The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases

Luigi Cristiano

R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy

Received 11 November 2020; accepted 29 March 2021
Available online 16 April 2021

Abstract: The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.

Copyright © 2021, Chongqing Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The eukaryotic translation elongation factors (EEFs) play a central role in the proteins biosynthesis during the elongation step of translation (Fig. 1). They include the eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), eukaryotic translation elongation factor 1 alpha 2 (EEF1A2), eukaryotic translation elongation factor 1 beta 2 (EEF1B2), eukaryotic translation elongation factor 1 delta (EEF1D), eukaryotic translation elongation factor 1 gamma (EEF1G), eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1), and eukaryotic translation elongation factor-2 (EEF2). These genes, and related proteins, can be grouped into two large subfamilies, namely non-alpha EEFs and alpha EEFs. Many published studies reported their biological significance as well as their involvement in cancer and other human diseases.
other human diseases. Nevertheless, the role and biological function of their pseudogenes in normal and pathological states are still poorly studied.

Until recently, pseudogenes were believed to be junk DNA, i.e. relics, non-functional versions, of parental protein-coding genes no longer able to encode a protein and devoid of any biological significance or usefulness. Recent transcriptomic and proteomic analyses have shown that both pseudogene-derived transcripts and pseudogene-derived proteins can be found in new locations on different chromosomes than their gene from which it derives. Furthermore, they can be expressed or in other cellular compartments. The role of a protein produced by a pseudogene can also be revealed only in a pathologic condition such as cancer.6

The expression profile of pseudogenes has been reported to vary in different tissues, under different conditions, both physiologically than pathological,11 but it cannot be excluded that it varies over time, i.e. during embryogenesis12 and/or childhood or adulthood, as well as it can be acquired systematically, as shown during cancer development.13

Pseudogenes are classified into three main categories: processed pseudogenes, unprocessed pseudogenes, and unitary pseudogenes.14,15 Processed pseudogenes (PPs) are pseudogenes devoid of introns and other regulatory elements (such as enhancers and promoter) and derive from the reverse transcription of mRNA followed by the reinsertion of respective DNA (cDNA) into the genome (retrotransposition) and therefore are often also called retro-pseudogenes. In this regard, the copy number of a retroseupseudogene could be related to the expression level of the gene from which it derives. Furthermore, they can be found in new locations on different chromosomes than their parental coding-gene and many of them have been reported to be actively transcribed.16,17

The unprocessed pseudogenes, on the other hand, can contain introns and regulatory sequences. They result from gene duplication during unequal crossing-over and are generally found on the same chromosome of the parental protein-coding gene. The subcategory of transcribed pseudogenes, both unprocessed and processed, shows one or more transcripts. Finally, the unitary pseudogenes (orphans) are considered to be previously active genes that become inactive due to mutations and genomic alterations and have no homologous active gene in the genome.

This review paper, for the first time, collects and summarizes all that are known and currently published on EEFs pseudogenes to create a state of the art from which to build further research and insights.

Materials and methods

A list of annotated pseudogenes by each EEF gene was obtained from NCBI:Gene (https://www.ncbi.nlm.nih.gov/gene/) by typing the official symbol of the parental gene and then searching for annotated pseudogenes on its profile on the “General gene information” sub-tab.

Each pseudogene is searched for published papers by typing its official symbol on Pubmed (https://pubmed.ncbi.nlm.nih.gov/), Academia (https://www.academia.edu/),
Pseudogenes of non-alpha eukaryotic translation elongation factors

Non-alpha EEFs collect nearly all components of the eukaryotic translation elongation factor-1 macromolecular complex (eEF1H), namely eEF1B2, eEF1D and eEF1G, as well as a component of multiaminoacyl-tRNA synthetase macromolecular complex (MARS), that is eEF1E1, and eEF2. All of these genes encode at least one protein, but more frequently several protein isoforms, which play a central role in peptide elongation during protein biosynthesis.

eEF1B2, eEF1D, and eEF1G join the valyl t-RNA synthetase (valRS) to form the macromolecular complex eEF1BGD which is involved in the regeneration of the active form of eEF1A, i.e. converts the inactive GDP-bound form of eEF1A into its active GTP-bound form (eEF1A-GTP).\(^\text{19}\)

eEF1E1 interacts with different aminoacyl-tRNA synthetases\(^\text{20}\) and could contribute to the anchoring of the macromolecular aminoacyl-tRNA synthetases complex (MARS) to the EF1H complex in the translation elongation step.\(^\text{21}\) Finally, eEF2 is required for translocation of the peptidyl-tRNA from A-site to P-site of the ribosome.

Figure 1 The elongation step of translation. The active form of eEF1A (eEF1A-GTP), delivers an aminoacylated tRNA to the A site of the ribosome. Following the proper codon-anticodon recognition the GTP is hydrolyzed and the inactive eEF1A-GDP is released from the ribosome and then it is bound by eEF1H protein complex. eEF1H is formed previously by the binding of eEF1B2, eEF1G, eEF1D and Val-RS. This complex promotes the exchange between GDP and GTP to regenerate the active form of eEF1A. eEF1E1 collaborates to anchor MARS complex to eEF1H. eEF2 is subsequently involved for ribosome translocation. A box is added to each EEFs indicating the number of pseudogenes known so far.\(^\text{1}\)
All these factors exhibit canonical functions and multiple non-canonical roles (moonlight roles) within the cell and are frequently altered in expression, gene amplification and genomic rearrangements in many cancers and other diseases. All have at least one pseudogene, but more frequently more than one, dispersed in the human genome (Fig. 2) with the exception of EEF2 for which no pseudogenes in humans are known.

The pseudogenes reported for non-alpha EEFs are classified into processed pseudogenes, unprocessed pseudogenes and transcribed unprocessed pseudogenes. These pseudogenes are listed in Table 1A (more detail in the T1ASuppl supplementary material). All non-alpha EEF coding genes, briefly, and their pseudogenes, more extensively, will be treated individually.

Figure 2 Localization of EEFs pseudogenes. The figure shows the locations of each pseudogene and its respective parental gene in the human genome. The data have been extracted from Gene (NCBI).
Table 1A Pseudogenes of non-alpha EEFs. List of all non-alpha EEFs pseudogenes so far discovered and the correlation with diseases where they are reported or there is evidence about them (see also supplementary table TA1SUPPL).

RFG	PS	Description	Status	CHR	Location	Length (nt)	Main diseases
EEF1B2	EEF1B2P1	EEF1B2 pseudogene 1	Processed pseudogene	15	15q21.2	880	Non-squamous non-small cell lung cancer (NSCLC) (?)26, Human bone osteosarcoma epithelial cell line (U2OS) (?), acute myeloid leukemia (AML) cell lines (KG-1, MOLM-14) (?), Hepatocellular carcinoma (?), HIV-1 reverse transcription cofactor (?)29,32
	EEF1B2P2	EEF1B2 pseudogene 2	Unprocessed pseudogene	5	5q13.1	803	—
	EEF1B2P3	EEF1B2 pseudogene 3	X	Xp22.11	764	—	—
	EEF1B2P4	EEF1B2 pseudogene 4	Processed pseudogene	12	12q23.3	1161	—
	EEF1B2P5	EEF1B2 pseudogene 5	Unprocessed pseudogene	6	6q12	1877	—
	EEF1B2P6	EEF1B2 pseudogene 6	Processed pseudogene	7	7q32.3	766	—
	EEF1B2P7	EEF1B2 pseudogene 7	Transcribed unprocessed pseudogene	2	2q37.1	799	—
	EEF1B2P8	EEF1B2 pseudogene 8	Transcribed unprocessed pseudogene	3	3q26.31	796	—
EEF1D	EEF1DP1	EEF1D pseudogene 1	Processed pseudogene	19	19p13.12	980	Acute myeloid leukemia cell lines (HL-60, MOLM-14, THP-1, U937) (?), diffuse large B-cell lymphoma cell lines (DHL4, DHL6) (?), hepatocellular carcinoma cell line (Huh-7) (?), Human bone osteosarcoma epithelial cell line (U2OS) (?), melanoma (?)50, Melanoma (?)
	EEF1DP2	EEF1D pseudogene 2		9	9q22.31	976	Prostate carcinoma, breast carcinoma, ankylosing spondylitis, adenocortical carcinoma (ACC), pheochromocytoma and Paraganglioma (PCPG), brain lower-grade glioma (LGG), rectum adenocarcinoma (READ), cervical squamous cell carcinoma, endocervical adenocarcinoma (CESC), uterine carcinosarcoma (UCS), head and neck squamous cell carcinoma (HNSC), hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma, acute myeloid leukemia (AML), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), skin cutaneous melanoma (SKCM), pancreatic adenocarcinoma (PAAD), sarcoma (SARC), bladder urothelial carcinoma (BLCA), chromophobe renal cell carcinoma (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), synucleinopathy and Parkinson’s disease (?), non-small cell lung cancer (?), multiple sclerosis (?), large B-cell lymphoma cell lines (SUDHL4, Toledo, OCI-Ly3) (?), epidermolysis bullosa simplex (?)17-45
	EEF1DP3	EEF1D pseudogene 3	Transcribed unprocessed pseudogene	13	13q13.1	575	(continued on next page)
Pseudogenes of EEF1B2

