Detoxication of Benzo[a]pyrene-7,8-dione by Sulfotransferases (SULT) in Human Lung Cells

Li Zhang, Meng Huang, Ian A. Blair and Trevor M. Penning

Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, 19104 -6084

Running title: Detoxication of PAH o-quinones by SULT

Address all correspondence to: Dr. Trevor M. Penning, Department of Pharmacology, University of Pennsylvania, School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104-6084, Phone: 215-898-9445, Fax: 215-573-7188, Email: penning@upenn.edu

Capsule:
Background: Benzo[a]pyrene-7,8-dione is a genotoxic metabolite produced by aldo-keto reductases.
Results: SULT1A1 is identified as the major SULT in lung cells involved in the detoxication of the corresponding catechol.
Conclusion: SULT1A1 may protect lung cells from the genotoxic benzo[a]pyrene-7,8-dione.
Significance: Polymorphisms in SULT1A1 may affect lung cancer susceptibility.

Summary
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases (AKRs) catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, 1A3 and 1E1 as the isoymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of [35S]-3'-phosphoadenosine 5'-phosphosulfate as sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-mono-sulfate products that were identified by RP-HPLC and by LC-MS/MS. The various SULT isoforms, produced the two isomers in different proportions. 2D [1H] and [13C] NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (kcat/Km) and yielded a single isomeric product corresponding to M1. By contrast SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.

INTRODUCTION
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants that originate from fossil fuel combustion and tobacco smoke, and are suspect lung carcinogens (1, 2). PAH are not biologically reactive and require metabolic activation to elicit their deleterious effects, thus they are procarcinogens (3). Benzo[a]pyrene (B[a]P) is a representative PAH and widely used to study the metabolic activation of PAH (3, 4).

There are three pathways for the activation of B[a]P. In the first pathway, called the radical cation pathway, B[a]P is activated by one-electron oxidation catalyzed by either P450 monooxygenases or peroxidases to yield a radical cation at C6 of B[a]P, which leads to the formation...
of depurinating adducts and results in G to T transversions (5, 6). The second pathway is known as the diol-epoxide pathway catalyzed by cytochrome P450s. In this pathway, B[a]P is initially converted to (−) trans-7,8-dihydroxy benzo[a]pyrene (B[a]P-7,8-trans-dihydriodiol) a proximate carcinogen intermediate by the sequential actions of P4501A1/1B1 and epoxide hydrolase. B[a]P-7,8-trans-dihydriodiol is then further monoxygenated by P450 1A1/ 1B1 to yield the ultimate carcinogen (+)-anti-7,8-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-B[a]PDE) (4, 7, 8). Anti-B[a]PDE is electrophilic and reacts with dGuo to form (+)-trans-anti-BPDE-N2-dGuo adducts (9, 10), which are believed to be the cause of mutagenicity in bacterial and mammalian cells as well as tumorigenicity in pulmonary adenomas of mice (11, 12). The third pathway is termed the o-quinone pathway catalyzed by aldo-keto reductases (AKR). In this pathway, B[a]P-7,8-trans-dihydriodiol is oxidized by AKR1A1 and AKR1C1-1C4 to yield a ketol which spontaneously rearranges to form B[a]P-7,8-catechol, which is not stable and undergoes autooxidation to yield B[a]P-7,8-dione and the generation of reactive oxygen species (ROS) (13-15) (Figure 1.).

B[a]P-7,8-dione is electrophilic and highly reactive with endogenous nucleophiles. It readily forms thioether conjugates with L-cysteine, N-acetyl-L-cysteine, and GSH (16, 17). B[a]P-7,8-dione can also react with DNA to form both stable and depurinating adducts (18-20). B[a]P-7,8-dione is also redox active, in the presence of NADPH it is reduced back to the catechol for subsequent rounds of autooxidation thereby amplifying ROS in futile redox-cycles (21). Recently, we found that this process was exacerbated enzymatically by NQO1 and by AKRs themselves (21). Using a yeast-based p53 mutagenesis assay, we find that B[a]P-7,8-dione was more mutagenic than diol-epoxides provided that the o-quinone was allowed to redox cycle and that the mutagenic efficiency of B[a]P-7,8-dione showed a linear correlation with the presence of 8-oxo-dGuo in the p53 DNA (22-24). In human lung adenocarcinoma (A549) cells with high constitutive expression of AKRs, the metabolic activation of B[a]P-7,8-trans-dihydriodiol to B[a]P-7,8-dione by AKRs led to the formation ROS and 8-oxo-dGuo adducts in cellular DNA which were exacerbated by the presence of a catechol-O-methyl transferase (COMT) inhibitor (25). The contribution of COMT to detoxication of PAH o-quinone was confirmed by demonstrating that human recombinant COMT detoxified structurally diverse PAH o-quinones, including B[a]P-7,8-dione, via O-methylation of PAH catechols (26).

It is still unknown whether sulfonation of B[a]P-7,8-catechol by human sulfotransferases (SULT) is a feasible detoxication route for B[a]P-7,8-dione. SULTs are a group of cytosolic enzymes responsible for transfer of a sulfonate group from a 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to either an hydroxyl moiety or an amine group (27, 28). On the basis of sequence identity, human SULTs are divided into two major families SULT1 and SULT2 which are also termed the phenol sulfotransferase and the hydroxysteroid sulfotransferase family, respectively. The SULT1 family is further classified into four subfamilies, phenol sulfotransferases (SULT1A), thyroid hormone sulfotransferases (SULT1B), hydroxyarylamine sulfotransferases (SULT1C), and estrogen sulfotransferases (SULT1E) (29). The SULT2 family consists of SULT2A and 2B subfamilies and catalyze sulfonation of the hydroxyl group of steroids including both 3α- and 3β-hydroxysteroids (30). Estrogen o-quinones are structurally related to the PAH o-quinones, and multiple SULTs catalyze the sulfonation of estrogen catechols such as 2-hydroxyestradiol, 4-hydroxyestradiol, 2-hydroxyestrone, 4-hydroxyestrone (31-33). SULT enzymes are also widely expressed and found in human lung (34). Therefore, it is imperative to investigate whether sulfonation of B[a]P-7,8-catechol by SULTs is a detoxication pathway for B[a]P-7,8-dione that will limit its ability to redox cycle.

**EXPERIMENTAL PROCEDURES**

**Chemicals and Reagents**

p-Nitrophenol and 3′-phosphoadenosine 5′-phosphosulfate (PAPS), were purchased from Sigma-Aldrich Co. (St. Louis, MO). [35S]-3′-Phosphoadenosine 5′-phosphosulfate (1-3Ci/mmol, 0.5mCi/ml) was obtained from PerkinElmer Inc (Waltham, MA). Benzo[a]pyrene-7,8-dione
(B[a]P-7,8-dione) was synthesized according to published procedures (35). All solvents were HPLC grade, and all other chemicals used were of the highest grade available.

