INTRODUCTION
Cancer is all concerning uncontrolled cell growth [1], it is escalating at an alarming rate causing a threat to human life and sustainability. Strategies for predictable cancer cure by chemotherapy and radiation therapy decrease the bulk of tumor cells but a population of cancer stem cells remains [2] and plant-based anticancer drugs discovery gain importance due to the limited success of clinical therapies using synthetic anticancer drugs together with their immense side effects [3, 4]. Many plant-derived compounds "phytochemicals" have been acknowledged to have anti-tumor properties, for example, induction of apoptosis and inhibition of cell proliferation resulting in reducing the risk of cancer [5, 6]. Still many of the potential herbs which are used by the traditional medicinal practitioners to treat several diseases are yet to be studied for their cytotoxic studies based on their traditional medicinal use. Some of the villagers in the Chitrarduga district used to approach traditional medicinal practitioners for various ailments and get treated. This indicates that documentation of the indigenous knowledge, conservation, domestication and better management of key medicinal plants is necessary to ensure intergenerational benefits from the herbal medicines [7]. Cytotoxic studies of different extracts from the species of Solanum like S. pseudocapsicum [8], Solanum nigrum [9, 10], S. trifoliatum [3], S. anguivi [11], S. torvum [12, 13], S. erianthum [14] and S. hygropetricum [15] were reported. Researches on the selection of medicinal plants for their cytotoxicity extraction and their cytotoxicity studies should begin with the ethno botanicals survey-based approach with traditional medicinal practitioner's knowledge. The genus Solanum of Solanaceae members found to have rich steroidial glycoalkaloids which are an important group of plant secondary metabolites isolated from more than 350 Solanum species [16, 17]. But, comprehensive phytochemicals extraction and their cytotoxic activity studies were not reported in S. pubescens Willd. Hence, in the present study, S. pubescens, an ethno botanically important plant was selected for the extraction of phytochemicals and investigation of their cytotoxicity against Hep G2, CaCo2 and T-47 D cell lines were made to identify a potent medicinal plant for anticancer drug molecules.

MATERIALS AND METHODS
The ethno botanical survey, plant material selection and extraction of phytochemicals
To select a herbal medicinal plant with anti-cancerous properties, an ethno botanical survey of medicinal plants used by the traditional medicinal practitioners was conducted in six taluks of Chitrarduga district, Karnataka, India (latitude 14° 13' 48” N and longitude: 76° 24' 00” E) during September 2014 to August 2016. In this survey, a standard questionnaire was framed and used to interview traditional medicinal practitioners [18]. Details of the plants used to cure various diseases were documented and the plants were identified by using valid literature and illustrations [19]. Based on the traditional medicinal use and the research reports, the study plant S. pubescens was collected from the study area and the voucher specimen number is INDGH43. The plant was identified and confirmed by referring Phytographia [20] and further authenticated by Prof. L. Rajanna, Chairperson, Department of Botany, Bangalore University, Bangalore, Karnataka, India. The plant herbarium was deposited and maintained in the department of Botany, Indavara Dodda Siddalinge Gowda Government College, Chikkamagaluru, Karnataka, India (fig. 1).

The matured leaf and stem bark of S. pubescens was dried, powdered and soxhlet extractions for each sample were made separately using five different solvents and samples were labelled as leaf ethyl acetate extract, stem bark ethyl acetate extract, leaf n-hexane extract, stem bark n-hexane extract, leaf methanol extract, stem bark methanol extract, leaf hydro alcohol extract, stem bark hydro alcohol extract, leaf chloroform extract and stem bark chloroform extract [21].
Preparation of test solution

For cytotoxicity studies, 10 mg of test substances were separately dissolved and volume was made up with Dulbecco’s Modified Eagle Medium–High Glucose (DMEM-HG) supplemented with 2% inactivated Fetal Bovine Serum (FBS) to obtain a stock solution of 1 mg/ml for all the cell lines and sterilized by 0.22µ syringe filtration. Serial two-fold dilutions were prepared from this for carrying out cytotoxic studies.

Chemicals

Ethyl acetate, n-Hexane, Methanol, Chloroform, Dimethyl sulfoxide (DMSO), Propanolo were obtained from E Merck Ltd., Mumbai, India. MT, FBS, Phosphate Buffered Saline (PBS), Dulbecco’s Modified Eagle’s Medium (DMEM) and Trypsin were obtained from Sigma Aldrich Co. St Louis, USA. EDTA, Glucose and antibiotics from Hi-Media Laboratories Ltd., Mumbai.

