ZrS$_2$ symmetrical-ambipolar FETs with near-midgap TiN film for both top-gate electrode and Schottky-barrier contact

Masaya Hamada*, Kentaro Matsuura, Takuya Hamada, Iriya Muneta, Kuniyuki Kakushima, Kazuo Tsutsui, and Hitoshi Wakabayashi

Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan

*E-mail: hamada.m.af@m.titech.ac.jp

Received October 16, 2020; revised November 28, 2020; accepted December 25, 2020; published online January 13, 2021

ZrS$_2$ ambipolar MISFETs are obtained in operations with both electrons and holes. A layered polycrystalline ZrS$_2$ thin film was formed by sputtering and sulfur-vapor annealing on a whole surface of a 2.4 cm \times 2.4 cm SiO$_2$/Si substrate. The ZrS$_2$ FETs have Al$_2$O$_3$ gate insulator and TiN film for both the top-gate electrode and Schottky-barrier contact, which show symmetrical I–V curves with a V_{ds} of 0.4 V contributed by the TiN film with midgap work function to the sputtered ZrS$_2$ film. Notably, ambipolar FET operations because of both electrons and holes were successfully observed with an on/off current ratio of 250. This is an important step to realize n/p-type unipolar ZrS$_2$ FETs.

1. Introduction

The scaling of silicon FETs has currently reached down to 5 nm technology node. Although new FET structures such as nanosheet, forksheet and n/p-stacked complementary FETs have been proposed for the sub-3 nm technology node, it is very difficult for these structures to maintain device performances due to the mobility degradation caused by scattering mechanisms in a channel with a thickness of only a few nano-meters. Therefore, adoption of new materials with high mobilities even at the atomically thin thickness has been considered. Two-dimensional (2D) semiconductors have attracted intense attention because of their excellent electrical properties. In particular, 2D transition metal dichalcogenide films have unique electrical and physical properties, such as a high mobility and a steady band gap despite an atomically-thin thickness. A Zirconium disulfide (ZrS$_2$) film has reported to perform high mobilities of more than 1000 cm2 V$^{-1}$ s$^{-1}$ and sulfur vapor annealing. Although a chemical vapor deposition (CVD) method for the synthesis of ZrS$_2$ film has been reported, a large area formation of this film has not been demonstrated yet. On the other hand, there has been a different attempt to use the sputtering method that achieves a uniform thickness with less contamination, and also fabrication of FETs has been demonstrated with this method. It has been reported that a large-area film of layered-polycrystalline ZrS$_2$ with a high Hall-effect electron mobility of 1250 cm2 V$^{-1}$ s$^{-1}$ was achieved by sputtering and sulfur-vapor annealing. To realize CMOS logic circuits based on ZrS$_2$ films, both p- and n-type transistors are required. Although electron conduction has been observed in ZrS$_2$ films, hole conduction of a ZrS$_2$ film has not been demonstrated yet. For both electron and hole conductions, an intrinsic ZrS$_2$ channel film, low resistance contacts to the channel and appropriate gate metals for the channel are necessary. ZrS$_2$ MISFETs with both electron and hole conductions were preliminary demonstrated by using only a near-midgap TiN film for both the top-gate electrode and the Schottky-barrier contact.

2. Experimental methods

TiN source and drain (S/D) electrodes with a thickness of 80 nm formed on an SiO$_2$/Si substrate by sputtering and subsequent wet etching. A ZrS$_2$ film was formed using an ultra-high-vacuum radio frequency magnetron sputtering tool and a ZrS$_2$ target of 99%. Then, sulfur-vapor annealing was carried out for sulfur compensation in which sulfur powder was evaporated at 250 °C for 60 min, and wafers were heated at 700 °C for 60 min in Ar flow under 100 Pa. A 20 nm Al$_2$O$_3$ gate insulator was deposited by atomic layer deposition (ALD) at 300 °C using trimethyl aluminum and H$_2$O precursors. Then, an active area was defined by photolithography and reactive ion etching (RIE). After those, a 60 nm SiN sidewall beside the active area was formed by sputtering and lift-off method, as shown in Figs. 1 and 2. A top-gate of the TiN film was also formed by sputtering and wet etching. Then, S/D contact through the Al$_2$O$_3$ gate insulator were fabricated by RIE and sputtering. Finally, forming gas (F.G.) annealing was conducted at 300 °C for 10 min.

