SPECTRAL CURVES FOR IDENTIFICATION OF WEEDS IN WHEAT CROP

Luan Pierre Pott1, Telmo Jorge Carneiro Amado2, Elodio Sebem3 & Raí Augusto Schwalbert4

1 - PhD student in Agriculture Engineering, UFSM, Santa Maria, RS, Brazil, luanpierrepott@hotmail.com
2- Postgraduation Program in Precision Agriculture, UFSM, Santa Maria, RS, Brazil, florestatel@hotmail.com;
3- Postgraduation Program in Precision Agriculture, UFSM, Santa Maria, RS, Brazil, elodiosebem@politecnico.ufsm.br
4 - PhD in Agriculture Engineering, UFSM, Santa Maria, RS, Brazil, rai.schwalbert@gmail.com

Keywords:
reflectance
spectral bands
wavelengths

ABSTRACT
The principal weeds in wheat cultivation are black oats and ryegrass and their control is generally performed without considering the spatial variability of the density of weed infestation. One way to identify weed species is by analyzing spectral curves of the targets. The objective of this work was to evaluate the spectral curves of wheat, black oats and ryegrass to identify which wavelengths are able to distinguish these species. The experiment was set using the species: black oats, ryegrass and wheat. Each species was sown in individual experimental plots in a completely randomized design with nine replications. HandHeld 2, ASD® spectroradiometer with 325-1075 nm spectral range was used to perform readings at full bloom stage. Then, the reflectance spectral data were grouped into eight spectral bands: violet, blue, green, yellow, orange, red, red edge and near infrared. Descriptive statistics of reflectance of the targets as well as analysis of variance (p<0.05) and test of Tukey for comparison of the means (p<0.01) were performed using the reflectance measurement of each spectral band. The results showed that the yellow and orange spectral bands obtained higher capacities of differentiation of the species under study. It can be concluded that the analysis of spectral curves of target of black oat and ryegrass weeds and wheat crop makes it possible to differentiate species in full bloom stage.

Palavras-chave:
bandas espectrais
comprimentos de onda
reflectância

CURVAS ESPECTRAIS PARA IDENTIFICAÇÃO DE PLANTAS DANINHAS NA CULTURA DO TRIGO
RESUMO
As principais plantas daninhas no cultivo de trigo são a aveia preta e o azevém e seu controle é geralmente realizado sem considerar a variabilidade espacial da densidade de infestação das plantas daninhas. Uma forma de identificar as espécies infestantes é através da análise de curvas espectrais dos alvos. O trabalho teve como objetivo avaliar as curvas espectrais de trigo, aveia preta e azevém para identificar quais comprimentos de onda são capazes de distinguir essas espécies. O experimento foi plantado utilizando as espécies: aveia preta, azevém e trigo. Cada espécie foi semeada em parcelas experimentais individuais, em delineamento inteiramente casualizado, com 9 repetições. Foram utilizados espectroradiômetros HandHeld 2, ASD® com faixa espectral de 325-1075 nm para realizar as leituras no estádio de florescimento pleno. Posteriormente, os dados espectrais de reflectância foram agrupados em 8 bandas espectrais: violeta, azul, verde, amarelo, laranja, vermelho, red edge e infravermelho próximo. Foi realizada a estatística descritiva da reflectância dos alvos bem como a análise de variância (p<0,05) e teste de comparação de médias Tukey (p<0,01) utilizando a medida da reflectância de cada banda espectral. Os resultados demonstraram que as bandas espectrais de amarelo e laranja obtiveram maiores capacidades de diferenciação das espécies de estudo. Pode-se concluir que a análise de curvas espectrais de alvos da planta daninha aveia preta e azevém e a cultura do trigo possibilita diferenciar espécies em florescimento pleno.
INTRODUCTION

Weeds usually occupy agricultural systems spontaneously, ultimately interfering with the yield of crops of interest as they compete directly for natural resources, and indirectly by releasing allelopathic substances and impairing harvesting. Species such as black oats (*Avena strigosa* (Schreb)) and ryegrass (*Lolium multiflorum* (Lam.)), which are cultivated in several regions of Brazil, are considered weeds particularly in wheat (*Triticum aestivum* (L.)) crops (LAMEGO et al., 2013).

