Biodiversity of Sematophyllaceae s. str. in northeastern Brazil

Milena Evangelista-dos-Santos1*, Emilia de B. Valente2

1 Programa de Pós-Graduação em Botânica, Herbário da UEFS, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil • milenaevangelista16@gmail.com • https://orcid.org/0000-0003-0816-2832
2 Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil • ebvalente@gmail.com • https://orcid.org/0000-0002-9801-2370
* Corresponding author

Abstract
In this study, we list 25 moss species belonging to Sematophyllaceae s. str. Six species are reported for the first time from some of the states in the Northeast Region of Brazil. Sematophyllum succedaneum (Hook.f. & Wilson) Mitt. stands out for being found for the first time in this region. The Atlantic Forest is the phytogeographic domain with the greatest number of Sematophyllaceae species, which are either exclusive to this domain or shared with the Caatinga and/or Cerrado. Our study expands on the previous knowledge of these species and provides a foundation for further studies.

Keywords
Atlantic Forest, Caatinga, Cerrado, Hypnales, pleurocarpous mosses

Introduction
The Northeast Region of Brazil is the third largest region and, has of the largest number of bryophyte species, with an estimated 689 species (Costa and Peralta 2015). This region presents four phytogeographic domains: Caatinga, Cerrado, Amazon Forest (in Maranhão), and Atlantic Forest. According to Drumond et al. (2000), the Caatinga is the largest domain occupying the central, northeastern, and southern area of the Northeast Region of Brazil. The Cerrado occupies the western and southeastern portions, whereas the Atlantic Forest, with its area drastically reduced, lies in the easternmost portion of the Northeast region. Although the Caatinga covers the largest territory, this domain has the lowest species diversity of bryophytes (Costa and Peralta 2015). The predominant ombrophilous forest in the Atlantic region is characterized by a high diversity (Costa and Peralta 2015).

Sematophyllaceae is a large moss family with approximately 49 species in Brazil (Câmara and Carvalho-Silva 2020). Descriptions of Sematophyllaceae species from the Northeast Region are found in the publications by Yano et al. (2009), Varão et al. (2011), Oliveira et al. (2018), Evangelista-dos-Santos et al. (2021), Evangelista-dos-Santos and Almeida (2020), and Souza and Oliveira (2019). Although there are existing published studies on Sematophyllaceae, additional investigations of herbarium collections are required to provide invaluable information.
The five herbaria with the most specimens collected in the Northeast Region are ALCB, HABIT, HUEFS, UB, and UFB (SpeciesLink 2021). Approximately 126 Sematophyllaceae specimens were found on the SpeciesLink website without identifications to species. Here, we provide a list of all Sematophyllaceae s. str. species occurring in the Northeast Region of Brazil, with taxonomic comments, photographs, ecological information, and geographic and altitudinal distribution.

Study Area

The Northeast Region of Brazil is located in the Southern Hemisphere tropics (Fig. 1). In the north and east is borders the Atlantic Ocean. Rainfall is between 300 and 2220 mm per year, and the average temperature is between 20 and 40 °C (Queiroz et al. 2018). The Northeast Region has a semi-arid climate (Araújo and Martins 1998). The region has the following physiognomies: Savana-estépica, Caatinga do Sertão, arid region with vegetational disjunctions, dense ombrophilous forest, ombrophilous open forest, seasonal semi-deciduous forest, seasonal deciduous forest, and savanna (IBGE 2012).

Methods

To obtain a preliminary list of the Sematophyllaceae s. str. species in the Northeast Region, we compiled data from published sources (i.e., Yano 1981, 1989, 1994, 2011; Costa et al. 2011; Varão et al. 2011; Oliveira et al. 2018; Evangelista-dos-Santos et al. 2019; Souza and Oliveira 2019). In addition, we consulted the online platforms SpeciesLink (https://specieslink.net/) and Flora e Funga do Brasil 2020 (http://floradobrasil.jbrj.gov.br).

For identification of Sematophyllaceae s. str. species, specialized literature was consulted (i.e., Florschutz 1964; Sharp et al. 1994; Buck 1994, 1998; Ramsay et al. 2004; Câmara et al. 2016), and type materials from NY, NHM, and PACA herbaria were requested on loan.

We undertook collection excursions in areas where fewer or dubious records existed (i.e., Serra da Jibóia, BA; Barra do Vento, BA; and Serra da Bela Vista, SE). Between 2019 and 2022, 212 samples were collected following the methodology proposed by Yano (1984). The collected material is deposited in HUEFS and ASE. Specimens were requested from the Alexandre Leal Costa (ALCB) and Anchieta (PACA) herbaria and analyzed in HUEFS. The specimens housed in the herbaria ASE, HABIT, HUESPI, HUNE, UB, and UFP were observed during visits in 2019 and 2021. The taxonomic classification used here follows Carvalho-Silva et al. (2017) and Deshmukh et al. (2021).

The species are classified according to the substrate they were colonizing (Robins 1952; Bates 2009). The Brazilian phytogeographic domains follow the classification proposed by Fiaschi and Pirani (2009). Of the 25 species included in the list of species, we selected 13 to be described and illustrated, as these species are newly reported from Northeast Region or with little information in the literature on them.

Results

Twenty-five species belonging to the family Sematophyllaceae s. str. (Table 1) are known from the Northeast Region of Brazil. Twenty-three species occur in the Atlantic Forest, of which 12 are exclusive to that domain, and 11 are shared with the Cerrado and Caatinga.
phytogeographic domains. Only *Donnellia lageniformis* (Müll.Hal.) W.R. Buck was found exclusively in campo rupestre in the Caatinga domain, growing on decaying wood. *Sematophyllum succedaneum* (Hook.f. & Wilson) Mitt. is newly recorded from the Northeast Region, and the geographic distributions of five other species are expanded: *Donnellia commutata* (Müll.Hal.) W.R. Buck, *Jirivanaea cuspidifera* (Mitt.) U.B.Deshmukh & Rathor, *J. galipensis* (Müll. Hal.) U.B.Deshmukh & Rathor, *Metathecium boryanum* (Müll.Hal.) Wijk & Margad., and *S. swartzii* (Schwӓgr.) W.H.Welch & H.A.Crum. The Brazilian states with the most species are Bahia (25 spp.), Pernambuco (8 spp.), and Maranhão and Ceará (each with 6 spp.). Altitudinal variation ranged between 93 and 1900 m. The diversity of substrates was great, with species growing on tree trunks, decaying logs, rocks, soil, fungi, and termite mounds. The substrate most colonized by Sematophyllaceae s. str. species was logs and decay ing wood.

Aptychopsis estrellae (Müll.Hal) P.E.A.S.Câmara, Carv.-Silva & W.R.P.Buck

Figure 2A–C

Material examined. BRAZIL – Alagoas • Murici, Estação Ecológica de Murici; 09°22′46″S, 035°50′28″W; 02.XII.2004; K.C. Pôrto leg.; UFP 48852 – Bahia • Miguel Calmon, Parque Estadual dos Sete Passagens; 11°38′14″S, 040°52′25″W; 1200 m alt.; 11.X.2007; J. Ballejos 1982; ALCB 79378 • Santa Teresinha, Serra da Jiboaia; 12°44′55″S, 039°47′55″W; 800 m alt.; 17.IX.2015; S.B.V. Bôas-Bastos 2734; ALCB 119927 – Pernambuco • Caruaru, Mata dos Altinhos, Brejo dos Cavais; 08°28′33″S, 035°17′11″W; 25.XIII.1987; K.C. Pôrto 2443; UFP 20827 • São Vicente Férreir, Serra das Mascarenhas; 07°47′45″S, 035°35′14″W; 23.III.2010; M.P.P. Silva 279; UFP 72135.

Identification. Leaves lanceolate to lanceolate-triang lar, concave, rarely plane, apex gradually acuminate, margin subentire; cells linear, flexuose, thick-walled, smooth, porose at base; alar cells curved or not to insertion, enlarged, inflated, oblong; supra-alar cells quad ratic, 1–2 rows. Capsules cylindric; exostome teeth triangular, bordered or not, cross-striolate below, trabe - culate at back; endostome with a medium-high basal membrane, segments papillose, perforate, cilia single sometimes rudimentary.

Aptychopsis pyrrhophylla (Müll.Hal) Wijk & Margad.

Figure 2D–F

Material examined. BRAZIL – Bahia • Abaira, Catolés, Serra do Barbado, Mata da Forquilha; 13°19′47″S, 041°53′12″W; 1655 m alt.; 05. IX.2008; C. Bastos 5166; ALCB 84217 • Rio de Contas, Pico das Almas; 13°59′S, 041°51′14″W; 1600 m alt.; 27.XI.1998; R.M. Harley 26634; HUEFS 28246.
Figure 2. Sematophyllaceae s. str. species in the Northeast Region of Brazil. A–C. *Aptychopsis estrellae*. D–F. *Aptychopsis pyrrhophylla*. G–I. *Aptychopsis tequendamensis*. J–L. *Brittonodoxa lithophila*. M–O. *Colobodontium vulpinum*. P–R. *Donnellia commutata*. Scale bars: A, D, G, J, M, P = 200 µm; B, C, E, F, H, I, L, O, R = 50 µm; K, N, Q = 20 µm.
Identification. Leaves oblong-lanceolate, concave or plane, apex long-acuminate, margins entire, revolute or not; cells linear-flexuose, thick-walled, smooth, porose at base; alar cells curved to the insertion, enlarged, inflated, oblong; supra-alar cells quadrate to subrectangular, 3–4 rows. Capsule not observed.

Aptchopsis teguendamensis (Hampe) P.E.A.S.Câmara, Carv.-Silva & W.R.Buck

Figure 2G–I

Material examined. BRAZIL – Bahia • Unapólis, Estação Ecológica Veracruz, divisa com Imbiriú; 16°36′06″S, 039°16′26″W; 09.IX.1999; C. Bastos & S.B.V. Bôas-Bastos 1727; ALCB 41679 • Santa Teresinha, Serra da Jiboia; 12°55′55″S, 039°47′55″W; 800 m alt.; 12.III.2002; C. Bastos & S.B.V. Bôas-Bastos 3155; ALCB 51322.

Identification. Leaves lanceolate to lanceolate-triangular, plane, apex long-acuminate, margins mostly entire; cells linear-flexuose, short linear at apices, thick-walled, smooth, porose at base; alar cells rarely incurred to insertion, enlarged, rectangular to short-rectangular; supra-alar cells quadrate to rectangular, 1 row. Capsules ovoid to cylindrical; exostome teeth triangular, bordered, cross-striolate below, trabeculate at back; endostome with a high basal membrane, segments finely papillose, perforate, cilia single.

Brittonodoxa lithophila (Hornsch.) W.R.Buck, P.E.A.S.Câmara & Carv.-Silva

Figure 2J–L

Material examined. BRAZIL – Bahia • Eunápolis, Estação Ecológica Veracruz, divisa com Imbiriú; 16°36′06″S, 039°16′26″W; 09.IX.1999; C. Bastos & S.B.V. Bôas-Bastos 1727; ALCB 41679 • Santa Teresinha, Serra da Jiboia; 12°55′55″S, 039°47′55″W; 800 m alt.; 12.III.2002; C. Bastos & S.B.V. Bôas-Bastos 3155; ALCB 51322.

Identification. Leaves orbicular to ovate, concave or plane, apex acuminate, margin entire; cells rhomboidal, thick-walled, smooth, not porose at base; alar cells not curved to insertion, inflated, oblong to short-rectangular; supra-alar cells quadrate to subrectangular, 2–4 rows. Capsule cylindrical; exostome teeth triangular, border, cross-striolate below, trabeculate at back; endostome with a high basal membrane, segments finely papillose, perforate, cilia single.

