Abstract

Background: Early restoration of patency of infarct related artery is a universally accepted goal in the treatment of acute myocardial infarction. These could be achieved by Primary PCI or fibrinolysis. Primary PCI is preferred reperfusion strategy over fibrinolysis. Identifying initial area at risk in patients with acute myocardial infarction had been shown to have a direct impact on patients adverse clinical outcomes as well as prediction of systolic dysfunction. Area flow index (AFI) calculation in patients with acute myocardial infarction may predict initial area at risk during primary PCI.

Aim: To investigate the clinical utility of Area flow index to predict systolic dysfunction and adverse clinical outcomes in patients with acute anterior ST elevation myocardial infarction.

Patients: 250 consecutive patients with acute anterior ST elevation myocardial infarction treated with primary PCI presenting to Alexandria main university hospital and ICC hospital from June 2013 till December 2014.

Methods: Echocardiographic assessment of LV systolic function 5-7 days after myocardial infarction by calculation of ejection fraction using modified simpson method. Area flow index was calculated by dividing culprit segment cross sectional area to total coronary cross sectional area.

\[
AFI = \frac{DC^2}{D1^2+D2^2+D3^2}
\]

Where DC is the culprit segment diameter, D1 left anterior descending diameter, D2 left circumflex diameter, D3 right coronary diameter.

All patients were followed one month for the occurrence of MACE.

Results: Patients were grouped according to their ejection fraction following myocardial infarction into 3 groups:

- Group I: severe LV systolic dysfunction EF <30%.
- Group II: moderate LV systolic dysfunction EF 30-45%.
- Group III: mild LV systolic dysfunction EF >45%

There was a significant negative correlation between AFI and LVEF (r=-0.58, P<0.001). The mean AFI for patients in group I was 33.1 ± 7.4, patients in group II was 26.6 ± 7.4, and those in group III was 20.0 ± 6.1. AFI>28.4% had a 75.6% sensitivity and 78.1% specificity in predicting severe LV systolic dysfunction. Also the composite one month MACE was higher in the group with AFI>28.4% (p<0.001).

Conclusion: Area flow index calculated from coronary angiography at time of primary PCI is a new strong independent predictor of LV systolic dysfunction and 1month MACE in patients with acute anterior myocardial infarction.
Keywords: Myocardial infarction; Patients; Systolic dysfunction; Heart failure

Introduction

ST-elevation myocardial infarction (STEMI) remains one of the leading causes of death globally [1]. Thrombolysis was a major step forward in the treatment of STEMI [2] and further progress was done when primary percutaneous coronary intervention (PCI) was established as a golden therapeutic standard [3].

Primary PCI is defined as percutaneous coronary intervention in the setting of STEMI, without previous fibrinolysis. It has replaced fibrinolysis as the preferred reperfusion strategy in patients with STEMI, provided it can be performed in a timely manner in high volume PCI centers with experienced operators and 24-hour, 7-day catheterization laboratory activation [4].

Compared with fibrinolytic therapy, primary PCI produces higher rates of infarct artery patency, TIMI 3 flow, and access site bleeding and lower rates of recurrent ischemia, reinfarction, emergency repeat revascularization procedures, intracranial hemorrhage, and death. Early, successful PCI also greatly decreases the complications of STEMI that result from longer ischemic times or unsuccessful fibrinolytic therapy, allowing earlier hospital discharge and resumption of daily activities. Primary PCI has its greatest survival benefit in high-risk patients. PCI outcomes have been shown to be worse with delays to treatment and with low-volume hospitals and operators [5].

Primary percutaneous coronary intervention (PCI) has become the predominant reperfusion strategy for ST-segment elevation myocardial infarction (STEMI) throughout western healthcare systems. Recent estimates in the United States suggest that primary PCI is used in 85% of all STEMI cases that undergo reperfusion, with thrombolytic agents used in only 9% and the combination of thrombolytic agents with PCI in 6% [6]. In Europe, fibrinolysis for STEMI is becoming a rare therapy; for example 6% of cases in the UK, 7% in Poland, and 8% in France. It is interesting to note that, even in countries with a large catchment area, such as Denmark with one primary PCI center per 1.4 million inhabitants and correspondingly long transportation distances, the STEMI case fatality rate is among the lowest recorded in Europe, with an in-hospital mortality of only 3% [7].

The 30-day mortality rate of patients with STEMI is between 2.5 and 10% [8]. Among patients with STEMI enrolled in trials, approximate in-hospital or 30-day mortality rates were 13% with medical therapy alone, 6-7% with optimal fibrinolytic therapy, and as low as 3 to 5% with primary percutaneous coronary intervention (PCI) when performed within two hours of chest pain onset [9-12].

