Salvage Debridement, Antibiotics and Implant Retention (“DAIR”) With Local Injection of a Selected Cocktail of Bacteriophages: Is It an Option for an Elderly Patient With Relapsing Staphylococcus aureus Prosthetic-Joint Infection?

Tristan Ferry,1,2,4 Gilles Leboucher,3 Cindy Fevre,6 Yannick Henry,2,4,7 Anne Conrad,1,2,3,4,8 Jérôme Josse,2,4,8 Cécile Batailler,4,7 Christian Chidiac,1,2,3,4 Mathieu Medina,1 S. Lustig,7 and Frédéric Laurent2,3,4,8; on behalf of the Lyon BJIn

1Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, France; 2Centre Interrégional de Référence des Infections Osteo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France; 3Centre International de Recherche en Infectiologie, Lyon, France; 4Centre Inter-régiona1 de Référence des Infections Osteo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, France; 5Pharmacie, Hôpital Mathieu Medina,6 S. Lustig,7 and Frédéric Laurent2,3,4,8; on behalf of the Lyon BJ

Study Group

An 80-year-old obese (100 kg) woman with type 2 diabetes mellitus and mild chronic kidney injury (creatinine clearance 60 mL/minute) had history of relapsing prosthetic joint infection (PJI). This salvage treatment was safe and associated with a clinical success. Scientific evaluation of the potential clinical benefit of bacteriophages as antbiofilm treatment in PJI is now feasible and required.

Keywords. bacteriophage; DAIR; prosthetic-joint infection; S. aureus; suppressive therapy.

Received 3 June 2018; editorial decision 12 October 2018; accepted 19 October 2018.

Correspondence: T. Ferry, MD, PhD, Service de Maladies Infectieuses et Tropical, Hôpital de la Croix-Rousse, 93 grande rue de la Croix-Rousse, 69004 Lyon, France (tristan.ferry@univ-lyon1.fr).

Open Forum Infectious Diseases®

© The Author(s) 2018. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. DOI: 10.1093/ofid/ofy269

Open Forum Infectious Diseases

• OFID

Downloaded from https://academic.oup.com/ofid/article-abstract/5/11/ofy269/5144083 by HOSPICES CIVILS DE LYON user on 05 December 2019
bacteriophage injection (10 months after the *C. koseri* infection), still under amoxicillin, the outcome was favorable without any clinical signs of persistent infection (Figure 1E). “Phagogram”, ie, activity of the selected bacteriophages on the *S. aureus* strain that grew preoperatively, was done retrospectively. Efficiency of each bacteriophage was tested using efficiency of plating (EOP) and killing assays (Figure 1F). The EOP assay is based on the visualization of bacterial lysis when the strain is spotted on a solid medium (spot test). In case of bacterial lysis with PFU, an EOP score defined by the patient-strain/reference-strain bacteriophage titer is indicated. The closer the score is to 1, the more effective the bacteriophage is. For the killing assay, the patient’s strains were cultured in a 96-well plate at a starting concentration of 1×10^6 colony-forming units/mL with or without bacteriophage. Each bacteriophage was added individually at 3 different concentrations, leading to different multiplicities of infection ([MOIs] ratio of phage/bacteria). The volume of phages added to bacterial cells were calculated to deliver 1, 10, and 100 phages per bacteria. However, under real experimental conditions, the MOIs were different and determined after each phagogram. As a consequence, we refer to them as low, medium, and high MOI. The bacterial concentrations were monitored over time by optical density at 600 nm. Five clones of the patient’s strain were tested with the anti-*S. aureus* bacteriophages. Among the bacteriophages used, the 1493 and 1815 showed a clear lytic activity (with visualization of PFU) with high EOP scores (4.4×10^{-1} and 7.4×10^{-1}, respectively). Bacteriophage 1957 was also active, with PFU visualization, but it was less effective (low EOP score: 4.9×10^{-3}) and displayed no activity on *S. aureus* in the killing assay, in comparison with the 2 other bacteriophages. We concluded that bacteriophages 1493 and 1815 were active and effective against this *S. aureus* strain, but not phage 1957. In addition, these bacteriophages had no activity against *S. lugdunensis* (data not shown).

DISCUSSION

Prosthetic joint infection is the most dramatic complication of arthroplasty, leading to iterative surgeries, loss of function, considerable direct and indirect cost, and death. The treatment of staphylococcal chronic PJIs requires prosthesis explantation to eradicate the biofilm, antibiotics, and then reimplantation in a 1- or a 2-stage strategy [1]. In elderly patients, explantation is sometimes not reasonable, especially in patients with large prostheses and with few motor disabilities. In such a population,
suppressive antibiotic therapy is sometimes used after performing a “DAIR” procedure, but the rate of success at 2 years is only approximately 60% [2].

