Joint Equidistribution of CM Points

Ilya Khayutin
September 29, 2017
Theorem (Pila ’11 for general \(n \), André ’98 for \(n = 2 \). Conditionally on GRH: Edixhoven ’98 and Edixhoven ’05)

Let \(X = Y \times \ldots \times Y \) be the Cartesian power of a modular curve. Assume \(\{ x^i = (x^i_1, \ldots, x^i_n) \} \), is a sequence of special points in \(X \), i.e. each \(x^i_k \in Y_k \) is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in \(X \).
Theorem (Pila ’11 for general n, André ’98 for $n = 2$. Conditionally on GRH: Edixhoven ’98 and Edixhoven ’05)

Let $X = Y \times \ldots \times Y$ be the Cartesian power of a modular curve. Assume $\{x_i^j = (x_1^i, \ldots, x_n^i)\}_i$ is a sequence of special points in X, i.e. each $x_k^i \in Y_k$ is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in X.

Definition

We call a sequence of special points *generic* if it has finite intersection with every proper special subvariety.
Proper Special Subvarieties for $n = 2$

- A special point (x_1, x_2),
- $\{x\} \times Y$ and $Y \times \{x\}$ for $x \in Y$ a CM point,
- image of a Hecke correspondence $T_n \hookrightarrow Y \times Y$, e.g. the diagonal embedding $Y \trianglerightarrow Y \times Y$.
Equidistribution Conjecture

Conjecture

Let \(\{x_i\}_i \) be a generic sequence of special points in \(X \) – the Cartesian power of a modular curve. Let the probability measure \(\mu_i \) on \(X \) be the normalized counting measure on the Galois orbit of \(x_i \)

\[
\mu_i := \frac{1}{|\text{Orb}(x_i)|} \sum_{y \in \text{Orb}(x_i)} \delta_y
\]

Then \(\{\mu_i\}_i \) converges weak-* to the uniform measure

\[
m_X = m_Y \times \ldots m_Y. \quad \underbrace{m_Y \times \ldots m_Y}_{n}
\]
Equidistribution Conjecture

Conjecture

Let \(\{x_i\}_i \) be a generic sequence of special points in \(X \) – the Cartesian power of a modular curve. Let the probability measure \(\mu_i \) on \(X \) be the normalized counting measure on the Galois orbit of \(x_i \)

\[
\mu_i := \frac{1}{|\text{Orb}(x_i)|} \sum_{y \in \text{Orb}(x_i)} \delta_y
\]

Then \(\{\mu_i\}_i \) converges weak-* to the uniform measure \(m_X = m_Y \times \ldots m_Y \).

Weaker Conjecture

Asymptotic density of Galois orbits in the locally compact topology.
Previously Known Results

- $n = 1$ – Duke ’88, Iwaniec ’87... Michel ’04, SW Zhang ’05. Assuming a split prime: Linnik ’55.

1 excludes most cases
Previously Known Results

• \(n = 1 \) – Duke ’88, Iwaniec ’87... Michel ’04, SW Zhang ’05. Assuming a split prime: Linnik ’55.

• \(n = 2 \) – If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant\(^1\) and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh ’13.

\(^1\) excludes most cases
Previously Known Results

- \(n = 1 \) – Duke ’88, Iwaniec ’87... Michel ’04, SW Zhang ’05. Assuming a split prime: Linnik ’55.
- \(n = 2 \) – If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant\(^1\) and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh ’13.
- \(n = 2 \) – Analogues problem over \(\mathbb{F}_q(t) \) reduced to counting points on varieties. Main term computed but could not yet show that error term is negligible. Shende, Tsimerman ’13.

\(^1\) excludes most cases
Theorem (Kh’17)

Let $X = Y \times \ldots Y$ be the Cartesian power of a modular curve.
Main Theorem

Theorem (Kh’17)

Let \(X = \underbrace{Y \times \ldots Y}_{n} \) be the Cartesian power of a modular curve.

