Genetic polymorphisms and asthma: findings from a case–control study in the Madeira island population

Anabela Gonçalves Berenguer1,5*, Ana Teresa Fernandes1, Susana Oliveira2, Mariana Rodrigues3, Pedro Ornelas2, Diogo Romeira2, Tânia Serrão2, Alexandra Rosa1,4† and Rita Câmara2†

Abstract

Background: Asthma is a complex disease influenced by multiple genetic and environmental factors. While Madeira has the highest prevalence of asthma in Portugal (14.6%), the effect of both genetic and environmental factors in this population has never been assessed. We categorized 98 asthma patients according to the Global Initiative for Asthma (GINA) guidelines, established their sensitization profile, and measured their forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) indexes. Selected single nucleotide polymorphisms (SNPs) were analysed as potential markers for asthma susceptibility and severity in the interleukin 4 (IL4), interleukin 13 (IL13), beta-2-adrenergic receptor (ADRB2), a disintegrin and metalloprotease 33 (ADAM33), gasdermin-like (GSDML) and the signal transducer and activator of transcription 6 (STAT6) genes comparatively to a population reference set.

Results: Although mites are the major source of allergic sensitization, no significant difference was found amongst asthma severity categories. IL4-590*CT/TT and IL4-RP2*253/183 were found to predict the risk (2-fold) and severity (3 to 4-fold) of asthma and were associated with a lower FEV1 index. ADRB2-c.16*AG is a risk factor (3.5-fold), while genotype GSDML-236*TT was protective (4-fold) for moderate-severe asthma. ADAM33-V4*C was associated to asthma and mild asthma by the transmission disequilibrium test (TDT). Finally, ADAM33-V4*CC and STAT6-21*TT were associated with higher sensitization (mean wheal size ≥10 mm) to house dust (1.4-fold) and storage mite (7.8-fold).

Conclusion: In Madeira, IL4-590C/T, IL4-RP2 253/183, GSDML-236C/T and ADAM33-V4C/G SNPs are important risk factors for asthma susceptibility and severity, with implications for asthma healthcare management.

Keywords: Asthma, Madeira, SNPs, Susceptibility, Severity

Background

Asthma is a chronic airway inflammation, characterized by variable airway obstruction and reduced lung function, and leading to wheezing and shortness of breath [1]. It is described as a complex disease arising from the contribution of multiple genetic and environmental factors [2,3], affecting more than 300 million people worldwide, with increased prevalence in developed societies [4].

In Portugal, 7.83% of the population is affected by clinical asthma and 8.72% by wheezing symptoms [5]. Within Portugal, the island of Madeira has a high prevalence of the disease, as active asthma (presence of symptoms during the last 12 months) affects 14.6%, and atopy (positive reaction to skin prick tests (SPT) to common aeroallergens and the presence of specific IgE) affects 54% of the population [6].

Given the high prevalence of asthma in the Madeira population [6], determining the population’s genetic background is an essential first step towards understanding the mechanisms of the disease. In previous work [7] we showed that both IL4-590 and IL4-RP2 are useful genetic markers to detect asthma predisposition in the Madeira population. Investigating a larger number of
genes is important because many genes with small effects, rather than just a few with strong effects, contribute to the disease risk [8]. A useful clustering of asthma susceptibility genes has been proposed [9]: i) triggers of the immune response (such as CD14, IL10, STAT3, MHC class II molecules); ii) regulators of the Th helper 2 (Th2) differentiation (IL12B, IL4, IL13, STAT6, IL4RA); iii) associated with epithelial biology (CCL5, FLG, SPINK5, GSDML) and iv) linked to lung function, airway remodeling and asthma severity (ADRB2, ADAM33, PP10, PHF11).

Here we extend our analysis in four important ways, to consider i) 6 additional polymorphisms, namely IL13-c.144 G/A, ADRB2-c.16 A/G, ADAM33-V4 C/G, ADAM33-S1 c.710 G/A, GSDML-236 C/T and STAT6-21 C/T (guided by a literature review summarized in Table 1), ii) the asthma persistence and severity classes according to GINA guidelines, iii) the most common allergens in the island and iv) the FEV1/FVC lung function indexes. Therefore, this work contributes to the analysis of the association of the above polymorphisms to asthma susceptibility and severity, FEV1/FVC indexes and sensitization profiles, in the Madeira population.

Results

Demographic and clinical characterization of the asthmatics

The demographic and clinical characterization of the asthmatic population analysed in this study are shown in Table 2. The patients’ mean age was 13.6 ± 4.3 years old, with 59.2% males. None of the asthma persistence or severity phenotypes was found sub-structured by the male-to-female ratio. The FEV1 and FVC indexes were significantly different between mild persistent and moderate-severe persistent asthma (Mean FEV1 t = 2.732, p-value = 0.008; FVC Mann–Whitney U = 456.0, p-value = 0.025).

Although persistent asthmatics were found more frequently sensitized to both cat and dog allergen than intermittent asthmatics (Additional file 1) no significant differences were observed for SPT positivity or degree of sensitization to the most common allergens in the island, namely dust and storage mites mix fungi, indoor fungi, cat or dog.

SNP association to asthma risk and severity

The genotypic and allelic frequencies of each SNP among asthma subgroups and population reference set are described in Table 3 and Additional file 2, respectively. The genotypic distribution of SNPs in controls reflects previously published data on other European and Mediterranean populations [45,46]. All SNP polymorphisms were found to be in HWE, except for STAT6-21 locus in mild persistent asthma (p-value = 0.038). Nevertheless, this SNP was considered in the analysis under a more stringent p-value cut-off of 0.01, since a slight deviation from HWE is allowed for SNPs linked to disease status [47].

