A Comparative Analysis of Enzyme-Linked Immunosorbent Assay and Rapid Card Test for Diagnosis of Rotavirus Antigen in Acute Diarrhea Below Five Years Children

Jugal Kishor Agarwal¹*, S.P. Garg¹, Dayachand² and Dipty Agrawal³

¹Department of Microbiology, SIMS, Hapur, India
²Department of Pediatrics, SIMS, Hapur, India
³Department of Anesthesia, SDN Hospital, Delhi, India
*Corresponding author

ABSTRACT

Group-A Rotavirus are responsible for severe watery diarrhea in young children. Rapid diagnosis of Rotavirus associated diarrhea can prevent inappropriate administration of antibiotics and help in preventing the spread of multi-drug resistance. Rotavirus antigen is detected by ELISA and with one step rapid antigen test showed an incidence of 22% using ELISA and 21.33% using Rapid test respectively. Rapid test showed a sensitivity of 96.97% and specificity of 100% in comparison to ELISA. The Rotavirus infection was highest in age group of 6 months to 24 months (62.77%) and in male (63.64%). The infection was maximum during winter and presented with triad of diarrhea, vomiting and fever. Majority of cases had watery diarrhea with severe dehydration.

Introduction

Acute diarrheal disease is a major public health problem leading to high morbidity and significant mortality in both developed and developing countries like India. Rota virus infection is the third most common cause of severe diarrhea in young children Worldwide (Kapikian et al., 1996) Almost all kids have had a Rota virus infection by the time they are 5 years old. It is estimated that Rota Virus infection annually causes 111 million episodes of gastroenteritis requiring home care, 5 million clinic visits, million hospitalization and approximately 600,000 deaths in children less than 5 years of age Worldwide (Parashar et al., 2003). There are seven Rota virus groups known to infect the humans, among them the most dominant is group A (Parashar et al., 2001). WHO estimated that diarrhea is responsible for 18% deaths among children younger than 5 years of age (Bryce et al., 2005).

In view of high incidence of morbidity and mortality in developing countries like India
there is a need for rapid and sensitive detection method in routine diagnostic laboratory, which perform antigen detection using enzyme immunoassay (EIA), latex agglutination assay (Bryce et al., 2005) or immuno chromatography. Evidence by direct virus detection using electron microscopy is not practical by routine laboratories. Although Rota virus can be isolated from stool sample by culture, but it is a cumbersome process and needs equipped laboratory require skilled personnel. The recent advance in antigen detection based on immunological techniques using monoclonal antibodies has gained the attention of researchers. Therefore the direct detection of antigen in stool sample by rapid one step assay is inexpensive, easy to handle, non invasive procedure, no specialized instrument is required and have high sensitivity (Cukor et al., 1984).

Materials and Methods

A prospective study was undertaken between January 2014 to October 2014 in the Microbiology and Pediatrics Department, SIMS, Hapur after obtaining a written & Informed consent by parents of children below five years with acute diarrhea. Clearance was taken from the ethical committee of the institute.

150 Freshly passed stool, samples were collected in wide mouth sterilized container from hospitalized children and OPD patients of SIMS, Hapur of acute diarrhea by the help of their parents or caretaker and transported to the Microbiology department as soon as possible. Samples were kept at 4°C and tested within 24 hours of collection. Rotavirus antigen is detected by immunochromatographic test (SD Bioline test kit) and ELISA kit (premier rotaclones) according to manufacturer’s instruction (One step rotavirus antigen test Korea, 2011; Rotavirus antigen ELISA, 2012).

Results and Discussion

Rotavirus was found to be a common cause of diarrhea in children less than 5 years of age with an incidence of 22% using ELISA and 21.33% using Rapid test. ICG was compared to standard ELISA showed a sensitivity of 96.97% and specific of 100%. The infection was maximum during the winter months. Male children (62.7%) were affected more than female (37.3%). There was no statistically significant difference in the frequency of rotavirus infection among patients from urban and rural area. A high number of (72.6%) of rotavirus positive cases by ELISA presented with a triad of diarrhea, vomiting and fever followed by vomiting preceding diarrhea (21%) and only diarrhea (6.4%). Dehydration was significant in children 72% showed severe dehydration.

In present study, out of 150 patients there were 32 rotavirus positive cases, with Rapid test. When compared to standard test - ELISA, Rapid test showed a sensitivity of 96.97% and specificity of 100%. ELISA is clearly the most sensitive method for detection of rotaviruses and is ideal for screening of large number of fecal specimens in a single sitting.

Now Rapid tests for rotavirus detection are also available such as ICG. This test facilitates qualitative information of rotavirus infection based on the presence of a rotavirus specific band. In addition, the Rapid test (ICG) requires less handling of the sample and quick as the results are available in short time (Momenzadeh et al., 2008).

The present study is matched with observations made by other workers. Momenzadeh et al., compared Rapid test with ELISA for detection of rotavirus. They
considered ELISA as standard test and found the sensitivity and specificity of ICG to be 87.7%, 98.6%, respectively, which is comparable to present study.

Another study done by Dennehy P H reported the sensitivity, specificity of ICG as 94% and 100%, respectively and that of ELISA, 95.5% and 100% respectively. ICG test was reported as a sensitive, specific and relatively simple test (Dennehy et al., 1999).

Dewar J et al., found out sensitivity of 88% (66/75) and a specificity of 100% of Rapid test when compared with the ELISA. Wilhelmi I et al., compared Rapid test method, with enzyme immunoassay. The statistical values of the enzyme immunoassay, and Rapid test method were respectively 96% and 99% for sensitivity; 99% and 96% for specificity (Wilhelmi et al., 2001).

In the above study Rapid test technique showed high sensitivity and specificity and was rapid and easy to perform in the routine clinical laboratory. ELISA is the standard test for detection of rotaviruses but because of limited availability and rather high cost we compared ICG to ELISA. In our study sensitivity (96.97%) and specificity (100%) of ICG was comparable to ELISA and made the diagnosis simple, rapid, cost-effective and convenient. A study conducted by Momenzadeh, et al., and Kim J et al., also showed similar results (Kim et al., 2014). Rotavirus accounting 20-50% of hospitalization for Diarrhea in children worldwide and is the most important cause of death of children (14). The present study showed an incidence of 22% of rotavirus diarrhea by ELISA in children less than five years of age. The result of this study is supported by other studies from Chandigarh (16-19%), Kolkata (5-22%) and Chennai (20.8%) (Broor et al., 2003).

Majority of infected children in present study were between 6 to 24 months of age (62.77%). It appeared that children below 6 months of age were initially protected by maternal antibodies to rotavirus infection and by acquired active immunity after 24 months of age (Saravanan et al., 2004). This result is similar to other studies done in Eastern Nepal and other countries (Shariff et al., 2003).

In present study 90.47% cases had watery diarrhea and majority (76.19%) are presented with severe dehydration due to elaboration of a potent enterotoxin which causes profuse watery diarrhea, destroys the intestinal epithelial surface leading to blunted villi, extensive damage, and shedding of massive quantities of virus in stools (Glass et al., 2006).

Age	Male	%	Female	%	Total	%
6 - 12 months	25	16.67%	20	13.33%	45	30.00%
1 - 2 years	32	21.33%	15	10.00%	47	31.33%
2 - 3 years	17	11.33%	13	8.67%	30	20.00%
3 - 4 years	9	6.00%	6	4.00%	15	10.00%
4- 5 years	7	4.67%	6	4.00%	13	8.67%
Total	90	60.00%	60	40.00%	150	100.00%

Table 1: Age & Sex Distribution of Diarrhea Cases
Table 2 Monthly Distribution of Rotavirus Positive Cases

Month	Number of Cases	Number of Rotavirus Positive Cases by ELISA	% Rotavirus Positive Cases
Jan	20	4	12.12%
Feb	13	4	12.12%
Mar	20	6	18.18%
April	30	8	24.24%
May	14	3	9.09%
June	11	0	0.00%
July	11	2	6.06%
Aug	10	1	3.03%
Sep	11	2	6.06%
Oct	10	3	9.09%
Total	150	33	100%

Table 3 Age & Sex Distribution of Rotavirus Positive Cases by ELISA

Age	Total no. of cases	Male	Female	Total %
6 - 12 months	11	8	3	33.33%
1 - 2 years	13	8	5	39.39%
2 - 3 years	6	3	3	18.18%
3 - 4 years	3	2	1	9.09%
4 - 5 years	0	0	0	0.00%
Total	33	21	12	100.00%

Table 4 Diarrhea in various Age Groups

Age	Total No. of Cases	ELISA No. (+/-)	Rapid Test No. (+/-)
6 - 12 months	45	11/34	10/35
1 - 2 years	47	13/34	13/34
2 - 3 years	30	6/24	6/24
3 - 4 years	15	3/12	3/12
4 - 5 years	13	0/13	0/13
Total	150	33/117	32/118
		22.00%	21.33%
Table 5: Comparison of Rapid Test with ELISA

Sensitivity	96.97%	
Specificity	100.00%	
Positive Predictive	100.00%	
Value	99.15%	
Accuracy	99.33%	

Table 6: Statistical Significance of Rotavirus with respect to months

	Cooler Months (Oct - Feb)	Hotter Months (Mar-Sep)	Total
Rotavirus Cases			
Positive	11	22	33
Negative	32	85	117
Total	43	107	150

Table 7: Statistical Significance of Rotavirus with respect to Age Group

	6 months to 2 years	More than 2 years	Total
Rotavirus Cases			
Positive	24	9	33
Negative	68	49	117
Total	92	58	150

In conclusion, rotavirus was significantly associated with diarrhea in children of 6-24 months of age, more in male children, associated with severe dehydration, vomiting, and fever. It is not routinely diagnosed in most of the hospitals due to non-availability of tests and its clinical spectrum of signs and symptoms which are mimics to other types of diarrhea. In India few hospitals use ELISA for the diagnosis of Rota Virus infection because of limited availability and cost. On the other hand Rapid test showed a sensitivity of 96.97% and specificity of 100% in comparison to ELISA, that is good agreement with ELISA. It has the advantage of being a quicker, cost-effective, and useful for testing even a single specimen, convenient, not requiring additional equipments, readily available, simple to perform and easy-to-read results.