Let \(\{x_i\}_i \) be a generic sequence of special points such that all coordinates of \(x_i \) have CM by the same maximal order of discriminant \(D_i \) and CM field \(E_i/\mathbb{Q} \). Fix two primes \(p_1, p_2 \) and assume that for all \(i \in \mathbb{N} \)
Main Theorem

Theorem (Kh’17)

Let $X = Y \times \ldots \times Y$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q}. Fix two primes p_1, p_2 and assume that for all $i \in \mathbb{N}$

1. p_1 and p_2 split in E_i,

2. The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.
Main Theorem

Theorem (Kh’17)

Let $X = Y \times \ldots Y$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q}. Fix two primes p_1, p_2 and assume that for all $i \in \mathbb{N}$

1. p_1 and p_2 split in E_i,
2. The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.

Then $\{\mu_i\}$ converges weak-* to the uniform measure.
Let $x \in Y$ be a CM point. The theory of complex multiplication implies that the Galois group of the field of definition of x is isomorphic to $\text{Pic}(\Lambda)$ and

$$\text{Orb}_{\text{Galois}}(x) = \text{Orb}_{\text{Pic}(\Lambda)}(x)$$

\[\text{Galois Action} \xrightarrow{\text{reciprocity}} \text{Torus Action}\]
The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let G be a form of PGL_2 over \mathbb{Q} and set $Y := \Gamma \backslash \frac{G(\mathbb{R})}{K_\infty}$ for $\Gamma < G(\mathbb{R})$ a congruence lattice and $K_\infty < G(\mathbb{R})$ a compact torus.
The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let G be a form of PGL_2 over \mathbb{Q} and set $Y := \Gamma \backslash \text{G}(\mathbb{R}) / K_\infty$ for $\Gamma < \text{G}(\mathbb{R})$ a congruence lattice and $K_\infty < \text{G}(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q}. Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a Pic(Λ_i)-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in \text{Pic}(\Lambda_i)$ and define

$$\mathcal{H}_i^{\text{joint}} = \{(z, \sigma_i \cdot z) \in Y \times Y \mid z \in \mathcal{H}_i\}$$
The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let G be a form of PGL_2 over \mathbb{Q} and set $Y := \Gamma \backslash \frac{G(\mathbb{R})}{K_{\infty}}$ for $\Gamma < G(\mathbb{R})$ a congruence lattice and $K_{\infty} < G(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q}. Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a $\text{Pic}(\Lambda_i)$-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in \text{Pic}(\Lambda_i)$ and define

$$\mathcal{H}_i^{\text{joint}} = \{(z, \sigma_i.z) \in Y \times Y \mid z \in \mathcal{H}_i\}$$

Denote by μ_i^{joint} the $\text{Pic}(\Lambda_i)^{\Delta}$-invariant probability measure supported on $\mathcal{H}_i^{\text{joint}}$. If

$$\min_{a \subset \Lambda_i \text{ invertible ideal} \atop a \in \sigma_i} \text{Nr } a \to i \to \infty \infty$$

Then $\mu_i^{\text{joint}} \to m_Y \times m_Y$.
Measure Rigidity and Intermediate Measures

• Einsiedler-Lindenstrauss Joinings Theorem (’15): Splitting Condition + \(n = 1 \) case \(\iff \) Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

• Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.

• Relative Trace: Express cross-correlation between \(H_i \) and a Hecke correspondence via a \(G_\Delta \backslash G \times G / T_\Delta \) relative trace where \(T \) is the anisotropic torus \(/ \mathbb{Q} \) associated to \(H_i \).

• Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in \(\Lambda \)-ideals).

• Sieve: Upper bound on shifted convolution sum using a vector sieve. This is conditional on non-existence of exceptional zeros.
Measure Rigidity and Intermediate Measures

- **Einsiedler-Lindenstrauss Joinings Theorem (’15):** Splitting Condition + \(n = 1 \) case \(\implies \) Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

- **Main Obstacle:** Exclude intermediate measures, i.e. translates of Hecke correspondences.
Measure Rigidity and Intermediate Measures

- **Einsiedler-Lindenstrauss Joinings Theorem (’15):** Splitting Condition + \(n = 1 \) case \(\Rightarrow \) Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- **Main Obstacle:** Exclude intermediate measures, i.e. translates of Hecke correspondences.
- **Relative Trace:** Express cross-correlation between \(\mathcal{H}_i \) and a Hecke correspondence via a \(G_{\Delta} \backslash G \times G / T_{\Delta} \) relative trace where \(T \) is the anisotropic torus \(/\mathbb{Q} \) associated to \(\mathcal{H}_i \).
Measure Rigidity and Intermediate Measures

• Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + $n = 1$ case \implies Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

• Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.

