Elevated PLA2G7 Gene Promoter Methylation as a Gender-Specific Marker of Aging Increases the Risk of Coronary Heart Disease in Females

Danjie Jiang1,2,3, Dawei Zheng1,9, Lingyan Wang4,9, Yi Huang2,3, Haibo Liu5, Leiting Xu2,3, Qi Liao2,3, Panpan Liu2,3, Xinbao Shi1, Zhaoyang Wang1, Lebo Sun1, Qingyun Zhou1, Ni Li1, Limin Xu2,3, Yanping Le2,3, Meng Ye2,3, Guofeng Shao1,9, Shiwei Duan2,9

1 Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China, 2 The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China, 3 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University, Ningbo, Zhejiang, China, 4 Bank of Blood Products, Ningbo No.2 Hospital, Ningbo, Zhejiang, China, 5 Yinzhou People’s Hospital, Ningbo University, Ningbo, Zhejiang, China

Abstract

PLA2G7 gene product is a secreted enzyme whose activity is associated with coronary heart disease (CHD). The goal of our study is to investigate the contribution of PLA2G7 promoter DNA methylation to the risk of CHD. Using the bisulphite pyrosequencing technology, PLA2G7 methylation was measured among 36 CHD cases and 36 well-matched controls. Our results indicated that there was a significant association between PLA2G7 methylation and CHD (adjusted P = 0.025). Significant gender-specific correlation was observed between age and PLA2G7 methylation (males: adjusted r = -0.365, adjusted P = 0.037; females: adjusted r = 0.373, adjusted P = 0.035). A breakdown analysis by gender showed that PLA2G7 methylation was significantly associated with CHD in females (adjusted P = 0.003) but not in males. A further two-way ANOVA analysis showed there was a significant interaction between gender and status of CHD for PLA2G7 methylation (gender*CHD: P = 6.04E−7). Moreover, PLA2G7 methylation is associated with the levels of total cholesterol (TC, r = 0.462, P = 0.009), triglyceride (TG, r = 0.414, P = 0.02) and Apolipoprotein B (ApoB, r = 0.396, P = 0.028) in females but not in males (adjusted P = 0.4). Receiver operating characteristic (ROC) curves showed that PLA2G7 methylation could predict the risk of CHD in females (area under curve (AUC) = 0.912, P = 2.40E−5). Our results suggest that PLA2G7 methylation changes with aging in a gender-specific pattern. The correlation between PLA2G7 methylation and CHD risk in females is independent of other parameters including age, smoking, diabetes and hypertension. PLA2G7 methylation might exert its effects on the risk of CHD by regulating the levels of TC, TG, and ApoB in females. The gender disparities in the PLA2G7 methylation may play a role in the molecular mechanisms underlying the pathophysiology of CHD.

Introduction

DNA methylation often occurs in a CpG dinucleotide context and promoter DNA methylation can regulate the expression level of gene. Vertebrate CpG islands (CGIs) are short interspersed CpG-rich DNA sequences predominantly nonmethylated in or near approximately 40% of promoters of mammalian genes [1]. CGI hypermethylation of gene promoter usually silences gene expression [2]. Aberrant DNA methylation has extensively studied for the pathogenesis of multiple cancers including colorectal cancer [3], lung cancer [4], and leukemia [5]. However, only a few studies [6–10] have indicated an involvement of DNA promoter methylation in the susceptibility of coronary heart disease (CHD) that is the top killer in the world.

Gender disparities exist in the incidence, clinical presentation, diagnosis, and the surgical treatment of CHD [11]. For example, there are significantly more men die of CHD than women each year [11,12]; Men suffered more from CHD and showed significantly more often chest pain localized on the right side of the chest [13]; Women were treated less intensively in the acute phase of acute coronary syndrome (ASC), while men were more often referred for coronary angiography [14–18]. Gender-related studies in CHD have identified a handful of biomarkers to clarify the differences between women and men [19]. It has been reported that by regulating expression of target gene, hormone-induced DNA methylation may increase or reduce the risk of complex diseases such as CHD [20]. Therefore, the gender difference in the epidemiological studies is likely attributable to the epigenetic modifications [21–23] such as DNA methylation.
PLA2G7 gene product is a secreted enzyme whose activity is associated with CHD [24,25]. Circulating lipoprotein-associated phospholipase A2 (Lp-PLA2) may indicate the inflammation level which plays a key role in the development of CHD [26,27]. Lp-PLA2 is expressed abundantly in the necrotic core of coronary lesions [28], and once in the arterial wall facilitates hydrolysis of phospholipids [29]. PLA2G7 gene expression and its expression quantitative locus were associated with CHD [30,31]. In light of the previous findings, we hypothesized that promoter DNA methylation of PLA2G7 gene in peripheral blood might contribute to the risk of CHD. Thus, the goal of this study was to assess whether PLA2G7 gene promoter DNA methylation is associated with the risk of CHD and whether the association, if exists, is gender-specific.