EEF1B2, also known as eEF1β or eEF1Bα, is a coding-gene located on Chromosome 2 (2q33.3). Several alternative splicing transcript variants have been observed but to date only one protein has been detected. Like the other members of the eEF1H complex, it is involved in the elongation step of translation and collaborates closely with eEF1D and eEF1G in the conversion of eEF1A from its inactive GDP-bound form to its active GTP-bound form.

Analysis of the sequences reported in the human genome revealed the presence of eight pseudogenes for EEF1B2 which are mostly classified as processed pseudogenes and probably related to recent retrotransposition events. The alternative forms EEF1B3 and EEF1B4, previously designated for EEF1B2, instead have shown to be pseudogenes namely EEF1B2P2 and EEF1B2P3 respectively. However, the pseudogenes of EEF1B2 are poorly studied and publications have been made only for some of them.

The EEF1B2 pseudogene 1, alias EEF1B2P1, was first reported in 1991. It was first referred to as a gene parologue...
of EEF1B2, named EEF1B1, but was latter better described as a processed pseudogene. It has been studied as a baseline putative marker for the prediction of overall patient survival in advanced non-squamous non-small cell lung cancer (NSCLC) but its biological significance in this cancer is unknown.

The EEF1B2 pseudogene 2, alias EEF1B2P2, was first reported in 1993 as an isof orm of EEF1B2 called EF-105a but it has subsequently been classified as a processed pseudogene. A transcript of this pseudogene was found in the human brain and muscle where this isof orm replaces the transcription of EEF1B2.

The EEF1B2 pseudogene 3, alias EEF1B2P3, was first reported in 1993 and later in an analysis of gene cluster in the human bone osteosarcoma epithelial cell line (U2OS) and in hepatocellular carcinoma, but its significance in these diseases is unknown. Some studies report differences in its expression levels: in particular, it has been found to be upregulated during HIV-1 infection, so it may be a critical reverse transcription cofactor of HIV-1. However, it is not clear why. Furthermore, the expression levels of EEF1B2P3 decrease after the use of a dihydroorotate dehydrogenase inhibitor in KG-1 and MOLT-14 acute myeloid leukaemia (AML) cell lines. The EEF1B2 pseudogene 6, alias EEF1B2P6, was first reported in 2007 but no other studies have been conducted.

The others, i.e. the EEF1B2 pseudogene 4 (alias EEF1B2P4) the EEF1B2 pseudogene 5 (alias EEF1B2P5), the EEF1B2 pseudogene 7 (alias EEF1B2P7) and the EEF1B2 pseudogene 8 (alias EEF1B2P8), are predicted by genome sequence analysis but are not yet supported by experimental evidence.

Pseudogenes of EEF1D

EEF1D, alias eEF1b or eEF1bo, is a coding gene with several alternative splicing variants that encode several protein isoforms. Like the other members of the eEF1H complex, it is involved in the elongation step of translation and closely collaborates with eEF1B in the conversion of eEF1A from its inactive GDP-bound form to its active GTP-bound form. Analysis of the human genome revealed the presence of eight pseudogenes. Some are poorly characterized while others are better known, especially EEF1DP3.

The EEF1D pseudogene 1, alias EEF1DP1, was first reported in 2001 and in datasets on some cancer cell lines of hepatocellular carcinoma, acute myeloid leukemia, diffuse large B-cell lymphoma, human bone osteosarcoma (U2OS) and melanoma without specific information, so its significance in these diseases is unclear. The same happens for EEF1D pseudogene 2, alias EEF1DP2, that is reported in datasets on melanoma. It is not entirely clear whether it is expressed or expressed even at a low level.

The EEF1D pseudogene 3, alias EEF1DP3, is the most studied pseudogene compared to the others of EEF1D and, in general, of all non-alpha EEFs pseudogenes. First reported in 2005 but also later by other authors, it is found on chromosome 13. To note that chromosome 13 is known to carry some putative oncogenes involved in cancer, including breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes.

EEF1DP3 is classified as a transcribed unprocessed pseudogene and the genomic sequence contains four non-coding exons. It is not yet known it undergoes post-transcriptional modifications, however it is transcribed and produces a long non-coding RNA (lncRNA) of 575 nt. It is known that lncRNAs, like other ncRNAs, can modulate gene expression both at the transcriptional level, interacting with the parental gene promoter, and at the post-transcriptional level, acting as microRNA decoys and thus may play key roles in cellular biological processes. Nowadays, the exact role of EEF1DP3 in healthy tissues is still unknown, however, it has been reported to be overexpressed in the heart, particularly in the left ventricle and is also expressed in the normal trachea, liver, testis, kidney, bladder and brain. Conversely, a low expression is found in the adrenal gland, colon and pituitary gland.

Numerous mutations and alterations in the genomic sequence for EEF1DP3 have been discovered which include copy number variations, translocations and interchromosomal translocations with the formation of novel fusion genes. These have been found in many kinds of cancer, such as breast cancer and Burkitt’s lymphoma, but also non-neoplastic disorders.

The most reported of these alterations is the EEF1DP3/FRY fusion originating from the read-through transcription between EEF1DP3 and FRY gene. EEF1DP3/FRY is a recurrent read-through fusion transcript that was first detected in vitro in KPL4 breast carcinoma cell-line and then was also detected in vivo in breast cancer samples but cannot be detected in breast normal tissues counterparts or blood samples from EEF1DP3/FRY positive patients. It has been detected in some types of non-neoplastic disorders and in some cancers such as malignant melanoma, Burkitt’s lymphoma, lung cancer and breast cancer.

EEF1DP3 is abnormally expressed in a very large list of cancers and diseases. It has been reported to be highly expressed in adrenal carcinomas i.e. adrenocortical carcinoma (ACC) and pheochromocytoma and paraganglioma (PCPG), brain lower-grade glioma (LGG), rectum adenocarcinoma (READ), gynaecological cancers such as cervical squamous cell carcinoma, endocervical adenocarcinoma (CESC) and uterine carcinosarcoma (UCS), head and neck squamous cell carcinoma (HNSC), hepatocellular carcinoma samples (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma, acute myeloid leukemia (AML) and lymphoid neoplasm diffuse large B-cell lymphoma (DLBCL), skin cutaneous melanoma (SKCM), pancreatic adenocarcinoma (PAAD), sarcoma (SARC) and urinary tract cancers such as urothelial bladder carcinoma (BLCA), chromophobe renal cell carcinoma (KICH), kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). Furthermore, it is also overexpressed in prostate adenocarcinoma (PRAD) while its loss by deletion has been associated with an increased risk and predisposition for ankylosing spondylitis (AS).

