Reference values for the cross-sectional area of normal radial nerve at two levels using high-resolution ultrasonography

Kunwar Pal Singh, Achal Singh Goindi, Kamlesh Gupta

Radiodiagnosis, SGRD University of Health Sciences, India
Correspondence: Kunwar Pal Singh, e-mail: kpsdhami@hotmail.com

DOI: 10.15557/JoU.2021.0020

Abstract

Aim of the study: High-resolution ultrasound is less often used to evaluate the radial nerves. The radial nerve is often involved in entrapment syndromes. The aim of the study is to establish the reference values for the cross-sectional area of the normal radial nerve on high-resolution ultrasonography, and to identify relationships between the cross-sectional area and the subject’s age, gender, height, weight, body mass index, and hand dominance. **Material and methods:** The study was conducted on 200 subjects of both sexes, between 18 and 75 years of age, who did not have history of peripheral neuropathy or trauma to the upper limb. High-resolution real-time sonographic examination of the radial nerves was performed in both arms at two different levels. Level 1 was taken just proximal to the nerve bifurcation, and level 2 just after the nerve exits the spiral groove. **Results:** The mean cross-sectional area measured at level 2 (4.3 ± 0.4 mm²) was greater than that measured at level 1 (2.3 ± 0.3 mm²). No significant relationship was seen with age and hand dominance (p > 0.05), but the cross-sectional area values at above mentioned levels were larger in males than in females (p < 0.05). In addition, the cross-sectional areas of the radial nerves showed a positive correlation with height, weight, and body mass index (p < 0.05). **Conclusion:** The established ultrasonographic reference values along with basic clinical data will aid in the diagnosis, response to treatment, and prognostic evaluation of peripheral neuropathies.

Introduction

Clinical and electrodiagnostic evaluations of peripheral nerves are widely used nowadays to assess the severity of trauma to the peripheral nerves. However, a major limitation is that these approaches are not able to determine the extent of damage to the nerve fibers in the first 6 weeks post trauma(1). Another disadvantage is that CT and MRI scans for neurographic studies are not always readily available and prove to be costly. High-resolution ultrasonography, on the other hand, is a dynamic, portable and cost-effective modality for the assessment of the peripheral nerves.

On ultrasound, the peripheral nerves show a tape-like fibrillar pattern on longitudinal scans and an ovoid fibrillar pattern on transverse scans. These specific patterns with a characteristic echotexture on sonography can be well correlated with the normal histology of the nerves(2).

The radial nerve is more commonly involved in entrapment syndromes compared to other peripheral nerves of the upper limb, such as the median or ulnar nerve. Common sites of nerve entrapment are the junction of the middle and distal third of the arm (post traumatic), just distal to the elbow (arcade of Frohse), and proximal to the wrist between the brachioradialis and the extensor carpi radialis longus(3). Generally, it is difficult to diagnose the condition clinically, and the final diagnosis is mostly obtained by excluding other differentials. This can lead to a delay in the initiation of effective treatment(3).

Studies show that high-resolution ultrasonography is useful for the localization of trauma, entrapment neuropathies, and infectious conditions and neoplasms involving the peripheral nerves(4-6).

The present study seeks to obtain high-resolution sonographic images of normal radial nerves to assess potential...
Material and methods

The study was conducted on 200 subjects. Individuals of both sexes, between 18 and 75 years of age, not having any history of peripheral neuropathy or trauma to the upper limb, and referred to the department of radiodiagnosis and imaging of the Sri Guru Ram Das Institute of Medical Sciences and Research, Sri Amritsar, for other medical or surgical conditions, were included in the study. Ethical clearance for the study was granted by the ethics committee at the Sri Guru Ram Das Institute of Medical Sciences and Research (reference number: Patho190/19).

Patients showing features of peripheral neuropathy as a result of trauma, pregnancy, diabetes mellitus, hypothyroidism or alcoholism were excluded from the study. After obtaining informed written consent from each subject, detailed clinical history was recorded, and high-resolution ultrasonography of the radial nerve was performed in both arms.

Statistical analysis

The data was analyzed using SPSS 24.0 software. Qualitative variables (sex, hand dominance) as well as quantitative variables (CSA, BMI, age, height, weight) were evaluated in the study. The means as well as standard deviations for the CSA of the radial nerves were calculated at two levels in bilateral upper arms in both men and women. Independent sample t-test was used to evaluate the association between the qualitative (gender and hand dominance) and quantitative (CSA) variables. The correlation of the mean CSA of the radial nerves with age, height, weight, and body mass index (BMI) was done using Pearson’s correlation analysis (‘r’ value). P values less than 0.05 were considered statistically significant.

Results

The mean CSA of the radial nerves calculated at level 1 and level were 2.3 ± 0.3 mm² and 4.3 ± 0.4 mm², respectively. There was a considerable difference in the mean CSA calculated at both these levels (p < 0.05) with CSA being more in the proximal part of the nerve (level 2) than the distal part (level 1) (Tab. 1).
Fig. 2. Ultrasonographic cross-sectional area values of the normal radial nerve (arrows) of the right and left upper limbs in the axial plane at level 1 in a 70-year-old male weighing 60 kg, with a height of 167 cm and a body mass index of 21.4 kg/m². The mean cross-sectional area on the right (A, B, C) and left (D, E, F) sides are 2.4 mm² and 2.5 mm², respectively (yellow arrow – radial nerve, RT – right, LT – left, PT – point, VAL – value).
Men had a significantly larger mean CSA than women ($p = 0.001$) at both levels in bilateral arms. (Tab. 2). No significant statistical difference ($p > 0.05$) was observed in the mean CSA of the radial nerves on comparison of the dominant and non-dominant arms (Tab. 3).

The mean CSA of the radial nerves at both levels in bilateral arms showed a significant ($p < 0.05$) positive correlation with height (Tab. 4), weight (Tab. 5) and body mass index (Tab. 6) as calculated by Pearson’s correlation analysis (positive r value). However, a correlation was observed between the mean CSA of the radial nerves and the age of the subjects ($p < 0.05$) (Tab. 7).

Discussion

High-resolution ultrasonography is a newly evolving tool to evaluate disorders of the peripheral nervous system[7]. The ultrasound appearance of a normal peripheral nerve shows

Fig. 3. High-resolution ultrasonography of the radial nerve of the right upper limb done with the patient in supine position using a high-resolution linear transducer (5–18 MHz) at the anterolateral aspect of the mid-humerus just after it exits the spiral groove (level 2)

Fig. 4. Ultrasonographic cross-sectional area values of the normal radial nerve (arrows) of the right and left upper limbs in the axial plane at level 2 in a 70-year-old male weighing 60 kg, with a height of 167 cm and a body mass index of 21.4 kg/m2. The mean cross-sectional area on the right (A, B, C) and left (D, E, F) sides are 4.5 mm2 and 4.8 mm2, respectively (yellow arrow – radial nerve, RT – right, LT – left, PT – point, VAL – value)

Level	CSA	SD	p-value
Level 1	0.023	0.003	0.001
Level 2	0.043	0.004	

CSA – cross-sectional area, SD – standard deviation

Tab. 1. Mean cross-sectional area (cm2) of the radial nerves at levels 1 and 2
multiple hypoechoic longitudinal nerve fascicles which are separated by discontinuous echogenic bands corresponding to the epineurium\(^{(8-11)}\). A previous study done by Alshami \textit{et al.} found that ultrasonography could accurately measure the CSA of the peripheral nerves\(^{(12)}\). In our study, a linear transducer with a frequency range of 5–18 MHz...
was used to scan the radial nerve of both upper arms, easily demonstrating the radial nerve fascicles. In most previous studies, the diameter instead of the CSA was used in evaluating the size of the nerve(1,12,13). However, in recent studies, the measurement of the CSA has been advised, as it provides the precise CSA(14–16). Some common variations

Fig. 6. Ultrasonographic cross-sectional area values of the normal radial nerve (arrows) of the left upper limb in the axial plane at level 1 (A, B, C) and level 2 (D, E, F) in a 63-year-old female weighing 87 kg, with a height of 162 cm and a body mass index of 33.2 kg/m\(^2\). The mean cross-sectional areas at level 1 and level 2 are 2.9 mm\(^2\) and 5.2 mm\(^2\), respectively (yellow arrow – radial nerve, RT – right, LT – left, PT – point, VAL – value)
included minor alterations, such as round to oval shapes at separate locations within the arm. In our study, it may be argued that the CSA is a reliable and more consistent index than the nerve diameter because of the presence of variable shapes. We measured the mean CSA values of the radial nerves at two levels in both arms.

The mean CSA values in our present study were 2.3 ± 0.3 mm2 and 4.3 ± 0.4 mm2 at levels 1 and 2, respectively (Tab. 1). The CSA of the nerve varies along its course in the arm, with the nerve being thicker in the proximal part and having a greater CSA. In a study conducted by Chen et al., it was seen that the mean CSA of the radial nerves at

Fig. 7. Ultrasonographic cross-sectional area values of the normal radial nerve (arrows) of the right upper limb in the axial plane at level 1 (A, B, C) and level 2 (D, E, F) in a 64-year-old male weighing 83 kg, with a height of 180 cm and a body mass index of 25.6 kg/m2. The mean cross-sectional areas at level 1 and level 2 are 2.9 mm2 and 5.8 mm2, respectively (yellow arrow – radial nerve, RT – right, LT – left, PT – point, VAL – value)
4 cm above the lateral epicondyle of the humerus and at the midpoint between the elbow crease and axilla were 5.14 ± 1.24 mm² and 5.08 ± 1.23 mm², respectively, suggesting that the mean CSA of the radial nerve was consistent throughout its entire length(17). Tagliafico et al. in their study showed that the mean CSA values and standard deviations for the radial nerve at the humeral shaft and along the supinator muscle were 7.2 ± 2.9 mm² and 2.3 ± 1.3 mm², respectively(18). Won et al. found that the CSA of the radial nerve at the level of the spiral groove and antecubital fossa

Fig. 8. Ultrasonographic cross-sectional area values of the normal radial nerve (arrows) of the left upper limb in the axial plane at level 1 (A, B, C) and level 2 (D, E, F) in a 64-year-old male weighing 83 kg, with a height of 180 cm and a body mass index of 25.6 kg/m². The mean cross-sectional areas at level 1 and level 2 are 2.9 mm² and 5.4 mm², respectively (yellow arrow – radial nerve, RT – right, LT – left, PT – point, VAL – value)
was $4.58 \pm 0.85 \text{ mm}^2$ and $4.53 \pm 0.75 \text{ mm}^2$, respectively for the right arm. For the left arm, these values were $4.65 \pm 0.91 \text{ mm}^2$ and $4.47 \pm 0.75 \text{ mm}^2$, respectively\(^{(19)}\). The mean CSA of the radial nerve at the spiral groove in healthy subjects was $3.2 \pm 1.5 \text{ mm}^2$ in another study conducted by Kerasnoudis \textit{et al}\(^{(20)}\). The observed variability in reference values may be due to differences in the population being studied\(^{(21,22)}\).
Bedewi et al. in their study showed that the CSA reference values of the upper limb nerves correlated with age, weight, and BMI. However, in that study, the CSA reference values did not correlate with height\(^{(23)}\). Chen et al. in their study found that a strong correlation existed between the CSA of the radial nerves and the height and weight of the subjects, with a correlation coefficient of 0.36 \((p < 0.05)\)\(^{(17)}\). Tagliafico et al. also showed a weak correlation of the radial nerve size with height, and a relatively strong correlation with weight and body mass index\(^{(18)}\). In our study, the mean CSA of the bilateral radial nerves at levels 1 and 2 showed a significant \((p < 0.05)\) positive
correlation with height (Tab. 4), weight (Tab. 5), and body mass index (BMI) (Tab. 6).

Chen et al. also observed that there was no statistical significance between the CSA reference values of the radial nerves and the age of the subject. There was also no statistical difference ($p > 0.05$) in the mean CSA values of the bilateral radial nerves when the dominant and non-dominant arms were compared ($p > 0.05$). In addition, they proved that women had smaller mean cross-sectional areas of the radial nerve than men.
Reference values for the cross-sectional area of normal radial nerve at two levels using high-resolution ultrasonography

\(p < 0.05\) in measurements performed at two sites\(^{(17)}\). However, Tagliafico et al. in their study showed a weak correlation of nerve size with the age of the subjects, and no correlation with the dominant and non-dominant sides\(^{(18)}\). In our present study, the CSA values were higher in males than females \(p < 0.05\) (Tab. 2). There was no significance \(p > 0.05\) between the mean CSA of the radial nerves with hand dominance (Tab. 3) and age of the subjects (Tab. 7). The point that there was no statistical difference between the dominant and non-dominant hands can be practically utilized for the comparison of both limbs.

Fig. 12. Ultrasonographic cross-sectional area values of the normal radial nerve (arrows) of the left upper limb in the axial plane at level 1 (A, B, C) and level 2 (D, E, F) in a 21-year-old male weighing 55 kg, with a height of 154 cm and a body mass index of 23.2 kg/m\(^2\). The mean cross-sectional areas at level 1 and level 2 are 1.8 mm\(^2\) and 3.8 mm\(^2\), respectively (yellow arrow – radial nerve, RT – right, LT – left, PT – point, VAL – value).
High-resolution ultrasonographic evaluation of the peripheral nerves allows good depiction of nerve morphology and can identify pathological changes such as nerve enlargement and alterations in the echopattern (24-26). Ultrasound also provides useful information about the morphology, precise location, and anatomical course of the nerve (27). The CSA values of the radial nerve obtained in this study will establish the normal range of values, which can facilitate the diagnosis of abnormal nerve disorders such as neuropathies, trauma, tumors, and entrapment involving the nerve. All these disorders will cause a significant alteration in the CSA of the radial nerve and height, weight, BMI, and but no correlation with age. Males had larger CSA values of the radial nerve and height, weight, BMI, and but no correlation with age. Males had larger CSA values of the radial nerve and height, weight, BMI, and but no correlation with age. Males had larger CSA values of the radial nerve and height, weight, BMI, and but no correlation with age.

There are a few limitations associated with the present study. The sample population was restricted to one demographic area, and the CSA measurements were done only at two levels. Including a population from different demographic strata and taking CSA measurements at more levels could be performed to avoid these limitations.

Conclusions

The mean CSA in our present study was $2.3 \pm 0.3 \text{ mm}^2$ and $4.3 \pm 0.4 \text{ mm}^2$ at levels 1 and 2, respectively. Healthy subjects showed a strong correlation between the CSA of the radial nerve and height, weight, BMI, and but no correlation with age. Males had larger CSA values of the radial nerve than females. We can practically compare both dominant and non-dominant hands, as there was no statistical difference between the CSA of the radial nerves in the dominant and non-dominant hands. These normal reference values of

Tables

Tab. 2. Mean cross-sectional area (cm²) of both radial nerves at two levels, and their relationship with patient sex

Sex	No. of cases	CSA level 1 Mean	CSA level 1 SD	P-value & r-value	CSA level 2 Mean	CSA level 2 SD	P-value & r-value		
Male	105	0.2443	0.003037	$r = -0.488$	$p = 0.001$	0.04949	0.008413	$r = -0.237$	$p = 0.001$
Female	95	0.02104	0.003058			0.02142	0.005664		

Tab. 3. Cross-sectional area (cm²) of the radial nerve at two levels, and its relationship with the dominant and non-dominant sides

Dominant side	No. of cases	CSA level 1 Mean	CSA level 1 SD	P-value & r-value	CSA level 2 Mean	CSA level 2 SD	P-value & r-value		
Left	11	0.02342	0.002244	$r = -0.042$	$p = 0.556$	0.02389	0.002424	$r = -0.018$	$p = 0.802$
Right	189	0.02279	0.003535			0.02324	0.007624		

Dominant side	No. of cases	CSA level 1 Mean	CSA level 1 SD	P-value & r-value	CSA level 2 Mean	CSA level 2 SD	P-value & r-value		
Left	11	0.04400	0.002324	$r = -0.057$	$p = 0.420$	0.04376	0.002237	$r = -0.014$	$p = 0.846$
Right	189	0.04297	0.004165			0.04313	0.010640		

Tab. 4. Cross-sectional area (cm²) of the radial nerve at two levels, and its relationship with height

Height	No. of cases	CSA level 1 Mean	CSA level 1 SD	P-value & r-value	CSA level 2 Mean	CSA level 2 SD	P-value & r-value		
≤160	54	0.01935	0.002298	$r = -0.736$	$p = 0.001$	0.02017	0.006965	$r = -0.359$	$p = 0.001$
161–170	110	0.02315	0.002379			0.02310	0.002869		
>170	36	0.02705	0.002451			0.02844	0.013136		

Height	No. of cases	CSA level 1 Mean	CSA level 1 SD	P-value & r-value	CSA level 2 Mean	CSA level 2 SD	P-value & r-value		
≤160	54	0.03917	0.002684	$r = -0.656$	$p = 0.001$	0.03914	0.002340	$r = -0.234$	$p = 0.001$
161–170	110	0.04489	0.013782			0.04419	0.013138		
>170	36	0.04714	0.004031			0.04606	0.005176		
the radial nerve can facilitate the study of sex-specific differences, and provide information on side to side variations along with abnormal nerve conditions. Hence, these ultrasonographic reference values along with basic clinical data will aid in the diagnosis, response to treatment, and prognostic evaluation of peripheral neuropathies.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations which might negatively affect the contents of this publication and/or claim authorship rights to this publication.
References

1. Cartwright MS, Chlechos GD, Walker FO, Wiesler ER, Campbell WW: Diagnostic ultrasound for nerve transaction. Muscle Nerve 2007; 35: 796–799.

2. Lee FC, Singh H, Nazarian LN, Raffill JK: High-resolution ultrasonography in the diagnosis and intraoperative management of peripheral nerve lesions. J Neurosurg 2011; 114: 206–211.

3. Kleinert JM, Mhtca S: Radial nerve entrapment. Orthop Clin North Am 1996; 27: 305–315.

4. Martinoli C, Bianchi S, Pugliese F, Bacigalupo L, Gauglio C, Valle M et al.: Sonography of entrapment neuropathies in the upper limb (wrist excluded). J Clin Ultrasound 2004; 32: 438–450.

5. Ng ES, Vijayan J, Therimadasamy AK, Tan TC, Chan YC, Lim A et al.: High resolution ultrasonography in the diagnosis of ulnar nerve lesions with particular reference to post-traumatic lesions and sites outside the elbow. Clin Neurophysiol 2011; 122: 188–193.

6. Bacigalupo L, Bianchi S, Valle M, Martinoli C: Ultrasonography of peripheral nerves. Radiolote 2003; 43: 841–849.

7. Hobson-Webb LD, Padua L, Martinoli C: Ultrasonography in the diagnosis of peripheral nerve disease. Expert Opin Med Diagn 2012; 6: 457–471.

8. Hammer HB, Hovden IAH, Haavardsholm EA, Kvien TK: Ultrasonography shows increased cross-sectional area of the median nerve in patients with arthritis and carpal tunnel syndrome. Rheumatology (Oxford) 2006; 45: 584–588.

9. Tagliafico A, Pugliese F, Bianchi S, Bodner G, Padua L, Rubino M et al.: High-resolution sonography of the palmar cutaneous branch of the median nerve. Am J Roentgenol 2008; 191: 107–114.

10. Thoirs K, Williams MA, Phillips M: Ultrasonographic measurements of the ulnar nerve at the elbow: role of confounders. J Ultrasound Med 2008; 27: 737–743.

11. Yoon JS, Walker FO, Cartwright MS: Ultrasonographic swelling ratio in the diagnosis of ulnar neuropathy at the elbow. Muscle Nerve 2008; 38: 1231–1235.

12. Alshami AM, Cairns CW, Wylie BK, Souvlis T, Coppieters MW: Reliability and size of measurement error when determining the cross-sectional area of the tibial nerve at the tarsal tunnel with ultrasonography. Ultrasound Med Biol 2009; 35: 1098–1102.

13. Kincaid BR, Barrett SL: Use of high-resolution ultrasound in evaluation of the foot and ankle. J Am Podiatr Med Assoc 2005; 95: 429–432.

14. Park GY, Kim JM, Lee SM: The ultrasonographic and electrodiagnostic findings of ulnar neuropathy at the elbow. Arch Phys Med Rehab 2004; 85: 1000–1005.

15. Mallouhi A, Pilitz J, Trieb T, Piza H, Bodner G: Predictors of carpal tunnel syndrome: accuracy of gray-scale and color Doppler sonography. Am J Roentgenol 2006; 186: 1240–1245.

16. Koenig RW, Pedro MT, Heinen CPG, Schmidt T, Richter H-P, Antoniadis G et al.: High-resolution ultrasound in evaluating peripheral nerve entrapment and trauma. Neurosurg Focus 2009; 26: E13.

17. Chen J, Wu S, Ren J: Ultrasonographic reference values for assessing normal radial nerve ultrasonography in the normal population. Neural Regen Res 2014; 9: 1844–1849.

18. Tagliafico A, Martinoli C: Reliability of side-to-side sonographic cross-sectional area measurements of upper extremity nerves in healthy volunteers. J Ultrasound Med 2013; 32: 457–462.

19. Won SJ, Kim B-J, Park KS, Yoon JS, Choi H: Reference values for nerve ultrasonography in the upper extremity. Muscle Nerve 2013; 47: 864–871.

20. Kerasnoudis A, Pitarokoili K, Behrendt V, Gold R, Yoon MS: Cross-sectional area reference values for sonography of peripheral nerves and brachial plexus. Clin Neurophysiol 2013; 124: 1881–1888.

21. Wein TH, Albers JW: Electrodagnostic approach to the patient with suspected peripheral polyneuropathy. Neurol Clin 2002; 20: 503–526.

22. Wong SM, Griffith JF, Hui ACF, Tang A, Wong KS: Discriminatory sonographic criteria for the diagnosis of carpal tunnel syndrome. Arthritis Rheum 2002; 46: 1914–1921.

23. Bedewi MA, Abodonya A, Koth M, Mahmoud G, Kamal S, Alqabbani A et al.: Estimation of ultrasound reference values for the upper limb peripheral nerves in adults: a cross-sectional study. Medicine (Baltimore) 2017; 96: e9306.

24. Goedee HS, Brekelmans GJ, van Asseldonk JTH, Beekman R, Mess WH, Visser LH: High resolution sonography in the evaluation of the peripheral nervous system in polyneuropathy – a review of the literature. Eur J Neurol 2013; 20: 1342–1351.

25. Zhong W, Zhang W, Zheng X, Li S, Shi J: The high-resolution ultrasonography and electrophysiological studies in nerve decompression for ulnar nerve entrapment at the elbow. J Reconstr Microsurg 2012; 28: 345–348.

26. Kerasnoidus A, Tsvigoulis G: Nerve ultrasound in peripheral neuropathies: a review. J Neuroimagining 2015; 25: 528–538.

27. Zhang W, Zhong W, Yang M, Shi J, Guowei L, Ma Q: Evaluation of the clinical efficacy of multiple lower-extremity nerve decompression in diabetic peripheral neuropathy. Br J Neurosurg 2013; 27: 795–799.

28. Beekman R, Schoemaker MC, Van Der Plas JF, Van Der Berg LH, Franssen H, Wokke JH et al.: Diagnostic value of high-resolution sonography in ulnar neuropathy at the elbow. Neurology 2004; 62: 767–773.

29. Cartwright MS, Shin HW, Passmore LV, Walker FO: Ultrasonographic findings of the normal ulnar nerve in adults. Arch Phys Med Rehab 2007; 88: 394–396.