Healthcare-seeking delay during COVID-19 pandemic among tuberculosis patients in Ilubabor zone health facilities, south-west Ethiopia

Jira Wakoya Feyisa1, Keno Melkamu Kitila2, Jiregna Chalchisa Lemu3, Megersa Dinku Hunde3 and Aboma Diriba Hunde4

Abstract

Introduction: Fear of COVID-19 makes tuberculosis (TB) patients seek health care after complications of the case. This can be the reason for serious illness, increased length of infectiousness, poor treatment outcomes, and economic crisis for families and the health system. Despite this, no study has been conducted in Ethiopia and in other African countries with the factor “fear of COVID-19.” Identified preventable factor and other covariates are used to reduce the healthcare-seeking delay.

Objective: This study assessed the association of fear of COVID-19 with healthcare-seeking delay among TB patients in Ilu Ababor Zone health facilities, south-western Ethiopia.

Methods and materials: A health institution-based cross-sectional study was conducted among TB patients from October 15, 2020, to March 1, 2021. Using a systematic sampling method, 403 TB patients were selected for face-to-face interviews. The association of fear of getting COVID-19 with healthcare-seeking delay was assessed by a chi-square test. Variables with a p-value <0.25 in the bi-variable binary logistic regression were entered into the multivariable binary logistic regression model. The level of statistical significance in multivariable binary logistic regression was declared at a p-value <0.05.

Result: In this study, the proportion of patient healthcare-seeking delay was 46.7%. Chi-square test of the association of fear of COVID-19 with healthcare-seeking delay among TB patients showed a significant association (p-value = 0.042). After controlling for covariates, patients living in rural area (adjusted odds ratio (AOR) = 2.437, 95% confidence interval (CI): 1.385–4.286), patients with poor knowledge (AOR = 3.300, 95% CI: 1.792–6.078), earning monthly income <200 Ethiopian birr (ETB) (AOR = 3.912 95% CI: 1.951–7.841), traveling greater than 30 min (AOR = 2.127, 95% CI: 1.301–3.476), and fear of COVID-19 pandemic (AOR = 3.124, 95% CI: 1.029–9.479) were significantly associated with patient healthcare-seeking delay.

Conclusion: The study found that healthcare-seeking delay among TB patients was substantial. Patient healthcare-seeking delay was significantly associated with fear of COVID-19.

Keywords
Healthcare-seeking delay, COVID-19, TB patient, Ethiopia

Date received: 24 May 2022; accepted: 10 November 2022

1Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
2Department of Public Health, College of Health Sciences, Mettu University, Mettu, Ethiopia
3Department of Nursing, College of Health Sciences, Mettu University, Mettu, Ethiopia
4Department of Midwifery, College of Health Sciences, Mettu University, Mettu, Ethiopia

Corresponding author:
Jira Wakoya Feyisa, Department of Public Health, Institute of Health Sciences, Wollega University, Nekemte, Oromia 395, Ethiopia.
Email: jirawakoya462@gmail.com
Introduction

Tuberculosis (TB) is a chronic contagious disease caused by *Mycobacterium tuberculosis* complex and other related species. Early diagnosis of TB and treatment effects are the keystones of global TB control programs. Despite the exhaustive strategies of the World Health Organization for controlling this disease, millions of people are still being infected annually. Therefore, individuals who had a cough and/or other clinical manifestations should seek health care as early as possible. Strategies of TB control and prevention are to identify and treat new incident cases as early as possible, but the strategy is hard to meet because patients usually go to the health facility (HF) late.

TB remains a major public health problem in Ethiopia and this could be partly due to patient healthcare-seeking delay. A result of the first national TB prevalence survey conducted in 2011 revealed that smear-positive pulmonary TB (SPTB) prevalence was 108/100,000; of which 55% were not detected before the survey. Moreover, according to a recent global report, about 32% of TB cases in Ethiopia mean that approximately 54,295 TB cases from an estimated 172,000 new cases may not have been diagnosed and properly treated and left in the population.

Late TB case identification results in serious illness, increased length of infectiousness, poor treatment outcomes, and economic crisis. Therefore, the crisis is very high from such preventable and treatable diseases because of delayed healthcare-seeking. Common factors contributing to patient healthcare-seeking delay include family size, occupation, income of family, stigma, knowledge about TB, and distance to a HF.

Cognizant of this, the Government of Ethiopia has given due attention to the control of TB and included the prevention and control of TB among the priority health programs in the country’s health sectors transformation plan. In Ethiopia, TB case findings were mainly relying on passive and community-based enhanced TB case finding as the main strategies. Although the problem is still a big issue in the country, no study has been conducted in Ethiopia and in other countries of Africa with the factor “fears of COVID-19.” Therefore, this study aimed to assess the association of fear of COVID-19 with healthcare-seeking delay among TB patients in Ilubabor zone HFs, south-west Ethiopia.

Methods and materials

Study design and population

The study was conducted in Ilubabor Zone HFs, south-west Ethiopia. A HF-based cross-sectional study was conducted from October 15, 2020, to March 1, 2021. All TB-diagnosed patients, both pulmonary and extrapulmonary cases, who were registered and receiving treatment in Ilubabor zone HFs, south-west Ethiopia were the source population. Diagnosed TB patients who were registered and receiving DOTS treatment at the 10 selected HFs during the study period were the study population in this study.

Inclusion criteria: All TB patients, both pulmonary and extrapulmonary cases, registered in the master registration book and those TB patients who transferred in for a continuation of treatment to the selected HFs were included.

Exclusion criteria: TB patients who were critically ill and unable to communicate were excluded from the study.

Sample population

The sample size for this study was calculated from a previous related study by using the single population proportion formula. The final sample size for this study was 403. The study was carried out in Ilubabor zone HFs that provide DOTS services. Ten HFs were randomly selected among the study area HFs. A systematic sampling technique using sampling interval = 2 was used to recruit the predetermined sample size (403) (Figure 1).

Dependent variables: Healthcare-seeking delay.

Independent variable: Fear of COVID-19.

Covariates

Sociodemographic: Sex, age, residence, marital status, literacy, family size, occupation, income, religion, and travel time to the HF.

Care-seeking practices: First action to illness, visited HCF, several visits to HCF, source of referral/advice to seek HCF.

Clinical factors: Type of HCF where TB is diagnosed, presenting symptoms, HIV sero-status, the severity of disease/patient functional status, types of diagnostic test used, types of TB, and history of TB contact.

Knowledge, attitude, and stigma: Knowledge of TB disease, perceived TB stigma.

Behavioral characteristics: Smoking, drinking alcohol.

Measures of healthcare-seeking delay

Healthcare-seeking delay is the time interval from the onset of symptoms of TB until the first visit to any formal HCF at a time greater than the median days as a cutoff point.
The onset of TB symptom: The time at which the first symptom (i.e. cough and other constitutional symptoms like fever, weakness, and weight loss or chest pain) of the illness for which a patient’s healthcare-seeking began.\cite{34}

Fear of COVID-19: In this study, fear of COVID-19 indicated the fear of COVID-19 during HF care-seeking. The variable was collected using the Question “Did you fear COVID-19, for HF care-seeking when you were manifesting TB symptoms?” The options were “yes, no, I don’t know COVID-19.”

Functional status

Working: Able to perform usual work in or out of the house.

Ambulatory: Able to perform activities of daily living.

Bedridden: Not able to perform activities of daily living.

Data collection tool and data collection procedure

An adapted structured questionnaire was used to gather the data.\cite{8,14} Besides, a data abstraction checklist was prepared to draw clinical profiles of the patients from the TB register. The questionnaire was initially prepared in English and then translated to Afan Oromo language, and was translated back to English to check for any inconsistencies. Data was collected by 10 nurse professionals who can speak the Afan Oromo language and 5 supervisors. Data were collected after obtaining informed written consent from the study participants.

The collected information from the TB registry and the patients were reported to the supervisors every 2–3 days, to enable taking immediate action in case inconsistencies and problems happen with the reported data. Reports were regularly cross-checked with the main TB registry found in the respective HFs and finally, the reviewed questionnaires were returned to the investigators.

Data quality assurance

To assure the data quality, a data collection tool was prepared after reviewing relevant literature and similar studies. The training was given to both data collectors and supervisors on a briefing on the general objective of the study, and a discussion of the contents of the questionnaire by the investigators. Pretesting of the questionnaire was carried out on the 5% of sample size in one of the health centers found outside of the study facilities before actual data collection. A necessary correction was made based on the pretested result to avoid any confusion and for better completion of the questions. The overall activities of data collection were also supervised and coordinated by the investigators. The completeness of the data was checked by data collectors during data collection and immediately after data collection by the supervisors and the investigators.
Statistical analysis

The collected data was entered into Epi-data version 4.4.2.1, exported to SPSS software version 25, and checked for inconsistencies and missing values by running frequencies and other data explorations. Frequency distributions mean/median and interquartile ranges were computed.

Beyond descriptive statistics, an association between the dependent variable and the independent variable (fear of COVID-19) was assessed by the chi-square test. Bi-variable binary logistic regression analysis was performed on each variable and a respective crude odds ratio was calculated. Independent variable (fear of COVID-19) and other covariates with marginal associations ($p < 0.25$) in the bi-variable binary logistic regression analysis were entered into a multivariable binary logistic regression analysis to detect factors contributed to healthcare-seeking delay among TB patients in the study area. A p-value of ≤ 0.05 was declared as statistically significant. Multicollinearity was checked using a collinearity matrix. The final model was fitted with Hosmer and Lemeshow (p-value = 0.55). The significant association of the independent variables and covariates with the dependent variable was reported using a 95% confidence interval and a respective adjusted odds ratio.

Ethical consideration

Ethical approval was obtained from the research and community service coordination office (RCS) of Mettu University College of Health Sciences with Ref/RCS/114/13. Following the approval, an official letter of cooperation was written to concerned bodies. Permission was also obtained from the zonal Health Bureau. Respondents were informed about the objective and purpose of the study and written informed consent was obtained from each respondent. Clear information was given to inform respondents about the purpose and procedure of the study, the importance of their participation, the right to withdraw at any time if they want, and about privacy and confidentiality of the information maintained throughout the study by maintaining anonymity, keeping their privacy by interviewing them in a separate room during the interview and locking records.

Results

Sociodemographic characteristics

In this study, 403 TB patients were involved and answered for the questionnaire making a response rate 100%. Most of the participants 207 (51.4%) were in the age category of 25–44 years. The number of male participants was 243 (60.3%). The majority of the participants were married—288 (71.5%). Among the participants, 189 (46.9%) were living in rural areas while the rest were in urban residences (Table 1).

Healthcare-seeking practices

Among the participants, 195 (48.4%) patients consulted informal care providers for their illnesses. The majority of the participant who visited health centers for the first time for their illness were 269 (66.7%); 289 (71.7%) of the study participants had a low stigma toward TB illness (Table 2).

Clinical characteristics

Most of the participants 292 (72.5%) were presented to HFs with coughs. The majority of the study participants 244 (60.5%) were ambulatory during a presentation to HFs. Among the patients who come to HF, 275 (68.2%) of them were SPTB (Table 3; Figures 2, 3, 4, and 5).

Knowledge status of TB patients

The attitude of patients toward TB in Ilubabor zone HFs

Frequency

Fear of COVID-19 of TB patients and its association with healthcare-seeking delay among TB patients

HF care-seeking status

Factors associated with healthcare-seeking delay among TB patients

Bi-variable logistic regression was conducted to identify candidate variables with a p-value < 0.25. The identified variables: sex, place of residence, educational status, suspecting illness to be TB, alcohol drinking status, manifested TB symptom, knowledge, monthly income, first action for consultation, distance from HFs, action enforced to seek HF, and fear of COVID-19 were entered to multivariable binary logistic regression to identify the possible significantly associated factors with healthcare-seeking delay among TB patients.

In multivariable logistic regression place of rural residence, poor knowledge, average monthly income < 2001 Ethiopian birr (ETB), distance traveled to HF > 30 min, and fear of COVID-19 were significantly associated factors with healthcare-seeking delay among TB patients in Ilubabor HFs (Table 4).

Discussion

This study was conducted to assess the association between fear of COVID-19 and healthcare-seeking delay among TB
Table 1. Sociodemographic characteristics of TB patients in Ilubabor in HFs, 2020.

Variables	Categories	Frequency (n = 403)	Percent (%)
Sex	Female	160	39.7
	Male	243	60.3
Age category	<25	66	16.4
	25–44	207	51.4
	>44	130	32.3
Residence	Urban	214	53.1
	Rural	189	46.9
Patient category	New	359	89.1
	Transfer in	44	10.9
Educational status	College and higher	72	17.9
	No formal education	66	16.4
	Primary school (1–8)	166	41.2
	Secondary school (9–12)	99	24.6
Marital status	Married	288	71.5
	Single	115	28.5
Family size	1–3	124	30.8
	>3	279	69.2
Occupation	Government employee	82	20.3
	Merchant	25	6.2
	Farmer/wife	153	38.0
	Other	143	35.5
Traveling time to a HF	>30 min	226	56.1
	≤30 min	177	43.9

HF: health facility; TB: tuberculosis.

Table 2. Healthcare-seeking practices of TB patients in Ilubabor in HFs, 2020.

Variables	Categories	Frequency (n = 403)	Percent (%)
The first action to illness	Nonformal	195	48.4
	Formal care provider	208	51.6
First visit to HCF	Health center	269	66.7
	Health post	27	6.7
	Hospital	107	26.6
Number of a visit to HCF	1 times	199	49.4
	≥2 times	204	50.6
Number of HCF visited	1 HF	199	49.4
	≥2 HFs	204	50.6
Perceived TB stigma	Low TB-associated stigma	289	71.7
	High TB-associated stigma	114	28.3

HCF: health-care facility; HF: health facility; TB: tuberculosis.

patients in Ilubabor zone HFs, south-west Ethiopia. The proportion of TB patient HF care-seeking delay with a 95% confidence interval was 46.7% (41.7–51.7%). This study was in line with the study conducted in Addis Ababa 42.1% and Montenegro 49%. The proportion of patient healthcare-seeking delay in this study was lower than the study conducted in Ghana 60.3% and Kenya 87%. This might be due to community-based awareness being delivered by Ethiopian health extension workers toward early HF seeking as it is one of the responsibilities of Ethiopian health extension workers. The finding of this study was higher than the study conducted in Australia 41.3%, France 27%, Dessie 41.1% and Asella 36.7%. This might be due to fear of COVID-19 and the lifestyle of the population toward HF-seeking behavior as well as the distance from HF, monthly income of the population, and residency area matters the habit of seeking HF.

In this study, patients who were living in rural areas were twofold times more likely to delay with healthcare-seeking. This study is in line with the study conducted in Angola and Bale. The possible explanation might be the distance from the HF and the accessibility of the service. Patients who were
earning <2000 ETB average monthly income were about fourfold times to delay healthcare-seeking than those who earned >4000 ETB. This study was supported by studies conducted in Addis Ababa, Hadiya, and India. The possible explanation regarding this might be transportation fees as well as charges for the diagnostic procedure until the case is identified. If they have the case of low average monthly income, they might be challenged to seek health care as early as needed.

Poor knowledge of TB resulted in threefold times more likely to delay HF care-seeking than knowledgeable patients. This study was consistent with the study conducted in the Affar region. This might be due to low awareness about symptoms of TB and the negative impacts of TB that enforce them to seek health care to be healed from the infection as early as possible. If the patient knew about the case, they would have sought healthcare as the case is curable.

Traveling more than 30 min to a HF contributed about twofold times more likely to delay healthcare-seeking than those traveling 30 min or less. This might be related to the distance that should be traveled to access healthcare. As HFs distance from their residential area, the probability to seek health care for their problem becomes low.

Fear of COVID-19 was about threefold times more likely to delay healthcare-seeking than those not fearing COVID-19. A possible explanation might be, fear of COVID-19 challenges them to seek healthcare because of the perception going to the hospital may lead to COVID-19 exposure that may infect them. The other explanation might be due to the symptom of TB-like coughing might be considered a symptom of COVID-19 that they fear being diagnosed with COVID-19 as well as fear of isolation due to the perception of being COVID-19 patient might be the reason for healthcare-seeking delay.

Information from this study is useful in developing interventions aimed at improving the early healthcare-seeking to initiate effective chemotherapy and minimize the potential of disease transmission in the population and the burden of morbidity in the patients. In the same way, the study can help health extension workers to have adequate information to improve finding TB cases in the community, especially in the study areas.

Furthermore, findings from this study can be used by the Ilubabor Zone health department to design and develop locally an appropriate plan and implementation strategy to improve early case detection of TB patients. Finally, the study is also important in providing information for government policymakers, program planners, and nongovernmental organizations to develop a relevant intervention.

Conclusion

This study found that healthcare-seeking delay among TB patients was substantial. Factors that contributed to patient healthcare-seeking delay were fear of COVID-19, rural area residence, poor knowledge, traveling time >30 min to a HF, and average monthly income <2000 ETB. Creating awareness for the community toward TB and about early

Table 3. Clinical characteristics and substance use among TB patients in Ilubabor zone HFs, 2021.

Variables	Category	Frequency	Percent
Symptoms	Cough	292	72.5
	Two mixed symptoms	74	18.4
	Multi symptoms	37	9.2
Patient functional status	Ambulatory	244	60.5
	Bedridden	3	0.7
	Working	156	38.7
Type of TB	EPTB	41	10.2
	SNPTB	87	21.6
	SPPTB	275	68.2
HIV result	Nonreactive	367	91.1
	Reactive	36	8.9
Type of diagnostic tool	Advanced	13	3.2
	Chest X-ray	8	2.0
	Microscope	331	82.1
	Microscope and chest X-ray	51	12.7
Smoking status	Never	388	96.3
	Current	3	0.7
	Former	12	3.0
Drink alcohol status	Current	12	3.0
	Former	38	9.4
	Never	353	87.6

HF: health facility; TB: tuberculosis; EPTB: extrapulmonary tuberculosis; SNPTB: sputum-negative pulmonary tuberculosis; SPPTB: sputum-positive pulmonary tuberculosis.

Figure 2. Knowledge status of the patient toward TB in Ilubabor zone HFs, 2021.

HF: health facility; TB: tuberculosis.
Figure 3. The attitude of TB patients in Ilubabor zone HFs, 2021.
HF: health facility; TB: tuberculosis.

Figure 4. Fear of COVID-19 status of the TB patients in Ilubabor zone HFs, 2020.
HF: health facility; TB: tuberculosis.

Figure 5. Health facility seeking status among TB patients in Ilubabor Zone, 2021.
HF: health facility; TB: tuberculosis.
Table 4. Bi-variable and multivariable binary logistic regressions to identify factors associated with healthcare-seeking delay among TB patients in Ilubabor zone HFs, 2021.

Variables	TB patient HF care-seeking	COR (95% CI)	AOR (95% CI)	p-Value	
	Delayed	Not delayed			
Sex					
Female	68 (42.5)	92 (57.5)	0.758 (0.51–1.13)	0.958 (0.583–1.576)	0.866
Male	120 (49.4)	123 (50.6)			
Place of residence					
Urban	93 (43.5)	121 (56.5)	1.32 (0.89–1.95)	2.437 (1.385–4.286)	0.002
Rural	95 (50.3)	94 (49.7)			
Educational status					
College and higher	30 (41.7)	42 (58.3)	1.32 (0.89–1.95)	2.437 (1.385–4.286)	0.002
Secondary school (9–12)	41 (51.4)	38 (48.6)	1.54 (0.88–2.70)	1.080 (0.485–2.404)	0.850
Primary school (1–8)	87 (52.4)	79 (47.6)	1.54 (0.88–2.70)	1.080 (0.485–2.404)	0.850
Never attended formal	30 (45.5)	36 (54.5)	1.17 (0.60–2.29)	0.906 (0.352–2.329)	0.838
Suspecting the illness to be TB					
No	160 (44.6)	199 (55.4)	2.18 (1.14–4.16)	1.626 (0.763–3.463)	0.208
Yes	28 (63.6)	16 (36.4)			
Alcohol drinking status					
Never drink	160 (45.3)	193 (54.7)	2.18 (1.14–4.16)	1.626 (0.763–3.463)	0.208
Current	8 (66.7)	4 (33.3)	2.41 (0.71–8.16)	0.753 (0.183–3.105)	0.695
Former	20 (52.6)	18 (47.4)	1.34 (0.69–2.62)	0.583 (0.261–1.304)	0.189
Manifested TB symptom					
One symptom	130 (44.5)	162 (55.5)	0.55 (0.27–1.10)	0.843 (0.343–2.073)	0.709
Two symptoms	36 (48.6)	38 (51.4)	0.65 (0.29–1.44)	1.098 (0.422–2.853)	0.848
More than two symptoms	22 (59.5)	15 (40.5)			
Knowledge					
Poor knowledge (1)	112 (69.6)	49 (30.4)	4.99 (3.24–7.69)	3.300 (1.792–6.078)	<0.001
Knowledgeable	76 (31.4)	166 (68.6)			
Monthly income (ETB)					
<2001	109 (71.7)	43 (28.3)	5.29 (3.30–8.48)	3.912 (1.951–7.841)	<0.001
2001–4000	21 (29.2)	51 (70.8)	0.86 (0.47–1.56)	0.859 (0.425–1.736)	0.673
>4001	58 (32.4)	121 (67.6)			
Action for consultation					
Informal HF	107 (54.9)	88 (45.1)	1.91 (1.28–2.83)	0.985 (0.545–1.780)	0.961
Formal HF	81 (38.9)	127 (61.1)			
Distance from HF					
>30 min	116 (51.3)	110 (48.7)	1.54 (1.03–2.29)	2.127 (1.301–3.476)	0.003
≤30 min	72 (40.7)	105 (59.3)			
Action enforced to seek HF					
Advise	28 (30.8)	63 (69.2)			
Refer	30 (53.6)	26 (46.4)	2.60 (1.30–5.17)	1.543 (0.613–3.885)	0.358
Self-initiation	130 (50.8)	126 (49.2)	2.32 (1.40–3.86)	1.004 (0.547–1.842)	0.990
COVID-19					
No fear of COVID-19	119 (43.8)	153 (56.3)			
Don’t know COVID-19	54 (49.1)	56 (50.9)	1.24 (0.80–1.93)	0.823 (0.483–1.403)	0.474
Fear of COVID-19	15 (71.4)	6 (28.6)	3.21 (1.21–8.54)	3.124 (1.029–9.479)	0.044

