ON THE GROUND STATE OF QUANTUM LAYERS

ZHIQIN LU

1. Introduction

The problem is from mesoscopic physics: let \(p: \Sigma \rightarrow \mathbb{R}^3 \) be an embedded surface in \(\mathbb{R}^3 \), we assume that

1. \(\Sigma \) is orientable, complete, but non-compact;
2. \(\Sigma \) is not totally geodesic;
3. \(\Sigma \) is asymptotically flat in the sense that the second fundamental form goes to zero at infinity.

On can build a quantum layer \(\Omega \) over such a surface \(\Sigma \) as follows: as a differentiable manifold, \(\Omega = \Sigma \times [-a, a] \) for some positive number \(a \). Let \(\vec{N} \) be the unit normal vector of \(\Sigma \) in \(\mathbb{R}^3 \). Define

\[
\tilde{p}: \Omega \rightarrow \mathbb{R}^3
\]

by

\[
\tilde{p}(x, t) = p(x) + t\vec{N}(x).
\]

Obviously, if \(a \) is small, then \(\tilde{p} \) is an embedding. The Riemannian metric \(ds^2_\Omega \) is defined as the pull-back of the Euclidean metric via \(\tilde{p} \). The Riemannian manifold \((\Omega, ds^2_\Omega) \) is called the quantum layer.

Let \(\Delta = \Delta_\Omega \) be the Dirichlet Laplacian. Then we make the following

Conjecture 1. *Using the above notations, and further assume that*

\[
(1.1) \quad \int_{\Sigma} |K|d\Sigma < +\infty.
\]

Then the ground state of \(\Delta \) exists.

We make the following explanation of the notations and terminology:

1. \(\Omega \) is a smooth manifold with boundary. The Dirichlet Laplacian is the self-adjoint extension of the Laplacian acting on \(C_0^\infty(\Omega) \);
2. By a theorem of Huber \[4\], if \((1.1) \) is valid, then \(\Sigma \) is differmorphic to a compact Riemann surface with finitely many points removed. Moreover, White \[10\] proved that if

\[
\int_{\Sigma} K^-d\Sigma < +\infty,
\]

Date: July 21, 2007.

The author is partially supported by NSF Career award DMS-0347033 and the Alfred P. Sloan Research Fellowship.
then
\[\int_\Sigma |K| d\Sigma < +\infty. \]

Thus (1.1) can be weakened.

(3) Since \(\Delta \) is a self-adjoint operator, the spectrum of \(\Delta \) is the disjoint union of two parts: pure point spectrum (eigenvalues of finite multiplicity) and the essential spectrum. The ground state is the smallest eigenvalue with finite multiplicity.

(4) The conjecture was proved under the condition
\[\int_\Sigma K d\Sigma \leq 0 \]

in [2, 1] by Duclos, Exner and Krejčířík and later by Carro n, Exner, and Krejčířík. Thus the remaining case is when
\[\int_\Sigma K d\Sigma > 0. \]

By a theorem of Hartman [3], we know that
\[\int_\Sigma K = 2\pi\chi(\Sigma) - \sum \lambda_i \]

where \(\lambda_i \) are the isoperimetric constants at each end of \(\Sigma \). Thus we have
\[\chi(\Sigma) > 0 \]

and \(g = 0 \). The surface must be diffeomorphic to \(\mathbb{R}^2 \). However, even through the topology of the surface is completely known, this is the most difficult case for the conjecture.

2. VARIATIONAL PRINCIPLE

It is well known that
\[\sigma_0 = \inf_{f \in C_0^\infty(\Omega)} \frac{\int_{\Omega} |\nabla f|^2 d\Omega}{\int_{\Omega} f^2 d\Omega} \]

is the infimum of the Laplacian, and

\[\sigma_{\text{ess}} = \sup_K \inf_{f \in C_0^\infty(\Omega \setminus K)} \frac{\int_{\Omega} |\nabla f|^2 d\Omega}{\int_{\Omega} f^2 d\Omega} \]

is the infimum of the essential spectrum, where \(K \) is running over all the compact subset of \(\Omega \). Since \(\Omega = \Sigma \times [-a, a] \), it is not hard to see that

\[\sigma_{\text{ess}} = \sup_{K \subset \Sigma} \inf_{f \in C_0^\infty(\Omega \setminus K \times [-a, a])} \frac{\int_{\Omega} |\nabla f|^2 d\Omega}{\int_{\Omega} f^2 d\Omega}, \]

where \(K \) is running over all the compact set of \(\Sigma \).

