Discovery of microquasar LS I +61 303 at VHE gamma-rays with MAGIC

Núria Sidro1 for the MAGIC Collaboration2

1 Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain nuria.sidro@ifae.es
2 Updated collaborator list at http://wwwmagic.mppmu.mpg.de/collaboration/members

Summary. Here we report the discovery of very high energy (> 100GeV) γ-ray emission from the radio emitting X-ray binary LS I +61 303 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope. This high energy emission has been found to be variable, detected 4 days after the periastron passage and lasting for several days. The data have been taken along different orbital cycles, and the fact that the detections occur at similar orbital phases, suggests that the emission is periodic. Two different scenarios have been involved to explain this high energy emission: the microquasar scenario where the γ-rays are produced in a radio-emitting jet; or the pulsar binary scenario, where they are produced in the shock which is generated by the interaction of a pulsar wind and the wind of the massive companion.

1 Introduction: The MAGIC Telescope

The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope [1] is a very high energy (VHE) γ-ray telescope, operating in a energy band from 100 GeV to 10 TeV, exploiting the Imaging Air Cherenkov (IAC) technique. Located on the Canary Island of La Palma, at 28°45’30"N, 17°52’48"W and 2250 m above sea level. The telescope has a 17-m diameter tessellated parabolic mirror, and is equipped with a 3.5°-3.8° field of view camera. See [2] for a complete description of the instrument.

2 The γ-ray binary LS I +61 303

LS I +61 303 belongs, together with LS 5039 [4] and PSR B1259-63 [1], to a new class of objects, the so-called γ-ray binary systems, whose electromagnetic emission extends up to the TeV domain. In section 2 we will describe the possible VHE emission scenarios for this object: it was proposed as microquasar candidates, but also thought to be in a pulsar binary scenario. Thus, the question of whether the three known γ-ray binaries produce TeV emission by the same mechanism, and by which one, is currently object of an intense debate [5].
2.1 Description of the object

This γ-ray binary system is composed of a B0 main sequence star with a circumstellar disc, i.e. a Be star, located at a distance of ∼2 kpc. A compact object of unknown nature (neutron star or black hole) is orbiting around it, in a highly eccentric ($e = 0.72 \pm 0.15$) orbit.

The orbital period –with associated radio [6] and X-ray [7] outbursts– is 26.496 days and periastron passage is at phase 0.23 ± 0.02 [8].

Radio outbursts are observed every orbital cycle at phases varying between 0.45 and 0.95 with a 4.6 years modulation [9].

High-resolution radio imaging techniques have shown extended, radio-emitting structures with angular extension of ∼0.01 to ∼0.1 arc-sec, interpreted within the framework of the microquasar scenario, where the radio emission is originated in a two-sided, possibly precessing, relativistic jet ($\beta/c = 0.6$) [10]. However, the two-sided jets were not completely resolved and no solid evidence of the presence of an accretion disk (i.e. a thermal X-ray component) has been observed. There are hints of variability of the γ-ray flux [11].

LS I +61 303 was considered as one of the two microquasar candidates positionally coincident with EGRET γ-ray sources [12], and the only one located in the Northern Hemisphere –hence a suitable target for MAGIC. The large uncertainty of the position of the EGRET source did not allow an unambiguous association.

2.2 MAGIC observations

LS I +61 303 was observed with MAGIC for 54 hours (after standard quality selection, discarding bad weather data) between October 2005 and March 2006 [13].

As mentioned above, MAGIC is able to operate in moderate moon conditions, and in particular, 22% of the data used in this analysis were recorded under moonlight.

The data analysis was carried out using the standard MAGIC reconstruction and analysis software [14, 15, 16].

The reconstructed γ-ray map is shown in Figure 1. The data were first divided into two different samples, around periastron passage (0.2-0.3) and at higher (0.4-0.7) orbital phases. No significant excess in the number of γ-ray events is detected around periastron passage, whereas there is a clear detection (9.4 σ statistical significance) at later orbital phases.

The distribution of γ-ray excess is consistent with a point-like source located at (J2000): $\alpha = 2^h 40^m 34^s$, $\delta = 61^\circ 15' 25''$, with statistical and systematic uncertainties of ±0.4′ and ±2′, respectively. This position is in agreement with the position of LS I +61 303. In the natural case in which the VHE emission is produced by the same object detected at EGRET energies, this result identifies a γ-ray source that resisted classification during the last three decades.

