The cloning of 3′-truncated preS/S gene from HBV genomic DNA and its expression in transgenic mice

Yi Ping Hu¹, Yu Cheng Yao², Jian Xiu Li², Xin Min Wang³, Hong Li³, Zhong Hua Wang¹ and Zhang Heng Lei³

Subject headings hepatitis B virus; gene expression; mice; transgene; polymerase chain reaction; DNA, recombinant; hepatoma

INTRODUCTION

Hepatitis B virus (HBV) is regarded as one of the main etiologic factors involved in the development of human hepatocellular carcinoma (HCC)¹⁻²⁰. The open reading frame (orf) of X gene of HBV encoded a transactivating factor is the evidence that strongly supported the notion that the X gene of HBV DNA integrated in HCC genomic DNA could contribute to the carcinogenesis of liver cells by activation of some related cellular genes in trans⁸⁻⁹. But it was found that the functional orf of X gene was absent in some HCCs harbouring HBV genomic DNA⁶⁻¹⁴. However, the 3′-truncated preS/S sequence of HBV DNA, which also encodes a transcriptional transactivation factor, was found in all analyzed HCCs harbouring HBV genomic DNA²⁰⁻²⁷. These findings indicate that transactivation of some cellular genes by the expression product of 3′-truncated preS/S sequence of HBV integrated in the genomic DNA of liver cells is a possible mechanism for HBV-associated oncogenesis¹¹. The transcriptional transactivity also can be produced in the cultured cells transfected with an artificial 3′-truncated preS/S gene of HBV genomic DNA¹¹. To explore the in vivo function of 3′-truncated preS/S region of HBV, we cloned the 3′-truncated preS/S region from wild-type HBV genomic DNA and constructed its expression vector for using in transgenic mice. Then, by using pronuclear microinjection method, we obtained two transgenic mouse lines expressing 3′-truncated preS/S region from 15 new born mice. These transgenic mouse lines are helpful to identify the function of the expression product of 3′-truncated preS/S in vivo and the relationship between 3′-truncated preS/S and HBV-associated oncogenesis.

MATERIALS AND METHODS

Materials

Plasmids Vectors pBR322HBV carrying wild-type HBV genomic DNA and pBluescript were preserved in our laboratory. Expression vector pcDNA3.1, containing MCV promoter was provided by Dr. Yu Hong-Yu.

Cells E. coli DH5α was preserved in our laboratory.

Animals C57BL/6 and BALB/c mice were preserved by our transgenic animal laboratory (SPF grade). All mice were maintained on a 14:10 light-dark schedule (lights off at 10 pm, on at 8 am.).

Main reagents Restriction endonucleases, T₄ DNA ligase and DNA large fragment (klenow) polymerase were purchased from Promega company. QIA quick gene gel kit and plasmid extraction kit were from QIA gene. Anti-HBV polyclonal antibody was purchased from Brightwell company.

PCR primers design and synthesis Primers were synthesized by Sangon. Positive primer: 5′GGCCAGA-GGCAAATCAGGTAGGAGG 3′, Negative primer: 5′TGGGTGAGGCAGTAGGTCGG- AACAGG 3′. The primers are from 1607 to 1934bp of HBV adr genomic DNA sequence, containing 327bp. We also used the T₃ primer, upstream the positive primer.

Methods

Plasmid construction A 2.0kb fragment, containing 3′-truncated preS/S of HBV genome, was cut out of pBR322HBV digested with XbaI and was subcloned into pBluescript, which was named pBluescript - Xba 2.0. The 3′-truncated preS/S region was obtained from pBluescript - Xba 2.0 digested with Bsr E II and xba I. Its 3′-end was filled with klenow fragment and dNTPs, and inserted into Bam HI site of expression vector pcDNA3.1 which also filled, named pcDNA3.1 PreS/S. Restriction endonucleases digesting and sequencing were used to identify the construction.
Transgenic mice The pcDNA3.1-PreS/S DNA was purified and dissolved in TE buffer (10mM Tris-HCl, 0.2mM EDTA, pH 7.5) at a final concentration of 1mg/L (~2000 copies/pl). After pronuclear microinjection, the eggs were implanted into oviducts of pseudopregnant recipients to enable further development before term.

DNA isolation To isolate tail fragments from 10-day-old mice, approximately one third of the tail was cut and placed into a screw-capped 1.5mL microcentrifuge tube containing 500µL of TB buffer. The tubes containing the tail fragments were incubated overnight at 55°C. They were extracted once with 500µL of 1:1 (v/v) equilibrated phenol-chloroform, and precipitated with 2 volumes of ethanol. After centrifugation, precipitates were resuspended in 500µL water.

