Markov’s inequality on Koornwinder’s domain in L^p norms

Tomasz Beberok

Abstract. Let $\Omega = \{(x, y) \in \mathbb{R}^2 : |x| < y + 1, x^2 > 4y\}$. We prove that the optimal exponent in Markov’s inequality on Ω in L^p norms is 4.

Keywords: Markov inequality; L^p norms; Markov exponent

AMS Subject Classifications: primary 41A17, secondary 41A44

1 Introduction

Throughout this paper $\mathcal{P}(\mathbb{R}^N)$ ($\mathcal{P}_n(\mathbb{R}^N)$, respectively) denotes the set of algebraic polynomials of N variables with real coefficients (with total degree at most n). We begin with the definition of multivariate Markov’s inequality.

Definition 1.1 Let $E \subset \mathbb{R}^N$ be a compact set. We say that E admit Markov’s inequality if there exist constants $M, r > 0$ such that for every polynomial $P \in \mathcal{P}(\mathbb{R}^N)$ and $j \in \{1, 2, \ldots, N\}$

$$\left\| \frac{\partial P}{\partial x_j} \right\|_E \leq M(\deg P)^r \|P\|_E$$

where $\| \cdot \|_E$ is the supremum norm on E.

A compact set E with this property is called a Markov set. The inequality (1) is a generalization of the classical inequality proved by A. A. Markov in 1889, which gives such estimate on $[-1, 1]$. The theory of Markov inequality and its generalizations is still the active and fruitful area of approximation theory (see, for instance, [5, 7, 17]). For a given compact set E, an important problem is to determine the minimal constant r in (1). This can be used to minimize the loss of regularity in problems concerning the linear extension of classes of C^∞ functions with restricted growth of derivatives (see [24, 25]). Such an r is so-called Markov’s exponent of E (see [4] for more detail on this matter). In the case of supremum norm various information about Markov’s exponent is known (see, e.g., [8, 11, 21, 26, 27]). The Markov type inequalities were also studied in L^p norms (see [11, 6, 12, 13, 14, 15]). In this case the question of Markov’s exponent problem is much more complex. In particular, to the best of our knowledge, there is no example of a compact set in \mathbb{R}^N with cusps for which Markov’s exponent (with respect to the Lebesgue measure) is known. The attempts to solve this problem led, among others, to a so-called Milówka–Ozorka identity (see [3, 22, 23] for discussion). The aim of this note is to give such an example. More precisely,
we show that, in the notation above, Markov’s exponent of Ω in L^p norms is 4. Here $\Omega = \{(x, y) \in \mathbb{R}^2 : |x| < y + 1, x^2 > 4y\}$ which is depicted in the Figure 1. Since Ω is the region for Koornwinder orthogonal polynomials (first type), see [18, 19], we call this set Koornwinder’s domain.

2 Some weighted polynomial inequalities on simplex

The following lemma will be particularly useful in the proof of our main result.

Lemma 2.1 Let $S = \{(x_1, x_2) \in \mathbb{R}^2 : -1 < x_1 < x_2 < 1\}$, $w(x_1, x_2) = x_2 - x_1$ and $1 \leq p \leq \infty$. Then there exists a positive constant $C(S, w)$ such that, for every $P \in \mathcal{P}_n(\mathbb{R}^2)$, we have

$$\left\| \frac{\partial P}{\partial x_i} \right\|_{L^p(S, w)} \leq Cn^2\|P\|_{L^p(S, w)} \quad (i = 1, 2). \quad (2)$$

Proof. We start with $p = \infty$. Since \overline{S} is a convex body in \mathbb{R}^2, the result of Wilhelmsen [30] gives

$$\max \left\{ \left\| w \frac{\partial P}{\partial x_1} - P \right\|_{L^\infty(S)}, \left\| w \frac{\partial P}{\partial x_2} + P \right\|_{L^\infty(S)} \right\} \leq \frac{2(n + 1)^2}{\delta_S} \|wP\|_{L^\infty(S)},$$

where δ_S is the width of the convex body (the minimal distance between parallel supporting hyperplanes). Therefore by Lemma 3 from [13], there is a constant $\kappa > 0$ such that, for all $P \in \mathcal{P}_n(\mathbb{R}^2)$,

$$\left\| w \frac{\partial P}{\partial x_i} \right\|_{L^\infty(S)} \leq \frac{2(\kappa \delta_S + 1)(n + 1)^2}{\delta_S} \|P\|_{L^\infty(S, w)} \quad (i = 1, 2). \quad (3)$$

