Expression of CD14 protein and its gene in liver sinusoidal endothelial cells during endotoxemia

Jian-Ping Gong, Li-Li Dai, Chang-An Liu, Chuan-Xin Wu, Yu-Jun Shi, Sheng-Wei Li, Xu-Hong Li

Jian-Ping Gong, Chang-An Liu, Chuan-Xin Wu, Yu-Jun Shi, Sheng-Wei Li, Xu-Hong Li, Department of General Surgery, the Second College of Clinical Medicine & the Second Affiliated Hospital of Chongqing University of Medical Science, Chongqing, 400010, China
Li-Li Dai, Department of Digestive Disease, the Second College of Clinical Medicine & the Second Affiliated Hospital of Chongqing University of Medical Science, Chongqing, 400010, China
Supported by the National Natural Science Foundation of China, No. 39970719, 30170919
Correspondence to: Dr Jian-Ping Gong, Department of General Surgery, the Second College of Clinical Medicine & the Second Affiliated Hospital of Chongqing University of Medical Science, 74 Linjiang Road, Chongqing 400010, China. gongjianping11@hotmail.com
Telephone: +86-23-85541610 Fax: +86-23-63822815
Received 2001-11-15 Accepted 2001-12-10

Abstract
AIM: To observe expression of CD14 protein and CD14 gene in rat liver sinusoidal endothelial cells (LSECs) during endotoxemia, and the role of CD14 protein in the activation of lipopolysaccharide (LPS)-induced LSECs.

METHODS: Wistar rat endotoxemia model was established first by injection of a dose of LPS (5mg/kg, Escherichia coli O111:B4) via the tail vein, then sacrificed after 0h, 3h, 6h, 12h, and 24h, respectively. LSECs were isolated from normal and LPS-injected rats by an in situ collagenase perfusion technique. The isolated LSECs were incubated with rabbit anti-rat CD14 polyclonal antibody, then stained with goat anti-rabbit IgG conjugated fluorescein isothiocyanate (FITC) and flow cytometric analysis (FCM) was performed. The percentage and mean fluorescence intensity (MFI) of CD14-positive cells were taken as the indexes. LSECs were collected to measure the expression of CD14 mRNA by in situ hybridization analysis. The isolated LSECs from normal rats were incubated firstly with anti-CD14 antibody, then stimulated with different concentrations of LPS, and the supernatants of these cells were then collected for measuring the levels of tumor necrosis factor (TNF)-α and Interleukin (IL)-6 with ELISA.

RESULTS: In rats with endotoxemia, LSECs displayed a strong MFI distinct from that of control rats. CD14 positive cells in rats with endotoxemia were 54.32%, 65.83%, 85.64%, and 45.65% at 3h, 6h, 12h, and 24h respectively, there was significant difference when compared to normal group of animals (4.45%) (<0.01). The expression of CD14 mRNA in isolated LSECs was stronger than that in control rats. In LPS group, the levels of TNF-α and IL-6 were 54±6ng.L⁻¹, 85±9ng.L⁻¹, 206±22ng.L⁻¹, 350±41ng.L⁻¹, 366±42ng.L⁻¹ and 103±11ng.L⁻¹, 187±20ng.L⁻¹, 244±26ng.L⁻¹, 290±31ng.L⁻¹, and 299±34ng.L⁻¹, respectively at different concentration points. There was significant difference between the two groups (<0.01).

CONCLUSION: LSECs can synthesize CD14 protein and express CD14 gene during endotoxemia. CD14 protein plays an important role in the activation of LPS-induced LSECs. This finding has important implications for the understanding of the mechanisms by which LPS may injure liver sinusoidal endothelial cells during sepsis.

