Concomitant Proton Pump Inhibitors and Immune Checkpoint Inhibitors Increase Nephritis Frequency

KOKI KATO1*, TOMOHIRO MIZUNO1*, TAKENAO KOSEKI1†, YOSHIMASA ITO2, MASAKAZU HATANO1, KAZUO TAKAHASHI3, SHIGEKI YAMADA1 and NAOTAKE TSUBOI2

1Department of Clinical Pharmacy, Fujita Health University School of Medicine, Toyoake, Japan; 2Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan; 3Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Japan

Abstract. Background/Aim: Concomitant proton pump inhibitor (PPI) and immune checkpoint inhibitor (ICPI) were determined as risk factors of acute kidney injury. To identify the type of PPI associated with ICPI-induced nephritis, we used the Japanese Adverse Drug Event Report database. Patients and Methods: ICPIs (nivolumab, pembrolizumab, ipilimumab, atezolizumab, durvalumab, and avelumab) and PPIs (esomeprazole, omeprazole, vonoprazan, rabeprazole, and lansoprazole) were selected as suspected nephritis-inducing drugs. Results: The cases of concomitant use of atezolizumab and rabeprazole, ipilimumab and omeprazole, ipilimumab and lansoprazole, nivolumab and esomeprazole, nivolumab and omeprazole, nivolumab and rabeprazole, nivolumab and lansoprazole, pembrolizumab and esomeprazole, as well as pembrolizumab and lansoprazole had a significantly higher reported odds ratio than monotherapy cases. Conclusion: Male patients or patients using ICPIs and PPIs (excluded vonoprazan) concomitantly should be monitored for renal function after chemotherapy.

Immune checkpoint inhibitors (ICPIs) are used as essential anti-cancer chemotherapy in various types of cancers (1-5). Blockade of programmed cell death-1 (PD-1)/PD-ligand-1 signaling (6, 7) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) signaling (8) activates T-cell mediated antitumor immunity; therefore, ICPIs exert dramatic effects in patients with cancer expressing these proteins. As ICPIs induce antitumor effects by reactivating antitumor immunity, they also cause immune-related adverse events (irAEs), such as interstitial pneumonia and nephritis (9-11), thyroid dysfunction (5, 9), type 1 diabetes mellitus (5), and lupus erythematosus (12). The clinical features and outcomes of ICPI-induced acute kidney injury (AKI) have been reported (13-15). As a pathological feature, acute tubulointerstitial nephritis was the primary pathologic lesion with lymphocyte infiltration. In addition, lower baseline estimated glomerular filtration rate (eGFR), use of proton pump inhibitor (PPI), and ICPI combination were determined as risk factors of ICPI-associated AKI (13). Furthermore, the mortality of patients with renal recovery after ICPI-induced nephritis was better than that of patients without renal recovery (16). To improve prognosis for patients treated with ICPIs, the prevention of ICPI-induced nephritis is essential.

PPIs are traditionally widely used for the treatment of several acid-related disorders, including peptic ulcer disease, gastroesophageal reflux disease, and Helicobacter pylori eradication. Although the use of PPIs was perceived as safe, it is associated with the incidence of AKI (17-22). In particular, omeprazole is associated with acute interstitial nephritis (AIN) (17). Because AKI and AIN increase the risk of chronic kidney disease (CKD), the prevention of PPI-induced AIN could decrease the initiation of dialysis (23-25). Since the frequency of overall incidence of ICPI-induced AKI is 2.2% (26), the information regarding ICPI-induced AKI is limited. In addition, it remains unclear as to which PPIs increase the risk of AKI. The Japanese Adverse Drug Event Report (JADER) database is an open-access database of adverse drug events (ADEs). The JADER database is useful for calculating ADE signals in rare cases. The frequencies of irAEs associated with ICPIs were approximately 50% (skin disorders), 40% (gastrointestinal disorders), 8% (endocrine disorders), 4% (hepatitis), and 1% (pneumonitis) in advanced melanoma (14). Because of
their low frequency, the signals of irAEs for nephritis/renal dysfunction, pneumonitis, rash, and type 1 diabetes mellitus associated with ICPIs were calculated using JADER (27). However, information on drug-drug interactions is limited. In this study, we aimed to elucidate the type of PPI associated with ICPI-induced nephritis and used the JADER database.

