Braincase and endocranium of the Placodont *Parahenodus atancensis* de Miguel Chaves, Ortega & Pérez-García, 2018, a representative of the highly specialized clade Henodontidae

Carlos DE MIGUEL CHAVES, Alejandro SERRANO, Francisco ORTEGA & Adán PÉREZ-GARCÍA
Comptes Rendus Palevol est indexé dans / Comptes Rendus Palevol is indexed by:

- Cambridge Scientific Abstracts
- Current Contents® Physical
- Chemical, and Earth Sciences®
- ISI Alerting Services®
- Geobstracts, Geobase, Georef, Inspec, Pascal
- Science Citation Index®, Science Citation Index Expanded®
- Scopus®.

Les articles ainsi que les nouveautés nomenclaturales publiés dans Comptes Rendus Palevol sont référencés par:

Articles and nomenclatural novelties published in Comptes Rendus Palevol are registered on:

- ZooBank® (http://zoobank.org)

Comptes Rendus Palevol est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris et l’Académie des sciences, Paris.

Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish:

Adansonia, Geodiversitas, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie.

L’Académie des sciences publie aussi / The Académie des sciences also publish:

Comptes Rendus Mathématique, Comptes Rendus Physique, Comptes Rendus Mécanique, Comptes Rendus Chimie, Comptes Rendus Géoscience, Comptes Rendus Biologies.
Braincase and endocranium of the Placodont *Parahenodus atancensis* de Miguel Chaves, Ortega & Pérez-García, 2018, a representative of the highly specialized clade Henodontidae

Carlos DE MIGUEL CHAVES
Alejandro SERRANO
Francisco ORTEGA
Adán PÉREZ-GARCÍA

Grupo de Biología Evolutiva, Facultad de Ciencias, UNED,
Paseo de la Senda del Rey 9, 28040, Madrid (Spain)
carlos.miguelchaves@gmail.com (corresponding author)
a.serrano@ccia.uned.es
fortega@ccia.uned.es
paleontologo@gmail.com

Submitted on 31 August 2019 | Accepted on 29 November 2019 | Published on 7 December 2020

ABSTRACT

Parahenodus atancensis de Miguel Chaves, Ortega & Pérez-García, 2018 is a recently described bizarre cyamodontoid placodont, based on a partial but well-preserved Spanish Upper Triassic skull. It was identified as the sister taxon of the German highly specialized *Henodus chelyops* Huene, 1936. The use of micro-computed tomography has been able to significantly increase knowledge of the cranial anatomy of *Parahenodus atancensis* by the characterization of several bones and structures previously unknown for this taxon, as well as to obtain a partial reconstruction of its brain endocast and associated endocranial structures, poorly known in most Triassic sauropterygians. In addition, we identify several synapomorphies of the braincase of Cyamodontoidea so far unknown in Henodontidae, improving knowledge about this clade. The study of the endocranium and neurosensory structures of *Parahenodus atancensis* suggests a relatively lower reliance on vision, the pineal system and the pituitary than in other Triassic sauropterygians.

RÉSUMÉ

La boîte crânienne et l’endocrâne du Placodont *Parahenodus atancensis* de Miguel Chaves, Ortega & Pérez-García, 2018, un représentant du groupe hautement spécialisé Henodontidae. *Parahenodus atancensis* de Miguel Chaves, Ortega & Pérez-García, 2018 est un placodont cyamodontoïde récemment décrit à partir d’un crâne partiel mais bien préservé du Trias supérieur d’Espagne.
Il a été identifié comme le groupe-frère du taxon allemand hautement spécialisé *Henodus chelyops* Huene, 1936. L'utilisation de la micro-tomographie permet d’améliorer considérablement les connaissances sur l’anatomie crânienne de *Parahenodus atancensis* par la caractérisation de plusieurs os et structures auparavant inconnues chez ce taxon, ainsi que d’obtenir une reconstruction partielle de son cerveau et des structures endocranéennes associées, peu connus chez les sauroptérygiens du Trias. De plus, nous identifions plusieurs synapomorphies de la boîte crânienne de Cyamodontoidea jusque-là inconnues chez les Henodontidae, améliorant ainsi la connaissance du clade. L’étude du cerveau et des structures neurosensorielles de *Parahenodus atancensis* suggère une dépendance relativement moindre de la vision, du système pinéal et de l’hypophyse par rapport aux autres sauroptérygiens du Trias.
Braincase and endocranium of the Placodont Parahenodus atancensis

