A Product Version of the Hilton-Milner-Frankl Theorem

Peter Frankl1, Jian Wang2

1Rényi Institute, Budapest, Hungary
2Department of Mathematics, Taiyuan University of Technology,
Taiyuan 030024, China

E-mail: 1frankl.peter@renyi.hu, 2wangjian01@tyut.edu.cn

Abstract

Two families F, G of k-subsets of $\{1, 2, \ldots, n\}$ are called non-trivial cross t-intersecting if $|F \cap G| \geq t$ for all $F \in F, G \in G$ and $|\{F: F \in F\}| < t$, $|\{G: G \in G\}| < t$. In the present paper, we determine the maximum product of the sizes of two non-trivial cross t-intersecting families of k-subsets of $\{1, 2, \ldots, n\}$ for $n \geq 4(t + 2)^2k^2$, $k \geq 5$, which is a product version of the Hilton-Milner-Frankl Theorem.

AMS classification: 05D05.

Key words: extremal set theory, cross t-intersecting family, product version, non-trivial

1 Introduction

Let $n > k > t$ be positive integers and let $[n] = \{1, 2, \ldots, n\}$ be the standard n-element set. Let $\binom{[n]}{k}$ denote the collection of all k-subsets of $[n]$. Subsets of $\binom{[n]}{k}$ are called k-uniform hypergraphs or k-graphs for short. A k-graph F is called t-intersecting if $|F \cap F'| \geq t$ for all $F, F' \in F$.

One of the most important results in extremal set theory is the following:

\textbf{Erdős-Ko-Rado Theorem} ([3]). Suppose that $n \geq n_0(k, t)$ and $F \subset \binom{[n]}{k}$ is t-intersecting. Then

$$|F| \leq \binom{n-t}{k-t}.$$ (1.1)

\textbf{Remark.} For $t = 1$ the exact value $n_0(k, t) = (k - t + 1)(t + 1)$ was proved in [3]. For $t \geq 15$ it is due to [4]. Finally Wilson [17] closed the gap $2 \leq t \leq 14$ with a proof valid for all t.

Pyber [16] proved a product version of the Erdős-Ko-Rado Theorem for $t = 1$.

\textbf{Theorem 1.1 (Pyber [16]).} Suppose that $F, G \subset \binom{[n]}{k}$ are cross-intersecting, $n \geq 2k$ then

$$|F||G| \leq \binom{n-1}{k-1}^2.$$ (1.2)
A \(t \)-intersecting family \(\mathcal{F} \subset \binom{[n]}{k} \) is called \emph{non-trivial} if \(| \cap \{ F : F \in \mathcal{F} \}| < t \).

Example 1.2. Define two families
\[
\mathcal{H}(n, k, t) = \left\{ H \in \binom{[n]}{k} : |t| < H, H \cap |t+1, k+1| = \emptyset \right\} \cup \{(k+1) \setminus \{j\} : 1 \leq j \leq t\},
\]
\[
\mathcal{A}(n, k, t) = \left\{ A \in \binom{[n]}{k} : |A \cap |t+2| \geq t+1 \right\}.
\]

It is easy to see that both \(\mathcal{H}(n, k, t) \) and \(\mathcal{A}(n, k, t) \) are non-trivial \(t \)-intersecting families.

Hilton-Milner-Frankl Theorem \((\text{[12]} \text{[3]}\). Suppose that \(\mathcal{F} \subset \binom{[n]}{k} \) is non-trivial \(t \)-intersecting, \(n \geq (k-t+1)(t+1) \). Then
\[
\text{(1.3)} \quad |\mathcal{F}| \leq \max \left\{ |\mathcal{A}(n, k, t)|, |\mathcal{H}(n, k, t)| \right\}.
\]

Two families \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) are called \emph{cross} \(t \)-intersecting if \(|F \cap G| \geq t \) for any \(F \in \mathcal{F}, G \in \mathcal{G} \). If \(\mathcal{A} \subset \binom{[n]}{k} \) is \(t \)-intersecting, then \(\mathcal{F} = \mathcal{A}, \mathcal{G} = \mathcal{A} \) are cross \(t \)-intersecting.

In the present paper, we prove a product version of the Hilton-Milner-Frankl Theorem.

Theorem 1.3. Suppose that \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) are non-trivial cross \(t \)-intersecting. If \(n \geq 4(t+2)^2k^2 \) and \(k \geq 5 \), then
\[
\text{(1.4)} \quad |\mathcal{F}| |\mathcal{G}| \leq \max \left\{ |\mathcal{A}(n, k, t)|^2, |\mathcal{H}(n, k, t)|^2 \right\}.
\]

It should be mentioned that the case \(t = 1 \) of Theorem 1.3 was proved for \(n \geq 9k \) and \(k \geq 6 \) in \([9]\). Thus we always assume \(t \geq 2 \) in this paper. Since we are concerned with the maximum of \(|\mathcal{F}| |\mathcal{G}| \), without further mention we are assuming throughout the paper that \(\mathcal{F} \) and \(\mathcal{G} \) form a saturated pair, that is, adding an extra \(k \)-set to either of the families would destroy the cross \(t \)-intersecting property.

It should also be mentioned that a similar result to Theorem 1.3 was obtained recently by Cao, Lu, Lv and Wang \([1]\), in which a different notion of non-triviality was considered. In their paper, the non-triviality of two cross \(t \)-intersecting families \(\mathcal{F}, \mathcal{G} \) means that \(\mathcal{F} \cup \mathcal{G} \) is not a \(t \)-star. However, to the best of our knowledge \(1.4 \) is the first one that implies the Hilton-Milner-Frankl Theorem (just set \(\mathcal{F} = \mathcal{G} \)).

For \(\mathcal{A}, \mathcal{B} \subset \binom{[n]}{k} \), we say that \(\mathcal{A}, \mathcal{B} \) are \emph{exact} \(t \)-intersecting if \(|A \cap B| = t \) for every \(A \in \mathcal{A}, B \in \mathcal{B} \). For \(\mathcal{F} \subset \binom{[n]}{k} \), the \(t \)-covering number \(\tau_t(\mathcal{F}) \) of \(\mathcal{F} \) is defined as
\[
\tau_t(\mathcal{F}) = \min \{|T| : |T \cap F| \geq t \text{ for all } F \in \mathcal{F}|\}
\]

For the proofs, we need a result concerning exact cross \(t \)-intersecting \((t+1)\)-uniform families.

Proposition 1.4. Let \(n > k > t \geq 2 \) and let \(\mathcal{A}, \mathcal{B} \subset \binom{[n]}{t+1} \) be non-empty exact cross \(t \)-intersecting. If both \(\mathcal{A} \) and \(\mathcal{B} \) do not contain a sunflower of \(k-t+2 \) petals with center of size \(t \), then one of the following holds:

(i) either \(|A| \leq 2, |B| \leq k+1, \tau_t(\mathcal{B}) \geq t+1 \) or \(|A| \leq 2, |B| \leq 2, \tau_t(\mathcal{A}) \geq t+1 \).

(ii) \(\mathcal{A} \cup \mathcal{B} \) is a sunflower with center of size \(t \).

(iii) \(|A||B| \leq \frac{(t+2)^2}{2} \).
Let us present some inequalities and notations needed in the proofs.

Proposition 1.5. Let \(n, k, i \) be positive integers. Then

\[
\left(\frac{n-i}{k} \right) \geq \frac{n-ik}{n} \left(\frac{n}{k} \right), \text{ for } n > ik.
\]

(1.5)

Proof. It is easy to check for all \(b > a > 0 \) that

\[
ba > (b+1)(a-1) \text{ holds.}
\]

(1.6)

Note that

\[
\left(\frac{n-i}{k} \right) = \frac{(n-k)(n-k-1)\ldots(n-k-(i-1))}{n(n-1)\ldots(n-(i-1))}.
\]

Applying (1.6) repeatedly we see that the numerator is greater than \((n-1)(n-2)\ldots(n-(i-1))(n-ki) \) implying

\[
\left(\frac{n-i}{k} \right) \geq \frac{1-ik}{n}.
\]

Thus (1.5) holds. \(\square \)

By (1.5), we obtain that for \(c > 1 \) and \(n \geq c(k-t)^2 + (t+1) \)

\[
\left(\frac{n-t-1}{k-t-1} \right) \leq \frac{n-t-1}{n-t-1-(k-t)(k-t-1)} \left(\frac{n-k-1}{k-t-1} \right)
\]

\[
\leq \frac{n-t-1}{n-t-1-(k-t)^2} \left(\frac{n-k-1}{k-t-1} \right)
\]

\[
\leq \frac{c}{c-1} \left(\frac{n-k-1}{k-t-1} \right).
\]

(1.7)

Moreover, for \(c > 2 \) we have

\[
\left(\frac{n-t-1}{k-t-1} \right)^2 \leq \left(\frac{c}{c-1} \right)^2 \left(\frac{n-k-1}{k-t-1} \right)^2
\]

\[
= \frac{c^2}{c^2-2c+1} \left(\frac{n-k-1}{k-t-1} \right)^2
\]

\[
\leq \frac{c}{c-2} \left(\frac{n-k-1}{k-t-1} \right)^2.
\]

(1.8)

Similarly, we can show that for \(n \geq ck \) and \(c > 2 \),

\[
\left(\frac{n-t-1}{k-t-1} \right)^2 \leq \frac{c}{c-2} \left(\frac{n-t-2}{k-t-1} \right)^2.
\]

(1.9)

Let us recall the following common notations:

\(\mathcal{F}(i) = \{ F \setminus \{i\} : i \in F \in \mathcal{F} \} \), \(\mathcal{F}(\bar{i}) = \{ F \in \mathcal{F} : i \notin F \} \).

Note that \(|\mathcal{F}| = |\mathcal{F}(i)| + |\mathcal{F}(\bar{i})| \). For \(P \subset Q \subset [n] \), let

\(\mathcal{F}(Q) = \{ F \setminus Q : Q \subset F \in \mathcal{F} \} \), \(\mathcal{F}(P, Q) = \{ F \setminus Q : F \cap Q = P, F \in \mathcal{F} \} \).
We also use $\mathcal{F}(Q)$ to denote $\mathcal{F}(\emptyset, Q)$. For $\mathcal{F}([i], Q)$ we simply write $\mathcal{F}(i, Q)$.

Define the family of ℓ-th t-transversals of $\mathcal{F} \subset \binom{[n]}{k}$:

$$\mathcal{T}_\ell^{(t)}(\mathcal{F}) = \{T \subset [n]: |T| = \ell, |T \cap F| \geq t \text{ for all } F \in \mathcal{F}\}$$

and define the family of t-transversals of \mathcal{F}:

$$\mathcal{T}_t(\mathcal{F}) = \bigcup_{t \leq \ell \leq k} \mathcal{T}_\ell^{(t)}(\mathcal{F}).$$

Clearly, if \mathcal{F}, \mathcal{G} are cross t-intersecting then $\mathcal{F} \subset \mathcal{T}_t^{(k)}(\mathcal{G})$ and $\mathcal{G} \subset \mathcal{T}_t^{(k)}(\mathcal{F})$.

