The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition

Gareth Prosser,1, Julius Brandenburgb,1, Norbert Reiling, Clifton Earl Barry III, Robert J. Wilkinson, Katalin A. Wilkinson

1Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
bMicrobial Interface Biology, Priority Research Area Infectious, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany
cClinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
dThe Francis Crick Institute, London, NW1 2AT, United Kingdom
eDepartment of Medicine, Imperial College, London, W2 1PG, United Kingdom
fGerman Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany

Received 8 September 2016; accepted 6 October 2016
Available online 22 October 2016

Abstract

*Mycobacterium tuberculosis* is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines.

© 2016 The Author(s). Published by Elsevier Masson SAS on behalf of Institut Pasteur. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Tuberculosis; Hypoxia; T cells; Antigens; Macrophage; Lipid droplets

1. Introduction

Since tuberculosis (TB) was declared a global health emergency in 1993 [1] a number of important control efforts have led to a fall of TB-associated mortality and the saving of 45 million lives [2]. However, up to a third of the world’s population is estimated latently infected with *Mycobacterium tuberculosis* (Mt), serving as a reservoir for many of the estimated 9·6 million people who developed TB worldwide in 2014, leading to 1·5 million deaths. Thus, TB now ranks alongside HIV as a leading cause of death worldwide, and the rate of HIV-TB co-infection worldwide in 2014 was 12% [2]. Mt is transmitted by the cough of an infected person (aerosolized) and inhaled into the alveoli of a new host. This process can lead to three possible outcomes: i) a minority develop active primary progressive TB disease and develop a detectable but ineffective acquired immune response (immune sensitization), ii) the majority develop latent TB infection that is contained throughout their life by an effective acquired immune response, and iii) a small proportion of those latently infected develop post-primary TB as a result of reactivation of their latent infection, which can be triggered by immune suppression such as HIV-1 infection [3]. Latent Mt infection (LTBI) is defined solely by evidence of immune sensitization by mycobacterial proteins: a positive result in either the
tuberculin skin test (TST) or an in vitro interferon gamma release assay (IGRA), in the absence of clinical signs and symptoms of active disease [4]. However, TST and IGRA do not distinguish latent TB from active disease, and neither have high accuracy to predict subsequent active tuberculosis [5]. Better understanding of the biology of Mtb and of LTBI is necessary in order to develop better diagnostic methods and treatment options. However, the interplay between Mtb and the human host is incompletely understood.

Conventionally, LTBI is conceived as Mtb remaining in an inactive, stationary phase in the granuloma as a stable latent population of bacilli capable of surviving under stressful conditions generated by the host [6]. Alternatively, viable non-replicating persistent Mtb reside within alveolar epithelial cells in the lung, with reactivation being associated with the upregulation of resuscitation promoting factors within MTB and the escape of newly dividing microorganisms into alveoli and bronchi [7]. Recent advances in imaging technologies such as computed tomography (CT) combined with positron emission tomography (PET) have aided the evolution of a concept that LTBI encompasses a diverse range of individual states extending from sterilizing immunity in those who have completely cleared the infection via an effective acquired immune response, to subclinical active disease in those who harbor actively replicating bacteria in the absence of clinical symptoms, through to active TB disease with clinical symptoms [8,9].

Thus, it has been proposed that Mtb infection may be better viewed as a continuous spectrum of immune responses, mycobacterial metabolic activity, and bacillary numbers. In this model the impact of HIV infection can be conceptualized as a shift towards poor immune control, higher mycobacterial metabolic activity, and greater organism load, with subsequently increased risk of progression to active disease [3,8–11].

Direct measurement of lesional oxygen tension in rabbits [12], and indirect measurements in non-human primates and humans using hypoxia-sensitive probes demonstrate many TB lesions in vivo are hypoxic [13]. Hypoxia is only one of the many different stresses Mtb encounters in the granuloma and in vitro and animal models are limited in the extent to which they recapitulate the multifactorial environment created by the host to arrest mycobacterial growth. Nonetheless, many conceptual advances have been achieved in recent years in our understanding of mycobacterial physiology under low oxygen conditions, particularly in the areas of gene regulation, metabolism, and energy homeostasis.

2. M. tuberculosis and hypoxia: in vitro studies of bacterial response and adaptation

The existence of a coordinated and inducible response of Mtb to low oxygen conditions was initially revealed by Wayne and colleagues, culminating in the now widely employed in vitro “Wayne” model of hypoxia-induced dormancy [14]. In this system, bacteria grown in liquid medium in sealed tubes with limited head space gradually deplete oxygen supplies, leading to a non-replicating state of persistence (NRP) characterized by reduced metabolism and increased drug tolerance. In this state cellular viability can remain unchanged for weeks to months, with synchronized replication resuming following culture reaeration. The inferred similarities between bacteria grown in vitro under hypoxic conditions and clinical cases of latent infection have made the Wayne model a key tool for investigating the molecular basis of mycobacterial dormancy. A key caveat is that many of these studies were performed using laboratory strains of Mtb that have been passaged aerobically over many years, these findings therefore need to be revisited using recent clinical isolates.

2.1. Gene regulation, hypoxia sensing

Early work on gene expression analysis of Mtb undergoing hypoxic challenge identified a suite of almost 50 genes that were significantly and consistently upregulated relative to aerobic controls. Further work identified that this regulon was controlled by a transcription factor subsequently named DosR (Dormancy Survival Regulator), the activation of which was mediated through two classic two-component system-type transmembrane sensor histidine kinases, DosS and DosT [15]. Activation of DosS and DosT in turn is still the subject of some debate, however strong evidence suggests they sense cellular redox status and dissolved oxygen concentration, respectively, via their heme prosthetic groups [16]. Genes within the DosR regulon are involved in multiple processes including central metabolism, energy generation and gene regulation; however the majority are of unknown function. Interestingly, despite its dominance of gene expression under hypoxia, multiple studies have demonstrated that genetic inactivation of dosR results in a relatively mild loss of viability under hypoxia in vitro (2–3 logs decrease in CFUs after 30–50 days incubation) [17–19] and varying responses in vivo in multiple animal models [20]. Further evidence suggests these effects may be dependent on the exact hypoxia model, strain, animal model, and growth media used [17,18,20,21]. Furthermore, upregulation of the DosR regulon is not specific to hypoxic challenge (it is also activated by NO and CO [22,23]; nor is it uniquely controlled by DosST sensing there is significant cross-talk with other TCS regulons [24]). Nonetheless, DosR and its regulon are modestly upregulated in sputum from active TB cases [25], supporting a role for the dormancy survival response in infection.

Outside of the DosR response, other transcriptional regulators have been identified as playing significant roles under hypoxic conditions, although precise functions have not been determined [25,26]. Galagan and colleagues used ChIP-Seq data from strains overexpressing various transcription factors to develop a detailed map of regulatory interactions in Mtb under hypoxia [26]. They identified Rv0081, itself part of the DosR regulon, as a major regulatory hub controlling multiple hypoxia-relevant processes. Interestingly, the Mycobacterium smegmatis homologue of the Rv0079 - a gene within the same operon as Rv0081 - has also been shown to have functional importance in this bacterium during hypoxia in stabilizing ribosomes in the 70S form, in contrast to the higher order structures seen in many enteric bacteria grown under similar
DosR-regulated TAG biosynthetic gene

Mtb accumulates intracellular triacylglycerides (TAGs) under with the dormancy/hibernation programs of other organisms, resumption of growth when conditions improve. Consistent carbon and energy sources for prolonged survival and later metabolism towards lipid storage may be a major regulator of observed under hypoxia [32,33]. The canonical metabolic role of Icl is to allow growth on fatty acids as the sole carbon source under hypoxia. Instead, glycine levels are seen to increase in an Icl-dependent manner [35,36], inferring subsequent reduction of glycine to glyoxylate as an alternative detoxification step under these conditions. Consistent with this hypothesis, expression and activity of glycine dehydrogenase increases substantially in hypoxic Mtb [14]. Glyoxylate reduction is also a possible fermentative mechanism of regenerating oxidized cofactors during the reductive stress of hypoxia.

Less is known about peripheral metabolic pathways and biosynthesis of other essential compounds and macromolecules under hypoxia. There appears to be growing evidence for shifts in nitrogen metabolism, particularly influenced by the large amount of nitrogen syphoned into the sequestration of glyoxylate (as glycine), changes in glutamine biosynthesis [33], observations of aspartate secretion [36], polyglutamate/glutamine biosynthesis [38], as well as a possible assimilatory role for the DosR-regulated nitrite reductase [39].
NAD + ratio, indicative of a blocked electron transport system (ETS) and consistent with depleted stores of terminal electron acceptors (TEAs) [40]. However, ATP levels remain non-zero throughout hypoxic challenge, and de novo ATP synthesis via the ETS (as opposed to via substrate level phosphorylation) is a strict requirement for bacterial survival under these conditions [40]. This suggests that, despite cessation of replication, Mtb maintains both an energized membrane and constitutive ATP production even in the absence of molecular oxygen. Interestingly, transcriptional changes under hypoxia demonstrate a functional switch to the use of less energy efficient respiratory complexes, including upregulation of the non-proton-translocating type II NADH dehydrogenase (ndh; essential for survival under hypoxia [40]) and cytochrome bd oxidase (cydAB) and down regulation of the proton-pumping type I NADH dehydrogenase (nuo [32]). The survival benefit in uncoupling electron transport from generation of the proton motive force (PMF) suggests that cofactor recycling is more important than ATP generation under these conditions, and/or that the PMF is already sufficiently maintained by alternative measures (e.g. succinate, aspartate secretion, nitrate reduction; see previous and later sections).
Succinate dehydrogenase, which physically links the TCA cycle and ETS, has recently been shown to play a key but enigmatic role in mycobacterial adaptation to hypoxic conditions. Genetic deletion of succinate dehydrogenase (SDH) 1 (sdh-1; Rv0247c-0249c), the major aerobic SDH, abolishes the ability of bacteria to regulate oxygen consumption (continual high respiratory rates, significantly higher membrane potential relative to wild-type) when approaching hypoxia which subsequently led to increased bacterial death at later stages of anaerobiosis [41]. However, other evidence suggests that Sdh-2 (a homologue of sdh-1; Rv3316-3319) may have a key role during hypoxia, either as a canonical succinate dehydrogenase/fumarate reductase [34,37] and/or in maintenance of the PMF (protonophore treatment of an sdh-2 null mutant under hypoxia is lethal [41]).

2.4. Quinones

While certain proteinaceous modules of the ETS appear to differ between hypo- and normoxia, quinone electron carriers are indispensable across all conditions. Accordingly, inhibition of menaquinone (MQ) biosynthesis is cidal to anaerobic bacteria [16,42]. Intriguingly, menaquinone:menaquinol (MQ:MQH2) homeostasis under hypoxia may also play a larger regulatory role in addition to electron transport, including in activation of the DosS sensor kinase of the DosR system [16] and regulation of SDH-1 catalytic activity [41]. Also, total MQ pool sizes are reduced under hypoxia, and addition of exogenous MQs lowers cell viability [16], while the degree of saturation of the MQ isoprenyl tail also changes under low oxygen conditions [16,43]. Deletion of the gene that reduces the MQ isoprenoid side chain results in reduction of efficiency of electron transport and compromised survival in macrophages. The reduced isoprenoid side chain seems highly unlikely to affect the intrinsic redox behavior of this cofactor suggesting that this modification tunes the two forms of MQ to interact with different redox partners and that these therefore have discrete biological functions [44]. Recently, a polyketide synthase (PKS) biosynthetic gene cluster was identified in M. smegmatis that was upregulated under hypoxia and coded for the production of novel benzoquinoid compounds. Genetic deletion led to lower viability under hypoxic conditions, which could be rescued upon addition of exogenous synthetic benzoquinones. It is unknown whether Mtb carries the same biosynthetic capabilities. The benefit of such alternative electron carriers under hypoxic conditions is unknown, but may be related to the lower potential difference between oxidized and reduced forms of the benzoquinone moiety relative to the naphthoquinone bicyclic ring system of menaquinones [45].

In the absence of molecular oxygen many facultative anaerobes can switch to alternative external TEAs to sustain respiration. Mtb contains all the genetic elements necessary for reduction of nitrate and nitrite, and both of these activities have been detected in growing cells [39,46]. Nitrite production increases significantly in anaerobically grown Mtb, even though neither expression of the NarGHJI (nitrate reductase) operon nor corresponding catalytic activity in whole cell extracts is significantly different between bacteria grown aerobically or anaerobically. The nitrate import/nitrite export NarK2X operon, however, is part of the DosR regulon and is strongly upregulated under hypoxia [32,46], suggesting that NarGHJI activity is modified post-translationally following activation of the nitrate import machinery (or directly following oxygen depletion). Interestingly, NarG null mutants display no fitness or viability cost compared to wild-type strains when grown under hypoxic conditions [46,47], casting doubt on the functional importance of nitrate reduction within the context of the ETS under low oxygen conditions. Similarly, the nitrite reductase NirBD only appears to be expressed and have physiological importance when nitrate or nitrite is supplied as the sole nitrogen source, whether under aerobic or anaerobic conditions [39,47]. However, adding exogenous nitrate to the growth medium of anaerobic bacteria abolishes the aforementioned succinate secretion, restores ATP levels, lowers the NADH/NAD+ ratio, and also buffers against the -cidal effects of mild acid challenge, but only in the presence of an intact NarGHJI operon [35,47]. Therefore, nitrate reduction may occupy a non-essential but conditionally important role, independent of nitrogen assimilation, in mycobacterial survival of hypoxic challenge by aiding in maintenance of both the PMF (in a similar role to succinate secretion) and ATP levels.

3. The host response to hypoxia

3.1. Macrophage immune mechanisms during hypoxia

Macrophages undergo substantial phenotypic changes when exposed to reduced oxygen tension and several lines of evidence suggest that hypoxia modulates central effector functions of this key innate immune cell (Fig. 2). The restriction of local oxygen supply was shown to lead to an increased formation of cytokines, chemokines [48,49] proangiogenic factors [50] but to a reduced eicosanoid synthesis by these cells [51]. Human mononuclear cells and macrophages facing hypoxic conditions secrete significantly enhanced amounts of the major pro-inflammatory cytokines IL-1β and TNF [52,53]. Various studies have shown that there is a hypoxia-mediated increase in innate immune cell migration into tumor tissue [54] and other hypoxia-related disease settings such as rheumatoid arthritis [55] and atherosclerosis [56]. During migration into inflammatory tissue, monocytes/macrophages encounter a gradual decrease in oxygen availability. The increased migration may be due to a hypoxia-induced chemokine gradient or due to recently observed HIF-1α dependent, chemokine independent accelerated migratory capacity of macrophages, when oxygen tension drops below a certain value [57].

HIF-1α plays a key role for macrophages to adapt to low oxygen tension. Cell-specific deletion of HIF-1α or transient gene silencing in macrophages reduces inflammatory responses with regard to macrophage motility and invasiveness, phagocytic capacity and most importantly bacterial killing
However also under normoxic conditions HIF-1α is induced upon bacterial infection [60]. It plays an important role for the production of key immune effector molecules, including granule proteases, antimicrobial peptides, TNF and nitric oxide (NO). The latter is of major importance since antibacterial immunity critically depends on NO production through Nitric Oxide Synthase-2 (NOS2) in macrophages of infected mice. The importance of HIF-1α for bacteria induced NOS2 expression has been also demonstrated in studies using macrophages stimulated with lipopolysaccharide (LPS) [61], lipoteichoic acid [62] and mycobacteria derived trehalose dimycolate (TDM) [63]. Notably, Mi et al. showed that pattern recognition receptor dependent stimulation of murine macrophages under hypoxia leads to enhanced NOS2 expression when compared to normoxic conditions [64], indicating that cell activation by conserved microbial structures is augmented under hypoxic conditions. Indeed, there is a close relationship between HIF-1α and a central transcriptional regulator for innate immunity and inflammatory processes [65] the transcription factor NF-kappaB (NF-kB) [66–68]. It was shown that hypoxia itself activates NF-kB through decreased Prolyl hydroxylase-1-dependent hydroxylation of IkappaB kinase-beta [69]. In addition TLR4 activation enhances HIF-1α transcript levels and thus promotes the expression of NF-kB -regulated cytokines in macrophages [70]. The key role of HIF-1α for the production of central immune effector molecules is directly linked to reduction of cellular ATP levels [58]. Under hypoxic conditions HIF-1α promotes the switch to glycolysis so that these cells can continue to produce ATP when oxygen is limited [71]. This change in cellular energy metabolism [72,73] is also observed in LPS-stimulated macrophages, similar to hypoxic conditions: leading to a metabolic shift towards glycolysis away from oxidative phosphorylation [72,74].

