Contents

1 Normed vector spaces 2
2 Separation theorems 7
3 Dual spaces 8
4 Quotient spaces, norms 11
5 Dual cones 12
6 Operator norms 13
7 Trace norms 14
8 Vector-valued functions 15

References 17

As usual, \(\mathbb{R} \) and \(\mathbb{C} \) denote the real and complex numbers. If \(z \) is a complex number, then \(z \) can be expressed as \(x + yi \), where \(x, y \) are real numbers, called the real and imaginary parts of \(z \), and \(i^2 = -1 \). In this case the complex conjugate of \(z \) is denoted \(\overline{z} \) and defined to be \(x - yi \).

These notes are connected to the “potpourri” topics class in the Department of Mathematics, Rice University, in the fall semester of 2004.
If x is a real number, then the absolute value of x is denoted $|x|$ and defined to be equal to x when $x \geq 0$ and to $-x$ when $x \leq 0$. Notice that $|x + y| \leq |x| + |y|$ and $|x y| = |x| |y|$ for all real numbers x, y.

If $z = x + y i$ is a complex number, $x, y \in \mathbb{R}$, then the modulus of z is denoted $|z|$ and is the nonnegative real number defined by $|z|^2 = z \bar{z} = x^2 + y^2$. For every pair of complex numbers z, w we have that $|z + w| \leq |z| + |w|$ and $|z w| = |z| |w|$.

1 Normed vector spaces

Let V be a real or complex vector space. By a norm on V we mean a function $\|v\|$ defined for all $v \in V$ such that $\|v\|$ is a nonnegative real number for all $v \in V$ which is equal to 0 if and only if $v = 0$,

\begin{equation}
\|\alpha v\| = |\alpha| \|v\|
\end{equation}

for all real or complex numbers α, as appropriate, and all $v \in V$, and

\begin{equation}
\|v + w\| \leq \|v\| + \|w\|
\end{equation}

for all $v, w \in V$. In this event $\|v - w\|$ defines a metric on V.

An inner product on a real or complex vector space V is a function $\langle v, w \rangle$ defined for $v, w \in V$ which takes values in the real or complex numbers, according to whether V is a real or complex vector space, and which satisfies the following properties. First, for each fixed $w \in V$, $\langle v, w \rangle$ is linear as a function of v, which is to say that

\begin{equation}
\langle v + v', w \rangle = \langle v, w \rangle + \langle v', w \rangle
\end{equation}

for all $v, v' \in V$ and

\begin{equation}
\langle \alpha v, w \rangle = \alpha \langle v, w \rangle
\end{equation}

for all real or complex numbers α, as appropriate, and all $v \in V$. Second, $\langle v, w \rangle$ is symmetric in v, w when V is a real vector space, which means that

\begin{equation}
\langle w, v \rangle = \langle v, w \rangle
\end{equation}

for all $v, w \in V$, and it is Hermitian-symmetric in the complex case, which means that

\begin{equation}
\langle w, v \rangle = \overline{\langle v, w \rangle}
\end{equation}
for all $v, w \in V$. As a result, $\langle v, w \rangle$ is linear in w for each fixed v in the real case, and it is conjugate-linear in the complex case. From the symmetry condition it follows that $\langle v, v \rangle$ is a real number for all $v \in V$ even in the complex case, and the third condition is that

$$\langle v, v \rangle \geq 0 \quad (1.7)$$

for all $v \in V$, with

$$\langle v, v \rangle > 0 \quad (1.8)$$

when $v \neq 0$.

Suppose that V is a real or complex vector space with inner product $\langle v, w \rangle$, and put

$$\|v\| = \langle v, v \rangle^{1/2} \quad (1.9)$$

for $v \in V$. The Cauchy–Schwarz inequality states that

$$|\langle v, w \rangle| \leq \|v\| \|w\| \quad (1.10)$$

for all $v, w \in V$. This can be derived using the fact that

$$\langle v + \alpha w, v + \alpha w \rangle \quad (1.11)$$

is a nonnegative real number for all scalars α. As a consequence, one can check that

$$\|v + w\| \leq \|v\| + \|w\| \quad (1.12)$$

for all $v, w \in V$, by expanding $\|v + w\|^2$ in terms of the inner product. It follows that $\|v\|$ defines a norm on V.

A subset E of a vector space V is said to be convex if for each $v, w \in E$ and each real number t with $0 \leq t \leq 1$ we have that

$$tv + (1 - t)w \in E. \quad (1.13)$$

Suppose that $\|v\|$ is a real-valued function on V such that $\|v\| \geq 0$ for all $v \in V$, $\|v\| = 0$ if and only if $v = 0$, and $\|\alpha v\| = |\alpha| \|v\|$ for all scalars α and all $v \in V$. Then $\|v\|$ defines a norm on V if and only if

$$\{v \in V : \|v\| \leq 1\} \quad (1.14)$$

is a convex subset of V. In other words, this is equivalent to the triangle inequality in the presence of the other conditions. This is not too difficult to verify.
Fix a positive integer \(n \), and consider \(\mathbb{R}^n \) and \(\mathbb{C}^n \) as real or complex vector spaces. More precisely, \(\mathbb{R}^n \) and \(\mathbb{C}^n \) consist of \(n \)-tuples of real or complex numbers, as appropriate. If \(v = (v_1, \ldots, v_n) \), \(w = (w_1, \ldots, w_n) \) are elements of \(\mathbb{R}^n \) or of \(\mathbb{C}^n \), then the sum \(v + w \) is defined coordinatewise,

\[
(1.15) \quad v + w = (v_1 + w_1, \ldots, v_n + w_n).
\]

