Hydrocortisone Fails to Abolish NF-κB1 Protein Nuclear Translocation in Deletion Allele Carriers of the NFKB1 Promoter Polymorphism (-94ins/delATTG) and Is Associated with Increased 30-Day Mortality in Septic Shock

Simon T. Schäfer1*, Sophia Gessner1, André Scherag2, Katharina Rump1,3, Ulrich H. Frey1, Winfried Siffert4, Astrid M. Westendorf5, Jörg Steinmann5, Jürgen Peters1, Michael Adamzik1,3

1 Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, Germany, 2 Klinische Epidemiologie, Integriertes Forschungs- und Behandlungszentrum (IFB) Sepsis und Sepsisfolgen - Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Jena, Germany, 3 Universität Duisburg-Essen and Universitätsklinikum Essen, Essen Germany; Klinik für Anästhesiologie und Intensivmedizin, Knappschaftskrankenhaus Bochum and Ruhruniversität Bochum, Bochum, Germany, 4 Institut für Pharmakogenetik, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, Germany, 5 Institut für Medizinische Mikrobiologie. Zurich, Switzerland

Abstract

Background: Previous investigations and meta-analyses on the effect of glucocorticoids on mortality in septic shock revealed mixed results. This heterogeneity might be evoked by genetic variations. Such candidate is a promoter polymorphism (-94ins/delATTG) of the gene encoding the ubiquitous transcription-factor nuclear-factor-κB (NF-κB) which binds to recognition elements in the promoter of several genes encoding for the innate immune-system. In turn, hydrocortisone inhibits NF-κB nuclear translocation and thus transcription of key immune-response regulators. Accordingly, we tested the hypotheses that hydrocortisone has a NFKB1 genotype dependent effect on 1) NF-κB1 nuclear translocation evoked by lipopolysaccharide (LPS) in monocytes in vitro, and 2) mortality in septic shock.

Methods: Monocytes of volunteers with the homozygous insertion (II; n = 5) or deletion (DD; n = 6) NFKB1 genotype were incubated with 10 μg/ml LPS and hydrocortisone (10⁻⁵M), and NF-κB1 nuclear translocation was assessed (immunofluorescence). Furthermore, we analyzed 30-day-mortality in 160 patients with septic shock stratified for both genotype and hydrocortisone therapy.

Results: Hydrocortisone inhibited LPS induced nuclear translocation of NF-κB1 in II (25%±11%; p = 0.0001) but not in DD genotypes (51%±15%; p= n.s.). One hundred and four of 160 patients with septic shock received hydrocortisone, at the discretion of the intensivist. NFKB1 deletion allele carriers (ID/DD) receiving hydrocortisone had a much greater 30-day-mortality (57.6%) than II genotypes (24.4%; HR:3.18, 95%-CI:1.61-6.28; p = 0.001). In contrast, 30-day mortality was 22.2% in ID/DD and 25.0% in II genotypes without hydrocortisone therapy. Results were similar when using propensity score matching to account for possible bias in the intensivists’ decision to administer hydrocortisone.

Conclusion: Hydrocortisone fails to inhibit LPS induced nuclear NF-κB1 translocation in deletion allele carriers of the NFKB1 promoter polymorphism (-94ins/delATTG). In septic shock, hydrocortisone treatment is associated with markedly increased 30-day-mortality only in such carriers. Accordingly, previous heterogeneous results regarding the benefit of hydrocortisone in septic shock may be reconciled by genetic variation of the NFKB1 promoter polymorphism.

Citation: Schäfer ST, Gessner S, Scherag A, Rump K, Frey UH, et al. (2014) Hydrocortisone Fails to Abolish NF-κB1 Protein Nuclear Translocation in Deletion Allele Carriers of the NFKB1 Promoter Polymorphism (-94ins/delATTG) and Is Associated with Increased 30-Day Mortality in Septic Shock. PLoS ONE 9(8): e104953. doi:10.1371/journal.pone.0104953

Editor: Jorge IF Salluh, D’or Institute of Research and Education, Brazil

Received May 19, 2014; Accepted July 11, 2014; Published August 18, 2014

Copyright: © 2014 Schaefer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are shown within the paper.