Thus we conclude that (2) holds when $p = \infty$. Now, for each $1 \leq p < \infty$, it is clear that

$$\left\| \frac{\partial P}{\partial x_i} \right\|_{L^p(S, w)} \leq \sum_{j=0}^2 \left(\int_{D_j} \left| \frac{\partial P}{\partial x_i}(x_1, x_2) \right|^p (x_2 - x_1) \, dx_1 \, dx_2 \right)^{1/p}$$
where
\[D_0 = \{(x_1, x_2) \in \mathbb{R}^2: -1 < x_1 < 0, x_1 + 1 < x_2 < 1\}, \]
\[D_1 = \{(x_1, x_2) \in \mathbb{R}^2: -1 < x_1 < 0, x_1 < x_2 < x_1 + 1\}, \]
\[D_2 = \{(x_1, x_2) \in \mathbb{R}^2: 0 < x_2 < 1, x_2 - 1 < x_1 < x_2\}. \]

We shall show that there is a constant \(\tilde{C} > 0 \) such that, for all \(P \in \mathcal{P}(\mathbb{R}^2) \),
\[
\left\| \frac{\partial P}{\partial x_i} \right\|_{L^p(D_j, w)} \leq \tilde{C}(\deg P)^2 \|P\|_{L^p(S, w)}, \quad j = 0, 1, 2. \tag{4}
\]

Since \(D_0 \) is a bounded convex set and \(w \) is bounded away from zero on \(D_0 \), we have (see \[9, 12, 13, 20\])
\[
\left(\int_{D_0} \left| \frac{\partial P}{\partial x_i}(x_1, x_2) \right|^p (x_2 - x_1) \, dx_1 dx_2 \right)^{1/p} \leq C_0(\deg P)^2 \|\, P\|_{L^p(D_0, w)} \leq C_0(\deg P)^2 \|\, P\|_{L^p(S, w)}.
\]

Now consider the case \(j = 1 \). The integral is then
\[
\left(\int_{D_1} \left| \frac{\partial P}{\partial x_i}(x_1, x_2) \right|^p (x_2 - x_1) \, dx_1 dx_2 \right)^{1/p}.
\]

We perform the change of variables \(t = x_1, s = x_2 - x_1 \). The integral becomes
\[
\left(\int_{-1}^0 \int_{0}^1 \left| \frac{\partial P}{\partial x_i}(t, s + t) \right|^p s \, ds \, dt \right)^{1/p}.
\]

Define \(Q(t, s) = P(t, s + t) \). Then
\[
\frac{\partial Q}{\partial t}(t, s) - \frac{\partial Q}{\partial s}(t, s) = \frac{\partial P}{\partial x_1}(t, s + t), \quad \frac{\partial Q}{\partial s}(t, s) = \frac{\partial P}{\partial x_2}(t, s + t).
\]

Hence, (using Goetgheluck’s result—see \[10\])
\[
\int_0^1 \left| \frac{\partial P}{\partial x_2}(t, s + t) \right|^p s \, ds \leq C_1^p(\deg Q)^{2p} \int_0^1 |Q(t, s)|^p s \, ds.
\]

Therefore
\[
\left\| \frac{\partial P}{\partial x_2} \right\|_{L^p(D_1, w)} \leq \left(\int_{-1}^0 \left[C_1^p(\deg P)^{2p} \int_0^1 |Q(t, s)|^p s \, ds \right] \, dt \right)^{1/p}
\]
\[
= C_1(\deg P)^2 \left(\int_{-1}^0 \int_0^1 |P(t, s + t)|^p s \, ds \, dt \right)^{1/p}
\]
\[
\leq C_1(\deg P)^2 \|\, P\|_{L^p(S, w)}.
\]

3
On the other hand,
\[
\left\| \frac{\partial P}{\partial x_1} \right\|_{L^p(D_1,w)} \leq \left(\int_{-1}^{0} \int_{0}^{1} \left| \frac{\partial Q}{\partial t}(t,s) \right|^p s \, ds \, dt \right)^{1/p} + \left(\int_{-1}^{0} \int_{0}^{1} \left| \frac{\partial Q}{\partial s}(t,s) \right|^p s \, ds \, dt \right)^{1/p}.
\]

