COMPONENTS IMPACT ANALYZER WITH GENETIC ALGORITHM

D. Jeyamala¹, K. Sabari Nathan², S. Balamurugan³ and A. Jalilá⁴

Department of Computer Applications, Thiagarajar College of Engineering, India

E-mail: ¹djmcse@tce.edu, ²sabarinathan4you@gmail.com, ³balmsg4u@gmail.com and ⁴mejalila@gmail.com

Abstract

High quality software can be obtained by means of rigorous testing of all the components of the software. This research work has proposed an automated software testing framework that performs a mutant based components impact analysis to identify the higher critical components from the Software Under Test (SUT). In this work, the mutants are automatically generated by injecting faults in the original program and they are used to identify the impact over the other components in the SUT. The generated mutants are executed using a suite of test cases to identify their impact over the other components of the system. Based on their impact level, the critical components are identified and then rigorously verified using the test cases generated using Genetic Algorithm (GA) based approach with branch coverage and mutation score based test adequacy criterion as the fitness functions. For unit testing, the branch coverage based test case adequacy criteria is used to test whether all the branches have been covered or not. In integration testing, the components are tested against the test cases generated using GA by means of identifying the execution trace of each method and each intermediate results is compared against the expected output stored in the repository. The testing tool named as “Impact Arbiter” developed as part of this work has carried out all these tasks in an automated way and has generated various graphs for the purpose of visualization.

Keywords:
Critical Components, Impact Analysis, Mutation Analysis, Genetic Algorithm (GA), Branch Coverage Value (BCV)

1. INTRODUCTION

Software testing is an important phase of Software Development Life Cycle (SDLC) [13]. Since exhaustive testing of software is not possible, but as per the Pareto’s principle [14], only 20% of the components have higher impact than the remaining components, and therefore we need to monitor and rigorously test only those 20% of the components during testing. This will not only improve the quality but also will reduce the testing cost and time. Hence there is a need to identify the critical components and apply rigorous testing on them prior to release. Hence, this approach has proposed a novel approach to identify the impact level of the 20% components which cause 80% of the problems after delivery.

The proposed approach applies a novel methodology namely mutant based component impact analysis. This is achieved by artificially injecting faults to the component and then identifying the impact level of the faulty component over the other components. As fault is an external, incorrect behaviour of a program that leads to incorrect result or failure, here faults are introduced by applying the Offutt mutation operators [15], [24]. It is said to be Arithmetic Operator Replacement (AOR), Relational Operator Replacement (ROR), Unary Operator Inclusion (UOI), Logical Connector Replacement (LCR), Absolute Keyword Inclusion (ABS) and it used to make change to the components automatically [5].

The fault identification is done by means of executing the mutants over test cases. The next task is to identify the execution trace to find their impact over the other components. Then, based on the outcome of the results, a complete impact analysis is performed by examining the impact level of each of the faulty versions of the component over the other components [1]. In this research work, the impact level is classified as catastrophic, critical, marginal and minor [1]. The higher impact may result from flawed procedures that cause catastrophic effects. Based on this mutation-based impact analysis, the overall impact level of each component is identified. The components which have higher impact are called as critical components.

Once the critical components are identified, they are verified rigorously using the test cases generated using GA. The algorithm begins with a random set of test cases called as individuals. The test cases are chosen based on the mutation score which have higher fault adequacy generated based on random test cases. The test cases generated using Genetic Algorithm is used in unit testing and integration testing to test each of the components in the system. In unit testing, the code instrumentation is done for all the methods of the SUT to monitor the execution of each branch and related information. The generated test cases using GA are executed against each component to monitor the execution of each branch of the method. If branch coverage reaches above 98%, the unit testing process is said to be completed. Otherwise, the remaining set of test cases will be generated based on the coverage value using GA until the fitness value reaches above 98%. In the case of integration testing, the components are tested with the test cases generated using GA by means of identifying execution trace of each method and its intermediate result is compared against expected output stored in the repository.

The various reports and graphs [14] which are generated as part of this research work show a clear picture about the overall view of the SUT against impact analysis, test cases efficiency, cost of testing process and so on. As an outcome of this approach, the critical components are identified using and their impact level and are verified using Genetic algorithm based test case generation and optimization.

