Forest Core Demarcation Using Geo-Spatial Techniques: A Habitat Management Approach in Panchet Forest Division, Bankura, West Bengal, India

Mrinmay Mandal\(^1*) and Nilanjana Das Chatterjee\(^1\)

\(^1\)Department of Geography and Environment Management, Vidyasagar University, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Author MM designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author NDC managed the analyses of the study and literature searches. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJGR/2019/v2i230080

Editor(s):
(1) Dr. Margaret Mwangi, Lead Scientist, Environment & Society, SEDS, Pennsylvania, USA.
(2) Dr. Suleiman Iguda Ladan, Department of Basic and Applied Sciences, Hassan Usman Katsina Polytechnic, Katsina, Nigeria.
(3) Dr. Vincent N. Ojeh, Department of Geography, Faculty of Social & Management Sciences, Taraba State University, Nigeria.
(4) Dr. Xu Chong, Professor, Institute of GeologyChina Earthquake Administration, Beijing, China.

Reviewers:
(1) Aikaterini Karagianni, Aristotle University of Thessaloniki, Greece.
(2) Tomozei Claudia, Vasile Alecsandri University of Bacau, Romania.

Complete Peer review History: http://www.sdiarticle3.com/review-history/48107

ABSTRACT

Habitat interior function effect from an area of specific edge depth in a forest patch. Every habitat has obviously an interior area, small or large size. Structurally it depends on the shape and edge depth ratio of the specific patch. The amount of habitat interior strengthens movement, connectivity, protection and availability of species, especially for large size animal. Habitat interior plays a vital role in sustaining their biological behaviour and activities. Forest habitat is developed by plantation after 1980 through different social forestry programs in Panchet Forest division. For this reason, forest cover is increased and it is spatially fragmented in nature. Fragmented habitat has a negative impact on forest interior. So demarcation of habitat interior or core is very urgent for biodiversity conservation and managing habitat structure. Thus the present study tries to investigate and identify
the amount of habitat core using geospatial techniques and field verification. Major objectives are to suggest practical methods to increases the amount of interior as well as to minimize the gap between isolated patches to enhance the functional capability of habitat core in Panchet Forest Division under Bankura District.

Keywords: Landscape; habitat colonization; habitat core; ecological behaviour; fragmented habitat; connectivity.

1. INTRODUCTION

The core area is defined "as the area within patch beyond some specified depth of edge influence (i.e., edge distance) or buffer width" [1,2]. So every patch has a core but its amount or effectiveness depends on its shape (Fig. 1). Therefore a large patch may not behold large amount of core area when it becomes more complex in shape. Most of conservation importance animal species required large habitat core for their biological function [3]. Forest core is often vital to many wildlife species and essential to the proper function of much ecological process [4]. Area-sensitive animal species richness, colonization, remoteness from disturbing activities, resting is directly influenced by habitat core area. Interior animal species those are roaming in different homogeneous habitat patch, they can try to relax in a deep core area in a habitat patch for their biological metabolism [5,6]. Interior portion of habitat is different in micro-climatic condition in case of temperature, wind speed, energy penetration, canopy cover, shading from the edge [7]. For that reason, wilderness exists in the core than the edge. Wilder animal species, therefore, want to get larger and undisturbed core area. Elephants becoming a wild animal preferred such condition for their biological interaction with habitat. The same condition was happening due to increase forest cover in Bankura district from last few decades as well as in Panchet forest division. After 1980 degraded forest become not only protected but also increased forest area by social forestry [8]. On that situation a small population of elephants of Dalma Wildlife Sanctuary (Jharkhand State) has been making deep foray eastward into the state of West Bengal, make use of small patches of regenerating forest [9]. It is interesting to know that some migrated bull elephants are also residential in nature using existing forest core as their permanent habitat [10,11,12].

