Successful Corticosteroid Treatment of Refractory Spontaneous Vasoconstriction of Extracranial Internal Carotid and Coronary Arteries

Mariko Takeuchi, MD, Kozue Saito, MD, PhD, Katsufumi Kajimoto, MD, PhD, and Kazuyuki Nagatsu, MD, PhD

CASE REPORT

A 25-year-old man presented with transient alternating hemiplegia at our hospital. He had frequent chest pains caused by coronary artery spasms. He had suffered an acute anterior myocardial infarction with thrombus 6 years previously and undergone an intensive medical therapy. A coronary artery stent had been placed, but the primary and secondary stent occlusions occurred within 1 year. He was subsequently treated with a calcium channel blocker (CCB) and an anticoagulant drug. He developed right hemiparesis and aphasia 2 years previously. Acute cerebral infarcts in both the frontoparietal lobes were detected by magnetic resonance imaging (MRI) at that time. Magnetic resonance angiography (MRA) revealed severe stenosis in the left extracranial ICA. Three days later, MRA showed no abnormality in the left ICA, but a severe stenosis in the right ICA. The patient experienced no traumatic events and no intramural hematoma could be detected. The results of blood and cerebrospinal fluid analysis were normal. Antiplatelet therapy was added on the basis of the diagnosis of spontaneous vasospasms. Since his first ischemic stroke event, the patient had suffered several attacks of transient hemiparesis in the right or left side and reported of feeling lethargic at least once in a month. He was a nonsmoker and had no family history of neurological or cardiovascular diseases.

On admission to the hospital, the results of blood analysis, including the examination for collagen diseases and coagulopathies, revealed no abnormalities except for a high level of nonspecific immunoglobulin E. The patient was alert and no new neurological abnormalities were observed using MRI and MRA. Carotidand transcranial US examinations were performed once in a day to evaluate the vasospasms of cervical ICA. US results revealed a stenotic portion of the ICA at 2 to 5 cm from its origin and an increased peak flow velocity, in agreement with MRA data. The blood flow in the middle cerebral artery (MCA), evaluated using transcranial color-coded sonography, was maintained despite occurrence of ICA spasms. Several new episodes of ICA spasms in 1 or both sides, with and without any neurological symptoms, were detected. Although the dose of CCB was increased and supplemented by nitrate treatment, the vasospasms continued for the periods of 1 day to 1 week.

On the 49th day in the hospital, bilateral ICA vasospasms were detected using US and MRA (Figs. 1A, B). Furthermore, transcranial color-coded sonography revealed a reduction in the blood flow velocity in the left MCA, with a poststenotic pattern flow (Fig. 1C), CCB and nitrate treatment (both intravenous and oral administration) did not suppress ICA vasospasms. Then, steroid pulse therapy (methylprednisolone 1000 mg/d for 3 d) and subsequently oral corticosteroid therapy (prednisolone 60 mg/d) was started. Two days later, MRA and US examinations showed the complete resolution of vasospasms (Figs. 1D-F).

After we had tapered the corticosteroid dose to 15 mg/d during the next 14 months, the patient returned to the hospital with a right-hand limb shaking signs. MRA examination revealed a severe stenosis of the left ICA. The dosage of the corticosteroid was increased to 20 mg/d and tapered again to 12.5 mg/d. Three years later, the patient was hospitalized again with limb shaking. US revealed the left ICA occlusion due to SVEICA. Intravenous administration of methylprednisolone (250 mg/d for 3 d) completely resolved the left ICA spasms within a day. The patient has been free of complaints and living a normal social life, except for 2 short attacks, for 4 years since the administration of the corticosteroid. He is being treated with an oral corticosteroid (15 mg/d) and is surviving without cervical vasospasms or cardiovascular events.

From the Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan. The authors declare no conflict of interest.

Reprints: Mariko Takeuchi, MD, Department of Neurology and Stroke Center, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: takemari@neurol.med.osaka-u.ac.jp.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

ISSN: 1074-7931/16/2104-0055
DOI: 10.1097/NRL.0000000000000808

The Neurologist • Volume 21, Number 4, July 2016 www.theneurologist.org | 55
DISCUSSION

Table 1 summarizes the data from previous reports on SVEICA, including the present case. The unilateral or bilateral ICA vasospasms were resolved within a short time, and there were no other radiologic findings reported. Only a few patients with SVEICA had headaches, which were not associated with vasospasms. Some patients, including our patient, suffered from a coronary artery disease.2,4,6,9 The patient described by Yoshimoto et al6 was diagnosed with vasospastic angina using acetylcholine test.

