IDENTIFICAÇÃO DE UM MÉTODO ESTATÍSTICO COMO INSTRUMENTO DA QUALIDADE:
Tempo da Presença do Doente na Sala de Operação

CAMPINAS
2009
GUIOMAR TEREZINHA CARVALHO ARANHA

IDENTIFICAÇÃO DE UM MÉTODO ESTATÍSTICO COMO INSTRUMENTO DA QUALIDADE:
Tempo da Presença do Doente na Sala de Operação

Tese de Doutorado apresentada à Pós-Graduação da Faculdade de Ciências Médicas da Universidade Estadual de Campinas para obtenção do Título de Doutor em Cirurgia Cardíaca, na área de Pesquisa Experimental.

ORIENTADOR: PROF. DR. REINALDO WILSON VIEIRA

CAMPINAS
2009
Título em inglês: Identification of a statistical method of quality as a tool: time patient in the presence of operating room

Keywords: • Cardiac surgical procedures
• Survival analysis
• Quality control
• Operating rooms
• Time management

Titulação: Doutor em Cirurgia
Área de concentração: Pesquisa Experimental

Banca examinadora:

Prof. Dr. Reinaldo Wilson Vieira
Prof. Dr. Domingo Marcolino Braile
Profa. Dra. Eugênia Maria Reginato Charnet
Prof. Dr. João Nelson Rodrigues Branco
Prof. Dr. Odail Pagliardi

Data da defesa: 27-11-2009
Banca Examinadora da Tese de Doutorado
Guiomar Terezinha Carvalho Aranha

Orientador: Prof. Dr. Reinaldo Wilson Vieira

Membros:

1. Prof. Dr. Reinaldo Wilson Vieira

2. Prof. Dr. Domingo Marcolino Braile

3. Profa. Dra. Eugênia Maria Reginato Charnet

4. Prof. Dr. João Nelson Rodrigues Branco

5. Prof. Dr. Odail Pagliardi

Curso de pós-graduação em Cirurgia, da Faculdade de Ciências Médicas da Universidade Estadual de Campinas.

Data: 27/11/2009
Dedico este trabalho...

A Deus,
minha vida, minha força e meu tudo.
À Nossa Senhora Aparecida com sua companhia e bênçãos.
À memória de meu pai, exemplo de honestidade.
À minha querida mãe, amiga, companheira, modelo de fé, de coragem.
À meu querido irmão, solidário, companheiro, modelo de perseverança.
A meus queridos amigos, cireneus, companheiros de minha vida e de trabalho.
AGRADECIMENTOS

A Todos os que se doam para que os conhecimentos adquiridos no decorrer da jornada de suas existências sejam repartidos em comum união com todos e sem distinção.

Ao Prof. Dr. Reinaldo Wilson Vieira, meu orientador, incentivador, pela confiança em mim depositada como profissional e como aluna de Pós-Graduação; pela paciência e sábios conselhos, e, principalmente por dar-me esta oportunidade de expressar meu aprendizado.

Ao Prof. Dr. Domingo Marcolino Braile, pela amizade fraternal, pela confiança depositada em meus estudos e trabalhos realizados no “HC da UNICAMP”. Propiciou-me junto com o meu orientador, momentos felizes, inesquecíveis.

À Profa. Dra. Eugênia Maria Reginato Charnet do Departamento de Estatística/UNICAMP, professora em toda a extensão que essa palavra enseja, educadora, incentivadora e amiga, por confiar e brindar comigo este desafio da minha vida acadêmica.

Ao Prof. Dr. João Nelson Rodrigues Branco, pela certeza das colocações para o aprimoramento da Tese.

Ao Prof. Dr. João José Fagundes, pela cordial amizade fraterna e estímulo na elaboração da Tese.

Ao Prof. Dr. Odail Pagliardi, pela amizade e atenções nesses longos anos de luta diária em minha atividade profissional e acadêmica.

Ao Prof. Dr. Olimpio J. Nogueira V. Bittar, pelas atenções incansáveis, pela amizade fraterna, sempre disposto a auxiliar-me, orientando-me, incentivando-me em meus empreendimentos, confiando no meu trabalho, nos meus estudos, honrando-me com a sua presença nos momentos mais difíceis.

Ao Prof. Dr. Ivomar Gomes Duarte, pela confiança nos meus estudos, nas minhas pesquisas, por dar-me sempre a oportunidade de expressar os conhecimentos que eu adquiria passo a passo. Enfim, pela amizade que fica dessa jornada da vida.
Ao Prof. Dr. Joaquim Murray Bustorff Silva, Coordenador do Programa de Pós-Graduação em Cirurgia/FCM pela acolhida junto à renomada academia e pela confiança em meu trabalho profissional, que ora se confunde com o meu trabalho acadêmico.

Ao Prof. Dr. Nelson Adami Andreollo, Chefe do Departamento de Cirurgia/FCM, pelo respeito e consideração pela minha atividade profissional e acadêmica.

Ao Prof. Dr. Benedito Galvão Benze do Departamento de Estatística da Universidade Federal de São Carlos, que ao esclarecer-me nas indagações estatísticas de minha lida diária profissional, permitiu-me indiretamente que aprimorasse meus conhecimentos acadêmicos, além de propiciar-me a companhia de excelentes estagiários.

À Adriana Magalhães, amizade sincera que se fez à distância, fruto do desenvolvimento de novos trabalhos que nesses anos passados aconteceram. Pela confiança e pacienciosa atenção no dia a dia da vida profissional.

Ao Superintendente do Hospital de Clínicas/UNICAMP, Prof. Dr. Luis Carlos Zeferino, pela confiança em meu trabalho profissional, o qual com suas questões prementes, possibilitou-me atender as exigências acadêmicas.

Ao Prof. Dr. Roberto Marini, a Profa. Dra. Ana Terezinha Tresoldi, Prof. Dr. Luis Roberto Lopes, ao Prof. Dr. Ivan Felizardo Contrera Toro, ao Prof. Dr. Manoel Barros Bértolo, estimadas chefias que me ensinaram a arte profissional, de como lidar com as urgências do dia a dia, e que ao depositarem confiança na realização de minhas atividades propiciaram que eu também penetrasse no mundo acadêmico com mais segurança.

Ao Prof. Luis Antonio Eiras Falcão, pelas incansáveis vezes que foi professor da minha atividade profissional, sempre com solicitude e paciência me pôs a par de conceitos e práticas científicas, propiciando que eu realizasse meu trabalho com fidedignidade.

Ao Engenheiro Ricardo Küssell/CENAPAD/UNICAMP, pela solicitude, amabilidade e generosidade em ajudar-me em minhas dificuldades na programação do SAS, que sem esta ajuda careceria de segurança nos resultados obtidos, e este momento não teria o êxito tão buscado.
À equipe da Cirurgia Cardíaca do Hospital de Clínicas/UNICAMP, em especial ao Prof. Dr. Pedro Paulo Martins de Oliveira e ao Prof. Dr. Orlando Petrucci Junior pela valorosa orientação ao meu trabalho acadêmico e a Enfermeira Beatriz Helena Bolsonaro Pereira de Souza, por auxiliar-me a concluir um trabalho profissional que em determinado tempo me foi solicitado.

A ex-secretária da Disciplina de Cirurgia Cardíaca/FCM/UNICAMP, Thereza Aparecida Costa Barreto, pelo estímulo, amizade, empenho, encorajamento à minha atividade acadêmica e pelos inúmeros diálogos que tivemos sobre a realização da fé na vida diária.

Às secretárias da Pós-Graduação da Cirurgia/FCM/UNICAMP e funcionários, em particular a Paula Léa F. da Costa Ferreira e Vera Maria Barbosa, Carlos Alberto Araujo Fidelis, pelo companheirismo e esclarecimentos de todo o processo administrativo que o aluno de Pós-Graduação precisa ter.

A Isabel Gardenal da Assessoria de Imprensa/UNICAMP, exemplo de dedicação profissional, pela amizade fraternal que me contemplou nestes anos de minha atividade profissional.

Ao webdesign Sergio Semionato/GGBS/UNICAMP, pela amizade sincera, pelos incontáveis auxílios aos meus estudos, aos Congressos dos quais participei, e principalmente a esse momento tão significativo que ora se enseja.

Ao webdesign Alexandre da Silva/HC/UNICAMP, pela valorosa colaboração na apresentação da Tese e correções do design, proporcionando uma agradável visualização dos conceitos.

Às amigas fraternas, Marcia Martins Baccetti, Livia Paschoalino, e parceiras de trabalho, que com paciência, responsabilidade e colaboração na jornada de trabalho, possibilitaram o engrandecimento de meus conhecimentos.

Aos estagiários e hoje profissionais da Estatística, Daniel Montechiesi P. de Oliveira, Marcel Henrique da Silva, que colaboraram para o meu rejuvenescimento profissional, com suas presenças sempre amigas, solidárias, propiciaram-me saudosas lembranças da minha juventude quando entrei na UNICAMP em um tempo que já vai distante.
À memória de Conceição Aparecida Peres, que tanto bem fez a minha vida, com o exemplo vivo da humanidade de Cristo. Hoje na companhia de Nossa Senhora, o céu se alegra.

A todos os funcionários do Hospital de Clínicas/UNICAMP, em particular àqueles que estimularam o meu crescimento profissional e me transmitiram o carinho de suas amizades, aos talentosos amigos e amiga, em especial a Maria Aparecida Pontes Jorge, Maria Rita Fraga, Neusa Amadio, Sandra Regina A. Terra, Marcia Banin, Padre Norberto Tortorelo Bonfim, Pastor João Silvio Rocha, Célia Regina Boccatti, Eliana Pietebron, Antonio Alberto Ravagnani, Romeu Fernandes, Flora Bueno, e tantos outros das diversas áreas do “HC da UNICAMP”, tais como Serviço Social, Recursos Humanos, Ouvidoria, Divisão de Nutrição e Dietética, Área de Ambulatórios, SAM, Protocolo, Captação de Órgãos, UTI, Imagem.

Aos médicos e todos aqueles, profissionais da área da Saúde em geral, que se dedicam com empenho na busca de soluções para os problemas de saúde que a cada dia se tornam quase que intransponíveis, mas que com dedicação e perseverança, graças a Deus, conseguem minimizar o sofrimento daqueles que tem como último recurso o “HC da UNICAMP”.

Aos pacientes, em particular, humanidade de Cristo, que me faziam lembrar com suas idas e vindas ao “HC da UNICAMP”, em particular à Capela, foi para eles em particular os frutos de meu trabalho, os meus estudos, a luta que se travava no dia a dia.

Aos meus familiares, a minha mãe e meu irmão, pela generosidade e doação de suas vidas à minha vida, pelo encorajamento, incentivo e sábias orientações em meus projetos, e que se constituíram em uma rocha em que pude edificar meus sonhos que hoje parte deles puderam se realizar. A ambos, a minha gratidão eterna, os meus sentimentos de um amor eterno. A meu pai, em memória, pelo exemplo de honestidade que norteou a sua vida e foi meu exemplo.
A Deus, acima de tudo, em especial o meu agradecimento, a minha homenagem, pela vida, por caminhar lado a lado comigo em todos os instantes, e principalmente, por permitir que este momento se realizasse em toda a sua intensidade, por encorajar-me quando auxílio Lhe pedia, e quando não Lhe pedia, além de que com os desafios que tive e que passei em Sua companhia, permitiu também que eu me conhecêsse melhor como pessoa e a infinitude de seu misericordioso Amor.
No princípio, Deus criou os céus e a terra.

A terra estava informe e vazia; as trevas cobriam o abismo e o Espírito de Deus pairava sobre as águas.

Deus disse: "Faça-se a luz!" E a luz foi feita.

Deus viu que a luz era boa, e separou a luz das trevas.

Deus chamou à luz DIA, e às trevas NOITE. Sobreveio a tarde e depois a manhã: foi o primeiro dia.

Deus disse: "Faça-se um firmamento entre as águas, e separe ele umas das outras".

Deus fez o firmamento e separou as águas que estavam debaixo do firmamento daquelas que estavam por cima.

E assim se fez. Deus chamou ao firmamento CÉUS. Sobreveio a tarde e depois a manhã: foi o segundo dia.

Deus disse: "Que as águas que estão debaixo dos céus se ajuntem num mesmo lugar, e apareça o elemento árido." E assim se fez.

Deus chamou ao elemento árido TERRA, e ao ajuntamento das águas MAR. E Deus viu que isso era bom. ...

Gênesis 1 – 10
SUMÁRIO	
SIGLAS E ABREVIATURAS	xix
LISTA DE QUADROS	xxiii
LISTA DE TABELAS	xxv
LISTA DE FIGURAS	xxvii
RESUMO	xxix
ABSTRATO	xxxi
INTRODUÇÃO	33
OBJETIVO	47
MATERIAL E MÉTODO	51
RESULTADOS	61
DISCUSSÃO	89
CONCLUSÃO	115
REFERÊNCIAS BIBLIOGRÁFICAS	119
ANEXOS	127
SIGLAS E ABREVIATURAS

FDS_LIC - Função de Distribuição de Sobrevivência_Limite Inferior de Confiança

FDS_LSC - Função de Distribuição de Sobrevivência_Limite Superior de Confiança

Tempos do Procedimento Cirúrgico em Estudo:

T6 - tempo final da operação – tempo de indução anestésica = tempo real da operação.

T7 - tempo final da operação – tempo de (degermação + assepsia + colocação de campos) = tempo exato da operação.

T8 - tempo de alta da sala de operação – tempo de entrada na sala de operação = tempo da presença do doente na sala de operação.

Tempos do Processo das Operações

Sala de Operação:

T1 - tempo de saída da sala de preparo – tempo de entrada na sala de preparo.

T2 - tempo de entrada na sala de operação - tempo da saída da sala de preparo = tempo de percurso. Neste estudo foi insignificante, devido à aproximação da sala de operação da cirurgia cardíaca.

T3 - tempo de indução anestésica - tempo de entrada na sala de operação.

T4 - tempo de (degermação + assepsia + colocação de campos operatórios) – tempo de indução anestésica.

T5 - tempo de início da operação – tempo de (degermação + assepsia + colocação de campos operatórios).

T6 - tempo de final da operação - tempo de indução anestésica = tempo real da operação.
T61 - tempo final de anestesia – tempo final da operação.

T7 - tempo final da operação – tempo de (degermação + assepsia + colocação de campos operatórios) = tempo exato operação.

T8 - tempo de saída sala de operação - tempo de entrada na sala de operação = tempo da presença do doente na sala de operação.

T9 - tpo2 = tempo de entrada na UTI = tempo pós-operatório 2 (tempo não de interesse neste estudo, pois não pertence ao fluxo dos tempos do processo das operações.

T10 - tempo de inicio da limpeza - tempo de entrada na UTI.

T12 - tempo de saída da sala de operação – tempo final da operação.

Tempo de limpeza da sala de operação

T12.1 - tempo da saída da sala de operação - tempo final de anestesia = tempo pós-operatório 1 (tempo em que o paciente espera pela liberação do leito na UTI).

T11 - tempo final de limpeza – tempo de início de limpeza

Tempos máximos disponíveis: TMáx Disponíveis

TMáx (720 minutos): tempo máximo de 720 minutos disponíveis.

TMáx (660 minutos) (- 1 hora limpeza): tempo máximo de 660 minutos disponível, descontado uma hora de limpeza do tempo máximo de 12 horas disponível.

TMáx (690 minutos) (Literatura): tempo máximo disponível de 690 minutos, descontada meia hora do tempo máximo de 12 horas disponível.

TMáx (720 minutos) - mínimo de limpeza: tempo máximo de 720 minutos disponível – tempo mínimo de limpeza da sala de operação por tipo de operação.
TMáx (720 minutos) - máximo de limpeza: tempo máximo de 720 minutos disponível – tempo máximo de limpeza da sala de operação por tipo de operação.

Diferença = TMáx (720 minutos) - T8 (H1 e H2): diferença do tempo máximo de 720 minutos disponível – Tempo T8 (tempo da presença do doente na sala de operação), diferença esta utilizada para as hipóteses H1 e H2.

Diferença = TMáx (660 minutos) - T8 (H3 e H4): tempo máximo de 660 minutos disponível – T8 (tempo da presença do doente na sala de operação), diferença esta utilizada para as hipóteses H3 e H4.

Diferença = TMáx (690 minutos) - T8 =Literatura(690 minutos) (H5 e H6): tempo máximo de 690 minutos – T8 (tempo da presença do paciente na sala de operação), diferença esta utilizada para as hipóteses H5 e H6.

Diferença = TMáx (720 minutos) - T8 TLMáx tipo (H 7 e H8): tempo máximo de 720 minutos disponível – tempo máximo de limpeza na sala de operação, diferença esta utilizada para as hipóteses H7 e H8.

Diferença = TMáx (720 minutos) - T8 TLMín tipo (H 9 e H10): tempo máximo de 720 minutos disponível – tempo mínimo de limpeza na sala de operação, diferença esta utilizada para as hipóteses H7 e H8.

Tempos de Limpeza da Sala de Operação

Tempo Limpeza Mínimo (TLMín): tempo mínimo de limpeza por tipo de operação.

Tempo Limpeza Máximo (TLMáx): tempo máximo de limpeza por tipo de operação

Tempo Limpeza Literatura (aproximadamente) (TLL)
LISTA DE QUADROS

QUADRO 1 - Procedimentos da cirurgia cardíaca 57
QUADRO 2 - Operações eletivas e suspensas realizadas 64
QUADRO 3 - Estatística dos tempos T6, T7 e T8 em geral em minutos. 67
QUADRO 4 - Estatística dos tempos T6, T7 e T8 por Tipo de Procedimento Cirúrgico Cardíaco em minutos. 68
QUADRO 5 - Tempos máximos na sala de operação (minutos) - T6: - tempo real da operação – T7: tempo exato da operação – T8: tempo da presença do doente na sala de operação 84
QUADRO 6 - Matriz de relação de otimização do tempo do doente na sala de operação (T8) (minutos) 86
QUADRO 7 - Planejamento da otimização da sala da cirurgia cardíaca com previsão de novas operações 88
QUADRO 8 - Metodologias de apoio para o gerenciamento das operações 92
QUADRO 9A - Indicadores 109
QUADRO 9B - Indicadores 110
QUADRO 10 - Indicadores do custo da qualidade 111
LISTA DE TABELAS

TABELA 1 - Operações realizadas e suspensas – cirurgia cardíaca 65
TABELA 2 - Operações suspensas - cirurgia cardíaca – ano - 2008 66
TABELA 3 - Hospitalização da cirurgia cardíaca - ano: 2008 67
LISTA DE FIGURAS

Figura 1 A – Sobrevivência Geral – tempo 6: T6 – Tempo Real da Operação 70
Figura 1 B – Sobrevivência Geral – tempo 7: T7 – Tempo Exato da Operação 70
Figura 1 C – Sobrevivência Geral – tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação 71
Figura 2 A – Aneurisma da Aorta - tempo 6: T6 – Tempo Real da Operação 73
Figura 2 B – Aneurisma da Aorta - tempo 7: T7 – Tempo Exato da Operação 73
Figura 2 C – Aneurisma da Aorta - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação 74
Figura 3 A – Cardiopatia Isquêmica - tempo 6: T6 – Tempo Real da Operação 75
Figura 3 B – Cardiopatia Isquêmica - tempo 7: T7 – Tempo Exato da Operação 75
Figura 3 C – Cardiopatia Isquêmica - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação 76
Figura 4 A – Cardiopatia Congênita - tempo 6: T6 – Tempo Real da Operação 77
Figura 4 B – Cardiopatia Congênita - tempo 7: T7 – Tempo Exato da Operação 77
Figura 4 C – Cardiopatia Congênita - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação 78
Figura 5 A – Valvares - tempo 6: T6 – Tempo Real da Operação 79
Figura 5 B – Valvares - tempo 7: T7 – Tempo Exato da Operação 80
Figura 5 C – Valvares - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação 80
Figura 6 A – Outros Procedimentos- tempo 6: T6 – Tempo Real da Operação 81
Figura 6 B – Outros Procedimentos- tempo 7: T7 – Tempo Exato da Operação 82
Figura 6 C – Outros Procedimentos- tempo 8: T8– Tempo da Presença do Doente na Sala de Operação
Introdução: A organização do trabalho científico através da lógica e experimentos, a estrutura do estabelecimento de pesquisa individual ou aos diferentes aspectos da vida da comunidade científica foram o eixo de mudanças na relação ciência e tecnologia. A Universidade, dentro deste contexto, se constitui em uma fonte de criação permanente, sistematização e difusão do conhecimento científico e tecnológico. A estatística como instrumento da qualidade se constitui em apoio às ações que visem à otimização dos recursos disponíveis e melhoria da prestação de serviços com qualidade.

Objetivo: O estudo proposto, junto à especialidade de Cirurgia Cardíaca/Hospital de Clínicas/Unicamp tem como objetivo identificar um método estatístico que expresse o tempo da presença do doente na sala de operação e construir uma “matriz de relação” de otimização deste tempo, o tempo exato e real da operação. **Método:** O método de análise de sobrevivência aplicada utilizando o estimador não paramétrico de Kaplan-Meier, permite calcular as curvas de sobrevivência para os tempos em estudo, e com o resultado obtido criar uma “matriz de relação” da otimização do tempo da presença do doente na sala de operação por meio de dez hipóteses que auxiliam na escolha da nova operação, e melhor ocupação da sala. Este estudo tem como parâmetro de referência para o tempo de limpeza da sala de operação, o que a literatura estabelece em aproximadamente 30 minutos, além do tempo de cada tipo de procedimento cirúrgico. A amostra aleatória simples para estimar a curva de sobrevivência constitui-se de 71 pacientes, das operações eletivas de adultos da Cirurgia Cardíaca/Hospital de Clínicas/UNICAMP, durante o ano de 2008. **Resultados:** Nos resultados encontrados observou-se que os tempos que sobram das operações em média estão em um intervalo de 140 minutos a 200 minutos e excedem de 5 minutos a 90 minutos, para realização de novas operações. No geral, realizou-se em média diariamente uma operação dentro de 520 minutos, para um tempo disponível de 720 minutos. No ano de 2008 foram suspensas 39% das operações, sendo que 81% dos motivos foram “fatores hospitalares extrapacientes” e 19% “relativos ao paciente”. Em suma com os resultados obtidos pela metodologia de análise de sobrevivência, metodologia tradicional, e metodologia de gestão da qualidade, é possível cruzar informações e construir passo a passo o conhecimento científico e tecnológico. **Conclusão:** (1) O tempo do doente na sala
de operação é um tempo que tem nele incluso, o tempo de aprendizado pelo aluno, em um hospital escola, universitário. (2) Com o tempo máximo disponível de 720 minutos não é possível realizar outra operação, a não ser utilizando da "matriz de relação", sendo que o tempo máximo disponível varia entre 660 minutos e 690 minutos, considerando-se intervalo de limpeza da sala. (3) Ao otimizar o tempo do doente na sala de operação, através da “matriz de relação”, mais doentes serão beneficiados, acarretando uma diminuição da fila de espera para novas operações, garantindo uma eficiente relação custo-benefício. (4) A “matriz de relação” fornece dados que permitem visualizar, opinar e decidir qual é a melhor operação a ser realizada e se há tempo disponível para tal.

