Detection of *Francisella tularensis* in Biological Specimens Using a Capture Enzyme-Linked Immunosorbent Assay, an Immunochromatographic Handheld Assay, and a PCR

ROLAND GRUNOW,1* WOLF SPLETTSTOESSER,1 SAHRA MCDONALD,2 CHRISTIAN OTTERBEIN,1 TOM O’BRIEN,3 CECILIA MORGAN,3 JENNIFER ALDRICH,3 ERWIN HOFER,4 ERNST-JÜRGEN FINKE,1 AND HERMANN MEYER1

Institute of Microbiology, Federal Armed Forces Medical Academy, Neuherbergstr. 11, D-80937 Munich, Germany; 2Porton Down, Salisbury, United Kingdom; 3Naval Medical Research Institute, Bethesda, Maryland; and 4Federal Institute for Control of Infectious Diseases of Animals, 2340 Mödling, Austria

Received 30 March 1999/Returned for modification 19 August 1999/Accepted 20 October 1999

The early detection of *Francisella tularensis*, the causative agent of tularemia, is important for adequate treatment by antibiotics and the outcome of the disease. Here we describe a new capture enzyme-linked immunosorbent assay (cELISA) based on monoclonal antibodies specific for lipopolysaccharide (LPS) of *Francisella tularensis* subsp. holarctica and *Francisella tularensis* subsp. *tularensis*. No cross-reactivity with *Francisella tularensis* subsp. novicida, *Francisella philomiragia*, and a panel of other possibly related bacteria, including *Brucella* spp., *Yersinia* spp., *Escherichia coli*, and *Burkholderia* spp., was observed. The detection limit of the assay was 103 to 104 bacteria/ml. This sensitivity was achieved by solubilization of the LPS prior to the cELISA. In addition, a novel immunochromatographic membrane-based handheld assay (HHA) and a PCR, targeting sequences of the 17-kDa protein (TUL4) gene of *F. tularensis*, were used in this study. Compared to the cELISA, the sensitivity of the HHA was about 100 times lower and that of the PCR was about 10 times higher. All three techniques were successfully applied to detect *F. tularensis* in tissue samples of European brown hares (*Lepus europaeus*). Whereas all infected samples were recognized by the cELISA, those with relatively low bacterial load were partially or not detected by PCR and HHA, probably due to inhibitors or lack of sensitivity. In conclusion, the HHA can be used as a very fast and simple approach to perform field diagnosis to obtain a first hint of an infection with *F. tularensis*, especially in emergent situations. In any suspect case, the diagnosis should be confirmed by more sensitive techniques, such as the cELISA and PCR.

Within the genus *Francisella* there are two known species, *Francisella tularensis* and *Francisella philomiragia*, which have a 16S rRNA gene sequence similarity of more than 98% (6). *F. tularensis*, a gram-negative, small (0.2 to 0.7 by 0.2 μm) facultative intracellular bacterium, is distributed on all continents of the northern hemisphere. At least four subspecies of *F. tularensis* are known. *Francisella tularensis* subsp. *tularensis* (or type A; predominantly found in North America), *Francisella tularensis* subsp. *holarctica*, and *Francisella tularensis* subsp. *media-asiaica* (both referred to as type B) cause the zoonotic disease tularemia in humans and animals (5, 11, 17). Only a few cases of human tularemia-like disease caused by the fourth subspecies, *Francisella tularensis* subsp. *novicida*, have been described (10). Depending on the site of entry and the predominant infectious or pathogenic process, tularemia can clinically manifest as an ulceroglandular, glandular, pulmonary, typhoidal, or ocular form. High fever and enlarged lymph nodes are predominant symptoms.

More than 250 different animal species can be infected by *F. tularensis*. Small rodents are the main natural hosts (reservoir), and blood-sucking ectoparasites are the most important vectors. In addition, the bacteria are quite stable in the environment under humidified and cold conditions. Humans can acquire the infection through the bites of infected arthropods or after contact with infected animals or contaminated water, food, dust, and aerosols (15, 17).