Table 3 shows significant effects for the genotypes IL4-590*CT/TT; IL4-RP2*183253/183183, ADRB2-c.16*AG/AA, and GSDML-236*TT. Specifically, the IL4-590*CT/TT genotypes were significantly more frequent in asthma patients (35.8% vs. 20.0%, χ2 p-value = 0.009; OR 2.222, 95% CI 1.191-4.416), persistent asthma (37.8% vs. 20.0%; χ2 p-value = 0.006; OR 2.433, 95% CI 1.264-4.717), and moderate-severe asthma vs. the reference set (20% vs. 50.0%; χ2 p-value = 0.002; OR 4.000, 95% CI 1.701-9.343). Genotypes IL4-RP2*183253/183183 were significantly more frequent in asthma patients (30.7% vs. 18.2%; χ2 p-value = 0.027; OR 1.984, 95% CI 1.040-3.788), in persistent asthma (33.8% vs. 18.2%; χ2 p-value = 0.013; OR 2.296, 95% CI 1.159-4.547), and in the moderate-severe asthma vs. the reference set (46.7% vs. 18.2%; χ2 p-value = 0.002; OR 3.938, 95% CI 1.657-9.357). ADRB2-c.16*AG was significantly more frequent in moderate-severe asthma vs. mild asthma (66.7% vs. 36.4%, p-value = 0.010, OR 3.500, 95% CI 1.318-9.293) while GSDML-236*TT displays a significant opposite trend (20.0% and 50.0%, respectively in moderate-severe and mild asthma; χ2 p-value = 0.008, OR 0.250 95% CI 0.086-0.730).

The results described above are corroborated by the allelic counts (Additional file 2) of IL4-590*T, which are significantly higher in asthma patients (19.4%; χ2 p-value = 0.010, OR 2.060, 95% CI 1.178-3.601), in persistent asthma (20.3% χ2 p-value = 0.009, OR 2.178 95% CI 1.208-3.925), and in moderate-severe (28.3%, χ2 p-value = 4.514*10^-4, OR 3.386 95% CI 1.668-6.877)

Table 1 Selected studies previously reporting association of the studied SNPs and asthma

Gene	Polymorphism	dbsNP rs ref (NCBI)	Chromosome location	Alleles (ancestral:derived)	References
IL13	c.144Gln/Arg	rs20541	5q31 exon 4	G > A	[10-16]
IL4	590	rs2243250	5q31 promoter	C > T	[17-23]
IL4	RP2	-	5q31 intron 2	253 > 183(del)	[24]
ADRB2	c.16Arg/Gly	rs1042713	5q31 exon	A > G	[25,26]
ADAM33	V4	rs2787094	20p13 3’UTR	C > G	[27-30]
ADAM33	S1 c.710Val/Ile	rs3918396	20p13 exon 19	G > A	[27]
GSDML	236	rs7216389	17q21 intron 1	C > T	[31-39]
STAT6	21	rs324011	12q13-24 intron 2	C > T	[19,40-44]
vs. the reference set (10.5%). Similarly, the allelic counts of **IL4-RP2**^*183* were significantly higher in moderate-severe asthma (26.7% vs. 10.5%; \(\chi^2 \) p-value = 0.001, OR 3.115 95% CI 1.521-6.379).

SNP association to FEV\textsubscript{1} and FVC

Table 4 shows the association analysis of SNP genotypes with the FEV\textsubscript{1} and FVC indexes. Significant differences were found for mean FEV\textsubscript{1} distribution among **IL4-590**^*CT/TT* genotypes (F = 3.982, p-value = 0.024), with **IL4-590**^*CT/TT* patients exhibiting a significantly lower FEV\textsubscript{1} values when compared to **IL4-590**^*CC* homozygotes patients (t = 2.797, p-value = 0.006). Similarly, a significantly lower FEV\textsubscript{1} index was found amongst patients with **IL4-RP2**^*183*253/183183 compared to **IL4-RP2**^*183*253/183253 when compared to **IL4-RP2**^*253253* homozygotes (t = 2.974, p-value = 0.004).

SNP association to SPT

Despite not associated to SPT positivity, some of the studied SNPs relate to the sensitization degree (Table 5). **ADAM33-V4**^*CC* relates to house dust mite (*Dermatophagoides pteronyssinus* \(\chi^2 \) p-value = 0.016, OR 1.325, 95% CI 1.070-1.641 and *Blomia tropicalis* \(\chi^2 \) p-value = 0.047, OR 1.355, 95% CI 1.131-1.622). **STAT6-21**^*TT* is associated to the degree of sensitization for storage mite (\(\chi^2 \) p-value = 0.003, OR 7.778, 95% CI 1.682-35.962).

SNP haplotypes and epistasis association to asthma risk

Table 6 shows the haplotype frequencies for SNPs at the 5q31 and 20p13 chromosomal regions. At the 5q31, we highlight **IL4-590**/**IL4-RP2**^* T183* frequency, which is significantly lower in the reference set (8.8%) than overall asthma (16.8%, p-value = 0.019), persistent asthma (18.2%, p-value = 0.011), and moderate-severe asthma (26.7%, p-value = 3x10^-4). In addition, this same haplotype was more common in moderate-severe vs. mild asthma (26.7% vs. 12.5%, p-value = 0.029). In fact, every haplotype found to associate with the risk of asthma includes either **IL4-590**^*C/T* or **IL4-RP2**^*2183*253 or both. Compared to the reference set, the most significant combinations are i) overall asthma **IL13c.144/IL4-590**^*GT* (p-value = 0.018); ii) persistent asthma **IL13c.144/IL4-590**^*GT* (p-value = 0.010) and iii) moderate-severe asthma **IL4-590/IL4-RP2**^*T183* (p-value = 3x10^-4). **IL13c.144/IL4-RP2**^*A183* is also more frequently found in moderate-severe asthma than in mild asthma (p-value = 0.017).

Epistatic interactions between pairs of SNPs between all asthma subgroups were tested, revealing significant epistasis for loci **IL4-590** and **STAT6-21** in moderate-to-severe compared to intermittent asthma (p-value = 0.044) and **IL13c.144** and **ADAM33-V4** between persistent asthma and the Madeira reference set (p-value = 0.035).

