Review on risk factors related to lower back disorders at workplace

Nur A’ Tifah Jaffar, Mohd Nasrull Abdol Rahman*

Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering and Manufacturing, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Batu Pahat, Johor, Malaysia

Corresponding author: *mnasrull@uthm.edu.my

Abstract. This review examines the evidence of the occurrence of risk exposure on work-related lower back disorders in the workplace. This review also investigates potential interactions between the risk factors in the workplace which include heavy physical work risk factor, static work postures risk factor, frequent bending and twisting risk factor, lifting risk factor, pushing and pulling risk factor, repetitive work risk factor, vibration risk factor, psychological and psychosocial risk factor that may be associated with symptoms of musculoskeletal disorders of lower back. These risk factors can reinforce each other and their influence can also be mediated by cultural or social factors. A systematic review of the literature was carried out by searching using databases and the searching strategy was used combined keyword for risk factors, work-related lower back disorders, heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological and psychosocial risk factor. A total of 67 articles were identified and reviewed. The risk factors identified that related for low back disorder are seven which are heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological and psychosocial risk factor. A total of 67 articles were identified and reviewed. The risk factors identified that related for low back disorder are seven which are heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological and psychosocial risk factor. The result confirms that, existing of higher physical and psychosocial demand related to reported risk factors of low back disorders. The result also showed that previous reviews had evaluated relationship between risk factors of low back disorders and specific types of musculoskeletal disorders. This review also highlights the scarves evidence regarding some of the frequently reported risk factors for work related lower back disorders.

1. Introduction
A Socio-psychological factor was affected by various diseases such as back pain [1-3]. Personal, psychological, biomechanical factors and various occupational risk factors are an effective factors related to low back pain [4–7]. Epidemiologic on the role of manual materials handling related to low back disorder was evaluated [8]. Low back pain is a very common health problem [9] that affecting performance. Several risk factors have been identified such as occupational posture, depressive moods, obesity, body height and age. The causes still remain and difficult to analysis [10]. The impact of low back to society can be figured in epidemiologic studies and can be evaluate the prevalence and...
incidence of the conditions [11]. During the working hours, 81.6% of which consisted of low back pain [12]. Highest prevalence of Musculoskeletal Disorders (MSD) was low back pain [13]. This review examines the evidence of the occurrence of risk exposure on work-related lower back disorders in the workplace and investigates potential interactions between the risk factors in the workplace.

2. Methods
This review was identifying the prevalence risk factors for low back disorders at workplace. Relevant literature was obtained from the following strategy. Keywords were identified after a scoping study and were then cross-searched with general terms including risk factors, lower back disorders, heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological, psychosocial risk factor and level of evidence such as strong, moderate, limited, insufficient and no evidence.

To identify published research, several databases were using for searching related to keyword with low back pain. Full papers were obtained for papers based on the criteria that they included new data or results and systematic review. Two steps were used to assess the level of evidence and strength of association. First, level of evidence was determined based on the number, quality, and outcome of the studies. The strong evidence is when the findings in more than one of high quality studies, while the moderate evidence provides consistent findings in one high quality study. Limited evidence is findings with one or more low quality studies. Then, the insufficient evidence is one moderate quality study with inconsistent findings across multiple studies.

The next step is categorization of the strength of the association is considered according to a method used by Hartvigsen et al. Based on this method, three categories have been included which are, no statistically significant positive association with (p>0.05) or Odd Ratio (OR) or Relative Ratio (RR) less than or 95% of Confidence Interval (CI) below or straddling 1.00, moderate association with OR or RR between 1.01 and 2.00 and (0.01<p<0.05) and strong association with the OR or RR value more than 2.00 or (p<0.01). The independent data collected were extracted, and any dissimilarities of opinion between the team members were identified and resolved in a discussion. The outcomes of the discussion and consensus are presented as the research findings in the form of summary table in spread sheets and are discussed further in the discussion section.

