Comparison of the clinical effect of the adhesive strategies of universal adhesives in the treatment of non-carious cervical lesions. Systematic review and meta-analysis.

Heber Arbildo,1,2,3 César Lamas-Lara,4 Fredy Cruzado-Oliva,2 Carmen Rosas-Prado,1 Alberto Gómez-Fuertes1 & Hernán Vásquez-Rodrigo.5

Abstract: Objective: To compare, through a systematic review and a meta-analysis, the clinical effect of the adhesive strategies of universal adhesives (UA) in the treatment of non-caries cervical lesions (NCCLs). Material and Method: A search of the literature was carried out up to January 2018, in the biomedical databases: Pubmed, Embase, Scielo, Science Direct, SIGLE, LILACS, BBO, Google Scholar and the Central Register of Cochrane Clinical Trials. The selection criteria of the studies were as: randomized clinical trials, with a maximum age of 5 years and which report the clinical effects (marginal adaptation, discoloration or marginal staining, presence of secondary caries, postoperative sensitivity, retention and fractures) of the UA in the treatment of NCCLs. The risk of study bias was analyzed through the Cochrane Handbook of systematic reviews of interventions. Results: The search strategy resulted in eight articles that reported no difference in marginal adaptation, discoloration or marginal staining, presence of secondary caries and postoperative sensitivity among the adhesive strategies of the UA; however they reported a difference between the retention and the presence of fractures, with the conventional adhesive strategy resulting in a better clinical effect. Conclusion: The reviewed literature suggests that the conventional adhesive strategy of UAs results in greater retention and absence of fractures in the treatment of NCCLs.

Keywords: universal adhesives; non-caries cervical lesion; review; meta-analysis.

INTRODUCTION.

Non-caries cervical lesions (NCCLs) are hard tissue defects in the cervical region of the teeth that is not caused by a bacterial agent.1,2 These lesions appear in various forms and have been found in living individuals as well as in skeletons and fossils at ancient sites.3 It is among the most frequent pathologies that affect dental structures and its severity has been associated with aging. Epidemiological studies on the prevalence of NCCLs are still scarce in the literature, but there are reports that it affects up to 76% of the middle-aged adult population in China.1,2,4

Several studies have proposed several etiological factors for NCCLs, such as: aging, sex, oral hygiene habits, saliva, consumption of acidic beverages, teeth-brushing intensity, state of the periodontium, number of teeth, occlusion, occlusal contact area, occlusal erosion and attrition. However, these etiologies could converge to three fundamental mechanisms. One is wear by friction, which is the micro-deformation of the teeth surface caused by kinetic energy due to the brushing of teeth, dental floss,
toothpicks, parafunction, swallowing and chewing. Another is chemical-induced wear, which encompasses: chemical, biochemical and electrical erosion; and by acids and proteolysis. The last is microstructural loss by occlusal forces during parafunction, occlusion, swallowing and retention of objects in the mouth. Therefore, the NCCLs are multifactorial, and in addition to these three mechanisms, additional factors could facilitate their development.³

These types of lesions are treated by a restorative therapeutic approach and although restoration with composite resins does not address the etiology, it replaces the lost tissue thus restoring the structural integrity of the teeth, minimizing wear and, when present, dentine hypersensitivity, while also improving aesthetics.¹,²,⁵ Restorations of NCCLs are common in the clinical setting, and represent one of the least durable restorations, with a high rate of retention loss, marginal discoloration and marginal adaptation.¹,⁵,⁷ Issues in restoring NCCLs include the difficulty in controlling moisture and obtaining access to the subgingival margins, ¹, ⁸ as well as selecting the best adhesive strategy for the restoration of such lesions.¹,⁵,⁶

Dental adhesive can be classified into two groups according to the technical differences in the attachment to dental substrates: conventional adhesive strategies or etch-and-rinse systems, and self-conditioning adhesives such as self-etching systems.⁹

Taking into account the differences in professional criteria regarding adhesive strategies, some manufacturers have launched more versatile adhesive systems that give the dentist the opportunity to decide which strategy to use: conventional or self-etching. This new family of dental adhesives is known as "universal" or "multimode" and represents the latest generation of adhesives on the market.⁹,¹⁰-¹² They are designed under the "all-in-one" concept, already in place for the single-step self-etching adhesives, but also incorporate the versatility of being adaptable to the clinical situation at hand.⁹,¹² An adhesive that can be applied in both directions allows the dentist to decide on the most suitable adhesive protocol for the cavity under preparation.⁹

Despite the efforts of manufacturers in developing and bringing new materials to the market, the question remains whether dentists should consider the use of these new adhesives with a prior etching rather than using a self-etching strategy. The differences in long-term follow-up for both these strategies using universal adhesives may be one of the reasons for such controversy, thus requiring further analysis of these studies to provide a clinical guide for dentists to use in daily practice. Therefore, the objective of this article was to compare the adhesive strategies of universal adhesives (UA) (conventional or self-etching) in the treatment of NCCLs.

**MATERIALS AND METHODS.**

The development of this review was carried out in accordance with a research protocol previously prepared following the PRISMA guidelines.¹³

Search:

A broad search strategy was carried out in the biomedical databases PubMed, Embase, SciELO, ScienceDirect, SIGLE (System of Information on Grey Literature in Europe), LILACS, BBO, Google Scholar and the Cochrane Central Register of Controlled Trials, as well as an additional manual search in the highest impact rehabilitation and aesthetic journals such as: Caries Research, Journal of Oral Rehabilitation, Journal of Prosthetic Dentistry, Operative Dentistry, International Dental Journal, Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry, Journal of Esthetic and Restorative Dentistry and Journal of Advanced Prosthodontics, from January 2, 2013 to January 9, 2018; A combination of the following thematic headings using the following keywords was employed: ("universal adhesive" OR "universal adhesives" OR "adhesivo universal" OR "All-Bond Universal" OR "Prime & Bond Elect" OR "Xeno Select" OR "AdheSE Universal" OR "G-aenial Bond" OR "Clearfil Universal Bond" OR "Scotchbond Universal" OR "Futurabond U") AND ("non carious cervical lesion" OR "non carious cervical lesions" OR "cervical lesion" OR "cervical lesions" OR "class V" OR "class 5" OR "lesión cervical no cariosa" OR "lesión cervical" OR "clase 5")

Selection criteria

Inclusion criteria:

- Articles that report the use of UA.
- Articles that report the clinical effects of UA in the treatment of NCCLs (marginal adaptation, discoloration or marginal staining, presence of secondary caries, postoperative sensitivity, retention and fractures).
Selection process and data extraction:
We reviewed the titles and abstracts of each of the studies obtained following the inclusion and exclusion criteria described above; the full texts of the studies that met these parameters were obtained in order to determine their risk of bias.

To assess the studies, a checklist was made in duplicate, in order to extract the information of interest and to collate the data. Two reviewers (CL and FC) independently carried out the evaluation of the articles regarding name, author, year of publication, type of study, number of patients (proportion of males and females), average age and age range of patients, follow-up time, country where the study was conducted, study groups, number of patients and teeth or restorations per study group, type of teeth per study group, UA employed, evaluation criteria used, marginal adaptation, discoloration or marginal staining, presence of secondary caries, postoperative sensitivity, retention and fractures, results, conclusions and bias risk. For the resolution of any discrepancy between the reviewers, they met and discussed with a third reviewer (HV) in order to reach concurrence.

Assessment of the studies bias risk
For assessing the risk of bias, each study was analyzed according to the Cochrane Handbook of Systematic Reviews of Interventions.14

Analysis of the results
The data of each study were introduced and analyzed in the RevMan 5.3 software (Cochrane Group, UK).

RESULTS.

Selection of studies
The initial search in the biomedical databases yielded a total of 411 titles, dated from January 2013 to January 2018, of which 49 were duplicated titles, thus leaving 362 unique titles. Titles were read and 323 were excluded, resulting in 39 titles, subsequently the abstracts were read discarding those that did not meet the inclusion criteria. Finally, eight articles were selected for an exhaustive review of their content and methodology. None of the eight articles was discarded for the meta-analysis (Figure 1).

Study characteristics and results
In all the included studies,15-22 the number of patients ranged from 26 to 50, with a follow-up time between 6 and 36 months. One study19 reported that the mean age of the patients was between 60.1 years. All studies15-22 reported that the total number of patients in relation to their gender was 163 and 146 male and female respectively and that all patients were older than 19 years. Brazil15-18,20-22 and the United States19 were the countries where the studies took place. One study17 reported that the patients who participated were classified into smokers and non-smokers. The UAs that were used included Scotchbond Universal,16-19 Xeno Select,20 Futurabond U22 y Tetric N-bond Universal.21 The clinical evaluation criteria were analyzed according to the modified criteria of Cvar and Ryge,19 of the World Dental Federation15,16,18,20-22 and of the United States Public Health Service.15-18,20,21 In all studies15-22 restorative treatments of NCCLs were performed with composite resins using UA and conventional and self-etching methodologies (Table 1).

