Central Odontogenic Fibroma, its Treatment and its Recurrence: A Systematic Review

Introduction

The central odontogenic fibroma (COF) is an extremely rare benign neoplasm of intraosseous or central presentation, being itself only 0.1% of all odontogenic tumors. The purpose of this systematic review is to provide an overview of the treatment of the central odontogenic fibroma and its recurrence.

Methods

Following PRISMA guideline, a systematic review was carried out.

Results

The initial search retrieved 51763 articles identified through database searching, and 41 articles identified through manual search. After examination of the title and the abstract, 83 articles were retrieved for further examination. Sixty-two articles were included, thus obtaining a total of 104 patients. The recurrence of the 84 patients was 4.76%.

Discussion

The recurrence reports vary in the literature. The most recent review by García-Cano E, et al., showed no recurrence whatsoever; Ramer and colleagues reported only 5 cases of recurrence. However, only 39 cases out of 68 were followed up. In this systematic review out of 84 patients, 4 (4.7%) presented recurrence. From these, 3 cases were treated by enucleation and one by curettage.

Conclusion

The recurrence rate in these tumors is very low and mainly related to an incomplete resection. Therefore, conservative surgery must be done as a first-line treatment.

Keywords: Systematic Review; Central Odontogenic Fibroma; Treatment; Recurrence.

Abstract

Introduction: The central odontogenic fibroma (COF) is an extremely rare benign neoplasm of intraosseous or central presentation, being itself only 0.1% of all odontogenic tumors. The purpose of this systematic review is to provide an overview of the treatment of the central odontogenic fibroma and its recurrence.

Methods: Following PRISMA guideline, a systematic review was carried out.

Results: The initial search retrieved 51763 articles identified through database searching, and 41 articles identified through manual search. After examination of the title and the abstract, 83 articles were retrieved for further examination. Sixty-two articles were included, thus obtaining a total of 104 patients. The recurrence of the 84 patients was 4.76%.

Discussion: The recurrence reports vary in the literature. The most recent review by García-Cano E, et al., showed no recurrence whatsoever; Ramer and colleagues reported only 5 cases of recurrence. However, only 39 cases out of 68 were followed up. In this systematic review out of 84 patients, 4 (4.7%) presented recurrence. From these, 3 cases were treated by enucleation and one by curettage.

Conclusion: The recurrence rate in these tumors is very low and mainly related to an incomplete resection. Therefore, conservative surgery must be done as a first-line treatment.

Keywords: Systematic Review; Central Odontogenic Fibroma; Treatment; Recurrence.
authors Lombardi-Azócar JJ and García-Cano E, including the following databases: PubMed, Embase, Cochrane Library, and Web of Science (all searched up to January 4th, 2016). In addition, we performed a manual search of secondary sources including references of the articles initially identified. The goal was to identify all studies addressing COF in relation to its treatment and its recurrence. The following search terms were used: (((((((Central Odontogenic Fibroma) OR COF) AND Treatment) OR Enucleation) OR curettage) OR Resection) AND Recurrence).

Data Extraction and Analysis

We followed the PRISMA guideline for systematic reviews. All the articles regarding the prevalence and treatment of patients with COF and its recurrence were included. The full texts of articles that met the inclusion criteria and of articles whose abstract was lacking information were obtained. Data on the number of patients, patient characteristics such as gender, age, COF localization, correlation with unerupted tooth, treatment used, follow-up, and recurrence were tabulated.

Inclusion Criteria

Patients with histopathological diagnosis of COF, with follow-up and information regarding recurrence.

Exclusion Criteria

Patients with histopathological diagnosis of odontogenic fibroma, without diagnosis of being central.
Patients without follow-up.
Patients without information about recurrence. Patients with histopathological findings of COF and other types in the same tumor. Articles that did not have an English abstract with the above-mentioned characteristics.

Results

The initial search retrieved 51,763 articles identified through database searching, and 41 articles identified through manual search. After examination of the title and the abstract, 83 articles were retrieved for further examination. Sixty-two articles were included, thus obtaining a total of 104 patients (Table 1).

For the analysis of the correlation with an unerupted tooth, 13 patients from one article were excluded because no information was available, resulting in a total of 91 patients.

For the analysis of the tumor localization, all of the 104 patients were included.

For the treatment and recurrence analysis, 20 patients from 5 articles were excluded due to a lack of information about follow-up, diagnosis of being central, or information about recurrence.
Eighty-Four patients were included in the analysis.

The age of the patients ranged from 3 to 74 years old, with a mean age of 31.11 years (n=104), with a gender relation of 0.79:1 (46 males – 58 females).

The unerupted tooth relation for the 91 patients was 28.57% (26 patients).

The most frequent localization for all patients was the mandible in 52% (54 patients), and the maxilla 48% (50 patients).

The surgery type of the 84 patients included was as shown in the Table 2.

The recurrence of the 84 patients was 4.76% (4 patients) Table 3.

Discussion

Unerupted Tooth Relation

Cicconetti and colleagues made a literature survey which included 64 patients, from which 25% of them were associated with the

Table 1. Summary of Patients and Articles Included in the Systematic Review.

Reference	Age	Gender	Unerupted tooth relation	Localisation	Treatment	Follow-up	Recurrence
Wesley RK, et al., [6]	11 y	M	Yes	Mandible	Enucleation/Curettage	24 Mo	No
Heimdal A, et al., [7]	20 y	F	No	Mandible	Enucleation	108 Mo	Yes
Schofield ID [8]	11 Y	F	No	Mandible	Enucleation	N / A	N / A
Dahl EC, et al., [9]	27 Y	M	No	Maxilla	Enucleation	60 Mo	No
Dunlap CL, Barker BF [10]	33 Y	F	No	Maxilla	Curettage	120 Mo	No
Janssen JH, Blüdorp PA [11]	44 Y	M	No	Maxilla	Enucleation	6 Mo	No
Sepheriadou-Mavropoulou TH, et al., [12]	16 Y	F	No	Maxilla	Enucleation	30 Mo	No
Watt-Smith SR, et al., [13]	63 Y	F	No	Mandible	Enucleation	9 Mo	No
Handlers JP, et al., [14]	14 Y	F	N / A	Maxilla	Enucleation	3 Mo	No
72 Y	M	N / A	Maxilla	12 Mo	No		
28 Y	M	N / A	Maxilla	12 Mo	No		
45 Y	F	N / A	Maxilla	12 Mo	No		
41 Y	F	N / A	Maxilla	36 Mo	No		
23 Y	F	N / A	Maxilla	N / A	N / A		
26 Y	F	N / A	Maxilla	N / A	N / A		
28 Y	F	N / A	Maxilla	N / A	N / A		
30 Y	F	N / A	Maxilla	N / A	N / A		
22 Y	F	N / A	Maxilla	N / A	N / A		
42 Y	F	N / A	Maxilla	N / A	N / A		
61 Y	F	N / A	Maxilla	N / A	N / A		
14 Y	F	N / A	Maxilla	N / A	N / A		
46 Y	F	N / A	Maxilla	N / A	N / A		
24 Y	M	N / A	Maxilla	N / A	N / A		
66 Y	F	N / A	Mandible	N / A	N / A		
39 Y	F	N / A	Maxilla	N / A	N / A		
52 Y	F	N / A	Mandible	N / A	N / A		
34 Y	M	N / A	Mandible	N / A	N / A		
Gunhan O, et al., [15]	55 Y	F	N / A	Maxilla	Enucleation	60 Mo	No
Thomopoulos G, et al., [16]	53 Y	M	No	Maxilla	Enucleation	6 Mo+	No+
Chen CH, Huang YL [17]	32 Y	M	N/A	Mandible	Enucleation	36 Mo	No
Allen CM, et al., [18]	66 Y	F	No	Maxilla	Curettage	6 Mo	No
14 Y	F	N / A	Maxilla	48 Mo	No		
30 Y	F	No	Maxilla	14 Mo	Yes		
Huey MW, et al., [19]	42 Y	M	No	Maxilla	Enucleation	4 Mo	No
Mosqueda-Taylor, et al., [20]	17 Y	F	No	Mandible	Curettage	72 Mo	No
Calvo N, et al., [21]	61 Y	M	No	Maxilla	Enucleation	36 Mo	No
Daniels JSM [22]	30 Y	F	Yes	Mandible	Enucleation	60 Mo	No
Covani U, et al., [23]	26 Y	F	No	Maxilla	Enucleation	72 Mo	No
Cicconetti A, et al., [24]	38 Y	F	Si	Mandible	Enucleation / Curettage	18 Mo	No
Cercadillo-Ibarquen I, et al., [25]							
Author(s)	Age	Sex	Site	Treatment	Follow-Up	Recurrence	
-----------	-----	-----	------	-----------	-----------	------------	
Lombardi-Azócar JJ, García-Cano E, Malagón-Hidalgo HO, González-Magaña F, Montiel-Janquín AJ, et al., (2017)	45 Y	F	Mandible	Enucleation	12 Mo	No	
Chuang GP, et al., [27]	20 Y	F	No	Mandible	Enucleation / Curettage	8 Mo	No
