MOEBIUS-WALSH CORRELATION BOUNDS AND AN ESTIMATE OF MAUDUIT AND RIVAT

J. BOURGAIN

ABSTRACT. We establish small correlation bounds for the Moebius function and the Walsh system, answering affirmatively a question posed by G. Kalai [Ka]. The argument is based on generalizing the approach of Mauduit and Rivat [M-R] in order to treat Walsh functions of ‘large weight’, while the ‘small weight’ case follows from recent work due to B. Green [Gr]. The conclusion is an estimate uniform over the full Walsh system. A similar result also holds for the Liouville function.

§0. Introduction

Fix a large integer λ and restrict the Moebius function μ to the interval $[1, 2^\lambda] \cap \mathbb{Z} = \Omega$. Identifying Ω with the Boolean cube $\{0, 1\}^\lambda$ by binary expansion $x = \sum_{0 \leq j < \lambda} x_j 2^j$, the Walsh system $\{w_A : A \subset \{0, \ldots, \lambda - 1\}\}$ is defined by $w_\varphi = 1$ and

$$w_A(x) = \prod_{j \in A} (1 - 2x_j) = e^{i\pi \sum_{j \in A} x_j}. \quad (0.1)$$

The Walsh functions on Ω form an orthonormal basis (the character group of $(\mathbb{Z}/2\mathbb{Z})^\lambda$) and given a function f on Ω, we write

$$f = \sum_{A \subset \{0, \ldots, \lambda - 1\}} \hat{f}(A) w_A \quad (0.2)$$

where $\hat{f}(A) = 2^{-\lambda} \sum_{n \in \Omega} f(n) w_A(n)$ are the Fourier-Walsh coefficients of f. Understanding the size and distribution of those coefficients is well-known to be important to various issues, in particular in complexity theory and computer science. Roughly speaking, a $F - W$ spectrum which is ‘spread out’ indicates a high level of complexity for the function f. We do not elaborate on this theory here and refer the reader to

This research was partially supported by NSF grants DMS-0808042 and DMS-0835373.
the extensive literature on the subject; see also the preprint of B. Green [Gr], which motivated this Note.

Returning to the Moebius function and the so-called ‘Moebius randomness law’ it seems therefore reasonable to expect that $\mu|\Omega$ will have a $F-W$ spectrum that is not localized. More precisely, we establish the following uniform bound on its $F-W$ coefficients, answering affirmatively a question posed by G. Kalai.

Theorem 1. For λ large enough,

$$\max_{A \subset \{0, \ldots, \lambda-1\}} \left| \sum_{n<2^\lambda} \mu(n)w_A(n) \right| < 2^{\lambda - \lambda^{1/10}}$$

(a similar estimate is also valid for the Liouville function).

The proof of (0.3) involves different arguments, depending on the size $|A|$. Roughly speaking, one distinguishes between the case $|A| = o(\sqrt{\lambda})$ and $|A| \gtrsim \sqrt{\lambda}$. In the first case, B. Green already obtained an estimate of the type (0.3), see [Gr]. Part of the technique used in [Gr] is borrowed from Harman and Katai’s work [H-K] on prescribing binary digits of the primes. Let us point out that in this range the problem of estimating the correlation of μ with a Walsh function is reduced to estimates on the usual Fourier spectrum of μ (by an expansion of w_A in the trigonometric system). The latter is then achieved either by means of Dirichlet L-function theory (when the argument α is close to a rational $\frac{a}{q}$ with sufficiently small denominator q) or by Vinogradov’s estimate when q is large. At the other end of the spectrum, when $A = \{0, \ldots, \lambda\}$, Mauduit and Rivat proved that

$$\left| \sum_{n<2^\lambda} \Lambda(n)\tilde{w}_A(n) \right| < 2^{(1-\varepsilon)\lambda}$$

for some $\varepsilon > 0$.

Here $\Lambda(n)$ stands for the Van Mangold function ([M-R]). Their motivation was the solution to a problem of Gelfond on the uniform distribution of the sum of the binary digits of the primes. Of course, their argument gives a similar bound for the Moebius
function as well. Thus
\[\left| \sum_{n<2^\lambda} \mu(n)\widehat{w_{\{0,\ldots,\lambda-1\}}} (n) \right| < 2^{(1-\varepsilon)\lambda}. \]
(0.5)

A remarkable feature of the [M-R] method is that the usual type-I, type-II sum approach in the study of sums
\[\sum_{n<X} \Lambda(n)f(n) \quad \text{or} \quad \sum_{n<X} \mu(n)f(n) \]
is applied directly to \(f = w_{\{1,\ldots,\lambda\}} \) without an initial conversion to additive characters (as done in [H-K] and [Gr]). The main idea in what follows is to generalize the Mauduit-Rivat argument in order to treat all Walshes \(w_A \) provided \(A \) is not too small (the latter case being captured by [Gr]).

Needless to say, the \(2^{-\lambda^{1/10}} \)-saving in (0.3) can surely be improved (this is an issue concerning the treatment of low-weight Walsh functions) and no effort has been made in this respect. We also observe that, assuming \(GRH \), (0.3) may be improved to

Theorem 2. Under \(GRH \), assuming \(\lambda \) large, we have
\[\max_{A \subset \{0,\ldots,\lambda-1\}} \left| \sum_{n<2^\lambda} \mu(n)w_A(n) \right| < 2^{\lambda \left(1 - \frac{c}{(\log \lambda)^2}\right)}. \]
(0.6)

We will assume the reader familiar with the basic technique, going back to Vinogradov, of type-I and type-II sums, to which sums \(\sum_{n<X} \mu(n)f(n) \) may be reduced; see [I-K] or [M-R]. In fact, we will rely here on the same version as used in [M-R] (see [M-R], Lemma 1). Otherwise, besides referring to the work of B. Green for \(|A| \) small, our presentation is basically self-contained. In particular, all the required lemmas pertaining to bounds on Fourier coefficients of Walsh functions are proven (they include estimates similar to those needed in [M-R] and also some additional ones) and are presented in \(\S 1 \) of the paper.
1. Estimates on Fourier coefficients of Walsh functions