Similarly, if \(\alpha \) is a real or complex number and \(v = (v_1, \ldots, v_n) \) is an element of \(\mathbb{R}^n \) or of \(\mathbb{C}^n \), as appropriate, then the scalar product \(\alpha v \) is defined coordinatewise,

\[
(1.16) \quad \alpha v = (\alpha v_1, \ldots, \alpha v_n).
\]

The standard inner product on \(\mathbb{R}^n \), \(\mathbb{C}^n \) is defined by

\[
(1.17) \quad \langle v, w \rangle = \sum_{j=1}^{n} v_j w_j
\]
in the real case and

\[
(1.18) \quad \langle v, w \rangle = \sum_{j=1}^{n} v_j \overline{w_j}
\]
in the complex case. If \(p \) is a real number with \(1 \leq p < \infty \), then we put

\[
(1.19) \quad \|v\|_p = \left(\sum_{j=1}^{n} |v_j|^p \right)^{1/p}
\]
in both the real and complex cases, and we can extend this to \(p = \infty \) by

\[
(1.20) \quad \|v\|_\infty = \max(|v_1|, \ldots, |v_n|).
\]

Notice that \(\|v\|_2 \) is the norm associated to the standard inner product on \(\mathbb{R}^n \), \(\mathbb{C}^n \). For all \(p, 1 \leq p \leq \infty \), one can check that \(\|v\|_p \) defines a norm on \(\mathbb{R}^n \), \(\mathbb{C}^n \). The triangle inequality is easy to check when \(p = 1, \infty \), and when \(1 < p < \infty \) one can show that the closed unit ball associated to \(\|v\|_p \) is convex using the fact that \(t^p \) is a convex function on the nonnegative real numbers.

Suppose that \(1 \leq p, q \leq \infty \) and that

\[
(1.21) \quad \frac{1}{p} + \frac{1}{q} = 1,
\]
with $1/\infty = 0$, in which case we say that p, q are “conjugate exponents”. If v, w are elements of \mathbb{R}^n or of \mathbb{C}^n, then

\begin{equation}
\left| \sum_{j=1}^{n} v_j w_j \right| \leq \|v\|_p \|w\|_q. \tag{1.22}
\end{equation}

This is Hölder’s inequality.

When $p = q = 2$ Hölder’s inequality reduces to the Cauchy–Schwarz inequality. When $p, q = 1, \infty$ one can check it directly using the triangle inequality for scalars. Now suppose that $1 < p, q < \infty$, and observe that

\begin{equation}
a b \leq \frac{a^p}{p} + \frac{b^q}{q} \tag{1.23}
\end{equation}

for all nonnegative real numbers a, b, as a result of the convexity of the exponential function, for instance. Hence

\begin{equation}
\left| \sum_{j=1}^{n} v_j w_j \right| \leq \|v\|_p^p + \|w\|_q^q \tag{1.24}
\end{equation}

for all v, w in \mathbb{R}^n or in \mathbb{C}^n, by applying the previous inequality to $|v_j w_j|$ and summing over j. This yields Hölder’s inequality when $\|v\|_p = 1$ and $\|w\|_q = 1$, and the general case follows from a scaling argument.

The triangle inequality for $\|v\|_p$ is known as Minkowski’s inequality, and one can also derive it from Hölder’s inequality, in analogy with the $p = 2$ case. Let us restrict our attention to $1 < p < \infty$, since the $p = 1, \infty$ cases can be handled directly. For all v, w in \mathbb{R}^n or in \mathbb{C}^n we have that

\begin{equation}
\|v + w\|_p^p \leq \sum_{j=1}^{n} |v_j| |v_j + w_j|^{p-1} + \sum_{j=1}^{n} |w_j| |v_j + w_j|^{p-1}. \tag{1.25}
\end{equation}

If q is the exponent conjugate to p, then Hölder’s inequality implies that

\begin{equation}
\|v + w\|_p^p \leq (\|v\|_p + \|w\|_p) \left(\sum_{j=1}^{n} |v_j + w_j|^{q(p-1)} \right)^{1/q}. \tag{1.26}
\end{equation}

This can be rewritten as

\begin{equation}
\|v + w\|_p^p \leq (\|v\|_p + \|w\|_p) \|v + w\|_p^{p-1}, \tag{1.27}
\end{equation}

which implies that $\|v + w\|_p \leq \|v\|_p + \|w\|_p$, as desired.
If \(v \) is an element of \(\mathbb{R}^n \) or of \(\mathbb{C}^n \) and \(1 \leq p < \infty \), then

\[
\|v\|_\infty \leq \|v\|_p.
\]

(1.28)

More generally, if \(1 \leq p \leq q < \infty \), then

\[
\|v\|_q \leq \|v\|_p.
\]

(1.29)

Indeed,

\[
\|v\|_q = \sum_{j=1}^{n} |v_j|^q \leq \|v\|_\infty^{q-p} \|v\|_p^p \leq \|v\|_p^q.
\]

(1.30)

Of course

\[
\|v\|_p \leq n^{1/p} \|v\|_\infty
\]

for all \(v \) in \(\mathbb{R}^n \) or \(\mathbb{C}^n \) and \(1 \leq p < \infty \). For \(1 \leq p \leq q < \infty \) one can check that

\[
\|v\|_p \leq n^{(1/p)-(1/q)} \|v\|_q
\]

(1.32)

using Hölder’s inequality.

