This is a paper in the intersection of time series analysis and complexity theory that presents new results on permutation complexity in general and permutation entropy in particular. In this context, permutation complexity refers to the characterization of time series by means of ordinal patterns (permutations), entropic measures, decay rates of missing ordinal patterns, and more. Since the inception of this “ordinal” methodology, its practical application to any type of scalar time series and real-valued processes have proven to be simple and useful. However, the theoretical aspects have remained limited to noiseless deterministic series and dynamical systems, the main obstacle being the super-exponential growth of allowed permutations with length when randomness (also in form of observational noise) is present in the data. To overcome this difficulty, we take a new approach through complexity classes, which are precisely defined by the growth of allowed permutations with length, regardless of the deterministic or noisy nature of the data. We consider three major classes: exponential, sub-factorial and factorial. The next step is to adapt the concept of Z-entropy to each of those classes, which we call permutation entropy because it coincides with the conventional permutation entropy on the exponential class. Z-entropies are a family of group entropies, each of them extensive on a given complexity class. The result is a unified approach to the ordinal analysis of deterministic and random processes, from dynamical systems to white noise, with new concepts and tools. Numerical simulations show that permutation entropy discriminates time series from all complexity classes.

Keywords Time series analysis; Deterministic and random real-valued processes; Metric and topological permutation entropy; Permutation complexity classes; Permutation entropy rate for noisy processes; Discrimination of noisy time series; Numerical simulations.

Contents

1 Introduction
2 Permutation complexity
2.1 Ordinal representations and permutation entropy .. 4
2.2 Allowed pattern growths for deterministic and random processes 5

3 Permutation complexity functions and classes ... 6

4 Generalized permutation entropy
4.1 Permutation entropy of finite order ... 9
4.2 Permutation entropy rate ... 11

5 Numerical simulations
5.1 Time series discrimination using permutation entropies 13
5.2 Time series discrimination using permutation complexity functions 14
5.3 The sub-factorial class .. 16

6 Conclusion ... 19

7 Acknowledgements .. 20

1 Introduction
Complexity in symbolic times series, symbols being taken from a finite alphabet \(\mathcal{A} \), has to do with the number of different sequences (strings, words, blocks,...) of a given length \(n \) and how this number increases with \(n \). The perhaps simplest approach consists in counting the number of such sequences. In this case, the complexity of periodic sequences is a bounded function of \(n \) [1], while the complexity of arbitrary sequences grows as \(|\mathcal{A}|^n \) (\(|\cdot|\) denotes cardinality). Take the logarithmic growth rate, namely \(\log |\mathcal{A}| \), to obtain the Shannon entropy of a memoryless process that outputs the symbols of \(\mathcal{A} \) with equal probabilities. The positivity of the entropy differentiates then exponential from sub-exponential growth. Other approaches to the concept of complexity of sequences and the processes producing them have been proposed in different fields. Thus, in information theory complexity is usually related to compression [2, 3]. Here one counts the number of new words arising as one parses the whole message (ideally, a one-sided infinite binary sequence). In dynamical systems and symbolic dynamics, the main tool is the dynamic entropy, both in its metric and topological versions [4]. In computer science, algorithmic (or Kolmogorov) complexity refers to the shortest computer code that generates the sequence at hand, while computational problems are grouped into (polynomial, exponential,...) complexity classes according to how the amount of resources (time, memory,...) needed to solve them using a computation model (Turing machine, probabilistic Turing machine, quantum computer,...) depends on the “size” of the input (usually, the number of bits) [5]. In number theory and cryptography there are also several proposals, some of them going deep into the concepts of randomness, compressibility and typicality [6, 7, 8].

This paper deals with the concept of permutation complexity of real-valued time series introduced in [9, 10, 11], so our symbols will be ordinal patterns or permutations of length \(L \) [12]. As we will see more precisely in the following sections, the count of permutations grows exponentially with \(L \) in the case of (noiseless) deterministic signals, while it grows super-exponentially for noisy deterministic and random signals, sometimes called noisy signals hereafter for brevity. This different growth behavior of the ordinal patterns and, therefore, of the permutation complexity makes possible to distinguish deterministic signals from noisy signals but, at the same time, it poses a challenge for a unified quantification of permutation complexity for a simple reason: the usual tools for measuring complexity (say, Shannon and Kolmogorov-Sinai entropies) are designed for exponential growths of the symbols they are defined upon, thus diverging when applied to super-exponential growths. This occurs, in particular, with permutation entropy, which is the Shannon entropy of a time series in its ordinal representation, i.e., its symbolic representation via ordinal patterns.

As a result, the tools of permutation complexity are applied to time series analysis in different ways. In theoretical applications, where the time series are deterministic and may be assumed to be infinitely long, one uses entropic measures such as metric and topological permutation entropy, or the like. In practical applications, where the time series are noisy and finite, one typically resorts to permutations entropies of finite order (Section 2.1), causality-complexity planes [13, 14], the decay rate of the missing patterns [15, 16], and ordinal networks [17], to mention some
typical techniques. This being the case, the objective of the present paper is to propose an integrating and overarching approach as follows.

The main character of this new approach is the logarithmic growth of allowed (or visible) ordinal patterns with increasing length. Depending on that growth, processes are collected in the exponential, sub-factorial and factorial complexity classes, whether they are deterministic or random. This procedure was inspired by similar ideas in complexity theory, where systems are usually classified according to the state growth rates of the states with the number of constituents N. For each of those classes there is a particular group entropy, called Z-entropy, that is extensive for the systems in the class, meaning that it is finite over the uniform probability distributions in the limit $N \to \infty$ [18, 19]. In our context, system translates into process, the extensive parameter N into the length L of the ordinal patterns, Z-entropy into (generalized) permutation entropy, and extensivity into the convergence of the corresponding topological permutation entropy rate. Nevertheless, the introduction of the key concepts will be self-contained and will concentrate on time series and processes, so that the reader can understand their rationale and properties without further reference. The result is a characterization of time series in the ordinal representation that focuses on complexity rather than data generation. This way we extend the realm of the standard permutation entropy from deterministic processes (dynamical systems) to random processes, thus filling a conceptual gap in permutation complexity. A first step in this direction was taken in [20], where we used the Z-entropy of the factorial complexity class to define a generalized permutation entropy for noisy signals without forbidden patterns, i.e., noisy dynamics and random processes such that all ordinal patterns of any length are allowed; these are the kind of signals encountered in practice. Our approach here is more general and comprehensive.

Regarding the notion of group entropy mentioned above, it was introduced in [21] and discussed, e.g., in [22, 23, 24, 25, 18, 19]. Essentially, a group entropy is a functional defined on a probability space which satisfies several important properties, such as the first three Shannon-Khinchin axioms (Section 4) and a so-called composability axiom: the entropy of a system compound by two statistically independent systems is expressed by a formal group law [20]. By construction, group entropies have a direct interpretation as information measures [25, 18]. In particular, they can be used to define divergences and Riemannian structures over statistical manifolds.

The ordinal approach, where the information contained in the ordinal patterns is exploited via probability distributions, entropies, etc., is quite popular in time series analysis for a number of reasons, including its computational simplicity and speed. Applications to biomedicine where among the first and include epilepsy [26], cardiopathies [27], heart rate variability [28], and more [29]. Further applications include dynamical change detection [30], signal characterization [16, 31, 32], and image processing [33, 34]. Currently, ordinal techniques, alone or complemented by other methods, are being applied in plenty of fields, e.g., chaotic dynamics, earth science, computational neuroscience, and econophysics; see [35] for examples, and [36] for a recent survey.

The rest of this paper is organized as follows. Section 2 contains the mathematical setting for the subsequent discussion, in particular, metric and topological permutation entropies as well as the concepts of allowed and forbidden patterns. In doing so, we cover the full range of discrete-time, real-valued time series envisaged in this paper, namely: noiseless deterministic, noisy deterministic, and random signals. This section is partially based on our paper [20]. Section 3 is devoted to the permutation complexity function and classes. Here we introduce the exponential, sub-factorial and factorial permutation complexity classes that are further analyzed in the subsequent sections. In Section 4 we briefly review the general concept of entropy (based on the Shannon-Khinchin axioms), before extending permutation entropy from the exponential class to the factorial and sub-factorial classes. Numerical simulations is the subject of Section 5. In this section, the discriminatory power of the permutation entropy (Section 5.1) and the permutation complexity function (Section 5.2) is put to the test with a battery of seven noisy processes from the factorial class. In Section 5.3 we study numerically and analytically a toy model for sub-factorial processes. The conclusions are summarized in Section 6.

2 Permutation complexity

Real-valued time series typically result from sampling analog signals or observing dynamical flows at discrete times. A further step in the analysis of such series can be the discretization of the data, a procedure that is usually called symbolic representation. The information provided by a symbolic representation may be sufficient for the intended application while simplifying the mathematical tools needed for the analysis. In this regard, ordinal patterns [12] are becoming increasingly popular to represent symbolically real-valued time series. Some reasons for this is their mathematically sound relation to Kolmogorov-Sinai entropy via permutation entropy [37, 38, 39, 40] and their ease of computation. Ordinal patterns and permutation entropies are the main ingredients of permutation complexity.
2.1 Ordinal representations and permutation entropy

Given a (finite or infinite) time series \((x_t)_{t \geq 0} = x_0, x_1, \ldots, x_t, \ldots\), where \(t = 0, 1, \ldots, N \leq \infty\) is discrete time and \(x_t \in \mathbb{R}\), its symbolic representation by ordinal patterns of length \(L \geq 2\) is \(r_t = (r_0, r_1, \ldots, r_{t-1})\), where \(r_t\) is the rank vector of the string \(x^L_t := x_t, x_{t+1}, \ldots, x_{t+L-1}\). In case of two or more ties, one can adopt some convention, e.g., the earlier entry is smaller. Sometimes we say that \(x^L_t\) defines the ordinal \(L\)-pattern \(r_t\) or that it is of type \(r_t\). Ordinal \(L\)-patterns can be identified with permutations of \(\{0, 1, \ldots, L-1\}\), i.e., with elements of the symmetric group of degree \(L, S_L\); the cardinality of \(S_L, |S_L|\), is \(L!\). Symbolic representations of time series by means of ordinal patterns are called ordinal representations. The algebraic structure of \(S_L\) was exploited in [11], which lead to the more general concept of algebraic representations.

Furthermore, the time series \((x_t)_{t \geq 0}\) is assumed to be output by a discrete-time deterministic or random process \(X\) taking values on an interval \(I \subset \mathbb{R}\). By deterministic process we mean a one dimensional dynamical system \((I, B, \mu, f)\), where \(I\) (the state space) is a bounded interval of \(\mathbb{R}\), \(B\) is the Borel \(\sigma\)-algebra of \(I\), \(\mu\) is a measure over the measurable space \((I, B)\) such that \(\mu(I) = 1\) (i.e., \((I, B, \mu)\) is a probability space) and, for the time being, \(f : I \to I\) is any \(\mu\)-invariant map (i.e., \(\mu(f^{-1}(B)) = \mu(B)\) for all \(B \in B\)); alternatively, we say that \(\mu\) is \(f\)-invariant. In this case, the output \((x_t)_{t \geq 0}\) of the deterministic process \(X\) is the orbit of \(x_0\), i.e., \((x_t)_{t \geq 0} = (f^t(x_0))_{t \geq 0}\), where \(f^0(x_0) = x_0 \in I\) and \(f^t(x_0) = f(f^{t-1}(x_0))\). An ordinal representation of the orbits of \(f\) by ordinal \(L\)-patterns partitions the state space \(I\) into the \(L!\) bins \(P_r = \{x \in I : (x, f(x), \ldots, f^{L-1}(x))\) is of type \(r \in S_L\}\).

Therefore, the probability \(p(r)\) of the ordinal pattern \(r \in S_L\) to occur in an output of the deterministic process \(X\) generated by the map \(f\) is

\[
p(r) = \mu(P_r).
\]

Note that, although the outputs \((x_t)_{t \geq 0}\) are deterministic (“sharp” orbits), their ordinal representations \((r_t)_{t \geq 0}\) are random sequences (“pixelated” orbits), as occurs with any symbolic dynamics of a map with respect to a partition of its state space [9].

The metric permutation entropy (rate) of the process \(X\) is defined as

\[
h^*(X) = \lim_{L \to \infty} \sup \frac{1}{L} H^*(X^L_0),
\]

where \(X^L_0 = X_0, X_1, \ldots, X_{L-1}\) and

\[
H^*(X^L_0) = - \sum_{r \in S_L} p(r) \ln p(r)
\]

is the metric permutation entropy of \(X\) of order \(L\).

In other words, \(H^*(X^L_0)\) is the Shannon entropy of the probability distribution \(\{p(r) : r \in S_L\}\). If \(X\) is a deterministic process (and \(\mu\) is known), then \(p(r)\) is given as in Equations (2)-(3). If \(X\) is a random process, the probabilities \(p(r)\) can only exceptionally be derived from the probability distributions of \(X\) [41], so, in general, they have to be estimated, e.g., by relative frequencies:

\[
\hat{p}(r) = \frac{|\{x^L_t of type r \in S_L : 0 \leq t \leq N - L + 1\}|}{N - L + 2}.
\]

In the theoretical case of an infinite time series, take the limit \(N \to \infty\) in (6). In nonlinear time series analysis, the ergodic invariant measure defined by \(\mu(P_r) = \hat{p}(r)\) is called the physical or natural measure because it is the only relevant measure for physical systems and numerical simulations [42]. More about this in Section 5.4.

Remark 1. The limit \(\lim_{N \to \infty} \hat{p}(r)\) exists with probability 1 when the underlying stochastic process fulfills the following weak stationarity condition: for \(k \leq L - 1\), the probability for \(x_t < x_{t+k}\) should not depend on \(t\) [12]. This is the case for stationary processes but also for non-stationary processes with stationary increments such as the fractional Brownian motion [43] and its increments, that is, the fractional Gaussian noise. We will use these random processes, which have long range dependencies, in the numerical simulations.

Let \(X\) be a deterministic or random process that takes values on an interval \(I \subset \mathbb{R}\). We say that an ordinal pattern \(r \in S_L\) is allowed for \(X\) if the probability that a string \(x^L_t\) of type \(r\) is output by \(X\) is positive. That is, an \(L\)-pattern \(r\) is allowed if there are strings \(x_t, x_{t+L-1}\) in some outputs or orbits of \(X\) such that the type of those strings is \(r\).
Otherwise, the ordinal L-pattern r is forbidden for X. For example, the ordinal 3-pattern $r = (2, 1, 0)$ is forbidden for the logistic map $f(x) = 4x(1 - x)$, $0 \leq x \leq 1$, because there is no string x_t, x_{t+1}, x_{t+2} in any orbit of f such that $x_{t+2} < x_{t+1} < x_t$; all other 3-patterns $r = (\rho_0, \rho_1, \rho_2)$, where $\rho_0, \rho_1, \rho_2 \in \{0, 1, 2\}$ and $r \neq (2, 1, 0)$, are allowed for the logistic map, that is, $x_{t+\rho_0} < x_{t+\rho_1} < x_{t+\rho_2}$ for x_t in a suitable subinterval of $[0, 1]$, see [9]. Since we do not consider patterns other than ordinal patterns in this paper, we speak of allowed and forbidden patterns for brevity.

If $A_L(X)$ denotes the number of allowed patterns of length L for X, the topological permutation entropy (rate) of the process X is then defined as

$$h_0^*(X) = \limsup_{L \to \infty} \frac{1}{L} H_0^*(X_L^b),$$

where

$$H_0^*(X_L^b) = \log A_L(X)$$

is the topological permutation entropy of X of order L. Moreover,

$$h^*(X_L^b) \leq H_0^*(X_L^b) \leq \log L,$$

where $H^*(X_L^b) = H_0^*(X_L^b)$ for flat probability distributions of the allowed L-patterns, and $H_0^*(X_L^b) = \log L!$ if all L-patterns are allowed.

2.2 Allowed pattern growths for deterministic and random processes

The map $f : I \to I$ is called piecewise monotone if there is a finite partition of I such that f is continuous and strictly monotone on each subinterval of the partition. If the graph of f has n humps, then f is called unimodal ($n = 1$) or multimodal ($n > 1$). Most one-dimensional maps encountered in practice are piecewise monotone, so this condition does not imply any strong restriction for practical purposes. Let $h_0(f)$ denote the topological entropy of f, and $h(f)$ its metric (or Kolmogorov-Sinai) entropy [44]. The following theorem holds [37].

Theorem 2. If f is piecewise monotone, then (a) $h^*(f) = h(f)$, and (b) $h_0^*(f) = h_0(f)$.

Theorem 2(a) was generalized to countably piecewise monotone maps in [40]. Generalizations to higher dimensional intervals can be found in [45].

From Theorem 2(b) and Equations (7)–(8) it follows that

$$\ln A_L(X) = \ln |\{\text{allowed } L\text{-patterns for deterministic } X\}| \sim h_0(f)L,$$

where f is the map generating the outputs of X, the symbol \sim stands for “asymptotically when $L \to \infty$” (i.e., $\lim_{L \to \infty} \ln A_L(X)/(h_0(f)L) = 1$) and, for the sake of this paper, we assume $h_0(f) > 0$ throughout. Therefore, the number of allowed L-patterns for a piecewise monotone map f grows exponentially with L. To be more precise, according to the proof of Proposition 1(b) in [37], $A_L(X) \sim \exp\{h_0(f)L + \ln L + \text{const}\}$.

Remark 3. More generally, it is easy to show that $\ln \phi(L) \sim g(L)$ if and only if $\phi(L) = \exp[g(L)] + o(g(L)]$, where $o(g(L))$ denotes a function such that $o(g(L))/g(L) \to 0$ when $L \to \infty$. Exponential growth of $\phi(L)$ with respect to L corresponds to $g(L)$ linear, as in Equation (10). In that particular case: $X = f, \phi(L) = A_L(X), g(L) = h_0(f)L$ and $o(g(L)) = \ln L + \text{const} = o(L)$.

Since, on the other hand, the number of possible L-patterns is $L!$ and

$$\ln L! \sim L \ln L$$

by Stirling’s formula $\ln L! \sim L(\ln L - 1) + \frac{1}{2}\ln(2\pi L)$, we conclude from Equation (11) that deterministic processes necessarily have forbidden L-patterns for L large enough and, in fact, the number of forbidden L-patterns grows super-exponentially with L. By deterministic process we mean here and hereafter the dynamics generated by (the iteration of) a piecewise monotone map so that Theorem 2 is applicable and Equation (10) holds with $h_0(f) > 0$. Sometimes we write $X = f$ in this case.

As mentioned before, $r = (2, 1, 0)$ is the only forbidden 3-pattern for the logistic parabola, while all 3-patterns are allowed for the shift map $x \to 2x \mod 1$ [9]. The respective number of forbidden 4-patterns is 12 and 6 [9]. Each forbidden pattern of length L_0 in a deterministic dynamic is the seed of an infinitely long trail of “outgrowth forbidden patterns” of lengths $L > L_0$ whose structure can be found in [9]. Let us mention in passing that forbidden patterns there exist also in higher dimensional dynamics (at least) for expansive maps, ordinal patterns being defined lexicographically [46]. Therefore, projections of higher dimensional dynamics are expected to have forbidden patterns and exponential growths of allowed patterns as well.
At the other extreme are random processes without forbidden patterns, that is, processes for which all ordinal patterns of any length are allowed and, hence, their growth is factorial: \(A_L(X) = |S_L| = L! \). A trivial example of a random process without forbidden patterns is white noise.

Also noisy deterministic time series may not have forbidden patterns (for sufficiently long series). Indeed, when the dynamics takes place on a nontrivial attractor so that the orbits are dense, then the observational (white) noise will "destroy" all forbidden patterns in the long run, no matter how small the noise. For this reason, we sometimes call noisy deterministic processes and other random processes without forbidden patterns just forbidden-pattern-free (FPF) processes or signals. Unlike Equation (10) for deterministic processes, for FPF processes we have

\[
\ln A_L(X) = \ln |\{\text{allowed } L\text{-patterns for FPF } X\}| = \ln L! \sim L \ln L, \tag{12}
\]

where we used the asymptotic equivalence (11).

To complete the picture, let us point out that random processes can have forbidden patterns too. A conceptually simple (though impractical) way of constructing such a process is to repeatedly draw \(x_t \) until the type of the block \(x_0, x_1, ..., x_t \) is allowed, for \(t = 1, 2, ... \). By controlling the number of allowed \(L \)-patterns, this constrained random process outputs time series with any feasible growth of allowed \(L \)-patterns, in particular, an exponential one (as in the deterministic case). A more realistic example of a random process with a sub-factorial growth of allowed pattern is the following.

Example 4. (Not-so-noisy measurement of a periodic signal). Suppose that a periodic time series \((y_t)_{t \geq 0} = (f^t(y_0))_{t \geq 0}\) of prime period \(p \geq 2 \) is observed; so \(y_t = f^k(y_0) = y_k \) for every \(t = k \mod p, k = 0, 1, ..., p - 1 \), where \(y_0 < y_1 < ... < y_{p-1} \) for simplicity. Furthermore, suppose that the points \(y_k \) are measured with a device whose precision is value dependent, so that only the measurement of, say, \(y_{p-1} \) is noiseless and, otherwise, the uncertainty intervals of \(y_0, ..., y_{p-2} \) do not overlap. To model this situation, let \(\delta > 0 \) be the minimum separation between the points of the periodic cycle \((y_0, y_1, ..., y_{p-1})\) and add white noise to \(y_t \) with amplitude less than \(\delta/2 \), except when \(t = p - 1 \mod p \). That is, the noisy observations are \(x_t = y_t + \zeta_t \) for \(t = 0, 1, ..., p - 2 \mod p \), where \(\zeta_t \) are independent and uniformly distributed random variables in \((-\delta/2, \delta/2)\), and \(x_t = y_t \) for \(t = p - 1 \mod p \) so that \(x_{vp} < x_{vp+1} < ... < x_{(\nu+1)p-1} = y_{p-1} \) for all \(\nu \in \mathbb{N} \). Choose \(L = vp \) for simplicity. Then the number of allowed \(L \)-patterns is given by

\[
A_L(X_p) = p (\nu!)^{p-1} = p[(L/p)!]^{p-1}, \tag{13}
\]

where \(X_p \) is the noisy process that outputs the time series \((x_t)_{t \geq 0}\). The factor \(p \) in Equation (13) comes from the \(p \) different values of the time index \(t \) modulus \(p \). For each such \(t \) (say, \(t = 0, 1, ..., p - 1 \)), the window \(x_t^L = x_t, x_{t+1}, ..., x_{t+L-1} \) splits in \(p \) disjoint groups of \(\nu \) points each as follows:

\[
\{x_{t+j}: t+j = 0 \mod p\} < \{x_{t+j}: t+j = 1 \mod p\} < ... < \{x_{t+j}: t+j = p-1 \mod p\}, \tag{14}
\]

where \(0 \leq j < L-1 \) and \(x_{t+j} = y_{p-1} \) for all \(t+j = p-1 \mod p \) (last group). As a result, the time indices of the \(\nu \) noisy points \(x_{t+j} \) in each of the first \(p-1 \) groups of the splitting (14) can be ordered in any of the \(\nu! \) permutations (\(\nu \)-patterns) possible, while the time indices of the noiseless points \(x_{t+j} = y_p \) in the last group leads to only one \(\nu \)-pattern, namely: the permutation consisting of the corresponding time indices in increasing order (according to the convention for repeated values). This explains the second factor \((\nu!)^{p-1} \) in Equation (13). Therefore, as \(\nu = L/p \) increases,

\[
\ln A_L(X_p) = \ln p + (p-1)\ln((L/p)!| \sim (p-1)\frac{L}{p}\ln \frac{L}{p} = \frac{p-1}{p}L\ln(L-L/p) \sim cL\ln L \tag{15}
\]

where \(c = (p-1)/p < 1 \) and \(L = vp \). Obviously, if the number of "noiseless" measurements of the periodic cycle \((y_0, y_1, ..., y_{p-1})\) is generalized to \(m \), then, \(c = (p-m)/p \).