Patients and Methods

Data source. Data from April 2004 to September 2020 were extracted from the JADER database. The JADER database consists of four data tables: patient demographic information (demo), drug information (drug), ADEs (reac), and primary disease (hist). The duplicated data in the “drug” and “reac” tables were removed, and the “demo” table was linked to the “drug” and “reac” tables using each case identified in the data tables. In these cases, the contribution of the medications to the ADEs was classified into three categories: “suspected medicine”, “concomitant medicine”, and “interaction”. The “suspected medicine” category was extracted into ADEs in the present study.

The “demo” table contained data for patient sex and age, as well as other patient characteristics. Data without sex or age information were excluded from the dataset. For the association analysis performed with patients classified in 10-year age intervals, we defined “older adults” as those in their “70s”, “80s”, “90s”, and “100s”, according to a previous report (28). Nivolumab, pembrolizumab, ipilimumab, atezolizumab, durvalumab, and avelumab were selected as suspected drugs for analysis of irAEs. These ICPIs have been approved by the Japanese Ministry of Health, Labor, and Welfare.

Definition of cancer patients. The primary disease in the “hist” tables was defined on the basis of the preferred terms (PTs) in the Medical Dictionary for Regulatory Activities (MedDRA) version 23.1. MedDRA term grouping at the PT level defines the patient’s medical condition. Cancer as a primary disease as defined by PTs is shown in Table I after removing duplicated data. Other cancers not included in Table I that appeared as primary diseases were classified as others/uncertain.

Definition of ICPIs and nephritis as irAEs. ICPIs (nivolumab, pembrolizumab, ipilimumab, atezolizumab, durvalumab, and avelumab) and PPIs (esomeprazole, omeprazole, vonoprazan, rabeprazole, and lansoprazole) were selected as suspected nephritis-inducing drugs. The ADEs in the “reac” table were coded according to the PTs in the MedDRA. Nephritis as an irAE was selected by three nephrologists from the MedDRA, and the PTs for nephritis are listed in Table II.

Statistical analysis. The reporting odds ratio (ROR), which serves as an index for adverse event signals, was calculated using the following equations (28), with a, b, c, and d cross-tabulation as follows: a, number of cases with an ADE related to the use of the suspected drug; b, number of cases with an ADE related to the use of all other drugs; c, number of cases with all other ADEs related to the use of the suspected drug; and d, number of cases with all other ADEs related to the use of all other drugs.

\[
\text{ROR} = \frac{a/b}{c/d} = \frac{ad}{bc}
\]

Adverse event signals were recognized as significant when the ROR estimates and the lower limits of the corresponding 95% confidence interval (CI) exceeded 1. RORs were calculated using Excel for Microsoft 365 (Microsoft Corporation, Redmond, WA, USA). The signals of drug-drug interactions were evaluated as significant when the lower limits of the corresponding 95% CI in drug-drug interactions exceeded the higher limits of the corresponding 95% CI in monotherapy (29).

Chi-square test as univariate analysis and multiple logistic regression analysis were used to assess the risk of nephritis in ICPI monotherapy. Two-sided p-values less than 0.05 were considered significant. We conducted the multiple logistic regression analysis in ICPI dataset showing significant ADE signals of nephritis. Multiple logistic regression analysis in each ICPI dataset was performed using SPSS version 22.0 (SPSS Inc., Chicago, IL, USA).

Results

Patient characteristics and ROR of monotherapy. A total of 591,114 cases were included in the dataset (Figure 1). The numbers of side-effects associated with nivolumab, pembrolizumab, ipilimumab, atezolizumab, durvalumab, and avelumab were 9,116, 5,838, 2,831, 1,288, 1,054, and 48, respectively (Table III). In patients taking ICPI monotherapy, ADE signals of nephritis were detected in the atezolizumab, ipilimumab, durvalumab, nivolumab, and pembrolizumab groups. The use of atezolizumab [ROR (95% CI)=1.780 (1.102 to 2.874)], ipilimumab [ROR (95% CI)=2.454 (1.857 to 3.242)], nivolumab [ROR (95% CI)=2.091 (1.764 to 2.479)], and pembrolizumab [ROR (95% CI)=2.443 (2.008 to 2.973)] showed a statistically significant signal for nephritis (Table IV). Although the durvalumab group also showed ADE signals for nephritis, the signals were not statistically significant [ROR (95% CI)=0.252 (0.063 to 1.010)] (Table IV). Moreover, the avelumab group did not show any ADE signal for nephritis because of the small sample size.

ADE signals of nephritis were detected in patients treated with PPIs. The use of esomeprazole [ROR (95% CI)=2.064 (1.326 to 3.214)], omeprazole [ROR (95% CI)=4.248 (3.209 to 5.622)], vonoprazan [ROR (95% CI)=1.829 (1.132 to 2.954)], rabeprazole [ROR (95% CI)=3.169 (2.263 to 4.437)], and lansoprazole [ROR (95% CI)=2.178 (1.705 to 2.783)] showed a statistically significant signal for nephritis (Table IV).