3. Results
According the risk factors identified were organized according to (1) heavy physical work risk factor, (2) static work postures risk factor, (3) frequent bending and twisting risk factor, (4) lifting risk factor, pushing and pulling risk factor, (5) repetitive work risk factor, (6) vibration risk factor, (7) psychological and psychosocial risk factor and the level of evidence supporting the relationship with lower back disorders such as strong, moderate, insufficient, limited and no evidence. Table 1 presents an overview of the scientific evidence for risk factors of work-related lower back disorders.
Table 1: The scientific evidence for risk factors of work-related lower back disorders

Type of risk factors	Variables	Level of evidence*	Strength Association*	References
Heavy physical work	Standing			
	Heavy lifting	(OR= 1.12, CI = 0.48-2.59)	43.37%	11
	Physical/ mental workload	**P<0.05**		
	Longer period	**P < 0.01**		13
	Sedentary	95% CI 1.5–409		14
	Heavy work	95% CI 0.3–23.7		
	Longer period	odds ratios of 0.55	95% CI: 0.33–0.90	15
Static work postures	**Prolonged movement**	**58%**		13
	Simultaneous lifting with straight knees	OR 6.1, 95% CI 1.3–27.9	14	
	Lifting	**OR 2.16, 95% CI 1.0–4.7**	14, 23	
	Forceful movements	**Strong evidence**		14
	Duration	**Moderate**		27
	Low back disorders	**Strong evidence**		14, 28
	Male drivers	**Strong evidence**		29
	Prolonged sitting and certain work postures	**Strong evidence**	30	
	Musculoskeletal disorders	**Moderate evidence**		31-32
	Job dissatisfaction	**Strongly associated**		36
	Low social support	**Strong evidence**		37
	Awkward posture, gender, workload	**Strong evidence**		41
	Low support from supervisor and co-workers	**Strong evidence**	37, 48	
	Musculoskeletal with low support from supervisor	**Limited evidence**	49	
	Work schedule with musculoskeletal	**Strong evidence**	52	
	Age with physical capacities	**Strong evidence**	56.58	
	Age with low back pain	**Strong evidence**	59	
	Vibration with gender	**Strong association**	61	
	Higher education with low back pain	**OR: 1.9; 1.2–3.0**	15	

*Strong Evidence: Consistent findings in multiple >1 of quality studies; Moderate Evidence: Consistent findings in one high quality studies and >1 low quality studies or in multiple low quality studies; Limited Evidence: One or more low quality studies; Insufficient Evidence: One moderate quality study inconsistent findings across multiple studies. Strength of Associations: No statistically significant: (p>0.005) or Odd Ratio (OR) less than 95% of Confidence Interval (CI) below or straddling 1.00; Moderate Association: (0.01<p<0.05) or Odd Ratio (OR) between 1.01 and 2.00; Strong Association: (p<0.01) or Odd Ratio (OR) is more than 2.00.
4. Discussion
Heavy physical work can be defined as work that needed of energy with measurement scale for physical strength [8]. There are an evidence that low back pain was not predicted by having a job with heavy lifting and much standing (OR= 1.12, CI = 0.48-2.59) [14] and the prevalence of musculoskeletal disorders related with low back was 43.37%. The relationship between workload and the prevalence of low back pain has a significant relationship between physical/mental workload with low back pain (P<0.05) [4]. Posture was defined as the position of different parts of your body. Awkward posture happens when muscle, tendons and ligaments can be stressed and in hard working condition in this posture [15]. This position occurs when any joint of your body bends or twists extraordinary movements [16]. Working in static posture for longer periods during work was also associated with low back pain (P < 0.01) [17]. In comparison, sedentary had increased the degenerative of disc with ORs of 24.6 (95% CI 1.5–409). Besides that, heavy physical work also increased the same risk of disc degeneration with sedentary OR of 2.8 (95% CI 0.3–23.7) [18]. Sedentary occupation was negatively related with long-lasting low back pain at baseline with an OR of 0.55 (95% CI: 0.33–0.90) [19].

