Local structure and dynamics in methylammonium, formamidinium and cesium tin(II) mixed-halide perovskites from 119Sn solid-state NMR

Dominik J. Kubicki,a,b Daniel Prochowicz,d Elodie Salager,f,g Aydar Rakhmatullin,i Clare P. Greyb, Lyndon Emsleyc, Samuel Stranksa

aCavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
cLaboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
dInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
eLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
fConditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), UPR 3079 CNRS, Université d’Orléans, 1D Avenue de la Recherche Scientifique, Orléans 45071, France
gRéseau sur le Stockage Electrochimique de l’Energie (RS2E), FR 3459 CNRS, 33 Rue Saint Leu, Amiens 80039, France

Table of contents

List of figures and tables
3

Synthesis of the materials
5

Supplementary Note 1
7

Supplementary Note 2
7

Details of NMR measurements
9

XRD data
12

List of figures and tables

Figure S1. Echo-detected 119Sn MAS NMR spectra of MASnBr$_3$ at 4.7 T, 298 K and 12 kHz MAS using a refocusing echo period of (a) 16.7 μs (asynchronous), (b) 83.3 μs (rotor synchronized). The rotor-synchronized echo period does not lead to the appearance of spinning sidebands and its only effect is lower signal intensity due to fast transverse relaxation. Number of scans: (a) 1024, (b) 4096. Recycle delay: 50 ms.

Figure S2. 1H,13C CP MAS NMR spectra at 11.7 T, 100 K and 12 kHz MAS of (a) MASnI$_3$, (b) MASnI$_{1.5}$Br$_{1.5}$, (c) MASnBr$_3$, (d) MASnBr$_{1.5}$Cl$_{1.5}$, (e) MASnCl$_3$, (f) MASnCl$_{1.5}$I$_{1.5}$. The well-resolved features in panels c and e correspond to distinct MA environments present in the low-symmetry low temperature phases of MASnBr$_3$ and MASnCl$_3$, respectively. The spectra of mixed-halide compositions are broader as compared to the single halide materials, consistent with the presence of halide disorder. Recycle delay: 2 s. Number of scans: 256-1024. 1H decoupling: 100 kHz (SPINAL-64). Contact time: 1 ms.

Figure S3. 14N MAS NMR echo-detected spectra at 11.7 T, 298 K and 5 kHz MAS of (a) MASnI$_3$, (b) FASnI$_3$, (c) MA$_{0.25}$FA$_{0.75}$SnI$_3$. The broadening of the spinning sideband manifold in the mixed-cation case (panel c) is indicative of lowering of the cuboctahedral symmetry. Recycle delay: 0.3 s. RF strength: 62.5 kHz.
Figure S4. 133Cs MAS NMR echo-detected spectra at 16.4 T, 298 K and 12 kHz MAS of (a) CsSnI$_3$, (b) CsSnBr$_3$, (c) CsSnCl$_3$. The similarity of 133Cs shift of CsSnBr$_3$ and CsSnCl$_3$ is coincidental as the compounds are cubic and monoclinic at room temperature, respectively. 133Cs resonances in 3D halide perovskites have been shown to be strongly temperature dependent and an upfield shift (to lower ppm values) is expected on increasing the temperature and symmetry in CsSnCl$_3$, consistent with previous reports. Recycle delay: (a) 120 s, (b) 40 s, (c) 40 s. RF strength: 27.8 kHz.

Figure S5. A plot of the relaxation rate $R (R = 1/T_1)$ of the variable-temperature T_1 relaxation data for MASnBr$_3$ at 16.4 T as a function of the square of temperature. The dependence would be linear if temperature was dominated by spin-phonon Raman scattering.