For $A \subset \{0, \ldots, \lambda - 1\}$ and $x = \sum j x_j 2^j \in [1, 2^\lambda] \cap \mathbb{Z}$

$$w_A(x) = \prod_{j \in A} (1 - 2x_j) = e^{i\pi \sum_{j \in A} x_j} = \prod_{j \in A} h\left(\frac{x}{2^{j+1}}\right)$$ \quad (1.0)

where $h : \mathbb{R} \to \{1, -1\}$ is the 1-periodic function

$$
\begin{cases}
 h = 1 & \text{if } 0 \leq x < \frac{1}{2} \\
 h = -1 & \text{if } \frac{1}{2} \leq x < 1
\end{cases}
$$

For $x \in \mathbb{Z}$,

$$h\left(\frac{x}{2^j + 1}\right) = \sum_{|r| < 2^j+1} a_{r,j} e\left(\frac{rx}{2^{j+1}}\right) \text{ with } \sum |a_r| \lesssim j.$$

It follows that

Lemma 1. $w_A(x) = \sum_{k < 2^\lambda} \hat{w}_A(k) e\left(\frac{kx}{2}\right)$ with

$$\sum |\hat{w}_A(k)| < (\mathcal{C}\lambda)^{|A|}.$$ \quad (1.1)

From the second equality in (1.0), also

$$\hat{w}_A(k) = 2^{-\lambda} \sum_{\{x_j\}} e^{i\pi \sum_{j \in A} x_j} e^{2\pi i k \sum x_j 2^j} = \prod_{j \not\in A} \left(\frac{1 + e(k2^j - \lambda)}{2}\right) \prod_{j \in A} \left(\frac{1 - e(k2^j - \lambda)}{2}\right)$$

and

$$|\hat{w}_A(k)| = \prod_{j \not\in A} |\cos \pi k 2^j - \lambda| \prod_{j \in A} |\sin \pi k 2^j - \lambda|$$ \quad (1.2)

Lemma 2. $||\hat{w}_A||_\infty \lesssim 2^{-c|A|}$ for some constant $c > 0$. \quad (1.3)

Proof. Use (1.2).

Taking some $i_0 \in A$ and assuming

$$\left| \sin \pi \frac{k}{2^\lambda - i_0} \right| \approx 1, \text{ hence } \left| \frac{k}{2^\lambda - i_0} - \frac{1}{2} \right| \approx 0$$
it follows that either
\[\left\| \frac{k}{2^{\lambda-i_0-1}} - \frac{1}{4} \right\| \approx 0 \]
or
\[\left\| \frac{k}{2^{\lambda-i_0-1}} - \frac{3}{4} \right\| \approx 0 \]
and in either case
\[\left| \cos \pi \frac{k}{2^{\lambda-i_0-1}} \right|, \left| \sin \pi \frac{k}{2^{\lambda-i_0-1}} \right| \approx \frac{1}{\sqrt{2}}. \]
The conclusion follows from (1.2). \qed

In addition to (1.1), we have the bound

Lemma 3.
\[\sum_{k < 2^{\lambda}} |\hat{w}_A(k)| \lesssim 2^{(\frac{3}{2}-c)\lambda}. \] \hspace{1cm} (1.4)

for some constant \(c > 0 \).

Proof. We have to estimate
\[\sum_{k \in \mathbb{Z}/2^{\lambda} \mathbb{Z}} \prod_{i \leq \lambda} \left| \cos \pi \left(\frac{u_i}{2} + \frac{k}{2^{\lambda-i}} \right) \right| \] \hspace{1cm} (1.5)
where \(u_i = 1 \) if \(i \in A \) and \(u_i = 0 \) if \(i \notin A \).

Perform a shift \(k \to k + c2^{\lambda-2} + d2^{\lambda-1} \) with \(c, d = 0, 1 \).

This gives
\[\sum_{k \in \mathbb{Z}/2^{\lambda-2} \mathbb{Z}} \prod_{2 \leq i \leq \lambda} \left| \cos \pi \left(\frac{u_i}{2} + \frac{k}{2^{\lambda-i}} \right) \right|. \] \hspace{1cm} (*)
with
\[
(*) = \frac{1}{4} \sum_{c,d=0,1} \left| \cos \pi \left(\frac{u_0}{2} + \frac{k}{2^\lambda} + \frac{c}{4} + \frac{d}{2} \right) \right| \left| \cos \pi \left(\frac{u_1}{2} + \frac{k}{2^\lambda - 1} + \frac{c}{2} \right) \right|
\]
\[= \frac{1}{4} \sum_{c=0,1} \left(\left| \cos \pi \left(\frac{u_0}{2} + \frac{k}{2^\lambda} + \frac{c}{4} \right) \right| + \left| \sin \pi \left(\frac{u_0}{2} + \frac{k}{2^\lambda} + \frac{c}{4} \right) \right| \right) \left| \cos \pi \left(\frac{u_1}{2} + \frac{k}{2^\lambda - 1} + \frac{c}{2} \right) \right|
\]
\[= \frac{1}{4} \left\{ (|\cos \phi| + |\sin \phi|) \cdot \left| \cos \left(\frac{\pi u_1}{2} + 2\phi \right) \right| + \frac{1}{\sqrt{2}} (|\cos \phi - \sin \phi| + |\sin \phi + \cos \phi|) \cdot \left| \sin \left(\frac{\pi u_1}{2} + 2\phi \right) \right| \right\}
\]
where \(\phi = \pi \left(\frac{u_0}{2} + \frac{k}{2^\lambda} \right) \). Clearly
\[
(1.6) \leq \frac{1}{4} \left\{ (1 + \sin 2\phi) \frac{1}{\sqrt{2}} \left| \cos \left(2\phi \right) \right| + (1 + \cos 2\phi) \frac{1}{\sqrt{2}} \left| \sin \left(2\phi \right) \right| \right\}
\]
\[\leq \frac{1}{4} \sqrt{2 + \sqrt{2}}.
\]
Iterating, we obtain the bound
\[
\leq \left(\sqrt{2 + \sqrt{2}} \right)^{\lambda/2}
\]
and hence (1.4). \(\square \)