The noisy process presented in Example 4 will be discussed with greater detail in Section 5.2. In particular, the asymptotic growth of \(\ln A_L(X_p) \) depends on \(L \) modulus \(p \).

Since real-world data is noisy, one certainly expects super-exponentially growing numbers of allowed patterns in empirical observations, although sub-factorial growths such as in Equation (15) seem elusive.

3 Permutation complexity functions and classes

Next we wish to associate the notion of permutation complexity to processes ranging from deterministically generated signals to white noise. Unfortunately, the metric and topological permutation entropies are not up to the job.
For instance, \(h_0^t(X) \) converges for deterministic processes (Theorem 2) but diverges for forbidden-pattern-free (FPF) signals:

\[
h_0^t(X) = \lim_{L \to \infty} \frac{1}{L} \ln A_L(X) = \lim_{L \to \infty} \ln L = \infty
\]

by (12).

This being the case, we shall rather focus on the permutation complexity (PC) class of the process \(X \), which we define by the asymptotic growth of \(\ln A_L(X) \) with respect to \(L \). In view of Equation (10) for the deterministic processes and Equation (12) for the FPF processes, we propose the following definition.

Definition 5. Let \(g(t) \) be a positive, invertible and sufficiently regular function of the real variable \(t \geq 0 \). A process \(X \) is said to belong to the PC class \(g \) if

\[
\ln A_L(X) \sim g(L)
\]

as \(L \to \infty \).

The function \(g(t) \) will be called the permutation complexity (PC) function of the process \(X \). The name of \(g(t) \) is suggested by Equation (10) with \(L = |t| \), since the topological entropy \(h_0(f) \) measures the dynamical complexity of the deterministic dynamic generated by \(f \). In some cases, for convenience or economy, we will group a family of classes under a single “super-class”, although we will also call them classes.

Remark 6. Two important observations on the PC function of a process:

1. Regarding regularity, we will assume henceforth that \(g(t) \) is bicontinuous, i.e., both \(g(t) \) and its inverse \(g^{-1}(s) \) are continuous. The bicontinuity and invertibility of \(g(t) \) imply that \(g(t) \) and, hence, \(g^{-1}(t) \) are strictly monotonic [47], in fact, strictly increasing in our case.

2. Regarding uniqueness, the complexity class \(g \) depends only on the asymptotic behavior of \(g(t) \); any other function \(\tilde{g}(t) \sim g(t) \) (i.e., \(\tilde{g}(t) = g(t) + o(g(t)) \)) will work out as well. Put in other terms, PC classes are defined up to asymptotic equivalence.

Considering the growth of \(A_L(X) \), there is a first clear-cut division of processes: deterministic processes, for which \(A_L(X) \) grows exponentially, and FPF processes, for which \(A_L(X) \) grows factorially. Data analysis and numerical simulations show that the latter are ubiquitous in practice. Processes with super-exponential but sub-factorial growths will be grouped in a third class. Specifically, we are going to turn our attention to the following three PC classes.

(C1) Exponential class: \(\ln A_L(X) \sim cL \) \((c > 0) \), i.e.,

\[
g(t) = ct =: g_{\exp}(t).
\]

Thus, the exponential class is actually a class of classes, one for each \(c \). Each class with a given constant \(c \) includes all deterministic processes \(X = f \) with topological entropy \(h_0(f) = c \); maps with the same \(h_0(f) \) are said to be topologically conjugate. Therefore, deterministic processes with different topological entropies have different permutation complexities, in line with the concept of dynamical complexity.

Moreover, for each \(c > 0 \) the corresponding class is non-empty. Indeed, for every \(\sigma > 1 \) there exists a piecewise monotone map \(f \) with \(h_0(f) = \ln \sigma > 0 \), namely, the piecewise linear selfmap of the interval \([0, 1]\) with constant slopes \(\pm \sigma \). Therefore, any function of the form \(g(t) = ct \) is the PC function of a deterministic processes generated by a piecewise linear map with \(\sigma = e^c \).

(C2) Factorial class: \(\ln A_L(X) \sim \ln L \), i.e.,

\[
g(t) = t \ln t =: g_{\fac}(t).
\]

Regarding the applications, the factorial class is the most interesting since virtually all random processes in practice are FPF.

(C3) Sub-factorial class: \(\ln A_L(X) \sim g(t) \), where (i) \(g_{\exp}(t) = o(g(t)) \) and \(g(t) = o(g_{\fac}(t)) \) or, else, (ii)

\[
g(t) := ct \ln t \text{ with } 0 < c < 1.
\]
The sub-factorial class is also a class of classes. This class is potentially the largest since it fills the gap between the exponential and the factorial class, although practical examples are hard to find. Examples of functions $g(t)$ such that $ct = o(g(t))$ and $g(t) = o(t \ln t)$ (condition $C3(i)$) are

$$g(t) = t \ln^{(n)} t \quad (n \geq 2),$$

where $\ln^{(n)} t$ denotes the composition of the logarithmic function n times. Toy models with PC functions of the form (20) were presented in Example 4. Prompted by this example, in the forthcoming theorems we will use $g_{\text{sub}}(t) := ct \ln t, \ 0 < c < 1$, as a prototypical PC function of the sub-factorial class, although the other representatives in Equation (21) will also be considered alongside.

Let us mention in passing that $g(t) = ct \ln t$ with $c > 1$ is not the PC function of any random process in the ordinal representation. However, statistical complex systems may have such super-factorial growth rates of the state space as the number of constituents increases [24].

Of course, the exponential and sub-factorial classes can be thought of as refined in smaller classes whenever convenient.

To conclude this section, let us return to the asymmetry between deterministic and FPF processes regarding their PC functions. As already mentioned, $g_{\text{exp}}(t) = ct$ distinguishes deterministic processes from each other up to topological conjugacy, since $c = h_0(f)$ in this case. On the contrary, all FPF processes have the same PC function, namely, $g_{\text{fac}}(t) = t \ln t$, the reason being that $A_L(X)$ counts the number of allowed L-patterns for $L \gg 1$, and this number is $L!$ for all FPF processes. The result is that $g_{\text{fac}}(t)$ is useless in distinguishing FPF processes from each other. A possible way out of this shortcoming is to take into account the probability distribution of the allowed L-patterns, e.g., through permutation entropies tailored to each PC class, as we do in the next section. A different approach, based on the convergence rate of $\ln A_L(X)$ to $g_{\text{fac}}(t) = t \ln t$ with the length of the time series, will be presented in Section 5.2 when discussing numerical simulations.

4 Generalized permutation entropy

Let $p = (p_1, p_2, \ldots, p_W)$ be a discrete probability distribution; we denote by P_W the set of all discrete probability distributions with W entries. From the point of view of information theory, an entropy is a positive functional $S(p)$ defined on $\cup_{W \geq 2} P_W$ that satisfies certain properties required by Shannon [48, 49] and Khinchin [50] in their uniqueness theorem for $S(p)$, and nowadays known as the Shannon-Khinchin (SK) axioms. The first three (SK) axioms are:

(SK1) Continuity: S is continuous on P_W for each W.

(SK2) Maximaliy: For each $(p_1, p_2, \ldots, p_W) \in P_W$,

$$S(p_1, p_2, \ldots, p_W) \leq S\left(\frac{1}{W}, \frac{1}{W}, \ldots, \frac{1}{W}\right).$$

(SK3) Expansibility: For each $(p_1, p_2, \ldots, p_W) \in P_W$ and $i \in \{0, 1, \ldots, n - 1\}$,

$$S(p_1, \ldots, p_i, 0, p_{i+1}, \ldots, p_n) = S(p_1, p_2, \ldots, p_n).$$

If $S(p)$ satisfies (SK1)-(SK3) and a fourth axiom called separability or strong additivity (SK4), then $S(p)$ must be the Boltzmann-Gibbs-Shannon entropy (usually called Shannon entropy in information theory):

$$S(p) = -k \sum_{i=1}^{W} p_i \ln p_i =: S_{\text{BGS}}(p),$$

where k is an arbitrary positive constant that can be interpreted as the freedom in the choice of the logarithm base. If, otherwise, $S(p)$ only satisfies the first three SK axioms, then $S(p)$ is called a generalized entropy and its form is only known under additional assumptions [51, 52].

Remark 7. In the case of group entropies, of interest in this work, the strong additivity axiom (SK4) is replaced by the composability axiom, namely, the requirement that there exists a suitable function of the form $\Phi(x, y) = x + y +$ higher order terms, which takes care of the composition process of two independent systems that are described by probability distributions. Specifically,

$$S(p \times q) = \Phi(S(p), S(q)),$$

where p, q are any two probability distributions and $p \times q$ is their product distribution. Here Φ is supposed to satisfy three properties: (i) $\Phi(x, y) = \Phi(y, x)$ (symmetry), (ii) $\Phi(x, \Phi(y, z)) = \Phi(\Phi(x, y), z)$ (associativity), and (iii)
\(\Phi(x, 0) = x \) (null-composability), which coincide with those of a formal group law \([18]\). Thus, a group entropy is a functional satisfying the first three SK axioms and the composability axiom. Property (23) is actually crucial to generalize the standard notion of entropy. The entropies of Shannon \([22]\), Rényi \([24]\), and Tsallis \([53]\) belong to this class. A multivariate extension of the notion of group entropy has been proposed in \([19]\). An independent axiomatic approach to composable entropies, the pseudoadditive entropies, has been discussed in \([52]\) (see also the references therein).

As it turns out, \(S_{BGS}(p) \) is not well suited to deal with the diversity of complex systems, including the thermodynamical ones. In complexity theory, systems are usually classified in sub-exponential, exponential and super-exponential “complexity classes”, according to the state growth rates of the states with the number of constituents \(N \). For each of such classes there is a specific group entropy, called \(Z \)-entropy, that is extensive for the systems in the class, meaning that it is finite over uniform probability distributions in the limit \(N \to \infty \) \([18][19]\).

