A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synthesis mediated metal nanoparticles: overview, challenges and future perspectives

Loick P. Kojom Foko1†, Francois Eya’a Meva2*†, Carole E. Eboumbou Moukoko3,4†, Agnes A. Ntoumba1, Marie I. Ngaha Njila1, Philippe Belle Ebanda Kedi1, Lawrence Ayong3 and Leopold G. Lehman1,4*

Abstract

Background: The recent emergence in Southeast Asia of artemisinin resistance poses major threats to malaria control and elimination globally. Green nanotechnologies can constitute interesting tools for discovering anti-malarial medicines. This systematic review focused on the green synthesis of metal nanoparticles as potential source of new antimalarial drugs.

Methods: Seven electronic database were used following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Results: A total of 17 papers were included in the systematic review. 82.4% of the studies used plant leaves to produce nanoparticles (NPs) while three studies used microorganisms, including bacteria and fungi. Silver was the main metal precursor for the synthesis of NPs. The majority of studies obtained nanoparticles spherical in shape, with sizes ranging between 4 and 65 nm, and reported no or little cytotoxic effect of the NPs. Results based on 50% inhibitory concentration (IC50) varied between studies but, in general, could be divided into three NP categories; (i) those more effective than positive controls, (ii) those more effective than corresponding plant extracts and, (iii) those less effective than the positive controls or plant extracts.

Conclusions: This study highlights the high antiplasmodial potential of green-synthesized metal nanoparticles thereby underscoring the possibility to find and develop new anti-malarial drugs based on green synthesis approaches. However, the review also highlights the need for extensive in vitro and in vivo studies to confirm their safety in humans and the elucidation of the mechanism of action.

Keywords: Metal nanoparticles, Green synthesis, Antiplasmodial activity, Toxicity
Background

In 2015, nearly 9.2 million deaths occurred in Africa with 56.4% being due to communicable, maternal, perinatal or nutritional conditions and, malaria ranked as one of the most devastating infectious diseases characterized by intermittent high fevers, severe anaemia, convulsions, neurological complications such as brain injury and coma [1]. Malaria is caused by protozoan parasites of the genus *Plasmodium* that are transmitted to humans through the bite of infected female *Anopheles* mosquitoes [2]. *Plasmodium falciparum* causes most of the deaths, whereas *Plasmodium vivax* is the most widespread. *Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi,* and *Plasmodium cynomolgi* are other species that infect or cause disease in humans [2–4]. Malaria remains a very important public health problem, especially in sub-Saharan Africa where the disease has significantly delayed economic development. In 2017, approximately 219 million malaria cases and 435,000 related deaths were recorded worldwide; the majority (92%) of which occurred in sub-Saharan Africa [3].

Despite significant global efforts in the fight against malaria through increased funding for malaria research and development, delivery and scaling up of control interventions (diagnosis, prevention and treatment), the Global Technical Strategy (GTS) goals for malaria morbidity and mortality for 2020 are far from being achieved [3]. The World Malaria Report 2018 reported that only 70% of cases were avoided from 2000 to 2015, and also showed an increase in malaria cases in some countries from 2016 to 2017.

Unfortunately, one of the major barriers to successful global malaria control (GMC) is the emergence and the propagation of parasites resistant to currently used anti-malarial drugs. Artemisinin-based combination therapy (ACT), which is the most effective treatment available today, has been an integral part of the recent successes in GMC [2–4]. However, the future of these artemisinin-based combinations is endangered by the emergence of artemisinin resistant *P. falciparum* strains primarily reported in western Cambodia and subsequently in the Greater Mekong Subregion (GMS) and Southern China [5–7]. The circulation of artemisinin (ART) resistant parasites and/or resistant to partner drugs in ACT has greatly hindered the management of malarious patients and control strategies in these areas. Many studies reported increased failure rates following ACT due to the presence of ART-resistant parasites [8–10].

The resistance phenotype against artemisinin loci seems to be under positive selection within the propeller domain of the *P. falciparum kelch (k13)* gene, but other studies have indicated that additional single nucleotide substitutions on chromosomes 10, 13, and 14 may also be responsible for this resistance phenotype [11–13]. This suggest the exact genes which confer this delayed clearance or involved in artemisinin resistance are yet unknown, although 13 nonsynonymous mutations have been validated as associated markers [5, 14–19]. Moreover, mortality rates as well as recurrent malaria cases increased following the spread of artemisinin resistant parasites in these areas [1].

The emergence or spread of artemisinin resistance from Asia to Africa, as observed previously for older anti-malarial drugs including chloroquine and sulfadoxine–pyrimethamine [20–22], would be devastating to global malaria elimination efforts. Despite numerous fears on the potential emergence or spread of artemisinin resistance-associated *k13* mutations in Africa, the so far identified mutations are rare and unrelated to *k13* polymorphisms found to be associated with reduced susceptibility in Asia [5, 23–31]. Thus, in this situation and in the context where many anti-malarial treatments are paid for by non-profit organizations and governments, the future of malaria control and global elimination would depend on the ability of research and development to deliver the next generation of anti-malarial drugs [32]. If unsuccessful, this could greatly jeopardize the hope to efficiently control and eliminate malaria, particularly in the African continent as outlined in the Global Technical Strategy 2016–2030 [1].

Diverse strategies exist for the development of novel anti-malarial drugs, and some have come from living organisms. Basically the synthesis of metal NPs requests the combination of three elements namely: the metal source (generally noble metals such as silver, gold, palladium and titanium salt), the reducing agent and the capping agent. Metal nanoparticles are traditionally produced using chemical and physical methods. However, these methods are challenging as they are costly, time-consuming and request for utilization of reagents harmful to environment [33, 34]. In this regard, new NPs synthesis methods referred to as green synthesis have been developed to overcome these issues. Green synthesis consists in the production of metal NPs by exploiting the reducing and capping natural potential of biomolecules from living organisms such as plants and microorganisms. The method is simple, cost-effective and eco-friendly [33, 34].