The rest of the paper is organized as follows. In Section 2, we recall some inequalities concerning cross-intersecting families that are needed in the proofs. In Section 3, we determine the maximum product size of non-trivial cross t-intersecting families with a common t-transversal of size $t + 1$. In Section 4, we define a notion of basis for cross t-intersecting families and establish an upper bound on the size of the basis. In Section 5, we prove Theorem 1.3.

2 Some inequalities concerning cross-intersecting families

In this section, we recall several useful inequalities concerning cross-intersecting families. We also give a proof of a result of Hilton via the Hilton-Milner-Frankl Theorem.

An important tool for proving the results concerning cross-intersecting families is the Kruskal-Katona Theorem (15, 13, cf. [6] or [14] for short proofs of it).

Daykin [2] was the first to show that the Kruskal-Katona Theorem implies the Kruskal-Katona Theorem [11]. Let $\{a\}$ be pairwise cross-intersecting and $|A| = 2, 3$. For two distinct sets $F, G \in \binom{[n]}{k}$ we say that F precedes G if

$$\min\{i: i \in F \setminus G\} < \min\{i: i \in G \setminus F\}.$$

E.g., $\{1, 7\}$ precedes $\{2, 3\}$. For a positive integer b, let $\mathcal{L}(n, b, m)$ denote the first m members of $\binom{[n]}{b}$ in lexicographic order.

Hilton’s Lemma ([10]). Let n, a, b be positive integers, $n \geq a + b$. Suppose that $\mathcal{A} \subset \binom{[a]}{a}$ and $\mathcal{B} \subset \binom{[b]}{b}$ are cross-intersecting. Then $\mathcal{L}(n, a, |\mathcal{A}|)$ and $\mathcal{L}(n, b, |\mathcal{B}|)$ are cross-intersecting as well.

One can deduce a result of Hilton [11] from the Hilton-Milner-Frankl Theorem.

Theorem 2.1 ([11]). Let $\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_{t+1} \subset \binom{X}{k}$ be pairwise cross-intersecting and $|X| = m \geq (t + 1)a$. If at least two of them are non-empty, then

$$\sum_{i=1}^{t+1} |\mathcal{K}_i| \leq \max \left\{(t + 1)\binom{m-1}{a-1}, \binom{m}{a} - \binom{m-a}{a} + t\right\}.$$

Proof. Set $n = m + t + 1, k = a + t, X = [t + 2, n]$. Define the family $\mathcal{K} = \mathcal{K}_0 \cup \ldots \cup \mathcal{K}_{t+1} \subset \binom{[n]}{k}$ via

$$\mathcal{K}_0 = \left\{[t + 1] \cup K: K \in \binom{X}{k-t-1}\right\},$$

$$\mathcal{K}_i = \left\{([t + 1] \setminus \{i\}) \cup K: K \in \mathcal{K}_i\right\}, \ 1 \leq i \leq t + 1.$$
It is easy to check that \mathcal{K} is t-intersecting. Let $I = \cap \{K : K \in \mathcal{K}\}$. Let us show $|I| < t$. Without loss of generality assume that $\mathcal{K}_1, \mathcal{K}_2$ are non-empty. It follows that $1, 2 \notin I$. For any $t + 2 \leq x \leq n$, $x \notin \cap \{K : K \in \mathcal{K}_0\} \supset I$. Thus \mathcal{K} is non-trivial. Applying the Hilton-Milner-Frankl Theorem, for $(m + t + 1) \geq (a + 1)(t + 1)$ we have

$$|\mathcal{K}| = \binom{n - t - 1}{k - t - 1} + \sum_{1 \leq i \leq t+1} |\tilde{\mathcal{K}}_i|$$

$$\leq \max\{|A(n, k, t)|, |\mathcal{H}(n, k, t)|\}$$

$$= \max\left\{ (t+2)\binom{n-t-2}{k-t-1} + \binom{n-t}{k-t} + \binom{n}{k} - \binom{n-k-1}{k} \right\}$$

$$= \binom{n-t-1}{k-t-1} + \max\left\{ (t+1)\left(\binom{m-1}{a-1}, \binom{m}{a} - \binom{m-a}{a} \right) + t \right\},$$

implying (2.1).

Remark. It should be mentioned that if \mathcal{F} is non-trivial t-intersecting and has a t-transversal of size $t+1$, then one can also deduce the Hilton-Milner-Frankl Theorem from Theorem 2.1

Corollary 2.2. Let $\mathcal{K}_1, \mathcal{K}_2 \subset \binom{X}{a}$ be non-empty cross-intersecting and $|X| = m \geq (t+1)a$. If $|\mathcal{K}_1| \geq |\mathcal{K}_2|$, then

$$|\mathcal{K}_1| + t|\mathcal{K}_2| \leq \max\left\{ (t+1)\left(\binom{m-1}{a-1}, \binom{m}{a} - \binom{m-a}{a} \right) + t \right\}. \quad (2.2)$$

Proof. By Hilton’s Lemma, we may assume that \mathcal{K}_i consists of the first $|\mathcal{K}_i|$ members of $\binom{X}{a}$ in lexicographic order. Clearly $|\mathcal{K}_2| \leq \binom{m-1}{a-1}$, implying that \mathcal{K}_2 is intersecting. Then $\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_2$ are all non-empty and pairwise cross-intersecting. By (2.1) the corollary follows.

We should mention that Hilton’s result holds for the full range $m \geq 2a$, but we only use it in the range that we proved it.

Theorem 2.3 ([7]). Let $\mathcal{K}_1, \mathcal{K}_2 \subset \binom{X}{a}$ be non-empty cross-intersecting and $|X| = m \geq 2a$. If $|\mathcal{K}_1| \geq |\mathcal{K}_2| \geq \binom{m-2}{a-2}$, then

$$|\mathcal{K}_1| + |\mathcal{K}_2| \leq 2\binom{m-1}{a-1}. \quad (2.3)$$

3 Non-trivial cross t-intersecting families with common trasversals

In this section, we determine the maximum product sizes of two non-trivial cross t-intersecting families with a common t-transversal of size $t + 1$.

Proposition 3.1. Suppose that $\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k}$ are non-trivial cross t-intersecting and

$$\mathcal{T}_t^{(t+1)}(\mathcal{F}) \cap \mathcal{T}_t^{(t+1)}(\mathcal{G}) \neq \emptyset.$$

If $n \geq 6(t+1)k^2$, then

$$|\mathcal{F}||\mathcal{G}| \leq \max\left\{ |A(n, k, t)|^2, |\mathcal{H}(n, k, t)|^2 \right\}. \quad (3.1)$$
Proof. Without loss of generality, assume that \([t + 1] \in \mathcal{T}_t^{(t+1)}(\mathcal{F}) \cap \mathcal{T}_t^{(t+1)}(\mathcal{G})\). Since \([t + 1]\) is a common \(t\)-transversal, for \(\mathcal{H} = \mathcal{F}\) or \(\mathcal{G}\)

\[
|\mathcal{H}| = \sum_{1 \leq i \leq t+1} |\mathcal{H}([t + 1] \setminus \{i\}, [t + 1])| + |\mathcal{H}([t + 1])|.
\]

Assume that \(\mathcal{F}\) and \(\mathcal{G}\) form a saturated pair. Then

\[
\mathcal{H}([t + 1]) = \left\{ H \setminus [t + 1] : [t + 1] \subset H \in \binom{[n]}{k} \right\}.
\]

I.e., the last term in (3.2) is \(\binom{n-t-1}{k-t-1}\).

For \(1 \leq i \leq t + 1\) set \(\mathcal{H}_i = \mathcal{H}([t + 1] \setminus \{i\}, [t + 1])\). For convenience let \(X = [t + 2, n]\).

Then \(\mathcal{H}_i \subset \binom{X}{k-1}\). Note that (3.2) can be rewritten as

\[
|\mathcal{H}| = \binom{n-t-1}{k-t-1} + \sum_{1 \leq i \leq t+1} |\mathcal{H}_i|.
\]

Note also that \(\mathcal{F}_i, \mathcal{G}_j\) are cross-intersecting for \(i \neq j\).

Fact 3.2. If \(\mathcal{F}_i, \mathcal{G}_j\) are cross-intersecting and \(\mathcal{G}_j\) is non-empty, then

\[
|\mathcal{F}_i| \leq (k-t) \binom{n-t-1}{k-t-1}.
\]

Proof. Let \(G \in \mathcal{G}_j\). Since each member in \(\mathcal{F}_i\) intersects \(G\) and \(|G| = k-t\), we infer

\[
|\mathcal{F}_i| \leq \binom{|X|}{k-t} - \binom{|X| - |G|}{k-t} \leq (k-t) \binom{|X| - 1}{k-t-1} \leq (k-t) \binom{n-t-1}{k-t-1}.
\]

By Hilton’s Lemma, we may assume that \(\mathcal{H}_i\) consists of the first \(|\mathcal{H}_i|\) members of \(\binom{X}{k-1}\) in lexicographic order. By symmetry assume that

\[
|\mathcal{F}_1| \geq |\mathcal{F}_2| \geq \ldots \geq |\mathcal{F}_{t+1}|\]

and thereby \(\mathcal{F}_1 \supset \mathcal{F}_2 \supset \ldots \supset \mathcal{F}_{t+1}\).

Let \(\mathcal{G}^*\) be the one of \(\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_{t+1}\) with the maximum size.

Fact 3.3. We may assume that \(\min\{|\mathcal{F}_1|, |\mathcal{G}^*|\} \geq \binom{n-t-3}{k-t-2}\).

Proof. By non-triviality of \(\mathcal{F}, \mathcal{G}\), we see that both \(\mathcal{F}_1\) and \(\mathcal{G}^*\) are non-empty. Then by Fact 3.2

\[
|\mathcal{F}_1| \leq (k-t) \binom{n-t-1}{k-t-1} \text{ and } |\mathcal{G}^*| \leq (k-t) \binom{n-t-1}{k-t-1}.
\]

If \(\min\{|\mathcal{F}_1|, |\mathcal{G}^*|\} < \binom{n-t-3}{k-t-2}\), without loss of generality assume that \(|\mathcal{G}^*| < \binom{n-t-3}{k-t-2}\).

