RESEARCH ARTICLE

THE EFFECT OF THERMOCYCLING ON MARGINAL SEALING ABILITY OF MTA PLUS AND BIODENTINE WHEN USED AS ROOT-END FILLING MATERIALS

Deebah Choudhary
Assistant Professor, Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Sehora, Jammu, Jammu and Kashmir, India.

Manuscript Info

Abstract

**Background:** Marginal microleakage occurs when restorations are poorly adapted to the cavity walls which leads to penetration of bacteria, fluid and nutrient into the marginal gap.

**Aim:** The study aimed to evaluate the effect of thermocycling on marginal sealing ability of two root-end filling materials i.e. MTA Plus and Biodentine.

**Materials and Methods:** An in vitro study was conducted at Department of Conservative Dentistry and Endodontics in Institute of Dental Sciences (IDS), Jammu, Jammu and Kashmir, India. Forty extracted teeth with single root were decoronated maintaining a standardized length of 16mm. Biomechanical preparation and obturation was done for all the teeth. Samples were stored at 37°C and 100% humidity for seven days. Apical 3mm was resected and cavities were prepared which were randomly divided into two experimental groups with twenty samples each. The cavities were filled with MTA Plus in group I and Biodentine in group II. These groups were further divided into two subgroups of ten each (n=10). The second subgroup of both the groups did not receive any treatment and the first subgroup samples were subjected to 500 thermocycles in water bath at temperature ranges between 5°C and 55°C with a dwell time of 30 second. The samples were immersed in methylene blue dye and after through washing they were sectioned longitudinally. Examination was done under stereomicroscope to measure the depth of penetration.

**Statistical Analysis:** The data collected were put to statistical analysis by one-way ANOVA (analysis of variance) and post hoc tests.

**Results:** The average depth of dye penetration was least for Biodentine when thermocycling treatment was not given (0.13mm) and maximum value was depicted by MTA Plus when undergone thermal cycles (0.57mm). It is also noted that no significant difference is seen in Biodentine with or without artificial aging procedure.

**Conclusion:** Biodentine showed least amount of microleakage, thus a better sealing ability. Also there was little effect of thermocycling on microleakage of both the materials.
Introduction:-
Root canal treatment (RCT) is a non-invasive and a conservative mode of treating any endodontic disease. The main objective of any endodontic treatment is to create fluid tight seal to prevent failure of root canal treatment. Some periapical lesions require a surgical intervention which includes hard and soft tissue removal, exposure of root tip, periapical curettage, if required, root-end resection, and followed by retrograde filling. Other disorders which require surgical treatment are calcified canals, endodontic instrument separation, dilacerated root canal anatomy. A good apical seal prevents entry of microbes from periapical region to the root canal, thus increasing the longevity of the endodontic treatment. A good root-end filling material should have characteristics like radiopaque, non-absorbable, easy manipulation, non-toxic, easy adherence to the tooth structure and promote healing. Earlier the root-end filling materials used were amalgam, glass ionomer cements, Cavit, composite resin and Super ethoxy benzoic acid. With the advancement in dentistry, newer materials are emerging which has enhanced the quality of dental procedures. One of the material which has shown a success rate over other root-end filling materials is Mineral Trioxide Aggregate (MTA). MTA was developed in 1993 by Dr. Torabinejad for endodontic procedures like pulp capping, root-end filling, repair of perforation in furcation, apexification and obturation. Besides it so many clinical uses, MTA had many disadvantages like discoloration of the tooth, difficulty of handling, expensive, long setting time and comparatively lower compressive and flexural strengths.

In order to overcome these drawbacks of MTA, in 2012 MTA Plus (Avalon Biomed, Houston, Texas, United States) was marketed which was said to have a finer particle size and a shorter setting time than MTA. Another material which came into light was Biodentine (Septodont, Saint-Maur-Des-Fosses, France), which was developed in 2010 with better physical properties than MTA. Biodentine has said to have superior qualities than MTA like better handling properties, shorter setting time, early mineralization, biocompatibility, elastic modulus quite similar to dentine and greater bond strength.

