Nuclear modification factors of K_S and ω mesons in Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

A. Berdnikov, Ya. Berdnikov, D. Kotov, P. Radzevich, and S. Zharko

Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya st., Saint-Petersburg, Russia

E-mail: zharkosergey94@gmail.com

Abstract. Jet quenching is an important evidence of the quark-gluon plasma (QGP) formation. The effect of jet quenching is emerged in ultra-relativistic heavy-ion collisions (A+A) by suppressed production of hadron yields at high transverse momenta ($p_T > 5$ GeV/c) when compared to one measured in elementary proton-proton collisions ($p+p$). Cu+Au collisions are characterised by the unique asymmetric nuclei overlap geometry different from one presented in symmetric collisions (Au+Au, Cu+Cu). It makes the Cu+Au collision system especially interesting for jet quenching studies. In this paper we present results of the K_S meson production measurement in Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with respect to the meson p_T and collision centrality obtained using the electromagnetic calorimeter of PHENIX experiment. K_S mesons are reconstructed via the $K_S \rightarrow \pi^0 (\rightarrow \gamma \gamma) \pi^0 (\rightarrow \gamma \gamma)$ decay channel. Obtained K_S meson nuclear modification factors are consistent with ones measured for π^0 and η mesons and reconstructed jets in the same collision system and ones measured in Cu+Cu and Au+Au collisions at the same collision energy.

1. Introduction

Quark-gluon plasma (QGP) is a deconfined state of nuclear matter with color-charged quarks and gluons (partons) as degrees of freedom. First evidences of the QGP formation in central ultra-relativistic heavy ion collisions (A+A) were established at Relativistic Heavy Ion Collider (RHIC) experiments [1–4]. Later, the fact of the QGP production was confirmed at Large Hadron Collider (LHC) [5–7].

Hadron production at high transverse momenta ($p_T > 5$ GeV/c) is governed by the fragmentation of hard-scattered partons. Parton hard scattering and fragmentation processes in elementary proton-proton ($p+p$) collisions are well described by perturbative Quantum Chromodynamics (pQCD) [8]. When A+A collisions are considered, the interaction of hard-scattered partons with created QGP medium leads to the modification of fragmented hadron yields. In particular, hard-scattered partons traverse in the medium and lose a part of their energy which results in suppressed production of hadron yields (jet quenching effect) [9,10].

Measurements of the different high-p_T hadron species (π^0, η, K_S, ω) production provide a systematic study of in-medium effects with respect to the fragmentation function and quantum numbers (mass, flavour, spin) of the final-state hadrons. For example, a K_S meson is a strange pseudoscalar, thus measurements of its production help to study the flavour dependence of the parton energy loss. In the same way as a π^0 meson, an ω meson contains only the first generation quarks (u, d) but as a vector has a different spin. Thus, measurements of ω meson production...
in A+A collisions allows to explore fragmentation properties as a function of final hadrons spin states.

Usually, the hadron production is studied with respect to the particle p_T and the collision centrality. The collision centrality is quantified in percent and represents the geometry of the A+A collision. For example, centrality 0-20% corresponds to central collisions with large particle multiplicity and created energy density; centrality 60-90% corresponds to peripheral collisions, where only few nucleons part in the nuclei interaction.

Quantitatively, jet quenching is probed with a nuclear modification factor (R_{AA}):

$$R_{AA}^{cent}(p_T) = \frac{1}{N_{coll}^{cent}} \frac{dN_{AA}^{cent}(p_T)/dp_T}{dN_{pp}(p_T)/dp_T},$$

(1)

where $dN_{AA}^{cent}(p_T)/dp_T$ ($dN_{pp}(p_T)/dp_T$) – the particle yield measured in A+A ($p+p$), N_{coll}^{cent} – the number of binary inelastic nucleon-nucleon collisions. The $dN_{AA}^{cent}(p_T)/dp_T$ and N_{coll}^{cent} are determined for the selected centrality interval.

Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV is an asymmetric system of ultra-relativistic heavy colliding nuclei and has different collision geometry when compared to symmetric systems such as Au+Au and Cu+Cu. Opposite to Au+Au, in Cu+Au a nuclear overlap region has an additional asymmetry along the axis connecting the interacting nuclei centres (Fig.1). Thus, light meson suppression measurements in Cu+Au collisions are especially interesting for the jet quenching systematic studies and can provide an additional input parameters discrimination for various phenomenological parton energy loss models.

2. Data Analysis

All results presented in the paper are obtained with the PHENIX spectrometer [11] in data collected in RHIC Year-2012 run. The centrality categorization and determination of the collision vertex along the beam axis (z_{vertex}) are provided with two beam-beam counters (BBC) [12].
BBCs are located in the $3.0 < |\eta| < 3.9$ region in pseudorapidity towards North and South beam directions. The mean numbers of the nucleons participating in nuclei interactions ($\langle N_{\text{part}} \rangle$) and binary collisions ($\langle N_{\text{coll}} \rangle$) for selected centrality intervals are estimated with the Glauber-model Monte-Carlo simulation [13] considering the BBC response.

Eight sectors of the electromagnetic calorimeter (EMCal): six sectors of lead-scintillator (PbSc) and two sectors of Cherenkov sampling (PbGl) are used to reconstruct K_S meson yields. Each sector covers 22.5 degree in azimuthal angle and $|\eta| < 0.35$ region in pseudorapidity. The EMCal construction and performance details can be found elsewhere in [14].

Two hardware triggers are used in the analysis for the data sample formation. The Minimum Bias trigger (MB) is fired if both BBCs simultaneously detect charged particles. The MB trigger is used to measure K_S meson yields at $p_T < 10$ GeV/c. The ERT-A trigger is fired if at least one high-energy electromagnetic shower is induced in the EMCal. The ERT-A trigger is used at higher transverse momenta. With the $|z_{\text{vertex}}| < 20$ cm cut MB and ERT-A data samples contain 6.9×10^9 and 1.8×10^{10} collision events, respectively.

K_S mesons are reconstructed via $K_S \rightarrow \pi^0 \pi^0$ decay channel with a branching ratio $BR = 30.69 \pm 0.05\%$ [15]. In turn, π^0 mesons are reconstructed via $\pi^0 \rightarrow \gamma \gamma$ decay channel with $BR = 98.82 \pm 0.03\%$ [15]. A minimum photon energy (E_γ) cut of 0.4 GeV and a standard shower shape cut [14] for γ-candidates are introduced to reduce the contribution of hadron showers in the EMCal. An asymmetry cut of $|E_\gamma - E_\gamma'|(E_\gamma + E_\gamma') < 0.8$ is applied to each $\gamma \gamma$ pair to reduce the background from combinatorial pairs. In addition, both γ-candidates are required to be in the same EMCal sector.

To form a π^0-candidate each $\gamma \gamma$ pair is required to have its invariant mass in a 2σ range from the π^0 meson mass parametrisation and be in the same East or West central arm of the spectrometer. Also, π^0-candidates are required to have its transverse momentum ($p_T^{\pi^0}$) in the range $2 < p_T^{\pi^0} < 11$ GeV/c ($2 < p_T^{\pi^0} < 14$ GeV/c) for the candidates reconstructed in PbSc (PbGl) sectors. The lower reach is limited to reduce the contribution of the

![Figure 3](image1.png) ![Figure 4](image2.png)

Figure 3. K_S meson invariant p_T-spectra measured in 0-93% (●, multiplied by 10^3), 0-20% (■, multiplied by 10^4), 20-40% (◇, multiplied by 10^4), 40-60% (□, multiplied by 10^{-1}), and 60-90% (● multiplied by 10^{-2}) centrality intervals of Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Error bars and open boxes show statistical and systematic uncertainties, respectively.

Figure 4. Ratios of K_S and π^0 meson yields measured as a function of transverse momentum in 0-93% (●), 0-20% (■), 20-40% (◇), 40-60% (□), and 60-90% (●) centrality intervals of Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Error bars and open boxes show statistical and systematic uncertainties, respectively.
combinatorial background. The higher reaches correspond to the point where cluster merging effect significantly affects π^0-candidates reconstruction \cite{16}. For all selected π^0-candidates an additional energy correction is applied to bring the reconstructed π^0 masses to the Particle Data Group value, which helps to significantly improve K^0_S signal-to-background ratios (S/B).