It was also reported in datasets on various neurodegenerative disorders such as synucleinopathy and Parkinson’s disease, but also in non-small cell lung cancer, multiple sclerosis and epidermolysis bullosa simplex. However, its role in these diseases is unclear.
The *EEF1D* pseudogene 4, alias *EEF1DP4*, was first described in 1998. It was reported in datasets on glioma, breast cancer, primary myelofibrosis, colon cancer and osteosarcoma. However, its significance in these diseases is still unknown. A similar situation is also for the *EEF1D* pseudogene 5, alias *EEF1DP5*, which is not clearly reported in breast cancer and in a gene cluster analysis in the human bone osteosarcoma epithelial cell line (U2OS). Furthermore, this pseudogene exhibits frequent genomic deletions whose role is completely unknown.

The *EEF1D* pseudogene 6 (*EEF1DP6*) is reported in datasets on acute myeloid leukemia, systemic juvenile idiopathic arthritis and neuropathy in Charcot-Marie-Tooth disease type 1A, but like other pseudogenes, its significance is unknown. The last ones foreseen by the analysis of the genome are *EEF1D* pseudogene 7 (*EEF1DP7*) and *EEF1D* pseudogene 8 (*EEF1DP8*). However, they are not yet supported by any experimental evidence.

Pseudogenes of EEF1G

EEF1G, alias *EEF1γ* or *EEF1βγ*, is a coding gene located on Chromosome 11 (11q12.3). At least five alternative splicing variants have been observed, of which two are protein-coding while the others are ncRNA sequences. Like the other components of the eEF1H complex, it is involved in the elongation step of translation and most likely stimulates the activity of eEF1B2 and guarantees stability to the entire eEF1H complex. Analysis of the human genome revealed the presence of nine pseudogenes for *EEF1G* classified as processed pseudogenes. These pseudogenes are studied very marginally.

The *EEF1G* pseudogene 1, alias *EEF1GP1*, was first reported in 1998 and later in a gene cluster analysis dataset on human bone osteosarcoma epithelial cell line (U2OS) but its involvement is unclear.

EEF1G pseudogene 4, alias *EEF1GP4*, was reported by some studies on the sequencing of the human genome. *EEF1G* pseudogene 5, alias *EEF1GP5*, is not clearly reported with regard to prostate cancer and Duchenne muscular dystrophy thus its significance in these diseases is unknown. It is also reported in a gene cluster analysis dataset on human bone osteosarcoma epithelial cell line (U2OS). Similar considerations can be made for *EEF1GP1* pseudogene 9, alias *LOC729998*, which appears in datasets on some cancer cell lines of hepatocellular carcinoma, acute myeloid leukaemia, and diffuse large B-cell lymphoma.

The others, i.e. the *EEF1G* pseudogene 2 (alias *EEF1GP2*), the *EEF1G* pseudogene 3 (alias *EEF1GP3*), the *EEF1G* pseudogene 6 (alias *EEF1GP6*), the *EEF1G* pseudogene 7 (alias *EEF1GP7*) and the *EEF1G* pseudogene 8 (alias *EEF1GP8*), are predicted by genome sequence analysis but are not yet supported by any experimental evidence.

Pseudogenes of EEF1E1

EEF1E1 is known under some names such as aminoaacyl tRNA synthetase complex-interacting multifunctional protein 3 (AIMP3) and P18 and was first identified by Mao and colleagues in 1998. *EEF1E1* plays a role as an auxiliary component of the macromolecular aminoacyl-tRNA synthetases complex (MARS) in the elongation step of translation, in particular, it interacts with several aminoaacyl-tRNA synthetases and could contribute to the anchoring of the MARS complex to the EF1H complex. Its expression is frequently found altered in human cancer cells and is considered a putative tumor suppressor gene.

Sequence analysis of the human genome revealed the presence of only one pseudogene related to *EEF1E1* on chromosome 2, precisely in the location 2q13. This pseudogene has been named eukaryotic translation elongation factor 1 epsilon 1 pseudogene 1, alias *EEF1E1P1*, and is classified as a processed pseudogene. It shows 93.47% identity with the alternative splicing transcript variant 1 mRNA of *EEF1E1* (*RefSeq* NM_004280.5) but no sequence identity or homology was found with the transcript variant 2 mRNA of *EEF1E1*, so it can be assumed that the origin of *EEF1E1P1* is due to a probable retrotransposition event from the *EEF1E1* variant 1 mRNA alone. It is reported in a study on genetic loci related to coronary artery disease but its significance in this disease is unclear. Until now, no one has studied this pseudogene on cancers.

Pseudogenes of alpha eukaryotic translation elongation factors

Alpha EEFs collect the remaining components of the eEF1H complex, i.e. *eEF1A1* and its isoform *eEF1A2*. These genes are found in different locations in the human genome and encode at least one protein that plays a central role in peptide elongation during protein biosynthesis, like the other members of eEF1H. In particular, *eEF1A1* allows the delivery of aminoaacyl-tRNAs to the ribosome mediated by the hydrolysis of GTP. Indeed, during the translation elongation step, the inactive GDP-bound form of *eEF1A* (eEF1A-GDP) is converted to its active GTP-bound form (eEF1A-GTP) by eEF1BGD complex by GTP hydrolysis, thus acting as a guanine nucleotide exchange factor (GEF), generating eEF1A-GTP for the successive elongation cycle. Both *eEF1A1* and *eEF1A2* exhibit canonical functions and multiple non-canonical roles (moonlight roles) within the cell and, like other EEFs, are often altered in expression, gene amplification and genomic rearrangements in many types of cancers and other diseases.

The pseudogenes reported for alpha EEFs, in particular *EEF1A1*, are very numerous and are mostly considered retropseudogenes. They are classified into processed pseudogenes, unprocessed pseudogenes and transcribed unprocessed pseudogenes. These pseudogenes are listed in Table 1B (more detail in the T1ASuppl supplementary material). Below are described in detail, one by one, the pseudogenes of the alpha EEFs (see also Fig. 2).

Pseudogenes of EEF1A1

EEF1A1 is a coding gene of 5283 nt long located on Chromosome 6 (6q13) with several alternative splicing transcript variants and protein isoforms of which most studied are the prostate tumor-inducing gene-1, alias *PTI-1* or EEF 1-alpha 1-like 14 (*EEF1A1L14*), and cervical cancer suppressor 3 (*CCS-3*). Today it is one of the most studied proteins both
RFG	PS	Description	Status	CHR	Location	Length (nt)	Main diseases
EEF1A1	EEF1A1P1	EEF1A1 pseudogene 1	Processed pseudogene	21	21q21.2	1034	Celiac disease (?), oral squamous cell carcinoma, osteosarcoma (?)
	72						Bladder cancer (?), Uterine cancer (?), Colorectal cancer (?)
EEF1A1	EEF1A1P2	EEF1A1 pseudogene 2		14	14q31.1	1912	
	70,76						
EEF1A1	EEF1A1P3	EEF1A1 pseudogene 3		13	13q12.2	1623	
	70						
EEF1A1	EEF1A1P4	EEF1A1 pseudogene 4		12	12p12.3	1659	
	70						
EEF1A1	EEF1A1P5	EEF1A1 pseudogene 5		9	9q34.13	1747	Hepatocellular carcinoma (?), nasopharyngeal carcinoma (?), oral squamous cell carcinoma, hepatitis E virus cofactor 31,74,82,83
	70,77−81						
EEF1A1	EEF1A1P6	EEF1A1 pseudogene 6		7	7p15.3	1746	Rectum cancer (?), schizophrenia (?), multiple myeloma (?), hepatocellular carcinoma (?) 31,84,85
	70,78						
EEF1A1	EEF1A1P7	EEF1A1 pseudogene 7		19	19q13.12	2142	Hepatocellular carcinoma (?), breast cancer (?) 31,86,87
	70						
EEF1A1	EEF1A1P8	EEF1A1 pseudogene 8		3	3q27.1	1644	
	70						
EEF1A1	EEF1A1P9	EEF1A1 pseudogene 9		4	4q24	1751	Duchenne muscular dystrophy (DMD) (?), acute lymphoblastic leukemia (?), metastatic prostate cancer (?), prostate adenocarcinoma cell line (LNCaP) (?), melanoma (?), kidney cancer (?), osteosarcoma (?), hepatocellular carcinoma (?), glioma, cervical cancer (?), autism spectrum disorders (?), 31,79,88−92
	70						
EEF1A1	EEF1A1P10	EEF1A1 pseudogene 10		7	7q35	1650	
	70						
EEF1A1	EEF1A1P11	EEF1A1 pseudogene 11		1	1p21.3	1748	Osteosarcoma (?), lung cancer (?), colon cancer, type 2 diabetes mellitus 75,94,95
	70,93						
EEF1A1	EEF1A1P12	EEF1A1 pseudogene 12		2	2q12.2	1698	Hepatocellular carcinoma (?), osteosarcoma (?), multiple myeloma (?), oral squamous cell carcinoma, epilepsy (?) 31,74,75,85,96
	70						
EEF1A1	EEF1A1P13	EEF1A1 pseudogene 13		5	5p15.2	1747	
	70,97−98						
EEF1A1	EEF1A1P14	EEF1A1 pseudogene 14		1	1q31.3	1666	Liver cancer (?), rectum cancer (?), ovarian cancer (?), oral squamous cell carcinoma, breast cancer (?) 74,103
	70,99						
EEF1A1	EEF1A1P15	EEF1A1 pseudogene 15		X	Xq21.33	1689	
	70						
EEF1A1	EEF1A1P16	EEF1A1 pseudogene 16		12	12p12.3	1635	Gastric cancer, Glioma (?) 101,102
	70						
EEF1A1	EEF1A1P17	EEF1A1 pseudogene 17		12	12q12	1413	
	70						
EEF1A1	EEF1A1P18	EEF1A1 pseudogene 18		11	11q13.1	467	

