A new species of *Albugo* parasitic to *Arabidopsis thaliana* reveals new evolutionary patterns in white blister rusts (*Albuginaceae*)

M. Thines¹,³, Y.-J. Choi², E. Kemen³, S. Ploch¹, E.B. Holub⁴, H.-D. Shin², J.D.G. Jones³

Key words

Albuginales
effector gene
comparative morphology
phylogeny
plant pathogen speciation

Abstract

The obligate biotrophic lineages of the white blister rusts (Albuginales, Oomycota) are of ancient origin compared to the rather recently evolved downy mildews, and sophisticated mechanisms of biotrophy and a high degree of adaptation diversity are to be expected in these organisms. Speciation in the biotrophic Oomycetes is usually thought to be the consequence of host adaptation or geographic isolation. Here we report the presence of two distinct species of *Albugo* on the model plant *Arabidopsis thaliana*, *Albugo candida* and *Albugo laibachii*, the latter being formally described in this manuscript. Both species may occupy the same host within the same environment, but are nevertheless phylogenetically distinct, as inferred from analyses of both mitochondrial and nuclear DNA sequences. Different ways of adapting to their host physiology might constitute an important factor of their different niches. Evidence for this can be gained from the completely different host range of the two pathogens. *While Albugo candida* is a generalist species, consisting of several physiological varieties, which is able to parasitize a great variety of Brassicaceae, *Albugo laibachii* has not been found on any host other than *Arabidopsis thaliana*. Therefore, *Albugo laibachii* belongs to a group of highly specialised species, like the other known specialist species in *Albugo* s.s., *Albugo koreana*, *Albugo lepildii* and *Albugo voglmayrii*. The comparative investigation of the effector genes and host targets in the generalist and the specialist species may constitute a model system for elucidating the fundamental processes involved in plant pathogen co-adaptation and speciation.

Article info

Received: 3 February 2009; Accepted: 20 April 2009; Published: 26 May 2009.

INTRODUCTION

The brassicaceous plant *Arabidopsis thaliana*, which has been the model system to study plant genetics and physiology since Laibach (1943) proposed it as a suitable candidate, has been the motor for fundamental discoveries in plant biology. During the past years, it has also become the focus of studies in plant pathogen interactions, especially in obligate pathogens, like downy mildews and powdery mildews (Holub 2007, 2008). Investigation of these obligate pathogens has provided many important insights into plant susceptibility and immunity (Austin et al. 2002, Muskett et al. 2002, Birch et al. 2006), but many aspects still remain enigmatic. With the discovery of a plethora of fast evolving effector genes involved in the pathogenesis of oomycetes (Morgan & Kamoun 2007), new approaches emerge for understanding the evolution of pathogenicity. The reference genome of the downy mildew of *Arabidopsis thaliana*, *Hyaloperonospora arabidopdis*, for example, contains more than 100 effector-like genes (Win et al. 2007). The function of most of these is currently unknown, but they are expected to somehow be involved in manipulating their hosts to attenuate defence or to re-direct host metabolism and favour the parasite development. It can be expected that obligate biotrophic pathogens manipulate their hosts by highly evolved mechanisms to attenuate defence, and they are thus of particular interest for investigating host-pathogen interactions. For plant pathologists, systems with different pathogens parasitic to the same host may constitute a promising approach to study plant defence mechanisms and the effectors involved in successful pathogen establishment. Recent reports demonstrate that white rust in *Arabidopsis thaliana* is also an important model pathosystem for molecular genetic investigation of broad spectrum induced susceptibility, and race-specific and non-host disease resistance (Holub et al. 1995, Parker et al. 1996, Borhan et al. 2004, Cooper et al. 2008).

