Guerrero Leal, María Yadira; Estrella Chulím, Néstor Gabriel; Sangerman-Jarquín, Dora Ma.; Jiménez Sánchez, Leobardo; Aguirre Alvarez, Luciano
Producción de alimentos en huertos familiares con camas biointensivas, en Españita, Tlaxcala
Revista Mexicana de Ciencias Agrícolas, núm. 11, mayo-junio, 2015, pp. 2139-2148
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias
Estado de México, México

Disponible en: http://www.redalyc.org/articulo.oa?id=263138103010
Producción de alimentos en huertos familiares con camas biointensivas, en Españita, Tlaxcala*

Food production in home gardens with bio-intensive beds in Españita, Tlaxcala

María Yadira Guerrero Leal1, Néstor Gabriel Estrella Chulím1, Dora Ma. Sangerman-Jarquín2, Leobardo Jiménez Sánchez3 y Luciano Aguirre Alvarez1

1Colegio de Postgraduados-Campus Puebla. Carretera Federal México Puebla Santiago Momoxpan, km 125.5. San Andrés Cholula, Puebla. C. P. 72760. Tel: 222 285 00 13. (maria_yadira3@hotmail.com; laguirrealvarez@gmail.com). 2Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco, km 13.5. A. P. 10, C. P. 56250. Coatlinchán, Texcoco, Estado de México, México. Tel: 01 595 92 1 26 81. (sangerman.dora@inifap.gob.mx). 3Colegio de Postgraduados-Campus Montecillos. Carretera México-Texcoco, km 36.5. Montecillo, Estado de México, México. C. P. 56230. (ljjs@colpos.mx). §Autor para correspondencia: nestrela@colpos.mx.

Resumen

La producción de hortalizas bajo el método de camas biointensivas es considerado como un agroecosistema y ha sido incluido en programas gubernamentales para tratar de reducir la pobreza e inseguridad alimentaria. El objetivo de la presente investigación fue conocer las características físicas que tienen las camas biointensivas de las familias, y en general entre otros aspectos relacionados con el desarrollo local de Españita, Tlaxcala. Para generar información, se utilizó la técnica de la entrevista a 45 familias de estudio, resultado de una lista de huertos familiares activos de la población objetivo proporcionada por el Centro de Economía Social Julián Garcés A. C. Los resultados muestran que la producción de hortalizas en camas biointensivas, visto como un agroecosistema está integrado por los componentes agrícola, pecuario, agua e infraestructura y equipo. Las especies vegetales obtenidas de las camas biointensivas contribuyen a la alimentación y algunas veces son utilizadas para la venta con las familias vecinas y familiares. Las prácticas tecnológicas realizadas en el proceso de producción no afectan al ambiente y conservan la diversidad vegetal y animal. Debido a su aportación a la alimentación, salud e ingresos, el agroecosistema biointensivo que han desarrollado las familias de estudio de Españita, Tlaxcala, es importante socialmente, económicamente y ecológicamente.

Abstract

Vegetable production under the beds bio-intensive method is considered as an agroecosystem and, has been included in government programs to try to reduce poverty and food insecurity. The aim of this investigation was to determine the physical characteristics that have the bio-intensive beds for families, and in general among other aspects of local development of Españita, Tlaxcala. In order to generate information, interview technique was used to study 45 families, the result of a list of active home gardens of the target population provided by the Centre for Social Economy Julián Garcés A. C. The results show that, the production of bio-intensive vegetable beds seen as an agroecosystem is composed of agriculture, livestock, water, infrastructure and equipment components. Plant species obtained from bio-intensive beds contribute to food and are sometimes used for sale with neighbouring families and relatives. The technological practices carried out in the production process does not affect the environment and conserve plant and animal diversity. Because of its contribution to food, health and income, have developed bio-intensive agroecosystem on families of Españita, Tlaxcala, it is important socially, economically and environmentally.

* Recibido: febrero de 2015
Aceptado: mayo de 2015
Palabras clave: huertos familiares, impactos, nutrición, producción.

Uno de los problemas clave que se presenta en la actualidad es la nutrición. En el caso del estado de Tlaxcala, el Centro de Economía Social Julián Garcés A. C., ha establecido huertos familiares con camas biointensivas como estrategia para generar autosuficiencia alimentaria en el municipio de Españita, Tlaxcala. Esta Organización de la Sociedad Civil toma a la alimentación como un derecho humano necesario para el desarrollo y crecimiento de hombres, mujeres, jóvenes, niños, niñas, ancianos (as), discapacitados (as), independientemente de clase, raza, género y etnia (FAO, 2002).