Bacteriophages are specific viruses that target bacteria [3]. They were first described in 1917 and remained a popular treatment throughout the 20th century in Eastern Europe, especially for patients with osteomyelitis [4]. By their nature, lytic bacteriophages are good candidates for antibacterial therapy. In comparison with antibiotics, they specifically target a bacterium, as long as it is present, and used it to amplify themselves. Indeed, the concentration of an antibiotic introduced into the human organism decreases rapidly with time (natural drug clearance from body), whereas phages continue to multiply, and then decreases after elimination of bacterial cells [3, 4]. This phenomenon, although observed in vitro and in nature, is unique and suggests that it could occur in humans. As a result, a single administration or a few administrations may theoretically be sufficient to treat a bacterial infection in humans. Bacteriophages remained a popular treatment in Eastern Europe (Georgia and Poland), especially for patients with osteomyelitis for whom traditional and preformed cocktails of bacteriophages are locally applied through the fistula [4]. Because their production in such countries currently does not follow the European GMP, bacteriophages are never used in patients with PJI, especially due to the risk of pyrogenicity. In Western Europe and the United States, medical health authorities consider that it is crucially important to respect GMP standards when producing bacteriophages for conducting clinical trials and targeting marketing authorizations and authorizing salvage therapy to guarantee the quality of the product.

In the European multicenter clinical trial, which was recently conducted by Pherecydes Pharma to evaluate phage therapy on burn wound infections, phages were produced according to GMP, but they are no longer available [5]. New GMP productions were not initiated yet. Therefore, GMP bacteriophages were not available. For this case, anti-*P. aeruginosa* and anti-*S. aureus* phages selected among the library of Pherecydes Pharma were produced in the R&D laboratory of the company. The major difference in the production process was not technical but related to the quality assurance level of the laboratory, which did not reach that of a GMP unit. This uncommon situation was accepted in this case of unmet medical need, but it implied a thorough evaluation of the quality control certificates of analysis of each bacteriophage by both ANSM and medical staff. They specifically evaluated the elimination of bacterial components (toxins etc.) generated during the production process.

Pseudomonas aeruginosa was not retrieved in surgical samples, and the effect of the corresponding bacteriophages was difficult to evaluate. One of the 3 *S. aureus* bacteriophages lacked efficacy on the patient’s strain, but the other 2 proved to be active. These findings show that it is desirable to isolate the strain infecting a patient before surgery (ie, by performing preoperative joint fluid culture) to perform a phagogram for selecting the active bacteriophage(s) before local injection. The use of bacteriophage is particularly promising in patients with PJI because bacteriophages and antibiotics are synergistic [6, 7], because some in vitro and animal models demonstrated that bacteriophages could have an anti-biofilm activity [6, 7], and because the rate of success, regardless of the clinical presentation (ie, acute or chronic), is unacceptably low [2, 8–12]. Finally, this salvage treatment was safe. The treatment success may have been due to the action of bacteriophages on the *S. aureus* biofilm, because the patient had not received further antibiotics active against that organism for 12 months.

There is a considerable opportunity to develop the use of bacteriophages in patients with PJI in France because of the following: (1) it is now possible to select a bacteriophage mix through a susceptibility test (phagogram); (2) their production with a high level of purity according to European GMP is achievable; (3) ANSM agrees for the use of bacteriophages as salvage therapy; (4) our infectiologists and orthopedic surgeons from a reference center are motivated to recruit a large cohort of patients, including more complex cases that require salvage therapy; (5) our pharmacists agree to take responsibility to assemble a magistral preparation (mix of bacteriophages) just before the peroperative administration.

As a first step, it seems reasonable to limit this treatment in specialized units to patients (1) with PJI at high risk of complication in case of explantation and (2) for whom suppressive oral antimicrobial therapy is discussed. In addition to conventional therapies such as DAIR and antibiotics, the use of bacteriophages that may have an anti-biofilm activity, as suspected in the case reported here, may contribute to improvement of patients at particularly high risk for complication, long-term antibiotic toxicity, and mortality. It would be of great interest to assess the value of this treatment for patients with acute PJI. Finally, bacteriophages active on *Enterobacteriaceae* and coagulase-negative staphylococci (such as *Staphylococcus epidermidis*) produced according to GMP has to be considered, because these pathogens are frequently involved in patients with PJI and are more and more resistant to conventional antibiotics.

