Transcription factor UvMsn2 is important for vegetative growth, conidiogenesis, stress response, mitochondrial morphology and pathogenicity in the rice false smut fungus *Ustilaginoidea virens*

Yuandi Xu†, Shuang Wu†, Zhaomeng Yu, Emily Kolojane Moeketsi, Zhixiang Yang, Zhengguang Zhang and Haifeng Zhang*

Abstract

Transcription factors (TFs) play critical roles in the control of development and pathogenicity of phytopathogens by directly or indirectly regulating the expression of downstream genes. Here, we identified and characterized a zinc finger TF UvMsn2 in *Ustilaginoidea virens*, a homolog of MoMsn2 from the rice blast fungus. Heterogenous complementation assay revealed that UvMsn2 fully restored the defects of the ΔMomsn2 mutant in vegetative growth, conidiation and pathogenicity. Deletion of *UvMsn2* in *U. virens* led to a reduction of the pathogen in vegetative growth, aerial hyphae and conidiation. Additionally, the ΔUVmsn2 mutant displayed defects in conidial morphology and germination, as well as mitochondrial morphology. Pathogenicity and toxicity assays revealed that the ΔUVmsn2 mutant was non-pathogenic and less inhibitory to rice seed germination. The ΔUVmsn2 mutant showed different sensitivity to various stresses. Further microscopic examination found that UvMsn2 was localized in both cytosol and nucleus, and translocated from cytosol to nucleus under the treatment of NaCl. Our results demonstrate that UvMsn2 is a critical TF that regulates the vegetative growth, conidiogenesis, stress response, mitochondrial morphology and virulence in the rice false smut fungus.

Keywords: Transcription factor UvMsn2, Conidiogenesis, Stress response, Mitochondrial morphology, Pathogenicity, *Ustilaginoidea virens*

Background

Eukaryotes have evolved complex and precise mechanisms for perception and transduction of extracellular signals to adapt to environmental stresses, including transcriptional regulation of genes (Rajvanshi et al. 2017). Transcriptional regulation by a diverse array of transcription factors (TFs) is a major mechanism for modulating cellular development and differentiation in response to physiological or environmental stimuli (Zhang et al. 2014). Different types of TFs participate in various cellular activities and signal responses through controlling transcriptional activities of downstream genes (Zhang et al. 2014). In budding yeast *Saccharomyces cerevisiae*, two zinc finger proteins, Msn2 and Msn4, are key TFs that respond to multiple stresses by regulating the transcription of stress-response genes (Estruc and Carlson 1993). Both proteins bind specifically to the stress response element AGGGG or GGGGA when exposed to stress environment (Stewart-Ornstein et al., 1993). This suggests their potential roles in stress response and development in fungi.
Over 90% genes were positively regulated by Msn2/4 under heat, osmotic and carbon starvation conditions (Gasch et al. 2000); and the regulation of these genes is dependent on the translocation of Msn2/4 from the cytosol to the nucleus (Rajvanshi et al. 2017).

Under glucose-rich conditions or in cells at the log phase of growth, Msn2 is distributed in the cytosol, but is translocated from the cytosol to the nucleus under stress or glucose depletion conditions (Gorner et al. 2002). Msn2 also shows a carbon source-dependent localization pattern and plays a role in fatty acid oxidation in yeast (Rajvanshi et al. 2017). Non-favorable carbon sources including oleate, galactose and glycerol can induce the translocation of Msn2 from the cytosol to the nucleus. Once shifted to nucleus, Msn2 targets several β-oxidation genes that are involved in fatty acid oxidation to regulate fatty acid metabolism (Rajvanshi et al. 2017). Additionally, Msn2/4 also plays a role in targeting the rapamycin (TOR) pathway by which to regulate multiple cellular processes in response to nutrients (Crespo and Hall 2002). Inhibition of the TOR pathway leads to increased stress response due to nuclear accumulation of Msn2/4 in yeast (Crespo and Hall 2002). In the rice blast fungus Magnaporthe oryzae, MoMsn2 is distributed in both cytosol and nucleus, and translocated from cytosol to nucleus under salt stress. MoMsn2 controls vegetative growth, conidiogenesis, stress response, cell wall integrity and pathogenicity by regulating the expression of a series of downstream genes (Zhang et al. 2014). Our previous study revealed that MoMsn2, a transcription factor from M. oryzae, plays pleiotropic roles in hyphal growth, conidiogenesis, stress response, mitochondrial morphology and pathogenicity of M. oryzae by modulating the expression of a series of genes directly or indirectly (Zhang et al. 2014). Here, we identified a homolog of MoMsn2 in the rice false smut fungus U. virens by using a BLAST_P search, and named it UvMsn2. UvMsn2 contains 535 amino acids (aa), and shows 40% aa identity to MoMsn2. Domain prediction revealed that UvMsn2 possesses two nuclear localization signal sequences (NLS1: 422–456 aa and NLS2: 525–535 aa; http://nls-mapper.iab.keio.ac.jp/cgi-bin-NLS_Mapper_form.cgi, cut-off score: 7.0), and two zinc finger domains (C2H2: 426–437 aa and 445–465 aa; https://myhits.isb.sib.swiss/cgi-bin/motif_scan) at its carboxyl terminus, similar to that found in MoMsn2 (Fig. 1a). We then generated the pYF11-UvMsn2 (driven by its native promoter) construct and transformed it into the ΔMomsn2 mutant. The resulting heterologous complemented transformants ΔMomsn2/UvMsn2 were screened by GFP signal and used for phenotypic analysis. It was demonstrated that UvMsn2 almost fully restored the defects of the ΔMomsn2 mutant in vegetative growth, conidiation and pathogenicity, and ΔMomsn2/UvMsn2 showed a very similar colony morphology, sporulation capacity and pathogenicity as that of the wild-type Guy11 of M. oryzae (Fig. 1b, c). Meanwhile, the mitochondrial morphology of ΔMomsn2/UvMsn2 was also restored to that of the wild-type strain (Additional file 1: Figure S1). These results suggest that both the structure and biological role of Msn2 are well conserved in M. oryzae and U. virens.

