INTRODUCTION

Total knee arthroplasty (TKA) is the most common arthroplasty in the United States. The elderly, obese, and those with multiple comorbidities are at increased risk of developing complications, leading to high readmission rates. With increases in these patient factors, complications and readmission rates may continue to rise in patients undergoing TKA. Preoperative comorbidities, like cardiac disease, chronic obstructive pulmonary disease (COPD), diabetes mellitus, and obesity, increase the likelihood of postoperative complications. Demographic factors, such as age, sex, and race, also contribute to increased risk. Readmission rates after TKA are under scrutiny in the United States since the implementation of Medicare Hospital Readmission Avoidance Program in 2012.

ABSTRACT

Objective: To identify independent risk factors, complications, and early hospital readmission following total knee arthroplasty. Methods: Using the ACS-NSQIP database, we identified patients who underwent primary TKA from 2012-2015. The primary outcome was early hospital readmission. Patient demographics, preoperative comorbidities, laboratory data, operative characteristics, and postoperative complications were compared between readmitted and non-readmitted patients. Logistic regression identified independent risk factors for 30-day readmission. Results: 137,209 patients underwent TKA; 3.4% were readmitted within 30 days. Advanced age, male sex, black ethnicity, morbid obesity, presence of preoperative comorbidities, high ASA classification, and increased operative time were independently related risk factors. Asian and no reported race were negative risk factors. Postoperative complications: acute myocardial infarction, acute renal failure, stroke, pneumonia, pulmonary embolism, and deep vein thrombosis show positive associations. Conclusions: Advanced age, male sex, black ethnicity, morbid obesity, presence of comorbidities, high ASA classification and long operative time are independent risk factors for postoperative complications and early hospital readmission following total knee arthroplasty. Level of Evidence III, Case control study.

Keywords: Arthroplasty. Knee. Patient readmission. Risk factors.

RISK FACTORS FOR EARLY HOSPITAL READMISSION FOLLOWING TOTAL KNEE ARTHROPLASTY

FATORES DE RISCO DE REINTERNAÇÃO HOSPITALAR PRECOCÊ APÓS ARTROPLASTIA TOTAL DO JOELHO

EVA J. LEHTONEN,1 MATTHEW C. HESS,1 GERALD McGWIN JR.,2 ASHISH SHAH,1 ALEXANDRE LEME GODOY-SANTOS,3 SAMEER NARANE1

1. University of Alabama at Birmingham, Department of Orthopedic Surgery, Birmingham, AL, United States.
2. University of Alabama at Birmingham, Department of Public Health, Birmingham, AL, United States.
3. Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brasil.

RESUMO

Objetivo: Identificar fatores de risco independentes, complicações e reinternação precoce após artroplastia total do joelho. Métodos: A partir de banco de dados ACS-NSQIP, identificamos pacientes submetidos à ATJ primária de 2012 a 2015. O desfecho primário foi a reinternação hospitalar precoce. Dados demográficos, comorbidades pré-operatórias, dados laboratoriais, características cirúrgicas e complicações pós-operatórias foram comparadas entre os pacientes reinternados e não reinternados. A regressão logística identificou fatores de risco independentes para a reinternação em 30 dias. Resultados: Foram identificados 137.209 pacientes submetidos à ATJ, sendo que 3,4% foram reinternados no período de 30 dias. A idade avançada, o sexo masculino, a raça negra, a obesidade mórbida, a presença de comorbidades pré-operatórias, a alta classificação ASA e o aumento do tempo cirúrgico foram fatores de risco relacionados independentemente. A raça asiática e as não relatadas foram fatores de risco negativos. As complicações pós-operatórias infarto agudo do miocárdio, insuficiência renal aguda, acidente vascular cerebral, pneumonia, embolia pulmonar e trombose venosa profunda apresentaram associações positivas. Conclusões: Idade avançada, sexo masculino, raça negra, obesidade mórbida, presença de comorbidades, classificação ASA elevada e tempo cirúrgico prolongado são fatores de risco independentes de complicações pós-operatórias e reinternação precoce após artroplastia total do joelho. Nível de evidência III, Estudo de caso de controle.

