A locking-free DPG scheme for Timoshenko beams

Thomas Führer†, Carlos García Vera∗ and Norbert Heuer‡

∗Facultad de Matemáticas
Pontificia Universidad Católica de Chile
Santiago, Chile
e-mail: cgarciv@mat.uc.cl

† Facultad de Matemáticas
Pontificia Universidad Católica de Chile
Santiago, Chile
e-mail: tofuhrer@mat.uc.cl

‡ Facultad de Matemáticas
Pontificia Universidad Católica de Chile
Santiago, Chile
e-mail: nheuer@mat.uc.cl

Key Words: beam bending, Timoshenko model, Euler–Bernoulli model, discontinuous Petrov–Galerkin method, optimal test functions.

ABSTRACT

We develop a discontinuous Petrov–Galerkin scheme with optimal test functions (DPG method) for the Timoshenko beam bending model with various boundary conditions, combining clamped, supported, and free ends. Our scheme approximates the transverse deflection and bending moment. It converges quasi-optimally in L^2 and is locking free. In particular, it behaves well (converges quasi-optimally) in the limit case of the Euler–Bernoulli model. Several numerical results illustrate the performance of our method.

REFERENCES

[1] C. Carstensen, L. Demkowicz and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations. *Computers and Mathematics with Applications*, 72 (2016): pp. 494–522.

[2] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part II: Optimal test functions. *Numerical Methods for Partial Differential Equations*, 27 (2011): pp. 70–105.

[3] L. Demkowicz and J. Gopalakrishnan, Analysis of the DPG method for the Poisson equation. *SIAM J. Numer. Anal.*, 49 (2011): pp. 1788–1809.

[4] T. Führer, C. García and N. Heuer A Locking-Free DPG Scheme for Timoshenko Beams. *Computational Methods in Applied Mathematics*, 21(2) (2021): pp. 373–383.

[5] T. Führer, N. Heuer, F. J. Sayas, An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation. *Numer. Math.*, 145 (2020): pp. 313–344.

[6] T. Führer, N. Heuer, Fully discrete DPG methods for the Kirchhoff–Love plate bending model. *Comput. Methods Appl. Mech. Engrg.*, 343 (2019): pp. 550–571.

[7] A. Niemi, J. Bramwell, L. Demkowicz, Discontinuous Petrov–Galerkin method with optimal test functions for thin–body problems in solid mechanics. *Comput. Methods Appl. Mech. Engrg.*, 200 (2011): pp. 1291–1300.