If \(V \) is a real or complex vector space and \(\|v\| \) is a norm on \(V \), then

\[
\|v\| \leq \|w\| + \|v-w\|
\]

(1.33)

and

\[
\|w\| \leq \|v\| + \|v-w\|
\]

(1.34)

for all \(v, w \in V \), by the triangle inequality. Therefore

\[
\left|\|v\| - \|w\|\right| \leq \|v-w\|
\]

(1.35)

for all \(v, w \in V \). In particular, \(\|v\| \) is continuous on \(V \) as a real-valued function with respect to the metric associated to the norm on \(V \).

If \(V \) is \(\mathbb{R}^n \) or \(\mathbb{C}^n \), then it is easy to see that \(\|v\| \) is bounded by a constant times the standard Euclidean norm \(\|v\|_2 \), by expressing \(v \) as a linear combination of the standard basis vectors. It follows that \(\|v\| \) is continuous as a real-valued function with respect to the usual Euclidean topology on \(\mathbb{R}^n \) or \(\mathbb{C}^n \). By standard results from advanced calculus, the minimum of \(\|v\| \) over the set of \(v \)'s such that \(\|v\|_2 = 1 \) is attained, since the latter is compact, and of course the minimum is positive because \(\|v\| > 0 \) when \(v \neq 0 \). This implies that \(\|v\| \) is also greater than or equal to a positive constant times \(\|v\|_2 \). As a consequence, the topology determined by the metric \(\|v-w\| \) is the same as the standard Euclidean topology on \(\mathbb{R}^n \), \(\mathbb{C}^n \), as appropriate.
2 Separation theorems

Fix a positive integer n, and let E be a nonempty closed convex subset of \mathbb{R}^n. Also let p be a point in \mathbb{R}^n which is not in E. There exists a point $q \in E$ such that the Euclidean distance $\|p - q\|_2$ from p to q is as small as possible.

Let H be the affine hyperplane through q which is orthogonal to $p - q$. In other words, using the standard inner product on \mathbb{R}^n, H consists of the $v \in \mathbb{R}^n$ such that the inner product of $v - q$ with $p - q$ is equal to 0.

If x is any element of E, then x lies in the closed half-space in \mathbb{R}^n which is bounded by H and which does not contain p. This is equivalent to saying that the inner product of $x - q$ with $p - q$ is less than or equal to 0, while the inner product of $p - q$ with itself is equal to $\|p - q\|_2^2 > 0$. One can see this through a simple geometric argument, to the effect that if $x \in E$ lies in the open half-space in \mathbb{R}^n containing p, then there is a point along the line segment joining x to q which is closer to p than q is.

It follows that in fact E is equal to the intersection of the closed half-spaces containing it. Namely, each point in \mathbb{R}^n which is not in E is also in the complement of one of the closed half-spaces containing E.

Remark 2.1 The use of the Euclidean norm here may seem a bit strange, since the statement that $q \in E$ and H is a hyperplane through q such that E is contained in a closed half-space in \mathbb{R}^n bounded by H and p is in the complementary open half-space bounded by H does not require the Euclidean norm or inner product. One could just as well use a different inner product on \mathbb{R}^n, which could lead to a different choice of q and H. Observe however that if q and H the properties just mentioned, then there is an inner product on \mathbb{R}^n such that the distance from q to p in the corresponding norm is as small as possible and H is the hyperplane through q which is orthogonal to $q - p$.

Next suppose that E is a closed convex subset of \mathbb{R}^n and that p is a point in the boundary of E. Thus $p \in E$ and there is a sequence of points $\{p_j\}_{j=1}^\infty$ in $\mathbb{R}^n \setminus E$ which converges to p. In this case there is a hyperplane H in \mathbb{R}^n which passes through p such that E is contained in one of the closed half-spaces bounded by H. We can reformulate this by saying that there is a vector $v \in \mathbb{R}^n$ such that $\|v\|_2 = 1$ and for each $x \in E$ we have that the inner product of $x - p$ with v is greater than or equal to 0. From the previous argument we know that for each j there is a point $q_j \in E$ such that $\|q_j - p_j\|_2$
is as small as possible and for each \(x \in E \) the inner product of \(x - q_j \) with \(q_j - p \) is greater than or equal to 0.

Put \(v_j = (q_j - p)/\|q_j - p\|_2 \), so that \(\|v_j\|_2 = 1 \) for all \(j \) by construction. By passing to a subsequence if necessary we may assume that \(\{v_j\}_{j=1}^\infty \) converges to a vector \(v \in \mathbb{R}^n \) such that \(\|v\|_2 = 1 \). It is easy to check that \(v \) has the required properties, since \(\{q_j\}_{j=1}^\infty \) converges to \(p \).

