Recombinant *Salmonella* expressing SspH2-Escl fusion protein limits its colonization in mice

Maozhi Hu 1,2*, Weixin Zhao 3, Wei Gao 1, Wenhua Li 3, Chuang Meng 1,2, Qiuxiang Yan 1, Yuyang Wang 1, Xiaohui Zhou 1,2,4, Shizhong Geng 1,2, Zhiming Pan 1,2, Guiyou Cui 3 and Xinan Jiao 1,2*

Abstract

Background: Activation of inflammasome contributes to the clearance of intracellular bacteria. C-terminus of *E. coli* Escl protein can activate NLRC4 (NLR family, CARD domain containing-4) inflammasome in macrophages. The purpose of this study was to determine if activation of NLRC4 inflammasome by Escl can reduce the colonization of *Salmonella* in mice.

Results: A recombinant *S. typhimurium* strain expressing fusion protein of the N-terminal SspH2 (a *Salmonella* type III secretion system 2 effector) and C-terminal Escl was constructed and designated as X4550(pYA3334-SspH2-Escl). In vitro assay showed that X4550(pYA3334-SspH2-Escl) significantly enhanced IL-1β and IL-18 secretion (P < 0.05) and pyroptotic cell death of mouse peritoneal macrophages, compared with those infected with control strain, X4550(pYA3334-SspH2). In vivo studies showed that colonization of X4550(pYA3334-SspH2-Escl) in both spleen and liver were significantly lower than that of X4550(pYA3334-SspH2) (P < 0.05). The bacterial counts of X4550(pYA3334-SspH2-Escl) in mice decreased, while those of X4550(pYA3334-SspH2) increased over the time after infection. Additionally, X4550(pYA3334-SspH2-Escl) induced a less pathological alteration in spleen and liver than X4550(pYA3334-SspH2).

Conclusion: Fusion protein SspH2-Escl may be translocated into macrophages and activate NLRC4 inflammasome, which limits *Salmonella* colonization in spleen and liver of mice.

Keywords: *Salmonella*, Inflammasome, SspH2-Escl, Mice, Colonization

Background

Innate immune system plays a primary role in the rapid elimination of invading microorganisms, which occurs via the recognition of microbial pathogen-associated molecular patterns by the cellular pattern recognition receptors [1, 2]. Intracellular nucleotide binding domain leucine-rich repeat-containing receptor (NLR) can recognize microbial components that are transported to the cytoplasm through the bacterial secretion system, which can then activate inflammasome signalling [3, 4]. During this process, procaspase-1 is synthesized by activated macrophages and enriched in the inflammasome, ultimately being cleaved into the activated caspase-1 [5]. Activation of caspase-1 subsequently triggers IL-1β/IL-18 maturation and macrophage pyroptotic death. This pathway is important to defend against the colonization of intracellular bacteria in the intestinal tract and systemic circulation [6–8].

After infection, *Salmonella* can selectively secret cytoplasmic effectors through its type III secretion system (T3SS) [9–11]. These effectors regulate the host cells’ defense mechanisms to ensure the survival of the invading bacteria [12, 13]. Infection of *Salmonella* can result in both decreased breeding potential and increased fatality in host organism. Therefore, a key defensive step to protect against *Salmonella* infection is to reduce bacterial intracellular survival. Currently, there is no effective approach to induce adaptive immunity during the early stages of a *Salmonella* infection, thus it is critical to focus on innate immunity.
During the early stage of infection, *Salmonella* T3SS1 effectors are expressed to mediate bacterial infection. Once *Salmonella* enters host cells, T3SS2 effectors are expressed in order to mediate bacterial intracellular survival [14]. Though many proteins of *Salmonella* can activate intracellular inflammasome response, over the course of evolution, *Salmonella* has developed the ability to escape the inflammasome responses. This can occur through the T3SS1 protein PrgJ that can activate the NLRC4 inflammasome in macrophages, but is only expressed during the early stage of infection. When *Salmonella* successfully survives intracellularly, it no longer express PrgJ [15]. This suggests that if *Salmonella* strain can persistently express and transport PrgJ to the cytoplasm of host cells, it can enhance the activation of inflammasome and thereby inhibit the intracellular survival of bacteria [16]. It has also been reported that the immunization of the *Listeria monocytogenes* strain can enhance caspase-1 activation can confer protective immunity against a subsequent wild-type challenge [17]. Thus, it has been hypothesized that the *Salmonella* strain with the ability to enhance caspase-1 activation can strengthen the cell's defense against *Salmonella* infection [18].

Previous reports have suggested that inflammasome activation mechanism can be used in the design of recombinant vaccines to limit the colonization of intracellular bacteria in vivo [19]. As previously reported, the N-terminus signal peptide of the *Salmonella* effector SspH2 can be recognized by T3SS2 and transported into the cytoplasm [20, 21]. The C-terminus of *E. coli* Escl protein can activate the NLRC4 (NLR family, CARD domain containing-4) inflammasome in macrophages [15]. In the present study, a recombinant *Salmonella* fusion expressing the N-terminus of *Salmonella* SspH2 and the C-terminus of *E. coli* Escl was constructed. The recombinant strain was tested for its ability to activate inflammasome and colonize in vivo mouse.

Methods

Animals, plasmids and bacteria

Six-week-old female C57BL/6 mice were obtained from the Comparative Medicine Center of Yangzhou University (Yangzhou, China). This study was carried out in accordance with the regulations established by the Chinese Ministry of Science and Technology. The animal experiment protocol was approved by the Committee on the Ethics of Animal Experiments of Yangzhou University (Permit Number: 2007-0005). All surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering.

Plasmids pMD20 T (Amp⁺) and pYA3334 (asd⁺), *E. coli* DH5α (R⁺ M⁺, Amp⁺) and X6212 (asd⁺, NA⁺, R⁺M⁺), attenuated *S. Typhimurium* strains X3730 (GalE⁻, Hsd⁻, Asd⁻, NA⁻, R⁻M⁻) and X4550 (Δcrp-1, Δcyt-1, asd⁻, NA⁻, R⁻M⁻) were used in this study as previously described [22, 23]. *S. Enteritidis* C50041 and *E. coli* O:157 were used for the amplification of sspH2 and escl genes, respectively. Bacterial strains were grown in Luria broth (LB) medium.

Construction of recombinant plasmid and *S. typhimurium* expressing SspH2-Escl fusion protein

The genomic DNA of bacteria C50041 and O:157 were extracted using the high pure PCR template preparation kit (Takara, Dalian, China) according to the manufacturer's instructions. The nucleotide sequences of primers for polymerase chain reaction (PCR) were shown in Table 1, with the underlined segments indicating the restriction sites. The 5′-terminal sequence (1–453 bp) of the sspH2 gene was amplified from the C50041 strain using the primers SspH2-F1 (forward primer) and SspH2-R1 (reverse primer). The 3′-terminal sequence (205–426 bp) of the escl gene was amplified from O:157 strain using the primers Escl-F1 (forward primer) and Escl-R1 (reverse primer). The above two purified PCR products were then mixed for the overlap PCR splicing using the primers SspH2-F1 and Escl-R1. All PCR products were subsequently identified via agarose gel electrophoresis. The purified PCR product sspH2-escl (729 bp) was cloned into the plasmid pMD20 T and the recombinant plasmid was then transformed into *E.coli* DH5α for amplification. The recombinant plasmid was verified by restriction digestion and DNA sequencing. After digestion with Neo I and Sal I (Takara), the sspH2-escl gene was cloned into the plasmid pYA3334. The recombinant plasmid was named as pYA3334-SspH2-Escl and transformed into *E.coli* X6212. The recombinant plasmid pYA3334-SspH2-Escl was verified by enzyme digestion and DNA sequencing. The plasmid pYA3334-SspH2-Escl was then transformed into *S. typhimurium* X3730 for methylation modification. Finally, the modified plasmid pYA3334-SspH2-Escl was transformed into *S. typhimurium* X4550. The recombinant bacteria were designated as X4550(pYA3334-SspH2-Escl).

The purified PCR product sspH2 amplified from the C50041 strain using the primers SspH2-F1 (forward primer) and SspH2-R4 (reverse primer) was cloned into the plasmid pYA3334. The recombinant plasmid was designated as pYA3334-SspH2 and the corresponding recombinant bacteria was named as X4550(pYA3334-SspH2).

The plasmid pYA3334 was used as a negative control and the corresponding recombinant bacteria was named as X4550(pYA3334).

Growth curve of recombinant *S. typhimurium* strains

The growth characteristic of recombinant bacteria was performed as previously described [23]. Briefly, single colony of recombinant bacteria was inoculated in LB
After being cultured with shaking at 37 °C overnight, 50 μl of bacteria was inoculated in 5 ml LB medium and cultured with shaking at 37 °C. OD600 was measured at different time to obtain the growth curve.

In vitro infection of mouse peritoneal macrophages

Peritoneal cells were collected by lavaging the mouse peritoneal cavity using RPMI 1640 culture medium supplemented with 10% fetal bovine serum (FBS) (Gibco, Carlsbad, CA). After washing with phosphate buffer saline (PBS), cells were suspended in RPMI 1640 complete medium (RPMI 1640 containing 10% FBS), seeded on 96-well plates, and cultured at 37 °C in 5% CO2 for 3 h. Non-adherent cells were removed and cell density was adjusted to 20,000 cells per well. The adherent cells were pre-stimulated with 1 μg/ml E. coli lipopolysaccharide (LPS) (Sigma-Aldrich) to induce the expression of pro-IL-1β. The freshly cultured X4550(pYA3334-SspH2-EscI), X4550(pYA3334-SspH2) and X4550(pYA3334) were centrifuged at 1500 × g for 10 min and washed with PBS. The bacteria were resuspended in RPMI 1640 complete medium and added to the LPS-stimulated cells to the desired multiplicity of infection (MOI = 10, 50 and 100, respectively). The cell plate was centrifuged at 500 × g for 10 min to enhance the contact of bacteria with the cells. Infected cells were incubated at 37 °C for 30 min. The supernatants were then removed and washed with RPMI 1640 complete medium. Subsequently, RPMI 1640 complete medium containing 100 U/ml penicillin, 100 μg/ml streptomycin, and 1 μg/ml LPS were added to the cells (100 μl/well) to kill the extracellular bacteria. Cells were remained in culture at 37 °C and 5% CO2 for four hours [24, 25]. In all experiments, uninfected cells were used as controls. The cell morphology was observed using TS100-F inverted microscope (Nikon, Japan).

After culturing, the supernatants were collected and centrifuged at 2000 × g for 5 min to remove all dead bacteria and debris. Quantification of IL-1β and IL-18 was performed using cytometric bead array system (CBA) mouse IL-1β Flex Set and enzyme-linked immunosorbent assay kit (Biosciences, PharMingen, San Diego, CA) according to the manufacturer’s instructions. The flow cytometry was performed using FACSARia flow cytometer with FACSDiva software (Becton-Dickinson Immunocytometry Systems, BDIS, San Jose, CA).

The lactate dehydrogenase (LDH) release was measured using the cytotoxicity detection kit (Roche, Switzerland) according to the manufacturer’s instructions. The relative amount of released LDH was calculated as follows: %released LDH (sample) = (sample – medium background)/(total LDH – medium background) × 100% [26].

Table 1 The primer sequences used in this study

Primers	Sequences
SspH2-F1	5’-CCGGAATTCATGCCCTTTATATTGGAAGCGGATGT-3’
SspH2-R1	5’-AAGACACTCCCGCACCCTGTCCCAGATGCCCCCT-3’
EscI-F1	5’-ATCCGGGACGTCGGCGCAGGCCTCTCCAGAAC-3’
EscI-R1	5’-ATCGTGCACCTACTTTATCGTCATCCTTGTAATCTTGACGAACTA-3’
SspH2-F3	5’-GTTAACCATGTTGCCCTTTATATTGGAAGCG-3’
EscI-R2	5’-GAACGATCGACCTACTTTATCGTCATCCTTG-3’
SspH2-R4	5’-GTCGACCTACTTTATCGTCATCCTTGTAATCTCCCGCACCCTGTCCCAGAT-3’

medium. After being cultured with shaking at 37 °C overnight, 50 μl of bacteria was inoculated in 5 ml LB medium and cultured with shaking at 37 °C. OD600 was measured at different time to obtain the growth curve.

In vitro infection of mouse peritoneal macrophages

Peritoneal cells were collected by lavaging the mouse peritoneal cavity using RPMI 1640 culture medium supplemented with 10% fetal bovine serum (FBS) (Gibco, Carlsbad, CA). After washing with phosphate buffer saline (PBS), cells were suspended in RPMI 1640 complete medium (RPMI 1640 containing 10% FBS), seeded on 96-well plates, and cultured at 37 °C in 5% CO2 for 3 h. Non-adherent cells were removed and cell density was adjusted to 20,000 cells per well. The adherent cells were pre-stimulated with 1 μg/ml E. coli lipopolysaccharide (LPS) (Sigma-Aldrich) to induce the expression of pro-IL-1β. The freshly cultured X4550(pYA3334-SspH2-EscI), X4550(pYA3334-SspH2) and X4550(pYA3334) were centrifuged at 1500 × g for 10 min and washed with PBS. The bacteria were resuspended in RPMI 1640 complete medium and added to the LPS-stimulated cells to the desired multiplicity of infection (MOI = 10, 50 and 100, respectively). The cell plate was centrifuged at 500 × g for 10 min to enhance the contact of bacteria with the cells. Infected cells were incubated at 37 °C for 30 min. The supernatants were then removed and washed with RPMI 1640 complete medium. Subsequently, RPMI 1640 complete medium containing 100 U/ml penicillin, 100 μg/ml streptomycin, and 1 μg/ml LPS were added to the cells (100 μl/well) to kill the extracellular bacteria. Cells were remained in culture at 37 °C and 5% CO2 for four hours [24, 25]. In all experiments, uninfected cells were used as controls. The cell morphology was observed using TS100-F inverted microscope (Nikon, Japan).

After culturing, the supernatants were collected and centrifuged at 2000 × g for 5 min to remove all dead bacteria and debris. Quantification of IL-1β and IL-18 was performed using cytometric bead array system (CBA) mouse IL-1β Flex Set and enzyme-linked immunosorbent assay kit (Biosciences, PharMingen, San Diego, CA) according to the manufacturer’s instructions. The flow cytometry was performed using FACSARia flow cytometer with FACSDiva software (Becton-Dickinson Immunocytometry Systems, BDIS, San Jose, CA).

The lactate dehydrogenase (LDH) release was measured using the cytotoxicity detection kit (Roche, Switzerland) according to the manufacturer’s instructions. The relative amount of released LDH was calculated as follows: %released LDH (sample) = (sample – medium background)/(total LDH – medium background) × 100% [26].

Cell plates were washed with PBS and the cells were collected for counting. Then the cells were lysed by lysis solution containing 1 mM phenylmethanesulfonyl fluoride (Westang, Shanghai) according to the manufacturer’s instructions. The intracellular bacteria were counted by coating on the LB agar plate containing NA (20 μg/ml) for culturing.

The intracellular caspase-1 activation were determined by FLICA™ caspase-1 detection kit (Immunocytometry Systems).
Technologies Inc., Bloomington, MN) using flow cytometry according to the manufacturer’s instructions.

In vivo infection of mice
The freshly cultured bacteria were centrifuged at 1500 × g for 10 min and washed with PBS. Six-week-old C57BL/6 mice were intravenously injected with X4550(pYA3334), X4550(pYA3334-SspH2) and X4550(pYA3334-SspH2-EscI), respectively. Each mouse was infected with 1 × 10⁶ cfu using 100 µl PBS as vehicle. The mice intravenously injected with equivalent PBS were used as controls.

At different time points post-infection, the spleen and liver of mice were harvested to determine bacterial colonization. Briefly, the weight and size of the tissues were recorded. After grinding in 5 ml PBS, the suspension of spleen and liver tissues were ten-fold diluted in PBS and 100 µl suspension were then evenly plated on the LB agar containing nalidixic acid (NA, 20 µg/ml) for CFU enumeration.

Three weeks after infection, the pathological section of spleen and liver of mice were examined using hematoxylin-eosin (HE) staining.

Quantification of IL-6 and TNF-α were performed using CBA mouse inflammation kit (Biosciences, PharMingen, San Diego, CA) according to the manufacturer’s instructions.

Statistical analysis
Within each experiment, three to four replicate assays were conducted for each treatment and the average value was calculated for final statistical comparisons. All statistical analyses were performed by t-tests using SPSS software (Version 13.0 for Windows, Chicago, IL). A value of \(P \leq 0.05 \) was considered to be statistically significant.

Results
Construction of recombinant plasmid and growth curve of recombinant bacteria
The PCR products of 5’-terminus of *sspH2* gene (478 bp) and the 3’-terminus of *escI* gene (277 bp) were identified (Fig. 1a). The overlapping PCR product *sspH2-escI* gene was 729 bp as expected. Transformants could grow on LB agar plate without diaminopimelic acid
LDH release and intracellular bacterial counts.

(pYA3334) with regard to the IL-1β infected with X4550(pYA3334-SspH2) and X4550(pYA3334-SspH2-EscI) was constructed successfully. The growth states of recombinant bacteria X4550(pYA3334-SspH2-EscI), X4550(pYA3334-SspH2-H2) and X4550(pYA3334) were similar, suggesting that metabolism of the bacteria was not affected by transforming recombinant plasmid into S. typhimurium strain (Fig. 1d).

Pyroptotic cell death of mouse peritoneal macrophages after in vitro infection

IL-1β and IL-18 content in the supernatant of peritoneal macrophages following 4 h of infection (MOI = 50 or 100) was significantly higher than those in the uninfected control (P < 0.05). Notably, infection with X4550 (pYA3334-SspH2-EscI) induced significantly more IL-1β and IL-18 secretion from peritoneal macrophages than that induced by X4550(pYA3334-SspH2) or X4550(pYA3334) (P < 0.05, Fig. 2a).

LDH release assay indicated that X4550(pYA3334-SspH2-EscI) induced higher cytoxicity than X4550 (pYA3334-SspH2) and X4550(pYA3334) at 1, 3, 5 h post infection with MOI 100 and 24 h post infection with MOI 10, 50 and 100 (P < 0.05, Fig. 2b).

X4550(pYA3334-SspH2-EscI) induced higher level of caspase-1 activation than X4550(pYA3334-SspH2) and X4550(pYA3334) after infection. The result at 1 h post infection with MOI 100 was shown in Fig. 2c.

After 24 h, the morphology of X4550(pYA3334-SspH2-EscI)-infected cells (MOI = 100) was found to be markedly poor, and the integrity of the cell membrane was completely lost. Furthermore, the degree of injury induced by X4550(pYA3334-SspH2-EscI) was higher than that induced by X4550(pYA3334-SspH2) and X4550(pYA3334) (Fig. 2d). Intracellular bacteria in the cells infected with X4550(pYA3334-SspH2-EscI) was significantly lower than that infected with X4550(pYA3334-SspH2) and X4550 (pYA3334) (P < 0.05, Fig. 2e).

No significant difference was found between the cells infected with X4550(pYA3334-SspH2-EscI) and X4550 (pYA3334) with regard to the IL-1β and IL-18 secretion, LDH release and intracellular bacterial counts.

Colonization of recombinant bacteria and pathology in mice

The spleen and liver of mice infected with X4550(pYA3334) or X4550(pYA3334-SspH2) had significant swelling with the infection time prolongation, when compared with those infected with X4550(pYA3334-SspH2-EscI). Six days after infection, the spleen size and weight of mice infected with X4550(pYA3334) or X4550(pYA3334-SspH2) were approximately four-fold greater than those infected with of X4550(pYA3334-SspH2-EscI). No significant differences were found between the mice infected with X4550(pYA3334-SspH2-EscI) and the uninfected controls (Fig. 3a).

One day after intravenous injection, the bacterial counts of X4550(pYA3334-SspH2-EscI) colonized in mice spleen and liver were significantly lower than those of X4550(pYA3334) and X4550(pYA3334-SspH2) (P < 0.05). As infection time extended, the bacteria counts in the spleen and liver of X4550(pYA3334-SspH2-EscI)-infected mice decreased significantly, with no bacteria being detected six days after infection. However, X4550(pYA3334)- and X4550(pYA3334-SspH2)-infected mice were observed to have a significant increase in bacterial counts over the time (Fig. 3b). No significant difference was found between X4550(pYA3334-SspH2) and X4550(pYA3334) with regards to the bacterial counts in the spleen and liver.

All infected mice could secrete IL-6 and TNF-α at 1 day post infection, while the uninfected mice secrete minimal level of IL-6 and TNF-α. Three days after infection, the IL-6 and TNF-α levels in serum of mice infected by X4550(pYA3334-SspH2-EscI) decreased, while those in mice infected with X4550(pYA3334-SspH2) and X4550 (pYA3334) significantly increased (P < 0.05). No significant difference was found between X4550(pYA3334-SspH2) and X4550(pYA3334) (Fig. 3c).

Three weeks after infection, pathological analysis (Fig. 3d) showed stronger inflammatory responses in the spleen and liver of X4550(pYA3334)- and X4550(pYA3334-SspH2)-infected mice than those of X4550(pYA3334-SspH2-EscI)-infected mice and uninfected controls. Only a few small necrotic foci were found in the liver of X4550(pYA3334-SspH2-EscI)-infected mice, when compared with uninfected controls. In contrast, in the X4550(pYA3334)- and X4550(pYA3334-SspH2)-infected mice, large number of lymphocytes were observed in the splenic sinus, and many necrotic foci containing lymphocytes and necrotic hepatocytes were found in the liver. No significant pathological differences were found between X4550(pYA3334-SspH2) and X4550(pYA3334)-infected mice.

Discussion

Activation of NLR by microbial components can result in the subsequent activation of inflammasome in macrophages [1, 2] and is beneficial for the defense against intracellular bacteria [7, 8, 27, 28]. This is particularly important for the protection of intestinal mucosa and defense against systemic infection [6, 29]. Currently, the inflammasome mechanism has been predominantly stimulated with peptides in vitro [15]. However, due to the complex regulation by bacteria in the host cells, the responses of host cells against these peptides may be different from their response against the whole bacterium. Thus, it is more practical to study the inflammasome...
Fig. 2 (See legend on next page.)
responses through bacterial infection, rather than peptide treatment. It has been reported that the recombinant
Listeria monocytogenes can enhance inflammasome
response is attenuated and has a protective effect against
virulent bacteria challenge [17]. Based on these previous
findings, it has been suggested that an attenuated *Salmo-
ella* vaccine candidate that enhances the inflammasome
responses can also elevate cellular immunity against sub-
sequent *Salmonella* infection [18]. To test this possibility,
we sought to construct a recombinant *Salmonella* strain
that can enhance inflammasome activation.

Salmonella pathogenicity islands (SPI)-1 and –2 ex-
press T3SS1 and T3SS2, respectively [30]. SPI-1 is
mainly expressed in the intestines to promote the inva-
sion of *Salmonella* into epithelial cells, while SPI-2 is
mainly expressed in host cells to augment the survival of
Salmonella in macrophages [14]. Reports have shown
that NLRC4 can sense *Salmonella* proteins PrgJ and fla-
gellin, which both contain a common C-terminal amino
acid sequence [15, 26, 31]. However, over the course of
evolution, *Salmonella* has developed many evasion
strategies to prevent NLRC4 detection in macrophages.
For instance, SPI-1 and SPI-2 encode the rod proteins
Prgl and Ssa1 respectively, which form the needle in
T3SS basal body [32]. NLRC4 can sense Prgl, but not
Ssa1, due to one amino acid difference (V95) in the C-
terminus between them [15]. Moreover, flagellin is re-
pressed in the intracellular environment while SPI-2 T3SS
is active [16, 33]. Taken together, it has been hy-
pothesized that recombinant *Salmonella* expressing flag-
gellin or Prgl from a SPI-2 co-regulated promotor can
be persistently detected via NLRC4 and completely
cleared in vivo [16]. As reported, *Salmonella* effect-
rator SspH2 can be translocated by T3SS2 and colocalize
with the polymerizing actin cytoskeleton [20]. The recombi-
nant *Salmonella* expressing fusion protein of SspH2 and
exogenous antigen can translocate the latter into the cyto-
plasm of macrophages [20, 21, 34, 35]. Furthermore,
the SspH2 N-terminal amino acid sequence is conserved
among different *Salmonella* strains and can be used as
an efficient delivery vector [20]. Escl protein, the inner
rod protein of enteropathogenic *E. coli*, is secreted in the
eye stage of infection [36, 37] and its C-terminal
sequence can activate the NLRC4 inflammasome [15]. In
this experiment, the N-terminus of SspH2 and the C-
terminus of Escl were selected to construct the recom-
binant *Salmonella* expressing fusion protein SspH2-Escl.

Salmonella lacking *asd* gene has an obligatory re-
quirement for DAP because the *asd* mutant will undergo lysis
in environments deprived of DAP. The *asd* plasmid
containing the wild-type *asd* gene can complement the
mutants to become a stable balanced-lethal system and
be used to express exogenous antigens [38]. The *Δcrp
Δcyg* *Salmonella* strain X4550 is avirulent and immuno-
genic in mice, and introduction of *asd* plasmid
pYA3334 into X4550 could completely restore avirulent
[22]. It is reported that X4550 still can survive in mice
for a long time [23]. Therefore, X4550 is usually used to
express exogenous antigen to promote immunity with-
out any antibiotic selection. In this experiment, X4550
was selected as the vector to express and transport fusion protein SspH2-Escl.
The intracellular caspase-1 activation and secretion of
IL-1β and IL-18 are essential for inflammasome
response in macrophages [7]. The recombinant bacteria
expressing SspH2-Escl could significantly promote the
secretion of IL-1β and IL-18 and the pyroptotic cell
death of macrophages in in vitro infection when com-
pared with bacteria expressing SspH2 only, suggesting
that the intracellular recombinant *Salmonella* can
c SUCCESSFULLY express fusion protein SspH2-Escl and the
SspH2 N-terminus can be used as a signal to deliver Escl
C-terminus into the host cells, resulting in activation of
the NLRC4 inflammasome. Furthermore, in vivo infec-
tion, the expression of SspH2-Escl, but not SspH2
alone, could inhibit the colonization of recombinant bac-
teria, suggesting that reduction of bacterial colonization
in mice may be due to the activation of NLRC4 inflam-
masome by Escl in the cytoplasm.

So far, there are different interpretations about how the
inflammasome pathway is used during immune defense
[39]. Pyroptosis can lyse the host cells and the pathogen
can then be phagocytosed by neutrophils, resulting in bac-
terial death. As reported, a *sifA* gene-mutated *Salmonella*
can destroy the *Salmonella*-containing vacuole due to
caspase-11 activation, but not due to the secretion of IL-
1\(\beta\) and IL-18. It is also reported that the clearance of *Burkholderia* occurs, in part, due to the secretion of IL-1\(\beta\) and IL-18 after nasal infection. This indicates that pyroptosis is a defense mechanism to clear intracellular bacteria [40]. The anti-infection defense of recombinant *L. monocytogenes* that enhanced the inflammasome activation is due to caspase-1-induced pyroptosis, but not due to the secretion of IL-1\(\beta\) and IL-18 [17]. In this experiment, the inhibition of *Salmonella* colonization in mice several days after intravenous infection may be due to the pyroptosis observed in the earlier stages of infection. The definite mechanism should be further studied in the future using NLRC4\(^{-}\) mice.

Fig. 3 In vivo infection of mice. Six-week-old C57BL/6 mice were intravenously injected with either freshly collected X4550(pYA3334), X4550(pYA3334-SspH2) or X4550(pYA3334-SspH2-EscI), 1\(\times\) 10\(^6\) cfu/mouse. Several days later, the weight of spleen (a), the bacterial colonization (b) in spleen and liver, and the contents of IL-6 and TNF in serum (c) were counted. Three weeks post-infection, the spleen and liver (d) of the mice were stained with hematoxylin-eosin for pathological assay, all scale bars represent 50 \(\mu\)m. Five mice were used in each treatment. The data shown are representative of three replicate experiments.
The inflammasome pathway was first named and characterized in 2002 [41] and has since seen great effort to elucidate its mechanism of action. This work can also lead to some applications, especially in the attenuated vaccine design. Because activated inflammasome is not specific to a particular bacteria, this will provide a general platform for the development of vaccine of not only Salmonella, but also other intracellular pathogens.

Conclusions

Through construction of recombinant Salmonella, we found that the expression of SspH2-EscI could enhance the activation of inflammasome responses in macrophages and decrease the colonization of bacteria in mice. We speculate that the fusion protein SspH2-EscI may be transported into the cytoplasm of macrophages and then activate NLRC4 inflammasome, which limits the colonization of Salmonella.

Abbreviations

CBA: Cytometric bead array system; FBS: Fetal bovine serum; HE: Hematoxylin-eosin; LB: Luria broth; LDH: Lactate dehydrogenase; LPS: Lipopolysaccharide; NA: Nalidixic acid; NL: Nucleotide binding domain leucine-rich repeat-containing receptor; NLRC4: NLR family, CARD domain containing-4; PBS: Phosphate buffer saline; PCR: Polymerase chain reaction; SPI: Salmonella pathogenicity islands; TSS5: Type III secretion system

Acknowledgements

This work was supported by the National Natural Science Foundation of China (3120103907, 31372414, 31372415) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article.

Authors’ contributions

This study was designed by XJ, MH, ZP and GC. Data collection and statistical analysis were performed by MH, WG, QY and SG. WZ, WL and CM were managed subject infection studies. YW wrote the first draft and MH, XZ, ZP, GC and XJ contributed to the final manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

This study was approved by the Committee on the Ethics of Animal Experiments of Yangzhou University (Permit Number: 2007–0005). This study does not involve the use of human data or tissue.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China. 2Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China. 3College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou 225009, Jiangsu, China. 4Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs 06269-3089, CT, USA.

Received: 19 September 2016 Accepted: 24 April 2017

Published online: 03 May 2017

References

1. Skeldon A, Saleh M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol. 2011;2:15.

2. Kofod EM, Vance RE. Innate immune recognition of bacterial ligands by NLRC4 and NLRC5 in host defense against Salmonella. J Exp Med. 2010;207(8):1745–55.

3. Monie TP, Bryant CE, Gay NJ. Activating immunity: lessons from the TLRs and NLRs. Trends Biochem Sci. 2009;34(11):553–61.

4. Khameneh HJ, Mortellaro A. NLRC4 gets out of control. Nat Genet. 2014; 46(10):1048–9.

5. Broz P, Newton K, Lamkanfi M, Mariathasan S, Diot VM, Monack DM. Redundant roles for inflammasome receptors NLRC3 and NLRC4 in host defense against Salmonella. J Exp Med. 2010;207(8):1745–55.

6. Carvalho OA, Nalbantoglu I, Atiken JD, Uchiyama R, Su Y, Doho GH, et al. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol. 2012;5(3):288–98.

7. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2014; 477(7366):592–600.

8. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sakar A, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42.

9. Stevens MP, Humphrey TJ, Maskell DJ. Molecular insights into farm animal and zoonotic Salmonella infections. Phil Trans R Soc B. 2009;364:2709–23.

