On volume functions of special flow polytopes

Takayuki NEGISHI, Yuki SUGIYAMA, and Tatsuru TAKAKURA

Abstract

In this paper, we consider the volume of a special kind of flow polytope. We show that its volume satisfies a certain system of differential equations, and conversely, the solution of the system of differential equations is unique up to a constant multiple. In addition, we give an inductive formula for the volume with respect to the rank of the root system of type A.

1 Introduction

The number of lattice points and the volume of a convex polytope are important and interesting objects and have been studied from various points of view (see, e.g., [4]). For example, the number of lattice points of a convex polytope associated to a root system is called the Kostant partition function, and it plays an important role in representation theory of Lie groups (see, e.g., [7]).

In this paper, we consider a convex polytope associated to the root system of type A, which is called a flow polytope. As explained in [2, 3], the cone spanned by the positive roots is divided into several polyhedral cones called chambers, and the combinatorial property of a flow polytope depends on a chamber. Moreover, there is a specific chamber called the nice chamber, which plays a significant role in [9]. Also in [2, 3], a number of theoretical results related to the Kostant partition function and the volume function of a flow polytope can be found. In particular, it is shown that these functions for the nice chamber are written as iterated residues ([3, Lemma 21]). We also refer to [1] for similar formulas for other chambers in more general settings.

The purpose of this paper is to characterize the volume function of a flow polytope for the nice chamber in terms of a system of differential equations, based on a result in [3]. In order to state the main results, we give some notation. Let e_i be the standard basis of \mathbb{R}^{r+1} and let

$$A_+^r = \{e_i - e_j \mid 1 \leq i < j \leq r+1\}$$

be the positive root system of type A with rank r. We assign a positive integer $m_{i,j}$ to each i and j with $1 \leq i < j \leq r+1$. Let us set $m = (m_{i,j})$ and $M = \sum_{1 \leq i < j \leq r+1} m_{i,j}$. For $a = a_1 e_1 + \cdots + a_r e_r - (a_1 + \cdots + a_r) e_{r+1} \in \mathbb{R}^{r+1}$, where $a_i \in \mathbb{R}_{\geq 0} \ (i = 1, \ldots, r)$, the following polytope $P_{A^r_+,m}(a)$ is called the flow polytope:

$$P_{A^r_+,m}(a) = \left\{ (y_{i,j,k}) \in \mathbb{R}^M \mid 1 \leq i < j \leq r+1, \ 1 \leq k \leq m_{i,j}, \ y_{i,j,k} \geq 0, \ \sum_{1 \leq i < j \leq r+1} \sum_{1 \leq k \leq m_{i,j}} y_{i,j,k} (e_i - e_j) = a \right\}.$$
Note that the flow polytopes in \([3]\) include the case that some of \(m_{i,j}\)'s are zero, whereas we exclude such cases in this paper. We denote the volume of \(P_{A^r,m}(a)\) by \(v_{A^r,m}(a)\).

The open set
\[
\mathfrak{c}_{\text{nice}} := \{ a = a_1 e_1 + \cdots + a_r e_r - (a_1 + \cdots + a_r) e_{r+1} \in \mathbb{R}^{r+1} \mid a_i > 0, i = 1, \ldots, r \}
\]
in \(\mathbb{R}^{r+1}\) is called the nice chamber. We are interested in the volume \(v_{A^r,m}(a)\) when \(a\) is in the closure of the nice chamber, and then it is written by \(v_{A^r,m,\mathfrak{c}_{\text{nice}}} (a)\). It is a homogeneous polynomial of degree \(M - r\). The first result of this paper is the following.

Theorem 1.1 Let \(a = \sum_{i=1}^{r} a_i (e_i - e_{r+1}) \in \mathfrak{c}_{\text{nice}}\), and let \(v_{A^r,m,\mathfrak{c}_{\text{nice}}} (a)\) be the volume of \(P_{A^r,m}(a)\). Then \(v = v_{A^r,m,\mathfrak{c}_{\text{nice}}} (a)\) satisfies the system of differential equations as follows:

\[
\begin{align*}
\partial_{r+1}^m v &= 0 \\
(\partial_{r-1} - \partial_r)^{m_{r-1,r}} \partial_{r-1}^m v &= 0 \\
& \vdots \\
(\partial_1 - \partial_{r-1})^{m_{1,r-1}} (\partial_1 - \partial_2)^{m_{1,2}} (\partial_1 - \partial_3)^{m_{1,3}} \cdots (\partial_1 - \partial_r)^{m_{1,r}} \partial_{r-1}^{m_{r-1,r-1}} v &= 0,
\end{align*}
\]

where \(\partial_i = \frac{\partial}{\partial a_i}\) for \(i = 1, \ldots, r\). Conversely, the polynomial \(v = v(a)\) of degree \(M - r\) satisfying the above equations is equal to a constant multiple of \(v_{A^r,m,\mathfrak{c}_{\text{nice}}} (a)\).

We remark that it is known the volume function \(v_{A^r,m}(a)\) of \(P_{A^r,m}(a)\), as a distribution on \(\mathbb{R}^r\), satisfies the differential equation

\[
Lv_{A^r,m}(a) = \delta (a) \tag{1.1}
\]
in general, where \(L = \prod_{i<j} (\partial_i - \partial_j)^{m_{i,j}}\) and \(\delta (a)\) is the Dirac delta function on \(\mathbb{R}^r\) \([6, 9]\). Note that \(\partial_{r+1}\) in the definition of \(L\) is supposed to be zero. The above theorem characterizes the function \(v_{A^r,m,\mathfrak{c}_{\text{nice}}} (a)\) on \(\mathfrak{c}_{\text{nice}}\) more explicitly.