MUPA ATZ0104 is an undeformed partial skull 63 mm long and 73 mm wide, which preserves the parietal table, and the partial right orbit, palate and occiput (Fig. 1). However, it lacks the rostrum, most of the orbits and the left side of the skull table. The skull is internally filled with marl.

MUPA ATZ0104 was scanned with a high resolution scanner Nikon XT H-160, in the Servicio de Técnicas No Destructivas: Microscopía Electrónica y Confocal y Espectroscopía ct-Scan, of the Museo Nacional de Ciencias Naturales (Madrid, Spain). The scanning used a voltage of 152 kV and a current of 49 μA. The inter-slice spacing was 0.08 mm. The raw data were imported to a segmentation and 3D editor software for segmentation, visualization and analysis. An interactive 3D PDF of the skull bones, brain and associated structures is included as Electronic Supplementary Material (Appendices).

RESULTS

NEW INSIGHTS INTO THE OSSEOUS ANATOMY OF THE PARAHENODUS ATANCENSIS SKULL

A detailed description of the external morphology of the holotype of Parahenodus atancensis was provided by de Miguel Chaves et al. (2018). However, the application of CT technology has allowed us to complete that description by the characterization of the inner morphology of the braincase, in addition to performing the three-dimensional reconstruction of each of the osseous elements preserved in this specimen (Fig. 2).

New osseous information relative to the skull of Parahenodus atancensis is described in this section. The quadratojugals contact the complete lateral and dorsolateral surfaces of the quadrates (Fig. 2A, C, E, F). In ventral view, the contact

FIG. 1. — MUPA ATZ0104, holotype skull of Parahenodus atancensis de Miguel Chaves, Ortega & Pérez-García, 2018, from the Upper Triassic fossil site of El Atance (Guadalajara, Spain): A1, photograph of the dorsal view; A2, dorsal view of the digital rendering of the skull; B1, photograph of the ventral view; B2, ventral view of the digital rendering of the skull. Scale bar: 2 cm.
FIG. 2. — Three-dimensional digital model of the holotype of Parahenodus atancensis de Miguel Chaves, Ortega & Pérez-García, 2018 (MUPA ATZ0104), from the Upper Triassic of El Atance (Guadalajara, Spain), where the bones have been individualized by different colors, in dorsal (A), ventral (B), anterior (C), posterior (D), right lateral (E), and left lateral (F) views. Anatomical abbreviations: pt.f, post-temporal fenestra; st.f, subtemporal fossa; u.t.f, upper temporal fossa. Dashed lines indicate the contour of the subtemporal fossa. Scale bar: 2 cm.
between the preserved jugal and maxilla is located near the external margin of the palate (Fig. 2B), being confirmed as caused by a medial expansion of the jugal, as suggested by de Miguel Chaves et al. (2018). This medial expansion of the right jugal also contacts ventromedially with the palatine. This study allows a detailed characterization of the jugals of this taxon. In ventral view, the jugal posterolaterally contacts the quadratojugal, posteromedially the postorbital, and the squamosal between both sutures. Furthermore, the jugal defines the anterior margin of the preserved subtemporal fossa (Fig. 2B). The medial margin of the subtemporal fossa is formed by the pterygoid, the palatine and the medial projection of the jugal. Due to breakage, the contact between the palatines and the quadrates cannot be accurately defined.

