Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19, HHV6 and MOG antibody: A perfect storm

Muruj Jumah, Farah Rahman, Mark Figgie, Ankita Prasad, Anthony Zampino, Ali Fadhil, Kaitlin Palmer, Robin Arthur Buerki, Steven Gunzler, Praveen Gundelly, Hesham Abboud

PII: S0165-5728(21)00048-5
DOI: https://doi.org/10.1016/j.jneuroim.2021.577521
Reference: JNI 577521
To appear in: Journal of Neuroimmunology

Received date: 18 December 2020
Revised date: 6 February 2021
Accepted date: 6 February 2021

Please cite this article as: M. Jumah, F. Rahman, M. Figgie, et al., COVID-19, HHV6 and MOG antibody: A perfect storm, Journal of Neuroimmunology (2021), https://doi.org/10.1016/j.jneuroim.2021.577521

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier.
COVID-19, HHV6 and MOG antibody: A Perfect Storm

Muruj Jumah1,* , Farah Rahman2,* , Mark Figgie1, Ankita Prasad1, Anthony Zampino1, Ali Fadhil1, Kaitlin Palmer1, Robin Arthur Buerki1, Steven Gunzler1, Praveen Gundelly3, Hesham Abboud1,2,4

1 Neurology Department, University Hospitals of Cleveland, Cleveland, Ohio, USA
2 Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
3 Infectious disease department, University Hospitals of Cleveland, Cleveland, Ohio, USA
4 1 Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Cleveland, Ohio, USA

Corresponding Author:
Hesham Abboud MD PhD,
Multiple Sclerosis and Neuroimmunology program, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106
Phone: 216-844-5137
Fax: 216-844-4785
Email: hesham.abboud@uhhospitals.org

Word count: 1309

Title character count: 48

Number of references: 27
Number of Tables: 1
Number of Figures: 1
Supplemental material: none

Search terms:
COVID-19, SARS-CoV-2, HHV6, MOG, transverse myelitis, demyelination

Financial disclosures:
S. Gunzler receives research support from NIH, Impax, Biogen, and the Parkinson Study Group; H. Abboud is a consultant for Biogen, Genentech, Sanofi-Genzyme, Celgene, Alexion, and Viela Bio. He receives research support from Novartis, Celgene, and Genentech. The other authors report no disclosures.

* These authors contributed equally to the manuscript as co-first authors
1. **Introduction:**

COVID-19 infection predominantly presents with fever and lower respiratory tract involvement (Needham et al., 2020). Lymphopenia is a cardinal laboratory finding (Terpos et al., 2020) that creates an acquired immunodeficiency state. Neurological presentations are increasingly being recognized and include headache, anosmia, ageusia, cerebrovascular accidents, Guillain-Barré syndrome, encephalopathy, acute encephalitis, and acute transverse myelitis (Chakraborty et al., 2020). We report a novel case of human herpesvirus-6 (HHV6) myelitis with concomitant myelin oligodendrocyte glycoprotein antibody (MOG-IgG) mediated parainfectious myelitis in a patient with COVID-19-induced immunodeficiency.