TDT association analysis

The TDT analysis in Table 7 suggests that the **ADAM33-V4**^*C* allele is significantly over transmitted to offsprings in overall asthma (ratio 27/15 of transmitted/non-transmitted; McNemar \(\chi^2 \) p-value = 0.044, OR 1.800, 95% CI 0.956-3.384), in persistent asthma (ratio 22/9 of transmitted/non-transmitted; McNemar \(\chi^2 \) p-value = 0.015 OR 3.500, 95% CI 1.126-11.965), and in mild asthma (ratio 16/4 of transmitted/non-transmitted; McNemar \(\chi^2 \) p-value = 0.015 OR 4.000, 95% CI 1.337-11.965). **IL4-590**^*T* and **IL4-RP2**^*A183* alleles were found to be significantly over transmitted only amongst moderate-severe offspring asthma (ratio 15/6 of transmitted/non-transmitted; McNemar \(\chi^2 \) p-value = 0.039 OR 2.500, 95% CI 0.970-6.443 and ratio 14/4 of transmitted/non-transmitted; McNemar \(\chi^2 \) p-value = 0.015 OR 3.500, 95% CI 1.152-10.663, respectively).

Discussion

In the asthmatic patients studied, 24.5% are classified as intermittent asthmatics while the remaining are persistent asthmatics (of which 40.5% show moderate-severe forms of the disease). The significant differences we observed for FEV\textsubscript{1} and FVC indexes denote these as reliable indicators for disease severity, as previous stated by a number of studies [48-50].

SNP **IL4-590**^*C/T* has been repeatedly associated to asthma in several population backgrounds [17-22] and the results of this study in the Madeira island population...
SNP genotypes	Madeira reference set	Overall asthma	Intermittent asthma	Persistent asthma	Mild	Moderate-severe
	105	98	24	74	44	30
IL4-590 C/T						
CC	0.800	0.643	0.708	0.622	0.705	0.500
CT	0.191	0.327	0.250	0.351	0.295	0.433
TT	0.009	0.031	0.042	0.027	0	0.067
p-value		0.009		0.006	0.002	
OR (95%CI)	2.222 (1.191-4.146)	2.433 (1.264-4.717)	4.000 (1.701-9.434)			
IL4-RP2 253/183						
253253	0.818	0.694	0.792	0.662	0.750	0.533
183253	0.155	0.276	0.167	0.311	0.250	0.400
183183	0.027	0.031	0.042	0.027	0	0.067
p-value		0.027		0.013	0.002	
OR (95%CI)	1.984 (1.040-3.788)	2.296 (1.159-4.547)	3.938 (1.657-9.357)			
IL13-c.144 G/A						
GG	0.676	0.704	0.625	0.730	0.773	0.667
GA	0.305	0.267	0.333	0.257	0.205	0.333
AA	0.019	0.020	0.042	0.014	0.023	0
ADRB2-c.16 A/G						
AA	0.181	0.194	0.250	0.176	0.250	0.067
AG	0.457	0.480	0.458	0.486	0.364	0.667
GG	0.362	0.327	0.292	0.338	0.386	0.267
p-value				0.010*		
OR (95%CI)	3.500 (1.318-9.293)					
ADAM33-V4 C/G						
GG	0.029	0.010	0	0.014	0.023	0
CG	0.209	0.235	0.292	0.216	0.182	0.267
CC	0.762	0.755	0.708	0.770	0.795	0.733
ADAM33-51c.710						
G/A GG	0.905	0.929	0.917	0.932	0.932	0.933
GA	0.095	0.071	0.083	0.068	0.068	0.067
AA	0	0	0	0	0	0
GSDML-236 C/T						
CC	0.171	0.163	0.167	0.162	0.136	0.200
CT	0.467	0.469	0.500	0.459	0.364	0.600
TT	0.362	0.367	0.333	0.378	0.500	0.200
p-value				0.008**		
OR (95%CI)	0.250 (0.086-0.730)					
STAT6-21 C/T						
Table 3 SNP genotypic frequencies for the Madeira reference set and asthmatics study population (Continued)

SNP genotypes	CC	CT	TT			
	0.428	0.449	0.417	0.459	0.523	0.367
	0.486	0.418	0.458	0.405	0.295	0.567
	0.086	0.133	0.125	0.135	0.182	0.067

a) Except for IL4-590 and IL4-RP2 (n = 110);
b) Polymorphism not in HWE for mild asthma (p-value = 0.038).

χ² (or Fisher’s exact test when appropriate) significant p-values and OR (95%CI), using the Madeira reference set as a control, are shown in bold (dominant model).

* Heterozygote model, significant p-values and OR (95%CI) for comparison between mild persistent and moderate-severe persistent; Dominant model, Fisher’s exact test p-value = 0.038, OR (95%CI) 4.667 (0.953-22.851); ** Recessive model, significant p-values and OR (95%CI) for comparison between mild persistent and moderate-severe persistent; Heterozygote model: Fisher’s exact test p-value = 0.039, OR 2.625 (1.011-6.817).

Table 4 Mean FEV₁ and FVC indexes across SNP genotypes

SNP genotypes	Lung function indexes	
	FEV₁ (mean +/- s.d.)	FVC (mean +/- s.d.)
	n 98	
IL13-c.144 G/A	GG 98.42 +/-13.95	96.33 +/-11.88
	GA 93.44 +/-16.58	92.15 +/-14.79
	AA 92.50 +/-7.78	89.50 +/-12.02
IL4-590 C/T	CC 99.92 +/-14.28	96.87 +/-11.28
	CT 91.69 +/-14.41	92.13 +/-14.79
	TT 90.00 +/-12.00	87.67 +/-16.04
	F p-value 0.024 Dominant model CT/TT vs CC 0.006	
IL4-RP2 253/183	253253 99.75 +/-14.15	97.07 +/-11.34
	183253 90.59 +/-14.52	90.74 +/-14.89
	183183 90.00 +/-12.00	87.67 +/-16.04
	F p-value 0.015 Dominant model 183253/183183 vs 253253 0.004	
ADRB2-c.16 A/G	AA 95.16 +/-19.79	91.74 +/-16.20
	AG 95.91 +/-12.83	94.91 +/-11.95
	GG 99.47 +/-13.94	97.19 +/-11.62
ADAM33-V4 C/G	GG 99.00 +/-0.0	98.00 +/-0.0
	CG 94.65 +/-15.66	94.26 +/-10.19
	CC 97.61 +/-14.53	95.24 +/-13.61
ADAM33-S1c.710 G/A	GG 97.13 +/-14.81	95.22 +/-13.05
	GA 94.29 +/-13.96	92.71 +/-8.92
	AA -	-
GSMDL-236 C/T	CC 99.13 +/-13.20	94.25 +/-12.07
	CT 96.30 +/-17.48	94.13 +/-14.34
	TT 96.75 +/-11.34	96.56 +/-11.04
STAT6-21 C/T	CC 97.34 +/-15.74	95.00 +/-14.28
	CT 96.49 +/-13.52	94.24 +/-11.73
	TT 96.92 +/-15.73	97.69 +/-11.01