Materials and Methods

Sample and Clinical Data
A total of 36 CHD cases and 36 age- and sex-matched controls were collected from the patients in the Ningbo Lihuili Hospital. The details of the inclusion criteria were presented in our previous publication [32]. All the individuals were Han Chinese originated from Ningbo city in the Eastern China. Blood samples were collected in 3.2% citrate sodium-treated tubes and then stored at -80°C. The study protocol was approved by the Ethical Committee of Ningbo Lihuili Hospital, and the informed written consent was obtained from all the subjects.

Biochemical Analyses
Human genomic DNA was prepared from peripheral blood samples using the nucleic acid extraction analyzer (Lab-Aid 820, Xiamen City, China). DNA concentrations were determined by the ultramicro nucleic acid ultraviolet tester (NANODROP 1000, Wilmington, USA). Plasma levels of TG, TC, high density lipoprotein (HDL), and low density lipoprotein (LDL) were measured using an enzymatic end point assay [33]. The ApoA, ApoB and ApoE levels were measured by the transmission turbidimetric method [34]. The plasma Lp(a) concentrations were determined by a sandwich enzyme-linked immunosorbent assay.

Characteristics	Men (n = 36) Mean±s.e.	Women (n = 36) Mean±s.e.	P value
Age (years)	62.0±5.4	62.2±5.4	0.896
TG (mmol/L)	2.39±0.82	2.75±0.80	0.054
TC (mmol/L)	4.19±0.85	4.64±0.84	0.060
HDL (mmol/L)	1.08±0.20	1.20±0.25	0.173
LDL (mmol/L)	1.59±0.90	1.54±0.95	0.444
ApoA I (g/L)	0.88±0.14	0.91±0.13	0.789
ApoB (g/L)	0.63±0.15	0.67±0.16	0.226
ApoE (g/L)	4.2±1.2	6.8±8.3	0.005d
Lp(a) (g/L)	0.27±0.36	0.31±0.33	0.298e
hs-CRP (mg/L)	3.2±3.4	3.5±3.5b	0.664b
ALB (g/L)	42.2±4.1	41.4±3.2	0.126
GLB (g/L)	22.6±3.7	25.4±3.6	0.112
A/G	1.9±0.3	1.7±0.3	0.033
ALT (IU/L)	24±14	23±15	0.502
AST (IU/L)	21±7	22±8	0.808
ALP (IU/L)	60±15	70±18	0.130
GGT(IU/L)	29±20	25±25	0.929c
mean PLA2G7 methylation (%)	5.08±2.65	5.15±3.29	0.226

aP values were adjusted for the history of smoking, diabetes and hypertension.

bAn outlier due to the clerical error was eliminated.

cLog-transformation was used.

dNonparametric rank test was applied.

Figure 1. Significant correlation among the four CpGs in PLA2G7 gene promoter.
doi:10.1371/journal.pone.0059752.g001
and hypertension. r values and P values were adjusted for the history of smoking, diabetes and hypertension.

For PLA2G7 gene promoter DNA methylation levels of PLA2G7 promoter region of gene, we performed a bisulphate pyrosequencing assay. As shown in Figure 1, the bisulphate pyrosequencing assay was carried on a fragment (hg19, chr6:46702737–46703316) in the promoter region of PLA2G7 gene. This fragment contained 4 CG sites that could be measured to evaluate the methylation levels of PLA2G7 gene promoter. Methylation levels of these 4 CpGs (Figure 1, r = 0.8, P = 0.0001) was found among these 4 CpGs. No gender difference was observed for the methylation level of PLA2G7 gene (Table 1, adjusted P = 0.025).