By definition, we have \(\sigma \leq \sigma_{\text{ess}} \). Furthermore, we have

Proposition 2.1. If \(\sigma_0 < \sigma_{\text{ess}} \), then the ground state exists and is equal to \(\sigma_0 \).
Let \((x_1, x_2, t)\) be a local coordinate system of \(\Sigma\). Then \((x_1, x_2, t)\) defines a local coordinate system of \(\Omega\). Such a local coordinate system is called a Fermi coordinate system. Let \(x_3 = t\) and let \(ds^2 = G_{ij}dx_idx_j\). Then we have

\[
G_{ij} = \begin{cases}
(p + t\vec{N})_{x_i}(p + t\vec{N})_{x_j} & 1 \leq i, j \leq 2; \\
0 & i = 3, \text{ or } j = 3, \text{ but } i \neq j; \\
1 & i = j = 3.
\end{cases}
\]

We make the following definition: let \(f\) be a smooth function of \(\Omega\). Then we define

\[
Q(f, f) = \int_\Omega |\nabla f|^2d\Omega - \kappa^2 \int_\Omega f^2d\Omega; \\
Q_1(f, f) = \int_\Omega |\nabla' f|^2d\Omega; \\
Q_2(f, f) = \int_\Omega \left(\frac{\partial f}{\partial t}\right)^2d\Omega - \kappa^2 \int_\Omega f^2d\Omega,
\]

where \(|\nabla' f|^2 = \sum_{i,j=1}^{2} G^{ij} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}|^2\).

Obviously, we have

\[
Q(f, f) = Q_1(f, f) + Q_2(f, f).
\]

It follows that

\[
\int_\Omega |\nabla f|^2d\Omega = \int_\Omega |\nabla' f|^2d\Omega + \int_\Omega \left(\frac{\partial f}{\partial t}\right)^2d\Omega
\]

for a smooth function \(f \in C^\infty(\Omega)\), where

\[
|\nabla' f|^2 = \sum_{1 \leq i, j \leq 2} G^{ij} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}
\]

is the norm of the horizontal differential. Apparently, we have

\[
\int_\Omega |\nabla f|^2d\Omega \geq \int_\Omega \left(\frac{\partial f}{\partial t}\right)^2d\Omega.
\]

Let \(ds^2 = g_{ij}dx_idx_j\) be the Riemannian metric of \(\Sigma\) under the coordinates \((x_1, x_2)\). Then we are above to compare the matrices \((G_{ij})_{1 \leq i, j \leq 2}\) and \((g_{ij})\), at least outside a big compact set of \(\Sigma\). By (2.3), we have

\[
G_{ij} = g_{ij} + tp_{x_i}\vec{N}_{x_j} + tp_{x_j}\vec{N}_{x_i} + t^2\vec{N}_{x_i}\vec{N}_{x_j}.
\]

We assume that at the point \(x\), \(g_{ij} = \delta_{ij}\). Then we have

\[
|G_{ij} - \delta_{ij}| \leq 2a|B| + a^2|B|^2,
\]

where \(B\) is the second fundamental form of the surface \(\Sigma\). Thus we have the following conclusion:
Proposition 2.2. For any \(\varepsilon > 0 \), there is a compact set \(K \) of \(\Sigma \) such that on \(\Sigma \setminus K \) we have
\[
(1 - \varepsilon) \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \leq \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} \leq (1 + \varepsilon) \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}.
\]
In particular, we have
\[
(1 - \varepsilon)^2 d\Sigma dt \leq d\Omega \leq (1 + \varepsilon)^2 d\Sigma dt.
\]
\(\square\)

Let \(\kappa = \frac{\pi}{2a} \). Then we proved the following:

Lemma 2.1. Using the above notations, we have
\[
\sigma_{\text{ess}} \geq \frac{\pi^2}{4a^2}.
\]

Proof. Let \(K \) be any compact set of \(\Sigma \). If \(f \in C_0^\infty(\Omega \setminus K) \), then by Proposition 2.2, we have
\[
\int_{\Omega} \left(\frac{\partial f}{\partial t} \right)^2 d\Omega \geq (1 - \varepsilon)^2 \int_{\Sigma} \int_{-a}^{a} \left(\frac{\partial f}{\partial t} \right)^2 dt d\Sigma \geq (1 - \varepsilon)^2 \int_{\Sigma} f^2 dtd\Sigma,
\]
where the last inequality is from the 1-dimensional Poincaré inequality. Thus by using Proposition 2.2 again, we have
\[
\int_{\Omega} |\nabla f|^2 d\Omega \geq \frac{(1 - \varepsilon)^2}{(1 + \varepsilon)^2} \kappa^2 \int_{\Sigma} f^2 dtd\Sigma,
\]
for any \(\varepsilon \). Thus we have
\[
\sigma_{\text{ess}} \geq \frac{(1 - \varepsilon)^2}{(1 + \varepsilon)^2} \kappa^2
\]
and the lemma is proved. \(\square\)