Descritores: Artroplastia. Joelho. Readmissão do paciente. Fatores de risco.
RESULTS

A total of 137,209 patients were included in the study. The overall 30-day readmission rate for patients after primary TKA was 3.4% (4,668 of 137,209 patients).

The average age for patients in this study was 66.6 years. Older age, male sex, black race, and higher BMI category were significant (p<0.0001) demographic factors positively associated with readmission (Table 1 and Table 2). Asian and unreported race were significant (p<0.0001) demographic factors negatively associated with readmission (Table 1 and Table 2). For the medical comorbidities, smoking, insulin-dependent vs non-insulin-dependent diabetes, dialysis use, hypertension, congestive heart failure, dyspnea, COPD, bleeding disorder, preoperative open wound and wound infection, as well as corticosteroid use were significantly (p<0.0001) positively associated with readmission. Laboratory values such as elevated WBC count, low hematocrit, low platelets, elevated creatinine, low serum albumin, and elevated INR were also significantly (p<0.0001) positively associated with readmission. Other operative variables, such as increased operation time, use of general anesthesia vs other techniques, and increased time from operation to discharge also demonstrated significant (p<0.0001) positive associations with readmission.

All variables shown in Table 3 demonstrated statistically significant (p<0.0001) positive associations with readmission. The overall complication rate among readmitted patients was 58.0% (6,143 of 13,720 patients) compared to 10.4% among non-readmitted patients. Among readmitted patients, 32.4% developed medical complications and 25.6% developed surgical complications.

Each year of increasing age (OR, per year: 1.02; 95% CI, 1.02 to 1.03) and black vs white race (OR, black vs white race: 1.24; 95% CI, 1.11 to 1.37) were significant independent positive risk factors for 30-day readmission. Female vs male sex (OR, female vs male: 0.78; 95% CI, 0.73 to 0.83), Asian vs white race (OR, Asian vs white race: 0.62; 95% CI, 0.48 to 0.80), and unknown or unreported vs white race (OR, unknown vs white race: 0.87; 95% CI, 0.78 to 0.96) demonstrated significant protective effects. Morbidly obese patients had significantly higher odds of readmission than overweight patients (OR: 1.20; 95% CI, 1.08 to 1.32). Patients with ASA class 4 had more than twice the odds of being readmitted compared to those with ASA class 2 (OR: 2.06; 95% CI, 1.73 to 2.44). Patients with ASA class 3 also had significantly higher odds of readmission compared to those with ASA class 2 (OR: 1.43; 95% CI, 1.34 to 1.53). Each additional minute of operative time was found to be an independent positive risk factor for readmission (OR per minute: 1.002; 95% CI, 1.002 to 1.003). The presence of one or more preoperative comorbidity was positively associated with readmission compared to patients with no comorbidities (OR: 1.29; 95% CI, 1.25 to 1.34, p<0.0001). (Table 2)

All postoperative complications included in the multivariate analysis demonstrated significant independent associations with readmission (Table 3). Patients who were readmitted had over ten-times the odds of postoperative superficial surgical site infection, pulmonary embolism, or deep vein thrombosis.
The number of TKA being performed across the U.S is increasing, presenting a challenge in a rapidly changing healthcare landscape. Changing patient demographics and regulations creating financial penalties for adverse patient outcomes has created an incentive for scrutiny in this area. A previous study of the ACS-NSQIP database from 2011 found that older age, male gender, positive cancer history, elevated BUN, presence of a bleeding disorder, and high ASA score were shown to be positive predictors of readmission, though, this focused on all joint arthroplasties. However, with TKA being the most common performed arthroplasty along with the availability of multiple years of additional data, it is necessary to update and refine our understanding of factors influencing readmission following TKA.

Our analysis of the data from a cohort of 137,209 patients from 2012-2015 found that the 30-day readmission rate following TKA was 3.4%. Many demographic characteristics, preoperative comorbidities, laboratory abnormalities and postoperative complications were associated with higher rates of readmission following TKA. Increasing age, male sex, black race, morbid obesity, presence of one or more comorbidities, postoperative complications, ASA class 3 or 4, and longer operation time demonstrated significant, independent positive associations with 30-day readmission following TKA. Our study’s 30-day readmission rate (3.4%) is consistent with existing literature; 30-day readmission rates following TKA have been reported between 2.4% - 5.8%. Our study reports a lower rate than the ACS-NSQIP database (3.4% vs 4.6%), which may suggest that regulatory efforts and risk reduction initiatives in recent years have had a positive effect. This is consistent with an institutional cohort by Keeney et al which showed that introduction of risk reducing initiatives significantly reduced readmission rates following TKA.

