A new PacBio genome sequence of an Australian *Pyrenophora tritici-repentis* race 1 isolate

Paula Moolhuijzen*, Pao Theen See and Caroline S. Moffat

Abstract

Objectives: The necrotrophic fungal pathogen *Pyrenophora tritici-repentis* (Ptr) is the causal agent of tan spot (or yellow) spot disease of wheat (*Triticum aestivum*), which has a significant economic impact on the grain industry worldwide [1]. Ptr, a necrotrophic fungal pathogen is an ascomycete within the order Pleosporales, which also contains other important crop pathogens [2, 3]. The production of necrotrophic host-specific effectors contributes to the pathogenicity of this fungus, and three Ptr effectors have been described to date. ToxA and ToxB, are both well-characterised small effector proteins that produce necrosis and chlorosis symptoms respectively [4, 5], while ToxC, which also causes chlorosis, remains to be identified and may be the product of a secondary metabolite gene cluster [6].

The ToxA gene, believed to have been horizontally transferred to Ptr from *Parastagonospora nodorum* [7], can occupy different loci positions in different isolates and races of Ptr [8]. It has been proposed that this type of translocation could be the result of gene proximity to a chromosomal break point [9]. Recently, we confirmed large scale chromosomal rearrangements/fusions between two race 1 isolates sourced from North America (Pt-1C-BFP) [10] and Australia (M4) [11]. We therefore undertook PacBio Biosciences (PacBio) Sequel system for long-read sequencing of a second Australian Ptr isolate (V1), collected from a different geographic state, for whole genome comparison necessary to confirm these larger rearrangements and examine any further genomic variations. Furthermore, a high quality PacBio genome assembly enables the characterization of predicted

Keywords: *Pyrenophora tritici-repentis*, Genome assembly, PacBio sequel, Comparative analysis, ToxA, Tan spot, Yellow spot

Introduction

The necrotrophic fungal pathogen *Pyrenophora tritici-repentis* (Ptr) is the causal agent of tan (or yellow) spot disease of wheat (*Triticum aestivum*), which has a significant economic impact on the grain industry worldwide [1]. Ptr, a necrotrophic fungal pathogen is an ascomycete within the order Pleosporales, which also contains other important crop pathogens [2, 3]. The production of necrotrophic host-specific effectors contributes to the pathogenicity of this fungus, and three Ptr effectors have been described to date. ToxA and ToxB, are both well-characterised small effector proteins that produce necrosis and chlorosis symptoms respectively [4, 5], while ToxC, which also causes chlorosis, remains to be identified and may be the product of a secondary metabolite gene cluster [6].

The ToxA gene, believed to have been horizontally transferred to Ptr from *Parastagonospora nodorum* [7], can occupy different loci positions in different isolates and races of Ptr [8]. It has been proposed that this type of translocation could be the result of gene proximity to a chromosomal break point [9]. Recently, we confirmed large scale chromosomal rearrangements/fusions between two race 1 isolates sourced from North America (Pt-1C-BFP) [10] and Australia (M4) [11]. We therefore undertook PacBio Biosciences (PacBio) Sequel system for long-read sequencing of a second Australian Ptr isolate (V1), collected from a different geographic state, for whole genome comparison necessary to confirm these larger rearrangements and examine any further genomic variations. Furthermore, a high quality PacBio genome assembly enables the characterization of predicted
secondary metabolite gene clusters and effectors often contained in highly complex genomic regions.

Main text

Methods

Isolate collection and sequencing

The pathogenic isolate V1 was isolated from tan spot infected leaves collected from Horsham, Victoria, Australia in 2015. V1 was cultured in vitro from a single spore [12].

V1 genomic DNA was extracted from 3-day old mycelia grown in vitro in Fries 3 liquid medium, using a BioSprint 15 DNA Plant Kit (Qiagen, Hilden, Germany) and automated workstation according to the manufacturer’s instruction [11]. DNA was further treated with 50 μg/ml of RNase enzyme (Qiagen, Hilden, Germany) for 1 h followed by phenol/chloroform extraction, followed by precipitation with sodium acetate and ethanol, and finally resuspension in TE buffer [11].

The V1 genome was sequenced using PacBio Biosciences (PacBio) Sequel small-molecule real-time sequencing (SMRT) Cell Technology at 283X to yield 11.4 Gb (1,319,569 long reads) by Novogene Co., Ltd, Hong Kong. The V1 genome was also sequenced via Illumina HiSeq 150 bp PE by Novogene Co., Ltd (Hong Kong) to yield 3.2 Gb at 80X coverage. Illumina read Phred quality score distribution was greater than 30, and reads containing adaptors were removed.

Plant materials and pathogenicity assays

To assess pathogenicity and race classification differential wheat genotypes, which differ in their effector sensitivities were used for inoculation [5, 13]. The wheat lines used were Glenlea and BG261 (both ToxA-sensitive), 6B662 (ToxB-sensitive) and 6B365 (ToxC-sensitive). Two week-old wheat (Triticum aestivum L.) seedlings were spore-inoculated by spraying the whole plants evenly with approximately 2000 conidia/ml and grown under controlled growth conditions [14]. The second leaves were harvested 7-days post-inoculation, visually inspected for symptoms and photographed. Infection experiments were repeated twice with four replicate plants per wheat line to demonstrate the pathogenicity and race classification.

Genome assembly of V1 and comparative analysis

PacBio sequence data was error-corrected and assembled using linux-amd64 Canu 1.8 software [15] guided by a genome size of 40 Mb. Illumina PE reads were quality trimmed for random hexamer primers on the 5’ read end using Trimmomatic v0.22 [16]. The high quality trimmed Illumina reads were aligned to the Canu genome assembly using BWA 0.7.14-r1138 [17] and filtered for concordant PE read alignments using samttools 0.1.19-96b5f2294a [18]. The Canu genome assembly was additionally corrected with the high quality Illumina alignments using Pilon 1.2 [19] to generate a final polished V1 sequence assembly with SNP and INDEL corrections.

V1 was then aligned to Pt-1C-BFP [10] and M4 [11] scaffolded chromosomes using NUCmer v3.1 (-maxmatch -coords). The sequence alignment for Pt-1C-BFP (NCBI Accession DS231618.1), M4 (chr6) and V1 (C11 reverse complemented and C12 reverse complemented) was conducted using Progressive Mauve 2015-02-25 [20], and EasyFig Version 2.2.3 [21], BLASTN, filter 500 bp length.

Gene prediction and functional annotation

M4 Illumina RNA-seq data [11] was aligned to V1 using TopHat v2.0.12 [22] (-N 2 -i 10 -I 5000 -p 16 -no-discord - ant -no-mixed -report-secondary-alignments -micro-exon-search -library-type fr-firststrand) for supporting ab initio gene predictions by CodingQuarry v1.2 [23] in pathogen mode (PM). Ab initio gene predictions were also made with GeneMark-ES v4.33 [24].

Pt-1C-BFP and M4 reference proteins [10] [11] were aligned to V1 using Exonerate v2.2.0 [25] (–showvulgar no -showalignment no –minintron 10 –maxintron 3000) in mode protein2genome. The ab initio gene predictions and exonerate alignments were then combined using EvidenceModeller v1.1.1 [26] with a minimum intron length of 10 bp and weightings of CodingQuarry:1, GeneMark. hmm:1, protein exonerate:2.

Gene annotations were assigned by BLASTX v2.2.26 searches across NCBI RefSeq and NR (taxon = Ascomycota) (October 2018) databases and RPS-BLAST v2.2.26 of Pfam, Smart and CDD domain databases (October 2018). Final gene annotations were summarised by AutoFACT v3.4 [27].

Pt-1C-BFP, M4 and V1 proteins were clustered to identify orthologous genes using OrthoFinder version 1.1.4 [28]. Predicted gene proteins for isolates Pt-1C-BFP, M4 and V1 were also assessed using BUSCO version3 [29] against Fungi OrthoDB version 9.

