Multiplicity of solutions for fractional $q(\cdot)$-laplacian equations

Rahmoune Abita 1 · Umberto Biccari 2,3

Received: 14 March 2022 / Accepted: 23 May 2023 / Published online: 29 July 2023
© Orthogonal Publisher and Springer Nature Switzerland AG 2023

Abstract
In this paper, we deal with the following elliptic-type problem

\[
\begin{align*}
\left\{
(-\Delta)^{s(q_{\cdot})} u + \lambda V u &= \alpha |u|^{p_{\cdot}-2} u + \beta |u|^{k_{\cdot}-2} u & \text{in } \Omega, \\
u &= 0 & \text{in } \mathbb{R}^n \setminus \Omega,
\end{align*}
\]

where $q(\cdot) : \overline{\Omega} \times \overline{\Omega} \to \mathbb{R}$ is a measurable function and $s(\cdot) : \mathbb{R}^n \times \mathbb{R}^n \to (0, 1)$ is a continuous function, $n > q(x, y) s(x, y)$ for all $(x, y) \in \Omega \times \Omega$, $(-\Delta)^{s(\cdot)}_{q(\cdot)}$ is the variable-order fractional Laplace operator, and V is a positive continuous potential. Using the mountain pass category theorem and Ekeland’s variational principle, we obtain the existence of at least two different solutions for all $\lambda > 0$. Besides, we prove that these solutions converge to two of the infinitely many solutions of a limit problem as $\lambda \to +\infty$.

Keywords
Fractional elliptic equation · Variable-order fractional Laplacian · Variational methods · Fractional Sobolev spaces

Mathematics Subject Classification
26A33 · 35R11 · 74G35

Rahmoune Abita and Umberto Biccari contributed equally to this work.
1 Introduction

In recent years, many authors have paid attention to the study of nonlocal fractional operators and related fractional differential equations. This is partially due to the large employment of these operators to model several phenomena such as ultra-relativistic limits of quantum mechanics, phase transition, population dynamics and game theory.

In this paper, we deal with the following elliptic equation for the fractional Laplace operator with variable order derivative involving variable exponent nonlinearities:

\[
\begin{aligned}
(-\Delta)^{s(q)}_{q(s)}u + \lambda Vu &= \alpha |u|^{p(s)-2} u + \beta |u|^{k(s)-2} u \quad \text{in } \Omega, \\
|\nabla u| &= 0 \quad \text{in } \mathbb{R}^n \setminus \Omega.
\end{aligned}
\] (1)

In (1), for all \(q(\cdot) : \Omega \times \Omega \rightarrow (1, +\infty) \) measurable and \(s(\cdot) : \mathbb{R}^n \times \mathbb{R}^n \rightarrow (0, 1) \) continuous, with \(n > q(x, y) s(x, y) \) for all \((x, y) \in \Omega \times \Omega \), we denote by \((-\Delta)^{s(q)}_{q(s)}\) the variable-order fractional \(q(\cdot)\)-Laplacian operator which is defined for any \(\varphi \in C_c^\infty(\Omega) \) and all \(x \in \mathbb{R}^n \) as

\[
(-\Delta)^{s(q)}_{q(s)} \varphi(x) = 2 \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^n \setminus B_\varepsilon(x)} \frac{\varphi(x) - \varphi(y)}{|x - y|^{n+q(x,y)s(x,y)}} |x - y|^{q(x,y)2} \ |\varphi(x) - \varphi(y)| \ dy,
\] (2)

where \(B_\varepsilon(x) \) is the ball of radius \(\varepsilon > 0 \) centered at \(x \in \mathbb{R}^n \). Moreover, \(V : \Omega \rightarrow [0, +\infty) \) is a continuous function and \(\alpha, \beta, \lambda > 0 \) are positive parameters. Finally, the variable exponents \(k(\cdot) \) and \(p(\cdot) \) of the nonlinear terms are given measurable functions on \(\Omega \).

The terminology variable-order fractional Laplace operator indicates that \(s(\cdot) \) and \(q(\cdot) \) are functions and not real numbers. This operator is then a generalization of the fractional Laplacian \((-\Delta)^s\), which corresponds to \(q(\cdot) \equiv 2 \) and \(s(\cdot) \equiv s \in (0, 1) \) constant, and of the \(q \)-Laplacian \(-\Delta_q\), which corresponds to \(q(\cdot) \equiv q \in (1, +\infty) \) constant and \(s(\cdot) \equiv 1 \).

System (1) can be cast as an extension to the fractional variable-order case of the second-order elliptic equation with variable growth conditions

\[
\begin{aligned}
-\Delta u + \lambda Vu &= \alpha |u|^{p(s)-2} u + \beta |u|^{k(s)-2} u \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\] (3)

which is obtained when considering \(s(\cdot) \equiv 1 \) and \(q(\cdot) \equiv 2 \). Equation (3) is a well-known model for electrorheological fluids [39], whose properties have been studied for instance in [2, 34, 35].

The research on fractional Laplace operators and their applications is very attractive and extended. In the last decade, many authors from different fields of the pure and applied mathematics have considered PDE models involving the fractional Laplacian and addressed many relevant questions such as existence, uniqueness and regularity of solutions [6, 10, 14, 16, 18, 19, 21, 40–42, 47–51, 54], spectral properties [26, 27, 33], or even more applied issues, for example control problems [4, 9, 11–13, 15, 43–46] or...
the description of several phenomena arising in finance and quantum mechanics \[5, 18, 31\].

On the other hand, results for the variable-order fractional Laplacian are limited and rare, and the literature on this operator is much less extended. We refer for instance to \[7, 8, 29, 53\] for some relevant bibliography. In particular, in \[53\], the authors considered equation (1) with \(q(\cdot) \equiv 2\) in a bounded domain of \(\mathbb{R}^n\) and, under some suitable assumptions, they showed that the problem admits at least two different solutions for all \(\lambda > 0\). Moreover, they proved that these two solutions converge to two solutions of a limit model as \(\lambda \to +\infty\), for which they also obtained the existence of infinitely many solutions.

The purpose of this paper is to extend the results of \[53\] to the operator (2). In particular, we will show also in this case the existence of two distinct solutions for all \(\lambda > 0\), and that these two solutions converge to two of the infinitely many solutions of a limit model as \(\lambda \to +\infty\).

Our results will be obtained by similar techniques as \[53\], based on Ekeland’s variational principle and a mountain pass theorem, which we suitably adapted to cover the case of a variable \(q(\cdot)\). Let us stress that some of these techniques had already been employed in our previous contributions \[36–38\], in the context of wave-type equations with variable-exponent nonlinearities.

This paper is composed by three sections in addition to the introduction. In Sect. 2, we recall the definitions of the variable-exponent Lebesgue and Sobolev spaces, and present some of their relevant properties. We also state there our main results. In Sect. 3, we prove our first result showing the existence of a least two distinct nontrivial weak solutions for (1). In Sect. 4, we focus on the case \(\lambda \to +\infty\) and prove the existence of infinitely many solutions for this limit problem. Finally, Sect. 5 is devoted to some conclusions and open problems.

2 Functional setting and main results

In this section, we describe the functional setting in which we shall work and state our main results.

Let us start by introducing the Lebesgue and Sobolev spaces with variable exponent. Here we refer mainly to \[23, 25, 28, 30\].

Throughout the rest of the paper we assume that \(\Omega\) is a bounded open domain of \(\mathbb{R}^n\), \(n \geq 1\), with smooth boundary \(\Gamma\). Moreover, in what follows, if not stated differently, we will always assume that \(p : \overline{\Omega} \to (1, +\infty)\) is a measurable function and we will denote

\[
p^- := \text{ess inf}_{x \in \Omega} \{ p(x) \} \quad \text{and} \quad p^+ := \text{ess sup}_{x \in \Omega} \{ p(x) \}.
\]

Let

\[
\mathcal{P}_{p(\cdot),\Omega}(v) := \int_{\Omega} |v(x)|^{p(x)} \, dx.
\]
We then define the variable-exponent space $L^{p(\cdot)}(\Omega)$ as

$$L^{p(\cdot)}(\Omega) = \left\{ v : \Omega \to \mathbb{R} \text{ measurable} : \varrho_{p(\cdot),\Omega}(v) < +\infty \right\},$$

which is a Banach space equipped with the Luxemburg norm

$$\|u\|_{L^{p(\cdot)}(\Omega)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} \, dx \leq 1 \right\}.$$

Variable-exponent Lebesgue spaces are similar to classical Lebesgue spaces in many aspects (see for instance [30]). In particular, it follows directly from the definition of the norm that

$$\|u\|_{L^{p(\cdot)}(\Omega)} < 1 (= 1; > 1) \iff \varrho_{p(\cdot),\Omega}(u) < 1 (= 1; > 1),$$

$$\|u\|_{L^{p(\cdot)}(\Omega)} > 1 \iff \|u\|^{p^{-}}_{L^{p(\cdot)}(\Omega)} \leq \varrho_{p(\cdot),\Omega}(u) \leq \|u\|^{p^{+}}_{L^{p(\cdot)}(\Omega)},$$

$$\|u\|_{L^{p(\cdot)}(\Omega)} < 1 \iff \|u\|^{p^{-}}_{L^{p(\cdot)}(\Omega)} \leq \varrho_{p(\cdot),\Omega}(u) \leq \max \|u\|^{p^{+}}_{L^{p(\cdot)}(\Omega)}. \quad (4)$$

Moreover, we have the following generalized Hölder’s inequalities.

Theorem 1 [30, Theorem 2.1] Let $p : \overline{\Omega} \to (1, +\infty)$ measurable and define the conjugate exponents

$$p'(x) = \frac{p(x)}{p(x) - 1} \quad \text{and} \quad (p')^{-} = \frac{p^{-}}{p^{-} - 1},$$

so that we have

$$\frac{1}{p(x)} + \frac{1}{p'(x)} = 1 \quad \text{and} \quad \frac{1}{p^{-}} + \frac{1}{(p')^{-}} = 1.$$

Then, for all functions $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p'(\cdot)}(\Omega)$, the following estimate holds:

$$\int_{\Omega} |u(x)v(x)| \, dx \leq \left(\frac{1}{p^{-}} + \frac{1}{(p')^{-}} \right) \|u\|_{L^{p(\cdot)}(\Omega)} \|v\|_{L^{p'(\cdot)}(\Omega)}.$$

Theorem 2 [22, Lemma 3.2.20] Let $p, q, r : \overline{\Omega} \to (1, +\infty)$ be measurable functions such that

$$\frac{1}{p(\cdot)} = \frac{1}{r(\cdot)} + \frac{1}{q(\cdot)}.$$

Then, for all functions $u \in L^{r(\cdot)}(\Omega)$ and $v \in L^{q(\cdot)}(\Omega)$, we have $uv \in L^{p(\cdot)}(\Omega)$ with

$$\|uv\|_{L^{p(\cdot)}(\Omega)} \leq C \|u\|_{L^{r(\cdot)}(\Omega)} \|v\|_{L^{q(\cdot)}(\Omega)},$$

where $C = C(n, p, q, r, \Omega)$.

\textcopyright Springer
Let us now introduce the variable order fractional Sobolev spaces. To this end, we shall make the following assumptions:

Hypothesis P: $p : \Omega \rightarrow (1, +\infty)$ is a measurable function satisfying:

$$2 < p^- \leq p(x) \leq p^+ < +\infty$$ \hfill (P1)

$$\exists M > 0 : |p(x) - p(y)| \leq \frac{M}{|\log |x - y||} \text{ for all } x, y \text{ in } \Omega \text{ with } 0 < |x - y| < \frac{1}{2}.$$ \hfill (P2)

Hypothesis Q: $q : \overline{\Omega} \times \overline{\Omega} \rightarrow \mathbb{R}$ is a measurable function satisfying:

- q is symmetric, i.e., $q(x, y) = q(y, x)$ for all $(x, y) \in \overline{\Omega} \times \overline{\Omega}$, \hfill (Q1)

$$2 < q^- := \min_{\overline{\Omega} \times \overline{\Omega}} q(x, y) \leq q(x, y) \leq \max_{\overline{\Omega} \times \overline{\Omega}} q(x, y) =: q^+ < p^- < +\infty,$$ \hfill (Q2)

$$q((x, y) - (z, z)) = q(x, y), \text{ for all } (x, y), (z, z) \in \overline{\Omega} \times \overline{\Omega}. \hfill (Q3)$$

Hypothesis S: $s : \mathbb{R}^n \times \mathbb{R}^n \rightarrow (0, 1)$ is a measurable function satisfying:

- s is symmetric, i.e., $s(x, y) = s(y, x)$ for all $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$, \hfill (S1)

$$0 < s^- := \min_{\mathbb{R}^{2n}} s(x, y) \leq s(x, y) \leq \max_{\mathbb{R}^{2n}} s(x, y) =: s^+ < 1. \hfill (S2)$$

We then define the generalized fractional Sobolev space with variable exponents via the Gagliardo approach as follows

$$\mathcal{H}^s(\Omega) = H^{p(\cdot), q(\cdot), s(\cdot)}(\Omega) = \left\{ u \in L^{p(\cdot)}(\Omega) : [u]_{q(\cdot), s(\cdot), \Omega} < +\infty \right\},$$

where

$$[u]_{q(\cdot), s(\cdot), \Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^{q(x, y)}}{\lambda} \frac{dx \, dy}{|x - y|^{n + q(x, y)s(x, y)}} < 1 \right\}.$$
is the corresponding variable exponent Gagliardo seminorm. Then, \(\mathcal{H}^{s(\cdot)}(\Omega) \) equipped with the norm

\[
\| u \|_{\mathcal{H}^{p(\cdot)}(\Omega)} = \| u \|_{L^{p(\cdot)}(\Omega)} + \| u \|_{q(\cdot),s(\cdot),\Omega},
\]

is a Banach space.

Define now \(\mathcal{H}^{s(\cdot)}_{0}(\Omega) = H^{p(\cdot),q(\cdot),s(\cdot)}_{0}(\Omega) \) as the linear space of Lebesgue measurable functions \(u : \mathbb{R}^n \to \mathbb{R} \) such that \(u \in H^{p(\cdot),q(\cdot),s(\cdot)}(\Omega) \) with \(u = 0 \) in \(\mathbb{R}^n \setminus \Omega \). Then, \(\mathcal{H}^{s(\cdot)}_{0}(\Omega) \) is a Banach space with the norm endowed by \(\mathcal{H}^{s(\cdot)}(\Omega) \). Moreover, we have the following result.

Proposition 3 Let \(p(x), q(x, y) \) and \(s(x, y) \) be continuous variable exponents. Assume that

\[
n > s^- q(x, y) \quad \text{for all} \ (x, y) \in \overline{\Omega} \times \overline{\Omega}, \quad (5)
\]

\[
p(x) > q(x, x) \quad \text{for all} \ x \in \overline{\Omega}. \quad (6)
\]

Let \((P1), (P2), (Q1), (Q2)\) and \((Q3)\) be satisfied. Assume that \(r : \overline{\Omega} \to (1, +\infty) \) is a continuous function such that

\[
q^*(x) := \frac{\max q(x, x)}{n - s^- q(x, x)} > r(x), \quad \text{for all} \ x \in \overline{\Omega}. \quad (7)
\]

Then, the following facts hold:

1. There exists a positive constant \(C = C(n, p, q, r, s, \Omega) \) such that for every \(v \in \mathcal{H}^{s(\cdot)}(\Omega) \) we have

\[
\| v \|_{L^{r(\cdot)}(\Omega)} \leq C \| v \|_{\mathcal{H}^{s(\cdot)}_{0}(\Omega)},
\]

i.e. \(\mathcal{H}^{s(\cdot)}_{0}(\Omega) \) can be continuously embedded into \(L^{r(\cdot)}(\Omega) \) for any \(r \in (1, q^*) \).

2. The embedding \(\mathcal{H}^{s(\cdot)}_{0}(\Omega) \hookrightarrow L^{r(\cdot)}(\Omega) \) is compact.

3. When one considers functions \(u \in \mathcal{H}^{s(\cdot)}_{0}(\Omega) \) that are compactly supported inside \(\Omega \), the embedding’s \(\mathcal{H}^{s(\cdot)}_{0}^{+}(\Omega) \hookrightarrow \mathcal{H}^{s(\cdot)}(\Omega) \hookrightarrow \mathcal{H}^{s(\cdot)}_{0}^{-}(\Omega) \) are continuous.

Note that, When \(r(x) \leq p(x) \) for every \(x \in \overline{\Omega} \) the principal inequality in the main proposition, i.e., \(\| u \|_{L^{r(\cdot)}(\Omega)} \leq C \| u \|_{\mathcal{H}^{s(\cdot)}_{0}(\Omega)} \), trivially holds. Hence, our results are significant when \(p(x) < r(x) \) for some points \(x \) inside \(\Omega \).

Proof The proof will be organized in three steps, one for each different result we stated. In particular, in Step 1, we will show that \(\mathcal{H}^{s(\cdot)}_{0}(\Omega) \) can be continuously embedded into \(L^{r(\cdot)}(\Omega) \) for any \(r \in (1, q^*) \). In Step 2, we will show that this embedding is compact. Finally, in Step 3, we will show that when one considers functions \(u \in \mathcal{H}^{s(\cdot)}_{0}(\Omega) \) that are compactly supported inside \(\Omega \), the embedding \(\mathcal{H}^{s(\cdot)}_{0}^{+}(\Omega) \hookrightarrow \mathcal{H}^{s(\cdot)}(\Omega) \hookrightarrow \mathcal{H}^{s(\cdot)}_{0}^{-}(\Omega) \) are continuous.
Step 1. First of all, by definition of s^- and using (5) and (7) we have that there exists a constant $k_1 > 0$ such that

$$\frac{nq(x, x)}{n - s(-)q(x, x)} - r(x) \geq k_1 > 0 \quad \text{for all } x \in \overline{\Omega}.$$

Moreover, by (6) we have the existence of a second positive constant k_2 such that

$$p(x) - q(x, x) \geq k_2 > 0.$$

Thus, there exists a constant $\varepsilon > 0$ and K disjoint hypercubes B_i such that $\Omega = \bigcup_{i=1}^{K} B_i$ and $\text{diam}(B_i) < \varepsilon$, that verify

$$\frac{nq(z, y)}{n - s(z, y)q(z, y)} - r(x) \geq \frac{k_1}{2},$$

$$p(x) \geq q(z, y) + \frac{k_2}{2},$$

(8)

for every $x \in B_i$ and $(z, y) \in B_i \times B_i$. Let

$$s_i = \inf_{B_i \times B_i} s(z, y), \quad q_i = \inf_{B_i \times B_i} (q(z, y) - \delta) \quad \text{and} \quad q_i^* = \frac{nq_i}{n - s_i q_i}.$$

From (8) and the continuity of the associated exponents, we can pick $\delta = \delta(k_1)$, with $q_- - 1 > \delta > 0$, such that

$$\frac{nq_i}{n - s_i q_i} \geq r(x) + \frac{k_1}{2} \quad \text{for all } x \in B_i \text{ and } n > s_i q_i,$$

$$p(x) \geq q_i + \frac{k_2}{2} \quad \text{for all } x \in B_i.$$

Therefore we can employ the Sobolev embedding theorem for constant exponents (see [1, Theorem 5.4]) to get the existence of a suitable positive constant $C = C(n, q_i, s_i, \varepsilon, B_i)$ such that

$$\|u\|_{L^{q_i^*}(B_i)} \leq C \left(\|u\|_{L^{q_i}(B_i)} + [u]_{q_i, s_i, B_i} \right).$$

(9)

Let us now suppose that there exist three positive constants c_1, c_2 and c_3 such that

$$\sum_{i=0}^{n} \|u\|_{L^{q_i^*}(B_i)} \geq c_1 \|u\|_{L^{r}(\Omega)},$$

(10a)

$$\|u\|_{L^{p}(\Omega)} \geq c_2 \sum_{i=0}^{n} \|u\|_{L^{q_i}(B_i)},$$

(10b)

$$[u]_{q(\cdot), s(\cdot), \Omega} \geq c_3 \sum_{i=0}^{n} [u]_{q_i, s_i, B_i}.$$

(10c)
Then, from (9) and (10a)–(10c) we can conclude that
\[
\|u\|_{L^r(\Omega)} \leq c_1 \sum_{i=0}^{n} \|u\|_{L^{q_i^*(B_i)}} \leq C \sum_{i=0}^{n} \left(\|u\|_{L^{q_i(B_i)}} + \|u\|_{L^{q_i^*(B_i)}} \right)
\]
\[
\leq C \left(\|u\|_{L^p(\Omega)} + \|u\|_{L^{q_i^*(\cdot,\cdot)\Omega}} \right) = C \|u\|_{H^{q_i^*(\cdot,\cdot)\Omega}},
\]
as we wanted to show. Hence, we only have to prove that (10a)–(10c) hold. Let us start with (10a). We have
\[
|u(x)| = \sum_{i=0}^{n} |u(x)| \chi_{B_i},
\]
which clearly implies that
\[
\|u\|_{L^r(\Omega)} \leq \sum_{i=0}^{n} \|u\|_{L^r(B_i)}. \tag{11}
\]
Moreover, notice that for each \(i\), \(q_i^* > r(x)\) if \(x \in B_i\). Then we can choose \(a_i(x)\) such that
\[
\frac{1}{r(x)} = \frac{1}{q_i^*} + \frac{1}{a_i(x)},
\]
and by Theorem 2 we have
\[
\|u\|_{L^r(\Omega)} \leq C \|1\|_{L^{q_i^*(B_i)}} \|u\|_{L^{q_i^*(B_i)}} = C \|u\|_{L^{q_i^*(B_i)}}.
\]
Thus, (10a) immediately follows from (11). Moreover, in a similar way and using that \(p(x) > q_i\) for \(x \in B_i\), we easily obtain also (10b). Finally, to prove (10c) let us fix
\[
U(x, y) = \frac{|u(x) - u(y)|}{|x - y|^{s_j}},
\]
and remark that
\[
[u]_{q_i, s_j, B_i} = \int_{B_i} \int_{B_i} \frac{|u(x) - u(y)|^{q_i}}{|x - y|^{n + q_i s_j}} \, dx \, dy = \int_{B_i} \int_{B_i} \left(\frac{|u(x) - u(y)|}{|x - y|^{s_j}} \right)^{q_i} \, dx \, dy \int_{B_i} \int_{B_i} \left(\frac{|u(x) - u(y)|}{|x - y|^{s_j}} \right)^{q_i} \, dx \, dy,
\]
\[
= \|U\|_{L^{q_i}(\mu, B_i \times B_i)} \|u\|_{L^{q_i^*(\cdot,\cdot)\Omega}} \|u\|_{L^{q_i^*(\mu, B_i \times B_i)}}
\]
\[
= C \|U\|_{L^{q_i^*(\mu, B_i \times B_i)}} \|u\|_{L^{q_i^*(\mu, B_i \times B_i)}} \tag{12}
\]
where Theorem 2 is used with \(b_i(x, y)\) such that
\[
1 = \frac{q_i}{q(x, y)} + \frac{q_i}{b_i(x, y)},
\]
but considering the measure in $B_i \times B_i$ given by

$$d\mu(x, y) = \frac{dx\,dy}{|x - y|^{\frac{n}{q_i}}}.$$

Now we aim to show that

$$\|U\|_{L^q(B_i \times B_i)} \leq C[u]_{q(-, s)(\cdot), B_i},$$

for every i. If this is valid, then we directly obtain (10c) from (12). Let $\lambda > 0$ be such that

$$\int_{B_i \times B_i} \left[\frac{|u(x) - u(y)|}{\lambda} \right]^{q(x, y)} \frac{dx\,dy}{|x - y|^{n+q(x, y)s(x, y)}} < 1.$$

Then

$$\int_{B_i \times B_i} \left(\frac{|u(x) - u(y)|}{\lambda} \right)^{q(x, y)} \frac{dx\,dy}{|x - y|^{n}} = \int_{B_i \times B_i} \left[\frac{|u(x) - u(y)|}{\lambda} \right]^{q(x, y)} \frac{dx\,dy}{|x - y|^{n+q(x, y)s(x, y)}} < 1.$$

Therefore

$$\|U\|_{L^q(\cdot, \cdot)(B_i \times B_i)} \leq \lambda,$$

and we finally obtain the inequality (13).

Step 2. Let us consider a sequence $\{u_j\} \subset H^{s(\cdot)}_0(\Omega)$ such that $u_j \to u$ in $H^{s(\cdot)}_0(\Omega)$ as $j \to +\infty$, and denote $v_j := u_j - u$. Hence $v_j \to 0$ in $H^{s(\cdot)}_0(\Omega)$, which implies that $[v_j]_{q(-, s)(\cdot), \Omega}$ is uniformly bounded.

Extend the functions v_j by zero outside of Ω and, with some abuse of notation, denote this extension v_j. We have to show that $v_j \to 0$ in $L^r(\cdot)(\Omega)$. To this end, let ψ_ε be a standard mollifier for all $\varepsilon > 0$. We then have

$$v_j = (v_j - \psi_\varepsilon * v_j) + \psi_\varepsilon * v_j,$$

and from (14) we get

$$\|v_j\|_{L^r(\cdot)(\Omega)} \leq \|v_j - v_j * \psi_\varepsilon\|_{L^r(\cdot)(\Omega)} + \|v_j * \psi_\varepsilon\|_{L^r(\cdot)(\Omega)}$$

$$\leq c\varepsilon[v_j]_{q(-, s)(\cdot), \Omega} + \|v_j * \psi_\varepsilon\|_{L^r(\cdot)(\Omega)}.\quad (14)$$

Since $v_j \to 0$ and $\varepsilon > 0$ is fixed, we obtain that as $j \to +\infty$

$$v_j * \psi_\varepsilon(x) = \int_{\mathbb{R}^n} \psi_\varepsilon(x - y)v_j(y)dy \to 0.$$
Let \(\Omega_\varepsilon := \{ x \in \mathbb{R}^n : \text{dist}(x, \Omega) \leq \varepsilon \} \). Thus \(v_j * \psi_\varepsilon(x) = 0 \) for all \(x \in \mathbb{R}^n \setminus \Omega_\varepsilon \).

By the Hölder’s inequality given in Theorem 1, we then get that for all \(x \in \Omega_\varepsilon \)

\[
|v_j * \psi_\varepsilon(x)| = \left| \int_{\mathbb{R}^n} \psi_\varepsilon(x - y)v_j(y)dy \right| \leq c \| v_j \|_{L^r(\Omega)} \| \psi_\varepsilon(x - .) \|_{L^r(\Omega)}.
\]

As \(\psi \in C_0^\infty(\mathbb{R}^n) \), we have \(|\psi| \leq c \) and thus \(|\psi_\varepsilon| \leq c\varepsilon^{-n} \). This gives

\[
\| \psi_\varepsilon(x - .) \|_{L^r(\Omega)} \leq c\varepsilon^{-n} \| \chi_{\Omega_\varepsilon} \|_{L^r(\Omega)} \leq c(\varepsilon, r),
\]

independently of the choice of \(x \in \mathbb{R}^n \) and \(j \). Using the uniform boundedness of \(v_j \)

in \(L^r \), we then have

\[
\left| v_j * \psi_\varepsilon(x) \right| \leq c(\varepsilon, r) \chi_{\Omega_\varepsilon}(x) \quad \text{for all } x \in \mathbb{R}^n.
\]

Since \(\chi_{\Omega_\varepsilon} \in L^r(\mathbb{R}^n) \) and \(v_j * \psi_\varepsilon(x) \to 0 \) a.e., we obtain by the dominated convergence theorem that \(v_j * \psi_\varepsilon \to 0 \) in \(L^r(\mathbb{R}^n) \) as \(j \to +\infty \). Hence, from (14) it follows that

\[
\lim \sup_{j \to +\infty} \| v_j \|_{L^r(\Omega)} \leq c\varepsilon \lim \sup_{j \to +\infty} [v_j]_{q(\cdot), s(\cdot), \Omega}.
\]

Since \(\varepsilon > 0 \) is arbitrary and \([v_j]_{q(\cdot), s(\cdot), \Omega} \) is uniformly bounded, this implies that \(v_j \to 0 \) in \(L^r(\mathbb{R}^n) \) and thus \(u_j \to u \) in \(L^r(\Omega) \), which yields the compactness of the embedding.

Step 3. When we consider functions that are compactly supported inside \(\Omega \), we can get rid of the term \(\| u \|_{L^r(\Omega)} \) and it holds that

\[
\| u \|_{L^r(\Omega)} \leq C[u]_{q(\cdot), s(\cdot), \Omega}.
\]

Let \(u \in \mathcal{H}_0^{s(\cdot)}(\Omega) \). From (10c), and because \(s^- \leq s_i \) in \(B_i \) for all \(i \), since in the case of constant exponent \(s_i \) the Sobolev embedding for subcritical exponents is continuous, we have

\[
\sum_{i=0}^n [u]_{q_i, s_i, B_i} \leq c \sum_{i=0}^n [u]_{q_i, s_i, B_i} \leq c[u]_{q(\cdot), s(\cdot), \Omega} < +\infty.
\]

Using this for every \(i \), it holds that \([u]_{q(\cdot), s^-(\cdot), \Omega} \leq c[u]_{q(\cdot), s(\cdot), \Omega} \), which gives \(u \in \mathcal{H}_0^{s^-(\cdot)}(\Omega) \), and then \(\mathcal{H}_0^{s(\cdot)}(\Omega) \hookrightarrow \mathcal{H}_0^{s^-(\cdot)}(\Omega) \).

Therefore, it only remains to show that \(\mathcal{H}_0^{s(\cdot)}(\Omega) \hookrightarrow \mathcal{H}_0^{s(\cdot)}(\Omega) \). To this end, let \(u \in \mathcal{H}_0^{s(\cdot)}(\Omega) \), and let \(\lambda > 0 \) be such that

\[
\iint_{B_i \times B_i} \frac{|u(x) - u(y)|^{q(x,y)}}{\lambda \cdot |x - y|^{n+q(x,y)s^+}} \, dx \, dy < 1.
\]
Then, using that \(\text{diam}(B_i) < \varepsilon < 1 \), we get \(|x - y| < 1\) for every \((x, y) \in B_i \times B_i\) and hence

\[
\int_{B_i \times B_i} \left| \frac{u(x) - u(y)}{\lambda} \right|^{q(x, y)} \frac{dxdy}{|x - y|^{n+q(x, y)s(x, y)}} = \int_{B_i \times B_i} \left| \frac{u(x) - u(y)}{\lambda} \right|^{q(x, y)} \frac{dxdy}{|x - y|^{n+q(x, y)s(x, y)}} \leq \int_{B_i \times B_i} \left| \frac{u(x) - u(y)}{\lambda} \right|^{q(x, y)} \frac{dxdy}{|x - y|^{n+q(x, y)s}} < 1.
\]

Therefore \(u \in \mathcal{H}^s_0(\Omega) \), that is, \(\mathcal{H}^s_0(\Omega) \hookrightarrow \mathcal{H}^{s(\cdot)}_0(\Omega) \).

Remark 1 Our result is sharp in the following sense: if

\[
q^*(x_0) = \frac{nq(x_0, x_0)}{n - s(x_0, x_0)q(x_0, x_0)} < r(x_0),
\]

for some \(x_0 \in \Omega \), then the embedding of \(\mathcal{H}^s_0(\Omega) \) in \(L^r(\Omega) \) cannot hold for every \(p(\cdot) \). As a matter of fact, from the continuity conditions we imposed on \(q, r \) and \(s \), there exists a small ball \(B_\delta(x_0) \) such that

\[
\max_{B_\delta(x_0) \times B_\delta(x_0)} \frac{nq(x, y)}{n - s(x, y)q(x, y)} < \min_{B_\delta(x_0)} r(x).
\]

Now, fix \(p(x) < \min_{B_\delta(x_0)} r(x) \) and notice that, for \(p(x) \geq r(x) \), we have that \(\mathcal{H}^s_0(\Omega) \) is embedded in \(L^r(\Omega) \). Hence, with the same arguments that hold for the constant exponent case, one can create a sequence \(\{u_j\}_j \) supported inside \(B_\delta(x_0) \) such that \(\|u_j\|_{\mathcal{H}^s_0(\Omega)} \leq C \) and \(\|u_j\|_{L^r(B_\delta(x_0))} \to +\infty \). In fact, it is enough to consider a smooth, compactly supported function \(g \), and pick \(u_j = j^b g(jx) \) with \(b \) satisfying \(bq(x, y) - n + s(x, y)q(x, y) \leq 0 \) and \(br(x) - n > 0 \) for \(x, y \in B_\delta(x_0) \).