Remark 2.1. Although not needed in this paper, we can actually prove that \(\sigma_{\text{ess}} = \kappa^2 \). To see this, we first observe that since the second fundamental form of \(\Sigma \) is bounded, there is a lower bound for the injectivity radius. As a result, the volume of the surface \(\Sigma \) is infinite. By the assumption, the Gauss curvature is integrable. Thus \(\Sigma \) is parabolic (cf. [5]). From the above, we conclude that for any \(\varepsilon, C > 0 \) and any compact sets \(K \subset K' \) of \(\Sigma \), there is a smooth function \(\varphi \in C_0^\infty(\Sigma \setminus K') \) such that
\[
\varphi \equiv 1 \text{ on } K, \quad \int_{\Sigma} \varphi^2 d\Sigma > C, \quad \text{and} \quad \int_{\Sigma} |\nabla \varphi|^2 d\Sigma < \varepsilon.
\]

Let \(\tilde{\varphi} = \varphi \chi \), where \(\chi = \cos \kappa t \). Then \(\tilde{\varphi} \) is a function on \(\Omega \) with compact support. Since the second fundamental form goes to zero at infinity, by Proposition 2.2 for \(K' \) large enough, we have
\[
\int_{\Omega} |\nabla \tilde{\varphi}|^2 d\Omega < 4a\varepsilon.
\]
Thus from (2.4) and Proposition 2.2 again, we have
\[Q(\tilde{\phi}, \tilde{\phi}) < 4a\varepsilon + (1 + \varepsilon)^2 \int_{\Sigma} \varphi^2 d\Sigma \int_{-a}^{a} \left(\frac{\partial \chi}{\partial t} \right)^2 dt \]
\[- (1 - \varepsilon)^2 \kappa^2 \int_{\Sigma} \varphi^2 d\Sigma \int_{-a}^{a} \chi^2 dt. \]
A straightforward computation gives
\[\int_{-a}^{a} \left(\frac{\partial \chi}{\partial t} \right)^2 dt = \kappa^2 \int_{-a}^{a} \chi^2 dt. \]
Thus
\[Q(\tilde{\phi}, \tilde{\phi}) \leq 4a\varepsilon + 4a\varepsilon \int_{\Sigma} \varphi^2 d\Sigma. \]
By the definition of \(\sigma_{\text{ess}} \), we have
\[\sigma_{\text{ess}} - \kappa^2 \leq \frac{Q(\tilde{\phi}, \tilde{\phi})}{\int_{\Omega} \varphi^2 d\Omega} \leq \frac{4\varepsilon(1 + \int_{\Sigma} \varphi^2 d\Sigma)}{(1 - \varepsilon)^2 \int_{\Sigma} \varphi^2 d\Sigma}. \]
We let \(\varepsilon \to 0 \) and \(C \to \infty \), then we have \(\sigma_{\text{ess}} \leq \kappa^2 \), as needed.

3. The upper bound of \(\sigma_0 \)

It is usually more difficult to estimate \(\sigma_0 \) from above. In [7, Theorem 1.1], we proved the following

Theorem 3.1. Let \(\Sigma \) be a convex surface in \(\mathbb{R}^3 \) which can be represented by the graph of a convex function \(z = f(x, y) \). Suppose \(0 \) is the minimum point of the function and suppose that at \(0 \), \(f \) is strictly convex. Furthermore suppose that the second fundamental form goes to zero at infinity. Let \(C \) be the supremum of the second fundamental form of \(\Sigma \). Let \(Ca < 1 \). Then the ground state of the quantum layer \(\Omega \) exists.

In this section, we generalize the above result into the following:

Theorem 3.2. Let \(\Sigma \) be a complete surface in \(\mathbb{R}^3 \) with nonnegative Gauss curvature but not totally geodesic. Furthermore suppose that the second fundamental form of \(\Sigma \) goes to zero at infinity. Let \(C \) be the supremum of the second fundamental form of \(\Sigma \). Let \(Ca < 1 \). Then the ground state of the quantum layer \(\Omega \) built over \(\Sigma \) with width \(a \) exists.

