Pressure evolution of low-temperature crystal structure and bonding of 37 K \(T_c \) FeSe superconductor

S. Margadonna1 Y. Takabayashi2, Y. Ohishi3, Y. Mizuguchi4,5,6, Y. Takano4,5,6, T. Kugayama7, T. Nakagawa3, M. Takata3, and K. Prassides8,*

1School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
2Department of Chemistry, University of Durham, Durham DH1 3LE, UK
3Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198, Japan
4National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
5JST, TRIP, 1-2-1 Sengen, Tsukuba 305-0047, Japan
6University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-0001, Japan
7Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531, Japan

FeSe with the PbO structure is a key member of the family of new high-\(T_c \) iron pnictide and chalcogenide superconductors, as while it possesses the basic layered structural motif of edge-sharing distorted FeSe\(_4\) tetrahedra, it lacks interleaved ion spacers or charge-reservoir layers. We find that application of hydrostatic pressure first rapidly increases \(T_c \) which attains a broad maximum of 37 K at \(\sim 7 \) GPa (this is one of the highest \(T_c \) ever reported for a binary solid) before decreasing to 6 K upon further compression to \(\sim 14 \) GPa. Complementary synchrotron X-ray diffraction at 16 K was used to measure the low-temperature isothermal compressibility of \(\alpha\)-FeSe, revealing an extremely soft solid with a bulk modulus, \(K_0 = 30.7(1.1) \) GPa and strong bonding anisotropy between inter- and intra-layer directions that transforms to the more densely packed \(\beta\)-polymorph above \(\sim 9 \) GPa. The non-monotonic \(T_c(P) \) behavior of FeSe coincides with drastic anomalies in the pressure evolution of the interlayer spacing, pointing to the key role of this structural feature in modulating the electronic properties.

PACS numbers: 74.70.Dd, 74.25.Ha, 61.05.C-

The \(\alpha\)-polymorph of the simple binary FeSe phase has recently emerged as a superconductor with an ambient \(P \) \(T_c \) of \(\sim 8-13 \) K 2,3 Its structure comprises stacks of edge-sharing FeSe\(_4\) tetrahedra with a packing motif essentially identical to that of the FeAs layers in the families of the FeAs-based high-\(T_c \) superconductors4,5,6,7 but lacking any interleaved ion spacers or insulating layers. The structural analogy is reinforced by the observation that below 70 K the high-temperature crystal structure becomes metrically orthorhombic (space group \(\text{Cnma} \))8 displaying an identical distortion of the FeSe layers to that observed in the iron oxyselenide family9,10 Theoretical calculations also find a very similar 2D electronic structure to that of the FeAs-based superconductors with cylindrical electron sections at the zone corner and cylindrical hole surface sections11. Moreover, superconductivity in FeSe is very sensitive to defects and disorder and occurs over a limited range of FeSe\(_{1-x}\) non-stoichiometry12.

The effect of applied pressure on \(T_c \) provides crucial information in differentiating between competing models of superconductivity and in the FeSe binary, \(T_c \) is initially extremely sensitive to \(P \) and rises rapidly to 27 K at 1.48 GPa2. At the same time, antiferromagnetic spin fluctuations present above \(T_c \) are strongly enhanced by pressure13. In the FeAs-based superconductors, the response of \(T_c \) to pressurization is complex and sensitively depends on the composition of the materials and their doping level. Both positive and negative initial pressure coefficients, \(dT_c/dP \) have been measured. Typically for the REFeAsO\(_{1-x}\)F\(_x\) families, \(dT_c/dP \) is positive at low doping levels and switches over to a negative value as \(x \) increases14,15,16,17,18. Moreover, for systems where the initial \(dT_c/dP \) is positive, there is a critical value of \(P \) above which the trend is reversed and \(T_c \) then decreases upon further pressurization14,19.

Despite the importance of the evolution of \(T_c \) with \(P \) in understanding the superconducting properties of the Fe-based materials, there is currently little information on the detailed pressure dependence of their structural properties20,21,22. Here we report on the conducting properties of FeSe as a function of \(P \) up to \(\sim 14 \) GPa; we find a very high initial pressure coefficient with \(T_c \) maximized at 37 K at \(\sim 7 \) GPa. At higher \(P \), \(dT_c/dP \) becomes negative and \(T_c \) is reduced to 6 K at \(\sim 14 \) GPa. We also study the precise pressure evolution to 12.8 GPa of the FeSe structure at 16 K (i.e. well within the superconducting regime) by synchrotron X-ray powder diffraction. We find that the orthorhombic \(\alpha\)-polymorph survives to \(\sim 9 \) GPa whereupon the structure changes to that of the non-superconducting hexagonal \(\beta\)-phase. \(T_c \) initially increases with \(P \) despite the decreasing SeFeSe thickness and the increasing distortion of the FeSe\(_4\) units while the subsequent decrease clearly correlates with changes in the FeSe interlayer spacing.

The FeSe sample used in this work was prepared, as reported elsewhere2. Electrical resistivity measurements under high pressures were performed by a standard four-probe technique using a diamond anvil cell (DAC). Powdered NaCl was used as pressure-transmitting medium. Pressure was applied at room temperature and measured by the ruby fluorescence method. The measured values at
high temperature are used to discuss the pressure dependence of T_c. The high-pressure synchrotron X-ray diffraction experiments at 16 K were performed at beamline BL10XU, SPring-8. The powder sample was loaded in a membrane DAC, which was placed inside a closed-cycle helium refrigerator. Daphne$^\text{TM}$ oil was used as a pressure medium. The applied pressure measured with the ruby fluorescence method was increased at 16 K without dismounting the cell from the cryostat. The diffraction patterns ($\lambda = 0.41118 \ \text{Å}$) were collected using a flat image plate detector up to 12.8 GPa. Data analysis of the diffraction profiles was performed with the GSAS suite of Rietveld programs.

Fig. 1a shows the temperature dependence of the resistance of FeSe at various pressures. Superconductivity was observed below 13.4 K with a fairly sharp onset. T_c is found to increase initially rapidly upon application of pressure with an accompanying increase in width and reaches a broad maximum of 37 K at 6.6 GPa — for binary solids, this high-T_c is only surpassed by Cs$_3$C$_60$ (38 K)23 and MgB$_2$ (39 K)24 In a second experiment, P was increased first directly to 7.6 GPa and then to 13.9 GPa where the onset T_c is smaller at 6 K (Fig. 1b). Pressure release to near ambient and subsequent pressurization to 9.7 GPa resulted in smaller values of T_c — this may be related to the irreversibility of the $\alpha \rightarrow \beta$ structural transformation (vide infra) (Fig. 2d).

Inspection of the diffraction profiles25 at 16 K and 0.25 GPa (Fig. 1c) readily reveals the orthorhombic (α) unit cell (space group Cnma) established for α-FeSe below 70 K at ambient P. Additional peaks are also evident and these can be accounted for by the presence of a minority hexagonal NiAs-type β-FeSe phase (32.4(1)% fraction). The diffraction datasets collected with increasing P show no structural changes for α-FeSe between 0.25 and 7.5 GPa with the α/β-phase assemblage remaining unaltered.25 The same structural model was therefore employed in the Rietveld refinements in this pressure range, revealing a monotonic decrease in the lattice constants and unit cell volume with increasing P (Fig. 2a,b). However, the response of the lattice metrics to P is strongly anisotropic with the interlayer spacing showing a significantly larger contraction than the intralayer dimensions. As P increases, $2c/(a+b)$ smoothly decreases until at ~ 4 GPa, it approaches 1. Further increase in P leads to an even higher compression of the FeSe interlayer spacing (Fig. 2c) with $2c/(a+b) = 0.986(2)$ at 7.5 GPa. However, as the sample is pressed to 9.0 GPa (Fig. 1d), the α-phase fraction begins to decrease and then it sharply collapses with an almost complete $\alpha \rightarrow \beta$ transformation taking place.25 At the same time, while the basal plane lattice constants continue to contract, c begins to increase, resulting in saturation of the volume response to pressure and an increasing $2c/(a+b)$ ratio (Fig. 2a-c). Gradual depressurization to ~ 2 GPa does not lead to recovery of the orthorhombic α polymorph, implying that the $\alpha \rightarrow \beta$ phase transformation is irreversible at these low temperatures. Recovery of α-FeSe (53% fraction) at this P necessitated heating of the sample inside the MDAC to 300 K. 26

Fig. 2b shows the pressure evolution of the unit cell volume of α-FeSe together with a least-squares fit of its 16 K equation-of-state (EOS) to the semi-empirical third-order Birch-Murnaghan equation.27 The fit results in values of the atmospheric pressure isothermal bulk modulus, $K_0 = 30.7(1.1)$ GPa and its pressure derivative, $K'_0 = 30.7(1.1)$ GPa.
6.7(6) taking into account the $V(P)$ data to 7.5 GPa. The volume compressibility, $\kappa = \text{dln} V/\text{d}P = 0.033(1)$ GPa$^{-1}$ implies a soft highly compressible solid. A comparable value of the bulk modulus ~ 33 GPa at 50 K has been proposed from neutron diffraction measurements over a restricted 0-0.6 GPa range. The anisotropy in bonding of the α-FeSe structure (Fig. 3d) is clearly evident in Fig. 2(a) which displays the variation of the orthorhombic lattice constants with P. α-FeSe is least compressible in the basal plane, in which the covalent Fe-Se bonds lie (dlna/dP = 0.029(2) \text{ GPa}^{-1}$, dln$b$/dP = 0.026(3) GPa$^{-1}$), while the interlayer compressibility, dlnc/dP = 0.065(4) GPa$^{-1}$ is ~ 2.5 times larger, implying very soft Se-Se interlayer interactions.

The immediate consequence of the structural simplicity of FeSe is that the ~ 2.91 Å-thick SeFeSe building blocks are in close proximity separated by each other by only ~ 2.58 Å (Fig. 3d). This contrasts sharply with the enhanced interlayer separation in the FeAs analogues (e.g. interslab separation is ~ 5.79 Å in SmFeAsO which comprises interleaved SmO layers and ~ 3.45 and 3.34 Å in SrFe$_2$As$_2$ and LiFeAs which possess AE$^{2+}$ and Li$^{+}$ spacers, respectively). As a result, the c axis in FeSe is only marginally larger (1.03 times) than the average basal plane dimensions. The electronic consequence of this structural size proximity should be to render the electronic structure of FeSe more 3D in nature than those of any of the related FeAs superconductors. Moreover, given the softness of the interlayer Se-Se interactions relative to the covalently bonded SeFeSe slabs, application of pressure should have a profound influence on the structural and electronic dimensionalities, allowing their tuning at interlayer contact separations inaccessible in other currently known Fe-based superconductors. This is of key importance if we recall both the extreme sensitivity of T_c to P and its non-monotonic response at high P. The distinct structural response to P of α-FeSe is clearly apparent by considering the compressibility and its anisotropy (Fig. 2a,b). Firstly, the low-T bulk modulus, $K_0 = 30.7(1.1)$ GPa is the smallest measured thus far in any of these systems $- K_0 = 57.3(6)$ GPa for LiFeAs, $78(2)$ GPa for LaFeAsO$_{0.3}$F$_{0.7}$, and 102(2) GPa for NdFeAsO$_{0.88}$F$_{0.12}$. In addition, the compressibility of α-FeSe along the interlayer direction is the largest amongst these systems $-$ the c axis contracts by 7.3% at 7.5 GPa $-$ while the basal plane compressibility (contraction by 3.3% at 7.5 GPa) is comparable to that in LiFeAs but considerably larger than those of the iron oxyselenides.

This sets the scene to discuss the pressure response of T_c in α-FeSe and its relationship to the structural evolution with P. Fig. 3a,3c show the pressure dependence at 16 K of the Fe-Se and Se-Se interatomic distances. The Fe-Se bonds contract smoothly to ~ 4 GPa but remain essentially unchanged with further increase in P resulting in an overall decrease of 2.3% at 9.0 GPa. Similarly the intralayer Se-Se distances decrease monotonically with a somewhat larger contraction of 3.7%. However, the pressure response of the interlayer Se-Se contacts is much steeper with a 9.8% decrease reflecting the very large interlayer compressibility $-$ the SeFeSe slabs approach each other rapidly up to 7.5 GPa but then their contact distance appears to saturate. As a result, there is a correlation between the pressure evolution of the unit cell metrics and the superconducting T_c (Fig. 3f). At low pressures, the rapid increase in $(a+b)/2c$ is mirrored by the rapidly increasing T_c (α-FeSe has the smallest bulk modulus and highest pressure coefficient of T_c amongst the Fe-based superconductors). Remarkably the pressure range at which the maximum T_c is found coincides with the onset of the structural anomalies. While the basal plane lattice constants continue to contract smoothly, the interlayer spacing begins to expand slightly leading to a decreasing $(a+b)/2c$ ratio as P increases above 7.5 GPa. Thus it is tempting to ascribe the non-monotonic $T_c(P)$ behavior to the competition between the effects of the interlayer Se-Se interactions (tuning the doping level) and the intralayer FeSe bonding and suggests that higher T_cs are associated with smaller interlayer spacings (increased dimensionality).

Fig. 3b,c shows the pressure dependence at 16 K of the thickness of the SeFeSe slabs and the crystallographic bond angles of the FeSe$_4$ tetrahedra (Fig. 3e). It has been argued for the iron (oxy)arsenides that the geometry of the edge-sharing FeAs$_4$ tetrahedral units sensitively controls the width of the electronic conduction band and therefore the magnitudes of the slab thickness and the
As-Fe-As angles are important parameters in tuning the electronic properties of these systems and determining T_c. Empirically T_c appears to be maximal when the FeAs$_4$ units are close to regular with As-Fe-As angles of 109.47°. Along these lines, the observation of negative pressure coefficients of T_c has been rationalized in terms of increased tetrahedral distortion away from regular shape. α-FeSe has an identical distortion mode of the FeSe$_4$ tetrahedra with a sizable distortion away from regularity (7° angle difference, Fig. 3c). However, while the distortion also increases significantly with increasing P and the SeF eSe slab thickness decreases (Fig. 3b,c), the pressure coefficient of T_c is positive in this range, implying that the empirical generalization which appears to hold well for the iron (oxy)arsenides is not applicable in the present system—apparently the dependence of the electronic structure on the interlayer separation dominates in determining the superconducting properties of α-FeSe.

Finally, we discuss the high-P α→β transformation. Firstly, pressurization leads to a rapid decrease in the Se-Se interlayer contacts in the α-phase at 7.5 GPa, these approach a value of 3.3 Å, which is significantly smaller than the sum of the Se$^{2−}$ ionic radii. As a result, the sign of the compressibility along c changes and the interlayer spacing begins to increase upon further increase in P. In addition, the three-dimensional β-FeSe is more densely packed than the quasi-two-dimensional α polymorph. The large difference in packing density is retained at high P and at 9.0 GPa, the α→β transition is accompanied by a ~14.6% decrease in volume as the Fe-Se coordination changes from tetrahedral to the more densely packed octahedral one. At the same time, the transition results in an increase of the Fe-Fe and Fe-Se distances by 6.4% and 4.0%, respectively. These observations point toward a scenario where the α-phase cannot sustain pressures above 9 GPa as the interlayer separation is now so small that is energetically favorable to form the more efficiently packed β-phase with a release of the bonding distances.

In conclusion, we have found that the superconductivity onset in α-FeSe attains a broad maximum of 37 K at ~7 GPa. The orthorhombically distorted superconducting phase is extremely soft and the pressure response of the structure reveals an intimate link between the SeF eSe interlayer separations and the superconducting properties. Detailed band structure calculations should be able to shed light on the accompanying evolution of the doping level of the SeF eSe layers and decipher the relative importance between the increased dimensionality and the FeSe slab geometry to superconductivity.

We thank SPring-8 for access to the synchrotron X-ray facilities and K. Kuroki for useful discussions.