Influence of SULT1A1*2 Polymorphism on Plasma Efavirenz Concentration in Thai HIV-1 Patients

Monpat Chamnanphon
Rattanaporn Sukprasong
Andrea Gaedigk
Children's Mercy Hospital
Weerawat Manosuthi
Pajaree Charivyavilaskul

See next page for additional authors

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers

Recommended Citation
Chamnanphon M, Sukprasong R, Gaedigk A, et al. Influence of SULT1A1*2 Polymorphism on Plasma Efavirenz Concentration in Thai HIV-1 Patients. Pharmgenomics Pers Med. 2021;14:915-926. Published 2021 Jul 24. doi:10.2147/PGPM.S306358

This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact library@cmh.edu.
Influence of SULT1A1*2 Polymorphism on Plasma Efavirenz Concentration in Thai HIV-1 Patients

Monpat Chamnanphon1,2,* Rattanaporn Sukprasong3,4,* Andrea Gaedigk5,6 Weerawat Manosuthi7 Pajaree Chariyavilaskul2 Supeecho Wittayalertpanya2 Napatrupron Koomdee3,4 Thawinee Jantararoungtong3,4 Apichaya Puangpetch1,4 Chonlaphat Sukasem3,4

1Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Nakornnayok, Thailand; 2Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 3Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 4Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand; 5Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO, USA; 6School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA; 7Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand

*These authors contributed equally to this work

\textbf{Purpose:} Plasma efavirenz (EFV) concentrations within therapeutic levels are essential to successfully treat patients suffering from human immunodeficiency virus (HIV) type 1. In addition to the drug-metabolizing enzyme CYP2B6, other phase II drug-metabolizing enzymes and transporters may have an important role in the pharmacokinetics of EFV. Thus, the influence of phase II drug-metabolizing enzymes and drug transporters on plasma EFV levels was investigated in Thai HIV patients receiving EFV.

\textbf{Patients and Methods:} Genotyping was performed by TaqMan® real-time PCR in 149 HIV-infected Thai adults, and plasma efavirenz concentration was measured by a validated high-performance liquid chromatography in 12 hours after dosing steady-state plasma samples at week 12 and 24.

\textbf{Results:} Patients with three or more copies of SULT1A1 had significantly lower median plasma EFV concentrations than those carrying two copies at week 12 (\(p=0.046\)) and SULT1A1*2 (c.638G>A) carriers had significantly lower median plasma EFV concentrations compared to those not carrying the variant at week 24 (\(p=0.048\)). However, no significant association was found after adjusting for CYP2B6 genotype.

\textbf{Conclusion:} Genetic variation in a combination of SULT1A1*2 and SULT1A1 copy number may contribute to variability in EFV metabolism and thereby may impact drug response. The influence of a combination between the SULT1A1 and CYP2B6 genotype on EFV pharmacokinetics should be further investigated in a larger study population.

\textbf{Keywords:} phase II drug-metabolizing enzymes, transporter genes, efavirenz, HIV-1, Thai

\section*{Introduction}

Human immunodeficiency virus type 1 infection (from here on forward referred to “HIV”) is a major global health problem including Thailand. Co-infections with other viruses including hepatitis B are also common.1 Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor (NNRTI) is a mainstay component in highly active antiretroviral therapy (HAART). EFV is combined with Truvada, which consists of tenofovir and emtricitabine; this triple combination provides the principal HAART in a single, once a day tablet to effectively suppress HIV replication in the majority of patients.2 This drug combination has been approved by the US Food and Drug Administration (FDA) in July 2006 under the brand name Atripla and is listed as one of the most important medications needed in basic health systems in the Essential Medicines List issued by the World Health Organization. The preferred therapeutic range of EFV plasma concentrations is 1–4 mg/L. Plasma concentrations below 1 mg/L have been associated with virological failure,3–8 effectively causing a patient to have “treatment failure on an EFV-based
regimen. In contrast, plasma concentrations >4 mg/L have been associated with a higher risk of central nervous system (CNS) side effects, as well as CNS toxicity that often causes patients to discontinue therapy.