Nearly all dental materials show some kind of dimensional changes on placement into the cavity. Marginal microleakage occurs when restorations are poorly adapted to the cavity walls which leads to penetration of bacteria, fluid and nutrient into the marginal gap. Microleakage is basically the clinically undetectable passage of bacteria, fluids, molecules or ions between a cavity wall and the restorative material applied to it. Microleakage has a major adverse effect on the tooth-restoration interface leading to total failure of the restoration. To study the relationship between marginal microleakage and sealing ability of the materials many in vitro and in vivo studies are being conducted. In order to simulate the clinical setting in vitro conditions, reliable techniques are being used to carry out to imitate thermal changes in the oral cavity during eating and drinking. According to International Standardization Organisation (ISO) a standard protocol should be followed to test the sealing ability of dental materials to the tooth structure. To stimulate the thermal changes in the oral cavity, a marginal microleakage assessment should be done by placing the samples for thermocycling in a water bath at 5°C and 55°C temperatures.

However, very few studies have been done in order to evaluate the effect of presence and absence of thermocycling on the microleakage and dentin bond failure of newer root-end filling materials. Therefore, this study aims at evaluating the effect of thermocycling on sealing ability of two root-end filling materials.

Materials and Methods:-

Study Samples
Forty extracted single-rooted human teeth were selected for the study. All the samples selected had the following features: mature apices, straight canal, absences of fractures/cracks, no signs of root resorption and no indication of canal calcification.

Sample Preparation
All the samples were thoroughly cleaned using ultrasonics to remove any kind of dental deposits over the surface. The teeth were decoronated to standardize the root length to 16 mm. Canal orifice was located and patency was obtained using a 10k file (Mani inc, Takenzawa, North of Tokyo, Japan). The samples were thoroughly irrigated with 5% sodium hypochlorite (5% Hyposol, PervestDenpro Ltd., Jammu, India). Root canal preparation was carried out using step-back technique and 40k file was used as master apical file. Canal was dried using absorbent paper points and obturation was done with gutta-percha and AH plus sealer (Dentsply, Konstanz, Germany). The canal orifice was sealed by Glass ionomer cement (Fuji II LC, GC America Inc.). Samples were stored at 37°C and 100% humidity for seven days. All the samples were 3mm resected apically perpendicular to the long axis of the tooth by a
straight fissure bur (SS White). Standardize root-end cavity preparation was done keeping the depth of 3mm and a diameter of 0.8mm using a straight fissure bur (SF 41, Mani, Japan).

Sample grouping
All the samples were initially divided into two experimental groups (n=20):
- Group I: MTA plus (Avalon Biomed, Houston, Texas, United States)
- Group II: Biodentine (Septodont, Saint-Maur-Des-Fosses, France)

The materials were manipulated according to manufacturer’s instructions and cavities were filled using MTA carrier and compacted using a smaller plugger (Dentsply, York, PA-USA). These groups were further divided into two subgroups of ten each (n=10). The second subgroup of both the groups did not receive any treatment and the first subgroup samples were subjected to 500 thermocycles in water bath at temperature ranges between 5°C and 55°C with a dwell time of 30 seconds. This was done in order to stimulate temperature range of oral cavity. The specimens were then coated with nail varnish leaving the apex, it was allowed to dry.

Microleakage Evaluation
Following this all the samples were immersed in methylene blue solution (Fisher scientific by Thermo Fisher Scientific, Mumbai, India) at normal room temperature for 24 hours. After this procedure, the samples were rinsed for 5 mins to remove extra dye over the root surface. The teeth were sectioned longitudinally by using diamond disc attached with micromotor under water coolant. The depth of dye penetration was observed under stereomicroscope at 30x magnification (Nikon SMZ 1500 Zoom Stereomicroscope). The depth was measured in millimetres along one of the cavity walls where more dye penetration was observed.

Statistical Analysis:
The data for each sample was analysed by calculating mean. The data was statistical analysed using analysis of variance (Anova) and Post hoc comparisons were performed using Turkey test. The level of significance was 0.05.

