Effects of Electroencephalogram Guided Anesthesia on Postoperative Delirium: A Systematic Review and Meta-analysis

CURRENT STATUS: UNDER REVIEW

Lin Ding
Sichuan University West China Hospital

DongXu Chen
Sichuan University West China Hospital

Qian Li
Sichuan University West China Hospital

✉ sculiqian@foxmail.com Corresponding Author
ORCID: https://orcid.org/0000-0003-3301-4284

DOI:
10.21203/rs.3.rs-18197/v1

SUBJECT AREAS
Anesthesiology & Pain Medicine

KEYWORDS
electroencephalogram, postoperative delirium, meta-analysis, hospitalization time
Abstract

Background: Postoperative delirium is a common complication characterized by confusion, inattentiveness and other mental symptoms. It is still unclear whether the use of electroencephalogram (EEG) monitoring during surgery can decrease the incidence of postoperative delirium. The purpose of this study was to evaluate the effectiveness of EEG guided anesthesia on postoperative delirium (POD) based on randomized controlled trials (RCTs).

Methods: The electronic databases of Ovid MEDLINE, PubMed, EMBASE, Cochrane Library database, CNKI and other local databases were systematically searched for RCTs from their inception until October 2019. The odds ratios (ORs) and the mean differences (MDs) with a 95% confidence intervals (CIs) were calculated to evaluate the correlation between EEG and itemized categories and continuous variable, respectively.

Results: Seven RCTs with 3859 patients were included in the final analysis. The summary OR indicated that patients receiving EEG monitoring had a lower incidence rate of postoperative delirium (OR: 0.65; 95% CI: 0.46-0.92; P = 0.01). In addition, no significant difference was found between the EEG monitoring group and the routine care group with respects to the length of hospitalization (MD: -0.59; 95% CI: -1.26 to 0.07; P=0.08).

Conclusions: The findings of this study indicated that intraoperative use of electroencephalogram monitoring could decrease the risk of postoperative delirium. But for high risk patients, we should take a multi-component strategy to prevent delirium. Further large-scale, randomized controlled trials should be conducted to verify the treatment effect of intraoperative use of electroencephalogram monitoring on patients.

Introduction

Delirium is an acute disorder of mental dysfunction, characterized by confusion, inattentiveness, disorientation, agitation, and in some cases, excessive autonomic nervous system activity [1]. Postoperative delirium (POD) is a common complication after surgery, with a general incidence rate ranging from 10%-50%. In high-risk patients, the incidence rate of POD can reach as high as 50-70% [2-4]. POD is associated with several poor prognosis factors, including higher mortality, long-term
cognitive decline, dementia, re-admission and prolonged length of hospitalization. It also increases the financial burdens to the public, reaching up to $16 billion for US health care cost every year [4-10].

Various risk factors have been reported to be associated with postoperative delirium, such as the use of drugs, inflammation, and metabolic abnormalities [11]. Notably, some studies revealed that excessively deep depth of anesthesia increased the risk of postoperative delirium [12-14].

Electroencephalography (EEG) is commonly used for monitoring the depth of anesthesia [15]. Burst suppression, an EEG pattern featuring flat periods of high-voltage, slow wave electrical activity with inter-burst refractory periods, often suggests excessively deep depth of anesthesia [16, 17]. Although it remains controversial whether the burst suppression pattern of EEG during surgery correlates with the risk of postoperative delirium, Fritz et. al. reported that the burst suppression characteristic of EEG could serve as an independent risk factor for postoperative delirium [18]. Previous meta-analysis indicated that the use of EEG monitoring during surgery correlated with a reduced risk of postoperative delirium [19]. However, the recently published result of a randomized controlled trial (RCT) addressing the same question, which was conducted by Widles et. al and enrolled 1213 patients, was not consistent with the conclusion [20].

To better understand the effects of EEG monitoring on POD and to provide clearer guidance to clinicians, we conducted this systematic review to investigate the relationship between EEG monitoring during surgery and the adverse clinical outcomes.

