Summary of the internet of things and its application in agro-industrial production

D M Rodríguez¹, E Bayona², and A A Rosado¹

¹ Grupo de Investigación en Tecnología y Desarrollo en Ingeniería, Universidad Francisco de Paula Santander Seccional Ocaña, Colombia
² Grupo de Investigación en Ciencia y Tecnología, Universidad Francisco de Paula Santander Seccional Ocaña, Colombia

E-mail: aarosadog@ufpso.edu.co, dmrodrigueza@ufpso.edu.co

Abstract. The internet of things, day by day accompanies the development of activities that are executed in any space, through remote access. Households and companies have included new technologies in different areas for the automatic development of activities or processes, real-time monitoring and control, which has become a pressing need for decision-making. For this reason, it is necessary to carry out a bibliographic review, by searching for scientific articles, in the most recognized digital databases, where the most important aspects of the internet of things, technologies and elements used in the last ones are mentioned years, in order to know a little more about these and their characteristics in common. For the investigation, the recommendations and analysis of the results obtained in case studies will be taken into account, seeking to leave a precedent that contributes to the improvement of the agro-industrial production processes, so that they are supported in new technologies that allow identifying, measure and control variables, that achieve the efficient operation of resources, maximizing the potential of their characteristics.

1. Introduction

The agricultural sector is undergoing profound changes due to transformations related to the rural, the increase in poverty, the consolidation of productive and commercial blocks, the environment, natural resources, biotechnological and computer development, which has led to modernization production processes. It can see how entrepreneurs, institutions and even the common people, implement and use systems more frequently that allow them to have control from large industries to everyday use; which has even led to a socio-cultural change due to the transformations in the relationship between man and his reality, which leads us to understand technology as a dynamic, multidirectional, interconnected and complex system [1,2].

Internet of things (IoT) is known as the connection of technological or electronic objects that connect to the internet [3].

In the field of agriculture, most processes are carried out in rural areas with little access to technology and depend on what is called family farming that produces 70% of food worldwide, being an influential economy, but that due globalization has made it difficult to be competitive and have the control that allows them to plan in the long term; which creates the need to generate benefits for farmers and lead them to modernization [4].

The objective of this article is to expose the research contributions that frame the internet of things and how it is applied in agribusiness; exposing the set of elements that comprise an IoT solution,
approached from the architecture that supports it, allowing other researchers to know the hardware, software and communication elements that are required for the capture and transmission of data, storage concepts, processing and management that demands the enormous amount of information generated by this type of technological system.

2. Methodology
To locate the bibliographic documents, a search was conducted in electronic databases such as Association for Computing Machinery (ACM), Institute of Electrical and Electronics Engineers (IEEE) Xplore, scielo, science direct, scopus and google scholar, using the descriptors: Scientific articles, reviews, concept maps, and critical readings. Searching include keywords such as: Sensors in agricultural production processes, agricultural technology, case studies of processes that implement IoT, among others, identifying publications made in the last five years; obtaining records that ranged between 500 and 560, is the result of the combination of different keywords. The selected documents present general characteristics of the IoT and projects carried out in the field of agriculture.

3. Internet of things overview
The IoT refers to the network interconnection of all everyday objects, which are often equipped with some kind of intelligence; it is a platform for teams that communicate electronically and share specific information and data with the world around them, combining physical and digital components to create new products and businesses, generate value in companies based on the monitoring and control categories, big data and business analysis and information exchange and collaboration, being a critical and integrated system, an infrastructure in which many applications and services can run; which will be personalized and others will be throughout the city [5-9].

3.1. Fields of application
The following application areas can be established: transport systems, logistics, smart cities, home automation, agriculture, smart farms, industry and business, parking applications, structural health, maps, traffic congestion, smart lighting, waste management, pollution of air, detection of forest fires, disaster prevention, use and quality of water and energy, leaks, smart meters, security and emergencies, entertainment (weather conditions, information inquiries, etc.) [10-12].

3.2. Architectures
In general, it involves the following components: connected objects, network technologies, communication protocols, IoT platforms for data processing and user applications, and hardware devices used in agricultural facilities, surveillance and monitoring, industrial processes, environments domestic and mineral exploitation [13,14], distributed in several layers, as shown in Table 1, the outermost layer is responsible for displaying and extracting knowledge that is based on the data that was captured in the layer more internal [15].

Table 1. Proposed architecture.
Components
Application
Middleware
Communications
Dispositive

3.3. Technologies used
These technologies can be in an intelligent environment, in an open field, and inside a home. Every day, applications are sought to focus on wireless networks, but currently, wired network applications are
generated and technologies should point to both types of networks. Table 2 generally shows some of the most used technologies in each layer according to the architecture proposed [15,16].

