Association of type 2 diabetes susceptibility loci with peripheral nerve function in a Chinese population with diabetes

Jingyi Lu1,2,3,4, Yi Luo1,2,3,4, Jie Wang1,2,3,4, Cheng Hu1,2,3,4, Rong Zhang1,2,3,4, Congrong Wang1,2,3,4*, Weiping Jia1,2,3,4

1Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 2Shanghai Diabetes Institute, 3Shanghai Key Laboratory of Diabetes Mellitus, and 4Shanghai Clinical Center for Diabetes, Shanghai, China

Keywords
Diabetic neuropathy, Genetics, Nerve conduction study

*Correspondence
Congrong Wang
Tel: +86-21-2405-8254
Fax: +86-21-6436-8031
E-mail address: crwang@sjtu.edu.cn

ABSTRACT
Aims/Introduction: Previous studies have suggested a possible relationship between type 2 diabetes mellitus susceptibility loci and diabetic complications. The present study aimed to investigate the associations between type 2 diabetes mellitus loci with peripheral nerve function in a Chinese population with type 2 diabetes mellitus.

Materials and Methods: A total of 1,900 type 2 diabetes mellitus patients were recruited in the study. We selected ten single nucleotide polymorphisms (SNPs) from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese patients. Genotyping was carried out by using a MassARRAY Compact Analyzer. Peripheral nerve function was evaluated by nerve conduction studies in all participants. The composite Z-scores for nerve conduction parameters including conduction velocity (CV), amplitude and latency were calculated, respectively.

Results: Rs5219 of KCNJ11 (E23K, G→A) was identified to be associated with all the parameters obtained from nerve conduction studies (Z-score of CV: \(β = 0.113, P = 0.01\); Z-score of amplitude: \(β = 0.133, P = 0.01\); Z-score of latency: \(β = -0.116, P = 0.01\)) after adjustment for covariates including age, duration and glycated hemoglobin. Specifically, each copy of the A allele was related to better outcomes.

CDKAL1 rs7756992 and TCF7L2 rs7903146 correlated with the composite Z-score of amplitude (\(P = 0.028\) and \(P = 0.016\), respectively), but not CV (\(P = 0.393\) and \(P = 0.281\), respectively) or latency (\(P = 0.286\) and \(P = 0.273\), respectively). There were no significant associations between the other seven SNPs and peripheral nerve function.

Conclusions: Rs5219 at KCNJ11 (E23K) was associated with peripheral nerve function in a Chinese population with type 2 diabetes mellitus, suggesting shared genetic factors for type 2 diabetes mellitus and diabetic polyneuropathy in this population.

INTRODUCTION
Diabetic polyneuropathy (DPN) is one of the most common forms of diabetic complications. The prevalence of DPN was estimated to be approximately 50\%\(^1\). Mechanisms underlying the development of DPN include activation of the polyol pathway, exaggerated oxidative stress, overactivity of protein kinase C and increased formation of advanced glycation end-products\(^2,3\). In addition, there is emerging evidence that genetic factors could contribute to the development of DPN. For instance, several studies reported that some patients with prediabetes might have neuropathic complications, whereas some show little evidence of neuropathy even after long-standing diabetes, suggesting genetic heterogeneity of DPN development\(^4\).

To date, approximately 80 type 2 diabetes mellitus susceptibility loci have been reported in different ethnic groups\(^5,6\). Of them, some have been confirmed in Chinese descents in our previous studies\(^7-10\). Recently, associations between type 2 diabetes mellitus susceptibility loci and diabetic nephropathy were reported including variants in JAZF1, FTO, CDKAL1, KCNJ11, KCNQ1 and HHEX/IDE genes\(^11-13\). In addition, TCF7L2 rs7903146 was identified to be associated with diabetic
retinopathy, nephropathy and neuropathy. These data suggest that type 2 diabetes mellitus and its complications might have shared genetic risk factors. By carrying out nerve conduction studies (NCS), the current study sought to evaluate the associations of type 2 diabetes mellitus susceptibility genes with peripheral nerve function in a Chinese population with type 2 diabetes mellitus.

MATERIALS AND METHODS

Study population

We recruited 1,900 patients with type 2 diabetes mellitus from the Shanghai Diabetes Institute Inpatient Database of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China. Diabetes was defined according to the 1999 World Health Organization criteria. Individuals were negative for glutamic acid decarboxylase and/or insulin-like 2 antibodies. Participants with known diseases that could possibly affect NCS parameters (such as Guillain–Barré syndrome and carpal tunnel syndrome) were excluded.

