Lower bound on the proton charge radius from electron scattering data

Franziska Hagelsteina, Vladimir Pascalutsab,*

a Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

b Institut f"{u}r Kernphysik and Cluster of Excellence PRISMA, Johannes Gutenberg Universit"{a}t Mainz, D-55128 Mainz, Germany

Abstract

The proton charge-radius determinations from the electromagnetic form-factor measurements in electron-proton (ep) scattering require an extrapolation to zero momentum transfer \((Q^2 = 0)\) which is prone to model-dependent assumptions. We show that the data at finite momentum transfer can be used to establish a rigorous lower bound on the proton charge radius, while bypassing the model-dependent assumptions that go into the fitting and extrapolation of the ep data. The near-future precise ep experiments at very low \(Q^2\), such as PRad, are expected to set a stringent lower bound on the proton radius.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The proton charge radius is traditionally accessed in elastic electron-proton (ep) scattering at small momentum transfers \([\text{low } Q^2]\) \cite{1,2}. Recently, however, the accuracy of this method has been questioned in the context of the proton-radius puzzle, which is partially attributed to the discrepancy between the 2010 ep scattering value of Bernauer et al. \cite{3,4} and the muonic-hydrogen \((\mu H)\) extraction of the proton radius \cite{5,6}, see Fig. 1. Meanwhile, as seen from the figure, the different extractions based on ep-scattering data have covered a whole range of values and hardly add-up into a coherent picture.

A “weak link” of the proton-radius extractions from ep experiments is the extrapolation to zero momentum transfer. Namely, while the data taken in some finite-\(Q^2\) range can directly be mapped into the proton (electric and magnetic) Sachs form factors \(G_E(Q^2)\) and \(G_M(Q^2)\), the radii extractions require the derivatives of those at \(Q^2 = 0\), e.g.: \(R_E = \sqrt{-\frac{\alpha}{\pi}} G'_E(0)\). As much as one believes that the slope at 0 is largely determined by the behavior at finite \(Q^2\), it is not easy to quantify this relation with the necessary precision. The issues of fitting and extrapolation of the form-factor data have lately been under intense discussion, see, e.g., Refs. \cite{14,25–27}. Similar extrapolation problems should exist in the extractions based on lattice QCD, since the lowest momentum transfer therein is severely limited by the finite volume.

Here, we show that the form-factor data at finite \(Q^2\) provide a lower bound on the proton charge radius. A determination of this bound needs no extrapolation, therefore no major model assumptions, and should be based solely on experimental (or lattice) data. At the same time, given that some of the conventional extractions from ep data show a considerably larger radius than the \(\mu H\) value, a strict lower bound, based purely on data, is potentially useful in understanding this discrepancy.

In what follows, we briefly recall the basic formulae in Sec. 2, introduce the quantity proposed to serve as the charge-radius bound in Sec. 3, obtain an empirical value for it based on proton electric form-factor data in Sec. 4 and conclude in Sec. 5.

2. Basic ingredients of the radius extraction

Let us recall that a spin-1/2 particle, such as the proton, has two electromagnetic form factors. These are either the Dirac and Pauli form factors: \(F_1(Q^2)\) and \(F_2(Q^2)\); or, the electric and magnetic Sachs form factors:

\begin{equation}
G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2),
\end{equation}

\begin{equation}
G_M(Q^2) = F_1(Q^2) + F_2(Q^2),
\end{equation}

where \(M\) is the proton mass.
The subject of interest is the root-mean-square (rms) radius (or, simply the charge radius): \(R_E = \sqrt{\langle r^2 \rangle_E} \). Ideally, it could be extracted by fitting the first few terms of the above Taylor expansion of the form factor to the experimental data at low \(Q^2 \). In practice, however, this does not work. The main reason is that the convergence radius of the Taylor expansion is limited by the onset of the pion-production branch cut for time-like photon momenta at \(Q^2 = -4m^2 \) (the nearest singularity, as far as the strong interaction is concerned), and there are simply not many ep data for \(Q^2 \leq 4m^2 \approx 0.08 \text{ GeV}^2 \).

