Watson, J., Mounce, L., Bailey, S., Cooper, S., & Hamilton, W. (2019). Rational Testing: Blood markers for cancer. *BMJ, 367,* [l5774]. https://doi.org/10.1136/bmj.l5774

Publisher's PDF, also known as Version of record

License (if available):
CC BY-NC

Link to published version (if available):
10.1136/bmj.l5774

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via BMJ Publishing Group at https://www.bmj.com/content/367/bmj.l5774 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
A 61 year old man with a one month history of back pain visits his general practitioner (GP). He has hypertension, has never smoked, and reports fatigue for several months. The pain is keeping him awake at night. He has not lost weight. Clinical examination is normal. The differential diagnosis for this patient is wide, including potential malignant causes such as pancreatic, myeloma, and prostate cancer or metastatic disease.

Cancer can be difficult to identify from many of the common symptoms are non-specific and low risk, and even the most well known “alarm” symptoms have relatively low positive predictive values (PPVs) for underlying malignancy\(^1\); for example, weight loss has a PPV for underlying malignancy of only 0-3.3\(^2\); while rectal bleeding has a PPV of 2.2-15.8\(^2\). Cancer markers used in hospital settings, when applied to low risk primary care patients, have low positive predictive values and high false positive rates\(^4\). Identifying patients whose non-specific symptoms may be caused by cancer, rather than benign disease, is therefore a challenge for primary care physicians.

While formal diagnosis usually happens in secondary care, the first suspicion of cancer generally occurs in primary care. Patients whose symptoms represent an approximate risk of cancer of ≥3\% are recommended by the National Institute for Health and Care Excellence (NICE) for urgent investigation, often by referral.\(^3\) Those with estimated risk <3\% may receive an initial panel of primary care investigations, or triage testing, to stratify risk. Triage tests can provide clues to help identify patients for referral, and crucially can point towards the site of an underlying malignancy. This is particularly useful when the patient’s vague symptoms could be caused by several different cancer types, and can guide decision making on any need for further investigation.

This article discusses blood tests to detect or stratify risk for possible cancer in primary care and presents evidence for their use in symptomatic patients. First we consider tests that are not specific for any one type of cancer but which may help primary care providers stratify risk of malignancy. Then we discuss specific markers for certain types of cancer. Blood tests that might be used for screening asymptomatic patients, tests for less common malignancies (eg, gastrin, prolactin) or for monitoring patients with known malignancies, are beyond the scope of this article.

What you need to know

What	How
Triage blood tests in primary care, such as haemoglobin, platelets, serum calcium level, liver function tests, and inflammatory markers such as C reactive protein and erythrocyte sedimentation rate may provide “clues” to cancer in patients with non-specific symptoms	Triage tests do not have the performance characteristics of rule-out tests
Evidence supports the use of only a small number of specific cancer markers, such as CA125 and PSA, in primary care	

Search strategy

In August 2019 we replicated the search strategy used by NICE in its most recent guidance, NG12, restricted to papers published after 2014 (2011 for ovary) as the NICE searches had been performed before that date. LM, SB, and WH worked in pairs to assess candidate abstracts for blood tests used in primary care, and extracted full texts for relevant hits, supplemented by a large personal library of existing references.

What is the next investigation?

Non-specific blood tests or clues for cancer

Several non-specific tests, commonly used in primary care, can provide “clues” towards possible cancer. Tests with a PPV for cancer of >1\%, including haemoglobin, platelet count, serum calcium, liver function tests, and inflammatory markers such as C reactive protein (CRP) and erythrocyte sedimentation rate...
Results were significant for a slightly raised platelet count raised the possibility of underlying malignancy. The patient was aged 64, 89 years old, at presentation. He gave a history of night sweats, weight loss, and a feeling of tiredness, and his full blood count showed a haematological disorder. The overall blood count and differential were performed, and the results were normal, indicating that no primary malignancy was present. However, the presence of night sweats and weight loss suggested that the patient may have an underlying cancer-related illness. The patient was referred to a secondary care provider for further investigations.