K^0_S yields are determined from π^0-candidate pair invariant mass (M_{inv}) distributions accumulated in the selected K^0_S transverse momentum and event centrality intervals. The distributions are fitted to a sum of the Gauss function and the second order polynomial, which describe the signal and the background, respectively. Examples of the M_{inv} distributions are shown in Fig.2. K^0_S yields are obtained as the difference between the sum of the distribution bin content in a 2σ vicinity around the peak position and the polynomial fit integral in the same region.

Obtained K^0_S yields are corrected for the limited acceptance and detector effects with the reconstruction efficiency. The $K^0_S\rightarrow\pi^0\pi^0$ decay reconstruction efficiency is derived from the Monte-Carlo simulation based on GEANT 3.61 \cite{17}. The high multiplicity effects influence is accounted by embedding simulated K^0_S mesons into real Cu+Au collision events end then analysed in the same way as in real data.

The K^0_S meson invariant p_T-spectra are accumulated as follows:

$$\frac{1}{N_{\text{event}}} \frac{d^2N}{2\pi p_T dp_T dy} = \frac{1}{2\pi p_T \Delta p_T \Delta y} \times \frac{N_{K^0_S}}{N_{\text{event}} \epsilon_{\text{rec}} BR},$$

(2)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Nuclear modification factors of π^0 (\bullet), η (\bullet), and K^0_S (Φ) mesons measured as a function of p_T in 0-20\% (a), 20-40\% (b), 40-60\% (c), and 60-90\% (d) centrality intervals of Cu+Au collisions at $s_{NN} = 200$ GeV. Error bars and boxes around points shows statistical and p_T-dependent systematic uncertainties. Boxes at unity shows p_T-independent systematic uncertainties.}
\end{figure}
where N_{K_S} – the K_S meson extracted yield, ϵ_{rec} – the K_S meson reconstruction efficiency, N_{event} – the number of analysed events, BR – the $K_S \rightarrow \pi^0\pi^0$ decay branching ratio.

The detector performance in the simulation and the analysis cuts are varied to estimate systematic uncertainties of the K_S meson results. Main systematic uncertainties come from the K_S yield extraction parameters selection and a photon conversion in the detector materials. The corresponding uncertainty is estimated by variations of the fitting range, peak integration region and the fit polynomial order and is assigned to be 10-15%, 8-12%, and 18-25% in the low, intermediate, and high p_T regions, respectively, depending on the centrality interval.

A part of daughter photons from π^0 meson decays experiences a conversion into e^-e^+ pairs when passing through detector materials. In the presence of magnetic field electrons and positrons are bended to the opposite directions, thus the original photon can not be reconstructed in the EMCal. It leads to the lose of about 25% π^0 mesons. The uncertainty of the photon conversion from this effect reproduction mismatches in simulations and real data and was estimated to be 5.2% for π^0 meson production [16]. For K_S meson production the uncertainty from photon conversion is assigned as a double uncertainty from π^0 meson measurements and is estimated to be 10.4% independently on the meson p_T and collision centrality.

3. Results

Fig. 3 shows K_S meson invariant p_T-spectra measured in different centrality intervals of Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The p_T range of measurements is limited by rapidly decreasing S/B at low p_T and decreasing statistics at high momenta.

Fig. 4 presents the ratio of K_S and π^0 yields (K_S/π^0) measured as a function of p_T in different Cu+Au centrality intervals. Yields of π^0 were previously published in [16]. The ratios are p_T-independent and consistent for all centrality intervals within large uncertainties. Also, obtained ratios are consistent with ones measured in d+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV [18].

Fig. 5 shows a comparison of π^0 [16], η [16], and K_S mesons nuclear modification factors, measured as a function of transverse momentum in different centrality intervals of Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The reference K_S spectra obtained in $p+p$ collisions were

$$
R_{AA} = \frac{N_{p+p}}{N_{Au+Au}}
$$

Figure 6. Nuclear modification factors of K_S mesons measured as a function of p_T in Au+Au (∙), Cu+Cu (○), and Cu+Au (●) collisions at $\sqrt{s_{NN}} = 200$ GeV at similar N_{part}. Uncertainties are the same as in Fig. 5. Panel (a) is for 20-60% Au+Au with $\langle N_{part} \rangle = 102 \pm 6$, 0-20% Cu+Cu with $\langle N_{part} \rangle = 86 \pm 2$, and 20-40% Cu+Au with $\langle N_{part} \rangle = 80 \pm 3$. Panel (b) is for 60-93% Au+Au with $\langle N_{part} \rangle = 14 \pm 2$, 60-94% Cu+Cu with $\langle N_{part} \rangle = 6.4 \pm 0.4$, and 60-90% Cu+Au with $\langle N_{part} \rangle = 8.9 \pm 1.4$.

5
published in [19]. Nuclear modification factors obtained for different meson species are consistent within uncertainties in the whole p_T range for all selected centrality intervals. Also, the R_{AA} are consistent with ones measured for reconstructed jets in the same collision system [20] suggesting that the meson suppression pattern does not depend of the fragmented parton flavor. Fig. 6 compares K_S meson nuclear modification factors, obtained in Au+Au, Cu+Cu [18], and Cu+Au at $\sqrt{s_{NN}} = 200$ GeV and similar N_{part}. K_S meson yields are similarly suppressed in different heavy-ion systems suggesting that the meson production suppression mostly depends on the energy density created in nuclei interactions and do not depend on the collision geometry (or the dependence is weak).

4. Summary

In summary, PHENIX has measured K_S meson invariant p_T-spectra and nuclear modification factors as a function of p_T in different centrality intervals of Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Obtained K_S/π^0 do not show p_T or centrality dependence within uncertainties and are consistent with results previously obtained in $d+Au$ and Cu+Cu collisions at the same collision energy. In Cu+Au collisions K_S meson production shows similar suppression pattern as one for π^0 and η mesons and for reconstructed jets. Also, the observed K_S meson suppression pattern is the same as in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV within uncertainties of measurements.

Acknowledgements

We acknowledge support from Russian Ministry of Education and Science, state assignment 3.1498.2017/4.6.

References

[1] Arsene I et al 2005 Nucl. Phys. A 757 1-27
[2] Back B et al 2005 Nucl. Phys. A 757 28-101
[3] Adams J et al 2005 Nucl. Phys. A 757 102-83
[4] Adcox K et al 2005 Nucl. Phys. A 757 184-283
[5] Chatrchyan S et al 2012 Eur. Phys. J. C. 72 1945
[6] Abelev B et al 2013 Phys. Lett. B 720 52-62
[7] Aad G et al 2013 Phys. Lett. B 719 220-41
[8] Owens J F 1987 Rev. Mod. Phys. 59 465
[9] Baier R, Schiff D, and Zakharov B G 2000 Ann. Rev. Nucl. Part. Sci. 50 37-69
[10] Wang X-N, Gyulassy M, and Plumer M 1995 Phys. Rev. D 51 3436-46
[11] Adcox K et al 2003 Nucl. Inst. Meth. A 499 469-87
[12] Allen M et al 2003 Nucl. Inst. Meth. A 499 549-59
[13] Miller M L, Reygers K, Sanders S J, and Steinberg P 2007 Ann. Rev. Nucl. Part. Sci. 57 205
[14] Aphecetche L et al 2003 Nucl. Inst. Meth. A 499 521-36
[15] Beringer J et al 2012 Phys. Rev. D 86 010001
[16] Zharko S 2017 Nucl. Phys. A 967 552-5
[17] Brun R, Hadelberg R, Hansroul M, and Lassale J C 1978 Geant: Simulation program for particle physics experiments. User guide and reference manual CERN-DD-78-2-REV
[18] Adare A et al 2014 Phys. Rev. C 90 054905
[19] Adare A et al 2011 Phys. Rev. D 83 052004
[20] Timilsina A 2016 Nucl. Phys. A 956 637-40