Materials And Methods

This review was conducted and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement (PRISMA) guidelines [21]. This systematic review and meta-analysis had been registered in the international prospective register of systematic reviews (CRD42019130512 https://www.crd.york.ac.uk/prospero/).

Search Strategy

Two investigators (DL and DXC) performed a systematic search in the databases of Ovid MEDLINE,
PubMed, EMBASE, Cochrane Library database, CNKI and other databases updated to October 2019. The full search terms for PubMed was: ((((((Electroencephalography [MeSH Terms]) OR Electroencephalography [Title/Abstract]) OR electroencephalogram [Title/Abstract]) OR bispectral index[Title/Abstract]) OR BIS [Title/Abstract]) OR Auditory Evoked Potential [Title/Abstract]) OR AEP [Title/Abstract]) OR depth of anesthesia [Title/Abstract])) AND ((delirium [MeSH Terms]) OR deliri* [Title/Abstract]). The search terms were modified for each database. Any conflicts about search result between the two investigators (DL and DXC) were resolved by discussion and the consensus was reached.

Eligibility Criteria

Prior to the systematic review and meta-analysis, the inclusion criteria were predetermined by all authors. Inclusion criteria are as the following: (1) the study was randomized controlled trial (RCT), regardless of publication language and status; (2) patients were adults aged 18 years or older who underwent general anesthesia for surgery; (3) the outcomes of using processed EEG and routine care were compared; (4) the occurrence of POD assessed by validated scale was reported in the study. The exclusion criteria were: (1) non-randomized studies; (2) non full-text studies; (3) ongoing studies; (4) the outcome data could not be extracted and used for analysis.

Data Collection and Quality Assessment

The data was extracted by two investigators (DL and DXC) independently using a standardized form based on the PICO approach. This form includes the first author, year of publication, study design, sample size, outcome variables and assessment scale, summative results and conclusion. The methodological quality of the included studies was assessed using the Cochrane risk of bias scale, which contains seven specified domains [22]. Risk of bias were classified as high, low or unclear for each item. The quality assessment was conducted by two investigators independently, and any conflicts was resolved by a third investigator (QL) referring to the original article.

Statistical Analysis

Data analyses were performed using Review Manager (version 5.3). The inspection level for the pooled data were 2-sided, and P < 0.05 was regarded as statistically significant. The odds ratio (OR)
and mean difference (MD) with 95% confidence interval (CI) were employed for analyzing the categories and continuous data. The standard difference was calculated with the formula: (Maximum-Minimum)/4 \[23\]. Heterogeneity across studies was assessed with chi-square test and I² test, and I² >50% or P < 0.10 was considered as significantly heterogenous. The random-effect model was adopted if the heterogeneity existed among the studies, whereas the fixed-effect model was applied if no significant heterogeneity was detected \[24-26\]. Sensitivity analysis was conducted to assess the impact of single study to the overall analysis \[27\]. Publication bias was assessed using the Egger and Begg test \[28, 29\].

Results

Literature Search

The initial searches in PubMed, Ovid, EMBASE, Cochrane library, CNKI and Chinese local databases identified 770 reports. Duplicates removal reduced the number of reports to 682. Then, 662 studies were excluded after reviewing the title and abstracts. The full text of the remaining 20 studies were retrieved for evaluations, in which 13 studies were further excluded due to one or more of the following reasons: not RCT (n=2) \[30,31\]; review (n=3) \[32-34\]; non-general anesthesia patients (n=2) \[12,13\]; the control group used end-tidal anesthetic concentration (ETAC) as a guide for anesthesia depth rather than routine care (n=1) \[35\]; no full-text available (n=1) \[36\], or ongoing studies (n=4). Reviewing the reference lists of retrieved studies did not identify any new eligible study. Finally, seven RCTs were included in this review \[20, 37-42\]. A flow diagram illustrating the literature search and trials screening process was shown in Figure 1.