Drug-drug interaction signals. The signals of drug-drug interactions are shown in Table IV. Cases with concomitant use of atezolizumab and rabeprazole [ROR (95% CI)=66.43 (6.022 to 732.8)], ipilimumab and omeprazole [ROR (95% CI)=265.8 (24.09 to 2931)], ipilimumab and lansoprazole [ROR (95% CI)=29.53 (6.378 to 136.7)], nivolumab and esomeprazole [ROR (95% CI)=40.91 (13.33 to 125.5)], nivolumab and omeprazole [ROR (95% CI)=199.5 (56.28 to 707.3)], nivolumab and rabeprazole [ROR (95% CI)=114.0 (38.30 to 339.4)], nivolumab and lansoprazole [ROR (95% CI)=31.04 (13.67 to 70.71)], pembrolizumab and esomeprazole [ROR
Table I. Preferred terms to define different cancer types (appearing in the Medical Dictionary for Regulatory Activities version 23.1).

Cancer type	Preferred terms number	Preferred terms	Cancer type	Preferred terms number	Preferred terms
Non-small cell lung cancer	10001245	Adenosquamous cell lung cancer	Bladder cancer	10005003	Bladder cancer
	10001247	Adenosquamous cell lung cancer recurrent	Bladder cancer stage 0, with cancer in situ	10005005	Bladder cancer recurrent
	10001248	Adenosquamous cell lung cancer stage 0	Bladder cancer stage I, with cancer in situ	10005006	Bladder cancer recurrent
	10001249	Adenosquamous cell lung cancer stage I	Bladder cancer stage II	10005008	Bladder cancer stage II
	10001250	Adenosquamous cell lung cancer stage II	Bladder cancer stage III	10005010	Bladder cancer stage III
	10001251	Adenosquamous cell lung cancer stage III	Bladder cancer stage IV	10005011	Bladder cancer stage IV
	10001254	Adenosquamous cell lung cancer stage IV	Bladder squamous cell carcinoma recurrent	10005075	Bladder squamous cell carcinoma recurrent
	10023775	Large cell lung cancer in situ	Bladder squamous cell carcinoma stage 0	10005076	Bladder squamous cell carcinoma stage 0
	10023776	Large cell lung cancer stage 0	Bladder squamous cell carcinoma stage I	10005077	Bladder squamous cell carcinoma stage I
	10023777	Large cell lung cancer stage I	Bladder squamous cell carcinoma stage II	10005078	Bladder squamous cell carcinoma stage II
	10023778	Large cell lung cancer stage II	Bladder squamous cell carcinoma stage III	10005079	Bladder squamous cell carcinoma stage III
	10023779	Large cell lung cancer stage III	Bladder squamous cell carcinoma stage IV	10005080	Bladder squamous cell carcinoma stage IV
	10023780	Large cell lung cancer stage IV	Bladder squamous cell carcinoma stage unspecified	10005081	Bladder squamous cell carcinoma stage unspecified
	10025031	Lung adenocarcinoma	Bladder transitional cell carcinoma	10005084	Bladder transitional cell carcinoma
	10025032	Lung adenocarcinoma recurrent	Metastatic carcinoma of the bladder	10057355	Metastatic carcinoma of the bladder
	10025033	Lung adenocarcinoma stage 0	Bladder transitional cell carcinoma stage 0	10066749	Bladder transitional cell carcinoma stage 0
	10025034	Lung adenocarcinoma stage I	Bladder transitional cell carcinoma stage I	10066750	Bladder transitional cell carcinoma stage I