PALAVRAS-CHAVES: Procedimentos cirúrgicos cardíacos; Análise de sobrevida; Gestão da qualidade; Salas cirúrgicas; Gerenciamento do tempo.
Introduction: The science and technology evolution were made by the scientific literature and the scientific methodological theory. The Academy with this background is the continuing source of sistematization and diffusion of scientific acknowledge. Statistics as a tool for a quality control might support actions that may promote the available resources optimization and improvements on services with higher quality. Objective: The present study, carried out with the Cardiac Surgery Discipline at Hospital de Clínicas/Unicamp had the aim to identify the best statistical method for patient time at operation room by fitting and building up a model for predicted operation room time, and observed operation room time measurements. Method: The method of survival analysis performed using the nonparametric estimator of Kaplan-Meier allows to calculate the survival curves for time to study. Using this analysis was possible to build up a “relationship matrix” for operation room time optimization, predicted operation room time, and observed operation time by choosing ten different hypotheses which assisted for the next operation type to be performed increasing the operation room time availability. The “relationship matrix” took into account as parameters: time period for operation room disinfection that the consulted literature reports to be around 30 minutes; and surgery procedure type performed. This study included 71 patients underwent open-heart surgeries by Discipline of Cardiac Surgery at Hospital de Clinicas/Unicamp randomly sampled during 2008. Results: The remaining mean operation time after the first surgery in the day ranged from 140 to 200 minutes and the exceeding mean operation time after first surgery in the day ranged from 5 to 90 minutes. The average surgeries performed every day were one procedure spending 520 minutes within 720 minutes available for every day. In 2008, 39% of the procedures were postponed, such that 81% of those due to “hospital related” reasons and 19% to “patient related” reasons. In summary, the results showed above using Kaplan-Meier statistical method, traditional methodology, and managing of quality methodology it was possible to build up a scientific acknowledge. Conclusion: (1) The patient time at the operation room includ ed a students learning time a school hospital. (2) With the maximum available time (i.e.720 minutes) it is not possible to perform another operation, nonetheless employing the “relationship matrix”, with a maximum available time
between 660 and 690 minutes, taking into account were included in this interval the disinfection room time. (3) By optimizing the patient time at operation room, more patients will be benefit shorting the waiting list time for operations and increasing the cost/benefit ratio. (4) The “relationship matrix” gave data that provided valuable information for choosing next operation type based on remained time.

KEYWORDS: Cardiac surgical procedures; analysis of survival; Quality control; Operating rooms; Time management.
INTRODUÇÃO
O início da ciência aplicada se dá a partir da década de 1860 - 1870, o aparecimento da pesquisa organizada de laboratório e a disponibilidade de pesquisadores formados permitiram um novo tipo de trabalho aplicado. Dois exemplos considerados notáveis foram segundo Ben David (1974) o desenvolvimento da anilina e as vacinas imunizadoras. Esses dois exemplos levaram ao estabelecimento de laboratórios que não se destinavam ao ensino e que empregavam pesquisadores profissionais que não eram professores. Outro desenvolvimento ocorreu nos institutos de tecnologia. ... De qualquer forma, a pesquisa industrial e os institutos tecnológicos se tornaram “consumidores” cada vez mais importantes e finalmente “produtores” de ciência de nível universitário. Por isso, embora os casos em que uma descoberta científica se tornava uma fonte imediata de uma invenção útil continuavam a ser exceções raras. A ciência passou a ter estreita relação com a tecnologia, através da formação científica de engenheiros e do recurso cada vez mais freqüente a consulta científica pela indústria, por hospitais e pelas forças militares.

A universidade desde os tempos mais remotos quando da sua criação continua sendo uma das instituições mais importantes, e é uma fonte permanente de formação, sistematização e difusão do conhecimento científico e tecnológico. A educação superior dá as mais evidentes e, aparentemente, as mais numerosas oportunidades para a extensão dos usos da ciência. E o impacto da ciência é talvez mais forte atualmente, em conseqüência de seu crescente domínio da doença e da conseqüente eliminação de uma das fontes de angústia permanente e de esperança, em torno das quais se centralizavam muitas das práticas religiosas. (Ben David, 1974).

A emergência da ciência moderna, segundo Fourez (1995), ligou-se à ideologia burguesa e a sua vontade de dominar o mundo e controlar o meio ambiente. E durante séculos sentiu-se a eficácia desse método, e os seus sucessos serviram de base às ideologias do progresso. E é a partir do século XVI, com os físicos (ou mecanicistas) que se começa a criar uma representação do mundo na qual os objetos não possuíam mais nada de subjetivo: o mundo dos astros obedecia a leis frias, a um determinismo, que logo seria chamado, como
a linguagem universal”,... “a matemática fornecerá então à física uma linguagem em que cada ponto do espaço será percebido como equivalente a um outro.

A história da ciência assemelha-se, portanto, aos raciocínios. Daí que a união entre a ciência e técnica, admitida por muitos contemporâneos, parece como evidente, e que é a ciência que permite o desenvolvimento da técnica. Durante muito tempo, ciência e técnica se desenvolveram em separado, na verdade, muitas vezes foi a técnica que esteve em avanço em relação às compreensões teóricas.

Independentemente dos desenvolvimentos históricos, o fato é que, hoje, ciência e tecnologia parecem estar completamente ligadas, a um ponto em que se torna difícil determinar que desenvolvimentos devam ser considerados como “técnicos” e quais, “científicos”.

No século XX, a parceria universidade com o segmento empresarial tornou-se uma prática rotineira em países como Japão, EUA, Canadá, Inglaterra em particular. Nos demais países e em especial os considerados emergentes, como é o caso da China, Coréia do Sul, México e Brasil, destaca-se, segundo Melo (2002), como um dos principais instrumentos de difusão de tecnologias indutoras de desenvolvimento.

Embora as parcerias ocorram, nas universidades ainda o processo não é de fácil aceitação e nem de entendimento, devido às questões ideológicas e objetivos distintos que a universidade e empresa possuem. Melo (2002), citando Solino (1999), em níveis macros e históricos, a Universidade vem contribuindo, de forma decisiva, para o avanço da ciência e da tecnologia, sobretudo formando profissionais para as mais diversas áreas do conhecimento. Contudo, o acelerado avanço científico e tecnológico, quando submetido aos interesses de uma minoria, tende a afastar a Universidade de sua real missão.

A criação de uma interface capaz de fomentar os vínculos entre a universidade e a indústria foi à tarefa principal com que se enfrentaram os delineadores de políticas de Ciência & Tecnologia. Atualmente se privilegia a análise de política científica como uma área que tem o objetivo global de gerar uma nova matriz capaz de propor um novo estilo de desenvolvimento para a América Latina.
E é dentro deste contexto do papel da Universidade, com o desenvolvimento de diversas áreas do conhecimento como Estatística, por exemplo, possui uma venerável história que tem início no século XVII, tanto como um campo da matemática quanto como um instrumento que pode ser aplicado a diferentes problemas, que esta então disciplina vai se consolidando ao longo do tempo como ciência, do reconhecimento da atividade científica socialmente valorizada. No século XIX, iniciou-se um importante movimento profissional dirigido por Quetelet, destinado à melhoria e à propagação da estatística.

Em 1935 há a fundação do Instituto de Estatística Matemática e nas primeiras décadas do século XX, a estatística era considerada, fundamentalmente, como um instrumento de pesquisa aplicada, principalmente pelas universidades americanas. (Ben David, 1974)

A Estatística passou a ser considerada como um conjunto de técnicas úteis para a tomada de decisão sobre um processo ou população, baseada na análise da informação contida em uma amostra desta população. Métodos estatísticos desempenham papel fundamental na melhoria da qualidade. Eles fornecem os meios pelos quais produtos, por exemplo, são sorteados, testados e avaliados e a informação contida nesses dados é usada para controlar e melhorar o processo de produção. (Montgomery, 2004)

A estatística com seus métodos propiciou o aparecimento de um novo método de gestão, considerado como paradigma no século XX, a “Gestão da Qualidade e os seus instrumentos passaram a serem conhecidos como “ferramentas da qualidade”. Em termos de implementação e filosofia de gerenciamento, três líderes se destacaram: W. E. Deming, J. M. Juran e A. V. Feigenbaum.

Scherkenbach (1992), discípulo de Deming, estatístico, apresenta os “14 pontos de Deming”, ou o caminho para a produtividade e qualidade, que devem ser constantemente aperfeiçoados, já que a busca da melhoria na prestação de serviços deve ser contínua. A “qualidade”, conhecida também como uma filosofia gerencial, para Longo (1994), é constituída de instrumentos de avaliação, metodologias, procedimentos de controle, tais como o Diagrama de Pareto conhecido pela relação “80/20” para distinção das
causas dos problemas “muitos, mas triviais” dos “poucos, mas vitais”, que segundo Kume (1993), quase todas as perdas poderiam ser eliminadas concentrando-se nas causas específicas e deixando de lado temporariamente os problemas dos “muitos, mas problemas triviais”; o Controle Estatístico do Processo (CEP), aplicado, por exemplo, no tempo de permanência em dias dos pacientes internados da Cirurgia Cardíaca, em trabalho realizado por Aranha (2005) et al., é outra aplicação do estudo de variabilidade do processo, que vem auxiliar na melhoria da prestação de serviços.

Desde os anos 60, Donabedian ao escrever sobre o tema Qualidade na Saúde, baseia-se na sistematização do conhecimento sobre as várias organizações de cuidado à saúde, e afirma que qualidade do cuidado na saúde é decorrente de três fatores: estrutura, processo e resultado; classicamente considerados uma tríade, que corresponde às noções de Teoria Geral de Sistemas como “input-process-output”. Categorização essa, que segundo Malik & Schiesari (1998), tem por objetivo a sistematização da complexidade da saúde, permitindo que a partir dela, estabeleçam-se indicadores específicos para cada uma das etapas consideradas.

Com o foco na qualidade da assistência, a Organização Mundial da Saúde, ao adotar o tema qualidade da assistência cria o sistema de Acreditação Hospitalar ou Certificação da Qualidade, onde se definiu os padrões de assistência, conceitos, descrevendo os passos para se aderir ao Processo de Acreditação, ONA (2001). Empresas foram e estão sendo credenciadas pela Organização Nacional de Acreditação, como no Estado de São Paulo pela Sociedade Médica Paulista de Acreditação em Saúde/Controle de Qualidade Hospitalar - SMPAS/CQH.

A importância da “gestão de qualidade” ocorre com ênfase na elaboração e criação de indicadores que venham apoiar as decisões administrativas e as três condições para se ter qualidade, por exemplo, quando se trata de área hospitalar devem contemplar: 1. Ensino Adequado, 2. Atendimento Efetivo (a qualidade está ligada ao atendimento efetivo, e é intrínseco a este. O que por si só já é um indicador para se ter qualidade) e 3. Resolutividade. Como consequência não há atendimento efetivo sem qualidade. A qualidade leva em consideração a resolutividade, isto é, só terá boa qualidade, o
atendimento que é capaz de resolver o problema. O grande volume do atendimento (quantidade) só tem sentido quando gera a resolução ou solução de uma grande percentagem dos problemas. A resolutividade geralmente ocorre com mais frequência, quando o serviço é de boa qualidade. Consequentemente, resolutividade tem que ver com qualidade e quantidade.

Neste sentido, Fávero (1975), alerta, com relação à assistência hospitalar que é importante “... conhecer o uso dos leitos hospitalares do município e detectar possíveis inadequações, cujas correções possam maximizar o uso dos leitos, colaborando para baixar o custo da assistência médica sem diminuir a quantidade nem a qualidade”. Aranha & Soares (2003) realizaram um estudo de um método estatístico para avaliação de tendência da média de permanência (dias) dos pacientes internados da Cirurgia Cardíaca, o qual se evidenciou que o intervalo de confiança é um instrumento que serve como auxílio para avaliação da prestação de serviços.

Perroca et al. (2007), quando se referem aos cancelamentos de operações, estimam-se que cerca de 60% dos cancelamentos dos procedimentos eletivos são potencialmente evitáveis e poderiam ser preveníveis, usando-se técnicas de melhoria de qualidade. Os cancelamentos cirúrgicos deveriam ser vistos como eventos adversos e monitorados rotineiramente nos sistemas clínicos de incidentes hospitalares, uma vez que se constituem na maior causa do uso inefficiente do tempo na Sala de Operação (SO) e de desperdício de recursos disponíveis.

Para Paschoal & Gatto (2006), existem duas vertentes pelas quais a suspensão de uma operação pode ser analisada, a primeira, voltada para as repercussões que envolvem o paciente; e a segunda, pelas conseqüências que causam para a instituição de saúde. Para o paciente, toda operação, por mais simples que seja, tem importante significado a ponto de provocar comportamento com a mesma proporção de qualquer outra situação traumática. Para a instituição, certamente envolverá reorganização do trabalho, ou retrabalho, descarte de material hospitalar, custos da qualidade, custo de hotelaria, desperdício de tempo dos profissionais envolvidos na operação, aumento da fila de espera dos pacientes por operação, dias desnecessários de internação, que segundo Esteves (1999), citando Gertman e
Restuccia (1981), que ao realizarem uma análise da literatura disponível sobre o uso inapropriado dos leitos hospitalares, os pesquisadores encontraram que a utilização desnecessária supera a 10% dos dias hospitalares; sendo que na pesquisa desenvolvida por Restuccia & Holloway (1976), é indicado com precisão que o número de dias considerados inapropriados é da ordem de 10,6% dos dias de internação.

Uma outra ferramenta da qualidade, as pesquisas de opinião são instrumentos de avaliação e normalmente são utilizadas com o objetivo de orientar as ações futuras, com vistas à melhoria contínua; e neste sentido, Haddad et al. (2002) realizaram uma pesquisa de opinião junto aos pacientes candidatos a operações cardíacas, que estavam em fila de espera para operações, por meio de questionários, cujo objetivo era avaliar a mortalidade e as repercussões psicológicas do prolongamento do tempo de espera em pacientes candidatos à operação cardíaca. Os resultados encontrados revelaram que vários pacientes apresentaram intensa ansiedade pela operação e atribuíram os problemas de adaptação, no âmbito da vida afetiva, profissional e social, ao não tratamento cirúrgico.

Conclui-se que a importância da aplicação da estatística, dos seus métodos e da “gestão da qualidade”, com as suas ferramentas, auxiliando na criação e estudo de indicadores de produtividade e qualidade, contribuem para auxiliar na melhoria e na prestação de serviços quer sejam eles realizados junto aos pacientes, quer no apoio às decisões gerenciais, econômicas, científicas e tecnológicas entre tantas outras.

Com o avanço tecnológico na área da saúde em particular, propiciando o uso de equipamentos, aparelhos, que permitam obter resultados significativos na sua aplicação, como os exames laboratoriais, tomógrafos, exames que utilizam dos raios x, bomba de circulação extracorpórea, cardioversor ou desfibrilador, se fazem necessárias técnicas aprimoradas de medição, de tal forma que venham a garantir um melhor diagnóstico, que para Bittar (1996), citando Sloan & Valcona (1986), a maior precisão e rapidez no diagnóstico devido ao desenvolvimento dos serviços complementares, trouxe como consequência uma diminuição no tempo de permanência. Não se deve esquecer também o desenvolvimento tecnológico ocorrido com drogas, órteses, próteses e procedimentos que
influenciam diretamente no tempo de internação necessário para restabelecimento dos pacientes.

O processo de incorporação de novas tecnologias necessita que haja um melhor balanceamento do custeio entre alta tecnologia para poucos e intervenções mais efetivas para muitos. Deve-se considerar as necessidades dos doentes, quantos serão beneficiados, se não haverá custos além do esperado com aumento da qualidade, se não haverá custo da qualidade como o desperdício. Observou-se que o Centro Cirúrgico é um candidato potencial a desperdiçar material hospitalar entre outros, possivelmente pelas suas próprias características, segundo Aranha (2001) e Aranha & Vieira (2004); e que a garantia da qualidade se fará presente, ao impedir que desperdícios diversos venham a ocorrer, sejam eles quais forem com relação aos equipamentos, medicamentos, materiais hospitalares, recursos humanos, principalmente, tempo de uso da sala de operação, entre tantos outros.

Duarte & Ferreira (2006), em seu estudo identificaram como um importante indicador de processo, as operações suspensas por fatores hospitalares extrapaciente, que segundo os autores vem sendo utilizado por revelar o grau de organização do centro cirúrgico, bem como do funcionamento de vários setores do hospital, pois envolve o monitoramento de vários processos e subprocessos. O seguimento e correção das principais causas hospitalares de suspensão de cirurgia podem significar redução de desperdícios, aumento da qualidade e da produtividade; de mesma concordância com este trabalho, os motivos de suspensão de operações causam “desperdícios” diversos, alguns deles estudados por Aranha & Vieira (2004), os quais impedem a realização de novas operações ou a otimização do tempo da presença do doente na sala de operação.

Aliado a uma alta tecnologia, os profissionais permanentemente bem preparados para o seu manuseio, constituem outro fator importante, imprescindível na relação dos cuidados médicos com os pacientes. O ensino de qualidade em uma Universidade e uma prática no Hospital Escola conduzem o aprendizado adquirido em sala de aula, para uma atividade profissional que envolve professores, alunos e doentes/pacientes a uma esfera de cuidados que algumas vezes sobrepõe parâmetros de referência, devido à gravidade do caso.
O tempo para realização das atividades em geral é uma variável essencial a ser medida e controlada em qualquer atividade em geral, no caso de um hospital escola, desde o tempo que o paciente aguarda na fila de espera para ser atendido até o seu efetivo atendimento, tempo de consulta, tempo de espera para se realizar exames laboratoriais, diagnóstico por imagem, tempos dos processos cirúrgicos, tempo de permanência hospitalar (dias), tempo de limpeza da sala de operação (minutos), que segundo Nepote (2008), a literatura estabelece em média, aproximadamente de 30 minutos, valor esse próximo ao encontrado por Joaquim (2005); e que para Possari (2004), citando Ide, Kirby e Starck (1992), as operações cardíacas necessitem de 40 minutos, em estudo realizado no Hospital de Boston.

O tempo de aprendizado, em um Hospital Escola, nem sempre contabilizado nos cálculos, embora embutido neles, não de maneira visível, é um “tempo ganho de aprendizado”, que se reverterá mais tarde, com quanto mais experiente for o profissionalion, em menos tempo para realização dos procedimentos cirúrgicos como por exemplo. Observa-se que este tempo agregado de conhecimento por não ser mensurável momentaneamente, só posteriormente, se converterá em benefício social; quando mais operações poderão ser realizadas, em menor tempo, tendo a um tempo limite médio, respeitando o próprio tempo do paciente, e de acordo com as condições do estado de saúde do paciente principalmente, e com o que é possível se fazer com os recursos humanos, financeiros e físicos disponíveis.

Outrossim, observa-se que ao tempo do profissional iniciante empregado no procedimento terá incluso nele o tempo de orientação e auxílio do profissional experiente. E isso se faz notar ao comparar os tempos dos procedimentos cirúrgicos quando realizados por um ou por outro profissional, os quais serão diferentes, principalmente em se tratando de um Hospital Escola.

Intrínseco à sobrevivência de um hospital em geral é o custo hospitalar que deve ser equalizado não só quanto se pode gastar, mas o quanto de benefício é propiciado por um gasto, ou seja, quantos pacientes poderão se beneficiar futuramente com relação àquele gasto. Um dos desafios para manutenção da qualidade são os recursos disponíveis
para a prestação de serviços. Manter o equilíbrio na relação custos e benefícios tendo como
referência a ética, talvez seja o maior desafio da qualidade. (Bittar, 2001)

Resulta que a utilização eficaz e eficiente dos recursos deve ser perseguida pelo
gestor hospitalar sob pena do Hospital não conseguir acompanhar os avanços na medicina.
Necessidade e demanda dão início ao planejamento propriamente dito. Fatores como a
condição de saúde, políticas, cultura, ética, legitimação de atos e ações fazem com que a
execução do planejamento chegue ao sucesso ou insucesso, ensejando que os mesmos
tenham lugar de destaque na proposição de valores e ações. Programas de garantia de
qualidade precisam ir além da rotina de sistemas estabelecidos; os métodos
epidemiológicos auxiliarão alcançar a meta desejada, a melhoria contínua da produção de
serviços e satisfação do usuário. (Bittar, 2005).

Akerman (1995), citando Grannemann (1991), lembra que a qualidade do
cuidado oferecido depende mais da forma de organização do serviço do que da lista de
prioridades definida para um determinado serviço; e citando Kaluzny et al. (1992), relata
que há um outro fator a ser pensando, que é uma mudança cultural na direção do serviço de
saúde que a sociedade deseja e está preparada para financiar. A metodologia considerada
apropriada – levando-se em conta o arcabouço conceitual definido e as características
técnicas, culturais e de custos – poderá servir de base para o desenho de um protocolo geral
para a determinação de prioridades na alocação de recursos para a assistência à saúde.

Portanto, tem-se que a ética médica, a bioética, ao lado dos fatores citados
como a educação permanente dos profissionais, o uso de uma tecnologia que garanta um
maior número de pacientes dela podendo fazer uso, com técnicas menos invasivas, com
menos riscos de complicações, com melhor produtividade e qualidade dos procedimentos
sem desperdício de tempo, materiais hospitalares, equipamentos, método, medição,
medicamentos, recursos humanos, é que proporcionará uma eficiente relação custo-
benefício.

O HC/UNICAMP apresenta como dentre as maiores causas de internação as
doenças cardiovasculares, em faixas etárias mais elevadas, e espelha essa tendência que o
Censo 2000 – IBGE identifica como transição demográfica. Mortes por doenças cardiovasculares estão entre as maiores causas, indicando que deverão existir não só por parte do governo, bem como pelas instituições de saúde, ações voltadas a reduzir a causa do número de óbitos, tais como controle da hipertensão, ao tabagismo, controle do estresse, redução no tempo na fila de espera por operações cardíacas, etc. Daí a importância em se trabalhar com métodos que venham a garantir não só a melhoria e qualidade do atendimento ao paciente, também a incorporação de metodologias estatísticas e instrumentos de gestão da qualidade, que apóiem um eficiente e eficaz gerenciamento do “tempo da presença do doente na sala de operação”, da própria sala de operação, do agendamento por novas operações e consequentemente na otimização da fila de espera tanto “interna”, gerada pela suspensão ou atraso nas operações, como na fila de espera externa.

Justifica-se o uso dessa metodologia pela importância que assume a medição dos tempos dos procedimentos cirúrgicos cardíacos. Tempos este que auxiliarão na tomada de decisões pela equipe de cirurgiões, para escolha da nova operação e agendamento da mesma, para administração da própria sala de operação pelo Centro Cirúrgico, quando se reverterá em previsão de novas operações. Para isso se construirá uma “matriz de relação”, de otimização do tempo do doente na sala de operação. Dessa forma, com esta ferramenta de “gestão da qualidade”, abre-se a possibilidade de trabalhar como a sobra dos tempos das operações anteriores e fazer previsão ou planejamento de novas operações dentro de um tempo máximo disponível para operações estabelecido pelo Centro Cirúrgico, com repercussão na fila externa de pacientes candidatos às operações.

Até o presente momento desconhece-se a aplicação dessa metodologia análise de sobrevivência aplicada ao tempo do procedimento cirúrgico: tempo exato e real da operação e tempo da presença do doente na sala de operação. E mais, com o uso desta metodologia tradicional, com os resultados obtidos, torná-la um instrumento de “gestão da qualidade”.