Figure S6. The effect of spinning on 119Sn NMR spectra and T_1 relaxation of tin(II) halide perovskites: (a) FASnI$_3$ (red: static, green: 12 kHz MAS), (b) MASnBr$_3$ (red: static, green: 1.5 kHz MAS, blue: 12 kHz MAS), (c) FASnBr$_3$ (red: static, green: 1.5 kHz MAS). The use of MAS does not lead to shortening of the T_1 which excludes MAS-induced heteronuclear polarization exchange as a possible relaxation mechanism in MASnBr$_3$. The slight shortening of T_1 on going from 1.5 to 12 kHz (panel b) is a temperature-induced effect.

Figure S7. WSolids1 (WSolids1 ver. 1.21.3, K. Eichele, Universität Tübingen, 2015) line shape simulations in the extreme narrowing regime of (a) MASnBr$_3$, (b) MASnI$_3$, (c,d) CsSnI$_3$. The relevant simulation parameters are given below the spectra. exp − experimental spectrum, sim − simulated spectrum, $J = ^{119}$Sn–X J-coupling, $d = ^{119}$Sn–X dipole coupling, T_{1q} estimated T_1 relaxation of the quadrupolar nucleus. Dipolar couplings expected based on the crystal structures (Sn–X distance = 2.9-3.1 Å) are as follows: 119Sn–35Br: $d = -410$ Hz, 119Sn–81Br: $d = -380$ Hz, 119Sn–127I: $d = -304$ Hz. The width of the spectrum is largely determined by the magnitude of J while d introduces a small asymmetry and T_{1q} determines the line broadening in the extreme narrowing regime. In the case of CsSnI$_3$, the asymmetry is reproduced well with a d value larger than the coupling expected based on the crystal structure (panel c). Using the coupling strength based on the crystal structure leads to a more symmetric simulated spectrum (panel d). Since the spectra are echo-acquired, we expect that the slight asymmetry may be an artifact caused by anisotropic 119Sn T_2 relaxation.

Figure S8. Powder X-ray diffraction patterns of the materials reported in Figure 2 of the main text.

Figure S9. Powder X-ray diffraction patterns of the materials reported in Figure 3 of the main text. The asterisks indicate the corresponding oxidized A$_2$SnX$_6$ phase which slowly forms during the XRD measurement which is carried out in air.

Figure S10. Powder X-ray diffraction patterns of the materials reported in Figure 4a-c of the main text. The asterisks indicate the corresponding oxidized A$_2$SnX$_6$ phase which slowly forms during the XRD measurement which is carried out in air.

Figure S11. Powder X-ray diffraction patterns of the materials reported in Figure 4d-m of the main text.

Figure S12. Powder X-ray diffraction patterns of the materials reported in Figure 5 of the main text.

Table S1. Chemical shifts and peak widths of the multi-field variable-temperature T_1 relaxation data of MASnBr$_3$, measured using a saturation recovery sequence and a Hahn echo in the quasi-static regime: total echo duration 40 μs at 17.6 and 4.7 T, and 66.7 μs at 9.4 T. The uncertainties of the monoexponential T_1 fit are < 1 %.

Table S2. An Arrhenius fit of the T_1 relaxation data (abscissa: 1/T, ordinate: ln(T_1/s)) to the equation: $y = a + bx$ for MASnBr$_3$. The errors of the least-squares fit are given as one standard deviation. The error of the average is given as one standard deviation of the average. $R = 8.3144598$ J/(K·mol).

Table S3. 119Sn T_1 values measured using a saturation-recovery sequence and fitted using a monoexponential function. The uncertainties of the fit are < 1 %.

Table S4. Acquisition and processing parameters used for the spectra in the main text.