Then for \(n \geq 4(t+1)^2(k-t+1) + t + 1\) we obtain that

\[
|\mathcal{F}_1| \leq \left(\binom{n-t-1}{k-t-1} + (t+1)|\mathcal{F}_1| \right) \left(\binom{n-t-1}{k-t-1} + (t+1)|\mathcal{G}^*| \right)
\leq \left(\binom{n-t-1}{k-t-1} + (t+1)(k-t) \binom{n-t-1}{k-t-1} \right) \left(\binom{n-t-1}{k-t-1} + (t+1) \binom{n-t-3}{k-t-2} \right)
\leq (t+1)(k-t+1) \binom{n-t-1}{k-t-1}^2 + ((t+1)(k-t)+1)(t+1) \binom{n-t-2}{k-t-2} \binom{n-t-1}{k-t-1}
\leq (t+1)(k-t+1) \binom{n-t-1}{k-t-1}^2 + \frac{(t+1)^2(k-t+1)^2}{n-t-1} \binom{n-t-1}{k-t-1}^2
\leq \left(t + \frac{5}{4} \right) (k-t+1) \binom{n-t-1}{k-t-1}^2.
\]
Then apply \((3.3) \) with \(c = 4(t+1) \) and note that \((t + \frac{5}{4})(t+1) < (t + \frac{1}{2})(t+2) \) for \(t \geq 2 \), we obtain that
\[
|\mathcal{F}| |\mathcal{G}| \leq \left(t + \frac{5}{4} \right) \frac{4t+4}{4t+2} (k-t+1) \left(\frac{n-k-1}{k-t} \right)^2
\leq (t+2)(k-t+1) \left(\frac{n-k-1}{k-t} \right)^2
\leq \max \{ |A(n,k,t)|^2, |H(n,k,t)|^2 \}.
\]

Thus we may assume that \(\min \{ |\mathcal{F}|, |\mathcal{G}|^* \} \geq \binom{n-t-3}{k-t-2} \).

Now we distinguish two cases.

Case 1. \(|\mathcal{G}_1| \geq \max_{2 \leq i \leq t+1} |\mathcal{G}_i| \).

Without loss of generality, assume that \(|\mathcal{G}_2| = \max_{2 \leq i \leq t+1} |\mathcal{G}_i| \). Then \(\mathcal{G}_j \subset \mathcal{G}_2 \) for \(3 \leq j \leq t+1 \). Since \(\mathcal{F} \) is non-trivial, we know that \(|\mathcal{F}| \neq 0 \). For otherwise \(\mathcal{F}_2 = \mathcal{F}_3 = \ldots = \mathcal{F}_{t+1} = \emptyset \), it follows that \(\mathcal{F} \subset \{ F \in \binom{[n]}{k} : [2, t+1] \subset F \} \), contradicting the non-triviality of \(\mathcal{F} \). Similarly \(\mathcal{G}_2 \neq \emptyset \).

Subcase 1.1. \(|\mathcal{F}_1| \geq |\mathcal{G}_2| \) and \(|\mathcal{G}_1| \geq |\mathcal{F}_2| \).

Since \(\mathcal{F}_1, \mathcal{G}_2 \) is cross-intersecting and \(|\mathcal{F}_1| \geq |\mathcal{G}_2| \), by \((2.2) \) we obtain that
\[
|\mathcal{F}_1| + t|\mathcal{G}_2| \leq \max \left\{ (t+1) \binom{|X| - 1}{k-t-1}, \binom{|X|}{k-t} - \binom{|X| - (k-t)}{k-t} + t \right\}.
\]

Similarly,
\[
|\mathcal{G}_1| + t|\mathcal{F}_2| \leq \max \left\{ (t+1) \binom{|X| - 1}{k-t-1}, \binom{|X|}{k-t} - \binom{|X| - (k-t)}{k-t} + t \right\}.
\]

By \((3.3), (3.4) \) and \((3.5) \), we arrive at
\[
|\mathcal{F}| + |\mathcal{G}| = 2 \binom{n-t-1}{k-t-1} + \sum_{1 \leq i \leq t+1} |\mathcal{F}_i| + \sum_{1 \leq i \leq t+1} |\mathcal{G}_i|
\leq 2 \binom{n-t-1}{k-t-1} + 2 \max \left\{ (t+1) \binom{|X| - 1}{k-t-1}, \binom{|X|}{k-t} - \binom{|X| - (k-t)}{k-t} + t \right\}
= 2 \max \left\{ (t+2) \binom{n-t-2}{k-t-1} + \binom{n-t-2}{k-t-2} + t + \binom{n-t}{k-t} - \binom{n-k-1}{k-t} \right\}
\]
and \((3.1) \) follows from \(|\mathcal{F}| |\mathcal{G}| \leq \left(\frac{|\mathcal{F}| + |\mathcal{G}|}{2} \right)^2 \).

Subcase 1.2. \(|\mathcal{G}_1| < |\mathcal{F}_2| \) or \(|\mathcal{F}_1| < |\mathcal{G}_2| \).

By symmetry, we may assume that \(|\mathcal{G}_1| < |\mathcal{F}_2| \). By Fact \((3.3) \) we see \(|\mathcal{G}_1| \geq \binom{n-t-3}{k-t-2} \). Since \(\mathcal{G}_1, \mathcal{F}_2 \) are cross-intersecting, by \((2.3) \) we have
\[
|\mathcal{G}_1| + |\mathcal{F}_2| \leq 2 \binom{|X| - 1}{k-t-1},
\]
and thereby \(|\mathcal{G}_1| \leq \binom{n-t-2}{k-t-1} \).
Subcase 1.2.1. \(|G_2| \geq \binom{n-t-3}{k-t-2}\).

Since \(G_2, F_1\) are cross-intersecting and \(|F_1| \geq |G_2| \geq \binom{n-t-3}{k-t-2}\), by (2.3)

\[(3.7) \quad |F_1| + |G_2| \leq 2\left|X\right| - 1.
\]

By (3.6) and (3.7), we obtain that

\[
|F| + |G| \leq 2\left|X\right| + t(|G_1| + |F_2|) + (|F_1| + |G_2|)
\]

\[
\leq 2\left|X\right| + (2t + 2)\left|X\right| - 1
\]

\[
= 2(t + 2)\left|X\right| - 2
\]

\[
= 2|A(n, k, t)|
\]

and (3.1) follows.

Subcase 1.2.2. \(|G_2| < \binom{n-t-3}{k-t-2} < \binom{n-t-2}{k-t-2}\).

By Fact 3.2 we have \(|F_1| \leq (k-t)\binom{n-t-1}{k-t-1}\). Since \(F_2, G_1\) are cross-intersecting, by (1.2)

we obtain that

\[(3.8) \quad |F_2||G_1| \leq \left(\frac{n-t-2}{k-t-1}\right)^2 \leq \left(\frac{n-t-1}{k-t-1}\right)^2.
\]

Therefore,

\[
|F||G| \leq \left(\frac{n-t-1}{k-t-1} + t|F_2| + |F_1|\right) \left(\frac{n-t-1}{k-t-1} + t|G_2| + |G_1|\right)
\]

\[
\leq \left(k-t+1\right)\left(\frac{n-t-1}{k-t-1} + t|F_2|\right) \left(\frac{n-t-1}{k-t-1} + t\left(\frac{n-t-2}{k-t-2}\right) + |G_1|\right)
\]

\[
= \left(k-t+1\right)\left(1 + t\frac{k-t-1}{n-t-1}\right)\left(\frac{n-t-1}{k-t-1}\right)^2 + t|F_2||G_1|
\]

\[
+ \left(\frac{n-t-1}{k-t-1}\right) \left(1 + t\frac{k-t-1}{n-t-1}\right) t|F_2| + \left(k-t+1\right)|G_1|.
\]

By (3.8), it follows that

\[
|F||G| \leq (k+1)\left(\frac{n-t-1}{k-t-1}\right)^2 + \frac{t(k-t)^2}{n-t-1}\left(\frac{n-t-1}{k-t-1}\right)^2
\]

\[
+ \left(\frac{n-t-1}{k-t-1}\right) \left(1 + t\frac{k-t-1}{n-t-1}\right) t|F_2| + \left(k-t+1\right)|G_1|.
\]
By (3.6) and \(|G_1| \leq \binom{n-t-1}{k-t-1}\), we have
\[
\left(1 + \frac{t(k-t-1)}{n-t-1}\right) t |F_2| + (k-t+1)|G_1|
\]
\[
< \left(1 + \frac{t(k-t)}{n-t-1}\right) t \left(2 \cdot \binom{n-t-1}{k-t-1} - |G_1|\right) + (k-t+1)|G_1|
\]
(3.10)
\[
\leq \max \left\{2t + \frac{2t^2(k-t)}{n-t-1}, k+1 + \frac{t^2(k-t)}{n-t-1}\right\} \binom{n-t-1}{k-t-1}.
\]
Combining (3.10) and (3.9), we arrive at
\[
|F||G| \leq \left(\frac{t(k-t)}{n-t-1}\right) + \max \left\{k+1 + \frac{2t^2(k-t)}{n-t-1}, 2(k+1) + \frac{t^2(k-t)}{n-t-1}\right\} \binom{n-t-1}{k-t-1}.
\]
Note that
\[
t(k-t)^2 + 2t^2(k-t) = t(k-t)(k+t) = t(k^2 - t^2) \leq tk^2.
\]
For \(n \geq tk^2 + (t+1)\),
\[
|F||G| < \left(\frac{n-t-1}{k-t-1}\right)^2 \max \left\{k+2t+1 + \frac{tk^2}{n-t-1}, 2(k+1) + \frac{tk^2}{n-t-1}\right\}
\]
(3.11)
\[
\leq \left(\frac{n-t-1}{k-t-1}\right)^2 \max \{k+2t+2, 2k+3\}.
\]
If \(k \geq 2t+3\), then \(k+2t+2 < 2k+3\) and \(2k+3 = 4(k - \frac{k}{2} + \frac{3}{4}) < 4(k-t+1)\). By applying (3.8) with \(c = 6\), we obtain for \(n \geq 6(k-t)^2 + t + 1\),
\[
|F||G| \leq (2k+3) \binom{n-t-1}{k-t-1}^2 \leq 4(k-t+1) \binom{n-t-1}{k-t-1}^2 \leq 6(k-t+1) \binom{n-k-1}{k-t-1}^2.
\]
Since \(k \geq 2t+3\) implies \(k-t+1 \geq t+4 \geq 6\), we have
\[
|F||G| \leq 6(k-t+1) \binom{n-k-1}{k-t-1}^2 \leq (k-t+1)^2 \binom{n-k-1}{k-t-1}^2 < |H(n, k, t)|^2.
\]
If \(2t \leq k \leq 2t+2\), then \(k+2t+2 \leq 2k+3\). By (3.11) we have
\[
|F||G| \leq (2k+3) \binom{n-t-1}{k-t-1}^2 \leq (4t+7) \binom{n-t-1}{k-t-1}^2.
\]
Applying (1.9) with \(c = 8(t+2)\), we arrive at
\[
|F||G| \leq (4t+7) \frac{8(t+2)}{8(t+2) - 2} \binom{n-t-2}{k-t-1}^2 = 4(t+2) \binom{n-t-2}{k-t-1}^2 < |A(n, k, t)|^2.
\]
If \(k \leq 2t-1\), then \(k+2t+2 \geq 2k+3\). By (3.11) we have
\[
|F||G| \leq (k+2t+2) \binom{n-t-1}{k-t-1}^2 < (4t+4) \binom{n-t-1}{k-t-1}^2.
\]
Applying (1.9) with \(c = 2(t+2) \), we arrive at
\[
|\mathcal{F}||\mathcal{G}| \leq 4(t+1)\frac{2(t+2)}{2(t+2)-2} \left(\frac{n-t-2}{k-t-1} \right)^2 = 4(t+2) \left(\frac{n-t-2}{k-t-1} \right)^2 < |\mathcal{A}(n,k,t)|^2.
\]

Case 2. \(|\mathcal{G}_1| \leq \max_{2 \leq i \leq t+1} |\mathcal{G}_i| \).