3. Results and discussion

Figure 3 shows the I_d–V_{ds} characteristics of the ZrS$_2$ MISFETs obtained with and without F.G. annealing for the V_{ds} of 0.05 and 1.0 V. It is observed that different threshold
Voltages are obtained with and without F.G. annealing at a high V_{ds}. Especially with F.G. annealing, ambipolar transfer characteristics at V_{ds} of 1.0 V are confirmed.

To confirm the insulation property of the Al$_2$O$_3$ film, the I_d, I_s, and I_g-V_{gs} characteristics of the ZrS$_2$ MISFETs obtained with and without F.G. annealing are shown in Figs. 4(a) and 4(b). Since the I_d directly corresponds to the I_s value at high V_{gs} and the I_g is sufficiently suppressed, the ALD Al$_2$O$_3$ film shows good insulation behavior even on the ZrS$_2$ film. The I_g appears to be independent of the gate voltage because of a floating channel voltage with a semiconductor-on-insulator structure of the ZrS$_2$ MISFET.\(^{41,22}\)

To elucidate the origin of the V_{th} shift, the I_d-V_{gs} characteristics in forward and backward sweeps for the ZrS$_2$ MISFETs obtained with and without F.G. annealing are shown in Figs. 5(a) and 5(b). Regardless of the F.G. annealing, only a small V_{th} shift is observed for a relatively high gate voltage range. It is speculated that the density of interface states between the Al$_2$O$_3$ and the ZrS$_2$ films are very low despite the polycrystallinity of the sputtered ZrS$_2$ film. Therefore, it is considered that fixed charges in the Al$_2$O$_3$ film play the dominant role in the V_{th} shift. This indicates that positive fixed charges are reduced by the F.G. annealing resulting in the positive V_{th} shift. In addition, the reduction of the off-current after F.G. annealing is considered to be because of the termination of an edge of the ZrS$_2$ channel by hydrogen.

To evaluate the drive current on F.G. annealing, the I_d and $I_g-(V_{gs} - V_{off})$ characteristics of the ZrS$_2$ MISFETs obtained with and without F.G. annealing are shown in Fig. 6, where V_{off} is extracted at the minimum I_d. The I_d values at high positive $V_{gs} - V_{off}$ with and without the F.G. annealing are almost identical.

To confirm the saturation characteristics at negative and positive gate voltage ranges, the I_d-V_{ds} characteristics of the ZrS$_2$ MISFETs obtained with F.G. annealing are shown in Figs. 7(a) and 7(b), respectively. The Schottky-like I_d curves are observed at the negative gate voltage, while at the positive one, I_d shows Ohmic-like curves. Since a parasitic resistance at the negative gate voltage is larger than that at the positive one, it is speculated that a TiN work function approximately locates above the intrinsic energy level of the ZrS$_2$ film.

Ambipolar transfer characteristics, as discussed above, can be explained by the Schottky-barrier FET model,\(^{13}\) as shown in Fig. 8. According to this model, the Schottky barriers for electrons and holes are controlled by the gate voltage. At a positive gate voltage, electrons mainly contribute to the current at a positive V_{ds}. By contrast, at a negative gate voltage, holes mainly contribute to the current at the positive V_{ds}. As discussed
with both Figs. 3 and 8, symmetrical I_d-V_{gs} curves to V_{off} of 0.4 V suggest that the Fermi energy level of the sputtered ZrS$_2$ film is located approximately in the middle of the band gap, because of the low carrier density of the ZrS$_2$ film.