n = 1.

A Shapiro-Wilk oxon test showed that FEV₁ is normally distributed (p > 0.05) while FVC is not (p = 0.008). Thus, ANOVA was used for FEV₁, analysis while a Kruskal-Wallis test was used for FVC.
are no exception (previously reported by our re-
search team [7]. Our findings show that IL4-590*CT/
TT genotypes associate to a 2.2-fold risk for asthma
(2.4-fold for overall persistent asthma and 4-fold for
moderate-severe persistent asthma) while IL4-590*T
allele represents a 2-fold risk for asthma (2.2-fold for
persistent asthma and 3.4-fold for moderate-severe asthma),
compared to individuals harbouring other
IL4-590 C/T genotypes or allele. Our findings also indicate that
IL4-RP2*253183/183183 genotypes translate into a 2-fold
increased risk for asthma (2.3-fold and 2.9-fold respectively
for persistent and moderate-severe persistent asthma), in

Table 5 Skin prick tests positivity across SNP genotypes

Allergen panel	SNP genotypes	ADAM33-V4 C/G	p-value	OR (95% CI)							
		GG	CG	CC	n						
Dermatophagoides pteronyssinus	(-)	23	0.043	0.348	0.609	0.043	0.348	0.609			
	(+)	74	0	0.203	0.797	0.203	0.797	0.797			
	< 10 mm	44	0	0.295	0.705	0.295	0.705	0.705			
	≥ 10 mm	30	0	0.067	0.933	0.067	0.933	0.933	0.016	1.325 (1.070-1.641)	
Blomia tropicalis	(-)	43	0.023	0.279	0.698	0.023	0.279	0.698			
	(+)	54	0	0.204	0.796	0.204	0.796	0.796			
	< 10 mm	42	0	0.262	0.738	0.262	0.738	0.738			
	≥ 10 mm	12	0	0	1.00	0	1.00	1.00	0.047	1.355 (1.131-1.622)	

STAT6-21 C/T

Storage mites	CC	CT	TT	n	0.003*	7.778 (1.682-35.962)
(-)	53	0.396	0.472	0.132		
(+)	44	0.500	0.364	0.236		
< 10 mm	35	0.514	0.429	0.057		
≥ 10 mm	9	0.444	0.111	0.444		

Only significant associations are reported, in bold. Storage mites: Lepidoglyphus destructor, Glycifagus domesticus, Acarus siro, Euroglyphus maynei and Tyrophagus putrescentiae allergens, classified as ≥ 10 mm if at least one test resulted in wheal diameter ≥ 10 mm. *Recessive model.

Table 6 SNP haplotype frequencies in the Madeira reference set and the asthmatics study population

Haplotype block	Madeira reference set	Overall asthma	Intermittent asthma	Persistent asthma	Mild	Moderate-severe	
		105*	98	24	74	44	30
IL4-590/IL4-RP2	T183	0.088	0.168 (0.019)	0.125	0.125	0.267 (3x10^{-4}/0.029*)	
	C253	0.894	0.806	0.833	0.797	0.852 (0.004/0.044*)	
IL4-590/ADRB2-c.16	TA	0.018	0.058 (0.037)	0.064	0.055 (0.048)	0.031	0.085 (0.009)
	TG	0.092	0.136	0.102	0.148	0.117 (0.023)	
IL4-RP2/ADRB2-c.16	183A	0.025	0.057	0.059	0.056	0.032 (0.026)	
	183G	0.084	0.111	0.066	0.127	0.093 (0.037)	
IL13-c.144/IL4-590	GT	0.064	0.134 (0.018)	0.098	0.146 (0.010)	0.128	0.166 (0.010)
	AT	0.046	0.060	0.068	0.057	0.020 (0.020*)	
IL13-c.144/IL4-RP2	G183	0.059	0.106	0.052	0.124 (0.033)	0.105	0.147 (0.022)
	A183	0.050	0.063	0.073	0.059	0.021 (0.017*)	
IL13-c.144/IL4-590/IL4-RP2	GT183	0.051	0.107 (0.041)	0.054	0.125 (0.016)	0.105	0.148 (0.009)
	AT183	0.040	0.062	0.071	0.058	0.020 (0.024/0.018*)	
IL4-590/IL4-RP2/ADRB2-c.16	T183A	0.016	0.055 (0.038)	0.052	0.053 (0.045)	0.030	0.082 (0.008)
	T183G	0.073	0.113	0.067	0.129	0.095 (0.013)	

Haplotypes denoting significant differences are shown in bold, with respective p-values within parentheses. Significant p-values, using Madeira reference set as a control, are shown within parentheses; * significant p-values for comparison between mild persistent and moderate-severe persistent.
particular \textit{IL4-RP2*183} allele (3.1-fold risk for moderate-severe persistent asthma). This SNP has been implicated in childhood asthma in a Chinese population, where authors suggest a link between the allele and higher expression of \textit{IL4} in asthma \cite{24}. The findings for \textit{IL4} SNPs are further corroborated by the association of the risk genotypes to worse lung function, namely lower FEV\textsubscript{1} index. Genotype \textit{IL4-590*TT} has been previously associated with lower FEV\textsubscript{1} index, used as a measure for asthma severity, in a population of white asthmatic subjects \cite{51}.

