CP and charge asymmetries at CDF

Michael Morello for the CDF Collaboration
University and I.N.F.N of Pisa - Ed. C, Polo Fibonacci, Largo B. Pontecorvo, 3 - 56127 Pisa, Italy
E-mail: michael.morello@pi.infn.it

Abstract. We present CDF results on the branching fractions and time-integrated direct CP asymmetries for B^0 and B^0_s decay modes into pairs of charmless charged hadrons (pions or kaons). We report also the first observation of $B^0_s \rightarrow D_s^+ K^-$ mode and the measurement of its branching fraction.

1. Introduction

The interpretation of the CP violation mechanism is one of the most controversial aspects of the Standard Model. Many extensions of Standard Model predict that there are new sources of CP violation, beyond the single Kobayashi-Maskawa phase in the quark-mixing matrix (CKM). Considerations related to the observed baryon asymmetry of the Universe imply that such new sources should exist. The non-leptonic decays of B mesons are effective probes of the CKM matrix and sensitive to these potential new physics effects. The large production cross section of B hadrons of all kinds at the Tevatron allows extending such measurements to B^0_s decays, which are important to supplement our understanding of B^0 meson decays.

The $B^0_s \rightarrow K^- \pi^+$ mode could be used to measure γ [1] and its CP asymmetry could be a powerful model-independent test of the source of direct CP asymmetry in the B system [2]. This may provide useful information to solve the current discrepancy between the asymmetries observed in the neutral $A_{\text{CP}}(B^0 \rightarrow K^+ \pi^-)$ and charged mode $A_{\text{CP}}(B^+ \rightarrow K^+ \pi^0)$ [3]. A time-dependent, flavor-tagged measurement of $B^0_s \rightarrow D^+_s K^-$ can provide a measurement of γ in a theoretically clean way [4].

Throughout this paper, C-conjugate modes are implied and branching fractions indicate CP-averages unless otherwise stated.

2. Measurements of $B^0_{(s)} \rightarrow h^+ h^-$ decays

The Collider Detector at Fermilab (CDF) experiment analysed an integrated luminosity $\int L dt \simeq 1$ fb$^{-1}$ sample of pairs of oppositely-charged particles and reconstructed a sample of 14,500 $B^0_{(s)} \rightarrow h^+ h^-$ decay modes (where $h = K$ or π) after the off-line confirmation of trigger requirements. In the off-line analysis, we chose the selection cuts minimizing the expected uncertainty of the physics observables to be measured (through several “pseudo-experiments”). We used two different sets of cuts, respectively optimized to measure the CP asymmetry $A_{\text{CP}}(B^0 \rightarrow K^+ \pi^-)$ (loose cuts) and to improve the sensitivity for discovery and limit setting [5] of the not yet observed $B^0_s \rightarrow K^- \pi^+$ mode. The resolution in invariant mass and in particle identification (dE/dx) is not sufficient for separating the individual $B^0_{(s)} \rightarrow h^+ h^-$ decay modes.
on an event-by-event basis, therefore we performed a Maximum Likelihood fit which combines kinematic and particle identification information to statistically determine both the contribution of each mode, and the relative contributions to the CP asymmetries. We performed two separate fits: one on the sample selected with loose cuts and one on the sample selected with tight cuts. Significant signals are seen for $B^0 \rightarrow \pi^+\pi^-$, $B^0 \rightarrow K^+\pi^-$, and $B^0 \rightarrow K^+K^-$, previously observed by CDF [6]. Three new rare modes were observed for the first time $B^0_s \rightarrow K^-\pi^+$, $\Lambda^0_b \rightarrow p\pi^-$ and $\Lambda^0_b \rightarrow pK^-$, with a significance respectively of 8.2σ, 6.0σ and 11.5σ, estimated using a p-value distribution on pseudo-experiments. No evidence was obtained for $B^0_s \rightarrow \pi^+\pi^-$ or $B^0 \rightarrow K^+K^-$ mode.

Table 1. Results on data sample selected with loose cuts (top) and tight cuts (bottom). Absolute branching fractions are normalized to the world-average values $\mathcal{B}(B^0 \rightarrow K^+\pi^-) = (19.7\pm0.6) \times 10^{-6}$ and $f_s = (10.4\pm1.4)\%$ and $f_d = (39.8\pm1.0)\%$ [3]. The first quoted uncertainty is statistical, the second is systematic. N_s is the number of fitted events for each mode. For rare modes both systematic and statistical uncertainty on N_s was quoted while for abundant modes only the statistical one. For the Λ^0_b modes only the ratio $\frac{\mathcal{B}(\Lambda^0_b \rightarrow p\pi^-)}{\mathcal{B}(\Lambda^0_b \rightarrow pK^-)}$ was measured.