Colobodontium vulpinum (Mont.) S.P.Churchill & W.R.Buck

Figure 2M–O

Material examined. BRAZIL – Bahia • Piatã, Cachoeira do Patricio; 13°08′35″S 041°53′25″W; 1200 m alt.; 19.II.2007; J. Ballejos 1214; ALCB 77318 • Morro do Chapéu, Mata do Capão do Pinho; 929 m alt.; 17.VI.2008; E.B. Valente 1196; HUEFS 154441 • Santa Teresinha, Serra da Jiboia; 12°55′55″S, 039°47′55″W; 800 m alt.; 24.IX.2004; E.B. Valente 402; HUEFS 97274 • Ceará • Crato, Chapada do Araripe; 07°38′72″S, 040°21′70″W; 920 m alt.; 19.III.1983; S. Prazeres & K.C. Pôrto leg.; UFP 6069 – Maranhão • Carolina, RPPN Mansinhas; 07°16′49″S, 047°41′21″W; 13.IV.2016; R.R.O. 493; HABIT 3187 – Pernambuco • Timbaúba, Engenho, Água Azul; 17.IV.1992; S.R. Germano leg; UFP 8683.

Identification. Leaves lanceolate, concave or plane, apex acuminate, margin entire; cells rhomboidal to long-rhomboidal, thick-walled, smooth, not porose at base; alar cells not curved to insertion, oblong; supra-alar cells quadrate to subrectangular, 2–4 rows. Capsules cylindrical; exostome teeth triangular, bone-white, not bordered, with prominent cross walls, slightly trabeculate at back; endostome reduced with a very low basal membrane, sometimes absent, cilia absent.

Sematophyllum beyrichii (Hornsch.) Broth.

Figure 3A–C

Material examined. BRAZIL – Alagoas • Murici, Estação Ecológica de Murici; 09°22′46″S, 035°50′28″W; 02.XII.2004; K.C. Pôrto leg.; UFP 48981 – Bahia • Boa Nova, Parque Nacional de Boa Nova, Recanto dos Pássaros; 14°39′20″S, 040°14′46″W; 20.I.2010; A.M. Souza 590; HUEFS 204888 • Igapópiúna, Reserva Ecológica de Michelin; 13°47′19″S, 039°11′51″W; 04.IV.2010; H.C. Oliveira 1737; ALCB 112639 • Itaberaba, Serra do Orobó; 12°35′13″S, 040°46′27″W; 752 m alt.; 10.X.2019; C.J.P. Bastos 5580; ALCB 119569 • Miguel Calmon, Parque Estadual das Sete Passagens; 11°38′14″S, 040°52′25″W; 1200 m alt.; 19.II.2007; J. Ballejos 1214; ALCB 77318 • Morro do Chapéu, Mata do Capão do Pinho; 929 m alt.; 17.VI.2008; E.B. Valente 1196; HUEFS 154441 • Santa Teresinha, Serra da Jiboia; 12°55′55″S, 039°47′55″W; 800 m alt.; 24.IX.2004; E.B. Valente 402; HUEFS 97274 – Ceará • Crato, Chapada do Araripe; 07°38′72″S, 040°21′70″W; 920 m alt.; 19.III.1983; S. Prazeres & K.C. Pôrto leg.; UFP 6069 – Maranhão • Carolina, RPPN Mansinhas; 07°10′49″S, 047°41′21″W; 13.IV.2016; R.R.O. 493; HABIT 3187 – Pernambuco • Timbaúba, Engenho, Água Azul; 17.IV.1992; S.R. Germano leg; UFP 8683.

Identification. Leaves lanceolate, concave or plane, apex acuminate, margin entire; cells rhomboidal to long-rhomboidal, thick-walled, smooth, not porose at base; alar cells not curved to insertion, oblong; supra-alar cells quadrate to subrectangular, 2–4 rows. Capsules cylindrical; exostome teeth triangular, bone-white, not bordered, with prominent cross walls, slightly trabeculate at back; endostome reduced with a very low basal membrane, sometimes absent, cilia absent.
Figure 3. Sematophyllaceae s. str. species in the Northeast Region of Brazil. A–C. Sematophyllum beyrichii. D–F. Sematophyllum succedaneum. G–I. Trichosteleum brachydicton. J–L. Trichosteleum glaucinum. M–O. Trichosteleum glaziowii. P–R. Trichosteleum papillosum. S–U. Trichosteleum sentosum. Scale bars: A, D, G, J, M, P = 200 µm; B, C, H, I, N, O, Q, R, T, U = 50 µm; F, K, L = 20 µm; E = 10 µm.
Teresina, Serra da Jiboia; 12°55′55″S, 039°47′55″W; 800 m alt.; 03.IV.1999; E. Mello 2670; HUEFS 36594 – Ceará • Ubaijara, Serra do Ibiapaba, São Luis; 03°58′45″S, 041°09′00″W; 924 m alt.; 24.VIII.2010; C. Bastos 5360; ALCB 97126 – Maranhão • Mirador; 30.VI.2008; E.S. Brito & G.M. Conceição leg.; HABIT 574 – Pernambuco • Reserva Ecológica de Garjau, Mata do encravamento; 06.VI.2000; S.R. Germano leg.; UFP 32934.

