Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks

Kenta Oono1,2 Taiji Suzuki1,3

\{kenta_oono, taiji\}@mist.i.u-tokyo.ac.jp
1. The University of Tokyo 2. Preferred Networks, Inc. 3. RIKEN AIP

Thirty-sixth International Conference on Machine Learning (ICML 2019)
June 13th 2019, Long Beach, CA, U.S.A.
Key Takeaway

Q. Why ResNet-type CNNs work well?
Key Takeaway

Q. Why ResNet-type CNNs work well?

A. Hidden *sparse structure* promotes good performance.
Problem Setting

We consider a non-parametric regression problem:

\[Y = f^\circ(X) + \xi \]

\(f^\circ \): True function (e.g., Hölder, Barron, Besov class), \(\xi \): Gaussian noise
Problem Setting

We consider a non-parametric regression problem:

\[Y = f^\circ (X) + \xi \]

\(f^\circ \): True function (e.g., Hölder, Barron, Besov class), \(\xi \): Gaussian noise

Given \(N \) i.i.d. samples, we pick an estimator \(\hat{f} \) from the hypothesis class \(\mathcal{F} \), which is a set of functions realized by CNNs with a specified architecture.
Problem Setting

We consider a non-parametric regression problem:

\[
Y = f^\circ(X) + \xi
\]

\(f^\circ\): True function (e.g., Hölder, Barron, Besov class), \(\xi\): Gaussian noise

Given \(N\) i.i.d. samples, we pick an estimator \(\hat{f}\) from the hypothesis class \(\mathcal{F}\), which is a set of functions realized by CNNs with a specified architecture.

Goal: Evaluate the estimation error

\[
\mathcal{R}(\hat{f}) := \mathbb{E}_X |\hat{f}(X) - f^\circ(X)|^2
\]
Prior Work

\[
\mathcal{R}(\hat{f}) \lesssim \inf_{f \in \mathcal{F}} \| f - f^\circ \|_{\infty}^2 + \tilde{O}(M_{\mathcal{F}}/N)
\]

Approximation Error Model Complexity

\(N\): Sample size
\(\mathcal{F}\): Set of functions realizable by CNNs with a specified architecture
\(f^\circ\): True function (e.g., Hölder, Barron, Besov etc.)
\(\tilde{O}(\cdot)\): \(O\)-notation ignoring logarithmic terms.
Prior Work

\[R(\hat{f}) \lesssim \inf_{f \in \mathcal{F}} \| f - f^\circ \|_\infty^2 + \tilde{O}(M_\mathcal{F}/N) \]

Approximation Error \quad Model Complexity

CNN type	Parameter Size $M_\mathcal{F}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 😞	-

N: Sample size
\mathcal{F}: Set of functions realizable by CNNs with a specified architecture
f°: True function (e.g., Hölder, Barron, Besov etc.)
$\tilde{O}(\cdot)$: O-notation ignoring logarithmic terms.
Approximation Error \(\mathcal{R}(\hat{f}) \lesssim \inf_{f \in \mathcal{F}} \| f - f^\circ \|_\infty^2 + O(\mathcal{M}_\mathcal{F}/N) \)

CNN type	Parameter Size	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 😞	-
Sparse*	# of non-zero weights	Optimal 😊	Needed 😞

* e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

\(N \): Sample size
\(\mathcal{F} \): Set of functions realizable by CNNs with a specified architecture
\(f^\circ \): True function (e.g., Hölder, Barron, Besov etc.)
\(\tilde{O}(\cdot) \): \(O \)-notation ignoring logarithmic terms.
Prior Work

$$\mathcal{R}(\hat{f}) \lesssim \inf_{f \in \mathcal{F}} \| f - f^{\circ} \|_\infty^2 + \tilde{O}(M_{\mathcal{F}} / N)$$

Approximation Error **Model Complexity**

CNN type	Parameter Size $M_{\mathcal{F}}$	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 😞	-
Sparse*	# of non-zero weights	Optimal 😃	Needed 😞
ResNet	# of all weights	Optimal 😃	Not Needed 😃

* e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

N: Sample size

\mathcal{F}: Set of functions realizable by CNNs with a specified architecture

f°: True function (e.g., Hölder, Barron, Besov etc.)

$\tilde{O}(\cdot)$: O-notation ignoring logarithmic terms.
Contribution

ResNet-type CNNs can achieve minimax-optimal rates without unrealistic constraints.

CNN type	Parameter Size M_F	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 😞	-
Sparse*	# of non-zero weights	Optimal 😊	Needed 😞
ResNet	# of all weights	Optimal 😊	Not Needed 😊

* e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]
Contribution

ResNet-type CNNs can achieve minimax-optimal rates without unrealistic constraints.

CNN type	Parameter Size M_F	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 😞	-
Sparse*	# of non-zero weights	Optimal 😊	Needed 😞
ResNet	# of all weights	Optimal 😊	Not Needed 😊

* e.g., Hölder case: [Yarotsuky, 17; Schmidt-Hieber, 17; Petersen & Voigtlaender, 18]

Key Observation

Known optimal FNNs have block-sparse structures
Block-sparse FNN

\[
FNN := \sum_{m=1}^{M} w_m^T FC_m(\cdot) - b
\]
Block-sparse FNN

\[\text{FNN} := \sum_{m=1}^{M} w_m^T \text{FC}_m(\cdot) - b \]

Known best approximating FNNs are **block-sparse** when the true function is ---

- Barron [Klusowski & Barron, 18]
- Hölder [Yarotsky, 17; Schmidt-Hieber, 17]
- Besov [Suzuki, 19].
Block-sparse FNN to ResNet-type CNN

\[\text{FNN} := \sum_{m=1}^{M} w_m^T \text{FC}_m(\cdot) - b \]

\[\text{CNN} := \text{FC} \circ (\text{Conv}_M + \text{id}) \circ \cdots \circ (\text{Conv}_1 + \text{id}) \circ P \]

Known best approximating FNNs are block-sparse when the true function is ---

\[
\begin{aligned}
\text{Barron} & \quad \text{[Klusowski \& Barron, 18]} \\
\text{Hölder} & \quad \text{[Yarotsky, 17; Schmidt-Hieber, 17]} \\
\text{Besov} & \quad \text{[Suzuki, 19].}
\end{aligned}
\]
Block-sparse FNN to ResNet-type CNN

\[\text{CNN: } = \text{FC} \circ (\text{Conv}_M + \text{id}) \circ \ldots \circ (\text{Conv}_1 + \text{id}) \circ P \]

Known best approximating FNNs are block-sparse when the true function is ---

- Barron [Klusowski & Barron, 18]
- Hölder [Yarotsky, 17; Schmidt-Hieber, 17]
- Besov [Suzuki, 19].
Block-sparse FNN to ResNet-type CNN

Known best approximating FNNs are block-sparse when the true function is ---

\[
\begin{align*}
\text{Barron} & \quad [\text{Klusowski & Barron, 18}] \\
\text{Hölder} & \quad [\text{Yarotsky, 17; Schmidt-Hieber, 17}] \\
\text{Besov} & \quad [\text{Suzuki, 19}].
\end{align*}
\]
For any block-sparse FNN with M blocks, there exists a ResNet-type CNN with M residual blocks which has $O(M)$ more parameters and which is identical (as a function) to the FNN.
Optimality of ResNet-type CNNs

Theorem (e.g., Hölder Case)

Suppose the true function f^* is β-Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:
Suppose the true function f° is β-Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:

- \mathcal{F} does **NOT** have sparse constraints
- the estimator \hat{f} of \mathcal{F} achieves the *minimax-optimal* estimation error rate (up to log factors).

Theorem (e.g., Hölder Case)
Theorem (e.g., Hölder Case)

Suppose the true function f^* is β-Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:

- \mathcal{F} does **NOT** have sparse constraints
- the estimator \hat{f} of \mathcal{F} achieves the minimax-optimal estimation error rate (up to log factors).

😊 Minimax optimal ! 😞 No discrete optimization !
Optimality of ResNet-type CNNs

Theorem (e.g., Hölder Case)

Suppose the true function f° is β-Hölder. There exists a set of ResNet-type CNNs \mathcal{F} such that:

- \mathcal{F} does NOT have sparse constraints
- the estimator \hat{f} of \mathcal{F} achieves the minimax-optimal estimation error rate (up to log factors).

😊 Minimax optimal! 😞 No discrete optimization!

Note

- Using the same strategy, we can prove that ResNet-type CNNs can achieve the same rate as FNNs for the Barron class etc.
- We remove unrealistic constraints on channels size, too (see the paper).
Conclusion

ResNet-type CNNs can achieve minimax-optimal rates in several function classes without implausible constraints.

CNN type	Parameter Size M_F	Minimax Optimality	Discrete Optimization
General	# of all weights	Sub-optimal 😞	-
Sparse*	# of non-zero weights	Optimal 😋	Needed 😞
ResNet	# of all weights	Optimal 😋	Not Needed 😞

↑ Minimax Optimal

↑ Minimax Optimal, too!

Poster: 13th June, Pacific Ballroom #77