Chemical vs entomopathogenic control of *Thaumastocoris peregrinus* (Hemiptera: Thaumastocoridae) via aerial application in eucalyptus plantations

Carlos Frederico Wilcken¹, Mário Henrique Ferreira do Amaral Dal Pogetto², Alexandre Coutinho Vianna Lima³, Everton Pires Soliman³, Bianca Vique Fernandes⁴, Isabel Moreira da Silva⁵, Antonio José Vinha Zanuncio⁶, Leonardo Rodrigues Barbosa⁷ & José Cola Zanuncio⁸

The *Thaumastocoris peregrinus* spread to eucalyptus plantations in many countries. Chemical control is a questionable measure, mainly due to the environmental impact, high cost and moreover has the use restricted by the forest certifications. Bio-insecticides may have similar efficiency to chemical products to control *T. peregrinus*. The chemical thiamethoxam, thiamethoxam + lambda-cyhalothrin, acephate and the microbial *Beauveria bassiana* and *Metarhizium anisopliae* insecticides were tested at different doses to manage *T. peregrinus*. The products were sprayed on eucalyptus plants using aircraft and populations of this insect were counted before application and at 1, 14 and 21 days afterwards (DAA). Ten eucalyptus trees were evaluated per plot, with the collection of ten leaves from the middle third of the crown of each tree, and the number of *T. peregrinus* nymphs and adults obtained per leaf was determined. All the chemical insecticides had similar control at 1 DAA for *T. peregrinus* nymphs and adults. At 14 DAA, the number of *T. peregrinus* nymphs and adults on eucalyptus leaves was similar for the chemical and microbial insecticide treatments. At 21 DAA the control efficiency of *T. peregrinus* nymphs and adults was higher than 80% with all insecticides. The entomopathogenic insecticides have potential for aerial application to control *T. peregrinus* nymphs and adults and provide viable and environmentally-friendly alternative to manage this pest.

Eucalyptus (Myrtales: Myrtaceae), a native plant mainly from Australia, was introduced to Brazil and planted in genetically homogeneous and continuous areas to produce raw material for the forestry industry¹². Eucalyptus plantations occupy 5.7 million hectares, representing 72% of the total planted trees in this country¹. Homogeneous forests may be more susceptible to pests¹⁴ reducing productivity of Eucalyptus plants²⁻⁹.

Thaumastocoris peregrinus Carpintero & Dellapé 2006 (Hemiptera: Thaumastocoridae) is a serious pest with a rapid dispersal rate in eucalyptus species and hybrids due to high reproductive capacity, rapid colonization and...
broad infestation10,11. An Australian native, this pest spread to South Africa, Zimbabwe, Malawi, Kenya12 and to countries such as Argentina13, Brazil14,15, Chile16, Italy17, New Zealand18, Portugal19, Uruguay20 and Mexico21. In Brazil, this insect was detected in 2008 in Rio Grande do Sul and São Paulo states and later in Minas Gerais, Espírito Santo, Rio de Janeiro, Mato Grosso do Sul19, Goiás22, Paraná23, Santa Catarina24 and Sergipe25 states.

The short life cycle and high reproductive potential facilitate the rapid population growth of *T. peregrinus* in the field10,11,25,26, reducing photosynthetic apparatus an thus tree growth15 and productivity27. The analysis of the ecophysiological variables allows evaluating damages to the photosynthetic ability of *E. camaldulensis* by the bronze bug attack27. Sap sucking by *T. peregrinus* nymphs and adults causes chlorotic spots, leaf fall and decreases photosynthetic area12,14,17, which can lead to plant death35. Leaves damaged by *T. peregrinus* are initially silver, subsequently turning brown and red, which gives the tree a bronzed appearance, justifying its common name as bronze bug15. *Eucalyptus* species planted in Brazil includes *Eucalyptus camaldulensis*, *Eucalyptus grandis* and *Eucalyptus urophylla* and hybrids adequate for the *T. peregrinus* development and reproduction26.

