INTRODUCTION

Template dependent nucleotide polymerases use a remarkably well conserved two metal ion dependent phosphoryl transfer mechanism for nucleotide addition. Templates, primer-ends and nucleotides are positioned at the active site, the 3’ hydroxyl of the primer-end attacks the z-phosphate of the incoming dNTP, pyrophosphate (PPi) is released and the primer-end translocates to allow for the addition of the next nucleotide [1]. A conserved structural feature of polymerase active sites is the presence of two or three acidic residues (depending on the class of polymerases) which coordinate the positioning of the metal ions [2].

Reverse transcriptases (RTs) are a class of RNA or DNA-dependent DNA polymerases first discovered within retroviral particles [3,4]. They are essential for retroviral replication, and copy the genomic RNA into double stranded DNA that can then integrate into a new genomic location[5]. RTs, or the genes encoding them, have subsequently been discovered in a wide range of endogenous retrotransposons and in some infectious DNA viruses, where they are used for element replication, as well as in telomerases, that use a short RNA template to create terminal DNA repeats at chromosome ends. All RTs contain three conservatively spaced aspartates, two of which form the canonical “YXDD” sequence [6,7]. Early studies with retroviral RTs showed that mutation of any of these aspartates severely disrupts polymerase function in vitro, and eliminates the biological activity of the affected enzyme [8,9]. In previous studies of the RT encoded by the yeast retrotransposon Ty1, we found that a substitution of the second D in the YXDD box (D211N), had surprisingly little effect on the in vitro ability of the enzyme to add nucleotides to homopolymer substrates, although a D211E substitution of the second D in the YXDD box (D211E), had completely blocked polymerization [10].

While the D211N mutation completely inhibits transposition, we also identified second site suppressor mutations in the RNase H domain of Ty1 RT, which restored 5–10% of the D211N mutant’s transposition capability [10]. Although this was the first reported case of a retrotransposon with apparently loosened requirements for the acidic residues in the active site, there is now a report that a different, unrelated retrotransposon RT from yeast (Ty3) has similar if not even more extreme flexibility at these sites [11].

Because of the unusual properties of the mutant Ty1 RT, we undertook a pre-steady state analysis of single base incorporation to compare the kinetic parameters of the two enzymes, determine the nature of the defect in the D211N mutant, and to better understand the role of this residue in polymerization and transposition. Our results indicated that the rate constant for single nucleotide addition (kpol) was reduced 223 fold for the D211N mutant rather than 223 fold for pyrophosphorolysis, the reverse reaction to polymerization, where pyrophosphate is the substrate and dNTPs are the product. We find that pyrophosphorolysis is efficient only when the base-paired primer template region is >14 bases, and that activity increases when the primer end is blunt-ended or recessed by only a few bases. Using pre-steady state kinetic analysis, we find that the rate of pyrophosphorolysis (kpyro) in the D211N mutant is nearly 320 fold lower than the WT enzyme, and that the mutant enzyme has an ~170 fold lower apparent Kd for pyrophosphate. These findings indicate that subtle substrate differences can strongly affect the enzyme’s ability to properly position the primer-end to carry out pyrophosphorolysis. Further, the kinetic data suggests that the D211 residue has a role in pyrophosphate binding and release, which could affect polymerase translocation, and help explain the D211N mutant’s transposition defect.
Pyrophosphorolysis is the reverse of the polymerization reaction, in which the terminal base at a primer-end is excised in the presence of a properly positioned PPI group, generating a dNTP and a primer one base shorter than its initial length. Pyrophosphorolysis has been useful in studying the events occurring at the polymerase active site. In particular it has become apparent that excision of incorporated nucleotide analogue chain-terminators is an important drug resistance mechanism utilized in vivo by mutant versions of HIV1 RT, and possibly other viral polymerases [13–15]. This process is mechanistically analogous to pyrophosphorolysis, except that ATP is the PPI donor [16,17]. Analysis of this phenomenon, and the effects of various analogs and mutations in HIV-1 RT on the relative efficiency of this process, has helped to explicate the events at the active site that result in pyrophosphorolysis and the related phenomenon of translocation and processive synthesis [18,19].

The primer-end in the active site of a polymerase can be present in one of two positions, referred to as the P and N sites. With the primer-end in the P site, an incoming nucleotide can bind to the N site, and chemistry can occur between the 3' hydroxyl and the alpha phosphate of the dNTP. Post-chemistry, the primer-end resides in the N site, which also houses the PPI group. The chemical step at the active site corresponds to the closing down of a finger domain over the active site, leading to a "closed" conformation [20]. Translocation then involves the movement of the primer-end from the N site back to the P site, accompanied by release of the PPI from the N site pocket. This corresponds to a switch back to an "open" conformation. An important insight from the work on HIV-1 nucleotide analog resistance mutants is that the equilibrium between the primer-end at the P site versus the N site is an important determinant in the ability to carry out excision, since this reaction can only occur if the primer-end is positioned at the N site, which may not be a favorable placement.