Fig. 2. The cellular response to hypoxia.
Left panel: Schematic representation of a human granuloma with central necrosis. It is characterized by a decreasing O₂ tension when getting into the center of a granuloma. Necrotic granulomas are characterized by an outer lymphocyte cuff of T and B cells and a macrophage-rich mid region that surrounds an amorph area of caseum in the center. In these characteristic lesions, mycobacteria often reside within necrotic tissue that has no obvious supply of oxygen. Right panel: Graphic illustration of the M. tuberculosis macrophage interaction in normoxia and hypoxia. Infection of macrophages with Mtb leads to a wide array of cellular responses, most of which have been studied under normoxia. Virulent mycobacteria have developed mechanisms operative in infected cells, which allow bacillary replication and persistence by fine-tuning pro- and anti-inflammatory activity. Hypoxic conditions lead to a significant increase of antimycobacterial effector functions, many of which are significantly enhanced by HIF-1 alpha. This hypoxia-mediated control of Mtb replication is at the same time associated with a significant metabolic reprogramming of its host cell characterized by a shift from oxidative toward glycolytic metabolism. Exposure to hypoxia but also to conserved microbial structures decreased the rate of beta-oxidation, whereas the accumulation of triglycerides increased inside the host cell. This metabolic shift leading to lipid droplet formation is presumably exploited by Mtb. Lipid-laden macrophages are found inside the hypoxic environment of the granuloma and are thought to provide a lipid-rich microenvironment for Mtb, thereby allowing it to adapt to an intracellular lifestyle of non-replicating persistence (NRP) in which it is largely resistant to known bactericidal mechanisms of macrophages and many antimicrobials.
This phenomenon of aerobic glycolysis in immune cells, resembling the Warburg effect in tumors [75], seems to be necessary for a vigorous and robust response upon classical activation of macrophages (also referred to as M1), though this metabolic transition results in an abating Krebs cycle which is coupled to a less efficient energy production. This reprogramming leads to an increased production of critical metabolites such as succinate, itaconic acid and nitric oxide (NO), all of which have key effector functions during infections [76–78]. During activation macrophages use other metabolic pathways to satisfy their need for precursor molecules. For example, murine macrophages use an aspartate-arginosuccinate shunt to maintain Interleukin-6 and NO production during M1 activation [79]. Huang et al. showed that cell-intrinsic lysosomal lipolysis is essential for alternative activation (M2) of macrophages [73], further substantiating the link between inflammatory activation and metabolic reprogramming. These studies not only show that inflammatory activation modulates cellular metabolism, but also suggest that the metabolic pathways themselves alter macrophage effector functions dramatically [73,79]. Intriguingly, the Krebs cycle metabolite succinate serves as an inflammatory signal in macrophages, enhancing IL-1β production by stabilizing HIF-1α [76]. This study, and also the work of Haschemi et al. implicating the carbohydrate kinase-like protein CARKL as an immune modulator in macrophages, shows that metabolic reprogramming is required for full macrophage effector function [80]. However, it also suggests that a manipulation of biosynthetic pathways or changes in metabolite levels may affect immune cell function, as shown for saturated and polyunsaturated fatty acids in dendritic cells [81].

3.2. The macrophage/Mtb interaction in hypoxia

Mtb infects macrophages, dendritic cells and neutrophils, with macrophages most extensively studied. Infection with Mtb leads to a wide array of cellular responses, most of which have been studied under normoxia. The evolutionary success of virulent mycobacteria likely depends on cross-species-conserved mechanisms operative in infected cells [82], which allow bacillary replication and persistence by fine-tuning pro- and anti-inflammatory activity [83]. Limited inflammation results in improper activation of macrophages, defective antimicrobial activity, and intracellular survival of the bacilli. Excessive inflammation promotes recruitment of additional Mtb-permissive cells, cell death, and extracellular replication of the bacilli [84]. Most studies indicate that reduced tissue oxygen promotes innate immune cell functions. From a host perspective, by affecting the fine-tuned inflammatory balance within granulomas, hypoxia could do both, either improve the immunity against Mtb, or lead to an impaired growth restriction by causing excessive inflammation and immunopathology.

Human monocyte derived macrophages cultured in 5% oxygen, corresponding to the physiological tissue concentration, permitted significantly less growth than those cultured at the 20% oxygen levels of ambient air [85]. Meylan et al. concluded that macrophages cultured at low oxygen tension may differ from their counterparts cultured at a higher oxygen level in that their intracellular milieu is less supportive of mycobacterial growth. A low pO2, which is closer to tissue conditions, did not affect the growth of free-living bacteria but strikingly reduced the growth of intracellular mycobacteria. The growth inhibitory effect was not due to a putative differential response to IFN-γ or TNF-α at low oxygen conditions, but was associated with a shift from oxidative toward glycolytic metabolism, consistent with earlier work in which macrophages cultured at low pO2 showed a metabolic shift toward glycolysis [86]. This was an early hint that metabolic changes contribute to Mtb growth control in macrophages. Recent data now show that glycolysis is involved in Mtb growth control in human and murine primary macrophages [87]. A third study also clearly demonstrated significantly decreased growth of Mtb under hypoxia (1% O2), when compared to human macrophages kept at 20% [88]. Importantly, macrophage viability, phagocytosis of live Mtb bacteria and Mtb-induced cytokine release were not affected. It has been shown that hypoxia also leads to the induction of autophagy [89], an important mechanism known to limit the growth of intracellular pathogens including Mtb [90]. However there are no data that imply a functional role for this anti mycobacterial effector mechanism under hypoxic conditions. Thus the molecular mechanisms limiting Mtb growth under hypoxic conditions are still incompletely understood. At the same time Mtb is thought to adapt to an intracellular lifestyle of non-replicating persistence (NRP) in which it is largely resistant to known bactericidal mechanisms of macrophages and many antimicrobials [91].

This hypoxia-mediated control of Mtb replication is at the same time associated with a significant metabolic reprogramming of its host cell. Human macrophages cultured for 24 h under hypoxia (1% O2) accumulate triacylglycerols (TAG) in lipid droplets [92]. The authors observed increased mRNA and protein levels of adipocyte differentiation-related protein (ADRP) also known adipophilin/perilipin 2, a key factor of lipid droplet formation [92]. Exposure to hypoxia but also to conserved microbial structures decreased the rate of beta-oxidation, whereas the accumulation of triglycerides increased inside the host cell. This phenomenon has recently been attributed to a metabolic switch towards glycolysis [76] by simultaneously decreasing lipolysis and fatty acid oxidation [73]. It appears this metabolic shift leading to lipid droplet formation is exploited by Mtb. Daniel et al. observed that human peripheral blood monocyte-derived macrophages and THP-1 macrophages incubated under hypoxia accumulate Oil Red O-stained lipid droplets containing TAG [93]. The authors were the first to study this effect in the context of Mtb infection. They demonstrated that inside hypoxic, lipid-laden macrophages, nearly half the Mtb population developed phenotypic tolerance to isoniazid, lost acid-fast staining and accumulated intracellular lipid droplets. The fatty acid composition of host and Mtb TAG were nearly identical suggesting that Mtb utilizes host TAG to
accumulate intracellular TAG. Other groups suggested that
Mtb actively induces this type of lipid-laden phenotype via
targeted manipulation of host cellular metabolism resulting
in the accumulation of lipid droplets in the macrophage [94].
Mtb oxygenated mycolic acids (MA) trigger the differenti-
ation of human monocyte-derived macrophages into foamy
macrophages [95]. Interestingly it has been observed that
inhibition of autophagy leads to increased levels of TAG and
lipid droplets, and pharmacological induction of autophagy
leads to decreased levels of lipid droplets [96]. This may be
of functional relevance, since it was shown that Mtb uses a
miRNA circuit to inhibit autophagy and promote fatty acid
stores in lipid droplets to ensure its own intracellular sur-
vival [97]. Lipid-loaded macrophages are found inside the
hypoxic environment of the granuloma. They contain
abundant stores of TAG and are thought to provide a lipid-
rich microenvironment for Mtb [95,98]. Numerous studies
have demonstrated that Mtb relies on fatty acids and also
cholesterol as important nutrients during infection, which are
used for energy synthesis, virulence factor expression, cell
wall and outer membrane construction; and to limit meta-
bolic stress [99–103]. Moreover, the development of the
lipid-rich caseme in the human TB granuloma has been
shown to correlate with a realignment in host lipid meta-
bolism within the granuloma, suggesting a pathogen-driven
response leading to the pathology necessary for Mtb trans-
mission [104].

