A review on *Balanites aegyptiaca* Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity

Daya L. Chothani, H. U. Vaghasiya

Department of Pharmacognosy, Pioneer Degree Pharmacy College, Vadodara, Gujarat, ¹Sun Pharma Advanced Research Company (SPARC Ltd.) Baroda, Gujarat, India

Submitted: 20-08-2010

ABSTRACT

Balanites aegyptiaca Del. (Zygophyllaceae), known as ‘desert date,’ is spiny shrub or tree up to 10 m tall, widely distributed in dry land areas of Africa and South Asia. It is traditionally used in treatment of various ailments i.e. jaundice, intestinal worm infection, wounds, malaria, syphilis, epilepsy, dysentery, constipation, diarrhea, hemorrhoid, stomach aches, asthma, and fever. It contains protein, lipid, carbohydrate, alkaloid, saponin, flavonoid, and organic acid. Present review summarizes the traditional claims, phytochemistry, and pharmacology of *B. aegyptiaca* Del reported in scientific literature.

Key words: *Balanites aegyptiaca*, Balanitin, desert date

INTRODUCTION

Balanites aegyptiaca Del., also known as ‘Desert date’ in English, a member of the family Zygophyllaceae, is one of the most common but neglected wild plant species of the dry land areas of Africa and South Asia.[1,2] This tree is native to much of Africa and parts of the Middle East. In India, it is particularly found in Rajasthan, Gujarat, Madhya Pradesh, and Deccan.[3] This is one of the most common trees in Senegal.[4-7] It can be found in many kinds of habitat, tolerating a wide variety of soil types, from sand to heavy clay, and climatic moisture levels [Figure 1].

Taxonomical profile[8]

Kingdom	Plantae
Division	Magnoliophyta
Class	Magnoliopsida
Order	Sapindales

Family : Zygophyllaceae
Genus : Balanites Delile
Species : Balanites aegyptiaca (L.) Delile

Synonyms: *Ximenia aegyptiaca* L. (excl. *Balanites roxburghii* Planch), *Agialida senegalensis* van Tiegh., *Agialida barteri* van Tiegh., *Agialida tombucensis* van Tiegh., *Balanites ziziphoides* Milbr. Et Schlechter, *Balanites latifolia* (van Tiegh.) Chiov.

Vernacular name:
Ayurvedic : Ingudi, Angaar Vrksha, Taapasadrum, Taapasa vruksha, Dirghkantaka.
Unani : Hingan, Hanguul.
Siddha : Nanjunda.
Folk : Hingol, Hingota, Hingothaa.
English : Desert date, Soapberry tree, Thorn tree, Egyptian balsam

Address for correspondence:
Ms. Daya. L. Chothani
Pioneer degree pharmacy college, Baroda-Vadodara-India
E-mail: dayachothani@yahoo.co.in/daya.herb@gmail.com

Access this article online

Quick Response Code:

Website: www.phcogrev.com

DOI: 10.4103/0973-7847.79100

Figure 1: *Balanites aegyptiaca* Del
Traditional Uses

Aqueous extract of fruits showed spermicidal activity without local vaginal irritation in human being, up to 4% sperms becoming sluggish on contact with the plant extract and then immobile within 30 s; the effect was concentration-related. Protracted administration of the fruit pulp extract produced hyperglycemia-induced testicular dysfunction in dogs. Seed is used as expectorant, antibacterial, and antifungal. Fruit is used in whooping cough, also in leucoderma and other skin diseases. Bark is used as spasmolytic.

The seed is used as a febrifuge. Root extracts have proved ‘slightly effective’ against experimental malaria. In Kenya, a root infusion is used as an emetic. In asthma, about 10 gm of seed powder is taken with glass of water in the morning for 10 days. Tablets are prepared from roots mixed with ‘Hing’ powder (Ferula asafoetida); by adding Piper betle leaf, juices are taken once with water for 9 days, soon after the menstruation to avoid unwanted pregnancy. In Egyptian folk medicine, the fruits are used as an oral hypoglycemic and an antidiabetic; an aqueous extract of the fruit mesocarp is used in Sudanese folk medicine in the treatment of jaundice. Used in food preparations and herbal medicine, especially in Africa and some developing Countries. The fresh leaf of the plant Acalypha is pounded with small amount of root of B. aegyptiaca and Cissus quadrangularis, and then soaked in water for an hour or two. It is decanted and administered intranasally and orally. Latex of the plant is used in epilepsy, administered through intranasal route. Used as tooth brush. Fruits are used to treat dysentery and constipation. The seed oil is used to treat tumors and wounds. Used as laxative, also used in treatment of hemorrhoid, stomach aches, jaundice, yellow fever, syphilis, and epilepsy. A fruit is used to treat liver disease and as a purgative, and sucked by school children as a confectionary in some countries. The bark is used in the treatment of syphilis, round worm infections, and as a fish poison. The aqueous leaf extract and saponins isolated from its kernel cakes have antibacterial activity. Seeds are used as anthelmintic and purgative. Ground seeds are given to camels to cure impaction and colic.