En el país, en la última década, el sistema de producción agrícola biointensivo ha sido considerado en programas gubernamentales, federales y estatales, como clave para buscar el desarrollo de los productores(as) campesinos(as). En este sistema la familia campesina lleva a cabo una producción no especializada, donde utilizan los componentes bióticos y no bióticos del ecosistema para complementar su alimentación, su salud e ingreso. En las camas biointensivas se producen principalmente hortalizas para alimento de la familia, en menor frecuencia se encuentran plantas medicinales y plantas ornamentales (Gallopín, 2003).

Según Jeavons (2004), el huerto familiar es un sistema de producción para la obtención de más alimentos en menos espacio, basado en la utilización de insumos locales, sin maquinaria ni fertilizantes o insecticidas comerciales, para evitar daños al ambiente o a la salud de mujeres, hombres y los ecosistemas. Autores como Jeavons (2004) refieren a que no se trata solo de los recursos naturales, sino también de la compleja situación económica, nutricional y social que padecen las diversas generaciones y sociedades. En este sentido, actualmente se hacen necesarias diversas estrategias para utilizar los recursos naturales que se tienen alcance. Los huertos familiares con camas biointensivas son una alternativa para disminuir la inseguridad alimentaria presente en las familias del municipio de Españita, Tlaxcala, así como también pueden generar cambios positivos en el apoyo a las deficiencias alimentarias por las que atraviesan actualmente diversos países, regiones y comunidades vulnerables (Altieri, 2000).

Mediante esta investigación se pretende conocer las características físicas de las camas biointensivas ubicadas en los huertos familiares, y en general en otros aspectos relacionados con el desarrollo local en las familias de nueve comunidades pertenecientes al municipio de Españita, Tlaxcala.

Keywords: home gardens, impacts, nutrition, production.

One of the key problems that arises now is nutrition. For the state of Tlaxcala, the Centre for Social Economy Julián Garcés A. C., established home gardens with bio-intensive beds as a strategy to generate food self-sufficiency in the town of España, Tlaxcala. The Civil Society Organization takes to food as a prerequisite for the development and growth of human right men, women, youth, children, the elderly, disabled, regardless of class, race, gender and ethnicity (FAO, 2002).

At home, in the last decade, bio-intensive farming system has been considered in government, federal and state programs as key to pursue development of the producers’ farmers. In this system, the peasant family performs unskilled production, where they use biotic and abiotic components of the ecosystem to complement their diet, health and income. In the bio-intensive vegetable beds occur mainly for family food, less frequently medicinal plants and ornamental plants (Gallopín, 2003).

According to Jeavons (2004), the family garden is a production system for producing more food in less space, based on the use of local inputs, without machinery or commercial insecticides or fertilizers to prevent damage to the environment or the health of women men and ecosystems. Authors like Jeavons (2004) refer to not just natural resources, but also the complex economic, nutritional and social situation faced by different generations and societies. In this regard, various strategies currently required are made to use natural resources have reached. Home gardens with bio-intensive beds are an alternative to reduce food insecurity in families España Township, Tlaxcala, and can also generate positive changes in supporting dietary deficiencies currently faced by many countries, regions and communities vulnerable (Altieri, 2000).

Through this research we pretend to know the physical characteristics of the bio-intensive beds located in home gardens, and generally in other aspects of local development in the families of nine communities belonging to the municipality of España, Tlaxcala.

España, Municipal head with a total of 1 876 inhabitants, the main activity is agriculture, forestry and fishing (Baca, 2007). España Township is located in the central Mexican plateau at 2 640 meters. Its geographical position, according
Españita, Cabecera Municipal con un total de 1 876 habitantes, su principal actividad se encuentra en la agricultura, ganadería, silvicultura y pesca. (Baca, 2007). El municipio de Españita se encuentra ubicado en el Altiplano central mexicano a 2 640 msnm. Su posición geográfica, de acuerdo al Instituto Nacional de Estadística, Geografía e Informática es: 19 °C, 27 min latitud norte y 98 °C, 25 min longitud oeste (Maldonado, 2007).

Españita colinda al norte con el municipio de Sanctórum de Lázaro Cárdenas, al sur limita con el municipio de Ixtacuixtla de Mariano Matamoros, al oriente se establecen linderos con el municipio de Hueyotlipan; asimismo, al poniente colinda con el municipio de Sanctórum de Lázaro Cárdenas y el estado de Puebla (CONEVAL, 2013).

Diseño de la investigación. La investigación se orientó hacia una comprensión sistémica del traspatio, primeramente se analizó la estructura y el funcionamiento. Una vez que se caracterizó el sistema biointensivo, se determinaron los aspectos sociales, económicos y ecológicos que este genera, que es el objetivo principal del estudio.

