Dualities between Laplace-Carson Transform and Some Useful Integral Transforms

Raman Chauhan, Nigam Kumar, Sudhanshu Aggarwal

Abstract: Integral transforms have wide applications in the various disciplines of engineering and science to solve the problems of heat transfer, springs, mixing problems, electrical networks, bending of beams, carbon dating problems, Newton’s second law of motion, signal processing, exponential growth and decay problems. In this paper, we will discuss the dualities between Laplace-Carson transform and some useful integral transforms namely Laplace transform, Kamal transform, Aboodh transform, Sumudu transform, Elzaki transform, Mohand transform and Sawi transform. To visualize the importance of dualities between Laplace-Carson transform and mention integral transforms, we give tabular presentation of the integral transforms (Laplace transform, Kamal transform, Aboodh transform, Sumudu transform, Elzaki transform, Mohand transform and Sawi transform) of mostly used basic functions by using mention dualities relations. Results show that the mention integral transforms are strongly related with Laplace-Carson transform.

Keywords: Laplace; Kamal; Aboodh; Sumudu; Mohand; Sawi; Laplace-Carson transforms.

AMS Subject Classification 2010: 44A05, 44A10, 44A15.

I. INTRODUCTION

Many process and phenomenon of science, engineering and real life can be expressed mathematically and solved by using integral transforms. The problems arise in the field of signal processing, statistics, thermal science, medicine, fractional calculus, aerodynamics, civil engineering, control theory, cardiology, quantum mechanics, space science, marine science, biology, gravitation, nuclear magnetic resonance, heat conduction, economics, telecommunications, nuclear reactors, detection of diabetes, chemistry, stress analysis, electricity, physics, potential theory, mathematics, deflection of beams, vibration of plates, defense, Brownian motion and many other fields can be easily handle with the help of integral transforms by converting them into mathematical form. In the advanced time, researchers are interested in solving the advance problems of research, science, space, engineering and real life by introducing new integral transforms. Aggarwal and Chaudhary [1] discussed Mohand and Laplace transforms comparatively by solving system of differential equations using both integral transforms.

Recently many scholars [2-6, 9] used different integral transforms namely Kamal transform, Aboodh transform, Sumudu transform, Elzaki transform, Mohand transform and Mahgoub (Laplace-Carson) transform for evaluating improper integrals which contains error function in the integrand. Mahgoub [7] gave Sawi transform which is a new integral transform. Singh and Aggarwal [8] solved the problems of growth and decay by using Sawi transform. The aim of this study is to establish duality relations between Laplace-Carson transform and some useful integral transforms namely Laplace transform, Kamal transform, Aboodh transform, Sumudu transform, Elzaki transform, Mohand transform and Sawi transform.

II. LAPLACE TRANSFORM

The Laplace transform of the function \(Z(\gamma), \gamma \geq 0 \) is given by [1]

\[
L[Z(\gamma)] = \int_0^\infty Z(\gamma)e^{-\gamma}d\gamma = B(\epsilon)
\]

(1)

III. KAMAL TRANSFORM

Kamal transform of the function \(Z(\gamma), \gamma \geq 0 \) is given by [2]

\[
K[Z(\gamma)] = \int_0^\infty Z(\gamma)e^{-\gamma}d\gamma = C(\epsilon),
\]

(2)

0 < k_1 \leq \epsilon \leq k_2

III. ABOODH TRANSFORM

Aboodh transform of the function \(Z(\gamma), \gamma \geq 0 \) is given by [3]

\[
A[Z(\gamma)] = \frac{1}{\epsilon} \int_0^\infty Z(\gamma)e^{-\gamma}d\gamma = D(\epsilon),
\]

(3)

0 < k_1 \leq \epsilon \leq k_2

IV. SUMUDEU TRANSFORM

Sumudu transform of the function \(Z(\gamma), \gamma \geq 0 \) is given by [4]

\[
S[Z(\gamma)] = \int_0^\infty Z(\gamma)e^{-\gamma}d\gamma = F(\epsilon),
\]