(continued on next page)
RFG	PS	Description	Status	CHR	Location	Length (nt)	Main diseases
EEF1A1P19	EEF1A1	pseudogene 19	5	5p12	1645		Hepatocellular carcinoma (?)[^31]
EEF1A1P20	EEF1A1	pseudogene 20	5	5q21.1	1644		Nonalcoholic fatty liver disease (?)[^104]
EEF1A1P21	EEF1A1	pseudogene 21	4	4p15.1	1339		Oral squamous cell carcinoma[^74]
EEF1A1P22	EEF1A1	pseudogene 22	15	15q21.3	1639	Multiple myeloma (?)[^85]	
EEF1A1P23	EEF1A1	pseudogene 23	Transcribed processed pseudogene	3	3q29	658	—
EEF1A1P24	EEF1A1	pseudogene 24	Processed pseudogene	3	3p22.1	1638	Acute lymphoblastic leukemia (?)
EEF1A1P25	EEF1A1	pseudogene 25	3	3q22.3	1471	—	
EEF1A1P26	EEF1A1	pseudogene 26	7	7p21.2	1383	Oral squamous cell carcinoma, type 2 diabetes mellitus (?)[^74,105]	
EEF1A1P27	EEF1A1	pseudogene 27	7	7p21.1	1151	Oral squamous cell carcinoma[^74]	
EEF1A1P28	EEF1A1	pseudogene 28	7	7q21.13	1671	EBV-positive T/NK-cell lymphoma (?)[^106]	
EEF1A1P29	EEF1A1	pseudogene 29	X	Xq21.2	1443	Breast cancer (?), lung cancer (?), prostate cancer (?), colorectal cancer (?), leukemia (?)[^87,107]	
EEF1A1P30	EEF1A1	pseudogene 30	X	Xq24	2354	—	
EEF1A1P31	EEF1A1	pseudogene 31	Unprocessed pseudogene	X	Xq28	10,389	—
EEF1A1P32	EEF1A1	pseudogene 32	1	1q31.3	2156	Oral squamous cell carcinoma[^74]	
EEF1A1P33	EEF1A1	pseudogene 33	Processed pseudogene	12	12q23.1	1662	—
EEF1A1P34	EEF1A1	pseudogene 34	20	20p11.23	1464	—	
EEF1A1P35	EEF1A1	pseudogene 35	4	4q28.3	1646	—	
EEF1A1P36	EEF1A1	pseudogene 36	6	6q23.2	1431	—	
EEF1A1P37	EEF1A1	pseudogene 37	8	8q23.3	557	Oral squamous cell carcinoma[^74]	
EEF1A1P38	EEF1A1	pseudogene 38	Processed pseudogene	16	16p12.1	1937	Gastric cancer, oral squamous cell carcinoma[^74,104]
EEF1A1P39	EEF1A1	pseudogene 39	10	10p11.23	250	Oral squamous cell carcinoma[^74]	
EEF1A1P40	EEF1A1	pseudogene 40	X	Xq22.3	573	—	
EEF1A1P41	EEF1A1	pseudogene 41	Y	Yp11.2	374	—	
EEF1A1P43	EEF1A1	pseudogene 43	Unprocessed pseudogene	17	17p11.2	3871	Smith-Magenis syndrome (?)[^109]
EEF1A2P42	EEF1A1	pseudogene 42	Processed pseudogene	6	6p12.3	2214	Hepatocellular carcinoma cell line (Huh-7) (?), Diffuse large B-cell lymphoma cell lines (DHL4, DHL6) (?), Acute myeloid leukemia cell lines (HL-60, MOLM-14, THP-1, U937) (?), Melanoma cell line (FEMX-I) (?)
LOC401677	EEF1A2	pseudogene	Transcribed unprocessed	11	11p14.1	931	—

[^31]: Hepatocellular carcinoma (?)
[^104]: Nonalcoholic fatty liver disease (?)
[^74]: Oral squamous cell carcinoma
[^85]: Multiple myeloma (?)
[^106]: EBV-positive T/NK-cell lymphoma (?)
[^107]: Breast cancer (?), lung cancer (?), prostate cancer (?), colorectal cancer (?), leukemia (?)
[^109]: Smith-Magenis syndrome (?)
[^74]: Oral squamous cell carcinoma
for its fundamental role in the cell and for its involvement in many human diseases, especially cancer. In fact, it plays a key role in the elongation step of translation in which it is responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. Furthermore, it is expressed in all tissues except the brain, heart and skeletal muscles where it is replaced by the isoform EEF1A2.83 Furthermore, it interacts with Hepatitis E virus (HEV) nonstructural protein 7, a mitochondrial protein encoded in many human diseases, especially cancer.23 In fact, it was first reported in 199670 and is highly expressed in human primary monocytes.78 Subsequently, it is reported in a study on schizophrenia,84 hepatocellular carcinoma,85 multiple myeloma,85 and in a dataset on rectum cancer. The contribution of EEF1A1P6 in these diseases is unknown.

The EEF1A1 pseudogene 7 (EEF1A1P7), the EEF1A1 pseudogene 9 (EEF1A1P9) and the EEF1A1 pseudogene 12 (EEF1A1P12) were first reported in 199670 and subsequently in a study on hepatocellular carcinoma.31 Furthermore, EEF1A1P7 was also reported in two studies on breast cancer both as such65 and as aberrant transcript fused with EEF1A1P2.97

EEF1A1P9 is reported in familiar melanoma (FM) where it was found upregulated after UV-exposure of FM cultured fibroblasts.56 It is also reported in kidney cancer,59 osteosarcoma57 and autism spectrum disorders, in which copy gain of a genomic region that includes EEF1A1P92 is shown. In glioma it has been reported that it is a protective factor: in fact, patients with a high expression for EEF1A1P9 had a favorable prognosis so it can play an important role in the onset and progression of glioma.90 EEF1A1P9 is shown to be downregulated in cervical cancer71 and is reported in datasets on Duchenne muscular dystrophy (DMD), acute lymphoblastic leukaemia, metastatic prostate cancer and in the LNCap prostate adenocarcinoma cell line. EEF1A1P12 is reported in osteosarcoma,75 multiple myeloma,85 oral squamous cell carcinoma (with copy gain)85 and epilepsy.96

Table 1B (continued)