Some of the independent predictors of early death from STEMI include age, Killip class, time to reperfusion, cardiac arrest, tachycardia, hypotension, anterior infarct location, prior infarction, diabetes mellitus, smoking status, renal function, number of diseased vessels and biomarker findings. Whereas the Thrombolysis in Myocardial Infarction (TIMI) risk score was developed specifically in patients with STEMI, the GRACE model predicts in-hospital and 6-month mortality rate across the spectrum of patients presenting with ACS, including those with ST elevation or ST depression. Risk assessment is a continuous process that should be repeated throughout hospitalization and at time of discharge [13].

Identifying initial area at risk in patients with acute myocardial infarction had been shown to have a direct impact on patients adverse clinical outcomes as well as prediction of systolic dysfunction. Area flow index (AFI) calculation in patients with acute myocardial infarction may predict initial area at risk during primary PCI [14].

Aim: In this study we investigated the clinical utility of Area flow index as a predictor of systolic dysfunction and adverse clinical outcomes in patients with acute anterior ST elevation myocardial infarction

Patients and Methods

250 consecutive patients with acute anterior ST elevation myocardial infarction treated with primary PCI presenting to Alexandria main university hospital and ICC hospital from June 2013 till December 2014.

Echocardiographic assessment of LV systolic function 5-7 days after myocardial infarction by calculation of ejection fraction using modified Simpson method.

Area flow index was calculated by dividing culprit segment cross sectional area to total coronary cross sectional area.

\[
AFI = \frac{DC^2}{D1^2 + D2^2 + D3^2}
\]

Where DC is the culprit segment diameter, D1 left anterior descending diameter, D2 left circumflex diameter, D3 right coronary diameter (Figure 1).

Figure 1: AFI index calculation.

All patients were followed one month for the occurrence of MACE. Patients were grouped according to their ejection fraction following myocardial infarction into 3 groups:

- Group I: Severe LV systolic dysfunction EF<30%.
- Group II: Moderate LV systolic dysfunction EF 30-45%.
- Group III: Mild LV systolic dysfunction EF>45%.

Results

There were no significant differences between three groups regarding the demographic data, risk factors or medications used (Tables 1 and 2).

The mean age in group I was 66 ± 14, in group II 61 ± 14, and in group III 60 ± 15.
The incidence of Hypertension in group I was 46.2%, in group II 44.7%, and in group III 37.9%.

Regarding the incidence of diabetes, in group I 18.6%, group II 16.5% and in group III 15.9%.

The incidence of MACE were 43.5% in group I, 15.4% in group II and 2.3% in group III (P=0.013). Also the incidence of new congestive heart failure were significantly higher in patients of group I 21.9%, then in group II 4.4%, then in group III 0% (P=0.002) (Table 5).

Table 2: Relation between three groups and demographic data and risk factors.

Drug use	“Group 1” Severe LV dysfunction (EF <30%) “n=52”	“Group 2” Moderate LV dysfunction (EF =30-44%) “n=132”	“Group 3” Mild LV dysfunction (EF > 45%) “n=66”	p
Age (years)	66.0 ± 14.0	61.0 ± 14.0	60. 0 ± 15.0	0.103 NS
Sex, F/M	15/37	26/106	18/48	0.236 NS
Hypertension, n (%)	24 (46.2)	59 (44.7)	25 (37.9)	0.352 NS
Dyslipidemia, n (%)	15 (28.8)	49 (37.1)	20 (30.3)	0.411 NS
Diabetes mellitus, n (%)	6 (18.6)	15 (16.5)	7 (15.9)	NS

Table 3: Relation between three groups and primary PCI data.

MACE	“Group 1” Severe LV dysfunction (EF <30%) “n=52”	“Group 2” Moderate LV dysfunction (EF =30-44%) “n=132”	“Group 3” Mild LV dysfunction (EF > 45%) “n=66”	p
Final TIMI flow	60.6	93.4	93.2	0.236
Door-to-balloon time, min	48 ± 10	51 ± 9	47 ± 11	0.254
Symptom-to-balloon time, hr	4 (3-6)	3.5 (3-6)	3 (2-4)	0.32

Table 4: Relation between LVEF and AFI.

MACE	“Group 1” Severe LV dysfunction (EF <30%) “n=52”	“Group 2” Moderate LV dysfunction (EF =30-44%) “n=132”	“Group 3” Mild LV dysfunction (EF > 45%) “n=66”	p
Death, n (%)	4 (12.5)	7 (7.7)	1 (2.3)	0.365
Stroke, n (%)	0 (0)	1 (1.1)	0 (0)	-
Non fatal MI, n (%)	3 (9.3)	2 (2.2)	0 (0)	0.175
New CHF, n (%)	7 (21.9)	4 (4.4)	0 (0)	0.002'
Composite MACE, n (%)	14 (43.5)	14 (15.4)	1 (2.3)	0.013'

Table 5: Relation between LVEF and one month MACE.