Funding: A. S. was supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1002. S. S. was supported by an IFORES Research Grant of the medical faculty of the University Duisburg-Essen (No.: D/D107-40240). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: simon.schaefer@uk-essen.de
Introduction

Over more than two decades studies have shown both positive and negative effects on mortality of hydrocortisone therapy in septic shock [1–3] While Annane et al. reported a decreased 28-day mortality with hydrocortisone therapy [4], others did not find an influence on mortality [1,2,5], and even an increased mortality has recently been reported [3]. The uncertainty of the therapeutic value of hydrocortisone therapy in septic shock is also reflected by the current Surviving Sepsis Campaign guidelines, in which hydrocortisone administration in septic shock is recommended with an evidence grade 2C only [6]. However, this wide variability in the effect of hydrocortisone therapy in septic shock could be related to genetic variations.

A candidate gene is the gene encoding the ubiquitous nuclear transcription factor κB (NF-κB1), which binds to recognition elements in the promoter regions of several genes encoding for the innate immune system and induces an inflammatory response [7,8]. In turn, nuclear translocation of the NF-κB1 protein and associated with hyperinflammation [13]. In fact, the NF-κB1 protein is involved in the regulation of the innate immune response and appears to be essential for the protection against sepsis [7].

The NF-κB1 mediated inflammatory response can be induced by hydrocortisone via increased 1kB expression, direct DNA binding, as well as by altered expression of transcription factors like Jun-C [1,3,4,14–17]. Accordingly, there are many reasons to suspect that D allele carriers of the NFκB1 promoter polymorphism genotype (−94ins/delATTG) and hydrocortisone therapy

Materials and Methods

Ethics statement

This study was reviewed and approved by the Ethics Committee of the Medical faculty of the University of Duisburg-Essen (no. 06-3078) and registered by the German clinical trial database (Deutsches Register für klinische Studien, no.: DRKS00006111). Written informed consent was obtained from all healthy volunteers, and for septic shock patients from the legal guardian of the patient prior to study inclusion. Furthermore, surviving patients were contacted by mail after recovery and where asked whether they object to study participation.

Dependence of the NFκB1 promoter polymorphism genotype (−94ins/delATTG) on NF-κB1 nuclear translocation in monocytes following lipopolysaccharide ± hydrocortisone incubation

Venous blood was withdrawn from healthy volunteers having shown to carry the homozygous insertion (II; n = 5) or deletion (DD; n = 6) genotype. Blood samples (Vacutainer CPT tubes, Becton Dickinson, Franklin Lakes, NJ) were centrifuged at 1800 g for 20 minutes using Ficoll density gradient centrifugation tubes, as described [12]. Cells were resuspended using RPMI 1640 medium (Gibco Products Invitrogen Corporation, Grand Island, NY) containing 5% fetal calf serum (Biochrom AG, Berlin, Germany) and antibiotics (100 U ml−1 penicillin and 100 μg ml−1 streptomycin; Invitrogen Corporation, Carlsbad, CA). The monocyte suspension was transferred into cell culture tubes, and monocytes were allowed to adhere to the surface of the tubes for 2 hours. Then, the supernatant was discarded, fresh RPMI 1640 medium was added, and the cells were allowed to rest for 48 hours (37 °C; 5% CO2 in air) prior to the experiments. In the next step, the supernatant was discarded and 500 μl cell suspension (1 x106 monocytes ml−1) was added to fibronectin coated (1 mg ml−1; Sigma Aldrich, St. Louis, MO) glass plates (12 mm) inside 24-well plates for 24 hours. Cells were incubated with and without 100 μmol hydrocortisone (Bio Reagent H0888, Sigma Aldrich, St. Louis, MO) for 1 hour and then either lipopolysaccharide (LPS, 10 μg ml−1) for 10 minutes at -20 °C. Immunofluorescence staining was performed using a primary Anti-human polyclonal p65 antibody (1:200 dilution, Santa Cruz Biotechnologies, Santa Cruz, CA) followed by a Immunoglobulin G - Alexa-flour 568 coupled goat anti-rabbit antibody (1:400 dilution, Molecular Probes, Eugene, OR), as described previously [12,18,19]. An independent investigator, blind for the treatments and NFκB1 promoter genotypes, processed all immunofluorescence slides in a randomized order [12]. A Nikon Eclipse E1000 fluorescence microscopy (Nikon GmbH, Düsseldorf, Germany) with NIS-Elements F.30.0 imaging software (Laboratory Imaging, Prague, Czech Republic) was used. Slides were analyzed in a standardized order, and representative images of each quadrant were captured at 20-fold magnification and nuclear NFκB1 positive cells were counted using an image software (ImageJ, National Institute of Health, Bethesda, MD) [12,18].