We have, arguing as before, that there exists constants \(\hat{C}_1, C_1 \) such that for every polynomial \(Q \in P(\mathbb{R}^2) \)
\[
\int_{-1}^{0} \left| \frac{\partial Q}{\partial t}(t,s) \right|^p dt \leq \hat{C}_1^p (\deg Q)^{2p} \int_{-1}^{0} \left| Q(t,s) \right|^p dt,
\]
\[
\int_{0}^{1} \left| \frac{\partial Q}{\partial s}(t,s) \right|^p s \, ds \leq C_1^p (\deg Q)^{2p} \int_{0}^{1} \left| Q(t,s) \right|^p s \, ds.
\]

Therefore we see immediately that
\[
\left\| \frac{\partial P}{\partial x_1} \right\|_{L^p(D_1,w)} \leq \left(\int_{0}^{1} \left[\hat{C}_1^p (\deg P)^{2ps} \int_{-1}^{0} \left| Q(t,s) \right|^p dt \right] ds \right)^{1/p} + \left(\int_{-1}^{0} \left[C_1^p (\deg P)^{2ps} \int_{0}^{1} \left| Q(t,s) \right|^p s \, ds \right] dt \right)^{1/p}.
\]

Thus we finally have
\[
\left\| \frac{\partial P}{\partial x_1} \right\|_{L^p(D_1,w)} \leq \hat{C}_1 (\deg P)^2 \| P \|_{L^p(D_1,w)} + C_1 (\deg P)^2 \| P \|_{L^p(D_1,w)}
\]
\[
\leq (\hat{C}_1 + C_1)(\deg P)^2 \| P \|_{L^p(S,w)}.
\]

A similar result for \(D_2 \) obtains if one considers the substitution \(t = x_2, s = x_2 - x_1 \) and polynomial \(\hat{Q}(t,s) = P(t-s,t) \). We omit the details. Thus we have shown that, if \(\hat{C} = 2 \max \{ C_0, \hat{C}_1, C_1, \hat{C}_2, C_2 \} \), then (4) holds. That completes the proof. Now we shall prove the following weighted Schur-type inequality.

Lemma 2.2 (with previous notation). Let \(d \) be a natural number. Then, for every \(A \subset \bar{S} \) and \(R \in \mathcal{P}_k(\mathbb{R}^2) \), satisfying the condition
\[
\{ \text{there exists } \alpha \in \mathbb{N}^2 \text{ such that } \alpha_1 + \alpha_2 \leq d \text{ and } |R^{(\alpha)}(x)| \geq m > 0 \ (x \in A) \}
\]
one can find a constant \(C_d \) such that, for any \(\epsilon > 0 \) and every \(P \in \mathcal{P}_n(\mathbb{R}^2) \), we have
\[
\| P \|_{L^p(A,w)} \leq C_d m^{-1} \epsilon^{-1} (n + k)^{2d} \| PR \|_{L^p(S,w)} + \epsilon \| P \|_{L^p(S,w)}. \tag{5}
\]

Proof. The idea of the proof comes from [13]. Thus we proceed by induction on the length of \(\alpha \). If \(\alpha_1 = \alpha_2 = 0 \), then
\[
|P(x)| \leq m^{-1} |P(x)R(x)| \text{ for } x \in A.
\]
Thus we can share

On the other hand, if

Therefore by the preceding lemma,

if

\[x \\in \mathbb{R}^n \]

\[\alpha \]

denotes the length of \(\alpha \). Let

\[I = \{ (\beta_1, \beta_2) \in \mathbb{N}^2 : 0 < |\beta|, 0 \leq \beta_1 \leq \alpha_1, 0 \leq \beta_2 \leq \alpha_2 \} \.