Without loss of generality, assume that \(|\mathcal{G}_2| = \max_{2 \leq i \leq t+1} |\mathcal{G}_i| \). Then \(|\mathcal{G}_2| = \max_{1 \leq i \leq t+1} |\mathcal{G}_i| \) and \(\mathcal{G}_i \subset \mathcal{G}_2 \) for all \(1 \leq i \leq t+1 \). Since \(\mathcal{F}_i \subset \mathcal{F}_1 \), \(\mathcal{G}_i \subset \mathcal{G}_2 \), \(\mathcal{F}_i \) and \(\mathcal{G}_i \) are cross-intersecting for \(1 \leq i \leq t+1 \), by saturatedness we may assume that \(|\mathcal{F}_i| = |\mathcal{F}_1| \) and \(|\mathcal{G}_i| = |\mathcal{G}_2| \) for all \(i \in [t+1] \). Then (3.11) is equivalent to

\[
(3.12) \\
\left(\frac{n-t-1}{k-t-1} + (t+1)|\mathcal{F}_1| \right) \left(\frac{n-t-1}{k-t-1} + (t+1)|\mathcal{G}_2| \right) \leq \max\{|\mathcal{A}(n,k,t)|^2, |\mathcal{H}(n,k,t)|^2\}.
\]

Without loss of generality, assume that \(|\mathcal{F}_1| \leq |\mathcal{G}_2| \). By Fact 5.3 we have \(|\mathcal{F}_1| \geq \binom{n-t-3}{k-t-2} \).

Since \(\mathcal{F}_1, \mathcal{G}_2 \) are cross-intersecting, by (2.3) we have \(|\mathcal{F}_1| + |\mathcal{G}_2| \leq 2\binom{|X|-1}{k-1} \). By (1.2) \(|\mathcal{F}_1||\mathcal{G}_2| \leq \binom{|X|-1}{k-1}^2 \). Then expanding (3.12):

\[
LHS \leq \frac{(n-t-1)^2}{k-t-1} + 2\frac{(n-t-1)}{k-t-1}(t+1)\frac{(n-t-2)}{k-t-1} + \left((t+1)\frac{(n-t-2)}{k-t-1} \right)^2
\]

\[= |\mathcal{A}(n,k,t)|^2, \]

and the proposition is proven. \(\square \)

4 The basis of cross \(t \)-intersecting families

In this section, we prove an inequality concerning the size of basis of cross \(t \)-intersecting families by a branching process.

We need the following notion of basis. Let \(\mathcal{B}(\mathcal{F}) \) be the family of minimal (for containment) sets in \(\mathcal{T}_i(\mathcal{G}) \) and let \(\mathcal{B}(\mathcal{G}) \) be the family of minimal sets in \(\mathcal{T}_i(\mathcal{F}) \).

Let us prove some properties of the basis.

Lemma 4.1. Suppose that \(\mathcal{F}, \mathcal{G} \subset \binom{|X|}{k} \) form a saturated pair of cross \(t \)-intersecting families. Then (i) and (ii) hold.

(i) Both \(\mathcal{B}(\mathcal{F}) \) and \(\mathcal{B}(\mathcal{G}) \) are antichains, and \(\mathcal{B}(\mathcal{F}), \mathcal{B}(\mathcal{G}) \) are cross \(t \)-intersecting,

(ii) \(\mathcal{F} = \left\{ F \in \binom{|X|}{k} : \exists B \in \mathcal{B}(\mathcal{F}), B \subset F \right\} \) and \(\mathcal{G} = \left\{ G \in \binom{|X|}{k} : \exists B \in \mathcal{B}(\mathcal{G}), B \subset G \right\} \).

Proof. (i) Clearly, \(\mathcal{B}(\mathcal{F}) \) and \(\mathcal{B}(\mathcal{G}) \) are both antichains. Suppose for contradiction that \(B \in \mathcal{B}(\mathcal{F}), B' \in \mathcal{B}(\mathcal{G}) \) but \(|B \cap B'| < t \). If \(|B| = |B'| = k \), then \(B \in \mathcal{F}, B' \in \mathcal{G} \) follow from saturatedness, a contradiction. If \(|B| < k \), then there exists \(F \supseteq B \) such that \(|F| = k \) and \(|F \cap B'| = |B \cap B'| < t \). By definition \(F \in \mathcal{T}_i(\mathcal{G}) \). Since \(\mathcal{F}, \mathcal{G} \) are saturated, we see that \(F \in \mathcal{F} \). But this contradicts the assumption that \(B' \) is a \(t \)-transversal of \(\mathcal{F} \). Since \(\mathcal{F}, \mathcal{G} \) are saturated, (ii) is immediate from the definition of \(\mathcal{B}(\mathcal{F}) \) and \(\mathcal{B}(\mathcal{G}) \). \(\square \)
Let \(s(\mathcal{B}) = \min \{|B| : B \in \mathcal{B} \} \). For any \(\ell \) with \(s(\mathcal{B}) \leq \ell \leq k \), define

\[
\mathcal{B}^{(\ell)} = \{ B \in \mathcal{B} : |B| = \ell \} \quad \text{and} \quad \mathcal{B}^{(\leq \ell)} = \bigcup_{i=s(\mathcal{B})}^{\ell} \mathcal{B}^{(i)}.
\]

It is easy to see that \(s(\mathcal{B}(\mathcal{G})) = \tau_1(\mathcal{F}) \).

By a branching process, we establish an inequality concerning the size of the basis.

Lemma 4.2. Suppose that \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) are a saturated pair of cross t-intersecting families. Let \(\mathcal{B}_1 = \mathcal{B}(\mathcal{F}) \) and \(\mathcal{B}_2 = \mathcal{B}(\mathcal{G}) \). For each \(i = 1, 2 \), if \(s(\mathcal{B}_i) \geq t + 1 \) and there exists \(r_i \geq s(\mathcal{B}_i) \) such that \(\tau_1(\mathcal{B}_i^{(\leq r_i)}) \geq t + 1 \) then

\[
(4.1) \quad \sum_{r_i \leq \ell \leq k} \binom{s(\mathcal{B}_i)}{t}\ell^\ell \leq |\mathcal{B}_3^{(\leq 1)}| \leq 1
\]

and

\[
(4.2) \quad \sum_{s_i \leq \ell \leq k} \binom{s(\mathcal{B}_i)}{t} \ell^\ell \leq |\mathcal{B}_3^{(\leq 1)}| \leq 1.
\]

Proof. By symmetry, it is sufficient to prove the lemma only for \(i = 1 \). For the proof we use a branching process. During the proof a sequence \(S = (x_1, x_2, \ldots, x_t) \) is an ordered sequence of distinct elements of \([n]\) and we use \(\hat{S} \) to denote the underlying unordered set \(\{x_1, x_2, \ldots, x_t\} \). At the beginning, we assign weight 1 to the empty sequence \(S_0 \).

At the first stage, we choose \(B_{1,1} \in \mathcal{B}_1 \) with \(|B_{1,1}| = s(\mathcal{B}_1) \geq t + 1 \). For any \(t \)-subset \(\{x_1, x_2, \ldots, x_t\} \subset B_{1,1} \), define one sequence \((x_1, x_2, \ldots, x_t)\) and assign weight \(\left(\frac{s(\mathcal{B}_1)}{t}\right)^{-1} \) to it.

At the second stage, since \(\tau_1(\mathcal{B}_1^{(\leq r_1)}) \geq t + 1 \), for each sequence \(S = (x_1, \ldots, x_t) \) we may choose \(B_{1,t+1} \in \mathcal{B}_1^{(\leq r_1)} \) such that \(|\hat{S} \cap B_{1,t+1}| < t \). Then we replace \(S = (x_1, \ldots, x_t) \) by \(|B_{1,t+1} \setminus \hat{S}| \) sequences of the form \((x_1, \ldots, x_t, y)\) with \(y \in B_{1,t+1} \setminus \hat{S} \) and weight \(\frac{w(S)}{|B_{1,t+1} \setminus \hat{S}|} \).

In each subsequent stage, we pick a sequence \(S = (x_1, \ldots, x_p) \) and denote its weight by \(w(S) \). If \(|\hat{S} \cap B_1| \geq t \) holds for all \(B_1 \in \mathcal{B}_1 \) then we do nothing. Otherwise we pick \(B_1 \in \mathcal{B}_1 \) satisfying \(|\hat{S} \cap B_1| < t \) and replace \(S \) by the \(|B_1 \setminus \hat{S}| \) sequences \((x_1, \ldots, x_p, y)\) with \(y \in B_1 \setminus \hat{S} \) and assign weight \(\frac{w(S)}{|B_1 \setminus \hat{S}|} \) to each of them. Clearly, the total weight is always 1.

We continue until \(|\hat{S} \cap B_1| \geq t \) for all sequences and all \(B_1 \in \mathcal{B}_1 \). Since \([n]\) is finite, each sequence has length at most \(n \) and eventually the process stops. Let \(\mathcal{S} \) be the collection of sequences that survived in the end of the branching process and let \(\mathcal{S}^{(\ell)} \) be the collection of sequences in \(\mathcal{S} \) with length \(\ell \).

Claim 1. To each \(B_2 \in \mathcal{B}_2^{(\ell)} \) with \(\ell \geq r_1 \) there is some sequence \(S \in \mathcal{S}^{(\ell)} \) with \(\hat{S} = B_2 \).