• Relative Trace: Express cross-correlation between H_i and a Hecke correspondence via a $G^\Delta \backslash G \times G / T^\Delta$ relative trace where T is the anisotropic torus $/Q$ associated to H_i.

• Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in Λ-ideals).
Measure Rigidity and Intermediate Measures

- **Einsiedler-Lindenstrauss Joinings Theorem (’15):** Splitting Condition + $n = 1$ case \implies Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

- **Main Obstacle:** Exclude intermediate measures, i.e. translates of Hecke correspondences.

- **Relative Trace:** Express cross-correlation between \mathcal{H}_i and a Hecke correspondence via a $G\backslash G \times G / T_\Delta$ relative trace where T is the anisotropic torus $/\mathbb{Q}$ associated to \mathcal{H}_i.

- **Geometric Expansion:** Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in Λ-ideals).

- **Sieve:** Upper bound on shifted convolution sum using a vector sieve. This is conditional on non-existence of exceptional zeros.
Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

$$\exists \eta > 0 \forall i \geq 1: \min_{\substack{a \subseteq \Lambda_i \text{ invertible ideal} \\ a \in \sigma_i}} \text{Nr} \ a \ll |D_i|^{1/2-\eta}$$

This covers approximately $\sim |D_i|^{-\eta} \# \text{Pic}(\Lambda)$ twists σ_i.
Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

$$\exists \eta > 0 \ \forall i \geq 1 : \min_{a \subseteq \Lambda_i \text{ invertible ideal}} \min_{a \in \sigma_i} \text{Nr} \ a \ll |D_i|^{1/2-\eta}$$

This covers approximately $\sim |D_i|^{-\eta} \# \text{Pic(}\Lambda\text{) twists } \sigma_i$.

The new method applies when the extra conditions hold and

$$\exists \epsilon > 0 \ \forall i \geq 1 : \min_{a \subseteq \Lambda_i \text{ invertible ideal}} \min_{a \in \sigma_i} \text{Nr} \ a \geq |D_i|^\frac{2-\theta^{-1}}{3} + \epsilon$$

where θ is the best available exponent in Gauss’s circle problem for imaginary quadratic fields. The Van der Corput bound yields $\theta = 2/3 \Rightarrow \frac{2-\theta^{-1}}{3} = 1/6$.
Joint Equidistribution of CM Points

Ilya Khayutin
September 29, 2017
Theorem (Pila ‘11 for general n, André ‘98 for $n = 2$. Conditionally on GRH: Edixhoven ‘98 and Edixhoven ’05)

Let $X = Y \times \ldots \times Y$ be the Cartesian power of a modular curve. Assume $\{x^i = (x^i_1, \ldots, x^i_n)\}_i$ is a sequence of special points in X, i.e. each $x^i_k \in Y_k$ is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in X.

Definition

We call a sequence of special points generic if it has finite intersection with every proper special subvariety.
Theorem (Pila ‘11 for general n, André ‘98 for $n = 2$. Conditionally on GRH: Edixhoven ‘98 and Edixhoven ‘05)

Let $X = Y \times \ldots \times Y$ be the Cartesian power of a modular curve. Assume $\{x^i = (x^i_1, \ldots, x^i_n)\}_i$ is a sequence of special points in X, i.e. each $x^i_k \in Y_k$ is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in X.

Definition

We call a sequence of special points generic if it has finite intersection with every proper special subvariety.
Proper Special Subvarieties for $n = 2$

- A special point (x_1, x_2),
- $\{x\} \times Y$ and $Y \times \{x\}$ for $x \in Y$ a CM point,
- image of a Hecke correspondence $T_n \hookrightarrow Y \times Y$, e.g. the diagonal embedding $Y \hookrightarrow Y \times Y$.

Equidistribution Conjecture

Conjecture
Let \(\{x_i\}_i \) be a generic sequence of special points in \(X \) – the Cartesian power of a modular curve. Let the probability measure \(\mu_i \) on \(X \) be the normalized counting measure on the Galois orbit of \(x_i \)

\[
\mu_i := \frac{1}{|\text{Orb}(x_i)|} \sum_{y \in \text{Orb}(x_i)} \delta_y
\]

Then \(\{\mu_i\}_i \) converges weak-* to the uniform measure

\[
m_X = m_Y \times \ldots m_Y. \quad \underbrace{m_Y \times \ldots m_Y}_{n}
\]
Equidistribution Conjecture

Conjecture
Let \(\{x_i\}_i \) be a generic sequence of special points in \(X \) – the Cartesian power of a modular curve. Let the probability measure \(\mu_i \) on \(X \) be the normalized counting measure on the Galois orbit of \(x_i \)

\[
\mu_i := \frac{1}{|\text{Orb}(x_i)|} \sum_{y \in \text{Orb}(x_i)} \delta_y
\]

Then \(\{\mu_i\}_i \) converges weak-* to the uniform measure \(m_X = m_Y \times \ldots \times m_Y \).

