Fifty top-cited spine articles from mainland China: A citation analysis

Yaohong Wu1,*, Yachao Zhao2,*, Linghan Lin2, Zhijun Lu1, Zhaoyang Guo1, Xiaoming Li1, Rongchun Chen1 and Huasong Ma3

Abstract

Objective: To identify the 50 top-cited spine articles from mainland China and to analyze their main characteristics.

Methods: Web of Science was used to identify the 50 top-cited spine articles from mainland China in 27 spine-related journals. The title, year of publication, number of citations, journal, anatomic focus, subspecialty, evidence level, city, institution and author were recorded.

Results: The top 50 articles had 29–122 citations and were published in 11 English-language journals; most (32) were published in the 2000s. The journal Spine had the largest number of articles and The Lancet had the highest impact factor. The lumber spine was the most discussed anatomic area (18). Degenerative spine disease was the most common subspecialty topic (22). Most articles were clinical studies (29); the others were basic research (21). Level IV was the most common evidence level (17).

Conclusions: This list indicates the most influential articles from mainland China in the global spine research community. Identification of these articles provides insights into the trends in spine care in mainland China and the historical contributions of researchers from mainland China to the international spine research field.

Keywords
Spine, citation analysis, mainland China

Date received: 21 February 2017; accepted: 16 May 2017

1Department of Orthopaedics, Ganzhou People’s Hospital, Ganzhou, China
2The Third Clinical College, Southern Medical University, Guangzhou, China
3Department of Orthopaedics, The 306th Hospital of People’s Liberation Army, Beijing, China

*These authors contributed equally to this work.

Corresponding authors:
Huasong Ma and Rongchun Chen, Department of Orthopaedics, The 306th Hospital of People’s Liberation Army, No. 9, Anxiangbeili, Beijing 100101, China; Department of Orthopaedics, Ganzhou People’s Hospital, No. 17, Hongqi Road, Ganzhou 341000, China.
Emails: plaspine306@163.com; rongchunchen@126.com

Creative Commons CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Mainland China has the largest population in the world and has shown rapid economic progress. These factors have led to substantial biomedical developments and recent improvements in spine care in mainland China. In addition, the country has the largest number of orthopedic surgeons in the world. Therefore, mainland China is an important leader in the field of spine research, although influential spine research from this region has yet to be studied.

Multiple methods are used to assess the significance of medical studies. The citation of a previous paper indicates the importance of the previous study to the current article. The importance of a study is often assessed using citation analysis. The number of citations is a marker of the influence of an article and offers a reliable method to rank articles. The larger an article’s citation history, the more valuable the article is to its field.

Web of Science is an important database that provides citation metrics and other academic impact information. This platform has been widely used to analyze the most-cited articles in various medical fields. One 2012 study used a citation index to examine the most-cited articles in the spine research field, permitting a deeper understanding of the characteristics of influential papers. However, this previous study did not include any Chinese spine articles. Moreover, to the best of our knowledge, there are no analyses of the top-cited spine papers from mainland China, indicating that the contribution of Chinese spine surgeons and researchers to the global spine research community has not been adequately investigated. Therefore, this study aimed to identify the 50 top-cited spine papers originating from mainland China, to analyze their main characteristics and to provide a unique insight into mainland China’s most important contributions to the spine research field.

Materials and methods

The citation search was performed on April 6, 2016, using the Web of Science database (Thomson Reuters, Philadelphia, Pennsylvania), which has been used in previous similar studies. Based on a previous paper published in 2012, 27 spine-related journals were included in the literature search (Table 1). These journals were chosen from the Web of Science categories, including “Orthopedics.”

Journal name
American Journal of Neuroradiology
American Journal of Roentgenology
Clinical Biomechanics
Clinical Journal of Pain
Clinical Orthopaedics and Related Research
European Spine Journal
Journal of Neurosurgery
Journal of Pediatric Orthopaedics
Journal of Spinal Disorders
Journal of Spinal Disorders and Techniques
Journal of Trauma
Journal of the American Medical Association
Journal of Bone and Joint Surgery. American Volume
Journal of Bone and Joint Surgery. British Volume
Journal of Neurosurgery: Spine
Journal of Vascular and Interventional Radiology
The Lancet
New England Journal of Medicine
Neurosurgical Review
Neurosurgery
Orthopedic Clinics of North America
Pain
Physical Therapy
Radiology
Regional Anesthesia and Pain Medicine
Spine
The Spine Journal
“Neurosciences,” “Neurology,” “Rehabilitation,” “Sports Sciences,” “Medicine, General and Internal” and “Radiology, Nuclear Medicine, and Medical Imaging.” These 27 journals regularly publish articles about spine research.

