PERIODS OF MIRRORS AND MULTIPLE ZETA VALUES

Michael E. Hoffman

Abstract. In a recent paper, A. Libgober showed that the multiplicative sequence \{Q_i(c_1, \ldots, c_i)\} of Chern classes corresponding to the power series \(Q(z) = \Gamma(1+z)^{-1}\) appears in a relation between the Chern classes of certain Calabi-Yau manifolds and the periods of their mirrors. We show that the polynomials \(Q_i\) can be expressed in terms of multiple zeta values.

1. The multiplicative sequence

In [6], the (Hirzebruch) multiplicative sequence \(\{Q_i\}\) associated to the power series \(Q(z) = \Gamma(1+z)^{-1}\) is considered in connection with mirror symmetry. If \(e_i\) denotes the \(i\)th elementary symmetric function in the variables \(t_1, t_2, \ldots\), then

\[
\sum_{i=0}^{\infty} Q_i(e_1, \ldots, e_i) = \prod_{i=1}^{\infty} \frac{1}{\Gamma(1+t_i)}.
\]

As shown in [6], the polynomials \(Q_i(c_1, \ldots, c_i)\) in the Chern classes of certain Calabi-Yau manifolds \(X\) are related to the coefficients of the generalized hypergeometric series expansion of the period (holomorphic at a maximum degeneracy point) of a mirror of \(X\). In particular, if \(X\) is a Calabi-Yau hypersurface of dimension 4 in a nonsingular toric Fano manifold, then

\[
\int_X Q_4(c_1, c_2, c_3, c_4) = \frac{1}{24} K_{ijkl} \frac{\partial^4 c(0, \ldots, 0)}{\partial \rho_i \partial \rho_j \partial \rho_k \partial \rho_l},
\]

where the \(c(\rho_1, \ldots, \rho_r)\) are coefficients in the expansion of the period and \(K_{ijkl}\) is the (suitably normalized) 4-point function corresponding to a mirror of \(X\). In [6] it is shown that the polynomials \(Q_i\) have the form

\[
Q_1(c_1) = \gamma c_1 \quad \text{and} \quad Q_i(c_1, \ldots, c_i) = \zeta(i)c_i + \cdots, \quad i > 1.
\]

In this note we show that the polynomials \(Q_i\) have an explicit expression in terms of multiple zeta values (called multiple harmonic series in [4]), which have previously appeared in connection with Kontsevich’s invariant in knot theory [8,5], and in quantum field theory [1].

1991 Mathematics Subject Classification. Primary 14J32, 11M41; Secondary 05E05.

Key words and phrases. mirror symmetry, multiple zeta values, gamma function.
2. The formula for the Q_i

Let Sym be the algebra of symmetric functions in the variables t_1, t_2, \ldots (with rational coefficients), and let p_i be the ith power-sum symmetric function in these variables. For a partition $\lambda = (\lambda_1, \lambda_2, \ldots)$, let m_λ be the corresponding monomial symmetric function and $e_\lambda = e_{\lambda_1} e_{\lambda_2} \cdots$. It is well known that $\{m_\lambda\}$ and $\{e_\lambda\}$ are bases for Sym as a vector space. In [4] it is shown (Theorem 5.1) that the homomorphism $\zeta : \text{Sym} \to \mathbb{R}$ such that $\zeta(p_1) = \gamma$ and $\zeta(p_i) = \zeta(i)$ for $i > 2$ satisfies

$$\zeta \left(\sum_{i \geq 0} e_i z^i \right) = \frac{1}{\Gamma(1+z)}.$$

(2)

Our main result expresses the polynomials Q_i in terms of ζ.

Theorem. For any partition λ of i, the coefficient of e_λ in $Q_i(e_1, \ldots, e_i)$ is $\zeta(m_\lambda)$.

Proof. Using equations (1) and (2), we have

$$\sum_{i \geq 0} Q_i(e_1, e_2, \ldots) = \prod_{i=1}^\infty \frac{1}{1 + t_i} = \prod_{i=1}^\infty \sum_{j=0}^\infty \zeta(e_j)t_i^j = \sum_{\lambda} \zeta(e_\lambda)m_\lambda.$$

Now the transition matrix M from the basis $\{e_\lambda\}$ of Sym to the basis $\{m_\lambda\}$, i.e.

$$e_\lambda = \sum_\mu M_{\lambda \mu} m_\mu$$

is known to be symmetric (see Ch. I, §6 of [7]), so we have

$$\sum_\lambda \zeta(e_\lambda)m_\lambda = \sum_\lambda \sum_\mu M_{\lambda \mu} \zeta(m_\mu)m_\lambda = \sum_\mu \zeta(m_\mu) \sum_\lambda M_{\lambda \mu} m_\lambda = \sum_\mu \zeta(m_\mu)e_\mu,$$

and the result follows.

