GC-MS ANALYSIS OF METHANOLIC STEM EXTRACT OF GYNOCHTHODES RIDSDALEI, RAZAFIM AND B. BREMER, AN ENDEMIC, ENDANGERED MEDICINAL PLANT OF SOUTHERN WESTERN GHATS

RENI R. NAIR, A. GANGAPRASAD*
Plant Tissue Culture and Molecular Biology Lab, Department of Botany, University of Kerala, Thiruvananthapuram, Kerala, India, 695581
Email: agangaprasad@yahoo.com

Received: 27 Dec 2016, Revised and Accepted: 27 Mar 2017

ABSTRACT

Objective: The present research study was undertaken to determine the presence of bioactive components present in the methanolic stem extract of Gynochthodes ridsdalei using GC-MS analysis.

Methods: The Fresh stem of Gynochthodes ridsdalei collected from the forest areas of Ponmudi region of Thiruvananthapuram district of Kerala state, India was used. The mass spectrum GC-MS of the crude methanolic extract was estimated using the database of National Institute of Standard and Technology (NIST).

Results: The active principles with their retention time, peak area, molecular formula, molecular weight, structure and category of the compound were predicted. The analysis revealed the presence of 52 bioactive components. Most of the identified compounds are basically biological important. The components were identified by comparing their retention time and peak area with that of literature and by interpretation of mass spectra. The phyto components screened were of biological importance. Some of them were sterols, anthraquinones, vitamins etc.

Conclusion: The result reveals the existence of various bioactive compounds and validates the earlier reports of therapeutic importance of the plant. Gynochthodes ridsdalei is recommended as a plant of phytochemical and pharmaceutical importance.

Keywords: Gynochthodes ridsdalei, Morinda reticulata, endangered, southern Western Ghats, gas chromatography

INTRODUCTION

The use of medicinal plants has gained considerable importance in our day to day life since ancient times. Traditional medicine is the sum total of knowledge, skills and practices based on the theories, beliefs, experiences indigenous to different cultures that are used to maintain health as well as to diagnose, improve or treat physical and mental illness. The therapeutic use of some plants against critical human illnesses predates recorded history and represents the most significant direct antecedent to modern medicine [1]. Medicinal plants are rich resources of ingredients which can be used in drug development and synthesis. Many higher plants are a major source of secondary metabolites which are used for many medicinal purposes. Gynochthodes ridsdalei (Syn: Morinda reticulata) is a large woody climbing shrub with coriaceous reticulate leaves belonging to the family Rubiaceae. The plant is endemic to southern Western Ghats [2]. It forms an important component in a variety of herbal formulation in traditional medicine [3]. Plants belonging to family Rubiaceae are known to contain a substantial amount of anthraquinones especially in the roots [4] and are characterised by brightly coloured anthraquinones that have been used in the past for various dyeing purpose. The screening of plant extracts is an innovative method to find therapeutically important compounds which will help to develop novel drugs [5]. Gas Chromatography–Mass Spectrometry (GC-MS) analysis is used for the direct analysis of bioactive components in traditional medicine and for separation and analysis of multi-component mixtures such as essential oils, hydrocarbons etc [6].

MATERIALS AND METHODS

Plant material

Fresh stem of Gynochthodes ridsdalei collected from the forest areas of Ponmudi region of Thiruvananthapuram district of Kerala state, India was used. The taxonomical identification of the plant was done using authentic literature [7, 8]. A voucher specimen was deposited at the Herbarium of Department of Botany, University of Kerala, Kariavattom (KUBH No. 8095).

Preparation of plant extract

The collected stem was chopped and shade dried under room temperature for 7 d and then milled into coarse powder by the mechanical grinder. About 10 gm of the powdered stem sample was subjected to Soxhlet extraction using 200 ml methanol. The extract was concentrated using rotary evaporator (Superfit rotavap) under reduced pressure and stored in the refrigerator until further use. Two microliters of the extract were employed in GC–MS analysis for identification of different compounds.

GC–MS analysis

The analysis of the extract was performed using GC–MS (Model: GC–MS-QP 2010, Shimadzu, Tokyo, Japan) equipped with a VF 5 ms fused silica capillary column of 30 m length, 0.25 mm diameter and 0.25 µm film thickness. For GC–MS detection, electron ionization energy of 70eV was used. The carrier gas was helium (99.9%) and used at constant flow rate of 1.2 ml/min. Injector and mass transfer line temperature were set at 200 °C and 255 °C respectively. The oven temperature was set from 70 to 300 °C at 10 °C/min for 9 min. One microliter of the sample was injected in a split mode with a scan range of 40-1000 m/z. The total running time of GC–MS was 35 min. The relative percentage amount of each component was calculated by comparing its average peak area normalization [9].

