WaveCorr: Correlation-savvy Deep Reinforcement Learning for Portfolio Management

Saeed Marzban Erick Delage
GERAD & Department of Decision Sciences, HEC Montréal, Montreal, Canada
saeed.marzban@hec.ca, erick.delage@hec.ca

Jonathan Yumeng Li
Telfer School of Management, University of Ottawa, Ottawa, Canada
jonathan.li@telfer.uottawa.ca

Jeremie Desgagne-Bouchard Carl Dussault
Evovest, Montreal, Canada

Abstract

The problem of portfolio management represents an important and challenging class of dynamic decision making problems, where rebalancing decisions need to be made over time with the consideration of many factors such as investors’ preferences, trading environments, and market conditions. In this paper, we present a new portfolio policy network architecture for deep reinforcement learning (DRL) that can exploit more effectively cross-asset dependency information and achieve better performance than state-of-the-art architectures. In particular, we introduce a new property, referred to as asset permutation invariance, for portfolio policy networks that exploit multi-asset time series data, and design the first portfolio policy network, named WaveCorr, that preserves this invariance property when treating asset correlation information. At the core of our design is an innovative permutation invariant correlation processing layer. An extensive set of experiments are conducted using data from both Canadian (TSX) and American stock markets (S&P 500), and WaveCorr consistently outperforms other architectures with an impressive 3%-25% absolute improvement in terms of average annual return, and up to more than 200% relative improvement in average Sharpe ratio. We also measured an improvement of a factor of up to 5 in the stability of performance under random choices of initial asset ordering and weights. The stability of the network has been found as particularly valuable by our industrial partner.

1 Introduction

In recent years, there has been a growing interest in applying Deep Reinforcement Learning (DRL) to solve dynamic decision problems that are complex in nature. One representative class of problems is portfolio management, whose formulation typically requires a large amount of continuous state/action variables and a sophisticated form of risk function for capturing the intrinsic complexity of financial markets, trading environments, and investors’ preferences.

In this paper, we propose a new architecture of DRL for solving portfolio management problems that optimize a Sharpe ratio criterion. While there are several works in the literature that apply DRL for portfolio management problems such as [Moody et al. 1998, He et al. 2016, Liang et al. 2018] among others, little has been done to investigate how to improve the design of a Neural Network...
(NN) in DRL so that it can capture more effectively the nature of dependency exhibited in financial
data. In particular, it is known that extracting and exploiting cross-asset dependencies over time is
crucial to the performance of portfolio management. The neural network architectures adopted in
most existing works, such as Long-Short-Term-Memory (LSTM) or Convolutional Neutral Network
(CNN), however, only process input data on an asset-by-asset basis and thus lack a mechanism
to capture cross-asset dependency information. The architecture presented in this paper, named
as WaveCorr, offers a mechanism to extract the information of both time-series dependency and
cross-asset dependency. It is built upon the WaveNet structure [Oord et al., 2016], which uses dilated
causal convolutions at its core, and a new design of correlation block that can process and extract
cross-asset information.

In particular, throughout our development, we identify and define a property that can be used to guide
the design of a network architecture that takes multi-asset data as input. This property, referred to
as asset permutation invariance, is motivated by the observation that the dependency across assets
has a very different nature from the dependency across time. Namely, while the dependency across
time is sensitive to the sequential relationship of data, the dependency across assets is not. To put
it another way, given a multivariate time series data, the data would not be considered the same if
the time indices are permuted, but the data should remain the same if the asset indices are permuted.
While this property may appear more than reasonable, as discussed in section 3, a naive extension
of CNN that accounts for both time and asset dependencies can easily fail to satisfy this property.
To the best of our knowledge, the only other works that have also considered extracting cross-asset
dependency information in DRL for portfolio management are the recent works of Zhang et al. [2020]
and Xu et al. [2020]. While Zhang et al.’s work is closer to ours in that it is also built upon the idea
of adding a correlation layer to a CNN-like module, its overall architecture is different from ours
and, most noticeably, their design does not follow the property of asset permutation invariance and
thus its performance can vary significantly when the ordering of assets changes. As further shown
in the numerical section, our architecture, which has a simpler yet permutation invariant structure,
outperforms in many aspects Zhang et al.’s architecture. The work of Xu et al. [2020] takes a very
different direction from ours, which follows a so-called attention mechanism and an encoder-decoder
structure. A more detailed discussion is beyond the scope of this paper.

Overall, the contribution of this paper is three fold. First, we introduce a new property, referred to
as asset permutation invariance, for portfolio policy networks that exploit multi-asset time series
data. Second, we design the first portfolio policy network, named WaveCorr, that accounts for asset
dependencies in a way that preserves this invariance. This achievement relies on the design of an
innovative permutation invariant correlation processing layer. Third, and most importantly, we present
evidence that WaveCorr significantly outperforms state-of-the-art policy network architectures using
data from both Canadian (TSX) and American (S&P 500) stock markets. Specifically, our new
architecture leads to an impressive 5%-25% absolute improvement in terms of average annual return,
up to more than 200% relative improvement in average Sharpe ratio, and reduces, during the period of
2019-2020 (i.e. the Covid-19 pandemic), by 16% the maximum daily portfolio loss compared to the
best competing method. Using the same set of hyper-parameters, we also measured an improvement
of up to a factor of 5 in the stability of performance under random choices of initial asset ordering
and weights, and observe that WaveCorr consistently outperforms our benchmarks under a number of
variations of the model: including the number of available assets, the size of transaction costs, etc.
Overall, we interpret this empirical evidence as a strong support regarding the potential impact of the
WaveCorr architecture on automated portfolio management practices, and, more generally, regarding
the claim that asset permutation invariance is an important NN property for this class of problems.

The rest of the paper unfolds as follows. Section 2 presents the portfolio management problem and
risk averse reinforcement learning formulation. Section 3 introduces the new property of “asset
permutation invariance” for portfolio policy network and presents a new network architecture based
on convolution networks that satisfies this property. Finally, Section 4 presents the findings from our
numerical experiments. We finally conclude in Section 5.
2 Problem statement

2.1 Portfolio management problem

The portfolio management problem consists of optimizing the reallocation of wealth among many available financial assets including stocks, commodities, equities, currencies, etc. at discrete points in time. In this paper, we assume that there are \(m \) risky assets in the market, hence the portfolio is controlled based on a set of weights \(\mathbf{w}_t \in \mathbb{R}^m := \{ \mathbf{w} \in \mathbb{R}^m | \sum_{i=1}^m w_i^t = 1 \} \), which describes the proportion of wealth invested in each asset. Portfolios are rebalanced at the beginning of each period \(t = 0, 1, ..., T - 1 \), which will incur proportional transaction costs for the investor, i.e., commission rates are of \(c_s \) and \(c_p \), respectively. We follow Jiang et al. [2017] to model the evolution of the portfolio value and weights (see Figure 1). Specifically, during period \(t \) the portfolio value and weights start at \(p_{t-1} \) and \(\mathbf{w}_{t-1} \), and the changes in stock prices, captured by a random vector of asset returns \(\boldsymbol{\xi}_t \in \mathbb{R}^m \), affect the end of period portfolio value \(p_t^t := p_{t-1}^t \mathbf{\xi}_t^t \mathbf{w}_{t-1}^t \), and weight vector \(\mathbf{w}_t := (p_{t-1}^t/p_t^t)\mathbf{\xi}_t^t \mathbf{w}_{t-1}^t \), where \(\cdot \) is a term-wise product. The investor then decides on a new distribution of his wealth \(\mathbf{w}_t \), which triggers the following transaction cost:

\[
c_s \sum_{i=1}^m (p_i^t w_i^t - p_{t-1}^t w_{t-1}^i)^+ + c_p \sum_{i=1}^m (p_i^t w_i^t - p_{t-1}^t w_{t-1}^i)^+.
\]

