Monogamy relations of all quantum correlation measures for multipartite quantum systems

Zhi-Xiang Jin¹ and Shao-Ming Fei¹,²

¹School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
²Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Abstract

The monogamy relations of quantum correlation restrict the sharability of quantum correlations in multipartite quantum states. We show that all measures of quantum correlations satisfy some kind of monogamy relations for arbitrary multipartite quantum states. Moreover, by introducing residual quantum correlations, we present tighter monogamy inequalities that are better than all the existing ones. In particular, for multi-qubit pure states, we also establish new monogamous relations based on the concurrence and concurrence of assistance under the partition of the first two qubits and the remaining ones.
Sharing of quantum correlations among many parties is an important quantum phenomena, which plays significant roles in quantum information processing ranging from quantum communication protocols \cite{1-4} to cooperative events in quantum systems \cite{5,6}. It is therefore important to conceptualize and quantify quantum correlations. Any such measure of quantum correlation is expected to satisfy a monotonic (precisely, non-increasing) under an intuitively satisfactory set of local quantum operations \cite{7,8}.

For a quantum state shared by more than two parties, one may expect that all the measures of quantum correlation would additionally follow a monogamy property \cite{9-18}, which restricts the sharability of quantum correlations among many parties. The monogamous nature of quantum correlations plays a key role in the security of quantum cryptography \cite{19}. Monogamy relations are not always satisfied by a correlation measure, for example, the entanglement of formation \cite{10} which quantifies the amount of entanglement required for preparation of a given bipartite quantum state. However, although the concurrence \cite{20} and entanglement of formation do not satisfy the monogamy inequality, \(\mathcal{E}_{A|BC} \geq \mathcal{E}_{AB} + \mathcal{E}_{AC} \) (\(\mathcal{E}_{A|BC} \) stands for the entanglement between \(A \) and \(BC \)), it has been shown that the \(\alpha \)-th \((\alpha \geq 2) \) power of concurrence and the \(\alpha \)-th \((\alpha \geq \sqrt{2}) \) power of entanglement of formation for \(N \)-qubit states do satisfy such monogamy relations \cite{21}. In \cite{22} a tighter monogamy relation for \(\alpha \)-th \((\alpha \geq 2) \) power of concurrence has been presented. It has been shown that the information-theoretic quantum correlation measure, quantum discord \cite{23}, can violate the monogamy relations \cite{24-27}, but a monotonically increasing function of the quantum discord could satisfy the monogamy relation for three-qubit pure states \cite{28}.

In this paper, we first show that all quantum correlation measures satisfy some kind of monogamy relations for arbitrary multipartite quantum states. Then we introduce the residual quantum correlations, and present tighter monogamy inequalities that are better than all the existing ones. For multi-qubit pure states, we establish new monogamous relations based on the concurrence and concurrence of assistance under the partition of the first two qubits and the rest ones.

Let \(\mathcal{Q} \) be an arbitrary quantum correlation measure of bipartite systems. The quantum correlation measure \(\mathcal{Q} \) is said to be monogamous for an \(N \)-partite quantum state \(\rho_{AB_1B_2...B_{N-1}} \), if it satisfies the following inequality \cite{29},

\[
\mathcal{Q}(\rho_{AB_1}) + \mathcal{Q}(\rho_{AB_2}) + \cdots + \mathcal{Q}(\rho_{AB_{N-1}}) \leq \mathcal{Q}(\rho_{A|B_1B_2...B_{N-1}}), \tag{1}
\]
where ρ_{AB_i}, $i = 1, \ldots, N - 1$, are the reduced density matrices, $Q(\rho_{A|B_1B_2\cdots B_{N-1}})$ denotes the quantum correlation Q of the state $\rho_{AB_1B_2\cdots B_{N-1}}$ under bipartite partition $A|B_1B_2\cdots B_{N-1}$. For simplicity, we denote $Q(\rho_{AB})$ by Q_{AB}, and $Q(\rho_{A|B_1B_2\cdots B_{N-1}})$ by $Q_{A|B_1B_2\cdots B_{N-1}}$. One can define the Q-monogamy score for the N-partite state $\rho_{AB_1B_2\cdots B_{N-1}}$,

$$\delta_Q = Q_{A|B_1B_2\cdots B_{N-1}} - \sum_{i=1}^{N-1} Q_{AB_i}. \quad (2)$$

Non-negativity of δ_Q for all quantum states implies the monogamy of Q. For instance, the square of the concurrence has been shown to be monogamous \cite{9, 12} for all multi-qubit states. However, there are other measures like entanglement of formation, quantum discord, and quantum work deficit which are known to be nonmonogamous for pure three-qubit states \cite{24, 25}.

Given any quantum correlation measure that is non-monogamic for a multipartite quantum state, it is always possible to find a monotonically increasing function of the measure which is monogamous for the same state \cite{30}. It has been proved that for arbitrary dimensional tripartite states, there exists $\beta_{\min}(Q) \in R$ such that for any $\gamma \geq \beta_{\min}(Q)$, the quantum correlation measure Q satisfies the following monogamy relation \cite{30}

$$Q_{A|BC}^\gamma \geq Q_{AB}^\gamma + Q_{AC}^\gamma. \quad (3)$$

In the following, we denote $\beta = \beta_{\min}(Q)$ the minimal value such that Q satisfies the above inequality. Generalizing the conclusion \cite{3} to the N partite case, we have the following result.

[Theorem 1]. For any $d \otimes d_1 \otimes \cdots \otimes d_{N-1}$ state $\rho_{AB_1B_2\cdots B_{N-1}}$, we have

$$Q_{A|B_1B_2\cdots B_{N-1}}^\alpha \geq \sum_{i=1}^{N-1} Q_{AB_i}^\alpha, \quad (4)$$

for $\alpha \geq \beta$, $N \geq 3$.

[Proof]. The Eq. \cite{4} reduces to Eq. \cite{3} for $N = 3$. Suppose the Theorem 1 holds for $N - 2$. Then, if we consider the state $\rho_{AB_2\cdots B_{N-1}}$, we have

$$Q_{A|B_2\cdots B_{N-1}}^\alpha \geq \sum_{i=2}^{N-1} Q_{AB_i}^\alpha,$$

for any $\alpha \geq \beta$.

3
Applying Eq. (3) for the tripartite partition $A|B_1|B_2 \cdots B_{N-1}$, we have

$$Q^{\alpha}_{A|B_1} \geq Q^{\alpha}_{AB_1} + Q^{\alpha}_{A|B_2 \cdots B_{N-1}}$$

$$\geq Q^{\alpha}_{AB_1} + \sum_{i=2}^{N-1} Q^{\alpha}_{AB_i}$$

$$= \sum_{i=2}^{N-1} Q^{\alpha}_{AB_i},$$

for any $\alpha \geq \beta$.

Theorem 1 gives a general result for arbitrary measure of quantum correlations. However, such relations can be further improved by tightening the lower bound of the inequality (4). Similar to the three tangle of concurrence, for tripartite quantum states $\rho \in H_A \otimes H_B \otimes H_C$, we define the residual quantum correlation as a function of α,

$$Q^{\alpha}_{A|B'C} = Q^{\alpha}_{A|BC} - Q^{\alpha}_{AB} - Q^{\alpha}_{AC}, \quad \alpha \geq \beta. \quad (5)$$

In the following, we denote $Q^{\alpha}_{A|B'C} = Q^{\alpha}_{A|B'|C} (\alpha)$ for convenience. Now consider a $d \otimes d \otimes d \otimes d$ state $\rho_{AB_1B_2B_3}$. Define $Q^{\alpha}_{A|B'|B'_2} = \max\{Q^{\alpha}_{A|B_1|B_2}, Q^{\alpha}_{A|B_1|B_3}, Q^{\alpha}_{A|B_2|B_3}\}$, where B'_1 and B'_2 stand for two of B_1, B_2 and B_3 such that $Q^{\alpha}_{A|B'_1|B'_2} = \max\{Q^{\alpha}_{A|B_1|B_2}, Q^{\alpha}_{A|B_1|B_3}, Q^{\alpha}_{A|B_2|B_3}\}$.

[Theorem 2]. For any $d \otimes d_1 \otimes d_2 \otimes d_3$ state $\rho_{AB_1B_2B_3}$, we have

$$Q^{\alpha}_{A|B_1B_2B_3} \geq \sum_{i=1}^{3} Q^{\alpha}_{AB_i} + Q^{\alpha}_{A|B'_i|B'_2}, \quad (6)$$

for $\alpha \geq \beta$.

[Proof]. By definition we have

$$\sum_{i=1}^{3} Q^{\alpha}_{AB_i} + Q^{\alpha}_{A|B'_i|B'_2} = Q^{\alpha}_{AB_3} + Q^{\alpha}_{A|B'_3|B'_2}$$

$$\leq Q^{\alpha}_{A|B_1B_2B_3},$$

where B'_3 is the complementary of $B'_1B'_2$ in the subsystem $B_1B_2B_3$, the equality is due to the definition of the residual quantum correlation. From [4], we get the inequality.