Identification of the components

Elucidation of mass spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST) and Wiley Spectra Libraries. The spectrum of the unknown component was compared with the spectrum of known components, which was stored in the NIST library source [10]. The name, molecular weight and molecular mass of the identified compounds were further confirmed by comparison of their retention indices with literature data. For quantitative analysis, compounds concentrations (as % content) were calculated by integrating their corresponding chromatographic peak area.
RESULTS AND DISCUSSION

The bioactive components present in the methanolic stem extract of *G. ridsdalei* were identified by GC–MS analysis. The gas chromatogram shows the relative concentrations of various compounds getting eluted as a function of retention time (fig. 1). Identification of the compounds was accomplished by comparing their mass spectra and retention indices with those given in the literature and those authentic samples. The active principles with their retention time (RT), molecular formula, molecular weight (MW), concentration (%), nature of the compound and their biological activities are presented in (table 1) and are listed by their order of retention times. The heights of the peak indicate the relative concentrations of the compounds present in *G. ridsdalei*.

![Fig. 1: GC-MS Chromatogram of methanolic stem extract of Gynochthodes ridsdalei](image)

Table 1: Phytocomponents identified in the methanolic stem extract of G. ridsdalei by GC-MS

S. No.	Retention time	Peak area%	Name of the compound	Molecular formula	Molecular weight	Nature of compound	Uses
1	7.303	1.16	1,3-Benzenediol, 5-chloro-	C₆H₈O₄	144.1253	Phenol (Resorcinol)	Diazodyes, Dermatology
2	8.618	0.83	5-Hydroxymethylfurfural	C₄H₆O₃	126.1100	Organic compound	Baking industry
3	9.889	0.80	Benzene methanol, 3-fluoro-2-Methoxy-4-vinylphenol	C₆H₆O₃	169.1362	Phenol	Flavoring agent
4	10.416	5.09	Phenol, 2,6-dimethoxy-3-Amino-2,6-dimethoxypyridine	C₇H₇NO₄	194.230	Aromatic	Smoky aroma in foods
5	13.135	1.60	1-Butanol, 3-methyl formate	C₆H₁₂O₂	116	Alcoholic compound	Perfumary, dental
6	14.688	0.39	Phenol, 2,6-dimethoxy-4-(2-propenyl)-3-Hydroxy-4-methoxycinnamic acid	C₁₀H₂₂O₃	256.4241	Palmitic acid	Antimicrobial, antioxidant, hypocholesterolemic, nematicide
7	15.126	4.34	4-[(IE)-3-Hydroxy-1-propenyl]-2-methoxyphenol	C₁₀H₁₄O₃	172.147	Aniline	Precursor to crystal violet dye, insect repellent, perfumary, hypnotic/sedative
8	15.468	1.00	3,5-Dimethoxy-4-hydroxyphenylacetic acid	C₁₆H₁₄O₃	251.224	Acetic acid	Synthesis of atenolol
9	16.448	2.69	2,5-Dihydroxy-3-Methyl-1-penten-4-yn-3-ol	C₁₀H₁₄O₃	172.147	Tertiary hexanol	Antimicrobial
10	16.769	0.56	6-Octen-1-ol	C₆H₁₂O₂	156.27	Palmitic acid	Antimicrobial
11	17.436	1.02	3-Methyl-1-penten-4-yn-3-ol	C₁₀H₁₄O₃	251.224	Acid	Synthesis of atenolol
12	17.711	0.42	2,5-Dihydroxy-3-Methyl-1-penten-4-yn-3-ol	C₁₀H₁₄O₃	172.147	Tertiary hexanol	Antimicrobial
13	17.436	2.29	Scopoletin	C₁₀H₁₄O₃	192.16	Coumarin	Used in food making
14	17.711	2.69	Squalene	C₃₀H₅₀	410	Triterpene	Antimicrobial, hypnotic/sedative