Discussion

Worldwide, coronary artery disease (CAD) is the single most frequent cause of death. In-hospital (approximately 5% to 6%) and 1 year (approximately 7% to 18%) mortality rates from STEMI also have decreased significantly in association with greater use of reperfusion therapy, Primary Percutaneous Coronary Intervention (Primary PCI), modern antithrombotic therapy and secondary prevention treatments [14].

The mortality of STEMI is influenced by many factors, among them: age, Killip class, time delay to treatment, mode of treatment, history of...
prior myocardial infarction, diabetes mellitus, renal failure, number of
diseased coronary arteries, ejection fraction, and treatment.

Approximately 30% of patients with STEMI are women. Female sex
was a strong independent predictor of failure to receive reperfusion
therapy among patients who had no contraindications. Compared with
men, women presented later after symptom onset, had longer door-to-
fibrinolysis and door-to-balloon (or device) (D2B) times and less often
received aspirin or beta blockers within 24 hours of presentation.

Approximately 23% of patients with STEMI in the United States have
diabetes mellitus, and three quarters of all deaths among patients with
diabetes mellitus are related to coronary artery disease. Diabetes
mellitus is associated with higher short- and long-term mortality after
STEMI.

In our study we aimed to correlate the clinical utility of a simple
index calculated at time of coronary angiography during primary PCI
(Area flow index) with left ventricular systolic dysfunction and MACE
flow

The results of our study were similar to the study conducted by Agac
et al. [14]. In our study we had a significant negative correlation
between AFI and LVEF (r=-0.58, P<0.001). Also in the study of Agac et
al. [14] they had a significant negative correlation between AFI and
LVEF (p<0.001)

In our study we had statistically significant correlations between LV
EF and MACE after one month (p=0.013) which was similar to the
results of Agac et al. [14].

Conclusion

Area flow index calculated from coronary angiography at time of
primary PCI is a new strong independent predictor of LV systolic
dysfunction and MACE in patients with acute anterior
myocardial infarction.

References

1. (1993) The effects of tissue plasminogen activator, streptokinase, or both
on coronary-artery patency, ventricular function, and survival after acute
myocardial infarction. The GUSTO Angiographic Investigators. N Engl J
Med 329: 1615-1622.

2. Della (1986) Effectiveness of intravenous thrombolytic treatment in acute
myocardial infarction. Lancet 1: 397-401.

3. Investigators (1988) Randomised trial of intravenous streptokinase, oral
aspirin, both, or neither among 17,187 cases of suspected acute
myocardial infarction: ISIS-2. ISIS-2 (Second International Study of
Infarct Survival) Collaborative Group. Lancet 2: 349-360.

4. Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus
intravenous thrombolytic therapy for acute myocardial infarction: a
quantitative review of 23 randomised trials. The Lancet 361: 13-20.

5. Steg PG, James SK, Atar D, Badano LP, Blömstrom-Lundqvist C, et al.
(2012) ESC Guidelines for the management of acute myocardial
infection in patients presenting with ST-segment elevation. Eur Heart J
33: 2569-2619.

6. http://www.cardiosource.org.

7. Kristensen SD, Laut KG, Fajadet J, Kaifoszova Z, Kala P, et al. (2014)
Reperfusion therapy for ST elevation acute myocardial infarction
2010/2011: current status in 37 ESC countries. Eur Heart J 35: 1957-1970.

8. McManus DD, Gore J, Yarzebski J, Spencer F, Lessard D, et al. (2011)
Recent trends in the incidence, treatment, and outcomes of patients with
STEMI and NSTEMI. Am J Med 124: 40-47.

9. Tobbia P, Brodie BR, Witzenbichler B, Metzger C, Guagliumi G, et al.
(2013) Adverse event rates following primary PCI for STEMI at US and
non-US hospitals: three-year analysis from the HORIZONS-AMI trial.
EuroIntervention 8: 1134-1142.

10. (1993) An international randomized trial comparing four thrombolytic
strategies for acute myocardial infarction. The GUSTO investigators.
N Engl J Med 329: 673-682.

11. Van De Werf F, Adgey J, Ardissino D, Armstrong PW, Aylward P, et al.
(1999) Single-bolus tenecteplase compared with front-loaded alteplase in
acute myocardial infarction: the ASSENT-2 double-blind randomised
trial. Lancet 354: 716-722.

12. Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, et al. (2000)
Relationship of symptom-onset-to-balloon time and door-to-balloon
time with mortality in patients undergoing angioplasty for acute
myocardial infarction. JAMA 283: 2941-2947.

13. Mehta RH, Calif RM, Garg J, White HD, Van de Werf F, et al. (2007) The
impact of anthropomorphic indices on clinical outcomes in patients with
acute ST-elevation myocardial infarction. Eur Heart J 28: 415-424.

14. Agac M, Agac S, Korkmaz L, Celik S, Erkan H, et al. (2013) Clinical utility
of a novel index to predict systolic dysfunction and adverse clinical
outcome in patients with acute ST-elevation myocardial infarction: a pilot
study. European Heart Journal 34: 2226-2229.