Table S5. Summary of the degradation products of tin(II) halide perovskites detected using 119Sn MAS NMR. Note that not all possible degradation products were detected for all samples - see the discussion in the main text for details.
Synthesis of the materials

MASnCl₂: MACI (68 mg, 1.00 mmol), SnCl₂ (190 mg, 1.00 mmol),
MASnBr₃: MABr (112 mg, 1.00 mmol), SnBr₂ (279 mg, 1.00 mmol),
MASnI₃: MAI (159 mg, 1.00 mmol), SnI₂ (373 mg, 1.00 mmol),

MASnCl₂Br₀.₃: MACI (61 mg, 0.9 mmol), MABr (11 mg, 0.1 mmol), SnCl₂ (171 mg, 0.9 mmol), SnBr₂ (28 mg, 0.1 mmol)
MASnCl₂Br₀.₅: MACI (47 mg, 0.7 mmol), MABr (34 mg, 0.3 mmol), SnCl₂ (133 mg, 0.7 mmol), SnBr₂ (84 mg, 0.3 mmol)
MASnCl₁₅Br₁₅: MACI (34 mg, 0.5 mmol), MABr (56 mg, 0.5 mmol), SnCl₂ (95 mg, 0.5 mmol), SnBr₂ (139 mg, 0.5 mmol)

MASnCl₂I₀.₃: MACI (61 mg, 0.9 mmol), MAI (16 mg, 0.1 mmol), SnCl₂ (171 mg, 0.9 mmol), SnI₂ (37 mg, 0.1 mmol)

MASnBr₁₉I₁₂: MABr (34 mg, 0.3 mmol), MAI (111 mg, 0.7 mmol), SnBr₂ (84 mg, 0.3 mmol), SnI₂ (261 mg, 0.7 mmol)
MASnBr₁₅I₁₅: MABr (56 mg, 0.5 mmol), MAI (79 mg, 0.5 mmol), SnBr₂ (139 mg, 0.5 mmol), SnI₂ (186 mg, 0.5 mmol)
MASnBr₂₁₆I₉: MABr (78 mg, 0.7 mmol), MAI (48 mg, 0.3 mmol), SnBr₂ (195 mg, 0.7 mmol), SnI₂ (112 mg, 0.3 mmol)
MASnBr₂₅I₄₅: MABr (95 mg, 0.85 mmol), MAI (24 mg, 0.25 mmol), SnBr₂ (237 mg, 0.85 mmol), SnI₂ (56 mg, 0.25 mmol)
MASnBr₂₇I₀.₃: MABr (101 mg, 0.9 mmol), MAI (16 mg, 0.1 mmol), SnBr₂ (251 mg, 0.9 mmol), SnI₂ (37 mg, 0.1 mmol)

MA₂SnBr₆: MABr (224 mg, 2.00 mmol), SnBr₄ (438 mg, 1.00 mmol),
MA₂SnI₆: MAI (318 mg, 2.00 mmol), SnI₄ (626 mg, 1.00 mmol),

FASnI₃: FAI (172 mg, 1.00 mmol), SnI₂ (373 mg, 1.00 mmol),
FASnBr₃: FABr (125 mg, 1.00 mmol), SnBr₂ (279 mg, 1.00 mmol),
FASnCl₃: FACI (81 mg, 1.00 mmol), SnCl₂ (190 mg, 1.00 mmol),
MA₀.₅FA₀.₅SnBr₃: MABr (56 mg, 0.5 mmol), FABr (62 mg, 0.5 mmol), SnBr₂ (279 mg, 1.00 mmol),
MA₀.₅FA₀.₅SnCl₃: MACI (34 mg, 0.5 mmol), FACI (40 mg, 0.5 mmol), SnCl₂ (190 mg, 1.00 mmol),
CsSnI₃: CsI (260 mg, 1.00 mmol), SnI₂ (373 mg, 1.00 mmol),
CsSnBr₃: CsBr (213 mg, 1.00 mmol), SnBr₂ (279 mg, 1.00 mmol),
CsSnCl₃: CsCl (168 mg, 1.00 mmol), SnCl₂ (190 mg, 1.00 mmol),
CsSnCl₁₅Br₁₅: CsCl (168 mg, 1.00 mmol), SnCl₂ (95 mg, 0.5 mmol), SnBr₂ (139 mg, 0.5 mmol),

- S3 -
Figure S1. Echo-detected 119Sn MAS NMR spectra of MASnBr$_3$ at 4.7 T, 298 K and 12 kHz MAS using a refocusing echo period of (a) 16.7 μs (asynchronous), (b) 83.3 μs (rotor synchronized). The rotor-synchronized echo period does not lead to the appearance of spinning sidebands and its only effect is lower signal intensity due to fast transverse relaxation. Number of scans: (a) 1024, (b) 4096. Recycle delay: 50 ms.