CYP2B6 plays a major role in EFV metabolism. Several previous studies, including our cohort, have reported the influence of CYP2B6 enzyme on EFV pharmacokinetics. Increased plasma EFV concentrations were associated with CYP2B6 genotype in HIV patients. A few studies to date have investigated only CYP2B6 and plasma EFV concentrations, however, other enzymes such as CYP3A4/5, CYP1A2 and CYP2A6 in minor pathways are still overlooked. Furthermore, EFV is directly conjugated with glucuronic acid via UDP-glucuronosyltransferase (UGT) 2B7 into EFV-N-glucuronide, and hydroxyefavirenz metabolites can be further glucuronidated by UGTs shunting them towards urinary excretion. In addition, an association between single nucleotide polymorphisms (SNPs) in the ABC4 c.3348A>G (rs1751034), c.912G>T (rs2274407) and EFV single nucleotide polymorphisms (SNPs) in the phase II drug-metabolizing enzymes and drug transporters (ABCC4, ABCC2, ABCC1, SULT1A1, UGT2B7, UGT2B17, UGT2B1, UGT2B1, ABCA1, CYP3A4, CYP2B6, CYP1A2, CYP2A6) in minor pathways are still overlooked. System (CNS) side effects, have been associated with a higher risk of central nervous toxicity that often causes patients to discontinue therapy. Patients receiving concomitant treatments that could potentially affect efavirenz pharmacokinetics were excluded. And the CYP2B6 genotype results from our previous studies, which consisted of *1/*1 (52, 34.9%), *1/*2 (11, 7.4%), *1/*4 (3, 2.0%), *1/*6 (61, 40.9%), *2/*4 (2, 1.3%), *2/*6 (2, 1.3%), *4/*4 (5, 3.4%), *5/*6 (2, 1.3%), *6/*6 (11, 7.4%), were used for calculation in multiple regression analysis to control the impact of major CYP2B6 enzyme that may interfere the results in this study.

Genotype of Phase II Drug Metabolizing Enzymes and Transporter Genes
DNA was isolated from the stored EDTA cell pellets (~20°C) using the QiAamp® DNA Blood Mini Kit (Qiagen, Hilden, Germany). Genomic DNA was quantified by a UV spectrophotometer ND-1000 at 260 nm (Nanodrop Technologies, Wilmington, DE).

Genotyping with TaqMan® assays was performed on a Viia7 real-time PCR instrument (Applied Biosystems, Foster City, CA, USA) as previously described. Genotyping included eight SNPs (rs and assay IDs are shown in brackets): ABCA1 c.4760A>G (rs2230808, C__2741104_1), ABCB2 c.68231A>G (rs3740065, C__2271640_10), ABCB2 c.-24C>T (rs71620, C__2814642_40), ABCB4 c.3348A>G (rs1751034, C__1901918_30), SULT1A1 c.638G>A (rs1042028 or rs9282861, AHOJH16), UGT2B7 c.-161C>T (rs7668258, C__27827970_40, part of some UGT2B7*1 haplotypes and *2), UGT2B7 c.211G>T (rs12233719, C__45181106_10, UGT2B7*3) and UGT2B7 c.372A>G (rs28365063, C__30689135_20, found in some UGT2B7*1 and *3).

Materials and Methods

Patient Samples
One hundred and forty-nine HIV-infected adult Thai patients receiving EFV were recruited from the outpatient unit of the Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health and Nonthaburi, Thailand. All subjects provided written informed consent to participate in the study in accordance with the guidelines of the Declaration of Helsinki. This study was approved by the Ethics Committee of the Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand. Enrolled subjects for the study were over 18 years, had no opportunistic infection and receiving efavirenz 600 mg, tenofovir 300 mg, lamivudine 300 mg at bedtime. Mid-dose efavirenz plasma concentration was measured at 12 and 24 weeks following initiation of antiretroviral therapy. Patients receiving concomitant treatments that could potentially affect efavirenz pharmacokinetics were excluded. And the CYP2B6 genotype results from our previous studies, which consisted of *1/*1 (52, 34.9%), *1/*2 (11, 7.4%), *1/*4 (3, 2.0%), *1/*6 (61, 40.9%), *2/*4 (2, 1.3%), *2/*6 (2, 1.3%), *4/*4 (5, 3.4%), *5/*6 (2, 1.3%), *6/*6 (11, 7.4%), were used for calculation in multiple regression analysis to control the impact of major CYP2B6 enzyme that may interfere the results in this study.

SULT1A1 and UGT2B17 Copy Number Variation Analysis
CNV analysis was performed by quantitative multiplex PCR amplification (MPA) as previously described by Gaedigk et al. Briefly, PCR fragments were separated
on an ABI 3730 instrument (Applied Biosystems, Foster City, CA, USA) and analyzed with GeneMapper®. UGT2B17 and SULT1A1 copy number was determined by normalizing against UGT2B15 and SULT1A2, respectively.

Measurement of Efavirenz Plasma Concentrations
Fasting plasma EFV concentrations 12 hours after dosing were measured at 12 and 24 weeks following antiretroviral therapy initiation. A validated isocratic reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection at 245 nm was used to measure plasma EFV concentrations as previously described.29 Plasma samples (300 µL pretreated with acetonitrile) were injected into an Agilent 1100 HPLC instrument equipped with an Omnispher C18 (150 x 4.6 mm ID/particle size 5 µm) analytical column (Varian, CA, and USA), and a ChromGuard RP guard column. The mobile phase consisted of 10 mM KH₂PO₄ pH 3.1: acetonitrile (50: 50, v/v). ChromQuest Software version 4.1 was used for processing the sample peak heights. The average accuracy was 102–105% and the coefficient of variation was <5%.

