Sources of Resistance for Two Differentially Pathogenic Strains of Xanthomonas fragariae in Fragaria Genotypes

John L. Maas1, Cristina Gouin-Behe2, John S. Hartung3, and Stan C. Hokanson

1Research Geneticist.
E-mail: jmaas@asrr.ars.usda.gov; jhartung@asrr.ars.usda.gov
1Research Plant Pathologist.
E-mail: cbehe@asrr.ars.usda.gov
Xanthomonas fragariae

Abstract. Bacterial angular leafspot disease (BALD) of strawberry (Fragaria sp. and F. ×ananassa Duchesne cultivars) has become increasingly destructive to strawberry fruit and plant production in Canada and the United States, as well as in other countries. The disease, caused by Xanthomonas fragariae Kennedy and King, was first documented in Minnesota in 1960, and has become of worldwide concern because of the economic impact of BALD in strawberry fruit and nursery-plant production and the lack of adequate disease control strategies. We tested 81 Fragaria genotypes, including representatives of F. ×ananassa, F. chiloensis (L.) Duchesne, F. virginiana Duchesne, and F. vesca L., for resistance to two pathogenic strains of X. fragariae. Two genotypes, a native F. virginiana from Minnesota and an F. virginiana × F. ×ananassa hybrid, were found to resist infection by both bacterial strains and may be potential sources of resistance to other strains of X. fragariae.

Bacterial angular leafspot of strawberry, first documented from Minnesota in 1960, was determined to be caused by the bacterium Xanthomonas fragariae (Kennedy and King, 1962a). Since 1962, angular leafspot has occurred in many strawberry-growing areas of North America, Europe, South America, Africa, and Australasia (Maas et al., 1995). The European Plant Protection Organization (EPPO) lists X. fragariae as an important quarantine pest (Smith et al., 1992) and has prescribed phytosanitary procedures (Calzolari, 1994). The Food and Agriculture Organization of the United Nations and the International Plant Genetic Resources Institute also lists angular leafspot as a potential risk in international distribution of strawberry germplasm (Diekmann et al., 1994).

Strawberry cultivars reportedly vary in susceptibility to angular leafspot. Howard (1971) reported that ‘Dabreak’ was more severely affected than ‘Florida 90’, ‘Missionary’, ‘Tioga’, ‘Torrey’, ‘Salinas’, and La. 1158, and that damage to ‘Florida 90’ was minimal and infection of ‘Missionary’ very light. Of 64 cultivars and clones tested by Kennedy and King (1962b), only the clones Minnesota 1716 (a third-generation self of ‘Belt’ × ‘Premier’) and F. vesca (‘Alpine’) had low disease severity ratings compared with the others evaluated in a greenhouse inoculation test. Unfortunately, the clone Minnesota 1716 has been lost as a source of disease-resistant germplasm (J. Luby, pers. comm.). In a related field inoculation study by Kennedy and King (1962b), ‘Robinson’, ‘Sparkle’, and ‘Trumpeter’ developed the most severe symptoms of 20 clones tested, while the F. vesca (‘Alpine’) plants showed no infection. Hazel and Civerolo (1980) observed that ‘Badgerbelle’ and ‘Atlas’ had low susceptibility to BALD. Hazel (1981) found that, of several Fragaria species evaluated by inoculation, only F. moschata Duch. (hexaploid) was immune, some F. virginiana clones displayed a moderate degree of tolerance, and all other species were susceptible to X. fragariae. These data suggest that selection for resistance to the disease may be possible. Incorporation of resistance to X. fragariae from other species would involve some complex crosses involving different ploidy levels. However, such crosses would also serve to broaden the germplasm base of F. ×ananassa for resistance to disease and biotic and abiotic stresses and enhancement of plant and fruit traits as recommended by Luby et al. (1991) and Sjulin and Dale (1987).

A potential obstacle to evaluating Fragaria genotypes for resistance to X. fragariae is differential pathogenicities of strains. Pooler et al. (1996), for example, found that although similar physiologically, genetically these strains differ slightly, as shown by enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR), repetitive extragenic palindromic (REP) PCR, and random amplified polymorphic DNA (RAPD) PCR analyses. Pooler et al. (1996) recognized four ERIC PCR groups in X. fragariae but also concluded that X. fragariae strains from various locations around the world are genetically fairly homogeneous. Tests for differential pathogenicities among the strains were not included in these analyses.

Our objectives were to evaluate a large number of native North American clones of Fragaria species and F. ×ananassa cultivars for resistance to strains of Xanthomonas fragariae representative of two ERIC PCR groups, with primary focus on octoploid species because of their potential for rapid assimilation of resistance into strawberry breeding programs.

Materials and Methods

Two strains of X. fragariae were used in these studies: ATCC 33239 (American Type Culture Collection, Rockville, Md.), the type strain of X. fragariae from Minnesota, and strain Xf-3 from North Carolina (D. Ritchie, North Carolina State Univ., Raleigh). Both strains are pathogenic to strawberry (Millholland et al., 1996; Pooler et al., 1996). Strains of X. fragariae were stored in 15% glycerol gel in culture tubes at −70 °C until used for inoculum preparation (Roberts et al., 1996). Strains were seeded onto solid sucrose peptone agar (SPA) medium (Hayward, 1960) and incubated at 24 °C for 3 d. Bacteria were washed from culture plates with sterile distilled water and the suspensions were diluted to a final optical density of 0.100 at OD595, corresponding to ≈108 colony-forming units/ml.

Strawberry plants were obtained from several germplasm collections in North America (Table 1) and propagated in a quarantine greenhouse facility away from other strawberry plants. Plants were watered prior to inoculation and leaves to be inoculated were identified with tape placed on their petioles. Generally, the two youngest, fully expanded leaves on each of two plants per genotype were selected for X. fragariae strain. Bacterial suspensions were drawn into a 3-mL syringe; the needle was removed, the syringe aperture placed firmly against the abaxial surface of a leaflet, and the syringe plunger carefully depressed until a water-soaked area became visible (Fig. 1). Care was taken not to injure the leaflet with pressure from the syringe body. In all tests, each leaflet was inoculated at four sites away from the midrib for a total of 12 inoculations per leaf, resulting in 24 inoculation sites per plant on each of two plants per genotype. Inoculated plants were placed in individual clear plastic bags for 3 d in a lighted laboratory at room temperature. Plants then were moved to a mist bench where they were misted for 1 min, three times per hour. After 1 week in the mist bench, plants were moved to benches in a shaded greenhouse at ≈24 °C with a 16-h photoperiod (natural plus supplemental overhead lighting). Plants were watered and...
Table 1. Strawberry genotype reactions to infection by two strains (ATCC 33239 and Xf-3) of Xanthomonas fragariae in Tests 1, 2, and 3, and an overall rating.

Fragaria species, clone and origin	Test 1 ATCC 33239	Test 2 ATCC 33239	Test 3 ATCC 33239	Overall rating
F. chiloensis				
Blakemore (Md.)	r	s	s	S
Cesena (Italy)	s	s		S
Delmarvel (Md.)	r	r	r	S
Earlglow (Md.)	s	s	s	S
Gilbert (Wisc.)	s	s		S
Guardian (Md.)	s	s	s	S
Lateglo (Md.)	r	r	r	S/R
Marmolada (Italy)	s	s	s	S
Mohawk (Md.)	r	r	r	S/R
Puget Reliance (Wash.)	s	s		S
Scott (Md.)	s	r	s	S
Soquel (Calif.)	s	s		S
Sweet Charlie (Fla.)	s	r	r	S
Torrey (Calif.)	s	s		S
Winona (Minn.)	s	r	r	S
MD-683 (Md.)	---	---	r	S
SG5 (Plateau) (Tenn.)	s	s	s	S
61-16-99 (Calif.)	s	s		S
F. xananassa x F. virginiana				
80-4-38 (Md.)	r	r	---	r
F. chiloensis				
CA 11 (Ore.)	s	s	s	S
CA 12 (Ore.)	r	r	s	S
CCA (Calif.)	s	s	s	S
Del Norte (Calif.)	r	s	s	S
FRA 0890 (B.C.)	r	---	s	S
FRA 0871 (B.C.)	s	s	s	S
Lon (Chile)	s	s	s	S
M-03 (Ore.)	s	s	s	S
P-11 (Ore.)	s	s	s	S
Y-36 (Ore.)	s	s	s	S
F. virginiana				
AC 8118 (Md.)	s	s	s	S
K9-5 (N.S.)	s	r	s	S
K9-6 (N.S.)	---	---	s	S
K9-2-19 (N.S.)	s	s	s	S
RH01 (Minn.)	s	s	s	S
RH02 (Alaska)	s	s	s	S
RH03 (N.Y.)	s	s	s	S
RH04 (Minn.)	r	r	s	S
RH05 (N.Y.)	s	s	s	S
RH06 (Minn.)	s	s	s	S
RH07 (N.Y.)	s	r	s	S
RH09 (Minn.)	s	s		S
RH10 (Minn.)	s	s	s	S
RH11 (Minn.)	s	s	s	S
RH12 (Minn.)	s	r	s	S
RH13 (Minn.)	s	---	s	S
RH14 (Minn.)	r	r	s	S
RH15 (Minn.)	s	s	s	S
RH16 (N.Y.)	s	s	s	S
RH17 (Minn.)	r	r	s	S
RH18 (N.Y.)	s	s	s	S
RH20 (Minn.)	s	s	s	S
RH21 (Minn.)	s	s	s	S
RH22 (Minn.)	s	s	s	S
RH25 (Ore.)	s	s	s	S
RH30 (Minn.)	s	s	s	S
RH32 (N.Y.)	s	s	s	S
RH34 (N.Y.)	r	r	s	S
RH35 (N.Y.)	---	s	r	S
RH37 (Minn.)	s	s	s	S
RH38 (Minn.)	s	s	s	S
RH39 (Minn.)	s	s	s	S
RH41 (Minn.)	s	s	s	S
RH42 (Minn.)	r	s	s	S
RH44 (Minn.)	r	s	s	S

Results and Discussion

Of the 81 genotypes tested against two virulent strains of X. fragariae in Tests 1, 2, and 3, only two, 80-4-38 and SG-89, were resistant to both strains (Table 1). Several genotypes (‘Lateglo’, ‘Mohawk’, ‘Winona’, 61-16-99, RH47, SG-11, SG-15, SG-22, SG-24, and SG-25) were resistant to X. fragariae Xf-3 but not to strain ATCC 33239. No genotypes were both susceptible to strain Xf-3 and resistant to strain ATCC 33239. Resistance was not observed in any F. chiloensis genotypes; however, our sample size for F. chiloensis was not observed in any F. chiloensis genotypes; however, our sample size for F.
Table 1. Continued.

Fragaria species, clone and origin	ATCC 33239	Xf-3	ATCC 33239	Xf-3	ATCC 33239	Xf-3	Overall rating
RH46 (Alta.)	s	s	s	s	S		
RH47 (Minn.)	s	r	s	s	S/R		
RH48 (Minn.)	---	---	s	r	s	S	
SG-2 (Ark.)	s	r	s	s	S		
SG-3 (Ark.)	s	---	s	s	S		
SG-4 (N.C.)	s	s	s	s	S		
SG-9 (Pa.)	s	r	s	s	S/R		
SG-11 (Pa.)	s	r	s	s	S/R		
SG-21 (Pa.)	s	r	s	s	S		
SG-22 (Pa.)	s	r	s	s	S/R		
SG-24 (Pa.)	s	r	s	s	S/R		
SG-82 (N.C.)	r	r	s	r	r	S	
SG-89 (Minn.)	s	r	r	r	S		
F. vesca	s	s	s	s	S		
SG-15 (Pa.)	s	r	s	r	S/R		
SG-25 (Pa.)	s	r	---	---	S/R		
Tozahizic (Mexico)	s	s	s	s	S		

\(F. \times \text{ananassa}\) cultivars, MD-683, 80-4-38, AC 8118, Del Norte, CCA, Tozahizic, and SG numbers from the USDA Beltsville Fruit Laboratory collection; 61-16-99 from C. Winterbottom, Univ. of California, Davis. \(F. \times \text{chiloensis}\) FRA numbered clones from the National Clonal Germplasm Repository, Trenton, Ont., and the remainder from S. Cameron and C. Shanks, Washington State Univ., Vancouver. \(F. \times \text{virginiana}\) K numbered clones from A. Jamieson, Agriculture and Agri-Food Canada, Kentville, N.S., RH numbered clones from J. Luby, Univ. of Minnesota, St. Paul.

Clones rated susceptible ("s" in individual tests or "S" overall) or resistant ("r" in individual tests or "R" overall). Clones not included in this test series.

"Earliglow" x SG-26 (\(F. \times \text{virginiana}\)).

Fig. 1. Inoculation of strawberry leaflets with a small syringe, containing a suspension of \(Xanthomonas \text{fragariae}\), that is gently pressed against the abaxial leaf surface and the plunger gently depressed until a water-soaked area becomes visible.

Fig. 2. Strawberry leaflets of a susceptible genotype (‘Gilbert’) inoculated with \(Xanthomonas \text{fragariae}\), showing bacterial angular leaf spot symptoms with bacterial exudate (pointers) on several inoculation sites.

chiloensis may have been too small to include possible resistant genotypes. To confirm the resistance of 80-4-38 and SG-89, a fourth test against the two \(X. \text{fragariae}\) strains was performed, and both genotypes were again rated resistant (Table 2). The expression of resistance appeared to be a general reaction to infection by \(X. \text{fragariae}\) in that the inoculated sites, although appearing chlorotic (Fig. 3C), lost translucency, exhibited no bacterial exudate or lesion expansion, and sometimes separated from normal leaf tissue (Fig. 3D).

The ultimate source of resistance to \(X. \text{fragariae}\) in octoploid \(F. \text{virginiana}\) is not apparent. However, based on the widely dispersed origins of the resistant genotypes in this study, resistance may be widely distributed among North American \(F. \text{virginiana}\) genotypes. Clone 80-4-38 (‘Earliglow’ x \(F. \times \text{virginiana}\) clone 26-2 [PI 441219]) was selected at Beltsville (J.L.M.) in a study of resistance to fruit rots caused by Botrytis cinerea Pers.:Fr. and Colletotrichum sp. The other doubly resistant genotype in this study, clone SG-89 (Luby no. MS 7-7), collected by M. Stahler in 1986 from Pine County, Minn. (46°05’N, 92°45’W), appears typical of Minnesota populations in terms of morphological and running and flowering responses (J. Luby, pers. comm.).

Although clones 80-4-38 and SG-89 could potentially be useful in breeding programs for incorporating resistance to BALD, it would be advantageous to understand the mode of transmission of resistance imparted by 80-4-38 and SG-89, and whether resistance to all of the four ERIC PCR groups of \(X. \text{fragariae}\) identified by Pooher et al. (1996) would result. Note that several genotypes also carry with them some negative traits; for example, susceptibility to other important diseases (genotypes 61-16-99 and 80-4-38), small fruit size (\(F. \times \text{virginiana}\) genotypes), and resistance to only one strain (Xf-3) of \(X. \text{fragariae}\) (\(F. \times \text{ananassa}\) cultivars). Nevertheless, we conclude that genotypes 80-4-38 and SG-89 would be exceptionally good candidates for inclusion as parents in a breeding program concerned with developing new cultivars resistant to the bacterial angular leaf spot disease.

Literature Cited

Calzolari, A. 1994. \(Xanthomonas \text{fragariae}\): Detection methods in strawberry plants. OEPP/EPPO Bul. 24:343–346.

Diekmann, M., E.A. Frison, and T. Putter. 1994. Strawberry angular leaf spot. FAO/IPGRI Technical guidelines for the safe movement of strawberry germplasm. Food and Agr. Organization of the United Nations, Rome/Intl. Plant Genetics Resources Inst., Rome. p. 35–36.

Hayward, A.C. 1960. A method for characterizing \(Pseudomonas \text{solannacerus}\). Nature 186:405–406.

Hazel, W.J. 1981. \(Xanthomonas \text{fragariae}\): cause of strawberry angular leaf spot: Its growth, sympotmatology, bacteriophages, and control. Ph.D. Diss., Univ. of Maryland, College Park.

Hazel, W.J. and E.L. Civerolo. 1980. Procedures for growth and inoculation of \(Xanthomonas \text{fragariae}\), causal organism of angular leaf spot of strawberry. Plant Dis. 64:178–181.

Howard, C.M. 1971. Occurrence of strawberry an-
Table 2. Mean angular leafspot symptom ratings of strawberry genotypes inoculated with two strains of *Xanthomonas fragariae* in Test 4.

Days after inoculation	Strain	Genotype	7	14	23	37
7	XF3	80-4-38	1.0^a	1.0 a^a	1.0 a	1.5 a
		SG-89	1.0	1.0 a	1.0 a	1.5 a
		Delmarvel	1.0	1.0 a	1.5 a	3.5 b
		Gilbert	1.0	3.0 b	4.0 b	5.0 b
14	ATCC 33239	80-4-38	1.0	1.0 a	1.0 a	1.0 a
		SG-89	1.0	2.0 a	2.0 a	2.0 a
		Delmarvel	1.5	1.5 a	1.5 a	4.0 b
		Gilbert	1.5	3.0 b	5.0 b	5.0 c

^aMean separation within columns and isolates by Duncan’s multiple range test, *P* ≤ 0.05; NS = nonsignificant.

^bMean ratings of two plants inoculated at four locations on each leaflet of two leaves per plant, resulting in 24 inoculation sites per plant. Ratings based on the following criteria: 0 = no reaction, transient water-soaking from inoculation no longer evident; 1 = transient water-soaking evident in the inoculation site; 2 = slight chlorosis or necrosis in the center of the inoculation site; 3 = water-soaking expanding beyond inoculation site; 4 = necrosis spreading beyond the inoculation site and/or secondary infections evident; and 5 = total necrosis of the inoculation area and leaflet changing color from chlorotic to reddish-brown. Ratings were converted by angular transformation prior to means separation in columns within strains by Duncan’s multiple range test.

Fig. 3. Strawberry leaflets inoculated with *Xanthomonas fragariae* showing (A) bacterial angular leafspot symptoms on a susceptible genotype (‘Gilbert’) with translucent and angular appearance of lesions, (B) secondary lesions (pointers) developing in the susceptible genotype, (C) lack of translucency at inoculation sites (pointers) in the resistant genotype SG-89, and (D) dislocation of inoculated tissue from noninoculated tissue in the resistant genotype 80-4-38.