Since the last term $Q^{\alpha}_{A|B'_i|B'_2}$ in (6) is semi-positive, the inequality (6) is always tighter than (4) for such states $\rho_{AB_1B_2B_3}$. Let us consider the following example based on the quantum correlation measure concurrence. First, we give the definition of concurrence. For a bipartite pure state $|\psi\rangle_{AB} \in H_A \otimes H_B$, the concurrence is $C(|\psi\rangle_{AB}) = \sqrt{2 [1 - Tr(\rho^{2}_A)]}$,
where ρ_A is the reduced density matrix obtained by tracing over the subsystem B, $\rho_A = \text{Tr}_B (|\psi\rangle_{AB} \langle \psi|)$. The concurrence for a bipartite mixed state ρ_{AB} is defined by the convex roof extension,

$$C(\rho_{AB}) = \min \{ p_i C(|\psi_i\rangle) \} \sum_i p_i C(|\psi_i\rangle),$$

where the minimum is taken over all possible decompositions of $\rho_{AB} = \sum_i p_i |\psi_i\rangle \langle \psi_i|$, with $p_i \geq 0$ and $\sum p_i = 1$ and $|\psi_i\rangle \in H_A \otimes H_B$. In [21], the authors show that

$$C^\alpha(\rho_{A|B_1B_2 \cdots B_{N-1}}) \geq C^\alpha(\rho_{AB_1}) + C^\alpha(\rho_{AB_2}) + \cdots + C^\alpha(\rho_{AB_{N-1}}),$$

for an N-qubit state $\rho_{AB_1 \cdots B_{N-1}}$.

Example 1. For the concurrence of the W state,

$$|W\rangle_{A|B_1B_2B_3} = \frac{1}{2}(|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle),$$

we have $\beta = 2$, $C_{AB_i} = \frac{1}{2}$, $i = 1, 2, 3$, and $C_{A|B_1B_2} = C_{A|B_1B_3} = C_{A|B_2B_3} = \frac{\sqrt{2}}{2}$. Therefore

$$C_{AB_i}^\alpha = C_{A|B_1B_2}^\alpha = C_{A|B_1B_3}^\alpha = C_{A|B_2B_3}^\alpha = (\frac{\sqrt{2}}{2})^\alpha - 2(\frac{1}{2})^\alpha.$$

Set $y_1 = C_{A|B_1B_2B_3}^\alpha = (\frac{\sqrt{2}}{2})^\alpha$, $y_2 = \sum_{i=1}^3 C_{AB_i}^\alpha = 3(\frac{1}{2})^\alpha$, $y_3 = \sum_{i=1}^3 C_{AB_i}^\alpha + C_{A|B_1B_2}^\alpha = (\frac{\sqrt{2}}{2})^\alpha + (\frac{1}{2})^\alpha$, one can see that our result is better than (7) in [21], see Fig. 1.

Generalizing the conclusion in Theorem 2 to N partite case, we have the following result.

[Theorem 3]. For any $d \otimes d_1 \otimes \cdots \otimes d_{N-1}$ state $\rho_{A|B_1B_2 \cdots B_{N-1}}$, we have

$$Q^\alpha_{A|B_1B_2 \cdots B_{N-1}} \geq \sum_{i=1}^{N-1} Q^\alpha_{AB_i} + \sum_{k=2}^{N-2} Q^\alpha_{A|B'_1|B'_2| \cdots |B'_k},$$

(9)
for $\alpha \geq \beta$, where $Q^\alpha_{A|B_1'B_2'...B_n'} = \max_{1\leq l\leq k+1\{Q^\alpha_{A|B_1'...B_{k+1}} \}$ (where B_i stands for B_i being omitted in the sub-indices), $Q^\alpha_{A|B_1|B_2|...|B_{k+1}} = Q^\alpha_{A|B_1B_2...B_{k+1}} - \sum_{i=1}^{k+1} Q^\alpha_{AB_i} - \sum_{i=2}^{k} Q^\alpha_{A|B_1'|B_2'|...|B_{k}'}$, $2 \leq k \leq N - 2$, $1 \leq l \leq k + 1$, $N \geq 4$.

[Proof]. We prove the theorem by induction. For $N = 4$ it reduces to Theorem 2. Suppose the Theorem 2 holds for $N = n$, i.e.,

$$Q^\alpha_{A|B_1B_2...B_{n-1}} \geq \sum_{i=1}^{n-1} Q^\alpha_{AB_i} + Q^\alpha_{A|B_1|B_2'} + ... + Q^\alpha_{A|B_1'|B_2'...B_{n-2}'}.$$ \hspace{1cm} (10)

Then for $N = n + 1$, we have

$$\sum_{i=1}^{n} Q^\alpha_{AB_i} + Q^\alpha_{A|B_1|B_2'} + ... + Q^\alpha_{A|B_1'|B_2'...B_{n-1}'} \leq Q^\alpha_{A|B_1'B_2'...B_{n-1}'} + Q^\alpha_{AB_n'} \leq Q^\alpha_{A|B_1B_2...B_{n}}$$

where B_n' is the complementary of $B_1'B_2', ... , B_{n-1}'$ in the subsystem $B_1B_2, ... , B_n$. The first inequality is due to (10). By (4) we get the last inequality. \hfill \blacksquare

In Theorems 1 and 2 we have take into account the maximum value among $Q^\alpha_{A|B_1|...|B_{k+1}}$. If instead of the maximum value, one just considers the mean value of $Q^\alpha_{A|B_1|...|B_{k+1}}$, one may have the following corollary.