Figure S2. 1H-13C CP MAS NMR spectra at 11.7 T, 100 K and 12 kHz MAS of (a) MASnI$_3$, (b) MASn$_{1.5}$Br$_{1.5}$, (c) MASnBr$_3$, (d) MASnBr$_{1.5}$Cl$_{1.5}$, (e) MASnCl$_3$, (f) MASnCl$_{1.5}$I$_{1.5}$. The well-resolved features in panels c and e correspond to distinct MA environments present in the low-symmetry low temperature phases of MASnBr$_3$ and MASnCl$_3$, respectively. The spectra
of mixed-halide compositions are broader as compared to the single halide materials, consistent with the presence of halide disorder. Recycle delay: 2 s. Number of scans: 256-1024. 1H decoupling: 100 kHz (SPINAL-64). Contact time: 1 ms.

Figure S3. 14N MAS NMR echo-detected spectra at 11.7 T, 298 K and 5 kHz MAS of (a) MASnI$_3$, (b) FASnI$_3$, (c) MA$_{0.25}$FA$_{0.75}$SnI$_3$. The broadening of the spinning sideband manifold in the mixed-cation case (panel c) is indicative of lowering of the cubooctahedral symmetry. Recycle delay: 0.3 s. RF strength: 62.5 kHz.

Figure S4. 133Cs MAS NMR echo-detected spectra at 16.4 T, 298 K and 12 kHz MAS of (a) CsSnI$_3$, (b) CsSnBr$_3$, (c) CsSnCl$_3$. The similarity of 133Cs shift of CsSnBr$_3$ and CsSnCl$_3$ is coincidental as the compounds are cubic and monoclinic at room temperature, respectively. 133Cs resonances in 3D halide perovskites have been shown to be strongly temperature dependent and an upfield shift (to lower ppm values) is expected on increasing the temperature and symmetry in CsSnCl$_3$, consistent with previous reports.1,2 Recycle delay: (a) 120 s, (b) 40 s, (c) 40 s. RF strength: 27.8 kHz.
Figure S5. A plot of the relaxation rate R ($R=1/T_1$) of the variable-temperature T_1 relaxation data for MASnBr_3 at 16.4 T as a function of the square of temperature. The dependence would be linear if relaxation was dominated by spin-phonon Raman scattering.3

Figure S6. The effect of spinning on ^{119}Sn NMR spectra and T_1 relaxation of tin(II) halide perovskites: (a) FASnI_3 (red: static, green: 12 kHz MAS), (b) MASnBr_3 (red: static, green 1.5 kHz MAS, blue: 12 kHz MAS), (c) FASnBr_3 (red: static, green: 1.5 kHz MAS). The use of MAS does not lead to shortening of the T_1 which excludes MAS-induced heteronuclear polarization exchange as a possible relaxation mechanism in MASnBr_3. The slight shortening of T_1 on going from 1.5 to 12 kHz (panel b) is a temperature-induced effect.
Figure S7. WSolids1 (WSolids1 ver. 1.21.3, K. Eichele, Universität Tübingen, 2015) line shape simulations in the extreme narrowing regime of (a) MASnBr$_3$, (b) MASnI$_3$, (c,d) CsSnI$_3$. The relevant simulation parameters are given below the spectra. exp – experimental spectrum, sim – simulated spectrum, J – 119Sn-X J-coupling, d – 119Sn-X dipole coupling, T_{1q} – estimated T_1 relaxation of the quadrupolar nucleus. Dipolar couplings expected based on the crystal structures (Sn-X distance = 2.9-3.1 Å) are as follows: 119Sn-$_{81}$Br: d = -410 Hz, 119Sn-$_{79}$Br: d = -380 Hz, 119Sn-$_{127}$I: d = -304 Hz. The width of the spectrum is largely determined by the magnitude of J while d introduces a small asymmetry and T_{1q} determines the line broadening in the extreme narrowing regime. In the case of CsSnI$_3$, the asymmetry is reproduced well with a d value larger than the coupling expected based on the crystal structure (panel c). Using the coupling strength based on the crystal structure leads to a more symmetric simulated spectrum (panel d). Since the spectra are echo-acquired, we expect that the slight asymmetry may be an artifact caused by anisotropic 119Sn T_2 relaxation.

