Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions

Jennifer H. Barrett1*, John C. Taylor1*, Chloe Bright1, Mark Harland1, Alison M. Dunning7, Lars A. Akslen3,4, Per A. Andresen5, Marie-Françoise Avril6, Esther Azizi7,8, Giovanna Bianchi Scarrà9,10, Myriam Brossard11,12, Kevin M. Brown13, Tadeusz Debniak14, David E. Elder15, Eitan Friedman8, Paola Ghiorzo9,10, Elizabeth M. Gillanders16, Nelleke A. Gruis17, Johan Hansson18, Per Helsing19, Marko Hočevar20, Veronica Hőiö21, Christian Ingvart21, Maria Teresa Landi13, Julie Lang72, G. Mark Lathrop23,24, Jan Lubinski14, Rona M. Mackie25,26, Anders Molven26,27, Srdjan Novaković28, Häkan Olsson29,30, Susana Puig31,32, Joan Anton Puig-Butille31,32, Nienke van der Stoep33, Remco van Doorn17, Wilbert van Workum34, Alisa M. Goldstein13, Peter A. Kanetsky35, Paul D. Pharoah2,36, Florence Demenais11,12, Nicholas K. Hayward37, Julia A. Newton Bishop1, D. Timothy Bishop1 and Mark M. Iles1 on behalf of the GenoMEL Consortium

1 Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
2 Department of Oncology, University of Cambridge, Cambridge, United Kingdom
3 Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
4 Department of Pathology, Haukeland University Hospital, Bergen, Norway
5 Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
6 Assistance Publique–Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France
7 Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel
8 Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
9 Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
10 Laboratory of Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino–IST, Genoa, Italy
11 INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France
12 Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, Paris, France
13 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
14 International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland

Key words: melanoma, fine mapping, penalized regression, heritability, genome-wide signal

Additional Supporting Information may be found in the online version of this article.

*J.H.B. and J.C.T. contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Grant sponsor: European Commission; Grant number: LSHC-CT-2006-018702; Grant sponsor: Cancer Research UK Programme Awards; Grant numbers: C588/A4994, C588/A10589; Grant sponsor: Cancer Research UK Project Grant; Grant number: C8216/A6129; Grant sponsor: US National Institutes of Health; Grant number: CA83115; Grant sponsor: CIDR; Grant number: HHSN268201100011I; Grant sponsor: Wellcome Trust; Grant number: 076113; Grant sponsor: SEARCH: Cancer Research UK “Genetic Epidemiology of Cancer”; Grant numbers: C8197/A10123, C490/A1021, C1287/A10122, C1287/A10118, C490/A10119; Grant sponsor: Genetic Factors in Telomere Length; Grant number: C1287/A9450; Grant sponsor: European Research Council Advanced Grant; Grant number: ERC-2011-294576; Grant sponsor: Università degli Studi di Genova Progetti di Ricerca di Ateneo; Grant number: PRA 2012–2013; Grant sponsor: Institut National du Cancer; Grant number: INCa_5982/PLBIO-2012; Grant sponsor: Catalan Government, Spain; Grant number: AGAUR 2009 SGR 1337; Grant sponsor: Ligue Nationale Contre Le Cancer; Grant numbers: PRE05/FD, PRE 09/FD; Grant sponsor: Programme Hospitalier de Recherche Clinique; Grant number: AOM-07-195; Grant sponsor: European Biobanking and Biomolecular Resources Research Infrastructure (BBMRI)—Netherlands Hub; Grant number: CO18; Grant sponsor: Fondo de Investigaciones Sanitarias; Grant number: P.I. 09/01393; Grant sponsor: Comprehensive Cancer Center, Oslo University Hospital; Grant number: SE0728; Grant sponsor: Norwegian Cancer Society; Grant number: 71512-PR-2006-0356; Grant sponsor: Intramural Research Program of the NIH; National Cancer Institute (NCI); Ministère de l’Enseignement Supérieur et de la Recherche; Institut National du Cancer (INCa); Swedish Cancer Society; Karolinska Institutet’s Research Funds; Swedish Cancer Society; Gunnar Nilsson Foundation; IRCCS Azienda Ospedaliera Universitaria San Martino—IST Istituto Nazionale per la Ricerca sul Cancro; 5 per 1000 per la Ricerca Corrente; Intramural Research Program of National Institutes of Health; National Cancer Institute, Division of Cancer Epidemiology and Genetics; Ligue Nationale Contre Le Cancer Doctoral Fellowship; CIBER de Enfermedades Raras del Instituto de Salud Carlos III, Spain

D.O.I: 10.1002/ijc.29099

History: Received 24 Mar 2014; Accepted 6 June 2014; Online 31 Jul 2014

Correspondence to: Jennifer H. Barrett, Cancer Genetics Building, St James’s University Hospital, Beckett Street, Leeds LS97TF, United Kingdom, Tel: +44-113-206-6613, Fax: +44-113-234-0183, E-mail: j.h.barrett@leeds.ac.uk