**Cell Lines and Culture Conditions**
A549 (human lung adenocarcinoma cells) were obtained from American Type Culture Collection (ATCC number CCL-185) and maintained in F-12K nutrient mixture (Kaighn's modification) with 10% heat-inactivated FBS, 2 mM L-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. H358 (human bronchoalveolar cells) were obtained from American Type Culture Collection (ATCC number CRL-5807) and maintained in RPMI 1640 nutrient mixture with 10% heat-inactivated FBS, 2 mM L-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. HBEC-KT (immortalized human bronchial epithelial cells) originated from a patient without lung cancer were a gift from Dr. John Minna at University of Texas Southwestern Medical Center and maintained in keratinocyte-serum free medium with 0.1–0.2 ng/ml recombinant EGF, 20–30 μg/ml bovine pituitary extract, and 2 mM L-glutamine. BEAS-2B (normal human bronchial epithelium cells) cells from American Type Culture Collection (ATCC number CRL-9609) were cultured in BEGM Bronchial Epithelium Medium (Cambrex CC-3170). Cells were incubated at 37 °C in a humidified atmosphere containing 5% CO₂ and were passaged every 3 days at a 1:6 dilution. Cultured cells with a passage number of 10–20 were used in the experiments to reduce variability during cell culture.

**RT-PCR Analysis of SULT mRNA Expression in Human Lung Cells**
Total RNA from each cell line was extracted using RNeasy Kits (Qiagen, Valencia, CA). cDNA was synthesized with GeneAmp® RNA PCR Core Kit according to the manufacturer’s protocol (Applied Biosystems, Carlsbad, CA). An aliquot of 1μl of the reverse transcriptase reaction mixture was used for PCR. In 25 μl of PCR system, there was 1x PCR buffer (10 mM Tris-HCl buffer, pH 8.3, 50mM KCl), 2.5 mM MgCl₂, 250 μM dNTPs, 0.2 μM primers and 0.5 U of Taq DNA polymerase (Applied Biosystems, Carlsbad, CA). The sequences of forward and reverse primer pairs for SULT1A1, 1A3, 1B1, 1C2, 1E1, 2A1, β-actin were taken from previous studies (36, 37). PCR amplification was carried out with Perkin Elmer GeneAmp PCR System 2400 (Waltham, MA) using the following protocol. After an initial denaturation step at 95°C for 45 s, amplification was conducted by denaturation at 95 °C for 15 s, annealing at 68 °C (for SULT1E1) or 66 °C (for other SULT isoforms) for 30 s, and extension at 72 °C for 45 s for 30 cycles. The final extension reaction was performed at 72 °C for 7 min. Plasmids corresponding to pGEX-2TK-SULT1A1*3, 1A3, 1B1, 1C2, 1E1, 2A1 were kindly provided by Prof. Ming-Cheh Liu (Department of Pharmacology, College of Pharmacy, University of Toledo, OH) and were used as positive controls, while H₂O was used as negative control. The control samples were amplified using the same conditions as described above. An aliquot of 10 μl of PCR products were analyzed by electrophoresis in 2% agarose gel with ethidium bromide and visualized under UV light.

**Preparation of pGEX-2TK-SULT1A1*1 wild-type Expression Vectors**
The pGEX-2TK-SULT1A1*3 (Met223Val) was used as a template to prepare a wild type construct by conducting site-directed mutagenesis using the QuikChange method following the manufacturer's protocol. The following forward and reverse primers were used (where the underlined nucleotides indicate the mutation introduced): 5′-dGAGACCGTGGAATTTCATGTTCAGCACACGTCG-3′ and 5′-dCGACGTGTGCTGAACCATGAAGTCCACGGTCTC-3′. The introduction of the wild-type sequence of SULT1A1*1 into the construct was verified by dideoxysequencing.

**Standard Radiometric Assay for SULT activity**
SULT enzyme assays were conducted as described by Foldes and Meek (38). Briefly, the reaction system contained 10 mM KPO₄ buffer of pH 7.4, 1.0 mM dithiothreitol, 5.0 mM MgCl₂, 20 μM [³⁵S]PAPS (100 cpm/pm), 10 μM (for SULT1A1) or 500 μM (for SULT1A3 and 1E1) of p-nitrophenol, human recombinant SULTs, in a final volume of 100 μl. Reactions were initiated by addition of [³⁵S]PAPS. After incubation at 37 °C...
for 15 min, the reactions were terminated by the sequential addition of 50 µl each of 0.1 M barium acetate, 0.1 M barium hydroxide and 0.1 M zinc sulfate. The precipitate was pelleted by centrifugation at 16,000 g for 10 min. An aliquot of 50 µl supernatant was pipetted and mixed with scintillation fluid. The radioactivity was measured on a Tri-Carb 2100TR scintillation counter (machine efficiency for tritium is 65%). Control reactions were performed in the absence of p-nitrophenol. The trace amount of [35S]-PAPS unprecipitated by the barium treatment in the controls served as a background value that was subtracted from the values obtained from reactions containing p-nitrophenol. The volume corrected cpm were converted to pmoles of p-nitrophenol sulfate formed using the specific radioactivity of [35S]-PAPS. It was also confirmed that a single product of p-nitrophenol-sulfate was formed by comparing the retention time of authentic p-nitrophenyl sulfate (Sigma-Aldrich Co., St. Louis, MO) by RP-HPLC.

Expression and Purification of SULT

The SULTs expressed in human lung cells were purified as recombinant enzymes following the reported method with slight modification (39). The pGEX-2TK-SULT1A1, 1A3, 1E1 expression vectors were transformed respectively into competent Escherichia coli C41(DE3) cells. The cells were grown in 750 ml cultures of Luria-Bertani medium at 37 °C (containing 100 μg/ml ampicillin). Upon reaching A600 = 0.6, 1 mM isopropyl-1-thio-β-d-galactopyranoside was added to induce enzyme expression, and cells were cultured overnight. The culture was centrifuged for 10 min at 10,000 × g at 4 °C. Harvested cells were washed with saline, and the pellets were resuspended in buffer A (20 mM Tris-HCl (pH 7.5) containing 10 mM NaCl and 1mM EDTA). Resuspensions were lysed by sonication and centrifuged twice for 10 min at 10,000 × g at 4 °C. The lysate was loaded onto a Glutathione Sepharose column (GE Healthcare, Uppsala, Sweden) equilibrated with buffer A. GST-SULT fusion proteins were eluted with buffer consisting 10 mM GSH, 20 mM Tris-HCl (pH 7.5), 10 mM NaCl, 1mM EDTA. The collected fractions were digested with 40 units of thrombin for 1 hour to cleave the GST tag from the fusion protein and release native SULTs, the thrombin was inactivated by adding 20 µg of aprotinin. The resulting cleavage products were dialyzed overnight in buffer. The cleaved GST tags were removed by loading the dialysate onto a Glutathione-Sepharose column equilibrated with buffer A. The eluent containing native SULTs was concentrated into 2 ml using a Centricon (Millipore, Billerica, MA) and further purified with HiPrep 16/60 gel filtration column (GE Healthcare, Uppsala, Sweden). The active fractions containing SULTs were identified using the standard SULT assay conditions, measurement of A280 nm and visualization of the protein content of each fraction by SDS-PAGE. The homogeneous human recombinant SULT1A1, 1A3, 1E1 with a Mr = 35 kDa were obtained by this procedure, as judged by SDS-polyacrylamide gel electrophoresis. The specific activities of SULT 1A1, 1A3, 1E1 were 25, 33, 27 nmol of p-nitrophenol sulfate formed/min/mg, respectively and compare favorably with published values for these enzymes (39-41). The purified enzymes were stored in 20 mM Tris-HCl (pH 7.5) containing 1 mM EDTA, 10 mM DTT, 20% glycerol at −80 °C for future use.

Kinetic Studies on the Formation of B[a]P-7,8-catechol sulfates

Experiments were conducted anaerobically in a glove box purged with argon. All the solvent and aqueous solutions were degassed by freeze-pump-thaw cycling five times and stored in sealed containers filled with argon. The reactions were performed in 1.5 ml amber glass vials with polytetrafluoroethylene/silicone septa closures. The reaction system contained 10 mM KPO4 buffer of pH 7.4, 1.0 mM dithiothreitol, 5.0 mM MgCl2, 20 μM [35S]PAPS (100 cpm/pmol), 0–10 μM B[a]P-7,8-dione in a final volume of 0.2 ml. The reactions were initiated by the addition of 0.48–0.96 μg of human recombinant SULTs at 25 °C. The amount of enzyme used was always in the linear range as determined by plots of initial velocity versus enzyme concentrations. The reactions were quenched by the addition of 50 µl of ice-cold 1% formic acid and were placed on ice. The reaction mixtures were then extracted twice with 0.5 ml aliquots of ethyl acetate twice by vortex mixing and centrifuged at 16,000 g to help phase separation. The combined ethyl acetate layer was backwashed with 0.2 ml of 1% formic acid by
vigorous vortexing and centrifuged at 16,000g. The organic phase was then dried by a SpeedVac concentrator (Thermo Scientific). The residue was dissolved in 100 μl methanol, and an aliquot of 50 μl was analyzed by scintillation counting or by HPLC analysis. The initial velocity was estimated by the slope of the linear portion of the progress curve over 10 min. Kinetic analyses using nonlinear regression were performed by fitting the Michaelis-Menten equation to the data with the program Grafit,

\[ v = V_{\text{max}} \times [S] / (K_m + [S]) \]

When substrate inhibition was observed, the following equation was fitted to the initial velocity data in a similar manner,

\[ v = V_{\text{max}} \times [S] / (K_m + [S] + [S]^2/K_i) \]

where \( v \) is the initial velocity of the reaction, \([S]\) is the molar concentration of the substrate, and \( K_m \) is the Michaelis-Menten constant for the substrate. Because of the iterative fits of the equations to each data set, each fit provided estimates of the kinetic parameters as mean ± S.E. Dividing \( V_{\text{max}} \) by the molar concentration of the enzyme gave \( k_{\text{cat}} \).

\( K_i \) is the dissociation constant for the substrate to dissociate from the enzyme inhibitor complex.

**Metabolism of B[a]P-7,8-dione in Human Lung Cells**

The A549, HBEC-KT, H358 cells (5 × 10⁶) at confluence were treated with B[a]P-7,8-dione (2 μM, 0.2% DMSO) in HBSS buffer containing 1 mM sodium pyruvate. The culture media were collected at 0 and 24 hours, respectively, and subsequently acidified with 0.1% formic acid before extraction with 2 × 1.5-fold volume of cold H₂O-saturated ethyl acetate. The organic phases of culture media were combined and dried under vacuum. The residue was dissolved in 100 μl of methanol. A 20 μl aliquot was analyzed by LC-MS/MS.

**Identification of B[a]P-7,8-catechol sulfates by HPLC-RAM-UV and LC-MS/MS**

The B[a]P-7,8-catechol sulfates generated with [³⁵S]PAPS were analyzed by a Waters Alliance 2695 chromatographic system (Waters Corp., Milford, MA) in tandem with a Waters 996 photodiode array detector and a β-RAM inline radiometric detector (IN/US Systems Inc., Tampa, FL). Chromatographic separation was achieved on a reverse-phase column (Zorbax-ODS C18, 5 μm, 4.6 × 250 mm, DuPont) eluted with the following linear gradient of H₂O (0.1% trifluoroacetic acid and 5 mM ammonium acetate; solvent A)/MeOH (0.1% trifluoroacetic acid and 5 mM ammonium acetate; solvent B) at a flow rate of 0.5 ml/min. Solvent B was changed from 65 to 80% (v/v) over 45 min, kept at 80% over 5 min, changed from 80 to 65% over 1 min, and kept at 65% for 9 min. Eluates from the column were introduced into the inline radiometric detector following mixture of the scintillant with the HPLC effluent (IN/US Systems Inc.) at a flow rate 1.5 ml/min.

LC-MS/MS identification of the O-sulfated catechols was conducted with a Finnigan TSQ Quantum Ultra spectrometer (Thermo Fisher, San Jose, CA) equipped with a Heated Electrospray Ionization (HESI) Probe ionization source. The mass spectrometer was operated in the positive ion mode or negative ion mode with the following parameters: sprayvoltage (4500 V at positive ion mode or -2000 V at negative ion mode), vaporizer temperature (400 °C), sheath gas pressure (35 arbitrary units), auxiliary gas pressure (10 arbitrary units), capillary temperature (350 °C), and collision energy (20 V). The masses of the metabolites were obtained by detecting the molecular ion from Q1 full scan, and the corresponding mass spectrum of each metabolite was obtained from a Q3 full scan of the product ions of the molecular ion. The chromatography conditions for the metabolites were identical to those used for HPLC-RAM-UV detection.

**Identification of the B[a]P-7,8-catechol sulfates by ¹H and ¹³C NMR Analysis**

To generate sufficient B[a]P-7,8-catechol-O-mono sulfs for characterization, the sulfonation reactions were performed on a large scale. Metabolites were synthesized in a 100 ml system containing 10 mM KPO₄ buffer (pH 7.4), 1.0 mM dithiothreitol, 5.0 mM MgCl₂, 20 μM PAPS, 10 μM B[a]P-7,8-dione, under anaerobic conditions. The reaction was started by the addition of 1.2 mg
of human recombinant SULT1A3 and incubated for 90 min at 37 °C. The reaction was quenched by the addition of 250 μl of formic acid. Metabolites were extracted with 1 × 100 ml of ethyl acetate followed by 1 × 50 ml of ethyl acetate. The pooled extracts were evaporated to complete dryness. The residues were dissolved in 2 ml of methanol and subjected to RP-HPLC (Zorbax-ODS C18, 5 μm, 4.6 × 250 mm, DuPont). The column was eluted with the linear gradient of H₂O (0.1% trifluoroacetic acid solvent A)/MeOH (0.1% trifluoroacetic acid; solvent B) at a flow rate of 0.5 ml/min. Solvent B started with 50% for 5 min, and was changed from 50 to 70% (v/v) in 3 min, and changed afterward from 70-73% over 27 min, and then further changed from 73-80% in 5 min, kept at 80% over 5 min, changed from 80 to 50% over 1 min, and kept at 50% for 14 min. The B[a]P-7,8-catechol- O-monosulfates were collected on the basis of their characteristic UV spectra. The pooled elutes were evaporated to complete dryness.

Identification of B[a]P -7,8-catechol O-monosulfates Produced by Human Recombinant SULT Isoforms.

