Design of automatic hand sanitizer with ultrasonic sensor

Jonathan Lesmana\(^1\)*, Agus Halim\(^1\), Agustinus Purna Irawan\(^1\)
\(^1\)Faculty of Engineering, Universitas Tarumanagara, Indonesia
\(^*\)jonathan.515160009@stu.untar.ac.id

Abstract. An automatic hand sanitizer allows the discharge of the sanitizing liquid without pressing any nozzle. The design of the automatic hand sanitizer is focused on the mechanism of pressing the nozzle of the hand sanitizer that involves conversion from a rotation movement into a translation movement. VDI 2221 method is used to design the automatic hand sanitizer, which uses Arduino Nano as the microcontroller, servo motor as the motor, ultrasonic sensor for detecting the movement from the environment, and rack and pinion system as the mechanism for pressing the nozzle from the hand sanitizer. The prototype of automatic hand sanitizer has worked well and has become a reference for further development.

Keywords: design, automatic hand sanitizer, ultrasonic sensor.

1. Introduction
Hand is one of the media that could spread diseases, such as skin diseases, diarrhea and respiratory diseases such as Upper Respiratory Tract Infection caused by germs or bacteria left on the hands after carrying out various activities, therefore cleaning hands is very important for everyone to prevent the spread of disease. Washing hands is a simple activity that aims to remove impurities and minimize the number of germs in the hands and palms. Washing hands using water requires humans to be close to water sources and if washing hands without hand washing soap that contains antiseptics, it will not be effective in removing the bacteria from the hands and not cleaning humans from the microorganisms on the hands. There is a more practical way, by using an antiseptic gel liquid called hand sanitizer \([1]\).

The automatic hand sanitizer is a smart device that is controlled by an Arduino microcontroller, in addition to working automatically this tool is also programmed to be able to adapt to user needs, this tool can be applied anywhere, such as in restaurants, hospitals, toilets, etc. Because this tool works automatically, our hands are more assured in cleanliness because users doesn’t need to touch the hand sanitizer lever to operate the hand sanitizer.

2. Method
The design method is using the VDI 2221 which is divided into 4 steps as follows: \([2-8]\)

a) Make the clarification of the task
b) Identifying the conceptual design and the embodiment design
c) Create the detail design
d) Choose the material used from the chosen design
e) Adjust the design specifications for the prototype
f) Create the prototype

3. Result and Discussion
As an initial reference in this design, specifications are determined by considering the requirements of demand and wish \([9-11]\).
Table 1. Demand and wish

Demand and wish	Demand	Wish	Demand
The movement uses motor power			
Material is easily found at low prices			
Good quality material			
Low cost manufacturing			
Easy manufacturing			
Low cost maintenance			
Easy maintenance			
The use of the hand sanitizer is enough for one time use	Demand		
Rechargeable battery			
Automatic operation			

Table 2. Design variant

Variable	Automatic hand sanitizer design
Microcontroller	Arduino Nano, Arduino Uno, Arduino Mini
Motor	Servo Motor, Stepper Motor
Rotation movement	360°, 180°, 90°
Mechanism system	Crankshaft Mechanism, Rack and Pinion
The material of the automatic hand sanitizer body	Aluminium, PLA (Polyactic Acid), Stainless Steel
Concept design of the automatic hand sanitizer body	
Table 3. Solution principle

	Variant 1	Variant 2	Variant 3	Variant 4	Variant 5	Variant 6
Fulfill the	NO	NO	NO	NO	YES	YES
demand list of						
needs						
Can be realized	YES	NO	YES	NO	YES	YES
Easy to operate	YES	YES	YES	YES	YES	YES
Safe to use	NO	YES	YES	YES	NO	YES
Motor can handle	YES	NO	YES	NO	NO	YES
heavy load						
Easy maintenance	NO	NO	YES	YES	NO	YES

From the results of the possible design variants. The results are obtained by using variant 6 using arduino nano as a microcontroller, servo motor as the type of motor used with a rotational motion of 90°, the type of material used for automatic hand sanitizer type PLA (Polyactic Acid) so that it can be manufactured in a 3D printing process, using concept design 2. The determination of the force required by pressing the hand sanitizer lever on a digital scale. This experiment was carried out 4 times with 4 different bottles and different viscosity level of hand sanitizer, with the average force obtained. The results that is taken can be seen in table 4 [12-14].

