The Formulas for the Distribution of the
3-Smooth, 5-Smooth, 7-Smooth and all other
Smooth Numbers

Raphael Schumacher
raphschu@ethz.ch

Abstract
In this paper we present and prove rapidly convergent formulas for the distribution of the 3-smooth, 5-smooth, 7-smooth and all other smooth numbers. One of these formulas is another version of a formula due to Hardy and Littlewood for the arithmetic function \(N_{a,b}(x) \), which counts the number of positive integers of the form \(a^p b^q \) less than or equal to \(x \).

1 Introduction
Let \(a \in \mathbb{N}_{\geq 2} \) be a fixed natural number.
Let \(N_a(x) \) denote the number of natural numbers of the form \(a^p \) which are smaller or equal to \(x \), where \(p \in \mathbb{N}_0 \).
By definition [1, 2], we have that the 2-smooth numbers are just the powers of 2, namely
\[
S_2 := \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, \ldots \}
\]
and that the formula for their distribution is
\[
N_2(x) = \frac{\log(x)}{\log(2)} + \frac{1}{2} - B_1 \left(\left\{ \frac{\log(x)}{\log(2)} \right\} \right).
\]
This follows directly from the more general formula
\[
N_a(x) = \frac{\log(x)}{\log(a)} + \frac{1}{2} - B_1 \left(\left\{ \frac{\log(x)}{\log(a)} \right\} \right).
\]
Numbers of the form \(2^p 3^q \), where \(p \in \mathbb{N}_0 \) and \(q \in \mathbb{N}_0 \) are called 3-smooth numbers [1, 2, 3], because these numbers are exactly the numbers which have no prime factors larger than 3.
We will denote the sequence of 3-smooth numbers by \(S_{2,3} \). Thus, we have that
\[
S_{2,3} := \{2^p 3^q : p \in \mathbb{N}_0, q \in \mathbb{N}_0\} = \{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, \ldots \}.
\]
More generally, let $a, b \in \mathbb{N}$ be fixed natural numbers such that $a < b$ and $\gcd(a, b) = 1$. Let $N_{a,b}(x)$ denote the number of natural numbers of the form $a^p b^q$ which are smaller or equal to x, where $p, q \in \mathbb{N}_0$. Furthermore, we denote by $\chi_{S_{a,b}}(x)$ the characteristic function of the natural numbers of the form $a^p b^q$.

In his first letter to Hardy [4, 5, 6, 7], Ramanujan gave the formula

$$N_{2,3}(x) \approx \frac{1}{2} \frac{\log(2x) \log(3x)}{\log(2) \log(3)} + \frac{1}{2} \chi_{S_{2,3}}(x),$$

which provides a very close approximation to the number $N_{2,3}(x)$ of 3-smooth numbers less than or equal to x.

In his notebooks [4, 7], Ramanujan later generalized this expression to all $a, b \in \mathbb{N}$ with $\gcd(a, b) = 1$, namely

$$N_{a,b}(x) \approx \frac{1}{2} \frac{\log(ax) \log(bx)}{\log(a) \log(b)} + \frac{1}{2} \chi_{S_{a,b}}(x),$$

which is again a very close approximation to $N_{a,b}(x)$.

The analog formula for $N_{a,b,c}(x)$ [8, 9, 10] is

$$N_{a,b,c}(x) \approx \frac{\log\left(\sqrt[3]{abc} x\right)^3}{6 \log(a) \log(b) \log(c)} + \frac{1}{2} \chi_{S_{a,b,c}}(x),$$

which is also a very good approximation to $N_{a,b,c}(x)$.

In the following sections, we present and prove rapidly convergent formulas for the functions $N_{a,b}(x)$ and $N_{2,3}(x)$, having the above Ramanujan approximations as their first term. These two formulas are other versions of a more rapidly convergent formula already found by Hardy and Littlewood around 1920 [11, 12], as it was communicated to us by Emanuele Tron [13]. We also prove very rapidly convergent formulas for the distribution of the 5-smooth, 7-smooth and all other smooth numbers.

At the end of the paper, we give an exact formula for the counting function of the natural numbers of the form $a^p b^q$.

We have searched all resulting formulas (which are given in theorems and corollaries) in the literature and on the internet, but we could only find the Hardy-Littlewood formula [11, 12]. Therefore, we believe that all other results are new.
2 The Formulas for \(N_{a,b}(x) \) and the 3-Smooth Numbers Counting Function \(N_{2,3}(x) \)

Let \(a, b \in \mathbb{N} \) such that \(a < b \) and \(\gcd(a, b) = 1 \).

For \(x \in \mathbb{R}^+ \), we define the function \(N_{a,b}(x) \) by

\[
N_{a,b}(x) := \sum_{p \in \mathbb{N}_0, q \in \mathbb{N}_0} \frac{1}{p^a q^b}.
\]

Moreover, we denote the set of natural numbers of the form \(a^p b^q \) by \(S_{a,b} \) and its characteristic function by \(\chi_{S_{a,b}}(x) \), that is

\[
S_{a,b} := \{a^p b^q : p \in \mathbb{N}_0, q \in \mathbb{N}_0\},
\]

\[
\chi_{S_{a,b}}(x) := \begin{cases} 1 & \text{if } x \in S_{a,b} \\ 0 & \text{if } x \notin S_{a,b} \end{cases}.
\]

We have that

\[
N_{a,b}(x) = 1 + \sum_{k=0}^{\lfloor \log_a(x) \rfloor} \left(\lfloor \log_{a^k}(x) \rfloor + \lfloor \log_{b^k}(x) \rfloor \right).
\]

Theorem 1. (Our Formula for \(N_{a,b}(x) \))

For every real number \(x > 1 \), we have that

\[
N_{a,b}(x) = \frac{\log(ax) \log(bx)}{2 \log(a) \log(b)} + \frac{\log(a)}{12 \log(b)} + \frac{\log(b)}{12 \log(a)} - \frac{1}{4} - \frac{1}{2} B_1^* \left(\left\lfloor \frac{\log(x)}{\log(a)} \right\rfloor \right) - \frac{1}{2} B_1^* \left(\left\lfloor \frac{\log(x)}{\log(b)} \right\rfloor \right) - \frac{\log(b)}{2 \log(a)} B_2 \left(\left\lfloor \frac{\log(x)}{\log(b)} \right\rfloor \right) - \frac{\log(a)}{2 \log(a)} B_2 \left(\left\lfloor \frac{\log(x)}{\log(a)} \right\rfloor \right) + \frac{\log(a) \log(b)}{\pi^2} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \cos \left(\frac{2 \pi n \log(x)}{\log(a)} \right) - \cos \left(\frac{2 \pi m \log(x)}{\log(b)} \right) + \frac{1}{2} \chi_{S_{a,b}}(x),
\]

where

\[
B_1^*\left(\left\{x\right\}\right) := \begin{cases} \left\{x\right\} - \frac{1}{2} & \text{if } x \notin \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Z} \end{cases},
\]

\[
B_2\left(\left\{x\right\}\right) := \left\{x\right\}^2 - \left\{x\right\} + \frac{1}{6} \quad \forall x \in \mathbb{R}.
\]

The above formula converges rapidly.

As usual we denote by \(\{x\} \) the fractional part of \(x \).

This is just another version of the following
Theorem 2. *(The Hardy-Littlewood formula for \(N_{a,b}(x) \))* [11, 12]
For every real number \(x \geq 1 \), we have that
\[
N_{a,b}(x) = \frac{1}{2} \log(\frac{ax}{\log(a)}) + \frac{1}{2} \log(\frac{bx}{\log(b)}) + \frac{1}{2} \log(\frac{b}{\log(b)}) - \frac{1}{4} - B_1^* \left(\frac{\log(x)}{\log(2)} \right) - B_1^* \left(\frac{\log(x)}{\log(3)} \right)
\]
\[- \frac{1}{2\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(b)}{\log(b)} \right)}{k \sin \left(\pi k \frac{\log(b)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a)}{\log(a)} \right)}{k \sin \left(\pi k \frac{\log(a)}{\log(b)} \right)} \right) + \frac{1}{2} \delta_{a,b}(x),
\]
where the series is to be interpreted as meaning [12]
\[
\sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(b)}{\log(a)} \right)}{k \sin \left(\pi k \frac{\log(b)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a)}{\log(b)} \right)}{k \sin \left(\pi k \frac{\log(a)}{\log(b)} \right)} \right) = \lim_{R \to \infty} \left(\sum_{k=1}^{\left\lfloor R \log(a) \right\rfloor} \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(b)}{\log(a)} \right)}{k \sin \left(\pi k \frac{\log(b)}{\log(2)} \right)} + \sum_{k=1}^{\left\lfloor R \log(b) \right\rfloor} \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a)}{\log(b)} \right)}{k \sin \left(\pi k \frac{\log(a)}{\log(b)} \right)} \right),
\]
when \(R \to \infty \) in an appropriate manner.

This formula converges very rapidly.

Setting \(a = 2 \) and \(b = 3 \), we get immediately two formulas for the distribution of the 3-smooth numbers, namely

Corollary 3. *(Our Formula for the 3-Smooth Numbers Counting Function \(N_{2,3}(x) \)))*
For every real number \(x \geq 1 \), we have that
\[
N_{2,3}(x) = \frac{1}{2} \log(\frac{2x}{\log(2)}) + \frac{1}{2} \log(\frac{3x}{\log(3)}) + \frac{1}{2} \log(\frac{3}{\log(3)}) - \frac{1}{4} - B_1^* \left(\frac{\log(x)}{\log(2)} \right) - B_1^* \left(\frac{\log(x)}{\log(3)} \right)
\]
\[- \frac{1}{2\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(3)}{\log(2)} \right)}{k \sin \left(\pi k \frac{\log(3)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(2)}{\log(3)} \right)}{k \sin \left(\pi k \frac{\log(2)}{\log(3)} \right)} \right) + \frac{1}{2} \delta_{2,3}(x).
\]

Corollary 4. *(The Hardy-Littlewood formula for \(N_{2,3}(x) \)) [11, 12]*
For every real number \(x \geq 1 \), we have that
\[
N_{2,3}(x) = \frac{1}{2} \log(\frac{2x}{\log(2)}) + \frac{1}{2} \log(\frac{3x}{\log(3)}) + \frac{1}{2} \log(\frac{3}{\log(3)}) - \frac{1}{4} - B_1^* \left(\frac{\log(x)}{\log(2)} \right) - B_1^* \left(\frac{\log(x)}{\log(3)} \right)
\]
\[- \frac{1}{2\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(3)}{\log(2)} \right)}{k \sin \left(\pi k \frac{\log(3)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(2)}{\log(3)} \right)}{k \sin \left(\pi k \frac{\log(2)}{\log(3)} \right)} \right) + \frac{1}{2} \delta_{2,3}(x),
\]
where the series is to be interpreted as meaning $[12]$,

$$
\sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(3)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(2)}{\log(3)} \right)}{k \sin \left(\frac{\pi k \log(2)}{\log(3)} \right)} \right) = \lim_{R \to \infty} \left(\sum_{k=1}^{[R \log(2)]} \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(3)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} + \sum_{k=1}^{[R \log(3)]} \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(2)}{\log(3)} \right)}{k \sin \left(\frac{\pi k \log(2)}{\log(3)} \right)} \right),
$$

when $R \to \infty$ in an appropriate manner.

Using the computationally more efficient formula

$$
N_{2,3}(x) = 1 + \sum_{k=0}^{[\log_3(x)]} \left[\log_2 \left(\frac{x}{3^k} \right) \right],
$$

we get the following two tables:

x	$N_{2,3}(x)$	Our Formula for $N_{2,3}(x)$	Number of terms (n, m)
1	1	1.0510201857955517	$(n, m) = (4, 4)$ at $x = 1.1$
10	7	7.0071497373839231	$(n, m) = (22, 22)$
10^2	20	20.0045160354084706	$(n, m) = (10, 10)$
10^3	40	40.0039084310672772	$(n, m) = (12, 12)$
10^4	67	67.0408408937206653	$(n, m) = (20, 20)$
10^5	101	101.0507215439969785	$(n, m) = (28, 28)$
10^6	142	142.01315000789587358	$(n, m) = (70, 70)$
10^7	190	190.007073892232323501	$(n, m) = (110, 110)$
10^8	244	244.0065991203209415	$(n, m) = (140, 140)$
10^9	306	306.00585869480145596	$(n, m) = (160, 160)$
10^{10}	376	376.02126583465866742	$(n, m) = (170, 170)$
10^{10^2}	35084	35084.056892623289416675	$(n, m) = (2000, 2000)$
10^{10^3}	3483931	3483931.035272714689991309386	$(n, m) = (4000, 4000)$

Table 1: Values of $N_{2,3}(x)$
Corollary 5. (Modified version of our formula for $N_{a,b}(x)$)

For every real number $x > 1$, we have

$$N_{a,b}(x) = \frac{\log(x)^2}{2 \log(a) \log(b)} + \frac{\log(x)}{2 \log(a)} + \frac{\log(x)}{2 \log(b)} + \frac{1}{4} + \frac{\log(a)}{12 \log(b)} + \frac{\log(b)}{12 \log(a)} - \frac{1}{2} B_1^* \left(\left\{ \frac{\log(x)}{\log(a)} \right\} \right)$$

$$- \frac{1}{2} B_1^* \left(\left\{ \frac{\log(x)}{\log(b)} \right\} \right) - \frac{\log(a)}{2 \log(b)} B_2 \left(\left\{ \frac{\log(x)}{\log(a)} \right\} \right) - \frac{\log(b)}{2 \log(a)} B_2 \left(\left\{ \frac{\log(x)}{\log(b)} \right\} \right)$$

$$+ \frac{\log(a) \log(b)}{\pi^2} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \cos \left(\frac{2\pi m \log(x)}{\log(a)} \right) - \cos \left(\frac{2\pi m \log(x)}{\log(b)} \right) \right) + \frac{1}{2} \chi_{a,b}(x).$$