Table 2. Technologies used by IoT.

Application	Proposed technologies and equipment	Features
Middleware	Request and response adapter protocol (RRAP), Fi-Ware	Responsible for addressing actions such as registration services, service requests and failures [18].
Communications	IEEE 802.15.4, Xbee, TCP / IP Architecture RFID, IEEE 802.15.4, Z_Wave, LTE, LoRa, NFC, UWB, M2M, 6loWPAN, NGN, WSN, Zigbee, Wavenis, Wireless Mbus, Wifi, Wmaz, PLC, GSM, GPRS, SCADA systems, IP networks, PSTN, XDSL, PAN, LAN, MAN, CDMA, WCDMA, CDMA, HSPA, Bluetooth, RF, Microwave, Infrared, among others	They consume low energy, compatible with Arduino and other platforms, and are divided into two layers, one physical and one medium access control. Used for data transfer. Based on wireless and wired networks [19].
Dispositive	Oracle Sun SPOT, MEMSIC Iris, Arduino UNO, RFID Readers, M2M Terminals, SCALA Meters, NFIC, QR Codes, BIDI Codes, People Mobile, Environmental Devices, Furniture, Buildings, Piping and Piping Systems, Weather Stations, Microelectromechanical Systems (MEMS) and nanoelectromechanical (NEMS)	Devices capable of getting involved in HTTP communications, mote modules with various capabilities to improve the overall functionality of wireless sensor networks [20], low-cost boards used for detection and actuation

4. Internet of things in agro-industrial production

The agricultural sector requires the use of new technologies that allow efficient use, resource monitoring, and decision making. The internet of things has been having a great impact in this area due to new alternatives and the low costs offered to meet this objective, offering efficiency and productivity in crops, and measuring variables related to soils, plants and improve production processes, optimizing resources and improving their performance level [21-23].

The IoT allows farmers to automate the activities of monitoring crops and animal production, in some cases allowing remote access to their farms [24], developed platforms use sensors that take values which must be managed and evaluated with high precision to allow for successful decision-making that generates benefits [25], mostly consisting of wireless sensor networks and actuators [26]; allow control of autonomous irrigation systems [27], monitoring system of environmental variables, powered by solar energy, a system based on DigiMesh and Wi-Fi that can be applied in both rural and urban scenarios and a transmission system with IoT platforms [28,29], and information systems focused on precision agriculture technologies [30].

5. Elements and technologies

Through the use of sensors and actuators, IoT systems can guarantee the quality of products of plant origin for human consumption and allow the producer to offer new services, have control of their data collection, monitoring and decision-making processes. Applications based on hardware and free software such as Arduino and Raspberry have been made, in addition to Linux, Java, wildfly, python, radio mobile that allow us to offer solutions to improve and optimize resources and crop quality [26,31,32]. Table 3 summarizes the elements and technologies that characterize the solutions that were developed in the field of agriculture [16,30]:

Table 3 summarizes the elements and technologies that characterize the solutions that were developed in the field of agriculture [16,30]:

Application	Proposed technologies and equipment	Features
Middleware	Request and response adapter protocol (RRAP), Fi-Ware	Responsible for addressing actions such as registration services, service requests and failures [18].
Communications	IEEE 802.15.4, Xbee, TCP / IP Architecture RFID, IEEE 802.15.4, Z_Wave, LTE, LoRa, NFC, UWB, M2M, 6loWPAN, NGN, WSN, Zigbee, Wavenis, Wireless Mbus, Wifi, Wmaz, PLC, GSM, GPRS, SCADA systems, IP networks, PSTN, XDSL, PAN, LAN, MAN, CDMA, WCDMA, CDMA, HSPA, Bluetooth, RF, Microwave, Infrared, among others	They consume low energy, compatible with Arduino and other platforms, and are divided into two layers, one physical and one medium access control. Used for data transfer. Based on wireless and wired networks [19].
Dispositive	Oracle Sun SPOT, MEMSIC Iris, Arduino UNO, RFID Readers, M2M Terminals, SCALA Meters, NFIC, QR Codes, BIDI Codes, People Mobile, Environmental Devices, Furniture, Buildings, Piping and Piping Systems, Weather Stations, Microelectromechanical Systems (MEMS) and nanoelectromechanical (NEMS)	Devices capable of getting involved in HTTP communications, mote modules with various capabilities to improve the overall functionality of wireless sensor networks [20], low-cost boards used for detection and actuation
Table 3. Technologies used by IoT.