10. Lara-Tejero M, Kato J, Wagner S, Liu X, Gallan JE. A Sorting platform determines the order of protein secretion in bacterial type III systems. Science. 2011;331(1198):91–4.

11. Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW. pH sensing by intracellular Salmonella induces effector translocation. Science. 2010; 328(5981):1040–43.

12. McGhee EJ, Brawn LC, Humen PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009;12(1):117–24.

13. Lahiri A, Lahiri A, Iyer N, Das P, Chakravortty D. Visiting the cell biology of Salmonella infection. Microbes Infect. 2010;12:2809–18.

14. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2014; 477(7366):592–600.

15. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sakar A, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42.

16. Stevens MP, Humphrey TJ, Maskell DJ. Molecular insights into farm animal and zoonotic Salmonella infections. Phil Trans R Soc B. 2009;364:2709–23.

17. Lara-Tejero M, Kato J, Wagner S, Liu X, Gallan JE. A Sorting platform determines the order of protein secretion in bacterial type III systems. Science. 2011;331(1198):91–4.

18. Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW. pH sensing by intracellular Salmonella induces effector translocation. Science. 2010; 328(5981):1040–43.

19. McGhee EJ, Brawn LC, Humen PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009;12(1):117–24.

20. Lara-Tejero M, Kato J, Wagner S, Liu X, Gallan JE. A Sorting platform determines the order of protein secretion in bacterial type III systems. Science. 2011;331(1198):91–4.

21. McGhee EJ, Brawn LC, Humen PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009;12(1):117–24.
24. Pelegrin P, Barroso-Gutierrez C, Surprenant A. P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J Immunol. 2008;180:7147–57.

25. Hoffmann C, Gaille M, Dilling S, Kappeli R, Muller AJ, Songhet P, et al. In macrophages, caspase-1 activation by SopE and the type III secretion system-1 of S. Typhimurium can proceed in the absence of flagellin. PLoS One. 2010;5(8):e12477.

26. Lightfield KL, Persson J, Trinidad NJ, Brubaker SW, Kofoed EM, Sauer JD, et al. Differential requirements for NAIPs in activation of the NLRC4 inflammasome. Infect Immun. 2011;79(6):1606–14.

27. Becker CE, O'Neill LAJ. Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin Immunopathol. 2007;29:239–48.

28. Shaw MH, Reimer T, Kim YG, Nunez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol. 2008;20(4):377–82.

29. Byrne BG, Dubuisson JF, Joshi AD, Persson JJ, Swanson MS. Inflammasome components coordinate autoapoptosis and pyroptosis as macrophage responses to infection. Mbio. 2013;4(1):e00620–12.

30. Figuera R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology. 2012;158(Pt5):1147–61.

31. Pereira MSF, Marques GG, Delama JE, Zamboni DS. The Nlrc4 inflammasome contributes to restriction of pulmonary infection by flagellated Legionella spp. that trigger pyroptosis. Front Microbiol. 2011;2:233.

32. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM. Structural insights into the assembly of the type III secretion needle complex. Science. 2004;306(5698):1040–2.

33. Yang X, Thornburg T, Sui Z, Jun S, Robison A, Li J, et al. Flagella overexpression attenuates Salmonella pathogenesis. PLoS One. 2012;7(1):e46828.

34. Jones-Carson J, McCallister BD, Clambey ET, Vazquez-Torres A. Systemic CD8 T-cell memory response to a Salmonella pathogenicity island 2 effector is restricted to Salmonella enterica encountered in the gastrointestinal mucosa. Infect Immun. 2007;75(6):2708–16.

35. Miao EA, Miller SI. A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci U S A. 2000;97(13):7539–44.

36. Lefebre MD, Galan JE. The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system. Proc Natl Acad Sci U S A. 2014;111(2):817–22.

37. Malen N, Deng W, Finlay BB. Escl: a crucial component of the type III secretion system forms the inner rod structure in enteropathogenic Escherichia coli. Biochem J. 2012;442(1):119–25.

38. Zhao Z, Li M, Luo D, Xing L, Wu S, Duan Y, et al. Protection of mice from Brucella infection by immunization with attenuated Salmonella enterica serovar typhimurium expressing A L7/L12 and BLS fusion antigen of Brucella. Vaccine. 2009;27:S214–9.

39. Kong W, Brovold M, Koeneman BA, Clark-Curtiss J, Curtiss 3rd R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A. 2012;109(47):19414–9.

40. Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol. 2013;16(3):319–26.

41. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-1β. Mol Cell. 2002;10:417–26.