The inclusion criteria of this study were (1) spine-related articles; (2) from mainland China; and (3) ranked in the top 50 papers according to the number of citations. Based on previous similar publications, the articles from these 27 journals were ordered by number of citations. To exclude papers not from mainland China, “Peoples R China” was selected in the record field “Countries/territories.” Articles that lacked a primary or reprint address in mainland China were excluded. This ensured that articles with one or more Chinese co-authors but that were not from mainland China were not included.

The 50 top-cited spine papers from mainland China were included in this study. The title, year of publication, number of citations, journal, anatomic focus, subspecialty, level of evidence, city, institution and author were recorded and analyzed.

Results

The top 50 articles and their citations are shown in Table 2. These articles

Rank	Article	Number of citations	Rank	Article	Number of citations
1	Hu and Xing, 1998 (38)	122	26	Dai, 2001 (63)	38
2	Peng et al., 2005 (39)	108	27	Li et al., 2006 (64)	38
3	Peng et al., 2006 (40)	102	28	Zhang et al., 2008 (65)	37
4	Bao and Ling, 1997 (41)	97	29	Han et al., 2008 (66)	36
5	Zhang et al., 2005 (42)	83	30	Dai et al., 1998 (67)	35
6	Tan et al., 2003 (43)	83	31	Hou et al., 2003 (68)	35
7	Liao et al., 2003 (44)	70	32	Li et al., 2006 (69)	35
8	Holmes et al., 1994 (45)	61	33	Sheng et al., 2010 (70)	35
9	Zhao et al., 2005 (46)	61	34	Ma et al., 2005 (71)	35
10	Wang et al., 2007 (47)	58	35	Jian et al., 2010 (72)	35
11	Hou et al., 1993 (48)	54	36	Tian et al., 2011 (73)	34
12	Wu et al., 2006 (49)	53	37	Feng et al., 2010 (74)	34
13	Wu et al., 2006 (50)	53	38	Fan et al., 2010 (75)	33
14	Jin et al., 2004 (51)	51	39	Chen et al., 2005 (76)	33
15	Dai, 1998 (52)	47	40	Xue et al., 2012 (77)	33
16	Peng et al., 2006 (53)	47	41	Wang et al., 2008 (78)	32
17	Wang et al., 2006 (54)	46	42	Kai et al., 2003 (79)	32
18	Ruan et al., 2007 (55)	45	43	Fu et al., 2008 (80)	31
19	Li et al., 2011 (56)	45	44	Dai et al., 2005 (81)	31
20	Dai et al., 2009 (57)	44	45	Guo et al., 2010 (82)	31
21	Wang et al., 2010 (58)	44	46	Qiu et al., 2005 (83)	30
22	Shi et al., 1999 (59)	44	47	Kong et al., 2007 (84)	30
23	Sung et al., 1987 (60)	43	48	Chen et al., 2007 (85)	30
24	Yan et al., 2008 (61)	40	49	Hu et al., 2010 (86)	30
25	Dai and Jiang, 2008 (62)	40	50	Dai and Jia, 2000 (87)	29
received 29 to 122 citations (mean number of citations: 48). The oldest paper (published in 1987) was ranked 23rd and the latest paper (published in 2012) was ranked 40th. Most articles (32) were published in the 2000s, followed by the 2010s (n = 10), 1990s (n = 7) and 1980s (n = 1) (Figure 1).

The 50 articles were published in 11 English-language journals (Table 3). Most papers were published in *Spine* (n = 23), followed by *European Spine Journal* (n = 10), *Clinical Orthopaedics and Related Research* (n = 3) and *Journal of Neurosurgery: Spine* (n = 3). The *Lancet* had the highest impact factor (45.217), far more than any other journal included in this study. Table 4 shows the articles classified by anatomic focus. The lumbar spine was the most discussed anatomic area (n = 18), followed by the entire spine (n = 12) and the cervical spine (n = 11). Of the top 50 papers,

Figure 1. Number of articles per decade.