Nanoproducts and metal nanoparticles are highly useful, safe in nature with numerous applications in renewable energies, catalysis, cosmetics, food, electronics, environmental remediation, biomedical devices and health [35, 36]. Metal NPs were mainly tested for their biocidal activity against bacteria [37–39], fungi [40, 41], and viruses [42, 43]. Little is reported on antiplasmodial potential of metal NPs [44]. In this systematic review,
the living organisms mediated synthesis of nanoparticles (NPs) is presented as a source for new medicines to overcome the possible loss of ACT in the future. A recent systematic review by Barabadi and co-workers [45] addressed the utilization of biosynthesized NPs as control tool of malaria vectors and parasites. The authors did not address some of the gaps and challenges existing in this emerging line of research as well as the toxicity of green nanoparticles against non-target organisms (humans, for example). However, the authors reported interesting biocidal antiplasmodial activity of NPs but unfortunately, information concerning the efficacy of NPs compared to the positive control (anti-malarial drug or plant extract) is lacking.

Thus, data from 17 studies on the antiplasmodial activity of green-synthesized metal nanoparticles were comprehensively analysed with aims (1) to present commonly used biological material and main methodological aspects for green synthesis of metal nanoparticles; (2) to summarize the main findings of the selected studies; (3) to outline difficulties encountered in the synthesis of green-synthesized metal nanoparticles and, evaluation of their antiplasmodial and cytotoxic potential and, (4) to highlight future challenges and gaps in green technology driven anti-malarial drug discovery.

Methods

Data source and eligibility criteria

Two authors of the research team developed a strategy to search for articles to be included in the systematic review. Between 25th September and 25th November 2018 seven electronic databases including Medline, Scopus, Excerpta Medica Database (EMBASE), African Index Medicus, Popline, Africa wide information and the Cochrane library were used to search for potentially eligible publications. Supplemental sources included Boolean operators “AND”/“OR” during the searching using the above mentioned electronic databases. The full texts of each study were retrieved, analysed and the screened studies were included in the review. Corresponding authors of relevant documents were asked to provide full texts when not free or inaccessible. When it was not possible, i.e. non-reply or negative reply from corresponding authors these full texts were purchased. In addition, the references list of relevant documents was also examined to increase the chances of finding eligible papers. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart was used to depict the entire stepwise process of screening strategy (Additional files 1 and 2) [46].

Data of interest

All information collected in the different articles collected from the seven different databases used are classified into six major groups (Table 2). Two investigators

Nanoparticles-producing living organisms	Diseases or parasites	Word groups Nature and type of synthesis of nanoparticles	Inputs and outcomes
‘Plant’ OR ‘Bacteria’ OR ‘Mushroom’ OR ‘Fungi’ OR ‘Worms’ OR ‘Helminths’ OR ‘Microorganism’ OR ‘Microbial’	‘Malaria’ OR ‘Plasmodium’ OR ‘Plasmodium falciparum’ OR ‘Plasmodium berghei’	‘Green synthesis’ OR ‘Biological synthesis’ OR ‘Biosynthesis’ OR ‘Plant-mediated’ OR ‘Metal-based’ OR ‘Nanoparticles’ OR ‘Metal nanoparticles’ OR ‘Biometallic nanoparticles’ OR ‘Gold nanoparticles’ OR ‘Silver nanoparticles’ OR ‘Copper nanoparticles’ OR ‘Platinum nanoparticles’ OR ‘Titanium’ OR ‘Palladium’	‘In vitro activity’ OR ‘In vivo activity’ OR ‘In vitro potential’ OR ‘In vivo potential’ OR ‘Antimalarial activity’ OR ‘Antimalaria’ OR ‘Antiplasmodial activity’ OR ‘Effectiveness’ OR ‘Assessment’ OR ‘Effect’ OR ‘Properties’

a Medical Subject Headings (MeSH) terms used to make search in PubMed
independently extracted data and any discrepancies were resolved through discussion and consensus.

Data verification for consistency
Data of interest were independently keyed in an Excel spreadsheet (Microsoft Office 2016, USA) by two persons to ensure internal quality control of database. These data were also checked for consistency by two additional persons for external quality control of database. When discrepancy between the two Excel sheets occurred, two more people checked the data again.

Results
Characteristics of the studies included in the review
In total, 17 studies were eligible based on the selection process summarized in Fig. 1 [47–63]. All these studies clearly synthesized, characterized and assessed the antiplasmodial potential of biologically produced metal-based nanoparticles (NPs). Fourteen of them used plants as biological material for producing NPs, while the three remaining used microorganism especially bacteria (Table 3). Most of included studies (16/17; 94.11%) were conducted by Indian research teams.

Information on living organism used for synthesis of metal nanoparticles
Globally, 17 plant species distributed into 16 families were investigated for their ability to elicit nano-sized materials with antiplasmodial properties (Table 3). These plants included *Andrographis paniculata*, *Azadirachta indica* and *Pteridium aquilinum*. These are popularly known as “King of Bitters”, “Neem” and “Bracken fern” respectively by populations who use them. The morphological type of plants included tree, herb, herbaceous herb and algae (Table 3). Of the three studies that used microorganisms, two focused on bacteria and the remaining one on worms. Bacteria consisted of *Streptomyces* sp LK-3 (JF710608) and *Magnetospirillum gryphiswaldense* which were isolated from marine sediments and laboratory-maintained respectively (Table 3).

Methods used for green synthesis of metal nanoparticles within included studies
Leaves were used as biological material for synthesis of metal NPs in 11 out of 14 studies having used plants. The other plant parts included flowers, seeds and barks [50, 53, 57]. Decantation was predominantly used by authors
to produce aqueous extracts which had to be mixed with metal precursor for NPs synthesis (Table 4). Indeed, biological material (4–10 g) was boiled following careful washing (tap water and double-distilled water) and cutting. Water was mainly used as extraction solvent and the mixture was then decanted and filtered using Whatman N°1 filter paper (Table 4). The mode of preparation of NPs among studies having used microorganisms was available in two studies. For instance, Kharthik and colleagues inoculated their bacterium of interest, incubated with metal precursor in aqueous medium consisting of 50% sea water and the mixture was then centrifuged [61].

Methods used for studying nanoparticles
The physical characterization of metal nanoparticles was studied on four aspects namely shape, size and distribution size, chemical composition, and structure and stability (Table 4). Ultraviolet spectroscopy (UV–Vis)
proved the formation of the nanoparticles by showing the characteristic plasmon vibration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to determine the shape and size of the nanoparticles. SEM is coupled with energy dispersive X-ray spectroscopy (EDX, EDS) which provides elemental mapping in terms of atomic composition while TEM is coupled with selected area electron diffraction (SAED) which shows crystallographic planes. Fourier-transform infrared spectroscopy (FTIR) was used to study the nanoparticles/secondary metabolites interface by providing molecular vibrations. X-ray diffraction (XRD) was used for nature, crystallinity as well as shape and size determination. Dynamic light scattering (DLS) provides size distributions in term of hydrodynamic radius. Few studies studied the nanoparticles stability by determining their Zeta potential and the silver content by Atomic absorption spectroscopy (AAS) [53, 57, 59, 61].

