Review

Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates

Sarah F. Al-Subaie 1,2, Abdullah M. Alowaifeer 2 and Maged E. Mohamed 1,*

1 Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
2 Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
* Correspondence: memohamed@kfu.edu.sa; Tel.: +966-542990226

Abstract: Pyrrolizidine alkaloids are natural secondary metabolites that are mainly produced in plants, bacteria, and fungi as a part of an organism’s defense machinery. These compounds constitute the largest class of alkaloids and are produced in nearly 3% of flowering plants, most of which belong to the Asteraceae and Boraginaceae families. Chemically, pyrrolizidine alkaloids are esters of the amino alcohol necine (which consists of two fused five-membered rings including a nitrogen atom) and one or more units of necic acids. Pyrrolizidine alkaloids are toxic to humans and mammals; thus, the ability to detect these alkaloids in food and nutrients is a matter of food security. The latest advances in the extraction and analysis of this class of alkaloids are summarized in this review, with special emphasis on chromatographic-based analysis and determinations in food.

Keywords: pyrrolizidine alkaloids; GC/MS; LC/MS; necic acid; necine; food security

1. Introduction

Plants and their phytoeffective metabolites are used for medicinal purposes but are also an enormous source of toxic products. Alkaloids contribute considerably to the medicinal and pharmacological activity of natural products while they are also recognized for high potency, a narrow therapeutic index, and, therefore, their toxicity. Alkaloids are produced with high diversity in prokaryotes and eukaryotes and are biosynthesized by many species of bacteria, fungi, marine organisms, insects, plants, and animals [1–3].

Pyrrolizidine alkaloids (PAs) and their N-oxides are produced by many flowering plants for protection. Approximately 660 PAs have been characterized in more than 6000 plants, occurring more frequently in the Asteraceae, Boraginaceae, Fabaceae, and Orchidaceae families and to a lesser extent in the Poaceae, Lamiaeae, and Convolvulaceae families [4–7]. Additional important plant families that contain PAs are Compositeae and Leguminosae. PAs and their derivatives are found in many genera, such as Alkanna, Cynoglossum, Heliotropium, Lithospermum, Symphytum, Anchusa, and Borago from the Boraginaceae family and Brachyglottis, Senecio, Tussilago, Cineraria, Petasites, and Eupatorium from the Asteraceae family [6]. Other import genera containing PAs include Amsinckia, Crotalaria, Echium, and Trichodesma [8]. Although PAs are a source of the pharmacological activity in many medicinal plants and are therefore used in folk medicine [9], the toxicity of this class of alkaloids to humans and many animals usually compromises the medicinal benefits.

In this review, different separation methods and chemical analysis of PAs are first presented, followed by a summary of the widest possible range of mass spectrometer specifications used for the analysis of this class of alkaloids.

2. PA Chemistry

PAs are esters of necine alcohol and necic acids [9] and are described in Figure 1. Necine is a heterocyclic amino alcohol based on a pyrrolizidine nucleus containing two
fused five-membered rings, including a nitrogen atom. Necine normally contains two hydroxyl groups, of which one is directly attached to the heterocycle and the other is attached to C1 via a hydroxymethyl group (Figure 1).

![Figure 1. PAs are esters of necine and necic acids. Necine is a pyrrolizidine-based amino alcohol (the structure is shown in the red box) that exists in 4 different forms: platynecine, otonecine, retronecine, and heliotridine. Necic acid (the structure is shown in the upper blue box) exists as three different forms depending on the necine base, e.g., retronecine, heliotridine, otonecine, platynecine (Figure 1). Necic acids are a group of hydroxylated aliphatic acids containing either one or two carboxylic acid groups (Figure 1). Schramm, et al. [9] further classified PAs according to their overall structure into the following types: senecionine, triangularine, lycopsamine, monocrotaline, phalaenopsine/ipanguline, combined triangularine and lycopsamine, simple PAs, and PAs with unusual linkage patterns (more information can be found in [9]).](image)

3. Toxicology of PAs

PAs are not intrinsically toxic; however, the 1,2-unsaturated PAs are metabolized in the liver into active pyrrolic metabolites, to which all the hepatotoxicity, including liver cirrhosis and liver failure, is attributed. As reported by Xia, et al. [10], the PA can lead to the formation of five different DNA reactive secondary pyrrolic metabolites. Moreover, it may cause pulmonary hypertension, cardiac hypertrophy, kidney degeneration, carcinogenicity, and genotoxicity, all of which could be fatal. [11–13]. The quantity and severity of the toxic metabolites produced by PAs results in different corresponding toxicity and potency levels (Table 1).
Table 1. In silico predicted lethal dose 50 (LD$_{50}$) values of some PAs [14].

PA	LD$_{50}$ (g/kg)
Monocrotaline *	0.731
Echimidine	0.616
Senkirkine	0.275
Trichodesmine	0.324
Acetyllycopsamine	0.356
Seneciphylline	0.264
Retrorsine *	0.320
Senecionine	0.127
Heliosupine	0.708
Riddelliine	0.616
Clivorine	0.386
Usaramine	0.264
Jacobine	0.461
Echiumine	0.122
Lycopsamine	0.239
Heliotrine	0.056
Heliocoromandaline	0.246
Otosenine	0.106

* In vitro test compound.

The ingestion of PAs is usually accompanied by toxicity symptoms ranging from nausea, vomiting, jaundice, and fever to hepatic occlusion [15]. According to the time and concentration of the exposure to PAs, alkaloid toxicity can be classified into chronic (long-term exposure with low concentrations of PAs) and acute (short-term exposure with high concentrations of PAs) toxicity, both of which can lead to serious illness, symptoms, and diseases in animals and humans.

4. Food and Pharmaceutical Products Safety Recommendation Regarding PAs

PAs and their N-oxide derivatives are found in many food products and supplements, particularly tea, herbal products, and honey. The European Food Safety Authority (EFSA) has identified a group of 17 PAs and their N-oxide derivatives that commonly contaminate food, including intermedine/lycopsamine, intermedine-N-oxide/lycopsamine-N-oxide, senecionine/senecivernine, senecionine-N-oxide/senecivernine-N-oxide, seneciphylline, seneciphylline-N-oxide, retrorsine, retrorsine-N-oxide, echimidine, echimidine-N-oxide, lasiocarpine, lasiocarpine-N-oxide, and senkirkine. To better understand the occurrence of PAs in food, PAs other than those mentioned in the 17-PAs list should also be monitored due to chromatographic coelution and structural isomerization problems [16]. As of July 2022, in Europe, the maximum PAs in different tea and herbal products came into effect, as shown in Table 2 [17].
Table 2. European Commission Regulation for the maximum sum level of the 21 PAs, together with the other 14 coeluting PAs for certain foodstuffs [17].

Foodstuffs	Max Sum Level of PAs (µg/kg)
Herbal infusions (dried product)	200
Herbal infusions of rooibos, anise (*Pimpinella anisum*), lemon balm, chamomile, thyme, peppermint, lemon verbena (dried product), and mixtures exclusively composed of these dried herbs	400
Tea (*Camellia sinensis*) and flavored tea (*Camellia sinensis*) (dried product)	150
Tea (*Camellia sinensis*), flavored tea (*Camellia sinensis*), and herbal infusions for infants and young children (dried product)	75
Tea (*Camellia sinensis*), flavored tea (*Camellia sinensis*), and herbal infusions for infants and young children (liquid)	1.0
Food supplements containing herbal ingredients including extracts	400
Pollen-based food supplements, pollen, and pollen products	500
Borage leaves (fresh, frozen) placed on the market for the final consumer	750
Cumin seeds (seed spice)	400
Borage, lovage, marjoram, and oregano (dried) and mixtures exclusively composed of these dried herbs	1000

EFSA recommends monitoring the concentration of these toxic alkaloids frequently to maintain the lowest possible occurrence in food chains [18]. Some countries, such as Germany, have introduced a limit of 1 µg/day of PAs for pharmaceutical products/medicines used for less than 6 weeks, and of 0.1 µg/day of PAs for consumption exceeding a 6-week period. Previously, the Federal Institute of Risk Assessment in Germany (BfR) recommended a daily intake of not more than 0.007 µg/kg body weight/day [15]. Furthermore, in 2017, and as a reference point for chronic risk assessment, the EFSA panel on contaminants chose a Benchmark Dose Lower Confidence limit for a 10% excess cancer risk (BMDL10) of 237 µg/kg BW per day for an increase in liver hemangiosarcoma incidence in female rats exposed to riddelliine [16].

5. Analysis of PAs

PA analysis can be divided into three phases: extraction, separation, and identification, the efficiency of which depends on many factors. Table 3 presents the most used gas and high-performance liquid chromatographic methods, including sample preparation, over the last 15 years.
Table 3. Separation methods of PAs in last 15 years (2007–2022).

Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
Honey and herbal beverage	Prepare using QuEChERs					
 - Solvent for extraction: 1 mL water followed by 5 mL ACN
 - Partition salts: 1 g NaCl
 - Clean-up process: SPE using 50 mg PSA | UPLC-IM-QTOF-MS/MS | 7 PAs | 61–120 | LOQ: 1–20 µg/kg | [19] |
| Teas and herbs | Prepare using QuEChERs
 - Solvent for extraction: 30 mL ACN: water (75:25, v/v) with 0.5% FA
 - Partition salts: 6 g MgSO₄ and 1.5 g CH₃COONa
 - Clean-up process: SPE using 400 mg PSA, 400 mg C₁₈, 400 mg GCB, and 1200 mg MgSO₄ | HPLC-Q-Orbitrap-MS/MS | 28 PAs/PA N-Oxides | 87–111 | LOQ: 5 µg/kg | [20] |
| Aromatic herbs | Prepare using QuEChERs
 - Solvent for extraction: 1 mL H₂O followed by 1 mL ACN
 - Partition salts: 0.4 g MgSO₄, 0.1 g TSCDH, 0.05 g DSHCSH, and 0.1 g NaCl
 - Clean-up process: 25 mg LP-MS-NH₂ and 150 mg MgSO₄ | UHPLC-IT-MS/MS | 21 PAs/PA N-Oxides | 73–105 | LOQ: 1.2–9.9 µg/kg | [21] |
| Pollen | Prepare using QuEChERs
 - Solvent for extraction: 10 mL H₂SO₄ (0.1 M)
 - Partition salts: 4 g MgSO₄, 1 g TSCDH, 0.5 g DSHCSH, and 1 g NaCl
 - Clean-up process: 150 mg PSA and 900 mg MgSO₄ | UHPLC-TQ-MS/MS | 20 PAs | 73–106 | LOQ: 4.0–9.0 µg/kg | [22] |
| Sample Type | Sample Preparation | Instrument | Analytes | Recovery (%) | LOD/LOQ | Ref. | |
|---|---|---|---|---|---|---|---|
| Teas and Weeds | Solvent for extraction: 0.1 M of H$_2$SO$_4$ | UHPLC-MS/MS | 14 PAs/PA N-Oxides | 68-110 | LOD: 0.001–0.4 µg/kg | LOQ: 1–5 µg/kg | [23] |
| | Clean-up process: PCX-SPE | | | | | |
| | Elution solvent: MeOH + 0.5% NH$_4$OH | | | | | |
| | Solvent for extraction: 0.1 M of H$_2$SO$_4$ | UHPLC-QTOF-MS/MS | 26 PAs/PA N-Oxides | 75-120 | LOD: 1–7 µg/kg | LOQ: 10–20 µg/kg | [24] |
| | Clean-up process: filter through 0.22 µm PVDF | | | | | |
| Honey | Solvent for extraction: 6.5 mmol/L NH$_4$OH | LC-MS/MS | 28 PAs | 67–151 | LOD: 0.03–2.1 µg/kg | LOQ: 0.1–6.5 µg/kg | [25] |
| | Clean-up process: filter through 0.22 µm PVDF | | | | | |
| Herbal Medicines | Solvent for extraction: 50% MeOH + 0.05 M H$_2$SO$_4$ | UPLC-MS/MS | 21 PAs | 86–101 | LOD: 0.1–3 µg/kg | LOQ: 1.3–9 µg/kg | [26] |
| | Clean-up process: MCX—SPE | | | | | |
| | Elution solvent: 4 mL of 2.5% ammonia in MeOH | | | | | |
| Black tea and Herbal tea | Solvent for extraction: 50% MeOH solution with 0.05 M H$_2$SO$_4$ | DART-IT-MS | 6 PAs | 89–112 | LOD: 0.5–8 µg/kg | LOQ: 1.8–2.8 µg/kg | [27] |
| | Clean-up process: MCX—SPE | | | | | |
| | Elution solvent: 4 mL of 2.5% ammonia in MeOH | | | | | |
| Milk | Solvent for extraction: LLE with 0.5% FA; then LLE with DCM | LC-Q-TRAP-MS/MS Mode: ESI, MRMS | 8 PAs/PA N-Oxides | - | - | [28] |
| Dried Plant, Pollen, and Honey | Solvent for extraction: 70% MeOH in H$_2$O acidified with 2% FA | | | | | |
| Sample Type | Sample Preparation | Instrument | Analytes | Recovery (%) | LOD/LOQ | Ref. |
|---------------|--|--------------------------------|-----------------|--------------|---------------|------|
| Honey | Solvent for extraction: LLE + 0.05 M H$_2$SO$_4$ | HPLC-DAD (wavelength: 223 nm) | 2 PAs | - | - | [29] |
| Honey | Solvent for extraction: LLE + 0.05 M H$_2$SO$_4$: MeOH (85:15, v/v) | HPLC-TQ-MS/MS | 17 PAs | - | - | [30] |
| Maize | Solvent for extraction: SLE + 0.05 M H$_2$SO$_4$ | HPLC-QTRAP-MS/MS | Sum of 1, 2-unsaturated retronecine/heliotridine-PAs | - | - | [31] |
| Plant and Seeds| Prepare using QuEChERS: Solvent for extraction: 1 mL H$_2$O followed by 1 mL ACN | UHPLC-MS/MS | 45 PAs/PA N-oxides | LOD: 0.05 ng/mL | LOQ: - | [32] |
| Oregano | Solvent for extraction: 1 mL H$_2$O + 0.1 g TSCDH, 0.05 g DSHCSH, and 0.1 g NaCl | UHPLC-IT MS/MS | 21 PAs/PA N-oxides | 77–96 | LOD: 0.1–7.5 µg/kg | LOQ: 0.5–25.0 µg/kg | [33] |
| Spices and Herbs | Solvent for extraction: SLE + 0.05 M H$_2$SO$_4$ | HPLC-TQ-MS/MS | 44 PAs/PA N-oxides | 50–119 | LOD: Less than 0.1–2.6 µg/kg | LOQ: - | [5] |
| Sample Type | Sample Preparation | Instrument | Analytes | Recovery (%) | LOD/LOQ | Ref. |
|------------------|---|-----------------------------|--------------|--------------|---------------|----------|
| Herbs | Prepare using QuEChERs | HPLC-QTRAP MS/MS | 30 PAs/PA N-oxides | 61–128 | LOQ: 1 µg/kg | [34] |
| | • Solvent for extraction: add 10 mL H₂O, then add 10 mL ACN with 1% FA | | | | | |
| | • Partition salts: 4 g MgSO₄, 1 g TSCDH, 0.5 g DSHCHSH, and 1 g NaCl | | | | | |
| | • Clean-up process: 200 mg graphene | | | | | |
| Herbs | • Solvent for extraction: MeOH: H₂O: FA, 60:39.6:0.4, v/v/v | UHPLC-QTRAP-MS/MS | 33 PAs/PA N-oxides | 78–117 | LOQ: 0.5–10 µg/kg | [35] |
| | • Clean-up process: SPE | | | | | |
| Honey | Prepare using QuEChERs | LC-QTRAP MS/MS | 5 PAs/PA N-oxides | 86–111 | LOQ: 8–18 µg/kg | [36] |
| | • Solvent for extraction: 10 mL H₂O then 10 mL ACN | | | | | |
| | • Partition salts: 4 g MgSO₄ and 1 g NaCl | | | | | |
| | • Clean-up process: - | | | | | |
| Honey | • Solvent for extraction: DLLME + CHCl₃ and iPrOH | UHPLC-QTRAP-MS/MS | 9 PAs/PA N-oxides | 63–103 | LOQ: 0.03–0.06 µg/kg | [37] |
| Herbal teas | • Solvent of extraction: boiling water for infusion | UHPLC-TQ-MS/MS | 70 PAs/PA N-oxides | 73–107 | LOD: 0.01–0.02 µg/L | [38] |
| Herbal juices | • Solvent of extraction: LLE + 0.05 M of H₂SO₄ | HPLC-QTRAP-MS/MS | 30 PAs/PA N-oxides | - | - | [39] |
| | • Clean-up process: SCX-SPE | | | | | |
Table 3. Cont.

Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
Honey	Solvent of extraction: LLE + 0.05 M of H₂SO₄	HPLC-Q-TOF-MS/MS	12 PAs/PA N-oxides	79–104	LOD: 0.2–0.6 µg/kg	[40]
	Clean-up process: MCX-SPE				LOQ: 0.5–1.3 µg/kg	
Herbs	Solvent of extraction: SLE + 2% FA	HPLC-TQ-MS/MS	12 PAs/PA N-oxides	-	-	[41]
Teas and Herbs	Solvent of extraction: SLE + 0.05 M of H₂SO₄	HPLC-TQ-MS/MS	44 PAs/PA N-oxides	52–152	LOD: 0.1–7.0 µg/kg	[42]
Animal-derived samples:	Solvent of extraction: LLE or SLE + 0.2% FA solution + hexane	UHPLC-TQ-MS/MS	38 PAs/PA N-oxides	30–122	LODs: Milk and yoghurt 0.03–0.05 µg/L egg, cheese, chicken, and pork meat: 0.05–0.15 µg/kg red meat: 0.1–0.25 µg/kg	[43]
Herbal samples:	Solvent of extraction: infusion with boiling water					
Supplements:	Solvent of extraction: SLE + 0.05 M H₂SO₄					
Milk, Dairy products, eggs, meat, meat products, Herbs and Food supplements						
Table 3. Cont.

Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
Honey	Solvent of extraction: LLE + 0.15 M HCl					
 | Clean-up process: MCX-SPE | GC-Q-MS EI | 4 PAs/PA N-oxides | 73–94 | LOD: -
 | LOQ: 1 µg/kg | [44] |
| Herbs, Spices, Teas, and ice-tea drinks | Solvent of extraction: SLE + 0.1% FA in MeOH
 | Clean-up process: SPE | UHPLC-TQ-MS/MS | 31 PAs/PA N-oxides | 86–125 | No LODs for all
 | LOQs: 0.1–1 ng/g | Infusion extracts: 0.01 ng/mL | [45] |
| Infusion extracts and ice-tea drinks: | Solvent of extraction: infusion of teas with boiling water
 | Clean-up process: MCX-SPE | HPLC-TQ-MS/MS | 25 PAs/PA N-oxides | 49–121 | LOD: 0.01–1.60 µg/kg
 | LOQ: 0.03–5.40 µg/kg | [46] |
| Peppermint tea and Honey | Solvent of extraction: SLE or LLE + 0.05 M of H$_2$SO$_4$
 | Clean-up process: SCX-SPE | HPLC-Q-Orbitrap-MS/MS | 9 PAs - - | 92–115 | LOD: 0.04–0.2 µg/kg
 | LOQ: 0.1–0.7 µg/kg | [47] |
| Plants | Solvent of extraction: LLE using CHCl$_3$/MeOH (85:15) then add 5 mL of NH$_4$OH (25% solution)
 | Clean-up process: Add 2 M of HCl to extract then neutralize the aqueous layer with Na$_2$CO$_3$ and extract with CHCl$_3$ | GC-MS | 5 PAs | - | - | [48] |
Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
Feed (Silage and hay)	• Solvent of extraction: 1 M HCl, then pH adjusted to 10–11 with NH₃ • Clean-up process: SPE	GC-MS	2 (sum of retronecine derivative and heliotridine derivative)	72.7–94.4	LOD: - LOQ: 10 µg/kg	[49]
Honey	• Clean-up process: SCX-SPE	LC-IT-MS/MS	6 PAs/PA N-oxides	74–108	LOD2- LOQ: 0.25 µg/kg	[50]
Honey	• Solvent of extraction: dilution by distilled water only • Clean-up process: -	HPLC-QTRAP-MS/MS	8 PAs/PA N-oxides	93–110	LOD: 0.1–1 µg/kg LOQ: 0.2–1.5	[51]
Eggs and Meat	• Solvent of extraction: SLE by 0.2% FA and hexane, then NH₃ pH is adjusted to 9.0–10.0 • Clean-up process: MCX-SPE	UHPLC-TQ-MS/MS	51 PAs/PA N-oxides	-	LOD: - LOQ: 0.1–1 µg/kg	[52]
Milk and Soy:	• Solvent of extraction: SLE or LLE using CHCl₃:MeOH (1:1, v/v), then NH₃ pH is adjusted to 9.0–10.0	HPLC-TQ-MS/MS	9 PAs/PA N-oxides	82–105	LOD: 0.07–0.59 µg/kg LOQ: 0.20–1.43 ng/mL	[53]
Milks, Soybean, Seed oils, and Margarines	• Clean-up process: SCX-SPE • Solvent of extraction: SLE or LLE by MeOH • Clean-up process: SCX-SPE	UHPLC-Q-TOF-MS/MS	25 PAs/PA N-oxides	-	LOD: 0.05–5 ng/mL	[54]
Herbal supplements	• Solvent of extraction: SLE using MeOH • Clean-up process: -					
Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
-------------------	---	-----------------------------	----------------	--------------	--------------------------	------
Teas, Wheat, and Leek	Prepare using QuEChERS • Solvent of extraction: acidification with 10 mL water with 0.2% FA, followed by 10 mL ACN • Partition salts: 4 g MgSO₄ and 1 g NaCl • Clean-up process: 100 mg C18 and 300 mg MgSO₄	HPLC-Q-Orbitrap-MS/MS • Mode: ESI +Ve and, ESI – Ve HRMS • Column: C8 (150 mm × 2.1 mm i.d., 2.6 mm) at 25 °C • M.P: for +Ve ESI, A: 0.1% FA + 5 mM NH₄HCO₂ in H₂O, B: 0.1% FA + 5 mM NH₄HCO₂ in MeOH, for – Ve ESI, A: 5 mM of NH₄CH₃CO₂ in H₂O, B: 5 mM of NH₄CH₃CO₂ in MeOH	11 PAs/PA N-oxides	71–93	LOD: - µg/kg LOQ: 1–100 µg/kg	[55]
Herbal teas	Dry samples: • Solvent of extraction: SLE + 0.05 M of H₂SO₄, then using NH₃ pH is adjust to 6.0-7.0 • Clean-up process: MCX-SPE	HPLC-TQ-MS/MS • Mode: +Ve ESI MRM • Column: C18 (150 × 2.1 mm; 1.9µm) at 20 °C • M.P: A: 0.1% FA + 5 mM NH₄HCO₂ in H₂O, B: 0.1% FA + 5 mM NH₄HCO₂ in MeOH	23 PAs/PA N-oxides	76–125	LOD: - LOQ: 10 µg/kg	[56]
Infusion samples:	• Solvent of extraction: infusion by boiling water • Clean-up using: MCX-SPE	HPLC-TQ-MS/MS • Mode: +Ve ESI, SIM • Column: PFP (150 × 2.1 mm, 2.6 µm) at 35 °C • M.P: A: 95:5 v/v H₂O/ACN + 0.05% FA, B: 100% ACN	14 PAs/PA N-oxides	82–112	LOD: 0.4–3.3 µg/kg LOQ: 1.4–10.9 µg/kg	[57]
Honey	• Solvent of extraction: LLE + 0.05 M of H₂SO₄ • Clean-up process: SCX-SPE	HPLC-TQ-MS/MS • Mode: +Ve ESI, MRM • Column: C18 (150 × 2.1 mm; 1.9µm) at 35 °C • M.P: A: 0.1% FA + 5 mM NH₄HCO₂ in H₂O, B: 0.1% FA + 5 mM NH₄HCO₂ in MeOH	5 PAs/PA N-oxides	40–106	LOD: 0.45–0.67 ng/mL LOQ: 1.21–1.79 ng/mL	[58]
Honey	• Solvent of extraction: LLE + 0.05 M of H₂SO₄ • Clean-up process: SCX-SPE	HPLC-TQ-MS/MS • Mode: +Ve ESI, SIM • Column: C18 (100 × 30 mm, 2,5 µm) at 25 °C • M.P: A: 0.1% FA in H₂O, B: 0.1% FA in ACN	5 PAs/PA N-oxides	72–98	LOD: - LOQ: 5 µg/kg	[59]
Feed	Prepare using QuEChERS • Solvent of extraction: 10 mL ACN followed by 10 mL 0.1% FA in H₂O • Partition salts: 4 g MgSO₄ and 1 g NaCl • Clean-up process: -	UHPLC-TQ-MS/MS • Mode: +Ve ESI, MRM • Column: C18 (50 mm × 2.1 mm,1.7 µm) at 40 °C • M.P: A: 0.1% FA in H₂O, B: 0.1% FA + 1 mM NH₄HCO₂ in MeOH	5 PAs	72–98	LOD: - LOQ: 5 µg/kg	[59]
Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
-------------	--------------------	------------	----------	--------------	---------	------
Honey	• Solvent of extraction: LLE + 0.05 M of H$_2$SO$_4$					
 • Clean-up process: SCX-SPE | HPLC-TQ-MS/MS | 14 PAs/PA N-oxides | 70–125 | LOD: 0.5–3.9 µg/kg
 LOQ: 2.3–12.9 µg/kg | [60] |
| Herbal teas | • Solvent of extraction: SLE with aqueous AcOH: MeOH (1:2, v/v), then NH$_3$ (till pH 5.0–6.0)
 • Clean-up process: - | HPLC-QTRAP-MS/MS | 28 PAs/PA N-oxides | 80–95 | LOD: -
 LOQ: 10–50 µg/kg | [61] |
| Herbal teas | • Solvent of extraction: SLE + 0.05 M of H$_2$SO$_4$
 • Clean-up process: SCX-SPE | HPLC-TQ-MS/MS | 14 PAs/PA N-oxides | 93–127 | LOD: 0.4–1.9 µg/kg
 LOQ: 1.3–6.3 µg/kg | [62] |
| Eggs | • Solvent of extraction: SLE + 0.05 M of H$_2$SO$_4$ +
 ACN
 • Clean-up process: SCX-SPE | HPLC-IT-MS/MS | 2 PAs/PA N-oxides | - | LOD: - µg/kg
 LOQ: 2 ng/g | [63] |
| Honey | Prepare using QuEChERs
 • Solvent of extraction: LLE + 10 mL H$_2$SO$_4$ (0.05 M), add zinc dust, supernatant with 10 mL ACN
 • Partition salts: 4 g MgSO$_4$, 1 g TSCDH, 0.5 g DSHCCH, and 1 g NaCl
 • Clean-up process: 150 mg PSA, 45 mg C18, and 900 mg MgSO$_4$ | UHPLC-Q-MS | 9 PAs | 67–122 | LOD: -
 LOQ: 0.08–4.3 µg/kg | [64] |
| Honey | • Solvent of extraction: LLE + 0.05 M of H$_2$SO$_4$
 • Clean-up process: SCX-SPE | HPLC-QTRAP-MS/MS | 18 PAs/PA N-oxides | - | LOD: -
 LOQ: 1–3 µg/kg | [65] |
Table 3. Cont.

Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
Honey and Herbal teas	Honey Samples: LLE + 0.05 M of H₂SO₄ Clean-up process: SCX-SPE	HPLC-TQ-MS/MS	17 PAs/PA	45–122	LOD: 0.06–2.0 µg/kg LOQ: 0.18–6.4 µg/kg	[66]
Herbal Teas	Solvent of extraction: SLE + 0.05 M of H₂SO₄, then using NH₃ (till pH 6.0–7.0)		N-oxides			
	Clean-up process: reversed phase-SPE					
	Prepare using QuEChERs					
	Solvent for extraction:					
	Tablets and capsules: 10 mL deionized water with 2% FA, afterward 10 mL ACN.					
	Soft gels: defatted with 4 mL hexane, add 10 mL deionized water with 2% FA, afterward 10 mL ACN.					
	Partition salts: 4 g MgSO₄ and 1 g NaCl					
	Clean-up process: 100 mg C18 silica and 300 mg MgSO₄					
Herbal supplement in form of tablets, capsules, soft gels, and liquids	HPLC-IT-MS/MS		11 PAs/PA	70–120	LOD: - LOQ: 50–2500 µg/kg	[67]
Honey	Solvent of extraction: LLE + 0.5 M of H₂SO₄ Clean-up process: SCX-SPE		N-oxides			
	HPLC-TQ-MS/MS					
	Mode: +Ve ESI, MRM					
	Column: C18 (150 × 2.1 mm i.d., 1.8 µm) at 40 °C					
	M.P: A: 0.1% FA in H₂O, B: 0.1% FA in MeOH					
	HPLC-IT-MS/MS		11 PAs/PA	87	LOD: 0.01–0.03 µg/mL LOQ: 0.04–0.10 µg/kg	[69]
	Mode: +Ve ESI					
	Column: C18 (150 × 2.1 mm, 3 µm) at 30 °C					
	M.P: A: 0.05% FA in H₂O, B: 100% ACN					
Honey	Solvent of extraction: LLE + 0.05 M of H₂SO₄ Clean-up process: SCX-SPE		7 PAs/PA	-	LOD: 50 ng/kg	[70]
	HPLC-IT-MS/MS		N-oxides			
	Mode: +Ve ESI					
	Column: C18 (150 × 2.1 mm i.d., 4 µm)					
	M.P: 0.1% FA in H₂O					
Table 3. Cont.

Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
Herbs and Honey	• Solvent of extraction: LLE or SLE 0.05 M of H₂SO₄	HPLC-QTRAP-MS/MS	3 PAs/PA N-oxides	69–104	LOD: 0.1–1 µg/kg LOQ: 0.3–3 µg/kg	[71]
	• Clean-up process: SCX-SPE					
	Honey	HRGC-Q-MS	2 PAs/PA N-oxides	-	LOD: 2 µg/kg LOQ: 6 µg/kg	[72]
	• Solvent of extraction: 0.05 M sulfuric acid, then add zinc and filtration using glass wool					
	• Clean-up process: SCX-SPE					
	Milk	UHPLC-QHQ-MS/MS	21 PAs/PA N-oxides	44–67	LOD: - LOQ: 0.05–0.2 µg/L	[73]
	• Solvent of extraction: 0.1% FA in MeOH for precipitation, followed by evaporation to concentration					
	• Clean-up process: -					
Honey, Food supplements, and feed	Prepare using QuEChERs	HPLC-Orbitrap-MS	14 PAs/PA N-oxides	-	-	[74]
Mead and fennel honey:	• Solvent of extraction: LLE + 0.05 M of H₂SO₄, LLE with pentane: DCM (2:1, v/v)	HRGC-Q-MS	6 PAs/PA N-oxides	74–88	LOD: - LOQ: 10 µg/kg	[75]
Honey, pollen, and honey-products	• Clean-up process: SCX-SPE					
	• Rest of foodstuff:					
	• Solvent of extraction: LLE with pentane: DCM (2:1, v/v)					
	• Clean-up process: SCX-SPE					
Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
-------------	--------------------	--------------------	---------------------------	--------------	---------------	----------------
Honey	Prepare using QuEChERs					
- Solvent of extraction: dilution with 4 mL H2O, followed by 4 mL ACN
- Partition salts: 0.8 g MgSO4, 0.2 g TSCDH, 0.1 g DSHCSh, and 0.2 g NaCl
- Clean-up process: dSPE (500 mg MgSO4)
- Mode: +VE ESI
- Column: C18 (150 × 2.1 mm, 5 mm)
- M.P: A: 0.1% CH3COOH in H2O, B: 0.1% CH2COOH in MeOH | HPLC-TQ-MS/MS
HRGC-Q-MS
HPLC-QTRAP-MS/MS
LC-TOF-MS
HPLC-diode array
HRGC-MS
HPLC-IT-MS | 16 PAs/PA N-oxides
17 PAs/PA N-oxides
342 PAs/PA N-oxides
2 PAs/PA N-oxides
2 (sum of retronecine and heliotridine)
1 PAs | 97–105
60–110
-
99–107
80–86 | LOD: -
LOD: -
LOD: -
LOD: -
LOD: - | 0.26
-
1.32
5.29 | [76]
[77]
[78]
[79]
[80] |
| Honey | Solvent of extraction: LLE + 0.05 M of H2SO4
- Clean-up process: SCX-SPE | | | | LOD: -
LOD: - | [77] |
| Plant | Solvent of extraction: SLE by MeOH
- Clean-up process: -
- Mode: +Ve ESI MRM
- Column: C18 at 25 °C
- M.P: A: 0.5% FA in H2O, B: 0.5% FA + 5% H2O in 94.5% MeOH
- Column: C18 (150 mm × 2.1 mm i.d., 3 μm)
- M.P: 0.1% CH3COOH in H2O, B: 100% ACN | HPLC-IT-MS
LC-TOF-MS | 342 PAs/PA N-oxides | - | LOD: -
LOD: - | 0.26
1.04 | [78]
[81] |
| Plant | Solvent of extraction: closed system technique of microwave-assisted extraction
- Clean-up process: -
- Mode: +Ve ESI SIM
- Column: C18(3.9 mm × 150 mm, 5 μm)
- M.P: A: 0.1% FA in 20 mM NH4CH3CO2, B: 0.1% FA in ACN | HPLC-diode array
HPLC-QTRAP-MS/MS
HPLC-TQ-MS/MS
HRGC-MS
HPLC-IT-MS | 2 PAs/PA N-oxides | 99–107 | LOD: 0.5 ng/mL
LOD: 0.19 ng/mL | 0.26
1.32
1.04
0.01 | [79]
[81] |
| Honey | Solvent of extraction: SCX-SPE followed by 2 reduction steps using zinc and LiAlH4 with subsequent sialylation
- Clean-up process: -
- Solvent of extraction: 0.2% of HCL in an ultrasonic bath followed by centrifuge for 10 min then filtration through a 0.45 μm membrane | HRGC-MS
HRGC-MS
HPLC-IT-MS | 2 (sum of retronecine and heliotridine) | 80–86 | LOD: -
LOD: -
LOD: - | 0.26
-
0.5 | [80]
[81] |
| Plant | Solvent of extraction: closed system technique of microwave-assisted extraction
- Clean-up process: -
- Mode: ESI
- Column: C18 (250 × 4.6 mm i.d.; 5 μm) at 25 °C
- M.P: A: 1% FA in H2O, B: 100% ACN | HPLC-IT-MS | 1 PAs | - | LOD: 0.5 ng/mL
LOD: 1 ng/mL | 0.26
0.5 | [81] |
Table 3. Cont.

