Equation of State of Four- and Five-Dimensional Hard-Hypersphere Mixtures

Mariano López de Haro 1, Andrés Santos 2,* and Santos B. Yuste 2

1 Instituto de Energías Renovables, Universidad Nacional Autónoma de México (U.N.A.M.), Temixco, Morelos 62580, México
2 Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
* Correspondence: andres@unex.es; Tel.: +34-924-289-651

Abstract: New proposals for the equation of state of four- and five-dimensional hard-hypersphere mixtures in terms of the equation of state of the corresponding monocomponent hard-hypersphere fluid are introduced. Such proposals (which are constructed in such a way so as to yield the exact third virial coefficient) extend, on the one hand, recent similar formulations for hard-disk and (three-dimensional) hard-sphere mixtures and, on the other hand, two of our previous proposals also linking the mixture equation of state and the one of the monocomponent fluid but unable to reproduce the exact third virial coefficient. The old and new proposals are tested by comparison with published molecular dynamics and Monte Carlo simulation results and their relative merit is evaluated.

Keywords: equation of state; hard hyperspheres; fluid mixtures

1. Introduction

The interest in studying systems of \(d \)-dimensional hard spheres has been present for many decades and still continues to stimulate intensive research [1–96]. This interest is based on the versatility of such systems that allows one to gain insight into, among other things, the equilibrium and dynamical properties of simple fluids, colloids, granular matter, and glasses with which they share similar phenomenology. For instance, it is well known that all \(d \)-dimensional hard-sphere systems undergo a fluid-solid phase transition which occurs at smaller packing fractions as the spatial dimension is increased. This implies that mean-field-like descriptions of this transition become mathematically simpler and more accurate as one increases the number of dimensions. Also, in the limit of infinite dimension one may even derive analytical results for the thermodynamics, structure, and phase transitions of such hypersphere fluids [1–13]. In particular, the equation of state (EOS) truncated at the level of the second virial coefficient becomes exact in this limit [8].

While of course real experiments cannot be performed in these systems, they are amenable to computer simulations and theoretical developments. Many aspects concerning hard hyperspheres have been already dealt with, such as thermodynamic and structural properties [13–67], virial coefficients [67–80], and disordered packings [52,81–91] or glassy behavior [12,81,82,92]. Nevertheless, due to the fact that (except in the infinite dimensional case) no exact analytical results are available, efforts to clarify or reinforce theoretical developments are worth pursuing. In the case of mixtures of hard hyperspheres this is particularly important since, comparatively speaking, the literature pertaining to them is not very abundant. To the best of our knowledge, the first paper reporting an (approximate) EOS for additive binary hard-hypersphere mixtures is the one by González et al. [28], in which they used the overlap volume approach. What they did was to compute the partial direct correlation functions through an interpolation between the exact low-density and the Percus–Yevick high-density behavior of such functions to produce a Carnahan–Starling-like EOS which they subsequently compared with the (very few then) available simulation data for additive hard-disk mixtures. A few years later, we
proposed an ansatz for the contact values of the partial radial distribution functions complying with some exact limiting conditions to derive an EOS (henceforth denoted with the label “e1”) of a multicomponent d-dimensional hard-sphere fluid in terms of the one of the single monocomponent system. To our knowledge, the first simulation results for the structural and thermodynamic properties of additive hard-hypersphere mixtures were obtained via molecular dynamics (MD) for a few binary mixtures in four and five spatial dimensions by González-Melchor et al. [36], later confirmed by Monte Carlo (MC) computations by Bishop and Whitlock [41]. The comparison between such simulation results and our e1 EOS [32] led to very reasonable agreement. Later, we proposed a closely related approximate EOS (henceforth denoted with the label “e2”) stemming from additional exact limiting conditions applied to the contact values of the partial radial distribution functions [37,48]. A limitation of these proposals is that, except in the three-dimensional case, they are unable to yield the exact third virial coefficient. As shown below, extensions of these EOS (denoted as “e1” and “e2”) complying with the requirement that the third virial coefficient computed from them is the exact one, may be introduced with little difficulty. More recently, we have developed yet another approximate EOS (henceforth denoted with the label “sp”) for d-dimensional hard-sphere mixtures [63,64,93], and newer simulation results for hard-hypersphere mixtures have also been obtained [57–59]. It is the aim of this paper to carry out a comparison between all the available simulation data for binary additive four- and five-dimensional hypersphere mixtures and our theoretical proposals.

The paper is organized as follows. In order to make it self-contained, in Section 2 we provide a brief outline of the approaches we have followed to link the EOS of a polydisperse d-dimensional hard-sphere mixture and that of the corresponding monocomponent system. Section 3 presents the specific cases of four and five spatial dimensions, the choice of the EOS of the monocomponent system to complete the mapping, and the comparison with the simulation data. We close the paper in Section 4 with a discussion of the results and some concluding remarks.

2. Mappings Between the Equation of State of the Polydisperse Mixture and that of the Monocomponent System

Let us begin by considering a mixture of additive hard spheres in d dimensions with an arbitrary number s of components. This number s may even be infinite, i.e., the system may also be a polydisperse mixture with a continuous size distribution. The additive hard core of the interaction between a sphere of species i and a sphere of species j is \(r_{ij} = \frac{1}{2}(\sigma_i + \sigma_j) \), where the diameter of a sphere of species i is \(\sigma_i \). Let the number density of the mixture be \(\rho \) and the mole fraction of species i be \(\chi_i = \rho_i / \rho \), where \(\rho_i \) is the number density of species i. In terms of these quantities, the packing fraction is given by \(\eta = v_d \rho M_d \), where \(v_d = (\pi / 4)^{d/2} / \Gamma(1 + d/2) \) is the volume of a d-dimensional sphere of unit diameter, \(\Gamma(\cdot) \) is the Gamma function, and \(M_d \equiv \langle \sigma^d \rangle = \sum_{i=1}^{s} \chi_i \sigma_i^d \) denotes the nth moment of the diameter distribution.

Unfortunately, no exact explicit EOS for a mixture of d-dimensional hard spheres is available. The (formal) virial expression for such EOS involves only the contact values \(g_{ij}(\sigma_{ij}^+ \rangle \) of the radial distribution functions \(g_{ij}(r) \), where r is the distance, namely

\[
Z(\eta) = 1 + \frac{2^{d-1}}{M_d} \eta \sum_{i,j=1}^{s} x_i x_j \sigma_{ij}^d g_{ij}(\sigma_{ij}^+) \]

(1)

where \(Z = p / \rho k_B T \) is the compressibility factor of the mixture, \(p \) being the pressure, \(k_B \) the Boltzmann constant, and \(T \) the absolute temperature. Hence, a useful way to obtain approximate expressions for the EOS of the mixture is to propose or derive approximate expressions for the contact values \(g_{ij}(\sigma_{ij}^+) \). We have already followed this route and the outcome is briefly described below. More details may be found in Ref. [48] and references therein.
2.1. The e1 Approximation

The basic assumption is that, at a given packing fraction \(\eta \), the dependence of \(g_{ij}(\sigma_{ij}^+) \) on the sets of \(\{ \sigma_k \} \) and \(\{ x_k \} \) takes place only through the scaled quantity

\[
\bar{z}_{ij} = \frac{\sigma_i \sigma_j M_{d-1}}{\sigma_{ij} M_d},
\]

which we express as

\[
g_{ij}(\sigma_{ij}^+) = G(\eta, \bar{z}_{ij}),
\]

where the function \(G(\eta,z) \) is universal, i.e., it is a common function for all the pairs \((i,j)\), regardless of the composition and number of components of the mixture. Next, making use of some consistency conditions, we have derived two approximate expressions for the EOS of the mixture. The first one, labeled “e1,” indicating that (i) the contact values \(g_{ij}(\sigma_{ij}^+) \) used are an extension of the monocomponent fluid contact value \(g_s \equiv g(\sigma^+) \) and that (ii) \(G(\eta,z) \) is a linear polynomial in \(z \), leads to an EOS that exhibits an excellent agreement with simulations in 2, 3, 4, and 5 dimensions, provided that an accurate \(g_s \) is used as input \([32,36,57,59,67]\). This EOS may be written as

\[
Z_{e1}(\eta) = 1 + \frac{\eta}{1-\eta} 2^{d-1}(\Omega_0 - \Omega_1) + [Z_s(\eta) - 1] \Omega_1,
\]

where the coefficients \(\Omega_m \) depend only on the composition of the mixture and are defined by

\[
\Omega_m = 2^{-(d-m)} \frac{M_{d-1}^m}{M_d^{m+1}} \sum_{n=0}^{d-m} \binom{d-m}{n} M_{n+m} M_{d-n}.
\]

It is interesting to point out that from Equation (4) one may write the virial coefficients of the mixture \(B_n \), defined by

\[
Z(\rho) = 1 + \sum_{n=1}^{\infty} B_{n+1} \rho^n,
\]

in terms of the (reduced) virial coefficients of the single component fluid \(b_n \) defined by

\[
Z_s(\eta) = 1 + \sum_{n=1}^{\infty} b_{n+1} \eta^n.
\]

The result is

\[
B_n^{e1} = \Omega_1 b_n + 2^{d-1}(\Omega_0 - \Omega_1),
\]

where \(B_n = B_n/\langle v_2 \rangle M_d \) are reduced virial coefficients. Since \(b_2 = 2^{d-1} \), Equation (8) yields the exact second virial coefficient \([63]\)

\[
B_2 = 2^{d-1} \Omega_0.
\]

In general, however, \(B_n^{e1} \) with \(n \geq 3 \) are only approximate. In particular,

\[
B_3^{e1} = 1 + \left(\frac{b_3}{4} + 2 \right) \frac{M_1 M_3}{M_4} + 3 \frac{M_2^2}{M_4} + \left(\frac{3b_3}{4} - 6 \right) \frac{M_2 M_3^2}{M_4}, \quad (d = 4),
\]

\[
B_3^{e1} = 1 + \frac{65}{4} \frac{M_1 M_4}{M_5} + 10 \frac{M_2 M_3}{M_5} + 45 \frac{M_2 M_4^2}{M_5^2} + \frac{135}{4} \frac{M_3^2 M_4}{M_5^2}, \quad (d = 5).
\]

In Equation (10a),

\[
b_3 = 64 \left(\frac{4}{3} - \frac{3\sqrt{3}}{2\pi} \right), \quad (d = 4),
\]
is the reduced third virial coefficient of a monocomponent four-dimensional fluid, while in Equation (10b) we have taken into account that \(b_3 = 106 \) if \(d = 5 \).

It is interesting to note that, by eliminating \(\Omega_0 \) and \(\Omega_1 \) in favor of \(B_2 \) and \(B_3^{e1} \), Equation (4) can be rewritten as

\[
Z_{e1}(\eta) = 1 + \frac{\eta}{1 - \eta} \frac{b_3 B_2 - b_3 B_3^{e1}}{b_3 - b_2} + \left[Z_n(\eta) - 1 \right] \frac{B_3^{e1} - B_2}{b_3 - b_2}.
\]

(12)

2.2. The e2 Approximation

The second approximation, labeled “e2,” similarly indicates that (i) the resulting contact values represent an extension of the single component contact value \(g_s \), and that (ii) \(G(\eta, z) \) is a quadratic polynomial in \(z \). In this case, one also gets a closed expression for the compressibility factor in terms of the packing fraction \(\eta \) and the first few moments \(M_n, n \leq d \). Such an expression is

\[
Z_{e2}(\eta) = Z_{e1}(\eta) - \left(\Omega_2 - \Omega_1 \right) \left[Z_n(\eta) \left(1 - 2^{d-2} \eta \right) - 1 - 2^{d-2} \frac{\eta}{1 - \eta} \right].
\]

(13)

The associated (reduced) virial coefficients are

\[
\bar{B}_{e2}^n = \bar{B}_{e1}^n - \left(\Omega_2 - \Omega_1 \right) \left[b_n - 2^{d-2} (1 + b_{n-1}) \right].
\]

(14)

Again, since \(b_1 = 1 \) and \(b_2 = 2^{d-1} \), the exact second virial coefficient, Equation (9), is recovered for any dimensionality. Additionally, in the case of spheres (\(d = 3 \)), \(b_3 = 10 \) and thus \(B_3^{e1} = B_3^{e2} = 4 \Omega_0 + 6 \Omega_1 \), which is the exact result for that dimensionality. In the cases of \(d = 4 \) and \(d = 5 \), one has

\[
\bar{B}_{e2}^3 = 1 + \left(\frac{b_3}{2} - 7 \right) \frac{M_1 M_3}{M_4} + 3 \frac{M_2^2}{M_4} + (b_3 - 15) \frac{M_2 M_3^2}{M_4^2} + \left(18 - \frac{b_3}{2} \right) \frac{M_3^3}{M_4^3}, \quad (d = 4),
\]

(15a)

\[
\bar{B}_{e2}^5 = 1 + \frac{25}{2} \frac{M_1 M_4}{M_5} + 10 \frac{M_2 M_3}{M_5} + \frac{75}{2} \frac{M_2 M_4^2}{M_5^2} + \frac{45}{2} \frac{M_3 M_4^2}{M_5^2} + \frac{45}{2} \frac{M_3 M_4^3}{M_5^3} + \frac{45}{2} \frac{M_3 M_4^3}{M_5^3}, \quad (d = 5).
\]

(15b)

It is also worthwhile noting that \(\Omega_1 = \Omega_2 \) in the case of disks (\(d = 2 \)) and thus \(Z_{e1}(\eta) = Z_{e2}(\eta) \) for those systems.