	10025035	Lung adenocarcinoma stage II	Bladder transitional cell carcinoma stage IV	10066752	Bladder transitional cell carcinoma stage IV
	10025036	Lung adenocarcinoma stage III	Bladder transitional cell carcinoma stage II	10066753	Bladder transitional cell carcinoma stage II
	10025037	Lung adenocarcinoma stage IV	Bladder transitional cell carcinoma stage III	10066754	Bladder transitional cell carcinoma stage III
	10025038	Lung adenocarcinoma stage IV	Bladder transitional cell carcinoma metastatic	10071664	Bladder transitional cell carcinoma metastatic
	10025120	Lung squamous cell carcinoma recurrent	Bladder transitional cell carcinoma of the bladder	10078341	Bladder transitional cell carcinoma of the bladder
	10025121	Lung squamous cell carcinoma stage 0	Malignant neoplasm of renal pelvis	10026426	Malignant neoplasm of renal pelvis
	10025122	Lung squamous cell carcinoma stage I	Transitional cell cancer of renal pelvis and ureter metastatic	10044406	Transitional cell cancer of renal pelvis and ureter metastatic
	10025123	Lung squamous cell carcinoma stage II	Transitional cell cancer of the renal pelvis and ureter	10044407	Transitional cell cancer of the renal pelvis and ureter
	10025124	Lung squamous cell carcinoma stage III	Transitional cell cancer of the renal pelvis and ureter localised	10044408	Transitional cell cancer of the renal pelvis and ureter localised
	10025125	Lung squamous cell carcinoma stage IV	Transitional cell cancer of the renal pelvis and ureter recurrent	10044410	Transitional cell cancer of the renal pelvis and ureter recurrent
	10025126	Lung squamous cell carcinoma stage IV	Transitional cell cancer of the renal pelvis and ureter regional	10044411	Transitional cell cancer of the renal pelvis and ureter regional
	10025127	Lung squamous cell carcinoma stage IV	Bladder transitional cell carcinoma of the bladder	10046392	Bladder transitional cell carcinoma
	10025128	Lung squamous cell carcinoma stage IV	Malignant neoplasm of paraurethral glands	10026326	Malignant neoplasm of paraurethral glands
	10025129	Lung squamous cell carcinoma stage IV	Transitional cell carcinoma urethra	10044426	Transitional cell carcinoma urethra
	10025130	Lung squamous cell carcinoma stage IV	Urethral cancer metastatic	10046434	Urethral cancer metastatic
	10025131	Lung squamous cell carcinoma stage IV	Urethral cancer recurrent	10046435	Urethral cancer recurrent
	10025132	Lung squamous cell carcinoma stage IV	Malignant urinary tract neoplasm	10061272	Malignant urinary tract neoplasm
	10025133	Lung squamous cell carcinoma stage IV	Urinary tract carcinoma in situ	10061396	Urinary tract carcinoma in situ
	10025134	Lung squamous cell carcinoma stage IV	Transitional cell carcinoma metastatic	10071080	Transitional cell carcinoma metastatic
	10025135	Lung squamous cell carcinoma stage IV	Malignant genitourinary tract neoplasm	10074419	Malignant genitourinary tract neoplasm
	10025136	Lung squamous cell carcinoma stage IV	Transitional cell carcinoma recurrent	10077051	Transitional cell carcinoma recurrent
	10025137	Lung squamous cell carcinoma stage IV	Bladder neoplasm	10005056	Bladder neoplasm

