Antiferromagnetism in the magnetoelectric effect single crystal LiMnPO₄

Jiying Li¹,², Wei Tian³, Ying Chen¹,², Jerel L. Zarestky³, Jeffrey W. Lynn¹, and David Vaknin³*

¹NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
²Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742
³Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011

(Dated: April 16, 2009)

Elastic and inelastic neutron scattering studies reveal details of the antiferromagnetic transition and intriguing spin-dynamics in the magnetoelectric effect single crystal LiMnPO₄. The elastic scattering studies confirm the system is antiferromagnetic (AFM) below $T_N=33.75$ K with local magnetic moments (Mn$^{2+}$; $S=5/2$) that are aligned along the crystallographic a-axis. The spin-wave dispersion curves propagating along the three principal axes, determined by inelastic scattering, are adequately modeled in the linear spin-wave framework assuming a spin-Hamiltonian that is parameterized by inter- and in-plane nearest- and next-nearest-neighbor interactions, and by easy-plane anisotropy. The temperature dependence of the spin dynamics makes this an excellent model many-body spin system to address the question of the relationship between spin-wave excitations and the order parameter.

PACS numbers: 75.25.+z, 75.30.Ds, 75.50.Ee

INTRODUCTION

The recent discoveries of colossal magnetoelectric effects (ME) in rare-earth-manganites (RMnO₃) [1, 2] and manganese-oxides (R₂MnO₅) [3] triggered a revival interest in the so-called insulating multiferroic materials that exhibit ferroelectricity in coexistence with ferromagnetism or antiferromagnetism (FM or AFM) [4, 5]. Systematic studies of the coupling between the electric and magnetic fields in crystals date back to the early 1960s with the discovery of the first ME compound Cr₂O₃ [6, 7]. Early on, the isostructural transition-metal lithium-orthophosphates LiMPO₄ (M = Mn, Fe, Co, Ni) were identified as ME systems [8, 9, 10] and have been the subjects of numerous studies [11, 12, 13]. Like other members of the lithium-orthophosphates, LiMnPO₄ is an antiferromagnetic insulator with $Pnma$ symmetry group [14, 15]. In this structure, each Mn$^{2+}$ ion occupies the center of a slightly distorted MnO₆ octahedron that shares oxygen anions with a tetrahedral PO₄ forming a closely packed oxygen framework. The Mn$^{2+}$ ions ($S=5/2$) form buckled layers that are stacked along the [100] crystallographic axis, as shown in Fig. (1a). The nearest neighbors (NN) in the b-c plane are coupled magnetically by a relatively strong exchange interaction J_1 through an Mn-O-Mn oxygen-bond, whereas the in-plane next-NN (NNN) are coupled via Mn-O-Mn (J_2 [16, 17]) (see Fig. (1b) for the definitions of the exchange couplings). The interlayer magnetic coupling is mediated through phosphates by higher order superexchange via Mn-O-P-O-Mn, which was found to be relatively large in similar frameworks [18].

Neutron diffraction of polycrystalline samples [19, 20, 21] and single crystal NMR [16] measurements showed that all LiMPO₄ share the same colinear (up-down) AFM ground state with spin orientation along a, b, b and c crystallographic directions for LiMnPO₄, LiFePO₄, LiCoPO₄ and LiNiPO₄, respectively. However, recent single crystal neutron diffraction studies of LiCoPO₄, LiFePO₄, and LiNiPO₄, [22, 23, 24, 25] show the moments in the ground state are slightly tilted away from principal crystallographic directions, indicating the magnetic symmetries for these systems are lower than those determined from polycrystalline measurements, giving rise to spontaneously induced weak ferromagnetism. Weak ferromagnetism (WFM) in magnetic susceptibility measurements has also been reported for LiNiPO₄ [26] and LiMnPO₄ [27] below T_N. Indeed, domain structures observed by second-harmonic-generation (SHG) experiments in LiCoPO₄ were interpreted as ferrotoroidic domains [28] facilitated by the lower magnetic symmetry obtained in neutron scattering experiments [22]. Based on the detailed spin configuration observed in LiNiPO₄, Jensen and co-workers have been able to model the temperature dependence of the ME coefficients of this system [29].