2.3. Exact Third Virial Coefficient. Modified Versions of the e1 and e2 Approximations

As said above, both \(B_3^{e1} \) and \(B_3^{e2} \) differ from the exact third virial coefficient, except in the three-dimensional case (\(d = 3 \)). The exact expression is [63]

\[
B_3 = \frac{1}{M_d} \sum_{i,j,k=1}^{s} x_i x_j x_k \bar{B}_{ijk},
\]

(16a)

\[
\bar{B}_{ijk} = \frac{d^2}{3} 2^{3d-1} \Gamma(d/2) \left(\sigma_{ij} \sigma_{ik} \sigma_{jk} \right)^{d/2} \int_0^\infty \frac{dx}{\kappa^{d+1}} \frac{I_{d/2}(\kappa \sigma_{ij}) I_{d/2}(\kappa \sigma_{ik}) I_{d/2}(\kappa \sigma_{jk})}{I_{d/2}(\kappa)},
\]

(16b)

where \(I_n(\cdot) \) is the Bessel function of the first kind of order \(n \).

For odd dimensionality, it turns out that the composition-independent coefficients \(\bar{B}_{ijk} \) have a polynomial dependence on \(\sigma_i, \sigma_j, \) and \(\sigma_k \). As a consequence, the third virial coefficient \(B_3 \) can be expressed in terms of moments \(M_n \) with \(1 \leq n \leq d \). In particular [63],

\[
B_3 = 1 + 10 \frac{M_1 M_4}{M_5} + 20 \frac{M_2 M_3}{M_5} + 25 \frac{M_2 M_4^2}{M_5^2} + 50 \frac{M_3 M_4^3}{M_5^3}, \quad (d = 5).
\]

(17)
where q is the size ratio. The expressions for \hat{B}_{122} and \hat{B}_{121} can be obtained from Equations (18a) and (18b), respectively, by the replacements $\sigma_1 \rightarrow \sigma_2, q \rightarrow q^{-1}$.

Figure 1 displays the size-ratio dependence of the exact second and third virial coefficients for three representative binary compositions of four- and five-dimensional systems. The degree of bidispersity of a certain binary mixture can be measured by the distances $1-B_2/b_2$ and $1-B_3/b_3$. In this sense, Figure 1 shows that, as expected, the degree of bidispersity grows monotonically as the small-to-big size ratio decreases at a given mole fraction. It also increases as the concentration of the big spheres decreases at a given size ratio, except possibly if the latter ratio is close to unity.

To assess the quality of the approximate coefficients (10) and (15), we plot in Figure 2 the ratios B_3^{e1}/B_3 and B_3^{e2}/B_3 as functions of the size ratio σ_2/σ_1 for the same three representative binary compositions as in Figure 1. As we can observe, both the e1 and e2 approximations predict values for the third virial coefficient in overall good agreement with the exact values, especially as the concentration of the big spheres increases. The e1 approximation overestimates B_3 and generally performs worse than the e2 approximation, which tends to overestimate (underestimate) B_3 if the concentration of the big spheres is sufficiently small (large). Additionally, the agreement is better in the four-dimensional case than for five-dimensional hyperspheres. The latter point is relevant because, as said before, the exact expressions of B_3 for $d = 4$ are relatively involved [see Equations (18) in the binary case], whereas B_3^{e1} and B_3^{e2} are just simple combinations of moments [see Equations (10a) and (15a)].
Figure 2. Plot of the ratios \(B_2^{\text{ex}}/B_3\) (solid lines) and \(B_2^{\text{eff}}/B_3\) (dashed lines) vs the size ratio \(\sigma_2/\sigma_1\) for binary mixtures with mole fractions \(x_1 = 0.2, 0.5, \) and \(0.8\). Panel (a) corresponds to \(d = 4\), while panel (b) corresponds to \(d = 5\).

The structure of Equation (12) suggests the introduction of a modified version (henceforth labeled as “\(\bar{e}_1\)”) of the \(e_1\) EOS by replacing the approximate third virial coefficient \(B_3^{\text{ex}}\) by the exact one. More specifically,

\[
Z_{\bar{e}_1}(\eta) = Z_{e_1}(\eta) + \frac{B_3 - B_3^{\text{ex}}}{B_3 - b_2} \left[Z_\eta(\eta) - 1 - b_2 \frac{\eta}{1 - \eta} \right].
\]

(19)

Analogously, we introduce the modified version (“\(\bar{e}_2\)”) of the \(e_2\) approximation as

\[
Z_{\bar{e}_2}(\eta) = Z_{e_2}(\eta) + \frac{B_3 - B_3^{\text{ex}}}{B_3 - b_2} \left[Z_\eta(\eta) - 1 - b_2 \frac{\eta}{1 - \eta} \right].
\]

(20)

By construction, both \(Z_{\bar{e}_1}(\eta)\) and \(Z_{\bar{e}_2}(\eta)\) are consistent with the exact second and third virial coefficients. Moreover, \(Z_{\bar{e}_1}(\eta) = Z_{\bar{e}_2}(\eta)\) for \(d = 2\), while \(Z_{\bar{e}_1}(\eta) = Z_{e_1}(\eta)\) and \(Z_{\bar{e}_2}(\eta) = Z_{e_2}(\eta)\) for \(d = 3\).