In addition, in Theorem 3.6, we show the volume \(v_{A^r,m,\mathfrak{c}_{\text{nice}}} (a)\) is written by a linear combination of \(v_{A_{r-1}^{r+1},m',\mathfrak{c}_{\text{nice}}'} (a)\) and its partial derivatives, where \(m' = (m_{i,j})_{2 \leq i < j \leq r+1}\) and \(\mathfrak{c}_{\text{nice}}'\) is the nice chamber of \(A_{r-1}^{r+1}\).

This paper is organized as follows. In Section 2, we recall the iterated residue, the Jeffrey-Kirwan residue, and the nice chamber based on \([2, 3, 5, 8]\). Also, we give the some examples of \(P_{A^r,m}(a)\) and the calculations of the volume \(v_{A^r,m,\mathfrak{c}_{\text{nice}}} (a)\). In Section 3, we prove the main theorems.

2 Preliminaries

In this section, we set up the tools to prove the main theorems based on \([2, 3, 5, 8]\).
2.1 Flow polytopes and its volumes

Let \(e_1, \ldots, e_{r+1} \) be the standard basis of \(\mathbb{R}^{r+1} \), and let

\[
V = \left\{ a = \sum_{i=1}^{r+1} a_i e_i \in \mathbb{R}^{r+1} \mid \sum_{i=1}^{r+1} a_i = 0 \right\}.
\]

We consider the positive root system of type \(A \) with rank \(r \) as follows:

\[
A_r^+ = \{ e_i - e_j \mid 1 \leq i < j \leq r + 1 \}.
\]

Let \(C(A_r^+) \) be the convex cone generated by \(A_r^+ \):

\[
C(A_r^+) = \{ a = a_1 e_1 + \cdots + a_r e_r - (a_1 + \cdots + a_r) e_{r+1} \mid a_1, \ldots, a_r \in \mathbb{R}_{\geq 0} \}.
\]

We assign a positive integer \(m_{i,j} \) to each \(i \) and \(j \) with \(1 \leq i < j \leq r + 1 \), and it is called a multiplicity. Let us set \(m = (m_{i,j}) \) and \(M = \sum_{1 \leq i < j \leq r+1} m_{i,j} \).

Definition 2.1 Let \(a = a_1 e_1 + \cdots + a_r e_r - (a_1 + \cdots + a_r) e_{r+1} \in C(A_r^+) \). We consider the following polytope:

\[
P_{A_r^+, m}(a) = \left\{ (y_{i,j,k}) \in \mathbb{R}^M \mid 1 \leq i < j \leq r + 1, 1 \leq k \leq m_{i,j},
\right.
\]

\[
y_{i,j,k} \geq 0, \quad \sum_{1 \leq i < j \leq r+1} \sum_{1 \leq k \leq m_{i,j}} y_{i,j,k} (e_i - e_j) = a \right\},
\]

which is called the flow polytope.

Remark 2.2 The flow polytopes in [3] include the case that \(m_{i,j} = 0 \) for some \(i \) and \(j \).

The elements of \(A_r^+ \) generate a lattice \(V_Z \) in \(V \). The lattice \(V_Z \) determines a measure \(da \) on \(V \).

Let \(du \) be the Lebesgue measure on \(\mathbb{R}^M \). Let \([\alpha_1, \ldots, \alpha_M] \) be a sequence of elements of \(A_r^+ \) with multiplicity \(m_{i,j} \), and let \(\varphi \) be the surjective linear map from \(\mathbb{R}^M \) to \(V \) defined by \(\varphi(e_k) = \alpha_k \). The vector space \(\ker(\varphi) = \varphi^{-1}(0) \) is of dimension \(d = M - r \) and it is equipped with the quotient Lebesgue measure \(du/da \). For \(a \in V \), the affine space \(\varphi^{-1}(a) \) is parallel to \(\ker(\varphi) \), and thus also equipped with the Lebesgue measure \(du/da \). Volumes of subsets of \(\varphi^{-1}(a) \) are computed for this measure. In particular, we can consider the volume \(v_{A_r^+, m}(a) \) of the polytope \(P_{A_r^+, m}(a) \).

2.2 Total residue and iterated residue

Let \(A_r = A_r^+ \cup (-A_r^+) \), and let \(U \) be the dual vector space of \(V \). We denote by \(R_{A_r} \) the ring of rational functions \(f(x_1, \ldots, x_r) \) on the complexification \(U_C \) of \(U \) with poles on the hyperplanes \(x_i - x_j = 0 \) (\(1 \leq i < j \leq r + 1 \)) or \(x_i = 0 \) (\(1 \leq i \leq r \)). A subset \(\sigma \) of \(A_r \) is called a basis of \(A_r \) if the elements \(\alpha \in \sigma \) form a basis of \(V \). In this case, we set

\[
f_{\sigma}(x) := \frac{1}{\prod_{\alpha \in \sigma} \alpha(x)}
\]
and call such an element a *simple fraction*. We denote by S_{A_r} the linear subspace of R_{A_r} spanned by simple fractions. The space U acts on R_{A_r} by differentiation: $(\partial(u)f)(x) = (\frac{d}{dx})f(x + \varepsilon u)|_{\varepsilon = 0}$. We denote by $\partial(U)R_{A_r}$ the space spanned by derivatives of functions in R_{A_r}. It is shown in [3, Proposition 7] that

$$R_{A_r} = \partial(U)R_{A_r} \oplus S_{A_r}.$$

The projection map $\text{Tres}_{A_r} : R_{A_r} \to S_{A_r}$ with respect to this decomposition is called the total residue map.

