Proteomic and toxicological analysis of the venom of *Micrurus yatesi* and its neutralization by an antivenom

Gianni Mena\(^a\), Stephanie Chaves-Araya\(^a\), Johelen Chacón\(^a\), Enikő Török\(^b\), Ferenc Török\(^c\), Fabián Bonilla\(^a\), Mahmood Sasa\(^a,d\), José María Gutiérrez\(^a\), Bruno Lomonte\(^a\), Julián Fernández\(^b\)*

\(^a\) Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
\(^b\) Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
\(^c\) Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
\(^d\) Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica

Handling Editor: Glenn King

Keywords:
Venomics
Micrurus alleni
Micrurus yatesi
Coralsnake
Antivenom

ARTICLE INFO

ABSTRACT

Coralsnakes belong to the family Elapidae and possess venoms which are lethal to humans and can be grouped based on the predominance of either three finger toxins (3FTxs) or phospholipases A\(_2\) (PLA\(_2\)). A proteomic and toxicological analysis of the venom of the coralsnake *Micrurus yatesi* was performed. This species, distributed in southeastern Costa Rica, was formerly considered a subspecies of *M. alleni*. Results showed that this venom is PLA\(_2\)-rich, in contrast with the previously studied venom of *Micrurus alleni*. Toxicological evaluation of the venom, in accordance with proteomic data, revealed that it has a markedly higher in vitro PLA\(_2\) activity upon a synthetic substrate than *M. alleni*. The evaluation of in vivo myotoxicity in CD-1 mice using histological evaluation and plasma creatine kinase release also showed that *M. yatesi* venom caused muscle damage. A commercial equine antivenom prepared using the venom of *Micrurus nigrocinctus* displayed a similar recognition of the venoms of *M. yatesi* and *M. nigrocinctus* by enzyme immunoassay. This antivenom also immunorecognized the main fractions of the venom of *M. yatesi* and was able to neutralize its lethal effect in a murine model.

1. Introduction

Coralsnakes, genus *Micrurus*, are small to moderate-sized (from less than 50 cm–150 cm in total length) slender elapid snakes that populate diverse habitats, which include lowland rainforests, deserts, and highland cloud forests from southern United States to central Argentina (Campbell and Lamar, 2004; Roze, 1996). Most coralsnakes have a color pattern of some combination of red, yellow or white, and black rings (Campbell and Lamar, 2004). Although a comprehensive phylogenetic analysis of the species that make up the genus is still pending (Zaher et al., 2021), some monophyletic groups have been identified based on the structure of their hemipenes and molecular characters: the group of monadal black ring coralsnakes, which have slender and strongly bifurcated hemipenes; the group of triad pattern coralsnakes with short, bilobed hemipenes; and the group of bicolored coralsnakes with strongly bilobed and slender hemipenes (Slowinski, 1995). Envenomings by coralsnakes are characterized by paresthesia, local pain, palpebral ptosis, dizziness, blurred vision, weakness, slight local edema, erythema, dysphagia, dyspnea, myalgia, salivation and respiratory failure which may lead to death (Bucareuchi et al., 2016). However, regardless of the toxicity of their venoms, bites by these elapids are far less frequent than those caused by pitvipers, representing less than 2% of snakebite envenomations reported in the Western Hemisphere (Bucareuchi et al., 2016).

Transcriptomic and proteomic analyses have revealed that venoms from coralsnakes are characterized by a predominance of phospholipases A\(_2\) (PLA\(_2\)) and three-finger toxins (3FTxs), with lower quantities of proteins from other families (Aird et al., 2017; Corrêa-Netto et al., 2011; Lomonte et al., 2016, 2021; Sanz et al., 2019b). Postsynaptically active 3FTxs in these venoms block nicotinic cholinergic receptors by competing with acetylcholine (Moreira et al., 2010), while presynaptically active PLA\(_2\) hydrolyze phospholipids at the nerve terminal and impair the release of acetylcholine (Dal Belo et al., 2005). From the proteomic point of view, *Micrurus* venoms belong to two main groups
depending on the predominant components, i.e., 3FTx-rich venoms and PLA₂-rich venoms (Fernández et al., 2015; Lomonte et al., 2016, 2021).

Although only a fraction of the total number of coral snake species has been examined, the expression of these types of venoms might reflect the group's evolutionary history (Lomonte et al., 2016). The selective pressure that mediated this expression pattern is unknown, nor is it clear whether the appearance of PLA₂-rich venoms has occurred as many independent events within the history of coral snakes (Lomonte et al., 2021). Integrating more species into the review of venom proteomic profiles, including closely related species, could help elucidate these questions.

Micrurus alleni is a widely distributed species found from eastern Honduras to northwestern Panama (Campbell and Lamar, 2004; Roze, 1996). This is a terrestrial and primarily nocturnal snake that inhabits swamps, the vicinity of creeks and rivers, and is found often under leaf litter in primary and secondary forests (Solórzano, 2004).

Micrurus alleni was first described as a subspecies of _Micrurus nigrocinctus_ by Schmidt (M. n. alleni) from specimens collected in Caribbean Nicaragua (Schmidt, 1926). A related form was soon after described by Dunn (1942) as _M. n. yatesi_ honoring Thomas Yates, who collected several specimens in Chiriquí, Panama. The status of these two forms and their distinction from _M. nigrocinctus_ was quickly recognized by Taylor (1951) and further supported by Roze (1967) in his early revision of the genus. From these works, _M. alleni_ was considered as a nominal species with at least two distinct allopatric populations: _M. a. alleni_, distributed from the Honduran Mosquitia to Caribbean Panama, and _M. a. yatesi_, distributed in the humid forests of the Central and South Pacific of Costa Rica and Chiriquí Province in Panama (Campbell and Lamar, 2004; Roze, 1996).

Although the distinction between these populations is not contested, the use of trinomial nomenclature to distinguish them has not always been accepted (Campbell and Lamar, 2004; Savage and Vial, 1974) and their taxonomic status is currently under review. Previous authors have suggested recognizing _M. yatesi_ as a full species separated from _M. alleni_ based on distinctive external characters (Campbell and Lamar, 2004; Solórzano, 2004) and divergences in molecular characters (Sasa and Smith, 2001). We follow this recommendation here.