Denoting the net effect of transaction costs on portfolio value with \(\nu_t := p_t^t/p_{t-1}^t \), as reported in Li et al. [2018] one finds that \(\nu_t \) is the solution of the following equations:

\[
\nu_t = f(\nu_t, \mathbf{w}_t', \mathbf{w}_t) := 1 - c_s \sum_{i=1}^m (w_i^t - w_{t-1}^i)^+ - c_p \sum_{i=1}^m (w_i^t - w_{t-1}^i)^+.
\]

This, in turn, allows us to express the portfolio’s log return during the \(t \) th period as:

\[
\xi_{t+1} := \ln(p_{t+1}^t/p_t^t) = \ln(\nu_t(p_{t+1}^t/p_t^t)) = \ln(\nu_t(\mathbf{w}_t', \mathbf{w}_t)) + \ln(\mathbf{\xi}_{t+1}^t \mathbf{w}_t)
\]

where we make explicit the influence of \(\mathbf{w}_t' \) and \(\mathbf{w}_t \) on \(\nu_t \).

We note that in Jiang et al. [2017], the authors suggest to approximate \(\nu_t \) using an iterative procedure. However, we actually show in Appendix A that \(\nu_t \) can easily be identified with high precision using the bisection method.

2.2 Risk-averse Reinforcement Learning Formulation

In this section, we formulate the portfolio management problem as a Markov Decision Process (MDP) denoted by \((\mathcal{S}, \mathcal{A}, r, P) \). In this regard, the agent (i.e. an investor) interacts with a stochastic environment by taking an action \(a_t \equiv \mathbf{w}_t \in \mathbb{R}^m \) after observing the state \(s_t \in \mathcal{S} \) composed of a window of historical market observations, which include the latest stock returns \(\mathbf{\xi}_t \), along with the final portfolio composition of the previous period \(\mathbf{w}_t' \). This action results in the immediate stochastic reward that takes the shape of an approximation of the realized log return, i.e. \(r_t(s_t, a_t, s_{t+1}) := \ln(f(1, \mathbf{w}_t', \mathbf{w}_t)) + \ln(\mathbf{\xi}_{t+1}^t \mathbf{w}_t) \approx \ln(\nu_t(\mathbf{w}_t', \mathbf{w}_t)) + \ln(\mathbf{\xi}_{t+1}^t \mathbf{w}_t) \), for which a derivative is easily obtained. Finally, \(P \) captures the assumed Markovian transition dynamics of the stock market and its effect on portfolio weights: \(P(s_{t+1}|s_t, a_t, s_{t+1}) = P(s_{t+1}|s_t, a_t) \).

Following the works of Moody et al. [1998] and Almahdi and Yang [2017] on risk averse DRL, our objective is to identify a deterministic trading policy \(\mu_\theta \) (parameterized by \(\theta \)) that maximizes the
expected value of the Sharpe ratio measured on \(T\)-periods log return trajectories generated by \(\mu_\theta\). Namely:

\[
\max_\theta J_F(\mu_\theta) := \mathbb{E}_{s_{t+1} \sim P(s_{t+1} | s_t, \mu_\theta(s_t))} \left[SR(r_0(s_0, \mu_\theta(s_0), s_1), ..., r_{T-1}(s_{T-1}, \mu_\theta(s_{T-1}), s_T)) \right]
\] \(2\)

where \(F\) is some fixed distribution and

\[
SR(r_{0:T-1}) := \frac{(1/T) \sum_{t=0}^{T-1} r_t}{\sqrt{(1/(T-1)) \sum_{t=0}^{T-1} (r_t - (1/T) \sum_{t=0}^{T-1} r_t)^2}}.
\]

The choice of using the Sharpe ratio of log returns is motivated by modern portfolio theory (see Markowitz [1952]), which advocates a balance between expected returns and exposure to risks, and where it plays the role of a canonical way of exercising this trade-off [Sharpe, 1966]. While it is inapt of characterizing downside risk, it is still considered a “gold standard of performance evaluation” by the financial community (Bailey and Lopez de Prado, 2012). In Moody et al. [1998], the trajectory-wise Sharpe ratio is used as an estimator of the instantaneous one in order to facilitate evaluation “by the financial community” [Bailey and Lopez de Prado, 2012]. In Moody et al. [1998], the trajectory-wise Sharpe ratio is used as an estimator of the instantaneous one in order to facilitate the use in RL. A side-benefit of this estimator is to offer some control on the variations in the evolution of the portfolio value which can be reassuring for the investor.

In the context of our portfolio management problem, since \(s_t\) is composed of an exogeneous component \(s_t^{ex}\) which includes \(\xi_t\) and an endogeneous state \(\omega_t\) that becomes deterministic when \(\alpha_t\) and \(s_{t+1}^{ex}\) are known, we have that:

\[
J_F(\mu_\theta) := \mathbb{E}_{s_{t+1} \sim P(s_{t+1} | s_t, \beta(s_t))} \left[SR(r_0(s_0^\theta, \mu_\theta(s_0^\theta), \bar{s}_1^\theta), ..., r_{T-1}(\bar{s}_{T-1}^\theta, \mu_\theta(s_{T-1}^\theta), \bar{s}_T^\theta)) \right]
\]

where \(\beta(s_t)\) is an arbitrary policy, and where the effect of \(\mu_\theta\) on the trajectory can be calculated using

\[
\bar{s}_t^\theta := \left(s_t^{exo}, \frac{\xi_t \mu_\theta(s_{t-1}^\theta)}{\xi_t^\theta \mu_\theta(s_{t-1}^\theta)} \right),
\]

for \(t \geq 1\), while \(s_0^\theta := s_0\). Hence,

\[
\nabla_\theta J_F(\mu_\theta) := \mathbb{E}[\nabla_\theta SR(r_0(s_0^\theta, \mu_\theta(s_0^\theta), s_1^\theta), ..., r_{T-1}(\bar{s}_{T-1}^\theta, \mu_\theta(s_{T-1}^\theta), \bar{s}_T^\theta))],
\]

where \(\nabla_\theta SR\) can be obtained by backpropagation using the chain rule. This leads to the following stochastic gradient step:

\[
\theta_{k+1} = \theta_k + \alpha \nabla_\theta SR(r_0(s_0^\theta, \mu_\theta(s_0^\theta), s_1^\theta), ..., r_{T-1}(\bar{s}_{T-1}^\theta, \mu_\theta(s_{T-1}^\theta), \bar{s}_T^\theta)),
\]

with \(\alpha > 0\) as the step size.

3 The New Permutation Invariant WaveCorr Architecture

There are several considerations that go into the design of the network for the portfolio policy network \(\mu_\theta\). First, the network should have the capacity to handle long historical time series data, which allows for extracting long-term dependencies across time. Second, the network should be flexible in its design for capturing dependencies across a large number of available assets. Third, the network should be parsimoniously parameterized to achieve these objectives without being prone to overfitting. To this end, the WaveNet structure [Oord et al., 2016] offers a good basis for developing our architecture and was employed in Zhang et al. [2020]. Unfortunately, a direct application of WaveNet in portfolio management struggles at processing the cross-asset correlation information. This is because the convolutions embedded in the WaveNet model are 1D and extending to 2D convolutions increases the number of parameters in the model, which makes it more prone to the issue of over-fitting, a notorious issue particularly in RL. Most importantly, naive attempts at adapting WaveNet to account for such dependencies (as done in Zhang et al. [2020]) can make the network become sensitive to the ordering of the assets in the input data, an issue that we will revisit below.