Proof. Let us suppose the contrary and let \(S = (x_1, \ldots, x_p) \) be a sequence of maximal length that occurred at some stage of the branching process satisfying \(\hat{S} \subsetneq B_2 \). Since \(B_1, B_2 \) are cross \(t \)-intersecting, \(|B_1 \cap B_2| \geq t \), implying that such an \(S \) exists. By the choice of \(S \) we see that \(p \geq t \). Since \(\hat{S} \) is a proper subset of \(B_2 \), it follows that \(\hat{S} \notin \mathcal{B}(\mathcal{G}) \subset \mathcal{T}(\mathcal{F}) \). Thereby there exists \(F \in \mathcal{F} \) with \(|\hat{S} \cap F| < t \). In view of Lemma 1.1 (ii), we can find \(B'_1 \in \mathcal{B}_1 \) such that \(|\hat{S} \cap B'_1| < t \). Thus at some point we picked \(S \) and some \(B_1 \in \mathcal{B}_1 \) with \(|\hat{S} \cap B_1| < t \). Since \(B_1, B_2 \) are cross \(t \)-intersecting, \(|B_2 \cap B_1| \geq t \). Consequently, for each \(y \in B_2 \cap B_1 \) the sequence \((x_1, \ldots, x_p, y)\) occurred in
the branching process. This contradicts the maximality of \(p \). Hence there is an \(S \) at some stage satisfying \(\hat{S} = B_2 \). Since \(B_1, B_2 \) are cross \(t \)-intersecting, \(|\hat{S} \cap B'_1| = |B_2 \cap B'_1| \geq t \) for all \(B'_1 \in B_1 \). Thus \(\hat{S} \in S \) and the claim holds.

By Claim 1, we see that \(|B_2^{(\ell)}| \leq |S^{(\ell)}| \) for all \(\ell \geq r_1 \). Let \(S = (x_1, \ldots, x_t) \in S^{(\ell)} \) and let \(S_i = (x_1, \ldots, x_i) \) for \(i = t, \ldots, \ell \). At the first stage, \(w(S_t) = 1/(s(B_1)) \). Assume that \(B_{1,i} \) is the selected set when replacing \(S_i = S_{i-1} \) and the branching process for \(i = t+1, \ldots, \ell \). Clearly, \(x_i \in B_{1,i} \) for \(i \geq t + 1 \), \(B_{1,i+1} \in B_1^{(r_1)} \) and

\[
 w(S) = \left(s(B_1) \right)^{-1} \prod_{i=t+1}^{\ell} \frac{1}{|B_{1,i} \setminus S_{i-1}|}.
\]

Note that \(|B_{1,i+1} \setminus \hat{S}_i| \leq r_1 \) and \(|B_{1,i} \setminus \hat{S}_{i-1}| \leq k \) for \(i \geq t + 2 \). It follows that

\[
 w(S) \geq \left(\frac{s(B_1)}{t} r_1 k^{\ell-t-1} \right)^{-1}.
\]

Thus we obtain that

\[
 \sum_{r_1 \leq t \leq k} \left(\frac{s(B_1)}{t} r_1 k^{\ell-t-1} \right)^{-1} \leq \sum_{r_1 \leq t \leq k} \sum_{S \in S^{(\ell)}} w(S) \leq \sum_{S \in S} w(S) = 1
\]

and (4.1) holds.

If we omit the second stage in the branching process, then by the similar argument we can obtain (4.2).

5 The proof of the main theorem

In this section, we determine the maximum product of the sizes of two non-trivial cross \(t \)-intersecting families.

Lemma 5.1. Let \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) be a saturated pair of non-trivial cross \(t \)-intersecting families. Set \(B_1 = B(\mathcal{F}), B_2 = B(\mathcal{G}) \). Then neither \(B_1 \) nor \(B_2 \) contains a sunflower of \(k-t+2 \) petals with center of size \(t \).

Proof. Suppose for contradiction that there exists a sunflower of \(k-t+2 \) petals with center of size \(t \) in \(B_1 \). Without loss of generality, assume that \([t] \cup A_1, \ldots, [t] \cup A_{k-t+2} \) is such a sunflower. Then for each \(G \in \mathcal{G} \), by the definition of \(B(\mathcal{F}) \) we have \(|G \cap ([t] \cup A_j)| \geq t \) for \(j = 1, \ldots, k-t+2 \). It follows that \([t] \subset G \), contradicting the non-triviality of \(\mathcal{G} \).

Lemma 5.2. Let \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) be a saturated pair of non-trivial cross \(t \)-intersecting families. Set \(\mathcal{A}_1 = T_t^{(t+1)}(\mathcal{G}), \mathcal{A}_2 = T_t^{(t+1)}(\mathcal{F}) \). If \(s(B(\mathcal{F})) = s \), then

\[
 |\mathcal{A}_2| \leq \left(\frac{s}{t} \right) (k-t+1).
\]

If \(\mathcal{A}_1 \neq \emptyset \) and \(\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset \), then

\[
 |\mathcal{A}_2| \leq 2(k-t+1).
\]
Proof. Let us prove (5.1) first. Since \(s(\mathcal{B}(\mathcal{F})) = s \), there exists an \(S \in \mathcal{B}(\mathcal{F}) \) with \(|S| = s \). Note that by Lemma 4.1 (i) we have \(|A \cap S| \geq t\) for each \(A \in \mathcal{A}_2\). Then

\[
|A_2| \leq \sum_{T \in \binom{S}{t}} |A_2(T)|.
\]

By Lemma 5.1 we see that \(|A_2(T)| \leq k - t + 1\) and (5.1) follows.

Now we prove (5.2). Without loss of generality, let \([t + 1] \in A_1\). Then \(|D \cap [t + 1]| \geq t\) for all \(D \in \mathcal{A}_2\). Should \(|F \cap [t + 1]| \geq t\) hold for all \(F \in \mathcal{F} \), we get \([t + 1] \in A_1 \cap \mathcal{A}_2\), contradicting \(A_1 \cap \mathcal{A}_2 = \emptyset \). I.e., we may fix \(F_0 \) with \(|F_0 \cap [t + 1]| \leq t - 1\). Let \(\mathcal{A}_2 = \{D_1, \ldots, D_\ell\} \) and define \(x_i \) by \(D_1 \setminus [t + 1] = \{x_i\} \). Note that

\[
t \leq |F_0 \cap D_1| \leq |F_0 \cap [t + 1]| + |F_0 \cap \{x_i\}| \leq t + 1.
\]

Thus \(|F_0 \cap [t + 1]| = t - 1, x_i \in F_0\) and \(F_0 \cap [t + 1] \subset D_i\). Since \(|D_i \cap [t + 1]| = t\), it follows that there are only two choices for \(D_i \cap [t + 1]\). Then by Lemma 5.1 we conclude that \(|A_2| \leq 2(k - t + 1)\). \(\square\)

Proof of Proposition 1.4. Let us prove the following two facts.

Fact 5.3. For any \(A, A' \in \mathcal{A}, |A \cap A'| = t - 1 \) or \(t \).

Proof. Indeed, if \(A \cap A' = D \) with \(|D| \leq t - 2\), then for any \(B \in \mathcal{B} \) the fact \(|B \cap (A' \setminus D)| \geq 2\) implies

\[
|B \cap (A \cup (A' \setminus D))| = |B \cap A| + |B \cap (A' \setminus D)| \geq t + 2,
\]

contradicting \(|B| = t + 1\). \(\square\)

Fact 5.4. Suppose that \(|A \cap A'| = t - 1\) then \(A \cap A' \subset B \) for all \(B \in \mathcal{B}\).

Proof. Suppose \(|B \cap (A \cap A')| \leq t - 2\). Then \(B \supset A \setminus A', B \supset A' \setminus A \) and \(|B \cap A \cap A'| = t - 2\) follow. Consequently \(|B| = t + 2\), contradiction. \(\square\)

If \(|A \cap A'| = t\) for all \(A, A' \in \mathcal{A}\) and also \(B \cap B' = t\) for all \(B, B' \in \mathcal{B}\), then \(\mathcal{A} \cup \mathcal{B} \) is either a subset of \(\binom{[t + 2]}{t + 1}\) up to isomorphism or a sunflower with center of size \(t \). If \(\mathcal{A} \cup \mathcal{B} \) is a sunflower with center of size \(t \), then (ii) holds. If \(\mathcal{A} \cup \mathcal{B} \) is a subset of \(\binom{[t + 2]}{t + 1}\), note that the exact cross \(t \)-intersection implies \(\mathcal{A} \cap B = \emptyset \), then \(|A| + |B| \leq t + 2\) and thereby \(|\mathcal{A}| |\mathcal{B}| \leq \frac{(t+2)^2}{2}\). Thus (iii) holds.

In the rest of the proof, we assume that there exist \(A, A' \in \mathcal{A} \) such that \(|A \cap A'| = t - 1\). By symmetry we assume that \([t + 1], [t - 1] \cup \{t + 2, t + 3\} \in \mathcal{A}\). By Fact 5.3 \([t - 1] \subset B\) for all \(B \in \mathcal{B}\). We claim that \(|B| \leq 4\). Indeed, for every \(B \in \mathcal{B}, |B \cap [t + 1]| = t\) and \(|B \cap ([t - 1] \cup \{t + 2, t + 3\})| = t\) imply that \(B = [t - 1] \cup \{x, y\}\) with \(x \in \{t, t + 1\}, y \in \{t + 2, t + 3\}\). Now we distinguish two cases.

Case 1. \(\exists B, B' \in \mathcal{B} \) with \(|B \cap B'| = t - 1\).

Necessarily, \(B \cap B' = [t - 1]\). Consequently \([t - 1] \subset A\) for all \(A \in \mathcal{A}\) and even \(A \setminus [t - 1] \subset [t, t + 3]\). Now \(\mathcal{A}(t - 1) \) and \(\mathcal{B}([t - 1]) \) are cross-intersecting 2-graphs on the four vertices \(t, t + 1, t + 2, t + 3 \). We infer \(\min\{|A|, |B|\} = 2\). It follows that \(|\mathcal{A}| |\mathcal{B}| \leq 8 \leq \frac{(t+2)^2}{2}\) and (iii) holds.