(4)

0 < k_1 \leq \epsilon \leq k_2

V. ELZAKI TRANSFORM

Elzaki transform of the function \(Z(\gamma), \gamma \geq 0 \) is given by [5]

\[
E[Z(\gamma)] = \epsilon \int_0^\infty Z(\gamma)e^{-\gamma}d\gamma = G(\epsilon),
\]

(5)

0 < k_1 \leq \epsilon \leq k_2

VI. MOHAND TRANSFORM

Mohand transform of the function \(Z(\gamma), \gamma \geq 0 \) is given by [1, 6]

\[
M[Z(\gamma)] = \epsilon^2 \int_0^\infty Z(\gamma)e^{-\gamma}d\gamma = H(\epsilon),
\]

(6)

0 < k_1 \leq \epsilon \leq k_2

Revised Manuscript Received on October 05, 2019
Raman Chauhan, Assistant Professor, Department of Mathematics, Noida Institute of Engineering & Technology, Greater Noida-201306, U.P., India
Email: raman2chauhan@gmail.com

Nigam Kumar, Assistant Professor, Department of Applied Science & Humanities, G.L. Bajaj Institute of Technology & Management, Greater Noida-201306, U.P., India
Email: nigam6244@gmail.com

Sudhanshu Aggarwal, Assistant Professor, Department of Mathematics, National P.G. College, Barhagunj, Gorakhpur-273402, U.P., India
Email: sudhanshu30187@gmail.com

Retrieval Number: L3163(2019)©BEIESP
DOI: 10.35940/ijitee.L3163.1081219

Email: raman2chauhan@gmail.com

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
VII. SAWI TRANSFORM

Sawi transform of the function $Z(\gamma), \gamma \geq 0$ is given by [7, 8]

$$S^*(Z(\gamma)) = \frac{1}{\sqrt{\pi}} \int_0^\infty Z(\gamma)e^{-\frac{\gamma}{\epsilon}}d\gamma = I(e),$$

$$0 < k_1 \leq \epsilon \leq k_2$$

VIII. LAPLACE–CARSON TRANSFORM

Laplace-Carson transform of the function $Z(\gamma), \gamma \geq 0$ is given by [9]

$$L,\{Z(\gamma)\} = e\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma = J(e),$$

$$0 < k_1 \leq \epsilon \leq k_2$$

IX. DUALITIES OF LAPLACE–CARSON TRANSFORM WITH SOME USEFUL INTEGRAL TRANSFORMS

In this section, we define the dualities between Laplace-Carson transform and some useful integral transforms namely Laplace transform, Kamal transform, Aboodh transform, Sumudu transform, Elzaki transform, Mohand transform and Sawi transform.

A. Duality between Laplace-Carson and Laplace Transforms

If Laplace-Carson and Laplace transforms of $Z(\gamma)$ are $J(e)$ and $B(e)$ respectively then

$$J(e) = eB(e)$$

and $B(e) = \frac{1}{e}J(e)$

Proof: From (8),

$$J(e) = e\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma$$

Now, using (1) in above Equation, we obtain

$$J(e) = eB(e).$$

To drive (10), we use (1)

$$B(e) = \int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma$$

$$\Rightarrow B(e) = \frac{1}{e}\left[e\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma\right]$$

It is immediately concluded using (8) in (11)

$$B(e) = \frac{1}{e}J(e).$$

B. Duality between Laplace-Carson and Kamal Transforms

If Laplace-Carson and Kamal transforms of $Z(\gamma)$ are $J(e)$ and $C(e)$ respectively then

$$J(e) = eC\left(\frac{1}{e}\right)$$

and $C(e) = ej\left(\frac{1}{e}\right)$

Proof: Using (8) follows

$$J(e) = e\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma$$

Now, using (2) in above equation, we obtain

$$J(e) = eC\left(\frac{1}{e}\right).$$

To drive (13), we use (2)

$$C(e) = \int_0^\infty Z(\epsilon \gamma)e^{-\gamma}d\gamma$$

$$\Rightarrow C(e) = e\left[e\int_0^\infty Z(\epsilon \gamma)e^{-\gamma}d\gamma\right]$$