Table I. Continued
Cancer type	Preferred terms number	Preferred terms	Cancer type	Preferred terms number	Preferred terms
Renal cell carcinoma	10061398	Urinary tract neoplasm	Hodgkin’s disease lymphocyte depletion	10020209	stage I site unspecified
	10062221	Ureteral neoplasm	Hodgkin’s disease lymphocyte depletion	10020210	stage I supradiaphragm
	10062223	Urethral neoplasm	Hodgkin’s disease lymphocyte depletion	10020211	stage II site unspecified
	10009253	Clear cell sarcoma of the kidney	Hodgkin’s disease lymphocyte depletion	10020212	stage II supradiaphragm
	10029145	Nephroblastoma	Hodgkin’s disease lymphocyte depletion	10020213	stage III
	10038389	Renal cancer	Hodgkin’s disease lymphocyte depletion	10020214	stage III
	10038390	Renal cancer recurrent	Hodgkin’s disease lymphocyte depletion	10020215	stage IV
	10038391	Renal cancer stage I	Hodgkin’s disease lymphocyte depletion	10020216	type recurrent
	10038392	Renal cancer stage II	Hodgkin’s disease lymphocyte depletion	10020217	type refractory
	10038393	Renal cancer stage III	Hodgkin’s disease lymphocyte depletion	10020218	type stage IV
	10038394	Renal cancer stage IV	Hodgkin’s disease lymphocyte depletion	10020219	type stage unspecified
	10038410	Renal cell carcinoma recurrent	Hodgkin’s disease lymphocyte predominance stage I site unspecified	10020220	
	10038411	Renal cell carcinoma stage I	Hodgkin’s disease lymphocyte predominance stage I supradiaphragm	10020221	
	10038412	Renal cell carcinoma stage II	Hodgkin’s disease lymphocyte predominance stage II site unspecified	10020222	
	10038413	Renal cell carcinoma stage III	Hodgkin’s disease lymphocyte predominance stage II supradiaphragm	10020223	
	10038414	Renal cell carcinoma stage IV	Hodgkin’s disease lymphocyte predominance stage III	10020224	
	10039019	Renal cancer metastatic	Hodgkin’s disease lymphocyte predominance stage III	10020225	
	10050176	Renal oncocytoma	Hodgkin’s disease lymphocyte predominance stage IV	10020226	
	10050513	Metastatic renal cell carcinoma	Hodgkin’s disease lymphocyte predominance type recurrent	10020227	
	10051948	Renal adenoma	Hodgkin’s disease lymphocyte predominance type refractory	10020228	
	10061482	Renal neoplasm	Hodgkin’s disease lymphocyte predominance type stage IV	10020229	
	10061872	Non-renal cell carcinoma of kidney	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020230	
	10067943	Hereditary papillary renal carcinoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020231	
	10067944	Hereditary leiomyomatosis renal cell carcinoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020232	
	10067946	Renal cell carcinoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020233	
	10069908	Renal haemangioma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020234	
	10073251	Clear cell renal cell carcinoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020235	
	10078493	Papillary renal cell carcinoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020236	
	10080544	Chromophobe renal cell carcinoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020237	
	10081895	Multilocular cystic nephroma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020238	
	10083207	Renal hamartoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020239	
Melanoma	10025650	Malignant melanoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020240	
	10025652	Malignant melanoma in situ	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020241	
	10025668	Malignant melanoma stage I	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020242	
	10025669	Malignant melanoma stage II	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020243	
	10025670	Malignant melanoma stage III	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020244	
	10025671	Malignant melanoma stage IV	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020245	
	10027480	Metastatic malignant melanoma	Hodgkin’s disease lymphocyte predominance type stage unspecified	10020246	
Gastric cancer	10001150	Adenocarcinoma gastric	Hodgkin’s disease	10020206	stage I site unspecified
	10017758	Gastric cancer	Hodgkin’s disease	10020207	stage I site unspecified
	10017761	Gastric cancer recurrent	Hodgkin’s disease	10020208	stage I site unspecified
	10017762	Gastric cancer stage 0	Hodgkin’s disease	10020209	stage I site unspecified
	10017763	Gastric cancer stage I	Hodgkin’s disease	10020210	stage I site unspecified
	10017764	Gastric cancer stage II	Hodgkin’s disease	10020211	stage I site unspecified
	10017765	Gastric cancer stage III	Hodgkin’s disease	10020212	stage I site unspecified
	10017766	Gastric cancer stage IV	Hodgkin’s disease	10020213	stage I site unspecified
	10055008	Gastric sarcoma	Hodgkin’s disease	10020214	stage I site unspecified
	10061967	Gastric cancer stage IV	Hodgkin’s disease	10020215	stage I site unspecified
	10063916	Metastatic gastric cancer	Hodgkin’s disease	10020216	stage I site unspecified
	1006896	HER2 positive gastric cancer	Hodgkin’s disease	10020217	stage I site unspecified
Hodgkin lymphoma	1000208	Hodgkin’s disease lymphocyte depletion stage I site unspecified	Hodgkin’s disease	10020209	stage I site unspecified
	10020209	Hodgkin’s disease	Hodgkin’s disease	10020210	stage I site unspecified
	10020210	Hodgkin’s disease	Hodgkin’s disease	10020211	stage I site unspecified
	10020211	Hodgkin’s disease	Hodgkin’s disease	10020212	stage I site unspecified
	10020212	Hodgkin’s disease	Hodgkin’s disease	10020213	stage I site unspecified
	10020213	Hodgkin’s disease	Hodgkin’s disease	10020214	stage I site unspecified
	10020214	Hodgkin’s disease	Hodgkin’s disease	10020215	stage I site unspecified
	10020215	Hodgkin’s disease	Hodgkin’s disease	10020216	stage I site unspecified

