Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Genome-wide analysis of Indian SARS-CoV-2 genomes to identify T-cell and B-cell epitopes from conserved regions based on immunogenicity and antigenicity

Nimisha Ghosh a,1, Nikhil Sharma b,1, Indrajit Saha c,*,1, Sudipto Saha d

a Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Orissa, India
b Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
c Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata, West Bengal, India
d Division of Bioinformatics Bose Institute, Kolkata, West Bengal, India

ARTICLE INFO

Keywords:
B-cell epitopes
Conserved regions
SARS-CoV-2
Peptide based vaccine
Physico-chemical properties
T-cell epitopes

ABSTRACT

SARS-CoV-2 has a high transmission rate and shows frequent mutations, thus making vaccine development an arduous task. However, researchers around the globe are working hard to find a solution e.g. synthetic vaccine. Here, we have performed genome-wide analysis of 566 Indian SARS-CoV-2 genomes to extract the potential conserved regions for identifying peptide based synthetic vaccines, viz. epitopes with high immunogenicity and antigenicity. In this regard, different multiple sequence alignment techniques are used to align the SARS-CoV-2 genomes separately. Subsequently, consensus conserved regions are identified after finding the conserved regions from each aligned result of alignment techniques. Further, the consensus conserved regions are refined considering that their lengths are greater than or equal to 60nt and their corresponding proteins are devoid of any stop codons. Subsequently, their specificity as query coverage are verified using Nucleotide BLAST. Finally, with these consensus conserved regions, T-cell and B-cell epitopes are identified based on their immunogenic and antigenic scores which are then used to rank the conserved regions. As a result, we have ranked 23 consensus conserved regions that are associated with different proteins. This ranking also resulted in 34 MHC-I and 37 MHC-II restricted T-cell epitopes with 16 and 19 unique HLA alleles and 29 B-cell epitopes. After ranking, the consensus conserved region from NSP3 gene is obtained that is highly immunogenic and antigenic. In order to judge the relevance of the identified epitopes, the physico-chemical properties and binding conformation of the MHC-I and MHC-II restricted T-cell epitopes are shown with respect to HLA alleles.

1. Introduction

In December 2019, China reported a sudden outbreak of pneumonia due to an unknown source in Hubei province, Wuhan city [1] which later got attributed to a virus named SARS-CoV-2. SARS-CoV-2 belongs to the family of Coronaviridae which also houses SARS-CoV-1 [2,3] and MERS-CoV [4] virus. Genomic sequence analysis of the newly reported virus was found to be highly similar to that of SARS-CoV (95%–100%), thus showing the evolutionary similarity between SARS-CoV and SARS-CoV-2 [5]. By October 2020, India has registered over 7.65 million cases [6], making it one of the most affected countries in the world. Symptoms of the COVID-19 vary from fever, cough, myalgia, dyspnoea and diarrhoea to severe respiratory distress which may require life support systems. In severe cases, it may even lead to death [7]. Considering these consequences, World Health Organisation (WHO) suggested to interrupt human–human contact in the form of total lock downs along with precautionary measures such as face masks and hand sanitizers to control the spread of COVID-19. Hence, it is the need of the hour to find a cure for COVID-19 in the form of vaccine.

Classical methods of vaccine design like attenuation of the virus through external sources such as micro-organisms to mitigate its harm or virulence usually depends on the response of the virus itself. Sometimes mutations in the virus genome can result in autoimmune response eventually making the virus even more virulent. Hence, such classic
identical strains of SARS-CoV-2. With time, more mutation points have been discovered [21] as well. This alteration in the protein region of the genome can lead to vaccine failures as was noticed in the case of Influenza virus in 2013–14 [22]. Hence, stable vaccine design is the need of the hour. Moreover, for such RNA viruses which undergo rapid mutations, Nandy et al. [9] have suggested the extraction of genomic regions which are either not influenced or very less influenced by the process of mutation. This can be carried out by analysing large set of virus genomes with the help of sequence alignment techniques. Such similar regions inside different viral genomes can be then considered for synthetic peptide vaccine designs. In [23], Gupta et al. have developed a web resource “CoronaVR” and have identified a set of T-cell and B-cell epitopes that can be incorporated in vaccine design. On the other hand, Crooke et al. [24] have used available algorithms and webtools to identify 41 T-cell epitopes (5 HLA class I, 36 HLA class II) and 6 B-cell epitopes as probable targets for epitope-based vaccine design. Ong et al. [25] have used Vaxign and the recently developed Vaxign-ML reverse vaccinology tools to predict potential vaccine candidates for COVID-19. Apart from Spike, they have identified epitopes derived from NSP3, NSP9, NSP8, NSP10 and NSP1 proteins to be highly likely candidates for vaccine design. There are other works like [26–33] as well pertaining to epitope identification in SARS-CoV-2 for vaccine design.

In the above discussed literature, prediction of epitopes has been performed by analysing the virus proteins whereas mutational mutations are the primary reason for change in structure of the virus proteins. This fact motivated us to analyse the 566 available Indian SARS-CoV-2 genomes to identify the conserved regions to predict the immunogenic and antigenic epitopes. For this purpose, we have used four different multiple sequence alignment techniques viz. ClustalW [34], MUSCLE [35], Clustalo [36,37] and MAFFT [38] to align the sequences. Consensus conserved regions (CcRs) are then identified after finding the conserved regions from each aligned results of the alignment techniques. Further, these conserved regions are filtered on the basis of (a) length should be greater than or equal to 60nt and (b) corresponding protein sequence should not have any stop codons. This is followed by the validation of specificity of the conserved regions as query coverage with the help of Nucleotide BLAST [39]. These filtered conserved regions are then used to identify the T-cell and B-cell epitopes based on their immunogenic and antigenic scores. Thereafter, these scores are used to rank the conserved regions. As a result, we have obtained 23 conserved regions encompassing NSP1, NSP2, NSP3, NSP4, 3CL-Protease, NSP10, RNA-directed RNA polymerase, Helicase, Spike glycoprotein and Nucleocapsid protein. Subsequently, the consensus conserved region in NSP3 gene has been found to be highly immunogenic and antigenic. It provides MHC-I and MHC-II restricted T-cell epitopes and B-cell epitopes, FLKKDAPYI, ITFLKKDAPYIVGDV, TLVSDIDITFLKKDAP as immunogenic and TAVVIPTPK, IDIDFLKKDAPYIVG, LHPSATSVLSDITTF as antigenic respectively. Also, different immunogenic and antigenic epitopes associated to other conserved regions are provided as well. Finally, to validate the identified epitopes, the conformational 2D non-covalent structure of the chosen epitopes is studied. Moreover, the physicochemical properties of the epitopes along with Ramachandran plot and Z-scores are also reported in the paper.