Notice that the set \(I \) contains at most \(\frac{(d_0+1)(d_0+2)}{2} - 1 \) elements. By Leibniz’s rule, if \(x \in A \), then

\[
|P(x)| \leq m^{-1} \left[|(PR)^{(\alpha)}(x)| + \sum_{\beta \in I} \left(\frac{\alpha}{\beta} \right) |R^{(\alpha-\beta)}(x)| |P^{(\beta)}(x)| \right].
\]

Let \(C \) be a constant so that (2) holds. We set

\[B_0 = \{ x \in A : |R^{(\alpha-\beta)}(x)| \leq \frac{m\epsilon}{\eta^2} (Cn^2)^{-|\beta|}, \beta \in I \}, \]

where \(\eta = \frac{(d_0+1)(d_0+2)}{2} \). Then, for each \(x \in B_0 \), we have

\[
|P(x)| \leq m^{-1}|(PR)^{(\alpha)}(x)| + \frac{\epsilon}{\eta^2} \sum_{\beta \in I} (Cn^2)^{-|\beta|} |P^{(\beta)}(x)|.
\]

This yields

\[
\|P\|_{L^p(B_0, w)} \leq m^{-1}\|(PR)^{(\alpha)}\|_{L^p(B_0, w)} + \frac{\epsilon}{\eta^2} \sum_{\beta \in I} (Cn^2)^{-|\beta|} \|P^{(\beta)}\|_{L^p(B_0, w)}
\]

\[
\leq m^{-1}\|(PR)^{(\alpha)}\|_{L^p(S, w)} + \frac{\epsilon}{\eta^2} \sum_{\beta \in I} (Cn^2)^{-|\beta|} \|P^{(\beta)}\|_{L^p(S, w)}.
\]

Therefore by the preceding lemma,

\[
\|P\|_{L^p(B_0, w)} \leq m^{-1}C^{\alpha}(n+k)^{2\alpha}\|PR\|_{L^p(S, w)} + \frac{\epsilon}{\eta}\|P\|_{L^p(S, w)}.
\]

On the other hand, if \(x \in A \setminus B_0 \), then there exists \(\beta \in I \) such that

\[
|P^{(\alpha-\beta)}(x)| > \left(\frac{\alpha}{\beta} \right)^{-1} \frac{m\epsilon(Cn^2)^{-|\beta|}}{\eta^2}.
\]

Thus we can share \(x \in A \setminus B_0 \) into at most \(\eta - 1 \) disjoint subsets \(B_j \) such that, for every \(x \in B_j \), there exists an index \(\beta \) for which (6) holds. Therefore, since \(|\beta| > 0 \), on each \(B_j \), replacing \(\epsilon \) by \(\frac{\epsilon}{\eta} \), we conclude by induction that

\[
\|P\|_{L^p(B_j, w)} \leq (Cn^2)^{\delta}|\eta^2\frac{m\epsilon}{\eta^2} (Cn^2)^{-|\beta|} \sum_{\beta \in I} \left(\frac{\eta}{\epsilon} \right)^{d_0-1}
\]

\[
\times (n+k)^{2(d_0-|\beta|)}\|PR\|_{L^p(S, w)} + \frac{\epsilon}{\eta}\|P\|_{L^p(S, w)}.
\]
Since \(A = \bigcup_j B_j \) we see that
\[
\| P \|_{L^p(A,w)} \leq C_d m^{-d_0} (n + k)^{2d_0} \| PR \|_{L^p(S,w)} + \epsilon \| P \|_{L^p(S,w)}
\]
with
\[
C_d = C^{2d_0} + \left(\frac{(d_0 + 1)(d_0 + 2)}{2} \right)^{d_0 + 1} C_{d_0 - 1} \sum_{\beta \in I} (\alpha \beta)^{|\beta|},
\]
which completes the induction and the proof.

3 Main result

Our main result reads as follows:

Theorem 3.1 Let \(p \geq 1 \). Then there exists constant \(C = C(\Omega, p) \) such that for every polynomial \(P \in \mathcal{P}_n(\mathbb{R}^2) \) we have
\[
\max \left\{ \left\| \frac{\partial P}{\partial x} \right\|_{L^p(\Omega)}, \left\| \frac{\partial P}{\partial y} \right\|_{L^p(\Omega)} \right\} \leq C n^4 \| P \|_{L^p(\Omega)}. \tag{7}
\]