Chemical control is, usually, used in insect population outbreaks and *T. peregrinus* was managed in urban areas with the systemic imidacloprid insecticide26. In Brazil the pyrethroid Capture 400 EC (FMC Agricultural Solutions) is the only product registered to control *T. peregrinus*. However, chemical control can cause environmental impact including reduction of natural enemies, intoxication of users and environmental contamination by the use of these products in extensive areas and moreover they have high cost and are restricted by the forest certification bodies26-28. Aerial spraying with insecticides may impact wildlife and beneficial insects29. The issue with aerial applications of neonicotinoids is related to its drift, gradual accumulation in target crop and non-crop vegetation, phloem-mediated translocation to nectar or pollen, the subsequent lethal and sub-lethal impacts on herbivores and higher trophic levels (including birds and arthropod natural enemies)32,33. Thus it is necessary to propose alternative control which are efficient, cost-effective and environmentally sound34,35.

Efficient strategies to manage the *T. peregrinus* in commercial plantations in Brazil are unavailable, thus, biological control is the viable option against this pest30,36. The Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae)12, Hemerobius bolivari Banks (Neuroptera: Hemerobiidae)15, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae)15 and predatory stinkbug have been reported as natural enemies of *T. peregrinus*12,25,26. In Brazil, microbial control is a viable alternative due to favorable environmental conditions. Entomopathogenic fungi are used against agricultural insect pests, because they are natural to the environment. *Beauvaria bassiana* (Bals.) Vuillemin and *Metarhizium anisopliae* (Metsch.) Sorokin have wide host range39. They are used via inoculative, conservative, incremental or inundative applications and penetrate host integument40. *Metarhizium anisopliae* and *B. bassiana* are effective against forest pests41-44. However, it is important to determine the concentrations of mycoinsecticide to overcome natural host defense mechanism barriers and to cause host death40,44. The importance of the forestry sector to the Brazilian economy and the introduction of *T. peregrinus* into Brazil make it necessary to reduce population outbreaks of this pest.

The objective of this study was to investigate the efficiency of entomopathogenic fungi compared to chemical insecticides to control *T. peregrinus*.

Results

The number of *T. peregrinus* nymphs and adults per eucalyptus leaf, before application, was similar between treatments (Table 1).

The number of *T. peregrinus* nymphs and adults per leaf was lower 1 day after the application of the insecticides thiamethoxam (Actara), thiamethoxam + lambda-cyhalothrin (Engeo Pleno) and acephate (Orthene) (Table 1), observing greater efficiency with the second product (Fig. 1). The control efficiency was 73; 81; 88; 90 and 95% for the acephate (Orthene), thiamethoxam (Actara) and Engeo Pleno at the rates of 0.15, 0.2 and 0.1 Kg/ha, respectively (Fig. 1).

Fourteen days after the application of the chemical and biological insecticides, the number of *T. peregrinus* nymphs and adults were similar (Table 1). The efficiency of thiamethoxam + lambda-cyhalothrin (0.2 L/ha), *M. anisopliae* (1 kg/ha), thiamethoxam (0.1 kg/ha) and *B. bassiana* (0.5 and 1 Kg/ha) was 81, 83, 91, 92 and 94%, respectively (Fig. 1).

The number of *T. peregrinus* nymphs and adults at 21 days after application was lower for *B. bassiana* with the lowest doses and similar to the treatments with Engeo Pleno, Orthene and Actara (0.15 Kg/ha) (Table 1). The control was above 80% in all treatments, with greater efficiency for *B. bassiana* 0.5 Kg/ha (99%) and acephate 0.5 kg/ha (97%) (Fig. 1).

Discussion

Biological insecticides, such as entomopathogenic fungi, are safer and have lower health risks than chemicals in pest control45,46. The bronze bug mortality by *B. bassiana* and *M. anisopliae* in the field is poorly studied but microbial products may have high efficiency in the integrated management of this pest in forest crops. Temperatures of 27, 28 and 29 °C and precipitation of 20; 25 and 63 mm in August, September and October were adequate for sporulation and favored the control efficiency of *T. peregrinus* by *B. bassiana* and *M. anisopliae*, as observed in other works46,47. These entomopathogens have a wide host range, but their germination, conidia persistence, host mortality and sporulation depend on adequate environmental conditions such as temperature and humidity48,49. *Beauvaria bassiana* and *M. anisopliae* can grow between 5 to 30 and 5 to 40 °C respectively, but showing optimal growth at temperatures of 25 and 30 °C50, determining their efficacy in biological control. This makes necessary an adequacy between the temperature and humidity for the efficiency of these fungi. Entomopathogen applications in the field are preferable in the late afternoon to avoid the negative impact of abrupt changes in temperature51. The low precipitation level may initially compromise the spore penetration and survival even at adequate temperatures. However, increased precipitation favored conidio genesis in the first dead individuals, with horizontal aerial applications confirming the importance of the forestry sector to the Brazilian economy and the introduction of *T. peregrinus* into Brazil make it necessary to reduce population outbreaks of this pest.
transmission and dissemination of the disease throughout the populations. This is important because the potential for fungus conidogenesis is determinant in the pathogen spread among pest individuals.

The higher efficiency of the chemical insecticides, 1 day after application, shows its faster impact due to the pyrethroid and neonicotinoid knock-down effect. This is similar to other neonicotinoids and pyrethroids such as imidacloprid and lambda-cyhalothrin. The data were transformed (x + 0.5) to the statistical analysis. Means followed by the same letter per column did not differ from each other by Tukey test (p < 0.05). DAA = days after insecticide applications. Unsatisfactory evaluation in the treatments with mycoinsecticides due to insufficient time to cause insect death.

Table 1. Mean number of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) nymphs and adults per eucalyptus leaf in the biological and chemical insecticide treatments before application and at 1, 14 and 21 day after application. lamb. + thiam = Lambda-cyhalothrin + thiamethoxam. The data were transformed (x + 0.5) before the statistical analysis. Means followed by the same letter per column did not differ from each other by Tukey test (p < 0.05). DAA = days after insecticide applications. Unsatisfactory evaluation in the treatments with mycoinsecticides due to insufficient time to cause insect death.

Treatment	Before	1 DAA*	14 DAA	21 DAA
Beauveria 0.5 Kg/ha	7.52 a	—	0.30 a	0.17 a
Beauveria 1.0 Kg/ha	8.03 a	—	0.26 a	0.44 ab
Beauveria 1.5 Kg/ha	5.28 a	—	0.65 ab	1.59 cd
Metarhizium 0.25 Kg/ha	0.17 a	—	2.08 b	1.27 bcd
Metarhizium 0.50 Kg/ha	0.44 a	—	0.30 ab	1.54 cd
Metarhizium 1 Kg/ha	1.59 a	—	0.63 ab	2.09 d
Actara (thiamethoxam) 0.1 Kg/ha	5.91 a	0.69 a	0.27 a	1.42 cd
Actara (thiamethoxam) 0.15 Kg/ha	3.54 a	0.74 a	2.00 ab	0.93 abc
Actara (thiamethoxam) 0.2 Kg/ha	3.73 a	0.75 a	0.94 ab	1.56 cd
Engeo Pleno (lamb. + thiam.) 0.2 L/ha	6.06 a	0.32 a	0.60 ab	0.43 ab
Orthene (acephate) 0.5 Kg/ha	2.96 a	0.90 a	0.58 ab	0.16 a
Control	2.61 a	2.95 b	1.36 ab	4.14 e
CV (%)	40.01	17.68	23.32	12.09
F	0.61**	9.90*	3.28	23.45*

Figure 1. Efficiency (%) of the insecticides Boveril (BIT 0.5 = BIT 0.5 kg/ha, BIT 1.0 = BIT 1.0 kg/ha, BIT 1.5 = BIT 1.5 kg/ha), Metarril (MIT 0.25 = MIT 0.25 kg/ha, MIT 0.50 = MIT 0.50 kg/ha, MIT 1.0 = MIT 1.0 kg/ha), Actara 0.1 = Actara (thiamethoxam 0.1 kg/ha), Actara 0.15 = Actara (thiamethoxam) 0.15 kg/ha, Actara 0.2 = Actara (thiamethoxam) 0.2 kg/ha, Engeo Pleno = Engeo Pleno (lambda cialothrin + thiamethoxam) 0.2/ha e Orthene = Orthene (acephate) 0.5 kg/ha to control Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) nymphs and adults in the first (1 day after application = DAA), second (14 DAA) and third (21 DAA) evaluations (Henderson-Tilton formula).
with microorganism strains, homogenized by manual shaking and stored in air-conditioned rooms with a controlled temperature and relative humidity and/or rainy periods. Additionally, they require longer periods to cause mortality compared to synthetic chemical products, but side-effects in infected insects reduce feeding and damage. The pathogenicity and virulence of the mycoinsecticides indicate that the fungi overcome the physical barriers such as insect sclerotized cuticle, but may have chemical properties inhibiting conidia germination. *Thaumastocoris peregrinus* control over 80% at 21 DAA using entomopathogenic fungi indicates the delayed effect of this product as found for *B. bassiana* surviving and colonizing foliar tissues 30 days after inoculation without damaging plants.

Methods

Obtaining fungal spores. The fungus *Beauveria bassiana* (isolated ESALQ PL63- obtained from *Atta* spp. in Piracicaba, São Paulo, Brazil) was the active ingredient of the product Boveril and *Metarhizium anisopliae* (ESALQ E9 isolate - obtained from *Atta* spp. in Boca da Mata, Alagoas, Brazil) that of the product Metarril. Both are deposited in the Bank of the Laboratory of Pathology and Microbial Control of Insects of ESALQ/USP Piracicaba, São Paulo, Brazil. These microorganisms were cultured by solid fermentation in rice and their conidia were dried and extracted for the assays. Spore production followed a methodology described, with modifications. This methodology includes pre-baking the rice, packing it in polypropylene bags, closing the bags and sterilizing them for 20 minutes in an autoclave at 121 °C. After cooling the rice, the substrate is inoculated with microorganism strains, homogenized by manual shaking and stored in air-conditioned rooms with a controlled temperature of 25 ± 1.0 °C and 12 hour photoperiod and placed on shelves for four days. After this time, the rice with mycelium was dried for three days under the same conditions of controlled temperature and photoperiod and sieved to extract the pure conidia (Personal communication, Luciano Koppert).
The pure spores of the entomopathogenic fungi were used in the same proportion of the active ingredient used in the commercial product Boveril and Metarril corresponding to 2.5 × 10^9 spores/ha and 6.9 × 10^9 spores/ha respectively.

Conducting the experiment. The experiment was carried out in Pompéu, Minas Gerais state, Brazil in areas of the Valleroue & Mannesmann Florestal (V&M) with a randomized complete block design. The 12 treatments were conducted with chemical and biological insecticides with different concentrations (Table 2) with four replications and 48 plots, each 40 m wide and 500 m long, equivalent to 2 ha. The evaluation was done in the central area (2 ha) of each plot to avoid drift contamination between treatments. The clones VM01 (hybrids of E. urophylla and E. camaldulensis) with approximately 12 to 16 months old and spaced 2 × 3 m were used.

The products and water (control) were sprayed using an agricultural aircraft model Ipanema with Micronair AU 5000 rotary spray nozzles with electronic beacon DGPS in a round-trip evolution system with a diameter of 200 micrometer drops. After each spraying with the respective treatments, the tank was cleaned with 100 liters of water, with the aid of a tank kite. The temperature and humidity conditions in the field (Table 2) were adequate for the B. bassiana and M. anisopliae survival and development.

Thaumastocoris peregrinus nymphs and adults were collected before and at 1, 14 and 21 days after spraying. Microbial insecticides were not evaluated 1 day after application due to their slower action.

Ten trees were evaluated per plot with the collection of ten leaves from the middle third of the crown of each one (3). The leaves were removed from the plant and packed in sealed paper bags which were transported to the FCA/UNESP Biological Control of Forest Pests Laboratory in Botucatu, São Paulo state, Brazil, where live insects were counted.

The mean numbers of *T. peregrinus* nymphs and adults per eucalyptus leaf were submitted to variance analysis and compared using Tukey test (p < 0.05). The control efficiency of the products was corrected by the Henderson-Tilton’s formula (32), adequate to evaluate the number of live insects in a non-uniform population: efficiency (%) = [(numbers in the control before application x numbers in the treatment after application)/(number in the control after application x numbers in the treatment before application)] × 100.

References

1. Dos Santos, A. et al. Multispectral characterization, prediction and mapping of *Thaumastocoris peregrinus* (Hemiptera: Thaumastocoridae) attack in *Eucalyptus* plantations using remote sensing. *J Spat Sci* 62, 127–137 (2017).

2. Miranda, M. A. S., Ribeiro, G. B. D., Valverde, S. R. & Isbaex, C. *Eucalyptus* sp. woodchip potential for industrial thermal energy production. *Rev Arvore* 41, e140604 (2017).

3. IBÁ – Instituto Brasileiro de Arvores. Relatório 2017; São Paulo: IBÁ (2017).

4. Zanuncio, J. C., Alves, J. B., Santos, G. P. & Campos, W. O. Monitoring and population dynamics of Lepidoptera associated with eucalyptus. VI: Belo Oriente Region, Minas Gerais, Brazil. *Pesqui Agropecu Bras* 28, 1121–1127 (1993).

5. Zanuncio, T. V., Zanuncio, J. C., Miranda, M. M. M. & de Barros Medeiros, A. G. Effect of plantation age on diversity and population fluctuation of Lepidoptera collected in *Eucalyptus* plantations in Brazil. *Forest Ecol Manag* 108, 91–98 (1998).

6. Zanuncio, J. C., Lacerta, M. C., Zanuncio, T. V., Silva, A. M. C. & Espindula, M. C. Fertility table and rate of population growth of the predator *Supputius cincticeps* (Heteroptera: Pentatomidae) on one plants of *Eucalyptus cloeziana* in the field. *Ann Appl Biol* 144, 357–361 (2004a).

7. Santos, A., Zanetti, R., Almado, R. P. & Zanuncio, J. C. Cerambycidae associated with hybrid *Eucalyptus urograndis* and native vegetation in Carbonita, Minas Gerais State, Brazil. *Fla Entomol* 97, 523–527 (2014).

8. Zanuncio, J. C., Lopes, E. T., Leite, H. G. & Filho, M. C. Q. Sampling methods for monitoring the number and area of colonies of leaf cutting ants (Hymenoptera: Formicidae) in *Eucalyptus* plantations. *Rev Bras Entomol* 357–361 (2004a).

9. Zanuncio, J. C., Tavares, W. S., Ramalho, F. S., Leite, G. L. D. & Serrão, J. E. *Sarsina violascens* spatial and temporal distributions affected by native vegetation strips in *Eucalyptus* plantations. *Pesqui Agropecu Bras* 6, 703 (2016).

10. Nadel, R. L. & Noack, A. E. Current understanding of the biology of *Thaumastocoris peregrinus* in the quest for a management strategy. *Int J Pest Manage* 58, 257–266 (2012).

11. Souza, G. K. et al. Reproductive tract histology of *Thaumastocoris peregrinus* (Hemiptera: Thaumastocoridae). *Ann Entomol Soc Am* 107, 853–857 (2014).

12. Nadel, R. L. et al. Population dynamics of *Thaumastocoris peregrinus* in *Eucalyptus* plantations of South Africa. *J Pest Sci* 88, 97–106 (2015).

13. Cárpintero, D. L. & Dellape, P. M. A new species of *Thaumastocoris* Kirkaldy from Argentina (Heteroptera: Thaumastocoridae). *Zootaxa* 1228, 61–68 (2006).

14. Barbosa, L. R., Santos, F., Wilcken, C. F. & Soliman, E. P. Registro de *Thaumastocoris peregrinus* (Hemiptera: Thaumastocoridae) no estado do Paraná. *Pesqui Flor Bras* 30, 75–77 (2010).

15. Wilcken, C. F. et al. Bronze bug *Thaumastocoris peregrinus* Carpentero and Dellapé (Hemiptera: Thaumastocoridae) on *Eucalyptus* in Brazil and its distribution. *J Plant Prot Res* 50, 201–205 (2010).

16. Iste, S., Ruiz, C., Sandoval, A. & Valenzuela, J. Detección de *Thaumastocoris peregrinus* (Hemiptera: Thaumastocoridae) asociado a *Eucalyptus* spp. en Chile. *Bosque* 32, 309–313 (2011).

17. Lualdonia, S. & Sasso, R. The bronze bug *Thaumastocoris peregrinus*: a new insect recorded in Italy, damaging to *Eucalyptus* trees. *B Insectol* 65, 89–93 (2012).

18. Soppow, S., George, S. & Ward, N. Bronze bug, *Thaumastocoris peregrinus*: a new Eucalyptus pest in New Zealand. *Surveyline* 39, 43–46 (2012).

19. Garcia, A., Figueiredo, E., Valente, C., Montserrat, V. J. & Branco, M. First record of *Thaumastocoris peregrinus* in Portugal and of the neotropical predator *Hemerobius bolivari* in Europe. *B Insectol* 66(251), 256 (2013).

20. Martínez, G. & Bianchi, M. Primer registro para Uruguay de la chinche del eucalipto, *Thaumastocoris peregrinus* Carpentero y Dellapé, 2006 (Hemiptera: Thaumastocoridae). *Agricolúcia* 14, 15–18 (2010).

21. Imenez-Quiroz, E., Vanezis-Rico, J. M., Morales-Martinez, O., medicals, J. R. & Rodriguez-Leyva, E. First Record of the Bronze Bug, *Thaumastocoris peregrinus* Carpentero & Dellapé 2006 (Hemiptera: Thaumastocoridae), in Mexico. *J Agr Urban Entomol* 32, 35–39 (2016).

22. Pereira, J. M., Melo, A. P. C., Fernandes, P. M. & Soliman, E. P. Ocorrência de *Thaumastocoris peregrinus* Carpentero & Dellapé (Hemiptera: Thaumastocoridae) no Estado do Goiás. *Cienc Rural* 43, 254–257 (2013).

23. Savaris, M., Lampert, S., Pereira, P. V. S. & Salvadori, J. R. Primeiro registro de *Thaumastocoris peregrinus* para o estado de Santa Catarina, e novas áreas de ocorrência para o Rio Grande do Sul, Brasil. *Cienc Rural* 41, 1874–1876 (2011).
64. Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J. & Thomas, M. Biological control of locust and grasshoppers. *Annu Rev Entomol* **44**, 667–702 (2001).
65. Pelizza, S. A., Mariottini, Y., Russo, M. L., Cabello, M. N. & Lange, C. E. Survival and fecundity of * Dichroplus maculipennis* and *Ronderosia bergi* (Orthoptera: Acrididae: Melanoplinae) following infection by * Beauveria bassiana* (Ascomycota: Hypocreales) under laboratory conditions. *Biocontrol Sci Techn* **23**, 701–710 (2013).
66. Gómez-Vidal, S., Lopez-Llorca, L. V., Jansson, H. B. & Salinas, J. Endophytic colonization of date palm (*Phoenix dactylifera* L.) leaves by entomopathogenic fungi. *Micron* **37**, 624–632 (2006).
67. Mweke, A. et al. Evaluation of the entomopathogenic fungi *Metarhizium anisopliae*, *Beauveria bassiana* and *Isaria* sp. for the management of *Aphis craccivora* (Hemiptera: Aphididae). *J Econ Entomol* **111**, 1587–1594 (2018).
68. Lee, S. J., Kim, S., Skinner, M., Parker, B. L. & Kim, J. S. Screen bag formulation of * Beauveria* and *Metarhizium* granules to manage *Riptortus pedestris* (Hemiptera: Alydidae). *J Asia-Pac Entomol* **19**, 887–892 (2016).
69. Ayal- Zermeño, M. A. et al. Characterisation of entomopathogenic fungi used in the biological control programme of *Diaphorina citri* in Mexico. *Biocontrol Sci Techn* **25**, 1192–1207 (2015).
70. Zafar, J., Freed, S., Khan, B. A. & Farooq, M. Effectiveness of * Beauveria bassiana* against cotton whitefly, *Bemisia tabaci* (Gennadius) (Aleyrodidae: Homoptera) on different host plants. *Pak J Zool* **48**, 91–99 (2016).
71. Leite, L. G., Batista Filho, A., Almeida, J. E. M. & Alves, S. B. Produção de fungos entomopatogênicos. *Ribeirão Preto: AS*, 92p (2003).
72. Henderson, C. F. & Tilton, E. W. Tests with aracicides against the brown wheat mite. *J Econ Entomol* **48**, 157–161 (1955).

Acknowledgements

We acknowledge the financial support from “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and “Programa Cooperativo sobre Proteção Florestal (PRÔTEF) do Instituto de Pesquisas e Estudos Florestais (IPEF)”. Dr. Phillip John Villani (The University of Melbourne, Australia) revised and corrected the English language used in this manuscript.

Author Contributions

M.H.F.d.A.D.P., C.F.W., A.C.V.L., E.P.S., B.V.F., I.M.S. and J.C.Z. designed the research; A.C.V.L., E.P.S., L.R.B. and B.V.F. performed the experiments; M.H.F.d.A.D.P., A.J.V.Z., C.F.W., A.C.V.L., E.P.S., B.V.F., I.M.S., L.R.B. and J.C.Z. analyzed the data, participated in writing and approved the manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019