2. **Case Presentation:**

A 61-year-old man with no significant medical history presented with acute urine retention after one week of fever, chills, arthralgia, and ribcage pain. He had been recently exposed to his son who had confirmed COVID-19 infection. A Foley catheter was placed in the ER and nasopharyngeal polymerase chain reaction (PCR) tested negative for SARS-CoV-2. Over the following day, he developed progressive bilateral lower extremity weakness and decreased sensation below the ribcage. His examination was remarkable for flaccid paraplegia with a T7 sensory level. Spine MRI showed non-enhancing T2 hyperintense lesions of variable length in the mid-thoracic spinal cord, while brain MRI was unremarkable (fig. 1). He had elevated CRP (3.08 mg/dL), ESR (45 mm/hour), and ferritin (881 µg/L), with low absolute lymphocyte count (ALC) of 790 cells/mm³, low immunoglobulin-G level of 193 mg/dl (normal range 700-166), low immunoglobulin-M level of 12 mg/dl (normal range 40-230), and negative HIV. Both serum SARS-CoV-2 IgG and repeat nasopharyngeal PCR were positive, confirming COVID-19.
infection albeit without respiratory symptoms. Interestingly, plasma human herpes virus 6 (HHV6) PCR was positive (14500 copies/mL). Cerebrospinal fluid (CSF) analysis showed lymphocyte-predominant pleocytosis (279 cells/µL), hyperproteinorrachia (106 mg/dL), elevated myelin basic protein (16.7 mcq/L), negative oligoclonal bands, and normal IgG index and synthesis rate. Although SARS-CoV-2 PCR was negative in the CSF, CSF HHV6 PCR was significantly positive (67000 copies/mL). Viral CSF PCR was negative for herpes simplex 1 and 2, varicella zoster, cytomegalovirus, enterovirus, and human parechovirus. The preliminary diagnosis was HHV6 myelitis in the setting of an immunocompromised state caused by COVID-19 infection. He was started on a 2-week-course of ganciclovir along with high dose intravenous methylprednisolone for presumed concomitant parainfectious inflammatory myelitis. He had mild clinical improvement with this regimen and was subsequently started on 7 sessions of plasma exchange (PLEX). Parainfectious inflammatory myelitis was later confirmed when his serum demyelinating panel tested positive for high titer (1:1000) myelin oligodendrocyte glycoprotein antibody (MOG-IgG) and negative aquaporin-4 (AQP4-IgG) antibody. MOG-IgG was tested commercially at the Mayo Clinic via live cell fluorescence-activated cell sorting assay. The patient improved significantly with PLEX and ganciclovir, and was discharged on a prednisone taper. Repeat blood tests after improvement and recovery from COVID19 showed normalization of ALC and immunoglobulin levels, declining titer of MOG-IgG, and reduction of HHV6 viral copies in plasma (2100 copies/mL). Post-treatment serum HHV6-IgM was negative and HHV6-IgG was positive. Repeat CSF sampling was not pursued due to the remarkable clinical improvement. At his outpatient appointment five weeks after discharge, his paraplegia had completely resolved with minimal residual sensory and bladder symptoms.

3. Discussion:
This case illustrates an unusual, albeit plausible, sequence of events that led to a severe, yet reversible, neurological presentation. COVID-19 infection is characterized by acquired lymphopenia, which is a predictor of disease severity (Terpos et al., 2020). This, in addition to the hypogammaglobulinemia seen in a subset of patients (Dupont et al, 2020), creates an acquired immunocompromised state during COVID-19 infection as evidenced by an increased susceptibility to secondary bacterial infections and viral reactivation (Li et al., 2020; Drago et al., 2020, Abadias-Grando et al, 2021). HHV6 myelitis is a rare disorder that is almost exclusively seen in immunocompromised patients such as post bone marrow transplantation and in the setting of HIV infection (Shiroshita et al., 2020). Given that our patient had no prior history of immunodeficiency and tested negative for HIV, the most likely trigger of his HHV6 reactivation was COVID-19-induced immunodeficiency. Most cases of true viral myelitis are thought to have a concomitant post-viral or parainfectious immune-mediated response that contributes to spinal cord inflammation, justifying the use of corticosteroids with or without anti-viral agents. This, in addition to the growing literature on post-COVID-19 immune-mediated neurological complications is what prompted us to initiate immunotherapy early on. The decision to add PLEX after the limited initial response to corticosteroids was based on literature suggesting improved outcomes of transverse myelitis with combined therapy (Greenberg et al, 2007). In this case, the combined SARS-CoV-2 and HHV6 infection likely triggered immune-mediated myelitis. This was confirmed by the positivity of MOG-IgG, an antibody linked to monophasic or recurrent demyelinating disorders including acute disseminated encephalomyelitis, optic neuritis, and transverse myelitis (Cobo-Calvo et al., 2020). MOG-IgG-related demyelination can be post-viral or idiopathic.
Several cases of post-COVID-19 myelitis have been reported often with negative SARS-CoV-2 PCR in the CSF and good response to corticosteroids, suggesting an immune-mediated etiology (Table -1). An increased incidence of HHV6-related diseases such as Kawasaki disease and pityriasis rosea has been reported during the COVID-19 pandemic, suggesting a link between COVID-19 immune dysfunction and reactivation of HHV6 (Dursun et al., 2020; Drago et al., 2020, Abadias-Grando et al, 2021). Interestingly, the HHV6 and SARS-CoV-2 viruses have each been separately linked to MOG-IgG positive transverse myelitis (Zhou et al., 2020 and Vieira et al., 2020). To our knowledge, this is the first report of possible HHV6 reactivation in the central nervous system in the setting of COVID-19 immune dysfunction, and the first with parainfectious MOG-IgG myelitis in the setting of SARS-CoV-2 / HHV6 co-infection.