Esse trabalho desenvolve-se nas seguintes partes: A Introdução, na qual destaca a Universidade, como uma fonte de criação permanente, sistematização e difusão
do conhecimento científico e tecnológico. A ciência estatística, com aplicação de seus métodos, se torna instrumento de gestão da qualidade; o Hospital Escola é o local onde o ensino e aprendizado se faz presente nas diversas ações, que buscam a solução para o agravo da saúde dos pacientes, no emprego de técnicas cirúrgicas avançadas, cuidados, assistência ao paciente entre outros, no qual a especialidade da Cirurgia Cardíaca/HC/UNICAMP se faz presente na realização das operações. O **Objetivo**, a identificação do método estatístico para análise dos tempos, que melhor expresse os tempos dos procedimentos cirúrgicos, que será alcançado através da exposição deste a ser apresentado na parte relativa a **Material e Método**, está subdividido formalmente, em uma seção relativa ao **Procedimento Estatístico**, com a finalidade de identificação da metodologia de análise de sobrevivência aplicada aos tempos em estudo e tornando-a um instrumento de gestão da qualidade quando da construção da “matriz de relação”. Os **Resultados** estão expostos através de Quadros e Tabelas, contendo indicadores de produção, indicadores de produtividade e qualidade, indicador de processo, indicador de cancelamento de operações/desperdício com relação às operações suspensas, indicadores relativos ao desempenho da Cirurgia Cardíaca. Apresenta a variável tempo, com os diversos tempos que envolvem o processo de uma operação, e principalmente os relativos ao tempo exato e real da operação e ao tempo da presença do doente na sala de operação para o conjunto das operações em geral e para os tipos de operações cardíacas, quais sejam, aneurisma da aorta, cardiopatia congênita, cardiopatia isquêmica, valvares e outros procedimentos cardíacos (pericardiectomia e desbridamento cirúrgico), e finalmente ao tornar este método como instrumento de gestão da qualidade, constrói-se a “matriz de relação” de otimização do tempo do doente na sala de operação, com 10 possibilidades de realização de novas operações, com as sobras do tempo das operações anteriores, possibilitando a previsão de novas operações, na perspectiva de redução da fila de espera dos pacientes por operações. Na **Discussão** os resultados, apresentados pela análise de sobrevivência e os indicadores encontrados são colocados dentro de um quadro conceitual gerencial, como uma proposta metodológica ao incorporar a metodologia adotada, análise de sobrevivência aplicada aos tempos das operações, relacionando-a, como o a metodologia ou **Diagrama de Pareto** aplicado às operações suspensas. Essas metodologias são
colocadas conjuntamente, dentro de um Diagrama de “causa e efeito” de Ishikawa, também instrumento de “gestão da qualidade”, no que se refere à Medição, expõem-se os indicadores encontrados e faz-se a interlocução com a literatura utilizada. Finalmente, na Conclusão são colocados os pontos principais relativos aos tempos do paciente na sala de operação, enfatizando a importância da criação da “matriz de relação”. Contém também uma seção de Anexos, com gráficos, tabelas, quadros e dados, para uma melhor compreensão da análise realizada com os resultados obtidos nesse trabalho.
OBJETIVO
Identificar um método estatístico que expresse o tempo da presença do doente na sala de operação e construir a matriz de relação de otimização deste tempo, o tempo exato e real da operação.
MATERIAL E MÉTODO
Foi aplicada a metodologia de análise de sobrevivência, o estimador não paramétrico de Kaplan-Meier, segundo Kaplan & Meier (1958) e Colosimo & Giolo (2006), que tem por objetivo identificar fatores que podem influenciar o tempo de processamento das operações. O tempo em que ocorre o evento de interesse é especificado pela sua “função de sobrevivência” ou “função de risco”. O procedimento inicial é encontrar uma estimativa para a função de sobrevivência e, a partir dela estimar as estatísticas de interesse que usualmente são o tempo médio ou mediano. A técnica mais conhecida para este propósito é o estimador não paramétrico de Kaplan-Meier para a função de sobrevivência, também chamado de estimador limite-produto. O estimador limite-produto é uma adaptação da função de sobrevivência empírica que, na ausência de censuras, é definido neste estudo como:

$$\hat{S}(t) = \frac{\text{número de operações que se encerraram até o tempo } t}{\text{número total de operações no estudo}}$$

$$\hat{S}(t)$$ é uma função escada com degraus nos tempos observados das operações não encerradas de tamanho 1/n, em que n é o tamanho da amostra. Se existirem empates em um certo tempo t, o tamanho do degrau fica multiplicado pelo número de empates.

O estimador de Kaplan-Meier, na sua construção, considera tantos intervalos de tempo quanto forem o “número de falhas distintas”. Neste estudo identifica-se “falhas” como a quantidade de operações que não foram encerradas ou finalizadas. Os limites dos intervalos de tempo são os tempos de não encerramentos das operações na amostra.

Assim, sucessivamente, para qualquer t, S(t) pode ser escrito em termos de probabilidades condicionais. Suponha que existam n pacientes no estudo e k(≤ n) não encerramentos das operações distintos nos tempos \(t_1 < t_2 << ... t_k \). Considerando S(t) uma função discreta com probabilidade maior que zero somente nos tempos de não encerramento da operação (tempo este considerado de “falha”) \(t_j \), j=1, ... k tem-se que:

$$S(t_j) = (1-q_1)(1-q_2)...(1-q_j),$$
em que \(q_j \) é a probabilidade de uma operação não se encerrar, neste estudo, no intervalo \([t_{j-1}, t_j)\) sabendo que a operação não se encerrou ou procedimento cirúrgico não se encerrou até \(t_{j-1} \) e considerando \(t_0 = 0 \). Ou seja, pode-se escrever \(q_j \) como:

\[
q_j = P \left(T \in [t_{j-1}, t_j) \mid T \geq t_{j-1} \right)
\]

Desta forma, a expressão geral de \(S(t) \) é escrita em termos de probabilidades condicionais. O estimador de Kaplan-Meier se reduz, então a estimar \(q_j \) que, adaptado é dado por:

\[
\hat{q}_j = \frac{\text{número de não encerramentos das operações em } t_j}{\text{número de operações sob risco em } t_{j-1}}
\]

A expressão geral do estimador de Kaplan-Meier pode ser apresentada após estas considerações preliminares.

Formalmente, considera-se:

\[
t_1 < t_2 < \ldots < t_k \quad \text{os } k \text{ tempos distintos e ordenados pela ocorrência do evento de interesse (tempo de não encerramento das operações)}
\]

\[
d_j \quad \text{número de não encerramentos das operações em } t_j, \ j = 1, \ldots, k \text{ e}
\]

\[
n_j \quad \text{número de operações que se encerraram sob risco em } t_j, \text{ ou seja, número de operações que se encerraram e não foram censurados até o instante imediatamente anterior a } t_j.
\]

O estimador de Kaplan-Meier é, então, definido como:

\[
\hat{S}(t) = \prod_{j:t_{j-1}} \left(\frac{n_j - d_j}{n_j} \right) = \prod_{j:t_{j-1}} \left(1 - \frac{d_j}{n_j} \right)
\]
PROCEDIMENTO ESTATÍSTICO

Algumas estatísticas são utilizadas como a média, o tempo o mínimo e o máximo das operações, o intervalo de confiança de 95% para o limite inferior e superior, para os Tempos do Processo das Operações em um Centro Cirúrgico (Anexo 1, pág. 129), o qual descreve todos os tempos envolvidos na operação, desde a entrada e saída do doente na sala de preparo, entrada e saída da sala de operação, e saída do paciente da sala de operação para a UTI, observando que os pacientes da Cirurgia Cardíaca são encaminhados diretamente para a UTI.

A análise de sobrevivência aplicada a este estudo refere-se ao tempo em que a operação não se encerrou ou não finalizou, variável esta dependente, sendo utilizada para os tempos real e exato da operação e para o tempo da presença do doente na sala de operação ou o tempo em que o procedimento cirúrgico não se encerrou. Este tempo passa a ser contado desde o momento da entrada na sala de operação, que é o “tempo de entrada na sala de operação” até o “tempo de saída na sala de operação”, para o tempo T8 – tempo da presença do doente na sala de operação (ou tempo do procedimento cirúrgico), e, para o tempo em que a operação não se encerrou, aplicado aos tempos real e exato da operação, considerou-se o “tempo de entrada na sala de operação” até “tempo final da indução anestésica”, para o tempo T6 – tempo real da operação, e “tempo de entrada na sala de operação” até o tempo final de (degermação + assepsia + colocação de campos), para o tempo T7 – tempo exato da operação.

Com essa metodologia, são analisados as variáveis de interesse neste estudo e que se constituem nos principais tempos da operação, descritos abaixo:

- T6 = tempo final da operação – tempo de indução anestésica = tempo real da operação.

- T7 = tempo final da operação – tempo de (degermação + assepsia + colocação de campos) = tempo exato da operação.
- T8 = tempo de alta da sala de operação – tempo de entrada na sala de operação = tempo da presença do doente na sala de operação ou tempo do procedimento cirúrgico.

Com os resultados obtidos pela análise de sobrevivência aplicada ao tempo T8, constrói-se a “matriz de relação” de otimização da presença do doente na sala de operação com suas respectivas hipóteses/cenários, da hipótese H1 à hipótese H10, com a finalidade de se fazer uma previsão de novas operações, utilizando para isso a sobra do tempo médio da operação anterior, através da diferença entre o tempo máximo disponível, de acordo com a hipótese adotada que conterá a regra estabelecida para a realização da nova operação, com o tempo T8, para o tempo médio das operações em geral e dos tempos médios por tipo de operação, com a ressalva que a nova operação tem a possibilidade de poder exceder o tempo em até 90 minutos.

Para a criação da “matriz de relação” de otimização do tempo do doente na sala de operação, metodologia de gestão da qualidade, teve como referência Moura (1994), Aranha (2001) e Aranha & Vieira (2004).

A “matriz de relação” permite identificar não apenas a presença, mas também a intensidade das relações entre os fatores analisados. Esta ferramenta é bastante flexível, permitindo-se adaptações criativas. Ela é construída por meio da criação de uma matriz, “tipo L”, uma matriz básica e de ampla aplicação, a qual permite relacionar dois conjuntos de fatores, nas linhas verticais e horizontais. (Moura, 1994). Neste estudo a “matriz de relação” de otimização do tempo da presença do doente na sala de operação, tempo T8, tem na sua construção a incorporação do “diagrama de árvores”, contendo tempos probabilísticos advindos da “curva de sobrevivência”. Nesta matriz são incorporadas várias hipóteses ou cenários possíveis de realização de novas operações, e tem como um produto a previsão de novas operações de acordo com as hipóteses adotadas, permitindo um melhor agendamento de novas operações eletivas.

Para esse estudo de análise dos tempos das operações cardíacas, os procedimentos foram classificados, conforme o QUADRO 1 abaixo:
Identificou-se a grade da sala de operação, uma sala, da Cirurgia Cardíaca, para a quantificação da capacidade máxima de operações desta sala, em dois períodos diários, manhã e tarde, de 360 minutos cada, de segunda-feira à sexta-feira, num total de 720 minutos disponíveis.

A amostra aleatória simples para estimar a curva de sobrevivência ao nível de confiança de 95%, constituiu-se de 71 pacientes submetidos à operações cardíacas, de janeiro – dezembro/2008. As respectivas análises de sobrevivência foram feitas para as 8 operações de aneurisma da aorta, 6 operações de cardiopatia isquêmica, 6 operações de cardiopatia congênita, 2 operações de outros procedimentos (pericardiectomia e

NOME	CÓDIGOS
AMPLIAÇÃO DE VIA DE SAÍDA DO VENTRICULO DIREITO E/OU RAMOS PULMONARES	2
AORTICA - TROCA PROTESE BIOLOGICA	1
AORTICA - TROCA PROTESE MECANICA	1
CORREÇÃO DE DUPLA VIA SAÍDA VENTRICULO DIREITO	1
CORREÇÃO DRENAGEM ANOMALA TOTAL DAS VEIAS PULMONARES	2
DESBRIDAMENTO CIRÚRGICO	5
FECHAMENTO DE COMUNICACAO INTERATRIAL	2
IMPLANTE DE PROTESE VALVAR	1
IMPLANTE DE PROTESE VALVAR INTERNADO(VALVOPLASTIA)	1
MITRAL – TROCA PROTESE BIOLOGICA	1
MITRAL – TROCA PROTESE MECANICA	1
PERICARDIECTOMIA	5
RECONSTRUÇÃO RAIZ AORTA TUBO VALVULADO	4
REVASCULARIZAÇÃO MIOCARDIO C/ USO DE CIRCULAÇÃO EXTRACORPOREO	3
TROCA DA AORTA ASCENDENTE	4
TROCA DE AORTA DESCENDENTE	4
TROCA VALVAR COM REVASCULARIZAÇÃO DO MIOCARDIO	3

Nota: Códigos: 1) Valvares - 2) Cardiopatia Congênita - 3) Cardiopatia Isquêmica – 4) Aneurisma da Aorta – 5) Outros procedimentos: Pericardiectomia e Desbridamento Cirúrgico. Nota 2: Os procedimentos áorticos não apareceram na amostra.
desbridamento cirúrgico), e 49 operações de valvares. Amostra esta que teve os tempos classificados no fluxo do processo das operações, também reavaliados junto ao prontuário médico do paciente.

Para apresentação dos resultados relativos às operações suspensas, do ano de 2008, fez-se uso do Diagrama de Pareto, instrumento de gestão da qualidade, que se aplica aos problemas de qualidade nos processos, tendo como referências Kume (1993), Aranha (2001) e Aranha & Vieira (2004).

As ferramentas da qualidade são técnicas que são utilizadas com a finalidade de definir, mensurar, analisar e propor soluções para os problemas que interferem no bom desempenho dos processos de trabalho. Malik & Schiesari (1998).

No Diagrama de Pareto, os eventos indesejáveis ou custos ligados a qualidade, produtividade, etc. são estratificados de acordo com suas causas/manifestações e plotados em gráficos verticais em ordem de importância. Ele auxilia a dirigir a atenção e esforços para problemas verdadeiramente importantes, além de que permite priorizar a causa ou problema mais crítico. Ele é conhecido como a regra “80/20” de Pareto, na qual os problemas “muitos, mas triviais” são separados dos “poucos, mas vitais”.

Esse diagrama é utilizado na fase do Planejamento (P), que é uma das fases do ciclo PDCA, uma outra ferramenta da qualidade, onde P significa Plan/Planejamento, D, Do/Fazer, C, Check/Verificar e A, Action/Consolidar. O ciclo PDCA é uma proposta de abordagem organizada para qualquer tipo de problema, podendo assim, orientar de maneira eficaz/eficiente a preparação e a execução de atividades planejadas para a solução de um problema. (Malik & Schiesari, 1998).

Ao se fazer uso destes instrumentos da qualidade conjuntamente, aplicando-os ao indicador de processo - motivos de operações suspensas por fatores hospitalares extrapacientes, segundo Duarte & Ferreira (2006), ou ao indicador de cancelamento de operações/indicador do custo da qualidade: desperdício de operações, segundo Perroca et al (2007), Aranha (2001) e Aranha & Vieira (2004), eles auxiliarão, no planejamento e agendamento de novas operações, no caso da Cirurgia Cardíaca, e consequentemente, na
redução do tempo na fila de espera dos pacientes por operações, seja a fila “interna”, ocasionada pela suspensão ou atraso ou a externa.

Para auxílio à **Discussão**, se construiu um quadro conceitual, dinâmico, como uma proposta metodológica, no qual utilizou as metodologias, análise de sobrevivência aplicada aos tempos dos pacientes, tempo real e exato das operações, tempo do presença do doente na sala de operação e o Diagrama de Pareto, aplicado às operações suspensas, possibilitando que estas metodologias se relacionem entre si e ao mesmo tempo dialoguem com a literatura de referência, de tal forma, que se possa construir os indicadores de cada metodologia, no atendimento do objetivo proposto por este estudo.

Com as informações relativas aos tempos, em geral e por tipos, gerados por meio da análise de sobrevivência aplicada, a qual se torna um instrumento da qualidade, se constrói a “**matriz de relação**” de otimização do tempo do doente na sala de operação, possibilitando-se fazer uma previsão de novas operações com o tempo probabilístico que sobra das operações anteriores. Esta ferramenta ou instrumento da qualidade, “**matriz de relação**”, permite identificar não apenas a presença, mas também a intensidade das relações entre os fatores analisados, além de que é bastante flexível, permitindo-se segundo Moura (1994), adaptações criativas.

A “**matriz de relação**” encerra em si, neste estudo, portanto, uma “**árvore de possibilidades**”, contendo os tempos gerados pela curva de sobrevivência, de acordo com as hipóteses adotadas, interrelacionando as informações das linhas e colunas.

O **Diagrama de Pareto** aplicado ao **indicador de processo, indicador de cancelamento de operações** possibilita o conhecimento real dos motivos de suspensão das operações que interferem gerencialmente na fila de espera tanto “interna” quanto externa por operações, impossibilitando a realização de novas operações que são possíveis mediante a própria construção da “**matriz de relação**”.

Dentro deste contexto de construção do conhecimento científico e tecnológico na área da saúde, Aranha & Vieira (2007), de identificação de um método estatístico como instrumento da qualidade, se fará uso de uma outra ferramenta da qualidade, os **6 M’s ou**
Diagrama de Ishikawa, que é um diagrama que mostra a relação entre uma característica de qualidade (efeito) e os fatores que a influenciam (causas), nos fatores considerados tradicionais: Mãos de Obra, Material, Máquinas/Equipamentos, Medição, Métodos, Meio Ambiente; sendo que para a construção do quadro conceitual, como proposta metodológica, se fará uso do fator Medição, no item relativo à Discussão.

O Diagrama de Ishikawa é também conhecido como “espinha de peixe” e serve para identificar, explorar, ressaltar, mapear fatores que se julga estar afetando um problema. Um exemplo, segundo Malik & Shiesari (1998), de diagrama sobre as possíveis causas do atraso entre uma operação e outra, podem ser: Pessoal, Políticas, Processo e Planta.

Outrossim, observa-se que os instrumentos da qualidade utilizados neste estudo atuam todos na fase do Planejamento do ciclo PDCA.
RESULTADOS
RESULTADOS

Os resultados apresentados em quadros e tabelas contém uma estatística descritiva, e uma aplicação da análise de sobrevivência, utilizando o estimador de Kaplan-Meier nos tempos do procedimento cirúrgico, apresentando-os por meio de tabelas e gráficos de tal forma que se complementem descrição e análise dos dados.

Primeiramente apresenta-se um quadro com o indicador de produção – operações da Cirurgia Cardíaca durante o ano de 2008, para que se possa ter uma visão geral das operações eletivas realizadas e suspensas, através da média, do mínimo e do máximo de operações eletivas realizadas e suspensas e o limite inferior e superior de confiança para a média; para a seguir apresentar um quadro com as operações realizadas e suspensas contendo o total, a média mensal e o percentual das operações realizadas e suspensas; um quadro com os motivos de operações suspensas, disponibilizados em um Diagrama de Pareto, contendo o indicador de processo - motivos de operações suspensas, um indicador de cancelamento das operações como um todo/um indicador do custo da qualidade: desperdício de operações; uma tabela com o indicador de estrutura – capacidade operacional (leitos), a quantidade de leitos operacionais da Cirurgia Cardíaca para a hospitalização em dias dos pacientes internados, os indicadores de produção, produtividade e qualidade, a média de permanência dos pacientes internados e a porcentagem de ocupação dos leitos. Esses indicadores compõem o quadro de indicadores de desempenho.

A seguir apresenta-se os indicadores dos procedimentos cirúrgicos relativos aos perfis dos tempos médios em minutos das operações, calculados através da análise de sobrevivência aplicada, para os tempos real e exato da operação e o tempo da presença do doente na sala de operação, a média desses tempos, desvios-padrões, o mínimo e máximo desses tempos, o limite inferior e superior de 95% de confiança para a média; observando que os cálculos foram feitos para as operações em geral e para cada tipo de operação cardíaca; gráficos e quadros textos para as operações em geral, em conjunto, e por tipos de operações e suas respectivas considerações.
Finalmente, uma análise propriamente dita com os resultados dos tempos obtidos pela análise de sobrevivência, aplicada à amostra de 71 pacientes advindos das operações eletivas realizadas no ano de 2008, composta de três quadros: um com os tempos que sobram da operação anterior e tempos que excedem na realização da nova operação, outro com a criação da “matriz de relação” de otimização dos tempos do doente na sala de operação, contendo as 10 hipóteses/cenários possíveis de realização de novas operações, para finalmente em novo quadro, apresentar uma visão diferenciada da “matriz de relação”, e prever-se as novas operações juntamente com as hipóteses prováveis.

A. Produção do ano de 2008 e respectivos indicadores

- Indicador de Produção – Operações da Cirurgia Cardíaca durante o ano de 2008, Operações Eletivas e Suspensas Realizadas, especificada no Quadro 2, o qual contém a as operações realizadas de janeiro à dezembro de 2008, o mínimo e o máximo de operações encontradas durante este ano de 2008.

QUADRO 2 - Operações Eletivas e Suspensas Realizadas

Operações	Total	Mínimo Operações	Máximo Operações
Eletivas	365	20	37
Suspensas	236	12	29

A TABELA 1, sob outra visão que a apresentada no quadro anterior, apresenta os indicador de operações agendadas no ano de 2008, separadas em operações eletivas, subdivididas em adultas e infantis, e operações suspensas, o indicador de cancelamento de operações com os motivos de operações suspensas, nas mais relevantes causas, subdivididas em motivos hospitalares extrapacientes (administrativos) e os relativos aos pacientes, a média mensal das operações agendadas, eletivas (adultos e infantis) e suspensas, o percentual das operações em relação ao total, para cada item especificado anteriormente, e uma previsão de quantas operações poderiam ser realizadas se não
houvesse estes motivos hospitalares extra-pacientes - indicador de processo, e o indicador de cancelamento de operações/indicador do custo da qualidade – desperdícios de operações.

TABELA 1 - Operações Realizadas e Suspensas – Cirurgia Cardíaca

Ano – 2008	Operações	Total	Média Mensal de Operações	Percentual de Operações
Agendadas	601	50	100%	
• Eletivas	365	30	61%	
- Adultos	291	24	80%	
- Infantil	74	6	20%	
• Suspensas:	236	20	39%	
- Motivos Hospitalares Extra Pacientes	190	16	81%	
- Horário Cirúrgico Insuficiente	92	8	48%	
- Leito não Disponível na UTI	70	6	37%	
- Outros motivos administrativos	28	2	15%	
• Motivos Pacientes	46	4	19%	
Previsão para operações	481	40	-	

Fonte: Centro Cirúrgico e Censo Hospitalar/HC/UNICAMP - - Nota: As operações eletivas foram realizadas em 203 dias e as operações infantis em 72 dias. As de urgência/emergência em 181 dias.

A TABELA 2 apresenta o Indicador de Processo - Motivos de Operações Suspensas, com todos os motivos de suspensão, resumido na TABELA 1, apresentando os dados dentro de um Diagrama de Pareto, na qual as causas dos motivos de suspensão de operações ficam expressas como na relação de Pareto “80/20”, em que as causas “poucas e vitais” e “as muitas, mas triviais”, mostram os diferentes problemas de qualidade que aparecem sob a forma de perdas de operações devido à suspensão das mesmas.
TABELA 2 - Operações Suspensas - Cirurgia Cardíaca – ano - 2008

Motivos de Suspensão	Tipos	Total (freqüência)	Total Acumulados	Porcentagem (freqüência)	Porcentagem Acumulados
Horário Cirúrgico Insuficiente	A	92	92	39,0%	39%
Leito não disponível na UTI	A	70	162	29,7%	69%
Cirurgia já ocorreu	A	12	174	5,1%	74%
Leito Hospitalar não disponível	A	5	179	2,1%	76%
Falta de Leito na UTI Pediátrica	A	3	182	1,3%	77%
Falta de sangue	A	2	184	0,8%	78%
Segundo/Terceiro na lista de espera	A	2	186	0,8%	79%
Falta de prontuário	A	2	188	0,8%	80%
Falta material médico específico	A	1	189	0,4%	80%
Falta de anestesista	A	1	190	0,4%	81%
Total de A		190			
Paciente s/ condições clínicas	P	27	27	11%	11%
Paciente não Internou/Compareceu	P	10	37	4%	16%
Contra indicação Cirúrgica	P	6	43	3%	18%
Contra Indicação Anestésica	P	1	44	0%	19%
Paciente aguarda Exames	P	1	45	0%	19%
Alta do Paciente	P	1	46	0%	19%
Total de P		46			

TOTAL GERAL .. 236 100%

Fonte: Centro Cirúrgico/HC/UNICAMP Nota: A: Administrativo/Hospitalares Extra-Pacientes - P: Paciente

A TABELA 3 apresenta para o ano de 2008, os indicadores de estrutura, produção e produtividade e qualidade da hospitalização da cirúrgica cardíaca, e são o número de internações realizadas, os leitos existentes, à média de permanência em dias dos pacientes internados e à taxa de ocupação hospitalar dos leitos durante o ano de 2008.
B. Análise de sobrevivência aplicada aos tempos do procedimento

Neste item consta de uma descritiva dos tempos médios (minutos) obtidos pela análise de sobrevivência aplicada, segundo Kaplan-Meier, para a amostra de 71 pacientes submetidos à operações, durante o ano de 2008. Foram calculadas para as operações em geral (como um todo) e para os tipos de operações cardíacas que expressas no Quadro 3 e Quadro 4, o qual contém a média dos tempos (minutos), desvio-padrão e limite inferior e superior de 95% de confiança para a média, dos principais tempos em estudo, para o tempo T6, tempo real da operação, o tempo T7, tempo exato da operação e o tempo T8, tempo da presença do doente na sala de operação, identificados no ANEXO 1 - Tempos do Processo das Operações, pág. 129, em um Centro Cirúrgico.

