The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria

T. A. V. Rees1 and John A. Raven2,3,4

1Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Auckland 1142, New Zealand; 2Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; 3Climate Change Cluster, Faculty of Science, University of Technology, Sydney, Ultimo, NSW 2007, Australia; 4School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia

\section*{Summary}
\begin{itemize}
 \item The (maximum) growth rate (μ_{max}) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes.
 \item Using published data, we show that though there is a strong positive relationship between the μ_{max} of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex.
 \item In eukaryotes there is a strong positive relationship between μ_{max} and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing μ_{max} in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor.
 \item The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
\end{itemize}

\section*{Introduction}

The growth rate hypothesis (Elser \textit{et al.}, 1996, 2000; Sterner & Elser, 2002) states that rapid growth requires increased numbers of ribosomes for protein synthesis, which in turn means that cellular concentrations of phosphorus (P)-rich RNA (largely ribosomal RNA) will also increase. Consequently the hypothesis predicts that RNA content and, consequently, organism P concentrations should increase with increasing growth rate (Elser \textit{et al.}, 1996; Main \textit{et al.}, 1997; Sterner & Elser, 2002; Moreno & Martiny, 2018). It should be noted that the growth rate hypothesis originated with differences in P content between slow-growing freshwater copepods and rapidly growing cladocerans, mainly \textit{Daphnia}, being almost entirely explained by differences in RNA content (Sterner, 1995; Elser \textit{et al.}, 1996; Sterner & Elser, 2002). In other words, changes in P content are dominated by changes in RNA content (mainly rRNA, but also mRNA and tRNA, which should also increase with growth rate) and, all else being equal, the relative proportions of P-containing compounds do not remain constant with growth rate. However, Elser \textit{et al.} (2003) provide evidence that the amount of P in RNA constitutes 49% of the total P in a number of prokaryotic and eukaryotic heterotrophs. Most of the information relating to the growth rate hypothesis is for an individual species growing under various forms of resource limitation. The few interspecific studies of the growth rate hypothesis either do not include any photosynthetic organisms (Sutcliffe, 1970; Elser \textit{et al.}, 2003), or concentrate only on N : P ratios in higher plant leaves (Reich \textit{et al.}, 2010) or N : P ratios in phytoplankton (Flynn \textit{et al.}, 2010), though the latter does include fluorescence data for RNA (see ‘RNA’ in Materials and Methods).

Here we address the relationship, at the interspecific level, between μ_{max} (a cardinal characteristic of any organism (Flynn & Skibinski, 2020)) of photosynthetic organisms and their nitrogen (N) and P contents, P productivities (g dry matter g$^{-1}$ phosphorus d$^{-1}$) and P-containing constituents, in both prokaryotes and eukaryotes. We reverse the logic of the growth rate hypothesis by starting with the strong positive relationship between μ_{max} and P content and then addressing the reason for this. RNA content is a part of the answer, and we discuss the possibility that the other P-containing constituents are involved directly or indirectly in ribosome synthesis and function.

\section*{Materials and Methods}

\section*{Data}

We searched (from Google to Web of Science) the literature (a total of 79 publications) for data on maximum growth rate
(µ_max), organism N and P content and P-containing cellular constituents (polyphosphate, RNA, DNA, phospholipids and phosphate esters and anhydrides) expressed as a percentage of dry weight and/or total P in photosynthetic organisms. Where the relationships between µ_max and N and P content are compared, only data for all three parameters for a given species that were obtained from the same paper (or in two instances from the same group) were used. Where comparisons are made between µ_max and a constituent (e.g. RNA) only data for both parameters given in the same paper were used. The number of observations is given in the legend of each table and figure.

Maximum growth rate

Only µ_max is considered here and it is assumed that growth was balanced (i.e. all cellular constituents increase at the same rate) and that local conditions allowed for sufficient resources, which would include temperature and light for the latter, when the measurements were made. Only µ_max involving measurements of the increase in cell number or some measure of biomass (e.g. fresh weight, dry weight) over time were used. All µ_max values are expressed as specific growth rate with units of d⁻¹. Data provided as doublings d⁻¹ (base 2) were converted to µ_max by multiplying by log₂ (₀.₆₉₃₁). Where there was more than one reported value for µ_max of a species, the highest value was used as it is assumed that this represents the true (or truer) µ_max. The assumption of balanced growth allows µ_max measured as, for example, increases in cell density to be expressed as g dry weight g⁻¹ dry weight d⁻¹. Values for µ_max were not corrected for temperature, because though there are appropriate Q₁₀ values for growth rate, there are no comparable values for N, P or RNA content of organisms (see Moreno & Martiny (2018) for a full discussion).

Organismal N and P

Values for cell or tissue N and P are for organisms growing at µ_max. Values for N and P were obtained from the same paper as µ_max and were used only where these values were given as % dry weight or where it is possible to calculate dry weight. All these data were used to calculate P productivities, and extra data were added from other sources where only µ_max and P content were provided. The benefits of using dry weight as a standard measure for biomass are outlined elsewhere (Rees, 2014; Raven, 2015) under ‘What is the effect of temperature?’ in the Discussion.

Storage of N or P (as polyphosphate or phosphate) can, both in principle and in practice, have a marked effect on values for organism N or P. This is more likely to occur when an organism is grown with excess external sources of N or P to prevent resource limitation and to ensure µ_max and is why Raven (2013a) explicitly deducts polyphosphate from an inventory of major P-containing fractions. The main reason for including polyphosphate is that it may have an important role in biosynthesis and not simply as a form of P storage (the non-storage role of polyphosphate is discussed under ‘Polyphosphate/phosphate/phytate’).

Phosphorus productivity

Phosphorus productivity (g dry weight g⁻¹ phosphorus d⁻¹) was calculated as:

\[
\frac{\mu_{\text{max}}}{P}
\]

where µ_max is maximum growth rate (d⁻¹) and P is the proportion of dry weight that is phosphorus (g phosphorus g⁻¹ dry weight).

A single, exceptionally high, P productivity (536 g dry biomass g⁻¹ P d⁻¹) for Ulva rigida (Lavery & McComb, 1991) is not included. This high rate is largely due to a very low tissue phosphorus content of 0.04%, which is the lowest for any photosynthetic organism recorded here. Chaetomorpha linum from the same site had a P productivity of 119 g dry biomass g⁻¹ P d⁻¹ and a tissue phosphorus content of 0.2% (Lavery & McComb, 1991), suggesting that the high P productivity for U. rigida is not due to any property of the site that it was collected from.