2.4. The \(sp\) Approximation

Also in previous work \[63,64,93\], we have adopted an approach to relate the EOS of the polydisperse mixture of \(d\)-dimensional hard spheres to the one of the monocomponent fluid which differs from the \(e_1\) and \(e_2\) approaches in that it does not make use of Equation (1). This involves expressing the excess free energy per particle \(\alpha^{ex}\) of a polydisperse mixture of packing fraction \(\eta\) in terms of the one of the corresponding monocomponent fluid \(\alpha^{ex}_{\text{eff}}\) of an effective packing fraction \(\eta_{\text{eff}}\) as

\[
\frac{\alpha^{ex}(\eta)}{k_B T} + \ln(1 - \eta) = \frac{\alpha}{\lambda} \left[\frac{\alpha^{ex}_{\text{eff}}(\eta_{\text{eff}})}{k_B T} + \ln(1 - \eta_{\text{eff}}) \right].
\]

(21)

In Equation (21), \(\eta_{\text{eff}}\) and \(\eta\) are related through

\[
\frac{\eta_{\text{eff}}}{1 - \eta_{\text{eff}}} = \frac{1}{\lambda} \frac{\eta}{1 - \eta}, \quad \eta_{\text{eff}} = \left[1 + \lambda \left(\eta^{-1} - 1 \right) \right]^{-1},
\]

(22)

while the parameters \(\lambda\) and \(\alpha\) are determined by imposing consistency with the (exact) second and third virial coefficients of the mixture, Equations (9) and (16). More specifically \[63,64\],

\[
\lambda = \frac{B_2 - 1}{B_2 - 1/b_2 + 1/b_2 + 1}, \quad \alpha = \lambda^2 \frac{B_2 - 1}{b_2 - 1}.
\]

(23)
Taking into account the thermodynamic relation

\[Z(\eta) = 1 + \eta \frac{\partial \alpha \epsilon_x(\eta)}{\partial \eta} / k_B T, \tag{24} \]

the mapping between the compressibility factor of the \(d \)-dimensional monocomponent system \((Z_s)\) and the approximate one of the polydisperse mixture that is then obtained from Equation (21) may be expressed as

\[\eta Z_{sp}(\eta) - \frac{\eta}{1-\eta} = \alpha \left[\eta_{eff} Z_s(\eta_{eff}) - \frac{\eta_{eff}}{1-\eta_{eff}} \right], \tag{25} \]

where a label “sp,” motivated by the nomenclature already introduced in connection with the “surplus” pressure \(\eta Z(\eta) - \eta / (1 - \eta) \) [63], has been added to distinguish this compressibility factor from the previous approximations.

Equation (25) shares with Equations (19) and (20) the consistency with the exact second and third virial coefficients. On the other hand, while \(Z_{s1}(\eta) \) and \(Z_{s2}(\eta) \) are related to the monocomponent compressibility factor \(Z_s(\eta) \) evaluated at the same packing fraction \(\eta \) as that of the mixture, \(Z_{sp}(\eta) \) is related to \(Z_s(\eta_{eff}) \) evaluated at a different (effective) packing fraction \(\eta_{eff} \).

Figure 3 shows that \(\lambda > 1 \), while \(\alpha < 1 \), except if the mole fraction of the big spheres is large enough (not shown). According to Equations (22) and (25), this implies that (i) \(\eta_{eff} < \eta \) and (ii) the surplus pressure of the mixture at a packing fraction \(\eta \) is generally smaller than that of the monocomponent fluid at the equivalent packing fraction \(\eta_{eff} \). It is also worthwhile noting that, in contrast to what happens with \(\bar{B}_2 \) and \(\bar{B}_3 \) (see Figure 1), \(\lambda \) has a nonmonotonic dependence on the size ratio and \(\alpha \) also exhibits a nonmonotonic behavior if \(x_1 \) is small enough.

While we have proved the sp approach to be successful for both hard-disk \((d = 2)\) [64] and hard-sphere \((d = 3)\) [93] mixtures, one of our goals is to test it for \(d = 4 \) and \(d = 5 \) as well.

3. Comparison with Computer Simulation Results

In order to obtain explicit numerical results for the different approximations to the EOS of four- and five-dimensional hard-sphere mixtures, we require an expression for \(Z_s(\eta) \). While other choices

![Figure 3](image-url)
Table 1. Values of b_2–b_4, ζ_0, ζ_1, and η_{cp} for $d = 4$ and $d = 5$.

	$d = 4$	$d = 5$
b_2	8	16
b_3	$2^6 \left(\frac{3}{4} - \frac{3\sqrt{3}}{2\pi} \right) \approx 32.406$	106
b_4	$2^9 \left(2 - \frac{27\sqrt{3}}{4\pi} + \frac{82}{45\pi^2} \right) \approx 77.7452$	67.18345
ζ_0	$1.2973(99)$	$1.074(16)$
ζ_1	$-0.0621(13)$	$0.163(45)$
η_{cp}	$\frac{\pi^2}{16} \approx 0.617$	$\frac{\pi^2}{40} \approx 0.465$

![Figure 4](image-url) Plot of the monocomponent compressibility factor $Z_s(\eta)$, as inferred from simulation data for the mixtures described in Table 2, according to the theories (from bottom to top) e1, e2, \bar{e}_1, and sp (the three latter have been shifted vertically for better clarity). The solid lines represent the LM EOS, Equation (26). Panel (a) corresponds to $d = 4$, while panel (b) corresponds to $d = 5$.

If, as before, the degree of bidispersity is measured by $1 - \tilde{B}_2/b_2$ and $1 - \tilde{B}_3/b_3$, we can observe the following ordering of decreasing bidispersity in the four-dimensional systems: Aa, Ba, Ab, Bb, Da, Cb, Db, Ac, Bc, Eb, Dc, Fa, Fb, and Fc. The same ordering applies in the case of the five-dimensional systems, except that, apart from the absence of the system Eb, the sequence [Ab, Bb, Da] is replaced by either [Ab, Da, Bb] or by [Da, Ab, Bb] if either $1 - \tilde{B}_2/b_2$ or $1 - \tilde{B}_3/b_3$ are used, respectively.
Table 2. Binary mixtures of four- and five-dimensional hard spheres studied through simulations (MC or MD) and the values of their coefficients \bar{B}_2 [see Equation (9)], \bar{B}_3 [see Equations (16)–(18)], λ, and α [see Equation (23)].