Weaker Conjecture
Asymptotic density of Galois orbits in the locally compact topology.
Previously Known Results

- \(n = 1 \) – Duke ’88, Iwaniec ’87… Michel ’04, SW Zhang ’05. Assuming a split prime: Linnik ’55.

^1excludes most cases
Previously Known Results

• \(n = 1 \) – Duke ’88, Iwaniec ’87... Michel ’04, SW Zhang ’05. Assuming a split prime: Linnik ’55.

• \(n = 2 \) – If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant\(^1\) and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh ’13.

\(^1\)excludes most cases
Previously Known Results

- $n = 1$ – Duke ’88, Iwaniec ’87... Michel ’04, SW Zhang ’05. Assuming a split prime: Linnik ’55.
- $n = 2$ – If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant\(^1\) and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh ’13.
- $n = 2$ – Analogues problem over $\mathbb{F}_q(t)$ reduced to counting points on varieties. Main term computed but could not yet show that error term is negligible. Shende, Tsimerman ’13.

\(^1\)excludes most cases
Main Theorem

Theorem (Kh’17)

Let \(X = Y \times \cdots Y \) be the Cartesian power of a modular curve.
Main Theorem

Theorem (Kh’17)

Let $X = Y \times \ldots Y$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q}. Fix two primes p_1, p_2 and assume that for all $i \in \mathbb{N}$
Theorem (Kh’17)

Let $X = \underbrace{Y \times \ldots Y}_n$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q}. Fix two primes p_1, p_2 and assume that for all $i \in \mathbb{N}$

1. p_1 and p_2 split in E_i,
2. The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.
Main Theorem

Theorem (Kh’17)
Let $X = Y \times \ldots Y$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q}. Fix two primes p_1, p_2 and assume that for all $i \in \mathbb{N}$

1. p_1 and p_2 split in E_i,
2. The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.

Then $\{\mu_i\}$ converges weak-\ast to the uniform measure.
Complex Multiplication

Let \(x \in Y \) be a CM point. The theory of complex multiplication implies that the Galois group of the field of definition of \(x \) is isomorphic to \(\text{Pic}(\Lambda) \) and

\[
\text{Orb}_{\text{Galois}}(x) = \text{Orb}_{\text{Pic}(\Lambda)}(x)
\]

\[
\text{Galois Action} \xrightarrow{\text{reciprocity}} \text{Torus Action}
\]
Conjecture (Michel & Venkatesh)

Let \mathbf{G} be a form of PGL_2 over \mathbb{Q} and set $Y := \Gamma \backslash \mathbf{G}(\mathbb{R}) / K_\infty$ for $\Gamma < \mathbf{G}(\mathbb{R})$ a congruence lattice and $K_\infty < \mathbf{G}(\mathbb{R})$ a compact torus.
The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let G be a form of PGL_2 over \mathbb{Q} and set $Y := \Gamma \backslash \mathbb{G}(\mathbb{R})/K_\infty$ for $\Gamma < \mathbb{G}(\mathbb{R})$ a congruence lattice and $K_\infty < \mathbb{G}(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q}. Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a Pic(Λ_i)-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in \text{Pic}(\Lambda_i)$ and define

\[
\mathcal{H}_i^{\text{joint}} = \{(z, \sigma_i \cdot z) \in Y \times Y \mid z \in \mathcal{H}_i\}
\]
Conjecture (Michel & Venkatesh)

Let G be a form of PGL_2 over \mathbb{Q} and set $Y := \Gamma \backslash G(\mathbb{R})/K_{\infty}$ for $\Gamma < G(\mathbb{R})$ a congruence lattice and $K_{\infty} < G(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q}. Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a $\text{Pic}(\Lambda_i)$-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in \text{Pic}(\Lambda_i)$ and define

$$\mathcal{H}_i^{\text{joint}} = \{(z, \sigma_i \cdot z) \in Y \times Y \mid z \in \mathcal{H}_i\}$$