2. OBJECTIVES

Panchet Forest Division (PFD) is consisting of isolated forest patch with high structural fragmentation. In spite of wildlife, activities are more frequent and also gradually increase [13, 12]. In forest core area of PFD, many selective herbivore species ecological activities have been found [14]. Now elephants take rest at the time of movement to select some forest patch depending upon core condition. Therefore forest core is becoming a commendable factor ecologically. To understand the nature of core of the forest patches and improve the quality of core areas of PFD, study constructs appropriate three objectives.

a. Identification of forest habitat patches with exact shape from the categorical map
b. Core area demarcation and estimate at specified edge depth against each and every forest patch,

c. Improve core area effectiveness by structural management methods for wildlife conservation in future.

3. STUDY AREA

Panchet Forest Division (PFD) is one of the wildest divisions among other three forest divisions in Bankura district. The latitudinal extension of the study area is 22°53N to 23°12N and longitudinal location is 87°03E to 87°42E. Total geographical area of PFD is 1355.62 sq. km. Among this Reserved Forest is 12.90 sqkm and Protected Forest is 335.11sq.km [15]. Generally, forest is sub-tropical dry deciduous in nature dominated by sal (Shorea robusta) tree and some of Akasmoni and Eucalyptus mixed.
4. MATERIALS

The study considers forest patch as a wildlife habitat. 27 forest habitat patch polygons were demarcated. All forest patches have been digitized from IRS LISS-III P6 image 2016, keeping corresponding structure and shape. Extended three forest patches from PFD to the adjoining district have taken into consideration for the purpose of the study (Fig. 2). These forest patch polygons are named as the name of nearest or adjust village name. These patches also place ID value against each and every patch accordingly. After that, these habitat patches were analyzed through ArcGIS 10.1 version software and it's Patch Extension Tool.

5. METHODS

From existing 27 forests habitat patches structural core area has been measured. The core area is measured at specified edge depth at 300 m. Number of disjoint core area in each patch is not considered for the study. Percentage of core area accepted as an important parameter for the purpose of the study due to size variety of habitat patches. Finally, the output value against every habitat patches were discussed ecologically.

1. Core Area (CA) [16]

\[CA = a^c_i \]

\(a^c_i \) = core area \((m^2)\) of patch i based on specified-edge depth at 300 m or buffer distance.

At this fixed edge depth, the value of CA increasing with increasing habitat quality. Practically patch has a larger core. it means that it offers better condition for wildlife habitation. More attention is paid to the forest patch due to frequent man-animal conflict in the surroundings.

2. Percentage of Core Area (PCA)

\[PCA = \frac{a^c_i}{a_i} \times 100 \]

\(a^c_i \) = core area \((m^2)\) of patch i based on specified-edge depth (300m) and \(a_i \) is the area \((m^2)\) of i patch.

This geometric technique signifies the area weighted core of the target patch. The index value increasing approach shows that patch structure quality is better. Simple word standard structure habitat shape has a good quantity core than a more complex habitat shape when patch size is the same.

Fig. 2. Forest patches from landuse/land cover map of PFD
Source: IRS LISS-III P6 image 2016
6. RESULTS AND DISCUSSION

6.1 Core Area (CA)

After analysis, the study finds out the larger core holding forest patch Joypur 29779794.91 sq.m, Taldangra 11046878.57 sq.m, Kalabagan 4361352.22 sq.m, Joypur-ii 5053611.78 sq.m, Bridabanpur 2780911.92 sq.m accordingly in PFD (Fig. 3). The lowest core area has been found in Pearbandh forest patch 274.16 sq.m and core area is nil in Chatrakrishnanagar forest patch. Medium size core area patches are Upper Arrha 1801929.69 sq.m, Sabrakona 339258.77 sq.m, Amdangra 286813.36 sq.m, Krishnasingpur 819628.74 sq.m respectively. For structural high complexity in Joypur (Fig. 4), Majuriprasadpur, Upper Arrha consist of several disjoint core area that is number of core is high. This scenario shows that these forest patches have more fragmented in nature and land encroachment is high. Ecologically this fact reduced the quality of habitat.