Int. J. Cancer: 136, 1351–1360 (2015) © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC
At least 17 genomic regions are established as harboring melanoma susceptibility variants, in most instances with genome-wide levels of significance and replication in independent samples. Based on genome-wide single nucleotide polymorphism (SNP) data augmented by imputation to the 1,000 Genomes reference panel, we have fine mapped these regions in over 5,000 individuals with melanoma (mainly from the GenoMEL consortium) and over 7,000 ethnically matched controls. A penalized regression approach was used to discover those SNP markers that most parsimoniously explain the observed association in each genomic region. For the majority of the regions, the signal is best explained by a single SNP, which sometimes, as in the tyrosinase region, is a known functional variant. However in five regions the explanation is more complex. At the CDKN2A locus, for example, there is strong evidence that not only multiple SNPs but also multiple genes are involved. Our results illustrate the variability in the biology underlying genome-wide susceptibility loci and make steps toward accounting for some of the “missing heritability.”

What’s new?
In genome-wide association studies, researchers identify genetic variants that frequently associate with a particular disease, though the variants identified may not contribute to the molecular cause of the disease. This study took a closer look at 17 regions associated with melanoma, fine mapping the regions both in people with melanoma and in healthy controls. Though single SNPs account for the association in some regions, they found that in a few regions, several SNPs – and possibly multiple genes – contributed to the association signal. These findings illustrate the importance of not overlooking the interaction between multiple genetic markers when conducting such studies.

Genome-wide association (GWA) studies have been extremely successful at identifying genomic regions associated with complex diseases and phenotypic traits. However, studies often do not go beyond reporting the most strongly associated genotyped single nucleotide polymorphism (SNP) and the best candidate gene within the region covered by the association signal. The reported SNP is unlikely to be the causal variant and does not necessarily even identify the relevant gene. Thus the reported SNP is unlikely to characterize the relationship between genotype and phenotype, and hence may not add much to the understanding of disease aetiology.

Although GWA studies involve the genotyping of hundreds of thousands of markers across the genome, a variant not available on the genotyping platform may be more strongly associated with outcome than the single most significant genotyped SNP. Coverage of the region may be greatly improved without extra genotyping by imputation of ungenotyped markers, allowing greater refinement of the association signal. The genetic information gained by imputation may help to identify potential causal variants that are in linkage disequilibrium (LD) with the associated genotyped markers and improve the selection of genes chosen for denser genotyping.
genotyping or sequencing. Furthermore, in some genomic regions multiple markers may better explain the association signal, and multiple variants may be independently associated with the trait. A recent study of the region around the telomerase reverse transcriptase gene TERT, within which there are SNPs associated with a number of cancers including melanoma, reported multiple independent SNP associations with both telomere length and breast cancer risk. For these reasons, disease risk estimates based solely on the single reported SNP may not adequately reflect the contribution of the region to the heritability and aetiology of disease.

Recent GWA studies of melanoma susceptibility, pigmentation-related phenotypes and nevi have led to the discovery and confirmation of a number of genomic regions associated with risk of melanoma.3–8 Association signals for these regions vary greatly, both in their strength and in the breadth of region showing association. For instance, associated SNPs in the 21q22.3 region (near MX2) span <100 kb, whereas associated SNPs in the 20q11.2-q12 region (near ASIP) cover more than 1 Mb. This variation may be due largely to differing patterns of LD around a single variant or could be indicative of a more complex arrangement of functional variants. We have previously shown in a melanoma case-control study that fine mapping of an association signal through imputation can help to implicate a gene (MCIR) with known functional relevance, despite the initial association signal spanning a number of candidate genes, the signal here being due to multiple less common loss-of-function variants.

The aim of this study is to refine the association signal in each of the 17 genomic regions previously shown to be associated with melanoma risk using a large case-control dataset.

Material and Methods

Study population

Cases for the GenoMEL GWA study of melanoma were preferentially selected to have a family history of melanoma, multiple primary tumors or an onset before 40 years of age, mainly from centers across Europe. In all 2,744 cases and 1,834 controls from Phases 1 or 2 of the study were included mainly from centers across Europe. In all 2,744 cases and 1,834 controls from the Studies of Epidemiology and Risk Factors in Cancer Heredity (SEARCH) series of population-based studies in Eastern England. This resulted in a combined sample set of 5,374 cases and 7,691 controls for the analysis after quality control (QC) described below.