Lemma 4. Let \(r < \lambda, a = 0, 1, \ldots, 2^r - 1 \). Then
\[
\sum_{k \equiv a (mod \, 2^r)} |\hat{w}_A(k)| \lesssim 2^{(\frac{1}{2} - c)(\lambda - r)}.
\] (1.7)

Proof. Writing \(k = a + 2^r k_1 \) with \(k_1 < 2^{\lambda - r} \),
\[
|\hat{w}_A(k)| = \prod_{i < \lambda - r} \left| \cos \pi \left(\frac{u_i}{2} + \frac{a}{2^\lambda - i} + \frac{k_1}{2^\lambda - i - r} \right) \right| \prod_{i \geq \lambda - r} \left| \cos \pi \left(\frac{u_i}{2} + \frac{a}{2^\lambda - i} \right) \right|
\]
\[\leq \prod_{i < \lambda - r} \left(\left| \cos \pi \left(\frac{u_i}{2} + \frac{k_1}{2^\lambda - r - i} \right) \right| + 2^{-\lambda + i + r} \right).
\] (1.8)
For fixed k_1, denote

$$B(k_1) = \left\{ i < \lambda - r; \left| \cos \pi \left(\frac{u_i}{2} + \frac{k_1}{2\lambda - r - i} \right) \right| < \left(\frac{1}{\sqrt{2}} \right)^{\lambda - r - i} \right\}$$

Hence, if $i \not\in B_{k_1}$

$$\left| \cos \pi \left(\frac{u_i}{2} + \frac{k_1}{2\lambda - r - i} \right) \right| < \left(1 + \left(\frac{1}{\sqrt{2}} \right)^{\lambda - r - i} \right) \left| \cos \pi \left(\frac{u_i}{2} + \frac{k_1}{2\lambda - r - i} \right) \right|$$

and if $i \in B_{k_1}$

$$\left| \cos \pi \left(\frac{u_i}{2} + \frac{k_1}{2\lambda - r - i} \right) \right| < \left(1 + 2 \left(\frac{1}{\sqrt{2}} \right)^{\lambda - r - i} \right) \left| \sin \pi \left(\frac{u_i}{2} + \frac{k_1}{2\lambda - r - i} \right) \right|.$$

Thus certainly

$$|\widehat{w}_A(k)| \lesssim \sum_{B \subset \{0, 1, \ldots, \lambda - r - 1\}} \left(\frac{1}{\sqrt{2}} \right)^{\sum_{i \in B} (\lambda - r - i)} \prod_{i \in B, i < \lambda - r} \left| \cos \pi \left(\frac{u_i}{2} + \frac{k_1}{2\lambda - r - i} \right) \right| \prod_{i \in B} \left| \sin \pi \left(\frac{u_i}{2} + \frac{k_1}{2\lambda - r - i} \right) \right|. \tag{1.9}$$

Given $B \subset [0, \lambda - r - 1]$, define $B_1 \subset [0, \lambda - r - 1]$ as

$$B_1 = (B \cap [u_i = 0]) \cup (B^c \cap [u_i = 1]).$$

Hence

$$(1.9) = \sum_B \left(\frac{1}{\sqrt{2}} \right)^{\sum_{i \in B} (\lambda - r - i)} |\widehat{w}_{B_1}(k_1)|. \tag{1.10}$$

Summation of (1.10) over $k_1 < 2^\lambda - r$ and using the bound (1.4) with λ replaced by $\lambda - r$ clearly gives (1.7)

Next, we also need the following ‘approximation property’ for shifts

Lemma 5. Let $A \subset [\lambda - \sigma, \lambda] \cap \mathbb{Z}$.

Then

$$\sum_{k < 2^\lambda} |\widehat{w}_A(k)| < C^{(\log \lambda)^2} (2\sigma)^{\frac{1}{2} - c}. \tag{1.11}$$
Moreover, there is a bounded function W_A on $[0, \lambda] \cap \mathbb{Z}$ satisfying $|\hat{W}_A| \leq |\hat{w}_A|$ and

\begin{equation}
2^{-\lambda} \sum_{x < 2^\lambda} |W_A(x) - w_A(x)|^2 \left(\frac{1}{2} \right)^{1/2} < 2^{-c} \tag{1.12}
\end{equation}

\begin{equation}
\hat{W}_A(k) = 0 \text{ if } |k| > 2^{\sigma+t} \tag{1.13}
\end{equation}

Here $t \in \mathbb{Z}$ is a parameter satisfying $C(\log \lambda)^2 < t < \frac{1}{2} (\lambda - \sigma)$.

Proof. Writing $k = k_0 + 2^\sigma k_1$ with $k_0 < 2^\sigma, |k_1| < 2^{\lambda-\sigma-1}$ and setting again $u_i = 1$ if $i \in A$, $u_i = 0$ if $i \notin A$, we obtain

\begin{equation}
|\hat{w}_A(k)| = \prod_{i < \lambda - \sigma} \cos \pi \left(\frac{k_0 + 2^\sigma k_1}{2^{\lambda-i}} \right) \cdot \prod_{\lambda - \sigma \leq i < \lambda} \cos \pi \left(\frac{u_i + k_0}{2^{\lambda-i}} \right) \tag{1.14}
\end{equation}

\begin{equation}
= (1.14).|\hat{w}_{A-\lambda+\sigma}(k_0)|. \tag{1.15}
\end{equation}

where

\begin{equation}
A - \lambda + \sigma \subset [0, \sigma] \cap \mathbb{Z}.
\end{equation}

We treat (1.14) as in the proof of Lemma 4, obtaining a bound

\begin{equation}
|(1.14)| < \sum_{B \subset \{0,1,\ldots,\lambda-\sigma-1\}} \left(\frac{1}{\sqrt{2}} \right)^{\sum_{i \in B} (\lambda - \sigma - i)} |\hat{w}_B(k_1)|. \tag{1.16}
\end{equation}