In Chifra District, the root of plant is used for the treatment of render pest and anthrax. In East Africa, it is widely used as anthelmintic. Root is used in various folk medicines for the treatment of abdominal pain and as purgative, while the bark is employed as a fish poison and also as a remedy for malaria and syphilis. The root, bark, kernel, and fruit have been shown to be lethal to mollusks. In Sudanese folk medicine, it is used to treat jaundice. Its antimalarial and molluscical activity is well studied. In vitro antiplasmodial test of the dichloromethane and methanol (ME) extract of stem bark of the plant showed antimalarial activity. In Senegal, Nigeria, Morocco, and Ethiopia, B. aegyptiaca is taken a purgative for colic and stomach ache. In Chad, fresh twigs are put on the fire in order to keep insects away. For intestinal worm, the fruits are dried and mashed in millet porridge and eaten. In Libya and Eritrea, the leaves are used for cleaning infected wounds. In Sudan and Chad the bar, B. aegyptiaca is component of soap. The use of the kernel oil for treatment of wounds has been reported from Nigeria. For contraception, in Nigeria, a mixture of dried leaves powder of B. aegyptiaca and Ricinus communis in water and in Somalia, the bark of root is crushed and mixed with two glasses of water, which is then filtered. This preparation is repeated for three days and one glass is drunk three times daily for three days.

PHYTOCHEMICAL CONSTITUENTS

Leaves

It contains saponin, furanocoumarin, and flavonoid namely quercetin 3-glucoside, quercetin-3-rutinoside; 3-glucoside,
3-rutinoside, 3-7-diglucoside and 3-rhamnogalactoside of isorhamnetin.[40,41]

Fruit

Mesocarp of fruit contains 1.2 to 1.5% protein and 35 to 37% sugars, 15% organic acids, other constituents like 3-rutinoside and 3-rhamnogalactoside,[42] diosgenin;[43] it also contain a mixture of 22R and 22S epimers of 26-((\beta-D-glucopyranosyl)-3-\beta-[4-O-((\beta-D-glucopyranosyl)-2-O-(\alpha-L-rhamnopyranosyl)-\beta-D-glucopyranosyloxy)-22,26-dihydroxyfurost-5-ene. However, kernel contains a xylopyranosyl derivative of above saponin present in mesocarp.[44] Balanitoside (furostanol glycoside) and 6-methylidiosgenin,[45] balanitin-3 (spirostanol glycoside) have been reported from fruits (mesocarp) of \textit{B. aegyptiaca}.[46] Balanitin-6 and -7: Diosgenyl saponins,[47,48] two pregnane glycosides namely pregn-5-ene-3\beta,16\beta,20(R)-triol 3-O-(2,6-di-O-\alpha-l-rhamnopyranosyl)-\beta-d-glucopyranoside (balagynptin), and pregn-5-ene-3\beta,16\beta,20(R)-triol 3-O-\beta-d-glucopyranoside,[49] long chain hydrocarbon. The kernels contained 45.0 to 46.1% oil and protein (32.4%), oil contains mainly palmitic, stearic, oleic, and linoleic acids which were the main fatty acids.[50-53] The oil exhibited anticancer activity against lung, liver, and brain human carcinoma cell lines. It also had antimutagenic activity against \textit{Fasciola gigantica}-induced mutagenicity besides anthelmintic activity against hepatic worms (\textit{Schistosoma mansoni} and \textit{Fasciola gigantica}). Preliminary screening showed that the oil had antiviral activity against Herpes simplex virus. It also had antimicrobial activity against selected strains of Gram-positive bacteria, Gram-negative bacteria, and \textit{Candida}.[44] Nine saponin have been reported from kernel cake of \textit{B. aegyptiaca}, from the nine components, six saponins with molecular masses of 1196, 1064, 1210, 1224, 1078, and 1046 Da were identified, with the compound of mass 1210 Da being the main saponin (ca. 36%).[55] The leaves and fruit kernels of \textit{B. aegyptiaca} L. were found to contain six diosgenin glucosides including di-, tri-, and tetraglucosides. Hydrolysis of the saponins gave 25D-spirosta-3, 5-diene and 3\beta-chloro-25D-spirost-5-ene[56-59] balanitin-1, -2, and -3 [Figure 2].[60]

Root

It is reported to contain steroidal saponin about 1% glycosides and major sapogenin is yamogenin[61,62] other glycosides;

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chemical-constituents.png}
\caption{Chemical constituents of \textit{Balanites aegyptiaca}}
\end{figure}
Bark
It is reported to contain furanocoumarin bergapten and dihydrofuranocumarin D- marmesin, two alkaloid namely, N-trans-feruloyltyramine and N-cis-feruloyltyramine, and three common metabolites, vanillic acid, syringic acid, and 3-hydroxy-
1-(4-hydroxy-3-methoxyphenyl)-1-propanone, long-chain aliphatic compound, 10-methyl-n-heptacosane, and a new sugar, diglucosyldirhamnoside, have also been reported from the stem-barks. It also contains beta-sitosterol, bergapten, marmesin, and beta-sitosterol glucoside, balanitin-1, -2, and -3; balanitin-1 for example possesses a yamogenin aglycone with a branched glucose and rhamnose side chain.