Genotyping

GenoMEL Phase 1 samples were genotyped on the Illumina HumanHap300 BeadChip version 2 duo array and the Illumina HumanCNV370 array. GenoMEL Phase 2 samples were genotyped on Illumina Human610-Quad array. The additional UK cases were genotyped on the Illumina HumanOmnimixExpressExome BeadChip. The WTCCC samples were genotyped on the Illumina HumanHap 1.2 M array, but only SNPs that were also on either the HumanHap300 or Human610 array were retained for imputation. Samples and SNPs on the HumanOmnimixExpressExome array were subjected to the same stringent QC as the GenoMEL GWA datasets, previously described in detail. Briefly, samples were excluded for any of the following reasons: (i) a call-rate of <97% (of the total number of SNPs on the chip); (ii) evidence of non-European origin from principal components analysis; (iii) sex as ascertained by genotyping not matching reported sex; (iv) evidence of first degree relationship or identity with another sample; (v) recommendation to be excluded by the WTCCC (for WTCCC samples only). To ensure high quality imputation, very stringent QC measures were applied within each genotyped array; SNPs could therefore be excluded from just a subset of our entire sample. SNPs were excluded for any of the following reasons: (i) Hardy–Weinberg equilibrium \(p \) value \(<10^{-4}\) in controls; (ii) call-rate <97%; (iii) recommendation for exclusion by the WTCCC (for WTCCC samples only); (iv) minor allele frequency (MAF) <0.03.

Imputation

Imputation was conducted separately on each array using IMPUTEv2 with the 1000 Genomes Phase 1 integrated variant set as reference panel (March 2012 release, excluding SNPs with MAF <0.001 in CEU European samples). Imputation was constrained to a 2 Mb region (6 Mb for the 20q11.2-q12 region around ASIP) centered on the reference SNP. Only those SNPs that were either (i) genotyped on all arrays (Type A); (ii) imputed with an INFO score \(\geq 0.8\) on all arrays (Type B); or (iii) imputed with an INFO score \(\geq 0.5\) (but not \(\geq 0.8\)) on all arrays and with a MAF \(\geq 0.03\) (Type C) were retained for analysis.

Statistical analysis

A total of 17 regions were analyzed, all of which have been reported to include a SNP associated with melanoma risk, in most instances with a genome-wide level of statistical significance and replication in independent samples (Table 1). For convenience the regions will be referred to by the name of a likely candidate gene.

For single SNP analyses of association with melanoma, imputed genotypes were analyzed as expected genotype counts based on the posterior probabilities (gene dosage) using logistic
Table 1. Results for 17 previously published melanoma susceptibility regions

Chromosome	Gene	Reference study	SNP name	Position	p value	R^2 for melanoma risk	SNP name	Position	p value	R^2 for melanoma risk
1q21.3	ARNT	MacGregor et al.	rs7412746	150860471	2.6×10^{-4}	0.08	rs3768013	150815411	2.9×10^{-6}	0.13
1q42.12	PARP1	MacGregor et al.	rs3219090	226566491	6.4×10^{-6}	0.12	rs1858550	226608104	1.7×10^{-7}	0.16
2q33-q34	CASP8	Barrett et al.	rs13016963	202162811	9.5×10^{-7}	0.14	rs2349073	202186986	6.3×10^{-8}	0.17
5p15.33	TERT	Rahmar et al.	rs401681	33951693	2.2×10^{-9}	0.20	rs1858550	33951693	1.02	0.08
5p13.2	SLC45A2	Guedj.	rs16891982	33951693	0.08	0.20	as reference			
6p25-p23	IRF4	Duffy et al.	rs12203592	396321	0.04	rs9405705	470384	1.5×10^{-4}	0.08	
9p21	CDKN2A	Bishop et al.	rs7023329	21816528	8.3×10^{-10}	0.32	rs869330	21804617	3.8×10^{-16}	0.38
9p23	TYRP1	Duffy et al.	rs2733832	12704725	0.43	rs7206189	12704725	1.3×10^{-5}	0.11	
11q13	CCND1	Barrett et al.	rs1485993	69362414	4.5×10^{-9}	0.20	rs12422135	69378260	3.5×10^{-10}	0.22
11q14-q21	TPR	Bishop et al.	rs1393350	89011046	5.3×10^{-13}	0.30	rs1126809	89017961	9.8×10^{-15}	0.34
11q22-q23	ATM	Barrett et al.	rs1801516	108175462	1.8×10^{-7}	0.16	rs4753835	108145249	1.7×10^{-7}	0.16
15q13.1	OCA2	Amos et al.	rs1129038	28356859	0.081	0.02	rs145720174	28468231	4.8×10^{-4}	0.07
16q12.2	FTO	Iles et al.	rs12596638	54115829	5.1×10^{-7}	0.14	as reference			
16q24.3	MC1R	Bishop et al.	rs258322	89755903	6.8×10^{-4}	1.02	rs73283859	90062520	3.6×10^{-52}	1.31
20q11.2-q12	ASIP	Bishop et al.	rs2284378	32818707	1.4×10^{-6}	0.13	rs6059655	32665748	2.1×10^{-11}	0.26
21q22.3	MX2	Barrett et al.	rs45430	42746081	2.9×10^{-8}	0.18	rs443099	42743327	1.1×10^{-8}	0.19
22q13.1	PLA2G6	Bishop et al.	rs6001027	38545619	3.8×10^{-7}	0.15	rs3891103	38537159	2.9×10^{-9}	0.20