Recombinant human SULT1A1, 1A3 and 1E1 were expressed as GST-fusion proteins, and upon removal of the tag and subsequent chromatography they were obtained in homogeneous form with appropriate specific activities for the sulfonation of p-nitrophenol. Discontinuous assays were performed with [35S]-PAPS as sulfonate group donor and the products were profiled by RP-HPLC with on-line radiometric detection. Reactions were subsequently performed with unlabeled PAPS for product identification by LC-MS/MS. Recombinant SULT1A1 catalyzed the formation of a single metabolite (M1) while SULT1A3 and 1E1 catalyzed the formation of two metabolites (M1, M2) of B[a]P -7,8-catechol which were detected by HPLC-UV-RAM (Figure 3). The HPLC-UV-RAM gave information on the ratios of the two [35S] B[a]P-7,8-catechol sulfates generated with [35S]PAPS. SULT1A3 and 1E1 formed both M1 and M2 in the ratios of 82:18 and 37:63 (M1:M2), respectively. The UV spectra of two metabolites were different. LC-MS analysis demonstrated that the molecular ions of both metabolites were the same. In the positive ion mode, they gave an m/z = 365, and in the negative ion mode they gave an m/z = 363. MS/MS analysis provided additional structural information for the two metabolites. In the positive ion mode, the product ion spectra of the two metabolites were identical and gave the characteristic cleavage at –SO₃H with the loss of 81 amu from the molecular ion (Figure 4) indicating that they were sulfate conjugates. Cleavage at one of the C-OH bonds resulted in a daughter ion of m/z 267 representing the loss of –OH. Rearrangement at the remaining phenolic group likely resulted in a change from a-C-OH to -C=O bond. The-C=O group was then lost resulting in fragment ion at m/z = 239. In the negative ion mode, product ion spectra of two metabolites also demonstrated characteristic cleavage at –SO₃– resulting in daughter ions at m/z 283. LC-MS/MS analyses in both the positive and negative ion modes confirmed that the metabolites formed in the reaction system were B[a]P-7,8-catechol-O-monosulfates. However, since the mass spectra of M1 and M2 were identical, LC-MS/MS could not distinguish the position of sulfate group in the two isomers.

Kinetic Studies on the Formation of B[a]P-7,8-catechol sulfates

To obtain steady state kinetic parameters for the formation of the B[a]P-7,8-catechol-O-monosulfates we conducted discontinuous assays using the recombinant SULT isoforms. We used
an assay based on ethyl acetate extraction of the products under acidic conditions which was favorable for the partition of metabolites in the organic phase. RP-HPLC analysis confirmed that when M1 and M2 were generated, they formed concurrently for SULT1A3 and 1E1. Only M1 was formed for SULT1A1. We find that the kinetic profiles for the formation of B[a]P-7,8-catechol sulfates catalyzed by the three SULTs were quite different (Figure 5 and Table 1). Both the Michaelis-Menten equation and the equation for substrate inhibition were fitted to kinetic data with non-linear regression analysis. Goodness of fit clearly distinguished between these two kinetic patterns. B[a]P-7,8-catechol sulfonation catalyzed by SULT1A3 followed normal Michaelis-Menten kinetics. By contrast B[a]P-7,8-catechol sulfonation catalyzed by SULT1A1*1 and 1E1 showed modest to potent substrate inhibition yielding \( K_v \) values of 30.0 and 0.08 \( \mu M \), respectively. \( k_{cat}/K_m \) values showed that SULT1A1 was the most catalytically efficient isozyme, followed by SULT1E1 and 1A3, respectively. The \( K_m \) value for SULT1A1*1 was the lowest yielding a value in the submicromolar range that was 63 and 15-fold lower than those seen with SULT1A3 and 1E1. B[a]P-7,8-catechol sulfonation by the thermostable SULT1A1*3 variant followed normal Michaelis-Menten kinetics. The \( K_m \) value of SULT1A1*3 was close to that of SULT1A1*1, while the \( k_{cat}/K_m \) value of SULT1A1*3 was about 50\% of the wide type enzyme (Table 1). Interestingly, the catalytic efficiency of SULT1A1*1 and COMT to form B[a]P-7,8-catechol monosulfate and O-methylated B[a]P-7,8-catechol were similar.

**Formation of B[a]P-7,8-catechol sulfates in Human Lung Cells Treated with 2 μM B[a]P-7,8-dione**

One B[a]P-7,8-catechol-O-monosulfate isomer was detected in A549, H358, and HBEC-tk cell lines after incubation of the cells with 2 μM B[a]P-7,8-dione for 24 h, and was detected by LC-MS/MS (Figure 6). Similar experiments were not performed on BEAS-2B cells since they are AKR null by real-time PCR (Kushman and Penning, unpublished). Using the negative ion mode by monitoring the reaction transition m/z 363→283, the metabolite in the human lung cells had the same retention time as M1. No significant amount of the other isomeric B[a]P-7,8-catechol-O-monosulfate was detected in the cells.

**NMR analysis of B[a]P-7,8-catechol monosulfates**

To identify the M1 and M2 B[a]P-7,8-catechol-O-monosulfates unequivocally, they were enzymatically generated using SULT1A3 on a preparative scale and purified by RP-HPLC. 2D \([1^H]\) NMR, \([1^C]\) NMR of M1 and 1D \([1^H]\) NMR of M2 were obtained. 2D \([1^H]\) and \([13^C]\) NMR of M2 could not be obtained due to its poor yield. By comparing previous published 2D \([1^H]\) NMR of B[a]P-7,8-catechol, the protons in the spectra of B[a]P-7,8-catechol sulfates could be assigned (17). Generally, the \([1^H]\) NMR spectra of catechol and catechol sulfates are quite similar. All the protons were aromatic and were located between 7.5 to 9.1 ppm. H-6 in both M1 and M2 was singlet due to lack of coupling with other protons. The cross peaks at 2D \([1^H]\) NMR of M1 indicated the coupling between H-9 and H-10, H-11 and H-12, H-1 and H-2, H-2 and H-3, as well as H-4 and H-5 (Figure 7). A complete list of the connectivities obtained from the cross peaks are provided in Table 2. To determinate the position of the sulfate group, it is necessary to examine the influence of the -SO$_3$ group on the chemical shift of the related protons. Based on diagnostic peaks of H-6, H-9, and H-10, M1 was assigned as 8-hydroxy-B[a]P-7-O-sulfate and M2 was 7-hydroxy-B[a]P-8-O-sulfate. \([13^C]\) NMR spectrum of M1 was also acquired (see, Figure S1). The chemical shifts were as follow: δ=146.72, 131.36, 130.99, 130.07, 128.20, 127.94, 127.46, 127.30, 127.18, 125.49, 125.15, 125.09, 124.52, 123.69, 121.97, 121.81, 121.36, 119.18, 118.50 ppm. The carbon at the ortho- and para- positions carry a partial positive
charge which results in the deshielding of protons at these positions. When the \(-\text{SO}_3\) group is at C7, this would place H-10 at the \textit{para}-position with respect to the \(-\text{SO}_3\) group and its resonance would be shifted to a more downfield position. This is observed since H-10 and H-6 now overlap in the spectrum of the M1 isomer. By contrast the chemical shift of H-9 would be unaltered since the \(-\text{SO}_3\) group would be in a \textit{meta}-position relative to this proton and this is observed in the spectrum of M1. When the \textit{SO}_3 group is at the C8 position H-10 and H-6 are clearly separated, but H-9 would now be in the \textit{ortho}-position and its resonance would be expected to be shifted downfield. For M2, the \(-\text{SO}_3\) group shifted the H-9 resonance downfield when it was compared with the chemical shifts of H-9 in the spectra of either B[a]P-7,8-catechol or M1. This indicated that in M2, H-9 should be in the \textit{ortho}-position with respect to the \textit{SO}_3 group. The chemical shift values of the other aromatic protons in M1 and M2 were quite similar because they are far away for the \(-\text{SO}_3\) group and thus there was a minimal effect on their chemical environment. This analysis shows that M1 is 8-hydroxy-B[a]P-7,8-O-sulfate and M2 is 7-hydroxy-B[a]P-8-O-sulfate. Using these compounds as standards the isomer produced in human lung cells was found to be M1 or 8-hydroxy-B[a]P-7,8-O-sulfate.