Bending can be described as flexion of the trunk, usually in the forward or lateral direction while twisting can be defined as trunk rotation. An awkward posture is condition at extreme positions and angles. Frequency of prolonged forward bending and twisting the body was significantly associated with LBP (P < 0.001) [17]. The highest prevalence was observed in lifting and twisting movement together with straight knees (OR 6.1, 95% CI 1.3–27.9) [18]. Manual handling is activities that require use of the force exerted by a person to push, pull, carry, lift, move, lower and hold [20]. The manual material handling (MMH) including lifting, holding, carrying, or moving heavy objects in the workplace [12,21]. MMH usage is suggested over machineries because of high flexibility and being relatively low in cost [22-23]. Previous studies show a significant relationship between manual handling and musculoskeletal injury if the tasks are not carried out safely [24-26]. Lifting can define as moving a load from another place or level to another one (place/level) and also related with back disorder [27] with (OR 2.16, 95% CI 1.0–4.7) [18, 28]. High force imposed in lifting, grasping, pushing, or pulling causes muscle and tendon overloaded and exposes workers to the risk factors of MSDs [29]. There are three types of activity that require force which are lowering, carrying or lifting, and activities of pulling or pushing, excessive gripping is forcing the muscles [25] to contract harder than normal, leading to stress on the muscle, tendons, and joints [16]. Strong evidence has showed that low-back disorders are related with lifting activities and forceful movements [18]. Pushing and pulling also an occupational risk factor for low back pain [30-31]. Those employees that not crane operators and had no record in frequent lifting activities was not related with low back pain (OR 0.70, 95% CI 0.14–3.5) [18].

Repetitiveness is the average number of movement or energy exertion used to perform the same work, using the same body parts at a new intervals rest time repeatedly [32]. There is higher relationship between repetitive work with awkward posture in back, shoulder, wrist and elbow [33]. Strong evidence relationship showed between exposures to Whole Body Vibration (WBV) and low-back disorder [18]. Both of the epidemiologic and experimental evidence suggest that WBV may happens in combination with other risk factors can increase the risk of LBP. Exposure to WBV is an occupational risk factor that cause on health in drivers and there is strong evidence that WBV are related with work-related low back pain [34]. There is strong prevalence of whole body vibration between low back pains with about 92.2 of group response rate among male tractor drivers [35]. Furthermore, strong evidence that WBV is a risk only in combination with other factors, which are prolonged sitting and work postures [36]. Vibrations cause damage to organ on the body by being buffeted from the high vibration levels at relatively low frequencies and breakdown the body tissues [16]. There is moderate evidence that highlights the relationship between low back pain and MSD [37-38]. This risk factor also became major social and economic impact on society [19]. There are an evidence exist which indicates that social and psychosocial factors play an important role in the symptom related with low back pain [39]. Occupational health consists of an encompassed job stress,
job satisfaction, and organizational support from supervisors and co-workers [40]. Psychosocial risk factors are classified into two categories. The first category is associated with WMSDs which is dedicated to workers in the workplace which is poor social support at workplace and the second category is associated with individuals such as depression. Working stress also can be defined as stress that the demands exceed one’s capacity to cope at work [28]. Physical environment and complexity of individual and group tasks are the factors that can be effected stress at workplace [41]. In addition, job dissatisfaction is also found to be strongly associated with work stress [42]. Strong evidence was showed in low social support at the workplace [43].

A workload can be divided into two which are physical or mental commonly connected together and cannot be separated when a subject forms a particular task [44]. Human operators are important elements of several of the systems and maintaining their performance. They are usually found in control workplaces, often working there for several years [45]. Usually, the more demanding the task, the more the operators must work to accomplish the task [46]. There is strong evidence that supports the relationship between awkward posture, gender and workload [47]. There are three types of supervisor support such as an emotional, informational and instrumental [48]. The social support literature has shown that when supervisors are supportive, employees feeling more courage and it will help the supervisor to achieve the goals [49-50]. Supervisor support also provides employees with an important resource to handle the stress at workplace and maintain job performance [51]. Co-worker support was defined as ‘employees’ global beliefs concern for their co-workers attitudes towards them [52]. In most cases, co-worker support is crucial in order to complete the work-related task as it also influences overall morale [53]. There is strong evidence that shows low support from supervisors and co-workers caused to back pain [42, 54]. While there limited evidence to associate MSDs with low support from supervisors [55]. Personal and job resources can be reduce the negative effects of work schedule demands on health [56-57]. The work schedule can affect the level of risk of WMSDs. In the event of an extension of working hours a day, the workload will increase and the rest period required by an individual will be shortened. There is strong evidence that associates work schedule with work-related, MSDs [58]. Age is considered as a variable or constant change that affects a person’s employability, because health and muscle pain are affected with age [59-60]. In terms of WMSDs, there are three changes associated with age, which are changes in joint mobility, muscle strength and reduction in reaction and movement time [61]. There is strong evidence that associates age with changes in physical capacities [62-64]. There is strong evidence among older in age has a higher reports of low back pain [65].

