Medium Modifications from $^4\text{He}(e,e'p)^3\text{H}$

- Nucleons in the Nuclear Medium and in-medium electromagnetic form factors
- Preliminary results from JLab experiment E03-104 (Hall A Collaboration)
 - Polarization transfer
 - Induced polarization
- Momentum dependence of bound nucleon wave function

Simona Malace (Postdoc), Michael Paolone (Ph.D. Student), Steffen Strauch
University of South Carolina

Sixth International Conference on Perspectives in Hadronic Physics
ICTP, Trieste, Italy – May 12-16, 2008
Nucleons in the Nuclear Medium

• Conventional Nuclear Physics:
 ➤ Nuclei are effectively and well described as point-like protons and neutrons (+ form factor) and interaction through effective forces (meson exchange).
 ➤ Medium effects arise through non-nucleonic degrees of freedom.
 ➤ Are free nucleons and mesons, under every circumstance, the best quasi-particle to chose?

• Nucleon Medium Modifications:
 ➤ Nucleons and mesons are not the fundamental entities in QCD.
 ➤ Medium effects arise through changes of fundamental properties of the nucleon.
 ➤ Do nucleons change their quark-gluon structure in the nuclear medium?
The EMC Effect

- The European Muon Collaboration used muon scattering to measure nuclear structure functions and observed a depletion of the nuclear structure function $F_2^A(x)$ in the valence-quark regime $0.3 \leq x \leq 0.8$.
- J. Smith and G. Miller: chiral quark-soliton model of the nucleon
 Conventional nuclear physics does not explain EMC effect.

\[R(x, Q^2) = \frac{F_2^A}{AF_2^N} \]

SLAC-E139 data for Iron and Gold

- Nucleon structure is modified in the nuclear medium
- Note: prelim. E03-103 4He data consistent with SLAC A=12 param.

Dave Gaskell, NuINT07, May 31 2007
y - Scaling Function

- y - scaling analysis of quasielastic scattering data
- Deviation of the cross-section from scattering from free nucleons scales to a function of a single variable y, the longitudinal momentum distribution.
- y-scaling property very sensitive to change of nucleon radius
- Limits: $Q^2 > 1 \text{ (GeV/c)}^2 : \Delta G_M < 3\%$

$I.\: Sick,\: D.\: Day\: and\: J.S.\: McCarthy,\: Phys.\: Rev.\: Lett.\: 45,\: 871\: (1980);$
Limit on radius from I. Sick, in: H. Klapdor (Ed.), Proc. Int. Conf. on Weak and Electromagnetic Interactions in Nuclei, Springer-Verlag, Berlin, 1986, p. 415

\[
F(y) = \frac{\sigma(q, \omega)}{Z\sigma_{ep} + N\sigma_{en}} \cdot \frac{d\omega}{dy}
\]
Coulomb Sum Rule

• **CSR:** Integral of the quasi-elastic electric response Response $R_L(q, \omega)$

\[
S_L(q) = \frac{1}{Z} \int_{\omega^+}^{\infty} \frac{R_L(q, \omega)}{\tilde{G}_E^2} d\omega \rightarrow 1
\]

• Experimental findings controversial:
 - No quenching in the data observed [2]
 - Quenching of S_L is experimentally established [3]
 - Good agreement between theory and experiment for 4He when using free-nucleon form factors [4]

• Limits: $Q^2 \leq 0.5 \text{ (GeV/c)}^2$
 - $\Delta G_E < 15\%$ or even $< 5\%$

• New data expected from JLab E05-110
 [Choi, Chen, and Meziani]

[1] I. Sick, Phys. Lett. B 157, 13 (1985)
[2] J. Jourdan, Nucl. Phys. A 603, 117 (1996)
[3] J. Morgenstern, Z.-E. Meziani, Phys. Lett. B 515, 269 (2001)
[4] J. Carlson, J. Jourdan, R. Schiavilla, and I. Sick, Phys. Lett. B 553, 191 (2003)
Quark Meson Coupling Model (QMC)

• Structure of the nucleon described by valence quarks in a bag (Cloudy-bag model).