In what follows, we will always denote by \(C_r \) the constant of the Sobolev embedding \(\mathcal{H}^s_0(\Omega) \hookrightarrow L^r(\Omega) \). Then, by applying (4) and Proposition 3, for all

\[
p(x) \in \left(1, \frac{nq(x, x)}{n - s(x, x)q(x, x)} \right),
\]

we obtain

\[
\int_\Omega |u(x)|^{p(x)} dx \leq \max \left(\|u\|_{L^{p(\cdot)}(\Omega)}^{p^-}, \|u\|_{L^{p(\cdot)}(\Omega)}^{p^+} \right) \leq \max \left(C_p^{p^-} [u]_{q(\cdot), \Omega}^{p^-}, C_p^{p^+} [u]_{q(\cdot), \Omega}^{p^+} \right) \quad (15).
\]
We are now ready to provide our notion of solution to (1). To this end, let us introduce the Banach space

\[E_\lambda = \left\{ u \in L^{p(x)}(\Omega) : [u]_{q(\cdot), s(\cdot), \Omega} + \lambda \int_{\Omega} V(x) |u(x)|^2 \, dx < +\infty \right\}, \]

equipped with the norm \([u]_{q(\cdot), s(\cdot), \Omega} + \|u\|_{p(\cdot)}\). Let \(E_{\lambda, 0}\) denote the closure of \(C_0^\infty(\Omega)\) in \(E_\lambda\). Then \(E_{\lambda, 0}\) is a Banach space with the norm

\[\|u\|_\lambda := [u]_{q(\cdot), s(\cdot), \Omega}. \]

This space \(E_{\lambda, 0}\) is the appropriate functional setting in which we can define the solutions to (1). In particular, we have

Definition 1 A function \(u \in E_{\lambda, 0}\) is called a (weak) solution of problem (1) if

\[
\int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{q(x, y) - 2} (u(x) - u(y))(v(x) - v(y))}{|x - y|^{\alpha + q(x, y)s(x, y)}} \, dx \, dy \\
+ \lambda \int_{\Omega} V(x)u(x)v(x) \, dx = \int_{\Omega} \left(\alpha |u|^{p(x)-2} uv(x) + \beta |u|^{k(x)-2} u(x)v(x) \right) \, dx,
\]

for any \(v \in E_{\lambda, 0}\).

Notice that, given the variational nature of Definition 1, the solution of (1) can be characterized in terms of the critical points of a suitable functional. In particular, let us define

\[
I_\lambda(u) := \int_{\mathbb{R}^n} \frac{1}{q(x, y)} \frac{|u(x) - u(y)|^{q(x, y)}}{|x - y|^{\alpha + q(x, y)s(x, y)}} \, dx \, dy + \frac{\lambda}{2} \int_{\Omega} V(x) |u(x)|^2 \, dx \\
- \int_{\Omega} \left(\frac{\alpha}{p(x)} |u|^{p(x)} + \frac{\beta}{k(x)} |u|^{k(x)} \right) \, dx,
\]

and \(L_1 : E_{\lambda, 0} \to E_{\lambda, 0}^*\) such that

\[
\langle L_1(u), v \rangle_\lambda = \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{q(x, y) - 2} (u(x) - u(y))(v(x) - v(y))}{|x - y|^{\alpha + q(x, y)s(x, y)}} \, dx \, dy \\
+ \lambda \int_{\Omega} V(x)u(x)v(x) \, dx, \quad \text{for all } u, v \in E_{\lambda, 0},
\]

where we denoted with \(\langle \cdot, \cdot \rangle_\lambda\) the duality pair between \(E_{\lambda, 0}\) and \(E_{\lambda, 0}^*\). Then, one can verify that \(I_\lambda\) is well-defined and \(C^1\) in \(E_{\lambda, 0}\) and, for all \(u, v \in E_{\lambda, 0}\), we have

\[
\langle I'_\lambda(u), v \rangle_\lambda = \langle L_1(u), v \rangle_\lambda - \int_{\Omega} \left(\alpha |u|^{p(x)-2} u + \beta |u|^{k(x)-2} u \right) v \, dx,
\]

\(\square\) Springer
Hence if \(u \in E_{\lambda,0} \) is such that \(\langle I'_\lambda(u), v \rangle_\lambda = 0 \) for all \(v \in E_{\lambda,0} \), then \(u \) is a solution of (1).

For our next purpose, we need the following properties of the fractional operator \(L_1 \) given by

Lemma 1 (Properties of the fractional operator \(L_1 \))

(i) \(L_1 : E_{\lambda,0} \to E_{\lambda,0}^* \) is a bounded and strictly monotone operator.

(ii) \(L_1 : E_{\lambda,0} \to E_{\lambda,0}^* \) is a mapping of type \((M_+), i.e., if u_n \to u \) in \(E_{\lambda,0} \) and
\[
\limsup_{n \to +\infty} \langle L_1(u_n) - L_1(u), u_n - u \rangle_\lambda \leq 0,
\]
then \(u_n \to u \) in \(E_{\lambda,0} \).

(iii) \(L_1 : E_{\lambda,0} \to E_{\lambda,0}^* \) is a homeomorphism and semicontinuous.

Proof

(i) Obviously, \(L_1 \) is a bounded operator. The strict monotonicity of \(L_1 \) follows from the following inequality:

\[
\begin{align*}
| x - y |^p & \leq c_p \left(| x |^{p-2} x - | y |^{p-2} y \right) (x - y); \quad p \geq 2 \\
| x - y |^p & \leq C_p \left(| x |^{p-2} x - | y |^{p-2} y \right) \left(| x |^p + | y |^p \right) \frac{2-p}{2}; \quad 1 < p < 2,
\end{align*}
\]

for all \(x, y \in \mathbb{R}^N \), where \(c_p = \left(\frac{1}{2} \right)^{-p} \) and \(C_p = \frac{1}{p-1} \).

(ii) Let \((u_n) \subset E_{\lambda,0} \) be a sequence such that \(u_n \to u \) in \(E_{\lambda,0} \) and \(\limsup_{n \to +\infty} \langle L_1(u_n) - L_1(u), u_n - u \rangle_\lambda \leq 0 \). Then, from (i), we deduce that

\[
\lim_{n \to +\infty} \langle L_1(u_n) - L_1(u), u_n - u \rangle_\lambda = 0.
\]

By Proposition 3, we get

\[
u_n(x) \to u(x), \text{ a.e. } x \in \Omega. \quad (16)
\]

This along with Fatou’s Lemma yield

\[
\liminf_{n \to +\infty} \int_\Omega \int_\Omega |u_n(x) - u_n(y)|^{p(x,y)} |x - y|^{n+q(s(x,y)} \ dx \ dy \geq \int_\Omega \int_\Omega |u(x) - u(y)|^{p(x,y)} |x - y|^{n+q(s(x,y)} \ dx \ dy,
\]

(17)

On the other hand we have

\[
\lim_{n \to +\infty} \langle L_1(u_n), u_n - u \rangle_\lambda = \lim_{n \to +\infty} \langle L_1(u_n) - L_1(u), u_n - u \rangle_\lambda = 0. \quad (18)
\]
Now using Young’s inequality, there is a positive constant c such that

$$
\langle L_1 (u_n) , u_n - u \rangle \lambda = \int_\Omega \int_\Omega \frac{|u_n(x) - u_n(y)|^{p(x,y)}}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy
- \int_\Omega \int_\Omega \frac{|u_n(x) - u_n(y)|^{p(x,y)-2}(u_n(x) - u_n(y))(u(x) - u(y))}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy
\geq \int_\Omega \int_\Omega \frac{|u_n(x) - u_n(y)|^{p(x,y)-2}(u_n(x) - u_n(y))(u(x) - u(y))}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy
- c \int_\Omega \int_\Omega \frac{|u_n(x) - u_n(y)|^{p(x,y)}}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy
\geq c \int_\Omega \int_\Omega \frac{|u_n(x) - u_n(y)|^{p(x,y)}}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy - c \int_\Omega \int_\Omega \frac{|u(x) - u(y)|^{p(x,y)}}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy.
$$

As a result of (17), (18) and (19), we get

$$
\lim_{n \to +\infty} \int_\Omega \int_\Omega \frac{|u_n(x) - u_n(y)|^{p(x,y)}}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy = \int_\Omega \int_\Omega \frac{|u(x) - u(y)|^{p(x,y)}}{|x-y|^{n+q(x,y)s(x,y)}} \, dx \, dy.
$$

(20)

In view of the Brezis–Lieb [17] lemma, from (16), (20), our result is as follows.

(iii) By (i), L_1 is an injection, and by using assertion (4), we get

$$
\lim_{\|u\|_\lambda \to +\infty} \frac{\langle L_1 (u) , u \rangle \lambda}{\|u\|_\lambda} = +\infty.
$$

Hence, L_1 is coercive namely, for big $\|u\|_\lambda$ (if $\|u\|_\lambda$ is bounded, then it readily follows), then replacing u by $u\|u\|_\lambda^{-1}$ we get that

$$
\|u\|_\lambda^{-q^+} \langle L_1 (u) , u \rangle \lambda \geq \|u\|_\lambda^{-1},
$$

thus

$$
\langle L_1 (u) , u \rangle \lambda \geq \|u\|_\lambda^{q^+-1}.
$$

Thus, by [32, Through the Minty–Browder theorem], L_1 is a surjection. So L_1 has an inverse mapping $L_1^{-1} : E_{\lambda,0}^* \to E_{\lambda,0}$. It remains to show that L_1^{-1} is continuous. Namely, let f_n, $f \in E_{\lambda,0}^*$ such that $f_n \to f$ in $E_{\lambda,0}^*$. Let $u_n = L_1^{-1} (f_n)$, $u = L_1^{-1} (f)$, then

$$
L_1 (u_n) = f_n \text{ and } L_1 (u) = f.
$$

Because of the coercivity of L_1, (u_n) is bounded in $E_{\lambda,0}$. We can suppose that $u_n \to u_0$ in $E_{\lambda,0}$. It follows that

$$
\lim_{n \to +\infty} \langle L_1 (u_n) - L_1 (u_0) , u_n - u_0 \rangle \lambda = \lim_{n \to +\infty} \langle f_n , u_n - u_0 \rangle \lambda = 0.
$$

From the fact that L_1 is of type (M^+), we conclude that $u_n \to u_0$ in $E_{\lambda,0}$. This completes the proof.
We can now introduce the main results of this paper. To this end, we shall first make the following assumptions on the potential V and the function k.

Hypothesis V: $V : \Omega \to [0, +\infty)$ is a continuous function satisfying:

$$J = \text{int}(V^{-1}(0)) \subset \Omega$$

is nonempty and bounded domain,

$$\widetilde{J} := V^{-1}(0),$$

there exists a nonempty open domain $\Omega_0 \subset J$, such that $V(x) \equiv 0$ for all $x \in \overline{\Omega}_0$.