Araki M, et al., [28]	40 Y	M	Yes	Mandible	Enucleation	84 Mo	No
Daskala I, et al., [29]	71 Y	M	No	Mandible	Enucleation	1 Mo	No
Kishino M, et al., [30]	29 Y	M	No	Maxilla	Enucleation	14 Mo	No
Brazao-Silva Mt, et al., [31]	28 Y	M	No	Mandible	Curettage	156 Mo	No
Melo AR, et al., [32]	16 Y	M	No	Maxilla	Enucleation	60 Mo	Yes
de-Matos FR, et al., [33]	36 Y	F	No	Maxilla	Enucleation	11 Mo	No
Mosqueda-Taylor A, et al., [34]	39 Y	M	No	Maxilla	Enucleation	3 Mo	No
	48 Y	M	No	Maxilla	Enucleation	12 Mo	No
	42 Y	F	No	Mandible	Enucleation	48 Mo	No
	17 Y	F	No	Mandible	Enucleation	156 Mo	No
	25 Y	F	No	Maxilla	Enucleation	6 Mo	No
	14 Y	M	No	Mandible	Enucleation	16 Mo	No
	14 Y	M	No	Mandible	Enucleation	24 Mo	No
	49 Y	M	No	Maxilla	Enucleation	6 Mo	No
	31 Y	F	No	Maxilla	Enucleation	48 Mo	No
	28 Y	M	No	Mandible	Enucleation	6 Mo	No
	24 Y	M	No	Maxilla	Enucleation	N / A	N / A
	39 Y	F	No	Maxilla	Enucleation	N / A	N / A
	51 Y	F	No	Mandible	Enucleation	N / A	N / A
	25 Y	F	No	Maxilla	Enucleation	N / A	N / A
Nah KS [35]	17 Y	M	No	Mandible	Enucleation	24 Mo	No
Kiklander S, et al., [36]	9 Y	M	Yes	Mandible	Enucleation	12 Mo	No
Bologna-Molina R, et al., [37]	14 Y	M	No	Mandible	Enucleation / Curettage	24 M	No
Ahmad SJ, et al., [38]	16 Y	M	No	Mandible	Enucleation	36 Mo	No
Hrchi R, et al., [39]	17 Y	M	Yes	Mandible	Enucleation / Curettage	60 Mo	No
	30 Y	M	Yes	Mandible	Enucleation / Curettage	60 Mo	No
	18 Y	F	Yes	Maxilla	Enucleation / Curettage	60 Mo	No
	29 Y	M	Yes	Mandible	Enucleation / Curettage	60 Mo	No
	16 Y	M	Yes	Mandible	Enucleation / Curettage	60 Mo	No
	11 Y	F	Yes	Maxilla	Enucleation / Curettage	60 Mo	No
	17 Y	M	Yes	Mandible	Enucleation / Curettage	60 Mo	No
Hara M, et al., [40]	24 Y	F	No	Maxilla	Enucleation	12 Mo	No
	12 Y	F	Yes	Mandible	Enucleation	28 Mo	No
Chhabra V, Chhabra B. [41]	16 Y	F	No	Mandible	Enucleation	12 Mo	No
Kimura T, et al., [42]	74 Y	F	No	Mandible	Marginal Mandibulectomy	48 Mo	No
Takeo T, et al., [43]	29 Y	M	Yes	Mandible	Enucleation	24 Mo	No
Pushpanshu J, et al., [4]	18 Y	F	No	Mandible	Curettage	30 Mo	No
Jordanidis S, et al., [44]	39 Y	F	Yes	Mandible	Enucleation / Curettage	12 Mo	No
Salgado H, et al., [2]	24 Y	M	No	Maxilla	Enucleation	18 Mo	No
Sachdeva SK, et al., [45]	18 Y	F	Yes	Mandible	Enucleation	12 Mo	Yes
Gopinath PA, et al., [46]	51 Y	M	No	Mandible	Enucleation	36 Mo	No
Batson JP, et al., [47]	18 Y	M	No	Mandible	Enucleation / Curettage	18 Mo	No
Schueller JL, et al., [48]	54 Y	F	No	Maxilla	Enucleation	6 Mo	No
Venugopal S, et al., [49]	49 Y	M	No	Mandible	Enucleation	12 Mo	No
Chreanovic BR, et al., [50]	7 Y	M	Yes	Mandible	Enucleation	9 Mo	No
Liu X, et al., [51]	41 Y	M	No	Maxilla	Enucleation	13 Mo	No
Thananko P, et al., [52]	10 Y	M	Yes	Mandible	Enucleation	12 Mo	No
Soolari A, Khan A [5]	53 Y	M	No	Mandible	Enucleation / Curettage	12 Mo+	No+
Hedge U, Rekha M [53]	35 Y	M	No	Maxilla	Enucleation	24 Mo	No
Salehnejad J, et al., [54]	10 Y	M	N / A	Mandible	Right Hemimandibulectomy	14 Mo	No
Shirashi T, et al., [55]	3 Y	F	Yes	Mandible	Left Segmentary Mandibulectomy	24 Mo	No
Anbiace N, et al., [56]	4 Y	M	Yes	Mandible	Right Segmental Mandibular Resection	6 Mo	No
Monteiro LS, et al., [57]	74 Y	F	No	Mandible	Er:YAG (2940mm)/enucleation / Curettage	48 Mo	No
Lombardi-Azócar JJ, García-Cano E, Malagón-Hidalgo HO, González-Magaña F, Montiel-Jarquín AJ, et al., (2017) Central Odontogenic Fibroma, its Treatment and its Recurrence: A Systematic Review. Int J Dentistry Oral Sci. S10:001, 1-7.

