A More General Maximal Bernstein-type Inequality

Péter Kevei
MTA-SZTE Analysis and Stochastics Research Group
Bolyai Institute, Aradi várta nők tere 1, 6720 Szeged, Hungary
e-mail: kevei@math.u-szeged.hu
David M. Mason
University of Delaware
213 Townsend Hall, Newark, DE 19716, USA
e-mail: davidm@udel.edu

May 24, 2012

Abstract
We extend a general Bernstein-type maximal inequality of Kevei and Mason (2011) for sums of random variables.

Keywords: Bernstein inequality, dependent sums, maximal inequality, mixing, partial sums.

AMS Subject Classification: MSC 60E15; MSC 60F05; MSC 60G10.

1 Introduction
Let X_1, X_2, \ldots be a sequence of random variables, and for any choice of $1 \leq k \leq l < \infty$ we denote the partial sum $S(k, l) = \sum_{i=k}^{l} X_i$, and define $M(k, l) = \max\{|S(k, k)|, \ldots, |S(k, l)|\}$. It turns out that under a variety of assumptions the partial sums $S(k, l)$ will satisfy a generalized Bernstein-type inequality of the following form: for suitable constants $A > 0$, $a > 0$, $b \geq 0$ and $0 < \gamma < 2$ for all $m \geq 0$, $n \geq 1$ and $t \geq 0$,
\[
P\{|S(m+1, m+n)| > t\} \leq A \exp\left\{-\frac{at^2}{n+bt^\gamma}\right\}.
\]
(1.1)

Kevei and Mason [2] provide numerous examples of sequences of random variables X_1, X_2, \ldots, that satisfy a Bernstein-type inequality of the form (1.1). They show, somewhat unexpectedly, without any additional assumptions, a modified version of it also holds for $M(1+m, n+m)$ for all $m \geq 0$ and $n \geq 1$. Here is their main result.

Theorem 1.1. Assume that for constants $A > 0$, $a > 0$, $b \geq 0$ and $\gamma \in (0, 2)$, inequality (1.1) holds for all $m \geq 0$, $n \geq 1$ and $t \geq 0$. Then for every $0 < c < a$, b and γ such that for all $n \geq 1$, $m \geq 0$ and $t \geq 0$,
\[
P\{M(m+1, m+n) > t\} \leq C \exp\left\{-\frac{ct^2}{n+bt^\gamma}\right\}.
\]
(1.2)

*Supported by the TAMOP-4.2.1/B-09/1/KONV-2010-0005 project.
†Research partially supported by NSF Grant DMS-0503908.
There exists an interesting class of Bernstein-type inequalities that are not of the form (1.1). Here are two motivating examples.

Example 1. Assume that X_1, X_2, \ldots is a stationary Markov chain satisfying the conditions of Theorem 6 of Adamczak [1] and let f be any bounded measurable function such that $Ef(X_1) = 0$. His theorem implies that for some constants $D > 0, d_1 > 0$ and $d_2 > 0$ for all $t \geq 0$ and $n \geq 1$,

$$P \{|S_n(f)| \geq t\} \leq D^{-1} \exp \left(- \frac{Dt^2}{nd_1 + td_2 \log n} \right),$$

(1.3)

where $S_n(f) = \sum_{i=1}^n f(X_i)$, and D/d_1 is related to the limiting variance in the central limit theorem.

Example 2. Assume that X_1, X_2, \ldots is a strong mixing sequence with mixing coefficients $\alpha(n), n \geq 1$, satisfying for some $d > 0, \alpha(n) \leq \exp(-2dn)$. Also assume that $EX_i = 0$ and for some $M > 0, |X_i| \leq M$, for all $i \geq 1$. Theorem 2 of Merlevède, Peligrad and Rio [4] implies that for some constant $D > 0$ for all $t \geq 0$ and $n \geq 1$,

$$P \{|S_n| \geq t\} \leq D \exp \left(- \frac{Dt^2}{nv^2 + M^2 + tM (\log n)^2} \right),$$

(1.4)

where $S_n = \sum_{i=1}^n X_i$ and $v^2 = \sup_{t>0} \left(Var(X_i) + 2 \sum_{j>i} |cov(X_i, X_j)| \right)$.

The purpose of this note is to establish the following extended version of Theorem 1.1 that will show that a maximal version of inequalities (1.3) and (1.4) also holds.