Statistical Analysis
Genotype distributions were tested for Hardy–Weinberg equilibrium using exact tests under a call rate of 95% exemption. Data were summarized using medians and interquartile ranges (IQR) for continuous variables and frequencies and proportions for categorical variables. A Kruskal–Wallis test was performed for the comparison of plasma EFV concentrations among genotype groups. Mann–Whitney U-tests were used to compare plasma EFV concentrations between two genotypes. Wilcoxon matched pairs test was used for comparing two groups. A multivariable linear regression was performed for multiple factors including clinical characteristics, genotyping data with p values less than 0.20. Statistical significance was defined as p<0.05 (STATA 14, StataCorp LP, TX) after non-adjusting and adjusting for CYP2B6 genotyping that is the main enzyme in efavirenz metabolism.

Results
Demographic Characteristics, Allele and Genotype Frequencies
A total of 149 participants were enrolled in the study. The average age of the patients was 37.4 (min-max; 19–59) years; 116 (77.9%) patients were male and 33 (22.1%) female. Patient demographics are presented in Table 1.

SULT1A1 copy number (CN) ranged from 1 to 6 copies and the frequency distribution of SULT1A1 CN 1, 2, 3, 4, 5, and 6 was 3.4%, 48.3%, 29.5%, 11.4%, 4.7%, and 2.7%, respectively. The observed SULT1A1 gene deletion (1 copy) and multiallelic duplications were similar to previous reports in Thai,31 Caucasian-American,32 European-Caucasian,33,34 Indians,35 Japanese,36 and Chinese.37 For UGT2B17, three distinct clusters representing zero (56.4%), one (34.2%) and two gene copies (9.4%) were observed. Over 90% of patients were predicted to have decreased or no activity due to the loss of one or both gene copies. Furthermore, CNV frequencies differed from those reported by others.24,30,38–43 The distribution of SULT1A1 and UGT2B17 gene copy number among different ethnic populations is shown in Table 2.

Genotyping data for the investigated phase II drug-metabolizing enzyme and transporter genes were obtained for all 149 patients. Allele frequencies and copy number variations are summarized in Table 3.

Table 1 Patient Demographics (n=149)

Data Characteristics, (Number of Patients) at Baseline	Value
HIV-1 positive	100%
Age, mean±SD (range; min-max), years	37.4±8.54 (19–59)
Gender, number (%)	
-Males	116 (77.9%)
-Females	33 (22.1%)
Body weight, mean±SD (min-max), Kg	54.6±9.5 (31–86)
CD4 cell count, median (IQR), cells/mm³	42 (17–109)
Plasma HIV-1 RNA, median (IQR), Log copies/mL	5.8 (5.4–6.2)
Hemoglobin, mean±SD, g/dL	10.8±1.8 (6.5–15.5)
Blood Urea Nitrogen, median (IQR), mg/dL	10 (7–11)
Serum creatinine, mean±SD (min-max), mg/dL	0.7±0.2 (0.3–1.3)
Direct bilirubin, median (IQR), mg/dL	0.2 (0.1–0.4)
Total bilirubin, median (IQR), mg/dL	0.5 (0.3–0.7)
Alkaline phosphatase, median (IQR), mg/dL	105 (74–167)
Aspartate aminotransferase, median (IQR), U/L	37 (27–52)
Alanine aminotransferase, median (IQR), U/L	31 (19–46)
All SNPs were in Hardy–Weinberg equilibrium ($p>0.05$).

Efavirenz Plasma Concentration in HIV-Infected Thai Adults

The overall median steady state EFV plasma concentration (12 hours after dosing) was 2.41 mg/L (IQR: 1.46–4.12 mg/L) at week 12 and 2.32 mg/L (IQR: 1.54–3.70 mg/L) at week 24. Of the 149 patients, 100 (67.1%) were within the therapeutic range (1 to 4 mg/L). Large inter-individual variation in EFV plasma concentrations was observed for 49 patients (32.9%), ranging from <1 mg/L (efficacy cut-off value) in 11 cases (7.4%) to >4 mg/L (toxicity cut-off value) in 38 cases (25.5%) at week 12, and 15 cases with <1 mg/L and 34 cases with >4 mg/L at week 24.

Relationship Between SNPs Tested, Gene Copy Number and Efavirenz Plasma Concentration

The SNP defining $SULT1A1*2$ (c.638G>A, Arg213His) was associated with plasma EFV concentrations at week 24 ($p=0.048$) but was not significant for week 12 (Table 3, Figure 1A and B). Patients heterozygous for $SULT1A1*2$ had significantly lower median plasma EFV concentrations at week 24 (2.18 mg/L, IQR: 1.44–2.60) compared to patients who did not carry this variant (2.33 mg/L, IQR: 1.57–4.21). However, there was no significant effect on plasma EFV concentrations at week 12. An association was also observed for $SULT1A1$ gene copy number. Patients with CN>2 predicted to have higher SULT1A1 activity were significantly associated with decreased plasma EFV concentrations at week 12 ($p=0.046$).
Table 3: Relationship Between Genetic Variation in Drug-Metabolizing Enzyme and Transporter Genes and Plasma Efavirenz Concentrations (N=149)