UV–Vis spectroscopy appears as one of the key method to investigate nanoparticles behaviour such as formation, development or aggregation. Characteristic plasmon vibration occurs because of the free oscillation of electrons at the metallic surface. They are situated at 400–450 nm for silver [47–50, 52, 54–58], 540 and 560 nm for gold [51, 61], 360 for TiO2 [59].

A majority of studies obtained spherical-shaped nanoparticles (Table 4). Globally, the size of NPs ranged between 4 and 65 nm and a few studies reported an aggregation phenomenon during synthesis [49, 56]. Some studies reported the appearance of additional Bragg peaks [48–50, 56]. The presence of energy dispersive X ray-related signals associated with oxygen or carbon atoms [52, 56], while additional chlorine signal may appear too [54]. Selected area electron diffraction (SAED) showed diffraction dots and crystallographic planes of the obtained nanoparticles (Table 5) [57].

Powder X-ray diffraction is one of the most important characterization tool used in solid state chemistry [64]. It is used to determine the nature of the crystalline phases and then of the synthesized nanoparticles starting from the biological extracts (plant, earthworm). More antiplasmodial properties have been evaluated with nanosilver (57%) and nanogold (29%) (Table 4). This determination is possible by comparison of the obtained pattern to the International Centre for Diffraction Data (ICDD)

Table 3: Characteristics of plants and microorganisms used for synthesis of metal nanoparticles

Authors [Reference]	Country	Plants used for synthesis of NPs (Family)	Common/International name	Morphology
Panneerselvam et al. [47]	India	Andrographis paniculata (Burm.f.) Nees (Acanthaceae)	King of Bitters	Herbaceous plant
Ponaruleselvam et al. [48]	India	Catharanthus roseus Linn. G. Don (Apocynaceae)	Cayenne jasmine, Old maid	Herbaceous plant
Mishra et al. [49]	India	Ashoka (Sarca indicia) (Caesalpinioideae)	Ashoka, Neem	Tree
Panneerselvam et al. [50]	India	Euphorbia hirta (Euphorbiaceae)	Pill-bearing/hairy/garden spurge, asthma plant	Herb
Rajakumar et al. [51]	India	Eclipta prostrata L. (Asteraceae)	False daisy	Herbaceous plant
Murugan et al. [52]	India	Uvula lactuca (Chlorophyceae)	Sea lettuce	Algae
Subramaniam et al. [53]	India	Couroupa vitanensis (Lecythidaceae)	Cannonball tree	Tree
Panneerselvam et al. [54]	India	Penicillium aquaticum L. Kuhn (Dennstaedtiaceae)	Bracken fern	Herb
Murugan et al. [55]	India	Codium tomentosum (Codiaceae)	Velvet horn, Spongweeds	Herb
Murugan et al. [56]	India	Azadirachta indica A. Juss (Meliaceae)	Village pharmacy, Neem	Tree
Dutta et al. [57]	India	Syzygium jaibos (L.) Alston (Myrtaceae)	Rose apple	Tree
Sardana et al. [58]	India	Tulsi (Ocimum sanctum) (Lamiaceae)	Tulsi, Neem	Herb tree
Gandhi et al. [59]	India	Momordica charantia (Cucurbitaceae)	Bitter melon, bitter apple	Herbaceous plant
Rotimi et al. [60]	South Africa	Callistemon citrum (Myrtaecae)	Lemon Bottlebrush	Herb

Table 4: Characteristics of plants and microorganisms used for synthesis of metal nanoparticles

Authors [Reference]	Country	Microorganisms used for synthesis of NPs	Nature of the microorganism	Site of isolation
Kharthik et al. [61]	India	Streptomyces sp LK-3 (JF710608)	Bacterium (Actinobacterium)	Marine sediments
Jaganathan et al. [62]	India	Eudrilus eugeniae	Earthworm	Not specified
Murugan et al. [63]	India	Magnetospermium grphyswaldense MSR-1 (DSM6361)	Magnetotactic bacterium	Laboratory strain
patterns, formerly the Joint Committee on Powder Diffraction Standards (JCPDS) patterns. If the biosynthesis leads to pure palladium, gold or titanium dioxide nanoparticles, it is not the case for silver where nanosilver, silver chloride nanocrystallites or their mixture are obtained [35, 36, 43].

FTIR was carried out to investigate biomolecules extracts at the metallic interface of silver, gold, palladium and the metal oxide interface for titanium. The method shows molecular vibrations at the surface or the synthesized nanoparticles. FTIR spectroscopy revealed absorption frequencies that can be well correlated with characteristic tables. For example, O–H (stretch, H-bonded) at 3200–3600 and C–O (stretch) at 1050–1150 for alcohols (Table 5). C–H (stretch) at 2860–3000 and –C–H (bending) at 1350–1480 for alkanes. C=C (stretch) at 1620–1680 for alkenes. N–H (stretch) at 3300–3500 and N–H (bending) at 1600 but also C–N (stretch) at 1080–1360 for amines. C–H (stretch) at 3000–3100 and C=C (stretch) at 1400–1600 for aromatics or C=O (stretch) at 1670–1820 for carbonyls [65].