Given the unusual observations regarding the biochemical properties of the D211N mutant in polymerization, and the importance of primer-end placement in the active site, we set out to determine how the substitution would affect the process of pyrophosphorolysis. Previous studies on HIV-1 RT and Ty3 RT have shown that certain mutations do not necessarily affect polymerization and pyrophosphorolysis equally, suggesting that binding or positioning of the substrates in one direction or the other can be differentially affected [11,21]. Since this could give further insights into the functions of the D211 residue, we carried out a series of experiments to characterize determinants of pyrophosphorolysis for the WT and mutant enzyme, using either Mg2+ or Mn2+ as the divalent cation. We then measured the apparent k_d for PPI and the k_{pyro} using pre-steady state kinetics. This study of pyrophosphorolysis, along with our previous examination of polymerization, form the frame work for future understanding of the mechanistic basis of the activity of the Ty1 RT second site suppressor mutants.

RESULTS

D211 N mutant RT enzyme is defective in pyrophosphorolysis

We initially compared the time course of pyrophosphorolysis (0–3600 sec) for the two enzymes using our previous 32P-labeled 14-mer/28-mer DNA/DNA substrate [12] (RAG*998/*928, Fig. 1) in the presence of 1 mM sodium pyrophosphate and 10 mM Mg2+.

The behavior of the two enzymes was quite distinct under substrate excess conditions (Fig. 2). The WT enzyme was able to excise a base from ~10% of the labeled primer within 60 seconds.

The fraction of excised substrate increased to ~17% over the time course (Fig. 2A). Time points beyond 120 seconds also showed base addition. Under the same conditions, pyrophosphorolysis with the D211N RT was insignificant, amounting to <1% of the total substrate at the longest time point (Fig. 2B). We did not observe any base addition with the mutant enzyme either. Since there are no nucleoside triphosphates initially present in the in vitro reaction, the presence of base addition in WT RT reactions (Fig. 2A) suggested that nucleoside triphosphates were being generated by pyrophosphorolysis of the unlabeled strand of the double stranded substrate, and subsequently used for polymerization. This is consistent with the observation that the excised base from the unlabeled strand (dATP) is complementary to the next base beyond the primer, for this primer/template combination.

Pyrophosphorolysis on the 5’ blunt end

To determine whether pyrophosphorolysis is simultaneously occurring at the other end of the 14-mer/28-mer DNA/DNA substrate, we labeled the 5’ end of the 28-mer oligonucleotide with 32P, instead of the 14-mer, and repeated the time course reactions with this new substrate (RAG 998/*928, Fig. 1) under the same conditions. Unexpectedly, WT reactions were much more extensive on this end of the substrate, with ~4.2% of the total substrate excised by 10 sec.

By 900 seconds almost 50% of the substrate had at least one base excised. By the end of the time course, a substantial portion of the substrate had been reduced by 8 bases (Fig. 3A). The large amount of dNTPs generated by pyrophosphorolysis of the blunt end could support the forward reaction observed in Fig. 2A. The D211N mutant also shows improved pyrophosphorolysis (~14% of the total substrate by 3600 seconds) but was not nearly as robust as the WT enzyme (Fig. 3B).

The apparent preferential pyrophosphorolysis at the blunt end, and the generation of polymerization substrates made examination of the excision reaction at the recessed end too complex. To simplify, we modified the original substrate by introducing a mismatched guanosine at the 3’ end of the 28-mer template (resulting in RAG*998/1109, Fig. 1). In the presence of PPI, the WT enzyme was able to excise a base from the labeled primer without showing any forward reaction products (Fig. S1A). Therefore, a mismatch at the blunt end blocks base addition at the recessed end, presumably by inhibiting pyrophosphorolysis at the mismatched blunt end. The D211N mutant reactions were very poor and no pyrophosphorolysis activity was observed even at 3600 seconds (Fig. S1B).

Primer length effects

The preceding analysis indicated that the recessed primer end of the 14-mer/28-mer or 28-mer substrates (RAG*998/928, RAG*998/1109, Fig. 1, where “]” refers to the terminal mismatch) is a poor substrate for pyrophosphorolysis. To determine the effects of altering substrate lengths and/or the degree of primer end recessing, we used a variety of substrates (Fig. 4) that differed only by the length of the 5’-end 32P-labeled primer, as a 14-mer, 20-mer, 24-mer, 27-mer or 28-mer (RAGs 998, 1250,1249, 1248 and 952 respectively as in Fig. 1). Primers were annealed to the same terminally mismatched 28'-mer template. Further, we carried out the 60-minute reactions using either Mg2+ or Mn2+ as the divalent cation. For both WT and D211N mutant enzymes (Fig. 4A & B) pyrophosphorolysis activity significantly improved with the increase in length beyond the 14-mer in the presence of Mg2+. In particular, the WT enzyme was able to excise >30% of the 24-mer and 28-mer substrates (Fig. 4C). The
D211N mutant enzyme pyrophosphorolysis activity also improved proportionately with longer primers compared to the 14-mer primer but was still defective in comparison to WT (Fig. 4C and 4D).