Proof. Let us first prove the inequality (7) with respect to the second variable. Let \(P \in \mathcal{P}_n(\mathbb{R}^2) \). Then the integrals
\[
\int_{\Omega} \left| \frac{\partial P}{\partial y}(x,y) \right|^p \, dx \, dy, \quad \int_{\Omega} |P(x,y)|^p \, dx \, dy
\]
become, under a change of variables \(x = u + v, \ y = uv \),
\[
\int_S \left| \frac{\partial P}{\partial y}(u+v,uv) \right|^p (v-u) \, du \, dv, \quad \int_S |P(u+v,uv)|^p (v-u) \, du \, dv
\]
where \(S = \{(u,v) \in \mathbb{R}^2: -1 < u < v < 1\} \). Let us define polynomial \(Q(u,v) = P(u+v,uv) \). Then
\[
(v-u) \frac{\partial P}{\partial y}(u+v,uv) = \frac{\partial Q}{\partial u}(u,v) - \frac{\partial Q}{\partial v}(u,v).
\]
We now see, using Lemma 2.1 that
\[
\left\| (v-u) \frac{\partial P}{\partial y}(u+v,uv) \right\|_{L^p(S,w)} = \left\| \frac{\partial Q}{\partial u} - \frac{\partial Q}{\partial v} \right\|_{L^p(S,w)} \leq C(p,S)(2n)^2 \| Q \|_{L^p(S,w)}.
\]

Lemma 2.2 tells us that
\[
\left\| \frac{\partial P}{\partial y}(u+v,uv) \right\|_{L^p(S,w)} \leq C_1(p,S)(2n)^2 \left\| (v-u) \frac{\partial P}{\partial y}(u+v,uv) \right\|_{L^p(S,w)}.
\]
Hence
\[\left\| \frac{\partial P}{\partial y} (u + v, uv) \right\|_{L^p(S, w)} \leq CC_1 (2n)^4 \| Q \|_{L^p(S, w)}. \]
That completes the proof of (7) for the derivative of \(P \) with respect to \(y \). To prove the remaining part we need to consider the polynomials \(uQ \) and \(vQ \). Then
\[(v - u) \frac{\partial P}{\partial x} (u + v, uv) = \frac{\partial vQ}{\partial v} (u, v) - \frac{\partial uQ}{\partial u} (u, v). \]
Hence
\[\left\| (v - u) \frac{\partial P}{\partial x} (u + v, uv) \right\|_{L^p(S, w)} \leq C (2n + 1)^2 \left(\| vQ \|_{L^p(S, w)} + \| uQ \|_{L^p(S, w)} \right) \]
\[\leq C' (2n + 1)^2 \| Q \|_{L^p(S, w)}. \]
Thus using an argument similar to the one that we carry out in detail in the previous case, one can obtain the desired estimate.

Remark 3.1 In the same fashion, we may prove that there exists a positive constant \(C_1 \) such that for every \(P \in P_n(\mathbb{R}^2) \) we have
\[\max \left\{ \left\| \frac{\partial P}{\partial x} \right\|_{L^p(\Delta_l)}, \left\| \frac{\partial P}{\partial y} \right\|_{L^p(\Delta_l)} \right\} \leq C_1 n^{2l} \| P \|_{L^p(\Delta_l)} \] \(\quad \) (8)
where \(\Delta_l = \{(x, y) \in \mathbb{R}^2 : |x|^{1/l} + |y|^{1/l} \leq 1 \} \) and \(l \) is a positive odd number.

4 Sharpness of the exponents

In fact, according to [2], it is enough to prove sharpness in the supremum norm. The discussion here is based on unpublished work of M. Baran. Let us consider following sequence of polynomials
\[P_k(x, y) = \left[\frac{1}{k} T_k \left(\frac{2 - x}{4} \right) \right]^5 \left(\frac{1 + x + y}{4} \right) \]
where \(T_k \) is the \(k \)th Chebyshev polynomial of the first kind. Note that the degree of a polynomial \(P_k \) is equal \(5k - 4 \). Since
\[\left| \frac{1}{k} T'_k (1 - x) \right| \leq \frac{1}{\sqrt{x}} \text{ for every } x \in (0, 1] \text{ and } \]
\[\frac{1 + x + y}{4} \leq \left(\frac{1}{2} + \frac{x}{4} \right)^2 \text{ for } (x, y) \in \Omega, \]
we may conclude that
\[|P_k(x, y)| \leq \left| \frac{1}{k} T'_k \left(\frac{2 - x}{4} \right) \right| \sqrt{\frac{1}{2} + \frac{x}{4}} \left| \frac{1}{k} T_k \left(\frac{2 - x}{4} \right) \right| \leq \frac{1}{k} \| T_k \|_{[-1, 1]} = k \]
for any \((x, y) \in \Omega\). On the other hand,
\[
\left| \frac{\partial P_k}{\partial y} (-2, 1) \right| = \frac{1}{4} \left| \frac{1}{k} T'_k(1) \right|^5 = \frac{k^5}{4} \geq \frac{k^4}{4} \| P_k \|_\Omega.
\]