3.3. The TB granuloma and hypoxia

The formation of granulomas is the hallmark of Mtb
infection. A granuloma can be defined as an inflammatory
mononuclear cell infiltrate that, while capable of limiting
growth of Mtb, also provides a survival niche from which the
bacteria may disseminate. The tuberculosis lesion is highly
dynamic and shaped by both, immune response elements and
the pathogen [105]. During disease the formation of necrotic
(caseous) granuloma may occur. Necrotic granulomas have an
outer lymphocyte cuff dominated by T and B cells and a
macrophage-rich mid region that surrounds an amorphous
center of caseous necrosis [106]. In these characteristic le-
sions, mycobacteria often reside within necrotic tissue that has
no obvious supply of oxygen [91]. Indirect evidence links
changes in oxygen tension with varying TB disease [28].
Intriguingly tuberculosis infections preferentially occur in the
most oxygen-rich sites in the human body [107]. In line with
these data is the observation that within the lungs of patients
failing TB chemotherapy, histological examination of different
lung lesions revealed heterogeneous morphology and distri-
bution of acid-fast bacilli [108]. Both studies suggest that
reduced levels of O2 may limit Mtb growth in vivo. It is pre-
sumed that Mtb resides in these regions in a slow growing or
non-replicating form, due to limited availability and supply of
oxygen and nutrients [109].

A number of animal model systems including mice, guinea
pigs, rabbits, zebrafish and non-human primates are used to
research aspects of granuloma immunopathology in
mycobacterial infections. The low dose aerosol model of
experimental TB infection in mice has been valuable to define
immunological mechanisms of protection against infection, the
virulence of mycobacterial strains, or validating novel
chemotherapeutic strategies against TB [110,111]. However
mice infected with Mtb fail to produce highly organized
caseous or necrotic lesions and do not develop hypoxic regions
within their infected lungs [12,112] suggesting that standard
mouse models of persistent tuberculosis may not be suitable
for the study of the hypoxic response in Mtb infection. In
contrast to mice tuberculous granulomas in guinea pigs, rab-
bbits, nonhuman primates [12], and zebrafish [113] are hypoxic
and are appropriate models to study the effect of low oxygen
tension in Mtb infection. However three independent, recently
developed mouse models may offer new opportunities to study
these effects also in TB infected mice. Dermal TB infection of
NOS-deficient mice results in development of classic human
granuloma pathology when IFN-γ or TNF-α activity is
blocked in vivo [114]. Unlike BALB/c and C57Bl/6 mice,
C3HeB/FeJ mice infected with Mtb showed evidence of lesion
hypoxia, fibrosis, liquefactive necrosis, and occasional cavity
formation [115]. Very recently aerosol Mtb infection of IL-13
overexpressing mice resulted in pulmonary centrally necro-
tizing granulomas with multinucleated giant cells, a hypoxic
rim and a perinecrotic collagen capsule, with an adjacent zone
of lipid-rich, acid-fast bacilli-containing foamy macrophages,
thus strongly resembling the pathology in human post-primary
TB [116]. Thus the use of human tissues or an appropriate
animal model to study the host granulomatous response to Mtb
is of ultimate importance.

What are the characteristic features of macrophages in
hypoxic conditions within the granulomatous lesion? Macro-
phages in granulomas are both antimycobacterial effector but
also the host cell for Mtb. Detailed immunohistochemical
analysis of granulomatous lesions from Mtb infected cyn-
omolgus macaques, a non-human primate, using a combina-
tion of phenotypic and functional markers suggests that
macrophages with anti-inflammatory phenotypes localized to
outer regions of granulomas, whereas the inner regions were
more likely to contain macrophages with proinflammatory,
presumably bactericidal, phenotypes. Active lesions display a
gradient of anti- and pro-inflammatory phenotypes, with anti-
inflammatory CD163+ iNOS+ Arg1high macrophages on outer
margins and proinflammatory CD11c+ CD68+ CD163dim
iNOS+ eNOS+ Arg1low macrophages toward the center, thus
making it possible to mount antibacterial responses safely
away from uninvolved tissue. These data support the concept
that granulomas have organized microenvironments that bal-
ance antimicrobial and anti-inflammatory responses to limit
pathology in the lungs [106]. This is consistent with a recent
study demonstrating that inflammatory signaling in human
tuberculosis granulomas is spatially organized [117]. The au-
thors applied laser-capture microdissection, mass spectrometry
and confocal microscopy, to generate detailed molecular maps
of human granulomas. It was observed that the centers of
granulomas have a pro-inflammatory environment that is
characterized by the presence of antimicrobial peptides,
reactive oxygen species and proinflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. If one relates these data to the spatial distribution of local oxygen tension within TB granuloma, there is a nearly perfect concordance between areas of hypoxia, necrosis, and a high degree of proinflammatory activities. In other words the highly hypoxic center is the focus of greatest antimicrobial activity, which is surrounded by an area of reduced proinflammatory activity and gradually increasing oxygen tension. It is of particular interest that foamy macrophages, which are key participants in both sustaining persistent bacteria and contributing to tissue pathology are located mainly in the interface region surrounding central necrosis [95]. As a result of the complex host pathogen interplay foamy macrophages in the interface region may reflect the perfect niche and prime location for Mtb to initiate a new round of infection.

The development of hypoxia is also known to be a stimulus for vascularization [118]. In TB it has been observed that cavitary TB patients presented patterns of low vascularization in the areas of peripheral infiltration, whereas tuberculosis lesions were always surrounded by highly vascularized tissue [119]. This is consistent with the finding that progression to necrosis and caseation is associated with the formation of vascular epithelial growth factor (VEGF) by activated macrophages [120,121]. Indeed VEGF, a primary mediator of host vascularization, has been found to be induced in human tuberculosis patients [122]. In another smaller study VEGF was postulated as a host marker to differentiate active TB from latent TB infection [123]. A recent study showed that vascularization of zebrafish granulomas was accompanied by macrophage expression of VEGF. Most importantly, treatment of infected animals with a VEGFR antagonist led to dramatic reductions in vascularization and bacterial burdens, demonstrating that a granuloma-induced VEGF-mediated angiogenic program is beneficial to mycobacteria [113]. Taken together, while hypoxia seems host protective at first sight, Mtb may exploit the hypoxia-induced host response to ensure its survival and transmission.

4. The acquired immune response to hypoxia-inducible Mtb targets

4.1. MTB antigen discovery

Understanding the host immune responses following infection with MTB is essential to help design effective vaccines and identify diagnostic and prognostic immune biomarkers. Antigen discovery efforts have been a core activity in mycobacterial research for several decades, facilitated by the availability of the genome sequence [124]. Antigen discovery approaches include i) the use of algorithms for genome-based prediction of immunodominant epitopes, ii) evaluation of candidate antigens/epitopes for T cell recognition, and iii) understanding the relationship between epitope specificity and the phenotype of the responding T cells. All these approaches rely on the assumption that the antigens of interest are expressed, translated and presented by infected cells, where they are recognized by T cells. While the MTB genome consists of close to 4000 genes, little is known about the MTB antigen repertoire that is actually expressed by the bacilli during infection of human cells. Sequencing the genomes of 21 strains, representative of the global diversity of the MTB complex showed, that the majority of the experimentally confirmed human T cell epitopes had little sequence variation, suggesting they are evolutionarily hyperconserved, implying that MTB might benefit from recognition by human T cells [125].

However, this knowledge is biased by the methods used to experimentally confirm the human T cell epitopes: using IFN-gamma production as a read-out. IFN-gamma is the most established readout of cell mediated immune response assays and a hallmark of the Th1 type cellular immunity [126]. The importance of the Th1 type immunity in controlling MTB infection has been established both in mice and humans [127]. However, it may be an incomplete representation of the cytokine repertoire and functional response of T cells to MTB antigens, and we still do not have a validated immune correlate of protection from TB disease to aid antigen discovery and identification of vaccine candidates. Thus, antigens activating immune cells other than CD4+ and/or CD8+ T cells, producing cytokines other than IFN-gamma are less widely explored [128]. While a number of cytokines and chemokines are being evaluated as alternatives to IFN-gamma, data are still preliminary [129]. Additionally, broadening antigen selection strategies is necessary, such as screening subdominant (cryptic) epitopes, which are not, or only weakly, recognized during natural immunity, but are able to induce immunity and protection against MTB challenge, as demonstrated in mouse models [130].

4.2. Mtb biology driven antigen discovery leading to potentially infection stage specific antigens

As indicated above, Mtb can adapt transcriptionally to a wide variety of environmental conditions, such as nutrient depletion, shifts in pH and hypoxia in vivo. The hypothesis that genes highly induced under such conditions may also be expressed and available as potential T cell targets has led to the derivation of what are termed infection stage specific MTB genes and thus their cognate antigens.