RFG	PS	Description	Status	CHR	Location	Length (nt)	Main diseases
LOC441880	EEF1A2	pseudogene	pseudogene	1	1p35.2	1383	–
LOC642791	EEF1A2	pseudogene	pseudogene	11	11q14.3	2001	–
LOC729856	Elongation	factor 1-alpha-like	Unprocessed pseudogene	1	1p36.11	468	–
LOC100421798	EEF1A2	pseudogene	Processed pseudogene	5	5q31.1	1148	–
LOC100421817	EEF1A2	pseudogene	pseudogene	3	3q25.1	1344	–
LOC100421840	EEF1A2	pseudogene	pseudogene	1	1q32.1	1329	–
LOC100421842	EEF1A2	pseudogene	pseudogene	1	1q42.13	554	–

Abbreviations: RFG, related functional gene; PS, pseudogene; CHR, Chromosome; [(?)], uncertain; [-], unknown.
Disease list	Solid tumors and cell cultures	Lip, oral cavity and pharynx	Nasopharyngeal carcinoma	Pseudogenes
Cancer (included tissues and cell cultures)			Oral squamous cell carcinoma	EEF1A1P5, EEF1A1P1, EEF1A1P5, EEF1A1P12, EEF1A1P14, EEF1A1P21, EEF1A1P26, EEF1A1P27, EEF1A1P32, EEF1A1P37, EEF1A1P38, EEF1A1P39, EEF1A1P16, EEF1A1P38
Digestive organs	Gastric cancer/stomach adenocarcinoma (STAD)	Rectum adenocarcinoma (READ)	Colon adenocarcinoma (COAD)	EEF1A1P6, EEF1A1P14, EEF1A1P12, EEF1A1P14, EEF1A1P11, EEF1A1P29
	Liver hepatocellular carcinoma (LIHC)			EEF1B2P2, EEF1DP3, LOC729998, EEF1A1P5, EEF1A1P6, EEF1A1P7, EEF1A1P9, EEF1A1P12, EEF1A1P14, EEF1A1P19, EEF1A1P42
Respiratory system and intrathoracic organs	Pancreatic adenocarcinoma (PAAD)	Lung adenocarcinoma (LUAD)	Lung squamous cell carcinoma (LUSC)	EEF1DP3, EEF1A1P11, EEF1A1P29
	Mesothelioma (MESO)	Non-squamous non-small cell lung cancer (NSCLC)	Skin cutaneous melanoma (SKCM)	EEF1DP3, EEF1DP1, EEF1DP2, EEF1DP3, EEF1A1P9, LOC401677
Skin				EEF1B2P2, EEF1DP1, EEF1DP4, EEF1DP5, EEF1GP1, EEF1GP5, EEF1A1P1, EEF1A1P9, EEF1A1P11, EEF1A1P12
Bones, joints and articular cartilage		Bone osteosarcoma		EEF1DP3
Connective, subcutaneous and other soft tissues		Sarcoma (SARC)		
Eye, brain and other parts of central nervous system		Glioma		EEF1DP3, EEF1DP4, EEF1A1P9, EEF1A1P16
Peripheral nerves and autonomic nervous system		Primary myelofibrosis		EEF1DP4
Breast		Breast carcinoma (BRCA)		EEF1DP3, EEF1DP4, EEF1DP5, EEF1A1P7, EEF1A1P14, EEF1A1P29, EEF1A1P14
Female genital organs		Ovarian cancer		EEF1A1P2, EEF1DP3
System	Cancer Type	EEFs		
---	---	--		
Male genital organs	Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC)	EEF1DP3, EEF1A1P9		
	Prostate carcinoma (PRAD)	EEF1DP3, EEF1GP5, EEF1A1P9, EEF1A1P29		
Urinary tract	Adrenocortical carcinoma (ACC)	EEF1DP3		
	Bladder cancer/urothelial carcinoma (BLCA)	EEF1A1P2, EEF1DP3		
	Chromophobe renal cell carcinoma (KICH)	EEF1DP3		
	Kidney renal clear cell carcinoma (KIRC)	EEF1DP3, EEF1A1P9		
	Kidney renal papillary cell carcinoma (KIRP)	EEF1DP3		
Thyroid and other endocrine glands	Pheochromocytoma and Paraganglioma (PCPG)	EEF1DP3		
Other and ill-defined sites	Head and neck squamous cell carcinoma (HNSC)	EEF1DP3		
Hematological malignancies	Lymphoid neoplasm diffuse large B-cell lymphoma (DABC)	EEF1DP1, EEF1DP3, LOC729998, EEF1A1P42		
	Acute lymphoblastic leukemia	EEF1A1P9, EEF1A1P24, EEF1A1P29		
	Leukemia			
	Multiple myeloma	EEF1A1P6, EEF1A1P12, EEF1A1P22		
	Acute myeloid leukemia	EEF1B2P2, EEF1DP1, EEF1DP3, EEF1DP6, LOC729998, EEF1A1P42		
Other human diseases	EBV-positive T/NK-cell lymphoma	EEF1A1P28		
Infectious Agents	HIV-1 reverse transcription cofactor	EEF1B2P2		
Mental, behavioural or neurodevelopmental disorders	Hepatitis E virus cofactor	EEF1A1P5		
Developmental anomalies	Schizophrenia	EEF1A1P6		
	Neuropathy in Charcot-Marie-Tooth disease type 1A	EEF1DP6		
Diseases of the musculoskeletal system or connective tissue	Smith-Magenis syndrome	EEF1A1P43		
	Ankylosing spondylitis	EEF1DP3		
Diseases of the nervous system	Systemic juvenile idiopathic arthritis	EEF1DP6		
	Synucleinopathy and Parkinson’s disease	EEF1DP3		
	Multiple sclerosis	EEF1DP3		
	Duchenne muscular dystrophy	EEF1GP5, EEF1A1P9		
Diseases of the skin	Epilepsy	EEF1A1P12		
Diseases of the digestive system	Celiac disease	EEF1A1P1		
	Nonalcoholic fatty liver disease	EEF1A1P20		
Endocrine, nutritional or metabolic diseases	Type 2 diabetes mellitus	EEF1A1P11, EEF1A1P26		
Diseases of the circulatory system	Coronary artery disease	EEF1E1P1		
ovarian cancer and rectal cancer, but no other studies have been conducted.

EEF1A1 pseudogene 16 (EEF1A1P16) and EEF1A1 pseudogene 38 (EEF1A1P38) are both upregulated in gastric cancer patient samples. Furthermore, EEF1A1P16 is also reported on glioma while EEF1A1P38 is reported on oral squamous cell carcinoma (with copy gain). EEF1A1 pseudogene 19 (EEF1A1P19) is reported in hepatocellular carcinoma, while EEF1A1 pseudogene 20, alias EEF1A1P20, is reported in a study concerning single nucleotide polymorphisms associated with the pathology of non-alcoholic fatty liver disease. EEF1A1 pseudogene 21 (EEF1A1P21) is reported in oral squamous cell carcinoma (with copy gain). EEF1A1 pseudogene 22 (EEF1A1P22) is reported in multiple myeloma, while EEF1A1 pseudogene 24, alias EEF1A1P24, is reported in datasets on acute lymphoblastic leukaemia.

EEF1A1 pseudogene 26, alias EEF1A1P26, is reported in type 2 diabetes mellitus and oral squamous cell carcinoma (with copy gain), while EEF1A1 pseudogene 27 (EEF1A1P27) is reported in oral squamous cell carcinoma (with copy gain). EEF1A1 pseudogene 28 (EEF1A1P28) shows copy number gain in EBV-positive T/NK-cell lymphoma and EEF1A1 pseudogene 29 (EEF1A1P29) is reported in breast cancer, prostate cancer, colorectal cancer and leukaemia. EEF1A1 pseudogene 31 (EEF1A1P31) was first reported in 2018 while EEF1A1 pseudogene 32 (EEF1A1P32) is reported in oral squamous cell carcinoma (with copy gain). EEF1A1 pseudogene 37 (EEF1A1P37) and EEF1A1 pseudogene 39 (EEF1A1P39) are reported together on oral squamous cell carcinoma with copy loss for the former and a copy gain for the latter. EEF1A1 pseudogene 43, alias EEF1A1P43 or formerly known as EEF1A3, was first reported in 1998 and later in Smith-Magenis syndrome where, however, it is not considered important because it does not show significant physiological effects.

