Research Article

Variable Step Size Adams Methods for BSDEs

Qiang Han

1Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan, Shandong 250100, China

Correspondence should be addressed to Qiang Han; 201411272@mail.sdu.edu.cn

Received 4 October 2021; Revised 12 November 2021; Accepted 15 November 2021; Published 9 December 2021

Academic Editor: Mehmet Emir Koksal

Copyright © 2021 Qiang Han. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For backward stochastic differential equations (BSDEs), we construct variable step size Adams methods by means of Itô–Taylor expansion, and these schemes are nonlinear multistep schemes. It is deduced that the conditions of local truncation errors with respect to Y and Z reach high order. The coefficients in the numerical methods are inferred and bounded under appropriate conditions. A necessary and sufficient condition is given to judge the stability of our numerical schemes. Moreover, the high-order convergence of the schemes is rigorously proved. The numerical illustrations are provided.

1. Introduction

In 1973, Bismut [1] introduced the linear BSDEs. Until 1990, the well-posedness result of nonlinear BSDEs was rigorously proved by Pardoux and Peng [2–4]. After boomingly developed for three past decades, BSDEs become a vital tool to formulate many problems such as mathematical finance [5], partial differential equations [4], actuarial and financial [6], risk measures [7], and finance [8]. However, the theory of nonlinear BSDEs indicates that a majority of nonlinear BSDEs do not have analytical solutions [9]. Thus, the main purpose of this paper is to design a new numerical scheme to solve the following BSDE:

$$Y_t = \Phi(W_T) + \int_t^T f(s, Y_s, Z_s)ds - \int_t^T Z_sdW_s, \quad (1)$$

where $T > 0$ denotes a fixed terminal time and W is a d-dimensional Brownian motion defined on a filtered complete probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})$; $\Phi(W_T): \mathbb{R}^d \rightarrow \mathbb{R}^m$ is a given terminal condition of BSDE, and $f(t, y, z): [0, T] \times \mathbb{R}^m \times \mathbb{R}^{md} \rightarrow \mathbb{R}^m$ is the generator function. In addition, they satisfy the following.

Assumption 1. $f(t, Y, Z) \in C^k_b, k \in \mathbb{N}^*$, and $\Phi(W_T) \in C^1_b$ where C^k_b are the set of all k-times continuously differential functions with all partial derivatives bounded.

The papers with respect to numerical solutions of BSDEs are unlikely to list exhaustively because there is a vast literature. Therefore, we recommend milestone papers to readers with respect to time-discretization of BSDEs. The paper [10] was the first work of designing efficient algorithms for BSDEs. After that, a modified and implementable numerical scheme was adopted to calculate BSDEs in [11]. In the meantime, the Malliavin calculus and Monte Carlo methods were utilized by [12] to discretize BSDEs. The empirical regression method was constructed by [13] for BSDEs. The papers [14, 15] presented the θ-scheme to discretize BSDEs. The forward Picard iterations method was designed by [16]. The cubature method was used to solve BSDEs in [14, 17]. In [15], authors proposed the BCOS method based on the Fourier cosine series expansions to approximate the solutions of BSDEs. The stochastic grid binding method [18] was introduced to solve BSDEs. The authors in [19] proposed the branching diffusion method for BSDEs, and the branching techniques do not suffer from the curse of dimensionality. A deep learning method was constructed to solve BSDEs. The authors in [20] proposed the branching diffusion method for BSDEs, and the branching techniques do not suffer from the curse of dimensionality. A deep learning method was constructed to solve BSDEs via the Euler scheme under the condition of minimizing the global loss function. The papers [22, 23] improved the deep learning method via solving the fixed point problem.
If the Euler scheme (explicit, implicit, or generalized) is utilized to discretize BSDEs, the order of discretization error is 1/2 (see [11, 13, 18, 24]). The \(\theta \)-schemes [14, 15] are adopted to discretize BSDEs, and the corresponding rate of convergence is 2. To obtain higher-order schemes, the multistep schemes [16, 25–27] are developed to solve BSDEs.

From the above review, the time-discretization of BSDEs can adopt low-order schemes or high-order schemes. Notice that the Euler schemes, the \(\theta \)-schemes, and the multistep schemes are constant variable step size. And there are a large number of documents about the constant variable step size schemes. This implies that the theory of implementable numerical methods of BSDEs is booming. The variable step size numerical methods play a vital role in the field of numerical methods of stochastic differential equations (see [28, 29]) while they are not seen in the field of numerical theory of BSDEs. Thus, for this motivation, this paper is to provide novel high-order nonlinear discretization schemes called variable step size Adams scheme (14) by utilizing Itô–Taylor expansion. Note that our high-order nonlinear scheme is always explicit with respect to \(t \). It is uniformly Lipschitz with respect to \(u \). The scheme is always explicit with respect to \(Y \). It is equipped with \(\varphi \) and \(\chi \). The latter has the advantage that we can adopt low-orders schemes or high-orders schemes. Notice that our high-order nonlinear scheme is always explicit with respect to \(t \). It is equipped with \(\varphi \) and \(\chi \). The latter has the advantage that we can adopt low-orders schemes or high-orders schemes.

For readers’ convenience, we introduce some symbols before providing the lemma. For a multi-index with finite length \(\alpha \), let \(\ell (\alpha) \) be the length of a multi-index of \(\alpha \); \(\mathcal{A}^n(\alpha) \) is the set of all functions \(\nu : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R} \) for which \(\mathcal{L} v \) is well defined and continuous; \(\mathcal{A}^n_b \) denotes the subset of all functions \(\nu \in \mathcal{A}^n(\alpha) \) such that the function \(\mathcal{L} v \) is bounded; for positive integer \(n \), \(\mathcal{A}^n_\alpha \) is the set of functions \(\nu \) such that \(\nu^\alpha \in \mathcal{A}^n_b \) for all \(\nu \in [\alpha] \leq n \).

Lemma 2 (see Proposition 2.2 in [30]). Let \(n \geq 0 \). Then, for a function \(\nu \in \mathcal{A}^{n+1}_b \), \(E_t [\nu(t+h, X_t)] = \nu_t + h\nu_t^{(0)} + h^2/2\nu_t^{(0)} + \cdots + h^n/n!\nu_t^{(n)} + \mathcal{O}(h^{n+1}) \), where \(E_t [\cdot] = E [\cdot|\mathcal{F}_t] \); \(\nu_t^{(0)} = \mathcal{L} \nu_t \). \(\mathcal{L} = \mathcal{L}_0 \circ \mathcal{L}_1 \circ \cdots \circ \mathcal{L}_n \).

3. Variable Step Size Adams Methods

In this part, we introduce the variable step size Adams schemes of BSDEs in detail.