Identification. Leaves lanceolate or oblong-lanceolate, convave, rarely plane, apex acuminate; cells linear, flexuose, thick-walled, smooth, not porose at base; alar cells not curved to insertion, inflated, oblong; supra-alar cells quadratic, 1–2 rows. Capsules cylindrical; exostome teeth triangular, bordered, cross-striolate below, trabeculate at back; endostome with a high basal membrane, segments papillose, perforate or not, cilia none or rudimentary.

Sematophyllum succedaneum (Hook.f. & Wilson) Mitt.
Figure 3D–F

Material examined. BRAZIL – Bahia • Santa Terezinha, Serra da Jiboia; 12°55′55″S, 039°47′55″W; 800 m alt.; 13.IX.1997; E. Mello 2217; HUEFS 29954.

Identification. Leaves oblong-lanceolate, plane or concave, apex acuminate, margin entire to subentire; cells rhomboidal, flexuose, thick-walled, unipapillose in ½ of leaf, porose at base; alar cells not curved to insertion, inflated or not, oblong; supra-alar cells quadratic, 1 row. Capsules cylindrical; exostome teeth triangular, not bordered, cross-striolate below, trabeculate at back; endostome with a high basal membrane, segments papillose, perforate, cilia single.

Trichosteleum brachydictyon (Besch.) A.Jaeger
Figure 3G–I

Material examined. BRAZIL – Bahia • Santa Terezinha, Serra da Jiboia; 12°55′55″S, 039°47′55″W; 800 m alt.; 13.IX.1997; E. Mello 2217; HUEFS 29954.

Identification. Leaves lanceolate or oblong-lanceolate, convave, rarely plane, apex acuminate; cells linear, flexuose, thick-walled, unipapillose in ½ of leaf, porose at base; alar cells not curved to insertion, inflated or not, oblong; supra-alar cells quadratic, 1 row. Capsules cylindrical; exostome teeth triangular, not bordered, cross-striolate below, trabeculate at back; endostome with a high basal membrane, segments papillose, perforate, cilia single.

Trichosteleum glaucinum (Sull.) A.Jaeger
Figure 3J–L

Material examined. BRAZIL – Bahia • Nova Esperança, Estação Ecológica Wenceslau Guimarães, Trilha Água Vermelha; 13°35′43″ S, 039°43′10″ W; 583 m alt.; 29.IX.2017; R.R. Ferminano 102; ALCB 124284.

Identification. Leaves lanceolate or oblong-lanceolate, concave or plane, apex short-acuminate, rarely twisted, margins serrulate; cells linear to rhomboidal, think-walled, unipapillose in ⅓ of leaf, porose in the insertion; alar cells not curved to insertion, inflated, ovate to oblong; supra-alar cells not differentiated. Capsule not observed.

Trichosteleum glaziovii W.R.Buck
Figure 3M–O

Material examined. BRAZIL – Bahia • Miguel Calmon, Parque Estadual das Sete Passagens; 11°38′14″S, 040°52′25″W; 1200 m alt.; 22.VI.2003; C. Bastos & S.B.V. Bôas-Bastos 3699; ALCB 51783.