QUADRO 3 - Estatística dos Tempos T6, T7 e T8 em Geral em minutos.

Tempos Operações em Geral	Média	Desvio Padrão	Mínimo	Máximo	Limite Inferior de 95% de Confiança para a Média	Limite Superior de 95% de Confiança para a Média
T6	297.69	74.61	35.00	485.00	280.03	315.35
T7	271.28	71.45	25.00	420.00	254.37	288.19
T8	342.34	78.48	65.00	520.00	323.76	360.91

Nota: - T6 - tempo real da operação (tempo final da operação – tempo de indução anestésica), T7 - tempo exato da operação (tempo final da operação – tempo de degermação + assepsia + colocação de campos operatórios) e T8 - tempo da presença do doente na sala de operação (tempo de saída da sala de operação – tempo de entrada na sala de operação).
Assim tem-se:
- Tempo T6, tempo real da operação, em média no geral foi de 298 minutos.
- Tempo T7, tempo exato da operação, em média no geral foi de 271 minutos.
- Tempo T8, tempo da presença do doente na sala de operação, em média no geral foi de 342 minutos.

QUADRO 4 - Estatística dos Tempos T6, T7 e T8 por Tipo de Procedimento Cirúrgico Cardíaco em minutos.

Tipos de Operações Cardíacas	N Obs	Variáveis	Média	Desvio Padrão	Mínimo	Máximo	Limite Inferior de 95% de Confiância para a Média	Limite Superior de 95% de Confiância para a Média
Aneurisma	8	T6	372.50	73.97	270.00	485.00	310.66	434.34
		T7	333.00	58.21	255.00	420.00	284.34	381.66
		T8	428.75	72.79	315.00	520.00	367.90	489.60
Cardiopatia Isquêmica	6	T6	288.33	90.76	150.00	400.00	193.09	383.58
		T7	258.17	97.91	100.00	377.00	155.42	360.92
		T8	334.50	81.68	215.00	420.00	248.78	420.22
Outros	2	T6	220.00	42.43	190.00	250.00	-161.19	601.19
		T7	196.00	41.01	167.00	225.00	-172.48	564.48
		T8	267.50	60.10	225.00	310.00	-272.51	807.51
Cardiopatia Congenita	6	T6	246.67	40.58	195.00	285.00	204.08	289.25
		T7	223.00	40.23	172.00	262.00	180.78	265.22
		T8	292.33	46.01	235.00	355.00	244.05	340.61
Valvares	49	T6	296.04	68.77	35.00	408.00	276.29	315.79
		T7	271.80	67.56	25.00	385.00	252.39	291.20
		T8	338.37	73.51	65.00	460.00	317.25	359.48

Notas: (1) Na amostra não apareceu nenhum procedimento aórtico (2) NOb: número de observações.

C. Análise dos tempos T6, T7 e T8 e “matriz de relação” de otimização dos tempos do doente na sala de operação relativo ao tempo T8.

Preliminarmente apresenta-se uma estatística descritiva dos tempos e curva da função de sobrevivência para os tempos T6, T7, T8, no geral e em particular por tipo de operação cardíaca, aplicados na amostra aleatória simples para estimar a curva de sobrevivência ao nível de confiança de 95%, constituindo-se de 71 pacientes submetidos à operações cardíacas, de janeiro – dezembro/2008, contendo o evento de interesse que é o tempo médio (minutos) de não encerramento das operações/não finalização das operações até determinado tempo e o tempo médio (minutos) de operações encerradas/finalizadas das operações:
- T6 = tempo final da operação – tempo de indução anestésica = tempo real da operação.

- T7 = tempo final da operação – tempo de (degermação + assepsia + colocação de campos) = tempo exato da operação.

- T8 = tempo de alta da sala de operação – tempo de entrada na sala de operação = tempo da presença do doente na sala de operação.

A seguir apresenta-se a descrição dos tempos, das curvas da função de sobrevivência com seus respectivos gráficos e se referirão ao tempo que a operação não se encerrou ou não encerramento do procedimento cirúrgico, do tempo T6, tempo real da operação, tempo T7, tempo exato da operação e tempo T8, tempo da presença do doente na sala de operação, em geral e por tipo de operação.

C.1 Estatística Descritiva dos Tempos

GERAL

Os tempos T6, T7 e T8 referem-se aos tempos em média (minutos) em geral, como um todo, das operações cardíacas, sem distinguir os diferentes tipos de operações cardíacas. A amostra aleatória simples para estimar a curva de sobrevivência ao nível de confiança de 95%, constituiu-se de 71 pacientes submetidos à operações cardíacas, de janeiro – dezembro/2008. Apresenta-se o perfil dos tempos real (T6) e exato (T7) das operações e tempo da presença do doente na sala de operação (T8); com os respectivos valores dos tempos médios (minutos) de não encerramento ou finalização em até aproximadamente 50% das operações, e o tempo máximo em que todas operações foram encerradas ou finalizadas.
- Tempo T6 – tempo real da operação em minutos

T6: Até o tempo de 290 minutos, aproximadamente 49% das operações em geral não tiveram seu tempo T6 finalizado, e assim até o tempo de 485 minutos em média todas as operações em geral tiveram seu tempo T6 finalizado.

Figura 1 A – Sobrevivência Geral – tempo 6: T6 – Tempo Real da Operação

- Tempo T7 – tempo exato da operação em minutos

T7: Até o tempo de 265 minutos aproximadamente 51% das operações em geral não tiveram seu tempo T7 finalizado, e assim até o tempo de 420 minutos em média todas as operações em geral tiveram seu tempo T7 finalizado.

Figura 1 B – Sobrevivência Geral – tempo 7: T7 – Tempo Exato da Operação
- Tempo T8 – tempo da presença do doente na sala de operação em minutos

Figura 1 C – Sobrevivência Geral – tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

T8: Até o tempo de 340 minutos aproximadamente 51% das operações em geral não tiveram seu tempo T8 finalizado, e assim até o tempo de 520 minutos em média todas as operações em geral tiveram seu tempo T8 finalizado.
TEMPOS POR TIPOS DE OPERAÇÕES CARDÍACAS

Os tempos T6, T7 e T8 referem-se aos tempos em média (minutos) por tipos de operações cardíacas. A amostra aleatória simples para estimar a curva de sobrevivência no nível de confiança de 95%, constituíu-se de 71 pacientes submetidos à operações cardíacas, de janeiro – dezembro/2008. A quantidade de operações por tipos de operações cardíacas, foram de 8 operações de aneurisma da aorta, 6 operações de cardiopatia isquêmica, 6 operações de cardiopatia congênita, 49 operações valvares e 2 operações outros procedimentos (pericardiectomia e desbridamento cirúrgico). Apresenta-se o perfil dos tempos real (T6) e exato (T7) das operações e tempo da presença do doente na sala de operação (T8); com os respectivos valores dos tempos médios (minutos) de não encerramento ou finalização em até aproximadamente 50% das operações, e o tempo máximo em que todas operações foram ou encerradas finalizadas.

ANEURISMA DA AORTA

Na amostra de 71 pacientes, no nível de confiança de 95% para estimar a curva de sobrevivência, encontrou-se 8 operações de aneurisma da aorta, sendo abaixo apresentado o perfil deste tipo de operação, bem como os valores respectivos do tempo médio (minutos) da não finalização de aproximadamente até 50% das operações e finalização em média (minutos) das operações de aneurisma da aorta, que tiveram o seu tempo encerrado, ou seja, todas as operações de aneurisma da aorta foram encerradas ou finalizadas. Os cálculos foram feitos para os tempos real e exato da operação e o tempo da presença do doente na sala de operação.
Resultados

- **Tempo T6 – tempo real da operação (minutos)**

 ![Tempo T6 Diagrama](image1)

 T6: Até o tempo de 350 minutos, aproximadamente 50% das operações aneurisma da aorta não tiveram seu tempo T6 finalizado, e assim até o tempo de 485 minutos em média todas operações aneurisma da aorta tiveram seu tempo T6 finalizado.

 Figura 2 A – Aneurisma da Aorta - tempo 6: T6 – Tempo Real da Operação

- **Tempo T7 – tempo exato da operação (minutos)**

 ![Tempo T7 Diagrama](image2)

 T7: Até o tempo de 320 minutos, aproximadamente 50% das operações aneurismas da aorta não tiveram seu tempo T7 finalizado, e assim até o tempo de 420 minutos em média todas operações aneurismas da aorta tiveram seu tempo T7 finalizado.

 Figura 2 B – Aneurisma da Aorta - tempo 7: T7 – Tempo Exato da Operação
- Tempo T8 – tempo da presença do doente na sala de operação (minutos)

Figura 2 C – Aneurisma da Aorta - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

CARDIOPATIA ISQUÊMICA

Na amostra de 71 pacientes, no nível de confiança de 95% para estimar a curva de sobrevivência, encontrou-se 6 operações de cardiopatia isquêmica, sendo abaixo apresentado o perfil deste tipo de operação, bem como os valores respectivos do tempo médio (minutos) da não finalização de aproximadamente até 50% das operações e finalização em média (minutos) das operações de cardiopatia isquêmica, que tiveram o seu tempo encerrado, ou seja, todas as operações de cardiopatia isquêmica foram finalizadas ou encerradas. Foram calculados para os tempos real e exato da operação e no tempo da presença do doente na sala de operação.
- Tempo T6 – tempo real da operação (minutos)

T6: Até o tempo de 275 minutos, aproximadamente 50% das operações cardiopatias isquêmicas não tiveram seu tempo T6 finalizado, e assim até o tempo de 400 minutos, em média todas as operações cardiopatias isquêmicas tiveram seu tempo T6 finalizado.

Figura 3 A – Cardiopatia Isquêmica - tempo 6: T6 – Tempo Real da Operação

- Tempo T7 – tempo exato da operação (minutos)

T7: Até o tempo de 250 minutos, aproximadamente 50% das operações cardiopatias isquêmicas não tiveram seu tempo T7 finalizado, e assim até o tempo de 377 minutos em média todas as operações cardiopatias isquêmicas tiveram seu tempo T7 finalizado.

Figura 3 B – Cardiopatia Isquêmica - tempo 7: T7 – Tempo Real da Operação
- Tempo T8 – tempo da presença do doente na sala de operação (minutos)

CARDIOPATIA CONGENITA

Na amostra de 71 pacientes, no nível de confiança de 95% para estimar a curva e sobrevivência, encontrou-se 6 operações de cardiopatia congênita, sendo abaixo apresentado o perfil deste tipo de operação, bem como os valores respectivos do tempo médio (minutos) da não finalização de aproximadamente até 50% das operações e finalização em média (minutos) das operações de cardiopatia congênita, que tiveram o seu tempo encerrado, ou seja, todas as operações de cardiopatia congênita foram encerradas ou finalizadas. Foram calculados para os tempos real e exato da operação e no tempo da presença do doente na sala de operação.

Figura 3 C – Cardiopatia Isquêmica - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

CARDIOPATIA CONGENITA

Na amostra de 71 pacientes, no nível de confiança de 95% para estimar a curva e sobrevivência, encontrou-se 6 operações de cardiopatia congênita, sendo abaixo apresentado o perfil deste tipo de operação, bem como os valores respectivos do tempo médio (minutos) da não finalização de aproximadamente até 50% das operações e finalização em média (minutos) das operações de cardiopatia congênita, que tiveram o seu tempo encerrado, ou seja, todas as operações de cardiopatia congênita foram encerradas ou finalizadas. Foram calculados para os tempos real e exato da operação e no tempo da presença do doente na sala de operação.

T8: Até o tempo de 340 minutos, aproximadamente 50% das operações cardiopatias isquêmicas não tiveram seu tempo T8 finalizado, e assim até o tempo de 420 minutos em média todas as operações cardiopatias isquêmicas tiveram seu tempo T8 finalizado.
Tempo T6 – tempo real da operação (minutos)

Figura 4 A – Cardiopatia Congênita - tempo 6: T6 – Tempo Real da Operação

T6: Até o tempo de 245 minutos, aproximadamente 50% das operações cardiopatias congênitas não tiveram seu tempo T6 finalizado, e assim até o tempo 285 minutos em média todas operações cardiopatias congênitas tiveram seu tempo T6 finalizado.

Tempo T7 – tempo exato da operação (minutos)

Figura 4 B – Cardiopatia Congênita - tempo 7: T7 – Tempo Exato da Operação

T7: Até o tempo de 222 minutos aproximadamente 50% das operações cardiopatias congênitas não tiveram seu tempo T7 finalizado, e assim até o tempo 262 minutos em média todas operações cardiopatias congênitas tiveram seu tempo T7 finalizado.
- Tempo T8 – tempo da presença do doente na sala de operação (minutos)

![Diagrama de sobrevivência](attachment:funcaocurva.png)

Função de Distribuição de Sobrevivência

Tempos: Até o tempo de 270 minutos, aproximadamente 50% das operações cardiopatias congênitas não tiveram seu tempo T6 finalizado, e assim até o tempo de 355 minutos em média todas operações cardiopatias congênitas em tiveram seu tempo T8 finalizado.

Figura 4 C – Cardiopatia Congênita - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

VALVARES

Na amostra de 71 pacientes, no nível de confiança de 95% para estimar a curva de sobrevivência, encontrou-se 49 operações de valvares, sendo abaixo apresentado o perfil deste tipo de operação, bem como os valores respectivos do tempo médio (minutos) da não finalização de aproximadamente até 50% das operações e finalização em média (minutos) das operações de valvares, que tiveram o seu tempo encerrado, ou seja, todas as operações de valvares foram encerradas ou finalizadas. Foram calculados para os tempos real e exato da operação e tempo da presença do doente na sala de operação.
- Tempo T6 – tempo real da operação (minutos)

T6: Até o tempo de 290 minutos, aproximadamente 51% das operações valvares não tiveram seu tempo T6 finalizado, e assim até o tempo de 408 minutos em média todas operações valvares tiveram seu tempo T6 finalizado.

Figura 5 A – Valvares - tempo 6: T6 – Tempo Real da Operação

- Tempo T7 – tempo exato da operação (minutos)

T7: Até o tempo de 265 minutos, aproximadamente 53% das operações valvares não tiveram seu tempo T7 finalizado, e assim até o tempo de 385 minutos em média todas operações valvares tiveram seu tempo T7 finalizado.

Figura 5 B – Valvares - tempo 7: T7 – Tempo Exato da Operação
- Tempo T8 – tempo da presença do doente na sala de operação (minutos)

Valvares

T8: Até o tempo de 340 minutos, aproximadamente 51% das operações valvares não tiveram seu tempo T8 finalizado, e assim até o tempo de 460 minutos em média todas operações valvares tiveram seu tempo T8 finalizado.

Figura 5 C – Valvares - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação
OUTROS PROCEDIMENTOS: PERICARDIECTOMIA E DESBRIDAMENTO CIRÚRGICO

Na amostra de 71 pacientes, no nível de confiança de 95% para estimar a curva de sobrevivência, encontrou-se 2 operações outros procedimentos (pericardiectomia e desbridamento cirúrgico), sendo abaixo apresentado o perfil deste tipo de operação, bem como os valores respectivos do tempo médio (minutos) da não finalização de aproximadamente até 50% das operações e finalização em média (minutos) das operações outros procedimentos que tiveram o seu tempo encerrado, ou seja, todas as operações outros procedimentos foram encerradas ou finalizadas. Foram calculados para os tempos real e exato da operação e no tempo da presença do doente na sala de operação.

- Tempo T6 – tempo real da operação (minutos)

Figura 6 A – Outros Procedimentos- tempo 6: T6 – Tempo Real da Operação

T6: Até o tempo de 190 minutos, aproximadamente 50% das operações outros procedimentos não tiveram seu tempo T6 finalizado, e assim até o tempo de 250 minutos em média todas operações outros procedimentos tiveram seu tempo T6 finalizado.
- **Tempo T7** – tempo exato da operação (minutos)

 ![Diagrama T7]

 Figura 6 B – Outros Procedimentos- tempo 7: T7 – Tempo Exato da Operação

- **Tempo T8** – tempo da presença do doente na sala de operação (minutos)

 ![Diagrama T8]

 Figura 6 C – Outros Procedimentos- tempo 8: T8– Tempo da Presença do Doente na Sala de Operação

T7: Até o tempo de 167 minutos, aproximadamente 50% das operações *outros procedimentos* não tiveram seu tempo T7 finalizado, e assim até o tempo de 225 minutos em média todas operações *outros procedimentos* tiveram seu tempo T7 finalizado.

T8: Até o tempo de 225 minutos, aproximadamente 50% das operações *outros procedimentos* não tiveram seu tempo T8 finalizado, e assim até o tempo de 310 minutos em média todas operações *outros procedimentos* tiveram seu tempo T8 finalizado.
C2. Criação da “matriz de relação” – transformação da metodologia tradicional – análise de sobrevivência aplicada em instrumento de qualidade.

São apresentados os cálculos das probabilidades das operações que se encerraram ou finalizaram, ou seja, tempo em que as operações se encerraram, finalizaram, inverso do que foi considerado o evento de interesse para o cálculo das curvas de sobrevivência. Como os tempos são probabilísticos, aplicou-se uma das definições da teoria da probabilidade, “a probabilidade de qualquer evento é igual a soma das probabilidades dos pontos a ele pertencentes” ou “a probabilidade de um evento ocorrer mais a probabilidade de seu complemento (não ocorrer) é igual a 1”, para o cálculo do tempo de encerramento do procedimento cirúrgico. Esses resultados compõem o QUADRO 5, de apoio para a criação da “matriz de relação”, segundo Moura (1994), Aranha (2001) e Aranha & Vieira (2004), com os tempos que sobram da operação anterior. Essa “matriz de relação” tem na sua estrutura a concepção de uma “árvores de possibilidades”, ou seja, prevê-se as possibilidades de novas operações ocorrerem com a sobra do tempo da operação anterior, por meio de várias hipóteses ou cenários, facilitando o planejamento da sala de operação e previsão de novas operações.

O QUADRO 5 apresenta os principais tempos máximos em geral e por especialidade para T8, T7 e T6; tempos máximos disponíveis, a diferença desses tempos com o tempo T8 e com os tempos mínimo e máximo de limpeza por tipo de operação e diferença do tempo máximo disponível com o tempo de limpeza segundo a literatura.
QUADRO 5 - Tempos Máximos na Sala de Operação (minutos) - T6: tempo real da operação – T7: tempo exato da operação – T8: tempo da presença do doente na sala de operação

Tempo Máximo (horas/minutos)	Geral	Aneurisma	Valvares	Cardiopatia Isquêmica	Cardiopatia Congênita	Outros Procedimentos
T8	520	520	460	420	355	310
T7	420	420	385	377	262	225
T6	485	485	408	400	285	250
Tempo Máximo (TMáx) Disponíveis						
TMáx (12 horas) = TMáx (720 minutos)	720	720	720	720	720	720
TMáx (11 horas) (- 1 hora limpeza) = TMáx (660 minutos)	660	660	660	660	660	660
TMáx (11 horas e 30 minutos)(considerando o tempo de limpeza da literatura) = TMáx (690 minutos)	690	690	690	690	690	690
TMáx (12 horas)-mínimo de limpeza = TMáx (720 minutos)-mínimo de limpeza=TMáx(720 minutos)-TLMín	710	695	710	695	710	670
TMáx (12 horas)-máximo de limpeza = TMáx (720 minutos)-máximo de limpeza=TMáx(720)-TLMáx	660	665	680	660	710	670
Diferença = TMáx (720 minutos) - T8 (H1 e H2)	200	200	260	300	365	410
Diferença = TMáx (660 minutos) - T8 (H3 e H4)	140	140	200	240	305	350
Diferença = TMáx (690 minutos) - T8 (H5 e H6)	170	170	230	270	335	380
Diferença = TMáx (720 minutos)-T8-TLMáx tipo (H7 e H8)	140	145	220	240	355	360
Diferença = TMáx (720 minutos)-T8-TLMín tipo (H9 e H10)	190	175	250	275	355	360

Tempo de Limpeza da Sala de Operação						
Tempo Limpeza Mínimo (TLMín)	10	25	10	25	10	50
Tempo Limpeza Máximo (TLMáx)	60	55	40	60	10	50
Tempo Limpeza Literatura (aproximadamente) = TLL	30	30	30	30	30	30

O QUADRO 6, “matriz de relação” é uma análise cruzada das informações obtidas dos resultados da análise de sobrevivência, no qual constam hipóteses/possibilidades para previsão de novas operações. Este quadro ANEXO 4_ANÁLISE DE...
SOBREVIVÊNCIA_SAS, pág. 133, contém a diferença dos tempos máximos com relação a T8, as 10 hipóteses de apoio para a realização de uma nova operação, tempo sobrando e tempo excedente das possíveis novas operações em minutos, sendo que em geral em média sobra de 140 minutos a 200 minutos, excede de 5 minutos a 90 minutos, e nr, significa nenhuma nova operação realizada. Por exemplo, se utilizar a H1, a Diferença=TMáx (12horas/720 mins)-T8 (=200) e considerando a regra de H1: “fazer outra operação do mesmo tipo”, verifica-se que uma outra operação de aneurisma, que utiliza em média 520 minutos, não ser viável. Como sobram-lhe 200 minutos (720 – 520=200), não é possível realizar outra operação do mesmo tipo, e assim ocorre com as demais hipóteses de acordo com as suas regras, o tempo máximo disponibilizado pelo Centro Cirúrgico. A subtração deste tempo com o tempo de limpeza da sala de operação deve variar em torno de 30 minutos, segundo a literatura a um máximo de 60 minutos, e de acordo com o tempo de limpeza de cada tipo de operação. Estabeleceu-se como regra neste estudo, uma possibilidade de exceder o tempo para a realização de novas operações em até 90 minutos.
QUADRO 6 - Matriz de Relação de Otimização do Tempo do Doente da Sala de Operação (T8) (Minutos)

Tipos	Operações x Tempo Sobrando/Excedente com relação aos Tempos Disponíveis						
	Tempos Análise Sobrevivência (T8)	Geral	Aneurisma	Valvares (Val)	Congênito	Isquêmica (Isq)	Outros Procedimentos (OP)
	520	520	460	355	420	310	

Hipóteses	Tempo Disponível Geral (minutos)	Tempo Sobrando (minutos)/Excedentes(minutos)					
	Geral	Aneurisma	Valvares (Val)	Congênito	Isquêmica	OP	
H1	720	200	200	260	365	300	410
	s(200):nr	s(200):nr	s(260):nr	s(10):Cong	s(300):nr	s(100):OP	
H2	720	200	200	260	365	300	410
	s(200):nr	s(200):nr	e(50):OP	s(55):OP	e(55):Isq	e(55):Val	
H3	660	140	140	200	305	240	350
	s(140):nr	s(140):nr	s(200):nr	e(50):Cong	s(240):nr	s(40):OP	
H4	660	140	140	200	305	240	350
	s(140):nr	s(140):nr	s(200):nr	e(5):OP	e(70):OP	e(5):Cong	
H5	690	170	170	230	335	270	380
	s(170):nr	s(170):nr	s(230):nr	e(20):Cong	s(270):nr	s(70):OP	
H6	690	170	170	230	335	270	380
	s(170):nr	s(170):nr	e(80):OP	s(25):OP	e(40):OP	s(25):Cong	
H7	660	140	145	220	355	240	360
	s(140):nr	s(145):nr	s(220):nr	s(0):Cong	s(240):nr	s(50):OP	
H8	660	140	145	220	355	240	360
	s(140):nr	s(140):nr	e(90):OP	s(45):OP	e(70):OP	s(5):Cong	
H9	710	190	175	250	355	275	360
	s(190):nr	s(175):nr	s(250):nr	s(0):Cong	s(275):nr	s(50):OP	
H10	710	190	175	250	355	275	360
	s(190):nr	s(175):nr	e(60):OP	s(45):OP	e(35):OP	s(5):Cong	

Nota: Tempo Sobrando em média no geral de 140 minutos a 200 minutos - e: Tempo Excedente em média no geral de 5 minutos a 90 minutos
HIPÓTESES PARA REALIZAÇÃO DE NOVA OPERAÇÃO DO MESMO TIPO OU NÃO, PARA CADA TIPO DE OPERAÇÃO CARDÍACA:

H1: Novas Operações do mesmo tipo, com Diferença = TMáx(12 horas/720 minutos) - T8.

H2: Novas Operações não do mesmo tipo, com Diferença = TMáx(12 horas/720 minutos) - T8.

H3: Novas Operações do mesmo tipo, com Diferença = TMáx(11 horas/660 minutos) - T8.

H4: Novas Operações não do mesmo tipo, com Diferença = TMáx(11/660 minutos) - T8.

H5: Novas Operações do mesmo tipo, com Diferença = TMáx(11 horas e 30 minutos/690 minutos) - T8.

H6: Novas Operações não do mesmo tipo, com Diferença = TMáx(11 horas e 30 minutos/690 minutos) - T8.

H7: Novas Operações do mesmo tipo, com Diferença = TMáx(12 horas/720 minutos) - T8 TLMáx tipo.

H8: Novas Operações não do mesmo tipo, com Diferença = TMáx(12 horas/720 minutos) - T8 TLMáx tipo.

H9: Novas Operações do mesmo tipo, com Diferença = TMáx(12 horas/720 minutos) - T8 TLMín tipo.

H10: Novas Operações não do mesmo tipo, Diferença = TMáx(12 horas/720 minutos) - T8 TLMín tipo.

O QUADRO 7, apoio para o planejamento das operações, é uma visão diferenciada da “matriz de relação”, que auxiliará na tomada de decisão pela equipe cirúrgica, da melhor opção no momento para a realização da nova operação, de acordo com o tempo que sobra da operação anterior.
QUADRO 7 - Planejamento da Otimização da Sala da Cirurgia Cardíaca com Previsão de Novas Operações

Tipos	Aneurisma	Valvares	Cardiopatia Isquêmica	Cardiopatia Congênita	Outros Procedimentos
Aneurisma	-	-	-	-	-
Valvares	-	-	-	-	H2/H6/H10
Cardiopatia Isquêmica	-	-	-	H2/H6/H10	H2/H4/H6/H8/H10
Cardiopatia Congênita	-	-	H2/H6/H8/H10	H1/H3/H5/H7/H9	H2/H4/H6/H8/H10
Outros Procedimentos	-	H2/H6	H2/H4/H6/H8/H10	H2/H4/H6/H8/H10	H1/H3/H5/H7/H9

- Analisando as possibilidades de realizar novas operações com relação às 10 Hipóteses tem-se:

H10: 7 possibilidades;
H2 e H6: 8 possibilidades;
H8: 5 possibilidades;
H4: 4 possibilidades;
H1,H3,H5,H7,H9: 2 possibilidades, dependendo do tempo final da operação, o tipo de operação e com um intervalo de tempo acrescendo de 90 minutos, no caso do tempo da nova operação precisar exceder.
DISCUSSÃO
Utiliza-se nesse estudo a construção de um quadro conceitual, como uma proposta metodológica para exposição conjunta da metodologia tradicional “análise de sobrevivência aplicada” e o método de “gestão da qualidade”, utilizando deste, as ferramentas, a “matriz de relação” e o Diagrama de Pareto”, que atuam na fase de planejamento do ciclo PDCA, segundo Malik & Shiesari (1998). Este quadro tem por base a “Medicação” e tem incorporado nele um dos “6 M’s de Ishikawa”, e as colunas são compostas de: Metodologia, uma relação de Causa e Efeito, Indicadores e Literatura, expostos abaixo:
METODOLOGIA	CAUSA	EFEITO	INDICADORES	LITERATURA
Estatística Tradicional:	Aplicação da metodologia estatística – estimador de Kaplan Meier	- Identificação dos intervalos de tempo para realização das operações	- Tempo da Presença do Doente na Sala de Operação (T8)	Kaplan & Meier (1958) Colosimo & Giolo (2006)
Gestão da Qualidade: - “Matriz de Relação”	Aplicação da “Matriz de Relação” aos tempos que sobram ou excedem das operações	- Previsão de novas operações com respectivas (10) hipóteses/centários prováveis	- Tempo Real da Operação (T7)	Moura (1994) Aranha (2001) Aranha & Vieira (2004)
Gestão da Qualidade: - Diagrama de Pareto: “80/20”	Aplicação de Pareto nas operações suspensas	- Aumento de novas operações	- Motivos de suspensão de operações: motivos hospitalares extrapacientes e relativos aos pacientes.	Kume (1993) Perroca et al. (2007) Duarte & Ferreira (2006) Paschoal & Gatto (2006)
	Diminuição das operações suspensas ou cancelamentos de operações.	- Diminuição de novas operações.	- Aumenta o número de novas operações	Duarte & Ferreira (2006)
	Atraso nas operações devido: - início da operação com atraso, - à limpeza, - outras intercorrências	- Aumenta o motivo de suspensão de operações por “horário cirúrgico insuficiente”	- Diminuição da qualidade e produtividade	Paschoal & Gatto (2006) Bittar (2001 e 2005) Perroca et al. (2007) Haddad et al. (2002)
	Suspensão de operações por fatores administrativos: - “horário cirúrgico insuficiente” - “falta de leitos na UTI” - outras intercorrências	- Aumenta a fila de espera “interna” e externa, - Aumenta da “ansiedade” dos pacientes pela espera por operações. - Falta de Organização de Trabalho, - Desperdícios diversos: adiamento de operações, materiais hospitalares (esterilização dispendiosa), tempo da equipe multidisciplinar, etc. - Aumento do custo hospitalar e, da sala de operação.	- Indicador de Custo da Qualidade/Pesquisa de Opinião Funcionários	Akerman (1995) Aranha (2001) Aranha & Vieira (2004)

Discussão
É de conhecimento que em todo o processo de produção, independentemente de quão bem planejado ou cuidadosamente mantido ele seja, uma certa quantidade de variabilidade inerente ou natural sempre existirá. Essa variabilidade natural ou “ruído de fundo” é o efeito cumulativo de muitas causas pequenas, essencialmente evitáveis. No sistema de controle estatístico da qualidade, essa variabilidade natural é, em geral, chamada “sistema estável de causas aleatórias”, segundo Montgomery (2004). Fato este averiguado por Aranha et al. (2005), que demonstraram que deixar de identificar e controlar fontes importantes de variação é ignorar a causa de muitos problemas de qualidade. E é através desta moderna abordagem da qualidade fundamentada no pensamento científico e estatístico é possível avaliar os resultados e confrontá-los com a literatura existente.

Produção do ano de 2008 e respectivos indicadores.

Para obtenção dos resultados apresentados e na forma em que foram expostos, particularmente com relação ao Indicador de Processo - Motivos de Operações Suspensas, verificou-se para esse indicador quando da utilização do Diagrama de Pareto, segundo Kume (1993), vide TABELA 2, pág. 66, que os motivos das operações suspensas se expressaram como motivos “muitos, mas triviais” “poucas e vitais” e, mostrando os diferentes problemas de qualidade que aparecem sob a forma de “perdas/desperdícios” de operações, devido à suspensão das mesmas. Em geral a taxa de suspensão de operações para o ano de 2008 foi de 39%, em relação às operações agendadas, sendo que os motivos “fatores hospitalares extrapacientes” (administrativos) contribuíram com 81%, em um total de 190 operações suspensas, enquanto que os relativos aos pacientes 19%, apresentando um total de 46 operações suspensas, num total geral de 236 operações suspensas, mantendo praticamente a relação de “80/20”.

Observa-se, entretanto, que os maiores motivos de operações suspensas ocorreram com o “horário cirúrgico insuficiente”, em um total de 92 operações suspensas, seguido por “leito não disponível na UTI”, em um total de 70 operações suspensas, sendo que com relação aos motivos “relativos aos pacientes”, designação adotada neste estudo, os maiores motivos foram “paciente sem condições clínicas”, no total de 27 operações.
suspensas, seguidas por “outros motivos” somando-se 12 operações suspensas e “paciente não se internou” ou “não compareceu”, no total de 10 operações suspensas.

Portanto, muitas operações deixaram de ser realizadas por “fatores hospitalares extrapacientes”, em particular “horário cirúrgico insuficiente” e “leito não disponível na UTI”, que somam 162 operações suspensas no total, motivos que poderiam ser melhor administrados, pois inviabilizam a própria administração de um Centro Cirúrgico, aumentando com isso a fila de espera das operações cardíacas tanto “interna” como “externa”.

Particularmente com relação ao motivo “horário cirúrgico insuficiente”, segundo o que a especialidade Cirurgia Cardíaca observou, tem sido insuficiente para realizar mais operações, devido também a outros motivos administrativos, tais como “atraso de início das operações”, “atraso com a limpeza da sala de operação” e não propriamente com a “limpeza da sala de operação” em si, “atraso devido à equipe multidisciplinar” entre outros motivos já relacionados; os quais impactam no tempo para realização de novas operações podendo até impedir a realização de uma nova operação.

Contudo, apesar desses motivos administrativos passíveis de serem medidos, e dos relativos aos “fatores hospitalares extrapacientes” relatados, ainda é possível realizar nova operação, desde que “essa perda de tempo” não venha a interferir no tempo para a realização da nova operação, e que é possível de ser realizada, ao se utilizar do tempo que sobra da operação anterior, otimizando-o, mediante a criação de uma “matriz de relação”, contendo 10 hipóteses ou possibilidades que viabilizem aumentar o número de operações, dentro da regra também que se estabeleceu neste estudo para a realização da nova operação, que caso se realize uma nova operação, o tempo poderá exceder em até 90 minutos, pois tem-se que ter em conta o tempo de limpeza da sala de operação que deve constar da ocupação da sala.

- Tempos Impactantes no Tempo Máximo Disponível para a realização da operação
Outros tempos existem no processo da operação e que causam também impacto no tempo máximo disponível para a realização de operações eletivas, que são os tempos de entrada e saída do doente na sala de preparo, o tempo de espera para liberação de leito na UTI - tempo pós-operatório 1, o tempo de aguardo pela equipe de limpeza da sala de operação, conforme ANEXO 1, pág. 129, ANEXO 2, pág. 130 e ANEXO 3, pág. 132, tempos estes que não estando sob controle trarão como consequência não só a suspensão ou atraso nas operações, mas o aumento na fila de espera “interna” e externa por operações e que causarão variabilidade no processo.

- Com relação à sala de preparo, o tempo T1 (tempo de saída da sala de preparo – tempo de entrada na sala de preparo), em média foi de 88 minutos, com um mínimo de zero minuto, quando o paciente é encaminhado diretamente para a sala de operação.
Se o tempo que o doente fica na sala de preparo for maior que 60 minutos, por exemplo, significa que está havendo uma relativa espera para entrada na sala de operação, o que pode ser devido a diversos fatores entre outros:

1. A sala não está pronta para a realização da operação, ou, se está tendo um tempo de limpeza considerável ou está tendo um tempo alto na espera pela limpeza da sala, e as causas precisam ser investigadas,

2. Paciente apresentou intercorrência, e, portanto, poderá não fazer a operação,

3. Falta de leito na UTI,

4. Falta de material cirúrgico e a sala de operação não foi liberada,

5. Falta do resultado dos exames do paciente,

6. Operação teve que ser suspensa por causas diversas o que irá impactar na média de permanência do paciente internado (em dias), gerando aumento desnecessário de dias de internação, segundo Esteves (1999), citando Gertman & Restucci (1981) e Restucci e Holloway (1976), que deverá ser da ordem de 10% à 10,6% de dias desnecessários de internação, aumento de custos da sala de operação, custo de material cirúrgico, custo da hora docente, custo da hora da equipe de cirurgia cardíaca, custo da sala de preparo, custos de hotelaria entre outros.- Tempo T3 (tempo de indução – tempo de entrada na sala de operação) tempo de aguardo do paciente para a realização da operação propriamente dita, em média em geral é de 22,28 minutos, com um tempo mínimo 0 (zero) minutos e o máximo de 140 minutos (caso excepcional, como ocorreu com uma operação do tipo valvares).

Quando o tempo é mínimo, significa que não havendo inter-ocorrência iniciou-se a indução anestésica tão logo foi possível, e, quando o tempo foi maior de aproximadamente 2 horas, significa a ocorrência de alguma causa excepcional na sala de operação, fazendo com que esse tempo seja alto, ocasionando impacto no tempo máximo disponível para a próxima operação que poderá vir a ser realizada ou não.
Portanto, até 30 minutos, 57 pacientes ficaram aguardando a operação propriamente dita, de 30 minutos a 60 minutos, 9 pacientes, e de 60 minutos a 140 minutos, 5 pacientes.

- Tempo T12.1 (tempo de saída/alta da sala de operação – tempo final da anestesia = tempo pós-operatório), tempo pós-operatório 1, em média no geral é de 11,48 minutos. O mínimo de tempo pós-operatório é 0 (zero) minutos, quando o paciente é encaminhado diretamente para a UTI e o máximo é de 95 minutos, tempo em que o paciente ficou aguardando pela liberação do leito na UTI.

O Tempo Pós-Operatório 1 é um tempo importante porque ele irá informar quanto tempo o paciente teve que aguardar para ser encaminhado para a UTI, e consequentemente significa que poderá haver atraso na próxima operação, caso esse tempo seja alto.

O tempo de limpeza da sala de operação T11 (tempo final de limpeza – tempo de início da limpeza) é em média de 10 minutos e o máximo de 60 minutos, com uma média aproximada de 34 minutos, variando por tipo de operação. Foi considerado também para os cálculos neste estudo o que a literatura estabelece como tempo médio de limpeza, de aproximadamente de 30 minutos, segundo Nepote (2008).

Para a limpeza da sala de operação, há tempos inclusos (tempo da limpeza pela enfermagem, circulante e auxiliar de anestesia, e tempo de limpeza pela limpadora), tempos esses que não estando dentro do tempo de previsão para limpeza da sala, poderão provocar atraso na próxima operação, caso em ocorra alguma intercorrência. Caso isto aconteça junto às equipes de limpeza, reduzirá o tempo máximo disponível da sala de operação. O atraso na limpeza da sala poderá também provocar aumento de uma das causas de suspensão de operações por “horário cirúrgico insuficiente”.

A demora da saída da sala de operação poderá ser devido a diversos fatores entre tantos outros:
1. Tempo de limpeza da sala de operação com atraso, e demora do preparo da sala de operação para nova operação, demandando “desperdício” de tempo, podendo até implicar no conjunto com os demais tempos (desde o tempo que o paciente ficou na sala de preparo até à operação propriamente dita), que novas operações possam a vir serem realizadas, de acordo com a “grade de horário da sala de operação” para aquele dia, ou podendo se a operação vir ser realizada, extrapolar o horário disponível para operações.

2. Há que se considerar com relação à limpeza da sala, que há um outro tempo pertinente a ele, que não é coletado, que é o tempo que se tem que aguardar pela equipe de limpeza da sala. Tempo este que sendo alto irá influir consideravelmente também no horário disponível para operações, conforme relatado anteriormente.

3. O paciente fica aguardando a liberação do leito na UTI,

4. O paciente não se recuperou da anestesia,

5. O paciente não está em condições de deixar a sala de operação.

Há um tempo secundário, quando da suspensão de operações, tempo esse que pode afetar a próxima operação: tempo de aguardar transporte do paciente para a UTI/Enfermaria.

Em geral, atrasos ou suspensão de operações se refletem na otimização do tempo do doente na sala de operação, e, portanto na otimização da sala de operação, que poderão ser evitados analisando as possíveis causas onde o processo tem mais possibilidade de funcionar inadequadamente, sugerindo-se que deve-se:

- Revisar o processo antes de chegar ao Centro Cirúrgico:

- Motivos de atrasos nas operação/suspensão de operações, onde a fase pré-operatória pode ser um provável ponto de “gargalo”, devido as muitas informações convergentes: exames do pacientes, paciente sem preparo adequado, prontuários incompletos nos horários da manhã, paciente com falta de condições clínicas, atraso por
falta de funcionários na escolta e transporte para o Centro Cirúrgico no momento em que foi solicitado.

– Observações:

1. Se os primeiros casos do dia forem atrasados por preparo pré-operatório inadequado, então as outras operações subseqüentes também se atrasarão.

2. A suspensão da primeira operação e o atraso para definir a entrada do próximo procedimento, induz a um atraso para ocupação da sala, surgindo aí um possível “gargalo”.

O tempo médio do atraso/suspensão é o tempo não utilizado ou tempo desperdiçado, que deverá ser coletado para definição da ocupação da sala, demonstrando que o tempo que se tem disponível para realização da operação já é um tempo menor do que o esperado, indicando que o tempo da operação deverá exceder o tempo antes disponível.

A coleta de dados deverá assumir forma de “auditorias” dos registros médicos, de enfermagem e outros, levadas a efeito ao meio-dia do dia anterior à operação. Dessa forma se poderá trabalhar com uma ação preventiva, qual seja a de certificar-se com antecedência de que os registros dos pacientes estejam completos antes que a operação esteja programada para começar.

Os benefícios alcançados poderão ser entre outros:

1. Otimização da grade cirúrgica, priorizando as necessidades,

2. Paralelamente sabendo do atraso, a supervisão poderá gerenciar melhor outras atividades dos funcionários dentro do Centro Cirúrgico, adequando melhor o tempo de atividades dos funcionários entre outros ações administrativas.
Duarte & Ferreira (2006), identificaram como um importante indicador de processo, as operações suspensas por “fatores hospitalares extrapaciente”, que segundo os autores vem sendo utilizado por revelar o grau de organização do centro cirúrgico, bem como do funcionamento de vários setores do hospital, pois envolve o monitoramento de vários processos e subprocessos. O seguimento e correção das principais causas hospitalares de suspensão de operação podem significar redução de desperdícios, aumento da qualidade e da produtividade.

Também para Perroca et all (2007), com relação aos cancelamentos de operações, seus estudos revelaram que estima-se que cerca de 60% dos cancelamentos dos procedimentos eletivos são potencialmente evitáveis e poderiam ser preveníveis, usando-se técnicas de melhoria de qualidade. Os cancelamentos cirúrgicos deveriam ser vistos como eventos adversos e monitorados rotineiramente nos sistemas clínicos de incidentes hospitalares, uma vez que se constituem na maior causa do uso inefficiente do tempo na SO (Sala de Operação) e desperdício de recursos.

De mesma concordância com o trabalho de Duarte & Ferreira (2006), e Perroca et all (2007), Aranha & Vieira (2004), realizaram um estudo, uma pesquisa de opinião, com relação aos vários tipos de desperdícios percebidos no HC/UNICAMP, no qual o Centro Cirúrgico por natureza sendo um local que muito se consome recursos, é um potencial candidato a desperdiçar “recursos materiais”, e que se usando metodologias de “gestão da qualidade”, aplicando-as no monitoramento dos processos existentes em um Centro Cirúrgico, se terá a probabilidade de não “desperdiçar operações”, ou seja, poderá com a nova proposição haver uma diminuição de operações suspensas por motivos administrativos ou “fatores hospitalares extrapacientes”, além de que paralelamente com o uso de um método como o da “matriz de relação” de otimização do tempo do doente na sala de operação, se permitirá planejar, prever um aumento de novas operações, com implicação na fila de espera tanto “interna”, que deixará de existir, como externa.
Segundo Paschoal & Gatto (2006), a suspensão de uma operação é um evento que pode ser analisado por duas vertentes: a primeira, sem dúvida, voltada para as repercussões que envolvem o paciente; e a segunda, pelas conseqüências que causam para a instituição de saúde. Para o paciente, toda cirurgia, por mais simples que seja, tem importante significado a ponto de provocar comportamento com a mesma proporção de qualquer outra situação traumática.

A intervenção cirúrgica, para Paschoal & Gatto (2006), requer preparo prévio do paciente e da família, pois envolve aceitação da operação, preparo físico e psicológico, interferência no estilo de vida, alterações socioeconômicas pelo afastamento no trabalho, além da situação de estresse gerada pelo medo do desconhecido citando Cavalcante et all (2000). O paciente, ao se preparar para a operação, traz consigo expectativas, dúvidas e temores a respeito do que irá acontecer. Para ele, o hospital é um ambiente estranho e desconhecido, onde se sente nas mãos de profissionais, aos quais confia e espera receber cuidados adequados. Todas as suas preocupações e expectativas estão voltadas para a realização da operação e não para a sua suspensão.

A suspensão de operação acarreta prejuízos ao paciente, interferindo no resultado da assistência e na produtividade do serviço. Do ponto de vista administrativo, interfere na própria equipe de saúde, no que se refere à operacionalização do trabalho, ao consumo de tempo e de recursos materiais. Para o hospital, a ocupação do leito, a reserva da sala operatória, o desperdício de material cuja esterilização é dispendiosa, o pessoal envolvido no preparo de material e da sala de operação e a perda da oportunidade de inclusão de outro paciente na programação cirúrgica acarretam prejuízos incalculáveis para todo sistema hospitalar envolvido, citando Vieira (1982). (Paschoal & Gatto, 2006)
A sensação de ansiedade pela não realização da operação está de acordo com os estudos que Haddad et al. (2002) realizaram através de uma pesquisa junto aos pacientes candidatos a operações cardíacas, através de questionários, cujo objetivo era avaliar a mortalidade e as repercussões psicológicas do prolongamento do tempo de espera em pacientes candidatos à cirurgia cardíaca. Os resultados encontrados revelaram que vários pacientes apresentaram intensa ansiedade e atribuíam os problemas de adaptação, ao âmbito da vida afetiva, profissional e social, ao não tratamento cirúrgico. Observaram que, na ocasião da indicação cirúrgica, desencadeou-se uma crise psicológica, para a qual o paciente procurou uma solução adaptativa, pois com o prolongamento do tempo de espera, vários pacientes queixaram-se de que a fila era um obstáculo à sua sobrevivência, apresentavam intensa ansiedade, achavam-se em progressiva deterioração de suas condições orgânicas e apresentavam problemas de adaptação no âmbito da vida afetiva, profissional e social. Por outro lado, outros pacientes consideravam que o tempo havia amortecido a motivação inicial, na época da indicação cirúrgica e que não viam mais a necessidade de realizar a cirurgia. O prolongamento excessivo do tempo de espera trouxe várias conseqüências, como a elevada mortalidade, maior nos pacientes com cardiopatia valvular e os problemas psicológicos e sociais salientados no estudo.

Neste estudo evidenciou-se que as implicações das operações suspensas, irão desgastar emocionalmente o paciente, pois a operação poderá não ocorrer conforme a programação prevista (ou agendada), e ele doente, terá que retornar ao leito para aguardar o novo agendamento da operação, além de existirem outros agravantes como os já citados anteriormente por Paschoal & Gatto (2006) e Haddad et al. (2002).
- Descritiva e análise dos tempos T6, T7 e T8 e a criação da “matriz de relação” de otimização do tempo do doente na sala de operação relativo ao tempo T8.