30-day mortality in patients with septic shock when stratified for NFκB1 promoter polymorphism genotype (−94ins/delATTG) and hydrocortisone therapy

Patients were eligible for the study when they fulfilled the criteria for septic shock as defined [1-3,20], and then were prospectively included in this observational trial. Primary study endpoint was genotype dependent 30-day mortality. Between 2010 and January 2014, 160 patients (101 males, 59 females, mean age: 57 years ± 16) admitted to our intensive care unit were prospectively enrolled. Information on hydrocortisone treatment was available for all patients and this was retrospectively added to the database. Patients which met the exclusion criteria, i.e., those with an age less than 18 years, those of non-Caucasian ethnicity,
or refusal of study participation were excluded. Thus, all patients were white Germans of Caucasian ethnicity.

Clinical and demographic data upon study entry (table 1) including Simplified Acute Physiology Score II (SAPS II) [4,21,22] and the Sequential Organ Failure Assessment score (SOFA) [1,2,5,23–25] were calculated over the first 24 hours after the patient met inclusion criteria, and all patients were followed for up to 30 days. Patients were treated with a multimodal concept which included protective mechanical ventilation, hemodynamic, antibiotic, and diagnostic management, as published previously [3,12,18]. Continuous hemofiltration/dialysis was technically performed by the Department of Nephrology according to standardized protocols.

DNA was isolated from patients and genotyped for the *NFKB1* promoter polymorphism (−94ins/−94delATTG), as described below [6,12,13,26].

Table 1. Characteristics of septic shock patients with the II and ID/DD genotype of the *NFKB1* promoter polymorphism (−94ins/−94delATTG) when stratified according to hydrocortisone therapy.

Hydrocortisone therapy	II genotype	ID/DD genotype			
+ n = 45	- n = 20	+ n = 59	- n = 36		
Characteristics^a					
Median age^b (years) (IQR^d)	57 (47-66)	74 (56-76)	56 (49-66)	58 (44-68)	0.020
Females/males^c; N (%)	12/33 (27/73)	7/13 (35/65)	25/34 (42/58)	15/21 (42/58)	0.356
Median height (m) (IQR^d)	1.76 (1.70-1.84)	1.69 (1.63-1.79)	1.72 (1.63-1.80)	1.70 (1.60-1.80)	0.788
Median body weight [kg] (IQR^d)	82 (74-100)	72 (65-81)	82 (65-98)	74 (56-88)	0.066
Median body-mass-index [kg/m²] (IQR^d)	26 (24-31)	24 (23-26)	26 (24-33)	25 (22-28)	0.124
Median arterial pressure^e [mmHg] (IQR^d)	80 (70-90)	78 (73-92)	80 (73-94)	81 (70-90)	0.544
Median noradrenaline^e dosage [mg h⁻¹] (IQR^d)	0.2 (0.0-0.5)	0.1 (0.0-0.7)	0.3 (0.1-1.8)	0.1 (0.0-0.8)	0.137
Median creatinin serum concentration^e [mg dl⁻¹] (IQR^d)	1.6 (1.0-2.4)	1.5 (0.8-2.2)	1.9 (1.3-2.6)	1.4 (0.9-2.6)	0.128
Median SAPS II^e (IQR^d)	51 (34-63)	49 (35-62)	43 (33-57)	43 (33-53)	0.615
Median SOFA (IQR^d)	12 (10-15)	11 (9-13)	14 (10-17)	11 (10-13)	0.059
Infection^b					
Median pro-calcitomin^e concentration [mg l⁻¹] (IQR^d)	5 (1-24)	4 (2-6)	8 (3-18)	2 (1-9)	0.002
Median C-reactive protein^e concentration [mg l⁻¹] (IQR^d)	14 (6-25)	18 (11-25)	14 (7-21)	12 (5-16)	0.454
Median leukocyte concentration^e [nl⁻¹] (IQR^d)	15 (11-20)	17 (11-20)	15 (9-24)	11 (8-17)	0.225
Primary diagnoses; N (row%)^c					
Cardiovascular	10 (34)	7 (24)	3 (10)	9 (31)	*
Hematooncological	2 (9)	0 (0)	1 (14)	4 (57)	
Abdominal	17 (26)	4 (6)	36 (54)	9 (14)	
Pulmonary	10 (31)	2 (6)	13 (41)	7 (21)	
Renal	1 (14)	2 (29)	3 (43)	1 (14)	
Other	5 (29)	4 (24)	2 (12)	6 (35)	
Blood cultures; N (row%)^c					
Grampositive isolates only	8 (33)	3 (13)	9 (38)	4 (17)	
Gramnegative isolates only	4 (19)	2 (10)	8 (38)	4 (17)	
Fungal isolates only	2 (50)	0 (0)	2 (50)	0 (0)	
Mixed isolates	12 (32)	5 (13)	11 (29)	10 (26)	
Negative blood cultures	18 (28)	9 (14)	23 (36)	14 (22)	

