Recent topics of infrared effective lattice QCD

Tsuneo Suzuki, Shun-ichi Kitahara, Fumiyoshi Shoji, Atsushi Nakamura, Kentarou Yamagishi, Shoichi Ito, Tomohiro Tsunemi, Shouji Fujimoto and Seikou Kato.

1. SU3 infrared effective monopole action

Abelian dominance and monopole dominance in MA gauge suggest the existence of an effective monopole action also in SU(3) QCD. There are two independent (three with one constraint \(\sum_{i=1}^{3} k_{\mu}(s) = 0 \)) currents in the case of SU(3). Applying the same inverse Monte-Carlo method developed in the case of SU(2) QCD, we have derived the infrared effective monopole action starting from the vacuum ensemble \(\{ k_{\mu}(s) \} \) defined from the thermalized abelian link fields after the MA abelian projection. Effective monopole actions can be derived similarly for the blocked monopole currents \(K_{\mu}(s) = \sum_{i,j,m=0}^{n-1} k_{\mu}(ns + (n-1)i+\hat{\nu}+j\hat{\rho}+m\hat{\sigma}) \). This corresponds to the block-spin transformation of the monopole currents on the dual lattice. The form of the action is restricted to 27 two-point interactions up to 3na(\(\beta \)) distance between monopole currents and the most leading 4 and 6 point interactions. The lattice size is 48\(_4 \) for \(\beta = 5.6 \sim 6.4 \). The results are as follow:

1. The monopole actions are fixed clearly when we pay attention to two independent monopole currents: \(S(k) = \sum G_{i}(S_{i}(k^{1}) + S_{i}(k^{2}) + S_{i}(-k^{1} - k^{2}) \) as well as one kind of monopole currents: \(S(k) = \sum G_{i}S_{i}(k) \).
2. The scaling \(S(n, a(\beta)) = S(b = na(\beta)) \) for fixed \(b = na(\beta) \) looks good both for one-current and two-current cases. (Fig.1)
3. Monopole condensation occurs in the large \(b \) region. Entropy dominates over the energy: \(\ln 7 > G_{1} \) in the one-current case. (Fig.1)
4. The quadratic monopole actions are dominant for large \(b \) in both cases.

In the infrared regions, quadratic monopole interactions are dominant. When we restrict our-
selves to quadratic monopole interactions alone, the block-spin transformation can be done analytically as done in SU(2) QCD. We can obtain also the perfect operator to evaluate the static quark-antiquark potential \(V(Ib, Jb, Kb) \) on the coarse \(b \) lattice.

In the framework of the string model, the quantum effects are seen to be small in the infrared region and the static potential is evaluated by the classical contributions alone:

\[
\langle W(C) \rangle_{cl} = \exp\left\{ -\frac{2}{3}\pi^2 a^8 \sum_{s, s', \mu, \nu} N_\mu (as) \times A_{\mu \nu}(as - as') N_\nu(as') \right\},
\]

where \(N_\mu (s) = \sum \Delta^{-1} (s - s') \pi \epsilon_{\mu \alpha \beta \gamma} \partial S_{\beta \gamma}(s' + \mu) \) and \(S_{\beta \gamma}(s) \) is the source term corresponding to the Wilson loop. We get the rotational invariance \(V(Ib, Jb, 0)/V(Ib, 0, 0) = \sqrt{2} \) and \(\sigma = \pi \kappa \ln(m_1/m_2)/3 \), where \(m_1 \) and \(m_2 \) are dimensional constants parametrizing the monopole action on the fine \(a \) lattice. \(\sigma \) is equivalent to the result from DGL theory.

![Figure 2](image)

Figure 2. The string tension evaluated from the SU(3) effective action.

2. **Gauge independence of abelian and monopole dominances**

Abelian and monopole dominances are shown numerically in MA gauge. However, monopole condensation after abelian projection in some gauges can not explain color confinement. Abelian neutral but color non-singlet states are not confined. **Gauge independence of monopole condensation is essential for color confinement.** Here we prove the gauge independence of the monopole dominance if abelian dominance is gauge independent.

First we note that abelian Wilson loops without any gauge fixing are known to give the same string tension as that from non-abelian Wilson loops in the strong coupling expansion. Recently, Ogilvie proved the same fact for any \(\beta \) using the character expansion. Abelian dominance comes from the Elitzur’s theorem and then it must be gauge independent.