Now let \(C \) be a closed convex cone in \(\mathbb{R}^n \), which means that \(C \) is a closed subset of \(\mathbb{R}^n \), \(0 \in C \), for each \(v \in C \) and positive real number \(t \) we have that \(tv \in C \), and for each \(v, w \in C \) we have that \(v + w \in C \). Suppose that \(z \) is a point in \(\mathbb{R}^n \) which is not in \(C \), so that \(tz \) is not in \(C \) for any positive real number \(t \). Let us check that there is a hyperplane in \(\mathbb{R}^n \) which passes through 0 such that \(C \) is contained in one of the closed half-spaces in \(\mathbb{R}^n \) bounded by \(H \) and \(z \) is contained in the complementary open half-space bounded by \(H \). This is equivalent to saying that there is a vector \(v \in \mathbb{R}^n \) such that \(\|v\|_2 = 1 \), the inner product of \(v \) with any element of \(C \) is greater than or equal to 0, and the inner product of \(v \) with \(z \) is strictly less than 0.

From the earlier arguments there is a \(q \in C \) such that for any \(x \in C \) the inner product of \(x - q \) with \(q - z \) is greater than or equal to 0. Put \(v = (q - z)/\|q - z\|_2 \), so that \(\|v\|_2 = 1 \) automatically and the inner product of \(x - q \) with \(v \) is greater than or equal to 0 for all \(x \in C \). Because 0 and \(2q \) are elements of \(C \), we have that the inner product of \(-q \), \(q \) with \(v \) are greater than or equal to 0, which is to say that the inner product of \(q \) with \(v \) is actually equal to 0. Thus the inner product of any \(x \in C \) with \(v \) is greater than or equal to 0, and the inner product of \(z \) with \(v \) is negative is equal to the inner product of \(z - q \) with \(v \), which is \(-\|z - q\|_2 < 0\).

3 Dual spaces

Let \(V \) be a finite-dimensional real or complex vector space, and let \(V^* \) denote the corresponding dual vector space of linear functionals on \(V \). Thus the elements of \(V^* \) are linear mappings from \(V \) into the real or complex numbers, as appropriate. If \(V \) is a real or complex vector space, then \(V^* \) is too, because one can add linear functionals and multiply them by scalars.

Suppose that the dimension of \(V \) is equal to \(n \), and that \(v_1, \ldots, v_n \) is a basis for \(V \). Thus every element of \(V \) can be expressed in a unique manner as a linear combination of the \(v_j \)'s. If \(\lambda \in V^* \), then \(\lambda \) is uniquely determined by the \(n \) scalars \(\lambda(v_1), \ldots, \lambda(v_n) \), and these scalars may be chosen freely. Thus
V^* also has dimension equal to n.

Suppose that V is equipped with a norm $\|v\|$. If λ is a linear functional on V, then there is a nonnegative real number k such that

\[
|\lambda(v)| \leq k \|v\|
\]

for all $v \in V$. To see this, one might as well assume that V is equal to \mathbb{R}^n or \mathbb{C}^n, using a basis for V to get an isomorphism with \mathbb{R}^n or \mathbb{C}^n. As we have seen, any norm on \mathbb{R}^n or \mathbb{C}^n is equivalent to the standard Euclidean norm, in the sense that each is bounded by a constant multiple of the other. The existence of an $k \geq 0$ as above then follows from the corresponding statement for the Euclidean norm.

Let us define the dual norm of a linear functional λ on V associated to the norm $\|v\|$ on V by

\[
\|\lambda\|_* = \sup\{|\lambda(v)| : v \in V, \|v\| \leq 1\}.
\]

Equivalently,

\[
|\lambda(v)| \leq \|\lambda\|_* \|v\|
\]

for all $v \in V$, and $\|\lambda\|_*$ is the smallest nonnegative real number with this property. One can check that $\|\lambda\|_*$ does indeed define a norm on V^*.

For instance, suppose that V is equipped with an inner product $\langle v, w \rangle$. For each $w \in V$,

\[
\lambda_w(v) = \langle v, w \rangle
\]

defines a linear functional on V, and in fact every linear functional on V arises in this manner. With respect to the norm on V associated to the inner product, the dual norm of λ_w is less than or equal to the norm of w, by the Cauchy–Schwartz inequality. By choosing $v = w$ one can check that the dual norm of λ_w is equal to the norm of w.

Now suppose that V is \mathbb{R}^n or \mathbb{C}^n, and for each w in \mathbb{R}^n or \mathbb{C}^n, as appropriate, consider the linear functional λ_w on V given by

\[
\lambda_w(v) = \sum_{j=1}^{n} v_j w_j,
\]

$v = (v_1, \ldots, v_n)$, $w = (w_1, \ldots, w_n)$. Every linear functional on V arises in this manner. If V is equipped with the norm $\|v\|_p$ from Section II $1 \leq p \leq \infty$, then the dual norm of λ_w is equal to $\|w\|_q$, where q is the exponent conjugate.
Indeed, the dual norm of λw is less than or equal to $\|w\|_q$ by Hölder’s inequality. Conversely, one can show that the dual norm of λw is greater than or equal to $\|w\|_q$ through specific choices of v.

If V is any finite-dimensional real or complex vector space equipped with a norm $\| \cdot \|$, and if v is any vector in V, then

$$|\lambda(v)| \leq ||\lambda||_* \|v\|,$$

just by the definition of the dual norm. It turns out that for each nonzero vector $v \in V$ there is a linear functional λ on V such that $||\lambda||_* = 1$ and $\lambda(v) = \|v\|$. To see this we may as well assume that $\|v\| = 1$, by scaling.