Amongst the first antigens to be investigated were those of the heat shock response: proteins induced under stress conditions, such as elevations of temperature causing denaturation of proteins during infection [131]. Heat shock proteins assist the survival of MTB but also provide a signal to the immune response. The gene Rv0251c is induced most strongly by heat shock in MTB. It encodes Acr2, a member of the alpha-crystallin family of molecular chaperones. The expression of Acr2 increases within 1 h after infection of monocytes or macrophages, reaching a peak of 18- to 55-fold increase by 24 h of infection in vitro. However, a deletion mutant (Δacr2) was unimpaired in log phase growth and persisted in IFN-gamma-activated human macrophages, suggesting that
Table 1

| First author and year published | Antigens evaluated | Antigen formulations tested | Numbers studied (human/mouse) | Main findings |
|--------------------------------|--------------------|----------------------------|-----------------------------|--------------|
| Leyten et al., 2006 [140]      | DosR induced: 25 (selected the most strongly expressed proteins of the DosR regulon; first reference to 'latency antigens') | Recombinant proteins Peptide pools for CFP-10 | TB patients on treatment (n = 11), after treatment (cured TB, n = 9), TST + LTBI n = 23, uninfected healthy controls n = 21, all recruited in The Netherlands. | Latently infected individuals recognized more latency antigens (specifically Rv1733c, Rv2029c, Rv2627c and Rv2628c), compared to TB patients, who responded more strongly to CFP-10. These data suggest immune responses against latency antigens may contribute to controlling latent MtB infection. |
| Schuck et al., 2009 [147]      | Immunodominant: 7 | Recombinant proteins Overlapping synthetic peptides also for Rv3407 | Patients with active TB (n = 20) and controls with LTBI (n = 22), recruited in Germany | Significantly higher T-cell responses to 7/35 antigens tested in LTBI. T cells specific for Rv3407 were exclusively detected in LTBI. Data support the hypothesis that the latency-associated antigens can be exploited as biomarkers for LTBI. |
| Black et al., 2009 [148]       | DosR induced: 51 | Recombinant proteins | Healthy household contacts (n = 131) recruited from 3 sites (South Africa, Uganda, The Gambia) | Rv1733c was the most commonly recognized DosR regulated antigen. |
| Gideon et al., 2010 [144]      | EHR induced: 3 species specific (RD11 encoded Rv2568c and Rv2659c; and RD2 encoded Rv1986) | Overlapping synthetic peptides in pools of max 13 peptides per pool. Individual peptides for Rv1986 | Patients with active TB (n = 20), LTBI (n = 29), HIV infected LTBI (n = 19, sampled longitudinally after starting ART), recruited in South Africa. | This study evaluated the antigen specific IL-2 response in parallel with the IFN-gamma response. IFN-gamma responses to the RD11 proteins were inferior compared to the immunodominant molecules, in both aTB and LTBI groups. A strong IL-2 recall response to Rv1986 was found in LTBI. Latency associated antigens expressed in a recombinant vaccine can improve long-term protection against MTB challenge. |
| Reece et al., 2011 [149]       | Rv2659c, Rv3407 and Rv1733c, expressed by the recombinant rBCGΔureC::hly vaccine | N/A (Recombinant vaccines were tested) | Mice vaccinated and challenged with MTB Beijing/W isolate | The rps (Rv0867c, Rv2389c, Rv2450c, Rv1009, Rv1884c) elicited higher IFN-gamma responses in HHCs compared to TB patients, and could differentiate TB from non-TB with area under the curve (AUC) ranging between 0.72 and 0.8. |
| Chegou et al., 2012 [150]      | 118 infection stage specific antigens, including: immunodominant: 8 DosR: 51 Reactivation-associated: 23 Rpf: 5 Starvation-induced: 7 Other stress conditions: 24 | Recombinant proteins (n = 112) and Synthetic peptide pools (n = 8, with 6–13 peptides per pool) | TB patients (n = 23) and healthy household controls (HHC, n = 101), recruited in South Africa | Only moderate evidence of infection-stage specific antigen recognition was observed using IFN-gamma and IL-2 ELISPOT as readout. Data suggest antigens are similarly targets of the immune response in active TB and LTBI, consistent with the view of TB being a spectrum of infection. |
| Gideon et al., 2012 [143]      | EHR induced: 26 | Overlapping synthetic peptides in pools of 7–14 peptides per pool. | Patients with active TB (n = 37), LTBI (n = 40), recruited in South Africa. | The 16 IVE-TB antigens identified were also immunogenic in skin test positive controls, representing TB vaccine candidates and/or TB biomarker antigens. |
| Commandeur et al., 2013 [151]  | 2170 MTB genes investigated in an unbiased Ag discovery approach for in vivo expression (IVE) during MTB infection in the lungs of mice. 16 antigens selected, expressed during in vivo infection (term IVE-TB) of all four mouse strains, tested in humans. | Recombinant proteins | 4 mouse strains, n = 133 skin test positive control persons and n = 7 TB patients, recruited in The Netherlands and Norway. |

(continued on next page)
Rv0251c is dispensable. The protein Acr2 is strongly recognized by cattle with early primary *Mycobacterium bovis* infection and also by healthy MTB-sensitized people (LTBI). Interestingly, within the latter group, those with recent exposure to infectious tuberculosis had higher frequencies of Acr2-specific IFN-gamma-secreting T cells than those with more remote exposure, suggesting infection stage-specific immunity to tuberculosis [132].

### 4.3. Infection stage specific T cell responses to TB

Several studies evaluated the above candidate genes, and many were found to encode MTB antigens that induce strong immune responses. One of the most abundant upregulated proteins during hypoxia is the 16 kDa (α-crystallin/Acr, Rv0231c, HspX) protein [133], also a DosR regulated antigen. Attributes of immunodominance, predominant expression during mycobacterial dormancy and species specificity made it a highly attractive candidate for the study of the immune response in humans. Further studies demonstrated it to be immunodominant in both the murine and human systems [134,135]. The most permissively recognized region was found to be between amino acids 91–110, possibly due to its ability to bind multiple HLA-DR alleles [136].

The finding that the IFN-gamma response to Rv2031c was higher in healthy BCG-vaccinated controls compared to those with extensive untreated tuberculosis led to the speculation that prolonged containment (LTBI) in humans may be divided on re-challenge, and thus limit dissemination [137]. This was further investigated by comparing T-cell responses against Rv2031c and the secreted MTB protein Ag85B (Rv1886c) in TB patients and various controls. Gamma interferon responses to Rv2031c were higher in MTB-exposed individuals, with no such differences found against the secreted Ag85B. The term ‘latency antigens’ was coined and suggested that subunit vaccines incorporating latency antigens, as well as recombinant BCG strains expressing latency antigens should be considered as new vaccines against TB [138].

These findings prompted the investigation of the human immune response to other DosR regulon encoded genes, summarized in Ref. [139]. Overall, DosR encoded
immunodominant antigens have been termed ‘latency antige-
ns’ due to preferential recognition shown by those with
LTBI in terms of a higher IFN-γ response, when compared to
those with active tuberculosis [140]. In particular Rv1733c, Rv2029c, Rv2627c and Rv2628c induced strong IFN-gamma responses in skin test positive individuals, suggesting that
immune responses against these antigens may contribute to
the control of LTBI. The immunogenicity of these (and additional)
proposing DosR regulon-encoded antigens by plasmid DNA
vaccination was also assessed in mice. Strong immune re-
sponses could be induced against most, the strongest being
Rv2031c and Rv2626c, providing proof-of-concept for studies
in mice mimicking LTBI models and their extrapolation to
humans for potential new vaccination strategies against TB
[141]. A number of comprehensive studies followed, partially
summarized in Table 1, which is however by no means
exhaustive.

4.4. The T cell response to antigens encoded by the
genes of the enduring hypoxic response (EHR) of MTB

A detailed analysis of MTB genes that are upregulated
during the latent stage of infection was considered a priority
to identify new antigenic targets for vaccination strategies
[139,142]. Transcriptional analysis of the hypoxic response at
later timepoints led to the identification of 230 genes induced
between 4 and 7 days of hypoxia, that were named the
enduring hypoxic response (EHR) genes [18]. Analysis of
EHR encoded proteins could provide novel T cell targets, with
the hypothesis that these genes may be expressed in vivo
and thereby could be targets of the immune response [28].

