Systematic Review

Extrusion of the distal ventriculoperitoneal shunt catheter through the umbilicus: a systematic literature review from 1973 to 2021

Rajendra K. Ghritlaharey*

Department of Paediatric Surgery, Gandhi Medical College and Associated, Kamla Nehru and Hamidia Hospitals, Bhopal, Madhya Pradesh, India

Received: 31 October 2021
Revised: 02 November 2021
Accepted: 03 November 2021

*Correspondence:
Dr. Rajendra K Ghritlaharey,
E-mail: drrajendrak1@gmail.com

ABSTRACT

Trans-umbilical extrusion of the distal ventriculoperitoneal shunt catheter is a rare complication of the VPS insertion. The objectives of this review were to analyze various variables like the age, sex, indication for VPS insertion, clinical presentation, the operative therapy offered for the management, and outcome of the cases published/managed for the trans-umbilical extrusion of the distal VPS shunt catheter. In 1973, the maiden case of trans-umbilical extrusion of the distal VPS catheter was published. Literature/case reports were retrieved from 1973 to October 31, 2021. A total of n=24 (12 males, 12 females) cases were recruited for this systematic review. All of them were children below the age of 13 years. In four-fifths (n=19) of children, the initial VPS catheter was inserted during the first 6 months of life. The median age of children at the time of diagnosis of the above-described VPS complication was 7.5 (42.21 SD) months, and it ranged from 2 months to 13 years of age. The median interval from the initial VPS insertion/last VPS revision to the diagnosis of complication was 4 (24.77 SD) months, and it ranged from 3 weeks to 8 years. The main complaint was the extrusion of the distal VPS catheter through the umbilicus. Surgical procedures performed for the management were (a) removal of the entire VPS catheter n=15, (b) removal of distal/part of distal VPS catheter n=5, and (C) others n=2. For VPS revision; delayed re-VPS insertion was performed in n=10, immediate revision of the distal VPS catheter in n=3, and others. Three (12.5%) children died during the postoperative and follow-up period. The distal VPS catheter extrusion through the umbilicus is a rare complication of VPS insertion, and it occurred exclusively in children. In 70% (n=17) of children, it was documented ≤6 months afterward of the VPS insertion. Delayed re-VPS catheter insertion was preferred for 40% of the children for VPS revision procedures.

Keywords: Children, Complication, Extrusion, Hydrocephalus, Infants, Umbilicus, Ventriculoperitoneal shunt, Ventriculoperitoneal shunt revision

INTRODUCTION

Diversion of the cerebrospinal fluid (CSF) from the ventricular system to the peritoneal cavity through the VPS catheter is one of the most frequently performed surgical procedures for treatment of hydrocephalus.1-3 VPS insertion is associated with a wide variety of complications. The extrusion of the distal VPS catheter through the natural orifices is more common.4-7 Extrusion of the distal VPS catheter through the body parts, other than natural orifices, has also been reported but less frequent.8-10 Distal VPS catheter extrusion through the umbilicus has also been reported but less frequent, and only n=27 cases have been reported to date.11-33 The present manuscript is a systematic review of the literature of n=24 cases of trans-umbilical extrusion of the distal VPS catheter to highlight the demographics, clinical characteristics, surgical procedures offered for the management, and the outcome.11-30
METHODS

PubMed, PubMed Central, Google Scholar, Google Images, ResearchGate, and a few other websites were searched for the retrieval of the relevant literature/case reports. The maiden case of trans-umbilical extrusion of the distal VPS catheter was published in 1973. Relevant literature and case reports were retrieved from 1973 to October 31, 2021. The variables included for the review were age, sex, indication for VPS insertion, interval, and operative therapy offered for management, and outcome. Cases with incomplete desired details were excluded from the review. Case reports presented with CSF umbilical fistula but without trans-umbilical extrusion of the VPS catheter were excluded from the review. For the present review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines are followed. Various keywords were employed during an electronic search for the literature. The keywords utilized for the online search were, “umbilical extrusion of peritoneal shunt catheter”, “trans-umbilical extrusion of ventriculoperitoneal shunt catheter”, “trans-umbilical extrusion of peritoneal shunt catheter”, “extrusion of CSF shunt catheter through umbilicus”, “extrusion of distal ventriculoperitoneal shunt catheter”, and “rare/unusual complication of ventriculoperitoneal shunt catheter”. The full text of the manuscripts was assessed for the final selection of the manuscripts. It is a single-author manuscript; search for the literature, screening and final selection of the articles, extraction of the desired variable from the manuscripts, manuscript writing, and all others were done by the author alone. This manuscript is a systematic review of the already published literature/manuscripts, therefore approval from "the institutional ethics committee" was not required.