Mode	N_s	Quantity	Measurement	$\mathcal{B}(10^{-6})$
$B^0 \rightarrow K^+\pi^-$	4045 \pm 84	$\frac{B(B^0 \rightarrow K^+\pi^-)}{B(B^0 \rightarrow K^+\pi^-)+B(B^0 \rightarrow K^+\pi^-)}$	$-0.086 \pm 0.023 \pm 0.009$	5.10 \pm 0.33 \pm 0.36
$B^0 \rightarrow \pi^+\pi^-$	1121 \pm 63	$\frac{B(B^0 \rightarrow \pi^+\pi^-)}{B(B^0 \rightarrow \pi^+\pi^-)+B(B^0 \rightarrow \pi^+\pi^-)}$	$0.259 \pm 0.017 \pm 0.016$	5.10 \pm 0.33 \pm 0.36
$B^0_s \rightarrow K^+K^-$	1307 \pm 64	$\frac{B(B^0_s \rightarrow K^+K^-)}{B(B^0_s \rightarrow K^+K^-)+B(B^0_s \rightarrow K^+K^-)}$	$0.324 \pm 0.019 \pm 0.041$	24.4 \pm 1.4 \pm 4.6
$B^0_s \rightarrow K^-\pi^+$	230 \pm 34 \pm 16	$\frac{B(B^0_s \rightarrow K^-\pi^+)}{B(B^0_s \rightarrow K^-\pi^+)+B(B^0_s \rightarrow K^-\pi^+)}$	$0.066 \pm 0.010 \pm 0.010$	5.0 \pm 0.75 \pm 1.0
$B^0 \rightarrow \pi^+\pi^-$	60 \pm 6 \pm 14	$\frac{B(B^0 \rightarrow \pi^+\pi^-)}{B(B^0 \rightarrow \pi^+\pi^-)+B(B^0 \rightarrow \pi^+\pi^-)}$	$0.39 \pm 0.15 \pm 0.08$	5.0 \pm 0.75 \pm 1.0
$B^0 \rightarrow K^+K^-$	61 \pm 25 \pm 35	$\frac{B(B^0 \rightarrow K^+K^-)}{B(B^0 \rightarrow K^+K^-)+B(B^0 \rightarrow K^+K^-)}$	$-0.21 \pm 0.16 \pm 0.39$	5.0 \pm 0.75 \pm 1.0
$B^0 \rightarrow \pi^+\pi^-$	26 \pm 16 \pm 14	$\frac{B(B^0 \rightarrow \pi^+\pi^-)}{B(B^0 \rightarrow \pi^+\pi^-)+B(B^0 \rightarrow \pi^+\pi^-)}$	$0.007 \pm 0.004 \pm 0.005$	0.53 \pm 0.31 \pm 0.40
$B^0 \rightarrow K^+K^-$	61 \pm 25 \pm 35	$\frac{B(B^0 \rightarrow K^+K^-)}{B(B^0 \rightarrow K^+K^-)+B(B^0 \rightarrow K^+K^-)}$	$0.020 \pm 0.008 \pm 0.006$	0.39 \pm 0.16 \pm 0.12

The relative branching fractions are listed in Table 1, where f_d and f_s indicate the production fractions respectively of B^0 and B^0_s from fragmentation of a b quark in pp collisions. An upper limit is also quoted for modes in which no significant signal is observed. We also list absolute results obtained by normalizing the data to the world-average of $\mathcal{B}(B^0 \rightarrow K^+\pi^-)$ [3].

The branching fraction of the newly observed mode $\mathcal{B}(B^0_s \rightarrow K^-\pi^+) = (5.0\pm0.75\pm1.0) \times 10^{-6}$ is in agreement with the latest theoretical expectation, [7] which is lower than the previous predictions [8, 9]. We measured for the first time in the B^0_s meson system the direct CP asymmetry $A_{CP}(B^0_s \rightarrow K^-\pi^+) = 0.39 \pm 0.15 \pm 0.08$. This value favors a large CP violation in B^0_s meson decays, although it is also compatible with zero. In Ref. [2] a robust test of the Standard Model or a probe of new physics is suggested by comparison of the direct CP asymmetries in $B^0_s \rightarrow K^-\pi^+$ and $B^0 \rightarrow K^+\pi^-$ decays. Using HFAG input [3] we measure $\frac{\Gamma(B^0_s \rightarrow K^-\pi^+)-\Gamma(B^0 \rightarrow K^+\pi^-)}{\Gamma(B^0_s \rightarrow K^-\pi^+)+\Gamma(B^0 \rightarrow K^+\pi^-)} = 0.84 \pm 0.42 \pm 0.15$, in agreement with the Standard Model expectation of unity. Assuming that the relationship above is equal to one, using as
input the $\mathcal{B}(B_s^0 \to K^-\pi^+)$ measured here, and the world–average for $\mathcal{A}_{CP}(B^0 \to K^+\pi^-)$ and $\mathcal{B}(B^0 \to K^+\pi^-)$ [3], we estimate the expected value for $\mathcal{A}_{CP}(B_s^0 \to K^-\pi^+) \approx 0.37$ in agreement with our measurement. The branching fraction $\mathcal{B}(B_s^0 \to K^+K^-) = (24.4 \pm 1.4 \pm 4.6) \times 10^{-6}$ is in agreement with the latest theoretical expectation [10, 11] and with the previous CDF measurement [6]. An improved systematic uncertainty is expected for the final analysis of the same sample. The results for the B^0 are in agreement with world–average values [3]. $\mathcal{A}_{CP}(B^0 \to K^+\pi^-) = -0.086 \pm 0.023 \pm 0.009$ is already competitive with the current B–Factories measurements.