Identification. Leaves falcate, lanceolate, concave, apex acuminate, margins serrulate; cells linear, flexuose, thick-walled, unipapillose, sometimes papillae are inconspicuous, porose at base; alar cells not curved to insertion, inflated, oblong; supra-alar cells quadratic 1 row. Capsule not observed.

Trichosteleum papillosum (Hornsch.) A.Jaeger
Figure 3P–R

Material examined. BRAZIL – Bahia • Boa Nova, Parque Nacional de Boa Nova, Recanto dos Pássaros; 14°39′20″S, 034°56′26″W; 03.VIII.1998; O. Yano et al. 23412; UB 204790 – Sergipe • Itabaiana, Serra de Itabaiana; 10°41′50″ S, 037°25′29″ W; 190 m alt.; 13.I.1981; D. Andrade-Lima 6744; UB 204680.

Identification. Leaves lanceolate or oblong-lanceolate, plane or concave, apex acuminate to crispate, margins serrulate; cells fusiform to linear fusiform, thick-walled, unipapillose in ½ of leaf, porose at base; alar cells not curved to insertion, inflated, oblong; supra-alar cells quadratic, 1–2 rows. Capsule not observed.

Trichosteleum sentosum (Besch.) A.Jaeger
Figure 3S–U

Material examined. BRAZIL – Bahia • Boa Nova, Parque Nacional de Boa Nova, Recanto dos Pássaros; 14°39′20″S, 034°56′26″W; 03.VIII.1998; O. Yano et al. 23412; UB 204790 – Sergipe • Itabaiana, Serra de Itabaiana; 10°41′50″ S, 037°25′29″ W; 190 m alt.; 13.I.1981; D. Andrade-Lima 6744; UB 204680.

Identification. Leaves lanceolate or oblong-lanceolate, plane or concave, apex acuminate, rarely twisted, margins serrulate; cells linear, flexuose, thick-walled, unipapillose in ½ of leaf, porose at base; alar cells not curved to insertion, enlarged, inflated, oblong; supra-alar cells quadratic, 1–2 rows. Capsules cylindrical; exostome teeth triangular, bordered, cross-striolate below, trabeculate at back; endostome with a high basal membrane, segments papillose, perforate, cilia single.
1–2 rows. Capsules cylindric; exostome teeth triangular, bordered, cross-striolate below, trabeculate at back; endostome with a high basal membrane, segments papillose, perforate, cilia single rarely in pairs.

Discussion

According to Câmara and Carvalho-Silva (2022), Sematophyllaceae s.lat. is represented in the Northeast Region of Brazil by 23 species, five of which currently belong to the family Pylaisiadelphaceae Goffinet & W.R.Buck. Hence, 18 species of Sematophyllaceae s. str. were known from this region (Carvalho-Silva et al. 2017). In Brazil, 38 species of Sematophyllaceae s. str. are recognized (Câmara and Carvalho-Silva 2022), and with 25 species, in the Northeast Region has 65.7% of the total reported for the country. All species were found in the state of Bahia (Evangelista-dos-Santos et al. 2021).

The species reported from the Northeast Region are similar to the other Brazilian regions, especially the South and Southeast Regions, according to the published literature (i.e., Visnadi 2006; Amélio 2019; Faria et al. 2020; Koga and Peralta 2021; Remor et al. 2021). The South and Southeast Regions are predominantly within the Atlantic Forest domain, which has the largest number of species of the family in Brazil, which justifies the similarity (Costa and Peralta 2015).

With our new data from previously unexplored locations and new records from the Caatinga or Cerrado domain, the number species known from the Northeast Region is considerably increased. The occurrence of the relatively larger number of Sematophyllaceae s. str. species found in this region can be explained by the variety of habitats, floristic heterogeneity, and environmental conditions (Giulietti et al. 2005; Moraes et al. 2020). Greater availability of water, which provides ideal microhabitats for bryophytes may also be of importance (Vanderpoorten and Goffinet 2009).

Although cited in the literature, some species have not since been recorded in certain places, such as Aptychopsis estrellae cited for the Serra do Itabaiana in Sergipe (Silva and Pórtio 2015), Jirivaneeaa caespitosa (Hedw.) U.B.Deshmukh & Rathor for the Serra do Cariri in Pernambuco (Yano 1981), and Trichosteleum sento (Hedw.) Broth. on the bases of living tree trunks, Colobodontium vulpinum on rocks, Trichosteleum papillosum on decaying plant material, and Trichosteleum glaziovii on rocks.

