FINITE LIFETIME EIGENFUNCTIONS OF COUPLED SYSTEMS OF HARMONIC OSCILLATORS

L. BOULTON1, S.A.M. MARCANTOGNINI2 AND M.D. MORÁN3

Abstract. We consider a Hermite-type basis for which the eigenvalue problem associated to the operator $H_{A,B} := B(-\partial^2_x) + Ax^2$ acting on $L^2(\mathbb{R}; \mathbb{C}^2)$ becomes a three-terms recurrence. Here A and B are 2×2 constant positive definite matrices. Our main result provides an explicit characterization of the eigenvectors of $H_{A,B}$ that lie in the span of the first four elements of this basis when $AB \neq BA$.

1. Introduction

It is well known that the spectrum of the harmonic oscillator Hamiltonian
\[
H_\alpha := -\partial_x^2 + \alpha^2 x^2, \quad \alpha > 0,
\]
acting on $L^2(\mathbb{R})$ consists of the non-degenerate eigenvalues \(\{\alpha(2n + 1)\}_{n=0}^\infty\) with corresponding normalized eigenfunctions
\[
\phi_n^\alpha(x) = \frac{\alpha^{1/4} h_n(\alpha^{1/2} x) e^{-\alpha x^2/2}}{\sqrt{2^n n! \sqrt{\pi}}},
\]
where $h_n(x) := (-1)^n e^{x^2} \partial_x^n [e^{-x^2}]$ is the n-th Hermite polynomial. The present paper is devoted to studying the spectrum of a matrix version of H_α, the operator
\[
H_{A,B} := B(-\partial_x^2) + Ax^2,
\]
acting on $L^2(\mathbb{R}; \mathbb{C}^2)$, where A and B are two 2×2 constant positive definite matrices.

In contrast to the scalar situation, the spectral analysis of $H_{A,B}$ is far more involved due to the non-commutativity of the coefficients. If $AB = BA$, it is not difficult to find the eigenvalues and eigenfunctions of $H_{A,B}$ from those of H_α. On the other hand, when $AB \neq BA$, the
eigenvalues and eigenfunctions of $H_{A,B}$ are connected to those of H_α in a highly non-trivial manner (see Theorem 3 below).

Our recent interest in describing spectral properties of operators such as $H_{A,B}$ arises from two sources. In a series of recent works, Parmeggiani and Wakayama, cf. [4], [5] and [6], characterize the spectrum of the operator $K_{\tilde{A},\tilde{B}} := \tilde{A}(-\partial_x^2 + x^2) + \tilde{B}(2x\partial_x + x^2)$ acting on $L^2(\mathbb{R}; \mathbb{C}^2)$, assuming that \tilde{A} is definite positive and $\tilde{B} = -\tilde{B}'$. Although the two operators are related, it does not seem possible to obtain the eigenvalues of $H_{A,B}$ from those of $K_{\tilde{A},\tilde{B}}$. In [5] and [6] the eigenfunctions of $K_{\tilde{A},\tilde{B}}$ are found in terms of a twisted Hermite-type basis of $L^2(\mathbb{R}; \mathbb{C}^2)$. In this basis the eigenvalue problem associated to $K_{\tilde{A},\tilde{B}}$ becomes a three-term recurrence. The strategy presented below for analyzing the spectrum of $H_{A,B}$ will be similar.

Our second motivation is heuristic. It is known that the scalar harmonic oscillator, H_α, achieves the optimal value for the constant in the Lieb-Thirring inequalities with power $\sigma \geq 3/2$, cf. [2]. It would be of great interest finding Hamiltonians with similar properties for Lieb-Thirring-type inequalities for magnetic Schrödinger and Pauli operators, cf. [1], [2] and [3]. Due to their close connection with the harmonic oscillator, both $K_{\tilde{A},\tilde{B}}$ and the presently discussed $H_{A,B}$ are strong candidates for further investigations in this direction.

The plan of the paper is as follows. Section 2 is devoted to describing elementary facts about $H_{A,B}$. In section 3 we consider a basis for which the eigenvalue problem associated to $H_{A,B}$ is expressed as a three-term recurrence. The main results are to be found in section 4 where we establish necessary and sufficient conditions, given explicitly in terms of the entries of A and B, for an eigenfunction of $H_{A,B}$ to be the linear combination of the first four elements of this basis.