Now, we deduce the variable step size Adams schemes of BSDEs with respect to \(Y \). A discretization \(\pi = \{ t_0, t_1, \ldots , t_N \} \) of the time interval \([0,T]\) is defined with step size \(h_i = t_{i+1} - t_i \) and \(h = \max_{0 \leq i \leq N-1} h_i \); then, we can restate the BSDE (1) as follows:

\[
Y_t = Y_{t_{i+1}} + \int_{t_i}^{t_{i+1}} f(s, Y_s, Z_s)ds - \int_{t_i}^{t_{i+1}} Z_s dW_s. \tag{4}
\]

Taking conditional expectations on both sides of (4), we get the result as follows:

\[
Y_t = E_t [Y_{t_{i+1}}] + \int_{t_i}^{t_{i+1}} E_t [f(s, Y_s, Z_s)]ds, \tag{5}
\]

where \(E_t [\cdot] = E [\cdot|\mathcal{F}_t] \). It is straightforward that the integrand \(E_t [f(s, Y_s, Z_s)] \) in the above equation is a deterministic function of time \(s \). Naturally, we can replace the function \(E_t [f(s, Y_s, Z_s)] \) in (5) by using multistep methods through the support points \(\{ (t_i, E_t [f(s, Y_s, Z_s)]) \} \) where \(k_i = 1, \ldots, i + k \) which is a given positive integer and satisfies \(0 \leq k < N \), namely,

\[
\int_{t_i}^{t_{i+1}} E_t [f(s, Y_s, Z_s)]ds = h_i \sum_{j=0}^{k} \Gamma_{ij} E_t [f(t_{i+j}, Y_{t_{i+j}}, Z_{t_{i+j}})] + R_i^t_i, \tag{6}
\]

where coefficients \(\Gamma_{ij} \) depend on \(h_i \) for \(i = N - 1, \ldots , 0 \) and will be given soon; \(R_i^t \)
\[\{ E_t[f(s, Y_s, Z_s)] - \sum_{j=0}^{k} \Gamma_{j;i} E_t[f(t_{i+j}, Y_{i+j}, Z_{i+j})] \} ds. \]

Inserting (6) into (5), we obtain
\[Y_{t_i} = E_t[Y_{ti+1}] + h_i \sum_{j=0}^{k} \Gamma_{j;i} E_t[f(t_{i+j}, Y_{i+j}, Z_{i+j})] + R^\tau_i. \] (7)

Hence, the time-discretization of \(Y \) is, for \(i = N - k, N - k - 1, \ldots, 0 \),
\[Y_t^\tau = E_t[Y_{ti+1}] + h_i \sum_{j=0}^{k} \Gamma_{j;i} E_t[f(t_{i+j}, Y_{i+j}^\tau, Z_{i+j}^\tau)]. \] (8)

In what follows, we demonstrate the expression with respect to \(Z \). Multiplying (4) by \(\Delta W_{t_{i+1}} = W_t - W_{t_i}, n \in \mathbb{N}^+ \) and then taking conditional expectation on the derived equation, we obtain
\[
0 = E_t[Y_{ti+1} \Delta W_{ti+1}^\tau] + \int_{t_i}^{t_{i+1}} E_t[f(s, Y_s, Z_s) \Delta W_{si+1}^\tau] ds \\
- \int_{t_i}^{t_{i+1}} E_t[Z_s] ds,
\]
where \(\Delta W_{t_{i+1}} = W_s - W_{t_i} \). Analogously, we approximate the two integral terms on right-hand side of (9) by the manner as calculating \(Y_t \), namely,
\[
\int_{t_i}^{t_{i+1}} E_t[f(s, Y_s, Z_s) \Delta W_{si+1}^\tau] ds = h_i \sum_{j=0}^{k} \Gamma_{j;i}^* E_t[f(t_{i+j}, Y_{i+j}, Z_{i+j}) \Delta W_{ti+1}^\tau] + R_1^\tau,
\]
\[
\int_{t_i}^{t_{i+1}} E_t[Z_s] ds = h_i \sum_{j=0}^{k} \Gamma_{j;i}^* E_t[Z_{i+j}] + R_2^\tau,
\]
where \(R_1^\tau = \int_{t_i}^{t_{i+1}} E_t[f(s, Y_s, Z_s) \Delta W_{si+1}^\tau] ds - h_i \sum_{j=0}^{k} \Gamma_{j;i}^* E_t[f(t_{i+j}, Y_{i+j}, Z_{i+j}) \Delta W_{ti+1}^\tau] \) and \(R_2^\tau = \int_{t_i}^{t_{i+1}} E_t[Z_s] ds - h_i \sum_{j=0}^{k} \Gamma_{j;i} E_t[Z_{i+j}] \). Plugging (10) and (11) into (9), we deduce
\[
0 = E_t[Y_{ti+1} \Delta W_{ti+1}^\tau] + h_i \sum_{j=0}^{k} \Gamma_{j;i}^* E_t[f(t_{i+j}, Y_{i+j}, Z_{i+j}) \Delta W_{ti+1}^\tau] \\
- h_i \sum_{j=0}^{k} \Gamma_{j;i}^* E_t[Z_{i+j}] + R^\tau_i,
\]
where \(R_i^\tau = R_1^\tau - R_2^\tau \). Hence, the time-discretization of \(Z \) is, for \(i = N - k, N - k - 1, \ldots, 0 \),
\[
\Gamma_{j;i}^* E_t[Z_{i+j}] = E_t[Y_{ti+1} \frac{\Delta W_{ti+1}^\tau}{h_i}] + \sum_{j=0}^{k} \Gamma_{j;i}^* E_t[f(t_{i+j}, Y_{i+j}^\tau, Z_{i+j}^\tau) \Delta W_{ti+1}^\tau] \\
- \sum_{j=0}^{k} \Gamma_{j;i} E_t[Z_{i+j}^\tau],
\] (13)

Thus, from the two equations (8) and (13), we propose the explicit Adams schemes to solve BSDE (1) as follows.

Giving the initial values \(\{(Y_{N-1}^\tau, Z_{N-1}^\tau)\}_{k=1}^N \), we solve random variables \((Y_i^\tau, Z_i^\tau) \) for \(i = N - k, N - k - 1, \ldots, 0 \) from
\[
\begin{aligned}
Y_i^\tau &= E_t[Y_{ti+1}^\tau] + h_i \sum_{j=0}^{k} \Gamma_{j;i} E_t[f(t_{i+j}, Y_{i+j}^\tau, Z_{i+j}^\tau)]. \\
0 &= E_t[Y_{ti+1}^\tau \Delta W_{ti+1}^\tau] + \sum_{j=0}^{k} \Gamma_{j;i} E_t[f(t_{i+j}, \frac{\Delta W_{ti+1}^\tau}{h_i})] - \sum_{j=0}^{k} \Gamma_{j;i} E_t[Z_{i+j}^\tau],
\end{aligned}
\]
where \(f(t, Y, Z) \) for \(i = N - 1, N - 2, \ldots, 0 \); coefficients \(\Gamma_{j;i}, \Gamma_{j;i}^* \) and \(\Gamma_{j;i}^{**} \) depend on \(h_i \) for \(i = N - 1, \ldots, 0 \).

Remark 1. If \(\Gamma_{0;j} = 0 \), the scheme with respect to \(Y \) is explicit and \(\Gamma_{j;j} = \Gamma_{j;j}^* \) for \(j = 1, 2, \ldots, k \). If \(\Gamma_{0;j} \neq 0 \) the scheme with respect to \(Y \) is implicit and \(\Gamma_{j;j} = \Gamma_{j;j}^* \) for \(j = 1, 2, \ldots, k \).

4. Theoretical Analysis

Before showing the stability and convergence analysis of the variable step size Adams scheme (14), we first provide a few lemmas.

Lemma 3. Under Assumption 1, assume that the parameters \(\{\Gamma_{j;i}\}_{j,i} \) satisfy the relation as follows:
\[
\begin{cases}
1 = \sum_{p=0}^{k} \Gamma_{p;i}, & q = 1, \\
1 = \sum_{p=1}^{k} \left(\sum_{r=0}^{k} \Gamma_{r;i} \right)^{q-1} h_r, & q \geq 2.
\end{cases}
\]

Then,
\[
R^\tau = o(h^k), \quad \Gamma_{0;j} = 0, \quad O(h^{k+1}), \quad \Gamma_{0;j} \neq 0.
\] (16)

Proof. By Assumption 1, the integrand \(E_t[f(s, Y_s, Z_s)] \), \(s > t \), is a continuous function with respect to \(s \) (see Theorem 2.2.1 of [31]). Then, by taking derivative with respect to \(s \) on
\[
E_t[Y_s] = E_t[\Phi(W_s)] + \int_s^T E_t[f(s, Y_s, Z_s)] ds, \forall s \in [t, T],
\]
we obtain the following reference ordinary differential equation:
\[
\frac{dE_t[Y_s]}{ds} = -E_t[f(s, Y_s, Z_s)], \quad s \in [t, T].
\] (18)
Thus, from the definition of R^f_t, we have

$$R^f_t = \int_{t_i}^{t_f} \left\{ E [f(s, Y_s, Z_s)] - \sum_{j=0}^{k} \Gamma_{j,i} \mathbb{E} \left[f(t_{i,j}, Y_{i,j}, Z_{i,j}) \right] \right\} ds$$

$$= Y_{t_i} - \mathbb{E}[Y_{t_i}] - h_i \sum_{j=0}^{k} \Gamma_{j,i} \mathbb{E} \left[f(t_{i,j}, Y_{i,j}, Z_{i,j}) \right].$$

(19)

Substituting (18) into (19) and utilizing Itô–Taylor expansion at (t_i, W_{t_i}), we have

$$R^f_t = \mathbb{E} \left[u_{t_i} - u_{t_i} - h_i \sum_{j=0}^{k} \Gamma_{j,i} f(t_{i,j}, Y_{i,j}, Z_{i,j}) \right]$$

$$= \mathbb{E} \left[u_{t_i} - u_{t_i} + h_i \sum_{j=1}^{k} \Gamma_{j,i} u_{t_i}^{(0)} \right]$$

$$= \mathbb{E} \left[h_i u_{t_i}^{(0)} (1 - \sum_{j=0}^{k} \Gamma_{j,i}) + \sum_{q=2}^{k} \frac{h_i^{(q)}}{q!} u_{t_i}^{(q)} \left(-1 + \sum_{p=1}^{k} \Gamma_{p,i} \right) + \sum_{j=1}^{k} \frac{h_i^{(j)}}{h_i^{j}} (\Gamma_{j,i} - \sum_{k=0}^{j-1} \frac{(h_i + h_{i+1})^{k-1}}{h_i^{k}} \Gamma_{j,i}) \right]$$

(20)

where $u_{t_i} = u(t_i, W_{t_i})$. The conclusion is obvious with the help of equation (20). The proof is completed.

Lemma 4. Under Assumption 1, assume that the parameters $\{\Gamma_{j,i}\}_{0 \leq j \leq k}$ satisfy

$$1 = \sum_{j=0}^{k} \Gamma_{j,i}^{*}\Gamma_{j,i}$$

$$0 \neq \Gamma_{0,i}^{*}$$

$$1 = \sum_{j=1}^{k} (\sum_{k=0}^{j-1} h_{i+1} \Gamma_{j,i}) q \Gamma_{j,i}^{*} + \Gamma_{j,i}^{*}, \quad q \geq 1.$$

(21)

Then, $R^f_t = O(h^{k+1}).$

Proof. By Assumption 1, the two integrands $\mathbb{E} [f(s, Y_s, Z_s) \Delta W_{t,s}^T]$ and $\mathbb{E} [Z_s]$, $s > t$, are continuous function of s (see Theorem 2.2.1 of [31]). Taking derivative with respect to s, we have the ordinary differential equation as follows:

$$\frac{d\mathbb{E}_t [Y_s \Delta W_{t,s}^T]}{ds} = -\mathbb{E}_t [f(s, X_s, Y_s, Z_s) \Delta W_{t,s}^T] + \mathbb{E}_t [Z_s],$$

$$s \in [t, T].$$

(22)
Thus,

\[
\frac{R_\ell^2}{\Gamma_{0,j}^2 h_{t_i}} = Z_{t_i} - E_i \left[Y_{i-1, Z_{t_{i-1}}} - \sum_{j=1}^{k} \Gamma_{0,j}^{\ast \ast} E_i \left[f(t_{i,j}, Y_{i,j}, Z_{i,j}) \Delta W_{i,j}^T \right] + \sum_{j=1}^{k} \Gamma_{0,j}^{\ast \ast} E_i \left[Z_{i,j} \right] \right]
\]

\[
= Z_{t_i} - E_i \left[Y_{i-1, Z_{t_{i-1}}} - \sum_{j=1}^{k} \Gamma_{0,j}^{\ast \ast} E_i \left[(Y_{i,j}, \Delta W_{i,j}^T)^{(0)} \right] + \sum_{j=1}^{k} \Gamma_{0,j}^{\ast \ast} E_i \left[Z_{i,j} \right] \right]
\]

\[
= Z_{t_i} - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} E_i \left[Z_{t_{i-1}} \right] + \frac{k}{\Gamma_{0,j}^2 h_{t_i}} E_i \left[(t_{i,j} - t_i) Z_{t_{i-1}}^{(0)} + \Gamma_{0,j}^{\ast \ast} Z_{t_{i-1}} \right],
\]

where the last equality can be verified via relation (2) and integration by parts. Substituting (22) into (23) and utilizing Itô–Taylor expansion at \((t_i, W_{t_i})\), we have

\[
\frac{R_\ell^2}{\Gamma_{0,i}^2 h_{t_i}} = E_i \left[Z_{t_i} \left(1 - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} \sum_{j=1}^{k} \Gamma_{0,j}^{\ast \ast} \right) + h_i Z_{t_i}^{(0)} \left(1 - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} \sum_{j=1}^{k} \frac{1}{\Gamma_{0,j}^2 h_{t_i}} (\Gamma_{0,j}^{\ast} + \Gamma_{0,j}^{\ast \ast}) \right) \right]
\]

\[
+ \frac{h_i^2}{2} Z_{t_i}^{(0,0)} \left(1 - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} \sum_{j=1}^{k} \frac{1}{\Gamma_{0,j}^2 h_{t_i}} (\Gamma_{0,j}^{\ast} + \Gamma_{0,j}^{\ast \ast}) \right) + h_i^3 \left(1 - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} \sum_{j=1}^{k} \frac{1}{\Gamma_{0,j}^2 h_{t_i}} (\Gamma_{0,j}^{\ast} + \Gamma_{0,j}^{\ast \ast}) \right) \]

\[
+ \cdots + \frac{h_i^q}{q!} Z_{t_i}^{(0,h)} \left(1 - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} \sum_{j=1}^{k} \frac{1}{\Gamma_{0,j}^2 h_{t_i}} (\Gamma_{0,j}^{\ast} + \Gamma_{0,j}^{\ast \ast}) \right) + \cdots \]

\[
= E_i \left[Z_{t_i} \left(1 - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} \sum_{j=1}^{k} \Gamma_{0,j}^{\ast \ast} \right) + \sum_{q=1}^{k} \frac{h_i^q}{q!} Z_{t_i}^{(0,q)} \left(1 - \frac{1}{\Gamma_{0,j}^2 h_{t_i}} \sum_{j=1}^{k} \frac{1}{\Gamma_{0,j}^2 h_{t_i}} (\Gamma_{0,j}^{\ast} + \Gamma_{0,j}^{\ast \ast}) \right) \right].
\]

The conclusion is obvious with the help of equation (24). The proof is completed.

In what follows, we list the numerical expressions with respect to \(Y\) and \(Z\) by utilizing Lemmas 3 and 4.

\[
k = 1, Y_i^T = E_i [Y_{i+1}^T] + h_i E_i [f_{i+1}],
\]

\[
k = 2, Y_i^T = E_i [Y_{i+1}^T] + h_i E_i \left[f_{i+1} + \frac{h_i}{2h_{i+1}} (f_{i+1} - f_{i+2}) \right],
\]

\[
k = 3, Y_i^T = E_i [Y_{i+1}^T] + h_i E_i \left[f_{i+1} + \frac{h_i}{2h_{i+1}} (f_{i+1} - f_{i+2}) + \frac{2h_i + 3h_{i+1}}{6(h_i + h_{i+1})} \left(\frac{h_{i+1} + h_{i+2}}{h_{i+1} + h_{i+2}} f_{i+1} \right) \right]
\]

\[
+ \frac{h_i (h_i + h_{i+1})}{h_{i+1} h_{i+2}} f_{i+2}^T + \frac{h_i (h_i + h_{i+1})}{h_{i+1} h_{i+2}} f_{i+3}^T \right].
\]

(1) If \(\Gamma_{0,j} = 0\), the numerical schemes of \(Y\) for \(k = 1, 2, 3\) with respect to time are
(2) If \(\Gamma_{0,i} \neq 0 \), the numerical schemes of \(Y \) for \(k = 0, 1, 2 \) with respect to time are

\[
\begin{align*}
\text{(i)} & \quad k = 0, Y^\pi_i = E_i[Y^\pi_{i+1}] + h_i f^\pi_i, \\
\text{(ii)} & \quad k = 1, Y^\pi_i = E_i[Y^\pi_{i+1}] + \frac{h_i}{2} E_i[f^\pi_i + f^\pi_{i+1}], \\
\text{(iii)} & \quad k = 2, Y^\pi_i = E_i[Y^\pi_{i+1}] + h_i E_i \left[\frac{2h_i + 3h_{i+1}}{6(h_i + h_{i+1})} f^\pi_i + \frac{h_i + 3h_{i+1}}{6h_{i+1}} f^\pi_{i+1} - \frac{h^2_i}{6(h_i + h_{i+1})h_{i+1}} f^\pi_{i+2} \right].
\end{align*}
\]

(26)

(3) The numerical expressions with respect to \(Z \) are provided for \(k = 0, 1, 2 \), namely,

\[
\begin{align*}
\text{(i)} & \quad k = 0, Z^\pi_i = E_i \left[\frac{\Delta W^T_{i+1}}{h_i} \right], \\
\text{(ii)} & \quad k = 1, \frac{1}{2} Z^\pi_i = E_i \left[\frac{\Delta W^T_{i+1}}{h_i} \right] + E_i \left[f^\pi_{i+1} \Delta W^T_{i+1} \right] - \frac{1}{2} E_i \left[Z^\pi_{i+1} \right], \\
\text{(iii)} & \quad k = 2, \frac{2h_i + 3h_{i+1}}{6(h_i + h_{i+1})} Z^\pi_i = E_i \left[\frac{\Delta W^T_{i+1}}{h_i} \right] + E_i \left[f^\pi_{i+1} \Delta W^T_{i+1} + \frac{h_i}{2h_{i+1}} (f^\pi_{i+1} \Delta W^T_{i+1} - f^\pi_{i+2} \Delta W^T_{i+2}) \right] \\
& \quad - E_i \left[\frac{4h_i + 3h_{i+1}}{6(h_i + h_{i+1})} Z^\pi_{i+1} + \frac{h^2_i}{6h_{i+1}(h_i + h_{i+1})} (Z^\pi_{i+1} - Z^\pi_{i+2}) \right].
\end{align*}
\]

(27)

Lemma 5. If constraints (15) and (21) and \((h_i/h_{i+1}) \leq M, M \in (0, +\infty)\) are satisfied, then the coefficients \(\Gamma_{j,i}, \Gamma_{j,j}^*, \) and \(\Gamma_{j,j}^{**} \) in scheme (14) are bounded.

Proof. From Lemma 3, we know that the coefficients \(\Gamma_{j,i} \) are composed of products and sums of \(h_i/h_{i+1} \) for \(j = 1, 2, \ldots, k \). Under the condition \(h_i/h_{i+1} \leq M \), it is clear that the coefficients \(\Gamma_{j,i} \) are bounded. Analogously, we derive that coefficients \(\Gamma_{j,j}^* \) and \(\Gamma_{j,j}^{**} \) are bounded.

In what follows, two definitions are introduced to serve the stability of scheme (14). \(\square \)

Definition 1. The characteristic polynomials of (14) are given by

\[
\begin{align*}
P_y(\zeta) &= \zeta - 1, \quad (28) \\
P_z(\zeta) &= \zeta^{k-1} - \sum_{j=0}^{k} \Gamma_{j,j}^{\star} \zeta^{k-j}.
\end{align*}
\]

And Equation (14) is said to fulfil Dahlquist’s root condition if

(i) The roots of \(P_y(\zeta) \) and \(P_z(\zeta) \) lie on or within the unit circle

(ii) The roots on the unit circle are simple

Definition 2. Let \((Y^\pi_i, Z^\pi_i), i = 0, 1, \ldots, N - k\), be the time-discretization approximate solution given by (14) and \((\bar{Y}^\pi_i, \bar{Z}^\pi_i)\) be the solution of its perturbed form (see (31)). Then, scheme (14) is said to be \(L_2 \)-stable if

\[
\max_{0 \leq i \leq N-k} E \left[\left| Y^\pi_i - \bar{Y}^\pi_i \right|^2 + \left| Z^\pi_i - \bar{Z}^\pi_i \right|^2 \right] \leq C \left(\max_{N-k \leq i \leq N} E \left[\left| Y^\pi_i - \bar{Y}^\pi_i \right|^2 + \left| Z^\pi_i - \bar{Z}^\pi_i \right|^2 \right] + \sum_{\ell=0}^{N-k} E \left[|e^\pi_\ell|^2 + |e^\pi_\ell|^2 \right] \right),
\]

(30)
where \(C \) denotes a constant which changes from line to line;
\((\overline{Y}_i^n, \overline{Z}_i^n)\) satisfies a perturbed form of (14) for
\(i = N - k, N - k - 1, \ldots, 0 \):

\[
\begin{align*}
\overline{Y}_i^n &= E_i[\overline{Y}_{i+1}^n] + h^i \sum_{j=0}^{k} \Gamma_{j,i} E_i[\overline{F}_{i+j}] + \varepsilon_i^Y, \\
0 &= \frac{1}{h^i} E_i[\overline{Y}_{i+1}^n \Delta W_{i+1}^{\top}] + \sum_{j=1}^{k} \Gamma_{j,i} E_i[\overline{F}_{i+j} \Delta W_{i+j}^{\top}] - \sum_{j=0}^{k} \Gamma_{j,i} E_i[\overline{Z}_{i+1}^n] + \varepsilon_i^Z,
\end{align*}
\]

(31)

where \(\overline{Y}_i^n = f(t_i, Y_i^n, Z_i^n) \); sequences \(\varepsilon_i^Y \) and \(\varepsilon_i^Z \) which belong to \(L_2(\mathcal{F}_i) \) are random variables.

