Neuropeptides as Novel Insecticidal Agents

K. Elakkiya, P. Yasodha*, C. Gailce Leo Justin and Vijay Akshay Kumar

Anbil Dharmalingam Agricultural College & Research Institute, Navalur Kuttapattu, Trichy–620027 Tamil Nadu, India

*Corresponding author

A B S T R A C T

Neuropeptides (protein molecules) are synthesised in the neurons, helps to communicate the impulse from the stimulant to the receptor. Neuropeptides are responsible for regulating a various physiological functions including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Neuropeptides are different from neurotransmitters because, former releases in the haemolymph and the later releases in the neuro-neuro junction or in the neuro-muscular junction. The first neuropeptide isolated from *Periplaneta Americana* was protocolin in the year 1975 which helps in muscle contractions in hindgut, reproductive, skeletal and heart muscle. At present a total of 4782 insect neuropeptide records were obtained which perform various related physiological functions. Thus it paves the way for the generation of novel type of putative insect control agents based on backbone cyclic (BBC) peptidomimetic antagonists of insect-neuropeptides. At present four different neuropeptides such as proctolin, kinin, pheromone biosynthesis activating neuropeptide (PBAN) and allatostatin were studied thoroughly and their biologically active sequence were identified. Using this sequence peptidomimetic analogues (either as agonists or antagonists) were synthesized in automated peptide synthesizer and tested for their efficacy as insecticide. Among those four PBAN showed good result as insecticide by reducing pheromone production up to 73% in *Helicoverpa peltigera*. Based on this many neuropeptides were under in vitro test for their antagonist activity. In 2016, a synthetic antagonistic neuropeptide based on pheromone biosynthesis activating neuropeptide was registered for patent by Altstein. This neuropeptide based insecticide is highly insect specific and can be incorporated as apart in integrated pest management though the production of synthetic peptide is critical.

Keywords

Insect neuropeptide, PBAN, backbone cyclic peptidomimetic antagonists

Article Info

Accepted: 07 January 2019
Available Online: 10 February 2019

Introduction

To meet the requirements of population green revolution has started which results in the use of toxic chemicals and insects too gained resistance to overcome these toxic substances. Continuous use of those toxic substances in turn results in the degradation of environment. To overcome those difficulties, strategies were approached based on integrated pest management which includes the characteristics of insect specific, non toxic, compatible with other insect control agents, etc. Initially to meet these requirements various compounds such as bio control agents, newer insecticides, transgenic plants
were introduced. Now a days insects are gaining resistance to those compounds and so an innovative approach for pest management such as neuropeptide based pest control were established. Neuropeptides are the neurohormones which are synthesised in the neurons or neuro endocrine cells and are released in the haemolymph. Neuropeptides coordinates complex of physiological functions like mating, oviposition, moulting, water balance, fat mobilization, etc. (Yeoh et al., 2017). Neuropeptides are produced from larger precursor proteins which are known as prepropeptides. Prepropeptide comprise of a signal peptide (which directs the protein to the secretary pathway), progenitors of mature peptides (the biologically active peptides), spacer peptides (peptide fragments with no known biological function and non conserved sequences) and cleavage sites (monobasic and dibasic) (Yeoh et al., 2017). The first neuropeptide isolated was proctolin from cockroach which was found to have myostimulatory activity (Starratt and Brown, 1975). One year later AKH, the adipokinetic hormone of Locusta migratoria was found. AKH-related peptides have now been identified in numerous insects, and several other protostomes including arthropods, nematodes, annelids and mollusks (Gade, 1997).

Only with the advent of genomics, protein mass spectrometry and high-field NMR spectroscopy in the late 1980s and 1990s knowledge on insect neuropeptides was increased. Later in the year 1989 PBAN was found to regulate sex pheromone synthesis in female moths (Raina et al., 1989) with this the knowledge on insect neuropeptide has been increased. Neuropeptides were classified into different families based on the homology of amino acid sequence. In order to standardize classification of neuropeptides, DNeR (Database for Insect Neuropeptide Research) adopts the nomenclature for naming insect neuropeptide families proposed by Coast and Schooley (2011).

