Integrated stratigraphy of the Guşteriţa clay pit: a key section for the early Pannonian (late Miocene) of the Transylvanian Basin (Romania)

Dániel BOTKA1,2, Imre MAGYAR3,4,5, Vivien CSOMA4,6, Emőke TÓTH7, Michal ŠUJAN8, Zsófia RUSZKICZAY-RÜDIGER9, Andrej CHYBA10, Régis BRAUCHER11, Karin SANT12, Stejpan ĆORIĆ13, Viktória BARANYI10, Korálka BAKRAČ10, Krešimir KRIZMANIĆ11, István Róbert BARTHA12, Martón SZABÓ13, & Lóránd SILYE14

1 Department of Palaeontology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary;
2 MOL Hungarian Oil and Gas Plc., Október huszonharmadik utca 18, 1117 Budapest, Hungary;
3 MTA-MTM-ELTE Research Group for Paleontology, Ludovika tér 2, 1083 Budapest, Hungary;
4 Department of Geology and Palaeontology, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia;
5 Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, 1112 Budapest, Hungary;
6 Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
7 CNRS-IRD-Collège de France-INRA, CEREGE, Aix-Marseille Univ., 13545 Aix-en-Provence, France;
8 Paleomagnetic Laboratory Fort Hoofddijk, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, the Netherlands;
9 Department of Sedimentary Geology, Geological Survey of Austria, Neulinggasse 38, 1030 Vienna, Austria;
10 Department of Geology, Croatian Geological Survey, Sachsova 2, 10000 Zagreb, Croatia;
11 INA Industrija nafte, d.d., Exploration and Production, Rock and Fluid Analysis, Lovińčica bb, 10000 Zagreb, Croatia;
12 Department of Geology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary;
13 Department of Palaeontology and Geology, Hungarian Natural History Museum, Ludovika tér 2, 1083 Budapest, Hungary;
14 Department of Geology, Babeş-Bolyai University, Strada Mihail Kogálniceanu 1, 400084 Cluj-Napoca, Romania;

Corresponding author: botkadani@gmail.com

KEYWORDS Miocene, Lake Pannon, chronostratigraphy, biostratigraphy, magnetostratigraphy, authigenic 10Be/9Be dating

Abstract

The Neogene Transylvanian Basin (TB), enclosed between the eastern and southern Carpathians and the Apuseni Mountains in Romania, is a significant natural gas province with a long production history. In order to improve the (bio)stratigraphic resolution, correlations and dating in the several 100-m-thick upper Miocene (Pannonian) succession of the basin, the largest and most fossiliferous outcrop at Guşteriţa (northeastern part of Sibiu) was investigated and set as a reference section for the Congeria banatica zone in the entire TB. Grey, laminated and massive silty marl, deposited in the deep-water environment of Lake Pannon, was exposed in the ~55-m-high outcrop. The uppermost 25 m of the section was sampled in high resolution (sampling per metres) for macro- and microfossils, including palynology; for authigenic 10Be/9Be dating and for magnetostratigraphy; in addition, macrofossils and samples for authigenic 10Be/9Be isotopic measurements were collected from the lower part of the section as well. The studied sedimentary record belongs to the profundal C. banatica mollusc assemblage zone. The upper 25 m can be correlated to the Hemicytheria tenuistriata and Propontoniella candeo ostracod biozones, the uppermost part of the Spiniferites oblongus, the entire Pontiadinium pcevaradense and the lowermost part of the Spiniferites hennersdorfensis organic-walled microplankton zones. All samples contained endemic Pannonian calcareous nannofossils, representing the Noelaerhabdus bozinovicae zone. Nine samples were analysed for authigenic 10Be/9Be isotopic measurements. The calculated age data of six samples provided a weighted mean value of 10.42 ± 0.39 Ma. However, three samples within the section exhibited higher isotopic ratios and yielded younger apparent ages. A nearly twofold change in the initial 10Be/9Be ratio is a possible reason for the higher measured isotopic ratios of these samples. Magnetostratigraphic samples showed normal polarity for the entire upper part of the outcrop and can be correlated with the C5n.2n polarity chron (11.056–9.984 Ma, ATNTS2012), which is in agreement with the biostratigraphic data. Based on these newly obtained data and correlation of the biozones with other parts of the Pannonian Basin System, the Guşteriţa section represents the ~11.0–10.5 Ma interval, and it is a key section for correlation of mollusc, ostracod, dinoflagellate and calcareous nanoplankton biostratigraphic records within this time interval.

Volume 112/ 2019/ 2

Unauthenticated | Heruntergeladen 06.03.20 17:43 UTC
1. Introduction
The Transylvanian Basin (TB) is one of the largest gas provinces of Eastern Europe with a long production record (Stefănescu et al., 2006). The upper Miocene sedimentary sequence of the basin fills has an average thickness of ca. 300 m, but it can reach ca. 1400 m thickness in the central part of the basin, in the surroundings of Sighișoara (Ciulavu et al., 2000; Sanders et al., 2002; Krézsek and Filipescu, 2005; Krézsek and Bally, 2006; Tiliţă et al., 2013). The upper Miocene deposits in the TB are present in a more or less contiguous area throughout the central, southwestern, and eastern part of the basin, in an area of ca. 7500 km² (representing about one-third of the total basin area) (Fig. 1c). Fossils from the upper Miocene sedimentary record of the TB are largely identical with the endemic molluscs, ostracods, and algae that once lived in Lake Pannon, an enormous and long-lived lake that covered most of the intra-Carpathian Pannonian Basin (PB) in the late Neogene. Therefore, it was inferred long ago that in the late Miocene, the TB was part of Lake Pannon, and the regional chronostratigraphic term "Pannonian" can be applied for these sediments (Lorenthény, 1902).

Lake Pannon was a large, deep (more than 1000 m deep in some parts) lake with brackish-water conditions (salinity: 5–12%). Like most long-lived lakes, a diverse endemic fauna and flora (molluscs, ostracods, fishes, dinoflagellates, acritarchs, diatoms and calcareous nannoplankton) evolved in the lake (Kázmér, 1990; Müller et al., 1999; Neubauer et al., 2016).

The biostratigraphic subdivision and chronostratigraphic framework of this several hundred-meter-thick sequence in the TB, representing ~2.5 Ma, are still relatively poorly developed and imply much uncertainty. The molluscs and ostracod biozonations were largely based on the biostratigraphy of shallow-water deposits of the Vienna Basin developed many decades ago (Papp, 1951, 1953). The results of some recent magnetostratigraphic studies are available (Vasiliev et al., 2010; de Leeuw et al., 2011), but their interpretations are partly debatable (see the Discussion section). Radiometric age measurements have never been published from the Pannonian of the TB.

Our main objective was the development of a comprehensive Pannonian biochronostratigraphy in the TB; therefore, we conducted integrated stratigraphic research in the most fossiliferous Pannonian outcrop of the TB, the Gușterița clay pit, in Sibiu. We investigated various fossil groups; identified and correlated mollusc, ostracod, dinoflagellate cyst and calcareous nannoplankton biozones; performed magnetostratigraphic research and experimented with the authigenic \(^{10}\text{Be}/^{9}\text{Be}\) dating method.

Our study has relevance not only in the TB but also in the PB, where surface distribution of the coeval deep-water sediments is confined to the eastern and southern margins of the basin, whereas they are usually deeply buried and comprise hydrocarbon source rocks and reservoirs in other parts of the PB.

2. Geographic and geological settings
The TB is surrounded by the chains of the eastern and southern Carpathians. It is separated from the PB by the Apuseni Mountains (Fig. 1a–b) and has a relatively high present-day altitude of 300–500 m above the mean sea level.

The Cenozoic evolution of the TB was controlled by the Carpathian orogeny. Synchronously with the uplift of the Carpathians, a more than 3500-m-thick middle to upper Miocene sedimentary sequence accumulated in the TB. Exhumation and erosion of the infilled basin started at the end of the Miocene (Krézsek and Bally, 2006), which resulted in the erosion of younger than 9–8 Ma deposits (Sanders et al., 1999, 2002). Lower Pannonian sands, marls and conglomerates are the youngest of the preserved sediments in the TB; however, Pliocene brackish-water deposits can be found in the small basins of the Eastern Carpathians (Brăsova-Baraolt, Ciuc and Gheorgheni Depressions – Fieltz and Seghedi, 2005; László, 2005). At the end of the middle Miocene (end of Sarmatian), connection with the Eastern Paratethys ceased due to the uplift of the Carpathians, and Lake Pannon was born. Brackish- and freshwater endemic faunas evolved in the lake (Lubensescu, 1981; Magyar et al., 1999a; Müller et al., 1999). Older theories suggested continental environment and erosion around the Sarmatian–Pannonian transition (Vancea, 1960; Marinescu, 1985; Magyar et al., 1999a). According to Marinescu (1985), the oldest Pannonian littoral mollusc biozone (Congeria ornithopsis zone) is totally missing from the TB. More recent studies, however, indicated that the sedimentation was continuous through the Sarmatian–Pannonian boundary, as witnessed by the deep-water facies of the Oarba de Mureş (ODM) sections located in the depocenter of the TB (Sztanó et al., 2005; Sütő and Szegő, 2008; Vasiliev et al., 2010; Filipescu et al., 2011).

At the beginning of the late Miocene (beginning of Pannonian), a deep-lacustrine environment formed in most parts of the basin. Unlike in the PB, deep-water sediments can be studied in surface exposures due to the subsequent erosion that uncovered them. Deep-water fans are preserved in the southwestern part, while in the southeastern part, some 100-m-thick shallow-water (delta), freshwater-paludal and continental (fluvial) formations can be found. In the latter region, Pliocene volcanics cover and protect the loose Pannonian rocks from erosion (Krézsek et al., 2010). In the eastern part of the basin, deep-water turbiditic successions are preserved (Bartha et al., 2016). Deposition in the TB probably lasted until the end of the Miocene, but most of the shallow-lacustrine, continental-fluvial deposits were eroded during the Pliocene to Quaternary. According to apatite fission track thermochronological analyses on borehole samples and numerical flexural-isostatic 3-D modelling, it is likely that at least a 500-m-thick sedimentary succession was eroded (Sanders et al., 1999, 2002).
Figure 1: Geographic and geological maps of the Transylvanian Basin in the intra-Carpathian realm. a: Geographic map indicating the two basins in Europe (PB: Pannonian Basin and TB: Transylvanian Basin). b: DEM of the Pannonian Basin System. c: Geological map of the Transylvanian Basin and geographic situation of the discussed localities in this study (GUS: Guşteriţa, OdM: Oarba de Mureş). Legend: Pg: Paleogene, M1: lower Miocene, Ba: Badenian, Sm: Sarmatian and Pa: Pannonian. 1–2: Units of the Carpathians and the Apuseni Mountains (1. Metamorphic, 2. Mesozoic sediments), 3. Paleogene, 4. lower Miocene, 5. middle Miocene (Badenian), 6. middle Miocene (Sarmatian), 7. upper Miocene (Pannonian), 8. Neogene volcanic and volcano-sedimentary rocks and 9. Quaternary (modified after Sândulescu et al., 1978). DEM: Digital elevation model.
The Pannonian lithostratigraphy of the TB is not uniform. Beside formations, informal units are used as well, and due to the heterogeneity of lithofacies, different classifications are created for different parts of the basin. The Lopadea Formation (Lubenescu and Lubenescu, 1977) comprises sandy–clayey layers in the western basin margin. In the eastern part, the Ocland Formation (Rado et al., 1980) was erected for the deltaic, sandy-marly deposits. Sediments of the Guşteriţa and Vingard formations (Lubenescu, 1981), as well as the pebbly Săcădate Member, are located in the southern-southwestern part of the basin. The clayey-marly deposits and fauna of the Guşteriţa Formation provide evidence for a deep-water, profoundal environment, while the sand and fauna of the Vingard Formation indicate shallow-water, littoral deposition. The conglomerate and sand of the Săcădate Member contain a mixed Sarmatian–Pannonian fossil fauna (Lubenescu, 1981; Chira et al., 2000). These formations can be paralleled with the Pannonian formations of the PB. Deep-water marls of the Guşteriţa Formation correspond to the Endrőd Marl Formation (Juhász, 1997). The turbiditic succession of the Lopadea Formation is similar to the Szolnok Sandstone Formation (Juhász et al., 1997). The Săcădate Member resembles the Békés Conglomerate Formation (Gajdos et al., 1997). In the case of the regressive sediments (Vingard Formation, Ocland Formation and the unassigned sequences in the eastern part of the basin), the correlation is less straightforward, because their fossil content is somewhat different from their PB relatives.