The chemical method is commonly used in weed control with the use of herbicides. Post-emergence herbicide applications are carried out in total area in most cases, not considering the variability of weeds in agricultural areas.

The over-application of herbicides on areas without weed infestations results in environmental pollution and chemical residues (DASS et al., 2017). Another reason for decreasing the amount of herbicides applied in the crops is the prevention of the rise in cases of weed resistance to the mechanisms of action of the herbicide (HEAP, 2019).

Studies that use sensors to identify weeds in agricultural crops have been intensified in the last years. Targeted weed control can provide a reduction in the use of herbicide (PEÑA et al., 2013; HUANG et al., 2018).

However, in order to conduct weed control in a direct way, its identification is necessary. Successful identification of one weed species compared to another depends on the presence or absence of minimal but measurable differences between species (FEILHAUER et al., 2017). Optical characteristics of the plant, such as contents of pigment, water and dry matter, play a role in how the plant will reflect light and can be manipulated to discriminate species.

Hyperspectral sensors have a spectral resolution of less than 20 nanometers. They usually characterize the electromagnetic spectrum within the 400-2500 nm range, which encompasses the visible, near and mid infrared areas (MIRIK et al., 2013), which allows the generation of curves of spectral targets (LOUARGANT et al., 2018). In this sense, the objective of this work was to evaluate the spectral curves of wheat, black oats and ryegrass and to identify the most efficient wavelengths in distinguishing these species.

MATERIAL AND METHODS

The experiment was conducted in Santa Maria, state of Rio Grande do Sul in an area owned by the Federal University of Santa Maria (UFSM), within the geographic coordinates 29.7180º S, 53.7375º W and average altitude of 110 m. The climate in the area is classified as Cfa with hot summer (ALVARES et al., 2013). Paleudalf soil prevails in the area under study (EMBRAPA, 2013).

The area in question had been managed under no-tillage system for over six years under the rotation of summer soybean and corn crops and winter crops of black oat and wheat. In relation to the management of the area, desiccation was performed using glyphosate herbicide at a dose of 2,160 g·ha⁻¹ of a.e. (acid equivalent). For application, it was used a CO₂ pressurized backpack sprayer with fan-type tips that provided an application volume of 150 L · ha⁻¹.

The experiment had nine plots for each species, totaling 27 experimental units. Plot dimensions were 5 x 3 m, totaling 15 m², in a completely randomized design (Figure 1).

![Figure 1. Location and layout of the experiment and experimental units.](image-url)
The wheat, black oat and ryegrass species were manually sown on June 3, 2017, in a 0.5-m row spacing, with a population of 250,000 plants ha\(^{-1}\). Fertilization was performed in topdressing with application of 200 kg ha\(^{-1}\) of the formula 10-20-20 immediately after sowing. Nitrogen fertilization was also performed in topdressing using 100 kg ha\(^{-1}\), using urea 30 days after the emergence of culture.

The spectral curves were mapped using the HandHeld 2, ASD® spectrum radiometer equipment, with wavelengths of 325-1075 nm. This sensor is classified as passive in reference to the source of power for the measurements, with a spectral resolution of 1 nm. The wavelength range used for the analysis was 380-900 nm due to the noise at the extremes.

Reading was performed using Spectroradiometer when the crops were in full bloom. First, the equipment was calibrated in white plate so evaluation could be started. Reading of the target species in each plot were carried out. Measurements were made with the sensor in the zenith position in relation to the target, in a target-sensor distance of 0.5 m. The readings were taken when the day was completely clear, with no clouds, around 12h00 p.m. (UTC-3). For each plot, three readings were taken which were subsamples of the 9 plots of each species, totaling 27 readings for each species. Data were extracted from the equipment and previously analyzed using View Spec Pro software version 6.0, ASD®.

Spectral data were set at the following band wavelengths: violet (380-450 nm), blue (451-495 nm), green (496-570 nm), yellow (571-590 nm), orange (591-620 nm), red (621-700 nm), red edge (700-750 nm) and near infrared (NIR) (751-900 nm).

