Induced artificial androgenesis in common tench, Tinca tinca (L.), using common carp and common bream eggs

Dariusz Kucharczyk,1 Daniel Żarski,1 Katarzyna Targońska,1 Marek J. Łuczyński,2 Andrzej Szczerbowski,2 Joanna Nowosad,1 Roman Kujawa,1 Andrzej Mamcarz1

1Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
2Department of Aquaculture, Inland Fisheries Institute in Olsztyn, Olsztyn-Kortowo, Poland

Abstract

This study presents artificial induction using tench eggs, Tinca tinca (L.), of androgenetic origin. The oocytes taken from common bream, Abramis brama (L.) and common carp, Cyprinus carpio L. were genetically inactivated using UV irradiation and then inseminated using tench spermatozoa. Androgenetic origin (haploid or diploid embryos) was checked using a recessive colour (blond) and morphological markers. The percentage of hatched embryos in all experimental groups was much lower than in the control groups. All haploid embryos showed morphological abnormalities, which were recorded as haploid syndrome (stunted body, poorly formed retina, etc.). The optimal dose of UV irradiation of common bream and common carp eggs was 3456 J m⁻². At this dose, almost 100% of haploid embryos were produced at a hatching rate of over 6%. Lower UV-ray doses affected abnormal embryo development. The highest yield of tench androgenesis (about 2%) was noted when eggs were exposed to thermal shock 30 min after egg activation.

Materials and methods

Bercsenyi et al., 1998; Kucharczyk et al., 2008b, 2008c). The common tench Tinca tinca (L.) is a species which has a huge commercial value in many European countries, such as the Czech Republic, Hungary, Italy, Spain and Poland and other continents (Wang et al., 2006; Celada et al., 2009; Kujawa et al., 2011). For developing a culture method, different aspects of artificial reproduction (Kujawa et al. 2011; Targóńska et al., 2012), gamete management (Mamcarz et al., 2006), hatchery techniques (Kujawa et al., 2010) and larval and juvenile rearing (Mamcarz et al., 2011; Nowosad et al., 2013) are studied. Since some of the common tench wild and cultured stocks may be extinct, many aspects of biotechnology should be studied, e.g. cryopreservation of sperm (Rodina et al., 2007) or genome manipulation like androgenesis.

The aim of this study is to determine the possibility of obtaining androgenotes from common tench, using the eggs of common carp and bream Abramis brama (L.).
Experimental groups of eggs (common carp and common bream) after exposition to the different time of UV irradiation: E1, E3, E6, E8, E9, E10, E12 or E14 min (dose of UV irradiation ranged from 384 to 5376 J m\(^{-2}\)) were inseminated with 0.05 mL of yellow-coloured trench sperm. After irradiation, eggs from additional control groups were fertilised (control of treatment in ovarian fluid: groups D2). The eggs were incubated in a laboratory recirculating system at 21°C. All experimental groups were analysed in triplicate. During androgenesis, experimental groups were fertilised with 0.05 mL of yellow trench form sperm after exposition of the oocytes to a 9 min UV irradiation (an UV irradiation dose of 3456 J m\(^{-2}\)). Inseminated eggs were exposed to thermal shock from 20 to 60 min after egg activation (40°C; 2 min duration). This constituted E20, E30, E40, E50 and E60 groups, respectively. Eggs treated with UV irradiation, but not exposed to the thermal shock, were fertilised using the yellow form of trench sperm (control of irradiation quality, group I). After the experiment, eggs from other control groups were inseminated (control of treatment in ovarian fluid: groups D2). The whole procedure during both experiments was carried out in darkness to avoid genetic photo-reactivation (Kaastrup and Horlyck, 1987). Before the application of thermal shock, the eggs were kept at 21°C. After the experiment, the eggs were incubated in a laboratory recirculating system at 21-22°C, which was found to be the optimum incubation temperature for trench, carp and bream (Kucharczyk et al., 1997a, 1997b, 1998, 2005). All experimental groups were analysed in triplicate.