Corollary 6. (Modified Hardy-Littlewood formula for $N_{a,b}(x)$)[11, 12]

For every real number $x \geq 1$, we have

$$N_{a,b}(x) = \frac{\log(x)^2}{2 \log(a) \log(b)} + \frac{\log(x)}{2 \log(a)} + \frac{\log(x)}{2 \log(b)} + \frac{1}{4} + \frac{\log(a)}{12 \log(b)} + \frac{\log(b)}{12 \log(a)} - B_1^* \left(\left\{ \frac{\log(x)}{\log(a)} \right\} \right)$$

$$- B_1^* \left(\left\{ \frac{\log(x)}{\log(b)} \right\} \right) - \frac{1}{2\pi} \sum_{k=1}^{\infty} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{2} \log(a)}{\log(b)} \right) \right) + \cos \left(\frac{2\pi k \log(x) - \frac{1}{2} \log(b)}{\log(a)} \right) \right) + \frac{1}{2} \chi_{a,b}(x),$$

where the series is interpreted as mentioned above.
3 The Formula for the Distribution of the 5-Smooth Numbers

Let $a, b, c \in \mathbb{N}$ such that $a < b < c$ and $\gcd(a, b, c) = 1$. For $x \in \mathbb{R}_0^+$, we define the function $N_{a,b,c}(x)$ by

$$N_{a,b,c}(x) : = \sum_{a^p b^q c^l \leq x \atop p, q, l \in \mathbb{N}_0} 1.$$

We define also

$$S_{a,b,c} : = \{a^p b^q : p \in \mathbb{N}_0, q \in \mathbb{N}_0, l \in \mathbb{N}_0\},$$

$$\chi_{S_{a,b,c}}(x) : = \begin{cases} 1 & \text{if } x \in S_{a,b,c} \\ 0 & \text{if } x \notin S_{a,b,c}. \end{cases}$$

Thus, we have that

$$N_{a,b,c}(x) = \sum_{k=0}^{\lfloor \log_c(x) \rfloor} \sum_{l=0}^{\lfloor \log_a(x) \rfloor} \left(\left\lfloor \log_c \left(\frac{x}{a^k b^l} \right) \right\rfloor + 1 \right).$$

We have the following

Theorem 7. (Formula for $N_{a,b,c}(x)$)

For every real number $x \geq 1$, we have that

$$N_{a,b,c}(x) = \frac{\log(x)^3}{6 \log(a) \log(b) \log(c)} + \frac{\log(x)^2}{4 \log(a) \log(b)} + \frac{\log(x)^2}{4 \log(a) \log(c)} + \frac{\log(x)^2}{4 \log(b) \log(c)} + \frac{\log(x)}{4 \log(a)}
$$

$$+ \frac{\log(x)}{4 \log(b)} + \frac{\log(x)}{4 \log(c)} + \frac{\log(x)}{12 \log(b) \log(c)} + \frac{\log(x)}{12 \log(a) \log(c)} + \frac{\log(x)}{12 \log(a) \log(b)}
$$

$$+ \frac{\log(a)}{24 \log(b)} + \frac{\log(a)}{24 \log(c)} + \frac{\log(b)}{24 \log(a)} + \frac{\log(b)}{24 \log(c)} + \frac{\log(c)}{24 \log(a)} + \frac{\log(c)}{24 \log(b)} + \frac{1}{8}
$$

$$- B_1^* \left(\left\lfloor \log(x) / \log(a) \right\rfloor \right) - B_1^* \left(\left\lfloor \log(x) / \log(b) \right\rfloor \right) - B_1^* \left(\left\lfloor \log(x) / \log(c) \right\rfloor \right)
$$

$$- \frac{1}{4\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a)}{\log(a)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(b)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(b)}{\log(b)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(a)} \right)} \right)
$$

$$- \frac{1}{4\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(c)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(b)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(c)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(a)} \right)} \right)
$$

$$- \frac{1}{4\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(b)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(a)} \right)} \right).$$
This formula converges very rapidly.

In the above formula, the series are to be interpreted as meaning

\[
\sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) + \frac{1}{2} \log(b) - \frac{1}{2} \log(c)}{\log(a)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(a)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a) + \frac{1}{2} \log(c)}{\log(b)} \right)}{k \sin \left(\frac{\pi k \log(c)}{\log(b)} \right)} \right)
\]

\[
= \lim_{R \to \infty} \left(\sum_{k=1}^{\lfloor R \log(a) \rfloor} \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{2} \log(b) - \frac{1}{2} \log(c)}{\log(a)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(a)} \right)} + \frac{\sin \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a) + \frac{1}{2} \log(c)}{\log(b)} \right)}{k \sin \left(\frac{\pi k \log(c)}{\log(b)} \right)} \right)
\]

and

\[
\sum_{k=1}^{\infty} \left(\frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{2} \log(b) - \frac{1}{2} \log(c)}{\log(a)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(a)} \right)} + \frac{\sin \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a) + \frac{1}{2} \log(c)}{\log(b)} \right)}{k \sin \left(\frac{\pi k \log(c)}{\log(b)} \right)} \right)
\]

\[
= \lim_{R \to \infty} \left(\sum_{k=1}^{\lfloor R \log(a) \rfloor} \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{2} \log(b) - \frac{1}{2} \log(c)}{\log(a)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(a)} \right)} + \frac{\sin \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(a) + \frac{1}{2} \log(c)}{\log(b)} \right)}{k \sin \left(\frac{\pi k \log(c)}{\log(b)} \right)} \right),
\]

when \(R \to \infty \) in an appropriate manner.

Setting \(a = 2, b = 3 \) and \(c = 5 \) and interpreting the series, like before, as meaning (for example)

\[
\sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(3)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(2) + \frac{1}{2} \log(3)}{\log(3)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(3)} \right)} \right)
\]

\[
= \lim_{R \to \infty} \left(\sum_{k=1}^{\lfloor R \log(2) \rfloor} \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(3)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{2} \log(2) + \frac{1}{2} \log(3)}{\log(3)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(3)} \right)} \right),
\]

8
and

\[
\sum_{k=1}^{\infty} \left(\frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{3} \log(3) - \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} \right) + \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{3} \log(3) - \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(5)}{\log(2)} \right)}
\]

\[
= \lim_{R \to \infty} \left(\sum_{k=1}^{\lfloor R \log(2) \rfloor} \left(\frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{3} \log(3) - \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} \right) + \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{3} \log(3) - \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(5)}{\log(2)} \right)} \right),
\]

when \(R \to \infty \) in an appropriate manner, we get for the sequence

\[
S_{2,3,5} : = \{2^p 3^q 5^l : p \in \mathbb{N}_0, q \in \mathbb{N}_0, l \in \mathbb{N}_0 \}
\]

= \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, \ldots \},

of 5-smooth numbers (regular numbers or Hamming numbers) \([9, 10]\), the following formula

Corollary 8. (Formula for the 5-Smooth Numbers Counting Function \(N_{2,3,5}(x)\))

For every real number \(x \geq 1 \), we have that

\[
N_{2,3,5}(x) = \frac{\log(x)^3}{6 \log(2) \log(3) \log(5)} + \frac{\log(x)^2}{4 \log(2) \log(3)} + \frac{\log(x)^2}{4 \log(2) \log(5)} + \frac{\log(x)^2}{4 \log(3) \log(5)} + \frac{\log(x)}{4 \log(2)}
\]

\[
+ \frac{\log(x)}{4 \log(3)} + \frac{\log(x)}{12 \log(3) \log(5)} + \frac{\log(x)}{12 \log(2) \log(5)} + \frac{\log(x)}{12 \log(2) \log(3)}
\]

\[
+ \frac{\log(2)}{24 \log(3)} + \frac{\log(2)}{24 \log(5)} + \frac{\log(2)}{24 \log(2)} + \frac{\log(5)}{24 \log(3)} + \frac{\log(5)}{24 \log(5)} + \frac{\log(5)}{24 \log(2)} + \frac{\log(5)}{8}
\]

\[
- B_1^* \left(\left\{ \frac{\log(x)}{\log(2)} \right\} \right) - B_1^* \left(\left\{ \frac{\log(x)}{\log(3)} \right\} \right) - B_1^* \left(\left\{ \frac{\log(x)}{\log(5)} \right\} \right)
\]

\[
- \frac{1}{4\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{3} \log(3) + \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{3} \log(3) - \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(5)}{\log(2)} \right)} \right)
\]

\[
- \frac{1}{4\pi} \sum_{k=1}^{\infty} \left(\frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{3} \log(3) + \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(5)}{\log(2)} \right)} + \frac{\cos \left(2\pi k \frac{\log(x) - \frac{1}{3} \log(3) - \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} \right)
\]

\[
- \frac{1}{8\pi} \sum_{k=1}^{\infty} \left(\frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{3} \log(3) - \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} \right) + \frac{\sin \left(2\pi k \frac{\log(x) - \frac{1}{3} \log(3) + \frac{1}{3} \log(5)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(5)}{\log(2)} \right)}
\]
This formula converges very rapidly. Using this formula for the 5-Smooth Numbers Counting Function \(N_{2,3,5}(x) \), we get the following table:

\(x \)	\(N_{2,3,5}(x) \)	Formula for \(N_{2,3,5}(x) \)	Number of terms \(R \)
1	1	1.0191146914343678209209456	\(R = 3 \)
10	9	9.0066388420020729763649195	\(R = 11 \)
\(10^2 \)	34	34.01798108016701636663657078	\(R = 32 \)
\(10^4 \)	86	86.01831146911104727455077198	\(R = 40 \)
\(10^4 \)	175	175.01259815271196528318821070	\(R = 52 \)
\(10^6 \)	313	313.01116052291470126065468770	\(R = 100 \)
\(10^6 \)	507	507.04384962202822061525989835	\(R = 104 \)
\(10^7 \)	768	768.05762686767314864195183397	\(R = 110 \)
\(10^8 \)	1105	1105.00435666776355760375109758	\(R = 260 \)
\(10^9 \)	1530	1530.0019878928910791841182114	\(R = 300 \)
\(10^{10} \)	2053	2053.01709151724653660944693303	\(R = 306 \)
\(10^{10} \)	1697191	1697191.10060827971167051326275935	\(R = 20000 \)

Table 3: Values of \(N_{2,3,5}(x) \)

4 The Formula for the Distribution of the 7-Smooth Numbers

Let \(a, b, c, d \in \mathbb{N} \) such that \(a < b < c < d \) and \(\text{gcd}(a, b, c, d) = 1 \). For \(x \in \mathbb{R}_0^+ \), we define the function \(N_{a,b,c,d}(x) \) by

\[
N_{a,b,c,d}(x) : = \sum_{\substack{a,b,c,d \leq x \\ p \in \mathbb{N}_0, q \in \mathbb{N}_0, \ell \in \mathbb{N}_0, f \in \mathbb{N}_0}} 1.
\]
We define also
\[S_{a,b,c,d} : = \{a^p b^q c^l d^f : p \in \mathbb{N}_0, q \in \mathbb{N}_0, l \in \mathbb{N}_0, f \in \mathbb{N}_0 \}, \]
\[\chi_{S_{a,b,c,d}}(x) : = \begin{cases} 1 & \text{if } x \in S_{a,b,c,d} \\ 0 & \text{if } x \notin S_{a,b,c,d} \end{cases}. \]

Thus, we have that
\[N_{a,b,c,d}(x) = \sum_{k=0}^{\lfloor \log_a(x) \rfloor} \sum_{l=0}^{\lfloor \log_b(x) \rfloor} \sum_{m=0}^{\lfloor \log_c(x) \rfloor} \left(\lfloor \log_d \left(\frac{x}{a^k b^l c^m} \right) \rfloor + 1 \right). \]

We have the following

Theorem 9. (Formula for \(N_{a,b,c,d}(x) \))