A sequence stratigraphic framework of the Pannonian of the TB was proposed by Krézsek and Filipescu (2005) and Krézsek et al. (2010), using the original three-system tract model of Vail et al. (1977). They divided the middle to late Miocene sedimentary succession of the basin into minimum eight different sequences based on seismic profiles and well logs. The Pannonian sediments included the following system tracts: TST7, HST7, LST8, TST8, HST8 and LST9 (Krézsek and Filipescu, 2005; Krézsek et al., 1980) was erected for the deltaic, sandy-marly deposits. Sediments of the Guşteriţa and Vingard formations (Lubenescu, 1981) can be a product of background sedimentation, with investigations and surface gamma-ray logging, the marl sandy turbidites (sand intercalations), which is a characteristic of inner fan overbank deposits as well as outer fan lobes (Tökés, 2013; Tökés et al., 2015). Based on seismic interpretation, the locality can represent the transgressive system tract of the early Pannonian (Krézsek et al., 2010).

Guşteriţa is one of the largest outcrops and perhaps the most fossiliferous site of the deep-water Pannonian formations in the TB. The Pannonian macrofauna of the locality was examined by some earlier authors, but their faunal lists contain a relatively low number of taxa (Ackner, 1852; Lörenthey, 1893; Koch, 1876, 1895; Bielz, 1894; Lubenescu, 1981). Plant remains from the outcrop were described by Givulescu (1969).

3. Material and methods

Samples were collected from four different section parts of the Guşteriţa clay pit. In October 2015, macrofossils and marl samples for authigenic ²⁶⁹Be/⁹Be isotopic measurements were collected from the lower, middle and upper parts of the mine (Guşteriţa 1, 2 and 3) (Fig. 2a). Later, in June 2017, the uppermost 25 m of the quarry (Guşteriţa 4) was sampled (Fig. 2b). Samples were collected for macro- and microfossils (ostracods, dinoflagellates and calcareous nannoplankton), for magnetic polarity measurements (per metre) and for authigenic ²⁶⁹Be/⁹Be dating (per 5 m). In addition, numerous trace fossils (Fig. 2d), thecamoebians, fish teeth, ooliths, some partial fish skeletons and fossil plant remains were found.

3.1 Biostratigraphy

Altogether 1295 mollusc specimens were determined. The bulk of the studied material was collected by the authors from various parts of the clay pit (Guşteriţa 1, 2, 3 and 4). The studied material also comprised the collections of the Brukenthal Museum, Sibiu, Romania, and the Paleontology-Stratigraphy Museum of the Babeş-Bolyai University, Cluj-Napoca, Romania. The collected molluscs were prepared in the laboratory of the Department of Paleontology-Stratigraphy Museum of the Eötvös Loránd University, Budapest, Hungary. Polyvinyl butyral and polyvinyl acetate were used for solidifying the thin and fragile shells.

A total of 25 micropalaeontological samples were examined from the upper part of the outcrop (Guşteriţa 4). The microfossils with carbonate shells were processed with hydrogen peroxide (10%) from about 250 g of air-dried sediments. The scanning electron microscope (SEM) images were made with a Hitachi S-2600N Variable-Pressure Scanning Electron Microscope at the Botanical Department of the Hungarian Natural History Museum in Budapest. The ecological limits of the Pannonian ostracods are based on recent analogies with taxa that are still living; in the case of the extinct forms, the co-occurring faunal elements, sediment type and previous ostracod studies were referred to.

Palynological analysis was carried out on 25 samples collected from the uppermost 25 m of the quarry. Standard palynological processing techniques were used to extract the organic matter (e.g. Moore et al., 1991; Wood et al., 1996). The samples were treated with sodium pyrophosphate (Na₅P₃O₁₀), cold HCl (15%) and HF (40%), removing carbonates and silica. Heavy liquid
1000× magnification at the Department of Sedimentary Geology, Geological Survey of Austria, Vienna, Austria. Quantitative data were obtained by counting at least 300 specimens from each smear slide.

3.2 Magnetostratigraphy

Guşteriţa 4 section was sampled for magnetostratigraphic purposes by drilling 26 marl samples from the quarry. Measurements were carried out in the Fort Hoofddijk Paleomagnetic Laboratory of the Utrecht University, Utrecht, the Netherlands. Magnetic susceptibility measurements were made on an AGICO MFK1-FA Multi-Function Kappabridge automatic device, using the Saphyr6 software. For the alternating field (AF) measurements, a laboratory-built automated AF-coil-interfaced measuring device with a 2G cryogenic magnetometer was used (Mullender et al., 2016). The following field steps were used: 0, 5, 10, 15, 20, 25, 30, 32, 35, 40, 45, 50, 60 and 80 mT. The thermal (TH) measurements were carried out with a manually operated 2G Enterprises DC
where \(R_{d} \) is the measured \(^{10}\)Be/\(^{9}\)Be isotopic ratio, \(R_{i} \) the initial \(^{10}\)Be/\(^{9}\)Be isotopic ratio, \(\lambda \) the decay constant of \(^{10}\)Be isotope (\(\lambda = (4.997 \pm 0.043) \times 10^{-7} \text{ a}^{-1} \)) and \(t \) the elapsed time.

The initial \(^{10}\)Be/\(^{9}\)Be isotopic ratio \((R_{i}) \) is usually determined from recent sediment representative of the former environment and assuming constant deposition processes and source areas through time.

For authigenic \(^{10}\)Be/\(^{9}\)Be isotopic dating, ~40 g air-dried marl from each sample was grinded in an agate hand mortar and oven-dried. The sample preparation followed the procedure of Bourlès et al. (1989) and Carcailllet et al. (2004), adopted by Šujan et al. (2018). Approximately 1.5 g of each sample was leached in a solution of acetic acid and hydroxylammonium hydrochloride. After lixiviation, aliquots for \(^{9}\)Be measurements were taken and a beryllium carrier was added (~0.3 g of a 1000 ppm ICP standard beryllium solution). The beryllium was separated from other elements using ion chromatography (Merkel and Herpers, 1999). Purified samples were oxidised at 800°C and cathodised for accelerator mass spectrometry (AMS) measurements of their \(^{10}\)Be/\(^{9}\)Be ratio. AMS measurements were performed at the French national facility ASTER (CEREGE, Aix-en-Provence, France). The concentrations of \(^{9}\)Be were determined by AAS in CEREGE (samples ODM and GUS1, 2, 3) and by ICP-MS in the laboratory of the Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia (Šujan et al., 2018; samples G01–G25). The comparability of both \(^{9}\)Be measurement approaches was tested using replicated measurements. The \(^{10}\)Be concentrations were corrected according to chemical processing blank values (Table 1). The weighted mean ages were calculated using the KDX software by Spencer et al. (2017).

4. Results

4.1 Molluscs

Altogether 23 mollusc taxa were determined, representing 13 genera and 19 species (Suppl. S1). The assemblage consisted of brackish-water bivalves (Congeria banatica, Lymnocardium undatum, Paradacna lenzi and Paradacna syrmienae), pulmonate (Gyraulus ponticus, Gyraulus tenuistratius, Orygoceras levis, Undulotheca halavatsi, Undulotheca nobilis and Velutinopsis velutina) and prosobranchiate snails (Micromelania striata and Prosostenia sundecia) (Fig. 3). They represented seven families (Dreissenidae, Cardiidae, Sphaeriidae, Planorbidae, Hydroidae, Lymnaeidae and Valvatidae). The most frequent bivalve species of the deep-water fossil fauna was the dreissenid C. banatica, which sometimes formed coquina-like monospecific accumulations on bedding planes (Fig. 3k). Pulmonate snails were strongly dominant amongst gastropods (Fig. 3e–j and l).

The mollusc biostratigraphy of the offshore deposits of Lake Pannon is poorly developed. For the time being, only three biozones are distinguished: the Lymnocardium...
praeponticum or Radix croatica zone, the C. banatica zone and the "Dreissenomya digitifera" zone (for a summary, see Magyar et al., 1999b). In the mollusc biostatigraphic system developed for the TB by Lubenescu (1981), the deep-water sediments were subdivided into the older C. banatica and the younger C. prezjuvocii zones. In both stratigraphic schemes, the molluscan record from Gușterița 1 to 4 belonged to the C. banatica zone, based on the presence of C. banatica throughout the entire section.

The stratigraphic distributions of other species from Gușterița were either not known or not narrow enough to be used for further subdivision of the C. banatica zone. The only exception was the Radix–Valentinopsis–Undulotheca–Provalenciennessia–Valenciennius evolutionary lineage of lymnaeid snails, which was characterised by progressively larger shell size, widening of the aperture, reduction of whorl number and appearance and strengthening of transversal ribs (e.g. Gorjanović-Kramberger, 1901, 1923; Moos, 1944). The morphotypes of this lineage are good candidates for high-resolution biostatigraphic markers, but only after their taxonomy, nomenclature and stratigraphic range of individual taxa are revised.

In the Gușterița material, we recognised that the names Velutinopsis nobilis (Reuss, 1868) and Undulotheca pancici (Brusina, 1893) refer to the same species (Fig. 3h–i). The difference between the two types is probably due to the different direction of compaction that affected the shells after burial. The type specimen of V. nobilis is laterally compacted, while the name U. pancici is used for dorsoventrally compacted specimens. According to our observations and opinion, these two forms belong to one species, because otherwise they are characterised by the same morphological traits (large aperture, reduction in number of whorls and strong rounded ribs) (Fig. 3h–i). Applying the priority rule, the valid species name would be V. nobilis, but because of the rounded ribs characteristic for the genus Undulotheca, we propose to use the species name U. nobilis instead. V. velutina (usually smooth, more whorled form) is also a common form in the Pannonian of the TB. In Gușterița, we found specimens slightly different from the type. The shell surface of this species is usually completely smooth, while in the case of some specimens, slightly bulged growth lines are observed, which are not strong enough to call them ribs. These specimens may represent a transitional form between V. velutina and U. nobilis. Similar specimens from Beočin, Serbia, were described by Gorjanović-Kramberger (1901) as Velutinopsis rugosa.

4.2 Ostracods

Samples from the Gușterița 4 section produced a relatively diverse benthic ostracod material. The preservation is moderate and sometimes poor (with a lot of broken valves and carapaces). There are more adult specimens than juvenile ones. Altogether 18 euryhaline benthic ostracod taxa were identified belonging to eight species, eleven genera, five families and one order (Podocopida) (Fig. 4 and Suppl. S2).