The success of androgenetic development in embryos in present study was determined in few ways: i) haploid syndrome (poorly formed retina, stunted body, etc.); ii) colour marker (wild-dark colour or yellow); and iii) morphological marker: the differences between embryos of pure species and their hybrids (Kucharczyk, 2002; Manczarz et al., 2006).

The differences in hatching success and in the survival of trench embryos were analysed using ANOVA and tested by post-hoc Duncan’s multiple range test (P<0.05). All of the values expressed as percentages were arcsine transformed prior to statistical analysis.

Results and discussion

The optimum irradiation dose of eggs for both fish species (bream and carp) was 3456 J m\(^{-2}\) (9 min exposure) (Figure 1A and 1B). In these groups, the highest percentage of live embryos at the eyed-egg-stage, as well as the highest hatching rate was observed. All hatched embryos from these groups were yellow-coloured and showed morphological abnormalities, which were recorded as haploid syndrome, i.e. stunted body, poorly-formed retina. The survival of newly-hatched (5 h after hatching) larvae in all experimental groups was statistically lower than in the control groups (groups K and D) (Figure 1A and 1B). Such results were in contrast with embryos survival to the eyed-egg-stage, where there were no significant differences between treated and control groups (P>0.05). All hatched larvae in these groups irradiated from 6 (dose 1152 J m\(^{-2}\)) to 14 min (dose 5376 J m\(^{-2}\)) were yellow, whereas all specimens from control groups were wild (dark) coloured. In groups where the lowest UV doses were applied (1 and 3 min of treatment), dark diploid, aneuploid, as well as a few blond haploid embryos were recognised. Many abnormal dark-coloured embryos, morphologically similar to the typical haploids, were probably aneuploids.

The survival of newly-hatched larvae (5 h after hatching) in all experimental groups involving androgenesis, was significantly lower than in the control groups. In the latter groups, the survival was high, except in the control groups where common carp eggs were used (Figure 2A and 2B). Yellow-coloured haploid embryos showed morphological abnormalities. The highest yield of androgenesis (P<0.05) was noted when eggs were exposed to shock 30 min after egg activation. The high level of survival to the eyed-egg-stage in control (D1 and D2) and treated groups suggests that stirring and keeping the eggs in artificial ovarian fluid is not harmful to embryonic development. Diploid androgenotes of trench were morphologically different than embryos from the control groups (K). Haploid larvae were viable only for the next 3 to 4 days after hatching.

During the experimental period, it was observed that one of the negative effects on common tench production is the unpredictable variation of environmental conditions. This situation has prompted a search for ways to increase the tench population or at least maintain the population in Polish lakes. Tench is economically important for Polish inland fisheries and the gradual decline in production has caused serious difficulties, particularly in increasing interspecies competition, rural and industrial origin pollution and overexploitation. One solution to the problem is to apply modern genome...
engineering. The aquaculture of many more species was dynamically powered to the developing genome engineering (Krasznai and Marian, 1986; Goryczko et al., 1991; Kucharczyk et al., 2008b, 2008c; Ocalewicz et al., 2010) and the results of the studies are used not only for commercial purposes but are also of scientific interest. The low hatching rate of tench embryos from genetically inactivated oocytes (0-2%) has been observed in many other fish species. Similar data to the present work have been reported by other authors: i.e. Scheerer et al. (1986) and Babiak et al. (2002a, 2002b) for rainbow trout (Oncorhynchus mykiss Walbaum 1792), May et al. (1988) for brook trout (Salvelinus fontinalis Mitchill 1814), Arai et al. (1992) for loach (Misgurnus anguillicaudatus Cantor 1842), Bongers et al. (1994) for common carp, Kucharczyk (2002) for common bream, Lin and Dabrowski (1998) for northern pike and Kucharczyk (2001) and Kucharczyk et al. (2008b, 2008c) for ide (Leuciscus idus L.) and dace (Leuciscus leuciscus L.). Such low survival rates of androgenotes were probably connected with the synergic effect of a few sublethal manipulations such as irradiation of oocytes and applied temperature shock as well as increased inbreeding.