It is immediately concluded using (8) in above equation,

$$C(e) = ej\left(\frac{1}{e}\right).$$

C. Duality between Laplace-Carson and Aboodh Transforms

If Laplace-Carson and Aboodh transforms of $Z(\gamma)$ are $J(e)$ and $D(e)$ respectively then

$$J(e) = e^2D(e)$$

and $D(e) = \frac{1}{e}J(e)$

Proof: It is immediately concluded from (8)

$$J(e) = e\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma$$

$$\Rightarrow J(e) = e^2\left[\frac{1}{\epsilon}\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma\right]$$

Now, using (3) in above Equation, we have

$$J(e) = e^2D(e).$$

To drive (16), we use (3)

$$D(e) = \frac{1}{\epsilon}\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma$$

$$\Rightarrow D(e) = \frac{1}{e^2}\left[\epsilon\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma\right]$$

It is immediately concluded using (8) in above equation,

$$D(e) = \frac{1}{e^2}J(e).$$

D. Duality between Laplace-Carson and Sumudu Transforms

If Laplace-Carson and Sumudu transforms of $Z(\gamma)$ are $J(e)$ and $F(e)$ respectively then

$$J(e) = F\left(\frac{1}{e}\right)$$

and $F(e) = J\left(\frac{1}{e}\right)$

Proof: From (8), we have

$$J(e) = e\int_0^\infty Z(\gamma)e^{-\epsilon\gamma}d\gamma$$

Put $\epsilon \gamma = u \Rightarrow dy = \frac{du}{\epsilon}$ in above equation, we have

$$J(e) = e\int_0^\infty Z(u)e^{-u\frac{du}{\epsilon}}$$

$$\Rightarrow J(e) = \int_0^\infty Z(u)e^{-u\frac{du}{\epsilon}}$$

Now, using (4) in above equation, we have

$$J(e) = F\left(\frac{1}{e}\right).$$

To drive (18), we use (4)

$$F(e) = \int_0^\infty Z(\epsilon \gamma)e^{-\gamma}d\gamma$$

Put $\epsilon \gamma = u \Rightarrow dy = \frac{du}{\epsilon}$ in above equation, we have

$$F(e) = \int_0^\infty Z(u)e^{-u\frac{du}{\epsilon}}$$

$$\Rightarrow F(e) = \int_0^\infty Z(u)e^{-u\frac{du}{\epsilon}}$$

It is immediately concluded using (8) in above equation,

$$F(e) = J\left(\frac{1}{e}\right).$$

E. Duality between Laplace-Carson and Elzaki Transforms

If Laplace-Carson and Elzaki transforms of $Z(\gamma)$ are $J(e)$ and $G(e)$ respectively then

$$J(e) = e^2G\left(\frac{1}{e}\right)$$

and $G(e) = e^2J\left(\frac{1}{e}\right)$

Proof: From (8), we have
\[
J(\epsilon) = \epsilon \int_0^\infty Z(y) e^{-\epsilon y} dy \\
\Rightarrow J(\epsilon) = \epsilon^2 \frac{1}{\epsilon} \int_0^\infty Z(y) e^{-\epsilon y} dy
\]

Now, using (5) in above equation, we have

\[
J(\epsilon) = \epsilon^2 G \left(\frac{1}{\epsilon} \right).
\]

To drive (20), we use (5)

\[
G(\epsilon) = \epsilon \int_0^\infty Z(y) e^{-\epsilon y} dy \\
G(\epsilon) = \epsilon^2 \frac{1}{\epsilon} \int_0^\infty Z(y) e^{-\epsilon y} dy
\]