d	Label	σ_2/σ_1	x_1	Simulation method	\bar{B}_2	\bar{B}_3	λ	α
4	Aa4	1/4	0.25	MD1	3.85618	12.2253	1.28824	0.677138
	Ab4	1/4	0.50	MD1	5.21595	18.8828	1.10923	0.741033
	Ac4	1/4	0.75	MD1	6.60436	25.6326	1.03810	0.862800
	Ba4	1/3	0.25	MD1	4.42857	14.4931	1.28470	0.808392
	Bb4	1/3	0.50	MD1	5.56098	20.2530	1.11943	0.816497
	Bc4	1/3	0.75	MD1	6.77049	26.2935	1.04334	0.897356
	Cb4	2/5	0.50	MC2	5.87285	21.5939	1.11692	0.868418
	Da4	1/2	0.25	MD1	5.82895	20.8444	1.17876	0.958523
	Db4	1/2	0.50	MD1 & MC2	6.38235	23.9444	1.09883	0.928396
	Dc4	1/2	0.75	MD1	7.15816	28.0333	1.04047	0.952376
	Eb4	3/5	0.50	MC2	6.90085	26.5045	1.07078	0.966532
	Fa4	3/4	0.25	MD1	7.55661	29.9061	1.03231	0.998173
	Fb4	3/4	0.50	MD1	7.56231	29.9832	1.02894	0.992515
	Fc4	3/4	0.75	MD1	7.73940	30.9790	1.01561	0.993060
5	Aa5	1/4	0.25	MD1	6.30550	32.9426	1.24358	0.546995
	Ab5	1/4	0.50	MD1	9.52439	57.2455	1.08739	0.671954
	Ac5	1/4	0.75	MD1	12.7601	81.6145	1.02988	0.831562
	Ba5	1/3	0.25	MD1	7.21951	37.7995	1.27656	0.675687
	Bb5	1/3	0.50	MD1	10.0984	60.3097	1.10651	0.742645
	Bc5	1/3	0.75	MD1	13.0411	83.1175	1.03739	0.863898
	Cb5	2/5	0.50	MC3,4	10.6565	63.6666	1.11369	0.798464
	Da5	1/2	0.25	MD1	9.89286	55.1378	1.22316	0.886983
	Db5	1/2	0.50	MD1 & MC3,5	11.6818	70.5615	1.10812	0.887437
	Dc5	1/2	0.75	MD1	13.7964	88.0120	1.04172	0.925768
	Fa5	3/4	0.25	MD1	14.5176	92.4875	1.04866	0.990981
	Fb5	3/4	0.50	MD1	14.6327	93.8346	1.03957	0.982162
	Fc5	3/4	0.75	MD1	15.2162	99.1168	1.02005	0.986104

1Ref. [36] 2Ref. [57] 3Ref. [59] 4$x_1 = \frac{x_1}{\sigma_1} = 0.499486$ 5$x_1 = \frac{x_1}{\sigma_1} = 0.500514$
It should be stressed that the proposals implied by Equations (4), (13), (19), (20), and (25) may be interpreted in two directions. On the one hand, if \(Z_s \) is known as a function of the packing fraction, then one can readily compute the compressibility factor of the mixture for any packing fraction and composition [\(\eta \text{eff} \) and \(\eta \) being related through Equation (22) in the case of \(Z_{sp} \)]; this is the standard view. On the other hand, if simulation data for the EOS of the mixture is available for different densities, size ratios, and mole fractions, Equations (4), (13), (19), (20), and (25) can be used to infer the compressibility factor of the monocomponent fluid. This is particularly important in the high-density region, where obtaining data from simulation may be accessible in the case of mixtures but either difficult or not feasible in the case of the monocomponent fluid, as happens in the metastable fluid branch [64,93].

In principle, simulation data for different mixtures would yield different inferred functions \(Z_s(\eta) \). Thus, without having to use an externally imposed monocomponent EOS, the degree of collapse of the outcome of the different theories for the compressibility factor. This does not mean that all our theoretical proposals are rather accurate: the errors in \(Z_s \) are even smaller in the other approximate EOS. Note that we have not put error bars in the simulations.

The same feature is also present (although somewhat less apparent) in Figure 6(i). This does not mean that the MC data are necessarily more accurate than the MD ones. In fact, MC data are statistically more precise but they might be affected by a (small) computational bias. It is also worth pointing out that the representation of Figure 4, the usefulness of those mappings is confirmed by the nice collapse obtained for all the points corresponding to the mixtures described in Table 2. The inferred data associated with \(Z_{e2} \) are almost identical to those associated with \(Z_{c2} \) and thus they are omitted in Figure 4. Figure 4 also shows that the inferred curves are very close to the LM (monocomponent) EOS, Equation (26), what validates its choice as an accurate function \(Z_s(\eta) \) in what follows. Notwithstanding this, one can observe in the high-density regime that the values inferred from simulation data via \(Z_{c1} \) and \(Z_{e1} \) tend to underestimate the LM curve for both \(d = 4 \) and \(d = 5 \), while the values inferred via \(Z_{e2} \) tend to overestimate it for \(d = 5 \). Overall, one can say that the best agreement with the LM EOS is obtained by using \(Z_{e2} \) and \(Z_{sp} \) for \(d = 4 \) and \(d = 5 \), respectively.

Now we turn to a more direct comparison between the simulation data and the approximate EOS for mixtures. As expected from the indirect representation of Figure 4, we have observed a very good agreement (not shown) between the simulation data for the systems displayed in Table 2 and the theoretical predictions obtained from Equations (4), (13), (19), (20), and (25), supplemented by Equation (26).

In order to perform a more stringent assessment of the five theoretical EOS, we have chosen \(Z_{e1}(\eta) \) as a reference theory and focused on the percentage deviation 100\(|Z(\eta)/Z_{e1}(\eta) - 1| \) from it. The results are displayed in Figures 5 and 6 for \(d = 4 \) and \(d = 5 \), respectively. Those figures reinforce the view that all our theoretical proposals are rather accurate: the errors in \(Z_{e1} \) are typically smaller than 1% and they are even smaller in the other approximate EOS. Note that we have not put error bars in the MD data since they were unfortunately not reported in Reference [36]. We must also mention that the MD data are generally more scattered than the MC ones. Moreover, certain (small) discrepancies between MC and MD points can be observed in Figure 5(i), MC data generally lying below MD data. The same feature is also present (although somewhat less apparent) in Figure 6(i). This does not mean that the MC data are necessarily more accurate than the MD ones. In fact, MC data are statistically precise but they might be affected by a (small) computational bias. It is also worth pointing out that the representation of Figures 5 and 6 is more demanding than a conventional representation of \(Z \) vs \(\eta \) for each mixture or even the representation of Figure 4.

4. Discussion and Concluding Remarks

In this paper we have carried out a thorough comparison between our theoretical proposals for the EOS of a multicomponent \(d \)-dimensional mixture of hard hyperspheres and the available simulation results for binary mixtures of both four- and five-dimensional hard hyperspheres. Let us summarize the outcome of the different theories for the compressibility factor.

First, we note that \(Z_{e2}(\eta) \approx Z_{e1}(\eta) < Z_{sp}(\eta) < Z_{e3}(\eta) < Z_{c1}(\eta) \). The fact that \(Z_{e2}(\eta) \approx Z_{e1}(\eta) \) is a consequence of the small deviations of \(B_3^e \) from the exact third virial coefficient (see Figure 2). Thus, there does not seem to be any practical advantage in choosing \(Z_{e2} \) instead of \(Z_{e1} \), especially if \(d = 4 \) [where the exact \(B_3 \) has a rather involved expression, see Equations (18)]. If one restricts oneself
Figure 5. Plot of the relative deviations $100[Z(\eta)/Z_{e1}(\eta) - 1]$ from the theoretical EOS $Z_{e1}(\eta)$ for the four-dimensional mixtures Aa4–F4 (see Table 2). Thick (red) dashed lines: $e1$; thick (red) solid lines: $\dot{e}1$; thin (blue) dashed lines: $e2$; thin (blue) solid lines: $\dot{e}2$; dash-dotted (black) lines: sp; filled circles: MD; open squares with error bars: MC.
Figure 6. Plot of the relative deviations \(100\left(\frac{Z(\eta)}{Z_{\text{c1}}(\eta)} - 1\right)\) from the theoretical EOS \(Z_{\text{c1}}(\eta)\) for the five-dimensional mixtures Aa5–Fc5 (see Table 2). Thick (red) dashed lines: \(e_1\); thick (red) solid lines: \(\bar{e}_1\); thin (blue) dashed lines: \(e_2\); thin (blue) solid lines: \(\bar{e}_2\); dash-dotted (black) lines: sp; filled circles: MD; open squares with error bars: MC.
to the comparison between those approximate EOS that do not yield the exact B_3, namely Z_{e1} and Z_{e2}, we find that Z_{e2} performs generally better. On the other hand, if approximations requiring the exact B_3 as input are considered, namely Z_{e1}, Z_{e2}, and Z_{sp}, the conclusion is that Z_{sp} generally outperforms the other two.

The comparison with the simulation data confirms that the good agreement between the results of $Z_{e1}(\eta)$ that had been found earlier in connection with both MD [36] and MC [57,59] simulation data is even improved by the other approximate theories. In fact, in both the four- and five-dimensional cases, the best agreement with the MD results is generally obtained from Z_{e1} and Z_{sp}. On the other hand, for the four-dimensional case, the best agreement with the MC results corresponds to $Z_{e2} \approx Z_{e2}$, while that for the five-dimensional case corresponds to Z_{sp}.

Finally, it must be pointed out that it seems that overall Z_{sp} exhibits the best global behavior. However, more accurate simulation data would be needed to confirm this conclusion. It should also be stressed that the performance of the analyzed approximate EOS for mixtures might be affected by the reliability of the (monocomponent) LM EOS. In any event, one may reasonably argue that the mapping between the compressibility factor of the mixture and the one of the monocomponent system with an effective packing fraction [see Equations (22) and (25)] that had already been tested in two- [64] and three-dimensional [93] mixtures is confirmed as an excellent approach also for higher dimensions.

Author Contributions: A.S. proposed the idea and the three authors performed the calculations. The three authors also participated in the analysis and discussion of the results and worked on the revision and writing of the final manuscript.

Funding: A.S. and S.B.Y. acknowledge financial support from the Spanish Agencia Estatal de Investigación through Grant No. FIS2016-76359-P and the Junta de Extremadura (Spain) through Grant No. GR18079, both partially financed by Fondo Europeo de Desarrollo Regional funds.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

- EOS: Equation of state
- LM: Luban–Michels
- MC: Monte Carlo
- MD: Molecular dynamics

References

1. Frisch, H.L.; Rivier, N.; Wyler, D. Classical Hard-Sphere Fluid in Infinitely Many Dimensions. *Phys. Rev. Lett.* 1985, 54, 2061–2063. doi:10.1103/PhysRevLett.54.2061.
2. Luban, M. Comment on “Classical Hard-Sphere Fluid in Infinitely Many Dimensions”. *Phys. Rev. Lett.* 1986, 56, 2330–2330. doi:10.1103/PhysRevLett.56.2330.
3. Frisch, H.L.; Rivier, N.; Wyler, D. Frisch, Rivier, and Wyler Respond. *Phys. Rev. Lett.* 1986, 56, 2331–2331. doi:10.1103/PhysRevLett.56.2331.
4. Klein, W.; Frisch, H.L. Instability in the infinite dimensional hard-sphere fluid. *J. Chem. Phys.* 1986, 84, 968–970. doi:10.1063/1.450544.
5. Wyler, D.; Rivier, N.; Frisch, H.L. Hard-sphere fluid in infinite dimensions. *Phys. Rev. A* 1987, 36, 2422–2431. doi:10.1103/PhysRevA.36.2422.
6. Bagchi, B.; Rice, S.A. On the stability of the infinite dimensional fluid of hard hyperspheres: A statistical mechanical estimate of the density of closest packing of simple hypercubic lattices in spaces of large dimensionality. *J. Chem. Phys.* 1988, 88, 1177–1184. doi:10.1063/1.454237.
7. Elskens, Y.; Frisch, H.L. Kinetic theory of hard spheres in infinite dimensions. *Phys. Rev. A* 1988, 37, 4351–4353. doi:10.1103/PhysRevA.37.4351.
8. Carmesin, H.O.; Frisch, H.; Percus, J. Binary nonadditive hard-sphere mixtures at high dimension. *J. Stat. Phys.* 1991, 63, 791–795. doi:10.1007/BF01029212.
9. Frisch, H.L.; Percus, J.K. High dimensionality as an organizing device for classical fluids. *Phys. Rev. E* **1999**, *60*, 2942–2948. doi:10.1103/PhysRevE.60.2942.

10. Parisi, G.; Slanina, F. Toy model for the mean-field theory of hard-sphere liquids. *Phys. Rev. E* **2000**, *62*, 6554–6559. doi:10.1103/PhysRevE.62.6554.