To discuss the configuration of the band gap for the sputtered ZrS$_2$ film, the band diagrams are shown in Fig. 9. Since the TiN work function is located in the middle of the Si band gap, it is predicted that the bandgap of the sputtered ZrS$_2$ film is surprisingly located at a shallower level than calculated one with a large electron affinity of 5.71. Furthermore, it is speculated that the intrinsic level of the ZrS$_2$ locates a lower level than the TiN work function, which is consistent with the discussion on the gate stack above. These suggest that it is convenient to design the ZrS$_2$ FETs, comprehensively.

To evaluate the intrinsic drivability in the operation of electrons, parasitic resistances are extracted from the R_{total} of the ZrS$_2$ MISFETs as a function of L_{ch} at the V_{ds} of 1.0 V, as shown in Fig. 10. An R_{ext} of 0.038 GΩ cm and $2\Delta L$ of $-1.5 \mu m$ were calculated with the Terada method.

To compare the difference in the conductivity between the holes and electrons, the $g_{m}(V_{gs} - V_{off})$ characteristics without parasitic resistance of the ZrS$_2$ MISFETs are shown in Fig. 11. Here R_{ext} and $2\Delta L$ of electrons are applied even for hole operation. It is observed that the electron mobility is higher than that of the hole one, because the I_d value at the positive $V_{gs} - V_{off}$ is larger than that at negative one. This is consistent with that electron mass is approximately a half of hole one. From these g_{m} values, an electron field-effect mobility of approximately 0.001 cm2 V$^{-1}$ s$^{-1}$ is calculated, which does not meet the previous report. It is because that the Al$_2$O$_3$ gate insulator film influences transport properties of the ZrS$_2$ channel as well as other reports, and also the mobility can be deteriorated by the interface roughness between the ZrS$_2$ and Al$_2$O$_3$ films which might be unfortunately enhanced by SiO$_2$ surface roughness during the bottom TiN-electrode formation.

Table I shows the benchmarks of the ZrS$_2$ MISFETs obtained using different formation methods.
that our FET is superior to other FETs in terms of a small V_{off} of 0.4 V and a high on/off current ratio of 250, because the contact TiN work function is near the middle of the bandgap of the sputtered ZrS$_2$ channel. Most importantly, conductions of both holes and electrons are performed, because of the higher quality of ZrS$_2$ film and integrated processes to fabricate the MISFETs.

4. Conclusions

Chip-level-integrated ambipolar-ZrS$_2$ MISFETs were successfully achieved by sputtering and sulfur-vapor annealing. In particular, the FETs performed both electron and hole conductions with a smaller V_{off} of 0.4 V. In addition, the bandgap of the sputtered ZrS$_2$ films was predicted to be at a shallower level than the calculated value, which is advantageous for the engineering of the gate and contact metals. This study is an important milestone for the realization of n/p-type unipolar ZrS$_2$ FETs, and it is expected the more discussions to satisfy to precisely control the device operation.

Acknowledgments

This paper is partly supported by JST CREST and COI with Grant Nos. of JPMJCR16F4 and JPMJCE1309, respectively.

ORCID iDs

Masaya Hamada https://orcid.org/0000-0002-5830-5283

Table I. Benchmark of characteristics for reported ZrS$_2$ FETs obtained using different film formation methods.

ZrS$_2$ film formation method	Sputtering in this work	CVD$^{[2]}$	CVD$^{[3]}$
Precursors	ZrS$_2$ and sulfur	ZrCl$_2$ and sulfur	ZrCl$_2$ and sulfur
Temperature [°C]	700	760	950
Thickness [nm]	~5	0.71	A few layers
Gate configuration	Top	Bottom	Bottom
Operation	Ambipolar	Unipolar (e)	Unipolar (e)
V_{off} [V]	0.4 (e/h both)	~40	~10
$R_{\text{on/off}}$	~250	~15	~25
Mobility	0.0001	0.1–0.8	~0.1

SBBH05-4 © 2021 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd
