The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

Lawrence N. Hudson1* | Tim Newbold2,3* | Sara Contu1 | Samantha L. L. Hill1,2 | Igor Lysenko4 | Adriana De Palma1,4 | Helen R. P. Phillips1,4 | Tamera I. Alhusseini5 | Felicity E. Bedford6 | Dominic J. Bennett4 | Hollie Booth2,7 | Victoria J. Burton1,8 | Charlotte W. T. Chng4 | Argyrios Choimes1,4 | David L. P. Correia9 | Julie Day4 | Susy Echeverría-Londoño1,4 | Susan R. Emerson1 | Di Gao1 | Morgan Garon4 | Michelle L. K. Harrison4 | Daniel J. Ingram10 | Martin Jung10 | Victoria Kemp11 | Lucinda Kirkpatrick12 | Callum D. Martin13 | Yuan Pan14 | Gwilym D. Pask-Hale1 | Edwin L. Pynegar15 | Alexandra N. Robinson5 | Katia Sanchez-Ortiz16 | Rebecca A. Senior14 | Benno I. Simmons4 | Hannah J. White17 | Hanbin Zhang16 | Job Aben18,19 | Stefan Abrahamczyk20 | Gilbert B. Adum21,22 | Virginia Aguilar-Barquero23 | Marcelo A. Aizen24 | Belén Albertos25 | E. L. Alcalá26 | Maria del Mar Alguacil27 | Audrey Alignier28,29 | Marc Ancran29,30 | Alan N. Andersen32 | Enrique Arbeláez-Cortés33,34 | Inge Armbricht35 | Víctor Arroyo-Rodríguez36 | Tom Aumann37 | Jan C. Axmacher38 | Badrul Azhar39,40 | Adrián B. Azpiroz41 | Lander Baeten42,43 | Adama Bakayoko44,45 | András Báldi46 | John E. Banks47 | Sharad K. Baral48 | Jos Barlow49,50 | Barbara I. P. Barratt51 | Lurdes Barrico52 | Paola Bartolommei53 | Diane M. Barton51 | Yves Basset54 | Péter Batáry55 | Adam J. Bates56,57 | Bruno Baur58 | Erin M. Bayne59 | Pedro Beja60 | Suzan Benedick61 | Åke Berg62 | Henry Bernard63 | Nicholas J. Berry64 | Dinesh Bhatt65 | Jake E. Bicknell66,67 | Jochen H. Bihn68 | Robin J. Blake69,70 | Kadiri S. Bobo71,72 | Roberto Bócon73 | Teun Boekhout74 | Katrin Böhning-Gaese75,76 | Kevin J. Bonham77 | Paulo A. V. Borges78 | Sérgio H. Borges79 | Céline Boutin80 | Jérémy Bouyer81,82 | Cibele Bragagnol83 | Jodi S. Brandt84 | Francis Q. Brearley85 | Isabel Brito86 | Vicenc Bros87,88 | Jörg Brunet89 | Grzegorz Buczkowski90 | Christopher M. Buddle91 | Rob Bugter92 | Erika Buscardo93,94,95 | Jörn Buse96 | Jimmy Cabra-García97,98 | Nilton C. Cáceres99 | Nicolette L. Cagle100 | María Calviño-Cancela101 | Sydney A. Cameron102,103 | Eliana M. Cancelli104 | Rut Caparrós25,105 | Pedro Cardoso78,106 | Dan Carpenter107,108 | Tiago F. Carrio109 | Anelena L. Carvalho79 | Camila R. Cassano110 | Helena Castro52 |
Alejandro A. Castro-Luna | Rolando Cerda B. | Alexis Cerezo | Kim Alan Chapman | Matthieu Chauvat | Morten Christensen | Francis M. Clarke | Daniel F.R. Cleary | Giorgio Colombo | Stuart P. Connop | Michael D. Craig | Leopoldo Cruz-López | Saul A. Cunningham | Biagio D’Aniello | Neil D’Cruze | Pedro Giovâni da Silva | Martin Dallimer | Emmanuel Danquah | Ben Darvill | Jens Dauber | Adrian L. V. Davis | Jeff Dawson | Claudio de Sassi | Benoit de Thoisy | Olivier Deheuvels | Alain Dejean | Jean-Louis Devineau | Tim Diekötter | Jignasu V. Dolia | Erwin Dominguez | Yamileth Dominguez-Haydar | Silvia Dorn | Isabel Draper | Niels Dreber | Bertrand Dumont | Simon G. Dures | Mats Dynesius | Lars Edenius | Paul Eggleton | Felix Eigenbrod | Zoltán Elek | Martin H. Entling | Karen J. Esler | Ricardo F. de Lima | Aisyah Faruk | Nina Farwig | Tom M. Faye | Antonio Feliciotti | Annika M. Felton | Roderick J. Fensham | Ignacio C. Fernandez | Catarina C. Ferreira | Gentile F. Ficetola | Cristina Fiera | Bruno K. C. Filgueiras | Hüseyin K. Fırıncıoğlu | David Flaspholter | Andreas Floren | Steven J. Fonte | Anne Fournier | Robert E. Fowler | Markus Franzén | Lauchlan H. Fraser | Gabriella M. Fredriksson | Gerald B. Freire-Jr | Tiago L. M. Frizzo | Daisuke Fukuda | Dario Furlani | René Gaigher | Jörg U. Ganzhorn | Karla P. García | Juan C. García-R | Jenni G. Garden | Ricardo Garilletti | Bao-Ming Ge | Benoit Gendreau-Berthiaume | Philippa J. Gerard | Carla Gheler-Costa | Benjamin Gilbert | Paolo Giordani | Simonetta Giordano | Carly Goldotes | Laurens G. L. Gomes | Rachelle K. Gould | Dave Goulson | Aaron D. Gove | Laurent Granjon | Ingo Grass | Claudia L. Gray | James Grogan | Weibin Gu | Moisès Guardiola | Nihara R. Gunawardene | Alvaro G. Gutierrez | Doris L. Gutiérrez-Lamus | Daniela H. Haarmeyer | Mick E. Hanley | Thor Hanson | Nor R. Hashim | Shombe N. Hassan | Richard G. Hatfield | Joseph E. Hawes | Matt W. Hayward | Christian Hébert | Alvin J. Helden | John-André Henden | Philipp Henschel | Lionel Hernández | James P. Herrera | Farina Herrmann | Felix Herzog | Diego Higuera-Díaz | Branko Hilje | Hubert Höfer | Anke Hoffmann | Finbarr G. Horgan | Elisabeth Hornung | Roland Horváth | Kristoffer Hylander | Paola Isaacs-Cubides | Hiroaki Ishida | Masahiro Ishitani | Carmen T. Jacobs | Víctor J. Jaramillo | Birgit Jauker | F. Jiménez Hernández | McKenzie F. Johnson | Virat Jolli | Mats Jonsell | S. Nur Julián | Thomas S. Jung | Vena Kapoor | Heike Kappes | Vassiliki Kati |
51 AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel, New Zealand
52 Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
53 COT (Tuscan Ornithological Society), Livorno, Italy
54 Smithsonian Tropical Research Institute, Balboa, Ancon, Panama City, Republic of Panama
55 Agroecology, Department of Crop Sciences, Georg-August University, Göttingen, Germany
56 Biosciences, School of Science & Technology, Nottingham Trent University, Clifton, Nottingham, UK
57 University of Birmingham, Edgbaston, Birmingham, UK
58 Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
59 Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
60 CIIBIO/InBio, Centro de Investigación en Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
61 Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Malaysia
62 The Swedish University of Agricultural Sciences, The Swedish Biodiversity Centre, Uppsala, Sweden
63 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Malaysia
64 School of Geosciences, University of Edinburgh, Edinburgh, UK
65 Department of Zoology & Environmental Science, Gurukula Kangri University, Haridwar, India
66 Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK
67 Iwokrama International Centre for Rainforest Conservation and Development, Georgetown, Guyana
68 Department of Ecology-Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
69 Compliance Services International, Pentlands Science Park, Penicuik, Edinburgh, UK
70 Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
71 School for the Training of Wildlife Specialists Garoua, Garoua, Cameroon
72 Department of Forestry, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
73 Mater Natura – Instituto de Estudos Ambientais, Curitiba, Brazil
74 CBS Fungal Biodiversity Centre (CBS–KNAW), Utrecht, The Netherlands
75 Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
76 Institute for Ecology, Evolution & Diversity, Goethe University Frankfurt, Biologicum, Frankfurt am Main, Germany
77 School of Land and Food, University of Tasmania, Sandy Bay, Tas., Australia
78 Departamento de Ciências Agrárias, cE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
79 Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
80 Environment and Climate Change Canada, Science & Technology Branch, Carleton University, Ottawa, ON, Canada
81 Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
82 Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut national de la recherche agronomique (INRA), Montpellier, France
83 Departamento de Zoología, Instituto de Biociencias, Universidade de São Paulo, São Paulo, Brazil
84 Human Environment Systems Center, Boise State University, Boise, ID, USA
85 School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
86 Universidade de Évora – ICAAM, Évora, Portugal
87 Natural Parks Technical Office, Diputació de Barcelona, Barcelona, Spain
88 Natural History Museum of Barcelona, Barcelona, Catalonia, Spain
89 Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Alnarp, Sweden
90 Department of Entomology, Purdue University, West Lafayette, IN, USA
91 Department of Natural Resource Sciences, McGill University, Ste-Ann-de-Bellevue, QC, Canada
92 Alterra, part of Wageningen University and Research, RB Wageningen, The Netherlands
93 Departamento de Ciências da Vida, Centro de Ecologia Funcional, Universidade de Coimbra, Coimbra, Portugal
94 Departamento de Biología Vegetal, Instituto de Biología, Universidade Estadual de Campinas, Campinas, Brazil
95 Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
96 Institute for Environmental Sciences, University Koblenz-Landau, Landau, Germany
97 Departamento de Zoología, Instituto de Biociencias, Universidade de São Paulo, São Paulo, Brazil
98 Departamento de Biología, Grupo de investigación en Biología, Ecología y Manejo de Hormigas, Sección de Entomología, Universidad del Valle, Cali, Colombia
Department of Biology, Federal University of Santa Maria, CCNE, Santa Maria, Brazil
Nicholas School of the Environment, Duke University, Durham, NC, USA
Department of Ecology and Animal Biology, Faculty of Sciences, University of Vigo, Vigo, Spain
Department of Entomology, University of Illinois, Urbana, IL, USA
Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana, IL, USA
Museu de Zoológia da Universidade de São Paulo, São Paulo, Brazil
Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid, Spain
Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
Parks and Countryside, Bracknell Forest Council, Bracknell, UK
Soil Biodiversity Group, Life Sciences Department, Natural History Museum, London, UK
Museu de Zoológia da Universidade de São Paulo, São Paulo, Brazil
Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
Instituto de Biotecnologia y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Mexico
Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Tropical Agricultural Research and Higher Education Center, Turrialba, Costa Rica
Department of Quantitative Methods and Information Systems, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
Applied Ecological Services, Inc., Prior Lake, MN, USA
Normandie Univ, EA 1293 ECODEV-Rouen, SFR SCALE, UFR Sciences et Techniques, Mont Saint Aignan Cedex, France
MC-Consult, Sore, Denmark
Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
Department of Biology, CESAM, Universidade de Aveiro, Aveiro, Portugal
Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
Sustainability Research Institute, University of East London, London, UK
Centre of Excellence for Environmental Decisions, School of Plant Biology, University of Western Australia, Nedlands, WA, Australia
School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
Grupo Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur, Tapachula, Mexico
CSIRO Land and Water Flagship, Canberra, ACT, Australia
Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney, UK
Programa de Pós-Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
British Trust for Ornithology, Stirling, UK
Thünen Institute of Biodiversity, Braunschweig, Germany
Scarb Research Group, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
Durrell Wildlife Conservation Trust, Trinity, Jersey
Center for International Forestry Research, Bogor, Indonesia
Kwata NGO, Cayenne, French Guiana
CIRAD, UMR Systeme, Montpellier, France
ICRAF, Regional Office for Latin America, Lima, Peru
UPS, INP, Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, Toulouse, France
CNRS – UMR 5245, Ecolab, Toulouse, France
CNRS – UMR 8172, Écologie des Forêts de Guyane, Kouros Cedex, France
CNRS – UMR 7206 (retired) CNRS/MNHN, Paris, France
Department of Landscape Ecology, Institute of Natural Resource Conservation, Kiel University, Kiel, Germany
Department of Biology, Nature Conservation, University Marburg, Marburg, Germany
Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
Post Graduate Program in Wildlife Biology and Conservation, National Centre for Biological Sciences, Bangalore, India
Wildlife Conservation Society (India Program), Centre for Wildlife Studies, Bangalore, India
Instituto de Investigaciones Agropecuarias – INIA – CRI – Kampenaike, Punta Arenas, Chile
Programa de Biología, Universidad del Atlántico, Barranquilla, Colombia
Applied Entomology, ETH Zürich, Zürich, Switzerland
Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
201	DIFAR, University of Genova, Genova, Italy
202	Tel Aviv University, Tel Aviv, Israel
203	World Wildlife Fund, Inc. (WWF) Guianas, Paramaribo, Suriname
204	Rubenstein School of Natural Resources, University of Vermont, Burlington, VT, USA
205	Astron Environmental Services, East Perth, WA, Australia
206	Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
207	Centre de Biologie pour la Gestion des Populations (CBGP), INRA, IRD, CIRAD, SUPAGRO, Montferrier-sur-Lez cedex, France
208	Department of Zoology, University of Oxford, Oxford, UK
209	Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
210	China International Engineering Consulting Corporation, Haidian District, Beijing, China
211	CERAF, Cerdanyola del Vallés, Catalonia, Spain
212	Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Chile
213	Grupos de Fauna, Instituto amazónico de investigaciones científicas Sinchi, Bogotá, Colombia
214	Biodiversity, Evolution and Ecology of Plants (BEE), Biocentre Klein Flottbek and Botanical Garden, University of Hamburg, Hamburg, Germany
215	School of Biological Science, University of Plymouth, Plymouth, UK
216	Friday Harbor, WA, USA
217	International University of Malaya-Wales, Jalan Tun Ismail, Kuala Lumpur, Malaysia
218	Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
219	The Xerces Society for Invertebrate Conservation, Portland, OR, USA
220	Animal & Environment Research Group, Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
221	Walter Sisulu University, Mthatha, Transkei, South Africa
222	Centre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
223	College of Natural Sciences, Bangor University, Bangor, Gwynedd, UK
224	Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
225	Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
226	Panthera, New York, NY, USA
227	Universidad Nacional Experimental de Guayana, Puerto Ordaz, Venezuela
228	Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
229	Agroscope, Zürich, Switzerland
230	Corporación Sentido Natural, Bogotá, Colombia
231	Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, AB, Canada
232	State Museum of Natural History Karlsruhe (SMNK), Biosciences, Karlsruhe, Germany
233	Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
234	University of Technology Sydney, Sydney, NSW, Australia
235	University of New Brunswick, Fredericton, NB, Canada
236	Department of Ecology, Faculty of Veterinary Science, SZIE University, Budapest, Hungary
237	Department of Ecology, University of Debrecen, Debrecen, Hungary
238	Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
239	Instituto de Investigaciones y Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
240	Institute of Natural and Environmental Sciences, University of Hyogo, Hyogo, Japan
241	Hiroshima UniversityLeading-program, Higashihiroshima, Kagamiyama, Japan
242	Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México C.P., Mexico
243	Department of Animal Ecology, Justus-Liebig-University, Giessen, Germany
244	Escuela de Biología, Universidad de Costa Rica, San Pedro, Costa Rica
245	Biodiversity and Environmental Sustainability, Rohini, India
246	Department of Environmental Studies, Shivaji College (University of Delhi), New Delhi, India
247	Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
248	School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
249	Yukon Department of Environment, Whitehorse, YT, Canada
250	Nature Conservation Foundation, Mysore, India
251	Cologne Biocenter, Zoological Institute, University of Cologne, Köln, Germany
The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
National Museums of Kenya, Nairobi, Kenya
Center for Macroeckology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, Mexico
Department of Geography, University of Bergen, Bergen, Norway
Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
School of Biology, University of Leeds, Leeds, West Yorkshire, UK
Marshall Agroecology Ltd, Barton, Winscombe, UK
Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
Centro de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, Mexico
Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
Associate of Arts Program, University of Delaware – Wilmington, Wilmington, DE, USA
Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
Department of Entomology, University of California, Riverside, CA, USA
Centre for Mining Land Rehabilitation, The University of Queensland, Brisbane, Qld, Australia
Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
Museo de Historia Natural "Vera Alleman Haeghebaert", Universidad Ricardo Palma, Lima 33, Peru
Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Alicante, Spain
Department of Ecology, Swedish University of Agricultural Sciences, Grimso Wildlife Research Station, Riddarhyttan, Sweden
Rainforest Alliance, New York, NY, USA
Department of Natural Resources, Cornell University, Ithaca, NY, USA
Department of Natural Resources & Environmental Sciences, University of Illinois, Urbana, IL, USA
Universidad Industrial de Santander, Bucaramanga, Colombia
School of Plant Biology, University of Western Australia, Crawley, WA, Australia
Lab. Ecotono, INIBIOMA (Universidad Nacional del Comahue-CONICET), Bariloche, Argentina
Botany Department, National Museums of Kenya, Nairobi, Kenya
Department of Wildlife Management, University of Eldoret, Eldoret, Kenya
Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
El Colegio de la Frontera Sur, Ecología Evolutiva y Conservación, San Cristóbal de las Casas, Mexico
Nature Kenya, Nairobi, Kenya
WWF, Washington, DC, USA
Independent Research Scholar, New Delhi, India
Avian Diversity and Bioacoustic Lab, Department of Zoology, Gurukula Kangri University, Haridwar, India
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
Environmental Futures Research Institute, and Griffith School of Environment, Griffith University, Nathan, Brisbane, Qld, Australia
College of Bioresource Science, Nihon University, Fujisawa, Japan
Forestry and Forest Products Research Institute, Tsukuba, Japan
Laboratorio de Investigaciones en Abejas (Departamento de Biología), Universidad Nacional de Colombia, Bogotá, Colombia
Laboratorio de Información Geográfica, El Colegio de la Frontera Sur (ECOSUR), San Cristóbal de las Casas, Mexico
CMRPZ – I.E. Plaza Bonita, San Andrés de Sotavento (Córdoba), Colombia
BirdLife International – África Partnership Secretariat, Nairobi, Kenya
Ornithology Section, National Museums of Kenya, Nairobi, Kenya
Department of Zoology, University of British Columbia, Vancouver, BC, Canada
Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
Department of Biology/Biodiversity, Lund University, Lund, Sweden
Department of Biosciences, University of Helsinki, Helsinki, Finland
Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
School of Biology, The University of Nottingham, University Park, Nottingham, UK