Components	Proposed technologies and equipment	Features and/or uses
Application	Positioning Systems GPS, GLONASS, Galileo, BeiDou, Linux, Java, Wildfly, Python, Mobile Radio	Traffic control that provide real-time data [30]
Middleware	Decision Support Systems (DSS, Decision Support Systems), Data Mining	They carry out comparisons between sampling processes, production, crop damage and costs, use of fertilizers, schedule operations during harvest for decision making, present crop yield and productivity maps, perform processes to explain the behavior of data [33-36]
Communications	Standard 802.15.2, Wifi, Bluetooth, ZigBee, mobile phones. GPRS, Xbee	They allow messages to be adapted to the specific needs of the application, such as Xbee, which allows low-power electronic devices to carry out their wireless communications [37,38]
Dispositive	Arduino, Raspberry and its complements, Wireless Networks of WSN Sensors, Variable Rate Technologies and (VRT) Remotely piloted aircraft, Drones	They are microcontrollers and system memories, modules such as Bluetooth, XBee, WSN sensors that communicate two or more sensors to monitor large environments [39-41] are commonly used

6. Applications and platforms

For data management in the development and proper functioning of the proposed applications, some of the authors mention the use of the applications and platforms shown in Table 4.

Table 4. Applications and platforms.

Application	Features
Google Drive	Cloud storage tool, synchronous and asynchronous communication [42,43]
Dropbox	Supplier of cloud-based storage systems [44,45]
Microsoft Azure	It is a set of cloud services that allow you to create, manage and deploy applications on a huge global network with your favorite tools and frameworks [46]
Amazon	E-commerce platform and cloud computing services [47]
Web services	An application accessible to other applications through the web that requires the coordination of hardware and software resources [48,49]
IBM Watson	It is a cognitive technology that processes information similarly to a human by understanding natural language and analyzing unstructured data [50]
Ubidots	Data platform to create applications that capture information, connecting devices to the cloud [51]
Phant	SparkFun software whose IoT protocol is HTTP, custom software, graphics through open-source [52,53]
ThingSpeak	The definition of ThingSpeak is: It is a web-based open API IoT source [54,55]

It is important to recognize that there is still more to be developed, and according to the authors, the lack of interoperability between platforms must be taken into account, so that it can always act or operate between systems and they are transversal with the technology, so that users you don't have to be changing system; It is also proven that there are solutions capable of supporting current agricultural applications that connect a small number of devices and low data generation rates, but future applications must perform a deployment of larger components, because they demand greater bandwidth, generation of data and number of connected networks, also the environmental impact that will be generated by electronic waste that is growing faster and faster due to the speed of IoT development should be taken into account [56,57].
7. Conclusions
One of the main features in the development of an IoT architecture is the use of a wireless network of sensors that allow data capture of system variables, which will then be analyzed for decision making within the production process.

There are a variety of technologies for the implementation of IoT applications, but their choice will depend on the environmental and geographical conditions where they will be used, as well as the resources available since there are also free hardware and software options that allow performing the functions mentioned in the article.

The IoT applications that currently exist generate satisfactory results, but with the passage of time and market demand they will require a greater number of applications that lead to the use of better technologies and equipment with greater reach, much larger networks and more complex information systems.