Here, we report elastic and inelastic neutron scattering studies of a single crystal LiMnPO₄, to determine the nature of the AFM transition and the spin dynamics in this system. Recent susceptibility measurements indicated WFM in this system [27] implying spin-canting that may be detected in neutron diffraction measurements. There is also some inconsistency in the literature with regard to the transition temperature; $T_N = 34.85$ [19, 20] and 42 K were reported [27] for polycrystalline samples. The spin dynamics of the LiFePO₄, LiCoPO₄ and LiNiPO₄ were measured and modeled in the linear spin-wave framework only recently [23, 24, 25], to suc-
cessfully yield the exchange couplings and the single-ion anisotropy parameters in these systems. Determining and analyzing the spin dynamics of LiMnPO₄ is an important step towards developing a universal understanding of the magnetic properties of this isostructural group of compounds.

![Diagram](image.png)

FIG. 1: (color online) (a) Atomic structure of LiMnPO₄. The Mn²⁺ ions form buckled layers stacked perpendicular to the [100] crystallographic direction. The ground state of LiMnPO₄ is collinear antiferromagnetic with average moments along the a-axis. (b) Spin arrangement of the two Mn²⁺ layers. The in-plane nearest and next-nearest neighbor interactions J₁, J₂, J₃ and inter-plane nearest and next-nearest neighbor interactions J₄, J₅ are labeled.

EXPERIMENTAL DETAILS

A LiMnPO₄ single crystal (0.41 gram, pink in color) was grown by the standard flux growth technique (LiCl was used as the flux) from a stoichiometric mixture of high purity MnCl₂ (99.999% Aldrich) and Li₃PO₄ (99.999% Aldrich). Powder, for the XRD, was prepared by crushing typical isolated single crystals. The composition and structure were confirmed by carrying out Rietveld analysis of X-ray powder diffraction (XRD) data, using the GSAS software package [31]. No extra peaks from impurities were detected in the XRD pattern. The lattice parameters yielded from the refinement at room temperature (a = 10.524 Å, b = 6.095 Å, and c = 4.75 Å) are in good agreement with the values reported in the literatures [20, 32, 33].

Neutron scattering measurements were carried out on the BT7 and BT9 thermal triple axis spectrometer at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A monochromatic neutron beam of wavelength λ = 2.36 Å (14.7 meV, kₒ = 2π/λ = 2.66Å⁻¹) was selected by a vertical focusing monochromator system, using the (0 0 2) Bragg reflection of highly oriented pyrolytic graphite (HOPG) crystals. HOPG crystals were also used as analyzer for both the elastic and the inelastic studies. The high resolution inelastic scattering measurements were conducted on the on the cold neutron Spin Polarized Inelastic Neutron Spectrometer (SPINS) at the NCNR.

RESULTS AND DISCUSSION

Elastic neutron scattering

The LiMnPO₄ crystal was oriented with its a-b plane, (and subsequently rotated with its b-c plane) to coincide with the scattering-plane of the spectrometer. The elastic measurements, with the strongest magnetic reflection (010) peak, confirmed that the magnetic structure of LiMnPO₄ is AFM with spin orientation along the a-axis.

![Graph](image.png)

FIG. 2: (Color online) Temperature dependence of the square root of the integrated intensity of the (010) magnetic peak. The transition temperature obtained from the fit is T_N = 33.85 ± 0.1 K and the critical exponent β = 0.126 ± 0.017.
The temperature dependence of the magnetic (010) reflection was used to extract the behavior of the order parameter in the temperature range from 5 to 50 K. Figure 2 shows the square root of the integrated intensity, representing the staggered magnetization, (i.e., order parameter) as a function of temperature for the (010) peak. The order parameter was fit to a power law function near the transition temperature:

\[\sqrt{T} \propto M^\dagger = M^\dagger_0 t^\beta \]