[Corollary 1]. For any $d \otimes d_1 \otimes ... \otimes d_{N-1}$ state $\rho_{A|B_1B_2...B_{N-1}}$, we have

$$Q^\alpha_{A|B_1B_2...B_{N-1}} \geq \sum_{i=1}^{N-1} Q^\alpha_{AB_i} + \sum_{k=3}^{N-1} \left(\frac{1}{k} \sum_{l=1}^{k} Q^\alpha_{A|B_1|...|B_{k}} \right),$$ \hspace{1cm} (11)

for all $\alpha \geq \beta$, $N \geq 4$, where

$$Q^\alpha_{A|B_1B_2...B_{j}} = Q^\alpha_{A|B_1B_2...B_{j}} - \sum_{i=1}^{j} Q^\alpha_{AB_i} - \sum_{k=3}^{j} \left(\frac{1}{k} \sum_{l=1}^{k} Q^\alpha_{A|B_1|...|B_{k}} \right),$$ \hspace{1cm} (12)

$3 \leq j \leq N - 1$, $3 \leq k \leq N - 1$ and $1 \leq l \leq k$.

Example 2. Let us consider the concurrence of the four-qubit pure state,

$$|\psi\rangle_{ABCD} = \frac{1}{\sqrt{3}}(|0000\rangle + |0010\rangle + |1011\rangle).$$ \hspace{1cm} (13)

We have $\rho_{ACD} = \text{Tr}_B(|\psi\rangle_{ABCD}\langle\psi|) = \frac{1}{3}(|000\rangle + |010\rangle + |111\rangle)(|000\rangle + |010\rangle + |111\rangle), \rho_{BCD} = \text{Tr}_A(|\psi\rangle_{ABCD}\langle\psi|) = \frac{1}{3}(|000\rangle\langle000| + |000\rangle\langle010| + |001\rangle\langle010| + |010\rangle\langle010| + |011\rangle\langle011|), C_{AB} = C_{AC} = 0, C_{AD} = \frac{2}{3}, C_{BC} = C_{BD} = 0, C_{A|BC} = 0, C_{A|BD} = \frac{2}{3}, C_{A|CD} = \frac{2\sqrt{2}}{3}$. Therefore,
FIG. 2: Solid (blue) line y_1 for the αth power of concurrence under bipartition $A|B_1B_2B_3$; Dashed (red) line y_3 for the lower bound in [11]; Dotted (green) line y_2 for the result in [21].

$C_{AB} = C_{A|B} = 0, C_{A|C} = (\frac{\sqrt{2}}{3})^2 - (\frac{2}{3})^\alpha$. Set $y_1 = C_{AB|C} = (\frac{\sqrt{2}}{3})^\alpha$, $y_2 = C_{AC} + C_{AD}$, $y_3 = C_{AB} + C_{AC} + C_{AD} + \frac{1}{3}(\alpha)$, $y_4 = C_{AC} + C_{AB} + C_{AD} + \frac{1}{3}(\alpha)^2$, one can see that our result is better than that in [21], see Fig. 2.

Next, we adopt an approach used in [22] to improve the further above results on monogamy relations for multipartite quantum correlation measures. First, we give a Lemma.

[Lemma]. For any $d_1 \otimes d_2 \otimes d_3$ mixed state $\rho \in H_A \otimes H_B \otimes H_C$, if $Q_{AB} \geq Q_{AC}$, we have

$$Q_{A|BC} \geq Q_{AB} + \alpha \beta Q_{AC}, \quad (14)$$

for all $\alpha \geq \beta$.