Characteristics of Included Studies

As listed in Table 1, seven RCTs including a total number of 3859 patients were enrolled in this meta-analysis. Six out of the seven studies used bispectral index (BIS), and the last one, conducted by Jidenstal et. al \[37\], used auditory evoked potential (AEP) as the guide for anesthesia depth. One trial included patients who underwent cardiac surgery \[20\], whereas the other six studies were conducted in patients who underwent major non-cardiac surgery, including abdominal surgery, ENT surgery and
hip fracture repair surgeries. The assessment result of risk of bias was shown in Figure 2 (figure2A: risk of bias summary: review authors’ judgements of each risk of bias; B: risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all). As shown in the figure 2, the study conducted by Li et al. was at high risk of bias due to the absence of the methods of allocation and blinding [42]. Two studies were at unclear risk of bias due to the unclear blinding of outcome assessments (detection bias) or unclear blinding of participants and study personnel (performance bias) [39, 41]. And the remaining 4 studies were at low risk of bias.

Postoperative Delirium (POD)

After pooling the data from all the included studies (n=3859, EEG monitoring=1924, routine care=1935), we noticed that patients in EEG-guided anesthesia group had a reduced risk of postoperative delirium as compared to the patients in the group of routine care (OR: 0.65; 95% CI: 0.46-0.92; P = 0.01); (Figure 3), but the heterogeneity among included studies was detected (P=0.002, $I^2=71\%$). Sensitivity analysis result indicated that the study conducted by Wildes et al. [20] (n=1213, EEG monitoring =604, routine care=609) contributed to the heterogeneity, but the result was not changed by excluding this specific trial (OR: 0.60; 95% CI: 0.50-0.73; P < 0.00001) from our study. Base on Egger (P=0.283) and Begg (P=0.452) tests, no significant publication bias in terms of postoperative delirium was found.

Length of Patient Hospitalization

Data from 4 trials including 3450 patients were analyzed regarding the length of hospitalization between the EEG monitoring group and the routine care group [20,38-39,41]. Three of the four studies (n=3270, EEG monitoring =1629, routine care=1641) didn’t demonstrate significant difference between the EEG guided anesthesia group and routine care group [22, 38, 39] with respect to the length of hospitalization. Qiang et al. (n=180, EEG monitoring=90, routine care=90) reported a significantly longer hospital-stay for patients in the routine care group compared to that of the patients in the EEG monitoring group [41]. The analysis result of all the patients in the four studies didn’t support the conclusion that the use of intraoperative EEG monitoring could reduce the length of hospitalization
(MD: -0.59; 95%CI: -1.26 to 0.07; P=0.08). Detailed result was shown in Figure 4. Furthermore, significant heterogeneity was observed in the studied trials (P=0.03, $i^2=65\%$).

Mortality

Two studies (n=2368, EEG monitoring=1179, routine care=1189) investigated the postoperative mortality. Radtke *et al.* (n=1155, EEG monitoring=575, routine care=580) reported that the 3-month mortality was not significantly different between the EEG-guided anesthesia group and the routine care group. However, Wildes and his colleagues (n=1213, EEG monitoring =604, routine care=609) revealed that the 30 days postoperative mortality rate was lower in patients receiving intraoperative EEG guided anesthesia (p=0.004) than that of the patients in the routine care group. The meta-analysis was not conducted for mortality due to the limited data and the high heterogeneity of the trials.

Discussion

In the present systematic review and meta-analysis, seven RCTs with 3859 patients, including 1924 patients who received EEG-guided anesthesia and 1935 patients who received routine care were enrolled. We found the incidence of postoperative delirium was significantly reduced in the EEG-guided group compared to the routine care group. However, there was no difference regarding the length of hospitalization between the two groups. No analysis was performed on mortality rate due to limited data and the high heterogeneity of reenrolled studies.

