W* Dynamics of Infinite Dissipative Quantum Systems

by Geoffrey L. Sewell*

School of Physics and Astronomy, Queen Mary University of London,
Mile End Road, London E1 4NS, UK

Key Words:- operator algebras, folium of states, complete positivity, quasi-equivalent representations

Abstract

We formulate the dynamics of an infinitely extended open dissipative quantum system, \(\Sigma \), in the Schroedinger picture. The generic model on which this is based comprises a \(\mathcal{C}^\star \)-algebra, \(\mathcal{A} \), of observables, a folium, \(\mathcal{F} \), of states on this algebra and a one-parameter semigroup, \(\tau \), of linear transformations of \(\mathcal{F} \) that represents its dynamics and is given by a natural infinite volume limit of the corresponding semigroup for a finite system. On this basis, we establish that the dynamics of \(\Sigma \) is given by a one parameter group of completely positive linear transformations of the \(W^\star \)-algebra dual to \(\mathcal{F} \). This result serves to extend our earlier formulation [1] of infinitely extended conservative systems to open dissipative ones.

1. Introduction.

The dynamics of a finite dissipative quantum system has been formulated by Lindblad [2] and Gorini, Kossakowski and Sudarshan [3] as a one parameter semigroup of completely positive (CP) linear transformations of its observables. The aim of this article is to provide a corresponding formulation of infinitely extended dissipative quantum systems, which may provide a natural basis for a treatment of nonequilibrium statistical thermodynamics. We remark that, for the case where these reduce to conservative systems, such a treatment has been made [1] for the evolution of a folium, \(\mathcal{F}_{\text{con}} \) of states, which was shown to be governed by the action of a one parameter group of \(\star \)-automorphisms of the \(W^\star \)-algebra dual to \(\mathcal{F}_{\text{con}} \). The essential result of the present article is that, in the general dissipative case, the quantum evolution of a folium, \(\mathcal{F} \), of states is given instead by a one parameter semigroup of completely positive identity preserving linear transformations of the \(W^\star \)-algebra dual to \(\mathcal{F} \): in general these are quite different, due to their dissipative character, from the \(\star \)-automorphisms of the conservative case.

We base our treatment of \(\Sigma \) on a generic operator algebraic model of an infinitely extended open, dissipative quantum system, as represented by a triple \((\mathcal{A}, \mathcal{F}, \tau)\) where \(\mathcal{A} \) is a \(\mathcal{C}^\star \)-algebra of observables, \(\mathcal{F} \) is a folium** of its states and \(\tau \) is a one parameter semigroup.
semigroup of transformations of \mathcal{F} as given by an infinite volume limit of the dynamical semigroup of a finite version of Σ. The system is thus an infinite volume counterpart of the finite model formulated in [2] and [3], and is designed to be applicable to statistical mechanics and quantum field theory.

We provide further specifications of the above model in subsequent Sections. Thus, in Section 2 we pass to a formulation of the algebra \mathcal{A} in terms of a standard quasi-local structure, and in Section 3 we provide corresponding specifications of the folium \mathcal{F} and the dynamical semigroup τ. This leads to our main result, namely the Proposition of Section 3, which establishes and identifies the W^*-dynamics of the model.

2. The Algebraic Structure.

We assume that Σ occupies a space X, which may be either \mathbb{R}^d or \mathbb{Z}^d, with d finite. We denote by L the set of bounded open subregions of X and to each $\Lambda \in L$ we assign a W^*-algebra, $\mathcal{A}(\Lambda)$, whose self-adjoint elements represent the bounded observables localised in that region. We assume that the algebras $\{\mathcal{A}(\Lambda)|\Lambda \in L\}$ are type I factors that satisfy the standard requirements of isotony and local commutativity. We define \mathcal{A}_L, the algebra of local observables of Σ, to be $\bigcup_{\Lambda \in L} \mathcal{A}(\Lambda)$; and we define \mathcal{A}, the norm completion of \mathcal{A}_L, to be the C^*-algebra of quasi-local bounded observables of the system. We assume that each of the local algebras $\mathcal{A}(\Lambda)$ is equipped with a one parameter semigroup $\{\gamma_t(\Lambda)|t \in \mathbb{R}_+\}$ of completely positive (CP) [2, 5] identity preserving transformations, which represent the dynamics of the finite version, $\Sigma(\Lambda)$, of Σ confined to the region Λ.