AOR: adjusted odds ratio; COR: crude odds ratio; HF: health facility; TB: tuberculosis; CI: confidence interval.

healthcare-seeking as soon as the appearance of TB symptoms with clear information about the symptoms especially, for the rural communities as the result of the study indicated that they are both poor knowledge about the infection; by encouraging them to travel more distance to be healthy from the acute and chronic outcome of the disease. They should also focus on a group of people with a fear of COVID-19 to seek healthcare as early as possible by developing a strategic
intervention for the group of the society according to the police of the country to overcome a fear of COVID-19.

Strength of the study: In this study, the variable that was not considered in the previous studies “fear of COVID-19” was included.

Limitation of the study: Due to the design effect, identification of cause and effect is difficult. Comparing the situation of improvement of delay due to COVID-19 during the study period as the general of the country was difficult due to deficit of information.

Acknowledgements
We would like to acknowledge the Illubabor health facilities administrator, health professionals, and data collectors who contributed to this work. We would like to thank all the participants for their participation and the information they provided us. Finally, we would like to extend our gratitude to Mettu University.

Author contributions
KM, JW, JCH, MD, and AD conceived and designed the study, developed data collection instruments, and supervised data collection. KM, JW, JCH, and MD participated in the testing and finalization of the data collection instruments and coordinated the study progress. JW performed the statistical analysis and wrote all versions of the manuscript. All authors read and approved the final manuscript.

Availability of data and materials
The raw data documents are available upon request from the corresponding author.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval
Ethical approval was obtained from the research and community service coordination office (RCS) of Mettu University College of Health Sciences with Ref/RCS/114/13. Following the approval, an official letter of co-operation was written to concerned bodies. Permission was also obtained from the zonal Health Bureau.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Informed consent
Respondents were informed about the objective and purpose of the study and written informed consent was obtained from each respondent. Clear information was given to inform respondents about the purpose and procedure of the study, the importance of their participation, the right to withdraw at any time if they want, and about privacy and confidentiality of the information maintained throughout the study by maintaining anonymity, keeping their privacy by interviewing them in a separate room during the interview and locking records; for every study participant written consent was ticked as “yes” by data collectors if the individual was voluntary to participate. Therefore whether educated or not the purpose of the study was read for them and they understood and decided.

ORCID iD
Jira Wakoya Feyisa https://orcid.org/0000-0002-9774-2398

Supplemental material
Supplemental material for this article is available online.