Remark 3.1. Since for all convex function \(f \) in Theorem 3.1, the Gauss curvature is nonnegative, the above theorem is indeed a generalization of Theorem 3.1. On the other hand, by a theorem of Sacksteder [9], any complete surface of nonnegative curvature is either a developable surface or the graph of some convex function. At a first glance, it seems that there is not much difference between the surfaces in both theorems. However, we have to use a complete different method to prove this slight generalization.
Proof of Theorem 3.2. If the Gauss curvature is identically zero, then by \cite[Theorem 2]{8}, the ground state exists.

If the Gauss curvature is positive at one point, then by using the theorem of Sacksteder \cite{9}, \(\Sigma \) can be represented by the graph of some convex function. If we fix an orientation, we can assume that \(H \), the mean curvature, is always nonnegative.

By a result of White \cite{10}, we know that there is an \(\varepsilon_0 > 0 \) such that for \(R > R_0 > R_1 \),

\[
\int_{\partial B(R)} ||B|| > \varepsilon_0,
\]

where \(B \) is the second fundamental form of \(\Sigma \). Since \(\Sigma \) is convex, we have

\[
H \geq \frac{1}{2} ||B||.
\]

Thus we have

\begin{equation}
(3.1) \quad \int_{B(R_2) \setminus B(R_1)} H \, d\Sigma \geq \frac{1}{2} \varepsilon_0 (R_2 - R_1)
\end{equation}

provided that \(R_2 > R_1 \) are large enough.

We will create suitable test functions using the techniques similar to \cite{2, 11, 1, 6, 8}. Let \(\varphi \in C^\infty_0 (\Sigma \setminus B(\frac{R}{2})) \) be a smooth function such that

\[
\varphi \equiv 1 \quad \text{on} \quad B(2R) \setminus B(R), \quad \int_\Sigma |\nabla \varphi|^2 d\Sigma < \varepsilon_1,
\]

where \(\varepsilon_1 \to 0 \) as \(R \to \infty \). The existence of such a function \(\varphi \) is guaranteed by the parabolicity of \(\Sigma \). Then we have, as in Remark 2.1, that

\[
Q(\varphi \chi, \varphi \chi) < 4a\varepsilon_1 + 2a\pi^2 \int_{\Sigma \setminus B(R/2)} K \varphi^2 d\Sigma.
\]

Since \(K \) is integrable, for any \(\varepsilon_2 > 0 \), there is an \(R_0 > 0 \) such that if \(R > R_0 \), we have

\[
Q(\varphi \chi, \varphi \chi) < \varepsilon_2.
\]

Now let’s consider a function \(j \in C^\infty_0 (B(\frac{4}{3}R) \setminus B(\frac{2}{3}R)) \). Consider the function \(j \chi(t)t \), where \(j \) is a smooth function on \(\Sigma \) such that \(j \equiv 1 \) on \(B(\frac{19}{12}R) \setminus B(\frac{17}{12}R); \ 0 \leq j \leq 1; \ \text{and} \ |\nabla j| < 2 \). Then there is an absolute constant \(C_1 \), such that

\[
Q(j \chi(t)t, j \chi(t)t) \leq C_1 R^2.
\]

Finally, let’s consider \(Q(\varphi \chi(t), j \chi(t)t) \). Since \(\text{supp} j \subset \{ \varphi \equiv 1 \} \), by \cite{23, 5}, \(Q_1(\varphi \chi(t), j \chi(t)t) = 0 \). Let

\[
\sigma = - \int_{-a}^a \chi'(t) \chi(t) t \, dt > 0.
\]

Then

\[
Q(\varphi \chi(t), j \chi(t)t) = -\sigma \int_{\Sigma} j d\Sigma.
\]
Let $\varepsilon > 0$. Then we have
\[
Q(\varphi(t) + \varepsilon j\chi(t)t, \varphi(t) + \varepsilon j\chi(t)t) < \varepsilon - 2\varepsilon \sigma \int \Sigma jd\Sigma + \varepsilon^2 C_1 R^2.
\]
By (3.1), we have
\[
Q(\varphi(t) + \varepsilon j\chi(t)t, \varphi(t) + \varepsilon j\chi(t)t) < \varepsilon - \frac{1}{3}\varepsilon \sigma R + \varepsilon^2 C_1 R^2.
\]
If
\[
\varepsilon < \frac{\sigma^2}{36C_1},
\]
then there is a suitable $\varepsilon > 0$ such that
\[
Q(\varphi(t) + \varepsilon j\chi(t)t, \varphi(t) + \varepsilon j\chi(t)t) < 0.
\]
Thus $\sigma_0 < \kappa^2$. \hfill \Box