Evaluation methods and findings on antiplasmodial activity of nanoparticles

The studies were mainly designed as in vitro even though a few studies were in vivo [51, 59], or a combination of both [56, 63]. Most studies evaluated the susceptibility of laboratory strains of *Plasmodium falciparum*, such as INDO (CQ-resistance), 3D7 (CQ-sensitive), FcB1/Colombia (CQ-sensitive) and Dd2 (CQ-sensitive) using chloroquine as positive control (Table 3). Negative controls were included in the study design and consisted of distilled water, uninfected and infected red blood cells or medium culture. A few studies collected *Plasmodium falciparum* field isolates from patients attending health facilities [54, 55, 57]. *Plasmodium berghei* was used in studies based on animal model for appraising the malarial susceptibility

Table 4 Synthesis, characterization methods, characteristics and antiplasmodial activity assessment of metal nanoparticles

Items	Parameters	Categories	References
Mode of preparation	Part used for NPs synthesis	Leaves	[47–50, 52, 53, 57–60]
		Flowers	[53]
		Seeds	[55, 56, 60]
		Barks	[57]
		Whole organism	[61–63]
Extraction solvent	Water	[47, 48, 50–60]	
	Tris–HCl buffer	[49]	
Main method of preparation	Washing, cutting, boiling, decantation, filtration	[47–56, 59]	
Plasmon resonance	UV–Vis	[47, 48, 50–63]	
Shape, size and size distribution	FESEM/SEM, EDX, EDAX	[47, 48, 50–56, 60–63]	
	HRTEM/TEM, SAED	[49, 51, 57–61, 63]	
Silver content	AAS	[49]	
Interface NPs-metabolites	FTIR	[49, 51–53, 55–57, 59, 60, 62, 63]	
Size distribution	DLS	[49, 59]	
Structure-crystallinity	XRD	[47–57, 61]	
Stability	Zeta potential	[47, 51, 53, 55]	
Metal source	AgNO₃	[47–50, 52, 54–58, 61, 63]	
	HAuCl₄	[53, 57, 60, 61]	
	Pd(OAc)₂	[51]	
	TiCl₄	[59]	
Time of production	< 30 min	[50, 58, 59, 61]	
	> 30 min	[47, 49, 51, 53–56]	
Shape	Spherical or mainly spherical	[47–51, 54, 56–59, 62]	
	Other shapes (cubical, polygonal, triangular, oval, ellipsoidal, rectangular)	[50–53, 55, 57–59, 61]	
NPs aggregation phenomenon	Yes	[49, 56]	

AAS atomic absorption spectroscopy, DLS dynamic light scattering, DRIFT diffuse reflectance infrared Fourier transform, EDS Electron Diffraction Spectrophotometer, FESEM field emission scanning electron microscopy, FTIR Fourier-transform infrared, HR-TEM high resolution transmission electron microscopy, SAED size and selected area diffraction, SEM scanning electron microscopy, TEM transmission electron microscopy, EDAX energy dispersive X-ray, HF health facility.
and nanoparticles were administered either orally [56], or intraperitoneally [61].

The percentage of parasite growth suppression and 50% inhibitory concentration (IC50) were used as endpoints for evaluation of antiplasmodial activity of nanoparticles (Table 6). Panneerselvam and co-workers reported a reduction in parasite growth rate by 26% to 83% at doses 25 µg/mL and 100 µg/mL respectively [50]. A lower antiplasmodial activity comprises between 6.4 and 42.8% was reported by Murugan and colleagues [56]. Results based on IC50 were very contrasted between studies but generally, these met into three categories namely (i) nanoparticles were more efficient than positive control [52–56], (ii) nanoparticles were more efficient than plant extract [49, 51, 56, 57], and (iii) nanoparticles were less efficient than positive control (chloroquine) or plant extract [53–55, 57]. Nine of eleven studies having used chloroquine as control found that metal NPs were more efficient [49, 51–56, 62, 63]. For instance, Jaganathan et al. found their nanoparticles had IC50 of 49.3 µg/mL and 55.5 µg/mL against P. falciparum 3D7 (chloroquine-sensitive) and INDO (chloroquine-resistant) strains respectively compared to chloroquine (81.5 µg/mL and 86.5 µg/mL respectively) [62]. Murugan et al. reported an IC50 of 63.18 µg/mL and 69.24 µg/mL for nanoparticles compared to 82.41 µg/mL and 86.12 µg/mL for extracts against 3D7 and INDO strains respectively, thus outlining a higher antiplasmodial activity of nanoparticles compared to plant extract (Table 6) [56].

Cytotoxicity of nanoparticles

As presented in Table 7, seven out seventeen studies included cytotoxicity analysis of synthesized nanoparticles [49, 51, 61]. Of the seven studies, four reported no or little deleterious effect of nanoparticles on used cell lines [49, 50, 57, 59]. Conversely, the remaining studies three reported important adverse effects including tissue damages, behavioural changes, changes in physical appearance, deaths of laboratory animals [61], necrosis and cytopathic effects [51], and apoptosis [62] (Table 7).

Discussion

This systematic review focused on studies having evaluated the antiplasmodial activity of biologically synthesized metal nanoparticles. The production of nanoparticles (NPs) using living beings also known as green synthesis is much more interesting as it deals with environmental and economic issues. Indeed, this approach is

Table 5 FTIR shows characteristic vibrations and translations

Authors	Main IR characteristics	Particular characteristics						
	O–H stretch	C–H stretch	CN stretch	C=C stretch	N–H stretch	C=N stretch	C=O stretch	C–O stretch
Rajakumar et al. [51]	3361	1540	1399	1049				
Mishra et al. [49]	3622	1699	1388	1043				
Murugan et al. [52]	3280	2359	1092–1027					
Jaganathan et al. [62]	3455	2920	1639	1555	1407			
Subramaniam et al. [53]	3421	2362	1641	1514	1456			
Murugan et al. [55]	3416; 3402	1640/1635						
Murugan et al. [56]	3479; 3402	2359	1092–1027					
Dutta et al. [57]	3341–3308	~2800	~1400					
Murugan et al. [63]	3273	2921/2924	1728					
Gandhi et al. [59]	3377	2941	1695	1417	1293	1078	700–450	
Rotimi et al. [60]	3400	1680	500 Au–O					

The table shows only selected bands discussed by the authors, *earthworms*
Table 6 Antiplasmodial effectiveness of synthesized nanoparticles