Result:
Table 1 shows microleakage values for different groups. The average depth of dye penetration was least for Biodentine when thermocycling treatment was not given (0.13mm) and maximum value was depicted by MTA Plus when undergone thermal cycles (0.57mm).

| Sample | MTA Plus + Thermocycling (mm) | MTA (mm) | Biodentine + Thermocycling (mm) | Biodentine (mm) |
|--------|-------------------------------|----------|--------------------------------|-----------------|
| 1      | 0.43                          | 0.33     | 0.24                           | 0.16            |
| 2      | 0.36                          | 0.5      | 0.17                           | 0.12            |
| 3      | 0.59                          | 0.46     | 0.21                           | 0.11            |
| 4      | 0.52                          | 0.39     | 0.16                           | 0               |
| 5      | 0.77                          | 0.31     | 0                              | 0.14            |
| 6      | 0.56                          | 0.27     | 0.15                           | 0.23            |
| 7      | 0.73                          | 0.32     | 0.22                           | 0.13            |
| 8      | 0.8                           | 0.36     | 0.29                           | 0.26            |
| 9      | 0.51                          | 0.3      | 0.2                            | 0.11            |
| 10     | 0.46                          | 0.41     | 0.17                           | 0               |
| Average| 0.573                         | 0.401    | 0.181                          | 0.134           |

Table 2 below presents the ANOVA of both root-end filling materials with or without thermocycling treatment. It is clear from the significance column that in terms of the microleakage there is a significant difference between the subgroups as the p-value of all the factors is 0.000 which is less than 0.005. Hence, Post Hoc test was applied to identify the homogeneous subsets of means of sub groups.

| Microleakage | Sum of Squares | df | Mean Square | F     | Sig. |
|--------------|----------------|----|-------------|-------|------|
|              |                |    |             |       |      |
Table 4 depicts that in terms of marginal sealing ability, MTA Plus with thermocycling treatment is having the maximum apical leakage i.e. 0.573 as compared to other subgroups. Also, it is evident that Group IV has least apical leakage i.e. 0.134. It is also noted that no significant difference is seen in Biodentine with or without artificial aging procedure.

Table 4:- Means for groups in homogeneous subsets. Tukey HSD*

| SubGroup                  | N  | Subset for alpha = 0.05 |
|---------------------------|----|------------------------|
|                           | 1  | 2  | 3  |
| Biodentine                | 10 | .1340                    |
| Biodentine + Thermocycling| 10 | .1810                    |
| MTA Plus                  | 10 | .3650                    |
| MTA Plus + Thermocycling  | 10 | .5730                    |
| Sig.                      | .729 | 1.000 | 1.000 |

Abbreviation: N, number of samples in each subgroup
Discussion:–
Root canal treatment aims at removal of microbial contents and complete sealing in three dimensions. In some cases where conventional endodontic treatment is a failure, surgical endodontics is required. The common surgical procedures are root-end resection and root-end filling with a biocompatible material. Studies have shown that apical 3mm of the root contains 98% apical ramifications and 93% of lateral canals which are said to be responsible for root canal therapy failure. Resection of root-end should be done at 90 degrees as it conserves root structure and also provides a proper crown/root ratio, whereas if the root-end is resected at 30 and 45 degrees it causes removal of unnecessary root structure and exposes dentinal tubules to periapical area. All the material used for the root-end filling should have properties like adherence to the dentin walls, non-toxic, non-irritant to periapical tissues, promote healing, non-corrosive, easy to manipulate, dimensionally stable and impermeable to moisture. Endodontic therapy failure is caused by apical microleakage. Marginal seal of the filling material can be disrupted due to thermal, chemical or mechanical causes which can occur in the tooth/restoration interface. One of the most common methods to evaluate apical leakage is by dye penetration.

Thermal cycle procedure is important to determine marginal sealing ability of a material during laboratory studies. Thermocycling has been introduced in science of dental materials as artificial aging methodology. In literature thermocycling has been defined as the in vitro process of subjecting an extracted tooth carrying a restoration to temperature changes that are found in oral cavity. The procedure of thermal cycling provides two kinds of stresses: firstly, extreme temperature changes can cause mechanical stresses which lead to crack formation through the bonded interfaces. Secondly, the gap created by debonding is associated with movement of fluids in and out of the gaps. The appropriate thermocycling procedure includes minimum of 500 cycles in water between 5°C and 55°C for artificial aging of any material. The method of temperature changes has been tested by many researchers to evaluate marginal fluid movement in restorations in vitro. This technique has been combined with the use of dyes, air pressure, isotopes which help for detecting the microleakage of the dental materials. In the present study both the materials were subjected to thermal cycles in order to determine the effect of thermal shocks on the sealing ability to root canal dentin.