Trend test p values for association in this study for the SNP reported by the reference study and for the SNP with the strongest signal in this study. The R^2 for percentage of variation explained in melanoma risk is also given from the study. The gene listed is the gene considered to be the likely candidate in the region. Positions are build 37.
regression implemented in SNPTEST2, assuming an additive model, with geographical region (UK/Netherlands, France, Spain, Scandinavia, Italy, Poland, Israel) as a covariate. We have previously shown that adjusting for region adequately adjusts for population stratification and that including principal components brings no improvement.4 No further analysis was conducted for any region where no SNP reached a \(p \) value \(< 10^{-5} \) in this analysis. For other regions the SNP-by-SNP analysis was repeated adjusting for the most significant SNP in the region by including this in the logistic regression model.

Each of the regions was narrowed down to the interval covering 500 kb on either side of any SNP with \(p \) value \(< 10^{-5} \) in the initial single SNP unadjusted analysis. Penalized logistic regression is an effective method for the simultaneous analysis of large numbers of correlated variables and was therefore used to jointly analyze all SNPs in each of these narrower intervals. The analysis was carried out using Hyperlasso,\(^{19}\) which implements a Bayesian-inspired penalized maximum likelihood approach with a normal-exponential-gamma (NEG) prior. Genotypes were standardized, and geographical region was adjusted for as before. Model parameters were set to control the type-I error at \(10^{-4} \), with the shape parameter fixed at \(0.05 \)\(^{19}\) and 100 iterations were run for each region. Each iteration searches for the model with maximum likelihood, but the model may differ between iterations because of the stochastic nature of the order in which variables are considered for inclusion in the model. Each model selected was analyzed further using logistic regression (with no penalization). For interpretation, models were considered to be statistically equivalent if the SNPs included were in complete or very strong LD (based on the correlation coefficient \(r^2 \) between estimated SNP dosages).

For comparison, five regions (SLC45A2, TYR, ASIP, TERT, and CDKN2A) with different features (see Results) were also analyzed with alternative penalty functions (lasso and elastic net) using the glmnet function\(^{20}\) in R (version 2.15.2, R Foundation for Statistical Computing, Vienna, Austria, 2012). For this analysis, to aid interpretation LD-based pruning using PLINK\(^{21}\) was used to remove markers that were very highly associated (\(r^2 > 0.95 \)) prior to the penalized regression analysis. The penalty for each term in these analyses is of the form \(\lambda (\alpha |\beta| + (1 - \alpha) \beta^2) \), where \(\beta \) is the coefficient for that term; for lasso, \(\alpha = 1 \), and for the elastic

Figure 1. Association signals for the 13 regions analyzed in the fine mapping Manhattan plots displaying the strength of association with melanoma risk (\(-\log_{10} p\)) from the single SNP analysis versus chromosomal position (Mb). The colors indicate the imputation quality: black = fully genotyped (a); red = imputed with a minimum INFO score \(\geq 0.8 \) (b); and green = imputed with a minimum INFO score \(\geq 0.5 \) but \(< 0.8 \) and MAF > 3%.
whereas others have signals that encompass several genes, for including all listed SNPs at that locus. The LD (r) of SNP-by-SNP analyses is presented for the results from the single SNP analysis and when including all listed SNPs at that locus. The LD (r^2) with the most significant SNP in this study (Top SNP) is estimated from the correlation coefficient. The R^2 for percentage of variation explained in melanoma risk is given for including all listed SNPs at that locus.

For each region the model with the greatest number of SNPs in shown after 100 iterations of Hyperlasso. Two different 2-SNP models occurred for \(k \) regions after imputation. The regions near \(TERT \) and \(CDKN2A \) have been analyzed separately,9 so results are only given for the \(TERT \) region only 6 out of 100 iterations selected a SNP actually located in the \(TERT \) gene; otherwise a SNP located in the widest of these being the \(ASIP \) region covering several megabases. When adjusting for the most significant SNP, the \(TERT \), \(CDKN2A \) and \(CCND1 \) regions have a clear secondary signal reaching at least \(10^{-5} \) (Supporting Information Fig. 1).