The occiput and the posterior part of the braincase of MUPA ATZ0104 are badly damaged. Thus, part of the supraoccipital, the exoccipitals and most of the basioccipital, including the condyle, are lost, and most of the foramina present in the posterior surface of the skull cannot be observed either (Fig. 2D). The supraoccipital defines the dorsal margin of the foramen magnum, and it is in contact with the parietals. The supraoccipital would also have been in contact with the opisthotic but due to the preservation of the fossil this area of contact is missing. The preserved right opisthotic forms the paroccipital process, which includes a ventral tuber. The opisthotic also presents a lateral ascendant ramus that contacts a descending process of the squamosal (Fig. 2D). It also contacts the quadrate. The anterior surface of the opisthotic is not well preserved.

The squamosals possess a small projection that expands anteriorly, the otic process (sensu Nosotti & Pinna 1993), which contacts the postero dorsal region of the prootics (Fig. 3). Another small medioventral projection of the squamosals contacts the posterodorsal expansion of the epipterygoids (Fig. 3). The prootics are short elements with a convex lateral surface and a deeply concave medial one, where they possess a cavity where the endosseous labyrinths (inner ear) are located. A posterolateral projection of the prootics contacts the otic process of the squamosals (Fig. 3). This projection of the prootics also defines the medial margin of the palatoquadrate cartilage recess, and has a groove for this cartilage (see below). This groove for the palatoquadrate cartilage is also present in the quadrates (Fig. 4). The prootics are located anterior to the opisthotics (Fig. 3). However, due to the bad preservation of the anterior surface of the preserved right opisthotic, the limits of the otic capsule cannot be well defined. The prootics also contact the quadrates ventrolaterally, and are located posterior to the epipterygoids (Fig. 4).
The epipterygoids are complex elements that form most of the lateral walls of the preserved braincase (Fig. 3). They are anteriorly convex, and strongly concave posteriorly, with a lateroventral expansion that extends over the palatines (Fig. 4). The epipterygoids have a longitudinal furrow that receives a descending process of the parietals (Fig. 3). A well-developed posterodorsal projection of the epipterygoids contacts a medioventral expansion of the squamosals (Fig. 3). The epipterygoids contact the fused parietal dorsally, the prootics and the squamosals posteriorly, and the palatines, the pterygoids and the parabasisphenoid ventrally.

The parietals are fused into a single element, and they enclose the braincase dorsally (Fig. 2A). This unpaired parietal possesses two descending processes that are received by the epipterygoids. These descending processes become posteriorly a ventral thickening of the bone, where the parietal contacts the supraoccipital. The right post-temporal fenestra has been identified in Parahenodus atancensis (Figs 2D; 3). It is defined posteroventrally by the opisthotic; posterodorsally, posteromedially, posterolaterally, dorsally and laterally by the squamosal; anterodorsally and anteromedially by the epipterygoid; and anteroventrally by the prootic (Figs 2D; 3). A foramen is present at the anterior region of the preserved right post-temporal fenestra, the pteroccipital foramen, which opens ventrally to a short passage of the stapedial artery, anterior to the paroccipital process (Fig. 3). This pteroccipital foramen is delimited posteriorly by the opisthotic, laterally by the otic process of the squamosal, anteriorly by the prootic, and laterally by the squamosal and the epipterygoid.

A pair of palatoquadrate cartilage recesses has also been identified in the holotype of Parahenodus atancensis (Fig. 4). They are triangular cleavages that would have been filled with cartilage in the living animal, connecting the quadrate and the epipterygoid. They are defined mostly by the palatines and the medial wing of the quadrates laterally; medially by the squamosals, the prootics and the epipterygoids; and ventrally by the quadrates, the palatines and the pterygoids. A groove for the cartilage is observed in the quadrates and the prootics.

Most of the small parabasisphenoid complex is also preserved, being located anteriorly to the basioccipital (Fig. 5). It closes the braincase ventrally in the preserved area. It is V-shaped, with its lateral projections contacting the pterygoids and the epipterygoids. The sella turcica is small and shallow, being square-shaped in dorsal view. Two small cerebral carotid foramina are also present. A poorly developed dorsum sellae is observed in the posterior margin of the sella turcica.