The study protocol was approved by the institutional review board of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital. The conduction of the study conforms to the provisions of the Declaration of Helsinki II. Written informed consent was obtained from each participant.

Anthropometric and biochemical measurements

Anthropometric parameters were height and weight. Body mass index was calculated as weight (kg)/height (m)\(^2\). Biochemical measurements including glycated hemoglobin (HbA1c), fasting plasma glucose and lipid profiles (total cholesterol, triglyceride, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol) were determined as previously described.

Nerve conduction studies

Electrophysiological examinations were carried out by using EMGMyto, EBNeuro (Esaote, Florence, Italy). Motor nerve studies were carried out in the median and tibial nerves, including the following parameters: conduction velocity (CV), distal latency and compound muscle action potential amplitude. CV, sensory nerve onset latency, and sensory nerve action potential amplitude were measured in the median and superficial peroneal nerves. Skin temperatures were kept at 32–35°C during testing.

Additionally, the composite Z-scores for nerve conduction (NC) parameters including CV, amplitude and latency were calculated, respectively. For each individual, every CV value was converted into a Z-score using the formula:

\[
Z = \frac{X - \mu}{\sigma}
\]

where \(X\) is the individual value of control, \(\mu\) is the mean value of control group, and \(\sigma\) is the SD of control group. A composite Z-score of CV was then calculated as \(Z_{\text{CV}} = \frac{(Z_{\text{CV}} - \mu_{\text{CV}}) + (Z_{\text{CV}} \text{ motor median CV}) + (Z_{\text{CV}} \text{ superficial peroneal CV}) + (Z_{\text{CV}} \text{ tibial CV})}{4}\). The composite Z-scores for amplitude and latency were calculated similarly.

Single nucleotide polymorphism selection and genotyping

We selected ten single nucleotide polymorphisms (SNPs) from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese patients, including PPARG rs1801282, IGF2BP2 rs7651090, CDKAL1 rs7756992, CDKN2A/2B rs10811661, IDE-KIF11-HHEX rs1111875, TCF7L2 rs7903146, HNF1β rs4430796, KCNQ1 rs2237892, SLC30A8 rs13266634 and KCNJ11 rs251979. All the SNPs were genotyped using the primer extension of multiplex products with detecting by matrix-assisted laser desorption ionization-time of flight mass spectrometry on a MassARRAY Compact Analyzer (Sequenom, San Diego, CA, USA).

Statistical analyses

Allele frequencies for the SNP tested were calculated by gene counting. Genotype frequency distribution was tested for Hardy–Weinberg equilibrium with a chi-square test. All analyses were carried out under an additive genetic model, except that the associations of rs10811661 (PPARG) and rs7903146 (TCF7L2) with NC parameters were investigated under a dominant model because of the small number of minor allele homozygous. Student’s t-test and analysis of variance (ANOVA) were used to assess differences in continuous variables. The association of NC parameters with each SNP was analyzed by multiple linear regression analysis after adjusting for age, type 2 diabetes mellitus duration and HbA1c as confounding factors. Statistical analyses were carried out by using SPSS software version 11.0 (SPSS, Chicago, IL, USA). A two-tailed P-value of <0.05 was considered to be statistically significant.

RESULTS

Clinical characteristics of the participants are shown in Table 1. The mean age of the participants was 60.65 ± 12.16 years, with

| Table 1 | Clinical characteristics of the participants |
|--|
| T2DM patients | 998/902 |
| Age (years) | 60.65 ± 12.16 |
| Duration of diabetes (years) | 7.44 ± 6.76 |
| BMI (kg/m\(^2\)) | 24.48 ± 3.46 |
| FPG (mmol/L) | 12.4 ± 4.95 |
| HbA1c (%) | 9.07 ± 2.31 |
| SBP (mmHg) | 133.66 ± 17.8 |
| DBP (mmHg) | 80.74 ± 9.46 |
| Total cholesterol (mmol/L) | 4.79 ± 1.15 |
| HDL cholesterol (mmol/L) | 1.16 ± 0.56 |
| LDL cholesterol (mmol/L) | 2.97 ± 0.87 |
| Triglycerides (mmol/L) | 1.88 ± 1.82 |

Continuous variables are presented as mean ± standard deviation; categorical variables are presented as numbers. BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus.
the average diabetes duration of 7.44 ± 6.76 years and the mean HbA1c of 9.07 ± 2.31%.

All SNPs selected in the present study were in Hardy–Weinberg equilibrium. The minor allele frequencies of the SNPs in our study population are shown in Table 2. Of the ten SNPs, rs5219 of KCNJ11 (E23K: G→A) was identified to be associated with all the parameters obtained from NCS (Z-score of CV: $\beta = 0.113$, $P = 0.01$; Z-score of amplitude: $\beta = 0.133$, $P = 0.01$; Z-score of latency: $\beta = -0.116$, $P = 0.01$) after adjustment for age, duration and HbA1c, with each copy of the A allele relating to better NC parameters (Tables 2 and 3).