The two highly distinct lineages of *Oomycota* (*Albuginaceae* and *Peronosporaceae*) that are obligate parasites of *Arabidopsis thaliana* (Gäumann 1918, Biga 1955) have until recently (Dick 2001) been thought to be closely related members of the order *Peronosporales*, and very distinct from the order *Pythiales*, which included the hemibiotrophic genera *Phytophthora* and *Pythium*. However, it became evident from the first comprehensive phylogenies of these organisms (Riethmüller et al. 2002, Hudspeth et al. 2003) that the downy mildews and white blister rusts are only distantly related. Along with morphological and cytological evidence, the order *Albuginales* was therefore introduced (Thines & Spring 2005), along with two new genera in the white blister rusts, *Pustula* (white blister rusts of *Asteridae*) and *Wilsoniana* (white blister rusts of *Caryophyllidae*). In the first phylogenetic reconstructions including *Albugo* s.s. (Rehmery et al. 2000, Choi et al. 2006, Voglmayr & Riethmüller 2006), it was observed that *Albugo* in *Brassicaceae* did not form a homogenous clade, but was separated into one clade comprising the majority of isolates and several additional distinct lineages. More detailed phylogenetic and morphological investigations revealed that in *Capsella bursa-pastoris* and in the genus *Draba*, two different specialist species are present (Choi et al. 2007, 2008). However, these new species were...
collected in isolated geographic regions in Korea or east Asia, and have so far not been reported from other parts of the world, suggesting that geographic isolation might have enabled independent adaptation to the same host. Closer inspection of the phylogeny presented by Voglmayr & Riedmüller (2006), in comparison with the one shown in Choi et al. (2007), reveals that in Cardaminopsis halleri (now Arabidopsis halleri), Albugo candida was observed in a specimen from Romania, while in a specimen of Arabidopsis thaliana from Austria a genetically distinct Albugo was found. If two related – yet distinct – species were parasitic to Arabidopsis in the same geographic region, this would suggest that sympatric speciation based on unknown niche adaptation mechanisms is possible in Albugo. This would create a promising model system for investigating plant defence and plant-pathogen interaction. In addition, it would raise fundamental questions regarding niche recognition, evolution and ecology in obligate, biotrophic plant pathogens. Therefore, it was the aim of this study to clarify whether two different species of Albugo might be present in the same geographic region and on a single host species – the model plant Arabidopsis thaliana.

MATERIALS AND METHODS

Specimens and morphological investigation

The details for the specimens examined and GenBank accession numbers are given in Table 1. Morphological investigation was done as described previously (Choi et al. 2008).

Table 1 Arabuginaceae specimens investigated in this study.