2. Elementary properties of $H_{A,B}$

We define $H_{A,B}$ rigorously as the self-adjoint operator whose domain, denoted below by \mathcal{D}, is the set of all

$$
\begin{pmatrix}
\phi \\
\psi
\end{pmatrix} \in L^2(\mathbb{R}; \mathbb{C}^2)
$$

such that

$$
\phi, \psi \in H^2(\mathbb{R}) \cap \left\{ f \in L^2(\mathbb{R}) : \int |x^2 f(x)|^2 < \infty \right\} = H^2(\mathbb{R}) \cap \widehat{H}^2(\mathbb{R}),
$$
where $H^2(\mathbb{R})$ denotes the Sobolev space of index (2,2) and “\(\hat{\cdot}\)” denotes Fourier transform. Since
\[
\langle H_{A,B} \left(\phi, \psi \right), \left(\phi, \psi \right) \rangle = \int \left[B \left(\phi', \psi' \right) \cdot \left(\phi', \psi' \right) + A \left(x\phi, x\psi \right) \cdot \left(x\phi, x\psi \right) \right] \, dx \geq 0,
\]

$H_{A,B}$ is a symmetric operator. It is well known (cf. [7]) that if the domain of H_α is chosen to be $H^2(\mathbb{R}) \cap \hat{H}^2(\mathbb{R})$, then H_α is self-adjoint, non-negative and $S(\mathbb{R})$, the Schwartz space, is a core for H_α. Thus $H_{A,B}$ with domain D is a self-adjoint non-negative operator with core $S(\mathbb{R}; \mathbb{C}^2)$. Indeed, these properties are obvious when A is a diagonal non-negative matrix and $B = Id$, the identity matrix. The general case follows by considering the factorization
\[
H_{A,B} = B^{1/2} E^* H_{C,Id} E B^{1/2},
\]
where $B^{-1/2} A B^{-1/2} = E^* C E$ is the Jordan diagonalization of the former matrix, and by using the fact that D is invariant under the action of constant matrices.

Lemma 1. The spectrum of $H_{A,B}$ consists exclusively of isolated eigenvalues of finite multiplicity whose only accumulation point is $+\infty$. Moreover, if λ_n denotes the n-th eigenvalue of this operator counting multiplicity, then
\[
a_1^{1/2} b_1^{1/2} (2n + 1) \leq \lambda_{2n+1} \leq \lambda_{2n+2} \leq a_2^{1/2} b_2^{1/2} (2n + 1),
\]
where $0 < a_1 \leq a_2$ and $0 < b_1 \leq b_2$, are the eigenvalues of A and B, respectively.

Proof. It reduces to showing that
\[
\lambda_n(H_{A_1,B_1}) \leq \lambda_n(H_{A,B}) \leq \lambda_n(H_{A_2,B_2}),
\]
where $A_j = a_j(\text{Id})$ and $B_j = b_j(\text{Id})$. This follows directly from the min-max principle (cf. [8]), the estimates
\[
0 < \begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix} \leq A \leq \begin{pmatrix} a_2 & 0 \\ 0 & a_2 \end{pmatrix} \quad \text{and} \quad 0 < \begin{pmatrix} b_1 & 0 \\ 0 & b_1 \end{pmatrix} \leq B \leq \begin{pmatrix} b_2 & 0 \\ 0 & b_2 \end{pmatrix},
\]
and [2].

The above universal bound is not sharp in general and for most pairs (A, B), $\lambda_{2n+1} \neq \lambda_{2n+2}$.