Targeted-deletion of UvMsn2 and complementation in U. virens

To investigate the biological role of UvMsn2 in the rice false smut fungus, we generated the gene replacement construct pMD19-T-UvMsn2KO containing a hygromycin cassette (HPH) (Additional file 1: Figure S2a) and CRISPR/Cas9 construct pCas9-tRNA-UvMsn2 according to our previous study (Guo et al. 2019). The resulting constructs were analyzed by sequencing and then co-transformed into the protoplasts of the wild-type
HWD-2. A total of 20 hygromycin B-resistant transformants were obtained, of which three candidates were subsequently screened out by PCR. Finally, two candidates were confirmed as *UvMSN2* deletion mutants (*ΔUvmsn2*) by southern blot analysis, with each having a single copy of *HPH* cassette (Additional file 1: Figure S2b). For complementation, we generated the pYF11-*UvMSN2*-GFP construct (containing the entire *UvMSN2* gene including its 1.5-kb promoter region) and transformed it into the *ΔUvmsn2* mutant. The resulting bleomycin-resistant transformants with green fluorescent protein (GFP) signals rescued the defects of the *ΔUvmsn2* mutant, and were selected as the final complemented strains, and named *ΔUvmsn2/UvMSN2*.

UvMsn2 is important for vegetative growth and conidiogenesis in *U. virens*

We first investigated the role of UvMsn2 in vegetative growth of *U. virens* by inoculating the wild-type HWD-2, *ΔUvmsn2* mutant and complemented strain *ΔUvmsn2/UvMSN2* onto YT and PDA media. Compared with HWD-2 and *ΔUvmsn2/UvMSN2*, the *ΔUvmsn2* mutant showed a much smaller colony size with less pigment and aerial hyphae on both YT and PDA media after incubated at 25 °C for 14 days (Fig. 2a). The colony diameter of the *ΔUvmsn2* mutant was reduced by 51.9 and 46.2% on YT and PDA, respectively (Fig. 2b). We then assessed the sporulation capacity of the *ΔUvmsn2* mutant, and found that the conidial number was decreased by 76.5% compared with the wild type (Fig. 2d). Meanwhile, we found that 79.5% conidia of the *ΔUvmsn2* mutant were abnormal; they were larger or longer in size than the wild-type and complemented strains (Fig. 2c, d). Additionally, we also evaluated conidial germination, and found that the vast majority of conidia formed one germ tube in the *ΔUvmsn2* mutant, whereas multiple germ tubes in the wild-type and complemented strains (Fig. 3). The results suggest that UvMsn2 plays an important role in vegetative growth, conidiation, and also conidial morphology and germination in *U. virens*.

UvMsn2 plays a crucial role in response of *U. virens* to environmental stresses

To determine whether UvMsn2 is involved in response of *U. virens* to environmental stresses, HWD-2, *ΔUvmsn2* and *ΔUvmsn2/UvMSN2* were inoculated onto YT plates supplemented with different stress agents, including NaCl and sorbitol (osmotic stresses), H$_2$O$_2$ (oxidative stress), and SDS, CFW and CR (cell wall stresses). After incubation at 25 °C for 14 days, the *ΔUvmsn2* mutant showed a decreased tolerance to sorbitol, H$_2$O$_2$ and SDS, and an increased tolerance to CFW and CR, and exhibited no remarkable difference to NaCl in comparison to the wild-type HWD-2 and complemented strain *ΔUvmsn2/UvMSN2* (Fig. 4a, b). The results indicate that UvMsn2 plays a crucial role in response to environmental stresses in *U. virens*.
UvMsn2 is important for pathogenicity and production of phytotoxic compounds in U. virens

