Vitiligo repigmentation: What’s new?
Serena Gianfaldoni1*, Matteo Zanardelli2 and Torello Lotti3

1Department of Dermatology, University of Pisa, Italy
2NEUROFARBA Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
3Chair of Dermatology, University of Rome “G. Marconi”, Rome, Italy

Abstract
Vitiligo is a relatively common acquired skin disorder, characterized by the progressive loss of melanocytes, which results in white patches. Classically, vitiligo’s treatments have been considered unsatisfactory and challenging. Recent advances in the knowledge of vitiligo’s pathogenesis have contributed to find better therapeutic options, so that at present many patients find a solution for depigmented skin. The authors show new promising technologies for vitiligo’s repigmentation.

Introduction
Vitiligo is an acquired condition, often familial, characterized by progressive loss of melanocytes from the epidermis and the epidermal appendages, resulting in skin areas without pigmentation. Vitiligo is a relatively common skin disease, with an estimated prevalence of 0.5-1% in most populations. It affects people of all backgrounds and both genders. Half of vitiligo patients have an onset before the age of 20 years.

Although the precise etiology of the disease is still unclear [1], recent data support that vitiligo is a T-cell mediated autoimmune disease, maybe triggered by oxidative stress [2].

Clinically, vitiligo is characterized by white patches, affecting skin, mucous membranes and hair. The color contrast between the healthy pigmented skin and the vitiliginous paths (leopard-like skin appearance) is an important cause of psychological distress and reduction of the life quality index, of vitiligo patients.

The treatment of vitiligo is aimed at halting disease progression and inducing repigmentation, achieving an acceptable cosmetic result. To date, many medical and surgical treatments are available [3,4] (Table 1). Surgical therapies should be reserved for stable recalcitrant lesions, which did not achieve cosmetically pleasing results with medical treatments. Moreover a wide range of medical treatments are now available, such as steroids, ultraviolet radiations, lasers, calcineurin inhibitors, topical immunomodulators, 5-FU, prostaglandin analogs, topical vitamin D analogues and many others. Among these topical steroids and phototherapy are the more appreciated medical therapeutic options.

Corticosteroids (CSs) act as anti-inflammatory and immunosuppressant agents. Treatment with CSs has seen to decrease melanocytes’ destruction, to induce their repopulation and pigment production. CSs could be used in a topical or in a systemic way. Topical steroids are considered to be the first-line therapy for localized vitiligo. They could be used alone or combined with light therapy, achieving better clinical results. Steroids are quite safe if used for few weeks, and, under this condition, they could be used also in children. Unfortunately, the treatment should be time-limited (no more than 2-4 months) to avoid percutaneous adsorption and local side effects such as epidermal atrophy, striae distensae, telangiectasia, hypertrichosis and, more rarely, acniform eruption. In patients affected by generalized or progressive vitiligo, another therapeutic option is the systemic administration of corticosteroids, also in combination with UV light. While systemic CSs could be useful to stop the progression of the disease and to induce repigmentation, they can induce important side effects (eg. insomnia, acniform eruption, weight gain, hypertrichosis, menstrual alteration, adrenal insufficiency).

Another mainstay in the treatment of vitiligo, especially for generalized forms, is ultraviolet radiations (UVR), both in the range of UVB and UVA. Phototherapy stimulates melanocytes activity and halts their destruction. Historically, the first phototherapeutic device, which has been introduced in the vitiligo treatment, was UVA light

Table 1. Therapeutic options for vitiligo.