The EEF1A1 pseudogene 4 (EEF1A1P4), the EEF1A1 pseudogene 8 (EEF1A1P8), the EEF1A1 pseudogene 10 (EEF1A1P10) and the EEF1A1 pseudogene 15 (EEF1A1P15) are first described in 1996 but no other studies have been done. Lastly, the remaining ones, i.e. EEF1A1 pseudogene 2 (alias EEF1A1P2), EEF1A1 pseudogene 17 (EEF1A1P17), EEF1A1 pseudogene 18 (EEF1A1P18), EEF1A1 pseudogene 23 (EEF1A1P23), EEF1A1 pseudogene 25 (EEF1A1P25), EEF1A1 pseudogene 30 (EEF1A1P30), EEF1A1 pseudogene 33 (EEF1A1P33), EEF1A1 pseudogene 34 (EEF1A1P34), EEF1A1 pseudogene 35 (EEF1A1P35), EEF1A1 pseudogene 36 (EEF1A1P36), EEF1A1 pseudogene 40 (EEF1A1P40) and EEF1A1 pseudogene 41 (EEF1A1P41), are predicted by genome sequence analysis but are not yet supported by experimental evidence, so they are very little known.

Pseudogenes of EEF1A2

EEF1A2 is a coding gene located on Chromosome 20 (20q13.33) and at the same time it is an isofom of EEF1A1 that performs the same function in the translation elongation step. The switch between the two isoforms occurs only in the brain, heart and skeletal muscle. EEF1A2 shows expression alterations and various genomic anomalies in many cancers. Analysis of the human genome revealed nine poorly studied pseudogenes for EEF1A2 listed below. EEF1A1 pseudogene 42, alias EEF1A1P42, is associated with EEF1A2 pseudogenes instead with EEF1A1 pseudogenes and is reported in datasets on some cancer cell lines of hepatocellular carcinoma, acute myeloid leukaemia and diffuse large B-cell lymphoma without any other type of study.

LOC401677 is reported in some papers and in datasets on melanoma, in particular in the FEMX-I melanoma cell line.

LOC642791 and LOC729856 are reported in some studies but not much more is known about them.

The other EEF1A2 pseudogenes, namely LOC441880, LOC100421798, LOC100421817, LOC100421840 and LOC100421842, are predicted by genome sequence analysis but are not yet supported by experimental evidence, so they are unknown.

Conclusion and perspective

All the coding genes belonging to EEFs play an important role in the cell and undergo important alterations in cancer. Similarly, even if still in its infancy, the studies available so far on the respective pseudogenes highlight at least two important aspects: first, they certainly have one or more roles in the cell, most likely via ncRNAs, but the possibility of other forms of regulation is not excluded, including through proteins or peptides still unknown, and second that they certainly have a role in human pathologies, first of all in cancer.

EEFs pseudogenes discovered to date are very numerous, especially for EEF1A1, and this could not only be a simple result of chance, a consequence of errors or evolution, but could reflect a complex system of genomic regulation that is still poorly understood today. EEF1A1, for example, is very conserved in the evolution of the species, so much so that its counterpart is also known in bacteria with the name of EF-Tu. Therefore, it is the oldest gene in the EEFs and has certainly been the subject of many events during the evolution of the species. However, it may be equally true that the abundance of its pseudogenes in the human genome is not only entirely linked to evolution but could also be related to other factors, including the high transcription of its parental gene. Indeed, in some cases there is a positive correlation between high levels of gene expression, especially for housekeeping genes, and the increase in the number of related pseudogenes in the human genome. This is true, apart for EEF1A1, also for GAPDH and RPL21 (for more details see supplementary table TAI SUPPL), both of which are highly transcribed.

The other members of the EEFs, among them, have a similar number of pseudogenes and this is less than ten except for EEF1E1 which has only one pseudogene. On an evolutionary level, the latter could certainly be the most recent, but it is also significant that its parental gene is considered a putative tumor suppressor gene that is often downregulated in cancer. In fact, EEF1E1 also has the least number of genomic rearrangements.

It is currently not known whether the pseudogenes of EEFs have a regulatory role in the expression of the
respective parental gene as described for others and for many there is still no evidence of their involvement in the development and/or progression of human cancers or other human diseases because there is no sufficient knowledge about them to understand their repercussions on cellular behavior. Furthermore, EEFs pseudogenes could theoretically produce non-coding transcripts, but there is currently no firm evidence for this.

The studies in which EEFs pseudogenes have most appeared concern oral squamous cell carcinoma, hepatocellular carcinoma, osteosarcoma, breast cancer and acute myeloid leukaemia (Table 2). However, their exact role in these cancers is not yet defined while the most studied pseudogenes are EEF1DP3 and EEF1A1P9, although they must be well characterized and understood. More work is needed for all these pseudogenes, especially for those that are currently less known, to achieve two very important goals, in addition to general knowledge about them, which are their role as possible biomarkers, both diagnostic and prognostic, and their possible role as therapeutic targets.

In conclusion, EEFs pseudogenes may play a role in the cell, probably in gene regulation, and are involved in many human diseases, including cancer. In the future, it will be important to characterize them and explore their ability to modulate parental gene expression under different cellular conditions, their precise mechanisms of function and the possibility of using them as new biomarkers or therapeutic targets for cancer management and treatment or other human diseases.

Conflict of interests

The author has no conflict of interests to declare.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gendis.2021.03.009.

References

1. Cristiano L. Translation elongation factors: are useful biomarkers in cancer? Open Access J Bio Sci Res. 2020;6(1):1–7.
2. Chan JJ, Tay Y. Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci. 2018;19(5):1310.
3. Poliseno L, Marracci A, Pandolfi PP. Pseudogenes in human cancer. Front Med. 2015;2:68.
4. Kim MS, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature. 2014;509(7502):575–581.
5. Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–108.
6. Poliseno L. Pseudogenes: newly discovered players in human cancer. Sci Signal. 2012;5(242):re5.
7. Chan WL, Chang JG. Pseudogene-derived endogenous siRNAs and their function. Methods Mol Biol. 2014;1167:227–239.
8. Hu X, Yang L, Mo YJ. Role of pseudogenes in tumorigenesis. Cancers (Basel). 2018;10(8):256.
9. An Y, Furber KL, Ji S. Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med. 2018;21(1):183–192.
10. Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet. 2015;52(1):17–24.
11. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149(7):1622–1634.
12. Savtchenko ES, Schiff TA, Jiang CK, Freedberg IM, Blumenberg M. Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence. Am J Hum Genet. 1988;43(5):630–637.
13. Cooke S, Shlien A, Marshall J, et al. Processed pseudogenes acquired somatically during cancer development. Nat Commun. 2014;5:3644.
14. Kovalenko TF, Patrushev LI. Pseudogenes as functionally significant elements of the genome. Biochemistry (Mosc). 2018;83(11):1332–1349.
15. Grandé D, Johnsson P. Pseudogene-expressed RNAs: emerging roles in gene regulation and disease. Curr Top Microbiol Immunol. 2016;394:111–126.
16. Johnsson P, Morris KV, Grandé D. Pseudogenes: a novel source of trans-acting antisense RNAs. Methods Mol Biol. 2014;1167:213–226.
17. Pei BK, Sisu C, Frankish A, et al. The GENCODE pseudogene resource. Genome Biol. 2012;13(9):R51.
18. Huret JL, Ahmad M, Arsaban M, et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013;41(D1):D920–D924.
19. Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA. 2012;3(4):543–555.
20. Tao Y, Fang P, Kim S, Guo M, Young NL, Marshall AG. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry. PLoS One. 2017;12(8):e0181869.
21. Quevillon S, Miranda M. The p18 component of the multi-synthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett. 1996;395(1):63–67.
22. Ejiri S. Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci Biotechnol Biochem. 2002;66(1):1–21.
23. Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One. 2018;13(1):e0191377.
24. Chambers DM, Rouleau GA, Abbott CM. Comparative genomic analysis of genes encoding translation elongation factor 1B(alpha) in human and mouse shows EEF1B1 to be a recent retrotransposition event. Genomics. 2001;77(3):145–148.
25. von der Kammer H, Klaudiny J, Zimmer M, Scheit KH. Human elongation factor 1 beta: cDNA and derived amino acid sequence. Biochem Biophys Res Commun. 1991;177(1):312–317.
26. Baty F, Joerger M, Früh M, Klingbiel D, Zappa F, Brutsche M. 24h-gene variation effect of combined bevaczumab/erlotinib in advanced non-squamous non-small cell lung cancer using exon array blood profiling. J Transl Med. 2017;15(1):66.
27. Vanweselink S, Krieck J, Andersen GR, et al. Solution structure of the 162 residue C-terminal domain of human elongation factor 1Bgamma. J Biol Chem. 2003;278(44):43443–43451.
28. Pizzuti A, Gennarelli M, Novelli G, et al. Human elongation factor EF-1 beta: cloning and characterization of the EF1 beta 5a gene and assignment of EF-1 beta isoforms to chromosomes 2,5,15 and X. Biochem Biophys Res Commun. 1993;197(1):154–162.
29. Chapman AR, Lee DF, Cai W, et al. Correlated gene modules uncovered by single-cell transcriptomics with high detectability and accuracy. BioRxiv. 2020;8:e92190.