A viable approach to fit to higher \(Q^2 \) is, instead of the Taylor expansion, to use a form which takes the singularities into account. This is done in the \(z \)-expansion [12] and dispersive fits [21,23, 24]. These approaches have, however, other severe limitations. The \(z \)-expansion only deals with the first singularity and therefore extends the convergence radius to \(9m^2 \) only. The dispersive approach is based on an exact dispersion relation for the form factor:

\[
G_E(Q^2) = 1 - \frac{Q^2}{4\pi} \int_0^\infty \frac{\text{d}t}{4m_\pi^2} \frac{\text{Im} G_E(t)}{t(t + Q^2)},
\]

which, in principle, accounts for all singularities. Unfortunately, it requires the knowledge of the spectral function, \(\text{Im} G_E(t) \), which is not directly accessible in experiment, and needs to be modeled. Chiral perturbation theory can only provide a description of this function in the range of \(t \leq 1 \text{ GeV}^2 \). Despite the recent progress in the empirical description of the spectral function [29], the problem of model dependence of the radius extraction in the dispersive approach remains to be non-trivial.

3. Positivity bounds

Given the aforementioned issues in extracting the charge radius from form-factor data, we turn to establishing a bound on the radius, rather than the radius itself. The advantage is that the bound will follow from the finite-\(Q^2 \) data alone and needs no extrapolations or model assumptions.

To this end we consider the following quantity:

\[
R_E^2(Q^2) = -\frac{6}{Q^2} \ln G_E(Q^2),
\]

which in the real-photon limit yields the radius squared:

\[
\lim_{Q^2 \to 0} R_E^2(Q^2) = -\frac{6}{G_E(Q^2)} \bigg|_{Q^2=0} = R_E^2.
\]

As will be argued in Sec. 3, the spacelike \((Q^2 \geq 0)\) proton form factor is bounded from above:

\[
G_E(Q^2) \leq 1,
\]

and hence, the above log-function is positive, \(R_E^2(Q^2) \geq 0 \). Furthermore, if \(G_E \) falls with increasing \(Q^2 \) not faster than by a power law, then \(R_E^2(Q^2) \) falls as well. The analytic properties of \(G_E \), in the absence of zeros, are inherited by its logarithm. The subtracted dispersion relation (5) for the form factor then leads to an unsubtracted one for \(R_E^2 \):

\[
R_E^2(Q^2) = \frac{1}{\pi} \int_0^\infty \frac{\text{d}t}{4m_\pi^2} \frac{\text{Im} R_E^2(t)}{t(t + Q^2)},
\]

where \(\text{Im} R_E^2(t) = (6/t)\varphi_E(t) \), and \(\varphi_E(t) \geq 0 \) is the phase defined through \(G_E(t) = |G_E(t)|e^{i\varphi_E(t)} \). This dispersion relation shows that

\[
G_E(Q^2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{\langle r^{2n} \rangle_E}{n} Q^{2n} = 1 - \frac{1}{6} \langle r^2 \rangle_E Q^2 + \frac{1}{120} \langle r^4 \rangle_E Q^4 + \ldots
\]
the function is monotonic in the spacelike region. The latter allows one to establish a lower bound on the radius:

\[R_E^2(Q^2) \leq R_E^2, \quad \text{for } Q^2 \geq 0. \quad (10) \]

Substituting in here the Taylor expansion, Eq. (4), one has:

\[R_E^2(Q^2) = R_E^2 - \left(\frac{1}{20} \left(\frac{1}{R_E^2} - \frac{1}{12} \right) \right) Q^2 + \mathcal{O}(Q^4), \quad (11) \]

and so, in order for the bound to hold at arbitrarily low \(Q^2 \), the fourth and second moments must satisfy the following inequality\(^1\): \[\sqrt{\frac{3}{5}} R_E^2 > R_E^2. \] \((12) \)

We have checked that this non-trivial hierarchical condition on the radii, which follows from the lower bound Eq. (10), is verified in existing empirical parametrizations of the proton form factor, of which the dipole form, \(G_E(Q^2) = [1 + Q^2/(0.71 \text{GeV}^2)]^{-2} \), is the simplest one.

The fact that \(R_E^2(Q^2) \) is monotonically increasing towards \(Q^2 = 0 \) means that the best bound is obtained at lowest accessible \(Q^2 \).

In practice, however, it depends on the size of the experimental errors, including the uncertainty in the overall normalization of the form factor. We discuss this in detail in Sec. 4, when obtaining the empirical value of the bound from experimental data. In the rest of this section we focus on the proof of Eq. (8).

The unitary bound on the proton form factor, given in Eq. (8), and subsequently the radius bound, given in Eq. (10), follow from positivity of the corresponding charge density distribution: \(\rho_E(r) \geq 0 \). Indeed, from Eq. (2a), \(G_E(0) - G_E(Q^2) = 4\pi \int_0^{\infty} \rho_E(r) \rho_E(r') \, dr', \) \((13) \)

with the property of the Bessel function \(j_0(x) \leq 1 \), and the positivity of \(\rho_E(r) \), we can see that the integrand on the right-hand side is positive definite, and Eq. (8) follows upon substituting \(G_E(0) = 1 \) on the left-hand side.

There is a concern \(^3\) that the proton charge density is not necessarily positive definite, and only the transverse charge density is \(\rho_\perp(b) \geq 0 \). The latter relates to the Dirac form factor through the two-dimensional Fourier transform:

\[F_1(Q^2) = 2\pi \int_0^{\infty} \rho_\perp(b) \, db, \] \((14) \)

where \(j_0(x) \) is the cylindrical Bessel function. However, the positivity of the transverse charge density is sufficient to prove the unity bound of Eq. (8). To see this, one may apply the previous argument [cf. Eq. (13)] to Eq. (14) using \(j_0(x) \leq 1 \), and derive the bound on the Dirac form factor:

\[F_1(Q^2) \leq 1. \] \((15) \)

Then, the unitary bound on \(G_E \) follows from its definition in terms of the Dirac and Pauli form factors, see Eq. (1a), by taking into account the conditions \(F_1(Q^2) \leq 1 \) and \(F_2(Q^2) \geq 0 \). The latter is valid for the proton in at least the low-\(Q \) region, as can be seen empirically from \(F_2(0) = \kappa \), with \(\kappa \approx 1.79 \) the anomalous magnetic moment of the proton.

While the unity bound on \(G_E \) follows from the positivity of \(\rho_E(r) \), the reverse is not necessarily true. Therefore, the proof based on the positivity of the transverse charge density \(\rho_\perp(b) \) does not necessarily imply the positivity of \(\rho_\parallel(b) \). Introducing \(\rho_\parallel(r) \) as the three-dimensional Fourier-transform of the Dirac form factor, we have:

\[F_1(Q^2) = 4\pi \int_0^{\infty} \rho_\parallel(r) \rho_\parallel(r') \, dr, \] \((16) \)

and matching it to Eq. (14), we obtain its relation to the transverse density\(^2\):

\[\rho_\perp(b) = 2 \int_b^{\infty} \frac{r}{\sqrt{r^2 - b^2}} \rho_\parallel(r) \, dr, \] \((17a) \)

\[= \int_{-\infty}^{\infty} dz \rho_\parallel(\sqrt{b^2 + z^2}). \] \((17b) \)

The two are thus related by the Abel transform \(^{[32], p. 351\text{ et seq.]}\). It infers \(\rho_\perp \geq 0 \), for \(\rho_\parallel \geq 0 \), while the reverse is not necessarily true.

4. Exploring the ep scattering data

4.1. Direct determination

We now proceed to obtaining the lower bound on the proton charge radius from ep scattering data. The first step is to convert the experimental data for \(G_E(Q^2) \) to \(R_E^2(Q^2) \), using the definition (6). The presently available data in the region well below the pion-pair production scale (here we chose \(Q^2 < 0.02 \text{ GeV}^2 \)) are shown in Fig. 2. The light-blue points are from the dataset of Bernauer et al. \(^{[3,4]}\). The light-red data points are from the recent initial-state radiation (ISR) experiment at MAMI \(^{[30]}\). In both cases we show the statistical error bars only (the systematic error will be discussed below and taken into account for Bernauer’s data). The two points at \(Q^2 = 0 \) indicate the muonic-hydrogen (green) and Bernauer’s ep-scattering (dark-blue) values of the proton charge radius.

In principle, every data point in Fig. 2, at finite \(Q^2 \), provides a lower bound on the proton charge radius. For a more accurate

\(^1\) Based on Eq. (9), one can claim that \(R_E^2(Q^2) \) is completely monotonic, i.e.: \((-1)^d R_E^2(Q^2)/d Q^2 \geq 0\), from which the lower bounds on other radii can be derived. The lowest values of the radii are given in terms of the charge radius \(R_E \), and can all be obtained from Taylor-expanding the following form of the form factor: \(R_E^{\text{mon}}(Q^2) = \exp(-1/b R_E^2 Q^2). \)

\(^2\) Here we recall the following relations between the spherical and cylindrical Bessel functions:

\[j_0(x) = \frac{2}{\pi} \int_0^{\infty} \frac{x^2 - \sqrt{x^2 + x^2}}{x^2} \]

\[j_0(x) = \frac{1}{\pi} \int_0^{\infty} \frac{x^2 - \sqrt{x^2 + x^2}}{x^2} \]

as well as their orthogonality:

\[\int_0^{\infty} \frac{dQ}{Q^2} j_i(Qb) j_i(Qb') = \frac{1}{b} \delta(b - b'), \]

\[\int_0^{\infty} \frac{dQ}{Q^2} j_i(Qr) j_i(Qr') = \frac{\pi}{2r^2} \delta(r - r'). \]
value, we can average over any subset of these data. In the figure, the horizontal blue band is the statistical average of Bernauer’s dataset, whereas the red band is the statistical average of the ISR dataset. These bands were obtained fitting a horizontal line through the respective datasets using the NonlinearModelFit routine of Mathematica [33]. The corresponding values are presented in, respectively, the 1st and 3rd row of Table 1.

This is how ideally the bound should be determined from the experimental data. However, the present experimental data have systematic uncertainties of which the most acute one is the unknown absolute normalization of the cross section. The Bernauer dataset, for example, is normalized in conjunction with the radius extraction. Thus, the data normalization and the extrapolation to \(Q^2 = 0\) are done simultaneously in the same fit. Moreover, one can obtain an equally good representation of Bernauer’s data by using a lower value of the radius and different normalization factors [34,35].

4.2. Overall normalization factor

To see how the normalization uncertainty affects the bound, let us suppose the experimental form factor has a small normalization error \(\epsilon\), such that \(G_E^{\text{exp}} = (1 + \epsilon) G_E\), with \(G_E\) having the usual interpretation. Then,

\[
R_E^{2 \text{exp}}(Q^2) = -\frac{6}{Q^2} \ln [(1 + \epsilon) G_E(Q^2)] = R_E^2(Q^2) - \frac{6}{Q^2} \ln (1 + \epsilon).
\]

If \(\epsilon\) is positive, this is not a problem — the lower bound is preserved: \(R_E^{2 \text{exp}}(Q^2) \leq R_E^2\), for \(\epsilon \geq 0\). In the case of \(\epsilon < 0\), in a certain low-\(Q^2\) region, the bound is violated:

\[
R_E^{2 \text{exp}}(Q^2) \not\leq R_E^2, \quad \text{for } Q^2 < Q_0^2,
\]

where \(Q_0\) is the root of the following equation:

\[R_E^2(Q_0^2) - \frac{6}{Q_0^2} \ln (1 + \epsilon) = R_E^2.\]

Assuming \(Q_0\) is small, we can use the expanded form of \(R_E^2(Q^2)\) in Eq. (11), to find:

\[Q_0^2 = \sqrt{-\frac{6\ln (1 + \epsilon)}{20 [r^4]_E - 12 R_E^2}}.\]

For example, taking \(\epsilon = -0.001\) and typical values of the radii [36], this equation gives \(Q_0^2 \approx 0.01 \text{ GeV}^2\). Therefore, one strategy for avoiding the possible normalization issue is to drop the data below a certain \(Q^2\) value from the lower-bound evaluation.

Of course, this consideration only applies when all the data points of a given dataset have the same normalization factor. In reality, the experiment of Bernauer et al. [4] has a complicated normalization procedure, involving 31 normalization factors, and one can manage to obtain significant shifts of the data points by a different fit of these factors [34,35]. These shifts could then be considered as a systematic normalization uncertainty which is only partially attributed to an overall normalization.

Therefore, it is better to treat the overall-normalization uncertainty as a systematic error. In accounting for this highly-correlated error we use the method adopted by the PDG [37, Sec. 5.2]. Namely, the averaging of the dataset \(A_i \pm \sigma_i \pm \Delta\), with \(\Delta\) the

Dataset	Average \(\sqrt{R_E^2(Q^2)}\)
Bernauer et al. [4]	\(Q^2 < 0.02 \text{ GeV}^2\)
	0.857 ± 0.010
subset “1.3”	
	0.864 ± 0.016
Mihovilović et al. [30]	all data
	0.842 ± 0.011

\[R_E^2(Q_0^2) = \frac{6}{Q_0^2} \ln (1 + \epsilon) = R_E^2.\]

\[Q_0^2 = \sqrt{-\frac{6\ln (1 + \epsilon)}{20 [r^4]_E - 12 R_E^2}}.\]
correlated systematic error, is equivalent to averaging the dataset \(A_i \pm \sigma_i' \), where \(\sigma_i' = (\sigma_i^2 + \Delta_i^2)^{1/2} \) is the redefined error with \(\Delta_i^2 = \sigma_i^2 \sum_{j=1}^n (1/\sigma_j^2) \). The systematic uncertainty of Bernauer’s data on the reduced cross section, in the low-Q region, is of the order \(10^{-3} \). Taking the latter number for \(\Delta \), the error increases as \(\sigma' \approx 4.5\sigma \), hence, the systematic error dominates in this dataset. The resulting average of the lower-bound function, including the systematic uncertainty, is given in the first row of Table 1. We have checked that the analogous account of the form-factor normalization uncertainty at the level of the \(R^2(Q^2) \) quantity, rather than the cross section, results in a slightly smaller uncertainty on the bound. In either case, this error estimate is only indicative. In a more proper error evaluation one should use the covariance matrix established in the experimental analysis.

One can also identify subsets where the normalization is an overall factor. In the experimental data of Bernauer et al, these are, for example, normalization sets (see Supplement in [4]):

- 3 (spectrometer A, 180 MeV beam energy),
- 13 (spectrometer B, 180 MeV beam energy),
- 6:9 (spectrometer B, 315 MeV beam energy).

The most precise result is coming from the subset 1:3, because it is the largest in the relevant low-Q region. The resulting average for the subset 1:3 is shown in Fig. 3 and, including the above-mentioned systematic error, the second row of Table 1.

Both rows yield essentially the same lower bound: \(R_E > 0.847 \) fm at 95% confidence level (CL) for the full Bernauer’s dataset vs. \(R_E > 0.848 \) fm for the subset 1:3. We chose to show only the former value in the summary plot of Fig. 1, cf. the blue band.

The average of the ISR data, shown in the last row of Table 1 (includes statistical errors only), yields a smaller lower bound: \(R_E > 0.831 \) fm at 95% CL, represented by the light-red band in Fig. 1.

5. Conclusion

An extraction of the proton charge radius from ep scattering requires an extrapolation to zero momentum transfer, which nowadays is entangled in the analysis of ep data. We aim here to get rid of the extrapolation issues in the interpretation of ep data. We show that the ep scattering may directly provide a lower bound on the proton charge radius, cf. Eq. (10) with Eq. (6). We emphasize that the lower-bound determination, unlike the extraction of the charge radius itself, does not involve any fitting of the \(Q^2 \)-dependence with subsequent extrapolation to \(Q^2 = 0 \). Thus, the lower bound is a directly observable quantity (to the same extent as is the form factor), and is a more rigorous experimental outcome than the charge radius itself.

For illustrative purposes, we have made a tentative determination of the lower bound on the proton charge radius from the available data in the region of \(Q^2 \) below 0.02 GeV\(^2\). The outcome for the two presently available experiments is given in Table 1. The lower bound resulting from Bernauer’s dataset \([R_E > 0.847 \) fm at 95% CL] appears to be in tension with the muonic-hydrogen results (see Fig. 1), albeit our uncertainty estimate is only indicative and should be taken with caution. The treatment of systematic errors, most notably the normalization uncertainty, is rather involved in this particular experiment and entangled with the radius extraction. For the bound determination one obviously needs the systematic errors of the cross section, to be determined independently of any radius extraction procedure.

Since the lower-bound function, defined in Eq. (6), is monotonically increasing with decreasing \(Q^2 \), the most stringent bound will be obtained from the lower \(Q^2 \) range, provided that the accuracy does not deteriorate with decreasing \(Q^2 \). Therefore, with the forthcoming results of the PRad experiment [38,39], one hopes to obtain a much better determination of the lower bound. The PRad data will reach down to \(2 \times 10^{-4} \) GeV\(^2\) and include a simultaneous measurement of the Müller scattering. The latter will allow to further reduce the systematic uncertainties.

Acknowledgements

We are grateful to Jan Bernauer, Michael Distler, Miha Mihovilović, and Thomas Walcher for sharing their data with us and helpful communications; to Douglas Higinbotham for checking some of our results and an interesting discussion; to Patricia Bickert, Ashot Gasparian, Vadim Lensky, and Stefan Scherer for useful remarks on the manuscript. This work was supported by the Swiss National Science Foundation and the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center 1044 [The Low-Energy Frontier of the Standard Model].