The venom of _M. alleni_ from the Caribbean versant of Costa Rica has been previously studied (Fernández et al., 2015) and showed a predominance of 3FTxs. The antivenom used to treat coral snake envenomings in Central America, prepared against the venom of _M. nigrocinctus_ (a phospholipase A₂-predominant venom), was able to neutralize the lethality of _M. alleni_, albeit with a weaker potency (venom/antivenom proportion of 50 μg/mL to protect all mice) compared to the homologous venom (_M. nigrocinctus_ 300 μg/mL ratio to protect all mice) (Fernández et al., 2015). On the other hand, only few aspects from the venom of _M. yatesi_ have been previously studied. An intravenous (i. v.) median lethal dose (LD₅₀) of 12.0 ± 2.8 μg/mouse (0.7 ± 0.16 μg/g) and an intraperitoneal (i.p.) LD₅₀ of 12.0 ± 1.8 μg/mouse (0.7 ± 0.11 μg/g) were reported by Bolanos (1972). Neurotoxic and phospholipase A₂ (PLA₂) activities were also described previously in _M. yatesi_ venom (Rosso et al., 1996).

The aim of this work is to report the proteomic composition and toxicological characteristics of the venom of _M. yatesi_, as well as the immunological recognition and neutralization by the antivenom used in Central America to treat coral snake envenomings.

2. Materials and methods

2.1. Venoms and antivenom

Micrurus yatesi specimens were collected in the South Pacific region of Costa Rica and kept at the Laboratory for Dangerous Animals Research (LIAP) at Instituto Clodomiro Picado, Universidad de Costa Rica.

Venom was obtained from one adult specimen of _M. yatesi_ (LIAP 001, 1 km north Wilson Botanical Garden, Copal, San Vito de Coto Brus, Puntarenas Province). The venom was manually extracted, lyophilized and stored at −20 °C until analysis. This venom was used for all experiments, while a small amount of venom from two other individuals (LIAP 094 Hacienda Barú, Bahía Ballena, Osa, Puntarenas Province; LIAP 704 Sabalito, Coto Brus, Puntarenas Province) was used to compare individual variation using RP-HPLC. Venoms from _M. nigrocinctus_ (San José, San José Province) and _M. alleni_ (Guayacán, Siquirres, Limón Province), consisting of pools from several individuals, were included in some of the assays for comparative purposes. For immunological studies, two batches of a commercial equine antivenin raised against _M. nigrocinctus_ produced by Instituto Clodomiro Picado, University of Costa Rica (SAC-ICP) was used: Batch 561, expiry date: July 2018, for ELISA assays; and batch 604, expiry date: May 2021, for neutralization assays. Experiments were performed before the expiry date of the antivenin.

2.2. RP-HPLC and SDS-PAGE

Two mg of _M. yatesi_ venom were dissolved in 200 μL of solution A (0.1% trifluoroacetic acid; TFA), centrifuged at 15,000×g for 5 min to remove debris and separated on a C18 column (250 × 4.6 mm, particle size: 5 μm; Teknokroma) using an Agilent 1200 chromatograph with 215 nm monitoring. Elution was performed with a 1 mL/min flow by applying a gradient of solution A (0.1% TFA) to solution B (0.1% TFA in acetonitrile) as follows: 0% B for 5 min, 0–15% B over 10 min, 15–45% B over 60 min, 45–70% B over 10 min and 70 B over 9 min. The venom fractions were collected manually and dried in a vacuum centrifuge (SpeedVac, Thermo). The fractions were redissolved in water, separated by SDS-PAGE in pre-cast 4–20% gels (Sigma–TruPage™) under reducing conditions and later stained with LabSafe GEL Blue™. The protein bands were cut from the gels and subjected to reduction (10 mM dithiothreitol), alkylation (50 mM iodoacetamide) and an in-gel digestion with sequencing grade bovines trypsin overnight (in 25 mM ammonium bicarbonate) using an automated digestor (DigestPro MSI, Intavis). Resulting peptides were extracted with a solution of 0.1% TFA and 60% acetonitrile, and concentrated for mass spectrometry analysis.

To evaluate individual venom variation, venoms from 2 other specimens of _M. yatesi_ (LIAP 094, LIAP 704) were also analyzed by RP-HPLC using the same conditions. The RP-HPLC profile of the venom of _M. alleni_ was also obtained for comparison purposes.

2.3. MALDI-TOF/TOF and ESI-MS

Tryptic peptides were mixed with an equal volume of a saturated α-cyano-4-hydroxycinnamic acid matrix (α-CHCA; in 50% acetonitrile, 0.1% TFA). One μL of the mix was spotted onto Opti-TOF 384 plates and dried to later be analyzed in positive reflector mode using a Proteomics Analyzer 4800-Plus instrument (Sciex, Washington D.C., USA). Spectra were acquired using a laser intensity of 3000 and 500 shots/spectrum, using CalMix 5 (ABSciex) as external standards spotted on the same plate. Up to 10 precursor ions were chosen from each MS spectrum for automated collision-induced dissociation MS/MS spectra acquisition at 2 kV, in positive mode (500 shots/spectrum, laser intensity 3500). Resulting spectra were searched using the Paragon® algorithm of ProteinPilot v.4 software (Sciex) against the UniProt/SwissProt database for Serpentes, at a confidence level of ≥95%, for the assignment of proteins to known families. A few peptides with lower confidence scores were manually searched using BLAST (http://blast.ncbi.nlm.nih.gov), and their sequence was confirmed by manual interpretation of MS/MS spectra.

The monoisotopic mass of proteins from prominent RP-HPLC fractions was determined by direct infusion of the fractions (flow rate 5 μL/min), dissolved in 50% acetonitrile and 0.1% formic acid, into a Q-Exactive Plus® mass spectrometer (Thermo Fisher Scientific, USA). MS spectra were acquired in positive mode, using 3.9 kV spray voltage, full
MS scan range from 800 to 2500 m/z, and an AGC target of 3×10^6).

2.4. Venom protein family abundance

The relative abundance of each venom protein family was estimated by integration of the RP-HPLC peak signals at 215 nm, using Chem Station B.04.01 (Agilent, Santa Clara, California, USA). Densitometry was used for assigning percentual distribution for peak signals with two or more SDS-PAGE bands using Image Lab v.2.0 software (Bio-Rad, Hercules, California, USA).

2.5. In vitro venom activities

2.5.1. Phospholipase A_2 activity

Different amounts of M. *yatesi*, M. *alleni* or M. *nigrocinctus* venoms (from 625 ng to 40 μg), dissolved in 25 μL of water, were added to 200 μL of buffer (10 mM Tris-HCl, 10 mM CaCl$_2$, 0.1 M NaCl, pH 8.0) in microplate wells. Next, 25 μL of the synthetic substrate 4-nitro-3-octanoyloxy-benzoic acid (4-NOB, 1 mg/mL in acetonitrile) were added (Holzer and Mackessy, 1996). After a 60 min incubation at 37°C, absorbance was determined at 405 nm by a microplate reader (Thermo). One unit of PLA$_2$ activity was defined as the change of 1 in absorbance. The assay was performed in triplicates.