Table 3. Number of articles on the top 50 list by source journal.

Journal	Number of articles	Impact factor
Spine	23	2.297
European Spine Journal	10	2.066
Clinical Orthopaedics and Related Research	3	2.765
Journal of Neurosurgery: Spine	3	2.383
Journal of Bone and Joint Surgery. American Volume	2	5.280
Pain	2	5.213
Neurosurgery	2	3.620
Journal of Bone and Joint Surgery. British Volume	2	3.309
The Lancet	1	45.217
American Journal of Neuroradiology	1	3.589
The Spine Journal	1	2.426
29 were clinical studies and 21 reported basic research. Of the 29 clinical studies, most showed evidence levels of IV (n = 17), far more than any other level of evidence (Figure 2). Degenerative spine disease was the most popular subspecialty topic (n = 22) in the top 50 list, followed by general spine (n = 13) and trauma (n = 5) (Table 5).

The top 50 articles were published by authors from 12 Chinese cities (Table 6). The largest number of articles were published in Beijing (n = 15), followed by Shanghai (n = 14) and Hangzhou (n = 4) (Table 6). A total of 27 institutions published these 50 top-cited articles. Eight

Table 4. Articles classified by anatomic focus.
Anatomic focus

Lumbar spine
Entire spine
Cervical spine
Thoracolumbar spine
Thoracic spine
Sacrum

Table 5. Number of articles by subspecialty.
Subspecialty

Degenerative
General spine
Trauma
Infection
Deformity
Developmental/congenital
Oncology

Figure 2. Level of evidence of clinical articles.
institutions with more than one article published 31 of the top 50 articles (62%). Among them, Xinhua Hospital published the greatest number of articles (n = 10), followed by 304th Hospital (n = 5) and Peking University Third Hospital (n = 4) (Table 7). Three authors contributed more than one article. Dai LY published the largest number of the 50 top-cited articles (n = 7), followed by Peng BG (n = 3) and Hou SX (n = 2) (Table 8).

Table 6. Cities from which the articles originated.

City	Number of articles
Beijing	15
Shanghai	14
Hangzhou	4
Nanjing	3
Soochow	3
Guangzhou	2
Wenzhou	2
Xi’an	2
Chengdu	1
Nanchong	1
Urumqi	1
Chongqing	1

Table 7. Institutions associated with more than one article.

Institution (City)	Number of articles
Xinhua Hospital (Shanghai)	10
304th Hospital (Beijing)	5
Peking University Third Hospital (Beijing)	4
The First Affiliated Hospital of Soochow University (Soochow)	3
Changzheng Hospital (Shanghai)	3
The Second Affiliated Hospital of Zhejiang University (Hangzhou)	2
Sir Run Run Shaw Hospital (Hangzhou)	2
The 2nd Affiliated Hospital of Wenzhou Medical University (Wenzhou)	2

Table 8. First authors with more than one article.

Author name	Number of articles
Dai LY	7
Peng BG	3
Hou SX	2

Discussion

Citation analysis has been widely used to investigate the top-cited papers in many biomedical fields, and has been applied to the field of spine research. However, previous research has not included Chinese articles in the global top-cited spine articles. In addition, to the best of our knowledge, the top-cited spine papers from mainland China have not been reported, despite the increasing importance of Chinese spine surgeons and researchers to the international spine community. Therefore, we aimed to identify and characterize the 50 most-cited spine articles from mainland China and to provide a unique perspective on Chinese spine research.

We found that the 50 top-cited papers were reported between 1987 and 2012 and that 2000–2009 was the most prolific decade. This finding is inconsistent with analysis of the global spine research field, which showed that 1990–1999 was the most important decade. This may be explained by an historical lack of financial funds and articles published in English in mainland China.
owing to a less developed economy.88,89 In contrast, the recent increase in influential papers reflects the greater development of the Chinese spine research field.6,7

The 50 top-cited spine papers had between 29 and 122 citations. These numbers are substantially lower than those for the global spine field (which showed the lowest citation number as 244);34 this may be because the previous study did not include Chinese articles.34 This finding indicates that although the quantity of Chinese articles has increased, the quality of Chinese articles needs to improve.6,7

All the included papers were published in English. One of the main reasons for this is that English is the most common language of influential articles in the field of spine research and other orthopedic subspecialties.16,34,35,37,90–94 This result may indicate that Chinese authors experience a language barrier that results in fewer spine research publications from China than from Western countries.