From (1.1), certainly

\begin{equation}
\sum_{k_1 < 2^{\lambda-\sigma}} |\hat{w}_B(k_1)| < (C\lambda)^{|B|} \tag{1.17}
\end{equation}

and substitution of (1.17) in (1.16) implies by (1.15)

\begin{equation}
\|\hat{w}_A\|_1 \leq \|\hat{w}_{A-\lambda+\sigma}\|_1 \cdot \sum_B \left(\frac{1}{\sqrt{2}} \right)^{\sum_{i \in B} (\lambda - \sigma - i)} (C\lambda)^{|B|} \tag{Lemma 3}
\end{equation}

\begin{equation}
< (2^\sigma)^{\frac{1}{2}-c} C(\log \lambda)^2 \tag{1.11}
\end{equation}

which is (1.11).
Next, let \(C(\log \lambda)^2 < \rho < \frac{1}{2}(\lambda - \sigma) \) and estimate

\[
\sum_{k_1} \min_{B \leq \lambda - \sigma - \rho} \left(\frac{1}{\sqrt{2}} \right)^{\frac{\lambda - \sigma - i}{2}} |\hat{w}_B(k_1)| \lesssim 2^{-\rho/4}. \tag{1.18}
\]

If

\[
B \subset [\lambda - \sigma - \rho, \lambda - \sigma]
\]

we establish a bound on \(\hat{w}_B(k_1) \). Write

\[
|\hat{w}_B(k_1)| = \prod_{i < \lambda - \sigma - \rho} \left| \cos \pi \frac{k_1}{2^{\lambda - \sigma - i}} \right| \prod_{\lambda - \sigma - \rho \leq i < \lambda - \sigma} \left| \cos \pi \left(\frac{v_i}{2} + \frac{k_1}{2^{\lambda - \sigma - i}} \right) \right|
\]

with \(v_i = 0, 1 \) if \(i \notin B, i \in B \). Hence, for \(4^\rho < k_1 < 2^{\lambda - \sigma - 1} \)

\[
|\hat{w}_B(k_1)| \leq \prod_{\rho < j \leq \lambda - \sigma} \left| \cos \frac{v_j}{2^j} \frac{k_1}{2^j} \right| < k_1^{-c} \tag{1.20}
\]

for some \(c < 0 \), as we verify by dyadic expansion of \(k_1 \).

It follows that for \(4^\rho \leq K_1 < 2^{\lambda - \sigma} \)

\[
\sum_{K_1 < |k_1| < 2^{\lambda - \sigma}} \left\{ \sum_{B(1.19)} \left(\frac{1}{\sqrt{2}} \right)^{\frac{\lambda - \sigma - i}{2}} |\hat{w}_B(k_1)| \right\}^2 <
\]

\[
< C \sum_{B(1.19)} \sum_{K_1 < |k_1| < 2^{\lambda - \sigma}} \left(\frac{1}{\sqrt{2}} \right)^{\frac{\lambda - \sigma - i}{2}} |\hat{w}_B(k_1)|^2 \]

\[
< K_1^{-c} \sum_{B} \left(\frac{1}{\sqrt{2}} \right)^{\frac{\lambda - \sigma - i}{2}} \| \hat{w}_B \|_1 \]

\[
< K_1^{-c} C(\log \lambda)^2. \tag{1.21}
\]

Define \(W_A \) as Fourier restriction of \(w_A \). More specifically, let

\[
W_A(x) = \sum \eta(k)\hat{w}_A(k) e \left(\frac{kx}{2^\lambda} \right) \tag{1.22}
\]

where \(\eta : \mathbb{R} \to [0, 1] \) is trapezoidal with \(\eta(z) = 1 \) for \(|z| < K_1 2^\sigma, \eta(z) = 0 \) for \(|z| \geq 2K_1 2^\sigma \). Hence \(\|W_A\|_\infty \leq 3 \) and \(\hat{w}_A(k) = \hat{w}_A(k) \) for \(|k| \leq K_1 2^\sigma, \hat{w}_A(k) = 0 \) for \(|k| \geq 2K_1 2^\sigma \).
From the preceding
\[
\|\hat{W}_A - \hat{w}_A\|_2^2 \leq \sum_{k_0 < 2^\sigma} |\hat{W}_{A-\lambda - \sigma}(k_0)|^2 \sum_{K_1 \leq |k| < 2^\lambda - \sigma} (1.16)^2
\]
\[
\leq 2^{-\rho/2 + K_1^{-c} C^2 (\log \lambda)^2}.
\]
Taking \(K_1 = 2^{t-1}\), \(\rho = t^2\), Lemma 5 follows. \(\square\)

The role of \(W_A\) is to provide a substitute for \(w_A\) with localized Fourier transform.

Lemma 6. If \(J \subset [1, 2^\lambda[\) is an interval, there is a bound
\[
\sum_{k \in J} |\hat{w}_A(k)| \lesssim |J|^{1/2 - c}.
\]

Proof. Write
\[
|\hat{w}_A(k)| = \prod_{i < \lambda} \left| \cos \left(\frac{u_i}{2} + \frac{k}{2^\lambda - i} \right) \right|
\]
with \(u_i = 0 (u_i = 1)\) if \(i \notin A (i \in A)\).

Assume \(2^m \sim |J| < 2^m\). Obviously
\[
|\hat{w}_A(k)| \leq \prod_{\lambda - m \leq i < \lambda} \left| \cos \left(\frac{u_i}{2} + \frac{k}{2^\lambda - i} \right) \right| = \prod_{0 \leq i_1 < m} \left| \cos \left(\frac{u_{i_1 + \lambda - m}}{2} + \frac{k}{2m - i_1} \right) \right|
\]
\[
= |\hat{w}_{A_1}(k)|
\]
where
\[
A_1 = \{0 \leq i_1 < m; i_1 \in A + m - \lambda \}.
\]
Hence, since \(\hat{w}_{A_1}\) is \(2^m\)-periodic
\[
\sum_{k \in J} |\hat{w}_A(k)| \leq \sum_{k \in J} |\hat{w}_{A_1}(k)| \leq \sum_{k < 2^m} |\hat{w}_{A_1}(k)| \leq ||\hat{w}_{A_1}||_1 < 2^m(1/2 - c)
\]
by Lemma 3. \(\square\)

2. **Type-II sums**

Let \(X = 2^\lambda\), \(S \subset \{0, \ldots, \lambda - 1\}\), \(w_S(x) = \prod_{i \in S} (1 - 2x_i)\) with \(x = \sum x_i 2^i\).