CONCLUSIONS

The salvage use of a bacteriophage mix was safe and associated with a clinical success and a potential anti-biofilm activity in a patient with relapsing *S. aureus* PJI. Selecting the best bacteriophage mix based on a phagogram of the infecting strain should be performed before bacteriophage therapy. Production of bacteriophages with a high purity level according to GMP guidelines is currently possible, making the scientific evaluation of their potential clinical benefit in BJI feasible.

Supplementary Data

Supplementary materials are available at *Open Forum Infectious Diseases* online. Consisting of data provided by the authors to benefit the reader,
the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

We acknowledge Drs. Corinne Decouchon and Laurence Legout (Infectiologists) who participated in the patient care before administration of bacteriophages, and Dr. Romain Gaillard (Orthopaedic surgeon) who participated in the surgery and the management of the patient. We acknowledge Dr. Philippe Cochard who actively participated in the care and the rehabilitation of the patient. We acknowledge Caroline Semaille (French National Agency for Medicines and Health Products Safety [ANSM]) and all members of ANSM “Comite Scientifique Specialisé Temporaire” dedicated to bacteriophage therapy.

Financial support. Pherecydes Pharma has produced and funded the production of bacteriophages.

Lyon Bone and Joint Infection Study Group: Coordinator - Tristan Ferry; Infectious Diseases Specialists - Tristan Ferry, Florent Valour, Thomas Perpoint, André Bobieux, François Biron, Patrick Mialhes, Florence Ader, Agathe Becker, Sandrine Roux, Claire Trifaut-Fillit, Anne Conrad, Alexie Bosch, Fatiha Daoud, Johanna Lippman, Evelyne Braun, and Christian Chidiac; Surgeons - Sébastien Lustig, Elvire Servien, Romain Gaillard, Antoine Schneider, Stanislas Gunst, Cécile Batailler, Michel-Henry Fessy, Jean-Luc Besse, Yannick Herry, Anthony Viste, Philippe Chaudier, Cyril Courtin, Lucie Louboutin, Sébastien Martres, Franck Trouillet, Cédric Barrey, Emmanuel Jouanneau, Timothée Jacquesson, Ali Mojallal, Fabien Boucher, Hristo Shipkov, and Joseph Chateau; Anesthesiologists - Frédéric Aubrun, Mikhail Dziadzko, and Caroline Macabéo; Microbiologists - Frederic Laurent, Laetitia Beraud, Jérôme Josse, Camille Kolenda, and Céline Dupieux; Imaging - Fabien Craighero, Loic Boussel, and Jean-Baptiste Pialat; Nuclear Medicine - Isabelle Morelec, Marc Janier, and Céline Dupieux; PK/PD Specialists - Michel Tod, Marie-Claude Baptiste Pialat; Nuclear Medicine - Isabelle Morelec, Marc Janier, and Céline Dupieux; Clinical Research Assistant - Eugénie Mabrut.

Potential conflicts of interest. C. F. and M. M. are employed by the commercial company Pherecydes Pharma. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2013; 56:e1–25.
2. Prendki V, Ferry T, Sergent P, et al. Prolonged suppressive antibiotic therapy for prosthetic joint infection in the elderly: a national multicentre cohort study. Eur J Clin Microbiol Infect Dis 2017; 36:1577–85.
3. Colle M, Millard AD, Letarouil AV, Hepay S. Phages in nature. Bacteriophage 2011; 1:31–45.
4. Kutateladze M, Adaimia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 2010; 28:591–5.
5. Jault P, Leclerc T, Jenne S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 2018; pii: S1473-3099(18)30482-1.
6. Clokie MR, Millard AD, Letarouill AV, Hepay S. Phages in nature. Bacteriophage 2011; 1:31–45.
7. Kumaran D, Taha M, Yi Q, et al. Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol 2018; 9:127.
8. Bouaziz A, Uçkay I, Lustig S, et al. Non-compliance with IDSA guidelines for prosthetic joint infection is a risk factor for treatment failure. Med Mal Infect 2018; 48:207–11.
9. Lora-Tamayo J, Senneville E, Ribera A, et al. The not-so-good prognosis of streptococcal periprosthetic joint infection managed by implant retention: the results of a large multicenter study. Clin Infect Dis 2017; 64:1472–52.
10. Rodriguez-Pardo D, Pignau C, Lora-Tamayo J, et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect 2014; 20:O911–9.
11. Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis 2013; 56:182–4.
12. Bouaziz A, Uçkay I, Lustig S, et al. Microbiological markers suggesting high inoculum size at time of surgery are risk factors for relapse in patients with Staphylococcus aureus prosthetic joint infection. J Infect 2012; 65:582–4.