One important consideration relevant to our case is the possibility of chromosomally-integrated HHV6. This is an inherited condition in which the HHV6 genome is transmitted from a parent germ cell and becomes integrated with the individual’s cellular genome in all tissues (Aimola et al., 2020). This can give false positive HHV6 PCR results when tested in cell-containing samples like whole blood albeit fewer viral copies can also be found in plasma secondary to cell lysis. Testing HHV6 PCR in hair follicles can differentiate this condition from true HHV6 infection/reactivation. Since we did not perform this test in our patient, it is possible that the patient could have had chromosomally-integrated HHV6. However, chromosomally-integrated HHV6 is very rare (less than 1% of the population) and individuals with this rare condition are still at risk for HHV6 reactivation and CNS infection when immunocompromised (Aimola et al., 2020). The fact that our patient tested positive for serum HHV6-IgG argues against chromosomally-integrated HHV6 since these patients often develop immune tolerance to viral proteins and usually test negative for HHV6 antibodies (Tanaka-Taya et al. 2004). The decline in
viral copies after treatment with ganciclovir also supports HHV6 reactivation. Second to encephalitis, HHV6 myelitis is a relatively common manifestation of HHV6 reactivation in immunocompromised patients (Shiroshita et al., 2019). Therefore, the occurrence of this typical presentation in our immunodeficient patient with positive HHV6 PCR in CSF, CSF pleocytosis in the typical viral range, and good clinical and serological response to ganciclovir is less likely to be a rare coincidence. Moreover, HHV6 infection/reactivation has been shown to trigger demyelination so the positivity to the demyelinating antibody in our patient is in itself supportive of HHV6 infection (Dunn et al., 2020).

In conclusion, patients with neurological manifestations in the setting of COVID-19 lymphopenia/hypogammaglobulinemia may need to be tested for opportunistic infections including HHV6 in the correct clinical setting. Combined anti-viral and immunomodulating therapies may be necessary to promote recovery in these special cases. Demyelinating antibodies like MOG-IgG and AQP4-IgG should be tested in the setting of a suspicious clinical picture, such as longitudinally extensive myelitis or severe optic neuritis. MOG-IgG should then be repeated as persistent positivity may predict recurrent disease while transient positivity usually indicates a monophasic course (Cobo-Calvo et al., 2020). This case expands the spectrum of autoimmune and infectious neurological complications of COVID-19.

Appendix 1:

Name	Location	Contribution
Muruj Jumah, MD	University Hospitals of Cleveland / Case Western Reserve University, Cleveland	Writing manuscript first draft, acquisition and interpretation of data, literature review, constructing figure and graphical abstract.
Farah Rahman	Case Western Reserve University, Cleveland, OH	Co-writing manuscript first draft, acquisition and interpretation of data, literature review, constructing table.
Mark Figgie, MD	University Hospitals of Cleveland / Case Western	Acquisition and interpretation of data.
References:

Abadías-Granado et al, 2021 Abadías-Granado I, Navarro-Bielsa A, Morales-Callaghan AM, Roc L, Suso-Estivalez CC, Pobar-Echeverría M, Gilaberte Y. COVID-19-associated cutaneous manifestations: does HHV-6 play an etiological role? Br J Dermatol. 2021 Jan 8. doi: 10.1111/bjd.19806. Epub ahead of print. PMID: 33420720.

Abdelhady et al., 2020 Abdelhady M, Elsotouhy A, Vattoth S, et al. Acute Flaccid Myelitis in COVID-19: A Case Report. BJR|case reports. 2020 Jul 24;6(3):20200098. doi:10.1259/bjrcr.20200098

Aimola et al., 2020 Aimola G, Beythien G, Aswad A, Kaufer BB. Current understanding of human herpesvirus 6 (HHV-6) chromosomal integration. Antiviral Res. 2020 Apr;176:104720. doi: 10.1016/j.antiviral.2020.104720. Epub 2020 Feb 7. PMID: 32044155.