30. Zhou J, Quah JY, Ng Y, et al. ASLAN003, a potent dihydroorotate dehydrogenase inhibitor for differentiation of acute myeloid leukemia. Haematologica. 2020;105(9):2286–2297.

31. Süt BB. Data article on genes that share similar expression patterns with EF1 complex proteins in hepatocellular carcinoma. Data Brief. 2020;29:105162.

32. Díez-Fuertes F, De La Torre-Tarazona HE, Calonge E, et al. Transcriptome sequencing of peripheral blood mononuclear cells from elite controller-long term non progressors. Sci Rep. 2019;9(1):14265.

33. Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–678.

34. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–1351.

35. Kimura K, Wakamatsu A, Suzuki Y, et al. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 2006;16(1):55–65.

36. Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale mapping of the human protein-protein interaction network. Nature. 2005;437(7062):1173–1178.

37. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–1120.

38. Erho N, Buerki C, Triche TJ, Davicioni E, Vergara IA. Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer. J Oncol. 2012:2012:541353.

39. Fimereli D, Fumagalli D, Brown D, et al. Genomic hotspots but few recurrent fusion genes in breast cancer. Genes Chromosomes Cancer. 2018;57(7):331–338.

40. Ruan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–1178.

41. Babiceanu M, Qin F, Xie Z, et al. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016;44(6):2859–2872.

42. Kim J, Kim S, Ko S, et al. Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples. Genes Chromosomes Cancer. 2015;54(11):681–691.

43. Shahba S, Jafari Shakib R, Jamshidi A, et al. Association study of copy number variation in BMPBA gene with the risk of ankylosing spondylitis in Iranian population. J Cell Biochem. 2018;129(5):8359–8365.

44. Yim SH, Jung SH, Chung B, Chung YJ. Clinical implications of copy number variations in autoimmune disorders. Kor J Intern Med. 2015;30(3):294–304.

45. Jung SH, Yim SH, Hu HJ, et al. Genome-wide copy number variation analysis identifies deletion variants associated with ankylosing spondylitis. Arthritis Rheum. 2014;66(8):2103–2112.

46. Sanger Center. Genome Sequencing Center. Toward a complete human genome sequence. Genome Res. 1998;8(11):1097–1108.

47. Stefansson OA, Jonasson JG, Olafsdottir K, et al. Genomic and phenotypic analysis of BRCA2 mutated breast cancers reveals co-occurring changes linked to progression. Breast Cancer Res. 2011;13(5):R55.

48. Lv H, Zhang M, Shang Z, et al. Genome-wide haplotype association study identify the FGFFR2 gene as a risk gene for acute myeloid leukemia. Oncotarget. 2017;8(5):7891–7899.

49. Ombrello MJ, Arthur VL, Remmers EF, et al. Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis. 2017;76(5):906–913.

50. Tao F, Beecham GW, Rebello AP, et al. Modifier gene candidates in charcot-marie-tooth disease type 1a: a case-only genome-wide association study. J Neurogenet Dis. 2019;8(2):201–211.

51. Muzny DM, Scherer SE, Kaul R, et al. The DNA sequence, annotation and analysis of human chromosome 3. Nature. 2004;640(7888):1194–1198.

52. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2001;409(6822):860–921.

53. van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res. 2018;122(3):433–443.

54. Cristiano L. EEF1B2 (eukaryotic translation elongation factor 1 beta 2). Genet Cytogenet Oncol Haematol. 2020;24(9):338–345.

55. Le Sourd F, Boulben S, Le Bouffant R, et al. eEF1B: at the dawn of the 21st century. Biochim Biophys Acta. 2006;1759(1–2):13–31.

56. Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002;269(22):5360–5368.

57. Cristiano L. EEF1D (eukaryotic translation elongation factor 1 delta). Genet Cytogenet Oncol Haematol. 2020;24(3):117–135.

58. Dunham A, Matthews LH, Burton J, et al. The DNA sequence and analysis of human chromosome 13. Nature. 2004;428(6982):522–528.

59. Cristiano L. EEF1DP3 (eukaryotic translation elongation factor 1 delta pseudogene 3). Genet Cytogenet Oncol Haematol. 2020;24(2):164–169.

60. Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8), R72.

61. Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen CR. Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system. Biochem J. 2002;365(Pt 3):669–676.

62. Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen CR. Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system. Biochem J. 2002;365(Pt 3):669–676.

63. Cristiano L. EEF1G (eukaryotic translation elongation factor 1 gamma). Atlas Genet Cytogenet Oncol Haematol. 2020;24(2):58–68.

64. Mao M, Fu G, Wu JS, et al. Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning. Proc Natl Acad Sci U S A. 1998;95(14):8175–8180.

65. Deineko V. On ARS-interacting multifunctional protein p18. Nat Prec. 2008.

66. Kim SM, Jeon Y, Kim D, et al. AIMP3 depletion causes genome instability and loss of stemness in mouse embryonic stem cells. Cell Death Dis. 2018;9(10):972.

67. Park BJ, Oh YS, Park SY, et al. AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. Cancer Res. 2006;66(14):6913–6918.

68. Park BJ, Kang JW, Lee SW, et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell. 2005;120(2):209–221.

69. Kim SS, Hur SY, Kim YR, Lee SH. Expression of AIMP1, 2 and 3, the scaffolds for the multi-RNA synthetase complex, is downregulated in gastric and colorectal cancer. Tumori. 2011;97(3):380–385.

