Study regarding the influence of environmental temperature and irradiation conditions on the performance of a photovoltaic solar module

C Hațiegan¹, N Gillich¹, C Popescu², E Răduca¹, L Cîndea³, M F Predus⁴ and I M Terfăloagă¹,⁵

¹Eftimie Murgu University of Resita, Department of Electric Engineering and Informatics, Traian Vuia str., no. 1-4, 320085 Resita, Romania
²“Constantin Brâncuși” University of Târgu Jiu, Department of Electric Engineering, Eroilor str., no. 30, 210135 Targu Jiu, Romania
³Eftimie Murgu University of Resita, Department of Mechanical and Materials Engineering, Traian Vuia str., no.1-4, 320085 Resita, Romania
⁴“Politehnica” University of Bucharest, Splaiul Independentei, nr.313, 060042, Bucuresti, Romania
⁵West University of Timisoara, Department of Computer Science, Vasile Parvan str., no. 4, 300223 Timisoara, Romania

E-mail: c.hatiegan@uem.ro

Abstract. In this paper the proposed study is verify to fit with the observed experimental data by choosing a correct mathematical model. The performance of the solar photovoltaic module provides a general view of the climate variables impacts and helps to find the efficiency of this module knowing the climatic parameters of a particular geographic area. The study was made when the climate is variable which is useful in developing an efficiency relationship of the photovoltaic solar module with major climatic parameters such as temperature, wind speed, humidity, dust, etc., so that the determined equations are in good correlation with measured data. The effectuate analysis shows that both variables: environmental temperature and irradiation can be used to optimize the efficiency of a photovoltaic solar module for different applications.

1. Introduction
Due to pollution and the realising of the limited fossil fuel reserves, regenerable resources for producing energy have risen constantly and have proven an adequate solution for humanity [1, 2].

Also, the technological dependency of the industrialised world on fossil fuel and the way in which these fuels have constantly degraded the terran environment in quite alarming.

Solar panels have become one of the most promising ways to meet the electrification demands of many isolated consumers around the world [3-5].

Power generation systems using photovoltaic systems located on the building surface can be combined with other functions of buildings that require electricity consumption [6-8].

Solar radiation (flux) is obviously a determining factor when it comes to studying the natural potential of solar energy as a source of renewable energy [9-10].
The efficiency of the solar photovoltaic module obtained during the day has different values. This fluctuation results from various factors that affect the performance of the photovoltaic solar module. These factors can be: latitude, altitude, temperature, humidity, wind speed, cloud cover, dust, impurities, etc., [11-15].

In this paper the average values of the efficiency, the surrounding environment temperature and the irradiation were determined experimentally. Also, the evolution of the average values of the efficiency, surrounding environment temperature and irradiation determined experimentally according to the months of the year 2014, as well as the evolution of the average values of the efficiency and of the irradiation in relation to the average values of the surrounding environment temperatures were presented graphically.

2. The system for monitoring the efficiency, irradiation and environmental temperature

The module performance provides an overview of the impacts of climate variables and helps to learn the efficiency of modules while knowing the climatic parameters of an area [16].

Solar radiation (flux) is obviously a determining factor when it comes to studying the natural potential of solar energy as a source of renewable energy. For tropical regions, on average, the potential for solar radiation is about 16.4 ± 1.2 MJ/m² per day [16], [17]. Solar flux is described by visible infrared radiation and near solar emissions, whereas the different spectra are described by their wavelength, which varies in a wide range.

Tracking of the equipment is done with a local monitoring system, but also at a distance, via the Internet. The Sunny WebBox (Figure 1) remote monitoring system acquires real-time data from the following components of the photovoltaic system [18]: from irradiation sensors, ambient temperature, photovoltaic panel temperature and wind speed; from the network inverter; from the battery inverter.

As the central communication interface, the Sunny WebBox connects the photovoltaic plant and its operator. The Sunny WebBox collects and documents all data of the connected devices, allowing continuous photovoltaic monitoring. Sunny WebBox provides the operator with all data recorded through an Internet connection.

The Flashview presentation software and the Sunny Portal site can be used to edit data or graphically display the stored data.

This means that operators can see returns both on the local network and via the Internet at any time using Flashview and Sunny Portal. The Sunny WebBox is also a powerful tool for operators when configuring cells or performing remote diagnostics via the computer. It allows continuous monitoring of photovoltaic installations and helps optimize photovoltaic cell yields [19].

