Current progress of nuclear astrophysical reaction
and decay study at CIAE

W. P. Liu, Z. H. Li, B. Guo, Y. B. Wang, J. Su, X. X. Bai, G. Lian,
B. X. Wang, S. Q. Yan, S. Zeng, Y. J. Li, E. T. Li, S. J. Jin, X. Liu
China Institute of Atomic Energy, P. O. Box 275(1), Beijing 102413, P. R. China
E-mail: wpliu@ciae.ac.cn

Abstract. Presented here was current progress of the study of nuclear astrophysical reaction
and decay at CIAE. We studied astrophysical 12N(p,γ)13O reaction through the measurement
of the 12N(d,n)13O angular distribution in inverse kinematics. Our result is in agreement with
that from the 14N(12N,13O)13C reaction and two shell model calculations. We also measured
the angular distributions of single neutron transfer reaction of 7Li(6Li,7Li)6Li, and derived the
reaction cross section for 6Li(n,γ)7Li by using the present spectroscopic factor. The astrophysical
reaction rate is found to be higher by a factor of 1.7 than the value adopted in previous
reaction network calculations. In addition, half-life of 147Sm in metal samarium and Sm$_2$O$_3$
was measured. No significant change has been observed within the experimental uncertainty.

1. Introduction
Direct reactions like (d,n) can be used to determine the (p,γ) reaction cross sections indirectly,
using the asymptotic normalization coefficient (ANC) or spectroscopic factor (SF) extracted
from the measured (d,n) angular distribution [1]. As an example, we measured the 7Be(d,n)8B
angular distribution in inverse kinematics at $E_{c.m.} = 5.8$ MeV and extracted the ANC for the
virtual decay 8B \rightarrow 7Be + p based on distorted wave Born approximation (DWBA) analysis.
The astrophysical S-factor for the 7Be(p,γ)8B reaction at zero energy was derived by ANC
method, for the first time [2]. This method was also used to indirectly determine astrophysical
S-factors for the 11C(p,γ)12N [3] and 13N(p,γ)14O [4] reactions. In this paper, we extended this
method to the reaction of 12N(p,γ)13O.

The similar approach can be used to determine the (n,γ) reaction rates based on the (d,p) or
other one neutron transfer reaction. Since these are normally s-wave neutron capture reactions,
the contribution inside the nucleus is not negligible, and thus the ANC approach is no more
valid. Alternatively, the spectroscopic factor (SF) method by constraining the optical potential
parameters with their volume integrals per nucleon is developed to solve this problem. Its
feasibility is demonstrated by the fact that the volume integral per nucleon is nearly a constant
for 1p shell, and was successfully used to deduce the reaction rate of 8Li(n,γ)9Li [5]. We showed
the application of this method to the case of 6Li(n,γ)7Li reaction.

A possible influence of the quasi-free electron cloud in metallic environment on the α-decay
process has attracted an intense interest in recent years. It was predicted [6, 7] that the α-
decay rate could be enhanced by a factor greater than two in the metal hosts. Contrary to these
predictions, the theoretical calculation with quantum mechanical tunneling arguments indicated
that the change of α-decay rate in metals is negligibly small [8]. A change of decay rate will have significant astrophysical impact, since half-life is an important input to the astrophysical network calculation. In this paper, we presented the study of half-life of 147Sm in metal samarium and Sm$_2$O$_3$.

2. 12N(p,γ)13O reaction

The 12N(p,γ)13O reaction is one of the key reactions in rap-I and rap-II chains [9]. Due to the low Q-value (1.516 MeV), the 12N(p,γ)13O cross sections at low energies of astrophysical interest are dominated by the direct capture into the ground state and the resonant capture via the first excited state of 13O. Currently, the extracted astrophysical S-factor S(0) at zero energy has large discrepancies.

The experiment was performed with the CNS Radioactive Ion Beam (CRIB) facility at CNS/RIKEN. A primary 10B beam with the energy of 82 MeV was yielded from the AVF cyclotron. The secondary 12N ions with the energy of 70 MeV were produced through the 3He(10B,12N) reaction and then separated by the CRIB facility. Two parallel plate avalanche counters (PPACs) were used to trace incident each 12N particle and determine its incident angle and position on secondary target. After the two PPACs, the secondary 12N beam bombarded a (CD$_2$)$_n$ foil to study the 2H(12N,13O)n reaction. The typical purity and intensity of 12N beam on target were approximately 30% and 200-600 pps, respectively. The reaction products 13O were detected and identified with a telescope consisting of a 23 μm silicon detector (ΔE) and a 57 μm double-sided silicon strip detector (DSSD).