For every real number \(x \geq 1 \), we have that
\[
N_{a,b,c,d}(x) = \frac{\log(x)^4}{24 \log(a) \log(b) \log(c) \log(d)} + \frac{\log(x)^3}{12 \log(a) \log(b) \log(c)} + \frac{\log(x)^3}{12 \log(b) \log(c) \log(d)} \Bigg[\frac{\log(x)^3}{24 \log(a) \log(b) \log(c)} + \frac{\log(x)^2}{24 \log(a) \log(b) \log(c)} + \frac{\log(x)^2}{24 \log(a) \log(b) \log(c)} + \frac{\log(x)^2}{24 \log(a) \log(b) \log(c)} \Bigg] \\
+ \frac{\log(x)^2}{8 \log(a) \log(b)} \\
+ \frac{\log(a) \log(x)}{24 \log(a) \log(b) \log(c) \log(d)} + \frac{\log(a) \log(x)}{24 \log(a) \log(b) \log(c) \log(d)} + \frac{\log(b) \log(x)}{24 \log(a) \log(b) \log(c) \log(d)} \\
+ \frac{\log(d) \log(x)}{24 \log(a) \log(b) \log(c) \log(d)} \\
+ \frac{1}{48 \log(b) \log(c) \log(d)} \\
+ \frac{\log(c)^3}{144 \log(a) \log(b) \log(c) \log(d)} \\
+ \frac{\log(b)^3}{720 \log(a) \log(b) \log(c) \log(d)} \Bigg].
\]
\[- \frac{7}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(b)} \right\} \right) - \frac{7}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(c)} \right\} \right) - \frac{7}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(d)} \right\} \right) \]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(b)}{\log(a)} \right) \frac{\pi k \log(b)}{\log(a)} + \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(c)}{\log(b)} \right) \frac{\pi k \log(c)}{\log(b)} \]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(c)}{\log(a)} \right) \frac{\pi k \log(a)}{\log(b)} + \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(d)}{\log(c)} \right) \frac{\pi k \log(d)}{\log(c)} \]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(d)}{\log(a)} \right) \frac{\pi k \log(a)}{\log(c)} + \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(d)}{\log(b)} \right) \frac{\pi k \log(b)}{\log(d)} \]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(c)}{\log(a)} \right) \frac{\pi k \log(c)}{\log(b)} + \cos \left(2\pi k \frac{\log(x) - \frac{1}{k} \log(c)}{\log(d)} \right) \frac{\pi k \log(c)}{\log(d)} \]

\[- \frac{1}{16\pi} \sum_{k=1}^{\infty} \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(b) - \frac{1}{k} \log(c)}{\log(a)} \right) \frac{\pi k \log(b)}{\log(a)} + \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(b) + \frac{1}{k} \log(c)}{\log(a)} \right) \frac{\pi k \log(b)}{\log(a)} \]

\[- \frac{1}{16\pi} \sum_{k=1}^{\infty} \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(c) - \frac{1}{k} \log(b)}{\log(a)} \right) \frac{\pi k \log(c)}{\log(b)} + \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(c) + \frac{1}{k} \log(b)}{\log(a)} \right) \frac{\pi k \log(c)}{\log(b)} \]

\[- \frac{1}{16\pi} \sum_{k=1}^{\infty} \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(b) + \frac{1}{k} \log(d)}{\log(a)} \right) \frac{\pi k \log(b)}{\log(a)} + \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(b) + \frac{1}{k} \log(d)}{\log(c)} \right) \frac{\pi k \log(b)}{\log(c)} \]

\[- \frac{1}{16\pi} \sum_{k=1}^{\infty} \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(b) + \frac{1}{k} \log(d)}{\log(c)} \right) \frac{\pi k \log(b)}{\log(c)} + \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(b) + \frac{1}{k} \log(d)}{\log(b)} \right) \frac{\pi k \log(b)}{\log(b)} \]

\[- \frac{1}{16\pi} \sum_{k=1}^{\infty} \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(c) - \frac{1}{k} \log(b)}{\log(b)} \right) \frac{\pi k \log(c)}{\log(b)} + \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(c) + \frac{1}{k} \log(b)}{\log(b)} \right) \frac{\pi k \log(c)}{\log(b)} \]

\[- \frac{1}{16\pi} \sum_{k=1}^{\infty} \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(c) - \frac{1}{k} \log(b)}{\log(b)} \right) \frac{\pi k \log(c)}{\log(b)} + \sin \left(2\pi k \frac{\log(x) + \frac{1}{k} \log(c) + \frac{1}{k} \log(b)}{\log(b)} \right) \frac{\pi k \log(c)}{\log(b)} \]
\[-\frac{1}{16\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{3} \log(a) - \frac{1}{3} \log(d)}{\log(b)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(b)} \right) \sin \left(\frac{\pi k \log(d)}{\log(b)} \right)} + \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(\frac{\pi k \log(c)}{\log(a)} \right) \cos \left(\frac{\pi k \log(d)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(b)} \right) \sin \left(\frac{\pi k \log(c)}{\log(b)} \right) \sin \left(\frac{\pi k \log(d)}{\log(a)} \right)}\]

\[-\frac{1}{16\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{5} \log(a) - \frac{1}{5} \log(b)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(c)} \right) \sin \left(\frac{\pi k \log(d)}{\log(c)} \right)} + \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos \left(\frac{\pi k \log(a)}{\log(b)} \right) \cos \left(\frac{\pi k \log(c)}{\log(b)} \right) \cos \left(\frac{\pi k \log(d)}{\log(b)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(c)} \right) \sin \left(\frac{\pi k \log(c)}{\log(c)} \right) \sin \left(\frac{\pi k \log(d)}{\log(c)} \right)}\]

\[-\frac{1}{16\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{7} \log(a) - \frac{1}{7} \log(c)}{\log(d)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(d)} \right) \sin \left(\frac{\pi k \log(c)}{\log(d)} \right) \sin \left(\frac{\pi k \log(d)}{\log(d)} \right)} + \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos \left(\frac{\pi k \log(a)}{\log(c)} \right) \cos \left(\frac{\pi k \log(b)}{\log(c)} \right) \cos \left(\frac{\pi k \log(d)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(b)} \right) \sin \left(\frac{\pi k \log(b)}{\log(b)} \right) \sin \left(\frac{\pi k \log(d)}{\log(c)} \right)}\]

\[-\frac{1}{16\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2\pi k \frac{\log(x) + \frac{1}{9} \log(a) - \frac{1}{9} \log(c)}{\log(e)} \right)}{k \sin \left(\frac{\pi k \log(b)}{\log(e)} \right) \sin \left(\frac{\pi k \log(c)}{\log(e)} \right) \sin \left(\frac{\pi k \log(d)}{\log(e)} \right) \sin \left(\frac{\pi k \log(d)}{\log(e)} \right)} + \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos \left(\frac{\pi k \log(a)}{\log(c)} \right) \cos \left(\frac{\pi k \log(b)}{\log(c)} \right) \cos \left(\frac{\pi k \log(d)}{\log(c)} \right) \cos \left(\frac{\pi k \log(e)}{\log(c)} \right)}{k \sin \left(\frac{\pi k \log(a)}{\log(b)} \right) \sin \left(\frac{\pi k \log(b)}{\log(b)} \right) \sin \left(\frac{\pi k \log(d)}{\log(c)} \right) \sin \left(\frac{\pi k \log(e)}{\log(c)} \right)}\]

This formula converges again very rapidly.
The series appearing in this formula are all interpreted like before.
Setting $a = 2$, $b = 3$, $c = 5$ and $d = 7$, we get for the sequence

\[S_{2,3,5,7} = \{ 2^p 3^q 5^r 7^t : p \in \mathbb{N}_0, q \in \mathbb{N}_0, r \in \mathbb{N}_0, t \in \mathbb{N}_0 \} \]

\[= \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, \ldots \} , \]

of 7-smooth numbers (Humble numbers or "highly composite numbers") \cite{1, 2, 14}, immediately the following

Corollary 10. (Formula for the 7-Smooth Numbers Counting Function $N_{2,3,5,7}(x)$)

For every real number $x \geq 1$, we have that

\[
N_{2,3,5,7}(x) = \frac{\log(x)^4}{24 \log(2) \log(3) \log(5) \log(7)} + \frac{\log(x)^3}{12 \log(2) \log(3) \log(5)} + \frac{\log(x)^3}{12 \log(2) \log(3) \log(7)} + \frac{\log(x)^3}{24 \log(2) \log(3) \log(7)} + \frac{\log(x)^2}{8 \log(2) \log(3)} + \frac{\log(x)^2}{8 \log(2) \log(5)} + \frac{\log(x)^2}{8 \log(2) \log(7)} + \frac{\log(x)^2}{24 \log(3) \log(5)} + \frac{\log(x)^2}{24 \log(3) \log(7)} + \frac{\log(x)^2}{24 \log(5) \log(7)} + \frac{\log(x)}{8 \log(2) \log(3)} + \frac{\log(x)}{8 \log(2) \log(5)} + \frac{\log(x)}{8 \log(2) \log(7)} + \frac{\log(x)}{24 \log(3) \log(5)} + \frac{\log(x)}{24 \log(3) \log(7)} + \frac{\log(x)}{24 \log(5) \log(7)} + \frac{\log(x)}{16} + \frac{\log(x)}{48 \log(3)} + \frac{\log(x)}{48 \log(5)} + \frac{\log(x)}{48 \log(7)} + \frac{\log(x)}{48 \log(3)} + \frac{\log(x)}{48 \log(5)} + \frac{\log(x)}{48 \log(7)} + \frac{\log(x)}{48 \log(3)} + \frac{\log(x)}{48 \log(5)} + \frac{\log(x)}{48 \log(7)} + \frac{\log(x)}{144 \log(5) \log(7)} + \frac{\log(x)}{144 \log(3) \log(7)} + \frac{\log(x)}{144 \log(5) \log(7)} + \frac{\log(x)}{144 \log(2) \log(5)} + \frac{\log(x)}{144 \log(2) \log(7)} + \frac{\log(x)}{720 \log(3) \log(5) \log(7)} + \frac{\log(x)}{720 \log(2) \log(5) \log(7)} - \frac{\log(3)^3}{720 \log(2) \log(3) \log(7)} - \frac{\log(3)^3}{720 \log(2) \log(3) \log(5)} - \frac{7}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(2)} \right\} \right) - \frac{7}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(3)} \right\} \right) - \frac{7}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(5)} \right\} \right) - \frac{7}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(3)} \right\} \right) - \frac{1}{8 \pi} \sum_{k=1}^{\infty} \frac{\cos \left(2 \pi k \frac{\log(x) - \frac{1}{2} \log(2)}{\log(2)} \right)}{k \sin \left(\frac{\pi k \log(3)}{\log(2)} \right)} + \frac{\cos \left(2 \pi k \frac{\log(x) - \frac{1}{2} \log(2)}{\log(3)} \right)}{k \sin \left(\frac{\pi k \log(2)}{\log(3)} \right)} \right).
\]
\[\sum_{k=1}^{\infty} \left(\frac{1}{8\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(2)}{\log(5)} \right) \right) + \frac{1}{8\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(5)} \right) \right) \right) \]

\[\sum_{k=1}^{\infty} \left(\frac{1}{8\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(3)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(7)} \right) \right) + \frac{1}{8\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(3)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(7)} \right) \right) \right) \]

\[\sum_{k=1}^{\infty} \left(\frac{1}{8\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(3)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(3)} \right) \right) + \frac{1}{8\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(3)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(3)} \right) \right) \right) \]

\[\sum_{k=1}^{\infty} \left(\frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) \right) + \frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) \right) \right) \]

\[\sum_{k=1}^{\infty} \left(\frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) \right) + \frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) \right) \right) \]

\[\sum_{k=1}^{\infty} \left(\frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) \right) + \frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) \right) \right) \]

\[\sum_{k=1}^{\infty} \left(\frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(5)}{\log(2)} \right) \right) + \frac{1}{16\pi} \left(\cos \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) + \sin \left(\frac{2\pi k \log(x) - \frac{1}{7} \log(7)}{\log(2)} \right) \right) \right) \]
This formula converges very rapidly.
Every series is interpreted as mentioned above.
Using this formula for the 7-Smooth Numbers Counting Function $N_{2,3,5,7}(x)$, we get the following table:

x	$N_{2,3,5,7}(x)$	Formula for $N_{2,3,5,7}(x)$	Number of terms R
1	1	$1.030338881294024982617233653730019551$	$R = 3$
10	10	$10.01263249440259984789405319823431872565$	$R = 3$
102	46	$46.0366852149172637513023829386497852216$	$R = 20$
103	141	$141.01285390547424275647701138240776403195$	$R = 80$
104	338	$338.018699772052226169818534005048234745$	$R = 80$
105	694	$694.00540895426731024839939099335158382934$	$R = 100$
106	1273	$1273.0211557487663113791230619711970129327$	$R = 1500$
107	2155	$2155.0113332556847397569818080511876853632$	$R = 1500$
108	3427	$3427.01611847162744035197962908126411814549$	$R = 1500$
109	5194	$5194.0377142423207725446033555297308020543638$	$R = 1600$
1010	7575	$7575.01767118495435682818874877606239707862$	$R = 9000$

Table 4: Values of $N_{2,3,5,7}(x)$

5 The Formula for the Distribution of all Smooth Numbers

Let $a_1, a_2, a_3, \ldots, a_n \in \mathbb{N}$ such that $a_1 < a_2 < a_3 < \ldots < a_n$ and gcd($a_1, a_2, a_3, \ldots, a_n$) = 1. For $x \in \mathbb{R}_0^+$, we define the function $N_{a_1,a_2,a_3,\ldots,a_n}(x)$ by

$$N_{a_1,a_2,a_3,\ldots,a_n}(x) = \sum_{q_1 \in \mathbb{N}_0, q_2 \in \mathbb{N}_0, q_3 \in \mathbb{N}_0, \ldots, q_n \in \mathbb{N}_0} 1.$$

We define also

$$S_{a_1,a_2,a_3,\ldots,a_n} = \{ a_1^{q_1} a_2^{q_2} a_3^{q_3} \cdots a_n^{q_n} : q_1 \in \mathbb{N}_0, q_2 \in \mathbb{N}_0, q_3 \in \mathbb{N}_0, \ldots, q_n \in \mathbb{N}_0 \},$$

$$\chi_{S_{a_1,a_2,a_3,\ldots,a_n}}(x) = \begin{cases} 1 & \text{if } x \in S_{a_1,a_2,a_3,\ldots,a_n} \\ 0 & \text{if } x \notin S_{a_1,a_2,a_3,\ldots,a_n}. \end{cases}$$

Thus, we have that

$$N_{a_1,a_2,a_3,\ldots,a_n}(x) = \sum_{k_1=0}^{\lfloor \log_{a_1} x \rfloor} \sum_{k_2=0}^{\lfloor \log_{a_2} \left(\frac{x}{a_1^{k_1}} \right) \rfloor} \cdots \sum_{k_n-1=0}^{\lfloor \log_{a_n} \left(\frac{x}{a_1^{k_1} a_2^{k_2} \cdots a_{n-1}^{k_{n-2}}} \right) \rfloor} \left(\left\lfloor \log_{a_n} \left(\frac{x}{a_1^{k_1} a_2^{k_2} a_3^{k_3} \cdots a_{n-1}^{k_{n-1}}} \right) \right\rfloor + 1 \right).$$
Expressions of this form for $N_{a_1, a_2, a_3, \ldots, a_n}(x)$ are called "Klauder-Ness Expressions" [15, 16]. We have the following

Theorem 11. *(Formula for $N_{a_1, a_2, a_3, \ldots, a_n}(x)$)*

For every real number $x \geq 1$, we have that

$$N_{a_1, a_2, a_3, \ldots, a_n}(x) = \text{Res}_{s=0} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k^s} \right)} \right) - \frac{1}{2n-1} \sum_{k=1}^{n} \sum_{m=1}^{n-1} B_1 \left(\left\{ \log(x) \right\} \right)$$

$$+ \frac{1}{2n-1} \pi \sum_{m=1}^{n} \sum_{r=1}^{n-1} \sum_{i_1 < i_2 < i_3 < \ldots < i_r \in \{i_1, i_2, i_3, \ldots, i_r\}} \sum_{k=1}^{\infty} \sin \left(\frac{2\pi k \log(x)}{\log(a_m)} - \frac{\pi r}{2} \right) \prod_{l=1}^{r} \cot \left(\frac{\pi k \log(i_l)}{\log(a_m)} \right)$$

$$+ \frac{1}{2} \chi_{S_{a_1, a_2, a_3, \ldots, a_n}}(x),$$

where the series are to be interpreted as meaning

$$\sum_{k=1}^{\infty} \sin \left(\frac{2\pi k \log(x)}{\log(a_m)} - \frac{\pi r}{2} \right) \prod_{l=1}^{r} \cot \left(\frac{\pi k \log(i_l)}{\log(a_m)} \right) = \lim_{R \to \infty} \left(\sum_{k=1}^{\lfloor R \log(a_m) \rfloor} \sin \left(\frac{2\pi k \log(x)}{\log(a_m)} - \frac{\pi r}{2} \right) \prod_{l=1}^{r} \cot \left(\frac{\pi k \log(i_l)}{\log(a_m)} \right) \right),$$

when $R \to \infty$ in an appropriate manner.

This formula converges again very rapidly.

Proof. We have that

$$\sum_{k=1}^{\infty} \chi_{S_{a_1, a_2, a_3, \ldots, a_n}}(k) = \prod_{k=1}^{n} \left(\sum_{m=0}^{\infty} \frac{1}{a_k^{ms}} \right)$$

$$= \prod_{k=1}^{n} \frac{1}{1 - e^{-\log(a_k)s}}.$$
Therefore, by Perron’s formula, we get that

\[N_{a_1, a_2, a_3, \ldots, a_n}(x) = \frac{1}{2\pi i} \int_\gamma \left(\prod_{k=1}^{n} \frac{1}{1 - e^{-\log(a_k)s}} \right) \frac{x^s}{s} ds \]

\[= \text{Res}_{s=0} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) \]

\[+ \sum_{m=1}^{n} \sum_{k=1}^{\infty} \left(\text{Res}_{s=\frac{2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) + \text{Res}_{s=\frac{-2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) \right) \]

\[+ \frac{1}{2} \chi_{a_1, a_2, a_3, \ldots, a_n}(x), \]

where \(\gamma = \) line from \(1 - i \infty \) to \(1 + i \infty \).

Using the relation

\[\lim_{s \to \pm \frac{2\pi ik}{\log(a_m)}} \left(\frac{s \mp \frac{2\pi ik}{\log(a_m)}}{1 - e^{-\log(a_m)s}} \right) = \frac{1}{\log(a_m)} \quad \forall k \in \mathbb{N}, \]

we can compute the "\(a_m \)-Residues" to

\[\text{Res}_{s=\frac{2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) = - \frac{i \prod_{l \neq m}^{n} a_l^{\frac{2\pi ik}{\log(a_m)}}}{2\pi k \prod_{l \neq m}^{n} \left(a_l^{\frac{2\pi ik}{\log(a_m)}} - 1 \right)} \quad \text{for all } k \in \mathbb{N} \]

\[\text{Res}_{s=\frac{-2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) = - \frac{(-1)^n i x^{\frac{2\pi ik}{\log(a_m)}}}{2\pi k \prod_{l \neq m}^{n} \left(a_l^{\frac{2\pi ik}{\log(a_m)}} - 1 \right)} \quad \text{for all } k \in \mathbb{N}. \]

Using the relations

\[\sin \left(\frac{2\pi k \log(x)}{\log(a_m)} \right) = \frac{1}{2} \frac{i x^{\frac{2\pi ik}{\log(a_m)}} - 1}{i^{\frac{2\pi ik}{\log(a_m)}}} \]

\[\cos \left(\frac{2\pi k \log(x)}{\log(a_m)} \right) = \frac{1}{2} \frac{i x^{\frac{2\pi ik}{\log(a_m)}} + 1}{i^{\frac{2\pi ik}{\log(a_m)}}} \]

\[\cot \left(\frac{\pi k \log(i)}{\log(a_m)} \right) = \frac{i^{\frac{2\pi ik}{\log(a_m)}} + 1}{i^{\frac{2\pi ik}{\log(a_m)}} - 1} \]

19
we establish (by expanding everything out) that

\[
\sin \left(2\pi k \frac{\log(x)}{\log(a_m)} - \frac{\pi r}{2} \right) = \begin{cases}
(-1)^{\frac{r}{2}} \sin \left(2\pi k \frac{\log(x)}{\log(a_m)} \right), & \text{if } r \text{ is even} \\
(-1)^{\frac{r+1}{2}} \cos \left(2\pi k \frac{\log(x)}{\log(a_m)} \right), & \text{if } r \text{ is odd}
\end{cases}
\]

\[
= \begin{cases}
(-1)^{\frac{r}{2}} \left(\frac{1}{2} i x^2 \frac{2\pi k}{\log(a_m)} - \frac{1}{2} i x^2 \frac{2\pi k}{\log(a_m)} \right), & \text{if } r \text{ is even} \\
(-1)^{\frac{r+1}{2}} \left(\frac{1}{2} x^2 - \frac{2\pi k}{\log(a_m)} + \frac{1}{2} x^2 \frac{2\pi k}{\log(a_m)} \right), & \text{if } r \text{ is odd}
\end{cases}
\]

and

\[
\sin \left(2\pi k \frac{\log(x)}{\log(a_m)} - \frac{\pi r}{2} \right) = (-1)^{\frac{r}{2}(r \mod 4 + r \mod 2)} \left(\frac{1}{2} i^{r+1 \mod 2} x^2 \frac{2\pi k}{\log(a_m)} + (-1)^{r+1} \frac{1}{2} i^{r+1 \mod 2} x^2 \frac{2\pi k}{\log(a_m)} \right),
\]

we establish (by expanding everything out) that

\[
\sum_{r=1}^{n-1} \sum_{\{i_1 < i_2 < \cdots < i_r\} \subseteq \{a_1, a_2, a_3, \ldots, a_m\}} \sin \left(2\pi k \frac{\log(x)}{\log(a_m)} - \frac{\pi r}{2} \right) \prod_{l=1}^{r} \cot \left(\frac{\pi k \log(a_l)}{\log(a_m)} \right) + \sin \left(2\pi k \frac{\log(x)}{\log(a_m)} \right)
\]

\[
= \sum_{r=1}^{n-1} \sum_{\{i_1 < i_2 < \cdots < i_r\} \subseteq \{a_1, a_2, a_3, \ldots, a_m\}} (-1)^{\frac{r}{2}(r \mod 4 + r \mod 2)} \left(\frac{1}{2} i^{r+1 \mod 2} x^2 \frac{2\pi k}{\log(a_m)} + (-1)^{r+1} \frac{1}{2} i^{r+1 \mod 2} x^2 \frac{2\pi k}{\log(a_m)} \right)
\]

\[
= \sum_{r=1}^{n-1} \sum_{\{i_1 < i_2 < \cdots < i_r\} \subseteq \{a_1, a_2, a_3, \ldots, a_m\}} (-1)^{\frac{r}{2}(r \mod 4 + r \mod 2)} \frac{1}{2} i^{r+1} x^2 \frac{2\pi k}{\log(a_m)} + (-1)^{r+1} \frac{1}{2} i^{r+1} x^2 \frac{2\pi k}{\log(a_m)}
\]

\[
+ \sum_{r=1}^{n-1} \sum_{\{i_1 < i_2 < \cdots < i_r\} \subseteq \{a_1, a_2, a_3, \ldots, a_m\}} (-1)^{r+1 + \frac{r}{2}(r \mod 4 + r \mod 2)} \frac{1}{2} i^{r+1} x^2 \frac{2\pi k}{\log(a_m)} - (-1)^{r+1} \frac{1}{2} i^{r+1} x^2 \frac{2\pi k}{\log(a_m)}
\]

\[
= (-1)^{n-1} \frac{1}{2} i^{2\pi k} x^2 \log(a_m) \left(\prod_{l=1}^{n} \frac{\epsilon_l a_l^{2\pi k} \log(a_m)}{a_l^{2\pi k} \log(a_m)} \right) \prod_{l=1}^{n} \frac{2\pi k}{\log(a_m)} + \epsilon_k \right)
\]

\[
= \frac{1}{2} \left(- \frac{2\pi k}{\log(a_m)} \right) \left(\prod_{l=1}^{n} \frac{a_l^{2\pi k} \log(a_m)}{a_l^{2\pi k} \log(a_m)} - 1 \right)
\]

\[
- \frac{1}{2} \left(- \frac{2\pi k}{\log(a_m)} \right) \left(\prod_{l=1}^{n} \frac{a_l^{2\pi k} \log(a_m)}{a_l^{2\pi k} \log(a_m)} - 1 \right)
\]

\[
20
\]
In the above calculation, we have used the two algebraic identities

\[S_1(x_1, x_2, x_3, \ldots, x_n) = 2^n, \]

\[S_2(x_1, x_2, x_3, \ldots, x_n) = 2^n \prod_{k=1}^{n} x_k, \]

where

\[S_1(x_1, x_2, x_3, \ldots, x_n) = \sum_{\{\epsilon_1, \epsilon_2, \epsilon_3, \ldots, \epsilon_n\} \subset \{\pm 1, \pm 1, \pm 1, \ldots, \pm 1\}} \prod_{k=1}^{n} \epsilon_k (x_k + \epsilon_k) \]

\[S_2(x_1, x_2, x_3, \ldots, x_n) = \sum_{\{\epsilon_1, \epsilon_2, \epsilon_3, \ldots, \epsilon_n\} \subset \{\pm 1, \pm 1, \pm 1, \ldots, \pm 1\}} \prod_{k=1}^{n} (x_k + \epsilon_k). \]

These two identities follow by induction, because for \(n = 1 \), we have that

\[S_1(x_1) = (x_1 + 1) - (x_1 - 1) = 2 \]

\[S_2(x_1) = (x_1 + 1) + (x_1 - 1) = 2x_1. \]

These two identities are exactly the claimed formulas for \(S_1(x_1) \) and \(S_2(x_1) \).

Supposing now that the statement is also true for \(S_1(x_1, x_2, x_3, \ldots, x_{n-1}) \) and \(S_2(x_1, x_2, x_3, \ldots, x_{n-1}) \),
we prove by induction

\[S_1(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) = (x_n + 1)S_1(x_1, x_2, x_3, \ldots, x_{n-1}) - (x_n - 1)S_1(x_1, x_2, x_3, \ldots, x_{n-1}) \]
\[= (x_n + 1 - x_n + 1)S_1(x_1, x_2, x_3, \ldots, x_{n-1}) \]
\[= 2S_1(x_1, x_2, x_3, \ldots, x_{n-1}) \]
\[= 2 \cdot 2^{n-1} \]
\[= 2^n, \]

\[S_2(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) = (x_n + 1)S_2(x_1, x_2, x_3, \ldots, x_{n-1}) + (x_n - 1)S_2(x_1, x_2, x_3, \ldots, x_{n-1}) \]
\[= (x_n + 1 + x_n - 1)S_2(x_1, x_2, x_3, \ldots, x_{n-1}) \]
\[= 2x_nS_2(x_1, x_2, x_3, \ldots, x_{n-1}) \]
\[= 2x_n2^{n-1} \prod_{k=1}^{n-1} x_k \]
\[= 2^n \prod_{k=1}^{n} x_k. \]

These are the claimed statements for \(S_1(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) \) and \(S_2(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) \). Therefore, the inductive proof is finished.

The above established identity implies that

\[
\text{Res}_{s = \frac{2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) + \text{Res}_{s = -\frac{2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) + i \left(-\frac{x^s}{\prod_{k=1}^{n} \left(1 - \frac{1}{a_k} \right)} \right) \]
\[= (-1)^{n+1} \frac{2\pi k \prod_{l=1}^{n} \left(\frac{2\pi ik}{\log(a_m)} - a_l \frac{2\pi ik}{\log(a_m)} \right)}{2\pi k \prod_{l=1}^{n} \left(\frac{2\pi ik}{\log(a_m)} - 1 \right)} \]
\[= \frac{1}{2^{n-1}\pi k} \left(\sum_{r=1}^{n-1} \sum_{i_1 < i_2 < \cdots < i_r} \text{Res}_{s = \frac{2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{l=1}^{n} \left(1 - \frac{1}{a_l} \right)} \right) \right) \]
\[= \frac{1}{2^{n-1}\pi k} \left(\sum_{r=1}^{n-1} \sum_{i_1 < i_2 < \cdots < i_r} \text{Res}_{s = \frac{2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{l=1}^{n} \left(1 - \frac{1}{a_l} \right)} \right) \right) \]
\[= \frac{1}{2^{n-1}\pi k} \left(\sum_{r=1}^{n-1} \sum_{i_1 < i_2 < \cdots < i_r} \text{Res}_{s = \frac{2\pi ik}{\log(a_m)}} \left(\frac{x^s}{s \prod_{l=1}^{n} \left(1 - \frac{1}{a_l} \right)} \right) \right) \]

for all \(k \in \mathbb{N} \) and for all \(1 \leq m \leq n \).

Summing up all the Residues, we get our formula for \(N_{a_1,a_2,a_3,\ldots,a_n}(x) \). \(\square \)

Remark 12. The first few identities of the family of identities, which we encountered in the
above proof, are

\[S_1(x) = (x + 1) - (x - 1) = 2 \]

\[S_2(x) = (x + 1) + (x - 1) = 2x \]

\[S_1(x, x) = (x + 1)(x + 1) - (x - 1)(x + 1) - (x + 1)(x - 1) + (x - 1)(x - 1) = 4 \]

\[S_2(x, x) = (x + 1)(x + 1) + (x - 1)(x + 1) + (x + 1)(x - 1) + (x - 1)(x - 1) = 4x_1x_2 \]

\[S_1(x, x, x) = (x + 1)(x + 1)(x + 1) - (x - 1)(x + 1)(x + 1) - (x + 1)(x - 1)(x + 1) - (x + 1)(x - 1)(x - 1) \]

\[+ (x - 1)(x - 1)(x - 1) = 8 \]

\[S_2(x, x, x, x) = (x + 1)(x + 1)(x + 1) + (x - 1)(x + 1)(x + 1) + (x + 1)(x - 1)(x + 1) + (x + 1)(x - 1)(x - 1) \]

\[+ (x - 1)(x - 1)(x - 1) = 8x_1x_2x_3. \]

And so on.

Setting \(a_1 = 2, a_2 = 3, a_3 = 5, a_4 = 7, \ldots, a_k = p_k = k\)-th prime number, \ldots, \(a_n = p_n = n\)-th prime number in the above theorem, we get for the sequence

\[S_{2,3,5,7,\ldots,p_n} : = \left\{ 2^{q_1}3^{q_2}5^{q_3}7^{q_4}\ldots p_n^{q_n} : q_1 \in \mathbb{N}_0, q_2 \in \mathbb{N}_0, q_3 \in \mathbb{N}_0, \ldots, q_n \in \mathbb{N}_0 \right\}, \]

of \(p_n \)-smooth numbers \([1, 2]\), immediately the following

Corollary 13. (Formula for the \(p_n \)-Smooth Numbers Counting Function \(N_{2,3,5,7,\ldots,p_n}(x) \))

For every real number \(x \geq 1 \), we have that

\[
N_{2,3,5,7,\ldots,p_n}(x) = \text{Res}_{s=0} \left(\frac{s^x}{\prod_{k=1}^{n} \left(1 - \frac{x}{p_k} \right)} \right) - \frac{1}{2^{n-1}} \sum_{k=1}^{n} B_{k}^* \left(\left\{ \log(x) \right\} / \log(p_k) \right)
\]

\[
+ \frac{1}{2^{n-1} \pi} \sum_{m=1}^{n} \sum_{r=1}^{n-1} \sum_{i_{1} < i_{2} < \ldots < i_r}^{\{1,2,3,\ldots,r\} \subset \{2,3,5,7,\ldots,p_n\}} \sum_{k=1}^{\infty} \frac{\sin \left(2\pi k \log(x) \right)}{k} \prod_{l=1}^{r} \frac{\pi k \log(i_l)}{\log(p_k)}
\]

\[
+ \frac{1}{2} \chi_{S_{2,3,5,7,\ldots,p_n}}(x),
\]

23
where the series are to be interpreted as meaning

\[
\sum_{k=1}^{\infty} \frac{\sin \left(\frac{2\pi k \log(x)}{\log(p_m)} - \frac{\pi r}{2} \right)}{k} \prod_{l=1}^{r} \cot \left(\frac{\pi k \log(i_l)}{\log(p_m)} \right)
\]

\[
= \lim_{R \to \infty} \left(\sum_{k=1}^{\lfloor R \log(p_m) \rfloor} \frac{\sin \left(\frac{2\pi k \log(x)}{\log(p_m)} - \frac{\pi r}{2} \right)}{k} \prod_{l=1}^{r} \cot \left(\frac{\pi k \log(i_l)}{\log(p_m)} \right) \right),
\]

when \(R \to \infty \) in an appropriate manner.

This formula converges also very rapidly.

Therefore, we have

Corollary 14. *(The Hardy-Littlewood formula for \(N_{a,b}(x) \) and \(N_{2,3}(x) \)) [11, 12]*

For every real number \(x \geq 1 \), we have that

\[
N_{a,b}(x) = \frac{\log(x)^2}{2 \log(a) \log(b)} + \frac{\log(x)}{2 \log(a)} + \frac{\log(x)}{2 \log(b)} + \frac{1}{4} + \frac{\log(a)}{12 \log(a)} + \frac{\log(b)}{12 \log(a)}
\]

\[- \frac{1}{2} B^*_1 \left(\left\{ \frac{\log(x)}{\log(a)} \right\} \right) - \frac{1}{2} B^*_1 \left(\left\{ \frac{\log(x)}{\log(b)} \right\} \right) - \frac{1}{2\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(a)}{\log(b)} \right) \cos \left(\frac{2\pi k \log(x)}{\log(a)} \right) \sqrt{k} \sin \left(\frac{\pi k \log(a)}{\log(b)} \right) + \frac{1}{2} \chi_{S_{a,b}}(x)
\]

and

\[
N_{2,3}(x) = \frac{\log(x)^2}{2 \log(2) \log(3)} + \frac{\log(x)}{2 \log(2)} + \frac{\log(x)}{2 \log(3)} + \frac{1}{4} + \frac{\log(2)}{12 \log(3)} + \frac{\log(3)}{12 \log(2)}
\]

\[- \frac{1}{2} B^*_1 \left(\left\{ \frac{\log(x)}{\log(2)} \right\} \right) - \frac{1}{2} B^*_1 \left(\left\{ \frac{\log(x)}{\log(3)} \right\} \right) - \frac{1}{2\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(3)} \right) \cos \left(\frac{2\pi k \log(x)}{\log(2)} \right) \sqrt{k} \sin \left(\frac{\pi k \log(2)}{\log(3)} \right) + \frac{1}{2} \chi_{S_{2,3}}(x).
\]

Proof. The proof that we give here is Hardy’s proof [11] of the formula for \(N_{a,b}(x) \).

We have that

\[
\sum_{k=1}^{\infty} \frac{\chi_{S_{a,b}}(k)}{k^s} = \left(\sum_{m_1=0}^{\infty} \frac{1}{q^{m_1 s}} \right) \left(\sum_{m_2=0}^{\infty} \frac{1}{b^{m_2 s}} \right) = \frac{1}{(1 - e^{-\log(a)s}) (1 - e^{-\log(b)s})}.
\]
Therefore, by Perron’s formula, we get that

\[
N_{a,b}(x) = \frac{1}{2\pi i} \int_{\gamma} \frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s})} ds
\]

where \(\gamma = \text{line from } 1 - i\infty \text{ to } 1 + i\infty\).

Moreover, we have that

\[
\text{Res}_{s=0} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s})} \right) = \frac{\log(x)^2}{2 \log(a) \log(b)} + \frac{\log(x)}{2 \log(a)} + \frac{\log(x)}{2 \log(b)}
\]

and that

\[
\text{Res}_{s=2\pi ik/\log(a)} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s})} \right) = -\frac{ib}{2\pi k} \frac{2\pi ik}{\log(b)} \frac{x^{2\pi ik/\log(a)}}{ \log(a)}
\]

for all \(k \in \mathbb{N}\).
Using the relations
\[
\sin \left(\frac{2\pi k \log(x)}{\log(a)} \right) = \frac{1}{2} i x - \frac{2\pi k}{\log(a)} - \frac{1}{2} i x \frac{2\pi k}{\log(a)}
\]
\[
\cos \left(\frac{2\pi k \log(x)}{\log(a)} \right) = \frac{1}{2} x - \frac{2\pi k}{\log(a)} + \frac{1}{2} x \frac{2\pi k}{\log(a)}
\]
\[
\cot \left(\frac{\pi k \log(b)}{\log(a)} \right) = i \frac{b \frac{2\pi k}{\log(a)} + 1}{b \frac{2\pi k}{\log(a)} - 1},
\]
we establish (by expanding everything out) the following identity
\[
- \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(\frac{2\pi k \log(x)}{\log(a)} \right) + \sin \left(\frac{2\pi k \log(x)}{\log(a)} \right)
\]
\[
= - \left(\frac{b \frac{2\pi k}{\log(a)} + 1}{b \frac{2\pi k}{\log(a)} - 1} \right) \left(\frac{1}{2} x - \frac{2\pi k}{\log(a)} + \frac{1}{2} x \frac{2\pi k}{\log(a)} \right) + \left(\frac{1}{2} i x - \frac{2\pi k}{\log(a)} - \frac{1}{2} i x \frac{2\pi k}{\log(a)} \right)
\]
\[
= i \frac{x - \frac{2\pi k}{\log(a)} + \frac{2\pi k}{\log(a)} x \frac{2\pi k}{\log(a)}}{b \frac{2\pi k}{\log(a)} - 1}.
\]

Therefore, for the first Residues (the "a -Residues"), we have that
\[
\text{Res}_{s=\frac{2\pi ik}{\log(a)}} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right)} \right) + \text{Res}_{s=\frac{2\pi ik}{\log(a)}} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right)} \right)
\]
\[
= i \left(x - \frac{2\pi ik}{\log(a)} + a \frac{2\pi ik}{\log(b)} x \frac{2\pi ik}{\log(b)} \right)
\]
\[
= \frac{1}{2\pi k} \left(- \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(\frac{2\pi k \log(x)}{\log(a)} \right) + \sin \left(\frac{2\pi k \log(x)}{\log(a)} \right) \right) \quad \text{for all } k \in \mathbb{N}.
\]

Exchanging a and b ("permuting a and b"), we get also the other Residues (the "b -Residues"), namely
\[
\text{Res}_{s=\frac{2\pi ik}{\log(b)}} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right)} \right) + \text{Res}_{s=\frac{2\pi ik}{\log(b)}} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right)} \right)
\]
\[
= - \left(a \frac{2\pi ik}{\log(b)} - 1 \right) \left(x - \frac{2\pi ik}{\log(b)} + a \frac{2\pi ik}{\log(b)} x \frac{2\pi ik}{\log(b)} \right)
\]
\[
= \frac{1}{2\pi k} \left(- \cot \left(\frac{\pi k \log(a)}{\log(b)} \right) \cos \left(\frac{2\pi k \log(x)}{\log(b)} \right) + \sin \left(\frac{2\pi k \log(x)}{\log(b)} \right) \right) \quad \text{for all } k \in \mathbb{N}.
\]

Summing everything up, we get our formula for \(N_{a,b}(x) \). Setting \(a = 2 \) and \(b = 3 \), we get also the formula for \(N_{2,3}(x) \). \(\square \)
Corollary 15. (The Formulas for \(N_{a,b,c}(x)\) and \(N_{2,3,5}(x)\))

For every real number \(x \geq 1\), we have that

\[
N_{a,b,c}(x) = \frac{\log(x)^3}{6 \log(a) \log(b) \log(c)} + \frac{\log(x)^2}{4 \log(a) \log(b)} + \frac{\log(x)^2}{4 \log(b) \log(c)} + \frac{\log(x)^2}{4 \log(c) \log(a)} + \frac{\log(x)}{4 \log(b) + 4 \log(c)} + \frac{\log(x)}{24 \log(b) + 24 \log(c)} + \frac{\log(x)}{24 \log(c) + 24 \log(b) + \frac{1}{8}}
\]

\[-\frac{1}{4} B_1^* \left(\left\{ \frac{\log(x)}{\log(a)} \right\} \right) - \frac{1}{4} B_1^* \left(\left\{ \frac{\log(x)}{\log(b)} \right\} \right) - \frac{1}{4} B_1^* \left(\left\{ \frac{\log(x)}{\log(c)} \right\} \right)
\]

\[-\frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) - \frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(b)}{\log(c)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(c)} \right)
\]

\[-\frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(c)}{\log(b)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(b)} \right) - \frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(c)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right)
\]

\[-\frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(b)}{\log(a)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(a)} \right) - \frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(b)}{\log(c)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(c)} \right)
\]

\[-\frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(c)}{\log(b)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(b)} \right) - \frac{1}{4\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(c)}{\log(a)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(a)} \right) + \frac{1}{2} \chi_{\delta_{a,b,c}}(x)
\]

and
\[N_{2,3,5}(x) = \frac{\log(x)^3}{6 \log(2) \log(3) \log(5)} + \frac{\log(x)^2}{4 \log(2) \log(3)} + \frac{\log(x)^2}{4 \log(2) \log(5)} + \frac{\log(x)^2}{4 \log(3) \log(5)} + \frac{\log(x)}{4 \log(2) \log(3) \log(5)} \\
+ \frac{\log(x)}{4 \log(2) \log(5)} + \frac{\log(x)}{4 \log(3) \log(5)} + \frac{12 \log(3) \log(5)}{24 \log(2) \log(3) \log(5)} + \frac{12 \log(2) \log(5)}{24 \log(2) \log(3) \log(5)} + \frac{12 \log(2) \log(3)}{24 \log(2) \log(3) \log(5)} + \frac{4 \log(2) \log(3)}{24 \log(2) \log(3) \log(5)} + \frac{24 \log(2)}{24 \log(2) \log(3) \log(5)} + \frac{24 \log(5)}{24 \log(2) \log(3) \log(5)} + \frac{1}{8} \]

- \frac{1}{4} B_1^* \left(\left\{ \frac{\log(x)}{\log(2)} \right\} \right) \cdot - \frac{1}{4} B_1^* \left(\left\{ \frac{\log(x)}{\log(3)} \right\} \right) \cdot - \frac{1}{4} B_1^* \left(\left\{ \frac{\log(x)}{\log(5)} \right\} \right)

Proof. We have that

\[\sum_{k=1}^{\infty} \frac{\chi_{S_{a,b,c}}(k)}{k^s} = \left(\sum_{m_1=0}^{\infty} \frac{1}{e^{m_1 s}} \right) \left(\sum_{m_2=0}^{\infty} \frac{1}{e^{m_2 s}} \right) \left(\sum_{m_3=0}^{\infty} \frac{1}{e^{m_3 s}} \right) \cdot \frac{1}{\left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right) \left(1 - e^{-\log(c)s} \right)} \cdot \]
Therefore, by Perron’s formula, we get that
\[
N_{a,b,c}(x) = \frac{1}{2\pi i} \int_{\gamma} \frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \, ds
\]
\[
= \text{Res}_{s=0} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right)
\]
\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(a)}} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right)
\]
\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(b)}} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right)
\]
\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(c)}} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right)
\]
\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(c)}} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right)
\]
\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(c)}} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right)
\]
\[
+ \frac{1}{2} \chi_{S_{a,b,c}}(x),
\]
where $\gamma =$ line from $1 - i\infty$ to $1 + i\infty$.