Métodos, técnicas e instrumentos para recabar la información. Se utilizó el padrón proporcionado por el Centro de Economía Social Julián Garcés A. C. donde se tenían 50 familias activas en el año 2013 en el programa de “huertos familiares que cuentan con camas biointensivas”. Fueron entrevistadas 45 familias, con un total de 174 personas de las cuales 77.8% fueron mujeres y el resto hombres. Las cuales correspondieron a un total de nueve comunidades las cuales fueron: Pipillola, San Francisco Mitepec, San Juan Mitepec, El Piñón, La Magdalena, Álvaro Obregón, Constancia, La Reforma y San Agustín pertenecientes al municipio de Españita, Tlaxcala.

El instrumento con que se recabó la información fue el cuestionario, que consiste en un conjunto de preguntas respecto de una o más variables a medir, en congruencia con el planteamiento del problema e hipótesis. Estuvo compuesto por las siguientes secciones: I. información general de las familias de estudio y la unidad de producción; II. Información sobre el manejo en términos de recursos escasos de las camas biointensivas; III. Dinámica de la producción obtenida del sistema biointensivo; IV. Impactos en el sistema biointensivo por cambios en el clima; V. Conocimientos generales sobre el sistema biointensivo; y VI. Preguntas abiertas sobre el sistema biointensivo.

to the National Institute of Statistics, Geography and Informatics is: 19 °C, 27 min north latitude and 98 °C, 25 min west longitude (Maldonado, 2007).

Españita bordered on the north by the municipality of Sanctórum of Lazaro Cardenas, south borders the municipality of Ixtacuixtla Mariano Matamoros, eastern boundaries set by the municipality of Hueyotlipan; also, the west borders the municipality of Sanctórum of Lazaro Cardenas and the state of Puebla (CONEVAL, 2013).

![Españita](image)

Figura 1. Localización del Municipio de Españita, Tlaxcala.

Figure 1. Location of the Municipality of Españita, Tlaxcala.

Research design. The research was directed towards a systemic understanding of the backyard, first the structure and operation are analysed. Once the bio-intensive system was characterized, social, economic and ecological aspects it generates, which is the main objective of the study were determined.

Methods, techniques and tools for collecting information. The information provided by the Centre for Social Economy Julián Garcés A.C was used, where 50 families were active in 2013 in the program of "home gardens that feature bio-intensive beds". 45 families were interviewed, with a total of 174 people, of which 77.8% were women and the rest were men. Which corresponded to a total of nine communities which were: Pipillola, San Francisco Mitepec, San Juan Mitepec, El Piñón, La Magdalena, Álvaro Obregón, Constancia, La Reforma and San Agustín belonging to the municipality of Españita, Tlaxcala.

The instrument with which the information was collected was a questionnaire consisting of a set of questions for one or more variables to be measured, consistent with the problem
Análisis estadístico. Se realizó un análisis descriptivo de las variables establecidas en la investigación utilizando el procedimiento del programa SPSS versión 15.0.1 (SPSS Institute, 2006). Para lo cual, primeramente se elaboró una base de datos de la información obtenida en campo en el programa antes mencionado.

La media de integrantes por familia, es de 3.8 personas, en el Municipio de Españita, Tlaxcala fue de 4.8, a nivel estatal fue de 4.2 y a nivel nacional de 3.9. En cuanto a la media de integrantes que se encontró (3.8), se aproxima al reportado a nivel municipal por dicho instituto. En el Cuadro 1 se muestra la estructura familiar encontrada, misma que indica una predominancia de los hogares nucleares.

Más de 92% de las jefas de familia, administradoras de la unidad de producción familiar, eran mujeres, con una edad promedio de 48 años. Así como también se encargaban fundamentalmente del trabajo doméstico (más de 55.6% de los casos), aunque también desarrollaban tareas generadoras de ingresos, como empleadas en labores domésticas. En las familias entrevistadas había, en conjunto, 129 hijos (72 mujeres y 57 varones); 66% de ellos tenían 29 años o menos, dato relevante para estimar la demanda de empleo a futuro que habrá en la región.

El índice de alfabetismo es alto, sin contar a los niños(as) menores de 5 años que aún no asistían a la escuela: más de 96% de las personas sabían leer y escribir. No obstante, 58% de los jóvenes de entre 16 y 22 años no continuaba estudiando. De las personas entrevistadas solo una persona contesto no saber leer y escribir.

El grado máximo de estudios de la jefa (46.7%) y jefe de familia (34.1%) corresponde a primaria incompleta. Es decir, la mayoría de los jefes de familia no han concluido la educación básica; sin embargo, en los hijos(as) el nivel máximo de estudios es la preparatoria completa (17.6%) y el nivel bajo de estudios en los hijos(as) es que se encuentra estudiando primaria (26.1%). La media de los años de experiencia de las personas entrevistadas en las actividades relacionadas con el sistema biointensivo es de 5.6 años. Hechos que reflejan amplia experiencia en las actividades relacionadas con la producción de hortalizas en camas biointensivas.

Entre los jefes de familia entrevistados 56.1% se dedican a la agricultura como actividad principal; los demás desarrollaban tareas extra finca para poder sostener a sus familias; 4.4% se desempeñaba en tareas tales como las artesanías, chofer, venta

Statistical Analysis. A descriptive analysis of the variables set in the research was conducted using the procedure of SPSS version 15.0.1 (SPSS Institute, 2006). For this purpose, first was developed a database of information obtained in the above field program.

The average of members per household is 3.8 people, in the Municipality of Españita, Tlaxcala was 4.8, statewide was 4.2 and 3.9 nationally. In terms of average members was found (3.8), it approaches the municipal level reported by the institute. In Table 1, the found, family structure indicating a predominance of nuclear households is shown.

More than 92% of household heads, managers of family production unit, were women, with an average age of 48 years. And also were responsible primarily for domestic work (more than 55.6% of cases), but also developed income-generating tasks, as employed in domestic work. In the families interviewed had, overall, 129 children (72 females and 57 males); 66% of them were 29 years or less, relevant for estimating future employment demand to be in the region data.

The literacy rate is high, not counting children under 5 years not attending school: over 96% of people were literate. However, 58% of young people aged between 16 and 22 years did not continue studying. Of those interviewed only one person answered not to read or write.

The maximum degree of studies of the head (46.7%) and head of household (34.1%) is incomplete elementary school. Most of the householders have not completed basic education; however, for the young ones, the highest level of education is high school (17.6%) and, the low level of studies are children studying the elementary (26.1%). The average of the years of experience of the people interviewed in activities related to bio-intensive system is 5.6 years. Facts reflecting extensive experience in activities related to the production of bio-intensive vegetable beds.
Las razones que las familias en estudio tomaron en cuenta para participar en la producción de hortalizas en camas biointensivas fue principalmente para tener que comer (24.4%). El número de familias que participan en las labores de producción de las camas biointensivas fue de solo una familia (97.8%) así como también coincidió que el número de huertos con los que cuentan las familias fue de solo uno (91.1%).

Características de las camas biointensivas. El número de camas con las que cuentan las familias de estudio fue de tres camas por familia (33.3%). Respecto a las medidas que cuenta cada familia de superficie de las camas biointensivas con 55.6% son de 1 m de ancho hasta 6 m de largo, con 2.2% le corresponde con 50 cm de ancho por 1.50 cm de largo y de 60 cm de ancho por 4 m de largo, la tenencia de la tierra es pequeña propiedad en su totalidad. La disponibilidad de superficie tan pequeña de tierra, se debe a la repartición de herencia que por generaciones se ha dado y a los principios teóricos del sistema biointensivo (Palma, 2002).

En lo que se refiere a la infraestructura y herramientas, los datos proyectan que solo 15.6% se encuentran las camas biointensivas dentro de un invernadero, 84.4% se encuentran a la intemperie. En cuanto a herramientas, cuentan con pala, rastrillo, bieldo y carretilla (37.8%), las cuales emplean principalmente en la elaboración de las camas biointensivas. Esto significa que las familias no cuentan con los recursos económicos suficientes para adquirir un invernadero o no han accedido a subsidios de algún programa gubernamental. Para adquirir los insumos suficientes para la producción de sus hortalizas en camas biointensivas tienen como limitante la poca credibilidad y desinterés de las autoridades encargadas del desarrollo social sustentable esto debido a intereses principalmente económicos de la globalización, que no lo hace rentable (López, 2010).

Las características de la siembra de las distintas hortalizas presentes en las camas biointensivas se presentan en la Figura 2.

Figura 2. Esquema de la siembra de las hortalizas en las camas biointensivas (2013).

Among household heads interviewed, 56.1% are engaged in agriculture as their main activity; other developed additional farm to support their families tasks; 4.4% was working on tasks such as handicrafts, driver, sell sheet, promoter or carpenter. The children also worked within and outside the family production unit to help monetization.

The reasons that families in the study were considered to participate in the production of bio-intensive vegetable beds was mainly for having to eat (24.4%). The number of families participating in the work of production of bio-intensive beds was only one family (97.8%) and also agreed that the number of orchards with that families was only one (91.1%).

Characteristics of bio-intensive beds. The number of beds with that families of the study was three beds per family (33.3%). Regarding measures available to each family of surface bio-intensive beds 55.6% are 1 m in width up to 6 m long, 2.2% corresponds to 50 cm wide and 1.50 cm long and 60 cm wide by 4 m long, the tenure is small property in full. The availability of such a small land surface is due to the distribution of inheritance which for generations has already given the theoretical principles of bio-intensive system (Palma, 2002).

Regarding the tools and infrastructure, the data projected only 15.6% Bio-intensive beds are inside a greenhouse, 84.4% are outdoors. As for tools, shovel, rake, pitchfork and wheelbarrow (37.8%), which employ mainly in the development of bio-intensive beds. This means that families do not have sufficient financial resources to purchase a greenhouse or have not agreed to a government subsidy program. To acquire sufficient inputs for the production of its bio-intensive vegetable beds have as limiting the unreliability and lack of authorities responsible for sustainable social development that economic interests mainly because of globalization, making it unprofitable (López, 2010).

Sowing characteristics of the different vegetables present in Biointensive beds are shown in Figure 2.

Figura 2. Schematic of planting vegetables in bio-intensive beds (2013).
En las camas biointensivas ubicadas en los huertos familiares del municipio de Españita, Tlaxcala, la mayor superficie de las camas biointensivas es cultivada con hortalizas, solo una pequeña superficie es para especies medicinales y ornamentales principalmente. En el Cuadro 1, se observan las especies vegetales encontradas; de acuerdo a la parte comestible, las especies vegetales se clasifican en frutos, hojas, tallos, flores y raíces (Olivares, 2012). Se encontraron en promedio (13.3%) siete especies diferentes las cuales son: acelga, zanahoria, calabacita, rábano, cilantro, jitomate y coliflor. Sin embargo, existe una amplia gama de hortalizas cultivadas bajo el sistema biointensivo.

El diseño en la siembra de las diferentes hortalizas que se muestran en la Figura 2 es muy diversa dependiendo de las necesidades de las familias de estudio y del espacio con que cuentan en la cama biointensiva; sin embargo, en promedio el número de plantas presentes en la Figura 2, corresponde a lo encontrado en el momento de la investigación, por lo que a continuación se muestra en el Cuadro 1. Especies vegetales encontradas en las camas biointensivas del Municipio de Españita, Tlaxcala (2013).

Cuadro 1. Plant species found in the bio-intensive beds Españita Municipality, Tlaxcala (2013).

Hortalizas	Núm. de familias	Medicinales	Ornamentales
Cilantro (xilantro corriandro)	44	Manzanilla (Matricaria C.)	Lluvia (Laburnum A.)
Rábano (Raphanus sativus)	39	Ruda (Ruta G.)	Alhelí (Erysimum C.)
Acelga (Beta vulgaris Var. C)	38		
Betabel (Beta vulgaris)	29		
Zanahoria (Daucus carota)	26		
Lechuga (Lactuca sativa)	22		
Calabacita (Cucurbita P.)	13		
Chicharos (Pisum sativum)	11		
Ejote (Phaseolus vulgaris L.)	8		
Coliflor (Brassica oleracea L.)	6		
Brócoli (Brassica oleracea L.)	6		
Tomate (Solanum lycopersicum)	4		
Jitomate (Lycopersicum esculentum)	4		
Chilacayote (Cucurbita ficifolia)	2		
Haba (Vicia faba)	2		
Papa (Solanum tuberosum)	2		
Chile guajillo (Capsicum annuum)	1		
Chile poblano (Capsicum annuum)	1		
Verdolagas (Portulaca Oleracea)	1		
Cebolla (Allium cepa)	1		
Col (Brassica oleracea)	1		
Huauzontle (Chenopodium nuttalliae)	1		
Espinacas (Spinacia oleracea)	1		
Maíz (Zea mays L.)	1		

In the bio-intensive beds located in home gardens Españita Township, Tlaxcala, the largest area of bio-intensive beds is cultivated with vegetables, only a small area is mainly for medicinal and ornamental species. In Table 1, the plant species found are observed; according to the edible part, plant species are classified as fruits, leaves, stems, flowers and roots (Olivares, 2012). Chard, carrots, zucchini, radishes, cilantro, tomato and cauliflower: seven different species which are found on average (13.3%). However, a wide range of vegetables are grown under the bio-intensive system.

The design on the planting of different vegetables are shown in Figure 1 is different depending on the needs of families and study space available to them in bed bio-intensive; however, on average the number of plants present in Figure 1, corresponds to that found at the time of the investigation, so is shown below in Table 2. The number of main vegetables and plants located in the time of the investigation.
en el Cuadro 2. Las principales hortalizas y número de plantas que se localizaron en el momento de la investigación.

Hortaliza	Núm. de familias	Núm. de plantas (Max-mínimo)
Cilantro	44	12
Rábano	39	30
Acelga	38	4
Betabel	29	10
Zanahoria	26	12
Lechuga	22	3
Calabaza	13	4
Coliflor	6	3

Cuadro 2. Promedio de número de hortalizas principales en una cama biointensiva en el Municipio de Españita, Tlaxcala (2013).

Table 2. Average number of main vegetables in a bio-intensive bed in the Municipality of Españita, Tlaxcala (2013).

Respecto al cercado de las camas biointensivas, 91.1% de las familias las tienen protegidas para evitar posibles daños a sus hortalizas por el ataque de animales, ello sugiere la importancia que las familias otorgan a la protección de sus hortalizas para su crecimiento y desarrollo. La orientación de la protección, es cubrir el perímetro que ocupa la superficie de las camas biointensivas sembradas principalmente de hortalizas, con la finalidad de asegurar la producción (Jiménez, 2007). Los materiales utilizados para cercar el área son en orden de importancia la malla metálica, plásticos y costales.

Para sembrar o realizar actividades en los cultivos, los productores utilizan un calendario que han construido de acuerdo a su experiencia y conocimiento. Se guían por las estaciones del año, la época de lluvias, la temporada de calor, época de frío y el estado del tiempo. Así saben que cultivos sembrar de acuerdo a la época del año. En forma general, las practicas tecnológicas que utilizan para llevar a cabo el proceso de producción consiste en la preparación del terreno con la finalidad de tener un suelo poroso esta actividad se lleva a cabo primeramente delimitando el área de la camas posteriormente se realiza la doble excavación, la cual permite la entrada de aire al suelo, con lo que ayudamos a que la vida se desarrolle mejor y se retenga más agua para las plantas. Esta práctica consiste en cavar aproximadamente 60 cm de profundidad e incorporar materia orgánica en el orificio perforado, en los siguientes 30 ó 40 cm, excavar otra zanja, y con la tierra de esta segunda zanja tapar la primera, se continúa en línea recta con el mismo procedimiento antes mencionado hasta terminar con el largo de la cama (Jeavons, 2007).

Regarding the enclosure of bio-intensive beds, 91.1% of households have them protected to avoid damage to their vegetables by animal attack, this suggests the importance that families attach to the protection of their vegetables for their growth and development. The orientation of protection is to cover the perimeter covers an area of bio-intensive vegetable beds planted mainly with the aim of ensuring production (Jiménez, 2007). The materials used for fencing the area are in order of importance the metal mesh and plastic sacks.

To plant or activities in crops, producers use a calendar that have been built according to their experience and knowledge. They are guided by the seasons, the rainy season, the hot season, cold weather and the weather. So they know which crops to grow according to the season. In general, technological practices that used to carry out the production process involves preparing the ground for the purpose of having a porous soil this activity is carried out by first defining the area of the beds then double digging is done which allows air to enter the soil, thus helping to develop better life and more water is retained for plants. This practice involves digging about 60 cm deep and incorporate organic matter into the drilled hole, in the next 30 or 40 cm, dig another trench, and the land of the second trench cover primera.se continuous straight with the same procedure aforementioned to finish with the bed (Jeavons, 2007).

The close planting means that the plants are planted at a shorter distance to the commercial and traditional agriculture recommended, so the space is better used. Sown to “staggered” into a hexagon, so that the distance between plants is always the same; this varies with the type and variety.
La siembra cercana significa que las plantas se siembran a una distancia menor a la que la agricultura comercial y tradicional recomienda, así se aprovecha mejor el espacio. Se siembra a "tresbolillo" en forma de hexágono, de manera que la distancia entre planta y planta sea siempre la misma; esta varía según el tipo y variedad de planta. El 88.9% siembra sus hortalizas de forma directa y solo 11.1% es en almacigo. Así como también afirman que cada que cosechan alguna hortaliza vuelven a sembrar otra en el mismo lugar (100%) solo que de diferente especie a la cosechada, por lo que con ello se cumple uno de los principios fundamentales del método biointensivo.

Los principios fundamentales, son los siguientes: doble excavación, uso de composta, siembra cercana, asociación y rotación de cultivos, uso de semillas de polinización abierta, cultivo para la producción de composta y generación de carbono y calorías, cuidado integral (Flores, 2005).

Los riegos son de forma manual, igualmente que la siembra, deshierbe, fertilización, manejo de plagas y enfermedades. Esta práctica la realizan cada tercer día (66.7%) en promedio 77.8% la adquieren del agua potable de su casa y el recipiente de apoyo es con un bote de chiles envinagres el cual cuenta con orificios.

La fertilización de sus hortalizas en camas biointensivas es a base de compostas orgánicas y el control de plagas y enfermedades es con apoyo de productos naturales, estas prácticas de producción son con apoyo del CES, ya que imparten talleres a base de productos naturales y de los cuales se cuenta en la región, con el fin de no continuar dañando el medio ambiente y a los hombres y mujeres.

La mayoría de los productores no cuentan con sistema de riego tecnificado para sus hortalizas, solo se ubicaron dos familias que cuentan con sistema de riego por cintilla; riegan en forma manual, acarrean el agua desde la fuente de almacenamiento hacia los cultivos en camas biointensivas. Algunas personas comentaron que reutilizan el agua que ocupan para las labores del hogar, tales como: lavado de ropa y trastes para regar las hortalizas.

Enténtimos de reciclaje de nutrientes, lo anterior significa que al emplear los estiércoles de los animales de traspatio como abono para la producción de hortalizas en camas biointensivas, los productores incorporan practicas agroecológicas, contribuyendo a aumentar los niveles de nutrientes y materia orgánica en el suelo y a disminuir los problemas de algunas malezas, plagas y enfermedades. También se contribuye a reducir la erosión del suelo (García, 2008).
El control de plagas y enfermedades es otra práctica agrícola importante para obtener excelente calidad y cantidad en la producción (Dopazo, 2010). En la producción de hortalizas en camas biointensivas de Españita, Tlaxcala, se encontró que 64.4% ataca estos problemas con productos biológicos con el apoyo del C. E. S. mediante la impartición de talleres, en donde utilizan productos como: ajo, agua con jabón, cebolla, hierbabuena, manzanilla, etc.

Conclusiones

Las camas biointensivas del municipio de Españita, Tlaxcala, está integrado por cuatro componentes: agrícola, agua, infraestructura y herramientas. La superficie total del área con la que cuentan las camas biointensivas está asociada a la superficie total del huerto familiar. Por lo que a mayor superficie disponible en el huerto familiar, mayor disposición de superficie para el cultivo de hortalizas en camas biointensivas. Las características de los componentes estructurales como el cercado del área de las camas biointensivas, el uso de invernadero y el uso de materiales locales como madera, malla, palos o marañas de algunos árboles presentes en las comunidades, plásticos, costales y tabique para construir la protección de las camas biointensivas, permiten que las familias de estudio cultiven diversas especies vegetales.

Las camas biointensivas representan importancia ecológica debido a que las familias de estudio en el proceso de producción de las hortalizas llevan a cabo las prácticas y principios que requiere el sistema biointensivo, ya que incluyen prácticas que ayudan a conservar los recursos naturales, como: la selección de semillas de las hortalizas cosechadas de las camas biointensivas (82.2%), el uso de abonos orgánicos (95.6%) contribuyendo de esta manera a mejorar la calidad del suelo ayudando a reducir la erosión y aumentando la fertilidad, empleo de productos biológicos (64.4%) para el control de plagas y enfermedades.

Las camas biointensivas que han desarrollado las familias de estudio de Españita, Tlaxcala, es importante social, económica y ecológicamente. Aun sin la intervención de apoyos gubernamentales del estado, las familias realizan acciones en las camas biointensivas para contribuir a su reproducción social, a reducir la pobreza e inseguridad alimentaria.

Conclusions

The bio-intensive beds Españita Township, Tlaxcala, consists of four components: agriculture, water, infrastructure and tools. The total surface area with which the bio-intensive beds feature is associated with the total area of the home garden. As a larger surface area available on the house, better willingness surface for growing bio-intensive vegetable beds. The characteristics of the structural components such as fencing the area of bio-intensive beds, the use of emissions and the use of local materials such as wood, mesh, sticks or tangles of some trees present in the communities, plastics, bags and wall to build the protection of bio-intensive beds, allow families to study various plant species grow.

The bio-intensive beds represent ecological importance because families studied in the production process of vegetables holding practices and principles requiring bio-intensive system, including practices that help to conserve natural resources, such as: selection of seed of the harvested vegetables from the bio-intensive beds (82.2%), use of organic fertilizers (95.6%) contributing to improving soil quality by helping to reduce erosion and increase fertility, use of biological products (64.4 %) for the control of pests and diseases.

The bio-intensive beds that were developed in Españita, Tlaxcala, are important socially, economically and environmentally. Even without the intervention of the governmental support, families perform actions in the bio-intensive beds to contribute to their social reproduction, to reduce poverty and food insecurity.