• Nuclear system described using effective scalar (σ) and vector (ω) meson fields.

• Scalar and vector fields of nuclear matter couple directly to confined quarks.

→ Modification of internal structure of bound nucleon

D.H. Lu, A.W. Thomas, K. Tsushima, A.G. Williams, K. Saito, Phys. Lett. B 417, 217 (1998)
D.H. Lu et al., Phys. Rev. C 60, 068201 (1999)
Electromagnetic rms radii and magnetic moments of the bound proton are increased.

At low Q^2: Charge form factor much more sensitive to the nuclear medium than the magnetic ones.

D.H. Lu et al., Phys. Rev. C 60, 068201 (1999)
Chiral Quark Soliton Model (CQSM)

- Chiral-soliton model provides the quark and antiquark substructure of the proton, embedded in nuclear matter.
- Medium modifications:
 - significant for G_E, only moderate for G_M
 - no strong enhancement of the magnetic moment

CQSM: J.R. Smith and G.A. Miller, Phys. Rev. C 70, 065205 (2004)
Other Models

• **Extended Skyrme Model**
 U. Yakhshiev, U. Meißner, A. Wirzba, Eur. Phys. J. A 16, 569 (2003)
 - Model of the nucleon based on Skyrme Lagrangian
 - Results for 4He comparable to QMC, but differ in detail
 - $(G_E/G_M)_{\text{medium}}/(G_E/G_M)_{\text{free}} \approx 1$ for $R = 1$ fm

• **Nambu–Jona-Lasinio model**
 T. Horikawa, W. Bentz, Nucl. Phys. A 762, 102 (2005)
 - Nucleon as quark-diquark bound state + nuclear matter in the mean field approximation.
 - Medium modifications: increase of the electric size in the medium
 - Medium modifications decrease with increasing Q^2 for both, spin and orbital form factors.

• **Generalized Parton Distributions**
 S. Liuti, hep-ph/0608251, hep-ph/0601125
 - Connection between the modifications induced by the nuclear medium of the nucleon form factors and of the deep inelastic structure functions, obtained using the concept of generalized parton distributions.
Medium-modified form factors are not an experimental observable. How can we test these predictions?

Strategy:

• Choose an observable with high sensitivity to nucleon structure while being at the same time least sensitive to conventional medium effects.

• Chose a dense yet simple nuclear target, which allows for microscopic calculations.

• Provide high-precision data to put Nuclear Physics models to rigorous test.
Polarization-Transfer Technique

• Free electron-nucleon scattering

\[
\frac{G_E}{G_M} = -\frac{P'_x}{P'_z} \cdot \frac{E_i + E_f}{2m} \tan \left(\frac{\theta_e}{2} \right) 1^1H(\vec{e}, \vec{e}' \vec{p})
\]

• Bound nucleons → evaluation within model

Reaction-mechanism effects predicted to be small and minimal for

- Quasielastic scattering
- Small missing momenta
- Symmetry about \(p_m = 0 \)

R. Arnold, C. Carlson, and F. Gross, Phys. Rev. C 23, 363 (1981); for reaction-mechanism effects, e.g., J.M. Laget, Nucl. Phys. A 579, 333 (1994), J.J. Kelly, Phys. Rev. C 59, 3256 (1999), A. Meucci, C. Guisti, and F.D. Pacati, Phys. Rev. C 66, 034610 (2002).
Proton Recoil Polarization in $^4\text{He}(\vec{e}, e' \vec{p})^3\text{H}$

- **Kinematics**: low missing momentum, quasielastic scattering

- **Channel identification by missing mass** (Mike Paolone)

- **Polarization-transfer ratio** P'_x/P'_z: sensitive to G_E/G_M

$$R = \left(\frac{P'_x}{P'_z} \right)_{\text{bound}} \bigg/ \left(\frac{P'_x}{P'_z} \right)_{\text{free}}$$