2. Materials and methods

In this section, at first the data preparation is elaborated followed by the discussion on the pipeline of the proposed work. For the benefit of the readers, brief discussions on epitope based vaccine, T-cell and B-cell epitopes and their prediction tools, physico-chemical properties of epitopes and docking of T-cell epitopes are given in the supplementary file. Moreover, prediction tools for T-cell and B-cell epitopes are reported in Supplementary Tables S1 and S2.
2.1. Data preparation

In order to map the SARS-CoV-2 proteins, we have used the reference SARS-CoV-2 genome (NC_045512.2) and 44583 available protein sequences from the National Center for Biotechnology (NCBI). To generate the protein sequence, we have taken the reference sequence of SARS-CoV-2 genome and considered the reading frame concepts. A reading frame divides the sequence of nucleotides of the reference sequence into a set of successive, non-overlapping triplets. There are three possible reading frames: Frame 1 which starts from the first nucleotide of a reference sequence and creates the triplets, Frame 2 which starts from the second nucleotide and creates the triplets and Frame 3 which starts from the third nucleotide and creates the triplets. For each frame, these triplets are then translated into the corresponding proteins based on the codon table. Finally, we have obtained 25 such unique proteins which were best matched to Frame 2. Also, the recent genomic sequences of Indian SARS-CoV-2 virus have been collected from Global Initiative on Sharing All Influenza Data (GISAID) in fasta format. It contains 566 complete and near complete genomes with sequence ID. The average length of the 566 genomes is 29,831 bp. These 566 SARS-CoV-2 sequences are aligned using multiple sequencing alignment (MSA) techniques to extract the conserved regions. Also, the coded protein associated to each conserved region are extracted. For the alignment of sequences, High Performance Computing (HPC) facility of NITTTR, Kolkata is used. The HPC cluster has a master node with dual Intel Xeon Gold 6130 Processor having 32 Cores, 2.10 GHz, 22 MB L3 Cache and 128 GB DDR4 RAM and 2 GPU and 4 CPU computing nodes with dual Intel Xeon Gold 6152 Processor having 44 Cores, 2.1 GHz, 30 MB L3 Cache and 192 GB DDR4 RAM each, while GPU nodes have NVIDIA Tesla V100 GPU with 16 GB memory each. MSA was performed using the 2 GPU and 4 CPU computing nodes.

2.2. Pipeline of the workflow

The pipeline of the workflow is shown in Fig. 1. To start with, we have focused on finding the conserved regions in the 566 Indian SARS-CoV-2 genome sequence which are not affected by genetic mutations. For the same, initially we have constructed a Consensus Multiple Sequence Alignment (CMSA) approach in which we have used four different alignment techniques: ClustalW, MUSCLE, ClustalO and MAFFT in order to align the 566 SARS-CoV-2 sequences. Subsequently, consensus conserved regions (CCnRs) are identified after finding the conserved regions from each aligned result of alignment techniques. ClustalW initially performs pairwise alignment of all sequences by using the k-tuple method. Thereafter, CMSA is created by progressively aligning the most closely related sequences based on Neighbor-Joining guide tree method. In MUSCLE technique, two distance measures are used: k-mer

2 https://www.ncbi.nlm.nih.gov/nuccore/1798174254.
3 https://en.wikipedia.org/wiki/DNA_codon_table.
4 https://www.gisaid.org/.

Fig. 1. Pipeline of the Workflow.
for unaligned pairs and Kimura method for aligned pairs of sequences. Initially, a draft MSA is produced in MUSCLE using the k-mer method. Then, a progressive alignment is constructed based on the guide tree as produced by the UPGMA method. This initial tree is then re-estimated using the Kimura distance method after which UPGMA method is once again used to produce a new guide tree, thereby creating a second MSA. New MSAs are finally created by realigning the two sequences created previously. Clustalo uses the k-tuple method to produce pairwise alignment. Then mBed is used to cluster the sequences followed by k-tuple distances are calculated. Then, FFT-NS-i is performed to get the final MSA.

Finally, MSA is constructed using the HHalign package. MAFFT uses two weighted Pair Group Method with Arithmetic Mean (UPGMA) method. New MSAs are finally created by realigning the two sequences created using the Kimura distance method after which UPGMA method is once produced by the UPGMA method. This initial tree is then re-estimated -

N. Ghosh et al.

Fig. 2. 125 Consensus Conserved Regions (CCnRs) from the four alignment techniques.

score calculation ProSA\(^{11}\) online server is used.

\[
R_{CCnR} = \text{Rank}\left(\frac{IS_{\text{MHC-I}} \times IS_{\text{MHC-II}} \times IS_{\text{B-cell}}}{AS_{\text{MHC-I}} \times AS_{\text{MHC-II}} \times AS_{\text{B-cell}}}\right)
\]

where, \(R_{CCnR}\) represents rank of consensus conserved region (CCnR) based on geometric mean of immunogenic and antigenic scores of T-cell and B-cell epitopes, IS; and AS are the scaled immunogenic and antigenic scores for MHC-I, MHC-II and B-cell epitopes respectively.

3. Results and discussions

3.1. Ranking of the CCnRs

Experiments in this study are carried out according to the flowchart as mentioned in Fig. 1. Initially, 566 Indian SARS-CoV-2 genomes are aligned by using Consensus Multiple Sequence Alignment (CMSA) techniques, ClustalW, MUSCLE, Clustalo and MAFFT. Subsequently, we have obtained 125 CCnRs by considering all the alignment techniques. This is shown in Fig. 2 where 438, 439, 438 and 438 conserved regions (CnRs) from ClustalW, MUSCLE, Clustalo and MAFFT respectively are provided resulting in 125 CCnRs. This is followed by mapping of the CCnRs to 11 coding regions i.e. ORF1ab, Spike, ORF3a, Envelope, Membrane, ORF6, ORF7a, ORF7b, ORF8, Nucleocapsid and ORF10. The corresponding protein sequence for each CCnR has been taken from Frame 2. Now, the 125 CCnRs are filtered based on the criteria that (a) their length should be greater than or equal to 60nt and (b) no stop codon should be present in the corresponding protein regions. Moreover, to validate the identified epitopes, and B-cell epitopes so that proper ranking of the consensus conserved regions can be performed. The skewness of immunogenic and antigenic scores obtained for T-cell and B-cell epitopes is computed by Eq. (2).

