Noise mapping in campus a Rawamangun-Jakarta State University environment and its effect on academic atmosphere

T Mulyono¹*, D Rochadi² and I Widiasanti²

¹ Transportation Department, Faculty of Engineering, State University of Jakarta, Jalan Rawamangun Muka, Jakarta, Indonesia
² Faculty of Engineering, State University of Jakarta, Jalan Rawamangun Muka, Jakarta, Indonesia

*trimulyono@unj.ac.id

Abstract. The aim of this research was to map the noise level. The survey method with a questionnaire for 30 respondents taken at random was used to obtain data on effects on the academic atmosphere during the period August - October 2019. Measurement noise levels based on Equivalent Continuous Noise Level Data during the day (L_S), night (L_M) and one-day (L_SM). This data is collected from 256 coordinates by a digital sound level meter and two application software. Mapping using the Surfer application ver11, results show that the noise level category into 5 areas: (1) Red zone, 75-80 dB(A); (2) Yellow zone, 65-75 dB(A); (3) Green zone, 55-65 dB(A); (4) Dark blue zone, 50-55 dB(A); and (5) the blue/bright zone, 45-50 dB(A). Noise levels in near or inside building and students gather is close to the threshold. At near to highways, canteen and near housing, open space and parking area indicate that exceed the threshold of 55 dB(A) and 33.1% of students perceived disturbed when the noise level is at 61 + 3 dB(A). As a result, to improve the academic atmosphere, the area near the highway built physical barriers or tree planting and manage the parking area better.

1. Introduction

The professional educational settings such as schools, preschool facilities and other learning environments, information is predominantly presented orally to the learner. Thus, listening is an important precondition for successful learning. Hearing clarity is affected by noise levels which play a major role. Noise levels that are higher than required, are not suitable for the teaching-learning process which makes the academic climate make unconducive.

Noise has become a part of our daily lives in modern society. Its presence affects the ability to concentrate and communicate and will even interfere brain's speech function [1]. The effect of road traffic annoyance affects the interaction between the ability to focus attention and visual factors [2]. Other analysis results show that traffic noise exposure affects their academic performance, health, and future potential [3], and might act synergistically on cognitive function in adults [4] including accelerating the risk of cognitive impairment and Alzheimer's disease [5] and even may influence mental health [6].

Traffic noise has been known to severely affect human population including the educational environment. The results of noise research in several educational institutions in Indonesia all exceed the noise threshold is 55 db(A) [7], such as at the Sekolah Tinggi Teknologi Adisutjipto (STTA) 55 db(A)
[8], STIKES Insan Unggul Surabaya 67-74 dB(A) [9], Polytectnic Negeri Surabaya 57 dB(A) [10] and Putra Putra Padang University 67.91-59.93 dB(A) [11], and Lampung University 71-85 dB(A) [12]. These all the results of this study did not make noise mapping.

Strategies to minimize noise exposure by making more green open space or greenspace [13] with vegetation/plant [14], improvement of the façade acoustic [15,16] and design criteria [17]. This noise will disrupt the academic atmosphere. Its play a significant role in student success. Academic atmosphere is the atmosphere in which one attempts to learn, which can aid in the learning experience or distract from and diminish it. Other findings show that the possible relationship between green space and academic performance is complex and tenuous [18]. The positively perceived learning environment contributes to better academic performance [19] and even socio-emotional skill [20] The efforts implemented to improve the academic performance is create favorable educational environment, that noise pollution is the main cause of discomfort among teachers and students which appears in the form of discomfort, irritability, lack of concentration, drowsiness, fatigue, depression and headache [21–23]. Noise levels can not only be measured at one point, but represent an area of studied. Noise maps are calculated according to noise directives that evaluate the level of noise exposure in the educational environment and compared with the standard threshold level of noise. Noise mapping to provide better recommendations for policy makers and ensure a more efficient use of noise control strategies [24]. The noise map is a helpful and important tool for noise management and acoustical planning [25]. The results of this investigation can help design and improve the academic atmosphere due to noise exposure.

