Representing Random Permutations as the Product of Two Involutions

Charles Burnette
Department of Mathematics
Drexel University
Philadelphia, PA 19104-2875
cdb72@drexel.edu

July 3, 2015

Abstract

An involution is a permutation that is its own inverse. Given a permutation σ of $[n]$, let $N_n(\sigma)$ denote the number of ways to write σ as a product of two involutions of $[n]$. If we endow the symmetric groups S_n with uniform probability measures, then the random variables N_n are asymptotically lognormal.

The proof is based upon the observation that, for most permutations σ, $N_n(\sigma)$ can be well approximated by $B_n(\sigma)$, the product of the cycle lengths of σ. Asymptotic lognormality of N_n can therefore be deduced from Erdős and Turán’s theorem that B_n itself is asymptotically lognormal.