11. Yukhimets, A.; Frisch, H.L.; Percus, J.K. Molecular Fluids at High Dimensionality. *J. Stat. Phys.* **2000**, *100*, 135–151. doi:10.1023/A:101863527522.

12. Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and Jamming Transitions: From Exact Results to Finite-Dimensional Descriptions. *Annu. Rev. Cond. Matt. Phys.* **2017**, *8*, 265–288. doi:10.1146/annurev-conmatphys-031016-025334.

13. Santos, A.; López de Haro, M. Demixing can occur in binary hard-sphere mixtures with negative non-additivity. *Phys. Rev. E* **2005**, *72*, 010501(R). doi:10.1103/PhysRevE.72.010501.

14. Freasier, C.; Isbister, D.J. A remark on the Percus–Yevick approximation in high dimensions. Hard core fluids. *Mol. Phys.* **1984**, *56*, 937–942. doi:10.1080/00268978400100711.

15. Leutheusser, E. Exact solution of the Percus–Yevick equation for a hard-core fluid in odd dimensions. *Physica A* **1984**, *127*, 667–676. doi:10.1016/0378-4371(84)90050-5.

16. Michel, P.J.; Trappeniers, N.J. Dynamical computer simulations on hard hyperspheres in four- and five-dimensional space. *Phys. Lett. A* **1984**, *104*, 425–429. doi:10.1016/0375-9601(84)90749-7.

17. Baus, M.; Colot, J.L. Theoretical structure factors for hard-core fluids. *J. Phys. C* **1986**, *19*, L643–L648. doi:10.1088/0022-3719/19/28/002.

18. Baus, M.; Colot, J.L. Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions. *Phys. Rev. A* **1987**, *36*, 3912–3925. doi:10.1103/PhysRevA.36.3912.

19. Rosénfeld, Y. Distribution function of two cavities and Percus–Yevick direct correlation functions for a hard sphere fluid in *D* dimensions: Overlap volume function representation. *J. Chem. Phys.* **1987**, *87*, 4865–4869. doi:10.1063/1.452797.

20. Rosénfeld, Y. Scaled field particle theory of the structure and thermodynamics of isotropic hard particle fluids. *J. Chem. Phys.* **1988**, *89*, 4272–4287. doi:10.1063/1.454810.

21. Amorós, J.; Solana, J.R.; Villar, E. Equations of state for four- and five-dimensional hard hypersphere fluids. *Phys. Chem. Liq.* **1989**, *19*, 119–124. doi:10.1080/00319108908028443.

22. Song, Y.; Mason, E.A.; Stratt, R.M. Why does the Carnahan-Starling equation work so well? *J. Phys. Chem.* **1989**, *93*, 6916–6919. doi:10.1021/j100356a008.

23. Song, Y.; Mason, E.A. Equation of state for fluids of spherical particles in *d* dimensions. *J. Chem. Phys.* **1990**, *93*, 686–688. doi:10.1063/1.459517.

24. González, D.J.; González, L.E.; Silbert, M. Thermodynamics of a fluid of hard *D*-dimensional spheres: Percus-Yevick and Carnahan-Starling-like results for *D* = 4 and 5. *Phys. Chem. Liq.* **1990**, *22*, 95–102. doi:10.1080/00319109008036415.

25. Luban, M.; Michel, P.J. Equation of state of hard *D*-dimensional hyperspheres. *Phys. Rev. A* **1990**, *41*, 6796–6804. doi:10.1103/PhysRevA.41.6796.

26. Maeso, M.J.; Solana, J.R.; Amorós, J.; Villar, E. Equations of state for *D*-dimensional hard sphere fluids. *Mater. Chem. Phys.* **1991**, *30*, 39–42. doi:10.1016/0254-0584(91)90151-J.

27. González, D.J.; González, L.E.; Silbert, M. Structure and thermodynamics of hard *D*-dimensional spheres: overlap volume function approach. *Mol. Phys.* **1991**, *74*, 613–627. doi:10.1080/00268979101002461.

28. González, L.E.; González, D.J.; Silbert, M. Structure and thermodynamics of mixtures of hard *D*-dimensional spheres: Overlap volume function approach. *J. Chem. Phys.* **1992**, *97*, 5132–5141. doi:10.1063/1.463810.

29. Velasco, E.; Mederos, L.; Navascaés, G. Analytical approach to the thermodynamics and density distribution of crystalline phases of hard spheres. *Mol. Phys.* **1997**, *99*, 1273–1277. doi:10.1080/00268999700482929.

30. Bishop, M.; Masters, A.; Clarke, J.H.R. Equation of state and hard-Weiss–Chandler–Anderson hyperspheres in four and five dimensions. *J. Chem. Phys.* **1999**, *110*, 11449–11453. doi:10.1063/1.479086.

31. Finken, R.; Schmidt, M.; Löwen, H. Freezing transition of hard hyperspheres. *Phys. Rev. E* **2001**, *65*, 016108. doi:10.1103/PhysRevE.65.016108.

32. Santos, A.; Yuste, S.B.; López de Haro, M. Equation of state of a multicomponent *d*-dimensional hard-sphere fluid. *Mol. Phys.* **1999**, *96*, 1–5. doi:10.1080/00268979909482932.
33. Mon, K.K.; Percus, J.K. Virial expansion and liquid-vapor critical points of high dimension classical fluids. J. Chem. Phys. 1999, 110, 2734–2735. doi:10.1063/1.477998.

34. Santos, A. An equation of state à la Carnahan-Starling for a five-dimensional fluid of hard hyperspheres. J. Chem. Phys. 2000, 112, 10680–10681. doi:10.1063/1.1481701.

35. Lue, L.; Bishop, M.; Whitlock, P.A. The fluid to solid phase transition of hard hyperspheres in four and five dimensions. J. Chem. Phys. 2000, 114, 4905–4911. doi:10.1063/1.1349094.

36. Adda-Bedia, M.; Katzav, E.; Vella, D. Solution of the Percus–Yevick equation for hard hyperspheres in even dimensions. J. Chem. Phys. 2000, 112, 024505. doi:10.1063/1.1848091.

37. Bishop, M.; Whitlock, P.A. The structure of hyperspherical fluids in various dimensions. J. Chem. Phys. 2000, 112, 074508. doi:10.1063/1.1874963.