Families of neuropeptide

At present, roughly 54 insect neuropeptide families were classified which covers 23 insect orders. Among those 54 neuropeptide families only four neuropeptides (Proctolin, kinin, pheromone biosynthesis activating neuropeptide and allatostatin) were studied thoroughly and tested for their bioassay activity against various insects (Table 1).

Steps involved in isolation of neuropeptide:

Sequencing of protein is done by isolating the specific gene of interest using AQUA and PROCHECK-NMR (Laskowski et al., 1996). Then artificial synthesis of peptide is done by the condensation reaction of the carboxyl group of one amino acid to the amino group of another using Fmoc (fluorenylmethoxycarbonyl) resin (Shin et al., 1999). After isolation, *in vitro* and *in vivo* protein docking is done using various softwares such as ADAM, AutoDock, DARWIN, DIVALI, DOCK, DockVision, EUROC, FlexX, FLOG, FTDOCK, GOLD, Hammerhead, ICM, LIGIN, LUDI, MCDOCK, Prodock, Proleads, QXP, SANDOCK, etc. (Sousa et al., 2006). Structural modification of synthesised protein is done to obtain the antagonist activity either by Linear replacement /side chain modification (Fig. 1) or by backbone cyclization (Fig. 2) (Gilon et al., 1997). The final product is produced in the form of dry powder (Alstein, 2003).

Proctolin

Proctolin is produced by motor neurons in locusts and found to regulate corpora cardiac crawling behaviour in *Drosophila* (Clark et al., 2006). The biologically active sequence of proctolin contains arginin, tyrosine, leucine,
threonine (Fig. 3). Replacing an amino group with O\textsubscript{2} between Tyr2 and Leu3 was almost found to inactivate the muscle contraction in *Locusta migratoria* at a concentration of 1 mmol/L. Replacing an amino group with O\textsubscript{2} between Arg1 and Tyr2 was found to retain the activity of muscle O\textsubscript{2} significantly. Cyclization of proctolin (Cycloproctolin) was found to be a potent antagonist of proctolin-induced production of the second messengers InsP3 (insulin P3) and InsP4 (insulin P4) (Scherkenbeck, 2009).

Kinins

The first members of the kinin family was isolated from *Leucophaea maderae* also found to be present in nematodes, annelids and molluscs (Radford et al., 2002) triggers ecdysis behaviour. Kinin shares a common C-terminal pentapeptide sequence of Phe-Phe-Aib- Trp- Gly-NH\textsubscript{2} When Gly is replaced using any of the following substitute and its aphicidal activity was tested (Zang, 2015).

Pyrokinins /pheromone biosynthesis activating neuropeptides (PBANs)

Pheromone Biosynthesis Activating Neuropeptide (PBAN) regulates pheromone biosynthesis and is a peptide of pyrokinin type. Since no PK precursor gene was yet known these peptides were named after their functions: Pheromone Biosynthesis Activating Neuropeptides (PBAN), Diapause Hormone (DH), Melanization and Reddish Coloration Hormone (MRCH) and so on. PBAN and DH were found primarily in Lepidoptera and drosophila. The pyrokinins/PBANs have been extensively explored to develop biostable analogs to be used in insect pest control (Raina and Menn, 1993). The C-terminal pentapeptide, Phe-Ser-Pro-Arg-Leu-NH\textsubscript{2} is the biologically active sequence of PBAN and found homologous to *Mythimma sapareta* as pheromonotropin and to *Bombyx mori* as diapause hormone. C-terminal hexapeptide, H-Tyr-Phe-Ser-Pro-Arg-Leu-NH\textsubscript{2} the active sequence of PBAN was found to dissolve in the solvent and hence choosed for insectical activity. The peptide H-Arg-Tyr-Phe-D-Phe-Pro-Arg-Leu-NH\textsubscript{2} exhibited the highest antagonistic activity is because when using dextro (d) phe. It caused jitters action in insect. Injection of 100 pmol of this peptide, inhibited sex pheromone biosynthesis by 63% after 2 h (Gilon et al., 1997). Based on substitution of L-amino acids with d-Phe followed by backbone cyclization (Fig. 4), has led to the discovery of several highly potent linear and conformationally constrained, selective, metabolically stable backbone cyclic (BBC) pure antagonists for PBAN (Harinton, 2010).