We first present the general architecture of WaveCorr in Figure 2. Here, the network takes as input a tensor of dimension \(m \times h \times d\), where \(m\) : the number of assets, \(h\) : the size of look-back time window, \(d\) : the number of channels (number of features for each asset), and generates as output an \(m\)-dimensional wealth allocation vector. The WaveCorr blocks, which play the key role for extracting
cross time/asset dependencies, form the body of the architecture. In order to provide more flexibility for the choice of \(h \), we define a causal convolution after the sequence of WaveCorr blocks to adjust the receptive field so that it includes the whole length of the input time series. Also, similar to the WaveNet structure, we use skip connections in our architecture.

The design of the WaveCorr residual block in WaveCorr extends a simplified variation [Bai et al., 2018] of the residual block in WaveNet by adding our new correlation layers (and Relu, concatenation operations following right after). As shown in Figure 3, the block includes two layers of dilated causal convolutions followed by Relu activation functions and dropout layers. Having an input of dimensions \(m \times h \times d \), the convolutions output tensors of dimension \(m \times h \times d' \) where each slice of the output tensor, i.e. an \(m \times 1 \times d \) matrix, contains the dependency information of each asset over time. By applying different dilation rates in each WaveCorr block, the model is able of extracting the dependency information for a longer time horizon. A dropout layer with a rate of 50\% is considered to prevent over-fitting, whereas for the gradient explosion/vanishing prevention mechanism of residual connection we use a \(1 \times 1 \) convolution (presented on the top of Figure 3), which inherently ensures that the summation operation is over tensors of the same shape. The \(\text{Corr} \) layer generates an output tensor of dimensions \(m \times h \times 1 \) from an \(m \times h \times d \) input, where each slice of the output tensor, i.e. an \(m \times 1 \times 1 \) matrix, is meant to contain cross-asset dependency information. The concatenation operator combines the cross-asset dependency information obtained from the \(\text{Corr} \) layer with the cross-time dependency information obtained from the causal convolutions.

Before defining the \(\text{Corr} \) layer, we take a pause to introduce a property that will be used to further guide its design, namely the property of asset permutation invariance. This property is motivated by the idea that the set of possible investment policies that can be modeled by the portfolio policy network should not be affected by the way the assets are indexed in the problem. On a block per block level, we will therefore impose that, when the asset indexing of the input tensor is reordered,
the set of possible mappings obtained should also only differ in its asset indexing. More specifically, we let \(\sigma : \mathbb{R}^{m \times h \times d} \rightarrow \mathbb{R}^{m \times h \times d} \) denote a permutation operator over a tensor \(T \) such that \(\sigma(T)[i,:,:] = T[\pi(i),:,:] \), where \(\pi : \{1, ..., m\} \rightarrow \{1, ..., m\} \) is a bijective function. Furthermore, we consider \(\sigma^{-1} : \mathbb{R}^{m \times h \times d} \rightarrow \mathbb{R}^{m \times h \times d} \) denote its “inverse” such that \(\sigma^{-1}(\sigma(O))[i,:] = O[\pi^{-1}(i),:,:] \), with \(O \in \mathbb{R}^{m \times h \times d} \).

Definition 3.1. (Asset Permutation Invariance) A block capturing a set of functions \(B \subseteq \{ B : \mathbb{R}^{m \times h \times d} \rightarrow \mathbb{R}^{m \times h' \times d'} \} \) is asset permutation invariant if given any permutation operator \(\sigma \), we have that \(\{\sigma^{-1} \circ B \circ \sigma : \sigma \in B\} = B \), where \(\circ \) stands for function composition.

One can verify, for instances, that all the blocks described so far in WaveCorr are permutation invariant and that asset permutation invariance is preserved under composition (see Appendix A.2.2).

With this property in mind, we can now detail the design of a permutation invariant Corr layer via Procedure 1, where we denote as \(CC : \mathbb{R}^{(m+1)\times h \times d} \rightarrow \mathbb{R}^{1 \times h \times 1} \) the operator that applies an \((m+1) \times 1\) convolution, and as \(Concat_1 \) the operator that concatenates two tensors along the first dimension. In Procedure 1, the kernel is applied to a tensor \(O_{mdl} \in \mathbb{R}^{(m+1) \times h \times d} \) constructed from adding the \(i \)-th row of the input tensor on the top of the input tensor. Concatenating the output tensors from each run gives the final output tensor. Figure 4 gives an example for the case with \(m = 5 \), and \(h = d = 1 \). Effectively, one can show that Corr layer satisfies asset permutation invariance (proof in Appendix).

Procedure 1: Corr layer

Result: Tensor that contains correlation information, \(O_{out} \) of dimension \(m \times h \times 1 \)

Inputs: Tensor \(O_{in} \) of dimension \(m \times h \times d \);
Define an empty tensor \(O_{out} \) of dimension \(0 \times h \times 1 \);
for \(i = 1 : m \) do
 Set \(O_{mdl} = Concat_1(O_{in}[i,:,:], O_{in}); \)
 Set \(O_{out} = Concat_1(O_{out}, CC(O_{mdl})); \)
end

Proposition 3.1. The Corr layer block satisfies asset permutation invariance.

Table 1 summarizes the details of each layer involved in the WaveCorr architecture: including kernel sizes, internal numbers of channels, dilation rates, and types of activation functions. Overall, the following proposition confirms that this WaveCorr portfolio policy network satisfies asset permutation invariance (see Appendix for proof).

Proposition 3.2. The WaveCorr portfolio policy network architecture satisfies asset permutation invariance.

Finally, it is necessary to discuss some connections with the recent work of [Zhang et al., 2020], where the authors propose an architecture that also takes both sequential and cross-asset dependency into consideration. Their proposed architecture, from a high level perspective, is more complex than ours in that theirs involves two sub-networks, one LSTM and one CNN, whereas ours is built solely on CNN. Our architecture is thus simpler to implement, less susceptible to overfitting, and allows for more efficient computation. The most noticeable difference between their design and ours is at the level of the Corr layer block, where they use a convolution with a \(m \times 1 \) kernel to extract dependency...
across assets and apply a standard padding trick to keep the output tensor invariant in size. Their approach suffers from two issues (see Appendix A.3 for details): first, the kernel in their design may capture only partial dependency information, and second, most problematically, their design is not asset permutation invariant and thus the performance of their network can be highly sensitive to the ordering of assets. This second issue is further confirmed empirically in section 4.3.

Remark 3.1. To the best of our knowledge, all the previous literature on permutation invariance (PI) (see for e.g. [Zaheer et al. 2017], [Cai et al. 2021], [Li et al. 2021]) of neural networks have considered a definition that resembles Definition 1 in [Cai et al. 2021], which requires that all functions $B \in \mathcal{B}$ are PI, i.e. that for any permutation operator σ, we have that $\sigma^{-1} \circ B \circ \sigma = B$. Definition 3.1 is more flexible as it does not impose the PI property on every function of the set \mathcal{B} but only on the set as a whole, i.e. if $B \in \mathcal{B}$ then $\sigma^{-1} \circ B \circ \sigma$ is also in \mathcal{B} for all σ. This distinction is crucial given that [Cai et al. 2021] themselves observe that correlations cannot be modeled using their version of permutation invariant policy networks “as they are agnostic to identities of entities”. For instance, the architecture proposed in figures 2 and 3 violates Cai et al.’s PI definition and therefore does not suffer from this deficiency.