Figure 1. The e Sunny WebBox connecting way to a computer

Sunny SensorBox records the relevant environmental data to monitor the performance of photovoltaic cell systems.
For this purpose, the Sunny SensorBox has an integrated irradiation sensor as well as an external temperature sensor. The operator can also optionally be connected to an ambient temperature sensor and a wind sensor at the Sunny SensorBox.

3. Measurement results
The measurements were performed during the interval January 2014 - December 2014, in Resita, Romania, at various times of the day with clear or partly cloudy skies, averaging the values of efficiency, surrounding environment temperature and irradiation.

| Table 1. Measured values in the period January-December 2014 |
|---------------------------------|-----------------|-----------------|-----------------|
| Month | Efficiency average value | Surrounding environment temperature average value | Irradiation |
| January | 8.53 | 3 | 535 |
| February | 10.79 | 5 | 801 |
| March | 9.12 | 10 | 881 |
| April | 10.36 | 15 | 892 |
| May | 10.00 | 20 | 978 |
| June | 10.12 | 38 | 928 |
| July | 10.16 | 39.4 | 910 |
| August | 10.66 | 33 | 954 |
| September | 10.83 | 22.3 | 978 |
| October | 9.36 | 14 | 697 |
| November | 8.83 | 9.6 | 600 |
| December | 7.90 | 20 | 473 |

The data presented in Table 1, refers to days with clear, cloudy or partly cloudy sky, averaging the values of efficiency, surrounding environment temperature and irradiation.

Figure 2 shows graphically the evolution of the average values of experimentally determined efficiency’s according to the months of 2014.

![Evolution of the average value of the efficiency depending on the months of the year 2014](image)

Figure 2. Evolution of the efficiency average value according the months of the year 2014
Figure 2 shows that the maximum value was determined in September and the minimum value in December.

Figure 3 shows graphically the evolution of the experimentally determined average temperature values in relation to the months of 2014.

![Evolution of the average value of the temperature depending on the months of the year 2014](image)

Figure 3. Evolution of the temperature average value according the months of the year 2014

The Figure shows that the maximum temperature was determined in July, and the minimum temperature in January. Figure 4 presents graphically the evolution of the average irradiation values determined experimentally according to the months of 2014.

![Evolution of the average value of the irradiation depending on the months of the year 2014](image)

Figure 4. Evolution of the irradiation average value according the months of the year 2014

The Figure shows that the maximum irradiation value was determined in May and September, and the minimum irradiation value in December.

Figure 5 presents graphically the evolution of the average efficiency values according to the average temperature values determined in the months of 2014.
The evolution of the average value of the efficiency depending on temperature

Temperature [°C]	Efficiency [%]
3	8.3
5	10.79
10	9.12
12	10.36
14	10
16	10.12
18	10.16
20	10.66
22.3	10.83
23	9.36
24	8.83

The average value of the temperature [°C]
The average value of the efficiency [%]

Figure 5. Evolution of the average efficiency value according to the temperature during the period January- December 2014

The Figure shows that the maximum yield of n = 10.83 was determined at 22.3 ° C and the minimum efficiency of n = 7.9 at 20 ° C.

The curve obtained in Figure 5 was interpolated in polynomial form in Figure 6 to obtain the mathematical representation of the average efficiency value in relation to the average temperature during January 2014 - December 2014.

The polynomial function of the efficiency according to temperature is given by the relation (1):

\[\eta(T) = -0.0001T^8 + 0.0058T^6 - 0.1115T^4 + 1.028T^3 - 4.7256T^2 + 10.066T + 2.3794, \]

with \(R^2 = 0.7901 \)

Figure 7 shows the evolution of average irradiation values according to the average temperature values determined in the months of 2014.
The evolution of the average value of the irradiation depending on temperature

The average value of the temperature [°C]
The average value of the irradiation [W/m²]

Figure 7. Evolution of the irradiation average value according to the temperature in the period January - December 2014

We can see from the Figure that the maximum irradiation \(B = 978 \) [W/m²] was determined at temperatures of 20 °C and 22.3 °C and the minimum irradiation \(B = 473 \) [W/m²] at 20 °C.

The curve obtained in Figure 7 was interpolated in polynomial form in Figure 8 to obtain the mathematical representation of the average irradiation value in relation to the average temperature during January 2014 - December 2014. The polynomial irradiation function according to the temperature is given by the relation (2):

\[
B(T) = 0.0186T^5 - 0.5904T^4 + 6.3075T^3 - 22.062T^2 + 464.73T + 137.3,
\]

with \(R^2 = 0.9521 \)

Figure 8. Evolution of the irradiation average value according to the temperature (January - December 2014)
4. Conclusions
The study was carried out when the climate is variable, fact which is useful in developing an efficiency relationship of the photovoltaic solar module with major climatic parameters such as temperature, wind speed, humidity; dust, etc., so that the determined equations are in good correlation with measured data.