RESULTS

The literature search was performed for the selection of the manuscripts for the systematic review of the management of trans-umbilical extrusion of the distal VPS catheter, and is presented in the PRISMA flow chart in Figure 1. A total of n=27 cases related to the treatment of trans-umbilical extrusion of distal VPS were retrieved.11-33 This review consisted of a total of n=24 cases (12 males, 12 females) of trans-umbilical extrusion of the distal VPS catheter, and all were children below the age of 13-years.11-30 Nineteen manuscripts were published and available in the English language.11,13-30 One of the manuscripts was published and available in a language other than English.12 Fourteen cases of extrusion of the distal VPS catheter through the umbilicus were published as case reports. Three of them were parts of the two original articles, and the remaining six of the cases were parts of the four cases series. Three of the cases were part of the other article, and the desired details were not available and excluded from this review.31-33 The demographics, clinical and operative details of n=24 children included in the present review of the management of extrusion of the distal VPS catheter through the umbilicus are provided in Table 1.11-30 Results of the present review on the management of trans-umbilical extrusion of the distal VPS catheter are summarized in Table 2.

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram for manuscript selection for the systematic review of the extrusion of the distal ventriculoperitoneal shunt catheter through the umbilicus from 1973 to 2021.
Table 1: Demographics, clinical and operative details of the cases published on the management of extrusion of the distal ventriculoperitoneal shunt catheter through the umbilicus from 1973 to 2021 (n=24).

Case No.	Author(s)	Pub. Year	Indication for VPS insertion	Sex	Age VPS insertion (months)	Age umbilical extrusion (months)	Interval (months)	VPS (R)	Meningitis	Operative procedures performed	Remark
1.	Adeloye	197311	Cong hydroc	Female	9	12	3	No	No	(i) Removal of distal VPS catheter, (ii) Immediate revision of distal VPS catheter	Well
2.	Takahashi et al, 198812	1988	Cong hydroc	Male	3	16	9	Yes	No	(i) Removal of part of distal VPS catheter, (ii) Immediate revision of distal VPS catheter	Well
3.	Das et al, 199213	1992	Cong hydroc	Male	5	7	3 weeks	Yes	No	Surgical procedure not done (consent not given by parents)	-
4.	Boroujeni 200214	2002	Cong hydroc with NTD	Female	Neonate 4	4	4	No	No	(i) Removal of entire VPS catheter, (ii) Ventriculo-atrial shunt insertion	Well
5.	Wani et al, 200215	2002	Cong hydroc	Female	12	18	6	No	Yes	(i) Removal of entire VPS catheter, (ii) Delayed re-VPS catheter insertion	Well
6.	Silav et al, 200216	2002	Hydroc with NTD	Male	1	2	1	No	Yes?	Surgical procedure not done (consent not given by parents)	-
7.	de Aquino et al, 200617	2006	Cong hydroc	Female	1 day	36	36	No	No	(i) Removal of entire VPS catheter?? (Operative details not available)	Well
8.	de Aquino et al. 200617	2006	Cong hydroc	Female	6	31	25	No	No	(i) Removal of entire VPS catheter?? (Operative details not available)	Well
9.	de Aquino et al. 200617	2006	Hydroc Post infective	Female	1	19	NA	Yes	No	(i) Removal of entire VPS catheter?? (Operative details not available)	Death
10.	Eser et al, 200618	2006	Cong hydroc with NTD	Male	1 day	3	3	No	Yes?	Surgical procedure not done (consent not given by parents)	-
11.	Kanojia et al, 200819	2008	Cong hydroc with NTD	Male	3	6	3	No	No	(i) Removal of entire VPS catheter, (ii) Delayed re-VPS catheter insertion	Well
12.	Kella et al, 200820	2008	Cong hydroc	Female	1	18	17	No	No	(i) Removal of entire VPS catheter, (ii) Delayed re-VPS catheter insertion	Well
13.	Sarkar et al, 201021	2010	Cong hydroc	Male	5	9	4	No	No	Surgical procedure not done (consent not given by parents)	-

Continued.
Case No.	Author(s)	Indication for VPS insertion	Sex	Age VPS insertion (months)	Age umbilical extrusion (months)	Interval (months)	VPS (R)	Meningitis	Operative procedures performed	Remark
14.	Kumar et al, 2010²²	Cong hydroc	Male	Neonate	3	3	No	No	(i) Removal of entire VPS catheter, (ii) Delayed re-VPS catheter insertion	Well
15.	Ardalan et al, 2011²³	Cong hydroc with NTD	Female	Neonate?	4	3	No	No	(i) Removal of entire VPS catheter, (ii) Delayed re-VPS catheter insertion	Death
16.	Ghritlaharey et al, 2012²⁴	Cong hydroc	Male	5	8	3	No	No	(i) Removal of distal VPS catheter, (ii) Immediate revision of distal VPS catheter	Well
17.	Kundal et al, 2012²⁵	Cong hydroc	Male	1	6	5	No	No	(i) Removal of entire VPS catheter, (ii) Delayed re-VPS catheter insertion	Well
18.	Oungbo et al, 2016²⁶	Cong hydroc	Female	2	5	3	No	No	(i) Removal of entire VPS catheter, (ii) Delayed re-VPS catheter insertion	Well
19.	Gadjradj et al, 2020²⁷	Hydroc Arterio-venous fistula	Male	NA	12 years	8 years	Yes	No	(i) Removal of entire VPS catheter (re-VPS catheter insertion not required)	Well
20.	Xia et al, 2020²⁸	Hydroc Postoperative	Male	7.6 years	8 years	6	No	No	(i) Extruded distal VPS catheter as EVD, (ii) Delayed removal of extruded distal VPS, (iii) Repositioning of remaining distal VPS	Well
21.	Calgaro et al, 2020²⁹	Cong hydroc	Female	Neonate?	5	4?	No	No	(i) Removal of entire VPS catheter, (ii) Immediate re-VPS catheter insertion	Well
22.	Pant et al, 2021³⁰	Cong hydroc with NTD	Female	≤ 6 weeks	6 (median)	5 (median)	No	No	(i) Removal of part of distal VPS catheter, (ii) EVD, (ii) Delayed re-VPS catheter insertion	Well
23.	Pant et al, 2021³⁰	Cong hydroc with NTD	Male?	≤ 6 weeks	6 (median)	5 (median)	No	No	(i) Removal of extruded distal VPS catheter, (ii) Repositioning of remaining distal VPS catheter	Well
24.	Ghritlaharey (Present Case), 2021⁹	Hydroc Post infective	Female	6 years	13 years	7 years	No	No	(A) Extruded distal VPS catheter as EVD (B) Delayed revision of distal VPS catheter	Well

Cong = Congenital, EVD= External ventricular drainage, Hydroc= Hydrocephalus, NA= Not available, NTD= Neural tube defect, Pub=Publication, Ref=Reference, VPS= Ventriculoperitoneal shunt, R=Revision
Present case report

A 13-years-old girl presented with dull, periumbilical pain for 2-months. There was a thin purulent discharge through the umbilicus for the past 10-days. Her distal VPS catheter was extruded out through the umbilicus for 5 days.

There were no other symptoms relating to the gastrointestinal tract, central nervous system, or others. A VPS catheter was implanted (not by the author) seven years back for post-infectious hydrocephalus. Clinically, her general and systemic examinations were within normal. Part of her distal VPS catheter was extruded out through the umbilicus. Her VPS catheter was functional and draining clear CSF from the distal end (Figure 2A). Thin purulent discharge through the umbilicus was present (Figure 2B). Mild, peri-umbilical tenderness was present. An organomegaly, abdominal lump, or ascites were not detected. X-rays (AP and lateral view) of the head were done that showed the ventricular catheter, chamber of the shunt system, and upper part of the distal VPS catheter in continuity (Figure 2C). Her x-ray of the chest and abdomen showed continuity of the distal VPS catheter without any kinking or break (Figure 2D). Ultrasound of the abdomen was also reported as normal.

Figure 2 (A) Clinical photograph showing trans-umbilical extruded distal VPS catheter, CSF drops also seen at the tip of the distal VPS catheter. (B) Clinical photograph showing trans-umbilical extruded distal VPS catheter, pus discharge also seen at the umbilicus. (C) X-ray of the head (AP and lateral view) showing ventricular catheter and shunt chamber in place. (D) X-ray of the chest and abdomen showing distal VPS catheter without break/kinking. (E) Cranial computed tomography scan showing ventricular catheter within the brain parenchyma. (F) Cranial computed tomography scans showing ventricular catheter. Ventricular dilatation (hydrocephalus) not seen in any of the scans.
Her cranial CT scan showed a ventricular catheter well in place and ventricular dilatation (hydrocephalus) not seen in any of the films (Figures 2E and 2F). Her previous CT scan of the head=2, Computed tomography scan of the head=1, Computed tomography scan of the abdomen=1,.

DISCUSSION

Perforation of the hollow viscera, followed by the distal VPS catheter extrusion through the natural orifices, is one of the known complications of VPS insertion.2,4-7,34-38

Harischandra et al, in a comprehensive literature review for the VPS migration, and found that approximately 14% of the migration occurred through the abdominal wall.9 They documented that majority of the migration was through the anterior abdominal wall. They also identified n=10 cases of trans-umbilical migration/ extrusion of the distal VPS catheter, and the least was the migration through the posterior abdominal wall. In 1973, Adeloye first reported the spontaneous trans-umbilical extrusion of the distal VPS catheter in a child.11 The present systematic review of the literature revealed a total of n=27 cases of extrusion of the distal VPS catheter through the umbilicus.11-35 Due to the incomplete details, three of the cases/children were excluded from the present review.31-33 In 1975, Antunes et al first reported spontaneous CSF umbilical fistula in two cases, detected after the VPS insertion.39 CSF umbilical fistula is more frequent than that of the trans-umbilical extrusion of the distal VPS catheter.40,41

Summary of evidence

A review of the reported/published cases of trans-umbilical extrusion of the distal VPS catheter revealed that it occurred exclusively in children and occurred equally in girls and boys. It was detected earliest at the age of two months and ranged up to 13 years. Four-fifths

Table 2: Summary of results obtained for the systematic review of the cases of extrusion of the distal ventriculoperitoneal shunt catheter through the umbilicus.

Variables	N
Total number of cases	n=24
Indication for VPS insertion	Cong hydroc=13 (54.16%), Cong hydroc with NTD=7 (29.13%)
Age: VPS insertion	Median=2 (22.31 SD) months, ranged from 1 day to 7.6 years, Four-fifths (n=19) of children were ≤ 6 months of age
History of VPS revision	Yes, n=4
Age: Trans-umbilical extrusion	Median=7.5 (42.21 SD) months, ranged from 2 months to 13 years, Four-fifths (n=19) of children were ≤ 24 months of age
Interval	Median=4 (24.77 SD) months, ranged from 3 weeks to 8 years, In seventy percent (n=17) children, the interval was ≤ 6 months.
Chief complaint	Extrusion of the distal VPS catheter through umbilicus=24
Additional complaints	Discharges through the umbilicus=6, Abdominal pain=7 Symptoms relating to the central nervous system=2
Meningitis/CSF infection	Clinical meningitis=2, CSF infection=7, peritonitis=nil
VPS function	Distal end of VPS catheter was draining CSF=17
Radiological investigations	Plain x-rays=9, Ultrasonography of the abdomen=8, Ultrasonography of the head=2, Computed tomography scan of the head=1, Computed tomography scan of the abdomen=1,
Operative procedures done	(A) Removal of the entire VPS catheter=15 (62.5%), (B) Removal of distal/part of distal VPS catheter=5 (20.8%), (C) Distal VPS catheter as external ventricular drainage=2 (8.3%), (D) Surgical procedures not done =2 (8.3%)
VPS revision done	(A) Delayed re-VPS insertion=10 (41.6%), (B) Immediate revision of distal VPS catheter=3 (12.5%), (C) Immediate re-VPS insertion=1 (4.1%), (D) Delayed revision of distal VPS catheter=1 (4.1%), (E) Conversion to ventriculo-atrial shunt=1 (4.1%), (F) Repositioning of the distal VPS catheter=2 (8.3%), (G) Surgical procedures not done=2 (8.3%), (H) re-VPS insertion not required=1 (4.1%), (I) Details not available =3 (12.5%)
Postoperative mortality	n=3 (12.5%)
(n=19) of children were ≤24 months of age at the time of diagnosis of the umbilical extrusion of the distal VPS catheter. The median age of children at the time of diagnosis of the above-described VPS complication was 7.5 (42.21 SD) months. It was less frequent, 36-months after the VPS insertion/revision, and occurred only in n=2 of children.27

Initial VPS catheter was implanted for congenital hydrocephalus in (n=13) 54% of children.11-13,15,17,20,22,24-26,29 In 30% (n=7) of children, the indication for initial VPS catheter insertion was hydrocephalus associated with NTD/developed after repair of NTDs.14,16,18,19,23,30 Initial VPS catheter was implanted for post-infectious hydrocephalus in n=2 (8.3%).17 In two (8.3%) of children, the indication for VPS insertion was others.27,28 The age of children at the time of initial VPS insertion ranged from 1 day to 7.6 years with a median of 2 (22.31 SD) months. In four-fifths (n=19) of children, the initial VPS catheter was inserted during the first 6-months of life.

The median interval from the initial VPS insertion/last VPS revision to the diagnosis of the above-described VPS complication was 4 (24.77 SD) months, and it ranged from 3 weeks to 8 years. In seventy percent (n=17) children, the interval was ≤6 months. This complication was less frequent after 36-months of VPS insertion and n=2 cases were identified. For the cases with a prior history of VPS shunt revisions, the interval was calculated from the last VPS revision to the diagnosis of the extrusion of the distal VPS catheter.

All the children clinically presented with the chief complaint of extrusion of the distal VPS catheter through the umbilicus. Associated additional symptoms were also documented and that were: discharges through the umbilicus (n=7) abdominal pain (n=6) and symptoms related to the central nervous system (n=2).13,15,16,18,23,26-28 Signs of clinical meningitis were evidenced in n=2 of the children.15,18 CSF was positive for pathogens in n=7 cases.12,15,16,18,23,25,27 Peritonitis was not evidenced in any of the cases. In seventy percent (n=17), the VPS system was functional, and it was draining CSF from the distal end of the catheter.11-13,18,28,30 The clinical diagnosis was possible in all the cases due to the finding of an extruded VPS catheter through the umbilicus. The radiological investigations ordered during the management, and were plain x-rays (n=9), USG of the abdomen (n=8) cranial CT scan (n=1) p and CT scan of the abdomen (n=1).15,20,23-25,27,28

Surgical interventions were carried out in children for the treatment of trans-umbilical extrusion of the distal VPS catheter. The surgical therapy offered in the order of frequency were as- removal of the entire VPS catheter n=15,14,20,22,23,25,27,29 Removal of the distal/part of distal VPS catheter n=5,11,12,24,30 Distal VPS catheter converted as external ventricular drainage n=2.28 Surgical procedures not done in n=2 of children, as their parents refused surgical therapy.13,21 VPS revision is also an integral part of the management of cases of extruded distal VPS catheter, whether it was extruded through one of the natural orifices or extruded through the other body parts. Revision of the VPS catheter was also carried out in n=16 children. Delayed re-VPS insertion was the most preferred option and performed in n=10 children.15,16,18,20,22,23,25,26,30 The immediate revision of the distal/peritoneal part of the VPS catheter was preferred for n=3 children.11,12,24 Immediate re-VPS insertion was done for one of the children.29 Conversion to the ventriculoatrial shunt was done for n=1 of children.14 One of the children did not require re-VPS insertion.27

This review revealed three (12.5%) deaths observed during postoperative and follow-up periods.16,17,23 Deaths were not directly related to the therapy offered for trans-umbilical extrusion of the distal VPS catheter. Deaths were related to the disease itself and the complications related to the VPS insertion. One of the children died due to ventriculitis/meningitis.17 Another child died 10-months after the VPS revision due to unknown reasons, and another one died 2-months after the VPS revision due to respiratory failure.16,23

The exact cause for the trans-umbilical extrusion of the distal VPS catheter is not known. In the anterior abdominal wall, umbilicus is a relatively weak point.44,45 Probably various factors are involved in the occurrence of the trans-umbilical extrusion of the distal VPS catheter. They are weakness of the umbilicus, CSF infection/shunt infection, peristaltic movements, omental activity, adhesion formation, abdominal wall muscles contractions, intra abdominal pressure, and tissue reaction for the shunt catheter. Probably, infection is one of the important factors and it was documented in nine of the cases.12,15,16,18,23,27,28 In two of the children, umbilical peri-umbilical abscess was also present.16,18 Extrusion of the VPS catheter through the persistent of the part of the urachus towards the umbilicus was also documented by one of the authors.20

Limitations

One of the limitations of this systematic review is that the cases on the management of umbilical extrusion of the VPS catheter were limited. Three such cases were also not included in the present manuscript because of the unavailability of the desired details. The standard guideline is not available for the management of extrusion of the distal VPS catheter through the umbilicus, most probably because of the fewer number of reported cases. The authors used various procedures, especially for the VPS revisions.