Authors [Reference]	Parasite growth inhibition rate ranged from 26% (25 µg/mL) to 83% (100 µg/mL) I_{C50} = 50 µg/mL	Results on used controls
Panneerselvam et al. [47]	Parasite growth inhibition rate ranged from 26% (25 µg/mL) to 83% (100 µg/mL) I_{C50} = 50 µg/mL	Not computable
Rotimi et al. [60]	Parasite growth inhibition rate ranged from 26.2% (20 µg/mL) to 100% (100 µg/mL) I_{C50} = 51.46 µg/mL	Not computable
Kharthik et al. [61]	Nearly 40% inhibition was observed at dose 8 mg/kg/bw	Not computable
Mishra et al. [49]	Parasite growth inhibition rate ranged from 6.4 to 42.8%	Not computable
Subramaniam et al. [53]	Parasite growth inhibition rate ranged from 26.2% (20 µg/mL) to 100% (100 µg/mL) I_{C50} = 51.46 µg/mL	Not computable
Rajakumar et al. [51]	I_{C50} = 4.34 µg/mL, I_{C50} = 8.704 µg/mL, I_{C50} = 18.49 µg/mL	AE: I_{C50} = 1.90, I_{C90} = 10.29 and I_{C90} = 64.11 µg/mL
Subramaniam et al. [53]	I_{C50} = 69.47 µg/mL (3D7), I_{C50} = 76.33 µg/mL (INDO)	CQ: I_{C50} = 80 µg/mL (3D7), I_{C50} = 85 µg/mL (INDO)
Panneerselvam et al. [54]	I_{C50} = 78.12 µg/mL (3D7), I_{C50} = 88.34 µg/mL (INDO)	CQ: I_{C50} = 80 µg/mL (3D7), I_{C50} = 90 µg/mL (INDO)
Murugan et al. [52]	I_{C50} = 76.33 µg/mL (3D7), I_{C50} = 79.13 µg/mL (INDO)	CQ: I_{C50} = 80 µg/mL (3D7), I_{C50} = 90 µg/mL (INDO)
Jaganathan et al. [62]	I_{C50} = 49.3 µg/mL (3D7), I_{C50} = 55.5 µg/mL (INDO)	CQ: I_{C50} = 80 µg/mL (3D7), I_{C50} = 90 µg/mL (INDO)
Subramaniam et al. [53]	I_{C50} = 69.47 µg/mL (3D7), I_{C50} = 76.33 µg/mL (INDO)	AE: I_{C50} = 51.34 µg/mL (3D7), I_{C50} = 65.17 µg/mL (INDO)
Panneerselvam et al. [54]	I_{C50} = 78.12 µg/mL (3D7), I_{C50} = 88.34 µg/mL (INDO)	CQ: Parasite growth reduced from 51.2% up to 53.6%
Murugan et al. [55]	I_{C50} = 72.45 µg/mL (3D7), I_{C50} = 76.08 µg/mL (INDO)	I_{C50} = 90 µg/mL (3D7), I_{C50} = 98.5 µg/mL (INDO)
Murugan et al. [56]	Parasite growth inhibition rate ranged from 6.4 to 42.8% I_{C50} = 63.18 µg/mL (3D7), I_{C50} = 69.24 µg/mL (INDO)	AE: Parasite growth reduced from 15.2% up to 58.6%
Dutta et al. [57]	AgNP: I_{C50} = 24.22 ± 2.44 µg/mL (Bark, 3D7) I_{C50} = 29.09 ± 2.54 µg/mL (Bark, Dd2) I_{C50} = 28.97 ± 3.21 µg/mL (Leaf, 3D7) I_{C50} = 34.49 ± 1.42 µg/mL (Leaf, Dd2)	AE: I_{C50} = 43.49 ± 3.23 µg/mL (Bark, 3D7) I_{C50} = 47.66 ± 3.97 µg/mL (Bark, Dd2) I_{C50} = 51.70 ± 1.29 µg/mL (Leaf, 3D7) I_{C50} = 53.37 ± 2.86 µg/mL (Leaf, Dd2)
Sardana et al. [58]	I_{C50} = 0.313 to 1.692 µM (3D7)	Not applicable
Gandhi et al. [59]	I_{C50} = 53.42 µg/mL (3D7), I_{C50} = 59.71 µg/mL (INDO)	CQ: I_{C50} = 0.021 µg/mL (3D7), I_{C50} = 0.258 µg/mL (INDO)
Rotimi et al. [60]	NPs were inactive against malaria parasites (% viability < 20%)	Not specified

NPs nanoparticles, AgNPs silver nanoparticles, AuNPs gold nanoparticles, I_{C50} 20% inhibitory concentration, I_{C90} 50% inhibitory concentration, I_{C90} 90% inhibitory concentration, CQ chloroquine, AE aqueous extract

* I_{C50} was calculated using data coming from the study

...more advantageous as it limits the risk of biohazard and reduces costs imposed by isolation, purification of microorganisms as well as maintaining cell cultures [35, 68]. Furthermore, the critical need for creation of highly aseptic conditions and their maintenance impedes the possibility of using microbe-synthesized nanoparticles in a large-scale production perspective [35, 68]. Benelli [69] concluded in a precedent review that carbonyl groups had the stronger ability to bind metals, indicating that the proteins could form a capping layer on AgNPs.
preventing agglomeration and thereby stabilizing the medium. Other molecules like (poly)phenols of enzymes and polysaccharides or flavonoids of proteins could perform that same role and build the metal interfaces. Silver was mainly used as metal precursor for the synthesis of nanoparticles. This can be due to interesting properties of this atom such as its wide antimicrobial activity and chemical stability \[70\]. The synthesis leads generally to pure silver, silver chloride nanocrystallites or a mixture of both. The biosegregation of those entities by plant extract is not described in literature \[71\]. This atom has been known for having biocidal action against a broad range of microorganisms in ancient times. Nowadays, silver ions are used in a large number of medical situations including catheter disinfection, water purification, food hygiene and dental work for control of bacterial growth \[72, 73\].

The colour change outlining the obtainment of NPs was achieved between 10 and 150 min after mixture between precursor metal and plant extract. This colour change is attributed to the surface plasmon resonance phenomenon which occurs when free electrons present on the surface of nanoparticles enter in resonance with the wavelength of the incident light \[57\].

Nanoparticles were mainly spherical in shape even though other shapes were also reported. Furthermore, their size distribution was large enough. Both physical parameters are responsible for distinctive physico-chemical properties of NPs which underlie their biological activities against microorganisms \[74–76\]. The formation of NPs involves two stages namely (i) nucleation where nuclei form by self-assemble of atoms and (ii) subsequent growth of this nuclei into a nanosized particle. Tran et al. \[74\] demonstrated that the size and shape of Ag-NPs were strongly dependent on these stages. Indeed, it is more likely to have monodispersed nanoparticles with uniform size distribution if all nuclei form at the same time. As a result, these nuclei will need to have the sale subsequent growth \[74\]. Additionally, factors such as reaction parameters (pH, ionic force, osmotic pressure and temperature), the nature of stabilizing agent and surface plasmon resonance can influence the shape and size of nanoparticles \[77–80\].