where \(M^\dagger_0 \) is the sublattice magnetization at \(T = 0 \) K, \(t = (1-T/T_N) \) is the reduced temperature, and \(\beta \) is the critical exponent. The obtained transition temperatures from the fit is \(T_N = 33.85 \pm 0.1 \) K and the critical exponent for the temperature dependent magnetization \(\beta \) is \(0.126 \pm 0.017 \) by using the main (010) magnetic peak. This is very close to the theoretical value of the critical exponent of the 2D Ising system \(\beta = 0.125 \) \[34\], consistent with the layered nature of the magnetic system, as also demonstrated by the weak interlayer coupling obtained from the analysis of the spin-waves discussed below. The transition temperature is found to be very close to the value, \(34.85 \pm 0.1 \) K measured by Mays \[16\] using nuclear magnetic resonances performed on a single crystal of LiMnPO\(_4\), whereas susceptibility measurements of powder samples yield \(T_N = 42 \) K \[27\].

Unlike LiCoPO\(_4\) and LiFePO\(_4\), strong critical scattering above the AFM transition is observed in LiMnPO\(_4\) and persists to almost twice \(T_N \) (traced to temperatures as high as 70 K) before the spins become uncorrelated. These correlations were already evident in Figure 2. Figure 3 shows longitudinal and transversal scans at the (010) magnetic peak above the transition with energy transfer \(\Delta E = 0 \). The peaks are much broader than the spectrometer’s resolution indicating some type of short range correlations. This is reminiscent of the behavior in LiNiPO\(_4\) where this critical scattering was later found to be associated with an incommensurate (IC) short- and long-range magnetic order above \(T_N \) \[35\]. Below \(\sim 33 \) K all peaks are practically resolution limited Gaussian shaped. Above \(T_N \), the peaks were fit to a Lorentzian line shape \(1/(q^2 + \kappa^2) \), where \(q = h \) or \(k \), and \(\kappa \) is inversely proportional to the coherence length \(\xi = 2\pi/\kappa \), convoluted with an instrumental gaussian shaped resolution function. The calculated coherence lengths along the \(a \)- and \(b \)-axis, as a function of temperature are shown in Figure 3 (c). Below the transition temperature, the in-plane coherence lengths (along the \(b \)-axis) is significantly longer than that between the planes (along the \(a \)-axis), consistent with the quasi-2D nature of LiMnPO\(_4\). The correlation lengths were remeasured on BT9 using the integrated energy (two-axis mode) method and yielded similar results. Attempts to correlate the in-plane coherence length in the critical regime with the 2D-Ising model failed, but the Kosterlitz-Thouless (KT) 2D XY-model, \(\xi(T) = Ae^{B/(T-T_c)^\nu} \), seems to fit our data well \[30\] (solid line, Fig. 3) with \(T_c = 33.6 \pm 0.008 \) and \(\nu = 0.51 \pm 0.1 \). This strong critical scattering above the transition with KT characteristics may therefore indicate...
spin-dimensionality crossover from the 2D Heisenberg to the 2D XY-model.

Inelastic and quasielastic neutron scattering

Spin waves along the three principal reciprocal lattice directions \((q,1,0),(0,1+q,0)\) and \((0,1,q)\) were measured in energy loss mode at \(T = 5\,\text{K}\). Examples of the excitations measured on BT7 at \(q = 0.2\) are shown in Figure 4. A single excitation was observed at each \(q\) along the three directions on BT7 which has an energy resolution of \(\sim 1\,\text{meV}\). At \(T \approx 50\,\text{K}\), no similar peaks are observed confirming the magnetic origin of the excitations. The inelastic signals at various constant wave-vectors were fit to Gaussian shaped functions (solid line in Fig. 4), and the set of energies at maximum intensity were used to construct the spin-wave dispersion curves shown in Fig. 5. It is shown that the spin-waves propagating in the plane along the \((001)\) and \((010)\) directions have higher energy than the spin-waves propagating along \((100)\) at the same \(q\) values. Qualitatively, this behavior reflects the anisotropy in the strength of the exchange couplings in the system; as expected, the in-plane exchange couplings are much stronger than those between planes. Using the cold neutron triple axis SPINS spectrometer, an energy gap \(E_G = 0.48\,\text{meV}\) was observed around the \((010)\) zone center, which is much smaller than the 2 meV \([23]\), 5.86 meV \([23]\), and 4.7 meV \([24]\) observed in LiNiPO\(_4\), LiFePO\(_4\) and LiCoPO\(_4\), respectively. With the high energy resolution of SPINS, which is around 0.1 meV (using 3.7 meV final energy), two energy excitation peaks were identified at the zone center, as shown in Figure 5.