Alketbi et al., 2020 Alketbi R, Alnuaimi D, Almulla M, Altalai N, Samir M, Kumar N, et al. Acute myelitis as a neurological complication of Covid-19: A case report and MRI findings. Radiology Case Reports. 2020;15(9):1591–5. doi.org/10.1016/j.radcr.2020.06.001

Baghbanian and Namazi, 2020 Baghbanian, S., Namazi, F. Post COVID-19 longitudinally extensive transverse myelitis (LETM)–a case report. Acta Neurol Belg (2020). https://doi.org/10.1007/s13760-020-01497-x

Chakraborty et al., 2020 Chakraborty U, Chandra A, Ray AK, et al. COVID-19 – Associated Transverse Myelitis: A Rare Entity BMJ Case Rep 2020;13:e238668. doi:10.1136/bcr-2020- 238668

Chow et al., 2020 Chow CCN, Magnussen J, Ip J, et al.
Acute Transverse Myelitis in COVID-19 Infection: A Case Report
BMJ Case Rep 2020;13:e236720. doi:10.1136/bcr-2020-236720.

Cobo-Calvo et al., 2020 Cobo-Calvo A, Ruiz A, Rollet F, Arrambide G, Deschamps R, Maillart E, Papeix C, Audoin B, Lépine AF, Maurey H, Zephir H, Biotti D, Ciron J, Durand-Dubief F, Collongues N, Ayriagnac X, Labauge P, Pierre M, Thouvenet E, Bourre B, Montcuquet A, Cohen M, Horellou P, Tintoré M, De Seze J, Vukusic S, Deiva K, Marignier R; NOMADMUS, KidBioSEP and OFSEP study groups. Clinical features and risk of relapses in children and adults with MOGAD. Ann Neurol. 2020 Sep 21. doi: 10.1002/ana.25909. Epub ahead of print. PMID: 32959427.

Drago et al., 2020 Drago F, Ciccarese G, Rebora A, Parodi A. Human herpesvirus-6, -7, and Epstein-Barr virus reactivation in pityriasis rosea during COVID-19. J Med Virol. 2020 Sep 24;10.1002/jmv.26549. doi: 10.1002/jmv.26549. Epub ahead of print. PMID: 32970319; PMCID: PMC7537064.

Dunn et al., 2020 Dunn N, Kharlamova N, Fogdell-Hahn A. The role of herpesvirus 6A and 6B in multiple sclerosis and epilepsy. Scand J Immunol. 2020 Dec;92(6):e12984. doi: 10.1111/sji.12984. Epub 2020 Oct 23. PMID: 33037649; PMCID: PMC7757173.

Dupont et al, 2020 Dupont T, Caillat-Zucman S, Fremeaux-Bacchi V, Torir P, Lengliné E, Darmon M, Peffault de Latour R, Zafrani L, Azoulay E, Dumas G. Identification of Distinct Immunophenotypes in Critically Ill Coronavirus Disease 2019 Patients. Chest. 2020 Dec 11:S0012-3692(20)35351-4. doi: 10.1016/j.chest.2020.11.049. Epub ahead of print. PMID: 33316234; PMCID: PMC7831685.

Dursun, 2020 Dursun R. The clinics of HHV-6 infection in COVID-19 pandemic: Pityriasis rosea and Kawasaki disease. Dermatol Ther. 2020;(May 2020). doi:10.1111/dth.13730

Greenberg et al, 2007 Greenberg BM, Thomas KP, Krishnan C, Kaplin AI, Calabresi PA, Kerr DA. Idiopathic transverse myelitis: corticosteroids, plasma exchange, or cyclophosphamide. Neurology. 2007 May 8;68(19):1614-7. doi: 10.1212/01.wnl.0000260970.63493.c8. PMID: 17485649

Li et al., 2020 Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, Shen B, Gong Z, et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020 May;94:122-132. doi: 10.1016/j.ijid.2020.03.053. Epub 2020 Apr 3. PMID: 32251805; PMCID: PMC7128884.