Table 1. Preoperative and Operative Characteristics.

Variable	Not Readmitted* (N=132,541)	Readmitted* (N=4,668)	P Value	Variable	Not Readmitted* (N=132,541)	Readmitted* (N=4,668)	P Value
Age	66.53 (48.9)	<0.0001		Pre-op blood transfusion	67 (6.1%)	7 (0.2%)	0.004
Sex		<0.0001		Systemic Sepsis	241 (0.2%)	15 (0.3%)	0.16
Male	49.856 (37.6%)	2.039 (43.7%)		SIRS	5 (0.0%)	0 (0.0%)	<0.0001
Female	82.685 (62.4%)	2.629 (56.3%)		Septic Shock	5 (0.0%)	0 (0.0%)	<0.0001
Race		<0.0001		Corticosteroid use	4.675 (3.5%)	260 (5.6%)	<0.0001
White	103.659 (78.2%)	3.691 (79.1%)		ASA class	80.225	4 (0.0%)	<0.0001
Asian	9.567 (7.2%)	440 (9.4%)		Operative time# (min)	93.59 (55.24 - 131.94)	97.78 (53.78 - 141.78)	<0.0001
American Indian	2.845 (2.2%)	63 (1.4%)		Operation time# (per min)	1.002 (1.002 to 1.003)	1.002 (1.002 to 1.003)	<0.0001
Native Hawaiian	418 (0.3%)	9 (0.2%)		Operation time# (per min)	1.002 (1.002 to 1.003)	1.002 (1.002 to 1.003)	<0.0001
Unreported	15.341 (11.6%)	450 (9.6%)		Operation time# (per min)	1.002 (1.002 to 1.003)	1.002 (1.002 to 1.003)	<0.0001
BMI Category		<0.0001		Operation time# (per min)	1.002 (1.002 to 1.003)	1.002 (1.002 to 1.003)	<0.0001
Preoperative Labs		<0.0001		Operation time# (per min)	1.002 (1.002 to 1.003)	1.002 (1.002 to 1.003)	<0.0001
Operative Variables		<0.0001		Operation time# (per min)	1.002 (1.002 to 1.003)	1.002 (1.002 to 1.003)	<0.0001

* Some data points were unrecorded and were therefore unavailable for inclusion in the evaluation. ¥ The values given represent the average age of patients, in years. The values are given as a number of patients, with the percentage in parentheses. The values given represent an average, with 1 standard deviation in parentheses.

Table 2. Preoperative and Operative Characteristics as Risk Factors for Readmission After Total Knee Arthroplasty.

Variable	Odds Ratio (95% CI)	P Value
Preoperative Characteristics		
Age (per year)	1.021 (1.018 to 1.025)	<0.0001
Sex female vs male	0.78 (0.73 to 0.83)	<0.0001
Race		<0.0001
Black vs White	1.24 (1.11 to 1.37)	<0.0001
Asian vs White	0.62 (0.48 to 0.80)	0.0002
Native Hawaiian vs White	0.58 (0.30 to 1.13)	0.1118
American Indian vs White	0.60 (0.36 to 1.00)	0.0514
Non reported vs White	0.87 (0.78 to 0.96)	0.0048
BMI Category		
Underweight vs Overweight	1.06 (0.56 to 1.99)	0.8670
Normal vs Overweight	1.11 (0.99 to 1.23)	0.0750
Obese vs Overweight	0.96 (0.88 to 1.04)	0.2742
Very obese vs Overweight	0.92 (0.84 to 1.04)	0.0715
Morbidly Obese vs Overweight	1.20 (1.08 to 1.32)	0.0033
Comorbidities	1.29 (1.25 to 1.34)	<0.0001
Operative variables		
ASA class		

DISCUSSION

The number of TKA being performed across the U.S is increasing, presenting a challenge in a rapidly changing healthcare landscape. Changing patient demographics and regulations creating financial penalties for adverse patient outcomes has created an incentive for scrutiny in this area. A previous study of the ACS-NSQIP database from 2011 found that older age, male gender, positive cancer history, elevated BUN, presence of a bleeding disorder, and high ASA score were shown to be positive predictors of readmission, though, this focused on all joint arthroplasties. However, with TKA being the most common performed arthroplasty along with the availability of multiple years of additional data, it is necessary to update and refine our understanding of factors influencing readmission following TKA.