\[
E = \ln 5 + \sum \ln|S_x|
\]

where \(S_x\) indicates the frequency of each residue \(x\) occurring at position \(y\) and 5 represents the four possible residues as nucleotide plus gap. To identify the conserved regions (CnRs) for each alignment technique, a minimum segment length of 15 is considered with maximum average entropy as 0.2. Further, maximum entropy per position is taken as 0.2 with no gaps after finding the consensus sequence for the 566 genomic sequences. All these values are taken after following the literature. Therefore, the CnRs are identified considering the CnRs of all the alignment techniques. Next, a refinement process is carried out for the CnRs based on the criteria that their length is greater then or equal to 60nt and no stop codon is present in the associated protein sequence. Moreover, Nucleotide BLAST is used to verify the specificity of the CnRs as query coverage as well. Subsequently, T-cell and B-cell epitopes are identified from these CnRs. To predict the T-cell and B-cell epitopes and to find their corresponding immunogenic scores, each CnR is subjected to IEDB\(^6\) and ABCPred\(^7\) respectively as recommended by IEDB, for the prediction of MHC-I and MHC-II T-cell epitopes, NetMHCpan\(^8\) and Consensus Approach\(^9\) [40] are selected respectively whereas for B-cell epitopes, prediction is carried out by ABCPred which uses Recurrent Neural Network. Then, by using the predicted epitopes, antigenic scores are calculated with the help of VaxiJen2.0\(^10\). For each CnR, multiple T-cell and B-cell epitopes are identified with their corresponding immunogenic and antigenic scores. Subsequently, for each CnR the highest immunogenic and antigenic scores are considered to select the corresponding epitopes. Furthermore, these scores are used to rank the CCnRs based on geometric mean as given in Eq. (2). The use of geometric mean is to avoid the skewness of immunogenic and antigenic scores obtained for T-cell and B-cell epitopes so that proper ranking of the consensus conserved regions can be performed. Moreover, to validate the identified epitopes, the conformational 2D non-covalent structures of the identified epitopes are studied using LigPlot+ [41]. Furthermore, BepiPred2.0 server\(^10\) [42] is used for the verification of the predicted B-cell epitopes. Also, the physico-chemical properties of the epitopes along with Ramachandran plot are reported through PyMOL [43] and its extensive libraries Autodock Vina (for docking) [44] and PyMOD 3 [45] while for the Z-
percentage of BLAST specificity scores as query coverage, coding regions with their starting and ending coordinates, lengths and coded proteins are also mentioned in Table 1. Moreover, the ranking with the scores of these top 5 CCnRs is reported in Table 2. It is found from Table 1, that the top 5 CCnRs belong to the coding region which codes NSP3, 3CL-Proteinase, NSP10 and NSP4 proteins respectively. Please note that all the 23 CCnRs are reported in Supplementary Table S3 while their ranking details are given in Supplementary Table S4.

It is important to note that although structural proteins are the popular candidates for vaccine, vaccine protection can be correlated to non-structural proteins. In this regard, [47] showed that NS1 which is a non-structural protein can bring about protective immunity against

Consensus Conserved Region (CCnR)	Protein Sequence of CCnR	Length of BLAST Specificity Score of CCnR	% of BLAST Specificity Score as Query Coverage	Coding Region (CR)	Starting Coordinate of CR	Ending Coordinate of CR	Length of CR	Coded Protein from CR	
4012-CACAGAAAAACTTGTTACTTTTATTGTTACATTAATGGCATTCTGGTTTAACAGATTAGATACGG	TENLLYIDINGNLHPDDSA TLVSVDFKTDLPAPYVGSTDVDKLEAVYTPTKAGGTTMLAKA	204	377	100	ORF1ab	266	21555	21290	NSP3
10463-TTAAAGGGTGTTCATCCTTTTATTGTTACATTAATGGCATTCTGGTTTAACAGATTAGATACGG	RKGFLNGSGLSVG	77	143	100	ORF1ab	266	21555	21290	3CL-Proteinase
13291-TTTTGTGACTTAAAAGGTAATTGTTACATTAATGGCATTCTGGTTTAACAGATTAGATACGG	FCDLKGKYVQIPTCTCAACCTGAGCACTTGTCTTATATAGTAACGT	101	187	100	ORF1ab	266	21555	21290	NSP10
5307-TAACACTCTCAAGAAAATGATAGTTGCTACTCTGGTTTAACAGATTAGATACGG	TLQYELKFNPPAQD	61	113	100	ORF1ab	266	21555	21290	NSP3
9564-ATCTTACTCTTGTTTGAT	FLPGVSIVYLYLFYLY	94	174	100	ORF1ab	266	21555	21290	NSP4

Table 2

Consensus Conserved Region (CCnR)	Protein Sequence	Coded Protein	MHC-I restricted T-cell Immunogenic Score	MHC-I restricted T-cell Antigenic score	MHC-II restricted T-cell Immunogenic Score	MHC-II restricted T-cell Antigenic score	Final Score		
10463-TTAAAGGGTGTTCATCCTTTTATTGTTACATTAATGGCATTCTGGTTTAACAGATTAGATACGG	TENLLYIDINGNLHPDDSA TLVSVDFKTDLPAPYVGSTDVDKLEAVYTPTKAGGTTMLAKA	NSP3	0.8640	0.7361	0.9804	0.6382	0.8810	1	0.84
13291-TTTTGTGACTTAAAAGGTAATTGTTACATTAATGGCATTCTGGTTTAACAGATTAGATACGG	FCDLKGKYVQIPTCTCAACCTGAGCACTTGTCTTATATAGTAACGT	3CL-Proteinase	0.6552	0.9049	0.9114	0.7499	0.7143	0.7401	0.77
5307-TAACACTCTCAAGAAAATGATAGTTGCTACTCTGGTTTAACAGATTAGATACGG	TLQYELKFNPPAQD	NSP3	0.9136	0.7542	0.9818	0.3852	0.9048	0.6813	0.74
9564-ATCTTACTCTTGTTTGAT	FLPGVSIVYLYLFYLY	NSP4	0.9980	0.7866	0.9933	0.3326	0.9762	0.4726	0.70
flaviviruses. Though, no neutralizing effect was shown by antibodies against NS1, some exuded complement-fixing activity and even passive transfer of anti-NS1 antibody or immunization with NS1 can lead to protection against viruses [48]. Furthermore, anti-NS1 antibody could be responsible to block NS1-induced pathogenic effects, reduce viral replication by complement-dependent cytotoxicity of infected cells and even attenuate NS1-induced disease development. This has led to NS1 being a prospective vaccine candidate against Dengue virus [49,50]. Another core advantage of NS1 is that being a non-structural protein, the anti-NS1 antibody will not instigate antibody-dependent enhancement (ADE), which is a virulence factor causing serious repercussions. Additionally, non-structural virus proteins can generate cytotoxic T

Table 3
List of Immunogenic and Antigenic Epitopes for MHC-I, MHC-II restricted T-cell and B-cell Epitopes.