The detection of specific antibodies in serum is the most widely used approach for routine laboratory diagnosis of tularemia. However, antibodies to *F. tularensis* are not detected until 2 weeks or more after infection (2, 12). An early identification of the pathogen is important, as the course and the outcome of the disease is mainly dependent on early and adequate antibiotic treatment. The classical methods for identification of *F. tularensis* are the isolation of the pathogen by cultivation with subsequent identification by agglutination or immunofluorescence assay. These methods are time-consuming and require intensive handling of the infectious agent. Antigen detection in urine and RNA hybridization of wound specimens have also been used as diagnostic methods (7, 16). More recently, PCR has been applied for the detection of *F. tularensis* (6, 13, 18).

In this study we describe a highly sensitive capture enzyme-linked immunosorbent assay (cELISA) based on monoclonal antibodies (MAbs) and compare it with an immunochromatographic membrane-based handheld assay (HHA) and a PCR for detection of *F. tularensis* in naturally infected hare tissues.

**MATERIALS AND METHODS**

**Bacteria.** The *F. tularensis* live vaccine strain (LVS; ATCC 29864) was cultivated on cecrine-hear agar (Difco, Augsburg, Germany) supplemented with 10% sheep blood. The bacterial isolates from European brown hares (*Lepus europaeus*) were obtained by direct cultivation on cecrine-hear agar as described previously (9). The bacteria were identified as *F. tularensis* by specific antisera. The classification of these isolates as *F. tularensis* subsp. *holarctica* was done on the basis of resistance to erythromycin and acid formation from glucose.
and maltose, as well as by the absence of utilization of glycerol and saccharose (4, 14). The sources of other bacteria used in this study are listed in Table 1. All bacterial isolates used were inactivated by 0.5 to 1.0% formalin at room temperature for 20 min, washed in phosphate-buffered saline (PBS; pH 7.4) and adjusted to an optical density at 560 nm (OD560) of 1.0. In the case of F. tularensis, this OD corresponded to approximately 10°FU/ml (data not shown).

### Tissue samples
Spleen, lung, and kidney specimens from European brown hares found dead or ill during an epidemic from F. tularensis holarctica (Heraeus, Hanau, Germany) and was extensively dialyzed against PBS. The MAb Ft-27 of IgM isotype was concentrated to 2 mg/ml by stirring it in a 3% solution of sodium bicarbonate (20% [wt/vol]), and 50 μl of SDS (20% [wt/vol]) was added. After dialysis, the solution was centrifuged for 20 min at 4°C, and the supernatant was mixed with 50 μl of SDS (20% [wt/vol]) and 50 μl of proteinase K (1 mg/ml) and incubated at 56°C for 3 to 5 h. After two phenol extractions followed by two 5× washes with 70% ethanol, the DNA was eluted with 30 μl of diethylpyrocarbonate (TE) buffer (10 mM Tris, 1 mM EDTA, pH 8.0, 0.1% sodium azide). Two hundred microliters of the sample was pipetted into the starting chamber of the device, where specific gold-labeled MABs were added, and reacted with the F. tularensis antigen. Complexed and free antibodies migrated through a nitrocellulose membrane by capillary forces. The detection window contained a line of coated specific anti-F. tularensis rabbit antibody and a line of coated anti-mouse immunoglobulin. The result was visually determined as a relative intensity of the specific line after 15 min, when the control line was completely developed.

### Preparition of DNA and PCR
In order to isolate DNA, two different protocols for treatment of tissue and spiked serum samples prior to PCR were assessed. For method A, a 400-μl aliquot of ground tissue slurry or of spiked serum was mixed with 50 μl of TEN buffer (100 mM Tris, 10 mM EDTA, 1 mM NaCl, pH 8.0), 20 μl of SDS (20% [wt/vol]), and 50 μl of proteinase K (1 mg/ml) and incubated at 56°C for 3 to 5 h. After two phenol extractions followed by two 5× washes with 70% ethanol, the DNA was eluted with 30 μl of diethylpyrocarbonate (TE) buffer (10 mM Tris, 1 mM EDTA, pH 8.0, 0.1% sodium azide). Two hundred microliters of the sample was pipetted into the starting chamber of the device, where specific gold-labeled MABs were added, and reacted with the F. tularensis antigen. Complexed and free antibodies migrated through a nitrocellulose membrane by capillary forces. The detection window contained a line of coated specific anti-F. tularensis rabbit antibody and a line of coated anti-mouse immunoglobulin. The result was visually determined as a relative intensity of the specific line after 15 min, when the control line was completely developed.