Allatostatin –A, B, C

The first member of the insect AST family was isolated in the year 1989 from brain extracts of the cockroach *Diploptera punctata* (Woodhead et al., 1989). AST is found to be three types. AST-A as cockroach type, AST- B as cricket type and AST C as moth type. These peptides were called allatostatins due to their ability to inhibit juvenile hormone (JH) biosynthesis by the corpora allata. AST also regulates various aspects of feeding and metabolism in several species (Yeoh et al., 2017). Allatostatins contains 8-13 amino acids and are amidated. The biologically active peptide sequences of allatostatin are Ala-Pro-Ser-Gly-Ala-Gln-Arg-Leu-Tyr-Gly-Phe Gly-Leu- NH\textsubscript{2}. An in vitro bioassay of the synthesized allatostatins showed >40% inhibition of juvenile hormone synthesis by corpora allata of virgin females with 10-9M allatostatin. In addition, allatostatin inhibited juvenile hormone synthesis by corpora allata from mated females and last-instar larvae of *D. Punctata* and corpora allata of adult female *Periplaneta Americana* (Woodhead et al., 1987).
Table 1 Families of insect neuropeptide

Neuropeptide	Isolated from	Function	References
Adipokinetic hormone	Locusta migratoria	May play a part in development and ecdysis	Siegert, 1999
Anti-diuretic Factor	Tenebrio molitor	Inhibit fluid secretion in Malpighian tubules	Eigenherr et al., 2002; Schooley et al., 2012
Allatostatin A,B,C	Cockroach, Cricket, Moth	Inhibits JH synthesis	Woodhead et al., 1989; Lorenz et al., 1995; Kramer et al., 1991
Allatotropin	Manduca sexta	Stimulates JH biosynthesis	Kataoka et al., 1989
Bursicon	Drosophila melanogaster	Cuticle tanning	Luo et al., 2005; Mendive et al., 2005
Capability	Manduca sexta	Impacts desiccation and cold stress tolerance	Huesmann et al., 1995
Crustacean Cardio-Active Peptide	Locusta migratoria	Initiating the ecdysis	Stangier et al., 1989
CCHamide	Bombyx mori	Increased the motivation to feed	Roller et al., 2008
Pigment-dispersing factor	Romalea microptera	Pigment movements in response to light	Rao et al., 1987
Corazonin	Periplaneta americana	Initiating ecdysis	Veenstra, 1989
Diuretic Hormone 31, 44	Diploptera punctata, Manduca sexta	Fluid secretion in MTs	Furuya et al., 2000; Kataoka et al., 1989
Eclosion hormone	Manduca sexta and Bombyx mori	Ecdysis behavior	Kataoka et al., 1987; Kono et al., 1987
Ecdysis-trIGGERing hormone	Manduca sexta	Triggers ecdysis	Zitnan et al., 1996
FMRFamide	Drosophila melanogaster	Ecdysis, myostimulatory in action	Nambu et al., 1988; Schneider and Taghert, 1988
GP2, 5	Drosophila melanogaster	Anti-diuresis	Hsu et al., 2002; Sudo et al., 2005
Insulin-like Peptide	Bombyx mori	Growth, metabolism and reproduction	Nagasawa et al., 1986
Ion transport peptide	Apis mellifera	Modulate ion transport	
Kinin	Leucophaea maderae	Myotropic, diuretic activities.	Holman et al., 1986; Holman et al., 1987
Limostatin	Drosophila melanogaster	Regulate production and release of DILPs in Drosophila	Alfa et al., 2015
Myosuppressin	Leucophaea maderae	Inhibit heart and visceral muscle.	Holman et al., 1986