4 Experimental results

In this section, we present the results of a series of experiments evaluating the empirical performance of our WaveCorr DRL approach. We start by presenting the experimental set-up. We follow with our main study that evaluates WaveCorr against a number of popular benchmarks. We finally shed light on the superior performance of WaveCorr with comparative studies that evaluate the sensitivity of its performance to permutation of the assets, number of assets, size of transaction costs, and (in Appendix A.6.3) maximum holding constraints. All code is available at https://github.com/saeedmarzban/waveCorr.

4.1 Experimental set-up

Data sets: We employ three data sets. **Can-data** includes the daily closing prices of 50 Canadian assets from 01/01/2003 until 01/11/2019 randomly chosen among the 70 companies that were continuously part of the Canadian S&P/TSX Composite Index during this period. **US-data** contains 50 randomly picked US assets among the 250 that were part of S&P500 index during the same period. Finally, **Covid-data** considered 50 randomly resampled assets from S&P/TSX Composite Index for period 01/11/2011-01/01/2021 and included open, highest, lowest, and closing daily prices. The Can-data and US-data sets were partitioned into training, validation, and test sets according to the periods 2003-2009/2010-2013/2014-2019 and 2003-2009/2010-2012/2013-2019 respectively, while the Covid-data was only divided in a training (2012-2018) and testing (2019-2020) periods given that hyper-parameters were reused from the previous two studies. We assume with all datasets a constant commission rate of $c_s = c_p = 0.05\%$ in the comparative study, while the sensitivity analysis considers no transaction costs unless specified otherwise.
Benchmarks: In our main study, we compare the performance of WaveCorr to CS-PPN [Zhang et al., 2020], EIIE [Jiang et al., 2017], and the equal weighted portfolio (EW). Note that both CS-PPN and EIIE were adapted to optimize the Sharpe-ratio objective described in section 2.2 that exactly accounts for transaction costs.

Hyper-parameter selection: Based on a preliminary unreported investigation, where we explored the influence of different optimizers (namely ADAM, SGD, RMSProp, and SGD with momentum), we concluded that ADAM had the fastest convergence. We also narrowed down a list of reasonable values (see Table A.6) for the following common hyper-parameters: initial learning rate, decay rate, minimum rate, look-back window size h, planning horizon T. For each method, the final choice of hyper-parameter settings was done based on the average annual return achieved on both a 4-fold cross-validation study using Can-data and a 3-fold study with the US-data. The final selection (see Table A.6) favored, for each method, a candidate that appeared in the top 5 best performing settings of both data-sets in order to encourage generalization power among similarly performing candidates. Note that in order to decide on the number of epochs, an early stopping criteria was systematically employed.

Metrics: We evaluate all approaches using out-of-sample data (“test data”). “Annual return” denotes the annualized rate of return for the accumulated portfolio value. “Annual vol” denotes the prorated standard deviation of daily returns. Trajectory-wise Sharpe ratio (SR) of the log returns, Maximum drawdown (MDD), i.e. biggest loss from a peak, and average Turnover, i.e. average of the trading volume, are also reported (see [Zhang et al., 2020] for formal definitions). Finally, we report on the average “daily hit rate” which captures the proportion of days during which the log returns out-performed EW.

Important implementation details: Exploiting the fact that our SGD step involves exercising the portfolio policy network for T consecutive steps (see equation (3)), a clever implementation was able to reduce WaveCorr’s training time per episode by a factor of 4. This was done by replacing the T copies of the portfolio policy network producing $a_0, a_2, \ldots, a_{T-1}$, with an equivalent single augmented multi-period portfolio policy network producing all of these actions simultaneously, while making sure that all intermediate calculations are reused as much as possible (see Appendix A.4 for details). We also implement our stochastic gradient descent approach by updating, after each episode k, the initial state distribution F to reflect the latest policy μ_{θ_k}. This is done in order for the final policy to be better adapted to the conditions encountered when the portfolio policy network is applied on a longer horizon than T.

4.2 Comparative Evaluation of WaveCorr

In this set of experiments the performances of WaveCorr, CS-PPN, EIIE, and EW are compared for a set of 10 experiments (with random reinitialization of NN parameters) on the three datasets. The average and standard deviations of each performance metric are presented in Table 2 while Figure A.8 (in the Appendix) presents the average out-of-sample portfolio value trajectories. The main takeaway from the table is that WaveCorr significantly outperforms the three benchmarks on all data sets, achieving an absolute improvement in average yearly returns of 3% to 25% compared to the best alternative. It also dominates CS-PPN and EIIE in terms of Sharpe ratio, maximum drawdown, daily hit rate, and turnover. EW does appear to be causing less volatility in the US-data, which leads to a slightly improved SR. Another important observation consists in the variance of these metrics over the 10 experiments. Once again WaveCorr comes out as being generally more reliable than the two other DRL benchmarks in the Can-data, while EIIE appears to be more reliable in the US-data sacrificing average performance. Overall, the impressive performance of WaveCorr seems to support our claim that our new architecture allows for a better identification of the cross-asset dependencies. In conditions of market crisis (i.e. the Covid-data), we finally observe that WaveCorr exposes the investors to much lower short term losses, with an MDD of only 31% compared to more than twice as much for CS-PPN and EIIE, which reflects of a more effective hedging strategy.

4.3 Sensitivity Analysis

Sensitivity to permutation of the assets: In this set of experiment, we are interested in measuring the effect of asset permutation on the performance of WaveCorr and CS-PPN. Specifically, each
Table 2: The average (and standard deviation) performances using three data sets.

Method	Annual return	Annual vol	SR	MDD	Daily hit rate	Turnover
	Can-data					
WaveCorr	27% (3%)	16% (1%)	1.73 (0.25)	16% (2%)	52% (1%)	0.32 (0.01)
CS-PPN	21% (4%)	19% (2%)	1.14 (0.34)	17% (4%)	51% (1%)	0.38 (0.05)
EIIE	-1% (8%)	29% (4%)	-0.01 (0.28)	55% (9%)	47% (1%)	0.64 (0.08)
EW	4% (0%)	14% (0%)	0.31 (0.00)	36% (0%)	-	0.00 (0.00)
	US-data					
WaveCorr	19% (2%)	16% (2%)	1.17 (0.20)	20% (4%)	50% (1%)	0.11 (0.02)
CS-PPN	14% (2%)	15% (2%)	0.94 (0.17)	22% (6%)	49% (1%)	0.15 (0.08)
EIIE	16% (1%)	15% (0%)	1.09 (0.06)	20% (1%)	50% (0%)	0.17 (0.02)
EW	15% (0%)	13% (0%)	1.18 (0.00)	18% (0%)	-	0.00 (0.00)
	Covid-data					
WaveCorr	56% (13%)	26% (5%)	2.16 (0.50)	31% (9%)	51% (2%)	0.19 (0.05)
CS-PPN	31% (27%)	51% (6%)	0.60 (0.48)	67% (7%)	50% (2%)	0.3 (0.09)
EIIE	11% (30%)	76% (17%)	0.20 (0.43)	77% (13%)	46% (2%)	0.76 (0.27)
EW	27% (0%)	29% (0%)	0.93(0.00)	47% (0%)	-	0.01 (0.00)

The experiment now consists in resampling a permutation of the 50 stocks instead of the initial parameters of the neural networks. The results are summarized in Table 3 and illustrated in Figure 5. We observe that the learning curves and performance of CS-PPN are significantly affected by asset permutation compared to WaveCorr. In particular, one sees that the standard deviation of annual return is reduced by more than a factor of about 5 with WaveCorr. We believe this is entirely attributable to the new structure of the Corr layer in the portfolio policy network.