Hyperlasso analyses

Single variant regions. In the Hyperlasso analyses, the effect on disease risk was best described by a single-SNP model for 8 regions (\(ARNT \), \(PARP1 \), \(CASP8 \), \(SLCA5A2 \), \(TYR \), \(ATM \) and \(MX2 \)); for each of these regions a single-SNP model was selected in at least 89% of the iterations. For the remaining few iterations a 2-SNP model was selected. When a single-SNP model was selected, the SNP was almost always either the most significant SNP from the single SNP analysis (see Table 1) or one in strong LD with it (almost always \(r^2 > 0.9 \), Supporting Information Table 3).

For the \(ARNT \) region, the SNPs selected in the model were located within the \(ARNT \) gene in 90% of the iterations. The most strongly associated SNP in the region is \(rs7568013 \), which was selected in 13 of the 100 iterations. Another SNP, \(rs7514004 \), in almost complete LD with this (\(r^2 = 0.99 \)) was selected slightly more frequently (16 times), and 8 other SNPs were selected in different iterations, all also in strong LD (\(r^2 \geq 0.98 \) for 7 of them, \(r^2 = 0.92 \) for one). For the \(PARP1 \) region only 6 out of 100 iterations selected a SNP located in the \(PARP1 \) gene; otherwise a SNP located...
near the 5′ end was selected. Across all iterations, 28 different SNPs were selected, but all were in very strong LD with the top SNP rs1858550 ($r^2 \geq 0.97$). Similarly, for the CASP8 region, only 17% of the iterations converging to a single-SNP model selected a SNP in CASP8, with the majority selecting a SNP in the neighboring gene AL2CR12. The top SNP rs2349073 was selected most frequently (13 iterations), but others were similarly frequent and all were in strong LD ($r^2 \geq 0.94$). Only one SNP was selected, in all 100 iterations, for the SLC45A2 region, this being the previously reported missense SNP rs16891982. This SNP was also selected using either the lasso or elastic net penalty. Similarly, the missense SNP rs1126809 was selected in 44% of the single-SNP models for the TYR region; in most other iterations an alternate SNP in LD with this ($r^2 \geq 0.89$) was selected.

In the MX2 region the top SNP rs443099, or one of five other SNPs within the MX2 gene in almost perfect LD ($r^2 \geq 0.98$), was selected in 81% of the iterations converging on a single-SNP model. For all but one of the remaining iterations, rs390789, a SNP in weaker LD ($r^2 = 0.86$) and not in MX2, was selected.

Possible multiple variant region. For the PLA2G6 region a single-SNP model was selected in 66 iterations (Supporting Information Table 4), the single SNP being either the top SNP rs3891103 or one in moderate to strong LD with this ($r^2 \geq 0.82$). In other iterations 2-SNP models were selected involving SNPs both of which were reasonably strongly associated with rs3891103 ($r^2 \geq 0.59$, usually much higher). In most models, both SNPs were located in the PLA2G6 gene. The results are not as clear-cut as for the above single-SNP regions; a possible explanation is that a single causal SNP exists in the region that is not in very strong LD with any single genotyped or imputed SNP.

Regions showing evidence of multiple independent variants. Hyperlasso gave a variety of models for the ASIP gene (Table 2, Supporting Information Table 5). Most of these reduce to
two different 2-SNP models occurring with similar frequency. Both models include rs6059655 in RALY (or a SNP in almost complete LD, \(r^2 \geq 0.98 \), blue diamonds in Fig. 2a), the other SNP being either rs6088372 also in RALY (green diamond) or rs74325991 (red diamond) which is not located in a gene. Using the alternative penalties, the 2-SNP model including rs6059655 and rs6088372 was selected.

For all three of the regions (TERT, CDKN2A and CCND1) that showed strong evidence of further association when adjusting for the top SNP (Supporting Information Fig. 1), Hyperlasso selected multiple variant models in all iterations.

Either 3- or 4-SNP models were selected to explain the signal in the TERT region (Table 2, Supporting Information Table 6). When taking LD into account, these reduced to two distinct 3-SNP models (selected in 33 and 12% of iterations) and one 4-SNP model (55%). The most commonly selected 3-SNP model includes 2 SNPs in the TERT gene (rs7705526 and rs2736099, \(r^2 = 0.60 \), \(D' = 0.60 \) between them, green and orange diamonds in Fig. 2b) and an additional 2 SNP rs2447853 (or one in almost complete LD with this) in the neighboring CLPTM1L gene (red diamonds in Fig. 2b). The LD between rs2447853 and the 2 SNPs in TERT was \(r^2 = 0.09 \), \(D' = 0.11 \) for rs7705526 and \(r^2 = 0.14 \), \(D' = 0.18 \) for rs2736099. When regressing melanoma case/control status on these 3 SNPs, the signal at CLPTM1L becomes stronger than in the single-SNP analysis (\(p = 5.5 \times 10^{-14} \)). The 4-SNP model was equivalent to this 3-SNP model, but with an extra SNP, rs1801075, which lies between TERT and CLPTM1L, or a SNP in strong LD with this, which includes SNPs within CLPTM1L (blue diamonds in Fig. 2b). This 4-SNP model was selected using the alternative penalty functions. The imputation quality was noticeably poor around the TERT gene; only 29% of variants in the gene (from 1,000 Genomes) are included in the analysis, compared with 50% across all regions, and 64 of the 78 SNPs that are included are relatively poorly imputed (Type C) SNPs.