![Figure 4](image_url)

FIG. 4: (color online) Examples of constant-Q energy scans measured on BT7 at 5 K, at wave-vectors \(q = 0.2\) along \((q,1,0),(0,1+q,0)\) and \((0,1,q)\) reciprocal directions. A single energy excitation is present in every direction with the typical energy resolution of BT7 around 1 meV.

To model the spin-wave dispersions, we use a spin-Hamiltonian based on the ground state spin structure of LiMnPO\(_4\) as shown in Fig. 1 as follows

\[
\mathcal{H} = \sum_{i,j}(J_{i,j}S_i \cdot S_j) + \sum_{i,\xi}D_{\xi}(S_i^\xi)^2
\]

where \(J_1\) to \(J_5\) are the spin coupling constants (see Fig. 1), and \(D_{\xi}\) are the single ion anisotropies. Since the excitation spectrum is insensitive to an overall shift of the ground state energy we can define \(D_z \equiv 0\) for simplicity. The \(x, y,\) and \(z\) coordinates are defined along the \(c-, b-, \) and \(a-\) axis, respectively, to align the spin direction in the ground state with the quantum \(z\)-axis in Eq. 4. The magnon dispersion curves derived from Eq. 4 by linear spin-wave theory is given in Refs. 23, 24, 37.

In the model, the calculated spin waves have two non-degenerate branches (denoted by the \(\pm\) sign in Eq. 3) as a result of the different anisotropies along the \(x\) and \(y\) directions.

\[
h\omega = \sqrt{A^2 - (B \pm C)^2}
\]

where,

\[
A \equiv 4S(J_1 + J_5) - 2S[J_4(1 - \cos(q \cdot r_5)) + J_2(1 - \cos(q \cdot r_6)) + J_4(2 - \cos(q \cdot r_7) - \cos(q \cdot r_8))] + (S - 1/2)(D_x + D_y),
\]

\[
B \equiv (S - 1/2)(D_x - D_y),
\]

\[
C \equiv 2J_1S[\cos(q \cdot r_1) + \cos(q \cdot r_2)] + 2J_5S[\cos(q \cdot r_3) + \cos(q \cdot r_4)],
\]

and \(r_i\) denotes a vector to a NN and NNN,

\[
\begin{align*}
 r_1 &= (c/2, b/2, 0) \\
 r_2 &= (-c/2, b/2, 0) \\
 r_3 &= (0, b/2, a/2) \\
 r_4 &= (0, -b/2, a/2) \\
 r_5 &= (0, b, 0) \\
 r_6 &= (c, 0, 0) \\
 r_7 &= (c/2, 0, a/2) \\
 r_8 &= (-c/2, 0, a/2).
\end{align*}
\]