3. Multiple zeta values

As shown in [4], ζ can be thought of as a homomorphism from the algebra of quasi-symmetric functions in the t_i (as defined in [2]) to \mathbb{R} that extends the multiple zeta values introduced in [3] and [8], i.e.

$$\zeta(i_1, i_2, \ldots, i_k) = \sum_{n_1 > n_2 > \cdots > n_k \geq 1} \frac{1}{n_1^{i_1} n_2^{i_2} \cdots n_k^{i_k}},$$

where i_1 must be assumed greater than 1 for convergence. If we let \mathcal{H}^1 be the rational vector space of polynomials in the noncommuting variables z_1, z_2, \ldots, then \mathcal{H}^1 becomes isomorphic to the algebra of quasi-symmetric functions if we define the (commutative) multiplication $*$ by the inductive rule

$$z_i w_1 * z_j w_2 = z_i (w_1 * z_j w_2) + z_j (z_i w_1 * w_2) + z_{i+j} (w_1 * w_2).$$

$$z_i w_1 * z_j w_2 = z_i (w_1 * z_j w_2) + z_j (z_i w_1 * w_2) + z_{i+j} (w_1 * w_2).$$
for any words w_1, w_2 in the z_i; see [4] for details. The algebra Sym of symmetric functions can be identified with the subspace of \mathcal{H}^1 generated by linear combinations of monomials invariant under permutation of subscripts, e.g. $z_2^2 = m_{22}$ and $z_1 z_2 + z_2 z_1 = m_{21}$; z_i and z_i^1 correspond to p_i and e_i respectively. As an algebra \mathcal{H}^1 is generated by Lyndon words in the z_i, i.e. monomials w such that for any nontrivial decomposition $w = uv$ one has $v > w$, where the z_i are ordered as $z_1 > z_2 > \cdots$ and this order is extended to monomials lexicographically. Then the only Lyndon word that starts with z_1 is z_1 itself, and ζ is the homomorphism from \mathcal{H}^1 to \mathbb{R} defined on Lyndon words $w = z_{i_1} z_{i_2} \cdots z_{i_k}$ by

$$\zeta(w) = \begin{cases} \gamma, & w = z_1, \\ \zeta(i_1, i_2, \ldots, i_k), & \text{otherwise.} \end{cases}$$

By the results of [4], $\zeta(z_{i_1} z_{i_2} \cdots z_{i_k})$ coincides with $\zeta(i_1, i_2, \ldots, i_k)$ as defined by equation (3) whenever $i_1 > 1$.

Since the power-sum symmetric functions p_i generate the algebra Sym, we can compute $\zeta(m_{\lambda})$ by first expressing m_{λ} in terms of power-sum functions (see [7, p. 109] for an explicit formula), and then applying the homomorphism ζ. Hence the coefficient of each monomial c_{λ} in $Q_i(c_1, \ldots, c_i)$ is a polynomial in the numbers γ and $\zeta(i)$, $i \geq 2$. By this method we can obtain formulas (1.3)-(1.6) of [6] (with the following corrections: in (1.4) the coefficient of c_2^1 should be $\frac{1}{2}(\gamma^2 - \zeta(2))$, while in (1.5) the coefficient of c_3^1 should be $\frac{1}{6}(\zeta(3) - \frac{1}{2}\zeta(2) + \frac{1}{6}\gamma^3)$).

If m_{λ} is a monomial symmetric function such that the partition λ involves no 1’s, then $\zeta(m_{\lambda})$ is just a sum of ordinary multiple zeta values, e.g. $\zeta(m_{22}) = \zeta(2, 2) = \frac{3}{4}\zeta(4)$ and $\zeta(m_{62}) = \zeta(6, 2) + \zeta(2, 6) = \frac{5}{3}\zeta(8)$. In particular, such $\zeta(m_{\lambda})$ are the only coefficients needed to evaluate $Q_i(c_1, \ldots, c_i)$ on a Calabi-Yau manifold, since $c_1 = 0$ in that case.

References

1. D. J. Broadhurst and K. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B 393 (1997), 403–412.
2. I. M. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and Algebra, Contemp. Math. 34, Amer. Math. Soc., Providence, 1984, pp. 289–301.
3. M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.
4. M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477–495.
5. T. Q. T. Le and J. Murakami, Kontsevich's integral for the Homfly polynomial and relations between values of the multiple zeta functions, Topology Appl. 62 (1995), 193–206.
6. A. Libgober, Chern classes and the periods of mirrors, Math. Res. Lett. 6 (1999), 141–149.
7. I. G. Macdonald, Symmetric Polynomials and Hall Functions, 2nd ed., Oxford University Press, New York, 1995.
8. D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II, Birkhauser, Boston, 1994, pp. 497–512.

U. S. Naval Academy, Annapolis, MD 21402
E-mail address: meh@nadn.navy.mil