CONCLUSION

Extrusion of the distal VPS catheter through the umbilicus is a rare complication of VPS insertion. Trans-umbilical extrusion of the distal VPS catheter occurred exclusively in children. In 70% of children, it was
documented ≤6 months of the VPS insertion. Sixty-two percent of children were treated by removal of the entire VPS catheter. Another one-fifths of children were treated by removal of the distal/part of the distal VPS catheter. Delayed re-VPS catheter insertion was preferred for 40% of the children for VPS revision.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. Notarianni C, Vannemreddy P, Culdito G, Bollam P, Wylen E, Willis B et al. Congenital hydrocephalus and ventriculoperitoneal shunts: influence of etiology and programmable shunts on revisions. J Neurosurg Pediatr. 2009;4:547-52.
2. Kumar P, Pandey S, Bhakal N, Shrivastava S, Gupta LN, Jha RP. A retrospective study on ventriculoperitoneal shunt complications in a tertiary care centre. Ind J Neurosurg. 2020;9:170-4.
3. Catapano JS, Mezher AW, Wang DJ, Whiting AC, Mooney MA, Bohl MA, et al. Laparoscopic-assisted ventriculoperitoneal shunt placement and reduction in operative time and total hospital charges. World Neurosurg. 2020;135:e623-8.
4. Ghritlaharey RK, Budhwani KS, Shrivastava DK, Gupta G, Kushwaha AS et al. Trans-anal protrusion of ventriculo-peritoneal shunt catheter with silent bowel perforation: report of ten cases in children. Pediatr Surg Int. 2007;23:575-80.
5. Ghritlaharey RK. Review of the management of peroral extrusion of ventriculoperitoneal shunt catheter. J Clin Diagn Res. 2016;10:PE01-6.
6. Miranda ME, de Sousa MB, Tatsuo ES, Quites LV, Giannetti AV. Bladder perforation by ventriculoperitoneal shunt. Childs Nerv Syst. 2016;32:2321-26.
7. Ghritlaharey RK. Management of trans-vaginal extrusion of the distal ventriculoperitoneal shunt catheter: a systematic literature review from 1973 to 2021. Int J Res Med Sci. 2021;9:3416-23.
8. Panigrahi S, Mishra SS, Das S, Tripathy L, Patpatrao AS. Spontaneous extrusion of peritoneal catheter of ventriculoperitoneal shunt through the intact abdominal wall: Report of two cases. J Pediatr Neurosci. 2012;7:228-30.
9. Harischandra LS, Sharma A, Chatterjee S. Shunt migration in ventriculoperitoneal shunt: A comprehensive review of literature. Neurol India. 2019;67:85-99.
10. Allouh MZ, Al Barbarawi MM, Asfour HA, Said RS. Migration of the distal catheter of the ventriculoperitoneal shunt in hydrocephalus: A comprehensive analytical review from an anatomical perspective. Clin Anat. 2017;30:821-30.
11. Adeloye A. Spontaneous extrusion of the abdominal tube through the umbilicus complicating peritoneal shunt for hydrocephalus. Case report. J Neurosurg. 1973;38:758-60.
12. Takahashi J, Makita Y, Nabeshima S, Tei T, Keyaki A, Miyamoto Y. Spontaneous extrusion of peritoneal tubes after ventriculoperitoneal shunting. Report of two cases. Neurol Med Chir (Tokyo). 1988;28:808-11.
13. Das PC, Radhakrishna K, Rao PLNG. Spontaneous extrusion of a peritoneal tube through the umbilicus: an unusual complication of ventriculo-peritoneal shunt for hydrocephalus. Pediatr Surg Int. 1992;7:209-10.
14. Saedy-Boroujeni HR. Photoclinic diagnosis: Protrusion of peritoneal part of VP shunt catheter from umbilicus. Arch Iran Med. 2002;5:61-2.
15. Wani AA, Ramzan A, Wani MA. Protrusion of a peritoneal catheter through the umbilicus: an unusual complication of a ventriculoperitoneal shunt. Pediatr Surg Int. 2002;18:171-2.
16. Silav G, Tun K, Dolguin H, Unlu A, Selcuki M. The spontaneous umbilical perforation of the distal end of ventriculoperitoneal shunt. Neurochirurgie. 2002;48:128-30.
17. de Aquino HB, Carelli EF, Borges Neto AG, Pereira CU. Nonfunctional abdominal complications of the distal catheter on the treatment of hydrocephalus: an inflammatory hypothesis? Experience with six cases. Childs Nerv Syst. 2006;22:1225-30.
18. Eser O, Dogru O, Aslan A, Kundak AA. Umbilical perforation: an unusual complication of a ventriculoperitoneal shunt. Childs Nerv Syst. 2006;22:1509-10.
19. Kanojia R, Sinha SK, Rawat J, Wakhlu A, Kureel S, Tandon R. Unusual ventriculoperitoneal shunt extrusion: Experience with 5 cases and review of the literature. Pediatr Neurosurg. 2008;44:49-51.
20. Kella N, Rathi PK, Qureshi MA. Umbilical perforation: A rare complication of ventriculoperitoneal shunt. J Coll Physicians Surg Pak. 2008;18:644-5.
21. Sarkar D, Sarkar S. Ventriculoperitoneal shunt catheter migration through umbilicus - A rare complication. Pediatr Oncall J. 2010;7:20-1.