Older strata of the section Gușterița 4 (samples G1 to G9) are characterised by the specimens of Candona sp., Candona (Propontoniella) sp., Candona (Thaminocypris) sp., Candona (Thaminocypris) aspera, Candona (Thaminocypris) transylvanica, Candona (Thamino-cypris) transylvanica, Candona (Thyphlocypris) sp., Hemi-cytheria sp. and Hungarocythere sp. (Fig. 4c–d and f–h). The dominance of the thin-shelled Candoninae suggests a sublittoral to profundal depositional environment.

The fauna of the younger layers (samples G10 to G25) contains the specimens of Bakunella sp., Candona (Propontoniella) candeo, C. (T.) aspera, C. (Thaminocypris) transylvanica, Euxinocythere naca, Hemicytheria croatica, Leptocythere sp., Leptocythere (Amnicythere) stan-czvae, Loxoconcha granifera, Loxoconcha rhombovalis and Pseudocandona sp. (Fig. 4a–e, g and i–j).

Modern Bakunella lives at salinities of 11.5 to 13.5‰ in sublittoral to profound depths of the central and

Table 1: Authigenic ¹³Be/¹⁰Be isotopic data from the Oarba de Mureș A outcrop and from the Gușterița quarry. ODM-15.2 and ODM-28 indicate the samples taken from the ODM "X" outcrop. Gușterița 1, 2 and 3 represent the lower, middle and upper part of the mine. G01 to G25 samples are from the Gușterița 4 section. R_{G20} = (2.32 ± 0.94) × 10⁻¹⁴, R_{G25} = (5.61 ± 0.41) × 10⁻¹⁴ and R_{GUS-15.2} = (3.55 ± 0.26) × 10⁻¹⁴. Blank sample for ODM and GUS samples: 2.32 × 10⁻¹⁴. Blank sample for G01 to G25 samples: 1.18 ± 10⁻¹⁴. Abbreviations: GUS: Gușterița and ODM: Oarba de Mureș.

Sample ID	Depth (m)	¹³Be (at.g⁻¹) × 10⁻¹⁴	¹⁰Be (at.g⁻¹) × 10²	Natural ¹³Be/¹⁰Be	Age - R_{G20} (Ma)	Age - R_{GUS-15.2} (Ma)	Age - R_{GUS-25} (Ma)
ODM-28	28	3.41 ± 0.04	5.76 ± 0.41	1.69 ± 0.12	12.05 ± 0.9	11.62 ± 1.18	10.7 ± 1.11
ODM-15.2	15.2	3.41 ± 0.04	3.63 ± 0.26	1.07 ± 0.08	12.97 ± 0.99	12.54 ± 1.29	11.62 ± 1.22
GUS1	52.7 ± 2.5	5.99 ± 0.03	11.59 ± 0.76	1.93 ± 0.13	11.78 ± 0.82	11.35 ± 1.11	10.43 ± 1.04
GUS2	47.7 ± 2.5	4.11 ± 0.03	13.02 ± 0.69	3.17 ± 0.17	10.79 ± 0.62	10.36 ± 0.94	9.44 ± 0.87
GUS3	32.7 ± 2.5	3.98 ± 0.05	9.83 ± 0.58	2.47 ± 0.15	11.29 ± 0.72	10.86 ± 1.02	9.94 ± 0.95
G01	25	2.26 ± 0.03	7.56 ± 0.31	3.34 ± 0.14	10.69 ± 0.51	10.25 ± 0.87	9.34 ± 0.8
G06	19.8	1.95 ± 0.03	15.53 ± 0.57	7.98 ± 0.32	8.94 ± 0.4	8.51 ± 0.70	7.59 ± 0.63
G10	15	1.92 ± 0.02	11.01 ± 0.37	5.73 ± 0.2	9.61 ± 0.39	9.17 ± 0.74	8.26 ± 0.66
G14	11	2.56 ± 0.03	16.96 ± 0.65	6.64 ± 0.27	9.31 ± 0.42	8.88 ± 0.74	7.96 ± 0.66
G20	5	2.05 ± 0.05	5.81 ± 0.27	2.83 ± 0.15	11.02 ± 0.62	10.59 ± 0.95	9.67 ± 0.87
G25	0	2.25 ± 0.07	10.69 ± 0.55	4.76 ± 0.28	9.98 ± 0.63	9.55 ± 0.90	8.63 ± 0.81
Recent Hemicytheria and Loxoconcha live mainly on algae in the littoral zone (Puri et al., 1969), and their fossil representatives are known from mesohaline lacustrine environments (Gross, 2002; Witt, 2010). The southern Caspian Basin (Gofman, 1966; Boomer et al., 2005). Euxinocythere is not only known from brackish environment but also tolerates freshwater littoral to deep limnic conditions (e.g. Pipik and Bodergat, 2004; Cziczer et al. 2008).

Figure 3: Dominant mollusc species of the Gușterița clay pit. a: Congeria banatica R. Hörnes, 1875, Gușterița 3. b: Lymnocardium undatum (Reuss, 1868), Gușterița 3. c: Paradacna syrience (R. Hörnes, 1874), Gușterița 3. d: Paradacna lenzi (R. Hörnes, 1874), collection of the Brukenthal Museum, Sibiu, inventory number: 49.383–49.384. e: Gyraulus ponticus (Lörenthey, 1893), Gușterița 3. f: Gyraulus tenuistriatus (Gorjanović-Kramberger, 1899), Gușterița 3. g: Orygoceras levis Gorjanović-Kramberger, 1890, Gușterița 3. h: Undulotheca nobilis (Reuss, 1868), Gușterița 2, dorsal view. i: U. nobilis (Reuss, 1868), Gușterița 3, lateral view. j: Undulotheca halavatsi Gorjanović-Kramberger, 1901, Gușterița 3, dorsal view. k: C. banatica-dominated coquina-like accumulations on a bedding plane, note the orientation of the specimens, collection of the Brukenthal Museum, Sibiu, inventory number: 48.892. l: Velutinopsis velutina (Deshayes, 1838), collection of the Brukenthal Museum, Sibiu, inventory number: 48.919, dorsal view.
The ostracod assemblages of the younger strata indicate meso- to pliohaline (5–16 ‰) sublittoral depositional environment with a few littoral elements transported from the margins. In the uppermost layer (sample G25), nearshore faunal elements become dominant beside the common sublittoral forms.

Two successive ostracod biozones were identified in the studied Gușterița 4 section, based on the system of Krstić (1985): the *Hemicytheria tenuistriata* (samples G1 to G9) and *P. candeo* zones (samples G10 to G25). According to Krstić (1985), the older *E. naca* and *L. rhombovalis* overlap in their stratigraphic ranges with the younger *L. granifera* exclusively within the *H. tenuistriata* and *P. candeo* zones. Within this interval, the first appearance of the species *P. candeo* marks the bottom of the *P. candeo* zone (sample G10 in our section). Krstić (1985) also claimed that *C. (Thaminocypris) transylvanica* is restricted to zones older than the *P. candeo* zone. In our material, there is a slight overlap between the stratigraphic ranges of the older *C. transylvanica* and the younger *P. candeo* (samples G10–G14). Nevertheless, we mark the boundary between the older *H. tenuistriata* and the younger *P. candeo* zones between the samples G9 and G10, with the first occurrence of *P. candeo*.

In the system of Krstić (1985), both zones belong to the lower Pannonian Slavonian Substage. The appearance of *H. croatica* was unexpected in the uppermost sample (G25), because this form is the index fossil of the younger

Figure 4: Pannonian ostracods from the Gușterița quarry. Abbreviations: LV = left valve and RV = right valve. a: *Hemicytheria croatica* Sokač, 1972, RV in lateral view, sample G25. b: *Euxinocythere naca* (Méhes, 1908), LV in lateral view, sample G12. c: *Candona (Thaminocypris) aspera* (Héjjas, 1894), RV in lateral view, sample G06. d: *Candona (Thaminocypris) transylvanica* (Héjjas, 1894), RV in lateral view, sample G06. e: *Loxoconcha rhombovalis* (Pokorný, 1952), RV in lateral view, sample G25. f: *Candona (Propontoniella)* sp., RV in lateral view, sample G11. g: *C. (T.) aspera* juv. (Héjjas, 1894), LV in lateral view, sample G06. h: *Candona (Thyphlocypris)* sp. juv., LV in lateral view, sample G18. i: *Leptocythere (Amnicythere) stanchevae* (Krstić, 1973), LV in lateral view, sample G25. j: *Loxoconcha granifera* (Reuss, 1850), RV in lateral view, sample G25.
H. croatica zone (Serbian Substage of the Pannonian). This phenomenon requires further discussion, because *H. croatica* was also found by Rundić in ter Borgh et al. (2013) in older “Slavonian” strata in Beočin. The stratigraphic range of *H. croatica* thus seems to be wider than supposed by Krstić (1985), so its stratigraphic marker role should be reconsidered.

4.3 Palynology

The Gușterița samples yielded a moderately diverse but excellently preserved dinocyst assemblage and several other aquatic (prasinophytes, acritarchs and green algae) and terrestrial palynomorph groups (spores and pollen) (Fig. 5 and Suppl. S3). The majority of the dinocysts are endemic Pannonian taxa belonging to the genera *Spiniferites*, *Impagadinium* and *Virgodinium* (Fig. 5a–e, j-l and o). The common occurrence of the Badenian–Sarmatian taxa (e.g. *Polyphasederium zoharyi*, *Cleistochinophyllum placacanthum*, *Melitasphaeridium choanophorum*, *Nematosphaeropsis* sp. and *Homotryblium* sp.) indicates the reworking of older Miocene sediments into the lake.

The dinocyst assemblages through the Gușterița 4 section have allowed three biozones to be identified. Samples G1–G9 reveal a rich assemblage with *Spiniferites pannonicus* and *Spiniferites oblongus* and are assigned to the *S. oblongus* zone. The zone is characterised by the high abundance of *S. pannonicus* and *S. oblongus* in the Hungarian part of the Pannonian Basin System (PBS), while the Zone is defined as ranging from the first appearance date of *S. oblongus* to the first appearance date of *Pontidiinium pessvaradense* in Croatia (Bakrač et al., 2012). Similar associations are known from the entire PBS and have been recorded from Serbia (Rundić et al., 2011) and Austria (e.g. Kern et al., 2013) as well.

The first occurrence of *P. pessvaradense* is recorded in sample G10, and it remains common throughout the section with higher abundance ratios in the uppermost samples (G21–G24). The *P. pessvaradense* biozone is characterised by the common occurrence of the species *P. pessvaradense* and *P. obesum* together with various proximate cysts, such as *Impagadinium* spp. and *Virgodinium* spp. in Hungary (Sütő-Szentai, 1988, 2000). Bakrač et al. (2012) defined this zone as an interval from the first appearance date of *P. pessvaradense* to the first occurrence of *Spiniferites bentorii coniunctus* in distal and/or *Spiniferites validus* in proximal settings. In the Gușterița 4 section, samples G10–G21 are assigned to the *P. pessvaradense* zone.

The dinocyst composition of samples G22–G25 is similar to the dinocyst assemblage of the lower part of the *Spiniferites hennersdorfiensis* zone (Sütő-Szentai, 1988, 2000; Soliman and Riding, 2017) in Hungary and the distal association of the *S. validus* zone (Sve) in Croatia (Bakrač et al., 2012) by the common occurrence of *Spiniferites* specimens with membranous crests, especially *S. hennersdorfiensis*. *S. validus* is not recorded in Gușterița, although its absence is explained by the more distal depositional setting in the TB. The Sve zone has a rich and diverse dinocyst assemblage in distal settings, including membranous *Spiniferites* types, *Spiniferites maisensis*, *S. oblongus*, *P. pessvaradense* and various *Virgodinium* species (Bakrač et al., 2012), which is a good match for the association in samples G22–G25. It has to be noted though that the differences in dinocyst species composition might be also related to changes in environmental parameters, e.g. salinity variation from incoming river runoff, nutrients and/or hydrodynamic conditions suggesting slightly different environmental conditions for the uppermost part of the section.

4.4 Calcareous nannoplankton

All samples from the Gușterița section contain very well-preserved and common calcareous nannofossil assemblages (Fig. 6). Endemic calcareous nannofossils are represented by the species *Isolithus semenenko*, *Isolithus pavelici*, *Noelaerhabdus jerkovici*, *Noelaerhabdus bozi novicae* and *Praenoeaerhabdus banatensis*. The genus *Isolithus* dominates the assemblages in the lower part of the section, in samples G1–G2, G6–G8, G10–11 and G14 (Fig. 6j, o and q). In contrast, the upper part of the section (samples G14–G25) is characterised by the dominance of *Noelaerhabdus*, which occurs in increasing number from G4 to the top of the section (Fig. 7), reaching the highest values in samples G21 (97.8%) and G24 (86.3%). Species of genus *Noelaerhabdus* are characterised by possession of a central spine placed vertical on the basal plate. The shape ending of the central spine is a crucial feature for distinguishing various species within the genus. Upon this criterion, all *Noelaerhabdus* specimens from the Gușterița 4 section can be assigned to *N. bozinnovicae* and *N. jerkovici*. During preparation, the central spine was usually broken, and the original shape of fossils could not be always reconstructed. Therefore, coccoliths without spine were counted separately (*Noelaerhabdus* spp.) from coccoliths with spine. This group also included endemic nannofossils described as *P. banatensis*. Coccoliths with spine in the central field (*N. bozinnovicae* and *N. jerkovici*) were grouped in *Noelaerhabdus* spp. and subdivided into three morphotypes according to the length of the spine: 3–7 μm, 7–15 μm and >15 μm (Suppl. S4). In assemblages from the middle and upper parts of the section, *Noelaerhabdus* spp. with longer spine (7–15 μm and >15 μm) dominated. These changes in the length of the spine can be caused by changes in the palaeoecological conditions. Blooms of ascidian spicules (*Perforocolci nella fusiformis*) in samples G2–G5 and G13 and in high amounts in samples G13, G16 and G20–G21 may point to periods when sediment transport was more effective.

Non-endemic Miocene calcareous nannofossils are represented by taxa, which have their first occurrence in the early/middle Miocene and the last occurrence in the upper Miocene/Pliocene. Among them, *Coccolithus pelagicus* and *Reticulofenestra pseudoumbilicus* are common, and they are accompanied by *Calcicidiscus leptopus*, *Helicosphaera carteri*, *Helicosphaera wallichi*, *Sphenolithus heteromorphus*, *Umbilicosphaera jafari*, *Umbilicosphaera...
Figure 5: Photomicrographs of selected organic-walled microplankton from the Guşteriţa 4 section. Each scale bar represents 10 mm. Sample and slide numbers are indicated in the brackets.

a: Spiniferites pannonicus (Sütőné Szentai, 1986; Soliman and Riding, 2017), lateral view (G1/1).
b: Spiniferites oblongus (Sütőné Szentai, 1986; Soliman and Riding, 2017), right lateral view (G24/2).
c: Spiniferites maisensis (Sütő Zoltánné, 1994), right lateral view (G14/2).
d: Nematosphaeropsis bicorporis (Sütő-Szentai, 1990), right lateral view (G14/1).
e: Pontiadinium pecsvaradense (Sütőné Szentai, 1982), right lateral view (G10/1).
f: Pontiadinium obesum (Sütőné Szentai, 1982), lateral view (G25/2).
g: Virgodinium asymmetricum primus (Sütő-Szentai, 1988; Sütőné Szentai, 2010), lateral view (G1/1).
h: Virgodinium pelagicum (Sütőné Szentai, 1982; Sütőné Szentai, 2010), lateral view (G10/1).
i: Virgodinium asymmetricum primus, lateral view (G6/1).
j: Mendicodinium mataschenensis (Soliman and Feist-Burkhardt, 2012), dorsal view (G2/1).
Figure 6: Calcareous nannoplankton from the Gușterița 4 section. a–e, h–i, l–n and v: Praenoelaerhabdus banatensis (Mihajlovic, 1993) (1–5 and 8–9; sample G23; 12–14 and 22: sample G25). f: Coccolithus pelagicus (Wallich, 1877; Schiller, 1930), sample G12. g and t: Noelaerhabdus bozinovicae (Jerkovic, 1970), sample G25. j and o: Isolithus semenenko (Lyul'eva, 1989), sample G10. k: Calcidiscus leptoporus (Murray and Blackman, 1898; Loeblich and Tappan, 1978), sample G20. p and u: Noelaerhabdus jerkovici (Bóna and Gál, 1985), sample G23. q: Isolithus pavelici (Corić, 2006), sample G10. r–s: Perforocalcinella fusiformis (Bóna, 1964) (18: sample G4 and 19: sample G5).
rotula, etc. Non-endemic (normal marine) Miocene nannofossils are common in sample G1 (30.7%), but then absent in the lower part of the section (samples G2–G4), reaching a maximum in sample G12 with 49.8%. The occurrence of these species is varying throughout the section (Fig. 7). Most of the clearly redeposited nannofossils are from the Cretaceous (*Micula stauropora*, *Watznaueria barnesiae*, etc.), Eocene/Oligocene (*Reticulofenestra bilicus*, *Cribrocentrum reticulatum*, etc.) and lower/middle Miocene (*S. heteromorphus*, *Helicosphaera ampliaperta*, etc.) with a maximum in sample G1 (5.4%) (Fig. 7). As all samples contain also plant remains, it seems that all normal marine long-range taxa are reworked too. In addition, there is a correlation between the amount of normal marine long-range forms and the amount of reworked Badenian (NN5) specimens, suggesting that these long-range (non-endemic) nannofossils are also redeposited (Fig. 6f and k).

The correlation between endemic calcareous nannofossils and standard nannofossil zones is still not clear (see Mărunțeanu, 1997; Chira, 2006; Chira and Malacu, 2008). Mărunțeanu (1997) investigated the evolution trends in Pannonian endemic calcareous nannofossils and erected three biozones: *P. banatensis*, *N. bozinovicae* and *Noelaerhadus bonagali* zones. Sediments from the Gușteriţa clay pit can be attributed to the *N. bozinovicae* zone, based on the presence of *N. bozinovicae*, *N. jerkovići* and the absence of *N. bonagali* in the investigated samples.

4.5 Trace fossils and other remains

During the collection and preparation of molluscs, several remains of other fossil groups were unearthed (Suppl. S2). Two types of trace fossils were frequent. One of them was a few centimeter long residence tube of probably annelid worms, such as *Pectinaria*. This tube was lined (agglutinated) with calcareous shell fragments of tiny animals (ostracods and/or bivalve embryos, shell fragments) or with mineral grains during the life activity of the worm. This trace fossil can be easily recognised by the regular and tight positions of the tiny shells. Jámbor and Radócz (1970) distinguished and described several morphotypes based on the composition of the tubes from drill cores in the PB. We were able to distinguish and identify two of them, *Pectinaria ostracopannonicus* and *Pectinaria gigantea*. The first one was made of almost exclusively carapaces of ostracods (Fig. 8c), and the latter consisted of bivalve embryos and shell fragments (Fig. 8e). Another frequent trace fossil was *Diplocraterion isp*. These appeared as dumbbell-like forms on the bedding planes, but in fact they were U-shaped burrows (Fig. 8d). Their creators were probably crustaceans (Fürsich, 1974).

Fishes are represented by a relatively large number of teeth, a few otoliths and further unidentifiable elements. Teeth of Morphotype 1 are the most characteristic among all. The high, curved base is circular in cross-section, bearing a fine apicobasal striation. The slightly reclined tip is lanceolate and usually translucent. Morphologically identical teeth were published by Brzobohatý and Paná
and subtropical water (Froese and Pauly, 2019). Recent Sciaenidae members are generally bottom-dwelling fish, living in the neritic zone of temperate and warm shallow seas and estuaries, playing a key role in estuarine ecosystems (Carnevale et al., 2006).

In the micropalaeontological samples, plant remains, bone fragments, fish scales, fish vertebra and thecamoebians were common together with some reworked older Miocene fossils (foraminifers and bryozoans). During the preparation process, a specimen of a regular, oval thecamoebian, similar to *Silicoplacentina majzoni* (Kőváry, 1956; Fig. 8b), and a partial fish skeleton (Fig. 8a) were found in the Gușterița 2 section.

4.6 Magnetostratigraphy

From the Gușterița 4 section, two types of palaeomagnetic measurements (TH demagnetisation and AF demagnetisation) were performed on 26 samples. Suppl. S5 contains the results of TH measurements, while Suppl. S6 includes the outcomes of AF measurements.

The investigated samples had good magnetic characters; thus, only one quality group was created. We chose four TH samples to figure them on Zijderveld diagrams. Two different T-sessions were separated (T1: orange and T2: black) based on the measured values (Fig. 10a–d). A total of 24 samples were chosen for AF measurements. We chose four AF samples to figure them on Zijderveld diagrams (1985) as teeth of indeterminate gadid fishes (Figs. 9a–d). Teeth of Morphotype 2 include simple recurved teeth, circular in cross-section. The small, shiny and smooth cap is separated from the apicobasally striated base (Fig. 9e). Teeth of Morphotype 3 are of simplest morphology. The teeth are minute, narrow and shiny, tapering to the tip, bearing no surface striations. They are also weakly bent to the supposed lingual direction. The taxonomic identification of these isolated teeth is very problematic due to their simple, almost featureless morphology; however, here we tentatively attribute them to family Gadidae or Gobiidae (Fig. 9) (see Brzobohatý and Panâ, 1985; Kramér et al., 2009; Berkovitz and Shellis, 2017). These forms frequently occur in late Miocene deposits of the PB. Two generally poorly preserved otoliths were also unearthed, both representing the family Sciaenidae (after Schwarzhans, 1993; Bosnakoff, 2008).

Since the collected fish material is isolated and only hardly identifiable (only at the family level), it is less important regarding the paleoenvironmental reconstructions. Families Gadidae, Gobiidae and Sciaenidae occur in fresh-water, brackish-water and normal marine conditions as well (see Froese and Pauly, 2019). Modern members of Gadidae are found in circumpolar water and temperate water. Most gadid species are demersal or benthopelagic, feeding mainly on fish and invertebrates. Extant gobiids are distributed mostly in tropical water and subtropical water (Froese and Pauly, 2019). Recent Sciaenidae members are generally bottom-dwelling fish, living in the neritic zone of temperate and warm shallow seas and estuaries, playing a key role in estuarine ecosystems (Carnevale et al., 2006).

In the micropalaeontological samples, plant remains, bone fragments, fish scales, fish vertebra and thecamoebians were common together with some reworked older Miocene fossils (foraminifers and bryozoans). During the preparation process, a specimen of a regular, oval thecamoebian, similar to *Silicoplacentina majzoni* (Kőváry, 1956; Fig. 8b), and a partial fish skeleton (Fig. 8a) were found in the Gușterița 2 section.

4.6 Magnetostratigraphy

From the Gușterița 4 section, two types of palaeomagnetic measurements (TH demagnetisation and AF demagnetisation) were performed on 26 samples. Suppl. S5 contains the results of TH measurements, while Suppl. S6 includes the outcomes of AF measurements.