As we mentioned earlier, it is not difficult to compute the eigenvalues and eigenfunctions of $H_{A,B}$ when A and B commute. Indeed $AB = BA$ if, and only if, A and B have one (and hence both) eigenvectors in common. Let $w_j \neq 0$ be such that $Aw_j = a_j w_j$ and $Bw_j = b_j w_j$,
for $j = 1, 2$. Let $\phi^\alpha_j(x)$ be, as in (14), the eigenfunctions of H_α. Let $\beta_j = \sqrt{a_j/b_j} > 0$. Then

$$H_{A,B}w_j\phi^\beta_n(x) = (-b_j\partial_x^2 + a_jx^2)w_j\phi^\beta_n(x) = b_j(-\partial_x^2 + (a_j/b_j)x^2)w_j\phi^\beta_n(x) = b_j^{1/2}a_j^{1/2}(2n + 1)w_j\phi^\beta_n(x).$$

By choosing $\|w_j\| = 1$, the family $\{w_j\phi^\beta_n(x) : j = 1, 2; n = 0, 1, \ldots \}$ is an orthonormal basis of $L^2(\mathbb{R}; \mathbb{C}^2)$, hence

$$\text{Spec } H_{A,B} = \{b_j^{1/2}a_j^{1/2}(2n + 1) : j = 1, 2; n = 0, 1, \ldots \}.$$

The analysis below will show that finding the eigenvalues and eigenfunctions of $H_{A,B}$ whenever $AB \neq BA$ is by no means of the trivial nature as the above case.

3. Hermite expansion of the eigenfunctions in the non-commutative case

Without further mention, we will often suppress the sub-indices in operator expressions. The structure of $H_{A,B} \equiv H$ allows us to decompose $L^2(\mathbb{R}; \mathbb{C}^2)$ into two invariant subspaces where the eigenvalue problem can be studied independently. We perform this decomposition as follows. Given $\alpha > 0$, let

$$\mathcal{H}^\alpha_+ := \text{Span} \{vx^je^{-\alpha x^2/2} : v \in \mathbb{C}^2, j = 2k, k = 0, 1, \ldots \},$$

$$\mathcal{H}^\alpha_- := \text{Span} \{vx^je^{-\alpha x^2/2} : v \in \mathbb{C}^2, j = 2k + 1, k = 0, 1, \ldots \},$$

and denote by $H^\pm = H|(\mathcal{D} \cap \mathcal{H}^\alpha_\pm)$. Since \mathcal{H}^α_\pm are invariant under ∂_x^2, multiplication by x^2 and action of constant matrices, these spaces are also invariant under H. Hence $H^\pm : \mathcal{D} \cap \mathcal{H}^\alpha_\pm \to \mathcal{H}^\alpha_\pm$ are self-adjoint operators and

$$\text{Spec } H = \text{Spec } H^+ \cup \text{Spec } H^-.$$

Let

$$L = 2^{-1/2}(x + \partial_x) \quad \text{and} \quad L^* = 2^{-1/2}(x - \partial_x)$$

be the annihilation and creation operators for the scalar harmonic oscillator. Then

$$L\phi^1_0 = 0, \quad L\phi^1_n = n^{1/2}\phi^1_{n-1} \quad \text{and} \quad L^*\phi^1_n = (n + 1)^{1/2}\phi^1_{n+1}.$$

From these relations one can easily deduce the recurrent identities

$$2\alpha x^2\phi^\alpha_n = (n + 2)^{1/2}(n + 1)^{1/2}\phi^\alpha_{n+2} + (2n + 1)\phi^\alpha_n + n^{1/2}(n - 1)^{1/2}\phi^\alpha_{n-2},$$

$$2\alpha^{-1}\partial_x^2\phi^\alpha_n = (n + 2)^{1/2}(n + 1)^{1/2}\phi^\alpha_{n+2} - (2n + 1)\phi^\alpha_n + n^{1/2}(n - 1)^{1/2}\phi^\alpha_{n-2},$$
where, here and elsewhere, any quantity with negative sub-index is zero. Since \(\{ \phi_n^\alpha \}_{n=0}^\infty \) is an orthonormal basis for \(L^2(\mathbb{R}) \), we can expand any vector of \(L^2(\mathbb{R}; \mathbb{C}^2) \) via

\[
\begin{align*}
\begin{pmatrix} \phi \\ \psi \end{pmatrix} &= \sum_{n=0}^\infty v_n \phi_n^\alpha,
\end{align*}
\]