70. Lund A, Knudsen SM, Vissing H, Clark B, Tommerup N. Assignment of human elongation factor 1 alpha genes: EEF1A
maps to chromosome 6q14 and EEF1A2 to 20q13.3. Genomics. 1996;36(2):359–361.
71. Madsen HO, Poulsen K, Dahl O, Clark BF, Hjorth JP. Retro-pseudogenes constitute the major part of the human elongation factor 1 alpha gene family. Nucleic Acids Res. 1990; 18(6):1513–1516.
72. Hattori M, Fujiyama A, Taylor TD, et al. The DNA sequence of human chromosome 21. Nature. 2000;405(6784):311–319.
73. Acharya P, Kutum R, Pandey R, et al. First degree relatives of patients with celiac disease harbour an intestinal transcriptomic signature that might protect them from enterocyte damage. Clin Transl Gastroenterol. 2018;9(10):195.
74. Vincent-Chong VK, Salahshourifar I, Razali R, Anwar A, Acharya P, Kutum R, Pandey R, et al. First degree relatives of patients with celiac disease harbour an intestinal transcriptomic signature that might protect them from enterocyte damage. Clin Transl Gastroenterol. 2018;9(10):195.
75. Liu F, Xing L, Zhang X, Zhang X. A four-pseudogene classifier identified by machine learning serves as a novel prognostic marker for survival of osteosarcoma. Genes (Basel). 2019;10(6):414.
76. Bonaldo MF, Yu MT, Jelenc P, et al. Selection of cDNAs using chromosome-specific genomic clones: application to human chromosome 13. Hum Mol Genet. 1994;3(9):1663–1671.
77. Carnes MU, Allingham RR, Ashley-Koch A, Hauser MA. Transcriptome analysis of adult and fetal trabecular meshwork, cornea, and ciliary body tissues by RNA sequencing. Exp Eye Res. 2018;167:91–99.
78. Mirsaflian H, Ripen AM, Hanaharan T, Mohamad SB, Merican AF. Toward a reference gene catalog of human primary monocyes. OMICS. 2016;20(11):627–634.
79. Pieragostino D, Agnifili L, Fasanella V, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naïve to therapy. Mol Biosyst. 2013;9(6):1108–1116.
80. de Mateo S, Castillo J, Estanyol JM, Ballesca JL, Oliva R. Genome-wide array comparative genomic hybridization: a meta-analysis. Head Neck. 2015; 38(Suppl 1):E783–E797.
81. de Mateo S, Castillo J, Estanyol JM, Ballesca JL, Oliva R. Genome-wide array comparative genomic hybridization: a meta-analysis. Head Neck. 2015; 38(Suppl 1):E783–E797.
82. Zhang W, Du M, Wang T, et al. Long non-coding RNA LINC01133 mediates nasopharyngeal carcinoma tumorigenesis by binding to YBX1. Genes (Basel). 2019;10(3):236.
83. Evgrafov OV, Armoskus C, Wrobel BB, et al. Gene expression differences in kidney cancer. OMICS. 2013;14(4):391–401.
84. Gruber F, Keats JJ, McBride K, et al. Bayesian network models of micro-structural variations and their proteogenomic landscapes in stem cells, tissues, and cancer. Methods Mol Biol. 2014;1107:279–302.
85. Fan M, Pfeffer SR, Lynch HT, et al. Altered transcriptome signature of phenotypically normal skin fibroblasts heterozygous for CDKN2A in familial melanoma: relevance to early intervention. Oncotarget. 2013;4(1):128–141.
86. Ng SB, Chung TH, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematol. 2018;103(2):278–287.
87. Axelrod J, Borewicz D, El-Khamisy SF. Identification of micro-structural variations and their proteogenomic landscapes in stem cells, tissues, and cancer. Methods Mol Biol. 2014;1107:279–302.
88. Fan M, Pfeffer SR, Lynch HT, et al. Altered transcriptome signature of phenotypically normal skin fibroblasts heterozygous for CDKN2A in familial melanoma: relevance to early intervention. Oncotarget. 2013;4(1):128–141.
89. Ha MJ, Balandadayuthapani V, Do KA. Prognostic gene signature identification using causal structure learning: applications in kidney cancer. Canc In. 2015;14(Suppl 1):23–35.
90. Wang Y, Liu X, Guan G, Xiao Z, Zhao W, Zhuang M. Identification of a five-pseudogene signature for predicting survival and its ceRNA network in glioma. Front Oncol. 2019;9:1059.
91. Zhang W, Du M, Wang T, et al. Long non-coding RNA LINC01133 mediates nasopharyngeal carcinoma tumorigenesis by binding to YBX1. Genes (Basel). 2019;10(3):236.
92. Audere M, Rutka K, Inaskina I, et al. Genetic linkage studies of a North American maculopathy family. Medicine. 2016; 52(3):180–186.
93. van Soest S, van Rossem MJ, Heckenlively JR, et al. Integrated genetic and physical map of the 1q31→q32.1 region, encompassing the RP12 locus, the F13B and H1F1 genes, and the EEF1AL1 and RPL30 pseudogenes. Cytogenet Cell Genet. 1999;84(1–2):22–27.
94. Kato N. Insights into the genetic basis of type 2 diabetes. Diabetes Invest. 2013;4(3):233–244.
95. Lin Y-Y, Gawronski A, Hach F, et al. Computational identification of micro-structural variations and their proteogenomic landscapes in stem cells, tissues, and cancer. Methods Mol Biol. 2014;1107:279–302.
96. Evgrafov OV, Armoskus C, Wrobel BB, et al. Gene expression differences in kidney cancer. OMICS. 2013;14(4):391–401.
97. Audere M, Rutka K, Inaskina I, et al. Genetic linkage studies of a North American maculopathy family. Medicine. 2016; 52(3):180–186.
98. van Soest S, van Rossem MJ, Heckenlively JR, et al. Integrated genetic and physical map of the 1q31→q32.1 region, encompassing the RP12 locus, the F13B and H1F1 genes, and the EEF1AL1 and RPL30 pseudogenes. Cytogenet Cell Genet. 1999;84(1–2):22–27.
99. Comuzzie AG, Cole SA, Laston SL, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One. 2012;7(12):e51954.
100. Rodrigues-Peres RM, de S Carvalho B, Anurag M, et al. Copy number alterations associated with clinical features in an underrepresented population with breast cancer. Mol Genet Genom Med. 2019;7(7):e00750.
101. Abed S, Baghaei K, Pakzad P, Hashemi M, Zali MR. Evaluation of large-scale RNA-seq studies with the MDSeq. Nucleic Acids Res. 2017;45(13):e127.
102. Lai KP, Li JW, Chan TF, et al. Transcriptomic and methylomic association studies identifying functionally related genes and intragenic regions in small sample studies. Pharmacogenomics. 2013;14(4):391–401.
103. Lai KP, Li JW, Chan TF, et al. Transcriptomic and methylomic association studies identifying functionally related genes and intragenic regions in small sample studies. Pharmacogenomics. 2013;14(4):391–401.
104. Balsano C, Porcu C, Sideri S, Tavolaro S. Fat and hepatocellular carcinoma. Head Neck. 2015; 1673.
105. Kato N. Insights into the genetic basis of type 2 diabetes. Diabetes Invest. 2013;4(3):233–244.
106. Ng SB, Chung TH, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematol. 2018;103(2):278–287.
107. Tubal R, Özgür A, Tutar Y. Involvement of miRNAs and pseudogenes in cancer. Methods Mol Biol. 2018;1699:45–66.
108. Jorge P, Garcia E, Gonçalves A, et al. Classical fragile-X phenotype in a female infant disclosed by comprehensive genomic studies. *BMC Med Genet*. 2018;19(1):74.

109. Lucas RE, Vlangos CN, Das P, Patel P, Elsea SH. Genomic organisation of the approximately 1.5 Mb Smith-Magenis syndrome critical interval: transcription map, genomic contig, and candidate gene analysis. *Eur J Hum Genet*. 2001;9(12):892–902.

110. Taylor TD, Noguchi H, Totoki Y, et al. Human chromosome 11 DNA sequence and analysis including novel gene identification. *Nature*. 2006;440(7083):497–500.

111. Dick DM, Aliev F, Krueger RF, et al. Genome-wide association study of conduct disorder symptomatology. *Mol Psychiatr*. 2011;16(8):800–808.

112. Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. *Drug Metabol Pharmacokinet*. 2014;29(4):333–340.

113. Mansilla F, Hansen LL, Jakobsen NO, Clark BF, Knudsen CR. Deconstructing PTI-1: PTI-1 is a truncated, but not mutated, form of translation elongation factor 1A1, eEF1A1. *Biochim Biophys Acta*. 2005;727(2):116–124.

114. Choi WI, Kim Y, Kim Y, et al. Eukaryotic translation initiation factor 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokedex/ZBTB7A). *Cell Physiol Biochem*. 2009;23(4–6):359–370.

115. Abbott CM, Proud CG. Translation factors: in sickness and in health. *Trends Biochem Sci*. 2004;29(1):25–31.

116. Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, et al. Systems analysis of subjects acutely infected with the Chikungunya virus. *PLoS Pathog*. 2019;15(6):e1007880.

117. Lee M, Surh YJ. eEF1A2 as a putative oncogene. *Ann N Y Acad Sci*. 2009;1171:87–93.

118. McDonell L, Drouin G. The abundance of processed pseudo-genes derived from glycolytic genes is correlated with their expression level. *Genome*. 2012;55(2):147–151.

119. Hirotsune S, Yoshida N, Chen A, et al. An expressed pseudo-gene regulates the messenger-RNA stability of its homologous coding gene. *Nature*. 2003;423(6935):91–96.