The signal in the CDKN2A region is explained in most iterations by a particular 3-SNP (31 iterations) or 4-SNP model (54 iterations) (Table 2, Supporting Information Table 7). All these models included the top SNP rs869330, which is in MTAP, or a SNP in strong LD with this (blue diamonds in Fig. 2c). There was almost no change in the OR and p value for this SNP when adding the other 2 SNPs in the 3-SNP model in a logistic regression analysis. The other 2 SNPs in the model also gave reasonably strong signals in the multiple logistic regression analysis. These were located in CDKN2B-AS1 or CDKN2A (rs3088440 or a SNP in strong LD with this, \(p < 10^{-4} \), green diamonds in Fig. 2c) and CDKN2A (rs3731204 or a SNP in LD with this, \(p < 10^{-5} \), red diamonds in Fig. 2c). The LD between rs869330 and the other 2 SNPs was \(r^2 = 0.03 \) for both rs3088440 and rs3731204 (\(D' < 0.07 \)). The LD between rs3088440 and rs3731204 was \(r^2 = 0.12 \), although \(D' = 0.94 \): the minor allele for rs3088440 hardly ever occurs with the minor allele of rs3731204. The 4-SNP model was equivalent to the 3-SNP model with an additional SNP, rs1011970 or a proxy, in CDKN2A-AS1 (orange diamonds in Fig. 2c). The remaining 15 iterations converged on 3-, 4- or 5-SNP models, which were similar (usually including all the SNPs from the 3-SNP model). Using the lasso penalty, a 6-SNP model was selected, including the 4 SNPs in the above 4-SNP model, plus an additional 2 SNPs from among those highly correlated with the top SNP rs869330 (blue diamonds in Fig. 2c).

The most frequent model selected for the CCND1 region (65 iterations) was a 2-SNP model with neither SNP located in a gene (Table 2, Supporting Information Table 8, Fig. 2d). The models included the top SNP rs12422135 (\(p < 10^{-5} \)) or a proxy, all of which were around 80 kb from CCND1 (red diamonds in Fig. 2d). The second SNP in the model was rs2290419 (\(p < 10^{-5} \)) located distal to MYEOV (green diamond in Fig. 2d). These SNPs are not in LD with one another (\(r^2 = 0.03 \), \(D' = 0.12 \)). In 20 iterations a third SNP was also selected (rs623110 or rs486564, \(r^2 = 1.0 \), blue diamond in Fig. 2d). In the remaining 15 iterations, alternative 3- or 4-SNP models were selected, all of which were equivalent to one of these two models plus one additional SNP.

Improvements in explanatory power. For each region the percentage of variance in melanoma risk explained by the reported SNP and the top SNP from this study is shown in Table 1. If we assume the SNPs contribute additively to risk, the 13 SNPs studied in detail are estimated to explain 2.4% of the variance in risk based on the reported SNP, rising to 2.8% if we use the top single SNP based on imputation in this study. Hence the improvement is modest (17%), and will be partly driven by over-fitting; the largest single improvement is for ASIP, where the estimate doubles from 0.13 to 0.26%. For the 3 clearly more complex regions, the percentage of variance explained by the models in Table 2 compared with the best single-SNP model increases by \(\sim 70\% \) (70% for TERT, 71% for CDKN2A and 68% for CCND1).

Discussion

We have refined the association signals for regions that have been previously associated with melanoma, using a pragmatic statistical approach that includes adjusted analyses and penalized logistic regression. We have shown that the complexity of the association signal within a specific genomic region ranges from those regions best explained by a single variant to those that can only be explained by 3 or 4 variants. The evidence for multiple independent signals is strong: in three regions there is a secondary signal reaching \(p < 10^{-5} \) after conditioning on the most significant SNP, equivalent to a Bonferroni correction for 5,000 independent tests in the region, and these results are borne out by the Hyperlasso analysis. It is possible that even independent signals represent a haplotypic effect, although we saw little evidence of haplotypic effects from the SNPs in the multiple variant regions. It is becoming increasingly clear that multiple independent causal variants may contribute to disease susceptibility at a
single locus. Despite this, statistical approaches are sometimes applied to fine mapping that presuppose the existence of a single causal variant in a region.