Denote by μ_i^{joint} the $\text{Pic}(\Lambda_i)\Delta$-invariant probability measure supported on $\mathcal{H}_i^{\text{joint}}$. If

$$\min_{\begin{array}{c} a \subseteq \Lambda_i \text{ invertible ideal} \\ a \in \sigma_i \end{array}} \text{Nr } a \to_i \to_{i \to \infty} \infty$$

Then $\mu_i^{\text{joint}} \to m_Y \times m_Y$.
Measure Rigidity and Intermediate Measures

- Einsiedler-Lindenstrauss Joinings Theorem (’15): Splitting Condition + $n = 1$ case \Rightarrow Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
Measure Rigidity and Intermediate Measures

• Einsiedler-Lindenstrauss Joinings Theorem (’15): Splitting Condition + $n = 1$ case \implies Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

• Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.
Einsiedler-Lindenstrauss Joinings Theorem (’15): Splitting Condition + $n = 1$ case \implies Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.

Relative Trace: Express cross-correlation between \mathcal{H}_i and a Hecke correspondence via a $\mathcal{G}_\Delta \backslash \mathcal{G} \times \mathcal{G} / \mathcal{T}_\Delta$ relative trace where \mathcal{T} is the anisotropic torus $/\mathbb{Q}$ associated to \mathcal{H}_i.

Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in Λ-ideals).

Sieve: Upper bound on shifted convolution sum using a vector sieve. This is conditional on non-existence of exceptional zeros.
Measure Rigidity and Intermediate Measures

- **Einsiedler-Lindenstrauss Joinings Theorem (’15):** Splitting Condition + \(n = 1 \) case \(\implies \) Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

- **Main Obstacle:** Exclude intermediate measures, i.e. translates of Hecke correspondences.

- **Relative Trace:** Express cross-correlation between \(\mathcal{H}_i \) and a Hecke correspondence via a \(G_\Delta \backslash G \times G / T_\Delta \) relative trace where \(T \) is the anisotropic torus \(/Q \) associated to \(\mathcal{H}_i \).

- **Geometric Expansion:** Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in \(\Lambda \)-ideals).

- **Sieve:** Upper bound on shifted convolution sum using a vector sieve. This is conditional on non-existence of exceptional zeros.
Measure Rigidity and Intermediate Measures

- Einsiedler-Lindenstrauss Joinings Theorem (’15): Splitting Condition + $n = 1$ case \implies Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

- Main Obstacle: Exclude intermediate measures, i.e., translates of Hecke correspondences.

- Relative Trace: Express cross-correlation between \mathcal{H}_i and a Hecke correspondence via a $G_\Delta \setminus G \times G / T_\Delta$ relative trace where T is the anisotropic torus $/\mathbb{Q}$ associated to \mathcal{H}_i.

- Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in Λ-ideals).

- Sieve: Upper bound on shifted convolution sum using a vector sieve. This is conditional on non-existence of exceptional zeros.
Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

\[\exists \eta > 0 \forall i \geq 1 : \min_{\text{invertible ideal } a \subseteq \Lambda_i} \min_{a \in \sigma_i} \text{Nr } a \ll |D_i|^{1/2 - \eta} \]

This covers approximately \(\sim |D_i|^{-\eta} \# \text{Pic}(\Lambda) \text{ twists } \sigma_i. \)
Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

$$\exists \eta > 0 \ \forall i \geq 1 : \ \min_{a \subseteq \Lambda_i \text{ invertible ideal}} \text{Nr} \ a \ll |D_i|^{1/2 - \eta}$$

This covers approximately $\sim |D_i|^{-\eta} \# \text{Pic}(\Lambda) \text{ twists } \sigma_i$.

The new method applies when the extra conditions hold and

$$\exists \epsilon > 0 \ \forall i \geq 1 : \ \min_{a \subseteq \Lambda_i \text{ invertible ideal}} \text{Nr} \ a \geq |D_i|^{\frac{2-\theta-1}{3}} + \epsilon$$

where θ is the best available exponent in Gauss’s circle problem for imaginary quadratic fields. The Van der Corput bound yields $\theta = 2/3 \implies \frac{2-\theta^{-1}}{3} = 1/6$.