Genomics update

Genomics against flatulence

OnlineOpen: This article is available free online at www.blackwell-synergy.com

Michael Y. Galperin*
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

In the past several months, eukaryotic genome sequencing has brought us the complete genome of the tiny green alga *Ostreococcus lucimarinus* (Palenik et al., 2007) and a draft genome of the mosquito *Aedes aegypti* (Nene et al., 2007). Given that the genome sequence of another *Ostreococcus* species, *Ostreococcus tauri*, has been sequenced less than a year ago (Derelle et al., 2006), the availability of the *O. lucimarinus* genome opens a possibility to study the evolution of this unicellular planktonic organism and its adaptation to the life in the surface layer of the sea. There has been also exciting news from archaeal and bacterial genome sequencing. The list of recently sequenced genomes (Table 1) includes bacteria that inhabit a variety of ecological niches and degrade numerous environmental contaminants, as well as two \(\gamma\)-proteobacteria with near-minimal gene sets.

Archaea (archaebacteria) are generally viewed as freeliving organisms capable of surviving at extremely high temperatures, salt concentrations and extreme pH values. The discoveries, primarily in the past several years, of various mesophilic archaea have done little to shatter the perception of archaea as exotic organisms with little relevance to everyday human life. Indeed, there are no known human pathogens among the *Archaea*. Nevertheless, archaea play a key role in human gut, accounting for one of its activities that usually goes unmentioned, namely, production of gas. Some of this gas, consisting largely of methane and hydrogen, makes it all the way back the gastrointestinal tract and shows up in human breath. Most of the gas, however, is released from the large intestine of the human body. Taking into account the contribution of methanogenic archaea to the global warming (see our previous column, Galperin, 2007), a search for antimethanogen

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

In a subsequent revision of metanagen taxonomy, *M. ruminantium* was transferred to the genus *Methanobrevibacter* with one of its species named *Methanobrevibacter smithii*, after Paul H. Smith and Robert E. Hungate (1958) several years earlier. The culture counts, estimated from serial dilutions, were in the range of \(2 \times 10^7\) to \(2 \times 10^9\) organisms g\(^{-1}\). In the spirit of the time, the validity of the latter figure is discussed in the article (which is freely available on line at the Journal of Bacteriology website http://jb.asm.org/cgi/reprint/96/6/2178 or through PubMed Central) with the following details:

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

In a subsequent revision of metanagen taxonomy, *M. ruminantium* was transferred to the genus *Methanobrevibacter* with one of its species named *Methanobrevibacter smithii*, after Paul H. Smith and Robert E. Hungate (1958) several years earlier. The culture counts, estimated from serial dilutions, were in the range of \(2 \times 10^7\) to \(2 \times 10^9\) organisms g\(^{-1}\). In the spirit of the time, the validity of the latter figure is discussed in the article (which is freely available on line at the Journal of Bacteriology website http://jb.asm.org/cgi/reprint/96/6/2178 or through PubMed Central) with the following details:

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

In a subsequent revision of metanagen taxonomy, *M. ruminantium* was transferred to the genus *Methanobrevibacter* with one of its species named *Methanobrevibacter smithii*, after Paul H. Smith and Robert E. Hungate (1958) several years earlier. The culture counts, estimated from serial dilutions, were in the range of \(2 \times 10^7\) to \(2 \times 10^9\) organisms g\(^{-1}\). In the spirit of the time, the validity of the latter figure is discussed in the article (which is freely available on line at the Journal of Bacteriology website http://jb.asm.org/cgi/reprint/96/6/2178 or through PubMed Central) with the following details:

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

In a subsequent revision of metanagen taxonomy, *M. ruminantium* was transferred to the genus *Methanobrevibacter* with one of its species named *Methanobrevibacter smithii*, after Paul H. Smith and Robert E. Hungate (1958) several years earlier. The culture counts, estimated from serial dilutions, were in the range of \(2 \times 10^7\) to \(2 \times 10^9\) organisms g\(^{-1}\). In the spirit of the time, the validity of the latter figure is discussed in the article (which is freely available on line at the Journal of Bacteriology website http://jb.asm.org/cgi/reprint/96/6/2178 or through PubMed Central) with the following details:

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

In a subsequent revision of metanagen taxonomy, *M. ruminantium* was transferred to the genus *Methanobrevibacter* with one of its species named *Methanobrevibacter smithii*, after Paul H. Smith and Robert E. Hungate (1958) several years earlier. The culture counts, estimated from serial dilutions, were in the range of \(2 \times 10^7\) to \(2 \times 10^9\) organisms g\(^{-1}\). In the spirit of the time, the validity of the latter figure is discussed in the article (which is freely available on line at the Journal of Bacteriology website http://jb.asm.org/cgi/reprint/96/6/2178 or through PubMed Central) with the following details:

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.