References
1. Federal Ministry of Health of Ethiopia. Guideline for clinical and programmatic management of TB, leprosy and TB/HIV in Ethiopia. Addis Ababa, Ethiopia: FMOH, 2015.
2. World Health Organization. The global plan to stop TB 2011–2015: transforming the fight towards elimination of tuberculosis. Geneva: World Health Organization, 2010.
3. World Health Organization (WHO). Global Tuberculosis Report 2018: World Health Organization, https://www.who.int/tb/publications/global_report/en/ (2018, accessed 20 June 2020).
4. World Health Organization. Global tuberculosis control: WHO report 2010. Geneva: World Health Organization, 2010.
5. Pio A, Toman’s tuberculosis: case detection, treatment, and monitoring. Bull World Health Organ 2005; 83(5): 397–398.
6. Pronyk RM, Makhubele MB, Hargreaves JR, et al. Assessing health-seeking behavior among tuberculosis patients in rural South Africa. Int J Tuberc Lung Dis 2001; 5(7): 619–627.
7. World Health Organization (WHO) and Regional Office for the Eastern Mediterranean. Diagnostic and treatment delay in tuberculosis. An in-depth analysis of the health-seeking behaviour of patients and health system response in seven countries of the Eastern Mediterranean Region. Geneva, Switzerland: World Health Organization (WHO), http://applications.emro.who.int/dsaf/dsa710.pdf (2006, accessed 20 June 2020).
8. Asres M, Gedefaw M, Kahsay A, et al. Patients’ delay in seeking health care for tuberculosis diagnosis in East Gojam Zone, Northwest Ethiopia. Am J Trop Med Hyg 2017; 96(5): 1071–1075.
9. Sreramareddy CT, Pandurru KV, Menten J, et al. Time delays in diagnosis of pulmonary tuberculosis: a systematic review of the literature. BMC Infect Dis 2009; 9(1): 91.
10. Tobgay KJ, Sarma PS and Thankappan K. Predictors of treatment delays for tuberculosis in Sikkim. Natl Med J India 2006; 19(2): 60–63.
11. Storla DG, Yimer S and Bjuane GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health 2008; 8(1): 15.
12. Federal Ministry of Health (FMOH) Ethiopia, Ethiopian Public Health Institute. Implementation guideline for Gene Xpert MTB/RIF assay in Ethiopia. Ethiopia: Federal Ministry of Health (FMOH) Ethiopia, http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf (2014, accessed 20 June 2020).
13. Federal Ministry of Health of Ethiopia. First Ethiopian National Population-based tuberculosis prevalence survey. Addis Ababa: Federal Ministry of Health Ethiopia, https://www.ephi.gov.et/images/downloads/Tuberculosis%20Prevalence%20Survey.pdf (2011, accessed 20 June 2020).
14. Gebreeziabher SB, Bjune GA and Yimer SA. Total delay is associated with unfavorable treatment outcome among pulmonary tuberculosis patients in West Gojam Zone, Northwest Ethiopia: a prospective cohort study. *PLoS One* 2016; 11(7): e0159579.

15. Lin Y, Enarson DA, Du J, et al. Risk factors for unfavorable treatment outcome among new smear-positive pulmonary tuberculosis cases in China. *Public Health Action* 2017; 7(4): 299–303.

16. Asres A, Jerene D and Deressa W. Delays to treatment initiation is associated with tuberculosis treatment outcomes among patients on directly observed treatment short course in Southwest Ethiopia: a follow-up study. *BMC Med* 2018; 18(1): 64.

17. Liang L, Wu Q, Gao L, et al. Factors contributing to the high prevalence of multidrug-resistant tuberculosis: a study from China. *Thorax* 2012; 67(7): 632–638.

18. Vassall A. *The costs and cost-effectiveness of tuberculosis control*. Amsterdam, Netherlands: Amsterdam University Press, 2009.

19. Rahayu SR, Katsuyama H, Demura M, et al. Factors associated with tuberculosis cases in Semarang District, Indonesia: a case-control study performed in the area where case detection rate was extremely low. *Environ Health Prev Med* 2015; 20(4): 253–261.

20. Lee C-H, Wang J-Y, Lin H-C, et al. Treatment delay and fatal outcomes of pulmonary tuberculosis in advanced age: a retrospective nationwide cohort study. *BMC Infect Dis* 2017; 17(1): 449.

21. Ukwaja KN, Alobu I, Gwennyi C, et al. The high cost of free tuberculosis services: patient and household costs associated with tuberculosis care in Ebonyi State, Nigeria. *PLoS One* 2013; 8(8): e73134.

22. Mesfin MM, Newell JN, Madeley RJ, et al. Cost implications of delays to tuberculosis diagnosis among pulmonary tuberculosis patients in Ethiopia. *BMC Public Health* 2010; 10(1): 173.

23. Tanimura T, Jaramillo E, Weil D, et al. Financial burden for patients on directly observed treatment short course in districts of Southwestern Ethiopia: a longitudinal study. *J Health Popul Nutr* 2018; 37(1):15.

24. Asres A, Jerene D and Deressa W. Pre-and post-diagnosis costs of tuberculosis to patients on directly observed treatment short course in districts of Southwestern Ethiopia: a longitudinal study. *J Health Popul Nutr* 2018; 37(1):15.

25. Centers for Disease Control and Prevention. *Questions and answers about tuberculosis*. Atlanta, GA: U.S. Department of Health and Human Services: Centers for Disease Control and Prevention, https://www.cdc.gov/tb/publications/faqs/pdfs/qa.pdf (2009, accessed 20 June 2020).

26. Adenager GS, Alemseged F, Asefa H, et al. Factors associated with treatment delay among pulmonary tuberculosis patients in public and private health facilities in Addis Ababa, Ethiopia. *Tuberc Res Treat* 2017; 2017: 5120841.

27. Tsegaye D, Ejigu EA, Yilma TM, et al. Delay in seeking health care and associated factors among pulmonary tuberculosis patients in North Wollo Zone, Northeast Ethiopia: institution based cross-sectional study. *Arch Clin Microbiol* 2016; 7(3): 17.

28. Tong Y, Guan X, Hou S, et al. Determinants of health care-seeking delay among tuberculosis patients in rural area of central China. *Int J Environ Res Public Health* 2018; 15(9): 1998.

29. Thakur R and Murhekar M. Delay in diagnosis and treatment among TB patients registered under RNTCP Mandi, Himachal Pradesh, India, 2010. *Indian J Tuberc* 2013; 60(1): 37–45.

30. Kalan ME, Sis HY, Kelkar V, et al The identification of risk factors associated with patient and healthcare system delays in the treatment of tuberculosis in Tabriz, Iran. *BMC Public Health* 2018; 18(1): 174.

31. Federal Democratic Republic of Ethiopia Ministry of Health. *Health Sector Transformation plan I: annual performance report*. Addis Ababa: Federal Ministry of Health, 2008.

32. Federal Ministry of Health of Ethiopia. *Guidelines for clinical and programmatic management of TB, TB/HIV and leprosy in Ethiopia*. Addis Ababa: Federal Ministry of Health of Ethiopia, 2016.

33. Asefa A and Teshome W. Total delay in treatment among smear-positive pulmonary tuberculosis patients in five primary health centers, Southern Ethiopia: a cross-sectional study. *PLoS One* 2014; 9(7): e102884.

34. Lusignani LS, Quaglio G, Atzori A, et al. Factors associated with patient and health care system delay in diagnosis for tuberculosis in the province of Luanda, Angola. *BMC Infect Dis* 2013; 13(1): 168.

35. Bojovic O, Medenica M, Zivkovic D, et al. Factors associated with patient and health system delays in diagnosis and treatment of tuberculosis in Montenegro, 2015–2016. *PLoS One* 2018; 13(3): e0193997.

36. Nyatichi FO, Amimo FA, Nabie B, et al. Factors contributing to delay in seeking treatment among pulmonary tuberculosis patients in Suneka Sub-County, Kenya. *J Health Edu Res Dev* 2016; 4: 2.

37. Takarinda KC, Harries AD, Nyathi B, et al. Tuberculosis treatment delays and associated factors within the Zimbabwe national tuberculosis program. *BMC Public Health* 2015; 15(1): 29.

38. Williams E, Cheng AC, Lane GP, et al. Delays in presentation and diagnosis of pulmonary tuberculosis: a retrospective study of a tertiary health service in Western Melbourne, 2011–2014. *Intern Med J* 2018; 48(2): 184–193.

39. Tattevin P, Che D, Fraisse P, et al. Factors associated with patient and health care system delay in the diagnosis of tuberculosis in France. *Int J Tuberc Lung Dis* 2012; 16(4): 510–515.

40. Hamza A, Demissie M, Gare S, et al. Delay in tuberculosis diagnosis among tuberculosis patients at the three hospitals: Asella, Robe and Abomsa of Arsi Zone, Oromia Regional State. *Open Access Lib J* 2015; 2(12): e1947.

41. Reves R and Angelo S. *As Ethiopia moves towards tuberculosis elimination, successes require higher investment*. London: Center for Strategic and International Studies, 2016.

42. Belay M, Bjune G, Ameni G, et al. Diagnostic and treatment delay among tuberculosis patients in Afar Region, Ethiopia: a cross-sectional study. *BMC Public Health* 2012; 12(1): 369.