3. The Folium \mathcal{F} and the dynamical semigroup τ.

It follows from these specifications [4] that the linear span, $[\mathcal{F}]$, of \mathcal{F} is the predual of the bicommutant of a certain representation*, π, of \mathcal{A}, i.e. that \mathcal{F} is the set of normal states on $\pi(\mathcal{A})''$. We assume that the dynamics of Σ, in the Schroedinger representation, is given by a one parameter semigroup, τ, of affine transformations of \mathcal{F}. Hence, by duality, this semigroup induces a corresponding one, τ^*, of affine transformations of $\pi(\mathcal{A})''$, as defined by the formula

$$\langle f; \tau_t^*B \rangle = \langle \gamma_t f; B \rangle \quad \forall f \in [\mathcal{F}], \quad B \in \pi(\mathcal{A})'', \quad t \in \mathbb{R}_+,$$

where $[\mathcal{F}]$ is the linear span of \mathcal{F}. We assume that τ^* is just that canonically induced by the local semigroup $\{\gamma_t(\Lambda)|t \in \mathbb{R}_+\}$ in the limit $\Lambda \uparrow X$, i.e.

$$\tau_t^* \pi(A) = s : \lim_{\Lambda \uparrow X} \pi(\gamma_t(\Lambda)A) \quad \forall A \in \mathcal{A}_L, \quad t \in \mathbb{R}_+. \quad (3.2)$$

Equivalently, defining $\tilde{\gamma}_t(\Lambda)$ to be the transformation of $\pi(\mathcal{A}(\Lambda))$ given by the formula

$$\tilde{\gamma}_t(\Lambda) \pi(A) := \pi(\gamma_t(\Lambda)A) \quad \forall A \in \mathcal{A}_L, \quad t \in \mathbb{R}_+, \quad (3.3)$$

as B runs through \mathcal{A}.

* Specifically, π is any element of the quasi-equivalence class of the direct sum of the GNS representations of the states comprising \mathcal{F}.
the condition (3.2) may be expressed in the form
\[\tau^* \pi(A) = s : \lim_{\Lambda \uparrow X} \tilde{\gamma}_t(\Lambda) \pi(A) \forall A \in \mathcal{A}_L, \ t \in \mathbb{R}_+. \] \tag{3.4}

Suppose now that \(\mathcal{M} \) is a finite dimensional matrix algebra. Then since any element, \(C, \) of \(\pi(\mathcal{A}_L) \otimes \mathcal{M} \) may be expressed in the form \(\sum_r \pi(A_r) \otimes M_r, \) where the \(M_r \)'s form an operator valued basis in \(\mathcal{M} \) and the \(A_r \)'s are elements of \(\pi(\mathcal{A}_L), \) it follows that the condition (3.4) implies that
\[[\tau^* \otimes I] C = s : \lim_{\Lambda \uparrow X} [\tilde{\gamma}_t(\Lambda) \otimes I] C \forall C \in \pi(\mathcal{A}_L) \otimes \mathcal{M}, \ t \in \mathbb{R}_+. \] \tag{3.5}

Proposition. Under the above specifications of the model., the action of the dynamical semigroup \(\tau^* \) on the algebra \(\pi(\mathcal{A})'' \) is completely positive and identity preserving.

Lemma. Given \((t, \Lambda) (\in \mathbb{R}_+ \times \mathbb{L})\) the transformation \(\tilde{\gamma}_t(\Lambda) \) of \(\pi(\mathcal{A})^{\Lambda} \) is CP and identity preserving.

