INFLUENCE OF FOAM ROLLING ON ELBOW PROPRIOCEPTION, STRENGTH,
AND FUNCTIONAL MOTOR PERFORMANCE

Fatma Ozden, MS, PT*; Sevgi Sevi Yesilyaprak, PhD, PT†

*Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey; Department of Physical
Therapy, Fizipol Physical Therapy and Rehabilitation Center, Manisa, Turkey,
+905544473147, ffatmaozden@outlook.com;

†School of Physical Therapy and Rehabilitation, Dokuz Eylül University, Izmir, Turkey,
+905055882829, sevgi.subasi@deu.edu.tr, ssyesilyaprak@gmail.com

Readers should keep in mind that the in-production articles posted in this
section may undergo changes in the content and presentation before they
appear in forthcoming issues. We recommend regular visits to the site to
ensure access to the most current version of the article. Please contact the
JAT office (jat@slu.edu) with any questions.
EFFECTS OF FOAM ROLLING ON ELBOW PROPRIORCEPTION, STRENGTH, AND FUNCTIONAL MOTOR PERFORMANCE

ABSTRACT

Context: Foam rolling has recently been used frequently to increase flexibility. However, its effects on proprioception, strength and motor performance are not well known. In addition, very few studies have examined the effects of foam rolling in the upper extremity.

Objective: To investigate the effects of foam rolling on elbow proprioception, strength, and functional motor performance in healthy individuals.

Design: Randomized controlled study.

Setting: Exercise laboratory of X Department, X University.

Patients or Other Participants: Sixty healthy participants (mean age=22.83±4.07 years).

Intervention(s): We randomly assigned participants into two groups: the foam rolling group (FRG) (4 weeks of foam rolling for the biceps brachii muscle) and control group (CG) (no foam rolling).

Main Outcome Measure(s): We evaluated proprioception (joint position sense [JPS] and force matching), biceps brachii muscle strength, and functional motor performance (modified pull-up test [MPUT], closed kinetic chain upper extremity stability test [CKCUEST], and push-up test) at the baseline, and at the end of the 4th week and 8th week.

Results: JPS at 45° elbow flexion, muscle strength, CKCUEST, and push-up test results improved after foam rolling and improvement was maintained at the follow-up (p<0.017). While the changes in groups for the results of proprioception and CKCUEST were similar among the three time points (p>0.05), there were significant improvements for the muscle strength from baseline to the second evaluation, and from baseline to the follow-up (p<0.001) in the FRG compared to the CG (p=0.004). The FRG was superior to the CG in the
improvement of push-up test results among the three time points (p=0.040, p=0.001, p<0.001). Other data did not change (p>0.05).

Conclusion: Foam rolling is effective in improving elbow JPS in small flexion angles, biceps brachii strength, and some parameters of upper extremity functional motor performance. These effects are maintained 4 weeks after application.

Keywords: Position sense, force sense, musculoskeletal injury, upper extremity, prevention

Contribution of each author to the manuscript:
1) Substantial contributions to conception and design, acquisition of data, and analysis and interpretation of data: AAA,
2) Drafting the article and revising it critically for important intellectual content: AAA and BBB,
3) Final approval of the version to be published: AAA and BBB.

Abstract word count: 296

Body of manuscript word count: 4070

Key Points:
1. 4 weeks of foam rolling to biceps brachii improved its muscle strength, elbow JPS measured at a relatively small joint angle, and some parameters of upper extremity functional motor performance.
2. Positive effects of 4 weeks of foam rolling continue for one more month.
3. Foam rolling to biceps brachii is not recommended to improve elbow force sense and JPS measured at larger angles.
INTRODUCTION

Proprioception, which is a prerequisite for optimal muscular control, coordination, and stabilization, is vital for a full movement repertoire that includes activities of daily living (ADL) (such as walking, reaching, and lifting objects) as well as challenging athletic skills (such as jumping, shooting, and throwing). Muscle strength, which is essential for general health and physical fitness, also facilitates participation in ADL, physical activity, leisure activities, and sporting performance. Strength, proprioception, and neuromuscular control are combined in functional motor performance, which involves movements whose reflections are directly seen in ADL and sports. After an injury, proprioception decreases due to deafferentation caused by damage to mechanoreceptors, which disrupts the neuromuscular response required for joint stabilization in the regulation of function, and thus, decreases stability. This could ultimately lead to further microtrauma and re-injury. In this context, strength and neuromuscular control are critical to improve performance, and to prevent injury and re-injury in the upper extremity. The recovery of decreased strength and neuromuscular control after injury is also a prerequisite for returning to sports.

The proprioception and neuromuscular control of the shoulder and elbow are necessary for accurate positioning of the hand and proper function of the upper extremity during ADL and sporting activities. While a growing number of research studies focus on proprioception and neuromuscular control of the shoulder region, focusing on the elbow in this scope is surprisingly still in its infancy. Focusing on the elbow joint is of great importance for the following reasons: The elbow joint contributes to stabilization and the fulfillment of fine manipulative tasks, and to achieving high performance in sports. During multi-joint activity, coordination among joints compensates for errors, thereby improving performance. Erroneous deviations of proximal limb segments can be offset by distal joints, and this compensatory behavior can be organized on the basis of proprioception.
Moreover, higher errors seem to occur in elbow proprioception when compared to shoulder proprioception during some sporting activities such as overhead throw. It is also reported that deterioration in the proprioceptive input at the elbow results in a greater disturbance to endpoint positioning of the arm movements, than deterioration in the proprioceptive input at the shoulder does. Besides, sporting activities often lead to injuries that impair elbow proprioception. It appears crucial to develop effective interventions to improve elbow proprioception and neuromuscular control.

Foam rolling is an affordable, easy, and time-efficient technique that has been commonly used as an exercise and massage tool in recent years. It is reported that foam rolling increases flexibility, joint and fascia mobility. Results of a few studies that reported the effects of the technique on strength/endurance, proprioception, and performance are in part contradictory. Some studies investigating the effects of foam rolling on proprioception, strength/endurance or performance reported no effect or a decrease, while others have found evidence to support improvements in proprioception, strength/endurance or performance following foam rolling. However, none of these studies are on the upper extremity. The cylindrical structure of the material used in foam rolling, its texture, and the application of the technique with a certain pressure with body weight, may affect proprioception by stimulating the receptors. This may contribute to strength and functional stability/motor performance if the afferent pathways can be rearranged and the co-activation of some force couples can be facilitated. Conversely, it may be expected that the application will not improve or worsen strength due to its possible relaxation effect.

There is no study on the effects of foam rolling on functional motor performance and its use in the elbow region. Furthermore, acute effects of the technique have generally been investigated. High-quality and well-designed randomized controlled studies are warranted to
investigate the effects of the technique with a longer application period and appropriate follow-ups.14 Determining whether foam rolling is an effective intervention to improve elbow proprioception, strength, and upper extremity performance would be useful for guiding the healthcare team in implementing effective interventions to improve upper extremity performance and prevent musculoskeletal injuries.

The purpose of this study was to evaluate the effects of foam rolling for the elbow at the end of the four-week intervention and at a one-month follow-up on proprioception, strength, and functional motor performance.

MATERIALS AND METHODS

Research Design

Between September 2017-December 2018, 60 healthy university students participated in this randomized controlled study conducted at X University, X Department. The Ethics Committee of X University (Number: XXX) approved this study, and participants gave their written informed consent. Participants were randomly divided into the Foam Rolling Group (FRG) or Control Group (CG) (n\textsubscript{FRG}=n\textsubscript{CG}=30) (Figure 1) by a computerized random number generator (Random.org; Randomness and Integrity Services Ltd, Dublin, Ireland; https://www.random.org).

Participants

Volunteers were included if they were ≥18 years of age, did not have elbow pain up until 6 months before recruitment, and did not regularly perform upper extremity sports in the previous 6 months. Exclusion criteria were open wound, acne, or similar skin problems that may prevent the application of foam rolling, experience of foam rolling or myofascial relaxation exercises, a history of previous or current upper extremity injuries, upper extremity fracture or surgery, or a systemic musculoskeletal disease, osteoporosis, diabetes mellitus and peripheral neuropathy, vertigo, cardiovascular disease, and pregnancy.
As there were no relevant studies, we included 30 individuals in each group to ensure parametric conditions instead of performing an a priori power analysis.

Procedures

Foam rolling and evaluations were performed on the dominant side. 120-sec rest periods were given between the evaluations. Evaluations were done before administration, at the end of 4 weeks, and 1 month after the second evaluation (at the end of 8 weeks). Any learning effect was excluded by performing a familiarization session for all tests.

Outcome Measures

Proprioception:

Joint position sense (JPS)

The participants sat on the chair with their back supported and their hip flexed approximately 90°. The forearm was placed on the arm of the chair, covered with a foam pad, in a semi-prone position with the elbow fully extended at the starting position. The participant bent his/her elbow to the target angle (45°, 60°, and 75° elbow flexion in a random order [JPS_45°, JPS_60°, JPS_75°, respectively]) measured by a digital inclinometer (Baseline, NY, USA), and maintained this position for 5 sec to learn this angle. Afterward, he/she returned to the initial position and rested for 5 sec. (Figure 2). Participants repeated this protocol three times with eyes open (EO) and eyes closed (EC). In the actual test, we applied the EC protocol three times. Based on the test-retest in 10 patients, our test-retest reliability was determined to be ICC (3,k)=0.78 (JPS_45°), 0.94 (JPS_60°), and 0.78 (JPS_75°).

Force Matching

Force sense was assessed using force reproduction by limb matching that involves the use of a reference force, determined as a percentage of a maximal voluntary isometric contraction, and attempting to replicate that force. The hand-held dynamometer (HHD) is a
small, portable, low-cost, and easy-to-use device that was reported to be valid and reliable in
isolated strength testing of various muscles.21 As there are limited studies of reliable force-
reproduction measures in the elbow region, we used a force matching test protocol that
appears to be compatible with HHD.13 We measured force matching for elbow flexion. The
participant sat in a chair with 90° elbow and 90° shoulder flexion, the forearm in supination,
and the elbow rested on the table. First, we measured the maximum voluntary contraction
(MVC) for elbow flexors 3 times using a hand-held dynamometer (HHD) (MicroFET®3;
Hoggan Inc, UT, USA) and averaged the results. Next, we calculated 30\% of the MVC and,
after a 45-sec rest, taught the participant the amount of target contraction three times with EO
and EC. Then, we asked the participants to match the same force with EC (Figure 3).22 Our
test-retest reliability was ICC (3,k)=0.83.

We recorded the deviation (absolute error) from the target and averaged the 3 test
results in all proprioception evaluations.

\textbf{Muscle Strength:}

We measured the biceps brachii muscle strength with the HHD. The participants laid in
a supine position with a neutral shoulder, elbow in 90° flexion, and forearm in supination. We
placed the HDD proximal to the styloid process and asked the participant to perform a
gradually increasing MVC in 2 sec and then maintain it for 5 sec. The participant provided
muscle contraction until his/her effort matched the examiner. We averaged the 3 test results.
We allowed a rest period of 1 min between tests.23 Our test-retest reliability was ICC
(3,k)=0.97.
Functional motor performance:

Before the tests, the participants performed warm-up from submaximal to maximal levels. For a high-intensity effort, we verbally encouraged the participants throughout the evaluations. We allowed a 1-min rest between tests.

Closed Kinetic Chain Upper Extremity Stabilization Test (CKCUEST)

We marked two lines (two strips of athletic tape with a width of 3.8 cm) parallel to each other at a distance of 90 cm on a floor as measured with a standard cloth tape measure. The starting position for the test was one hand on each piece of tape while the body was in a push-up position. The participant had to move both hands back and forth from each line as many times as possible in 15 s, men in the push-up position, and women in the modified push-up position (kneeling) (Figure 4). We averaged the 3 test results. We allowed a 45-sec rest period between repetitions. In addition to the average number of lines touched, the score and power were calculated using the following equation: score=average of the number of lines touched/height, power=[(68% weight*the average number of lines touched) / 15]. Our test-retest reliability was ICC (3,k)=0.91.