Hypothesis K: $k : \Omega \to \mathbb{R}$ is a continuous function satisfying:

$$2 < k^- \leq k(x) \leq k^+ < q^+ - 1 \quad \text{for all } x \in \overline{\Omega}.$$

(K1)

Moreover, we shall consider the following variant of (P1)

$$2 < p^- \leq p(x) \leq p^+ < \frac{nq(x, x)}{n - s(x, x)q(x, x)} \quad \text{for all } x \in \overline{\Omega}.$$

(P1a)

Finally, we assume that the parameters α and β verify

$$\alpha \leq \frac{D(q^+ - 1 - k^+)}{A(p^+ - k^+)}, \quad \beta \leq \frac{D(p^+ - q^+ + 1)}{B(p^+ - k^+)},$$

(21)

with

$$A = \max \left(\frac{C_p^-}{p^-}, \frac{C_p^+}{p^+} \right), \quad B = \max \left(\frac{C_k^-}{k^-}, \frac{C_k^+}{k^+} \right), \quad D = \min \left(\frac{1}{q^+}, \frac{1}{2} \right),$$

(22)

where, we recall, C_p and C_k are the constants of the Sobolev embedding's

$$\mathcal{H}_0^{s(\cdot)}(\Omega) \hookrightarrow L^{p(\cdot)}(\Omega) \quad \text{and} \quad \mathcal{H}_0^{s(\cdot)}(\Omega) \hookrightarrow L^{k(\cdot)}(\Omega),$$

respectively.

The first main contribution of the present paper is the non-uniqueness of solutions for (1). In particular, we have:

Theorem 4 Assume that (P1a), (P2), (S1), (S2), (V1), (V2), (K1) and (21) hold. Let $n > q^+ s^+$. Then (1) admits at least two distinct solutions for all $\lambda > 0$.

Furthermore, in the following results, we investigate the concentration of solutions obtained by Theorem 4.
Theorem 5 Let u^1_λ and u^2_λ be two solutions obtained in Theorem 4 and Ω_0 as in (V2). Then $u^1_\lambda \to u^1$ and $u^2_\lambda \to u^2$ in $H^{s(\cdot)}_0(\Omega)$ as $\lambda \to +\infty$, where $u^1 \neq u^2$ are two nontrivial solutions of the following problem

$$\begin{cases}
(-\Delta)^{s(\cdot)} u = \alpha |u|^{p(\cdot)-1} u + \beta |u|^{k(\cdot)-1} u & \text{in } \Omega_0, \\
[7 pt] u = 0 & \text{in } \mathbb{R}^n \setminus \Omega_0.
\end{cases} \quad (23)$$

Theorem 6 Assume that (P1a), (S1), (S2), (K1) and (21) hold. Let $n > 2s^+$. Then problem (23) has infinitely many solutions.

3 Proof of Theorem 4

We give here the proof of our first main result Theorem 4. To this end, we first need some preparation.

Let us start by introducing the notion of $(PS)_c$ sequence and stating the so-called $(PS)_c$ condition.

Definition 2 For any $c \in \mathbb{R}$, a sequence $\{u_j\}_j \subset E_\lambda$ is called a $(PS)_c$ sequence if $I_\lambda(u_j) \to c$ and $I'_\lambda(u_j) \to 0$ as $j \to +\infty$.

Definition 3 We say that I_λ provides the $(PS)_c$ condition in E_λ at the level $c \in \mathbb{R}$ if each $(PS)_c$ sequence $\{u_j\}_j \subset E_\lambda$ possess a strongly convergent subsequence in E_λ.

Moreover, in the sequel, we shall make use of the following standard mountain pass theorem (see for example [3]).

Theorem 7 Let E be a real Banach space and $J \in C^1(E, \mathbb{R})$ with $J(0) = 0$. Suppose that

(i) There exist ρ, $\delta > 0$ such that $J(u) \geq \delta$ for all $u \in E$ with $\|u\|_E = \rho$.
(ii) There exists $e \in E$ satisfying $\|e\|_E > \rho$ such that $J(e) < 0$.

Define $\Gamma = \{\gamma \in C^1([0, 1]; E) : \gamma(0) = 1 \text{and} \gamma(1) = e\}$. Then

$$c = \inf_{\gamma \in \Gamma} \max_{0 \leq \sigma \leq 1} J(\gamma(\sigma)) \geq \delta$$

and there exists a $(PS)_c$ sequence $\{u_j\}_j \subset E$.

Theorem 7 applied to the functional I_λ will be the starting point to prove our main result. To this end, we first need to check that I_λ possesses the mountain pass geometry (i) and (ii). This is ensured by the following lemma.

Lemma 2 Assume that the assumptions (P1a), (S2), (V1)-(V2), (K1) and (21) are satisfied. Then

1. For all $\lambda > 0$, there exist $\rho > 0$ and $\delta > 0$ such that

$$I_\lambda(u) > \delta \text{ for all } u \in E_\lambda \text{ with } \|u\|_\lambda = \rho. \quad (24)$$
2. There exists $e \in E_\lambda$ with $\|e\|_\lambda > \rho$, where $\rho > 0$ is fixed in (24), such that $I_\lambda(e) < 0$ for all $\lambda > 0$.

Proof We divide the proof into two steps, one for each different result we are claiming.

Step 1. Let us start by proving the first mountain pass property. Using the fractional Sobolev inequality and (15), for all $u \in E_\lambda$, we have

$$
\int_\Omega \left(\frac{\alpha}{p(x)} |u|^{p(x)} + \frac{\beta}{k(x)} |u|^{k(x)} \right) \, dx \\
\leq \frac{\alpha}{p} \int_\Omega |u|^{p(x)} \, dx + \frac{\beta}{k} \int_\Omega |u|^{k(x)} \, dx \\
\leq \frac{\alpha}{p} \max \left(C_p^{-} \|u\|_{\lambda}^{p^{-}}, C_p^{+} \|u\|_{\lambda}^{p^{+}} \right) + \frac{\beta}{k} \max \left(C_k^{-} \|u\|_{\lambda}^{k^{-}}, C_k^{+} \|u\|_{\lambda}^{k^{+}} \right).
$$

We then get from (25) that

$$
I_\lambda \geq \min \left(\frac{1}{q^{+} - 1}, \frac{1}{2} \right) \|u\|_{\lambda}^{q^{+} - 1} - \frac{\alpha}{p} \max \left(C_p^{-}, C_p^{+} \right) \|u\|_{\lambda}^{p^{+}} - \frac{\beta}{k} \max \left(C_k^{-}, C_k^{+} \right) \|u\|_{\lambda}^{k^{+}},
$$

for all $u \in E_\lambda$ with $\|u\|_{\lambda} \geq 1$. Set now the constants A, B and C as in (22) and let $\phi : [0, +\infty) \rightarrow \mathbb{R}$ be an auxiliary function such that

$$
\phi(\sigma) = \psi(\sigma) \sigma^{k^{+}} \text{ for all } \sigma \geq 0,
$$

where

$$
\psi(\sigma) = D \sigma^{q^{+} - 1 - k^{+}} - A \sigma^{p^{+} - k^{+}} - B \beta.
$$

Let

$$
\sigma^{*} := \left[\frac{D(q^{+} - 1 - k^{+})}{A(\alpha(p^{+} - k^{+}))} \right]^{1 \over p^{+} + 1 - q^{+}}.
$$

We then have

$$
\psi(\sigma^{*}) = \max_{\sigma \geq 0} \psi(\sigma) > 0,
$$

provided that

$$
B \beta < \left[\frac{D(q^{+} - 1 - k^{+})}{A(\alpha(p^{+} - k^{+}))} \right]^{q^{+} - 1 - k^{+} \over p^{+} + 1 - q^{+}} \frac{D(p^{+} - q^{+} + 1)}{(p^{+} - k^{+})},
$$

\square Springer
that is,
\[
\beta^{p^+ + 1 - q^+} \alpha^1 + k^+ - q^+ < \left[\frac{D(q^+ - 1 - k^+)}{A(p^+ - k^+)} \right]^{q^+ - 1 - k^+} \left(\frac{D(p^+ - q^+ + 1)}{B(p^+ - k^+)} \right)^{p^+ + 1 - q^+}.
\]

Moreover, since we are assuming
\[
\alpha \leq \frac{D(q^+ - 1 - k^+)}{A(p^+ - k^+)},
\]
we can readily check that \(\sigma^* \geq 1 \). Then, the first mountain pass property holds with \(\rho = \sigma^* > 0 \) and \(\delta = \phi(\sigma^*) > 0 \).

Step 2. Let us now prove the second mountain pass property. In order to do that, let us select \(v_0 \in E_\lambda \) such that
\[
\int_{\Omega} |v_0|^{p(x)} \, dx > 0.
\]
Then for all \(\sigma \geq 1 \), taking into account \(2 < q^- < p^+ \), we have
\[
I_\lambda(\sigma v_0) \leq \sigma q^+ \int_{\mathbb{R}^n} \frac{1}{q(x, y)} \frac{|v_0(x) - v_0(y)|^{q(x, y)}}{|x - y|^{p^+ q(x, y) s(x, y)}} \, dx \, dy
+ \frac{\lambda}{2} \sigma^2 \int_{\Omega} V(x) |v_0(x)|^2 \, dx - \frac{\alpha \sigma p^-}{p^+} \int_{\Omega} |v_0|^{p(x)} \, dx,
\]
We take \(\sigma \) large enough such that \(\|\sigma v_0\|_\lambda > \rho \), and
\[
\sigma \geq \max \left(1, \left(\frac{2 p^+ \lambda}{\alpha} \int_{\Omega} V(x) |v_0(x)|^2 \, dx \right)^{\frac{1}{p^+ - 2}} \right),
\]
\[
\left(4 p^+ \int_{\mathbb{R}^{2n}} \frac{1}{q(x, y)} \frac{|v_0(x) - v_0(y)|^{q(x, y)}}{|x - y|^{p^+ q(x, y) s(x, y)}} \, dx \, dy \right)^{\frac{1}{p^+ - q^+}} \left(\frac{\alpha}{\int_{\Omega} |v_0|^{p(x)} \, dx} \right)^{\frac{1}{p^+ - 2}},
\]
we infer that \(I_\lambda(\sigma v_0) < 0 \). Then, the second mountain pass property is satisfied by letting \(e = \sigma v_0 \).

Let us now show that the functional \(I_\lambda \) provides the \((PS)_c\) condition in \(E_\lambda \). To this end, in the same spirit of Theorem 7, let us define
\[
c_\lambda = \inf_{\gamma \in \Gamma} \max_{0 \leq \sigma \leq 1} I_\lambda(\gamma(\sigma)),
\]
\(\square \) Springer
and

\[c(\Omega_0) = \inf_{\gamma \in \tilde{\Gamma}} \max_{0 \leq \sigma \leq 1} I_\lambda \left| \mathcal{H}_0^{s(\sigma)}(\Omega_0) (\gamma(\sigma)) \right], \]

where:

- the set \(\Omega_0 \) is the one provided by assumption \((V2)\);
- \(I_\lambda \mid_{\mathcal{H}_0^{s(\sigma)}(\Omega_0)} \) is a restriction of \(I_\lambda \) on \(\mathcal{H}_0^{s(\sigma)}(\Omega_0) \);
- \(\Gamma = \{ \gamma \in C^1([0, 1]; E_\lambda) : \gamma(0) = 1 \text{ and } \gamma(1) = e \} \);
- \(\tilde{\Gamma} = \{ \gamma \in C^1([0, 1]; \mathcal{H}_0^{s(\cdot)}(\Omega_0)) : \gamma(0) = 1 \text{ and } \gamma(1) = e \} \).