It is immediately concluded using (8) in above equation,

\[
G(\epsilon) = \epsilon^2 f \left(\frac{1}{\epsilon} \right).
\]

F. Duality between Laplace-Carson and Mohand Transforms

If Laplace-Carson and Mohand transforms of \(Z(y) \) are \(f(\epsilon) \) and \(H(\epsilon) \) respectively then

\[
f(\epsilon) = \frac{1}{\epsilon} H(\epsilon)
\]

and \(H(\epsilon) = \epsilon f(\epsilon) \)

Proof: From (8), we have

\[
f(\epsilon) = \epsilon \int_0^\infty Z(y) e^{-\epsilon y} dy \\
\Rightarrow f(\epsilon) = \frac{1}{\epsilon} \int_0^\infty Z(y) e^{-\epsilon y} dy
\]

Now, using (6) in above equation, we have

\[
f(\epsilon) = \frac{1}{\epsilon} H(\epsilon).
\]

To drive (22), we use (6)

\[
H(\epsilon) = \epsilon^2 \int_0^\infty Z(y) e^{-\epsilon y} dy \\
\Rightarrow H(\epsilon) = \epsilon \int_0^\infty Z(y) e^{-\epsilon y} dy
\]

It is immediately concluded using (8) in above equation,

\[
H(\epsilon) = \epsilon f(\epsilon).
\]

G. Duality between Laplace-Carson and Sawi Transforms

If Laplace-Carson and Sawi transforms of \(Z(y) \) are \(j(\epsilon) \) and \(I(\epsilon) \) respectively then

\[
j(\epsilon) = \frac{1}{\epsilon} I \left(\frac{1}{\epsilon} \right)
\]

and \(I(\epsilon) = \frac{1}{\epsilon} j \left(\frac{1}{\epsilon} \right) \)

Proof: Using (8) follows

\[
j(\epsilon) = \epsilon \int_0^\infty Z(y) e^{-\epsilon y} dy \\
\Rightarrow j(\epsilon) = \frac{1}{\epsilon} \int_0^\infty Z(y) e^{-\epsilon y} dy
\]

Now, using (7) in above equation, we obtain

\[
j(\epsilon) = \frac{1}{\epsilon} I \left(\frac{1}{\epsilon} \right).
\]

To drive (24), we use (7)

\[
I(\epsilon) = \frac{1}{\epsilon} \int_0^\infty Z(y) e^{-\epsilon y} dy \\
\Rightarrow I(\epsilon) = \frac{1}{\epsilon} \int_0^\infty Z(y) e^{-\epsilon y} dy
\]

Now, using (8) in above equation, we obtain

\[
I(\epsilon) = \frac{1}{\epsilon} j \left(\frac{1}{\epsilon} \right).
\]

X. APPLICATIONS OF MENTION DUALITY RELATIONS FOR FINDING INTEGRAL TRANSFORMS (LAPLACE TRANSFORM, KAMAL TRANSFORM, ABOODH TRANSFORM, SUMUDU TRANSFORM, ELZAKI TRANSFORM, MOHAND TRANSFORM AND SAWI TRANSFORM) OF USEFUL BASIC FUNCTIONS

We are giving tabular presentation of the integral transforms of mostly used basic functions by using mention dualities relations to visualize the usefulness of dualities between Laplace-Carson transform and mention integral transforms in the application field.

