The q-AGT–W Relations Via Shuffle Algebras

Andrei Negut1,2

1 Department of Mathematics, MIT, Cambridge, MA, USA. E-mail: andrei.negut@gmail.com
2 Simion Stoilow Institute of Mathematics, Bucharest, Romania.

Received: 27 September 2016 / Accepted: 1 December 2017
Published online: 21 February 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: We construct the action of the q-deformed W-algebra on its level r representation geometrically, using the moduli space of $U(r)$ instantons on the plane and the double shuffle algebra. We give an explicit LDU decomposition for the action of W-algebra currents in the fixed point basis of the level r representation, and prove a relation between the Carlsson–Okounkov Ext operator and intertwiners for the deformed W-algebra. We interpret this result as a q-deformed version of the AGT–W relations.

1 Introduction

Fix $r \in \mathbb{N}$. The moduli space \mathcal{M} of rank r framed sheaves on \mathbb{P}^2 is an algebro-geometric incarnation of the moduli space of $U(r)$ instantons, where the Nekrasov partition function naturally appears. More precisely, it has been known from the work of [10,11,25,34] that the partition function of $5dU(r)^k$-gauge theory with bi-fundamental hypermultiplets m_1, \ldots, m_k, in the presence of full Ω-background, is:

$$Z_{m_1,\ldots,m_k}(x_1,\ldots,x_k) = \text{Tr} \left(A_{m_1}(x_1) \circ \cdots \circ A_{m_k}(x_k) \bigg| _{u_{k+1}=u^i} \right)$$

where the Ext operator (see (4.2) for the precise geometric definition) is:

$$A_{m_i}(x_i) : K_{u_{i+1}} \longrightarrow K_{u^i}$$

and K_{u^i} denotes the equivariant K-theory of the moduli space of rank r sheaves, with equivariant weights encoded in the vector of parameters $u^i = (u^1_i, \ldots, u^r_i)$. The partition function of linear quiver gauge theory can be recovered from the operators $A_m(x)$ and their matrix coefficients, as explained in [7]. This partition function has been studied extensively and from many different points of view, see e.g. [26,35].

The main purpose of the present paper is to mathematically state and prove a connection between the rank r Nekrasov partition function and conformal blocks for the
q-W-algebra (more commonly called “deformed W-algebra”) of type \mathfrak{gl}_r. The proof of our main Theorem 1.1 uses two main mathematical tools: expressing q-W-algebras via shuffle algebras, and performing intersection-theoretic computations with the Ext operator (1.2). We interpret our result as a q-deformed version of the well-known AGT–W relations between gauge theory and conformal field theory (these were introduced by Alday, Gaiotto and Tachikawa and extended by Wyllard in the undeformed case, and formulated in the q-deformed case by Awata and Yamada, see [4,7,39,40] among other references. The physical literature on the subject is vast, see for example [1,22,36] for other points of view).

The algebra we study is the tensor product of the q-W-algebra of type \mathfrak{sl}_r [3,14] and a q-Heisenberg algebra. By close analogy with loc. cit., we show in Sect. 5 that the defining currents of our q-W-algebra are “elementary symmetric functions”:

$$W_k(z) = \sum_{1 \leq i_1 < \cdots < i_k \leq r} \exp\left[b^{i_1}(x) \right] \exp\left[b^{i_2}\left(\frac{x}{q}\right) \right] \cdots \exp\left[b^{i_k}\left(\frac{x}{q^{k-1}}\right) \right]$$ \hspace{1cm} (1.3)

in a family of bosonic fields $b^1(z), \ldots, b^r(z)$ which satisfy the commutation relations (5.1). The nice thing about the \mathfrak{gl}_r case is that one can send $r \to \infty$, and the resulting limit can be interpreted as the upper half of the double shuffle algebra (as in Sect. 2).

For fixed r, the definition (1.3) implies the following relations:

$$W_0(x) = 1, \quad W_k(x) = 0 \quad \text{for all } k > r$$

and:

$$W_k(x)W_{k'}(y) \cdot f_{kk'}\left(\frac{y}{x}\right) = W_{k'}(y)W_k(x) \cdot f_{kk'}\left(\frac{x}{y}\right)$$

$$= \sum_{i=\max(0,k'-k+1)}^{k'} \delta\left(\frac{y}{xq^i}\right) \left[W_{k'-i}(x)W_{k+i}(y)f_{k'-i,k+i}\left(\frac{y}{x}\right) \bigg|_{x=y=q^i} \right]$$

$$\theta(\min(i,k-k'+i))$$

$$- \sum_{i=\max(0,k-k'+1)}^{k} \delta\left(\frac{x}{yq^i}\right) \left[W_{k-i}(y)W_{k'+i}(x)f_{k-i,k'+i}\left(\frac{x}{y}\right) \bigg|_{y=x=q^i} \right]$$

$$\theta(\min(i,k'-k+i))$$ \hspace{1cm} (1.4)

The quantity $\theta(s)$ is defined for all $s \in \mathbb{N}$ in (2.63), while the power series $f_{kk'}(z)$ is defined in (2.64) (note that we always expand it in $|z| \ll 1$). In Proposition 5.7, we will explain how formulas (1.4) differ from those of [3,14].

Our strategy is quite well-known to mathematicians and physicists: to recast the AGT–W relations as a connection between the operator $A_m(x)$ and intertwiners for the q-W-algebra. This starts with Theorem 3.12 below, which states that for arbitrary $r \in \mathbb{N}$ and generic equivariant parameters $\mathbf{u} = (u_1, \ldots, u_r)$, the K-theory group K_u of the moduli space of rank r sheaves is isomorphic to the Verma module of the q-W-algebra, with highest weight prescribed by the equivariant parameters \mathbf{u}. Note that our construction and proof are purely geometric, and do not use the isomorphism between the level r representation and a tensor product of r Fock spaces (which was used e.g. in [2]). This geometric definition is fruitful because it can be extended to moduli of sheaves on other surfaces, see [32,33]: