Partial Type Constructors
Or, Making ad hoc datatypes less ad hoc

Mark P. Jones
Portland State University

J. Garrett Morris
University of Kansas

Richard A. Eisenberg
Tweag I/O
rae@richarde.dev
@RaeHaskell

Friday, 11 September 2020
MuniHac
data List a
 = Nil
 | Cons a (List a)

List Int
List Bool
List (Int -> Int)
List Person
data Set a = ...

Sets make sense only for elements with an equality relation.

Set Int ✓
Set Bool ✓
Set (Int -> Int) X
Set Person ✓
data BSTSet a = ...

Binary search trees make sense only for elements with a total order.

BSTSet Int ✔
BSTSet Bool ✔
BSTSet (Int -> Int) ❌
BSTSet Person ❌

No person is greater than another.
Sets make sense only for elements with an equality relation.

Binary search trees make sense only for elements with a total order.

\[
\text{size} :: \text{Set} \ (\text{Int} \rightarrow \text{Int})
\]
\[
\text{size} = \ldots
\]

“But nothing can go wrong here!”
idMaybe :: Maybe -> Maybe
idMaybe x = x

"But nothing can go wrong here!"

Why reject idMaybe but accept size?

Because we've assumed all type constructors are total.
There are many partial types:

- Set a
- BST a
- UArray a
- StateT s m a
- Complex n
- SharedArray a
- Encrypted bits a
- ...
Problem is more than static checks

```haskell
instance Functor Set where
  fmap = ...
```

Because `Set`'s functions are constrained, we can't write this instance.
There are workarounds.

But our idea is better.

Related work is in the paper.
Key idea: Datatype contexts

```haskell
data Ord a => BST a

BST a is a type only when ord a holds.
```
Key idea: Datatype contexts

> ghc BST.hs
BST.hs: error:
 Illegal datatype context (use DatatypeContexts): Ord a =>
Key idea:
Datatype contexts

> ghc BST.hs
BST.hs: warning:
-XDatatypeContexts is deprecated: It was widely considered a misfeature, and has been removed from the Haskell language.

GHC's DataCon module:

dcStupidTheta :: ThetaType
-- The context of the data type declaration
-- data Eq a => T a = ...
-- "Stupid", because the dictionaries aren't used for anything.
Key idea: Datatype contexts

But these weren't always stupid...
Key idea: Datatype contexts

Haskell 1.0 Report [Hudak and Wadler 1990]:

```
data c => T u_1 ... u_n
```

"declares that a type $T t_1 ... t_n$ is only valid where $c[t_1/u_1, ..., t_n/u_n]$ holds."

This text is missing from the Haskell 1.1 Report [Hudak et al. 1991].
Key idea: Datatype contexts

Our goal: Bring back 1990!
(by giving datatype contexts a sensible semantics)
Today's datatype contexts are indeed stupid.

data Ord a => BST a = Mk ...
f :: BST Person -> BST Person
f x = x
Today's datatype contexts are indeed stupid.

```haskell
data Ord a => BST a = Mk ...

seqBST :: BST a -> ()
seqBST (Mk {}) = ()
```

No instance for (Ord a) arising from a use of ‘Mk’
Key idea: Datatype contexts

Our interpretation: An occurrence of `BST a` requires an `Ord a` constraint.

- `idBST :: BST a -> BST a` ✗
- `idBST :: Ord a => BST a -> BST a` ✓
idBST :: BST a -> BST a

idBST :: Ord a => BST a -> BST a

But the **Ord a** constraint is redundant and annoying, so we elaborate the former to the latter.

\[f :: BST a -> a -> a -> Bool \]

\[f _ x y = x < y \]

ord a is implied.
idBST :: BST a -> BST a
idBST :: Ord a => BST a -> BST a

But the Ord a constraint is redundant and annoying, so we elaborate the former to the latter.

f :: BST a -> a -> a -> Bool
f _ x y = x < y

ord a is implied.
What about abstraction?

For $f \ a$ to be a type, we must know any constraints are satisfied.

a must be in the domain of f.

$f \ @ \ a$ must hold.
For t_1 t_2 to be a type, $t_1 @ t_2$ must hold.

For concrete types T, $T @ a$ is T's datatype context, if any.

$BST @ a \iff Ord a$
\[P \mid \Delta \vdash \tau_1 : \kappa_1 \rightarrow \kappa_2 \]
\[P \mid \Delta \vdash \tau_2 : \kappa_1 \]
\[P \mid \Delta \vdash \tau_1 \mathbin{@} \tau_2 \]
\[\frac{}{P \mid \Delta \vdash \tau_1 \tau_2 : \kappa_2} \]
Example

class Functor f where
fmap :: (a -> b) -> f a -> f b

elaborates to

class Functor f where
fmap :: (f @ a, f @ b) => (a -> b) -> f a -> f b

instance Functor BST where ...