Protein	Code	Type	MHC-I restricted T-cell	MHC-II restricted T-cell	B-cell					
Sequence	Proteins	Epitope	Alleles	Score of Immunogenicity	Score of Antigenicity	Epitope	Alleles	Score of Immunogenicity	Score of Antigenicity	
TENLLYIDINGNLHPDS	NSP3	Immuno	IFNLKDAPYI	HLA-A*31:01	0.8640	0.3890	ITFLKDAPYTVGDV	HLA-DRB3*01:01	0.9804	0.3036
ATLVSDDI										
TFLKEDAP										
YIVGDDV										
QEEVYLTAV										
VIPIKKA										
GGTTIE										
MLAKA										
KGSFLNG	3CL-Protease	Immuno	FLNGSCSV	HLA-A*02:03	0.6552	0.3342	CGSVGFN	HLA-DQA1*01:01/DQB1*05:01	0.9114	0.7499
SGSV										
GNPFDY										
CVSPFY										
FCDLGK	NSP10	Immuno	DLKGYVQI	HLA-B*08:01	0.9136	0.7542	KGKVQ	HLA-DRB1*04:01	0.9818	0.1892
KYVQIPTT										
CANDPV										
GFTLKV										
NTVCYVG										
TLQQIEL	NSP3	Immuno	NPPALQDAY	HLA-B*35:01	0.8106	0.4557	QELKFN	HLA-DRB3*02:02	0.9485	0.6409
KFPNPA										
LQDAY										
FLPGVY	NSP4	Immuno	VSFLAHIQW	HLA-B*57:01	0.9980	0.7866	GYSVYLV	HLA-DPA1*01:03/DPB1*02:01	0.9933	0.3326
SVIYLYTFY										
LTNDVSV										
LAHIQWMV										

Fig. 3. Graphical representation of B-cell epitopes for TLVSDDITFLKEDAP and LHPDSATLVSDITF with the threshold marked by red line.
lymphocytes which are important to control infection. In [51], the authors have shown that the non-structural proteins of the hepatitis-C virus could generate HCV-specific broad-spectrum T-cell responses. Non-structural proteins have been used by [52] for vaccine design against Usutu Virus. Also, as targets for prophylactic or therapeutic vaccines, the non-structural proteins of HIV-1 were shown to be quite important [53]. Moreover, Ong et al. [25] have predicted NSP3 in SARS-CoV-2 to produce high protective antigenicity. Thus, we can hypothesize that apart from structural proteins non-structural proteins of SARS-CoV-2 can be possible targets as well for vaccine design which may induce cell-mediated or humoral immunity that is necessary to prevent viral invasion and/or replication.

3.2. Identification of MHC-I restricted T-cell epitopes

For epitope prediction from the 23 CCnRs, the associated protein sequences are used as inputs to the prediction tools. In this regard, MHC-I binding predictions are performed using IEDB [54] recommended NetMHCpan EL 4.1 (published recently in September 2020) targeting 27 unique HLA alleles. As a result, for each CCnR good binders in the form of immunogenic score, 4 best HLA epitopes are selected, in total 92 epitopes of length 9–11 mer each are obtained. Their antigenic scores are evaluated using VaxiJen2.0 [55]. In order to rank the CCnRs, only the best immunogenic and antigenic MHC-I restricted T-cell epitopes are considered. As a consequence, 34 such epitopes are identified and reported in Supplementary Table S5 for all the CCnRs while for the top 5 CCnRs, 8 epitopes are reported in Table 3. From this table, it is seen that FLKKDAPYI and TAVVIPTKK are the highly immunogenic and antigenic MHC-I restricted T-cell epitopes from the NSP3 coded protein binded to HLA-A*31:01 and HLA-A*68:01 HLA alleles respectively. All the 92 MHC-I restricted T-cell epitopes along with their HLA alleles are provided in the supplementary as an excel file.

3.3. Identification of MHC-II restricted T-cell epitopes

Similar procedures are carried out for MHC-II restricted T-cell epitopes which are responsible for antigen productions are predicted using ABCPred [56] with the length of 15–18 mer and their antigenic scores are evaluated from the VaxiJen server. As a result, 61 epitopes are found. In order to rank the CCnRs, the best immunogenic and antigenic B-cell epitopes are considered which resulted in 29 epitopes. These epitopes are reported in Supplementary Table S5 for all the CCnRs while for the top 5 CCnRs, 6 B-cell epitopes are reported in Table 3. In this table, it is found that TLVSDIDITFLKKDAP and IDITFLKKDAPYIVG are the most immunogenic and antigenic MHC-II restricted T-cell epitopes corresponding to HLA-DRB3*01:01 allele. All the 92 MHC-II restricted T-cell epitopes along with their HLA alleles are provided in the supplementary as an excel file.

3.4. Identification of B-cell epitopes

After obtaining MHC-I and MHC-II T-cell epitopes, B-cell epitopes with consensus prediction targeting a different set of 27 unique HLA alleles. Subsequently, we obtained 92 epitopes of length 15–17 mer each which are bound to their alleles along with their corresponding immunogenic and antigenic scores. In order to rank the CCnRs, the best immunogenic and antigenic MHC-II restricted T-cell epitopes are considered, resulting in 37 epitopes which are reported in Supplementary Table S5 for all the CCnRs. The 8 epitopes for the top 5 CCnRs are reported in Table 3. All the 92 MHC-II restricted T-cell epitopes along with their HLA alleles are provided in the supplementary as an excel file.

Fig. 4. MHC-I, MHC-II restricted T-cell and B-cell epitopes underlined in the protein sequences of top 5 CCnRs for (a) NSP3 (b) 3CL-Proteinase (c) NSP10 (d) NSP3 and (e) NSP4.
3.5. Final panel of epitopes

Table 4 summarises the final panel of the 34 MHC-I, 37 MHC-II restricted T-cell epitopes and 29 B-cell epitopes for 23 CCnRs based on their highest immunogenic and antigenic scores. There are 16 unique HLA alleles for MHC-I and 19 unique HLA alleles for MHC-II restricted T-cell epitopes. The associated coded proteins for the 23 CCnRs are NSP1, NSP2, NSP3, NSP4, 3CL-Proteinase, NSP10, RNA-directed RNA polymerase, Helicase, Spike glycoprotein and Nucleocapsid protein. For better readability, the epitopes associated with the top 5 CCnRs are underlined in Fig. 4 whereas the epitopes for 23 CCnRs are underlined in Supplementary Fig. S2. The red lines, green lines and the blue lines respectively denote the MHC-I, MHC-II T-cells and B-cells respectively. Moreover, for the ease of the readers, all the details related to the 125 CCnRs, 92 MHC-I and MHC-II restricted T-cell and 61 B-cell epitopes are provided in the supplementary as an excel file, the link of which is given in Table S6. Additionally, a list of MHC-I and MHC-II restricted T-cell and B-cell epitopes for SARS-CoV-2 as collected from different sources in the literature like [15–17, 20, 23–33] are reported in Table 5. For space constraint, 3 of each MHC-I and MHC-II restricted T-cell and B-cell epitopes from each paper are mentioned in this table while the list of all the MHC-I and MHC-II restricted T-cell and B-cell epitopes are given in the supplementary as an excel file as given in Table S6. Thus, Tables 4 and 5 can provide the readers a better insight

Table 4
Overview of MHC-I, MHC-II restricted T-cell and B-cell epitopes for the 23 CCnRs.