The high level of survival to the eyed-egg-stage in control (D1 and D2) and treated groups suggests that stirring is not harmful to eggs. Similar observations have been made by Bongers et al. (1994). The obtained results show that UV treatment successfully inactivated the nuclear DNA in common carp and common bream eggs. Androgenetic origin (haploid or diploid embryos) was checked using a recessive colour marker (blond) and a morphological marker. Data published by Mamcarz et al. (2006) showed that newly-hatched hybrids between tench and carp or bream are morphologically different from genetically pure tench specimens. The low survival of hatched diploid embryos in the case of common carp – tench hybrids was also previously reported by Mamcarz et al. (2006). The applied dose of UV irradiation was 3456 J m−2, at which almost 100% haploid embryos were produced at a hatching rate of over 2%. These doses were higher than those described as the optimum UV oocyte treatment for common carp (2500 J m−2) by Bongers et al. (1994) or for northern pike (660 to 1320 Jm−2) by Lin and Dabrowski (1998) and were similar to those reported by Kucharczyk (2002) for common bream and Kucharczyk (2001) for ide (2700 to 3500 J m−2). For doubling chromosomal material during the androgenesis process, heat shocks were usually applied and, in some cases, very intensively (up to 42°C) (Arai et al., 1995; Grunina et al., 1995; Bercsenyi et al., 1998; Pandian and Koteeswaran, 1998; Kucharczyk, 2002). The survival of larvae of androgenetic origin is variable (usually very low) and depended on many different factors. The data published by Scheerer et al. (1986), Bongers et al. (1994, 1995) and by Pandian and Koteeswaran (1998), Rothbard et al. (1999), Babiak et al. (2002a, 2002b) showed that if androgenesis is involved in inbred lines, the survival was much higher than in wild ones. The obtained results in the present work showed that the survival of androgenetic-origin larvae was between 0 and 2%. However, the results of the present research were not different from those obtained by Kucharczyk (2002).

![Figure 1](image_url)

Figure 1. Inactivated oocyte genome in common bream (A) and carp (B). The haploid hatched groups marked with the same letter do not differ statistically (post-hoc Duncan test, α=0.05).
for pure tench androgenesis. Grunina et al. (1995) and Bercsenyi et al. (1998) suggest that if eggs from other fish species than spermatozoa were used, this usually increased embryo survival. However, the obtained results in the present work did not differ from the data obtained by Kucharczyk (2002) for pure tench androgenesis.

Conclusions

The study found that androgenetic tench production using eggs from common carp and bream is possible. However, the yield of androgenesis is not satisfactorily high, although it is enough for the stock producing of androgenetic tench.

References

Arai, K., Ikeno, M., Suzuki, R., 1995. Production of androgenetic diploid loach Misgurnus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture 137:131-138.

Arai, K., Masaoka, T., Suzuki, R., 1992. Optimum conditions of UV irradiation for genetic inactivation of loach eggs. Nippon Suisan Gakk. 58:1197-1201.

Babiak, I., Dobosz, S., Goryczko, K., Kuzminski, H., Brzuzan, P., Ciesielski, S., 2002a. Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology 57:1229-1249.

Babiak, I., Dobosz, S., Kuzminski, H., Goryczko, K., Ciesielski, S., Brzuzan, P., Urbanyi, B., Horvath, A., Lahnsteiner, F., Piironen, J., 2002b. Failure of interspecies androgenesis in salmonids. J. Fish Biol. 61:432-447.

Babiak, I., Magary, I., Urbanyi, B., Orban, L., Horvath, L., 1998. Hatching out goldfish from common carp eggs: interspecific androgenesis between two cyprinid fishes. Genome 41:573-579.

Bongers, A.B.J., Abarcia, J.B., Zandieh-Doulabi, B., Eding, E.H., Komen, J., Richter, C.J.J., 1995. Maternal influence on development of androgenetic clones of common carp, Cyprinus carpio L. Aquaculture 137:139-147.

Bongers, A.B.J., Veld, E.P.C., Abo-Hasema, K., Bremmer, I.M., Eding, E.H., Komen, J., Richter, C.J.J., 1994. Androgenesis in common carp (Cyprinus carpio L.) using UV irradiation in a synthetic ovarian fluid and heat shock. Aquaculture 122:119-132.