Case 2. \(|B \cap B'| = t\) for every \(B, B' \in \mathcal{B}\).
Case 1. Similarly, we have for \(|A| \leq t \). Hence \(|A| \leq t \). Since \(A \) does not contain a sunflower of size \(k - t + 1 \) petals with center of size \(t \), we infer that \(|A_0| \leq k - t + 1 \). If \(|A_0| \leq 2 \), then \(|A| \leq 2(k - t + 2) \leq \frac{(k + 2)^2}{2} \), (iii) holds. If \(|A_0| \geq 3 \), since \(|t - 1| \leq 2 \), \(|A| \leq k + 1 \), (i) holds. \(\square \)

Proof of Theorem \(4 \). Let \(B_1 = B(F), B_2 = B(G), A_1 = B_1^{(t+1)}, A_2 = B_2^{(t+1)} \) and let \(s_1 = s(B_1), s_2 = s(B_2) \). Let us partition \(F \) into \(F^{(s_1)} \cup \ldots \cup F^{(s_2)} \) where \(F \in F^{(s)} \) if \(\max\{|B|: B \in B_1, B \subset F\} = s \). Similarly, partition \(G \) into \(G^{(s_2)} \cup \ldots \cup G^{(k)} \). By non-triviality of \(F \) and \(G \), we know \(s_1 \geq t + 1 \) and \(s_2 \geq t + 1 \). For every \(m \in [s_1, k] \), define

\[
F^{(\geq m)} = \bigcup_{m \leq \ell \leq k} F^{(\ell)}.
\]

For \(m \in [s_2, k] \), define

\[
G^{(\geq m)} = \bigcup_{m \leq \ell \leq k} G^{(\ell)}.
\]

Let \(\alpha_\ell = \binom{s_2}{\ell} k^{\ell - t} |B_1^{(\ell)}|^{-1} \). By (4.2) we have

\[
\sum_{m \leq \ell \leq k} \alpha_\ell \leq \sum_{s_1 \leq \ell \leq k} \alpha_\ell \leq 1.
\]

Let \(f(n, k, \ell) = \binom{s_2}{\ell} k^{\ell - t} (\frac{n}{k_\ell} - \ell) \). For \(n \geq k^2 \), we have

\[
\frac{f(n, k, \ell) + 1}{f(n, k, \ell)} = \frac{k^{\ell+1-t}(\frac{n-k-1}{k_{\ell-1}})}{k^{\ell-t}(\frac{n-k\ell}{k_{\ell-1}})} = \frac{k(k-\ell)}{n-\ell} \leq 1.
\]

Then by (5.3) and (5.4) we have for \(m \geq s_1 \)

\[
|F^{(\geq m)}| \leq \sum_{m \leq \ell \leq k} |B_1^{(\ell)}|(\frac{n-\ell}{k-\ell}) = \sum_{m \leq \ell \leq k} \alpha_\ell f(n, k, \ell)
\]

\[
\leq f(n, k, m)
\]

\[
(\binom{s_2}{t}) k^{m-t} (\frac{n-m}{k-m})
\]

Similarly, we have for \(m \geq s_2 \)

\[
|G^{(\geq m)}| \leq \binom{s_1}{t} k^{m-t} (\frac{n-m}{k-m})
\]

Without loss of generality we assume that \(s_1 \geq s_2 \). Now we distinguish four cases.

Case 1. \(s_1 \geq s_2 \geq t + 2 \).

Applying (5.5) with \(m = s_1 \), we obtain that

\[
|F| \leq \binom{s_2}{t} k^{s_1-t} (\frac{n-s_1}{k-s_1})
\]
Applying (5.6) with \(m = s_2 \), we obtain that

\begin{equation}
(5.8) \quad |G| \leq \binom{s_1}{t} k^{s_2-t} \binom{n-s_2}{k-s_2}.
\end{equation}

Then

\begin{equation}
|F||G| \leq \binom{s_1}{t} k^{s_1-t} \binom{n-s_1}{k-s_1} \binom{s_2}{t} k^{s_2-t} \binom{n-s_2}{k-s_2}.
\end{equation}

Let \(g_i(n, k, s) = \binom{s}{t} k^{s_1-t} \binom{n-s}{k-s_1}, \) \(i = 1, 2 \). Since \(s_i \geq t + 2 \) and for \(n \geq tk^2 \),

\begin{equation}
(5.9) \quad \frac{g_i(n, k, s_1 + 1)}{g_i(n, k, s_i)} = \frac{(s_i+1)_t}{(s_i)_t} \frac{k^{s_1-t} \binom{n-s_1-1}{k-s_1}}{k^{s_i-t} \binom{n-s_i}{k-s_i}} = \frac{s_i + 1}{s_i + 1 - t} \frac{k(k-s_i)}{n-s_i} \leq \frac{t+3}{3} \frac{k(k-s_i)}{n-s_i} < 1,
\end{equation}

it follows that for \(n \geq (t+2)^2k^2 + t + 1 \),

\[|F||G| \leq g_1(n, k, s_1) g_2(n, k, s_2) \leq g_1(n, k, t+2) g_2(n, k, t+2) \]

\[= \binom{t+2}{t} k^4 \binom{n-t-2}{k-t-2} \]

\[\leq \frac{(t+2)^4 k^4 (k-t-1)^2}{4(n-t-1)^2} \binom{n-t-1}{k-t-1} \]

\[\leq \frac{(k-t+1)^2}{4} \binom{n-t-1}{k-t-1}. \]

Apply (1.8) with \(c = 4 \), we conclude that

\[|F||G| \leq \frac{(k-t+1)^2}{2} \binom{n-k-1}{k-t-1} < |H(n, k, t)|^2. \]

Case 2. \(s_1 \geq t + 3 \) and \(s_2 = t + 1 \).

By (5.1) we have \(|A_2| \leq \binom{s_1}{t} (k-t+1) \). By (5.6),

\[|F| \leq (t+1) k^{s_1-t} \binom{n-s_1}{k-s_1}. \]

By (5.6),

\[|G(\geq t+2)| \leq \binom{s_1}{t} k^2 \binom{n-t-2}{k-t-2}. \]

It follows that

\[|F||G| \leq (t+1) k^{s_1-t} \binom{n-s_1}{k-s_1} \left(|A_2| \binom{n-t-1}{k-t-1} + \binom{s_1}{t} k^2 \binom{n-t-2}{k-t-2} \right) \]

\[\leq (t+1) k^{s_1-t} \binom{n-s_1}{k-s_1} \left(\binom{s_1}{t} (k-t+1) \binom{n-t-1}{k-t-1} + \binom{s_1}{t} k^2 \binom{n-t-2}{k-t-2} \right) \]

\[\leq (t+1) g_1(n, k, s_1) \left((k-t+1) \binom{n-t-1}{k-t-1} + k^2 \binom{n-t-2}{k-t-2} \right). \]
By (5.9) we see that \(g_1(n,k,s_1) \) is a decreasing function of \(s_1 \) and \(s_1 \geq t + 3 \). Thus, for \(n \geq (t + 2)^2 k^2 + t + 1 \) we have

\[
|\mathcal{F}||\mathcal{G}| \leq (t + 1) g_1(n,k,t + 3) \left((k - t + 1) \binom{n - t - 1}{k - t - 1} + k^2 \binom{n - t - 2}{k - t - 2} \right)
\]

\[
\leq (t + 1) \binom{t + 3}{3} k^3 \binom{n - t - 3}{k - t - 3} \left((k - t + 1) \binom{n - t - 1}{k - t - 1} + k^2 \binom{n - t - 2}{k - t - 2} \right)
\]

\[
\leq \frac{(t + 1)^2(t + 2)(t + 3)k^3(k - t - 1)^2}{6(n - t - 1)^2} \left((k - t + 1) + \frac{k^2(k - t - 1)}{n - t - 1} \right) \left(n - t - 1 \right)^2
\]

\[
\leq \frac{k - t + 1}{6} (k - t + 1 + k - t + 1) \left(n - t - 1 \right)^2 \left(k - t - 1 \right)
\]

\[
= \frac{(k - t + 1)^2}{3} \left(n - t - 1 \right)^2 \left(k - t - 1 \right).
\]

Apply (1.8) with \(c = 4 \), we conclude that

\[
|\mathcal{F}| |\mathcal{G}| < \frac{2(k - t + 1)^2}{3} \left(n - k - 1 \right)^2 \leq |\mathcal{H}(n,k,t)|^2.
\]

Case 3. \(s_1 = t + 2 \) and \(s_2 = t + 1 \).

By (5.3) and (5.6), we obtain that

\[
|\mathcal{F}(\geq t+3)| \leq (t + 1) k^3 \left(\binom{n - t - 3}{k - t - 3} \right)
\]

and

\[
|\mathcal{G}(\geq t+2)| \leq \binom{t + 2}{t} k^2 \left(\binom{n - t - 2}{k - t - 2} \right) \leq \frac{(t + 2)^2}{2} k^2 \left(\binom{n - t - 2}{k - t - 2} \right).
\]

Fix some \(S \in B_1^{(t+2)} \). By Lemma 4.1(i), we see that \(|A_2 \cap S| \geq t \) for all \(A_2 \in A_2 \). For any \(T \in \binom{S}{t} \), define

\[
N(T) = \{x: T \cup \{x\} \in A_2\} \quad \text{and} \quad \Gamma = \left\{ T \in \binom{S}{t}: |N(T)| \geq 4 \right\}.
\]

By Lemma 5.1 we see that \(|N(T)| \leq k - t + 1 \). If \(|N(T)| \geq 4 \), then we claim that \(T \subseteq S' \) for all \(S' \in B_1^{(t+2)} \). Indeed, if \(|S' \cap T| \leq t \), then for every \(x \in N(T) \), \(|S' \cap (T \cup \{x\})| \geq t \) implies \(|S' \cap T| = t - 1 \) and \(x \in S' \). It follows that \(|S'| \geq t - 1 + 4 = t + 3 \), a contradiction.

Subcase 3.1. There exist \(T, T' \in \Gamma \) such that \(T \cup T' = S \).

Then we have \(T' \cup T \subset S' \) for all \(S' \in B_1^{(t+2)} \). It follows that \(|B_1^{(t+2)}| = 1 \). By (5.1) we
have $|A_2| \leq \binom{t+2}{t}(k-t+1)$. By (5.10) and (5.11) we obtain that

$$|\mathcal{F}| \leq \left(\binom{n-t-2}{k-t-2} + (t+1)k^3\binom{n-t-3}{k-t-3} \right) \cdot \left(\frac{k-t-1}{n-t-1} + \binom{t+2}{k-t-2} \right) \cdot \left(\frac{n-t-1}{k-t-1} \right).$$

Therefore, using $n \geq (t+2)^2k^2 + t + 1$ and $k \geq 5$ we arrive at

$$|\mathcal{F}| \leq \left(\frac{(t+2)^2(k-t-1)}{n-t-1} + \frac{(t+1)(t+2)k^3(k-t-1)^2}{(n-t-1)^2} \right) \cdot \left(\frac{k-t+1}{2(n-t-1)} \right) \cdot \left(\frac{n-t-1}{k-t-1} \right)^2 \leq \frac{3}{8}(k-t+1)^2 \left(\frac{n-t-1}{k-t-1} \right)^2.$$

Apply (1.8) with $c = 4$, we conclude that

$$|\mathcal{F}| \leq \frac{3}{4}(k-t+1)^2 \left(\frac{n-t-1}{k-t-1} \right)^2 < |\mathcal{H}(n,k,t)|^2.$$

Subcase 3.2. $T \cup T' \subseteq S$ for every $T, T' \in \Gamma$.