References
[1] Viñas Román J 2015 Cambios en la educación agrícola en curso y perspectivas Ceiba 37(1) 23
[2] Tabares Quiroz J and Correa Vélez S 2014 Tecnología y sociedad: una aproximación a los estudios sociales de la tecnología Revista Iberoamericana de Ciencia, Tecnología y Sociedad 9(26) 129
[3] Atzori L, Iera A and Morabito G 2017 Understanding the internet of things: definition, potentials, and societal role of a fast evolving paradigm Ad Hoc Networks 56(1) 122
[4] Van Der Ploeg J D 2013 Diez cualidades de la agricultura familiar Leisa Revista de Agroecología 29(4) 11
[5] Sun Y, Song H, Jara A and Bie R 2016 Internet of things and big data analytics for smart and connected communities IEEE Access 4 766
[6] Wortmann F and Fluchter K 2015 Internet of things-technology and value added Business & Information Systems Engineering 57(3) 221
[7] Lee I and Lee K 2015 The Internet of things (IoT): Applications, investments, and challenges for enterprises Business Horizons 4(58) 431
[8] Stankovic J 2014 Research directions for the internet of things IEEE Internet of Things Journal 1(1) 3
[9] Quiroja Montoya E A, Jaramillo Colorado S F, Campo Muñoz W Y and Chanchi Golondrino G E 2017 Propuesta de una arquitectura para agricultura de precisión soportada en IoT RISTI - Revista Ibérica de Sistemas e Tecnologías de Informação (24) 39
[10] Whitmore A, Agarwal A and Da Xu L 2015 The internet of things-A survey of topics and trends Information Systems Frontiers 17(2) 261
[11] Čolaković A and Hadžiulić M 2018 Internet of things (IoT): A review of enabling technologies, challenges, and open research issues Computer Networks 144 17
[12] Miorandi D, Sicari S, De Pellegrini F and Chlamtac I 2012 Internet of things: Vision, applications and research challenges Ad Hoc Networks 10(7) 1497
[13] Cruz Vega M, Oliete Vivas P, Morales Rios C, Gonzalez Luis C, Cendón Martín B and Hernández Seco A 2015 Las tecnologías IOT dentro de la industria conectada (Madrid: Fundación EOI)
[14] Rodriguez Molina J, Martínez Ortega J F, Rubio Cifuentes G and Hernández Díaz V 2014 A proposal for an internet of things (Lisboa: 3rd International Conference on Sensor Networks)
[15] Ray P 2018 A survey on internet of things architectures Journal of King Saud University Computer and Information Sciences 30 291
[16] Borgia E 2014 The internet of things vision: Key features, applications and open issues Computer Communication 54 I
[17] Singh K and Kapoor D 2017 Create your own internet of things: A survey of IoT platforms IEEE Consumer Electronics Magazine 6(2) 57
[18] Ollero A, Sanfelìu A, Montano L, Lau N and Cardeira C 2017 Robobo: The next generation of educational robot (Seville:Third Iberian Robotics Conference)
[19] Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M and Ayyash M 2015 Internet of things: A survey on enabling technologies, protocols, and applications IEEE Communications Surveys & Tutorials 17(4) 2347
[20] Taentzer G 2015 Modelling foundations and applications (Aquila: 11th European Conference)
[21] Ruiz Ortega F J, Esquivel Murillo K, Rodriguez Martínez D O, Rodriguez Torres M E and Duarte Rampirez R 2018 Internet de las cosas (IoT), Una alternativa para el cuidado del agua Pistas Educativas 40(130) 2318
[22] Campoverde Marca A M, Hernández Rojas D L and Mazón Olivo B E 2015 *Cloud computing para el internet de las cosas. Caso de estudio orientado a la agricultura de precisión* (Machala: I Congreso Internacional de Ciencia y Tecnología UTMACH)

[23] Corral Ortega D, Ruiz Ibarra J, Arias Hurtado A I, Torres Ibarra M, Mendivil Cortez C V and Andrade Salinas P R 2019 Estudio de mercado para la creación de una empresa de servicios e investigación que contemple la incursión de drones en la agricultura de precisión *Revista de Investigación Académica Sin Frontera: División de Ciencias Económicas y Sociales* 11(28) 1

[24] Talavera J, Tobón L, Gómez J, Culman M, Aranda J, Parra D and Garreta L 2017 Review of IoT applications in agro-industrial and environmental fields *Computers and Electronics in Agriculture* 142 283

[25] Abbhishek K and Sanmeet K 2019 Evolution of internet of things (IoT) *Computers and Electronics in Agriculture* 157 218

[26] García López J E, Chavez Chavez J and Jurado Sánchez A 2017 Modelado de una red de sensores y actuadores inalámbrica (Puebla: IEEE)

[27] Castro Silva J A 2016 *Sistema de riego autónomo basado en la internet de las cosas* (Neiva: Universidad Internacional de la Rioja)

[28] Quiñones Cuenc M, González Jaramillo V, Torres R and Jumbo M 2017 Sistema de monitoreo de variables medioambientales *Enfoque UTE* 7(1) 329

[29] Vite Cevallos H A,Vargas Collaguazu L A and Vargas Collaguazu J D 2018 Uso de índices espectrales en la agricultura de precisión caso de estudio campus de la Facultad Técnica de Machala *Alternativas* 19 71

[30] Orozco O and Llano Ramírez G 2016 Sistemas de información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión *Revista de Ingenierías, Universidad de Medellín* 15(28) 103

[31] Chora García D, Álvarez MArtínez G and Espinoza García M. 2018 Raspberry Pi y arduino *Informática y Sistemas* 2(1) 74

[32] Cama A, De la Hoz E and Cama D 2012 Redes de sensores inalámbricos y el internet de las cosas *Revistas Científicas CUC* 8(1) 163

[33] Melo Dematte J A, Loratte Dematte J L, Alves E R, Barbosa R N and Morelli J L 2014 Precision agriculture for sugarcane management *Acta Scientiarum* 36(1) 111

[34] Palma López D J, Salgado García S, Obrador Olán J J, Lagunes Espinoza L D, Zavala Cruz J and Carrera Martel L A. 2002 Sistema integrado para recomendar dosis de fertilización en caña de azúcar (SIRDF) *Terra Latinoamericana* 20(3) 347

[35] Stray B J, Van Vuuren J H and Bezuidenhout C N 2012 An optimisation-based seasonal sugarcane harvest scheduling decision *Computers and Electronics in Agriculture* 83 21

[36] Mukherjee A, Misra S, Raghuwanshi N and Mitra S 2019 Blind entity identification for agricultural IoT deployments *IEEE Internet of Things Journal* 6(2) 3156

[37] Lozoya C, Aguilar A and Mendoza C 2016 Service oriented design approach for a precision agriculture datalogger *IEEE Latin America Transactions* 14(4) 1683

[38] Pascual R, Sanchez D M, Naces L and Nuñez W 2015 *A wireless sensor network using XBee for precision agriculture of sweet potatoes (Ipomoea batatas)* (Pereira: International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management)

[39] Hamouda Y and Elhabil B 2017 *Precision agriculture for greenhouses using a wireless sensor network* (Gaza: Palestinian International Conference on Information and Communication Technology)

[40] Ossa Duque S I 2017 Monitoreo y control de variables ambientales mediante una red inalámbrica para agricultura *Vector* 12(6) 51-

[41] Zhang C, Walters D and Kovacs J M 2014 Applications of low altitude remote sensing in agriculture upon farmers *PLOS ONE* 9(11) 1

[42] Bastys I, Balliu M and Sabelfeld A 2018 *If this then what?:controlling flows in IoT apps* (Toronto: Conference on Computer and Communications Security)

[43] Barrios I and Casadei L 2014 Promoviendo el uso de google como herramienta de trabajo colaborativo en la nube para estudiantes de ingeniería *Edweb: Revista de Tecnologías de Información y Comunicación en Educación* 8(1) 43

[44] Zheng Z, Zhu J and Lyu M 2013 Service-generated big data and big data-as-a-service: An overview *International Congress on Big Data* (Santa clara: IEEE)

[45] Drago I, Mella M, Munafò M, Sperotto A, Sadre R and Pras A 2012 *Inside dropbox: Understanding personal cloud storage services* (USA: Internet Measurement Conference)
[46] Pflanzner T and Kertesz A 2016 A survey of IoT cloud providers (Opatija: 39th International Convention on Information and Communication Technology, Electronics and Microelectronics)

[47] Guth J, Breitenbücher U, Falkenthal M, Leymann F, and Reinfurt L 2016 Comparison of IoT platform architectures: A field study based on a reference architecture (Paris: Cloudification of the Internet of Things (CIoT))

[48] Lemos A L, Daniel F and Benatallah B 2016 Web service composition: A survey of techniques and tools ACM Computing Surveys (CSUR) 48(3) 1

[49] Sheng Q, Qiao X, Vasilakos A, Szabo C, Bourne S and Xu, X 2014 Web services composition: A decade’s overview Information Sciences 218

[50] Doyle Lindrud S 2015 Watson will see you now Tech Savvy 19(1) 31

[51] Sheth A 2016 Internet of things to smart IoT through semantic, cognitive, and perceptual computing IEEE Intelligent Systems 31(2) 108

[52] Wang X, Qiu H and Xie F 2017 A survey on the industrial readiness for internet of things 8th Annual Ubiquitous Computing (New York: IEEE)

[53] Pocero L, Amaxilatis D, Mylonas G and Chatzigiannakis I 2017 Open source IoT meter devices for smart and energy-efficient school buildings HardwareX 1 54

[54] Pasha S 2016 Thingspeak based sensing and monitoring system for IoT with Matlab analysis International Journal of New Technology and Research (IJNTR) 2(6) 19

[55] Abdul-Rahman A and Graves C 2016 Internet of things application using tethered MSP430 to Thingspeak cloud Symposium on Service-Oriented System Engineering (Oxford: IEEE)

[56] Serrano Caobos J 2016 Tendencias Tecnológicas en internet El Profesional de la Información 25(6) 843

[57] Martinez R, Pastor J A, Álvarez B and Iborra A 2016 Diseño e implementación de un banco de pruebas para evaluar plataformas Anuario de Jóvenes Investigadores 9 216