Morphology of the reconstructed brain, inner ear, and neurosensory and neurovascular structures

Due to the preservation of MUPA ATZ0104, only a small portion of the endocast can be identified (Fig. 6). The antorbital region of the skull is missing, so most of the forebrain (including the olfactory structures) could not be reconstructed.
In the same way, the skull lacks most of the bones in the occipital region (i.e., the exoccipitals, part of the supraoccipital, the left opisthotic and most of the basioccipital). Thus, the reconstruction of the endocast of MUPA ATZ0104 includes the posterior area of the forebrain or prosencephalon, most of the midbrain or mesencephalon, and the anterior part of the hindbrain or rhombencephalon.

Only the posteriormost region of the forebrain of MUPA ATZ0104, where the pineal system is located, could be reconstructed (Fig. 7). The cerebrum has a flat dorsal surface, and a trapezium-shape section, the dorsal surface being longer than the ventral one (Fig. 7C, D). The pineal system in *Parahenodus atancensis* is represented by a very thin and laterally compressed passage, which connects the dorsal surface of the brain with a longitudinally narrow pineal foramen located anteriorly in the fused parietal (Fig. 7A, C, D).

The area where the pituitary (or hypophysis) would have been is identified as a weakly developed rectangular structure, located in the posteroventralmost part of the prosencephalon (Fig. 7B). It is settled over the *sella turcica* of the parabasisphenoid. It has two small lobes that lead to the two small cerebral carotid foramina of the *sella turcica*.

The reconstructed mesencephalon of *Parahenodus atancensis* exhibits a pair of strong lateral and symmetric compressions (Fig. 7A). These lateral compressions of the midbrain are well defined by the medial ascendant wall of the epityrgoids. Each of these strong compressions could correspond to the *cava epipiterica*. Optic lobes could not be clearly distinguished in the endocast of the midbrain of MUPA ATZ0104. Posterior to the *cava epipiterica*, the mesencephalon expands laterally (Fig. 7A). The morphology of the mesencephalon and rhombencephalon in the area posterior to this point cannot be defined.

Only the anteriormost part of both right and left endosseous labyrinths could be reconstructed (Fig. 7), due to the poor preservation of the right opisthotic and the lack of the left one, the otic capsules being incomplete. Both endosseous labyrinths are slightly distorted and medially rotated. Thus, only part of the anterior semicircular canal can be reconstructed, as well as part of the vestibule of the inner ear (Fig. 7E, F). They seem to be dorsoventrally short and anteroposteriorly elongated. However, the morphology of the anterior semicircular canal cannot be observed in detail due to the collapse of these canals and the poor preservation of the prootics.

Although most of the areas where the cranial nerves of MUPA ATZ0104 were located are lost, the canal for the trigeminal nerve (V) can be identified (Fig. 7). This canal is located anterior to the endosseous labyrinth, being enclosed between the epityrgoids and the prootics. The trigeminal nerve would emerge from the braincase through the trigeminal foramen (see above).
Ventrally to the brain, the paired carotid branches are recognized, corresponding to two long neurovascular canals that run longitudinally to the occipital foramina, not preserved in MUPA ATZ0104 (Fig. 7B, E, F). In fact, because of the loss of most of the occiput in the holotype of *Parahenodus atancensis*, we cannot reconstruct the morphology of the carotid arteries posterior to the pterygoids. The canals for the carotid branches are ventrally and laterally delimited by the pterygoids, medially by the basioccipital and the parabasisphenoid, and dorso-anteriorly by the parabasisphenoid. The carotids would emerge from the brain ventrally to the pineal organ (Fig. 7E, F). Posterior to this point, they...
Fig. 7. — Digital reconstruction of the brain and associated endocranial structures of the holotype of Parahenodus atancensis de Miguel Chaves, Ortega & Pérez-Garcia, 2018 (MUPA ATZ0104), in dorsal (A), ventral (B), anterior (C), posterior (D), right lateral (E) and left lateral (F) views. Anatomical abbreviations: c.e, cavum epiptericum; p.s, pineal system; pit., pituitary; V, trigeminal nerve. Light blue corresponds to the areas in which the morphology of the brain cannot be reconstructed due to the loss of the adjacent bones of the skull. Scale bar: 2 cm.
would reach the sella turcica in the parabasisphenoid and, although it cannot be clearly observed due to the preservation, they would contact the pituitary through the small carotid foramina of the sella turcica.