4. Further Discussions.

We proved the following more general

Theorem 4.1. We assume that Σ satisfies

1. The isopermetric inequality holds. That is, there is a constant $\delta_1 > 0$ such that if D is a domain in Σ, we have
 \[
 (\text{length}(\partial D))^2 \geq \delta_1 \text{Area}(D).
 \]

2. There is another positive constant $\delta_2 > 0$ such that for any compact set K of Σ, there is a curve C outside the set K such that if γ is one of its normal vector in Σ, then there is a vector \vec{a} such that
 \[
 \langle \gamma, \vec{a} \rangle \geq \delta_2 > 0
 \]
 for some fixed vector $\vec{a} \in \mathbb{R}^3$.

Then the ground state exists.

Proof. We let φ be a smooth function such that $\text{supp} \varphi \subset B(R) \setminus B(r)$ for $R >> R/4 >> 4r >> r > 0$ large. We also assume that on $B(R/2) \setminus B(2r)$, $\varphi \equiv 1$. Let $\varepsilon_0 > 0$ be a positive number to be determined later such that
\[
\int \Sigma |\nabla \varphi|^2 \leq \varepsilon_0, \quad \int \Sigma |\varphi|^2 \leq \varepsilon_0.
\]
Note that ε_0 is independent of R.

We let $\chi = \cos \frac{\pi}{2r}t$. Then there is a constant C such that
\[
Q(\varphi \chi, \varphi \chi) < C\varepsilon_0.
\]
Let C be a curve outside the compact set $B(4r)$ satisfying the condition in the theorem. We let R big enough that $C \subset B(R/4)$.

In order to construct the test functions, we let ρ be the cut-off function such that $\rho = 1$ if $t \leq 0$ and $\rho = 0$ if $t \geq 1$ and we assume that ρ is decreasing. Near the curve C, any point p has a coordinate (t, s), where
s ∈ C from the exponential map. To be more precise, let \((x_1, x_2)\) be the the local coordinates near \(C\) such that locally \(C\) can be represented by \(x_1 = 0\). Let the Riemannian metric under this coordinate system be
\[
g_{11}(dx_1)^2 + 2g_{12}dx_1dx_2 + g_{22}(dx_2)^2.
\]
The fact that \(\vec{\gamma}\) is a normal vector implies that if
\[
\vec{\gamma} = \gamma_1 \frac{\partial}{\partial x_1} + \gamma_2 \frac{\partial}{\partial x_2},
\]
then
\[
\gamma_1 g_{12} + \gamma_2 g_{22} = 0.
\]
Let \(\sigma_t(x_2)\) be the geodesic lines starting from \(x_2 \in C\) with initial vector \(\vec{\gamma}\). Then \(\sigma_t\) is the exponential map. The Jacobian of the map at \(t = 0\) is
\[
\begin{pmatrix}
\gamma_1 & \gamma_2 \\
0 & 1
\end{pmatrix}
\]
In particular, \(\gamma_1 \neq 0\) since the map must be nonsingular. A simple computation shows that \(\nabla t = \gamma_1 g^{12} \frac{\partial}{\partial x_1}\). Thus \(\nabla t\) is proportional to \(\vec{\gamma}\).

Let \(\varphi_1\) be a cut-off function such that \(\varphi_1 \equiv 1\) on \(B(R/4) \setminus B(4r)\) and \(\text{supp}(\varphi_1) \subset B(R/2) \setminus B(2r)\). We define \(\tilde{\rho}(p) = \varphi_1 \rho(t/\varepsilon_1)\), where \(\varepsilon_1\) is a positive constant to be determined. WLOG, let \(\vec{a}\) be the z-direction in the Euclidean space.