\textit{IL4} is a key cytokine in IgE production via Th2 pathway \cite{52}, which has been previously shown to play an important role in asthma pathogenesis \cite{53}. Its serum levels are significantly higher in steroid-naive asthmatic children and severe forms of asthma when compared to healthy control groups \cite{54,55}. From a functional perspective, it is not surprising that \textit{IL4} SNPs may regulate its transcription rates: allele \textit{IL4-590*T} allows an extra binding site for the nuclear factor of activated T-cells (NFAT) at \textit{IL4} promoter, leading to a 3-fold higher transcription rate \cite{23}; haplotypes with \textit{IL4-RP2*183} and SNPs within \textit{IL4} promoter account for high \textit{IL4} expression \cite{56}.

The case–control associations of \textit{IL4-590*T} and \textit{IL4-RP2*183} to moderate-severe persistent asthma are further corroborated by TDT analysis (2.5 and 3.5-fold increased risk respectively). TDT is a family-based test robust against population stratification \cite{57,58} defined as the presence of multiple subgroups with distinct allele frequencies within a population \cite{59}. Although stratification is mostly noticed in recent history of admixture \cite{60}, we cannot disregard the considerable sub-Saharan and northern African proportion in the Madeira genetic background, due to the North Atlantic slavetrade on the 16th-19th centuries and previously confirmed by Y-chromosome \cite{61} and mtDNA studies \cite{62}.

Previous studies have related \textit{ADRB2-c.16*GG} to asthma onset and severity \cite{25,26}. Conversely, our data suggest heterozygous \textit{ADRB2-c.16*AG} as 3.5-fold risk genotype for moderate-severe asthma. In the absence of functional studies, we can only hypothesize that heterodimeric \textit{ADRB2} receptors on the bronchial smooth muscle may be less stable or bind to a more restricted scope of products than homodimeric receptors, therefore enhancing more severe forms of asthma. However, the high heterozygosity for \textit{ADRB2-c.16} is found not only in patient’s subgroups but also in the Madeira reference set and other population sets \cite{63-65}. Even though it deserves more attention, this may indicate heterozygote advantage for this SNP or other in linkage disequilibrium, in a metabolic pathway that may or may not relate to asthma pathogenesis. Other examples of heterozygote advantage in \textit{ADRB2} exist, such as \textit{ADRB2-c.27*CG} that is protective against lung function decline \cite{66} and accounts for a decreased risk of asthma \cite{67}.

In our data, \textit{GSDML-236*TT} genotype is found to be a protective for asthma severity, with a 4-fold significantly lower frequency in moderate-severe asthma, as opposed to mild. \textit{GSDML-236C/T} polymorphism has been related to asthma predisposition, severity and/or asthma-related phenotypes in a number of studies \cite{31-39}. However, our results are in contrast to certain previous studies, which suggest this genotype is a genetic risk factor for the disease severity \cite{32,35,37,38}. The \textit{GSDML} encodes for gasdermin B protein expressed in epithelial barrier function and skin differentiation, influencing the expression of the neighbouring gene \textit{ORMDL3} and thus contributing to asthma susceptibility \cite{34}.

The case–control association in our dataset does not support the influence of \textit{ADAM33-V4C/G} or \textit{ADAM33-S1c.710G/A} in asthma, contrary to some previous work \cite{27-30} and consistent with other studies \cite{68}. \textit{ADAM33-V4C} allele was nevertheless marginally over transmitted to Madeira asthmatics, as suggested by TDT analysis (1.8-fold risk for overall asthma, 2.4-fold risk for persistent asthma and 4-fold risk for mild asthma). A similar trend of association was seen in Caucasian children with asthma and bronchial responsiveness (p-value = 0.0959) \cite{27}. Located at 3’-UTR, \textit{ADAM33-V4C/G} SNP may

Table 7 TDT analysis in family trios for SNP association with asthma

SNP allele	Valid trios (n)	TDT-test value	TDT p-value	OR (95% CI)
Overall asthma				
ADAM33-V4*C	41	3.429	0.044	1.800 (0.956-3.384)
Persistent asthma				
ADAM33-V4*C	30	5.452	0.015	2.444 (1.126-5.309)
Mild asthma				
ADAM33-V4*C	19	7.200	0.006	4.000 (1.337-11.965)
Moderate-severe asthma				
IL4-590*T	19	3.857	0.039	2.500 (0.970-6.443)
IL4-RP2*183	17	5.556	0.015	3.500 (1.152-10.633)

Only significant associations are reported, in bold.
influence the expression of its encoded desintegrin and metallopeptidase domain 33 in airway smooth muscle and lung fibroblasts [27,69,70] thus playing a role on airway remodeling and bronchial responsiveness [27,71]. In addition, our study associates ADAM33-V4′CC to a wheel size ≥ 10 mm both in Dermatophagoides pteronyssinus and Blomia tropicalis, in accordance with previous study relating ADAM33-V4′CC to high levels of IgE against Blomia tropicalis (Z score: 2.039, p = 0.03) [72].

No significant association with the disease risk was detected for STAT6-21C/T, similar to the analysis in [73] but contrary to other studies [19,40-44]. However, STAT6-21T is overrepresented in asthmatics with a ≥10 mm wheel size reaction to storage mites and shows a significant epistatic interaction with IL4-590C/T between moderate-severe persistent and intermittent asthma. The enhanced allergic response is not unexpected since STAT6 is a signal transducer and activator of transcription enrolled in the regulation of IgE expression [40,52,74] whose STAT6-21T allele promotes higher levels of IgE [19].

Finally, the haplotype analysis was significant for SNPs at 5q31, namely IL4-590*T and IL4-RP2*183 in overall asthma, persistent asthma and moderate-severe persistent asthma. Haplotypes of IL4-RP2*183 and SNPs within the promoter of IL4 have been found to account for high IL4 expression [56]. Our results also indicate the synergistic effect of IL13c.144G and ADRB2*G with either IL4-590*T or IL4-RP2*183 or both for the onset of asthma persistent phenotypes. Nevertheless, their combination equals or slightly lowers the statistical significance of IL4-590/IL4-RP2*T183 haplotype in the same classes.