2.5.2. Enzyme-linked immunosorbent assay (ELISA)

An ELISA was used to assess the ability of the anticoag antivenom produced at ICP to cross-recognize whole M. *yatesi* venom or its RP-HPLC fractions. M. *yatesi*, M. *alleni* and M. *nigrocinctus* venoms were dissolved in sodium phosphate buffer (PBS: 0.12 M NaCl, 0.04 M sodium phosphate, pH 7.2) and adsorbed onto a 96-well microplate (1 μg/100 μL/well) overnight at room temperature. After discarding the excess venom samples, wells were blocked by incubation with 100 μL of PBS that contained 3% bovine serum albumin (BSA) during 30 min. The microplates were washed five times with PBS. A volume of 100 μL of various dilutions (from 1:500 to 1:32000) of antivenom (in PBS with 3% BSA) were added to the microplates, which were incubated during 1 h at room temperature. As a negative control, a mock antivenom prepared from plasma of non-immunized horses was run in parallel under identical conditions on wells with M. *yatesi* venom. After washing the microplates five times with PBS, the antibodies bound to the venoms were detected by the addition of anti-horse IgG/alkaline phosphatase conjugate (Sigma; 1:4000 dilution in PBS with 3% BSA) during 1 h at room temperature, followed by five washes with PBS and the development of final color using p-nitrophenylphosphate (1 mg/mL in 0.1 M glycine, pH 10.4, with 1 mM MgCl$_2$ and 1 mM ZnCl$_2$). The absorbances were registered at 405 nm by a Multiskan microplate reader (Thermo). All samples were processed in triplicate wells. A similar procedure was used to evaluate the recognition of the most abundant fractions obtained by RP-HPLC (fractions 12, 14, 15, 17, 18, 20, 21, 22, 23, and 26), using instead 0.4 μg/100 μL/well of each fraction and an antivenom dilution of 1:1000, in PBS-BSA for the binding step of equine antibodies.

2.6. In vivo venom activities

Animal experiments were performed following protocols approved by the Institutional Committee for the Care and Use of Laboratory Animals of the University of Costa Rica (CICUA permit 021-17), using CD-1 mice of either sex, bred at Instituto Clodomiro Picado. Individual venom variability and comparison with M. *alleni* venom

2.6.1. Venom lethality

Various amounts of M. *yatesi* venom (from 3 to 23 μg) dissolved in 100 μL of PBS were injected intravenously (caudal vein) in groups of four mice (body weight between 16 and 18 g). The deaths were recorded after 24 h and the median lethal dose (LD_{50}) was calculated by Probit analysis using the BioStat 2008 Professional program (Finney, 1971).

2.6.2. Myotoxic activity

Groups of five mice (18–20 g) received an intramuscular injection of either M. *yatesi* or M. *nigrocinctus* venom (5 μg in 50 μL of PBS) in the right gastrocnemius muscle. A control group received an injection of 50 μL of PBS alone. After 3 h, blood samples were obtained from the tail of each mouse into heparinized capillary tubes. After centrifugation, 4 μL of plasma was used to determine the creatine kinase (CK) activity using a UV-kinetic assay (Wiener Lab, Argentina). CK activity was expressed in Units/L.

Myotoxic activity was confirmed by extracting the injected gastrocnemius of mice 24 h after injection, subsequent to their euthanasia by carbon dioxide inhalation. Muscle tissue was fixed with formalin (3.7%) overnight and routinely processed for embedding in paraffin. Sections of 4 μm thickness were cut and stained with hematoxylin-eosin for histological observation.

2.6.3. Neutralization of lethality

The capacity of the SAC-ICP anticoag antivenom produced in ICP to neutralize the lethal activity of M. *yatesi* venom was assessed by injecting intravenously groups of five mice (16–18 g) with 200 μL of a solution that contained 30 μg of M. *yatesi* venom (equivalent to 3 × LD_{50}), which was previously mixed and incubated for 30 min at 37°C with different dilutions of antivenom to obtain the following venom/antivenom ratios: 100, 200 and 400 μg of venom/mL of antivenom. The control group of mice received the same dose of venom but was incubated with PBS instead of antivenom. Deaths were recorded after 24 h and the median effective dose (ED_{50}) was determined using Probit analysis (Finney, 1971).

2.7. Statistical analyses

The significance of differences between means of two groups was assessed by Student’s t-test, or between means of three groups by ANOVA with post-hoc Tukey HSD. Differences were considered significant if $p < 0.05$.

3. Results

3.1. The venom proteome of M. *yatesi*

Venom from *Micrurus yatesi* was separated into 29 fractions using RP-HPLC. These fractions were further separated into 48 SDS-PAGE bands (Fig. 1). Most of the SDS-PAGE bands were assigned to a protein family using tandem mass spectrometry. The most abundant proteins in the venom were PLA$_2$s (54.7% of total venom proteins, Fig. 2) and 3FTxs (20.2%). Proteins that belong to the metalloproteinase (7.6%), L-amino acid oxidase (6.1%), vesperrhin/ohanin (1.7%), serine proteinase (1.4%), hyaluronidase (0.9%), Kunitz-type inhibitors (0.9%), C-type lectin/lectin-like (0.6%) and glutathione peroxidase (0.5%) families were detected in lower quantities. Peptidic or non-protein material (peaks 1–5) comprised 3.9% of *Micrurus yatesi* venom. A small percentage (1.5% of the venom proteome) could not be identified.

3.2. Individual venom variability and comparison with M. *alleni* venom

Venoms of M. *yatesi* and M. *nigrocinctus* had similar PLA$_2$ activities in
vitro (Fig. 5), which were higher than the activity of the venom of M. alleni. The intramuscular injection of M. yatesi venom in the gastrocnemius of mice significantly increased plasma CK activity, compared to controls injected only with the vehicle (Fig. 6). The in vivo myotoxic activity of M. yatesi venom was confirmed by histological analysis of injected muscles which showed widespread distribution of necrotic fibers characterized by hypercontraction and disorganization of the myofibrillar material, as well as edema (Fig. 6). The intravenous (i. v.) LD50 of Micrurus yatesi venom in mice was 10.1 μg (95% confidence limits: 5.9–14.3 μg) per 16–18 g mouse, or 0.59 μg/g (95% confidence limits: 0.35–0.84 μg/g).

3.4. Immunorecognition and neutralization of M. yatesi venom by antivenom

The venom of M. yatesi was recognized by SAC-ICP antibodies with a similar ELISA signal to the one obtained with M. nigrocinctus venom, and a higher signal than the one obtained for M. alleni (Fig. 7). The immunorecognition by the antivenom of the most abundant RP-HPLC fractions of the venom was also assessed (Fig. 8). The fraction with the highest signal contained proteins from the metalloproteinase and serine proteinase families, while the least recognized major fraction contained a higher signal than the one obtained for M. alleni. The SAC-ICP antivenom was able to neutralize the lethal activity of M. yatesi venom with an ED50 of 262 μg of venom/mL of antivenom (95% confidence limits: 187–419 μg/mL).