Let \(\vec{n}\) be the normal vector of \(\Sigma\). Let \(n_z\) be the z-component of \(\vec{n}\). We compute the following term
\[
Q(\varphi \chi, \tilde{\rho} n_z \chi_1) = -\int_{\Sigma} H \varphi \tilde{\rho} n_z d\Sigma \int_{-a}^a (\chi' \chi_1 t - \kappa^2 \chi \chi_1 t) dt.
\]
A straight computation shows that
\[
C_1 = \int_{-a}^a (\chi' \chi_1 t - \kappa^2 \chi \chi_1 t) dt = -1/2 \neq 0.
\]
Furthermore, we have \(H n_z = \Delta z\). As a result, we have
\[
-\int_{\Sigma} H \varphi \tilde{\rho} n_z d\Sigma = \int_{\Sigma} \nabla z \nabla \tilde{\rho} = \int_{\{t \leq \varepsilon_1\}} \nabla z \nabla \tilde{\rho}
\]
(Note that \(\varphi \equiv 1\) on the points we are interested). We have the following Taylor expansion:
\[
\nabla z \nabla \tilde{\rho}(t, x_2) = \nabla z \nabla \tilde{\rho}(0, x_2) + O(t)
\]
Since \(\int_{\{t \leq \varepsilon_1\}} O(t)/\varepsilon_1 = O(\varepsilon_1) \text{Length}(C)\), we have
\[
\int_{\Sigma} \nabla z \nabla \tilde{\rho} \geq (\delta_2 - O(\varepsilon_1)) \text{Length}(C)
\]
We choose ε_1 small enough, then we have
\[
\int_\Sigma \nabla z \nabla \rho \geq \frac{1}{2} \delta^2 \text{Length}(C)
\]
If we let $\varepsilon \to 0$, then that above becomes
\[- \int_\Sigma H \varphi \rho_n d\Sigma = \int_\Sigma \nabla z \nabla \rho \geq \delta^2 \text{Length}(C).
\]
Finally, we have $|\rho_n z| + |\nabla (\rho_n z)| \leq 2$, thus we have
\[
Q(\rho_n z \chi_1, \rho_n z \chi_1) \leq C \text{Area}(D),
\]
where D is the domain C enclosed. To summary, for any $\varepsilon < 0$, we have
\[
Q(\varphi \chi + \varepsilon \rho_n z \chi_1, \varphi \chi + \varepsilon \rho_n z \chi_1) \leq C \varepsilon_0 + 2 \varepsilon C_1 \delta \frac{\delta^2}{C^2} \text{Area}(D).
\]
Using the isoperimetric inequality, we know that if $\varepsilon_0 < \delta_1 \delta^2 / C^2$ is small enough, then
\[
Q(\varphi \chi + \varepsilon \rho_n z \chi_1, \varphi \chi + \varepsilon \rho_n z \chi_1) < 0
\]
which proves the theorem.

Using the same proof, we can prove the following:

Theorem 4.2. Using the same notations as in Conjecture [4], we assume further that
\[
||B||(x) \leq C/\text{dist}(x, x_0),
\]
where $x_0 \in \Sigma$ is a reference point of Σ. Then Conjecture [4] is true.

\[\square\]

References

[1] G. Carron, P. Exner, and D. Krejčiřík. Topologically nontrivial quantum layers. *J. Math. Phys.*, 45(2):774–784, 2004.
[2] P. Duclos, P. Exner, and D. Krejčiřík. Bound states in curved quantum layers. *Comm. Math. Phys.*, 223(1):13–28, 2001.
[3] P. Hartman. Geodesic parallel coordinates in the large. *Amer. J. Math.*, 86:705–727, 1964.
[4] A. Huber. On subharmonic functions and differential geometry in the large. *Comment. Math. Helv.*, 32:13–72, 1957.
[5] P. Li. Curvature and function theory on Riemannian manifolds. In *Surveys in differential geometry*, Surv. Differ. Geom., VII, pages 375–432. Int. Press, Somerville, MA, 2000.
[6] C. Lin and Z. Lu. On the discrete spectrum of generalized quantum tubes. *Communications of Partial Differential Equations*, 31:1529–1546, 2006.
[7] C. Lin and Z. Lu. Existence of bounded states for layers built over hypersurfaces in \mathbb{R}^{n+1}. *J. Funct. Anal.*, 244(1):1–25, 2007.
[8] C. Lin and Z. Lu. Quantum layers over surfaces ruled outside a compact set. *Journal of Mathematical Physics*, 48:053522, 2007.
[9] R. Sacksteder. On hypersurfaces with no negative sectional curvatures. *Amer. J. Math.*, 82:609–630, 1960.
[10] B. White. Complete surfaces of finite total curvature. *J. Differential Geom.*, 26(2):315–326, 1987.
Department of Mathematics, University of California, Irvine, Irvine, CA 92697

E-mail address, Zhiqin Lu: zlu@math.uci.edu