A similar calculation shows that, for \(Q_k = \left[\frac{1}{k} T'_k \left(\frac{1+y}{2} \right) \right]^5 \left(\frac{x^2}{4} - y \right)\),
\[
\| Q_k \|_\Omega \leq k \quad \text{and} \quad \left| \frac{\partial Q_k}{\partial x} (2, 1) \right| = k^5.
\]

Let \(P_n^{(\alpha, \beta)}\) denote the Jacobi polynomials. In order to prove sharpness of (8), we consider the sequence of polynomials \(W_n(x, y) = y P_n^{(\alpha, \alpha)}(x)\). Thus
\[
\int_{\Delta} \left| \frac{\partial W_n}{\partial y} (x, y) \right|^p \, dx dy = 2 \int_{-1}^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - |x|^{1/l} \right)^l \, dx,
\]
\[
\int_{\Delta} |W_n(x, y)|^p \, dx dy = \frac{2}{p+1} \int_{-1}^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - |x|^{1/l} \right)^{(p+1)l} \, dx.
\]

By the well known symmetry relation (see [29], Chap. IV)
\[
P_n^{(\alpha, \beta)}(x) = (-1)^n P_n^{(\beta, \alpha)}(-x).
\]

we find that
\[
\int_{\Delta} \left| \frac{\partial W_n}{\partial y} (x, y) \right|^p \, dx dy = 4 \int_0^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - x^{1/l} \right)^l \, dx,
\]
\[
\int_{\Delta} |W_n(x, y)|^p \, dx dy = \frac{4}{p+1} \int_0^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - x^{1/l} \right)^{(p+1)l} \, dx.
\]

Now Bernoulli’s inequality, for each positive integer \(l\) and \(x \in [0, 1]\), implies that
\[
\left(1 - \frac{x}{l} \right)^l \leq (1 - x^{1/l})^l \leq (1 - x)^l.
\]

Hence, if \(n \to \infty\), then
\[
\frac{\int_{\Delta} \left| \frac{\partial W_n}{\partial y} (x, y) \right|^p \, dx dy}{\int_{\Delta} |W_n(x, y)|^p \, dx dy} \sim \frac{\int_0^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - x^{1/l} \right)^l \, dx}{\int_0^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - x \right)^{(p+1)l} \, dx}.
\]

We may now apply the result of Szegő (see [29], Chap. VII) to get
\[
\int_0^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - x \right)^l \, dx \sim n^{\alpha p - 2l - 2} \quad \text{whenever} \quad 2l < \mu_{\alpha, p}, \quad (9)
\]
\[
\int_0^1 \left| P_n^{(\alpha, \alpha)}(x) \right|^p \left(1 - x \right)^{(p+1)l} \, dx \sim n^{\alpha p - 2(p+1)l - 2}, \quad 2(p+1)l < \mu_{\alpha, p}, \quad (10)
\]

where \(\mu_{\alpha, p} = \alpha p - 2 + p/2\). If \(2(p+1)l < \mu_{\alpha, p}\), we can combine (9) and (10) to see that
\[
\frac{\left\| \frac{\partial W_n}{\partial y} \right\|_{L^p(\Delta)}}{\| W_n \|_{L^p(\Delta)}} \sim n^{2l}.
\]

That is what we wished to prove.
Acknowledgment

The author deeply thanks Mirosław Baran and Leokadia Bialas-Cież who pointed out some important remarks, corrections and shared their unpublished notes. The author was supported by the Polish National Science Centre (NCN) Opus grant no. 2017/25/B/ST1/00906.