Gene	N=149 (%)	EFV Plasma Concentration (mg/L), Median (IQR), Week 12	EFV Plasma Concentration (mg/L), Median (IQR), Week 24	P value⁺
ABCA1 c.4760A>G (rs2230808)				
A/A	32 (21.5)	2.07 (1.29–3.46)	2.62 (1.31–3.81)	0.601
A/G	69 (46.3)	2.23 (1.34–3.53)	2.33 (1.60–4.21)	0.644
G/G	48 (32.2)	2.94 (1.78–4.59)	2.22 (1.54–3.10)	0.056
P value				
ABCCC2 g.68231A>G (rs3740065)				
A/A	63 (42.3)	2.43 (1.57–4.10)	2.22 (1.54–3.41)	0.059
A/G	86 (57.7)	2.40 (1.36–4.21)	2.38 (1.55–4.01)	0.728
P value				
ABCCC2 c.-24C>T (rs717620)				
C/C	88 (59.1)	2.43 (1.52–4.26)	2.50 (1.56–3.84)	0.943
C/T	56 (37.6)	2.23 (1.41–4.14)	2.22 (1.44–4.04)	0.118
T/T	5 (3.3)	2.29 (1.57–2.38)	2.13 (1.58–3.10)	0.225
P value				
ABCC4 c.3348A>G (rs1751034)				
A/A	97 (65.1)	2.41 (1.57–4.99)	2.36 (1.55–3.67)	0.526
A/G	45 (30.2)	2.29 (1.43–5.02)	2.33 (1.56–4.24)	0.343
G/G	7 (4.7)	2.43 (1.03–2.73)	1.81 (1.07–2.46)	0.735
P value				
SULT1A1 c.638G>A (rs1042028)				
G/G	123 (82.6)	2.39 (1.41–4.54)	2.33 (1.57–4.21)	0.629
G/A	26 (17.4)	2.41 (1.48–3.22)	2.18 (1.44–2.60)	0.109
P value				
SULT1A1 copy number (CN)				
1	5 (3.4)	2.43 (1.34–4.97)	2.46 (2.22–2.55)	0.500
2	72 (48.3)	2.78 (1.64–4.24)	2.32 (1.61–4.01)	0.143
3	44 (29.5)	2.06 (1.26–2.82)	2.22 (1.47–4.02)	0.524
4	17 (11.4)	2.02 (1.43–3.89)	2.30 (1.47–3.00)	0.756
5	7 (4.7)	2.77 (1.33–5.84)	2.72 (1.09–5.58)	0.398
6	4 (2.7)	3.95 (2.45–5.32)	2.10 (1.60–2.98)	0.068
>2	72 (48.3)	2.07 (1.39–3.22)	2.30 (1.52–3.51)	0.860
P value				
UGT2B7 c.-161C>T (rs7668258)				
C/C	88 (59.1)	2.20 (1.45–3.94)	2.22 (1.57–3.50)	0.126
C/T	52 (34.9)	2.78 (1.56–4.78)	2.33 (1.52–4.24)	0.536
T/T	9 (6)	2.15 (1.37–2.55)	2.85 (1.47–3.87)	0.012⁺
P value				
UGT2B7 c.211G>T (rs12233719)				
G/G	124 (83.2)	2.43 (1.52–4.12)	2.30 (1.54–3.59)	0.137
G/T	24 (16.1)	1.74 (1.36–3.41)	2.46 (1.95–4.19)	0.317
T/T	1 (0.7)	4.63 (4.63–4.63)	4.17 (4.17–4.17)	0.317
P value				

(Continued)
Table 3 (Continued).

Gene	N=149 (%)	EFV Plasma Concentration (mg/L), Median (IQR), Week 12	EFV Plasma Concentration (mg/L), Median (IQR), Week 24	P value \(^\dagger\)
UGT2B7 c.372A>G (rs28365063)				
A/A	80 (53.7)	2.57 (1.39–4.16)	2.22 (1.42–3.50)	0.094
A/G	59 (39.6)	2.41 (1.69–3.51)	2.55 (1.84–4.42)	0.786
G/G	10 (6.7)	1.58 (1.30–4.63)	2.22 (1.36–4.17)	0.876
P-value				
UGT2B17 copy number				
0	84 (56.4)	2.42 (1.46–3.92)	2.37 (1.54–3.64)	0.450
1	51 (34.2)	2.38 (1.48–4.10)	2.22 (1.52–3.59)	0.297
2	14 (9.4)	2.84 (1.24–5.42)	2.63 (2.05–5.52)	0.875
0–1	135 (90.6)	2.41 (1.48–3.99)	2.30 (1.53–3.62)	0.216
P-value				

Notes: \(^\dagger\)Wilcoxon matched pairs test (comparing two groups); \(\dagger\)Significance \((P<0.05)\); A post-hoc analysis of plasma EFV concentrations and SULT1A1 copy number at week 12 was as follows: CN=2 vs CN ≥3 \((P = 0.046)\), CN=2 vs CN=3 \((p=0.019)\), CN=2 vs CN=3+4 \((P = 0.015)\).