It was intriguing that we observed a gender-specific pattern of the correlation between age and PLA2G7 gene methylation. As shown in Figure 2, males: adjusted r = −0.365, adjusted P = 0.037; females: adjusted r = 0.373, adjusted P = 0.035. A further breakdown analysis by gender found that the significant association only existed in the female subgroup (Figure 3, females: uncorrected r = 0.365, adjusted r = 0.373, adjusted P = 0.033; males: uncorrected r = 0.041, adjusted P = 0.096).

As shown in Table 1 and 2, a total of 16 phenotypes were compared between CHD cases and controls. P = 4.5E−6, adjusted P = 0.003; males: uncorrected P = 0.041, adjusted P = 0.096. To note, the adjusted P values were corrected by age, the history of smoking, diabetes and hypertension. A further two-way ANOVA analysis also showed there was a significant interaction between gender and status of CHD for the methylation level of PLA2G7 gene (gender*CHD: P = 6.04E−7).

Table 2. Characteristics of subjects from cases and controls. P values were adjusted for age, the history of smoking, diabetes and hypertension.

Characteristics	Cases (n = 36) Mean±s.e.	Controls (n = 36) Mean±s.e.	P value
Age	62.5±5.5	61.7±5.2	0.802
Gender (M/F)	18/18	18/18	1.000
TG (mmol/L)	2.66±0.86	2.48±0.80	0.554
TC (mmol/L)	4.49±0.90	4.34±0.86	0.591
HDL (mmol/L)	1.15±0.24	1.13±0.22	0.747
LDL (mmol/L)	1.51±0.98	1.62±0.86	0.700
ApoA I (g/L)	0.90±0.11	0.90±0.16	0.845
ApoB (g/L)	0.66±0.17	0.66±0.15	0.686
ApoE (g/L)	6.5±8.4	4.5±1.2	0.910d
Lp (a) (g/L)	0.32±0.38	0.27±0.31	0.325e
hs-CRP (mg/L)	3.5±3.5	3.1±3.5^d	0.257f
ALB (g/L)	41.6±3.8	42.0±3.6	0.487
GLB (g/L)	24.2±3.7	23.8±4.1	0.942
A/G	1.8±0.3	1.8±0.3	0.697
ALT (IU/L)	26±17	21±11	0.168
AST (IU/L)	23±9	21±6	0.398
ALP (IU/L)	65±19	65±16	0.912
GGT (IU/L)	28±26	27±20	0.721f
mean PLA2G7 methylation (%)	6.41±2.62	4.98±3.06	0.025

P values were adjusted for the history of smoking, diabetes and hypertension.

*An outlier due to the clerical error was eliminated.

Log-transformation was used.

Nonparametric rank test was applied.

doi:10.1371/journal.pone.0059752.t002

Figure 2. Correlation between PLA2G7 methylation and age. r values and P values were adjusted for the history of smoking, diabetes and hypertension.

doi:10.1371/journal.pone.0059752.g002

Figure 3. Comparison of PLA2G7 methylation levels between cases and controls. P values were adjusted for age, the history of smoking, diabetes and hypertension.

doi:10.1371/journal.pone.0059752.g003
involved in the present study. Among these phenotypes, only the ratio of albumin to globulin (A/G) showed a significant difference between men and women (Table 1, adjusted P = 0.033). No significant association was observed between A/G phenotype and CHD risk in either the female subgroup (P = 0.293) or the male subgroup (P = 0.716). And there is no correlation between the PLA2G7 methylation and A/G phenotypes in either the female subgroup (plot 3b, r = 0.062, P = 0.739) or the male subgroup (r = 0.050, P = 0.786). No significant association of the rest phenotypes with the risk of CHD was found (Table 2). Interestingly, a significant female-specific association was found between PLA2G7 promoter DNA methylation and phenotypes including

![Figure 4. Pearson correlation between PLA2G7 DNA methylation and TC, TG, ApoB.](image)
a) r values and P values were adjusted for age, the history of smoking, diabetes and hypertension.
doi:10.1371/journal.pone.0059752.g004

![Figure 5. ROC curves of PLA2G7 in total, male and female samples.](image)
doi:10.1371/journal.pone.0059752.g005
Discussion

CHD cases were observed to have significantly higher genomic DNA methylation in peripheral lymphocytes in comparison to non-CHD controls [39]. In addition, candidate epigenetics analysis showed that altered ABCA1 promoter DNA methylation was associated with the risk of CHD [10]. In the present study, we had recruited 36 cases and 36 gender- and age-matched controls to test the association between DNA methylation of PLA2G7 gene and the risk of CHD. We found that PLA2G7 methylation changes with aging in a gender-specific pattern, which accords with the previous observation that the pattern of DNA methylation changes individually over time [40].