Prior to our study, Kristen *et al.* and Punjasawadwong *et al.* have performed two meta-analyses independently, including 3 RCTs (n = 2197) and 5 RCTs (n = 2654) respectively, to evaluate the impact of EEG monitoring on POD and postoperative cognitive dysfunction (POCD). Both meta-analyses reported that the EEG-guided anesthesia could reduce the incidence of POD. But the authors also pointed out that the quality of the research evidence was moderate, and future studies should be required to clarify whether the appropriate EEG during surgery can reduce the occurrence of POD. It is worth noting that one recently added large-sample RCT (n = 1213) conducted by Wildes and his colleagues proposed that EEG-guided anesthesia could not reduce the incidence of POD, which was
inconsistent with previous large-sample studies \cite{38-39}. In 2013, Chan et. al performed an RCT with 902 patients and revealed that the incidence rate of POD was lower in patients receiving EEG-guided anesthesia than that in patients receiving routine care \cite{38}. In addition, Radtke and his colleagues analyzed information from 1155 patients and concluded that EEG monitoring correlated with a significant reduction of POD incidence \cite{39}. These discrepant findings may attribute to the methodological differences and the heterogeneity of the studied population among those studies.

Compared to the studies by Chan and Radtke et. al\cite{38, 39}, the study conducted by Wildes et. al\cite{20} included patients with more severe conditions. More than 30% of the patients in Wildes’ study had ASA ≥ 3 or had a history of falls or planned cardiothoracic surgery, all of which are risk factors for POD \cite{54-56}. For these high-risk patients, it is recommended in several clinical practice guidelines that a multi-component strategy is needed to prevent delirium \cite{43, 44}, indicating that a single approach of monitoring has limited effect on these high-risk patients to prevent POD occurrence. An ongoing study in patients undergoing cardiac surgery may provide further evidence to verify the conclusion \cite{45}.

However, our meta-analysis suggested that the EEG monitoring significantly correlates with a lower risk of POD.

However, the underlying mechanisms of the POD prevention by EEG monitoring remains unclear. One hypothesis is that the use of EEG monitoring makes it possible to avoid too deep anesthesia, therefore to specifically reduce the incidence and cumulative duration of intraoperative burst suppression. Previous studies have shown that burst suppression is an independent risk factor of postoperative delirium \cite{18, 46}, and Hesse et al. have demonstrated that every incidence of burst suppression during the anesthesia maintenance is associated with a 75% increase in odds of postoperative delirium \cite{31}. Furthermore, high incidence or longer duration of burst suppression are significantly associated with the incidence of postoperative delirium \cite{46-48}. In addition, the use of EEG monitoring also reduce the dosage of general anesthetics, such as volatile agents and propofol \cite{49, 50}. Previous studies have reported that excessively exposure to potent volatile agents might
increase the incidence of POD[51]. Particularly, most of these studies were performed in geriatric patients whose aging brains are more sensitive to anesthetic agents, therefore are more likely to experience the burst suppression and POD[52-53].

Our meta-analysis results indicated that use of EEG monitoring can reduce the incidence of postoperative delirium, while no effect of EEG on the length of hospitalization was found. In the present study, 4 RCTs including 3450 patients were evaluated with respects to the effect of EEG on the length of hospital stay, only one study with a small sample size of 180 patients indicated that EEG-guided anesthesia could reduce the length of hospitalization. However, hospitalization length is affected by many factors in addition to the postoperative delirium, and the length of hospital stay is not the primary evaluated outcome in the analyzed reports in our study. Therefore, it is difficult to rule out the impacts of other confounding factors and further investigation is needed to clarify the correlation.

In addition, we intended to analyze the mortality between the two groups. However, only two of seven included studies reported the mortality rate. Wildes et al.[20] revealed a significantly higher odd of 30-day mortality in patients without using EEG monitor, as compared to the routine care group. While in Readtke’s report[39], it was shown that the use of processed EEG had no influence on the 3-month mortality rate. Furthermore, a previous meta-analysis indicated that deep anesthesia had no effect on long-term mortality[57], which is consistent with a recently published multicenter RCT[58].