Modified Pull-up Test (MPUT)

We positioned the participants on their back and adjusted the metal frame above their heads to be just above the shoulder level. Men performed the pull-up test with the support from their heels, while women were supported with a step just below the knees. To perform the test at full range, the participants started the test by holding the metal frame with the arms in full extension, pulling it parallel to the floor, and finally lowering their bodies with their elbows fully extended. During the test, we instructed the participants to limit the movement of the head and trunk, and to maintain smoothness as much as possible (Figure 5). The participants performed the test with as many pulls as possible within 15 sec during the three
maximum tests, and we averaged the scores. We allowed a 45-sec rest between repetitions.24 We calculated a test-retest reliability of ICC (3,k)=0.93.

Push-up Test

Males performed the test in the standard position (on the hands and feet), and females in the modified position (on the hands and knees). While the participant was in the prone position with the trunk straight and hands open at shoulder width, he/she performed push-ups. Participants began the test with the elbows fully extended. As the body descended to the ground, the participants bent their elbows until the humerus was parallel to the surface. Throughout the test, we instructed the subjects to keep the head and trunk position straight. They performed a submaximal warm-up before three maximal tests. They performed the maximal tests after they had performed a 15-sec trial and had a 45-sec rest period. The number of push-ups the participants completed in the 15-sec bout was recorded. We averaged the results.24 Our test-retest reliability was ICC (3,k)=0.75.

Foam Rolling Protocol

The FRG performed the protocol for 1 session/day, 3 days/week, for 4 weeks with the physiotherapist. We instructed the participants not to do any other exercise or receive any other treatments until the end of the study, and we monitored their compliance during the weekly sessions.

During the application, the participant sat on the floor with the side of the trunk close to a rectangular step. We placed a standard 15.3 cm foam rolling material on the step, and the participant placed the biceps brachii muscle with body weight on the foam rolling material with the shoulder at 90° abduction and the elbow at full extension (Figure 6). We preferred the biceps brachii muscle because it would be more distinct and easily distinguishable than the other muscles. The participants performed a total of 2 sets (60 sec each) of foam rolling in the form of 10 back-and-forth movements in 1 minute. We used a metronome to control the
speed. We allowed a 30-sec rest between sets. To ensure adequate pressure during the application, we provided verbal encouragement for the participants to place as much of their bodyweight as possible onto the foam roller, pushing into discomfort but not pain. Before the application, we conducted a trial session for teaching purposes.26

CG Protocol

We handed out an information brochure to the CG about proprioception, strength, function, and foam rolling. We asked them not to do regular sports during the study and to continue ADL as usual. We monitored their compliance monthly.

Statistical Analysis

We used the “Statistical Package for Social Sciences (SPSS v22.0)” for all data analyses. We used the Shapiro-Wilk test to determine the normal distribution of continuous data. We used the Mann-Whitney U test to compare height, body weight, BMI, and age, and the χ^2 test to compare the gender and dominant extremity distribution of the two groups. Among the three evaluations, Friedman analysis of variance was used to examine the changes in proprioception, strength, and performance data. Then, to identify the time interval in which a meaningful difference occurred based on the level of significance of the data, Wilcoxon analysis and Bonferroni correction were performed ($p<0.0167$). We used the Mann-Whitney U Test to compare changes between these three time intervals between the groups. We set the significance level as $p <0.05$. In the post hoc power analyses, we accepted ≥ 0.80 as sufficient to show significant differences.

RESULTS

Participants’ mean age was 22.83±4.07 years, and their mean BMI was 22.44±3.39 kg/cm². All participants attended all sessions without any side effects.
Baseline main outcome measurements and participant characteristics were similar among groups (p>0.05), except age (p=0.01) (Table 1). Table 2, Table 3, and Table 4 present outcome measurement results. Supplementary Table 1, Supplementary Table 2, and Supplementary Table 3 present the effect sizes and post-hoc power results.

Proprioception:

JPS

JPS_45° of the FRG was more accurate after 4 weeks of intervention compared to the first assessment values (p=0.01). The values of the CG did not change (p=0.72). When the changes in the groups over time were compared, there were no differences between the groups after 4 weeks (p_{JPS,45°}=0.06) and after 8 weeks (p_{JPS,45°}=0.33). Other JPS data did not change significantly over time in either group (p_{JPS,60°}=0.38 for FRG, p_{JPS,60°}=0.71 for CG) (p_{JPS,75°}=0.60 for FRG, p_{JPS,75°}=0.38 for CG) (Table 2).

Force matching

There was no significant change in force matching data over time in either group (p=0.65 for FRG, p=0.51 for CG) (Table 2).

Muscle Strength:

In the second (p_{2nd-1st}=0.002) and third (p_{3rd-1st}=0.001) assessments, muscle strength increased in the FRG compared to the first assessment values. The CG’s values did not change (p=0.85). When the changes over time within groups were compared, the changes between the first and second (p_{2nd-1st}=0.004) assessments and between the first and third assessments (p_{3rd-1st}=0.001) were different. However, the changes between the second and the third assessment results were not different between the groups (p=0.98) (Table 3).

Functional motor performance:

CKCUEST
In the FRG, after both 4 weeks ($p_{\text{average}_{2nd-1st}}=0.001$, $p_{\text{score}_{2nd-1st}}<0.001$, $p_{\text{power}_{2nd-1st}}=0.001$) and 8 weeks ($p_{\text{average}_{3rd-1st}}=0.001$, $p_{\text{score}_{3rd-1st}}=0.001$, $p_{\text{power}_{3rd-1st}}=0.002$) of application, CKCUEST results improved compared to the pre-intervention results ($p_{\text{average}}<0.001$, $p_{\text{score}}=0.001$, $p_{\text{power}}=0.001$). When we compared the changes in the groups over time, there was no difference between measurement times ($p_{\text{average}_{2nd-1st}}=0.12$, $p_{\text{average}_{3rd-2nd}}=0.46$, $p_{\text{average}_{3rd-1st}}=0.34$; $p_{\text{score}_{2nd-1st}}=0.13$, $p_{\text{score}_{3rd-2nd}}=0.42$, $p_{\text{score}_{3rd-1st}}=0.34$; $p_{\text{power}_{2nd-1st}}=0.11$, $p_{\text{power}_{3rd-2nd}}=0.68$, $p_{\text{power}_{3rd-1st}}=0.32$). The CG’s values did not change ($p_{\text{average}}=0.55$, $p_{\text{score}}=0.055$, $p_{\text{power}}=0.055$).

MPUT

There was no significant change in the MPUT data over time in either group ($p=0.07$ for FRG, $p=0.80$ for CG).

Push-up Test

In the FRG, push-up results improved after 4 weeks ($p_{2nd-1st}=0.003$) and 8 weeks ($p_{3rd-1st}=0.001$) of intervention compared to pre-intervention, but there was no change in the CG values ($p=0.057$). When we compared the changes in the groups over time, we observed that the FRG results significantly improved compared to the CG results at all time intervals ($p_{2nd-1st}=0.04$, $p_{3rd-2nd}=0.001$, $p_{3rd-1st}<0.001$)(Table 4).

DISCUSSION

JPS at 45° elbow flexion, muscle strength, CKCUEST, and push-up test results improved after 4 weeks of foam rolling and improvement was maintained for one more month. There were significant improvements in muscle strength from baseline to the second evaluation, and from baseline to the follow-up in the FRG compared to the CG. The FRG was superior to the CG in the improvement of push-up test results among the three time points.
There are several potential mechanical, neurophysiological, and psychological mechanisms for the beneficial effects of foam rolling including improved proprioceptive feedback13, 15, muscle firing rate and fiber recruitment15, 18, circulation13, 14, 27, mobility17, autonomic nervous system (ANS) activation28, and perceptions of well-being29.

Foam rolling improved JPS\textsubscript{45°}. At the end of the 8th week, the results deteriorated slightly compared to the values obtained after the 4 weeks of application and improved compared to the baseline values, but these changes were not statistically significant. Therefore, we can say that the values obtained after application were maintained for one more month. However, this result should be interpreted with caution because of its similarity with the baseline value. While JPS did not change in the CG and the improvement in JPS\textsubscript{45°} in the FRG was greater than in the CG, we may have failed to show a significant difference between groups, attributable to our insufficient statistical power (post-hoc power=0.21-0.54).

The improvements we found in JPS\textsubscript{45°} may be due to the following mechanisms: During rolling, pressure-related elongation in the muscle may activate the muscle spindle and Golgi tendon organs (GTO) and the mechanoreceptors in the fascia, so that the muscle will give more proprioceptive feedback to the central nervous system13, 15. The relatively normal JPS values4, and the more accurate baseline values for JPS\textsubscript{60°} and JPS\textsubscript{75°} compared to JPS\textsubscript{45°} could be the reasons for the lack of improvement in these JPS values.

Foam rolling did not change force matching. Force sense arises from the sense of tension peripherally (afferent feedback from the muscle) and the sense of effort centrally. The main factor in the prediction of the target force appears to be the sense of effort30. It appears that foam rolling does not have a significant central effect. David et al. also found improvement in knee JPS but not in force sense after foam rolling. They suggested that most of the time spent during foam rolling application is for the muscle belly, which stimulates the muscle spindles more, and less time is spent for the tendons, which stimulates the GTO less.
Therefore, they associated their findings with the fact that the force sense testing acts on the GTO, while the JPS test acts on the GTO and muscle spindles.15 This could also explain our results.

The biceps brachii strength increased after 4 weeks of foam rolling, and this improvement was maintained for one more month. Increased neural stimulation via foam rolling may increase the firing rate and patterning of muscle fiber recruitment.15, 18 The technique might have caused elongation of the shortened sarcomeres with ischemic compression and a better contribution to the contraction of the muscle.31 Moreover, reactive hyperemia due to pressure may lead to better oxygen uptake, and a decrease in the production of nociceptive and inflammatory substances, which may result in less damage to muscle fibers, and as a result, better power production might have occurred.13, 32

The pressure applied during foam rolling may lead to an increase in blood supply and to tissue biochemical changes similar to those of other massage techniques. These changes can be listed as: Increased circulating neutrophil levels33, much smaller increases in post-exercise plasma creatine kinase33, activation of sensors for the transcription of cytochrome c oxidase subunit VIIb (COX7B) and NADH Dehydrogenase 1 (ND1), indicating generation of new mitochondria34, and much fewer active immune cytokines reflecting less cellular stress and inflammation.34 With the formation of new mitochondrial cells, the muscle tissue can be oxygenated more, and muscle strength may increase.18

Another possible mechanism could be ANS activation with stimulation of interstitial Type III and IV receptors that respond to light touch, and Ruffini terminations in the fascia that respond to deep continuous pressure. Stimulation of these receptors can reduce sympathetic tone, increase gamma motor neuron activity, and promote the relaxation of intra-fascial smooth muscle cells.28 The ANS can also change vasodilatation state and fascial
viscosity. Optimum relaxation in muscle and fascia might have had a positive effect on the muscle length-tension relationship.13, 14, 35

Strength gains were maintained one month after the application. The following may have been effective for this result: The stimulation of the proprioceptors in myofascia may have resulted in neural and myofascial adaptation. Fascia is thought to have a memory due to the mechanoreceptor and nociceptor structures it contains. Neural inputs to the brain can be changed along with myofascial memory changes obtained by applications that use contact and pressure, such as foam rolling. In addition, the collagen in the fascia is deposited along the direction of stretching at the molecular and macroscopic levels. Mechanical loads affect collagen alignment and deposition. Furthermore, the extracellular matrix can also be effective in this memory. Muscle appears to have a memory due to the central motor learning ability and DNA-containing nuclei within the muscle. These all point to a myofascial memory and, moreover, a myofascial awareness.36 In future studies, how long this effect persists should be investigated with a longer follow-up.

In the results of the studies that investigated the effects of foam rolling on performance,18, 29,37,38 especially immediate results are inconsistent. We found that CKCUEST and push-up test results improved after 4 weeks of foam rolling and that this improvement was maintained for one more month. As discussed in the section on strength, neural and myofascial adaptation and myofascial memory/awareness can be the explanations for the maintaining of the positive results.

Foam rolling can influence performance by creating a warm-up effect that can be attributed to circulatory changes and fascial relaxation.14 Changes in tissue perfusion, an increase in plasma nitric oxide levels, a decrease in arterial stiffness, and an improvement in vascular endothelial function27 may lead to changes in afferent muscle fibers and ANS activation. As performance mainly depends on muscle strength and neuromuscular control, 14
improved strength and proprioception may explain the improvement in performance tests based on dynamic stabilization. Foam rolling did not improve or deteriorate the MPUT results. Through the increased dynamic neuromuscular stabilization with intense mechanoreceptor stimulation by foam rolling,1,5 our performance tests performed in a weight-bearing position and requiring more joint stability may have better reflected the effects of the application.23 Lastly, there may also have been an increase in performance due to a possible increase in mobility17,37 or a psychological environment conducive to enhancing performance by reduced fatigue perception via stimulation of parasympathetic activity14,17,29.