As previously reported [12,22], for polymerization, the WT enzyme has a marked Mg$^{2+}$ preference, and is inhibited by Mn$^{2+}$, whereas the mutant enzyme prefers Mn$^{2+}$ to Mg$^{2+}$. In the presence of Mg$^{2+}$, the WT enzyme excised a larger percentage of substrates than in Mn$^{2+}$ (Fig. 4C). The D211N mutant enzyme showed no clear preference under these conditions (Fig. 4D). For both enzymes, the patterns of excision differ in the presence of the different metals, with a greater number of bases removed from any given excised substrate in the presence of Mg$^{2+}$ (Fig. 4A and B).

These results demonstrate that substrates with double stranded primer/template regions greater than 14 bps are better substrates for the Ty1 RT pyrophosphorolysis reaction. Of note, during processive excision, as seen in Fig. 4A, most excised products remained longer than 14-bases long, and a 14 base primer appears to be a limit to excision. Increased primer length is not the only factor associated with increased pyrophosphorolysis activity, however, since the 24-mer was the most active, a blunt 28-mer was next most active and a 20-mer was more active than the 27-mer. The Mn$^{2+}$ results for WT mirrored those with Mg$^{2+}$, suggesting that metal ion was not the determining factor in relative activity on different substrates.

We further explored the influence of different substrate arrangements on pyrophosphorolysis (Fig. S2). These comparisons demonstrated that the poor reaction of the original 14 mer/28 mer is not due to the length of the recessed end, since a substrate with the same recessed 14 bases, but a double stranded region extended by an additional 11 bases underwent robust pyrophosphorolysis.

Pyrophosphorolysis processivity

In our previous study [12] we found that both the WT and D211N mutant were highly processive for the polymerase reaction. Since we observed multiple excision products, we asked whether excision of multiple bases was processive or distributive. The reactions were carried out in the presence or absence of a trap in excess to the labeled substrate, and in the presence of Mg$^{2+}$ or Mn$^{2+}$. Trap effectiveness controls and control reactions without enzyme or PPI or divalent ions were also conducted. Fig. 5A shows that either in the presence or absence of trap, and in the presence of metal, the WT enzyme can excise multiple bases. This indicates that pyrophosphorolysis is processive in the presence of either divalent...
metal ion. The D211N enzyme was similarly insensitive to the presence of the trap (Fig. 3B) indicating that the D211N RT is also processive for pyrophosphorolysis in the presence of either divalent metal ion.

Pre-steady-state kinetics of pyrophosphorolysis for WT and mutant D211 N Ty1 RT

Our steady state studies showed that the D211N mutant enzyme was much less proficient at pyrophosphorolysis, but did not provide a quantitative analysis of the kinetic differences. To examine this, we turned to pre-steady state single base excision kinetic analysis. Earlier, we had shown that single base addition onto the 14-mer/28-mer RAG998/RAG928 substrate was ~223 fold slower for the mutant enzyme than the WT RT, but that dNTP binding was only minimally affected [12]. To measure the reverse reaction of polymerization, we generated the corresponding 15-mer/28-mer −mer primer was excised by at least one base, 50.1% of the 15-mer primer was excised in the presence of 1 mM PPi during a 30 minute reaction (data not shown). Therefore, this 15-mer/28-mer substrate could be used to compare with our previous single correct base incorporation kinetics. Here, we are interested in determining the parameters of Ty1 RT pyrophosphorolysis, $k_{p,\text{in}}$, and K_d for PPi.

The 5’ end-labeled 15-mer primer was annealed to a 28-mer template, mixed with RT and varying concentrations of sodium pyrophosphate and reactions were initiated by the addition of Mg^{2+}. Reactions were quenched at various times and products were visualized and quantitated. The exponential rate constants were derived by fitting the data to equation 1, as shown by the solid lines in Fig. 6 A & B. Note that the concentration of excision products (i.e., the amplitude) in both Fig. 6A and 6B increases as a function of the initial PPi concentration, indicating that the reaction has come to equilibrium at the active site. This phenomenon represents the balance between the thermodynamically unfavorable pyrophosphorolysis reaction and the much more favorable polymerization reaction that uses the dNTP generated at the active site. As the concentration of PPi increases, the equilibrium is shifted towards pyrophosphorolysis.

The derived exponential rate constants were plotted against their respective PPi concentrations and the curve was fitted to a hyperbolic equation (Equation 2 and Fig. 6C & D) from which K_d and $k_{p,\text{in}}$ values were derived. In deriving K_d we assumed that PPi is in rapid equilibrium with $EwTPn$. In this way, we found apparent K_d values of 6.52±2.43 mM and 0.039±0.007 mM and $k_{p,\text{in}}$ values 0.93±0.15 sec$^{-1}$ and 0.0029±0.0001 sec$^{-1}$ respectively for the WT and mutant D211N enzymes. These correspond to an ~170 fold greater binding affinity of PPi for the mutant enzyme, and an ~320 fold decrease in the rate of pyrophosphorolysis for this enzyme. The derived catalytic efficiency was only ~2 fold lower for the mutant RT enzyme compared to the WT enzyme. In our previous study, using similar approaches for the forward polymerization reaction, we found apparent K_d values for dATP of 2.4±0.4 microM and 1.0±0.04 microM and $k_{p,\text{in}}$ values of 7.8±0.4 sec$^{-1}$ and 0.035±0.002 sec$^{-1}$ respectively for the WT and mutant D211N enzymes. These values indicate a similar binding affinity of dATP for the two enzymes, but an ~100 fold lower catalytic efficiency for the mutant enzyme. Thus while both the forward and reverse reactions are significantly slower for the mutant enzyme than the WT enzyme, the differences in binding affinity and catalytic efficiency for the two substrates imply that the mutation at D211 affects different steps in the forward and reverse reactions and can have a strong influence on the internal equilibrium between these two competing reactions.

DISCUSSION

In this study we have examined the determinants of pyrophosphorolysis of a retrotransposon reverse transcriptase. By carrying out a series of reactions using different, but related, partially double stranded substrates we have observed several factors that influence the ability of the enzyme to remove terminal primer bases in the presence of PPi. Our initial substrate (a 14 base recessed 3’ end plus a 14 base double stranded region) was only poorly excised and only a single base was generally removed. Either reduction of the recessed end or an increase in the double stranded primer/template region increased pyrophosphorolysis
and made it more processive. In particular, the same 14 base recessed end, with a double stranded region extended to 24 bases, had a much greater capacity for pyrophosphorolysis than the original substrate (Fig. 4 and Fig. S2). In our earlier study [12] we examined dissociation of the enzyme from the 14/28 primer/template, and found a much higher affinity for Ty1 RT (0.06 min⁻¹) than for a retroviral RT that we measured concurrently (5.5 min⁻¹). This suggests that the limited pyrophosphorolysis observed for the smaller substrate is not due to poor binding. Instead it is more likely that the 14/28 substrate assumes a conformation at the polymerase active site incompatible with pyrophosphorolysis. Even a single additional primer strand base greatly improved pyrophosphorolysis. Studies of the elongation complex of T. thermophilus RNA polymerase have shown that a single base pair addition or subtraction to the primer/template complex has marked consequences on the complex conformation and its ability to support pyrophosphorolysis [23].

As shown in Fig. 7 (and discussed below), while the primer 3' end at the P site can lead to polymerization, the primer-end must be at the N site for pyrophosphorolysis to occur, and this may be disfavored with short substrates. Interestingly, even with processive pyrophosphorolysis of longer primers, the reaction appeared to stop beyond a primer length of 14, further indicating an impediment to continued reaction past this substrate. The RNase H active site for Ty1 RT has been mapped to between 14 and 15 bases from the 3' end of the primer terminus in the polymerase active site (as opposed to 18 bases in retroviruses) [24,25]. Given our previous genetic results on interactions between the Ty1 RT polymerase and RNase H active sites [10], it is plausible that suboptimal positioning of the substrate at the RNase H active site could influence the conformation at the polymerase active site in ways that disfavor pyrophosphorolysis. For example, we found that while blunt ends were very good substrates for processive pyrophosphorolysis (Fig. 3 and Figs. S1 and S2), a terminal mismatch or a 3' extension eliminated the activity. In each case, the primer-end needs to be base paired to the template strand to be in a proper conformation. With a blunt end, there is no extended single stranded template sequence to help position the primer terminus at the P site, and this could facilitate translocation to the N site and subsequent pyrophosphorolysis (Fig. 7).

We speculate that pyrophosphorolysis takes place by at least a 3 step mechanism (Fig. 7). First, both PPi and the 3' primer-end form a complex at the N site (structures 1–4). Second, a conformational change takes place that brings the primer-end in close proximity with PPi (structure 5). This change from an "open" to a "closed" conformation is analogous to the pre-chemical isomerization steps during polymerization observed for HIV-1 RT, DNA polymerase β and other DNA and RNA polymerases [19,26-28]. Third, the phosphoryl transfer reaction occurs to generate a dNTP at the N site (structure 6). This would need to be followed by release of the dNTP (structures 7 and 1) for any additional PPi to enter the N site.

By carrying out pre-steady state kinetic analysis of the two enzymes, we have identified a source of difference between the WT and mutant enzyme that could contribute to their in vitro and in vivo behaviors. The WT Ty1 RT has an apparent K_a for PPi of ~7 mM, similar to the calculated K_a s of several other polymerases examined by related methods [29–33]. This millimolar range K_a means that under physiological conditions it is unlikely that PPi is bound at the active site, relative to dNTPs, which have K_a s in the micromolar range. Therefore it was unexpected that the D211N mutant had an apparent K_a for PPi in the micromolar range, lower than any other...