The 50 top-cited papers were reported in 11 journals. Among them, \textit{Spine} published the greatest number of papers. The first four journals published nearly three-quarters of the total number of articles: \textit{Spine, European Spine Journal, Clinical Orthopaedics and Related Research,} and \textit{Journal of Neurosurgery: Spine.} Three of these are subspecialty spine journals. This may indicate that the influential articles are mainly published in subspecialty spine journals. Moreover, previous studies have suggested that impact factor should be the most important indicator of article citations, and many of the most-cited papers have been published in high-impact factor publications.16,17,95 However, the present findings do not support this. \textit{The Lancet}, which has the highest impact factor (45.217), published only one paper. \textit{Spine}, which has a lower impact factor (2.297), published the largest number of papers (n = 23). This may indicate that citations are not always affected by impact factor. This has been suggested by previous researchers20,34 and indicates the importance of considering several factors when investigating citations in certain journals.16,34,37,93

Authors from 12 cities were responsible for the 50 top-cited articles. Beijing ranked 1st, and Shanghai ranked 2nd, suggesting that Beijing and Shanghai play an important role in Chinese spine research. This can be attributed to the large number of spine surgeons and researchers and adequate financial research funds in these cities.16,29

Of the top 50 studies, clinical studies were more popular than basic research. This finding is consistent with previous study findings on global spine research.34 However, the proportion of clinical studies/basic research in mainland China is much smaller than that worldwide (29/21 versus 81/19, respectively). This suggests the need to improve Chinese spine-related clinical research. One previous study found a relatively greater number of basic research studies in current Chinese clinical research.2 There are several possible reasons for this phenomenon. Clinical studies are very complicated and require long-term intervention and follow-ups. Mainland China has a large number of patients with spine-related problems and this could facilitate recruitment of greater numbers of patients in clinical studies. However, mainland China lacks a high-quality healthcare system equal to that in developed countries.9 Therefore, the lower quality of health care in mainland China may hinder patient participation in clinical studies. In addition, insufficient research funds and a lack of available time have resulted in fewer clinical studies in mainland China.2,96 However, these disadvantages may be reduced in the Chinese spine research field. Medical system reforms, increased experience in conducting clinical studies and greater investment in research is
likely to improve research in mainland China in future years.9–11

Some limitations of this study should be noted. First, we selected spine-related journals based on previous research.34 These journals do not include all spine articles, because some basic research journals and general journals also publish spine-related articles. However, no search strategy can identify all spine articles. Generally, the articles published in journals not indexed in this study are likely to have fewer citations than those that we indexed.34 Second, this was a cross-sectional study design with a single time point. The rankings identified may change if the study is replicated in the future.

Conclusion

To the best of our knowledge, this is the first bibliometric analysis of the most-cited spine articles from mainland China. The study findings indicate an increase in the number of influential papers published by the Chinese spine research community in recent years. The present study identifies the most influential Chinese articles in global spine research, provides a general picture of Chinese historical contributions to the global spine research community and illustrates trends in spine care in mainland China. We believe that this study will help surgeons, researchers and managers to recognize the main characteristics of Chinese spine research and will form the basis of future high-impact studies.

Declaration of conflicting interests

The authors declare that there is no conflict of interest.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81601948).