A metodologia adotada para este tipo de estudo, análise de sobrevivência aplicada, utilizando o estimador não paramétrico de Kaplan-Meier, é um apoio para avaliação do desempenho da sala de operação, através da análise dos tempos de interesse: tempo real da operação, tempo exato da operação e tempo da presença do doente na sala de operação.

Segundo os QUADRO 3, pág. 67, e QUADRO 4, pág. 68, descritiva dos tempos em minutos em geral para todas as operações e para o tipo de operações identificou-se que:

- Tempo T6 - tempo real operação (tempo final da operação – tempo de indução anestésica), em média no geral é de 298 minutos.

- Tempo T7 - tempo exato da operação (tempo final da operação – tempo de (degermação + assepsia + colocação de campos operatórios), em média no geral é de 320 minutos.

- Tempo T8 - tempo da presença do doente na sala de operação (tempo de saída da sala de operação – tempo de entrada na sala de operação) em média no geral é de 342 minutos.

Os tempos médios por tipo de operação cardíaca foram os seguintes:

Aneurisma da Aorta: Os tempos médios foram para T6, tempo real da operação, 373 minutos, T7, tempo exato da operação, 333 minutos e T8, tempo da presença do doente na sala de operação, 429 minutos.

Cardiopatia Isquémica: Os tempos médios foram para T6, tempo real da operação, 288 minutos, T7, tempo exato da operação, 258 minutos e T8, tempo da presença do doente na sala de operação, 335 minutos.
Cardiopatia Congênita: Os tempos médios foram para T6, tempo real da operação, 247 minutos, T7, tempo exato da operação, 223 minutos e T8, tempo da presença do doente na sala de operação, 292 minutos.

Valvares: Os tempos médios foram para T6, tempo real da operação, 296 minutos, T7, tempo exato da operação, 272 minutos e T8, tempo da presença do doente na sala de operação, 338 minutos.

Outros Procedimentos (Pericardiectomia e Desbridamento Cardíaco): Os tempos médios foram para T6, tempo real da operação, 220 minutos, T7, tempo exato da operação, 196 minutos e T8, tempo da presença do doente na sala de operação, 268 minutos.

No geral, sem distinguir o tipo de operação cardíaca, realiza-se em média diariamente uma operação em um intervalo de 520 minutos, conforme análise de tempo T8 - tempo da presença do doente na sala de operação, com uma sobra máxima de 200 minutos, em que não se é possível realizar nenhuma nova operação a menos que se utilize do estudo proposto pela “matriz de relação” que ao gerar as 10 hipóteses ou possibilidades diferentes com o tempo que sobra da operação anterior, abre-se a possibilidade de realizar novas operações dentro de determinadas condições, tendo em consideração o tempo de limpeza da sala principalmente. Daí a necessidade de se propor as 10 hipóteses/possibilidades na “matriz de relação” com inclusão do tempo de limpeza da sala também. Ressalta-se que o cenário atual contempla as hipóteses H1 e H2 sem restrição ao tempo de limpeza, o que é irreal e improvável de ocorrer, pelo exposto anteriormente, dado que não serem uma melhor opção para a realização da nova operação.
Com relação às sobras de tempo da operação anterior ou desperdício de tempo disponível se não operar, há no mínimo 140 minutos e no máximo 200 minutos, dependendo da hipótese adotada no QUADRO 5, pág. 84, e QUADRO 6, pág. 86, e que o tempo máximo disponível para operação varia dentro de um intervalo de 660 minutos à 690 minutos mais provável, se assumir ser este o mais provável, se considerar que tempo de limpeza varia dentro de um intervalo de 30 minutos (considerando o tempo pela literatura) à 60 minutos, sendo que o tempo médio encontrado neste estudo foi de aproximadamente 34 minutos. Dentro de outro contexto, tendo em consideração o tempo mínimo e o tempo máximo de limpeza, o intervalo variará de 660 minutos à 710.

No QUADRO 6, pág. 86, – “matriz de relação” – nota-se uma peculiaridade neste quadro, é possível que se avalie, no todo e em cada tipo de operação cardíaca, o tempo da presença do doente na sala de operação (T8), e no mesmo momento verificar com o tempo que sobra das operações, quais alternativas possíveis existem para a realização de uma nova operação, de tal forma a eliminar as “perdas de tempo/desperdício” que sobram da operação anterior, e assim otimizar o tempo disponível, aumentar o número de operações e a ocupação da sala de operação e diminuir a fila de espera por operações.

Se for feito o cruzamento de dados das operações suspensas com a “matriz de relação”, tem-se que no ano de 2008 foram realizadas em 203 dias, descontados os feriados, 291 operações cardíacas, com uma média mensal de 30 operações, e uma média diária de uma operação eletiva da Cirurgia Cardíaca, apresentando 190 operações suspensas por motivos administrativos e 46 operações suspensas por motivos relativos aos pacientes em um total de 236 operações suspensas.

A previsão em geral de operações ao ano seria de 481 operações, se não houvesse suspensão de operações com uma média mensal de 40 operações, 10 operações semanais ou duas operações diárias, com exceção de aneurisma que tem um tempo médio de 520 minutos, mas, que principalmente há que considerar as possibilidades da matriz de relação de otimização dos tempos do doente na sala de operação para tomada de decisão, na qual existe a possibilidade de aumentar o número de operações.
Com o uso da metodologia de análise de sobrevivência aplicada utilizando o estimador de Kaplan-Meier, pode-se prever um tempo de agilização para novas operações:

1. Uma informação mais precisa para a UTI, do intervalo de tempo esperado de encerramento da operação;

2. Um tempo de início para uma nova operação, o qual contribuirá para a redução da ansiedade do paciente pela espera da mesma;

3. A realização dos trabalhos da sala de preparo com mais eficiência (otimização) para receber o paciente, para as equipes de anestesia, de enfermagem, central de material esterilizado, limpeza da sala de operação (enfermagem e limpadora).

4. Poderá planejar a vinda de outro paciente em determinado tempo para a sala de preparo, diminuindo o tempo de espera do mesmo, a “expectativa” do paciente para a operação. E isto certamente poderá estar propiciando melhoria no atendimento ao paciente internado em primeira instância.
Qualificando operativamente as ações administrativas e outras decorrentes do processo da operação em si, tornando-as mais eficientes e eficazes, haverá um atendimento mais humanizado prestado ao paciente, menos tempo na fila de espera “interna” e externa, além de proporcionar uma reação “em cadeia” das ações a serem praticadas com melhor gerenciamento do tempo de cada equipe participante do processo de operação, serviços entre outros, agilizando-os.

O QUADRO 7, pág. 88, expõe o possível planejamento das operações, utilizando a “matriz de relação” exposta no QUADRO 6, pág. 86. Ao analisar as possibilidades de acordo com as hipóteses em ordem decrescente de frequência de possibilidades diárias para a realização de novas operações ter-se-ão: H10: 7 possibilidades; H2 e H6: 8 possibilidades; H8: 5 possibilidades; H4: 4 possibilidades; H1, H3, H5, H7, H9: 2 possibilidades, sendo que H1 e H2 compõe o cenário atual, nas quais no cálculo da ocupação da sala de operação não leva em conta o tempo de limpeza da sala de operação entre uma operação e outra.
Akerman (1995), citando Santos (1991) relata que no Brasil, segundo pesquisadores, estima-se que 30% a 40% dos recursos disponíveis são desperdiçáveis. Transpondo para estes percentuais para o estudo que agora se realiza com relação ao tempo máximo disponível para operar de 12 horas/720 minutos, pode-se esperar que se terá a menos 3,6 horas a 4,8 horas/216 minutos a 288 minutos e o tempo máximo disponível deverá ser de 7,2 horas a 8,4 horas/432 minutos a 504 minutos. Assim sendo o tempo disponível para operações deverá ser de 432 minutos a 504 minutos e nele descontando o tempo T8, tempo da presença do doente na sala de operação, para o cálculo de tempo que sobra da operação anterior, pouco tempo ou quase nenhum tempo sobrará para a realização de uma nova operação, deduzindo daí que haverá baixa ocupação da sala de operação, que tem uma média em torno de 60%, com uma “perda de tempo ou desperdício” relativo às “fatores hospitalares extrapacientes”, o qual induzirá acreditar que o horário cirúrgico proposto de 12 horas ser insuficiente. As “perdas de tempo” são portanto, por motivos diversos que fazem com que o horário cirúrgico seja insuficiente. Paralelamente considerando o QUADRO 5, pág. 84 com as 10 Hipóteses mais prováveis de serem realizadas e se houver as “perdas de tempo” relativas ao tempo de uso da sala de operação, deixam portanto de existir as possibilidades de novas operações.

Nota-se também que quando há um atraso em uma operação, por algum motivo, o tempo médio do atraso é um tempo que parece não estar sendo utilizado de maneira geral no cômputo da ocupação da sala de operação. É um tempo “desperdiçado”, e que deve ser coletado para definição da ocupação da sala, a fim de demonstrar que o tempo que se tem disponível para realização da operação é um tempo menor do que o esperado, e que há uma possibilidade do tempo da operação exceder o tempo disponível, ou até mesmo a operação vir a ser suspensa por “falta de tempo disponível” ou “horário cirúrgico insuficiente”.

Os QUADROS – 9A e 9B abaixo apresentam os indicadores de desempenho, assistência hospitalar, de desempenho da Cirurgia Cardíaca, e o QUADRO 10, os indicadores do custo da qualidade, que podem tornar inoperante o processo de gerenciamento da sala de operação, devido à suspensão das operações, e outros tipos de desperdícios de tempo com atraso na limpeza e outros atrasos diversos.
QUADRO 9A – INDICADORES

Classificação dos Indicadores	Conceitos	Indicadores	Resultados	Parâmetro de Referência
Tempo do Procedimento Cirúrgico.	- Análise de Sobrevivência-estimador de Kaplan-Meier: T8 = tempo de alta da sala de operação – tempo de entrada na sala de operação; T7 = tempo final da operação – tempo de (degemação + assepsia + colocação de campos); T6 = tempo final da operação – tempo de indução anestésica	- Tempo da Presença do Doente na Sala de Operação (T8), - Tempo Real da Operação (T7), - Tempo Exato da Operação (T6)	Tempo Médio Geral (minutos): - T8: Min: 65 min, Max: 520 min, Média: 342 min; - T7: Min: 25 min, Máx: 420 min, Média: 271 min; - T6: Min: 35 min, Máx: 485 min, Média: 298 minutos;	-
Processo: Motivos de Suspensão de Operações por “fatores hospitalares extrapacientes”	- Grau de Organização do Centro Cirúrgico	- Operações Suspensas	Operações suspensas: 236 operações	-
Custo da Qualidade: Desperdício de Operações.	- Nº de salas em utilização/Nº total de salas existentes	- Nº de salas em utilização/Nº total de salas existentes	1 sala exclusiva.	-
Estrutura: (Sala de Operação da Cirurgia Cardiaca)	- Taxa de Utilização da Sala de Operação=Tempo total de Sala Utilizado/Tempo de Sala Disponível	- Taxa de Utilização da Sala de Operação	Geral: 59% ocupação da sala.	-
Produtividade	- Quantidade de Operações realizadas por determinado período.	- Operações Eletivas (Adultos)	Operações: 291 em 203 dias- Média: 1,43 operações/sala/dia	Bittar (2007): SAHE/2007 - HE em Geral - operações/sala/dia em 2006: 1,08 a 2,60. Média de 1,82 operações/sala/dia
Produção	Quantidade de operações possíveis caso não houvesse operações suspensas.	Nº operações previstas	Operações no ano de 2008: Média mensal: 40 operações - mínimo de 1 operação/sala/dia - máximo de 2 operações/sala/dia	Portaria 1.703/2004 GM, estabelece em geral: Meta: mínimo: 2,6 operações/sala/dia. (para um mês de 30 dias).
Previsão de operações	Fonte: Citações do artigo de Kaplan & Meier (1958) - Bittar OJNV, Magalhães A. Hospitais de Ensino: Informações para Discussão	- 481 operações no ano de 2008: - Média mensal: 40 operações - mínimo de 1 operação/sala/dia - máximo de 2 operações/sala/dia.		
QUADRO 9B – INDICADORES

Classificação dos Indicadores	Conceitos	Indicadores	Resultados	Parâmetro de Referência
Estrutura		Leitos Operacionais	Leitos: 3	Portaria 1.101/2002 GM
- Produtividade e Qualidade		Média de Permanência dos pacientes internados (dias) (MP)	MP = 3,7 dias.	
		Taxa de Ocupação Hospitalar/Percentagem de Ocupação dos leitos. (TOH)	TOH = 92,17%	

Notas: Min: mínimo; Máx: máximo; Minutos: min
QUADRO 10 – INDICADORES DO CUSTO DA QUALIDADE

Classificação	Conceitos	Indicadores	Resultados	Parâmetro de Referência
Indicador do Custo da Qualidade:				
Desperdício – Recursos Disponíveis:	30% a 40% são desperdiçáveis.	Recursos Disponíveis: tempo para realizar a operação	TMáxDisp = 7,2 horas a 8,4 horas Perda de 4 a 5 horas ou TMáxDisp = 432min a 504 min Perdas de 216 min a 288 min. ou TMáxDisp = 9 horas	Montgomery (2004)
Custos da Qualidade são as categorias de custos que estão associadas a produzir, identificar, evitar, no caso, operações que não venham a se realizarem. Os custos da qualidade podem ser: prevenção, processo, avaliação, os relativos a materiais hospitalares, equipamentos, meio ambiente (sala de operação), equipamentos, recursos humanos, medição e etc.				Akerman (1995)
Operações Suspensas (“fatores hospitalares extrapacientes”)	Operações Suspensas	Perdas: 39% de operações suspensas. Motivos de Suspensão: - 81% dos motivos são “fatores hospitalares extrapacientes”.		
Desperdícios:	Atraso nas Operações	*Tempo não calculado por falta de dados disponíveis		Akerman (1995), 30% a 40% dos recursos disponíveis são desperdiçáveis, Paschoal & Gatto (2006), 60% dos cancelamentos poderiam ser evitáveis.
Tempo de Limpeza (atraso na limpeza da sala): Desperdício – Atraso de operações Atrasos diversos: Equipe multidisciplinar, Falta de leitos na UTI, Falta de materiais hospitalares, Outros: Materiais Hospitalares.				Aranha (2001) Aranha & Vieira (2004).
- Desperdício de utilização dos leitos ou de dias de internação devido à suspensão de operações.	- Ocupação desnecessária dos leitos	- Ocupação do leito acima do esperado - Ocupação de 92,16%, no ano de 2008. Provavelmente 8,21% devido à suspensão de operações, quando o paciente aguarda no leito por um novo agendamento da operação.		Fávero (1975): utilização inadequada dos leitos. Esteves (1999) citando: Gertman & Restuccia (1981) Restuccia & Holloway (1976), 10% a 10,6% dias de internação são desnecessários.
Resulta que segundo Bittar (2001) é desnecessário enfatizar a importância da utilização de indicadores que medem a qualidade e quantidade do que é realizado em termos de programas e serviços de saúde e que os mesmos cubram todos os seus componentes, como a estrutura, os processos e resultados, de tal forma que não se inviabilize o aumento de novas operações ou que propicie uma diminuição da fila de espera “interna” no Hospital, que diminuindo esta, consequentemente diminuirá a fila de espera externa.

O estudo proposto de otimização do tempo do doente na sala de operação traz como benefício, uma perspectiva de aumento de novas operações, diminuição na fila de espera tanto “interna” como externa, um controle mais eficaz do tempo do processo de operação por diferentes equipes participantes, diminuição da ansiedade dos pacientes na espera da operação, pois haverá uma probabilidade maior dela ocorrer, sendo que menos operações deverão ser suspensas pelo motivo “horário cirúrgico insuficiente”.

Aparenta-se neste estudo que há provavelmente, ajuízo, três filas de espera: uma que normalmente existe devido à grande demanda por operações cardíacas, as relativas também à suspensão de operações, a devida ao atraso na operação anterior em particular, quando esta operação excede o tempo previsto, impossibilitando que nova operação se realize, o que leva-se a refletir sobre quais tecnologias e quais profissionais deverão serem incorporados as equipes, redefinindo os métodos de gestão, avaliação, remuneração e parcerias entre os setores privados e públicos será fundamental para a provisão de saúde nas próximas décadas, reforçando inclusive a integração universidade-empresa-governo. (Bittar, 2005)
Este mesmo autor citando Mintzberg (2000) demonstra que o planejamento teve ao longo do tempo várias escolas: design, planejamento, posicionamento, empreendedora, cognitiva, aprendizado, poder, cultural, ambiental e de configuração. Interpretá-las pode ser um caminho para facilitar o entendimento dessa função, mas sem o conhecimento da intricada teia que se apresenta num organismo responsável por estas atividades é quase impossível chegar ao fim. Com a quantidade de variáveis, instâncias, normas, personagens com as quais o planejador se depara no dia-a-dia, sua tarefa não se restringe apenas ao aspecto numérico de simplesmente contar.

Para muitos de nossos contemporâneos, parece evidente que ciência e tecnologia estejam ligadas. Ainda mais, que é a ciência que permite o desenvolvimento da técnica. Fourez (1995). E é a ciência, tecnologia e saúde que trabalhando em conjunto, garantirão a busca por metodologias como a análise de sobrevivência aplicada – estimador de Kaplan-Meier, que permitirão cruzar informações, criar indicadores que venham a espelhar a realidade com mais fidedignidade. No trabalho evidenciou-se que a aplicação da metodologia estatística empregada permitiu criar uma matriz de relação de otimização do tempo da presença do doente na sala de operação.
CONCLUSÃO
(1) O tempo do doente na sala de operação é um tempo que tem nele incluso, o tempo de aprendizado pelo aluno, em um hospital escola, universitário. (2) Com o tempo máximo disponível de 720 minutos não é possível realizar outra operação, a não ser utilizando da "matriz de relação", sendo que o tempo máximo disponível varia entre 660 minutos e 690 minutos, considerando-se intervalo de limpeza da sala (valores da literatura). (3) Ao otimizar o tempo do doente na sala de operação, através da “matriz de relação”, mais doentes serão beneficiados, acarretando uma diminuição da fila de espera para novas operações, garantindo uma eficiente relação custo-benefício. (4) A “matriz de relação” fornece dados que permitem visualizar, opinar e decidir qual é a melhor operação a ser realizada e se há tempo disponível para tal.
AKERMAN, M. Determinação de prioridades na alocação de recursos para a assistência à saúde: um desafio contemporâneo para o setor saúde, Revista de Administração Pública. 1995 Abr-Jun; 29(2):126-136.

ARANHA GTC. Estudo de um dos indicadores do custo da qualidade: o desperdício [Dissertação]. Campinas (SP): Universidade Estadual de Campinas; 2001.

ARANHA GTC, SOARES APM. Validação de um método estatístico para avaliação de tendência da média de permanência (dias). In: Congresso de Qualidade Hospitalar – Qualihosp, 2003, São Paulo (Brasil) São Paulo, 1º. Lugar, (Pôster).

ARANHA GTCA, VIEIRA RW. Estudo de um dos indicadores do custo da qualidade: o desperdício, Revista de Administração em Saúde. 2004 Abr-Jun; 6(23):43-55.

ARANHA, GTC, MORAES, AL., PAGLIARDI O. VIEIRA RW. O uso do controle estatístico do processo (cep) na média de permanência (dias) como instrumento de gestão de qualidade hospitalar. In: ADH’2005/CQH’2005, 2005, São Paulo (Brasil) São Paulo, (Pôster).

ARANHA TCA, VIEIRA RW. Construção do conhecimento em ciência & tecnologia: estudo de caso – universidade e empresa privada, Revista de Administração em Saúde. 2007 Jan-Mar; 9(34):26-35.

BITTAR, OJNV. Produtividade em hospitais de acordo com alguns indicadores hospitalares, Revista de Saúde Pública. 1996 Fev; 30(1):53-60.

BITTAR, OJNV. Indicadores de qualidade e quantidade em saúde. Revista de Administração em Saúde. 2001 Jul-Set; 3(13):21-28.

BITTAR, OJNV. Inúmeros números do planejamento de saúde. Revista de Administração em Saúde. 2005 Jul-Set; 7:79-94.

BITTAR OJNV, MAGALHÃES A. Hospitais de ensino: informações para monitoramento. Revista de Administração em Saúde, 2007 Out-Dez; 9(37):1-9.
COLOSIMO EA, GIOLO SR. Análise de sobrevivência. São Paulo: Projeto Fisher/Ed Edgar Blücher; 2006. 369p.

DAVID, JB. O papel do cientista na sociedade, um estudo comparativo. São Paulo: Editora da Universidade de São Paulo; 1974. 281 p.

DUARTE IG, FERREIRA, DP. Uso de indicadores na gestão de um centro cirúrgico, Revista de Administração em Saúde. 2006 Abr-Jun; 8(31):63-70.

ESTEVES, MJV. Fatores do Processo de Assistência Médico Hospitalar, que causam o incremento da permanência dos pacientes no Hospital [Tese – Doutorado]. São Paulo (SP): Universidade de São Paulo; 1999.

FÁVERO, M. Estudo da duração da internação em hospitais gerais de Ribeirão Preto [Tese - Livre docência]. Ribeirão Preto (SP): Universidade de São Paulo; 1975.

FOUREZ, G. Perspectivas sócio-históricas sobre a ciência moderna. In: A construção das ciências – introdução à filosofia e à ética das ciências, São Paulo: UNESP; 1995. 319p.

GERTMAN P, RESTUCCIA J. The appropriateness evaluation protocol: a technique for assessing unnecessary days of hospital care. Medical Care. 1981, 19(8):855-71.

GRANNEMANN, TW. Priority setting: a sensible approach to Medicaid policy? Inquiry. 1991; 28:300-305.

HADDAD N, BITTAR OJNV, PEREIRA AAM, SILVA MB, AMATO VL, FARSKY PS, et al. Consequências do Prolongamento do Tempo de Espera em Pacientes Candidatos à Cirurgia Cardiaca, São Paulo, Arq Bras Cardiol. 2002, 78(5):452-8.

IDE P, KIRBY KK, STARK MS. Operating room productivity – an evaluation format, The Journal of Nursing Administration. 1992, 22(10):41-48.
JOAQUIM, ED. Análise de um novo centro cirúrgico para o hospital universitário cajuru: estudo de caso baseado em simulação computacional [Dissertação]. Curitiba (PR): Pontifícia Universidade Católica do Paraná; 2005.

KALUZNY AD, McLASGHLIN CP. Applying total quality management concepts to public health organizations. Public Health Reports. 1992, 107(3):257-64.

KAPLAN EL, MEIER, P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association. 1958, 53(282):457-481.

KUME, H. Métodos estatísticos para a melhoria da qualidade. 5a. edição. São Paulo: Gente; 1993. 245 p.

LONGO, RMJ. A revolução da qualidade total: histórico e modelo gerencial. — Brasília: IPEA, 1994 (RI IPEA/CPS, n.31/94).

MALIK AM, SHIESARI LMC. Qualidade na gestão local de serviços e ações de saúde. Faculdade de Saúde Pública da Universidade de São Paulo, Série Saúde e Cidadania, São Paulo: IDS; 1998, 232 p.

MELO, PA. A cooperação universidade/empresa nas universidades públicas brasileiras [Tese – Doutorado]. Florianópolis (SC): Universidade Federal de Santa Catarina; 2002.

MINTZBERG H, AHLSTRAND B, LAMPEL, J. Safári de Estratégia, um roteiro pela selva do planejamento estratégico; Porto Alegre: Bookman; 2000. 299p.

MONTGOMERY, DC. Introdução ao controle estatístico da qualidade. São Paulo: Rio de Janeiro; 2004. 513 p.