**DISCUSSION**

We are conducting a systematic study to identify the conjugating enzymes that can intercept PAH-o-quinones and prevent their redox cycling to the corresponding PAH-o-quinones. These studies will document which enzymes attenuate the ability of AKR products to form ROS that can lead to the mutagenic lesion 8-oxo-dGuo. Previously we have shown that PAH-o-quinones are enzymatically redox-cycled at a robust rate by recombinant NQO1 and by AKRs themselves, and that human COMT can \(O\)-methylate a series of PAH-catechols (21, 26). In this study we identify SULT1A1 as the major isozyme responsible for the formation of B[a]P-7,8-catechol-O-mono-sulfate based on catalytic efficiency and enzyme expression level in human lung cells. We also identify the major metabolite formed as 8-hydroxy-benzo[a]pyrene-7-O-sulfate based on NMR data.

Three SULT isoforms, SULT1A1, 1A3, 1E1, were detected in human lung cells and were recombinantly expressed for the present study. SULT1A1 and 1A3 share 95.6% similarity in amino acid sequence, while SULT1A1 and 1E1 share only 65.4% similarity. SULT1A1 formed only the M1 metabolite, 8-hydroxy-benzo[a]pyrene-7-O-sulfate, while SULT1A3 showed a distinct preference for the formation of M1. By contrast SULT1E1 formed M1 and M2 in approximately equal amounts. It is probable the high amino acid sequence similarity, and therefore similar three-dimensional structure of SULT1A1 and 1A3 accounts for their similar regioselectivity of sulfonation of B[a]P-7,8-catechol. SULTs perform sulfonation via a SN2 mechanism without going through a sulfonated enzyme intermediate. To determine the structural basis for the formation of M1 and M2 at the same active site will require an X-ray crystallographic approach.

SULT1A1 was the most catalytically efficient isozyme among the three SULTs in sulfonating B[a]P-7,8-catechol. The \(K_m\) value of SULT1A1 was in the nanomolar range which indicates that it can detoxify B[a]P-7,8-catechol at very low substrate concentrations but would also be easily saturated. Even though there is 95.6% similarity in amino acid sequence between SULT1A1 and 1A3, their kinetic profiles were different. Although the \(k_{\text{cat}}\) value of SULT1A3 was higher than that of SULT1A1, the \(K_m\) of SULT1A3 is orders of magnitude greater than that of SULT1A1, thus SULT1A3 is less efficient at detoxication of B[a]P-7,8-catechol than SULT1A1. It was also found that B[a]P-7,8-catechol caused significant substrate inhibition of SULT1E1 which would compromise its detoxication. Moreover, the mRNA level of SULT1E1 was relatively low in human lung cells. When the kinetic profiles and expression levels of the SULTs is considered, SULT1E1 was not as important as SULT1A1 and 1A3 in sulfonation of B[a]P-7,8-catechol. Interestingly, SULT1E1 is the most efficient SULT isozyme for sulfonation of 17\(\beta\)-estradiol and estrogen-3,4-catechol, which prevents formation of estrogen-o-quinones (31). Estrogen-o-quinones are regarded as endogenous tumor initiators and able to attack DNA to form potentially carcinogenic stable or depurinating DNA adducts (42). It is possible that inhibition to SULT1E1 by B[a]P-7,8-catechol and other PAH catechols may
increase the risk factor for estrogen-dependent genotoxicity.

We also demonstrated that B[a]P-7,8-dione was metabolized to B[a]P-7,8-catechol sulfate in three human lung cell-based models. At 2µM of B[a]P-7,8-dione, only 8-hydroxy-B[a]P-7-O-sulfate (M1) was detected in the cells. In the metabolism study using recombinant SULTs, the ratios of M1/M2 formation for SULT1A1, 1A3, and 1E1 were 100:0, 82:18, 36:63, respectively. This ratio could be used as an index to reflect in part the contribution of SULTs in cellular detoxication of B[a]P-7,8-dione. The predominant metabolite found in the cells (M1) implied that SULT1A1 makes the most significant contribution to O-sulfonation. This is consistent with the analysis based on the kinetic profiles and expression levels of each SULTs.

We found that in A549, H358 and HBEC-tk human lung cells, the O-monomesulfate conjugate of B[a]P-7,8-catechol accounts for 12.2%, 15%, and 3.5% of the metabolites derived from B[a]P-7,8-dione (43). The amount of O-monomesulfated B[a]P-7,8-catechol formed was about twice that of the O-methylated B[a]P-7,8-catechol. This indicated that detoxication of B[a]P-7,8-dione through the sulfation pathway is preferred over O-methylation. Inhibition of COMT in A549 cells increased DNA strand breaks and formation of 8-oxo-dGuo in cells treated with B[a]P-7,8-dione which supports the contention that O-methylation of B[a]P-7,8-catechol contributes to the detoxication of B[a]P-7,8-dione by preventing its ability to redox cycle (25). Because of the higher level of O-sulfation in these cells, we predict that SULTs will play a more important role than COMT in intercepting B[a]P-7,8-dione to prevent the generation of reactive oxygen species. The expression of SULT and COMT in lung tissue has been established by others (34, 44), and suggests that is reasonable to infer from our cell based study that both enzymes will play a significant role in the detoxication of B[a]P-7,8-dione.

SULT1A1 polymorphism has been associated with an increased lung cancer risk (45), and polymorphic variants of SULT1A1 may affect the detoxication of PAH o-quinones. The common SULT1A1 allozymes mainly include *1 (wide-type), *2 variant (Arg213His), and *3 variant (Met223Val) (46). The allelic frequencies for SULT1A1*1,*2,*3 in Caucasians were 0.656, 0.332, 0.012, respectively. Despite the low frequency of SULT1A1*3 in Caucasians, it has an allelic frequency of 0.229 in African-Americans (46). It has been reported that SULT1A1 recombinant allozymes have variable thermal stability and specific activity toward p-nitrophenol, catechol estrogens, and dietary flavonoids (31, 47, 48). The SULT1A1 *2 variant was associated with low enzyme activity and thermal stability (45, 47, 48). Although SULT1A1 *3 had compatible thermal stability to wild type enzyme, its specific activities for SULT1A1 substrates were usually lower than that of wild type (48).