Cell line and culture medium

Hep G2, CaCo2 and T-47 D cell lines were procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were Hep G2, CaCo2 and T-47 D cell lines were procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were Hep G2, CaCo2 and T-47 D cell lines were procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were Hep G2, CaCo2 and T-47 D cell lines were procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were Hep G2, CaCo2 and T-47 D cell lines were procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were Hep G2, CaCo2 and T-47 D cell lines were procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were Hep G2, CaCo2 and T-47 D cell lines were procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were gently shaken and incubated for 3 h at 37 °C in a 5% CO2 atmosphere. The supernatant was removed and 100 µl of propanol was added and the plates were gently shaken to solubilize the formed formazan. The absorbance was measured using a microplate reader at a wavelength of 540 nm. The percentage growth inhibition was calculated using the standard formula and the concentration of test substances needed to inhibit cell growth by 50% (CTC50) was generated from the dose-response curves for each cell line. DMSO was used as control. Trials were conducted with three replicates for each concentration and data were expressed as mean±Standard Deviation (SD).

RESULTS AND DISCUSSION

Selection of *S. pubescens* was accomplished through an ethnobotanical survey, a herbal medicinal plant used by the traditional medicinal practitioners to treat cancer. In the survey, a sum of 190 plant species belonging to 156 genera and 75 families were screened from six taluks of Chitrakura district whereas in the literature cytotoxicity study of *S. pubescens* is not yet reported. Hence, in the present investigation, MTT assay-based cytotoxicity was determined in all the ten different extracts against Hep G2 cell line with the concentrations of test solutions ranging from 1000-7.8 µg/ml. Best four extracts that exhibited 50% viability of cell lines are 24.51±0.08, 44.92±0.04, 48.85±0.41 and 49.03±0.17 µg/ml in stem bark methanol, stem bark hydro alcohol, leaf chloroform and leaf n-hexane extracts, respectively (table 1 and fig. 2 A, B). In the Hep G2 cell line, the cytotoxic study showed that the stem bark is found to be the good source of the anti-cancer drug for human liver carcinoma and the methanol is a suitable solvent to extract the phytochemicals. Further, cytotoxic studies on CaCo2 and T-47 D cell lines exhibited the CTC50 values 57.15±1.75 and 20.27±1.52 µg/ml respectively and both the fractions were extracted using chloroform from leaves of the study plant. The present study findings indicate that the leaf should be the source of herbal raw material to investigate the anticancerous drugs against human colon and breast cancer (table 1 and fig. 2 C-F).

Table 1: Cytotoxic properties of leaf and stem bark extracts of *S. pubescens* against HepG2, CaCo2, T-47 D cell lines

S. No.	Name of the solvent used	Cytotoxicity concentration (µg/ml)	Hep G2	CaCo2	T-47 D						
		Leaf	Stem bark	Leaf	Stem bark	Leaf	Stem bark	Leaf	Stem bark	Leaf	Stem bark
1.	Ethyl acetate	15.97±0.01	167.88±0.86	ND	ND	ND	ND	ND	ND	ND	ND
2.	n-Hexane	49.03±0.17	>1000	61.03±0.12	ND	26.67±1.70	ND	ND	ND	ND	
3.	Methanol	116.2±0.58	24.51±0.08	ND	83.68±0.33	ND	112.29±4.28	ND	ND	ND	ND
4.	Hydo alcohol	105.40±0.13	44.92±0.04	ND	77.50±0.62	ND	94.9±0.55	ND	ND	ND	ND
5.	Chloroform	48.85±0.41	184.55±0.66	57.15±1.75	ND	20.27±1.52	ND	ND	ND	ND	