Figure 3. Pyrophosphorolysis by WT and D211N Ty1 RT of a blunt-ended primer terminus. Pyrophosphorolysis reactions of WT or mutant D211N Ty1 RT were carried out under same conditions as Fig. 2 in the presence of 10 mM Mg²⁺, using 5' P-end labeled 28-mer/14-mer substrate (RAG*928/998, Fig. 1). A, represents time course of WT reactions in seconds in the presence or absence of PPi. B, represents time course of D211N reactions with or without PPi. Control reactions are in the absence of Mg²⁺ or enzyme.
doi:10.1371/journal.pone.0001389.g003
reported polymerase. Since we are determining K_d for PPI indirectly, by measuring product formation as a function of PPI concentration, one reason for the lower PPI K_d of D211N mutant is its slower chemical step relative to that of the WT enzyme. The k_{pyro} of the mutant enzyme is ~ 320 fold slower than that of the WT. Due to the slower chemical step, PPI bound enzyme intermediates accumulate in the mutant enzyme reaction, but not in the WT. Thus, the apparent K_d in the case of the mutant would correspond to the equilibrium among structures 1 through 4, which reflects the true binding affinity. In other words, the PPI K_d of the mutant is more close to the “true” K_d and the PPI K_d of the WT is close to its K_m.

The difference in the apparent K_d for PPI for WT versus D211N mutant RTs, despite their similar K_m for dNTP, could relate to the potential distortions of the active site architecture in the mutant enzyme due to the D211 to N211 substitution, its effect on metal binding, and its effect on PPI binding. Our previous work, as well

Figure 4. Effect of primer length on pyrophosphorolysis. Pyrophosphorolysis by WT or mutant D211N Ty1 RT were carried out for 60 minutes in the presence of either 10 mM Mg$^{2+}$ or 2 mM Mn$^{2+}$. Substrates are 5'-32P-end labeled primers of lengths 14, 20, 24, 27, 28-mer (RAG 998, RAG 1250, RAG 1249, RAG 1248, RAG 952 respectively, Fig. 1), each paired with the 28-mer template oligo (RAG 1109, Fig. 1). A, shows WT reactions with different primer length substrates in the presence or absence of PPI. B, represents D211N reactions with or without PPI. Control reactions on both the panels are in the absence of enzyme or Metal$^{2+}$. C and D represent bar graphs for WT and DN Ty1 RT reactions depicting ratios of intensities of cleaved products to the total products in reactions (I cleaved products/I total bands). Black bars are for reactions in Mg$^{2+}$ while grey bars are for reactions in Mn$^{2+}$.

doi:10.1371/journal.pone.0001389.g004
as crystallographic studies of HIV-1 RT, suggests that the D211 side chain is more likely involved in the chemical steps and the coordination of the “A site” metal ion, than in the “B site” metal ion which is involved in binding the triphosphates of the dNTP, and presumably, the PPI after chemistry. Modeling studies of the DNA polymerase β active site based on recent high resolution structures suggest that during formation of the transition state, the proton from the primer 3’ hydroxyl is transferred to form a distorted H bond between two aspartates, equivalent to our D211 and D210, and that this interaction could drive subsequent release of both PPI and the catalytic Mg2+ [34,35]. This implies that a relay of interactions links D211 and PPI and that alteration of that relay by N211 in the mutant enzyme could affect the apparent affinity of PPI for the enzyme.

Figure 5. Processivity of the Ty1 pyrophosphorolysis. Pyrophosphorolysis by WT or mutant D211N Ty1 RT were carried out for 60 minutes in the presence or the absence of trap and in the presence of either 10 mM Mg2+ or 2 mM Mn2+. Substrates are 5’-32P-end labeled substrate (RAG*1249/1109, Fig. 1). A, shows WT reactions in the presence or absence of 200 fold excess of cold 24-mer/28-mer DNA/DNA substrate trap and with or without PPI (depicted as + and – respectively). B, similarly represents D211N reactions. Control reactions on both the panels are in the absence of enzymes. Trap effectiveness controls are also shown.

doi:10.1371/journal.pone.0001389.g005
The fate of PPi at the active site has become a major focus of attention in models for translocation of polymerases along a template. These models have been made for RNA polymerases in particular, but the basic concepts should apply to all polymerases. One model, referred to as the “power stroke” mechanism, posits that the energy of cleavage of the dNTP results in a change in active site conformation that favors translocation [36,37]. Yin and Steitz propose for T7 RNA polymerase, that the release of PPi produces the conformational change resulting in translocation [38]. Sarafianos et al. propose that movement of the negatively charged loop formed by the HIV1 RT equivalents of D210 and D211, observed pre- and post-translocation, provides a “springboard” for translocation [19]. A second model, termed “Brownian-ratchet motion” proposes that the primer-end moves back and forth between P and N sites, and that addition of dNTP serve to ratchet the primer-end in the P site where polymerization can occur [39,40]. In either case, the apparent tighter binding of PPi to the active site of the D211N mutant could push the equilibrium more toward the reverse reaction, and impede processive synthesis in vivo. Further, since PPi and dNTP reside at the same binding site, PPi might more effectively compete with dNTP in the mutant enzyme. This could explain our previous observations about the in vivo...
vitro polymerization processivity for the two enzymes. On short substrates the two enzymes behaved similarly, but on longer substrates the WT enzyme was much more processive in the presence of Mg$^{2+}$. Accumulation of PPi during processive synthesis could have inhibited further polymerization in the mutant enzyme. Future analysis of polymerization and processivity under competitive conditions will help to better understand this relationship.