Gong JP, Dai LL, Liu CA, Wu CX, Shi YJ, Li SW, Li XH. Expression of CD14 protein and its gene in liver sinusoidal endothelial cells during endotoxemia. World J Gastroenterol 2002;8(3):551-554

INTRODUCTION
Lipopolysaccharide (LPS) has been shown to play a key role in the pathogenesis of severe sepsis and septic shock caused by gram-negative bacteria. LPS stimulates monocytes and macrophages to release proinflammatory mediators, such as tumor necrosis factor (TNF)-α and interleukins[10-10]. Recent studies have reported that LPS-binding protein (LBP) and LPS receptor CD14 mediate responses of activated monocytes, macrophages and other cells to LPS[11-13]. CD14 is a 55-kDa glycoprotein with multiple leucine-rich repeats and was first described as a myeloid differentiation antigen[14]. CD14 has been identified as receptor for complexes of LPS and LBP. It is known that CD14 is linked to the cell membrane by a glycosylphosphatidylinositol anchor in myeloid lineage cells, and it plays a pivotal role in the activation of LPS-induced monocytes and macrophages[15, 16]. But it is not yet clear whether CD14 is expressed by vascular endothelial cells. Indeed, it has been generally accepted that endothelial cells do not express CD14[17]. Soluble CD14 (sCD14) is thought to facilitate LPS-induced activation of endothelial cells[18]. However, recent studies have shown that endothelial cells are sensitive to low concentration of LPS and anti-CD14 antibodies can block endothelial cell activation even in the absence of serum, which is an observation inconsistent with the concept that endothelial cells do not express CD14[19]. Our aim was to demonstrate that liver sinusoidal endothelial cells (LSECs) synthesize CD14 protein and express CD14 gene in rats with endotoxemia, and the role of CD14 protein in the activation of LPS-induced LSECs.

MATERIALS AND METHODS
Reagents
LPS (Escherichia coli O111: B4) and collagenase (type IV) were purchased from Sigma Chemical Company (St. Louis, Mo.). A rabbit anti-rat CD14 polyclonal antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, Calif). Fluorescein isothiocyanate (FITC)–IgG were purchased from Zhongshan Biotechnology Company (Beijing, China). In situ hybridization analysis kit of CD14 mRNA was purchased from Boshide Biotechnology Company (Wuhan, China).

Animals
Male Wistar rats, which were pathogen-free and weighed...
approximately 225g each, were purchased from the Animal Center of Chongqing University of Medical Science. The rats were exposed each day to 12h of light and darkness respectively. Rodent chow and water were provided ad libitum. Experimental protocols were approved by the Institutional Care and Use Committee of Chongqing University of Medical Science.

The endotoxemia model of animals
The Wistar rat endotoxemia model was established as described previously[20]. In brief, animals were injected with a dose of LPS (5mg/kg, Escherichia coli O111:B4) via the tail vein, then the sacrificed after 3h, 6h, 12h, and 24h, respectively. There were six rats at each time point. Other six rats were used as control group (0h).

LSECs isolation
LSECs were isolated from normal and LPS-injected rats by an in situ collagenase perfusion technique, modified as described previously[21]. In brief, livers were removed after a portal vein perfusion with Hanks’ balanced salt solution (HBSS) and the homogenate was digested in a solution of 0.5% collagenase. LSECs were separated from other nonparenchymal cells by two cycles of differential centrifugation (50×g for 2min) and further purified over a 30% Percoll gradient. LSECs purity exceeded 90% as assessed by light microscopy, and viability was typically greater than 95% as determined by trypan blue exclusion assay.

Determination of CD14 mRNA by in situ hybridization
In situ hybridization was performed as described previously[22]. Positive result: positive location was blue.

Flow cytometric analysis
Expression of CD14 protein in LSECs was examined by flow cytometric analysis as described previously[23]. In brief, LSECs were incubated with rabbit anti-rat CD14 polyclonal antibody (1ug/ml) after washing, and then cells were incubated with goat anti-rabbit immunoglobulin G labeled with FITC. After being washed three times, 10000 cells were analyzed by flow cytometry (Coulter, USA), and the percentage and mean fluorescence intensity (MFI) of CD14-positive cells were taken as the indexes.