Limitations

The first limitation of this study is the lack of blinding of the investigator who performed the measurements, as it was a thesis study. Therefore, we took strict precautions to avoid bias. The author was not allowed to read the results on the measurement device throughout the tests. A trained assistant, blinded to the group assignments, read and recorded the results. To prevent bias in functional performance tests, the researcher did not see the first evaluation results while recording the following evaluation results. The other author, who was unaware of the group assignment of the participants, performed the data analyses.

Another limitation could be the lack of standardization of the pressure during foam rolling. Although we provided verbal encouragement for the participants to obtain adequate pressure onto the foam roller, we recommend ensuring standardization of the pressure with objective methods during application for future studies.

CONCLUSION

Foam rolling to biceps brachii is a safe method for improving its muscle strength, elbow JPS measured at 45°, and some parameters of upper extremity functional motor performance. After the 4-week training, improvements continued for one more month. Foam rolling had no
effect on force matching or JPS measured at larger angles. In future studies, the long-term
effects of the technique and related mechanisms, its effectiveness in the athletic population,
and various elbow pathologies should be investigated.
REFERENCES

1. Lephart SM, Pincivero DM, Giraldo JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. *Am J Sports Med.* 1997;25(1):130-7.

2. King J, Harding E, Karduna A. The shoulder and elbow joints and right and left sides demonstrate similar joint position sense. *J Mot Behav.* 2013;45(6):479-86

3. Sevrez V, Bourdin C. On the Role of Proprioception in Making Free Throws in Basketball. *Res Q Exerc Sport.* 2015;86(3):274-80

4. Juul-Kristensen B, Lund H, Hansen K, Christensen H et al. Test-retest reliability of joint position and kinesthetic sense in the elbow of healthy subjects. *Physiother Theory Pract.* 2008;24(1):65-72.

5. Gandevia SC. Does the nervous system depend on kinesthetic information to control natural limb movements? *Behavioural Brain Research.* 1992;15:614-32.

6. Nguyen P H, Dingwell B J. Proximal versus distal control of two-joint planar reaching movements in the presence of neuromuscular noise. *J Biomech Eng.* 2012;134(6):06

7. Manske R, Slovak M, Cox K, Smith B. Elbow Joint Active Replication in College Pitchers Following Simulated Game Throwing: An Exploratory Study. *Sports Physical Therapy J.* 2010;2(4):345-350

8. Folland PJ, Williams GA. The adaptations to strength training: morphological and neurological contributions to increased strength. *Sports Med.* 2007;37(2):145-68

9. Niespodziński B, Kochanowicz A, Mieszkowski J, Piskorska E et al. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception. *BioMed Research International.* 2018; (4):1-10
10. Aksei D, Mehmet E, Kaya D. Sports Injuries and Proprioception: Current Trends and New Horizons. In: Doral NM, editor. Berlin: Springer-Verlag 2012.

11. Wilk E. K, Macrina C. E, Cain L. E. Rehabilitation of the Overhead Athlete’s Elbow. Sports Health. 2012; 4(5):404-14

12. Tripp L B, Uhl L T, Mattacola G C, Srinivasan C et al. A comparison of individual joint contributions to multijoint position reproduction acuity in overhead-throwing athletes. Clinical Biomechanics. 2016;21(5):466-473

13. Freiwald J, Baumgart C, Kühnemann M, Hoppe W. Foam Rolling in Sport and Therapy-Potential Benefits and Risks. Part 1-definitions, anatomy, physiology and biomechanics. Sports Orthopaedics and Traumatology. 2016;32(3):258-66.

14. Wiewelhove T, Döweling A, Schneider C, Hottenrott L. A Meta-Analysis of the Effects of Foam Rolling on Performance and Recovery. Front. Physiol. 2019; 10:376.

15. David E, Amasay T, Ludwig K, Shapiro S. The Effects of Foam Rolling of the Hamstrings on Proprioception at the Knee and Hip Joints. International Journal of Exercise Science. 2019; 12(1):343-354

16. Ozsoy G, İlçin N, Ozsoy I, Gurpınar B. The Effects Of Myofascial Release Technique Combined With Core Stabilization Exercise In Elderly With Non-Specific Low Back Pain: A Randomized Controlled, Single-Blind Study. Clin Interv Aging. 2019; 14: 1729–1740.

17. Philips J, Diggin D, King LD, Sforzo AG. Effect of Varying Self-myofascial Release Duration on Subsequent Athletic Performance. J Strength Cond Res. 2018; 3246-48

18. Peacock CA, Krein DD, Silver TA, Sanders GJ. An Acute Bout of Self-Myofascial Release in the Form of Foam Rolling Improves Performance Testing. Int J Exerc Sci. 2014;7(3):202-11.

21
19. Cho SH, Kim SH. Immediate effect of stretching and ultrasound on hamstring flexibility and proprioception. *J Phys Ther Sci.* 2016;28(6):1806-8.

20. Behara B, Jacobson B. Acute Effects of Deep Tissue Foam Rolling and Dynamic Stretching on Muscular Strength, Power, and Flexibility in Division I Linemen. *J Strength Cond Res.* 2017;31(4):888-92.

21. Stark T, Walker B, Phillips K J, Fejer R et al. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. *Pharmacy Management R*, 2011; 3(5): 472-479

22. Brockett C, Warren N, Gregory JE, Morgan DL. A Comparison of the Effects of Concentric Versus Eccentric Exercise on Force and Position Sense at the Human Elbow Joint. *Brain Res.*1997;771(2):251-8.

23. Andrews A, Thomas M, Bohannon R. Normative Values for Isometric Muscle Force Measurements Obtained With Hand-held Dynamometers. *Physical Therapy.* 1996;76(3):248-59.

24. Negrete JR, Hanney JW, Kolber JM, Davies JG. Reliability, Minimal Detectable Change, and Normative Values For Tests of Upper Extremity Function and Power. *Journal of Strength and Conditioning Research.* 2010;24(12):3318–25.