PHARMACOLOGICAL ACTIVITY
Cardioprotective cum antioxidant activity
The plant acts as antioxidant against adriamycin-induced cardiotoxicity in experimental mice. Adriamycin when administered intraperitoneally, it cause elevation of serum lactate dehydrogenase, creatine phosphokinase, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, lipid peroxide, total nitric oxide, erythrocyte lysate superoxide dismutase (SOD), glutathione peroxidase (GPx), and plasma catalase (CAT) in mice heart tissue. Adriamycin drug reduced the activities of SOD, GPx, and CAT. Pretreatment with B. aegyptiaca extract significantly (P<0.05) prevented these alterations and restored the enzyme activities to near normal levels.

Anthelmintic activity
The crude aqueous extract of root bark of B. aegyptiaca was showed a dose-dependent inhibition of spontaneous motility (paralysis) in adult earthworms. And also possesses vermicidal activity. It is reported that stem bark water extract (9 g/kg body weight) of Albizia anthelmintica and fruit mesopercar water extract (9 g/kg body weight) of B. aegyptiaca shows significant anthelmintic activity compared with albendazole (20 mg/kg body weight) against Fasciola gigantica adult worm. And a single dose of 200 mg/kg body weight of B. aegyptiaca fruit mesocarp also showed activity against Schistosoma mansoni in infected mice when compared with praziquantel. Balanitin-7 is isolated from aqueous extract of B. aegyptiaca seed and reported as anthelmintic agent when tested by in vitro means of an original anthelmintic assay, using Caenorhabditis elegans as a biological model. The methanolic extract of B. aegyptiaca fruits is reported to have anthelmintic action against different stages of Trichinella spiralis in rats compared with anthelmintic drug albendazole. The aqueous extract of B. aegyptiaca also has molluscicidal agent to juvenile and adult Bulinus globosus and Bulinus truncatus.

Antibacterial effects
The aqueous and organic leaves extracts of B. aegyptiaca and Moringa oleifera were reported to have antibacterial effect against Salmonella typhi isolated from blood clot culture using the disc diffusion method. The extracts of B. aegyptiaca plants demonstrated the highest activity than Moringa oleifera. The ethanolic extracts of both plants demonstrated the highest activity whereas the aqueous extracts of both plants showed the least activity at 100 mg/ml as compared with ethanolic extracts. The activities of these plant extracts were comparable with those of antibiotics, ciprofloxacin, cotrimoxazole, and chloramphenicol, commonly used for treating typhoid fever. The antibacterial activity appears to increase when extracts of the two plants were used in combination at 100 mg/ml each. Preliminary phytochemical screening showed that plant extracts contain saponins, tannins, and phenols, and B. aegyptiaca possesses anthraquinones. The antibacterial activities of the extracts on S. typhi were reasonably stable when treated at 4, 30, 60, and 100°C for 1 hour. However, it reduces significantly when the pH was altered toward alkalinity.

The aqueous and ethanolic extracts of leaves of six plants viz., B. aegyptiaca (L.) Del, Hyptis suaveolens Poit, Lawsonia inermis L., Lecas aspera L., Labelia nicoianifolia Roth, and Phyllanthus maderaspatana L. were reported as antibacterial when tested individually and in combinations against five different diarrheagenic bacteria, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, and Listeria monocytogenes. Ciprofloxacin (20 µg) was used as antimicrobial standard. The highest antimicrobial activity was in both crude aqueous leaf extract and crude ethanolic leaf extract of Labelia nicoianifolia, when all extracts were tested individually. However, in combination, the highest activity was observed in crude ethanolic leaf extract Labelia nicoianifolia + B. aegyptiaca against S. aureus.

Antivenin activity
The acetone and methanolic extracts of stem bark of plant has reported an antivenin activity against saw-scaled (Echis carinatus) viper venom concentration at lethal dose (0.194 mg/ml), when administered intramuscularly to Wistar albino rats. Both extracts were found to be effective at 75 and 100 mg/ml concentrations.

Anticancer activity
A mixture of steroidal saponins; balanitin-6 (28%) and balanitin-7 (72%), isolated from B. aegyptiaca kernels, demonstrated appreciable anticancer effects in human cancer cell lines in vitro by using against A549 non–small-cell lung cancer (IC50, 0.5 μM) and U373 glioblastoma (IC50, 0.5 μM) cell lines. Bal6/7 displayed higher antiproliferative activity than etoposide and oxaliplatin, markedly less active than taxol. It indicated that balanitin 6/7 mixture is more a cytotoxic compound than a cytostatic one. In vitro anticancer activities are due to partly depletion of [ATP], leading in turn to major disorganization of actin and it does not
induce an increase in intracellular reactive oxygen species. In vivo, bal6/7 increased the survival time of mice bearing murine L1210 leukemia grafts to the same extent reported for vincristine.[85,86]

Anti-inflammatory and analgesic activity
The ethanol and petroleum ether extracts of aerial parts of *B. aegyptiaca* have been reported to have significant anti-inflammatory action an on carrageenan-induced hind paw edema in rats, the paw volume was measured plethysmometrically at 0 and 3 hours after injection and analgesic activity by using Eddy’s hot plate method and tail-flick method in albino rats. The ethanol and petroleum ether extracts showed a greater anti-inflammatory and analgesic effects comparative with the standard drugs, indomethacin and diclofenac sodium, respectively. It also indicated that the ethanolic extract of *B. aegyptiaca* exhibited more significant activity than petroleum ether in the treatment of pain and inflammation.[87]

In vitro antioxidant, xanthine oxidase and acetylcholinesterase inhibitory activities
It is reported that the galls and leaf extracts and fractions of *B. aegyptiaca* showed a significant antioxidant, xanthine oxidase, and acetylcholinesterase inhibitory activities. The total phenolics and flavonoids were measured using Folin-Ciocalteu and AlCl₃ reagents, respectively. Two methods, that is, FRAP (Iron (III) to Iron (II) reduction activity) and ABTS (2,2-azinobis-3-ethylbenzothiazoline-6-sulphonate) assay were used to estimate the total antioxidant capacity of the plant materials. Dichloromethane fraction of the Gall and ethyl acetate fractions of the leaves were reported to have highest antioxidant activity. The antioxidant activities were correlated significantly with the total phenolic and flavonoid contents. The study also showed that *B. aegyptiaca* galls and leaves fractions exhibited a moderate xanthine oxidase inhibitory activity compared with the acetylcholinesterase which was weakly inhibited by the tested extracts and fractions.[88]

Anti-inflammatory, antinoceptive and antioxidant activities
Methanolic and butanol (BE) extracts and of two new saponins isolated from *B. aegyptiaca* showed significant anti-inflammatory, antinoceptive activity in the carrageenin-induced edema in the rat, and acetic acid-induced writhing test in mice and antioxidant action by using in vitro, using a method based on the Briggs–Rauscher oscillating reaction. The samples, extracts and pure substances, were intragastrically administered to animals.[89]

Mosquito larvicidal activity

Fruit kernel extracts against anopheles arabiensis, Culex quinquefasciatus, and aedes aegypti
A saponin extract and water extract from fruit kernel of *B. aegyptiaca* was investigated as a mosquito larvicide. Both extracts were tested against second and fourth instar larvae of the three mosquito species namely *Anopheles arabiensis, Culex quinquefasciatus,* and *A. aegypti,* and LC₅₀ and LC₉₀ values were determined. Second instar larvae were more susceptible than fourth instar larvae in all cases. The larvae of *Anopheles arabiensis* were more susceptible than *Culex quinquefasciatus* and *A. aegypti* to its larvicidal effects. The saponin was more active than the water extract.[90]

Mesocarp of fruit extracts against A. aegypti
The various extract mesocarps of fruits viz. chloroform, ME, BE, ethyl acetate, and five fractions of ME extract showed larvicidal activity against *A. aegypti* mosquito larvae. The highest larval mortality was found in ME extract. The amount of saponin is correlated with larval mortality.[91] Mesocarp of fruit extracts has also reported mosquito larvicidal activity against *A. aegypti* and *Culex pipiens* and saponins from *B. aegyptiaca* callus against *A. aegypti* mosquito have been reported.[92]

Hepatoprotective activity[94-96]
Administration of the aqueous extract to biliary duct-ligated rats showed a dose-dependent significant decrease in serum bilirubin level. For three days, the animals were given different concentration of the extract intraperitoneally. The bilirubin concentration was reduced by 22.2% in the animal that received 1.2 g bark extract each day, by 31.6% in those given 2.4 g, and by 45.9% in those given 4.8 g.

Antidiabetic activity[97,98]
The pure saponin, extracted from the balsamate fruit mesocarp, and water extract have been reported as hypoglycemic agent when tested on albino rats in different concentrations dose and Daonil (as a standard medication). It also reported that it inhibit *Escherichia coli* growth in rats.[99] The aqueous extract of the mesocarp of *B. aegyptiaca* was reported to have antidiabetic effect in streptozotocin-induced diabetic mice.[100]

Antiviral activity
It is reported that bark aqueous extract of *B. aegyptiaca* used in treatment of both AIDS and Leukemia. An oral administration of the aqueous extract (30% w/v given at 100 ml every 8 hours for 30 days) for the treatment of HIV patients have shown excellent results. The same was given to patients with leukemia and a good increase in platelets and a normal blood differential reading after one month was noted.[101]

Wound healing activity
It is reported that *B. aegyptiaca* have potent wound-healing activity, as evident from the wound contraction. The results also indicated that plant possess potent antioxidant activity by inhibiting lipid peroxidation, bleaching DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, and protecting against oxidant injury to fibroblast cells.[102]

Hypocholesterolemic activity
It is reported that whole and extracted pulp of *B. aegyptiaca* fruits reported a hypocholesterolemic effect when tested on adult albino rats.[103]

Diuretic activity
The ethanol and methanolic extract of leaves of *B. aegyptiaca* reported diuretic effect when tested on Wistar albino rats with (150 and 300 mg/kg) oral doses. Frusemide was used as standard.
The results indicate that ethanol and methanol extracts show a significant ($P<0.05$) increase in the urine volume and electrolyte excretion ($P<0.001$) when compared with control.

CONCLUSIONS

Extensive literature survey revealed that ‘desert date’ has a long history of traditional uses for wide ranges of disease. It has been experimentally proved that *B. aegyptiaca* Del possess antioxidant, antimicrobial, anticancer, diuretic, hypolipidemic, wound-healing, antiviral, antidiabetic, hepatoprotective, mosquito larvicidal, anti-inflammatory and analgesic, antivenin, anthelmintic, cardioprotective cum antioxidant activity, and antinociceptive properties. Bark, fruits, seeds, seed oil, and leaves of this plant are widely used in folk medicine. In recent years, emphasis of research has been on utilizing traditional medicines that have long and proven history of treating various ailments. So, further studies need to be carried out to explore *B. aegyptiaca* Del for its potential in curing and treating disease.

REFERENCES

1. Hall JB, Walier DH. *Balanites aegyptiaca* Del. A monograph. School of Agricultural and Forest Science. Banger: University of Wales; 1991. p. 1-12.

2. Hall, J.B. Ecology of a key African multipurpose tree species *Balanites aegyptiaca* Del. (Balanitaceae): The state of knowledge. Forest Ecol Manag 1992;50:1-30.

3. *Balanites aegyptiaca* (L.) Deile*. Germplasm Resources Information Network. United States Department of Agriculture. 2008. Available from: http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?76322. [retrieved on 2009 Oct 2].

4. Ndoye M, et al. Reproductive biology in *Balanites aegyptiaca* (L.) Del., a semi-arid forest tree. Afr J Biotechnol 2004;3:40-6.

5. The Wealth of India, A Dictionary of Indian Raw Materials and Industrial Products, Publications and Information Directorate, Council of Scientific and Industrial Research, New Delhi: Vol. 2, 1988, p. 3.

6. Kirtikar BD, Basu BD. Indian Medicinal Plants. Deheradun: International Book Distributors; Vol. 3, 1933. p. 1823-4.

7. Pandey CN. Medicinal plants of Gujarat. Gujarat, India: Gujarat Ecological Education and Research Foundation, Council of Scientific and Industrial Research, New Delhi: Vol. 2, 1988. p. 3.

8. Kamil MS. A furostanol saponin from fruits of *Balanites aegyptiaca* Del. (Balanitaceae): The state of knowledge. Forest Ecol Manag 1992:50:1-30.

9. Schmidt L. and Jeker D. Dansa Forest Seed Centre, Seed Leaflet No. 21. (2001).

10. The wealth Of India, A Dictionary Of Indian, Raw material and Industrial product, Publication and Information Directorate, Council of Scientific and Industrial research, New Delhi: 2, 1999, 3.

11. Khare CP. Indian medicinal plants: An illustrated dictionary. Springer; 2007. p. 77-8.

12. Creach P. *Le Balanites aegyptiaca*, ses multiples applications au Tchad. Revue de Botanique appliqué d’Agriculture Tropicale. 1940:20:578-93.

13. Karel L, Roach ES. Dictionary of Antibiosis. New York: Columbia University Press; 1951. p. 48.

14. Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of South and East Africa. Edinburgh and London: E. and S. Livingstone; 1962. p. 1064-5.

15. Beentje HJ. Kenya trees, shrubs, and lianas. Nairobi: National Museums of Kenya; 1994. p. 378.

16. Jagtap SD, Deokule SS, Pawar PK, Harsulkar AM. Traditional Ethnomedical Knowledge Confined to the Pawra Tribe of Satpura Hills, Maharashtra, India. Ethnobotanical Leaflets 2009;13:96-115.

17. Vijgiri D, Sharma PP. Traditional uses of plants in indigenous folklore of Nizamabad District, Andhra Pradesh, India. Ethnobotanical Leaflets 2010;14:29-45.

18. Kamel MS. A furostanol saponin from fruits of *Balanites aegyptiaca*. Phytochemistry 1998;48:755-7.

19. Sarker SD, Bartholomew B, Nash RJ. Alkaloids from *Balanites aegyptiaca*. Fitoterapia 2000;71:328-30.

20. Obidah W, Nadro MS, Tiyalo GO, Wurochekke AU. Toxicity of crude *Balanites aegyptiaca* seed oil in rats. J Am Sci 2009; 5:13-6.