4. Discussion

Several factors including distribution in remote locations, low abundance, venom yield, and limited survival in captivity, have historically precluded a thorough analysis of the venom of M. yatesi. Very few specimens of this species have been kept at the serpentarium of ICP along the years. However, the recently collected venom from this species allowed the determination of the proteomic and toxicological characteristics, as well as the immunorecognition and neutralization by an antivenom.

A marked difference in venom composition was observed when the venom of M. yatesi was compared with that of M. alleni. The former has a predominance of toxins from the PLAs family while the latter has a predominance of toxins from the 3FTx family. This PLAs-3FTx dichotomy constitutes a general trend that has been observed in other coralsnake venoms (Fernández et al., 2015; Lomonte et al., 2016, 2021, 2016; Sanz et al., 2016, 2019a). Toxins from both protein families are able to exert neurotoxicity using different mechanisms. The 3FTxs compete with acetylcholine, blocking nicotinic cholinergic receptors at the motor end-plate (Moreira et al., 2010). On the other hand, toxins from the PLAs family impair the release of acetylcholine (Dal Belo et al., 2005) by hydrolyzing phospholipids of the nerve terminal plasma membrane. Differences in other less abundant components were also noted, since Kunitz-type inhibitors and serine proteinases were detected only in the venom of M. yatesi but not in M. alleni, while nerve growth factor was reported in the venom of M. alleni. Therefore, the venoms of these closely related species show significant variation in a number of venom protein families.

The toxicological analysis of the venom of M. yatesi estimated the intravenous LD50 of this venom at 10.1 μg/mouse (0.59 μg/g), whereas the LD50 of M. alleni was previously estimated in 6.3 μg/mouse (0.37 μg/g) (Fernández et al., 2015). The 95% confidence limits of these determinations overlapped, thus indicating non-significant differences between the toxicity of these venoms. Previously, an i.v. LD50 of 12.0 ± 2.8 μg/mouse (0.7 ± 0.16 μg/g) was reported for the venom of M. yatesi (Bolanos, 1972). The LD50 values of M. alleni and M. yatesi venoms suggest that they are able to induce lethality in mice through different neurotoxic mechanisms based on the proteomic profiles, i.e., predominantly presynaptically in the case of M. yatesi and postsynaptically in the case of M. alleni, a hypothesis that deserves further pharmacological
Peak % Mass	Peptide Ion MS/MS-derived peptide sequence	Protein family; related protein
1.5 3.9 18	1283.0 1 BDETXBCCTK	-
6a 1.6	1117.9 1 GCAVTPBP	-
	1707.3 1 FSPGXTSTSBTPAGBK	-
6b 2.2	1117.9 1 GCAVTPBP	-
	1707.3 1 FSPGXTSTSBTPAGBK	-
6c 2.2	1282.9 1 BDETXBCCTK	-
	1707.2 1 FSPGXTSTSBTPAGBK	-
7 1.5	1632.9 1 BFVYGGCGGNANNFK	-
	1706.9 1 FSPGXTSTSBTPAGBK	-
8a 0.3	1632.8 1 BFVYGGCGGNANNFK	-
	1706.9 1 FSPGXTSTSBTPAGBK	-
8b 0.4	1375.7 1 ENXCGTFMSAR	-
9a 0.8	1350.8 1 TXFXVGSYPEK	-
	1773.0 1 VCTYTXVGSYPEK	-
	997.5 1 FGAACSPK	-
9b 1.0	1350.8 1 TXFXVGSYPEK	-
	2113.3 1 VCTYTXVGSYPEBTVX	-
	2087.2 1 GEBVYTXVGSYPEK	-
	1773.0 1 VCTYTXVGSYPEK	-
	1026.5 1 WCACSPK	-
9c 0.6	-	-
	1773.0 1 VCTYTXVGSYPEK	-
	997.5 1 FGAACSPK	-
9d 0.1	-	-
10a 2.0	1773.0 1 VCTYTXVGSYPEK	-
	1310.7 1 AXEFGCGASCPC	-
10b 0.2	1310.7 1 AXEFGCGASCPC	-
11a 0.3	1800.9 1 TTTCADDGNNXCFBR	-
	967.6 1 WHMXXAPGR	-
11b 0.3	1310.7 1 AXEFGCGASCPC	-
11c 0.4	-	-
12 8.5	1706.0 1 APYNINJFBNFXBDPR	-
	2126.0 1 YGCGCYGGSPTPDVEXDR	-
	1549.9 1 APYNINJFBNFXBDPR	-
	1373.6 1 CBDFVCNDCD	-
13 0.4	1096.6 1 APYNINJFBNFK	-
	2126.0 1 YGCGCYGGSPTPDVEXDR	-
	1549.9 1 APYNINJFBNFXBDPK	-
	1373.6 1 CBDFVCNDCD	-
	1387.6 1 CBDFVCNDCD	-
14a 3.9	1373.6 1 CBDFVCNDCD	-
	1387.6 1 CBDFVCNDCD	-
14b 4.0	1373.6 1 CBDFVCNDCD	-
	1387.6 1 CBDFVCNDCD	-
15a 0.7	2855.4 1 SAWDFTNYGCYCGAGGSGTVDXDR	-
15b 8.3	2554.3 1 WTXYSYTCNSGGBXCTBDNNTK	-
	2226.2 1 CBDFVCNDCRTAAXCFAK	-

(continued on next page)
Table 1 (continued)