Sample Type	Sample Preparation	Instrument	Analytes	Recovery (%)	LOD/LOQ	Ref.
Plant	• Solvent of extraction: 0.2% of HCL in an ultrasonic bath, using ammonium solution pH was adjusted to 9–10 and extracted using CHCl₃	HPLC-IT-MS	13 PAs/PA N-oxides	91–102	LOD: 0.26 nmol/mL LOQ: -	[82]

ACN: acetonitrile; AcOH: acetic acid; C18: octadecyl bonded silica; CHCl₃: chloroform; DART: direct analysis in real time; DCM: dichloromethane; DLLME: dispersive liquid–liquid microextraction; DSHCSh: disodium hydrogen citrate sesquishydrate; dSPE: dispersive solid-phase extraction; ESI: electrospray ionization; EtOAc: ethyl acetate; FA: formic acid; GCB: graphitized carbon black; H₂O: water; H₂SO₄: sulfuric acid; HCl: hydrochloric acid; HDMS²: high-definition MS²; HILIC: hydrophobic interaction liquid chromatography; HPLC: high-performance liquid chromatography; HRMS: high resolution mass spectrometry; IM: ion mobility; iPrOH: isopropyl alcohol; IT: ion-trap LLE: liquid–liquid extraction; LOD: limit of detection; LOQ: limit of quantification; LP-MS-NH₂: large pore mesostructured silica with amino groups; MAE: microwave-assisted extraction; MCX: mixed-mode cationic exchange; MeOH: methanol; MRM: multiple reaction monitoring; MS/MS: tandem mass spectrometry; MS: mass spectrometry; MSDP: matrix solid-phase dispersion; Na₂CO₃: sodium carbonate; Na₂SO₄: sodium sulphate; NaCl: sodium chloride; NH₃: ammonia; NH₄OH: ammonium hydroxide; PA N-oxides: pyrrolizidine alkaloids N-oxide; PAs: pyrrolizidine alkaloids; PFP: pentafluoro phenylpropyl column; PHWE: pressurized hot water extraction; PSA: primary secondary amine; PVD: polyvinylidene difluoride; Q: single quadrupole; QTRAP: hybrid triple quadrupole-linear ion trap; QuEChERS: quick, easy, cheap, effective, rugged, and safe; QuPPe: quick polar pesticides; RP-MS: chromatographic column based on core enhanced technology; SCX: strong cation exchange; SIM: selected ion monitoring; SLE: solid–liquid extraction; SPE: solid-phase extraction; TQ: triple quadrupole; TSCDH: trisodium citrate dihydrate; UHPLC: ultra-high-performance liquid chromatography.
5.1. PA Extraction

PA extraction from different samples depends on the form and type of the alkaloid of interest, as well as the complexity of the matrix used to implement the extraction process. The extraction process may involve three stages: sample preparation, PA extraction, and clean up. The preparation process can include simple cutting of a herbal product or homogenization/pulverization of frozen or dried material to increase the surface area for the extraction [83]. As shown in Table 3, the solid–liquid extraction is still the technique most widely used for sample preparation, although other extraction and purification techniques such as solid-phase extraction (SPE) or the QuEChERS procedure are being applied since they allow for cleaner extracts [84]. Extraction from differently prepared samples involves treatment with a specific solvent under suitable conditions to extract the maximum quality and quantity of the target alkaloids. All forms of PAs, including the N-oxides, have slight solubility in nonpolar solvents, i.e., hexane, and are therefore more efficiently extracted with polar solvents, such as methanol or with aqueous dilute acid; therefore, both methanol and dilute aqueous solutions of organic or mineral acids are good extraction solvents for PAs and their N-oxide derivatives [83]. Considering solubility effects, several techniques have been used to extract PAs from different matrices. Some examples of these extraction techniques are maceration [85], refluxing [86], percolation [87], sonication [88], Soxhlet-based extraction [89], supercritical fluid extraction [90], pressurized liquid extraction [91], microwave-assisted extraction [79], and solid phase extraction [92]. For example, These et al. [85] used 25% methanol in 2% formic acid for maceration in a single extraction process, followed by filtration or centrifugation [85]. El-Shazly et al. [93] homogenized herbal components in 0.5 N hydrochloric acid, followed by soaking for 1 h [93]. Mroczek et al. [87] extracted PAs by refluxing with 1% tartaric acid in methanol [87]. The extraction conditions can affect the quality and quantity of the PA yield, e.g., the temperature of the extraction can influence the extraction process; therefore, the prolonged use of Soxhlet extraction under a high reflux temperature has been found to result in a marked decrease in the PA yield [94].

A food matrix could be described as a complex assembly of nutrients and non-nutrients interacting physically and chemically. A food matrix could influence the release, mass transfer, and stability of many food compounds [95]; e.g., in terms of food analysis, there is variation between honey and tea or other herbal product, so a matrix should be considered when attempting to achieve effective extraction results.

Solid phase extraction (SPE) techniques are another option for extracting and cleaning up PAs. The studies in Table 3 showed the utilization of SPE materials, e.g., Ergosil, C18-material, and strong cation exchange (SCX) for herbal products, including tea and spices, and illustrated that using SPE is necessary for many reasons, e.g., switching sample matrices to a form more compatible with chromatographic analyses, concentrating analytes for increased sensitivity, removing interferences to simplify chromatography and improve quantitation, and protecting the analytical column from contaminants. It is noted in most studies, as in Table 3, that there is a need to elute PAs and PA-N-oxides in SCX-based SPE with a basic solution, e.g., dilute NH₄OH.

5.2. PA Separation

PA separation is the main step after extraction. Many separation procedures can be used to analyze PAs, among which chromatographic techniques are currently the most utilized due to their ease of use and stability and reproducibility of results. Generally, the chromatographic separation and MS analysis of PAs and their N-oxides is a complex and complicated process owing to large numbers of structural and stereoisomers. This complexity and variation in the chemical structure enforced the utilization of many separations and isolation techniques in an attempt to solve the compound complexity matrix and reduce the problem of compound coelution. Examples of the separation techniques used are high-speed counter-current chromatography and capillary electrophoresis methods. Furthermore, detection techniques such as colorimetric, nuclear magnetic resonance-based,
immunological-based, and UV-spectrometry-based or mass spectrometry-based techniques are now widely used to detect PAs, allowing the process of separation and detection and, therefore, sample preparation to be simpler and easier to apply [96]. The most efficient chromatographic techniques that were used to separate PAs were the liquid–gas, liquid–liquid, or liquid–solid techniques.

5.2.1. PA Separation by Gas Chromatography

Table 3 shows examples of the most used gas chromatography methods for the analysis of PAs. PA N-oxides are not volatile and therefore cannot be detected by gas chromatography. Consequently (as shown in Table 3), in the reduction in PAs to their cores, retronecine and heliotridine, LiAlH4 is usually used as a reducing reagent. After reduction, the compounds are subjected to derivatization using N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), heptafluorobutyric acid (HFBA), or other similar reagents. The inability to directly analyze PA N-oxides and the extensive preparation steps, including derivatization, causes the use of gas chromatography techniques to be impracticable for the analysis of PAs. Furthermore, reducing all PAs to their bases does not enable relative amounts of the original individual PAs and the N-oxides to be assessed.

5.2.2. High-Performance Liquid Chromatography Separation of PAs

The use of high-performance liquid chromatography (HPLC), ultra-high-performance liquid chromatography (UHPLC), and liquid chromatography (LC) has been attracting an increasing interest for the separation of PAs, especially as LC–MS instruments become increasingly available (Table 3). LC–MS/MS methods have low detection limits (1 µg/kg or lower) and can be used to detect PAs and PA N-oxides simultaneously in a single run, as well as offering other advantages. Compared with GC, LC–MS offers the high-efficiency separation and detection of Pas without the need for derivatization, which means easier sample preparation. Even so, one of the main challenges in determining Pas or PA N-oxides by LC, HPLC, or UHPLC is the co-occurrence of isomers, which causes coelution, making it difficult to separate these compounds chromatographically and to identify them by mass spectrometry (since they have the same molecular weight and often very similar fragmentation patterns). Moreover, the disadvantage of these analysis techniques is the use of a targeted (non-broad-spectrum) setup, which could result in missing some PAs; furthermore, quantification necessitates the use of certified reference standards that are rare and very expensive [15,97]. Since targeted analysis focuses on specific compounds, it will not identify other compounds during analysis, so it is not effective for discovering new compounds or analyzing unknown samples [98]. In this case, nontarget analysis can reveal more broad information about new compounds [99]. An analysis of Table 3 indicated that the LC–MS methods can be used for both simple and complex matrices by slightly modifying the sample preparation methods to include a cleaning step.