[Proof]. For arbitrary $d_1 \otimes d_2 \otimes d_3$ tripartite state ρ_{ABC}. If $Q_{AB} \geq Q_{AC}$, we have

$$Q_{A|BC} = (Q_{AB}^\beta + Q_{AC}^\beta)^{\frac{\alpha}{\beta}} = Q_{AB}^\alpha \left(1 + \frac{Q_{AC}^\beta}{Q_{AB}^\beta}\right)^{\frac{\alpha}{\beta}}$$

$$\geq Q_{AB}^\alpha \left[1 + \frac{\alpha}{\beta} \left(\frac{Q_{AC}^\beta}{Q_{AB}^\beta}\right)^{\frac{\alpha}{\beta}}\right] = Q_{AB}^\alpha + \frac{\alpha}{\beta} Q_{AC}^\alpha,$$

where the first equality is due to (3), the inequality is due to the inequality $(1 + t)^x \geq 1 + xt \geq 1 + xt$ for $x \geq 1$, $0 \leq t \leq 1.$

In the above Lemma, without loss of generality, we have assumed that $Q_{AB} \geq Q_{AC}$, as the subsystems A and B are equivalent. Moreover, in the proof of the Lemma we have
assumed $Q_{AB} > 0$. If $Q_{AB} = 0$ and $Q_{AB} \geq Q_{AC}$, then $Q_{AB} = Q_{AC} = 0$. The lower bound is trivially zero. Generalizing the Lemma to multipartite quantum systems, we have the following Theorem.

[Theorem 4]. For any $d \otimes d_1 \otimes \cdots \otimes d_{N-1}$ state $\rho \in H_A \otimes H_{B_1} \otimes \cdots \otimes H_{B_{N-1}}$, if $Q_{AB_i} \geq Q_{A|B_{i+1} \cdots B_{N-1}}$ for $i = 1, 2, \cdots, m$, and $Q_{AB_j} \leq Q_{A|B_{j+1} \cdots B_{N-1}}$ for $j = m+1, \cdots, N-2$, $\forall 1 \leq m \leq N - 3$, $N \geq 4$, we have

$$Q_{A|B_1B_2\cdots B_{N-1}}^\alpha \geq Q_{AB_1}^\alpha + \frac{\alpha}{\beta} Q_{AB_2}^\alpha + \cdots + \left(\frac{\alpha}{\beta}\right)^{m-1} Q_{AB_m}^\alpha + \left(\frac{\alpha}{\beta}\right)^{m+1} (Q_{AB_{m+1}}^\alpha + \cdots + Q_{AB_{N-2}}^\alpha) + \left(\frac{\alpha}{\beta}\right)^m Q_{AB_{N-1}}^\alpha,$$

for all $\alpha \geq \beta$.

[Proof]. By using the Lemma repeatedly, one gets

$$Q_{A|B_1B_2\cdots B_{N-1}}^\alpha \geq Q_{AB_1}^\alpha + \frac{\alpha}{\beta} Q_{AB_2}^\alpha + \cdots + \left(\frac{\alpha}{\beta}\right)^{m-1} Q_{AB_m}^\alpha + \left(\frac{\alpha}{\beta}\right)^{m+1} (Q_{AB_{m+1}}^\alpha + \cdots + Q_{AB_{N-2}}^\alpha) + \left(\frac{\alpha}{\beta}\right)^m Q_{AB_{N-1}}^\alpha,$$ \hspace{1cm} (15)

As $Q_{AB_j} \leq Q_{A|B_{j+1} \cdots B_{N-1}}$ for $j = m + 1, \cdots, N - 2$, by (16) we get

$$Q_{A|B_{m+1} \cdots B_{N-1}}^\alpha \geq Q_{AB_{m+1}}^\alpha + Q_{A|B_{m+2} \cdots B_{N-1}}^\alpha + \alpha Q_{AB_{m+1}}^\alpha + \cdots + Q_{AB_{N-2}}^\alpha + Q_{AB_{N-1}}^\alpha,$$ \hspace{1cm} (17)

Combining (16) and (17), we have Theorem 4.

Similar to the Theorem 3, (15) can be improved by adding a term for residual quantum correlation. By a similar derivation to Theorem 3, we have

[Theorem 5]. For any $d \otimes d_1 \otimes \cdots \otimes d_{N-1}$ state $\rho \in H_A \otimes H_{B_1} \otimes \cdots \otimes H_{B_{N-1}}$, if $Q_{AB_i} \geq Q_{A|B_{i+1} \cdots B_{N-1}}$ for $i = 1, 2, \cdots, m$, and $Q_{AB_j} \leq Q_{A|B_{j+1} \cdots B_{N-1}}$ for $j = m+1, \cdots, N-2$, $\forall 1 \leq m \leq N - 3$, $N \geq 4$, we have

$$Q_{A|B_1B_2\cdots B_{N-1}}^\alpha \geq Q_{AB_1}^\alpha + \frac{\alpha}{\beta} Q_{AB_2}^\alpha + \cdots + \left(\frac{\alpha}{\beta}\right)^{m-1} Q_{AB_m}^\alpha + \left(\frac{\alpha}{\beta}\right)^{m+1} (Q_{AB_{m+1}}^\alpha + \cdots + Q_{AB_{N-2}}^\alpha) + \left(\frac{\alpha}{\beta}\right)^m Q_{AB_{N-1}}^\alpha,$$
∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