Results

Plant infection assays confirmed V1 as a race 1 isolate (producing ToxA and ToxC), by the presence of necrosis and chlorosis symptoms on the differential wheat lines Glenlea and 6B365 respectively, and absence of tan spot symptoms on Auburn and 6B662 (Fig. 1a). Furthermore, the induced chlorosis symptoms on the tan spot susceptible Australian commercial wheat cultivar Yitpi, also confirmed V1 pathogenicity (Fig. 1b).
The genomic sequence of V1 was assembled into 33 contiguous sequences with a total length of 40,408,077 bp and a N50 of 3,421,861 bp. The mean and longest contig sizes were 1,224,487 bp and 9,664,470 bp respectively. V1 contig length statistics showed an improvement in comparison to M4 and Pt-1C-BFP (Table 1). A total of 14,050 protein coding genes were annotated for V1, which included the major effector ToxA (PtrV1_13859) positioned on contig12: 1,348,464–1,349,050. A total of 10,398 genes were orthologous to Pt-1C-BFP and M4. The V1 annotated genome has been deposited with National Center for Biotechnology Information (NCBI) GenBank under the accession SAXQ00000000.

Whole genome alignment of V1 to M4 (PacBio RSII) and Pt-1C-BFP (Sanger) confirmed the same large-scale rearrangements in V1 that were found in M4 for chr3, chr7 and the distal regions of chr1 and 2 when compared to Pt-1C-BFP (Fig. 2a). However, V1 had sequence breaks at points not observed for M4 chr6 and observed for chr10 (which were confirmed previously by M4 optical mapping) [11]. The sequence alignment of M4 (chr6:1.57–1.75 Mb), Pt-1C-BFP (chr6 1.32–1.50) and V1 (contigs 11 and 12) highlight the sequence break point in V1 76,077 bp upstream of the ToxA effector gene (Fig. 2b), that was not found in M4.

Discussion
The PacBio sequence for V1 had longer assembly statistics when compared to the recent M4 PacBio RSII (six SMRT cells) assembly, possibly due to the higher depth of coverage obtained from the PacBio Sequel system for overlap assembly.

The sequence comparison of V1 to both M4 and Pt-1C-BFP confirmed the chromosomal rearrangements for M4 chr1, chr2, chr3 and chr7 for the Australia isolates, which appears stable despite isolates being collected from different geographic states. Smaller scale differences

Table 1 *Pyrenophora tritici-repentis* race 1 isolate genome information and assembly statistics

Isolate information	V1	M4*	Pt-1C-BFP*
Sequencing Platform	PacBio Sequel	PacBio RSII	Sanger, Illumina
Genome accession	SAXQ00000000	NQIK00000000	AAXI00000000
Collection site	Victoria, Australia	Western Australia, Australia	South Dakota, USA
Collection year	2015	2009	1994
Contig assembly statistics			
Total length (Mb)	40.4	40.9	38.0
Number	33	51	48
N50 (Mb)	3.4	2.9	1.9
Mean (Kb)	1224	802	778
Max (Mb)	9.6	5.6	6.7
GC %	50.4	50.7	50.8
Gene predictions			
Number	14,050	13,797	12,171
% BUSCO gene	96.55	98.62	98.62

* Previously published genome assemblies

b Complete and fragmented gene
between V1 and M4 were however detected in chr4, chr6, chr7 and chr8. Also, V1 had a sequence break upstream of ToxA with a significant sequence variation between Pt-1C-BFP and M4 in both length and complexity that was not resolved by assembly. These larger and smaller scale rearrangements can impact gene clusters, especially when they are proximal to complex sub-telomeric regions and breakpoints. This resource will therefore be useful for future ‘omics experiments and comparative Ptr genomic analyses.

Limitations
Although all methods have been made as consistent as possible for comparative analyses, this analysis has used databases, software and PacBio sequencing versions currently available, which may be updated in the future. The comparison of two Australian long-read assemblies is only an indication of potential genome stability in Australia.