In our systematic review, we included 91 patients, and only 26 of them correlated with an unerupted tooth (28.57%), while the rest did not (65 patients, 71.43%). Therefore, its presence is not necessary to make a differential radiological diagnosis.

Localization

The localization of these tumors varies in the literature. Handlers described 39 cases of COF, reporting 56% occurring in the maxilla and 44% in the mandible [14]. Ramer showed an incidence ratio in mandible and maxilla of 1:1 (34:34 patients) [64]. Meanwhile, in the most recent review by Cicconetti, they reported 52 patients, founding 61.53% in the mandible and 38.47% in the maxilla [24].

Nonetheless in our systematic review, out of 104 patients, 54 (52%) were located in the mandible, while the rest 50 (48%) were located in the maxilla.

Treatment

The first authors who reported curettage as a first-line treatment were Dunlap and Barker, who presented two cases of maxillary odontogenic fibroma treated by this method with a follow-up of 9 to 10 years without evidence of recurrence [10]. Since these lesions readily separate from their bony crypt and show no evidence of bony infiltration [5], generally the treatment described in the literature has been conservative.

However, there are special cases in which resections are necessary due to the extension of the tumor that compromises the bony structures, thus not allowing a conservative treatment; such cases are listed in Table 3.

Table 2. Summary Data of the Patients Included in the Systematic Review.

Total number of patients	104
Average of patients	31.11 years
Gender relation (Male:Female)	0.79 : 1
Unerupted tooth relation (n=91)	26 (28.57%)
Localization (n=104):	
Mandible	54 (52%)
Maxilla	50 (48%)
Surgery type (n= 84):	
Enucleation	53 (63.09%)
Curettage	8 (9.52%)
Enucleation and Curettage	17 (20.23%)
Resection procedure	4 (4.76%)
Er:YAG 2940mm and Enucleation and Curettage	1 (1.19%)
Enucleation and Curettage and liquid nitrogen	1 (1.19%)
Mean follow –up time (n=84)	34.17 Mo, 2.84 years
Recurrence (n=84)	4 (4.76%)

* n = number of patients

Table 3. Procedures Perform in the Recurrence Cases.