In order to relate what is expressed by the bacilli in vivo or
in vitro, to what is recognized by human T cells as antigens, a
combined bioinformatic and empirical approach was employed
as a novel genome based strategy, to guide the
discovery of potential antigens. The fold induction of the top
100 highly induced genes at 7 days of hypoxia, their transcript
abundance, population specific MHC class II-peptide binding
prediction (ProPred), and a literature search was combined,
leading to the selection of 26 candidate genes. Overlapping
peptides were used in combination with two readout systems,
ELISpot for IFN-γ as well as IL-2. Five novel immunodo-
minant proteins: Rv1957, Rv1954c, Rv1955, Rv2022c and
Rv1471, showed responses similar to the immunodominant
antigens CFP-10 and ESAT-6 in both magnitude and fre-
quency. These findings revealed that a number of hypoxia-
induced genes are potent T-cell targets and therefore offers
general support to the important role of hypoxia in the natural
course of TB infection. Importantly however, only moderate
evidence of infection stage specific recognition of antigens
was observed [143].

In light of the above findings, the hypoxia inducible MTB
specific proteins absent from the BCG vaccine strains were
also evaluated. One region of difference (RD) 2 and two RD11
encoded proteins were identified, that are absent from the
commonly used BCG strains (Rv1986) and all M. bovis strains
including BCG (Rv2658c and Rv2659c), respectively. When
compared to the immunodominant molecules ESAT-6 and
CFP-10, IFN-gamma responses to the RD11 proteins were
inferior in both aTB and LTBI groups. A strong IL-2 recall
response to Rv1986 was found in LTBI, targeted at two epit-
opic regions, containing residues 61–80 and 161–180 [144].
These studies confirmed that genomic knowledge does aide
antigen discovery, especially when it is complemented with
population specific MHC-class II-peptide prediction analysis,
as also shown in a different study later [145]. Additionally,
these studies also confirmed that a number of EHR genes are
expressed in vivo and are potent T-cell targets of the immune
response. The results further our understanding of the biology
of latent infection and offer general support to the hypoxia
hypothesis and its relationship to the natural infection of MTB.
While some of these findings did not provide support to the
hypothesis of infection stage specific antigen recognition, they
support an overlapping immunological spectrum between
those with latent and active TB disease as suggested [3,8].

Whilst hypoxia does characterize granulomas in tuberculosis
infection, but it is increasingly appreciated and accepted that
even those with active TB disease have a spectrum of lesions,
similar to those of the latently infected and it is likely that
the hypoxic lesions are present in both clinical states [9–11].
This has been shown in the cynomolgus macaque model: the fate of
individual lesions varies substantially within the same host,
suggesting that critical responses occur at the level of each
individual lesion, to ultimately determine the clinical outcome
of infection in the infected host [146].

Acknowledgements

RJW is supported by the Francis Crick Institute which re-
receives its core funding from Cancer Research UK
(FC00110218), the UK Medical Research Council
(FC00110218), and the Wellcome Trust (FC00110218); by
the Wellcome Trust (104803), National Institutes of Health
(1U01AI115940, U19 AI 111276), Medical Research Council
of South Africa via its strategic health innovations partners-
ships, and National Research Foundation of South Africa
(96841). This research was supported (in part) by the Intra-
mural Research Program of the NIAID, NIH. JB and NR are
supported in part by the Deutsche Forschungsgemeinschaft
(grants Re1228/5-1 and Re1228/5-2 within the priority pro-
gramme SPP1580; Cluster of excellence 306 “Inflammation at
interfaces”) and a grant of the Deutsches Zentrum für Infek-
tionsforschung (DZIF) within the “Thematic translational unit
tuberculosis (TTU TB)”.

References

[1] WHO. TB : a global emergency, WHO report on the TB epidemic.
1994. http://apps.who.int/iris/handle/10665/58749-sthash.J160RlIa.
dpdf. WHO/TB/94.177. [accessed 6 April 2016].
[2] WHO. Global tuberculosis report 2015. 2015. http://who.int/tb/
publications/global_report/en/ [accessed 29 October 2015].
[3] Young DB, Gideon HP, Wilkinson RJ. Eliminating latent tuberculosis.
Trends Microbiol 2009;17:183–8.
[4] Maertens G, Wilkinson RJ. Tuberculosis. Lancet 2007;370:2030–43.
Rangaka MX, Wilkinson KA, Glynn JR, Ding D, Menzies D, Mwansa-Kambafwile J, et al. Predictive value of interferon-gamma release as-
says for incident active tuberculosis: a systematic review and meta-
analysis. Lancet Infect Dis 2012;12:45–55.

Cardona PJ. New insights on the nature of latent tuberculosis infection
and its treatment. Inflamm Allergy Drug Targets 2007;6:27–39.

Ehlers S. Lazy, dynamic or minimally recrudescent? On the elusive
nature and location of the mycobacterium responsible for latent tuber-
culosis. Infection 2009;37:87–95.

Barry 3rd CE, Boshoff HI, Dortois V, Dick T, Ehrt S, Flynn J, et al. The
spectrum of latent tuberculosis: rethinking the biology and intervention
strategies. Nat Rev Microbiol 2009;7:845–55.

Gideon HP, Flynn JL. Latent tuberculosis: what the host “sees”? Immu-
ronul Res 2011;50:202–12.

Esmail H, Barry 3rd CE, Wilkinson RJ. Understanding latent tuberculo-
sis: the key to improved diagnostic and novel treatment strategies.
Drug Discov Today 2012;17:514–21.

Esmail H, Barry 3rd CE, Young DB, Wilkinson RJ. The ongoing
challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci
2014;369:20130437.

Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, et al. Tuber-
culosis granulomas are hypoxic in guinea pigs, rabbits, and nonhuman
primates. Infect Immun 2008;76:2333–40.

Belton M, Brilha S, Manavaki R, Mauri F, Nijran K, Hong YT, et al.
Hypoxia and tissue destruction in pulmonary TB. Thorax 2016 May 31.
http://dx.doi.org/10.1136/thoraxjnl-2015-207402. pii: thoraxjnl-
2016-211278.

Wayne LG, Hayes LG. An in vitro model for sequential study of
shiftdown of Mycobacterium tuberculosis through two stages of non-
replicating persistence. Infect Immun 1999;64:2062–9.

Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, et al.
Rv3133c/dosR is a transcription factor that mediates the hypoxic
response of Mycobacterium tuberculosis. Mol Microbiol 2003;48:
833–45.

Honaker RW, Dhimik RK, Narayanasamy P, Crick DC, Voskuil MI.
DosS responds to a reduced electron transport system to induce the
Mycobacterium tuberculosis DosR regulon. J Bacteriol 2010;192:
6447–55.

Boon C, Dick T. Mycobacterium bovis BCG response regulator essen-
tial for hypoxic dormancy. J Bacteriol 2002;184:6760–7.

Rustad TR, Harrell MI, Liao R, Sherman DR. The enduring hypoxic
response of Mycobacterium tuberculosis. PLoS One 2008;3:e1502.

Leistikow RL, Morton RA, Bartek IL, Frempong L, Wagner K, Voskuil MI.
The Mycobacterium tuberculosis DosR regulon assists in metabolic
homeostasis and enables rapid recovery from nonrespiring
dormancy. J Bacteriol 2010;192:1662–70.

Converse PJ, Karakousis PC, Klinkenberg LG, Kesavan AK, Ly LH,
Allen SS, et al. Role of the dosR-dosS two-component regulatory
system in Mycobacterium tuberculosis virulence in three animal
models. Infect Immun 2009;77:1230–7.

Phong WY, Lin W, Rao SP, Dick T, Alonso S, Pethe K. Characterization
of phosphofructokinase activity in Mycobacterium tuberculosis reveals
that a functional glycolytic carbon flow is necessary to limit the accu-
mulation of toxic metabolic intermediates under hypoxia. PLoS One
2013;8:e56037.

Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM,
Sherman DR, et al. Inhibition of respiration by nitric oxide induces a
Mycobacterium tuberculosis dormancy program. J Exp Med 2003;198:
705–15.

Kumar A, Toledo JC, Patel RP, Lancaster Jr JR, Steyn AJ. Mycobac-
terium tuberculosis DosS is a redox sensor and DosR is a hypoxia
sensor. Proc Natl Acad Sci U S A 2007;104(28):11568–73.

Malhotra V, Agrawal R, Duncan TR, Saini DK, Clark-Curtiss JE.
Mycobacterium tuberculosis response regulators, DevR and NarL,
interact in vivo and co-regulate gene expression during aerobic nitric
metabolism. J Biol Chem 2015;290:8294–309.