21. Seifu T. Ethnobotanical and ethnopharmaceutical studies on medicinal plants Of Chifta District, Afar Region, North Eastern Ethiopia. M. pharm, thesis, School of Graduate Studies of the Addis Ababa University, January-2004.

22. Araya YN. Contribution of trees for oral hygiene in East Africa. Ethnobotanical Leaflets 2007;11:38-44.

23. Khalid HS, Elkamali HH, Atta Elmanman AM. Trade of sudanese natural medicinal and their role in human and wildlife health care. Available from: http://www.crowwatch.org/Trade%20of%20Sudanese%20Natural%20Medicinals%20(2).pdf. [cited in 2010].

24. Ojo OO, Radro MS, Tella IO. Protection of rats by extracts of some common Nigerian trees against acetylcholinesterase-induced hepatotoxicity. Afr J Biotechnol 2006:5:755-60.

25. Barley S. Zygophyllaceae. In: Watt JM, Breyer-Brandwijk MG, editor. The Medicinal and poisonous plants of Southern and Eastern Africa. London: Livingstone Ltd; 1962. p. 1064.

26. Crouch P. Zygophyllaceae. In: Watt JM, Breyer-Brandwijk MG, editor. The Medicinal and poisonous plants of Southern and Eastern Africa. London: Livingstone Ltd; 1962. p. 1064.

27. Zarroug IMA, Nughud AD, Bashir AK, Mageed AA. Evaluation of Sudanese plant extracts as mosquito larvicides. Int Sci Crude Drug Res 1988; :71-6.

28. Bashir AK, Ahmed GHM, Sulum SM, ElKheir YM. Molluscicidal and other Biological activities of *B.aegyptiaca*. Cairo, Egypt: The first Arab Conference on Medicinal plants; 1984.

29. Doughari JM, Pukuma MS, De N. Antibacterial effects of *Balanites aegyptiaca* L. Del. and *Moniga oleifera* Lam. on *Salmonella typhi*. Afr J Biotechnol 2007;6:2212-5.

30. Khan FM. Ethno-veterinary medicinal usage of flora of greater cholistan desert (Pakistan). Pak Vet J 2009:29:75-80.

31. Kokwano JO. Medicinal Plants in East Africa, East Africa Literature Bureau, Kampala, Nairobi, Dar es Salam.; 1976. p. 34.

32. Kamel MS, Ohtani K, Kurokawa T, Assaf MH, El-Shanawany MA, Ali AA, et al. Studies on *Balanites aegyptiaca* fruits, an antidiabetic Egyptian folk medicine. Chem Pharm Bull (Tokyo) 1991;39:1229-33.

33. Ndabanizez P, Engels D, Kavamahanga PC. Study of the effects of plant molluscsicides from the natural flora of Burundi on *Biomphalaria pfeifferi*, the intermediate host of Bilharzias. In: Maesen, Vander LJ, Burgt, XM van der, Medenbach de Rooy JM, editors. Proceedings of the 14th AETFAT Congress. Netherlands: Kluwer Academic Publishers; 1994. p. 757-60.