Specify ranges \(M \sim 2^\mu, N \sim 2^\nu\) such that \(M \leq N\) and \(M.N \sim X\).
Our goal is to bound bilinear sums of the form \(\sum_{m \sim M} \alpha_m \beta_n w_S(m, n) \), where \(|\alpha_m|, |\beta_n| \leq 1\) are arbitrary coefficients.

We fix a relatively small dyadic integer \(L = 2^\rho \) (to be specified). We assume \(\rho < \frac{\mu}{100} \), noting that otherwise our final estimate (2.29) is trivial.

Following [M-R], we proceed with the initial reduction of the problem, crucial to our analysis.

Estimate
\[
\left| \sum_{m \sim M} \sum_{n \sim N} \alpha_m \beta_n w_S(m, n) \right| \leq \sum_{m \sim M} \left| \sum_{n \sim N} \beta_n w(m, n) \right| .
\] (2.1)

Fix \(K \), such that \(L2^K < N \) and write using Cauchy’s inequality
\[
\left| \sum_{n \sim N} \beta_n w(m, n) \right| \leq \frac{1}{L} \sum_{n \sim N} \left| \sum_{\ell = 1}^L \beta_{n + \ell 2^K} w(m + \ell 2^K) \right|
\]
\[
\left(\sum_{n \sim N} \beta_n w(m, n) \right)^2 \lesssim \frac{N}{L} \left[\sum_{|\ell| < L} \left| \sum_{n \sim N} \beta_n \overline{\beta}_{n + \ell 2^K} w(m, n) w(m + \ell 2^K) \right| \right].
\]

Hence, by another application of Cauchy’s inequality, we obtain
\[
(2.1)^2 \lesssim \frac{M.N}{L} \sum_{|\ell| < L} \left| \sum_{m \sim M} \sum_{n \sim N} w_S(m, n) w_S(m + \ell 2^K) \right| .
\] (2.2)

Comparing the binary expansions of \(mn \) and \(mn + \ell m 2^K \), the \(K \) first digits remain and we can assume that also digits \(j > K + \mu + \rho + \varepsilon \rho \) are unchanged provided in (2.2) we introduce an additional error term of the order \(2^{-\varepsilon \rho} M^2 N^2 \) (cf. Lemma 5 in [M-R]). Here \(\varepsilon > 0 \) remains to be specified and we assume \(\varepsilon \rho \in \mathbb{Z}_+ \).

Therefore we may write, up to above error
\[
w_S(mn)w_S(m(n + \ell 2^K)) \quad \Rightarrow \quad w_{S'}(mn)w_{S'}(m(n + \ell 2^K))
\]
with
\[
S' = S \cap [K, K + \mu + \rho'] \quad \text{and} \quad \rho' = (1 + \varepsilon) \rho
\]
and in (2.2) we may replace \(w = w_S \) by \(w_{S'} \).

We will either choose \(K = 0 \) or \(\mu - \rho \leq K < \lambda - \mu - \rho \). Hence, by varying \(K \), the intervals \([K, K + \mu + \rho]\) will cover \([0, \lambda]\).

For \(K \neq 0 \), we approximate \(w_{S'} \) by \(W_{S'} \) given by Lemma 5, applied with \(\lambda \) replaced by \(K + \mu + \rho' \) and \(\sigma \) by \(\mu + \rho' \).

Take \(t = \varepsilon \rho \) where \(\rho \) is certainly assumed to satisfy

\[
\frac{\mu}{100} > \rho \gg (\log \lambda)^2.
\]

Thus from (1.12)

\[
\sum_{x<X} |w_{S'}(x) - W_{S'}(x)|^2 < 2^{-ct}X.
\]

From the preceding (since \(W_{S'} \) is bounded)

\[
(2.2) \lesssim \frac{X}{L} \sum_{\substack{n \sim N \atop 0 < \ell < L}} \left| \sum_{m \sim M} W_{S'}(m.n)W_{S'}(m(n + \ell 2^K)) \right| + X \sum_{\substack{m \sim M \atop n \sim N}} |w_{S'}(mn) - W_{S'}(m.n)| + X^2 L^{-\epsilon} \tag{2.3}
\]

where

\[
(2.4) < X \left(\sum_{x<X} |w_{S'}(x) - W_{S'}(x)|^2 \right)^{\frac{1}{4}} \left(\sum_{x<X} d(x)^2 \right)^{\frac{1}{4}} < L^{-c\epsilon} X^2 (\log X)^C < L^{-c\epsilon} X^2.
\]

For \(K = 0 \)

\[
w_{S'}(x) = \sum_{k<2^{\mu+\rho'}} \tilde{w}_{S'}(k)e\left(\frac{kx}{2^{\mu+\rho'}}\right) \tag{2.5}
\]

where, from Lemma 2 and Lemma 3 applied with \(\lambda \) replaced by \(\mu + \rho' \)

\[
\|\tilde{w}_{S'}\|_\infty < 2^{-c|S'|} \tag{2.6}
\]

and

\[
\|\tilde{w}_{S'}\|_1 < 2^{\left(\frac{1}{2}-c\right)(\mu+\rho')} < 2^{\left(\frac{1}{2}-c\right)(\mu+\rho)} \tag{2.7}
\]
for ε small enough.