MEDICA Medical Therapies	SURGICA Surgical Therapy
Topical and/or systemic corticosteroids	Tissue grafting technique: suction blister grafting, split thickness grafting
Phototherapy: oral PUVA, topical PUVA, sol PUVA, nb-UVB, microphototherapy	Miniature punch grafting
Excimer laser	Follicular unit grafting
Topical immunomodulators: tacrolimus, pimecrolimus	Smash grafting
Topical Vitamin D analogues (calcipotriol)	Cellular grafting techniques: non-cultured epidermal suspensions, melanocyte culture transplantation
Pseudocatalase	
Topical 5-Fluoroacil	
Topical prostaglandin (PGE2) analog	
Topical curcumis melo extracts	
Depigmentation therapy	

Correspondence to: Serena Gianfaldoni, Department of Dermatology, University of Pisa, Italy, E-mail: serena.gianfaldoni@gmail.com

Key words: repigmentation, micro-focused phototherapy, topical cream, sun, antioxidant

Received: January 14, 2015; Accepted: February 10, 2015; Published: February 16, 2015
focused phototherapy, which consists of a short arc lamp generating a short wavelength non laser) have been introduced in the clinical practice (Table 2). More recently, further advances in technology have permitted the introduction of micro-focused phototherapies in the vitiligo treatment. These new therapeutic options are called Target therapies.

Among these the last frontier of vitiligo therapy is represented by the use of antioxidant agents. Some evidences support this theory:

1) The skin is an organ constantly affected by reactive oxygen species. Antioxidant agents have been proposed to prevent or delay skin aging and to reduce photodamage.

2) The skin is an organ constantly affected by reactive oxygen species. Antioxidant agents have been proposed to prevent or delay skin aging and to reduce photodamage.

Recent data suggest that narrowband-UVB, BIOSKIN EVOLUTION® can provide a spectrum of intensity up to 400 mW/cm² with an emission spectrum ranging from 300 to 320nm and a peak emission at 311nm. This specific wavelength has been shown to be the most effective in the vitiligo treatment, because it can stimulate in an optimal way the dormant melanocytes cells gradually. Moreover, it can act on the modulation of the immune system.

The treatment is limited to the vitiliginous pathes, with sparing of uninvolved skin areas. This factor allows the operator to administer re-pigmentation, without increase in the color contrast between healthy skin and vitiligo’s pathes. Energy level, spot light, time of emission and number of session are determined by the dermatologist, on the base of the clinical characteristic of the singular patient. The treatment is repeated once every three weeks, with the possibility to effect 1-3 sessions in the same day, in accordance with the patient’s therapeutic protocol. Usually, the first clinical results, in term of repigmentation’s rate, could be described just after 8-10 sessions. Body’s areas, such as face, neck, breast, genitals and thighs, repigment first than terminal zones (eg. Finger), which require in general a superior lapse of time.

The treatment has never highlighted any negative side effects, neither during the therapeutic session nor in the following days. Moreover, because it conveys microdoses of energy limited to lesions, it does not provoke photo ageing of the skin.

Recent data suggest that narrowband-UVB micro-focused phototherapies could be considered as first-choice therapy for patients affected by localized vitiligo, where it may provide good clinical results in term of restoring pigmentation, patients’ compliance, and safety [7,8].

While the effectiveness of conventional phototherapies and of the more innovative micro-focused phototherapies, patients’ compliance is often limited by the duration of the treatment. In fact, treatments are usually performed in more session at clinics, so that they require cost and time commitments.

For not-compliant patients, exposure to natural sunlight could be an effective alternative to administer phototherapy. However, sunlight provides narrowband UVB radiation and others non-therapeutic ones, which limit its value’s treatment. Recently, an innovative topical cream (PHOTOCIL®) has been introduced to selectively deliver narrowband-UVB therapy, when exposed to solar ultraviolet irradiation [9]. The composition of the cream is diethylamino hydroxybenzoil hexyl benzoate and alpha-glucosyl hesperidin, a glucosylated derivative of a natural plant flavonoid. These compounds were selected after toxic, allergic reaction and molecular size studies. Skin application is promoted by a water and oil emulsion. As respect to a broadband SPF 50 sunscreen, PHOTOCIL® is applied only on vitiliginous pathes. Recent data support the efficacy of the cream, suggesting that its application, before sunlight exposure, could be a safe and more accepted treatment for vitiligo than the tradition artificial phototherapy [10].

Another important innovation in vitiligo treatments is the use of antioxidants. Some evidences support this theory:

1) The skin is an organ constantly affected by reactive oxygen species. Antioxidant agents have been proposed to prevent or delay skin aging and to reduce photodamage.
species (ROS) from both endogenous and exogenous sources [11].