25. Ellenbecker TS. *Rehabilitation of Macro-Instability.* In: Ellenbecker TS, editor. *Shoulder Rehabilitation Non-Operative Treatment.* 1st ed. NY: Thieme; 2006: 48-50

26. Peacock AC, Krein DD, Antonio J, Sanfers JG et al. Comparing Acute Bouts of Sagittal Plane Progression Foam Rolling vs. Frontal Plane Progression Foam Rolling. *Journal of Strength and Conditioning Research.* 2015;29(8):2310–5.

27. Okamoto T, Masuhara M, Ikuta K. Acute effects of self-myofascial release using a foam roller on arterial function. *J Strength Cond Res.* 2014;28(1):69-73.
28. Wiktorsson-Moller M, Oberg B, Ekstrand J, Gillquist J. Effects of warming up, massage, and stretching on range of motion and muscle strength in the lower extremity. *Am J Sports Med.* 1983;11(4):249-52.

29. Healey KC, Hatfield DL, Blanpied P, Dorfman LR et al. The effects of myofascial release with foam rolling on performance. *J Strength Cond Res.* 2014;28(1):61-8.

30. McCloskey DI. *Corollary discharges: motor commands and perception.* In: Brookhart J MV, Brooks V, Geiger S, editor. Handbook of physiology, section 1, the nervous system, vol II, motor control: American Physiological Society, Bethesda, MD; 1981. p. 1415–47.

31. Cagnie B, Dewitte V, Coppieters I, Van Oosterwijck J et al. Effect of ischemic compression on trigger points in the neck and shoulder muscles in office workers: a cohort study. *J Manipulative Physiol Ther.* 2013;36(8):482-9.

32. Kalichman L, Ben David C. Effect of self-myofascial release on myofascial pain, muscle flexibility, and strength: A narrative review. *J Body Mov Ther.* 2017;21(2):446-51.

33. Smith L, Keating N M, Holbert D, Spratt J D et al. The effects of athletic massage on delayed onset muscle soreness, creatine kinase, and neutrophil count: a preliminary report. *J Orthop Sports Phys. Ther.* 1994;19(2):93-9

34. Crane D J, Ogborn I D, Cupido C, Melov S et al. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. *Sci Transl. Med.* 2012;4(119):119-23

35. Freiwald J, Baumgart C, Kühnemann M, Hoppe W. Foam-Rolling in sport and therapy – Potential benefits and risks: Part 2 – Positive and adverse effects on athletic performance. *Sports Orthopaedics and Traumatology.* 2016;32(3):267-75.
36. Tozzi P. Does fascia hold memories. *Journal of Bodywork & Movement Therapies*. 2014;18:259-265

37. MacDonald G, Penney M, Mullaley M, Cucunato A. An Acute Bout of Self-Myofascial Release Increases Range of Motion without a Subsequent Decrease in Muscle Activation of Force. *J Strength Cond Res*. 2013;27:812-21.

38. Sullivan KM, Silvey DB, Button DC, Behm DG. Roller-massager application to the hamstrings increases sit-and-reach range of motion within five to ten seconds without performance impairments. *Int J Sports Phys Ther*. 2013;8(3):228-36.
LEGENDS TO FIGURES

1. **Figure 1:** CONSORT (Consolidated Standards of Reporting Trials) flow diagram of the study.

2. **Figure 2:** Measurement of the Joint Position Sense

3. **Figure 3:** Measurement of the Force Matching

4. **Figure 4:** Closed Kinetic Chain Upper Extremity Stability Test (Positioning of the Women-on the Left and Positioning of the Men-on the Right)

5. **Figure 5:** Modified Pull-Up Test (Positioning of the Women-on the Left and Positioning of the Men-on the Right)

6. **Figure 6:** Foam Rolling Application
Table 1. Participants’ Characteristics

Characteristic	FRG (n=30)	CG (n=30)	p value
Age (years) a	21.70 (18.00 – 27.00)	23.97 (18.00 – 47.00)	0.019 § *
Height (cm) b	171.93±8.33	168.63±7.85	0.071 §
Weight (kg) b	68.93±13.46	62.43±11.06	0.080 §
BMI (kg/m²) b	23.16±3.67	21.72±2.98	0.171 §
Sex c (Male/Female)	18/12	11/19	0.071 †
Dominant Extremity c (Right/Left)	(30/0)	(29/1)	0.313 †

a Values are presented as median (minimum – maximum). b Values are presented as mean ± standard deviation. c Values are distribution as number of the participants in each group. BMI: Body Mass Index. †: χ² test, §: Mann Whitney U test. FRG: Foam Rolling Group, CG: Control Group. * p<0.05
Outcome Measure	Group	1st	2nd	3rd	Δ 2nd-1st	Δ 3rd-2nd	Δ 3rd-1st	Time p †	Binary Comparison of Measurement Times (p)††
	45°								
JPS(*)	FRG	4.86 ± 3.24	3.04 ± 1.87	3.82 ± 2.01	-1.82 ± 3.72	0.77 ± 2.67	-1.04 ± 3.05	0.010*	2>1*** (0.01) 1=3 (0.09) 2=3 (0.14)
	CG	4.93 ± 3.06	4.81 ± 2.76	4.59 ± 2.87	-0.12 ± 3.49	-0.31 ± 2.80	-0.33 ± 3.27	0.723	NA
	60°								
	FRG	4.07 ± 1.93	4.56 ± 2.61	3.59 ± 1.51	0.48 ± 3.17	-0.26 ± 2.82	-0.47 ± 2.40	0.387	NA
	CG	4.86 ± 3.58	4.19 ± 2.74	4.43 ± 2.59	0.66 ± 3.46	0.23 ± 3.49	-0.42 ± 4.25	0.712	NA
	75° a								
	FRG	3.00 (0.66-10.33)	3.49 (0.66-7.66)	3.00 (0.66-8.00)	0.00 [-7.00-2.33]	-0.83 [-4.67-4.33]	0.00 [-8.33-5.67]	0.607	NA
	CG	3.66 (0.66-11.33)	3.00 (1.33-8.66)	2.49 (0.66-3.33)	-0.33 [-5.67-5.33]	-0.33 [-5.67-3.67]	-0.83 [-6.67-5.33]	0.387	NA
Force match a	p §								
	45°	0.069	0.108	0.332	0.322	0.482	NA	NA	
	60°	0.290	0.234	0.450	0.450	0.519	NA	NA	
	75°	0.544	0.906	0.819	0.819	NA	NA	NA	
BB									
	FRG	0.30 (0.06-0.70)	0.03 (0.25-1.13)	0.30 (0.06-0.76)	0.000 [-0.50-0.67]	-0.11 [-0.70-0.57]	-0.01 [-0.57-0.57]	0.655	NA
	CG	0.31 (0.06-0.96)	0.316 (0.10-0.76)	0.28 (0.10-0.83)	-0.03 [-0.60-0.60]	-0.08 [-0.43-0.43]	-0.01 [-0.50-0.30]	0.519	NA

1st: Baseline, 2nd: After four weeks, 3rd: At the end of 8 week. Δ: Change between two measurements. Values are presented as mean ± standard deviation unless otherwise indicated. a Values are presented as median (min-max). FRG: Foam Rolling Group, CG: Control Group. BB: Biceps Brachii, JPS: Joint Position Sense, †: Change in time (The Friedman Analysis of Variance), ††: Wilcoxon Signed-rank Test, §: Change in time between groups (Mann Whitney-U Test). NA: Not applicable. Statistically significant difference: * p<0.05, ** p<0.0167.
Table 3. Muscle strength results among groups

Outcome Measure	Group	1st	2nd	3rd	Δ 2nd-1st	Δ 3rd-2nd	Δ 3rd-1st	Time p†	Binary Comparison of Measurement Times (p)††
Muscle strength (kg)									
	FRG	19.95 ± 4.30	21.33 ± 5.42	21.21 ± 4.70	1.29 ± 2.15	-0.02 ± 2.17	1.26 ± 1.91	<0.001*	2>1 † **(0.002) 3>1 † **(0.001) 2=3 (0.98)
	CG	18.58 ± 4.47	18.27 ± 3.54	18.29 ± 3.97	-0.31 ± 1.99	0.02 ± 1.56	-0.27 ± 1.42	0.851	NA
p §		0.004**	0.994	0.001**	NA	NA			

1st: Baseline, 2nd: After four weeks, 3rd: At the end of 8 week. Δ: Change between two measurements. Values are presented as mean ± standard deviation. FRG: Foam Rolling Group, CG: Control Group. BB: Biceps Brachii, †: Change in time (The Friedman Analysis of Variance). ††: Wilcoxon Signed-rank Test, §: Change in time between groups (Mann Whitney-U Test). NA: Not applicable. Statistically significant difference: * p<0.05, ** p<0.0167.
Outcome Measure	Group	1st	2nd	3rd	Δ 2nd- 1st	Δ 3rd- 2nd	Δ 3rd- 1st	Time	Binary Comparison of Measurement Times (p)††
MPUT									
FRG	8.78 ± 2.36	9.18 ± 2.43	9.61 ± 2.66	0.42 ± 1.53	0.42 ± 1.48	0.82 ± 1.57	0.077	NA	
CG	8.46 ± 2.05	8.31 ± 2.22	8.65 ± 2.69	-0.15 ± 1.99	0.34 ± 1.64	0.18 ± 2.09	0.805	NA	
Push up^a									
FRG	12.00 (7.00-17.00)	13.16 (7.00-22.00)	13.50 (7.66-21.00)	1.66 [-3.33] - [10.00]	1.10 [-1.00] - [4.00]	-0.66 [-2.67] - [8.00]	0.005[*]	2>1 † **(0.003) 3>1 † **(0.001) 2=3 (0.084)	
CG	11.00 (6.33-17.33)	12.16 (7.00-16.66)	10.99 (5.33-16.33)	0.16 [-7.67] - [4.67]	0.66 [-4.33] - [3.00]	1.83 [-5.33] - [2.33]	0.057	NA	
Functional motor performance^b									
p §									
Average	19.52±4.59	21.82±5.06	21.77±4.82	-2.29±3.08	-0.44±2.35	2.25±3.46	<0.001[*]	2>1 † **(0.001) 3>1 † **(0.001) 2=3 (0.72)	
Score	0.28±0.07	0.32±0.08	0.24±0.07	0.03±0.04	-0.001±0.035	0.03±0.05	0.001[*]	2>1 † **(0.000) 3>1 † **(0.001) 2=3 (0.74)	
Power	59.69±12.83	66.57±12.09	66.45±12.43	6.88±9.80	-0.12±7.70	6.75±11.64	0.001[*]	2>1 † **(0.001) 3>1 † **(0.002) 2=3 (0.79)	
Average	20.69±3.25	21.59±3.11	22.22±4.59	0.95±2.84	0.56±2.00	1.52±3.46	0.550	NA	
Score	0.31±0.06	0.32±0.06	0.33±0.07	0.01±0.04	0.009±0.030	0.02±0.05	0.055	NA	
Power	59.37±15.17	61.82±15.84	63.32±16.66	2.45±8.38	1.49±5.59	3.95±6.66	0.055	NA	

1st: Baseline, 2nd: After four weeks, 3rd: At the end of 8 week. Δ: Change between two measurements. Values are presented as mean ± standard deviation unless otherwise indicated. ^a Values are presented as median (min-max). FRG: Foam Rolling Group, CG: Control Group. CKCUEST: Closed Kinetic Chain Upper Extremity Stability Test, MPUT: Modified pull-up test. ^b MPUT outcome: the number of pull-ups, Push up test outcome: the number of push-ups, CKCUEST outcome: average number of lines touched, score (inch⁻¹) and power (kg). †: Change in time (The
Friedman Analysis of Variance), ††: Wilcoxon Signed-rank Test, §: Change in time between groups (Mann Whitney-U Test). NA: Not applicable. Statistically significant difference: * p<0.05, ** p<0.0167.
Supplementary Table 1. Effect size and post-hoc power results for proprioception