The following theorem is devoted to analyze the stability of scheme (14).

Theorem 1. Suppose Assumption 1 and the condition of Lemma 5 hold. Then, the variable step size explicit Adams methods (that is, the coefficient \(\Gamma_{0,i} = 0 \)) is numerically stable if and only if its characteristic polynomial (29) satisfies Dahlquist’s root condition.

Proof (sufficiency). Let \(\Delta Y_i = Y_i^n - \overline{Y}_i^n, \Delta Z_i = Z_i^n - \overline{Z}_i^n, \) and \(\Delta f_i = f(t_i, Y_i^n, Z_i^n) - f(t_i, \overline{Y}_i^n, \overline{Z}_i^n) \) for \(i = N - k, N - k - 1, \ldots, 0 \). We complete the proof of the theorem in three steps.

Step 1. From (14) and (31) with respect to \(Y \), one obtains

\[
\Delta Y_i = E_i[(\Delta Y_{i+1}) + h^i \sum_{j=1}^{k} \Gamma_{j,i} \Delta f_{i+j}] - \varepsilon_i^Y. \tag{32}
\]

Furthermore,

\[
|\Delta Y_i|^2 \leq |E_i[|\Delta Y_{i+1}|]|^2 + \frac{3 + \sqrt{5}}{2} \left(h^i L_j \sum_{j=1}^{k} |\Gamma_{j,i}| E_i \left[|\Delta Y_{i+j}| + |\Delta Z_{i+j}| \right] \right)^2
\]

\[
\leq |E_i[|\Delta Y_{i+1}|]|^2 + \frac{3 + \sqrt{5}}{2} (2k + 1) L_j^2 h^i \sum_{j=1}^{k} |\Gamma_{j,i}| E_i \left[|\Delta Y_{i+j}|^2 + |\Delta Z_{i+j}|^2 \right]
\]

\[
+ \frac{3 + \sqrt{5}}{2} (2k + 1)|\varepsilon_i^Y|^2. \tag{33}
\]

Summing over the above inequality from \(i \) to \(N - k \), we have

\[
|\Delta Y|^2 \leq |E_i[|\Delta Y_{N-k+1}|]|^2 + \frac{3 + \sqrt{5}}{2} (2k + 1) L_j^2 h^i \sum_{j=1}^{k} \sum_{i \leq j \leq k} |\Gamma_{j,i}| E_i \left[|\Delta Y_{i+j}|^2 + |\Delta Z_{i+j}|^2 \right]
\]

\[
+ \frac{3 + \sqrt{5}}{2} (2k + 1) \sum_{i \leq j \leq k} |\varepsilon_i^Y|^2. \tag{34}
\]
Step 2. Subtracting (31) from (14) with respect to Z, we obtain

$$
\Delta Z_i = \frac{1}{\Gamma_{0,i} h_i} \mathbb{E}[\Delta Y_{i+1}^T \Delta W_{i,i}^T] + \sum_{j=1}^{k} \Gamma_{i,j}^* \mathbb{E}[\Delta f_{i+1}^j \Delta W_{i,i}^T] - \frac{\epsilon_i Z}{\Gamma_{0,i}}
$$

(36)

By (2) and (3), one can verify that

$$
\mathbb{E}_i \left[Y_{i+1}^T \Delta W_{i,i}^T / h_i \right] = \frac{1}{h_i \sqrt{2 \pi h_i}} \int_{-\infty}^{\infty} u(t_{i+1}, x + v)e^{-(x - \mu)^2 / 2h_i} dv
$$

$$
= \frac{1}{\sqrt{2 \pi h_i}} \int_{-\infty}^{\infty} \frac{\partial u}{\partial x}(t_{i+1}, x + v)e^{-(x - \mu)^2 / 2h_i} dv
$$

$$
= \mathbb{E}_i \left[Z_{i,i} \right].
$$

(37)

Plugging (37) into (36), we have

$$
\Delta Z_i = \frac{1 - \Gamma_{i,i}^*}{\Gamma_{0,i}} \mathbb{E}_i[\Delta Z_{i+1}] - \sum_{j=1}^{k} \Gamma_{i,j}^* \mathbb{E}_i[\Delta f_{i+1}^j \Delta W_{i,i}^T] - \frac{\epsilon_i Z}{\Gamma_{0,i}}
$$

(38)

We rearrange the k-step recursion to a one-step recursion as follows:

$$
\mathbb{E}_i \left[\mathcal{X}_i \right] = \mathbb{E}_i \left[A \mathcal{X}_{i+1} + F_i + R_i \right],
$$

(39)

where

$$
\mathcal{X}_i = \begin{pmatrix}
\Delta Z_i \\
\Delta Z_{i+1} \\
\vdots \\
\Delta Z_{i+k-1}
\end{pmatrix},
A = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
\Gamma_{0,i} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\Gamma_{i,i}^* & \Gamma_{i+1,i}^* & \cdots & 1
\end{pmatrix},
F_i = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix},
R_i = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}
$$

(40)

To ensure the stability of the k-step scheme, the norm of the matrix A in equation (39) is not more than 1 (see Chapter III.4, Lemma 1.4.4.5 in [32]). This can be satisfied if the eigenvalues $eig(A)$ of the matrix A make $|eig(A)| \leq 1$ and the eigenvalues are simple if $|eig(A)| = 1$. In addition, the eigenvalues of A satisfy the root condition by Definition 1. By Dahlquist’s root condition, it is possible that there exists a nonsingular matrix \mathcal{D} such that $\|\mathcal{D}^{-1} A \mathcal{D}\| \leq 1$ where $\| \cdot \|$ denotes the spectral matrix norm induced by Euclidian vector norm in $\mathbb{R}^{kn \times n}$. Hence, we can choose a scalar product for $\mathcal{A}, \mathcal{A} \in \mathbb{R}^{kn \times n}$ as $\langle \mathcal{A}, \mathcal{A} \rangle = \langle \mathcal{D}^{-1} \mathcal{A}, \mathcal{D}^{-1} \mathcal{A} \rangle = \mathcal{A}^* (\mathcal{D}^{-1})^T \mathcal{D}^{-1} \mathcal{A}$. And we have $|\mathcal{A}|^2 = \langle \mathcal{A}, \mathcal{A} \rangle$, with the induced vector norm on $\mathbb{R}^{kn \times n}$. Let $\| \cdot \|_2$ be the induced matrix norm. Owing to the norm equivalence, we know that there exist positive constants c_1 and c_2 such that

$$
|\mathcal{A}|^2 \leq c_1 |\mathcal{A}|^2 \leq c_2 |\mathcal{A}|^2, \quad \forall \mathcal{A} \in \mathbb{R}^{kn \times n},
$$

(41)

where $|\mathcal{A}|^2 = \sum_{j=1,2,\ldots,n} |a_j|^2$ for $\mathcal{A} = (a_1^T, \ldots, a_n^T)^T$.

Applying $| \cdot |$ to equation (39), we have

$$
|\mathbb{E}_i \left[\mathcal{X}_i \right]|_2 = |\mathbb{E}_i \left[A \mathcal{X}_{i+1} + F_i + R_i \right]|_2
$$

$$
= \|A\|_2 |\mathbb{E}_i \left[\mathcal{X}_{i+1} \right]|_2 + |\mathbb{E}_i \left[F_i \right]|_2 + |\mathbb{E}_i \left[R_i \right]|_2
$$

$$
\leq |\mathbb{E}_i \left[\mathcal{X}_{i+1} \right]|_2 + |\mathbb{E}_i \left[F_i \right]|_2 + |\mathbb{E}_i \left[R_i \right]|_2.
$$

(42)
Squaring equation (42), then from the inequalities

\[(\sum_{i=1}^{\nu} a_i)^2 \leq \nu \sum_{i=1}^{\nu} a_i^2 \quad \text{and} \quad (a + b)^2 \leq \delta (1 + \delta) a^2 + (1 + 1/\delta) b^2, \quad \delta > 0,
\]
one deduces

\[
\begin{align*}
|E_i[\mathcal{Z}_i]|^2 &\leq |E_i[\mathcal{Z}_{i+1}]|^2 + \frac{3 + \sqrt{5}}{2} \Big(|E_i[F_i]|_+ + |E_i[R_i]|_+ \Big) \sum_{j=1}^{k} \left| E_i \left[T_{i,j}^* \Delta f_{i+j} \Delta W_{i,j} \right] \right|^2 + \frac{(k + 1)c_2^3 + \sqrt{5}/2}{(\Gamma_{0,j}^*)^2} \left| E_i[\epsilon_i^2] \right|^2.
\end{align*}
\]

(43)

By the Lipschitz condition of \(f \) with respect to \((y, z) \),

(43) can be restated as

\[
\begin{align*}
|E_i[\mathcal{Z}_i]|^2 &\leq |E_i[\mathcal{Z}_{i+1}]|^2 + (k + 1)c_2^2 \frac{3 + \sqrt{5}}{2} \sum_{j=1}^{k} \left(\frac{1}{T_{0,j}} \right)^2 \left| E_i \left[(|\Delta Y_{i+j}| + |\Delta Z_{i+j}|) \Delta W_{i,j} \right] \right|^2 \\
&+ \frac{(k + 1)c_2^3 + \sqrt{5}/2}{(\Gamma_{0,j}^*)^2} \left| E_i[\epsilon_i^2] \right|^2.
\end{align*}
\]

(44)

By the Cauchy–Schwarz inequality, we have the following estimates:

\[
\begin{align*}
|E_i[\mathcal{Z}_i]|^2 &\leq |E_i[\mathcal{Z}_{i+1}]|^2 + \frac{3 + \sqrt{5}}{2} k(k + 1)c_2 L_j^2 \max_{i \leq j \leq k} \left| \frac{T_{i,j}^*}{\Gamma_{0,j}^*} \right| \sum_{j=1}^{k} \left| E_i \left[|\Delta Y_{i+j}| + |\Delta Z_{i+j}| \right] \right|^2 \\
&+ \frac{(k + 1)c_2^3 + \sqrt{5}/2}{(\Gamma_{0,j}^*)^2} \left| E_i[\epsilon_i^2] \right|^2.
\end{align*}
\]

(45)

Summing over the above inequality from \(i \) to \(N - k \), we have

\[
\begin{align*}
|E_i[\mathcal{Z}_i]|^2 &\leq |E_i[\mathcal{Z}_{N-k+1}]|^2 + \frac{3 + \sqrt{5}}{2} \left(k(k + 1)c_2 L_j^2 \max_{i \leq j \leq k} \left| \frac{T_{i,j}^*}{\Gamma_{0,j}^*} \right| \sum_{i=1}^{N-k} \sum_{j=1}^{k} \left| E_i \left[|\Delta Y_{i+j}| + |\Delta Z_{i+j}| \right] \right|^2 \\
&+ \frac{(k + 1)c_2^3 + \sqrt{5}/2}{(\Gamma_{0,j}^*)^2} \sum_{i \leq i} \left| E_i[\epsilon_i^2] \right|^2 \\
&\leq |E_i[\mathcal{Z}_{N-k+1}]|^2 + \frac{3 + \sqrt{5}}{2} \left(k(k + 1)c_2 L_j^2 \max_{i \leq j \leq k} \left| \frac{T_{i,j}^*}{\Gamma_{0,j}^*} \right| \sum_{i=1}^{N-k} \sum_{j=1}^{k} \left| E_i \left[|\Delta Y_{i+j}| \right] + \sum_{i=1}^{N-k} \sum_{j=1}^{k} E_i[|Z_{i+j}|] \right|^2 \\
&+ \frac{(k + 1)c_2^3 + \sqrt{5}/2}{(\Gamma_{0,j}^*)^2} \sum_{i \leq i} \left| E_i[\epsilon_i^2] \right|^2.
\end{align*}
\]

(46)
Step 3. Adding (35) to (46), we obtain

\[
|\Delta Y_i|^2 + |E_i[\mathcal{Z}_i]|^2 \leq C(h + h^2) \sum_{\ell=k+1}^{N-k} E_i[|\Delta Y_i|^2 + |\mathcal{Z}_i|^2] + C \sum_{\ell=-N-k+1}^{N} E_i[|\Delta Y_i|^2 + |\mathcal{Z}_i|^2] + 3 + \frac{\sqrt{5}}{2} (2k + 1) \sum_{\ell=i}^{N-k} |\varepsilon_i|^2 + \frac{(k + 1)c_2 3 + \sqrt{5}/2}{(1/\delta_{h_i})^2} \sum_{\ell=i}^{N-k} E_i[|\varepsilon_i|^2].
\]

(47)

From the discrete Gronwall inequality, we have

\[
|\Delta Y_i|^2 + |E_i[\mathcal{Z}_i]|^2 \leq C \left(\max_{i+1 \leq N-k+1} kh E_i[|\Delta Y_i|^2 + |\mathcal{Z}_i|^2] + \sum_{\ell=N-k+1}^{N} E_i[|\Delta Y_i|^2 + |\mathcal{Z}_i|^2] + \sum_{\ell=i}^{N-k} E_i[|\varepsilon_i|^2 + |\varepsilon_i|^2] \right).
\]

(48)

Moreover,

\[
\max_{0 \leq i \leq N-k} E[|\Delta Y_i|^2 + |\Delta Z_i|^2] \leq C \left(\max_{N-k+1 \leq i \leq N} E[|\Delta Y_i|^2 + |\Delta Z_i|^2] + \sum_{\ell=i}^{N-k} E[|\varepsilon_i|^2 + |\varepsilon_i|^2] \right).
\]

(49)

Necessity. The proof is analogous to ordinary differential equations (see Theorem 6.3.3 in [33]). So, we omit it. \(\square\)

Theorem 2. Suppose Assumption 1 and the condition of Lemma 5 hold. Then, the variable step size implicit Adams methods (that is, the coefficient \(\Gamma_{ij} \neq 0\)) is numerically stable if and only if its characteristic polynomial (29) satisfies Dahlquist’s root condition.

Proof. The proof is analogous to that of Theorem 1. Thus, we omit it here.

Next, the convergence property of scheme (14) is given in the theorem as below. \(\square\)

Theorem 3. Suppose Assumption 1 and the condition of Lemma 5 hold. Let \((Y_i, Z_i)\) and \((Y_i^*, Z_i^*)\) be solutions of the BSDE in (1) and solutions of the variable step size Adams methods (14), respectively. The terminal values satisfy

\[
E[\sup_{0 \leq i \leq N-k} |Y_i^* - Y_i|^2 + |Z_i^* - Z_i|^2]^{1/2} \leq Kh.
\]

Then, as \(h\) is small enough,

\[
\max_{0 \leq i \leq N-k} E[|\Delta Y_i|^2 + |\Delta Z_i|^2] \leq C \left(\max_{N-k+1 \leq i \leq N} E[|\Delta Y_i|^2 + |\Delta Z_i|^2] + \sum_{\ell=i}^{N-k} E[|\varepsilon_i|^2 + |\varepsilon_i|^2] \right).
\]

(50)

Proof. The proof is obvious with the help of Theorem 1 and Lemmas 3 and 4. \(\square\)

5. Numerical Experiments

In this section, we demonstrate the theory results of scheme (14) via numerical examples. First, we choose a method to approximate the conditional mathematical expectations numerically. Among the popular methods, we focus on the least squares Monte Carlo (LSMC) method (see [13, 27]). Next, we review how to approximate mathematical expectations by the LSMC method.

For \(i \in [0, 1, \ldots, N]\), let \(\mathcal{G}_i := \{W^{(i, m)}: m = 1, 2, \ldots, M \in \mathbb{N}\}\) be independently generated copies of \(W_i\). The empirical probability measure of the \(\mathcal{G}_i\)-simulations is denoted by \(\nu_{i, M} = (1/M) \sum_{m=1}^{M} \delta_{(W^{(i, m)}_m)}\), where \(\delta_x\) is the Dirac measure on \(x\). Denote by \(\mathcal{X}_{Y,i}\) and \(\mathcal{X}_{Z,i}\) vector spaces of functions, i.e., \(\mathcal{X}_{Y,i} := \text{span}\{P_{Y,1}, P_{Y,2}, \ldots, P_{Y,M}\}\) where \(K_{Y,i}\) is a nonnegative integer; \(P_{Y,j}^{(k)}: \mathbb{R}^d \to \mathbb{R}^d\) such that \(E[[P_{Y,j}^{(k)} (W_i)]^2] < +\infty\); \(\mathcal{X}_{Z,i} := \{P_{Z,1}^{(1)} (.), P_{Z,2}^{(2)} (.), \ldots, P_{Z,1}^{(K_{Z,i})} (.)\}\) where \(K_{Z,i}\) is a positive integer; \(P_{Z,j}^{(k)}: \mathbb{R}^d \to \mathbb{R}^{\text{mod}}\) such that \(E[[P_{Z,j}^{(k)} (X_i)]^2] < +\infty\).
From ordinary least squares, numerical solutions $Y_{\pi(M)}^i$ and $Z_{\pi(M)}^i$ are obtained by the following manner:

$$Y_{\pi(M)}^i = \arg \inf_{\phi \in \mathcal{X}_{i}} \frac{1}{M} \sum_{m=1}^{M} \left| \phi(W_{i}^{(m)}) - S_{Y,i} \right|^2,$$

(51)

$$Z_{\pi(M)}^i = \arg \inf_{\phi \in \mathcal{X}_{i}} \frac{1}{M} \sum_{m=1}^{M} \left| \phi(W_{i}^{(m)}) - S_{Z,i} \right|^2,$$

(52)

where $S_{Y,i} = Y_{\pi(M)} \sum_{i=1}^{T} \Gamma_{0,i} \exp\left(\int_{t_{i-1}}^{t_i} \Gamma_{ij} \delta t_{ij} \right)$, and $S_{Z,i} = \sum_{i=1}^{T} \frac{1}{2} \sum_{k=1}^{N} \Gamma_{0,i} \exp\left(\int_{t_{k-1}}^{t_k} \Gamma_{ij} \delta t_{ij} \right) \sum_{k=1}^{N} \Gamma_{ij} \delta t_{ij}$.

To obtain the numerical solutions of BSDE (1.1), we have to determine the parameters in the numerical scheme (14). The coefficients Γ_{ij}^{π} and Γ_{ij}^{π} are obtained by means of Lemmas 3 and 4 as the value of k is given. In what follows, we discuss the numerical schemes according to the following two cases with the nonuniform time grid $T_j = T(1 - i/N)$:

$$Y_{i}^\pi = \mathbb{E}_i[Y_{i+1}^\pi] + h_i \mathbb{E}_i[f_{i+1}^\pi],$$

(53)

$$Z_{i}^\pi = \mathbb{E}_i[Y_{i+1}^\pi] + \frac{\Delta W_{i+1}^\pi}{h_i},$$

(54)

To compare the performance of scheme (53) and scheme (54), we also provide the corresponding constant variable step numerical schemes, namely,

$$Y_{i}^\pi = \mathbb{E}_i[Y_{i+1}^\pi] + h_i \mathbb{E}_i[f_{i+1}^\pi],$$

(55)

$$Z_{i}^\pi = \mathbb{E}_i[Y_{i+1}^\pi] - \frac{\Delta W_{i+1}^\pi}{h_i},$$

(56)

where the constant step size $h = T/N$. Before we apply our scheme (14) to the following BSDEs, we first introduce the notations. Let N be the number of time points; M represents the number of simulation paths. The basis functions which are spanned by polynomials whose degree is less than or equal to the order of discretization error are applied to compute the value of Y_{i}^π. The error of both the numerical solution and the exact solution of the BSDE (1) at the time $t = 0$ is denoted by $|Y_0 - Y_0^\pi|$.

Example 1. Consider the BSDE as follows:

$$Y_t = 1 + \eta + \sin(\tau L_1 W_t)$$

$$+ \int_0^T \min \left\{ 1, \left(Y_s - \eta - 1 - \frac{\sin(\tau L_1 W_s)}{\exp(\tau^2 d(T - t)/2)} \right)^2 \right\} ds$$

$$- \int_0^T Z_s dW_s,$$

(57)

which appears in [26] and is used to illustrate the variance reduction problem with closed-form solutions. Here, $\eta > 0$; $\tau > 0$; L_1 is a d-dimensional vector with components all 1.

Now, the solution to the above BSDE is

$$Y_t = 1 + \eta + \frac{\sin(\tau L_1 W_t)}{\exp(\tau^2 d(T - t)/2)}.$$

(58)

Take $T = 1, \eta = 0.6, \tau = 1/\sqrt{d}, d = 9$, and $M = 100000$.

Figure 1 presents the relationship of the absolute error between the numerical solution and the exact solution of BSDE (57) with respect to Y at time 0 and the number of time points via the variable step size scheme (53), the variable step size scheme (54), the constant variable step size scheme (55), and the constant variable step size scheme (56). To be specific, Figure 1 implies that (i) on the whole, the error of Y becomes smaller as N gets bigger in scheme (53), scheme (54), scheme (55), and scheme (56); (ii) if the absolute error $|Y_0 - Y_0^\pi|$ is fixed, the number of steps of the constant variable step size schemes is bigger than that of the variable step size schemes; and (iii) the absolute error with respect to Y obtained by schemes (54) and (56) is smaller than the absolute error of Y obtained by schemes (53) and (55).

Example 2. We consider the BSDE as follows:

$$Y_t = \frac{\exp(T + \sum_{k=1}^d W_k)}{1 + \exp(T + \sum_{k=1}^d W_k)} + \int_T^t \left(\sum_{k=1}^d Z_{k,s} \right) \left(Y_s - \frac{2 + d}{d} \right) ds$$

$$- \int_t^T Z_s dW_s,$$

(59)

Therefore, the exact solutions of BSDE (59) can be represented in the following form:

$$Y_t = \frac{\exp(t + \sum_{k=1}^d W_k)}{1 + \exp(t + \sum_{k=1}^d W_k)}$$

(60)
numerical algorithms with two examples. Finally, note that the constant variable one-step size schemes \([11, 15, 18, 24]\) and the constant variable multistep size schemes \([16, 26, 27]\) are the particular cases of our variable step size Adams schemes.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

This research was supported by National Natural Science of China under grant no. 12001316.

References

[1] J.-M. Bismut, “Conjugate convex functions in optimal stochastic control,” *Journal of Mathematical Analysis and Applications*, vol. 44, no. 2, pp. 384–404, 1973.

[2] E. Pardoux and S. G. Peng, “Adapted solution of a backward stochastic differential equation,” *Systems & Control Letters*, vol. 14, no. 1, pp. 55–61, 1990.

[3] E. Pardoux and S. Peng, “Backward Stochastic Differential Equations and Quasilinear Parabolic Partial Differential equations,” *Stochastic Partial Differential Equations and Their Applications*, pp. 200–217, Springer, Berlin, Heidelberg, 1992.

[4] S. Peng, “Probabilistic interpretation for systems of quasilinear parabolic partial differential equations,” *Stochastics and Stochastics Reports*, vol. 37, pp. 61–74, 1991.

[5] N. El Karoui, S. Peng, and M. C. Quenez, “Backward stochastic differential equations in finance,” *Mathematical Finance*, vol. 7, no. 1, pp. 1–71, 1997.

[6] L. Delong, *Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications: BSDEs with Jumps*, Springer, Berlin, Germany, 2013.

[7] E. Rosazza Gianin, “Risk measures via -expectations,” *Insurance: Mathematics and Economics*, vol. 39, no. 1, pp. 19–34, 2006.

[8] N. El Karoui, S. Hamadène, and A. Matoussi, “Chapter Eight. BSDEs And Applications,” in *Indifference Pricing: ET_heory and Applications*, R. Carmona, Ed., Springer, Berlin, Germany, pp. 267–320, 2008.

[9] N. El Karoui, S. Hamadène, and A. Matoussi, “‘Chapter Eight. BSDEs And Applications,” in *Indifference Pricing: ET_heory and Applications*, R. Carmona, Ed., Springer, Berlin, Germany, pp. 267–320, 2008.

[10] D. Chevance, “Numerical methods for backward stochastic differential equations and related obstacle problems for pdes,” *Annals of Probability*, vol. 25, no. 2, pp. 702–737, 1997.

[11] D. Chevance, “Numerical methods for backward stochastic differential equations,” *Numerical methods in finance*, vol. 13, pp. 232–244, 1997.

[12] J. Zhang, “A numerical scheme for BSDEs,” *Annals of Applied Probability*, vol. 14, no. 1, pp. 459–488, 2004.

[13] B. Bouchard and N. Touzi, “Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations,” *Stochastic Processes and Their Applications*, vol. 111, no. 2, pp. 175–206, 2004.
equations,” *Annals of Applied Probability*, vol. 15, pp. 2172–2202, 2005.

[14] D. Crisan and K. Manolarakis, “Solving Backward Stochastic Differential Equations Using the Cubature Method: Application to Nonlinear Pricing.” *SIAM Journal on Financial Mathematics*, vol. 3, no. 1, pp. 534–571, 2012.

[15] M. J. Ruijter and C. W. Oosterlee, “A fourier cosine method for an efficient computation of solutions to BSDEs,” *SIAM Journal on Scientific Computing*, vol. 37, no. 2, pp. A859–A889, 2015.

[16] C. Bender and R. Denk, “A forward scheme for backward SDEs,” *Stochastic Processes and Their Applications*, vol. 117, no. 12, pp. 1793–1812, 2007.

[17] J.-F. Chassagneux and C. A. Garcia Trillos, “Cubature method to solve BSDEs: error expansion and complexity control,” *Mathematics of Computation*, vol. 89, no. 324, pp. 1895–1932, 2020.

[18] K. W. Chau and C. W. Oosterlee, “Stochastic grid bunding method for backward stochastic differential equations,” *International Journal of Computer Mathematics*, vol. 96, pp. 2271–2301, 2019.

[19] P. Henry-Labordère, X. Tan, and N. Touzi, “A numerical algorithm for a class of BSDEs via the branching process,” *Stochastic Processes and Their Applications*, vol. 124, no. 2, pp. 1112–1140, 2014.

[20] J. Q. Han and A. Jentzen, “Deep learning-based numerical methods for high dimensional parabolic partial differential equations and backward stochastic differential equations,” *Communications in Mathematics and Statistics*, vol. 5, no. 4, pp. 349–380, 2017.

[21] M. Hutzenthaler, A. Jentzen, and T. Kruse, “On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations,” *Journal of Scientific Computing*, vol. 79, no. 3, pp. 1534–1571, 2019.

[22] Q. Chan-Wai-Nam, J. Mikael, and X. Warin, “Machine learning for semi linear PDEs,” *Journal of Scientific Computing*, vol. 79, no. 3, pp. 1667–1712, 2019.

[23] C. Huré, H. Pham, and X. Warin, “Deep backward schemes for high-dimensional nonlinear PDEs,” *Mathematics of Computation*, vol. 89, no. 324, pp. 1547–1579, 2020.

[24] M. Hu and L. Jiang, “An efficient numerical method for forward-backward stochastic differential equations driven by G-Brownian motion,” *Applied Numerical Mathematics*, vol. 165, pp. 578–597, 2021.

[25] J.-F. Chassagneux, “Linear multistep schemes for BSDEs,” *SIAM Journal on Numerical Analysis*, vol. 52, no. 6, pp. 2815–2836, 2014.

[26] E. Gobet, J. G. López-Salas, and C. Vázquez, “Quasi-regression monte-carlo scheme for semi-linear PDEs and BSDEs with large scale parallelization on GPUs,” *Archives of Computational Methods in Engineering*, vol. 27, no. 3, pp. 889–921, 2020.

[27] E. Gobet and P. Turkedjiev, "Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions," *Mathematics of Computation*, vol. 85, no. 299, pp. 1359–1391, 2016.

[28] N. Hofmann, T. Müller-Gronbach, and K. Ritter, “Optimal approximation of stochastic differential equations by adaptive step-size control,” *Mathematics of Computation*, vol. 69, pp. 1017–1034, 2000.