✅
Theory

We can compile our surface language into an internal language without partiality. (but with dependent types)
Internal Language

Kinds
\[\kappa ::= s \mid (\alpha:\kappa_1) \rightarrow \kappa_2 \mid (\delta:\pi) \Rightarrow \kappa \]

Types
\[\tau, \pi ::= C \mid \alpha \mid \tau_1 \tau_2 \mid \tau \nu \]
\[\mid \forall \alpha:\kappa.\tau \mid (\delta:\pi) \Rightarrow \tau \]

Evidence
\[\nu ::= \delta \mid \diamond \mid \ldots \]

Expressions
\[E ::= x \mid \lambda x:\tau.E \mid E_1 E_2 \mid \lambda \delta:\pi.E \]
\[\mid E \nu \mid \Lambda \alpha:\kappa.E \mid E \tau \]

Type constants
\[C, L ::= (\rightarrow) \mid \top_\kappa \mid \ldots \]

Type vars
\[\alpha, \ell ::= \ldots \]

Evidence vars
\[\delta ::= \ldots \]

Term vars
\[x ::= \ldots \]

Sorts
\[s ::= \ast \mid o \]

Kinding env’s
\[\Delta ::= \epsilon \mid \Delta, \alpha:\kappa \mid \Delta, \delta:\pi \]

Typing env’s
\[\Gamma ::= \epsilon \mid \Gamma, x:\tau \]

\[\Delta \vdash_t \tau_1 : (\alpha:\kappa_1) \rightarrow \kappa_2 \]
\[\Delta \vdash_t \tau_2 : \kappa_1 \]
\[\Delta \vdash_t \tau_1 \tau_2 : [\tau_2/\alpha]\kappa_2 \]

\[\Delta \vdash_t \nu : \pi \]
\[\Delta \vdash_t \tau : (\delta:\pi) \Rightarrow \kappa \]
\[\Delta \vdash_t \nu : [\nu/\delta]\kappa \]

\[\Delta \vdash_t \kappa_1 \text{ kind} \]
\[\Delta, \alpha:\kappa_1 \vdash_t \kappa_2 \text{ kind} \]
\[\Delta \vdash_t (\alpha:\kappa_1) \rightarrow \kappa_2 \text{ kind} \]

\[\Delta \vdash_t \pi : o \]
\[\Delta, \delta:\pi \vdash_t \kappa \text{ kind} \]
\[\Delta \vdash_t (\delta:\pi) \Rightarrow \kappa \text{ kind} \]
Compilation

Key idea: $f \ a$ compiles into $f \ a \ d$, where $(d : f @ a)$.

To quantify $(f : * \rightarrow *)$, we must quantify over $(c : * \rightarrow o)$, where $((@)f) = c$.
Compilation Example

\[
\text{fmap} :: \text{Functor } f \Rightarrow (a \to b) \to f\ a \to f\ b
\]

elaborates to

\[
\text{fmap} :: \forall (f :: \ast \to \ast) (a :: \ast) (b :: \ast). \text{Functor } f \Rightarrow f\ @\ a \Rightarrow f\ @\ b \Rightarrow (a \to b) \to f\ a \to f\ b
\]

compiles to

\[
\text{fmap} : \forall (c :: \ast \to o) (f :: (a::*) \to c\ a \Rightarrow *) (a :: \ast) (b :: \ast). \text{Functor } c\ f \Rightarrow (d1 : c\ a) \Rightarrow (d2 : c\ b) \Rightarrow (a \to b) \to f\ a\ d1 \to f\ b\ d2
\]
Theorem 8 (Compilation). If $\epsilon \mid \epsilon; \epsilon \vdash E : \sigma \sim_{\epsilon} E'$, then $\epsilon \mid \epsilon \vdash \sigma : \star \sim_{\epsilon} \tau; \epsilon \text{ and } \epsilon; \epsilon \vdash_{i} E' : \tau.$
Theorem 8 (Compilation). If $\epsilon \vdash \epsilon; \epsilon \vdash E : \sigma \rightarrow_{\epsilon} E'$, then $\epsilon \vdash \epsilon \vdash \sigma : \star \rightarrow_{\epsilon} \tau ; \epsilon$ and $\epsilon ; \epsilon \vdash_i E' : \tau$.
Implementation

• in Hugs
• of "research quality"

Used to test:
• 169 source files
• 38,000 loc
mapAndUnzipM :: Monad m => (a -> m (b, c)) -> [a] -> m ([b], [c])
mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip

We need a (m @([(b, c)]) constraint.
An alternate implementation wouldn't.
Out of 1,934 type signatures, 20 needed extra annotations. These were easy.
Modularity
Types constrain implementations.

(A bit like how Set operations need an Ord or Hashable constraint.)

Is this a problem?
Time will tell.
Related Work

- Java/Scala's bounded polymorphism
- ML modules
- Scott's E-logic
- GADTs are an orthogonal feature
- Other approaches to partiality
- Constrained type families
Partial Type Constructors
Or, Making ad hoc datatypes less ad hoc

Mark P. Jones
Portland State University

J. Garrett Morris
University of Kansas

Richard A. Eisenberg
Tweag I/O
rae@richarde.dev
@RaeHaskell

Friday, 11 September 2020
MuniHac