S. N.	\(Z(y) \)	\(L_1(Z(y)) = f(\epsilon) \)	\(L_2(Z(y)) = B(\epsilon) \)
1.	1	1	\(\frac{1}{\epsilon} \)
2.	\(y \)	\(\frac{1}{\epsilon} \)	\(\frac{1}{\epsilon^2} \)
3.	\(y^n \)	\(\frac{n!}{\epsilon^n} \)	\(\frac{n!}{\epsilon^{n+1}} \)
4.	\(y^n, \)	\(\frac{\Gamma(n+1)}{\epsilon^n} \)	\(\frac{\Gamma(n+1)}{\epsilon^{n+1}} \)
5.	\(e^{\alpha y} \)	\(\frac{\epsilon}{\epsilon - \alpha} \)	\(\frac{\epsilon}{1 - \alpha \epsilon} \)
6.	\(\sin y \)	\(\frac{\alpha e^{\alpha y}}{(e^{\alpha y} + \alpha^2)} \)	\(\frac{\alpha e^{\alpha y}}{(1 + \alpha^2 e^{\alpha y})} \)
7.	\(\cos y \)	\(\frac{\epsilon^2}{(e^{\alpha y} + \alpha^2)} \)	\(\frac{\epsilon^2}{(1 + \alpha^2 e^{\alpha y})} \)

S.N.	\(Z(y) \)	\(L_1(Z(y)) = f(\epsilon) \)	\(K(Z(y)) = C(\epsilon) \)
1.	1	1	\(\epsilon \)
2.	\(y \)	\(\frac{1}{\epsilon} \)	\(\epsilon^2 \)
3.	\(y^n \)	\(\frac{2n!}{\epsilon^n} \)	\(\frac{2n!}{\epsilon^{n+1}} \)
4.	\(y^n, \)	\(\frac{\Gamma(n+1)}{\epsilon^n} \)	\(\frac{\Gamma(n+1)}{\epsilon^{n+1}} \)
5.	\(e^{\alpha y} \)	\(\frac{\epsilon}{\epsilon - \alpha} \)	\(\frac{\epsilon}{1 - \alpha \epsilon} \)
6.	\(\sin y \)	\(\frac{\alpha e^{\alpha y}}{(e^{\alpha y} + \alpha^2)} \)	\(\frac{\alpha e^{\alpha y}}{(1 + \alpha^2 e^{\alpha y})} \)
7.	\(\cos y \)	\(\frac{\epsilon^2}{(e^{\alpha y} + \alpha^2)} \)	\(\frac{\epsilon^2}{(1 + \alpha^2 e^{\alpha y})} \)
Dualities between Laplace-Carson Transform and Some Useful Integral Transforms

Table-III: Aboodh transform of useful basic functions with the help of relation of duality between Laplace – Carson and Aboodh transforms

S.N.	$Z(\gamma)$	$L_1[Z(\gamma)] = f(\varepsilon)$	$A[Z(\gamma)] = D(\varepsilon)$
1.	1	1	$\frac{1}{\varepsilon^2}$
2.	γ	$\frac{1}{\varepsilon}$	$\frac{1}{\varepsilon^3}$
3.	γ^2	$\frac{2!}{\varepsilon^2}$	$\frac{2!}{\varepsilon^4}$
4.	$\gamma^n, n \in \mathbb{N}$	$\frac{n!}{\varepsilon^n}$	$\frac{n!}{\varepsilon^{n+2}}$
5.	$\gamma^n, n > -1$	$\frac{\Gamma(n + 1)}{\varepsilon^n}$	$\frac{\Gamma(n + 1)}{\varepsilon^{n+2}}$
6.	$e^{\alpha \gamma}$	$\frac{\varepsilon}{(\varepsilon - a)}$	$\frac{1}{\varepsilon(\varepsilon - a)}$
7.	$\sinh\gamma$	$\frac{\alpha e}{(\varepsilon^2 + a^2)}$	$\frac{\alpha e}{(\varepsilon^2 + a^2)}$
8.	$\cosh\gamma$	$\frac{\varepsilon^2}{(\varepsilon^2 + a^2)}$	$\frac{1}{(\varepsilon^2 + a^2)}$
9.	$\sinh\gamma$	$\frac{\alpha e}{(\varepsilon^2 - a^2)}$	$\frac{\alpha e}{(\varepsilon^2 - a^2)}$
10.	$\cosh\gamma$	$\frac{\varepsilon^2}{(\varepsilon^2 - a^2)}$	$\frac{1}{(\varepsilon^2 - a^2)}$

Table-IV: Sumudu transform of useful basic functions with the help of relation of duality between Laplace – Carson and Sumudu transforms

S.N.	$Z(\gamma)$	$L_1[Z(\gamma)] = f(\varepsilon)$	$S[Z(\gamma)] = F(\varepsilon)$
1.	1	1	1
2.	γ	$\frac{1}{\varepsilon}$	ε
3.	γ^2	$\frac{2!}{\varepsilon^2}$	$2! e^2$
4.	$\gamma^n, n \in \mathbb{N}$	$\frac{n!}{\varepsilon^n}$	$n! e^n$
5.	$\gamma^n, n > -1$	$\frac{\Gamma(n + 1)}{\varepsilon^n}$	$\Gamma(n + 1)e^n$
6.	$e^{\alpha \gamma}$	$\frac{\varepsilon}{(\varepsilon - a)}$	$\frac{1}{(1 - \alpha e)}$
7.	$\sinh\gamma$	$\frac{\alpha e}{(\varepsilon^2 + a^2)}$	$\frac{\alpha e}{(1 + a^2 e^2)}$
\[\begin{array}{|c|c|c|c|}
\hline
\text{S.N.} & \text{Z(\(\gamma\))} & L_*\{Z(\(\gamma\))\} = J(\(\epsilon\)) & E\{Z(\(\gamma\))\} = G(\(\epsilon\)) \\
\hline
1. & 1 & 1 & \(\epsilon^2\) \\
2. & \(\gamma\) & \frac{1}{\(\epsilon\)} & \(\epsilon^3\) \\
3. & \(\gamma^2\) & \frac{2!}{\(\epsilon^2\)} & 2! \(\epsilon^4\) \\
4. & \(\gamma^n, n \in N\) & \frac{n!}{\(\epsilon^n\)} & n! \(\epsilon^{n+2}\) \\
5. & \(\gamma^n, n > -1\) & \(\Gamma(n+1)\) \(\frac{\epsilon^n}{\epsilon^n}\) & \(\Gamma(n+1)\) \(\epsilon^{n+2}\) \\
6. & \(e^{\alpha \gamma}\) & \(\frac{\epsilon}{(\epsilon - a)}\) & \(\frac{\epsilon^2}{(1 - a \epsilon)}\) \\
7. & \(\sin\gamma\) & \(\frac{a \epsilon}{(\epsilon^2 + a^2)}\) & \(\frac{a \epsilon^3}{(1 + a^2 \epsilon^2)}\) \\
8. & \(\cos\gamma\) & \(\frac{\epsilon^2}{(\epsilon^2 + a^2)}\) & \(\frac{\epsilon^3}{(1 + a^2 \epsilon^2)}\) \\
9. & \(\sinh\gamma\) & \(\frac{a \epsilon}{(\epsilon^2 - a^2)}\) & \(\frac{a \epsilon^3}{(1 - a^2 \epsilon^2)}\) \\
10. & \(\cosh\gamma\) & \(\frac{\epsilon^2}{(\epsilon^2 - a^2)}\) & \(\frac{\epsilon^3}{(1 - a^2 \epsilon^2)}\) \\
\hline
\end{array} \]

\[\text{Table-V: Elzaki transform of useful basic functions with the help of relation of duality between Laplace – Carson and Elzaki transforms} \]