PLA2G7 is the coding gene for Lp-PLA2 whose abnormal activity can cause high risk of CHD [39] and may serve as a diagnostic marker for CHD [27]. However, controversies remained in the association between PLA2G7 variants and the risk of CHD [27,30,31,41,42]. The present study demonstrated that PLA2G7 methylation changes with aging differently in two genders. Its female-specific contribution to the risk of CHD provides epigenetic clues to explain the inconsistency in the epidemiological studies.

Epidemiologic evidence from observational studies and randomized clinical trials identified high risk factors of CHD among older men and women [43]. Among the conventional risk factors, diabetes mellitus and hyperlipidemia was shown to impact more on women while smoking was found to affect more on men [44]. To test the difference between male cases and controls, the unadjusted P value reached the significant level (P = 0.05, Figure 3). However, the significance disappeared after corrected by age, the history of smoking, diabetes and hypertension (P = 0.096). So we speculate that environmental factors such as aging, smoking, diabetes and hypertension may play their roles in the risk of CHD through affecting PLA2G7 methylation.

Gender difference exists in both the age of onset [45] and the long-term prognosis of CHD patients [46]. Estrogen regulates the enzymatic activity of PLA2G7 protein and thus causes significant changes in the metabolism of cholesterols and apolipoproteins [47-49]. In the present study, we observed a gender-dependent correlation between age and PLA2G7 methylation and an interaction between PLA2G7 methylation and gender. TC, TG, and ApoB are known as important risk factors of CHD [50,51]. And these findings suggest that PLA2G7 methylation may exert its effects on the risk of CHD by regulating the levels of TC, TG, and ApoB in females.

PLA2G7 methylation was shown to be controlled by the interactive effect of CHD status and gender. Female cases had a higher PLA2G7 methylation level than female controls while it was the opposite in males, although the latter comparison was not significant after correction with confounding factors such as smoking and status of diabetes and hypertension. The trend of correlation between PLA2G7 methylation and age was clearly opposite in the two genders. The ROC curves showed a much higher accuracy of PLA2G7 methylation to predict CHD in females than in males.

Although there is a paucity of evidence showing a gender-dimorphism of methylation-mediated PLA2G7 expression in CHD, we observe a possible connection with APOE gene that may help explain our results. As shown in the Figure S1, there is an APOE-dependent correlation between PLA2G7 expression and aging in mice (F = 12.42, P = 0.0074) [52]. Moreover, a female-specific interaction was found between APOE genotype and the metabolism of HDL [53], which is an important protective factor in cardiovascular diseases including CHD. Another piece of evidence has shown a significant association between APOE expression and aging [54]. All the above evidence about APOE gene might give a plausible explanation for the sex-dimorphism of the association of PLA2G7 promoter methylation with aging in CHD, although cautions need to be taken without direct supportive evidence. Future investigation of APOE interaction with PLA2G7 is needed to confirm this speculation.

There were some limitations in our study. Firstly, the sample size in our study is relatively small. Future investigation with more samples needs to be performed to confirm our findings. Secondly, only a fragment of the CGI was selected to stand for the whole promoter of PLA2G7. Thirdly, PLA2G7 methylation was measured in the whole peripheral blood which contained the DNA from a mixture of lymphocytes, granulocytes and other cell types. Fourthly, although we tried our best to control the confounding factors that may affect the methylation level of PLA2G7, there existed a possibility of an unknown factor that might confound the alteration of PLA2G7 methylation. Fifth, we didn’t explore the mechanism why PLA2G7 methylation correlated with TG, TC and ApoB in females. The exact interactions among them remained to be explained in the future work. Sixth, some P values in our study will not retain significance after being corrected by the number of tests. Therefore, we can’t exclude a chance of random positive findings among these results. Finally, the ages of female samples in our study range from 52 to 72. The mean age of natural menopause was 48.72±3.51 for Chinese female residents in city according to an epidemiological report in China [55]. As shown in Figure S2, the significance of association is mainly contributed by the elderly females. Thus, our results might not be feasible in the younger population.