There are some PA isomers recommended to be monitored by the European Commission Regulation 2020/2040, e.g., indicine, echinatine, rinderine (possible coelution with lycopsamine/intermedine), indicine-N-oxide, echinatine-N-oxide, rinderine-N-oxide (possible coelution with lycopsamine-N-oxide/intermedine-N-oxide), integerrime (possible coelution with senecivernine/senecionine), integerrime-N-oxide (possible coelution with senecivernine-N-oxide/senecionine-N-oxide), heliosupine (possible coelution with echimidine), heliosupine-N-oxide (possible coelution with echimidine-N-oxide), spartiodine (possible coelution with seneciphylline), spartiodine-N-oxide (possible coelution with seneciphylline-N-oxide), usaramine (possible coelution with retrorsine), and usaramine N-oxide (possible coelution with retrorsine N-oxide) [47]. Chromatographic resolution is fundamental for the differentiation of isomeric PAs such as intermedine, indicine, lycopsamine, rinderine, and echinatine (m/z 300) and their N-oxides (m/z 316) as well as integerrime, senecionine, and senecivernine (m/z 356) and their N-oxides (m/z 352), [100]. Klein, et al. [100] applied different acidic and alkaline mobile phases and succeeded to differentiate between some of the PA isomers, especially when alkaline conditions were...
applied. In the same study, the dimension of the C18 column and its particle size affected the resolution of the PA peaks produced. When a shorter column was used, this allowed for the reduction in sample size and produced a better separation and higher peak resolution. The problem of PA isomer separation will continue to be the most important problem in the analysis of PAs with only partial solutions, which allow for the separation and differentiation of particular groups of these alkaloids.

5.3. PA Identification

Colorimetric, nuclear magnetic resonance-based (NMR), immunological, UV-spectrometry-based, and capillary electrophoresis methods have been used to analyze PAs as detection techniques, and NMR is used for structure identification [83] as well. The identification of PAs separated by LC procedures using MS-generated data remains challenging due to the high diversity and relative complexity of PA structures. Many characteristic mass fragments for the different types of PAs have been determined (Table 4) [85]. For example, Joosten, et al. [101] described the pyrrolizidines in *Jacobaea vulgaris* where 25 PAs were identified based on typical mass spectral transitions and retention time [101]. Lu et al. [102] performed a study on pyrrolizidines in the *Senecio* species and identified two mass ions at *m/z* 120 and 138 indicating the presence of retronecine-type PAs, as well as fragments at *m/z* 122, 150, and *m/z* 168 distinguishing otonecine-type PAs. Lu et al. [102] also identified fragments 122, 140 *m/z* as characteristic for the platynecine type of PAs. Moreover, PA N-oxides were found to produce a neutral fragment at *m/z* 44 [102]. Zhou et al. [103] developed a coupled precursor ion scan (PIS) and multiple reaction monitoring (MRM) approach to improve PA identification. Ruan et al. [104] studied the fragmentation pattern of some PA N-oxides and their related PAs. Retronecine-type PA N-oxides were found to produce two characteristic fragment clusters at *m/z* 118–120 and 136–138, which were not detected in the parent retronecine-type PAs. Likewise, fragmentation of the platynecine-type PA N-oxides was found to produce two characteristic ion clusters at *m/z* 120–122 and 138–140.

Table 4. Selected PAs and PA-N-oxides parent ions (MS1) and daughter ions (MS2).

No.	Compound	MS1 *a* (m/z)	MS2 *b* (m/z)	DP *c* (V)	EP *d*	CE *e* (eV)	CXP *f* (V)	Reference
1	Monocrotaline	326.2	121	53	10	28	45	[34]
	326.3	121.2	106	10	39	10	10	[105]
	326.1	121	131	10	41	10	10	[106]
		94.0	106	10	73	10	10	[107]
		120.1	161	10	43	8	8	[51]
		94.1	161	10	73	13	12	[51]
		194.1	161	10	39	12		
2	Erucifoline	350.2	138	42	10	33	64	[34]
	350.2	94.0						[101]
	350.3	67.2	121	10	73	12		[106]
3	Monocrotaline NOs	342.2	137	38	10	34	53	[34]
		137.0	136	10	41	6	6	[105]
		120.1	136	10	51	6	6	[105]
		342.2	146	10	15	22		[106]
4	Europine	330.2	138	43	10	22	68	[34]
	330.4	138.1	66	10	31	10		[106]
5	Intermedine	300.1	94.1	96	10	33	12	[34]
		138.1	96	10	27	8		[51]
		156.0	96	10	37	10		[51]
	300.2	94.1	81	10	37	6		[51]
		138.1	81	10	31	6		[105]
	300.4	94.0	96	10	37	8		[106]
6	Indicine	300.1	156	42	10	24	48	[34]
	300.5	94.1	91	10	37	8		[106]
Table 4. Cont.

No.	Compound	MS1 \(^{a}\) (m/z)	MS2 \(^{b}\) (m/z)	DP \(^{c}\) (V)	EP \(^{d}\)	CE \(^{e}\) (eV)	CXP \(^{f}\) (V)	Reference
7	Lycopsamine	300.2	216	10	39	48	[34]	
		300.1	94.1	216	10	33	12	[51]
		138.1	96	216	10	33	8	[51]
		156.0	96	216	10	37	10	[51]
		300.2	156.2	60	10	39	8	[107]
		138.1	91	126	10	39	8	[107]
		94.1	91	126	10	37	8	[107]
		300.5	94.0	86	10	37	29	[106]
8	Erucifoline NOs	366.2	118	10	33	48	[34]	
		366.1	94.1	111	10	65	10	[106]
9	Europine NOs	346.2	256	10	25	75	[34]	
		172.2	256	10	43	6	[106]	
10	Intermedine NOs	316.2	172.2	56	10	37	14	[106]
		316.4	172.2	56	10	39	12	[106]
11	Indicine NOs	316.2	172.2	31	10	31	68	[34]
		316.4	172.2	31	10	10	12	[106]
12	Lycopsamine NOs	352.3	120.1	10	43	8	[105]	
		138.1	116	10	43	8	[105]	
		352.2	120.0	116	10	43	8	[105]
		352.1	138.1	161	10	43	12	[105]
		94.0	161	10	39	12	[105]	
		172.3	120.0	161	10	41	14	[106]
13	Retrorsine	354.3	222.0	10	41	12	[105]	
		120.1	222.0	10	10	53	6	[105]
		354.2	222.0	28	10	33	47	[34]
		222.1	222.0	28	10	33	47	[106]
15	Retrorsine NOs	368.3	94.0	111	10	73	16	[105]
		120.1	94.0	111	10	49	6	[105]
		368.1	120.1	111	10	49	6	[105]
		94.0	119	111	10	39	8	[105]
		84.0	120.1	120	10	71	6	[105]
		368.2	118	38	10	37	64	[34]
		368.3	94.0	60	10	30	12	[106]
16	Seneciphylline	334.2	138	43	10	31	75	[34]
		120.0	138	43	10	31	75	[101]
		138.1	138	43	10	31	75	[105]
		334.3	138.1	120	10	39	10	[105]
17	Heliotrine	314.2	138.1	35	10	26	48	[34]
		138.1	138	35	10	26	48	[101]
		314.3	138.1	76	10	31	8	[105]
		314.2	138.1	76	10	31	8	[105]
		314.2	138.2	86	10	29	10	[106]
18	Seneciphylline NOs	350.2	118	37	10	28	75	[34]
		120.0	118	37	10	28	75	[101]
		94.1	94.1	86	10	67	16	[105]
		118.1	94.1	86	10	45	6	[105]
		350.4	94.1	121	10	63	8	[106]
19	Heliotrine NOs	330.2	172	45	10	26	53	[34]
		330.3	172.2	45	10	39	12	[106]
No.	Compound	MS1* (m/z)	MS2* (m/z)	DP* (V)	EP* (eV)	CE* (eV)	CXP† (V)	Reference
-----	----------------	------------	------------	---------	----------	----------	----------	-----------
20	Senecionine	336.2	120.0	121	10	41	20	[105]
		138.0	121	10	41	8		[105]
		120	27	10	33	42		[34]
		120	30					[101]
		336.1	120.1	136	10	37	8	[51]
		93.9	136	10	39	12		[51]
		91.1	136	10	77	14		[51]
		336.3	120.0	136	10	43	10	[106]
21	Senecivernine	336.2	120	43	10	28	46	[34]
		336.3	120.1	136	10	41	10	[106]
22	Senecionine NOs	352.3	94.2	91	10	67	6	[105]
		136.0	91	10	51	12		[105]
		120.0	30					[101]
		136	35	10	37	47		[34]
		120.1	156	10	39	6	[51]	
		324.3	156	10	37	14		[51]
		93.9	156	10	41	12		[51]
		352.4	94.0	126	10	65	8	[106]
23	Senecivernine NOs	352.2	136	43	10	36	48	[34]
		352.4	94.0	131	10	63	8	[106]
24	Echimidine	398.2	220	23	10	24	54	[34]
		120.2	131	10	31	10		[51]
		220.1	131	10	23	10		[51]
		83.0	131	10	29	6	[51]	
		120.3	75	10	35		[107]	
		398.3	220.3	75	10	22		[107]
		120.0	76	10	35	8	[105]	
		220.1	76	10	25	12		[105]
		398.2	120.0	111	10	33	10	[106]
25	Senkirkine	366.3	168.0	86	10	43	8	[105]
		150.0	86	10	39	8	[105]	
		366.2	168	44	10	24	54	[34]
		366.1	168.2	96	10	39	12	[106]
26	Lasiocarpine	412.2	220	53	10	22	67	[34]
		412.3	120.1	96	10	39	10	[106]
27	Lasiocarpine NOs	428.2	254	75	10	30	38	[34]
		428.4	94.1	111	10	69	6	[106]
28	Jacobine	352.2	155	47	10	34	47	[34]
29	Jacobine NOs	368.2	296	36	10	26	45	[34]
30	Spartioidine	334.2	120.0					[101]
31	Integerrimine	336.2	120.0					[101]
32	Integerrimine NOs	352.2	120.0					[101]
33	Jacozine	350.2	94.0					[101]
34	Riddelliine	350.2	94.0					[101]
35	Riddelliine NOs	366.2	94.0					[101]
36	Jacobine	352.2	120.0					[101]
37	Jacobine NOs	368.2	94.0					[101]
38	Jacobine	370.2	120.0					[101]
39	Jacobine NOs	386	94.0					[101]
40	Acetylseneciphyline	376.2	120.0					[101]
41	Acetylseneciphyline NOs	392.2	120.0					[101]
42	Jacobine	388.2	120.0					[101]
43	Jacobine NOs	404.2	94.0					[101]
44	Acetylerucifoline	392.2	120.0					[101]
Table 4. Cont.