Table 4 Univariate and Multivariate Analyses of Genetic and Non-Genetic Factors Associated with Plasma Efavirenz Concentrations at Week 12 and 24 in HIV-1 Infected Thai Adults

Characteristics/Duration	Week 12		Week 24					
	Univariate Analysis	Multivariate Analysis	Univariate Analysis	Multivariate Analysis				
	Beta	P value						
Age, years	0.13	0.115	0.04	0.628	0.11	0.181	0.02	0.774
Gender	0.04	0.653	0.11	0.181	0.07	0.207	0.08	0.359
Body weight, kg	-0.04	0.634	-0.01	0.883	-0.04	0.681	-0.07	0.398
Height, cm	-0.16	0.048	-0.21	0.016	-0.04	0.681	-0.07	0.398
Hemoglobin, g/dL	-0.04	0.622	-0.23	0.009	-0.07	0.398	-0.07	0.398
Blood Urea Nitrogen, mg/dL	-0.01	0.948	0.02	0.865	-0.07	0.398	-0.07	0.398
Serum creatinine, mg/dL	-0.06	0.504	-0.21	0.016	-0.07	0.398	-0.07	0.398
Albumin, g/dL	-0.01	0.965	-0.01	0.887	-0.07	0.398	-0.07	0.398
Globulin, g/dL	0.19	0.022	0.20	0.018	0.19	0.030	0.19	0.030
Direct bilirubin, mg/dL	-0.05	0.555	0.03	0.721	-0.05	0.555	0.03	0.721
Total bilirubin, mg/dL	-0.06	0.495	0.02	0.806	-0.06	0.495	0.02	0.806
Alkaline phosphatase, U/L	0.03	0.747	0.01	0.963	0.03	0.747	0.01	0.963
Aspartate aminotransferase, U/L	-0.06	0.488	-0.09	0.339	-0.06	0.488	-0.09	0.339
Alanine aminotransferase, U/L	-0.08	0.360	-0.09	0.313	-0.08	0.360	-0.09	0.313
ABCA1 (c.4760A>G, rs2230808)	0.02	0.791	-0.06	0.458	0.02	0.791	-0.06	0.458
ABC2 (g.68231A>G, rs3740065)	-0.01	0.905	0.07	0.423	-0.01	0.905	0.07	0.423
ABC2 (c.-24C>T, rs717620)	-0.03	0.687	-0.07	0.437	-0.03	0.687	-0.07	0.437
ABC4 (c.3348A>G, rs1751034)	-0.01	0.988	-0.07	0.398	-0.01	0.988	-0.07	0.398
SULT1A1/*2 (c.638G>A, rs1042028)	-0.10	0.220	-0.19	0.027	-0.10	0.220	-0.19	0.027
SULT1A1 copy number	-0.11	0.204	-0.05	0.595	-0.11	0.204	-0.05	0.595
UGT2B7 (c.-161C>T, rs7668258)	-0.01	0.994	0.11	0.207	-0.01	0.994	0.11	0.207
UGT2B7 (c.211G>T, rs12233719)	-0.01	0.898	0.08	0.359	-0.01	0.898	0.08	0.359
UGT2B7 (c.372A>G, rs28365063)	-0.04	0.601	0.07	0.421	-0.04	0.601	0.07	0.421
UGT2B17 copy number	0.07	0.395	0.02	0.774	0.07	0.395	0.02	0.774

Abbreviations: CD4, cluster of differentiation 4; HIV, human immunodeficiency virus; RNA, ribonucleic acid; ARV, antiretroviral; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ABCB1, ATP Binding Cassette Subfamily B Member 1; ABCA1, ATP Binding Cassette Subfamily A member 1; ABCC2, ATP Binding Cassette Subfamily C Member 2; SULT1A1, sulphotransferase 1A1; UGT2B7, UDP Glucuronosyltransferase Family 2 Member B7.
A comparison of SULT1A1 CN and plasma EFV concentrations at week 12 was as follows: CN = 3 versus CN = 2 \((p=0.019)\), CN = 4 versus CN = 2 \((p=0.192)\), and CN = 2 versus CN = 3 and 4 \((p=0.015)\), respectively (Figure 2).

Copy number of UGT2B17 was not associated with plasma EFV concentrations.

We also observed a trend for ABCA1 4760G/G and higher median EFV concentrations (2.94 mg/L, IQR:
1.78–4.59) compared to subjects homozygous for the reference “A” allele (2.07 mg/L, 1.29–3.46), p=0.059. Conversely, patients genotyped as ABCC4 3348G/G tended to have lower EFV concentrations (1.81 mg/L, IQR: 1.07–2.46) compared to those homozygous for the reference “A” (2.36 mg/L, IQR: 1.55–3.67), p=0.140.