For $K \neq 0$,

$$W_S'(x) = \sum_{|k|<2^{\mu+\rho'+t}} \hat{W}_S'(k) e \left(\frac{kx}{2^{\mu+\rho'+K}} \right)$$

(2.8)

where

$$\|\hat{W}_S'\|_\infty \leq \|\hat{w}_S'\|_\infty < 2^{-c|S'|}$$

(2.9)

and by (1.11) and our choice of ρ

$$\|\hat{W}_S'\|_1 < 2^{(\frac{1}{2}-c)(\mu+\rho)}.$$

(2.10)

Denoting by w either w_S' when $K = 0$ or W_S' for $\mu + \rho \leq K < \lambda - \mu - \rho$, substitution of (2.5), (2.8) and applying a smoothened m-summation gives for (2.3), with $M_1 = M^{1-\varepsilon_1}$

$$\frac{M^2N^2}{L} \sum_{|\ell| \leq L} \sum_{n \sim N} |\hat{w}(k)| |\hat{w}(k')| 1 \left[\| \frac{k \ell}{2^{\mu+\rho'+K}} \| < \frac{M_1}{\lambda} \right]$$

(2.11)

up to a negligible error term.

The condition

$$\left\| \frac{(k-k')n}{2^{\mu+\rho'+K}} - \frac{k'\ell}{2^{\mu+\rho'}} \right\| < \frac{1}{M_1}$$

(2.12)

has to be analyzed.

For $k = k'$ the contribution is

$$\frac{M^2N^2}{L} \sum_{|\ell| \leq L} \sum_{|k|<2^{\mu+\rho'+t}} |\hat{w}(k)|^2 1 \left[\| \frac{k \ell}{2^{\mu+\rho'}} \| < \frac{M_1}{\lambda} \right].$$

(2.13)

The $\ell = 0$ contribution in (2.2) is at most $\frac{M^2N^2}{L}$.

For $\ell \neq 0$, we get a bound

$$M^{2+\varepsilon_1}N^2L^2 \|\hat{w}\|_\infty^2 < M^2N^2L^2 \|\hat{w}\|_\infty^2 < X^2L^22^{-c|S'|}$$

(2.14)

from (2.6), (2.9) and choosing $\varepsilon_1 > 0$ small enough to ensure $\varepsilon_1 \lambda < \varepsilon \rho$.

In the sequel, we assume $k \neq k'$, $\ell \neq 0$.
Also, if in (2.11) for given \(k, k', \ell \) there are at most \(O(1) \) values of \(n \) satisfying (2.12), the resulting contribution is at most

\[
M^2 N \| \hat{w} \|_1^2 \leq M^2 N (ML)^{1-2\epsilon} < X^2 LN^{-c} \tag{2.15}
\]

since \(M \leq N \).

Returning to (2.11), consider first the case \(K = 0 \).

We estimate the contribution for

\[
(k - k', 2^{\mu + \rho'}) = 2'.
\]

Thus \(k - k' = k_1 2^r, (k_1, 2) = 1 \) and (2.12) becomes

\[
\left\| \frac{k_1 n}{2^{\mu + \rho' - r}} - \frac{k' \ell}{2^{\mu + \rho'}} \right\| < \frac{1}{M_1} \tag{2.16}
\]

implying also

\[
\left\| \frac{k' \ell}{2^r} \right\| < \frac{L^{1+2\epsilon}}{2^r}. \tag{2.17}
\]

It follows from (2.17) that there are at most \(L^{1+2\epsilon} \) possibilities for \(k' \) (mod \(2^r \)) and hence for \((k, k') \) (mod \(2^r \)).

For fixed \(k, k', \ell \), (2.16) determines \(n \) (mod \(2^{\mu + \rho' - r} \)) up to \(1 + L^{1+2\epsilon} 2^{-r} \) possibilities and hence \(n \) up to \(\sum_{a \equiv k (\text{mod } 2^r)} (1 + L^{1+2\epsilon} 2^{-r}) \) possibilities.

Thus the corresponding contribution to (2.11) is at most

\[
\frac{M^2 N}{L} \sum_{|\ell| \leq L} L^{1+2\epsilon} N 2^r \sum_{k \equiv a (\text{mod } 2^r)} \sum_{k' \equiv a (\text{mod } 2^r)} |\hat{w}(k)||\hat{w}(k')| \leq M N^2 (L + 2^r)L^{2\epsilon} \max_a \left[\sum_{k < 2^{\mu + \rho'}} \left| \hat{w}(k) \right|^2 \right]. \tag{2.18}
\]
MOEBIUS-WALSH CORRELATION BOUNDS AND AN ESTIMATE OF MAUDUIT AND RIVAT

From Lemma 4 applied with \(\lambda \) replaced by \(\mu + \rho' \)

\[
\begin{align*}
(2.18) & \lesssim MN^2(L + 2r)(2^{\mu + \rho' - r})^{1-c}L^{2\epsilon} \\
& = M^2N^2(L^22^{-r} + L)(ML2^{-r})^{-c}L^{3\epsilon}.
\end{align*}
\]

Hence, assuming

\[
ML2^{-r} > L^C
\]

we obtain the bound

\[
\frac{X^2}{L}.
\]

Next, assume

\[
ML2^{-r} < L^C.
\]

From the preceding, there are at most \(L^{1+4\epsilon}(ML2^{-r})^2 < L^C \) possibilities for \((k,k')\).

This gives the contribution

\[M^2N^2L^C\|\hat{w}\|_\infty^2 < L^C X^2 2^{-c|S'|} \]

and in conclusion (\(K = 0 \)) the bound

\[X^2(L^{-1} + L^C 2^{-c|S'|}). \]

Next, assume

\[
K \geq \mu - \rho.
\]

Return to (2.11). Fix \(\ell, k, k' \) with \(|k - k'| \sim \Delta k < ML^2 \). Letting \(n \) range over an interval of size \(\frac{ML^2K}{\Delta k} \), the number of possibilities for \(n \) in that interval is at most

\[1 + \frac{L^{1+2\epsilon}2^K}{\Delta k}. \]

Assume

\[
N \gtrsim \frac{ML^2K}{\Delta k}.
\]

The number of \(n \)'s satisfying (2.12) is at most (since \(L2^K \geq M > \frac{\Delta k}{L^2} \) by (2.23))

\[
\frac{N\Delta k}{ML^2K} \left(1 + \frac{L^{1+2\epsilon}2^K}{\Delta k} \right) < \frac{N}{M}L^2.
\]
This gives the contribution in (2.11)

\[
L^2MN^2\|\hat{w}\|^2_1 < L^2MN^2(ML^2)^{1-c} < X^2L^3M^{-c}.
\]

(2.24)

Next, assume

\[N \ll \frac{ML^2K}{\Delta k}. \]

From (2.12), for \(\ell, k, k' \) given, there are at most

\[1 + \frac{2^kL^3}{\Delta k} \sim \frac{2^kL^3}{\Delta k} \]

values of \(n \).