Supplementary Note 1

It is worth noting that the CSA patterns of MASnCl$_{1.5}$Br$_{1.5}$ (fig. 2f) and MASnBr$_{2.55}$I$_{0.45}$ (fig. 3g) yield a single 119Sn peak while a sizeable CSA is expected in these cases due to asymmetric coordination of the tin(II) site. Taking a typical value of 119Sn CSA spanning 100 kHz, the dynamic process which leads to its averaging has to occur at a faster rate, i.e. with a correlation time shorter than 1/(100 kHz) = 10 μs. Since the previously determined halide hopping rates (>0.1 GHz) correspond to correlation times <10 ns, halide hopping might be the source of CSA averaging.

Supplementary Note 2

Estimation of the 119Sn T_1 minimum in the dipole-dipole relaxation mechanism for 119Sn coupled to 79Br at 4.7 T:

\[
\frac{1}{T_1} = \frac{4}{30} \left(\frac{\mu_0}{4\pi} \right)^2 \frac{\gamma_{^7S_n}^2 \gamma_{^9B_r}^2 \hbar}{r^6} S(S+1) \left(\frac{\tau}{1 + (\omega_{^7S_n} - \omega_{^9B_r})^2 \tau^2} + \frac{3\tau}{1 + \omega_{^7S_n}^2 \tau^2} + \frac{6\tau}{1 + (\omega_{^7S_n} + \omega_{^9B_r})^2 \tau^2} \right)
\]
where:
permeability of free space, \(\mu_0 = 4\pi \cdot 10^{-7} \text{ V} \cdot \text{s/(A} \cdot \text{m)} \)
Planck constant, \(\hbar = 1.054 \cdot 10^{-34} \text{ J} \cdot \text{s} \)
\(^{119}\text{Sn} \) gyromagnetic ratio, \(\gamma_{\text{Sn}} = -10.03170 \cdot 10^7 \text{ rad/(T} \cdot \text{s)} \)
\(^{79}\text{Br} \) gyromagnetic ratio, \(\gamma_{\text{Br}} = 6.72562 \cdot 10^7 \text{ rad/(T} \cdot \text{s)} \)
\(^{119}\text{Sn} - ^{79}\text{Br} \) distance in the crystal structure, \(r = 2.945 \cdot 10^{-10} \text{ m} \)
\(^{119}\text{Sn} \) Larmor frequency, \(\omega_{\text{Sn}} = 74.581 \cdot 10^6 \text{ Hz} \)
\(^{79}\text{Br} \) Larmor frequency, \(\omega_{\text{Br}} = 50.108 \cdot 10^6 \text{ Hz} \)
spin of \(^{79}\text{Br}, S = 3/2 \)
correlation time, \(\tau \) – an adjustable parameter
A \(T_1 \) minimum of 4.8 s is obtained for \(\tau = 13 \text{ ns} \).

Putting \(^{81}\text{Br} \) gyromagnetic ratio, \(\gamma_{\text{Br}} = -7.24978 \cdot 10^7 \text{ rad/(T} \cdot \text{s)} \) and \(^{81}\text{Br} \) Larmor frequency, \(\omega_{\text{Br}} = 54.0 \cdot 10^6 \text{ Hz} \), one obtains a \(T_1 \) minimum of 4.2 s for \(\tau = 13 \text{ ns} \).