Blocking test of anti-CD14 antibody
To determine the role of CD14 in the activation of LPS-induced LSECs, LSECs were isolated from normal rats. These cells were harvested and adjusted to a concentration of 1×10⁶/ml/well and were divided into two groups. Group of LPS: LSECs were incubated at different concentrations of LPS (0, 0.01ug/ml, 1ug/ml, 10ug/ml, and 100ug/ml). Group of anti-CD14 antibody blockade: LSECs were pre-incubated for 30min with 0.2ml CD14 antibody (1:100 dilution) before different concentrations of LPS were added. Supernatants were then collected for measuring the levels of TNF-α and IL-6 with ELISA.

Statistical analysis
All results were expressed as mean ± SEM. Statistical differences between means were determined by using Student’s t test. The value of P<0.01 was considered significant.

RESULTS
Binding of FITC to LSECs
To confirm expression of CD14 on LSECs, we examined the binding of FITC to the cells. CD14 positive cells were 4.45% in rats of normal group. But in rats with endotoxemia, CD14 positive cells were 54.32%, 65.83%, 85.64%, and 45.65% at 3h, 6h, 12h, and 24h respectively after stimulation of LPS, which were significant different when compared with normal group of animals (P<0.01) (Figure 1).

Expression of CD14 gene in LSECs
We postulated that LSECs could express CD14 mRNA during endotoxemia. In order to examine the cell-specific expression of CD14 mRNA, freshly isolated and purified LSECs were analyzed by in situ hybridization with a riboprobe specific for rat CD14. Our analysis showed that LSECs from controls had no detectable level of CD14 mRNA. LPS treatment increased the level of CD14 mRNA in LSECs, inducing expression as early as 3h after LPS treatment. The expression of CD14 gene increased with time, reaching a maximum induction by 12h after treatment of LPS, and subsequently declined to low level by 24h.

Results of blocking test
In LPS group, with increasing of LPS concentrations, the levels of TNF-α and IL-6 in supernatant of LSECs also increased. In group of anti-CD14 antibody blockade, productions of TNF-α and IL-6 in supernatants of LSECs were obviously inhibited by Ab against CD14 when compared with LPS group (P<0.01). (Figure 2 and 3)
CD14 as a key LPS signaling molecule was first reported to be expressed in monocyte-macrophage system. Recent works have showed that the CD14 antigen is expressed in many types of cells and tissues. But it is not yet clear whether vascular endothelial cells could synthesize CD14 protein and express CD14 gene. Beckhuizen et al. reported endothelial cells did not express CD14. With method of in situ hybridization, Fearns et al. found that endothelial cells did not express CD14 protein. Wang et al. considered that sCD14 was thought to facilitate LPS-induced activation of endothelial cells. But, Lee et al. found CD14-negative murine pre-B cells (70Z/3), which were unresponsive to low concentrations of LPS (0.1 ng/ml) even in the presence of serum, showed responses to LPS when transfected with CD14. Surprisingly, anti-CD14 antibody blocked endothelial cell activation by LPS in the absence of serum, which is an observation inconsistent with the concept that endothelial cells do not express CD14 protein.

In this experiment, we selected LSECs to represent vascular endothelial cells as targets of our experiment, and determined whether LSECs could synthesize CD14 protein and express CD14 gene. We found: 1) LSECs from normal rats did not synthesize CD14 protein and express CD14 gene, but the synthesis and expression of CD14 were markedly upregulated by LPS during endotoxemia, accompanied by the expression of CD14 mRNA, which showed that CD14 protein in LSECs was not passively acquired from serum. 2) Anti-CD14 antibody could block LSECs' activation by LPS in the absence of serum, which further indicated that LSECs could synthesize and express CD14 molecules.

Why were our findings different from previously published data that endothelial cells were negative? We think there were a few possibilities: 1) Many authors used routine passing of multiple culture of human vascular endothelial cells (HUVEC) or HUVEC purchased from tissue culture laboratories to observe whether these culture of human vascular endothelial cells (HUVEC) or HUVEC possibilities: (1) many authors used routine passaging of multiple CD14 molecules. Serum, which further indicated that LSECs could synthesize and express CD14 protein, which showed that CD14 protein in LSECs was not passively acquired from serum. (2) Anti-CD14 antibody could block LSECs' activation by LPS in the absence of serum, which further indicated that LSECs could synthesize and express CD14 molecules.