Also

\[
\left\| \frac{k'\ell}{2^{\mu+\rho'}} \right\| < \frac{1}{M_1} + \frac{\Delta k.N}{M.2^{\rho'.2^k}}.
\]

Since \(|k'| < 2^{\mu+\rho}L^2 \), there is some integer \(\ell_1, |\ell_1| < L^2 \) s.t.

\[
\left| \frac{k'\ell}{2^{\mu+\rho'}} - \ell_1 \right| < \frac{1}{M_1} + \frac{\Delta k.N}{M.2^{\rho'.2^k}}
\]

hence

\[
\left| k' - \ell_1 \frac{2^{\mu+\rho'}}{\ell} \right| < L^{1+2^\epsilon} + \frac{\Delta k.N}{2^k}.
\]

This restricts \(k' \) to at most \(L^2 \) intervals of size \(L^{1+2^\epsilon} + \frac{\Delta k.N}{2^k} \).

Using Lemma 6, we obtain the following bound for the contribution to (2.11)

\[
M^2NL^2 \left(L^{1+2^\epsilon} + \frac{\Delta k.N}{2^k} \right)^{1-c} \frac{2^kL^3}{\Delta k} \lesssim
\]

\[
\frac{M^2NL^22^k}{\Delta k} + M^2N^2L^5 \left(\frac{\Delta k.N}{2^k} \right)^{-c} < M^2N^2L^7 \left(\frac{2^k}{N.\Delta k} \right)^c.
\]

(2.25)

If we assume

\[\frac{N.\Delta k}{2^k} > L^c \]

(2.25) gives the bound

\[
\frac{X^2}{L}.
\]

(2.26)
Assume next
\[\frac{N \Delta k}{2^k} < L^C. \]

From the preceding, \(k' \) is restricted to \(L^C \) values and the corresponding contribution to (2.11) is bounded by
\[M^2 N^2 L^C \| \hat{w} \|_\infty^2 < X^2 L^C 2^{-c |S'|}. \]

(2.27)

Collecting previous bounds gives
\[(2.11) < X^2 \left(\frac{1}{L} + L^3 M^{-c} + L^C 2^{-c |S'|} \right) \]

(2.28)

and recalling (2.3), (2.4)
\[(2.1) < X \left(L^{-c \epsilon} + L^2 M^{-c} + L^C 2^{-c |S'|} \right). \]

(2.29)

In the estimate (2.29), \(S' \) depends on the choice of \(K \).

Recall that either \(K = 0 \) or \(\mu - \rho \leq K < \lambda - \mu - \rho \) and hence, varying \(K \), the intervals \([K, K + \mu + \rho]\) will cover \([0, \lambda - 1]\). Thus we may choose \(K \) as to ensure that
\[|S'| \geq \max |S \cap J| \geq \frac{\mu}{\lambda} |S| \]

(2.30)

with max taken over intervals \(J \subset [0, \lambda - 1] \) of size \(\mu \), in particular (2.29) implies
\[(2.1) < X \left(L^{-c \epsilon} + L^2 M^{-c} + L^C 2^{-c \frac{\mu}{\lambda} |S|} \right) \]

(2.31)

where \(L \) is a parameter.

For \(|S| \leq \frac{\lambda^{1/2}}{H} \) with \(H \gg 1 \) a parameter, we apply B. Green’s estimate (see [Gr])
\[\left| \sum_{x<2^k} w_S(x) \mu(x) \right| < \lambda e^{-cH}. \]

(2.32)

Thus we assume \(|S| > \frac{\lambda^{1/2}}{H} \). Taking \(L = 2^H \), it follows from (2.29), (2.31) that
\[(2.1) \lesssim X 2^{-c \epsilon H} \]

(2.33)

assuming either that
\[M > 2^{CH^2 \lambda^{1/2}} \]

(2.34)
or

\[M > C^H \text{ and } |S'| > CH \left(S' \text{ satisfying (2.30))}. \]

(2.35)

3. Type-I sums and conclusion

We use Lemma 1 from [M-R] but treat also some of the type-I sums as type-II sums. Indeed, according to (2.33), (2.34), only the range \(M < C H^2 \lambda^{1/2} \) remains to be treated.

Thus we need to bound

\[
\left| \sum_{m \sim M} \left| \sum_{n \sim N} w_S(mn) \right| \right| \leq N \sum_{m \sim M} \sum_{k \sim X} \left| \hat{w}_S(k) \right| \left| \sum_{n \sim N} e \left(\frac{kmn}{2^H} \right) \right|
\]

(3.1)

where \(M N \sim X = 2^\lambda, M < C H^2 \lambda^{1/2} \). We assume \(|S| > \frac{\lambda^{1/2}}{H} \).

Expanding in Fourier and using a suitable mollifier in the \(n \)-summation, we obtain

\[
(3.1) \leq N \sum_{m \sim M} \sum_{k \sim X} \left| \hat{w}_S(k) \right| \left| \sum_{n \sim N} e \left(\frac{kmn}{2^H} \right) \right|
\]

\[
< N \sum_{m \sim M} \sum_{k \sim X} \left| \hat{w}_S(k) \right| 1_{\left[\left| \frac{kmn}{2^H} \right| < \frac{\lambda^2}{N} \right]} + o(1) \quad (3.2)
\]

\[
< NM^2 \lambda^2 ||\hat{w}_S||_\infty \quad (3.2')
\]

\[
< XM2^{-c\lambda^{1/2}H^{-1}} \lambda^2. \quad (3.3)
\]

Taking \(H < \lambda^{1/10} \), (3.3) is certainly conclusive if \(M < C^H \). Hence recalling (2.35), we can assume that

\[\mu > H \text{ and } \max |S \cap J| < CH \]

(3.4)

for any interval \(J \subset \{0, \ldots, \lambda - 1\} \) of size \(\mu \), where \(M \sim 2^\mu \).