In this section we capitalize on the similarities between this approach and ours to extend the concept of permutation entropy from deterministic processes to random processes via the \(Z \)-entropies for the exponential, sub-factorial and factorial complexity classes.

4.1 Permutation entropy of finite order

Given a probability distribution \(p = (p_1, \ldots, p_W) \) and \(\alpha \in \mathbb{R}, \alpha > 0 \), the Rényi entropy \(R_\alpha(p) \) is defined as \([54]\)

\[
R_\alpha(p) = \frac{k}{1-\alpha} \ln \left(\sum_{i=1}^{W} p_i^\alpha \right) \tag{24}
\]

\((k > 0)\) for \(\alpha \neq 1 \), and

\[
R_1(p) := \lim_{\alpha \to 1} R_\alpha(p) = -k \sum_{i=1}^{W} p_i \ln p_i = S_{BGS}(p), \tag{25}
\]

see Equation (22). In statistical mechanics, \(k = 1.380649 \times 10^{-23} \) JK\(^{-1}\) is the Boltzmann constant; in information theory, \(k \) is usually set equal to 1, as we do from now on.

The following definition is an adaptation to our context of the concept of \(Z \)-entropy \([18][19]\). Remember that, according to Remark 6 on the PC function \(g(t) \) of a process, its inverse \(g^{-1}(s) \) is continuous and strictly increasing.

Definition 8. Let \(g(t) \) be the PC function of a process \(X \). The (metric) permutation entropy of order \(L \) of \(X \) is defined as

\[
Z_{g,\alpha}^*(X_L^L) = Z_{g,\alpha}^*(p) = g^{-1}(R_\alpha(p)) - g^{-1}(0), \tag{26}
\]

where \(\alpha > 0 \), \(p \) is the probability distribution of the ordinal \(L \)-patterns of \(X_0^L = X_0, X_1, \ldots, X_{L-1} \), and \(R_\alpha(p) \) is Rényi’s entropy.

The term \(-g^{-1}(0)\) in (26) ensures that \(Z_{g,\alpha}^*(X_L^L) = 0 \) for singular probability distributions, i.e., when \(p_{i_0} = 1 \) and \(p_i = 0 \) for \(i \neq i_0 \). By the continuity and strictly increasing monotonicity of \(g^{-1}(s) \), \(Z_{g,\alpha}^*(X_L^L) \) fulfills the axioms (SK1)-(SK3), i.e., \(Z_{g,\alpha}^*(X_0^L) \) is a generalized entropy. In addition, \(Z_{g,\alpha}^*(X_L^L) \) satisfies the composability axiom (23) with \(\Phi(x, y) = \chi^{-1}(\chi(x) + \chi(y)) \), where \(\chi(t) = g(t + g^{-1}(0)) \) and, hence, \(\chi^{-1}(s) = g^{-1}(s) - g^{-1}(0) \).

By its definition (and the increasing monotonicity of \(g^{-1}(s) \)), \(Z_{g,\alpha}^*(X_L^L) \) inherits some of the properties of \(R_\alpha(p) \). For instance, \(Z_{g,\alpha}^*(X_L^L) \) is monotone decreasing with respect to the parameter \(\alpha \) \([51]\).

\[
Z_{g,\alpha}^*(X_L^L) \geq Z_{g,\beta}^*(X_L^L) \quad \text{for } \alpha < \beta \tag{27}
\]

and each \(L \geq 2 \).

To formulate the next theorem, we need to introduce the special function \(L(x) \), by which we denote the principal branch of the real \(W - \text{Lambert function} \). This is a smooth function, defined as the solution of the equation \(y e^y = x \), i.e., \(W(x)e^{W(x)} = x \), for \(x \geq -e^{-1} \). \(L(x) \) is the unique solution for \(x \geq 0 \), while for \(-e^{-1} < x < 0 \) there is another solution belonging to a second branch. Some basic properties of \(L(x) \) are the following \([53]\): (i) \(L(x) \) is strictly increasing and \(\cap \)-convex; (ii) \(L(-e^{-1}) = -1 \) and \(L(0) = 0 \); (iii) \(L(x) > 0 \) for \(x > 0 \); (iv) \(L(x) > 1 \) for \(x > e \); and (v) \(L(x) \to \infty \) as \(x \to \infty \). Moreover, \(L(x) \) satisfies the identity

\[
L(x \ln x) = \ln x \tag{28}
\]

for \(x \geq e^{-1} \).
Theorem 9. Given a process X, let p be the probability distribution of the ordinal L-patterns of X_0^L. For the PC classes (C1)-(C3) of Section 3, the following holds.

(a) For $g_{\exp}(t) = ct$:

$$Z_{g_{\exp,\alpha}}^*(X_0^L) = \frac{1}{c} R_\alpha(p) =: Z_{\exp,\alpha}^*(X_0^L).$$ \hfill (29)

(b) For $g_{\fac}(t) = t \ln t$:

$$Z_{g_{\fac,\alpha}}^*(X_0^L) = e^{L[R_\alpha(p)]} - 1 =: Z_{\fac,\alpha}^*(X_0^L).$$ \hfill (30)

(c) For $g_{\sub}(t) = ct \ln t (0 < c < 1)$:

$$Z_{g_{\sub,\alpha}}^*(X_0^L) = e^{L[R_\alpha(p)/c]} - 1 =: Z_{\sub,\alpha}^*(X_0^L).$$ \hfill (31)

Proof. Equation (29) follows readily from the definition (26) and

$$g_{\exp}^{-1}(s) = \frac{s}{c}. $$

If $s = ct \ln t (0 < c \leq 1)$, then $L(s/c) = L(t \ln t) = \ln t$ by the identity (28). Hence

$$g_{\fac}^{-1}(s) = e^{L(s)}, $$

for $c = 1$,

$$g_{\sub}^{-1}(s) = e^{L(s/c)}, $$

for $c < 1$, and $g_{\sub}^{-1}(0) = g_{\fac}^{-1}(0) = e^{L(0)} = 1$. Equations (30) and (31) follow. \qed

Remark 10. Regarding Theorem 9 let us highlight the following points.

1. $Z_{g_{\exp,\alpha}}^*(p) = R_\alpha(p)$ for $c = 1$, that is, the sub-class that includes the maps with topological entropy 1. Since $R_\alpha(p)$ is defined anyway up to a positive constant k, see Equations (22)-(23), we may conclude that Rénny’s entropy (of the probability distribution of the ordinal L-patterns) is the permutation entropy when dealing with deterministic processes, regardless of their topological entropy.

2. In particular (see Equation (23))

$$Z_{\exp,1}^*(X_0^L) = S_{BGS}(p) = H^*(X_0^L),$$ \hfill (32)

where $H^*(X_0^L)$ is the conventional metric permutation entropy of order L, Equation (5). In other words, $Z_{g_{\exp,\alpha}}^*(X_0^L)$ reduces to the conventional permutation entropy under the right assumptions. This justifies calling it a (generalized) permutation entropy.

3. $Z_{g_{\fac,\alpha}}^*(X_0^L)$ was used in (20) (with the notation $Z_{g_{\fac}}^*(X_0^L)$) to generalize $H^*(X_0^L)$ to FPF processes. There it is proved that

$$Z_{g_{\fac,\alpha}}^*(p) = R_\alpha(p) - \frac{1}{2} R_\alpha(p)^2 + O(3)$$ \hfill (33)

if $R_\alpha(p) < 1/c$. Therefore, when $R_\alpha(p)$ is small, it is a good approximation of $Z_{g_{\fac,\alpha}}^*(p)$.

As anticipated in Section 3 we have chosen $g_{\sub}(t) = ct \ln t (0 < c < 1)$ in Theorem 9(c) mainly because of Example 4. For the choice $g_{\sub}(t) = t \ln(t)$ (n ≥ 2), the other examples of sub-factorial PC functions given in Equation (21), we need to generalize the Lambert function $L(x)$. We define the generalized Lambert function $L^{(n)}(x)$ ($n \geq 1$, with $L^{(1)}(x) = L(x)$) by the functional equation

$$L^{(n)}(x) \exp^{(n)}[L^{(n)}(x)] = x$$ \hfill (34)

for $x \geq - \exp^{(n)}(-1)$, where $\exp^{(n)}(x)$ denotes the composition of the exponential function n times. Hence, $L^{(n)}(x) \geq 0$ for $x \geq 0$, $L^{(n)}(0) = 0$, and the identity (28) generalizes to

$$L^{(n)}[x \ln^{(n)} x] = \ln^{(n)} x$$ \hfill (35)

for $x \geq \exp^{(n)}(-1)$ (since $L^{(n)}[- \exp^{(n)}(-1)] = -1$). It follows that the inverse of $g(t) = t \ln^{(n)} t$ is

$$g^{-1}(s) = \exp^{(n)}[L^{(n)}(s)],$$ \hfill (36)

so that $g^{-1}(0) = 1$ since $L^{(n)}(0) = 0$. Therefore, the permutation entropy of order L of the sub-factorial class defined by $g(t) = t \ln^{(n)} t$ is

$$Z_{g_{\fac,\alpha}}^*(X_0^L) = \exp^{(n)}[L^{(n)}(R_\alpha(p))] - 1 \quad (n \geq 2).$$ \hfill (37)

For $n = 1$ we recover $Z_{g_{\fac,\alpha}}^*(X_0^L)$, Equation (20).
4.2 Permutation entropy rate

According to axiom SK2, entropies reach their maxima over uniform probability distributions. Sometimes these upper bounds are called the topological versions of the corresponding entropies or simply topological entropies. Thus, the topological version of \(Z_{g,0}^*(X_0^L) \) is its tight upper bound, which is obtained over the uniform distribution \(p_u \) of the allowed ordinal \(L \)-patterns for \(X \). This means that \(p_u = (p_1, ..., p_L) \) with

\[
p_i = \begin{cases} 1/A_L(X) & \text{if the } i \text{th ordinal } L\text{-pattern is allowed for } X \\ 0 & \text{if the } i \text{th ordinal } L\text{-pattern is forbidden for } X \end{cases}
\]

for \(i = 1, ..., L \). Note that

\[R_\alpha(p_u) = \ln A_L(X) \]

for \(\alpha > 0 \). Plugging Equation (39) into (26), we are led to the following definition.

Definition 11. The topological permutation entropy of order \(L \) of a process \(X \) of class \(g \) is defined as

\[
Z_{g,0}^*(X_0^L) = Z_{g,0}^*(p_u) = g^{-1}(\ln A_L(X)) - g^{-1}(0),
\]

where \(p_u \) is the uniform probability distribution of allowed \(L \)-patterns for \(X \) as defined in Equation (38).

The notation \(Z_{g,0}^* \) for the topological permutation entropy is justified because \(\ln A_L(X) \) is formally obtained from Equation (24) by setting \(\alpha = 0 \); indeed,

\[
R_0(p_1, ..., p_L) = \ln |\{p_i : p_i > 0, 1 \leq i \leq L!\}| = \ln A_L(X)
\]

for all \(p = \{p_1, ..., p_L\} \). It follows,

\[
R_0(p) \geq R_\alpha(p)
\]

for all \(\alpha > 0 \), so that

\[
Z_{g,0}^*(X_0^L) \geq Z_{g,0}^*(X_0^L)
\]

for all \(\alpha > 0 \) since \(g^{-1}(s) \) is a strictly increasing function (see Remark 6).

Uniform probability distributions are special for several reasons. From the viewpoint of statistical mechanics, they correspond to the most disordered state, hence to equilibrium in the microcanonical ensemble. From the point of view of information theory, they amount to the principle of insufficient reason or maximum entropy principle [56] under null knowledge (maximum ignorance). Most important for us, the concept of extensivity (inherited from thermodynamics) also refers to such probability distributions: we say that an entropy \(S(p) \) is extensive if it scales linearly with the number of constituents (degrees of freedom, etc.) \(N \) of the system over the uniform probability distribution \(p = (1/N, ..., 1/N) \), i.e.,

\[
\lim_{N \to \infty} \frac{S(1/N, ..., 1/N)}{N} \sim \text{const} > 0.
\]

Therefore, extensivity depends on how the number of states grows with \(N \), the sub-exponential, exponential and super-exponential regimes (or classes) being the most important ones.

Theorem 12. The permutation entropy \(Z_{g,0}^*(X_0^L) \) is extensive with respect to the parameter \(L \). In fact, for all \(\alpha > 0 \),

\[
\frac{Z_{g,0}^*(p_u)}{L} = \frac{Z_{g,0}^*(X_0^L)}{L} \sim 1.
\]

Proof. From definition (40) and \(\ln A_L(X) \sim g(L) \), Equation (17), we obtain

\[
Z_{g,0}^*(X_0^L) = g^{-1}(\ln A_L(X)) - g^{-1}(0) \sim g^{-1}(g(L)) - g^{-1}(0) = L - g^{-1}(0) \sim L.
\]

This proves Equation (45).

To get rid of the dependence of \(Z_{g,0}^*(X_0^L) \) on \(L \), we turn to the entropy rates per variable, \(Z_{g,0}^*(X_0^L)/L \), and take the limit when \(L \to \infty \).

Definition 13. The permutation entropy rate (or just permutation entropy) of a process \(X \) of class \(g \) is defined as

\[
z_{g,0}^*(X) = \lim_{L \to \infty} \frac{1}{L} Z_{g,0}^*(X_0^L),
\]

where \(\alpha > 0 \): \(z_0^*(X) \) is the topological permutation entropy of \(X \), and \(z_0^*(X) \) with \(\alpha > 0 \) is the metric permutation entropy of \(X \).
The permutation entropy rate $z_{g,\alpha}^*(X)$ quantifies an intrinsic property of the process X. The existence of the limit (46) follows from Theorem[12] As a matter of fact, the existence of $z_{g,\alpha}^*(X)$ amounts to the extensivity of $Z_{g,\alpha}^*(X_0^L)$.

Theorem 14. For each complexity class g and $\alpha > 0$,

$$z_{g,\alpha}^*(X) \leq z_{g,0}^*(X) = 1$$

(47)

Proof. The inequality $z_{g,\alpha}^*(X) \leq z_{g,0}^*(X)$ follows from Equation (43). The equality

$$z_{g,0}^*(X) = \lim_{L \to \infty} \frac{1}{L} Z_{g,0}^*(X_0^L) = 1$$

(48)

follows from Equation (45).

Therefore, the values of the entropy rate $z_{g,\alpha}^*(X)$, $\alpha \geq 0$, are restricted to the unit interval $[0, 1]$. The next theorem gives $z_{g,\alpha}^*(X)$ for the exponential and factorial classes, along with the sub-factorial class for $g(t) = ct \ln t$ $(0 < c < 1)$.

Theorem 15. Given a process X, let p be the probability distribution of the ordinal L-patterns of X_0^L. The permutation entropy rate of X is given as follows.

(a) For the exponential class:

$$z_{exp,\alpha}^*(X) := z_{g_{exp,\alpha}}^*(X) = \lim_{L \to \infty} \frac{1}{cL} R_\alpha(p).$$

(49)

In particular, if $X = f$ and $\alpha = 1$, then

$$z_{exp,1}^*(X) = \frac{h(f)}{h_0(f)},$$

(50)

where $h(f)$ is the Kolmogorov-Sinai entropy of f and $h_0(f)$ is its topological entropy.

(b) For the factorial class:

$$z_{fac,\alpha}^*(X) := z_{g_{fac,\alpha}}^*(X) = \lim_{L \to \infty} \frac{1}{L} e^{C[R_\alpha(p)]}.$$

(51)

(c) For the sub-factorial class (defined by $g_{sub}(t) = ct \ln t$, $0 < c < 1$):

$$z_{sub,\alpha}^*(X) := z_{g_{sub,\alpha}}^*(X) = \lim_{L \to \infty} \frac{1}{L} e^{C[R_\alpha(p)]/c}.$$

(52)

Proof. Use the definition (46) and

$$Z_{g,\alpha}^*(X_0^L) \sim Z_{g_{exp,\alpha}}^*(X_0^L) = \frac{1}{e} R_\alpha(p)$$

for X in the exponential class (Theorem[9]a)),

$$Z_{g,\alpha}^*(X_0^L) \sim Z_{g_{fac,\alpha}}^*(X_0^L) = e^{C[R_\alpha(p)]/c}$$

for X in the factorial class (Theorem[9]b)), and

$$Z_{g,\alpha}^*(X_0^L) \sim Z_{g_{sub,\alpha}}^*(X_0^L) = e^{C[R_\alpha(p)]/c} - 1$$

for X in the sub-factorial class defined by $g_{sub}(t) = ct \ln t$, $0 < c < 1$ (Theorem[9]c)), to derive Equations (49), (51) and (52), respectively.

As for Equation (50), use (i) $R_1(p) = S_{BGS}(p) = H^*(X_0^L)$, (ii)

$$\lim_{L \to \infty} \frac{1}{L} R_1(p) = \lim_{L \to \infty} \frac{1}{L} H^*(X_0^L) = h(f)$$

(Theorem[2]a)), and (iii) $g_{exp}(t) = ct = h_0(f)t$ in Equation (49).

Note that Equation (50) complies with (47) for $g = g_{exp}$ and $\alpha = 1$ because $h_0(f) \geq h(f)$.

Remark 16. A few closing observations on permutation entropy rates.

12
1. The hierarchical order (27) and (43) carries on trivially to permutation entropy rates:

\[z_{g,\alpha}(X) \geq z_{g,\beta}(X) \]

for \(0 \leq \alpha < \beta \).

2. For the sub-factorial subclasses defined by \(g(t) = t \ln(n) t, n \geq 2 \), use Equation (37) to obtain

\[z_{g,\alpha}(X) = \lim_{L \to \infty} \frac{1}{L} \exp(n) \left[L^n \left[R_\alpha(p) \right] \right] . \]

3. For white noise (WN), the probability distribution of the \(L \)-patterns is uniform for every \(L \). Therefore,

\[z_{\text{fac},\alpha}(\text{WN}) = z_{\text{fac},\alpha}(\text{WN}) = 1 \]

for every \(\alpha > 0 \) by Equation (48).

5 Numerical simulations

One of the most important applications of permutation complexity to data analysis is the characterization and, hence, discrimination of time series. In this section we illustrate the discriminative power of permutation complexity in time series analysis. For this purpose, we are going to use permutation entropy in Section 5.1 and (perhaps surprisingly) the PC function in Section 5.2. Both tools are used in Section 5.3 to further dissect the sub-factorial “not-so-noisy measurement of a periodic signal” introduced in Example 4. Numerical receipts for computing ordinal patterns and permutation entropies can be found, e.g., in References [57, 58].

Since real time series analysis have finite length, some allowed ordinal patterns can be missing in random time series simply for statistical reasons. Therefore, practitioners prefer to speak of visible patterns and missing patterns rather than allowed patterns and forbidden patterns, respectively, as we will sometimes do as well.

5.1 Time series discrimination using permutation entropies

In Section 4 we have explicitly constructed a permutation entropy \(Z_{g,\alpha}^*(X_{0}^L) \) for each PC class \(g \) such that the corresponding entropy rate \(z_{g,\alpha}(X) \) is finite. However, real-world data is noisy, which seems to exclude the exponential class—but not quite.

In nonlinear time series analysis, it is good practice to test for determinism first. Underlying determinism in noisy time series can be unveiled by several techniques [59], including forbidden ordinal patterns [9]. If the noise to signal ratio is sufficiently small, then the data can be denoised, which allows the analyst to work with time series as good as noiseless deterministic. This is the exponential class, and the realm of the conventional permutation entropy \(Z_{\text{exp},\alpha}^*(X_{0}^L) = R_\alpha(p) \) (or \(H^*(X_{0}^L) \) for \(\alpha = 1 \)) and its rate \(z_{\text{exp},\alpha}^*(X) \). Since real-world time series are finite, the entropy rate \(z_{\text{exp},\alpha}^*(X) \) can only be estimated if the convergence of \(Z_{\text{exp},\alpha}^*(X_{0}^L)/L \) is sufficiently fast. This can be checked, e.g., by plotting \(Z_{\text{exp},\alpha}^*(X_{0}^L)/L = R_\alpha(p)/L \) vs \(1/L \); if there is an interval where the curve is linear (before undersampling sets in), then fit a straight line to the linear segment of the curve and compute the limit \(z_{\text{exp},\alpha}^*(X) = \lim_{L \to \infty} Z_{\text{exp},\alpha}^*(X_{0}^L)/L \) is the intercept of the straight line with the vertical axis (10 Sect. 2.1). If desired, the parameter \(c \) that appears in Equation (29) can be estimated by \(H_\alpha^*(X_{0}^L)/L = \ln A_L(X)/L \) (see Equations (7) and (8)), because \(H_\alpha^*(X_{0}^L)/L \) is a proxy of \(c = h_0(f) \) for \(L \) large enough by Theorem (2b) with \(f = X \). For the purpose of time series discrimination, however, \(c \) can be dispensed with, which amounts to setting \(c = 1 \). The estimation of \(A_L(X) \) is usually done by just counting visible patterns in a sample of time series or even in a single, sufficiently long time series. This procedure can be justified if the orbits densely visit the state space, a property that goes by the name of transitivity. By the way, this is the first property in Devaney’s definition of chaos and, in fact, it implies the other two properties (density of periodic points and sensitivity to initial conditions) for interval maps [60].

Furthermore, in nonlinear time series analysis, the dynamics of the (often unknown) system under observation is assumed to settle down on a low dimensional attractor, where it is transitive. However, for the asymptotic dynamics to be accessible to finite precision observations and numerical simulations, it is necessary that the physical measure (see Equation (6)) is smooth (or absolutely continuous in technical terminology [44]). Typically, the physical measure of chaotic attractors has a smooth density in the stretching, or unstable, directions of the dynamics, while it has a discontinuous (e.g., Cantor set-like) structure transversally to those directions [42]: think of the Hénon attractor. Finite precision smooths out the physical measure when the attractor is viewed transversally to the stretching directions.

Otherwise, if there is no good reason to assume determinism, the data are handled as random. Moreover, numerical simulations and empirical observations show that virtually all random time series encountered in practice are FPF. This
entails that \(Z_{\text{fac}, \alpha}(X^L_0) \) and \(z_{\text{fac}, \alpha}(X) \) are the appropriate tools to characterize random time series in the absence of more information. However, the factorial growth of the \(L \)-patterns and the associated computational cost restrict \(L \) to moderate values in practice \((L \lesssim 7)\), which makes the numerical estimation of \(z_{\text{fac}, \alpha}(X) \) an open question in general.

For the above reasons, we have selected seven random processes from the factorial class to illustrate the discrimination power of permutation complexity with numerical simulations. This is also a particularly difficult case because all processes belong to the same complexity class in strict sense (there are no parameters in \(g_{\text{fac}}(t) = t \ln t \)). Those seven processes are the following.

Fac1 White noise (WN) in the form of an independent and uniformly distributed process on \([0, 1]\);

Fac2 Fractional Gaussian noise (fGn) with Hurst exponent \(H = 0.2 \) [43];

Fac3-5 Fractional Brownian motion (fBm) with \(H = 0.2, 0.4 \) (anti-persistent processes), and \(H = 0.6 \) (persistent process) [43];

Fac6 Logistic map with additive white noise of amplitude 0.30 (noisy LM), i.e., \(x_t = y_t + z_t \), where \(y_t = 4y_{t-1}(1-y_{t-1}) \) with \(y_0 = 0.2002 \), and \((z_t)_{t \geq 0} \) is WN with \(-0.30 \leq z_t \leq 0.30\);

Fac7 Schuster map with exponent 2 [61] and additive white noise of amplitude 0.25 (noisy SM), i.e., \(x_t = y_t + z_t \), where \(y_t = y_{t-1} + y_{t-1} \) mod 1 with \(y_0 = 0.2002 \), and \((z_t)_{t \geq 0} \) is WN with \(-0.25 \leq z_t \leq 0.25\).

Arguments for this specific pick include that (i) the processes (Fac1)-(Fac7) cover a diversity of interesting cases (white noise, random processes with long dependence ranges, deterministic dynamics contaminated with observational noise); (ii) they are relevant to time series analysis and familiar to the analysts; and (iii) there are well-tested numerical routines available for simulations.

Figure 1 shows \(\langle Z_{\text{fac}, \alpha}(X^L_0) \rangle/L \), the average of \(Z_{\text{fac}, \alpha}(X^L_0) \) over 35 time series for the random processes (Fac1)-(Fac7) and \(3 \leq L \leq 7 \), where \(\alpha = 0.5 \) (a), \(\alpha = 1 \) (b) and \(\alpha = 1.5 \) (c). For calculation purposes, the maximal length of the time series was set at \(T_{\text{max}} = 50,000 \) \((\gg 7! = 5040)\), but the computational loop is actually exited as soon as the probability distribution of the \(L \)-patterns stabilizes, so that the numerical routine is the same for all \(3 \leq L \leq 7 \). We see in all panels of Figure 1 that \(\langle Z_{\text{fac}, \alpha}(X^L_0) \rangle/L \) follows a distinct and seemingly convergent trajectory for each process as \(L \) grows, upper bounded by the white noise. In agreement with [27], \(\langle Z_{\text{fac}, 0.5}(X^L_0) \rangle/L \geq \langle Z_{\text{fac}, 1}(X^L_0) \rangle/L \geq \langle Z_{\text{fac}, 1.5}(X^L_0) \rangle/L \) for each process. For white noise, \(\langle Z_{\text{fac}, \alpha}(X^L_0) \rangle/L \rightarrow 1 \) as \(L \) grows by Equation (55).

The effect of \(\alpha \) on the discriminatory power of \(Z_{\text{fac}, \alpha}(X^L_0) \) clearly depends on the probability distribution \(p \) of the \(L \)-patterns through the Rényi entropy \(R_\alpha(p) \). In particular, for \(\alpha < 1 \) the central part of the distribution is flattened, i.e., high-probability events are suppressed, and low-probability events are enhanced. This effect is more pronounced for smaller \(\alpha \). The opposite happens when \(\alpha > 1 \): low-probability events are suppressed while high-probability events are enhanced. Our choices \(\alpha = 0.5, 1, 1.5 \) are meant to include both situations \(\alpha < 1 \) and \(\alpha > 1 \), along with the Shannonian case \(\alpha = 1 \). In Figure 1 this results in a higher discriminatory power of \(Z_{\text{fac}, \alpha}(X^L_0) \) with increasing \(\alpha \), i.e., the larger \(\alpha \) the further apart the curves \(\langle Z_{\text{fac}, \alpha}(X^L_0) \rangle/L \) are, which shows that the parameter \(\alpha \) is an asset in applications. Similar choices of \(\alpha \) give similar results (not shown).

Note also that the curves of different processes may cross. The reason is that \(Z_{\text{fac}, \alpha}(X^L_0) \) can only capture ranges of interdependence up to \(L \). Put another way, larger window sizes \(L \) unveil dependencies between farther variables that can be measured by \(Z_{\text{fac}, \alpha}(X^L_0) \). Therefore, as \(L \) grows, \(Z_{\text{fac}, \alpha}(X^L_0) \) can become larger for a noisy chaotic signal, such as the noisy logistic map, than for a process with a longer, or an infinite, span of interdependence between its increments, such as the fractional Brownian motion with \(H = 0.40 \); this can be seen more clearly in panel (c).

In particular, Figure 1 shows that, although all seven processes (Fac1)-(Fac7) belong to the same PC class, namely, the factorial class, the finite rates \(Z_{\text{fac}, \alpha}(X^L_0) \) can distinguish them, evidencing as expected that \(Z_{\text{fac}, \alpha}(X^L_0) \) is a finer measure of permutation complexity than \(q(t) \). This does not mean that the growth rate of allowed patterns cannot be utilized for that objective, as we explain in Section 5.2.

5.2 Time series discrimination using permutation complexity functions

It was noticed in [15] that the number of missing \(L \)-patterns for a white noise series of length \(T \geq L \) decreases exponentially with \(T \). This result was generalized in [16] to different sorts of FPFP processes \((f^{-k} \text{ power spectrum (PS)}, \text{fractional Brownian motion (fBM), fractional Gaussian noise (fGn)})\) by setting

\[
\mathcal{M}_{L,T}(X) := \{ \text{missing } L\text{-patterns in } x^{T-1}_0 \} = C e^{-R T},
\]

where \(x^{T-1}_0 \) is a typical realization of \(X \) of length \(T \geq L \), and \(C \) and the decay rate \(R \) are constants that depend on \(L \) and the parameters of the random process \((k \text{ for } f^{-k} \text{ PS}, \text{or the Hurst exponent } H \text{ for BM and fGn})\). From Equation (56)
This being the case, we let the permutation complexity function $M_{\text{g}}(60)$, the limit of where the allowed patterns become progressively visible, and (ii) a

The limit is achieved in finite time, namely, once all allowed

A direct application of the “finite length” PC function $g(L, T)$ is to discriminate different FPF processes by the different convergence rates of $g(L, T)$ to $\ln L$ as T increases. Numerical evidence is shown in Figure 2 for $L = 6$ and $6 \leq T \leq 7000$ in the left panel; the right panel is a zoom of the left panel with $6 \leq T \leq 3000$. Here we used the same 35 time series, random processes (Fac1)-(Fac7) and numerical results as in Figure 1 and plotted $(g(6, T)) = \langle \ln A_{L,T}(X) \rangle$.
To wrap up this numerical section, we consider the sub-factorial class as well. To this end, we revisit the stretching exponent Equation (56) in the approximation (62) for $L = 4, 5, 6, T = 7,000$, and the random processes plotted in Figure 2.

The decay exponents R in the approximation (62) are listed in Table 1 for $L = 4, 5, 6, T = 7000$ and the random processes (Fac1)-(Fac7) shown in Figure 2. Due to the different correlation lengths, the curves $g(L, T)$ may intersect as a result of the different decay rates of the missing patterns.

Let us finally mention that Equation (56) has recently been generalized to [31, 32] as well as on the underlying random process; for $\beta = 1$ one recovers Equation (56).

Table 1: The decay exponent R in Equations (61)-(62) for $L = 4, 5, 6, T = 7,000$, and the random processes plotted in Figure 2

Serie	$L = 4$	$L = 5$	$L = 6$
White Noise	4.43×10^{-2}	8.47×10^{-3}	1.40×10^{-3}
$f GaH = 0.20$	4.93×10^{-2}	8.17×10^{-3}	1.21×10^{-3}
$f BmH = 0.20$	4.20×10^{-2}	7.52×10^{-3}	1.13×10^{-3}
$f BmH = 0.40$	3.76×10^{-2}	6.32×10^{-3}	8.12×10^{-4}
$f BmH = 0.60$	3.24×10^{-2}	4.07×10^{-3}	5.05×10^{-4}
Noisy LM	3.36×10^{-2}	5.55×10^{-3}	7.54×10^{-4}
Noisy SM	4.43×10^{-2}	8.09×10^{-3}	1.30×10^{-3}

\[\mathcal{M}_{L,N}(\mathbf{X}) = C \exp \left(-RN^\beta \right). \] (63)

The stretching exponent $0 < \beta \leq 1$ depends on L as well as on the underlying random process; for $\beta = 1$ one recovers Equation (56).

5.3 The sub-factorial class

To wrap up this numerical section, we consider the sub-factorial class as well. To this end, we revisit $\mathbf{X}_p = (X_t)_{t \geq 0}$, the “not-so-noisy measurement of a periodic signal” of period $p \geq 2$ introduced in Example 4 since this is the only instance of a sub-factorial process that we know of. As compared to the factorial processes studied in Sections 5.1 and 5.2 \mathbf{X}_p has two peculiarities: (i) its conceptual simplicity makes most details amenable to analytical scrutiny, and (ii) it is a cyclostationary process, i.e., its statistical properties vary periodically with time, so that it can be viewed as a random process composed of p interleaved stationary processes $(X_{\nu p + \mu})_{\nu \geq 0}, 0 \leq \mu \leq p - 1$. Likewise, it turns out that the ordinal representations of \mathbf{X}_p decompose into p sequences of representations by means of $(\nu p + \mu)$-patterns, $\nu \in \mathbb{N}$, such that \mathbf{X}_p has a PC function $g(L)$ for each of those sequences.
We start our numerical analysis of X_p with the finite length PC function $g(L, T)$ for $L = 6$. Figure 3 depicts $g(6, T)$ vs T for $6 \leq T \leq 50$ and $2 \leq p \leq 6$. Here we already recognize that these processes are not factorial because $g(6, T) < 2.5$ in all cases, whereas $g(6, T) \gtrsim \ln 6! \approx 6.58$ for factorial processes (see Section 5.2). Since they are not deterministic either (which can be simply checked by a return map), then they must be sub-factorial. The curves $g(6, T)$ in Figure 3 are visibly distinct, although the ones corresponding to the periods $p = 2, 3, 4$ run close to each other. The reason for this is that $g(6, 50) = \ln A_6(X_p)$, where, according to Table 2, $\ln A_6(X_p) = \ln 12 \approx 2.485$ for $p = 2, 3, 4$, while $\ln A_6(X_5) = \ln 9 \approx 2.197$ and $\ln A_6(X_6) = \ln 6 \approx 1.792$. Also, contrarily to Figure 2 for the factorial processes (Fac1)-(Fac7), the curves $g(6, T)$ in Figure 3 do not follow the exponential ansatz (62) but rather oscillate before leveling off. This is due to the periodicity of the probability distributions of the L-patterns (in particular, of the 6-patterns) as the window $x_t, x_{t+1}, \ldots, x_{t+5}$ slides from $t = 1$ to $T = 5$.

According to Equation (11), to compute the generalized permutation entropy $Z^*_{\text{sub}, c}(X_0^\perp)$ of a sub-factorial process $X = (X_t)_{t \geq 0}$ with PC function $g(L) = c L \ln L$, $0 < c < 1$, we need to know the constant c. With this objective, let $L = \nu p + \mu$, where $\nu = \lfloor L/p \rfloor \in \mathbb{N}$ and $\mu = L \mod p \in \{0, 1, \ldots, p - 1\}$; $\mu = 0$ (i.e., $L = \nu p$) is the case considered in Example 4. An argument similar to the one used there shows that Equation (13) generalizes to

$$A_L(X_p) = N_1(\nu, \mu) + N_2(\nu, \mu)$$

(64)

where

$$N_1(\nu, \mu) = (\nu - \mu)[(\nu + 1)]!^\nu [\nu!]^p - \mu, \ \ N_2(\nu, \mu) = \mu[(\nu + 1)]!^\nu [\nu!]^p - \mu.$$

(65)

Note that $N_2(\nu, 0) = 0$ for all ν, so that we recover Equation (13).

$$A_{\nu p}(X_p) = N_1(\nu, 0) = p(\nu!)^{p-1},$$

(66)

from Equation (64). Table 2 summarizes $A_L(X_p)$ for moderate values of p and L.

\(p\)	\(2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)	\(8\)	\(9\)	\(10\)	\(11\)	\(12\)	\(13\)	\(14\)
p	2	3	4	5	6	7	8	9	10	11	12	13	14
2	2	3	4	8	12	30	48	144	240	840	3,024	10,080	
3	3	5	8	12	28	60	108	324	864	3,024	10,080		
4	4	7	12	20	32	80	192	432	864	3,024	10,080		
5	5	9	16	28	48	80	192	432	864	3,024	10,080		
6	6	9	16	28	48	80	192	432	864	3,024	10,080		

Table 2: The number of allowed L-patterns $A_L(X_p)$ for periods $2 \leq p \leq 6$ and $p \leq L \leq 14$.

Figure 3: The averages $\langle g(6, T) \rangle$ of the permutation complexity function $g(6, T)$ over 35 realizations of the sub-factorial processes X_p of periods $2 \leq p \leq 6$ are plotted vs T (the time series length) for $6 \leq T \leq 50$.
Therefore,
\[A_L(X_p) = \frac{\nu + 1}{(\nu + 1)!} |\mu - |\nu| + 1 | + \nu + 1 | \nu + 1 | \nu | 1 + \frac{\mu}{(\mu - 1)!} \]
and
\[\ln A_L(X_p) = (\mu - 1) \ln(\nu + 1) + (p - \mu - 1) \ln(\nu + 1) + \ln(\nu + 1) + \ln \left[1 + \frac{\mu}{(\mu - 1)!} \right] \]
(67)

(68)

Use now Stirling’s formula (11) to derive
\[A_L(X_p) = (\mu - 1) \ln(\nu + 1) + (p - \mu - 1) \ln(\nu + 1) + \ln(\nu + 1) + \ln \left[1 + \frac{\mu}{(\mu - 1)!} \right] \]

when \(\nu \rightarrow \infty \) (\(\mu \) is bounded by \(p - 1 \)). Equation (69) leads to the following two cases.

1. If \(\mu = 0 \), i.e., \(L = \nu p \), then
\[\ln A_{\nu p}(X_p) \sim (\nu + 1) \nu \ln(\nu + 1) = (\nu + 1) \frac{L}{p} \ln \left(\frac{L}{p} \right) \sim \frac{2}{p} L \ln L. \]
(70)

This means that
\[g(L = \nu p) = c L \ln L \text{ with } c = \frac{2}{p}, \]
(71)
in accordance with Example 2. Numerical simulations confirm that, as expected, the \(N_3(\nu, \mu) \) allowed patterns for \(X_p \) are equiprobable, hence
\[R_{\alpha}(p_u) = R_0(p_u) = \ln N_3(L/p, 0) = (p - 1) \ln[p(L/p)!] \]
(72)
for all \(\alpha > 0 \), see Equation (66).

2. If \(1 \leq \mu \leq p - 1 \), i.e., \(L = \nu p + \mu \) with \(\mu \neq 0 \), then
\[\ln A_{\nu p + \mu}(X_p) \sim \mu(\nu + 1) \ln(\nu + 1) = \mu \left(N_\nu + 1 \right) \ln \left(\frac{N_\nu + 1}{p} \right) \sim \mu \frac{L}{p} \ln \left(\frac{L}{p} \right) \sim \frac{\mu}{p} L \ln L. \]
(73)
This means that
\[g(L = \nu p + \mu) = c L \ln L \text{ with } c = \frac{\mu}{p} \in \left\{ \frac{1}{p}, \frac{2}{p}, \ldots, \frac{p - 1}{p} \right\}. \]
(74)
Numerical simulations and theoretical insight show that, in this case, the probability distribution of the allowed patterns for \(X_p \) is composed of \(N_3(\nu, \mu) \) patterns of probability \(P_1 = (\nu - \mu)/p N_1 \), and \(N_2(\nu, \mu) \) patterns of probability \(P_2 = \mu/p N_2 \). It follows,
\[R_1(p) = -N_1 P_1 \ln P_1 - N_2 P_2 \ln P_2, \text{ and } R_{\alpha}(p) = \frac{1}{1 - \alpha} \ln \left(N_1 P_1^\alpha + N_2 P_2^\alpha \right) \]
(75)
for \(\alpha > 0 \), \(\alpha \neq 1 \), where \(p \) is the probability distribution of the allowed ordinal \(L \)-patterns for \(X_p \).

From Equations (71) and (74) we obtain
\[c = \frac{2}{p} \text{ for } L = 0, \, p - 1 \text{ mod } p. \]
(76)

In particular, \(c = 1/2 \) for \(p = 2 \) and \(\mu = 0, 1 \), i.e., the process \(X_2 \) has a unique PC function \(g(L) = (1/2) L \ln L \), regardless of whether we use ordinal patterns of even or odd lengths.

In conclusion, \(X_p \) generates \(p \) sub-factorial processes \(X_{p,\mu} \), \(0 \leq \mu \leq p - 1 \), according to the ordinal representations used to discretize the realizations of \(X_p \). Thus, if we use ordinal patterns of lengths \(L = \nu p \), \(\nu \in \mathbb{N} \), the result is a sub-factorial process \(X_{p,0} \) with
\[\ln A_{L=\nu p}(X_{p,0}) \sim \frac{2}{p} L \ln L. \]
(77)
Otherwise, if we use ordinal patterns of lengths \(L = \nu p + \mu \), with \(\nu \in \mathbb{N} \) and \(1 \leq \mu \leq p - 1 \) fixed, the result is a sub-factorial process \(X_{p,\mu} \) with
\[\ln A_{L=\nu p + \mu}(X_{p,\mu}) \sim \frac{\mu}{p} L \ln L. \]
(78)

More formally, we say that the cyclostationary process \(X_p \) generates the processes \(\{S_{\nu p + \mu} \}_{\nu \geq 1} = X_{p,\mu}, \) \(0 \leq \mu \leq p - 1 \), where \(\{S_{\nu p + \mu} \}_{\nu \geq 1} \) is the subsequence of ordinal representations used to compute the PC function \(g(L) \). In our case, the choices \(\{S_{\nu p + \mu} \}_{\nu \geq 1} \) are not fully justified because then the corresponding PC function exists.

Figure 4 shows the average \(\langle Z_{sub,\alpha}(X_{p,L}) \rangle / L \) of the permutation entropy \(Z_{sub,\alpha}(X_{p,L}) / L = (e^{[R_{\alpha}(p)/c]} - 1) / L \) over 35 realizations of the sub-factorial processes \(X_{2,\mu}, X_{3,\mu}, \) and \(2 \leq L \leq 14 \), where \(\alpha = 0.5 \) (a), \(\alpha = 1 \) (b) and \(\alpha = 1.5 \) (c). According to Equations (71) and (74), \(c = 1/2 \) for \(X_{2,0} \) and \(X_{2,1} \), \(c = 2/3 \) for \(X_{3,0} \) and \(X_{3,2} \), while \(c = 1/3 \) for \(X_{3,1} \). At variance with Figure 4, the curves in Figure 4 are further apart the lower \(\alpha \) is. In particular, we see overlaps of the processes \(X_{3,0} \) and \(X_{3,2} \) in panels (b) and (c) that, however, are resolved in panel (a). This again illustrates how the parameter \(\alpha \) can help when it comes to applications.
Permutation entropy is a popular tool for characterizing time series that depends on the size of the sliding window used to define the permutations it uses. If the data has been output by a dynamical system, the conventional permutation entropy rate (Equation 4) converges with increasing window sizes to the Kolmogorov-Sinai entropy of the dynamics (Theorem 2(a)). But if the process is noisy deterministic or random, then that entropy rate diverges in general because the number of visible ordinal patterns (permutations) can grow super-exponentially, see Equation (12). This different growth behavior of the ordinal patterns and, hence, of the permutation complexity makes possible to distinguish (noiseless) deterministic processes from noisy processes but poses a challenge for a unified formulation of permutation complexity and its measurement across the entire range of processes.

In view of this fact, the objective of this paper was to propose such a unified formulation. Our approach consisted of two steps. First, we introduced the permutation complexity (PC) function $g(t)$ in Section 5. The asymptotic behavior of $g(t)$ defines the exponential, sub-factorial and factorial PC classes, the latter being the most interesting in the application of the ordinal methodology to real-world time series. A “finite-length” version of the PC function, $g(L,T)$, where T is the length of a time series and $L \ll T$ is the length of the ordinal patterns, was used in the numerical simulations, Section 5.2, to discriminate random processes via its convergence rate to $\ln L!$ with satisfactory results (see Figure 2).

Second, we borrowed the concept of Z-entropy from statistical mechanics and complexity theory to generalize permutation entropy from the exponential PC class (the realm of conventional permutation entropy) to the sub-factorial and factorial PC classes. For this reason, the generalized permutation entropies go by the name $Z_{g,\alpha}^*$ (Equation 26), where the PC function $g(t)$ defines the corresponding class. Z-entropies are group entropies [18, 19] that are designed to be extensive on the various complexity classes, including classes not considered here such as the sub-exponential and the super-factorial. Precisely, the extensivity of the Z-entropy entails in our context that the rate of the generalized permutation entropy, $Z_{g,\alpha}^*$ (Equation 46), converges for the processes in the sub-factorial class and, foremost, in the factorial class. The discriminatory power of $Z_{g,\alpha}^*$ was numerically tested in Section 5.3 with seven processes belonging to the factorial class, i.e., $g(t) = t \ln t$. The results, shown in Figure 1, were satisfactory as well. For completion we also analyzed in Section 5.3 the particularities of a toy model for sub-factorial processes introduced in Example 3. This model is of limited practical interest but it has the virtue of revealing some subtleties such as the role of cyclostationarity.

In conclusion, we have presented in this paper an integrating approach to the study and characterization of real-valued processes, whether deterministic or random, in the ordinal representation. Regarding the methodology of this approach, the processes are sorted into the exponential, sub-factorial and factorial complexity classes. Regarding the tools, the permutation complexity of the processes in each class is measured by the corresponding permutation entropy, which
is the \(Z \)-entropy of that class. The result is a “class-wise” generalization of conventional permutation entropy, one per class, whose rate also converges in the sub-factorial and factorial classes. These entropic measures of permutation complexity have both fine theoretical properties and potential in practical applications, in addition to closing the conceptual gap between deterministic and noisy signals in the ordinal analysis of time series.

7 Acknowledgements

J.M.A. and R.D. were financially supported by Agencia Estatal de Investigación, Spain, grant PID2019-108654GB-I00. J.M.A. was also supported by Generalitat Valenciana, Spain, grant PROMETEO/2021/063. The research of P.T. has been supported by the research project PGC2018-094898-B-I00, Ministerio de Ciencia, Innovación y Universidades, Spain, and by the Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000904-S), Ministerio de Ciencia, Innovación y Universidades, Spain. P.T. is a member of the Gruppo Nazionale di Fisica Matematica (INdAM), Italy.

References

[1] Marston Morse and Gustav A. Hedlund. Symbolic dynamics ii. sturmian trajectories. *American Journal of Mathematics*, 62(1):1–42, 1940.

[2] A. Lempel and J. Ziv. On the complexity of finite sequences. *IEEE Transactions on Information Theory*, 22(1):75–81, 1976.

[3] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. *IEEE Transactions on Information Theory*, 24(5):530–556, sep 1978.

[4] José M. Amigó, Karsten Keller, and Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. *Discrete and Continuous Dynamical Systems - B*, 20(1531-3492-2015-10-3301):3301, 2015.

[5] Ming Li and Paul Vitányi. *An Introduction to Kolmogorov Complexity and Its Applications*. Springer-Verlag New York, 4 edition, 2019.

[6] Sérgio B. Volchan. What is a random sequence? *The American Mathematical Monthly*, 109(1):46–63, 2002.

[7] A. Shen, V.A. Uspensky, and N. Vereshchagin. *Kolmogorov Complexity and Algorithmic Randomness*, volume 220 of *Mathematical Surveys and Monographs*. American Mathematical Society, Rhode Island, 2017.

[8] Rod Downey and Denis R. Hirschfeldt. Computability and randomness. *Notices of the American Mathematical Society*, 66:1001–1012, Aug 2019.

[9] J. M. Amigó. *Permutation Complexity in Dynamical Systems*. Springer Series in Synergetics. Springer-Verlag Berlin Heidelberg, first edition, 2010.

[10] J. M. Amigó, S. Zambrano, and M. A. F. Sanjuán. Permutation complexity of spatiotemporal dynamics. *EPL (Europhysics Letters)*, 90(1):10007, apr 2010.

[11] R. Monetti, J.M. Amigó, T. Aschenbrenner, and W. Bunk. Permutation complexity of interacting dynamical systems. *Eur. Phys. J. Spec. Top.*, 222:421 – 436, 2013.

[12] C. Bandt and B. Pompe. Permutation entropy: A natural complexity measure for time series. *Phys. Rev. Lett.*, 88:174102, Apr 2002.

[13] O. A. Rosso, H. A. Larondo, M. T. Martín, A. Plastino, and M. A. Fuentes. Distinguishing noise from chaos. *Phys. Rev. Lett.*, 99:154102, Oct 2007.

[14] L. Zunino, M. C. Soriano, and O. A. Rosso. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. *Phys. Rev. E*, 86:046210, Oct 2012.

[15] J. M. Amigó, S. Zambrano, and M. A. F. Sanjuán. True and false forbidden patterns in deterministic and random dynamics. *Europhysics Letters (EPL)*, 79(5):50001, jul 2007.

[16] L. C. Carpi, P. M. Saco, and O. A. Rosso. Missing ordinal patterns in correlated noises. *Physica A: Statistical Mechanics and its Applications*, 389(10):2020 – 2029, 2010.

[17] Arthur A. B. Pessa and Haroldo V. Ribeiro. Characterizing stochastic time series with ordinal networks. *Phys. Rev. E*, 100:042304, Oct 2019.

[18] Piergiulio Tempesta and Henrik Jeldtoft. Jensen. Universality classes and information-theoretic measures of complexity via group entropies. *Scientific Reports*, 10(5952):1–11, 2020.
[19] Piergiulio Tempesta. Multivariate group entropies, super-exponentially growing complex systems, and functional equations. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 30(12):123119, 2020.

[20] José M. Amigó, Roberto Dale, and Piergiulio Tempesta. A generalized permutation entropy for noisy dynamics and random processes. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 31(1):013115, 2021.

[21] P. Tempesta. Group entropies, correlation laws, and zeta functions. *Phys. Rev. E*, 84:021121, Aug 2011.

[22] P. Tempesta. Formal groups and z-entropies. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 472(2195):20160143, 2016.

[23] H. J. Jensen and P. Tempesta. Group entropies: From phase space geometry to entropy functionals via group theory. *Entropy*, 20(10), 2018.

[24] H. J. Jensen, R. H. Pazuki, G. Puressner, and P. Tempesta. Statistical mechanics of exploding phase spaces: ontic open systems. *Journal of Physics A: Mathematical and Theoretical*, 51(37):375002, aug 2018.

[25] M. A. Rodríguez, A. Romaniega, and P. Tempesta. A new class of entropic information measures, formal group theory and information geometry. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 475(2222):20180633, 2019.

[26] Karsten Keller and Katharina Wittfeld. Distances of time series components by means of symbolic dynamics. *International Journal of Bifurcation and Chaos*, 14(02):693–703, 2004.

[27] U. Parlitz, S. Berg, S. Luther, A. Schirdewan, J. Kurths, and N. Wessel. Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics. *Computers in Biology and Medicine*, 42(3):319–327, 2012. Computing complexity in cardiovascular oscillations.

[28] G. Graff, B. Graff, A. Kaczkowska, D. Makowiecz, J.M. Amigó, J. Piskorski, K. Narkiewicz, and P. Guzik. Ordinal pattern statistics for the assessment of heart rate variability. *Eur. Phys. J. Spec. Top.*, 222:525 – 534, 2013.

[29] J. M. Amigó, K. Keller, and V. A. Unakafova. Ordinal symbolic analysis and its application to biomedical recordings. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 373(2034):20140091, 2015.

[30] Yinhe Cao, Wen-wen Tung, J. B. Gao, V. A. Protopopescu, and L. M. Hively. Detecting dynamical changes in time series using the permutation entropy. *Phys. Rev. E*, 70:046217, Oct 2004.

[31] Felipe Olivares, Luciano Zunino, and Dario G. Pérez. Revisiting the decay of missing ordinal patterns in long-term correlated time series. *Physica A: Statistical Mechanics and its Applications*, 534:122100, 2019.

[32] Felipe Olivares, Luciano Zunino, Miguel C. Soriano, and Darío G. Pérez. Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics. *Phys. Rev. E*, 100:042215, Oct 2019.

[33] L. Zunino and H. V. Ribeiro. Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane. *Chaos, Solitons and Fractals*, 91:679 – 688, 2016.

[34] E. T. C. Chagas, A. C. Frery, O. A. Rosso, and H. S. Ramos. Analysis and classification of sar textures using information theory. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 14:663–675, 2021.

[35] J. M. Amigó, K. Keller, and J. Kurths. Recent progress in symbolic dynamics and permutation complexity. *Eur. Phys. J. Spec. Top.*, 222:241 – 247, 2013.

[36] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo. Permutation entropy and its main biomedical and econophysics applications: A review. *Entropy*, 14(8):1553–1577, 2012.

[37] C. Bandt, G. Keller, and B. Pompe. Entropy of interval maps via permutations. *Nonlinearity*, 15(5):1595–1602, aug 2002.

[38] Karsten Keller and Mathieu Sinn. Kolmogorov–sinai entropy from the ordinal viewpoint. *Physica D: Nonlinear Phenomena*, 239(12):997–1000, 2010.

[39] J. M. Amigó. The equality of kolmogorov–sinai entropy and metric permutation entropy generalized. *Physica D: Nonlinear Phenomena*, 241(7):789 – 793, 2012.

[40] T. Gutjahr and K. Keller. Equality of kolmogorov–sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. *Discrete and Continuous Dynamical Systems - A*, 39(1078):4207, 2019.

[41] C. Bandt and F. Shiha. Order patterns in time series. *Journal of Time Series Analysis*, 28(5):646–665, 2007.
[42] J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. *Rev. Mod. Phys.*, 57:617–656, Jul 1985.

[43] Benoit B. Mandelbrot and John W. Van Ness. Fractional brownian motions, fractional noises and applications. *SIAM Review*, 10(4):422–437, 1968.

[44] P. Walters. *An Introduction to Ergodic Theory*, volume 79 of *Graduate Texts in Mathematics*. Springer-Verlag New York, first edition, 1982.

[45] J. M. Amigó and K. Keller. Permutation entropy: One concept, two approaches. *Eur. Phys. J. Spec. Top.*, 222:263 – 273, 2013.

[46] J. M. Amigó and M. B. Kennel. Forbidden ordinal patterns in higher dimensional dynamics. *Physica D: Nonlinear Phenomena*, 237(22):2893 – 2899, 2008.

[47] T. Apostol. *Mathematical Analysis*. Addison Wesley Longman, Menlo Park CA, second edition, 1974.

[48] C. E. Shannon. A mathematical theory of communication. *Bell System Technical Journal*, 27(3):379–423, 1948.

[49] C. E. Shannon and W. Weaver. *The mathematical Theory of Communication*. University of Illinois Press, Urbana, Illinois, first edition, 1949.

[50] A.I.A. Khinchin. *Mathematical Foundations of Information Theory*. Dover Books on Mathematics. Dover Publications, 1957.

[51] José M. Amigó, Sámuel G. Balogh, and Sergio Hernández. A brief review of generalized entropies. *Entropy*, 20(11), 2018.

[52] V. M. Ilíc, J. Korbél, S. Gupta, and A. M. Scarfone. An overview of generalized entropic forms (a). 133(5):50005, mar 2021.

[53] Constantino Tsallis. *Introduction to nonextensive statistical mechanics*. Springer-Verlag New York, 2009.

[54] A. Rényi. On measures of entropy and information. In *Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics*, pages 547–561, Berkeley, Calif., 1960. University of California Press.

[55] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, Cambridge UK, Jul 2010.

[56] E. T. Jaynes. Information theory and statistical mechanics. *Phys. Rev.*, 106:620–630, May 1957.

[57] Arthur A. B. Pessa and Haroldo V. Ribeiro. ordpy: A python package for data analysis with permutation entropy and ordinal network methods. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 31(6):063110, 2021.

[58] Valentina A. Unakafova and Karsten Keller. Efficiently measuring complexity on the basis of real-world data. *Entropy*, 15(10):4392–4415, 2013.

[59] Holger Kantz and Thomas Schreiber. *Nonlinear Time Series Analysis*. Cambridge University Press, 2 edition, 2003.

[60] S. Ruette. *Chaos on the Interval*. University lecture series. American Mathematical Society, Providence, Rhode Island, first edition, 2017.

[61] Heinz Georg Schuster. *Deterministic chaos: an introduction*. VCH; Distribution, USA and Canada, VCH Weinheim, Federal Republic of Germany: New York, NY, USA, 2nd rev. ed. edition, 1988.