Laboratorio de Zoología y Ecología Acuática – LAZOA, Universidad de Los Andes, Bogotá, Colombia

School of Forestry, University of Canterbury, Christchurch, New Zealand

BIO-Diverse, Bonn, Germany

Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA, USA

IUCN-Centre for Mediterranean Cooperation, Campanillas, Málaga, Spain

Oxford University Centre for the Environment, University of Oxford, Oxford, UK

Natural Resources and the Environment, CSIR, Stellenbosch, South Africa

International Programme Office (IPO), Vice Chancellor’s Office, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

Naturschutz – Planung und Beratung, Wiesendangen, Switzerland

Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Forestry Research Institute of Ghana, Kumasi, Ghana

Department of Animal & Environmental Biology, University of Benin, Benin City, Nigeria

Department of Genetics, Evolution and Environment, University College London, London, UK

The Royal Society for the Protection of Birds (RSPB), Sandy, Bedfordshire, UK

Laboratorio de Ecología del Paisaje, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile

Indian Institute of Science, Bangalore, India

Laboratorio Ecoton, CONICET–INIBIOMA, Universidad Nacional del Comahue, Bariloche, Argentina

Laboratorio de Investigaciones en Abejas, LABUN, Universidad Nacional de Colombia, Bogotá D.C., Colombia

Lancaster Environment Centre, Lancaster University, Lancaster, UK

Universidade Federal do Pará (UFPA), Núcleo de Altos Estudos Amazonicos (NAEA), Belém, Brazil

German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany

Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain

IKERBASQUE. Basque Foundation for Science, Bilbao, Spain

Instituto de Diversidad y Ecología Animal (IDEA, CONICET-UNC) and Centro de Zoología Aplicada, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina

IRD, UMR AMAP, TA A51/PS2, Montpellier cedex 05, France

French Institute of Pondicherry, UMIFFRE 21 CNRS-MAEE, Puducherry, India

School of Environmental Sciences, University of East Anglia, Norwich, UK

National Institute of Agricultural Technology (INTA), Río Gallegos, Argentina

National University of Southern Patagonia (UNPA), Río Gallegos, Argentina

National Commission of Scientist Research and Technology (CONICET), Buenos Aires, Argentina

Laboratory of Biogeography & Ecology, Department of Geography, University of the Aegean, Mytilene, Greece

Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany

University of Cambridge, Cambridge, UK

Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK

Systematics and Evolution Laboratory, Department of Biology, Western Kentucky University, Bowling Green, KY, USA

Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA

Facultad de Recursos Naturales, Escuela de Ciencias Ambientales, Laboratorio de Planificación Territorial, Universidad Católica de Temuco, Temuco, Chile

Biología y Conservación de Vertebrados, Instituto de Ecología A.C., El Haya, Xalapa, Mexico

Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain

Laboratorio de Entomología Ecológica, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile

Albertine Rift Program, Wildlife Conservation Society, Kampala, Uganda

IFEVA/Cátedra de Producción Vegetal, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina

Directora del Programa Conservación de Biodiversidad en Bosques Subtropicales, Cátedra de Desarrollo Sustentable y Biodiversidad, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, CIT-Jujuy CONICET, Fundación CEBio, San Salvador de Jujuy, Argentina

Departament de Ciències Ambientals, Universitat de Girona, Girona, Spain

Entomology, Cornell University, Ithaca, NY, USA

Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
Abstract

The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

KEYWORDS

data sharing, global biodiversity modeling, global change, habitat destruction, land use

1 INTRODUCTION

Many indicators are available for tracking the state of biodiversity through time, for example, in order to assess progress toward goals such as the Convention on Biological Diversity’s 2010 target or the newer Aichi Biodiversity Targets (Pereira et al., 2013; Tittensor et al., 2014). Most of the available indicators are taxonomically or ecologically narrow in scope, and many are based on the global status of species (e.g., Butchart et al., 2010; Tittensor et al., 2014), because of the finality of extinction. However, using a more representative set of taxa and considering local biodiversity offers several advantages. First, average responses of species to human impacts typically vary among higher taxa and ecological guilds (Lawton et al., 1998; McKinney, 1997; Newbold et al., 2014; WWF International, 2014), meaning that indicators need to be broadly based and as representative as possible, if they are to be used as proxies for biodiversity as a whole. Second, the taxa for which most data on trends are available (typically, charismatic groups such as birds or butterflies) are not always the most
important for the continued functioning of ecosystems and delivery of ecosystem services (Norris, 2012). Third, although many of the ultimate drivers behind biodiversity loss are global, the most important pressure mechanisms usually act much more locally (Brook, Ellis, Perring, Mackay, & Blomqvist, 2013). Fourth, most ecosystem services and their underpinning processes are mediated by local rather than global biodiversity (Cardinale et al., 2012; Grime, 1998): It is local rather than global functional diversity, for example, that determines how ecosystems function in a given set of conditions (Steffen et al., 2015). Finally, presence/absence and especially abundance of species at a site respond more rapidly to disturbance than extent of geographic distribution or global/national extinction risk (Balmford, Green, & Jenkins, 2003; Collen et al., 2009; Hull, Darroch, & Erwin, 2015), so local changes are likely to be detected before large global changes or extinction.

For these reasons, there is a need to model the response of local biodiversity to human pressures and, thus, to estimate biodiversity changes at local scales, but across a wide spatial domain (ideally globally) and for a wide range of taxa. We therefore need comparable high-quality data on local biodiversity at different levels of human pressure, from many different taxa and regions. At present, spatial comparisons of how biodiversity responds to variation in pressures provide the only feasible way to collate a large, globally representative evidence base and to model responses to human impacts. Although large temporal datasets are available (e.g., Butchart et al., 2004; Collen et al., 2009; Dornelas et al., 2014; Vellend et al., 2013), they may not be sufficiently representative of anthropogenic pressures for the trends they show to be taken at face value (Gonzalez et al., 2016). Furthermore, in the absence of contemporaneous site-specific information about pressures, it is not straightforward to use these data to model how biodiversity responds to pressures or to project changes into the future (but see Visconti et al., 2015). Spatially extensive field data of suitable quality and resolution are time-consuming and expensive to collect. The most convenient and readily available source of suitable biodiversity data is the published literature: Thousands of published papers are based on datasets that would be of value to global modeling efforts. However, it has been rare for such papers to publish data in full, even as supporting information, meaning that many potentially valuable datasets are “dark data” (Hampton et al., 2013), effectively at risk of being lost to science if they have not been lost already.

Since 2012, the PREDICTS project has been collating data on local biodiversity at different levels of human pressure from published papers, where necessary contacting those papers’ corresponding authors to request the underlying biodiversity data, species’ identities, and precise sampling locations. We have enhanced the collated data by scoring site characteristics relating to human pressures such as the predominant land use and how intensively the land is used by humans. We also used the geographical coordinates of the sites to match them to a number of published spatially explicit datasets. The database has already been used to conduct global (e.g., Newbold et al., 2015; Newbold, Hudson, Arnell, et al., 2016), regional (De Palma et al., 2016) and national (Echeverría-Londoño et al., 2016) analyses of the responses of local biodiversity to land use and related human pressures. The database was first described by Hudson et al. (2014) who published an interim version (March 2014) of the site-level metadata along with a detailed description of how the database has been collated and validated. Since that time, the database has nearly doubled in size. Here, we describe the status of the database and make available the full species-level data themselves (not just the site metadata previously released) to facilitate other research, especially into human impacts on ecological assemblages. We also include suggestions for how the database can be used.

METHODS

We sought datasets describing the abundance or occurrence of species, or the diversity of ecological assemblages of species at multiple sites in different land uses or at different levels of other human pressures (e.g., differing levels of land-use intensity). Data were primarily collated through subprojects on particular regions, land uses, or taxa. We also made general requests for data at conferences and through published articles (Hudson, Newbold, et al., 2013; Hudson et al., 2014; Newbold et al., 2012). Through the course of the project, searches were increasingly targeted toward under-represented regions, biomes, or taxa, in order to mitigate biased coverage in the literature.

To be included in the database, data were required to meet the following criteria: (1) the dataset was part of a published work, or the sampling methods were published; (2) the same sampling procedure was carried out at each site within each study (sampling effort was permitted to vary so long as it was recorded for each site); and (3) we could acquire the geographical coordinates of each sampled site. Where the author of the original publication was unable to supply the geographical coordinates, sites were georeferenced from maps in the publication (Hudson et al., 2014). Sites’ land use—primary vegetation, secondary vegetation (divided according to stage of recovery into mature, intermediate and young; or indeterminate where information on stage was unavailable), plantation forest, cropland, pasture and urban—and, within each land-use class, intensity—minimal, light and intense—were classified from the description given in the source publication or information subsequently provided by data contributors (see Hudson et al., 2014 for full details). These land-use categories were chosen to be as compatible as possible with those used in the harmonized land-use scenarios for 1500–2100 (Hurtt et al., 2011) in order to facilitate spatial and temporal projections of modeled land-use effects on biodiversity (e.g., Newbold et al., 2015). For some sites, land use and/or use intensity could not be established, so were given missing values.

The data were arranged in a hierarchical structure. The data from an individual published work, typically a published paper, constituted a “DataSource.” Where different sampling methods were used within a DataSource, for example, because different taxonomic groups were collected, and the data were made available separately, the data were divided into separate “Studies.” Data from a given DataSource were also split into multiple Studies if they covered large geographic areas (e.g., several countries), to reduce the effect of biogeographic differences within Studies. Each Study contained a set of sampled “Sites.”
and “Taxa” at each Site a set of “Measurements” (typically the abundance or occurrence of a set of taxa) were taken. The provided database extracts contain, for each Site, the raw measurement values, the sampling efforts and, where relevant, the effort-corrected abundance values (corrected across Sites within a Study by dividing the abundance measurement by sampling effort, assuming that sampled abundances increase linearly with sampling effort, after first rescaling effort values within each Study to a maximum value of one). The measurements were not corrected for different detectability (Hayward et al., 2015; MacKenzie et al., 2002).

It is important to note that the data in the database are often not exactly the same as those used in the source papers. Numbers of sites may differ because datasets provided may have been partial or included extra sites, or because we have aggregated or disaggregated data differently. Likewise, numbers of taxa may differ because of curation or because more data were provided than had been used in the source paper. Because our focus was to make these data as useful as possible for PREDICTS analysis, rather than to act as a repository for datasets from previous publications, it will often not be possible to use these data to replicate the analyses presented in the source papers.

We were limited by the rate at which we could process new data because so many datasets were contributed. This led to the development of a backlog, which we had to clear by the end of the first phase of funding for PREDICTS. During this stage of the project, in order to process all the datasets in hand within the time available, we focused our efforts on the fields shown to be most important in our models to that point (De Palma et al., 2015; Newbold et al., 2014, 2015). As a result, DataSources processed since early 2015 often lack data for some fields, including coordinate precision and maximum linear extent; details of the potentially affected fields are listed in Supporting Information.

Team members were trained in how to score datasets received, using written definitions and descriptions of fields and terms, as well as practice datasets. All data underwent basic validation checks to ensure values entered in each field were appropriate (Hudson et al., 2014). Geographical coordinates were visually inspected on a map after entry into the database, and our software automatically detected coordinates falling outside of the expected country (e.g., because latitude and longitude values were accidentally swapped). For the calculation of biodiversity metrics such as species richness, we accepted the identifications of species provided by the authors of the source publications; these were determined at the time of the original research, and so will not reflect subsequent taxonomic changes or re-identifications. We also matched taxonomic names to the Catalogue of Life 2013 checklist (COL; Roskov et al., 2013), allowing us to validate many of the names, assess taxonomic coverage and relate measurements to species-level datasets such as those describing ecological traits. We make available both the original species classifications and those from COL (field names are given in Supporting Information). We reviewed and corrected a number of potential error cases, such as names without a matching COL record, and names for which the higher taxonomic
The percentage of Studies (a and b), Sites (c and d), and samples (e and f) against percentages of terrestrial NPP (Net Primary Productivity, computed as in Hudson et al., 2014; a, c, and e) and terrestrial area (b, d, and f). Biome codes and colors are as in Figure 1.

rank of the matching COL record was unexpected (e.g., a COL record for a true fly within a Study that examined birds). Many more validation checks were applied; a complete description is in Hudson et al. (2014).

3 | RESULTS

3.1 Geographical coverage

This release of the PREDICTS database contains 3,250,404 records, from 26,114 sampled Sites (Figure 1), collated from 480 DataSources and 666 Studies. The data represent all of the world’s 14 terrestrial biomes, in approximate proportion to their contribution to global total primary productivity (Figure 2). The sampled Sites span 94 of the world’s countries (including all 17 megadiverse countries; Mittermeier, Gil, & Mittermeier, 1997), 281 of the 814 terrestrial ecoregions (The Nature Conservancy 2009) and 32 of Conservation International’s 35 biodiversity hotspots (Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 2000; circles on Figure 3). Although the database focuses on land use, it also includes data from regions that have so far seen relatively little land-use change, such as some
high biodiversity wilderness areas (Mittermeier et al., 2003; squares on Figure 3).

3.2 | Taxonomic coverage

Records in the PREDICTS database represent 47,044 species (see Hudson et al., 2014 for how species numbers are estimated in the face of imprecise taxon names), which is over 2% of the number thought to have been formally described (Chapman, 2009)—29,737 animals, 15,545 plants, 1,759 fungi, and three prostis. The taxonomic distribution of taxa in the database is in rough proportion to the numbers of described species in major taxonomic groups of animals and plants (Figure 4), and the data represent more than 1% as many species as have been described in the following groups: Amphibia, Arachnida, Archaeognatha, Ascomycota, Aves, Basidiomycota, Bryophyta, Chilopoda, Coleoptera, Collembola, Dermoptera, Diptera, Embioptera, Ferns and allies, Glomeromycota, Gymnosperms, Hemiptera, Hymenoptera, Isoptera, Lepidoptera, Magnoliophyta, Mammalia, Mantodea, Mecoptera, Neuroptera, Odonata, Onychophora, Orthoptera, Reptilia, Symphyla and Zoraptera (Figure 4). Vertebrates—and especially birds—are overrepresented owing to biases in the published literature (Figure 4), but less so than in many other data compilations (e.g., over half of the records currently in the Global Biodiversity Information Facility [GBIF] are of birds; www.gbif.org, accessed in April 2016). Most Studies in the PREDICTS database sampled at least multiple families, if not multiple orders, classes, phyla, or even kingdoms (Figure 5). However, some Studies sampled only a single family, genus, or even species (Figure 5).

3.3 | Temporal coverage

We focused primarily on data sampled since 2000 because most global layers describing human pressure are collected after this year and, in particular, to facilitate use of contemporaneous Moderate-resolution Imaging Spectroradiometer (MODIS) remotely sensed data (Justice et al., 1998; Tuck et al., 2014) in modeling. However, in filling certain taxonomic and geographic gaps, we also collated some data that were sampled before 2000 (Figure 6). Data are sparse after 2012 because of the natural time lags between data collection in the field, publication and then assimilation into the PREDICTS database (Figure 6).

3.4 | Data access and structure

This 2016 release of the database—the complete dataset and also site-level summaries—is available on the data portal of the Natural History Museum, London (doi: 10.5519/0066354) as comma-separated variable (CSV) files and as RDS files, the latter for use with the R statistical modeling language (R Core Team 2015; RDS files were generated using R 3.3.1). A complete description of the columns in the extracts, along with a visualization of the database schema, is given in Supporting Information. This paper makes all the data in this version of the database freely available to anyone wishing to use
them for any purpose. The terms of the license require that anyone publishing research based on these data should cite this paper and/or the original sources of the data used, as appropriate. The dataset at doi: 10.5519/0066354 contains bibliographic information for all DataSources in both CSV and BibTeX formats.

4 | DISCUSSION

The PREDICTS database is designed to be able to address a range of questions about how land use and related pressures have influenced the occurrence and abundance of species and the diversity of ecological assemblages. The highly structured nature of the data, with comparable surveys having been carried out at each Site within a Study, was chosen to facilitate such modeling. Table 1 identifies a range of long-standing general questions for which the PREDICTS data may be useful, referencing early papers addressing questions of each type. It also outlines the steps required to tackle each kind of question, in conjunction with other information about the Sites and species where necessary, and refers to papers that have performed so.

Changes in attitudes to—and the increasing ease of—data sharing have contributed to rapid growth in open compilations of structured biodiversity data and related pressure data targeted toward particular kinds of research question. Examples of data types featured in such compilations include population time series (e.g., Inchausti & Halley, 2001), assemblage time series (e.g., Dornelas et al., 2014), assemblage inventories (e.g., Thibault, Supp, Giffin, White, & Ernest, 2011), and species traits (e.g., Madin et al., 2016). Other projects have collated or are collating large compilations of structured biodiversity data, such as BIOFRAG (Pfeifer et al., 2014; habitat fragmentation), BIOTIME (The BioTIME Research Group, 2016; detailed time-series data, still being compiled) and GLOBIO3 (Alkemade et al., 2009; pristine versus disturbed habitats, not publicly available).

The largest open compilation of biodiversity data is the Global Biodiversity Information Facility (GBIF; www.gbif.org), which aggregates mostly unstructured species occurrence data. The unstructured nature of most GBIF data limits the range of questions to which they can easily be put, although they are increasingly used in modeling species distributions (e.g., Pineda & Lobo, 2008) and habitat suitability (e.g., Ficetola, Rondinini, Bonardi, Baisero, & Padoa-Schioppa, 2015). As of April 2016, GBIF holds over 560 million georeferenced occurrence records of around 1.5 million species, although coverage is taxonomically uneven (e.g., most records are of birds) and patchy even among the best-recorded groups (Meyer, Kreft, Guralnick, & Jetz, 2015).