References

1. Makris GC, Spanos A, Rafailidis PI, et al. Increasing contribution of China in modern biomedical research. Statistical data from ISI web of knowledge. Med Sci Monit 2009; 15: SR15–SR21.
2. Hu Y, Huang Y, Ding J, et al. Status of clinical research in China. Lancet 2011; 377: 124–125.
3. Tong D, Wang L and Jiang J. Publications from China in The Lancet, NEJM, and JAMA. Lancet 2013; 381: 1983.
4. Luo X, Liang Z, Gong F, et al. Worldwide productivity in the field of foot and ankle research from 2009–2013: a bibliometric analysis of highly cited journals. J Foot Ankle Res 2015; 8: 12.
5. Liang Z, Luo X, Gong F, et al. Worldwide Research Productivity in the Field of Arthroscopy: A Bibliometric Analysis. Arthroscopy 2015; 31: 1452–1457.
6. Jia ZW, Wu YH, Li H, et al. Growing trend of China’s contribution to the field of spine: a 10-year survey of the literature. Eur Spine J 2015; 24: 1806–1812.
7. Ding F, Jia Z and Liu M. National representation in the spine literature: a bibliometric analysis of highly cited spine journals. Eur Spine J 2016; 25: 850–855.
8. Leung KS, Ngai WK and Tian W. Orthopaedic training in China: experiences from the promotion of orthopaedic specialist training in China. J Bone Joint Surg Br 2011; 93: 1165–1168.
9. Perkovic V, Patil V, Wei L, et al. Global randomized trials: the promise of India and China. J Bone Joint Surg Am 2012; 94(Suppl 1): 92–96.
10. Wang C and Liu Q. A turning point for clinical research in China? Lancet 2013; 382: 835–836.
11. No authors listed. Reforming research in China. Lancet 2007; 369: 880–
12. Garfield E. Citation analysis as a tool in journal evaluation. Science 1972; 178: 471–479.
13. Cheek J, Garnham B and Quan J. What’s in a number? Issues in providing evidence of impact and quality of research(ers). Qual Health Res 2006; 16: 423–435.
14. Gisvold SE. Citation analysis and journal impact factors—is the tail wagging the dog? *Acta Anaesthesiol Scand* 1999; 43: 971–973.

15. To P, Atkinson CT, Lee DH, et al. The most cited articles in hand surgery over the past 20-plus years: a modern-day reading list. *J Hand Surg Am* 2013; 38: 983–987.

16. Kelly JC, Glynn RW, O’Briain DE, et al. The 100 classic papers of orthopaedic surgery: a bibliometric analysis. *J Bone Joint Surg Br* 2010; 92: 1338–1343.

17. Tas F. An analysis of the most-cited research papers on oncology: which journals have they been published in? *Tumour Biol* 2014; 35: 4645–4649.

18. Tam WW, Wong EL, Wong FC, et al. Citation classics: Top 50 cited articles in ‘respiratory system’. *Respirology* 2013; 18: 71–81.

19. Baltussen A and Kindler CH. Citation classics in critical care medicine. *Intensive Care Med* 2004; 30: 902–910.

20. Tsai YL, Lee CC, Chen SC, et al. Top-cited articles in emergency medicine. *Am J Emerg Med* 2006; 24: 647–654.

21. Shadgan B, Roig M, Hajghanbari B, et al. Top-cited articles in rehabilitation. *Arch Phys Med Rehabil* 2010; 91: 806–815.

22. Coelho DH, Edelmayer LW and Fenton JE. A century of citation classics in otolaryngology-head and neck surgery journals revisited. *Laryngoscope* 2014; 124: 1358–1362.

23. Ohba N, Nakao K, Isashiki Y, et al. The 100 most frequently cited articles in ophthalmology journals. *Arch Ophthalmol* 2007; 125: 952–960.

24. Brandt JS, Downing AC, Howard DL, et al. Citation classics in obstetrics and gynecology: the 100 most frequently cited journal articles in the last 50 years. *Am J Obstet Gynecol* 2010; 203: 355 e1–e7.

25. Baltussen A and Kindler CH. Citation classics in anesthetic journals. *Anesth Analg* 2004; 98: 443–451, table of contents.

26. Stern RS and Arndt KA. Top-cited dermatology authors publishing in 5 “high-impact” general medical journals. *Arch Dermatol* 2000; 136: 357–361.

27. Ollerton JE and Sugrue M. Citation classics in trauma. *J Trauma* 2005; 58: 364–369.

28. Wong EL, Tam WW, Wong FC, et al. Citation classics in nursing journals: the top 50 most frequently cited articles from 1956 to 2011. *Nurs Res* 2013; 62: 344–351.

29. Pagni M, Khan NR, Cohen HL, et al. Highly cited works in radiology: the top 100 cited articles in radiologic journals. *Acad Radiol* 2014; 21: 1056–1066.

30. Nason GJ, Tareen F and Mortell A. The top 100 cited articles in urology: An update. *Can Urol Assoc J* 2013; 7: E16–E24.

31. Paladugu R, Schein M, Gardezi S, et al. One hundred citation classics in general surgical journals. *World J Surg* 2002; 26: 1099–1105.

