A quick look at the latest developments in the COVID-19 pandemic

Ling Xue¹, Jiao Li¹,², Lin Wei¹ and Cuiqing Ma¹

Abstract
In December 2019, a new respiratory disease manifesting as viral pneumonia emerged in Wuhan, China. Isolation and identification of the virus showed that the pathogen causing this disease was a novel coronavirus. On January 12, 2020, the World Health Organization named the novel coronavirus causing the outbreak 2019 novel coronavirus (2019-nCoV). The disease caused by the virus was named coronavirus disease 2019 (COVID-19). Later, the Coronavirus Study Group of the International Committee on Taxonomy of Viruses formally named this virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus shows strong infectivity and high lethality, arousing widespread concern. As an emerging virus, a comprehensive understanding of SARS-CoV-2 is missing. To provide a reference and a theoretical basis for further study of SARS-CoV-2, recent advances in our understanding of the virus are summarized in this review.

Keywords
SARS-CoV-2, COVID-19, 2019-nCoV, novel coronavirus, pandemic, etiology, pathogenesis

Date received: 25 February 2020; accepted: 30 June 2020

Introduction
Coronaviruses are widespread in nature, only infect vertebrates and can cause respiratory, enteric, hepatic and neurologic system diseases in humans and animals.¹ Coronaviruses can be divided into four genera: alpha, beta, gamma, and delta coronaviruses.² Alpha and beta coronaviruses mainly infect mammals, while gamma and delta coronaviruses infect birds and bats, respectively. The novel coronavirus (SARS-CoV-2) belongs to the family Coronaviridae, genus Betacoronavirus, and is closely related to other coronaviruses, such as the SARS coronavirus and the middle East respiratory syndrome coronavirus. The spike protein on the virus surface is responsible for viral entry into host cells, and the main protease (Mpro) is an essential enzyme for virus replication. The virus is transmitted from person to person through respiratory droplets, direct contact, and environmental surfaces. The incubation period of COVID-19 is generally 3-7 days, and the median incubation period is 5 days. The virus can be transmitted in the initial stage of the disease, and infected patients may be asymptomatic carriers. The basic reproductive number (R0) of COVID-19 is estimated to be approximately 3.5, indicating the high transmissibility of the virus. The virus can cause severe outcomes in patients with underlying chronic diseases, such as cardiovascular disease, diabetes, chronic kidney disease, and chronic respiratory disease. The virus can also cause severe pulmonary injury, leading to acute respiratory distress syndrome and even death. The current treatment strategies include supportive care, antiviral treatment, and immunotherapy. The development of effective vaccines and antiviral drugs is crucial for controlling the COVID-19 pandemic.

¹Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Hebei Medical University, Shijiazhuang, China
²The Second Hospital of Hebei Medical University, Shijiazhuang, China

Corresponding author:
Cuiqing Ma, Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, China. Email: macuiqing@hebmu.edu.cn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
delta coronaviruses mainly infect birds.3 Seven coronaviruses can infect humans including the alpha coronaviruses, HCoV-229E and HCoV-NL63, and the beta coronaviruses, HCoV-OC43, HCoV-HKU1, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and SARS-CoV-2.4–7 HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections are relatively common in human populations. These viruses generally cause only mild respiratory symptoms similar to the common cold.8 However, SARS-CoV, MERS-CoV,9 and SARS-CoV-2 have higher infection and death rates.

Etiological characteristics

Structural characteristics

SARS-CoV-2 is an enveloped coronavirus. The virion is round or elliptic, often pleomorphic, and has a diameter between 60 nm and 140 nm.10,11 The virion can look like a crown when observed under electron microscopy. The viral spike protein present on the envelope is the most important surface protein of the virus and mediates infection. The spike protein contains two subunits: S1 and S2. S1 comprises the receptor binding domain (RBD) that recognizes cellular receptors, and S2 plays an important role in the process of membrane fusion.12 The spike protein determines the specificity and host range of the virus, and its sequence can be altered through gene recombination or mutation of the RBD.13 In addition, the spike protein is an important target of host neutralizing antibodies and plays a vital role in vaccine design.