Recurrence (n=84)	4 (4.76%)
Type of surgery (4):	
Enucleation	3 (66.66%)
Curettage	1 (33.33%)

* n = number of patients

* Y: Years; M: Male; F: Female; N/A: Non Available; Mo: Months; +: Information asked through e-mail to author.
treatments include mandibulectomy, hemimandibulectomy, resection and reconstruction with bone grafts or free flaps [42, 54-56]. As the technology and new treatments are discovered, various methods have been implemented for treating this tumor and to lower its recurrence, such as laser treatment described by Monteiro LS [57], or the use of liquid nitrogen as described by García-Cano et al., [63].

In this review 63% (53 patients) of the patients were treated only by enucleation, followed by enucleation and curettage with 20.2% (17 patients), and only curettage in 9.5% (8 patients). Only 7.14% were treated by other methods due to the tumor extension.

Recurrence

The recurrence reports vary in the literature. The most recent review by García-Cano et al., of 27 cases (23 treated by enucleation and 4 by a resection procedure) with a mean follow up of 20.73 months, showed no recurrence whatsoever [63]. Ramer and colleagues reported only 5 cases of recurrence. However, only 39 cases out of 68 were followed up [64].

In this systematic review out of 84 patients, 4 (4.7%) presented recurrence. From these, 3 cases were treated by enucleation and one by curettage (Table 3).

Heimdal and colleagues explained that the recurrence presented with their patient may have resulted due to incomplete removal [7]. On the other hand, Allen did not describe a possible cause [18]. Melo described that mistakes made in the histological diagnosis of the tumor and an inadequate surgical technique are considered to be possible causes for recurrence; they also described that a probable explanation would be the maintenance of the impacted maxillary right canine and its periodontal ligament as a tumor reactivating factor [32]. Sachdeva SK et al., described the most recent case for recurrence, mainly due to a probable incomplete removal of the tumor [45].

Conclusion

The COF is an extremely rare benign neoplasm found only in 0.1% of all odontogenic tumors.

The recurrence rate in these tumors is very low and mainly related to an incomplete resection. Therefore, conservative surgery must be done as a first-line treatment.

References

[1]. Muñoz Torres C, Reyes- Olave P, Álvarez- Novoa C, Venegas-Roja B (2010) Central odontogenic fibroma, WHO type. One case report and review of the literature. Rev Esp Cir Oral Maxilofacial. 32(4): 159-164.

[2]. Salgado H, Mesquita P (2014) Central odontogenic fibroma of the maxilla – A case report. Rev port Estomatol Med Dent cir Maxilofacial. 53(1): 49-54.

[3]. Corrêa-Castillo G, Liceaga-Reyes R, Mosqueda-Taylor A (2011) Uncommon mandibular lesion of central odontogenic fibroma combined with mandibular central giant cell granuloma. Rev Odont Mex. 15(2): 126-131.

[4]. Pushpanshu K, Kaushik R, Punyani SR, Jasuja V, Raj V, et al., (2013) Concurrent central odontogenic fibroma (WHO Type) and traumatic bone cyst: report of a rare case. Quant Imaging Med Surg. 3(6): 341-346.

[5]. Soolari A, Khan A (2014) Central Odontogenic Fibroma of the Gingiva: A Case Report. Open Dent J. 8: 280-288.

[6]. Wesley RK, Wysocki GP, Miner SM (1975) The central odontogenic fibroma. Clinical and morphologic studies. 40(2): 235-245.

[7]. Heimdal A, Isacson G, Nilsson L (1980) Recurrent central odontogenic fibroma. Oral Surg. 50(2): 140-145.

[8]. Schofield ID (1981) Central odontogenic fibroma: report of a case. J Oral Surg. 39(5): 218-220.

[9]. Dahl EC, Wolfson SH, Haugen JC (1981) Central odontogenic fibroma: review of literature and report of cases. J Oral Surg. 39(2): 120-124.