32. Ponce FA and Lozano AM. Highly cited works in neurosurgery. Part I: the 100 top-cited papers in neurosurgical journals. *J Neurosurg* 2010; 112: 223–232.

33. Huo YQ, Pan XH, Li QB, et al. Fifty top-cited classic papers in orthopedic elbow surgery: A bibliometric analysis. *Int J Surg* 2015; 18: 28–33.

34. Murray MR, Wang T, Schroeder GD, et al. The 100 most cited spine articles. *Eur Spine J* 2012; 21: 2059–2069.

35. Kavanagh RG, Kelly JC, Kelly PM, et al. The 100 classic papers of pediatric orthopaedic surgery: a bibliometric analysis. *J Bone Joint Surg Am* 2013; 95: e134.

36. Jia Z, Ding F, Wu Y, et al. The 50 Most-cited Articles in Orthopaedic Surgery From Mainland China. *Clin Orthop Relat Res* 2015; 473: 2423–2430.

37. Lefaivre KA, Shadgan B and O’Brien PJ. 100 most cited articles in orthopaedic surgery. *Clin Orthop Relat Res* 2011; 469: 1487–1497.

38. Hu SJ and Xing JL. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. *Pain* 1998; 77: 15–23.

39. Peng B, Wu W, Hou S, et al. The pathogenesis of discogenic low back pain. *J Bone Joint Surg Br* 2005; 87: 62–67.

40. Peng B, Hao J, Hou S, et al. Possible pathogenesis of painful intervertebral disc degeneration. *Spine (Phila Pa 1976)* 2006; 31: 560–566.

41. Bao YH and Ling F. Classification and therapeutic modalities of spinal vascular malformations in 80 patients. *Neurosurgery* 1997; 40: 75–81.
42. Zhang YG, Guo X, Xu P, et al. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 2005; 219–226.

43. Tan M, Wang H, Wang Y, et al. Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass. Spine (Phila Pa 1976) 2003; 28: 888–895.

44. Liao SS, Guan K, Cui FZ, et al. Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine (Phila Pa 1976) 2003; 28: 1954–1960.

45. Holmes A, Wang C, Han ZH, et al. The range and nature of flexion-extension motion in the cervical spine. Spine (Phila Pa 1976) 1994; 19: 2505–2510.

46. Zhao F, Pollintine P, Hole BD, et al. Discogenic origins of spinal instability. Spine (Phila Pa 1976) 2005; 30: 2621–2630.

47. Wang DL, Jiang SD and Dai LY. Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976) 1998; 23: 1734–1738.

48. Jin D, Qu D, Chen J, et al. One-stage anterior interbody autografting and instrumentation in primary surgical management of thoracolumbar spinal tuberculosis. Eur Spine J 2004; 13: 114–121.

52. Dai L. Disc degeneration and cervical instability. Correlation of magnetic resonance imaging with radiography. Spine (Phila Pa 1976) 1998; 23: 1734–1738.
the ligamentum flavum. *J Neurosurg Spine* 2006; 4: 191–197.

65. Zhang YH, Zhao CQ, Jiang LS, et al. Modic changes: a systematic review of the literature. *Eur Spine J* 2008; 17: 1289–1299.

66. Han B, Zhu K, Li FC, et al. A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. *Spine (Phila Pa 1976)* 2008; 33: 1925–1934.

67. Dai L, Ni B, Yuan W, et al. Radiculopathy after laminectomy for cervical compression myelopathy. *J Bone Joint Surg Br* 1998; 80: 846–849.

68. Hou SX, Tang JG, Chen HS, et al. Chronic inflammation and compression of the dorsal root contribute to sciatica induced by the intervertebral disc herniation in rats. *Pain* 2003; 105: 255–264.

69. Li XF, Dai LY, Lu H, et al. A systematic review of the management of hangman’s fractures. *Eur Spine J* 2006; 15: 257–269.

70. Sheng SR, Wang XY, Xu HZ, et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review. *Eur Spine J* 2010; 19: 46–56.

71. Ma XY, Yin QS, Wu ZH, et al. Anatomic considerations for the pedicle screw placement in the first cervical vertebra. *Spine (Phila Pa 1976)* 2005; 30: 1519–1523.

72. Jian FZ, Chen Z, Wrede KH, et al. Direct posterior reduction and fixation for the treatment of basilar invagination with atlantoaxial dislocation. *Neurosurgery* 2010; 66: 678–687; discussion 687.