34. Kwuosa VN, Mota BS, Ebele S. Toxicity of aqueous bark extract of the tree *Balanites aegyptiaca* on the fish *Oreochromis niloticus*. Appl Parasitol 1993;34:99-94.
35. Kela SL, Ogunsusi RA, Ogbogu VC, Nwude N. Susceptibility of two week old Lymnenaentatitanis to some plant extracts. Rev Elev Med Vet Pays Trop 1989;42:189-92.
36. Nkunya MH, Weenen H, Bray DH. Chemical Evaluation of Tanzanian medicinal plants for the active constituents as a basis for the medicinal usefulness of the plants. In: Mshiigeni KE, Nkuanya MH, Fupi V, Mahannah RL, Mehlu EN, editors. Proceedings of International Conference on Traditional Medicinal Plants. Arusha: 1990. p. 101-11.
37. Oliver PE. Medicinal plant in Nigeria. Nigeria: Nigerian College of Arts, Science and Technology; 1960. p. 138.
38. Breyer JM, Brandwijk MG. The medicinal and poisonous plants of Southern and Eastern Africa. 2nd ed. London: Livingstone; 1982. p. 1064-5.
39. Oliver-Bever B. Medicinal plants in tropical West Africa. Cambridge: Cambridge University Press; 1986. p. 54-55, 184.
40. Samuelssson G, Farah MH, Claeson P. Inventory of plants used in traditional medicine of somania, plant of the families Acanthaceae- Chenopodiaceae. J Ethanopharmacol 1991;35:25-63.
41. Neuwinger HD. Afrikanische Arzneipflanzen und jagdgifte. Stuttgart: WVG; 1994. p. 806-11.
42. Salwa AM, El Hadidi MN. Flavonoids of Balanites aegyptiaca (Balanitaceae) from Egypt. Plant Syst Evol 1988;160:153-8
43. Khare CP. Indian medicinal plants: An illustrated dictionary. Springer; 2007. p. 78.
44. Staerck D, Chapagain BP, Lindin T, Wiesman Z, Jaroszewski JW. Structural analysis of complex saponins of Balanites aegyptiaca by 800 MHz 1H NMR spectroscopy. Magn Reson Chem 2007;44:923-8.
45. Hosny M, Khalifa T, Calis I, Wright AD, Sticher O. Balanitaceae: A furostanol glycoside, and 6-methyldiosgenin from Balanites aegyptiaca. Phytochemistry 1992;31:3565-9.
46. Kamel MS. A furostanol saponin from fruits of Balanites aegyptiaca. Phytochemistry 1998;48:755-7.
47. Charlemagne, et al. Balanitin-6 and -7: Diosgenyl saponins isolated from Balanites aegyptiaca Del. display significant anti-tumor activity in vitro and in vivo. Int J Oncol 2008;32:5-15.
48. Petit GR, Dubek DL, Herald DL, Numata A, Takahasi C, Fujiki R, et al. Isolation and structure of cytostatic steroid saponins from the African medicinal plant Balanites aegyptiaca. J Nat Prod 1991;54:1491-502.
49. Kamel MS, Koskinen A. Pregnaneglycosides from fruits of Balanites aegyptiaca. Phytochemistry 1995;40:1773-5.
50. Hardman R, Wood CN, Sofowora EA. Isolation and characterization of seed hydrocarbons from Balanites aegyptiaca (B. roxburghii) and B. pedicellaris. Phytochemistry 1970;9: 1087-92.
51. Samuel AL, Temple VJ, Ladeji O. Chemical and nutritional evaluation of the seed kernel of Balanites Aegyptiaca. Niger J Biotech 1997;8:57-63.
52. Nour AA, Ahmed AH, Abdel-Gayoum AG. A chemical study of Balanites aegyptiaca L. (Lolob) fruits grown in Sudan. J Sci Food Agr 1985;36:1254-8.
53. Mohamed AM, Wolf W, Well S. Physical, morphological and chemical characteristics, oil recovery and fatty acid composition of Balanites aegyptiaca Kernels. Plant Foods Hum Nutr 2002;57:179-89.
54. Ali Ashaall HA, Farghaly AA, Abd El Aziz MM, Ali MA. Phytochemical investigation and medicinal evaluation of fixed oil of Balanites aegyptiaca fruits (Balanitaceae). J Ethnopharmacol 2010;127:495-501.
55. Chapagain BP, Wiesman Z. Determination of saponins in the kernel cake of Balanites aegyptiaca by HPLC-ESI/MS.
76. Koko WS, Galal M, Khalid HS. Fasciicidal efficacy of Albizia anthelmintica and Balanites aegyptiaca compared with albendazole. J Ethnopharmacol 2000;71:247-52.

77. Koko WS, Abdalla HS, Galal M, Khalid HS. Evaluation of oral therapy on mansonal schistosomiasis using single dose of Balanites aegyptiaca fruits and praziquantel. Fitoterapia 2005;76:30-4.

78. Gnounou C, Guissou P, Duez P, Frederick M, Dubois J. Nematocidal compounds from the seeds of Balanites aegyptiaca isolation and structure elucidation. Int J Pharmacol 2007;3:280-4.

79. Shalaby MA, Moghazy FM, Shalaby HA, Nasr SM. Effect of methanolic extract of Balanites aegyptiaca fruits on enteral and parenteral stages of Trichinella spiralis in rats. Parasitol Res 2010;107:17-25.

80. Anto F, Aryeyete ME, Anyorigiya T, Asoala V, Kpikpi J. The relative susceptibilities of juvenile and adult Bulinus globosus and Bulinus truncatus to the molluscidical activities in the fruit of Ghanaian Bghlia spadix, Blighia unjugata and Balanites aegyptiaca. Ann Trop Med Parasitol 2005;99:211-7.

81. Doughari JH, Pukuma MS, De N. Antibacterial effects of Balanites aegyptiaca L. Drel. and Moringa oleifera Lam. on Salmonella typhi, A. J Ecotoxicol Environ Sci Monitoring 2002;12:67-8.

82. Karuppusamy S, Rajasekarhan KM, Kargemam N. Anti-bacterial activity of Balanites aegyptiaca (L). Del. J Ecotoxicol Environ Sci Monitoring 2007;6:2212-5.

83. Kargemam N, Karuppusamy S, Mani Prakash M, Jayakumar M, Rajasekhar K. Anti-bacterial potency and synergistic activity of certain plant extracts against food-borne diarrheagenic bacteria. Int J Biomed Sci 2008;2:88-93.

84. Wufen BM, Adamu HM, Cham YA, Kela SL. Preliminary studies on the antivenin potential and phytochemical analysis of the crude extracts of Balanites aegyptica (Linn.) Dellei on albino rats. Nat Prod Radiance 2007;6:18-21.