We extend the definition of the total residue to the space \hat{R}_{A_r} consisting of functions P/Q where Q is a finite product of powers of the linear forms $\alpha \in A_r$ and $P = \sum_{k=0}^{\infty} P_k$ is a formal power series with P_k of degree k. As the total residue vanishes outside the homogeneous component of degree $-r$ of A_r, we can define $\text{Tres}_{A_r}(P/Q) = \text{Tres}_{A_r}(P_{q-r}/Q)$, where q is degree of Q. For $a \in V$ and multiplicities $m = (m_{i,j}) \in (\mathbb{Z}_{\geq 0})^M$ of elements of A_r^+, the function

$$F := \frac{e^{a_1x_1 + \cdots + a_rx_r}}{\prod_{i=1}^{r} x_i^{m_{i,r}+1} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}}$$

is in \hat{R}_{A_r}. We define $J_{A_r^+,m}(a) \in S_{A_r}$ by

$$J_{A_r^+,m}(a) = \text{Tres}_{A_r}F.$$

Next, we describe the iterated residue.

Definition 2.3 For $f \in R_{A_r}$, we define the iterated residue by

$$\text{Ires}_{x=0}f = \text{Res}_{x_1=0}\text{Res}_{x_2=0} \cdots \text{Res}_{x_r=0}f(x_1, \ldots, x_r).$$

Since the iterated residue $\text{Ires}_{x=0}f$ vanishes on the space $\partial(U)R_{A_r}$ as in [3], we have

$$\text{Ires}_{x=0}J_{A_r^+,m}(a) = \text{Ires}_{x=0}F. \quad (2.1)$$

2.3 Chambers and Jeffrey–Kirwan residue

Definition 2.4 Let $C(\nu)$ be the closed cone generated by ν for any subset ν of A_r^+ and let $C(A_r^+)_{\text{sing}}$ be the union of the cones $C(\nu)$ where ν is any subset of A_r^+ of cardinal strictly less than $r = \dim V$. By definition, the set $C(A_r^+)_{\text{reg}}$ of A_r^+-regular elements is the complement of $C(A_r^+)_{\text{sing}}$. A connected component of $C(A_r^+)_{\text{reg}}$ is called a *chamber*.

The Jeffrey–Kirwan residue [8] associated to a chamber c of $C(A_r^+)$ is a linear form $f \mapsto \langle\langle c, f \rangle\rangle$ on the vector space S_{A_r} of simple fractions. Any function f in S_{A_r} can be written as a linear combination of functions f_σ, with a basis σ of A_r contained in A_r^+. To determine the linear map $f \mapsto \langle\langle c, f \rangle\rangle$, it is enough to determine it on this set of functions f_σ. So we assume that σ is a basis of A_r contained in A_r^+.
Definition 2.5 For a chamber c and $f_\sigma \in S_{A_r}$, we define the Jeffrey–Kirwan residue $\langle \langle c, f_\sigma \rangle \rangle$ associated to a chamber c as follows:

- If $c \subset C(\sigma)$, then $\langle \langle c, f_\sigma \rangle \rangle = 1$.
- If $c \cap C(\sigma) = \emptyset$, then $\langle \langle c, f_\sigma \rangle \rangle = 0$,

where $C(\sigma)$ is the convex cone generated by σ.

Remark 2.6 More generally, as in [3, Definition 11], the Jeffrey–Kirwan residue $\langle \langle c, f_\sigma \rangle \rangle$ is defined to be $\frac{1}{\text{vol}(\sigma)}$ if $c \subset C(\sigma)$, where vol(σ) is the volume of the parallelepiped $\oplus_{\alpha \in \sigma}[0, 1] \alpha$, relative to our Lebesgue measure da. In our case, the volume vol(σ) is equal to 1 since A_r is unimodular.

The volume $v_{A_r^+, m}(a)$ of the flow polytope $P_{A_r^+, m}(a)$ is written by the function $J_{A_r^+, m}(a)$ and the Jeffrey–Kirwan residue in the following.

Theorem 2.7 ([3]) Let c be a chamber of $C(A_r^+)$. Then, for $a \in \overline{c}$, the volume $v_{A_r^+, m}(a)$ of $P_{A_r^+, m}(a)$ is given by

$$v_{A_r^+, m}(a) = \langle \langle c, J_{A_r^+, m}(a) \rangle \rangle.$$

We denote by $v_{A_r^+, m, c}(a)$ the polynomial function of a coinciding with $v_{A_r^+, m}(a)$ when $a \in \overline{c}$. It is a homogeneous polynomial of degree $M - r$.

2.4 Nice chamber

Definition 2.8 The open subset $\mathfrak{c}_{\text{nice}}$ of $C(A_r^+)$ is defined by

$$\mathfrak{c}_{\text{nice}} = \{a \in C(A_r^+) \mid a_i > 0 \ (i = 1, \ldots, r)\}.$$

The set $\mathfrak{c}_{\text{nice}}$ is in fact a chamber for the root system A_r^+ ([3]). The chamber $\mathfrak{c}_{\text{nice}}$ is called the nice chamber.

Lemma 2.9 ([3]) For the nice chamber $\mathfrak{c}_{\text{nice}}$ of A_r^+ and $f \in S_{A_r}$, we have

$$\langle \langle \mathfrak{c}_{\text{nice}}, f \rangle \rangle = \text{Ires}_{x=0} f.$$

From Theorem 2.7, Lemma 2.9 and (2.1), we have the following corollary.

Corollary 2.10 Let $a \in \overline{\mathfrak{c}_{\text{nice}}}$. Then the volume function $v_{A_r^+, m, \mathfrak{c}_{\text{nice}}}(a)$ is given by

$$v_{A_r^+, m, \mathfrak{c}_{\text{nice}}}(a) = \text{Ires}_{x=0} F.$$
2.5 Examples

In this subsection, we give some examples of the flow polytopes for A_1, A_2, and A_3, and calculate their volumes.