Peak	%	Mass (Da) approx. or (Da)	Peptide	MS/MS-derived peptide sequence	Conf (%)	Sco	Protein family; related protein	
1373.7	1	CBDFVCNCDR	99	14	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE	
1387.7	1	CBDFVCNCDR	99	12	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE	
2236.1	1	CBDFVCNCDRTAAXCFAK	99	9	Phospholipase A2; tr	U3FYP2	U3FYP2_MICFL	
2857.3	1	PXADFMNYYGCGBGGGTPVDDXDR	99	14	Phospholipase A2; tr	Q45Z53	Q45Z53_OXYSU	
2841.3	1	SAWDFTNYGCAGGGSGTPVDDXDR	99	14	Phospholipase A2; tr	A0A2D4NMC0	A0A2D4NMC0_9SAUR	
2554.3	1	WTXYSTSANGXNBTCBDNNTK	99	9	Phospholipase A2; tr	A0A289ZBS3	A0A289ZBS3_MICFL	
1387.6	1	CBDFVCNCDR	98.9	9	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE	
16	0.9	13	CBDHBCYDTEAVHGCWPK	99	9	Phospholipase A2; tr	U3FYP2	U3FYP2_MICFL
1373.7	1	CBDFVCNCDR	99	15	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE	
1373.7	1	CBDFVCNCDR	99	12	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE	
1387.7	1	CBDFVCNCDR	99	11	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE	
2678.3	1	CBDFVCNCDRTAAXCFAK	99	9	Phospholipase A2; tr	U3FYP2	U3FYP2_MICFL	
1373.7	1	CBDFVCNCDR	99	15	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE	
19	1.2	15	APYNDINNYNXDXKR	97.7	15	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
20a	1.5	13	CBDFVCNCDR	99	10	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
20b	0.8	11	CBDFVCNCDR	97.7	11	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
21	3.6	13	CBDFVCNCDR	99	14	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
22	7.1	13	CBDFVCNCDR	99	16	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
23a	2.6	14	CBDFVCNCDR	99	15	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
23b	0.9	11	CBDFVCNCDR	99	14	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
24	0.1	13	CBDFVCNCDR	99	13	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
25	0.6	20	CBDFVCNCDR	99	15	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
26a	0.3	150	CBDFVCNCDR	99	10	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
26b	3.9	70	CBDFVCNCDR	99	11	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
26c	1.4	37	CBDFVCNCDR	99	15	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
26d	0.9	14	CBDFVCNCDR	99	12	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE
27a	2.2	45	CBDFVCNCDR	99	15	Phospholipase A2; tr	A0A1H6N4A4	A0A1H6N4A4_MICLE

G. Mena et al.
Toxicon: X 13 (2022) 100097
Table 1 (continued)

Peak	% Mass	Peptide Ion	MS/MS-derived peptide sequence	Conf (%)	Sco	Protein family; related protein
27b	0.2 23	1544.8	BYXEFYYVVDNR	99	8	Metalloproteinase; tr[A0A194AS47]
		1184.5	DMFTXNBR	99	10	A0A194AS47,9SAUR
		1893.0	IHNFXHAXTGEXWYTK	99	17	
		1308.6	DPDYMVPEPTK	99	13	
		2052.9	TRPBYFSSSVSEHBR	99	8	
		2114.1	XDFGNTXGAHGSSGSCP	99	14	
		1416.7	YXEFVVVDNR	99	12	
27c	0.1 20	1263.7	SNAVTVXDFXGK	99	9	Metalloproteinase; tr[A0A194AS47]
		1544.8	BYXEFYYVVDNR	99	7	A0A194AS47,9SAUR
		1184.5	DMFTXNBR	99	8	
		1893.0	IHNFXHAXTGEXWYTK	99	16	
		2114.0	XDFGNTXGAHGSSGSCP	99	14	
27d	0.1 15	1308.6	DPDYMVPEPTK	99	10	Metalloproteinase; tr[U3EPC7]
		1893.0	IHNFXHAXTGEXWYTK	99	11	U3EPC7_MICFL
		1222.6	VYMVWXXNK	99	13	
		1544.8	BYXEFYYVVDNR	99	14	
		1263.7	SNAVTVXDFXGK	99	16	
		1416.7	YXEFVVVDNR	99	14	
		1184.5	DMFTXNBR	97.5	7	
28a	0.9 150	1733.9	BDGFXEFYVPBSEK	99	18	L-amino acid oxidase; tr[A0A2D4G4D6]
		1434.8	RXIFBFPPXSDFK	99	13	A0A2D4G4D6_MICCO
		2233.1	HVVVVAGMAGAXAAYVXAGAHK	99	28	
		1310.6	RFDENVGGFDR	99	16	L-amino acid oxidase; tr[A0A194AS48]
		1154.5	FDENVGDFR	99	15	A0A194AS48,9SAUR
		1637.8	NDXGWHVNXGPMR	99	22	
		1963.0	TGSDVXNDX3XXHXXPK	99	24	
		1448.7	EADYEFPFXEAXAR	99	18	
		1833.8	EFVBEDEANWYXXK	99	22	
		2275.0	XHFGETYTDNHGWIDSTK	99	30	
28b	4.6 70	1190.6	RBPXGECFR	99	9	L-amino acid oxidase; tr[A0A194ARE6]
		1310.6	RFDENVGGFDR	99	19	A0A194ARE6,9SAUR
		1434.7	RXIFBFPPXSDFK	99	13	
		1833.7	EFVBEDEANWYXXK	99	24	
		2031.9	THRNDXEGWHVXGPMR	99	27	
		2275.0	XHFGETYTDNHGWIDSTK	99	32	
		1637.7	NDXGWHVNXGPMR	99	23	
		1484.6	EADYEFPFXEAXAR	99	19	
		3066.4	YAMGXSSTSPVFPBFHYFETVAAVPGVR	99	14	
28c	0.5 22	1551.8	PGGGFV(Pox)NFBXFBK	99	15	Glutathione peroxidase; tr[V8P395]
		1385.7	DXVNGPBPROMV	99	15	V8P395,OPPHA
		1944.0	HVVPPGGGFV(Pox)NFBXFBK	99	15	
28d	0.1 15	2235.1	HVVVVAGMAGAXAAYVXAGAHK	99	20	L-amino acid oxidase; tr[A0A2D4G4D6]
		1833.8	EFVBEDEANWYXXK	99	16	A0A2D4G4D6_MICCO
		1637.7	NDXGWHVNXGPMR	99	19	
		1484.7	EADYEFPFXEAXAR	99	19	
28e	0.5 12	1190.6	RBPXGECFR	99	11	L-amino acid oxidase; tr[A0A194ARE6]
		1034.5	RPXGECFR	99	13	A0A194ARE6,9SAUR
		2235.1	HVVVVAGMAGAXAAYVXAGAHK	99	44	L-amino acid oxidase; tr[A0A2D4G4D6]
		2251.1	HVVVVAGMAG(Mox)AGXSAAYVXAGAHK	99	20	A0A2D4G4D6_MICCO
		1637.7	NDXGWHVNXGPMR	99	23	
		1484.7	EADYEFPFXEAXAR	99	19	
		2031.9	THRNDXEGWHVXGPMR	99	20	
		2780.3	APMPYNEFPXPFWNAPTBCBKX	99	14	Hyaluronidase; tr[A0A194APD1]
		1503.6	NFICBICYBQW	99	17	A0A194APD1,9SAUR
		1810.9	DSTAXFSPXYXIXTXX	99	20	
		1313.7	DYAXPFPFVYAR	99	16	
		2031.9	BHDSNAFXIXFPE5FR	99	23	
		1544.8	EXHIPDSEHBAXR	99	20	
		1903.9	BHDSNAFXIXFPE5FR	99	25	
		1441.7	BHDXFVPFVYAR	99	21	
		1243.6	NDBXXWXXW	99	15	