Table I. Continued.
(95% CI)=33.23 (9.374 to 117.8]], and pembrolizumab and lansoprazole [ROR (95% CI)=15.63 (3.611 to 67.69)] had a significantly higher ROR than monotherapy cases.

In univariate analysis, the frequency of nephritis was significantly high in male patients treated with ipilimumab (OR=3.844; 95%CI=1.634-9.042; \(p=0.001\)). There were no significant differences in male patients treated with atezolizumab (OR=3.139; 95% CI=0.714-13.794; \(p=0.110\)), nivolumab (OR=1.371; 95% CI=0.913-2.060; \(p=0.126\), and pembrolizumab (OR=1.648; 95% CI=0.977-2.782; \(p=0.059\)). We also conducted multiple

Multiple logistic regression analysis. In univariate analysis, the frequency of nephritis was significantly high in male patients treated with ipilimumab (OR=3.844; 95%CI=1.634-9.042; \(p=0.001\)). There were no significant differences in male patients treated with atezolizumab (OR=3.139; 95% CI=0.714-13.794; \(p=0.110\)), nivolumab (OR=1.371; 95% CI=0.913-2.060; \(p=0.126\), and pembrolizumab (OR=1.648; 95% CI=0.977-2.782; \(p=0.059\)). We also conducted multiple
logistic regression analysis to assess the risk of ipilimumab-induced nephritis. The frequency of nephritis was significantly higher in male patients treated with ipilimumab (OR=3.798; 95% CI=1.614-8.938; \(p = 0.002 \)). Age over 70 years did not influence the frequency of nephritis (Table V).

Discussion

The estimated incidence of ICPI-induced nephritis is much lower than that of other irAEs (26). Therefore, understanding ICPI-induced nephritis was limited to small case series. To clearly identify the risk factors for ICPI-induced nephritis, Cortazar et al. (13) conducted a multicenter study involving 138 patients with ICPI-induced nephritis. This report identified low baseline eGFR and PPI use as independent risk factors of ICPI-induced nephritis. However, the PPIs that increase the risk of ICPI-induced nephritis were not identified in this study. In the present study, omeprazole increased the frequency of nephritis in patients treated with ipilimumab or nivolumab. Esomeprazole and lansoprazole increased the frequency of nivolumab and pembrolizumab-induced nephritis. Furthermore, the frequency of ipilimumab-induced nephritis increased in male patients.
Hypomagnesemia, AKI, AIN, and CKD were reported as adverse events associated with PPI use (30, 31). The risk of hospital admission was elevated within 120 days of PPI exposure (32). In addition, PPI use was associated with increasing mortality due to cardiovascular disease, CKD, and upper gastrointestinal cancer (33). These previous reports suggested that medical practitioners should consider the potential benefits and risks of PPIs. Based on kidney biopsy results, the frequency of AIN with severe inflammatory cell infiltration was higher in ICPI-induced nephritis than in other types of renal injury (14). Hence, these reports suggest that cell-mediated immunity is associated with nephritis. Although the underlying mechanism of PPI-induced nephritis is unclear, PPI-induced nephritis showed cellular infiltrates with lymphocytes and occasional eosinophils in the renal interstitium (20, 22). Therefore, concomitant use of ICPI and PPI might develop cell-mediated immunity associated with AIN. In the present study, omeprazole and lansoprazole showed high risk of nephritis induction in the cases with or without ICPI. Although the most of omeprazole-induced nephritis are recognized as interstitial damage (17, 30), the underlying mechanism is unclear.
Organic cation transporters (OCTs) uptake PPIs to renal tubular cells (34). Since the affinity for OCTs and accumulation in renal tubular cells are higher for omeprazole or lansoprazole than that for rabeprazole (34), omeprazole, and lansoprazole have more potential in inducing AIN compared to other PPIs.

Male gender showed an increasing tendency towards risk of ICPI-induced nephritis (13). Although the mechanism of nephritis in male patients treated with ICPIs was unclear, our results supported this previous report. Since the frequency of irAEs is higher in female patients than that in male patients (35-37), ICPI-induced nephritis might have different mechanism to that of other irAEs. Since ipilimumab has an immunoglobulin G1 (IgG1) structure, it might lead to higher activation of complement and other immune system factors than the rest of the IgG subtypes (38-40). Therefore, our results suggested that male patients or patients with concomitant use of ICPIs and PPIs (excluded vonoprazan) should be monitored for renal function after chemotherapy.

The present study has certain limitations. First, the ADE signal of avelumab-induced nephritis was either weak or not detected because of the small sample size. Nivolumab was approved in Japan in 2014, whereas ipilimumab, pembrolizumab, avelumab, atezolizumab, and durvalumab were approved in 2016, 2015, 2017, 2018, and 2018, respectively. Therefore, the number of ADE reports for nivolumab is greater than those for the other ICPIs. Second, as a large spontaneous reporting system, the JADER database has various biases including under- or over-reporting and confounders caused by comorbidities (28, 41-45). Third, the number of nephritis event was small in concomitant use of ICPI and PPI. Although multiple logistic regression analysis could be conducted in monotherapy data set, this analysis was not applied for concomitant use data set because of lack statistical power.