Example 2.11 When $r = 1$, the nice chamber of A_1^+ is $c_{\text{nice}} = \{a = a_1(e_1 - e_2) \mid a_1 > 0\}$.
For $a = a_1(e_1 - e_2) \in c_{\text{nice}}$,
\[P_{A_1^+,m}(a) = \{(y_{i,j,k}) \in \mathbb{R}^{m_{1,2}} \mid y_{i,j,k} \geq 0, \ y_{1,1,1} + y_{1,2,2} + \cdots + y_{1,2,m_{1,2}} = a_1\} \]
From Corollary 2.10, we have
\[v_{A_1^+,m,c_{\text{nice}}}(a) = \text{Res}_{x_1=0} \left(\frac{e^{a_1 x_1}}{x_1^{m_{1,2}}} \right) \]
\[= \frac{1}{(m_{1,2} - 1)!} a_1^{m_{1,2}-1} \]

Example 2.12 When $r = 2$, there are two chambers c_1, c_2 of A_2^+ as below, and the nice chamber c_{nice} of A_2^+ is c_1.

![Diagram of the chamber of A_2^+](image)

For example, we set $m_{1,2} = n$ ($n \in \mathbb{Z}_{>0}$), $m_{1,3} = 1$, and $m_{2,3} = 1$. For $a = a_1 e_1 + a_2 e_2 - (a_1 + a_2)e_3 \in c_{\text{nice}}$,
\[P_{A_2^+,m}(a) = \{(y_{i,j,k}) \in \mathbb{R}^{n+2} \mid y_{i,j,k} \geq 0, \ y_{1,1,1} + y_{1,2,2} + \cdots + y_{1,2,n} + y_{1,3,1} = a_1 \]
\[-y_{1,2,1} - y_{1,2,2} - \cdots - y_{1,2,n} + y_{2,3,1} = a_2 \} \]
From Corollary 2.10, we have
\[v_{A_2^+,m,c_{\text{nice}}}(a) = \text{Ires}_{x_1=0} \left(\frac{e^{a_1 x_1 + a_2 x_2}}{x_1 x_2 (x_1 - x_2)^n} \right) \]
\[= \text{Res}_{x_1=0} \text{Res}_{x_2=0} \left(\frac{e^{a_1 x_1 + a_2 x_2}}{x_1 x_2 (x_1 - x_2)^n} \right) \]
\[= \frac{1}{n!} a_1^n \]
Example 2.13 When \(r = 3 \), there are seven chambers of \(A_3^+ \) as below (II), and the nice chamber \(c_{\text{nice}} \) of \(A_3^+ \) is \(c_1 \).

For example, we set \(m_{1,2} = 1, m_{1,3} = 1, m_{1,4} = 2, m_{2,3} = 1, m_{2,4} = 2, \) and \(m_{3,4} = 2 \).

For \(a = \sum_{i=1}^{3} a_i(e_i - e_4) \in c_{\text{nice}} \),

\[
P_{A_3^+,m}(a) = \left\{ (y_{i,j,k}) \in \mathbb{R}^9 \mid \begin{array}{l}
y_{i,j,k} \geq 0, \\
y_{1,2,1} + y_{1,3,1} + y_{1,4,1} + y_{1,4,2} = a_1, \\
y_{1,2,1} - y_{2,3,1} + y_{2,4,1} + y_{2,4,2} = a_2, \\
y_{3,1} - y_{2,3,1} + y_{3,4,1} + y_{3,4,2} = a_3, \\
y_{i,j,k} \geq 0, \\
y_{1,2,1} + y_{1,3,1} + y_{1,4,1} + y_{1,4,2} = a_1, \\
y_{1,2,1} - y_{2,3,1} + y_{2,4,1} + y_{2,4,2} = a_2, \\
y_{3,1} - y_{2,3,1} + y_{3,4,1} + y_{3,4,2} = a_3, \\
y_{i,j,k} \geq 0,
\end{array} \right\}
\]

From Corollary 2.10, we have

\[
v_{A_3^+,m,c_{\text{nice}}}(a) = \text{Ires}_{x=0} \left(\frac{e^{a_1 x_1 + a_2 x_2 + a_3 x_3}}{x_1^2 x_2^2 x_3^2 (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)} \right)
= \frac{1}{360} a_1^3 (a_1^3 + 6a_1^2 a_2 + 3a_1^2 a_3 + 15a_1 a_2^2 + 15a_1 a_2 a_3 + 10a_2^3 + 30a_2^2 a_3).
\]

3 Main theorems

In this section, we prove the main theorems of this paper. Let \(c_{\text{nice}} \) be the nice chamber of \(A_r^+ \) and let \(a = \sum_{i=1}^{r} a_i(e_i - e_{r+1}) \in c_{\text{nice}} \).

Theorem 3.1 For \(a \in c_{\text{nice}} \), let \(P_{A_r^+,m}(a) \) be the flow polytope as in Definition 2.1 and let \(v_{A_r^+,m,c_{\text{nice}}}(a) \) be the volume of \(P_{A_r^+,m}(a) \). Then \(v = v_{A_r^+,m,c_{\text{nice}}}(a) \) satisfies the system of
differential equations as follows:

\[
\begin{align*}
\partial_r^{m_r,r+1} v &= 0 \\
(\partial_{r-1} - \partial_r)^{m_{r-1},r} \partial_{r-1}^{m_{r-1},r+1} v &= 0 \\
&\vdots \\
(\partial_1 - \partial_r)^{m_{1,2}}(\partial_1 - \partial_3)^{m_{1,3}} \cdots (\partial_1 - \partial_r)^{m_{1,r}} \partial_1^{m_{1,r+1}} v &= 0,
\end{align*}
\]

(3.1)

where \(\partial_i = \frac{\partial}{\partial a_i} \) for \(i = 1, \ldots, r \).

Proof. Let \(F = \frac{e^{a_1 x_1 + \cdots + a_r x_r}}{\prod_{i=1}^r x_i^{m_i,r+1} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}} \). It is easy to see that

\[
P(\partial_1, \ldots, \partial_r)(I_{x=0} F) = I_{x=0}(P(\partial_1, \ldots, \partial_r) F) = I_{x=0}(P(x_1, \ldots, x_r) F)
\]

where \(P \) is a polynomial. Therefore, from Corollary 2.10, we obtain

\[
\partial_r^{m_r,r+1} v = \partial_r^{m_r,r+1} I_{x=0} F = I_{x=0}(\partial_r^{m_r,r+1} F)
\]

\[
= I_{x=0} \left(\frac{e^{a_1 x_1 + \cdots + a_r x_r}}{\prod_{i=1}^r x_i^{m_i,r+1} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}} \right)
\]

\[
= 0,
\]

and

\[
(\partial_{r-1} - \partial_r)^{m_{r-1},r} \partial_{r-1}^{m_{r-1},r+1} v
\]

\[
= I_{x=0}(\partial_{r-1} - \partial_r)^{m_{r-1},r} \partial_{r-1}^{m_{r-1},r+1} F
\]

\[
= I_{x=0}(\partial_{r-1} - \partial_r)^{m_{r-1},r} \left(\frac{e^{a_1 x_1 + \cdots + a_r x_r}}{x_r^{m_r,r+1} \prod_{i=1}^{r-2} x_i^{m_i,r+1} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}} \right)
\]

\[
= I_{x=0} \left(\frac{e^{a_1 x_1 + \cdots + a_r x_r}}{x_r^{m_r,r+1} \prod_{i=1}^{r-2} x_i^{m_i,r+1} \prod_{1 \leq i < j \leq r} (x_i - x_{i+1})^{m_{i,j}}} \right)
\]

\[
= \text{Res}_{x_1} \cdots \text{Res}_{x_{r-1}} \left(\frac{e^{a_r x_r}}{x_r^{m_r,r+1} \prod_{i=1}^{r-2} (x_i - x_r)^{m_{i,r}}} \right)
\]

\[
= 0,
\]

where we used

\[
\text{Res}_{x_k} \left(\frac{e^{a_1 x_1 + \cdots + a_k x_k}}{\prod_{i=1}^{k-1} x_i^{m_i,k+1} \prod_{1 \leq i < j \leq k} (x_i - x_j)^{m_{i,j}}} \right) = 0
\]

for \(k = 1, \ldots, r \). Similarly, we can check the left expressions. □
Remark 3.2 In general, it is known that the volume function $v_{A^r,m}(a)$ of $P_{A^r,m}(a)$, as a distribution on V, satisfies the differential equation

$$Lv_{A^r,m}(a) = \delta(a),$$

where $L = \prod_{i<j}(\partial_i - \partial_j)^{m_{i,j}}$ and $\delta(a)$ is the Dirac delta function on V (see [10]). Note that ∂_{r+1} in the definition of L is supposed to be zero. The above theorem, together with Proposition 3.3 and Theorem 3.4 as below, characterizes the function $v_{A^r,m,c_{\text{nice}}}(a)$ on $\mathfrak{c}_{\text{nice}}$ more explicitly.

Let $M_l = \sum_{i=l+1}^{r+1} m_{i,l}$ ($l = 1, \ldots, r$). Then we have the following proposition.

Proposition 3.3 The coefficient of $a_1^{M_1-1}a_2^{M_2-1}\cdots a_{r-1}^{M_{r-1}-1}a_r^{M_r-1}$ in the volume function $v_{A^r,m}(a)$ is given by

$$\frac{1}{(M_1-1)!(M_2-1)!\cdots(M_{r-1}-1)!(M_r-1)!}.$$

Proof. From Corollary 2.10, we have

$$v_{A^r,m,c_{\text{nice}}}(a) = \sum_{|i|=l-r} a_1^{i_1}a_2^{i_2}\cdots a_r^{i_r}\text{Res}_{x=0} \left(\frac{x_1^{i_1}x_2^{i_2}\cdots x_r^{i_r}}{\prod_{i=1}^{l} x_i^{m_{i,r+1}} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}} \right),$$

where $|i| = i_1 + \cdots + i_r$. When $i_l = M_l - 1$ for $l = 1, \ldots, r$,

$$\text{Res}_{x=0} \left(\frac{x_1^{i_1}x_2^{i_2}\cdots x_r^{i_r}}{\prod_{i=1}^{l} x_i^{m_{i,r+1}} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}} \right) = \text{Res}_{x_1=0} \cdots \text{Res}_{x_{r-1}=0} \text{Res}_{x_r=0} \left(\frac{x_1^{i_1}x_2^{i_2}\cdots x_r^{i_r}}{\prod_{i=1}^{l} x_i^{m_{i,r+1}} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}} \right)$$

$$= \text{Res}_{x_1=0} \cdots \text{Res}_{x_{r-1}=0} \left(\frac{x_1^{i_1}x_2^{i_2}\cdots x_r^{i_r}}{\prod_{i=1}^{l} x_i^{m_{i,r+1}} \prod_{1 \leq i < j \leq r} (x_i - x_j)^{m_{i,j}}} \right)$$