We found strong evidence that a single SNP explains the association signal in 8 of the 13 regions analyzed here: *ARNT, PARP1, CASP8, SLC45A2, TYR, ATM, FTO* and *MX2*. For two of the regions (*SLC45A2* and *TYR*), the likely causal variants are known. The SNP rs16891682 in *SLC45A2* was the only SNP selected by Hyperlasso and was also detected using other penalty functions; this SNP would likely be identified by any reasonable method. The SNP rs1126809 in *TYR* was selected using lasso/elastic net and about half of the time using the Hyperlasso method; the remaining iterations all converged on a single-SNP model where the SNP selected was in reasonably strong LD with rs1126809 ($r^2 \geq 0.89$). For the other single-variant regions identified, although no one SNP was selected much more frequently than the others, this was largely due to the inability of any statistical method to distinguish between almost perfectly correlated variables. The evidence from analysis of these regions suggests that either the most strongly associated SNP or one in very strong LD with it is the most likely explanation of the association signal; bioinformatic analysis of this relatively small set of SNPs can now be used to suggest the most promising candidates for functional investigation.

More complex models were clearly needed to explain the signals for the regions near *TERT, CDKN2A* and *CCND1*. Interestingly all three of these regions have previously been reported as harboring multiple risk variants for other diseases or traits. Independent associations have previously been reported in *TERT* for breast cancer and telomere length. The telomere associations partially concur with our model for melanoma; the SNPs associated with telomere length are rs7705526, the SNP indicated by a green diamond in Figure 2b, and rs2736108, which is only nominally associated with melanoma in our analysis ($p = 0.008$). Our reported second SNP in *TERT*, rs2736099 (orange diamond), is in only moderate LD with rs2736108 ($r^2 = 0.49$, $D' = 0.60$), although both are strongly associated with telomere length in univariate analysis ($p < 10^{-5}$ in Bojesen et al.). The *TERT* SNP alleles associated with longer telomeres are associated with higher risk of melanoma. In addition our most significant SNP in the region was in the neighboring *CLPTM1L* gene; SNPs in this gene show no clear association with either telomere length or breast cancer.

We found 3 strong independent signals in the 9p21 region, the strongest being in *MTAP*, with secondary peaks in the region containing *CDKN2A* and *CDKN2B-AS1*. The variant rs10811656, associated with coronary artery disease (CAD), is peripheral to this region (at 22.12 Mb in the *CDKN2B-AS1* locus, Fig. 2c). The interval around rs10811656 has been studied using chromatin conformation capture in human vascular endothelial cells and shown to physically interact with both the *CDKN2A/B* locus and *MTAP*. This complex region is clearly of major significance in a number of diseases.

French et al. found evidence for 3 distinct signals in the *CCND1* region in relation to oestrogen-receptor-positive breast cancer. Although different SNPs to ours were identified, their signals were between 69.32 and 69.38 Mb (Build 37), which is roughly the region spanned by two of the three signals in our model (blue and red diamonds in Fig. 2d). Although this region is itself intergenic, on the basis of functional studies these authors conclude that *CCND1* is the likely target gene for the variants identified.

Here we have employed penalized regression with a NEG prior to fine map these loci. This choice of prior was motivated by its sharp peak at zero, which shrinks the regression coefficients strongly when they are close to zero, leading to sparse models. In a comparison of penalized logistic regression methods with different penalties, single locus analysis and stepwise regression, Ayers and Cordell showed that the NEG gave the best overall performance and did not suffer from limitations on the number of markers being considered. Reassuringly we found broadly similar results when using a lasso or elastic net penalty function, although where there were differences these latter methods seemed to favor models with larger numbers of SNPs, which were then not significant in the full model using classical logistic regression.

A major limitation of statistical fine mapping based on imputation is that about half of all possible variants (as identified by 1,000 genomes) are dropped because they cannot be reliably imputed, at least with the density of genotyping used in our study and after strict QC. There is therefore a need to more densely genotype, or preferably sequence, parts of these regions to follow up these analyses. The analysis presented here helps to prioritize which of the associated loci require further investigation and, within these, to narrow down the regions to be sequenced.

We found a substantial (70%) improvement in the proportion of variance in melanoma risk explained by multiple SNP models compared with single SNPs in selected regions, although overall the proportion of variance explained by all loci is only modestly increased. This has been explored in other traits, showing an average increase of 17% in the proportion of variance explained using regression-based analysis of jointly significant markers compared with single variants at each locus.