73. Tian NF, Huang QS, Zhou P, et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. *Eur Spine J* 2011; 20: 846–859.

74. Feng G, Yang X, Shang H, et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. *J Bone Joint Surg Am* 2010; 92: 675–685.

75. Fan S, Hu Z, Zhao F, et al. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. *Eur Spine J* 2010; 19: 316–324.

76. Chen L, Yang H and Tang T. Cage migration in spondylolisthesis treated with posterior lumbar interbody fusion using BAK cages. *Spine (Phila Pa 1976)* 2005; 30: 2171–2175.

77. Xue H, Tu Y and Cai M. Comparison of unilateral versus bilateral instrumented transforaminal lumbar interbody fusion in degenerative lumbar diseases. *Spine J* 2012; 12: 209–215.

78. Wang XY, Dai LY, Xu HZ, et al. Kyphosis recurrence after posterior short-segment fixation in thoracolumbar burst fractures. *J Neurosurg Spine* 2008; 8: 246–254.

79. Kai T, Shao-qing G and Geng-ting D. In vivo evaluation of bone marrow stromal-derived osteoblasts- porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion. *Spine (Phila Pa 1976)* 2003; 28: 1653–1658.

80. Fu YS, Zeng BF and Xu JG. Long-term outcomes of two different decompressive techniques for lumbar spinal stenosis. *Spine (Phila Pa 1976)* 2008; 33: 514–518.

81. Dai LY, Jiang LS, Wang W, et al. Single-stage anterior autogenous bone grafting and instrumentation in the surgical management of spinal tuberculosis. *Spine (Phila Pa 1976)* 2005; 30: 2342–2349.

82. Guo JJ, Luk KD, Karppinen J, et al. Prevalence, distribution, and morphology of ossification of the ligamentum flavum: a population study of one thousand seven hundred thirty-six magnetic resonance imaging scans. *Spine (Phila Pa 1976)* 2010; 35: 51–56.

83. Qiu G, Zhang J, Wang Y, et al. A new operative classification of idiopathic scoliosis: a peking union medical college method. *Spine (Phila Pa 1976)* 2005; 30: 1419–1426.

84. Kong Q, Ma X, Li F, et al. COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. *Spine (Phila Pa 1976)* 2007; 32: 2834–2838.

85. Chen WH, Jiang LS and Dai LY. Surgical treatment of pyogenic vertebral osteomyelitis with spinal instrumentation. *Eur Spine J* 2007; 16: 1307–1316.

86. Hu R, Zhou J, Luo C, et al. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in
chronic spinal cord injury. *J Neurosurg Spine* 2010; 13: 169–180.

87. Dai L and Jia L. Central cord injury complicating acute cervical disc herniation in trauma. *Spine (Phila Pa 1976)* 2000; 25: 331–335; discussion 336.

88. Nie YX, Guo J, Knight DJ, et al. Orthopaedics in China. *J Bone Joint Surg Br* 2011; 93: 1145–1148.

89. Li Y. Chinese orthopaedic surgeons doing clinical research for international publication. *ANZ J Surg* 2013; 83: 300–301.

90. Baldwin K, Namdari S, Donegan D, et al. 100 most cited articles in fracture surgery. *Am J Orthop (Belle Mead NJ)* 2013; 42: 547–552.

91. Cassar Gheiti AJ, Downey RE, Byrne DP, et al. The 25 most cited articles in arthroscopic orthopaedic surgery. *Arthroscopy* 2012; 28: 548–564.

92. Holzer LA and Holzer G. The 50 highest cited papers in hip and knee arthroplasty. *J Arthroplasty* 2014; 29: 453–457.

93. Namdari S, Baldwin K, Kovatch K, et al. Fifty most cited articles in orthopedic shoulder surgery. *J Shoulder Elbow Surg* 2012; 21: 1796–1802.

94. Bayley M, Brooks F, Tong A, et al. The 100 most cited papers in foot and ankle surgery. *Foot (Edinb)* 2014; 24: 11–16.

95. Callaham M, Wears RL and Weber E. Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals. *JAMA* 2002; 287: 2847–2850.

96. Ma ZS, Wang L, Du GS, et al. What is the work environment of orthopaedic surgeons in China? *Clin Orthop Relat Res* 2014; 472: 3576–3580.