[10]. Dunlap CL, Barker BF (1984) Central odontogenic fibroma of the WHO type. Oral Surg Oral Med Oral Pathol. 57(4): 390-395.

[11]. Janssen JH, Blijdorp PA (1985) Central Odontogenic Fibroma. A case report. J Max Fac Surg. 13(5): 236-238.

[12]. Sepheriadou-Mavropoulou TH, Patrikouk A, Sotiridosu S (1985) Central odontogenic fibroma. Int J Oral Surg. 4(6): 550-555.

[13]. Watt-Smith SR, Ell-Lahban NG, Tinkler SM (1988) Central odontogenic fibroma. Int J Oral Maxillofac Surg. 17(2): 87-91.

[14]. Handlers J, Abrams AM, Melrose RJ, Danforth R (1991) Central Odontogenic Fibroma: Clinicopathologic Features of 19 Cases and Review of the Literature. J Oral Maxillofac Surg. 49(1): 46-72.

[15]. Gunthan O, Gurbuzer B, Gardner DG, Demiriz M, Finci R (1991) A central odontogenic fibroma exhibiting pleomorphic fibroblasts and numerous calcifications. Br J Oral Maxillofac Surg. 29(1): 42-43.

[16]. Thomopoulos G, Markeopoulos AK (1992) Central odontogenic fibroma: a case report. Ann Dent. 51(2): 12-13.

[17]. Chen CH, Huang YL (1992) Central odontogenic fibroma of the mandible – a case report. Gaoxiong Yi Xue Ke Xue Za Zhi. 8(6): 327-331.

[18]. Altay CM, Hammouti YL, Barar PG (1992) Central odontogenic fibroma, WHO type. A report of three cases with unusual associated giant cell reaction. Oral Surg Oral Med Oral Pathol. 73(1): 62-68.

[19]. Huey MW, Bramwell D, Hutter JW, Kratochvil FJ (1995) Central Odontogenic Fibroma Mimicking a Lesion of Endodonic Origin. J Endod. 21(12): 625-627.

[20]. Mosqueda-Taylor A, Bermúdez-Flores V, Díaz-Franco MA (1999) Combined Central Odontogenic Fibroma and Giant Cell Granuloma-Like Lesion of the Mandible: Report of a Case and Review of the Literature. J Oral Maxillofac Surg. 57(10): 1258-1262.

[21]. Calvo N, Alonso D, Prieto M, Junquera L (2002) Central Odontogenic Fibroma Granular Cell Variant: A Case Report and Review of the Literature. J Oral Maxillofac Surg. 60(10): 1192-1194.

[22]. Daniels JS (2004) Central odontogenic fibroma of mandible: a case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 98(3): 295-300.

[23]. Covani U, Crespi R, Perrini N, Barone A (2005) Central odontogenic fibroma: A case report. Med Oral Parol Oral Cir Bucal. 10(2): E154-157.

[24]. Ciococetti A, Bartoli A, Tallarico M, Maggiani F, Santaniello S (2006) Central odontogenic fibroma interesting the maxillary sinus. Minerva stomatol. A case report and literature. 55(4): 1-7.

[25]. Cercadillo-Ibarguren I, Berini-Ayres L, Marco-Molina V, Gay-Encoda C (2006) Locally aggressive central odontogenic fibroma associated to an inflammatory cyst: a clinical, histological and immunohistochemical study. J Oral Pathol Med. 35(8): 513-516.

[26]. Silva CO, Sallum AW, Gomes-do-Couto-Filho CE, Costa-Pereira AA, Costa-Henemann JA, et al., (2007) Localized Gingival Enlargement Associated With Alveolar Process Expansion: Peripheral Ossifying Fibroma Coincident With Central Odontogenic Fibroma. J Periodontol. 78(7): 1354-1359.

[27]. Chuang GP, Tsi L (2008) Central Odontogenic Fibroma of Mandible - A Case Report. Taiwan J Oral Maxillofac Surg. 19: 179-185.

[28]. Araki M, Nishimura S, Matsumoto N, Ohnishi M, Okhi H, et al., (2009) Central odontogenic fibroma with osteoid formation showing atypical radiographic appearance. Dentomaxillofac Radiol. 38(6): 426-430.

[29]. DaskaI I, Kalyvas D, Kolokoudias M, Vlachodimitropoulos D, Alexandridis C (2009) Central odontogenic fibroma of the mandible: a case report. J Oral Sci. 51(3): 457-461.

[30]. Kishino M, Ishihashi M, Koizumi H, Sato S, Murakami S, et al., (2009) Central odontogenic fibroma of the maxilla: a case report with immunohistochemical study. Oral Med Pathol. 14(1): 29-32.

[31]. Brazao-Silva MT, Fernandez AV, Duriguetto-Junior AF, Cardoso SV, Loyola AM (2010) Central odontogenic fibroma: a case report with long-term follow-up. Head Face Med. 6: 20.

[32]. Melo AR, Santos T-de-S, do Amaral MF, Albuquerque D-de-P, Andrade ES, et al., (2011) Central odontogenic fibroma interesting the maxillary sinus. Minerva stomatol. A case report and literature. 55(4): 1-7.
Lombardi-Azócar JJ, García-Cano E, Malagón-Hidalgo HO, González-Magaña F, Montiel-Jarquín AJ, et al., (2017) Central Odontogenic Fibroma, its Treatment and its Recurrence: A Systematic Review. Int J Dentistry Oral Sci. S10:001, 1-7.

[35]. Nah KS (2011) Central odontogenic fibroma: a case report. Imaging Sci Dent. 41(2): 85-86.
[36]. Niklander S, Martínez R, Deichert J, Esguep A (2011) Bilateral mandibular odontogenic fibroma (WHO type): Report of a case with 5-year radiographic follow-up. J Dental Sci. 6(2): 123-127.
[37]. Bologna-Molina R, Pacheo-Ruiz L, Mosquera-Taylor A, Huesca-Ramírez HG, Ponce-Lonato JA, et al., (2011) Central Odontogenic Fibroma combined with Central Giant Cell Lesion of the Mandible. Immunohistochemical profile. J Clin Exp Dent. 3(4): e348-351.
[38]. Ahmadi SK, Rahpeyma A (2012) Central Odontogenic Fibroma of the Mandible. JDMT. 1(2): 70-73.
[39]. Hrichi R, Gargallo-Albiol J, Berini-Aytés, Gay-Escoda C (2012) Central odontogenic fibroma: Retrospective study of 8 clinical cases. Med Oral Pathol Oral Cir Bucal. 17(1): e50-e62.
[40]. Hara M, Matsuzaki H, Katase N, Yanagi Y, Unetsubo T, et al., (2012) Central odontogenic fibroma of the jawbone: 2 case reports describing its imaging features and an analysis of its DCE-MRI findings. Oral Surg Oral Med Oral Pathol Oral Radiol. 113(6): e51-e58.
[41]. Chhabra V, Chhabra A (2012) Central odontogenic broma of the mandible. Contemp Clin Dent. 3(2): 230-3.
[42]. Kimura T, Ohba S, Yoshimura H, Katase N, Imamura Y, et al., (2013) Epithelium-Poor Type Central Odontogenic Fibroma: An Immunohistochemical Study and Review of the Literature. J Hard Tissue Biology. 22(2): 273-278.
[43]. Takeoka T, Inui M, Okamura K, Nakamura S, Shimizu K, et al., (2013) A central odontogenic fibroma mimicking a dentigerous cyst associated with an impacted mandibular third molar - Immunohistochemical study and review of literature. J Oral Maxillofac Surg. Med Pathol. 25(2): 193-196.
[44]. Jordanidis S, Pouloupolous A, Epivatianos A, Zouloumis L (2014) Central odontogenic fibroma: Report of case with immunohistochemical study. Indian J Dent Res. 24(6): 753-755.
[45]. Sachdeva SK, Verma P, Verma D, Verma KG (2014) Recurrent central odontogenic fibroma: An uncommon clinical presentation. Saudi Surg J. 2(1): 22-25.
[46]. Gopingathan PA, Kokila G, Jayothi M, Nair MS, Jacob TH, et al., (2014) Importance of Histopathology in Diagnosis of Central Odontogenic Fibroma - A Case Report. Res J Pharma, Biol Chem Sci. 5(6): 923-928.