Assume first that V is a real vector space, which we may as well take to be \mathbb{R}^n. The closed unit ball in \mathbb{R}^n associated to $\| \cdot \|$, consisting of vectors with norm less than or equal to 1, is a compact convex subset of \mathbb{R}^n, and v lies in the boundary of this convex set, since $\|v\| = 1$. As in Section 2 there is a hyperplane H through v such that the closed unit ball associated to the norm is contained in one of the closed half-spaces bounded by H. The linear functional λ on \mathbb{R}^n that we want is characterized by

$$H = \{ x \in \mathbb{R}^n : \lambda(x) = 1 \}.$$

Now suppose that V is a complex vector space. If λ is a linear mapping from V to the complex numbers, then the real part of λ is a real-linear mapping from V into the real numbers, i.e., it is a linear functional on V as a real vector space, without the additional structure of scalar multiplication by i. Conversely, if one starts with a real-linear mapping from V into the real numbers, then that is the real part of a unique complex-linear mapping from V into the complex numbers, as one can verify.

If β is any complex number, then the modulus of β can be described as the supremum of the real part of $\alpha \beta$, where α runs through all complex numbers with $|\alpha| \leq 1$. As a result, if V is a complex vector space, $\| \cdot \|$ is a norm on V, and λ is a complex linear functional on V, then the dual norm of λ can be described equivalently as the supremum of the real part of $\alpha \lambda(z)$ as α runs through all complex numbers with $|\alpha| \leq 1$ and z runs through all vectors in V with $\|z\| \leq 1$. Hence the dual norm of λ is equal to the supremum of the real part of $\lambda(z)$ as z runs through all vectors in V with $\|z\| \leq 1$, because one can absorb the scalar factors into z. In other words, the norm of λ as a complex linear functional on V is equal to the norm of the real part of λ as a real linear functional on V, using the same norm on V. This permits one to
derive the complex case of the statement under consideration from the real case.

4 Quotient spaces, norms

Let \(V \) be a finite-dimensional real or complex vector space, and let \(W \) be a linear subspace of \(V \). Consider the quotient space \(V/W \), which is basically defined by identifying points in \(V \) whose difference lies in \(W \). There is a canonical quotient mapping \(q \), which is a linear mapping from \(V \) onto \(W \).

Suppose also that \(V \) is equipped with a norm \(\|v\| \). Thus we get a metric associated to this norm, and with respect to this metric \(W \) is a closed subset of \(V \). Indeed, in \(\mathbb{R}^n \) or \(\mathbb{C}^n \), every linear subspace is a closed subset. The general case can be derived from this one because \(V \) is isomorphic to \(\mathbb{R}^n \) or \(\mathbb{C}^n \) for some \(n \), and the norm on \(V \) is equivalent to the usual Euclidean norm on \(\mathbb{R}^n \) or \(\mathbb{C}^n \), as appropriate, with respect to this isomorphism.

Let us define a quotient norm \(\| \cdot \|_{V/W} \) on \(V/W \) by saying that the norm of a point in \(V/W \) is equal to the infimum of the norms of the points in \(V \) which are identified to that point in the quotient. Equivalently, for each \(x \in V \), the norm of \(q(x) \) in \(V/W \) is equal to the infimum of the norms of \(x + w \) in \(V \) over \(w \in W \). In particular, \(\|q(x)\|_{V/W} \leq \|x\| \) for all \(x \in V \). It is not difficult to check that this does indeed define a norm on the quotient space \(V/W \).

Now let \(Z \) be a linear subspace of \(V \), and suppose that \(\lambda \) is a linear functional on \(Z \). We would like to extend \(\lambda \) to a linear functional on \(V \) whose dual norm on \(V \) is the same as that of \(\lambda \) on \(Z \), using the restriction of the given norm on \(V \) to \(Z \) as a norm on \(Z \). We may as well assume that \(\lambda \) is not the zero linear functional, which is to say that \(\lambda(z) \neq 0 \) for at least some \(z \in Z \). Let \(W \) denote the kernel of \(\lambda \), which is the linear subspace of \(Z \) consisting of all vectors \(y \in Z \) such that \(\lambda(y) = 0 \).

Let us work in the quotient space \(V/W \). The quotient \(Z/W \) is a one-dimensional subspace of \(V/W \). Because \(W \) is the kernel of \(\lambda \), there is a canonical linear functional on \(Z/W \) induced by \(\lambda \). One can check that the norm of this linear functional on \(Z/W \), associated to the quotient norm on \(Z/W \) obtained from our original norm \(\| \cdot \| \) on \(V \), is equal to the norm of \(\lambda \) as a linear functional on \(Z \).

Because \(Z/W \) has dimension equal to 1, there is a linear functional \(\mu \) on \(V/W \) with dual norm equal to 1 with respect to the quotient norm on
such that for each element of Z/W, the absolute value or modulus of μ applied to that element is equal to the quotient norm of that element. This follows from the result discussed in Section 3 applied to V/W with the dual norm. We can multiply μ by a scalar to get a linear functional on V/W whose norm is equal to the norm of λ on Z and which agrees on Z/W with the linear functional induced there by λ. The composition of this linear functional on V/W with the canonical quotient mapping from V onto W gives a linear functional on V which extends λ from Z to V and has the same norm as λ has on Z.