The spin-wave dispersion curves along the three directions in Fig. 6 were simultaneously fit to Eq. 6, using the “-” sign, yielding the following values: \(J_1 = 0.48 \pm 0.05\,\text{meV}\), \(J_2 = 0.2 \pm 0.038\,\text{meV}\), \(J_3 = 0.076 \pm 0.004\,\text{meV}\), \(J_4 = 0.036 \pm 0.002\,\text{meV}\), \(J_5 = 0.062 \pm 0.003\,\text{meV}\), \(D_x = 0.0609 \pm 0.001\,\text{meV}\) and \(D_y = 0.0089 \pm 0.001\,\text{meV}\). In the equation, \(S = 5/2\) for Mn\(^{2+}\). As expected, the in-plane NN exchange coupling \(J_1\), is the strongest, compared to the in-plane NNNs \(J_2\) and \(J_4\). The sign of both \(J_2\) and \(J_3\) indicates the NNN interactions compete with the simple AFM ordering dictated by \(J_1\). For weakly coupled layers, it has been predicted theoretically that an incommensurate (IC) magnetic structure should be realized when \(J_2/J_1 > 0.5\). Thus, unlike in LiNiPO\(_4\)
where the $J_2/J_1 \approx 0.6$ and an IC has been observed, the ratio for LiMnPO$_4$ (~ 0.4) seems to be too small to induce any IC phase transition [29]. The spin couplings between the inter-plane nearest-neighbors (J_4 and J_5) are relatively weak at about 12% of J_1 consistent with the quasi-2D behavior of this system. The values of the single ion $D_x = 0.0055$ and $D_y = 0.0071$, are much smaller than those of LiNiPO$_4$ [29], LiFePO$_4$ [23], and LiCoPO$_4$ [24] indicating that the ground state with magnetic moments along the a-axis is not very stable, and the moments are prone to a spin-flop transition in relatively weak magnetic fields [39, 40].

The second spin wave dispersion branches, given by “+” sign in Eq. (3), are calculated using the Js and Ds obtained from the fits listed above. The two branches almost overlap one another for the dispersions along all the three principal reciprocal directions, and are only separate by ~ 0.1 meV at the zone center. The spin wave dispersion along $(1, 0, 0)$ direction, where the model predicts the largest separation between the two branches, was re-measured with the high energy resolution on SPINS. Figure 6 (b) shows an enlargement graph of Figure 6 (a), with fairly good agreement with the model calculations.

The energy gaps at the zone center for the two branches are

$$\Delta E = 2S \sqrt{4D_x(J_1 + J_5) + D_xD_y},$$

(4)

for $(B - C)$ in Eq. (5) and

$$\Delta E = 2S \sqrt{4D_y(J_1 + J_5) + D_xD_y},$$

(5)

for $(B + C)$. J_5 represents the inter-plane NN coupling. From the equations, we notice that the energy gap not only depends on the single-ion anisotropy terms, but also on the two nearest-neighbor antiparallel exchange interactions.

The second spin wave dispersion branches, given by “+” sign in Eq. (3), are calculated using the Js and Ds obtained from the fits listed above. The two branches almost overlap one another for the dispersions along all the three principal reciprocal directions, and are only separate by ~ 0.1 meV at the zone center. The spin wave dispersion along $(1, 0, 0)$ direction, where the model predicts the largest separation between the two branches, was re-measured with the high energy resolution on SPINS. Figure 6 (b) shows an enlargement graph of Figure 6 (a), with fairly good agreement with the model calculations.
sition temperature was measured at the cold neutron triple axis spectrometer SPINS, and the results are shown in Figure 5 (energy gaps at various temperatures were determined from gaussian fits to constant-Q energy scans such as the one shown in Fig. 5 at $T = 5$ K). The energy gap monotonically decreases with increasing temperature and approaches zero at the transition temperature. The temperature dependence of the gap to a first approximation is proportional to the staggered magnetization which is temperature dependent \cite{42}. However, it may deviate in the critical regime due to the different temperature dependencies of the coupling constants and the single ion anisotropy. In antiferromagnets, the exchange constants J_{\parallel} usually decrease much faster than the single ion anisotropy near the transition temperature \cite{41, 42}.