Clearly, \(c(\Omega_0) \) is independent of \(\lambda \). Moreover, note that, for all \(u \in \mathcal{H}_0^{s(\cdot)}(\Omega_0) \), we have

\[
I_\lambda \mid_{\mathcal{H}_0^{s(\cdot)}(\Omega_0)} (u) = \int_{\Omega_0} \int_{\Omega_0} \frac{1}{q(x, y)} \frac{|u(x) - u(y)|^{q(x, y)}}{|x - y|^{n+q(x, y)s(x, y)}} \, dx \, dy
- \int_{\Omega_0} \left(\frac{\alpha}{p(x)} |u|^{p(x)} + \frac{\beta}{k(x)} |u|^{k(x)} \right) dx,
\]

By the proof of Lemma 2, we can infer that \(I_\lambda \mid_{\mathcal{H}_0^{s(\cdot)}(\Omega_0)} \) satisfies the mountain pass properties of Theorem 7. Since \(\mathcal{H}_0^{s(\cdot)}(\Omega_0) \subset E_\lambda \) for all \(\lambda > 0 \), one has \(0 < \alpha \leq c_\lambda \leq c(\Omega_0) \) for all \(\lambda > 0 \). Clearly, for all \(\sigma \in [0, 1], \sigma e \in \tilde{\Gamma} \). Thus, there exists \(C_0 > 0 \) such that

\[
c(\Omega_0) \leq \max_{0 \leq \sigma \leq 1} I_\lambda (\sigma e) \leq C_0 < +\infty, \tag{26}\]

since \(p^- > 2 \). Then,

\[
0 < \delta \leq c_\lambda \leq c(\Omega_0) < C_0,
\]

for all \(\lambda > 0 \). By Lemma 2 and Theorem 4, we get that for all \(\lambda > 0 \), there exists \(\{u_j\}_j \subset E_\lambda \) such that

\[
I_\lambda(u_j) \to c_\lambda > 0 \quad \text{and} \quad I'_\lambda(u_j) \to 0, \quad \text{as } j \to +\infty. \tag{27}\]

Hence, \(\{u_j\}_j \) is a \((PS)_{c_\lambda} \) sequence.

Lemma 3 Under the assumptions \((P1a), (S2), (V1), (V2), (K1)\) and \((21)\), the sequence \(\{u_j\}_j \) given by \((27)\) is bounded in \(E_\lambda \) for all \(\lambda > 0 \).
Lemma 4

Assume that (21), by coercivity of L_1 we obtain

$$c_\lambda + o(1) \geq I_\lambda(u_j) - \frac{1}{p^-} \langle I'_\lambda(u_j), u_j \rangle$$

$$= \iint_{\mathbb{R}^n} \frac{1}{q(x,y)} |u_j(x) - u_j(y)|^{q(x,y)} \, dx \, dy + \frac{\lambda}{2} \int_{\Omega} V(x) |u_j(x)|^2 \, dx - \frac{1}{p^-} \|u_j\|_{q^+ - 1}^{q^+ - 1}$$

$$- \int_{\Omega} \left(\alpha \left(\frac{1}{p^-} - 1 \right) |u_j(x)|^{p(x)} + \beta \left(\frac{1}{k(x)} - 1 \right) |u_j(x)|^{k(x)} \right) \, dx$$

$$\geq \left(\min \left(\frac{1}{2}, \frac{1}{q^+} \right) - \frac{1}{p^-} \right) \|u_j\|_{q^+ - 1}^{q^+ - 1}$$

$$- \beta \left(\frac{1}{k^-} - \frac{1}{p^-} \right) \max \left(C_k^{-}, \|u_j\|_{k^-}^{k^- - 2}, C_k^{k^+}, \|u_j\|_{k^+}^{k^+ - 2} \right).$$

(28)

Arguing by contradiction, we assume that $\{u_j\}_j$ is not bounded in $H_0^{s(\cdot)}(\Omega)$. Then there exists a subsequence, still denoted by $\{u_j\}_j$, such that $\|u_j\|_\lambda \to +\infty$ as $j \to +\infty$. Hence, by (28), we have

$$\frac{c_\lambda + o(1)}{\|u_j\|_\lambda^{q^+ - 1}} \geq \left(D - \frac{1}{p^-} \right) - \beta \left(\frac{1}{k^-} - \frac{1}{p^-} \right) \max \left(C_k^{-}, \|u_j\|_{k^-}^{k^- - 2}, C_k^{k^+}, \|u_j\|_{k^+}^{k^+ - 2} \right),$$

which yields $2 \geq p^-$ or $q^+ \geq p^-$. This is a contradiction, thus $\{u_j\}_j$ is bounded in E_λ for all $\lambda > 0$.

\[\square\]

Lemma 4 Assume that (P1a), (S2), (V1)–(V2), (K1) and (21) hold. Then I_λ satisfies the $(PS)_c$ condition in E_λ for all $c \in \mathbb{R}$ and $\lambda > 0$.

\textbf{Proof} Let $\{u_j\}_j$ be a $(PS)_c$ sequence with $c < C_0$, where C_0 is the constant introduced in (26). By Lemma 3, $\{u_j\}_j$ is bounded in E_λ and there exists $C > 0$ such that $\|u_j\|_\lambda \leq C$. Thus, there exist a subsequence of $\{u_j\}_j$, still denoted by $\{u_j\}_j$, and u_0 in E_λ such that as $j \to +\infty$

$$u_j \rightharpoonup u_0 \quad \text{weakly in } E_\lambda,$n

$$u_j \to u_0 \quad \text{a.e. in } \mathbb{R},$$

$$|u_j|^{p(\cdot) - 2} u_j \to |u_0|^{p(\cdot) - 2} u_0 \quad \text{weakly in } L^{p(\cdot) (\cdot)}(\Omega).$$

Our aim now is to prove that $u_j \to u_0$ strongly in E_λ. By Proposition 3, we obtain $u_j \to u_0$ in $L^{p(\cdot)}(\Omega)$ and $L^{k(\cdot)}(\Omega)$, respectively. Thus

$$\lim_{j \to +\infty} \int_{\Omega} |u_j(x) - u_0|^{p(x)} \, dx = 0,$$

and

$$\lim_{j \to +\infty} \int_{\Omega} |u_j(x) - u_0|^{k(x)} \, dx = 0.$$
It follows from (27) that

\[o(1) = \langle I'_\lambda(u_j) - I'_\lambda(u_0), u_j - u_0 \rangle \]

\[= (u_j - u_0, u_j - u_0)_\lambda - \alpha \int_\Omega \left(|u_j|^{p(x)-2} u_j - |u_0|^{p(x)-2} u_0 \right) (u_j - u_0) \, dx \]

\[- \beta \int_\Omega \left(|u_j|^{k(x)-2} u_j - |u_0|^{k(x)-2} u_0 \right) (u_j - u_0) \, dx, \]

which means that

\[\lim_{j \to +\infty} \|u_j - u_0\|_\lambda = 0. \]

This completes the proof. \(\square \)

Proof of Theorem 4 First of all, from Lemmas 2–3 and Theorem 7, we deduce that for all \(\lambda > 0 \) there exists a \((PS)_{\alpha\lambda}\) sequence \(\{u_j\}_j \) for \(I_\lambda \) on \(E_\lambda \).

Now, by Lemma 3 and the fact that \(0 < c_\lambda < c(\Omega_0) < C_0 \) for all \(\lambda > 0 \), where \(C_0 \) is the constant introduced in (26), we obtain that there exists a subsequence of \(\{u_j\}_j \), still denoted by \(\{u_j\}_j \), and \(u^{(1)}_\lambda \in E_\lambda \) such that \(u_j \rightharpoonup u^{(1)}_\lambda \) strongly in \(E_\lambda \). Moreover, \(I_\lambda(u_j) = c_\lambda \geq \delta \) and \(u^{(1)}_\lambda \) is a solution of (1). Next, we show that system (1) has another solution. For this purpose, let us define

\[\tilde{c}_\lambda := \inf \left\{ I_\lambda(u) : u \in \overline{B}_\rho \right\}, \]

where \(B_\rho = \{ u \in E_\lambda : \|u\|_\lambda < \rho \} \) and \(\rho > 0 \) is given by Lemma 2. Moreover, let \(w_0 \in \mathcal{H}^{s(\cdot)}_0(\Omega) \subset E_\lambda \) be such that

\[\int_\Omega |w_0|^{p(x)} \, dx > 0. \]

We can readily for \(2 < q^- < p^+ \) check that

\[I_\lambda(\tau w_0) \leq \tau^{q^+} \int_{\mathbb{R}^n} \frac{1}{q(x, y)} \frac{|w_0(x) - w_0(y)|^{q(x, y)}}{|x - y|^{n+q(x, y)s(x, y)}} \, dx \, dy \]

\[+ \frac{\lambda}{2} \tau^2 \int_\Omega V(x) |w_0(x)|^2 \, dx - \frac{\alpha \tau}{p^+} \int_\Omega |w_0|^{p(x)} \, dx, \]

\(\subseteq \) Springer
Hence, since by (P1)–(Q2) we have $2 < q^- < p^+$, for all $\tau < \tau_0$ with

$$
\tau_0 \geq \max \left(1, \left(\frac{2p^+}{\alpha} \int_{\Omega} V(x) |w_0(x)|^2 \, dx \right)^{\frac{1}{p^+-2}}, \right.
$$

$$
\left. \left(\frac{4p^+}{\alpha} \int_{\mathbb{R}^{2n}} \frac{1}{q(x,y)} \frac{|w_0(x) - w_0(y)|^{q(x,y)} |x-y|^{a+q(x,y)\lambda(x,y)}}{|x-y|} \, dx \, dy \right) \int_{\Omega} |w_0|^{p(x)} \, dx \right)^{\frac{1}{p^+-2}},
$$

we immediately obtain that $I_\lambda(\tau w_0) < 0$ for all $\lambda > 0$.

On the other hand, by taking $\tau \leq \rho \|w_0\|_{\lambda}^{-1}$, we also have that $\tau w_0 \in B_\rho$. Hence, if $\tau \leq \min(\tau_0, \rho \|w_0\|_{\lambda}^{-1})$, there exists $z_0 = \tau w_0 \in B_\rho$ such that $I_\lambda(z_0) < 0$ for all $\lambda > 0$. This clearly implies that $\tilde{c}_\lambda < 0$ for all $\lambda > 0$.

It then follows from Lemma 2 and the Ekeland variational principle (see [24]) applied in B_ρ, that there exists a sequence $\{u_j\}$ such that

$$
\tilde{c}_\lambda \leq I_\lambda(u_j) \leq \tilde{c}_\lambda + \frac{1}{j},
$$

and

$$
I_\lambda(v) \geq I_\lambda(u_j) - \frac{1}{j} \|u_j - v\|_\lambda,
$$

for all $v \in B_\rho$.