5 Dual cones

Let V be a finite-dimensional real vector space, and let C be a closed convex cone in V. To be more precise, one can use an isomorphism between V and \mathbb{R}^n to define the topology on V, i.e., so that the vector space isomorphism is a homeomorphism. This topology does not depend on the choice of isomorphism with \mathbb{R}^n, because every invertible linear mapping on \mathbb{R}^n defines a homeomorphism from \mathbb{R}^n onto itself. Thus C is a closed subset of V which contains 0 and has the property that $sv + tw \in V$ whenever s, t are nonnegative real numbers and $v, w \in C$.

Let us define C^* to be the set of linear functionals λ on V such that $\lambda(v) \geq 0$ for all $v \in C$. One can check that C^* defines a closed convex cone in V^*. This is called the dual cone associated to C. It follows from the result in Section 2 for closed convex cones that C is actually equal to the set of $v \in V$ such that $\lambda(v) \geq 0$ for all $\lambda \in C^*$.

As a basic example, let V be \mathbb{R}^n for some positive integer n, and let C be the closed convex cone consisting of vectors $v = (v_1, \ldots, v_n)$ such that $v_j \geq 0$ for all j. For each $w \in \mathbb{R}^n$, we get a linear functional λ_w on \mathbb{R}^n by putting $\lambda_w(v) = \sum_{j=1}^n v_j w_j$, and every linear functional on \mathbb{R}^n arises in this manner. For this cone C, the dual cone C^* consists of the linear functionals λ_w such that $w \in C$, as one can readily verify.

Now let W be a finite-dimensional real or complex vector space equipped with an inner product $\langle w, z \rangle$, and let V be the real vector space of linear mappings A from W to itself which are self-adjoint, which is to say that $\langle A(w), z \rangle$ is equal to $\langle w, A(z) \rangle$ for all $w, z \in W$. A self-adjoint linear transformation A on W is said to be nonnegative if $\langle A(w), w \rangle$ is nonnegative real number for all $w \in W$, and the nonnegative self-adjoint linear transforma-
tions on \(V \) form a closed convex cone in the real vector space of self-adjoint linear transformations on \(V \). If \(T \) is a self-adjoint linear transformation on \(V \), then we get a linear functional \(\lambda_T \) on the vector space of self-adjoint linear transformations on \(W \) by setting \(\lambda_T(A) \) equal to the trace of \(A \circ T \) for any self-adjoint linear transformation \(A \) on \(W \), and every linear functional on the vector space of self-adjoint linear transformations on \(W \) arises in this manner. If \(T \) is a self-adjoint linear transformation on \(W \), then \(\lambda_T(A) \geq 0 \) for all nonnegative self-adjoint linear transformations \(A \) on \(W \) if and only if \(T \) is nonnegative. This can be verified using the fact that a self-adjoint linear transformation on \(W \) can be diagonalized in an orthonormal basis.

6 Operator norms

Let \(V, W \) be finite-dimensional vector spaces, both real or both complex, and let \(\mathcal{L}(V,W) \) be the vector space of linear mappings from \(V \) to \(W \). More precisely, this is a real vector space if \(V, W \) are real vector spaces and it is a complex vector space if \(V, W \) are complex vector spaces. Notice that the dual \(V^* \) of \(V \) is the same as \(\mathcal{L}(V,\mathbb{R}) \) when \(V \) is a real vector space and it is the same as \(\mathcal{L}(V,\mathbb{C}) \) when \(V \) is a complex vector space.

Suppose that \(V, W \) are equipped with norms \(\|v\|_V, \|w\|_W \). If \(T \) is a linear mapping from \(V \) to \(W \), then there is a nonnegative real number \(k \) such that

\[
\|T(v)\|_W \leq k \|v\|_V
\]

for all \(v \in V \). This can be derived from the case of mappings between Euclidean spaces in the usual manner, and it basically amounts to saying that \(T \) is continuous as a mapping from \(V \) to \(W \) with respect to the metrics associated to the norms on \(V, W \).

We define the operator norm of \(T \) as a linear mapping from \(V \) to \(W \) by

\[
\|T\|_{op,VW} = \sup\{\|T(v)\|_W : v \in V, \|v\|_V \leq 1\}.
\]

Equivalently, \(\|T\|_{op,VW} \) is the smallest nonnegative real number that one can use as \(k \) in the preceding paragraph. It is easy to see that \(\|T\|_{op,VW} \) does indeed define a norm on \(\mathcal{L}(V,W) \). In the case where \(W \) is equal to \(\mathbb{R} \) or \(\mathbb{C} \), so that \(\mathcal{L}(V,W) \) is equal to \(V^* \), the operator norm reduces to the dual norm of a linear functional as defined in Section 3.

As another equivalent definition, the operator norm of \(T \) is equal to the supremum of \(|\mu(T(v))| \) over \(v \in V, \mu \in W^* \) where the \(V \)-norm of \(v \) and the
W^*-norm of μ are each less than or equal to 1. That $|\mu(T(v))|$ is less than or equal to the operator norm of T for these v's and μ's follows easily from the definition. The operator norm is equal to the supremum of these quantities because norms in W are detected by linear functionals as in Section 3.

For each linear mapping T from V to W there is an associated dual linear mapping T^* from W^* to V^*, defined by saying that if μ is a linear functional on W, then $T^*(\mu)$ is the linear functional on V given by the composition of μ with T. One can check that the operator norm of T^*, with respect to the dual norms on V^*, W^*, is equal to the operator norm of T with respect to the original norms on V, W.

As a special case, suppose that V is equal to \mathbb{R}^m or \mathbb{C}^m for some positive integer m, equipped with the norm $\|v\|_1 = |v_1| + \cdots + |v_m|$. If e_1, \ldots, e_m are the standard basis vectors for V, so that the lth component of e_j is equal to 1 when $j = l$ and to 0 when $j \neq l$, then one can show that the operator norm of a linear mapping T from V into a normed vector space W is equal to the maximum of $\|T(e_1)\|_W, \ldots, \|T(e_m)\|_W$.

Suppose instead that W is equal to \mathbb{R}^n or \mathbb{C}^n for some positive integer n, equipped with the norm $\|w\|_\infty = \max(|w_1|, \ldots, |w_n|)$. A linear mapping T from a normed vector space V into W is basically the same as a collection $\lambda_1, \ldots, \lambda_n$ of n linear functionals on V, corresponding to the n components of $T(v)$ in W. The operator norm of T is then equal to the maximum of the dual norms of $\lambda_1, \ldots, \lambda_n$ with respect to the given norm on V.

7 Trace norms

Let V, W be finite-dimensional vector spaces, both real or both complex, and let $\|\cdot\|_V$, $\|\cdot\|_W$ be norms on V, W, respectively. Also let T be a linear mapping from V to W. We can express T as

\[(7.1) \quad T(v) = \sum_{j=1}^{l} \lambda_j(v) w_j,\]

for some linear functionals $\lambda_1, \ldots, \lambda_l$ on V and some vectors w_1, \ldots, w_l in W.

If $\lambda \in V^*$ and $w \in W$, then $\lambda(v) w$ defines a linear mapping from V to W with rank 1, unless λ and w are both 0 in which event the linear mapping is 0. The operator norm of this linear mapping is equal to the product of the dual norm of λ and the norm of w in W. If T is given as a sum as above, then
for each j one can take the product of the dual norm of λ_j and the norm of w_j in W, and the sum of these products is a nonnegative real number which is greater than or equal to the operator norm of T. The trace norm of T is denoted $\|T\|_{tr,VW}$ and defined to be the infimum of this sum of products over all such representations of T. It is easy to see that the trace norm does indeed define a norm. In particular we have that

$$\|T\|_{op,VW} \leq \|T\|_{tr,VW} \quad (7.2)$$

by the earlier remarks, which shows that the trace norm of T is equal to 0 if and only if T is equal to 0. At any rate, the homogeneity and subadditivity of the trace norm can be derived directly from the definition.

If T is a linear mapping from V to W and A is a linear mapping from W to V, then the composition $A \circ T$ is a linear mapping from V to itself, and we can take its trace $\text{tr} A \circ T$ in the usual manner. If $T(v) = \lambda(v) w$ for some $\lambda \in V^*$ and $w \in W$, then $(A \circ T)(v) = \lambda(v) A(w)$, and the trace of $A \circ T$ is equal to $\lambda(A(w))$. Using this one can check that

$$|\text{tr} A \circ T| \leq \|A\|_{op,WV} \|T\|_{tr,VW} \quad (7.3)$$

for all linear mappings $A : W \to V$ and $T : V \to W$. One can think of $T \mapsto \text{tr} A \circ T$ as a linear functional on $\mathcal{L}(V,W)$, and the dual norm of this linear functional with respect to the trace norm on $\mathcal{L}(V,W)$ is equal to $\|A\|_{op,WV}$.

8 Vector-valued functions

Let E be a finite nonempty set. If V is a real or complex vector space, let us write $\mathcal{F}(E,V)$ for the vector space of functions on E with values in V. Thus $\mathcal{F}(E,\mathbb{R})$, $\mathcal{F}(E,\mathbb{C})$ denote the vector spaces of real or complex-valued functions on E.

If $1 \leq p \leq \infty$, let us write $\|f\|_p$ for the usual p-norm of a real or complex-valued function f on E, so that

$$\|f\|_p = \left(\sum_{x \in E} |f(x)|^p \right)^{1/p} \quad (8.1)$$

when $1 \leq p < \infty$ and

$$\|f\|_\infty = \max\{|f(x)| : x \in E\}. \quad (8.2)$$
Let V be a vector space equipped with a norm $\|v\|$, and let us extend the p-norms to V-valued functions on E by putting
\begin{equation}
\|f\|_{p,V} = \left(\sum_{x \in E} \|f(x)\|^p \right)^{1/p}
\end{equation}
when $1 \leq p < \infty$ and
\begin{equation}
\|f\|_{\infty,V} = \max \{\|f(x)\| : x \in E\},
\end{equation}
for any V-valued function f on E. It is easy to check that these do define norms on $\mathcal{F}(E, V)$, using the properties of the norm $\|v\|$ on V and the p-norms for scalar-valued functions.