Table 3: The average (and standard dev.) performances over random asset permutation in Can-data.

Annual return	Annual vol	SR	MDD	Daily hit rate	Turnover	
WaveCorr	48% (1%)	15% (1%)	3.15 (0.19)	14% (3%)	56% (0%)	0.48 (0.01)
CS-PPN	35% (5%)	18% (1%)	2.00 (0.37)	22% (4%)	54% (1%)	0.54 (0.03)

Figure 5: Comparison of the wealth accumulated by WaveCorr and CS-PPN under random initial permutation of assets on Can-data’s test set.

Sensitivity to number of assets: In this set of experiments, we measure the effect of varying the number of assets on the performance of WaveCorr and CS-PPN. We therefore run 10 experiments (randomly resampling initial NN parameters) with growing subsets of 30, 40, and 50 assets from Can-data. Results are summarized in Table 3 and illustrated in Figure A.9 (in Appendix). While having access to more assets should in theory be beneficial for the portfolio performance, we observe that it is not necessarily the case for CS-PPN. On the other hand, as the number of assets increase, a
significant improvement, with respect to all metrics, is achieved by WaveCorr. This evidence points to a better use of the correlation information in the data by WaveCorr.

Table 4: The average (and std. dev.) performances as a function of the number of assets in Can-data.

# of stocks	Annual return	Annual vol	SR	MDD	Daily hit rate	Turnover
WaveCorr						
30	37.7% (4%)	19% (1%)	2.02 (0.27)	22% (3%)	55% (1%)	0.39 (0.02)
40	38.5% (4%)	21% (1%)	1.81 (0.17)	23% (2%)	55% (1%)	0.44 (0.04)
50	43.0% (5%)	17% (2%)	2.57 (0.52)	20% (6%)	55% (1%)	0.43 (0.02)

CS-PPN						
30	30.3% (3%)	17% (1%)	1.80 (0.20)	21% (4%)	53% (1%)	0.42 (0.04)
40	29.8% (7%)	17% (2%)	1.70 (0.34)	22% (3%)	53% (1%)	0.41 (0.09)
50	32.2% (4%)	16% (1%)	2.07 (0.28)	18% (3%)	52% (1%)	0.43 (0.05)

Sensitivity to commission rate: Table 5 presents how the performances of WaveCorr and CS-PPN are affected by the magnitude of the commission rate, ranging among 0%, 0.05%, and 0.1%. One can first recognize that the two methods appear to have good control on turnover as the commission rate is increased. Nevertheless, one can confirm from this table the significantly superior performance of WaveCorr prevails under all level of commission rate.

Table 5: The average (and std. dev.) performances as a function of commission rate (CR) in Can-data.

Method	Annual return	Annual vol	SR	MDD	Daily hit rate	Turnover
CR = 0						
WaveCorr	42% (3%)	15% (0%)	2.77 (0.20)	13% (1%)	55% (1%)	0.44 (0.02)
CS-PPN	35% (4%)	17% (1%)	2.04 (0.27)	14% (3%)	53% (1%)	0.47 (0.05)
CR = 0.05%						
WaveCorr	27% (3%)	16% (1%)	1.73 (0.25)	15% (2%)	52% (1%)	0.32 (0.01)
CS-PPN	21% (4%)	19% (2%)	1.14 (0.34)	17% (4%)	51% (1%)	0.38 (0.05)
CR = 0.1%						
WaveCorr	19% (2%)	15% (1%)	1.34 (0.16)	16% (2%)	50% (1%)	0.22 (0.01)
CS-PPN	14% (7%)	17% (3%)	0.92 (0.50)	19% (8%)	50% (1%)	0.22 (0.09)

5 Conclusion

This paper presented a new architecture for portfolio management that is built upon WaveNet [Oord et al., 2016], which uses dilated causal convolutions at its core, and a new design of correlation block that can process and extract cross-asset information. We showed that, despite being parsimoniously parameterized, WaveCorr can satisfy the property of asset permutation invariance, whereas a naive extension of CNN, such as in the recent works of Zhang et al. [2020], does not. The API property is both appealing from a practical, given that it implies that the investor does not need to worry about how he/she indexes the different assets, and empirical point of views, given the empirical evidence that it leads to improved stability of the network’s performance. As a side product of our analysis, the results presented in Appendix A.2 lay important foundations for analysing the API property in a larger range of network architectures. In the numerical section, we tested the performance of WaveCorr using data from both Canadian (TSX) and American (S&P 500) stock markets. The experiments demonstrate that WaveCorr consistently outperforms our benchmarks under a number of variations of the model: including the number of available assets, the size of transaction costs, etc.
A Appendix

This appendix is organized as follows. Section A.1 demonstrates a claim made in section 2 regarding the fact that the solution of \(\nu \) can be obtained using a bisection method. Section A.2 presents proofs to the two propositions in section 3. Section A.3 presents further details on the correlation layer in Zhang et al. [2020] and its two deficiencies. Section A.4 presents further details on the augmented policy network architecture used to accelerate training. Section A.5 presents our hyper-parameter ranges and final selection. Finally, section A.6 presents a set of additional results.

A.1 Solving \(\nu = f(\nu) \)

In order to apply the bisection method to solve \(\nu = f(\nu) \), we will make use of the following proposition.

Proposition A.1. For any \(0 < c_s < 1 \) and \(0 < c_p < 1 \), the function \(g(\nu) := \nu - f(\nu) \) is strictly increasing on \([0, 1]\) with \(g(0) < 0 \) and \(g(1) > 0 \).

Proof. Recalling that \(f(\nu, w', w) := 1 - c_s \sum_{i=1}^{m} (w'^{i} - \nu w^{i})^{+} - c_p \sum_{i=1}^{m} (\nu w^{i} - w'^{i})^{+} \), we first obtain the two bounds at \(g(0) \) and \(g(1) \) as follows:

\[
g(0) = 0 - \left(1 - c_s \sum_{i=1}^{m} (w'^{i})^{+} - c_p \sum_{i=1}^{m} (-w'^{i})^{+} \right) = 0 - 1 + c_s < 0, \]

since \(c_s < 1 \), and

\[
g(1) = 1 - \left(1 - c_s \sum_{i=1}^{m} (w'^{i} - w^{i})^{+} - c_p \sum_{i=1}^{m} (w^{i} - w'^{i})^{+} \right) \geq \min(c_s, c_p) \|w'^{i} - w^{i}\|_1 > 0, \]

since \(\min(c_s, c_p) > 0 \). We can further establish the convexity of \(g(\nu) \), given that it is the sum of convex functions. A careful analysis reveals that \(g(\nu) \) is supported at 0 by the plane

\[
g(\nu) \geq g(0) + \nu \left(1 - c_s + c_p \sum_{i=1}^{m} 1\{w'^{i} = 0\} w^{i} \right), \]

where \(1\{A\} \) is the indicator function that returns 1 if \(A \) is true, and 0 otherwise. Hence, by convexity of \(g(\nu) \), the fact that this supporting plane is strictly increasing implies that \(g(\nu) \) is strictly increasing for all \(\nu \geq 0 \).