Coded Proteins	Type	MHC-I restricted T-cell Epitopes	HLA Alleles	MHC-II restricted T-cell Epitopes	HLA Alleles	B-cell Epitopes
NSP3	Immunogenic	FLKIDAPYI	HLA-A*31:01	ITFLKKDAPYIVGV	HLA-DRB3*01:01	TLVSDIDTFKLKDAP
3CL-Proteinase	Antigenic	TAVVPTEK	HLA-A*68:01	IDITPLKDDAPYIVGV	HLA-DRB3*01:01	LHPASATLVSDIDTF
	Antigenic	FLNSGCGGV	HLA-A*02:03	GSVFGNNFIDCVSF	HLA-DQA1*01:01/DQB1*05:01	GSVFGNNFIDCVSF
NSP10	Immunogenic	DLKGKVQI	HLA-B*08:01	KGYKVQIPTCTANDP	HLA-DRB1*04:01	TCCANPVDGVTLLNTV
NSP3	Immunogenic	NPPALQDAY	HLA-B*35:01	QIELKFNPPALQDAY	HLA-DRB3*02:02	LQIEIKNFPPALQDA
	Antigenic	IELKFNPPAL	HLA-B*40:01			
NSP4	Immunogenic	VSFLAHIQW	HLA-B*57:01	GYSIVYIYLTYLFTY	HLA-DPA1*01:03/DPB1*02:01	YSVIYLYLTYLNTVD
NSP3	Immunogenic	QVNGLTSKWK	HLA-B*57:01	PQVNGLTSKWDADN	HLA-DQA1*01:02/DQB1*06:02	KYPQVNGLTSKWDADN
Helicase	Immunogenic	RANMTMNTSY	HLA-A*30:02	YQKLLIHHRHRAQNMT	HLA-DRB4*01:01	FWDYQKLLIHHRHAQN
Spike glycoprotein	Immunogenic	HADQILPTTW	HLA-B*58:01	DIPAGICASYQQTQ	HLA-DQA1*05:01/DQB1*03:01	GCLIGAEHVNSSYECD
NSP4	Immunogenic	ICISTKHFYW	HLA-B*57:01	KIHYFWFSSNYLKRR	HLA-DPA1*01:03/DPB1*04:01	ISTKHYWFSSNYLKR
Nucleocapsid protein	Immunogenic	AQPAPASAF	HLA-B*15:01	ATKANYVTQAPQGRFR	HLA-DQB1*01:01	KSAEAASKPRKRQTRA
	Antigenic			KAYNVTQAPQGRFRRG	HLA-DQB1*01:01	GRRPQRQTPGNQGDQ
Spike glycoprotein	Immunogenic	FERDSTEI	HLA-B*40:01	VEGNCPYPLLQPSYGQ	HLA-DQA1*01:02/DQB1*05:01	GSTCPQVNGVENCYP
NSP4	Immunogenic	NVLEGVSAY	HLA-B*35:01	PVPYCYDNTVLEGSV	HLA-DRB1*04:01	SGKPVPCYTNDVLEG
Helicase	Immunogenic	VLAVHDHSY	HLA-B*15:01	VDHSYVYNAVTM	HLA-DRB3*02:02	LAVYHDHVNNVATNM
NSP3	Immunogenic	NYMPYFFTL	HLA-A*24:02	CTNMYPYFFTLILQ		VCTNMYPYFFTLQL
NSP10	Immunogenic	FAVDAAYAK	HLA-B*35:01	LSCFACAVAADAKY	HLA-DRB3*01:01	GTGQAITVPTFADMQ
3CL-Proteinase	Antigenic	VPANSTVLSF	HLA-B*35:01			KMLCHTHTGQAITYVT
	Antigenic			TTTGLNLWLDLYVYVC	HLA-DQA1*01:01/DQB1*05:01	VQTVGTTTLNLWLDD
NSP1	Immunogenic	HVGEPVAYAY	HLA-B*15:01	VAYVRKVLRLKNGK	HLA-DRB1*11:01	PHVGEIPVYVRKLLR
NSP4	Immunogenic	RPOTRVLYM	HLA-B*07:02	LMDGSIQFPNTYLE	HLA-DRB1*15:01	GQISQIOPNTYLEGSR
NSP4	Immunogenic	VCVSTSGRW	HLA-B*57:01	TSGRVLWLDNYDBYL	HLA-DRB3*02:02	LRDPRTYRLMDSQGIS
RNA-directed RNA polymerase	Immunogenic	DTLSLTTMK	HLA-A*68:01	TSTGRWVLWLDNYDYSYL	HLA-DRB3*02:02	YCRHTCERSEAGVCS
	Antigenic	LSLTTLNMK	HLA-A*11:01	TSTGRWVLWLDNYDYSYL	HLA-DRB3*02:02	YCRHTCERSEAGVCS
NSP2	Immunogenic	VTHSKGLYR	HLA-A*31:01	EFTTFVHSGSKLYRCV	HLA-DRB5*01:01	LNLEGETFVHSGKLY
Spike glycoprotein	Immunogenic	VYYPDKVFKR	HLA-A*31:01	TRGVYYPDKVFRR	HLA-DRB1*03:01	RGVYYPDKVFRRSVLH
NSP2	Immunogenic	LEQPTSEAV	HLA-B*40:01	GDQLPLEQPTSEAVE	HLA-DQA1*03:01/DQB1*03:02	TGDQLPLEQPTSEAVE
	Antigenic	EVVLKTGDL	HLA-A*26:01	EVVLKTGDLQPLEQ	HLA-DRB1*08:02	
into the epitopes identified so far.

3.6. Study of physico-chemical properties of epitopes

To judge the relevance of the epitopes as found in this work, we have evaluated the physico-chemical properties for each selected epitope. The values of each physico-chemical property lie between 0 and 1. Tables 6–8 show the physico-chemical properties for MHC-I, MHC-II restricted T-cell and B-cell epitopes respectively for the top 5 CCnRs whereas for all the 23 CCnRs, the results are reported in Supplementary Tables S7-S9 respectively. For example, in Table 6 MHC-I restricted T-cell epitope FLKKDAPYI has a positively charged value of 0.222, a negatively charged value of 0.111, polarity of 0.111, non-polarity of 0.556, alphaticity of 0.444, aromaticity of 0.222, acidity of 0.111, Basicity of 0.222, hydrophobicity of 0.556, hydrophilicity of 0.333, a neutral value of 0.111, hydroxylic value of 0 and sulphur content is 0 as well. Similarly, for other epitopes their physico-chemical properties can be found in the tables.