Databases of species traits continue to be collated and published, and many of them are relevant to taxa in the PREDICTS
FIGURE 5 Number of Studies by lowest common taxonomic group. Bars show the number of Studies within each lowest common taxon (so, one Study examined the species *Swietenia macrophylla*, three Studies examined the species *Bombus pascuorum*, ten Studies examined multiple species within the genus *Bombus*, and so on). Colors are as in Figure 4. Numbers on the right are the primary references from which data were taken: 1 Basset et al. (2008), 2 Buscardo et al. (2008), 3 Christensen and Heilmann-Clausen (2009), 4 Dominguez, Bahamonde, and Muñoz-Escobar (2012), 5 López-Quintero, Straatsma, Franco-Molano, and Boekhout (2012), 6 Nöske et al. (2008), 7 Norton, Espie, Murray, and Murray (2006), 8 Peri, Lencinas, Martínez Pastur, Wardell-Johnson, and Lasagno (2013), 9 Robinson and Williams (2011), 10 Barratt et al. (2005), 11 Bonham, Mesibov, and Bashford (2002), 12 Boutin, Martin, and Baril (2009), 13 Carpenter et al. (2012), 14 Gaigher and Samways (2010), 15 Ge et al. (2012), 16 Hayward (2009), 17 Leighton-Goodall, Brown, Hammond, and Eggleton (2012), 18 Muchane et al. (2012), 19 Ngai et al. (2008), 20 Richardson, Richardson, and Soto-Adames (2005), 21 Schon, Mackay, Minor, Yeates, and Hedley (2008), 22 Schon, Mackay, Yeates, and Minor (2010), 23 Schon, Mackay, and Minor (2011), 24 Smith (2006), 25 Smith, Potts, Woodcock, and Eggleton (2008), 26 Smith, Potts, and Eggleton (2008), 27 Todd et al. (2011), 28 Vasconcelos et al. (2009), 29 Walker, Wilson, Norbury, Monks, and Tanentzap (2014), 30 Baeten, Velge, et al. (2010), 31 Bakayoko, Martin, Chatelain, Traore, and Gautier (2011), 32 Center for International Forestry Research (CIFOR) (2013a), 33 Center for International Forestry Research (CIFOR) (2013b), 34 Dumont et al. (2009), 35 Firincioglu, Seefeldt, Sahin, and Vural (2009), 36 Haarmeyer, Schmiedel, Dengler, and Bosing (2010), 37 Joubert, Lafrenière, and Verheyen (2010), 39 Page, Qureshi, Rawat, and Kushalappa (2010), 40 Proença, Pereira, Guilherme, and Vicente (2010), 41 Shell et al. (2002), 42 Wang, Lencinas, Ross Friedman, Wang, and Qiu (2011), 43 Alignier and Deconchat (2013), 44 Baeten, Hermy, Van Daele, and Verheyen (2010), 46 Barlow, Gardner, et al. (2007), 46 Barrico et al. (2012), 47 Baur et al. (2010), 48 Berry et al. (2010), 49 Boutin, Baril, and Martin (2008), 51 Brearley (2011), 52 Brunet et al. (2011), 53 Calviño-Cancela, Rubido-Bará, and van Etten (2012), 54 Castro, Lehm, Lavoie, and Freitas (2010), 55 de Lima, Dallimer, Atkinson, and Barlow (2013), 56 Devineau, Fournier, and Nignan (2009), 57 Fensholt, Dwyer, Eyre, Fox, and Wang (2012), 58 Fernandez and Simonetti (2013), 59 Fredrikksson, Danielsen, and Swenson (2007), 61 Gendreau-Beuthäume, Kneeshaw, and Harvey (2012), 61 Golodets, Kigel, and Stembreg (2010), 62 Grass, Berens, Peter, and Farwig (2013), 63 Gutierrez et al. (2009), 64 Helden and Leath (2004), 65 Hernández, Delgado, Meier, and Duran (2012), 66 Hietz (2005), 67 Higuera and Wolf (2010), 68 Hylander and Némomissa (2009), 69 Ishida, Hattori, and Takeda (2005), 70 Kati, Zografou, Zirikalli, Chitos, and Willems (2012), 71 Kotaioi, Burley, and Mayfield (2012), 72 Kessler et al. (2005), 73 Kessler et al. (2009), 74 Kolb and Diekmann (2004), 75 Krauss, Klein, Steffan-Dewenter, and Tscharntke (2004), 76 Krauss et al. (2010), 77 Kumar and Shahabuddin (2005), 78 Letcher and Chazdon (2009), 79 Louhaichi, Salkini, and Petersen (2009), 80 Lucas-Borja et al. (2011), 81 Maren (2011), 82 Maren, Bhattacharai, and Chaudhary (2013), 83 Marin-Spiotta, Ostertag, and Silver (2007), 84 Mayfield, Ackerly, and Daily (2006), 85 McNamara, Erskine, Lamb, Chantalanges, and Boyle (2012), 86 Milder et al. (2010), 87 O’Connor (2005), 88 Paritsis and Aizen (2008), 89 Phalan, Onial, Balmford, and Green (2011), 90 Pincheira-Urbich, Rau, and Smith-Ramirez (2012), 91 Poggio, Chaneton, and Ghersa (2013), 92 Power and Stout (2011), 93 Power, Kelly, and Stout (2012), 94 Ramesh et al. (2010), 95 Romero-Duque, Jaramillo, and Perez-Jimenez (2007), 96 Schmitt, Senbeta, Denich, Preisinger, and Boehmer (2010), 97 Shannon et al. (2008), 98 Siebert (2011), 99 Vassilev, Pedashenko, Nikolov, Apostolova, and Dengler (2011), 100 Williams, Sheahan, and Gormally (2009), 101 Yamaura et al. (2012), 102 Alcalá, Alcalá, and Dolino (2004), 103 Bicknell and Perez (2010), 104 Centro Agronómico Tropical de Investigación y Enseñanza (CATEI) (2010), 105 Deheuvels, Avelino, Somarriva, and Malézieux (2012), 106 Deheuvels et al. (2014); Rousseau, Deheuvels, Rodriguez Arias, and Somarriva (2012), 107 Craig et al. (2009), (Continues)
(Continues)
Additional databases provide more abstract concepts such as species’ threat status (International Union for Conservation of Nature, 2016) and estimates of the degrees of protection required (Convention on International Trade in Endangered Species of Wild Fauna and Flora, 2016). Relating such data with measurements in the PREDICTS database makes possible investigation into how threats mediate species’ responses to changes in land use and land-use intensity. Examples of published analyses have examined habitat specialization and geographical range size of birds and mammals (Newbold et al., 2014), functional traits of vascular plants (Kattge et al., 2014), field metabolic rates of birds and mammals (Hudson, Isaac, & Reuman, 2013) and functional traits of vascular plants (Katge et al., 2011). Additional databases provide more abstract concepts such as species’ threat status (International Union for Conservation of Nature, 2016) and estimates of the degrees of protection required (Convention on International Trade in Endangered Species of Wild Fauna and Flora, 2016). Relating such data with measurements in the PREDICTS database makes possible investigation into how threats mediate species’ responses to changes in land use and land-use intensity. Examples of published analyses have examined habitat specialization and geographical range size of birds and mammals (Newbold et al., 2014), functional traits of vascular plants (Bernhardt-Römermann et al., 2011) and a range of morphometric,
When using the PREDICTS database, or indeed any database, to model biodiversity responses, it is important to be aware of potential mismatches in scale between Site-level data and pressure data such as MODIS remotely sensed data (Justice et al., 1998) and the harmonized land-use scenarios (Hurtt et al., 2011) and also between Site-level response variables and the scales of interest. The PREDICTS database contains some structural features that help with these issues. First, we assigned the Site-level land use and land-use intensity classifications based on the authors’ descriptions of the habitats so these classifications do not suffer from the problem of scale mismatch. Second, Sites are represented as precisely as possible: Sites often represent individual quadrats, traps, or other points within a broader sampling regime (such as a transect), and we recorded (as latitude and longitude) the coordinates of each Site rather than aggregating them into coarser summaries across the broader sampling regime. Third, where the relevant information was available, we also recorded the maximum extent of sampling as a linear value in meters (for 22,199 Sites, see Hudson et al. (2014) for details). Users of the database therefore have flexibility in deciding how measurements in the PREDICTS database are related to available pressure data. Possible solutions to scale mismatches between biodiversity data and pressure data would be (1) to exclude from analyses any Sites where the extent of sampling is substantially greater than the grain size of the pressure data or (2) to conduct some sort of spatial averaging of the pressure data. Novel methods have been published both for downscaling pressure data (e.g., Hoskins et al., 2016) and for upscaling local biodiversity.
Question	Early example references	Approach	Example using PREDICTS database
Questions about taxa			
Q 1. What factors influence the occurrence and/or abundance of a particular focal species?	Austin, Nicholls, and Margules (1990)	Filter to remove species not of interest. Merge PREDICTS data with data on any additional site-level characteristics of interest. One possible analytical approach is to model effects of site characteristics on presence-absence and log (abundance when present) separately, the first with binomial errors and the second with Gaussian errors, while accounting for among-Study differences (e.g., using mixed-effects models).	--
Q 2. Do changes in land-use facilitate success of invasive species?	Dukes and Mooney (1999), Theoharides and Dukes (2007)	Obtain lists of invasive species for the regions of interest and model presence-absence and/or abundance of invasives as above.	--
Q 3. Which ecological attributes of species make them more or less sensitive to human pressures?	McKinney (1997), Davies, Margules, and Lawrence (2000), Cardillo et al. (2005)	Merge PREDICTS data with species-level data on traits of interest. Model how site and species characteristics affect presence-absence and log (abundance when present) separately as above, accounting for Study-level and taxon-level differences (e.g., using mixed-effects models).	Newbold et al. (2014), De Palma et al. (2015)
Q 4. Which taxa have species that are more sensitive to human pressures, and which have less sensitive species?	Lawton et al. (1998), Mace and Balmford (2000), Gibson et al. (2011)	Add taxonomic group into models above as a fixed effect interacting with other fixed effects.	--
Q 5. Are phylogenetically distinct species particularly sensitive?	Gaston and Blackburn (1997), Purvis, Agapow, Gittleman, and Mace (2000)	Analyze phylogenetic distinctiveness or unique evolutionary history in the same way as ecological attributes.	--
Q 6. What are the relationships between geographic range size or occupancy and abundance?	Brown (1984)	Merge PREDICTS data with species-level data on range sizes or occupancy. Filter to the land uses of interest (e.g., primary vegetation if the focus is on natural systems), and examine within-Study relationship between abundance and relative range size or occupancy.	--
Q 7. Do suitability estimates from environmental niche models predict abundance?	VanDerWal, Shoo, Johnson, and Williams (2009)	Use other data on occurrences of species to fit niche models for all species in within selected Studies and thereby estimate suitability of each Site. Various modeling options are then possible depending on the precise question: for example, fit land use interacting with suitability when modeling abundance in order to test whether any correlation depends on land use.	--
Questions about sites			
Q 8. Which land uses and other Site-level pressures have the strongest net impact on levels of local biodiversity?	Lawton et al. (1998), Gibson et al. (2011)	Aggregate biodiversity data within a site to estimate relevant diversity metric (e.g., within-sample species richness, total abundance, rarefaction-based richness, species evenness), Merge Site-level biodiversity data with any additional data on Site-level characteristics of interest (e.g., from remotely sensed data) if required. Model Site-level diversity as a function of Site characteristics while accounting for among-Study differences (e.g., using mixed-effects models).	fig 1b,c in Newbold et al. (2015)

(Continues)
Question	Early example references	Approach	Example using PREDICTS database
Q 9. How do land use and other pressures reduce compositional intactness?	Scholes and Biggs (2005)	Because net changes are affected by gains of non-native species as well as losses of those originally present, modeling compositional intactness gives a more sensitive indication of human impacts. Model Site-level abundance as a function of pressures as above, and how compositional similarity to assemblages in primary vegetation differs among land uses. Combine these models to estimate the Biodiversity Intactness Index (Scholes & Biggs, 2005)—the average abundance of a diverse set of species, relative to their abundance in an unimpacted assemblage.	Newbold, Hudson, Arnell, et al. (2016)
Q 10. Do land use and related pressures influence community trait values?	Garnier et al. (2007)	Combine data on species’ occurrences or abundance with trait data to obtain average or community-weighted mean trait values, which can then be modeled like the Site-level response variables above.	fig 1d in Newbold et al. (2015)
Q 11. Does the biotic response to a given pressure vary regionally?	Gibson et al. (2011)	Add region as a fixed effect and test for interaction with other fixed effects.	–
Q 12. Which characteristics of Sites (e.g., duration of human impact and rate of climate change) mean that given land-use changes have particularly severe effects on biodiversity?	Balmford (1996), Travis (2003)	Merge Site-level diversity data with Site-level data on characteristics to be tested and assess the interaction of these variables with land use.	Gray et al. (2016)
Q 13. How accurate are global land-use data?	Girl, Zhu, and Reed (2005)	Use Site-level land-use data to calculate the receiver operating characteristic curve (i.e., sensitivity versus false-positive rate), using the area under the curve to quantify agreement. An extension of this could be to use the PREDICTS Site-level land use data as input into land use/land cover classification procedures, for example, by the remote sensing community, or at least use PREDICTS data to cross-check and validate land use and land cover maps with independent PREDICTS data.	Hoskins et al. (2016)
Questions above the site level			
Q 14. Is beta diversity lower in human-dominated than more natural land uses?	Tylianakis et al. (2005)	Estimate desired measures of similarity among Sites within studies. Model how biotic similarity among Sites depends on similarity of other attributes (including characteristics from remote sensing or Dynamic Global Ecosystem Models if required), accounting for among-Study differences (e.g., using mixed-effects models).	Newbold, Hudson, Hill, et al. (2016)
Q 15. Are land-sparing or land-sharing strategies optimal for local biodiversity?	Green, Cornell, Scharlemann, and Balmford (2005)	Analyze species by Sites and by Study and relate back to Q. 1. The overarching question about sparing versus sharing can be addressed by looking at the individual responses of species to land-use intensity, as measured by yield suggested by Green et al. (2005); this requires data on agricultural yields at relevant Sites in the PREDICTS database.	–

(Continues)
measurements to estimate changes in gamma diversity over broader areas (e.g., Azaele et al., 2015); both approaches offer potential solutions to mismatches in scale.

