Bai, Yuan; Xu, Mingda; Liu, Caifen; Shen, Mingwang; Wang, Lin; Tian, Linwei; Tan, Suoyi; Zhang, Lei; Holme, Petter; Lu, Xin; Lau, Eric H.Y.; Cowling, Benjamin J.; Du, Zhanwei

Travel-related Importation and Exportation Risks of SARS-CoV-2 Omicron Variant in 367 Prefectures (Cities) — China, 2022

Published in:
China CDC Weekly

DOI:
10.46234/ccdcw2022.184

Published: 07/10/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC

Please cite the original version:
Bai, Y., Xu, M., Liu, C., Shen, M., Wang, L., Tian, L., Tan, S., Zhang, L., Holme, P., Lu, X., Lau, E. H. Y., Cowling, B. J., & Du, Z. (2022). Travel-related Importation and Exportation Risks of SARS-CoV-2 Omicron Variant in 367 Prefectures (Cities) — China, 2022. China CDC Weekly, 4(40), 885-889. https://doi.org/10.46234/ccdcw2022.184
Travel-related Importation and Exportation Risks of SARS-CoV-2 Omicron Variant in 367 Prefectures (Cities) — China, 2022

Yuan Bai, Mingda Xu, Caiwen Liu, Mingwang Shen, Lin Wang, Linwei Tian, Suoyi Tan, Lei Zhang, Petter Holme, Xin Lu, Eric H. Y. Lau, Benjamin J. Cowling, Zhanwei Du

ABSTRACT

Introduction: Minimizing the importation and exportation risks of coronavirus disease 2019 (COVID-19) is a primary concern for sustaining the “Dynamic COVID-zero” strategy in China. Risk estimation is essential for cities to conduct before relaxing border control measures.

Methods: Informed by the daily number of passengers traveling between 367 prefectures (cities) in China, this study used a stochastic metapopulation model parameterized with COVID-19 epidemic characteristics to estimate the importation and exportation risks.

Results: Under the transmission scenario (R_0=5.49), this study estimated the cumulative case incidence of Changchun City, Jilin Province as 3,233 (95% confidence interval: 1,480, 4,986) before a lockdown on March 14, 2022, which is close to the 3,168 cases reported in real life by March 16, 2022. In a total of 367 prefectures (cities), 127 (35%) had high exportation risks according to the simulation and could transmit the disease to 50% of all other regions within a period from 17 to 94 days. The average time until a new infection arrives in a location in 1 of the 367 prefectures (cities) ranged from 26 to 101 days.

Conclusions: Estimating COVID-19 importation and exportation risks is necessary for preparedness, prevention, and control measures of COVID-19 — especially when new variants emerge.

At the same time, China has had the most severe COVID-19 outbreak since the original wave from Wuhan, driven by the Omicron variant, resulting in lockdowns in Shanghai Municipality, Shenzhen City, and Jilin Province (3–4). For regions with high importation risk, stringent measures (e.g., reduction of international flights, post-arrival quarantine, and strict surveillance) can be applied to earn more time for preparedness and response (5–6). In support of this, this study estimates importation and exportation risks of various regions using nationwide mobility data in China: using Changchun City and Jilin City in Jilin Province as a case study.

METHODS

Mobility Data

This study analyzed the daily number of passengers traveling between 367 prefectures (cities) in China, including 4 municipalities, 1 special administrative region, 332 prefecture-level divisions, 6 autonomous counties, and 24 county-level cities and centrally administered municipalities. The mobility data were from a national mobile phone carrier (China Unicom), with 318 million active users in 2019, during the period from January 7 to 13, 2020 (7–8). When users made phone calls, sent messages, turned on/off their devices, or switched towers, the national mobile phone carrier collected their location information (8–9). The dataset was anonymized so that this study cannot identify or filter users of certain groups. The dataset includes approximately 100 million daily between-city trips, without overseas mobility. This research assumed that the mobility between cities for each week in this study’s following simulations is the same as the study week.

Epidemic Model

Following the Covasim model structure, this study used a stochastic metapopulation model of COVID-19
transmission (Supplementary Figure S1, available in http://weekly.chinacdc.cn/) (10). The population is characterized as either susceptible (S), exposed (E, infected but not yet infectious), infectious (I), recovered (R), and deceased (D), with infectious population additionally categorized according to symptoms: pre-symptomatic (P), asymptomatic (A), mild (I1), severe (I2), or critical (I3). This study set initial cases (one seed per million population) for each prefecture (city) to simulate the daily situation of disease transmission. Then, this study evaluated the mean and 95% confidence interval (CI) of the daily infected cases based on 100 simulations. Specifically, this simulation calculated the number of infected cases without severe or critical symptoms in city i at time t as follows:

\[
\Lambda_i(t) = E_i(t) + P_i(t) + A_i(t) + I_{i1}(t).
\]

(1)

The prevalence \(\xi_i(t) \) of infected cases in prefecture (city) i at time t is given by:

\[
\xi_i(t) = \frac{\Lambda_i(t)}{\rho_i}.
\]

(2)

where \(\rho_i \) represents the population size of prefecture (city) i. This study then constructed an intercity mobility network to track the movement patterns of individuals between cities. Let \(\omega_{a,(d)} \) denote the number of residents from the origin prefecture (city) a that travel to the destination prefecture (city) d on day t. Given the daily prevalence \(\xi_i(t) \) of prefecture (city) i, the rate at which infected residents from prefecture (city) a travel to prefecture (city) d on day t is given by \(\psi_{a,d}(t_a) = \xi_i(t) \times \omega_{a,d}(t) \). The potential of importing at least one infected case from prefecture (city) a to prefecture (city) d on day \(t_a \) is given by (3,11):

\[
\psi_{a,d}(t_a) = 1 - \exp[-\theta_{a,d}(t_a)].
\]

(3)

The cumulative probability of importing at least one infection from prefecture (city) a to prefecture (city) d between \(t_0 \) and \(t_a \) is given by:

\[
\kappa_{a,d}(t_a) = 1 - \exp\left[-\int_{t_0}^{t_a} \theta_{a,d}(u) \, du \right].
\]

(4)

For each epidemic origin, this study conducted 100 stochastic simulations across 4 months (120 days). In each simulation, the prefecture (city) d has at least 1 infected case on or by day \(t_a \) when incorporating the probability \(\psi_{a,d}(t_a) \) or \(\kappa_{a,d}(t_a) \), respectively. This study tracked the geographic expansion of simulated epidemics by taking each prefecture (city) as an epidemic origin (epicenter). To compare the epidemic growth across outbreak scenarios, this study measured the time until a certain percentage of prefectures (cities) with importations reaches specified thresholds, such as \(T=50\% \), and denoted this quantity as \(\Gamma_T \) to measure the exportation risk. To assess the epidemiological vulnerability of a specific location i, this study tracked the days until i becomes infected under various scenarios as the importation risk, \(\chi \). Matlab (version R2021b, The MathWorks, Massachusetts, US) was used for analyzing mobility data and simulating the epidemic transmission model.

RESULTS

For each possible importation location of 367 prefectures (cities), this study simulated epidemics using a stochastic epidemiological model over three transmission scenarios for the Omicron variant (different \(R_0 \)): running 100 simulations for each scenario (parameters are in Supplementary Table S1, available in http://weekly.chinacdc.cn/). Under the middle transmission scenario \((R_0=5.49) \), the cumulative infections of Changchun are estimated as 3,233 (95% CI: 1,480, 4,986) before the quarantine was imposed on March 14, 2022, which is close to the real number of cases, 3,168, reported by March 16, 2022 (12–13). This study shows the results of the middle transmission scenario in the main text and the sensitivity analysis in the supplementary.