Lisnic et al., 2020 Lisnic V, Nemtan V, Hacina E, Topciu G, Manole E, Thurnher MM, et al. Acute transverse myelitis in a HIV-positive patient with COVID-19. The Moldovan Medical Journal. 2020Oct2;63(5):51–3. doi:10.21203/rs.3.rs-50901/v1

Munz et al., 2020 Munz, M., Wessendorf, S., Koretis, G. et al. Acute transverse myelitis after COVID-19 pneumonia. J Neurol 267, 2196–2197 (2020). doi.org/10.1007/s00415-020-09934-w

Needham et al., 2020 Needham, E.J., Chou, S.HY., Coles, A.J. et al. Neurological Implications of COVID-19 Infections. Neurocrit Care 32, 667–671 (2020). https://doi.org/10.1007/s12028-020-00978-4

Saberi et al., 2020 Saberi A, Ghayeghran A, Hatamian H, Hosseini-Nejad M, Eghbali BB, et al. COVID-19-Associated Myelitis, Para/Post Infectious or Infectious Myelitis: A Case Report From the North of Iran. Caspian Journal of Neurological Sciences. 2020Apr10:6(2):132–8. doi:10.32598/CJNS.6.21.1

Sarma and Bilello et al., 2020 Sarma D, Bilello L. A Case Report of Acute Transverse Myelitis Following Novel Coronavirus Infection.
Shiroshita et al., 2020 Shiroshita K, Mori T, Kato J, Sakurai M, Koda Y, Abe R, Murakami K, Sumiya C, Fujita S, Yamaguchi K, Yamazaki R, Nakayama H, Suzuki S, Nakahara J, Okamoto S. Clinical characteristics of human herpesvirus-6 myelitis after allogeneic hematopoietic stem cell transplantation and its favorable outcome by early intervention. Bone Marrow Transplant. 2020 May;55(5):939-945. doi: 10.1038/s41409-019-0755-2. Epub 2019 Nov 21. PMID: 31754252.

Sotoca and Rodríguez-Álvarez, 2020 Sotoca J, Rodríguez-Álvarez Y. COVID-19-associated acute necrotizing myelitis. Neurol Neuroimmunol Neuroinflamm. 2020 Jun 10;7(5):e803. doi:10.1212/NXI.0000000000000803. PMID: 32522767; PMCID: PMC7309521.

Tanaka-Taya et al., 2004 Tanaka-Taya K, Sashihara J, Kurahashi H, Amo K, Miyagawa H, Kondo K, Okada S, Yamanishi K. Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. J Med Virol. 2004 Jul;73(3):465-73. doi: 10.1002/jmv.20113. PMID: 15170644.

Terpos et al., 2020 Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020 Jul;95(7):834-847. doi: 10.1002/ajh.25829. Epub 2020 May 23. PMID: 32282949; PMCID: PMC7262337.

Valiuddin et al., 2020 Valiuddin H, Skwirsk B, Paz-Arabo P, et al. Acute transverse myelitis associated with SARS-CoV-2: A Case-Report. Brain Behav Immun Health. 2020 May;5:100091. doi: 10.1016/j.bbih.2020.100091. Epub 2020 Jun 6. PMID: 32835294; PMCID: PMC7275168.

Vierira et al., 2020 Vieira JP, Sequeira J, Brito MJ, et al. Postinfectious Anti–Myelin Oligodendrocyte Glycoprotein Antibody Positive Optic Neuritis and Myelitis. J Child Neurol. 2017;32(12):992-999. doi:10.1177/0883073817724927

Zachariaidis et al., 2020 Zachariaidis A., Tulbu A., Strambo D. et al. Transverse myelitis related to COVID-19 infection. J Neurol 267, 3459–34 1 (2020). doi.org/10.1007/s00415-020-09997-9

Zhou et al., 2020 Zhou S, Jones-Lopez EC, Soneji DJ, Azevedo CJ, Patel VR, et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis and Myelitis in COVID-19. J Neuroophthalmol. 2020 Sep;40(3):398-402. doi: 10.1097/WNO.0000000000001049. PMID: 32604245; PMCID: PMC7382408.
Abstract:

Background: Serious neurological complications of SARS-CoV-2 are increasingly being recognized.

Case: We report a novel case of HHV6 myelitis with parainfectious MOG-IgG in the setting of COVID-19-induced lymphopenia and hypogammaglobulinemia. The patient experienced complete neurological recovery with gancyclovir, high dose corticosteroids, and plasma exchange. To our knowledge, this is the first case of HHV6 reactivation in the central nervous system in the setting of COVID19 infection and the first case of MOG-IgG myelitis in the setting of SARS-CoV-2 and HHV6 coinfection.