Note: Uses are based on the compound's properties and are not exhaustive.
No.	Value	Formula	Molecular Weight	Compound Name
15	18.172	C_{6}H_{12}O_{2}	116	1-ButanoL3-Methyl, Formate
16	18.810	C_{10}H_{16}O_{2}	208.22	9,10-Anthracenedione, 9-hydroxy-1-methoxy
17	18.862	C_{20}H_{30}O_{2}	296	Phytol
18	18.944	C_{19}H_{28}O_{2}	280.445	9,12-Octadecadienoic acid (Z)-
19	18.989	C_{19}H_{28}O_{2}	282.4614	Oleic Acid cis-13-Octadecenoic acid cis-Vaccenic acid
20	19.189	C_{20}H_{30}O_{2}	284.4772	Octadecanoic acid
21	19.650	C_{20}H_{30}O_{2}	238.242	1-Hydroxy-2-methylanthraquinone
22	20.742	C_{21}H_{40}O_{7}	358.342	9,10-Anthracenedione, 2-hydroxy-1-methoxy
23	20.905	C_{19}H_{28}NO	281.4766	9-Octodecanamide, (Z)—
24	21.418	C_{12}H_{20}O_{2}	252.2201	1,2,4-Benzenetriaearboxylic acid, 5-methyl-3-phenylpropylhexyltetraene
25	21.715	C_{19}H_{26}O_{2}	238.238	2-(Hydroxymethyl)anthraquinones
26	21.804	C_{12}H_{20}NO_{2}	238.242	1,4,7-Trimethyl-2-azaflorene 4-Propylyanthren-9-one
27	22.124	C_{12}H_{20}O_{2}	238.242	1-Hydroxy-4-methylanthraquinone
28	22.324	C_{12}H_{20}O_{2}	238.242	3-Phenoxy-2H-chromen-2-one-2,6-Dianinoanthraquinone
29	22.488	C_{12}H_{20}O_{2}	340.5836	9,10-Anthracenediol, 2-ethyl-Docosanoic acid
30	22.636	C_{12}H_{20}O_{2}	254.238	9,10-Anthracenedione, 1-hydroxy-2-(hydroxymethyl)-
31	22.777	C_{12}H_{20}O_{2}	326.346	9,10-Anthracenedione, 1,8-dihydroxy-3-methyl-
32	23.238	C_{12}H_{20}O_{2}	150.18	4-Ethenyl-2-methoxyphenol
33	23.342	C_{12}H_{20}O_{2}	380.48	Benzoic acid, heptadeCyly ester
34	23.439	C_{12}H_{20}O_{2}	116.07	Fumuric acid, cis-hex-3-ethyl tetradecyl Eter
35	23.632	C_{12}H_{20}O_{2}	358.558	Octadecanoic acid, 2,3-dihydroxypropyl est
36	24.107	C_{12}H_{20}O_{2}	337.5029	13-Docosanamide, (Z)-
37	24.865	C_{12}H_{20}O_{2}	354.61	22-Tricosenoic acid
38	25.073	C_{12}H_{20}O_{2}	354.61	Triacontyl acetate
39	25.964	C_{12}H_{20}O_{2}	416.680	γ-Valerolactone
40	27.301	C_{12}H_{20}O_{2}	400.69	Campesterol
41	27.569	C_{12}H_{20}O_{2}	412.6908	5-Cholestene-3-ol(24-methyl-Stigmasterol
42	28.096	C_{12}H_{20}O_{2}	414.71	gamma-Sitosterol
43	28.497	C_{12}H_{20}O_{2}	386.65	5-Cholest-4-en-3-one, Pregn-4-ene-3, 20-dione, [8, alpha, 10 alpha]-
44	28.661	C_{12}H_{20}O_{2}	228.37	Tetradecanoic acid
45	28.817	C_{12}H_{20}O_{2}	410.686	4,22-Stigmastadiene-3-one Spinasterone
47	29.010	C_{12}H_{20}O_{2}	96.13	Cyclohex-2-enone, 2

Notes:
- **Antioxidant:** Antimicrobial
- **Antimicrobial:** Antimicrobial
- **Anti-inflammatory:** Dietary supplements
- **Antioxidant:** Dyes, Medicinal Importance
- **Dyes:** Dyes, Medicinal Importance
- **Food additive:** Food additive
- **Food preservative:** Flavouring agent
- **Food industry:** Flavouring agent
- **Flavouring agent:** Food preservative
- **Food additive:** Food preservative
- **Natural flavor:** Food preservative
- **Antioxidant:** Antioxidant, Anti-inflammation
- **Dyes:** Dyes, Medicinal Importance
- **Antioxidant:** Dietary supplements
- **Dyes:** Dietary supplements
- **Food additive:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
- **Antioxidant:** Dietary supplements
- **Flavouring agent:** Dietary supplements
The analysis revealed the presence of 52 photo components. Major compounds detected were sterols, anthraquinones, terpenes, vitamins etc. Stigmasterol (7.59%) showed highest peak (dominant component), followed by docosaneamide. Among the identified compounds, the diterpene alcohol, phytol is vital in the dispensation of glucose and can trigger enzymes within the body that have strong positive effects on insulin level. This means that phytol in the human diet could perhaps help reinstate the metabolic activities of those with type-2 diabetes [11, 12]. It is also a constituent of chlorophyll in plants and precursor for the manufacture of synthetic forms of vitamin E [13].