for a suitable unique sequence \((v_n) \in l^2(\mathbb{N}; \mathbb{C}^2) \). Moreover, denoting by \(N_\alpha := \alpha^{-1}A - \alpha B \) and \(M_\alpha := \alpha^{-1}A + \alpha B \),

\[
H \begin{pmatrix} \phi \\ \psi \end{pmatrix} = \left[(-\partial_x^2)B + x^2 A \right] \sum_{n=0}^\infty v_n \phi_n^\alpha
\]

\[
= \sum_{n=0}^\infty B v_n (-\partial_x^2) \phi_n^\alpha + A v_n x^2 \phi_n^\alpha
\]

\[
= \frac{1}{2} \sum_{n=0}^\infty (n+2)^{1/2} (n+1)^{1/2} N_\alpha v_n \phi_n^{\alpha+2} + (2n+1) M_\alpha v_n \phi_n^\alpha + n^{1/2} (n-1)^{1/2} N_\alpha v_n \phi_n^{\alpha-2}
\]

\[
= \frac{1}{2} \sum_{k=0}^\infty \left[k^{1/2} (k-1)^{1/2} N_\alpha v_{k-2} + (2k+1) M_\alpha v_k + (k+2)^{1/2} (k+1)^{1/2} N_\alpha v_{k+2} \right] \phi_k^\alpha.
\]

Thus \(2H^\pm \) are, respectively, similar to the block tri-diagonal matrices

\[
\begin{pmatrix}
S_0^\pm & T_1^\pm \\
T_1^\pm & S_1^\pm & T_2^\pm \\
& T_2^\pm & S_2^\pm & T_3^\pm \\
& & & & \ddots
\end{pmatrix}
\]

acting on \(l^2(\mathbb{N}; \mathbb{C}^2) \), where

\[
S_k^+ = (4k+1) M_\alpha, \quad T_k^+ = (2k)^{1/2} (2k-1)^{1/2} N_\alpha;
\]

\[
S_k^- = (4k+3) M_\alpha \quad \text{and} \quad T_k^- = (2k)^{1/2} (2k+1)^{1/2} N_\alpha.
\]

In order to reduce the amount of notation in our subsequent discussion, we consider \(H_{A,B} \) in canonical form as follows. If \(0 \leq b_1 \leq b_2 \) are the eigenvalues of \(B \), let \(U^* (\text{diag}[b_1, b_2]) U \) be the diagonalization of \(B \), and set \(\tilde{A} := b_1^{-1} U A U^* \) and \(\tilde{B} := \text{diag}[1, b_2/b_1] \). Then

\[
H_{A,B} = b_1 U^* H_{\tilde{A}, \tilde{B}} U
\]

where

\[
\tilde{A} = \begin{pmatrix} a & \xi \\ \xi & c \end{pmatrix} \quad \text{and} \quad \tilde{B} = \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix}.
\]
Here the positivity of A and B is equivalent to the conditions

$$b \geq 1, \quad a, c > 0 \quad \text{and} \quad 0 \leq |\xi|^2 < ac.$$

Furthermore notice that $AB = BA$ if, and only if, either $b = 1$ or $\xi = 0$. Hence, unless otherwise specified, we will consider without loss of generality that the pair (A, B) is always the pair (\tilde{A}, \tilde{B}) in (5).

By virtue of the tri-diagonal representation (4), it seems natural to expect that the Hermite series (3) may be a good candidate for expanding the eigenfunctions of H. Not to mention that it is the obvious extension of the scalar and commutative cases. In this respect, we may consider “finite lifetime” series expansions of eigenfunctions Φ of H,

$$\Phi = \sum_{n=0}^{k} v_n \phi_{\alpha(n)}$$

for suitable finite $k \in \mathbb{N} \cup \{0\}$, $\alpha(k) > 0$ and $v_n \in \mathbb{C}^2$. The results we present below show that, contrary to the above presumption, (3) is not such a good candidate for expanding Φ for small values of k. To be more precise, we show that for $k = 0, 1, 2, 3$, an expansion of type (6) is allowed only for a small sub-manifold of the region

$$R := \{(b, a, c, |\xi|) \in \mathbb{R}^4 : a, c > 0, b \geq 1, 0 \leq |\xi|^2 < ac\}$$

corresponding to all positive definite pairs (A, B).

We first discuss the cases $k = 0, 1$ and leave $k = 2, 3$ for the forthcoming section. The following result includes a family of test bases larger than the one considered in (6).

Lemma 2. Let $\phi_{\alpha_n}^\alpha(x)$ be the eigenfunctions of the scalar harmonic oscillator H_{α}. Then $H_{A,B}$ has an eigenfunction of the type $\Phi(x) = (\tilde{a}\phi_{\alpha_n}^\alpha(x), \tilde{b}\phi_{\beta_m}^\beta(x))^t$ where $\tilde{a}, \tilde{b} \in \mathbb{C}$, $\alpha, \beta > 0$ and $m, n \in \mathbb{N} \cup \{0\}$, if and only if $AB = BA$.

Proof. If $H\Phi = \lambda\Phi$, then

$$-\tilde{a}(\phi_{\alpha_n}^\alpha)'' + ax^2\tilde{a}\phi_{\alpha_n}^\alpha + \xi x^2\tilde{b}\phi_{\beta_m}^\beta - \lambda \tilde{a}\phi_{\alpha_n}^\alpha = 0,$$

$$-\tilde{b}(\phi_{\beta_m}^\beta)'' + cx^2\tilde{b}\phi_{\beta_m}^\beta + \overline{\xi} x^2\tilde{a}\phi_{\alpha_n}^\alpha - \lambda \tilde{b}\phi_{\beta_m}^\beta = 0.$$

If $\tilde{a} = 0$ or $\tilde{b} = 0$ in the above identities, necessarily $\xi = 0$ so $AB = BA$. Hence without loss of generality we can assume that $\tilde{a}\tilde{b} \neq 0$.

If $\alpha \neq \beta$, once again $\xi = 0$. Then we may suppose that $\alpha = \beta$. Since both left hand sides of the above identities are equal to $p(x) e^{-ax^2/2}$, where in both cases $p(x)$ is a polynomial of degree $2 + \max(m, n)$,
necessarily either \(\xi = 0 \) or \(m = n \). In the latter case, the above system is rewritten as

\[
\begin{align*}
-\tilde{a}(\phi_n^\alpha)'' + (a\tilde{a} + \xi\tilde{b})x^2 \phi_n^\alpha - \lambda\phi_n^\alpha &= 0, \\
-\tilde{b}(\phi_n^\alpha)'' + (\tilde{c}b + \xi\tilde{a})x^2 \phi_n^\alpha - \lambda\phi_n^\alpha &= 0.
\end{align*}
\]

Since \(\phi_n^\alpha \) is an eigenfunction of \(H_\alpha \) where \(\alpha > 0 \), necessarily \(\xi \in \mathbb{R} \).

Furthermore,

\[
a + \xi\tilde{b}/\tilde{a} = \alpha^2 = c/b + \xi\tilde{a}/(\tilde{b}) \quad \text{and} \quad a + \xi\tilde{b}/\tilde{a} = \lambda/(2n + 1) = bc + \xi\tilde{a}/\tilde{b}.
\]

Hence necessarily \(b = 1 \).

Since \(\mathcal{H}^\pm \) are invariant under the action of \(H \), and the even (resp. odd) terms in the series (6) belong to \(\mathcal{H}^+ \) (resp. \(\mathcal{H}^- \)), the above lemma ensures that \(\Phi = v_0\phi_0^\alpha + v_1\phi_1^\alpha \) is an eigenfunction of \(H \) if, and only if, \(A \) and \(B \) commute.

4. **Four-term expansion of eigenfunctions of** \(H_{A,B} \)

In this section we study necessary and sufficient conditions in order to guarantee that \(\Phi \in L^2(\mathbb{R}; \mathbb{C}^2) \), with finite lifetime expansion of the type (6) for \(k = 2 \) and 3, is an eigenfunction of \(H \) for suitable \(\alpha(k) > 0 \) when \(AB \neq BA \). In other words, assuming that \(\Phi \) satisfies the constraint

\[
\Phi = v_0\phi_0^\alpha + v_1\phi_1^\alpha + v_2\phi_2^\alpha + v_3\phi_3^\alpha,
\]

we aim to investigate conditions ensuring \(H\Phi = \lambda\Phi \).

Since

\[
v\phi_{2n}^\alpha \in \mathcal{H}^+_\alpha \quad \text{and} \quad v\phi_{2n+1}^\alpha \in \mathcal{H}^-_\alpha, \quad v \in \mathbb{C}^2
\]

for all \(n \in \mathbb{N} \cup \{0\} \), and the subspaces \(\mathcal{H}^\pm_\alpha \) are invariant under \(H \), we may consider the even and odd cases separately. To this end, let

\[
\Phi^+ = v_0\phi_0^\alpha + v_2\phi_2^\alpha \quad \text{and} \quad \Phi^- = v_1\phi_1^\alpha + v_3\phi_3^\alpha,
\]

\(\Phi^\pm \in \mathcal{H}^\pm \) respectively. Then our goal is to find necessary and sufficient conditions, given in terms of \((b, a, c, |\xi|) \in R \setminus \partial R \), ensuring that \(\Phi^\pm \) is an eigenfunction of \(H^\pm \). The following is our main result.

Theorem 3. Let

\[
B = \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} a & \xi \\ \xi & c \end{pmatrix},
\]

where \(b > 1, a, c > 0 \) and \(0 < |\xi|^2 < ac \). Let \(\beta > 0 \) be such that \(\beta^2 \) is an eigenvalue of \(B^{-1/2}AB^{-1/2} > 0 \). Let

\[
\lambda_{\text{even}} := \frac{5\beta(ab + c - 2\beta^2b)}{a + c - (b + 1)\beta^2} \quad \text{and} \quad \lambda_{\text{odd}} := \frac{7\beta(ab + c - 2\beta^2b)}{a + c - (b + 1)\beta^2}.
\]
Then

i) \(H^+ \) has an eigenfunction \(\Phi^+(x) \) of type (8) if and only if

\[
2\lambda_{\text{even}}[a + c - (b + 1)\beta^2] = 5\beta(\beta - \lambda_{\text{even}})(\lambda_{\text{even}} - \beta b).
\]

In this case \(\alpha = \beta \) and \(H^+\Phi^+ = \lambda_{\text{even}}\Phi^+ \). Furthermore, \(\lambda_{\text{even}} \) is an eigenvalue of \(M_\beta \).

ii) \(H^- \) has an eigenfunction \(\Phi^-(x) \) of type (8) if and only if

\[
6\lambda_{\text{odd}}[a + c - (b + 1)\beta^2] = 7\beta(3\beta - \lambda_{\text{odd}})(\lambda_{\text{odd}} - 3\beta b).
\]

In this case \(\alpha = \beta \) and \(H^-\Phi^- = \lambda_{\text{odd}}\Phi^- \). Furthermore \(\lambda_{\text{odd}} \) is an eigenvalue of \(3M_\beta \).

Notice that the conditions on \(a, b, c \) and \(\xi \) ensure that \(AB \neq BA \).

Proof. Put

\[
\Phi^+(x) = (u_0 + u_2x^2)e^{-\alpha x^2/2},
\]

for \(u_0, u_2 \neq 0 \). Since \(H^+ \) is similar to the tri-diagonal matrix (4), then

\[
H^+\Phi^+ = \lambda\Phi^+,
\]

if and only if

\[
S_0^+u_0 + T_1^+u_2 = \lambda u_0 \\
T_1^+u_0 + S_1^+u_2 = \lambda u_2 \\
T_2^+u_2 = 0.
\]

The latter equation implies that \(u_2 \in \ker N_\alpha \) and thus the first one implies that \(\lambda \) is an eigenvalue of \(S_0^+ = M_\alpha \) with associated eigenfunction \(u_0 \). A straightforward computation shows that the above system is equivalent to

\[
(A - \alpha^2B)u_2 = 0 \\
(A - \alpha^2B)u_0 + (5\alpha B - \lambda)u_2 = 0 \\
(\alpha B - \lambda)u_0 - 2Bu_2 = 0.
\]