The PREDICTS database continues to increase in size and currently contains a further 22 Studies with embargo dates that prevent their inclusion in this release. We intend to publish occasional updates to make these data freely available. We have also received a number of further offers of datasets that we hope to incorporate into the database and include in future releases. There are three priority categories of data that we are still seeking actively: bees from outside Western Europe; soil invertebrates and fungi; and geographic islands. The current database focuses entirely on spatial “control–impact” comparisons. A follow-on project that has recently begun focuses instead on temporal comparisons, collating data from “before–after” and (especially) “before–after–control–impact” studies of the effects of land-use change on terrestrial assemblages. We are therefore seeking datasets, linked to peer-reviewed publications, of comparable species-level surveys conducted at each sampling location, with temporal changes in land use and/or land-use intensity. If corresponding authors of such papers wish to offer their data, please complete our online form, available at www.predicts.org.uk/pages/contribute.html. As with PREDICTS, the new project will seek to make its data freely available.

ACKNOWLEDGMENTS

PREDICTS has been supported by U.K. Natural Environment Research Council grants (NE/J011193/2 and NE/L002515/1), a Hans Rausing PhD Scholarship and COLCIENCIAS (Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia). We thank the many researchers who generously contributed their data to the PREDICTS project; including The Nature Conservation Foundation, Ros Blanche, Zhi Ping Cao, Kristina Cockle, Emily Davis, Moïsés Barbosa de Souza, Carsten F Dormann, Christo Fabricius, Colin Ferguson, Heleen Fermon, Toby Gardner, Eva Gaublomme, Marco S Gottschalk, Peter Hietz, Juan Carlos Iturondobeitia, Daniel L Kelly, Lee Hsiang Liow, Takashi Matsumoto, William McShea, Elder F Morato, Andreas Müller, Philip Nyeko, Tim O’Connor, Clint Otto, Simon Paradis, Marino Rodrigues, Watana Sakchoowong, Hari Snidhar, Susan Walker, Rachael Winfree, Timothy T Work, Torsten Wrnosi, Gregory Zimmerman and all the field assistants, parataxonomists and taxonomists who collected and identified the animals, plants and fungi in the database. We thank all the many funding agencies and other organizations that have supported the original research that produced these data; these include Natural Sciences and Engineering Research Council of Canada and Tembec, the University of Miami Beyond the Book Research Scholarship, the NSF Graduate Research Fellowship and the National Science Foundation Research Experience for Undergraduates Supplemental Award. We thank Technical Solutions and Informatics staff at the Natural History Museum, London, especially Srinivas Pati, Simon Rycroft, Ben Scott and Chris Sleep.

CONFLICT OF INTEREST

None declared.
REFERENCES

Aben, J., Dorenbosch, M., Herzog, S. K., Smolders, A. J. P., & Van Der Velde, G. (2008). Human disturbance affects a deciduous forest bird community in the Andean foothills of central Bolivia. Bird Conservation International, 18(4), 363–380. doi:10.1017/s0959270080007326

Adum, G. B., Eichhorn, M. P., Odouro, W., Ofori-Boateng, C., & Rodel, M. O. (2013). Two-stage recovery of amphibian assemblages following selective logging of tropical forests. Conservation Biology, 27(2), 354–363. doi:10.1111/cobi.12006

Aguilar-Barquero, V., & Jiménez-Hernández, F. (2009). Diversidad y distribución de palmas (Arecaceae) en tres fragmentos de bosque muy húmedo en Costa Rica. Revista de Biología Tropical, 57(Suppl. 1), 83–92.

Albertos, B., Lara, F., Garilleti, R., & Mazimpaka, V. (2011). A survey of the epiphytic bryophyte flora in the northwest of the Iberian Peninsula. Cryptogamie, 26(3), 263–289.

Alcayaga, O. E., Pizarro-Araya, J., Alfaro, F. M., & Cepeda-Pizarro, J. (2013). Patterns of forest vegetation responses to edge effect as revealed by a continuous approach. Annals of Forest Science, 70(6), 601–609. doi:10.1007/s13595-013-0301-0

Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M., & ten Brink, B. (2009). GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 12(3), 374–390. doi:10.1007/s10021-009-9229-5

Andersen, A. N., & Hoffmann, B. D. (2011). Conservation value of low fire frequency tropical savannas: Ants in monsoonal northern Australia. Austral Ecology, 36(5), 497–503. doi:10.1111/j.1442-9993.2010.02151.x

Andersen, A. N., Ludwig, J. A., Lowe, L. M., & Rentz, D. C. F. (2001). Grasshopper biodiversity and bioindicators in Australian tropical savannas: Responses to disturbance in Kakadu National Park. Austral Ecology, 26(3), 213–222. doi:10.1046/j.1442-9993.2001.01106.x

Arbeláez-Cortés, E., Rodríguez-Correa, H. A., & Restrepo-Chica, M. (2011). Mixed bird flocks: Patterns of activity and species composition in a region of the Central Andes of Colombia. Revista Mexicana de Biodiversidad, 82(2), 639–651.

Armbricht, I., Perfecto, I., & Silverman, E. (2006). Limitation of nesting resources for ants in Canadian forests and coffee plantations. Ecological Entomology, 31(5), 403–410. doi:10.1111/j.1365-2311.2006.00802.x

Arroyo, J., Iturrrondo-Buitr, J. C., Rad, C., & Gonzalez-Carcedo, S. (2005). Oribatid mite (Acari) community structure in steppe habitats of Burgos Province, central northern Spain. Journal of Natural History, 39(39), 3453–3470. doi:10.1080/00222930500240346

Aumôn, T. (2001). The structure of raptor assemblages in riparian environments in the south-west of the Northern Territory, Australia. Emu, 101(4), 293–304. doi:10.1071/mu00072

Austin, M. P., Nicholls, A. O., & Margules, C. R. (1990). Measurement of the realized qualitative niche: Environmental niches of five Eucalyptus species. Ecological Monographs, 60(2), 161–177. doi:10.2307/1943043

Azim, N. M., Latip, N. S. A., Sah, S. A. M., Akil, M. A. M., Shafee, N. J., & Khaliruddin, N. L. (2011). Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in Riparian areas of the Kerian River Basin, Perak, Malaysia. Tropical Life Sciences Research, 22(2), 45–64.

Azpiroz, A. B., & Blake, J. G. (2009). Avian assemblages in altered and natural grasslands in the northern Campos of Uruguay. Condor, 111(1), 21–35. doi:10.1525/cond.2009.080111

Baeten, L., Hermy, M., Van Daele, S., & Verheyen, K. (2010). Unexpected understorey community development after 30 years in ancient and post-agricultural forests. Journal of Ecology, 98(6), 1447–1453. doi:10.1111/j.1365-2745.2010.01711.x

Baeten, L., Velghe, D., Vanhellemont, M., De Frenne, P., Hermy, M., & Verheyen, K. (2010). Early trajectories of spontaneous vegetation recovery after intensive agricultural land use. Restoration Ecology, 18, 379–386. doi:10.1111/j.1526-100x.2009.00627.x

Bakayo, A., Martín, P., Chatelain, C., Traore, D., & Gautier, L. (2011). Diversity, family dominance, life forms and ecological strategies of forest fragments compared to continuous forest in southwestern Côte d'Ivoire. Candollea, 66(2), 255–262. doi:10.15553/c2011v662a2

Baldí, A., Batáry, P., & Erdős, S. (2005). Effects of grazing intensity on bird assemblages and populations of Hungarian grasslands. Agriculture Ecosystems & Environment, 108(3), 251–263. doi:10.1016/j.agee.2005.02.006

Balmford, A. (1996). Extinction filters and current resilience: The significance of past selection pressures for conservation biology. Trends in Ecology & Evolution, 11(5), 193–196. doi:10.1016/1045-4873(96)00024-4

Balmford, A., Green, R. E., & Jenkins, M. (2003). Measuring the changing state of nature. Trends in Ecology & Evolution, 18(7), 326–330. doi:10.1016/s1098-9156(03)00067-3

Banks, J. E., Sandvik, P., & Keececker, L. (2007). Beetle (Coleoptera) and spider (Araneae) diversity in a mosaic of farmland, edge, and tropical forest habitats in western Costa Rica. Pan-Pacific Entomologist, 83(2), 152–160. doi:10.3956/0016-5347(03)00067-3

Baral, S. K., & Katzensteiner, K. (2009). Diversity of vascular plant communities along a disturbance gradient in a central mid-hill community forest of Nepal. Banko Janakari, 19(1), 3–7. doi:10.3126/banko.v19i11.2176

Barlow, J., Gardner, T. A., Araujo, I. S., Avila-Pires, T. C., Bonaldo, A. B., Costa, J. E., ... Peres, C. A. (2007). Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18555–18560. doi:10.1073/pnas.070333104

Barlow, J., Mestre, L. A. M., Gardner, T. A., & Peres, C. A. (2007). The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation, 136(2), 212–231. doi:10.1016/j.bioncon.2006.11.021

Barlow, J., Overal, W. L., Araujo, I. S., Gardner, T. A., & Peres, C. A. (2007). The value of primary, secondary and plantation forests for fruit-feeding...
Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14(4), 135–139. doi:10.1016/S0169-5347(99)01554-7

Dumont, B., Farrugia, A., Garel, J. P., Bachelard, P., Boitier, E., & Frain, M. (2009). How does grazing intensity influence the diversity of plants and insects in a species-rich upland grassland on basalt soils? Grass and Forage Science, 64(1), 92–105. doi:10.1111/j.1365-2494.2008.00674.x

Dures, S. G., & Cumming, G. S. (2010). The confounding influence of homogenising invasive species in a globally endangered and largely urban biome: Does habitat quality dominate avian biodiversity? Biological Conservation, 143(3), 768–777. doi:10.1016/j.biocon.2009.12.019

Fayle, T. M., Turner, E. C., Snaddon, J. L., Chey, V. K., Chung, A. Y. C., Eggleton, P., & Foster, W. A. (2010). Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic and Applied Ecology, 11(4), 337–345. doi:10.1016/j.baae.2009.12.009

Felton, A., Engstrom, L. M., Felton, A., & Knot, C. D. (2003). Orangutan population density, forest structure and fruit availability in hand-harvested and unlogged peat swamp forests inWest Kalimantan, Indonesia. Biological Conservation, 114(1), 91–101. doi:10.1016/s0030-0027(03)00013-2

Fensham, R., Dwyer, J., Eyre, T., Fairfax, R., & Wang, J. (2012). The effect of clearing on plant composition in mulga (Acacia aneura) dry forest, Australia. Austral Ecology, 37(2), 183–192. doi:10.1111/j.1442-9993.2011.02261.x

Fermon, H., Waltet, M., Vane-Wright, R. I., & Muhlenberg, M. (2005). Forest use and vertical stratification in fruit-feeding butterflies of Sulawesi, Indonesia: Impacts for conservation. Biodiversity and Conservation, 14(2), 333–350. doi:10.1007/s10531-004-0504-9

Fernandez, I. C., & Simonetti, J. A. (2013). Small mammal assemblages in fragmented shurblands of urban areas of Central Chile. Urban Ecosystems, 16(2), 377–387. doi:10.1007/s11252-012-0272-1

Ferreira, C., & Alves, P. (2005). Impacto da implementação de medidas de gestão do hábitat nas populações de coelho-bravo (Oryctolagus cuniculus algerius) no Parque Natural do Sudoeste Alentejano and Costa Vicentina. Technical report, Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Vairão, Portugal.

Ferreira, C., & Alves, P. C. (2009). Influence of habitat management on the abundance and diet of wild rabbit (Oryctolagus cuniculus algerius) populations in Mediterranean ecosystems. European Journal of Wildlife Research, 55(5), 487–496. doi:10.1007/s10344-009-0257-4

Ficetola, G. F., Rondinini, C., Bonardi, A., Baisero, D., & Padoa-Schioppa, E. (2015). Habitat availability for amphibians and extinction threat: A global analysis. Diversity and Distributions, 21(3), 302–311. doi:10.1111/ddi.12296

Fiera, C. (2008) Preliminary data on the species diversity of Collembo1a (Hexapoda: Collembola) along an urban gradient in Bucuresti. Travaux du Museum National d’Histoire Naturelle “Grigore Antipa”, 51. 363–367.

Firriero, M. M., Cruz-Lopez, L., Sanchez, D., Villanueva-Gutierrez, R., & Vandame, R. (2012). Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented neotropical habitats. Neotropical Entomology, 41(2), 95–104. doi:10.1590/s1374-4059201100009-5

Filgueiras, B., Lannuzzi, L., & Leal, I. (2011). Habitat fragmentation alters the structure of dung beetle communities in the Atlantic forest. Biological Conservation, 144(1), 362–369. doi:10.1016/j.biocon.2010.09.013

Finirengluo, H. K., Seefeldt, S. S., Sahin, B., & Vural, M. (2009). Assessment of grazing effect on sheep fescue (Festuca valesiaca) dominated steppe rangelands, in the semi-arid Central Anatolian region of Turkey. Journal of Arid Environments, 73(12), 1149–1157. doi:10.1016/j.jaridenv.2009.05.012

Flaspohler, D. J., Giardina, C. P., Asner, G. P., Hart, P., Price, J., Lyons, C. K., & Castaneda, X. (2010). Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biological Conservation, 143(2), 280–288. doi:10.1016/j.biocon.2009.10.009

Floren, A., Freking, A., Biehl, M., & Linsenmair, K. E. (2001). Anthropogenic disturbance changes the structure of arboreal tropical ant communities. Ecography, 24(5), 547–554. doi:10.1034/j.1600-0587.2001.tb00489.x

Fowler, R. E. (2014). An investigation into bee assemblage change along an urban-rural gradient. PhD thesis, University of Birmingham, Birmingham, UK.

Franzén, M., & Nilsson, S. G. (2008). How can we preserve and restore species richness of pollinating insects on agricultural land? Ecography, 31(6), 698–708. doi:10.1111/j.1600-0587.2008.05110.x

Fredrikssson, G. M., Danielsen, L. S., & Swenson, J. E. (2007). Impacts of El Nino related drought and forest fires on sun bear fruit resources in lowland dipterocarp forest of East Borneo. Biodiversity and Conservation, 16(6), 1823–1838. doi:10.1007/s10531-006-9075-0

Freire, G. D., & Motta, P. C. (2011). Effects of experimental fire regimes on the abundance and diversity of cursorial arachnids of Brazilian savannah (cerrado biome). Journal of Arachnology, 39(2), 263–272. doi:10.1636/cp-10-85.1

Frizzo, T. L. M., & Vasconcelos, H. L. (2013). The potential role of scattered trees for ant conservation in an agriculturally dominated neotropical landscape. Biotropica, 45(5), 644–651. doi:10.1111/btp.12045

Fukuda, D., Tisen, O. B., Momose, K., & Sakai, S. (2009). Bat diversity in the vegetation mosaic around a lowland dipterocarp forest of Borneo. Raffles Bulletin of Zoology, 57(1), 213–221.

Furiani, D., Ficetola, G. F., Colombo, G., Ugurlucan, M., & De Bernardi, F. (2009). Deforestation and the structure of frog communities in the
Gunawardene, N. R., Majer, J. D., & Edirisinghe, J. P. (2010). Investigating residual effects of selective logging on ant species assemblages in Sinharaja Forest Reserve, Sri Lanka. Forest Ecology and Management, 259(3), 555–562. doi:10.1016/j.foreco.2009.11.012

Gutierrez, A. G., Arnesto, J. I., Aravena, J. C., Carmona, M., Carrasco, N. V., Christie, D. A., ... Huth, A. (2009). Structural and environmental characterization of old-growth temperate rainforests of northern Chile Island, Chile: Regional and global relevance. Forest Ecology and Management, 258(4), 376–388. doi:10.1016/j.foreco.2009.03.011

Gutierrez-Lamus, D. L. (2004). Composition and abundance of Anura in two forest types (natural and planted) in the eastern Cordillera of Colombia. Caldasia, 36(1), 245–264.

Haarmeyer, D., Schmiedel, U., Dengler, J., & Bosing, B. (2010). How does grazing intensity affect different vegetation types in arid Succulent Karoo, South Africa? Implications for conservation management. Biological Conservation, 143(3), 588–596. doi:10.1016/j.biocon.2009.11.008

Hampson, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L., ... Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11(3), 156–162. doi:10.1890/120103

Hanley, M. E. (2005). Unpublished data of bee diversity in UK croplands. Hanley, M. E. (2005). Unpublished data of bee diversity in UK croplands. Hanley, M. E., Franco, M., Dean, C. E., Franklin, E. L., Harris, H. R., Haynes, Helden, A. J., & Leather, S. R. (2004). Biodiversity on urban roundabouts – Hemiptera, management and the species-area relationship. Basic and Applied Ecology, 5(4), 367–377. doi:10.1016/j.baae.2004.06.004

Henshel, P. (2008). The conservation biology of the Leopard Panthera pardus in Gabon: Status, threats and strategies for conservation. PhD thesis, Georg-August-Universität Göttingen, Göttingen, Germany.

Hernández, L., Delgado, L., Meier, W., & Durán, C. (2012). Empobrecimiento de bosques fragmentados en el norte de la Gran Sabana, Venezuela. Interciencia, 37(12), 891–898.

Herrera, J. P., Wright, P. C., Lauterbur, E., Ratovonjanahary, L., & Taylor, L. L. (2011). The effects of habitat disturbance on lemurs at Ranomafana National Park, Madagascar. International Journal of Primatology, 32(5), 1911–1908. doi:10.1007/s10764-011-9525-8

Herrmann, F., Westphal, C., Moritz, R. F. A., & Steffen-Dewenter, I. (2007). Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Molecular Ecology, 16(6), 1167–1178. doi:10.1111/j.1365-294x.2007.03226.x

Hietz, P. (2005). Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology, 19(2), 391–399. doi:10.1111/j.1523-1739.2005.00145.x

Higuera, D., & Wolf, J. H. D. (2010). Vascular epiphytes in dry oak forests show resilience to anthropogenic disturbance, Cordillera Oriental, Colombia. Caldasia, 32(1), 161–174.

Hijie, B., & Aide, T. M. (2012). Recovery of amphibian species richness and composition in a chronosequence of secondary forests, northeastern Costa Rica. Biological Conservation, 146(1), 170–176. doi:10.1016/j.biocon.2011.12.007

Hoffmann, A., & Zeller, U. (2005). Influence of variations in land use intensity on species diversity and abundance of small mammals in the Nama Karoo, Namibia. Belgian Journal of Zoology, 135, 91–96.

Horgan, F. G. (2009). Invasion and retreat: Shifting assemblages of dung beetles amidst changing agricultural landscapes in central Peru. Biodiversity and Conservation, 18(13), 3519–3541. doi:10.1007/s10531-009-9658-7

Hornung, E., Tothmertes, B., Magura, T., & Vilisics, F. (2007). Changes of iso-pod assemblages along an urban-suburban-rural gradient in Hungary. European Journal of Soil Biology, 43(3), 158–165. doi:10.1016/j.ejsobi.2007.01.001

Hoskins, A. J., Bush, A., Gilmore, J., Harwood, T., Hudson, L. N., Ware, C., ... Ferrier, S. (2016). Downscaling land-use data to provide global 30° estimates of five land-use classes. Ecology and Evolution, 6(9), 3040–3055. doi:10.1002/ece3.2104

Hu, C., & Cao, Z. P. (2008). Nematode community structure under compost and chemical fertilizer management practice, in the north China plain. Experimental Agriculture, 44(4), 485–496. doi:10.1017/s0014479708006716

Hudson, L. N., Isaac, N. J. B., & Reuman, D. C. (2013). The relationship between body mass and field metabolic rate among individual birds and mammals. Journal of Animal Ecology, 82(5), 1009–1020. doi:10.1111/1365-2656.12086

Hudson, L. N., Newbold, T., Contu, S., Hill, S. L. L., Lysenko, I., De Palma, A., ... Purvis, A. (2014). The PREDCITS database: A global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 4(24), 4701–4735. doi:10.1002/ece3.1303

Hudson, L. N., Newbold, T., Purves, D. W., Scharlemann, J. P. W., Mace, G., & Purvis, A. (2013) Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (PREDCITS): Can you help? BES Bulletin, 44(1), 36–37.

Hull, P. M., Darroch, S. A. F., & Erwin, D. H. (2015). Rarity in mass extinction and the future of ecosystems. Nature, 528(7582), 345–351. doi:10.1038/nature16160

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., ... Wang, Y. P. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117–161. doi:10.1007/s10584-011-0153-2

Hylander, K., & Nemomissa, S. (2009). Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest. Conservation Biology, 23(2), 400–409. doi:10.1111/j.1523-1739.2008.01097.x

Hylander, K., Nilsson, C., & Gothner, T. (2004). Effects of buffer-strip retention and clearcutting on land snails in boreal riparian forests. Conservation Biology, 18(4), 1052–1062. doi:10.1111/j.1523-1739.2004.00199.x
Navarro, I., L., Roman, A. K., Gomez, F. H., & Perez, H. A. (2011). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772), 853–858. doi:10.1038/35020501

Naidoo, R. (2004). Species richness and community composition of songbirds in a tropical forest-agricultural landscape. *Animal Conservation*, 7, 93–105. doi:10.1017/s1367943003001185

Naiithani, A., & Bhatt, D. (2012). Bird community structure in natural and urbanized habitats along an altitudinal gradient in Pauri district (Garhwal Himalaya) of Uttarakhand state, India. *Biologia*, 67(4), 800–808. doi:10.2478/s11756-012-0068-z

Nakagawa, M., Michigui, H., & Nakashizuka, T. (2006). The effects of various forest uses on small mammal communities in Sarawak, Malaysia. *Forest Ecology and Management*, 231(1–3), 55–62. doi:10.1016/j.foreco.2006.05.006

Nakamura, A., Proctor, H., & Catterall, C. P. (2003). Using soil and litter arthropods to assess the state of rainforest restoration. *Ecological Management & Restoration*, 4(Suppl.), S20–S28. doi:10.1046/j.1442-8903.4.s3.x

Nakashima, Y., Inoue, E., & Akomo-Okoue, E. (2013). Population density and habitat preferences of forest duikers in Moukaladou-Doudou National Park, Gabon. *African Zoology*, 48(2), 395–399. doi:10.3377/004.048.0212

Naoe, S., Sakai, S., & Masaki, T. (2012). Effect of forest shape on habitat selection of birds in a plantation-dominant landscape across seasons: Comparison between continuous and strip forests. *Journal of Forest Research*, 17(2), 219–223. doi:10.1007/s10310-011-0296-z

Navarrete, D., & Halffter, G. (2008). Dung beetle (Coleoptera: Scarabaeidae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: The effects of anthropogenic changes. *Biodiversity and Conservation*, 17(12), 2869–2898. doi:10.1007/s10531-008-9402-8

Navarro, I. L., Roman, A. K., Gomez, F. H., & Perez, H. A. (2011). Seasonal variation in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) from Serranía de Coraza, Sucre (Colombia). *Revista Colombiana de Ciencia Animal*, 3(1), 102–110.