Genetic characteristics

SARS-CoV-2 is a positive-sense, single-stranded RNA virus, and is prone to mutation. The viral genome is about 30 kb in length,14 encoding several open reading frames including ORF1ab and the S, E, M, and N genes.10 The genome encodes non-structural proteins, structural proteins and helper proteins. The S, E, M, and N genes encode the spike protein, envelope protein, membrane protein and nucleoprotein, respectively. The SARS-CoV-2 genome shares high homology with the genomes of bat coronaviruses,10,15,16 suggesting a likely origin of the virus in bats.

Physical and chemical properties

SARS-CoV-2 has difficulty surviving at high temperatures and in low humidity environments.17 The virus can be effectively inactivated at 56°C for 30 minutes.18 At least one study demonstrated a significant positive correlation between ambient average relative humidity levels (23.33%–82.67%) and confirmed cases of COVID-19.17 Coronaviruses are enveloped lipophilic viruses that are easily dissolved and destroyed by lipid solvents. Most approved disinfectants including ether, 75% ethanol, chlorinated disinfectants, peroxyacetic acid, and chloroform can effectively kill coronaviruses. In addition, the virus is also sensitive to ultraviolet light.18

Pathogenic mechanism

SARS-CoV-2 is an emerging coronavirus whose effects on the human body are not yet fully understood. Preliminary studies have suggested that the pathogenic mechanism of SARS-CoV-2 is similar to that of SARS-CoV. Both viruses bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) in human airway epithelial cells via the S protein on the envelope and enter the host cell.16,19–22 ACE2 is highly expressed in alveolar cells type 2 as well as in the esophagus, ileum, colon, heart, kidney, bladder and testis.23–28 These findings suggest that ACE2, which
is highly expressed in esophageal epithelial cells, intestinal epithelial cells, cardiomyocytes, and bladder epithelial cells, may allow SARS-CoV-2 to invade several human organs and lead to multiple organ damage and failure.

Clinical features

Human populations are generally susceptible to SARS-CoV-2. As of June 15, 2020, there were 84,823 confirmed cases and 4,645 deaths in China, with 7,823,334 confirmed cases and 431,541 deaths globally. Currently, the mortality rate is about 5.5% in China and globally, lower than that of SARS (10%) and MERS (36%). Based on current epidemiological data, the incubation period of SARS-CoV-2 appears to be long, ranging from 1 to 14 days but lasting for 3 to 7 days in most cases. The clinical manifestations of SARS-CoV-2 are similar to those of SARS-CoV. Both viruses primarily cause lower respiratory symptoms, but the clinical features associated with SARS-CoV-2 are milder than those associated with SARS-CoV. The symptoms of most patients are nonspecific: fever, cough, and fatigue are the main manifestations. A few patients have symptoms such as nasal congestion, runny nose, and diarrhea. Severe cases can develop into acute respiratory distress syndrome. SARS-CoV-2 can be detected in sputum, nose and throat swabs, alveolar lavage fluid and other samples by real-time reverse transcription polymerase chain reaction. Specific IgM and IgG antibodies can be detected in the sera of COVID-19 patients. Laboratory examinations showed that lymphocytes were decreased while levels of C-reactive protein, aspartate aminotransferase, and alanine aminotransferase were increased in most patients. On imaging examination, bilateral pneumonia can be seen with patchy shadows or ground-glass opacity. Cases with milder symptoms may not show pneumonia.

Most patients have a good prognosis, while a few progress to critical condition. The elderly, especially those with a history of chronic diseases and surgeries, are more susceptible to infection and have higher mortality rates and worse prognosis.

Transmission and prevention

SARS-CoV-2 can infect many animals as well as humans, and entry into human populations most likely represents a zoonotic transmission event. Some groups suggested that the natural host of the virus is the bat, although the intermediate hosts remain unclear. Other wild animals may also be involved in transmission such as minks and pangolins.