Quasi-elastic scattering (QENS) around (010) at different temperatures was measured on BT9 using the integrated energy (two-axis) mode, and the results are shown in Figure 8. At temperatures right below the transition, the (010) peak consists of a resolution limited Gaussian shaped magnetic Bragg peak superimposed on a broad Lorentzian shaped diffuse peak. Whereas the diffuse scattering becomes stronger with the increase of temperature (up to the transition), the elastic magnetic Bragg peak becomes weaker. The QENS intensity at each temperature was integrated over the the K range shown in Figure 8 (a) excluding the region from 0.98 to 1.02 (r.l.u) which is dominated by elastic scattering. Figure 8 (b) shows the QENS as a function of temperature, which exhibits a sharp peak at the transition ($T_N = 33.75$ K) with a tail that extends to about $1.5T_N$. This indicates that the short range correlations observed in the elastic scattering are primarily due to (dynamics) spin-fluctuations.

In summary, we determined the critical behavior near the AFM magnetic phase transition of LiMnPO$_4$ ($T_N = 33.85$ K). The strong critical scattering around the (010) magnetic peak and the in-plane, inter-plane coherence lengths indicate that the system is a quasi-2D system with very weak easy axis single ion anisotropy. Analysis of the spin-wave dispersions along the three principal axis directions show that the in-plane couplings are dominant compared to the inter-plane couplings. These in-plane competing interactions between in-plane NN and NNN-spins in LiMnPO$_4$ seem to be too weak to lead to more complicated, incommensurate magnetic structures. This is in contrast to the observation of incommensurate magnetic phases in LiNiPO$_4$ \cite{35}.

We thank Sung Chang for the support on the SPINS cold neutron triple axis. Ames Laboratory is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-07CH11358. SPINS is supported in part by the US National Science Foundation through DMR-0454672.

[1] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
[2] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
[3] N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Phys. Rev. Lett. 93, 107207-1 (2004).
[4] M. Fiebig, J. Phys. D: Appl. Phys., 38, R123 (2005).
[5] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
[6] D. N. Astrov, J. Exp. Theoret. Phys. (U.S.S.R.) 38, 984 (1960).
[7] G. T. Rado and V. J. Folen, Phys. Rev. lett. 7, 310 (1961).
[8] M. Mercier, and J. Gareyte, Sol. State Comm. 5, 139 (1967); 7, 149 (1969).
[9] M. Mercier, and P. Bauer, C. R. Acad. Sci. Paris 267, 465 (1968); and M. Mercier, Ph.D. thesis, Universit de
Grenoble, 1969.

[10] J.-P. Rivera, Ferroelectrics **161**, 147 (1994).

[11] *Ferroelectric interaction phenomena in crystals*, edited by A.J. Freeman and H. Schmid (Gordon and Breach Science Publishers, London/New York, 1975); references therein.

[12] Proceedings of the Second International Conference on Magnetoelastic Interaction Phenomena in Crystals (MEIPIC-2), Ascona, 1993, Parts I and II, edited by H. Schmid, A. Janner, H. Grimmer, J.-P. Rivera, and Z.-G. Ye [Ferroelectrics **161**, 1 (1994); **162**, 1 (1994)], references therein.

[13] *Ferroelectric Interactions Phenomena in Crystals*, edited by M. Fiebig, V. V. Eremenko, and I. E. Chupis, NATO Science Series (Kluwer Academic Publishers, Dordrecht, 2004); references therein.

[14] S. Geller and J. L. Easson, Acta Crystallogr., **18**, 258 (1960).

[15] H. D. Megaw, *Crystal Structures - A Working Approach*, Saunders, Philadelphia, 1973, P249.

[16] J. M. Mays, Phys. Rev. **131**, 38 (1963).

[17] D. Dai, M. H. Whangbo, H. J. Koo, X. Rocquefelte, S. Jobic, A. Villesuzanne, Inorganic Chem., **44**, 2407 (2005).

[18] J. L. Zarestky, D. Vaknin, B. C. Chakoumakos, T. Rojo, A. Goi, and G. E. Barberis, J. Mag. Mag. Matt. **234**, 401 (2001).

[19] R. P. Santoro, R. E. Newnham, and S. Nomura, J. Phys. Chem. Solids **27**, 655 (1966); R. P. Santoro, D. J. Segal, R. E. Newnham, J. Phys. Chem. Solids **27**, 1192 (1966).