To determine the role of UvMsn2 in virulence of U. virens, we inoculated conidial suspensions of HWD-2, ΔUvmsn2, and ΔUvmsn2/UvMSN2 into rice panicles by injection method. At 4 weeks post-inoculation, the ΔUvmsn2 mutant caused no symptoms on grains, and no false smut balls were observed on rice panicles. In contrast, the wild-type HWD-2 and complemented strain ΔUvmsn2/UvMSN2 caused severe symptoms, with over five false smut balls per rice panicle (Fig. 5a). We further investigated the role of UvMsn2 in regulating the production of phytotoxic compounds by harvesting 5-day-old YT culture filtrates of HWD-2, ΔUvmsn2, and ΔUvmsn2/UvMSN2 strains, and subjecting them to rice seed germination assays. The results showed that rice seeds germinated much longer shoots (2.4-fold) in ΔUvmsn2-treated group than in wild-type and complemented strains-treated groups (Fig. 5b, c). Additionally, we analyzed the expression levels of five ustilaginoid biosynthetic genes, i.e., USTA (the precursor protein encoding gene for ustiloxins) (Tsukui et al. 2015), PKS1
Fig. 4 UvMsn2 plays a crucial role in regulating stress responses in *Ustilaginoidea virens*. **a** The wild-type HWD-2, ΔUvmsn2 and ΔUvmsn2/UvMSN2 strains were incubated on YT agar plates supplemented with different stress agents at 25 °C for 14 days. **b** Statistical analysis of the growth inhibition rate of the indicated strains exposed to different stresses. The mean values ± SD were calculated from three independent experiments, and asterisks indicate a statistically significant difference from the wild-type strain (*P* < 0.01).

Fig. 5 UvMsn2 is essential for pathogenicity of *Ustilaginoidea virens*. **a** Conidial suspensions collected from the wild-type HWD-2, ΔUvmsn2 and ΔUvmsn2/UvMSN2 strains were inoculated into rice panicles and photographed at 28 dpi. The number of false smut balls on each panicle was counted and analyzed. **b** Seeds of rice cultivar were incubated on filter papers soaked with blank control (liquid YT medium) or filtrates of 5-day-old YT cultures of the indicated strains. Shoot length was examined after incubation at 25 °C for 5 days. **c** Statistical analysis of the shoot length of the indicated strains. The mean values ± SD were calculated from three independent experiments, and asterisk indicates a statistically significant difference from the wild type (*P* < 0.01). **d** RT-qPCR analyses of the expression of ustilaginoid biosynthetic genes in the indicated strains. The mean values ± SD were calculated from three independent experiments, and asterisk indicates a statistically significant difference from the wild-type strain (*P* < 0.01).
(polyketide synthase gene), UGSO, UGST and UGSL (major facilitator superfamily transporter encoding genes required for the modification of the primary PKS products) (Li et al. 2019), and found that all these five genes were significantly downregulated in the ΔUvmsn2 mutant (Fig. 5d). The results suggest that UvMsn2 is important for pathogenicity and production of phytotoxic compounds in U. virens.

UvMsn2 is required for the maintenance of mitochondrial morphology in U. virens

Msn2 is involved in virulence by regulating mitochondrial morphology in M. oryzae (Xiao et al. 2021). To determine whether Msn2 has a similar role in U. virens, we compared the mitochondrial morphology of HWD-2, ΔUvmsn2 and ΔUvmsn2/UvMSN2 strains in hyphae and conidia stained with Mitotracker Red. The results revealed that 80% mitochondria were tubular in both hyphae and conidia of the wild-type and complemented strains. In contrast, 80% mitochondria were punctate in the mutant. When treated with Mdivi-1, a mitochondrial fission inhibitor, 70% mitochondria of the ΔUvmsn2 mutant were restored to tubular morphology (Fig. 6a, b). The results indicate that UvMsn2 is essential for the maintenance of mitochondrial morphology.

Subcellular localization of UvMsn2 in U. virens

To determine the localization pattern of UvMsn2 in U. virens, we examined the hyphae and conidia of the complemented strain ΔUvmsn2/UvMSN2 under a confocal fluorescence microscope. We found that strong GFP signals were accumulated in punctate structures, and relative weak GFP signals were distributed in cytosol in both hyphae and conidia. We then stained the hyphae and conidia with DAPI (fluorescent dye that binds to DNA) and found GFP signals were merged well with DAPI signals (Fig. 7a). These findings indicate that UvMsn2 is localized in both cytosol and nucleus in U. virens. We further observed the localization pattern of UvMsn2 under the treatment of NaCl, and found that UvMsn2-GFP could translocate from cytosol to nucleus (Fig. 7b), which is similar to MoMsn2 in M. oryzae.

Discussion

In this study, we identified a zinc finger TF UvMsn2 in the rice false smut fungus U. virens, and found that UvMsn2 showed the conserved domain in protein sequence and similar biological functions to MoMsn2 from M. oryzae, indicating that Msn2 is likely a well-conserved protein across different phytopathogens.

Transcription regulation mediated by TFs is critical for driving multiple cellular activities. A large number of TFs have been characterized to play crucial roles in growth, development, stress response and infection of M. oryzae by directly or indirectly regulating the expression of downstream genes (Lu et al. 2014; Kong et al. 2015; Tang et al. 2015; Cao et al. 2016). In U. virens, many TFs such as GATA-binding TF family and basic leucine zipper (bZIP) TF family have been genome-widely identified (Yin et al. 2017; Yu et al. 2019), but their biological functions are still not studied in detail. Only several TFs (UvHox2, UvPro1 and UvCom1) are well characterized to play important roles in vegetative growth, conidiation, stress response and plant infection.
Here, we found that UvMsn2 is a key TF that regulates the development and virulence of *U. virens*. One of the important and conserved functions of Msn2 in yeast and fungi is its involvement in stress response (Gasch et al. 2000). In budding yeast, Msn2 is involved in responses to various stresses, including salt, osmotic, oxidative and carbon starvation stresses; it is translocated from cytosol to nucleus under stress conditions (Gorner et al. 1998; Boisnard et al. 2009; Rajvanshi et al. 2017). In two entomopathogenic fungi, Msn2 is required for multi-stress responses, including hyperosmolarity, oxidation, carbendazim, cell wall perturbing and high temperature stress (Liu et al. 2013). In *M. oryzae*, MoMsn2 is also involved in response to hyperosmolarity and cell wall perturbing stresses, and is translocated from cytosol to nucleus under NaCl treatment (Zhang et al. 2014). In consistent with these findings, we found that UvMsn2 also played important roles in multi-stress response of *U. virens*. Meanwhile, both ΔUvmsn2 and ΔMomsn2 mutants were more tolerant to CFW and CR, which is similar to some yeast mutants (Imai et al. 2005). One possible explanation is that the chitin level in cell wall is not the only factor determining CFW and CR sensitivity (Ram and Klis 2006). However, Msn2- and Msn4-like TFs have no obvious roles in stress responses in the fungal pathogen *Candida albicans* (Nicholls et al. 2004). These findings indicate that Msn2 is a key TF involved in stress response, though it exhibits diverged role during stress signaling in some fungi.

In addition to stress response, Msn2/4 plays very important roles in regulating infection-related morphogenesis in fungal pathogens, such as conidiation and virulence (Liu et al. 2013; Zhang et al. 2014). In *M. oryzae*, we found that MoMsn2 regulates vegetative growth, conidial production and morphology, mitochondrial morphology and infection by directly or indirectly regulating the expression of downstream genes (Zhang et al. 2014). Similar results were obtained for UvMsn2, and it is also important for vegetative growth, conidiogenesis, mitochondrial morphology and pathogenicity in *U. virens*. Meanwhile, UvMsn2 showed a similar localization pattern with MoMsn2; it is localized in both the cytosol and nucleus, and could also be translocated from cytosol to nucleus under stress treatment. All these findings indicate that UvMsn2 and MoMsn2 have a similar biological role, further supporting the result that UvMsn2 is the homolog of MoMsn2. In addition, we found that targeted-deletion of *UvMsn2* in *U. virens* resulted in less toxicity of its culture filtrates on rice seeds and the expression of several ustilaginoidin biosynthetic related genes was significantly decreased. Toxins are virulence factor contributing to infection of host plants by some pathogens (Proctor et al. 1995; Yang et al. 2016; Yang et al. 2017). Therefore, we suppose that UvMsn2 is likely involved in toxin production, thus contributing to the virulence of *U. virens*. However, the underlying mechanisms on how UvMsn2 regulates these processes need to be further explored.

Conclusions

In this study, we identified and characterized a zinc finger TF, UvMsn2, in *U. virens*, and found that UvMsn2 is important for vegetative growth, conidiogenesis, stress response, mitochondrial morphology and pathogenicity of this fungal pathogen. These findings provide new evidences to better understand the pathogenic mechanisms of *U. virens*.

Methods

Fungal strains and culture conditions

All of the *U. virens* strains were cultured on PSA (200 g of peeled potato, 20 g of sucrose, and 15 g of agar in 1 L of distilled water) in the dark at 25 °C. For conidiation, mycelial blocks were cultured in PSB (200 g of peeled potato, 20 g of sucrose in 1 L of distilled water) by shaking at 145 rpm, 28 °C for 7 days. For vegetative growth, 2 mm × 2 mm mycelial blocks from freshly cultured strains were inoculated onto potato dextrose agar (PDA) or YT (0.1% yeast extract, 0.1% tryptone, and 1%
The resulting pMD19-T-UvMSN2KO plates, then cultured in the dark at 25 °C for 14 days. To test sensitivity against different stresses, vegetative growth was assayed after incubation at 25 °C for 14 days on regular YT plates and YT with 0.4 M NaCl, 0.5 M sorbitol, 0.07% H2O2, 0.03% SDS (w/v), 70 μg/mL Congo red (CR) or 100 μg/mL calcifluor white (CFW). Freshly harvested conidia were resuspended with YTS (0.1% yeast extract, 0.1% tryptone, and 1% sucrose) to a concentration of 1 × 10^6 conidia/mL, which was used to assay conidial germination after incubated for 0, 2, 6, 10, 12, 16, 20 and 24 h. The wild-type strain HWD-2 (Chen et al. 2020a) was obtained from Dr. Lu Zheng’s Lab, Huazhong Agriculture University. All M. oryzae strains were cultured on complete medium (CM) at 28 °C in the dark. For vegetative growth, 2 mm × 2 mm mycelial blocks from freshly cultured strains were inoculated into CM plates and cultured at 28 °C for 7 days in the dark. For conidial production, strains were inoculated onto straw decoction and corn powder plates (SDC, 100 g straw, 40 g corn powder, 15 g agar in 1 L of distilled water) for 7 days in the dark followed by 3 days of continuous illumination under fluorescent light as described (Li et al. 2016). The M. oryzae Guy11 strain was used as wild type in this study, the ΔMomsn2 mutant was acquired in our previous study (Zhang et al. 2014).

Heterogenous complementation assay

For heterogenous complementation the ΔMomsn2 mutant, the entire UvMSN2 gene including its 1.5-kb promoter region was amplified by PCR, and cloned into the pYF11 plasmid (bleomycin resistant) digested with XhoI as described (Bruno et al. 2004). The resulting pYF11-UvMSN2-GFP construct was transformed into the protoplast of ΔMomsn2. The bleomycin-resistant transformants with GFP signals were selected for phenotype analysis.

Construction of the replacement vector and Cas9-gRNA vector for targeted-deletion of UvMSN2

To generate the UvMSN2 gene replacement vector pMD19-T-UvMSN2KO, the 1 kb upstream and 1 kb downstream flanking sequences of UvMSN2 were amplified with primers 1F/2R and 3F/4R (Additional file 2: Table S1), and cloned into the pMD19-T vector as described previously (Zhang et al. 2010). To generate Cas9-gRNA vector pCas9-tRp-gRNA-UvMSN2, the gRNA spacers were designed with the gRNA designer program (http://grna.ctegd.uga.edu/), and cloned into the pCas9-tRp-gRNA vector as described (Arazoe et al. 2015; Guo et al. 2019).

UvMSN2 gene deletion and complementation

The resulting pMD19-T-UvMSN2KO and pCas9-tRp-gRNA-UvMSN2 vectors were co-transformed into protoplasts of the wild-type strain HWD-2 according to the Magnaporthe transformation approach to obtain the gene deletion mutants (Talbot et al. 1993). Hygromycin-resistant transformants were screened by PCR, and confirmed by southern blot analysis. For complementation, the above pYF11-UvMSN2-GFP construct was transformed into the protoplast of ΔUvmsn2. The bleomycin-resistant transformants with GFP signals were selected for phenotype analysis.

Pathogenicity assay of M. oryzae strains

The 2-week-old seedlings of susceptible rice cultivar CO-39 and 7-day-old barley (cv. Four-arris) were used for inoculation assays as described previously (Zhang et al. 2014). Mycelial plugs of the wild-type Guy11, ΔMomsn2 mutant and heterologous complemented transformant ΔMomsn2/ΔUvMSN2 were inoculated onto detached rice and barely leaves, which were then placed in a growth chamber at 28 °C with 90% humidity and in the dark for the first 24 h, followed by a 12 h/12 h light/ dark cycle. Diseased leaves were photographed at 5 and 7 days post-inoculation (dpi) for barley and rice, respectively.

Toxicity assays with culture filtrates

Toxicity assays with culture filtrates were performed according to the method described previously (Zheng et al. 2016). Mycelial blocks (2 mm × 2 mm) were cut from the edge of 14-day old strains and cultured in liquid YT medium by shaking for 5 days. The mycelia were collected by filtration through two layers of Miracloth (EMD Millipore Corporation, Billerica, MA 01821 USA) and grinded into powder, and the dry weight was measured after lyophilizing for 24 h. The culture filtrates were then centrifuged at 3500 rpm for 8 min to collect the supernatants. Seeds of rice cultivar CO-39 were incubated on sterile filter papers soaked with the culture filtrates at 25 °C. The shoot and root growth were measured after incubation for 5 days.

Reverse transcription quantitative PCR (RT-qPCR) assay

Total RNA samples were extracted from freshly prepared mycelia using Pure linkTM RNA mini kit (Invitrogen). The cDNA was prepared using reverse transcriptase HiScript III RT SuperMix for qPCR (Vazyme Biotech Co., Nanjing, China). qPCR was run on an Applied Biosystems (Foster City, CA, USA) 7500 Real Time PCR System with SYBR Premix ExTaq (Vazyme Biotech Co., Nanjing, China). The relative quantification of each transcript was calculated by the 2^-ΔΔCT method (Livak and Schmittgen 2001) with the U. virens ACTIN gene (UV_6104) as the internal control. The experiment was repeated three times with three biological replicates each time.
Pathogenicity assay of \textit{U. virens} strains on rice panicles

Inoculation suspensions were prepared as described previously (Guo et al. 2019). The spore and mycelium mixture were broken into pieces and adjusted to a concentration of 3 × 10^6 spores/mL. One milliliter of suspensions was inoculated onto each spike and ten spikes for each strain as described previously (Zheng et al. 2017). The inoculated plants were kept in a chamber at 25 °C for 28 days with > 70% humidity.

Microscopic observation

The complemented transformant expressing \textit{UvMSN2::GFP} was used for subcellular localization observation. Hyphae and conidia were stained with the nucleus-specific dye 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, D8417) at a concentration of 10 μg/mL at room temperature for 3–5 min in darkness, then examined under a confocal fluorescence microscope (LSM710, 63×oil; Zeiss). For mitochondrial staining, hyphae and conidia of the indicated strains treated or untreated with Mdivi-1, were stained by the mitochondria-specific marker Mitotracker Red CMXRos (Invitrogen, Cat. M7512) at a concentration of 100 nM at room temperature for 1–2 min in darkness, and observed under a confocal microscope (LSM710, 63 × oil; Zeiss).

Abbreviations

aa: Amino acid; CFW: Calcofluor white; CR: Congo red; CRESPR: Clustered regularly interspaced short palindromic repeats; DAPI: 4′,6-diamidino-2-phenylindole; GFP: Green fluorescent protein; HPH: Hygromycin B phosphotransferase; NLS: Nuclear localization signal sequence; TF: Transcription factor; TOR: Target of rapamycin; PCR: Polymerase chain reaction; SDS: Sodium dodecyl sulfate

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s42483-021-00093-y.

Funding

This study was supported by the National Key Research and Development Program of China (Grant No: 2016YFD0300700/2016YFD0300706), the Natural Science Foundation of China (Grant No: 52061143045 to H. Zhang), the Fundamental Research Funds for the Central Universities (Grant No: KYY202103 to H. Zhang).

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 22 April 2021 Accepted: 7 July 2021

Published online: 31 July 2021

References

Araoz T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng. 2015;112(2):2543–9. https://doi.org/10.1002/bit.25662.

Boisnard S, Lagniel G, Garmendia-Torres C, Molin M, Boy-Marcotte E, Jacquet M, et al. H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxin in \textit{Sacharomyces cerevisiae}. Eukaryot Cell. 2009;8(9):1429–38. https://doi.org/10.1128/EC.00106-09.

Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell. 2004;3(6):1525–32. https://doi.org/10.1128/EC.3.6.1525-1532.2004.

Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, et al. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus \textit{Magnaporthe oryzae}. New PhytoL 2016;211(3):1035–51. https://doi.org/10.1111/nph.13948.

Chen X, Hai D, Tang J, Liu H, Huang J, Luo C, et al. \textit{UvCom1} is an important regulator required for development and infection in the rice false smut fungus \textit{Ustilaginoidea virens}. Phytopathology. 2020;110(2):483–93. https://doi.org/10.1094/PHYTO-05-19-0179-R.

Chen X, Tang J, Pei Z, Liu H, Huang J, Luo C, et al. The ‘pears and lemons’ protein \textit{UvPall} regulates development and virulence of \textit{Ustilaginoidea virens}. Environ Microbiol. 2020a;22(12):5414–22. https://doi.org/10.1111/1462-2920.15284.

Crespo JL, Hall MN. Elucidating TOR signaling and rapamycin action: lessons from \textit{Saccharomyces cerevisiae}. Microbiol Mol Biol Rev. 2002;66(4):579–91. https://doi.org/10.1128/MMBR.66.4.579-591.2002.

Estruch F, Carlson M. Two homologous zinc-finger genes identified by multiplicity suppression in a Snf1 protein kinase mutant of \textit{Saccharomyces cerevisiae}. Mol Cell Biol. 1993;13(7):3872–81. https://doi.org/10.1128/MCB.13.7.3872-3881.1993.

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–57. https://doi.org/10.1091/mbc.11.12.4241.

Gomer W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, et al. Nuclear localization of the \textit{C}_{2}\textit{H}_{2} zinc finger protein Msn2p is regulated by stress and protein kinase a activity. Genes Dev. 1998;12(4):586–97. https://doi.org/10.1101/gad.12.4.586.

Gomer W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, et al. Acute glucose starvation activates the nuclear localization signal of a stress-specific transcription factor. EMBO J. 2002;21(11):335–44. https://doi.org/10.1093/emboj/21.11.335.

Guo WW, Gao YX, Yu ZM, Xiao YH, Zhang ZG, Zhang HF. The adenylate cyclase \textit{UvAc1} and phosphodiesterase \textit{UvPdeH} control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus \textit{Ustilaginoidea virens}. Fungal Genet Biol. 2019;129:65–73. https://doi.org/10.1016/j.fgb.2019.01.017.

Acknowledgements

We thank Prof. Jin-Rong Xu at Purdue University for providing the \textit{pCas9-HSpG} RNA vector. We also thank Dr. Lu Zheng at Huazhong Agricultural University for providing the \textit{U. virens} field isolate HWD-2.

Authors’ contributions

YX, ZZ and HZ designed the research; YX, SW, ZMY, EKM and ZXY performed the experiments; YX, SW, ZMY and HZ analyzed the data; and YX, SW, ZZ and HZ wrote the manuscript. All authors read and approved the final manuscript.

Additional file 1: Figure S1. \textit{UvMsn2} rescues the defect in mitochondrial morphology of the \textit{ΔMsn2} mutant. Mitochondria in hyphae of the \textit{Magnaporthe oryzae} wild-type \textit{Gsy11}, \textit{ΔMsn2} mutant and heterologous complemented transformant \textit{ΔMsn2/UvMSN2} were stained with Mitotracker Red and examined under a confocal microscope. \textbf{Figure S2.} Targeted-deletion of \textit{UvMSN2} in \textit{Ustilaginoidea virens}. a Schematic diagram showing strategy for deletion of \textit{UvMSN2} from the genome of \textit{U. virens}. b Southern blot analysis of the gene knockout mutant using probe 1 and probe 2 corresponding to \textit{UvMSN2} and \textit{HPH}, respectively.

Additional file 2: Table S1. Primers used in this study.

Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, et al. Nuclear localization of the \textit{C}_{2}\textit{H}_{2} zinc finger protein Msn2p is regulated by stress and protein kinase a activity. Genes Dev. 1998;12(4):586–97. https://doi.org/10.1101/gad.12.4.586.

Gorner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, et al. Acute glucose starvation activates the nuclear localization signal of a stress-specific transcription factor. EMBO J. 2002;21(11):335–44. https://doi.org/10.1093/emboj/21.11.335.

Guo WW, Gao YX, Yu ZM, Xiao YH, Zhang ZG, Zhang HF. The adenylate cyclase \textit{UvAc1} and phosphodiesterase \textit{UvPdeH} control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus \textit{Ustilaginoidea virens}. Fungal Genet Biol. 2019;129:65–73. https://doi.org/10.1016/j.fgb.2019.01.017.
Imai K, Noda Y, Adachi H, Yoda K. A novel endoplasmic reticulum membrane protein Rcr1 regulates chitin deposition in the cell wall of Saccharomyces cerevisiae. J Biol Chem. 2005;280(9):8275–84. https://doi.org/10.1074/jbc.M409426200.

Kong S, Park SY, Lee YH. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ Microbiol. 2015;17(4):1425–43. https://doi.org/10.1111/1462-2901.12633.

Li M, Liu X, Liu Z, Sun Y, Liu M, Wang X, et al. Glyceride hydrolase MoGlk2 controls asexual/sexual development, cell wall integrity and infectious growth in the rice blast fungus. PLoS One. 2016;11(9):e0162243. https://doi.org/10.1371/journal.pone.0162243.

Li YJ, Wang M, Liu ZH, Zhang K, Cui FH, Sun WX. Towards understanding the biosynthetic pathway for ustilaginoidin mycotoxins in Ustilaginoidea virens. Environ Microbiol. 2019;21(8):2629–43. https://doi.org/10.1111/1462-2915.14752.

Liang YF, Han Y, Wang CF, Jiang C, Xu JR. Targeted deletion of the UST2 gene efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system. Front Plant Sci. 2018;9:669. https://doi.org/10.3389/fpls.2018.00669.

Liu Q, Ying SY, Li JG, Tian GC, Feng MG. Insight into the transcriptional regulation of MoGls2 and MoGls3 in the rice blast fungus. Fungal Genet Biol. 2013;54:42–51. https://doi.org/10.1016/j.fgb.2013.02.008.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1016/S1046-2023(01)00454-X.

Lu J, Gao H, Zhang L, Huang P, Liu F. Systematic analysis of Znc206 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog. 2014;10(10):e1004432. https://doi.org/10.1371/journal.ppat.1004432.

Lv B, Zheng L, Liu H, Zhang JT, Hsiang T, Huang JB. Use of random T-DNA mutagenesis in identification of gene UvSLT2, a regulator of conidiation, stress response, and virulence in Ustilaginoidea virens. Front Microbiol. 2016;7:2086.

Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, Whiteaway M, et al. Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell. 2004;3(5):1111–23. https://doi.org/10.1128/EC.3.5.1111-1123.2004.

Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact. 1995;8(4):593–601. https://doi.org/10.1093/mpmi/8.4.593.

Rajvanshi PK, Arya M, Rajasekharan R. The stress-regulatory transcription factors Msn2 and Msn4 regulate fatty acid oxidation in budding yeast. J Biol Chem. 2017;292(45):18628–43. https://doi.org/10.1074/jbc.M117.801704.

Ram AFJ, Kils FM. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc. 2006;1(5):2353–6. https://doi.org/10.1038/nprot.2006.397.

Stewart-Omstein J, Nelson C, DeRisi J, Weissman JS, El-Samad H. Genome-wide identification and analysis of the GATA transcription factor gene family in Ustilaginoidea virens. Genome. 2017;60(12):807–16. https://doi.org/10.1111/1462-2980.13783.

Sun W, Fan J, Fang AF, Li YJ, Tangjiaved M, Li DY, et al. Ustilaginoidea virens: insights into an emerging rice pathogen. Annu Rev Phytopathol. 2020;58(1):363–85. https://doi.org/10.1146/annurev-phyto-010820-012908.

Takahashi NJ, Ebbole DJ, Hamer JE. Identification and characterization of Mps1p, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1995;7(11):1575–90. https://doi.org/10.1105/tpc.7.11.1575.

Tanaka E, Kumagawa T, Tanaka C, Koga H. Simple transformation of the rice false smut fungus Villisclavella viridis by electroporation of intact conidia. Mycoscience. 2011;52(5):344–8. https://doi.org/10.1007/s10267-011-0115-6.

Tang W, Wu Y, Hong L, Zhu Q, Zuo RF, Guo XX, et al. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol. 2015;17(4):1377–96. https://doi.org/10.1111/1462-2920.12618.

Tsukui T, Nagano N, Uemura M, Kumagai T, Terao G, Machida M, et al. Ustiloxins, fungal cyclic peptides, are ribosomally synthesized in Ustilaginoidea virens. Bioinformatics. 2015;31(7):981–5. https://doi.org/10.1093/bioinformatics/btv573.

Xiao YH, Liu LP, Zhang T, Zhou RW, Ren Y, Li XR, et al. Transcription factor MoMsn2 targets the putative 3-methylglutaryl-CoA hydratase-encoding gene MoAUH1 to govern infectious growth via mitochondrial fusion/fission balance in Magnaporthe oryzae. Environ Microbiol. 2021;23(2):774–90. https://doi.org/10.1111/1462-2920.15088.

Yang KL, Liu Y, Liang LL, Li ZQ, Qin QP, Nie XY, et al. The high-affinity phosphohydrolase PdeH regulates development and aflatoxin biosynthesis in Aspergillus flavus. Fungal Genet Biol. 2017;101:7–19. https://doi.org/10.1016/j.fgb.2017.02.004.

Yang KL, Qin QP, Liu YH, Zhang LM, Liang LL, Lan HH, et al. Adenylyl cyclase AcaY regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Front Cell Infect Microbiol. 2016;6:190.

Yin WX, Cui P, Wei W, Lin Y, Luo CX. Genome-wide identification and analysis of the basic leucine zipper (bZIP) transcription factor gene family in Ustilaginoidea virens. Genome. 2017;60:1059–67.

Yu M, Yu JJ, Cao HI, Yong ML, Liu YF. Genome-wide identification and analysis of the GATA transcription factor gene family in Ustilaginoidea virens. Genome. 2019;62(12):807–16. https://doi.org/10.1111/1462-2980.13819.

Zhang H, Liu K, Zhang X, Song W, Zhao Q, Dong Y, et al. A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Curr Genet. 2010;56(6):517–28. https://doi.org/10.1007/s00294-010-0319-x.

Zhang Z, Zhao Q, Guo X, Guo M, Qi Z, Tang W, et al. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Mol Plant-Microbe Interact. 2014;27(5):446–60. https://doi.org/10.1094/MPMI-09-13-0271-R.

Zheng DL, Wang Y, Han Y, Xu JR, Wang CF. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep. 2016;6(1):24824. https://doi.org/10.1038/srep24824.

Zheng MT, Ding H, Huang L, Wang YH, Yu MN, Zheng R, et al. Low-affinity iron transport protein UvS3277 is important for pathogenesis in the rice false smut fungus Ustilaginoidea virens. Curr Genet. 2017;63(1):131–44. https://doi.org/10.1007/s00294-016-0677-4.