In This Issue

WASP takes the sting out of SCAR mutants

Veltman et al. reveal how one actin regulator can fill in for another to maintain cell protrusion and migration. The Arp2/3 complex stimulates actin assembly at several different sites within the cell. WASP family proteins activate the complex at clathrin-coated pits undergoing endocytosis, whereas SCAR/WAVE proteins stimulate Arp2/3’s activity at the leading edge to promote membrane protrusion and cell migration. Yet SCAR-deficient Dictyostelium cells still form protrusive pseudopods and migrate efficiently toward a chemoattractant. Veltman et al. wondered whether WASP might assume the responsibility of regulating cell protrusion in Dictyostelium cells lacking SCAR.

GW220 seals the fate of mRNAs

Castilla-Llorente et al. identify a protein that determines the localization and fate of miRNA-targeted mRNAs. miRNAs silence their target mRNAs by incorporating them into silencing complexes (miRISCs) that contain members of the Argonaute and GW families of proteins. Once inside an miRISC, an mRNA can be translationally repressed or permanently degraded, but how these alternative fates are coordinated is unclear. Castilla-Llorente et al. shed light on this question when they identified a unique GW protein splice variant called GW220.

GW220 proteins have been associated with the formation of cytoplasmic ribonucleoprotein granules called P bodies, but Castilla-Llorente et al. found that not all P bodies contain GW proteins. Instead, GW220 localized to a distinct class of P bodies that also contained Argonaute proteins and miRNA-targeted mRNAs. These “GW/P bodies” were much more stable than other P bodies, suggesting that they might have a role in mRNA storage.

Overexpressing GW220 promoted GW/P body aggregation, whereas GW220 depletion reduced the formation of these granules. miRNAs suppressed protein expression in cells containing numerous GW/P bodies, but the target mRNA itself was fairly stable. In cells lacking GW/P bodies, however, miRNAs induced degradation of their target mRNAs.

GW220 therefore directs silenced mRNAs into GW/P bodies, where they are translationally repressed but protected from degradation. Senior author Jidong Liu now wants to identify additional RNA and protein components of GW/P bodies in order to determine the factors that regulate their formation and to establish which endogenous mRNAs are silenced within these granules.

Centrosomes are PKA’s sensitive spot

Terrin et al. describe how protein kinase A (PKA) is uniquely regulated at the centrosome to control progression through the cell cycle.

The second messenger cAMP activates PKA to control a wide variety of cellular processes. PKA localizes to different parts of the cell by binding to A kinase-anchoring proteins like AKAP450, which recruits PKA to the centrosome. To investigate the function of centrosomal PKA, Terrin et al. developed a series of biosensors to monitor both cAMP levels and PKA activity at the centrosome.

In interphase cells, cAMP levels were lower around the centrosome than in the rest of the cytosol because AKAP450 also binds the cAMP-degrading phosphodiesterase PDE4D3. Surprisingly, however, PKA was more active at the centrosome. Terrin et al. found that binding to AKAP450 causes PKA to phosphorylate itself, raising the kinase’s sensitivity to cAMP.

Centrosomal cAMP levels and PKA activity increased during mitosis, possibly because PDE4D3 can be phosphorylated and inhibited by MAP kinases. To determine whether this local regulation of PKA is important for cell cycle progression, Terrin et al. displaced PDE4D3 from centrosomes to raise centrosomal cAMP levels throughout the cell cycle. Cells accumulated in prophase, indicating that cell division is specifically regulated by centrosomal PKA activity.

Senior author Manuela Zaccolo says that centrosomal PKA’s heightened sensitivity to lower cAMP levels may allow this population of the kinase to control the cell cycle independently of global changes in cAMP induced by extracellular signals. She now wants to investigate how centrosomal PKA arrests cells in prophase.

Terrin, A., et al. 2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201059.

Terrin, A., et al. 2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201059.

Terrin, A., et al. 2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201059.

JCB • VOLUME 198 • NUMBER 4 • 2012

472