Rachman H, Strong M, Urihics T, Grode L, Schuchhardt J, Mollenkopf H, et al. Unique transcriptome signature of Mycobacterium
tuberculosis in pulmonary tuberculosis. Infect Immun 2006;74:
1233–42.

Galagan JE, Minch K, Peterson M, Lyubetskaya A, Aziz R, Sweet L,
et al. The Mycobacterium tuberculosis regulatory network and hypoxia.
Nature 2013;499:178–83.

Trauer A, Loughhead KE, Bennett MH, Hingley-Wilson SM,
Williams HD. The dormancy regulator DosR controls ribosome stability
in hypoxic mycobacteria. J Biol Chem 2012;287:24053–63.

Rustad TR, Sherrid AM, Minch KJ, Sherman DR. Hypoxia: a window
into Mycobacterium tuberculosis latency. Cell Microbiol 2009;11:
1151–9.

Ortega C, Liao R, Anderson LN, Rustad T, Olloffart AR, Wright AT,
et al. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an
oxygen-dependent replication switch. PLoS Biol 2014;12:e1001746.

McGillivray A, Golden NA, Kaushal D. The Mycobacterium tubercu-
losis Clp gene regulator is required for in vitro reactivation from
hypoxia-induced dormancy. J Biol Chem 2015;290:2351–67.

Sherrid AM, Rustad TR, Cangelosi GA, Sherman DR. Characterization
of a Clp protease gene regulator and the reaeration response in Myco-
bacterium tuberculosis. PLoS One 2010;5:e11622.

Schubert OT, Ludwig C, Kogadeeva M, Zimmermann M, Rosenberger G, Gengenbacher M, et al. Absolute proteome composition and
dynamics during dormancy and resuscitation of Mycobacterium tubercu-
losis. Cell Host Microbe 2015;18:96–108.

Shi L, Sohusasky CD, Pfeiffer C, Datta P, Parks M, McFadden J, et al.
Carbon flux rerouting during Mycobacterium tuberculosis growth arrest.
Mol Microbiol 2010;78:1199–215.

Baek SH, Li AH, Sassetti CM. Metabolic regulation of mycobacterial
growth and antibiotic sensitivity. PLoS Biol 2011;9:e1001065.

Eoh H, Rhee KY. Multifunctional essentiality of succinate metabolism
in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl
Acad Sci U S A 2013;110:6554–9.

Zimmermann M, Kuehne A, Boshoff HI, Barry 3rd CE, Zamboni N,
Sauer U. Dynamic exometabolome analysis reveals active metabolic
pathways in non-replicating mycobacteria. Environ Microbiol 2015;17:
4802–15.

Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry 3rd CE,
Boshoff HI. Fumarate reductase activity maintains an energized
membrane in anerobic Mycobacterium tuberculosis. PLoS Pathog 2011;7:
e1002287.

Garg R, Tripathi D, Kanti S, Chandra H, Bhatnagar R, Banerjee N. The
conserved hypothetical protein Rv0574c is required for cell wall
integrity, stress tolerance, and virulence of Mycobacterium tubercu-
losis. Infect Immun 2015;83:120–9.

Akhtar S, Khan A, Sohusasky CD, Jagannath C, Sarkar D. Nitrite
reductase NirBD is induced and plays a important role during in vitro
dormancy of Mycobacterium tuberculosis. J Bacteriol 2013;195:
4592–9.

Rao SP, Alonso S, Rand L, Dick T, Pethe K. The proponentive force
is required for maintaining ATP homeostasis and viability of hypoxic,
nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci U S A
2008;105:11945–50.

Hartman T, Weinrick B, Vilcheze C, Berney M, Tufariello J, Cook GM,
et al. Succinate dehydrogenase is the regulator of respiration in
Mycobacterium tuberculosis. PLoS Pathog 2014;10:e1004510.

Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG,
et al. Discovery of selective menaquinone biosynthesis inhibitors
against Mycobacterium tuberculosis. J Med Chem 2012;55:7379–55.

Dhimin RK, Mahaputra S, Slayden RA, Boyne ME, Lenaerts A,
Hinshaw JC, et al. Menaquinone synthesis is critical for maintaining
mucobacterial viability during exponential growth and recovery from
non-replicating persistence. Mol Microbiol 2009;72:85–97.

Upadhayay A, Fontes FL, Gonzalez-Juarrero M, McNeil MR, Crans DC,
Jackson M, et al. Partial saturation of menaquinone in Mycobacterium
tuberculosis: function and essentiality of a novel reductase, MenJ. ACS
Cent Sci 2015;1:292–302.

Anand A, Verma P, Singh AK, Kaushik S, Pandey R, Shi C, et al.
Polyketide quinones are alternate intermediate electron carriers during
mycobacterial metabolism. Mol Biol Cell 2009;20:1199–215.
mycobacterial respiration in oxygen-deficient niches. Mol Cell 2015;60:637–50.

[Sohaskey CD, Wayne LG. Role of narC2X and narGHJ in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 2003;185:7247–56.]

[Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, Ng SH, et al. Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One 2010;5:e13356, 900.]

[Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M, et al. Monocytes and dendritic cells in a hypoxic environment: target sites on chemotaxis and migration. Immunobiology 2008;213:733–49.

[White JR, Harris RA, Lee SR, Craighan MH, Binley K, Price T, et al. Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 2004;83:1–8.

[Demasi M, Cleland LG, Cook-Johnson RJ, Caughey GE, James MJ. Effects of hypoxia on monocyte inflammatory mediator production: dissociation between changes in cyclooxygenase-2 expression and eicosanoid synthesis. J Biol Chem 2003;278:38607–16.

[Ghezzi P, Dinarello CA, Bianchi M, Rosandich ME, Repine JE, White CW. Hypoxia increases production of interleukin-1 and tumor necrosis factor by human mononuclear cells. Cytokine 1991;3:189–94.

[Scannell G, Waxman K, Kamil GI, Ioli G, Gatanaga T, Yamamoto R, et al. Hypoxia induces a human macrophage cell line to release tumor necrosis factor-alpha and its soluble receptors in vitro. J Surg Res 1993;54:281–5.

[Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004;104:2224–34.

[Hollander AP, Corke KP, Freemont AJ, Lewis CE. Expression of HIF-1alpha and macrophage responses by the transcription factors C/EBPbeta and NF-kappaB, giving insight into hypoxia-induced NKp30 activity. J Cell Sci 2002;106:18154–9.

[Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V. Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 2007;178:7516–9.

[Denko NC. Hypoxia, HIFI and glucose metabolism in the solid tumour. Nat Rev Cancer 2008;8:705–15.

[Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 2010;185:605–14.

[Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014;15:486–55.

[Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 2006;4:13–24.

[Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015;25:771–84.

[Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, Giannoudis A, Lewis CE. Alternative activation of macrophages: novel means of identifying regulators of angiogenesis. Genomics 2004;83:1–8.

[Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH. Monocytes and dendritic cells in a hypoxic environment: spot lights on chemotaxis and migration. Immunobiology 2008;213:733–49.

[Michelacci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015;42:419–30.

[Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Stark P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 2012;15:813–26.

[Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol 2005;174:5503–7.

[Comas I, Coscolla M, Luo T, Borrill S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 2013;45:1176–82.

[Cambier CJ, Falkow S, Ramakrishnan L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 2014;159:1497–509.

[Tan S, Russell DG. Trans-species communication in the Mycobacterium tuberculosis-infected macrophage. Immuno Rev 2015;264:233–48.

[Meylan PR, Richman DD, Kornbluth RS. Reduced intracellular growth of mycobacteria in human macrophages cultivated at physiological oxygen pressure. Am Rev Respir Dis 1992;145:947–53.

[Simon LM, Axline SG, Horn BR, Robin ED. Adaptations of energy metabolism in the cultivated macrophage. J Exp Med 1973;138:1413–25.

[Halldin S, Agren L, O’Sullivan PM, et al. Cutting edge: Mycobacterium
tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol 2016;196:2444–9.

[88] Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S. Hypoxia triggers the expression of human beta defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J Immunol 2012;188:4001–7.

[89] Bellot G, Garcia-Medina R, Gouon P, Chiche J, Roux D, Pouyssegur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009;29:2570–81.

[90] Gutierrez MG, Master SS, Singh BH, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and M. tuberculosis survival in infected macrophages. Cell 2004;119:753–66.

[91] Bosshoff HI, Barry CE. Tuberculosis - metabolism and respiration in the mycobacterium tuberculosis. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[92] Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[93] Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 2011;7:e100293.