MOURA, E. As sete ferramentas gerenciais da qualidade. São Paulo: Makron Books; 1994. 118 p.
NEPOTE, MHA. Associação entre os índices operacionais e a Taxa de ocupação de um centro cirúrgico geral [Dissertação]. Campinas (SP). Universidade Estadual de Campinas; 2008.

ORGANIZAÇÃO NACIONAL DE ACREDITAÇÃO. Manual das Organizações Prestadoras de Serviços Hospitalares, Pelotas (RS), Educat; 2001, 200 p.

PASCHOAL MLH, GATTO MAF. Taxa de suspensão de cirurgia em um hospital universitário e os motivos de absentismo do paciente à cirurgia programada. Rev Latino-am Enfermagem. 2006 Jan-Fev; 14(1):48-53.

PERROCA MG, JERICÓ MC, FACUNDIN SD. Cancelamento cirúrgico em um hospital escola: implicações sobre o gerenciamento de custos. Revista Latino-Americana de Enfermagem. 2007 Set-Out; 15(5):1018-1024.

POSSARI, JF. Centro cirúrgico, planejamento, organização e gestão. 2ª edição, São Paulo: Iátria; 2004. 308 p.

Brasília. PORTARIA Nº 1101 GM. 12 de junho de 2002. Ministério da Saúde.

Brasília. PORTARIA Nº 1703 GM. 17 de agosto de 2004. Ministério da Saúde.

PRODUÇÃO E MANUFATURA. In: MELLO S. (tradução). Gerenciamento da logística e cadeia de suprimentos. São Paulo, IMAM, 1997. 285p.

RESTUCCIA JD, HOLLOWAY DC. Barriers to appropriate utilization of an acute facility. Medical Care. 1976; 14(7):559-73.

SANTOS NR, CALEMAN G. Projeto de pesquisa operacional: avaliação da qualidade e resultados das ações e serviços de saúde ao nível loco-regional. Brasília, OPAS, 1991.

SOLINO, AS. Interação universidade-empresa: uma aliança estratégica para dar relevância e efetividade ao projeto acadêmico-profissional no contexto globalizado. Revista da Engenharia de Produção /UFRN, CT. – vol. 1, n.1 (jan./jun. 1999). Natal, RN, 1999.
SLOAN FA, VALCONA J. Why has hospital length of stay declined? An evaluation of alternative theories. Soc Sci Med. 1986;22: 63-73.

SCHERKENBACH, WW. O caminho de Deming para qualidade e produtividade. 5ª. r, Rio de Janeiro: Qualitymark; 1992, 149 p.

VIEIRA, MJ. Causas e conseqüências da suspensão de cirurgia programadas em uma cidade do nordeste do País [Dissertação]. Rio de Janeiro (RJ): Escola de Enfermagem Ana Nery/UFRJ; 1982.
ANEXOS
ANEXO 1

TEMPOS DO PROCESSO DAS OPERAÇÕES

Tempos do Processo das Operações
SALA DE OPERAÇÃO
T1= tempo de saída da sala de preparo – tempo de entrada na sala de preparo
T3= tempo de indução anestésica - tempo de entrada na sala de operação
T4= tempo de (degermação + assepsia + colocação de campos operatórios) – tempo de indução anestésica
T5 =tempo de início da operação – tempo de (degermação + assepsia +colocação de campos operatórios)
T6=tempo de final da operação - tempo de indução anestésica = tempo real da operação
T61= tempo final de anestesia – tempo final da operação
T7=tempo final da operação – tempo de (degermação + assepsia + colocação de campos operatórios) = tempo exato operação.
T8= tempo de saída sala de operação - tempo de entrada na sala de operação = tempo da presença do doente na sala de operação.
T12 = tempo de saída da sala de operação – tempo final da operação
T12.1=tempo da saída da sala de operação - tempo final de anestesia = tempo pós-operatório 1 (Paciente espera a liberação do leito)
T9=tpo2 = tempo de entrada na UTI = tempo pós-operatório 2 (tempo não de interesse neste estudo)
tpo3 = tempo de entrada na Enfermaria = tempo pós-operatório 3 (tempo não de interesse neste estudo)
T10= tempo de início da limpeza - tempo de entrada na UTI
T11= tempo de limpeza= tempo final de limpeza da sala - tempo do início da limpeza
Ocupação de Sala de Operação = T8 + T11
1. tempo da presença do doente na sala de operação = T8; - 2. tempo de limpeza da sala de operação = T11
SALA DE PREPARO
T1 = tempo de saída da sala de preparo - tempo de entrada na sala de preparo
1. tempo de entrada na sala de preparo - 2. tempo de saída da sala de preparo
UTI
1. tempo de entrada na UTI - 2. tempo de saída na UTI
Observação: Os pacientes da Cirurgia Cardíaca após a operação são encaminhados diretamente para a UTI.
LIMPEZA - SALA DE OPERAÇÃO
1. tempo de início da limpeza 2. tempo final de limpeza - T11 = tempo final de limpeza – tempo de início de limpeza
Obs.: T2 = tempo de entrada na sala de operação- tempo da saída da sala de preparo= tempo de percurso. Neste estudo foi insignificante, devido à aproximação da sala de operação da cirurgia cardíaca.
ANEXO 2
Estatística Descritiva de Todos os Tempos da Operação no Geral e por Tipo De Operação

QUADRO 2.1 - Geral

Variáveis – Tempos	Média	Desvio Padrão	Mínimo	Máximo	Limite Inferior de 95% de Confiança para Média	Limite Superior de 95% de Confiança para Média
T1	87.51	41.86	0.00	175.00	77.60	97.41
T2	2.00	2.48	0.00	10.00	1.41	2.59
T3	22.28	24.28	0.00	140.00	16.54	28.03
T4	26.41	12.82	0.00	80.00	23.37	29.44
T5	34.77	27.39	2.00	152.00	28.29	41.26
T6	297.69	74.61	35.00	485.00	280.03	315.35
T7	271.28	71.45	25.00	420.00	254.37	288.19
T8	342.34	78.48	65.00	520.00	323.76	360.91
T9	3.23	2.83	0.00	10.00	2.47	3.99
T10	18.39	18.28	0.00	75.00	11.68	25.09
T11	28.38	18.85	10.00	100.00	21.21	35.55
T12	22.37	13.77	0.00	100.00	19.11	25.62
T121	11.48	13.94	0.00	95.00	8.18	14.78

QUADRO 2.2 - Tipo de Operação Cardíaca

Tipos de Operações	N Obs	Variáveis	Média	Desvio Padrão	Mínimo	Máximo	Limite Inferior de 95% de Confiança para Média	Limite Superior de 95% de Confiança para Média
Aneurisma	8	T1	88.50	43.89	0.00	150.00	51.80	125.20
		T2	2.50	2.67	0.00	5.00	0.27	4.73
		T3	31.25	31.93	5.00	100.00	4.55	57.95
		T4	39.50	22.60	15.00	80.00	20.60	58.40
		T5	27.13	9.64	10.00	37.00	19.06	35.19
		T6	372.50	73.97	270.00	485.00	310.66	434.34
		T7	333.00	58.21	255.00	420.00	284.34	381.66
		T8	428.75	72.79	315.00	520.00	367.90	489.60
		T9	2.57	2.51	0.00	5.00	0.25	4.89
		T10	25.00	43.30	0.00	75.00	-82.57	132.57
		T11	40.00	21.21	25.00	55.00	-150.59	230.59
		T12	25.00	14.64	0.00	50.00	12.76	37.24
		T121	11.25	16.20	0.00	45.00	-2.30	24.80
Cardiopatia	6	T1	97.17	55.01	0.00	160.00	39.44	154.90
Isquêmica		T2	4.17	3.43	0.00	10.00	0.57	7.77
		T3	19.50	14.40	0.00	37.00	4.38	34.62
		T4	30.17	10.70	23.00	50.00	18.93	41.40
		T5	27.33	34.54	5.00	97.00	-8.92	63.58
		T6	288.33	90.76	150.00	400.00	193.09	383.58
		T7	258.17	97.91	100.00	377.00	155.42	360.92
		T8	334.50	81.68	215.00	420.00	248.78	420.22
		T9	4.00	4.18	0.00	10.00	-1.19	9.19
		T10	16.25	2.50	15.00	20.00	12.27	20.22
		T11	53.75	34.49	25.00	100.00	-1.13	108.63
		T12	26.67	9.83	20.00	45.00	16.35	36.98
		T121	9.17	10.68	0.00	25.00	-2.05	20.38
Outros	2	T1	82.50	3.54	80.00	85.00	50.73	114.27
Procedimentos		T2	2.50	3.54	0.00	5.00	-29.27	34.27

Anexos
- 130 -
| | | | | | | | | |
|---|---|---|---|---|---|---|---|---|
| T3 | 15.00 | 14.14 | 5.00 | 25.00 | -112.06 | 142.06 |
| T4 | 24.00 | 1.41 | 23.00 | 25.00 | 11.29 | 36.71 |
| T5 | 18.50 | 2.12 | 17.00 | 20.00 | -0.56 | 37.56 |
| T6 | 220.00 | 42.43 | 190.00 | 250.00 | -161.19 | 601.19 |
| T7 | 196.00 | 41.01 | 167.00 | 225.00 | -172.48 | 564.48 |
| T8 | 267.50 | 60.10 | 225.00 | 310.00 | -272.51 | 807.51 |
| T9 | 0.00 | . | 0.00 | 0.00 | . | . |
| T10 | 25.00 | . | 25.00 | 25.00 | . | . |
| T11 | 50.00 | . | 50.00 | 50.00 | . | . |
| T12 | 32.50 | 3.54 | 30.00 | 35.00 | 0.73 | 64.27 |
| T121| 15.00 | 7.07 | 10.00 | 20.00 | -48.53 | 78.53 |
| Cardiopatia Congênita | 6 | T1 | 110.83 | 8.61 | 100.00 | 120.00 | 101.80 | 119.87 |
| | | T2 | 1.00 | 2.00 | 0.00 | 5.00 | -1.10 | 3.10 |
| | | T3 | 22.33 | 22.64 | 5.00 | 65.00 | -1.43 | 46.09 |
| | | T4 | 23.67 | 3.33 | 20.00 | 30.00 | 20.18 | 27.16 |
| | | T5 | 33.83 | 16.93 | 15.00 | 57.00 | 16.07 | 51.60 |
| | | T6 | 246.67 | 40.58 | 195.00 | 285.00 | 204.08 | 289.25 |
| | | T7 | 223.00 | 40.23 | 172.00 | 262.00 | 180.78 | 265.22 |
| | | T8 | 292.33 | 46.01 | 235.00 | 355.00 | 244.05 | 340.61 |
| | | T9 | 2.33 | 2.52 | 0.00 | 5.00 | -3.92 | 8.58 |
| | | T10| 5.00 | . | 5.00 | 5.00 | . | . |
| | | T11| 10.00 | . | 10.00 | 10.00 | . | . |
| | | T12| 23.33 | 12.11 | 10.00 | 40.00 | 10.62 | 36.04 |
| | | T121| 12.00 | 12.96 | 0.00 | 30.00 | -1.60 | 25.60 |
| Valvares | 49 | T1 | 83.51 | 43.05 | 1.00 | 175.00 | 71.14 | 95.88 |
| | | T2 | 1.76 | 2.28 | 0.00 | 5.00 | 1.10 | 2.41 |
| | | T3 | 21.45 | 24.79 | 0.00 | 140.00 | 14.33 | 28.57 |
| | | T4 | 24.24 | 10.75 | 0.00 | 65.00 | 21.16 | 27.33 |
| | | T5 | 37.71 | 29.83 | 2.00 | 152.00 | 29.15 | 46.28 |
| | | T6 | 296.04 | 68.77 | 35.00 | 408.00 | 276.29 | 315.79 |
| | | T7 | 271.80 | 67.56 | 25.00 | 385.00 | 252.39 | 291.20 |
| | | T8 | 338.37 | 73.51 | 65.00 | 460.00 | 317.25 | 359.48 |
| | | T9 | 3.40 | 2.77 | 0.00 | 10.00 | 2.51 | 4.29 |
| | | T10| 18.18 | 16.73 | 0.00 | 55.00 | 10.76 | 25.60 |
| | | T11| 22.29 | 8.67 | 10.00 | 40.00 | 18.34 | 26.23 |
| | | T12| 20.88 | 14.47 | 5.00 | 100.00 | 16.72 | 25.03 |
| | | T121| 11.59 | 14.61 | 0.00 | 95.00 | 7.40 | 15.79 |
ANEXO 3

Frequência Do Tempo T3 (Tempo De Aguardo Do Paciente Para A Realização Da Cirurgia Propriamente Dita, Na Sala De Operação)

TEMPO3	FREQUÊNCIA	PERCENTUAL	FREQUÊNCIA ACUMULATIVA	PERCENTUAL ACUMULATIVO
0	3	4.23	3	4.23
2	2	2.82	5	7.04
3	1	1.41	6	8.45
5	10	14.08	16	22.54
9	2	2.82	18	25.35
10	11	15.49	29	40.85
13	1	1.41	30	42.25
15	14	19.72	44	61.97
17	1	1.41	45	63.38
20	4	5.63	49	69.01
25	6	8.45	55	77.46
30	2	2.82	57	80.28
35	2	2.82	59	83.10
37	1	1.41	60	84.51
40	1	1.41	61	85.92
50	1	1.41	62	87.32
55	3	4.23	65	91.55
60	1	1.41	66	92.96
65	1	1.41	67	94.37
70	2	2.82	69	97.18
100	1	1.41	70	98.59
140	1	1.41	71	100.00
ANEXO 4
ANÁLISE DE SOBREVIVÊNCIA

GERAL

- Tempo T6: tempo real da operação em minutos

Figura 1 A – Sobrevivência Geral – tempo 6: T6 – Tempo Real da Operação

Obs	tempo 6	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	35	0	0.98592	0.90421	0.99800
3	150	0	0.97183	0.89203	0.99288
4	155	0	0.95775	0.87470	0.98617
5	170	0	0.94366	0.85682	0.97847
6	190	0	0.92958	0.83906	0.97007
7	195	0	0.90141	0.80429	0.95174
8	200	0	0.88732	0.78730	0.94199
9	205	0	0.87324	0.77056	0.93194
10	225	0	0.85915	0.75404	0.92161
11	230	0	0.84507	0.73773	0.91105
12	240	0	0.83099	0.72161	0.90027
13	245	0	0.78873	0.67426	0.86683
14	250	0	0.77465	0.65879	0.85537
15	255	0	0.76056	0.64344	0.84375
16	260	0	0.74648	0.62823	0.83201
17	270	0	0.71831	0.59819	0.80813
18	275	0	0.66197	0.53944	0.75902
19	280	0	0.61972	0.49646	0.72111
20	285	0	0.54930	0.42672	0.65607
21	290	0	0.49296	0.37257	0.60246
22	295	0	0.47887	0.35925	0.58884
23	300	0	0.45070	0.33289	0.56135
24	305	0	0.43662	0.31985	0.54747
25	310	0	0.42254	0.30690	0.53350
26	315	0	0.35211	0.24361	0.46232
27	320	0	0.32394	0.21900	0.43317
- Tempo T7: – tempo exato da operação em minutos

Obs	tempo 6	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
28	325	0	0.30986	0.20687	0.41845
29	328	0	0.29577	0.19485	0.40362
30	330	0	0.28169	0.18294	0.38868
31	335	0	0.26761	0.17117	0.37362
32	340	0	0.25352	0.15953	0.35845
33	345	0	0.22535	0.13666	0.32771
34	350	0	0.19718	0.11442	0.29641
35	365	0	0.18310	0.10357	0.28052
36	370	0	0.16901	0.09291	0.26446
37	375	0	0.15493	0.08246	0.24820
38	385	0	0.12676	0.06230	0.21505
39	390	0	0.11268	0.05265	0.19809
40	395	0	0.08451	0.03445	0.16323
41	400	0	0.07042	0.02603	0.14522
42	405	0	0.05634	0.01823	0.12670
43	408	0	0.04225	0.01122	0.10756
44	420	0	0.02817	0.00533	0.08765
45	430	0	0.01408	0.00120	0.06719
46	485	0	0.00000		

Nota:
- **FDS_LIC:** Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
- **FDS_LSC:** Função de Distribuição de Sobrevivência_Limite Superior de Confiança

Figura 1 B – Sobrevivência Geral – tempo 7: T7 – Tempo Exato da Operação

Obs	tempo 7	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0		1.00000	1.00000	1.00000
2	25	0	0.98592	0.90421	0.99800
3	100	0	0.97183	0.89203	0.99288
4	132	0	0.95775	0.87470	0.98617
5	165	0	0.92958	0.83906	0.97007
6	167	0	0.91549	0.82154	0.96112
7	172	0	0.90141	0.80429	0.95174
Obs	tempo 7	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
-----	---------	---------	----------------	----------	----------
8	177	0	0.88732	0.78730	0.94199
9	180	0	0.87324	0.77056	0.93194
10	202	0	0.85915	0.75404	0.92161
11	207	0	0.83099	0.72161	0.90027
12	215	0	0.81690	0.70567	0.88930
13	217	0	0.80282	0.68989	0.87815
14	222	0	0.78873	0.67426	0.86683
15	225	0	0.77465	0.65879	0.85537
16	232	0	0.76484	0.62823	0.83201
18	245	0	0.70423	0.58334	0.79602
19	247	0	0.69014	0.56860	0.78379
20	250	0	0.66197	0.53944	0.75902
21	255	0	0.64789	0.52501	0.74648
22	257	0	0.63380	0.51069	0.73385
23	260	0	0.57746	0.45434	0.68236
24	262	0	0.52113	0.39947	0.62944
25	265	0	0.50704	0.38597	0.61599
26	267	0	0.46479	0.34603	0.57514
27	272	0	0.45070	0.33289	0.56135
28	277	0	0.42254	0.30690	0.53350
29	280	0	0.40845	0.29405	0.51945
30	282	0	0.39437	0.28129	0.50530
31	285	0	0.38028	0.26863	0.49107
32	292	0	0.33803	0.23125	0.44779
33	297	0	0.32394	0.21900	0.43317
34	300	0	0.29577	0.19485	0.40362
35	305	0	0.28169	0.18294	0.38868
36	307	0	0.26761	0.17117	0.37362
37	310	0	0.25352	0.15953	0.35845
38	320	0	0.19718	0.11442	0.29641
39	342	0	0.18310	0.10357	0.28052
40	347	0	0.16901	0.09291	0.26446
41	350	0	0.15493	0.08246	0.24820
42	360	0	0.11268	0.05265	0.19809
43	372	0	0.08451	0.03445	0.16323
44	375	0	0.07042	0.02603	0.14522
45	377	0	0.05634	0.01823	0.12670
46	380	0	0.04225	0.01122	0.10756
47	382	0	0.02817	0.00533	0.08765
48	385	0	0.01408	0.00120	0.06719
49	420	0	0.00000		

Notas: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
 FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança
- Tempo T8: tempo da presença do doente na sala de operação em minutos

Figura 1 C – Sobrevivência Geral – tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

Obs	tempo 8	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	65	0	0.98592	0.90421	0.99800
3	180	0	0.97183	0.89203	0.99288
4	215	0	0.95775	0.87470	0.98617
5	225	0	0.94366	0.85862	0.97847
6	227	0	0.92958	0.83196	0.97007
7	235	0	0.90141	0.80429	0.95174
8	245	0	0.88732	0.77303	0.94199
9	250	0	0.87324	0.77056	0.93194
10	255	0	0.85915	0.75404	0.92161
11	260	0	0.83099	0.72161	0.90027
12	265	0	0.81690	0.70567	0.88930
13	270	0	0.80282	0.68989	0.87815
14	290	0	0.78873	0.67426	0.86683
15	300	0	0.76056	0.64344	0.84375
16	305	0	0.74648	0.62823	0.83201
17	310	0	0.71831	0.59819	0.80813
18	313	0	0.70423	0.58334	0.79602
19	315	0	0.67606	0.55397	0.77146
20	319	0	0.66197	0.53944	0.75902
21	320	0	0.60563	0.48233	0.70829
22	324	0	0.59155	0.46829	0.69537
23	325	0	0.57746	0.45434	0.68236
24	330	0	0.56338	0.44049	0.66926
25	335	0	0.53521	0.41305	0.64280
26	340	0	0.50704	0.38597	0.61599
27	345	0	0.47887	0.35925	0.58884
28	348	0	0.46479	0.34603	0.57514
29	350	0	0.43662	0.31985	0.54747
Obs	tempo 8	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
-----	---------	---------	---------------	---------	---------
30	355	0	0.42254	0.30690	0.53350
31	360	0	0.38028	0.26863	0.49107
32	365	0	0.33803	0.23125	0.44779
33	370	0	0.32394	0.21900	0.43317
34	375	0	0.30986	0.20687	0.41845
35	380	0	0.28169	0.18294	0.38868
36	390	0	0.25352	0.15953	0.35845
37	395	0	0.22535	0.13666	0.32771
38	407	0	0.21127	0.12546	0.31213
39	410	0	0.19718	0.11442	0.29641
40	415	0	0.16901	0.09291	0.26446
41	420	0	0.14085	0.07225	0.23174
42	428	0	0.12676	0.06230	0.21505
43	430	0	0.11268	0.05265	0.19809
44	435	0	0.09859	0.04335	0.18084
45	450	0	0.08451	0.03445	0.16323
46	455	0	0.07042	0.02603	0.14522
47	460	0	0.04225	0.01122	0.10756
48	475	0	0.02817	0.00533	0.08765
49	490	0	0.01408	0.00120	0.06719
50	520	0	0.00000		

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança
POR TIPOS DE OPERAÇÃO CARDÍACA

ANEURISMA DA AORTA

Tempo T6: tempo real da operação (em minutos)

![Graph showing Anurisma da Aorta](image)

Figura 2 A – Aneurisma da Aorta - tempo 6: T6 – Tempo Real da Operação

Obs	tempo 6	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.000	1.00000	1.00000
2	270	0	0.875	0.38700	0.98139
3	300	0	0.750	0.31481	0.93090
4	320	0	0.625	0.22933	0.86070
5	350	0	0.500	0.15204	0.77486
6	405	0	0.375	0.08701	0.67436
7	420	0	0.250	0.03707	0.55808
8	430	0	0.125	0.00659	0.42271
9	485	0	0.000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança
Figura 2 B – Aneurisma da Aorta - tempo 7: T7 – Tempo Exato da Operação

Obs	tempo7	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.000	1.00000	1.00000
2	255	0	0.875	0.38700	0.98139
3	277	0	0.750	0.31481	0.93090
4	285	0	0.625	0.22933	0.86070
5	320	0	0.500	0.15204	0.77486
6	350	0	0.375	0.08701	0.67436
7	375	0	0.250	0.03707	0.55808
8	382	0	0.125	0.00659	0.42271
9	420	0	0.000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência Limite Superior de Confiança
Tempo T8: tempo da presença do doente na sala de operação (em minutos)

![Diagrama]

Figura 2 C – Aneurisma da Aorta - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

Obs	Tempo 8	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.000	1.00000	1.00000
2	315	0	0.875	0.38700	0.98139
3	360	0	0.750	0.31481	0.93090
4	365	0	0.625	0.22933	0.86070
5	450	0	0.500	0.15204	0.77486
6	455	0	0.375	0.08701	0.67436
7	475	0	0.250	0.03707	0.55808
8	490	0	0.125	0.00659	0.42271
9	520	0	0.000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança
CARDOATIA ISQUÊMICA

- Tempo T6: tempo real da operação (em minutos)

![Figura 3 A - Cardiopatia Isquêmica - tempo 6: T6 - Tempo Real da Operação](image)

Obs	Tempo 6	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	150	0	0.83333	0.27312	0.97471
3	225	0	0.66667	0.19462	0.90443
4	275	0	0.50000	0.11095	0.80371
5	335	0	0.33333	0.04608	0.67556
6	345	0	0.16667	0.00772	0.51680
7	400	0	0.00000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
 FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

- Tempo T7: tempo exato da operação (em minutos)