Several studies have found that men appear to have more conflicts in a workplace than women (Work Environment Statistics, 2012).Other studies have found that women are more relationship oriented and more attuned to relationships with others than men [66]. Work-related MSDs symptoms heavy lifting, and hand arm vibration are found to have strong association with gender [67]. Parents with higher education also can increase the risk of low back pain at workplace (OR: 1.9; 1.2 –3.0) [19].

5. Conclusion
This review confirmed some of the findings from the previous reviews have evaluated relationships between risk factors and types of MSDs. There is lack of an evidence to establish a relationship between a factor and work-related lower back disorders. Further investigations are required to examine this relationship and all of the risk factors need to be determined in order to improve the working productivity in various industry. The information on lower back disorders is available in the literature that may suffer from lack of comparability because of the variability of the definitions. Thus, this review paper is helpful to prevent the risk factors related for low back disorders occur at workplace.

Acknowledgement
This paper was partly sponsored by the Centre for Graduate Studies UTHM.
References

[1] Kim DY, Oh CH, Yoon SH, Park HC, Park CO 2012 Lumbar disc screening using back pain questionnaires- Oswestry Low Back Pain Score, Aberdeen Low Back Pain Scale, and Acute Low Back Pain screening questionnaire *Korean Journal of Spine*. 9(3) 153–158

[2] Odebiyi DO, Akanle OT, Akinbo SRA, Balogun SA 2016 Prevalence and Impact of Work-Related Musculoskeletal Disorders on Job Performance of Call Center Operators in Nigeria *International Journal of Occupational and Environmental Medicine* 7(2) 98-106

[3] Amin NA, Quek KF, Oxley JA, Noah RM, Nordin R 2015 Validity and Reliability of Malay Version of the Job Content Questionnaire among Public Hospital Female Nurses in Malaysia *International Journal of Occupational and Environmental Medicine* 6(4) 232-242

[4] Kalantari R, Arghami S, Ahmad E, Garosi1 E, Farahani AZ 2016 Relationship between workload and low back pain in assembly line workers *J Kermanshah Univ Med Sci* 20(1) 26-29

[5] Choobineh AR, Daneshmandi H, Aghabeigi M, Haghayegh A 2013 Prevalence of Musculoskeletal Symptoms among Employees of Iranian Petrochemical Industries: October 2009 to December 2012 *International Journal of Occupational and Environmental Medicine* 4(4) 195-204

[6] Taghavi SM, Mokarami H, Ahmadi O, Stallones L, Abbaspour A, Mariroyad H 2016 Risk Factors for Developing Work-Related Musculoskeletal Disorders during Dairy Farming *International Journal of Occupational and Environmental Medicine* 8(1) 39-45

[7] Rahman MNA, Haq HR, Hassan MF, Arifin MA, Yunos MZ, Bakar SA, Adzila S 2015 Musculoskeletal discomfort among workers in mould making manufacturing industry *ARPN Journal of Engineering and Applied Sciences* 10(15) 6269-6273

[8] Kuiper JI, Burdorf A, Verbeek JH, Monique HW Frings-Dresen, Allard J van der Beek, Eira R.A. Viikari-Juntura 1999 Epidemiologic evidence on manual materials handling as a risk factor for back disorders: a systematic review *International Journal of Industrial Ergonomics* 24 389-404