*CTC50 expressed as mean±SD, n=3, ND=Not detected

The ethnobotanical survey in the study area revealed the traditional knowledge from medicinal practitioners about the preferential use of medicinal plants for the treatment of various diseases and *S. pubescens* for cancer. According to WHO (World Health Organisation), cancer is a leading cause of death worldwide, accounting for an estimated 9.6 million deaths in 2018 and some of the most common causes of cancer death are cancers of colorectal (8,62,000 deaths), liver (7,82,000 deaths) and breast (6,27,000 deaths). The limited success of allopathic anticancer drugs and their massive side effects led to the move towards the development of plant-based anticancer drug discovery [3, 4].
Fig. 2: A-F. Shows the cytotoxic inhibitory effect on cell viability by the different extracts made from leaf and stem bark of *S. pubescens* on different human cancer cell lines. A-Control for HepG2, B-stem bark hydro alcohol 7.8 µg/ml (CTC50 44.92±0.04 µg/ml), C-Control for CaCo2 cell line, D-leaf chloroform 15.6 µg/ml (CTC50 57.15±1.75 µg/ml), E-Control for T-47D cell line, F-leaf chloroform 15.6 µg/ml (CTC50 20.27±1.52 µg/ml)

Over the past decades, there has been a resurgence of interest in the investigation of herbs as a source of potential anticancer drugs. Investigations on solasodine and its concentration in *S. pubescens* were made and found that the leaf and stem bark are the right sources of raw material for the cancer drug material [21]. In the present study, all the ten extracts were tested for their cytotoxic activity and the extracts like stem bark methanol, stem bark hydro alcohol, leaf chloroform and leaf n-hexane are noteworthy as they could exhibit promising anti-proliferative effects and the CTC50 values are quite evident (24.51±0.08, 44.92±0.04, 48.85±0.41 and 49.03±0.17 µg/ml) on Hep G2 cell line (table 1 and fig. 2 A, B). These results authenticate that the stem bark and leaf are found to be a good source of herbal drug raw material against human liver carcinoma. Liver cancer is a progressively increasing tumor with high mortality, not responsive to the cytotoxic agents used in chemotherapy and existing effective therapies have harmful side effects [23, 24]. Several *Solanum* species were extensively screened for its potential cytotoxic and anti-proliferative activity of phytochemicals extracted from the leaf, stem, fruit, seed and aerial parts against Hep G2 [3, 8, 9, 11, 14, 23] and found that the CTC50/IC50 values reported are from 7.04±1.08 to 225±15.2 µg/ml with the concentration ranging from 5 to 1000 µg/ml. In the present study, different extracts’ test solutions concentrations used were 7.8 to 1000 µg/ml and the CTC50 values are between 24.51±0.08 and 49.03±0.17 µg/ml. In the Hep G2 cell line, the cytotoxicity result findings conclude that the methanolic extracts from stem bark induced a significant 50% antiproliferative effect.

Further, the extracts were evaluated for cytotoxic studies on CaCo2 and T-47 D cell lines and the significant CTC50 values recorded are 57.15±1.75 and 20.27±1.52 µg/ml respectively and both the fractions were extracted using chloroform from leaves of the study plant (table 1 and fig. 2 C-F). Similar cytotoxic activity reports were found from the fruit extracts of *S. acoeleastum* [25] and leaf extracts of *S. nigrum* [10] and the CTC50/IC50 values are 24.40 ±1.13 µg/ml for CaCo2 and 0.948 mg/ml for Human Colorectal Carcinoma cell lines, respectively. Also, a report on cell viability assay of leaf and fruit extracts from *S. erianthum* on human breast cancer cell line (MCF-7) was found [14]. In *S. pubescens* Willd., research reports have been made on pharmacological studies like antidiabetic activity [26], anti-inflammatory activity [27], antidiarrheal activity [28], antinociceptive activity [29], anticonvulsant and sedative effects
investigation. Moreover, the solasodine of source of anti-proliferative compounds that is to be further the vital anti-carcinogenic compound as reported in our previous report, the findings have inferred that the stem bark (methanolic India, its vital that such locally available plants belong to Solanaceae are rich in bioactive compounds for many diseases and hence their therapeutic potential need to be thoroughly investigated [34, 35].

CONCLUSION
Cytotoxicity studies of leaf and stem bark extracts of S. pubescens Willd. on Hep G2, CaCo2 and T-47 D cell lines are a first of its kind report, the findings have inferred that the stem bark (methanolic extract) is found to be the source of raw material for anti-cancer drug for human liver carcinoma, the leaf (chloroform extract) is against both human colon and breast cancer and it is evident that solasodine is the vital anti-carcinogenic compound as reported in our previous investigation. Moreover, the solasodine of S. pubescens Willd. is a major source of anti-proliferative compounds that is to be further investigated on the line of isolation, purification, characterization and testing its individual anti-carcinogenic potential at the molecular level.

ACKNOWLEDGEMENT
The authors are thankful to the P. G. Department of Botany, I.D. S. G. Government College, Chikkamagaluru, Karnataka State, India for providing the facilities for performing the extraction work.

FUNDING
Nil

AUTHORS CONTRIBUTIONS
The first author has planned the research work, designed and carried out all the experiments, data compilations, statistical analysis, and preparation of the manuscript under the guidance of the second author. The second author has made critical observations in the manuscript and developed the final publishable format.

CONFLICT OF INTERESTS
The authors declare that there is no conflict of interest

REFERENCES
1. Aliomrani M, Jafarian A, Zolfaghari B. Phytochemical screening and cytotoxic evaluation of Euphorbia turcomanica on hela and HT-29 tumor cell lines. Adv Biomed Res 2017;6:68.
2. Sara Soltanian, Mahboubeh Sheldibehsaei, Neda Mohamadi. Cytotoxicity evaluation of methanol extracts of some medicinal plants on P19 embryonal carcinoma cells. J Appl Pharm Sci 2017;7:142-9.
3. Kanchana A, Balakrishna M. Anti-cancer effect of saponins isolated from Solanum trilobatum leaf extract and induction of apoptosis in human larynx cancer cell lines. Int J Pharm Pharm Sci 2011;3:356-64.
4. David J Newman, Gordon M Cragg, Kenneth M Sander. The importance of natural products upon drug discovery. Nat Prod Rep 2000;17:21-54.
5. Amin A, Gali-Muhtasib H, Ocker M, Schneider Stock R. Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci 2009;5:1-11.
6. Tan G, Gyllenhaal C, Soejarto DD. Biodiversity as a source of anticancer drugs. Curr Drug Targets 2006;7:265-77.
7. Caleb Mutwiwa, Brian Rotich, Matthaeus Kauti, Jafford Rithaa. Ethnobotanical survey of medicinal plants in mwala sub-county, machakos County, Kenya. J Med Plants Res 2018;4:10-9.
8. Potteklad Vijayan, Preethi Vijayaraj, Prashanth Haranahalli Chandrapra Setty, Raghu Chandrashekar Hanthaparla, Ashok Godavarti, Shri Gouravendra Badami, et al. The cytotoxic activity of the total alkaloids isolated from different parts of Solanum pseudocapsicum. BiopI Pharm Bull 2004;27:28-30.
9. Shokrulahed M, Azadbakhht M, Ahangar N, Hashemi A, Saeedi Sarai SS. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Pharmacogn Mag 2014;10:176-9.
10. Chen Jei Tai, Chien Kai Wang, Cheng Jeng Tai, Yi Feng Lin, Chi Shian Lin, Jian Yu Jian, et al. Aqueous extract of Solanum nigrum leaves induces autophagy and enhances cytotoxicity of cisplatin, doxorubicin, docetaxel, and 5-flourouracil in human colorectal cancer cells. J Evidence Based Complementary Altern Med 2013. http://doi.org/10.1155/2013/514719.
11. Gandhiaan J, Renganassamy R. Antiproliferative activity of Solanum angiivii against cancer cell lines. Pharm Lett 2012;4:875-80.
12. Swayamshidha Panigrahi, Meenakshi Sundaram Muthuraman, Ravichandran Natesan, Brindha Pemiah. Anticancer activity of ethanolic extract of Solanum torvum sw. Int J Pharm Pharm Sci 2014;6:93-8.
13. Joseph M Ngita, Ngugi Japhia Opong, Alexander N Nyarko, Dorothy Yebrao Manu, Phyllis GA Addo, Isaac Otchere, et al. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. J Ethnopharmacol 2016;182:1-5.
14. Radhika Mahadev, Ramakrishnaiah H, Krishna V, Deepalakschmi AP, Naveen Kumar N. Cytotoxic activity of methanolic extracts of Solanum erianthum D. DON. Int J Pharm Pharm Sci 2015;7:106-8.
15. Homaia Afreen, Toufiq-Ul Amin, Siddiquul Islam, Salma Parvin, Rayhanus Salam. In vitro phytochemical analysis and cytotoxic assay of leaves of Solanum jucoperum linn by brine shrimp bioassay. Innovations Pharm Biol Sci 2016;3:81-5.
16. Kanika Patel, Ravi B Singh, Dinesh K Patel. Medicinal significance, pharmacological activities, and analytical aspects of solasodine: a concise report of current scientific literature. J Acute Dis 2013;2:292-8.
17. Fang Sun, Shengyu Li, Dajun He, Gang Cao, Xiuwen N, Guihua Tai, et al. Effects of glycoalkaloids from Solanum plants on cucumber root growth. Phytochemistry 2010;71:1534-8.
18. Jain SK. Methods and approaches in ethnotobany. Society of Ethnobotany, Lucknow, India, 1986.
19. Gamble JS, Fisher RC. Flora of the presidency of madras, Reprinted Edition. I-II, Botanical Survey of India, Calcutta, India; 1957.
20. Phytographia: 5. t. 3. Hook. F., Flora Britanica India 4:230, Gamble, 2, 936;1883; 1794.
21. Sudhmana VN, Ramakrishnan. Screening, detection and quantification of solasodine in Solanum pubescens wild by reverse phase-high performance liquid chromatography method. Int J Green Pharm 2019;13:343-7.
22. Francis Denzots, Rita Lang, Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986;89:271-7.
23. Mostafa I Fekry, Shakra M Ezzat, Maha M Salama, Ohoud Y Alshehri, Ahmed M Al-Abd. Bioactive glycoalkaloids isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci Rep 2019;9:1746.
24. Mothanna AQ, Rozita R, Yeap SK, Omar AR, Ali AM, Altheen NB. Selective cytotoxicity of gonioltalinum against hepatoblastoma Hep-2 cells. Molec 2011;6:294-5.
25. Trevor Burger, Tsholofelo Mokoka, Gerda Fouche, Paul Steenkamp, Vanessa Steenkamp, Werner Cordier. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition. BMC Complementary Altern Med 2013;8:211.
26. Hemamalini K, Ramya Krishna V, Bhargav A, Vasireddy U. Hepato protective activity of Tabebuia rosea and Solanum pubescens against paracetamol induced hepatotoxicity in rats. Asian J Pharm Clin Res 2012;5:153-6.
27. Niyogi P, Raju NJ, Reddy PG, Rao BG. Formulation and evaluation of anti-inflammatory activity of Solanum pubescens wild extracts gel on albino wister rats. Int J Pharm 2012;2:484-90.