This study estimated importation and exportation risk (Figure 1), finding that epidemics tend to spread fastest and in the shortest amount of time when imported or exported from Beijing or Shanghai. The rates at which epidemics spread from and to each prefecture (city) are highly correlated to prefectures (cities) with larger population sizes. For \(R_0 = 5.49, 127 \) (35%) of 367 cities have high exportation risks and could transmit the disease to 50% of all other locations within a period from 17 to 94 days. The population sizes in the 127 prefectures (cities) with high exportation risks are around 5.69 million (95% CI: 2.08, 7.88). As a comparison, population sizes in the remaining 240 prefectures (cities) are much smaller, within 2.24 million (95% CI: 0.10, 6.09) (Supplementary Table S2, available in http://weekly.chinacdc.cn/). The importation risk, as the average time until a new infection arrives in a location in 1 of the 367 prefectures (cities), ranges from 26 to 101 days. The correlation coefficients between the population size and days of the importation and exportation risks are −0.56 and −0.77, respectively (both with \(P<0.001 \)). These patterns also hold for other transmission scenarios (Supplementary Figure S2, available in http://weekly.chinacdc.cn/).
FIGURE 1. Risks of epidemic importation and exportation transmission. Note: For each prefecture (city), the mean and 95% confidence interval (CI) of the exportation risk (x-axis) are estimated by the number of days following an importation into that prefecture (city) until 10%, 20%, and 50% of prefectures (cities) experience outbreaks (Γ10%, Γ20%, and Γ50%), averaged over 100 stochastic simulations. The mean and 95% CI of the importation risk (y-axis) are estimated by the number of days following importation in another prefecture (city) until the focal prefecture (city) receives its first infection, averaged over 100 stochastic simulations. All simulations assume an initial outbreak of $R_0 = 5.49$; analogous graphs for other R_0s are provided in Supplementary Figure S2. The importation and exportation risks are correlated with a Pearson’s correlation coefficient of 0.72, and to population size of the prefecture (city) with coefficients of −0.56 and −0.77, respectively (all have P value <0.001).

The importation and exportation transmission risks in China are highest for outbreaks starting in Beijing and Shanghai, in terms of both geography and the underlying mobility network. In the case study of Changchun, if a city lockdown is implemented two weeks after the seeds are imported, on average 16 (95% CI: 12, 19) cities will then have imported cases from a random city. If a city lockdown is implemented one week earlier or later, on average 1 (95% CI: 0, 1) cities, 13 (95% CI: 7, 21) and 8 (95% CI: 5, 11) cities, respectively. If it’s one week later, they will import 131 (95% CI: 122, 140) and 56 (95% CI: 51, 62) cities, respectively.

DISCUSSION

Human mobility patterns shape epidemiological risk. The destiny of a newly emerging infectious disease will most likely be determined by where it was first imported. This study’s analysis of prefectures (cities) in China suggests that the rate of epidemic expansion depends not only on well-understood epidemiological drivers, e.g., R_0, but also on the importation locations of the initial cases. Locations that are more vulnerable to aggressive epidemics are also the earliest to be hit by outbreaks that originate elsewhere.

Throughout the COVID-19 pandemic, as case numbers started to soar in the initial stage, countries had to make policy decisions quickly to avoid local outbreaks — even without timely and definite scientific evidence. In response to the resurgence of vaccine-evasive variants, estimation of importation risk is essential for implementing targeted risk-based travel restrictions. This study helped estimate the importation risk of prefectures (cities) from any epicenter using nationwide mobility data in China.

This study was subject to some limitations. The synthetic simulation does not explicitly include the possible delay of reports of new cases that could have happened early in the COVID-19 outbreak. In addition, this study’s model does not include moderate cases directly, which are combined into severe cases. However, it does assume that asymptomatic/exposed/pre-symptomatic/mild cases can travel between prefectures (cities). Therefore, such a model design would have little impact on this study’s estimates of both risk and incidence.

As Omicron outbreaks emerge within prefectures (cities) in the mainland of China in March 2022, the government will continue to face high pressure from the rapid transmissibility of the Omicron variant and coming variants in the future. The current pandemic presents a broader opportunity for us to interrogate how to control outbreaks. Like other transmissible
pathogens (e.g., influenza), SARS-CoV-2 is likely to circulate in humans for many years to come (15). Estimating COVID-19 importation and exportation risks is necessary for preparedness and prevention and control measures of COVID-19 — especially when new variants emerge.

Acknowledgements: China Unicom, staff at the telecom carrier, Dr. Qi Tan, Dr. Bingyi Yang, Prof. Peng Jia, Prof. Xiaoke Xu, Prof. Shujuan Yang, Prof. Li Zhao, and Prof. Shiyong Liu.