\[\begin{array}{|c|c|c|c|}
\hline
\text{S.N.} & \text{Z(\(\gamma\))} & \text{L}_*\{Z(\(\gamma\))\} = J(\(\epsilon\)) & \text{E}\{Z(\(\gamma\))\} = G(\(\epsilon\)) \\
\hline
1. & 1 & 1 & \(\epsilon^2\) \\
2. & \(\gamma\) & \frac{1}{\(\epsilon\)} & \(\epsilon^3\) \\
3. & \(\gamma^2\) & \frac{2!}{\(\epsilon^2\)} & 2! \(\epsilon^4\) \\
4. & \(\gamma^n, n \in N\) & \frac{n!}{\(\epsilon^n\)} & n! \(\epsilon^{n+2}\) \\
5. & \(\gamma^n, n > -1\) & \(\Gamma(n+1)\) \(\frac{\epsilon^n}{\epsilon^n}\) & \(\Gamma(n+1)\) \(\epsilon^{n+2}\) \\
6. & \(e^{\alpha \gamma}\) & \(\frac{\epsilon}{(\epsilon - a)}\) & \(\frac{\epsilon^2}{(1 - a \epsilon)}\) \\
7. & \(\sin\gamma\) & \(\frac{a \epsilon}{(\epsilon^2 + a^2)}\) & \(\frac{a \epsilon^3}{(1 + a^2 \epsilon^2)}\) \\
8. & \(\cos\gamma\) & \(\frac{\epsilon^2}{(\epsilon^2 + a^2)}\) & \(\frac{\epsilon^3}{(1 + a^2 \epsilon^2)}\) \\
9. & \(\sinh\gamma\) & \(\frac{a \epsilon}{(\epsilon^2 - a^2)}\) & \(\frac{a \epsilon^3}{(1 - a^2 \epsilon^2)}\) \\
10. & \(\cosh\gamma\) & \(\frac{\epsilon^2}{(\epsilon^2 - a^2)}\) & \(\frac{\epsilon^3}{(1 - a^2 \epsilon^2)}\) \\
\hline
\end{array} \]

\[\text{Table-VI: Mohand transform of useful basic functions with the help of relation of duality between Laplace – Carson and Mohand transforms} \]
Table VII: Sawi transform of useful basic functions with the help of relation of duality between Laplace-Carson and Sawi transforms

S.N.	\(Z(\gamma)\)	\(L(Z(\gamma)) = f(\epsilon)\)	\(S(Z(\gamma)) = I(\epsilon)\)
1.	1	1	\(\frac{1}{\epsilon}\)
2.	\(\gamma\)	\(\frac{1}{\epsilon}\)	1
3.	\(\gamma^2\)	\(\frac{2!}{\epsilon^2}\)	\(2!\)
4.	\(\gamma^n, n \in \mathbb{N}\)	\(\frac{n!}{\epsilon^n}\)	\(n!\epsilon^{n-1}\)
5.	\(\gamma^n, n > -1\)	\(\frac{\Gamma(n+1)}{\epsilon^n}\)	\(\Gamma(n+1)\epsilon^{n-1}\)
6.	\(e^{-\alpha}\)	\(\frac{\epsilon}{\epsilon - \alpha}\)	\(\frac{1}{\epsilon(1 - \alpha \epsilon)}\)
7.	\(sina\gamma\)	\(\frac{ae}{(\epsilon^2 + a^2)}\)	\(\frac{a}{(1 + a^2 \epsilon^2)}\)
8.	\(cosa\gamma\)	\(\frac{\epsilon^2}{(\epsilon^2 + a^2)}\)	\(\frac{1}{\epsilon(1 + a^2 \epsilon^2)}\)
9.	\(sisha\gamma\)	\(\frac{ae}{(\epsilon^2 - a^2)}\)	\(\frac{a}{(1 - a^2 \epsilon^2)}\)
10.	\(cosh\gamma\)	\(\frac{\epsilon^2}{(\epsilon^2 - a^2)}\)	\(\frac{1}{\epsilon(1 - a^2 \epsilon^2)}\)

XI. CONCLUSIONS

In the present paper, duality relations between Laplace-Carson transform and some useful integral transforms namely Laplace transform, Kamal transform, Abboodh transform, Sumudu transform, Elzaki transform, Mohand transform and Sawi transform are established successfully. Tabular presentation of the integral transforms (Laplace transform, Kamal transform, Abboodh transform, Sumudu transform, Elzaki transform, Mohand transform and Sawi transform) of mostly used basic functions are given with the help of mention dualities relations to visualize the importance of dualities between Laplace-Carson transform and mention integral transforms. Results show that the Laplace-Carson transform and mention integral transforms in this paper are strongly related to each others. In future using these duality relations, we can easily solved many advanced problems of modern era such as motion of coupled harmonic oscillators, drug distribution in the body, arms race models, Brownian motion and the common health problem such as detection of diabetes.