The total number of treated patients was 309. In one study,19 a control group was used. Within the evaluated clinical parameters it was observed that in all the studies15-22 marginal adaptation, discoloration or marginal staining, postoperative sensitivity, retention and fracture of the restorations where UA was used were reported; in seven studies15,16,18-22 the occurrence of secondary caries was reported in the restorations where UA was used; and one study19 reported the mean and standard deviation of the incidence of postoperative sensitivity (Table 1).

Analysis of the risk of bias of the studies
All studies15-22 showed a low risk of bias (Figure 2).

Summary of results (Meta-analysis)
Analysis of the clinical parameters evaluated in the comparison between the conventional and the self-etching adhesive system of the UA (Figure 3): The clinical parameters evaluated between the conventional and the
The marginal adaptation was determined in five studies \cite{15,16,18,20,22} reporting no significant difference, favoring the self-etching adhesive strategy with selective engraving of the enamel. The absence of postoperative sensitivity was determined in five studies \cite{15,16,18,20,22} revealing that there was no significant difference, without favoring a self-etching adhesive strategy. The absence of secondary caries and the absence of postoperative sensitivity were determined in five studies \cite{15,16,18,20,22} reporting no significant difference, without favoring an adhesive strategy. The absence of secondary caries was determined in seven studies \cite{15,16,18,20,22} reporting that there was no significant difference, favoring the conventional adhesive strategy. The absence of postoperative sensitivity was determined in seven studies \cite{15,18,20,22} with no significant difference found, and without favoring an adhesive strategy. Retention and absence of fractures were reported in all studies \cite{15-22} reporting that there was no significant difference, but favoring the conventional adhesive strategy. The absence of secondary caries was determined in seven studies \cite{15,16,18-22} reporting that there was no significant difference, but favoring the conventional adhesive strategy. The absence of secondary caries was determined in seven studies \cite{15,16,18-22} reporting no significant difference, but favoring the conventional adhesive strategy. The absence of secondary caries was determined in seven studies \cite{15,16,18-22} reporting that there was no significant difference, but favoring the conventional adhesive strategy. The absence of secondary caries was determined in seven studies \cite{15,16,18-22} reporting that there was no significant difference, but favoring the conventional adhesive strategy. The absence of secondary caries was determined in seven studies \cite{15,16,18-22} reporting that there was no significant difference, but favoring the conventional adhesive strategy.
| Author                  | Year | Type of study          | Follow-up time | Country          | Age: (range) | Clinical evaluation criteria | Universal Study groups | No. of patients | No. of teeth per group | No. of patients | No. of teeth per group |
|------------------------|------|------------------------|----------------|------------------|--------------|----------------------------|------------------------|-----------------|------------------------|-----------------|------------------------|
| Meta-Serrano et al.    | 2013 | Double-blind crossover RCT | 6 months       | Brazil           | (>20)        | World Dental Federation and Public Health Service | SU + conventional + wet dentin | 39 (24/15) | 50 (24/15) | 50 (24/15) | 50 (24/15) |
| Perdigão et al.        | 2014 | Double-blind crossover RCT | 18 months      | Brazil           | (>20)        | SU + conventional + wet dentin | SU + conventional | 39 (24/15) | 50 (24/15) | 50 (24/15) | 50 (24/15) |
| de Carvalho et al.     | 2015 | Double-blind crossover RCT | 12 months      | Brazil           | (>20)        | SU + conventional + wet dentin | SU + conventional | 39 (24/15) | 50 (24/15) | 50 (24/15) | 50 (24/15) |
| Loguercio et al.       | 2015 | Double-blind crossover RCT | 36 months      | Brazil           | (>20)        | SU + conventional + wet dentin | SU + conventional | 39 (24/15) | 50 (24/15) | 50 (24/15) | 50 (24/15) |