Neuropeptide F	Drosophila	Helps in foraging and feeding	Brown et al., 1999
Neuropeptide-like precursor	Drosophila	Role in development	Baggerman et al., 2002, 2005
Natalisin	**Drosophila**	Plays role in reproduction	Jiang *et al.*, 2013
----------------	----------------	----------------------------	---------------------
Orcokinin	**Bombyx mori**	Play roles in gut function.	Yamanaka *et al.*, 2011
Pheromone Biosynthesis Activating Neuropeptide (PBAN)	**Leucophaea maderae**	Regulating pheromone biosynthesis	Holman *et al.*, 1986
Diapause hormone	**Leucophaea maderae**	Regulation of insect diapause	Holman *et al.*, 1986
Partner of bursicon	**Drosophila melanogaster**	Cuticle tanning	Luo *et al.*, 2005; Mendive *et al.*, 2005
Pre-ecdysis triggering hormone	**Manduca sexta**	Tracheal air filling and triggering ecdysis	Zitnan *et al.*, 1996
Pyrokinin	**Leucophaea maderae**	Myostimulatory activity and regulates hormone biosynthesis	Holman *et al.*, 1986
Proctolin	**Periplaneta americana**	Stimulate muscle contractions	Starratt and Brown, 1975
Prothoracicotropic hormone	**Bombyx mori**	Regulates molts and metamorphosis	Kataoka *et al.*, 1991
Sulfakinin	**Leucophaea maderae**	Induces hyperactivity and aggression	Nachman *et al.*, 1986
SIFamide	**Sarcophaga bullata**	Involved in control of sexual behaviour	Janssen *et al.*, 1996
Short neuropeptide F	**Drosophila**	Roles in feeding, growth.	Nässel and Wegener 2011; Root *et al.*, 2011
Vasopressin	**Locusta migratoria**	Triggers diuresis	Proux *et al.*, 1987
Trissin	**Drosophila melanogaster**	Regulation of foregut-midgut contractions and food intake	Ida *et al.*, 2011
SIFamide	**Sarcophaga bullata**	Involved in control of sexual behaviour	Janssen *et al.*, 1996
Tachykinin-related peptide	**Locusta migratoria**	regulation of release of adipokinetic hormone from the corpora cardiac	Schoofs *et al.*, 1990
Calcitonin	Locust and termite	Not known	Veenstra, 2014
CNMamide	**Drosophila melanogaster**	Function not available	Jung *et al.*, 2014
RY amide	**Nasonia vitripennis**	Not known	Hauser *et al.*, 2010

Figure 1 Linear replacement of a peptide chain

![Linear replacement of a peptide chain](image)

Figure 2 Backbone cyclization of a peptide chain

![Backbone cyclization of a peptide chain](image)
In conclusion, as the neuropeptides play an important role in various physiological activities of insects, modification of these neuropeptides paves the way for the novel pest control strategy. As these neuropeptides are insect specific and environmentally safe it can be used as a component in integrated pest management and this brings an alternative way for using synthetic insecticides (Karuppaiah and Sujithra, 2013). However, the thorough knowledge in the isolation of specific protein sequence in relation to its function is essential to exploit this area. Therefore, by targeting the precursor of neuropeptide and by employing peptidase induced degradation insecticide agent can be produced which would fit well in future pest management programmes.