The emitted angle of reaction products was determined by combining the information from the DSSD and the two PPACs. The selection of 13O events from 2H(12N,13O)n were determined with a Monte Carlo (MC) simulation, which took into account the energy loss, kinematics, geometrical factor, angular and energy straggling effects in the two PPACs, secondary target and ΔE detector [4]. This simulation was calibrated with the 12N beam. The detection efficiency correction (due to the stopping of large angle events) from beam stopper was also computed via MC simulation. After beam normalization and background subtraction, the 2H(12N,13O)n angular distribution in center of mass frame was obtained and shown in Fig. 1.

In the present calculation, two sets of optical potentials (Set1 and Set2) of nucleon-target were taken from Ref. [10, 11] respectively. The theoretical calculations on direct process with two sets of optical potential were displayed in Fig. 1, together with compound nucleus (CN) contribution obtained by UNF code [12]. After the subtracting the CN contribution, the first three data points were used to derive the SF of 13O by the normalization of experimental data to theoretical calculations. For one set of optical potential, three SFs can be obtained by using the first three data points, which is corresponding to the peripheral process. Their weighted value was then taken as SF for this set of optical potential. The ratio of 1$p_{3/2}$:1$p_{1/2}$ was derived to be 0.16 based on shell model calculation [13].

The SF was extracted to be 0.80 ± 0.30 (0.69 ± 0.26 for 1$p_{1/2}$ orbit, 0.11 ± 0.04 for 1$p_{3/2}$ orbit). The error results from the measurement (36%) and the uncertainty of optical potential (11%). Our result is in agreement with that from the 14N(12N,13O)13C reaction [14] and two shell model calculations [9, 13]. The calculation on astrophysical S-factors and reaction rates for 12N(p,γ)13O is in progress now.

3. 6Li(n,γ)7Li reaction

In the reaction network calculation of primordial nucleosynthesis and other astrophysical scenarios, the reactions involving lithium isotopes play an important role. 6Li(n,γ)7Li is thought to be one of the important reactions for inhomogeneous Big Bang nucleosynthesis (IBBNs) [15]. In addition, the astrophysical significance of the 6Li(n,γ)7Li reaction is that the 6Li/7Li
Figure 1. Measured angular distribution of 2H(12N,13O$_{g.s.}$)n at $E_{c.m.} = 8.4$ MeV, together with the theoretical calculations on direct process using two sets of optical potential (Set1 and Set2) and compound nucleus contribution (CN).

ratio stands for a measure of the time scale for star evolution [16]. The direct- and indirect measurements of the above reactions are highly desired. The astrophysical 6Li(n,γ)7Li reaction rate can be studied via one-neutron transfer reaction 7Li(6Li,7Li)6Li. The SF of 7Li \rightarrow 6Li + n can be deduced and then used to derive the cross sections of 6Li(n,γ)7Li. The advantage of this system is that no other reaction is needed to get the SF of 7Li \rightarrow 6Li + n because the same SFs appear at both vertices of elastic and neutron exchange amplitudes. In addition, the optical potential parameters of entrance- and exit channels can be extracted simultaneously through 6Li + 7Li elastic scattering.

The experiment was performed by using Q3D spectrometer, using a 6Li beam from the HI-13 tandem accelerator in Beijing and a 7LiF target. The focal plane detector was a 2-dimensional position sensitive silicon detector. The SFs of the ground and first excited states of 7Li were deduced to be 0.73 \pm 0.05 and 0.90 \pm 0.09 by DWBA fit to the angular distributions of 6Li + 7Li transfer data, respectively. Fig. 2 shows the result of deduced 6Li(n,γ)7Li cross section. The current result is in excellent agreement with the experimental data of Ohsaki et al.[17]. The resultant astrophysical reaction rate is found to be higher by a factor of 1.7 than the value adopted in previous reaction network calculations [18].