22. Kumar B, Sharma SB, Singh DK. Extrusion of ventriculo-peritoneal shunt catheter. Indian J Pediatr. 2010;77:336.
23. Ardalan M, Rafati HA, Nejat F, EL Khashab M. Umbilical hernia and ventriculoperitoneal shunt complications. Iran J Pediatr. 2011;20:127-8.
24. Ghritlaharey RK, Budhwani KS, Shrivastava DK, Srivastava J. Ventriculoperitoneal shunt complications needing shunt revision in children: a review of 5 years of experience with 48 revisions. Afr J Paediatr Surg. 2012;9:32-9.
25. Kundal VK, Gajdhar M, Sharma C, Agrawal D, Kundal R. Wandering distal end of ventriculo-peritoneal shunt: Our experience with five cases and review of literature. J Nepal Paediatr Soc. 2012;32:266-9.
26. Ogungbo B, Olawoye O, Akudo JU, Ebang P. Management of an extruded ventriculoperitoneal catheter coming through the umbilicus. Niger J Gen Pract. 2016;14:14-6.
27. Gadjradj PS, Willemsz L, Spoor JK. Spontaneous externalization of a ventriculoperitoneal shunt tip through the navel. Br J Neurosurg. 2020;24:1-2.
28. Xia Y, He F, Ren Z, Wang C. Extrusion of the distal catheter from the umbilicus: A case report of a rare complication after ventriculoperitoneal shunt and its management. Front Pediatr. 2020;8:228.
29. Calgaro S, Colangelo AC, Ochirov S, Pizzol D, Antunes M. Failed ventriculoperitoneal shunt as treatment of infantile hydrocephalus. World Journal of Pediatric Surgery. 2020;3:e000123.
30. Pant N, Singh S, Singh G, Kumar A, Rai RK, Rawat J et al. The wandering ventriculoperitoneal shunt and the scope of its salvage. Childs Nerv Syst. 2021;37:2613-8.
31. Al-Akayleh A, Shurbage A. Management of unusual ventriculoperitoneal shunt complications. Journal of the Royal Medical Services (JRMS). 2009;16:55-60.
32. Agarwal N, Shukla RM, Agarwal D, Gupta K, Luthra R, Gupta J et al. Pediatric ventriculoperitoneal shunts and their complications: An analysis. J Indian Assoc Pediatr Surg. 2017;22:155-7.
33. Ezzat AAM, Soliman MAR, Hasanain AA, Thabit MA, Elshityan H, Kandel H et al. Migration of the distal catheter of ventriculoperitoneal shunts in pediatric age group: Case series. World Neurosurg. 2018;119:e131-7.
34. Thiong'o GM, Luzzio C, Albright AL. Ventriculoperitoneal shunt perforations of the gastrointestinal tract. J Neurosurg Pediatr. 2015;16:36-41.
35. Badri M, Gader G, Belkahla G, Kallel J, Zammel I. Transoral migration of the inferior end of a ventriculoperitoneal shunt: A case report with literature review. Neurochirurgie. 2018;64:203-5.
36. Feehey V, Ansar N, Donaldson-Hugh B, Alalade AF. Transoral protrusion of a ventriculoperitoneal catheter caused by jejunal perforation in an adult: Rare case report and review of the literature. World Neurosurg. 2020;137:200-5.
37. Faheem M, Jaiswal M, Prajapati HP, Kumar R, Saba Nu, Ojha BK. Unusual complications of ventriculoperitoneal shunt surgery: Tertiary care experience. J Pediatr Neurosci. Available at: https://www.pediatricneurosciences.com/preprintarticle.asp?id=320385. Accessed on 31 October 2021.
38. Sinha VD, Bhardwaj S, Purohit D, Chopra S. Unusual extrusion of distal end of ventriculoperitoneal shunt: Case series with literature review. Interdisciplinary Neurosurgery. 2021;24:101026.
39. Antunes AC, Ribeiro TR. Spontaneous umbilical fistula from ventriculoperitoneal shunt drainage. Report of two cases. J Neurosurg. 1975;43:481-2.
40. Takase T, Tane K, Suzuki T, Inoue T, Fumoto Y. Spontaneous umbilical fistula as a complication of ventriculo-peritoneal shunt: case report. No Shinkei Geka. 2005;33:725-9.
41. Dolas I, Apaydin HO, Yucetas SC, Ucar MD, Kilinc S, Ucler N. Cerebrospinal fluid leakage from the umbilicus: Case report and literature review. J Med Case Rep. 2016;20: 60-2.
42. Vankipuram S, Jaiswal S, Jaiswal M, Bajaj A, Chandra A, Ojha BK. Spontaneous umbilical CSF fistula due to migration of the peritoneal end of VP shunt: A case report and review of pathogenesis. J Pediatr Neurosci. 2017;12:285-7.
43. Yeola (Pate) M, Singh K. Ventriculoperitoneal shunt presenting as umbilical CSF fistula. J Family Med Prim Care. 2020;9:6276-8.
44. Hegazy AA. Anatomy and embryology of umbilicus in newborns: a review and clinical correlations. Front Med. 2016;10:271-7.
45. Das A. Umbilical lesions: A cluster of known unknowns and unknown unknowns. Cureus. 2019;11:e5309.

Cite this article as: Ghritlaharey RK. Extrusion of the distal ventriculoperitoneal shunt catheter through the umbilicus: a systematic literature review from 1973 to 2021. Int Surg J 2021;8:3654-62.