Conflicts of interest: Benjamin J. Cowling consults for AstraZeneca, Fosun Pharma, GlaxoSmithKline, Moderna, Pfizer, Roche, and Sanoﬁ Pasteur. Other authors declare no conflicts of interest.

Funding: Supported by AIR@InnoHK programme from The Innovation and Technology Commission of the Hong Kong Special Administrative Region, National Natural Science Foundation of China (72104208), JSPS KAKENHI (JP21H04595), National Nature Science Foundation of China (72025405, 91846301, 72088101, and 71790615).

doi: 10.46234/ccdcw2022.184

*Corresponding author: Benjamin J. Cowling, bcowling@hku.hk.

1. WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; 2 Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong Special Administrative Region, China; 3 China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an City, Shaanxi Province, China; 4 College of Systems Engineering, National University of Defense Technology, Changsha City, Hunan Province, China; 5 Department of Computer Science, Aalto University, Espoo, Finland; 6 Center for Computational Social Science, Kobe University, Kobe, Japan. 7 Joint first authors.

Submitted: April 29, 2022; Accepted: August 21, 2022

REFERENCES

1. Chakraborty I, Maity P. COVID-19 outbreak: migration, effects on society, global environment and prevention. Sci Total Environ 2020;728:138882. http://dx.doi.org/10.1016/j.scitotenv.2020.138882.

2. WHO. Novel Coronavirus (2019-nCoV) situation reports [Internet]. 2022. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. [2022-5-30].

3. Du ZW, Wang L, Cauchemez S, Xu XK, Wang XW, Gowing BJ, et al. Risk for transportation of coronavirus disease from Wuhan to other cities in China. Emerg Infect Dis 2020;26(5):1049 – 52. http://dx.doi.org/10.3201/eid2605.200146.

4. Ruktanonchai NW, Floyd JR, Lai S, Ruktanonchai CW, Sadilek A, Rente-Lourenco P, et al. Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science 2020;369(6510):1465 – 70. http://dx.doi.org/10.1126/science.abc5096.

5. Nakamura H, Managi S. Airport risk of importation and exportation of the COVID-19 pandemic. Transp Policy 2020;96:40 – 7. http://dx.doi.org/10.1016/j.tranpol.2020.06.018.

6. Lee K, Worsnop CZ, Grepin KA, Kamradt-Scott A. Global coordination on cross-border travel and trade measures crucial to COVID-19 response. Lancet 2020;395(10237):1593 – 5. http://dx.doi.org/10.1016/S0140-6736(20)31032-1.

7. Slorza D. Number of China Unicom mobile subscriptions from 2011 to 2021 [Internet]. 2022. https://www.statista.com/statistics/233968/number-of-china-unicom-mobile-subscriptions. [2022-3-17].

8. Tan SY, Lai SJ, Fang F, Cao ZQ, Sai B, Song B, et al. Mobility in China, 2020: a tale of four phases. Natl Sci Rev 2021;8(11):nwarb148. http://dx.doi.org/10.1093/nsr/nwarb148.

9. Gao C, Liu JM. Modeling and restraining mobile virus propagation.
Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart GR, et al. Covasim: an agent-based model of COVID-19 dynamics and interventions. PLoS Comput Biol 2021;17(7):e1009149. http://dx.doi.org/10.1371/journal.pcbi.1009149.

Wang L, Wu JT. Characterizing the dynamics underlying global spread of epidemics. Nat Commun 2018;9(1):218. http://dx.doi.org/10.1038/s41467-017-02344-z.

Ruan F, Zhang XB, Xiao SJ, Ni XH, Yin XL, Ye ZW, et al. An outbreak of the SARS-CoV-2 omicron variant BA.1 — Zhuhai City, Guangdong Province, China, January 13, 2022. China CDC Wkly 2022;4(30):669-71. http://dx.doi.org/10.46234/ccdw2022.032.

Changchun Municipal Health Commission. Changchun Municipal Health Commission’s briefing on the new crown pneumonia epidemic situation [Internet]. 2022. http://wjw.changchun.gov.cn/xwzx/tzgg/202203/t20220318_2994637.html. [2022-3-18]. (In Chinese).