Now we show that $\|u_j\|_{\lambda} < \rho$ for n sufficiently large. Arguing by contradiction, we assume that $\|u_j\|_{\lambda} = \rho$ for infinitely many j. Without loss of generality, we may assume that $\|u_j\|_{\lambda} = \rho$ for any $j \in \mathbb{N}$. From Lemma 2, we deduce that

$$
I_\lambda(u_j) \geq \delta > 0.
$$

This, combined with (29), implies that $\tilde{c}_\lambda \geq \delta > 0$, which contradicts $\tilde{c}_\lambda < 0$. Next we show that $I'_\lambda(u_j) \to 0$ in E_{λ}^*. Set

$$
w_j = u_j + \tau v, \quad \text{for all } v \in B_1 := \{v \in E_{\lambda} : \|v\|_{\lambda} = 1\},
$$

where $\tau > 0$ small enough is such that $(q^+ - 1) \tau \rho + \tau q^+ - 1 \leq \rho q^+ - 1 - \|u_j\|_{\lambda}^{q^+ - 1}$ for fixed j large. Then

$$
\|w_j\|_{\lambda}^{q^+ - 1} \leq \|u_j\|_{\lambda}^{q^+ - 1} + (q^+ - 1) \tau \rho \langle u_j, v \rangle_{\lambda} + \tau q^+ - 1
$$

$$
\leq \|u_j\|_{\lambda}^{q^+ - 1} + (q^+ - 1) \tau \rho + \tau q^+ - 1 \leq \rho q^+ - 1,
$$

ε Springer
which implies that \(w_j \in B_\rho \). Thus, from (30), we obtain

\[
I_\lambda(w_j) \geq I_\lambda(u_j) - \frac{1}{j} \|u_j - w_j\|_\lambda,
\]

that is

\[
\frac{I_\lambda(u_j + \tau v) - I_\lambda(u_j)}{\tau} \geq -\frac{1}{j}.
\]

Letting \(\tau \to 0^+ \), we get \(\langle I'_\lambda(u_j), v \rangle \geq -1/j \) for any fixed \(j \) large. Similarly, choosing \(\tau < 0 \) and \(|\tau| \) small enough and repeating the procedure above, one can obtain that \(\langle I'_\lambda(u_j), v \rangle \leq 1/j \) for any fixed \(j \) large. Thus,

\[
\lim_{j \to +\infty} \sup_{v \in B_1} |\langle I'_\lambda(u_j), v \rangle| = 0,
\]

which yields that \(I_\lambda(u_j) \to 0 \) in \(E^*_\lambda \) as \(j \to +\infty \). Therefore, \(\{u_j\}_j \) is a \((PS)\tilde{c}_\lambda\) sequence for the functional \(I_\lambda \). Using a similar discussion as in Lemma 4, there exists \(u^{(2)}_\lambda \in E_\lambda \) such that \(u_j \to u^{(2)}_\lambda \) in \(E_\lambda \). Thus, we get a nontrivial solution \(u^{(2)}_\lambda \) of (1) satisfying

\[
I_\lambda(u^{(2)}_\lambda) \leq \zeta < 0 \quad \text{and} \quad \|u^{(2)}_\lambda\|_\lambda < \rho.
\]

We therefore deduce that

\[
I_\lambda(u^{(2)}_\lambda) = \tilde{c}_\lambda \leq \zeta < 0 < \delta < c_\lambda = I_\lambda(u^{(1)}_\lambda) \quad \text{for all } \lambda > 0,
\]

which ends the proof. \(\square \)

4 Proof of Theorems 5 and 6

We give in this section the proof of the others two main results of this paper, namely Theorems 5 and 6.

Proof of Theorem 5 For any sequence \(\{\lambda_j\}_j \) such that \(1 \leq \lambda_j \to +\infty \) as \(j \to +\infty \), let \(u^{(i)}_j \) be the critical points of \(I_\lambda \) obtained in Theorem 4 for \(i = 1, 2 \). Thus, we have

\[
I_\lambda(u^{(2)}_\lambda) \leq \zeta < 0 \quad \text{and} \quad \|u^{(2)}_\lambda\|_\lambda < \rho.
\]

Hence, we deduce that

\[
I_\lambda(u^{(2)}_j) \leq \zeta < 0 < \delta < c_\lambda = I_\lambda(u^{(1)}_j) < C_0,
\]

\(I'_\lambda(u^{(2)}_j) = I'_\lambda(u^{(1)}_j), \)
where C_0 is the constant introduced in (26), and

\[
I_{\lambda_j}(u^{(i)}_j) \geq \min \left(\frac{1}{2}, \frac{1}{q^+} \right) \left\| u^{(i)}_j \right\|_{\lambda_j}^{q^+ - 1} - \int_{\Omega} \left(\frac{\alpha}{p(x)} \left| u^{(i)}_j \right|^{p(x)} + \frac{\beta}{k(x)} \left| u^{(i)}_j \right|^{k(x)} \right) dx
\]

\[
\geq \left(\min \left(\frac{1}{2}, \frac{1}{q^+} \right) - \frac{1}{p^-} \right) \left\| u^{(i)}_j \right\|_{\lambda_j}^{q^+ - 1} - \beta \left(\frac{1}{k^-} - \frac{1}{p^-} \right) \max \left(C_k^{-}, \left\| u^{(i)}_j \right\|_{\lambda_j}^{k^-}, C_k^+ \left\| u^{(i)}_j \right\|_{\lambda_j}^{k^+} \right). \quad \text{(32)}
\]

We then get from (31) and (32) that

\[
\left\| u^{(i)}_j \right\|_{\lambda_j} \leq C,
\]

where $C > 0$ is independent of λ_j. Hence, we can suppose that $u^{(i)}_j \rightharpoonup u^{(i)}$ weakly in $H^{s_0} (\Omega)$ and $u^{(i)}_j \rightarrow u^{(i)}$ strongly in $L^{p_0} (\Omega)$ and $L^{k_0} (\Omega)$, respectively. By Fatous’ lemma, we obtain

\[
\int_{\Omega} V(x) \left| u^{(i)}(x) \right|^2 dx \leq \liminf_{j \rightarrow +\infty} \int_{\Omega} V(x) \left| u^{(i)}_j(x) \right|^2 dx \leq \liminf_{j \rightarrow +\infty} \frac{\left\| u^{(i)}_j \right\|_{\lambda_j}^2}{\lambda_j} = 0.
\]

Thus, $u^{(i)} = 0$ a.e. in $\mathbb{R}^n \setminus V^{-1}(0)$ and $u^{(i)} \in H^{s_0}(\Omega_0)$ by (K1).

Similarly to the proof of Theorem 4, we can now prove that $u^{(1)}$ and $u^{(2)}$ are two solutions of problem (23). Indeed, from (31), $u^{(i)} = 0$ a.e. in $\mathbb{R}^n \setminus V^{-1}(0)$, and the fact that the constants ζ, δ are independent of λ, it follows that

\[
\max \left(\frac{1}{q^-}, \frac{1}{2} \right) \left\| u^{(1)} \right\|_{\lambda}^{q^+ - 1} - \int_{\Omega} \frac{\alpha}{p(x)} \left| u^{(1)} \right|^{p(x)} dx - \int_{\Omega} \frac{\beta}{k(x)} \left| u^{(1)} \right|^{k(x)} dx \geq \delta > 0,
\]

and

\[
\frac{1}{q^+} \int_{\Omega} \int_{\Omega} \frac{\left| u^{(2)}(x) - u^{(2)}(y) \right|^{q(x,y)}}{|x - y|^{n+q(x,y)}} dx dy - \int_{\Omega} \frac{\alpha}{p(x)} \left| u^{(2)} \right|^{p(x)} dx - \int_{\Omega} \frac{\beta}{k(x)} \left| u^{(2)} \right|^{k(x)} dx \leq \zeta < 0,
\]

which means that $u^1 \neq 0$ and $u^1 \neq u^2$. The proof is thus complete. \qed

We conclude this paper with the proof of Theorem 6, providing the existence of infinitely many solutions of problem (23). To this end, we will employ the following symmetric mountain pass theorem (see [20, Theorem 2.2]).

Theorem 8 Let X be a real infinite dimensional Banach space and $J \in C^1(X)$ a functional satisfying the $(PS)_c$ condition as well as the following three properties:

\[\square\] Springer
Therefore, there exists \(R \) such that

\[\|u\| \leq R \]

Thus, we get that for all \(u \) in \(|\Omega_1| \), we get

\[I(u) \leq \max \left(\frac{1}{q^+}, \frac{1}{2} \right) \sigma^{q+1} \|u\|_{\lambda}^{q^+ - 1} \|u\|_{\lambda}^{q^+ - 1} - \int_{\Omega_0} \alpha |u|^{p(x)} dx - \int_{\Omega_0} \beta |u|^{k(x)} dx \]

\[\leq \max \left(\frac{1}{q^+}, \frac{1}{2} \right) \sigma^{q+1} \|u\|_{\lambda}^{q^+ - 1} \|u\|_{\lambda}^{q^+ - 1} - \frac{\alpha \sigma^{p^-}}{p^+} \min \left(\|u\|_{L^p(\Omega_0)}, \|u\|_{L^p(\Omega_0)}^{p^-} \right) . \]

Note that there exists a constant \(C_{\mathcal{W}} > 0 \) such that \(\|u\|_{L^p(\Omega_0)} \geq C_{\mathcal{W}} \|u\|_{\lambda} \), because all norms are equivalent on the finite dimensional Banach space \(\mathcal{W} \). Hence, since \(p^- > 2 \), we get

\[I(\sigma u) \leq \max \left(\frac{1}{q^+}, \frac{1}{2} \right) \sigma^{q+1} \|u\|_{\lambda}^{q^+ - 1} \|u\|_{\lambda}^{q^+ - 1} - \frac{\alpha \sigma^{p^-}}{p^+} \min \left(C_{\mathcal{W}}^{p^-}, C_{\mathcal{W}}^{p^+} \right) \rightarrow -\infty \]

as \(\sigma \rightarrow +\infty \).

Thus, as \(R \rightarrow +\infty \),

\[\sup_{u \in \mathcal{H}_0^{r}(\Omega_0)} I(u) = \sup_{u \in \mathcal{H}_0^{r}(\Omega_0)} I(Ru) \rightarrow -\infty. \]

Therefore, there exists \(R_0 > 0 \) large enough such that \(I(u) < 0 \) for all function \(u \in \mathcal{H}_0^{r}(\Omega_0) \), with \(\|u\|_{\lambda} = R \) and \(R \geq R_0 \). Thus the claim holds true.