Specific cancer markers

Despite the proliferation of cancer biomarker research in secondary care, there is a shortage of relevant primary care studies, with no new markers entering primary care usage since Sturgeon et al's review in 2009. The small number of cancer specific tests validated for diagnosis of cancer in primary care settings are summarised in the infographic (fig 1). These tests should be used in symptomatic patients, rather than as a non-specific cancer screen. Even well known cancer markers that are part of routine clinical practice, such as prostate specific antigen (PSA) and cancer antigen 125 (CA125), have a limited evidence base. In the case of PSA, because so many men who develop prostate cancer will be asymptomatic, the positive predictive value of a positive test does not necessarily mean that the test makes cancer less likely, though neither result is definitive; that is, if these test results are normal, cancer may still be present. None of these tests has sufficient sensitivity to act as a “rule out” test, with the possible exception of the combination of a normal plasma viscosity or ESR plus normal full blood count, which may be used as a simple rule out for myeloma.

In the context of low risk symptoms, negative tests provide some reassurance. However, if symptoms continue or change, further investigation may still be warranted. Ideally, the rationale for and implications of a negative or positive test result should be discussed before ordering these tests so as to allow for shared decision making with patients.

Outcome

The general practitioner was concerned by the presence of night sweats and weight loss, and the patient was referred to secondary care for further investigations. The patient was a man aged 64, 89 years old, at presentation. He gave a history of night sweats, weight loss, and a feeling of tiredness, and his full blood count showed a haematological disorder. The overall blood count and differential were performed, and the results were normal, indicating that no primary malignancy was present. However, the presence of night sweats and weight loss suggested that the patient may have an underlying cancer-related illness. The patient was referred to a secondary care provider for further investigations.

Future research

Many cancer biomarkers are being investigated, particularly for cancers considered “hard to diagnose,” such as pancreas and ovary, or for early detection of cancer recurrences. However, of the candidate cancer biomarkers, few are expected to be tested for in clinical practice. Future research to evaluate markers for a potential diagnostic role should aim to quantify the false-positive rates, clinician and patient acceptability, and health economic aspects in order to determine how these tests should best be used.

Contributors

LM performed the searches, LM, SB, and WH reviewed abstracts and extracted full texts. JW, WH, and SB wrote the first draft of the article with input from LM and SC. All authors contributed to the intellectual content, edited the manuscript and approved the final version for submission.

Competing interests

The BMJ has judged that there are no disqualifying financial ties to commercial companies. The authors declare the following other interests: Funding: The author WH is co-Principal Investigator of, and the author SERB is funded by, a Cancer Research UK Population Research Catalyst award (C8640/A23385). JW is funded by a Doctoral Research Fellow from the National Institute for Health Research (DFR-2016-09-034). LM is funded by The Policy Research Unit in Cancer Awareness, Screening and Early Diagnosis which receives funding for a research programme from the Department of Health Policy Research Programme. It is a collaboration between researchers from seven institutions (Queen Mary University of London, UCL, King’s College London, London School of Hygiene and Tropical Medicine, Hull York Medical School, Durham University and Exeter Medical School). WH is supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula at the Royal Devon and Exeter NHS Foundation Trust.

Further details of The BMJ policy on financial interests are here: https://www.bmj.com/aboutbmj/resources/authors/forms-policies-and-checklists/declaration-competing-interests

The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Patient consent not required (patient anonymised or hypothetical)

Provenance and peer review: commissioned, based on an idea from the author; externally peer reviewed.