Cysteine residues are carbamidomethylated. X: Leu/Ile; B: Lys/Gln; Confidence (Conf) and Score (Sco) values calculated by the Paragon® algorithm of ProteinPilot®. Mass kDa approx: estimated mass in SDS-PAGE in reducing conditions. Mass values in Da of prominent RP-HPLC peaks were determined by ESI-MS as described in methods, and obtained masses for each RP-HPLC fraction were assigned to sub-fractions according to each SDS-PAGE band mass. Possible, although unconfirmed amino acid modifications suggested by the automated identification software are shown in parentheses, with the following abbreviations: da: deamidated, ded: dethiomethyl, ox: oxidation.
In agreement with proteomic results, the venom of *M. yatesi* displayed significant PLA$_2$ activity upon the synthetic substrate 4-NOBA, in a similar fashion as the PLA$_2$-rich venom of *M. nigrocinctus*. The 3FTx-rich venom of *M. alleni*, also in agreement with its composition, exhibited very low PLA$_2$ activity. When injected in CD-1 mice, the venom of *M. yatesi* exerted muscle damage, evidenced by the increase of plasma CK activity and by histological evaluation of injected muscles. Since *M. yatesi* is a PLA$_2$-rich venom, in similarity to *M. nigrocinctus* (Fernández et al., 2011), such myotoxic activity was expected since PLA$_2$s are the main myotoxic components in *Micrurus* venoms (Alape-Girón et al., 1999). The 3FTx-rich venom of *M. alleni* has been reported to induce a low (Fernández et al., 2015) to moderate (Gutiérrez et al., 1983) myotoxic effect. Mild myotoxicity has been described in

Fig. 2. Overall venom composition of *Micrurus yatesi* according to protein families, expressed as percentages of the total protein content. PLA$_2$: phospholipase A$_2$; 3FTx: three-finger toxin; MP: metalloproteinase; LAO: L-amino acid oxidase; PNP: peptides and/or non-proteinaceous components; VSP: vespryn/ohanin; UNK: unknown/unidentified; SP: serine proteinase; HYA: hyaluronidase; KUN: Kunitz-type serine proteinase inhibitor; CTL: C-type lectin/lectin-like; GPO: Glutathione peroxidase.

Fig. 3. Individual venom variation of *Micrurus yatesi*. Panels A, B, and C show the RP-HPLC profiles of venom from 3 individual specimens of *M. yatesi* under identical conditions. Even though clear differences in the venoms are observed, all 3 venoms show a profile with major fractions in the same time frame. This period (35–55 min) is characterized by the elution of PLA$_2$s.
Fig. 4. Comparison of the RP-HPLC profiles of venom from one specimen of Micrurus yatesi (blue) and venom from M. alleni (green). The 3FTx-rich venom of M. alleni is characterized by major fractions at the 20–30 min time frame, while the venom of M. yatesi contains PLA₂ fractions that elute at 35-55 min.

Fig. 5. Phospholipase A₂ activity of the venoms from M. yatesi, M. alleni and M. nigrocinctus on the monodisperse synthetic substrate 4-nitro-3-octanoyloxybenzoic acid. Different quantities of the venoms were incubated with the substrate for 60 min at 37 °C. One unit is defined as a change of 1 in absorbance at 405 nm. Each point represents mean ± SD of triplicates.

some human cases of envenomings by coral snakes (Bucaretchi et al., 2016), but this effect is not clinically significant. Experimentally, venoms of several species of coralsnakes have been shown to induce prominent myonecrosis in mice (de Roodt et al., 2012; Gutierrez et al., 1983; Rey-Suarez et al., 2016). When the immunorecognition of M. yatesi venom was evaluated using a commercial equine antivenom, prepared by the immunization of horses with the venom of M. nigrocinctus, the PLA₂-rich venom of M. yatesi was recognized to a similar extent as M. nigrocinctus venom. In contrast, the 3FTx-rich venom of M. alleni was recognized to a lower extent. It has been previously noted that coralsnake venoms with PLA₂ predominance are better recognized and neutralized by this antivenom than 3FTx predominant venoms (Fernández et al., 2015). Thus, results are in line with the proposal that the compositional 3FTx/PLA₂ dichotomy of coralsnake venoms is linked with a divergence in their immunological characteristics (Lomonte et al., 2016).

The most abundant fractions of M. yatesi venom, which contained mostly toxins from the PLA₂ family, but also from vesprryn, metalloproteinase, serine proteinase, and 3FTx families, were recognized by the SAC-ICP antivenom. The only exception was fraction 21, which contained a 3FTx and displayed a lower signal in the ELISA assay. Larger venom proteins, such as metalloproteinases, are generally better recognized by this coralsnake antivenom than proteins and peptides with a lower molecular mass, such as 3FTxs (Lippa et al., 2019; Rey-Suarez and Lomonte, 2016). This also explains why the fraction that contained a metalloproteinase and a serine proteinase showed the highest signal.

The SAC-ICP antivenom was able to neutralize the lethal activity of the venom of M. yatesi in a murine model. This preclinical assay predicts that, in case of envenomings by M. yatesi, treatment using this antivenom is likely to be effective. A lower neutralization capacity of the 3FTx predominant M. alleni venom was previously described using this antivenom (Fernández et al., 2015). Neutralization assays performed with PLA₂-rich coralsnake venoms reveal an effective neutralization by this antivenom, while 3FTx-rich venoms are poorly neutralized, or in the case of the venom from M. mipartitus, not neutralized (Rey-Suárez et al., 2011).

The close relationship between M. yatesi and M. alleni has been pointed out in a previous analysis based on mitochondrial DNA (Sasa and Smith, 2001). Although there is scarce knowledge on the natural history of these two coralsnake species, they are likely to share similar ecological niches, and therefore the present findings on their contrasting venom proteomic profiles are intriguing. A handful of stomach records indicate that M. alleni often consumes swamp eels (Synbranchus marmoratus) and small fossorial colubrids (Solórzano, 2004). Less information is available on the diet of M. yatesi, but they have been seen preying on caecilians and small colubrids. Whether these observations reflect differences in the ecological contexts that allowed the selection of uneven venom patterns in different settings is unknown. However, the potential adaptive role of these venom types in immobilizing different prey species deserves further consideration.

5. Concluding remarks

The study of venom from M. yatesi allowed to determine its venom composition and to compare it with the venom from M. alleni. Toxico logical analyses, in accordance with the proteomic profile, showed that this PLA₂-predominant venom possessed significant PLA₂ activity in vitro and caused muscle damage in a murine model. The Micrurus antivenom prepared at Instituto Clodomiro Picado recognizes the different fractions of M. yatesi venom and neutralizes its lethal activity, hence implying that it is likely to be effective in envenoming by this species.