$$= \text{Res}_{x_1=0} \frac{1}{x_1} = 1.$$

Thus we obtain the proposition. \Box

Theorem 3.4 Let $\phi_r = \phi(a_1, \ldots, a_r)$ be a homogeneous polynomial of a_1, \ldots, a_r with degree d and let $M = \sum_{1 \leq i < j \leq r+1} m_{i,j}$. Suppose ϕ_r satisfies the system of differential equations as follows:

$$\begin{cases}
\partial_r^{m_{r,r+1}}\phi_r = 0 \\
(\partial_{r-1} - \partial_r)^{m_{r-1,r}}\partial_r^{m_{r-1,r+1}}\phi_r = 0 \\
\vdots \\
(\partial_1 - \partial_2)^{m_{1,2}}(\partial_1 - \partial_3)^{m_{1,3}}\cdots(\partial_1 - \partial_r)^{m_{1,r}}\partial_1^{m_{1,r+1}}\phi_r = 0.
\end{cases} \tag{3.2}$$
(1) If $M - r < d$, then $\phi_r = 0$.

(2) If $0 \leq d \leq M - r$, then there is a non trivial homogeneous polynomial ϕ_r satisfying (3.2).

(3) If $d = M - r$ in particular, ϕ_r is equal to a constant multiple of $v = v_{A^+_1,m,\text{nice}}(a)$.

Proof. We argue by induction on r. In the case that $r = 1$, we write

$$\phi_1 = \phi(a_1) = pa_1^d,$$

where p is a constant. If $m_{1,2} - 1 < d$ and ϕ_1 satisfies the differential equation $\partial_1^{m_{1,2}} \phi_1 = 0$, then $p = 0$ and hence $\phi_1 = 0$. If $0 \leq d \leq m_{1,2} - 1$, then for any $p \neq 0$, $\partial_1^{m_{1,2}} \phi_1 = 0$. Also, if $d = m_{1,2} - 1$, in particular, then $\phi_1 = pa_1^{m_{1,2}-1}$, while $v = (\frac{1}{m_{1,2}})^{m_{1,2}-1}$ as in Example 2.11. Hence ϕ_1 is equal to a constant multiple of v.

We assume that the statement of this theorem holds for $r - 1$. We write ϕ_r as

$$\phi_r = \phi(a_1, \ldots, a_r) = g_d(a_2, \ldots, a_r) + a_1g_{d-1}(a_2, \ldots, a_r) + \cdots + a_1^dg_0(a_2, \ldots, a_r),$$

where g_k is a homogeneous polynomial of a_2, \ldots, a_r with degree k for $k = 0, 1, \ldots, d$. Then for $k = 0, 1, \ldots, d$, g_k satisfies the differential equations as follows:

$$
\begin{cases}
\partial_r^{m_{r,r+1}} g_k = 0 \\
(\partial_{r-1} - \partial_r)^{m_{r-1,r}} \partial_{r-1}^{m_{r-1,r+1}} g_k = 0 \\
\vdots \\
(\partial_2 - \partial_3)^{m_{2,3}}(\partial_2 - \partial_4)^{m_{2,4}} \cdots (\partial_2 - \partial_r)^{m_{2,r}} \partial_{2}^{m_{2,r+1}} g_k = 0.
\end{cases}
$$

We set $h = (\sum_{2 \leq i < j \leq r+1} m_{i,j}) - (r - 1)$. From the inductive assumption, if $0 \leq k \leq h$, then g_k is a homogeneous polynomial. On the other hand, if $h + 1 \leq k \leq d$, then $g_k = 0$, namely,

$$g_d(a_2, \ldots, a_r) = g_{d-1}(a_2, \ldots, a_r) = \cdots = g_{h+1}(a_2, \ldots, a_r) = 0. \quad (3.4)$$

(1) We consider the case of $M - r < d$. Let $M_1 = \sum_{i=2}^{r+1} m_{1,i}$. Now we compare the coefficients of $a_1^{d-h-M_1+n}$ in $(\partial_1 - \partial_2)^{m_{1,2}}(\partial_1 - \partial_3)^{m_{1,3}} \cdots (\partial_1 - \partial_r)^{m_{1,r}} \partial_1^{m_{1,r+1}} \phi_r$ for $n = 0, \ldots, h$. For $q = 1, \ldots, M_1 - m_{1,r+1}$, we define

$$D_q = \sum_{2 \leq i_1 \leq r} \binom{m_{1,i_1}}{q} \partial_{i_1}^q + \cdots + \sum_{2 \leq i_1 < \cdots < i_k \leq r} \prod_{1 \leq i \leq k} \binom{m_{1,i}}{p_i} \partial_{i_1}^{p_1} \partial_{i_2}^{p_2} \cdots \partial_{i_k}^{p_k}$$

$$+ \cdots + \sum_{2 \leq i_1 < \cdots < i_q \leq r} \prod_{1 \leq i \leq q} \binom{m_{1,i}}{1} \partial_{i_1} \partial_{i_2} \cdots \partial_{i_q}. \quad (3.5)$$
Then we have the following equation:

\[
\frac{(d-h+n)!}{(d-h-M_1+n)!} g_{h-n}(a_2, \ldots, a_r) - \frac{(d-h+n-1)!}{(d-h-M_1+n)!} D_1 g_{h-n+1}(a_2, \ldots, a_r) \\
+ \cdots \pm \frac{(d-h+n-j)!}{(d-h-M_1+n)!} D_j g_{h-n+j}(a_2, \ldots, a_r) \\
\pm \cdots \pm \frac{(d-h+n-(M_1-m_{1,r+1})!}{(d-h-M_1+n)!} D_{M_1-m_{1,r+1}} g_{h-n+M_1,r}(a_2, \ldots, a_r) \\
= 0.
\] (3.6)

