\section{Introduction and preliminaries}

Let A, B be two rings (algebras). An additive map $h : A \to B$ is called an n-Jordan homomorphism if $h(a^n) = (h(a))^n$ for all $a \in A$. Every Jordan homomorphism is an n-Jordan homomorphism, for all $n \geq 2$, but the converse is false in general. In this paper we investigate the n-Jordan homomorphisms on Banach algebras. Some results related to continuity are given as well.

\textit{2000 Mathematics subject classification:} primary 47B48; secondary 46L05, 46H25.

\textit{Keywords and phrases:} Jordan homomorphism, n-homomorphism, Banach algebra.
uniform algebra on a compact metric space, then there are exactly $2^{\text{Card}(\mathbb{C})}$ complex-valued ring homomorphisms on A whose kernels are nonmaximal prime ideals (see [4, Corollary 2.4]). As an example, take

$$A := \begin{bmatrix} 0 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & \mathbb{R} \\ 0 & 0 & 0 & \mathbb{R} \\ 0 & 0 & 0 & 0 \end{bmatrix};$$

then A is an algebra equipped with the usual matrix-like operations. It is easy to see that

$$A^3 \neq 0 = A^4.$$

So any additive map from A into itself is a 4-Jordan homomorphism, but its kernel does not need to be an ideal of A. Now let B be the algebra of all A-valued continuous functions from $[0, 1]$ into A with supremum norm. Then B is an infinite-dimensional Banach algebra, and the product of any four elements of B is 0. Since B is infinite-dimensional, there are linear discontinuous maps which are 4-Jordan homomorphisms from B into itself (see [3]). In this paper we study the continuity of linear n-Jordan homomorphisms on C^*-algebras.

2. Main result

By definition, it is obvious that n-ring homomorphisms are n-Jordan homomorphisms. Conversely, under a certain condition, n-Jordan homomorphisms are ring homomorphisms. For example, each Jordan homomorphism h from a commutative Banach algebra A into \mathbb{C} is a ring homomorphism: Fix $a, b \in A$ arbitrarily. Since $h((a + b)^2) = h(a + b)^2$ a simple calculation shows that $h(ab + ba) = 2h(a)h(b)$. The commutativity of A implies that $h(ab) = h(a)h(b)$ and hence h is a ring homomorphism. In 1968, Zelazko [8] proved the following theorem (see also [5, Theorem 1.1]).

Theorem 2.1. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a semisimple commutative Banach algebra. Then each Jordan homomorphism $h : A \rightarrow B$ is a ring homomorphism.

We prove the following result for 3-Jordan homomorphisms and 4-Jordan homomorphisms on commutative algebras.

Theorem 2.2. Let $n \in \{3, 4\}$ be fixed, A, B be two commutative algebras, and let $h : A \rightarrow B$ be an n-Jordan homomorphism. Then h is an n-ring homomorphism.

Proof. First, let $n = 3$. Recall that h is additive mapping such that $h(a^3) = (h(a))^3$ for all $a \in A$. Replacement of a by $x + y$ results in

$$h(x^2 y + xy^2) = h(x)^2 h(y) + h(x)h(y)^2.$$ \hfill (2.1)
Hence, for every \(x, y, z \in A \),

\[
h(xyz) = \frac{1}{2} h((x + z)^2y + (x + z)y^2 - (x^2y + xy^2 + z^2y + zy^2))
\]

\[
= \frac{1}{2} [h((x + z)^2y + (x + z)y^2] - h(x^2y + xy^2] - h(z^2y + zy^2)]
\]

\[
= \frac{1}{2} [\{ h((x + z)^2(y) + (x + z)[h(y)]^2 - h(x)^2h(y) + h(x)[h(y)]^2
\]

\[
- [h(z)^2h(y) + h(z)[h(y)]^2]
\]

\[
= h(x)h(y)h(z).
\]

This means that \(h \) is a 3-ring homomorphism. Now suppose that \(n = 4 \). Then \(h \) is additive and \(h(a^4) = (h(a))^4 \) for all \(a \in A \). Replace \(a \) by \(x + y \) in the equality above to get

\[
h(4x^3y + 6x^2y^2 + 4xy^3) = 4h(x)^3h(y) + 6h(x)^2h(y)^2 + 4h(x)h(y)^3.
\]

(2.2)

Replacing \(x \) by \(x + z \) in (2.2), we obtain

\[
h((4x^3y + 6x^2y^2 + 4xy^3) + (4x^3y + 6x^2y^2 + 4xy^3) + 12(x^2zy + xz^2y + xzy^2))
\]

\[
= (4h(x)^3h(y) + 6h(x)^2h(y)^2 + 4h(x)h(y)^3) + (4h(z)^3h(y) + 6h(z)^2h(y)^2
\]

\[
+ 4h(z)h(y)^3) + 12(h(x)^2h(z)h(y) + h(x)h(z)^2h(y)
\]

\[
+ h(x)h(z)h(y)^2).
\]

(2.3)

Combining (2.2) and (2.3) gives

\[
h(xyz)(x + y + z) = (h(x)h(y)h(z))(h(x) + h(y) + h(z)).
\]

(2.4)

Replace \(z \) by \(-x\) in (2.4) to obtain

\[
h(x^2y^2) = h(x)^2h(y)^2
\]

(2.5)

and replace \(y \) by \(y + w \) in (2.5) to get

\[
h(x^2yw) = h(x)^2h(y)h(w).
\]

(2.6)

Now replace \(x \) by \(x + t \) to obtain

\[
h(xtyw) = h(x)h(t)h(y)h(w).
\]

Hence, \(h \) is a 4-ring homomorphism. \(\Box \)

By Theorem 2.2 and [1, Theorem 3.2] we deduce the following result.

Corollary 2.3. Let \(h : A \to B \) be a linear involution preserving 3-Jordan homomorphism between commutative C*-algebras. Then \(h \) is norm contractive (that is, \(\|h\| \leq 1 \)).

Also, by Theorem 2.2 and [7, Theorem 2.3], we have the following corollary.
Corollary 2.4. Let $h : A \rightarrow B$ be a linear involution preserving 4-Jordan homomorphism between commutative C^*-algebras; then h is completely positive. Thus h is bounded.

Now we prove our main theorem.

Theorem 2.5. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a semisimple commutative Banach algebra. Then each 3-Jordan homomorphism $h : A \rightarrow B$ is a 3-ring homomorphism.

Proof. We prove the theorem in two steps as follows.

Step I. Suppose $B = C$. We have $h(a^3) = h(a)^3$ for all $a \in A$. Replace a by $x + y$ to obtain

$$h(xy y + yx^2 + y^2 x + x^2 y + xy^2 + yxy) = 3(h(x)^2 h(y) + h(x)h(y)^2)$$

(2.7)

and replace y by $-y$ in (2.7) to get

$$h(-xy x - yx^2 + y^2 x - x^2 y + xy^2 + yxy) = 3(-h(x)^2 h(y) + h(x)h(y)^2).$$

(2.8)

By (2.7) and (2.8) we obtain the relation

$$h(xy y^2 + y^2 x + yxy) = 3(h(x)h(y)^2).$$

(2.9)

Replacing y by $y - z$ in (2.9), we get

$$h(xy y^2 + xz^2 - 2xy z + yxy - yxz - zxy + zxz + z^2 x + y^2 x - 2yzx)$$

$$= 3(h(x)^2 h(y) + h(x)h(y)^2) - 6h(x)h(y)h(z).$$

(2.10)

By (2.9) and (2.10), we obtain

$$h(yxz + zxy + 2xyz + 2yzx) = 6h(x)h(y)h(z).$$

(2.11)

Replacing z by x in (2.11), we get

$$h(3y x^2 + x^2 y + 2y x x) = 6h(x)^2 h(y),$$

(2.12)

and combining (2.9) and (2.12), we obtain

$$h(xy x + 2y x^2) = 3h(x)^2 h(y).$$

(2.13)

From (2.8) and (2.13), we conclude that

$$h(yx^2 - x^2 y) = 0.$$

(2.14)

Replacing x by $x + z$ in (2.14), we get

$$h(yx^2 + yz^2 + 2yx z - x^2 y - z^2 y - 2x z y) = 0.$$
and from this equality and (2.14) it follows that
\[h(yxz - xzy) = 0. \] (2.15)

Combining (2.11) and (2.15) gives
\[h(yxz + 3xyz + 2yzx) = 6h(x)h(y)h(z), \] (2.16)
and then replacing \(z \) by \(x \) in (2.16) leads to
\[h(xy + xy^2) = 2h(x)^2h(y). \] (2.17)

Finally, combining (2.13) and (2.17) to obtain
\[h(yx^2) = h(y)h(x)^2 \] (2.18)
and then replacing \(x \) by \(x + z \) in (2.18), we conclude that
\[h(yxz) = h(y)h(x)h(z); \]
hence, \(h \) is a 3-ring homomorphism.