REFERENCES

1. Aggarwal, S. and Chaudhary, R., A comparative study of Mohand and Laplace transforms, Journal of Emerging Technologies and Innovative Research, Vol. 6, No. 2, Feb. 2019, pp. 230-240.
2. Aggarwal, S. and Singh, G.P., Kamal transform of error function, Journal of Applied Science and Computations, Vol. 6, No. 5, May 2019, pp. 2223-2235.
3. Aggarwal, S. and Singh, G.P., Abboodh transform of error function, Universal Review, Vol. 10, No. 6, June 2019, pp. 137-150.
4. Aggarwal, S. and Sharma, S.D., Sumudu transform of error function, Journal of Applied Science and Computations, Vol. 6, No. 6, June 2019, pp. 1222-1231.
5. Aggarwal, S., Gupta, A.R. and Kumar, A., Elzaki transform of error function, Global Journal of Engineering Science and Researches, Vol. 6, No. 5, May 2019, pp. 412-422.
6. Aggarwal, S., Gupta, A.R. and Kumar, D., Mohand transform of error function, International Journal of Research in Advent Technology, Vol. 7, No. 5, May 2019, pp. 224-231.
7. Mahgoub, Mohand M. Abdelrahim, The new integral transform "Sawi Transform", Advances in Theoretical and Applied Mathematics, Vol. 14, No. 1, 2019, pp. 81-87.
8. Singh, G.P. and Aggarwal, S., Sawi transform for population growth and decay problems, International Journal of Latest Technology in Engineering, Management & Applied Science, Vol. 8, No. 8, August 2019, pp. 157-162.
9. Aggarwal, S., Gupta, A.R., Sharma, S.D., Chauhan, R. and Sharma, N., Mahgoub transform (Laplace-Carson transform) of error function, International Journal of Latest Technology in Engineering, Management & Applied Science, Vol. 8, No. 4, April 2019, pp. 92-98.

AUTHORS PROFILE

Raman Chauhan has completed his M.Sc. (Mathematics) from Indian Institute of Technology, Roorkee in 2011. He is working at N.I.T. Greater Noida since 2013 as a dynamic, successful and responsible faculty member in the department of Mathematics. He has also qualified IIT JAM exam (2009) and Gate exam (2011, 2013, 2014 & 2015). His fields of interest include Integral Transform Methods, Optimization, Integral Equations and Abstract Algebra.

Dr. Nigam Kumar has received his Ph.D. degree from C.C.S. University, Meerut in 2016. He is working as an Assistant Professor in G.L. Bajaj Institute of Technology & Management, Greater Noida since 2013 as a responsible faculty member in the Department of Applied Science & Humanities in Mathematics. He has published many research papers in National and International Journals. His fields of interest include Topological Spaces, Integral Transform Methods and Integral Equations.

Dr. Sudhanshu Aggarwal has received his Ph.D. degree from C.C.S. University, Meerut in 2019. He has also qualified CSIR NET examination (June-2010, June-2012, June-2013, June-2014 and June-2015) in Mathematical Sciences. He is working as an Assistant Professor in National P.G. College Barbara, Gorakhpur. He is equipped with an extraordinary caliber and appreciable academic potency. His fields of interest include Integral Differential and Partial Differential Equations, Integral Equations, Vibration of Plates, Theory of Elasticity and Number Theory. He has published many research papers in national and international journals.