6.2 Percentage of Core Area (PCA)

Large habitat patch has dominance on the landscape in response to animal behaviour and animal ecological function acting on the landscape. When large habitat patch has minimum core due to its complex shape structure, it would be the same suitable like medium size habitat patch. The same situation was found in the Joypur forest (81973085 sq.m with 36.33% PCA) and it is the largest patch in PFD in spite of its percentage of core area is smaller than Taldangra forest patch (22240596 sq.m with 49.66% PCA) which is a medium size patch (Fig. 5). Generally above 30% PCA have been found only in four forest patches Joypur 36.33%, Joypur-ii 50.98%, Kalabagan 34.2% and Taldangra 49.63%. In between (15-30) % PCA has been found in seven forest patches like Sabrakona 20.48%, Brindabanpur 23.35%, Valuka 21.6%, Peardoba 27.87%, Upperpart arrha 18.36%, Krishnasingpur 22.89% and Chandabelia 18.07%. All other patches have scored below 15% PCA. It is interesting to know that Chatrakrishnanagar forest patch has no core area at specified edge depth.

6.3 Structural Management

Core area development in forest ecosystem is an important part of biodiversity management [17]. Habitat fragmentation and encroachment is a natural phenomenon in human modified landscape. According to Sudhakar and Raha, [8] amount of forest cover had been increased in the past three decades. Increase of forest area does not mean enhancement of ecological quality of habitat interior or core. For increasing quality of core area, habitat structural management is needed. Especially the non-forest land near the centre of the habitat patches are considered for plantation or forest regeneration. It should be the first step to develop core of the habitat. It is also effective to reduce habitat structural fragmentation and edge effect [18,19,20,21]. In the study area Joypur forest patch is the largest patch but highly fragmented and more complex in shape due to agricultural encroachment rather than Taldangra and Valuka East patch (Fig. 6). If in Joypur forest patch’s encroached area are altered in forest cover by plantation or forest regeneration then it will be a good core habitat for wildlife.

Fig. 3. Core area map of forest habitat patches in PFD at 300m edge depth
Fig. 4. Showing different six forest patches (1. Joypur-ID 14, 2. Peardoba-ID 9, 3. Upperpartarrha-ID 4, 4. Taldangra-ID 5, 5. Valuka-ID 21, 6. Majuriprasadpur-ID 11) core area at 300 m edge depth

Fig. 5. Patch wise graphical presentation of forest core area in % respect of individual patch area
6.3.1 Selection of plant species and planted area

Selection of the plant species and planted area is an important objective for any forest regeneration program [22,23]. In the study area, forest department takes several forestation and reforestation program. Generally, they planted Sal (Shorea robusta), Akashmoni (Acacia auriculiformis), and Euklepatus (Eucalyptus globulus) in the vacant land for economic benefit. This study suggests that plantation must be considering two things. First is selection of local plant species which has the capability to improve undergrowth, maximum canopy and layering of the forest. Plant species which is producing forage for herbivores animal (elephants) in the core area of the forest just as in (Fig. 7). Second is area selection for plantation. Encroachment area or non-forest area near the centre surrounding of the forest patch is a suitable place for forest plantation to improve core or interior habitat [24]. Thus approaches considerably rises quality of habitat and changes nature of man-animal conflict in the study area [25].

7. CONCLUSION

After understanding the overall habitat characteristics on the basis of interior or core structure, it is cleared that habitat fragmentation is one of the major facts which controls the amount and percentage of core area. In PFD 27 forest patches are highly fragmented. Therefore, to increase forest core suitable plantation area is very important for urgent forest management. This will enhance habitat structural quality as well as promote existing biodiversity.