In a univariate linear regression model, height, and globulin were significantly associated with plasma EFV concentrations at week 12 and hemoglobin, serum creatinine, globulin, and SULT1A1*2 were significantly associated with plasma EFV concentrations at week 24 (p<0.05). Our previous studies reported that CYP2B6 genotypes were significantly associated with higher or lower plasma EFV concentrations,15,28,29 thus, this variable was used in the composition of the multiple regression analysis. In a multivariable analysis of non-adjusting for CYP2B6 genotype, globulin was significantly associated with plasma EFV concentrations at week 12 (p=0.018) and hemoglobin, serum creatinine, and SULT1A1*2 were significantly associated with plasma EFV concentrations at week 24 (p=0.049), as presented in Table 4. After adjusting for CYP2B6 genotype that is a main factor for EFV metabolism in the multivariable linear regression analysis, a trend toward statistical significance of SULT1A1*2 was observed for patients carrying the SULT1A1*2 allele (c.638G>A), p=0.089. However, hemoglobin and serum creatinine were still significantly associated with plasma EFV concentrations at week 24 (p=0.006, p=0.010, respectively). Potential differences in demographic and clinical characteristics were also compared between SULT1A1*2 subgroups (*1/*1, *1/*2); however, statistically significant differences in these data between the subgroups were not found.

Discussion

Previous studies have established that CYP2B6 is a major route to EFV metabolism and thus plays an important role in EFV pharmacokinetics and pharmacodynamics. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has recently published a CYP2B6-efavirenz guideline.44 However, despite the prominent role of CYP2B6, notable portions of variability in plasma EFV concentrations cannot be explained by genetic variation in CYP2B6. In this study, we set out to explore whether
minor polymorphic phase II pathways (\textit{SULT1A1}, \textit{UGT2B7} and/or drug transporters \textit{ABCA1}, \textit{ABCC2} and \textit{ABCC4}) may also contribute to the observed variability.17

To that end, eight SNPs were selected in genes that have been shown to influence EFV pharmacokinetics22,23,45,46 and, therefore, may also be involved in EFV transport and/or metabolism. Notably, \textit{SULT1A1} was previously implicated to be significantly associated with plasma EFV concentrations,24 although its effects on EFV PK remain unknown. The most striking result was the observation that the \textit{SULT1A1*2} (c.638G>A) allele and \textit{SULT1A1} copy number variation were associated with reduced plasma EFV concentrations. The nonsynonymous SNP causes an Arg213His amino acid substitution and is found at 8.7\% in this study, similar to that of other East Asian populations (8\%, 12\%, 17\% in Han Chinese, Korean, Japanese, respectively), while high allelic frequency is shown at 33\%, 29\% in Caucasian-American and African-Americans.47-49 The Arg213His substitution negatively affects enzyme activity by decreasing protein thermostability.50,51 The \textit{SULT1A1*2} allele has been associated with decreased estrogen metabolism and hormone-dependent cancers and has also been described to contribute to the risk of cancer or response to therapy.52-54 There is no direct evidence supporting that genetic variation of \textit{SULT1A1} contributes to EFV PK, but Haas et al.24 have reported a significant relationship between \textit{SULT1A1} c.667A>G (Met223Val, rs1801030) and plasma EFV concentrations. This study was, however, limited due to the lack of correction for multiple comparisons and another limitation of the Haas et al.24 study is that \textit{SULT1A1} copy number variation was not accounted for pharmacokinetics of EFV. However, \textit{SULT1A1} CNVs have been shown to be the most important underlying genetic variation determining \textit{SULT1A1} activity55 and have been shown to impact the metabolism of several drugs.36,56,57 Our data suggest that \textit{SULT1A1} copy number and plasma EFV concentrations are indeed correlated contrasting the conclusion drawn by Hass et al.24 Patients carrying more than 2 \textit{SULT1A1} gene copies had decreased plasma EFV concentrations which were especially evident for subjects with 3 gene copies, the second most frequent CNV allele in our cohort. Based on our findings, the addition of \textit{SULT1A1} CNV testing is strongly encouraged to independently confirm the contribution of this pharmacogene to EFV metabolism and determine whether \textit{SULT1A1} genotype is a clinically useful marker to predict outcome and/or reduce adverse effects. No correlations were detected for \textit{UGT2B17} copy number.

The \textit{SULT1A1} CNV frequencies were markedly different from those previously reported in Thai,31 a small study that only included 34 subjects. The frequencies we describe here are overall consistent with those found across other populations (Table 2). Regarding the frequency of \textit{UGT2B17} copy number, there appears to be considerable variation among the major population groups.24,30,59-63 The frequencies we report for our cohort are distinct from those described for other Asian populations, but share the overall lower frequencies of 2-copy alleles compared to populations of European descent.

We also observed trends of association between variants in \textit{ABCA1}, \textit{ABCC4} transporter genes and EFV concentrations which were consistent with previous reports.11,22,58 \textit{ABCC4} c.3348A>G carriers (MRP4, multidrug resistance protein 4) had a tendency towards lower plasma EFV concentrations. This transporter, also known as MRP4 is located in the blood–brain barrier and in the kidney.59 MRP4 is mainly expressed in the blood-facing membrane of the brain capillaries and choroid plexus facilitating the export of substrate drugs via luminal cells.60 The c.3348A>G SNP may reduce expression concentrations and thereby increase EFV concentrations in cerebrospinal fluid which may in turn cause central nervous system effects.61 Many SNPs of \textit{ABCC4} have previously been reported to correlate with EFV PK parameters.22 However, it remains unclear whether genetic variation of \textit{ABCC4} has clinical relevance.