Abbreviations
Ptr: Pyrenophora tritici-repentis; PacBio: PacBio Biosciences; SRMT: small-molecule real-time sequencing; NCBI: National Centre for Biotechnology Information.

Acknowledgements
We thank the Australian Government National Collaborative Research Infrastructure Strategy (NCRIS) for providing access to Pawsey Supercomputing under a National Computational Merit Allocation Scheme (NCMAS), Nectar Research/Pawsey Nimbus Cloud resources. We also thank Mr John Robertson for the provision of tan spot leaf samples from Horsham, Victoria, and Kalai Marathamuthu (Curtin University) for assistance with the pathogenicity assays.

Authors’ contributions
PM conducted the bioinformatics analysis and wrote the draft manuscript. PTS and CM conducted the molecular analysis. CM led the project conceptualization. All authors contributed to reviewing and editing this manuscript. All authors read and approved the final manuscript. All authors agree to the publication policies of BMC Research Notes.

Funding
The analysis, data interpretation and writing of the manuscript were generously funded through the Grains and Research Development Corporation (project code CUR0023).
Availability of data and materials
All data generated or analysed during this study are included in this article. The assembled and annotated genome for isolate V1 was submitted to NCBI GenBank repository under accession SAXQ000000000.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 April 2019 Accepted: 28 September 2019 Published online: 04 October 2019

References
1. Moffat CS, Santana MF. Diseases affecting wheat: tan spot. In: Oliver R, editor. Integrated disease management of wheat and barley. Cambridge: Burleigh Dodds; 2018.
2. Oliver R, Tan K, Moffat C. Necrotrophic pathogens of wheat. Encycl Food Grains. 2016;4:273–8.
3. Ellwood SR, Syme RA, Moffat CS, Oliver RP. Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA. Fungal Genet Biol. 2012;49(10):825–9.
4. Strelkov SE, Ballance GM. Characterization of a host-specific protein toxin (Ptr ToxB) from Pyrenophora tritici-repentis. Mol Plant Microb Interact. 1999;12(8):728–32.
5. Ciuffetti LM, Tuori RP, Gaventa JM. A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell. 1997;9(2):155–44.
6. Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Frand LJ. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology. 2002;92(5):527–33.
7. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, et al. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006;38(8):953–6.
8. Aboukhaddour R, Cloutier S, Ballance GM, Lamari L. Genome characterization of Pyrenophora tritici-repentis isolates reveals high plasticity and independent chromosomal location of ToxA and ToxB. Mol Plant Pathol. 2009;10(2):201–12.
9. Bertazzi S, Williams AH, Jones DA, Syme RA, Tan KC, Hane JK. Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic fungi. Mol Plant Microb Interact. 2018;31(8):779–88.
10. Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, et al. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (Bethesda). 2013;3(1):41–63.
11. Moolhuijzen P, See PT, Hane JK, Shi G, Liu Z, Oliver RP, et al. Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics. 2018;19(1):279.
12. Moffat CS, See PT, Oliver RP. Leaf yellowing of the wheat cultivar Mace in the absence of yellow spot disease. Australas Plant Pathol. 2015;44(2):161–6.
13. Lamari L, Strelkov SE, Yahyacou A, Orabi J, Smith RB. The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology. 2003;93(4):391–6.
14. Moffat CS, See PT, Oliver RP. Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis. Mol Plant Pathol. 2014;15(9):919–26.
15. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.
16. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
17. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
19. Walker BJ, Abeel T, Shea T, Priest M, Aboueliel A, Salzthumam S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11):e112963.
20. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–403.
21. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10.
22. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
23. Testa AC, Hane JK, Ellwood SR, Oliver RP. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics. 2015;16:170.
24. Borodovsky M, Lomsadze A. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr Protoc Bioinformatics. 2011;1:1–10.
25. Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.
26. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EvidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7.
27. Koski LB, Gray MW, Lang BF, Burger G. AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics. 2005;6:615.
28. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
29. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 2019;1962:227–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.