DNA analysis The PCR amplification conditions were used with Taq DNA polymerase. For a 50µL reaction, mix the following components: 1µg template DNA, 0.5µL dNTP 10mm, 10u-Taq, 5µL PCR Buffer (10×), 41.5µL deionized water. We use the following cycling parameters: initial denaturation at 94°C for 5min; followed by 35 cycles at 94°C for 30s; 58°C for 30s; and 72°C for 1min; and then final extension at 72°C for 7min. The products were run on a 2% agarose gel.

Expression analysis The 100µL of blood was extracted from the mouse developed from a microinjected egg. After centrifuged in microfuge for 5min, the supernatants were isolated and analyzed by ELISA.

RESULTS

Clone of 3'-truncated preS/S and construction of its expression vector
The approximate 2.0kb fragment containing the preS/S was cloned from HBV genomic DNA, from which 3'-truncated preS/S region was cut out and subcloned into the expression vector pcDNA3.1, and then was identified by the restrictive enzyme and sequence analysis. The results showed that the structure was identical with our design (Figures 1 and 2).

![Figure 1](image_url) a: The HBV genomic sequence, cloned in pBR322. Positions of restriction site (B, Bam HI; Bs, Bst EII; X, Xba I; Xh, Xho I) b: 0.65kb fragment, containing the 3'-truncated preS/S. c: Construction of the vector (pcDNA3.1-preS/S) for expressing 3'-truncated preS/S.
Expression of 3'-truncated preS/S gene in transgenic mice

The serum samples were collected from the 2 mice harbouring the 3'-truncated preS/S region under the control of CMV promoter and the expression product of the recombinant gene in transgenic mice was analyzed by ELISA, in which the antibody against HBV preS1 was used as the first antibody. The results showed that 2 of them were positive for PreS1 (Table 1). Following the founders conformed, a series of expression analysis was carried out at different time points during the development. It was found that the 3'-truncated preS/S gene could be stably expressed in the transgenic mice.

DISCUSSION

The full-length preS/S sequence integrated in nearly all HCCs can’t show any trans-activity. However, one copy of the preS/S sequence with 3'-truncation could show a definite trans-activity[10]. We constructed the expression vector of 3'-truncated preS/S gene, which can be expressed in cultured mammalian cells. So this vector should be very useful for exploring the biological function of expression product of 3'-truncated preS/S gene and for identifying whether 3'-truncated preS/S gene in HCCs is a causative factor of HBV-associated oncogenesis.

During the process of generating transgenic mice, the miscarriage rate and mortality rate seemed to be much higher than that in the producing transgenic mice harbouring other genes[28-30]. This phenomenon indicates that beside the some common reasons for the death of transgenic mice there might be some other factors. It is possible that there are some effects of the trans-activation of the expression product of the 3'-truncated preS/S like those of the 3'-truncated preS/S intergrated in HCCs of human being on the develop mient of mouse embryos and its early growing of the pups after birth.

The 2 transgenic mouse founders could express 3'-truncated preS/S sequences stably. These results indicate that the 3'-truncated preS/S is integrated in their genomic DNA, which is similar to those existing in the HCCs of human being. So we believe that the 2 transgenic mouse lines can be employed as the model for exploring the in vivo function of the expression product of 3'-truncated preS/S and relationship between 3'-truncated preS/S and HBV-associated oncogenesis.

REFERENCES

1. Kekule AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Kosh y R. The preS2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature, 1990:343:457-460

