INVASRIANCE OF PLURIGENERA FAILS IN POSITIVE AND MIXED CHARACTERISTIC

IACOPO BRIVIO

Abstract. We construct smooth families of elliptic surface pairs with terminal singularities over a DVR of positive or mixed characteristic $(X, B) \to \text{Spec } R$, such that $P_m(X_k, B_k) > P_m(X_K, B_K)$ for all sufficiently divisible $m > 0$. In particular, this shows that invariance of all sufficiently divisible plurigenera does not follow from the MMP and Abundance Conjectures.

1. Introduction

A famous theorem by Siu ([Siu98, Siu02]) states that, if $X \to U$ is a smooth one-parameter family of complex projective varieties, the plurigenera of the fibers $P_m(X_u) := h^0(X_u, mK_{X_u})$ are independent of $u \in U$, for all $m \geq 0$. This result, and its generalizations to the log category ([BP12]), play an important role in the construction of moduli spaces for varieties of general type ([HMX18]). It is worth noticing that Siu’s argument is analytic and to this day there is no algebraic proof of [Siu02]. Notable exceptions are the cases of families of threefolds ([KM92]) and of varieties of general type ([Kaw99]). However, it has been known for a while that invariance of plurigenera follows from the Minimal Model and Abundance Conjectures ([Nak86]), at least over the complex numbers.

Much less is known when U is replaced by $\text{Spec } R$, where R is a DVR of positive or mixed characteristic, even for families of surfaces. By [KU85, Theorem 9.1] invariance of Kodaira dimension holds. However, invariance of all plurigenera can fail: in [Lan83, KU85] the authors constructed families of Enriques, resp. elliptic surfaces $X \to \text{Spec } R$ such that $P_1(X_k) > P_1(X_K)$. In [Suh08] it is shown that the same can happen even when K_X is ample. In all these examples however, the equality $P_m(X_k) = P_m(X_K)$ holds for all sufficiently divisible $m \geq 0$. Even better, by [EH21] we have that if $(X, B) \to \text{Spec } R$ is a log smooth family of klt surface pairs, then $P_m(X_k, B_k) = P_m(X_K, B_K)$ holds for all sufficiently divisible $m \geq 0$ except, possibly, when $\kappa(K_X + B/R) = 1$ and B_k is vertical with respect to the Iitaka fibration of $K_{X_k} + B_k$. It is then natural to ask whether the above equality always holds for all such m. We show this is not the case.

Theorem 1. For every prime p, there exist smooth families of minimal elliptic surface pairs of Kodaira dimension one with terminal singularities $(X, B) \to \text{Spec } R$, where R is an excellent DVR, with algebraically closed residue field k of characteristic $p > 0$ and fraction field K, such that

$$P_m(X_k, B_k) > P_m(X_K, B_K)$$

for all sufficiently divisible $m > 0$. Furthermore, for every p and every sufficiently divisible $m > 0$, the difference $P_m(X_k, B_k) - P_m(X_K, B_K)$ can be arbitrarily large.
Note that, over the complex numbers, invariance of all sufficiently divisible plurigenera holds for smooth families of terminal pairs of non-negative Kodaira dimension ([P07]). When the family has relative dimension two, this can be quickly shown using the MMP and Abundance Conjecture.

Acknowledgments: I would like to thank my PhD advisor, Prof. James McKernan, for his support and guidance that made this work possible. I have also benefitted from discussions with Prof. Michael M"{e}Quillan and Prof. Jungkai A. Chen, to whom I extend my gratitude. I would also like to thank Prof. Christopher Hacon for reading a preliminary version of this paper and for his precious feedback. The author has been supported by NSF research grants no: 1265263 and no: 1802460, and by a grant from the Simons Foundation #409187.

Note from the author: the previous version of this preprint claimed that Theorem 1 held even in the absence of a boundary divisor. I have been informed by Prof. János Kollár that the last part of my construction contains a mistake. We will address the boundary-free case in a future (version of this) paper.

2. Preliminaries

2.1. Notation and conventions.

- All schemes we consider will be of finite type over their bases.
- R denotes an excellent DVR with algebraically closed residue field k of characteristic p > 0, fraction field K, and uniformizer ω.
- Let F be a field: a variety is an integral and separated F-scheme. We usually assume our varieties to be normal. A family of varieties is an integral R-scheme X → Spec R whose fibers are varieties. The family is said to be smooth, resp. projective, if X is R-smooth, resp. R-projective.
- A pair (X, B) consists of a normal integral scheme X with an effective Q-divisor B such that K_X + B is Q-Cartier. We refer to [Kol13] for the various definitions of singularities of pairs. A family of pairs is a pair (X, B) → Spec R such that (X_u, B_u) is a pair for all u ∈ Spec R. The family is said to be smooth, resp. projective, if X is R-smooth, resp. R-projective.
- If (X, B) is a projective pair over a field F, we denote by P_m(X, B) := h^0(X, [m(K_X + B)]) the m-plurigenus of (X, B).

We consider \mathbb{P}^1_R with homogeneous coordinates [S : T]. We denote by \mathbb{A}^1_{R,s}, \mathbb{A}^1_{R,t} \subset \mathbb{P}^1_R the affine open sets \{ T \neq 0 \} and \{ S \neq 0 \}, respectively. The distinguished R-points \{ T = 0 \} and \{ S = 0 \} are denoted by \infty, respectively.

- Let X be an R-scheme: we denote by X_k, X_K and X_\infty, the special, the generic, and the geometric generic fiber of X → Spec R, respectively. An analogous notation will be used for sheaves over X and their sections.

2.2. Elliptic surfaces. Let F be a field: a morphism of smooth projective F-varieties f : X → C is an elliptic surface if dim(X) = 2, dim(C) = 1, f_*O_X = O_C, and a general fiber is a smooth curve of genus 1. The elliptic surface is said to be minimal if the fibers of f do not contain any (−1)-curve. Let f^*(c_i) = m_iD_i be the multiple singular fibers, where m_i is the gcd of the coefficients of the components of
Thus \(f^*(c_i) \). Since \(C \) is a smooth curve, we have a decomposition
\[
R^1 f_* \mathcal{O}_X = L \oplus T
\]
where \(L \) is a line bundle and \(T \) is torsion. We will denote by \(t \) the length of \(T \). The fibers over \(\text{Supp}(T) \) are called wild fibers; all of them are multiple ([BM77, Proposition 3]). A multiple fiber which is not wild is called tame.

Theorem 2 ([BM77]). Let \(f : X \to C \) be a minimal elliptic surface. Then
\[
K_X \sim_{\mathbb{Q}} f^*(K_C - L + \sum_i \frac{a_i}{m_i} c_i),
\]
where \(\deg(-L) = \chi(X, \mathcal{O}_X) + t \) and \(0 \leq a_i \leq m_i - 1 \), with \(a_i = m_i - 1 \) if and only if \(f^*(c_i) \) is tame. Moreover, \(T \) is supported precisely at those points \(c \in C \) such that \(h^1(f^{-1}(c), \mathcal{O}_{f^{-1}(c)}) > 1 \).

2.3. Iitaka fibration and invariance of plurigenera.

Let \(X \) be a normal, integral, and projective \(R \)-scheme, let \(D \) be an effective \(\mathbb{Q} \)-Cartier divisor, and consider the rational maps of \(R \)-schemes
\[
\phi_{[mD]} : X \to Z_m \subset \mathbb{P}H^0(X, mD)^{*},
\]
where \(Z_m \) denotes the image of \(\phi_{[mD]} \). By [Laz04, Sections 2.1.A, 2.1.B], for all \(m > 0 \) sufficiently divisible the maps \(\phi_{[mD]} \) are birational to a fixed morphism \(\phi_{\infty} : X_{\infty} \to Z_{\infty}/R \), called the Iitaka fibration of \(D \), satisfying \(\phi_{\infty*} \mathcal{O}_{X_{\infty}} = \mathcal{O}_{Z_{\infty}} \). The Iitaka dimension of \(D \) over \(R \) is defined to be \(\kappa(D/R) := \dim_R Z_{\infty}; \) note that we always have
\[
\kappa(D/R) = \kappa(D_K) \quad \kappa(D/R) \leq \kappa(D_k)
\]
by upper-semicontinuity of cohomology. If \((X, B)\) is a pair over \(R \), the Kodaira dimension of \((X, B)\) is defined to be \(\kappa(X, B/R) := \kappa(K_X + B/R) \). We will usually assume \(D \) to be semiample, i.e. \(mD \) is basepoint-free for some \(m > 0 \). The section ring \(R(D) := \bigoplus_{m \geq 0} H^0(X, mD) \) is then a finitely generated \(R \)-algebra and, for all sufficiently divisible \(m > 0 \),
\[
\phi_m = \phi_{\infty} : X \to Z := \text{Proj} R(D)
\]
is the Iitaka fibration of \(D \). Note that, if \(D \) is semiample, \(\kappa(D/R) = \kappa(D_k) \).

The following Lemma is the key to the construction of examples violating invariance of \(P_m(X_u, B_u) \) for all sufficiently divisible \(m > 0 \).

Lemma 3. Let \(X \to \text{Spec} R \) be a projective family of normal varieties, let \(D \) be a semiample \(\mathbb{Q} \)-Cartier \(\mathbb{Q} \)-divisor on \(X \), and let \(f : X \to Z \) be its Iitaka fibration. Then \(f_{k*} \mathcal{O}_{X_k} = \mathcal{O}_{Z_k} \) if and only if \(h^0(X_u, mD_u) \) is independent of \(u \in \text{Spec} R \) for all \(m \geq 0 \) sufficiently divisible.

Proof. If \(h^0(X_u, mD_u) \) is independent of \(u \in \text{Spec} R \) for all \(m \geq 0 \) sufficiently divisible, then for all such \(m \) we have surjectivity of the restriction map
\[
H^0(X, mD) \otimes k \to H^0(X_k, mD_k),
\]
thus \(f_k \) is the Iitaka fibration of \(D_k \). For the reverse implication, write \(D \sim_{\mathbb{Q}} f^* A \) for some ample \(\mathbb{Q} \)-divisor on \(Z \) and observe that for all \(m > 0 \) sufficiently divisible and all \(u \in \text{Spec} R \) we have \(h^0(X_u, mD_u) = \chi(Z_u, mA_u) \) by the projection formula and Serre vanishing. As \(Z \) is integral, it is flat over \(R \), hence \(\chi(Z_u, mA_u) \) is independent of \(u \in \text{Spec} R \).
Remark 4. Let F be a field, let $f : X \to C$ be a morphism with connected fibers between smooth projective F-varieties, and suppose C is a curve. Then we have a Stein factorization

$$f : X \xrightarrow{T} C \xrightarrow{h} C$$

where h is a universal homeomorphism. If $	ext{char}(F) = 0$ then h is an isomorphism by Zariski’s Main Theorem. If $	ext{char}(F) = p > 0$ then h is a composition of geometric Frobenius morphisms, hence $f_*\mathcal{O}_X = \mathcal{O}_C$ if and only if a general fiber of f is reduced.

3. Proof of Theorem 1

We fix an integer $n \geq 1$ and set $q := p^n$. Let $E \to \text{Spec} \, R$ be a family of elliptic curves such that $|\text{Pic}(E_K)[q]| > |\text{Pic}(E_k)[q]|$. Note that this condition is always satisfied when R is of mixed characteristic, while in equicharacteristic p we may consider an ordinary elliptic curve degenerating to a supersingular one. After possibly replacing R by a finite extension we may then assume that there exists a non-trivial q-torsion line bundle M on E such that $M_k = \mathcal{O}_{E_k}$. Denote by $1_M \in H^0(E, M^q)$ a nowhere vanishing section.

Consider now the following commutative diagram of R-schemes

$$
\begin{array}{ccc}
Y & \xleftarrow{\nu} & X \\
\pi & \downarrow & \downarrow f \\
E \times_R \mathbb{P}^1_R & \xrightarrow{pr_2} & \mathbb{P}^1_R,
\end{array}
$$

where π is the q-cyclic cover branched over $1_M \boxtimes TS^{q-1} \in H^0(E \times_R \mathbb{P}^1_R, M^q \boxtimes \mathcal{O}_{\mathbb{P}^1_R}(q))$, and ν is the normalization. Over $\mathbb{A}^1_{R,t}$ we have the following description

$$
\begin{array}{ccc}
\text{Spec} \frac{\mathcal{O}_E[t, \lambda]}{(\lambda^q - \varphi t)} & \xleftarrow{=} & \text{Spec} \frac{\mathcal{O}_E[t, \lambda]}{(\lambda^q - \varphi t)} \\
\downarrow & & \downarrow \\
\text{Spec} \mathcal{O}_E[t, \lambda] & \longrightarrow & \text{Spec} \, R[t],
\end{array}
$$

while over $\mathbb{A}^1_{R,s}$ we have

$$
\begin{array}{ccc}
\text{Spec} \frac{\mathcal{O}_E[s, \xi]}{(\xi^q - \psi s^{q-1})} & \xleftarrow{=} & \text{Spec} \frac{\mathcal{O}_E[s/\xi, \xi]}{(\xi - \psi(s/\xi)^{q-1})} \\
\downarrow & & \downarrow \\
\text{Spec} \mathcal{O}_E[s, \xi] & \longrightarrow & \text{Spec} \, R[s].
\end{array}
$$

Here $\varphi, \psi \in \mathcal{O}_E^*$ are local trivializations of 1_M, hence $\varphi_k, \psi_k \in k^*$. It is straightforward to verify that X is smooth over R. A general fiber of f_K is the smooth q-cover $F_K \to E_K$ induced by $1_{M_K} \in H^0(E_K, M^q_K)$. By Remark 4 we then have that $f_{K,*}\mathcal{O}_{X_K} = \mathcal{O}_{F_K}$, hence $f_*\mathcal{O}_X = \mathcal{O}_{\mathbb{P}^1_R}$ as Stein factorization and flat
base-change commute. From the equations we see that the function field extension induced by \(f_k \) factors as

\[
k(X_k) \leftrightarrow k(\mathbb{P}^1_k) \leftrightarrow k(\mathbb{P}^1_k),
\]

which in turn yields a non-trivial Stein factorization

\[
f_k : X_k \stackrel{\overline{k}}{\to} (\mathbb{P}^1_k)^{-n} \overset{\text{Fr}_n}{\to} \mathbb{P}^1_k.
\]

Observe that \(f_K : X_K \to \mathbb{P}^1_K \) is an isotrivial elliptic surface with multiple fibers \(qE_K \) over \(0_K, \infty_K \). We claim both these fibers are tame: note that we can find isomorphic neighborhoods of \(f_K^{-1}(0_K) \) and \(f_K^{-1}(\infty_K) \), thus one fiber is tame if and only if the other one is. Note also that \(h^1(X_K, \mathcal{O}_{X_K}) = 1 \). By contradiction, suppose both fibers are wild. By \cite[Theorem III.12.11]{Har77} the natural map

\[
R^1 f_{K,*} \mathcal{O}_{X_K} \otimes K(b) \to H^1(X_K, \mathcal{O}_{X_K, b})
\]

is surjective for all \(b \in \mathbb{P}^1_K \) and, as \(f_{K,*} \mathcal{O}_{X_K} = \mathcal{O}_{\mathbb{P}^1_K} \), the Leray spectral sequence yields

\[
1 = h^1(X_K, \mathcal{O}_{X_K}) = h^0(\mathbb{P}^1_K, R^1 f_{K,*} \mathcal{O}_{X_K}) \geq h^0(\mathbb{P}^1_K, (R^1 f_{K,*} \mathcal{O}_{X_K})_{\text{tor}}) \geq 4.
\]

As \(\chi(X_K, \mathcal{O}_{X_K}) = 0 \), Theorem 2 implies \(K_{X_K} \sim q f_K^*(-2 + 2(q - 1)/q)H_K \), where \(H \) is an hyperplane on \(\mathbb{P}^1_R \), thus \(K_X \sim q f^*(-2 + 2(q - 1)/q)H \), as \(X_K \) is irreducible.

Let now \(z_1, \ldots, z_l \) be pairwise disjoint \(R \)-points of \(\mathbb{P}^1_R \), not intersecting 0 or \(\infty \), and let \(0 < \epsilon \ll 1 \) be a rational number such that, setting \(B := f^*(\epsilon \sum_i z_i) \), we have that \((X_u, B_u) \) is terminal for all \(u \in \text{Spec} R \). For such choice of \(\{z_i\}_i \) we have that \(\epsilon \) is independent of \(l \). Thus upon taking very large \(l \) we may also assume that \(K_X + B \sim q f^*A \) for some ample \(\mathbb{Q} \)-divisor on \(\mathbb{P}^1_R \) of degree \(d \). In particular, \(f \) is the Iitaka fibration of \(K_X + B \), thus \(P_m(X_u, B_u) \) will jump for all sufficiently divisible \(m > 0 \), by Lemma 3. On the special elliptic surface we have \(K_{X_k} + B_k \sim \overline{\mathbb{P}^1}(qA) \), hence the projection formula on \(f_K \) and \(\overline{\mathbb{P}^1} \) yields

\[
P_m(X_k, B_k) = h^0(\mathbb{P}^1_K, \mathcal{O}_{\mathbb{P}^1_k}^{qmd}) > h^0(\mathbb{P}^1_K, \mathcal{O}_{\mathbb{P}^1_k}^{md}) = P_m(X_K, B_K).
\]

As \(q = p^n \) we see that, for every characteristic \(p \) and every \(m \geq 1 \) divisible enough, the jump in plurigenera can be arbitrarily large, thus concluding the proof.

Remark 5. By taking products we can construct smooth, higher-dimensional families of terminal pairs \((W, D) \to \text{Spec} R \) with \(\text{K}_W + D \) semiample and \(0 < \kappa(W, D/R) < \dim R W \) such that invariance of all sufficiently divisible plurigenera fails. Consider smooth families of Abelian, resp. canonically polarized varieties, \(A \to \text{Spec} R \) and \(V \to \text{Spec} R \). Then

\[
g := f \times \text{pr}_2 : (W, D) := (X \times_R A \times_R V, B \times_R A \times_R V) \to \mathbb{P}^1_R \times_R V
\]

is the Iitaka fibration of \(K_W + D \). By construction \(g_k \) has a non-trivial Stein factorization

\[
g_k : W_k \stackrel{\overline{\text{fr}}_k \times \text{pr}_2}{\to} (\mathbb{P}^1_k)^{-n} \times V_k \overset{\text{Fr}_n \times \text{id}_V}{\to} \mathbb{P}^1_k \times V_k,
\]

hence \(P_m(W_k, B_k) - P_m(W_K, B_K) > 0 \) can be arbitrarily large for all sufficiently divisible \(m \), as in the surface case.

References

[BMy77] E. Bombieri and D. Mumford. Enriques' classification of surfaces in char. p. II. In *Complex analysis and algebraic geometry*, pages 23–42. 1977.

[BP12] Bo Berndtsson and Mihai Păun. Quantitative extensions of pluricanonical forms and closed positive currents. *Nagoya Math. J.*, 205:25–65, 2012.

[EH21] Andrew Egbert and Christopher D. Hacon. Invariance of certain plurigenera for surfaces in mixed characteristics. *Nagoya Math. J.*, 243:1–10, 2021.

[Har77] Robin Hartshorne. *Algebraic geometry*. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

[HMX18] Christopher D. Hacon, James McKernan, and Chenyang Xu. Boundedness of moduli of varieties of general type. *J. Eur. Math. Soc. (JEMS)*, 20(4):865–901, 2018.

[Kaw99] Yujiro Kawamata. Deformations of canonical singularities. *J. Amer. Math. Soc.*, 12(1):85–92, 1999.

[KM92] János Kollár and Shigefumi Mori. Classification of three-dimensional flips. *J. Amer. Math. Soc.*, 5(3):533–703, 1992.

[Kol13] János Kollár. *Singularities of the minimal model program*, volume 200 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács.

[KU85] Toshiyuki Katsura and Kenji Ueno. On elliptic surfaces in characteristic p. *Math. Ann.*, 272(3):291–330, 1985.

[Lan83] William E. Lang. On Enriques surfaces in characteristic p. *Math. Ann.*, 265(1):45–65, 1983.

[Laz04] Robert Lazarsfeld. *Positivity in algebraic geometry. I*, volume 48 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]*. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.

[Nak86] Noboru Nakayama. Invariance of the plurigenera of algebraic varieties under minimal model conjectures. *Topology*, 25(2):237–251, 1986.

[Pă07] Mihai Păun. Siu’s invariance of plurigenera: a one-tower proof. *J. Differential Geom.*, 76(3):485–493, 2007.

[Siu98] Yum-Tong Siu. Invariance of plurigenera. *Invent. Math.*, 134(3):661–673, 1998.

[Siu02] Yum-Tong Siu. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semi-positively twisted plurigenera for manifolds not necessarily of general type. In *Complex geometry (Göttingen, 2000)*, pages 223–277. Springer, Berlin, 2002.

[Suh08] Junecue Suh. Plurigenera of general type surfaces in mixed characteristic. *Compos. Math.*, 144(5):1214–1226, 2008.

National Center for Theoretical Sciences, Taipei, 106, Taiwan

Email address: ibrivio@ncts.ntu.edu.tw