Our analysis of the data from a cohort of 137,209 patients from 2012-2015 found that the 30-day readmission rate following TKA was 3.4%. Many demographic characteristics, preoperative comorbidities, laboratory abnormalities and postoperative complications were associated with higher rates of readmission following TKA. Increasing age, male sex, black race, morbid obesity, presence of one or more comorbidities, postoperative complications, ASA class 3 or 4, and longer operation time demonstrated significant, independent positive associations with 30-day readmission following TKA. Our study’s 30-day readmission rate (3.4%) is consistent with existing literature; 30-day readmission rates following TKA have been reported between 2.4% - 5.8%. Our study reports a lower rate than the ACS-NSQIP database (3.4% vs 4.6%), which may suggest that regulatory efforts and risk reduction initiatives in recent years have had a positive effect. This is consistent with an institutional cohort by Keeney et al which showed that introduction of risk reducing initiatives significantly reduced 30-day readmission rates following TKA.
Readmitted patients had more than 18 times higher odds of experiencing MI prior to surgery may help decrease readmission. Acute renal failure (Odds Ratio 15.26) and other pulmonary complications (ventilator use, pneumonia, and unplanned intubation) were close behind MI as high magnitude positive risk factors of readmission. While a cardiopulmonary exam and basic renal function panel are staples of the preoperative assessment, our results emphasize the importance of thorough preoperative workup when attempting to reduce hospital readmissions. Many surgeons require a note from the primary care provider before a total knee replacement or that patients demonstrate a certain level of cardiopulmonary fitness prior to surgery. Standardized preoperative assessments and further identification of patients at risk of developing these complications may help reduce readmission after TKA. Postoperative deep venous thrombosis and pulmonary embolism were also high magnitude independent risk factors for readmission (Odds Ratio 16.45 and 10.32, respectively). While the majority of institutions and physicians implement prophylactic pharmacologic anticoagulation in the postoperative period, our findings emphasize the importance of patient education and preventive care to decrease hospital readmissions within 30 days of surgery.

Aside from medical and surgical complications, very high ASA class was associated with the highest odds of readmission. Patients with ASA class 4 had more than twice the odds of readmission compared to ASA class 2. Similarly, patients with ASA class 3 had 1.43 times the odds of readmission than ASA class 2 patients. Multiple retrospective studies of individual institutions report similar findings. The ASA classification system is widely utilized and available as a reliable predictor of readmission risk after TKA. Better understanding of risk factors allows the development and implementation of evidence-based interventions aimed at mitigating risks and reducing 30-day readmission rates following TKA. These risk factors for readmission are already being utilized to reduce hospital costs; young patients with low ASA scores and few medical comorbidities are often discharged early (0-2 days) and these early discharges are not associated with increased complications or readmissions.

Information from this study can be used to identify and counsel high-risk patients prior to surgery. Continued research and understanding in this area will allow more informed discussion of each patient’s individual risks and benefits for undergoing TKA. We hope this information will be used by healthcare providers to improve the outcomes for patients undergoing TKA.

Table 3. Postoperative complications as risk factors for readmission after total knee arthroplasty.