Furthermore, we have that
\[
\text{Res}_{s=0} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right)
\]
\[
= \frac{\log(x)^3}{6 \log(a) \log(b) \log(c)} + \frac{\log(x)^2}{4 \log(a) \log(b)} + \frac{\log(x)^2}{4 \log(a) \log(c)} + \frac{\log(x)^2}{4 \log(b) \log(c)} + \frac{\log(x)}{4 \log(a)}
\]
\[
+ \frac{\log(x)}{4 \log(b)} + \frac{\log(x)}{4 \log(c)} + \frac{\log(x)}{12 \log(b) \log(c)} + \frac{\log(x)}{12 \log(a) \log(c)} + \frac{\log(x)}{12 \log(a) \log(b)}
\]
\[
+ \frac{\log(a)}{24 \log(b)} + \frac{\log(a)}{24 \log(c)} + \frac{\log(b)}{24 \log(a)} + \frac{\log(b)}{24 \log(c)} + \frac{\log(c)}{24 \log(a)} + \frac{\log(c)}{24 \log(b)} + \frac{1}{8}
\]
and that
\[
\text{Res}_{s=\frac{2\pi ik}{\log(a)}} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right) = -\frac{\frac{2\pi ik}{\log(a)}}{\frac{2\pi ik}{\log(b)} - 1} \left(\frac{2\pi ik}{\log(c)} - 1 \right)
\]
\[
\text{Res}_{s=\frac{2\pi ik}{\log(b)}} \left(\frac{x^s}{s (1 - e^{-\log(a)s}) (1 - e^{-\log(b)s}) (1 - e^{-\log(c)s})} \right) = \frac{\frac{2\pi ik}{\log(a)}}{\frac{2\pi ik}{\log(b)} - 1} \left(\frac{2\pi ik}{\log(c)} - 1 \right)
\]
\[
\forall k \in \mathbb{N}.
\]
Exactly similar expressions hold also for the other Residues under exchanging \(a \) with \(b \), and \(a \) with \(c \) ("permuting \(a, b, c \)"). Using again the relations

\[
\sin \left(\frac{2\pi k \log(x)}{\log(a)} \right) = \frac{1}{2} ix^{\frac{-2\pi ik}{\log(a)}} - \frac{1}{2} ix^{\frac{2\pi ik}{\log(a)}}
\]

\[
\cos \left(\frac{2\pi k \log(x)}{\log(a)} \right) = \frac{1}{2} x^{\frac{-2\pi ik}{\log(a)}} + \frac{1}{2} x^{\frac{2\pi ik}{\log(a)}}
\]

\[
\cot \left(\frac{\pi k \log(b)}{\log(a)} \right) = \frac{i b^{\frac{2\pi ik}{\log(a)}} + 1}{b^{\frac{2\pi ik}{\log(a)}} - 1}
\]

we establish (by expanding everything out) the following identity

\[
- \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \sin \left(2\pi k \frac{\log(x)}{\log(a)} \right) - \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) \\
- \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) + \sin \left(2\pi k \frac{\log(x)}{\log(a)} \right)
\]

\[
= - \left(i \frac{2\pi ik}{\log(a)} + 1 \right) \left(i \frac{2\pi ik}{\log(a)} - 1 \right) \left(\frac{1}{2} ix^{\frac{-2\pi ik}{\log(a)}} - \frac{1}{2} ix^{\frac{2\pi ik}{\log(a)}} \right) - \left(i \frac{2\pi ik}{\log(a)} + 1 \right) \left(\frac{1}{2} x^{\frac{-2\pi ik}{\log(a)}} + \frac{1}{2} x^{\frac{2\pi ik}{\log(a)}} \right)
\]

\[
- \left(i \frac{2\pi ik}{\log(a)} - 1 \right) \left(\frac{1}{2} x^{\frac{-2\pi ik}{\log(a)}} + \frac{1}{2} x^{\frac{2\pi ik}{\log(a)}} \right) + \left(\frac{1}{2} ix^{\frac{-2\pi ik}{\log(a)}} - \frac{1}{2} ix^{\frac{2\pi ik}{\log(a)}} \right)
\]

\[
= \frac{2i \left(x^{\frac{-2\pi ik}{\log(a)}} - b^{\frac{2\pi ik}{\log(a)}} \right) c^{\frac{2\pi ik}{\log(a)}}}{\left(b^{\frac{2\pi ik}{\log(a)}} - 1 \right) \left(c^{\frac{2\pi ik}{\log(a)}} - 1 \right)}
\]

Therefore, for the first Residues (the "\(a \)-Residues"), we have that

\[
\text{Res}_{s=\frac{2\pi ik}{\log(a)}} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right) \left(1 - e^{-\log(c)s} \right)} \right)
\]

\[
+ \text{Res}_{s=-\frac{2\pi ik}{\log(a)}} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right) \left(1 - e^{-\log(c)s} \right)} \right)
\]

\[
= \frac{i \left(x^{\frac{-2\pi ik}{\log(a)}} - b^{\frac{2\pi ik}{\log(a)}} \right) c^{\frac{2\pi ik}{\log(a)}}}{2\pi k \left(b^{\frac{2\pi ik}{\log(a)}} - 1 \right) \left(c^{\frac{2\pi ik}{\log(a)}} - 1 \right)}
\]

\[
= \frac{1}{4\pi k} \left(- \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \sin \left(2\pi k \frac{\log(x)}{\log(a)} \right) - \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) \\
- \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) + \sin \left(2\pi k \frac{\log(x)}{\log(a)} \right) \right) \forall k \in \mathbb{N}
\]

Exchanging \(a \) with \(b \), and \(a \) with \(c \) ("permuting \(a, b, c \)", we get also the other Residues (the "\(b \)-Residues" and the "\(c \)-Residues"), which have exactly the same structure. Summing
everything up, we get the formula for $N_{a,b,c}(x)$. Setting $a = 2$, $b = 3$ and $c = 5$, we get also the formula for $N_{2,3,5}(x)$.

Corollary 16. (The Formulas for $N_{a,b,c,d}(x)$ and $N_{2,3,5,7}(x)$)
For every real number $x \geq 1$, we have that

$$N_{a,b,c,d}(x) = \frac{\log(x)^4}{24 \log(a) \log(b) \log(c) \log(d)} + \frac{\log(x)^3}{12 \log(a) \log(b) \log(c)} + \frac{\log(x)^3}{12 \log(a) \log(b) \log(c)} + \frac{\log(x)^3}{24 \log(b) \log(c) \log(d)}$$

$$+ \frac{\log(x)^2}{8 \log(a) \log(b)} + \frac{\log(x)^2}{8 \log(a) \log(c)} + \frac{\log(x)^2}{8 \log(a) \log(d)} + \frac{\log(x)^2}{8 \log(b) \log(c)} + \frac{\log(x)^2}{8 \log(b) \log(d)}$$

$$+ \frac{\log(x)^2}{8 \log(c) \log(d)} + \frac{\log(x)^2}{8 \log(a) \log(d)}$$

$$+ \frac{\log(a) \log(x)}{24 \log(b) \log(d)} + \frac{\log(b) \log(x)}{24 \log(c) \log(d)} + \frac{\log(b) \log(x)}{24 \log(c) \log(d)} + \frac{\log(b) \log(x)}{24 \log(c) \log(d)}$$

$$+ \frac{\log(d) \log(x)}{24 \log(b) \log(c)} + \frac{\log(d) \log(x)}{24 \log(b) \log(c)} + \frac{\log(d) \log(x)}{24 \log(b) \log(c)} + \frac{\log(d) \log(x)}{24 \log(b) \log(c)}$$

$$+ \frac{\log(b) \log(x)}{16} + \frac{\log(b) \log(x)}{48 \log(a)} + \frac{\log(b) \log(x)}{48 \log(c)} + \frac{\log(b) \log(x)}{48 \log(d)} + \frac{\log(b) \log(x)}{48 \log(a)} + \frac{\log(b) \log(x)}{48 \log(c)}$$

$$+ \frac{\log(a) \log(b)}{144 \log(c) \log(d)} + \frac{\log(a) \log(b)}{144 \log(c) \log(d)} + \frac{\log(a) \log(b)}{144 \log(c) \log(d)} + \frac{\log(a) \log(b)}{144 \log(c) \log(d)}$$

$$+ \frac{\log(d) \log(c)}{144 \log(a) \log(b)} + \frac{\log(d) \log(c)}{144 \log(a) \log(b)} + \frac{\log(d) \log(c)}{144 \log(a) \log(b)} + \frac{\log(d) \log(c)}{144 \log(a) \log(b)}$$

$$- \frac{\log(c)^3}{720 \log(a) \log(b) \log(d)} - \frac{\log(d)^3}{720 \log(a) \log(b) \log(c)} - \frac{1}{8} B_1 \left(\log(x) \log(b) \log(c) \log(d) \right)$$

$$- \frac{1}{8} B_1 \left(\log(x) \log(b) \log(c) \log(d) \right)$$

$$- \frac{1}{8} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(\frac{2 \pi k \log(x)}{\log(b)} \right)$$

$$- \frac{1}{8} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(c)}{\log(a)} \right) \cos \left(\frac{2 \pi k \log(x)}{\log(c)} \right)$$

$$- \frac{1}{8} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(\frac{2 \pi k \log(x)}{\log(b)} \right)$$

$$- \frac{1}{8} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(c)}{\log(a)} \right) \cos \left(\frac{2 \pi k \log(x)}{\log(c)} \right)$$
\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(d)}{\log(a)}\right) \cos\left(\frac{2\pi k \log(z)}{\log(a)}\right)}{k \sin\left(\frac{\pi k \log(d)}{\log(a)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(a)}{\log(d)}\right) \cos\left(\frac{2\pi k \log(z)}{\log(d)}\right)}{k \sin\left(\frac{\pi k \log(a)}{\log(d)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(c)}{\log(b)}\right) \cos\left(\frac{2\pi k \log(z)}{\log(b)}\right)}{k \sin\left(\frac{\pi k \log(c)}{\log(b)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(b)}{\log(c)}\right) \cos\left(\frac{2\pi k \log(z)}{\log(c)}\right)}{k \sin\left(\frac{\pi k \log(b)}{\log(c)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(c)}{\log(b)}\right) \cos\left(\frac{2\pi k \log(z)}{\log(b)}\right)}{k \sin\left(\frac{\pi k \log(c)}{\log(b)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(b)}{\log(c)}\right) \cos\left(\frac{2\pi k \log(z)}{\log(c)}\right)}{k \sin\left(\frac{\pi k \log(b)}{\log(c)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(d)}{\log(a)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(a)}\right)}{k \sin\left(\frac{\pi k \log(d)}{\log(a)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(a)}{\log(d)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(d)}\right)}{k \sin\left(\frac{\pi k \log(a)}{\log(d)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(c)}{\log(a)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(a)}\right)}{k \sin\left(\frac{\pi k \log(c)}{\log(a)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(a)}{\log(c)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(c)}\right)}{k \sin\left(\frac{\pi k \log(a)}{\log(c)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(d)}{\log(a)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(a)}\right)}{k \sin\left(\frac{\pi k \log(d)}{\log(a)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(a)}{\log(d)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(d)}\right)}{k \sin\left(\frac{\pi k \log(a)}{\log(d)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(b)}{\log(c)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(c)}\right)}{k \sin\left(\frac{\pi k \log(b)}{\log(c)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(c)}{\log(b)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(b)}\right)}{k \sin\left(\frac{\pi k \log(c)}{\log(b)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(b)}{\log(c)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(c)}\right)}{k \sin\left(\frac{\pi k \log(b)}{\log(c)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(c)}{\log(b)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(b)}\right)}{k \sin\left(\frac{\pi k \log(c)}{\log(b)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(d)}{\log(a)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(a)}\right)}{k \sin\left(\frac{\pi k \log(d)}{\log(a)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(a)}{\log(d)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(d)}\right)}{k \sin\left(\frac{\pi k \log(a)}{\log(d)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(b)}{\log(c)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(c)}\right)}{k \sin\left(\frac{\pi k \log(b)}{\log(c)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(c)}{\log(b)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(b)}\right)}{k \sin\left(\frac{\pi k \log(c)}{\log(b)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(d)}{\log(a)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(a)}\right)}{k \sin\left(\frac{\pi k \log(d)}{\log(a)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(a)}{\log(d)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(d)}\right)}{k \sin\left(\frac{\pi k \log(a)}{\log(d)}\right)} \]