1 Jones R, Latinovic R, Churchon J, Guilford MC. Alarm symptoms in early diagnosis of cancer in primary care: cohort study using General Practice Research Database. BMJ 2007;334:1040. 10.1136/bmj.39171.637106.AE 17493982
2 Nicholson BD, Hamilton W, O'Sullivan J, Aveyard P, Hobbs FR. Weight loss as a predictor of cancer in primary care: a systematic review and meta-analysis. Br J Gen Pract 2018;68:e311-22. 10.3399/bjgp18X695801 29630204
3 Astin M, Griffin T, Neal RD, Ross P, Hamilton W. The diagnostic value of symptoms for colorectal cancer in primary care: a systematic review. Br J Gen Pract 2011;61:e241-3. 10.3399/bjgp11X572427 21619747
4 Usher-Smith JA, Sharp SJ, Griffin SJ. The spectrum effect in tests for risk prediction, screening, and diagnosis. BMJ 2016;353:i3139. 10.1136/bmj.i3139 27334281
5 National Institute for Health and Care Excellence Suspected cancer: recognition and referral: NICE guidelines NG12. 2015. https://www.nice.org.uk/guidance/ng12
6 Watson JBS, Hamilton F, Hamilton W, Maurice L. Lessons from biases in electronic health record data: the importance of clinical vigilance with negative test results. BMJ 2018;361:k1479.
7 Koshiaris C, Van den Brul A, Oke J, et al. Early detection of multiple myeloma in primary care using blood tests: a case-control study in primary care. Br J Gen Pract 2018;68:e596-93. 10.3399/bjgp18X693857 30104326
8 Sturgeon CM, Lai LC, Duffy MJ. Serum tumour markers: how to order and interpret them. BMJ 2009;339:b3932. 10.1136/bmj.b3932 19773328
9 Crawford SM, Evans C. Outcome of elevated CA125 values from primary care following implementation of ovarian cancer guidelines. Fam Pract 2018;35:199-202. 10.1093/fampra/cmx096 29029123
10 Young GJ, Harrison S, Turner EL, et al. Prostate-specific antigen (PSA) testing of men in UK general practice: a 10-year longitudinal cohort study. BMJ Open 2017;7:e017729. 20044797
11 Jahn JL, Giovannucci EL, Stampfer MJ. The high prevalence of undiagnosed prostate cancer at autopsy: implications for epidemiology and treatment of prostate cancer in the Prostate-specific Antigen-era. Int J Cancer 2015;137:2376-82. 10.1002/ijc.29408 2557753
12 Lyztzopoulos G, Wardle J, Rubin G. Rothchild diagnostic delay in cancer: how difficult is the diagnosis?BMJ 2001;324:9740. 10.1136/bmj.324.7357.25491791
13 Rhea JM, Molinaro RJ. Cancer biomarkers: surviving the journey from bench to bedside. MLO 2011;43:10-2. 10.1615/MLO.2011-06.20.22
14 Schmidt Hansen M, Berendse S, Hamilton W. The association between symptoms and bladder or renal tract cancer in primary care: a systematic review. Br J Gen Pract 2015;65:117-8. 10.3399/bjgp15X687421 25600325
15 Bailey SE, Ukoumunne OC, Shepard EA, Hamilton W. Clinical relevance of thrombocytosis in primary care: a prospective cohort study of cancer incidence using
English electronic medical records and cancer registry data. Br J Gen Pract 2017;67:e405-13. 10.3399/bjgp17X691109 2853199

16 Hamilton W, Peters TJ, Round A, Sharp D. What are the clinical features of lung cancer before the diagnosis is made? A population based case-control study. Thorax 2005;60:1059-65. 10.1136/thx.2005.045880 16227326

17 Hamilton F, Carroll R, Hamilton W, Salisbury C. The risk of cancer in primary care patients with hypercalcaemia: a cohort study using electronic records. Br J Cancer 2014;111:1410-2. 10.1038/bjc.2014.433 25093495

18 Merriel SWD, Carroll R, Hamilton F, Hamilton W. Association between unexplained hypoalbuminaemia and new cancer diagnoses in UK primary care patients. Fam Pract 2016;33:449-52. 10.1093/fampra/cmw051 27343860

19 Schmidt-Hansen M, Berends S, Hamilton W. Symptoms of pancreatic cancer in primary care: a systematic review. Pancreas 2016;45:814-8. 10.1097/MPA.0000000000000527 26495795

20 Hamilton W. The CAPER studies: five case-control studies aimed at identifying and quantifying the risk of cancer in symptomatic primary care patients. Br J Cancer 2009;101(Suppl 2):S80-6. 10.1038/bjc.2009.316 19956169

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/ permissions
Figure

Predictive values of diagnostic blood tests as non-specific cancer markers, based on primary care studies or reviews

Fig 1 Primary care studies or review investigating the diagnostic role of blood tests as non-specific cancer markers: with positive predictive values (PPVs) ≥1% and <1%