2. Wang WL, Gu GY, Hu M. Expression and significance of HBV genes and their antigens in human primary intrahepatic cholangiocarcinoma.
World J Gastroentero, 1998;4:392-396
3 Zhong S, Wen SM, Zhang DF, Wang QL, Wang SQ, Ren H. Sequencing of PCR amplified HBV DNA pre-c and c regions in the 2.2.15 cells and antiviral action by targeted antisense oligonucleotide directed against sequence. World J Gastroentero, 1998;4:434-436
4 Tang RX, Guo FG, Zeng LY, WangYW, Wang YL. Detection of HBV DNA and its existence status in liver tissues and peripheral blood lymphocytes from chronic hepatitis B patients. World J Gastroentero, 1999;5:359-361
5 Guo SP, Ma ZS, Wang WL. Construction of eukaryotic expression vector of HBV x gene. World J Gastroentero, 1999;5:351-352
6 Beasly RP, Hwang LY. In viral hepatitis and liver disease. 1984: 209-214
7 Koshy R, Koch S, von Loringhoven FA, Kahmann R, Murray L. In the production of transgenic mice expressing hepatitis B virus surface antigen. Nature, 1984;306:629-632
8 Ogston CW, Jonak GJ, Golger CE, Astrin SM, Summers J. Cloning and structure analysis of integrated woodchuck hepatitis virus sequence from hepatocellular carcinoma. Cell, 1982;29:385-394
9 Fowler MJP, Thomas HC, Monjardino J. Cloning and analysis of integrated hepatitis B virus DNA of the adr subtype derived from a human primary liver cell carcinoma. J Gen Virol, 1986;67:771-775
10 Imai M, Hoshi Y, Okamoto H, Matsu T, Tsurimoto T, Matsubara K, Miyakawa Y, Mayumi M. Free and integrated forms of hepatitis B virus DNA in human hepatocellular carcinoma cells (PLCI, 342) propagated in nude mice. J Cell Biol, 1986;105:3555-3560
11 Shaal Y, Garcia PD, Schellekens H, Schaller H. Infectious hepatitis B virus from cloned DNA of known nucleotide sequence. Proc Natl Acad Sci USA, 1985;82:891-895
12 Dejean A, Bouguerelet L, Grzeschik KH, Tiollais P. Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature, 1986;322:70-72
13 Koike K, Kobayashi M, Mizusawa H, Yoshida E, Yaginuma K, Taira M. Rearrangement of the surface antigen gene of hepatitis B virus integrated in the human hepatoma cell lines. J Virol, 1986;59:731-734
14 Lei ZH, Li JX, Yu HY, Wang XM, Sun W, Pan XH, Hao GR, Wang XP, Pu JI, HuYP. Generation of transgenic mice harbouring hepatitis B (ayw subtype). Dier Junyi Daxue Xuebao, 1997;18:201-204
15 Yaginuma K, Kobayashi M, Yoshida E, Koike K. Hepatitis B virus integration in hepatocellular carcinoma DNA: duplication of cellular flanking sequences at the integration site. Proc Natl Acad Sci USA, 1985;82:4458-4462
16 Choo KB, Liu MS, Chang PC, Wu SM, Su MW, Pan CC, Han SH. Analysis of six distinct integrated hepatitis B virus sequences cloned from the cellular DNA of a human hepatocellular carcinoma. Vinology, 1986;154:405-408
17 Hachouch M, Farza H, Simon D, Tiollais P, Pourcel C. Maternal infection of hepatitis B virus x gene as antigen expression in transgenic mice correlates with de novo methylation. Nature, 1987;329:454-456
18 Seto E, Yen TSB, Peterlin BM, Ou JH. Trans activation of the human immunodeficiency virus long terminal repeat by the hepatitis B virus X protein. Proc Natl Acad Sci USA, 1988;85:8286-8290
19 Haslinger A, Karin M. Upstream promoter element of the human metallothionein-II gene can act as an enhancer element. Proc Natl Acad Sci USA, 1985;82:8572-8576
20 Will H, Cattaneo R, Darai G, Deinhardt F, Scheller H. Infectious hepatitis B virus from cloned DNA of known nucleotide sequence. Proc Natl Acad Sci USA, 1985;82:891-895
21 Cattaneo R, Will H, Hernandez N, Schaller H. Signals regulating hepatitis B virus surface antigen transcription. Nature, 1983;305:336-338
22 Ogston CW, Jonak GJ, Golger CE, Astrin SM, Summers J. Cloning and structural analysis of integrated woodchuck hepatitis virus sequences from hepatocellular carcinoma. Cell, 1982;29:385-394
23 Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf H. Signals regulating hepatitis B virus infection. Proc Natl Acad Sci USA, 1987;84:4739-4743
24 Lipp A, Schilling A, Wiest S, Laux G, Bornkamm GW. Target sequences for cis acting regulation within the dual promoter of the human c-myc gene. Moland Cellul Biol, 1987;7:1393-1400
25 Kaneko S, Miller RH. X region specific transcript in mammalian hepatitis B virus infected liver. J Virol, 1988;62:3979-3984
26 Standring DN, Rutter WJ, Varmus HE, Ganem D. Transcription of the hepatitis B surface antigen gene in cultured murine cells initiates within the presurface region. J Virol, 1984;50:563-571
27 Budkowska A, Dubreuil P, Riottot MM, Briantais MJ, Pillot J. A monoclonal antibody enzyme immunoassay for the detection of epitopes encoded by the pre S2 region of the hepatitis B virus genome. J Immunol Met, 1987;97:77-85
28 HuYP, Qin SZ, Xu YF, Liu ZD. Tissue specific expression of the hepatitis B virus X protein. Cell, 1987;7:1393-1400
29 HuYP, Qiuxf, Xue JL. Polymers enzyme chain reaction (PCR) in detection of transgenic mice harbouring human clotting factor IX cDNA. Chin Sci Bullle, 1994;39:1133-1138
30 Chen XS, Wang GJ, Cai X, Yu HY, HuYP. Oxymatrine downregulate HBV gene expression in HBV transgenic mice. Dier Junyi Daxue Xuebao, 1999;20:746-748

Edited by You DY
Proofread by Zhu LH and Ma JY