With full Run II samples ($5 - 6 \, fb^{-1}$ by year 2009) we expect a measurement of \mathcal{A}_{CP} in $B^0 \to K^+\pi^-$ with a statistical plus systematic uncertainty at 1\% level; 5-sigma observation of direct \mathcal{A}_{CP} in $B_s^0 \to K^-\pi^+$ (or alternatively the possible indication of non-SM sources of CP violation); the first measurement of \mathcal{A}_{CP} in Λ_b^0 charmless decays; and improved limits, or even observation, of annihilation modes $B_s^0 \to \pi^+\pi^-$ and $B^0 \to K^+K^-$. In addition to the above, time-dependent measurements will be performed for $B^0 \to \pi^+\pi^-$ and $B_s^0 \to K^+K^-$ decay [12]. See [13, 14] for more details.

3. First observation of $\ B_s^0 \to D_s^{\mp} K^\pm$

For the search of $B_s^0 \to D_s^{\mp} K^\pm$ mode we used a unbinned Maximum Likelihood fit which combines the kinematic and particle identification information, as the $B_s^0 \to h^+h^-$ analysis. The variables used are the invariant mass of the B_s^0 candidates in the $D_s\pi$ hypothesis and the dE/dx of the B_s^0 daughter track. With a data sample of integrated luminosity $\int L dt \approx 1.2 \, fb^{-1}$ we observe for the first time $B_s^0 \to D_s^{\mp} K^\pm$ decays, with a yield of 109 ± 19 events corresponding to a statistical significance of 7.9σ. We measured its branching fraction normalized to $B_s^0 \to D_s^- \pi^+$ mode:

$$\frac{\mathcal{B}(B_s^0 \to D_s^+ K^\mp)}{\mathcal{B}(B_s^0 \to D_s^- \pi^+)} = 0.107 \pm 0.019 \, \text{(stat.)} \pm 0.007 \, \text{(syst.)} $$

This is the initial step for a possible time-dependent asymmetry measurement with full Run II statistics. See [15, 16] for more details.

References

[1] Gronau M and Rosner J L 2000 Phys. Lett. B482 71 (Preprint hep-ph/0003119).
[2] Lipkin H. J. 2005 Phys. Lett. B621 126 (Preprint hep-ph/0503022).
[3] E. Barberio et al Heavy Flavor Averaging Group (HFAG) Preprint hep-ex/0603003.

See also http://www.slac.stanford.edu/xorg/hfag/.
[4] Aleksan R, Dunietz I and Kayser B 1992 Z. Phys. C54 653 – 660
[5] Punzi G 2003 Talk given at PHYSTAT2003, eConf C030908, MODT002 (Preprint physics/0308063).
[6] Abulencia A et al (CDF collaboration) 2006 Phys. Rev. Lett. 97 211802 (Preprint hep-ex/0607021).
[7] Williamson A R and Zupan J 2006 Phys. Rev. D 74 014003 (Preprint hep-ph/0601214).
[8] Beneke M and Neubert M 2003 Nucl. Phys. B675 333 (Preprint hep-ph/0308039).
[9] Yu Xian-Qiao, Li Ying and Lu Cai-Dian 2005 Phys. Rev. D 71 074026 (Preprint hep-ph/0501152).
[10] Descotes-Genon S, Matias J and Virto J 2006 Phys. Rev. Lett. 97 061801 (Preprint hep-ph/0603239).
[11] Baek S, London D, Matias J and Virto J 2006 J. High Energy Phys. JHEP(2006)612 (Preprint hep-ph/0601089).
[12] Punzi G 2007 Talk given at 4th International Workshop on the CKM Unitarity Triangle (CKM 2006), Nagoya, Japan Preprint hep-ex/0703029.
[13] Morello M 2007 Nucl. Phys. Proc. Suppl. 170 39 – 45 (Preprint hep-ex/0612018).
[14] Morello M PhD Thesis, Scuola Normale Superiore of Pisa (in preparation).
[15] http://www-cdf.fnal.gov/physics/new/bottom/070524.blessed-Bs-DsK/.
[16] CDF Collaboration, CDF Public note 8850.

http://www-cdf.fnal.gov/physics/new/bottom/070524.blessed-Bs-DsK/cdf8850.pdf.