3.7. Study of docking with Ramachandran plot and Z-score

To further validate the identified epitopes, the conformational 2D non-covalent structures of the identified MHC-I and MHC-II restricted T-cell epitopes are studied using LigPlot+. For the highly immunogenic and antigenic epitopes of each CCnR, molecular docking is computed using Autodock Vina in order to extract the stable binding conformation of each predicted epitope allele pair. For MHC-I restricted T-cell epitopes, 12 binding scores are generated from Autodock Vina while for MHC-II 9 binding scores are generated. For some epitopes, the docking structures are unable to generate due to the unavailability of the corresponding structure of the HLA alleles. Furthermore, Ramachandran plot and Z-score are also evaluated for further validation using PyMod 3.

Table 5
List of proposed epitopes for SARS-CoV-2 as given in the literature.

Source	Coded Proteins	MHC-I restricted T-cell Epitopes	MHC-II restricted T-cell Epitopes	B-cell Epitopes
Bhattacharya et al. [26]	Spike glycoprotein	SQCVNLTR	HVSGTNGT	SQCVNLTRTRSLPPAYTNNSFTRGVY
		YNTSFRG	VYHKNKKS	FSNTWFAHHSVGTNGRKFRDN
		GVVYHNNK	LVRDLIQG	DPEFLGYYVHNNKSWME
Chen et al. [27]	Spike glycoprotein	LSPRWYFY	IKLDDKDPN	EVRQAPSQGTQKADY
		RSNRRNSR	RSGARSKQR	GCLGAEIHNNSYEDC
		IGYRRAHR	RGMVEVPS	FQAMQMYRFINGVTQ
Naz et al. [17]	Spike glycoprotein	GVFFASFEK	EFVFNDIGYFQKYS	YNANSFSTFKGYGVSPKLNDCCT
		SQDNLFLPF	QPYVRVLLSFELHLA	
		KTSVDCMTY	MRTKSVDCMTYFICQDG	
Kar et al. [28]	Spike glycoprotein	QITTIDNTF	INTRIFQPDTALLHRS	FSYTLESLAKREMAI
		YQPFYRVRVL	GINITFQPTLLHHIR	HAGPGPGPY
		FITSYTTE	GWTFGAGAILQIPFA	KMGPGPGTRFA
Rakib et al. [16]	Spike glycoprotein	WTAGAAAAY	NVNNATNIV	RTOLPAPPITNS
		CDNPILGGY	SVTQSLIV	SGTNGTKRFDN
		GAAAYVGGY		LTGPDSSGWTAG
Vashi et al. [15]	Spike glycoprotein	RTQLPAPAY	MFVFLVILPLYSSQC	PPATNIFSRTGVYV
		RTQLPAPPA	MFVFLVILPLYSSQCVN	HVSNGTNGKRFDN
		LPPAYTNFS	QGNNKNFLREVFKNL	YYHKNKSWMES
Yadav et al. [20]	Spike glycoprotein	GVFFASFEK	TSLYXXKLASGVRAG	EVTPSGTWL
		FEYVOSQFPL	RTLSYKLASGVRQA	KLDXTPDNPX
		WTAGAAAAY	ASRFLARTRSMWSF	KTPFPTEPKKDDKKADEATQALPO
Crooke et al. [24]	Membrane glycoprotein	ATSRTLSSY	TSLYXXKLASGVRAG	EVTPSGTWL
		RLFRATSRM	RTLSYKLASGVRQA	KLDXTPDNPX
		YANNRFLY	ASRFLARTRSMWSF	KTPFPTEPKKDDKKADEATQALPO
Gupta et al. [23]	Spike glycoprotein	VRFNPNTL	NVTWFHAHV	GDEVQAPIAQRTGKIAEDYNKYLP
		YQPFYRVRVL		
		PYVVVLSF		
Bhatnager et al. [29]	Spike glycoprotein	LTDEMQIAY	VASQSIAYTMSLGA	KEEQIKGSKTR
		LTDEMQIAQY	LTDEMQIAQYTLA	ELKQYEQYGPQPGKWP
		IPFAMQOMAY	VNLDSLKDVEAE	IRAGPGGQNC
Kwarteng et al. [30]	Nucleocapsid protein	KTPPETPEK	AQFAPSASSAFMGRS	AGLPGYANK
		SSPPIDQGYY	IAQFAPSASSAFGMS	SKQQSLQCMSADS
		SSPPIDQGYY	POCQAAPSASSAFG	RRRIGDDGKMDD
Baruah et al. [31]	Spike glycoprotein	YLQPRFTFL	NA	CVNLITRTQTQLPPAYTN
		GYVFVAST		NVTWFHAHVTSVTD
		EPILGGVLK		NFFTPKCGVSPTKQNL
Bency et al. [32]	Spike glycoprotein	KIAAYNKL	VVVFHVTYV	MDLEQGKQOQKFN
		CGYVSTPKL	IGNINTRQF	YYVQYQOLPR
		VVVLFSLF	FNCYPFQS	NITNLCPGE
Singh et al. [33]	Nucleocapsid protein	AQFAPSASA	AQFAPSASSAFVMSR	KELDKF
		GDAALLALL	GDAALLALLLDRLQ	IKLDKDKPNDKNQ
		GMSRNGMVE	ASAFFGMSRNGIV	PTPPETKQDDDKKADETQALPOQKQKQTVT
Ong et al. [25]	NSP3	STNVITATY	ISNSSLWMLVINLQ	EDEEEDGCDEEEFQSTQVEYGTEDDYQGKPLEFGATS
		RMFVIFASF	LAYLIRTFPQTVL	EEEEJQEDLDDDD
		AEWFAYL	AAJMQLFSFYSFAVH	VQQQDGSEDNQ
Table 6
List of physico-chemical properties of MHC-I restricted T-cell epitopes.

MHC-I restricted T-cell epitopes	Positively charged	Negatively charged	Polarity	Non Polarity	Alphaticity	Aromaticity	Acidity	Basicity	Hydrophobicity	Hydrophilicity	Neutral	Hydroxylic	Sulphur Content
FLKKDAFYI	0.222	0.111	0.111	0.556	0.444	0.222	0.111	0.222	0.556	0.333	0.111	0	0
TAVVPIKKK	0.222	0	0.222	0.556	0.556	0	0	0.222	0.778	0.333	0.222	0.222	0
FLNGSGV	0.222	0	0.333	0.556	0.444	0.111	0	0	0.444	0.111	0.444	0.222	0.111
GVGFNPIIDY	0	0.111	0.222	0.556	0.444	0.222	0.111	0	0.333	0.111	0.444	0.222	0.111
ILRGYVQI	0.222	0.111	0.222	0.444	0.444	0.111	0.111	0.222	0.333	0.222	0.333	0	0
NQIALQDAY	0	0.111	0.222	0.556	0.556	0.111	0	0.556	0.333	0.333	0.222	0	0
ELKNPPAL	0.1	0.1	0	0.7	0.6	0.1	0.1	0.7	0.4	0.1	0	0	0
VSFLAHIQW	0.111	0	0.222	0.667	0.444	0.222	0	0.111	0.667	0.111	0.222	0.111	0

Table 7
List of physico-chemical properties of MHC-II restricted T-cell epitopes.

MHC-II restricted T-cell epitopes	Positively charged	Negatively charged	Polarity	Non Polarity	Alphaticity	Aromaticity	Acidity	Basicity	Hydrophobicity	Hydrophilicity	Neutral	Hydroxylic	Sulphur Content
ITFLKKDAFYIVGDV	0.133	0.133	0.133	0.6	0.533	0.133	0.133	0.133	0.6	0.2	0.267	0.067	0
IDITFLKKDAFYIVGD	0.133	0.133	0.133	0.6	0.533	0.133	0.133	0.133	0.6	0.2	0.267	0.067	0
CQSGVNGIDCVSF	0	0.133	0.333	0.467	0.333	0.2	0.133	0	0.467	0.067	0.4	0.133	0.133
KGKYVQPITCANDF	0.133	0.067	0.333	0.4	0.4	0.067	0.067	0.133	0.533	0.333	0.333	0.133	0.067
DLKGKQVQITCAND	0.133	0.067	0.333	0.4	0.4	0.067	0.067	0.133	0.533	0.267	0.333	0.133	0.067
QIELKPNPPALQDAY	0.067	0.133	0.2	0.533	0.467	0.2	0.133	0.067	0.533	0.267	0.267	0	0
GYSVIYLLFYLYLT	0	0	0.467	0.533	0.467	0.333	0	0.6	0	0	0.267	0.2	0
Table 8
List of physico-chemical properties of B-cell epitopes.

B-cell epitopes	Positively charged	Negatively charged	Polarity	Non Polarity	Aliphaticity	Aromaticity	Acidity	Basicity	Hydrophobicity	Hydrophilicity	Neutral	Hydroxyl	Sulphur Content
TLVSDIDTFLKKDAP	0.125	0.188	0.188	0.500	0.438	0.062	0.188	0.125	0.625	0.188	0.375	0.188	0
LHPDSATLVDIETF	0.062	0.188	0.250	0.500	0.438	0.062	0.188	0.062	0.625	0.125	0.438	0.250	0
GSVGFNIDYDCVSF	0	0.125	0.375	0.438	0.312	0.188	0.125	0	0.625	0.062	0.375	0.125	0.188
TTCANDPVTGKLNVT	0.062	0.062	0.312	0.438	0.375	0.062	0.062	0.062	0.688	0.250	0.375	0.250	0.062
LQQIELKFNPPALQDA	0.062	0.125	0.188	0.562	0.500	0.062	0.125	0.062	0.562	0.250	0.312	0	0
YSVIYLYLFYLTNDV	0	0.062	0.438	0.438	0.375	0.312	0	0.062	0.562	0.062	0.25	0.188	0

Table 9
Docking and Z-scores of MHC-I and MHC-II restricted T-cell epitopes for the top 5 ranked CCnRs.

MHC-I restricted T-cell epitopes	Score from Autodock Vina	Z Score	MHC-II restricted T-cell epitopes	Score from Autodock Vina	Z Score
FLKKDAPYY	–8.2	–9.81	ITFLKGDAPYTVGV	–9	–5.53
TAVVIPTKK	–8.8	–6.91	IDITFIFKGDAPYTVGV	–8.8	–5.59
LNGGSCSVD	Not Generated	Not Generated	GSGVGNSICYDV	Not Generated	Not Generated
GSVGFNIDY	–7.1	–5.4	KGKVQVTFTTCDPG	Not Generated	Not Generated
DLKGGVQIQ	–8.1	–8.81	DLKGGVQVTFTTCDPG	Not Generated	Not Generated
NPPALQDAY	Not Generated	Not Generated	QIELKNPPALQDAY	Not Generated	Not Generated
EILKNNPPAL	Not Generated	Not Generated	IELKNNPPALQDAY	Not Generated	Not Generated
VSFIAHQPW	–8.8	–9.26	GVYSVIFYLYTFTF	–8	–5.02
Fig. 5. Structural analysis for the highly immunogenic MHC-I restricted T-cell epitope “FLKKDAPYI” for NSP3 coded protein (a) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (b) Docking structure of MHC-I restricted T-cell epitope (c) The surface interaction between the allele and epitopes showing the fitting sites in binding grooves (d) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frame (e) Z-score plot and (f) all residue energy.
Fig. 6. Structural analysis for the highly antigenic MHC-I restricted T-cell epitope “TAVIPTKK” for NSP3 coded protein (a) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (b) Docking structure of MHC-I restricted T-cell epitope (c) The surface interaction between the allele and epitopes showing the fitting sites in binding grooves (d) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frame (e) Z-score plot and (f) all residue energy.
Fig. 7. Structural analysis for the highly immunogenic MHC-II restricted T-cell epitope “ITFLKDAPYIVGDV” for NSP3 coded protein (a) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (b) Docking structure of MHC-II restricted T-cell epitope (c) The surface interaction between the allele and epitopes showing the fitting sites in binding grooves (d) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frame (e) Z-score plot and (f) all residue energy.
Fig. 8. Structural analysis for the highly antigenic MHC-II restricted T-cell epitope “IDITFLKKDAPYIVG” for NSP3 coded protein (a) 2D pose representation between the epitope and HLA allele showing the different non-covalent bonds (b) Docking structure of MHC-II restricted T-cell epitope (c) The surface interaction between the allele and epitopes showing the fitting sites in binding grooves (d) Ramachandran plot of the epitope allele structure showing lower energy sites of the residues in different frame (e) Z-score plot and (f) all residue energy.
and ProSA server respectively. The results of docking along with Z-scores are reported in Table 9. The results for FLKDKAPYI and TAVVIPTKK which are the most highly immunogenic and antigenic MHC-I restricted T-cell epitopes are shown in Figs. 5 and 6 while ITFLKDKADPYIVGD and IDITFLKDKAPYIVGV which are the most highly immunogenic and antigenic MHC-II restricted T-cell epitopes are shown in Figs. 7 and 8 respectively. In these four figures, (a) shows the binding pose of the molecules of the two epitopes, (b) shows the exact binding position of the epitopes in the binding grooves of the alleles obtained from Autodock Vina with docking scores of –8.2 and –8.1 for MHC-I and –9 and –8.8 for MHC-II for both immunogenic and antigenic epitopes respectively and (c) depicts the surface interaction between the alleles and the identified epitopes showing the fitting sites in binding grooves. Further, quality of the residues inside the epitopes are evaluated on the basis of rotational spin of the atoms around bonds. This is depicted in (d) of Figs. 5 and 6 for MHC-I and Figs. 7 and 8 for MHC-II through Ramachandran plot in which points lying in the red region represents much more stable state of their bond orientations inside a molecule. This is followed by the Z-Score evaluation in (e) where the negative values of z-score which are –9.81 and –5.9 for MHC-I and –5.53 and –5.59 for MHC-II as shown in Table 9 and Figs. 5–8 verify the stability of the structures and (f) shows the overall negative energy values of the entire residues inside the whole structures which confirm the molecular stability of the identified epitopes. The results for docking along with Z-scores for all the 23 CCnRs are reported in Supplementary Table S10 while the corresponding structural analysis are given in Supplementary Figs. S3 and S4.