2. RELATED WORK

P. K. Suri et al. [9] have designed a simulator to identify critical components in a component based system (CBS). In their work, they have used Component Execution Graph (CEG) which is a network representation of the CBS. In this graph they have assigned a weight for each execution link which is actually the weight of the destination component. Weight ‘W’ of an execution path is the sum of all ‘Wi’s of execution links along that path. They have assumed that each execution path with maximum weight is called the “Critical Execution Path” and execution links falling along that path are all critical execution links.
links and all the components falling on this path are the critical components.

Zhou et al. [10] have analyzed Object-Oriented design metrics for predicting high and low severity faults. Their results are based on public domain NASA data set. In their study they stated that, design metrics such as CBO, WMC, RFC, and LCOM metrics were statistically significant to find fault-proneness of classes across fault severity and the prediction capabilities of these metrics depend on the severity of faults. Also, they insisted that, the design metrics are better predictors of low severity faults in classes than high severity faults.

Shatnawi et al. [11] have experimented the effectiveness of software metrics in identifying error-prone classes in post-release software evolution process. In their study they have tested software metrics such CBO, CTA (Coupling through Abstract Data Type), CTM (Through Message Passing), RFC, WMC, DIT, NOC etc., They proved that software metrics are used to identify error prone classes even after the software release evolution process.

Ray et al. [12] has proposed an analytical method for reliability-based risk assessment of a software system at the architectural level, which is based on UML sequence diagram and state chart diagram. In their work they have considered risk associated with various states of a component, message criticality and business risk to identify high risk components.

Goseva et al. [13] have applied UML and the commercial modelling environment Rational Rose Real Time (RoseRT) to obtain UML model statistics. In their approach, for each component and connector in software architecture, a dynamic heuristic risk issue is obtained and severity is assessed supported risk analysis. Then a Markov model is constructed to obtain scenario’s risk factors. The risk factors of use case and the overall system risk factors are estimated using the scenarios risk factors.

Lanubile et al. [16] has proposed to identify the software complexity measure using the modeling techniques like principal component analysis, layered neural networks, discriminant analysis, logical classification models, logistic regression, and holographic networks.

Jacek et al. [17] proposed the approach that identifies the fault prone components based on the risk assessment of impact of such post-release change fixes. The present their experiences with CRANE: a failure prediction, change risk analysis and test prioritization system at Microsoft Corporation that leverages existing research for the development and maintenance of Windows Vista. They identify and evaluate the impact and risk of a change is to understand the exact extent of changes.

Ohlsson et al. [18] has proposed using design metrics to identify the fault prone components with emphasis on the use of appropriate statistical methods to support quality improvement of software and they had taken Ericson Telecom AB as case study.

Birt et al. [19] has proposed using Genetic algorithm to predict faulty classes and identify accuracy of fault proneness prediction using Object oriented metrics.

As part of our previous work we published the following paper:

Mala and Praba [15] has proposed a novel regression testing methodology to identify and verify critical components, it can be done by means of dependability metrics and internal complexity metrics to calculate criticality measure and test those components using regression testing.

D. Jeya Mala and K. Sabari Nathan [23] proposed mutation based component impact analysis to identify the critical components in the SUT.

D. Jeya Mala and S. Balamurugan [24] used sensitivity and severity metrics to calculate the criticality measure of the SUT and to identify the critical components.

D. Jeya Mala and A. Jalila used the Object Constraint Language (OCL) Formal Specification design metrics to calculate the complexity of each component and based on the outcome, the critical components are identified in the SUT [25], [26].

3. PROPOSED WORK

The Software under Test (SUT) refers to any Java oriented real time system. Once it is given us input, the next task is to extract all the components, classes and methods in it. Here we undertook various case studies to verify this proposed approach. The following steps are involved:

Step 1: Extraction of SUT
Step 2: Perform Mutation based Impact Analysis to identify Critical Components.
Step 3: Critical Component Verification using Genetic Algorithm based Test Case Generation and optimization
Step 4: Unit and integration testing using GA
Step 5: Experimentation results of proposed approach
Step 6: Comparative analysis with Random testing.