Ethical statement

Animal experiments were performed following protocols approved by the Institutional Committee for the Care and Use of Laboratory Animals of the University of Costa Rica (CICUA permit 021-17).

Declaration of interests

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Stephanie Chaves-Araya, Fabián Bonilla, Mahmood Sasa, José María Gutierrez, Bruno Lomonte and Julián Fernández work at Instituto Clodomiro Picado, where the antivenom used in this study is produced.
Fig. 6. Myotoxic activity caused by the venoms of *Micrurus yatesi* and *M. nigrocinctus* in mice. Animals received an i.m. injection of 5 μg/50 μL of the venoms in the right gastrocnemius and plasma creatine kinase (CK) activity was determined after 3 h (A). The control group was injected with 50 μL of PBS. Bars represent mean ± SD of five mice. The differences between CK activity values of PBS and *M. nigrocinctus* venom, or between PBS and *M. yatesi* venom are significant (p < 0.05). Muscle necrosis was confirmed by histological analyses of muscles injected with *M. yatesi* venom (C), when compared to muscles injected with PBS (B).

Fig. 7. Cross-recognition of *Micrurus yatesi* and *M. alleni* crude venoms by the commercial equine antivenom raised against *Micrurus nigrocinctus* (SAC-ICP), evaluated by ELISA. Venoms were adsorbed to microplates and incubated with various dilutions of antivenom or a mock antivenom prepared using normal horse serum. An anti-horse IgG/alkaline phosphatase conjugate was used to detect bound antibodies, as described in Methods. Each point represents mean ± SD of triplicates. *Differences among all means are statistically significant (p < 0.01) except when the means of *M. yatesi* and *M. nigrocinctus* are compared with each other (no statistical difference). **Differences among all means are statistically significant (p < 0.01 or p < 0.05) except when the means of *M. yatesi* and *M. alleni* are compared with each other or when the means of *M. alleni* and mock antivenom are compared (no statistical difference). Statistical analyses of the other two dilutions are not shown.
Credit author statement

Gianni Mena: Data curation, Formal analysis, Methodology, writing and editing. Stephanie Chaves-Araya: Investigation and Methodology. Johelen Chacón: Data curation, Formal analysis. Eníkő Török: Data curation, Formal analysis, Methodology. Ferenc Török: Data curation, Formal analysis. Fabián Bonilla: Methodology, Resources. Mahmoud Sasa: Conceptualization, Methodology, Resources, writing and editing. José María Gutiérrez: Formal analysis, Resources, Funding acquisition, writing and editing. Bruno Lomonte: Conceptualization, Resources, Funding acquisition, writing and editing. Julían Fernández: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, writing and editing.

Acknowledgements

This study was supported by Vicerrectoría de Investigación, Universidad de Costa Rica, Costa Rica (741-B7608). The work of Eníkő Török and Ferenc Török at Instituto Clodomiro Picado was supported by a scholarship from Campus Mundi International Internship Program of Universidad de Costa Rica, Costa Rica (741-B7608). The work of Eníkő Török and Ferenc Török at Instituto Clodomiro Picado was supported by a scholarship from Campus Mundi International Internship Program of Universidad de Costa Rica, Costa Rica (741-B7608). The work of Eníkő Török and Ferenc Török at Instituto Clodomiro Picado was supported by a scholarship from Campus Mundi International Internship Program of Universidad de Costa Rica, Costa Rica (741-B7608). The work of Eníkő Török and Ferenc Török at Instituto Clodomiro Picado was supported by a scholarship from Campus Mundi International Internship Program of Universidad de Costa Rica, Costa Rica (741-B7608).

References

Aird, S., da Silva, N., Qui, L., Villar-Briones, A., Saddi, V., Pírez de Campos Telles, M., Grau, M., Mikheyev, A., 2017. Corallus venomomics: analyses of venom gland transcripts and proteomes of Six Brazilian Taxa. Toxins 9, 187. https://doi.org/10.3390/toxins9060187.

Alape-Girón, A., Persson, R., Cederlund, E., Flores-Díaz, M., Gutiérrez, J., Thelestam, M., Bergman, T., Jornvall, H., 1999. Elapid venom toxins: multiple recruitments of ancient scaffolds. Eur. J. Biochem. 259, 225–234. https://doi.org/10.1046/j.1432-1327.1999.00021.x.

Bolanos, R., 1972. Toxicity of Costa Rican snake venoms for the white mouse. Am. J. Trop. Med. Hyg. 21, 360–363.

Bucarechel, F., De Capitani, E.M., Vieira, R.J., Rodrigues, C.K., Zannin, M., Da Silva, N.J., Casais-e-Silva, L.L., Hyslop, S., 2016. Coral snake bites (Micrurus spp.) in Brazil: a review of literature reports. Clin. Toxicol. 54, 222–234. https://doi.org/10.3109/15563650.2015.1135337.

Campbell, J.A., Lamar, W.W., 2004. The Venomous Reptiles of the Western Hemisphere, second ed. Comstock Publishing Associates, Ithaca, New York.

Correa-Netto, C., Junqueira-de-Azevedo, I. de L.M., Silva, D.A., Ho, P.L., Leitão-de-Araújo, M., Alves, M.L.M., Sanz, L., Fuguel, D., Zingali, R.B., Calvete, J.J., 2011. Snake venoms and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J. Proteom. 74, 1795–1809. https://doi.org/10.1016/j.jprot.2011.04.003.

Dal Belo, C.A., Leite, G.B., Toyama, M.H., Marangoni, S., Corrado, A.P., Fontana, M.D., Southan, A., Rowan, E.G., Hyslop, S., Rodríguez-Simioni, L., 2005. Pharmacological and structural characterization of a novel phospholipase A2 from Micrurus dumerilii carinacauda venom. Toxicon 46, 736–750. https://doi.org/10.1016/j.toxicon.2005.07.016.

de Roozi, A., Lago, N., Stock, R., 2012. Myotoxicity and nephrotoxicity by Micrurus venoms in experimental renal envenomation. Toxicon 59, 356–364. https://doi.org/10.1016/j.toxicon.2011.11.009.

Dunn, E.R., 1942. New or noteworthy snakes from Panama. Natlase Natare Acad. Nat. Sci. Phila. 1–8.

Fernández, J., Alape-Girón, A., Angulo, Y., Sanz, L., Gutiérrez, J.M., Calvete, J.J., Lomonte, B., 2011. Venomic and antivenom analyses of the Central American coral snake, Micrurus nigrocinctus (Elapidae). J. Proteome Res. 10, 1816–1827. https://doi.org/10.1021/pr101091a.