The investigated samples had good magnetic characters; thus, only one quality group was created. We chose four TH samples to figure them on Zijderveld diagrams. Two different T-sessions were separated (T1: orange and T2: black) based on the measured values (Fig. 10a–d). A total of 24 samples were chosen for AF measurements. We chose four AF samples to figure them on Zijderveld diagrams.
Two different F-sessions were separated (F1: orange and F2: black) based on the measured values (Fig. 10e–h). In the case of some samples, gyroremanent magnetisation was observed, which means the effect of increased random direction that can happen above 35 mT (Fig. 10e and g). Owing to this phenomenon, the given sample could not be properly demagnetised. It usually predicted the presence of greigite (Fe₃S₄) in the sample (Babinszki et al., 2007); however, no rock thermal magnetic analyses were carried out.

All the results show normal polarity for the entire section, i.e. all the samples gave positive inclination and declination values above 270° (Suppl. S5–S6). It must be tested whether this normal polarity is in the primary or near-primary direction and may be used for correlation to the global time scale. To check if they represent a present-day overprint, the mean inclination and declination of the samples were compared to the present-day magnetic field in the study area. Present-day magnetic field values were the following on the day of sampling at the locality: declination 5.467° and inclination 63.004°.

The mean inclination of the samples was clearly different from the present-day field direction, and thus interpreted as a sub-recent viscous component; however, the mean declination was similar to the present-day value.

The palaeomagnetic signal was interpreted as primary or penecontemporaneous with deposition.

4.7 Authigenic ¹⁰Be/⁹Be dating

The initial ratio, which is essential for the age calculation, could be determined either by the analysis of recent equivalents of the studied depositional environment or by independent dating of a sample taken from the same basin and depositional environment. In first calculations of this study, the lacustrine initial ratio (6.97 ± 0.14) × 10⁻⁹ (R₀-lacus) from Šujan et al. (2016) was applied providing ages apparently slightly older compared to the biostratigraphic age proxies (Table 1). Hence, to test the validity of the lacustrine initial ¹⁰Be/⁹Be ratio, it was decided to calculate independently the initial ratio relevant to the eastern part of Lake Pannon. The ODM “A” outcrop, which is located in the central TB and represents an equivalent of the Gușterița locality in terms of depositional environment, contained a tuff layer dated at 11.62 ± 0.12 Ma by the ⁴⁰Ar/³⁹Ar method (Vasiliev et al., 2010). Two samples (ODM) were taken from a horizon above the tuff layer. The sample ODM-28 was chosen for the calculation of the initial ratio due to its proximity to the tuff horizon. Its estimated age was 12.05 ± 0.9 Ma based on the R₀-lacus. The resulting initial ¹⁰Be/⁹Be ratio (R₀-ODM) of (5.61 ± 0.41) ×
Integrated stratigraphy of the Gușterița clay pit: a key section for the early Pannonian (late Miocene) of the Transylvanian Basin (Romania)

Figure 10: Zijderveld diagrams of the TH and AF demagnetisation results from the Gușterița 4 section. Orange numbers and points mark the T1 (F1) phase. Black numbers and points indicate the T2 (F2) phase. Sample numbers are indicated in the right upper corners. Filled dots are declination values. Empty dots are inclination values. Lowermost numbers mean stratigraphic levels. Green lines are regression lines fitted to the T2 (F2) declination values. Red lines are regression lines fitted to the T2 (F2) inclination values. Abbreviations: TH: thermal, AF: alternating field, N: north, W: west, dec: declination, inc: inclination, int: intensity, MAD: maximal angular deviation and GRM: gyroremanent magnetisation.

Figure 11: Results of the authigenic 10Be/9Be isotopic measurements of the Gușterița clay pit. a: Depth chart of the natural 10Be/9Be ratios of the measured samples. b: Depth chart of the ageR0-lacus data (Ma), estimated with the help of an initial lacustrine isotopic ratio. c: Depth chart of the ageR0-ODM data (Ma), estimated with the help of the 40Ar/39Ar age of the Oarba de Mureș tuff. Age of deposition based on biostratigraphy and magnetostratigraphy of the Gușterița section is marked with yellow stripes.

^{10}Be was then used for the age calculations of all samples taken from the Gușterița locality.

The authigenic $^{10}\text{Be}/^{9}\text{Be}$ ages of the samples from the Gușterița outcrop were calculated using both the initial ratio determined by Šujan et al. (2016) for lacustrine facies ($R_{0\text{lac}}$) and the new initial ratio based on the ODM sample ODM-28 ($R_{0\text{ODM}}$) (Table 1 and Fig. 11). Two groups of samples could be distinguished. Six samples (GUS1, GUS2 and GUS3 from Gușterița 1, 2 and 3 sections and samples G01, G20 and G25 from the Gușterița 4 section) attained ages in agreement with other geochronological proxies with a weighted mean age of 10.83 ± 0.26 Ma using $R_{0\text{lac}}$ and 10.42 ± 0.39 Ma using $R_{0\text{ODM}}$. These two ages are statistically identical within uncertainties. We consider the ages calculated by the local initial ratio ($R_{0\text{ODM}}$) to be the best estimates of the deposition age of
the sediment succession at Gușterița; thus, these are discussed in the following.

The remaining three samples (G06 to G14 from the Gușterița 4 section), however, exhibited higher isotopic ratios and yielded ages between 9.17 ± 0.74 Ma and 8.51 ± 0.70 Ma \((R_{\text{O,CM}})\). The estimated age of these samples overlapped within uncertainties with a weighted mean of 8.84 ± 0.42 Ma \((N_{\text{O,CM}})\), considerably younger than the mean age calculated using the other six samples.

5. Discussion

5.1 Depositional environment

The abundant and diverse benthic life, represented by the body and trace fossils of the Gușterița outcrop, indicates oxygen-rich bottom conditions. Sand intercalations and the silt grain size suggest weak, but continuous flows, probably events of low-density turbidity currents, which maintained the permanent dissolved oxygen level. The occurrence of partial fish skeletons may indicate short periods of dysoxia, but there seems to be no disturbance in the permanent benthic life.

The recovered fossil fish fauna refers to a warm to temperate water. It is composed of euryhaline taxa (tolerating a wide range of salinities) with variable habitat preferences.

The mollusc and ostracod fauna consist of mostly deep-water or offshore species that live well below the storm wave base as suggested by their very thin shells. Extant relatives of some of the ostracod taxa live at salinities of 11.5–13.5‰ in sublittoral to profundal depths of the central and southern Caspian Basin. Based on the available and observed sedimentological and faunal characteristics, the depositional environment of the locality could be around the toe of slope (Krézsek et al., 2010).

5.2 Biostratigraphy

In general, the early Pannonian mollusc fauna is quite uniform across the PBS, suggesting that a large lake existed in the intra-Carpathian region at the beginning of the Pannonian (late Miocene). The overall appearance of the TB fauna shows great similarity to the early Pannonian mollusc fauna of northern Croatian and northern Serbian outcrops, e.g. Vrapče (Gorjanović-Kramberger, 1890), Londžica (Gorjanović-Kramberger, 1899), Kostanjek/Podsus (Vrsaljko, 1999), Beočin (Stevanović and Papp, 1985; ter Borgh et al., 2013) and drilling cores from Hungary, e.g. Lajoskomárom-1 (Jámbor et al., 1985).

In the early Pannonian offshore sediments of the TB, two clearly different mollusc assemblages occur. The older one is the \(L. \ praeponticum\) assemblage, which contains small-sized pioneer mollusc species, such as \(L. \ praeponticum\), Gyraulus vrapceanus, \(G. \ tenuistriatus\), Gry- raulus praeponticus, \(O. \ levis\) and Orygoceras fuchsi brusi- nai. A similar association is present in the entire PBS, probably representing a short time interval and a relatively deep- (sublittoral or profundal) and brackish-water stressed environment. This assemblage is only found at some localities in the central and eastern parts of the TB (Sztanó et al., 2005; Magyar, 2010). The younger assemblage is the \(C. \ banatica\) association, which indicates profound water depth and a stable environment, and it can be found in the entire PBS as well. Characteristic species of the \(C. \ banatica\) biozone are the dominant \(C. \ banatica\); thin-shelled cardiids, such as \(P. \ lenzi\) and \(P. \ symiensi\); \(L. \ undatum\); pulmonate gastropods, such as \(G. \ tenuistriatus\) and \(G. \ praeponticus\); the tiny scaphopod-like Orygoceras; Micromelanina and lymnaeid snails. The index fossil of the youngest profundal Pannonian mollusc zone in the PBS, “Dreissenomya” digitifera, has not been recovered from the TB so far (Fig. 12).

The age of the \(C. \ banatica\) zone was assessed by correlation with dinoflagellate and polarity zones in various locations (Magyar et al., 1999b; ter Borgh et al., 2013). Lying directly above the very thin, basal Pannonian (i.e. basal upper Miocene, \(<11.6 \text{ Ma}\) \(L. \ praeponticum \text{ or } R. \ coatico\) zone, the bottom of the \(C. \ banatica\) zone can be dated as ca. 11.4 Ma, whereas its top is younger than the top of C5n chron (9.7 Ma), so it is ca. 9.6 Ma (Fig. 12). Pannonian ostracods have been poorly documented from the TB. The published data were mainly taxon lists with a brief biostratigraphic evaluation (Chintäuan, 1971; Clichici et al., 1980; Popescu et al., 1995; Filipescu, 1996; Filipescu et al., 2011; de Leeuw et al., 2013). The first Pannonian ostracod assemblages, however, were described as early as in the 19th century (Héjjas, 1894). The most comprehensive work was published by Kovács et al. (2016) from the western margin of the TB (Gărbova de Jos, Gârbovița, Mihalt, Tâu, Cunța, and ODM) with a detailed study of biostratigraphic and palaeoecological distributions.

The biostratigraphic subdivisions based on ostracods are different within the territory of Lake Pannon, depending on the local character of the depositional environment (e.g. Pokorny, 1944; Kollmann, 1960; Sokáč, 1972; Krstić, 1985; Jiřiček, 1985; Szuromi-Korecz, 1992; Olteanu, 2011; Rundić et al., 2011). In the TB, no comprehensive ostracod zonation has been established yet; therefore, various biostratigraphic schemes were applied at different localities (cf. Filipescu, 1996; de Leeuw et al., 2013; Kovács et al., 2016). In this study, we tentatively use the most detailed Pannonian biozonation, erected by Krstić (1985) in the southern part of the PB, which takes into consideration some basic differences in the depositional environment. Data on the numerical ages of these zones, however, are not available in the literature.

Organic-walled microplankton assemblages, in particular dinocysts, are extensively used for the biostratigraphic subdivision of late Miocene sediments in the PBS. Dinocysts are the hypnozygotic resting cysts of the dinoflagellates representing a eukaryotic plankton group (Fensome et al., 1996). The majority of the late Miocene dinocysts from the PBS are endemic taxa that originate from marine dinocysts (e.g. Soliman and Riding, 2017). The brackish-water conditions of Lake Pannon initiated
Integrated stratigraphy of the Guşteriţa clay pit: a key section for the early Pannonian (late Miocene) of the Transylvanian Basin (Romania)

The S. oblongus zone is correlated to the upper part of C5r polarity zone and the lower part of C5n polarity zone indicating an age of ca. 11.3–10.8 Ma for the entire biozone from the Hungarian part of the PBS (Magyar et al., 1999b; Magyar and Geary, 2012). The overlying P. pecs-varadense zone is magnetostratigraphically correlated to C5n chron (Magyar et al., 1999b). This zone is usually thin, representing a relatively short time interval in the Hungarian and Croatian parts of the PBS; therefore, it was tentatively dated between 10.8 and 10.6 Ma (Magyar and Geary, 2012). The base of the S. hennersdorfensis zone (former S. paradoxus zone) cannot be younger than the Pannonian sequence of the name-giving Hennersdorf outcrop. The age of the latter was estimated by Harzhauser et al. (2004) as 10.3–10.4 Ma based on the vertebrate fauna of Hennersdorf, Vösendorf and Inzersdorf (Daxner-Höck in Harzhauser et al., 2004) and cyclostratigraphic considerations (Harzhauser et al., 2008). Data on the numerical ages of endemic nannoplankton biozones have not been published yet.