We also found that CDKAL1 rs7756992 and TCF7L2 rs7903146 were related to the composite Z-score of amplitude (CDKAL1 rs7756992: $\beta = -0.115$, $P = 0.028$; TCF7L2 rs7903146: $\beta = 0.123$, $P = 0.016$), but not CV ($P = 0.393$ and $P = 0.281$, respectively) or latency ($P = 0.286$ and $P = 0.273$, respectively). There was no significant association between the other seven SNPs and peripheral nerve functions (Table 2).

DISCUSSION

In the present study, we selected ten SNPs from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese people, and analyzed the association of these loci with peripheral nerve function in Chinese patients with type 2 diabetes mellitus. We found that rs5219 of KCNJ11 (E23K) was consistently associated with the parameters obtained from NCS, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

In the present study, we selected ten SNPs from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese people, and analyzed the association of these loci with peripheral nerve function in Chinese patients with type 2 diabetes mellitus. We found that rs5219 of KCNJ11 (E23K) was consistently associated with the parameters obtained from NCS, and the minor allele A seemed to have a protective effect on peripheral nerve function.

In the present study, we selected ten SNPs from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese people, and analyzed the association of these loci with peripheral nerve function in Chinese patients with type 2 diabetes mellitus. We found that rs5219 of KCNJ11 (E23K) was consistently associated with the parameters obtained from NCS, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

In the present study, we selected ten SNPs from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese people, and analyzed the association of these loci with peripheral nerve function in Chinese patients with type 2 diabetes mellitus. We found that rs5219 of KCNJ11 (E23K) was consistently associated with the parameters obtained from NCS, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

In the present study, we selected ten SNPs from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese people, and analyzed the association of these loci with peripheral nerve function in Chinese patients with type 2 diabetes mellitus. We found that rs5219 of KCNJ11 (E23K) was consistently associated with the parameters obtained from NCS, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.

Although a large portion of diabetic patients are affected by DPN, our knowledge about its genetic contributors is limited. In previous studies, several gene variants were reported to be associated with DPN, and the minor allele A seemed to have a protective effect on peripheral nerve function.
cardiovascular system, however, the activation of K_{ATP} channels could upregulate the expression of vasorelaxant factors, and E23K was reported to exert an beneficial effect on coronary heart disease34. More importantly, the presence of K_{ATP} channels was also reported in both the central and peripheral nervous system32,33. In peripheral sensory neurons, Kawano et al.34 further showed that the K_{ATP} channel plays an important role in the regulation of nerve excitability and neurotransmitter release, raising the possibility that variations/mutations in KCNJ11 might impact on nerve function through the modulation of K_{ATP} channel activity. In support of this notion, a patient with neonatal diabetes caused by a KCNJ11 V59M mutation was observed to present with neurological symptoms including muscle weakness, and delayed motor function and mental development35. In addition to sulfonylurea treatment, by closing the K_{ATP} channel, motor development and glycemic control were remarkably improved for this patient. Based on these observations, it is plausible to speculate that KCNJ11 E23K might affect peripheral nerve function through its effect on the activity of the K_{ATP} channel in the peripheral nervous system.

CDKAL1 rs7756992 and TCF7L2 rs7903146 were reported to be significantly associated with type 2 diabetes mellitus in multiple ethnic populations, although the exact mechanism remains unknown. We found these two SNPs correlated with the composite Z-score of amplitude, but not CV or latency. Established DPN is characterized by decreased amplitude, reduced CV and prolonged latency. Of them, amplitude is the most clinically relevant, as it reflects the density of functioning nerve fibers36. Therefore, it is possible that CDKAL1 rs7756992 and TCF7L2 rs7903146 could be associated with the early onset and severity of DPN, although their effect might not be as strong as KCNJ11 E23K.

Two limitations of this the present should be pointed out. First, we did not carry out correction for multiple testing when analyzing the association of ten SNPs with NCS data. The positive findings we observed would be non-significant after Bonferroni correction. Therefore, our work should be regarded as a preliminary study. Further studies with larger sample sizes and in other populations are required to confirm the present findings. Second, we used the superficial peroneal nerve to assess sensory nerve function of the lower limbs, whereas most previous studies used the sural nerve in NCS. However, it was reported that the superficial peroneal nerve is more sensitive for detecting peripheral neuropathy as compared with the sural nerve37. Nevertheless, caution should be taken to interpret the NCS data of the present study.

In conclusion, the current study shows that rs5219 at KCNJ11 (E23K) is significantly associated with peripheral nerve function as evaluated by NCS in a Chinese population with type 2 diabetes mellitus. The present findings suggest shared genetic factors for type 2 diabetes mellitus and DPN in this population.

ACKNOWLEDGMENTS

This work was funded by the National 973 Program (2011CB504001), Drug Innovation Program of National Science and Technology Project No. 2015ZX09307001-002, and the Program of the National Natural Science Foundation of China (NSFC; 81300666, 81170760 and 81200582). The content is solely the responsibility of the authors, and does not necessarily represent the official views of the funders. We thank all of the involved clinicians, nurses and technicians for their dedication in this study.

DISCLOSURE

The authors declare no conflict of interest.

Table 3 | Nerve conduction parameters of the participants according to KCNJ11 E23K genotypes

Parameters	EE	EK	KK	P	
Median (sensory)	CV (m/s)	50.75 ± 9.13	51.47 ± 8.67	52.44 ± 8.56	0.0135
Amp (mV)	13.82 ± 9.54	13.97 ± 9.15	14.93 ± 9.08	0.0673	
Latency (ms)	2.79 ± 0.80	2.73 ± 0.73	2.68 ± 0.69	0.255	
Median (motor)	CV (m/s)	52.66 ± 7.41	52.59 ± 7.43	53.32 ± 7.10	0.063
Amp (mV)	8.79 ± 4.75	8.88 ± 5.31	9.02 ± 4.99	0.918	
Latency (ms)	4.16 ± 1.57	4.12 ± 1.58	4.05 ± 1.47	0.875	
Superficial peroneal	CV (m/s)	40.37 ± 7.99	40.05 ± 8.32	41.16 ± 9.15	0.359
Amp (mV)	15.07 ± 11.51	15.98 ± 12.71	16.78 ± 12.69	0.317	
Latency (ms)	4.14 ± 3.84	4.20 ± 3.89	3.99 ± 3.71	0.936	
Tibial	CV (m/s)	42.13 ± 7.99	42.21 ± 7.20	43.05 ± 6.12	0.867
Amp (mV)	6.34 ± 4.70	7.82 ± 5.08	8.54 ± 6.58	0.014	
Latency (ms)	4.98 ± 1.75	4.74 ± 1.67	4.55 ± 1.35	0.276	
Composite	CV Z-score	-0.96 ± 0.98	-0.86 ± 0.91	-0.60 ± 0.80	0.010
Amp Z-score	-0.53 ± 0.59	-0.43 ± 0.60	-0.22 ± 0.53	0.010	
Latency Z-score	2.57 ± 3.16	2.28 ± 3.24	1.24 ± 2.31	0.010	

P was adjusted for age, type 2 diabetes mellitus duration and glycated hemoglobin. Amp, amplitude; CV, conduction velocity; EE, GG genotype carriers of KCNJ11 rs5219; EK, GA genotype carriers of KCNJ11 rs5219; KK, AA genotype carriers of KCNJ11 rs5219.
REFERENCES

1. Dyck PJ, Kratz KM, Kames JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. *Neurology* 1993; 43: 817–824.

2. Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. *Endocr Rev* 2004; 25: 612–628.

3. Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: where are we now and where to go? *J Diabetes Investig* 2011; 2: 18–32.

4. Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early? *Nat Rev Endocrinol* 2011; 7: 682–690.

5. Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives [Review]. *Endocr J* 2011; 58: 723–739.

6. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. *Nat Genet* 2008; 40: 638–645.

7. Hu C, Wang C, Zhang R, et al. Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. *Diabetologia* 2009; 52: 1322–1325.

8. Hu C, Wang C, Zhang R, et al. Association of genetic variants of NOS1AP with type 2 diabetes in a Chinese population. *Diabetologia* 2010; 53: 290–298.

9. Hu C, Zhang R, Wang C, et al. PPARG, KCNJ11, CDKAL1, CDK2APL2, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. *PLoS One* 2009; 4: e7643.

10. Wang C, Hu C, Zhang R, et al. Common variants of hepatocyte nuclear factor 1beta are associated with type 2 diabetes in a Chinese population. *Diabetes* 2009; 58: 1023–1027.

11. Franceschini N, Shara NM, Wang H, et al. The association of genetic variants of type 2 diabetes with kidney function. *Kidney Int* 2012; 82: 220–225.

12. Chen G, Xu Y, Lin Y, et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population. *J Diabetes* 2013; 5: 136–145.