Step II. \(B \) is arbitrary semisimple and commutative. Let \(M_B \) be the maximal ideal space of \(B \). We associate with each \(f \in M_B \) a function \(h_f : A \to \mathbb{C} \) defined by
\[h_f(a) := f(h(a)) \]
for all \(a \in A \). It is easy to see that \(h_f \) is additive and \(h_f(a^3) = (h_f(a))^3 \) for all \(a \in A \). So step I applied to \(h_f \) implies that \(h_f \) is a 3-ring homomorphism. By the definition of \(h_f \), we obtain that
\[f(h(abc)) = f(h(a))f(h(b))f(h(c)) = f(h(a)h(b)h(c)). \]

Hence
\[h(abc) - h(a)h(b)h(c) \in \text{Ker}(f) \]
for all \(a, b, c \in A \) and all \(f \in M_B \). Since \(B \) is assumed to be semisimple, we get \(h(abc) = h(a)h(b)h(c) \) for all \(a, b, c \in A \). We thus conclude that \(h \) is a 3-ring homomorphism, and the proof is complete.

From now on we consider such \(n \)-Jordan homomorphisms as are linear.

Corollary 2.6. Suppose that \(A, B \) are \(C^* \)-algebras, where \(A \) need not be commutative, and suppose that \(B \) is semisimple and commutative. Then every involution preserving 3-Jordan homomorphism \(h : A \to B \) is norm contractive (that is, \(\|h\| \leq 1 \)).

Proof. It follows from Theorem 2.5 and [1, Theorem 2.1].
THEOREM 2.7. Let $h : A \rightarrow B$ be a bounded involution preserving k-Jordan homomorphism between C^*-algebras such that $h(a^*a) = h(a)^*h(a)$ for all $a \in A$. Then h is norm contractive (that is, $\|h\| \leq 1$).

PROOF. From [7, Lemma 2.4],

$$\|h(a)\|^{4k+2} = \|(h(a)^*h(a))^{2k+1}\| = \|(h(a)^*h(a))^k(h(a)^*h(a))(h(a)^*h(a))^k\|$$

$$= \|[(h(a)(h(a)^*h(a))^k]h(a)(h(a)^*h(a))^k]\|$$

$$= \|h(a)(h(a)^*h(a))^k\|^2 = \|h(a)(h(a)^*h(a))^k\|^2$$

$$= \|h(a)(h(a)^*h(a))^k\|^2 \leq \|h(a)\|^2 \|h((a^*a)^k)\|^2$$

$$\leq \|h\|^2 \|a\|^2 \|h\|^2 (a^*a)^k \|^2$$

$$\leq \|h\|^4 \|a\|^{4k+2},$$

for all $a \in A$, which implies that $\|h\| \leq 1$ by taking $(4k + 2)$th roots. \qed

References

[1] J. Bracic and M. S. Moslehian, ‘On automatic continuity of 3-homomorphisms on Banach algebras’, Bull. Malays. Math. Sci. Soc. (2) 30(2) (2007), 195–200.

[2] A. Charnow, ‘The automorphisms of an algebraically closed field’, Canad. Math. Bull. 13 (1970), 95–97.

[3] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, ‘n-homomorphisms’, Bull. Iranian Math. Soc. 31(1) (2005), 13–23.

[4] T. Miura, S.-E. Takahasi and N. Niwa, ‘Prime ideals and complex ring homomorphisms on a commutative algebra’, Publ. Math. Debrecen 70(3–4) (2007), 453–460.

[5] T. Miura, S.-E. Takahasi and G. Hirasawa, ‘Hyers–Ulam–Rassias stability of Jordan homomorphisms on Banach algebras’, J. Inequal. Appl. 2005(4) (2005), 435–441.

[6] T. Palmer, ‘Banach algebras and the general theory of $*$-algebras’, in: Vol. I. Algebras and Banach algebras, Encyclopedia of Mathematics and its Applications, 49 (Cambridge University Press, Cambridge, 1994).

[7] E. Park and J. Trout, ‘On the nonexistence of nontrivial involutive n-homomorphisms of C^*-algebras’, Trans. Amer. Math. Soc. 361 (2009), 1949–1961.

[8] W. Zelazko, ‘A characterization of multiplicative linear functionals in complex Banach algebras’, Studia Math. 30 (1968), 83–85.

M. ESHAGHİ GORDJI, Department of Mathematics, Semnan University, PO Box 35195-363, Semnan, Iran

e-mail: madjid.eshaghi@gmail.com

https://doi.org/10.1017/S000497270900032X Published online by Cambridge University Press