38. Santos, A.; López de Haro, M.; Yuste, S.B.; López de Haro, M. Contact values of the radial distribution functions of hard hypersphere mixtures near a hard wall. Mol. Phys. 2006, 104, 3461–3467. doi:10.1080/00268970601028963.

39. Bishop, M.; Whitlock, P.A.; Klein, D. The structure of hyperspherical fluids in various dimensions. J. Chem. Phys. 2007, 126, 051202. doi:10.1063/1.2743031.

40. Lue, L.; Bishop, M. Molecular dynamics study of the thermodynamics and transport coefficients of hard hyperspheres in six and seven dimensions. Phys. Rev. E 2006, 74, 021201. doi:10.1103/PhysRevE.74.021201.

41. Bishop, M.; Whitlock, P.A.; Klein, D. The structure of hyperspherical fluids in various dimensions. J. Chem. Phys. 2007, 126, 074508. doi:10.1063/1.1848091.

42. Bishop, M.; Whitlock, P.A. The equation of state of hard hyperspheres in four and five dimensions. J. Chem. Phys. 2007, 126, 014507. doi:10.1063/1.1874973.

43. Santos, A.; Yuste, S.B.; Santos, A. Equation of state of a seven-dimensional hard-sphere fluid. Percus–Yevick theory and molecular-dynamics simulations. J. Chem. Phys. 2004, 120, 9113–9122. doi:10.1063/1.1701840.

44. Santos, A.; López de Haro, M.; Yuste, S.B. Equation of state of nonadditive d-dimensional hard-sphere mixtures. J. Chem. Phys. 2005, 122, 024514. doi:10.1063/1.1832591.

45. Bishop, M.; Whitlock, P.A.; Klein, D. The structure of hyperspherical fluids in various dimensions. J. Chem. Phys. 2005, 122, 074508. doi:10.1063/1.1848091.

46. Robles, M.; López de Haro, M.; Santos, A. Equation of state of a seven-dimensional hard-sphere fluid. Percus–Yevick theory and molecular-dynamics simulations. J. Chem. Phys. 2004, 120, 9113–9122. doi:10.1063/1.1701840.

47. Santos, A.; López de Haro, M.; Yuste, S.B.; López de Haro, M. Contact values of the radial distribution functions of hard-sphere mixtures near a hard wall. Mol. Phys. 2006, 104, 3461–3467. doi:10.1080/00268970601028963.

48. Bishop, M.; Whitlock, P.A.; Klein, D. The structure of hyperspherical fluids in various dimensions. J. Chem. Phys. 2007, 126, 074508. doi:10.1063/1.1848091.
67. Santos, A.; Yuste, S.B.; López de Haro, M. Virial coefficients and equations of state for mixtures of hard discs.
63. Santos, A.
61. Amorós, J. Equations of state for tetra-dimensional hard-sphere fluids.
79. Clisby, N.; McCoy, B.M. Ninth and Tenth Order Virial Coefficients for Hard Spheres in
78. Lyberg, I. The fourth virial coefficient of a fluid of hard spheres in odd dimensions.
77. Clisby, N.; McCoy, B.M. New results for virial coefficients of hard spheres in D dimensions. Pramana 2005, 64, 775–783. doi:10.1007/BF02704582.
83. Torquato, S.; Stillinger, F.H. Exactly Solvable Disordered Hard-Sphere Packing Model in Arbitrary-Dimensional Euclidean Spaces. *Phys. Rev. E* 2006, 73, 031106. doi:10.1103/PhysRevE.73.031106.

84. Torquato, S.; Uche, O.U.; Stillinger, F.H. Random sequential addition of hard spheres in high Euclidean dimensions. *Phys. Rev. E* 2006, 74, 061308. doi:10.1103/PhysRevE.74.061308.

85. Parisi, G.; Zamponi, F. Amorphous packings of hard spheres for large space dimension. *J. Stat. Mech.* 2006, p. P03017. doi:10.1088/1742-5468/2006/03/p03017.

86. Scardicchio, A.; Stillinger, F.H.; Torquato, S. Estimates of the optimal density of sphere packings in high dimensions. *J. Math. Phys.* 2008, 49, 043301. doi:10.1063/1.2897027.

87. van Meel, J.A.; Frenkel, D.; Charbonneau, P. Geometrical frustration: A study of four-dimensional hard spheres. *Phys. Rev. E* 2009, 79, 061308(R). doi:10.1103/PhysRevE.79.061308.

88. Agapie, S.C.; Whitlock, P.A. Random packing of hyperspheres and Marsaglia’s parking lot test. *Monte Carlo Methods and Applications* 2010, 16, 197–209. doi:10.1515/mcma.2010.019.

89. Torquato, S.; Stillinger, F.H. Jammed hard-particle packings: From Kepler to Bernal and beyond. *Rev. Mod. Phys.* 2010, 82, 2633–2672. doi:10.1103/RevModPhys.82.2633.

90. Zhang, G.; Torquato, S. Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. *Phys. Rev. E* 2013, 88, 053312. doi:10.1103/PhysRevE.88.053312.

91. Kazav, E.; Berdichevsky, R.; Schwartz, M. Random close packing from hard-sphere Percus-Yevick theory. *Phys. Rev. E* 2019, 99, 012146. doi:10.1103/PhysRevE.99.012146.

92. Berthier, L.; Charbonneau, P.; Kundu, J. Bypassing sluggishness: SWAP algorithm and glassiness in high dimensions. *Phys. Rev. E* 2019, 99, 031301(R). doi:10.1103/PhysRevE.99.031301.

93. Santos, A.; Yuste, S.B.; López de Haro, M.; Odriozola, G.; Ogarko, V. Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres. *Phys. Rev. E* 2014, 89, 040302(R). doi:10.1103/PhysRevE.89.040302.

94. Bishop, M.; Michels, J.P.; de Schepper, I.M. The short-time behavior of the velocity autocorrelation function of smooth, hard hyperspheres in three, four and five dimensions. *Phys. Lett. A* 1985, 111, 169–170. doi:10.1016/0375-9601(85)90568-7.

95. Colot, J.L.; Baus, M. The freezing of hard disks and hyperspheres. *Phys. Lett. A* 1986, 119, 135–139. doi:10.1016/0375-9601(86)90432-9.

96. Lue, L. Collision statistics, thermodynamics, and transport coefficients of hard hyperspheres in three, four, and five dimensions. *J. Chem. Phys.* 2005, 122, 044513. doi:10.1063/1.1834498.