications, 2006. AICT-ICTW ’06. International Conference on Internet and Web Applications and Services/Advanced International Conference on, page 121, February 2006.
[23] J. B. Rosen. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, 33(3):520–534, 1965.
[24] C. Shapiro. Consumer information, product quality, and seller reputation, 1982.
[25] A. C. Squicciarini, S. Sundareshwaran, and C. Griffin. A game theoretical perspective of users’ registration in online social platforms. In Accepted to Third IEEE International Conference on Privacy, Security, Risk and Trust, October 9 - 11 2011.
[26] F. Stutzman. An evaluation of identity-sharing behavior in social network communities. iDMAa Journal, 3(1), 2006.
[27] B. Thompson and D. Yao. The union-split algorithm and cluster-based anonymization of social networks. In ASIACCS ’09: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, pages 218–227, New York, NY, USA, 2009. ACM.
[28] J. W. Weibull. Evolutionary Game Theory. MIT Press, 1997.
[29] P. J. Windley, D. Daley, B. Cutler, and K. Tew. Using reputation to augment explicit authorization. In DIM ’07: Proceedings of the 2007 ACM workshop on Digital identity management, pages 72–81, New York, NY, USA, 2007. ACM.
[30] H. Xu, T. Dinev, H. J. Smith, and P. J. Hart. Examining the formation of individual’s privacy concerns: Toward an integrative view. In ICIS, page 6, 2008.
[31] H. Xu, R. Parks, C. Chu, and X. Zhang. Information disclosure and online social networks: From the case of facebook news feed controversy to a theoretical understanding. Proc. of the 16th Americas Conference on Information Systems, AMCIS 2010, 2010.
[32] M. Z. Yao, R. E. Rice, and K. Wallis. Predicting user concerns about online privacy. Journal of the American Society for Information Science and Technology (JASIST), 58(5):710–722, 2007.