Based on the description above, how to influence of noise on the academic atmosphere, noise level mapping is carried out. It is to analyze the noise level in the education area at UNJ Campus A - Rawamangun. Noise level data is obtained from measurements using a noise level measuring tool and 2 smartphone applications with measurement points based on google coordinates. Furthermore, the data is mapped using the mapping application. Mapping is used to classify area (zone) according to noise levels, whether they meet the noise threshold values set (Nilai Ambang Batas/NAB) for the educational environment or similar activities which 55 dB(A) [7,26]. The perceived noise impact is measured using interview survey with one verbal question. Regression analysis is used to analyze the effects of noise perceived by students.

2. Method
The focus of research is to produce noise maps and analyze their effects on the academic climate, which are as follows,

2.1. Instrument and time measurement
The most common measurement in environmental noise is the dB(A) level. Its measurement can be done two ways [7], that are: (1) simple measurement with sound level meter which measures the sound pressure level for 10 minutes for each measurement. The reading is every 5 (five) seconds in dB(A), and (2) The direct measurement with an integrating sound level meter that has a L_{eq} measurement facility (L_{eq} with a sampling time every 5 seconds). L_{eq} is equivalent continuous noise level, usually the sound pressure level (SPL). Its a measurement time every 5 seconds, measuring for 10 (ten) minutes [26].

Three measuring instruments are used (1) HT-80A / Digital Sound Noise Level Meter; (2) the Sound Level Meter application using the android Smart PRO Mobile, and (3) the Sound Meter Smart Tool application co. Measurement data from the three devices are then averaged, as a result of readings per-5 seconds. Time of measurement is done during 24 hour activity (L_{eq}) by taking measurement data as shown in Table 1, by way of daytime the highest level of activity for 16 hours (L_{eq} during daytime) at intervals of 6:00 to 22:00 and night activities for 8 hours (L_{eq} during the night) between 22.00 - 06.00. Because education activities only until 18:00 hours for the daytime and carried out only outside the building for (L_{eq}); (L_{eq}) and (L_{eq}). Data to analyze the effect of noise were obtained from the results of an interview survey with one verbal question "Does the noise from traffic (from the Pemuda street or from the Rawamangun Muka street) interfere with learning activities?" With four statements using a
Likert scale: 1–undisturbing, 2–sometimes disturbed, 3–quite disturbed, and 4–disturbed. Data is taken randomly from 30 respondents (students) at Campus A - Jakarta State University.

Table 1. Time measurement.

Date	Point	Date	Point	Night-time, \(L_M \) (\(L_s^1; L_s^2; L_s^3; L_s^4\))
27 August 2019	1 - 25	6 Sept 2019	101 - 125	
29 August 2019	26 - 50	9 Sept 2019	126 - 150	28 August 2019
3 Sept 2019	51 - 75	10 Sept 2019	151 - 163	1 – 50
4 Sept 2019	76 - 100	19 Sept 2019	164 - 232	2 Sep 2019
		20 Sept 2019	233 - 256	29 Sept 2019

\(L_1\) at 07.00 representing 06.00 – 09.00, \(L_2\) at 10.00 representing 09.00 – 11.00, \(L_3\) at 15.00 representing 14.00 – 17.00, \(L_4\) at 18.00 representing 17.00 – 22.00.

2.2. Methods

The method used are a survey study and data analysis. The survey was conducted using a sound intensity measuring instrument tool. Equivalent continuous noise level \((L_{eq})\) data is taken according to the coordinates of the "google maps" for Campus A - UNJ with 256 coordinates. Each coordinate data was using three measuring instruments with a sampling time every 5 seconds, \(L_{eq(1)}\) to \(L_{eq(7)}\). To calculated \(L_{eq}\) at the daytime \((L_3)\), nightday \((L_M)\) and day-night \((L_{SM})\) by using the average value of three measurement results, which is calculated [7] according to Eq. 1 [26].

\[L_s = 10 \log \left(\frac{1}{16} \left(T1.10^{0.1L_1} + T2.10^{0.1L_2} + T3.10^{0.1L_3} + T4.10^{0.1L_4} \right) dB(A) \right) \]

(1)

where \(L_s\) is \(L_{eq}\) daytime; \(T1\); \(T2\); \(T3\) and \(T4\) are time measurement for \(L_{eq(1)}\); \(L_{eq(2)}\); \(L_{eq(3)}\) and \(L_{eq(4)}\). \(L_{eq}\) for nightday \((L_M)\) calculated by Eq. 2. To find out whether the noise has exceeded the noise level it is necessary to find the \(L_{SM}\) value from the measurements, calculated by Eq. 3. Result of \(L_{SM}\) value compared with noise level threshold is set with tolerance \(\pm 3\ dB(A)\).

\[L_M = 10 \log \left(\frac{1}{8} (T5.10^{0.1L_5} + T6.10^{0.1L_6} + T7.10^{0.1L_7}) dB(A) \right) \]

(2)

\[L_{SM} = 10 \log \left(\frac{1}{24} (16.10^{0.1L_5} + 8.10^{0.1L_6} + 4.10^{0.1L_7}) dB(A) \right) \]

(3)

where \(L_M\) is \(L_{eq}\) night-time; \(T5\); \(T6\) and \(T7\) are time measurement for \(L_{eq(5)}\); \(L_{eq(6)}\) and \(L_{eq(7)}\).

The measurement results are then mapped using the Surfer application ver11 and determine areas where noise levels exceed threshold levels and to produce noise maps. The influence of noise on the academic atmosphere in this research uses the statistical hypothesis: \(H_0: \mu_0 = \mu_1\) and \(H_1: \mu_0 \neq \mu_1\), with \(\mu_0\) there is no influence of noise level on a scale of 1-4 (1–undisturbing, 2–sometimes disturbed, 3–quite disturbed, and 4–disturbed) on the academic atmosphere and \(\mu_1\) is the influence of noise levels. The results are also then compared with noise at a threshold exceeding 55 dB(A) (educational environment) \(\pm 3\ dB(A)\).

3. Result and discussion

Data is collected during the period August - October 2019 as in Table 1. Collecting data with an ordinary sound level meter is measured the sound pressure level dB(A) for 10 (ten) minutes for each measurement. The reading is done every 5 (five) seconds.
3.1. Noise mapping

Southern Latitude and East Longitude coordinates of "Google Maps", then plotted using the Surfer Ver11 application. Corresponds to the latitude and longitude coordinates for the noise level value in dB(A). On average three measuring devices are then mapped and contoured based on Eq.3 as Figure 1 for one day (day and night) and Figure 2. 3D visual appearance for measuring.

Based on the results of the mapping, using the Surfer Ver11 Application software the noise level area can be mapped according to the zone (region) at UNJ, Campus A – Rawamangun as shown in Figure 3. The results of the noise level zone mapping are 1–Red (75–80) dB(A), near Pemuda street, motorcycle parking, canteen; 2–Yellow (65–75) dB(A), near residential housing, Rawamangun Muka street, field or open space in the A-campus; 3–Green (55–65) dB(A), near the building, student gather; 4–Dark Blue (50–55) dB(A), in the building; and 5–Light Blue to purple (45–50), in the building (up to 3–story). In the zone close to the road the noise level exceeds the threshold [7,27]. This is consistent with the results of previous studies. [8–12].

3.2. Noise influence in academic atmosphere

Data on the results of verbal questions and noise levels prior to further analysis were performed testing of the analysis requirements including uniformity and normality of data using one-sample Kosmogorov-smirnov with SPSS Application. Data is then discussed to see the effect of noise level using simple linear regression. Test results at a significant level $\alpha = 0.05$ indicate that the data are normally distributed and meet the uniformity element (uniform). So the data can be analyzed further.

Result of regression analysis, H_0 accepted, it means that there is no influence of noise level on the academic atmosphere at UNJ Campus A - Rawamangun. This relationship is stated by Eq. 4,

$$\text{Noise Influence} = 0.060\text{dB}(A) - 1.597$$

(4)
The coefficient of variance of 0.331 shows that only about 33.1% of students were disturbed when the noise level increased, with the strength of the relationship of 10.9%. Eq. 4 also shows that at the noise level according to the threshold of 55 dB(A) for the educational environment it produces a value of 1.7 (between 1 and 2 on an undisturbed scale - sometimes disturbed). When the value of the noise level increases at intervals of 55 - 65 dB(A), the academic atmosphere will be influential and students will be quite disturbed and the noise level above 80 dB(A) produces an effect on the 4-disturbed, meaning that when the noise level reaches this level will affect the academic atmosphere because students are disturbed by noise caused by traffic. This is consistent accordance with the results of previous studies [2,21,23], that traffic activity has the potential to be one source of noise that can interfere with the effectiveness of teaching and learning activities in educational environment.

The results of the measurement of noise levels by taking the average value of observations for one day. During the day the noise is at intervals of 65 - 70 dB(A) in a zone close to the highway, i.e. Pemuda and Rawamangun street, motorcycle parking, canteen, near residential housing and open space with the threshold set is still above. At night, the interval is 40-45 dB(A) below the threshold. Overall, for one day in the August-October 2019 period, the noise level average of 61 + 3 dB(A). The value exceeded the threshold of 55 dB(A) according [7,26]. Strategies to minimize noise impact by increasing green open space [13], improvement of the façade acoustic [14,15].

4. Conclusion
Based on the focus of the research it can be concluded (1) the noise level at UNJ, Campus A - Rawamangun, is divided into 5 zones, namely: (a) Red Zone, 75 - 80 dB(A), (b) Yellow Zone, (c) Green zone, 55 - 65 dB(A) and (e) Light Blue/Purple Zone, 45 - 50 dB(A). Average noise level in UNJ Campus is 61+3 dB(A) exceeded the threshold of 55 dB(A) and 33.1% of student perception are disturbed when the noise level increases which is expressed by Noise Influence = 0.060dB (A) -1.597. The influence of noise level on a scale of 1-4 (1–undisturbing, 2–sometimes disturbed, 3–quite disturbed, and 4-disturbed).

Acknowledgment
This research can be carried out with funding from Jakarta State University through the Competitive Research Scheme of the Faculty of Engineering, UNJ. Thank you to reviewers who provided input and completed this article for the better.

References
[1] Kujala T and Brattico E 2009 Detrimental Noise Effects on Brain’s Speech Functions J Biol Psychol 81 135–143
[2] Sun K, De Coensel B, Echevarria Sanchez GM, Van Renterghem T and Botteldooren D 2018 Effect of Interaction Between Attention Focusing Capability and Visual Factors on Road Traffic Noise Annoyance J Appl Acoust 134 16–24
[3] Collins T W, Grineski S E and Nadybaly S 2019 Social disparities in exposure to noise at public schools in the contiguous United States J Environ Res 175 257–265
[4] Tzivian L, Jokisch M, Winkler A, Weimar C, Hennig F and Sugiri D 2017 Associations of Long-Term Exposure to Air Pollution and Road Traffic Noise with Cognitive Function—An Analysis of Effect Measure Modification J Environ Int 103 30–38
[5] Jafari Z, Kolb B E and Mohajerani M H 2019 Noise Exposure Accelerates the Risk of Cognitive Impairment and Alzheimer’s Disease: Adulthood, Gestational, and Prenatal Mechanistic Evidence from Animal Studies J Neurosci Biobehav Rev
[6] Klompmaker J O, Hoek G, Bloemsma LD, Wijga A H, van den Brink C and Brunekeef B 2019 Associations of Combined Exposures To Surrounding Green, Air Pollution And Traffic Noise On Mental Health J Environ Int 129 525–537
[7] Decree of the State Minister of Environment of the Republic of Indonesia No. KEP-48/MENLH/11/1996 about Standard Noise Levels
[8] Poerwanto E 2018 Evaluasi Faktor Kebisingan Ruang Kuliah Di STTA Pada Gedung Halim Perdana Kusuma Dan Abdurrahman Saleh (Yogyakarta, Indonesia: Research report)
[9] Hyperastuty A S, Asmoro W A and Dhanardono T 2013 Analisa Tingkat Kebisingan Lalu Lintas Pada Lingkungan Kampus STIKES Insan Unggul Surabaya. J Tek Pomits 1 1–4
[10] Maulana R R, Soelistijorini R, Santoso T B 2011 Pemetaan Kebisingan Di Lingkungan Kampus Politeknik (PENS-ITS) (Surabaya, Indonesia: Paper)
[11] Goembira F, Ihsan T, Fahyudi M 2016 Analisis Tingkat Kebisingan Di Kawasan Kampus Universitas Putra Indonesia (UPI) Di Kecamatan Lubuk Begalung Kota Padang. J Dampak 13 26–30
[12] Nuristian K, Warsito G A P and Supriyanto A 2015 Analisis Tingkat Kebisingan Suara Di Lingkungan Universitas Lampung J Teor dan Apl Fis 3 69–73
[13] Dzhambov A M, Markevych I, Tilov B G and Dimitrova D D 2018 Residential Greenspace Might Modify the Effect of Road Traffic Noise Exposure on General Mental Health in Students J Urban Forestry and Urban Greening 34 233–239
[14] Putra I S, Rombang J A 2018 Analysis of Vegetation Capability to Reduce Noise J Eugenia 24 105–115
[15] Secchi S, Astolfi A, Calosso G, Casini D, Cellai G and Scamoni F 2017 Effect of Outdoor Noise and Façade Sound Insulation on Indoor Acoustic Environment Of Italian Schools J Appl Acoust 126 120–130
[16] Thacher J D, Poulsen A H, Raaschou-Nielsen O, Jensen A, Hillig K and Roswall N 2020 High-resolution assessment of road traffic noise exposure in Denmark J Environ Res 182 109051
[17] Aguilar J R 2019 A review of acoustic design criteria for school infrastructure in Chile J Rev. Ing. Construcción 34 115–123
[18] Browning M H E M and Locke D H 2020 The Greenspace-Academic Performance Link Varies by Remote Sensing Measure and Urbanicity Around Maryland Public Schools J Landsc Urban Plan 195 103706
[19] Wayne S J, Fortner S A, Kitzes J A, Timm C and Kalishman S 2013 Cause or Effect? The Relationship Between Student Perception of The Medical School Learning Environment and Academic Performance on USMLE Step 1 J Med Teach 35 376–380
[20] Cernat V and Moldovan L 2018 Emotional Problems and Academic Performance of Students in Manufacturing J Procedia Manuf 22 833–839
[21] Gilavand A and Jamshidnezhad A 2016 The Effect of Noise in Educational Institutions on Learning and Academic Achievement of Elementary Students in Ahvaz, South- West of Iran. Int J Pediatr 16 1453–1463
[22] Pakulski L A, Glassman J, Anderson K and Squires E 2016 Noise Pollution (Noise - Scape) Among School Children. J Educ Pediatr (Re)Habilitative Audiol 22 1–9
[23] Gilavand A 2016 Investigating the Impact of Environmental Factors on Learning and Academic Achievement of Elementary Students Review Int J Med Res Heal Sci 5 360–369
[24] Kaddoura I, Kröger L and Nagel K 2017 An Activity-Based and Dynamic Approach to Calculate Road Traffic Noise Damages J Transp Res Part D Transp Environ 54 335–347
[25] Lan Z, He C and Cai M 2020 Urban Road Traffic Noise Spatiotemporal Distribution Mapping Using Multisource Data. J Transp Res Part D Transp Environ 82 102323
[26] Regulation of the Minister of Health of the Republic of Indonesia No 70/2016 about Industrial Work Environment Health Standards and Requirements