RNA

Values for cell or tissue RNA are for organisms growing at µ_max. There are a variety of potential problems associated with data for RNA and protein content, most of which have been addressed elsewhere (Flynn et al., 2010). Raven (2013a) has highlighted some of the problems associated with the extraction of protein and, to a greater extent, RNA, and there are additional problems relating to the measurement of RNA (and DNA) with fluorescent probes (Mordy & Carlson, 1991; Hildago et al., 2017). There may be instances where these problems do not occur or have been prevented, but there are examples where the use of fluorescent probes for both DNA and RNA give very low values for these nucleic acids (mainly microalgae and a few macroalgae), and these data are not included here. This is not to suggest that values obtained with fluorescent probes are incorrect. Rather, for internal consistency and because there are more published values, RNA values reported here used the orcinol method mainly, but also the UV method (Herbert et al., 1971; Geider & LaRoche, 2002) and are expressed as % total dry weight and/or %P. Where relevant it is assumed that 9.1% of RNA is P (Sterner & Elser, 2002).

Phospholipids

Values for phospholipids are for organisms growing at µ_max. Where relevant it is assumed that 4.2% of phospholipids is P (Sterner & Elser, 2002). There are conflicting values for the amount of phospholipid in the Haptophyta. Values for phospholipids in Isochrysis galbana range from 0.12% (Cañavate et al., 2017) to 5.2% (Zhu et al., 1997) and 5.5% of total dry weight (Fidalgo et al., 1998). For Diaconema vilkianum phospholipids are 1.5% of total lipid and 0.24% of dry weight; total lipid is 15.9% of dry weight (Cañavate et al., 2017). Other values for D. vilkianum are similar: phospholipids are 3.3% of total lipid (Armada et al., 2013, albeit the same group as Cañavate et al.,
2017) and total lipid is 17.9% of total dry weight (Fradique et al., 2013). Phospholipids are a minor component of lipid in *Pavlova lutheri* (Eichenberger & Gribi, 1997). In *Tisochysis lutea* phospholipids in the light are either the most abundant (Lacour et al., 2012) or the second most abundant lipid class (after glycolipids) (Marchetti et al., 2018). Phospholipids make up c. 33% of the total intact polar lipid during P-replete growth in *Emiliania huxleyi* (Shemi et al., 2016). There is a clear discrepancy in the apparent content of phospholipids in the Haptophyta that needs resolution. Where there were three values (*I. galbana* and *Nannochloropsis gaditana*), two of the three values for phospholipids were in close agreement and the one with the greater µmax was used. For other values there was only one published value for µmax and phospholipid content.

Other P constituents

Values for the other P constituents are for organisms growing at µmax. Values for DNA, polyphosphate and P-esters and anhydrides were obtained from the literature and either expressed as % total dry weight and/or %P.

Statistics

Reduced major axis (RMA) regression (Sokal & Rohlf, 1995) was used to describe relationships between µmax and cellular constituents. For these analyses the line-fitting package SMATR v.2.0 (Warton et al., 2006; http://www.bio.mq.edu.au/ecology/SMATR/) was used. Differences between phospholipid content and logged values for RNA : phospholipids ratio in prokaryotic and eukaryotic photosynthetic organisms were investigated using t-tests. Differences between DNA content as % of dry weight in microalgae and macroalgae and an angiosperm were investigated using a Mann–Whitney rank sum test. The effect of growth temperature and µmax on %P and RNA content were determined using multiple regressions. All statistical tests were performed in SIGMAPLOT v.14.

Results

Relationships between maximum growth rate and N and P content

There was a strong positive linear relationship (r² = 0.60) between µmax and P content expressed as percentage of organism dry weight (Fig. 1a). By contrast, there was a much weaker relationship (r² = -0.35) between µmax and nitrogen content expressed in terms of percentage of organism dry weight (Fig. 1b), and the relationship was stronger (r² = 0.45) if the data were fitted to a rectangular hyperbola (n = 58 for both Fig. 1a and b). Using a more extensive collection of data (n = 78), for µmax and P content expressed as percentage of organism dry weight, the relationship was stronger.
There was a significant difference in the phospholipid content (as a proportion of total P) between prokaryotic and eukaryotic photosynthetic organisms \((t = -2.432; \text{df} = 21; P = 0.024)\), being five times greater in eukaryotic photosynthetic organisms (Table 2). There were insufficient data to make the comparison based on dry weight. There was an even greater difference between prokaryotic and eukaryotic photosynthetic organisms \((t = 6.936; \text{df} = 10; P = <0.001)\) in the RNA : phospholipids ratio (Table 2).

Relationships between maximum growth rate and RNA and phospholipids in eukaryotic photosynthetic organisms

There were no relationships between any of the five major categories of P-containing compounds expressed as a proportion of dry weight and \(\mu_{\text{max}}\) except for RNA and, possibly, phospholipids. For the other categories there were insufficient data (polyphosphate, \(n = 1\); phosphate esters, \(n = 0\)) or no relationship (DNA, \(n = 7\)). However, there was a significant difference (Mann–Whitney \(U = 7; P = 0.002\)) between the DNA content (as % dry weight) of faster growing microalgae (marine and freshwater; 0.54%) and that of macrophytes (macroalgae and a terrestrial angiosperm; 0.28%).

The slope of the relationship for eukaryote phospholipids and \(\mu_{\text{max}}\) was not significantly different from zero, but the relationship was positive \((r^2 = 0.28)\). If a high value for phospholipid content of the freshwater diatom *Stephanodiscus minutulus*, which has a higher lipid content than protein even at \(\mu_{\text{max}}\) (Lynn *et al.*, 2000) is removed, the slope of the positive relationship was significantly different from zero \((r^2 = 0.42; \text{Fig. 2})\). A comparison of the slope and intercept of this relationship with that for Fig. 1(a), and assuming that 4.2% of phospholipids is P (Sterner & Elser, 2002), suggests that phospholipids constitutes a roughly constant 11% of total P in photosynthetic organisms, which is very similar to the value for eukaryotic phospholipids which includes the value for *S. minutulus* in Table 2.

There was a strong positive relationship \((r^2 = 0.66)\) between \(\mu_{\text{max}}\) and RNA as a percentage of dry weight in eukaryotic photosynthetic organisms (marine and freshwater microalgae and terrestrial plants) (Fig. 3). There was a nonsignificant \((P = 0.226)\) effect of temperature on RNA content \((\text{RNA} = 4.1 + (3.49 \times \mu_{\text{max}}) - (0.118 \times \text{temp})\), \(r^2 = 0.71)\). A comparison of the slope and intercept of this relationship with that for Fig. 1(a), assuming that 9.1% of RNA is P (Sterner & Elser, 2002), suggests that RNA constitutes a roughly constant 25% of total P in eukaryotic photosynthetic organisms, which is very similar to the value for eukaryotic RNA in Table 2.

Table 1 Mean (±SE) and median phosphorus productivities \((\text{g dry biomass g}^{-1} \text{P d}^{-1})\) for different groups of photosynthetic organisms growing at maximum growth rate.

Constituent	Mean ± SE (µg P d⁻¹)	Median	n
Marine microalgae	77 ± 8	72	30
Freshwater microalgae	75 ± 9	67	9
Marine macroalgae	72 ± 10	58	24
Terrestrial plants	71 ± 9	77	15
All photosynthetic organisms	74 ± 5	66	78
Cyanobacteria	74 ± 4	74	7

Cyanobacteria include marine and freshwater species.

\((r^2 = 0.67)\). There was a minor and nonsignificant \((P = 0.336)\) effect of temperature on P content \((\%P = 0.44 + (1.35 \times \mu_{\text{max}}) - (0.016 \times \text{temp})\), \(r^2 = 0.67)\). There were no differences between the P productivities of marine and freshwater microalgae, marine macroalgae and terrestrial plants (angiosperms and a fern) \((n = 78)\) (Table 1).

Table 2 Percentage of the major phosphorus-containing fractions in photosynthetic organisms growing at maximum growth rate as mean values (± SE).

Constituent	% (total P)	n
DNA	9 ± 2	18
P-esters	10 ± 3	5
Cyanobacteria		
RNA	46 ± 6	4
Phospholipids	3 ± 1	4
RNA : phospholipids	20 ± 5	4
Polysphosphate	29 ± 9	6
Eukaryotes		
RNA	25 ± 3	18
Phospholipids	14 ± 2	19
RNA : phospholipids	2 ± 0.4	8
Polysphosphate/phosphate	35 ± 8	7

Values for DNA and P-esters are for all photosynthetic organisms; RNA, phospholipids and polysphosphate are given as separate values for cyanobacteria and eukaryotes. It should be noted that phosphate rather than polysphosphate makes a major contribution in angiosperms, and one value (Bieleski, 1968) is included here, but only two published values (Robson *et al.*, 1959; Bieleski, 1968) distinguish between DNA and RNA.
that were comparable to eukaryotic photosynthetic organisms. The two exceptions were Prochlorococcus marinus subsp. pastoris str. CMP1986 (also known as Med4) and Mycobacterium bovis, that both have a single copy of the rRNA operon (Cox, 2004; Schirrmeister et al., 2012). By contrast, the other bacteria have two to six copies (Cox, 2004; Schirrmeister et al., 2012); there is no value for Nostoc paleudosum, but other species and strains of Nostoc possess three to six copies (The Ribosomal RNA Database; https://rrndb.umms.med.umich.edu/search/).

Discussion

Given the strong relationship between μ_{max} and P content, what is (are) the most likely P-containing constituent(s) that is (are) required for growth, and why is more P required for rapid growth? One possibility is that most of the P is allocated to RNA (as stated by the growth rate hypothesis). However, RNA accounts for only 25% (in eukaryotic photosynthetic organisms) or 50% (in prokaryotic photosynthetic organisms) of total P. Clearly this leaves 50 to 75% of total P unaccounted for. Either the growth rate hypothesis is only a partial explanation of the relationship between μ_{max} and P content, or the other four categories of P-containing constituents are directly or indirectly involved with RNA synthesis and/or ribosome functioning. This latter possibility, which would leave the growth rate hypothesis largely intact, is explored under ‘Role of P-constituents other than RNA’. However, we start by addressing two important questions relating to the data.

Does μ_{max} represent the true maximum growth rate?

The answer to this question is that it is impossible for anyone to be certain that their measurement of μ_{max} is a measure of the true maximum growth rate. Fenchel (1974) refers to his maximum growth rate (r_m) as an ‘approximation’. Given that we restricted our μ_{max} values to those papers that also contained information on N, P, RNA and phospholipids, then our μ_{max} is possibly even more of an approximation. However, it could be argued that as our techniques improve (there is independent evidence that they do not) our ‘approximate’ values should become closer to the true values. Within the context of our data, we would also expect, if the measured μ_{max} increased in the future, that the organism’s P content would also increase.

What is the effect of temperature?

The effect of temperature on P productivity was negligible across all photosynthetic organisms and minor with RNA content in eukaryotes. There is evidence for an increase in the amount of cellular or tissue RNA with a decrease in temperature in photosynthetic organisms (Woods et al., 2003) and marine phytoplankton (Toseland et al., 2013). With cold hardening in terrestrial plants there are increases in RNA content, but this is accompanied by a marked decrease in growth rate (e.g. Sarhan & D’Aoust, 1975) that is not a consideration here. We do not dispute that decreased growth rate and increased RNA content per unit dry weight are characteristics of cold hardening terrestrial plants. The difficulty with interpreting data for single cells is that cell volume (Atkinson et al., 2003) and cell dry weight (Cook, 1966; Aaronson, 1973) increase with decreasing temperature. With decreasing temperature the amount of RNA g⁻¹ dry weight decreases in Ochromonas danica (Aaronson, 1973), and Euglena gracilis strain Z (Cook, 1966), but there is a slight (12%) increase in E. gracilis var. bacillaris between 15 and 25°C (Cook, 1966). When the RNA content is expressed per cell in Scenedesmus sp., there is an increase in RNA content with decreasing temperature, but there is also an increase in cell volume, though the relative increase in RNA and P content between 10 and 15°C is greater than that for cell volume (Rhee & Gotham, 1981). However, at 15°C RNA constitutes 23% of total P, but at 10°C, only 13%. In Fragilariopsis cylindrus there is a strong negative relationship between temperature (−2, 4 and 10°C) and RNA content per cell (Toseland et al., 2013). The optimum growth temperature for F. cylindrus is about 4°C, and no growth occurs at 10°C (Lacour et al., 2017), therefore it is not surprising that there is less RNA per cell at 10°C. At 0°C, the growth rate of F. cylindrus is lower than at 4°C (Zhu et al., 2016). RNA increases by c. 75% between −2 and 4°C (Toseland et al., 2013), and cell volume increases by c. 90% between 0 and 4°C and there are similar increases in C, N and P per cell (Zhu et al., 2016).

Role of P-constituents other than RNA

Though there are numerous P-containing compounds in a cell, there are only five categories of P-containing compound that are quantitatively significant. The greater requirement for P in fast-growing organisms is either because it requires more of each category of P-containing compound (i.e. the relative proportion of each category remains constant), or one or
more categories of P-containing compound become proportionally more important (and others less so) as \(\mu_{\text{max}} \) increases. The data reported here and in Raven (2013a, his Table 2) support the former hypothesis. Is this because, as \(\mu_{\text{max}} \) increases, more ribosomes are needed and more of the other four categories of P-containing compounds are required to drive RNA synthesis and/or ribosome functioning?

Polyphosphate/phosphate/phytate

Polyphosphates are linear polymers of up to hundreds of phosphate molecules and can be the major P-containing compound in some photosynthetic organisms. It is generally considered to be a form of P storage (John & Flynn, 2000; Martin et al., 2014), with the advantage over phosphate being that its accumulation has no osmotic effect (Raven & Knoll, 2010). Polyphosphate may also serve as an energy source (e.g. Kornberg et al., 1999), but, at best, this would only provide a very short-term source of energy and ignores the cost of synthesizing polyphosphate (Raven & Knoll, 2010; Lavoie et al., 2016). In the aquatic angiosperm *Spirodea oligorrhiza*, 71% of total P is present as phosphate (Bieleski, 1968). Phytate (inositol hexakisphosphate) is the principal form of P storage in tubers, fruits, and seeds of terrestrial plants (Veneklaas et al., 2012; Frank, 2013; Lorenzo-Orts et al., 2020) and is the major form of P in some plants (Frank, 2013). In the root cortex of *Trifolium subterraneum*, P is accumulated in globular structures together with, in quantitative order, potassium, magnesium, sulphur, sodium and calcium (Ryan et al., 2019).

A relationship between polyphosphate concentrations and growth rate has been suggested for *Scenedesmus* sp. (Rhee, 1973) and *Saccharomyces cerevisiae* (Trilisenko & Kulakovskaya, 2014). A barley mutant with decreased (by > 90%) concentrations of seed phytate displays decreased yield even in irrigated fields, but even moderate decreases (33–70%) in phytate in mutant seeds cause decreased yields in nonirrigated fields (Raboy, 2007).

Polyphosphate can act as a chaperone in protein folding in bacteria (Gray et al., 2014). The only bacterial chaperone known

Fig. 3 Relationship between maximum growth rate (d\(^{-1}\)) and RNA content (% dry weight) of eukaryotic photosynthetic organisms and prokaryotic photosynthetic organisms and heterotrophs. The reduced major axis regression equation and coefficient of determination for the relationship between maximum growth rate and eukaryote RNA content are as follows: \(y = 0.34 + 4.35x; r^2 = 0.66, P (\text{slope} = 0) < 0.001, n = 12 \). Data were obtained from the following sources: for eukaryotic photosynthetic organisms, Robson et al. (1959), Nyholm (1977), Cook (1981), Kato & Asakura (1981), Laws et al. (1983), Bajaj (1970), Fidalgo et al. (1995), and Mahboob et al. (2012); for prokaryotic photosynthetic organisms with one copy of the rRNA operon, Casey et al. (2016); for prokaryotic photosynthetic organisms with two or more copies of the rRNA operon, Kramer & Morris (1990), Fontes et al. (1992), Vargas et al. (1998), and Li et al. (2014); for prokaryotic (heterotrophic) organisms with one copy of the rRNA operon, Cox (2004); for prokaryotic (heterotrophic) organisms with two or more copies of the rRNA operon, Cox (2004). The data for terrestrial plants consisted only of values for suspension or callus/tissue cultures. The data for prokaryotic (heterotrophic) organisms with two or more copies of the rRNA operon are for *Streptomyces coelicolor* growing at 8 and 16% of maximum growth rate (7.2 d\(^{-1}\)) so that growth rates were comparable to the other prokaryotes.
to bind to the ribosome is trigger factor, with chaperones such as the ATP-dependent chaperone DnaK binding to released polypeptides (Kramer et al., 2019). In bacteria it is the ATP-dependent chaperones such as DnaK that can be replaced by polyphosphate (Gray et al., 2014). Polyphosphate can bind to ribosomes in *Escherichia coli* both in vitro and in vivo, and stabilizes polysomes (McInerney et al., 2006). RNA associates with polyphosphate in *Anabaena variabilis* and *Chlorella pyrenoidosa*, with 1 mol of nucleotide being associated with 7 mol polyphosphate-P (Correll & Tolbert, 1962). It is currently unknown whether polyphosphate can act as a chaperone in eukaryotes, but it can bind to ribosomes.

Of particular interest is the role of lysine polyphosphorylation in ribosome biosynthesis in yeast and humans (Bentley-DeSousa et al., 2018; Lorenzo-Orts et al., 2020; McCarthy et al., 2020). In yeast c. 7% of proteins have one or more PASK-like motifs (stretches of 20 amino acids with up to at least 15 glutamate, aspartate and serine residues and at least one lysine residue), and the 17 known polyphosphorylated proteins are preferentially localized to the nucleolus. Mutants lacking Vtc4 polyphosphate polymerase are defective in 80S monosome and polysome assembly that compromises ribosome synthesis (Bentley-DeSousa et al., 2018). Two polyphosphorylated proteins in yeast are the histone chaperones Fpr3 and Fpr4 (Bentley-DeSousa et al., 2018). They work cooperatively to regulate genes involved in polyphosphate metabolism and ribosome synthesis, and mutants lacking genes for both chaperones have a genome instability phenotype at rDNA (Savic et al., 2019). The authors suggest that Fpr3 and Fpr4 may act as master regulators of ribosome biosynthesis. What is not known is whether lysine polyphosphorylation occurs in photosynthetic organisms or, even in yeast, the proportion of total polyphosphate that is involved.

Phospholipids

Phospholipids can be replaced by sulpholipids and galactolipids under conditions of P limitation (Andersson et al., 2005; Van Mooy et al., 2009; Raven, 2013b). Because it is assumed that there are no resource limitations during μ_{max}, such substitutions are ignored. However, there is currently no explanation for the apparent superiority of phospholipids under conditions of P sufficiency (Raven, 2013a). In algae and higher plants most extra-chloroplastic membranes are normally dominated by phospholipids (Jouhet et al., 2004; Andersson et al., 2005; Dörmann, 2005; Khizin-Goldberg, 2016), and this may explain the higher phospholipid content of roots compared to leaves (Siebers et al., 2015). Consequently, there will be always be a greater demand for phospholipids in eukaryotic than prokaryotic photosynthetic organisms, because the latter do not contain nuclei, vacuoles, endoplasmic reticulum (ER), Golgi apparatus or mitochondria. Though bacteria do contain organelles, those that are found in cyanobacteria are carboxysomes, which are enclosed in a protein shell and (except in *Gloeo bacter*) thylakoids with organelles that are delimited by lipoprotein membranes with very little phospholipid (Greening & Lithgow, 2020). Lipoprotein membranes with phospholipids as the dominant lipid (chromatophores, anammoxosomes and magnetosomes), with the possible exception of lipid bodies, are not found in cyanobacteria (Greening & Lithgow, 2020). This presumably explains the significant difference between the proportion of P present in phospholipids in prokaryotic and eukaryotic photosynthetic organisms.

Phospholipids are important constituents of the nuclear membrane, tonoplast, ER, Golgi apparatus and mitochondrial inner and outer membranes, as well as the plasma membrane, in plants (Dörmann, 2005). In Arabidopsis 31% of the genome codes for membrane proteins (Stevens & Arkin, 2000) that will be synthesized on ribosomes attached to the ER (rough ER) (Staehelin, 1997; Sadowski et al., 2008). Among eukaryotes, the proportion of the genome that codes for membrane proteins is relatively constant at c. 30% (Stevens & Arkin, 2000) despite marked differences in μ_{max} suggesting that the proportion of total ribosomes attached to the ER is also relatively constant. The data of Stevens & Arkin (2000) are derived from the predicted hydrophobic α-helical membrane proteins coded in the sequenced genome. For the human genome, only 11% had been sequenced, with 29.7% of the total genome predicted to contain genes coding for membrane proteins. Subsequently, of 21 416 annotated genes in the human genome, about 26% corresponded to membrane proteins (Fagerberg et al., 2010), and in a mapping study of 12 000 human proteins 27% were membrane proteins (Thul et al., 2017). The predictions of Stevens & Arkin (2000) appear to be remarkably robust. Consequently, as the total amount of RNA g^{-1} dry weight increases with increasing μ_{max}, the total number of ribosomes and the number of ribosomes attached to the ER should also increase.

Phosphate esters and anhydrides

Phosphate esters and anhydrides are involved in a variety of both biosynthetic and catabolic pathways. P-esters and anhydrides make up 5.6% of total P in *S. oligorhiza* (Bielecki, 1968). The major P-esters and anhydrides (in terms of P content) in *S. oligorhiza* are glucose-6-phosphate, ATP and phosphoglycerate (Bielecki, 1968), and in *Chlamydomonas reinhardtii* are ATP, 3-phosphoglycerate and glucose-6-phosphate (Mettler et al., 2014). It is likely that the value of 3% of total P for *Prochlorococcus* (Casey et al., 2016) is an underestimate as it does not include the three major compounds found in *S. oligorhiza* or *C. reinhardtii*. Conversely, the value of 17.7% for *Synechococcus elongatus* (Grillo & Gibson, 1979) may be an overestimate as the 5% cold trichloroacetic acid extract could also include orthophosphate and low molecular weight polyphosphate (Herbert et al., 1971; Thompson et al., 1994).

There are currently insufficient data with which to draw any conclusions regarding the amount of P-esters and anhydrides g^{-1} dry weight, but the available evidence suggests that changes in their amount with increasing μ_{max} is likely to be minor, mainly because of adverse osmotic effects (Park et al., 2016; Raven, 2018).
DNA

DNA accounts for a small proportion of dry weight (mean value of 0.5% dry weight) and total P (9%), but the amount of DNA \(\text{g}^{-1}\) dry weight is greater in fast-growing microalgae than in slow-growing macroalgae and an angiosperm. There is a positive relationship between rDNA copy number and genome size in plants (Prokopowich et al., 2003), suggesting that there are more rDNA copies in faster growing microalgae and providing a potential link between DNA and RNA content.

However, there is a negative relationship between DNA content (though not expressed \(\text{g}^{-1}\) dry weight) and growth rate (Bennett, 1972; Shuter et al., 1983; Gregory, 2001; Hessen et al., 2010; Sharpe et al., 2012; Šimová & Herben, 2012; Raven et al., 2019a,b). This may (Cavalier-Smith, 1978) or may not (Shuter et al., 1983) affect the rate of RNA transport through the nuclear pores in eukaryotes. There is no effect of genome size on growth rate in prokaryotes (Vieira-Silva et al., 2010).

There is a strong positive relationship between cell length and cell volume and the rRNA gene copy number in marine microalgae (Zhu et al., 2005; Godhe et al., 2008; Raven et al., 2019a) that would translate into a relatively low rRNA gene copy number in fast growing organisms. The extra copies in yeast are thought to protect the cells against DNA damage from mutagens such as UV. This became essential with the evolution of larger eukaryotic cells that required more rRNA transcription, which would be toxic unless they maintained more rDNA copies (Ide et al., 2010), though small, fast-growing cells are more at risk from UV damage than large cells (Raven, 1991; Finkel et al., 2010).

RNA

In eukaryotic or prokaryotic photosynthetic organisms, the proportion of total P which is RNA is surprisingly constant, irrespective of growth rate. In eukaryotes, the RNA content constitutes 20% of total P in *Parthenocissus tricuspidate*, which grows at 0.06 \(\text{d}^{-1}\) (Robson et al., 1959), 27% in *Chlorella vulgaris*, which grows at 2.05 \(\text{d}^{-1}\) (Nyholm, 1977) and is 17–32% in eight species of macroalgae (Young, 1964). The linear relationship between \(\mu_{\text{max}}\) and RNA content in eukaryotes suggests that RNA makes up a relatively constant 25% of total P. By contrast, in cyanobacteria RNA is 57% of total P in *P. marinus* growing at 0.62 \(\text{d}^{-1}\) (Casey et al., 2016) and 54% in *S. elongatus* growing at 3.36 \(\text{d}^{-1}\) (Grillo & Gibson, 1979). RNA remains a remarkably constant proportion of total P in cyanobacteria also, but closer to 50% of total P rather than the 25% in eukaryotic photosynthetic organisms.

Bacteria have from 1 to 17 copies of the rRNA operon, which consists of the three genes that encode 16S, 23S and 5S rRNA together with internal transcribed spacer regions that contain tRNA (Espejo & Plaza, 2018). The advantage of possessing more than one copy is that it allows rapid responses to increased resource availability (Condon et al., 1995; Klappenbach et al., 2000), but bacteria adapted to low-nutrient environments tend to be slow-growing and have a low number of rRNA operon copies (Fegatella et al., 1998; Klappenbach et al., 2000). There is a positive relationship between rRNA operon copy number and growth rate in bacteria and Archaea, though there is a large range of growth rates within each rRNA operon copy number up to a total of five (Vieira-Silva & Rocha, 2010). Of particular interest is a comparison of *Bacillus subtilis* with one to ten copies (Yano et al., 2013). The largest difference in the phenotypes of this bacterium occurs in the transition from one to two copies (Yano et al., 2013), and mutants with a single copy have lower numbers of ribosomes (20–35%) than the wild-type (Nanamiya et al., 2010). Consistent with this observation, a mutant of *E. coli* with only one copy of the rRNA operon has 56% of the rRNA found in a strain with no deletions, but the decrease in total RNA is relatively minor because of the presence of increased levels of tRNA in the mutant (Asai et al., 1999); the growth rate of the mutant with only one copy is c. 50% that of the wild-type. The increased levels of tRNA are due to the increase in the tRNA : ribosome ratio that occurs with decreased growth rate in *E. coli* (Dong et al., 1996). Though there are no published values for \(\mu_{\text{max}}\), all 62 genomes of *Rickettsia* investigated have a single operon (The Ribosomal RNA Database) and RNA is 3 to 5.5% of dry weight in *Rickettsia burnetii* (Smith & Stoker, 1951), which is similar to the values for *P. marinus* subsp. *pastoris* str. CMP1986 (also known as Med4) and *M. bovis*, which also have a single copy of the rRNA operon.

In contrast to cyanobacteria, there was a strong positive relationship between \(\mu_{\text{max}}\) and organism RNA content in eukaryotes, as predicted by the growth rate hypothesis. There is no doubting the central importance of RNA, but where is the other 75% of total P for eukaryotic photosynthetic organisms – and 50% for cyanobacteria and heterotrophs (Elser et al., 2003) – located, and what is its contribution to growth rate (Moreno & Martiny, 2018)?

Paucity of data

There are two major reasons for the limited data. The first is the use of dry weight as a universal measure of biomass across all photosynthetic organisms. The second is the time-consuming and unrewarding nature of compiling inventories of biochemical composition. While the use of dry weight as a measure of biomass is relatively common in macroalgae and terrestrial plants, it is much less so in microalgae and cyanobacteria. A major reason for the latter is the inconvenience of measuring dry weight due to salts in residual medium, on filters or in centrifuge tubes compromising the final dry weight. However, this is easily overcome by washing the cells with isotonic ammonium formate, which is volatile and is lost when the cells are dried using heat. Good inventories are available for well-studied organisms such as *E. coli*, but sadly the incentive for their construction is very limited. However, where they are available (e.g. Park et al., 2016) their considerable value is obvious.

Conclusion

Two of the three key predictions of the (maximum) growth rate hypothesis hold for eukaryotic photosynthetic organisms. However, RNA does not account for most of the P and the proportions of the different classes of compounds that contain P stay relatively constant. There is clear evidence that as \(\mu_{\text{max}}\) increases, the amount of
RNA g⁻¹ dry weight increases, and there is some evidence that more phospholipids are required and, to a lesser extent, polyphosphate and DNA (expressed g⁻¹ dry weight), but it is unlikely that the amounts of phospholipid esters and anhydrides increase. Whether the classes of compounds other than RNA are involved, directly or indirectly, in RNA biosynthesis and ribosome function (as suggested here) and/or they have other important roles in cell metabolism that increase with increasing μ_{max} remains to be elucidated.

Acknowledgements

We thank Adam Martiny and an anonymous reviewer for their constructive comments on an earlier version of the manuscript. JAR thanks Hans Lambers and Mark Westoby for their continued support and encouragement.

Author contributions

TAVR collected and analysed data; TAVR and JAR wrote the manuscript.

ORCID

John A. Raven https://orcid.org/0000-0002-2789-3297
T. A. V. Rees https://orcid.org/0000-0002-9688-2591

Data availability

The data obtained for this study are available at https://www.doi.org/10.6084/m9.figshare.13378145.

References

Aaronson S. 1973. Effect of incubation temperature on the macromolecular and lipid content of the phytallagelate Ochromonas danica. Journal of Phycology 9: 11–13.
Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS. 2005. Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. Journal of Biological Chemistry 280: 27578–27586.
Armada I, Hachero-Cruzado I, Mazuelos N, Rios JL, Manchado M, Cañavate JP. 2013. Differences in betaine lipids and fatty acids between Pseuodoisochrysis paradoxo VLP and Diacronema vilkianum VLP isolates (Haptophyta). Phytochemistry 95: 224–233.
Asai T, Condon C, Voulgaris J, Zaporojets D, Shen B, Al-Omar M, Squires C, Squires CL. 1999. Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. Journal of Bacteriology 181: 3803–3809.
Atkinson D, Cioffi BJ, Montagnes DJS. 2003. Protists decrease in size linearly with temperature: $\approx 2.5\% \cdot ^\circ\text{C}^{-1}$. Proceedings of the Royal Society of London B 270: 2605–2611.
Bajaj YFS. 1970. Effect of gamma-irradiation on growth, RNA, protein, and nitrogen contents of bean callus cultures. Annals of Botany 34: 1089–1096.
Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London B 181: 109–135.
Bentley-DeSouza A, Holinier C, Motesharrie H, Tseng Y-C, Kajjo S, Nwosu C, Amodeo GF, Bondy-Chornery E, Sai Y, Rudner A et al. 2018. A screen for candidate targets of lysine polyphosphorylation uncovers a conserved network implicated in ribosome biogenesis. Cell Reports 22: 3427–3439.
Bielecki RL. 1968. Levels of phosphate esters in Spirodela. Plant Physiology 43: 1297–1308.
Cañavate JP, Armada I, Hachero-Cruzado I. 2017. Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton. New Phytoplanckton 213: 700–713.
Casey JR, Mardinoglu A, Nielsen J, Karl DM. 2016. Adaptive evolution of phosphorus metabolism in Prochlorococcus. mSystems 1: e00656-16.
Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science 34: 247–278.
Condon C, Liveris D, Squires C, Schwartz I, Squires CL. 1995. RNA operon multiplicity in Escherichia coli and the physiological implications of rrr inactivation. Journal of Bacteriology 177: 4152–4156.
Cook JR. 1966. Adaptations to temperature in two closely related strains of Euglena gracilis. Biological Bulletin 131: 83–93.
Cook JR. 1981. Variation of DNA levels in Euglena related to pH of culture medium. Journal of Protozoology 28: 148–150.
Correll DL, Tolbert NE. 1962. Ribonucleic acid-polysphosphate from algae. I. Isolation and physiology. Plant Physiology 37: 627–636.
Cox RA. 2004. Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. Microbiology 150: 1413–1426.
Dong H, Nilsson L, Kurland CG. 1996. Co-variation of rRNA abundance and codon usage in Escherichia coli at different growth rates. Journal of Molecular Biology 260: 649–663.
Dörrmann P. 2005. Membrane lipids. In: Murphy DJ, ed. Plants lipids: biology, utilisation and manipulation. Oxford, UK: Blackwell Publishing, 123–161.
Eichenberger W, Gribi C. 1997. Lipids of Pavlova thubergii cellular site and metabolic role of DGCC. Phytochemistry 45: 1561–1567.
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J et al. 2003. Growth rate–stoichiometry couplings in diverse biota. Ecology Letters 6: 936–943.
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH. 1996. Organism size, life history, and N : P stoichiometry. BioScience 46: 674–684.
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JP, Hobbie SE, Odell GM, Weider JJ. 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3: 540–550.
Espesojo RJ, Plaza N. 2018. Multiple ribosomal RNA operons in bacteria: Their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Frontiers in Microbiology 9: 1232.
Fagerberg L, Jonasson K, von Heijne G, Uhlén M, Xia Y, Brunak S, Donaldson I, Da Silva P, Anderbergh S, Berglund L. 2010. Prediction of the human membrane proteome. Proteomics 10: 1141–1149.
Fagella F, Lim J, Kjelleberg S, Cavicchioli R. 1998. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Applied and Environmental Microbiology 64: 4433–4438.
Fenchel T. 1974. Intrinsc rate of natural increase: the relationship with body size. Oecologia 14: 317–326.
Fidalgo JP, Cid A, Abalde J, Herrero C. 1995. Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cahiers de Biologie Marine 36: 165–178.
Fidalgo JP, Cid A, Torres E, Sukkink A, Herrero C. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166: 105–116.
Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 113–137.
Flynn KJ, Raven JA, Rees TAV, Finkel Z, Quigg A, Beardall J. 2010. Is the growth rate hypothesis applicable to microalgae? Journal of Phycology 46: 1–12.
Flynn KJ, Skibinski DOF. 2020. Exploring evolution of maximum growth rates in plankton. Journal of Plankton Research 42: 497–513.

© 2021 The Authors
New Phytologist © 2021 New Phytologist Foundation

www.newphytologist.com
Li M, Nkrumah PT, Xiao M. 2014. Biochemical composition of Microcystis aeruginosa related to specific growth rate: insight into the effects of abiotic factors. *Inland Waters* 4: 357–362.

Lorenzo-Orts I, Couto D, Hothorn M. 2020. Identity and functions of inorganic and inositol polyphosphates in plants. *New Phytologist* 225: 637–652.

Lynn SG, Kilham SS, Kreger DA, Interlandi SJ. 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom *Stephanodiscus minutulus* (Bacillariophyceae). *Journal of Phycology* 36: 510–522.

Mahboob S, Rauf A, Ashraf M, Sultana T, Sultana S, Jabban F, Rajoka MI, Al-Balawi HFA, Al-Ghami KA. 2012. High-density productivity and crude protein productivity of a thermostolerant *Chlorella vulgaris* productive genetics and thermodynamics. *Aquaculture International* 20: 455–466.

Main TM, Dobberfuhl DR, Elser JJ. 1997. N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. *Limnology and Oceanography* 42: 1474–1478.

Marchetti J, da Costa F, Bougarian G, Quéré C, Soudant P, Robert R. 2018. The combined effects of blue light and dilution rate on lipid class and fatty acid composition of *Tisochrysis lutea*. *Journal of Applied Phycology* 30: 1483–1494.

Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BAS. 2014. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus. *Proceedings of the National Academy of Sciences, USA* 111: 8089–8094.

McCarthy L, Bentley-DeSouza A, Denoncourt A, Tseng Y-C, Gabriel M, Downey M. 2020. Proteins required for vacuolar function are targets of lysine polyphosphorylation in yeast. *FEBS Letters* 594: 21–30.

McNerney P, Mizutani T, Shiba T. 2006. Inorganic polyphosphate interacts with ribosomes and promotes translation fidelity in vitro and in vivo. *Molecular Microbiology* 60: 438–447.

Mettler T, Mühlhaus T, Hemme D, Schüttler M-A, Rupprecht J, Idoine A, Veyel D, Pal SK, Yaneva-Roder L, Winck FV et al. 2014. Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism *Chlamydomonas reinhardtii*. *Plant Cell* 26: 2310–2350.

Mordy CW, Carlson DJ. 1991. An evaluation of fluorescence techniques for measuring DNA and RNA in marine microorganisms. *Marine Ecology Progress Series* 73: 283–293.

Moreno AR, Martiny AC. 2018. Ecological stoichiometry of ocean plankton. *Annual Review of Marine Science* 10: 43–69.

Namaniya H, Sato M, Masuda K, Sato M, Wada T, Suzuki S, Natori Y, Katano M, Akamura G, Kawamura F. 2010. Bacillus subtilis mutants harbouring a single copy of the *rRNA* operon exhibit severe defects in growth and sporulation. *Microbiology* 156: 2944–2952.

Nyholm N. 1977. Kinetics of phosphate limited algal growth. *Biotechnology and Bioengineering* 19: 467–492.

Pahl SL, Lewis DM, Chen F, King KD. 2010. Growth dynamics and the proximate biochemical composition and fatty acid profile of heterotrophically grown diatom *Cyclotella crypta*. *Journal of Applied Phycology* 22: 165–171.

Park JO, Rubin SA, Xu Y-F, Amador-Noguez D, Fan J, Shlomi T, Rabinozvit JD. 2016. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. *Nature Chemical Biology* 12: 482–489.

Prokopowich CD, Gregory TR, Crease TJ. 2003. The correlation between rDNA copy number and genome size in eukaryotes. *Genome* 46: 48–50.

Raboy V. 2007. Seed phosphorus and the development of low-phytate crops. In: Turner BL, Richardson AE, Mullaney EJ, eds. *Inositol phosphates: linking agriculture and the environment*. Wallingford, UK: CAB International, 111–132.

Raven JA. 1991. Responses of aquatic photosynthetic organisms to increased solar UVB. *Journal of Photochemistry and Photobiology B Biology* 9: 239–244.

Raven JA. 2013a. RNA function and phosphorus use by photosynthetic organisms. *Frontiers in Plant Science* 4: 536.

Raven JA. 2013b. The evolution of autotrophy in relation to phosphorus requirement. *Journal of Experimental Botany* 64: 4023–4046.

Raven JA. 2015. Interactions between nitrogen and phosphorus metabolism. *Annual Plant Reviews* 48: 187–214.