[9] Rahman MNA and Razak NSA 2016 Review on Pen and Paper Based Observational Methods for Assessing Work-related Upper Limb Disorders *Indian Journal of Science and Technology* 9 1-11(Special Issue 1)

[10] Duthey 2013 B, Background Paper 6.24 Low Back Pain. In: Priority Medicines for Europe and the World

[11] Devon I, Rubin, MD 2007 Epidemiology and Risk Factors for Spine Pain *Neurol Clin* 25(2) 353–371

[12] Kadikon Y and Rahman MNA 2016 Manual material handling risk assessment tool for assessing exposure to risk factor of work-related musculoskeletal disorders: A review *Journal of Engineering and Applied Sciences* 11 2226-2232

[13] Baba Md Deros, Dian Darina Indah Daruis, Ahmad Rasdan Ismail, Nurfarhana Abdullah Sawal and Jaharah A Ghani 2010 Work-Related Musculoskeletal Disorders among Workers’ Performing Manual Material Handling Work in an Automotive Manufacturing Company *American Journal of Applied Sciences* 7(8) 1087-1092

[14] Eriksen W, Natvig B, Bruusgaard D 1999 Smoking, heavy physical work and low back pain: A four-year prospective study *Occup. Med.* 49(3) 155-160

[15] Rahman MNA, Zakaria NH, Masood I, Adzila S, & Nasir NF 2016 Risk assessment for the subjective occupant seating discomfort related office works *Information 19*(7B) 3025-3030

[16] Jaffar N, Abdul-Tharim A, Mohd-Kamar 2011 A literature review of ergonomics risk factors in construction industry *Procedia Engineering* 20 89-97

[17] Purani RS, Vyas NJ, Sheth MS 2016 Prevalence of low back pain in salespersons and its association with ergonomic risk factors in Ahmedabad, Gujarat: A cross-sectional survey *Medical Journal of Dr. D.Y. Patil University* 9(3) 331-335
[18] S. Dept. of Health and Human Services, Public Health Service, *Centers for Disease Control and Prevention*, National Institute for Occupational Safety and Health 1997 - Technology & Engineering

[19] Hestbaek L, Larsen K, Weidick F, Yde CL 2005 Low back pain in military recruits in relation to social background and previous low back pain. A cross-sectional and prospective observational survey *BMC Musculoskeletal Disorders* 6(1) 25-35

[20] Carrivick P, Lee A, Yau K 2001 Consultative team to assess manual handling and reduce the risk of occupational injury *Occupational and Environmental Medicine* 58(5) 339-344

[21] Zurada J 2012 Classifying the risk of work related low back disorders due to manual material handling tasks *Expert Systems with Applications* 39(12) 11125-11134

[22] Deros BM, Daruis DDI, Basir IM 2015 A Study on Ergonomic Awareness among Workers Performing Manual Material Handling Activities *Procedia Social and Behavioral Sciences* 195 1666-1673

[23] Dormohammadi A, Amjad-Sardrudi H, Motamedzade M, Dormohammadi R, Musavi S 2012 Ergonomics Intervention in a Tile Industry: A Case of Manual Material Handling *J Res Health Sci* 12(2) 109-113

[24] McGaha J, Miller K, Descatha A 2014 Exploring physical exposures and identifying high-risk work tasks within the floor layer trade *Applied Ergonomics* 45(4) 857-864

[25] Hoozemans MJ, Beek AJ, Fringsdresen MH 1998 Pushing and pulling in relation to musculoskeletal disorders: a review of risk factors *Ergonomics* 41(6) 757-781

[26] Yeung SS, Genaidy A, Deddens J 2002 Prevalence of musculoskeletal symptoms in single and multiple body regions and effects of perceived risk of injury among manual handling workers *Spine* 27(19) 2166-2172

[27] Mirakhorlo M, Aghzani MR, Kahrizi S 2014 Validation of a Musculoskeletal Model of Lifting and its Application for Biomechanical Evaluation of Lifting Techniques *Journal of Research in Health Sciences* 14(1) 23-28

[28] Motamedzade M, Ashuri MR, Golmohammadi R, Mahjub H 2011 Comparison of Ergonomic Risk Assessment Outputs from Rapid Entire Body Assessment and Quick Exposure Check in an Engine Oil Company *Journal of Research in Health Sciences* 11(1) 26-32

[29] Dellemann N, Haslegrave C, Chaffin D 2004 *Working posture and movements, tool for evaluation and engineering* Washington DC, CRC press

[30] Frymoyer JW, Pope MH, Contanza MC, Rosen JC, Goggin JE, Wilder DG 1980 Epidemiologic Studies of Low Back Pain *Spine* 5(5) 419-422

[31] Damkot DK, Pope MH, Lord, Frymoyer JW 1982 *The Relationship between Work History, Work Environment and Low Back Pain in Men* Work History, Environment 1395-1399

[32] Dale AM, Miller K, Gardner BT 2016 Observed use of voluntary controls to reduce physical exposures among sheet metal workers of the mechanical trade *Applied Ergonomics* 52 69-76

[33] Rahman MNA., MRA Rani, and MJ Rohani 2012 Investigation of work-related musculoskeletal disorders in wall plastering jobs within the construction industry. WORK *A Journal of Prevention, Assessment and Rehabilitation* 43(4) 507-514

[34] Bovenzi M 1998 An Updated Review Of Epidemiologic Studies On The Relationship Between Exposure To Whole-Body Vibration And Low Back Pain *Journal of Sound and Vibration* 215(4) 595-611

[35] Seidel H, Heide R 1986 Long term effects of whole body vibration: a critical survey of the literature *International Archives of Occupational and Environmental Health* 58(1) 1-26

[36] S. Lings, Leboeuf-Yde 2000 Whole-body vibration and low back pain: a systematic, critical review of the epidemiological literature 1992-1999 *Int Arch Occup Environ Health* 73(5) 290-297

[37] Ariens G, Bongers P, Douwes M 2001 Are neck flexion, neck rotation, and sitting at work risk factors for neck pain? Results of a prospective cohort study *Occupational and Environmental Medicine* 58(3) 200-207
[38] Lotters F, Burdorf A, Kuiper J 2003 Model for the work-relatedness of low-back pain
Scandinavian journal of work, environment & health 29 431-440
[39] Tsuboi H, Takeuchi K, Watanabe M, Hori R, Kobayashi F 2002 Psychosocial Factors Related
to Low Back Pain among School Personnel in Nagoya Japan Industrial Health 40(3) 266–
271
[40] Feuerstein M, Shaw WS, Nicholas RA, Huang GD 2004 From confounders to suspected risk
factors: psychosocial factors and work-related upper extremity disorders Journal of
Electromyography and Kinesiology 14(1) 171-178
[41] Othman CN, Lamin RAC, Othman N 2014 Occupational Stress Index of Malaysian University
Workplace Procedia-Social and Behavioral Sciences 153 700-710
[42] Latza U, Pfahlberg A, Gefeller O 2002 Impact of repetitive manual materials handling and
psychosocial work factors on the future prevalence of chronic low-back pain among
construction workers Scandinavian Journal of Work, Environment & Health 28 314-323
[43] Hoogendoorn WE, van Poppel MN, Bongers PM, Koes BW, Bouter LM 2000 Systematic
review of psychosocial factors at work and private life as risk factors for back pain Spine
25(16) 2114-2125
[44] Lean Y and Shan F 2012 Brief review on physiological and biochemical evaluations of human
mental workload Human Factors and Ergonomics in Manufacturing & Service Industries
22(3) 177-187
[45] Balfe N, Sharples S, Wilson JR 2015 Impact of automation: measurement of performance,
workload and behaviour in a complex control environment Applied Ergonomics 47 52-64
[46] Vidulich MA, Tsang PS 2015 The Confluence of Situation Awareness and Mental Workload for
Adaptable Human–Machine Systems Journal of Cognitive Engineering and Decision
Making 9(1) 95-97
[47] Jansen JP, Morgenstern H, Burdorf A 2004 Dose-response relations between occupational
exposures to physical and psychosocial factors and the risk of low back pain Occupational
and Environmental Medicine 61(12) 972-979
[48] House JS 1981 Work stress and social support
[49] Shanock LR and Eisenberger R 2006 When supervisors feel supported: relationships with
subordinates' perceived supervisor support, perceived organizational support, and
performance Journal of Applied psychology 91(3) 689
[50] Eisenberger R, Stinghamber F, Vandenberghe C 2002 Perceived supervisor support: contributed to
perceived organizational support and employee retention Journal of Applied
psychology 87(3) 565
[51] Muse LA and Pichle S 2011 A comparison of types of support for lower-skill workers: Evidence for
the importance of family supportive supervisors Journal of Vocational Behavior
79(3) 653-666
[52] Ladd D and Henry RA 2000 Helping coworkers and helping the organization: The role of
support perceptions, exchange ideology, and conscientiousness Journal of Applied Social
Psychology 30(10) 2028-2049
[53] Susskind AM, Kacmar KM, Borchgrevink CP 2003 Customer service providers' attitudes
relating to customer service and customer satisfaction in the customer-server exchange
Journal of Applied psychology 88(1) 179
[54] Heneweer H, Staes F,Aufdendampe G 2011 Physical activity and low back pain: a systematic
review of recent literature European Spine Journal 20(6) 826-845
[55] Smith DR, Wei N, Zhang YJ 2006 Musculoskeletal complaints and psychosocial risk factors
among physicians in mainland China International Journal of Industrial Ergonomics 36(6)
599-603
[56] Caruso CC, Hitchcock EM, Dick RB 2004 Overtime and extended work shifts: recent findings
on illnesses, injuries, and health behaviors US Department of Health and Human Services,
Centers for Disease Control and Prevention National Institute for Occupational Safety and
Health Cincinnati, OH vol: 143