13. Oshighe T, Tanaka Y, Araki S, et al. A single nucleotide polymorphism in KCNQ1 is associated with susceptibility to diabetic nephropathy in Japanese subjects with type 2 diabetes. *Diabetes Care* 2010; 33: 842–846.

14. Buraczynska M, Swatowski A, Markowska-Gośk D, et al. Transcription factor-7-like-2 (TCF7L2) gene polymorphism and complication/comorbidity profile in type 2 diabetes patients. *Diabetes Res Clin Pract* 2011; 93: 390–395.

15. Cicciacci C, Di Fusco D, Cacciotti L, et al. TCF7L2 gene polymorphisms and type 2 diabetes: association with diabetic retinopathy and cardiovascular autonomic neuropathy. *Acta Diabetol* 2013; 50: 789–799.

16. Luo J, Zhao L, Chen AY, et al. TCF7L2 variation and proliferative diabetic retinopathy. *Diabetes* 2013; 62: 2613–2617.

17. Alberti KG, Zimet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. *Diabet Med* 1998; 15: 539–553.

18. Jia WP, Pang C, Chen L, et al. Epidemiological characteristics of diabetes mellitus and impaired glucose regulation in a Chinese adult population: the Shanghai Diabetes Studies, a cross-sectional 3-year follow-up study in Shanghai urban communities. *Diabetologia* 2007; 50: 286–292.

19. Zhao Q, Xiao J, He J, et al. Cross-sectional and longitudinal replication analyses of genome-wide association loci of type 2 diabetes in Han Chinese. *PLoS One* 2014; 9: e91790.

20. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. *JAMA* 2005; 293: 217–228.

21. Sivenius K, Pihlajamaki J, Partanen J, et al. Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. *Diabetes Care* 2004; 27: 2021–2026.

22. Papanas N, Papatheodorou K, Papazoglou D, et al. An insertion/deletion polymorphism in the alpha2B adrenoceptor gene is associated with peripheral neuropathy in patients with type 2 diabetes mellitus. *Exp Clin Endocrinol Diabetes* 2007; 115: 327–330.

23. Jurado J, Ybarra J, Romeo JH, et al. Angiotensin-converting enzyme gene single polymorphism as a genetic biomarker of diabetic peripheral neuropathy: longitudinal prospective study. *J Diabetes Complications* 2012; 26: 77–82.

24. Vague P, Dufayet D, Coste T, et al. Association of diabetic neuropathy with Na/K-ATPase gene polymorphism. *Diabetologia* 1997; 40: 506–511.

25. Yigit S, Karakus N, Inanir A. Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy. *Mol Vis* 2013; 19: 1626–1630.

26. Monastiriotis C, Papanas N, Trpisianis G, et al. The epsilon4 allele of the APOE gene is associated with more severe peripheral neuropathy in type 2 diabetic patients. *Angiology* 2013; 64: 451–455.

27. Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. *Prog Biophys Mol Biol* 2003; 81: 133–176.

28. Schwanstecher C, Meyer U, Schwanstecher M. K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. *Diabetes* 2002; 51: 875–879.

29. Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11)
and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. *Diabetes* 2003; 52: 568–572.

30. Koo BK, Cho YM, Park BL, *et al*. Polymorphisms of *KCNJ11* (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. *Diabet Med* 2007; 24: 178–186.

31. Xiong C, Zheng F, Wan J, *et al*. The E23K polymorphism in Kir6.2 gene and coronary heart disease. *Clin Chim Acta* 2006; 367: 93–97.

32. Kawano T, Zoga V, Kimura M, *et al*. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. *Mol Pain* 2009; 5: 12.

33. Lee K, Dixon AK, Rowe IC, *et al*. Direct demonstration of sulphonylurea-sensitive KATP channels on nerve terminals of the rat motor cortex. *Br J Pharmacol* 1995; 115: 385–387.

34. Kawano T, Zoga V, Gemes G, *et al*. Suppressed Ca\(^{2+}\)/CaMKII-dependent K(ATP) channel activity in primary afferent neurons mediates hyperalgesia after axotomy. *Proc Natl Acad Sci USA* 2009; 106: 8725–8730.

35. Slingerland AS, Nuboer R, Hadders-Algra M, *et al*. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the *KCNJ11* gene. *Diabetologia* 2006; 49: 2559–2563.

36. Wilbourn AJ. Sensory nerve conduction studies. *J Clin Neurophysiol* 1994; 11: 584–601.

37. Lo YL, Xu LQ, Leoh TH, *et al*. Superficial peroneal sensory and sural nerve conduction studies in peripheral neuropathy. *J Clin Neurosci* 2006; 13: 547–549.