Given Proposition A.1 we can conclude that a bisection method can be used to find the root of \(g(\nu) \), which effectively solves \(\nu = f(\nu) \).

A.2 Proofs of Section 3

We start this section with a lemma that will simplify some of our later derivations.

Lemma A.1. A block capturing a set of functions \(B \subseteq \{B : \mathbb{R}^{m \times h \times d} \rightarrow \mathbb{R}^{m \times h' \times d'}\} \) is asset permutation invariant if and only if given any permutation operator \(\sigma \), we have that \(\{\sigma^{-1} \circ B \circ \sigma : B \in B\} \supseteq B \).

Proof. The “only if” follows straightforwardly from the fact that equality between two sets implies that each set is a subset of the other.
Regarding the “if” part, we start with the assumption that

$$\forall \sigma, \{\sigma^{-1} \circ B \circ \sigma : B \in \mathcal{B}\} \supseteq \mathcal{B}.$$

Next, we follow with the fact that for all permutation operator σ:

$$\{\sigma^{-1} \circ B \circ \sigma : B \in \mathcal{B}\} \subseteq \{\sigma^{-1} \circ B \circ \sigma' \circ \sigma^{-1} : B' \in \mathcal{B}\} = \{\sigma^{-1} \circ \sigma' \circ \sigma^{-1} : B' \in \mathcal{B}\} = \mathcal{B},$$

where we assumed for simplicity of exposition that $h = h'$ and $d = d'$, and exploited the fact that σ^{-1} is also a permutation operator.

A.2.1 Proof of Proposition 3.1

We first clarify that the correlation layer is associated with the following set of functions (see Procedure 1):

$$\mathcal{B} := \{B_{w,b} : w \in \mathbb{R}^{(m+1) \times d}, b \in \mathbb{R}\}$$

where

$$B_{w,b}(T)[i, :, 1] := \left(T[i, :, :] \sigma'(\tilde{T}_0) + \sum_{j=1}^{m} T[j, :, :] \sigma'(\tilde{T}_j) \right) \tilde{T} + b, \; \forall \; i = 1, \ldots, m,$$

with \cdot denoting the Hadamard (element-wise) product.

Let σ (associated with the bijection π) be an asset permutation operator. For any correlation layer function $B_{w,b} \in \mathcal{B}$, one can construct a new set of parameters $w'_0 := w_0, w'_j := w_{\pi(j)}$, for all $j = 1, \ldots, m$, and $b' := b$ such that for all input tensor T, we have that for all i:

$$B_{w',b'}(\sigma(T))[i, :, 1] = \left(\sigma(T)[i, :, :] \sigma'(\tilde{T}_0) + \sum_{j=1}^{m} \sigma(T)[j, :, :] \sigma'(\tilde{T}_j) \right) \tilde{T} + b \quad (A.4)$$

$$= \left(T[\pi(i), :, :] \sigma'(\tilde{T}_0) + \sum_{j=1}^{m} T[\pi(j), :, :] \sigma'(\tilde{T}_j) \right) \tilde{T} + b \quad (A.5)$$

$$= \left(T[\pi(i), :, :] \sigma'(\tilde{T}_0) + \sum_{j=1}^{m} T[j', :, :] \sigma'(\tilde{T}_j) \right) \tilde{T} + b. \quad (A.6)$$

Hence,

$$\sigma^{-1}(B_{w',b'}(\sigma(T)))[i, :, 1] = \left(T[i, :, :] \sigma'(\tilde{T}_0) + \sum_{j=1}^{m} T[j, :, :] \sigma'(\tilde{T}_j) \right) \tilde{T} + b = B_{w,b}(T)[i, :, 1].$$

We can therefore conclude that $\{\sigma^{-1} \circ B \circ \sigma : B \in \mathcal{B}\} \supseteq \mathcal{B}$. Based on Lemma A.1 we conclude that \mathcal{B} is asset permutation invariant.

A.2.2 Proof of Proposition 3.2

To prove Proposition 3.2, we demonstrate that all blocks used in the WaveCorr architecture are asset permutation invariant (Steps 1 to 3). We then show that asset permutation invariance is preserved under composition (Step 4). Finally, we can conclude in Step 5 that WaveCorr is asset permutation invariant.

Step 1 - Dilated convolution, Causal convolution, Sum, and 1 × 1 convolution are asset permutation invariant: The functional class of a dilated convolution, a causal convolution, a sum, and a 1 × 1 convolution block all have the form:

$$\mathcal{B} := \{B_g : g \in \mathcal{G}\},$$

where

$$B_g(T)[i, :, j] := g(T(i, :, :)), \; \forall \; i = 1, \ldots, m,$$
for some set of functions $G \subseteq \{ G : \mathbb{R}^{1 \times h \times d} \to \mathbb{R}^{1 \times h \times d'} \}$. In particular, in the case of dilated, causal, and 1×1 convolutions, this property follows from the use of 1×3, $1 \times [h-28]$, and 1×1 kernels respectively. Hence, for any $g \in G$, we have that:

$$\sigma^{-1}(B_g(\sigma(T))) = \sigma^{-1}(\sigma(B_g(T))) = B_g(T),$$

which implies that $\{ \sigma^{-1} \circ B \circ \sigma : B \in B \} = B$.

Step 2 - Relu and dropout are asset permutation invariant: We first clarify that Relu and dropout on a tensor in $\mathbb{R}^{m \times h \times 1}$ are singleton sets of functions:

$$B := \{ B_g \}$$

where $g : \mathbb{R} \to \mathbb{R}$ and $B_g(T)[i, j, k] := g(T[i, j, k])$. In particular, in the case of Relu, we have:

$$B_g(T)[i, j, k] := \max(0, T[i, j, k]),$$

while, for dropout we have:

$$B_g(T)[i, j, k] := T[i, j, k],$$

since a dropout block acts as a feed through operator. Hence, we naturally have that:

$$\sigma^{-1}(B_g(\sigma(T))) = \sigma^{-1}(\sigma(B_g(T))) = B_g(T),$$

which again implies that $\{ \sigma^{-1} \circ B \circ \sigma : B \in B \} = B$.

Step 3 - Softmax is asset permutation invariant: We first clarify that softmax on a vector in $\mathbb{R}^{m \times h \times 1}$ is a singleton set of functions:

$$B := \{ B \}$$

where

$$B(T)[i, j, 1] := \frac{\exp(T[i, j, 1])}{\sum_{i' = 1}^{m} \exp(T[i', j, 1])}.$$}

Hence, we have that:

$$B(\sigma(T))[i, j, 1] := \frac{\exp(T[\pi(i), j, 1])}{\sum_{i' = 1}^{m} \exp(T[\pi(i'), j, 1])} = \frac{\exp(T[\pi(i), j, 1])}{\sum_{i' = 1}^{m} \exp(T[\pi(i'), j, 1])}.$$}

This allows us to conclude that:

$$\sigma^{-1}(B(\sigma(T)))[i, j, 1] = B(T)[i, j, 1].$$

Hence, we conclude that $\{ \sigma^{-1} \circ B \circ \sigma : B \in B \} = B$.