No.	Compound	MS1 \(^a\) (m/z)	MS2 \(^b\) (m/z)	DP \(^c\) (V)	EP \(^d\) (V)	CE \(^e\) (eV)	CXP \(^f\) (V)	Reference
45	Acetylerucifoline NOs	408.2	94.0		40		[101]	
46	Acetyllycopsamine	342.3	198.4	53	10	38		
		138.3	53	10	36		[107]	
		120.2	53	10	36		[107]	
		94.2	53	10	60		[107]	
47	Echimidine NOs	414.2	352	42	10	21	75	[34]
		414.4	396.4	80	10	35		
		120.2	51	10	38		[107]	
		120.3	51	10	38			
48	Echiumine	382.5	220.3	51	10	25		
		120.3	51	10	38			
49	Echiumine NOs	398.3	220.4	80	10	22		
		120.2	80	10	35			
50	7,9-Ditigloylretronecine NOs	336.0	138.2	60	10	42		

\(a\)—precursor ion, \(b\)—product ion, \(c\)—declustering potential, \(d\)—entrance potential, \(e\)—collision energy, \(f\)—collision cell exit potential, NOs (PA N-oxides).

6. Conclusions

Pyrrolizidine alkaloids are compounds with different toxicity symptoms that should be detected in food and feed materials. PAs can be extracted similarly to other members in the class of alkaloids by acid–base, liquid–liquid, or liquid–solid extraction. Different techniques can be used to separate PAs and their N-oxides, of which the most common are LC–MS or GC–MS. GC–MS cannot be used to identify PA N-oxides directly and requires extensive sample preparation; consequently, GC–MS is generally considered to be impracticable for PA separation. On the other hand, LC–MS and LC–MS/MS are currently the most applied techniques for the separation and identification of PAs and their N-oxides because of numerous advantages, including effective separation, the potential for a wide range of compounds to be identified, and simple sample preparation. Nowadays, there are methods for detecting and identifying PAs from MS/MS traces, but these methods still need to be improved in the future in order to reduce the time and to distinguish between PA isomers more accurately. On the other hand, nontargeted PA detection needs more development to increase the specificity and sensitivity of the process to more accurately identify these alkaloids. Further clinical studies are recommended to assess the pharmacodynamic and pharmacokinetic effects of Pas on humans and animals in more detail. Finally, studies on Pas require a high safety level and detailed analyses.

Author Contributions: S.F.A.-S., A.M.A. and M.E.M. all are contributed to the conceptualization, data collection, writing, and revising. M.E.M. applied for funding. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deputyship for Research and Innovation, the Ministry of Education in Saudi Arabia, project number [INSTV006].

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Saudi Food and Drug Authority (SFDA) for their assistance and valuable support.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect those of the SFDA or its stakeholders. Guaranteeing the accuracy and validity of the data is the sole responsibility of the research team.
References

1. Dembitsky, V.M. Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 2014, 21, 1539–1581. [CrossRef]

2. Zotchev, S.B. Alkaloids from marine bacteria. Adv. Bot. Res. 2013, 68, 301–333. [CrossRef]

3. Tamariz, J.; Burgueno-Tapia, E.; Vázquez, M.A.; Delgado, F. Pyrrolizidine Alkaloids. Alkaloids Chem. Biol. 2018, 80, 1–314. [CrossRef] [PubMed]

4. Smith, L.W.; Culvenor, C.C.J. Plant sources of hepatotoxic pyrrolizidine alkaloids. J. Nat. Prod. 1981, 44, 129–152. [CrossRef]

5. Kaltner, F.; Ryckhli, M.; Gareis, M.; Gottschalk, C. Occurrence and risk assessment of pyrrolizidine alkaloids in spices and culinary herbs from various geographical origins. Toxins 2020, 12, 155. [CrossRef] [PubMed]

6. Moreira, R.; Pereira, D.M.; Valentião, P.; Andrade, P.B. Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 2018, 19, 1669. [CrossRef]

7. Tamariz, J.; Burgueno-Tapia, E.; Vázquez, M.A.; Delgado, F. Pyrrolizidine Alkaloids; Knöllker, H.-J., Ed.; Academic Press Inc.: Cambridge, MA, USA, 2018; Volume 80, p. 314.

8. Stegelmeier, B.L. Pyrrolizidine Alkaloid–Containing Toxic Plants (Senecio, Crotalaria, Cynoglossum, Amsinckia, Heliotropium, and Echium spp.). Vet. Clin. Food Anim. Pract. 2011, 27, 419–428. [CrossRef]

9. Schramm, S.; Köhler, N.; Rozhov, W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules 2019, 24, 498. [CrossRef] [PubMed]

10. Xia, Q.; He, X.; Shi, Q.; Lin, G.; Fu, P.P. Quantitation of DNA reactive pyrrolic metabolites of senecionine–A carcinogenic pyrrolizidine alkaloid by LC/MS/MS analysis. J. Food Drug Anal. 2020, 28, 167–174. [CrossRef] [PubMed]

11. Sharma, S.; Agrawal, R. Toxic behaviour of naturally occurring pyrrolizidine alkaloids. Int. J. Multidiscip. Curr. Res. 2015, 3, 594–597.

12. Teschke, R.; Vongdala, N.; Quan, N.V.; Quy, T.N.; Xuan, T.D. Metabolic toxification of 1, 2-unsaturated pyrrolizidine alkaloids causes human hepatic sinusoidal obstruction syndrome: The update. Int. J. Mol. Sci. 2021, 22, 10419. [CrossRef]

13. Casado, N.; Morante-Zarcero, S.; Sierra, I. The concerning food safety issue of pyrrolizidine alkaloids: An overview. Trends Food Sci. Technol. 2022, 120, 123–139. [CrossRef]

14. Zheng, P.; Xu, Y.; Ren, Z.; Wang, Z.; Wang, S.; Xiong, J.; Zhang, H.; Jiang, H. Toxic Prediction of Pyrrolizidine Alkaloids and Structure-Dependent Induction of Apoptosis in HepaRG Cells. Oxidative Med. Cell. Longev. 2021, 2021, 882304. [CrossRef]

15. EFSA Panel on Contaminants in the Food Chain. Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J. 2011, 9, 2406. [CrossRef]

16. EFSA Panel on Contaminants in the Food Chain; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschnweiler, B.; Cecattelli, S.; Cottrill, B.; Dinovi, M.; Edler, L. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J. 2017, 15, e04908. [CrossRef] [PubMed]

17. LEYEN, U.V.D. COMMISSION REGULATION (EU) 2020/2040 of 11 December 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of pyrrolizidine alkaloids in certain foodstuffs. J. Eur. Union Off. J. Eur. Union 2020.

18. Bundesinstitut für Risikobewertung. Pyrrolizidinalkaloide: Gehalte in Lebensmitteln Sollen Nach wie vor so Weit wie Möglich Gesenkt Werden; Bundesinstitut für Risikobewertung: Berlin, Germany, 2016.

19. Guo, Q.; Yang, Y.; Li, J.; Shao, B.; Zhang, J. Screening for plant toxins in honey and herbal beverage by ultrahigh-performance liquid chromatography-ion mobility-quadrupole time of flight mass spectrometry. Am. J. Anal. Chem. 2022, 13, 108–134. [CrossRef]

20. León, N.; Miralles, P.; Yusá, V.; Coscollá, C. A green analytical method for the simultaneous determination of 30 tropane and pyrrolizidine alkaloids and their N-oxides in teas and herbs for infusions by LC-Q-Orbitrap HRMS. J. Chromatogr. A 2022, 1666, 462835. [CrossRef]

21. Izara, S.; Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs. Food Chem. 2022, 380, 132189. [CrossRef] [PubMed]

22. Martinello, M.; Manziniello, C.; Gallina, A.; Mutinelli, F. In-house validation and application of UHPLC-MS/MS method for the quantification of pyrrolizidine and tropane alkaloids in commercial honey bee-collected pollen, teas and herbal infusions purchased on Italian market in 2019–2020 referring to recent European Union regulations. Int. J. Food Sci. Technol. 2022, 57, 7505–7516.

23. Han, H.; Jiang, C.; Wang, C.; Wang, Z.; Chai, Y.; Zhang, X.; Liu, X.; Lu, C.; Chen, H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food Control 2022, 132, 108518. [CrossRef]

24. Bandini, T.B.; Spisso, B.F. Development and validation of an LC-HRMS method for the determination of pyrrolizidine alkaloids and quinolones in honey employing a simple alkaline sample dilution. J. Food Meas. Charact. 2021, 15, 4758–4770. [CrossRef]

25. Jeong, S.H.; Choi, E.Y.; Kim, J.; Lee, C.; Kang, J.; Cho, S.; Ko, K.Y. LC-ESI-MS/MS simultaneous analysis method coupled with cation-exchange solid-phase extraction for determination of pyrrolizidine alkaloids on five kinds of herbal medicines. J. AOAC Int. 2021, 104, 1514–1525. [CrossRef] [PubMed]

26. Kwon, Y.; Koo, Y.; Jeong, Y. Determination of Pyrrolizidine Alkaloids in Teas Using Liquid Chromatography–Tandem Mass Spectrometry Combined with Rapid-Easy Extraction. Foods 2021, 10, 2250. [CrossRef]
27. Chen, Y.; Li, L.; Xiong, F.; Xie, Y.; Xiong, A.; Wang, Z.; Yang, L. Rapid identification and determination of pyrrolizidine alkaloids in herbs and food samples via direct analysis in real-time mass spectrometry. *Food Chem.* 2021, 334, 127472. [CrossRef]

28. Valese, A.C.; Dagher, H.; Muller, C.M.O.; Molognoli, L.; da Luz, C.F.P.; de Barcellos Falkenberg, D.; Gonzaga, L.V.; Brugnerotto, P.; Gorniak, S.L.; Barreto, F. Quantification of pyrrolizidine alkaloids in Senecio brasiliensis, bee hive pollen, and honey by LC-MS/MS. *J. Environ. Sci. Health Part B* 2021, 56, 685–694. [CrossRef] [PubMed]

29. Moreira, R.; Fernandes, F.; Valentaö, P.; Pereira, D.M.; Andrade, P.B. *Echium plantagineum* L. honey: Search of pyrrolizidine alkaloids and polyphenols, anti-inflammatory potential and cytotoxicity. *Food Chem.* 2020, 328, 127169. [CrossRef]

30. He, Y.; Zhu, L.; Ma, J.; Wong, L.; Zhao, Z.; Ye, Y.; Fu, P.P.; Lin, G. Comprehensive investigation and risk study on pyrrolizidine alkaloid contamination in Chinese retail honey. *Environ. Pollut.* 2020, 267, 115542. [CrossRef] [PubMed]

31. Letsyo, E.; Adams, Z.S.; Dzikunoo, J.; Asante-Donyinah, D. Uptake and accumulation of pyrrolizidine alkaloids in the tissues of maize (*Zea mays* L.) plants from the soil of a 4-year-old Chromolaena odorata dominated fallow farmland. *Chemosphere* 2021, 270, 128669. [CrossRef] [PubMed]

32. Prada, F.; Stashenko, E.E.; Martinez, J.R. LC/MS study of the diversity and distribution of pyrrolizidine alkaloids in Crotalaria species growing in Colombia. *J. Sep. Sci.* 2020, 43, 4322–4337. [CrossRef]

33. Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A miniaturized QuEChERS method combined with ultrahigh liquid chromatography coupled to tandem mass spectrometry for the analysis of pyrrolizidine alkaloids in oregano samples. *Foods* 2020, 9, 1319. [CrossRef] [PubMed]