Number	Species	Origin	Year	Herbarium code / strain identification	GenBank accession no. ITS	cox2
1	Albugo candida	Romania, Maramure,	1974	BP 54980 –	FJ463359	
2	Helophila meyeri	Rota, Vanhynsdorp	1896	BPI 184888	DQ141893 DQ1418515	
3	Arabidopsis thaliana	UK, Norwich	2007	SL 11888	FJ463350 FJ463361	
4	Arabidopsis thaliana	USA, California	1938	BPI 184897	DQ1418499 DQ1418522	
5	Berberis incana	Austria, Krems	1987	BPI 184200	DQ1418495 DQ1418508	
6	Brassica juncea	Korea, Namyangju	1998	KUS-F 15570	AY929826 AY927046	
7	Biscutella laevigata	Switzerland, Valais	1903	BPI 184869	DQ1418494 DQ1418506	
8	Thlaspi arvense	USA, New York	2002	CUP 065777	AY929847 AY913809	
9	Albugo halleri	Romania, Suceava	1980	BPI 199991	DQ1418502 DQ1418513	
10	Arabidopsis thaliana	Bulgaria	1955	SOMF 00337	AY929825 AY918303	
11	Erysimum cuspidatum	Romania, Mehedinti	1979	BPI 199988	DQ1418498 DQ1418519	
12	Arabidopsis thaliana	UK, Norwich	2007	SL 20D355	FJ463364 FJ463365	
13	Aubrieta deltoidea	Germany, Hessen	1953	BPI 184659	DQ1418500 DQ1418511	
14	Capsella bursa-pastoris	Netherlands, Zuid-Holland	1981	BPI 184451	DQ643916 DQ643944	
15	Arabidopsis thaliana	Ukraine, SL 30LL2	2007	FJ463366	FJ643937	
16	Arabidopsis thaliana	USA, Oregon	2000	CUP 065631	AY929840 AY913797	
17	Arabidopsis thaliana	UK, 'East Malling'	2007	UW Acem2 –	FJ463368	
18	Arabidopsis thaliana	Romania, Ilfov	1977	BP 75214 –	FJ463369	
19	Diplotaxis erucoides	Palestine, Kriiat-Anabim	1935	BPI 184682	DQ1418496 DQ1418517	
20	Raphanus sativus	Korea, Seoul	1990	KUS-F 10614	AY929841 AY927059	
21	Sinapis alba	Korea, Pyongchang	2002	KUS-F 19086	AY929844 AY913808	
22	Erucia sativa	Pakistan, Daudkhel	1968	BPI 184970	DQ1418503 DQ1418514	
23	Albugo lepidii	Korea, Seoul	1997	KUS-F 13747	AY929835 AY927054	
24	Lepidium apetalum	Korea, Seoul	2000	KUS-F 17251	AY929838 AY927057	
25	Lepidium virginicum	Korea, Seoul	1999	KUS-F 15732	AY929834 AY927053	
26	Capsella bursa-pastoris	Russia, Gacyong	1997	KUS-F 15798	AY929832 AY927051	
27	Albugo voglmayrii	Russia	1977	KUS-F 19086	AY929844 AY913808	
28	Descurainia sophia	Russia	1977	KUS-F 13747	AY929835 AY927054	
29	Diphyllobothriopsis strictus	Russia	1978	KUS-F 19086	AY929832 AY927051	
30	Albugo laibachii sp. nov.	Australia, Tasmania	1980	DAR 73071 –	FJ463371	
31	Arabidopsis thaliana	UK, 'East Malling'	2007	UW Acem1 –	FJ463372	
32	Arabidopsis thaliana	UK, Norwich	2007	SL1C	FJ463373 FJ463374	
33	Albugo koreana	Korea, Namyangju	1997	KUS-F 13752	AY929829 AY927048	
34	Capsella bursa-pastoris	Korea, Yonggin	2000	KUS-F 17254	AY929831 AY927050	
35	Capsella bursa-pastoris	Korea, Seoul	1999	KUS-F 15670	AY929830 AY927049	
36	Albugo ipomoeae-panduratae	Korea, Yangpyung	2003	KUS-F 19086	AY929828 AY913809	
37	Wisoniana amaranthi	Korea, Chunchon	2003	KUS-F 19235	AY929824 AY913805	

DNA extraction, PCR and sequencing

DNA extraction and cox2 amplification was performed as reported earlier (Hudsph et al. 2000, McKinney et al. 1995, Thines et al. 2008). ITS regions were amplified from the specimens as described previously (Thines 2007), with elongation time set to 1 min. In addition to the primers reported in Thines (2007), the oomycete specific forward primer DC6 (Cooke et al. 2000) was employed. Sequencing was carried out by the commercial sequencing company GATC (Konstanz, Germany), SolGent (Daejeon, Korea) and the John Innes Genome Laboratory, (Norwich, UK), using the primers applied for PCR.

Alignment and phylogenetic reconstruction

Alignments for cox2 and ITS regions were produced using MUSCLE (Edgar 2004), v3.6, with the default settings. No manual ‘improvements’ were done. Alignments have been deposited in TreeBASE under the accession numbers S2375. Molecular phylogenetic reconstructions were done on concatenated cox2 and ITS alignments using MEGA v4.0 (Tamura et al. 2007) for Minimum Evolution (using Tajima-Nei distances) and Maximum Parsimony analyses, and RAxML v7.0 (Stamatakis 2006) for Maximum Likelihood analysis. In both cases, all parameters were set to default values. For Maximum Likelihood analysis, the GTR+G+I model was chosen. For all analyses, 1 000 bootstrap replicates (Felsenstein 1985) were performed.
RESULTS