Descriptive statistics of reflectance of the target as well as analysis of variance (p <0.05) and the test of Tukey for comparison of the means (p <0.01) were performed using the reflectance measurement of each spectral curve. Graphs were also made to demonstrate the variation of the data observed through quartiles, boxplot. Statistical analyses were performed using R software (R CORE TEAM, 2018).

RESULTS AND DISCUSSION

The readings provided support to generate the spectral curves, which related the wavelengths with their respective reflectances for each target where for certain wavelengths there are larger amplitudes of reflectance differences for the species under study (Figure 2).

Plant reflectance is ruled by the concentration and distribution of biochemical compounds, internal tissue structure, as well as the properties of the leaf surface (GAO et al., 2018). Therefore, differences in pigment concentration, inner structure, leaf

![Figure 2. Spectral curves for black oat, ryegrass and wheat at full bloom. n= 27.](image-url)
shape, among others that interfere with the optical properties allow the differentiation of plant species (LIPPERT et al., 2015; FEILHAUER et al., 2017).

The spectral curves of each species were grouped into the spectral bands for analysis. The descriptive analysis of the spectral bands for each species is shown in Table 1.

The more specific analysis of the spectral bands allows observing the difference in the reflectance they have for each band. It is also possible to observe that some bands have larger reflectance variations in target readings. The violet band achieved a greater variation of the data obtaining coefficient of variation (CV) of 22.9, 28.0 and 26%.

Table 2 shows the test of Tukey for comparison of the means (p < 0.01) showing the yellow (571-590 nm) and orange (591-620 nm) spectral bands with the highest statistical distinctions for the three species, therefore, those are the bands with the best efficiency for their distinctions.

Table 1. Descriptive statistics of spectral band reflectance for the three species under study.

Band	Species	Black Oat	Ryegrass	Wheat					
		Violet	Bluel	Green	Yellow	Orange	Red	Red Edge	NIR
Mean		0.030	0.046	0.082	0.092	0.088	0.085	0.280	0.453
Median		0.028	0.046	0.083	0.097	0.096	0.093	0.282	0.442
Minimum		0.022	0.030	0.058	0.063	0.059	0.053	0.225	0.393
Maximum		0.045	0.058	0.104	0.112	0.103	0.103	0.331	0.523
SD*		0.007	0.007	0.012	0.015	0.016	0.018	0.027	0.042
CV** (%)		22.9	16.0	15.1	16.8	18.7	21.7	9.6	9.2
		Violet	Bluel	Green	Yellow	Orange	Red	Red Edge	NIR
Mean		0.012	0.016	0.039	0.037	0.029	0.022	0.184	0.332
Median		0.011	0.015	0.036	0.033	0.026	0.020	0.181	0.331
Minimum		0.008	0.012	0.031	0.029	0.024	0.017	0.146	0.265
Maximum		0.017	0.020	0.048	0.046	0.036	0.027	0.220	0.394
SD		0.003	0.003	0.007	0.007	0.005	0.004	0.029	0.051
CV (%)		28.0	20.4	17.5	17.8	17.3	18.9	15.7	15.3
		Violet	Bluel	Green	Yellow	Orange	Red	Red Edge	NIR
Mean		0.019	0.026	0.067	0.064	0.051	0.035	0.305	0.557
Median		0.020	0.027	0.067	0.062	0.050	0.034	0.320	0.608
Minimum		0.013	0.019	0.057	0.056	0.046	0.031	0.240	0.411
Maximum		0.026	0.033	0.083	0.078	0.061	0.041	0.366	0.668
SD		0.005	0.005	0.008	0.006	0.004	0.003	0.048	0.107
CV (%)		26.0	20.1	12.2	10.0	8.9	8.921	15.8	19.3

*SD= Standard deviation. **CV= coefficient of variation. n=27.
Sensing has been evaluated for distinction of species or group of weed species based on the assumption that each species has certain characteristics that can be used to differentiate it from another, which are usually leaf shape, size and reflectance. Several authors have shown that cultivated plants and crops can be discriminated by using their spectral signature (HUANG et al., 2016; HERRMANN et al., 2013; SHAPIRA et al., 2013).