**Table 1. Characteristics of included studies.**
| Authors                  | Year | Study Design          | Duration | Country                  | Adhesive       | Group 1 | Group 2 | Retention | Fracture | Secondary | Postop Sensitivity | Marginal Adaptation | Decoloration or Tinting Marginal | Modified Caries Range | Notes |
|-------------------------|------|-----------------------|----------|--------------------------|----------------|---------|---------|-----------|----------|-----------|---------------------|------------------------|--------------------------|-----------------------|-------|
| Lawson et al.           | 2015 | Double-blind parallel RCT | 24 months | United States of America | Scotchbond Universal (SU) | SU + self-etching | 39 | 50/40 | 40 | 0 | 0 | 35 | 5 | No reportado. |
| Lopes et al.            | 2016 | Double-blind crossover RCT | 6 months | Brazil | Xeno Select (XS) | XS + conventional + wet dentin | 31 | 31/31 | 30 | 0 | 0 | 30 | 1 | Random controlled trial |
| Loguercio et al.        | 2017 | Double-blind crossover RCT | 18 months | Brazil | Tetric N-bond Universal (TU) | TU + conventional + preparation | 48 | 48/46 | 46 | 0 | 0 | 44 | 2 | Secondary caries |
| de Albuquerque et al.   | 2017 | Double-blind crossover RCT | 6 months | Brazil | Futurabond Universal (FU) | FU + conventional + wet dentin | 50 | 50/48 | 48 | 0 | 0 | 45 | 3 | Marginal adaptation |

**Abbreviations:**
- NR: No reportado
- RCT: Random controlled trial
- MA: Marginal adaptation
- DM: Decoloración o tinting marginal
- SC: Secondary caries
- PS: Postoperative sensitivity
- R: Retention
- F: Fracture
- SU: Scotchbond Universal
- XS: Xeno Select
- TU: Tetric N-bond Universal

Arbildo H, Llamas-Lara C, Cruzado-Oliva F, Rosas-Prado C, Gómez-Fuertes A & Vásquez-Rodrigo H. Comparison of the clinical effect of the adhesive strategies of universal adhesives in the treatment of non-carious cervical lesions. Systematic review and meta-analysis. J Oral Res 2018; 7(5):210-222. doi:10.17126/joralres.2018.049
Figure 1. Article selection flowchart.

Articles identified in the electronic search (databases) and journals n = 411

Items selected to read the title n = 362

Articles selected to read the abstract n = 39

Articles included in the systematic revision n = 8

Articles included in the meta-analysis n = 8

Items excluded because they were repeated n = 49

Items excluded after evaluating the title n = 323

Items excluded after evaluating the abstract n = 31

Reviews (n = 2)
In vitro (n = 11)
Systematic reviews (n = 3)
Expert opinion (n = 1)
Not non-carious lesions (n = 4)
No use of universal adhesives (n = 4)
Thesis (n = 6)

Figure 2. Risk of bias of articles.

Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)
Incomplete outcome data (attrition bias)
Selective reporting (reporting bias)
Others bias

Low risk of bias
Unclear risk of bias
High risk of bias

Random sequence generation (selection bias).
Allocation concealment (selection bias).
Blinding of participants and personnel (performance bias).
Blinding of outcome assessment (detection bias).
Incomplete outcome data (attrition bias).
Selective reporting (reporting bias).
Others bias.
**Figure 3.** Forest plot of the event "Clinical parameters evaluated in the comparison between the conventional adhesive and self-etching strategy of UA"
| Study or Subgroup | C+DH Events | C+DS Events | Risk Ratio | Std. Mean difference |
|------------------|-------------|-------------|------------|---------------------|
| **1.2.1 Marginal adaptation** | | | | |
| de Albuquerque 2017 | 48 | 49 | 5.1% | 1.00 [0.96, 1.04] |
| Loguerci 2015 | 44 | 44 | 4.2% | 1.00 [0.96, 1.04] |
| Lopes 2016 | 30 | 28 | 1.0% | 0.97 [0.89, 1.06] |
| Mena-Serrano 2013 | 50 | 50 | 5.4% | 1.00 [0.96, 1.04] |
| Perdigão 2014 | 49 | 49 | 5.2% | 1.00 [0.96, 1.04] |
| **Subtotal (95% CI)** | 222 | 220 | 21.0% | 1.00 [0.98, 1.02] |
| **Total events** | 221 | 220 | | |
| Heterogeneity: Tau²=0.00; Chi²=0.48, df=4 (p=0.97); I²=0% |
| **Test for overall effect**: Z=0.14 (p=0.89) |