Statistical fine mapping does not in itself identify the causal SNP(s) but it does take us closer to achieving this goal by narrowing down the number of SNPs to be considered for further investigation. In all but the very simplest regions (*SLC45A2* and *TYR*), where coding variants explaining the signal have been previously identified, fine mapping must be followed up using bioinformatics and experimental approaches. Methods to identify and follow up non-coding functional variants have recently been reviewed, with suggestions of bioinformatics database searches, application of *in silico* tools and a range of molecular experimental techniques that can take the process forward to identify the causal mechanisms.
Acknowledgements

Genotyping services for samples from Leeds and Cambridge were provided by the Center for Inherited Disease Research (CIDR). This study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the generation of the data is available from their website (see URLs). The authors thank the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA) cooperative group for giving access to data of the EGEA study. The authors also thank the SUPplementation en Vitamines et Minéraux Anti-oXYdants (SU.VI.MAX) study for giving access to data of the SU.VI.MAX study. They acknowledge that the biological specimens of the French Familial Melanoma Study Group were obtained from the Institut Gustave Roussy and Fondation Jean Dausset–CEPH Biobanks. They also thank the French Familial Melanoma study group (a detailed list can be found in (4) and (5)) for contributing to the recruitment of cases. Web Resources: GenoMEL, http://www.genomel.org; Wellcome Trust Case Control Consortium http://www.wtccc.org.uk; EGEA study, https://egeanet.vjf.inserm.fr/ A full list of GenoMEL membership can be found in Supporting Information.

References

1. Welter D, Macarthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 2014;42: D1001–6.
2. Bojesen SE, Pooley KA, Johnatty SE, et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013;45: 371–84, 4e1–2.
3. Amos CI, Wang LE, Lee JE, et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet 2011;20:5021–23.
4. Barrett JH, Iles MM, Harland M, et al. Genomewide association study identifies three new melanoma susceptibility loci. Nat Genet 2011;43:1108–13.
5. Bishop DT, Demenais F, Iles MM, et al. Genome-wide association study identifies three new loci associated with melanoma risk. Nat Genet 2009;41:920–25.
6. Brown KM, Macgregor S, Montgomery GW, et al. Common sequence variants on 2q11.22 confer melanoma susceptibility. Nat Genet 2008;40:838–40.
7. Falchi M, Spector TD, Perks U, et al. Genome-wide search for nevus density shows linkage to two melanoma loci on chromosome 9 and identifies a new QTL on 5q31 in an adult twin cohort. Hum Mol Genet 2006;15:2975–9.
8. Macgregor S, Montgomery GW, Liu JZ, et al. Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nat Genet 2011;43:1114–18.
9. Brossard M, Corda E, Iles MM, et al. To what extent genotype imputations are able to identify causal variants in genome-wide association studies? Genet Epidemiol 2012;36:147–47.
10. Newton-Bishop JA, Chang YM, Iles MM, et al. Melanocytic nevi, nevus genes, and melanoma risk in a large case-control study in the United Kingdom. Cancer Epidemiol Biomarkers Prev 2010;19:2043–54.
11. Pooley KA, Tyrer J, Shah M, et al. No association between TERT-CLPTM1L single nucleotide polymorphism rs401681 and mean telomere length or cancer risk. Cancer Epidemiol Biomarkers Prev 2010;19:1862–5.
12. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009;5:e1000529.
13. Rafnar T, Sulem P, Stacey SN, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 2009;41:1221–7.
14. Guedj M, Bourillon A, Combadiere C, et al. Variants of the MATP/SLC45A2 gene are protective for melanoma in the French population. Hum Mutat 2008;29:1154–60.
15. Duffy DL, Iles MM, Glass D, et al. IRF4 variants have age-specific effects on nevus count and predispose to melanoma. Am J Hum Genet 2010;87:6–16.
16. Duffy DL, Zhao ZZ, Sturm RA, et al. Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J Investig Dermatol 2010;130:520–8.
17. Iles MM, Law MH, Stacey SN, et al. A variant in FTO shows association with melanoma risk not due to BMI. Nat Genet 2013;45:428–32.
18. Marchini J, Howie B, Myers S, et al. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007;39:906–13.
19. Hoggart CJ, Whittaker JC, De Iorio M, et al. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet 2008;4:e1000130.
20. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1–22.
21. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–75.
22. Mallor JB, McVean G, Byrnes J, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 2012;44:1294–301.
23. Spencer C, Hechter E, Vukcevic D, et al. Quantifying the underestimation of relative risks from genome-wide association studies. PLoS Genet 2011;7:e1001337.
24. Samani NJ, Erdmann J, Hall AS, et al. Genome-wide association analysis of coronary artery disease. N Engl J Med 2007;357:443–53.
25. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78.
26. Hariiomenyo O, Notani D, Song X, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 2011;470:264–8.
27. French JD, Ghousaini M, Edwards SL, et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am J Hum Genet 2013;92:489–503.
28. Ayers KL, Cordell HJ. SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genet Epidemiol 2010;34:879–91.
29. Gusev A, Bhatia G, Zaitlen N, et al. Quantifying missing heritability at known GWAS loci. PLoS Genet 2013;9:e1003993.
30. Edwards SL, Beeley J, French JD, et al. Beyond GWAS: illuminating the dark road from association to function. Am J Hum Genet 2013;93:779–97.