Importantly, a few studies reported an aggregation phenomenon during synthesis of metal nanoparticles outlining that nanoparticles were not stable during and/or after synthesis. These studies did not include methods such as energy dispersive X-ray (EDX) in their design in order to predict any possibility of aggregation. This phenomenon modulates the particular physico-chemical properties of nanosized particles and accordingly their biological actions \[81\]. However, a few authors outlined the importance of this phenomenon in toxicity against pathogenic microorganisms such as Escherichia coli induced by gold-based nanoparticles upon their intracellular penetration \[82\].

The studies were designed as in vitro, in vivo or a combination of both. In vitro studies have advantages to appraise the intrinsic susceptibility of malaria parasite to drugs compared to in vivo studies which results are strongly dependent on level of anti-malarial immunity of host. If not taken into account, one can believe illusively the effectiveness of tested molecules especially nanoparticles. Besides, most in vitro designed studies appraised

Table 7 Evaluation of toxicity of nanoparticles synthesized

Authors [Reference]	Used methods	Results
Kharthik et al. \[61\]	Brine shrimp lethality assay	No toxicity up to 8 mg/kg/bw
	Histological analysis	Tissue damages were reported at doses 12, 16 and 20 mg/kg/bw
	Search for any signs of toxicity	Deaths, behavioural changes, changes in physical appearance observed at doses 8, 12, 16 and 20 mg/kg/bw
Mishra et al. \[49\]	Haemolysis assay	No signs of haemolysis up to 40 µg/mL (MHC10 > 40 µg/mL)
Rajakumar et al. \[51\]	MTT assay using Hep-G2 cell line	Cellular toxicity (necrosis and cytopathic effects) of 8.5%, 24%, 48%, 65% and 76.5% at doses 1, 10, 100, 250 and 500 µg/mL respectively (more toxic than Pd (OAc)2 and plant extract)
Jaganathan et al. \[62\]	MTT assay using Hep-G2 cell line	Viability of Hep-G2 cells decreased when tested doses of NPs increased (IC50 = 25.96 µg/mL)
	Apoptosis assay	NPs induced apoptosis which increased significantly from 1.6 to 7.8% at doses 1.88 µg/mL and 30 µg/mL respectively
Dutta et al. \[57\]	MTT assay using HeLa and L6 lines	Insignificant toxicity against the both cell lines (IC50 > 200 µg/mL and > 250 µg/mL)
Gandhi et al. \[59\]	Non-target organism assay	NPs did not exhibit any noticeable toxicity on Poecilia reticulata after 24 h of exposure
Rotimi et al. \[60\]	Keusch et al. assay using HeLa lines	NPs were not toxic (% cell viability 89.66% ± 1.55%)

Note: NPs nanoparticles, IC50 50% inhibitory concentration, bw body weight, MHC10 minimum haemolytic concentration resulting in 10% haemolysis, PBMCs peripheral mononuclear cells, MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
the susceptibility of laboratory strains of *P. falciparum* such as INDO, 3D7 and Dd2. In a context of multidrug resistance in malaria parasites, it would be more interesting to test metal NPs against of *P. falciparum* field isolates in order to objectively appreciate their antiplasmodial action [47, 48, 50]. In the context of emergence and spread of resistance of malaria parasites to artemisinin and its derivatives, the possibility to develop new medicines through methods such as green nanotechnology is of utmost importance and interest. Furthermore, *P. falciparum* laboratory strains resistant to ART and its derivatives could be used as control instead of the above mentioned laboratory strains.

Most studies included in the review found that synthesized nanoparticles had antiplasmodial potential higher than used controls (chloroquine, extract). This finding indicates that these nanomaterials can be valuable tools for discovering and designing new medicines. The antiplasmodial activity of nanoparticles can be attributed to the presence of biological compounds such as flavonoids, alkaloids, terpenes, lignans, terpenoids, steroids, coumarins, phenolic acids, xanthones, proteins and anthraquinones [48, 62]. The Fourier-transform infrared spectroscopy-based results provided by the studies indicated the presence of functional groups hallmarking these compounds. These included N–H, C=O, C=C, COO−, N–O and C–N stretching. These compounds referred to as secondary metabolites had been shown previously to have biocidal activity against malaria parasites [83–91]. The mechanisms of action through which nanoparticles induce reduction in parasite growth rate and death are still clearly elusive. However, these could elicit their lethal action by operating on the genomic material of parasite, its surface membrane or even intracytoplasmic elements such as enzymes [35, 92]. The elucidation of mechanisms of antimalarial action is under intensive investigation. Karthik and colleagues reported the administration of gold NPs was associated with both a high TGF-β and low TNF production in mice infected with *P. berghei*; drawing the immunomodulatory role of metal NPs [61].

Finally, a few studies reported a toxic action of nanoparticles tested for their antimalarial potential. Indeed, a few of them reported nanoparticles had elicited toxic action against human cancer cell lines outlining thereby their possible but interesting anti-cancer potential. This is consistent with previous studies [93]. On the other hand, one study included in this review reported severe adverse effects and death cases caused by metal nanoparticles [61]. This brings back on the table the issue on the harmfulness of nanoparticles to humans. The question has been well documented [94–97], and implies that the evaluation of toxic potential of any new products is a crucial and composite step in the drug design. Thus, it would be important to include the evaluation of cytotoxic effects of nanoparticles when their antimicrobial effect is evaluated.

Future considerations

The some following researches worth addressing in future:

1. According to the 17 publications considered in the current review, most were conducted in India; and only one was conducted in Africa (South Africa). It is somewhat paradoxical as the African continent constitute the bulk of the total malaria burden and has an incredible diverse flora [3, 98]. Thus, there is need for more studies in this field in malaria endemic countries in this continent;
2. The mode of action through which metal nanoparticles elicit their biological effects is still elusive; thereby calling out to address this issue in future;
3. It is likely that many factors such as size and shape of NPs greatly influence their biological activities. Bioinformatics and modelling studies would be helpful to understand the real influence of these some above-mentioned factors;
4. Seven out of seventeen papers included in the review addressed the toxic potency of metal NPs; of which three reported significant toxicity against non-target organisms [51, 61, 62]. This finding put in light conflictual results on this issue and point out a need for more extensive studies on NPs toxicity prior to any development of anti-malarial drug.
5. Finally, great discrepancies in methodological approaches were recorded in the 17 reviewed publications; from the process NPs synthesis to methods of evaluating their antimalarial activity. Thus, in order to compare the results of different studies, it would be interesting to standardize the methodology for evaluating the antimalarial activity of green nanoparticles.