Although the $K_m$ value of SULT1A1 *3 was comparable to its wild type counterpart, its $k_{cat}$ was less. As a result, the catalytic efficiency of SULT1A1 *3 for sulfonation of B[a]P-7,8-catechol was about half of that observed for the wild type SULT1A1. Because SULT1A1 plays an important role in detoxication of B[a]P-7,8-dione, the present study provides some evidence that the polymorphic variants that reduce stability or catalytic efficiency of SULT1A1 in sulfonation of PAH catechols may increase susceptibility to lung cancer caused by smoking and air pollution. Unlike high allele frequencies of SULT1A1 variants, SULT1A3 and SULT1E1 variants were found to be very rare which indicate that genetic polymorphism of these two enzymes may have less influence on detoxication of B[a]P-7,8-dione (49, 50).

Sulfonation of PAH catechols by SULTs described in the present study may be one important mechanism for detoxication of PAH o-quinones. First SULTs could terminate the futile redox cycling of PAH o-quinones by intercepting o-quinones which cause ROS generation and subsequent oxidative DNA damage. Second SULTs could eliminate the electrophilicity of PAH o-quinones since the formation of catechol O-sulfates prevents the formation of covalent PAH o-quinone adducts with protein or DNA. Third, sulfation usually results in more polar metabolites and enhance renal or biliary excretion of xenobiotics or drugs, thus sulfate conjugation of PAH catechols may facilitate the elimination of
PAH o-quinones.

Acknowledgements:
We thank Dr. George Furst for conducting NMR analysis, Drs. Adegoke Adeniji and Ding Lu for the advice on NMR assignment, Dr. Mo Chen for help in recombinant SULT purification, Dr. Xiaojing Liu for the advice on LC/MS method development. The work was supported by NIH grants P30-ES-013508, R01-CA39504 and PA-DOH4100038714 awarded to TMP.

Footnote:
Aldo-keto reductases; benzo[a]pyrene-7,8-catechol, B[a]P-7,8-catechol; benzo[a]pyrene-7,8-dione, B[a]P-7,8-dione; catechol-O-methyl transferase, COMT; 3′-phosphoadenosine 5′-phosphosulfate, PAPS; sulfotransferases, SULTs; reactive oxygen species, ROS

Supporting Information:
Figure S1, \(^{13}\text{C}\)-NMR of 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) metabolite
References

1. Grimmer, G., and Bohnke, H. (1975) Polycyclic aromatic hydrocarbon profile analysis of high-protein foods, oils, and fats by gas chromatography. *J. Assoc Anal. Chem.* **58**, 725-733

2. Burczynski, M. E., Lin, H. K., and Penning, T. M. (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. *Cancer Res.* **59**, 607-614

3. Gelboin, H. V. (1980) Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. *Physiol. Rev.* **60**, 1107-1166

4. Conney, A. H. (1982) Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. *Cancer Res.* **42**, 4875-4917

5. Cavalieri, E. L., and Rogan, E. G. (1995) Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. *Xenobiotica* **25**, 677-688

6. Sagher, D., and Strauss, B. (1983) Insertion of nucleotides opposite apurinic/apyrimidinic sites in deoxyribonucleic acid during *in vitro* synthesis: uniqueness of adenine nucleotides. *Biochemistry* **22**, 4518-4526

7. Shimada, T., Hayes, C. L., Yamazaki, H., Amin, S., Hecht, S. S., Guengerich, F. P., and Sutter, T. R. (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. *Cancer Res.* **56**, 2979-2984

8. Shimada, T., Gillam, E. M., Oda, Y., Tsumura, F., Sutter, T. R., Guengerich, F. P., and Inoue, K. (1999) Metabolism of benzo[a]pyrene to *trans*-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by recombinant human cytochrome P450 1B1 and purified liver epoxide hydrolase. *Chem. Res. Toxicol.* **12**, 623-629

9. Kim, J. H., Stansbury, K. H., Walker, N. J., Trush, M. A., Strickland, P. T., and Sutter, T. R. (1998) Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1. *Carcinogenesis* **19**, 1847-1853

10. Koreeda, M., Moore, P. D., Wislocki, P. G., Levin, W., Yagi, H., and Jerina, D. M. (1978) Binding of benzo[a]pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. *Science* **199**, 778-781

11. Malaveille, C., Kuroki, T., Sims, P., Grover, P. L., and Bartsch, H. (1977) Mutagenicity of isomeric diol-epoxides of benzo[a]pyrene and benz[a]anthracene in *S. typhimurium* TA98 and TA100 and in V79 Chinese hamster cells. *Mutat. Res.* **44**, 313-326

12. Nesnow, S., Ross, J. A., Stoner, G. D., and Mass, M. J. (1995) Mechanistic linkage between DNA adducts, mutations in oncogenes and tumorigenesis of carcinogenic environmental polycyclic aromatic hydrocarbons in strain A/J mice. *Toxicology* **105**, 403-413

13. Burczynski, M. E., Harvey, R. G., and Penning, T. M. (1998) Expression and characterization of four recombinant human dihydrodiol dehydrogenase isoforms: oxidation of *trans*-7, 8-dihydroxy-7,8-dihydrobenzo[a]pyrene to the activated o-quinone
metabolite benzo[a]pyrene-7,8-dione. *Biochemistry* **37**, 6781-6790

14. Palackal, N. T., Burczynski, M. E., Harvey, R. G., and Penning, T. M. (2001) The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen *trans*-dihydriodiol to *o*-quinones: potential role in polycyclic aromatic hydrocarbon activation. *Biochemistry* **40**, 10901-10910

15. Palackal, N. T., Lee, S. H., Harvey, R. G., Blair, I. A., and Penning, T. M. (2002) Activation of polycyclic aromatic hydrocarbon *trans*-dihydriodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. *J. Biol. Chem.* **277**, 24799-24808

16. Murty, V. S., and Penning, T. M. (1992) Polycyclic aromatic hydrocarbon (PAH) *ortho*-quinone conjugate chemistry: kinetics of thiol addition to PAH *ortho*-quinones and structures of thioether adducts of naphthalene-1,2-dione. *Chem. Biol. Interact.* **84**, 169-188

17. Murty, V. S., and Penning, T. M. (1992) Characterization of mercapturic acid and glutathionyl conjugates of benzo[a]pyrene-7,8-dione by two-dimensional NMR. *Bioconjug. Chem.* **3**, 218-224

18. Shou, M., Harvey, R. G., and Penning, T. M. (1993) Reactivity of benzo[a]pyrene-7,8-dione with DNA. Evidence for the formation of deoxyguanosine adducts. *Carcinogenesis* **14**, 475-482

19. McCoull, K. D., Rindgen, D., Blair, I. A., and Penning, T. M. (1999) Synthesis and characterization of polycyclic aromatic hydrocarbon *o*-quinone depurinating N7-guanine adducts. *Chem. Res. Toxicol.* **12**, 237-246

20. Balu, N., Padgett, W. T., Nelson, G. B., Lambert, G. R., Ross, J. A., and Nesnow, S. (2006) Benzo[a]pyrene-7,8-quinone-3'-mononucleotide adduct standards for 32P postlabeling analyses: detection of benzo[a]pyrene-7,8-quinone-calf thymus DNA adducts. *Anal. Biochem.* **355**, 213-223

21. Shultz, C. A., Quinn, A. M., Park, J. H., Harvey, R. G., Bolton, J. L., Maser, E., and Penning, T. M. (2011) Specificity of human Aldo-Keto Reductases, NAD(P)H:Quinone Oxidoreductase, and Carbonyl Reductases to redox-cycle polycyclic aromatic hydrocarbon diones and 4-hydroxyeugenol-*o*-quinone. *Chem. Res. Toxicol.* **24**, 2153-2166