Ndang’ang’a, P., Njorge, J., & Githuru, M. (2013) Vegetation composition and structure influences bird species community assemblages in the highland agricultural landscape of Nyandarua, Kenya. *Ostrich*, 84(3), 171–179. doi:10.2998/00306525.123.860929

Neuschulz, E. L., Botzat, A., & Farwig, N. (2011). Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. *Oikos*, 120(9), 1371–1379. doi:10.1111/j.1600-0706.2011.19097.x

Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., ... Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment *Science*, 353(6296), 288–291. doi:10.1126/science.aaf2201

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Gray, C. L., Scharlemann, J. P. W., ... Purvis, A. (2016). Global patterns of terrestrial assemblage turnover within and among land uses. *Ecography*, 39, 1–13. doi:10.1111/ecog.01932

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., ... Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. *Nature*, 520(7545), 45–50. doi:10.1038/nature14324

Newbold, T., Hudson, L. N., Phillips, H. R., Hill, S. L. L., Contu, S., Lysenko, I., ... Purvis, A. (2014). A global model of the response of tropical and subtropical forest biodiversity to anthropogenic pressures. *Proceedings of the Royal Society B – Biological Sciences*, 281(1792), 2014/1371

Nielsen, R., Steffan-Dewenter, I., Westphal, C., Messinger, O., Potts, S. G., Roberts, S. P. M., ... Pott, T. (2011). Assessing bee species richness in two Mediterranean communities: Importance of habitat type and sampling techniques. *Ecological Research*, 26(5), 969–983. doi:10.1111/j.1121-8052.1

Noreika, N. (2009). New records of rare species of Coleoptera found in Ukwermé district in 2004–2005. *New and Rare for Lithuania Insect Species*, 21, 68–71.

Noreika, N., & Kotze, D. J. (2012). Forest edge contrasts have a predictable effect on the spatial distribution of carabid beetles in urban forests. *Journal of Insect Conservation*, 16(6), 867–881. doi:10.1007/s10841-012-9474-3

Nordfeldt, O., Abdel-Dayem, M., & Gilbert, F. (2012). Rainwater harvesting and arthropod biodiversity within an arid agro-ecosystem. *Agriculture Ecosystems & Environment*, 162, 8–14. doi:10.1016/j.agee.2012.08.007

Nordfeldt, O., Eichhorn, M. P., & Gilbert, F. (2013). Traditional agricultural gardens conserve wild plants and functional richness in arid South Sinai. *Basic and Applied Ecology*, 14(8), 659–669. doi:10.1016/j.baae.2013.10.004

Noriega, J. A., Palacio, J. M., Monroy-G, J. D., & Valencia, E. (2012). Estructura de un ensamblaje de escarabajos coprofagos (Coleoptera: Scarabaeinae) en tres sitios con diferente uso del suelo en Antioquia, Colombia. *Actualidades Biologicas (Medellin)*, 34(96), 43–54.

Noriega, J. A., Reale, E., & Fagua, G. (2007). Diversidad de escarabajos coprofagos (Coleoptera: Scarabaeinae) en un bosque de galería con tres estadios de alteración. *Universitas Scientiarum*, 12, 51–63.

Norris, K. (2012). Biodiversity in the context of ecosystem services: The applied need for systems approaches. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 367(1586), 191–199. doi:10.1098/rstb.2011.0176

Norton, D. A., Espie, P. R., Murray, W., & Murray, J. (2006) Influence of pastoral management on plant biodiversity in a depleted short tussock grassland, Mackenzie Basin. *New Zealand Journal of Ecology*, 30(3), 335–344. doi:10.1093/nzj/30.3.335

Nöské, N. M., Hilt, N., Werner, F. A., Brehm, G., Fiedler, K., Sipman, H. J. M., & Grødem, S. R. (2008). Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. *Basic and Applied Ecology*, 9(1), 4–12. doi:10.1016/j.baae.2007.06.014

Nova, C., Verdu, J. R., Rueda, C., & Galante, E. (2012). Comparing dung beetle species assemblages between protected areas and adjacent pastures in a Mediterranean savanna landscape. *Rangeland Ecology & Management*, 65(2), 137–143. doi:10.2111/rem-d-10-00050.1
Nyeko, P. (2009). Dung beetle assemblages and seasonality in primary forest and forest fragments on agricultural landscapes in Budongo, Uganda. *Biotropica*, 41(4), 476–484. doi:10.1111/j.1744-7429.2009.00499.x

O’Connor, T. G. (2005). Influence of land use on plant community composition and diversity in Highland Sourveld grassland in the southern Drakensberg, South Africa. *Journal of Applied Ecology*, 42(5), 975–988. doi:10.1111/j.1365-2664.2005.01065.x

O’Dea, N., & Whitaker, R. J. (2007). How resilient are Andean montane forest bird communities to habitat degradation? *Biodiversity and Conservation*, 16(4), 1131–1159. doi:10.1007/s10531-006-9095-9

Oertli, S., Muller, A., & Dorn, S. (2005). Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). *European Journal of Entomology*, 102(1), 53–63. doi:10.1016/j.ejoi.2005.05.014

O’Farrell, P. J., Donaldson, J. S., Hoffman, M. T., & Mader, A. D. (2008). Small mammal diversity and density on the Bokkeveld escarpment, South Africa – implications for conservation and livestock predation. *African Zoology*, 43(1), 117–124. doi:10.3377/1562-7020(2008)43[117:smdad0.2]2.0.co;2

Ofori-Boateng, C., Oduro, W., Hillers, A., Norris, K., Oppong, S. K., Adum, G. B., Oertli, S., Muller, A., & Dorn, S. (2005). Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). *European Journal of Entomology*, 102(1), 53–63. doi:10.1016/j.ejoi.2005.05.014

O’Farrell, P. J., Donaldson, J. S., Hoffman, M. T., & Mader, A. D. (2008). Small mammal diversity and density on the Bokkeveld escarpment, South Africa – implications for conservation and livestock predation. *African Zoology*, 43(1), 117–124. doi:10.3377/1562-7020(2008)43[117:smdad0.2]2.0.co;2

Poggio, S. L., Chaneton, E. J., & Ghersa, C. M. (2013). The arable plant diversity of intensively managed farmland: Effects of field position and crop type at local and landscape scales. *Agriculture Ecosystems & Environment*, 166, 55–64. doi:10.1016/j.agee.2012.01.013

Parra-H. A., & Bates-Parra, G. (2007) Variation of the orchid bee community (Hymenoptera: Apidae) in three altered habitats of the Colombian “llano” piedmont. *Revista de Biología Tropical*, 55(3–4), 931–941.

Parry, L., Barlow, J., & Peres, C. A. (2009). Hunting for sustainability in tropical secondary forests. *Conservation Biology*, 23(5), 1270–1280. doi:10.1111/j.1523-1739.2009.01224.x

Pearman, P. B. (2002). The scale of community structure: Habitat variation and avian guilds in tropical forest understory. *Ecological Monographs*, 72(1), 19–39. doi:10.2307/3100083

Pe’er, G., van Maanen, C., Turbe, A., Matsinos, Y. G., & Kark, S. (2011). Butterfly diversity at the ecotone between agricultural and semi-natural habitats across a climatic gradient. *Diversity and Distributions*, 17(6), 1186–1197. doi:10.1111/j.1476-4641.2011.00795.x

Pelegri, N., & Bucher, E. H. (2012). Effects of habitat degradation on the lizard assemblage in the Aride Chaco, central Argentina. *Journal of Arid Environments*, 79, 13–19. doi:10.1016/j.jaridenv.2011.11.004

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., ... Wegmann, M. (2013). Essential biodiversity variables. *Science*, 339(6177), 277–282. doi:10.1126/science.1229931

Peres, C. A., & Nascimento, H. S. (2006). Impact of game hunting by the Kayapo of south-eastern Amazonia: Implications for wildlife conservation in tropical forest indigenous reserves. *Biodiversity and Conservation*, 15(8), 2627–2653. doi:10.1007/s10531-005-5406-9

Peters, M. K., Lung, T., Schaab, G., & Waegerle, J. (2011). Deforestation and the population decline of the army ant Dorylus wilverthi in western Kenya over the last century. *Journal of Applied Ecology*, 48(3), 697–705. doi:10.1111/j.1365-2664.2011.01959.x

Peters, M. K., Fischer, G., Schaab, G., & Kraemer, M. (2009). Species compensation maintains abundance and raid rates of African swarm-raiding army ants in rainforest fragments. *Biological Conservation*, 142(3), 668–675. doi:10.1016/j.biocon.2008.11.021

Peters, M. K., Lung, T., Schaab, G., & Waegerle, J. (2011). Deforestation and the population decline of the army ant Dorylus wilverthi in western Kenya over the last century. *Journal of Applied Ecology*, 48(3), 697–705. doi:10.1111/j.1365-2664.2011.01959.x

Pethiyagoda Jr., R. S. & Manamendra-Arachchi, K. (2012). Endangered anurans in a novel forest in the highlands of Sri Lanka. *Wildlife Research*, 39(7), 641–648. doi:10.1071/wr12079

Pfeifer, M., Lefebvre, V., Gardner, T. A., Arroyo-Rodriguez, V., Baeten, L., Banks-Leite, C., ... Ewers, R. M. (2014). BIOFRAG – a new database for analyzing BIODiversity responses to forest FRAGmentation. *Ecology and Evolution*, 4(9), 1524–1537. doi:10.1002/ece3.1036

Phalan, B., Onial, M., Balmford, A., & Green, R. (2011). Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. *Science*, 333(6047), 1289–1291. doi:10.1126/science.1208742

Pillsbury, F. C., & Miller, J. R. (2008). Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. *Ecological Applications*, 18(5), 1107–1118. doi:10.1890/07-1899.1

Pincheira-Ulbrich, J., Rau, J. R., & Smith-Ramirez, C. (2012). Vascular epiphytes and climbing plants diversity in an agroforestry landscape in southern Chile: A comparison among native forest fragments. *Boletín De La Sociedad Argentina De Botánica*, 47(3–4), 411–426.

Pineda, E., & Halfflter, G. (2004). Species diversity and habitat fragmentation: Frogs in a tropical montane landscape in Mexico. *Biological Conservation*, 117(5), 499–508. doi:10.1016/j.biocon.2003.08.009

Pineda, E., & Lobo, J. M. (2008). Assessing the accuracy of species distribution models to predict amphibian species richness patterns. *Journal of Animal Ecology*, 77(1), 182–190. doi:10.1111/j.1365-2664.2008.01471.x

Poggio, S. L., Chaneton, E. J., & Ghersa, C. M. (2013). The arable plant diversity of intensively managed farmland: Effects of field position and crop type at local and landscape scales. *Agriculture Ecosystems & Environment*, 166, 55–64. doi:10.1016/j.agee.2012.01.013

Pillipsbury, F. C., & Miller, J. R. (2008). Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. *Ecological Applications*, 18(5), 1107–1118. doi:10.1111/j.1869-1833.2007.00780.x

Pillipsbury, F. C., & Miller, J. R. (2008). Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. *Ecological Applications*, 18(5), 1107–1118. doi:10.1111/j.1869-1833.2007.00780.x
Politi, N., Hunter Jr., M. & Rivera, L. (2012). Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. *Biodiversity and Conservation*, 21(12), 3131–3155. doi:10.1007/s10531-012-0359-3

Pons, P. & Wendenburg, C. (2005). The impact of fire and forest conversion into savanna on the bird communities of West Madagascar dry forests. *Animal Conservation*, 8, 183–193. doi:10.1017/s1367943005001940

Poveda, K., Martínez, E., Kersh-Becker, M., Bonilla, M., & Tscharntke, T. (2012). Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. *Journal of Applied Ecology*, 49(2), 513–522. doi:10.1111/j.1365-2664.2012.02120.x

Power, E. F., Kelly, D. L. & Stout, J. C. (2012). Organic farming and landscape structure: Effects on insect-pollinated plant diversity in intensively managed grasslands. *PLoS One*, 7(5), doi:10.1371/journal.pone.0038073

Power, E. F. & Stout, J. C. (2011). Organic dairy farming: Impacts on insector interaction networks and pollination. *Journal of Applied Ecology*, 48(3), 561–569. doi:10.1111/j.1365-2664.2010.01949.x

Presley, S. J., Willig, M. R., Wunderle, J., Joseph, M., & Saldanha, L. N. (2008). Organic dairy farming: Impacts on insect-pollinated plant diversity in intensively managed grasslands. *PLoS One*, 7(5), doi:10.1371/journal.pone.0038073

Redpath, N., Osgathorpe, L. M., Park, K., & Goulson, D. (2010). Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. *Biological Conservation*, 143(2), 492–500. doi:10.1016/j.biocon.2009.11.019

Reid, J. L., Harris, J. B. C., & Zahawi, R. A. (2012). Avian habitat preference in tropical forest restoration in southern Costa Rica. *Biotropica*, 44(3), 350–359. doi:10.1111/j.1744-7929.2011.00814.x

Reis, Y. T., & Cancelo, E. M. (2007). Termite (Insecta, Isoptera) richness in primary and secondary Atlantic Forest in southeastern Bahia. *Iheringia Serie Zoologia*, 97(3), 229–234.