| Species | Source or strain | No. of strains | Reactivity (bacteria/ml) |
|---------|-----------------|---------------|-------------------------|
| F. tularensis subsp. holarctica | ATCC 29684 (LVS) | 1 | <10⁴ |
| | WIS 140, 202 | 2 | <10⁴ |
| | BTB | 8 | <10⁴ |
| F. tularensis subsp. tularensis | ATCC 6223 | 1 | <10⁴ |
| | FOA | 12 | <10⁴ |
| F. tularensis subsp. novicida | ATCC 15482 | 1 | >10⁷ |
| | WIS 223 | 3 | >10⁷ |
| F. philomiragia | ATCC 25015, 25016, 25017 | 3 | >10⁷ |
| Brucella melitensis | WIS 165, 166, 167 | 4 | >10⁷ |
| Brucella abortus | ATCC 23448; WIS 181, 182 | 3 | >10⁷ |
| Brucella suis | ATCC 23444, 23 445, 23446, 23447 | 4 | >10⁷ |
| Brucella canis | WIS 51 | 1 | >10⁷ |
| Brucella neotomae | WIS 225 | 1 | >10⁷ |
| Yersinia pestis | ATCC 19428 | 1 | >10⁷ |
| Yersinia pseudotuberculosis | WIS 171, 175, 179 | 3 | >10⁷ |
| Burkholderia cepacia | DSM P 154 | 1 | >10⁷ |
| Burkholderia pseudomallei | WIS 203 | 1 | >10⁷ |
| Burkholderia mallei | WIS 204 | 1 | >10⁷ |
| Klebsiella ozaenae | IMB B 246, 248 | 2 | >10⁷ |
| Klebsiella pneumoniae | IMB B 235, 245 | 2 | >10⁷ |
| E. coli | O:26; O:91; O:111; O:118 | IMB B239, 237, 238, 241 | 1 | >10⁷ |
| | O:157 | IMB B240, 243, 244; ATCC 11775 | 1 | >10⁷ |
| Staphylococcus aureus | WIS B115 | 1 | >10⁷ |

a Bacteria were adjusted to an OD560 of 1.0 (approximately 10° bacteria/ml), and LPS was solubilized as described in Materials and Methods. Dilutions of the antigen corresponding to 10 to 10° bacteria/ml were studied for reactivity in cELISA. An OD560 >1 of 1 in cELISA was considered positive. WIS, Federal Armed Forces Institute for Protection Technologies and NBC Protection, Munster, Germany; BTB, Federal Institute for Control of Infectious Diseases of Animals, Mödling, Austria; FOA, National Defence Research Establishment, Umea, Sweden; DSM, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; IMB, Institute of Microbiology, Federal Armed Forces Medical Academy, Munich, Germany.
extractions with chloroform-isoamyl alcohol (24:1), the DNA was ethanol precipitated. The pellet was washed twice with 70% ethanol and resuspended in 20 ml of water. Method B was applied for spiked serum samples only. Lysis buffer (50 mM Tris, 1 mM EDTA, 0.5% Tween 20 [pH 8.0]; 190 ml) and 10 ml of proteinase K (1 mg/ml) were added to 200 ml of spiked serum. Incubation at 56°C for 3 h was followed by 10 min at 95°C to inactivate the proteinase K. The PCR was performed as described by Sjo¨stedt (18) with 1 ml of DNA template prepared by either method A or B and 40 cycles of amplification with primers specific for sequences of the gene encoding a 17-kDa lipoprotein, TUL 4 (13). After amplification, 5 ml of each reaction mixture was analyzed on a 2% agarose gel.

RESULTS AND DISCUSSION

Development and evaluation of the cELISA. Two specific murine MAbs to F. tularensis (8), Ft-11 (IgG1) and Ft-27 (IgM), were utilized for the cELISA. Both MAbs reacted strongly with the LPS of F. tularensis as shown by Western blot analysis (Fig. 1). The reactivity of the MAbs could be blocked by free LPS of F. tularensis in a concentration-dependent fash-

ion, indicating the specificity of the binding. A key step in the configuration of the assay was the extraction of the LPS from the bacteria. Compared to the crude bacterial preparation, a 10-fold increase in sensitivity was achieved with cELISA (Fig. 2). Furthermore, the handling of infectious material was reduced by this first step of the assay, as the LPS extraction was accompanied by inactivation of the bacteria. This procedure was the method of choice, as it also allowed the lysis of eukaryotic cells, which is important for the availability of intracellularly localized bacteria.

The sensitivity of the cELISA was proven with 26 strains of F. tularensis, including 3 reference strains obtained from the American Type Culture Collection (ATCC), 8 strains of F. tularensis subsp. holarctica isolated from European brown hares, and 13 strains of F. tularensis subsp. tularensis (type A [Table 1]). All tested isolates of F. tularensis except F. tularensis subsp. novicida were recognized. This underlines the unique LPS composition of both F. tularensis subsp. holarctica and F. tularensis subsp. tularensis, which is different from that of F. tularensis subsp. novicida (3, 19). No cross-reactivity with other tested bacteria, including Brucella spp., E. coli serotypes O:118 and O:157, and Yersinia spp., was observed. Therefore, a highly sensitive and specific cELISA for the diagnosis of tularemia was developed.

Detection limits of cELISA, HHA, and PCR. In order to compare the sensitivities of the different assays used in this study, serial dilutions of F. tularensis LVS were prepared in PBS and in human sera from healthy donors, representing biological fluids which could contain inhibiting factors for the assays. The detection limit of the cELISA was 103 bacteria/ml in PBS and 104 bacteria/ml in human serum (Fig. 3). This represents detecting 102 and 103 bacteria/100 ml of sample. Further evaluation of the assay has revealed that the bacteria and the LPS antigen, respectively, could be detected in spiked human urine, sputum, and stool with nearly the same sensitivity (data not shown).

Using the same samples, the detection limit of the immunochromatographic assay was 106 and 108 bacteria per ml of PBS or human serum, respectively (Fig. 3). This represents detecting 105 and 107 bacteria/100 ml of sample. Further evaluation of the assay has revealed that the bacteria and the LPS antigen, respectively, could be detected in spiked human urine, sputum, and stool with nearly the same sensitivity (data not shown).

FIG. 1. Western blot of LPS-specific MAbs to F. tularensis. Whole bacterial antigen of F. tularensis was separated by SDS-polyacrylamide gel electrophoresis with 4 to 20% Tris-glycine gel and blotted onto a nitrocellulose membrane. The MAbs Ft-27 and Ft-11 were used at 5 µg/ml in PBS (A). For specificity control, the MAbs were preincubated with extracted LPS from 104 (B), 106 (C), and 108 (D) bacteria/ml (lane E, molecular mass markers).

FIG. 2. Comparison of detection of whole bacteria and extracted LPS of F. tularensis by cELISA. Serial dilutions of whole bacteria and extracted LPS antigen of F. tularensis LVS from spiked PBS and pooled human sera were tested in the LPS-specific cELISA. The results are given as OD450.
was completed within 15 min, specimens containing a high bacterial load produced a positive signal in less than 1 min. A longer incubation time did not increase the sensitivity of the assay. This assay is principally applicable to field diagnostic use due to its fast and easy performance.

In comparison, $10^2$ bacteria/ml of PBS and $10^3$ to $10^4$ bacteria/ml of spiked serum, respectively, could be detected with the TUL4-specific PCR (Fig. 3).

Detection of F. tularensis in tissue specimens. For further evaluation, the assays were applied to detect and quantify F. tularensis in tissue samples from dead or sick and killed European brown hares (Table 2). The bacteria were isolated by direct cultivation or were detected by immunofluorescence from 14 samples from hares (no. 3 to 16) and were classified as F. tularensis subsp. holarctica. In one case (no. 17) tularemia was diagnosed serologically by a slide agglutination assay. In two cases (no. 1 and 2) the bacteriological and serological studies remained negative. Eleven of the animals (no. 3 to 13) showed pathomorphologic signs of an acute septicemic tularemia with enlarged spleen. Pneumonia, pericarditis, or nephritis was observed in four animals (no. 14 to 17) and was considered to represent chronic forms of the disease. In 15 cases, spleen tissues were studied; in two cases, kidney or lung, respectively, was available.

Two samples (no. 1 and 2) found to be negative after cultivation or by the immunofluorescence technique were also found to be negative in all three assays evaluated in this study. Fifteen of 15 tissue samples from infected hares were also identified as positive in cELISA, revealing a 100% agreement with the first diagnosis. Eleven of 15 samples were found to be positive with the HHA, and 13 of 15 samples were detected by PCR. The bacterial load, calculated from the standard curve of LVS created by the cELISA, had a broad range, between $10^6$ bacteria and $10^5$ bacteria/ml of suspended tissue. Negative results with the HHA and PCR were obtained for tissue samples with a low bacterial load from hares suffering from a chronic form of the disease. The endpoint titers for the cELISA and PCR were quite similar, whereas those of the HHA were significantly lower. The reason for the high sensitivity of the cELISA might be the high stability of LPS, as has been previously experienced with long-term storage of LPS and from studies of autolysated tissues (data not shown).

In conclusion, the HHA could be used as a field approach for the diagnosis of tularemia in emergent situations due to its simple application. However, because of its relatively low sensitivity, negative results obtained with this assay do not allow the exclusion of tularemia. Therefore, each suspect sample should be investigated by more sensitive laboratory methods, such as the highly sensitive cELISA and PCR. Conventional diagnostic tools, such as cultivation, immunofluorescence, and

table 2. Detection of F. tularensis in tissue samples of European brown hares

| No. | Diagnosis | Course   | Tissue    | cELISA (10^6 bact/ml) | cELISA titer | HHA titer | PCR titer |
|-----|-----------|----------|-----------|-----------------------|--------------|-----------|-----------|
| 1   | Neg       | Control  | Spleen    | Neg                   | Neg          | Neg       | Neg       |
| 2   | Neg       | Control  | Spleen    | Neg                   | Neg          | Neg$n^5$ | Neg$n^5$ |
| 3   | Cult.     | Acute-sept. | Spleen    | 135.0                 | 3.0 x 10^-5  | 10^-3     | 10^-2     |
| 4   | Cult.     | Acute-sept. | Spleen    | 2.9                   | 3.0 x 10^-3  | 10^-4     | 10^-2     |
| 5   | Cult.     | Acute-sept. | Lung      | 3.0                   | 5.0 x 10^-3  | 10^-2     | 10^-6     |
| 6   | Cult.     | Acute-sept. | Spleen    | 140.3                 | 1.6 x 10^-5  | 10^-4     | 10^-6     |
| 7   | Cult.     | Acute-sept. | Spleen    | 3.9                   | 5.0 x 10^-3  | 10^-2     | 10^-5     |
| 8   | Cult.     | Acute-sept. | Spleen    | 66.5                  | 1.0 x 10^-4  | 10^-3     | 10^-5     |
| 9   | Cult.     | Acute-sept. | Spleen    | 55.2                  | 1.0 x 10^-4  | 10^-3     | 10^-5     |
| 10  | Cult.     | Acute-sept. | Spleen    | 57.6                  | 8.0 x 10^-4  | 10^-3     | 10^-7     |
| 11  | IFA       | Acute-sept. | Spleen    | 1.1                   | 3.0 x 10^-3  | 10^-4     | 10^-3     |
| 12  | IFA       | Acute-sept. | Spleen    | 3.0                   | 1.0 x 10^-3  | 10^-2     | 10^-4     |
| 13  | IFA       | Acute-sept. | Spleen    | 7.0                   | 1.0 x 10^-4  | 10^-2     | 10^-3     |
| 14  | Cult.     | Chron.    | Spleen    | 0.1                   | 1.0 x 10^-2  | Neg       | Neg       |
| 15  | Cult.     | Chron.    | Kidney    | 0.3                   | 1.6 x 10^-2  | Neg       | Neg       |
| 16  | IFA       | Chron.    | Spleen    | 0.3                   | 3.0 x 10^-2  | Neg       | Neg       |
| 17  | Serol.    | Chron.    | Spleen    | 0.1                   | 3.0 x 10^-2  | Neg       | Neg       |

*a Diagnosis of tularemia was made by culturing bacteria (cult.), by immunofluorescence assay (IFA), or by antibody detection in serum (serol.). Depending on the pathomorphological picture, acute-septicemic (acute-sept.) and chronic (chron.) courses of the infection were identified. The number of bacteria per milliliter (bact/ml) was calculated from the standard curve of the cELISA. The results of the HHA and the PCR were obtained by registration of the last visible band in the assays. Neg, negative.
agglutination assays, are less sensitive, more time-consuming, and hazardous.