| **1.2.2 Absence of discoloration or marginal staining** | | | | |
| de Albuquerque 2017 | 48 | 49 | 5.1% | 1.00 [0.96, 1.04] |
| Loguerci 2015 | 44 | 44 | 4.2% | 1.00 [0.96, 1.04] |
| Lopes 2016 | 31 | 28 | 1.9% | 1.00 [0.94, 1.07] |
| Mena-Serrano 2013 | 50 | 50 | 5.4% | 1.00 [0.96, 1.04] |
| Perdigão 2014 | 49 | 49 | 5.2% | 1.00 [0.96, 1.04] |
| **Subtotal (95% CI)** | 222 | 220 | 21.9% | 1.00 [0.98, 1.02] |
| **Total events** | 222 | 220 | | |
| Heterogeneity: Tau²=0.00; Chi²=0.00, df=4 (p=1.00); I²=0% |
| **Test for overall effect**: Z=0.00 (p=1.00) |

| **1.2.3 Absence of secondary caries** | | | | |
| de Albuquerque 2017 | 48 | 49 | 5.1% | 1.00 [0.96, 1.04] |
| Loguerci 2015 | 44 | 44 | 4.2% | 1.00 [0.96, 1.04] |
| Lopes 2016 | 31 | 28 | 1.9% | 1.00 [0.94, 1.07] |
| Mena-Serrano 2013 | 50 | 50 | 5.4% | 1.00 [0.96, 1.04] |
| Perdigão 2014 | 49 | 49 | 5.2% | 1.00 [0.96, 1.04] |
| **Subtotal (95% CI)** | 222 | 220 | 21.9% | 1.00 [0.98, 1.02] |
| **Total events** | 222 | 220 | | |
| Heterogeneity: Tau²=0.00; Chi²=0.00, df=4 (p=1.00); I²=0% |
| **Test for overall effect**: Z=0.00 (p=1.00) |

| **1.2.4 Absence of post-operative sensitivity** | | | | |
| de Albuquerque 2017 | 48 | 49 | 5.1% | 1.00 [0.96, 1.04] |
| Loguerci 2015 | 44 | 44 | 4.2% | 1.00 [0.96, 1.04] |
| Lopes 2016 | 31 | 28 | 1.9% | 1.00 [0.94, 1.07] |
| Mena-Serrano 2013 | 50 | 50 | 5.4% | 1.00 [0.96, 1.04] |
| Perdigão 2014 | 49 | 49 | 5.2% | 1.00 [0.96, 1.04] |
| **Subtotal (95% CI)** | 222 | 220 | 17.5% | 1.00 [0.98, 1.02] |
| **Total events** | 219 | 217 | | |
| Heterogeneity: Tau²=0.00; Chi²=2.58, df=4 (p=0.63); I²=0% |
| **Test for overall effect**: Z=0.92 (p=0.36) |

| **12.5 Retention** | | | | |
| de Albuquerque 2017 | 45 | 49 | 1.2% | 0.96 [0.88, 1.04] |
| Loguerci 2015 | 43 | 44 | 2.0% | 1.00 [0.94, 1.07] |
| Lopes 2016 | 30 | 28 | 0.4% | 0.94 [1.04, 1.25] |
| Mena-Serrano 2013 | 49 | 50 | 2.7% | 0.98 [0.93, 1.04] |
| Perdigão 2014 | 48 | 49 | 2.6% | 0.98 [0.96, 1.04] |
| **Subtotal (95% CI)** | 222 | 220 | 8.8% | 0.99 [0.98, 1.02] |
| **Total events** | 215 | 215 | | |
| Heterogeneity: Tau²=0.00; Chi²=2.58, df=4 (p=0.63); I²=0% |
| **Test for overall effect**: Z=0.92 (p=0.36) |

| **1.1.6 Absence of fractures** | | | | |
| de Albuquerque 2017 | 45 | 48 | 1.2% | 0.96 [0.88, 1.04] |
| Loguerci 2015 | 43 | 44 | 2.0% | 1.00 [0.94, 1.07] |
| Lopes 2016 | 30 | 28 | 0.4% | 1.08 [0.94, 1.25] |
| Mena-Serrano 2013 | 49 | 50 | 2.7% | 0.98 [0.93, 1.04] |
| Perdigão 2014 | 48 | 49 | 2.6% | 0.98 [0.93, 1.04] |
| **Subtotal (95% CI)** | 222 | 220 | 8.8% | 0.99 [0.98, 1.02] |
| **Total events** | 215 | 215 | | |
| Heterogeneity: Tau²=0.00; Chi²=2.58, df=4 (p=0.63); I²=0% |
| **Test for overall effect**: Z=0.92 (p=0.36) |

| **Total (95% CI)** | 1332 | 1320 | 100.0% | 1.00 [0.99, 1.01] |

| **Total events** | 1849 | 1957 | | |
| Heterogeneity: Tau²=6.66, df=29 (p=1.00); I²=0% |
| **Test for overall effect**: Z=0.61 (p=0.54) |
| **Test for subgroup differences**: Chi²=1.34, df=5 (p=0.93); I²=0% |
**Figure 5.** Forest plot of the event “Clinical parameters evaluated in the comparison of the self-etching adhesive strategy of UA with and without selective etching of enamel.”