References

[1] M. Baran, New approach to Markov inequality in \(L^p \) norms, in: Approximation theory. In memory of A.K. Varma, I. Govil et al. – editors, M. Dekker, Inc., New York–Basel–Hong Kong (1998) 75–85.

[2] M. Baran, A. Kowalska, Generalized Nikolskii’s property and asymptotic exponent in Markov’s inequality, arXiv:1706.07175 (2017).

[3] M. Baran, A. Kowalska, B. Milówka and P. Ozorka, Identities for a derivation operator and their applications, Dolomites Res. Notes Approx. 8 (2015) 102–110.

[4] M. Baran, W. Pleśniak, Markov’s exponent of compact sets in \(C^n \), Proc. Amer. Math. Soc. 123 (1995) 2785–2791.

[5] L. Białas-Cież, J.P. Calvi, A. Kowalska, Polynomial inequalities on certain algebraic hypersurfaces, J. Math. Anal. Appl. 459 (2) (2018) 822–838.

[6] P. Borwien, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York 1995.

[7] A. Brudnyi, Bernstein Type Inequalities for Restrictions of Polynomials to Complex Submanifolds of \(\mathbb{C}^N \), J. Approx. Theory, 225 (2018) 106–147.

[8] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, 1993.

[9] Z. Ditzian, Multivariate Bernstein and Markov inequalities, J. Approx. Theory 70(3) (1992) 273–283.

[10] P. Goetgheluck, Polynomial inequalities and Markov’s inequality in weighted \(L^p \) spaces, Acta Math. Acad. Sci. Hungar. 33 (1979) 325–331.

[11] P. Goetgheluck, Une inégalité polynômiale en plusieurs variables, J. Approx. Theory 40 (1984) 161–172.

[12] P. Goetgheluck, Markov’s inequality on Locally Lipschitzian compact subsets of \(\mathbb{R}^n \) in \(L^p \) spaces, J. Approx. Theory 49 (1987) 303–310.

[13] P. Goetgheluck, Polynomial inequalities on general subsets of \(\mathbb{R}^N \), Coll. Mat. 57 (1989) 127–136.

[14] P. Goetgheluck, On the problem of sharp exponents in multivariate Nikolskii-type inequalities, J. Approx. Theory 77 (1994) 167–178.

[15] E. Hille, G. Szegő, J. Tamarkin, On some generalisation of a theorem of A. Markoff, Duke Math. J 3 (1937) 729–739.
[16] J. Karamata, Sur une inégalité relative aux fonctions convexes, Publ. Math. Univ. Belgrade 1 (1932) 145–148.

[17] S. Kalmykov, B. Nagy, Higher Markov and Bernstein inequalities and fast decreasing polynomials with prescribed zeros, J. Approx. Theory, 226 (2018) 34–59.

[18] T.H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, I, II, Proc. Kon. Akad. v. Wet., Amsterdam 36 (1974) 48–66.

[19] T.H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, III, IV, Proc. Kon. Akad. v. Wet., Amsterdam 36 (1974) 357–381.

[20] A. Kroo, On Bernstein–Markov-type inequalities for multivariate polynomials in L_q-norm, J. Approx. Theory 159 (2009) 85–96.

[21] G.V Milovanović, D.S. Mitrinović, T.M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing, River Edge, NJ, 1994.

[22] B. Milówka, Markov’s inequality and a generalized Pleśniak condition, East J. Approx. 11 (2005) 291–300.

[23] B. Milówka, Markov’s property for derivatives of order k, PhD thesis, 2006, 45 pp. (in Polish).

[24] W. Pawłucki, W. Pleśniak, Markov’s inequality and C^∞ functions on sets with polynomial cusps, Math. Ann. 275 (1986) 467–480.

[25] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C^∞ functions, J. Approx. Theory 61 (1990) 106–117.

[26] W. Pleśniak, Recent progress in multivariate Markov inequality, Approximation theory, Monogr. Textbooks Pure Appl. Math., Dekker, New York, (1998) 449–464.

[27] Q.I. Rachman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, Oxford 2002.

[28] E.M. Stein, Interpolation in polynomial classes and Markoff’s inequality, Duke Math. J. 24 (1957) 467–476.

[29] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, 1975.

[30] D.R. Wilhelmsen, A Markov inequality in several dimensions, J. Approx. Theory 11 (1974) 216–220.