5.3 Dating and integrated stratigraphy

In the TB, the age of both the oldest and the youngest Pannonian sediments is debated. Based on magnetostratigraphic correlations, Vasiliev et al. (2010) dated the Sarmatian–Pannonian boundary at 11.3 Ma, and de Leeuw et al. (2013) suggested an age of 8.4 Ma for the youngest erosional top of the Pannonian.

The S. oblongus zone is correlated to the upper part of C5r polarity zone and the lower part of C5n polarity zone indicating an age of ca. 11.3–10.8 Ma for the entire biozone from the Hungarian part of the PBS (Magyar et al., 1999b; Magyar and Geary, 2012). The overlying P. pecs-varadense zone is magnetostratigraphically correlated to C5n chron (Magyar et al., 1999b). This zone is usually thin, representing a relatively short time interval in the Hungarian and Croatian parts of the PBS; therefore, it was tentatively dated between 10.8 and 10.6 Ma (Magyar and Geary, 2012). The base of the S. hennersdorfensis zone (former S. paradoxus zone) cannot be younger than the Pannonian sequence of the name-giving Hennersdorf outcrop. The age of the latter was estimated by Harzhauser et al. (2004) as 10.3–10.4 Ma based on the vertebrate fauna of Hennersdorf, Vösendorf and Inzersdorf (Daxner-Höck in Harzhauser et al., 2004) and cyclostratigraphic considerations (Harzhauser et al., 2008). Data on the numerical ages of endemic nannoplankton biozones have not been published yet.

5.3 Dating and integrated stratigraphy

In the TB, the age of both the oldest and the youngest Pannonian sediments is debated. Based on magnetostratigraphic correlations, Vasiliev et al. (2010) dated the Sarmatian–Pannonian boundary at 11.3 Ma, and de Leeuw et al. (2013) suggested an age of 8.4 Ma for the youngest erosional top of the Pannonian.

In the central part of the TB, however, where the Sarmatian–Pannonian boundary is characterised by continuous
All magnetostratigraphic samples from the Gușterița 4 section show normal polarity, i.e. positive inclination values and declination values more than 270°. This signal may be the primary palaeomagnetic component according to the inclination values. Based on the biostratigraphic data mentioned earlier, the section can be correlated with the C5n.2n normal polarity magnetic chron (11.056–9.984 Ma; ATNTS2012 – Hilgen et al., 2012) (Fig. 13).

The authigenic 10Be/9Be dating of the GUS1-3, G01, G20 and G25 samples gave a weighted mean age of 10.42 ± 0.39 Ma (N_{0-ODM}), indicating that the outcrop is younger than 11 Ma. The considerable scatter (0.61 Ma) of the ages did not enable to identify a trend of increasing age with depth. This is indicative of sedimentation rates at which the age difference between the bottom and top of the studied succession remains within the uncertainties of the authigenic 10Be/9Be method.

Authigenic 10Be/9Be ratios of the three samples from Gușterița 4 (G06 to G14) differ from the remaining samples (Fig. 11). This discrepancy might be explained by a change in the initial isotopic ratio within the depositional environment or by a post-depositional transport of beryllium isotopes. The basin floor environment with turbidite flows is prone to mixing of various sources of sediment, depending on the depositional system proximity and river drainage basin pattern. The continuous growth of the authigenic rims around the clay particles causes that the duration of a particle transport (sediment-source
proximity) also affects the resulting isotopic ratio (Wittmann et al., 2017). The gained results indicate that a change in beryllium isotopic input might appear within the studied sedimentary section.

A backward calculation of the initial ratio of the samples G06 to G14 assuming their age to be in agreement with the weighted mean of the rest of the samples of the same set (10.42 ± 0.39 Ma) yielded initial ratios between (14.6 ± 0.80) × 10^{-8} and (10.05 ± 0.53) × 10^{-8}, with a mean value of (12.39 ± 2.07) × 10^{-8}, what differs from both applied initial ratios by a factor of ~2. Although the fossils and the sedimentary facies do not indicate any major change, a study of sediment provenance may prove the hypothesis of change in sediment source as the cause of observed discrepancy in 10Be/9Be concentrations.

Another possible explanation for the change in the initial ratio in a water column during sedimentation could be an overall rise of the water level of Lake Pannon, which attained its largest extent at ~10 Ma (Magyar et al., 1999a). This transgression was probably related to flooding and retrogradation of a depositional system, causing increase in distality of the sediment source and decrease in the 9Be input. A significant change in precipitation, which would affect the delivery of 10Be, is not expected in the studied time period.

The calculated mean initial ratio of samples G06 to G14 provides an important insight into the variability of the initial isotopic ratios within the depositional environment of sediment gravity flows on a basin floor. Nevertheless, the changes observed in the studied depositional record could be considered as not significant in the light of the high variability of 10Be/9Be ratios in recent continental environments reaching the value of 3.5 × 10^{-8} to 1.55 × 10^{-10} (e.g. Brown et al., 1992; Graham et al., 2001; Wittmann et al., 2012; von Blanckenburg et al., 2012). The 10Be/9Be record of the Göüstertî section implies that analysing of higher number of samples might be useful to effectively determine fluctuations of isotopic ratios, which should be expected in comparable depositional settings.

The approach of independent calculation of the initial isotopic ratio could substitute its determination from the recent samples, which would be problematic in sedimentary successions similar to those of Lake Pannon in the TB. The circumstances that call for using the above-mentioned approach are as follows: (1) there is no recent equivalent of turbiditic depositional environment and (2) major changes appeared in the petrology of the drainage basins since the late Miocene, mostly because of the latest Miocene to Quaternary volcanism (Fielitz and Seghe-dî, 2005) in the catchment areas of the incoming rivers.

Although ages calculated using the $R_{\text{O$_{18O}$}}$, determined from samples provided statistically similar results, the ages calculated by the local, 40Ar/39Ar-based initial ratio ($R_{\text{O$_{18O}$}}$) are suggested to be the best estimate authigenic 10Be/9Be age of the studied sediments.

The 55-m-high Göüstertî section thus represents a time interval of 500 kys at most (between 11.0 and 10.5 Ma).

Based on this age model and supposing that the ~0.11 m/kyr average sedimentation rate was more or less constant during deposition of the sequence, we have the opportunity to estimate, for the first time, the age of the boundaries between the S. oblongus and P. pecsvaradense dinoflagellate zones, the H. tenuiistriata and P. canedo ostracod zones (both ~10.75 Ma) and the P. pecsvaradense and S. hennersdorffensis dinoflagellate zones (~10.65 Ma).

6. Conclusions

The 55-m-thick, highly fossiliferous sedimentary sequence exposed in the clay pit of Göüstertî (Sibiu, Romania) was deposited in the deep-water zone of Lake Pannon during the late Miocene. It can be considered as a reference section for the “C. banatica beds”, widely distributed in the TB as well as in the neighbouring PB.

The upper 25 m of the profile displays normal magnetic polarity. As the authigenic 10Be/9Be dating of six samples gave a weighted mean age of 10.42 ± 0.39 Ma (initial ratio based on independent 40Ar/39Ar dating of an analogous profile at ODM), the outcropping sequence can be correlated most probably with the CS5n2n normal polarity chron (~11.1–10.0 Ma). While the entire sequence represents the C. banatica profound mollusc biozone, the upper 25 m belongs to three dinoflagellate zones, two ostracod zones and one regional calcareous nanoplankton zone. Because the S. hennersdorffensis dinoflagellate zone, dated elsewhere as 10.5–10.3 Ma, occurs only in the topmost layers of the outcrop, the age of the Göüstertî sequence can be constrained between 11.0 and 10.5 Ma; the section thus represents a time interval of maximum 500 kys. Supposing that the (at least) ~0.11 m/kyr average sedimentation rate was more or less constant during deposition of the sequence, the age of the boundaries between the H. tenuiistriata and P. canedo ostracod zones, the S. oblongus and P. pecsvaradense dinoflagellate zones (both ~10.75 Ma) and the P. pecsvaradense and S. hennersdorffensis dinoflagellate zones (~10.65 Ma) can be substantiated for the first time. These new data are valuable contributions to the high-resolution biochronostratigraphy of the PBS.

Acknowledgements

Lilla Tökés, Orsolya Sztanó, Soma Budai, Nikolett Csorvási, Ildikó Dávid and Zsuzsa Fülöp (Eötvös Loránd University, Budapest, Hungary) are thanked for field assistance. Ferenc Wanek (Sapienitza – Hungarian University of Transylvania, Cluj-Napoca, Romania) supported our work with his wide knowledge of field geology and by offering some hardly obtainable pieces of Romanian literature. Collection of old literature could not have happened without our librarians, Monica Baciu (Babeș-Bolyai University, Cluj-Napoca, Romania) and Timea Szlepák (Mining and Geological Survey of Hungary, Budapest, Hungary). Assistance in the collections of the Paleontology-Stratigraphy Museum, Babeș-Bolyai University, Cluj-Napoca, Romania, and Brukenthal Museum, Sibiu, Romania, was provided by Liana Sásáran and Nicolae Trif. We would like to thank the help of Krisztina.
Buczko (Botanical Department of the Natural History Museum, Budapest, Hungary) in making the SEM images. Special thanks to Oleksandr Kovalchuk (National Academy of Sciences of Ukraine, Kiev, Ukraine) and Mariann Bosnakoff (Hvolsvöllur, Iceland) for the advice regarding the fish fauna. We are grateful to Wout Krijgsman (Palo-
magnetic Laboratory Fort Hoofddijk, Utrecht University, Utrecht, the Netherlands) who kindly provided the equipment and staff of his laboratory, and to Dan Palcu for his great help in the laboratory, warm welcome and guidance during Dániel Botka's stay in Utrecht. Adrian Barbus, plant manager of the Wienerberger clay pit of Gusteríta, Sibiu, Romania, is acknowledged for the permission of sampling and collecting in the mining area. Special thanks to Wout Krijgsman for his useful help and valuable suggestions regarding the palaeomagnetic chapter and to Mathias Harzhauser (Natural History Museum, Vienna, Austria) and Sorin Filipescu (Babeș-Bolyai University, Cluj-Napoca, Romania) for their useful reviewer comments. Boglárka Deli (Mezőhegyes, Hungary) helped to get the final shape of the manuscript. Georges Aumaître, Didier L. Bourlès and Karim Keddadouche from ASTER are thanked for their valuable expertise in AMS. ASTER AMS national facility (CEREGE, Aix-
Provence, France) is supported by the INSU/CNRS, the ANR through the “Projets thématiques d'excellence” program for the “Equipements d'excellence” ASTER-CEREGE action and IRD. The research was funded by the Hungarian National Research, Development and Innovation Office (NKFIH – 116618 project). This is MTA-MTM-ELTE Paleo contribution No 309.

References

Ackner, M., 1852. Fundgrube fossiler Ueberreste zu Hammersdorf bei Hermannstadt. Verhandlungen und Mittheilungen des siebenbürgischen Vereins für Naturwissenschaften zu Hermannstadt, III/1, 6–11.