In a subsequent revision of metanagen taxonomy, *M. ruminantium* was transferred to the genus *Methanobrevibacter* with one of its species named *Methanobrevibacter smithii*, after Paul H. Smith and Robert E. Hungate (1958) several years earlier. The culture counts, estimated from serial dilutions, were in the range of \(2 \times 10^7\) to \(2 \times 10^9\) organisms g\(^{-1}\). In the spirit of the time, the validity of the latter figure is discussed in the article (which is freely available on line at the Journal of Bacteriology website http://jb.asm.org/cgi/reprint/96/6/2178 or through PubMed Central) with the following details:

The sample showing \(2 \times 10^9\) methanogenic bacteria per gram was obtained from a patient in the Veterans Administration Hospital, Madison, Wis., by E. M. Lapinski. Unusually large quantities of methane had been detected in the expired gas of this patient. A fecal sample was sent airmail to Davis, California, sealed with no access of oxygen. Presumably, the lower than body temperature in transit prevented growth, and the value found is an approximation of the viable bacteria in the sample.
Species name	Taxonomy	GenBank accession	Genome size (bp)	Proteins (total)	Sequencing centre*	Reference	
Ostreococcus lucimarinus	Eukaryota, Viridiplantae	CP000581–CP000601	13 200 000 (Total)	7651	JGI	Palenik et al. (2007)	
Methanobrevibacter smithii	Euryarchaeota	CP000678	1 853 160	1795	Washington U.	Samuel et al. (2007)	
Metallosphaera sedula	Euryarchaeota	CP000682	2 191 517	2256	JGI	Unpublished	
Pyrobaculum arsenaticum	Euryarchaeota	CP000660	2 121 076	2298	JGI	Unpublished	
Clavibacter michiganensis	Actinobacteria	AM711867	3 297 891	69 989	27 357	3029 University of Bielefeld, Germany	
Mycobacterium gilvum	Actinobacteria	CP000656–CP000659	5 982 829 (Total)	5579	JGI	Unpublished	
Salinispora tropica	Actinobacteria	CP000667	5 183 331	4536	JGI	Unpublished	
Flavobacterium johnsoniae	Bacteroidetes	CP000685	6 096 872	5017	JGI	Unpublished	
Prosthecochloris vibrioformis	Chlorobi	CP000607	1 966 858	1753	JGI	Unpublished	
Dehalococcoides sp. BAV1	Chloroflexi	CP000688	1 341 892	1371	JGI	Unpublished	
Roseiflexus sp. RS-1	Chloroflexi	CT978603	2 224 914	4517	JGI	Unpublished	
Synechococcus sp. RCC307	Cyanobacteria	CT971583	2 366 980	2533	JGI	Unpublished	
Caldicellulosiruptor saccharolyticus	Firmicutes	CP000679	2 970 275	2679	JGI	Unpublished	
Bradyrhizobium sp. BTAi1	α-Proteobacteria	CP000494–CP000495	8 264 687	228 826	JGI	Unpublished	
Bradyrhizobium sp. ORS278	α-Proteobacteria	CP000694	5 801 498	4517	JGI	Unpublished	
Streptococcus suis 05ZYH33	α-Proteobacteria	CP000407	2 970 275	2679	JGI	Unpublished	
Streptococcus suis 98HAH33	α-Proteobacteria	CP000408	2 970 275	2679	JGI	Unpublished	
Acidiphilium cryptum	α-Proteobacteria	CP000689–CP000697	3 963 080 (Total)	3559	JGI	Unpublished	
Polynucleobacter sp. QLW-P1DMWA-1	β-Proteobacteria	CP000655	2 159 490	2077	JGI	Unpublished	
Aeromonas salmonicida	γ-Proteobacteria	CP000664	4 702 402	166 749	155 098	4413 NRC – Halifax	Unpublished
Enterobacter sp. 638	γ-Proteobacteria	CP000653	4 518 712	157 749	4240	JGI	Unpublished
Psychrobacter sp. PRwf-1	γ-Proteobacteria	CP000713	2 978 987	2385	JGI	Unpublished	

Note: JGI = Joint Genome Institute, "Sebiahi et al. (2007)" refers to the reference "Sebiahi, et al. (2007)" and "Sirand-Pugnet et al. (2007)" refers to the reference "Sirand-Pugnet, et al. (2007)."
compounds could be quite an important undertaking. Accordingly, studies of methanogenesis and archaeal metabolism in general, which until recently appeared to be of purely academic interest, are suddenly finding unexpected applications in drug design.

Two other recently sequenced archaeal genomes belong to *Crenarchaeota*. *Metallosphaera sedula* strain DSM 5348 is an aerobic thermoacidophile related to *Sulfurovum* spp. that was first isolated from a thermal pond in the Pisciarelli Solfatara in Italy (Huber et al., 1989). It can grow at temperatures ranging from 50 to 79°C with optimal growth at 74°C and pH 2. *Metallosphaera sedula* is capable of oxidizing sulfidic ores, such as pyrite, making it an attractive organism for use in bioleaching of metals. Several of its respiratory complexes have been characterized (Kappler et al., 2005); the genome sequence should allow identification of the rest of them.