Overall complications	Not Readmitted \(^{a} \) (N=132,541)	Readmitted \(^{b} \) (N=4,658)	P Value \(^{f} \)	Odds Ratio (95% CI) \(^{g} \)	P Value \(^{h} \)
Medical complications					
Pneumonia	327 (0.3%)	176 (3.8%)	<0.0001	12.15 (10.04 to 14.71)	<0.0001
Unplanned intubation	138 (0.1%)	66 (1.4%)	<0.0001	9.94 (7.35 to 13.46)	<0.0001
Urinary tract infection	975 (0.7%)	225 (4.8%)	<0.0001	6.22 (5.34 to 7.23)	<0.0001
Ventilator for more than 48 hours	62 (0.1%)	35 (0.8%)	<0.0001	11.16 (7.28 to 17.09)	<0.0001
Stroke or cerebrovascular accident	72 (0.1%)	37 (0.8%)	<0.0001	12.18 (8.11 to 18.28)	<0.0001
Acute renal failure	41 (0.0%)	33 (0.7%)	<0.0001	15.26 (9.50 to 24.52)	<0.0001
Cardiac arrest	61 (0.1%)	30 (0.6%)	<0.0001	7.18 (5.00 to 11.81)	<0.0001
Sepsis	32 (0.0%)	57 (1.2%)	<0.0001	9.09 (6.38 to 12.77)	<0.0001
Myocardial infarction (MI)	152 (0.1%)	125 (2.7%)	<0.0001	18.48 (14.47 to 23.58)	<0.0001
Blood transfusion	9,806 (7.4%)	538 (11.5%)	<0.0001	1.41 (1.28 to 1.55)	<0.0001
Surgical complications					
Superficial surgical site infection	481 (0.4%)	224 (4.8%)	<0.0001	13.53 (11.46 to 15.98)	<0.0001
Deep or incisional surgical site infection	49 (0.0%)	164 (3.5%)	<0.0001	0.87 (0.56 to 1.36)	<0.0001
Organ or space surgical site infections	26 (0.0%)	179 (3.8%)	<0.0001	1.18 (0.88 to 1.59)	<0.0001
Pulmonary embolism	613 (0.5%)	319 (6.8%)	<0.0001	16.45 (14.27 to 18.96)	<0.0001
Deep venous thrombosis	913 (0.7%)	309 (6.6%)	<0.0001	10.32 (9.02 to 11.82)	<0.0001

* Some data points were unrecorded and were therefore unavailable for inclusion in the evaluation. The value are given as a number of patients, with the percentage in parentheses. ¶ P value from univariate modeling. ¥ The values are given as the odds ratio, with the 95% CI in parentheses. ‡ Logistic regression modeling adjusted for age, sex, race, and presence of one or more preoperative comorbidities, ASA class, and operative time. Not adjusted for concurrent medical or surgical complications.
the anticipation, prevention, and early detection of poor outcomes, leading to reduced cost and improved patient care. The results of this study should be interpreted in light of certain limitations. Demographically our patient sample was majority female (62.2%) and racially non-diverse. The overwhelming majority of patients were white (78.2%) or unreported (11.5%). Although we used a widely studied, validated database, errors in data entry or misclassifications may have occurred. This may be particularly important in calculated variables, such as BMI, which relies on the accuracy of both height and weight. This study was also limited by significant amounts of missing data in certain variables of interest.

CONCLUSION
This study was successful in identifying new variables associated with early readmission in patients undergoing TKA. Increasing age, male sex, black race, morbid obesity, the presence of preoperative comorbidities, high ASA class and increased operative time were significant positively associated independent risk factors rates following TKA.

ACKNOWLEDGEMENTS
Sawyer Muller, B.Sc.; Davis Stibolt, B.Sc.; Kevin Shrestha, B.Sc.; Martirn Pinto, M.D. from Department of Surgery, Division of Orthopaedic Surgery, University of Alabama, Birmingham, AL, USA

AUTHORS' CONTRIBUTIONS: Each author made significant individual contributions to this manuscript. EJIL (0000-0003-2844-5698)*: wrote and reviewed the article; Hackbarth G, Reischauer R, Mutti A. Collective accountability for medical care--toward bundled Medicare payments. N Engl J Med. 2008;359(1):3-5. *ORCID (Open Researcher and Contributor ID).