| Study or Subgroup | A+GE Events | A Events | Weight | Risk Ratio M-H, Random, 95% CI | Std. Mean difference IV Random, 95% CI |
|-------------------|-------------|----------|--------|-------------------------------|--------------------------------------|
| **1.3.1 Marginal adaptation** | | | | | |
| de Albuquerque 2017 | 47 | 48 | 5.8% | 1.00 [0.96, 1.04] | |
| Loguerci 2015 | 40 | 44 | 4.4% | 1.00 [0.96, 1.05] | |
| Lopes 2016 | 25 | 26 | 1.7% | 1.00 [0.93, 1.08] | |
| Mena-Serrano 2013 | 50 | 50 | 6.3% | 1.00 [0.96, 1.04] | |
| Perdigão 2014 | 48 | 49 | 3.0% | 1.02 [0.96, 1.08] | |
| Subtotal (95% CI) | 331 | 211 | 21.2% | 1.00 [0.98, 1.02] | |
| Total events | 218 | 210 | | | |
| **1.3.2 Absence of discolouration or marginal staining** | | | | | |
| de Albuquerque 2017 | 49 | 47 | 5.8% | 1.00 [0.96, 1.04] | |
| Loguerci 2015 | 44 | 44 | 4.4% | 1.00 [0.96, 1.05] | |
| Lopes 2016 | 26 | 25 | 1.7% | 1.00 [0.93, 1.08] | |
| Mena-Serrano 2013 | 50 | 50 | 6.3% | 1.00 [0.96, 1.04] | |
| Perdigão 2014 | 49 | 49 | 6.0% | 0.98 [0.96, 1.04] | |
| Subtotal (95% CI) | 218 | 211 | 24.3% | 1.00 [0.98, 1.02] | |
| Total events | 218 | 211 | | | |
| **1.3.3 Absence of secondary caries** | | | | | |
| de Albuquerque 2017 | 49 | 47 | 5.8% | 1.00 [0.96, 1.04] | |
| Loguerci 2015 | 44 | 44 | 4.4% | 1.00 [0.96, 1.05] | |
| Lopes 2016 | 26 | 25 | 1.7% | 1.00 [0.93, 1.08] | |
| Mena-Serrano 2013 | 50 | 50 | 6.3% | 1.00 [0.96, 1.04] | |
| Perdigão 2014 | 49 | 49 | 6.0% | 1.00 [0.96, 1.04] | |
| Subtotal (95% CI) | 218 | 211 | 24.3% | 1.00 [0.98, 1.02] | |
| Total events | 218 | 211 | | | |
| **1.3.4 Absence of post-operative sensitivity** | | | | | |
| de Albuquerque 2017 | 49 | 47 | 5.8% | 1.00 [0.96, 1.04] | |
| Loguerci 2015 | 44 | 44 | 4.4% | 1.00 [0.96, 1.05] | |
| Lopes 2016 | 26 | 25 | 1.7% | 1.00 [0.93, 1.08] | |
| Mena-Serrano 2013 | 50 | 50 | 6.3% | 1.00 [0.96, 1.04] | |
| Perdigão 2014 | 49 | 49 | 9.9% | 0.96 [0.90, 1.03] | |
| Subtotal (95% CI) | 218 | 211 | 20.2% | 1.00 [0.97, 1.02] | |
| Total events | 216 | 211 | | | |
| **1.3.5 Retention** | | | | | |
| de Albuquerque 2017 | 49 | 45 | 5.8% | 1.02 [0.95, 1.10] | |
| Loguerci 2015 | 43 | 43 | 0.6% | 1.12 [0.99, 1.27] | |
| Lopes 2016 | 21 | 21 | 0.1% | 1.06 [0.80, 1.42] | |
| Mena-Serrano 2013 | 50 | 50 | 1.5% | 1.06 [0.98, 1.15] | |
| Perdigão 2014 | 48 | 49 | 1.1% | 1.07 [0.97, 1.17] | |
| Total (95% CI) | 218 | 211 | 5.1% | 1.06 [0.93, 0.99] | |
| Total events | 210 | 191 | | | |
| **1.1.6 Absence of fractures** | | | | | |
| de Albuquerque 2017 | 49 | 47 | 18.8% | 1.02 [0.95, 1.10] | |
| Loguerci 2015 | 43 | 44 | 0.6% | 1.12 [0.99, 1.27] | |
| Lopes 2016 | 21 | 26 | 0.1% | 1.06 [0.80, 1.42] | |
| Mena-Serrano 2013 | 50 | 50 | 1.5% | 1.06 [0.98, 1.15] | |
| Perdigão 2014 | 48 | 49 | 1.1% | 1.07 [0.97, 1.17] | |
| Total (95% CI) | 218 | 211 | 5.1% | 1.06 [1.01, 1.10] | |
| Total events | 210 | 191 | | | |
| **Total (95% CI)** | 1308 | 1266 | 100.0% | 1.01 [1.00, 1.02] | |