Limitations of the study

Articles written in English and French were included in the present review and as a result may result in selection bias.

Conclusion

This review points out certain advantages in terms of rapidity and eco-friendliness of using living organisms such as plants for synthesis of metal nanoparticles. It provides a global overview on the antiplasmodial potential of these nanomaterials highlighting their usefulness
as promising sources for new anti-malarial drugs. The review also highlights unanswered questions regarding the exact mechanism through which these NPs elicit their cytotoxic actions against the parasite, and the need for further studies addressing the issue. Lastly, the review underscores the need to conduct detail studies on the safety profiles of available nanoparticles prior to use in humans.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12936-019-2974-9.

Abbreviations

- AAS: atomic absorption spectroscopy; ACT: artemisinin-based combination therapy; AE: aqueous extract; AgNPs: silver nanoparticles; ART: artemisinin; AuNPs: gold nanoparticles; bw: body weight; CQ: chloroquine; DLS: dynamic light scattering; DRIFT: diffuse reflectance infrared Fourier transform; EDS: Electron Diffraction Spectrophotometer; EMBASE: Excerpta Medica Database; FESEM: field emission scanning electron microscopy; FITR: Fourier-transform infrared; GMC: global malaria control; GMS: Greater Mekong subregion; GTS: Global Technical Strategy; HF: health facility; HIV/AIDS: human immunodeficiency virus/acquired immunodeficiency syndrome; HR-TEM: high resolution transmission electron microscopy; IC₅₀: 50% inhibitory concentration; ICDD: International Centre for Diffraction Data; ITP: intermittent preventive therapy in pregnancy; IRS: indoor residual spraying; JCPS: Joint Committee on Powder Diffraction Standards; LLINs: long-lasting insecticides-treated nets; MHC₁₀: minimum haemolytic concentration resulting in 10% haemolysis; MeSH: Medical Subject Headings; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MHC₂₀: minimum haemolytic concentration resulting in 20% haemolysis; MTI: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NC: negative control; PBMCs: peripheral mononuclear cells; PCI: positive control; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; RBC: red blood cells; SAED: size and selected area diffraction; SEM: scanning electron microscopy; TEM: transmission electron microscopy; TFG: tumour growth factor; TNF: tumour necrosis factor; NPs: nanoparticles; WHO: World Health Organization.

Authors’ contributions

LPKF drafted the manuscript, and FEM, CEEM, LA and LGL revised the manuscript. LPKF analysed and interpreted the results with help of FEM, CEEM and LA. LPKF, FEM, CEEM and LGL conceived of and designed the study. LPK, AAN, WGB, IPv and BKB contributed to the discussion. LPKF, FEM, CEEM and LGL undertook data analysis. LPKF interpreted the results. LPKF, FEM, CEEM and LGL undertook data interpretation. LPKF drafted the manuscript, and FEM, CEEM, LA and LGL revised the manuscript. LPKF, FEM, CEEM and LGL supervised the work at all stages. All authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its additional files.

Ethics approval and consent to participate

This research was based on information/data extracted from published studies and no ethical approval was acquired.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Animal Biology, Faculty of Science, The University of Douala, P.O. Box 24157, Douala, Cameroon. 2. Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon. 3. Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon. 4. Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon.

Received: 2 August 2019 **Accepted:** 24 September 2019

Published online: 03 October 2019

References

1. WHO. Factsheet on leading causes of deaths in Africa. Geneva: World Health Organization; 2017.
2. White NJ, Pukrittayakamee S, Tinh Hien T, Abul Faiz M, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;391:1608–21.
3. WHO. World malaria report 2018. Geneva: World Health Organization; 2018. http://www.who.int.
4. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J. 2014;13:68.
5. WHO. Status report on artemisinin and ACT resistance (April 2017). WHO/Htm/Gmp/2017. 2017:11. http://www.who.int/malaria/publications/atoz/artemisinin-resistance-april2017/en/.
6. Souleymane D, Abdoulaye AD, Ogobara KD. Methods for monitoring artemisinin-based combination therapies efficacy. Clin Rev Opin. 2017;8:1–13.
7. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in Western Cambodia. N Engl J Med. 2008;359:2619–20.
8. Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016;4:3.
9. Tilley L, Stramer J, Gnadig NF, Ralph SA, Fidock DA. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 2017;33:682–92.
10. Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEBS Microbiol Rev. 2017;41:34–48.
11. Cheeawanjan IH, Miller BA, Nair S, Nikhoma S, Tan A, Tan C, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2017;356:79–82.
12. Miotto O, Almagro-garcia J, Manske M, Macinnes B, Campino S, Rockett KA, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet. 2013;45:648–55.
13. Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin. Proc Natl Acad Sci USA. 2013;110:240–5.
14. Dondorp AM, Nosten F, Yi P, Das P, Dho O, Phyo AP, Tarning, J, et al. Artemisinin resistance in Plasmodium falciparum malaria. Drug Ther. 2009;361:455–67.
15. Witkowski B, Amarutunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-respose studies. Lancet Infect Dis. 2013;13:1043–9.
16. Ashley E, Dhorda M, Fairhurst RM, Amarutunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2015;371:411–23.
17. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211:670–9.
18. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.

19. Straimer J, Ginadig NF, Witkowski B, Amaratunga C, Duro V, Ramadanzi AP, et al. Plasmodium falciparum clinical isolates. Science. 2015;347:428–31.

20. Trape J-F. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg. 2001;64:12–17.

21. Trape J-F, Pison G, Spiegel A, Enel C, Rogier C. Combating malaria in Africa. Trends Parasitol. 2002;18:224–30.

22. Wongsrichanalai C, Sibley CH. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect. 2011;17:908–16.

23. Djaman JA, Oелефongo D, Ako AB, Roman J, Ngana VF, Basco LK, et al. Molecular epidemiology of malaria in Cameroon and Côte d’Ivoire. XXI. Kelch 13 propeller sequences in Plasmodium falciparum isolates before and after implementation of artemisinin-based combination therapy. Am J Trop Med Hyg. 2017;97:222–4.

24. Kamu E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson KA, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2015;211:1352–5.

25. Murugan K, Anitha J, Suresh U, Rajaganesh R, Panneerselvam C, Aziz AT, et al. Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sutsudicus? Hydrobiologia. 2010;651:335–50.