85. Gnoula C, Megalizzi V, De Nève N, Sauvage S, Ribaucour F, Guissou P, et al. Balanitin-6 and -7: Diosgenyl saponins isolated from Balanites aegyptiaca Del. display significant anti-tumor activity in vitro and in vivo. Int J Oncol 2008;32:5-15.

86. Pettit GR, Doubek DL, Herald DL. Isolation and structure of cytostatic steroidal saponins from the African Medicinal plant Balanites aegyptiaca. J Nat Prod 1991;54:1491-502.

87. Gaur K., Nema RK, Kori ML, Sharma CS, Singh V. Anti-inflammatory and analgesic activity of Balanites aegyptiaca in experimental animal models. Int J Green Pharmacol 2008;2:214-7.

88. Meda NT, Lamien-Meda A, Kiendrebeogo M, Lamien CE, Coulibaly AY, Millorgo-Rosalondimbry J, et al. In vitro antioxidant, xanthine oxidase and acetylcholinesterase inhibitory activities of Balanites aegyptiaca (L.) Del. (Balanitaceae). Pak J Biol Sci 2010;13:362-8.

89. Speroni E, Cervellati R, Innocenti G, Costa S, Guerra MC, Dall Acqua S, et al. Anti-inflammatory, anti-nociceptive and antioxidant activities of Balanites aegyptiaca (L.) Delille. J Ethnopharmacol 2005;98:117-25.

90. Zardough IM, Nugud AD, Bashir AK, Mageed AA. Balanites aegyptiaca as a Mosquito Larvicide. Pharma Biol 1990;28:267-71.

91. Wiesman Z, Chapagain BP. Larvocidal activity of saponin containing extracts and fractions of fruits mesocarp of Balanites aegyptiaca, Fitoterapia 2006;77:420-4.

92. Wiesman Z, Chapagain BP. Laboratory evaluation of natural saponin as a bioactive agent against Aedes aegypti and Culex pipiens. Dengue Bull 2003;27:168-73.

93. Chapagain BP, Saharan V, Wiesman Z. Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresearch Technol 2008;99:1165-8.

94. Mohamed AH, Eltahir KE, Ali MB, Galal M, Ayeed IA, Adam SI, et al. Some pharmacological and toxicological studies on Balanites aegyptiaca bark. Phytother Res 1999;13:439-41.

95. Abdel-Kader MS, Alqasoumi SI. Evaluation of the hepatoprotective effect of the ethanol extracts of Solanum nigrum, Cassia fistula, Balanites aegyptiaca and Carthamus tinctorius against experimentally induced liver injury in rats. Alex J Pharm Sci 2008;22:47-50.

96. Jaiprakash B, Aland R, Karadi RV, Savadi RV, Hukkeri VI. Hepatoprotective activity of fruit pulp of Balanites aegyptiaca. Indian Drugs 2003;40:296-7.

97. Kamel MS, Ohtani K, Kurokawa T, Assaf MH, el-Shanawany MA, Ali AA, et al. Studies on Balanites aegyptiaca fruits: An antidiabetic Egyptian folk medicine. Chem Pharm Bull (Tokyo) 1991;39:1229-33.

98. El-Saadany SS, Abdel-Rahim EA, Wasif MM. Biochemical action of Balanites aegyptiaca fruits as a possible hypoglycemic agent. Food Chem 1986;19:307-16.

99. George DH, Ali HK, El Abbas OA. Evaluation of the biological activity of Balanites aegyptiaca Del Saponin in the control of type 11 diabetes mellitus on rats and the growth of Escherichia coli. Afr J Women Change 2006;2:2. Available from: http://findarticles.com/p/articles/mi_hb003/is_2_23/ai_n29364027.

100. Mansour HA, Newairy AA. Amelioration of impaired renal function associated with diabetes by Balanites aegyptiaca fruits in streptozotocin-induced diabetic rats. J Med Res Inst 2000;21:115-25.

101. Hamid OA, Wahab ME, Abdu ZZ, Idris SM. Balanites aegyptiaca extracts for treatment of HIV/AIDS and leukemia. Available from: http://www.wipo.int/pcdtb/en/wo.jsp?wo=2001049306andIA=SD19990000002. [cited in 2001].

102. Annan K, Dickson R. Evaluation of wound healing actions of Hosuludina Opposita vahl, Anthocleista nobilis G. Don. and Balanites aegyptiaca L. J Sci Technol 2008;28:26-33.

103. Abdel-Rahim EA, El-Saadany SS, Wasif MM. Biochemical dynamics of hypcholesterolemic action of Balanites aegyptiaca fruit. Food Chem 1986;20:69-78.

104. Wani NS, Kabade JB, Kabade MV, Joshi SM and Patil AD. Diuretic activity of leaves of Balanites Roxburghii Linn. Int J Pharma Res Dev 2010;2:4. Available from: http://ijprdf.com/June%202012.pdf.

Source of Support: Nil, Conflict of Interest: None declared.