Conclusion
In conclusion, this study has replicated previously reported genetic associations and brought light to new associations of polymorphisms, individually or in haplotype, to asthma susceptibility, persistence and/or severity in the Madeira island population. IL4-590C/T and IL4-RP2253/183 seem to play an important role in the development of the disease, especially its moderate-severe persistent forms, as demonstrated by allele and haplotype case–control tests, TDT analysis, and significantly poorer FEV1 index. GSDML*CT/TT and ADRB2c.16*AG are found to predict asthma severity in case–control association, respectively as risk and protective factors for moderate-severe forms. ADAM33-V4′C and STAT-21*T seem to enhance the allergic response to Dermatophagoides pteronyssinus and Blomia tropicalis and to storages mites, respectively, and the first is further highlighted by TDT analysis as a risk factor for mild persistent asthma. The combined genotyping of IL4-590C/T, IL4-RP2-253/183, GSDML-236C/T and ADAM33-V4′GC could be of clinical relevance in ascertaining the risk of asthma onset and/or its persistence and severity, thus helping to define appropriate strategies for asthma healthcare in this island.

Methods
Participants
A sample of 98 atopic asthmatics, aged between 6 and 25 years old, and their parents (fathers n = 88 and mothers n = 96) were recruited at the Immunology Department, Dr. Nélio Mendonça Hospital, in Funchal, Madeira. For all participants, the last three generations of ancestors were born and lived in Madeira island. The diagnosis of asthma was based on clinical criteria associated with lung function and the SPT. For the epidemiologic characterization we deployed the ISAAC questionnaire to the asthmatic population and their parents. Following the GINA guidelines [75], pattern and frequency of symptoms associated with lung function were used to classify asthma into intermittent (n = 24) and persistent (n = 74), and the severity in persistent asthma was further classified as mild (n = 24), moderate (n = 26) and severe (n = 4). Given the small number of patients, the moderate and severe subgroups were merged. Asthma induced by exercise and associated to aspirin was excluded.

Ethics statement
The study had the approval of the Ethics Committee of Dr. Nélio Mendonça Hospital and the informed consent of the participants.

Allergy profile
The SPT was tested for an optimized battery with the most common aeroallergens in this island: house dust mite (Dermatophagoides pteronyssinus, Blomia tropicalis); storage mite (Lepidoglyphus destructor, Glycyphagus domesticus, Acarus siro, Euroglyphus maynei, Tyrophagus putrescoentae); Mix fungi (Fungus I, Fungus II); indoor fungi (Aspergillus fumigatus, Mucor sp.) and cat and dog. STP results were interpreted according to mean wheel size: positive ≥3 mm, sensitization degree ≥10 mm or ≥10 mm.

DNA extraction and genotyping
Patients’ blood samples were collected by venipuncture in 8 ml EDTA blood collection tubes and their DNA was extracted by salting-out method (adapted from [76]). Their parents contributed with saliva samples, collected in Oragene-DNA (OG-250) kits (Oragene). The DNA extraction followed the manufacturer’s instructions.

A sample of 110 unrelated individuals, whose ancestry was of local origin for the last three generations, was obtained from the Blood Sample Bank of Human Genetics Laboratory (LGH) and their DNA extraction was performed by a standard phenol-chloroform protocol (adapted from [77]). These constitute the Madeira population reference sample set, although their disease status is
unknown. The reference sample set was not matched to the patient's group to uphold a less biased study design. Each SNP (Table 1) was analysed by TaqMan real-time PCR (Applied Biosystems) according to the manufacturer's instructions, in a 7300 System SDS Software v1.4.

Statistical analysis
The statistical analysis was performed using SPSS (IBM SPSS Statistics, version 19.0.0), except for the Hardy-Weinberg Equilibrium (HWE) for each polymorphism, determined in ARLEQUIN version 3.11 [78]. Gender and SPT data among subgroups of asthma persistence and severity were analysed using Fisher's exact test, to account for the small sample size.

Following a Shapiro-Wilk test of normality, the association analysis of FEV1 to asthma persistence and severity was performed using a t-test (normal distribution), while a Mann–Whitney test was used for FVC (due to its non-normal distribution). The analysis of FEV1 and FVC indexes among SNP genotypes was tested using ANOVA (with Bonferroni post-hoc correction) and Kruskal-Wallis test, respectively.

The association of SNP genotypes and alleles to asthma susceptibility and severity, for multiple genetic models, were assessed by χ^2 (or Fisher's exact tests where appropriate) and corresponding odds ratio (OR) determined with a 95% CI. Haplotypes were generated with Haploview version 4.2 [79] and their association with the disease was analysed with the hap-assoc option in PLINK [80]. Epistatic interactions between pairs of SNPs were assessed with the PLINK option –epistasis –epi1. Permutation procedures were used to obtain significance levels empirically and results were interpreted at a significance level set for $p < 0.05$.

The transmission disequilibrium test (TDT) was determined through a McNemar test [81], based on data from heterozygous parents and the frequency of allelic transmission to affected offspring. The corresponding p-value (considered at a 0.05 significance level) and OR (95% CI) were determined.

To reduce the likelihood of commiting a Type I error due to multiple testing, the Benjamini & Hochberg procedure [82] was adopted for each set of results (presented in distinct tables) to control the false discovery rate set at $Q = 0.20$.

Additional files

Additional file 1: Skin prick tests positivity across asthma persistence and severity subgroups. The table describes the qualitative (positive vs. negative) and quantitative (<10 mm vs. ≥ 10 mm) reaction to common allergens in Madeira island (Dermatophagoides pteronyssinus, Blomia tropicalis, Storage mites, Mix fungi, Indoor fungi, cat and dog) across overall asthma and asthma severity categories (intermittent, persistent, mild and moderate-severe).