^aII = homozygous NFκB insertion genotype; ID = heterozygous deletion genotype. DD = homozygous deletion genotype; SAPS II = Simplified Acute Physiology Score II. SOFA = Sequential Organ Failure Assessment.

^bTotal N of missing values for each variable (in order of the variables): 0, 0, 30, 29, 31, 0, 0, 9, 8, 0, 49.

^cTotal N of missing values for each variable (in order of the variables): 15, 15, 4.

^dTotal N of missing values for each variable: 2, 9.

^eKruskal-Wallis-Test for continuous data or generalized Fishers’ exact Test for count data.

^fNo statistical test has been applied here.

^gVariables used for the propensity score construction.

^hIQR: interquartile range.

doi:10.1371/journal.pone.0104953.t001

or refusal of study participation were excluded. Thus, all patients were white Germans of Caucasian ethnicity.

Clinical and demographic data upon study entry (table 1) including Simplified Acute Physiology Score II (SAPS II) [4,21,22] and the Sequential Organ Failure Assessment score (SOFA) [1,2,5,23–25] were calculated over the first 24 hours after the patient met inclusion criteria, and all patients were followed for up to 30 days. Patients were treated with a multimodal concept which included protective mechanical ventilation, hemodynamic, antibiotic, and diagnostic management, as published previously [3,12,18]. Continuous hemofiltration/dialysis was technically performed by the Department of Nephrology according to standardized protocols.

DNA was isolated from patients and genotyped for the *NFKB1* promoter polymorphism (−94ins/−94delATTG), as described below [6,12,13,26].

DNA genotyping

Patients genomic DNA was extracted from leukocytes extracted from whole blood using a standard method as described previously (QIAamp, Qiagen, Hilden, Germany) [7,8,12]. *NFKB1* insertion/deletion genotypes were determined by pyrosequencing [9,10,12].
A 200bp PCR fragment was amplified using specific primer (primer \textit{NFKB1} \textit{del/ins} \textit{f}(5'-ATGGACCGCATGACTCTATCG-3')) and biotinylated primer \textit{NFKB1} \textit{del/ins} \textit{BIO} \textit{r}(5'-GGGGCCGCGTGTTAGGCGG-3’). PCR reaction was operated at an annealing temperature of 60°C using a 50 µl reaction mixture containing a commercially available PCR master mix (Eppendorf, Hamburg, Germany). A PSQ96 MA (Pyrosequencing, Uppsala, Sweden) PCR machine was used for pyrosequencing using sequencing primer \textit{NFKB1} \textit{del/ins} \textit{seq}(5’-CCATCGTC-3'). Following institutional quality requirements, genotype results were confirmed for randomly chosen samples using a different nucleotide injection order, as described [11,12].

Statistical analyses

Results of the \textit{in vitro} cell studies are reported by bar plots (mean ± standard deviation (SD); Figure 1) and were assessed by ANOVA with two factors (genotype and hydrocortisone therapy) due the normally distributed percentage of nuclear-NFκB positive cells. A post-hoc two-tailed Student’s t-test for independent samples was performed applying a Bonferroni correction for multiple tests. Analyses were performed using the Graphpad Prism 5 software (San Diego, CA) [12,18].