References

Alfa, R.W., Park, S., Skelly, K. R., Poffenberger, G., Jain, N., Gu, X., Kockel, L., Wang, J., Liu, Y., Powers, A. C. and Kim, S. K., 2015. Suppression of insulin production and secretion by a decrerin hormone. Cell metabolism. 21:323-333.

Alstein, M. 2003. Novel Insect Control Agents Based on Neuropeptide Antagonists. Journal of Molecular Neuroscience, 147-157.

Anderson, M. D. S., Halpern. E. M. and Keshishian, H., 1988. Identification of the neuropeptide transmitter proctolin in drosophila larvae: Characterization of
muscle fiber-specific neuromuscular endings. The Journal of Neuroscience, 8(1): 242-255.

Baggerman, G., Cerstiaens, A., De Loof, A. and Schoofs, L., 2002. Peptidomics of the larval Drosophila melanogaster central nervous system. The Journal of biological chemistry. 277(43): 40368-40374. doi: 10.1074/jbc.M206257200.

Baggerman, G., Boonen, K., Verleyen, P., De Loof, A. and Schoofs, L., 2005. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of mass spectrometry: JMS. 40(2): 250-260. doi: 10.1002/jms.744.

Brown, M. R., Crim, J. W., Arata, R. C., Cai, H. N., Chun, and Shen, P., 1999. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides. 20(9):1035-1042.

Clark, T. T and Undem, B. J., 2006. Transduction mechanisms in airway sensory nerves. Applied Physiology, 101: 950–959.

Coast, G. M., Schooley, D. A., 2011. Toward a consensus nomenclature for insect neuropeptides and peptide hormones. Peptides, 620-631 doi:10.1016/j.peptides.2010.11.006.

Dominguez, C., Boelens, R. and Bovin, M. J., 2003. Haddock: A protein-protein docking approach based on biochemical or biophysical data. J. Am. Chem. Soc, 125: 1731-1737.

Eigenheer, R. A., Nicolson, S.W., Schegg, K. M., Hull, J. J. and Schooley, D. A., 2002. Identification of a potent antidiuretic factor acting on beetle Malphighian tubules. Proc. Natl. Acad. Sci. USA. 99:84-89.

Fonagy, A. 2006. Insect Neuropeptides and their potential application for pest control. Acta Phytopathologica Et Entomologica Hungarica, 41:137–152: doi: 10.1556/APhyt.41.2006.1-2.14.

Furuya, K., Milchak, R. J., Schegg, K. M., Zhang, J., Tobe, S. S., Coast, G. M. and Schooley, D. A., 2000. Cockroach diuretic hormones: Characterization of a calcitonin-like peptide in insects. Proc. Natl. Acad. Sci. U. S. A. 97:6469–6474.

Gade, G and Auerswald, L., 1998. Insect neuropeptides regulating substrate mobilisation. South African Journal of Zoology, 33(2): 65-70.

Gilon, C., Zeltser, I., Daniel, S., Aziz, O., Scheffler, I. and Alstein, M., 1997. Rationally designs neuropeptide antagonists: A Novel Approach for Generation of Environmentally Friendly Insecticides. Invertebrate Neuroscience, 245-250.

Hariton, A., Aziz, O., Davidovitch, M. and Altstein, M., 2010. Bioavailability Of Backbone Cyclic PK/PBAN Neuropeptide Antagonists – Inhibition of Sex Pheromone Biosynthesis Elicited by the Natural Mechanism In Heliothis petligeria Females. The FEBS Journal, 1035–1044: doi:10.1111/j.1742-4658.2009.07547.x.

Hauser, F., Neupert, S., Williamson, M., Predel, R., Tanaka, Y. and Grimmelikhuijzen, C. J., 2010. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. Journal of proteome research. 9:5296-5310.

Holman, G. M., Cook, B. J. and Nachman, R. J., 1986. Isolation, primary structure and synthesis of leucomyosupressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp. Biochem. Physiol. 85:329-333.

Holman, G. M., Cook, B. J. and Nachman, R. J., 1986. Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae. Comp. Biochem. Physiol. C 85(1):219-224.

Holman, G.M., Cook, B. J. and Nachman, R. J., 1986. Isolation, primary structure and synthesis of two neuropeptides from Leucophaea maderae: members of a new family of cephalotropins. Comp. Biochem. Physiol. 84: 205-211.

Hsu, S. Y., Nakabayashi, K. and Bhalla, A., 2002. Evolution of glycoprotein hormone subunit genes in bilateral metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5. Mol. Endocrinol. 16:1538–51. doi:10.1210/mend.16.7.0871.
Huesmann, G. R., Cheung, C. C., Loi, P. K., Lee, T. D., Swiderek, K. M. and Tublitz, N. J., 1995. Amino acid sequence of CAP2b, an insect cardioacceleratory peptide from the tobacco hawkmoth Manduca sexta. FEBS Lett. 371:311–4.

Ida, T., Takahashi, T., Tominaga, H., Sato, T., Kume, K., Yoshizawa-Kumataya, K., Nishio, H., Kato, J., N. Murakami, J., Miyazato, M., Kangawa, K. and Kojima, M., 2011. Identification of the endogenous cysteine-rich peptide trissin, a ligand for an orphan G protein-coupled receptor in Drosophila. Biochem. Biophys. Res. Commun. 414: 44–48. doi:10.1016/j.bbrc.2011.09.018

Janssen, I., Schoofs, L., Spittaels, K., Neven, H., Broeck, J. and Devreese, B., 1996. Isolation of NEB-LFamide, a novel myotropic neuropeptide from the grey fleshfly. Molecular and cellular endocrinology. 117(2):157-165.

Jiang, H., Lkhagva, A., Daubnerova, I., Chae, H. S., Simo, L., Jung, S. H., Yoon, Y. K., Lee, N. R., Seong, J. Y., Zitnian, D., Park, Y. and Kim, Y. J., 2013. Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects. Proc. Natl. Acad. Sci. USA. 110(37):3526-3534.

Joseph, G.C., Pandit, A. A., Zandawala, M., Nassel, D. R., Davies, S. A. and Dow, A. T., 2017. DINeR:Database for Insect Neuropeptide Research. Insect Biochemistry and Molecular Biology, 86:9-19.

Jung, S. H., Lee, J. H., Chae, H. S., Seong, J. Y., Park, Y., Park, Z. Y. and Kim, Y. J., 2014. Identification of a novel insect neuropeptide, CNMa and its receptor. FEBS Lett. 588:2037–2041. doi:10.1016/j.febslet.2014.04.028

Karuppaiah, V. and Sujithra, M., 2013. Insect Neuropeptides: As Potential Targets for Pest Control. Double Helix Research, 10: 2250 –3668.

Kataoka, H., Toschi, A., Li, J. P., Carney, R. L., Schooley, D. A. and Kramer, S. J., 1989. Identification of an allatotropin from adult Manduca sexta. Science. 243:1481–3. doi:10.1126/science.243.4897.1481.

Kataoka, H., Nagasawa, H., Isogai, A., Ishizaki, H. and Suzuki, A., 1991. Prothoracotrophic hormone of the silkworm, Bombyx mori: amino acid sequence and dimeric structure. Agric. Biol. Chem. 55:73-86.

Kataoka, H., Troetschler, R. G., Li, J. P., Kramer, S. J., Carney, R. L. and Schooley, D. A., 1989. Isolation and identification of a diuretic hormone from the tobacco hornworm, Manduca sexta. Proc. Natl. Acad. Sci. U. S. A. 86:2976–2980.

Kataoka, H., Troetschler, R. G., Kramer, S. J., Cesarin, B. J. and Schooley, D. A., 1987. Isolation and primary structure of the eclosion hormone of the tobacco hornworm, Manduca sexta. Biochem. Biophys. Res. Commun. 146:746–750. doi:10.1016/0006-291X(87)90592-4.