Similarly to the proof of Lemma 3, one can show that \(I \) satisfies the \((PS)_c\) condition for any \(c \in \mathbb{R} \). Obviously, \(I(0) = 0 \) and \(I \) is an even functional. In conclusion, by Theorem 8, there exists an unbounded sequence of solutions of problem (23).
5 Conclusions and open problems

In this paper, we have considered the following second-order non-local elliptic equation with variable growth conditions driven by the variable-order fractional Laplace operator:

\[
\begin{cases}
(-\Delta)^{s_{\cdot}} q_{\cdot}) u + \lambda V u = \alpha |u|^{p_{\cdot}-2} u + \beta |u|^{k_{\cdot}-2} u & \text{in } \Omega, \\
u = 0 & \text{in } \mathbb{R}^n \setminus \Omega.
\end{cases}
\]

Under suitable assumptions for the functions \(q(\cdot), s(\cdot), V(\cdot), p(\cdot)\) and \(k(\cdot)\), and on the parameters \(\alpha\) and \(\beta\), we employed the mountain pass category theorem and Ekeland’s variational principle to obtain the existence of at least two different solutions for all \(\lambda > 0\). Moreover, we proved that these solutions converge to two solutions of a limit problem as \(\lambda \to +\infty\), and we obtained the existence of infinitely many solutions for this limit problem. Our results generalize the ones previously obtained in \([53]\) in the case \(q(\cdot) \equiv q\) constant.

We now conclude this paper by presenting a small collection of open problems related to our work which may be of interest for future research.

1. A crucial assumption for our results was that

\[q^{\ast}(x) := \frac{nq(x, y)}{n - s(x, y)q(x, y)} > r(x),\]

for all \(x \in \overline{\Omega}\) and some continuous function \(r\) such that \(r(x) > 1\). It would be interesting to analyze what results we can get in the case in which \(q^{\ast}(x_0) = r(x_0)\) for some \(x_0 \in \Omega\).

2. It would be worth to investigate what happens if in (1) we replace the Dirichlet homogeneous exterior condition \(u = 0\) in \(\mathbb{R}^n \setminus \Omega\) with the non-homogeneous one \(u = g\) in \(\mathbb{R}^n \setminus \Omega\), where \(g\) satisfies some regularity property to be defined. Notice that this would correspond to a non-homogeneous boundary condition on \(\partial \Omega\) in the local case of the Laplace operator.

3. A final interesting open problem would be to study the existence and multiplicity of solutions for Schrödinger–Kirchhoff type models involving the operator \((-\Delta)^{s_{\cdot}} q_{\cdot})\) with variable exponent nonlinearities, i.e.

\[
\begin{cases}
\mathcal{M}(-\Delta)^{s_{\cdot}} q_{\cdot} u + \lambda V u = \alpha |u|^{p_{\cdot}-2} u + \beta |u|^{k_{\cdot}-2} u & \text{in } \Omega, \\
u = 0 & \text{in } \mathbb{R}^n \setminus \Omega.
\end{cases}
\]

with \(\mathcal{M} = \mathcal{M}([u]_{q(\cdot), s(\cdot), \Omega})\). Such kind of problems have been recently analyzed in \([52]\) for the constant-exponent fractional \(q\)-Laplacian. Nevertheless, to the best of our knowledge, the case of the variable-exponent operator remains open.

3. To the best of our knowledge, this paper is the first to discuss the multiplicity of solutions for variable-order fractional \(q(\cdot)\)-Laplacian problems with concave-convex nonlinearity involving a variable exponent. Thus, among the questions...
Multiplicity of solutions for fractional $q(\cdot)$-laplacian equations

asked is the principle of the density of $\mathcal{D}(\Omega)$ in $\mathcal{H}^{s(\cdot)}_{0}(\Omega)$. In general for $\Omega \subset \mathbb{R}^n$, $\mathcal{H}^{s(\cdot)}_{0}(\Omega) \neq \mathcal{H}^{s(\cdot)}(\Omega)$, i.e. $\mathcal{D}(\Omega)$ is not dense in $\mathcal{H}^{s(\cdot)}_{0}(\Omega)$. As an open problem to this paper, the question, is $\mathcal{D}(\Omega)$ dense in $\mathcal{H}^{s(\cdot)}_{0}(\Omega)$? with

$$\mathcal{H}^{s(\cdot)}(\Omega) = H^{p(\cdot),q(\cdot),s(\cdot)}(\Omega) = \left\{ u \in L^{p(\cdot)}(\Omega) : [u]_{q(\cdot),s(\cdot),\Omega} < +\infty \right\},$$

where

$$[u]_{q(\cdot),s(\cdot),\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^{q(x,y)}}{\lambda} \frac{dx \, dy}{|x - y|^{n+q(x,y)s(x,y)}} < 1 \right\}.$$

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s41808-023-00239-3.

Author Contributions All the authors have contributed equally to this work.

Funding This work is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement NO: 694126-DyCon), by the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-18-1-0242 and by the Grant PID2020-112617GB-C22 KILEARN of MINECO (Spain).

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors have no conflict of interest/competing interests directly or indirectly related to the present work.

References

1. Adams, R.A., Fournier, J.J.: Sobolev Spaces. Elsevier, New York (2003)
2. Alves, C.O., Ferreira, M.C.: Existence of solutions for a class of $p(x)$-Laplacian equations involving a concave–convex nonlinearity with critical growth in \mathbb{R}^n. Topol. Methods Nonlinear Anal. 45(2), 399–422 (2015)
3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(4), 349–381 (1973)
4. Antil, H., Biccari, U., Ponce, R., Warma, M., Zamorano, S.: Controllability properties from the exterior under positivity constraints for a 1-d fractional heat equation. arXiv:1910.14529 (arXiv preprint) (2019)
5. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Not. Am. Math. Soc. 51(11), 1336–1347 (2004)
6. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \mathbb{R}^n. J. Differ. Equ. 255(8), 2340–2362 (2013)
7. Bahrouni, A.: Comparison and sub-supersolution principles for the fractional $p(\cdot)$-Laplacian. J. Math. Anal. Appl. 458(2), 1363–1372 (2018)
8. Bahrouni, A., Rădulescu, V.D.: On a new fractional sobolev space and applications to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst. S 11(3), 379 (2018)
9. Biccari, U.: Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evol. Equ. Control Theory 11(1), 301–324 (2022)
10. Biccari, U., Hernández-Santamaría, V.: The Poisson equation from non-local to local. Electron. J. Differ. Equ. 145, 1–13 (2018)
11. Biccari, U., Hernández-Santamaría, V.: Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects. IMA J. Math. Control Inf. 36(4), 1199–1235 (2019)
12. Biccari, U., Warma, M.: Null-controllability properties of a fractional wave equation with a memory term. Evol. Equ. Control Theory 9(2), 399–430 (2020)
13. Biccari, U., Warma, M., Zuazua, E.: Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17(2), 387–409 (2017)
14. Biccari, U., Warma, M., Zuazua, E.: Controllability of the one-dimensional fractional heat equation: theoretical and numerical aspects. IMA J. Math. Control Inf. 36(4), 1199–1235 (2019)
15. Biccari, U., Warma, M., Zuazua, E.: Null-controllability properties of a fractional wave equation with a memory term. Evol. Equ. Control Theory 9(2), 399–430 (2020)
16. Biccari, U., Warma, M., Zuazua, E.: Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17(2), 387–409 (2017)
17. Biccari, U., Warma, M., Zuazua, E.: Control and numerical approximation of fractional diffusion equations. Handb. Numer. Anal. (In press) (2021)
18. Bisci, G.M., Rădulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)
19. Brezis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)
20. Caffarelli, L.: Non-local diffusions, drifts and games. In: Nonlinear Partial Differential Equations, pp. 37–52. Springer, Berlin (2012)
21. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial. Differ. Equ. 32(8), 1245–1260 (2007)
22. Colasuonno, F., Pucci, P.: Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. Theo. Methods Appl. 74(17), 5962–5974 (2011)
23. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)
24. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47(2), 324–353 (1974)
25. Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k, p(x)}$ (Ω). J. Math. Anal. Appl. 262(2), 749–760 (2001)
26. Fărăseanu, M.: On an eigenvalue problem involving the fractional (s, p)-Laplacian. Fract. Calc. Appl. Anal. 21(1), 94–103 (2018)
27. Fărăseanu, M., Mihăilescu, M., Stancu-Dumitru, D.: Perturbed fractional eigenvalue problems. Discrete Contin. Dyn. Syst. 37(12), 6243–6255 (2017)
28. Fu, Y.: The existence of solutions for elliptic systems with nonuniform growth. Stud. Math. 3(151), 227–246 (2002)
29. Kaufmann, U., Rossi, J.D., Vidal, R.E.: Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians. Electron. J. Qual. Theory Differ. Equ. 76, 1–10 (2017)
30. Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}(Ω)$ and $W^{1, p(x)}(Ω)$. Czechoslovak Math. J. 41, 25 (2016)
31. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)
32. Rahmoune, A.: On the existence, uniqueness and stability of solutions for semi-linear generalized elasticity equation with general damping term. Acta Math. Sin. Engl. Ser. 33(11), 1549–1564 (2017)
33. Rahmoune, A.: Semilinear hibolc boundary value problem associated to the nonlinear generalized viscoelastic equations. Acta Math. Vietnam. 43(2), 219–238 (2018)
34. Rahmoune, A.: Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities. J. Math. Phys. 60(12), 122701 (2019)
39. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)
40. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)
41. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33(5), 2105–2137 (2013)
42. Warma, M.: The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42(2), 499–547 (2015)
43. Warma, M.: On the approximate controllability from the boundary for fractional wave equations. Appl. Anal. 96(13), 2291–2315 (2017)
44. Warma, M.: Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57(3), 2037–2063 (2019)
45. Warma, M., Zamorano, S.: Null controllability from the exterior of a one-dimensional nonlocal heat equation. Control Cybern. 48(3), 417–436 (2019)
46. Warma, M., Zamorano, S.: Analysis of the controllability from the exterior of strong damping nonlocal wave equations. ESAIM Control Optim. Calc. Var. 26(42), 1–34 (2020)
47. Xiang, M., Bisci, G.M., Tian, G., Zhang, B.: Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity 29(2), 357–374 (2016)
48. Xiang, M., Wang, F.: Fractional Schrödinger–Poisson–Kirchhoff type systems involving critical non-linearities. Nonlinear Anal. 164, 1–26 (2017)
49. Xiang, M., Zhang, B., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian. J. Math. Anal. Appl. 424(2), 1021–1041 (2015)
50. Xiang, M., Zhang, B., Guo, X.: Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem. Nonlinear Anal. Theory Methods Appl. 120, 299–313 (2015)
51. Xiang, M., Zhang, B., Rădulescu, V.D.: Existence of solutions for perturbed fractional p-laplacian equations. J. Differ. Equ. 260(2), 1392–1413 (2016)
52. Xiang, M., Zhang, B., Rădulescu, V.D.: Superlinear Schrödinger–Kirchhoff type problems involving the fractional p-Laplacian and critical exponent. Adv. Nonlinear Anal. 9(1), 690–709 (2020)
53. Xiang, M., Zhang, B., Yang, D.: Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. 178, 190–204 (2019)
54. Xiang, M., Zhang, B., Zhang, X.: A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in \mathbb{R}^n. Adv. Nonlinear Stud. 17(3), 611–640 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.