Supplementary Note 3

The following considerations have been used to distinguish between scalar relaxation of the first and second kind:

If the system is in the extreme narrowing limit for the \(^{79/81}\text{Br} \) \(T_{1Q} \), as the temperature increases:

(i) \(^{79/81}\text{Br} \) \(T_{1Q} \) gets longer, \(^{119}\text{Sn} \) \(T_2 \) gets shorter (since the flipping of the quadrupole partner gets slower).

(ii) Exchange due to halide hopping gets faster. \(^{119}\text{Sn} \) \(T_2 \) gets longer (since the hopping of the quadrupole partner gets faster)

If the system is in the slow motion limit for the \(^{79/81}\text{Br} \) \(T_{1Q} \), as the temperature increases:

(i) \(^{79/81}\text{Br} \) \(T_{1Q} \) gets shorter, \(^{119}\text{Sn} \) \(T_2 \) gets longer (since the flipping of the quadrupole partner gets faster).

(ii) Exchange due to halide hopping gets faster. \(^{119}\text{Sn} \) \(T_2 \) gets longer (since the hopping of the quadrupole partner gets faster)

It is therefore only possible to distinguish between scalar relaxation of the first and second kind based on \(^{119}\text{Sn} \) line widths if the system is in the extreme narrowing limit. While variable-temperature relaxation measurements of \(^{79/81}\text{Br} \) \(T_{1Q} \) are impractical due to a very large quadrupole coupling constant in \(\text{MASnBr}_3 \), we corroborate that \(^{119}\text{Sn} \) \(T_1 \) is determined by halide hopping (scalar relaxation of the first kind) based on the resulting activation energy:

1. The activation energy obtained from variable-temperature \(^{119}\text{Sn} \) \(T_1 \) measurements matches well that from electrical measurements (Table 1 in the main text). The
thermally activated process which is being probed is therefore halide hopping. This
confirms that relaxation is driven by halide hopping (i.e. scalar, 1st kind).

2. Scalar relaxation of the second kind would lead to an activation energy of the process
which drives $^{79/81}$Br $T_1\text{O}$, which is typically a Raman process related to lattice modes.
Since Raman and phonon spectra fall in the far infrared to THz range, the activation
energies corresponding to those processes are <0.03 eV, i.e. an order of magnitude
less than what is found experimentally.

Details of NMR measurements

Table S1. Chemical shifts and peak widths of the multi-field variable-temperature T_1
relaxation data of MASnBr$_3$, measured using a saturation recovery sequence and a Hahn echo
in the quasi-static regime: total echo duration 40 μs at 17.6 and 4.7 T, and 66.7 μs at 9.4 T.
The uncertainties of the monoexponential T_1 fit are <1 %.

Magnetic field strength: 17.6 T			
Temperature [K]	119Sn chemical shift [ppm]	fwhm [kHz]	T_1 [ms]
308	-315	10.7	9.66
326	-312	10.9	5.47
343	-310	9.5	2.95
356	-306	8.6	1.87
372	-302	7.8	1.12
389	-298	6.6	0.706
405	-293	5.6	0.465
421	-287	5.8	0.305
438	-281	5.9	0.235
454	-275	7.0	0.127
474	-267	6.8	0.101
490	-266	9.9	n.d. (decomposition)

Magnetic field strength: 9.4 T			
Temperature [K]	119Sn chemical shift [ppm]	fwhm [kHz]	T_1 [ms]
253	-322	10.7	201
268	-324	11.6	78
286	-317	10.8	30
313	-313	10.1	10
347	-307	8.2	3.3