Our measurements show that the VHE γ-ray emission from LS I +61 303 is variable. The γ-ray flux above 400 GeV coming from the direction of LS I +61 303 (see Figure 2) has a maximum corresponding to about 16% of the Crab nebula flux, and is detected around phase 0.6. The combined statistical significance of the 3 highest flux measurements is 8.7σ, for an integrated observation time of 4.2 hours.

The probability for the distribution of measured fluxes to be a statistical fluctuation of a constant flux (obtained from a χ² fit of a constant function to the entire data
Fig. 1. Smoothed maps of \(\gamma \)-ray excess events above 400 GeV around LS I +61 303. (A) Observations over 15.5 hours corresponding to data around periastron (phase 0.2-0.3). (B) Observations over 10.7 hours at orbital phase 0.4-0.7. The position of the optical source LSI +61 303 (yellow cross) and the 95% confidence level contours for two EGRET sources are shown. From Albert et al. [13].

The detection (sample) is \(3 \times 10^{-5} \). The fact that the detections occur at similar orbital phases hints at a periodic nature of the VHE \(\gamma \)-ray emission.

Contemporaneous radio observations of LS I +61 303 were carried out at 15 GHz with the Ryle Telescope covering several orbital periods of the source. The peak of the radio outbursts was at phase 0.7, i.e. between 1 and 3 days after the increase observed at VHE \(\gamma \)-rays flux (see Figure 3).

The VHE spectrum derived from data between \(\sim 200 \) GeV and \(\sim 4 \) TeV at orbital phases between 0.4 and 0.7 is shown in Figure 3. The obtained spectrum is fitted well (\(\chi^2/ndf = 6.6/5 \)) by a power law function:

\[
dN_\gamma/(dA/dt/dE) = (2.7 \pm 0.4 \pm 0.8) \times 10^{-12} \times E^{(-2.6 \pm 0.2 \pm 0.2)} \text{ cm}^{-2}\text{s}^{-1}\text{TeV}^{-1}
\]

where \(N_\gamma \) is the number of \(\gamma \)-rays reaching the Earth per unit area \(A \), time \(t \) and energy \(E \) (expressed in TeV). Errors quoted are statistical and systematic, respectively. This spectrum is consistent with that measured by EGRET for a spectral break between 10 and 100 GeV.

We estimate that the flux from LS I +61 303 above 200 GeV corresponds to an isotropic luminosity of \(\sim 7 \times 10^{33} \) erg s\(^{-1}\) (assuming a distance to the system of 2 kpc [18]). The intrinsic luminosity is of the same order of that of the similar object LS 5039 [3], and a factor \(\sim 2 \) lower than the previous experimental upper limit (\(< 8.8 \times 10^{32} \) cm\(^{-2}\) s\(^{-1}\) above 500 GeV) obtained by Whipple [19]. LS I +61 303 displays more luminosity at GeV than at X-ray energies, a behavior shared also by LS 5039.

2.3 Emission scenarios

Microquasars are a subclass of stellar, X-ray binary systems that display prominent radio emission, usually attributed to the existence of jets of relativistic particles.
Fig. 2. VHE γ-ray flux of LS I +61 303 as a function of orbital phase for the six observed orbital cycles (six upper panels, one point per observation night) and averaged for the entire observation time (bottom panel). Vertical error bars include 1σ statistical error and 10% systematic uncertainty on day-to-day relative fluxes. Only data points with more than 2σ significance are shown, and 2σ upper limits [17] are derived for the rest. The modified Julian date (MJD) corresponding to orbital phase 0 is indicated for every orbital cycle. From Albert et al. [13].

They are named after the similarities with active galactic nuclei (AGNs), since microquasars show the same three ingredients that make up radio-loud AGNs: a compact object, an accretion disc, and relativistic jets [20]. Hence, microquasars are galactic, scaled-down versions of an AGN, where instead of a super-massive black hole we deal with a compact object of just a few solar masses that accretes material from a donor star. The similarities with AGNs explain the large interest risen by microquasars. In fact, the short timescale variability displayed by microquasars allows to see changes in the ongoing physical processes within typical time scales ranging from minutes to months, in contrast with the usual scales of years to observe such variability in AGNs. In addition, microquasars could measurably contribute to the density of galactic cosmic rays [21].
LS I +61 303 was usually thought to be similar to the microquasar LS 5039, because evidence of relativistic jets has been found at radio frequencies. In this scenario, the high energy emission would be produced in shocks at the relativistic jets [20]. The observation of jets has triggered the study of different microquasar-based γ-ray emission models, some regarding hadronic mechanisms: relativistic protons in the jet interact with non-relativistic stellar wind ions, producing γ-rays via neutral pion decay; some regarding leptonic mechanisms: IC scattering of relativistic electrons in the jet on stellar and/or synchrotron photons [22].