DISCUSSION

The virtual reconstruction of the skull of the henodontid placodont *Parahenodus atancensis*, based on its holotype and so far only known specimen, provides new information about this taxon and improves our knowledge of the highly specialized clade Henodontidae. The ventral contact between the jugal and the maxilla of *Parahenodus atancensis* is recognized here as caused by a medial expansion of the jugal (Figs 2B; 8). This suture has not been described in any specimen of the other representative of Henodontidae currently known, *Henodus chelyops*, due to preservation issues (Rieppel 2001). A contact between the process of the squamosals and the posterodorsal process of the epitypogoids is present in *Parahenodus atancensis* (Fig. 3), this contact being also present in *Cynamodus rostratus* Münster, 1839, and *Placochelys placodonta* Jaekel, 1902 (Rieppel, 2001), but unknown in the other cyamodontoids. The otic process of the squamosal *sensu* Nosotti & Pinna (1993) is present in MUPA ATZ0104, being in contact with the prootic (Fig. 3). This neomorphic process is also observed in other cyamodontoids such as *Placochelys placodonta*, *Cynamodus rostratus* and *Cynamodus orientalis* Wang, Li, Scheyer & Zhao, 2019 (Rieppel 2001; Wang et al. 2019), but is unknown in *Henodus chelyops*. The epitypogoids of *Parahenodus atancensis* are identified as large and complex elements that define the braincase laterally (Fig. 3). Due to the preservation, the morphology and disposition of these bones in *Henodus chelyops* cannot be well defined, but the morphology in MUPA ATZ0104 is shared with that of other cyamodontoids. Thus, a broad dorsal process, the contact with the squamosal at the dorsal margin of post-temporal fenestra, and the large suture with the palatines are shared amongst all of them (Rieppel 2001; Neenan et al. 2015). The presence of the palatoquadrate cartilage recess in the holotype of *Parahenodus atancensis* (i.e., a cleft filled with cartilage in the living animal that would connect the quadrate with the epitypogoid; Fig. 4), is shared with the other cyamodontoids, being considered as a synapomorphy of the placodont genera *Cynamodus* and *Placochelys* *sensu* Nosotti & Rieppel 2002; Neenan & Scheyer 2012). This complex having been only described in detail in *Placochelys placodonta* (Rieppel 2001) and *Prephodermatopterus?* *alpinum* Meyer, 1858 (Neenan & Scheyer, 2014). By contrast, this foramen is totally enclosed by the prootic in the non-cyamodontoid placodont *Placodus gigas* (Neenan & Scheyer 2012). Information about the parabasisphenoid complex in cyamodontoid placodonts is limited. This complex having been only described in detail in *Placochelys placodonta* (Rieppel 2001) and *Prephodermatopterus?* *alpinum* Meyer, 1858 (Neenan & Scheyer, 2014). Its morphology in *Parahenodus atancensis* is similar to those of both taxa, with a shallow sella turcica, small cerebral carotid foramina and a poorly developed dorsum sellae (Fig. 5). However, it is larger and more complex in the non-cyamodontoid *Placodus gigas* (Neenan & Scheyer 2012). In fact, an unusual character in the latter is the notable distance between the sella turcica and the dorsum sellae (Nosotti & Rieppel 2002; Neenan & Scheyer 2012), which are usually located close to one another in cyamodontoid placodonts.