Conclusion: Patients with neurological manifestations in the setting of COVID19-related immunodeficiency should be tested for opportunistic infections including HHV6. Viral infection is a known trigger for MOG-IgG and therefore this antibody should be checked in patients with SARS-CoV-2 associated demyelination.
Fig. 1. Spinal cord magnetic resonance imaging of the patient:

(A, B) T2 weighted sagittal images of the thoracic spine show multifocal hyperintense lesions (white arrows) throughout the thoracic spinal cord. (C, D) Axial GRE T2 weighted images demonstrate ventral and central cord hyperintensity (white arrows) at the levels of T6 and T5, respectively.
Case Report	Size-location	SARS-CO-V2	HHV6	Other viruses	Oligoclonal bands	MOG-IgG	AQP4-IgG	Outcome	Treatment
Munz et al. May 2020	Short segment – thoracic	Positive pharyngeal PCR, Negative CSF PCR	Negative HSV CSF PCR	Negative	Negative	Negative	N/A	Positive	N/A
Zachariadis et al. June 2020	Short segment – thoracic	Negative nasopharyngeal PCR, positive IgG and IgM on serology	Negative in serum, not reported in CSF	Negative	Negative	Negative	N/A	Positive	N/A
Sotoca et al. September 2020	Longitudinally extensive from the medulla to the thoracic cord	Positive oropharyngeal PCR, Negative CSF PCR	Negative serum and CSF PCR	Negative	Negative	Negative	N/A	Partial	IVIG, steroids
Sarma et al. May 2020	Longitudinally extensive from the medulla to the conus	Positive oropharyngeal PCR, Negative CSF PCR	Negative	Not reported	Not reported	Not reported	Not reported	Partial	Steroids, Plasma exchange
Valiuddin et al. June 2020	Longitudinally extensive – cervical	Positive nasopharyngeal PCR, Negative CSF PCR	Not reported	Negative	Negative	Negative in CSF		Partial	Steroids
AlKetbi et al. September 2020	Longitudinally extensive from the cervical cord to the conus	Positive nasopharyngeal PCR, Negative CSF PCR	Not reported	Negative - Serum HSV 1 and 2, adenovirus, EBV, CMV and HIV	Negative	Not reported	Not reported	Partial	Steroids
Baghbanian et al. September 2020	Longitudinally extensive thoracic	Positive nasopharyngeal PCR, Negative CSF PCR	Not reported	Negative - CSF PCR for CMV and HSV	Negative	Negative	N/A	Partial	Steroids
Chow et al. August 2020	Longitudinally extensive – thoracic	Positive nasopharyngeal PCR, Negative CSF PCR	Not reported	Negative - Serology for EBV, CMV, HIV, hepatitis B and C	Negative	Negative	N/A	Partial	Steroids
Chakraborty et al. August 2020	Short segment - thoracic	Positive nasopharyngeal PCR, negative CSF PCR	Not reported	Negative - serology for hepatitis B, hepatitis C, HIV I and II	Not reported	Not reported	Not reported	Partial	Steroids
Authors	Disease Localization	Nasopharynx PCR	Cerebrospinal Fluid PCR	Other Reported Tests	Treatment	Outcome			
------------------	----------------------	-------------------	-------------------------	--	--	--------------			
Abdelhady et al.	Longitudinally extensive – thoracic	Positive	Not reported	Negative - hepatitis B and C, herpes simplex viruses	Not reported	Not reported			
Saberi, A. et al.	Longitudinally extensive – cervical	Negative nasopharyngeal PCR, “suspicious” CSF PCR	Not reported	Not reported	Negative				
Lisnic et al.	Longitudinally extensive – cervical and thoracic	Positive pharyngeal PCR, CSF not reported	Not reported	Negative - Serum and CSF HSV 1, 2, 6, CMV, EBV,	Negative				
Zhao, K. et al.	Uncertain – sensory level at T10 with bowel and bladder incontinence and LE paralysis	Positive nasopharyngeal PCR, CSF not reported	Not reported	Negative - EBV IgM, influenza B virus IgM, adenovirus IgM, coxsackievirus IgM, influenza A virus IgM, parainfluenza virus IgM, CMV IgM, RSV IgM	Not reported				
Zhou, S. et al.	Longitudinally extensive – cervical and thoracic	Positive nasopharyngeal PCR, Negative CSF PCR	Not reported	Negative	Positive				

Short segment less than three spinal levels (e.g. C5-C6)

Longitudinally extensive more than three spinal levels (e.g. from C2 to T12)