Stigmasterol is an unsaturated phytosterol occurring in the plant fats or oils. Stigmasterol is also found in various vegetables, legumes, nuts, seeds etc. Stigmasterol is used as a precursor in the manufacture of semisynthetic progesterone, a valuable human hormone that plays an important physiological role in the regulatory and tissue rebuilding mechanisms related to estrogen effects, as well as acting as an intermediate in the biosynthesis of androgens, estrogens, and corticoids [14]. It is also used as the precursor of vitamin D₃. Recently squalene possesses chemo preventive activity against colon carcinogenesis [15, 16].

CONCLUSION
This is the first report on the analysis of bioactive components present in G. ridsdalei. The result reveals the existence of various bioactive compounds and validates the earlier reports of therapeutic importance of the plant. G. ridsdalei is recommended as a plant of phytochemical and pharmaceutical importance. Further studies can be done to isolate the active principle of the methanolic extract as well as to elucidate the effect of extract for various diseases.

ACKNOWLEDGEMENT
The authors express their sincere gratitude to the Head, Department of Botany, University of Kerala for providing necessary facilities for doing this work and to the University of Kerala for financial support in the form of Junior Research Fellowship is acknowledged by the first author.

CONFLICT OF INTERESTS
Declare none

REFERENCES
1. Dutt R, Garg V, Madan AK. Can plants growing in diverse hostile environments provide a vital source of anticancer drugs? J Cancer Ther 2014;10:13-37.
2. Mohanan N, Sivadasan M. Flora of Agasthyamala, Bishen Singh Mahendra Pal Singh Dehradun; 2002. p. 353.
3. Zhang A, Sun H, Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem 2013;63:570-57.
4. Han YS, van der Heijden R, Verpoorte R. Biosynthesis of anthraquinone in cell cultures of the Rubiaceae. Plant Cell Tissue Organ Culture 2001;67:201–20.
5. Santos GC, Salvadori MS, Mota VG, Costa LM, de Almeida AA, de Oliveira GA, et al Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J 2013;11. http://dx.doi.org/10.1155/2013/949452
6. Gamble JS. Flora of Presidency of Madras. Vol II. Bishen Singh Mahendra Pal Singh Dehradun; 1921. p. 650-2.
7. Ijinu TP, Anish N, Shiju H, George V, Pushpangadan P. Home gardens for nutritional and primary health security of rural poor of South Kerala. Indian J Traditional Knowledge 2011;10:413-28.
8. Razafimandimbison SG, Bremer B. Nomenclatural changes and taxonomic notes in the tribe Morindeae (Rubiaceae). Adansonia 2011;33:283-309.
9. Sharma MD, Rautela I, Gahlot M, Sharma N, Koshy EP, GC–MS analysis of photo components in juice sample of Indian cane: Saccharum barberi. Int J Pharm Sci Res 2015;6:5147-53.
10. Stein SE. National Institute of Standards and Technology (NIST). Mass Spectral Database and Software. Version 3.02. Gaithersburg, USA; 1990.
11. Mohammad TG, Mohammed HE, Ali J, Seyedhossein H, Mohammad M. Antimicribial activity, toxicity and stability of phytol as a novel surface disinfectant. Environ Health Eng Manage J 2015;2:13-6.
12. Peter O, Malin H, Lars I Hellgren, Rikard H. Phytol: a chlorophyll component with anti-inflammatory and metabolic properties. Recent Advances in Redox-Active Plant and Microbial Products; 2014. p. 345-59.
13. Netscher T. Synthesis of vitamin E. Vitamins Hormones 2007;76:155-202.
14. Rao CV, Newmark HL, Reddy BS. Chemopreventive effect of squalene on colon cancer. Carcinogens 1998;19:287-97.
15. . Mohan VR, Sudha T, Chidambarampilli S. GC-MS analysis of bioactive components of aerial parts of Kirganelia Reticulata pior (Euphorbiaceae). J Curr Chem Pharm Sci 2013;3:4.
16. Alagammal M, Tresina P, Sand Mohan VR. GC-MS determination of bioactive components of Polygala javana dc. Int J Curr Pharm Res 2012;4:42-4.

How to cite this article
• Renji R Nair, A Gangaprasad. GC-MS analysis of methanolic stem extract of Gynochthodes ridsdalei, razafim and B. bremer, an endemic, endangered medicinal plant of Southern Western Ghats. Int J Curr Pharm Res 2017;9(3):99-101.