Table 4. Force test results

Bottle Diameter (mm)	Bottle Height (mm)	Viscosity Level (cP)	Force (N)
85.5	170	400	21
72.55	200	520	30
74.6	175	400	25
67.55	230	152	15

The force obtained needs to be multiplied by 1.5 as a safety factor for pressing the hand sanitizer nozzle lever so that the above experiment can be concluded that the compressive force needed to press the hand sanitizer nozzle lever is 45 N.
The determination of the specifications for the rack and pinion by using the MG996R type of servo motor are shown in table 5.

Parameters	Rack (mm)	Pinion (mm)
Diameter	-	45
Width	20	20
Length	11	-
Height	62	-

The sliding bearing is used to hold the rack gear and is tested by performing a static stress simulation on Fusion Autodesk 360 with the following results shown in Figure 1 and Figure 2.

Figure 1. Stress Analysis

Figure 2. Displacement

The overall design of the automatic hand sanitizer can be seen in Figure 3.

Figure 3. Automatic hand sanitizer design

4. Conclusion

Based on the results of the automatic hand sanitizer design, it can be concluded that the automatic hand sanitizer can facilitate the use of the hand sanitizer without touching the hand sanitizer nozzle and more efficient maintenance by simply replacing the hand sanitizer bottle without having to open the bottle for refilling the hand sanitizer.
5. References

[1] Rini, Eka P., Nugraheni, Estu R., 2018, *Journal of Pharmaceutical Science and Clinical Research* **3**-1-18

[2] Pahl, G., Beitz, W., 2007, *Engineering Design: A Systematic Approach* (Germany: Third edition)

[3] Irawan, A.P., Fediyanto, Tandi, S., 2006, *Proceedings-Ergo Future 2006* pp. 337-341

[4] Irawan, A.P., Halim, A., Kurniawan, H., 2017, *IOP Conference Series: Materials Science and Engineering* **237**-012006

[5] Irawan, A.P., Utama, D.W., E. Affandi, H. Suteja, 2019 *IOP Conference Series: Materials Science and Engineering* **508**-012054

[6] Sucipto, A., Kurnia, A., Halim, A., Irawan, A.P., 2020 *IOP Conference Series: Materials Science and Engineering* **725**-1-012021

[7] Arief, R.K., 2018, *Metode Desain VDI 2221 Untuk Merancang SKID MPFM SINGLE LINE* (Universitas Muhammadiyah Sumatera Barat)

[8] Irawan, A.P., Sirahar, D.A., Sugandy, J., 2006, *Perancangan Ulang Sepeda Elektrik Menggunakan Metode VDI 2221* (Jakarta: Fakultas Teknik, Universitas Tarumanagara)

[9] McCabe, W., Smith, J., Harriott, P., 2005, *Unit Operations of Chemical Engineering, Seventh Edition* (Singapore: McGraw-Hill Education)

[10] Hardiyanto, R.D., Rochim, A.F., Windasari, I.P., 2015, *Jurnal Teknologi dan Sistem Komputer* **3**-2-185

[11] Khurmi, R.S., Gupta, J.K., 2005 *A Text Book Of Machine Design* (New Delhi: Eurasia Publishing House (Pvt.) Ltd.)

[12] Irawan, A.P., 2016, *Perancangan Sistem Transmisi Roda Gigi* (Yogyakarta: Kanisius)

[13] Sularso, Suga, K., 1997 *Dasar Perencanaan dan Pemilihan Elemen Mesin* (Jakarta: PT. Pradnya Paramita)

[14] Marizar, E.S., Irawan, A.P., Beng, J.T., 2019 *IOP Conference Series: Materials Science and Engineering* **508**-1-012104