The mechanism of SVEICA is unclear, although different diagnoses such as aortic dissection, reversible cerebral vasconstriction syndrome, infections, connective tissue disease, pheochromocytoma, migraine, and coagulopathy were ruled out in most cases. In the patient reported by Kuzumoto et al,2 the disease appeared to be associated with smoking; however, vasospasms recurred after he quit smoking.

All the patients had treatment suitable for the cerebral infarction in the acute stage. Some reports have shown the effectiveness of stellate ganglion block,4 balloon angioplasty,9 carotid artery stenting,11 and intra-arterial injection of CCB.12 However, most patients suffered recurrences of vasospasms despite their chronic phase medication, such as treatment with CCB, antiplatelet, intravenous magnesium, and antiepileptic drugs. In 1 case, administration of CCB was effective. Steroid therapy was effective in 2 cases1,3 and ineffective in 1.10 Takagi et al reported that, in some patients with an allergic tendency, their recurrent
vasospastic angina was completely controlled by corticosteroid administration, and they have suggested that the coronary spasms may be induced by arterial hyperreactivity caused by local inflammation; corticosteroids would suppress the allergic response in the coronary artery.13 Corticosteroids may also be effective in the SVEICA patients for the same reason. A recurrence of vasospasms after a reduction in the dose of oral corticosteroids has been reported11,12; it was also observed in our case, suggesting that autoimmune response may be associated with SVEICA.

We performed daily carotid and transcranial US examination to screen for the spasms and evaluate the response to treatment because vasospasms often occurred asymmetrically and resolved rapidly. Our case suggested that daily US examination of the patients with suspected vasospasms of ICAs could detect the rapid morphologic changes.

Standard treatment and long-term prognosis for SVEICA are yet to be determined. The present case showed that corticosteroids might be effective, particularly for the patients with allergic tendencies. More cases are required to solve the etiology of SVEICA and to elucidate a standard treatment.

REFERENCES

1. Arning C, Schrattenholzer A, Lachenmayer L. Cervical carotid artery vasospasms causing cerebral ischemia: detection by immediate vascular ultrasonographic investigation. Stroke. 1998; 29:1063–1066.
2. Kazumoto Y, Mitsui Y, Ueda H, et al. Vasospastic cerebral infarction induced by smoking: a case report. No To Shinkei. 2005;57:33–36.
3. Janzarik WG, Ringleb PA, Reinhard M, et al. Recurrent extracranial carotid artery vasospasms: report of 2 cases. Stroke. 2006;37:2170–2173.
4. Yokoyama H, Yoneda M, Abe M, et al. Internal carotid artery vasospasm syndrome demonstration by neuroimaging. J Neurol Neurosurg Psychiatry. 2006;77:888–889.
5. Mosso M, Jung HH, Baumgartner RW. Recurrent spontaneous vasospasm of cervical carotid, ophthalmic and retinal arteries causing repeated retinal infarcts: a case report. Cerebrovasc Dis. 2007;24:381–384.
6. Yoshimoto H, Matsuo S, Umemoto T, et al. Idiopathic carotid and coronary vasospasm: a new syndrome? J Neuroimaging. 2011;21: 273–276.
7. Magnin E, Mouton S, Abouaf L, et al. Idiopathic vasospastic angiopathy of the internal carotid arteries: a rarely recognized cause of ischemic stroke in young individuals. Rev Neurol. 2011;167:626–631.
8. Moller S, Hilz MJ, Blinzler C, et al. Extracranial internal carotid artery vasospasm due to sympathetic dysfunction. Neurology. 2012;78:1892–1894.
9. Dembo T, Tanahashi N. Recurrent extracranial internal carotid artery vasospasm detected by intravascular ultrasound. Intern Med. 2012;51:1249–1253.
10. Sigrid W, Andreas K, Markus L, et al. Recurrent strokes due to transient vasospasms of the extracranial internal carotid artery. Case Report Neurol. 2013;5:143–148.
11. Fujimoto M, Iokawa H, Moriya M, et al. Treatment of idiopathic cervical internal carotid artery vasospasms with carotid artery stenting: a report of 2 cases. JNET. 2013;7:24–31.
12. Shimoda Y, Fujimura M, Kimura N, et al. Recurrent extracranial internal carotid artery vasospasm diagnosed by serial magnetic resonance angiography and superselective transarterial injection of a calcium channel blocker. J Stroke Cerebrovasc Dis. 2014; 23:e383–e387.
13. Takagi S, Goto Y, Hirose E, et al. Successful treatment of refractory vasospastic angina with corticosteroids: coronary arterial hyperactivity caused by local inflammation? Circ J. 2004; 68:17–22.