Given the complexity of HIV-1 infection, it is not surprising that multiple factors including patient demographics such as gender, age, body weight, liver, and renal impairment influence plasma EFV concentration.52 The contribution of these factors is in line with our previous findings63 as well as the current study (i.e., associations between plasma EFV concentrations and body weight, height, viral load, blood urea nitrogen (BUN) and aspartate aminotransferase (AST) were found). In addition, globulin influenced EFV metabolism at week 12. At week 24, however, there were only three factors, hemoglobin, serum creatinine, and \textit{SULT1A1*2} that remained statistically significant with low plasma EFV concentration after multivariate analysis. Lastly, EFV therapy may also influence hemoglobin and albumin,64 and Yimer et al.65 reported that lower baseline albumin levels are an important predictor for EFV-based HAART-induced liver injury. Although power analysis of the effect size of \textit{SULT1A1*2} allele accounted for 17\% of the observed variability in plasma EFV concentrations for multiple linear regression analysis by using non-adjusting for \textit{CYP2B6} genotyping model, this effect was disappeared after adjusting for \textit{CYP2B6} genotype in this
study. The influence of cofactors of EFV biotransformation pathway may be reduced because the number of sample sizes in each group tends to be small. Therefore, the findings of this study need to be viewed as preliminary.

Conclusion
Our findings suggest that SULT1A1*2 and copy number variation contribute to the metabolism of drug regimens containing EFV. Thus, in addition to patient demographics and CYP2B6 genotype status, future investigations should include SULT1A1 to further our understanding of variability of EFV metabolism to ultimately empower us to more accurately predict EFV drug response and avoid adverse events.

Acknowledgments
This research is supported by the Faculty of Medicine, Ramathibodi Hospital, Mahidol University; The International Research Network-The Thailand Research Fund (IRN60W003), Thailand; Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University. The authors also thank the Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, and School of Medicine, University of Missouri–Kansas City, for providing access to quantitative multiplex PCR amplification.

Disclosure
The authors reported no conflicts of interest in this work.

References

1. Barusrux S, Urwijitaroon Y, Puapairoj C, Romphruk A, Srivanitchak P. Association of HCV and Treponema pallidum infection in HIV infected northeastern Thai male blood donors. *J Med Assoc Thai*. 1997;80(Suppl 1):S106–111.

2. Mocroft A, Ledgerber B, Katlama C, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. *Lancet*. 2003;362(9377):22–29. doi:10.1016/S0140-6736(03)13802-0

3. Clevenbergh P, Mouly S, Sellier P, et al. Improving HIV infection management using antiretroviral plasma drug levels monitoring: a clinician’s point of view. *Curr HIV Res*. 2004;2(4):309–321. doi:10.2174/1566524043351129

4. Pretorius E, Klinker H, Rosenkranz B. The role of therapeutic drug monitoring in the management of patients with human immunodeficiency virus infection. *Ther Drug Monit*. 2011;33(3):265–274. doi:10.1097/FDT.0b013e31821b42d1

5. Stahle L, Moberg L, Svensson JO, Sonnerborg A. Efavirenz plasma concentrations in HIV-infected patients: inter- and intra-individual variability and clinical effects. *Ther Drug Monit*. 2004;26(3):267–270. doi:10.1097/00002030-200406000-00008

6. Arab-Alameddine M, Di Julio J, Buclin T, et al. Pharmacogenetics-based population pharmacokinetic analysis of efavirenz in HIV-1-infected individuals. *Clin Pharmacol Ther*. 2009;85(5):485–494. doi:10.1038/clpt.2008.271

7. Cabrera SE, Santos D, Valverde MP, et al. Influence of the cytochrome P450 2B6 genotype on population pharmacokinetics of efavirenz in human immunodeficiency virus patients. *Antimicrob Agents Chemother*. 2009;53(7):2791–2798. doi:10.1128/AAC.01537-08

8. Csajka C, Marzolini C, Fattinger K, et al. Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. *Clin Pharmacol Ther*. 2003;73(1):20–30. doi:10.1067/mcp.2003.22

9. Goudene V, van Nierkerk C, Snyman T, George JA. Presence of the CYP2B6 516G>T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. *AIDS Res Ther*. 2010;7:32. doi:10.1186/1742-6405-7-32

10. Sanchez A, Cabrera S, Santos D, et al. Population pharmacokinetic/pharmacogenetic model for optimization of efavirenz therapy in Caucasian HIV-infected patients. *Antimicrob Agents Chemother*. 2011;55(11):5314–5324. doi:10.1128/AAC.00194-11