Note that $T \cup T' \subseteq S$ implies $|T \cap T'| = t - 1$ for every $T, T' \in \Gamma$. Fix some $T, T' \in \Gamma$ and let $C = T \cap T', T' \setminus C = \{x\}, T \setminus C = \{y\}$. Recall that $\Gamma \subset \binom{S}{t}$ and $|S| = t+2$. If there exists $T'' \in \Gamma \setminus \{T, T'\}$ such that $C \subset T''$, then we infer that $|\Gamma| = 3$. If $|T'' \cap C| \leq t - 1$ for all $T'' \in \Gamma \setminus \{T, T'\}$, then $|T'' \cap T| = t - 1$ and $|T'' \cap T'| = t - 1$ imply that $x, y \in T''$ and $|T'' \cap C| = t - 1$. Hence there are at most $t - 1$ possibilities for T'' and $|\Gamma| \leq t + 1$. Thus $|\Gamma| \leq t + 1$ and it follows that

$$|A_2| \leq |\Gamma|(k-t+1) + 3 \left(\frac{t+2}{t} - |\Gamma| \right) \leq (t+1)(k-t-2) + 3 \left(\frac{t+2}{2} \right).$$

By (5.5) we have

$$|\mathcal{F}| \leq (t+1)k^2 \binom{n-t-2}{k-t-2}.$$
Therefore, by (5.11), (5.12) and (5.13) we obtain that
\[
|\mathcal{F}| |\mathcal{G}| \leq (t+1)k^2 \binom{n-t-2}{k-t-2} \left(|\mathcal{A}_2| \binom{n-t-1}{k-t-1} + \frac{(t+2)^2}{2} k^2 \binom{n-t-2}{k-t-2} \right)
\]
\[
\leq (t+1)k^2 \binom{n-t-2}{k-t-2} \left((t+1)(k-t-2) + 3 \binom{t+2}{2} \binom{n-t-1}{k-t-1} \right)
\]
\[
+ (t+1)k^2 \binom{n-t-2}{k-t-2} \frac{(t+2)^2}{2} k^2 \binom{n-t-2}{k-t-2}
\]
\[
\leq \left(\frac{(t+1)^2 k^2 (k-t-1)^2}{n-t-1} + \frac{3(t+1)(k-t+1)^2}{k-t-1} \right) \binom{n-t-1}{k-t-1}
\]
\[
+ \frac{(t+1)(t+2)^2 k^4 (k-t-1)^2}{2(n-t-1)^2} \binom{n-t-1}{k-t-1}.
\]
For \(n \geq 4(t+2)^2 k^2\), we arrive at
\[
|\mathcal{F}| |\mathcal{G}| < \left(\frac{(k-t-1)^2}{4} + \frac{3(t+1)(k-t+1)}{8} + \frac{(k-t+1)^2}{8} \right) \binom{n-t-1}{k-t-1}^2
\]
\[
\leq \frac{3}{4} \max \{ (t+2)^2, (k-t+1)^2 \} \binom{n-t-1}{k-t-1}^2.
\]
Now apply (1.8) with \(c = 8\), we conclude that
\[
|\mathcal{F}| |\mathcal{G}| < \max \{ (t+2)^2, (k-t-1)^2 \} \binom{n-t-1}{k-t-1}^2 < \max \{|\mathcal{A}(n,k,t)|^2, |\mathcal{H}(n,k,t)|^2\}.
\]

Case 4. \(s_1 = t+1\) and \(s_2 = t+1\).

Recall that \(\mathcal{A}_1 = T_{t+1}^t(\mathcal{G})\) and \(\mathcal{A}_2 = T_{t+1}^t(\mathcal{F})\). By the assumption, we have \(\mathcal{A}_1 \neq \emptyset \neq \mathcal{A}_2\). By (5.9) and (5.6), we have
\[
|\mathcal{F}| \leq |\mathcal{A}_1| \binom{n-t-1}{k-t-1} + (t+1)k^2 \binom{n-t-2}{k-t-2}
\]
and
\[
|\mathcal{G}| \leq |\mathcal{A}_2| \binom{n-t-1}{k-t-1} + (t+1)k^2 \binom{n-t-2}{k-t-2}.
\]
By Proposition 3.1, we may assume that \(\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset\). Then (5.2) implies \(|\mathcal{A}_1| + |\mathcal{A}_2| \leq 4(k-t-1)\).

If \(|\mathcal{A}_1|, |\mathcal{A}_2| \leq \max\{ (t+2)^2, (k-t+1)^2 \}/2\), then by multiplying (5.14) and (5.15) we get
\[
|\mathcal{F}| |\mathcal{G}| \leq |\mathcal{A}_1| |\mathcal{A}_2| \binom{n-t-1}{k-t-1}^2 + (t+1)k^2 \binom{n-t-2}{k-t-2} \binom{n-t-1}{k-t-1} (|\mathcal{A}_1| + |\mathcal{A}_2|)
\]
\[
+ (t+1)^2 k^4 \binom{n-t-2}{k-t-2}^2
\]
\[
\leq \frac{1}{2} \max \{ (t+2)^2, (k-t+1)^2 \} \binom{n-t-1}{k-t-1}^2 + \frac{4(t+1)k^2 (k-t+1)^2}{n-t-1} \binom{n-t-1}{k-t-1}^2
\]
\[
+ \frac{(t+1)^2 k^4 (k-t-1)^2}{(n-t-1)^2} \binom{n-t-1}{k-t-1}^2.
\]

18
For $n \geq 4(t + 2)^2k^2$, we arrive at

\[
|\mathcal{F}| |\mathcal{G}| \leq \left(\frac{1}{2} \max \left\{ (t + 2)^2, (k - t + 1)^2 \right\} + \frac{(k - t + 1)^2}{4} + \frac{(k - t + 1)^2}{8} \right) \left(\frac{n - t - 1}{k - t - 1} \right)^2
\]

\[
\leq \frac{7}{8} \max \left\{ (t + 2)^2, (k - t + 1)^2 \right\} \left(\frac{n - t - 1}{k - t - 1} \right)^2.
\]

Applying (1.8) with $c = 16$, we obtain that

\[
|\mathcal{F}| |\mathcal{G}| \leq \frac{7}{8} \times \frac{16}{16 - 2} \max \left\{ (t + 2)^2, (k - t + 1)^2 \right\} \left(\frac{n - k - 1}{k - t - 1} \right)^2
\]

\[
= \max \left\{ (t + 2)^2, (k - t + 1)^2 \right\} \left(\frac{n - k - 1}{k - t - 1} \right)^2
\]

\[
\leq \max \left\{ |A(n, k, t)|^2, |H(n, k, t)|^2 \right\}.
\]

Thus in the rest of the proof we may assume that

\[
(5.16) \quad |A_1| |A_2| > \frac{1}{2} \max \left\{ (t + 2)^2, (k - t + 1)^2 \right\}.
\]

Since $A_1 \cap A_2 = \emptyset$, we see that A_1, A_2 are non-empty exact cross t-intersecting. Applying Proposition 1.4 with $A = A_1, B = A_2$, we see that one of (i), (ii), (iii) in Proposition 1.4 holds. If (iii) holds, then $|A_1| |A_2| \leq \frac{(t + 2)^2}{2}$, contradicting (5.16). Thus, either (i) or (ii) of Proposition 1.4 holds.

Subcase 4.1. Either $|A_1| \leq 2$, $|A_2| \leq k + 1$, $τ_t(A_2) \geq t + 1$ or $|A_2| \leq 2$, $|A_1| \leq k + 1$, $τ_t(A_1) \geq t + 1$.

By symmetry, assume that $|A_1| \leq 2$, $|A_2| \leq k + 1$ and $τ_t(A_2) \geq t + 1$. Let r_2 be the minimum integer such that $τ_t(B_2^{(\leq r_2)}) \geq t + 1$. Then clearly $s_2 = r_2 = t + 1$. Let $α'_t = ((t + 1)^2k^{t-1})^{-1} |B_1^{(t)}|$. By (5.1) we have

\[
(5.17) \quad \sum_{t+2 \leq \ell \leq k} α'_t \leq \sum_{t+1 \leq \ell \leq k} α'_t \leq 1.
\]

Let $h(n, k, \ell) = (t + 1)^2k^{t-1} \binom{n-\ell}{k-\ell}$. Since

\[
\frac{h(n, k, \ell + 1)}{h(n, k, \ell)} = \frac{k^{\ell-t} \binom{n-\ell-1}{k-\ell-1}}{k^{\ell-t-1} \binom{n-\ell}{k-\ell-1}} = \frac{k^{t-1}}{n-\ell} < 1,
\]

by (5.17) we infer

\[
\sum_{t+2 \leq \ell \leq k} |\mathcal{F}(\ell)| \leq \sum_{t+2 \leq \ell \leq k} α'_t h(n, k, \ell) \leq h(n, k, t + 2) = (t + 1)^2k \binom{n-t}{k-t-2}.
\]

It follows that

\[
|\mathcal{F}| = |\mathcal{F}^{(t+1)}| + \sum_{t+2 \leq \ell \leq k} |\mathcal{F}(\ell)| \leq |A_1| \binom{n-t-1}{k-t-1} + (t + 1)^2k \binom{n-t-2}{k-t-2}
\]

\[
\leq 2 \binom{n-t-1}{k-t-1} + (t + 1)^2k \binom{n-t-2}{k-t-2}.
\]

(5.18)
If $k = t + 1$ then
\[|\mathcal{F}| |\mathcal{G}| = |A_1||A_2| \leq 2(k + 1) \leq 2(t + 2) < |\mathcal{A}(n, t+1, t)|^2 \]

and we are done. Hence we may assume that $k \geq t + 2$. Note that $k \geq t + 2$ and $k \geq 5$ imply $2(k + 1) \leq (t + 1)(k - t + 1)$. Therefore, by (5.15) and (5.16) we obtain that
\[
|\mathcal{F}| |\mathcal{G}| \leq \left(2 \binom{n-t-1}{k-t-1} + (t+1)^2k \binom{n-t-2}{k-t-2}\right) \\
\quad \cdot \left((k+1) \binom{n-t-1}{k-t-1} + (t+1)k^2 \binom{n-t-2}{k-t-2}\right) \\
\leq 2(k+1) \binom{n-t-1}{k-t-1}^2 + (2(t+1)^2(k+1)) \binom{n-t-2}{k-t-2} \binom{n-t-1}{k-t-1} \\
+ (t+1)^3k^3 \binom{n-t-2}{k-t-2}^2.
\]

Note that $(t+1)(k+1) = tk + k + t + 1 \leq tk + 2k = (t+2)k$ and thereby

\[2(t+1)^2 + 2(t+1)^2k + 2(t+1)(t+2)^2 = 2(t+1)(t+3)k^2. \]

Then for $n \geq 4(t+2)^2k^2$,
\[
|\mathcal{F}| |\mathcal{G}| < (t+1)(k-t+1) \binom{n-t-1}{k-t-1}^2 + \frac{2(t+1)(t+3)k^2 \binom{n-t-1}{k-t-1}^2}{n-t-1} \\
\quad + \frac{(t+1)^3k^3 \binom{k-t-1}^2}{(n-t-1)^2} \binom{n-t-1}{k-t-1}^2 \\
\quad < (t+1)(k-t+1) \binom{n-t-1}{k-t-1}^2 + \frac{k-t-1}{2} \binom{n-t-1}{k-t-1}^2 + \frac{k-t-1}{4} \binom{n-t-1}{k-t-1}^2 \\
\quad = \left(\frac{t+7}{4}\right)(k-t+1) \binom{n-t-1}{k-t-1}^2.
\]

Now applying (1.18) with $c = 8(t+2)$, we conclude that
\[
|\mathcal{F}| |\mathcal{G}| < \left(\frac{t+7}{4}\right)(k-t+1) \frac{8(t+2)}{8(t+2)-2} \binom{n-t-1}{k-t-1}^2 = (t+2)(k-t+1) \binom{n-k-1}{k-t-1}^2 \\
\quad \leq \max \{ |\mathcal{A}(n,k,t)|^2, |\mathcal{H}(n,k,t)|^2 \}.
\]

Subcase 4.2. $A_1 \cup A_2$ is a sunflower with center of size t.