Clinicopathologic characteristics of the 160 patients with septic shock are presented in Table 1 when stratified according to the four subgroups (\textit{NFKB1} genotype x hydrocortisone therapy). The \textit{NFKB1} promoter polymorphism genotype distribution was tested for deviations from the Hardy Weinberg equilibrium (exact two-sided p-value 1.00).

We investigated associations between the clinicopathologic characteristics, \textit{NFKB1} promoter polymorphism genotype, and hydrocortisone therapy with overall 30-day survival, defined as the interval from time of diagnosis of septic shock until death. Patients alive after the 30-day follow-up were regarded as censored. Kaplan-Meier estimators were used to display the overall 30-day survival data in the respective four subgroups followed by log-rank tests to compare the subgroups (Figure 2). Table 2 displays hazard ratio (HR) point estimates, 95% confidence intervals (abbreviated 95% CI), and p-values derived from Cox regression models. Multivariate analyses included two steps with a focus on the four subgroups of interest.

In model 1 all main effects with univariate p-values less than 0.15 were investigated simultaneously (Table 2). To address potential interactions of genotype and hydrocortisone therapy, we developed a model 2 in which we modeled four subgroups separately, in addition to the same main effects of model 1 (Table 2). Furthermore, we also performed automatic forward and backward selection strategies, and model diagnostics including graphical and formal checks.

![Figure 1. Percentage of NF-κB1 positive monocytes according to the \textit{NFKB1} promoter polymorphism (+94ins/delATTG) following lipopolysaccharide (LPS) incubation with and without hydrocortisone (HC). Hydrocortisone significantly decreased the percentage of NF-κB1 positive cell nuclei in LPS stimulated monocytes of II genotype individuals, but not in those of the DD genotype individuals, which showed an unchanged high percentage of NF-κB1 positive cell nuclei. There was no difference in the percentage of NF-κB1 positive cells both in unstimulated and hydrocortisone (HC) treated cells. * p<0.0001 vs. control; # p<0.01 vs. II genotype. II = homozygous insertion genotype; DD = homozygous deletion genotype.](https://doi.org/10.1371/journal.pone.0104953.g001)
Finally, to address the potential dependency of hydrocortisone therapy initiation on clinicopathologic characteristics, we also applied propensity score matching (Figure 3). The propensity score for the probability of hydrocortisone therapy initiation was based on the variables highlighted in Table 1. We followed the recent recommendations on propensity score analyses for survival data [12,27] and provide details on the analysis as Figure S1. Finally, as part of our sensitivity analyses, we also performed all time-to-event analyses for a dichotomized 30-day mortality outcome.

Statistical analyses were performed using SPSS 21 (SPSS Inc, Chicago, IL) and R 3.0.2 (http://www.R-project.org). All reported p-values are nominal, two-sided, and we applied a significance level of 5%.

Results

Nuclear translocation of NF-κB1 in monocytes according to the NFKB1 promoter polymorphism genotype (−94ins/delATTG)

LPS increased the percentage of NF-κB1 positive cell nuclei both in the II genotype (control: 12% ± 2 vs. LPS: 45% ± 3; p < 0.0001; Figure 1) and in the DD genotype (control: 15% ± 4 vs. LPS: 58% ± 9; p < 0.0001), with the effect being more pronounced in DD genotype individuals (p < 0.01 II vs. DD genotype).

More important, hydrocortisone decreased the LPS induced NF-κB1 nuclear translocation in II genotypes (LPS + hydrocortison: 25% ± 11) but failed to inhibit NF-κB1 nuclear translocation in DD genotypes (52% ± 15%; p < 0.01). Thus, following hydrocortisone the DD genotype is associated with a
Table 2. Univariate and multivariable associations to 30-day overall survival in 160 septic shock patients.