MATERIALS AND METHODS

Plasmids and Strains

The plasmid p6H Ty1 IN-RT-RH (AGE 2186) contained WT Ty1 RT–RH plus a 115 amino acid contiguous C-terminal portion of Ty1 integrase fused to the N-terminus of the RT-RH domain, all preceded by 6-histidine tag and was kindly provided by Dr. F. X. Wilhelm (IBMC, Strasbourg). Construct of the analogous mutant expression plasmid strain AGE 2352, with a D211N polymerase active site mutation has been described [12]. The WT and mutant plasmids were transformed into E. coli expression strain M15 [pREP4] (Qiagen) purified by Ni$^{2+}$-nitriloacetic acid-agarose (Qiagen) affinity chromatography as described [12].

Expression and Purification of Recombinant Ty1 RT

WT and mutant Ty1 RTs containing hexahistidine tags were expressed in E. coli strain M15 [pREP4] (Qiagen) purified by Ni$^{2+}$-nitriloacetic acid-agarose (Qiagen) affinity chromatography as described [12].

5′-32P Labeling of oligonucleotides

DNA oligonucleotides were 5’ end-labeled using [γ-32P] ATP and T4 polynucleotide kinase. Unincorporated nucleotide was re-
moved with nucleotide removal kits (Qiagen) or by P-30 spun columns (Biorad).

Denaturing gels

Reaction samples were stopped by mixing with loading buffer (95% formamide, 33 mM EDTA [pH 8], 0.1% bromophenol blue, 0.1% xylene cyanol). Samples were heated to 95°C for 5 min prior to loading 7 microliters on a 1x TBE buffer (0.089 M Tris-HCl, 0.089 M boric acid and 0.002 M sodium EDTA buffered at pH 8.5). Gels were visualized with a Storm 860 PhosphorImager and quantitated using the Image Quant 1.2 software (Molecular Dynamics).

Excision Assay with DNA Templates

In a typical assay, a DNA/DNA template/primer was prepared by annealing a 28-mer plus-strand sequence from the polypurine tract region of Ty1 RT (5'-ATT ACA TTA TGG GTG GTA TGT TGG AAT A -3'; where the polypurine tract is underlined) or an equivalent 28-mer plus-strand sequence with a ‘g’ at the 3’ end, (to generate a mispaired end) with the otherwise complementary 14 to 17-mer DNA/DNA template/primer substrate was prepared by annealing a 28-mer plus-stand sequence from the polypurine tract region of Ty1 RT (RAG1109) with a complementary 15-mer (RAG1316) at a template/primer ratio of 0.85/1, to generate the following substrate with a mispair at the 3’ end of the template to avoid forward reaction due to the other end pyrophosphorolysis.

\[5' \text{ATTACATTATGGGGTGGTATGTTGAATg} \ 3' \]
\[3' \text{ACCATACACCTTAT} \ \text{5'} \]

Two separate mixes were made. One was a 2X mix of DNA substrate, PPi and enzyme prepared in the reaction buffer (17 mM Tris-HCl [pH 7.5], 17 mM NaCl, 1 mM dithiothreitol and 20% glycerol) along with different sodium pyrophosphate concentrations and was loaded in one syringe. The second mix consisted of 2X divalent cation (MgCl2) in the same buffer and was loaded in the second syringe. These separate mixes were pre-warmed at 22°C for 10 minutes and were then combined in equal volumes to start the reactions at 22°C. Unless specified in the results and figure legends section, an assay mixture contained 40 nM template-primer, ~20 nM of active WT or mutant D211N Ty1 RT, with PPi donor and MgCl2 or MnCl2 at specified concentrations. Reactions were incubated at 22°C for specified times, and then terminated by the addition of loading buffer, denatured and separated by electrophoresis in 7 M urea-17% polyacrylamide gels. The products of the amounts of the products (i.e. bands smaller than the end-labeled primer) were determined relative to total labeled products seen using a phosphor-imager, after subtracting the background from the – PPi lane.

Pyrophosphorolysis Processivity Assay

The pyrophosphorolysis reactions were carried out by pre-incubating the end labeled 24-mer/28-mer substrate (RAG*1249/RAG 1109, Fig. 1), (40 nM) with WT or D211N Ty1 RT in the reaction buffer for 60 min at 22°C. Reactions were initiated by adding a mixture containing 1 mM sodium pyrophosphate with 10 mM Mg2+ or 2 mM Mn2+ along with or without an unlabeled 8 μM of 24-mer/28-mer DNA/DNA substrate trap (at a final concentration of 200 fold more than the labeled primer/template). Reactions were terminated after 1 hour by adding loading buffer. A trap effectiveness control was also carried out where the reaction was initiated by adding PPi with Mg2+ or Mn2+ to a mix containing enzyme, trap and primer/template (where enzyme was added to the labeled substrate in the presence of trap and then pre-warmed along with the two). The terminated processivity reaction and control reactions were resolved by 17% polyacrylamide-urea denaturing gel electrophoresis and analyzed as above.

Kd and kpyro determination

The pre-steady-state kinetic parameters for pyrophosphorolysis in the presence of sodium pyrophosphate and 20 mM Mg2+ by the WT and the mutant enzymes were measured as reported by Patel et al. [41] with some modifications. Reactions were carried in enzyme excess by rapid quench analysis [42] for WT using a KinTek RQF-3 Rapid Quench Flow apparatus, and manually for the D211N mutant. Protein concentrations for both enzymes were determined at OD 280 in a 1 cm cell in the presence of 8 M urea, (extinction coefficient for the 76. 861 kDa protein = 86,390/cm M). Enzymes were used at final concentrations of 547.92 nM (WT) and 365.34 nM (mutant), assuming that the enzyme is a monomer (F.X. Wilhelm, unpublished results) which were equivalent to active concentrations of 40.46 nM for WT and 40.10 nM for D211N as determined by 3 minute extension reactions at 200 micromolar dATP [12]. DNA/DNA template/primer substrate was prepared by annealing a 28-mer plus-stand sequence from the polypurine tract region of Ty1 RT [RAG1109] with a complementary 15-mer (RAG1316) at a template/primer ratio is 0.85/1, to generate the following substrate with a mispair at the 3’ end of the template to avoid forward reaction due to the other end pyrophosphorolysis

\[5' \text{ATTACATTATGGGGTGGTATGTTGAATg} \ 3' \]
\[3' \text{ACCATACACCTTAT} \ \text{5'} \]

Two separate mixes were made. One was a 2X mix of DNA substrate, PPi and enzyme prepared in the reaction buffer (17 mM Tris-HCl [pH 7.5], 17 mM NaCl, 1 mM dithiothreitol and 20% glycerol) along with different sodium pyrophosphate concentrations and was loaded in one syringe. The second mix consisted of 2X divalent cation (MgCl2) in the same buffer and was loaded in the second syringe. These separate mixes were pre-warmed at 22°C for 10 minutes and were then combined in equal volumes to start the reactions at 22°C. The assay mixture contained 20 nM template-primer, ~40 nM of active WT or mutant D211N Ty1 RT, 20 mM MgCl2 and various concentrations of sodium pyrophosphate. Samples were taken at several time points and quenched with EDTA, at a final concentration of 35 mM. For D211N mutant Ty1 RT, reactions were carried out manually under the same conditions. Products were denatured and resolved in 17% denaturing gels, scanned and then analyzed. Amounts of the excised products (<15-mer) were determined relative to total labeled products. The time course of a single turnover for individual [PPi] was fitted to an exponential equation (Equation 1).

Supporting Information

Figure S1 Pyrophosphorolysis by WT and D211N Ty1 RT of a recessed primer terminus in the presence of a mismatched other end eliminates forward reaction. Time course of pyrophosphorolysis for WT or mutant D211N Ty1 RT were carried out under...
same conditions using 5’ 32P-end labeled 14-mer/28-mer substrate (RAG*998/*1109, Fig. 1) in the presence of 10 mM Mg2+. A shows time course of WT reactions in seconds in the presence or absence of Pb2+. B, represents time course of D211N reactions with or without Pb2+. Control reactions are in the absence of Mg2+ or enzyme.

Found at: doi:10.1371/journal.pone.0001389.s001 (0.09 MB TIF)

Figure S2 Effects of different primer-ends and double strand length on pyrophosphorolysis. Pyrophosphorolysis reactions by WT were carried out for 60 minutes in the presence of either 10 mM Mg2+ or 2 mM Mn2+. A, shows relative positions of substrates 1–7 graphically. Substrates 1–7 are 5’ 32P-end labeled 14-mer/28-mer +. A, shows relative positions of 32P-end labeled 32P-end labeled 14-mer/28-mer −mer.

REFERENCES

1. Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274: 17395–17398.

2. Delarue M, Principe P, Tordo N, Moro D, Pernin P (1990) An attempt to unify time and structure of polymerases. Protein Eng 3: 461–467.

3. Baltimore D (1970) Viral RNA-dependent DNA polymerase. Nature 226: 1209–1211.

4. Temin HM, Minatani S (1970) RNA-dependent DNA polymerase in viruses of Rous sarcoma virus. Nature 226: 1211–1213.

5. Gilboa E, Mitra SW, Golfo S, Baltimore D (1979) A detailed model of reverse transcription and a test of crucial aspects. Cell 18: 93–100.