Let T be a linear transformation on the vector space of real or complex-valued functions on E. If V is a real or complex vector space, as appropriate, then T induces a natural linear transformation on the vector space of V-valued functions on E. For instance, for each $x \in E$ and scalar-valued function f on E, $T(f)(x)$ is a linear combination of $f(y)$, $y \in E$, and one can use the same coefficients to define $T(f)$ when f is a vector-valued function.

In general the relationship between the operator norm of T acting on scalar-valued functions and the operator norm of T acting on vector-valued functions can be complicated. If V happens to be \mathbb{R}^n or \mathbb{C}^n equipped with a p-norm, and if we use the p-norm for scalar valued functions on E, then the operator norm of T on scalar-valued functions with respect to the p-norm will be the same as the operator norm of T acting on V-valued functions with respect to the norm $\|f\|_{p,V}$ defined above.

Fix p, $1 \leq p < \infty$, and a positive integer n. Let \mathbb{S}^{n-1} denote the standard unit sphere in \mathbb{R}^n equipped with the Euclidean norm, which is the compact set of vectors with Euclidean norm equal to 1. Let V be the vector space of real-valued continuous functions on \mathbb{S}^{n-1}.

We can define a p-norm on V by taking the integral of the pth power of the absolute value of a continuous real-valued function on \mathbb{S}^{n-1}, and then taking the $(1/p)$th power of the result. Here we use the standard element of integration on \mathbb{S}^{n-1} which is invariant under rotations, and which one may wish to normalize so that the total measure of the sphere is equal to 1.

If T is a linear transformation acting on real-valued functions on E, then we get a linear transformation acting on V-valued functions as before. The operator norm of T acting on real-valued functions and using the p-norm on them is equal to the operator norm of the associated linear transformation...
acting on V-valued functions using the norm $\|f\|_{p,V}$ based on the p-norm for functions on S^{n-1} described in the preceding paragraph.

Let L denote the linear subspace of V consisting of functions on S^{n-1} which are restrictions of linear functions from \mathbb{R}^n, so that each function in L is given by the inner product of the point in the sphere with some fixed vector in \mathbb{R}^n. In this way we can identify L with \mathbb{R}^n, and the restriction of the p-norm on V to L corresponds to a constant multiple of the usual Euclidean norm on \mathbb{R}^n. Using this it follows that if T is a linear operator acting on real-valued functions on E, then the operator norm of T with respect to the p-norm on real-valued functions on E is the same as the operator norm of the corresponding linear transformation acting on \mathbb{R}^n-valued functions, using the norm on \mathbb{R}^n-valued functions obtained from the p-norm on real-valued functions and the Euclidean norm on \mathbb{R}^n.

References

[BenL] Y. Benyamini and J. Lindenstrauss, *Geometric Nonlinear Functional Analysis*, Colloquium Publications 48, American Mathematical Society, 2000.

[Boc] S. Bochner, *Lectures on Fourier Integrals*, translated by M. Tenenbaum and H. Pollard, Annals of Mathematics Studies 42, Princeton University Press, 1959.

[BocC] S. Bochner and K. Chandrasekharan, *Fourier Transforms*, Annals of Mathematics Studies 19, Princeton University Press, 1949.

[Duo] J. Duoandikoetxea, *Fourier Analysis*, translated and revised by D. Cruz-Uribe, SFO, American Mathematical Society, 2001.

[GarR] J. García-Cuerva and J. Rubio de Francia, *Weighted Norm Inequalities and Related Topics*, North-Holland, 1985.

[Gol] R. Goldberg, *Methods of Real Analysis*, 2nd edition, Wiley, 1976.

[HewS] E. Hewitt and K. Stromberg, *Real and Abstract Analysis*, Springer-Verlag, 1975.
[JohL] W. Johnson and J. Lindenstrauss, editors, *Handbook of the Geometry of Banach Spaces*, Volumes 1 and 2, North-Holland, 2001 and 2003.

[Kra1] S. Krantz, *Real Analysis and Foundations*, CRC Press, 1991.

[Kra2] S. Krantz, *A Panorama of Harmonic Analysis*, Mathematical Association of America, 1999.

[LinT] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces, I, Sequence Spaces and II, Function Spaces*, Springer-Verlag, 1977 and 1979.

[MilS] V. Milman and G. Schechtman, *Asymptotic theory of finite-dimensional normed vector spaces*, with an appendix by M. Gromov, Lecture Notes in Mathematics 1200, Springer-Verlag, 1986.

[Rud1] W. Rudin, *Principles of Mathematical Analysis*, 3rd edition, McGraw-Hill, 1976.

[Rud2] W. Rudin, *Real and Complex Analysis*, 3rd edition, McGraw-Hill, 1987.

[Rud3] W. Rudin, *Functional Analysis*, 2nd edition, McGraw-Hill, 1991.

[Ste] E. Stein, *Singular Integrals and Differentiability Properties of Functions*, Princeton University Press, 1970.

[SteS] E. Stein and R. Shakarchi, *Fourier Analysis: An Introduction*, Princeton University Press, 2003.

[SteW] E. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton University Press, 1971.

[Woj] P. Wojtaszczyk, *Banach Spaces for Analysts*, Cambridge University Press, 1991.

[Zyg] A. Zygmund, *Trigonometric Series*, Volumes I and II, 3rd edition, Cambridge University Press, 2002.