![Figura 3 B - Cardiopatia Isquêmica - tempo 7: T7 - Tempo Exato da Operação](image)
Obs	tempo 7	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	100	0	0.83333	0.27312	0.97471
3	202	0	0.66667	0.19462	0.90443
4	250	0	0.50000	0.11095	0.80371
5	300	0	0.33333	0.04608	0.67556
6	320	0	0.16667	0.00772	0.51680
7	377	0	0.00000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

- Tempo T8: tempo da presença do doente na sala de operação (em minutos)

![Graph](image)

Figura 3 C – Cardiopatia Isquêmica - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

Obs	tempo 8	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	215	0	0.83333	0.27312	0.97471
3	260	0	0.66667	0.19462	0.90443
4	340	0	0.50000	0.11095	0.80371
5	365	0	0.33333	0.04608	0.67556
6	407	0	0.16667	0.00772	0.51680
7	420	0	0.00000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

Anexos
- 142 -
CARMIOPATIA CONGÉNITA

- Tempo T6: tempo real da operação (em minutos)

Figura 4 A – Cardiopatia Congênita - tempo 6: T6 – Tempo Real da Operação

Obs	tempo 6	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	195	0	0.83333	0.27312	0.97471
3	200	0	0.66667	0.19462	0.90443
4	245	0	0.50000	0.11095	0.80371
5	275	0	0.33333	0.04608	0.67556
6	280	0	0.16667	0.00772	0.51680
7	285	0	0.00000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

- Tempo T7: tempo exato da operação (em minutos)

Figura 4 B – Cardiopatia Congênita - tempo 7: T7 – Tempo Exato da Operação
Tempo T8: Tempo da Presença do Doente na Sala de Operação (em minutos)

Obs	tempo 8	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	235	0	0.83333	0.27312	0.97471
3	255	0	0.66667	0.19462	0.90443
4	320	0	0.16667	0.04608	0.67556
5	355	0	0.00000	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

Figura 4 C – Cardiopatia Congênita - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação

Anexos
- 144 -
VALVARES

Tempo T6: tempo real da operação (em minutos)

Figura 5 A – Valvares - tempo 6: T6 – Tempo Real da Operação

Obs	tempo 6	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	0.0000	1.00000	1.00000	1.00000
2	35	0	0.97959	0.86383	0.99710
3	155	0	0.95918	0.84650	0.98963
4	170	0	0.93878	0.82207	0.97983
5	195	0	0.91837	0.79695	0.96855
6	205	0	0.89796	0.77206	0.95621
7	230	0	0.87755	0.74758	0.94304
8	240	0	0.85714	0.72355	0.92920
9	245	0	0.81633	0.67674	0.89990
10	255	0	0.79592	0.65390	0.88457
11	260	0	0.77551	0.63141	0.86886
12	270	0	0.75510	0.60924	0.85280
13	275	0	0.71429	0.56579	0.81973
14	280	0	0.67347	0.52344	0.78552
15	285	0	0.59184	0.44170	0.71412
16	290	0	0.51020	0.36362	0.63913
17	295	0	0.48980	0.34466	0.61985
18	300	0	0.46939	0.32592	0.60036
19	305	0	0.44898	0.30740	0.58065
20	310	0	0.42857	0.28911	0.56073
21	315	0	0.32653	0.20128	0.45775
22	320	0	0.30612	0.18449	0.43644
23	325	0	0.28571	0.16800	0.41486
24	328	0	0.26531	0.15181	0.39300
25	330	0	0.24490	0.13596	0.37084

Anexos
- 145 -
| Obs | tempo 6 | CENSURA | SOBREVIVÊNCIA | FDS_LIC | FDS_LSC |
|-----|---------|---------|---------------|---------|---------|
| 26 | 340 | 0 | 0.22449 | 0.12045 | 0.34837 |
| 27 | 345 | 0 | 0.20408 | 0.10534 | 0.32555 |
| 28 | 350 | 0 | 0.18367 | 0.09065 | 0.30235 |
| 29 | 365 | 0 | 0.16327 | 0.07644 | 0.27874 |
| 30 | 370 | 0 | 0.14286 | 0.06278 | 0.25464 |
| 31 | 375 | 0 | 0.12245 | 0.04975 | 0.23000 |
| 32 | 385 | 0 | 0.08163 | 0.02612 | 0.17865 |
| 33 | 390 | 0 | 0.06122 | 0.01599 | 0.15162 |
| 34 | 395 | 0 | 0.02041 | 0.00165 | 0.09403 |
| 35 | 408 | 0 | 0.00000 | . | . |

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

- Tempo T7: tempo exato da operação (em minutos)

Figura 5 B – Valvares - tempo 7: T7 – Tempo Exato da Operação

Obs	tempo 7	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	25	0	0.97959	0.86383	0.99710
3	132	0	0.95918	0.84650	0.98963
4	165	0	0.91837	0.79695	0.96855
5	180	0	0.89796	0.77206	0.95621
6	207	0	0.87755	0.74758	0.94304
7	215	0	0.85714	0.72355	0.92920
8	217	0	0.83673	0.69994	0.91479
9	232	0	0.81633	0.67674	0.89990
10	240	0	0.77551	0.63141	0.86886
11	245	0	0.73469	0.58737	0.83641
12	247	0	0.71429	0.56579	0.81973

Anexos
- 146 -
| Obs | tempo | CENSURA | SOBREVIVÊNCIA | FDS_LIC | FDS_LSC |
|-----|--------|---------|---------------|------------|------------|
| 13 | 250 | 0 | 0.69388 | 0.54448 | 0.80276 |
| 14 | 257 | 0 | 0.67347 | 0.52344 | 0.78552 |
| 15 | 260 | 0 | 0.61224 | 0.46178 | 0.73232 |
| 16 | 262 | 0 | 0.55102 | 0.40221 | 0.67706 |
| 17 | 265 | 0 | 0.53061 | 0.38281 | 0.65820 |
| 18 | 267 | 0 | 0.46939 | 0.32592 | 0.60036 |
| 19 | 272 | 0 | 0.44898 | 0.30740 | 0.58065 |
| 20 | 277 | 0 | 0.42857 | 0.28911 | 0.56073 |
| 21 | 280 | 0 | 0.40816 | 0.27105 | 0.54059 |
| 22 | 282 | 0 | 0.38776 | 0.25323 | 0.52023 |
| 23 | 292 | 0 | 0.32653 | 0.20128 | 0.45775 |
| 24 | 297 | 0 | 0.30612 | 0.18449 | 0.43644 |
| 25 | 300 | 0 | 0.28571 | 0.16800 | 0.41486 |
| 26 | 305 | 0 | 0.26531 | 0.15181 | 0.39300 |
| 27 | 307 | 0 | 0.24490 | 0.13596 | 0.37084 |
| 28 | 310 | 0 | 0.22449 | 0.12045 | 0.34837 |
| 29 | 320 | 0 | 0.18367 | 0.09065 | 0.30235 |
| 30 | 342 | 0 | 0.16327 | 0.07644 | 0.27874 |
| 31 | 347 | 0 | 0.14286 | 0.06278 | 0.25464 |
| 32 | 360 | 0 | 0.08163 | 0.02612 | 0.17865 |
| 33 | 372 | 0 | 0.04082 | 0.00753 | 0.12337 |
| 34 | 380 | 0 | 0.02041 | 0.00165 | 0.09403 |
| 35 | 385 | 0 | 0.00000 | . | . |

Nota: FDS_LIC: Função de Distribuição de Sobrevivência Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência Limite Superior de Confiança

- Tempo T8: tempo da presença do doente na sala de operação (em minutos)

Figura 5 C – Valvares - tempo 8: T8 – Tempo da Presença do Doente na Sala de Operação
Obs	tempo 8	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.00000	1.00000	1.00000
2	65	0	0.97959	0.86383	0.99710
3	180	0	0.95918	0.84650	0.98963
4	227	0	0.93878	0.82207	0.97983
5	235	0	0.91837	0.79695	0.96855
6	245	0	0.89796	0.77206	0.95621
7	250	0	0.87755	0.74758	0.94304
8	260	0	0.85714	0.72355	0.92920
9	265	0	0.83673	0.69994	0.91479
10	290	0	0.81633	0.67674	0.89990
11	300	0	0.77551	0.63141	0.86886
12	305	0	0.75510	0.60924	0.85280
13	310	0	0.73469	0.58737	0.83641
14	313	0	0.71429	0.56579	0.81973
15	315	0	0.69388	0.54448	0.80276
16	320	0	0.63265	0.48209	0.75029
17	324	0	0.61224	0.46178	0.73232
18	325	0	0.59184	0.44170	0.71412
19	330	0	0.57143	0.42184	0.69570
20	335	0	0.53061	0.38281	0.65820
21	340	0	0.51020	0.36362	0.63913
22	345	0	0.46939	0.32592	0.60036
23	348	0	0.44898	0.30740	0.58065
24	350	0	0.40816	0.27105	0.54059
25	360	0	0.36735	0.23566	0.49964
26	365	0	0.34694	0.21834	0.47882
27	370	0	0.32653	0.20128	0.45775
28	375	0	0.30612	0.18449	0.43644
29	380	0	0.26531	0.15181	0.39300
30	390	0	0.22449	0.12045	0.34837
31	395	0	0.18367	0.09065	0.30235
32	410	0	0.16327	0.07644	0.27874
33	415	0	0.12245	0.04975	0.23000
34	420	0	0.10204	0.03747	0.20471
35	428	0	0.08163	0.02612	0.17865
36	430	0	0.06122	0.01599	0.15162
37	435	0	0.04082	0.00753	0.12337
38	460	0	0.00000		

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança
OUTROS PROCEDIMENTOS – PERICARDIECTOMIA -DESBRIDAMENTO CIRÚRGICO

- Tempo T6: tempo real da operação (em minutos)

Figura 6 A – Outros Procedimentos- tempo 6: T6 – Tempo Real da Operação

Obs	tempo 6	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.0	1.00000	1.00000
2	190	0	0.5	0.00598	0.91041
3	250	0	0.0	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

- Tempo T7: tempo exato da operação (em minutos)
Figura 6 B – Outros Procedimentos- tempo 7: T7 – Tempo Exato da Operação

Obs	tempo 7	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.0	1.00000	1.00000
2	167	0	0.5	0.00598	0.91041
3	225	0	0.0	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança

- Tempo T8: tempo da presença do doente na sala de operação (em minutos)

Figura 6 C – Outros Procedimentos- tempo 8: T8– Tempo da Presença do Doente na Sala de Operação

Obs	tempo 8	CENSURA	SOBREVIVÊNCIA	FDS_LIC	FDS_LSC
1	0	.	1.0	1.00000	1.00000
2	225	0	0.5	0.00598	0.91041
3	310	0	0.0	.	.

Nota: FDS_LIC: Função de Distribuição de Sobrevivência_Limite Inferior de Confiança
FDS_LSC: Função de Distribuição de Sobrevivência_Limite Superior de Confiança
ANEXO 5
COMO CONSTRUIR A MATRIZ DE RELAÇÃO

A “matriz de relação” possui 10 hipóteses, constituídas de hipóteses ímpares e pares.

- As hipóteses ímpares – são relativas às operações novas do mesmo tipo e são as hipóteses menos problemáticas, porque não exigem muitos cálculos, apenas os cálculos matemáticos simples de subtração de valores, observando-se que se deve obedecer a regra criada neste estudo: a de poder exceder o tempo disponível em até 1 hora e 30 minutos (90 minutos) para realização de nova operação do mesmo tipo, e de acordo com a diferença do tempo que “sobrou” da operação anterior, porque nestas hipóteses ímpares, a pergunta que se faz é: – “Pode-se realizar outra operação do mesmo tipo?” Isto significa que com o tempo restante da primeira operação, deve-se verificar se é possível realizar outra operação do mesmo tipo.”

- Para hipóteses pares – operações novas não do mesmo tipo se exige mais atenção porque além de fazer os cálculos simples não devendo esquecer a regra: “pode-se exceder o tempo até 1 hora e 30 minutos (90 minutos)” para realização de nova operação não do mesmo tipo de acordo com a diferença do tempo que “sobra” da operação anterior. A pergunta que se faz nas hipóteses pares de acordo com a diferença dos tempos é: - “Pode-se realizar outra operação não do mesmo tipo, obedecendo a regra estabelecida? Isto significa que com o tempo restante da primeira operação, verificar se é possível realizar nova operação não do mesmo tipo.” Pode-se nestas hipóteses fazer múltiplas escolhas de uma nova operação.

Exemplo para Hipótese H1 e H2

- Hipóteses ímpares compara-se o tempo diretamente.

 Aneurisma - Total T8: 520 minutos, (Vide Quadro abaixo)

 Dif Tempo Máximo - T8 = (720 – 520 = 200 minutos). A pergunta que se faz para a hipótese 1: Posso realizar novas operações do mesmo tipo, com o tempo restante?
Não posso, porque preciso ter para operações de aneurisma um tempo máximo de 520 minutos, e o que sobrou de tempo da operação anterior são 200 minutos. Então escrevo apenas na célula ou abaixo da operação de aneurisma o que sobrou sobra (200) ou s(200).

Outros Procedimentos: Total T8: 310 minutos

Dif Tempo Máximo - T8: 410 minutos

A pergunta que se faz para a hipótese 1: Posso realizar novas operações do mesmo tipo, com o tempo faltante? – Sim, porque Outros Procedimentos tem um tempo máximo de 310 minutos e o que sobrou da operação anterior (a mesma) foram 410 minutos. (720-310=410 minutos) Pode-se realizar outra operação de outros procedimentos (porque a hipótese 1 (ou as ímpares), são sobre operações do mesmo tipo e o tempo que sobra da operação anterior, é possível realizar outra operação de “outros procedimentos”. Portanto agora, fazendo uma nova operação do mesmo tipo, sobra um tempo de 100 minutos do mesmo tipo, s(100):OP (outros procedimentos)

Hipóteses pares compara-se o tempo como na hipótese ímpar, usando da diferença dos tempos daquela hipótese e verifica-se com o tempo que sobra se pode fazer outra operação não do mesmo tipo. Deve-se atentar para a regra novamente de não exceder o tempo em 90 minutos. Pode-se nestas hipóteses fazer múltiplas escolhas de uma nova operação.

Exemplo: Aneurisma - Total T8: 520 minutos, Dif Tempo Máximo - T8 = 200 minutos

A pergunta que se faz para a hipótese 1: Posso realizar novas operações não do mesmo tipo, com o tempo faltante? – Não posso, porque o que sobrou de tempo, 200 minutos, não é possível realizar nem mesmo operações de “Outros Procedimentos” no intervalo máximo de 90 minutos conforme a Regra, porque se o fizer teremos (310 (que é o tempo máximo de outros procedimentos) – 200 (que é o que sobrou da operação anterior), tem como resultado 310 – 200 = 110 minutos e a regra diz “que pode exceder o tempo em...
até 90 minutos”. Daí não ser possível fazer outra operação não do mesmo tipo. Escreve na matriz sobra (200) ou s(200):nr ou s(200). Obs.: nr = não realizada outra operação

- Valvares: Total T8: 260 minutos (720 – 460 = 260 minutos). Dif Tempo Máximo - T8 = 260 minutos.

A pergunta que se faz para a hipótese 1: Posso realizar novas operações não do mesmo tipo, com o tempo faltante? – Sim, posso fazer uma operação de Outros Procedimentos, porque ela está no intervalo da Regra de 0 – 90 minutos.

Outros Procedimentos – T8: 310 minutos. Como sobrou 260 minutos e a diferença se fizer outra operação é de (310 – 260 = 50 minutos) – Então e (50): OP.
QUADRO 5- Tempos máximos na sala de operação (minutos) -T6: tempo real da operação – T7: tempo exato da operação – T8: tempo da presença do doente na sala de operação

Tempo Máximo (horas/minutos)	Geral	Aneurisma	Valvares	Cardiopatia Isquêmica	Cardiopatia Congênita	Outros Procedimentos
Tempos na Sala de Operação						
T8	520	520	460	420	355	310
T7	420	420	385	377	262	225
T6	485	485	408	400	285	250
Tempo Máximo (TMáx) Disponíveis						
TMáx (12 horas) = TMáx (720 minutos)	720	720	720	720	720	720
TMáx (11 horas) = TMáx (660 minutos)	660	660	660	660	660	660
TMáx (11 horas e 30 minutos)(considerando o tempo de limpeza da literatura) = TMáx (690 minutos)	690	690	690	690	690	690
TMáx (12 horas)-minimo de limpeza = TMáx (720 minutos)-minimo de limpeza=TMáx(720 minutos)-TLMín	710	695	710	695	710	670
TMáx (12 horas)-máximo de limpeza = TMáx (720 minutos)-máximo de limpeza=TMáx(720)-TLMáx	660	665	680	660	710	670
Diferença = TMáx (720 minutos) - T8 (H1 e H2)	200	200	260	300	365	410
Diferença = TMáx (660 minutos) - T8 (H3 e H4)	140	140	200	240	305	350
Diferença = TMáx (690 minutos) - T8 (H5 e H6)	170	170	230	270	335	380
Diferença = TMáx (720 minutos)-TLMáx tipo (H7 e H8)	140	145	220	240	355	360
Diferença = TMáx (720 minutos)-TLMín tipo (H9 e H10)	190	175	250	275	355	360
Tempo de Limpeza da Sala de Operação						
Tempo Limpeza Mínimo (TLMín)	10	25	10	25	10	50
Tempo Limpeza Máximo (TLMáx)	60	55	40	60	10	50
Tempo Limpeza Literatura (aproximadamente) = TLL	30	30	30	30	30	30
ANEXO 6
QUADROS DE APOIO À MATRIZ DE RELAÇÃO “SOFTWARE” SAS

QUADRO 6.1 - Hipótese=1 - Novas Operações do mesmo tipo com sobras de tempo de 200 minutos da operação anterior

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(200)
Congenito		355	s(365)
	Congenito	355	s(10)
Isquemica		420	s(300)
Outros		310	s(410)
	Outros	310	s(100)
Valvares		460	s(260)

QUADRO 6.2 - Hipótese=2 - Novas Operações não do mesmo tipo com sobras de tempo de 200 minutos da operação anterior

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(200)
Congenito		355	s(365)
ou Isquemica		420	s(55)
ou Outros		310	s(10)
Isquemica		420	s(300)
ou Congenito		355	s(55)
ou Outros		310	e(10)
Outros		310	s(410)
ou Valvares		460	e(50)
ou Isquemica		420	e(10)
ou Congenito		355	e(55)
Valvares		460	s(260)
ou Outros		310	e(50)
QUADRO 6.3 - Hipótese=3 - Novas Operações do mesmo tipo com sobras de tempo de 140 minutos da operação anterior.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(140)
Congenito		355	s(305)
	Congenito	355	e(50)
Isquemica		420	s(240)
Outros		310	s(350)
	Outros	310	e(40)
Valvares		460	s(200)

QUADRO 6.4 - Hipótese=4 Novas Operações não do mesmo tipo com sobras de tempo de 140 minutos da operação anterior.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(140)
Congenito		355	s(305)
	ou Outros	310	e(05)
Isquemica		420	s(240)
	ou Outros	310	e(70)
Outros		310	s(350)
	ou Isquemica	420	e(70)
	ou Congenito	355	e(05)
Valvares		460	s(200)
QUADRO 6.5 Hipótese=5 - Novas Operações do mesmo tipo com sobras de tempo de 170 minutos da operação anterior.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(170)
Congenito		355	s(335)
	Congenito	355	e(20)
Isquemica		420	s(270)
Outros		310	s(380)
Valvares		460	s(230)

QUADRO 6.6 - Hipótese=6 - Novas Operações não do mesmo tipo com sobras de tempo de 170 minutos da operação anterior.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(170)
Congenito		355	s(335)
ou Isquemica		420	e(85)
ou Outros		310	e(40)
Isquemica		420	s(270)
ou Congenito		355	e(85)
ou Outros		310	e(40)
Outros		310	s(380)
ou Valvares		460	e(80)
ou Isquemica		420	e(40)
ou Congenito		355	s(25)
Valvares		460	s(230)
ou Outros		310	e(80)
QUADRO 6.7 - Hipótese=7 - Novas Operações do mesmo tipo com sobras de tempo de 140 minutos da operação anterior.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(145)
Congenito		355	s(355)
Isquemica		420	s(240)
Outros		310	s(360)
Valvares		460	s(220)

QUADRO 6.8 - Hipótese=8 - Novas Operações não do mesmo tipo com sobras de tempo de 140 minutos da operação anterior.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(145)
Congenito		355	s(355)
ou Isquemica		420	e(65)
ou Outros		310	s(45)
Isquemica		420	s(240)
ou Outros		310	e(70)
Outros		310	s(360)
ou Isquemica		420	e(60)
ou Congenito		355	s(05)
Valvares		460	s(220)
ou Outros		310	e(90)
Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
------------------------	-------------------	------------------------	--------------------------------------
Aneurisma		520	s(175)
Congenito		355	s(355)
	Congenito	355	s(00)
Isquemica		420	s(275)
Outros		310	s(360)
	Outros	310	s(50)
Valvares		460	s(250)

QUADRO 6.10 - Hipótese=10 - Novas Operações do mesmo não tipo com sobras de tempo de 190 minutos da operação anterior.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(175)
Congenito		355	s(355)
ou Isquemica		420	e(65)
ou Outros		310	s(45)
Isquemica		420	e(275)
ou Congenito		355	e(80)
ou Outros		310	e(35)
Outros		310	s(360)
ou Isquemica		420	e(60)
ou Congenito		355	s(05)
Valvares		460	s(250)
ou Outros		310	e(60)
ANEXO 7
DESPERDÍCIO DE HORAS/MINUTOS (PERDAS DE TEMPO DE OCUPAÇÃO DA SALA DE OPERAÇÃO)

Quadro 7.1 - Hipótese=11 – Operações a serem realizadas com o tempo máximo disponível, com três horas/180 minutos a menos, para operações do mesmo tipo.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(20)
Congenito		355	s(185)
Geral		520	s(20)
Isquemica		420	s(120)
Outros		310	s(230)
Outros		310	e(80)
Valvares		460	s(80)

Quadro 7.2 - Hipótese=12 – Operações a serem realizadas com o tempo máximo disponível, com três horas/180 minutos a menos, para operações não do mesmo tipo.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	s(20)
Congenito		355	s(185)
Geral		520	s(20)
Isquemica		420	s(120)
Outros		310	s(230)
Valvares		460	s(80)
Quadro 7.3 - Hipótese=13 – Operações a serem realizadas com o tempo máximo disponível, com 30% do tempo máximo disponível a menos, para operações do mesmo tipo.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	e(16)
Congenito		355	s(149)
Geral		520	e(16)
Isquemica		420	s(84)
Outros		310	s(194)
Valvares		460	s(44)

Quadro 7.4 - Hipótese=14 – Operações a serem realizadas com o tempo máximo disponível, com 30% do tempo máximo disponível a menos, para operações não do mesmo tipo.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	e(16)
Congenito		355	s(149)
Geral		520	e(16)
Isquemica		420	s(84)
Outros		310	s(194)
Valvares		460	s(44)

Quadro 7.5 - Hipótese=15 – Operações a serem realizadas com o tempo máximo disponível, com 40% do tempo máximo disponível a menos, para operações do mesmo tipo.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	e(88)
Congenito		355	s(77)
Geral		520	e(88)
Isquemica		420	s(12)
Outros		310	s(122)
Valvares		460	e(28)
Quadro 7.6 - Hipótese=16 – Operações a serem realizadas com o tempo máximo disponível, com 40% do tempo máximo disponível a menos, para operações não do mesmo tipo.

Procedimento Principal	Novo Procedimento	Tempo Limite (minutos)	Tempo Sobrando ou Excedendo (minutos)
Aneurisma		520	e(88)
Congenito		355	s(77)
Geral		520	e(88)
Isquemica		420	s(12)
Outros		310	s(122)
Valvares		460	e(28)