22. Yu, D., Berlin, J. A., Penning, T. M., and Field, J. (2002) Reactive oxygen species generated by PAH *o*-quinones cause change-in-function mutations in p53. *Chem. Res. Toxicol.* **15**, 832-842

23. Park, J. H., Troxel, A. B., Harvey, R. G., and Penning, T. M. (2006) Polycyclic aromatic hydrocarbon (PAH) *o*-quinones produced by the aldo-keto reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. *Chem. Res. Toxicol.* **19**, 719-728

24. Shen, Y. M., Troxel, A. B., Vedantam, S., Penning, T. M., and Field, J. (2006) Comparison of p53 mutations induced by PAH *o*-quinones with those caused by anti-benzo[a]pyrene diol epoxide *in vitro*: role of reactive oxygen and biological selection. *Chem. Res. Toxicol.* **19**, 1441-1450

25. Park, J. H., Mangal, D., Tacka, K. A., Quinn, A. M., Harvey, R. G., Blair, I. A., and Penning, T. M. (2008) Evidence for the aldo-keto reductase pathway of polycyclic aromatic *trans*-dihydriodiol activation in human lung A549 cells. *Proc. Natl. Acad. Sci. U S A* **105**, 6846-6851
26. Zhang, L., Jin, Y., Chen, M., Huang, M., Harvey, R. G., Blair, I. A., and Penning, T. M. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols. *J. Biol. Chem.* **286**, 25644-25654

27. Negishi, M., Pedersen, L. G., Petrotchenko, E., Shevtsova, S., Gorokhov, A., Kakuta, Y., and Pedersen, L. C. (2001) Structure and function of sulfotransferases. *Arch. Biochem. Biophys.* **390**, 149-157

28. Coughtrie, M. W., Sharp, S., Maxwell, K., and Innes, N. P. (1998) Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. *Chem. Biol. Interact.* **109**, 3-27

29. Weinshilboum, R. M., Otterness, D. M., Aksoy, I. A., Wood, T. C., Her, C., and Raftogianis, R. B. (1997) Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. *FASEB J.* **11**, 3-14

30. Falany, C. N., Comer, K. A., Dooley, T. P., and Glatt, H. (1995) Human dehydroepiandrosterone sulfotransferase. Purification, molecular cloning, and characterization. *Ann. N. Y. Acad. Sci.* **774**, 59-72

31. Adjei, A. A., and Weinshilboum, R. M. (2002) Catechol estrogen sulfation: possible role in carcinogenesis. *Biochem. Biophys. Res. Commun.* **292**, 402-408

32. Taskinen, J., Ethell, B. T., Pihlavisto, P., Hood, A. M., Burchell, B., and Coughtrie, M. W. (2003) Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models. *Drug Metab. Dispos.* **31**, 1187-1197

33. Hui, Y., Yasuda, S., Liu, M. Y., Wu, Y. Y., and Liu, M. C. (2008) On the sulfation and methylation of catechol estrogens in human mammary epithelial cells and breast cancer cells. *Biol. Pharm. Bull.* **31**, 769-773

34. Cappiello, M., Franchi, M., Giuliani, L., and Pacifici, G. M. (1989) Distribution of 2-naphthol sulphotransferase and its endogenous substrate adenosine 3'-phosphate 5'-phosphosulphate in human tissues. *Eur. J. Clin. Pharmacol.* **37**, 317-320

35. Harvey, R. G., Dai, Q., Ran, C., and Penning, T. M. (2004) Synthesis of the o-quinones and other oxidized metabolites of polycyclic aromatic hydrocarbons implicated in carcinogenesis. *J. Org. Chem.* **69**, 2024-2032

36. Ebmeier, C. C., and Anderson, R. J. (2004) Human thyroid phenol sulfotransferase enzymes 1A1 and 1A3: activities in normal and diseased thyroid glands, and inhibition by thyroid hormones and phytoestrogens. *J. Clin. Endocrinol. Metab.* **89**, 5597-5605

37. Stanley, E. L., Hume, R., and Coughtrie, M. W. (2005) Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. *Mol. Cell. Endocrinol.* **240**, 32-42

38. Foldes, A., and Meek, J. L. (1973) Rat brain phenol sulphotransferase: partial purification and some properties. *Biochim. Biophys. Acta.* **327**, 365-374

39. Liu, M. C., Suiko, M., and Sakakibara, Y. (2000) Mutational analysis of the substrate binding/catalytic domains of human M form and P form phenol sulfotransferases. *J. Biol. Chem.* **275**, 13460-13464

40. Sakakibara, Y., Takami, Y., Nakayama, T., Suiko, M., and Liu, M. C. (1998) Localization and functional analysis of the substrate specificity/catalytic domains of human M-form and P-form phenol sulfotransferases. *J. Biol. Chem.* **273**, 6242-6247

41. Pai, T. G., Sugahara, T., Suiko, M., Sakakibara, Y., Xu, F., and Liu, M. C. (2002)
Differential xenoestrogen-sulfating activities of the human cytosolic sulfotransferases: molecular cloning, expression, and purification of human SULT2B1a and SULT2B1b sulfotransferases. *Biochim. Biophys. Acta.* **1573**, 165-170

42. Cavalieri, E. L., Stack, D. E., Devanesan, P. D., Todorovic, R., Dwivedy, I., Higginbotham, S., Johansson, S. L., Patil, K. D., Gross, M. L., Gooden, J. K., Ramanathan, R., Cerny, R. L., and Rogan, E. G. (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. *Proc. Natl. Acad. Sci. U S A* **94**, 10937-10942

43. Huang, M., Liu, X., Basu, S., Zhang, L., Kushman, M., Harvey, R.G., Blair, I.A. and Penning, T.M. (2012) Metabolism and disposition of benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in human lung cells by liquid chromatography tandem mass spectrometry: Detection of N7 adenine B[a]P-7,8-dione adduct. *Chem. Res. Toxicol.* **25**, 993-1003

44. Somers, G. I., Lindsay, N., Lowdon, B. M., Jones, A. E., Freathy, C., Ho, S., Woodroofe, A. J., Bayliss, M. K., and Manchee, G. R. (2007) A comparison of the expression and metabolizing activities of phase I and II enzymes in freshly isolated human lung parenchymal cells and cryopreserved human hepatocytes. *Drug. Metab. Dispos.* **35**, 1797-1805

45. Wang, Y., Spitz, M. R., Tsou, A. M., Zhang, K., Makan, N., and Wu, X. (2002) Sulfotransferase (SULT) 1A1 polymorphism as a predisposition factor for lung cancer: a case-control analysis. *Lung Cancer* **35**, 137-142

46. Carlini, E. J., Raftogianis, R. B., Wood, T. C., Jin, F., Zheng, W., Rebbeck, T. R., and Weinshilboum, R. M. (2001) Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. *Pharmacogenetics* **11**, 57-68

47. Raftogianis, R. B., Wood, T. C., and Weinshilboum, R. M. (1999) Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, alchozyme properties, and human liver genotype-phenotype correlations. *Biochem. Pharmacol.* **58**, 605-616

48. Nagar, S., Walther, S., and Blanchard, R. L. (2006) Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. *Mol. Pharmacol.* **69**, 2084-2092