Raven JA. 2018. The potential effect of low cell osmolarity on cell function through decreased concentration of enzyme substrates. *Journal of Experimental Botany* 69: 4667–4673.
Savic N, Shorthill SP, Bilenky M, Dobbs JM, Dilworth D, Hirst M, Nelson CJ, Sarhan F, D’Aoust MJ. 1975. Sadowski PG, Groen AJ, Dupree P, Lilley KS. 2008. Ryan MH, Kaur P, Nazeri NK, Clode PL, Keeble-Gagné N. 2010. Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ. 2010. Raven JA, Knight CA, Beardall J. 2019a. Genome and cell size variation across algal taxa. Perspectives in Phyiology 6: 59–90. Raven JA, Knight CA, Beardall J. 2019b. Cell size has gene expression and biophysical consequences for cellular function. Perspectives in Phyiology 6: 81–94. Raven JA, Knoll AH. 2010. Non-skeletal biominalization by eukaryotes: matters of moment and gravity. Geomicrobiology Journal 27: 572–584. Rees TAV. 2014. Scaling and transport kinetics in aquatic primary producers. Marine Ecology Progress Series 509: 103–112. Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ. 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society of London B 277: 877–883. Rhee G-Y. 1973. A continuous cultural study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. Journal of Phyiology 9: 495–506. Rhee G-Y, Gotham EJ. 1981. The effect of environmental factors on phytotropin growth: temperature and the interactions of temperature with nutrient limitation. Limnology and Oceanography 26: 635–648. Robson HH, Budd MA, Yost HC. 1959. Comparison of the nucleic acid, total nitrogen, and protein nitrogen levels of normal and tumor tissue under similar growth conditions. Plant Physiology 34: 435–440. Ryan MH, Kaur P, Nazeri NK, Clode PL, Keeble-Gagné N, Doolittle AL, Smernik RJ, Van Aken O, Nicol D, Maruyama H et al. 2019. Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant, Cell & Environment 42: 1987–2002. Sadowski PG, Green AJ, Dupree P, Lilley KS. 2008. Sub-cellular localization of membrane proteins. Proteomics 8: 3991–4011. Sarhan F, D’Aoust MJ. 1975. RNA synthesis in spring and winter wheat during cold acclimation. Physiologia Plantarum 35: 62–65. Savic N, Shorthill SP, Bilenky M, Dubbs JM, Dilworth D, Hirst M, Nelson CJ. 2019. Histone chaperone paralogs have redundant, cooperative, and divergent functions in yeast. Genetics 213: 1301–1316. Schirrmacher BE, Dalquen DA, Anisimova M, Bagheri HC. 2012. Gene copy number variation and its significance in cyanobacterial phylogeny. BMC Microbiology 12: 177. Sharpe SC, Koester JA, Loeb M, Cockshutt AM, Campbell DA, Irwin AJ, Finkel ZV. 2012. Influence of cell size and DNA content on growth rate and photosystem II function in cryptic species of Diplococcus breviscella. PLoS ONE 7: e52916. Shenini A, Schatz D, Fredericks HF, VanMooy BAS, Porat Z, Vardi A. 2016. Phosphorus starvation induces membrane remodelling and recycling in Emiliania huxleyi. New Phytologist 211: 886–898. Shuter BJ, Thomas JE, Taylor WD, Zimmerman AM. 1983. Phenotypic correlates of genomic DNA content in unicellular eukaryotes and other cells. American Naturalist 122: 26–44. Siebers M, Dörmann P, Huld G. 2015. Membrane remodelling in phosphorus-deficient plants. Annual Plant Review 48: 237–264. Šimová I, Herben T. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society of London B: Biological Sciences 279: 867–875. Smith JD, Stoker MGP. 1951. The nucleic acids of Rickettsia burneti. British Journal of Experimental Pathology 32: 433–441. Sokal RR, Rohlf FJ. 1995. Biometry. New York, USA: WH Freeman & Co. Staehelin LA. 1997. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. The Plant Journal 11: 1151–1165. Sterner RW. 1995. Elemental stoichiometry of species in ecosystems. In: Jones CG, Lawton JH, eds. Linking species and ecosystems. New York, USA: Chapman & Hall, 240–252. Sterner RW, Elser JJ. 2002. Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton, NJ, USA: Princeton University Press. Stevens TJ, Arkin. 2000. Do more complex organisms have a greater proportion of membrane proteins in their genome? Proteins 39: 417–420. Sutcliffe WH. 1970. Relationship between growth rate and ribonucleic acid concentration in some invertebrates. Journal of the Fisheries Research Board of Canada 27: 606–609. Thompson P-A, Oh H-M, Rhee G-Y. 1994. Storage of phosphorus in the nitrogen-fixing Anabaena flor-aquae (Cyanophyceae). Journal of Phyiology 30: 267–273. Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Almk T, Asplund A, Björk L, Breckels LM et al. 2017. A subcellular map of the human proteome. Science 356: eaal3321. Toseland A, Daines SJ, Clark JR, Kirkham A, Straus J, Uhlig C, Lenton TM, Valentin K, Pearson GA, Moulton V et al. 2013. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Climate Change 3: 979–984. Trilissenko LV, Kulakovskaya TV. 2014. Polyphosphates as an energy source for growth of Saccharomyces cerevisiae. Biochemistry (Moscow) 79: 478–482. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblik M, Lomas MW, Mincner TJ, Moore LR, Moutin T et al. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458: 69–72. Vargas MA, Rodríguez H, Moreno J, Oliwares H, Del Campo JA, Rivas J, Guerrero MG. 1998. Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. Journal of Phyiology 34: 812–817. Veneklasen EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Wolf-Ridiger S, Shane MW, White PJ et al. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist 195: 306–320. Vieira-Silva S, Rocha EPC. 2010. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genetics 6: e1000808. Vieira-Silva S, Touchon M, Rocha EPC. 2010. No evidence for elemental-based streamlining of prokaryotic genomes. Trends in Ecology and Evolution 25: 319–320. Warton DI, Wright IJ, Falster DS, Westoby M. 2006. Bivariate line-fitting methods for allometry. Biological Reviews 81: 259–291. Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ. 2003. Temperature and the chemical composition of poikilothermic organisms. Functional Ecology 17: 237–245. Yano K, Wada T, Suzuki S, Tagami K, Matsumoto T, Shiwa Y, Ishige T, Kawaguchi Y, Masuda K, Akanuma G et al. 2013. Multiple tRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis. Microbiology 159: 2225–2236. Young EG. 1964. The concentration of nucleic acids in some common marine algae. Canadian Journal of Botany 42: 1471–1479. Zhu CJ, Lee YK, Chao TM. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. Journal of Applied Phyiology 86: 451–457. Zhu F, Massana R, Not F, Marie D, Vaulot D. 2005. Mapping of picoukaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology 52: 79–92. Zhu Z, Xu K, Fu F, Spackeen JL, Bronk DA, Hutchins DA. 2016. A comparative study of iron and temperature interactive effects on diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica. Marine Ecology Progress Series 550: 39–51.