34. Kaczyński, P.; Lozowicka, B. A novel approach for fast and simple determination pyrrolizidine alkaloids in herbs by ultrasound-assisted dispersive solid phase extraction method coupled to liquid chromatography–tandem mass spectrometry. *J. Pharm. Biomed. Anal.* 2020, 187, 113551. [CrossRef]

35. Drzman, Z.; Jonatova, P.; Strarska-Zachariasova, M.; Prusova, N.; Brabenec, O.; Novakova, A.; Fenclova, M.; Hajslova, J. Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropeine alkaloids in plant-based food matrices. *Anal. Bioanal. Chem.* 2020, 412, 7155–7167. [CrossRef]

36. Sixto, A.; Niell, S.; Heinzen, H. Straightforward Determination of Pyrrolizidine Alkaloids in Honey through Simplified Methanol Extraction (QuPPE) and LC-MS/MS Modes. *ACS Omega* 2019, 4, 22632–22637. [CrossRef] [PubMed]

37. Celano, R.; Piccinelli, A.L.; Campone, L.; Russo, M.; Rastrelli, L. Determination of selected pyrrolizidine alkaloids in honey by dispersive liquid–liquid microextraction and ultrahigh-performance liquid chromatography–tandem mass spectrometry. *J. Agric. Food Chem.* 2019, 67, 8689–8699. [CrossRef]

38. Chen, L.; Mulder, P.P.; Peijnenburg, A.; Kietjens, I.M. Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. *Food Chem. Toxicol.* 2019, 130, 142–153. [CrossRef]

39. Chmit, M.S.; Wahrig, B.; Beuerle, T. Quantitative and qualitative analysis of pyrrolizidine alkaloids in liqueurs, elixirs and herbal juices. *Fitoterapia* 2019, 136, 104172. [CrossRef]

40. Wang, T.; Frandsen, H.L.; Christiansson, N.R.; Rosendal, S.E.; Pedersen, M.; Smidsgaard, J. Pyrrolizidine alkaloids in honey: Quantification with and without standards. *Food Control* 2019, 98, 227–237. [CrossRef]

41. Selmar, D.; Wittke, C.; Beck-von Wolffersdorff, I.; Klier, B.; Lewerenz, L.; Kleinwächter, M.; Nowak, M. Transfer of pyrrolizidine alkaloids from honey to milk and honey containing cereal-based infant foods: Results of a survey across Europe. *Food Addit. Contam. Part A* 2018, 35, 118–133. [CrossRef]

42. Kaltner, F.; Stiglbauer, B.; Rychlik, M.; Gareis, M.; Gottschalk, C. Development of a sensitive analytical method for determining 44 pyrrolizidine alkaloids in teas and herbal teas via LC-ESI-MS/MS. *Anal. Bioanal. Chem.* 2019, 411, 7233–7249. [CrossRef] [PubMed]

43. Mulder, P.P.; López, J.; Castelari, M.; Bodi, D.; Ronczka, S.; Preis-Weigert, A.; These, A. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: Results of a survey across Europe. *Food Addit. Contam. Part A* 2018, 35, 118–133. [CrossRef]

44. Kowalczyk, E.; Seradzki, Z.; Kwiatek, K. Determination of pyrrolizidine alkaloids in honey with sensitive gas chromatography–mass spectrometry method. *Food Anal. Methods* 2018, 11, 1345–1355. [CrossRef]

45. Picron, J.-F.; Herman, M.; van Hoeck, E.; Goscinny, S. Analytical strategies for the determination of pyrrolizidine alkaloids in plant based food and examination of the transfer rate during the infusion process. *Food Chem.* 2018, 266, 514–523. [CrossRef] [PubMed]

46. Kaltner, F.; Rychlik, M.; Gareis, M.; Gottschalk, C. Influence of storage on the stability of toxic pyrrolizidine alkaloids and their N-oxides in peppermint tea, hay, and honey. *J. Agric. Food Chem.* 2018, 66, 5221–5228. [CrossRef]

47. Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and validation of a QuEChERS method coupled to liquid chromatography and high resolution mass spectrometry to determine pyrrolizidine and tropeine alkaloids in honey. *Food Chem.* 2017, 234, 295–302. [CrossRef] [PubMed]

48. Onduso, S.O.; Ngâ, M.M.; Wanjohi, W.; Hassanali, A. Determination of pyrrolizidine alkaloids levels in *Symphytum asperum*. *Asian J. Nat. Prod. Biochem.* 2017, 15, 65–78. [CrossRef]

49. Kowalczyk, E.; Kwiatek, K. Determination of pyrrolizidine alkaloids in selected feed materials with gas chromatography–mass spectrometry. *Food Addit. Contam. Part A* 2017, 34, 853–863. [CrossRef]

50. Lorenza, L.; Roberta, M.; Alessandra, R.; Clara, M.; Francesca, C. Evaluation of some pyrrolizidine alkaloids in honey samples from the Veneto region (Italy) by LC-MS/MS. *Food Anal. Methods* 2016, 9, 1825–1836. [CrossRef]

51. Valese, A.C.; Molognoli, L.; de Sá Plöenco, L.A.; de Lima, F.G.; Gonzaga, L.V.; Górnika, S.L.; Dagher, H.; Barreto, F.; Costa, A.C.O. A fast and simple LC-ESI-MS/MS method for detecting pyrrolizidine alkaloids in honey with full validation and measurement uncertainty. *Foods* 2016, 6, 183–191. [CrossRef]
52. Mulder, PP.; de Witte, S.L.; Stoopen, G.M.; van der Meulen, J.; van Wikselaar, P.G.; Gruys, E.; Groot, M.J.; Hoogenboom, R.L. Transfer of pyrrolizidine alkaloids from various herbs to eggs and meat in laying hens. Food Addit. Contam. Part A 2016, 33, 1826–1839. [CrossRef]

53. Yoon, S.H.; Kim, M.-S.; Kim, S.H.; Park, H.M.; Pyo, H.; Lee, Y.M.; Lee, K.-T.; Hong, J. Effective application of freezing lipid precipitation and SCX-SPE for determination of pyrrolizidine alkaloids in high lipid foodstuffs by LC-ESI-MS/MS. J. Chromatogr. B 2015, 992, 56–66. [CrossRef]

54. Avula, B.; Sagi, S.; Wang, Y.-H.; Zweigenbaum, J.; Wang, M.; Khan, I.A. Characterization and screening of pyrrolizidine alkaloids and N-oxides from botanicals and dietary supplements using UHPLC-high-resolution mass spectrometry. Food Chem. 2015, 178, 136–148. [CrossRef] [PubMed]

55. Dzuman, Z.; Zachariasova, M.; Veprikova, Z.; Godula, M.; Hajsova, J. Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta 2015, 863, 29–40. [CrossRef]

56. Schulz, M.; Meins, J.; Diemert, S.; Zagermann-Muncke, P.; Goebel, R.; Schrenk, D.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Detection of pyrrolizidine alkaloids in German licensed herbal medicinal teas. Phytomedicine 2015, 22, 648–656. [CrossRef]

57. Griffin, C.T.; Mitrovic, S.M.; Danaher, M.; Furey, A. Development of a fast isocratic LC-MS/MS method for the high-throughput analysis of pyrrolizidine alkaloids in Australian honey. Food Addit. Contam. Part A 2015, 32, 214–228. [CrossRef] [PubMed]

58. Mudge, E.M.; Jones, A.M.P.; Brown, P.N. Quantification of pyrrolizidine alkaloids in North American plants and honey by LC-MS: Single laboratory validation. Food Addit. Contam. Part A 2015, 32, 2068–2074. [CrossRef] [PubMed]

59. Belechová, M.; Časlavský, J.; Pospíchalová, M.; Kosubová, P. UPLC-MS/MS method for determination of selected pyrrolizidine alkaloids in feed. Food Chem. 2015, 170, 265–270. [CrossRef] [PubMed]

60. Griffin, C.T.; O’Mahony, J.; Danaher, M.; Furey, A. Liquid chromatography tandem mass spectrometry detection of targeted pyrrolizidine alkaloids in honeys purchased within Ireland. Food Anal. Methods 2015, 8, 18–31. [CrossRef]

61. Shimshoni, J.A.; Duebecke, A.; Mulder, F.P.; Cuneah, O.; Barel, S. Pyrrolizidine and tropane alkaloids in teas and the herbal teas peppermint, rooibos and chamomile in the Israeli market. Food Addit. Contam. Part A 2015, 32, 2058–2067. [CrossRef] [PubMed]

62. Griffin, C.T.; Gosetto, F.; Danaher, M.; Sabatini, S.; Furey, A. Investigation of targeted pyrrolizidine alkaloids in traditional Chinese medicines and selected herbal teas sourced in Ireland using LC-ESI-MS/MS. Food Addit. Contam. Part A 2014, 31, 940–961. [CrossRef]

63. Diaz, G.; Almeida, L.X.; Gardner, D.R. Effects of dietary Crotalaria pallida seeds on the health and performance of laying hens and evaluation of residues in eggs. Res. Vet. Sci. 2014, 97, 297–303. [CrossRef] [PubMed]

64. Martinello, M.; Cristofoli, C.; Gallina, A.; Mutinelli, F. Easy and rapid method for the quantitative determination of pyrrolizidine alkaloids in honey by ultra performance liquid chromatography-mass spectrometry: An evaluation in commercial honey. Food Control 2014, 37, 146–152. [CrossRef]

65. Kast, C.; Dübecke, A.; Küchenmann, V.; Bieri, K.; Böhlen, M.; Zoller, O.; Beckh, G.; Lüllmann, C. Analysis of Swiss honeys for pyrrolizidine alkaloids. J. Agric. Food Chem. 2014, 63, 1893–1900. [CrossRef]

66. Böhl, D.; Ronczka, S.; Gottschalk, C.; Behr, N.; Skibba, A.; Wagner, M.; Lahrssen-Wiedeholt, M.; Preiss-Weigert, A.; These, A. Determination of pyrrolizidine alkaloids in tea, herbal drugs and honey. Food Addit. Contam. Part A 2014, 31, 1886–1895. [CrossRef]

67. Vaclavik, L.; Krynitsky, A.J.; Rader, J.I. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography–quadrupole-orbital ion trap mass spectrometry. Anal. Chim. Acta 2014, 810, 45–60. [CrossRef] [PubMed]

68. Orantes-Bermejo, F.; Serra Bonvehí, J.; Gómez-Pajuelo, A.; Megías, M.; Torres, C. Pyrrolizidine alkaloids: Their occurrence in Spanish honey collected from purple viper’s bugloss (Echium spp.). Food Addit. Contam. Part A 2013, 30, 1799–1806. [CrossRef] [PubMed]

69. Griffin, C.T.; Danaher, M.; Elliott, C.T.; Kennedy, D.G.; Furey, A. Detection of pyrrolizidine alkaloids in commercial honey using liquid chromatography–ion trap mass spectrometry. Food Chem. 2013, 136, 1577–1583. [CrossRef] [PubMed]

70. Cao, Y.; Colegate, S.; Edgar, J. Persistence of echimidine, a hepatotoxic pyrrolizidine alkaloid, from honey into meat. J. Food Compos. Anal. 2013, 29, 106–109. [CrossRef]

71. Cramer, L.; Schiebel, H.-M.; Ernst, L.; Beuerle, T. Pyrrolizidine alkaloids in the food chain: Development, validation, and application of a new HPLC-ESI-MS/MS sum parameter method. J. Agric. Food Chem. 2013, 61, 11382–11391. [CrossRef]

72. Cramer, L.; Beuerle, T. Detection and quantification of pyrrolizidine alkaloids in antibacterial medical honeys. Planta Med. 2012, 78, 1976–1982. [CrossRef]

73. Hoogenboom, L.; Mulder, P.P.; Zeilmaker, M.J.; van den Top, H.J.; Remmelink, G.J.; Brandon, E.F.; Klijnstra, M.; Meijer, G.A.; Schothorst, R.; van Egmond, H.P. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit. Contam. Part A 2011, 28, 359–372. [CrossRef]

74. Mol, H.; van Dam, R.; Zomer, P.; Mulder, P.P. Screening of plant toxins in food, feed and botanicals using full-scan high-resolution (Orbitrap) mass spectrometry. Food Addit. Contam. Part A 2011, 28, 1405–1423. [CrossRef] [PubMed]

75. Kempf, M.; Wittig, M.; Schönfeld, K.; Cramer, L.; Schreier, P.; Beuerle, T. Pyrrolizidine alkaloids in food: Downstream contamination in the food chain caused by honey and pollen. Food Addit. Contam. Part A 2011, 28, 325–331. [CrossRef]
76. Kempf, M.; Wittig, M.; Reinhard, A.; von der Ohe, K.; Blacquiére, T.; Raezke, K.-P.; Michel, R.; Schreier, P.; Beuerle, T. Pyrrolizidine alkaloids in honey: Comparison of analytical methods. Food Addit. Contam. Part A 2011, 28, 332–347. [CrossRef] [PubMed]

77. Dübecke, A.; Beckh, G.; Lüllmann, C. Pyrrolizidine alkaloids in honey and bee pollen. Food Addit. Contam. Part A 2011, 28, 348–358. [CrossRef]

78. Crews, C.; Driffield, M.; Berthiller, F.; Kraska, R. Loss of pyrrolizidine alkaloids on decomposition of ragwort (Senecio jacobaea) as measured by LC-TOF-MS. J. Agric. Food Chem. 2009, 57, 3669–3673. [CrossRef] [PubMed]

79. Jiang, Z.; Liu, F.; Goh, J.J.; Yu, L.; Li, S.F.Y.; Ong, E.S.; Ong, C.N. Determination of senkirkine and senecionine in Tussilago farfara using microwave-assisted extraction and pressurized hot water extraction with liquid chromatography tandem mass spectrometry. Talanta 2009, 79, 539–546. [CrossRef]

80. Kempf, M.; Beuerle, T.; Bühringer, M.; Denner, M.; Trotz, D.; von der Ohe, K.; Bhavanam, V.B.; Schreier, P. Pyrrolizidine alkaloids in honey: Risk analysis by gas chromatography-mass spectrometry. Mol. Nutr. Food Res. 2008, 52, 1193–1200. [CrossRef]

81. Zhang, F.; Wang, C.-h.; Xiong, A.-z.; Wang, W.; Yang, L.; Branford-White, C.J.; Wang, Z.-t.; Bligh, S.A. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography. Anal. Chim. Acta 2007, 605, 94–101. [CrossRef]

82. Crews, C. Methods for analysis of pyrrolizidine alkaloids. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Merillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1049–1068. [CrossRef]

83. González-Gómez, L.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Occurrence and Chemistry of Tropae Alkaloids in Foods, with a Focus on Sample Analysis Methods: A Review on Recent Trends and Technological Advances. Foods 2022, 11, 407. [CrossRef] [PubMed]

84. Herrmann, M.; Joppe, H.; Schmaus, G. Thesinine-4′-O-beta-D-glucoside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis. Phytochemistry 2002, 60, 399–402. [CrossRef] [PubMed]

85. Mroczek, T.; Baj, S.; Chrobok, A.; Glowniak, K. Screening for pyrrolizidine alkaloids in plant materials by electron ionization RP-HPLC-MS with thermabeam interface. Biomed. Chromatogr. 2004, 18, 745–751. [CrossRef]

86. Pietrosiuk, A.; Syklowska-Baranek, K.; Wiedenfeld, H.; Wolinowska, R.; Furmanowa, M.; Jaroszyk, E. The shikonin derivatives and pyrrolizidine alkaloids in hairy root cultures of Lithospermum canescens (Michx.) Lehm. Plant Cell Rep. 2006, 25, 1052–1058. [CrossRef] [PubMed]

87. Lang, G.; Passreiter, C.M.; Medinilla, B.; Castillo, J.; Witte, L. Non-toxic pyrrolizidine alkaloids from Eupatorium semialatum. Biochem. Syst. Ecol. 2001, 29, 143–147. [PubMed]

88. Schenck, A.; Siewert, B.; Toft, S.; Drewe, J. UPLC TOF MS for sensitive quantification of naturally occurring pyrrolizidine alkaloids as a new approach for tandem mass spectrometry: Presented for the determination of pyrrolizidine alkaloids in plants. Anal. Bioanal. Chem. 2013, 405, 9379–9383. [CrossRef]

89. Kempf, M.; Poppe, H.; Schmaus, G. Thesinine-4′-O-beta-D-glucoside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis. Phytochemistry 2002, 60, 399–402. [CrossRef] [PubMed]

90. Mroczek, T.; Baj, S.; Chrobok, A.; Glowniak, K. Structural screening by multiple reaction monitoring by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. J. Chromatogr. A 2004, 1032, 85–90. [CrossRef]

91. Mroczek, T.; Salzer, L.; Abdel-Tawab, M.; Mizaikoff, B. Efficient extraction of pyrrolizidine alkaloids from plants by pressurised liquid extraction—A preliminary study. Planta Med. 2020, 86, 249–262. [CrossRef]

92. El-Shazly, A.; El-Domiaty, M.; Witte, L.; Wink, M. Pyrrolizidine alkaloids in members of the Boraginaceae from Sinai (Egypt). Biochem. Syst. Ecol. 1999, 27, 619–636. [CrossRef]

93. Aguilera, J.M. The food matrix: Implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 2019, 59, 3612–3629. [PubMed]

94. Copper, R.A.; Bowers, R.J.; Beckham, C.J.; Huxtable, R.J. Preparative separation of pyrrolizidine alkaloids by high-speed counter-current chromatography. J. Chromatogr. A 1996, 732, 43–50. [CrossRef] [PubMed]

95. Aydn, A.A.; Letzel, T. Simultaneous investigation of sesquiterpenes, pyrrolizidine alkaloids and N-oxides in Butterbur (Petasites hybridus) with an offline 2D-combination of HPLC-UV and LC-MMI-ToF-MS. J. Pharm. Biomed. Anal. 2013, 85, 74–82. [CrossRef]

96. Bodi, D.; Ronczka, S.; Lahrssen-Wiederholt, M.; Preiss-Weigert, A. Structural screening by multiple reaction monitoring by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. J. Chromatogr. A 2004, 1032, 85–90. [CrossRef]

97. Aydn, A.A.; Letzel, T. Simultaneous investigation of sesquiterpenes, pyrrolizidine alkaloids and N-oxides in Butterbur (Petasites hybridus) with an offline 2D-combination of HPLC-UV and LC-MMI-ToF-MS. J. Pharm. Biomed. Anal. 2013, 85, 74–82. [CrossRef]

98. Pande, J. Metabolic profiling of bioactive compounds from different medicinal plants: An overview. Int. J. Chem. Stud. 2020. [CrossRef]

99. Kristensen, M. Nutri-Metabolomics: Effect and Exposure Markers of Apple and Pectin Intake; University of Copenhagen, Faculty of Life Sciences, Department of Food Science: Copenhagen, Denmark, 2010.

100. Klein, L.M.; Gabler, A.M.; Rychlik, M.; Gottschalk, C.; Kaltner, F. A sensitive LC–MS/MS method for isomer separation and quantitative determination of 51 pyrrolizidine alkaloids and two tropae alkaloids in cow’s milk. Anal. Bioanal. Chem. 2022, 414, 8107–8124. [CrossRef]
101. Joosten, L.; Mulder, P.P.; Vrieling, K.; van Veen, J.A.; Klinkhamer, P.G. The analysis of pyrrolizidine alkaloids in Jacobaea vulgaris; a comparison of extraction and detection methods. *Phytochem. Anal.* **2010**, *21*, 197–204. [CrossRef] [PubMed]

102. Lu, A.-J.; Lu, Y.-L.; Tan, D.-P.; Qin, L.; Ling, H.; Wang, C.-H.; He, Y.-Q. Identification of pyrrolizidine alkaloids in senecio plants by liquid chromatography-mass spectrometry. *J. Anal. Methods Chem.* **2021**, *2021*, 1957863. [CrossRef] [PubMed]

103. Zhou, Y.; Li, N.; Choi, F.; Qiao, C.-F.; Song, J.-Z.; Li, S.-L.; Liu, X.; Cai, Z.; Fu, P.; Lin, G.; et al. A new approach for simultaneous screening and quantification of toxic pyrrolizidine alkaloids in some potential pyrrolizidine alkaloid-containing plants by using ultra performance liquid chromatography-tandem quadrupole mass spectrometry. *Anal. Chim. Acta* **2010**, *681*, 33–40. [CrossRef] [PubMed]

104. Ruan, J.; Li, N.; Xia, Q.; Fu, P.P.; Peng, S.; Ye, Y.; Lin, G. Characteristic ion clusters as determinants for the identification of pyrrolizidine alkaloid N-oxides in pyrrolizidine alkaloid-containing natural products using HPLC-MS analysis. *J. Mass Spectrom.* **2012**, *47*, 331–337. [CrossRef]

105. Gottschalk, C.; Ronczka, S.; Preiß-Weigert, A.; Ostertag, J.; Klaffke, H.; Schafft, H.; Lahrssen-Wiederholt, M. Pyrrolizidine alkaloids in natural and experimental grass silages and implications for feed safety. *Anim. Feed Sci. Technol.* **2015**, *207*, 253–261. [CrossRef]

106. Takatsuji, Y.; Kakitani, A.; Nagatomi, Y.; Harayama, K.; Suzuki, K. A novel method for the detection of pyrrolizidine alkaloids in bottled tea and tea leaves by LC-MS/MS. *Jpn. J. Food Chem. Saf.* **2018**, *25*, 97–104. [CrossRef]

107. Sixto, A.; Pérez-Parada, A.; Niell, S.; Heinzen, H. GC–MS and LC–MS/MS workflows for the identification and quantitation of pyrrolizidine alkaloids in plant extracts, a case study: *Echium plantagineum*. *Rev. Bras. Farmacogn.* **2019**, *29*, 500–503. [CrossRef]