Rey-Benayas, J. M., Galvan, I., & Carrascal, L. M. (2010). Differential effects of vegetation restoration in Mediterranean abandoned crop-land by secondary succession and pine plantations on bird assemblages. *Forest Ecology and Management*, 260(1), 87–95. doi:10.1016/j.foreco.2010.04.004

Reynolds, C., & Symes, C. T. (2013). Grassland bird response to vegetation structural heterogeneity and clearing of invasive bramble. *African Zoology*, 48(2), 228–239. doi:10.33777/004.048.0217

Römer-Duque, L. P., Jaramillo, V. J., & Perez-Jimenez, A. (2007). Structure and diversity of secondary tropical dry forests in Mexico. *Journal of Animal Ecology*, 76(4), 926–936. doi:10.1111/j.1365-2664.2005.00990.x

Rivas-Benayas, J. M., Galvan, I., & Carrascal, L. M. (2010). Differential effects of vegetation restoration in Mediterranean abandoned crop-land by secondary succession and pine plantations on bird assemblages. *Forest Ecology and Management*, 260(1), 87–95. doi:10.1016/j.foreco.2010.04.004

R Core Team (2015). R: A Language and Environment for Statistical Computing. http://www.r-project.org

Rader, R., Bartomeus, I., Tylanakis, J. M., & Laliberte, E. (2014). The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. *Diversity and Distributions*, 20(8), 908–917. doi:10.1111/ddi.12221

Ramesh, B. R., Swaminath, M. H., Patil, S. V., Dasappa, Pélissier, R., Venugopal, P. D., & Ramalingam, S. (2010). Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. *Ecology*, 91(10), 3118. doi:10.1890/10-0133.1

Ramos-Robles, M., Gallina, S., & Manzuñano, J. (2013). Habitat and human factors associated with white-tailed deer density in the tropical dry forest of Tehuacan-Cuicatlán Biosphere Reserve, Mexico. *Tropical Conservation Science*, 6(1), 70–86.

Ranganathan, J., Chan, K. M. A., & Daily, G. C. (2007). Satellite detection of bird communities in tropical countryside. *Ecological Applications*, 17(5), 1499–1510. doi:10.1890/06-0285.1

Ranganathan, J., Daniels, R. R., Chandran, M. D. S., Ehrlich, P. R., & Daily, G. C. (2008). Sustaining biodiversity in ancient tropical countryside. *Proceedings of the National Academy of Sciences of the United States of America*, 105(46), 17852–17854. doi:10.1073/pnas.080874105

Rasmussen, C. (2009). Diversity and abundance of orchid bees (Hymenoptera: Apidae, Euglossini) in a tropical rainforest succession. *Neotropical Entomology*, 38(1), 66–73. doi:10.1590/S1519-566x2009000000006

Raub, F., Hoefer, H., Scheuermann, L., & Brandl, R. (2014). The conservation value of secondary forests in the southern Brazilian Mata Atlantica from a spider perspective. *Journal of Arachnology*, 42(1), 52–73. doi:10.1636/p13-47.1

Redpath, N., Osgathorpe, L. M., Park, K., & Goulson, D. (2010). Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. *Biological Conservation*, 143(2), 492–500. doi:10.1016/j.biocon.2009.11.019

Reid, J. L., Harris, J. B. C., & Zahawi, R. A. (2012). Avian habitat preference in tropical forest restoration in southern Costa Rica. *Biotropica*, 44(3), 350–359. doi:10.1111/j.1744-7929.2011.00814.x

Reis, Y. T., & Cancelo, E. M. (2007). Termite (Insecta, Isoptera) richness in primary and secondary Atlantic Forest in southeastern Bahia. *Iheringia Serie Zoologia*, 97(3), 229–234.

Rey-Benayas, J. M., Galvan, I., & Carrascal, L. M. (2010). Differential effects of vegetation restoration in Mediterranean abandoned crop-land by secondary succession and pine plantations on bird assemblages. *Forest Ecology and Management*, 260(1), 87–95. doi:10.1016/j.foreco.2010.04.004

Reynolds, C., & Symes, C. T. (2013). Grassland bird response to vegetation structural heterogeneity and clearing of invasive bramble. *African Zoology*, 48(2), 228–239. doi:10.33777/004.048.0217

Römer-Duque, L. P., Jaramillo, V. J., & Perez-Jimenez, A. (2007). Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. *Forest Ecology and Management*, 253(1–3), 38–47. doi:10.1016/j.foreco.2007.07.002

Rös, M., Escobar, F. & Haffter, G. (2012). How dung beetles respond to a human-modified variegated landscape in Mexican cloud forest: A study of biodiversity integrating ecological and biogeographical perspectives. *Diversity and Distributions*, 18(4), 377–389. doi:10.1111/j.1424-9907.2011.01800.x

Romero-Duque, L. P., Jaramillo, V. J., & Perez-Jimenez, A. (2007). Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. *Forest Ecology and Management*, 253(1–3), 38–47. doi:10.1016/j.foreco.2007.07.002

Rös, M., Escobar, F. & Haffter, G. (2012). How dung beetles respond to a human-modified variegated landscape in Mexican cloud forest: A study of biodiversity integrating ecological and biogeographical perspectives. *Diversity and Distributions*, 18(4), 377–389. doi:10.1111/j.1424-9907.2011.01800.x

Roskov, Y., Kunz, T., Paglinawan, L., Ordell, T., Nicolson, D., Culham, A., ... De Wever, A. (2013) Species 2000 & Catalogue of Life, 2013 Annual Checklist. http://catalogueoflife.org/annual-checklist/2013/

Rosselli, L. (2011). Factores ambientales relacionados con la presencia y abundancia de las aves de los humedales de la Sabana de Bogotá. PhD thesis, Universidad Nacional de Colombia, Bogotá, Colombia.
Wang, Y., Bao, Y., Yu, M., Xu, G., & Ding, P. (2010). Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. *Diversity and Distributions*, 16(5), 862–873. doi:10.1111/j.1472-4642.2010.00682.x

Wang, H. F., Lencinas, M. V., Ross Friedman, C., Wang, X. K., & Qiu, J. X. (2011). Understory plant diversity assessment of Eucalyptus plantations over three vegetation types in Yunnan, China. *New Forests*, 42(1), 101–116. doi:10.1007/s11056-010-9240-x

Watling, J. I., Gerow, K., & Donnelly, M. A. (2009). Nested species subsets of amphibians and reptiles on Neotropical forest islands. *Animal Conservation*, 12(5), 467–476. doi:10.1111/j.1469-1795.2009.00274.x

Weller, B., & Ganzhorn, J. U. (2004). Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. *Basic and Applied Ecology*, 5(2), 193–201. doi:10.1078/1439-1791-00220

Wells, K., Kalko, E. K. V., Lakim, M. B., & Pfeiffer, M. (2007). Effects of rain forest logging on species richness and assemblage composition of small mammals in Southeast Asia. *Journal of Biogeography*, 34(6), 1087–1099. doi:10.1111/j.1365-2699.2006.01677.x

Wiafe, E. D., & Amfo-Otu, R. (2012). Forest duiker (*Cephalophus* spp.) abundance and hunting activities in the Kakum conservation area, Ghana. *Journal of Ecology and the Natural Environment*, 4(4), 114–118. doi:10.5897/jene11.144

Wielgolaski, F. E., & Lascoux, P. (1992). The test of the nestedness null model. *Basic and Applied Ecology*, 3(2), 156–165. doi:10.1016/1439-1791(93)90027-T

Wilson, M. T., & Aizen, M. A. (2004). Diversity and functional composition of pollinator communities in London gardens. *American Naturalist*, 163(6), 873–886. doi:10.1086/424470

Winfree, R., Griswold, T., & Kremen, C. (2007). Effect of human disturbance on bee communities in a forested ecosystem. *Conservation Biology*, 21(1), 213–223. doi:10.1111/j.1523-1739.2006.00574.x

Woinarski, J. C. Z., & Ash, A. J. (2002). Responses of vertebrates to pastoralism, military land use and landscape position in an Australian tropical savanna. *Austral Ecology*, 27(3), 311–323. doi:10.1046/j.1442-9993.2002.01182.x

Woinarski, J. C. Z., Rankmore, B., Hill, B., Griffiths, A. D., Stewart, A., & Grace, B. (2009). Fauna assemblages in regrowth vegetation in tropical open forests of the Northern Territory, Australia. *Wildlife Research*, 36(8), 675–690. doi:10.1071/wr08128

Woodcock, B. A., Potts, S. G., Pilgrim, E., Ramsay, A. J., Tschewelin, T., Parkinson, A., … Tallowin, J. R. (2007). The potential of grass field margin management for enhancing beetle diversity in intensive livestock farms. *Journal of Applied Ecology*, 44(1), 60–69. doi:10.1111/j.1365-2664.2006.01258.x

Wronska, T., Gilbert, K., Long, E., Michal, B., Quinn, R., & Hausdorf, B. (2014). Species richness and meta-community structure of land snails along an altitudinal gradient on Bioko Island, Equatorial Guinea. *Journal of Molluscan Studies*, 80, 161–168. doi:10.1093/mollus/eyu008

Wu, J. H., Fu, C. Z., Chen, S. S., & Chen, J. K. (2002). Soil faunal response to land-use: Effect of estuarine tidal shift on nematode communities. *Applied Soil Ecology*, 21(2), 131–147. doi:10.1016/s0929-1393(02)00065-3

Wunderle, J. M., Henriques, L. M. P., & Willig, M. R. (2006). Short-term responses of birds to forest gaps and understory: An assessment of reduced-effect logging in a lowland Amazon forest. *Biotropica*, 38(2), 235–255. doi:10.1111/j.1744-7429.2006.00138.x

WWF International (2014) *Living Planet Report*. p. 180.

Yamaura, Y., Royle, J. A., Shimada, N., Asanuma, S., Sato, T., Taki, H., & Makino, S. (2012). Biodiversity of man-made open fields in an underused country: A class of multispecies abundance models for count data. *Biodiversity and Conservation*, 21(6), 1365–1380. doi:10.1007/s10531-012-0244-z

Yoshikura, S., Yasui, S., & Kamijo, T. (2011). Comparative study of forest-dwelling bats’ abundances and species richness between old-growth forests and conifer plantations in Nikko National Park, central Japan. *Mammal Study*, 36(4), 189–198. doi:10.3109/041.036.0402

Zaitsev, A. S., Chauvat, M., Pug, A., & Wolters, V. (2002). Oribatid mite diversity and community dynamics in a spruce chronosequence. *Soil Biology & Biochemistry*, 34(12), 1919–1927. doi:10.1016/s0038-0717(01)00208-0

Zaitsev, A. S., Wolters, V., Waldhardt, R., & Dauber, J. (2006). Long-term succession of oribatid mites after conversion of croplands to grasslands. *Applied Soil Ecology*, 34(2–3), 230–239. doi:10.1016/j.apsoil.2006.01.005

Zeidler, J., Hanrahan, S., & Scholes, M. (2002). Land-use intensity affects range condition in arid to semi-arid Namibia. *Journal of Arid Environments*, 52(3), 389–403. doi:10.1006/jare.2002.0990

Zhang, J. N., Li, Q., & Liang, W. J. (2010). Effect of acetochlor and carbofuran on soil nematode communities in a Chinese soybean field. *African Journal of Agricultural Research*, 5(20), 2787–2794.

Zimmerman, G., Bell, F. W., Woodcock, J., Palmer, A., & Paloniemi, J. (2011). Response of breeding songbirds to vegetation management in conifer plantations established in boreal mixedwoods. *The Forestry Chronicle*, 87(2), 217–224.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Hudson, L. N., Newbold, T., Contu, S., Hill S. L. L., Lysenko, I., De Palma A., … Purvis, A. (2017), The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. *Ecology and Evolution*, 7: 145–188. doi: 10.1002/ece3.2579