Proof of Lemma. Since \(\mathcal{A}(\Lambda) \) is a primary \(W^*- \) algebra, it follows from Krauss’s formula [6] that the action of \(\gamma_t(\Lambda) \) on this algebra may be expressed in the form
\[\gamma_t(\Lambda) C = \sum_{n \in \mathbb{N}} W_n^* CW_n \forall C \in \mathcal{A}(\Lambda) \] \tag{3.6},
where \(\{W_n\} \) is a sequence of elements of \(\mathcal{A}(\Lambda) \) such that
\[\sum_{n \in \mathbb{N}} W_n^* W_n = I \] \tag{3.7}
and \(\sum_{n \in \mathbb{N}} \) is taken to be the strong limit in the case where the number of terms is infinite. Hence, by the normality of \(\pi \) and Equs. (3.3) and (3.6),
\[\tilde{\gamma}_t(\Lambda) \pi(C) = \sum_{n \in \mathbb{N}} \tilde{W}_n^* \pi(C) \tilde{W}_n \] \tag{3.8}
where
\[\tilde{W}_n := \pi(W_n) \] \tag{3.9}
and
\[\sum_{n \in \mathbb{N}} \tilde{W}_n^* \tilde{W}_n = I. \] \tag{3.10}
Now let \(\mathcal{M} \) be a finite dimensional matrix algebra. Then any element \(\tilde{C} \) of \(\pi(\mathcal{A}(\Lambda)) \otimes \mathcal{M} \) may be expressed as a finite sum
\[\tilde{C} = \sum_{r \in J} \pi(C_r) \otimes M_r \] \tag{3.11},
where \(J \) is a finite index set, the \(C_r \)'s are elements of \(\mathcal{A}(\Lambda) \) and the \(M_r \)'s form an operator basis for \(\mathcal{M} \). Hence, by Equs. (3.8)-(3.11),
\[[\tilde{\gamma}_t(\Lambda) \otimes I](\tilde{C}^* \tilde{C}) = [\tilde{\gamma}_t(\Lambda \otimes I)] \sum_{r,s \in J} \pi(C_r^* C_s) \otimes M_r^* M_s = \]
\[
\sum_{r,s \in J, n \in \mathbb{N}} \tilde{W}^* n \pi(C^*_r C_s) \tilde{W} n \otimes M^*_r M_s = \sum_{n \in \mathbb{N}} D^*_n D_n
\]
(3.12),

where
\[
D_n = \sum_{r \in J} \pi(C_r) \tilde{W} n \otimes M_r.
\]
(3.13)

Hence \(\tilde{\gamma}_t(\Lambda) \otimes I \) is positive and therefore \(\tilde{\gamma}_t(\Lambda) \) is CP. Further, by Eqs. (3.8) and (3.10), it is identity preserving.

Proof of Proposition. It follows immediately from the Lemma, together with the definition (3.3) of \(\tilde{\gamma}_t(\Lambda) \) and the complete positivity of \(\gamma_t(\Lambda) \), that the transformation \(\tilde{\gamma}_t(\Lambda) \) is both CP and identity preserving.

To prove that the same is true for \(\tau_t^* \), we first infer from Eqs. (3.3) and (3.4) that its identity preserving property follows from that of \(\gamma_t(\Lambda) \).

Next we note that, by the finite dimensionality of \(\mathcal{M} \), elements \(\tilde{B} \) of \(\pi(\mathcal{A}_L) \otimes \mathcal{M} \) take the form
\[
\tilde{B} = \sum_J \pi(B_J) \otimes M_J
\]
where \(J \) is a finite index set. Hence
\[
[\tau^*_t \otimes I] \tilde{B} = \sum_J \tau^*_t \pi(B_J) \otimes M_J
\]
and hence, by Equ. (3.5),
\[
[\tau^*_t \otimes I] \tilde{B} = s - \lim_{\Lambda \uparrow X} (\tilde{\gamma}_t(\Lambda) \otimes I) \tilde{B}
\]
Therefore
\[
[\tau^*_t \otimes I] (\tilde{B}^* \tilde{B}) = s - \lim_{\Lambda \uparrow X} \tilde{\gamma}_t(\Lambda) (\tilde{B}^* \tilde{B})
\]
Since it follows from the Lemma that \(\tilde{\gamma}_t(\Lambda) \) is CP, i.e. that \(\tilde{\gamma}_t(\Lambda) \otimes I \) is positive, it follows from the last equation that the same is true for \(\tau^*_t \otimes I \), for all values of the dimensionality of \(\mathcal{M} \). In other words, \(\tau^* \) is CP.

References

[1] G. L. Sewell: Lett. Math. Phys. *6*, 209-213 (1982)

[2] G. Lindblad: Commun. Math. Phys. *48*, 119-130 (1976)

[3] V. Gorini, A. Kossakowski and E. C. G. Sudarshan: J. Math. Phys. *17*, 821-5 (1976)

[4] R. Haag, R V. Kadison and D. Kastler: Commun. Math. Phys.*33*, 1-22 (1973)

[5] W. F. Stinespring: Proc. Amer. Math. Soc. *6*, 211-216 (1955)

[6] K. Kraus: Ann. Phys. *64*, 311-335 (1971)