Outcome Measure	Effect size	Post-hoc power	
	FRG		
	2nd - 1st	0.64	0.99
	3rd - 1st	0.36	0.86
	3rd - 2nd	0.39	0.90
	2nd - 1st	0.04	0.06
	3rd - 1st	0.11	0.11
	3rd - 2nd	0.07	0.08
	Δ2nd - 1st	0.47	0.54
	Δ3rd - 1st	0.36	0.38
	Δ3rd - 2nd	0.22	0.21
	CG	20th	
	2nd - 1st	0.20	0.64
	3rd - 1st	0.27	0.84
	3rd - 2nd	0.42	0.99
	2nd - 1st	0.21	0.19
	3rd - 1st	0.13	0.12
	3rd - 2nd	0.09	0.09
	Δ2nd - 1st	0.34	0.58
	Δ3rd - 1st	0.37	0.58
	Δ3rd - 2nd	0.01	0.58
	2nd - 1st	0.05	0.12
	3rd - 1st	0.21	0.65
	3rd - 2nd	0.20	0.62
	2nd - 1st	0.17	0.15
	3rd - 1st	0.39	0.43
	3rd - 2nd	0.25	0.24
	Δ2nd - 1st	0.09	0.10
	Δ3rd - 1st	0.14	0.13
	Δ3rd - 2nd	0.04	0.07
	2nd - 1st	0.14	0.39
	3rd - 1st	0.11	0.29
	3rd - 2nd	0.24	0.75
	2nd - 1st	0.04	0.07
	3rd - 1st	0.24	0.22
	3rd - 2nd	0.22	0.21
	Δ2nd - 1st	0.16	0.15
	Δ3rd - 1st	0.13	0.12
	Δ3rd - 2nd	0.03	0.06

1st: Baseline, 2nd: After four weeks, 3rd: At the end of 8 weeks. Δ: Change between two measurements. FRG: Foam Rolling Group, CG: Control Group. BB: Biceps Brachii, JPS: Joint Position Sense. *: Indicates a statically significant result.
Supplementary Table 2. Effect size and post-hoc power results for muscle strength

Outcome Measure	Effect size	Post-hoc power
Muscle strength (kg)		
BB		
FRG		
2^{nd}-1^{st}	0.25	0.61
3^{rd}-1^{st}	0.28	0.67
3^{rd}-2^{nd}	0.01	0.05
CG		
2^{nd}-1^{st}	0.07	0.08
3^{rd}-1^{st}	0.06	0.08
3^{rd}-2^{nd}	0.01	0.05
Change in time between groups		
$\Delta 2^{nd}$-1^{st}	0.77	0.89
$\Delta 3^{rd}$-2^{nd}	0.02	0.05
$\Delta 3^{rd}$-1^{st}	0.76	0.88

1st: Baseline, 2nd: After four weeks, 3rd: At the end of 8 weeks. Δ: Change between two measurements. FRG: Foam Rolling Group, CG: Control Group. BB: Biceps Brachii, *: Indicates a statically significant result.
Supplementary Table 3. Effect size and post-hoc power results for functional motor performance

Outcome Measure		Effect size	Post-hoc power
MPUT	**Binary comparison of measurement times**		
FRG	2nd-1st	0.16	0.49
	3rd-1st	0.32	0.93
	3rd-2nd	0.16	0.49
CG	2nd-1st	0.07	0.08
	3rd-1st	0.07	0.08
	3rd-2nd	0.06	0.07
Change in time between groups			
FRG	2nd-1st	0.31	0.31
	3rd-2nd	0.04	0.07
	3rd-1st	0.34	0.35
Push up	**Binary comparison of measurement times**		
FRG	2nd-1st	0.63	0.99
	3rd-2nd	0.15	0.31
	2nd-1st	0.07	0.08
CG	3rd-1st	0.29	0.28
	3rd-2nd	0.34	0.36
Change in time between groups			
FRG	2nd-1st	0.53	0.64
	3rd-2nd	0.89	0.95
	3rd-1st	1.20	0.99
CKCUEST	**Binary comparison of measurement times**		
FRG	2nd-1st	0.47	0.97
	3rd-1st	0.47	0.97
	3rd-2nd	0.01	0.05
	2nd-1st	0.25	0.24
CG	3rd-1st	0.38	0.41
	3rd-2nd	0.13	0.12
Mean	**Score**		
FRG	2nd-1st	0.52	0.98
	3rd-1st	0.57	0.99
	3rd-2nd	0.01	0.06
CG	2nd-1st	0.18	0.16
	3rd-1st	0.32	0.33
	3rd-2nd	0.15	0.14
Power	**Score**		
FRG	2nd-1st	0.53	0.98
	3rd-1st	0.53	0.99
	3rd-2nd	0.01	0.05
CG	2nd-1st	0.15	0.14
	3rd-1st	0.24	0.23
	3rd-2nd	0.09	0.09
Change in time between groups			
Mean	2nd-1st	0.45	0.56
Score	3rd-2nd	0.23	0.30
Power	3rd-1st	0.19	0.25

1st: Baseline, 2nd: After four weeks, 3rd: At the end of 8 weeks. Δ: Change between two measurements. FRG: Foam Rolling Group, CG: Control Group. CKCUEST: Closed Kinetic Chain Upper Extremity Stability Test, MFUT: Modified pull-up test. *: Indicates a statically significant result.
Figure 1: CONSORT (Consolidated Standards of Reporting Trials) flow diagram of the study.

Assessed for eligibility (n=68)
Excluded (n=8)
- People under 18 years of age (n=0)
- Pain in the elbow during the last 6 months (n=0)
- Not to be able to participate in all interventions and evaluations (n=3)
- Acne and similar skin problems that may prevent the application of foam rolling (n=0)
- Previous experience with foam rolling (n=0)
- Having a systemic musculoskeletal disease (n=0)
- Upper extremity injury, history of fracture and surgery (n=0)
- Diagnosis of diabetes mellitus and peripheral neuropathy (n=2)
- Having a cardiovascular disease (n=0)
- Diagnosis of osteoporosis (n=0)
- Having vertigo (n=3)

Randomized (n=60)

Allocated to Foam Rolling Group
Received allocated intervention (n=30)

Allocated to Control Group
Received allocated intervention (n=30)

Follow-up
Lost to follow-up (n=0)
Discontinued (n=0)

Lost to follow-up (n=0)
Discontinued (n=0)

Analysis
Analyzed (n=30)

Analyzed (n=30)
Figure 2. Measurement of the Joint Position Sense

Figure 3. Measurement of the Force Matching
Figure 4. Closed Kinetic Chain Upper Extremity Stability Test (Positioning of the Women-on the Left and Positioning of the Men-on the Right)

Figure 5. Modified Pull-Up Test (Positioning of the Women-on the Left and Positioning of the Men-on the Right)
Figure 6. Foam Rolling Application