Step 4 - Asset permutation invariance is preserved under composition: Given two asset permutation invariant blocks representing the set of functions B_1 and B_2, one can define the composition block as:

$$B := \{ B_1 \circ B_2 : B_1 \in B_1, B_2 \in B_2 \}.$$}

We have that for all $B_1 \in B_1$ and $B_2 \in B_2$:

$$B = B_1 \circ B_2$$

$$= (\sigma^{-1} \circ B'_1 \circ \sigma) \circ (\sigma^{-1} \circ B'_2 \circ \sigma)$$

$$= \sigma^{-1} \circ B'_1 \circ B'_2 \circ \sigma$$

$$= \sigma^{-1} \circ B' \circ \sigma,$$

where $B'_1 \in B_1$ and $B'_2 \in B_2$ come from the definition of asset permutation invariance, and where $B' := B'_1 \circ B'_2 \in B$. We therefore have that $\{ \sigma^{-1} \circ B \circ \sigma : B \in B \} \supseteq B$. Finally, Lemma A.1 allows us to conclude that B is asset permutation invariant.

Step 5 - WaveCorr is asset permutation invariant: Combining Step 1 to 4 with Proposition 3.1 we arrive at the conclusion that the architecture presented in Figure 2 is asset permutation invariant since it is composed of a sequence of asset permutation invariant blocks.
A.3 Correlation Layer in Zhang et al. [2020] Violates Asset Permutation Invariance

Assuming for simplicity that m is odd, the “correlational convolution layer” proposed in Zhang et al. [2020] takes the form of the following set of functions:

$$\mathcal{B} := \{ B_{w,b} : \mathcal{W} \in \mathbb{R}^{m \times d \times d}, b \in \mathbb{R} \}$$

where

$$B_{w,b}(\mathcal{T})[i,j,k] := \sum_{\ell=1}^{m} \sum_{k'=1}^{d} \mathcal{T}[i-(m+1)/2 + \ell,j,k'] \mathcal{W}[\ell,k,k'] + b, \quad \forall i = 1, \ldots, m$$

$$\forall j = 1, \ldots, h$$

$$\forall k = 1, \ldots, d$$

where $\mathcal{T}[i', \ldots] := 0$ for all $i' \notin \{1, \ldots, m\}$ to represent a zero padding. Figure A.6 presents an example of this layer when $m = 5$, $h = 1$, and $d = 1$. One can already observe in this figure that correlation information is only partially extracted for some of the assets, e.g. the convolution associated to asset one (cf. first row in the figure) disregards the influence of the fifth asset. While this could perhaps be addressed by using a larger kernel, a more important issue arises with this architecture, namely that the block does not satisfy asset permutation invariance.

![Figure A.6: An example of the correlation layer in Zhang et al. [2020]’s work over 5 assets](Image)

Proposition A.2. The correlational convolution layer block used in Zhang et al. [2020] violates asset permutation invariance already when $m = 5$, $h = 1$, and $d = 1$.

Proof. When $m = 5$, $h = 1$, and $d = 1$, we first clarify that the correlational convolution layer from Zhang et al. [2020] is associated with the following set of functions:

$$\mathcal{B} := \{ B_{w,b} : w \in \mathbb{R}^{5}, b \in \mathbb{R} \}$$

where

$$B_{w,b}(\mathcal{T})[i] := \left\{ \begin{array}{ll} w_3 \mathcal{T}[1] + w_4 \mathcal{T}[2] + w_5 \mathcal{T}[3] + b & \text{if } i = 1 \\ w_2 \mathcal{T}[1] + w_3 \mathcal{T}[2] + w_4 \mathcal{T}[3] + w_5 \mathcal{T}[4] + b & \text{if } i = 2 \\ w_1 \mathcal{T}[1] + w_2 \mathcal{T}[2] + w_3 \mathcal{T}[3] + w_4 \mathcal{T}[4] + w_5 \mathcal{T}[5] + b & \text{if } i = 3 \\ w_1 \mathcal{T}[2] + w_2 \mathcal{T}[3] + w_3 \mathcal{T}[4] + w_4 \mathcal{T}[5] + b & \text{if } i = 4 \\ w_1 \mathcal{T}[3] + w_2 \mathcal{T}[4] + w_3 \mathcal{T}[5] + b & \text{if } i = 5 \end{array} \right. $$

where we shortened the notation $\mathcal{T}[i, 1, 1]$ to $\mathcal{T}[i]$. Let’s consider the asset permutation operator that inverts the order of the first two assets: $\pi(1) = 2$, $\pi(2) = 1$, and $\pi(i) = i$ for all $i \geq 3$. We will prove our claim by contradiction. Assuming that \mathcal{B} is asset permutation invariant, it must be that for any fixed values \bar{w} such that $\bar{w}_4 \neq \bar{w}_1$, there exists an associated pair of values (w', b') that makes $B_{w', b'} \equiv \sigma^{-1} \circ B_{\bar{w}, 0} \circ \sigma$. In particular, the two functions should return the same values for the following three “tensors”: $\mathcal{T}_0[i] := 0$, $\mathcal{T}_1[i] := 1\{i = 1\}$, and at $\mathcal{T}_2[i] := 1\{i = 2\}$. The first implies that $b' = 0$ since $b' = B_{w', b'}(\mathcal{T}_0)[1] = \sigma^{-1}(B_{\bar{w}, 0}(\sigma(\mathcal{T}_0)))[1] = 0$.

However, it also implies that:

$$w_2' = B_{w', b'}(\mathcal{T}_1)[2] = \sigma^{-1}(B_{\bar{w}, 0}(\sigma(\mathcal{T}_1)))[2] = B_{\bar{w}, 0}(\mathcal{T}_2)[1] = \bar{w}_4$$

and that

$$w_2' = B_{w', b'}(\mathcal{T}_2)[3] = \sigma^{-1}(B_{\bar{w}, 0}(\sigma(\mathcal{T}_2)))[3] = B_{\bar{w}, 0}(\mathcal{T}_1)[3] = \bar{w}_1.$$

We therefore have a contradiction since $\bar{w}_4 = w_2' = \bar{w}_1 \neq \bar{w}_4$ is impossible. We must therefore conclude that \mathcal{B} was not asset permutation invariant.