Without loss of generality, assume that $A_1 = \{[t] \cup \{a_1\}, \ldots, [t] \cup \{a_p\}\}$ and $A_2 = \{[t] \cup \{b_1\}, \ldots, [t] \cup \{b_q\}\}$. By Lemma 5.1 we see $p \leq k - t + 1$ and $q \leq k - t + 1$. If $p \leq 2$ or $q \leq 2$ holds, then
\[
|A_1||A_2| \leq 2(k-t+1) \leq \frac{1}{2}(t+2)(k-t+1) \leq \frac{1}{2} \max \{ (t+2)^2, (k-t+1)^2 \},
\]
contradicting (5.16). Thus we further assume that $p, q \geq 3$. Let $\mathcal{F}_0 = \mathcal{F}([t]), \mathcal{F}_1 = \mathcal{F} \setminus \mathcal{F}_0,$
$\mathcal{G}_0 = \mathcal{G}([t])$ and $\mathcal{G}_1 = \mathcal{G} \setminus \mathcal{G}_0$.

20
Claim 2. For each \(F \in \mathcal{F}_1 \), \(|F \cap [t]| = t - 1\) and \(\{b_1, \ldots, b_q\} \subset F \). Similarly, for each \(G \in \mathcal{G}_1 \), \(|G \cap [t]| = t - 1\) and \(\{a_1, \ldots, a_p\} \subset G \).

Proof. Indeed, simply note that \(|F \cap ([t] \cup \{b_j\})| \geq t \) for \(j = 1, \ldots, q \) and \([t] \not\subset F\), we see that \(|F \cap [t]| = t - 1\) and \(\{b_1, \ldots, b_q\} \subset F \).

By Claim 2, we see that

\[
|\mathcal{F}_1| \leq t \left(\frac{n - t - q + 1}{k - t - q + 1} \right) \leq t \left(\frac{n - t - 2}{k - t - 2} \right) \leq t \left(\frac{n - t - p + 1}{k - t - p + 1} \right) \leq t \left(\frac{n - t - 2}{k - t - 2} \right).
\]

By non-triviality, we know that \(\mathcal{F}_1 \neq \emptyset \neq \mathcal{G}_1 \). Fix some \(F \in \mathcal{F}_1 \). Then for every \(G_0 \in \mathcal{G}_0 \), since \(|G_0 \cap F| \geq t\) and \(|F \cap [t]| = t - 1\), \(G_0 \cap (F \setminus [t]) \neq \emptyset \). Therefore,

\[
|\mathcal{G}_0| \leq \left(\frac{n - t}{k - t} \right) - \left(\frac{n - t - |F \setminus [t]|}{k - t} \right) = \left(\frac{n - k - 1}{k - t} \right) = |H(n, k, t)| - t.
\]

Similarly,

\[
|\mathcal{F}_0| \leq \left(\frac{n - t}{k - t} \right) - \left(\frac{n - k - 1}{k - t} \right) = |H(n, k, t)| - t.
\]

Let \(\mathcal{K}_1 = \{F \setminus [t]: F \in \mathcal{F}_1\} \) and \(\mathcal{K}_2 = \{G \setminus [t]: G \in \mathcal{G}_1\} \). If \(|\mathcal{K}_1| = |\mathcal{K}_2| = 1\), then Claim 2 implies that \(|\mathcal{F}_1|, |\mathcal{G}_1| \leq t\). It follows that \(|\mathcal{F}| \mid \mathcal{G} \mid \leq |H(n, k, t)|^2\) and we are done. If at least one of \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) has size greater than one, without loss of generality, assume that \(|\mathcal{K}_1| \geq 2\) and let \(K_1, K_2 \in \mathcal{K}_1 \). Then \(F \cap K_i \neq \emptyset \) for \(i = 1, 2\) and for each \(F \in \mathcal{F}_0\). Therefore \(F \cap (K_1 \cap K_2) \neq \emptyset \) or \(F \cap (K_1 \setminus K_2) \neq \emptyset \), \(F \cap (K_2 \setminus K_1) \neq \emptyset \). It follows that

\[
|\mathcal{F}_0| \leq \left(\frac{n - t}{k - t} \right) - \left(\frac{n - k + 1 \mid K_1 \cap K_2 \mid}{k - t} \right) + |K_2 \setminus K_1||K_1 \setminus K_2| \left(\frac{n - t - 2}{k - t - 2} \right).
\]

Let \(|K_2 \setminus K_1| = x\). Note that \(|K_1| = |K_2| = k - t + 1\) implies that \(1 \leq x \leq k - t \). Define

\[
\varphi(x) = \left(\frac{n - t}{k - t} \right) - \left(\frac{n - k - 1 + x}{k - t} \right) + x^{2} \left(\frac{n - t - 2}{k - t - 2} \right).
\]

Note that for \(n \geq 4k^2 \),

\[
\varphi'(x) = - \left(\frac{n - k - 1 + x}{k - t} \right) \sum_{i=0}^{k-t-1} \frac{1}{n - k - 1 + x - i} + 2x \left(\frac{n - t - 2}{k - t - 2} \right)
\]

\[
\leq - \left(\frac{n - k}{k - t} \right) \frac{k - t}{n - t} + 2(k - t) \left(\frac{n - t - 2}{k - t - 2} \right)
\]

\[
\leq - \frac{n - t - (k - t)^2}{n - t} \left(\frac{n - t}{k - t} \right) \frac{k - t}{n - t} + 2(k - t) \left(\frac{n - t - 2}{k - t - 2} \right)
\]

\[
\leq - \frac{1}{2} \left(\frac{n - t - 1}{k - t - 1} \right) + 2(k - t) \left(\frac{n - t - 2}{k - t - 2} \right).
\]

\[
< 0.
\]
By $x \geq 1$, we infer
\[
|\mathcal{F}_0| \leq \varphi(1) = \binom{n-t}{k-t} - \binom{n-k}{k-t} + \binom{n-t-2}{k-t-2}
\]
(5.22)
\[= |\mathcal{H}(n,k,t)| - \binom{n-k-1}{k-t-1} + \binom{n-t-2}{k-t-2}.\]

Thus by (5.22), (5.19) and (5.20) we have
\[
|\mathcal{F}| G = (|\mathcal{F}_0| + |\mathcal{F}_1|) (|\mathcal{G}_0| + |\mathcal{G}_1|)
\]
\[\leq \left(|\mathcal{H}(n,k,t)| - \binom{n-k-1}{k-t-1} + (t+1) \binom{n-t-2}{k-t-2} \right)
\[\cdot \left(|\mathcal{H}(n,k,t)| + t \binom{n-t-2}{k-t-2} \right)
\[= |\mathcal{H}(n,k,t)|^2 + |\mathcal{H}(n,k,t)| \left((2t+1) \binom{n-t-2}{k-t-2} - \binom{n-k-1}{k-t-1} \right)
\[+ t(t+1) \binom{n-t-2}{k-t-2}^2 - t \binom{n-k-1}{k-t-1} \binom{n-t-2}{k-t-2}.\]
(5.23)

Applying (1.7) with $c = 2$, we have
\[
\binom{n-k-1}{k-t-1} \geq \frac{c-1}{c} \binom{n-t-1}{k-t-1} = \frac{1}{2} \binom{n-t-1}{k-t-1}.
\]

Then for $n \geq 4(t+1)k$,
\[
(2t+1) \binom{n-t-2}{k-t-2} - \binom{n-k-1}{k-t-1} \leq (2t+1) \binom{n-t-2}{k-t-2} - \frac{1}{2} \binom{n-t-1}{k-t-1}
\leq \left(\frac{n-t-2}{k-t-2} \right) \left(2t + 1 - \frac{n-t-1}{2(k-t-1)} \right)
\[< 0,
\]
(5.24)

and
\[
t(t+1) \binom{n-t-2}{k-t-2}^2 - t \binom{n-k-1}{k-t-1} \binom{n-t-2}{k-t-2}
\leq t(t+1) \binom{n-t-2}{k-t-2}^2 - \frac{1}{2} \binom{n-t-1}{k-t-1} \binom{n-t-2}{k-t-2}
\geq t \left(\frac{n-t-2}{k-t-2} \right)^2 \left(t+1 - \frac{n-t-1}{2(k-t-1)} \right)
\[< 0.
\]
(5.25)

By (5.23), (5.24) and (5.25), we conclude that $|\mathcal{F}| G < |\mathcal{H}(n,k,t)|^2$ and the theorem is proven.

Acknowledgement. We would like to thank the referees for their helpful comments and detailed corrections. The second author was supported by the National Natural Science Foundation of China (No. 11701407).
References

[1] M. Cao, M. Lu, B. Lv, K. Wang, Some intersection theorems for finite sets, arXiv:2205.10789, 2022.

[2] D.E. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combin. Theory, Ser. A 17 (1972), 254–255.

[3] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313–320.

[4] P. Frankl, The Erdős-Ko-Rado theorem is true for $n = \text{ckt}$, Coll. Math. Soc. J. Bolyai 18 (1978), 365–375.

[5] P. Frankl, On intersecting families of finite sets, J. Combin. Theory, Ser. A 24 (1978), 146–161.

[6] P. Frankl, A new short proof for the Kruskal-Katona theorem, Discrete Math. 48 (1984), 327–329.

[7] P. Frankl, Erdős-Ko-Rado theorem with conditions on the maximal degree, J. Comb. Theory, Ser. A 46 (1987) 252–263.

[8] P. Frankl, The shifting technique in extremal set theory, Surveys in Combinatorics 123 (1987), 81–110.

[9] P. Frankl, J. Wang, A product version of the Hilton-Milner Theorem, arXiv:2206.07218, 2022.

[10] A.J.W. Hilton, The Erdős-Ko-Rado Theorem with valency conditions, unpublished manuscript, 1976.

[11] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. 15 (1977), 369–376.

[12] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math. 18 (1967), 369–384.

[13] G.O.H. Katona, A theorem on finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966, Akad. Kiadó, Budapest, 1968; Classic Papers in Combinatorics, 1987, pp. 381–401.

[14] P. Keevash, Shadows and intersections: stability and new proofs, Adv. Math. 218 (2008), 1685–1703.

[15] J.B. Kruskal, The number of simplices in a complex, in: Math. Optimization Techniques, California Press, Berkeley, 1963, pp. 251–278.

[16] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory, Ser. A 43 (1986), 85–90.

[17] R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247–257.