- **Induced polarization** P_y: sensitive to final-state interactions
Thomas Jefferson
National Accelerator Facility

JLab in Newport News, VA

Hall A Counting House
E93-049 and E03-104 at Jefferson Lab Hall A

$^4\text{He}(e,e'p)^3\text{H}$ in quasielastic kinematics $Q^2 = 0.5 – 2.6$ (GeV/c)2

S. Strauch, et al., Phys. Rev. Lett. 91, 052301(2003);
JLab E03-104, R. Ent, R. Ransome, S. Strauch, P. Ulmer (spokespersons)
Polarization Measurement

Spin-dependent scattering

\[\vec{l} \cdot \vec{s} < 0 \quad \text{Left / right asymmetry} \quad \vec{l} \cdot \vec{s} > 0 \]

Observed angular distribution

\[
I(\theta, \varphi) = I_0(\theta) \left(1 + \epsilon_y \cos \varphi + \epsilon_x \sin \varphi \right)
\]

\[
= I_0(\theta) \left[1 + A_C(P_y \cos \varphi - P_x \sin \varphi) \right]
\]
Observed Angular Distribution

- Excellent control of systematic uncertainties for polarization transfer
- Instrumental asymmetries complicate the extraction of induced polarization
 - Detector misalignment
 - Detector inefficiencies
 - Tracking problems

(Simona Malace)

E03-104, preliminary

\[
\frac{1}{2I_0} \left[I(h=+1) + I(h=-1) \right]
\]

\[
\frac{1}{I(h=+1) - I(h=-1)}
\]

\[
\left(^1\text{H}(e,e'p) \right)
\]

\[
Q^2 = 0.8 \text{ GeV}^2
\]

Helicity Difference

Helicity Sum

no asymmetry expected for \(^1\text{H}\) (one photon approx.)

\[
\phi_{\text{FPF}} \text{ (deg)}
\]
Free Proton Form-Factor Ratio $\mu_p G_E/G_M$

- Preliminary results from E03-104 in good agreement with previous data.
- Small statistical uncertainties 0.7% from E03-104.
- Final data will have reduced systematic uncertainties.

$\mu_p(G_E^p/G_M^p)$

Q^2 (GeV/c)2

new data

- B. Milbrath et al., PRL 82, 2221 (1999)
- M.K. Jones et al., PRL 84, 1398 (2000)
- O. Gayou et al., PRC 64, 038202 (2001)
- S. Dieterich et al., PLB 500, 47 (2001)
- S. Crawford et al. PRL 98, 052301 (2007)
- G. Ron et al. PRL 99, 202007 (2007)
- JLab E93-049, E03-104 (preliminary)
2H and 4He(e,e’p) Polarization-Transfer Ratios

- 2H and 1H polarization-transfer data are similar.
- 4He data are significantly different than 2H, 1H data.
- Small effect for less dense nucleus, larger for denser.
- RDWIA and RMSGA models cannot describe 4He data.

$$R = \left(\frac{P'^x}{P'^z} \right)_{\text{bound}} / \left(\frac{P'^x}{P'^z} \right)_{\text{free}}$$

2H Model: H. Arenövel; see: B. Hu et al., Phys. Rev. C 73, 064004 (2006).
RDWIA: J.M. Udias et al., Phys. Rev. Lett. 83, 5451 (1999).
Relativistic Multiple-Scattering Glauber Approximation (RMSGA): P. Lava et al., Phys. Rev. C 71, 014605 (2005), D. Debruyne et al., Phys. Rev. C 62, 024611 (2000).
\(^4\text{He}(e,e'p)^3\text{H} - \text{Polarization-Transfer Ratio}\)

- Previous and preliminary high-statistics data from E03-104 are also low compared to RDWIA.
- \(R^{\text{RDWIA}}\) reduced by 3\% compared to \(R^{\text{RPWIA}}\) due to Enhancement of lower components (spinor distortions) in RDWIA.
- Small sensitivity to
 - bound-state wave function
 - current operator
 - optical potential (not including charge exchange terms)
Role of MEC in $^4\text{He}(e,e'p)^3\text{H}$