Molecular phylogenetic reconstruction

The phylogenetic reconstruction based on concatenated cox2 and ITS regions revealed a high degree of uniformity of *Albugo candida* isolates from 16 different host genera (Fig. 1). The genus *Arabidopsis* was among these genera, with five isolates from *Arabidopsis thaliana* and one isolate respectively from *Arabidopsis halleri* and *Arabidopsis arenosa*. This group, representing *A. candida*, was highly distinct from the other lineages, with maximum support in Minimum Evolution (ME) and Maximum Likelihood (ML) analyses and a bootstrap value of 99 in Maximum Parsimony (MP) analysis. Apart from *A. candida*, several other distinct lineages were observed, which correspond to the three additional species parasitic to *Brassicaceae*, *A. lepidii*, *A. koreana*, and *A. voglmayrii*. The specimens of *A. lepidii* and *A. koreana* each grouped together with maximum statistical support in ME and ML analysis, and a bootstrap value of 99 in MP analysis. The isolates from *Descuraina sophia* and *Diptychocarpus strictus* also clustered distinct from *A. candida*, and the other species so far described as parasites of the *Brassicaceae*. Notably, three isolates from *Arabidopsis thaliana* were also highly distinct from *A. candida*, and grouped together with maximum support in ME and ML analyses and a bootstrap value of 99 in MP analysis. Sequence similarity of these isolates in comparison to *A. candida* in ITS was only 86%. This is a much lower degree of similarity than in closely related *Phytophthora* or downy mildew species, where ITS sequences were found to have 99% similarity or more (Table 2). Relationships of the species of *Albugo* s.s. to each other could mostly not be resolved. However, some bootstrap support could be obtained for a clade consisting of all white blister pathogen lineages except for *A. candida* and *A. koreana* and for a clade containing the *Albugo* isolates from *Descuraina sophia*, *Diptychocarpus strictus* and *Arabidopsis thaliana*. All white blister pathogens on *Brassicaceae* formed a moderately (ML: bootstrap value 73) to highly (ME, MP: bootstrap value 99) supported clade.

Fig. 1 Phylogenetic tree inferred from Minimum Evolution analysis based on concatenated ITS and cox2 sequences. Numbers above branches indicate the respective support in ME, MP and ML analyses. A. = *Albugo*, I. = *Ipomoea*, W. = *Wilsoniana*. Numbers preceding taxon names correspond to the numbers given in Table 1.

1 – *A. candida* ex *Arabidopsis arenosa*
2 – *A. candida* ex *Heliophila meyeri*
3 – *A. candida* ex *Arabidopsis thaliana*
4 – *A. candida* ex *Arabidopsis thaliana*
5 – *A. candida* ex *Iberis amara*
6 – *A. candida* ex *Berteroa incana*
7 – *A. candida* ex *Brassica juncea*
8 – *A. candida* ex *Biscutella laevigata*
9 – *A. candida* ex *Thlaspi arvense*
10 – *A. candida* ex *Arabidopsis halleri*
11 – *A. candida* ex *Arabis turrita*
12 – *A. candida* ex *Erysimum cuspidatum*
13 – *A. candida* ex *Arabidopsis thaliana*
14 – *A. candida* ex *Aubrieta deltoidea*
15 – *A. candida* ex *Capsella bursa-pastoris*
16 – *A. candida* ex *Arabidopsis thaliana*
17 – *A. candida* ex *Lunaria* sp.
18 – *A. candida* ex *Capsella bursa-pastoris*
19 – *A. candida* ex *Arabidopsis thaliana*
20 – *A. candida* ex *Diploptaxis erucoides*
21 – *A. candida* ex *Raphanus sativus*
22 – *A. candida* ex *Sisymbrium luteum*
23 – *A. candida* ex *Eruca sativa*
24 – *A. lepidii* ex *Lepidium apetalum*
25 – *A. lepidii* ex *Lepidium virginicum*
26 – *A. lepidii* ex *Lepidium* sp.
27 – *A. voglmayrii* ex *Draba nemorosa*
28 – *A. sp. ex Descuraina sophia*
29 – *A. sp. ex Diptychocarpus strictus*
30 – *A. sp. nov. ex *Arabidopsis thaliana*
31 – *A. sp. nov. ex *Arabidopsis thaliana*
32 – *A. sp. nov. ex *Arabidopsis thaliana*
33 – *A. koreana* ex *Capsella bursa-pastoris*
34 – *A. koreana* ex *Capsella bursa-pastoris*
35 – *A. koreana* ex *Capsella bursa-pastoris*
36 – *A. ipomoeae-panduratae* ex *I. hederacea*
37 – *W. amaranthi* ex *Amaranthus spinosus*
Morphological investigation

Morphological comparison of Albugo candida from Arabidopsis thaliana and other hosts with the undescribed species of Albugo on Arabidopsis thaliana revealed marked differences in oospore size, which clearly separates A. candida from Albugo sp. on Arabidopsis thaliana. The oospores of Albugo candida were (42.5–)47.9–57.6–(62.5) (av. 51.8) μm diam in the type host Capsella bursa-pastoris, (37.5–)43.8–52.1–(57.5) (av. 48) μm diam in Erucia sp., (40–)43.1–49.4–(51.3) (av. 46.3) μm diam in Heliophila sp. and (42–)45.9–53.0–(55) (av. 49.5) μm diam in Arabidopsis thaliana. In the undescribed species on Arabidopsis thaliana, the oospores were significantly smaller with (36.8–)38.3–43.3–(47) (av. 40.8) μm diam. Oospore surface ornamentation was similar to A. candida, but markedly different from the other Albuginaceae. While branching lines on the oospore surface is a prominent character of oospores in A. candida (Fig. 2g, h), and also in the undescribed species (Fig. 2e, f), all other hitherto described species exhibit irregular, rounded protuberances on their oospore surface, which do not become confluent and branched. In addition, the lines formed on oospores of Albugo sp. (Fig. 2e) are mostly less regular in appearance than those in A. candida (Fig. 2g). Primary and secondary sporangia, as well as sporangiophores, were similar in shape and size in all specimens investigated and did not allow unambiguous species identification, which is in line with previous investigations.

Taxonomy

Due to its distinct phylogenetic placement and morphological characteristics differing from all other Albuginaceae hitherto known, a new species is introduced here to accommodate the undescribed species on Arabidopsis thaliana.

Albugo laibachii

Thines & Y.J. Choi, sp. nov. — MycoBank MB509563; Fig. 2

Mycelia intercellularia, haustoria intracellularea, vesicularia. Sori hypophylli, distincti, rotundi vel irregularae, saepè confluentes, albi, 0.5–4–(11) mm diam. Sporangiophora hyalina, clavata vel cylindracea, (20–)23.3–33.9–(37.5) (av. 28.6) μm longa, (10.5–)11.5–13.8–(15) (av. 12.7) μm diam (n = 102). Sporangia hyalina, globosa vel subglobosa, sporangia primaria (11.8–)12.5–14.5–(15.3) (av. 13.5) μm diam (n = 94), sporangia secondaria (11.5–)14.3–17.1–(18.5) (av. 15.7) μm diam (n = 113), parietibus uniformibus. Oogonia in folia, globosa vel irregularia, flavida, (45–)47.4–54.3–(58) (av. 50.9) μm diam (n = 63). Oospora luteola vel brunnea, globosa, verruculosa vel tuberculata, (36.8–)38.3–43.3–(47) (av. 40.8) μm diam (n = 34).

Etymology. Dedicated to Friedrich Laibach, who first suggested Arabidopsis thaliana as a model plant for plant genetics.

Mycelium intercellular. Haustoria knob-like to globose, 3–5 μm diam, surrounded by thick sheath, with narrow and short stalk, 1–2 μm in length, one to several in each host cell. Sori hypophyllous, distinct, rounded or irregular, 0.5–4–(11) mm diam, often confluent, whitish, sometimes present in stems and inflorescences. Sporangiophores hyaline, clavate or cylindrical, straight to slightly curved. (20–)23.3–33.9–(37.5) (av. 28.6) μm long, (10.5–)11.5–13.8–(15) (av. 12.7) μm wide (n = 102), mostly grouped, thick-walled, especially towards the base up to 6 μm. Sporangia arranged in basipetal chains, hyaline, primary sporangia similar to the secondary sporangia, but the former exhibit a slightly thicker wall; primary sporangia globose or polyagonal due to mutual pressure, (11.8–)12.5–14.5–(15.3) (av. 13.5) μm diam (n = 94), with wall uniformly 1.5–2 μm thick; secondary sporangia globose to subglobose, (11.5–)14.3–17.1–(18.5) (av. 15.7) μm diam (n = 113), with uniformly thin wall, tip round, base mostly rounded, but rarely subtruncated, pedicel mostly absent. Resting organs rarely present as pale brown dots on both the upper and lower surface of the leaf spots. Oogonia broadly globose or irregular, yellowish, (45–)47.4–54.3–(58) (av. 50.9) μm diam (n = 63), wall smooth, 1–2 μm thick. Oospores pleurotic, yellowish to pale brownish, globose, (36.8–)38.3–43.3–(47) (av. 40.8) μm diam including the height of tubercles (n = 34), wall 2–4 μm thick, irregularly tuberculate, with blunt ridges; tubercles mostly connected, but very rarely single, often branched, up to 4 μm long.

Substratum — Living leaves of Arabidopsis thaliana.

Known distribution — Australia, England, France, Germany.

Specimens examined. Australia, Tasmania, Gretha, 29 Sept. 1980. D. Moms, DAR 73071, holotype. — Additional specimens examined are listed in Table 1.

DISCUSSION

Before the molecular phylogenetic studies of Choi et al. (2006) and Voglmayr & Riethmüller (2006), it was generally believed that only a single species of Albugo is parasitic to Brassicaceae, with a very broad host range, encompassing 63 genera and 241 species (Biga 1955, Saharan & Verma 1992). These include cultivated species of economic importance, in particular Eutrema, Armoracia, Brassica and Raphanus species. Only recently, it was found that a high genetic diversity exists within Albugo on Brassicaceae (Choi et al. 2006, 2007, 2008, Voglmayr & Riethmüller 2006). In addition, it was realised that oospore morphology and ornamentation provide characters of high phylogenetic significance (Voglmayr & Riethmüller 2006, Choi et al. 2007, 2008), which is contrasted by a low degree of variability of the dimorphic sporangia (Constantinescu & Thines 2006) as has been revealed in several studies (Biga 1955, Makinen & Hietarvi 1965).

Mainly on the basis of oospore ornamentation two new species, Albugo koreana, parasitic to Capsella bursa-pastoris in Korea and A. voglmayrii, parasitic to Draba nemorosa in East Asia, were described. For the host genera of these species it has been known that Albugo candida may infect them in Europe. In case of A. koreana, even the same host species may be affected by either A. koreana or A. candida. But even with the rather broad sampling presented by Choi et al. 2007, no case of A. koreana from any other country than Korea could be confirmed.

Table 2 Comparison of the ITS similarity of various oomycete species.

GenBank No.	GenBank No.	Maximum identity in blastn*
Albugo laibachii	Albugo candida	86%
FJ483873	AF271231	
Albugo koreana	Albugo candida	85%
AY928930	AF271231	
Peronospora tabacina	Peronospora rumicis	92%
AY198289	DQ643903	
DQ643901	DQ643903	
Hyaloperonospora arabidopsis	Hyaloperonospora parasitica	88%
AY31434	AY10989	
Hyaloperonospora hesperidis	Hyaloperonospora parasitica	90%
AY31455	AY10989	
Phytophthora capsici	Phytophthora infestans	90%
AB367371	EU200321	
Phytophthora nicotinae	Phytophthora infestans	91%
FN263242	EU200321	
Phytophthora phasaeoli	Phytophthora infestans	99%
DQ821179	EU200321	
Phytophthora mirabilis	Phytophthora infestans	99%
AF286777	EU200321	

* Searches were performed at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi), with all parameters set to default values.
Therefore, it could be argued that \textit{A. candida} and \textit{A. koreana} are the result of an allopatric speciation event, i.e. speciation took place primarily due to geographic isolation.

However, this is in contrast to the situation observed in this study for northern Europe. Both \textit{A. candida} and \textit{A. laibachii} were found to co-occur in the same geographic region, and even in the same locality. Therefore, to explain the presence of two distinct species on the same host plant, either sympatric speciation (i.e. speciation within the same geographical region) or later migration has to be considered. In the former case the occupation of different ecological niches has to be postulated, which was also in line with the finding that the two species may coexist in the same region. As the host plant for both species is identical, these niches could be in different strategies for exploiting their host. Interestingly, the broad host spectrum of \textit{A. candida} could be confirmed in general, with a host range covering a large array of the common tribes of the \textit{Brassicaceae} (Choi et al. 2006, 2007, 2008, Voglmayr & Riethmüller 2006). Within the generalist species \textit{A. candida}, several more restricted or specialised lineages seem to be present (Pound & Williams 1963, Petrie 1988). However, inoculation experiments with other isolates have shown, that some are able to parasitize largely unrelated plants, even from two distinct families, as recently Khunti et al. (2000) showed that an isolate from \textit{Brassica juncea} could successfully infect \textit{Cleome viscosa}. It is also possible that in some of the infection trials so far unrevealed specialised species have been used.
Apart from A. candida, which encompasses all isolates from *Brassica* sequenced so far, several highly distinct lineages exist, many of which have so far not been described as independent species (Choi et al. 2006, 2007, 2008; Voglmayr & Riethmüller 2006). The basis for these highly different strategies likely is a consequence of different sets of effector genes employed during compatible interaction. It will be the privilege of future studies, to investigate the molecular basis of the host specialisation in *A. laibachii* and the broad host spectrum of the species *A. candida*, from which in turn several isolates with a restricted host range have recently been found (for a discussion see Borhan et al. 2008). The two *Albugo* pathogens of *Arabidopsis thaliana* might therefore become an important model system for investigating the basic processes involved in plant defence and pathogen specialisation.

Acknowledgements Funding by German Science Foundation (DFG) for MT and EK and the Elite Program for Postdocs of the Landessitzung Baden-Württemberg granted to MT, the UK Biotechnology and Biological Sciences Research Council for EBH and the Gatsby Charitable Foundation for JI is gratefully acknowledged. We are indebted to the curators of the herbaria BP, DAR and G for allowing investigation of the specimens in their keeping.

REFERENCES

Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE. 2002. Regulatory role of STG1 in early R gene-mediated plant defences. Science 295: 2077–2080.

Biga MLB. 1955. Riesaminazione delle specie del genere Albugo in base alla morfologia dei conidi. Sydowia 9: 339–358.

Birch PR, Rehmany AP, Pritchard L, Kambou S, Beynon JL. 2006. Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology 14: 8–11.

Borhan MH, Gunn N, Cooper A, Gulden S, Tör M, Rimmer SR, Holub EB. 2008. WRr4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of *Albugo candida*. Molecular Plant-Microbe Interactions 21: 757–768.

Borhan MH, Holub EB, Beynon JL, Rozwadowski K, Rimmer SR. 2004. The Arabidopsis TIR-NB-LRR gene RAC1 confers resistance to *Albugo candida* (white rust) and is dependent on EDS1 but not PAD4. Molecular Plant-Microbe Interactions 17: 711–719.

Choi Y-J, Shin H-D, Hong SB, Shin HD. 2006. Genetic diversity within the *Albugo candida* complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS1DNA and cox2 mtDNA sequences. Molecular Phylogenetics and Evolution 40: 400–409.

Choi Y-J, Shin H-D, Hong SB, Thines M. 2007. Morphological and molecular discrimination among *Albugo candida* materials infecting *Capsella bursa-pastoris* world-wide. Fungal Diversity 27: 11–34.

Choi Y-J, Shin H-D, Thines M. 2008. Evidence for uncharted biodiversity in the *Albugo candida* complex, with the description of a new species. Mycological Research 112: 1327–1334.

Constantinescu O, Thines M. 2006. Dimorphism of sporangia in the *Albugi-naeaceae* (Chromista, Peronosporomycetes). Sydowia 58: 178–190.

Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM. 2000. A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genetics and Biology 30: 17–32.

Cooper AJ, Latunde-Dada AO, Woods-Tör A, Lynn J, Lucas JA, Crute IR, Holub EB. 2008. Basic compatibility of *Albugo candida* in *Arabidopsis thaliana* and *Brassica juncea* causes broad-spectrum suppression of innate immunity. Molecular Plant-Microbe Interactions 21: 745–756.

Dick MW. 2001. Straminipilous fungi: Systematics of the Peronosporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. Klwer Academic Publishers, Dordrecht, Netherlands.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

Gäumann E. 1918. Über die Formen der *Peronospora parasitica* (Pers.) Fries. Beihefte zum Botanischen Zentralblatt 35: 395–533.

Holub EB. 2007. Natural variation in innate immunity of a pioneer species. Current Opinion in Plant Biology 10: 415–424.