Acknowledgement

JKA and DC collected the data, SPG guided the study, and DA critically reviews the article.

References

Broor, S., Ghosh, D., Mathur, P. 2003. Molecular epidemiology of rotavirus in India. *Indian J. Res.*, 118: 59–67.
Bryce, J., Boschi – Pinto, C., Shibuya, K., Black, R.E. 2005. WHO estimate so the causes of death in children *Lancet*, 365(9465): 1147-52.
Cukor, G. 1984. Detection of Rotavirus in human stools by using monoclonal antibody. J. Clin. Microbiol., 19: 888-892.
Dennehy, P.H., Hartin, M., Nelson, S.M., and Rebing, S.F. 1999. Evaluation of the immuno card STAT Rotavirus assay for detection of group A Rotavirus in fecal specimens. J. Clin. Microbiol., 37(6): 1977-1979.
Dewar, J., de Beer, M., Elliott, E., Monaisa, P., Semenya, D., Steele, A. 2005. Rapid detection of rotaviruses – are laboratories underestimating infection in infants, South African Med. J., 95(7): 494-5.
Estees, M.K. Rotavirus and their replication. In: Knipe DM, Howley PM, (eds) fields virology. Philadelphia: Lipin cott – Raven, 2001: PP. 1747-1785.
Glass, R.I., Parashar, U.D., Bresee, J.S., Tureios, R., Fischer, T.K., Widdowsen, M.A., et al. 2006. Rotavirus Vaccines: Current Prospects and Future Challenges. Lancet, 368: 323-32.
Glass, R.I., Parashar, U.D., Bresee, J.S., Tureios, R., Fischer, T.K., Widdowsen, M.A., et al. 2006. Rotavirus Vaccines: Current Prospects and Future Challenges. Lancet, 368: 323-32.
Wilhelmi, I., J. Colomina, D. Martín-Rodrigo, E. Roman and A. Sánchez-Fauquier New Immunochromatographic Method for Rapid Detection of Rotaviruses in Stool Samples Compared with Standard Enzyme Immunoassay and Latex Agglutination Techniques. Eur. J. Clin. Microbiol. Infect. Dis., 20(10): 741-3.
Kapikian, A.Z., Chamock, R.M. 1996. Rotavirus. In: fields BN Knipe DM, Howley PM, et al. eds. Fields virology. 3rd endn. Philadelphia: Lippin cott – Raven, PP 1657-1708.
Kim, J., Kim, H.S., Kim, H.S., Kim, J.S., Song, W., Lee, K.M., et al. 2014. Evaluation of an Immunochromatographic Assay for the Rapid and Simultaneous Detection of Rotavirus and Adenovirus in Stool Samples. Ann. Lab. Med., 34(3): 216–22.
Mitchell, D., Jiang, X., Matson, D. 2000. Gastrointestinal infections. In: Storch GA, et. Essentials of Diagnostic virology. New York: chruchill living stone, 2000:PP. 83.
Momenzadeh, A., Shahrzad, M., Faraji, A., Motamedi, rad1. M., Sohrabi,1.A., Modarres1, S., Azarnoush, L., Mirshahabi1, H. Comparison of Enzyme Immunoassay, Immunochromatography, and RNA-Polyacrylamide-Gel Electrophoresis for Diagnosis of Rotavirus Infection in Children with Acute Gastroenteritis. Iran J. Med. Sci., 33(3): 173.
One step rotavirus antigen test Korea: standard diagnoses tics, Inc; Dec 2011.
Parashar, U.D., Hummel mane, G. 2003. Bresee JS, Miller MA, Glass RI. Global illness and death. Caused by Rotavirus disease in children. Emerg. Infect. Dis., 9: 565-572.
Rotavirus antigen ELISA. USA: DRG International, Inc; 2012.
Saravanan, P., Ananthan, S., Ananthasubramanian, M. 20004. Rotavirus Infection among infants and young children in Chennai, South India. Indian J. Med. Microbiol., 22(4): 212–21.
Shariff, M., Deb, M., Singh, R. 2003. A study of diarrhea among children in eastern Nepal with reference to rotavirus. Indian J. Med. Microbiol., 21(2): 87–90.