The most common trigger of AIN is the drug used (46), therefore the identification of the types of drug is important in determining a preventive strategy. Although our results provide new insights of ICPI- and PPI-induced nephritis, further basic and clinical studies are required to elucidate the mechanisms of action.

Conflicts of Interest

The Authors report no conflicts of interest regarding this work.

Authors’ Contributions

KK, TM, YI, and NT designed this study. KK and TK carried out the survey of the JADER database. KK, TM, TK, and MH performed the statistical analyses. KK, TM, YI, KT, SY, and NT drafted the manuscript. All Authors approved the final manuscript.

Acknowledgements

The Authors would like to thank Editage (https://www.editage.com/) for editing and reviewing this manuscript for English language.

References

1 Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Pimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmansberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P and CheckMate 025 Investigators: Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19): 1803-1813, 2015. PMID: 26406148. DOI: 10.1056/NEJMoa1510665

Table V. Univariate and multivariate analysis for predictors of ICPI-induced nephritis.

	Univariate analysis			Multivariate analysis			
	OR (95%CI)	p-Value	OR (95%CI)	p-Value			
Atezolizumab	Male	3.139 (0.714-13.79)	0.110	3.798 (1.614-8.938)	0.002	3.798 (1.614-8.938)	0.002
	≥70 years	1.200 (0.460-3.130)	0.709	1.386 (0.795-2.415)	0.250	1.386 (0.795-2.415)	0.250
Ipilimumab	Male	3.844 (1.634-9.042)	0.001	3.798 (1.614-8.938)	0.002	3.798 (1.614-8.938)	0.002
	≥70 years	1.432 (0.822-2.492)	0.202	1.386 (0.795-2.415)	0.250	1.386 (0.795-2.415)	0.250
Nivolumab	Male	1.371 (0.913-2.060)	0.126	3.798 (1.614-8.938)	0.002	3.798 (1.614-8.938)	0.002
	≥70 years	0.975 (0.695-1.368)	0.885	1.386 (0.795-2.415)	0.250	1.386 (0.795-2.415)	0.250
Pembrolizumab	Male	1.648 (0.977-2.782)	0.059	3.798 (1.614-8.938)	0.002	3.798 (1.614-8.938)	0.002
	≥70 years	0.934 (0.633-1.378)	0.730	1.386 (0.795-2.415)	0.250	1.386 (0.795-2.415)	0.250

ICPI: Immune checkpoint inhibitor; OR: odds ratio; CI: confidence interval.
Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettering SN, Rudin CM, Rizvi N, Crinò L, Blumschein GR Jr, Antonia SJ, Dorange CT, Graf Finckenstein F and Brahmer JR: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17): 1627-1639, 2015. PMID: 26412456. DOI: 10.1056/NEJMa1507643

3 Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Pauken ME, Drake CG, Camacho LH, Kauh J, Onduski K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A and Wigginton JM: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26): 2455-2465, 2012. PMID: 22658128. DOI: 10.1056/NEJMo1206994

4 Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hasson JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel MJ, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JH, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A and Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8): 711-723, 2010. PMID: 20525992. DOI: 10.1056/NEJMo1003466

5 Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlo MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neys B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A and KEYNOTE-006 investigators: Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26): 2521-2532, 2015. PMID: 25891173. DOI: 10.1056/NEJMo1503093

6 Brahmer JR, Drake CG, Wolfler W, Powderly JD, Picus J, Shaffman WH, Stankevich E, Pons A, Salay TM, McMullen TL, Gilson MM, Wang C, Selby M, Taube JM, Amers R, Chen L, Korman AJ, Pardoll DM, Lowy I and Topalian SL: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19): 3167-3175, 2010. PMID: 20516446. DOI: 10.1200/JCO.2009.26.7609

7 Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettering SN, Kohut HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS and Hoos A: Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2): 95-106, 2007. PMID: 17251916. DOI: 10.1038/nrc2051

8 Tie Y, Ma X, Zhu C, Mao Y, Shen K, Wei X, Chen Y and Zheng H: Safety and efficacy of nivolumab in the treatment of cancers: A meta-analysis of 27 prospective clinical trials. Int J Cancer 140(4): 948-958, 2017. PMID: 27813059. DOI: 10.1002/ijc.30501

10 Bashey A, Medina B, Corringsham S, Pasek M, Carrier E, Vrooman L, Lowy I, Solomon SR, Morris LE, Holland HK, Mason JR, Alyea EP, Soiffer RJ and Ball ED: CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 113(7): 1581-1588, 2009. PMID: 18974373. DOI: 10.1182/blood-2008-07-168468