Several limitations of this meta-analysis should be acknowledged: (1) smaller number of included trials and the deviations in the results due to the absence of adjustment variables such as age, gender and the type of surgery; (2) the scales and methods of delirium evaluation varies among the included studies; (3) this study is based on the published articles, the publication bias is inevitable; (4) the analysis of this study is based on data at study-level, whereas the original data from individual patients was not available.

Conclusions
In conclusion, the findings of this study indicated that the use of EEG monitoring correlated with a
lower risk of postoperative delirium. Therefore, we recommend using EEG monitoring during surgery to reduce the risk of postoperative delirium. But for high risk patients, we should combine multiple interventions to optimize perioperative anesthesia for the prevention from postoperative delirium. Further large-scale RCTs should be conducted to verify the correlation between the use of electroencephalogram monitoring and postoperative delirium based on original data directly from patients.

Abbreviations
EEG: Electroencephalogram; POD: Postoperative delirium; BIS: bispectral index; AEP: auditory evoked potential; POCD: postoperative cognitive dysfunction; ETAC: end-tidal anesthetic concentration; ENT: ear, nose, and throat; CI: Confidence interval; OR: Odds ratio; RCTs: Randomized controlled trials; MD: mean difference.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
This study is supported by National Key R&D Program of China (2018YFC2001800).

Authors’ contributions
DL, DXC, and QL designed the study, DL and DXC conducted database searches and extracted study data, DL performed the data analysis, and was a major contributor in writing the manuscript, QL provided critical review
and modification of the manuscript. The authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. American Psychiatric Association. *Diagnostic and Statistical Manual of Mental Disorders, 5th Edn.* Washington, DC: American Psychiatric Association, 2013.

2. Schenning KJ, Deiner SG. *Postoperative Delirium in the Geriatric Patient.* Anesthesiol Clin 2015;33: 505-16. DOI: 10.1016/j.anclin.2015.05.007

3. Iamaroon A, Wongviriyawong T, Sura-Arunsumrit P, et al. Incidence of and risk factors for postoperative delirium in older adult patients undergoing non-cardiac surgery: a prospective study. [J]. BMC Geriatr, 2020, 20: 40. DOI: 10.1186/s12877-020-1449-8

4. Charles H, Brown. *Delirium in the cardiac surgical ICU.* Curr Opin Anaesthesiol 2014; 27: 117-22. DOI: 10.1097/ACO.0000000000000061

5. Tropea J, LoGiudice D, Liew D, et al. Poorer outcomes and greater healthcare costs for hospitalised older people with dementia and delirium: a retrospective cohort study. Int J Geriatr Psychiatry 2017;32: 539-47. DOI: 10.1002/gps.4491

6. Witlox J, Eurelings LS, de Jonghe JF, et al. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. *JAMA* 2010; 304:443-51. DOI: 10.1001/jama.2010.1013

7. Robinson TN, Raeburn CD, Tran ZV, et al. Postoperative delirium in the elderly: risk factors and outcomes. *Ann Surg* 2009;249:173-8. DOI: 10.1097/SLA.0b013e31818e4776.

8. Saczynski JS, Marcantonio ER, Quach L, et al. Cognitive trajectories after postoperative delirium. *N Engl J Med* 2012;367:30-9. DOI: 10.1056/NEJMoai1112923

9. Tosun Tasar P, Sahin S, Akcam NO, et al. Delirium is associated with increased mortality in the geriatric population. *Int J Psychiatry Clin Pract* 2018;22:200-5. DOI:
1. Palanca BJA, Wildes TS, Ju YS, et al. Electroencephalography and delirium in the postoperative period. Br J Anaesth 2017;119:294-307. DOI: 10.1093/bja/aew475

2. Sieber FE, Neufeld KJ, Gottschalk A, et al. Effect of Depth of Sedation in Older Patients Undergoing Hip Fracture Repair on Postoperative Delirium. JAMA Surgery 2018;153:987. DOI: 10.1001/jamasurg.2018.2602