\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(b)}{\log(c)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(c)}\right)}{k \sin\left(\frac{\pi k \log(b)}{\log(c)}\right)} = \frac{1}{8\pi} \sum_{k=1}^{\infty} \frac{\cos\left(\frac{\pi k \log(c)}{\log(b)}\right) \sin\left(\frac{2\pi k \log(z)}{\log(b)}\right)}{k \sin\left(\frac{\pi k \log(c)}{\log(b)}\right)} \]
\[-\frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(a)}{\log(c)} \right) \cos \left(\frac{\pi k \log(d)}{\log(c)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(c)} \right) \]
\[+ \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(b)}{\log(d)} \right) \cos \left(\frac{\pi k \log(c)}{\log(d)} \right) \cos \left(\frac{\pi k \log(d)}{\log(a)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(a)} \right) \]
\[+ \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(a)}{\log(c)} \right) \cos \left(\frac{\pi k \log(c)}{\log(b)} \right) \cos \left(\frac{\pi k \log(d)}{\log(b)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(b)} \right) \]
\[+ \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(a)}{\log(c)} \right) \cos \left(\frac{\pi k \log(b)}{\log(d)} \right) \cos \left(\frac{\pi k \log(c)}{\log(c)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(c)} \right) \]
\[+ \frac{1}{8\pi} \sum_{k=1}^{\infty} \sin \left(\frac{\pi k \log(a)}{\log(c)} \right) \sin \left(\frac{\pi k \log(b)}{\log(c)} \right) \sin \left(\frac{\pi k \log(c)}{\log(c)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(c)} \right) \]
\[+ \frac{1}{2} \chi_{a,b,c,d}(x) \]

and

\[N_{2,3,5,7}(x) = \frac{\log(x)^4}{24 \log(2) \log(3) \log(5) \log(7)} + \frac{\log(x)^3}{12 \log(2) \log(3) \log(5)} + \frac{\log(x)^3}{12 \log(2) \log(3) \log(7)} + \frac{\log(x)^3}{24 \log(3) \log(5) \log(7)} \]
\[+ \frac{\log(x)^3}{8 \log(2) \log(3) + \log(x)^3} + \frac{\log(x)^2}{8 \log(2) \log(5) + \log(x)^2} + \frac{\log(x)^2}{8 \log(2) \log(7) + \log(x)^2} + \frac{\log(x)^2}{8 \log(3) \log(5) + \log(x)^2} + \frac{\log(x)^2}{8 \log(3) \log(7) + \log(x)^2} \]
\[+ \frac{\log(x)^2}{8 \log(5) \log(7) + \log(x)^2} + \frac{\log(x)^2}{8 \log(2) \log(3) + \log(x)^2} + \frac{\log(x)^2}{8 \log(3) \log(5) + \log(x)^2} + \frac{\log(x)^2}{8 \log(2) \log(7) + \log(x)^2} + \frac{\log(x)^2}{8 \log(5) \log(7) + \log(x)^2} \]
\[
\begin{align*}
&+ \frac{\log(2) \log(x)}{24 \log(3) \log(7)} + \frac{\log(2) \log(x)}{24 \log(5) \log(7)} + \frac{\log(3) \log(x)}{24 \log(2) \log(5)} + \frac{\log(3) \log(x)}{24 \log(2) \log(7)} + \frac{\log(3) \log(x)}{24 \log(5) \log(7)} \\
&+ \frac{\log(2) \log(x)}{24 \log(2) \log(3)} + \frac{\log(5) \log(x)}{24 \log(3) \log(7)} + \frac{\log(5) \log(x)}{24 \log(7) \log(3)} + \frac{\log(7) \log(x)}{24 \log(3) \log(5)} + \frac{\log(7) \log(x)}{24 \log(5) \log(3)} \\
&+ \frac{\log(3) \log(x)}{24 \log(2) \log(5)} + \frac{1}{16} + \frac{\log(2)}{48 \log(3)} + \frac{\log(5)}{48 \log(7)} + \frac{\log(7)}{48 \log(5)} \\
&+ \frac{\log(3)}{48 \log(7)} + \frac{\log(5)}{48 \log(2)} + \frac{\log(7)}{48 \log(3)} + \frac{\log(5)}{48 \log(7)} + \frac{\log(7)}{48 \log(5)} \\
&+ \frac{144 \log(5) \log(7)}{144 \log(2) \log(7)} + \frac{144 \log(5) \log(7)}{144 \log(2) \log(3)} + \frac{144 \log(3) \log(5)}{144 \log(2) \log(7)} + \frac{144 \log(3) \log(5)}{144 \log(2) \log(3)} \\
&+ \frac{\log(5)^3}{720 \log(2) \log(3) \log(7)} - \frac{\log(7)^3}{720 \log(2) \log(3) \log(5)} - \frac{1}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(2)} \right\} \right) \\
&- \frac{1}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(3)} \right\} \right) - \frac{1}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(5)} \right\} \right) - \frac{1}{8} B_1^* \left(\left\{ \frac{\log(x)}{\log(7)} \right\} \right) \\
&- \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(2)} \right) \cos \left(2 \pi k \frac{\log(x)}{\log(2)} \right) - \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(5)}{\log(2)} \right) \cos \left(2 \pi k \frac{\log(x)}{\log(2)} \right) \\
&- \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(7)}{\log(2)} \right) \cos \left(2 \pi k \frac{\log(x)}{\log(2)} \right) - \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(5)} \right) \cos \left(2 \pi k \frac{\log(x)}{\log(5)} \right) \\
&- \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(7)} \right) \cos \left(2 \pi k \frac{\log(x)}{\log(7)} \right) - \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(5)}{\log(7)} \right) \cos \left(2 \pi k \frac{\log(x)}{\log(7)} \right) \\
&- \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(7)}{\log(5)} \right) \cos \left(2 \pi k \frac{\log(x)}{\log(5)} \right) - \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(5)}{\log(2)} \right) \sin \left(\frac{\pi k \log(x)}{\log(2)} \right) \\
&- \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(2)} \right) \sin \left(\frac{\pi k \log(x)}{\log(2)} \right) \\
&- \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(5)}{\log(2)} \right) \sin \left(\frac{\pi k \log(x)}{\log(2)} \right) \\
&- \frac{1}{8 \pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(7)}{\log(2)} \right) \sin \left(\frac{\pi k \log(x)}{\log(2)} \right)
\end{align*}
\]
\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(5)}{\log(2)} \right) \cos \left(\frac{\pi k \log(7)}{\log(2)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(2)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(2)} \right) \cos \left(\frac{\pi k \log(7)}{\log(2)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(2)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(3)} \right) \cos \left(\frac{\pi k \log(5)}{\log(3)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(3)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(5)}{\log(3)} \right) \cos \left(\frac{\pi k \log(7)}{\log(3)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(3)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(3)} \right) \cos \left(\frac{\pi k \log(5)}{\log(3)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(3)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(5)} \right) \cos \left(\frac{\pi k \log(7)}{\log(5)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(5)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(5)} \right) \cos \left(\frac{\pi k \log(7)}{\log(5)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(5)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(5)} \right) \cos \left(\frac{\pi k \log(7)}{\log(5)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(5)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(3)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]

\[- \frac{1}{8\pi} \sum_{k=1}^{\infty} \cos \left(\frac{\pi k \log(2)}{\log(7)} \right) \cos \left(\frac{\pi k \log(7)}{\log(7)} \right) \sin \left(\frac{2\pi k \log(x)}{\log(7)} \right)\]
Therefore, by Perron’s formula, we get that

We have that

Proof. We have that

\[
\sum_{k=1}^{\infty} \frac{\chi_{S_{a,b,c,d}}(k)}{k^{s}} = \left(\sum_{m_1=0}^{\infty} \frac{1}{a^{m_1}s} \right) \left(\sum_{m_2=0}^{\infty} \frac{1}{b^{m_2}s} \right) \left(\sum_{m_3=0}^{\infty} \frac{1}{c^{m_3}s} \right) \left(\sum_{m_4=0}^{\infty} \frac{1}{d^{m_4}s} \right)
\]

Therefore, by Perron’s formula, we get that

\[
N_{a,b,c,d}(x) = \frac{1}{2\pi i} \int_{s} x^{s} \left(\frac{1}{1-e^{-\log(a)s}} \right) \left(\frac{1}{1-e^{-\log(b)s}} \right) \left(\frac{1}{1-e^{-\log(c)s}} \right) \left(\frac{1}{1-e^{-\log(d)s}} \right) ds
\]

\[
= \text{Res}_{s=0} \left(\frac{x^{s}}{s (1-e^{-\log(a)s}) (1-e^{-\log(b)s}) (1-e^{-\log(c)s}) (1-e^{-\log(d)s})} \right)
\]

\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(a)}} \left(\frac{x^{s}}{s (1-e^{-\log(a)s}) (1-e^{-\log(b)s}) (1-e^{-\log(c)s}) (1-e^{-\log(d)s})} \right)
\]

\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(b)}} \left(\frac{x^{s}}{s (1-e^{-\log(a)s}) (1-e^{-\log(b)s}) (1-e^{-\log(c)s}) (1-e^{-\log(d)s})} \right)
\]

\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(c)}} \left(\frac{x^{s}}{s (1-e^{-\log(a)s}) (1-e^{-\log(b)s}) (1-e^{-\log(c)s}) (1-e^{-\log(d)s})} \right)
\]

\[
+ \sum_{k=1}^{\infty} \text{Res}_{s=\frac{2\pi ik}{\log(d)}} \left(\frac{x^{s}}{s (1-e^{-\log(a)s}) (1-e^{-\log(b)s}) (1-e^{-\log(c)s}) (1-e^{-\log(d)s})} \right)
\]

\[
= \frac{1}{2} \chi_{S_{2,3,5,7}}(x).
\]

36
\[+ \sum_{k=1}^{\infty} \text{Res}_{s=0} \frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right) \left(1 - e^{-\log(c)s} \right) \left(1 - e^{-\log(d)s} \right)} \]

+ \frac{1}{2} \chi_{s,a,b,c,d}(x),

where \(\gamma = \text{line from } 1 - i\infty \text{ to } 1 + i\infty \).

For the Residues, we have that

\[
\text{Res}_{s=0} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right) \left(1 - e^{-\log(c)s} \right) \left(1 - e^{-\log(d)s} \right)} \right)
\]

\[= \frac{24 \log(a) \log(b) \log(c) \log(d)}{\log(x)^3} + \frac{12 \log(a) \log(b) \log(c)}{\log(x)^3} + \frac{12 \log(a) \log(b) \log(d)}{\log(a) \log(x)^2} + \frac{24 \log(b) \log(c) \log(d)}{\log(d) \log(x)^2} + \frac{24 \log(a) \log(b) \log(c) \log(d)}{\log(x)^2} + \frac{8 \log(a) \log(b)}{\log(x)^2} + \frac{8 \log(a) \log(c)}{\log(x)} + \frac{8 \log(a) \log(d)}{\log(x)} + \frac{8 \log(b) \log(c)}{\log(x)} + \frac{8 \log(b) \log(d)}{\log(x)} + \frac{8 \log(c) \log(d)}{\log(x)} + \frac{8 \log(a) \log(c) \log(d)}{\log(x)} + \frac{8 \log(a) \log(b) \log(d)}{\log(x)} + \frac{8 \log(b) \log(c) \log(d)}{\log(x)} + \frac{8 \log(a) \log(b) \log(c) \log(d)}{\log(x)} + \frac{16 \log(b)}{48 \log(a)} + \frac{16 \log(c)}{48 \log(b)} + \frac{16 \log(d)}{48 \log(c)} + \frac{16 \log(a) \log(b) \log(c) \log(d)}{\log(b)^3}
\]

and that

\[
\text{Res}_{s=\frac{2\pi i k}{\log(a)}} \left(\frac{x^s}{s \left(1 - e^{-\log(a)s} \right) \left(1 - e^{-\log(b)s} \right) \left(1 - e^{-\log(c)s} \right) \left(1 - e^{-\log(d)s} \right)} \right)
\]

\[= -\frac{2\pi k}{\left(b_{\log(a)}^{2\pi i k} - 1 \right) \left(c_{\log(a)}^{2\pi i k} - 1 \right) \left(d_{\log(a)}^{2\pi i k} - 1 \right)} \quad \forall k \in \mathbb{N}
\]