Due to the worldwide pandemic caused by SARS-CoV-2, development of safe and effective vaccines is the need of the hour. This study has identified T-cell and B-cell epitopes using computational methods which can be used for probable vaccine design. The main advantages of this work can be summarised as (a) whole genome analysis of 566 Indian SARS-CoV-2 genomes in order to consider the genetic mutations to understand and target the virus proteins, (b) finding consensus conserved regions from four alignment techniques viz. ClustalW, MUSCLE, Clustalo and MAFFT and (c) using latest tools like NetMHCpan EL 4.1 (published in September 2020), PyMod 3 and BepiPred 2.0 for computational purposes. Furthermore, we have used our own developed tool ABCpred to predict the B-cell epitopes.

4. Conclusion

In this work, genome-wide analysis of 566 Indian SARS-CoV-2 genomes have been performed to extract the potential conserved regions for epitope-based synthetic vaccine design which show high immunogenicity and antigenicity. In this regard, 125 CCnRs have been identified after extracting the conserved regions from the aligned sequences of the four multiple sequence alignment techniques. These CCnRs are then filtered based on three major criteria of length greater than or equal to 60nt, no stop codons in the proteins and percentage of BLAST specificity score as query coverage equal to 100%. Such filtering resulted in 23 CCnRs covering NSP1, NSP2, NSP3, NSP4, 3CL-Proteinase, NSP10, RNA-directed RNA polymerase, Helicase, Spike glycoprotein and Nucleocapsid protein. This ranking also resulted in 34 MHC-I and 37 MHC-II restricted T-cell and B-cell epitopes for the 23 CCnRs. These CCnRs are then ranked based on their immunogenic and antigenic scores to identify the MHC-I and MHC-II restricted T-cell and B-cell epitopes. This ranking identified CCnR from NSP3 coded protein to be highly immunogenic and antigenic, providing MHC-I and MHC-II restricted T-cell and B-cell epitopes, FLKDKAPYI, ITFLKDKADPYIVGD, ITLVSDIDITTFLKDKADAP as most immunogenic and TAVVIPTKK, IDITFLKDKAPYIVGV, LPHDPSATLYSDIDITF as most antigenic respectively. These epitopes can be considered for designing of synthetic vaccines. Furthermore, to validate the relevance of these epitopes, their binding confirmation and physico-chemical properties are also shown with respect to HLA alleles. This study thus provides the potential MHC-I and MHC-II restricted T-cell and B-cell epitopes to design epitope-based synthetic vaccines.

Ethics approval and consent to participate

The ethical approval or individual consent was not applicable.

Availability of data and materials

The aligned 566 Indian SARS-CoV-2 genomes with reference as well as consensus sequences and the final results of this work are available at http://www.nitrtrkol.ac.in/indrajit/projects/COVID-EpitopeVaccine-India/. Moreover, Indian SARS-CoV-2 genomes used in this work are publicly available at GISAID database.

Consent for publication

Not applicable.

Funding

This work has been partially supported by CBG short term research grant on COVID-19 (CVD/2020/000991) from Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India.

Author contributions

Nimisha Ghosh: Formal analysis; Methodology; Coding; Visualization; Writing - original draft & editing. Nikhil Sharma: Methodology; Coding; Visualization; Writing - review & editing. Indrajit Saha: Conceptualization; Data curation; Supervision; Funding acquisition; Formal analysis; Investigation; Methodology; Project administration; Resources; Validation; Visualization; Writing - review & editing. Sudipto Saha: Conceptualization; Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

Acknowledgement

We thank all those who have contributed sequences to GISAID database.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.intimp.2020.107276.

References

[1] P. Zhou, X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C. Huang, H. Chen, J. Chen, Y. Loo, H. Guo, R. Jiang, M. Liu, Y. Chen, X. Shen, X. Wang, X. Zheng, K. Zhao, Q. Chen, L.L.F. Deng, B. Yan, F. Zhan, Y. Wang, G. Xiao, Z. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270–273, https://doi.org/10.1038/s41586-020-2122-7.
[2] T. Ksiazek, D. Erdman, C. Goldsmith, S. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. Comer, W. Lim, P. Rollin, S. Dowell, A. Ling, C. Humphrey, W.J. Shieh, J. Guan, C. Paddock, P. Rota, B. Fields, L. Anderson, A novel coronavirus associated with severe acute respiratory syndrome, New Engl. J. Med. 348 (2003) 1953–1966, https://doi.org/10.1056/NEJMoa030781.
[3] K. Holmes, L. Enjuanes, The sars coronavirus: A postgenomic era, Science (New York, N.Y.) 300 (2003) 1377–1378, https://doi.org/10.1126/science.1086418.
[4] R.D. Groot, S. Baker, B. Baric, C. Brown, C. Drosten, L. Enjuanes, R. Feachier, M. Galiano, A. Gorbalenya, Z. Memish, S. Perlman, L. Poon, E. Snijder, G. Stephenson, P. Wuu, A. Zaki, M. Zambon, J. Ziebuhr, Middle east respiratory syndrome coronavirus (mers-cov): Announcement of the coronavirus study group, J. Virol. 87 (2013), https://doi.org/10.1128/JVI.02444-13.
[54] R. Vita, S. Mahajan, J. Overton, S. Dhand, S. Martini, J. Cantrell, D. Wheeler, A. Sette, B. Peters, The immune epitope database (iedb): 2018 update, Nucleic Acids Res. (2018) gky1006, https://doi.org/10.1093/nar/gky1006.

[55] I. Doytchinova, D. Flower, Vaxijen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4, BMC Bioinformat. 8 (2007) 4, https://doi.org/10.1186/1471-2105-8-4.

[56] S. Saha, G. Raghava, Prediction methods for b-cell epitopes, Methods Mol. Biol. (Clifton, N.J.) 409 (2007) 387–394, https://doi.org/10.1007/978-1-60327-118-9_ 26.