Scarce information is so far available about the brain and senses of the placodonts and other Triassic sauropterygians. However, in spite of the fragmentary nature of MUPA ATZ0104, some information can be provided about the neuroanatomy of *Parahenodus atancensis*. The preserved region of MUPA ATZ0104 shows a long and tubular brain endocast (Fig. 7), as is the case in the sauropterygian genus *Nothosaurus* (Koken, 1893; Edinger, 1921; Voeten et al., 2018), whereas the brain in *Placodus gigas* is bulkier (Nosotti & Rieppel 2002; Neenan & Scheyer 2012). The morphology of the skull can be related with those of the braincase and the brain (as suggested by Voeten et al., 2018), since the skulls of both nothosaurians and cyamodontoid placodonts are much more dorsoventrally compressed than that of *Placodus gigas*. As in the case of *Nothosaurus marchicus* (Voeten et al., 2018), *Parahenodus atancensis* lacks well-developed cerebral lobes, but unlike this small nothosaur, no optic lobes are distinguishable in the endocast of MUPA ATZ0104. The absence of well recognizable optic lobes in the midbrain of *Parahenodus atancensis* suggests a poorer vision than those of the nothosaurs and plesiosaurs, where these structures are well developed (Allemand et al. 2019).

No optic lobes have been identified in *Placodus gigas* so far. The reconstructed pineal system in *Parahenodus atancensis* is very narrow (Fig. 7A, C, D), especially when compared with those of the Triassic sauropterygians *Placodus gigas* (Neenan & Scheyer 2012) and *Nothosaurus marchicus* (Voeten et al. 2018). This structure is much more developed in these two taxa, which suggests a lower dependence on the pineal organ in *Parahenodus atancensis* than in those forms, as well as a lower photoreceptive capability. Although the morphology of this pineal organ is unknown in *Henodus chelyops*, the pineal foramen is also mediolaterally compressed (e.g. Rieppel 2001), so a similar development of the pineal organ in this taxon is also expected.

The reconstructed pituitary in *Parahenodus atancensis* is weakly developed (Fig. 7B). A poorly developed...
pituitary can be inferred also in *Placochelys placodonta* and *Psephoderma alpinum*, based on the morphology of the parabasisphenoid complex (Rieppel 2001; Neenan & Scheyer 2014). A weak development of this structure has also been observed in *Nothosaurus marchicus* (Voeten et al. 2018). This contrasts with the identification of an unusually well-developed hypophysis in the placodont *Placodus gigas* (Neenan & Scheyer 2012), whose morphology could therefore be uncommon among Triassic sauropterygians, and also with the well-developed pituitary of such other sauropterygia linages as *Simosaurus gaillardoti* Meyer, 1842 (Neenan et al. 2017), all of which were inhabitants of nearshore and shallow waters. Whereas the bony labyrinth of the plesiosaurs is more derived as an adaptation to pelagic lifestyles, being similar to those of most of the cryptodiran marine turtles (see some exceptions in Evers et al. 2019), the morphology of this element in the Triassic sauropterygians resembles that of several extant aquatic reptiles, including crocodylians, freshwater turtles and marine squamates (Neenan et al. 2017). This implies that the reconstructed morphology of the bony labyrinth of *Henodontidae* (only known for *Parahenodus atancensis*) is similar to that of both extinct and extant shallow-water semi-aquatic reptiles, whose movement is strongly based on lateral undulations of the trunk and tail (Neenan et al. 2017).
CONCLUSIONS