Magnetic field strength: 4.7 T			
Temperature [K]	119Sn chemical shift [ppm]	fwhm [kHz]	T_1 [ms]
317	-334	10.5	8.271
339	-314	8.7	4.151
347	-310	7.5	2.426
360	-314	6.9	1.644
368	-310	6.1	1.138
382	-306	4.7	0.653
Table S2. An Arrhenius fit of the T_1 relaxation data (abscissa: $1/T$, ordinate: $\ln(T_1/s)$) to the equation: $y = a + b \cdot x$ for MASnBr$_3$. The errors of the least-squares fit are given as one standard deviation. The error of the average is given as one standard deviation of the average. $R = 8.3144598 \text{ J/(K} \cdot \text{mol})$.

magnetic field strength [T]	a	b	$E_a = b \cdot R/1000$ [kJ/mol]
17.6	-18.01 ± 0.15	4165 ± 57	34.1 ± 0.5
9.4	-16.75 ± 0.41	3811 ± 12	31.8 ± 0.1
4.7	-20.74 ± 0.29	5123 ± 11	42.7 ± 0.1
	average:		36.2 ± 5.7

Table S3. 119Sn T_1 values measured using a saturation-recovery sequence and fitted using a monoexponential function. The uncertainties of the fit are <1 %.

compound	119Sn T_1 [s]
MASnCl$_3$	60
MASnCl$_2$.Br$_{0.3}$	29.7
MASnCl$_2$.Br$_{0.9}$	2.59
MASnCl$_{1.3}$.Br$_{1.5}$	0.352
MASnBr$_3$	0.0053
MASnBr$_{2.7}$.I$_{0.3}$	0.0011
MASnBr$_{2.1}$.I$_{0.9}$	0.000164
MASnI$_3$	0.000545
β-Sn	0.00012
SnCl$_2$	26.4
SnBr$_2$	1.12
SnI$_2$	0.528
SnBr$_4$	1.95
SnI$_4$	11.5
MA$_2$SnBr$_6$	9.9
MA$_2$SnI$_6$	0.001

Table S4. Acquisition and processing parameters used for the spectra in the main text.

| 119Sn spectra |
|-------------------|-----------------|-----------------|-----------------|-----------------|
| composition | Figure | recycle delay [s] | number of scans | acquisition time [min] | Lorentzian apodization [Hz] |
| SnCl$_2$ | 2 | 34 | 32 | 18 | 200 |
| SnBr$_2$ | | 1.5 | 6204 | 155 | 1000 |
| MASnCl$_3$ | | 50 | 1384 | 1153 | 500 |
| MASnCl$_2$.Br$_{0.3}$ | | 40 | 1752 | 1168 | 500 |
Compound	3	4	5	
MASnCl₂Br₀.₉	3	1892	95	4000
MASnCl₁.₅Br₁.₅	0.5	3900	33	1000
MASnBr₃	0.05	4096	3	1000
SnBr₄	2.5	2260	94	1000
MA₂SnBr₆	13	680	147	2000
SnI₂	1	2224	37	2000
MASnI₃	0.01	32768 ×3 offsets	16	20000
MASnCl₂Br₁₀.₃ (fast)	0.05	55800	47	10000
MASnCl₂Br₁₀.₃ (slow)	50	2008	1673	100
MASnBr₀.₉I₂.₁	0.01	3654026	609	10000
MASnBr₁.₅I₁.₅	0.01	142604	24	10000
MASnBr₂₁₀.₉I₀.₉	0.01	135088	23	8000
MASnBr₃₅I₄₀.₄₅	0.001	81060	1	1000
MASnBr₁₀.₇I₀.₃	0.05	21940	18	2000
SnI₄	20	1832	611	2000
MA₂SnI₆	0.005	55980	5	1000
FASnI₃	0.01	31624 ×5 offsets	26	20000
CsSnI₃	0.001	420560 ×3 offsets	21	20000
CsSnBr₃	0.01	53028	9	1000
MA₀.₅FA₀.₅SnBr₃	0.015	10240	3	1000
FASnBr₃	0.1	2048	3	1000
MA₀.₅FA₀.₅SnCl₃	60	1240	1240	500
FASnCl₃	60	964	964	500
CsSnCl₃ (monoclinic)	60	876	876	500
CsSnCl₃ (cubic)	5	128	11	200
CsSnCl₁₂Br₁₅	0.5	3300	28	100
MASnBr₃ (degraded)	13	4972	1077	500
SnO₂	12	128	26	100
SnO₂ + 10 mol%SnBr₂	12	356	71	100
FASnBr₃ (degraded at RT)	13	4796	1039	1000
FASnBr₃ (degraded at 250 °C)	13	3300	715	500
CsSnBr₃ (degraded), perovskite region	0.01	53028	9	1000
CsSnBr₃ (degraded), decomposition products	13	968	210	2000
MASnI₃ (degraded), perovskite region	0.01	32768	5	10000
MASnI₃ (degraded), MA₂SnI₆ region	0.005	55980	5	1000
Material	Degradation conditions	Figure in the main text	Detected degradation products	
------------------------	------------------------	-------------------------	---	
MASnBr₃	1 h at 250 °C in air	5b	MA₂SnBr₆, SnO₂, (SnBr₄)	
FASnBr₃	5 days at RT, in air	5f	FA₂SnBr₆, SnO₂,	
FASnBr₃	Same sample as above + 0.5 h at 250 °C in air	5g	FA₂SnBr₆, SnO₂,	
CsSnBr₃	0.5 h at 350 °C in air	5i	Cs₂SnBr₆, SnO₂	
MASnI₃	1 h at 150 °C in air	5k	MA₂SnI₆, SnO₂, metallic tin	
FASnI₃	1 h at RT in air	5m	FA₂SnI₆	
CsSnI₃	3 h at 100 °C in air	5o	Cs₂SnI₆	