37
Exactly similar relations hold also for the other Residues under exchanging \(a \) with \(b \), \(a \) with \(c \), and \(a \) with \(d \) ("permuting \(a, b, c, d \)). Using the relations

\[
\sin \left(2\pi k \frac{\log(x)}{\log(a)} \right) = \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} \\
\cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) = \frac{1}{2} x \frac{2 \pi i k}{\log(a)} + \frac{1}{2} x \frac{2 \pi i k}{\log(a)} \\
cot \left(\pi k \frac{\log(b)}{\log(a)} \right) = i \frac{b^{2 \pi i k / \log(a)}}{b^{2 \pi i k / \log(a)} - 1} \\
\cot \left(\pi k \frac{\log(c)}{\log(a)} \right) = i \frac{c^{2 \pi i k / \log(a)}}{c^{2 \pi i k / \log(a)} - 1} \\
\cot \left(\pi k \frac{\log(d)}{\log(a)} \right) = i \frac{d^{2 \pi i k / \log(a)}}{d^{2 \pi i k / \log(a)} - 1}
\]

we establish (by expanding everything out) the following identity

\[
\begin{align*}
\cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \cot \left(\frac{\pi k \log(d)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) &= \\
- \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \sin \left(2\pi k \frac{\log(x)}{\log(a)} \right) &= \\
- \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \cot \left(\frac{\pi k \log(d)}{\log(a)} \right) \sin \left(2\pi k \frac{\log(x)}{\log(a)} \right) &= \\
- \cot \left(\frac{\pi k \log(b)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) - \cot \left(\frac{\pi k \log(c)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) &= \\
- \cot \left(\frac{\pi k \log(d)}{\log(a)} \right) \cos \left(2\pi k \frac{\log(x)}{\log(a)} \right) + \sin \left(2\pi k \frac{\log(x)}{\log(a)} \right) &= \\
\left(\frac{i \frac{b^{2 \pi i k / \log(a)}}{b^{2 \pi i k / \log(a)} - 1} + 1}{i \frac{b^{2 \pi i k / \log(a)}}{b^{2 \pi i k / \log(a)} - 1} + 1} \right) \left(i \frac{c^{2 \pi i k / \log(a)}}{c^{2 \pi i k / \log(a)} - 1} + 1 \right) \left(i \frac{d^{2 \pi i k / \log(a)}}{d^{2 \pi i k / \log(a)} - 1} + 1 \right) &= \\
\left(\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} \right) \left(\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} \right) \left(\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} \right) &= \\
- \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} &= \\
\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} &= \\
- \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} &= \\
\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} &= \\
\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} &= \\
\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} &= \\
\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)} &= \\
\frac{1}{2} i x \frac{2 \pi i k}{\log(a)} - \frac{1}{2} i x \frac{2 \pi i k}{\log(a)}
\end{align*}
\]
\[- \left(\frac{2\pi i k}{b \log(a)} + 1 \right) \left(\frac{1}{2} - \frac{2\pi i k}{\log(a)} + \frac{1}{2} \right) - \left(\frac{2\pi i k}{c \log(a)} + 1 \right) \left(\frac{1}{2} - \frac{2\pi i k}{\log(a)} + \frac{1}{2} \right) - \left(\frac{2\pi i k}{d \log(a)} + 1 \right) \left(\frac{1}{2} - \frac{2\pi i k}{\log(a)} + \frac{1}{2} \right) \]

\[- \left(\frac{2\pi i k}{d \log(a)} + 1 \right) \left(\frac{1}{2} - \frac{2\pi i k}{\log(a)} + \frac{1}{2} \right) + \left(\frac{1}{2} i x \frac{-2\pi i k}{\log(a)} - \frac{1}{2} i x \frac{2\pi i k}{\log(a)} \right) \]

\[= -4 i \left(x - \frac{2\pi i k}{\log(a)} + b \frac{2\pi i k}{c \log(a)} + c \frac{2\pi i k}{d \log(a)} + d \frac{2\pi i k}{x \log(a)} \right) \]

This shows that for the first Residues (the "a -Residues"), we have that

\[\text{Res}_{s= \frac{2\pi i k}{\log(a)}} \left(\frac{x^s}{s (1 - e^{-\log(a) s})(1 - e^{-\log(b) s})(1 - e^{-\log(c) s})(1 - e^{-\log(d) s})} \right)\]

\[+ \text{Res}_{s= -\frac{2\pi i k}{\log(a)}} \left(\frac{x^s}{s (1 - e^{-\log(a) s})(1 - e^{-\log(b) s})(1 - e^{-\log(c) s})(1 - e^{-\log(d) s})} \right)

\[= i \left(x - \frac{2\pi i k}{\log(a)} + b \frac{2\pi i k}{c \log(a)} + c \frac{2\pi i k}{d \log(a)} + d \frac{2\pi i k}{x \log(a)} \right) \]

\[= \frac{1}{2\pi k} \left(b \frac{2\pi i k}{\log(a)} - 1 \right) \left(c \frac{2\pi i k}{\log(a)} - 1 \right) \left(d \frac{2\pi i k}{\log(a)} - 1 \right)\]

By exchanging the variable a with all other variables b, c and d ("permuting a, b, c, d"), we get all four Residues (the "a, b, c, d -Residues"), which have all the same structure. Summing everything up, we get our formula for $N_{a,b,c,d}(x)$. Setting $a = 2$, $b = 3$, $c = 5$ and $d = 7$, we get also the formula for $N_{2,3,5,7}(x)$.

And so on.

These formulas are exactly equivalent to the previous mentioned formulas.
Let \(a, b \in \mathbb{N} \) such that \(a < b \) and \(\gcd(a, b) = 1 \).

For \(x \in \mathbb{R}_+^* \), we define the function \(N_{a,b}^{(2)}(x) \) by

\[
N_{a,b}^{(2)}(x) := \sum_{a^{p^2}b^{q^2} \leq x \atop p \in \mathbb{N}_0, q \in \mathbb{N}_0} 1.
\]

Moreover, we define

\[
S_{a,b}^{(2)} := \left\{ a^{p^2}b^{q^2} : p \in \mathbb{N}_0, q \in \mathbb{N}_0 \right\},
\]

\[
\chi_{S_{a,b}^{(2)}}(x) := \begin{cases}
1 & \text{if } x \in S_{a,b}^{(2)} \\
0 & \text{if } x \notin S_{a,b}^{(2)}.
\end{cases}
\]

We have that

\[
N_{a,b}^{(2)}(x) = 1 + \sum_{k=0}^{\left\lfloor \log_a(x) \right\rfloor} \left\lfloor \log_b \left(\frac{x}{b^{k^2}} \right) \right\rfloor + \left\lfloor \log_b(x) \right\rfloor.
\]

We have also the following

Theorem 17. (Formula for \(N_{a,b}^{(2)}(x) \))

For every real number \(x > 1 \), we have that

\[
N_{a,b}^{(2)}(x) = \frac{\pi \log(x)}{4 \sqrt{\log(a) \log(b)}} + \frac{1}{2} \sqrt{\frac{\log(x)}{\log(a)}} + \frac{1}{2} \sqrt{\frac{\log(x)}{\log(b)}} + \frac{1}{4} - \frac{1}{2} B_1^* \left(\left\lfloor \frac{\log(x)}{\log(a)} \right\rfloor \right)
\]

\[
- \frac{1}{2} B_1^* \left(\left\lfloor \frac{\log(x)}{\log(b)} \right\rfloor \right) + \sqrt{\log(x)} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} J_1 \left(\frac{2\pi \sqrt{n^2 \log(a) + m^2 \log(b)}}{\log(a) \log(b)} \log(x) \right)
\]

\[
+ \frac{1}{2} \sqrt{\frac{\log(x)}{\log(a)}} \sum_{k=1}^{\infty} J_1 \left(\frac{2\pi k \log(x)}{k \log(a)} \right) + \frac{1}{2} \sqrt{\frac{\log(x)}{\log(b)}} \sum_{k=1}^{\infty} J_1 \left(\frac{2\pi k \log(x)}{k \log(b)} \right) + \frac{1}{2} \chi_{S_{a,b}^{(2)}}(x).
\]

This formula converges very rapidly.

Setting \(a = 2 \) and \(b = 3 \), we get
Corollary 18. (Formula for $N_{2,3}^{(2)}(x)$)

For every real number $x > 1$, we have that

$$N_{2,3}^{(2)}(x) = \frac{\pi \log(x)}{2\sqrt{\log(2) \log(3)}} + \frac{1}{2} \sqrt{\frac{\log(x)}{\log(2)}} + \frac{1}{2} \sqrt{\frac{\log(x)}{\log(3)}} + \frac{1}{4} - \frac{1}{2} B_1^* \left(\left\{ \sqrt{\frac{\log(x)}{\log(2)}} \right\} \right)$$

$$- \frac{1}{2} B_1^* \left(\left\{ \sqrt{\frac{\log(x)}{\log(3)}} \right\} \right) + \sqrt{\log(x)} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} J_1 \left(\frac{2 \pi \sqrt{n^2 \log(2) + m^2 \log(3)}}{\log(x)} \right)$$

$$+ \frac{1}{2} \sqrt{\frac{\log(x)}{\log(2)}} \sum_{k=1}^{\infty} J_1 \left(\frac{2 \pi k \sqrt{\frac{\log(x)}{\log(3)}}}{k} \right) + \frac{1}{2} \sqrt{\frac{\log(x)}{\log(3)}} \sum_{k=1}^{\infty} J_1 \left(\frac{2 \pi k \sqrt{\frac{\log(x)}{\log(2)}}}{k} \right) + \frac{1}{2} \chi_{S_{2,3}}(x).$$

We have that

$$S_{2,3}^{(2)} := \left\{ 2^{p^2} 3^{q^2} : p \in \mathbb{N}_0, q \in \mathbb{N}_0 \right\}$$

$$= \{1, 2, 3, 6, 16, 48, 81, 162, \ldots \},$$

and therefore we get the following table:

x	$N_{2,3}^{(2)}(x)$	Formula for $N_{2,3}^{(2)}(x)$	Number of terms (n, m) needed with $k = 400$
1	1	1.077194794603379	$(n, m) = (1, 1)$ at $x = 1.1$
10	4	4.069103424005291	$(n, m) = (1, 1)$
10^2	7	7.000949506610362	$(n, m) = (5, 5)$
10^3	9	9.086395912838084	$(n, m) = (3, 3)$
10^4	11	11.038613589820953	$(n, m) = (5, 5)$
10^5	15	15.012706923272531	$(n, m) = (5, 5)$
10^6	17	17.046462385363300	$(n, m) = (5, 5)$
10^7	18	18.408421860888305	$(n, m) = (9, 9)$
10^8	22	22.127760008955621	$(n, m) = (6, 6)$
10^9	24	24.034210155019944	$(n, m) = (8, 8)$
10^{10}	26	26.0098454154207983	$(n, m) = (9, 9)$
10^{10^2}	226	226.001668111078420	$(n, m) = (39, 39)$
10^{10^3}	2122	2122.031291011313557	$(n, m) = (168, 168)$
10^{10^4}	20886	20886.032472386492101	$(n, m) = (400, 400)$
10^{10^5}	207756	207756.0303040763527672	$(n, m) = (1000, 1000)$
10^{10^6}	2074033	2074033.0733802760244109	$(n, m) = (1400, 1400)$

Table 5: Values of $N_{2,3}^{(2)}(x)$
7 Conclusion

We have presented and proved the formulas for the distribution of every smooth number sequence. This article and the proofs of these formulas will soon be published in a Journal.

References

[1] http://mathworld.wolfram.com/SmoothNumber.html
[2] https://en.wikipedia.org/wiki/Smooth_number
[3] https://oeis.org/A003586
[4] B. C. Berndt, Ramanujan’s Notebooks, Part IV, Springer, 66-69, 1994.
[5] Srinivasa Ramanujan, Collected Papers of Srinivasa Ramanujan, Oxford University Press, 2000.
[6] math.stackexchange.com/questions/15966/ramanujans-first-letter-to-hardy-and-the-number-of-3-smooth-integers
[7] http://math.stackexchange.com/questions/17267/on-the-consequences-of-an-exact-debruijn-function-or-if-ramanujan-had-more?
[8] A. Granville, Smooth numbers: computational number theory and beyond, Algorithmic Number Theory, MSRI Publications, Volume 44, 2008.
[9] https://en.wikipedia.org/wiki/Regular_number
[10] https://oeis.org/A051037
[11] G. H. Hardy, A lattice-point problem, in “Ramanujan: Twelve lectures on subjects suggested by his life and work”, AMS Chelsea, page 72, 1999.
[12] G. H. Hardy, J. E. Littlewood, Some problems of Diophantine approximation: The lattice-points of a right-angled triangle, Proc. London Math. Soc., page 35, 1922.
[13] Emanuele Tron, SNS Pisa, emanuele.tron@sns.it.
[14] http://oeis.org/A002473
[15] cf. Donald Mintz, donald.jmintz@gmail.com.
[16] cf. Donald J. Mintz, 2,3 Sequence as Binary Mixture, The Fibonacci Quarterly, Volume 19, 351-360, 1981.
2010 Mathematics Subject Classification: Primary 40A30; Secondary 11Y55.

Keywords: distribution of smooth numbers, distribution of friable numbers, distribution of 2-smooth numbers (powers of 2), distribution of 3-smooth numbers (harmonic numbers), distribution of 5-smooth numbers (regular numbers or Hamming numbers), distribution of 7-smooth numbers (Humble numbers or "highly composite numbers"), distribution of all smooth numbers, distribution of all friable numbers, distribution of \(p_n \)-smooth numbers, distribution of the natural numbers of the form \(a^p \) less than or equal to \(x \), distribution of the natural numbers of the form \(a^p b^q \) less than or equal to \(x \), distribution of the natural numbers of the form \(a^p b^q c^r \) less than or equal to \(x \), distribution of the natural numbers of the form \(a^p b^q c^r d^f \) less than or equal to \(x \), distribution of the natural numbers of the form \(a_1^{q_1} a_2^{q_2} a_3^{q_3} \cdots a_n^{q_n} \) less than or equal to \(x \), distribution of the natural numbers of the form \(2^p 3^q \) less than or equal to \(x \), distribution of the natural numbers of the form \(2^p 3^q 5^l \) less than or equal to \(x \), distribution of the natural numbers of the form \(2^p 3^q 5^l 7^f \) less than or equal to \(x \), distribution of the natural numbers of the form \(2^{p_1} 3^{q_1} 5^{q_2} \cdots p_n^{q_n} \) less than or equal to \(x \), distribution of the natural numbers of the form \(a^{p_1} b^{q_2} \) less than or equal to \(x \), distribution of the natural numbers of the form \(2^{p_1} 3^{q_2} \) less than or equal to \(x \).