In summary, we revealed PLA2G7 methylation as a gender-dependent marker of aging and its female-specific association with the risk of CHD and biochemistry factors such as TC, TG, and ApoB. These findings could establish a molecular link between aging and the risk of CHD and thus contribute to a better understanding of the molecular mechanisms underlying the pathophysiology of CHD. The above clues may help improve the current clinical diagnosis and treatment of CHD.

Supporting Information

Figure S1 Comparison of PLA2G7 methylation levels between cases and controls in different age groups in females. a) P values were adjusted for age, the history of smoking, diabetes and hypertension.

Figure S2 Correlation between PLA2G7 methylation and age.

Table S1 Primer information of PLA2G7 methylation assay.
Author Contributions
Conceived and designed the experiments: SD GS MY. Performed the experiments: DJ YH QL YL. Analyzed the data: DJ QL PL LX. Conceived and designed the experiments: SD GS MY. Performed the

References
1. Faterni M, Pao MM, Jeong S, Gal-Yam EN, Egger G, et al. (2005) Footprinting of mammalian promoters: use of a Cpg DNA methyltransferase releasing nucleosome positions at a single molecule level. Nucleic Acids Res 33: e176.
2. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Gene Dev 25: 1010–1022.
3. Kim MS, Lee J, Sidransky D (2010) DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 29: 181–206.
4. Kerr KM, Gallser JS, Hagen JA, Laird PW, Laird-Oiffinga I (2007) The role of DNA methylation in the development and progression of lung adenocarcinoma. Dis Markers 23: 5–30.
5. Akalin A, Garrett-Bakelman FE, Kormaksson M, Buniatli J, Zhang L, et al. (2012) Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 8: e1002781.
6. Post WS, Goldschmidt-Clermont PJ, Willhide CC, Heldman AW, Sussman MS, et al. (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43: 965–991.
7. Turunen MP, Aavik E, Yla-Herttuala S (2009) Epigenetics and atherosclerosis. Biochim Biophys Acta 1790: 886–891.
8. Bressler J, Shimmin LC, Boerwinkle E, Hixson JE (2011) Global DNA methylation and risk of subclinical atherosclerosis in young adults: The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Atherosclerosis 219: 958–962.
9. Friis S, Lotto V, Choi SW, Girelli D, Pinotti M, et al. (2012) Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J Med Genet 49: 192–199.
10. Guay SP, Brisson D, Munger J, Lamarche B, Gaudet D, et al. (2012) ABCA1 gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia. Epigenetics 7: 464–472.
11. Lawton JS (2011) Sex and gender differences in coronary artery disease. Semin Thorac Cardiovasc Surg 23: 126–130.
12. Anderson J, Keesenich CR (2001) Women and coronary heart disease. Nurse Pract 26: 12, 18–13 passion; quiz 32–13.
13. Bosser S, Haasenrietter J, Hani MA, Keller H, Sonnemich AS, et al. (2009) Gender differences in presentation and diagnosis of chest pain in primary care. BMC Fam Pract 10: 79.
14. Stone PH, Thompson B, Anderson HV, Kronenberg MW, Gibson RS, et al. (1996) Influence of race, sex, and age on management of unstable angina and non-Q-wave myocardial infarction: The TIMI III registry. JAMA 275: 1104–1112.
15. Chandra NC, Ziegelstein RC, Rogers WJ, Tiefenbrunn AJ, Gore JM, et al. (2012) ABCA1 polymorphisms and coronary heart disease risk: a meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J 33: 238–251.
16. Li Q, Li Q, Lv N, Gao Q, Cheng Y, et al. (2011) Association between lipoprotein-associated phospholipase A2 gene polymorphism and coronary artery disease in the Chinese Han population. Ann Hum Genet 75: 605–611.
17. Zhou J, Huang Y, Huang RS, Wang F, Xu L, et al. (2012) A case-control study provides evidence of association for a common SNP rs674819 in PDGF linked to coronary heart disease and suggests a sex-dependent effect. Thromb Res 130: 602–606.
18. Lopez-Varela MJ, Stone P, Ellis S, Colwell JA (1977) Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 23: 882–884.
19. Chen C (2001) A survey of the dietary nutritional composition of centenarians. Chin J Engl 114: 1003–1009.
20. Schumann G, Bonora R, Ceriotti F, Ferard G, Ferrero CA, et al. (2002) IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 4: Reference procedure for the measurement of catalytic concentration of alanine aminotransferase. Clin Chim Lab Med 40: 615–621.
21. Schumann G, Bonora R, Ceriotti F, Ferard G, Ferrero CA, et al. (2002) IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 6: Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase. Clin Chim Lab Med 40: 734–738.
22. Doumas BT, Peters T, Jr. (1997) Serum and urine albumin: a progress report on their measurement and clinical significance. Clin Chem Acta 258: 3–20.
23. Sharma P, Kumar J, Garg A, Pal A, et al. (2010) Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol 27: 357–365.
24. Bjornsson HT, Sigurdsson MI, Fallin MD, Izirray RA, Aspelund T, et al. (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299: 2877–2883.
25. Wang Q, Hao Y, Mo X, Wang L, Lu X, et al. (2010) PL2AG7 gene polymorphisms and coronary heart disease risk: a meta-analysis. Thromb Res 126: 495–503.
26. Casas JP, Nissinen A, Panayiotou A, Palmer J, Cooper JA, et al. (2010) PL2AG7 genotype, lipoprotein-associated phospholipase A2 activity, and coronary heart disease risk in 10 494 cases and 15 624 controls of European Ancestry. Circulation 121: 2294–2299.
27. Corr ICM, Guralnik JM, Bilato C (1996) Coronary heart disease risk factors in older persons. Aging (Milano) 8: 75–89.
28. Zhao Y, Tian F, Hu SY, Wang J, Zhang T, et al. (2012) Characteristics of traditional risk factors and coronary lesions on coronary heart disease among different sex populations. Zhonghua Xin Xing Bing Xue Za Zhi 33: 425–427.
29. Hyvarinen M, Qiao Q, Tuomilehto J, Soderberg S, Elasson M, et al. (2010) The difference between acute coronary heart disease and ischaemic stroke with regard to gender and age in Finnish and Swedish populations. Eur J Stroke 5: 152–156.
30. van der Meer MG, Cramer MJ, van der Graaf Y, Doevendans PA, Nathan HM (2012) Gender difference in long-term prognosis among patients with cardiovascular disease. Eur J Prev Cardiol 19: 237–245.
31. Yasuda K, Furukawa M, Johnston JM (1996) Effect of estrogen on plasma platelet-activating factor acetylhdrolyse and the timing of parturition in the rat. Biol Reprod 54: 224–229.

Contributed reagents/materials/analysis tools: DJ LW HL LX XS ZW LS QZ NL. Wrote the paper: DJZ SD GS MY LX.
48. Yoshimura T, Ohshige A, Maeda T, Ito M, Okamura H (1999) Estrogen replacement therapy decreases platelet-activating factor-acetylhydrolase activity in post-menopausal women. Maturitas 31: 249–253.
49. Yasuda K, Johnston JM (1992) The hormonal regulation of platelet-activating factor-acetylhydrolase in the rat. Endocrinology 130: 708–716.
50. Fang C, Chen Y, Nie R, Li G, Xu G, et al. (2009) Retrospective analysis of risk factors in young patients with coronary artery disease in Guangdong and Zhejiang, China. Acta Cardiol 64: 195–199.
51. Ajmal M, Ahmed W, Sadque A, Ali SH, Bokhari SH, et al. (2010) Identification of a recurrent insertion mutation in the LDLR gene in a Pakistani family with autosomal dominant hypercholesterolemia. Mol Biol Rep 37: 3860–3875.
52. Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, et al. (2009) Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med 206: 233–248.
53. Mosher MJ, Lange LA, Howard BV, Lee ET, Best LG, et al. (2008) Sex-specific interaction between APOE genotype and carbohydrate intake affects plasma HDL-C levels: the Strong Heart Family Study. Genes Nutr 3: 87–97.
54. Bekris LM, Millard SP, Galloway NM, Vuletic S, Albers JJ, et al. (2008) Multiple SNPs within and surrounding the apolipoprotein E gene influence cerebrospinal fluid apolipoprotein E protein levels. J Alzheimers Dis 15: 255–266.
55. Nie G-n, Wang X-y, Yang H-y, Ou A-h (2011) The research on the factors affecting the timing of natural menopause in Chinese city women. Maternal and Child Health Care of China 26: 3.