4. Half-life of 147Sm in metal samarium and Sm$_2$O$_3$

The 147Sm-143Nd method established by Lugmair [19] plays an important role in the dating of telluric, lunar and Martian rocks as well as meteorites. The half-life of 147Sm was reported to be 1.06×10^{11} y [20, 21]. It is in fairly good agreement with a measured value of $(1.070 \pm 0.009) \times 10^{11}$ y in 2009 [22], yet clearly shorter than that of $(1.17 \pm 0.02) \times 10^{11}$ y reported in 2003 [23]. The new measurements are needful for clarifying the discrepancy of experimental results.

In order to investigate the possible influence of metallic environment on the alpha decay process, we have measured the 147Sm activities in the hosts of metal samarium and Sm$_2$O$_3$. The
The result of deduced $^6\text{Li}(n,\gamma)^7\text{Li}$ cross section in comparison with the experimental data[17].

α-energy spectra obtained from the samples are shown in Fig. 3 together with the corresponding backgrounds.

The ^{147}Sm half-life was found to be $(1.06 \pm 0.01) \times 10^{11}$y in metal samarium and $(1.07 \pm 0.01) \times 10^{11}$y in Sm_2O_3, respectively [24]. No significant change has been observed within the experimental uncertainty. The result is not consistent with the prediction in Ref. [6, 7]. Due to the limited experimental precision in the present work (mainly due to the statistical uncertainties), a change of less than 3% is difficult to be observed, so it still is a controversial issue whether a slight influence of metallic environment on the α-decay process exists or not [8, 25].

The absolute half-life derived in this work is in good agreement with the recent experimental result [22] and the reported value [20, 21]. Our experiment provides an independent examination to the existing data.

Acknowledgement

These works were supported by the National Basic Research Programme of China under Grant No. 2007CB815003, the National Natural Science Foundation of China under Grant Nos. 11021504, 10735100, 10720101076, 10875175, and the outstanding tutors for doctoral dissertation of S&T project in Beijing under Grant No. YB20088280101.

References

[1] Xu H M et al. 1994 *Phys. Rev. Lett.* **73** 2027
[2] Liu W P et al. 1996 *Phys. Rev. Lett.* **77** 611
[3] Liu W P et al. 2003 *Nucl. Phys. A* **728** 275
[4] Li Z H et al. 2006 *Phys. Rev. C* **74** 035801
[5] Li Z H et al. 2005 *Phys. Rev. C* **71** 052801R
[6] Raiola F et al. 2005 *J. Phys. G* **31** 1141
Figure 3. Spectra taken for 100 hours: (A) Metal samarium sample, (B) Background for A, (C) Sm$_2$O$_3$ sample, (D) Background for C. The dashed lines denote the corresponding simulation results, taking into accounts of the energy loss and solid angle of α particles.

[7] Kettner K U et al. 2006 J. Phys. G 32 489
[8] Zinner N T 2007 Nucl. Phys. A 781 81
[9] Wiescher M et al. 1989 Astrophys. J. 343 352
[10] Varner R L et al. 1991 Phys. Rep. 201 57
[11] Koning A J 2003 Nucl. Phys. A 713 231
[12] Zhang J et al. 2002 Nucl. Sci. Eng. 142 207
[13] Warner R E et al. 2006 Phys. Rev. C 74 014605
[14] Banu A et al. 2009 Phys. Rev. C 79 025805
[15] Kajino T et al. 1990 Astrophys. J. 359 267
[16] Jedamzik K et al. 2000 Phys. Rev. Lett. 84 3248
[17] Ohsaki T et al. 2000 AIP Conf. Proc. 529 678
[18] Su J et al. 2010 Chin. Phys. Lett. 27 052101
[19] Lugmair G W 1974 Meteoritics. 9 369
[20] Lugmair G W et al. 1978 Earth Planet Sci. Lett. 39 349
[21] Mateosian E D et al. 1992 Nucl. Data. Sheets 66 705
[22] Kossert K et al. 2009 Applied Radiation and Isotopes 67 1702
[23] Kinoshita N et al. 2003 J. Nucl. Radiochem. Sci. 4 5
[24] Su J et al. 2010 Eur. Phys. J. A (in press)
[25] Czerski K et al. 2007 Eur. Phys. J. A 32 31