49. Hildebrandt, M. A., Salavaggione, O. E., Martin, Y. N., Flynn, H. C., Jalal, S., Wieben, E. D., and Weinshilboum, R. M. (2004) Human SULT1A3 pharmacogenetics: gene duplication and functional genomic studies. *Biochem. Biophys. Res. Commun.* **321**, 870-878

50. Glatt, H., and Meinl, W. (2004) Pharmacogenetics of soluble sulfotransferases (SULTs). *Naunyn. Schmiedebergs. Arch. Pharmacol.* **369**, 55-68
Figure legends

Figure 1: Metabolic activation of [B[a]P] by AKRs and detoxication of [B[a]P]-7,8-dione by SULTs

Figure 2. Gene expression of SULTs in human lung cells (A). A549: human lung adenocarcinoma cell; H358: human bronchoalveolar cell; HBEC-KT: immortalized human bronchial epithelial cell; BEAS-2B: normal human bronchial epithelial cell. SDS-PAGE of purified human recombinant SULTs (B)

Figure 3. HPLC/UV/RAM identification of sulfated metabolites (M1 and M2) of the [B[a]P]-7,8-catechol. [B[a]P]-7,8-catechol (10 μM) was generated in situ under anaerobic conditions in the presence of 1 mM dithiothreitol. The [B[a]P]-7,8-catechol was converted to the O-sulfate(s) in the presence of [35S]-PAPS and SULTs in the incubation buffer. A, B, and C, HPLC-UV chromatogram of [B[a]P]-7,8-catechol sulfates formed by SULT1A1,1A3,1E1, respectively; D, E, and F, HPLC-RAM chromatogram of [B[a]P]-7,8-catechol sulfates formed by SULT1A1,1A3,1E1, respectively. The red triangles indicate the beginning and end of peak integration in the chromatograms.

Figure 4. LC/MS/MS identification of sulfated metabolites (M1 and M2) of the [B[a]P]-7,8-catechol. [B[a]P]-7,8-catechol (10 μM) was generated in situ under anaerobic conditions in the presence of 1 mM dithiothreitol. The [B[a]P]-7,8-catechol was converted to the O-sulfate(s) in the presence of PAPS and SULTs in the incubation buffer. The reactions were quenched by 1% formic acid and extracted with ethyl acetate. The organic phase was then dried and dissolved in MeOH for LC-MS/MS analysis. A, B, and C, positive ion chromatogram of [B[a]P]-7,8-catechol sulfates by monitoring reaction transition m/z 365→284 ([M+H]+→[M+H-SO_3H]^+); D, positive ion MS^2 of isomer 1, and MS^2 of isomer 2; E, negative ion MS^2 of isomer 1, and MS^2 of isomer 2.

Figure 5. Kinetic characterization of Sulfation of [B[a]P]-7,8-catechol by SULTs. Initial velocities estimated by the slope of a linear portion of the progress curve over 10 min. Kinetic analyses were performed by fitting the Michaelis-Menten equation or the substrate inhibition equation to the data. Reactions contained 10 mM KPO_4 buffer of pH 7.4, 1.0 mM dithiothreitol, 5.0 mM MgCl_2, 20 μM [35S]PAPS, 0-10 μM [B[a]P]-7,8-dione, and 0.48-0.96 μg of human recombinant SULTs at 25 °C. A, B, C, velocity versus [S] curve for sulfation of [B[a]P]-7,8-catechol by SULT1A1,1A3,1E1, respectively.

Figure 6. LC-MS/MS detection of sulfated metabolites (M1 and M2) of the [B[a]P]-7,8-catechol formed by recombinant SULT1A3 (A) and by A549 (B), H358 (C), and HBEC-KT cells (D) at 24 h. [B[a]P]-7,8-dione (2 μM, 0.2% DMSO) in HBSS buffer were incubated with lung cells and collected at 0 and 24 h, respectively. The culture media were extracted with ethyl acetate. The organic phases were dried under vacuum and redissolved in methanol. [B[a]P]-7,8-catechol sulfates was analyzed with LC-MS/MS in negative ion mode by monitoring reaction transition m/z 363→283 ([M-H]^-→[M-H-SO_3^-]). The peak M1 had the same retention time and mass transition as authentic 8-hydroxy-[B[a]P]-7-O-sulfate.

Figure 7. 500 MHz [^1H]-COSY 8-hydroxy-[B[a]P]-7-O-sulfate (M1) and [^1H] NMR spectra of 7-hydroxy-[B[a]P]-8-O-sulfate (M2)
Figure 1.
Figure 2.

A

RT-PCR of SULT mRNA in various human lung cells

B

35kb

1: SULT 1A1
2: SULT 1A3
3: SULT 1E1
Figure 3.
Figure 4.
Figure 5.

A

SUL1A1

B

SUL1A3

C

SUL1E1

Sulfated B[a]P-7,8-catechols (nmol/min/mg)

B[a]P-7,8-catechol (µM)

Sulfated B[a]P-7,8-catechols (nmol/min/mg)

B[a]P-7,8-catechol (µM)
Figure 6.
Figure 7.
| Enzymes    | $V_{\text{max}}$ | $k_{\text{cat}}$ | $K_m$  | $K_i$  | $k_{\text{cat}}/K_m$ |
|------------|------------------|------------------|--------|--------|------------------|
|            | nmol/min/mg      | min$^{-1}$       | $\mu$M | $\mu$M | min$^{-1}$ $\mu$M$^{-1}$ |
| SULT1A1*1  | 1.68 ± 0.07      | 0.059 ± 0.002    | 0.061 ± 0.004 | 29.9 ± 3.5 | 0.97       |
| SULT1A1*3  | 0.84 ± 0.02      | 0.030 ± 0.001    | 0.08 ± 0.009  | NA        | 0.38       |
| SULT1A3    | 9.2 ± 0.9        | 0.32 ± 0.03      | 3.8 ± 0.8     | NA        | 0.084     |
| SULT1E1    | 15.4 ± 3.7       | 0.54 ± 0.13      | 0.90 ± 0.26   | 0.08 ± 0.02 | 0.60      |
| COMT$^a$   | 54.2             | 1.48             | 2.10         | NA        | 0.70      |

$a$: Zhang et al., 2011
Table 2. Proton assignments for 8-hydroxy-benzo[a]pyrene-7-O-sulfate

| Proton | Chemical shift (ppm), multiplicity | Coupling constants (Hz), J | Connectivities |
|--------|-----------------------------------|---------------------------|----------------|
| H-1 or H3 | 8.08, d; 8.22, d | 7.7 or 7.8 | H-2 with H-1/H-3 |
| H-2     | 7.95, m                           |                           | H-1/H-3 with H-2 |
| H-4     | 7.92, m                           |                           | H-4 with H-5    |
| H-5     | 8.05, d                           | 9.1                       | H-5 with H-4    |
| H-6     | 8.88, s                           |                           |                 |
| H-9     | 7.52, d                           | 9.3                       | H-9 with H-10   |
| H-10    | 8.88, d                           | 9.1                       | H-10 with H-9   |
| H-11    | 9.02, d                           | 9.1                       | H-11 with H-12  |
| H-12    | 8.31, d                           | 9.1                       | H-12 with H-11  |