Just 2 months after completing the sequence of *Pyrobaculum calidifontis* (GenBank accession number CP000561), JGI scientists have released the genome of *Pyrobaculum arsenaticum*, the fourth member of that genus with a completely sequenced genome. *Pyrobaculum arsenaticum* is a strictly anaerobic, hyperthermophilic archaean, isolated from a hot spring in Italy. It could grow chemoaerotrophically with CO₂ as carbon source, H₂ as electron donor and arsenate, thioulate or elemental sulfur as electron acceptors (Huber et al., 2000). It could also grow organotrophically, using sulfur, selenite or arsenite as electron acceptors (Huber et al., 2000). The genome of *Pyrobaculum arsenaticum* is the second phytopathogen. The sequenced strain *C. michiganensis* ssp. *michiganensis* is only the second phytopathogen. The sequenced strain *C. michiganensis* ssp. *michiganensis* is a pathogen of tomato that causes bacterial wilt and canker. This species includes four other subspecies. One of them, *C. michiganensis* ssp. *sepedonicus*, is responsible for ring rot of potato; its genome is being sequenced at the Sanger Institute. Three other subspecies of *C. michiganensis* infect, respectively, maize, wheat and alfalfa (Jahr et al., 1999; Gartemann et al., 2003).

Mycobacterium gilvum (previously referred to as *Mycobacterium flavescens*) strain PYR-GCK has been isolated just 2 months after completing the sequence of *Pyrobaculum calidifontis* (GenBank accession number CP000561), JGI scientists have released the genome of *Pyrobaculum arsenaticum*, the fourth member of that genus with a completely sequenced genome. *Pyrobaculum arsenaticum* is a strictly anaerobic, hyperthermophilic archaean, isolated from a hot spring in Italy. It could grow chemoaerotrophically with CO₂ as carbon source, H₂ as electron donor and arsenate, thioulate or elemental sulfur as electron acceptors (Huber et al., 2000). It could also grow organotrophically, using sulfur, selenite or arsenite as electron acceptors (Huber et al., 2000). The genome of *Pyrobaculum arsenaticum* is the second phytopathogen. The sequenced strain *C. michiganensis* ssp. *michiganensis* is only the second phytopathogen. The sequenced strain *C. michiganensis* ssp. *michiganensis* is a pathogen of tomato that causes bacterial wilt and canker. This species includes four other subspecies. One of them, *C. michiganensis* ssp. *sepedonicus*, is responsible for ring rot of potato; its genome is being sequenced at the Sanger Institute. Three other subspecies of *C. michiganensis* infect, respectively, maize, wheat and alfalfa (Jahr et al., 1999; Gartemann et al., 2003).

Mycobacterium gilvum (previously referred to as *Mycobacterium flavescens*) strain PYR-GCK has been isolated just 2 months after completing the sequence of *Pyrobaculum calidifontis* (GenBank accession number CP000561), JGI scientists have released the genome of *Pyrobaculum arsenaticum*, the fourth member of that genus with a completely sequenced genome. *Pyrobaculum arsenaticum* is a strictly anaerobic, hyperthermophilic archaean, isolated from a hot spring in Italy. It could grow chemoaerotrophically with CO₂ as carbon source, H₂ as electron donor and arsenate, thioulate or elemental sulfur as electron acceptors (Huber et al., 2000). It could also grow organotrophically, using sulfur, selenite or arsenite as electron acceptors (Huber et al., 2000). The genome of *Pyrobaculum arsenaticum* is the second phytopathogen. The sequenced strain *C. michiganensis* ssp. *michiganensis* is only the second phytopathogen. The sequenced strain *C. michiganensis* ssp. *michiganensis* is a pathogen of tomato that causes bacterial wilt and canker. This species includes four other subspecies. One of them, *C. michiganensis* ssp. *sepedonicus*, is responsible for ring rot of potato; its genome is being sequenced at the Sanger Institute. Three other subspecies of *C. michiganensis* infect, respectively, maize, wheat and alfalfa (Jahr et al., 1999; Gartemann et al., 2003).
in the sediment from the Grand Calumet River in Indiana as a strain capable of using pyrene as a sole source of carbon and energy. This strain was also capable of metabolizing such polycyclic aromatic hydrocarbons (PAHs) as phenanthrene and fluoranthene, but not naphthalene, chrysene, anthracene, fluorene, or benz[a]pyrene (Dean-Ross and Cerniglia, 1996). The first step of pyrene degradation is catalysed by the same two-subunit aromatic ring-hydroxylating dioxygenase NidAB as the one found in Mycobacterium vanbaalenii and other PAH-degrading mycobacteria (Brezna et al., 2003). Thus, M. gilvum probably differs from them in the downstream steps of PAH degradation, which now could be deduced through genome comparisons.

Salinispora tropica strain CNB-440 is a marine actinomycete, the first sequenced representative of the unique genus within the phylum Actinobacteria that is widespread in tropical and subtropical marine sediments (Jensen and Mafnas, 2006). Its cultivation has been achieved by including seawater into the growth medium (Mincer et al., 2002), which is why Salinispora spp. are now considered obligate marine bacteria. Accordingly, comparing the genome of S. tropica to other actinobacterial genomes offers a chance to examine how members of this genus have adapted to the marine life. JGI scientists are currently sequencing the genome of Salinispora arenicola, the second cultured representative of this genus (Maldonado et al., 2005). In addition to its ecological significance, S. tropica is remarkable as a producer of the various halogenated macrolides, including the anticancer agent salinosporamide A, a potent inhibitor of the 20S proteasome (Williams et al., 2005). A detailed analysis of S. tropica genome is expected to clarify the macrolide biosynthesis pathway(s) and allow genetic manipulation leading to an improved production of salinosporamide A and other secondary metabolites (Udwary et al., 2007).