6. Shalka AM, Gold SP, eds (1993) Reverse Transcriptase. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 492 p.

7. Langer JP, Hughes TR, Schatz O (1991) Subunit-selective blocking activity in foscarnet-resistant mutants of human immunodeficiency virus. Nature 327: 716–717.

8. Le Grice SFJ, Naas T, Wohlgensinger B, Schatz O (1991) Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. EMBO J 10: 3905–3911.

9. Uzun O, Gabriel A (2001) A Ty1 reverse transcriptase active-site aspartate in Tyr1 reverse transcriptase. Nucleic Acids Res 33: 171–181.

10. Pandey M, Patel S, Gabriel A (2004) Insights into the role of an active site aspartate in Ty1 reverse transcriptase polymerization. J Biol Chem 279: 47460–47466.

11. Urban S, Fischer KP, Tyrrell DL (2001) Efficient pyrophosphorolysis by a human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 276: 47379–47386.

12. Anand VS, Patel SS (2006) Transient state kinetics of transcription elongation by Escherichia coli RNA polymerase. Nucleic Acids Res 34: 4036–4045.

13. Arion D, Kaushik N, McMorrow S, Glick B (1999) Phosphodiesterase mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased phosphorylation and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 38: 15086–15097.

14. Jiang MY, Sheetz MP (1994) Mechanics of myosin motor: force and step size. Biophys J 66: 357–364.

15. Arion D, Kaushik N, McMorrow S, Glick B (1999) Phosphodiesterase mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased phosphorylation and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 38: 15086–15097.

16. Jung MY, Shechter MP (1994) Mechanics of myosin motor: force and step size. Biophys J 66: 357–364.

17. Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274: 17395–17398.

18. Delarue M, Principe P, Tordo N, Moro D, Pernin P (1990) An attempt to unify time and structure of polymerases. Protein Eng 3: 461–467.

19. Baltimore D (1970) Viral RNA-dependent DNA polymerase. Nature 226: 1209–1211.

20. Temin HM, Minatani S (1970) RNA-dependent DNA polymerase in viruses of Rous sarcoma virus. Nature 226: 1211–1213.

21. Gilboa E, Mitra SW, Golfo S, Baltimore D (1979) A detailed model of reverse transcription and a test of crucial aspects. Cell 18: 93–100.

22. Shalka AM, Gold SP, eds (1993) Reverse Transcriptase. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 492 p.

23. Langer JP, Hughes TR, Schatz O (1991) Subunit-selective blocking activity in foscarnet-resistant mutants of human immunodeficiency virus. Nature 327: 716–717.

24. Le Grice SFJ, Naas T, Wohlgensinger B, Schatz O (1991) Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. EMBO J 10: 3905–3911.

25. Uzun O, Gabriel A (2001) A Ty1 reverse transcriptase active-site aspartate in Tyr1 reverse transcriptase. Nucleic Acids Res 33: 171–181.

26. Pandey M, Patel S, Gabriel A (2004) Insights into the role of an active site aspartate in Ty1 reverse transcriptase polymerization. J Biol Chem 279: 47460–47466.

27. Urban S, Fischer KP, Tyrrell DL (2001) Efficient pyrophosphorolysis by a human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 276: 47379–47386.

28. Anand VS, Patel SS (2006) Transient state kinetics of transcription elongation by Escherichia coli RNA polymerase. J Biol Chem 281: 35677–35685.

29. Arion D, Kaushik N, McMorrow S, Glick B (1999) Phosphodiesterase mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased phosphorylation and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 38: 15086–15097.

30. Jiang MY, Sheetz MP (1994) Mechanics of myosin motor: force and step size. Biophys J 66: 357–364.

31. Urban S, Fischer KP, Tyrrell DL (2001) Efficient pyrophosphorolysis by a human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 276: 47379–47386.

32. Anand VS, Patel SS (2006) Transient state kinetics of transcription elongation by Escherichia coli RNA polymerase. J Biol Chem 281: 35677–35685.

33. Arion D, Kaushik N, McMorrow S, Glick B (1999) Phosphodiesterase mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased phosphorylation and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 38: 15086–15097.

34. Jiang MY, Sheetz MP (1994) Mechanics of myosin motor: force and step size. Biophys J 66: 357–364.

35. Arion D, Kaushik N, McMorrow S, Glick B (1999) Phosphodiesterase mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased phosphorylation and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 38: 15086–15097.

36. Jiang MY, Sheetz MP (1994) Mechanics of myosin motor: force and step size. Biophys J 66: 357–364.

37. Arion D, Kaushik N, McMorrow S, Glick B (1999) Phosphodiesterase mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased phosphorylation and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 38: 15086–15097.

38. Jiang MY, Sheetz MP (1994) Mechanics of myosin motor: force and step size. Biophys J 66: 357–364.