REFERENCES

1. Gong JP, Liu CA, Wu CX, Li SW, Shi YJ, Li XH. Nuclear factor kB activity in patients with acute severe cholangitis. World J Gastroenterol 2002; 8: 336-349
2. Gong JP, Wu CX, Liu CA, Li SW, Shi YJ, Yang K, Li Y, Li XH. Intestinal damage mediated by Kupffer cells in rats with endotoxemia. World J Gastroenterol 2002; 8: press
3. Gong JP, Liu CA, Wu CX, Li SW, Shi YJ, Yang K, Li Y, Li XH. Liver sinusoidal endothelial cell injury by neutrophils in rats with acute obstructive choanalitis. World J Gastroenterol 2002; 8: 342-345
4. Heumann D, Adachi Y, Roy DL, Ohno N, Yadomae T, Glauser MP, Calandra T. Role of plasma, lipopolysaccharide-binding protein, and CD14 in response of mouse peritoneal exudate macrophages to endotoxin. Infect Immun 2001; 69: 378-385
5. Merkel SM, Alexander S, Zulfal E, Oliver JD, Huet-Hudson YM. Essential role for estrogen in protection against Vibrio vulnificus-induced endotoxin shock. Infect Immun 2001; 69: 6119-6122
6. Rabiei L, Irnopoulos T, Cholley B, Haeffer-Cavillon N, Carreno MP. Gram-positive and Gram-negative bacteria do not trigger monocytes cytokine production through similar intracellular pathways. Infect Immun 2001; 69: 4590-4599
7. Fry DE. Sepsis syndrome. Br J Surg 2000; 66: 126-132
8. Hotchkiss RS, Karl IE. Cytokine blockade in sepsis—are two better than one? Crit Care Med 2001; 29: 671-672
9. Mathurin P, Deng QC, Keshavarzian A, Choudhary S, Holmes EW, Tsukamoto H. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology 2001; 34: 721-728
10. Parker SJ, Watkins PE. Experimental models of gram-negative sepsis. Br J Surg 2001; 88:22-30
11. Nanbo A, Nishimura H, Muta T, Nagasawa S. Lipopolysaccharide stimulates HepG2 human hepatoma cells in the presence of lipopolysaccharide-binding protein via CD14. Eur J Biochem 1999; 260: 183-191
12. Gutsman T, Muller M, Carroll SF, Mackenzie RC, Wiese A, Seydel U. Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mouse nuclear cells. Infect Immun 2001; 69: 6942-6950
13. HDI N, Berger D, Mimura Y, Frick J, Dentener MA, Buurman WA, Seidelmann M, Kaminishi M, Beger HG. Release of endotoxin-binding proteins during major elective surgery: role of soluble CD14 in phagocytic activation. World J Surg 2000; 24: 499-506
14. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995; 13: 437-457
15. Enomoto N, Yamashina S, Kono H, Schmemper P, Rivera CA, Enomoto A, Nishiuira T, Nishimura T, Brenner DA, Thurnan RG. Development of a new, simple rat model of alcohol-induced liver injury based on sensitization of Kupffer cells. Hepatology 1999; 29: 1608-1619
16. Li SW, Gong JP, Wu CX, Shi YJ, Liu CA. Lipopolysaccharide induced synthesis of CD14 proteins and its gene expression in hepatocytes during endotoxemia. World J Gastroenterol 2002; 8: 124-128
17. Kono H, Wheeler MD, Rusyn I, Lin M, Seabra V, Rivera CA, Bradford BU, Forman DT, Thurnan RG. Gender differences in early alcohol-induced liver injury role based on sensitization of Kupffer cells. Hepatology 1999; 29: 1608-1619
18. Li SW, Gong JP, Wu CX, Shi YJ, Liu CA. Lipopolysaccharide induced synthesis of CD14 proteins and its gene expression in hepatocytes during endotoxemia. World J Gastroenterol 2002; 8: 124-128
19. Von Asmuth EJU, Dentener MA, Baxil V, Bouma MG, Leeuwenberg JFM, Buurman WA. Anti-CD14 antibodies reduce responses of cultured human endothelial cells to endotoxin. Immunology 1993; 80: 78-83
20. Gong JP, Xu MQ, Li K, Zhu J, Han BL. Expression of CD14 in Kupffer cells induced by lipopolysaccharide. Di-San Junyi DaXue Xuebao 2001; 23: 425-428
21. Gong JP, Han BL. Technique of isolation, culture and identification of liver cells. Shijie Huaren Xuebao Zhai 1999; 7: 417-419
22. Fearns C, Loskutoff DJ. Role of tumor necrosis factor alpha in induction of murine CD14 gene expression by lipopolysaccharide. Infect Immun 1997; 65: 4822-4831
23. Gong JP, Han BL. Effect of CD14 in LPS mediating activation of Kupffer cells. Shijie Huaren Xuebao Zhai 1999; 7: 875-877
24. Fearn C, Kravchenko VV, Ulevitch RJ, Loskutoff DJ. Murine CD14 gene expression in vivo: extramyeloid synthesis and regulation by lipopolysaccharide. J Exp Med 1995; 181: 857-866
25. Li SW, Wu CX, Shi YJ, Liu CA. Lipopolysaccharide upregulates expression of CD14 gene and CD14 proteins of hepatocytes in rats. Chin J Hepatol 2001; 9:103-105
26. Zuo QG, Gong JP, Liu CA, Li SW, Wu XC, Yang K, Li Y. Expression of lipopolysaccharide binding protein and its receptor CD14 in experimental alcoholic liver disease. World J Gastroenterol 2003; 6: 836-840
27. Jiang Q, Akashi S, Miyake K, Petty HR. Cutting edge: lipopolysaccharide induces physical proximity between CD14 and toll-like receptors of neutrophils. J Exp Med 1999; 189: 1447-1450