3. Sieber FE, Zakriya KJ, Gottschalk A, et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc 2010;85:18-26. DOI: 10.4065/mcp.2009.0469

4. Lu X, Jin X, Yang S, Xia Y. The correlation of the depth of anesthesia and postoperative cognitive impairment: A meta-analysis based on randomized controlled trials. J Clin Anesth 2018;45:55-9. DOI: 10.1016/j.jclinane.2017.12.002

5. Fahy Brenda G, Chau Destiny F. The Technology of Processed Electroencephalogram Monitoring Devices for Assessment of Depth of Anesthesia. [J]. Anesth. Analg., 2018, 126: 111-117. DOI: 10.1213/ANE.0000000000002331

6. Liou JY, Baird-Del, Zhao MR, et al. Burst suppression uncovers rapid widespread alterations in network excitability caused by an acute seizure focus. [J]. Brain, 2019, 142: 3045-3058. DOI: 10.1093/brain/awz246

7. Jung D, Yang Sungwon, Lee MS et al. Remifentanil Alleviates Propofol-Induced Burst Suppression without Affecting Bispectral Index in Female Patients: A Randomized Controlled Trial. [J]. J Clin Med, 2019, 8:1186. DOI: 10.3390/jcm8081186

8. Fritz BA, Kalarickal PL, Maybrier HR, et al. Intraoperative Electroencephalogram Suppression Predicts Postoperative Delirium. Anesth Analg. 2016;122:234-42. DOI:
9. MacKenzie KK, Britt-Spells AM, Sands LP et al. Processed Electroencephalogram Monitoring and Postoperative Delirium: A Systematic Review and Meta-analysis. [J]. Anesthesiology, 2018, 129: 417-427. DOI: 10.1097/ALN.0000000000002323

0. Wildes TS, Mickle AM, Ben Abdallah A, et al. Effect of Electroencephalography-Guided Anesthetic Administration on Postoperative Delirium Among Older Adults Undergoing Major Surgery: The ENGAGES Randomized Clinical Trial. JAMA. 2019;321:473-83. DOI: 10.1001/jama.2018.22005

1. Moher D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Plos Med 2009; 6: e1000097. DOI: 1371/journal.pmed.1000097

2. Higgins J, Altman DG. Assessing risk of bias in included studies. In: Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1. Oxford, England: Cochrane Collaboration: 2008; chap 8.

3. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135. DOI: 10.1186/1471-2288-14-135

4. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-analyses. In: Higgins J, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1. Oxford, UK: The Cochrane Collaboration: 2008; chap 9.

5. Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60. DOI: 1136/bmj.327.7414.557

6. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-88.

7. Tobias A. Assessing the influence of a single study in meta-analysis. Stata Tech Bull 1999; 47: 15-17.
8. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-34. DOI: 10.1136/bmj.315.7109.629

9. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1101.

10. Deiner S, Luo X, Silverstein JH, et al. Can Intraoperative Processed EEG Predict Postoperative Cognitive Dysfunction in the Elderly? Clin Ther 2015;37:2700-5. DOI: 10.1016/j.clinthera.2015.11.004

11. Hesse S, Kreuzer M, Hight D, et al. Association of electroencephalogram trajectories during emergence from anaesthesia with delirium in the post-anaesthesia care unit: an early sign of postoperative complications. Br J Anaesth 2018. DOI: 10.1016/j.bja.2018.09.016

12. Shetty RM, Bellini A, Wijayatilake DS, et al. BIS monitoring versus clinical assessment for sedation in mechanically ventilated adults in the intensive care unit and its impact on clinical outcomes and resource utilization. Cochrane Database Syst Rev2018;2:CD011240. DOI: 10.1002/14651858.CD011240.pub2

13. Punjasawadwong Y, Chau-in W, Laopaiboon M, et al. Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database Syst Rev2018;5:CD011283. DOI: 10.1002/14651858.CD011283.pub2

14. Berger M, Nadler J, Mathew JP. Preventing delirium after cardiothoracic surgery: provocative but preliminary evidence for bispectral index monitoring. Anesth Analg 2014;118:706-7. DOI: 10.1213/ANE.0000000000000130

15. Whitlock EL, Torres BA, Lin N, et al. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth Analg. 2014;118:809-17. DOI: 10.1213/ANE.000000000000028

16. Punjasawadwong Y, Pipanmekaporn T, Wongpakaran N. Optimized anesthesia to reduce
incidence of postoperative delirium in elderly undergoing elective, non-cardiac surgery: a randomized controlled trial. Anesth Analg. 2016; 123:211.

7. Jildenstal PK. Does Depth of Anesthesia Influence Postoperative Cognitive Dysfunction or Inflammatory Response Following Major ENT Surgery? J Anesth Clin Res 2012;03(06). DOI: 10.1097/ANA.0b013e3182712fba

8. Chan MT, Cheng BC, Lee TM, et al. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol 2013;25:33-42.

9. Radtke FM, Franck M, Lendner J, et al. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth 2013;110 Suppl 1:i98-105. DOI: 10.1093/bja/aet055

10. Zhou Y, Li Y, Wang K. Bispectral Index Monitoring During Anesthesia Promotes Early Postoperative Recovery of Cognitive Function and Reduces Acute Delirium in Elderly Patients with Colon Carcinoma: A Prospective Controlled Study using the Attention Network Test. Med Sci Monit. 2018;24:7785-93. DOI: 10.12659/MSM.910124

1. Qiang lulu, Xu Guanghong, Fang Weiping, et al.(Chinese) The impact of bispectral index-guided anesthesia on the incidence of postoperative delirium in elderly patients with chronic anemia. Int J Aneth Resus. 2016;37:415-419

2. Li Yongjun, Sun Heliang, Li Xiaoshuang, et al.(Chinese) The effect of BIS monitoring on the incidence of postoperative delirium in elderly patients undergoing abdominal surgery. Jiangsu Med J.2014;40:977-978.

3. Hughes Christopher G,Boncyk Christina S,Culley Deborah J et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Postoperative Delirium Prevention.[J]. Anesth. Analg., 2020, DOI: 10.1213/ANE.0000000000004641

4. American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults. American Geriatrics Society abstracted clinical practice guideline for postoperative delirium in older
1. Leung JM, Sands LP, Lim E, et al. Does preoperative risk for delirium moderate the effects of postoperative pain and opiate use on postoperative delirium? [J]. Am J Geriatr Psychiatry, 2013, 21: 946-56. DOI: 10.1016/j.jagp.2013.01.069

2. Purdon PL, Pavone KJ, Akeju O, et al. The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. [J]. Br J Anaesth 2015; 115:i46-i57. DOI: 10.1093/bja/aev213

3. Deschamps Alain, Saha Tarit, El-Gabalawy Renée et al. Protocol for the electroencephalography guidance of anesthesia to alleviate geriatric syndromes (ENGAGES-Canada) study: A pragmatic, randomized clinical trial. [J]. F1000Res, 2019, 8: 1165. DOI: 10.12688/f1000research.19213.1

4. Soehle M, Dittmann A, Ellerkmann RK, et al. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. [J]. BMC Anesthesiol. 2015;15:61. DOI: 10.1186/s12871-015-0051-7

5. Besch G, Liu N, Samain E, et al. Occurrence of and risk factors for electroencephalogram burst suppression during propofol-remifentanil anaesthesia. [J]. Br J Anaesth 2011;107:749-56. DOI: 10.1093/bja/aer235

6. Plummer GS, Ibala R, Hahm E, et al. Electroencephalogram dynamics during general anesthesia predict the later incidence and duration of burst-suppression during cardiopulmonary bypass. [J]. Clin Neurophysiol. 2019;130:55-60. DOI: 10.1016/j.clinph.2018.11.003