In this study, the mean marginal sealing ability of Biodentine was more than MTA plus in the experimental groups. Many studies have similar microleakage values where Biodentine had significantly lower apical leakage as compared to other root-end filling materials. The mechanism of Biodentine which makes it superior in sealing ability compared to other groups is that when it comes in contact to the dentin of the tooth, it forms mineral tag like structures at the surface of interface, this is called as “mineral infiltration zone”. There occurs biomineralization which is said to be formed due to degradation of interfacial dentin by the alkaline nature of the product, all this process leads to a better sealing ability when placed over the surface of the tooth. Another study determined that Biodentine exhibits less porosity and increase density on complete setting as compared to MTA. The sealing ability of Biodentine was greater than MTA Plus when used as furcal repair material in molars.

The finding of this study has indicated that the untreated samples of both the groups (MTA Plus and Biodentine) have shown lower microleakage in comparison to those who have undergone thermocycling. Many studies have suggested that microleakage is significantly increased when dental materials are subjected to thermal cycles.

Conclusion:–
MTA Plus and Biodentine, the root-end filling materials showed a significant amount of microleakage with or without treatment to thermocycling. There was little effect of thermocycling on microleakage of both the materials. However, Biodentine showed minimum apical leakage even when subjected to artificial aging thus better marginal sealing ability. Hence Biodentine is a suitable root-end filling material in terms of sealing ability.

Source of Funding:
Nil.

Conflicts of Interest:
Nil.
References:

1. Estrela C., Holland R., Estrela C.R., Alencar A.H., Sousa-Neto M D , Pe’ cora J .D. Characterization of successful root canal treatment. Braz. Dent. J 2014; 25, 3–11.
2. Sauveur G, Boucher Y. A teaching model for endodontic surgery. IntEndod J 1998;31(2):133–136
3. Holt GM, Dumsha TC. Leakage of amalgam, composite, and super-EBA, compared with a new retrofitting material: bone cement. J Endod 2000;26(1):29–31
4. Fogel HM, Peikoff MD. Microleakage of root-end filling materials. J Endod 2001;27(7):456–458
5. Dorn SO and Gartner AH. Retrograde filling materials: a retrospective success–failure study of amalgam, EBA, and IRM. J Endod 1990; 16(6):391-393.
6. Jou YT, Perl C. Is there a best retrograde filling material? Dent. Clin. North. Am 1997; 41:555–561.
7. Von Arx T. Apical surgery: a review of current techniques and outcome. Saudi Dent. J 2011; 23:9–15.
8. Saraswathi DD, Tejavath SK, Babu MR, Swetha B, Gandhi B. A comparative evaluation of the sealing ability of three recent root-end filling materials: an in vitro study. J Adv Oral Res 2015; 6(3):3–39.
9. Negm AM, Hassanien EE, Abu-Seida AM, Nagy MM. Biological evaluation of a new pulp capping material developed from Portland cement. Exp. Toxicol. Pathol 2017; 69:115–122.
10. Priyalakshmi S, Ranjan M. Review on Biocement—a bioactive dentin substitute. J Dent Med Sci 2014;1 3:13–17.
11. Yadav G, Rehani U, Rana V. A Comparative Evaluation of Marginal Leakage of Different Restorative Materials in Deciduous Molars: An in vitro Study. Int J ClinPediatr Dent. 2012;5(2):101-7.
12. Morabito A &Defabianis P. Marginal seal of various restorative materials in primary molars. Journal of Clinical Pediatric Dentistry 1997; 22 Suppl 1:51-54.
13. Bergenholtz G, Cox CF, Loesche WJ & Syed SA. Bacterial leakage around dental restorations: Its effect on the dental pulp Journal of Oral Pathology 1982; 11 Suppl 6:439-450.
14. Crim GA, Swartz ML, Phillips RW. Comparison of four thermocycling techniques. J Prostheth Dent 1985;53(1):50-3.
15. International Standardization Organization - ISO. ISO/TS (E) 11405:2003: Dental materials – Testing adhesion to tooth structure. ISO; 2003.
16. Scholder H. Filling root canals in three dimensions. 1967. J Endod 2006;32(4):281–290.
17. Gagliani M, Taschieri S, Molinari R. Ultrasonic root-end preparation: influence of cutting angle on the apical seal. J Endod 1998;24(11):726–730.
18. Gutmann JL, Pitt Ford TR. Management of the resected root end: a clinical review.IntEndod J 1993; 26(5):273–283.
19. Stroppo JJ, Doyon GE, Gutmann JL. Root-end management: resection, cavity preparation, and material placement. Endodontol Topics 2005;11:131–151.
20. Torabinejad M, Higa RK, McKendry DJ, Pittford TR. Effects of blood contamination on dye leakage of four root-end filling materials. J Endod 1994;20:159–163.
21. Hakimseh S, Vaidyanathan J, Houpml ML, Vaidyanathan TK and Von Hahen S. Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences. Journal of Prosthetic Dentistry2000; 83(2):194-203.
22. Darbyshire PA, Messer LB and Douglas WH. Microleakage in class II composite restorations bonded to dentin using thermal and load cycling. Journal of Dental Research. 1988; 67(3):585-587.
23. Sheetal M, Amit P, Dhairyasheel E, Amit C, Abhijit P, Rahul SR. Methodologies for assessing root canal sealing: a review. Int J Oral Care Res 2015; 35:55–28.
24. Oito G and Austrheim EK. In vitro quality testing of dentin adhesives. Acta OdontologicaScandinavica. 1993; 51(4):263-269.
25. Alani AH and Toh CG. Detection of microleakage around dental restoration: a review. Operative Dentistry 1997; 22(4):173-185.
26. Schmid-Schwap, Martina & Graf, Alexandra &Preinerstorfer, Angela & Watts, David &Piehslinger, Eva &Schedde, Andreas. Microleakage after thermocycling of cemented crowns-A meta-analysis. Dental materials: official publication of the Academy of Dental Materials 2011; 27:855-69.
27. Pazinatto, Flávia& Campos, Bruno & Costa, Leonardo & Atta, Maria. (2003). Effect of the number of thermocycles on microleakage of resin composite restorations. Pesquisadontologicabrasileira = Brazilian oral research 2003; 17:337-41.
28. The ISO TR, “11450 standard. International organization for standardization,” ISO TR 11405, 1994, Dental materials- guidance on testing of adhesion to tooth structure.
29. Brown WS & Jacobs HR & Thompson RE. Thermal Fatigue in Teeth. Journal of dental research 1972; 51:461-7.