For an efficient species distinction, it is necessary that the values of the reflectance of the targets do not match the reflectance of the other species. It can be seen in the graphs below the variation of the reflectance readings for the yellow (Figure 3) and the orange spectral bands (Figure 4). It is observed that the reflectance variation of the three species in the yellow and orange bands do not intersect values, therefore, they are potential bands for differentiation of these species.

The reflectance of the yellow and orange spectral bands is influenced by the type of pigment,

Table 2. Results of the mean comparison analysis for the average reflectance of the bands in the three species under study.

Specie	Violet	Blue	Green	Yellow	Orange	Red	Red Edge	NIR
Black Oat	0.030 a*	0.045 a	0.081 a	0.091 a	0.088 a	0.084 a	0.280 a	0.452 ab
Ryegrass	0.011 b	0.015 b	0.038 b	0.036 c	0.029 c	0.021 b	0.183 b	0.331 b
Wheat	0.018 b	0.025 b	0.067 a	0.006 b	0.050 b	0.034 b	0.305 a	0.556 a

* Different letters in the same column represent significant statistical difference. Tukey 1%.

Figure 3. Variation of the reflectance of the targets in the yellow band. n= 27.

Figure 4. Variation of the reflectance of the targets in the orange band. n= 27.
as well as the amount of the pigment in the leaves (SHAPIRA et al., 2013), which may vary from species to species as well as the development stage of the species.

Several studies using multispectral and hyperspectral sensors have been performed (PEÑA et al., 2013; TORRES-SÁNCHEZ et al., 2013; LÓPEZ-GRANADOS et al., 2016; PEÑA et al., 2015; LÓPEZ-GRANADOS et al., 2016; PÉREZ-ORTIZ et al., 2016) to improve weed control in agricultural systems.

Remarkably, extensive studies are needed to define spectral bands in order to compose bases for site-specific weed management, reducing production costs as well as reducing environmental impacts.

CONCLUSION

• It can be concluded that the analysis of spectral curves of black oat, ryegrass and wheat plants allows their differentiation in the full bloom stage of the species.

• Yellow and orange spectral bands have higher spectral differentiation efficiency of black oats, ryegrass and wheat.

• Hyperspectral sensors are of paramount importance in defining wavelengths or spectral bands for the purpose of identifying distinct targets in agricultural systems.

• Studies using hyperspectral data of weed and cropped plants provide important information for composing a bank of spectral signatures for weed control in a targeted manner.

ACKNOWLEDGMENTS

This work was executed with the support by CAPES – Coordination for the Improvement of Higher Education Personnel Brasil – Financial code 001.

REFERENCES

ALVARES, C.A.; STAPE, J.L.; SENTELHAS, P.C.; DE MORAES, J.L.G.; SPAROVEK G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Schweizerbart, v.22, n.6, p.711–728, 2013.

DASS A.; SHEKHAWAT, K.; CHOUDHARY, A.K.; SEPAT, S.; RATHORE, S.S.; MAHAJAN, G.; CHAUHAN, B.S. Weed management in rice using crop competition-a review. Crop Protection, United States, v.95, p.45–52, 2017.

FEILHAUER, H.; SOMERS, B.; VAN DER LINDEN, S. Optical trait indicators for remote sensing of plant species composition: Predictive power and seasonal variability. Ecological Indicators, v.73, 825-33, 2017.

GAO, J.; NUYTTENS, D.; LOOTENS, P.; HE, Y.; PIETERS, J.G. Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosystem Engineering, v.170, p.39–50, 2018.

HEAP, I. The International Survey of Herbicide Resistant Weeds. 2019. Online. Internet. Acessado em: 23/08/2019. Disponível em: www.weedscience.org

HERRMANN, I.; SHAPIRA, U.; KINAST, S.; KARNIELI, A.; BONFIL, D.J. Ground-level hyperspectral imagery for detecting weeds in wheat fields. Precision Agriculture, United States, v.14, n.6, p.637–659, 2013.

HUANG, H.; DENG, J.; LAN, Y.; YANG, A.; DENG, X.; WEN, S.; ZHANG, H.; ZHANG, Y. Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery. Sensors, United States, v.18, n.10, p.3299-3311, 2018.