When \(n = 0 \), from (3.4) and (3.6), we have

\[g_h(a_2, \ldots, a_r) = 0. \]

When \(n = 1 \), we have

\[\frac{(d-h+1)!}{(d-h-M_1+1)!} g_{h-1}(a_2, \ldots, a_r) - \frac{(d-h)!}{(d-h-M_1+1)!} D_1 g_h(a_2, \ldots, a_r) = 0. \]

Thus we have

\[g_{h-1}(a_2, \ldots, a_r) = 0. \]

Similarly, we have

\[g_{h-2}(a_2, \ldots, a_r) = g_{h-3}(a_2, \ldots, a_r) = \cdots = g_0(a_2, \ldots, a_r) = 0 \]

and hence \(\phi_r = 0 \).

(2) We consider the case of \(0 \leq d \leq M - r \). By the inductive assumption, there is a non trivial homogeneous polynomial \(g_{h-n_1+i} \) satisfying (3.3) for \(i = 1, \ldots, n_1 \), where \(n_1 = M - r - d + 1 \). We can take

\[g_{h-n_1+i}(a_2, \ldots, a_r) \neq 0. \]

When \(n = n_1 \), from (3.4) and (3.6),

\[g_{h-n_1}(a_2, \ldots, a_r) \\
= \frac{(d-h+n_1-1)!}{(d-h+n_1)!} D_1 g_{h-n_1+1}(a_2, \ldots, a_r) - \frac{(d-h+n_1-2)!}{(d-h+n_1)!} D_2 g_{h-n_1+2}(a_2, \ldots, a_r) \\
+ \cdots \pm \frac{(d-h)!}{(d-h+n_1)!} D_{n_1} g_h(a_2, \ldots, a_r). \]

When \(n = n_1 + 1 \),

\[g_{h-(n_1+1)}(a_2, \ldots, a_r) \\
= \frac{(d-h+n_1)!}{(d-h+n_1+1)!} D_1 g_{h-n_1}(a_2, \ldots, a_r) - \frac{(d-h+n_1-1)!}{(d-h+n_1+1)!} D_2 g_{h-n_1+1}(a_2, \ldots, a_r) \\
+ \cdots \pm \frac{(d-h)!}{(d-h+n_1+1)!} D_{n_1+1} g_h(a_2, \ldots, a_r). \]
Similarly, for \(n = n_1 + 2, \ldots, h \), we can express \(g_{h-j}(a_2, \ldots, a_r) \) \((j = n_1, n_1 + 1, \ldots, h)\) in terms of \(g_{h-i}(a_2, \ldots, a_r) \) \((i = 1, \ldots, j)\) and their partial derivatives. Namely, we can express \(\phi_r \) in terms of \(g_{h-n_1+i}(a_2, \ldots, a_r) \) and their partial derivatives. It follows that \(\phi_r \neq 0 \) when \(0 \leq d \leq M - r \).

(3) If \(d = M - r \) in particular, then \(n_1 = 1 \), and \(g_{h-j} \) \((j = 1, \ldots, h)\) becomes linear combination of \(g_h \) and their partial derivatives. Therefore \(\phi_r \) is uniquely determined by \(g_h \). Moreover, from the inductive assumption, \(g_h = C \cdot v_{A_{r-1}^{+}, m', c'_{\text{nice}}} \), where \(C \) is a constant, \(m' = (m_{i,j})_{2 \leq i < j \leq r+1} \), and \(c'_{\text{nice}} \) is a nice chamber of \(A_{r-1}^{+} \). Hence the solution of (3.2) is unique up to a constant multiple. On the other hand, by Theorem 3.1, \(v_{A_{r-1}^{+}, m, c_{\text{nice}}} \) satisfies the system of differential equations (3.2). Hence \(\phi_r \) is equal to a constant multiple of \(v_{A_{r-1}^{+}, m, c_{\text{nice}}} \). \(\square \)

Remark 3.5 Let \(M_1 = \sum_{i=2}^{r+1} m_{1,i} \) and let \(D_q \) \((q = 1, \ldots, h)\) be as in (3.5). When \(d = M - r \), from the proof of Theorem 3.4(3), \(g_{h-j} \) \((j = 1, \ldots, h)\) is uniquely determined as follows:

\[
\begin{align*}
g_{h-1} &= \frac{(M_1-1)!}{M_1!} D_1 g_h \\
g_{h-2} &= \frac{(M_1-1)!}{(M_1+1)!} (D_1^2 - D_2) g_h \\
g_{h-3} &= \frac{(M_1-1)!}{(M_1+2)!} (D_1^3 - 2D_1D_2 + D_3) g_h \\
& \vdots \\
g_0 &= \frac{(M_1-1)!}{(M-r)!} (D_1^h - (h-1)D_1^{h-2}D_2 + \cdots \pm D_h) g_h.
\end{align*}
\]

Let \(m' = (m_{i,j})_{2 \leq i < j \leq r+1} \), \(c'_{\text{nice}} \) a nice chamber of \(A_{r-1}^{+} \) and \(\alpha' = \sum_{i=2}^{r} a_{i}(e_i - e_{r+1}) \in \overline{c}_{\text{nice}} \). From Proposition 3.3 and Remark 3.5, we obtain the following theorem.