Babinszki, E., Márton, E., Márton, P ., Kiss, L. F. 2007. Wide-spread occurrence of greigite in the sediments of Lake Pannon: Implications for environment and magnetostratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 252/3-4, 626–636. https://doi.org/10.1016/j.palaeo.2007.06.001

Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary geochronology, 3/3, 174–195. https://doi.org/10.1016/j.quageo.2007.12.001

Bakrač, K., Koch, G., Sremac, J., 2012. Middle and Late Miocene palynological biozonation of the south-western part of Central Paratethys (Croatia). Geologica Croatica, 65/2, 207–222. https://doi.org/10.4154/GC.2012.12

Bartha, I.R., Szőcs, E., Tőkés, L., 2016. Rezervoár analóg pannoniának turbiditét Kelet-Erdélyben: őskörnyezet és porozitásfejlődés. [Reservoir quality of the Late Miocene turbidites from the eastern Transylvanian Basin, Romania: depositional environment and porosity evolution]. Földtani Közlöny, 146/3, 257–274. (in Hungarian, with English abstract)

Berkovitz, B., Shellis, P., 2017. Chapter 4 – Bony fishes. In: Berkovitz, B., Shellis, P (eds), The teeth of Non-Mammalian Vertebrates. Academic Press, Cambridge, pp. 43–111.

Bielz, A., 1894. Pontische Ablagerungen in Sieben-bürgen. Verhandlungen und Mitteilungen des Siebenbürgischen Vereins für Naturwissenschaften zu Hermannstadt, 43, 94–96.

Blankenburg, F. von, Bouchez, J., Wittmann, H., 2012. Earth surface erosion and weathering from the 10Be (meteoric)/10Be ratio. Earth and Planetary Science Letters, 351–352, 295–305. https://doi.org/10.1016/j.epsl.2012.07.022

Boomer, I., von Grafenstein, U., Guichard, F., Bieda, S., 2005. Modern and Holocene sublittoral ostracod assemblages (Crustacea) from the Caspian Sea: A unique brackish, deep-water environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 225, 173–186. https://doi.org/10.1016/j.palaeo.2004.10.023

Bosnakoff, M., 2008. Late Miocene (Pannonian) sciaind fish otoliths from Hungary — preliminary studies. In: Galácz, A. (ed.): 125th Anniversary of the Department of Palaeontology at Budapest University — A Jubilee Volume, Hantkeniana, 6, 219–228.

Borgh, M. ter, Vasiliev, I., Stoica, M., Knežević, S., Maţenco, L., Krijgsman, W., Rundić, L., Cloetingh, S., 2013. The isolation of the Pannonian basin (Central Paratethys): new constraints from magnetostratigraphy and biostratigraphy. Global and Planetary Change, 103, 99–118. https://doi.org/10.1016/j.gloplacha.2012.10.001

Bourlés, D.L., Raisbeck, G.M., Yiou, F., 1989. 10Be and 26Al in marine sediments and their potential for dating. Geochimica et Cosmochimica Acta, 53, 443–452. https://doi.org/10.1016/0016-7037(92)90395-5

Brown, E.T., Measure, C.I., Edmond, J.M., Bourlès, D., Raisbeck, G.M., Yiou, F., 1992. Continental inputs of beryllium to the oceans. Earth and Planetary Science Letters, 114, 101–111. https://doi.org/10.1016/0012-821X(92)90154-N

Brusina, S., 1893. Fragmenti di malacologia terziaria Serbia. [Fragments from the Tertiary malacology of Serbia]. – Kraljevska-srpska državna štamparija, pp. 25–74. (in Italian)

Brzobohaty, R., Paná, I., 1985. Die Fischfauna des Pannonien. In: Papp, A., Jämbor, Á., Steininger, F.F. (eds), Chronostratigraphie und Neostratotypen Miozän der Zentralen Paratethys, Band VII. Me, Pannonien (Slavonien und Serbien), Akadémiai Kiadó, Budapest, pp. 426–439.

Carcaillot, J., Bourlès, D.L., Thouveny, N., Arnold, M., 2004. A high resolution authigenic 10Be/26Al record of geomagnetic moment variations over the last 300 ka from sedimentary cores of the Portuguese margin. Earth and Planetary Science Letters, 219, 397–412. https://doi.org/10.1016/S0012-821X(03)00702-7

Carnevale, G., Caput, D., Landini, W., 2006. Late Miocene fish otoliths from the Colombacci Formation (Northern
Koch, A., 1895. Földtani észleletek az erdélyi medencéből. II. Természettedményi Szak, 16, 35–68. (in Hungarian)

Hilgen, F.J., Lourens, L.J., van Dam, J.A., Beu, A.G., Boyes, A.F., Cooper, R.A., Krijgsman, W., Ogg, J.G., Piller, W.E., Wilson, D.S., 2012. Chapter 29 – The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (eds), The Geologic Time Scale 2012. Elsevier, Amsterdam, pp. 923–978. https://doi.org/10.1016/B978-0-444-59425-9.00029-9

Jámbor, Á., Korpás-Hódi, M., Széles, M., Sütő-Szentai, M., 1985. Zentrales Mittleres Donaubecken: Bohrung Lajoskomárom Lk-1, S-Balaton. In: Papp, A., Jámbor, Á., Steininger, F.F. (eds), Chronostratigraphie und Neostratotypen: Miozán der Zentralen Paratethys, Band VII. M6, Pannonien (Slavonien und Serbien). Akadémiai Kiadó, Budapest, pp. 204–241.

Jámbor, Á., Radócz, Gy., 1970. Pectinariák Magyarországi felsőneogénjéből. [Pectinarien aus dem oberen Neogen von Ungarn]. Földtani Közlöny, 100/4, 360–371. (in Hungarian, with German abstract)

Jiříček, R., 1985. Die Ostracoden des Pannonien. In: Jiříček, R., 1985. Die Ostracoden des Pannonien. In: Papp, A., Jámbor, Á., Steininger, F.F. (eds), Chronostratigraphie und Neostratotypen: Miozán der Zentralen Paratethys, Band VII. M6, Pannonien (Slavonien und Serbien). Akadémiai Kiadó, Budapest, pp. 378–425.

Juhász, Gy., 1997. Endrőd Marl Formation. In: Császár, G. (ed.), Basic lithostratigraphic units of Hungary. Charts and short descriptions. Geological Institute of Hungary, Budapest, p. 37.

Juhász, Gy., Németh, G., Gajdos, I., Pap, S., 1997. Szolnok Sandstone Formation. In: Császár, G. (ed.), Basic lithostratigraphic units of Hungary. Charts and short descriptions. Geological Institute of Hungary, Budapest, p. 38.

Kázmér, M., 1990. Birth, life and death of the Panonian Lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 79/1, 171–188. https://doi.org/10.1016/0031-0182(90)90111-J

Kern, A.K., Harzhauser, M., Soliman, A., Piller, W.E., Gross, M., 2012. Precipitation driven decadal scale decline and recovery of wetlands of Lake Pannon during the Tortonian. Palaeogeography, Palaeoclimatology, Palaeoecology, 317–318, 1–12. https://doi.org/10.1016/j.palaeo.2011.11.021

Koch, A., 1876. Adalékok Erdélyi geológiájához. V. A cerithium- és congeria-rétegek elterjedéséhez Erdélyben. – Értesítő az Erdélyi Múzeum-Egyetem Szakosztályából, II. Természettedményi Szak, 16, 35–68. (in Hungarian)

Kollmann, K., 1960. Cytherideinae und Schulerideinae n. subfam. (Ostracoda) aus dem Neogen des östlichen Österreich. Mitteilungen der Geologischen Gesellschaft in Wien, 51, 89–195.

Korschinek, G., Bergmaier, A., Faerstmann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gosstomski, Ch., Kossert, K., Maiti, M., Poutvitév, M., Remmert, A., 2010. A new value for the 10Be half-life by heavy ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268/2, 187–191. https://doi.org/10.1016/j.nimb.2009.09.020

Kovács, E., Magyar, I., Sztanó, O., Pipik, R., 2016. Pannonian ostracods from the southwestern Transylvanian basin. Geologia Croatica, 69/2, 213–229. https://doi.org/10.4154/GC.2016.16

Kováry, J., 1956. Thékamóbiák (Testaceák) a magyarországi alsópannóniai korú üledékekben. [Thécamobien (Testées) des sédiments du Pannonien inférieur de la Hongrie]. Földtani Közlöny, 86/4, 266–273. (in Hungarian, with French abstract)

Kramer, A., van Tassell, J. L., Patzner, R. A., 2009. Dentition, diet and behaviour of six gobid species (Gobiidae) in the Caribbean Sea. Cybium, 33/2, 107–121.

Krészek, Cs., Bally, A.W., 2006. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Marine and Petroleum Geology, 23, 405–442. https://doi.org/10.1016/j.marpetgeo.2006.03.003

Krészek, Cs., Filipescu, S., 2005. Middle to late Miocene sequence stratigraphy of the Transylvanian Basin (Romania). Tectonophysics, 410/1–4, 437–463. https://doi.org/10.1016/j.tecto.2005.02.018

Krészek, Cs., Filipescu, S., Silye, L., Matenco, L., Doust, H., 2010. Miocene facies associations and sedimentary evolution of the Southern Transylvanian Basin (Romania): Implications for hydrocarbon exploration. Marine and Petroleum Geology, 27, 191–214. https://doi.org/10.1016/j.marpetgeo.2009.07.009

Krstić, N., 1985. Ostracoden im Pannonien der Umgebung von Belgrad. In: Papp, A., Jámbor, Á., Steininger, F.F. (eds), Chronostratigraphie und Neostratotypen: Miozán der Zentralen Paratethys, Band VII. M6, Pannonien (Slavonien und Serbien). Akadémiai Kiadó, Budapest, pp. 103–143.

László, A., 2005. The post-Late Pontian paleogeographic evolution of the south Harghita Mountains area and the adjacent basins. Studia Universitatis Babeş-Bolyai, Geologia, 50/1, 27–40. http://dx.doi.org/10.5038/1937-8602.50.1.4

Leeuw, A. de, Filipescu, S., Matenco, L., Krészsek, Cs., 2005. Middle to late Miocene geographic evolution of the south Harghita Mountains area and the adjacent basins. Studia Universitatis Babeş-Bolyai, Geologia, 50/1, 27–40. http://dx.doi.org/10.5038/1937-8602.50.1.4

Unauthentifiziert | Heruntergeladen 06.03.20 17:43 UTC
Integrated stratigraphy of the Guşteriţa clay pit: a key section for the early Pannonian (late Miocene) of the Transylvanian Basin (Romania)

Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. Blackwell Scientific Publications, Oxford, 216 pp.

Moos, A., 1944. Neue Funde von Lynmaeiden, insbesondere von Valenciennesiiden im Pannon Kroatien. Geoloski vjestnik, 2/3, 343–390.