The first equation holds if and only if \(\alpha = \beta \). Here

\[
\beta = +\sqrt{ab + c \pm \sqrt{(c - ab)^2 + 4|\xi|^2b}}/2b
\]

and \(u_2 = \left(\begin{array}{c} c - \beta^2 b \\ -\xi \end{array} \right) \). Notice that in this case

\[
0 = \det(A - \beta^2B) = (a - \beta^2)(c - \beta^2 b) - |\xi|^2.
\]

Let \(\tilde{u}_2 = \left(\begin{array}{c} a - \beta^2 \\ \xi \end{array} \right) \). Then \(\tilde{u}_2 \perp u_2 \) and

\[
(A - \beta^2B)\tilde{u}_2 = (a + c - (1 + b)\beta^2)\tilde{u}_2.
\]
Decompose

\[u_0 = \gamma u_2 + \tilde{\gamma} \tilde{u}_2, \]

for suitable \(\gamma, \tilde{\gamma} \in \mathbb{C} \). Then the second identity of (11) holds if and only if, \(\lambda = \lambda_{\text{even}} \) and

(13) \[\tilde{\gamma}(a + c - (1 + b)\beta^2)(a - \beta^2) = 5\beta(1 - b)|\xi|^2. \]

The third identity of (11) can be rewritten as the system

\[
\begin{align*}
\gamma(\beta - \lambda)(c - a^2b) + \tilde{\gamma}(\beta - \lambda)(a - \beta^2) &= 2(c - \beta^2b) \\
\gamma(\beta b - \lambda)(-\tilde{\xi}) + \tilde{\gamma}(\beta b - \lambda)(\tilde{\xi}) &= -2b\tilde{\xi}
\end{align*}
\]

in \(\gamma \) and \(\tilde{\gamma} \). By finding \(\tilde{\gamma} \) from this system (for instance by Newton’s method) and by equating to (13), a straightforward computation yields (9).

The proof of ii) is similar.

\[\square \]

Notice that there is a duality of signs in the definition of \(\beta \) (cf. (12)), so conditions (9) and (10) comprise two possibilities each. Let

\[\Omega_{\text{even}}^\pm := \{(b, a, c, |\xi|) \in R : (9) \text{ holds}\} \]

and

\[\Omega_{\text{odd}}^\pm := \{(b, a, c, |\xi|) \in R : (10) \text{ holds}\}, \]

where the sign for the super-index is chosen in concordance to the sign in expression (12). By computing the partial derivatives of both sides of identities (9) and (11), a straightforward but rather long computation which we omit in the present discussion, shows that these four regions are smooth 3-manifolds embedded in \(R \subset \mathbb{R}^4 \), see (7).

The fact that \(\Omega_{\text{even}}^\pm \) are non empty is consequence of the following observation. By fixing \(\tilde{b} > 1 \) and \(|\tilde{\xi}| > 0 \), and by putting \(c = ab \), condition (9) can be rewritten as

\[
0 = \tilde{b}^{-1}(\tilde{b} + 1)^2[2(ab + c - 2\beta^2\tilde{b}) - (\beta - \lambda)(\lambda - \tilde{b}\beta)]
\]

\[
= \pm \frac{4|\tilde{\xi}|}{\tilde{b}} (\tilde{b} + 1)^2 - \beta^2(1 - 9\tilde{b})(9 - \tilde{b}),
\]

where \(\beta^2 = a \pm |\tilde{\xi}|\tilde{b}^{-1/2} \). Then \((\tilde{b}, \tilde{a}, a\tilde{b}, |\tilde{\xi}|) \in \Omega_{\text{even}}^+ \) whenever

\[\tilde{a} = -\frac{|\tilde{\xi}|(5\tilde{b}^2 - 90\tilde{b} + 5)}{\tilde{b}^{1/2}(9\tilde{b}^2 - 82\tilde{b} + 9)} \]

for \(9 < \tilde{b} < 9 + 4\sqrt{5} \), and \((\tilde{b}, \tilde{a}, a\tilde{b}, |\tilde{\xi}|) \in \Omega_{\text{even}}^- \) whenever

\[\tilde{a} = \frac{|\tilde{\xi}|(5\tilde{b}^2 - 90\tilde{b} + 5)}{\tilde{b}^{1/2}(9\tilde{b}^2 - 82\tilde{b} + 9)} \]
for $1 < \tilde{b} < 9$ or $\tilde{b} > 9 + 4\sqrt{5}$. Furthermore, notice that if $(\tilde{b}, \tilde{a}, \tilde{a}, |\tilde{\xi}|) \in \Omega_{\text{even}}^\pm$, then

$$(\tilde{b}, r\tilde{a}, r\tilde{c}, r|\tilde{\xi}|) \in \Omega_{\text{even}}^\pm, \quad \text{for all} \quad r > 0.$$

