1. Introduction

Neodymium-based materials are used in such applications and products as magnetic suspensions, photoluminescence, measurement of the grain size distribution in thin films, magnetic molecules, optical ring cores, coloring agents for glasses, and hard or soft magnets, depending on the crystal structure (a hexagonal or garnet crystal structure for hard magnets and a spinel crystal structure with an applied external magnetic field for temporary, soft magnets). When the external field decreases or disappears, the saturation magnetic value in a soft magnetic material is reduced. In these cases, different material groups exist. Ferrites, such as neodymium orthoferrite NdFeO_3, are one such group. NdFeO_3 is a soft material with an orthorhombically distorted structure derived from a cubic perovskite structure and was recently applied as an anode in solid oxide fuel cells. Although there have been various reports of mechanical alloy-based syntheses of NdFeO_3, the products were generated under different conditions (generating sub-products) and using different precursors, such as Ar and Fe_3O_4. Alternative synthesis methods were studied in 2011 and 2013, whereas the ceramic method has been traditionally used for the synthesis of this material. In this paper, we present the crystal structure, magnetic saturation and particle morphology of NdFeO_3 powders obtained by mechanosynthesis using a high-energy shaker/mixer mill at room temperature from Fe_2O_3 and Nd_2O_3 precursors under dry conditions without the use of a noble gas.

Keywords: Mechano synthesis, Ferrites, Neodymium, X-ray diffraction

2. Experimental

Iron oxide III (Sigma-Aldrich) and neodymium oxide III (Sigma-Aldrich) precursor oxides with a purity of higher than 99% were used in the milling process. The ratio was stoichiometric, as shown in equation 1. The volume of the stainless steel vials was 50 cm3, and the milling times...
tested were 0 h, 1.5 h, 4.5 h, 9 h, 13.5 h and 15 h. The ball-powder mass ratio was 20:1 and the shaker/mixer mill was a Spex 8000 D.

\[
\frac{1}{2} \text{Fe}_2\text{O}_3 + \frac{1}{2} \text{Nd}_2\text{O}_3 \rightarrow \text{NdFeO}_3
\]

The crystal structure was evaluated using a Bruker D8 Advance theta-theta X-ray diffractometer (XRD), with 2.2 kW Cu (\(\lambda=0.14051\) Å) radiation. The milling product was measured by diffraction in the 5-90° 2θ range with a step size of 0.02°. A LynxEye XE detector was used to provide improved fluorescence filtering and thereby improve the peak intensity. DIFFRAC.TOPAS software, version 4.2, was used for the Rietveld refinement, and the results were then compared with those in the ISCD structural database. The morphology was observed using a JEOL scanning electron microscope at 15 kV, and the magnetic saturation was evaluated using a MicroSense EV7 vibrating sample magnetometer (VSM-EV7) with a maximum field of 18000 Oe.

3. Results and discussion

3.1. Crystal structure characterization

The mixture of Nd\(_2\)O\(_3\) and Fe\(_2\)O\(_3\) powders was structurally characterized with XRD using the LynxEye XE detector (minimizing fluorescence contamination), which provides easier peak identification relative to traditional devices using Cu radiation. Figure 1 shows the peaks at 0 hours as a baseline. The identified Nd\(_2\)O\(_3\) peaks correspond to the ICSD database PDF 00-041-1089 hexagonal structure, those of Nd\(_2\)O\(_3\)CO\(_3\) correspond to PDF 00-037-0806, and those of Fe\(_2\)O\(_3\) correspond to the PDF 04-003-2900 cubic structure. Other peaks are also present due to the absorption of hydrogen and oxygen by neodymium as Nd(OH)\(_3\), identified in PDF 01-070-0214. The difference in the ionic radii of Fe and Nd is small, allowing the diffusion of Nd in Fe\(_2\)O\(_3\), as shown in Figure 2. The synthesized NdFeO\(_3\) (PDF 04-010-3990) was detected at 4.5 hours, a similar time to that reported by Alonso et al\(^{10}\). Examination of the XRD pattern shows that Nd(OH)\(_3\) peaks disappear due to the diffusion of Nd. With additional milling, the structure became orthorhombic, and the maximum quantity of NdFeO\(_3\) was synthesized at 13.5 hours, as shown in Figure 3. It is possible to observe only the orthorhombic phase of neodymium ferrite. The hexagonal structure of NdO\(_3\) was transformed to distorted perovskite. The results indicate that the low activation energy allowed the chemical reaction to start at the ambient room temperature within only a few hours, thus minimizing contamination or residual impurities from other materials.

The XRD pattern shown in Figure 4 corresponds to 15 hours of milling; in this pattern, it was possible to identify peaks between 2θ =24° and 2θ =25°, corresponding to Fe\(_2\)O\(_3\) (PDF 00-033-0664). This observation was most likely caused by wear and tear on the iron milling balls. Energy dispersive spectrometry (EDS) was used to find possible metallic elements derived from the balls; the results presented in Figure 5 show that iron, oxygen and
carbon were detected, of which the carbon originated from the polymer used to fix the sample.

The results by weight percent for the powders obtained from the milling process were calculated using Topas software (Figure 6). The optimal mechanosynthesis time for NdFeO$_3$ was 13.5 h. Table 1 shows the weight percentages obtained by Rietveld refinement, and Table 2 shows the lattice parameters.

3.2. Particle morphology

Figure 7 shows the particle morphology images. We found that the morphology was irregular during the synthesis process. In the image taken at 0 hours, the particle sizes of the powders are similar, and at 4.5 hours, some particles with dimensions of approximately 10 micrometers were observed. This finding can be attributed to the milling process, in which the particles are deformed and the newly exposed surfaces facilitate the growth of agglomerates and particles. The NdFeO$_3$ phase identified by XRD indicated that the chemical reaction was facilitated by the exposure of new surfaces. As the milling continued, different particle sizes were detected at 4.5 hours, while the particles observed at 9 hours had similar morphologies. Finally, 13.5 hours, the particles were small with a narrow size distribution.

The images presented in Figure 8 suggest that the NdFeO$_3$ particles obtained after 13.5 hours of milling were smaller than those obtained using the mixture of Nd$_2$O$_3$ and Fe$_2$O$_3$, as the particles in the center of the right-hand image are smaller than those in the left-hand image. The increased interaction between the reactants due to the milling process and the exposure of new surfaces favored the chemical reaction.

3.3. Magnetic saturation characterization

The magnetic saturation data for powders obtained at different milling times are shown in Figure 9. It is well known that mechanosynthesis changes the crystal structure of materials, thereby modifying their magnetic behavior. The magnetic saturation for NdFeO$_3$ obtained herein (1.15 emu/g) was superior to the value obtained by Hu et al. (0.8 emu/g) and similar to the value reported for NdFeO$_3$ with cubic morphology by Wang et al. At 15 hours of milling, corresponding to the time at which carbon was detected, the magnetic saturation was inferior to that obtained after 13.5 hours of milling. Interestingly, when the phase transformation began (4.5 hours), the magnetic saturation was 1.54 emu/g, superior to the values reported for other ferrites.

Milling time	NdFeO$_3$ (Weight %)	Fe$_2$O$_3$ (Weight %)	Nd$_2$O$_3$ (Weight %)
4.5 h	54.84	35.85	9.31
9 h	82.89	17.11	-
13.5 h	100%	-	-

Table 2 Lattice parameter values and crystallite size

Phase	a (Å)	b (Å)	c (Å)	Crystallite Size (nm)
NdFeO$_3$	5.5791	7.7637	5.4430	36.5
Fig. 7 SEM images of Nd$_2$O$_3$-Fe$_2$O$_3$ after 0, 4.5, 9 and 13.5 hours of milling.

Fig. 8 SEM images of Nd$_2$O$_3$-Fe$_2$O$_3$ after 0 and 13.5 h of milling.
References

1. Omijeh BO, Nmom CS, Nlewem E. Modeling of a vertical axis wind turbine with permanent magnet synchronous generator for Nigeria. International Journal of Engineering and Technology, 2013; 3 (2): 212-220. http://iet-journals.org/archive/2013/feb_vol_3_no_2/9183451357665481.pdf

2. Pashayev AM, Tagiyev BG, Abushov SA, Tagiyev OB, Kazimova FA. Photoluminescence of EuGaSe$_2$:Nd$^{3+}$ Optics and Photonics Journal. 2012;2(1):59-60. http://dx.doi.org/10.4236/opj.2012.21009

3. Zielinski M, Wojcieszak D, Domaradzki J, Kaczmarek D, Prociow E. Influence of neodymium dopant on TiO$_2$ structure. Electronics Technology (ISSE) IEEE Explore. 2010: doi: 10.1109/ISSE.2010.554725

4. Fahrendorf S, Atodiresei N, Besson C, Caciuc V, Mathes F, Wilga, Poland: 2006. doi:10.1117/12.714636.

5. Dorosz D. Ring-core optical fibre doped with neodymium. In: SPIE 6347, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. Proceedings. Wilga, Poland: 2006. doi: 10.1117/12.714636.

6. Guo X, Li X, Yang H, Zhao J, Zhao W. Effect of neodymium on the crystallization, microstructure and colorization of Li$_2$O-Al$_2$O$_3$-SiO$_2$. New Journal of Glass and Ceramics. 2012;2:98-103. doi:10.4236/njgc.2012.22014.

7. Özgür U, Alivov Y, Morkoç H. Microwave Ferrites. Part 1: Fundamental properties. Journal of Materials Science: Materials in Electronics. 2009;20(2):789-807.

8. Ahmad I, Akhtar MJ, Younas M, Siddique M, Hasan MM. Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO$_3$. Journal of Applied Physics. 2012;112(7):074105. doi: 10.1063/1.4754866

9. Chen T, Sheng L, Liu F, Zhu W, Zhang Q, Chu X. NdFeO$_3$ as node material for S/O2 solid oxide fuel cells. Journal of Rare Earths. 2012;30(11):1138-1141. doi:10.1016/S1002-0721(12)60194-X

10. Alonso T, Liu Y, McCormick PG. Synthesis of NdFeO$_3$ by mechanical alloying. Journal of Materials Science Letters. 1992;1(3):164-166.

11. Hao YJ, Li B, Liu RH, Li FT. Synthesis of NdFeO$_3$ Perovskites in a reverse microemulsion and its visible light photocatalytic activity. Advanced Material Research. 2011;282-283:593-596. doi:10.4028/www.scientific.net/AMR.282-283.593

12. Singh S, Singh A, Yadav BC, Dwivedi PB. Fabrication of nanobeads structured perovskite type neodymium iron oxide film: its structural, optical, electrical and LPG sensing investigations. Sensors & Actuators: B. Chemical. 2013;177: 730-739. doi:10.1016/j.snb.2012.11.096

13. Wen Q, Xu Y, Xu B, Fasel C, Guillou O, Bunkowsky G, et al. Single-source-precursor synthesis of dense SiC/HfC$_x$N$_{(1-x)}$-based ultrahigh-temperature ceramic nanocomposites. Nanoscale. 2014;6(22):13678-89. doi: 10.1039/c4nr03376k.

14. Wang Y, Cao S, Shao M, Yuan S, Kang B, Zhang J, et al. Growth rate dependence of the NdFeO$_3$ single crystal grown by float-zone-technique. Journal of Crystal Growth. 2010;318:927-931.

15. Yoo JW. Toward improved selectivity of targeted delivery: The potential of magnetic nanoparticles. Archives of Pharmaceutical Research. 2012;35(1):1-2. doi: 10.1007/s12272-012-0100-4.

16. Strukil V, Igrič MD, Eckert-Maksic M, Frisic T. Click mechanochemistry: quantitative synthesis of “ready to use chiral organocatalysts by efficient two-fold thiourea coupling to vicinal diamines. Chemistry. 2012;18 (27):8464-8473. doi: 10.1002/chem.201200632

17. Di Leo P, Pizzigallo MD, Ancona V, Di Benedetto M, Mesto E, Schingaro E, et al. Mechnochemical degradation of pentachlorophenol onto binnisite. Journal of Hazardous Materials. 2012;244-245:303-310. doi: 10.1016/j.jhazmat.2012.11.037.

18. Hu GH, Umehara I, Shuang X, Yuan S, Cao SX. Pressure effect in multiferroic phase transition of perovskite ferrite crystals NdFeO$_3$ and ErFeO$_3$. Journal of Physics: Conference Series. 2012;400(Pt 3): 032023. doi:10.1088/1742-6596/400/3/032023

19. Wang Y, Yan X, Chen J, Deng J, Yua R, Xing X. Shape controllable synthesis of NdFeO$_3$ micro single crystals by a hydrothermal route. CrystEngComm. 2014;16:858-852. doi: 10.1039/C3CE41434E

4. Conclusion

The mechanosynthesis of NdFeO$_3$ from the stoichiometric ratio of Nd$_2$O$_3$ and Fe$_2$O$_3$ powders was possible at room temperature, avoiding the high temperature (1000 °C) required when using the calcination method. The synthesis yield was close to 100% at 13.5 hours of milling, and the NdFeO$_3$ phase was detected after 4.5 hours of milling, as indicated by the formation of new surfaces after a few hours. The mechanosynthesis modified the crystal structure, reduced the particle size and increased the magnetic saturation above that of other orthoferrites. Our report provides new information about the morphology and magnetic saturation of this material and unprecedentedly high-resolution XRD results obtained using a LynxEye XE detector with Cu radiation.

Fig. 9. Hysteresis loops at H$_{ac}$=18 kOe measured at room temperature for oxide powders milled from (Nd$_2$O$_3$+ Fe$_2$O$_3$)