Flavobacterium johnsoniae (formerly Cytophaga johnsonae), first described by Roger Stanier (1947), is an aerobic bacterium that is commonly found in soil and freshwater. It is a member of the phylum Bacteroidetes, also known as the Cytophaga-Flavobacterium-Bacteroides group. Flavobacterium johnsoniae has attracted significant attention in the recent past, both as an effective chitin degrader and as a model organism for studying gliding motility (McBride, 2001; 2004). Remarkably, these two activities seem to be linked, as defects in gliding motility also affect chitin utilization (Braun et al., 2005). The reason for that is degradation of chitin and other insoluble biopolymers by F. johnsoniae apparently requires direct contact of cell with the substrate. This resembles cellulose degradation by the closely related Cytophaga hutchinsonii, whose genome has been sequenced at the JGI a year ago (Xie et al., 2007).

Prosthecochloris vibrioformis (a synonym of Chlorobium phaeovibrioides, Imhoff, 2003) is a green sulfur phototrophic bacterium, a member of the phylum Chlorobi, which already has four members with sequenced genomes. Like other Chlorobi, P. vibrioformis gains energy by anoxygenic photosynthesis using thiosulfate as an electron acceptor and reducing it to elemental sulfur, which accumulates as extracellular globules. The cells of P. vibrioformis have brownish color owing to the large amounts of bacteriochlorophyll e and carotenoids in their chlorosomes.

Roseiflexus sp. strain RS-1, also an anoxygenic photosynthetic bacterium, is the first phototrophic representative of the phylum Chloroflexi to have a completely sequenced genome. The 5.2-Mb genome of another phototrophic member of the Chloroflexi, Chloroflexus aurantiacus strain J-10-fl has been available in GenBank for the past 5 years (accession no. AAAH0000000) but still remains at the stage of 77 contigs. Three more representatives of this phylum are members of the genus Dehalococcoides which have lost the photosynthetic genes in the process of genome contraction during their adaptation to reductive dehalogenation (see below). In contrast to P. vibrioformis, Roseiflexus sp. does not contain chlorosomes and its major photosynthetic pigment is bacteriochlorophyll a. Comparative analysis of the genomes of members of Chlorobi and Chloroflexi could provide valuable information about mechanisms of anoxygenic photosynthesis.

Dehalococcoides sp. strain BAV1 is also a member of Chloroflexi, the third representative of the genus Dehalococcoides to have a completely sequenced genome. All three Dehalococcoides spp. are capable of metabolizing chlorinated hydrocarbons, including tetrachloroethene (PCE) and trichloroethene (TCE), which are commonly used as solvents and are major contaminants of soil and groundwater. Although Dehalococcoides ethenogenes strain 195 was originally reported to be capable of metabolizing PCE and TCE all the way to ethene, its cultures were found to accumulate 1,1-dichloroethene and vinyl chloride, which is a known human carcinogen (Maymo-Gatell et al., 1997; 2001). Dehalococcoides sp. CBDB1 can dechlorinate a variety of chlorobenzens but is also incapable of using dichloroethene or vinyl chloride (Kube et al., 2005). In contrast, the newly sequenced Dehalococcoides sp. strain BAV1 could grow using vinyl chloride and all dichloroethene isomers as electron acceptors. In addition, it could cometabolize PCE and TCE. Thus, strain BAV1 can be used for complete detoxification of PCE and TCE, that is, degradation of these compounds to environmentally benign ethene and inorganic chloride (He et al., 2003a,b). Comparative analysis of all three strains could provide clues to the mechanisms of reductive dehalogenation and the substrate specificities of the corresponding enzymes.
Clostridium botulinum is a well-known agent of food poisoning. Its spores are resistant to heat and survive exposure to air. In anaerobic conditions, which often exist in poorly prepared canned foods, *C. botulinum* spores germinate into vegetative cells. Growing vegetative cells secrete a variety of proteases and one or more toxic neurotoxins, known collectively as the botulinum toxin. Consumption of food contaminated with nanogram quantities of the botulinum toxin can be fatal for humans, as the toxin causes paralysis of chest muscles, which leads to asphyxiation. In addition, *C. botulinum* occasionally infects open wounds. The genome description (Sebaihia *et al*., 2007) includes a detailed comparison of five *Clostridium* spp., particularly with respect to the structure of the cell surface, extracellular enzymes and the regulation of toxin production. One cannot help noting that this deadly toxin has become a popular tool in cosmetology and has been suggested for a number of other applications, such as treatment of chronic migraines.

Two other members of the order *Clostridiales* in the current list (Table 1) are finding more traditional uses in biotechnology. *Caldicellulosiruptor saccharolyticus* is an anaerobic thermophilic bacterium that was isolated from a thermal spring in New Zealand (Sissons *et al*., 1987). Both the genus name, meaning literally ‘hot cellulose disruptor’, and the species name, which means ‘lysing sugar’, reflect the ability of the organism to metabolize a variety of mono- and polysaccharides, such as arabinose, amorphous cellulose, fructose, galactose, glucose, glycogen, lactose, laminarin, lichenin, mannose, maltose, pullulan, pectin, rhamnose, starch, sucrose, xylan and xylose (Rainey *et al*., 1994). Based on its inability to form spores, *C. saccharolyticus* was first assigned to a separate lineage within the *Bacillus/Clostridium* subphylum of the Gram-positive bacteria (the current *Firmicutes*), but later recognized as a member of the order *Clostridiales*. The ability of *C. saccharolyticus* to grow at 70°C, hydrolysing both α- and β-glucans, including cellulose and pectin, makes it an attractive candidate for conversion of plant biomass into biofuel. Comparison of the genomic sequence of *C. saccharolyticus* with those of related organisms could provide an insight in the mechanisms and regulation of cellulose degradation.

C. botulinum is a well-known agent of food poisoning. Its spores are resistant to heat and survive exposure to air. In anaerobic conditions, which often exist in poorly prepared canned foods, *C. botulinum* spores germinate into vegetative cells. Growing vegetative cells secrete a variety of proteases and one or more toxic neurotoxins, known collectively as the botulinum toxin. Consumption of food contaminated with nanogram quantities of the botulinum toxin can be fatal for humans, as the toxin causes paralysis of chest muscles, which leads to asphyxiation. In addition, *C. botulinum* occasionally infects open wounds. The genome description (Sebaihia *et al*., 2007) includes a detailed comparison of five *Clostridium* spp., particularly with respect to the structure of the cell surface, extracellular enzymes and the regulation of toxin production. One cannot help noting that this deadly toxin has become a popular tool in cosmetology and has been suggested for a number of other applications, such as treatment of chronic migraines.

Two other members of the order *Clostridiales* in the current list (Table 1) are finding more traditional uses in biotechnology. *Caldicellulosiruptor saccharolyticus* is an anaerobic thermophilic bacterium that was isolated from a thermal spring in New Zealand (Sissons *et al*., 1987). Both the genus name, meaning literally ‘hot cellulose disruptor’, and the species name, which means ‘lysing sugar’, reflect the ability of the organism to metabolize a variety of mono- and polysaccharides, such as arabinose, amorphous cellulose, fructose, galactose, glucose, glycogen, lactose, laminarin, lichenin, mannose, maltose, pullulan, pectin, rhamnose, starch, sucrose, xylan and xylose (Rainey *et al*., 1994). Based on its inability to form spores, *C. saccharolyticus* was first assigned to a separate lineage within the *Bacillus/Clostridium* subphylum of the Gram-positive bacteria (the current *Firmicutes*), but later recognized as a member of the order *Clostridiales*. The ability of *C. saccharolyticus* to grow at 70°C, hydrolysing both α- and β-glucans, including cellulose and pectin, makes it an attractive candidate for conversion of plant biomass into biofuel. Comparison of the genomic sequence of *C. saccharolyticus* with those of related organisms could provide an insight in the mechanisms and regulation of cellulose degradation.

Pelotomaculum thermopropionicum, also a member of *Clostridiales*, is a thermophilic propionate-oxidizing anaerobic bacterium, isolated in 2000 from anaerobic sludge blanket reactor in Niigata, Japan. It grows best in a syntrophic association with methanogenic archaea, metabolizing propionate, ethanol, lactate, butanol, pentanal, 1,3-propanediol, propanol and ethylene glycol (Imachi *et al*., 2002). Even before the completion of the genome sequencing, Kosaka and colleagues (2006) analysed the propionate fermentation pathway of *P. ther-
division genes may be linked to the fact that each host cell carries only a single cell of Cand. V. okutanii, which is vertically transferred through clam oocytes.

If Cand. V. okutanii has the smallest autotrophic genome sequenced to date, the sheep pathogen *Dichelobacter nodosus* has the smallest genome of any anaerobe. The genome of *D. nodosus*, the causative agent of ovine foot rot, is less than 1.4 Mb in size and codes for less than 1300 proteins (Myers et al., 2007). However, these genes are apparently all significant, as there are few paralogues and very few pseudogenes. Given that *D. nodosus* belongs to an early branching group of *γ*-Proteobacteria, the authors suggest that its evolutionary history differed from that of most other organisms with very small genomes, which are either obligate intracellular pathogens or symbionts. Thus, massive gene loss through pseudogenization probably played only a minor role in extensive genome reduction, if any, in the evolution of *D. nodosus*.

Of the three recently sequenced pseudomonad genomes (Table 1), *Pseudomonas putida* F1 is by far the best-studied one. This obligately aerobic bacterium was originally isolated from a polluted creek in Urbana, Illinois, by enrichment with ethylbenzene as the sole source of carbon and energy (Gibson et al., 1968). This strain can also grow on benzene, toluene and *p*-cymene, which are common contaminants of groundwater, leaching from underground gasoline storage tanks. When provided with a carbon source for growth, *P. putida* F1 can oxidize a variety of aromatic and aliphatic compounds that do not support its growth. This list includes nitrotoluenes, chlorobenzenes, chlorophenols and trichloroethylene. The mechanism of toluene degradation by *P. putida* F1 toluene dioxygenase and its regulation have been studied in much detail (Zylstra et al., 1988; Lau et al., 1997). Remarkably, *P. putida* F1 senses benzene, ethylbenzene and trichloroethylene, perceiving them as chemoattractants (Parales et al., 2000). Both strains of *P. putida* F1 and KT2240, whose genome was sequenced 5 years ago (Nelson et al., 2002; Dos Santos et al., 2004), have great potential for use in bioremediation.

The *Shewanella* genome sequencing project has released yet another complete genome, this time of the facultative anaerobe *Shewanella putrefaciens*. While some strains of *S. putrefaciens* have been isolated from clinical samples and appear to be opportunistic human pathogens (Holt et al., 2005), the sequenced strain is interesting primarily because of its capability to effectively reduce polyvalent metals and radionuclides including solid phase oxides of Fe, Mn, Cr, U(VI) and Tc (VII), using lactate as the electron donor.

The δ-proteobacterium *Geobacter uraniumreducens* is also a powerful reducer of metals. The sequenced strain *G. uraniumreducens* Rf4 has been isolated from a contaminated aquifer at the former uranium ore processing facility in Rifle, Colorado (Anderson et al., 2003). Injection of acetate (1–3 mM) into the groundwater led to an enrichment of the groundwater with *G. uraniumreducens*, which coincided with a decrease in U(VI) levels. Comparison of *G. uraniumreducens* genome sequence with that of *Geobacter metallireducens* and other metal-reducing bacteria should help in finding the best strains for bioremediation of uranium and other radionuclides.

Eight years after the publication of the genome sequence of an obligately anaerobic hyperthermophilic bacterium *Thermotoga maritima* (Nelson et al., 1999), the genome of a second member of the phylum *Thermotogae* has been released. While also an obligate anaerobe similar to *T. maritima* in its sugar utilization profile, *Thermotoga petrophila* strain RKU-1 has been isolated from a deep subterranean oil reservoir in Niigata, Japan, and could grow at a much wider range of temperatures, from 48 to 88°C, with an optimum at 80°C (Takahata et al., 2001). These features make *T. petrophila* an attractive source of thermostable enzymes, as well as a convenient model organism to study the mechanisms of thermostolerance in bacteria.

The list of the recently sequenced genomes also includes several important bacterial pathogens. The genome of *Orientia* (formerly *Rickettsia*) *tsutsugamushi*, the causative agent of scrub typhus, is remarkable primarily for the abundance of repeat elements, including numerous *tra* genes, transposases, phage integrases, reverse transcriptases and potential host–cell interaction proteins (Cho et al., 2007). Genome sequencing of two strains of *Streptococcus suis* serotype 2, which caused an outbreak of streptococcal toxic shock syndrome in China, revealed a shared pathogenicity island that appeared responsible for the high-virulence phenotype (Chen et al., 2007). In an article with an unusually impressive title, genome analysis of the ruminant pathogen *Mycoplasma agalactiae* and closely related mycoplasmas revealed traces of horizontal gene transfer, suggesting that it could have played a role in the mycoplasmal evolution (Sirand-Pugnet et al., 2007). The fifth complete genome of a *Brucella* spp. comes from the sheep pathogen *Brucella ovis*, which causes ovine contagious epididymitis in rams and premature abortion in pregnant ewes. It should be noted that in 1988, the ICSB Subcommittee on the Taxonomy of *Brucella* concluded that the *Brucella* is a monospecific genus with a single species *Brucella melitensis*. Indeed, all *Brucella* spp. have genomes consisting of two chromosomes with similar sizes, similar G + C content of 57.2% and encoding many proteins that are 99–100% identical. Thus, *B. ovis* is currently considered an accepted synonym for *Brucella melitensis* biovar Ovis.

The genome of *Aeromonas salmonicida* spp. salmonicida strain A449 was sequenced in an effort to find new
ways to control this widespread fish pathogen. The draft version of the genome has already been used to construct
A. salmonicida DNA microarray and identify potential virulence genes and candidates for vaccine development (Nash et al., 2006).

Last but not least, a recent article has uncovered the function of one of widespread ‘conserved hypothetical’ genes. This gene, which has been designated yebR in Escherichia coli, ytsP in Bacillus subtilis and YKL069w in Saccharomyces cerevisiae, has been shown to encode an enzyme that reduces free methionine sulfoxide (Lin et al., 2007). Two previously identified methionine sulfoxide reductases act predominantly on oxidized methionine residues in protein and cannot protect the cellular pool of free amino acid from oxidation. This work is yet another proof that ‘house-cleaning’ is a major cellular function that might employ a fair number of the uncharacterized ‘hypothetical’ proteins (see Galperin et al., 2006 for a review).

Acknowledgements

M.Y.G. is supported by the Intramural Research Program of the NIH, National Library of Medicine. The author’s opinions do not reflect the views of NCBI, NLM or the National Institutes of Health.

References

Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., et al. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69: 5884–5891.

Armengaud, J., Happe, B., and Timmis, K.N. (1998) Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J Bacteriol 180: 3954–3966.

Armengaud, J., Timmis, K.N., and Wittich, R.M. (1999) A functional 4-hydroxysalicylate/4-hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzop-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol 181: 3452–3461.

Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260–296.

Belay, N., Johnson, R., Rajagopal, B.S., de Macario, E.C., and Daniels, L. (1988) Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 54: 600–603.

Belay, N., Mukhopadhyay, B., Conway de Macario, E., Galask, R., and Daniels, L. (1990) Methanogenic bacteria in human vaginal samples. J Clin Microbiol 28: 1666–1668.

Braun, T.F., Khubbar, M.K., Saffarini, D.A., and McBride, M.J. (2005) Flavobacterium johnsoniae gliding motility genes identified by mariner transposon. J Bacteriol 187: 6943–6952.

Breza, N., Khan, A.A., and Cerniglia, C.E. (2003) Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol Lett 223: 177–183.

Chen, C., Tang, J., Dong, W., Wang, C., Feng, Y., Wang, J., et al. (2007) A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS ONE 2: e315.

Cho, N.H., Kim, H.R., Lee, J.H., Kim, S.Y., Kim, J., Cha, S., et al. (2007) The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host–cell interaction genes. Proc Natl Acad Sci USA 104: 7981–7986.

Dean-Ross, D., and Cerniglia, C.E. (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46: 307–312.

Dereelle, E., Ferraz, C., Rombouts, S., Rouze, P., Worden, A.Z., Robbens, S., et al. (2006) Genome analysis of the smallest free-living eukaryote Osteococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103: 11647–11652.

Dos Santos, V.A., Heim, S., Moore, E.R., Stratz, M., and Timmis, K.N. (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6: 1264–1286.

Galperin, M.Y. (2007) Using archaeal genomics to fight global warming and clostridia to fight cancer. Environ Microbiol 9: 279–286.

Galperin, M.Y., Moroz, O.V., Wilson, K.S., and Murzin, A.G. (2006) House cleaning, a part of good housekeeping. Mol Microbiol 59: 5–19.

Gartemann, K.H., Kirchner, O., Engemann, J., Graeven, I., Eichenlaub, R., and Burger, A. (2003) Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Bacteriol 186: 179–191.

Gibson, D.T., Koch, J.R., and Kallio, R.E. (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7: 2653–2662.

Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.C. et al. (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316: 1037–1312.

Halden, R.U., Halden, B.G., and Dwyer, D.F. (1999) Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin from soils inoculated with Sphingomonas sp. strain RW1. Appl Environ Microbiol 65: 2246–2249.

He, J., Ritalahti, K.M., Aiello, M.R., and Löffler, F.E. (2003a) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69: 996–1003.

He, J., Ritalahti, K.M., Yang, K.L., Koenigsberg, S.S., and Löffler, F.E. (2003b) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424: 62–65.

Holt, H.M., Gahrn-Hansen, B., and Bruun, B. (2005) Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect 11: 347–352.

Huber, R., Sacher, M., Vollmann, A., Huber, H., and Rose, D. (2000) Respiration of arsenate and selenate...
by hyperthermophilic archaea. *Syst Appl Microbiol* 23: 305–314.

Huber, G., Spinlner, C., Gambacorta, A., and Stetter, K.O. (1989) *Metallosphaera sedula* gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaeaebacteria. *Syst Appl Microbiol* 12: 38–47.

Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A., and Harada, H. (2002) *Pelotomaculum thermopropionicum* gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. *Int J Syst Evol Microbiol* 52: 1729–1735.

Imhoff, J.F. (2003) Phylogenetic taxonomy of the family *Chlorobiaceae* on the basis of 16S rRNA and *fmo* (Fenna-Matthews-Olson protein) gene sequences. *Int J Syst Evol Microbiol* 53: 941–951.

Jahr, H., Bahro, R., Burger, A., Ahlemeyer, J., and Eichenlaub, R. (1999) Interactions between *Clavibacter michiganensis* and its host plants. *Environ Microbiol* 1: 113–118.

Jensen, P.R., and Mafnas, C. (2006) Biogeography of the marine actinomycete *Salinispora*. *Environ Microbiol* 8: 1881–1888.

Kappler, U., Sly, L.I., and McEwan, A.G. (2005) Respiratory gene clusters of *Metallosphaera sedula* – differential expression and transcriptional organization. *Microbiology* 151: 35–43.

Kosaka, T., Uchiyama, T., Ishii, S., Enoki, M., Imachi, H., Kamagata, Y., et al. (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntrophic *Pelotomaculum thermopropionicum*. *J Bacteriol* 188: 202–210.

Kube, M., Beck, A., Zinder, S.H., Kuhl, H., Reinhardt, R., and Adrian, L. (2005) Genome sequence of the chlorinated compound-respiring bacterium *Dehalococcoides* species strain CBDB1. *Nat Biotechnol* 23: 1269–1273.

Küsel, K., Dorsch, T., Acker, G., and Stackebrandt, E. (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of *Acidiphilium cryptum* JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. *Appl Environ Microbiol* 65: 3633–3640.

Kuwahara, H., Yoshida, T., Takaki, Y., Shimamura, S., Nishi, S., Harada, M., et al. (2007) Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, *Calypogena okutani*. *Curr Biol* 17: 881–886.

Lau, P.C., Wang, Y., Patel, A., Labbe, D., Bergeron, H., Brousseau, R., et al. (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. *Proc Natl Acad Sci USA* 94: 1453–1458.

Lin, Z., Johnson, L.C., Weissbach, H., Brot, N., Lively, M.O., and Lowther, W.T. (2007) Free methionine-(R)-sulfoxide reductase from *Escherichia coli* reveals a new GAF domain function. *Proc Natl Acad Sci USA* 104: 9597–9602.

McBride, M.J. (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. *Annu Rev Microbiol* 55: 49–75.

McBride, M.J. (2004) *Cytophaga-Flavobacterium* gliding motility. *J Mol Microbiol Biotechnol* 7: 63–71.

McKay, L.F., Eastwood, M.A., and Brydon, W.G. (1985) Methane excretion in man – a study of breath, flatus, and faeces. *Gut* 26: 69–74.

Maldonado, L.A., Fenical, W., Jensen, P.R., Kaufman, C.A., Mincer, T.J., Ward, A.C., et al. (2005) *Salinispora arenicola* gen. nov., sp. nov. and *Salinispora tropica* sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. *Int J Syst Evol Microbiol* 55: 1759–1766.

Maymo-Gatell, X., Chien, Y., Gossett, J.M., and Zinder, S.H. (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. *Science* 276: 1568–1571.

Maymo-Gatell, X., Nijenhuis, I., and Zinder, S.H. (2001) Reductive dechlorination of cis,1,2-dichloroethene and vinyl chloride by *Dehalococcoides ethenogenes*. *Environ Sci Technol* 35: 516–521.

Miller, T.L., Wolin, M.J., de Macario, E.C., and Macario, A.J. (1982) Isolation of *Methanobrevibacter smithii* from human feces. *Appl Environ Microbiol* 43: 227–232.

Mincer, T.J., Jensen, P.R., Kaufman, C.A., and Fenical, W. (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. *Appl Environ Microbiol* 68: 5005–5011.

Myers, G.S., Parker, D., Al-Hasani, K., Kennan, R.M., Seemann, T., Ren, Q., et al. (2007) Genome sequence and identification of candidate vaccine antigens from the animal pathogen *Dichelobacter nodosus*. *Nat Biotechnol* 25: 569–575.

Nash, J.H., Findlay, W.A., Luebbert, C.C., Mykytczuk, O.L., Foote, S.J., Taboada, E.N., et al. (2006) Comparative genomics profiling of clinical isolates of *Aeromonas salmonicida* using DNA microarrays. *BMC Genomics* 7: 43.

Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., et al. (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of *Thermotoga maritima*. *Nature* 399: 329–339.

Nelson, K.E., Weinil, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., et al. (2002) Complete genome sequence and comparative analysis of the metabolically versatile *Pseudomonas putida* KT2440. *Environ Microbiol* 4: 799–808.

Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z.J., et al. (2007) Genome sequence of *Aedes aegypti*, a major arbovirus vector. *Science* 316: 1718–1723.

Nottingham, P.M., and Hungate, R.E. (1968) Isolation of methanogenic bacteria from feces of man. *J Bacteriol* 96: 2178–2179.

Palenik, B., Grimwood, J., Aerts, A., Rouze, P., Salamov, A., Putnam, N., et al. (2007) The tiny eukaryote *Ostreococcus* provides genomic insights into the paradox of plankton speciation. *Proc Natl Acad Sci USA* 104: 7705–7710.

Parales, R.E., Ditty, J.L., and Harwood, C.S. (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. *Appl Environ Microbiol* 66: 4096–4104.

Rainey, F.A., Donnison, A.M., Janssen, P.H., Saul, D., Rodrigo, A., Bergquist, P.L., et al. (1994) Description of *Caldicellulosiruptor saccharolyticus* gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. *FEMS Microbiol Lett* 120: 263–266.

Samuel, B.S., and Gordon, J.I. (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. *Proc Natl Acad Sci USA* 103: 10011–10016.
Samuel, B.S., Hansen, E.E., Manchester, J.K., Coutinho, P.M., Henriksat, B., Fulton, R., et al. (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 104: 10643–10648.

Sebaihia, M., Peck, M.W., Minton, N.P., Thomson, N.R., Holden, M.T., Mitchell, W.J., et al. (2007) Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17: 1082–1092.

Sirand-Pugnet, P., Lartigue, C., Marenda, M., Jacob, D., Barre, A., Barbe, V., et al. (2007) Being pathogen, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 3: e75.

Sissons, C.H., Sharrock, K.R., Daniel, R.M., and Morgan, H.W. (1987) Isolation of cellulolytic anaerobic extreme thermophiles from New Zealand thermal sites. Appl Environ Microbiol 53: 832–838.

Smith, P.H., and Hungate, R.E. (1958) Isolation and characterization of Methanobacterium ruminantium n. sp. J Bacteriol 75: 713–718.

Stanier, R.Y. (1947) Studies on nonfruiting myxobacteria. I. Cytophaga johnsonae, n. sp., a chitin-decomposing myxobacterium. J Bacteriol 53: 297–315.

Suarez, F., Furne, J., Springfield, J., and Levitt, M. (1997) Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol 272: 1028–1033.

Takahata, Y., Nishijima, M., Hoaki, T., and Maruyama, T. (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophilia sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51: 1901–1909.

Udawy, D.W., Zeigler, L., Asolkar, R.N., Singan, V., Lapidus, A., Fenical, W. et al. (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104: 10376–10381.

Williams, P.G., Buchanan, G.O., Feling, R.H., Kauffman, C.A., Jensen, P.R., and Fenical, W. (2005) New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70: 6196–6203.

Wittich, R.M., Wilkes, H., Sinnwell, V., Francke, W., and Fortnagel, P. (1992) Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58: 1005–1010.

Xie, G., Bruce, D.C., Challacombe, J.F., Chertkov, O., Dettet, J.C., Gilna, P., et al. (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73: 3536–3546.

Zylstra, G.J., McCombie, W.R., Gibson, D.T., and Finette, B.A. (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54: 1498–1503.