Additional file 2: SNP allelic frequencies for the Madeira reference set and asthmatics study population. The table describes the allelic frequencies for SNPs (ADAM33-S1c710, GSDML-236, STAT6-21) across the reference group, overall asthma and asthma severity categories (intermittent, persistent, mild and moderate-severe).

Abbreviations
ADAM33: A Disintegrin and Metalloprotease 33; ADRB2: Beta-2-adrenergic receptor; FEV1: Forced Expiratory Volume in 1 second; FVC: Forced Vital Capacity; GINA: Global Initiative for Asthma; GSDML: Gasdermin-like; IL4: Interleukin 4; IL13: Interleukin 13; SNP: Single Nucleotide Polymorphisms; SPT: Skin Prick Tests; STAT6: Signal Transducer and Activator of Transcription 6 (STAT6); TDT: Transmission Disequilibrium Test.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RC and ATF conceived and designed the study, AGB and ATF performed the DNA extraction and genotyping, RC, SO, DR and TS, characterized the reference sample set and asthmatics study population. MR designed the database, AGB and AR analyzed the data, AGB, AR and RC wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This project had the financial support of FEDER within the framework of the INTERREGIII C program. Anabela Berenguer is a recipient of a PhD scholarship from Fundação para a Ciência e Tecnologia (FCT) with the reference SFRH/BD/31273/2006. Ph.D. Ana Teresa Fernandes passed away during the course of the project.

Author details
1Human Genetics Laboratory, University of Madeira, 9000-390 Funchal, Portugal. 2Immunology Unit, Dr. Nêlio Mendonça Hospital, SESARAM, E.P.E, Funchal, Portugal. 3Unit of Statistics, Dr. Nêlio Mendonça Hospital, SESARAM, E.P.E, Funchal, Portugal. 4Medical Sciences Unit, Center of Life Sciences, University of Madeira, 9000-390 Funchal, Portugal. 5Department of Computer Science and Engineering, University of Oulu, PL 4500, 90014 Oulu, Finland.

Received: 19 March 2014 Accepted: 27 August 2014 Published: 4 September 2014

References
1. Reddel HK, Taylor DR, Bateam ED, Boulet LP, Bouhey HA, Busse WW, Casale TB, Chanez P, Enright PL, Gibson PG, de Jongste JC, Kerstjens HA, Lazarus SC, Levy ML, O’Byrne PM, Partridge MR, Pavord ID, Sears MR, Sterk PJ, Stoloff SW, Sullivan SD, Szefler SJ, Thomas MD, Wenzel SE, American Thoracic Society/European Respiratory Society Task Force on Asthma Control and Exacerbations: An official american thoracic society/european respiratory society statement: asthma control and exacerbations. Am J Respir Crit Care Med 2009, 180(Suppl 7):59–99.
2. Cookson WOC. Asthma genetics. Chest 2002, 121(Suppl 3):7–13.
3. Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, Lee YL. Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach. PLoS One 2012, 7(12):e50694.
4. Samolinski B, Frankczak A, Kuna P, Akldzy CA, Anto JM, Bielawsky AZ, Burney PG, Bush A, Czupryniak A, Dahl R, Flood B, Galea G, Jutel M, Kowalski ML, Kallonen S, Papadopoulous N, Rabciuskis F, Stenkeiwicz D, Tomaszewska A, Von Mutius E, Willman D, Wdowczyk A, Yusuf D, Zuberbier T, Bouquet J, Niggemann B. Prevention and control of childhood asthma and allergy in the EU from the public health point of view: an urgent need to fill the gaps. Allergy 2012, 67(Suppl 6):726–731.
5. To T, Stanoevich S, Moore G, Gershon AS, Bateman ED, Cruz AA, Boulet LP. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 2012, 12:204.
6. Pinto JR, Almeida MM. Epidemiology of asthma in schoolchildren in Portuguese speaking regions. Rev Fr Allergol 2005, 45:547–549.
10. Heinzmann A, Mao X-Q, Akaiwa M, Kreomer RT, Gao P-S, Ohshima K, Kabesch M, Schedel M, Carr D, Woitsch B, Fritzsch C, Weiland SK, von Mutius E, Gervaziev YV, Kaznacheev VA, Gervazieva VB:
The relationship between polymorphisms in the interleukin-4 receptor-alpha gene and asthma.

8. von Mutius E:
The role of beta 2-adrenoceptor gene polymorphisms in asthma.

19. Rockman MV, Hahn MW, Soranzo N, Goldstein DB, Wray GA:
The IL-4/IL-13 pathway genetics strongly influence serum IgE levels and IL4 expression.

7. Berenqueng AG, Carama RA, Brehm AD, Oliveira S, Fernandes AT:
Association of polymorphisms IL4-590 C/T and IL4-172 polymorphism in the human population of Madeira, Azores, Portugal, Cape Verde and Guinea-Bissau.

11. Chiang CH, Tang YC, Lin MW, Chung MY:
The STAT 6 haplotype with elevated serum IgE levels in a population based cohort of white adults.

20. Cui L, Jia J, Ma C-F, Li S-Y, Wang Y-P, Guo X-M, Li Q, Yu H-B, Liu W-H, Gao KM, Pedan A, Danzig MR, et al.
Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418(696):426–430.

28. Howard TD, Postma DS, Jongepier H, Moore WC, Koppelman GH, Zheng SL, Xu J, Bleeker ER, Meyers DA: Association of a disintegrin and metalloprotease 33 (ADAM33) gene with asthma in ethnically diverse populations.

29. Su D, Zhang X, Sui H, Lu F, Jin L, Zhang J: Association of ADAM33 gene polymorphisms with adult allergic asthma and rhinitis in a Chinese Han population.

30. Qu S, Sun D, Wang Y, Zhang C, Lv Y, Yao L: Association of ADAM33 polymorphisms with childhood asthma in a northern Chinese population. Exp Mol Pathol 2011, 91(Suppl 3):775–779.

31. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufl A, Rietshel E, Heinemann A, Simma B, Frischer T, Willis-Owen SA, Wong KC, Illig T, Vogelberg C, Weiland SK, von Mutius E, Abecasis GR, Farall M, Gut K, Lathrop GM, Cookson WO: Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007, 448(Suppl 7512):470–473.

32. Galanter J, Choudhry S, Eng C, Nazario S, Rodriguez-Santana JR, Casal J, Torres-Palacios A, Salas J, Chapela R, Watson HG, Meade K, Le Noir M, Rodrigues-Cintron W, Avila PC, Burchard EG: ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med 2008, 177(Suppl 1):1194–1200.

33. Madore AM, Tremblay K, Hudson TJ, Laprise C: Replication of an association between 17q21 SNPs and asthma in a French-Canadian familial collection. Hum Genet 2008, 123(Suppl 1):1933–95.

34. Tavendale L, Macgregor DF, Mukhopadhyay S, Palmer CN: A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J Allergy Clin Immunol 2008, 121(Suppl 4):860–863.

35. Bisgaard H, Bannelykke K, Steimam PM, Brasholt M, Chaves B, Kreiner-Møller E, Stage M, Kim C, Tavendale R, Baty F, Phipper CB, Palmer CN, Hakonarsson H: Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med 2009, 179(Suppl 1):179–183.

36. Wu H, Romaini I, Sienna-Monge JJ, Li H, del Rio-Navarro BE, London SJ: Genetic variation in ORMD1-1 and ORMD1-2 genes associated with asthma and atopy. J Allergy Clin Immunol 2007, 119(Suppl 3):357–360.

37. Bisgaard H, Bannelykke K, Steimam PM, Brasholt M, Chaves B, Kreiner-Møller E, Stage M, Kim C, Tavendale R, Baty F, Phipper CB, Palmer CN, Hakonarsson H: Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med 2009, 179(Suppl 1):179–183.

38. Wu H, Romaini I, Sienna-Monge JJ, Li H, del Rio-Navarro BE, London SJ: Genetic variation in ORMD1-1 and ORMD1-2 genes associated with asthma and atopy. J Allergy Clin Immunol 2007, 119(Suppl 3):357–360.
Controlling the false discovery rate: a practical approach. *Ann Allergy* 2003, 89(1):58-62.

21. Hiraishi M, Odani K, Takanashi J, et al.: The impact of population stratification on genetic association studies. *Am J Hum Genet* 2005, 76(2):286-299.

22. Joos L, Weir TD, Connett JE, Anthonisen NR, Woods R, Paré PD, Sandford AJ: Interleukin-13 and the evolution of asthma therapy. *Am J Clin Exp Immunol 2012*, 11(1):1-20.

23. de Bakker PI, Abecasis GR, Cooper R, et al.: The International HapMap Consortium: Factors associated with severity and exacerbation of asthma: a baseline analysis of the cohort for reality and evolution of adult asthma in Korea (COREA). *Ann Allergy Asthma Immunol 2009*, 103(Suppl 4):S11–S17.

24. Forni E, Cellejadi JC: Predicting asthma exacerbations in children. *Curr Opin Pulm Med 2012*, 18(1):63-69.

25. Burchard EG, Silverman BK, Rosenwasser LJ, Borish L, Yandava C, Pillari A, Weiss ST, Hasday J, Lilly CM, Ford JG, Drazen JM: Association between a sequence variant in the IL-4 gene promoter and FEV1 in asthma. *Am J Respir Crit Care Med 1999*, 160(9):919–922.

26. Oh CR, Geba GP, Moffino N: Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. *Eur Respir Rev 2010*, 19(Suppl 115):46–54.

27. Grünig G, Cozy DB, Reinbem J, Wills-Karp M, Interleukin 13 and the evolution of asthma therapy. *Am J Clin Exp Immunol 2012*, 11(1):1-20.

28. Abdoulamin AS, Hafidh RR, Abubakar F: Different inflammatory mechanisms in lungs of severe and mild asthma: crosstalk of NF-kappa-B, TGFbeta1, Bax, Bcl-2, IL-4 and IL-13. *Scand J Lab Invest 2009*, 69(Suppl 4):487–495.

29. Larna M, Chatterjee M, Nayak CR, Chaudhuri TK: Increased interleukin-4 and decreased interferon-y levels in serum of children with asthma. *Cytokine 2011*, 55(Suppl 3):335–338.

30. Nakashima H, Miyake K, Inoue Y, Shimizu S, Akahoshi M, Tanaka Y, Otsuka T, Sasazuki S, Inoue M, Tsugane S: Interleukin 13 and the evolution of asthma therapy. *Am J Clin Exp Immunol 2012*, 11(1):1-20.

31. Lewis CM: Genetic association studies: design, analysis and interpretation. *Brief Bioinform* 2003, 4(Suppl 1):146–153.

32. Cardon LR, Bell JI: Association study designs for complex diseases. *Nat Rev Genet 2001*, 1(Suppl 1):291–99.

33. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N, Gabriel SB, Topol EJ, Smoller JW, Pato CN, Pato MT, Petryshen TL, Kolonel LN, Lander ES, Sklar P, Henderson B, Hirschhorn JN, Althofer D: Assessing the impact of population stratification on genetic association studies. *Nat Genet 2004*, 36(Suppl 4):398–393.

34. Gonçalves R, Freitas A, Branco M, Rosa A, Fernandes AT, Zhivotovsky LA, Underhill PA, Kivisild T, Brehm A: Mitochondrial portraits of the Y-chromosome Lineages from Portugal, Madeira and Açores archipelagos witness different genetic pools of its European settlers. *Ann Hum Genet 2005*, 69(Suppl 1):44(3):443–454.

35. Brehm A, Pereira L, Kivisild T, Amorim A: Mitochondrial portraits of the Madeira and Açores archipelagos witness different genetic pools of its settlers. *Hum Genet 2003*, 114(Suppl 1):77–86.

36. Binnewies, S. et al. Genomic polymorphisms and asthma: findings from a case–control study in the Madeira island population. *Biological Research 2014* 47:40.