XRD data

Powder X-ray diffraction patterns were recorded on an X’Pert MPD PRO (Panalytical) diffractometer equipped with a ceramic tube (Cu anode, λ = 1.54060 Å), a secondary graphite (002) monochromator and an RTMS X’Celerator (Panalytical) in an angle range of 2θ = 5° to 40°, by step scanning with a step of 0.02 degree.
Figure S8. Powder X-ray diffraction patterns of the materials reported in Figure 2 of the main text.
Figure S9. Powder X-ray diffraction patterns of the materials reported in Figure 3 of the main text. The asterisks indicate the corresponding oxidized A$_2$SnX$_6$ phase which slowly forms during the XRD measurement which is carried out in air.
Figure S10. Powder X-ray diffraction patterns of the materials reported in Figure 4a-c of the main text. The asterisks indicate the corresponding oxidized A$_2$SnX$_6$ phase which slowly forms during the XRD measurement which is carried out in air.

Figure S11. Powder X-ray diffraction patterns of the materials reported in Figure 4d-m of the main text.
Figure S12. Powder X-ray diffraction patterns of the materials reported in Figure 5 of the main text.
(1) Phase Transitions in CsSnCl3 and CsPbBr3 An NMR and NQR Study: Zeitschrift für Naturforschung A
https://www.degruyter.com/view/j/zna.1991.46.issue-4/zna-1991-0406/zna-1991-0406.xml (accessed Aug 23, 2019).

(2) Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Zakeeruddin, S. M.; Grätzel, M.; Emsley, L. Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1–XPbI3 Hybrid Perovskites from Solid-State NMR. J. Am. Chem. Soc. 2017, 139 (40), 14173–14180. https://doi.org/10.1021/jacs.7b07223.

(3) Grutzner, J. B.; Stewart, K. W.; Wasylishen, R. E.; Lumsden, M. D.; Dybowski, C.; Beckmann, P. A. A New Mechanism for Spin–Lattice Relaxation of Heavy Nuclei in the Solid State: 207Pb Relaxation in Lead Nitrate. J. Am. Chem. Soc. 2001, 123 (29), 7094–7100. https://doi.org/10.1021/ja0040924.