Celada, J.D., Aguilara, A., Garcia, V., Carral, J.M., Saez-Royuela, M., Gonzales, R., Gonzalez, A., 2009. Rearing juvenile tench (Tinca tinca L.) under controlled conditions using Artemia nauplii as a supplement to a dry diet. Aquacult. Int. 17:565-570.

Flajshans, M., 1998. Genome manipulation in fish. Czech J. Anim. Sci. 43:387.

Goryczko, K., Dobosz, S., Mikäinen, T., Tomasik, L., 1991. UV irradiation of rainbow trout sperm as a practical method for induced gynogenesis. J. Appl. Ichthyol. 7:136-146.

Grunina, A.S, Recubratsky, A.V., Emelyanova, O.V., Neyfakh, A.A., 1995. Induced androgenesis in fish: production of viable androgenetic diploid hybrids. Aquaculture 137:149-160.

Kaastrup, P., Horlyck, V., 1987. Development of single method to optimize the conditions for pure tench androgenesis. Grunina et al. (1995) and Bercsenyi et al. (1998) suggest that if eggs from other fish species than spermatozoa were used, this usually increased embryo survival. However, the obtained results in the present work did not differ from the data obtained by Kucharczyk (2002) for pure tench androgenesis.

Figure 2. Artificial androgenesis induction in tench using common bream oocytes (A) and common carp oocytes (B). The diploid hatched groups (E20’-E60’) marked with the same letter do not differ statistically (post-hoc Duncan test, α<0.05).
for producing gynogenetic offspring, using albino rainbow trout, Salmo gairdneri Richardson, females as an indicator for gynogenesis J. Fish Biol. 31:29-33.

Krasznai, Z., Marian, T., 1986. Shock induced triploidy and its effect on growth and gonad development of the European catfish, Silurus glanis L. J. Fish Biol. 30:519-527.

Kucharczyk, D., 2001. Genetic inactivation of Leuciscus idus L. (ide) oocytes using UV irradiation. Cytobios 104:189-195.

Kucharczyk, D., 2002. Rozród kontrolowany i androgenicza wybranych gatunków ryb karpiowatych. Uniwersytet Warmińsko-Mazurski, Olsztyn, Poland.

Kucharczyk, D., Kujawa, R., Luczyński, M., Glogowski, J., Bałbiak, I., Wyszomirska, E., 1997a. Induced spawning in bream, Abramis brama (L.), using carp and bream putitary extract and hCG. Aquac. Res. 28:139-144.

Kucharczyk, D., Kujawa, R., Mamcarz, A., Targórska-Dietrich, K., Wyszomirska, E., 1997b. Induced spawning in bream (Abramis brama L.) using pellets containing GnRH. Czech J. Anim. Sci. 50:89-95.

Kucharczyk, D., Łuczyński, M., Kujawa, R., Czerkiesz, P., 1997b. Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquat. Sci. 59:214-224.

Kucharczyk, D., Łuczyński, M., Kujawa, R., Łuczyński, R., Ulikowski, D., Brzuzan, P., 1998. Influences of temperature and food on early development of bream (Abramis brama L.). Arch. Hydrobiol. 141:243-256.

Kucharczyk, D., Targórska, K., Hliwa, P., Gomułka, P., Kwiatkowski, M., Krejszeff, S., Perkowski, J., 2008a. Reproductive parameters of common carp (Cyprinus carpio L.) spawners during natural season and out-of-season spawning. Reprod. Biol. 8:285-289.

Kucharczyk, D., Targórska, K., Łuczyński, M., J., Szczerbowski, A., Kwiatkowski, M., Kujawa, R., 2008b. Androgenesis of ide, Leuciscus idus (L.), using chub, Leuciscus cephalus (L.), eggs. Arch. Pol. Fish. 16:453-457.

Kucharczyk, D., Targórska, K., Szczersowski, A., Łuczyński, M., J., Rożek, W., Kujawa, R., Mamcarz, A., 2008c. Genetic inactivation of dace, Leuciscus leuciscus (L.), gametes using UV irradiation. Arch. Pol. Fish. 16:437-446.