SARS-CoV-2 is highly infectious and pathogenic. The affinity of the SARS-CoV-2 S protein for ACE2 is approximately 10- to 20-fold higher than that of SARS-CoV, which may explain why SARS-CoV-2 is highly infectious. In the face of this outbreak, we need to raise our awareness of personal protection and do all we can to reduce the spread of the virus. Since the middle of December 2019, there has been persistent human-to-human transmission. Sources of infection are primarily patients with COVID-19 and asymptomatic cases. The modes of transmission include droplet, contact, and aerosol spread as well as potential transmission via the fecal-oral route. No evidence of vertical transmission was observed in women who acquired SARS-CoV-2 infection in late pregnancy. Thus, we should avoid eating wild animals, improve our knowledge of SARS-CoV-2, and enhance awareness of personal protection strategies.

SARS-CoV-2 is a novel coronavirus, and an effective vaccine has yet to be developed.
Inactivated vaccines, mRNA vaccines, DNA vaccines, viral vector vaccines, and other vaccine candidates are under development. Some have already entered clinical trials. A recombinant adenovirus type 5 vector vaccine, developed by Chen Wei’s team, showed good safety and immunogenicity in a phase I clinical trial, rapidly inducing both humoral and T-cell responses against SARS-CoV-2 in most participants. Currently, this vaccine is in phase 2 clinical trials, where its safety, tolerability and immunogenicity will be further evaluated.

Diagnosis and treatment

Detection of SARS-CoV-2 nucleic acid is the gold standard for diagnosis of SARS-CoV-2 infection. Methods for antigen detection, antibody detection and simpler nucleic acid detection are also being developed. IgM/IgG antibody rapid detection assays have appeared on the market and have been applied for clinical case detection. Compared with nucleic acid detection, antibody detection is often faster and more convenient. Antibody detection also has good sensitivity and specificity, and can be used as a supplement to nucleic acid detection. In general, diagnosis of COVID-19 is based on comprehensive analysis of epidemiological risk factors, clinical manifestations, laboratory examinations, imaging examinations and pathogen detection results.

There are no specific antiviral drugs against SARS-CoV-2, and recovery from COVID-19 basically depends on immunity and complementary clinical therapy. Because of the urgency of the SARS-CoV-2 pandemic, current treatments for SARS-CoV-2 are largely based on clinical experience with SARS and MERS. The inhibitory effects of antiviral agents approved or under development on SARS-CoV-2 are being tested, including agents developed to treat human immunodeficiency virus or influenza virus infections. Potential COVID-19 therapies include antiviral drugs (interferon-α, lopinavir/ritonavir, ribavirin, and hydroxychloroquine) as well as antimicrobial agents. Respiratory support is provided in severe cases including oxygen therapy, non-invasive mechanical ventilation, invasive mechanical ventilation, and extracorporeal membrane oxygenation.

Antibodies obtained from the plasma of convalescent patients have been used in clinical therapy. Passive antibody transfer was previously used to treat SARS and influenza infection and achieved good results. However, this therapy has some limitations, including limited availability of specific antibodies and the existence of certain safety risks. Thus, safe and effective specific therapeutic antibodies must be developed for clinical treatment. Clinical case studies showed that the antiviral drug remdesivir, which has broad spectrum antiviral effects, is effective in inhibiting SARS-CoV-2. However, data from a clinical trial by a Chinese research team showed that remdesivir does not provide significant clinical or antiviral effects in severe cases of COVID-19. Some clinical trials of remdesivir are still ongoing to determine whether the drug is effective for treatment of patients with COVID-19. In addition, baricitinib, chloroquine, and some Chinese patent drugs with antiviral activity were also found to have therapeutic effects on COVID-19.

Conclusion

Our understanding of the etiology, transmission route and pathogenic mechanism of SARS-CoV-2 is still preliminary and not comprehensive. Some countries, including China, have controlled the COVID-19 epidemic well, but the virus is still spreading in other parts of the world at an alarming rate. COVID-19 may become a seasonal disease coexisting with humans for a long
time. There are currently no safe and specific antiviral drugs for treatment of patients with COVID-19, and vaccine development will take time. Therefore, the basic biological characteristics, transmission mode, and strategies for prevention and treatment of SARS-CoV-2 need to be further studied. In addition, broad-spectrum anti-coronavirus drugs and specific monoclonal antibodies against SARS-CoV-2 need to be developed. In this review, we aimed to provide a reference and theoretical basis for further studies of the prevention and treatment of COVID-19.