Theorem 3.6 Let \(h = (\sum_{2 \leq i < j \leq r+1} m_{i,j}) - (r - 1) \) and let \(D_q \) \((q = 1, \ldots, h)\) be as in (3.5). Then \(v_{A_{r-1}^{+}, m', c'_{\text{nice}}} \) \((\alpha')\) is written by linear combination of \(v_{A_{r-1}^{+}, m', c'_{\text{nice}}} \) \((\alpha')\) and its partial derivatives as follows:

\[
v_{A_{r-1}^{+}, m', c'_{\text{nice}}} \left(\frac{1}{(M_1-1)!} a_1^{M_1-1} + \frac{1}{M_1} a_1^M D_1 + \frac{1}{(M_1+1)!} a_1^{M_1+1}(D_1^2 - D_2) \\
+ \frac{1}{(M_1+2)!} a_1^{M_1+2}(D_1^3 - 2D_1D_2 + D_3) + \cdots \\
+ \frac{1}{(M-r)!} a_1^{M-r}(D_1^h - (h-1)D_1^{h-2}D_2 + \cdots \pm D_h) \right) v_{A_{r-1}^{+}, m', c'_{\text{nice}}} \left(\alpha' \right).
\]

Example 3.7 Let \(r = 3 \), let \(a = \sum_{i=1}^{3} a_i(e_i - e_4) \in \overline{c}_{\text{nice}} \) and let \(\alpha' = \sum_{i=2}^{3} a_{i}(e_i - e_4) \in \overline{c}_{\text{nice}} \). We set \(m_{1,2} = 1, m_{1,3} = 1, m_{1,4} = 2, m_{2,3} = 1, m_{2,4} = 2 \) and \(m_{3,4} = 2 \) as in Example 2.13. Then we have

\[
v_{A_{3}^{+}, m, c_{\text{nice}}} \left(\frac{1}{360} a_1^3(a_1^3 + 6a_1^2a_2 + 3a_1^2a_3 + 15a_1a_2^2 + 15a_1a_2a_3 + 10a_2^3 + 30a_2^2a_3) \right).
\]
We can check that $v = v_{A^+_3, m, \epsilon_{nice}}(a)$ satisfies the system of differential equations as follows:

$$\begin{cases}
\partial_3^2 v = 0 \\
(\partial_2 - \partial_3)\partial_2^2 v = 0 \\
(\partial_1 - \partial_2)(\partial_1 - \partial_3)\partial_1^2 v = 0.
\end{cases}$$

Also, from Proposition 3.2, the coefficient of the term $a_1^3a_2^2a_3$ is $\frac{1}{3!2!1!} = \frac{1}{12}$. When $r = 2$,

$$v_{A^+_2, m, \epsilon_{nice}}(a') = \frac{1}{6}a_2^3(a_2 + 3a_3).$$

Therefore, we have

$$\begin{align*}
\left\{ \frac{1}{6}a_1^3 + \frac{1}{24}a_1^4D_1 + \frac{1}{120}a_1^5(D_1^2 - D_2) + \frac{1}{720}a_1^6(D_1^3 - 2D_1D_2 + D_3) \right\} v_{A^+_2, m, \epsilon_{nice}}(a') \\
= \frac{1}{36}a_1^3a_2^3 + \frac{1}{12}a_1^3a_2^2a_3 + \frac{1}{24}a_1^4a_2^2 + \frac{1}{24}a_1^4a_2a_3 + \frac{1}{60}a_1^5a_2 + \frac{1}{120}a_1^5a_3 + \frac{1}{360}a_1^6 \\
= v_{A^+_3, m, \epsilon_{nice}}(a).
\end{align*}$$

Hence when $r = 3$, we can check the equation (3.7) in Theorem 3.6.

Acknowledgements

The third author was supported by JSPS KAKENHI Grant Number JP16K05137.

References

[1] W. Baldoni, M. Beck, C. Cochet and M. Vergne, *Volume computation for polytopes and partition functions for classical root systems*, Discrete Comput. Geom. **35** (2006), 551–595.

[2] W. Baldoni-Silva and M. Vergne, *Residues formulae for volumes and Ehrhart polynomials of convex polytopes* (2001), arXiv:math/0103097v1.

[3] W. Baldoni and M. Vergne, *Kostant partition functions and flow polytopes*, Transform. Groups **13** (2008), Nos. 3–4, 447–469.

[4] M. Beck and S. Robins, *Computing the Continuous Discretely, second edition*, Undergraduate Texts in Mathematics, Springer, New York, 1997.

[5] M. Brion and M. Vergne, *Arrangements of hyperplanes I : Rational functions and Jeffrey-Kirwan residue*, Ann. Sci. École. Norm. Sup. **32** (1999), 715–741.
[6] V. Guillemin, E. Lerman and S. Sternberg, *Symplectic Fibrations and Multiplicity Diagrams*, Cambridge University Press, 1996.

[7] J. E. Humphreys, *Introduction to Lie Algebras and Representation Theory*, Graduate Texts in Mathematics, Springer, New York, 1972.

[8] L. C. Jeffrey and F. C. Kirwan, *Localization for nonabelian group actions*, Topology 34 (1995), 291–327.

[9] B. V. Lidskii, *Kostant function of the root system of A_n*, Funct. Anal. Appl. 18 (1984), 65–67.

Takayuki NEGISHI
Department of Mathematics, Graduate School of Science and Engineering, Chuo University,
Kasuga, Bunkyo-Ku, Tokyo, 112–8551 Japan.

Yuki SUGIYAMA
Department of Mathematics, Graduate School of Science and Engineering, Chuo University,
Kasuga, Bunkyo-Ku, Tokyo, 112–8551 Japan.
e-mail: y-sugi@gug.math.chuo-u.ac.jp

Tatsuru TAKAKURA
Department of Mathematics, Chuo University,
Kasuga, Bunkyo-Ku, Tokyo, 112–8551 Japan.
e-mail: takakura@math.chuo-u.ac.jp