Assumption (3.4) will provide further information on \(\hat{w}_S \) that will be useful in exploiting (3.2).

Write

\[S = S_1 \cup S_2 \]

where \(S_1 = S \cap [0, \lambda - 2\mu] \) and \(S_2 = S \cap [\lambda - 2\mu, \lambda] \). Hence by (3.4),

\[|S_2| < CH. \]
Thus

\[w_{S_2}(x) = \prod_{j \in S_2} h\left(\frac{x}{2^{j+1}}\right) \]

\[= \sum_{k_2 \in \mathcal{A}_2} \hat{w}_{S_2}(k_2) e\left(\frac{k_2 x}{2^\lambda}\right) + O_L(2^{-H}) \] \hspace{1cm} (3.5)

where the set \(\mathcal{A}_2 \) may be taken of size

\[|\mathcal{A}_2| < 2^{H|S_2|} < C^{H^2} \] \hspace{1cm} (3.6)

(obtained by truncation of the Fourier expansion of \(h \)).

On the other hand

\[w_{S_1}(x) = \sum_{k_1 < 2^{\lambda-2\mu}} \hat{w}_{S_1}(k_1) e\left(\frac{k_1 x}{2^{\lambda-2\mu}}\right) \]

and hence

\[w_S(x) = \sum_{k_1 < 2^{\lambda-2\mu}} \hat{w}_{S_1}(k_1)\hat{w}_{S_2}(k_2) e\left(\frac{2^{2\mu}k_1 + k_2}{2^\lambda} x\right) + O_L(2^{-H}). \] \hspace{1cm} (3.7)

The bound (3.2) becomes now

\[N \sum_{m \sim M} \max_{\substack{k_1 < 2^{\lambda-2\mu} \\ k_2 \in \mathcal{A}_2}} \left| \hat{w}_{S_1}(k_1) \right| \left| \hat{w}_{S_2}(k_2) \right| \frac{1}{\left[\left[2^{2\mu}k_1 + k_2 \right] \left[2^{4\mu}k_1 + k_2 \right] \right]^{\lambda^2 N} \left(2^{\lambda^2} \right)^2} \]

< \frac{N|\mathcal{A}_2| \left\| \hat{w}_{S_1} \right\|_\infty \max_{\substack{k_2 \in \mathcal{A}_2}} \sum_{m \sim M} \left\{ k_1 < 2^{\lambda-2\mu}; \right. \left. \frac{2^{2\mu}k_1 + k_2}{2^\lambda m} < \frac{\lambda^2}{N} \right\}}{\left(2^{\lambda^2} \right)^2}. \] \hspace{1cm} (3.8)

Clearly

\[\sum_{m \sim M} \left\{ k_1 < 2^{\lambda-2\mu}; \frac{k_1 m}{2^{\lambda-2\mu}} < \frac{2\lambda^2}{N} \right\} = \mu.M \]

and therefore, since \(|S_1| \gtrsim \frac{\lambda^{1/2}}{NM} \) and (3.6)

\[(3.8) < \mu C^{H^2} 2^{-c\lambda^{1/2} H^{-1}} NM \]
\[< 2^{-c\lambda^{1/2}H^{-1}}X. \] (3.9)

From (2.33) and (3.9), we can claim a uniform bound
\[\left| \sum_{x < X} \mu(x)w_S(x) \right| \lesssim X.2^{-c\lambda^{1/10}} \] (3.10)

hence obtaining Theorem 1.

Under GRH, (3.10) can be improved of course.

First, from a result due to Baker and Harman [B-H], there is a uniform bound
\[\left\| \sum_{n \in X} \mu(n)e(n\theta) \right\|_\infty \ll X^{\frac{3}{4} + \epsilon}. \] (3.11)

Hence
\[\left| \sum_{n < X} \mu(n)w_S(n) \right| < \|\hat{w}_S\|_1X^{\frac{3}{4} + \epsilon} < (\log X)|S|X^{\frac{3}{4} + \epsilon} \] (3.12)

and we may assume
\[|S| > c \frac{\log X}{\log \log X}. \] (3.13)

If (3.13), apply the type-I-II analysis above.

From (2.31), assuming
\[M \sim 2^\mu > X^{c_1 \frac{1}{\log \log X}} \] (3.14)

and choosing \(L \) appropriately, we obtain
\[(2.1) < X.2^{-c\frac{\log X}{(\log \log X)^2}}. \] (3.15)

If \(M \) fails (3.14) the type-I bound (3.2’) gives
\[(3.1) < X.M\|\hat{w}_S\|_\infty \]
\[< \frac{1}{c_1 \log \log X} X.X^{c_1 \frac{1}{\log \log X}} 2^{-c\frac{\log X}{\log \log X}} \]
\[< X^{1-c_2 \frac{1}{\log \log X}} \] (3.16)

for appropriate choice of \(c_1 \) in (3.14).
In either case
\[\left| \sum_{n < X} \mu(n)w_S(n) \right| < X^{1 - \frac{c}{(\log \log X)^2}} \quad (3.17) \]

which is Theorem 2.

REFERENCES

[B-H] R. Baker, G. Harman, Exponential sums formed with the Möbius function, *JLMS.* (2), 43 (1991), no 2, 193–198.

[Gr] B. Green, On (not) computing the Möbius function using bounded depth circuits, preprint, March 2011.

[H-K] G. Harman, I. Katai, Primes with preassigned digits II, Acta Arith. 133 (2008), no 2, 171–184.

[I-K] H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS, 2004.

[Ka] G. Kalai, Private communication.

[M-R] C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Annals Math (2), 171 (2010), no 3, 1591–1646.

INSTITUTE FOR ADVANCED STUDY, 1 EINSTEIN DRIVE, PRINCETON, NJ 08540