28. Hemamalini K, Bhargav A. Antidiarrheal activity of methanolic extracts of leaves of Solanum pubescens wild. Int J Pharmacol Toxicol 2013;3:43-5.

29. Sumalatha P, Hemamalini K, Shwetha R, Uma Vasi Reddy. Antinociceptive screening of methanol extract of Solanum Pubescens. Int J Pharm 2013;4:149-51.

30. Suvarchala Kirannai A, Hemamalini K, Uma Vasireddy. Anticonvulsant and sedative effects of leaf extract of Solanum pubescens. Int J Pharm Sci Res 2013;4:1424-7.

31. Haseebur Rahman, Riaz Mahmood, Nazneen Rahman, Mir Hars. Antibacterial activity of Solanum pubescens—an ethnomedicinal plant from south western region of Andhra Pradesh. Int J Appl Sci Biotechnol 2014;2:501-9.

32. Sudhama VN, Ramakrishnan M. Phytochemical extractions, qualitative analysis, and evaluation of antimicrobial activity in the leaf and stem bark of Solanum pubescens wild. Asian J Pharm Clin Res 2019;12:280-4.

33. Cham BE. Solasodine, solamargine and mixtures of solasodine rhamnosides: pathway to expansive clinical anticancer therapies. Int J Clin Med 2017;8:692-713.

34. Priya G, Chellaram C. Antiproliferative effect of ethanolic leaf extract of Solanum trifoliatum on Hep2 cancer cell lines. Asian J Pharm Clin Res 2014;7:58-61.

35. Lawrence Kalita, Biswajit Dash, Uttam Borah, Juman Deka, Suvakanta Dash. Preliminary phytochemical analysis and antimicrobial activity ethanolic extracts of dried fruits of Solanum torvum (family-solanaceae). Int J Curr Pharm Res 2017;9:123-6.