[94] Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KV. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 2012;12(5):669–81.

[95] Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, et al. Microenvironments in tuberculous granulomas are delineated by hypoxia and macrophages. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[96] Orme IM. The mouse as a useful model of tuberculosis. Tuberculosis 2004;119:753–66.

[97] Russell DG, VanderVen BC, Lee W, Abramovich RB, Kim MJ, Homolka S, et al. M. tuberculosis survival in infected macrophages. Cell Host Microbe 2010;8:68–76.

[98] Russell DG, VanderVen BC, Lee W, Abramovich RB, Kim MJ, Homolka S, et al. Mycobacterium tuberculosis survival in infected macrophages. Cell Host Microbe 2010;8:68–76.

[99] North RJ, Jung YJ. Immunity to tuberculosis. Annu Rev Immunol 2004;22:599–623.

[100] Orme IM. The mouse as a useful model of tuberculosis. Tuberculosis (Edinb) 2003;83:112–5.

[101] Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[102] Boshoff HI, Barry CE. Tuberculosis - metabolism and respiration in the mycobacterium tuberculosis. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[103] Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[104] Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 2011;7:e100293.

[105] Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KV. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 2012;12(5):669–81.

[106] Orme IM. The mouse as a useful model of tuberculosis. Tuberculosis (Edinb) 2003;83:112–5.

[107] Aly S, Wagner K, Keller C, Malm S, Malzan A, Brandau S, et al. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 2006;210:298–305.

[108] Oehlerls SH, Cronan MR, Scott NR, Thomas MI, Okuda KS, Walton EM, et al. Interception of host angiogenic signalling limits mycobacterial growth. Nature 2015;517:612–5.

[109] Reece ST, Loddenkemper C, Askew DJ, Zedler U, Schommer-Leitner S, Stein M, et al. Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice. J Clin Invest 2010;120:3365–76.

[110] Driver ER, Ryan GJ, Hofr DR, Irwin SM, Basaraba RJ, Kramnik I, et al. Evaluation of a mouse model of necrotic granuloma formation using C3H/HeJ mice for expression of drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012;56:3181–95.

[111] Heitmann L, Abad Dar M, Schreiber T, Erdmann H, Behrends J, et al. Evaluation of a mouse model of necrotic granuloma formation using C3H/HeJ mice for expression of drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012;56:3181–95.

[112] Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA, Prideaux B, et al. Inflammatory signalling in human tuberculosis granulomas is spatially organized. Nat Med 2016;22:531–8.

[113] Orme IM. The mouse as a useful model of tuberculosis. Tuberculosis (Edinb) 2003;83:112–5.

[114] Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[115] Boshoff HI, Barry CE. Tuberculosis - metabolism and respiration in the mycobacterium tuberculosis. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[116] Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[117] Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 2006;26:1871–6.

[118] Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 2011;7:e100293.
Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection. Biol Chem 2008;389:497–511.

[128] Geluk A, van Meijgaarden KE, Joosten SA, Commandeur S, Ottenhoff TH. Innovative strategies to identify M. tuberculosis antigens and epitopes using genome-wide analyses. Front Immunol 2014;5:256.

[129] Chegou NN, Heyckendorf J, Walzl G, Lange C, Ruwald M. Beyond the IFN-gamma horizon: biomarkers for immunodiagnosis of infection with Mycobacterium tuberculosis. Eur Respir J 2014;43:1472–86.

[130] Woodworth JS, Aagaard CS, Hansen PR, Cassidy JP, Agger EM, Andersen P. Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation. J Immunol 2014;192:3247–58.

[131] Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Woodworth JS, Aagaard CS, Hansen PR, Cassidy JP, Agger EM, et al. The heat shock response of Mycobacterium tuberculosis: linking gene expression, immunology and pathogenesis. Comp Funct Genomics 2002;3:348–51.

[132] Wilkinson KA, Stewart GR, Newton SM, Vordermeier HM, Wain JR, MurphyHN, et al. Infection biology of a novel alpha-crystallin of Mycobacterium tuberculosis: Acr2. J Immunol 2005;174:4237–43.

[133] Yuan Y, Crane DD, Barry 3rd CE. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol 1996;178:4848–92.

[134] Vordermeier HM, Harris DP, Lathigra R, Roman E, Moreno C, Ivanji J. Recognition of peptide epitopes of the 16,000 MW antigen of Mycobacterium tuberculosis by murine T cells. Immunology 1993;80:6–12.

[135] Friscia G, Vordermeier HM, Pasvol G, Harris DP, Moreno C, Ivanji J. Human T cell responses to peptide epitopes of the 16-kd antigen in tuberculosis. Clin Exp Immunol 1995;102:53–7.

[136] Jurcevic S, Hills A, Pasvol G, Davidson RN, Ivanji J, Wilkinson RJ. T cell responses to a mixture of Mycobacterium tuberculosis peptides with complementary HLA-DR binding profiles. Clin Exp Immunol 1996;105:416–21.

[137] Wilkinson RJ, Wilkinson KA, De Smet KAL, Haslov K, Pasvol G, Singh M, et al. Human T and B cell reactivity to the 16 kDa alpha-crystallin protein of Mycobacterium tuberculosis. Scand J Immunol 1998;48:403–9.

[138] Geluk A, Lin MY, van Meijgaarden KE, Leyten EM, Franken KL, Ottenhoff TH, et al. T-cell recognition of the HspX protein of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect Immun 2007;75:941–5.

[139] G. Prosser et al. / Microbes and Infection 19 (2017) 177–192

[140] G. Prosser et al. / Microbes and Infection 19 (2017) 177–192

[141] Roupie V, Romano M, Zhang L, Korf H, Lin MY, Franken KL, et al. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect 2006;8:2052–60.

[142] Lin MY, Ottenhoff TH. Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection. Biol Chem 2008;389:497–511.

[143] Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guiao H, Sherman DR, et al. Bioinformatic and empirical analysis of novel hypoxia-inducible targets of the human antituberculosis T cell response. J Immunol 2012;189:5867–76.

[144] Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guiao H, Kozak RA, et al. Hypoxia induces an immunodominant target of tuberculosis specific T cells absent from common BCG vaccines. PLoS Pathog 2010;6:e1000237.

[145] Horvati K, Bosse S, Gideon HP, Bacsa B, Szabo TG, Goliath R, et al. Population tailored modification of tuberculosis specific interferon-gamma release assay. J Infect 2016;72:179–88.

[146] Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioeger T, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 2014;20:75–9.

[147] Schuck SD, Mueller H, Kunzit F, Neher A, Hoffmann H, Franken KL, et al. Identification of T-cell antigens specific for latent Mycobacterium tuberculosis infection. PLoS One 2009;4:e5590.

[148] Black GF, Thiel BA, Ota MO, Parida SK, Adegbola R, Boom WH, et al. Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. Clin Vaccine Immunol 2009;16:1203–12.

[149] Reece ST, Nasser-Eddine A, Dietrich J, Stein M, Zedler U, Schommer-Leitner S, et al. Improved long-term protection against Mycobacterium tuberculosis Beijing/W in mice after intra-dermal inoculation of recombinant BCG expressing latency associated antigens. Vaccine 2011;29:8740–4.

[150] Chegou NN, Black GF, Loxton AG, Stanley K, Essone PN, Klein MR, et al. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infect Dis 2012;12:10.

[151] Commandeur S, van Meijgaarden KE, Prins C, Pichugin AV, Dijkman K, van den Eeden SJ, et al. An unbiased genome-wide Mycobacterium tuberculosis gene expression approach to discover antigens targeted by human T cells expressed during pulmonary infection. J Immunol 2013;190:1659–71.

[152] Sutherland JS, Lalor MK, Black GF, Thiel BA, Ota MO, Parida SK, Adegbola R, Boom WH, et al. Infection biology of a novel alpha-crystallin of Mycobacterium tuberculosis. J Immunol 2013;190:1659–71.

[153] Torres M, Garcia-Garcia L, Cruz-Hervert P, Guio H, Carranza C, Ferreyra-Reyes L, et al. Effect of isoniazid on antigen-specific interferon-gamma secretion in latent tuberculosis. Eur Respir J 2015;45:473–82.

[154] Arroyo L, Rojas M, Ortiz BL, Franken KL, Garcia LF, Ottenhoff TH, et al. Dynamics of the T cell response to Mycobacterium tuberculosis DosR and Rpf antigens in a Colombian population of household contacts of recently diagnosed pulmonary tuberculosis patients. Tuberculosis (Edinb) 2016;97:97–107.