ACKNOWLEDGMENTS

As listed in Table 2, bacteria were kindly provided by A. Sjöstedt (FOA, Umea, Sweden) and B. Niederwöhrmeier (WIS, Munster, Germany). We also thank Gudrun Zoller, Mandy Macholeth, Ulli M. Hohenester, and Rudi Kühn for excellent technical assistance, as well as Gale Brightwell and David Pulford (DERA Porton Down, United Kingdom) for reviewing the English language.

REFERENCES

1. Burans, J., A. Keleher, T. O'Brien, J. Hager-Aldrich, A. Plummer, and C. Morgan. 1996. Rapid method for the diagnosis of Bacillus anthracis infection in clinical samples using a hand-held assay. Salisbury Med. Bull. Special Suppl. 87:36–37.
2. Carlsson, H. E., A. A. Lindberg, G. Lindberg, B. Hederstedt, K. A. Karlsson, and B. O. Agell. 1979. Enzyme-linked immunosorbent assay for immunological diagnosis of human tularemia. J. Clin. Microbiol. 10:615–621.
3. Cowley, S. C., S. V. Myltseva, and F. E. Nano. 1996. Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol. 20:867–874.
4. Downs, C. M., and G. C. Bond. 1935. Studies on the cultural characterization of Pasteurella tularensis. J. Bacteriol. 30:485–490.
5. Evans, M. E., D. W. Gregory, W. Schaffner, and Z. A. McGee. 1985. Tularemia. A 30-year experience with 88 cases. Medicine 64:251–269.
6. Forsman, M., G. Sandström, and A. Sjöstedt. 1994. Analysis of 16S rDNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int. J. Syst. Bacteriol. 44:38–46.
7. Forsman, M., K. Knoppa, A. Sjöstedt, and A. Tärnvik. 1990. Use of RNA hybridization in the diagnosis of a case of ulceroglandular tularemia. Eur. J. Microbiol. Infect. Dis. 9:784–785.
8. Greiser-Wilke, I., C. Soine, and V. Moenning. 1989. Monoclonal antibodies reacting specifically with Francisella sp. J. Vet. Med. 36:593–600.
9. Hofer, E., H. Schildorfer, J. Flatscher, and M. Müllner. 1997. Detection of tularemia in European brown hares (Lepus europaeus) in Austria. Wien. Tierärztl. Monatsschr. 84:301–306.
10. Hollis, D. G., R. E. Weaver, A. G. Steigerwalt, J. D. Wenger, C. W. Moss, and D. J. Brenner. 1989. Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J. Clin. Microbiol. 27:1601–1608.
11. Hornick, R. B., and H. T. Eigelsbach. 1966. Aerogenic immunization of man with live tularemia vaccine. Bacteriol. Rev. 30:532–538.
12. Koskela, P., and A. Salminen. 1985. Humoral immunity against Francisella tularensis after natural infection. J. Clin. Microbiol. 22:973–979.
13. Long, G. W., J. J. Oprandy, R. R. Narayanan, A. H. Fortier, K. R. Portier, and C. A. Nacy. 1993. Detection of Francisella tularensis in blood by polymerase chain reaction. J. Clin. Microbiol. 31:152–154.
14. Olsufjev, N. G., and I. S. Meshcheryakova. 1983. Subspecific taxonomy of Francisella tularensis in blood by polymerase chain reaction. J. Clin. Microbiol. 31:715–724.
15. Olsufjev, N. G. 1974. Tularemia. Presented at the WHO Inter-regional traveling seminar on natural foci of zoonoses. Moscow, USSR.
16. Sandström, G. E., H. Wolf-Watz, and A. Tärnvik. 1986. Duct ELISA for detection of bacteria in fluid samples. J. Microbiol. Methods 5:971–979.
17. Sandström, G. E. 1994. The tularemia vaccine. J. Chem. Tech. Biotechnol. 59:315–320.
18. Sjöstedt, A., U. Eriksson, L. Berglund, and A. Tärnvik. 1997. Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J. Clin. Microbiol. 35:1045–1048.
19. Vinogradov, E. V., A. S. Shashkov, V. A. Knirel, N. K. Kochetkov, N. V. Tochlamysheva, S. F. Averin, O. V. Goncharova, and V. S. Khlebnikov. 1991. Structure of O-antigen of Francisella tularensis strain 15. Carbohydr. Res. 214:289–297.