Leading Group for Prevention and Control of COVID-19 in Jilin Province. Jilin Province: from today, the movement of people in this province across provinces, cities and states is prohibited [Internet]. 2022. http://www.news.cn/local/2022-03/14/c_1128469069.htm. [2022-3-18]. (In Chinese).

Cobey S. Modeling infectious disease dynamics. Science 2020;368(6492):713 - 4. http://dx.doi.org/10.1126/science.abb5659.
SUPPLEMENTARY FIGURE S1. Schematic of the model structure, following the Covasim model structure (1).
- An individual must pass through a mild stage before reaching a severe or critical stage.
- An individual must pass through a severe stage before reaching a critical stage.
- Only individuals in a critical stage may die.
- All individuals have equal transmission rates and equal susceptibility to infection.
- The transmission rate of severe or critical infections will not be involved in the calculation of mobility prevalence, because we assume that infected patients will be hospitalized when symptoms become severe or critical.

SUPPLEMENTARY TABLE S1. Epidemiological parameters.

Parameters	Values (mean, std)	Data source
R_0: basic reproduction number	2.43 (5.49, 8)	Assumed
β: transmission rate per contact	Calibrated to R_0	Assuming
ω_p: relative infectiousness of pre-symptomatic cases	1.57	(4–5)
ω_a: relative infectiousness of asymptomatic cases	0.5	(6)
ρ: initial cases	One seed per million population	Assumed
T_{inf}: latent period	Lognormal (4.5, 1.5)	(7–8)
T_{pre}: duration of pre-symptomatic infectiousness	2	(9)
T_m: duration of mild symptomatic infectiousness	Lognormal (6.6, 4.9)	(10–11)
T_s: duration of severe symptomatic infectiousness	Lognormal (1.5, 2.0)	(11–12)
T_c: duration of critical symptomatic infectiousness	Lognormal (10.7, 4.8)	(13)
T_a: duration of asymptomatic infectiousness	Lognormal (8.0, 2.0)	(14)
F_a: fraction of asymptomatic infectiousness	27%	(15)
F_s: fraction of (symptomatic) infections that are severe	0.8%	Assumed
F_c: fraction of (symptomatic) infections that are critical	0.1%	Assumed
CFR: Case fatality rate (fraction of infections that eventually result in decease)	0.1%	Assumed
α_e: transition rate out of exposed state	$1 / T_{inf}$	Assumed
α_p: transition rate out of pre-symptomatic state to symptomatic state	$1 - F_a$	Assumed
α_m: transition rate out of mild infectiousness state	$(1 / T_m) - y_m$	Assumed
α_s: transition rate out of severe infectiousness state	$(1 / T_s) \times (F_s/F_a+F_s)$	Assumed
α_c: transition rate out of critical infectiousness state	$(1 / T_c) \times (\text{CFR} / F_a)$	Assumed
γ_m: recovery rate of mild symptomatic individuals	$(1 / T_m) \times (1 - F_m)$	Assumed
γ_s: recovery rate of severe symptomatic individuals	$(1 / T_s) - \alpha_s$	Assumed
γ_c: recovery rate of critical symptomatic individuals	$(1 / T_c) - \alpha_c$	Assumed
γ_a: recovery rate of asymptomatic individuals	$1 / T_a$	Assumed
SUPPLEMENTARY FIGURE S2. Risks of epidemic importation and exportation transmission with different R_0, (A) $R_0=2.43$ and (B) $R_0=8$. Note: For each prefecture (city), the mean and 95% CI of the exportation risk (x-axis) are estimated by the number of days following an importation into that prefecture (city) until 10%, 20%, and 50% of prefectures (cities) experience outbreaks ($\Gamma_{10\%}$, $\Gamma_{20\%}$, and $\Gamma_{50\%}$), averaged over 100 stochastic simulations. The mean and 95% CI of the importation risk (y-axis) are estimated by the number of days following importation in another prefecture (city) until the focal prefecture (city) receives its first infection, averaged over 100 stochastic simulations of (A) $R_0=2.43$ and (B) $R_0=8$. The importation and exportation risks are correlated with a Pearson’s correlation coefficient of (A) 0.72 and (B) 0.72, and to population size of the prefecture (city) with coefficients of (A) −0.55 and −0.76; (B) −0.56 and −0.77, respectively (all have P-value <0.001).

SUPPLEMENTARY TABLE S2. List of 51 study regions including 28 provincial capitals, 4 municipalities, 1 special administrative region of China, and the prefectures (cities).

Prefecture (city)	Population	$\Gamma_{10\%}$ (mean)	$\Gamma_{20\%}$ (mean)	$\Gamma_{50\%}$ (mean)			
		Exportation risk	Importation risk	Exportation risk	Importation risk		
		(mean)	(mean)	(mean)	(mean)		
Chongqing	30,752,000	14.74	36.38	16.58	36.38	19.01	36.38
Shanghai	24,183,000	12.72	32.26	14.53	32.26	17.63	32.26
Beijing	21,707,000	13.28	25.70	14.82	25.70	17.40	25.70
Chengdu	16,044,700	14.34	34.64	16.30	34.64	18.53	34.64
Tianjin	15,569,000	14.96	38.32	16.50	38.32	19.45	38.32
Guangzhou	14,498,400	12.53	37.96	14.64	37.96	18.11	37.96
Harbin	10,929,000	16.38	57.43	17.63	57.43	22.65	57.43
Wuhan	10,892,900	14.19	36.84	15.83	36.84	18.17	36.84
Shijiazhuang	10,879,900	16.66	47.24	17.96	47.24	22.10	47.24
Zhengzhou	9,880,000	14.85	32.61	16.56	32.61	18.91	32.61
Hangzhou	9,468,000	14.00	41.27	15.63	41.27	18.82	41.27
Xi’an	8,989,000	14.38	35.25	16.21	35.25	19.05	35.25
Nanjing	8,335,000	14.13	41.19	15.86	41.19	18.88	41.19
Shenyang	8,294,000	15.38	50.44	17.36	50.44	21.37	50.44
Hefei	7,965,300	14.90	43.38	17.01	43.38	20.28	43.38
Changsha	7,918,100	14.59	38.07	16.17	38.07	18.50	38.07
Changchun	7,674,439	16.64	60.64	18.85	60.64	31.49	60.64
Hong Kong	7,413,100	51.55	98.63	–	98.63	–	98.63
Jinan	7,321,200	15.68	43.13	17.28	43.13	20.57	43.13
Nanning	7,153,300	15.94	50.91	17.54	50.91	21.34	50.91
Dalian	6,988,000	16.38	58.84	18.18	58.84	26.09	58.84
Kunming	6783,000	14.73	44.61	16.23	44.61	18.77	44.61
TABLE S2. (Continued)

Prefecture (city)	Population	Γ_{10^6}	Γ_{20^6}	Γ_{10^7}			
	Exportation risk (mean)	Importation risk (mean)	Exportation risk (mean)	Importation risk (mean)	Exportation risk (mean)	Importation risk (mean)	
Nanchang	5,463,538	15.20	43.39	16.38	43.39	19.25	43.39
Suihua	5,418,153	20.76	69.19	37.94	69.19	–	69.19
Qiqhhar	5,367,003	21.61	70.76	54.90	70.76	–	70.76
Guiyang	4,802,000	15.85	45.97	17.22	45.97	20.44	45.97
Jilin	4,413,157	18.98	68.08	26.78	68.08	–	68.08
Taiyuan	4,379,700	16.65	53.93	18.17	53.93	22.03	53.93
Fuzhou	4,031,037	16.69	52.55	17.95	52.55	39.71	52.55
Lanzhou	3,729,600	16.78	55.24	18.44	55.24	22.48	55.24
Anshan	3,598,000	19.18	70.13	26.05	70.13	–	70.13
Urumqi	3,500,000	17.24	71.81	19.27	71.81	26.68	71.81
Siping	3,385,156	18.73	68.53	48.51	68.53	–	68.53
Tongliao	3,128,700	19.58	70.33	63.55	70.33	–	70.33
Songyuan	2,880,086	20.17	68.84	75.10	68.84	–	68.84
Mudanjiang	2,798,723	25.45	70.46	–	70.46	–	70.46
Tieling	2,638,000	20.06	69.67	44.44	69.67	–	69.67
Xining	2,355,000	18.72	67.88	22.32	67.88	–	67.88
Tonghua	2,324,439	23.97	68.81	76.77	68.81	–	68.81
Haikou	2,272,100	16.03	56.04	17.71	56.04	20.58	56.04
Yanbian Korean Autonomous Prefecture	2,270,816	20.65	72.24	75.50	72.24	–	72.24
Yinchuan	2,225,391	18.27	71.43	21.71	71.43	66.14	71.43
Fushun	2,065,000	20.97	71.32	31.23	71.32	–	71.32
Baicheng	2,032,356	22.18	74.67	79.59	74.67	–	74.67
Baishan	1,296,127	24.82	72.66	–	72.66	–	72.66
Hinggan League	1,604,200	23.45	76.48	–	76.48	–	76.48
Lhasa	1,176,239	25.02	71.88	–	71.88	–	71.88
	559,423	21.44	86.53	40.61	86.53	–	86.53

Note: For each prefecture (city), the mean estimates of the exportation risk and the importation risk are calculated until 10%, 20%, and 50% of prefectures (cities) experience outbreaks (Γ_{10^6}, Γ_{20^6}, and Γ_{10^7}), averaged over 100 stochastic simulations. All simulations assume an initial outbreak of $R_0=5.49$.

“–” denotes regions without any importations or exportations in the studied period.

REFERENCES

1. Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart GR, et al. Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Comput Biol 2021;17(7):e1009149. http://dx.doi.org/10.1371/journal.pcbi.1009149.
2. Ruan F, Zhang X, Xiao S, Ni X, Yin X, Ye Z, et al. An Outbreak of the COVID-19 Omicron Variant — Zhubai City, Guangdong Province, China, January 13, 2022. China CDC Wkly 2022;4(30);669–71. https://doi.org/10.46234/ccdcw2022.032.
3. Nishiura H, Ito K, Anzu A, Kobayashi T, Plantham C, Rodrigue-Mozales AJ. Relative reproduction number of SARS-CoV2 Omicron (B.1.1.529) compared with Delta Variant in South Africa. J Clin Med Res 2021;13(1). Available from: http://dx.doi.org/10.3390/jcm13010030.
4. Alera A, Martin-Corral D, Pastore Y Piontti A, Ajelli M, Livinnova M, Chianzzi M, et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat Hum Behav 2020;4(9):964–71. https://doi.org/10.1038/s41562-020-0931-9.
5. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 2020;26(5):672 – 5. http://dx.doi.org/10.1038/s41591-020-0869-5.
6. Evey DM, Mc Evey D, McAlloon CG, Collins ÅB, Hunt K, Butler F, et al. The relative infectiousness of asymptomatic SARS-CoV-2 infected persons

Chinese Center for Disease Control and Prevention
CCDC Weekly / Vol. 4 / No. 40
compared with symptomatic individuals: A rapid scoping review. https://doi:10.1136/bmjopen-2020-042354.

7. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med 2020;172(9):577–82. https://doi.org/10.7326/M20-0504.

8. Pung R, Chiew CJ, Young BE, Chin S, Chen MI-C, Clapham HE, et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet 2020;395(10229):1039–46. https://doi.org/10.1016/S0140-6736(20)30528-6.

9. Du Z, Xu X, Wu Y, Wang L, Cowling BJ. Serial interval of COVID-19 among publicly reported confirmed cases. Emerg Infect Dis 2020;26(6):1341. http://dx.doi.org/10.3201/eid2606.200357.

10. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM, et al. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J Clin Med Res 2020;9(2):538. http://dx.doi.org/10.3390/jcm9020538.

11. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585.

12. Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect 2020;80(5):e1 – 6. http://dx.doi.org/10.1016/j.jinf.2020.03.004.

13. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020;20(6):669 – 77. http://dx.doi.org/10.1016/S1473-3099(20)30243-7.

14. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581(7809):465 – 9. http://dx.doi.org/10.1038/s41586-020-2196-x.

15. Kappler M. People with Omicron much more likely to be asymptomatic, research suggests [Internet]. Available from: https://www.healthing.ca/diseases-and-conditions/coronavirus/omicron-asymptomatic-rate. [2022-03-19].

16. Modeling COVID-19 spread vs healthcare capacity [Internet]. https://alhill.shinyapps.io/COVID19seir. [2022-5-19].