\[\square]\
We detail in this section how the structure of the portfolio management problem (2) can be exploited to generate a sequence of actions a_0, a_1,\ldots, a_{T-1} from a sample trajectory of states $s_0, s_1,\ldots, s_{T-1} \in \mathbb{R}^{m \times h \times d}$ over a planning horizon T, where m : the number of assets, h : the size of a lookback window, d : the number of features. The common way of implementing this is to create a tensor T of dimension $m \times h \times d \times T$ from s_0,\ldots, s_{T-1} and apply a policy network $\mu_\theta(s)$ to each state s_t in the tensor T so as to generate each action a_t. Assuming for simplicity of exposition that the state is entirely exogenous, this procedure is demonstrated in Figure A.7(a), where a standard causal convolution with $d = 1$ and kernel size of 2 is applied. In this procedure, the memory used to store the tensor T and the computation time taken to generate all actions a_0,\ldots, a_{T-1} grow linearly in T, which become significant for large T. It is possible to apply the policy network $\mu_\theta(s)$ to generate all the actions a_0,\ldots, a_{T-1} more efficiently than the procedure described in Figure A.7(a). Namely, in our implementation, we exploit the sequential and overlapping nature of sample states s_0,\ldots, s_{T-1} used to generate the actions a_0,\ldots, a_{T-1}, which naturally arises in the consideration of a multiperiod objective. Recall firstly that each sample state $s_t \in \mathbb{R}^{m \times h \times d}$, $t \in \{0,\ldots, T-1\}$, is obtained from a sample trajectory, denoted by $S \in \mathbb{R}^{m \times (h+T-1) \times d}$, where $s_t = S[\cdot, t+1 : t+h]$, $t = 0,\ldots, T-1$. Thus, between any s_t and s_{t+1}, the last $h-1$ columns in s_t overlap with the first $h-1$ columns in s_{t+1}. The fact that there is a significant overlap between any two consecutive states s_t, s_{t+1} hints already that processing each state s_{t+1} separately from s_t, as shown in Figure A.7(a), would invoke a large number of identical calculations in the network as those that were already done in processing s_t, which is wasteful and inefficient. To avoid such an issue, we take an augmented approach to apply the policy network. The idea is to use a sample trajectory S directly as input to an augmented policy network $\tilde{\mu}_\theta : \mathbb{R}^{m \times (h+T-1) \times d} \rightarrow \mathbb{R}^{m \times T}$, which reduces to exactly the same architecture as the policy network $\mu_\theta(s_t)$ when generating only the t-th action. Figure A.7(b) presents this augmented policy network $\tilde{\mu}_\theta(S)$ for our example, and how it can be applied to a trajectory S to generate all actions a_0,\ldots, a_{T-1} at once. One can observe that the use of an augmented policy network allows the intermediate calculations done for each state s_t (for generating an action a_t) to be reused by the calculations needed for the other states (and generating other actions). With the exact same architecture as the policy network $\mu_\theta(s)$, the augmented policy network $\tilde{\mu}_\theta(S)$, which takes a trajectory with width $h+T-1$ (thus including T many states), would by design generate T output, each corresponds to an action a_t. This not only speeds up the generation of actions a_0,\ldots, a_{T-1} significantly but also requires far less memory to store the input data, i.e. the use of a tensor with dimension $(m \times (h+T) \times d)$ instead of $m \times h \times d \times T$. The only sacrifice that is made with this approach is regarding the type of features that can be integrated. For instance, we cannot include features that are normalized with respect to the most recent history (as done in [Jiang et al. 2017]) given that this breaks the data redundancy between two consecutive time period. Our numerical results however seemed to indicate that such restrictions did not come at a price in terms of performance.
(a) $\mu_\theta(s)$ applied to each state separately

(b) $\vec{\mu}_\theta(S)$ applied to the full trajectory

Figure A.7: Comparison between the use of policy network $\mu_\theta(s)$ and of the augmented policy network $\vec{\mu}_\theta(S)$

A.5 Hyper-parameters Selection

Table A.6: List of Selected Hyper-parameters.

Hyper-parameter	Search range	WaveCorr	CS-PPN	EIIE
Learning rate	$\{5 \times 10^{-5}, 10^{-4}, 10^{-3}, 5 \times 10^{-3}\}$	5×10^{-5}	5×10^{-5}	10^{-4}
Decay rate	$\{0.9999, 0.99999, 1\}$	0.99999	0.99999	1
Minimum rate	$\{10^{-6}, 10^{-5}\}$	10^{-5}	10^{-5}	10^{-5}
Planning horizon T	$\{32, 64\}$	32	32	32
Look back window size h	$\{32, 64\}$	32	32	32
Number of epochs	$[0, \infty)$	5000	5000	5000
A.6 Additional results

A.6.1 Comparative Study

Figure A.8: Average (solid curve) and range (shaded region) of out-of-sample wealth accumulated by WaveCorr, CS-PPN, EIIE, and EW over 10 experiments using Can-data, US-data, and Covid-data.
A.6.2 Sensitivity to number of assets

![Graph A.9](image1)

Figure A.9: Average (solid curve) and range (shaded region) of the out-of-sample wealth accumulated, on 10 experiments using Can-data, by WaveCorr and CS-PPN when increasing the number of assets.

A.6.3 Performance comparison under maximum holding constraint

In practice, it is often required that the portfolio limits the amount of wealth invested in a single asset. This can be integrated to the risk-averse DRL formulation:

$$
\tilde{J}_F(\mu_\theta) := \mathbb{E}_{s_{t+1} \sim F(s_t, \mu_\theta(s_t))}[SR(r_0(s_0, \mu_\theta(s_0), s_1), ...)] - \frac{M}{T} \sum_{t=0}^{T-1} \sum_{i=1}^{m} \max(0, w_{i,t} - w_{max})
$$

where w_{max} is the maximum weight allowed in any asset, and M is a large constant. This new objective function penalizes any allocation that goes beyond w_{max}, which will encourage μ_θ to respects the maximum weight allocation condition. The commission rates are considered to be $c_s = c_p = 0.5\%$, and the experiments here are done over Can-data using the full set of 70 stocks, with a maximum holding of 20%. The results are summarized in Table A.7 and illustrated in Figure A.10.

As noted before, we observe that WaveCorr outperforms CS-PPN with respect to all performance metrics.

![Graph A.10](image2)

Figure A.10: Average (solid curve) and range (shaded region) of the out-of-sample wealth accumulated, on 10 experiments using Can-data, by WaveCorr and CS-PPN under maximum holding constraint.

Table A.7: The average (and standard dev.) performances when imposing a maximum holding constraints over 10 random initial NN weights in Can-data.

	Annual return	Annual vol	SR	MDD	Daily hit rate	Turnover
WaveCorr	20% (2%)	13% (0%)	1.55 (0.18)	14% (1%)	53% (1%)	0.17 (0.01)
CS-PPN	13% (1%)	13% (1%)	1.00 (0.15)	15% (2%)	50% (1%)	0.22 (0.03)
References

John Moody, Lizhong Wu, Yuansong Liao, and Matthew Saffell. Performance functions and reinforcement learning for trading systems and portfolios. *Journal of Forecasting*, 17(5-6):441–470, 1998.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

Zhipeng Liang, Hao Chen, Junhao Zhu, Kangkang Jiang, and Yanran Li. Adversarial deep reinforcement learning in portfolio management. *arXiv preprint arXiv:1808.09940*, 2018.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio. *arXiv preprint arXiv:1609.03499*, 2016.

Yifan Zhang, Peilin Zhao, Bin Li, Qingyao Wu, Junzhou Huang, and Mingkui Tan. Cost-sensitive portfolio selection via deep reinforcement learning. *IEEE Transactions on Knowledge and Data Engineering*, 2020.

Ke Xu, Yifan Zhang, Deheng Ye, Peilin Zhao, and Mingkui Tan. Relation-aware transformer for portfolio policy learning. *IJCAI*, 2020.

Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning framework for the financial portfolio management problem. *arXiv preprint arXiv:1706.10059*, 2017.

Bin Li, Jialei Wang, Dingjiang Huang, and Steven C. H. Hoi. Transaction cost optimization for online portfolio selection. *Quantitative Finance*, 18(8):1411–1424, 2018.

Saud Almahdi and Steve Y Yang. An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. *Expert Systems with Applications*, 87:267–279, 2017.

Harry Markowitz. Portfolio selection. *The Journal of Finance*, 7(1):77–91, 1952.

William F. Sharpe. Mutual fund performance. *The Journal of Business*, 39(1):119–138, 1966.

David H Bailey and Marcos Lopez de Prado. The Sharpe ratio efficient frontier. *Journal of Risk*, 15(2):13, 2012.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

Desmond Cai, Shiau Hong Lim, and Laura Wynter. Efficient reinforcement learning in resource allocation problems through permutation invariant multi-task learning. *CoRR*, abs/2102.09361, 2021.

Yan Li, Lingxiao Wang, Jiachen Yang, Ethan Wang, Zhaoran Wang, Tuo Zhao, and Hongyuan Zha. Permutation invariant policy optimization for mean-field multi-agent reinforcement learning: A principled approach. *CoRR*, abs/2105.08268, 2021.