Kujawa, R., Kucharczyk, D., Mamcarz, A., 1999. A model system for keeping spawners of wild and domestic fish before artificial spawning. Aquacult. Eng. 20:85-89.

Kujawa, R., Kucharczyk, D., Mamcarz, A., 2010. The effect of tannin concentration and egg unsticking time on the hatching success of tench Tinca tinca (L.) larvae. Rev. Fish Biol. Fisher. 20:339-343.

Kujawa, R., Kucharczyk, D., Mamcarz, A., Żarski, D., Targórska, K., 2011. Artificial spawning of common tench Tinca tinca (Linnaeus, 1758), obtained from wild and domestic stocks. Aquacult. Int. 19:513-521.

Lin, F., Dabrowski, K., 1998. Androgenesis and homzygous gynogenesis in muskelunge (Esox masquinongy): evaluation using flow cytometry. Mol. Reprod. Dev. 49:10-18.

Luczyński, M.J., Glogowski, J., Kucharczyk, D., Łuczyński, M., Demaska-Zales, K., 1997. Gynogenesis in northern pike (Esox lucius L.) induced by heat shock - preliminary data. Pol. Arch. Hydrobiol. 44:26-32.

Mamcarz, A., Kucharczyk, D., Kujawa, R., 2006. Reciprocal hybrids of tench Tinca tinca (L.) × bream Abramis brama (L.), and tench × carp Cyprinus carpio L., and some characteristics of their early development. Aquacult. Int. 14:27-33.

Mamcarz, A., Kucharczyk, D., Kujawa, R., Żarski, D., 2011. Effect of live and dry food on rearing of tench (Tinca tinca L.) larvae under controlled conditions. Ital. J. Anim. Sci. 10:e9.

May, B., Henley, K.J., Krueger, C.C., Gloss, S.P., 1988. Androgenesis as a mechanism for chromosome set manipulation in brook trout (Salvelinus fontinalis). Aquaculture 75:57-70.

Nowosad, J., Żarski, D., Bišas, M., Dryl, K., Krejszeff, S., Kucharczyk, D., 2013. Dynamics of ammonia excretion in juvenile common tench, Tinca tinca (L.), during intensive rearing under controlled conditions. Aquacult. Int. 21:629-637.

Ocalewicz, K., Dobosz, S., Kuzminski, H., Nowosad, J., Goryczko, K., 2010. Chromosome rearrangements and survival of androgenic rainbow trout (Oncorhynchus mykiss). J. Appl. Genet. 51:309-317.

Pandian, T.J., Koteeswaran, R., 1998. Ploidy level and sex control in fish. Hydrobiologia 384:167-243.

Rodina, M., Gela, D., Kocour, M., Hadi Alavi, S.M., Hulak, M., Linhart, O., 2007. Cryopreservation of tench, Tinca tinca, sperm: Sperm motility and hatching success of embryos. Theriogenology 67:931-940.

Rothbard, S., Rubinshtein, I., David, L., 1999. Ploidy manipulations aimed to produce androgenic Japanese ornamental (koi) carp, Cyprinus carpio L. Isr. J. Aquacult.-Bamid. 51:26-39.

Rubinshtein, I., Rothbard, S., Shelton, W.L., 1997. Relationships between embryological age, cytokinesis-1 and the timing of ploidy manipulations in fish. Isr. J. Aquacult.-Bamid. 49:99-110.

Scheerer, P.D., Thorgard, G.H., Allendorf, F.W., Knudsen, K.L., 1986. Androgenic rainbow trout produced from inbred and outbred sperm sources show similar survival. Aquaculture 57:289-298.

Targórska, K., Perkowski, T., Żarski, D., Krejszeff, S., Mamcarz, A., Kujawa, R., Kucharczyk, D., 2012. Method of evaluation of wild common tench, Tinca tinca (L.), female suitability for artificial reproduction during the spawning season. Ital. J. Anim. Sci. 11:e30.

Wang, J., Min, W., Guan, M., Gong, L., Ren, J., Huang, Z., Zheng, H., Zhang, J., Liu, H., Han, Y., 2006. Tench farming in China: present status and future prospects. Aquacult. Int. 14:205-208.