26. Bormann S, Straimer J, Mwai L, Abdi A, Rippert A, Okombo J, et al. Wide-screen microarray identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep. 2013;3:3318.

27. Torrentino-Bladinet M, Fall B, Benoit N, Camara C, Arnalvict R, Fall M, et al. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J. 2014;13:472.

28. Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Lack of artemisinin resistance in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J. 2014;13:472.

29. Mishra A, Kaulshik NK, Sardar M, Sahal D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloid Surf B. 2013;111:713–8.

30. Patra JK, Samidoss CM, Panneerselvam C, Kovendan K, Madhiyazhagan P. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res. 2015;114:1397–406.

31. Mishra A, Kaulshik NK. Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles against Plasmodium falciparum and its vector Anopheles stephensi. Parasitol Res. 2015;114:4087–97.

32. Subramaniam J, Murugan K, Panneerselvam C, Kovandan K, Madhiyazhagan P, Muthiah G, et al. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum and Couroupita guianensis-synthesized gold nanoparticles: high antimalarial potential, field efficacy against malaria vectors and synergy with Apocheilus lineatus predators. Environ Sci Pollut Res. 2016;23:5433–58.

33. Subramaniam J, Murugan K, Panneerselvam C, Kovandan K, Madhiyazhagan P, Dinesh D, et al. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antimalarial potential, field efficacy against malaria vectors and synergy with Apocheilus lineatus predators. Science. 2015;347:428–31.

34. Dauda K, Busari Z, Morenikeji O, Afolayan F. Poly (d-lactic-co-glycolic acid) -based artesunate nanoparticles: formulation, antimalarial and toxicity assessments. J Zhejiang Univ Sci B. 2017;18:977–85.

35. Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maroile AE, Robertson LJ, et al. Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomedicine. 2019;18:221–33.

36. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

37. Panneerselvam C, Porameswaran M, Radhakrishnan SK. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its antioxidant and antimicrobial effects. Front Microbiol. 2017;8:167.

38. Mallmann EJJ, Cunha FA, Castro BMNF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo. 2015;57:165–7.

39. Arciniegas-Grisalba PA, Patiño-Portela MC, Mosquera-Sánchez LP. In vitro activity of synthesized silver nanoparticles against ZO-117-0001, and their antifungal activity against coffee fungus Exyrophyllum salmonicolor. Appl Nanosci. 2017;7:225–41.

40. Narasimha G. Virucidal properties of silver nanoparticles synthesized from white button mushrooms (Agaricus bisporus). Int J Nano Dimens. 2016;3:181–4.

41. Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W, et al. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS ONE. 2015;10:e0141050.

42. Kojom Foko and et al. Malar J (2019) 18:337.
81. Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S.
80. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present
78. Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water
75. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparti-
72. Jung WK, Hye CK, Ki WK, Shin S, So HK, Yong HP. Antibacterial activity
69. Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging
68. Kalishwaralal K, Deepak V, Ram Kumar Pandian SB, Kottaisamy M,
66. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial
63. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM,
62. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D,
61. Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KV.
59. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
58. Rotimi L, Ojemeaye MO, Okoh OO, Sadimenko A, Okoh AI. Synthesis, char-
57. Pottorff I, Ojemaye MO, Okoh OO, Sadimenko A, Okoh AI. Synthesis, char-
56. Batista MGR, Assis LB, da Costa MHC, et al. Antiplasmodial activity of
55. Linder HP, Verboom GA. The evolution of regional species richness: the
54. Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian V, Raja RK,
53. Çiftci H, Turk M, Tamer U, Karahan S, Menemen Y. Silver nanoparticles:
52. Kamaraj C, Balasubramani V, Raja M, Balasubramanian V, Raja RK, et al. Ag nanoparticles synthesized using B-caryophyllene isolated from
51. Azebaze AGB, Mbosso Teinkela JE, Nguemfo EL, Valentin A, Dongmo AB, et al. Antiplasmodial activity of some phenolic compounds from Cam-
50. Saito ATY, Marín Rodriguez AA, Menchaca Vega DS, Sussmann RAC, Kimura EA, Katzin AM. Antimalarial activity of the terepne nerolidol. Int J Antimi-
49. Kayembe J, Tabà K, Ntumba K, Kazadi T. In vitro Antimalarial activity of
48. Saito ATY, Marín Rodriguez AA, Menchaca Vega DS, Sussmann RAC, Kimura EA, Katzin AM. Antimalarial activity of the terepne nerolidol. Int J Antimi-
47. Panyala NR, Peña-Méndez EM, Havel J. Silver or silver nanoparticles: a
46. Çiftci H, Turk M, Tamer U, Karahan S, Menemen Y. Silver nanoparticles:
45. Ovenden SPB, Cobbe M, Kissell R, Birrell GW, Chavchich M, Edstein MD.
44. Messi AN, Ngbo Mbjing JT, Ndongo JT, Ntumba AT, Yemeda FL, et al. Phenolic compounds from the roots of Ocampa schwienfurthiana and their antioxidant and antiplasmodial activities. Phytochem Lett.
43. Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L. Effects of aggregation and the
42. Chokchasiri R, Chaichompho W, Chalermlin P, Saksamarn A. Potent antiplasmodial alkaloids and flavonoids from Diosmischonax ocuminia.
41. Øvenden SPB, Cobbe M, Kissell R, Birrell GW, Chavchich M, Edstein MD.
40. Chokchasiri R, Chaichompho W, Chalermlin P, Saksamarn A. Potent antiplasmodial alkaloids and flavonoids from Diosmischonax ocuminia.
39. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
38. Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water
37. Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L. Effects of aggregation and the
36. Christy AJ, Umadevi M. Synthesis and characterization of monodispersed
35. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present
34. Gatto MA, Naseem S, Afat M, Mahmood Dar A, Qasim K, Zubair S. Phystiochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int.
33. Christy AJ, Umadevi M. Synthesis and characterization of monodispersed
32. Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water
31. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
30. Christy AJ, Umadevi M. Synthesis and characterization of monodispersed
29. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
28. Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water
27. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
26. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
25. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
24. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
23. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
22. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
21. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
20. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
19. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
18. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
17. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
16. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
15. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
14. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
13. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
12. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
11. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
10. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
9. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
8. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
7. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
6. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
5. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
4. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
3. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
2. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro
1. Gandhi PR, Jayaseelan C, Kamaraj C, Rajasree SRR, Regina Mary R. In vitro