However, no clear signal of the presence of an accretion disk (in particular a spectral feature between \(\sim 10 \) and \(\sim 100 \) keV due to the cut-off of the thermal emission) has been observed so far. Because of that, it has been alternatively proposed that relativistic particles could be injected into the surrounding medium at the shock where the wind of the young pulsar and the wind of the stellar companion collide [23], which seems to be the case of PSR B1259-63.

In the case of LS I +61 303 the resemblance of the time variability and the radio/X-ray spectra with those of young pulsars support such hypothesis. However, no pulsed emission has been detected from LS I +61 303.

Observation at VHE with MAGIC simultaneously together with other instruments at other wavelength domains—in particular radio—will help elucidate the mechanism of the TeV emission and hence the nature of γ-ray binaries.

Acknowledgements.

We would like to thanks G. Pooley at Cavendish Laboratory (Cambridge, UK) for providing us with the radio Ryle Telescope data. We also thank the IAC for the excellent working conditions at the Roque de los Muchachos Observatory in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Spanish CICYT is gratefully acknowledged. This work was also supported by ETH research grant TH-34/04-3, and the Polish MNiI grant 1P03D01028.
1. J. Cortina et al. Technical performance of the MAGIC telescope. Prepared for 29th International Cosmic Ray Conference (ICRC 2005), Pune, India.
2. M. Martinez et al. These proceedings.
3. F. Aharonian et al. 3.9 day orbital modulation in the TeV gamma-ray flux and spectrum from the X-ray binary LS 5039. *Astron. Astrophys.*, 2006.
4. F. Aharonian et al. Discovery of the binary pulsar PSR B1259-63 in very-high-energy gamma rays around periastron with HESS. *Astron. Astrophys.*, 2005.
5. I. F. Mirabel. Very energetic gamma-rays from microquasars and binary pulsars. *Science*, 312:1759–1760, 2006.
6. P. C. Gregory and A. R. Taylor. *Nature*, 272:704–706, 1978.
7. A. R. Taylor et al. *Astron. Astrophys.*, 305:817–824, 1996.
8. J. Casares, I. Ribas, J. M. Paredes, J. Marti, and C. Allende Prieto. Orbital parameters of the microquasar LS I +61 303. *Mon. Not. Roy. Astron. Soc.*, 360:1091–1104, 2005.
9. P. C. Gregory. *Astrophys. J.*, 575:427–434, 2002.
10. M. Massi et al. Hints for a fast precessing relativistic radio jet in LS I +61 303. *Astron. Astrophys.*, 414:L1–L4, 2004.
11. M. Tavani et al. *Astrophys. J.*, pages L89–L91, 1998.
12. D. A. Kniffen et al. *Astrophys. J.*, pages 126–131, 1997.
13. J. Albert et al. Variable very high energy gamma-ray emission from the microquasar LS I +61 303. *Science*, 312:1771–1773, 2006.
14. J. Albert et al. MAGIC observations of very high energy gamma-rays from HESS J1813-178. *Astrophys. J.*, 637:L41–L44, 2006.
15. J. Albert et al. Observation of VHE gamma radiation from hESS J1834-087/W41 with the MAGIC telescope. *Astrophys. J.*, 643:L53–L56, 2006.
16. J. Albert et al. Observation of gamma rays from the galactic center with the MAGIC telescope. *Astrophys. J.*, 638:L101–L104, 2006.
17. W. A. Rolke, A. M. Lopez, and J. Conrad. Confidence intervals with frequentist treatment of statistical and systematic uncertainties. *Nucl. Instrum. Meth.*, A551:493–503, 2005.
18. D. A. Frail and R. M. Hjellming. *Astrophys. J.*, pages 2126–2130, 1991.
19. S. J. Fegan et al. A survey of unidentified EGRET sources at very high energies. *Astrophys. J.*, 624:638–655, 2005.
20. I. F. Mirabel and L. F. Rodriguez. Sources of relativistic jets in the galaxy. *Ann. Rev. Astron. Astrophys.*, 37:409–443, 1999.
21. S. Heinz and R. A. Sunyaev. Cosmic rays from microquasars: a narrow component to the CR spectrum? *Astron. Astrophys.*, 390:751–766, 2002.
22. V. Bosch-Ramon, J. M. Paredes, G. E. Romero, and D. F. Torres. A microquasar model applied to unidentified gamma-ray sources. *Astron. Astrophys.*, 446:1081–1088, 2006.
23. L. Maraschi and A. Treves. *Mon. Not. Roy. Astron. Soc.*, page 1P, 1981.