A: Self-etching adhesive strategy without selective etching of enamel.

A + GE: Self-etching adhesive strategy with selective etching of enamel.
Figure 6. Forest plot of the event "Clinical parameters evaluated in the comparison of the conventional adhesive strategy of UA and dry dentine with self-etching and selective etching enamel"
DISCUSSION.

The objective of the present systematic review and meta-analysis was to compare the adhesive strategies of universal adhesives (conventional or self-etched) in the treatment of NCCLs based on randomized clinical trials (RCTs). The results showed that the use of both the conventional adhesive strategy and the self-etching adhesive strategy of universal adhesives resulted in good marginal adaptation, absence of discoloration or marginal staining, absence of secondary caries and absence of postoperative sensitivity; however, the use of a conventional adhesive strategy resulted in better retention and therefore a greater absence of fractures.

These results may be due to the fact that self-etched materials do not produce the same pattern as the use of phosphoric acid retentive etching used in the conventional system when applied to the enamel, and thus possibly representing the factor responsible for the union of the restoration with the dental structure. In contrast, conventional adhesive systems require the etching of dentin and enamel, and keeping the surface of the dentin moist before the application of the adhesive. If this protocol is not carried out, and the dentin is left excessively dry or excessively moist, hindering the penetration of the adhesive into the intertubular collagen, thus making this interface more prone to degradation over time. On the other hand, self-etching adhesive systems that employ conditioning agents without the need for rinsing and reduce the number of steps needed, are less sensitive to technical nuances and are more user-friendly. Due to the inadequate etching of self-etching adhesives, selective etching of the enamel margins with phosphoric acid has been recommended before their application. Although some positive effects were observed in some studies, no significant differences were observed in others.

In general, the conventional adhesive strategy of universal adhesives presents better retention and results in a greater absence of fractures compared with the self-etching adhesive strategy in the treatment of NCCLs.

CONCLUSION.

In general, the conventional adhesive strategy of universal adhesives presents better retention and results in a greater absence of fractures compared with the self-etching adhesive strategy in the treatment of NCCLs.

REFERENCES.

1. Szesz A, Parreira S, Reis A, Loguercio A. Selective enamel etching in cervical lesions for self-etch adhesives: A systematic review and meta-analysis. J Dent. 2016;53:1–11.
2. Rodríguez H, Hernández Y, Gonzales C. Lesiones cervicales no cariosas en pacientes del área de salud "Eléctrico", municipio Arroyo Naranjo. Rev Cub Estomatol. 2016;53(4):188–97.
3. Igarashi Y, Yoshida S, Kanazawa E. The prevalence and morphological types of non-carious cervical lesions (NCCL) in a contemporary sample of people. Odontology. 2017;105(4):443–52.
4. Lai ZY, Zhi QH, Zhou Y, Lin HC. Prevalence of non-caries cervical lesions and associated risk indicators in middle-aged and elderly populations in Southern China. Chin J Dent Res. 2015;18(1):41–50.
5. Peumans M, De Munck J, Mine A, Van Meerbeek B. Clinical effectiveness of contemporary adhesives for the restoration of non-caries cervical lesions. A systematic review. Dent Mater.

ISSN Online 0719-2479 - www.joralres.com © 2018
Comparison of the clinical effect of the adhesive strategies of universal adhesives in the treatment of non-carious cervical lesions. Systematic review and meta-analysis.

J Oral Res 2018; 7(5):210-222. doi:10.17126/joralres.2018.049

2014;30(10):1089–103.