www.wjgnet.com
receptor 4 (TLR4) prior to nuclear translocation of NF-kB. *J Immunol* 2000; 165:3541-3544

28 Ikejima K, Enomoto N, Seabra V, Ikejima A, Brenner DA, Thurman RG. Pronase destroys the lipopolysaccharide receptor CD14 on Kupffer cells. *Am J Physiol* 1999; 276: G591-G598

29 Scott MG, Vreugdenhil ACE, Buurman WA, Hancock REW, Gold MR. Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. *J Immunol* 2000;164:549-553

30 Asea A, Krazelt SK, Kurt-Jones EA, Stevenson MA, Chen LB, Fixberg RW, Koo GC, Calderwood SK. HSF70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. *Nature Med* 2000; 6:435-442

31 Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM. Induction of a novel mechanism of accelerated bacterial clearance by lipopolysaccharide in CD14-deficient and Toll-like receptor 4-deficient mice. *J Immunol* 2001; 166:1075-1078

32 Perea PY, Mayadas TN, Takeuchi O, Akira S, Zaks-Zilberman, Goyert SM, Vogel SN. CD11b/CD18 acts in concert with CD14 and toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. *J Immunol* 2001; 166: 574-581

33 Lee JD, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ. Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein. *J Exp Med* 1992; 175: 1697-1703

34 Jersmann HPA, Hii CST, Hodge GL, Ferrante AF. Synthesis and surface expression of CD14 by human endothelial cells. *Infect Immun* 2001; 69: 479-485

35 Bone-Larson CL, Simpson KJ, Colletti LM, Lukacs NW, Chen SC, Lira S, Kunkel S, Hogaboam CM. The role of chemokines in the immunopathology of the liver. *Immunol Rev* 2000; 177: 8-20

Edited by Hu DK