ACKNOWLEDGEMENTS

We are thankful at first to the forest officers and staff of Panchet Forest Division under Bankura district, West Bengal for stretching their helping hand for getting different information at the time of fieldwork and assurance to do this work. Forest rangers information about nature of animal colonization was very vital to us to understand the habitat situation. We are grateful to the Department of Geography and Environment Management, Vidyasagar
University, West Bengal for supplying field survey materials and technical support.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. McGarigal K, Cushman S. The gradient concept of landscape structure [Chapter 12]. In: Wiens John A, Moss Michael R, Eds. Issues and Perspectives in Landscape Ecology. Cambridge University Press. 2005;112-119,112–119.
2. McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS: Spatial pattern analysis program for categorical map. Computer software program produced by the authors at the University of Massachusetts, Amherst; 2002.
3. Dramstad WE, Olson JD, Forman RTT. Landscape ecology principle in landscape architecture and land use planning. Island press, American society of landscape design; 1996.
4. Couvillion BR. Spatial heterogeneity in forested landscape: An examination of forest fragmentation and sub-urban sprawl in the Florida parishes of Louisiana. Louisiana State University; 2005.
5. Forman RTT. Safe passages: Highways, wildlife, and habitat connectivity. Island Press; 2012.
6. Farina A. Principles and methods in landscape ecology. Landscape series, Springer; 2006.
7. Forman RTT. Land mosaic: The ecology of landscape and regions. Cambridge University press, Cambridge, England; 1995.
8. Sudhakar R, Raha AK. Forest change detection study of nine districts of West Bengal through digital image processing of Indian Remote Sensing Satelite data between 1988 &1991 – Procedural Manual and Inventory. Regional Remote Sensing Service Center, Kharagpur and Forest Department, Govt. of West Bengal Joint Collaborating Project; 1994.
9. Sukumar R. The living animals: Evolutionary ecology, behavior, and conservation. Oxford University Press, New York; 2003.
10. Mandal M, Chetterjee ND, Hazra J. Elephant migration and colonization in Bankura district, West Bengal, India. Vidyasagar University. Indian Journal of Geography and Environment. 2016;14:46-52.
11. Mandal M, Chatterjee N. Das. Quantification of habitat (Forest) shape complexity through geo-spatial analysis: An ecological approach in Panchet Forest Division in Bankura, West Bengal. Asian Journal of Environment & Ecology. AJEE. 2018;6(1):1-8.
12. Mandal M. Forest range wise Asian elephant’s (Elephas maximus) habitat suitability assessment through food and water availability: A case study in Panchet forest division, Bankura, West Bengal. International Journal of Basic and Advance Research; 2018. [ISSN 2454-4639 (P) 2456-1372 (O)]
13. Chatterjee N. Das. Man-elephant conflict: A case study from forests in West Bengal, India. Springer; 2016.
14. Kulandaivel S. A paradigm shift in the elephant depredation in South Bengal. Divisional Forest Officer, Bankura North Division, Personal Communication; 2010.
15. Anon. State Forest Report. Forest Department, Govt. of West Bengal Directorate of Forests Office of The Principal Chief Conservator of Forests. Kolkata; 2016.
16. McGarigal K, Marks BJ. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Report PNW-GTR-351, USDA forest service, Pacific Northwest Research Station, Portland, OR; 1995.
17. Li H, Wu J. Landscape pattern analysis: Key issues and challenges. In Key topics in landscape ecology. Cambridge University Press; 2007.
18. Desai A. The home range of elephants and its applications or management of the Mudumalai Wildlife Sanctuary, Tamil Nadu. Journal of Bombay Natural history. 1991; 88:145-156.
19. Desai A, Hedges S. Notes from the Co-chairs IUCN/SSC Asian Elephant Specialist Group. Gajah 333; 2010.
20. Cushman SA. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol Conservat. 2006;128: 231–24.
21. McGarigal K, Tagil S, Cushman SA. Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landscape Ecology. 2009;24(3): 433–450.
22. Das Gupta SP. Forest eco-system in West Bengal. Edited by Budhadev Choudhuri and Asok Maiti in Forest and Forest Development in India. Inter-India Publications, D-17, Raja Garden Extn. New Delhi; 1989.

23. Banks SC, Lindenmayer DB, Ward SJ, Taylor AC. The effects of habitat fragmentation via forestry plantation establishment on spatial genotypic structure in the small marsupial carnivore, Antechinus agilis. Molecular Ecology. 2005;14(6):1667-1680.

24. Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V. Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agriculture, Ecosystems & Environment. 2003;98:321–329.

25. Singh AK. Ecological investigation of human-elephant conflict in south West Bengal. Thesis paper, Saurashtra University, Rajkot, India; 2006.

© 2019 Mandal and Chatterjee; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/48107