[47]. Barson JP, Strickland F (2014) Central Odontogenic Fibroma: Case Report and Review. US Army Med Dep J. 57-60.
[48]. Schussel JL, Gallottini MHC, Bza-Silva PH (2014) Odontogenic Fibroma WHO-type simulating periodontal disease: Report of a case. J Indian Soc Periodontol. 18(1): 85-87.
[49]. Venugopal S, Radhakrishna S, Raj A, Sawhney A (2014) Central odontogenic fibroma. J Indian soc Periodontol. 18(2): 240-243.
[50]. Chrcanovic BR, Freire-Maia B, Gómez RS (2014) Small Central Odontogenic Fibroma Mimicking Hyperplastic Dental Follicle and Dentigerous Cyst. J Maxillofac Oral Surg. 13(3): 332-336.
[51]. Liu X, Yan S, Liu J (2014) Neurovascular involvement in central odontogenic fibroma: a potential source of confusion with invasive carcinoma. Histopathology. 66: 1055-1053.
[52]. Thankappan P, Chandru NSV, Amudala R, Yanadi P, Rahamthullah SAKU, et al., (2014) Central Odontogenic Fibroma of Simple Type. Case rep dent. Int J Appl Dent Sci. 1(4): 05-07.
[53]. Salehinejad J, Ghazi N, Seraji A, Ghanbari S, Nasr E (2015) Concurrent central odontogenic fibroma (WHO type) and odontoma: Report of a rare and unusual entity. J Oral Maxillofac Surg. Med Pathology. 27(6): 888-892.
[54]. Shiraiishi T, Uehara M, Fujita S, Ikeda T, Asahina I (2015) A case of central odontogenic fibroma in a pediatric patient: Mandibular reconstruction with parietal bone. J Oral Maxillofac Surg Med Pathol. 27(3): 361-365.
[55]. Anbiae N, Ebrahimnejad H, Sanaei A (2015) Central odontogenic fibroma (simple type) in a four-year-old boy: atypical cone-beam computed tomographic appearance with periosteal reaction. Imaging Sci Dent. 45(2): 109-115.
[56]. Monteiro LS, Martins M, Pacheco JL, Salaraz F, Magalhaes J, et al., (2015) Er:YAG Laser Assisted Treatment of Central Odontogenic Fibroma of the Mandible. Case Rep Dent. DOI: http://dx.doi.org/10.1155/2015/230297.
[57]. El-Hariti K, Oujaila A, El-Wady W (2015) Central Odontogenic fibroma of the maxilla. Indian J Dent. 6(4): 217-220.
[58]. Santoro A, Pannone G, Ramaglia L, Bufo P, Lo-Muzio L, et al., (2016) Central odontogenic fibroma of the mandible: A case report with diagnostic considerations. Ann med surg. 5: 14-18.
[59]. Prakash U, Shappo M, Chauhan R (2016) Central Odontogenic Fibroma: A Case report. J Adv Med Dent Sci Res. 4(2): 60-62.
[60]. Nakamura Y, Masuda K, Yamaza H, Nonaka K (2016) Central Odontogenic Fibroma Associated with Eruption Disturbance of a Permanent Incisor in a Six-Year-Old Girl. Int J Dentistry Oral Sci. 03(3): 205-208.
[61]. Pippi R, Santoro A, Patini R (2016) The central odontogenic fibroma: How difficult can be making a preliminary diagnosis. J clin Exp Dent. 8(2): e223-225.
[62]. García-Cano E, González-Magaña F, Malagón-Hidalgo HO, Caicedo-Perez JH, Carrilho-Ponce CS, et al., (2016) Central odontogenic fibroma: collection of cases in the world literature. Case report with use of adyuvant treatment for the reduction of recurrence with liquid nitrogen and bone regeneration guided with lyophilized bone and platelet-rich plasma. Int J Dentistry Oral Sci. 53: 002, 11-15.
[63]. Ramer M, Buonocore P, Krost B (2002) Central odontogenic fibroma – report of a case and review of the literature. Period Clin Invest. 24(1): 27-30.