Abelian dominance leads us to abelian effective action. We express the abelian action in terms of monopole interactions (with \(J \) the electric current). When we use the BKT transformation, we get an action in terms of monopole currents:

\[
Z(J) = e^{-F'[-i\delta/\delta B]} \sum_{k \in \mathbb{Z}, \delta k = 0} e^{-\frac{1}{4}(\delta B, (\Delta D)^{-1} \delta B)} e^{\frac{i}{2}(IB, \Delta^{-1}k + i(\Delta D)^{-1} \delta J)} e^{-4\pi^2(k, \Delta^{-1} Dk)} e^{2\pi i(\delta \Delta^{-1} k, S)} e^{-\frac{1}{4}(J, (\Delta D)^{-1} J)} \bigg|_{B=0}
\]

1) Electric-electric current \(J - J \) interactions (with no monopole \(k \)) come from the exchange of regular photons and have no line singularity leading to a linear potential. Hence the linear potential of abelian Wilson loops is due to the monopole contribution alone. **Monopole dominance is proved from abelian dominance.** 2) The linear potential comes only from \(\exp(2\pi i(\delta \Delta^{-1} k, S)) \). The surface independence of the static potential is assured due to the 4-d linking number.

3. **A new gauge fixing method for abelian projection**

To confirm the above results numerically, we analyze gauge dependence of abelian projection.
by Langevin equation with stochastic gauge fixing term[12],

$$\frac{\partial}{\partial \tau} A^a_\mu(x, \tau) = -\frac{\delta S}{\delta A^a_\mu(x, \tau)} + \frac{1}{\alpha} D^{ab} \Delta^b + \eta^a_\mu(x, \tau), \quad (1)$$

where \(\tau\) is fictitious time, \(\eta\) is Gaussian white noise and \(\Delta\) is gauge fixing term. \(\alpha = 0\) (\(\alpha = \infty\)) corresponds to the MA gauge fixing (no gauge fixing).

A compact lattice version of Eq.(1) was proposed in Ref.[13],

$$U_\mu(x, \tau + \Delta \tau) = \omega^\dagger_{\mu}(x, \tau)e^{if^a_\mu \Delta \tau}U_\mu(x, \tau)\omega(x + \hat{\mu}, \tau),$$

$$f^a_\mu = -\frac{\partial S}{\partial A^a_\mu} \Delta \tau + \eta^a_\mu(x, \tau) \sqrt{\Delta \tau},$$

$$\omega(x, \tau) = \exp(i\beta \Delta^a(x, \tau)t^a \Delta \tau/2N, \alpha).$$

We set \(\Delta(x, \tau) = i[\sigma_3, X(x, \tau)]\), where \(X\) is the operator to be diagonalized in MA gauge.

As a first test, we perform numerical simulations on a 12^4 lattice with \(\beta = 2.35\), \(\alpha = 0.025, 0.25, 2.5\), and \(\Delta \tau = 0.001\). We show the abelian heavy quark potentials for different \(\alpha\) in Fig.3 together with that of non-abelian potential, which are essentially same from \(\alpha = 0\) to 2.5, and show the confinement linear potential behavior.

Note that the string tension obtained by the standard gauge fixing procedure is larger than that of \(\alpha = 0\). This is probably due to the Gribov copies[14]. Bali et al. [15] have observed that when the number of copies decreases the string tension becomes small. This is very consistent with our data.

The heavy quark potentials from monopole and photon contributions are plotted in Fig.4. The monopole part shows the confinement behavior.

T.S. acknowledges financial support from JSPS Grant-in Aid for Scientific Research (B) (No.10440073 and No.11695029).

REFERENCES

1. H.Shiba and T.Suzuki, Phys. Lett. B351(1995) 519.
2. S.Kato et al., Nucl. Phys. B520(1998) 323.
3. T.A. DeGrand and D. Toussaint, Phys. Rev. D22 (1980) 2478.
4. T.L. Ivanenko et al., Phys. Lett. 252B (1990) 631.
5. S.Fujimoto et al., in this proceedings.
6. T. Suzuki, Prog.Theor.Phys. 80 (1988) 929; S. Maedan and T. Suzuki, Prog.Theor.Phys. 81 (1988) 229.
7. T. Suzuki and I. Yotsuyanagi, Phys. Rev. D42 (1990) 4257.
8. M.Faber et al., hep-lat/9810008.
9. M.C. Ogilvie, Phys.Rev. D59 (1999) 074505.
10. S.Elitzur, Phys. Rev. D12 (1975) 3978.
11. V.L. Beresinskii, Sov. Phys. JETP 32 (1970) 493; J.M. Kosterlitz and D.J. Thouless, J. Phys., C6 (1973) 1181.
12. D.Zwanziger, Nucl. Phys. B192 (1981) 259.
13. M.Mizutani and A.Nakamura, Vistas in Astronomy, 37, 305, 1993, Pergamon Press; Nucl.Phys. B(Proc.Suppl.)34, 253, 1994.
14. S.Hioki et al., Phys.Lett. B272 (1991) 326.
15. G.S.Bali et al., Phys.Rev. D54 (1996) 2863.