From the above steps are categorized into the following phases:

i. Identification of Critical Components using Mutation based Impact Analysis.
ii. Testing of Critical Components using GA based Test Case Generation and Optimization.

4. PHASE 1- IDENTIFICATION OF CRITICAL COMPONENTS

4.1 MUTANTS GENERATION

Here we generate mutants for each component in the SUT. The faults are injected using the set of five mutation operators (i.e., ABS, AOR, ROR, LCR, and UOI) which would be more effective as all the 22 mutation operators of Mothra [8], a mutation-testing tool.

Abbreviation	Description	Example
ABS	Absolute Value	x = 2*abs(a);
	Insertion	x = 2*a;
AOR Arithmetic Operator Replacement \[x = a + b; \rightarrow x = a \times b; \]

LCR Logical Connector Replacement \[x = a\&\&b \rightarrow x = a\|b; \]

ROR Relational Operator Replacement \[\text{if}(a > b) \rightarrow \text{if}(a < b) \]

UOI Unary operator Inclusion \[x = a + b; \rightarrow x = a + -b; \]

These five mutation operators have proved as sufficient mutation operators to generate a set of first order mutants [4].

In this step, we create mutants for each method in a component. Operators in each method can be inserted or replaced by Offutt operators which are mentioned in Table 1. In Fig. 1 the `checkBal()` method is taken from the “CheckBalance” component and changed the AOR mutation operator to replace `+` to `-` and the mutant is stored in the mutants list.

4.2 MUTATION ANALYSIS

Testing contains three main phases: test case generation, test execution, and test evaluation. A test case has components that describe an input, action or event under which a tester will determine if a feature of a SUT is working correctly or not [14].

Test case generation is the process of generating a collection of test cases which are applied to the SUT [14]. Here we generate random test data for each parameter in a method. The procedure is repeated for all components in the SUT. Apply the test cases to the component as a unit to rigorously cover it by means of executing the original and the mutants. Based on these results, the mutation score (MS) is evaluated and is used to identify the test case adequacy. The mutation score (MS) always lies between 0 and 1. If MS (T) = 0, the test case cannot distinguish any mutants and test cases is not efficient [15]. If MS (T) = 1 then test case distinguishes all mutants except those equivalent mutants and the test case is adequate to be applied in impact analysis [1]. The score is calculated based on method-wise, components-wise and application-wise mutation score in the SUT [1].

The following example shows the sample code, test cases and the execution results obtained after test case execution have been shown in Fig.2.

Fig. 2. Mutation Score Calculation

Application-wise Mutation Score:

\[
\text{MS} (T) = \frac{\mid D \mid}{(\mid D \mid + \mid L \mid)}
\]

where,

\[
\text{MS} (T) – \text{Mutation Score for test case T}
\]
D - No of Distinguished Mutants i.e. the mutants killed by the Test case T
L - No of Live Mutants i.e. the Test case T which could not kill the mutants

Method-wise Mutation Score:

\[
MS_m(T) = \frac{|D_m|}{|D_m|+|L_m|}
\]

where,

\[
MS_m(T) - \text{Mutation Score for Method-m against test case T}
\]

\[
D_m - \text{No of distinguished mutated methods for Method-m. i.e., the mutant for Method-m is killed by test case T}
\]

\[
L_m - \text{No of live mutated methods for Method-m. i.e., the mutant for Method-m not killed by Test case T}
\]

Component-wise Mutation score:

\[
MS_c(T) = \frac{|D_c|}{|D_c|+|L_c|}
\]

where,

\[
MS_c(T) - \text{Mutation Score for Component-c against Test case T}
\]

\[
D_c - \text{No of distinguished mutated components for Component-c i.e. the mutant for Component-c is killed by Test case T}
\]

\[
L_m - \text{No of live mutated components for Component-c i.e., the mutant for Method-m not killed by Test case T}
\]

4.3 IMPACT ANALYSIS

The Coupling or dependency is the degree to which each component depends on other modules [14]. Cohesion means the degree to which the elements of a component work together to produce a single functionality. In this approach, all the connected components for each component are extracted based on cohesion and coupling measure among components [1]. The interconnection may be in the form of inheritance or message passing over other components [14]. The efficient test cases are chosen based on mutation score and execute over mutated components to identify the impact level of each component based on the execution trace, to know how far it affected over connected components in a system [1]. The mutants are generated based on Step 3.3.1. The impact is categorized as catastrophic, critical major and minor [1]. This categorization is explained below:

4.3.1 **Catastrophic:**

The outcome of a mutated method throws an exception or decides the control flow of the client which calls this method is called catastrophic [1].

```java
public class Customer {
    public String validate(String acno) {
        if (acno.length() > 0) { //Mutated Statement
            return null;
        }
        return atypeno;
    }
}
```

4.3.2 **Critical:**

For example, the outcome of the mutated ‘validateAcc ()’ method of “Customer” class is used in the decision statement of the “CheckBalance” component’s ‘validate ()’ method. Here, the result of the ‘validate’ method will generate erroneous results due to the fault in the ‘validateAcc ()’ method and the entire application will collapse. Similarly, if the ‘validateAcc ()’ method throws an exception because of mutation means, the entire application will be terminated. Hence, the components that have this type of impact level are called as higher critical components.

4.3.3 **Marginal :**

If the outcome of a mutated method is in computational statement of a client, then the component that has this type of method is said to have the impact level as ‘critical’ [1].

```java
public class CheckBalance {
    public int validate(String ano, String at) {
        //-------code-------
        Customer cus = new Customer();
        if (cus.validateAcc(ano) != null) {
            //-------code-------
        }
    }
}
```

Fig.3. Mutated method used in decision statement – Catastrophic

Fig.4. Mutated method used in the computational statement

For example, the outcome of mutated “balanceEnquiry(”) method of “Transaction” class is in computational statement; hence the result of the method will generate erroneous results. So the impact level of component is critical.
public class Account {
 public String accountDetails(String a) {
 if(r.next()) {
 SI=p*n*r*100 // Mutated Statement
 }
 return SI.toString();
 }
 public class Statements {
 public void display(String ano) {
 Account report = new Account();
 for(int i=0;i<n;i++)
 report.accountDetails(i);
 }
 }
}
Fig.5. Mutated method used inside a looping statement

The mutated “accountDetails()” method of the “Account”
class is called in looping statement; the result of the function will
generate erroneous report. So the impact level of the component
is marginal.

4.3.4 Minor:
If the outcome of a method is called only a few times in other
components, then that component is said to have minor impact
level.

public Class CheckBalance{
 public int CheckBal(String ano, String at, int ba) {
 int j = Validate(accno, atp);
 if (j > 1) {
 // Mutated Statement
 }
 return value;
 }
}
Fig.6. Mutated method simply invoked a component

For example, the mutated “checkBal()” method of the
“CheckBalance” class is called in “Deposit” class, and the result
of the function would give erroneous answers but impact level is
very low compared to other categories. So the impact level of
the component is minor.

5. PHASE 2 - CRITICAL COMPONENTS
VERIFICATION

5.1 GA BASED TEST CASE GENERATION AND
OPTIMIZATION
This novel approach uses a genetic algorithm for an
optimization heuristic that minimizes the normal processes, such
as selection and mutation in natural advancement. It begins with
a random set of individuals (chromosomes) and through a
crossover and mutation operations, gradually evolves the
population toward an optimal solution based on the mutation
score and the branch coverage value.

5.1.1 Pseudo Code:

i. Instrumentation of code is done for all components in the
SUT
ii. Randomly initialize population (t)
iii. Determine fitness of population based on the mutation
score (t)
iv. Repeat
 a. Select parents from population (t)
 b. Perform crossover and mutation on parents
 creating population (t+1)
 c. Determine fitness of population based on the
 mutation score and the branch coverage value (t+1)

Until best individual is good enough.

5.1.2 Crossover:
Choose a random point on the two individuals which act as
parents. Split individuals at this crossover point. Create individuals
by means of exchanging test cases which act as parents.

Example:
Test Case1: {1000,"xxxx","FD", 1599}
Test Case2: {1010,"yyyy","CUR", 10009}
Crossover point: 2
Test Case1: {1000,"xxxx","CUR", 10009}
Test Case2: {1010,"yyyy","FD", 1599}

5.1.3 Mutation:
Choose any test data in a test case which act as a parent. Mutate
the test data using any one of bitwise or arithmetic operators for
numeric data and random word for string data and so on.

Example:
Test Case: {1000,"xxxx","FD", 30}
Mutation point: 4
Test Case: {1000,"xxxx","FD", 31}

5.1.4 Fitness function:
The Generated test cases using crossover and mutation are
executed against both original and mutant. Finally, the results are
assessed and test adequacy is calculated using the following
formulae.

Mutation Score
The Mutation Score is calculated using the above formulae
(1, 2, 3),
\[MS(T) = (|DM| / |LM|) \times 100 \quad (4) \]

where,
- MS(T) – Mutation Score for Test case T
- DM – Distinguished Mutant - if results are different
- LM – Live Mutant - if the results are same i.e. Test case cannot reveal the error

Branch Coverage
\[BCV (T) = (|BC| / |TB|) \times 100 \quad (5) \]

where,
- MS (T) – Branch Coverage Value for Test case T
- BC – Number of branches covered by Test case T
- TB – Total number of branches in the component

5.2 UNIT TESTING USING GA

In unit testing, the code instrumentation is done for all methods of the SUT to monitor the execution of each branch for branch coverage based fitness function for individuals. The initial population is a random set of individuals. From them, the best two parent test cases are chosen based on the higher fitness values. The selected individuals are passed to crossover and mutation to generate further test cases and then evaluated based on the branch coverage value and the mutation score. Based on the fitness value, the remaining set of test cases will be generated and the test case generation will be continued until the fitness value reach above 98%.

```java
public class SavingAcc extends Account {
    String an, at, sacn;
    public int ViewBalance(String ano, String atp) throws Exception {
        File file1 = new File("src//instrumented//ibsm1.SavingAcc.ViewBalance.txt");
        FileOutputStream fos = new FileOutputStream(file1, false);
        fos.write("1\n".getBytes());
        ------------------------Code------------------------
        if (ano.length() == 0 || atp.length() == 0) {
            fos.write("2\nB1\n".getBytes());
            ------------------------Code------------------------
            return 0;
        } else {
            fos.write("3\nB2\n".getBytes());
            ------------------------Code------------------------
            while (r.next()) {
                fos.write("4\nB3\n".getBytes());
                b = r.getInt(1);
            }
            ------------------------Code------------------------
            return b;
        }
    }
}
```

Example:

Parent Method is starting (“Class name”)
Child Method1 is starting (“Class name”)
Grand Child Method1 is starting (“Class name”)
Grand Child Method1 is ending (“Class name”, “return value”)
Child Method1 is ending (“Class name”, “return value”)
Child Method2 is starting (“Class name”)
Child Method2 is ending (“Class name”, “return value”)
Parent Method is ending (“Class name”, “return value”)

5.3 INTEGRATION TESTING USING GA

In Integration testing, the code instrumentation is done for all methods of the SUT and components are tested against the efficient test cases generated using GA by means of identifying the execution trace of each method and each intermediate result is compared against the expected output in the repository and it shows the pair-wise class name; also, it shows the status of intermediate results.

Class Name	Method Name	Pair wise Name	Status
CheckBalance	CheckBal()	Month	Pass
CheckBalance	CheckBal()	Customer	Pass
CheckBalance	CheckBal()	Statements	Pass
CheckBalance	CheckBal()	Year	Pass
CheckBalance	CheckBal()	CheckBalance	Fail
CheckBalance	CheckBal()	CheckBalance	Pass
CheckBalance	Validate()	CheckBalance	Pass

Table 2. Integration Testing Results for sample component

Table 3. Case Studies Under Taken

Sl. No	Test Problems	Test Object No.
1	Blood Bank	AS1
2	Banking Application	AS2
3	Library	AS3
4	Hospital	AS4
5	Apache.ant.1.2 [20]	RT1
6	JWALK [21]	RT2
7	Flaka [22]	RT3

Fig. 7. Branch coverage based test adequacy assessment
6.2 SAMPLE CASE STUDY 1 – REAL TIME SYSTEM

The Table 4 shows impact analysis for real time system oriented sample case study, Apache Ant1.2 [20]. Based on the impact analysis we have extracted critical components which are listed in Table 5.