The polynomial relations obtained through interpolation are approximated relations, but can be useful in order to determine the average efficiency value, respectively of the irradiation according to the average value of the ambient temperature.

The results of this analysis indicate that the measured parameters such as: the average value of the ambient temperature.

References
[1] Chioncel C P, Tirian G O, Gillich N, Hatiegan C and Spunei E 2016 Overview of the wind energy market and renewable energy policy in Romania, IOP Conf. Ser.: Mater. Sci. Eng. 163 012009
[2] Tokar A, Negoţescu A, Hamat C and Roşu Ş 2016 The chemical and ecological state evaluation of a storage lake, Revista de Chimie 67(9) 1860-1863
[3] Dubey S, Sarvaiya J N and Seshadri B 2013 Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World A Review, Energy Procedia 33 311-321
[4] Garcia A M C and Balenzategui J L 2004 Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations, Renewable Energy 29 1997-2010
[5] Negoţescu A and Tokar A 2016 Solar Energy as an Alternative to Energy Saving and Pollutant Emissions Reduction, Analele Universităţii "Eftimie Murgu" Reşiţa XXIII(1) 195-202
[6] Bhattacharya T, Chakraborty A K and Pal K 2014 Effects of Ambient Temperature and Wind Speed on Performance of Monocrystalline Solar Photovoltaic Module in Tripura, Journal of Solar Energy 2014 1-5
[7] Tokar A, Reteanz A and Negoţescu A 2017 Estimative analysis of investment payback for industrial spaces heated with radiant tubes, Revista Română de Inginerie Civilă 8(1) 12-18
[8] Negoţescu A, Tokar A and Hamat C 2016 The influence of the air thermal and rainfall regimes on storage lakes water turbidity, Materiale Plastice 53(3) 542-545
[9] Luminosu I, Fara L, Pop N, Costache M and Fara S 2012 Exergy Analysis of the Air Solar Collector Based on Experimental Data, Environmental Engineering and Management Journal 11(8) 1367-1374
[10] Sudhakar K and Srivastava T 2014 Energy and exergy analysis of 36 W solar photovoltaic module, International Journal of Ambient Energy 35(1) 51-57
[11] Yao W, Li Z, Wang Y, Jiang F and Hu L 2014 Evaluation of global solar radiation models for Shanghai, Energy Conversion and Management 84 597-612
[12] Enrique J M, Andujar J M and Bohorquez M A 2010 A reliable, fast and low cost maximum power point tracker for photovoltaic applications, Solar Energy 84(1) 79-89
[13] Chioncel C P, Kohake D, Augustinov L, Chioncel P and Tiran G O 2010 Yield factors of a photovoltaic plant, Acta Tech Corvin Bull Eng III(2) 63-66
[14] Araneo R, Grasselli U and Celozzi S 2014 Assessment of a practical model to estimate the cell temperature of a photovoltaic module, International Journal of Energy and Environmental Engineering 5(72) 1-16
[15] Popescu C, Hatiegan C, Racoeceanu C and Bejinaru A C 2017 Aspects on the influence of starting the own services consumers of an energy group with unit of 330 mw on the power supply, International Conference Knowledge-Based Organization 23(3) 84-89
[16] Chioncel C P, Chioncel P, Gillich N and Tirian G O 2009 Performance ratio of a photovoltaic plant, *Bulletin of Engineering, University Politehnica Timisoara* **II**(2) 55-58

[17] Shuklaa K N, Rangnekarb S and Sudhakarb S 2016 Mathematical modelling of solar radiation incident on tilted surface for photovoltaic application at Bhopal, *International Journal of Ambient Energy* **37**(6) 579-588

[18] Chioncel C P, Gillich N, Chioncel P and Gillich G R 2007 CMS solutions in monitoring and real-time data transfer of photovoltaic plants, XVth International Symposium on Electrical Apparatus and Technologies, SIELA 2007, Plovdiv, Bulgaria, May 31-June 1, Pp 14-17

[19] Ayompe L, Duffy A, McCormack S and Conlon M 2011 Measured Performance of a 1.72 kW Rooftop Grid Connected Photovoltaic System in Ireland, *Energy Conversion and Management* **52**(2) 816-825