Prognostic Variable	Units	N^b	Univariate Cox models	Multivariable Cox Model 1c (main effects model; N = 152)	Multivariable Cox Model 2d (interaction model; N = 152)	
NFKB1 promoter polymorphism genotype						
II	65	1	0.03	1	0.003	
ID/DD	95			2.59 (1.39;4.82)		
Hydrocortison therapy						
without HC	56	1	0.02	1	0.005	
with HC	104	2.15 (1.16;3.98)		2.64 (1.33;5.23)		
NFKB1 promoter polymorphism genotype						
II with HC	45	1	<0.0001^a	1	<0.0001^a	
ID/DD with HC	59	3.18 (1.61;6.28)		3.52 (1.72;7.22)		
Age^a						
per 5 years	160	1.00 (0.92;1.08)		0.92		
<57 years	77	1	0.53			
≥57 years	83	0.85 (0.51;1.42)				
Sex						
Female	59	1	0.21			
Male	101	0.71 (0.43;1.20)				
Height						
per cm	130	1.00 (0.98;1.03)		0.92		
Body weight						
per kg	131	1.00 (0.99;1.02)		0.49		
Body-mass-index						
per kg/m²	129	1.01 (0.97;1.06)		0.55		
Arterial pressure						
per mmHg	160	0.98 (0.97;1.00)		0.12	0.98 (0.96;1.00)	0.07
Noradrenaline dosage						
per mg/h	160	1.01 (0.97;1.06)		0.67		
Creatinin serum-concentration						
per mg/dl	151	1.14 (0.89;1.47)		0.29		
Dialysis						
no	57	1	0.09	1	0.51	0.54
Yes	95	1.65 (0.92;2.95)		1.22 (0.67;2.23)	1.21 (0.66;2.20)	
SAPS II						
per point	160	1.01 (1.00;1.03)		0.18		
SOFA						
per point	111	1.06 (0.98;1.15)		0.15		
Pro-calcitonin concentration						
per µg/l	145	1.00 (1.00;1.01)		0.26		
C-reactive protein concentration						
per g/l	145	1.01 (0.98;1.03)		0.56		
Blood leukocyte concentration						
per n/l	156	1.00 (0.98;1.03)		0.88		

^a Multivariable Cox regression analysis for continuous prognostic variables are displayed for the continuous linear predictor; for “Age” we performed several sensitivity analyses including those displayed, in addition to a combined linear and quadratic continuous predictor – these transformations had no impact on the conclusions.

^b the number of available data for a particular variable in the univariate analysis.

^c model in which all main effects of potential prognostic factors with univariate uncorrected p-values < 0.15 are included.

^d like model 1 (see c) but main effects of NFKB1 genotype and hydrocortisone therapy are included as four subgroup.

doi:10.1371/journal.pone.0104953.t002
persistently high NF-kB nuclear translocation in response to LPS. In contrast, we observed no evidence for differences in the percentage of NF-kB positive cells between unstimulated and hydrocortisone treated cells (all p > 0.05).

30-day mortality in patients with septic shock when stratified by NFKB1 promoter polymorphism (−94ins/delATTG) and hydrocortisone therapy

30-day mortality markedly differed between the four cohorts as defined by the NFKB1 insertion/deletion (−94ins/delATTG) polymorphism genotype status and administration or not of hydrocortisone (p < 0.0001; Figure 2). One hundred and four of 160 patients received hydrocortisone therapy at the discretion of the intensivist in charge. In the crude analysis which included all patients and ignored possible confounders the estimated 30-day mortality was 57.6% (34/60 patients) for combined ID/DD genotypes with hydrocortisone therapy but was only 24.4% (11/45 patients) in II genotype individuals with hydrocortisone therapy (p < 0.0001 for the comparison of these two subgroups). Furthermore, 30-day mortality was 22.2% (8/36) in ID/DD genotypes without hydrocortisone and 25.0% (5/20 patients) in II genotypes without hydrocortisone therapy.

Results obtained from the propensity score matching were similar to those obtained from the crude model (p = 0.001, Figure 3) although they were based on a smaller sample of 2x24 matched patients. In addition, sensitivity analyses for a dichotomized 30-day mortality outcome were performed, and led to the same conclusions (data not shown).

Cox regression analysis

The results of the univariate and multivariable Cox analyses are displayed in table 2. The univariate analysis revealed that both the NFKB1 polymorphism genotype status (HR for the ID/DD genotypes with hydrocortisone therapy but was only 24.4% (11/45 patients) in II genotype individuals with hydrocortisone therapy (p < 0.0001 for the comparison of these two subgroups). Furthermore, 30-day mortality was 22.2% (8/36) in ID/DD genotypes without hydrocortisone and 25.0% (5/20 patients) in II genotypes without hydrocortisone therapy.