Declaration of conflicting interest
The authors declare that there is no conflict of interest.

Funding
This work was supported by grants from the National Natural Science Foundation of China (81971474) and the Scientific and the Key R&D Projects of Hebei Province (20277738D).

ORCID iD
Ling Xue https://orcid.org/0000-0001-6910-4228

References
1. Weiss SR and Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res 2011; 81: 85–164.
2. Chan JFW, To KKW, Tse H, et al. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013; 21: 544–555. DOI: 10.1016/j.tim.2013.05.005.
3. Woo PCY, Lau SKP, Lam CSF, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 2012; 86: 3995–4008. DOI: 10.1128/JVI.06540-11.
4. Yin Y and Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2018; 23: 130–137.
5. Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1967–1976.
6. Zaki AM, Van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367: 1814–1820.
7. Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63: 457–460. DOI: 10.1007/s11427-020-1637-5.
8. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24: 490–502.
9. Cui J, Li F and Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17: 181–192.
10. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727–733. DOI: 10.1056/NEJMoA2001017.
11. National Health Commission of the People’s Republic of China. The notice of launching guideline on diagnosis and treatment of the novel coronavirus pneumonia. Pilot 7th edition, www.nhc.gov.cn/yyypjy/s6653p/202003/ 46c9294a7dfe4ce4e80dc7f5912eb1989.shtml (accessed 3 March 2020).
12. Li F. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. J Virol 2012; 86: 2856–2858.
13. De Wilde AH, Snijder EJ, Kikkert M, et al. Host factors in coronavirus replication. Curr Top Microbiol Immunol 2017; 419: 1–42.
14. Chen Y, Liu Q and Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020; 92: 418–423.
15. Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after
visiting Wuhan. *Emerg Microbes Infect* 2020; 9: 221–236.

16. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* 2020; 579: 270–273. DOI: 10.1038/s41586-020-1207-7.

17. Yao M, Zhang L, Ma J, et al. On airborne transmission and control of SARS-CoV-2. *Sci Total Environ* 2020; 731: 139178. DOI: 10.1016/j.scitotenv.2020.139178.

18. Chen ZM, Fu JF, Shu Q, et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. *World J Pediatr* 2020; 16: 240–246. DOI: 10.1007/s12519-020-00345-5.

19. Letko MC and Munster V. Functional assessment of cell entry and receptor usage for lineage B \(\beta \)-coronaviruses, including 2019-nCoV. *bioRxiv* 2020. DOI: 10.1101/2020.01.22.915660.

20. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. *Nature* 2003; 426: 450–454.

21. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. *Nat Med* 2005; 11: 875–879.

22. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. *Nature* 2020; 579: 265–269. DOI: 10.1038/s41586-020-0083-3.

23. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCoV infection: a bioinformatics analysis based on single-cell transcriptomes. *bioRxiv* 2020. DOI: 10.1101/2020.01.30.927806

24. Wang J, Zhao S, Liu M, et al. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism. *medRxiv* 2020. DOI: 10.1101/2020.02.05.20020545

25. Lin W, Hu L, Zhang Y, et al. Single-cell analysis of ACE2 expression in human kidneys and bladders reveals a potential route of 2019-nCoV infection. *bioRxiv* 2020. DOI: 10.1101/2020.02.08.939892

26. Fan C, Li K, Ding Y, et al. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. *medRxiv* 2020. DOI: 10.1101/2020.02.12.20022418.

27. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. *Front Med* 2020; 14: 185–192. DOI: 10.1007/s11684-020-0754-0.

28. Wang Z and Xu X. scRNA-seq Profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli Cells. *Cells* 2020; 9: 920. DOI: 10.3390/cells9040920.

29. China CDC. Distribution of COVID-19 Epidemic, http://2019ncov.chinacdc.cn/2019-nCoV/global.html (accessed 17 June 2020).

30. De Wit E, Van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. *Nat Rev Microbiol* 2016; 14: 523.

31. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; 395: 497–506. DOI: 10.1016/S0140-6736(20)30183-5.

32. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 2020; 395: 507–513. DOI: 10.1016/S0140-6736(20)30185-9.

33. Wang D, Hu B, Hu C, et al. Clinical characteristics of coronavirus disease 2019 in China. *N Engl J Med* 2020; 382: 1708–1720. DOI: 10.1056/NEJMoa2002032.

34. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. *JAMA* 2020; 323: 1061–1069. DOI: 10.1001/jama.2020.1585.

35. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. *Euro Surveill* 2020; 25: 2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045.
37. Wang W, Tang J and Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020; 92: 441–447. DOI: 10.1002/jmv.25689.

38. Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21: 335–337. DOI: 10.1016/s1470-2045(20)30096-6.

39. Zhu H, Guo Q, Li M, et al. Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv 2020. DOI: 10.1101/2020.01.21.914044.

40. Benvenuto D, Giovannetti M, Ciccozzi A, et al. The 2019–new coronavirus epidemic: evidence for virus evolution. J Med Virol 2020; 92: 455–459. DOI: 10.1002/jmv.25688.

41. Liu P, Chen W and Chen JP. Viral metagenomics revealed Sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses 2019; 11: 979.

42. Lam TTY, Shum MHH, Zhu HC, et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv 2020. DOI: 10.1101/2020.02.13.945485.

43. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367: 1260–1263. DOI: 10.1126/science.abb2507.

44. Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395: 514–523.

45. Phan LT, Nguyen TV, Luong QC, et al. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med 2020; 382: 872–874. DOI: 10.1056/NEJMc2001272.

46. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382: 1199–1207. DOI: 10.1056/NEJMoa2001316.

47. Hoehl S, Rabenau H, Berger A, et al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. N Engl J Med 2020; 382: 1278–1280. DOI: 10.1056/NEJMc2001899.

48. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020; 382: 1177–1179. DOI: 10.1056/NEJMc2001737.

49. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020; 323: 1406–1407. DOI: 10.1001/jama.2020.2565.

50. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395: 809–815. DOI: 10.1016/s0140-6736(20)30360-3.

51. Ma C, Su S, Wang J, et al. From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes Infect. Epub ahead of print 22 May 2020. DOI: 10.1016/j.micinf.2020.05.004.

52. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. Epub ahead of print 26 May 2020. DOI: 10.1016/s0140-6736(20)31208-3.

53. Xiang F, Wang X, He X, et al. Antibody detection and dynamic characteristics in patients with COVID-19. Clin Infect Dis. Epub ahead of print 20 April 2020. DOI: 10.1093/cid/ciaa461.

54. Centers for Disease Control and Prevention. Prevention & Treatment, https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html (accessed 8 February 2020).

55. Li G and De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19: 149–150. DOI: 10.1038/d41573-020-00016-0.

56. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7: 4.

57. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14: 69–71. DOI: 10.5582/bst.2020.01020.
58. Cheng Y, Wong R, Soo YOY, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. *Eur J Clin Microbiol Infect Dis* 2005; 24: 44–46.

59. Hung IFN, To KK W, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. *Clin Infect Dis* 2011; 52: 447–456.

60. Luke TC, Kilbane EM, Jackson JL, et al. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? *Ann Intern Med* 2006; 145: 599–609.

61. Zhou B, Zhong N and Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. *N Engl J Med* 2007; 357: 1450–1451.

62. Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. *Sci Rep* 2017; 7: 43395.

63. Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. *Sci Transl Med* 2017; 28: 396.

64. Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. *Nature* 2016; 531: 381–385.

65. De Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. *Proc Natl Acad Sci U S A* 2020; 117: 6771–6776. DOI: 10.1073/pnas.1922083117.

66. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. *Nat Commun* 2020; 11: 222.

67. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. *N Engl J Med* 2020; 382: 929–936. DOI: 10.1056/NEJMoa2001191.

68. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res* 2020; 30: 269–271. DOI: 10.1038/s41422-020-0282-0.

69. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomized, double-blind, placebo-controlled, multicentre trial. *Lancet* 2020; 395: 1569–1578. DOI: 10.1016/s0140-6736(20)31022-9.

70. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. *Lancet* 2020; 395: e30–e31.

71. Neher RA, Dyrdak R, Druelle V, et al. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. *Swiss Med Wkly* 2020; 150: w20224. DOI: 10.4414/smw.2020.20224.