The use of micro-computed tomography for the study of MUPA ATZ0104, a partial skull corresponding to the holotype and only known specimen of the Spanish Upper Triassic *Parahenodus atancensis*, provides the first three-dimensional reconstruction of a cyamodontoid placodont braincase and neural system. This virtual reconstruction allows the identification of several osseous elements of the skull so far unpublished or poorly known, such as the epitypegoids, the prootics, the parabasisphenoid complex, the otic process of the squamosal, the palatoquadrate cartilage recess, the trigeminal foramen and the pteroccipital foramen. Several synapomorphies of the braincase of the clade Cyamodontoidea, some of them so far unknown in Henodontidae, are recognized in *Parahenodus atancensis*, including the large and complex epitypegoids contacting the squamosal at the dorsal margin of the post-temporal fenestra and the palatines in their ventral surfaces; the presence of the palatoquadrate cartilage recess; and the presence of a pteroccipital foramen defined by the opisthotic, the prootic, the squamosal and the epitypegoid.

The reconstruction of the brain endocast and the associated structures of *Parahenodus* shows a lower reliance on vision and the pineal complex than in other known Triassic sauropterygians, as well as a weakly developed hypophysis; these characters were so far unknown for the highly specialized clade Henodontidae. The partial reconstruction of the bony labyrinth shows a similar morphology to that of other Triassic sauropterygians and several extant shallow-water semi-aquatic reptiles, which suggests that *Parahenodus atancensis* was a nearshore inhabitant, which is compatible with the lifestyle proposed for the members of Placodontia.

Acknowledgements

We thank Marcos Martín (UNED) for his comments and suggestions, and for his invaluable help during the preparation of this manuscript. We thank the editor Hans-Dieter Sues, the reviewer James Neenan and an anonymous reviewer for their kind comments, which have helped to improve this paper.

Funding

This work was supported by the Ministerio de Ciencia, Innovación y Universidades (IJC1-2016-30427); the Consejería de Educación, Cultura y Deportes of Castilla-La Mancha (SBPLY/15/180601/000044); and a FPI UNED Grant (Ref. 0271864713 Y0SC001170).

REFERENCES

AGASSIZ L. 1833-45. — *Recherches sur les Poissons Fossiles*. Four volumes, Tome I (livr. 18). Imprimerie de Petitpierre, Neuchâtel: xxxii-188.

ALLEMAND R., HOUSAYE A., BARDET N. & VINCENT P. 2019. — Endocranial anatomy of plesiosaurians (Reptilia, Plesiosauria) from the Late Cretaceous (Turonian) of Goulmima (Southern Morocco). *Journal of Vertebrate Paleontology* 37. https://doi.org/10.1080/07224634.2019.1595636

EDINGER T. 1921. — Über Nothosaurus. 1. Ein Steinkern der Schadelhöhle. *Senckenbergiana* 3 (5/6): 121-129.

EDINGER T. 1925. — Das Zentralnervensystem von *Placodus gigas* Ag. *Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft* 38: 311-318.

EVERS S. W., NEENAN J. M., FERREIRA G. S., WERNERBURG I., BARRETT P. M. & BENSON R. J. B. 2019. — Neurovascular anatomy of the protostegid turtle *Rhinochelys palichireps* and comparisons of membranous and endosseous labyrinth shape in an extinct turtle. *Zoological Journal Linnean Society* Volume 187, Issue 3: 800-828. https://doi.org/10.1093/ zoollinnean/zsz063

GORCE F. 1960. — Étude de quelques Vertébrés du Muschelkalk du Djebel Rehach (Sud Tunisien). *Mémoires de la Société géologique de France* (Nouvelle Série) 39, Mémoire 888: 1-34.

HAAS G. 1975. — On the placodonts of the Wadi Ramon area Muschelkalk. *Colloque international, Centre National de la Recherche Scientifique* 218: 1251-456.

HOPSON J. A. 1979. — Palaeoneurology, in GANS C., NORTH-CURT R. G. & ULINSKI P. (eds), *Biologie der Reptilia*, Volume 9, Neurology. Academic Press, London: 39-146.

HUENE F. V. 1936. — *Hendou chelyops*, ein neuer Placodontier. *Palaeontographica, Abteilung A* 84: 99-148.