Kono, T., Nagasawa, H., Isogai, A., Fugo, H. and Suzuki, A., 1987. Amino Acid Sequence of Eclosion Hormone of the Silkworm, Bombyx mori. Agric. Biol. Chem. 51:2307–2308. doi:10.1080/00021369.1987.10868358.

Kramer, S. J., Toschi, A., Miller, C. A., Kataoka, H., Quistad, G. B., Li, J. P., Carney, R. L. and Schooley, D. A., 1991. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA. 88: 9458–9462. doi:10.1073/pnas.0409916102.

Kramer, S. J., Toschi, A., Miller, C. A., Kataoka, H., Quistad, G. B., Li, J. P., Carney, R. L. and Schooley, D. A., 1991. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA. 88: 9458–9462. doi:10.1073/pnas.0409916102.

Kono, T., Nagasawa, H., Isogai, A., Fugo, H. and Suzuki, A., 1987. Amino Acid Sequence of Eclosion Hormone of the Silkworm, Bombyx mori. Agric. Biol. Chem. 51:2307–2308. doi:10.1080/00021369.1987.10868358.

Kramer, S. J., Toschi, A., Miller, C. A., Kataoka, H., Quistad, G. B., Li, J. P., Carney, R. L. and Schooley, D. A., 1991. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA. 88: 9458–9462. doi:10.1073/pnas.0409916102.
Grimmelikhuijzen, C. J. P., Vassart, G. and Broeck, J., 2005. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett. 579:2171–6. doi:10.1016/j.febslet.2005.03.006.

Nachman, R. J., Holman, G. M., Haddon, W. F. and Ling, N., 1986. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science. 234(4772):71–73.

Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Mizoguchi, A., Fujiwara, Y., Takahashi, S. Y. and Ishizaki, H., 1986. Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Natl. Acad. Sci. U S A. 83(16):5840–5843.

Nambu, J. R., Murphy-Erdosh, C., Andrews, P. C., Feistner, G. J. and Scheller, R. H., 1988. Isolation and characterization of a Drosophila neuropeptide gene. Neuron. 1:55–61.

Nässel, D. R., and Wegener, C., 2011. A comparative review of short and long neuropeptide F signalling in invertebrates: Any similarities to vertebrate neuropeptide Y signalling Peptides. 32(6):1335–1355. doi: 10.1016/j.peptides.2011.03.013.

Proux, J. P., Millert, C. A., Lit, J. P., Girardie, R. L. A., Delaages, M. and Schooley, D. A., 1987. Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. Biochemical and biophysical research communications. 149: 180–186.

Radford, J. C., Davies, S. A. and Dow, A.T., 2018. Systematic GPCR Analysis in Drosophila melanogaster. The American Society for Biochemistry and Molecular Biology. 8: 1-22.

Raina, A. K. and Menn, J. J., 1993. Pheromone Biosynthesis Activating Neuropeptide: From Discovery to Current Status. Archives of Insect Biochemistry and Physiology. 22:141-151.

Raina, A. K., Jaffe, H., Kempe, T. G., Keim, P., Blacher, R. W., Fales, H. M., Riley, J., Klun, A., Rigidway, R. L. and Hayes, D. K., 2014. Identification of a Neuropeptide Hormone that Regulates Sex Pheromone Production in Female Moths. Science, 244:796-798.

Rao, K. R. and Riehm, J. P., 1988. Pigment-dispersing hormones: A novel family of neuropeptides from arthropods. Peptides 9 Suppl. 1:153-159.

Roller, L., Yamanaka, N., Watanabe, K., Dauberova, I., Zitnan, D., Kataoka, H. and Tanaka, Y., 2008. The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38:1147–1157. doi:10.1016/j.ibmb.2008.04.009.