7. Punjasawadwong Y, Phongchiewboon A , Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery.[J] .Cochrane Database Syst Rev, 2014, CD003843. DOI: 10.1002/14651858.CD003843.pub3

8. Quesada N, Júdez D, Martínez UJ, et al. Bispectral Index Monitoring Reduces the Dosage of Propofol and Adverse Events in Sedation for Endobronchial Ultrasound.[J] .Respiration, 2016, 92: 166-75. DOI: 10.1159/000448433
3. Martin G, Glass PS, Breslin DS, et al. A study of anesthetic drug utilization in different age groups. J Clin Anesth 2003;15:194-200. DOI: 10.1016/s0952-8180(03)00030-8

4. Inouye SK, Charpentier PA. Precipitating factors for delirium in hospitalized elderly persons. Predictive model and interrelationship with baseline vulnerability. JAMA. 1996;275:852-7.

5. Brouquet A, Cudennec T, Benoist S, et al. Impaired mobility, ASA status and administration of tramadol are risk factors for postoperative delirium in patients aged 75 years or more after major abdominal surgery. Ann Surg 2010;251:759-65. DOI: 10.1097/SLA.0b013e3181c1cfc9

6. Raats JW, van Eijsden WA, Crolla RM, et al. Risk Factors and Outcomes for Postoperative Delirium after Major Surgery in Elderly Patients. PloS one. 2015;10:e0136071. DOI: 10.1371/journal.pone.0136071

7. Hamilton GM, Wheeler K, Di Michele J, et al. A Systematic Review and Meta-analysis Examining the Impact of Incident Postoperative Delirium on Mortality. Anesthesiology 2017;127:78-88. DOI: 10.1097/ALN.0000000000001660

8. Short TG, Campbell D, Frampton C, et al. Anaesthetic depth and complications after major surgery: an international, randomised controlled trial. [J]. Lancet, 2019, 394: 1907-1914. DOI:10.1016/S0140-6736(19)32315-3

Table
Due to technical limitations, Table 1 is only available for download from the Supplementary Files section.

Figures
Figure 1

A flow diagram illustrating the literature search and trials screening process.
Year	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
2019	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Red](red) ![Red](red) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)			
2019	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Red](red) ![Red](red) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)			
2018	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Red](red) ![Red](red) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)			
2017	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)	![Red](red) ![Red](red) ![Green](green) ![Green](green)	![Green](green) ![Green](green) ![Green](green) ![Green](green)			

19
Figure 2

2A: risk of bias summary: review authors’ judgements of each risk of bias; B: risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all

Study or Subgroup	Electromyograph-guided	Routine-Care	Odds Ratio	M.H. Random, 95% CI	
Chan 2013	70	450	109	452	0.58 (0.42, 0.91)
Jidrenstal 2012	0	16	2	16	1.28 (0.35, 2.31)
Li 2014	20	147	41	148	0.41 (0.23, 0.74)
Gold 2016	16	30	30	12.5%	0.48 (0.24, 0.95)
Reifke 2013	95	575	124	590	0.73 (0.54, 0.98)
Wildes 2019	157	694	140	699	1.18 (0.91, 1.53)
Zhou 2018	7	42	11	40	0.53 (0.24, 1.13)
Total (95% CI)		1924	1935	100.0%	0.65 (0.46, 0.92)

Total events: 3855

Heterogeneity: Tau² = 0.12; Chi² = 20.35, df = 6 (P = 0.002); I² = 71%
Test for overall effect: Z = 2.45 (P = 0.01)

Figure 3

After pooling the data from all the included studies (n=3859, EEG monitoring=1924, routine care=1935), we noticed that patients in EEG-guided anesthesia group had a reduced risk of postoperative delirium as compared to the patients in the group of routine care (OR: 0.65; 95% CI: 0.46-0.92; P = 0.01); but the heterogeneity among included studies was detected (P=0.002, I²=71%).
Figure 4

Detailed result of all the patients in the four studies

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

PRISMA 2009 checklist (1).doc
Table 1 Characteristics of included studies.doc