JAEKEL O. 1902. — Über Placochelys n. g. und ihre Beutung für die Stammsgeschichte der Schildkröten. *Neues Jahrbuch für Geologie und Paläontologie* 1902: 127-144.

JIANG D.-Y., MOTAHI R., HAO W.-C., RIEPPEL O., SUN Y.-L., SCHMITZ L. & SUN Z.-Y. 2008. — First record of Placodontoidea (Reptilia, Sauropterygia, Placodonta) from the Eastern Tethys. *Journal of Vertebrate Paleontology* 28: 904-908. https://doi.org/10.1671/0272-4634(2008)28[904:RFOPRS]2.0.CO;2

KEAR B. P., RICH T. H., VICKERS-RICH P., ALI M. A., AL-MUFAARRIH Y. A., MATARI A. H., MASARY A. M. & HALAWANI M. A. 2010. — A review of aquatic vertebrate remains from the Middle-Upper Triassic Jilh Formation of Saudi Arabia. *Proceedings of the Royal Society of Victoria* 122: 1-8.

KLEIN N., HOUSAYE A., NEENAN J. M. & SCHEYER T. M. 2015. — Long bone histology and microanatomy of Placodonta (Diapsida: Sauropterygia). *Contributions to Zoology* 84: 59-84. https://doi.org/10.1163/18759866-08401005

KLEIN N. & SCHEYER T. M. 2014. — A new placodont (Placodonta: Sauropterygia) from the Middle Triassic (early Anisian) of the Germanic Basin (Winterswijk, The Netherlands). *Acta Palaeontologica Polonica* 59: 887-902.

Koken E. 1890. — Über die Bildung des Schädels, der Gehirnhöhle und des Gehörorgans bei der Gattung Nothosaurus. *Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin*: 108-111.

Koken E. 1893a. — Beiträge zur Kenntnis der Gattung Nothosaurus. *Zeitschrift der Deutschen Geologischen Gesellschaft* 45: 337-377.

Koken E. 1893b. — *Die Vorwelt und ihre Entwicklungsgeschichte*. Weigel, Leipzig, 654 p.

Li C. 2000. — Placodont (Reptilia: Placodonta) from Upper Triassic of Guizhou, Southwest China. *Vertebrata PalAsiatica* 38: 314-317.

Li C. & RIEPPEL O. 2002. — A new cyamodontoid placodont from Triassic of Guizhou, China. *Chinese Science Bulletin* 47: 403-407.

MÁRQUEZ-AZAGA A., KLEIN N., RELOM L., PLASENCIA P., VILLENA J. A. & MARTÍNEZ-PEREZ C. 2019. — An enigmatic marine reptile, *Hispaniolasaurus craniolongatus* (gen. et sp. nov.) with nothosaurid affinities from the Ladinian of the Iberian Range (Spain). *Historical Biology* 31 (2): 223-233. https://doi.org/10.1080/08912963.2017.1359264

MEYER H. V. 1842. — Simosaurus, die stumpfschauze, ein Saurier aus dem Muschelkalke von Luneville. *Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde* 1842: 184-197.

MEYER H. V. 1858. — *Psaphodermia Alpinum* aus dem der Alpen. *Palaeontographica* 6: 246-252.
APPENDICES — ELECTRONIC SUPPLEMENTARY MATERIAL

Appendix 1. — Interactive PDF with the digital reconstruction of the bones of MUPA ATZ0104, the holotype of Parahenodus atancensis, from the Upper Triassic of El Atance (Guadalajara, Spain): http://sciencepress.mnhn.fr/sites/default/files/articles/pdf/comptes-rendus-palevol2020v19a10_s1.pdf

Appendix 2. — Interactive PDF with the digital reconstruction of the brain and associated structures of MUPA ATZ0104, the holotype of Parahenodus atancensis, from the Upper Triassic of El Atance (Guadalajara, Spain): http://sciencepress.mnhn.fr/sites/default/files/articles/pdf/comptes-rendus-palevol2020v19a10_s2.pdf