References

[1] R. Hofstadter, R.W. McAllister, Electron scattering from the proton, Phys. Rev. 98 (1955) 217–218.
[2] R. Hofstadter, Nuclear and nucleon scattering of high-energy electrons, Annu. Rev. Nucl. Part. Sci. 7 (1957) 231–316.
[3] J. Bernauer, et al., High-precision determination of the electric and magnetic form factors of the proton, Phys. Rev. Lett. 105 (2010) 242001.
[4] J.C. Bernauer, M.O. Distler, J. Friedrich, T. Walcher, Electric and magnetic form factors of the proton, Phys. Rev. C 90 (2014) 015206.
[5] P. Pohl, et al., The size of the proton, Nature 466 (2010) 213–216.
[6] A. Antognini, et al., Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen, Science 339 (2013) 417–420.
[7] F.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84 (2012) 1547–1605.
[8] F.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys. 88 (2016) 035009.
[9] A. Beyer, L. Mainenbacher, A. Matveev, R. Pohl, K. Khabarova, A. Grinin, T. Lamour, D.C. Yost, T.W. Hänsch, N. Kolachevsky, T. Udem, The Rydberg constant and proton size from atomic hydrogen, Science 358 (2017) 79–85.
[10] H. Fleurbœuf, S. Galtier, S. Thomas, M. Bonnand, L. Julien, F. Biraben, F. Nez, M. Abgrall, J. Guna, New measurement of the 1S – 3S transition frequency of hydrogen: contribution to the proton charge radius puzzle, Phys. Rev. Lett. 120 (2018) 183001.
[11] D. Borisjuk, Proton charge and magnetic rms radii from the elastic ep scattering data, Nucl. Phys. A 843 (2010) 59–67.
[12] R.J. Hill, G. Paz, Model independent extraction of the proton charge radius from electron scattering, Phys. Rev. D 82 (2010) 113005.
[13] X. Zhan, K. Allada, D. Armstrong, J. Arrington, et al., High precision measurement of the proton elastic form factor ratio \(g_{E2}/g_{M1} \) at low \(Q^2 \), Phys. Lett. B 705 (2011) 59–64.
[14] I. Sick, Problems with proton radii, Prog. Part. Nucl. Phys. 67 (2012) 473–478.
[15] K.M. Graczyk, C. Juszcak, Proton radius from Bayesian inference, Phys. Rev. C 90 (2014) 054334.
[16] J. Arrington, I. Sick, Evaluation of the proton charge radius from e-p scattering, J. Phys. Chem. Ref. Data 44 (2015) 031204.
[17] K. Griffioen, C. Carlson, S. Maddox, Consistency of electron scattering data with a small proton radius, Phys. Rev. C 93 (2016) 065207.
[18] G. Lee, J.R. Arrington, R.J. Hill, Extraction of the proton radius from electron-proton scattering data, Phys. Rev. D 92 (2015) 013013.
[19] D.W. Higinbotham, A.A. Kabir, V. Lin, D. Meekins, B. Norum, B. Sawatzky, Proton radius from electron scattering data, Phys. Rev. C 93 (2016) 065207.
[20] M. Horbatsch, E.A. Hessels, A. Pineda, Proton radius from electron-proton scattering and chiral perturbation theory, Phys. Rev. C 95 (2017) 035203.
[21] C. Adamuscin, S. Dubnicka, A. Dubnickova, New value of the proton charge root mean square radius, Prog. Part. Nucl. Phys. 67 (2012) 479–485.
[22] I.T. Lorenz, H.W. Hammer, U-G. Meissner, The size of the proton – closing in on the radius puzzle, Eur. Phys. J. A 48 (2012) 151.
[23] I. Lorenz, U. Meißner, H. Hammer, Y. Dong, Theoretical constraints and systematic effects in the determination of the proton form factors, Phys. Rev. D 91 (2015) 014023.
[24] J.M. Alarcón, D. Higinbotham, C. Weiss, Z. Ye, Proton charge radius extraction from electron scattering data using dispersive improved chiral effective field theory, arXiv:1809.06373 [hep-ph], 2018.
[25] J.C. Bernauer, Avoiding common pitfalls and misconceptions in extractions of the proton radius, arXiv:1606.02159 [nucl-th], 2016.
[26] T.R. Hayward, K.A. Griffioen, Evaluation of low-Q^2 fits to ep and ed elastic scattering data, arXiv:1804.09150 [nucl-ex], 2018.
[27] X. Yan, D.W. Higinbotham, D. Dutta, H. Gao, A. Gasparian, M.A. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, W. Xiong, Robust extraction of the proton charge radius from electron-proton scattering data, Phys. Rev. C 98 (2018) 025204.
[28] C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Nucleon electromagnetic form factors, Prog. Part. Nucl. Phys. 59 (2007) 694–764.
[29] M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.W. Hammer, U.G. Meißner, On the ππ continuum in the nucleon form factors and the proton radius puzzle, Eur. Phys. J. A 52 (2016) 331.
[30] M. Mikhailov, et al., First measurement of proton’s charge form factor at very low Q^2 with initial state radiation, Phys. Lett. B 771 (2017) 194–198.
[31] G.A. Miller, Transverse charge densities, Annu. Rev. Nucl. Part. Sci. 60 (2010) 1–25.
[32] R.N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill International Editions, 2000.
[33] W. R. Inc. Mathematica, Version 11.3, 2018, Champaign, IL.
[34] D.W. Higinbotham, Private communication (2018).
[35] D.W. Higinbotham, R.E. McClellan, How variation in analytic choices can affect normalization parameters and proton radius extractions from electron scattering data, arXiv:1902.08185 [physics.data-an], 2019.
[36] M. Distler, J.C. Bernauer, T. Walcher, The RMS charge radius of the proton and Zemach moments, Phys. Lett. B 696 (2011) 343–347.
[37] K.A. Olive, et al., Rev. Part. Phys., Chin. Phys. C 38 (2014) 090001.
[38] A. Gasparian, for the PRad at JLab Collaboration, The PRad experiment and the proton radius puzzle, EPJ Web Conf. 73 (2014) 07006.
[39] C. Peng, H. Gao, Proton charge radius (PRad) experiment at Jefferson lab, EPJ Web Conf. 113 (2016) 03007.