Holub EB. 2008. Natural history of *Arabidopsis thaliana* and oomycete symbioses. European Journal of Plant Pathology 122: 91–109.

Holub EB, Brose E, Tör M, Clay C, Crute IR, Beynon JL. 1995. Phenotypic and genotypic variation in the interaction between *Arabidopsis thaliana* and *Albugo candida*. Molecular Plant-Microbe Interactions 8: 916–928.

Hudspeth DSS, Nadler SA, Hudspeth MES. 2000. A cox2 molecular phylogeny of the Peronosporomycetes. Mycologia 92: 674–684.

Hudspeth DSS, Stenger D, Hudspeth MES. 2003. A cox2 phylogenetic hypothesis of the downy mildews and white rusts. Fungal Diversity 13: 47–57.

Kharti JP, Khandar RR, Bhoraniya MF. 2000. Studies on host range of *Albugo cruciferarum* the incitant of white rust of mustard. Agricultural Science Digest 20: 219–221.

Laibach F. 1943. *Arabidopsis thaliana* (L.) Heynh, als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Botanisches Archiv 44: 439–455.

Makinen Y, Hietajarvi L. 1965. On Finnish micromycetes. 5. *Albugo candida* in Finland, with special reference to the variation in the size of the conidia. Annales Botanici Fennici 2: 33–46.

McKinney EC, Ali N, Traut A, Feldmann KA, Belostotsky DA, McDowell JM, Meagher RB. 1995. Sequenced-based identification of T-DNA insertion mutations in *Arabidopsis*: act1 mutant act2-1 and act4-1. Plant Journal 8: 613–622.

Morgan W, Kamoun S. 2007. RXLR effectors of plant pathogenic Oomycetes. Current Opinion in Microbiology 10: 332–338.

Mussett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JD, Parker JE. 2002. *Arabidopsis* RAR1 exerts rate-limiting control of R gene-mediated defences against multiple pathogens. The Plant Cell 14: 979–999.

Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ. 1996. Characterization of eds1, a mutation in *Arabidopsis* suppressing resistance to *Peronospora parasitica* specified by several different RPP genes. The Plant Cell 8: 2033–2046.

Petrice GA. 1988. Races of *Albugo candida* (white rust and staghead) on cultivated *Crucciferae* in Saskatchewan. Canadian Journal of Plant Pathology 10: 142–150.

Pound GA, Williams PH. 1963. Biological races of *Albugo candida*. Phytology 53: 1146–1149.

Rehmany AP, Lynn JR, Tör M, Holub EB, Beynon JL. 2000. A comparison of *Peronospora parasitica* (downy mildew) isolates from *Arabidopsis thaliana* and *Brassica oleracea* using amplified fragment length polymorphism and internal transcribed spacer 1 sequence analyses. Fungal Genetics and Biology 30: 95–103.

Riemthaler A, Voglmayr H, Göker M, Weiß M, Oberwinkler F. 2002. Phylogenetic relationships of the downy mildews (*Peronosporales*) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94: 834–849.

Saharan GS, Verma PR. 1992. White rusts: a review of economically important species. International Development Research Centre, Ottawa, Canada.

Stamatakis A. 2006. RAXML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2868–2890.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software v. 4.0. Molecular Biology and Evolution 24: 1596–1599.

Thines M. 2007. Characterisation and phylogeny of repeated elements giving rise to exceptional length of ITS2 in several downy mildew genera (*Peronosporaceae*). Fungal Genetics and Biology 44: 199–207.

Thines M, Göker M, Teile S, Ryley M, Mathur K, Narayana YD, Spring O, Thakur RP. 2008. Phylogenetic relationships of *Peronospora* species and related fungi based on nuclear large subunit ribosomal DNA sequences. Mycologia 94: 345–351.

Thines M, Spring O. 2005. A revision of *Albugo* (Chromista, *Peronosporomycetes*). Mycotaxon 92: 443–458.

Voglmayr H, Riethmüller A. 2006. Phylogenetic relationships of *Albugo* species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycological Research 110: 75–85.

Win J, Morgan W, Bos J, Krassilova KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S. 2007. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19: 2349–2369.