Root, C. M., Ko, K. I., Jafari, A. and Wang, J. W. 2011. Presynaptic facilitation by neuropeptide signalling mediates odor-driven food search. Cell. 145:133-144.

Schöenbeck, J. and Zdobinsky, T., 2009. Insect Neuropeptides: Structures, Chemical Modification and Potential for Insect Control. Bioorganic & Medical Chemistry, 17: 4071–4084.

Schneider, L.E. and Taghert, P. H., 1988. Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc. Natl. Acad. Sci. U. S. A. 85:1993–7.

Schoofs, L., Holman, G. M., Hayes, T. K., Nachman, R. J. and De Loof, A., 1990. Locustatachykinin I and II, two novel insect neuropeptides with homology to peptides of the vertebrate tachykinin family. FEBS letters. 261(2):397–401.

Shin, Y., Winans, K. A., Backes, B. J., Kent, S. B. H., Ellman, J. A. and Bertozzi, C. R., 1999. Fmoc-based synthesis of peptide-thioesters: Application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc. 121: 11684-11689.

Siegert, K. J. 1999. Locust corpora cardiaca contain an inactive adipokinetic hormone. FEBS Lett. 447: 237–240. doi:10.1016/S0014-5793(99)00299-9.

Sousa, S. F., Fernandes, P. A. and Ramos, M. J., 2006. Protein-ligand docking: Current status and future challenges. Proteins: Structure, function and bioinformatics. 65: 15-26.

Stangier, J., Hilbich, C. and Keller, R., 1989.
Occurrence of crustacean cardioactive peptide (CCAP) in the nervous system of an insect, *Locusta migratoria*. J. Comp. Physiol. B. 159:5–11. doi:10.1007/BF00692677.

Starratt, A.N. and Brown, B.E., 1975. Structure of the Pentapeptide Proctolin, a Proposed Neurotransmitter in Insects. Life Sciences, 17: 1253-1256.

Sudo, S., Kuwabara, Y., Park, J. I., Sheau, Y. H. and Hsueh, A. J. W., 2005. Heterodimeric fly glycoprotein hormone-α2 (GPA2) and glycoprotein hormone-β5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5. Endocrinology. 146:3596–3604. doi:10.1210/en.2005-0317.

Veenstra, J. A., 2014. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front. Physiol. 5:1–22. doi:10.3389/fphys.2014.00454

Veenstra, J.A., 1994. Isolation and structure of the *Drosophila* corazonin gene. Biochem. Biophys. Res. Commun. 204: 292-296.

Wagner, G., Kumar, A. and Wuthrich, K., 1981. Systematic application of two-dimensional H nuclear-magnetic-resonance techniques for studies of proteins. Eur. J. Biochem. 114:375-384.

Woodhead, A. P., Stay, B., Seidel, S. L., Khan, M. A. and Tobe, S. S., 1989. Primary structure of four allatostatins: Neuropeptide inhibitors of juvenile hormone synthesis. Proc. Natl. Acad. Sci. U.S.A. 86:5997–6001. doi:10.1073/pnas.86.15.5997.

Yamanaka, N., Roller, L., Zitnan, D., Satake, H., Mizoguchi, A., Kataoka, H. and Tanaka, Y. 2011. *Bombyx* orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis. J. Comp. Neurol. 519:238-246.

Zhang, C., Qu, Y., Wu, X., Song, D., Ling, Y. and Yang, X., 2015. Eco-friendly insecticide discovery via peptidomimetics: Design, synthesis, and aphidical activity of novel insect kinin analogues. Journal of Agricultural Food Chemistry, 4527-4532: doi:10.1021/acs.jafc.5b01225.

Zitnan, D., T. G. Kingan, J. L. Hermesman and M. E. Adams. 1996. Identification of ecdysis-triggering hormone from an epitracheal endocrine system. Science. 271:88-91. doi:10.1126/science.271.5245.88.