[57] Schaufeli WB and Taris TW 2014 A critical review of the Job Demands-Resources Model: Implications for improving work and health bridging occupational Organizational and public health 43-68

[58] Long MH, Johnston V, Bogossian F 2012 Work-related upper quadrant musculoskeletal disorders in midwives, nurses and physicians: a systematic review of risk factors and functional consequences Applied Ergonomics 43(3) 455-467

[59] Petit A, Ha C, Bodin J 2015 Risk factors for carpal tunnel syndrome related to the work organization: A prospective surveillance study in a large working population Applied Ergonomics 47 1-10

[60] Palmer KT and Goodson N 2015 Ageing, musculoskeletal health and work Best Practice & Research Clinical Rheumatology 29(3) 391-404

[61] Okunribido O and Wynn T 2010 Ageing and work-related musculoskeletal disorders: A review of the recent literature. Health and Safety Executive Research Report RR799 Buxton: Health and Safety Executive

[62] Williams E, Gyi D, Gibb A 2011 Ageing Productively through Design? A Survey of Cement Manufacturing Workers. Design Principles and Practices

[63] Buckle P, Woods V, Oztug O 2008 Understanding workplace design for older workers: a case study Strategic Promotion of Ageing Research Capacity Engineering and Physical Sciences Research Council 3

[64] Onishi T, Kurimoto S, Suzuki M 2014 Work-related musculoskeletal disorders in the upper extremity among the staff of a Japanese university hospital International archives of occupational and environmental health 87(5) 547-555

[65] Iman Shojaei a, Milad Vazirian a, Emily Croft a, Maury A. Nussbaum b, Babak Bazrgari 2016 Age related differences in mechanical demands imposed on the lower back by manual material handling tasks Journal of Biomechanics 49(6) 896-903

[66] Addis ME and Mahalik JR 2003 Men, masculinity, and the contexts of help seeking American psychologist 58(1) 5-14

[67] Hooftman WE, van Poppel MN, van der Beek AJ 2004 Gender differences in the relations between work-related physical and psychosocial risk factors and musculoskeletal complaints Scandinavian journal of work, environment & health 30 261-278