This shows that Ω_{even}^\pm are non-empty, unbounded and the semi-axis \{$(b, 0, 0, 0) : b > 1$\} intersects $\partial \Omega_{\text{even}}^\pm$. All these properties also hold for Ω_{odd}^\pm.

Furthermore, \(\Omega_{\text{even}}^+ \cap \Omega_{\text{odd}}^+ = \emptyset\) and \(\Omega_{\text{even}}^- \cap \Omega_{\text{odd}}^- = \emptyset\).

Indeed, if (9) and (10) hold at the same time for the same tetrad $(b, a, c, |\xi|)$, then, according to Theorem 3, λ should be at the same time eigenvalue of M_β and $3M_\beta$ (\(\beta\) defined with the same sign). Obviously the latter is a contradiction. In figure 1 we reproduce the projections of these four regions, onto the hyper-plane $|\xi| = 1$. These picture suggest that $\Omega^+ \cap \Omega^- \neq \emptyset$.

Finally, we may comment on the issue of considering a more general basis for expanding the eigenfunctions of H. One might think that a natural candidate for generalizing (6) is the finite expansion

$$\Phi = \sum_{j=0}^{m} \left(a_j \varphi_\alpha^j \right) \left(b_j \varphi_\beta^j \right),$$

where a_j, b_j are complex number and $\alpha, \beta > 0$. We studied a particular case of this in Lemma 2. It turns out that if Φ is an eigenfunction of the above form, then either $\xi = 0$ or $\beta = \alpha$, so it should be as in (6). This can be easily proven by writing down the system for the eigenvalue
equation and considering the asymptotic behaviour of the identities as $x \to \infty$.

REFERENCES

[1] L. Erdős, J.P. Solovej “Magnetic Lieb-Thirring inequalities with optimal dependence on the field strength”. Preprint 2003, arXiv:math-ph/0306066.

[2] A. Laptev, T. Weidl, “Recent results on Lieb-Thirring inequality”, Université de Nantes. Exp. XX (2000) 1-14.

[3] A. Laptev, T. Weidl, “Sharp Lieb-Thirring inequalities in high dimensions”, Acta Math. 184 (2000) 87-111.

[4] A. Parmeggiani, M. Wakayama, “Oscillator representations and systems of ordinary differential equations”, Proc. Natl. Acad. Sci. USA 98 (2001) 26-30.

[5] A. Parmeggiani, M. Wakayama, “Non-commutative harmonic oscillators I”, Forum Math. 14 (2002) 538-604.

[6] A. Parmeggiani, M. Wakayama, “Non-commutative harmonic oscillators II”, Forum Math. 14 (2002) 609-690.

[7] M. Reed, B. Simon, Methods of modern mathematical physics, volume 2: self-adjointness, Academic press, New York, 1975.

[8] M. Reed, B. Simon, Methods of modern mathematical physics, volume 4: analysis of operators, Academic press, New York, 1978.

1LYONELL BOULTON
Department of Mathematics and Statistics,
University of Calgary,
2500 University Drive,
Calgary, AB, Canada T2N 1N4
email: lboulton@math.ucalgary.ca

2STEFANIA MARCANTOGNINI
Departamento de Matemáticas,
Instituto Venezolano de Investigaciones Científicas,
Apartado 21827,
Caracas, 1020A, Venezuela.
email: smarcant@ivic.ve

3MARÍA DOLORES MORÁN
Escuela de Matemáticas,
Facultad de Ciencias,
Universidad Central de Venezuela,
Apartado 20513,
Caracas, 1020A, Venezuela.
email: mmoran@euler.ciens.ucv.ve