REFERENCES
1. Maradit Kremers H, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, et al. Prevalence of Total Hip and Knee Replacement in the United States. J Bone Joint Surg Am. 2015;97(17):1386-97.
2. Martin JR, Jennings JM, Dennis DA. Morbid Obesity and Total Knee Arthroplasty: A Growing Problem. J Arthroplasty. 2012;27(3):397-401.
3. Vohries JS, Wang Y, Hernon JH, Maloney WJ, Huddleston JI. Decreased length of stay after TKA is not associated with increased readmission rates in a national Medicare sample. Clin Orthop Relat Res. 2012;470(1):166-71.
4. Lopez-de-Andres A, Hernandez-Barrera V, Martinez-Huedo MA, Villanueva-Martinez M, Jimenez-Trujillo I, Jimenez-Garcia R. Type 2 diabetes and in-hospital complications after revision of total hip and knee arthroplasty. PloS one. 2017;12(8):e0183796.
5. Schairer WW, Vail TP, Bozic KJ. What are the rates and causes of hospital readmission after total knee arthroplasty? Clin Orthop Relat Res. 2014;472(1):181-7.
6. Higuera CA, Elsharkawy K, Klika AK, Brocone M, Barsoum WK. 2010 Mid-America Orthopaedic Association Physician in Training Award: predictors of early adverse outcomes after total hip and knee arthroplasty in geriatric patients. Clin Orthop Relat Res. 2011;469(5):1391-400.
7. Weaver F, Hynes D, Hopkinson W, Wixson R, Khuri S, Daley J, et al. Preoperative risks and outcomes of hip and knee arthroplasty in the Veterans Health Administration. J Arthroplasty. 2003;18(6):693-708.
8. Soohoo NF, Lieberman JR, Ko CY, Zingmond DS. Factors predicting complication rates following total knee replacement. J Bone Joint Surg Am. 2006;88(3):480-6.
9. Hackbarth G, Reischauer R, Mutti A. Collective accountability for medical care--toward bundled Medicare payments. N Engl J Med. 2006;359(1):3-5.
10. Pugely AJ, Callaghan JJ, Martin CT, Cram P, Gao Y, Incidence of and risk factors for 30-day readmission following elective primary total joint arthroplasty: analysis from the ACS-NSQIP. J Arthroplasty. 2013;28(9):1499-504.
11. Schilling PL, Hallstrom BR, Birkmeyer JD, Carpenter JE. Prioritizing periprosthetic complications and outcomes in orthopaedic surgery. J Bone Joint Surg Am. 2010;92(9):1884-9.
12. American College of Surgeons National Surgical Quality Improvement Program. Data collection, analysis, and reporting. Chicago, IL: American College of Surgeons; [cited 2017 July]. Available from: https://www.facs.org/quality-programs/acs-nsqip.
13. User Guide for the ACS NSQIP Participant Use Data File (PUF): American College of Surgeons National Surgical Quality Improvement Program; [cited 2017 August]. Available from: https://www.facs.org/~media/files/qualityprograms/nsqip/nsqip_puf_user_guide_2015.ashx.
14. Bosco JA 3rd, Kirkenny AJ, Hutzler LH, Slover JD, Iorio R. Cost burden of 30-day readmissions following Medicare total hip and knee arthroplasty. J Arthroplasty. 2014;29(5):903-5.
15. Schafer WW, Vail TP, Bozic KJ. What are the rates and causes of hospital readmission after total knee arthroplasty? Clin Orthop Relat Res. 2014;472(1):181-7.
16. Higuera CA, Elsharkawy K, Klika AK, Brocone M, Barsoum WK. 2010 Mid-America Orthopaedic Association Physician in Training Award: predictors of early adverse outcomes after total hip and knee arthroplasty in geriatric patients. Clin Orthop Relat Res. 2011;469(5):1391-400.
17. Weaver F, Hynes D, Hopkinson W, Wixson R, Khuri S, Daley J, et al. Preoperative risks and outcomes of hip and knee arthroplasty in the Veterans Health Administration. J Arthroplasty. 2003;18(6):693-708.
18. Soohoo NF, Lieberman JR, Ko CY, Zingmond DS. Factors predicting complication rates following total knee replacement. J Bone Joint Surg Am. 2006;88(3):480-6.
19. Hackbarth G, Reischauer R, Mutti A. Collective accountability for medical care--toward bundled Medicare payments. N Engl J Med. 2006;359(1):3-5.
20. Pugely AJ, Callaghan JJ, Martin CT, Cram P, Gao Y, Incidence of and risk factors for 30-day readmission following elective primary total joint arthroplasty: analysis from the ACS-NSQIP. J Arthroplasty. 2013;28(9):1499-504.
21. Schilling PL, Hallstrom BR, Birkmeyer JD, Carpenter JE. Prioritizing periprosthetic complications and outcomes in orthopaedic surgery. J Bone Joint Surg Am. 2010;92(9):1884-9.