\[
\mathcal{Q}_{AB}^{\alpha|B_1B_2...B_{N-1}} \geq \mathcal{Q}_{AB}^{\alpha} + \frac{\alpha}{\beta} \mathcal{Q}_{AB}^{\alpha} + \cdots + \left(\frac{\alpha}{\beta}\right)^{m-1} \mathcal{Q}_{AB}^{\alpha} \\
+ \left(\frac{\alpha}{\beta}\right)^{m+1} (\mathcal{Q}_{ABm+1}^{\alpha} + \cdots + \mathcal{Q}_{ABN-2}^{\alpha}) + \left(\frac{\alpha}{\beta}\right)^{m} \mathcal{Q}_{ABN-1}^{\alpha} \\
+ \sum_{k=2}^{N-2} \hat{\mathcal{Q}}_{A|B|B'_1|B'_2|...|B'_k}^{\alpha} \\
= \sum_{i=1}^{N-1} \hat{\mathcal{Q}}_{ABi}^{\alpha} + \sum_{k=2}^{N-2} \hat{\mathcal{Q}}_{A|B|B'_1|B'_2|...|B'_k}^{\alpha},
\]

for all α ≥ β, where for simplicity, we have denoted \(\hat{\mathcal{Q}}_{AB1}^{\alpha} = \mathcal{Q}_{AB1}^{\alpha}, \hat{\mathcal{Q}}_{AB2}^{\alpha} = \frac{\alpha}{\beta} \mathcal{Q}_{AB2}^{\alpha}, \cdots, \hat{\mathcal{Q}}_{ABm}^{\alpha} = \left(\frac{\alpha}{\beta}\right)^{m-1} \mathcal{Q}_{ABm}^{\alpha}, \hat{\mathcal{Q}}_{ABm+1}^{\alpha} = \left(\frac{\alpha}{\beta}\right)^{m+1} \mathcal{Q}_{ABm+1}^{\alpha}, \cdots, \hat{\mathcal{Q}}_{ABN-2}^{\alpha} = \left(\frac{\alpha}{\beta}\right)^{m} \mathcal{Q}_{ABN-2}^{\alpha}, \hat{\mathcal{Q}}_{ABN-1}^{\alpha} = \left(\frac{\alpha}{\beta}\right)^{m} \mathcal{Q}_{ABN-1}^{\alpha} .

The residual quantum correlation term \(\hat{\mathcal{Q}}_{A|B|B'_1|B'_2|...|B'_k}^{\alpha} = \max_{1 \leq l \leq k} Q_{A|B_1|...|B_l|B_l'}^{\alpha} \).

As an example, let us consider again the the concurrence of the state (8). We have \(\hat{C}_{A|B|B_2}^{\alpha} = \hat{C}_{A|B_1|B_3}^{\alpha} = \hat{C}_{A|B_2|B_3}^{\alpha} = (\sqrt{\frac{2}{3}})^{\alpha} - (1 + \frac{\alpha}{2})(\frac{1}{2})^{\alpha} . \) Set \(y_1 = C_{A|B_1B_2B_3}^{\alpha} = (\sqrt{\frac{3}{2}})^{\alpha}, \)

\(y_2 = \sum_{i=1}^{3} \hat{C}_{A|B_i}^{\alpha} + \hat{C}_{A|B_1B_2}^{\alpha} = (\sqrt{\frac{3}{2}})^{\alpha} + \frac{\alpha}{2}(\frac{1}{2})^{\alpha}, y_3 = \sum_{i=1}^{3} \hat{C}_{A|B_i}^{\alpha} = (\alpha + 1)(\frac{1}{2})^{\alpha} . \) We see in Fig. 3 that the bound \([15]\) is improved.

In the following, we consider the multi-qubit states, \(d = d_1 = \cdots = d_{N-1} = 2 . \) For this
case, it has been shown in [32] that

\[C^2_{AB|B_2B_3} \leq C^2_{A|AB_1} + C^2_{a|AB_2} + \cdots + C^2_{a|AB_{N-1}}, \]

(19)

where the concurrence of assistance \(C_a \) is defined by \(C_a(\rho_{ABC}) \equiv C_a(\rho_{AB}) = \max_{\{p_i, |\psi_i\}i} \sum_i p_i C(|\psi_i\rangle) \), with the maximum taking over all possible decompositions of \(\rho_{AB} = \text{Tr}_C(|\psi_{ABC}\rangle\langle\psi|) = \sum_i p_i |\psi_i\rangle_{AB} \langle\psi_i| \), and \(C_{AB} = C_a(\rho_{AB}) \).

The residual quantum correlation for the concurrence can be also used to improve other kinds of monogamous relations based on concurrence and concurrence of assistance [31]. For \(N \)-qubit systems \(ABC_1 \cdots C_{N-2} \), the monogamy relations satisfied by the concurrence of \(N \)-qubit pure states under the partition \(AB \) and \(C_1 \cdots C_{N-2} \) have been first time established in [33]. In following we give an improved one.

[Theorem 6]. For any \(2 \otimes 2 \otimes \cdots \otimes 2 \) pure state \(|\psi\rangle_{ABC_1 \cdots C_{N-2}} \), we have

\[
C^2_{AB|C_1 \cdots C_{N-2}} \geq \max \left\{ \sum_{i=0}^{N-2} (C_{AC_i}^2 - C_{aBC_i}^2) + \sum_{k=1}^{N-3} C_{A|C_0,C_1|\cdots|C_k}^2, \right. \\
\left. \sum_{i=0}^{N-2} (C_{BC_i}^2 - C_{aAC_i}^2) + \sum_{k=1}^{N-3} C_{B|C_0,C_1|\cdots|C_k}^2 \right\}
\]

(20)

where \(\rho_{AC_0} = \rho_{AB}, \rho_{BC_0} = \rho_{BA} \),

\[
C_{A|C_0,C_1|\cdots|C_k}^2 = \sum_{i=0}^{k} C_{AC_i}^2 - \sum_{i=2}^{k-1} C_{A|C_0,C_i|\cdots|C_k}^2, \quad 1 \leq k \leq N - 3, \quad 0 \leq l \leq k + 1.
\]

[Proof]. For \(2 \otimes 2 \otimes \cdots \otimes 2 \) state \(|\psi\rangle_{ABC_1 \cdots C_{N-2}} \), one has

\[
C^2_{AB|C_1 \cdots C_{N-2}} \geq 2T(\rho_{AB}) - 2T(\rho_A) - 2T(\rho_B)
\]

\[
= C^2_{A|BC_1 \cdots C_{N-2}} - C^2_{B|AC_1 \cdots C_{N-2}}
\]

\[
\geq \sum_{i=0}^{N-2} C_{AC_i}^2 + \sum_{k=1}^{N-3} C_{A|C_0,C_i|\cdots|C_k}^2 - C_{B|AC_1 \cdots C_{N-2}}^2
\]

\[
\geq \sum_{i=0}^{N-2} C_{AC_i}^2 + \sum_{k=1}^{N-3} C_{A|C_0,C_i|\cdots|C_k}^2 - \sum_{i=0}^{N-2} C_{aBC_i}^2
\]

where \(T(\rho) = 1 - \text{Tr}(\rho^2) \), the first inequality is due to a property of the linear entropy. Using the Theorem 3, one can get the second inequality. The last inequality is obtained from (19).

The second summation term in (20) improves the result in [33]. Consider the concurrence of the state [13], \(|\psi\rangle_{AB_1B_2B_3} = |\psi\rangle_{ABCD} \). From Theorem 6 we have \(C_{AB|CD} \geq \frac{8}{5} \), which is better than the result \(C_{AB|CD} \geq \frac{4}{5} \) from [33].
Now we generalize our results to the concurrence $C_{ABC_1|C_2\cdots C_{N-2}}$ under partition ABC_1 and $C_2\cdots C_{N-2}$ ($N \geq 6$) for pure state $|\psi\rangle_{ABC_1\cdots C_{N-2}}$. Similar to Theorem 6, we can obtain the following corollary:

[Corollary 2]. For any N-qubit pure state $|\psi\rangle_{ABC_1\cdots C_{N-2}}$, we have

$$C_{ABC_1|C_2\cdots C_{N-2}}^2 \geq \max \{ J_A, J_B \} - J_{C_1},$$

where $J_A = \sum_{i=0}^{N-2} (C_{AC_i}^2 - C_{a BC_i}^2) + \sum_{k=1}^{N-3} C_{A|C_0|C_1|\cdots|C_k}^2$, $J_B = \sum_{i=0}^{N-2} (C_{BC_i}^2 - C_{a AC_i}^2) + \sum_{k=1}^{N-3} C_{B|C_0|C_1|\cdots|C_k}^2$, $J_{C_1} = C_{a C_1 A}^2 + C_{a C_1 B}^2 + \sum_{i=2}^{N-2} C_{a C_1 C_i}^2$.

[Proof]. For any N-qubit pure state $|\psi\rangle_{ABC_1\cdots C_{N-2}}$, we have

$$C_{ABC_1|C_2\cdots C_{N-2}}^2 = 2T(\rho_{ABC_1})$$

$$\geq 2T(\rho_{AB}) - 2T(\rho_{C_1})$$

$$= C_{AB|C_1\cdots C_{N-2}}^2 - C_{C_1|ABC_2\cdots C_{N-2}}^2,$$

where the inequality is due to the property of the linear entropy $T(\rho_{ABC_1}) \geq T(\rho_{AB}) - T(\rho_{C_1})$. Combining (19) and (20), we obtain (21).

We have presented general monogamy relations for any quantum correlation measures and multipartite quantum states. Similar to the three tangle of concurrence, we defined the αth ($\alpha \geq \beta$) power of the residual quantum correlation. Based on this, we have established tighter monogamy inequalities for arbitrary quantum correlation measures. For qubit systems, the bound for concurrence, given by concurrence of assistance, has been also improved. Finally, we have presented a different kind of monogamy relations satisfied by the concurrence of N-qubit pure states under partition AB and $C_1\cdots C_{N-2}$, as well as under partition ABC_1 and $C_2\cdots C_{N-2}$, which is also shown to be better than the existing ones. The residual quantum correlation we introduced may also contribute to improve other relations satisfied by the measures of quantum correlations.

[1] C. H. Bennett, S. J. Wiesner, Phys. Rev. Lett 69 (1992) 2881.

[2] C. H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres, W. K. Wootters, Phys. Rev. Lett 70 (1993) 1895.

[3] J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Rev. Mod. Phys. 84 (2012) 777-838.
[4] A. Sen(De), U. Sen, Physics News 40 (2010) 17-32 (available at arXiv:quant-ph/1105.2412).
[5] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), U. Sen, Adv. Phys 56 (2007) 243379.
[6] L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys 80 (2008) 517-576.
[7] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Modern Phys. 81 (2009) 865942.
[8] K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Modern Phys. 84 (2012) 1655.
[9] A. K. Ekert, Phys. Rev. Lett. 67 (1991) 661; V. Coffman, J. Kundu, W. K. Wootters, Phys. Rev. A 61 (2000) 052306.
[10] C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53 (1996) 2046.
[11] M. Koashi, A. Winter, Phys. Rev. A 69 (2004) 022309.
[12] G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 73 (2006) 032345.
[13] B. Toner, Proc. R. Soc. A 465, 59 (2009).
[14] B. Toner and F, arXiv:quant-ph/0611001.
[15] M. D. Reid, Phys. Rev. A 88, 062108 (2013).
[16] Y. Xiang, I. Kogias, G. Adesso, and Q. Y. He, Phys. Rev. A 95, 010101 (2017).
[17] S. Cheng, A. Milne, M. J. W. Hall, and H. M. Wiseman, Phys. Rev. A 94, 042105 (2016).
[18] A. Milne, S. Jevtic, D. Jennings, H. Wiseman, and T. Rudolph, New J. Phys. 16, 083017 (2014).
[19] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys 74 (2002) 145-195; B. M. Terhal, IBM J. Res. Dev. 48 (2004) 71-78.
[20] S. Hill, W. K. Wootters, Phys. Rev. Lett 78 (1997) 5022-5025.
S. Albeverio, S. M. Fei. J Opt B: Quantum Semiclass Opt 3 (2001) 223-227.
[21] X. N. Zhu and S. M. Fei, Phys. Rev. A 90 (2014) 024304.
[22] Z. X. Jin and S. M. Fei, Quant. Inf. Process (2017) 16:77.
[23] H. Ollivier, W. H. Zurek, Phys. Rev. Lett 88 (2001) 017901.
[24] R. Prabhu, A. K. Pati, A. Sen(De), U. Sen, Phys. Rev. A 85 (2012) 040102(R).
[25] G. L. Giorgi, Phys. Rev. A 84 (2011) 054301.
[26] R. Prabhu, A. K. Pati, A. Sen(De), U. Sen, Phys. Rev. A 86 (2012) 052337.
[27] X. J. Ren, H. Fan, Quant. Inf. Comp 13 (2013) 0469-0478.
[28] Y. K. Bai, N. Zhang, M. Y. Ye, Z. D. Wang, Phys. Rev. A 88 (2013) 012123.
[29] A. Kumar, R. Prabhu, A. Sen(De), and U. Sen, Phys. Rev. A 91 (2015) 012341.
[30] K. Salini, R. Prabhu, A. Sen(De), and U. Sen. Ann. Phys 348 (2014) 297-305.

[31] G. Gour, D. A. Meyer, and B. C. Sanders, Phys. Rev. A 72 (2005) 042329.

[32] G. Gour, S. Bandyopadhyay, and B. C. Sanders, J. Math. Phys 48 (2007) 012108.

[33] X. N. Zhu and S. M. Fei, Phys. Rev. A 92 (2015) 062345.