Mudie, P.J., Fonesme, R.A., Rochon, A., Bakrač, K., 2019. The dinoflagellate cysts *Thalassiphora subreticulata* n.sp. and *Thalassiphora balcanica*: their taxonomy, ontogenetic variation and evolution. Palynology, in press. https://doi.org/10.1080/01916122.2019.1567614

Mullender, T. A., Frederichs, T., Hilgenfeldt, C., de Groot, L. V., Fabian, K., Dekkers, M. J. 2016. Automated paleomagnetic and rock magnetic data acquisition with an in-line horizontal "2 G" system. Geochemistry, Geophysics, Geosystems, 17/9, 3546–3559. https://doi.org/10.1002/2016GC006436

Müller, P., Geary, D.H., Magyar, I., 1999. The endemic molluscs of the Late Miocene Lake Pannon: their origin, evolution, and family-level taxonomy. Lethaia, 32, 47–60. https://dx.doi.org/10.1111/j.1502-3931.1999.tb00580.x

Neubauer, T.A., Harzhauser, M., Mandic, O., Kroh, A., Georgopoulou, E., 2016. Evolution, turnovers and spatial variation of the gastropod fauna of the late Miocene biodiversity hotspot Lake Pannon. Palaeogeography, Palaeoclimatology, Palaeoecology, 442, 84–95. https://doi.org/10.1016/j.palaeo.2015.11.016

Oebbeke, K., Blanckenhorn, M., 1901. Bericht über die im Herbst 1899 gemeinsam unternommene geologische Rekognoszierungsreise in Siebenbürgen. Verhandlungen und Mittheilungen des siebenbürgischen Vereins für Naturwissenschaften zu Hermannstadt, 50, 1–42.

Olteanu, R., 2011. Atlas of the Pannonian and Pontian ostracods from the eastern area of the Pannonian Basin. Geo-Eco-Marina, 17, 135–177.

Papp, A., 1951. Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien, 44/1951, 85–222.

Paulissen, W., Luthi, S., Gruner, P., Corić, S., Harzhauser, M. 2011. Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna Basin. Geologica Carpathica, 62/2, 155–169. https://doi.org/10.2478/v10096-011-0013-z

Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (eds); Plankton stratigraphy. Cambridge University Press, Cambridge, pp. 427–554.

Pipik, R., Boderag, A.-M., 2004. *Euxinocythere* (Ostracoda, Cytheridae, Leptocytherinae) du Miocène supérieur du Bassin de Turicie (Slovénie): taxonomie et paléoenvironnement. Revue de Micropaléontologie, 47/1, 36–52. https://doi.org/10.1016/j.revmic.2004.01.001

Pokorny, V., 1944. Die microstratigraphie des Pannonien entre Hodonin et Mikulčice (Moravie méridionale, Tchechoslovénie). Bulletin International, Académie Tchèque des Sciences Prague, 23, 1–25.
Popescu, Gh., Mărăușteanu, M., Filipescu, S., 1995. Neogene from Transylvania Depression. Guide to Excursion A1 (Pre-Congress), Xth Congress RCMNS, București, 1995. Romanian Journal of Stratigraphy, 76/3, 1–27.

Puri, H.-S., Bonaduce, G., Gervasio, A.-M., 1969. Distribution of Ostracoda in the Mediterranean. In: Neale, J.W. (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver & Boyd, Edinburgh, pp. 356–412.

Rado, G., Țicleanu, N., Gheorghian, M., Popescu, A., 1980. Date noi privind litobiostratigrafia depozitelor miocenului și pliocenului din regiunea Comănești–Luetă–Mărținiș (Jud. Harghita). [New data on the litho-biostratigraphy of the Miocene and Pliocene rocks of the Comănești–Luetă–Mărținiș region (Harghita County)]. Studii și cercetări de Geologie, Geofizică, Geografie, Seria Geologie, 25, 95–108. (in Romanian, with English abstract)

Reuss, A.E., 1868. Paläontologische Beiträge (Zweite Folge). Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaft in Wien, 57/1, 79–109.

Richards, K., van Baak, C.G.C., Athersuch, J., Hoyle, T.M., Stoica, M., Austin, W.E.N., Wonders, A.A.H., Marret, F., Pinnington, C.A., 2018. Palynology and micropaleontology of the Pliocene - Pleistocene transition in outcrop from the western Caspian Sea, Azerbaijan: Potential links with the Mediterranean, Black Sea and the Arctic Ocean? Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 119–143. https://doi.org/10.1016/j.palaeo.2018.07.018

Rundić, L., Ganić, M., Knezević, S., Soliman, A., 2011. Upper Miocene Pannonian sediments from Belgrade (Serbia): New evidence and paleoenvironmental considerations. Geologica Carpathica, 62, 267–278. https://doi.org/10.2478/v10096-011-0021-z

Sanders, C.A.E., Andriessen, P.A.M., Cloetingh, S.A.P.L., 2002. The Neogene history of the Mediterranean Basin and Alpine/Carpathian System. European Geosciences Union Stephan Müller Special Publication, 1, 121–133.

Sándulescu, M., Kräutner, H., Borcoș, M., Năstăseanu, S., Patrulius, D., Ștefanescu, M., Ghenea, C., Lupu, M., Savu, H., Bercea, I., Marinescu, F., 1978. Geological map of Romania, scale 1:1 000 000. Institutul de Geologie și Geofizică, Bucharest.

Schwarzhans, W., 1993. A comparative morphological treatise of recent and fossil ootoliths of the family Sci- aeniidae (Perciformes). Piscium Catalogus: Part Otolithi Piscium, 1. Verlag Dr. Friedrich Pfeil, München, 245 pp.

Soliman, A., Riding, J.B., 2017. Late Miocene (Tortonian) gonyaulaccean dinoflagellate cysts from the Vienna Basin, Austria. Review of Palaeobotany and Palynology, 244, 325–346. https://doi.org/10.1016/j.revpalbo.2017.02.003

Sokać, A., 1972. Pannonian and Pontian ostracode fauna of Mt. Medvednica. Palaeontologia Jugoslavica, 11, 140 pp.

Spencer, C.J., Yakymchuk, C., Ghaznavi, M., 2017. Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geoscience Frontiers, 8/6, 1247–1252. https://doi.org/10.1016/j.gsf.2017.05.002

Sanders, C.A.E., Huismans, R.S., van Wees, J.D.A.M., An, Rundić, L., Ganić, M., Knezević, S., Soliman, A., 2006. Hydrocarbon geology of the Romanian Carpathians, their foreland, and the Transylvanian Basin. In: Golonka, J., Picha, F.J. (eds), The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Memoir, 84, 521–567. https://doi.org/10.1306/985619MB43077

Stevenović, P.M., Papp, A., 1985. Beocín, Syrmien (Jugoslavien). In: Papp, A., Jámbor, Á., Steininger, F.F. (eds), Chronostratigraphie und Neostatotypen: Miozän der Zentralen Paratethys, Band VII. M6, Pannonien (Sla-vonien und Serbien). Akadémiai Kiadó, Budapest, pp. 250–255.

Sujan, M., Braucher, R., AsterTeam, 2018. A test of reproducibility of authigenic beryllium extraction from clay sediment in the facility of the Dept. of Geology and Palaeontology, Comenius University in Bratislava (Slovakia). Acta Geologica Slovaca, 10/2, 165–169.

Sujan, M., Braucher, R., Kováč, M., Bourlès, D.L., Rybár, S., Guillou, V., Hudácková, N., 2016. Application of the authigenic 10Be/9Be dating method to Late Miocene-Pliocene sequences in the northern Danube Basin (Pannonian Basin System): Confirmation of heterochronous evolution of sedimentary environments. Global and Planetary Change, 137, 35–53. https://doi.org/10.1016/j.gloplacha.2015.12.013

Sütő, Z., Szegö, É., 2008. Szervesvázú mikroplankton-vízszín- gálatok az erdélyi-medencei marosorbói (Oarba de Mureș) szarmata és pannoniáni emelet határsztratotípus rétegeiből. I. (Organic-walled microplankton studies from beds of the Sarmatian–Pannonian stratotype section at Marosorbó (Oarba de Mureș), Transylvanian Basin). Földtani Közlöny, 138/3, 279–296. (in Hungarian, with English abstract)

Sütő–Szentai, M., 1988. Microplankton zones of organic skeleton in the Pannonian s.l. stratum complex and in the upper part of Sarmatian strata. Acta Botanica Hungarica, 34, 339–356.

Sütő–Szentai, M., 2000. Organic walled microplankton zonation of the Pannonian s.l. in the surroundings of Kaskantyú, Paks and Tengelic (Hungary). Annual Report of the Geological Institute of Hungary, 1994–1995/II, 153–175.

Szomolné Korecz, A., 1992. A Délkelet-Dunántúl pan noniáni s.l. képződményeinek rétegtani értékelése os tracoda faunajuk alapján. (Stratigraphic Evaluation of the Pannonian s.l. Formations of SE-Transdanubia on
the base of the Ostracode fauna]. Őslénytani Viták (Discussiones Palaeontologicae), 38, 5–20. (in Hungarian, with English abstract)

Sztanó, O., Krézsek, Cs., Magyar, I., Wanek, F., Juhasz, Gy., 2005. Sedimentary cycles and rhythms in a Sarmatian to Pannonian (Late Miocene) transitional section at Oarba de Mureş/Marosorô, Transylvanian Basin. Acta Geologica Hungarica, 48/3, 235–257. https://doi.org/10.1556/AGeol.48.2005.3.1

Tőkés, L., 2013. Pannon-tavi turbiditek Délerdéli feltárásokban: sedimentológiai és gamma-szelvényezés eredményei. [Lake Pannon turbidites in South Transylvanian outcrops: results of sedimentological and gamma-ray logging]. MSc thesis, Eötvös Loránd University, Budapest, 89 p. (in Hungarian, with English abstract)

Tőkés, L., Bartha, I. R., Silye, L., Krézsek, Cs., Sztanó, O. 2015. Diversity of channels and lobes in the deep-water Lake Pannon, southern Transylvanian Basin. Abstract Book of 31st IAS Meeting of Sedimentology, 22-25 June 2015, Kraków, Poland, p. 538.

Vail, P.R., Mitchum, R.M. Jr., Todd, R.G., Widmier, J.M., Thompson, S. III, Sangree, J.B., Bubb, J.N., Hatlelid, W.G., 1977. Seismic stratigraphy and global changes of sea level. In: Payton, C.E. (ed), Seismic Stratigraphy – Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26, 49–212. https://doi.org/10.1306/M26490

Vancea, A., 1960. Neogenul din Bazinul Transilvaniei. [Le Néogène du bassin de la Transylvanie]. Editura Academiei R.P.R., Bucharest, 262 p. (in Romanian, with French abstract)

Vasiliev, I., de Leeuw, A., Filipescu, S., Krijgsman, W., Kuiper, K., Stoica, M., Briceag, A., 2010. The age of the Sarmatian–Pannonian transition in the Transylvanian Basin (Central Paratethys). Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 54–69. https://doi.org/10.1016/j.palaeo.2010.07.015

Vrsaljko, D., 1999. The Pannonian palaeoecology and biostratigraphy of molluscs from Kostanjek-Medvednica Mt., Croatia. Geologia Croatica, 52/1, 9–27.

Witt, W. 2010. Late Miocene non-marine ostracods from the Lake Küçükçekmece region, Thrace (Turkey). Zitteliana, 50, 89–101.

Wittmann, H., von Blanckenburg, F., Mohtadi, M., Christl, M., Bernhardt, A. 2017. The competition between coastal trace metal fluxes and oceanic mixing from the 10Be/9Be ratio: Implications for sedimentary records. Geophysical Research Letters, 44/16, 8443–8452. https://doi.org/10.1002/2017GL074259

Wood, G., Gabriel, A.M., Lawson, J.C., 1996. Chapter 3. Palynological techniques – processing and microscopy. In: Jansonius, J., McGregor, D.C. (eds), Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, Dallas, pp. 29–50.

Zijderveld, J.D.A., 1967. Demagnetization of rocks: analysis of results. In: Collinson, D.W., Creer, K.M., Runcom, S.K. (eds), Methods in Paleomagnetism. Elsevier, Amsterdam, pp. 254–286.

National Centers for Environmental Information, USA. https://www.ngdc.noaa.gov (accessed on 10 September 2019).