11. Desta Z, Sausele T, Ward B, et al. Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. *Pharmacogenomics*. 2007;8(6):547–558. doi:10.2217/14622416.8.6.547

12. Ogburn ET, Jones DR. Pharmacogenetics of HLA-B*5701: implications for efavirenz metabolism. *Pharmacogenomics*. 2009;10(6):1293–1303. doi:10.2217/14622416.10.6.1293

13. Sanchez A, Cabrera S, Santos D, et al. Population pharmacokinetic/pharmacogenetic model for optimization of efavirenz therapy in Caucasian HIV-infected patients. *Antimicrob Agents Chemother*. 2011;55(11):5314–5324. doi:10.1128/AAC.00194-11

14. Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Lichter DA. Identification of human PMCs responsible for glucuronidation of efavirenz and its three metabolites. *Drug Metab Dispos*. 2005;33(7):848–856. doi:10.1124/dmd.104.00498254.2011.551849

15. Bae SK, Jeong YJ, Lee C, Liu KH. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxyl metabolites. *Xenobiotica*. 2011;41(6):437–444. doi:10.3109/00498254.2011.551849

16. Belanger AS, Caron P, Harvey M, Zimmerman PA, Mehlrott RK, Guillemette C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. *Drug Metab Dispos*. 2009;37(9):1793–1796. doi:10.1124/dmd.109.027706
54. Shatalova EG, Walther SE, Favorova OO, Rebbeck TR, Blanchard RL. Genetic polymorphisms in human SULT1A1 and UGT1A1 genes associate with breast tumor characteristics: a case-series study. *Breast Cancer Res.* 2005;7(6):R909–R921. doi:10.1186/bcr1318

55. Hebbring SJ, Adjei AA, Baer JL, et al. Human SULT1A1 gene: copy number differences and functional implications. *Hum Mol Genet.* 2006;16(5):463–470.

56. Edavana VK, Yu X, Dhakal IB, et al. Sulfation of fulvestrant by human liver cytosols and recombinant SULT1A1 and SULT1E1. *Pharmgenomics Pers Med.* 2011;4:137–145. doi:10.2147/PGPM.S25418

57. Edavana VK, Dhakal IB, Yu X, Williams S, Kadlubar S. Sulfation of 4-hydroxy toremifene: individual variability, isofrom specificity, and contribution to toremifene pharmacogenomics. *Drug Metab Dispos.* 2012;40(6):1210–1215. doi:10.1124/dmd.111.044040

58. Mukonzo JK, Owen JS, Ogwal-Okeng J, et al. Pharmacogenetic-based efavirenz dose modification: suggestions for an African population and the different CYP2B6 genotypes. *PLoS One.* 2014;9(1):e86919. doi:10.1371/journal.pone.0086919

59. Borst P, de Wolf C, van de Wetering K. Multidrug resistance-associated proteins 3, 4, and 5. *Pflugers Arch.* 2007;453(5):661–673. doi:10.1007/s00424-006-0054-9

60. Leggas M, Adachi M, Scheffer GL, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. *Mol Cell Biol.* 2004;24(17):7612–7621. doi:10.1128/MCB.24.17.7612-7621.2004

61. Sanchez Martin A, Cabrera Figueroa S, Cruz Guerrero R, Hurtado LP, Hurle AD, Carracedo Alvarez A. Impact of pharmacogenetics on CNS side effects related to efavirenz. *Pharmacogenomics.* 2013;14(10):1167–1178. doi:10.2217/pgs.13.111

62. Sukasem C, Churdboonchart V, Chasombat S, et al. Surveillance of genotypic resistance mutations in chronic HIV-1 treated individuals after completion of the National Access to Antiretroviral Program in Thailand. *Infection.* 2007;35(2):81–88. doi:10.1007/s15010-007-6169-x

63. Sukasem C, Chamnanphon M, Koomdee N, et al. Pharmacogenetics and clinical biomarkers for subtherapeutic plasma efavirenz concentration in HIV-1 infected Thai adults. *Drug Metab Pharmacokinet.* 2014;29(4):289–295. doi:10.2133/dmpk.DMPK-13-RG-077

64. Metzger IF, Quigg TC, Epstein N, et al. Substantial effect of efavirenz monotherapy on bilirubin levels in healthy volunteers. *Curr Ther Res Clin Exp.* 2014;76:64–69. doi:10.1016/j.curtheres.2014.05.002

65. Yimer G, Amogne W, Hahtewold A, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naive HIV patients from Ethiopia: a prospective cohort study. *Pharmacogenomics J.* 2012;12(6):499–506. doi:10.1038/tpj.2011.34

66. Song R-H, Shao X-Q, Li L, Wang W, Zhang J-A. Copy number variations exploration of multiple genes in Graves’ disease. *Medicine.* 2017;96(4):e5866. doi:10.1097/MD.000000000005866

Pharmacogenomics and Personalized Medicine

Publish your work in this journal

Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability. This journal is indexed on the American Chemical Society’s Chemical Abstracts Service (CAS). The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/pharmacogenomics-and-personalized-medicine-journal