9 Sukari A, Nagasaka M, Alhasan R, Patel D, Wozniak A, Ramchandren R, Vaishampayan U, Weise A, Flaherty L, Jhang H, Kim S and Gadgeel S: Cancer site and adverse events induced by immune checkpoint inhibitors: A retrospective analysis of real-life experience at a single institution. Anticancer Res 39(2): 781-790, 2019. PMID: 30711957. DOI: 10.21873/anticancer.13175

11 Fadel F, El Karoui K and Knebelmann B: Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 361(2): 211-212, 2009. PMID: 19587352. DOI: 10.1056/NEJMc0904283

12 Cortazar FB, Kibbelzaa ZA, Glezerman IG, Abudayyeh A, Mamlouk O, Motwani SS, Murakami N, Herrmann SM, Manohar S, Shirali AC, Kitchlu A, Shirazian S, Assal A, Vijayan A, Renaghan AD, Ortiz-Melo DI, Kangarajan S, Malik AB, Hogan JH, Dinh AR, Shin DS, Marrone KA, Mithani Z, Johnson DB, Hosseini A, Upreti D, Sharma S, Gupta S, Reynolds KD, Sise ME and Leaf DE: Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: A multicenter study. J Am Soc Nephrol 31(2): 435-446, 2020. PMID: 31896554. DOI: 10.1681/ASN.2019070766

13 Izzedine H, Mateus C, Bottros C, Robert C, Rouvier P, Amoura Z and Mathian A: Renal effects of immune checkpoint inhibitors. Nephrol Dial Transplant 32(6): 936-942, 2017. PMID: 28025384. DOI: 10.1093/ndt/gfw382

14 Espi M, Teuma C, Novel-Catin E, Maillet D, Souquet PJ, Dalle S, Koppe L and Fouque D: Renal adverse effects of immune checkpoint inhibitors in clinical practice: ImmunoTox study. Eur J Cancer 147: 29-39, 2021. PMID: 33607383. DOI: 10.1016/j.ejca.2021.01.005

15 Meraz-Muñoz A, Amir E, Ng P, Avila-Casado C, Ragobar C, Chan C, Kim J, Wald R and Kitchlu A: Acute kidney injury associated with immune checkpoint inhibitor therapy: incidence, risk factors and outcomes. J Immunother Cancer 8(1): e000467, 2020. PMID: 32601079. DOI: 10.1136/jitc-2019-000467

16 d’Adamo G, Spinelli C, Forte F and Gangeri F: Ompazolone-induced acute interstitial nephritis. Ren Fail 19(1): 171-175, 1997. PMID: 9044446. DOI: 10.1080/08860229709026272

17 Torpey N, Barker T and Ross C: Drug-induced tubulo-interstitial nephritis secondary to proton pump inhibitors: experience from a single UK renal unit. Nephrol Dial Transplant 19(6): 1441-1446, 2004. PMID: 15004262. DOI: 10.1093/ndt/gfh137

18 Muriithi AK, Leung N, Valeri AM, Cornell LD, Sethi S, Fidler ME and Nas SH: Clinical characteristics, causes and outcomes of acute interstitial nephritis in the elderly. Kidney Int 87(2): 458-464, 2015. PMID: 25185078. DOI: 10.1038/ki.2014.294

19 Geesinga N, Coleman PL and Roger SD: Rabeprazole-induced acute interstitial nephritis. Nephrol (Carlton) 10(1): 7-9, 2005. PMID: 15705174. DOI: 10.1111/j.1440-1797.2005.00365.x

20 Jones B, Hewson E and Price A: Acute interstitial nephritis due to omeprazole. Lancet 344(8928): 1017-1018, 1994. PMID: 7934394. DOI: 10.1016/s0140-6736(94)91674-8

21 Ni N, Moeckel GW and Kumar C: Late-onset omeprazole-associated acute interstitial nephritis. J Am Geriatr Soc 58(12): 2443-2444, 2010. PMID: 21143456. DOI: 10.1111/j.1532-5415.2010.03194.x

22 Lazarus B, Chen Y, Wilson FP, Sang Y, Chang AR, Coresh J and Grams ME: Proton Pump Inhibitor Use and the Risk of Chronic Kidney Disease. JAMA Intern Med 176(2): 238-246, 2016. PMID: 2675337. DOI: 10.1001/jamainternmed.2015.7193

23 Xie Y, Bowe B, Li T, Xian H, Balasubramanian S and Al-Aly Z: Proton pump inhibitors and risk of incident CKD and