30. Sousa CJ, Loyola AM, Versiani MA, Biffi JC, Oliveira RP and Pascon EA. A comparative histological evaluation of the biocompatibility of materials used in apical surgery. Int Endod J 2004; 37(11):738-748.

31. Kokate SR, Pawar AM. An in vitro comparative stereomicroscopic evaluation of marginal seal between MTA, glass ionomer cement & Biodentine as root end filling materials using 1% methylene blue as tracer. Endodontology 2012;24:36–42.

32. P V R, Vemisetty H, K D, et al. Comparative evaluation of marginal adaptation of Biodentine(TM) and other commonly used root end filling materials—an in vitro study. J Clin Diagn Res 2014;8(3):243–245.

33. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011;44(12):1081–1087.

34. Camilleri J, Grech L, Galea K, et al. Porosity and root dentine to material interface assessment of calcium silicate-based root end filling materials. Clin Oral Investig 2014;18(5):1437–1446.

35. Katge FA, Shivasharan PR, Patil D. Sealing ability of mineral trioxide aggregate PlusTM and BiodentineTM for repair of furcal perforation in primary molars: An in vitro study. Contemp Clin Dent 2016;7(4):487–492.

36. Mayer T, Eickholz P. Microleakage of temporary restorations after thermocycling and mechanical loading. J Endod 1997;23(5):320-322.

37. Wahab Fouad & Shaini Firas & Morgano Steven. The effect of thermocycling on microleakage of several commercially available composite Class V restorations in vitro. The Journal of prosthetic dentistry 2003; 90:168-74.

38. Mathew V, Mundathaje M, Rodrigues S, Shetty T, Pai U, Saldanha S. Comparative evaluation of the effect of artificial aging on the marginal leakage of cast crowns luted with three cements: An in vitro study. Journal of International Oral Health 2020;12(7):S13-S18.