[20] R. P. Santoro and R. E. Newnham, Acta. Cryst. **22**, 344 (1967).

[21] D. Vaknin, J. L. Zarestky, J. E. Ostenson, B. C. Chakoumakos, A. Goi, P. J. Pagliuso, T. Rojo, and G. E. Barberis, Phys. Rev. B **60**, 1100 (1999).

[22] D. Vaknin, J. L. Zarestky, L. L. Miller, J. -P. Rivera, and H. Schmid, Phys. Rev. B **65**, 224414 (2002).

[23] J. Li, V. O Garlea, J. L. Zarestky, and D. Vaknin, Phys. Rev. B **73**, 024410 (2006).

[24] W. Tian, J. Li, J. W. Lynn, J. L. Zarestky, and D. Vaknin, Phys. Rev. B **78**, 184429 (2008).

[25] T. B. S. Jensen, N. B. Christensen, M. Kenzelmann, H. M. Rønnow, C. Niedermayer, N. H. Andersen, K. Lefmann, J. Schefer, M. v. Zimmermann, J. Li, J. L. Zarestsky, and D. Vaknin, Phys. Rev. B **79**, 092412 (2009).

[26] Y. Kharchenko, N. Kharchenko, M. Baran and R. Szmyczak, Low Temp. Phys. **29**, 579 (2003).

[27] D. Arčon, A. Zorko, P. Cevec, R. Dominiko, M. Bele, J. Jamnik, Z. Jaglicic, I. Golosocsky, J. Phys. Chem. Solids, **65**, 1773 (2004); D. Arčon, A. Zorko, R. Dominko, Z. Jaglicic, J. Phys. Chem. Solids., **16**, 5531 (2004).

[28] B. van Aken, J.-P. Rivera, H. Schmid, and M. Fiebig, Nature **449**, 702 (2007).

[29] T. B. S. Jensen, N. B. Christensen, M. Kenzelmann, H. M. Rønnow, C. Niedermayer, N. H. Andersen, K. Lefmann, M. Jiménez-Ruiz, F. Demmel, J. Li, J. L. Zarestky, and D. Vaknin, Phys. Rev. B **69**, 092413 (2009).

[30] V. I. Fomin, V. P. Genezdilov, V. S. Kurnosov, A. V. Peschanski, A. V. Yeremenko, H. Schmid, J. -P. Rivera, and S. Gentil, Low Temp. Phys., **28**, 203 (2002).

[31] A. C. Larson, R. B. Von Dreele, and M. Lujan Jr., *Computer code GSAS, Generalized Structure Analysis System*, Neutron Scattering Center, Los Alamos National Laboratory, 1990.

[32] V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson and N. K. Hansen, Acta Crystal., **B39**, 147 (1993).

[33] G. Rousse, J. R. Carvajal, S. Patoux and C. Masquelier, Chem. Mater., **15**, 4082 (2003).

[34] M. F. Collins, *Magnetic Critical Scattering*, New York, Oxford University Press, 1989, p29.

[35] D. Vaknin, J. L. Zarestky, J. -P. Rivera, and H. Schmid, Phys. Rev. Lett., **92**, 207201/1 (2004).

[36] H. Q. Ding and M. S. Makivić, Phys. Rev. B, **42**, 6827 (1990).

[37] G. L. Squires, in *Introduction to the Theory of Thermal Neutron Scattering*, Cambridge University Press, New York, 1978, p156.

[38] T. Nagamiya, *Solid State Physics* edited F. Seitz and D. Turnbull (Academic, New York, 1967), Vol. 29, p. 346.

[39] J. H. Ranicar and P. R. Elliston, Phys. Lett. **25A**, 720 (1967).

[40] P. R. Elliston, J. G. Creer, and G. J. Troup, J. Phys. Chem. Solids **30**, 1335 (1969).

[41] O. Nagai, Phys. Rev. **180**, 557 (1969).

[42] M. Bloch, Phys. Rev. Lett. **9**, 286 (1962), and J. Appl. Phys. **34**, 1151 (1963).