Our results show the importance of analyzing herbarium collections in better understanding species. Many of the new occurrences come from materials originally identified at the family or genus level. Based on our results we highlight the important contribution of taxonomic study of herbarium collections.

Authors’ Contributions

Conceptualization: MES. Data curation: MES. Formal analysis: MES. Investigation: MES. Methodology: MES. Project administration: MES. Resources: MES. Software: MES. Supervision: EBV. Validation: MES. Visualization: MES. Writing – original draft: MES. Writing – review and editing: MES.

Acknowledgements

This study was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship granted to the first author. We thank the Programa de Pós-Graduação em Botânica de Universidade Estadual de Feira de Santana for the award of doctoral degree, the personnel at the herbaria ALCB, ASE, HUESPI, HUEFS, HUNEB, HABIT, NY, NHM, PACA, UB, and UFP for their support during our visits and for loans of specimens, and Dr. Paulo Eduardo Aguiar Saraiva Câmara for his help in the identification of some species.

References

Alvarenga LDP, Silva MPP, Oliveira JRPM, Pórtio KC (2007) Novas ocorrências de briófitas para Pernambuco, Brasil. Acta Botânica Brasiliaca 21 (2): 349–360. https://doi.org/10.1590/S0102-33062007000200009
Amélia LA, Peralta DF, Carmo DM (2019) Briófitas do Parque Estadual de Campos do Jordão, estado de São Paulo, Brasil. Hoehnea 46 (2): e962018. https://doi.org/10.1590/2236-8906-962018

Araújo FS, Martins FR (1998) Fisionomia e organização da vegetação do Carrasco no planalto da Ibiapaba, estado do Ceará. Acta Botanica Brasileira 13 (1): 1–13. https://doi.org/10.1590/S0102-33061999000100002

Bates JW (2009) Mineral nutrition and substratum ecology. In: Goffinet B, Shaw AJ. Bryophyte biology. Cambridge University Press, Cambridge, UK, 299–356.

Buck WR (1994) Pleurocarpous mosses of the West Indies. Memoirs of the New York Botanical Garden 82: 1–400.

Buck WR (1994) A synopsis of the American species of Donnellia (Sematophyllaceae). Hibokia 11: 377–405.

Câmara PEAS, Carvalho-Silva M, Buck WR (2016) The genus Acro­porium (Sematophyllaceae) in the neotropics. Journal of Bryology 37 (4): 284–291. https://doi.org/10.1179/1743282014Y.0000000126

Câmara PEAS, Carvalho-Silva M (2020). Sematophyllaceae. Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB96943. Accessed on: 2022-04-10.

Carvalho-Silva M, Stech M, Soares-Silva LH, Buck WR, Liu Y, Câmara P EAS (2017) A molecular phylogeny of the Sema­tophyllaceae s.l. (Hypnales) based on plastid, mitochondrial and nuclear markers, and its taxonomic implications. Taxon 66 (4): 811–831. https://doi.org/10.12705/664.2

Costa DP, Peralta DF (2015) Bryophytes diversity in Brazil. Rodriguesia 66 (4): 1063–1071. https://doi.org/10.1590/2175-7860201566409

Costa DP, Pórtico KC Luizi-Ponzo AP, Iliu-Borges AL, Bastos CJP, Câmara PEAS, Peralta DF, Bôas-Bastos SBV, Imbassahy CAA, Henriques DK, Gomes HCS, Rocha L M, Santos ND, Siverso TS, Vaz-Imbassahy TF, Churchill SP (2011) Synopsis of the Brazilian moss flora: checklist, distribution and conservation. Nova Hedwigia 93: 277–334. https://doi.org/10.1127/0029-5053/2011/0093-0277