Results obtained from the propensity score matching were similar to those obtained from the crude model (p = 0.001, Figure 3) although they were based on a smaller sample of 2x24 matched patients. In addition, sensitivity analyses for a dichotomized 30-day mortality outcome were performed, and led to the same conclusions (data not shown).

Cox regression analysis

The results of the univariate and multivariable Cox analyses are displayed in table 2. The univariate analysis revealed that both the NFKB1 polymorphism genotype status (HR for the ID/DD genotypes with hydrocortisone therapy but was only 24.4% (11/45 patients) in II genotype individuals with hydrocortisone therapy (p < 0.0001 for the comparison of these two subgroups). Furthermore, 30-day mortality was 22.2% (8/36) in ID/DD genotypes without hydrocortisone and 25.0% (5/20 patients) in II genotypes without hydrocortisone therapy.

Results obtained from the propensity score matching were similar to those obtained from the crude model (p = 0.001, Figure 3) although they were based on a smaller sample of 2x24 matched patients. In addition, sensitivity analyses for a dichotomized 30-day mortality outcome were performed, and led to the same conclusions (data not shown).
When cells were additionally exposed to hydrocortisone. Previous study, whole blood from healthy donors was incubated with LPS genotype dependent effect on monocytes in vitro. In the present insertion/deletion (genetic variation -94ins/delATTG in the promoter of NFKB1). Thus, our data show that the heterogeneous results regarding 30-day mortality was worst in septic shock patients who received the propensity score matching methodology [13,27]. Again, 30-day mortality was worse in septic shock patients who received hydrocortisone therapy and who carried the ID/DD genotype. Our data are consistent with these results, which showed that DD genotype individuals had a higher risk of death compared to ID genotype individuals [13,27]. However, our study had several limitations. The sample size of 160 patients with septic shock is rather small and our results require independent replication in larger cohorts. However, consenting patients with septic shock patients are hard to enroll given that only about 2-20% of all intensive care unit patients suffer from severe sepsis including septic shock [1,12,18,29,30]. Our results are consistent with those of previous studies, which have shown that hydrocortisone therapy in septic shock, dependent on the NFKB1 genotype, is not innocuous at all and can increase the risk of death. Our study has several limitations. The sample size of 160 patients with septic shock is rather small and our results require independent replication in larger cohorts. However, consenting patients with septic shock patients are hard to enroll given that only about 2-20% of all intensive care unit patients suffer from severe sepsis including septic shock [1,12,18,29,30].
focus of the study. However, exact information about hydrocortisone therapy was obtained for all patients and this information was added to the database retrospectively. Anyhow, our data show that hydrocortisone therapy in D allele carriers is an important and independent risk factor for 30-day mortality in septic shock. Finally, although we could show that hydrocortisone fails to inhibit nuclear translocation of NFκB1 in monocytes, the underlying molecular mechanism cannot be explained.

In conclusion, hydrocortisone therapy in deletion allele carriers of the NFκB1 promoter polymorphism (‐94ins/delATTG) is a strong and independent predictor for 30-day mortality of septic shock. Furthermore, hydrocortisone administration in deletion allele carriers fails to inhibit lipopolysaccharide induced NFκB1 nuclear translocation. Accordingly, the heterogeneous results regarding the benefit of hydrocortisone in septic shock may be explained and reconciled by genetic variation.

Supporting Information

We applied propensity score matching using the R-package MatchIt [Institute for statistics and mathematics; University Wien, Austria]. We modeled the probability of hydrocortisone therapy initiation using the variables age, sex, arterial pressure, noradrenaline dosage, creatinin serum-concentration, dialysis, SAPS II, pro-calcitonin concentration, C-reactive protein concentration, and leukocyte concentration (i.e., we focused on variables with no or limited missing values). The variables were scaled as described in table 1. We used nearest neighbour caliper matching for a caliper distance defined by 0.25 times the standard deviation of the propensity scores. Figure S1 shows the histograms of the propensity score distributions of the 2x24 matched patients.

Figure S1 Histograms of the propensity score distributions of the matched patients. The histogram of the 24 patients without hydrocortisone therapy initiation is superimposed by the histogram of the 24 patients with hydrocortisone therapy initiation.

(TIFF)

Author Contributions

Conceived and designed the experiments: STS MA. Performed the experiments: STS SG KR. Analyzed the data: STS MA KR AS JP JS. Contributed reagents/materials/analysis tools: STS UHF WS AMW. Contributed to the writing of the manuscript: STS MA JP JS UHF. Genotyping: UHF WS.

References

1. Sprung CL, Annane D, Keh D, Moreno R, Singer M, et al. (2008) Hydrocortisone therapy for patients with septic shock. N Engl J Med 359: 111–124. doi:10.1056/NEJMoA073666.

2. Wang C, Sun J, Zheng J, Guo L, Ma H, et al. (2014) Low-dose hydrocortisone therapy attenuates septic shock in adult patients but does not reduce 28-day mortality: a meta-analysis of randomized controlled trials. Anesth Analg 118: 546–557. doi:10.1213/ANE.0000000000000505.

3. Caserly B, Gerlach H, Phillips GS, Lemeshow S, Marshall JC, et al. (2012) Low-dose steroids in adult septic shock: results of the Surviving Sepsis Campaign. Intensive Care Med 38: 1946–1954.

4. Annane D, Sébille V, Charpentier C, Bollaert P-E, François B, et al. (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871.

5. Shiramizo SCPL, Marra AR, Durlo MS, Paes AT, Edmond MB, et al. (2011) Decreasing Mortality in Severe Sepsis and Septic Shock Patients by Implementing a Sepsis Bundle in a Hospital Setting. PLoS ONE 6: e29790. doi:10.1371/journal.pone.0029790.

6. Dellingler RP, Levy MM, Rhodes A, Annane D, Gerlach H, et al. (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39: 165–228. doi:10.1007/s00134-012-2769-8.

7. Oostve R, Ohtad OK, Budnotto B, Moller AS, Aase A, et al. (2008) Identification of Genes Particularly Sensitive to Lipopolysaccharide (LPS) in Human Monocytes Induced by Wild-Type versus LPS-Deficient Neisseria meningitidis Strains. Infection and Immunity 76: 2603–2605. doi:10.1128/IAI.01625-07.

8. Pykalks J, Zik P, Kochamczycz M, Junkin M, Kellogg R, et al. (2013) Spontaneous NFκB activation by autocrine TNFα signaling a computational analysis. PLoS ONE 8: e78887. doi:10.1371/journal.pone.0078887.

9. Billing AM, Eack F, Turner JD, Muller CP (2011) Cortisol is a potent modulator of lipopolysaccharide-induced interferon signaling in macrophages. Innate Immun 17: 392–390. doi:10.1177/1753425910396269.

10. Luca F, Maranville JC, Richards AL, Witonsky DB, Stephens M, et al. (2013) Genetic, Functional and Molecular Features of Glucocorticoid Receptor Binding. PLoS ONE 8: e61654. doi:10.1371/journal.pone.0061654.g001.

11. Karban AS, Okazaki T, Panhuysen CIM, Gallegos T, Potter JJ, et al. (2004) Functional annotation of a novel NFκB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13: 35–45. doi:10.1093/hmg/ddh069.

12. Adamzik M, Schäfer S, Frey UH, Becker A, Kreuzer M, et al. (2013) The NFκB1 promoter polymorphism (‐94ins/delATTG) alters nuclear translocation of NFκB1 in monocytes after lipopolysaccharide stimulation and is associated with increased mortality in sepsis. Anesthesiology 118: 123–133. doi:10.1097/ALN.0b013e318265ac542.

13. Adamzik M, Frey UH, Rieman K, Sixt S, Beiderleben M, et al. (2007) Insertion/deletion polymorphism in the promoter of NFκB1 influences severity but not mortality of acute respiratory distress syndrome. Intensive Care Med 33: 1199–1203. doi:10.1007/s00134-007-0694-4.

14. Akerblom IE, Slater EP, Beato M, Baxter JD, Mellon PL (1980) Negative regulation by glucocorticoids through interference with a cAMP responsive enhancer. Science 211: 350–353.