Fernández, J., Vargas-Vargas, N., Pla, D., Sasa, M., Rey-Suárez, P., Sanz, L., Gutiérrez, J.M., Calvete, J.J., Lomonte, B., 2015. Snake venomics of Micrurus alleni and Micrurus mosquitensis from the Caribbean region of Costa Rica reveals two divergent compositional patterns in New World elapid. Toxicon 107, 217–233. https://doi.org/10.1016/j.toxicon.2015.08.016.

Finney, D., 1971. Statistical Methods in Biological Assay. Charles Griffin and Company, London.

Gutiérrez, J., Lomonte, B., Portilla, E., Cerdas, L., Rojas, E., 1983. Local effects induced by coral snake venoms: evidence of myonecrosis after experimental inoculations of venoms from five species. Toxicon 21, 777–783. https://doi.org/10.1016/0041-0101(83)90066-1.

Holzer, M., Mackesy, S.P., 1996. An aqueous endpoint assay of snake venom phospholipase A2. Toxicon 34, 1149–1155. https://doi.org/10.1016/0041-0101(96)80057-8.

Lippa, E., Török, F., Gómez, A., Corrales, G., Chacón, D., Sasa, M., Gutiérrez, J.M., Lomonte, B., Fernández, J., 2019. First look into the venom of Raotan Island’s critically endangered coral snake Micrurus nunan: proteomic characterization, toxicity, immunorecognition and neutralization by an antivenom. J. Proteome 198, 177–185. https://doi.org/10.1016/j.jprot.2019.01.007.

Lomonte, B., Calvete, J.J., Fernández, J., Pla Ferrer, D., Rey-Suárez, P., Sanz, L., Gutiérrez, J.M., Sasa, M., 2021. Venomic analyses of coral snakes. In: Da Silva, N.J., Casais-e-Silva, L.L., Hyslop, S., Alape-Girón, A., Sasa, M., Porras, L.W., Aird, S., da Costa Prudente, A.L. (Eds.), Advances in CoralSnake Biology: with an Emphasis on South America. Eagle Mountain Publishing, Eagle Mountain, Utah, p. 775.

Lomonte, B., Rey-Suárez, P., Fernández, J., Sasa, M., Pla, D., Vargas, N., Bénard-Valle, M., Sanz, L., Correa-Netto, C., Núñez, V., Alape-Girón, A., Alagon, A., Gutiérrez, J.M., Calvete, J.J., 2016. Venoms of Micrurus coral snake: evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 122, 7–25. https://doi.org/10.1016/j.toxicon.2016.09.008.

Moreira, K.G., Prates, M.V., Andrade, F.A.C., Silva, L.P., Beira, P.O., 2015. Studies of Micrurus mapi and Micrurus dumerilii venoms by two therapeutic equine antivenoms. Biologicals 68, 40–45. https://doi.org/10.1016/j.biologicals.2015.08.011.

Rey-Suárez, P., Lomonte, B., 2020. Immunological cross-recognition and neutralization studies of Micrurus mapi and Micrurus dumerilii venoms by two therapeutic equine antivenoms. Biologicals 68, 40–45. https://doi.org/10.1016/j.biologicals.2020.08.011.

Rey-Suárez, P., Núñez, V., Fernández, J., Lomonte, B., 2016. Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: proteome, toxicity, and cross-neutralization by antivenom. J. Proteome 136, 262–273. https://doi.org/10.1016/j.jproteom.2016.02.006.
Rey-Suárez, P., Núñez, V., Gutiérrez, J.M., Lomonte, B., 2011. Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J. Proteom. 75, 655–667. https://doi.org/10.1016/j.jprot.2011.09.003.

Rosso, J.P., Vargas-Rosso, O., Gutiérrez, J.M., Rochat, H., Bougis, P.E., 1996. Characterization of α-neurotoxin and phospholipase A2 activities from Micrurus venoms: determination of the amino acid sequence and receptor-binding ability of the major α-neurotoxin from Micrurus nigrocinctus nigrocinctus. Eur. J. Biochem. 238, 231–239. https://doi.org/10.1111/j.1432-1033.1996.tb231q.x.

Roze, J.A., 1996. Coral Snakes of the Americas: Biology, Identification, and Venoms. Krieger.

Roze, J.A., 1967. A Check List of the New World Venomous Coral Snakes (Elapidae), with Descriptions of New Forms. American Museum novitates, p. 2287.

Sanz, L., de Freitas-Lima, L.N., Quesada-Bernat, S., Graça-de-Souza, V.K., Soares, A.M., Calderon, L. de A., Calvete, J.J., Caldeira, C.A.S., 2019a. Comparative venomics of Brazilian coral snakes: Micrurus frontalis, Micrurus spixii spixii, and Micrurus surinamensis. Toxicon 166, 39–45. https://doi.org/10.1016/j.toxicon.2019.05.001.

Sanz, L., Pla, D., Pérez, A., Rodríguez, Y., Zavaleta, A., Salas, M., Lomonte, B., Calvete, J., 2016. Venomic analysis of the poorly studied desert coral snake, Micrurus tschudi tschudi, supports the 3FTx/PLA2 dichotomy across Micrurus venoms. Toxins 8, 178. https://doi.org/10.3390/toxins8060178.

Sasa, M., Smith, E.N., 2001. Phylogenetic analysis of monadal coral snake genus Micrurus from Middle America. In: Joint Annual Meetings of the Herpetologists’ League and the Society for the Study of Amphibians and Reptiles. Indianapolis, pp. 131–132.

Savage, J.M., Vial, J.L., 1974. The venomous coral snakes (genus Micrurus) of Costa Rica. Rev. Biol. Trop. 21, 295–349.

Schmidt, K.F., 1936. Notes on Central American and Mexican coral snakes. Zool. Ser. F. Museum Nat. Hist. 20, 205–216.

Slowinski, J.B., 1995. A phylogenetic analysis of the New World coral snakes. J. Herpetol. 29, 325–338.

Solorzano, A., 2004. Serpientes de Costa Rica: distribución, taxonomía e historia natural. INBio.

Taylor, E.H., 1951. A brief review of the snakes of Costa Rica. Univ. Kans. Sci. Bull. 34, 1–188.

Zaher, H., Grazziotin, F.G., Prudente, A.L.C., Quadros, A.B., Trevine, V.C., Silva Jr., N.J., 2021. Origin and evolution of elapids and new world coral snakes. In: Silva, N.J., Porras, L.W., Aird, S., Prudente, A.L.C. (Eds.), Advances in Coral snake Biology: with an Emphasis on South America. Eagle Mountain Publishing, Utah, pp. 97–113.