Deshmukh UB, Rathor OS (2021) Jirivanea, a new name for Vitalia P.E.S. Câmara, Carv-Silva & W.R.Buck. hom. illeg. (Sematophyllaceae, Bryophyta) versus Vitalia Batista & Ciferri (Chaeot­hyriales, Ascomycota). Phytotaxa 500 (1): 055–056. https://doi.org/10.11646/phytotaxa.500.1.9

Drumond MA, Kill LHP, Lima PCF, Oliveira MC, Oliveira VR, Al­buquerque SG, Nascimento CES, Cavalcanti J (2000) Avaliação e identificação de ações prioritárias para a conservação, utilização sustentável e repartição de benefícios da biodiversidade do bioma Caatinga. https://www.infofoteca.cepnta.br/infoteca/bitstream /doc/1340001/assosustentavel.pdf. Accessed on: 2022-04-20.

Evangelista-dos-Santos M, Valente EB, Bastos CJP, Bôas-Bastos SBV, Cônego MC, Souza–Alves JP, Boubli JP, Bezerra B (2020) Habitat suitability for primate conservation in north-east Brazil. Oryx 54 (6): 803–813. https://doi.org/10.1017/S0030653319001388

Evangelista-dos-Santos M, Almeida GSS, Valente EB, Bastos CJP, Bôas-Bastos SBV, Heringia, Ribeirinho, São Paulo 73 (2): 191–195. https://doi.org/10.12862/2446-8231201873211

Queiroz R, Cordeiro LS, Sampaio VS, Ribeiro RTM, Lóiola MIB (2018) A região Nordeste. In: Coradin L, Camillo J, Pareyn FGC (Eds.). Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial – Plantas para o futuro: Região Nordeste. Ministério do Meio Ambiente, Brasília, Brazil, 75–104.

Ramsay HP, Schofield WB, Tan BC (2004) The family Sematophyllae­aceae (Bryopsida) in Australia, Part 2. Acroporium, Clastobryum, Macrohypnum, Meiothecia, Meiothecium, Papillidio­sis, Radula, Rhaphidorrhynchium, Trichosteleum, and Warburgiella. Journal of the Hattori Botanical Laboratory 95: 1–69.

Remor D, Pastore JFP, Peralta DF (2021) Levantamento das briófitas da trilha do Passeigueirinho, Curitibanos, estado de Santa Cata­rina, Brasil. Hoehnea 48: 1–14. https://doi.org/10.1590/2236-8906-06-118/2020

Robins RG (1952) Bryophyte ecology of a dune area in New Zealand. Acta Geobotanica 4: 1–31.

Sharp AJ, Crum H, Eckel PM (1994) The moss flora of Mexico. Mem­oirs of the New York Botanical Garden 69: 1–1113.

Souza MEW, Oliveira HC (2019) Briófitas de uma área ecotonal de Caatinga/Cerrado no estado do Piauí, Brasil. Enciclopédia Bios­fera 29 (16): 1796–1808.

Species-Link (2023) Sematophyllaceae. https://splink.cria.org.br/. Accessed on: 2022-04-10.

Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cam­bridge University Press, New York, USA, 294 pp.

Vareão LF, Cunha IPR, Peralta DF (2011) Levantamento de briófitas do distrito Bananal, município Governador Edison Lobão, Maranhão. Brasil. Revistas de Biologia e Ciências da Terra 11 (2): 88–92.

Visnadi RS (2006) Sematophyllaceae da Mata Atlântica do nordeste do Estado de São Paulo. Hoehnea 33 (4): 455–484.

Yano O (1994) Briófitas da Serra de Itabaiana, Sergipe, Brasil. Acta Botanica Brasileira 8(1): 45–57.

Yano O (2009) A regional checklist of Brazilian mosses. The Journal of the Hattori Botanical Laboratory 66: 373–484.

Yano O (2011) Catálogo de Musgos Brasileiros: literatura original, ba­sionímico, localidade-tipo e distribuição geográfica. Instituto de Botânica de São Paulo, São Paulo, Brasil, 180 pp.

Yano O, Bordin J, Peralta DF (2009) Briófitas dos estados do Ceará, Maranhão, Paraíba, Piauí e Rio Grande do Norte (Brasil). Hoehnea 36 (3): 377–385.