- The seagull diagram effects generally small and visible only at high missing momenta; MEC expected to give more significant effect in the induced polarization

 Relativistic mean-field calculation: A. Meucci, C. Giusti, and F.D. Pacati, Phys. Rev. C 66, 034610 (2002)

- R is suppressed by about 4% with respect to that obtained with one-body currents only

 R. Schiavilla, O. Benhar, A. Kievsky, L.E. Marcucci, and M. Viviani, Phys. Rev. Lett. 94, 072303 (2005)
Polarization Transfer in $^4\text{He}(\bar{e}, e' \bar{p})^3\text{H}$

\[G(Q^2, \rho) = G(Q^2) \frac{G_{\text{QMC}}(Q^2, \rho)}{G_{\text{QMC}}(Q^2)} \]

- In-medium form factors: density-dependent form factors are evaluated at the local density $\rho(r)$.
- R is reduced by an additional 6% (QMC).
- Data effectively described by proton medium modified form factors.
Interpretation of Polarization-Transfer Data

- Data consistent with:
 - RDWIA
 - Density-dependent medium modified form factors.

 OR

 - Free form factors
 - MEC
 - Spin-dependent charge-exchange FSI (not well constrained ⇒ need \(P_y \) from E03-104)

R. Schiavilla, O. Benhar, A. Kievsky, L.E. Marcucci, and M. Viviani, Phys. Rev. Lett. 94, 072303 (2005)

- The modeling of final-state interactions can be tested by measuring the induced polarization, \(P_y \).
Induced Polarization in $^4\text{He}(e,e'\bar{p})$

- P_y is a measure of final-state interactions (FSI).
- P_y is insensitive to in-medium form factors.
- Observed final-state interaction small and with only very weak Q^2 dependence.
- Results from RDWIA and Laget consistent with data.
- Spin-dependent charge exchange terms not well constrained by N-N scattering and possibly overestimated.

Note: Data are acceptance corrected; inner uncertainties are statistical only; full analysis of E03-104 will have reduced systematic uncertainties.
Bound Nucleon Wave Function

Pointlike Configurations (PLC)

- Smaller average interaction strength
- PLC suppressed in the bound state
- Contribution of PLCs exhibit a strong momentum dependence (arising from the reduction of the interaction strength)

Ciofi degli Atti et al. argue that medium modifications should strongly depend on the nucleon momentum (nucleon virtuality)

\[v = p^2 - m_N^2 \]
\[= (M_A - \sqrt{(M_A - m_N + E)^2 + p^2})^2 - p^2 - m_N^2 \]

- At \(v = 0 \), modification should vanish.
- “Would be nice to study modification of the nucleon form factors as a function of the nucleon momentum.” [Mark Strikman]

C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari, M.I. Strikman, Phys. Rev. C 76, 055206 (2007)
M.R. Frank, B.K. Jennings, G.A. Miller, Phys. Rev. C 54, 920 (1996)
Proton Virtuality – Suppression of PLCs?

- Polarization-transfer double ratio shows (linear) dependence on proton virtuality with the trend of $R \approx 1$ for $p^2 = m^2_N$
- Excellent description with the RDWIA + QMC model.
Summary

• Models predict change of the internal structure of bound nucleon

• Recoil-polarization in $^4\text{He}(e,e'p)^3\text{H}$

 ▶ Two polarization observables act together to constrain the interpretation of the data

 • Polarization transfer: sensitive to in-medium form factors

 • Induced polarization: sensitive to final-state interactions, not sensitive to in-medium form factors

• Preliminary results

 ▶ Data effectively described by in-medium electromagnetic form factors or strong charge-exchange FSI

 ▶ Induced polarization crucial to clarify role of FSI and new results from E03-104 will provide needed constraints