HUANG, Y.; LEE, M.A.; THOMSON, S.J.; REDDY, K.N. Ground-based hyperspectral remote sensing for weed management in crop production. International Journal of Agricultural and Biological Engineering, United States, v.9, n.2, p.98-109, 2016.

LAMEGO, F.P.; RUCHEL, Q.; KASPARY, T.E.; GALLON, M.; BASSO, C.J.; SANTI, A.L.
SPECTRAL CURVES FOR IDENTIFICATION OF WEEDS IN WHEAT CROP

Habilidade competitiva de cultivares de trigo com plantas daninhas. Planta Daninha, Viçosa, v.31, n.3, p.521–531, 2013.

LIPPERT, D.B.; BENEDETTI, A.C.P.; MUNIZ, M.F.B.; PEREIRA, R.S.; JUNIOR, C.A.B.; FINKENAUER, E.; BERRA, E.F. Comportamento espectral de folhas de Eucalyptus globulus (Labill.) atacadas por Mycosphaerella spp. nas regiões do visível e do infravermelho próximo do espectro eletromagnético. Ciência Florestal, Santa Maria, v.25, n.1, p.211-219, 2015.

LÓPEZ-GRANADOS, F.; TORRES-SÁNCHEZ, J.; SERRANO-PÉREZ, A.; DE CASTRO, A.I.; CARRASCOSA, J.M.; PEÑA, J.M. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precision Agriculture, United States, v.17, n.2, p.183–199, 2016.

LOUARGANT, M.; JONES, G.; FAROUX, R.; PAOLI, J.P.; MAILLOT, T.; GÉE, C.; VILLETTE, S. Unsupervised Classification Algorithm for Early Weed Detection in Row-Crops by Combining Spatial and Spectral Information. Remote Sensing, v.10, n.5, p.1-18, 2018.

MARSHALL, R.; MOSS, S.R. Characterisation and molecular basis of ALS inhibitor resistance in the grass weed Alopecurus myosuroides. Weed Research, United States, v.48, n.5, p.439–447, 2008.

MIRIK, M.; ANSLEY, R.J.; STEDDOM, K.; JONES, D.C.; RUSH, C.M.; MICHELS, G.J.; ELLIOTT, N.C. Remote distinction of a noxious weed (Musk Thistle: Carduus Nutans) using airborne hyperspectral imagery and the support vector machine classifier. Remote Sensing, Switzerland, v.5, n.2, p.612-630, 2013.

PEÑA, J.M.; TORRES-SÁNCHEZ, J.; DE CASTRO, A.I.; KELLY, M.; LÓPEZ-GRANADOS, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, v.8, n.10, e77151, 2013.

PEÑA, J.M.; TORRES-SÁNCHEZ, J.; SERRANO-PÉREZ, A.; DE CASTRO, A.I.; LÓPEZ-GRANADOS, F. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors, Switzerland, v.15, n.3, p.5609–5626, 2015.

PÉREZ-ORTIZ, M.; PEÑA, J.M.; GUTIÉRREZ, P.A.; TORRES-SÁNCHEZ, J.; MARTÍNEZ, C.H.; LÓPEZ-GRANADOS, F. Selecting patterns and features for between-and within-crop-row weed mapping using UAV-imagery. Expert System with Applications, v.47, p.85–94, 2016.

R CORE TEAM 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (Acesso em 10 de abril 2018).

SANTOS, H.G.; JACOMINE, P.K.T.; ANJOS, L.H.C.; OLIVEIRA, V.A.; LUMBRERAS, J.F.; COELHO, M.R.; ALMEIDA, J.A.; CUNHA, T.J.B.; OLIVEIRA, J.B. Embrapa: Sistema Brasileiro de Classificação de Solos. 3ª ed Brasília. 353p, 2013.

SHAPIRA, U.; HERRMANN, I.; KARNIELI, A.; BONFIL, D.J. Field spectroscopy for weed detection in wheat and chickpea fields. Remote Sensing, Switzerland, v.34, n.17, p.6094–6108, 2013.

TORRES-SÁNCHEZ, J.; LÓPEZ-GRANADOS, F.; DE CASTRO, A.I.; PEÑA-BARRAGÁN, J.M. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site-specific weed management. PLoS ONE, v.8, n.3, e58210, 2013.