Literatura citada

Altieri, M. y Nicholls, I. C. 2000. Agroecología, teoría y práctica para una agricultura sustentable. 1ª edición. México, D. F. 257 p.
Baca, M. J. 2007. Evolución de PESA - FAO en México. Seguridad alimentaria en Puebla; importancia, estrategias y experiencias. In: Jiménez, F. A. (Coord.). Secretaría de Desarrollo Rural del Gobierno del estado de Puebla. Colegio de Postgraduados Campus Puebla. 87 p.
COLPOS (Colegio de Postgraduados en Ciencias Agrícolas). 2007. Proyectos de la iniciativa de nutrición humana de la fundación W. K. Kellogg. Evaluación socioeconómica. 217 p.

CONEVAL (Consejo Nacional de Evaluación de la Política de Desarrollo Social). 2013a. Análisis y medición de la pobreza. México. http://www.coneval.gob.mx/medicion/Paginas/Medici%C3%B3n/Pobreza-2010.aspx.

CONEVAL (Consejo Nacional de Evaluación de la Política de Desarrollo Social). 2013b. Medición de pobreza en los municipios de México, 2010. http://www.coneval.gob.mx.

Dopazo, P. y Duch, G. 2010. Revista Soberanía Alimentaria, Biodiversidad y Culturas. http://gustavoduch.wordpress.com/algunas-conferencias/economia-solidaria-y-soberania-alimentaria/.

FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2002. La reducción de la pobreza y el hambre: la función fundamental de la financiación de la alimentación, la agricultura y el desarrollo rural. Roma. 89-95 pp.

FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2005. Políticas de seguridad alimentaria en los países de la comunidad Andina. Oficina Regional de la FAO para América Latina y el Caribe. Santiago, Chile. http://www.fao.org.

FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2011a. PESA México; Alianza FAO-SAGARPA. http://www.utn.org.mx/proyecto_pesa.html.

FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2011b. SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación), SEDESOL (Secretaría de Desarrollo Social), Instituto Nacional de Salud Pública. 2013. Panorama de la Seguridad Alimentaria y Nutricional en México 2012. México. 288 p.

Flores, G. 2005. FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación)-SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación)-AECI, PESA. Manejo del huerto integrado. 45 p.

Gallopín, G. 2003. Sostenibilidad y desarrollo sostenible: un enfoque sistémico. División de Desarrollo Sostenible y Asentamientos Humanos. Proyecto NET/00/063. “evaluación de la sostenibilidad en América Latina y el Caribe” CEPAL-Gobierno de los Países Bajos. Santiago de Chile. 174 p.

García, M. 2008. El estado de la inseguridad alimentaria en el mundo (SOFI) 2006: la erradicación del hambre en el mundo. Evaluación de la situación diez años después de la cumbre mundial sobre la alimentación (CMA)* de Jacob Skoet y Kostas Stamoulis en Agroalimentaria. http://www.redalyc.org/articulo.oa?id=199216339011.

Jeavons, J. 2004. Cultivo biointensivo de alimentos más alimentos en menos espacio, 6ª edición. EE.UU. 36 p.

Jeavons, J. y Cox, C. 2007. El huerto sustentable, como obtener suelos saludables, productos sanos y abundantes. Universidad de California. 432 p.

Jiménez, F. A. 2007. Seguridad alimentaria en Puebla: importancia, estrategias y experiencias. Secretaría de Desarrollo Rural del Gobierno del estado de Puebla. Colegio de Postgraduados Campus Puebla. 65 p.

López, D. M. S. 2010. Globalización económica y estrategias competitivas. Universidad Pontificia Comillas. 189 p.

Maldonado, M. A.; Cuatecontzi, G. F. and Luna, C. S. 2007. El desarrollo local desde la perspectiva de los derechos humanos. Elementos de diagnóstico de actores económicos para un plan de desarrollo local en el municipio de España Tlaxcala. Centro de Economía Social Julián García. SEDESOL (Secretaría de Desarrollo Social). México. 169 p.

Olivares, S. y Zacarías, I. 2012. Guía de alimentación saludable y necesidades nutricionales del adulto. INTA (Instituto de Nutrición y Tecnología de los Alimentos). Universidad de Chile. 11-45 pp.

Palma, S. A. 2002. Relaciones funcionales en el solar familiar en los agroecosistemas de Arroyo de Banco, Valle Nacional, Oaxaca. Veracruz, México. 73 p.

Rojas, S. R. 2009. Guía para realizar investigaciones Sociales. (Ed.). Plaza y Valdés. México, D. F. 45 p.