2) Plasma advanced protein oxidation or serum catalase levels are altered in vitiligo patients compared with healthy subjects, suggesting oxidative stress as a pathological marker [12].

3) The immunological component of vitiligo is linked with the displacement of redox equilibrium. ROS, besides having a direct melanocytotoxicity, can induce an autoimmune attack against melanocytes. They are involved in specific early events in T-cell activation and antioxidants are involved in reducing T-cell proliferation, IL-2R expression and IL-2 production [13].

4) The activity of tyrosinase, the enzyme expressed by melanocytes and catalyzing the synthesis of melanin, is altered by high levels of the reactive oxygen species (ROS) hydroxide peroxide [14].

ROS affect both melanocyte and keratinocyte functionality [15]. Melanogenesis is finely regulated by a chemical cross-talk of the cellular component of the dermis. In particular keratinocytes, together to melanocytes, form a functional unit deputed to the regulation of skin pigmentation. In vitiligo the impairment of keratinocyte cells removes the functional and trophic support to melanocytes and promotes their consequent death. Recently the modulation of keratinocytes activity of perilesional skin has received more attention. Perilesional skin may be considered as a critical zone where melanocyte death is initiated, with a substantial role played by keratinocytes in the development of disease. An Italian group of study indicated that keratinocytes from perilesional skin are significative affected by oxidative stress [16]. The natural antioxidant compounds curcumin and capsaicin repressed the intracellular ROS generation and the lipid peroxidation, improved mitochondrial activity and increased the phosphorylation of the antiapoptotic protein ERK.

Recently SIRT1 positive modulation has been highlighted as a preventive therapy able to reduce keratinocyte cell stress reducing the oxidative stress and promoting the activation of antiapoptotic pathways [17]. Sirtuins are a family of seven proteins in humans (SIRT1–SIRT7) that are involved in multiple cellular processes relevant to dermatology. In the cell they work as histone deacetylase and/or adenosine diphosphate ribosyltransferase. Sirtuins are involved in cellular pathways related to skin structure and function, including aging, ultraviolet-induced photoaging, inflammation, epigenetics, cancer, and a variety of cellular functions including cell cycle, DNA repair and proliferation. In human keratinocyte cultures from perilesional skin, resveratrol showed beneficial effects dependent on SIRT1 activation. The natural antioxidant rebalanced the keratinocytes oxidative state through normalizing the superoxide anion levels, the mitochondria depolarization and the mPTP opening. In particular it exerted cytoprotective effects making the functionality of AKT protein. Among its various cellular functions, there is extensive evidence that Akt plays a central role in regulating growth factor-mediated cell survival and blocking apoptosis. It is important to consider that though resveratrol is the most widely employed natural SIRT1 activator [18], some of their effects (e.g. its antioxidant properties) may be SIRT1-independent. Their protective effects are attributed to the increased expression of protective molecules, including MnSOD, Trx1 and Bcl-xL, and the down-regulation of pro-apoptotic effectors (e.g. Bax). Recent data [19] underlined that the SIRT1 activator, resveratrol, protects against UV- and H2O2-induced keratinocytes cell death, whereas SIRT inhibitors such as sirtinol and nicotinamide enhance cell death. In conclusion future studies are needed to elucidate the protective role of SIRT1 activators in the prevention of perilesional skin keratinocytes. Nevertheless SIRT1 positive modulation could be, in the future, an exploitable pharmacological intervention for the vitiligo treatment.

Conclusion

Vitiligo is one of the oldest skin disorders, affecting 1-2% of the human population. It is characterized by depigmented areas varying in number, form and localization, which stem from melanocytes loss or dysfunction. Because of the aspect of skin lesions, the disease is a psychological burden. Despite the classical idea of unsuccessful vitiligo treatments, recent advances in the knowledge of vitiligo’s pathogenesis have contributed to find better therapeutic options, so that at present many patients find a solution for depigmented skin.

References

1. Lotti T, Hautmann G, Hercogová J (2004) Vitiligo: disease or symptom? From the confusion of the past to current doubts. Vitiligo. Problems and solutions. Marcel Dekker, Inc, New York, NY, Basel, USA: 1-14.
2. Shah AA, Sinha AA (2013) Oxidative stress and autoimmune skin disease. Eur J Dermatol 23: 5-13. [Crossref]
3. Colucci R, Lotti T, Moretti S (2012) Vitiligo: an update on current pharmacotherapy and future directions. Expert Opin Pharmacother 13: 1885-1899. [Crossref]
4. Wassef C, Lombardi A, Khoeker S, Rao BK (2013) Vitiligo surgical, laser, and alternative therapies: a review and case series. J Drugs Dermatol 12: 685-691. [Crossref]
5. Scherschun L, Kim JJ, Lim HW (2001) Narrow-band ultraviolet B is a useful and well-tolerated treatment for vitiligo. J Am Acad Dermatol 44: 999-1003. [Crossref]
6. Lotti TM, Menchini G, Andreassi L (1999) UV-B radiation microtherapy: An elective treatment for segmental vitiligo. J Eur Acad Dermatol Venereol 13: 102-108. [Crossref]
7. Buggiani G, Tsampou D, Hercogová J, Rossi R, Brazzini B, et al. (2012) Clinical efficacy of a novel topical formulation fro vitiligo: compared evaluation of different treatment modalities in 149 patients. Derm Th 25: 475-476. [Crossref]
8. Lotti T, Prignano F, Buggiani G (2007) New and Experimental Treatments of Vitiligo and Other Hypomelanoses. Dermatol Clin 25: 393-400. [Crossref]
9. McCoy J, Goren A, Lotti T (2013) In vitro evaluation of a novel topical cream for vitiligo and psoriasis that selectively delivers NB-UVB therapy when exposed to sunlight. Dermatol Ther 27: 117-120. [Crossref]
10. Goren A, Salafia A, McCoy J, Keene S, Lotti T (2014) Novel topical cream delivers safe and effective sunlight therapy for vitiligo by selectively filtering damaging ultraviolet radiation. Dermatol Ther 27: 195-197. [Crossref]
11. Laddha NC, Dwivedi M, Mansuri MS, Gani AR, Ansarallah M, et al. (2013) Vitiligo: interplay between oxidative stress and immune system. Exp Dermatol 22: 245-250. [Crossref]
12. Deo SS, Bhagat AR, Shah RN (2013) Study of oxidative stress in peripheral blood of Indian vitiligo patients. Indian Dermatol Online J 4: 279-282. [Crossref]
13. Chaudhri G, Hunt NH, Clark IA, Ceredig R (1988) Antioxidants inhibit proliferation and cell surface expression of receptors for interleukin-2 and transferrin in T lymphocytes stimulated with phorbol myristate acetate and ionomycin. Cell Immunol 115: 204-213. [Crossref]
14. Westerhof W, d’Ischia M (2007) Vitiligo puzzle: the pieces fall in place. Pigment Cell Res 20: 345-359. [Crossref]
15. Zhang Y, Liu L, Jin L, Yi X, Dang F, et al. (2014) Oxidative stress-induced calreticulin expression and translocation: new insights into the destruction of melanocytes. J Invest Dermatol 134:183-191. [Crossref]
16. Becatti M, Prignano F, Fiorillo C, Pescitelli L, Nasi P, et al. (2010) The involvement of Smac/DIABLO, p53, NF-κB, and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin: Protective effects of curcumin and capsaicin. Antiox Redox Signal 13: 1309-1321. [Crossref]
17. Becatti M, Fiorillo C, Barjuna V, Cecchi C, Lotti T, et al. (2014) SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival. J Cell Mol Med 18: 514-529. [Crossref]
18. Baur JA (2010) Biochemical effects of SIRT1 activators. *Biochim Biophys Acta* 1804:1626-1634. [Crossref]

19. Cao C, Lu S, Kivlin R, Wallin B, Card E, et al. (2009) SIRT1 confers protection against UVB- and H\textsubscript{2}O\textsubscript{2}-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. *J Cell Mol Med* 13: 3631-3643. [Crossref]