6. Santos MJ, Ari N, Steele S, Costella J, Banting D. Retention of tooth-colored restorations in non-carious cervical lesions--a systematic review. Clin Oral Investig. 2014;18(5):1369–81.

7. Heintze SD, Rousson V, Hickel R. Clinical effectiveness of direct anterior restorations--a meta-analysis. Dent Mater. 2015;31(5):481–95.

8. Loguercio AD, Luque-Martinez I, Lisboa AH, Higashi C, Queiroz VA, Rego RO, Reis A. Influence of Isolation Method of the Operative Field on Gingival Damage, Patients' Preference, and Restoration Retention in Noncarious Cervical Lesions. Oper Dent. 2015;40(6):582–93.

9. Rosa WL, Piva E, Silva AF. Bond strength of universal adhesives: A systematic review and meta-analysis. J Dent. 2015;43(7):765–76.

10. de Goes MF, Shinohara MS, Freitas MS. Performance of a new one-step multi-mode adhesive on etched vs non-etched enamel on bond strength and interfacial morphology. J Adhes Dent. 2014;16(3):243–50.

11. Muñoz MA, Sezinando A, Luque-Martinez I, Szesz AL, Reis A, Loguercio AD, Bombarda NH, Perdigão J. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives. J Dent. 2014;42(5):595–602.

12. Wagner A, Wendler M, Petschelt A, Belli R, Lobhauer U. Bonding performance of universal adhesives in different etching modes. J Dent. 2014;42(7):800–7.

13. Urrútia G, Bonfill X. [PRISMA declaration: a proposal to improve the publication of systematic reviews and meta-analyses]. Med Clin. 2010;135(11):507–11.

14. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. 5st Ed. web site: The Cochrane Collaboration; 2011.

15. Mena-Serrano A, Kose C, De Paula EA, Tay LY, Reis A, Loguercio AD, Perdigão J. A new universal simplified adhesive: 6-month clinical evaluation. J Esthet Restor Dent. 2013;25(1):55–69.

16. Perdigão J, Kose C, Mena-Serrano AP, De Paula EA, Tay LY, Reis A, Loguercio AD. A new universal simplified adhesive: 18-month clinical evaluation. Oper Dent. 2014;39(2);113–27.

17. de Carvalho LD, Gondo R, Lopes GC. One-year Clinical Evaluation of Resin Composite Restorations of Noncarious Cervical Lesions in Smokers. J Adhes Dent. 2015;17(5):405–11.

18. Loguercio AD, de Paula EA, Hass V, Luque-Martinez I, Reis A, Perdigão J. A new universal simplified adhesive: 36-Month randomized double-blind clinical trial. J Dent. 2015;43(9):1083–92.

19. Lawson NC, Robles A, Fu CC, Lin CP, Sawlani K, Burgess J. Two-year clinical trial of a universal adhesive in total-etch and self-etch mode in non-carious cervical lesions. J Dent. 2015;43(10):1229–34.

20. Lopes LS, Calazans FS, Hidalgo R, Buitrago LL, Gutierrez F, Reis A, Loguercio AD, Barceleiro MO. Six-month Follow-up of Cervical Composite Restorations Placed With A New Universal Adhesive System: A Randomized Clinical Trial. Oper Dent. 2016;41(5):465–80.

21. Loguercio AD, Luque-Martinez IV, Fuentes S, Reis A, Muñoz MA. Effect of dentin roughness on the adhesive performance in non-carious cervical lesions: A double-blind randomized clinical trial. J Dent. 2018;69:60–9.

22. de Albuquerque EG, Warol F, Calazans FS, Poubel LA, Marins SS, Matos T, Hanzen T, Barceleiro MO, Dourado A. A New Universal Simplified Adhesive: 6-Month Randomized multi-center clinical trial. Rev Bras Odontol. 2017;74(4):251–60.

23. Moosavi H, Kimyai S, Forghani M, Khodadadi R. The clinical effectiveness of various adhesive systems: an 18-month evaluation. Oper Dent. 2013;38(2):134–41.

24. Marchesi G, Frassetto A, Mazzoni A, Apolonio F, Diolosà M, Cadenaro M, Di Lenarda R, Passley DH, Tay F, Breschi L. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study. J Dent. 2014;42(5):603–12.

25. Can Say E, Özel E, Yurdagüven H, Soyman M. Three-year clinical evaluation of a two-step self-etch adhesive with or without selective enamel etching in non-carious cervical sclerotic lesions. Clin Oral Investig. 2014;18(5):1427–33.