Table 4. Impact Analysis for Apache-Ant 1.2

Class Name	Class Affect	Impact
junit3.AntUnitTestCase	junit4.AntUnitSuiteRunner	Minor
junit3.AntUnitSuite	junit3.AntUnitTestCase	Minor
junit3.AntUnitSuite	junit4.AntUnitSuiteRunner	Minor
AntUnitScriptRunner	AntUnit	Catastrophic
AntUnitScriptRunner	junit3.AntUnitSuite	Marginal
LogContent	LogContent	Critical
LogContains	LogContains	Critical
ResourceExists	Exception*	Catastrophic
LogCapturer	LogContent	Marginal
LogCapturer	LogContains	Marginal
junit3.MultiProjectDe	junit3.AntUnitSuite	Minor
muOutputSteam		
AssertTask	Exception*	Catastrophic
AntUnit	Exception*	Catastrophic

*Because of mutation it throws an Exception and it is also called as Show-Stoppers’

Table 5. Critical Components for Apache Ant

Critical Components
.AntUnitScriptRunner
ResourceExists
AssertTask
AntUnit

6.3 SAMPLE CASE STUDY 2 – APPLICATION SOFTWARE

The Table 6 shows impact analysis for application oriented sample case study, Banking system. Based on the impact analysis we have extracted critical components which are listed in Table 7.

Table 6. Impact Analysis for Banking System

Class Name	Class Affect	Impact
Account	Admin	Critical
Admin	User	Minor
CheckBalance	Deposit	Minor
CheckBalance	Withdraw	Minor

CheckBalance | CurrentAcc | Minor |
CheckBalance | Transaction | Catastrophic|
CheckBalance | Account | Minor |
CheckBalance | OnlineServices| Minor |
ChequeBook | User | Critical|
ChequeBook | Exception | Catastrophic|
CurrentAcc | Account | Minor |
Customer | CheckBalance | Catastrophic|
Deposit | FundTransfer | Catastrophic|
FixedAcc | Account | Minor |
FundTransfer | Transaction | Minor |
Month | Customer | Minor |
OnlineServices | ProfileUpdate| Catastrophic|
ProfileUpdate | User | Minor |
ProfileUpdate | ChequeBook | Minor |
RecurringAcc | Account | Minor |
SavingAcc | Account | Minor |
Statements | Year | Marginal|
Statements | .Month | Minor |
Transaction | Account | Minor |
User | Admin | Critical|
User | Transaction | Minor |
Withdraw | FundTransfer | Catastrophic|
Year | CheckBalance | Minor |

Based on the outcome of impact analysis, the higher critical component is extracted and listed in Table 7.

Table 7. Critical Components for Banking Application

Critical Components
Deposit
CheckBalance
OnlineServices
Customer
Deposit
Withdraw
ChequeBook

As per the Infosys White Paper “Realizing Efficiency and Effectiveness in software through a Comprehensive metrics model” [14], the following graphs have been generated.

6.3.1 Connected Components Graph:

It shows the cohesion and coupling measure of all components and it also shows its connected components which have been extracted as in Step 4.3. It has been shown in Fig.10.
6.3.2 Show-Stopper’s Trend Graph:

A Show-Stopper is an exception thrown while during execution, which generally has higher impact thereby making software dysfunctional. Tracking show-stoppers is very important and hence we have identified and representation in the form of the graph as shown in Fig.9.

6.3.3 Impact Level Graph:

By implementing Step 4.3 the components’ impact value has been obtained. Based on the impact level, the higher impact level components are extracted and represented in the graph. This graph has showed the complete set of critical components and their impact value. The graph depicts the critical components and their overall impact level in the SUT as shown in Fig.10.

6.3.4 Cost of Testing Component wise Graph:

The objective of this graph is to identify software components having intensive test effort areas and identify the areas that need improvement actions. The graph in Fig.11 is generated using the following formulae.

\[
\text{Cost of each component} = \text{No of test cases} \times \text{Test case cost} \times \text{impact value}
\]

Cost of Testing Component-Wise

![Cost of Testing Component-Wise](image)

Fig.11. Cost of Testing Component-wise Graph

6.3.5 Defects Detected % trends Graph:

Defect Removal Efficiency (DRE) of each component is used to determine the effectiveness of Genetic Algorithm Test case defect removal efforts. It serves as an oblique indicator of the quality of the product. It measure the no of defects reported during mutation and how it reveal by the Genetic Algorithm Test case during each cycle. The higher percentage of DRE is the most positive impact on component quality. This is because it represents the ability of Genetic Algorithm to kill mutants.
highest possible value of DRE is “1” or “100%”. The following formulae are used to calculate DRE. It is shown in Fig.12.

\[
DRE = \left(\frac{|TM|}{|AM|} \right) \times 100
\]

where,

- TM = Total number of mutant components
- AM = No of Mutants revealed by GA in each cycle

6.3.6 **Overall Test Coverage Graph:**

The graph depicts the amount of component/test cases actually covered branches successfully via the total number of components/test cases of the SUT. It is an important factor to measure the effectiveness of the testing process. The Fig.13 shows the effectiveness of the testing process of the SUT.

6.3.7 **Component-wise Test Coverage Graph:**

The graph depicts the amount of test cases actually covered branches successfully via the total number of test cases of each component. It is an important factor to measure the effectiveness of the testing process for each component. The Fig.14 shows the effectiveness of the testing process of components.

6.4 FURTHER CASE STUDIES AND EXPERIMENTATION RESULTS

We are taken the above case studies and executed over our proposed approach and the following results are obtained while during testing of critical components.

Sl. No.	Test Problems	BCV (%)	MS	Execution Time in seconds	Total no. of Test Cases
1	AS1	96%	0.96	99.97	6155
2	AS2	98%	0.99	1167.288	1125
3	AS3	98%	0.99	63.28	1353
4	AS4	99%	0.95	365.47	736
5	RT1	97%	0.97	2354.843	1509
6	RT2	96%	0.96	3453.78	2974
7	RT3	97%	0.97	4693.756	3225

*The case studies contains equivalent mutants.

*The case studies contains infeasible branches.
It indicates that the performance of GA is superior and takes only less time for to completely test the critical components. It takes only 70% of test cases when compared to test cases generated using Random. Execution time is also reduced. The coverage value and mutation score of GA are improved than coverage value and mutation score of random based test cases.

The Fig.15 shows that more number of test cases generated using Random are failed in the case studies.

The Fig.16 shows only few test cases of GA are failed in the case studies, because those branches are infeasible branches.

The Fig.17 shows that the non-linear optimization of Random achieves same mutation score for more number of times and it cannot reach 0.98.

The Fig.18 shows the local optimization of Genetic Algorithm and reaches the maximum mutation score.

7. CONCLUSION

The proposed approach that can automatically generate mutants to identify the critical components based on the impact level of the components. The test cases are then executed to both original and mutants, based on the results, mutation score is calculated. The mutation score is test adequacy criteria to identify the impact levels of all the components over its connected components and based on the impact level the critical components are identified and it is verified using GA by means of unit testing and integration testing. The optimized test cases
are stored in the repository for future use. During the enhancement of software, the tester can use these test cases to test the software up to the underlined-level. Finally, based on the results, the efficiency of GA and Random are compared and represented in the form of graphs to make an assessment about the proposed approach. In future we will apply other test case optimization techniques like Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and so on, for a comparative study.

ACKNOWLEDGEMENT

This research paper is part of the UGC Major Research Project supported by University Grants Commission, New Delhi, India.

REFERENCES

[1] D. Jeyamala, K. Sabarinathan, “Critical Components Identification using Mutation based Components Impact Analysis”, International Journal of Computer Science and Informatics, Vol. 3, No. 2, pp. 24 - 33, 2013.

[2] D. Jeyamala, S. Balamurugan, “Fault-prone Components Identification for Real-time Complex systems based on Criticality Analysis”, International Journal of Computer Science and Informatics, Vol. 3, No. 2, pp. 17 - 23, 2013.

[3] A. Jalila, D. Jeyamala, S. Balamurugan and K. Sabarinathan, “OCL formal Specification based Metrics a measure of complexity and fault proneness”, International Journal of Computer Science and Informatics, Vol. 3, No. 2, pp. 69 - 79, 2013.

[4] A. Jalila, D. Jeyamala, “Empirical evidence on OCL formal specification-based metrics as a predictor of fault-proneness”, ACM SIGSOFT Software Engineering Notes Vol. 38, No. 5, pp. 1 - 10, 2013.

[5] A. Jefferson Offutt, A. Lee, G. Rothermel, R.H. Untch and C. Zapf, “An experimental determination of sufficient mutation operators”, ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 2, pp. 99 -118, 1996.

[6] R. A. DeMillo and R. J. Martin, “The Mothra software testing environment user’s manual”, Software Engineering Research Center, Technical Report, 1987.

[7] P. K. Suri and Kumar Sandeep, “Simulator for Identifying Critical Components for Testing in a Component Based Software System”, International Journal of Computer Science and Network Security, Vol. 10, No. 6, pp. 250 -257, 2010.

[8] Zhou Yuming and Haretong Leung, “Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity Faults”, IEEE Transactions on Software Engineering, Vol. 32, No. 10, pp. 771 - 789, 2006.

[9] Raed Shatnawi and Wei Li, “The Effectiveness of Software Metrics in Identifying Error-Prone Classes in Post-Release Software Evolution Process”, Journal of Systems and Software, Vol. 81, No. 11, pp.1868 – 1882, 2008.

[10] Yu-Seung Ma, Jeff Offutt and Yong Rae Kwon, “MuJava: An Automated Class Mutation System”, Journal of Software Testing, Verification and Reliability, Vol. 15, No. 2, pp. 97 - 133, 2005.

[11] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelnoe, D.E.M. Nassar, H. Ammar and A. Mili, “Architectural Level Risk Analysis using UML”, IEEE Transactions on Software Engineering, Vol. 29, No. 10, pp. 946 – 960, 2003.

[12] Anthony J. H. Simons, “JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction”, Automated Software Engineering, Vol. 14, No. 4, pp. 369 – 418, 2007.

[13] Srinivasan Desikan and Gopalaswamy Ramesh, “Software Testing Principles and Practices”, Pearson Education, 2006.

[14] Roger S. Pressman, “Software Engineering: A Practitioner’s Approach”, McGraw Hill, 1997.

[15] Aditya P. Mathur, “Foundations of Software Testing”, Pearson Education, 2008.

[16] A. J. Offutt, G. Rothermel and C. Zapf, “An experimental evaluation of selective mutation”, Proceedings of the 15th International Conference on Software Engineering, pp. 100 – 107, 1993.

[17] D. J. Mala and M. R. Prabha, “Critical components identification and verification for effective software test prioritization”, Proceedings of the Third International Conference on Advanced Computing, pp. 181 – 186, 2011.

[18] F. Lanubile, A. Lonigro and G. Visaggio, “Comparing models for identifying fault-prone software components”, Proceedings of the Seventh International Conference on Software Engineering and Knowledge Engineering, pp. 312 – 319, 1995.

[19] Jacek Czerwonka, R. Das, N. Nagappan, A. Tarvo and A. Teterv, “Crane: Failure prediction, change analysis and test prioritization in practice experiences from windows”, Proceedings of the IEEE Fourth International Conference on Software Testing, Verification and Validation, pp. 357 - 366, 2011.

[20] N. Ohlsson, M. Helander and C. Wohlin, “Quality improvement by identification of fault-prone modules using software design metrics”, Proceedings of the IEEE Sixth International Conference on Software Quality, pp. 1 –13, 1996.

[21] James R. Birt and Renate Sitte, “Optimizing testing efficiency with error-prone path identification and genetic algorithms”, Proceedings of the IEEE Software Engineering Conference, pp. 106 – 115, 2004.

[22] Mitrabinda Ray and Durga Prasad Mohapatra, “A novel methodology for software risk assessment at architectural level using UML diagrams”, SETLabs Briefings, Vol. 9, No. 4, pp. 41 - 60, 2011.

[23] Mandeep Walla, “Realizing Efficiency and Effectiveness in Software Testing through Comprehensive Metrics Model”, White Paper, Infosys, 2012.

[24] http://cs.gmu.edu/~offutt/mujava.

[25] http://ant.apache.org/.

[26] http://workbench.haefelinger.it/flaka/.