Theorem 1.2. Assume that there exist constants $A > 0$ and $a > 0$ and a sequence of non-decreasing non-negative functions $\{g_n\}_{n \geq 1}$ on $(0, \infty)$, such that for all $t > 0$ and $n \geq 1$, $g_n(t) \leq g_{n+1}(t)$ and for all $0 < \rho < 1$

$$\lim_{n \to \infty} \inf \left\{ \frac{t^2}{g_n(t) \log t} : g_n(t) > \rho n \right\} = \infty,$$

(1.5)

where the infimum of the empty set is defined to be infinity, such that for all $m \geq 0$, $n \geq 1$ and $t \geq 0$,

$$P\{|S(m+1, m+n)| > t\} \leq A \exp \left\{- \frac{at^2}{n + g_n(t)} \right\}.$$

(1.6)

Then for every $0 < c < a$ there exists a $C > 0$ depending only on A, a and $\{g_n\}_{n \geq 1}$ such that for all $n \geq 1, m \geq 0$ and $t \geq 0$,

$$P\{|M(m+1, m+n)| > t\} \leq C \exp \left\{- \frac{ct^2}{n + g_n(t)} \right\}.$$

(1.7)

Note that condition (1.5) trivially holds when the functions g_n are bounded, since the corresponding sets are empty sets. However, in the interesting cases g_n's are not bounded, and in this case the condition basically says that $g_n(t)$ increases slower than t^2.

Essentially the same proof shows that the statement of Theorem 1.2 remains true if in the numerator of (1.6) and (1.7) the function t^2 is replaced by a regularly varying function at infinity $f(t)$ with a positive index. In this case the t^2 in condition (1.5) must be replaced by $f(t)$. Since we do not know any application of a result of this type, we only mention this generalization.
Proof. Choose any \(0 < c < a\). We prove our theorem by induction on \(n\). Notice that by the assumption, for any integer \(n_0 \geq 1\) we may choose \(C > An_0\) to make the statement true for all \(1 \leq n \leq n_0\). This remark will be important, because at some steps of the proof we assume that \(n\) is large enough. Also since the constants \(A\) and \(a\) in (1.6) are independent of \(m\), we can without loss of generality assume \(m = 0\).

Assume the statement holds up to some \(n \geq 2\). (The constant \(C\) will be determined in the course of the proof.)

Case 1. Fix a \(t > 0\) and assume that

\[g_{n+1}(t) \leq \alpha n, \]
(1.8)

for some \(0 < \alpha < 1\) be specified later. (In any case, we assume that \(\alpha n \geq 1\).) Using an idea of [5], we may write for arbitrary \(1 \leq k < n\), \(0 < q < 1\) and \(p + q = 1\) the inequality

\[
P\{M(1, n + 1) > t\} \leq P\{M(1, k) > t\} + P\{|S(1, k + 1)| > pt\}
+ P\{M(k + 2, n + 1) > qt\}.
\]

Let

\[u = \frac{n + g_{n+1}(qt) - q^2 g_{n+1}(t)}{1 + q^2}. \]

Note that \(u \leq n - 1\) if \(0 < \alpha < 1\) is chosen small enough depending on \(q\), for \(n\) large enough. Notice that

\[
\frac{t^2}{u + g_{n+1}(t)} = \frac{q^2 t^2}{n - u + g_{n+1}(qt)}.
\]
(1.9)

Set

\[k = \lceil u \rceil. \]
(1.10)

Using the induction hypothesis and (1.6), keeping in mind that \(1 \leq k \leq n - 1\), we obtain

\[
P\{M(1, n + 1) > t\} \leq C \exp \left\{ -\frac{ct^2}{k + g_k(t)} \right\} + A \exp \left\{ -\frac{ap^2 t^2}{k + 1 + g_{k+1}(pt)} \right\}
+ C \exp \left\{ -\frac{cq^2 t^2}{n - k + g_{n-k}(qt)} \right\}
\leq C \exp \left\{ -\frac{ct^2}{k + g_{n+1}(t)} \right\} + A \exp \left\{ -\frac{ap^2 t^2}{k + 1 + g_{n+1}(pt)} \right\}
+ C \exp \left\{ -\frac{cq^2 t^2}{n - k + g_{n+1}(qt)} \right\}. \]
(1.11)

Notice that we chose \(k\) to make the first and third terms in (1.11) almost equal, and since by (1.10)

\[
\frac{t^2}{k + g_{n+1}(t)} \leq \frac{q^2 t^2}{n - k + g_{n+1}(qt)}
\]

the first term is greater than or equal to the third.

First we handle the second term in formula (1.11), showing that whenever \(g_{n+1}(t) \leq \alpha n\),

\[
\exp \left\{ -\frac{ap^2 t^2}{k + 1 + g_{n+1}(pt)} \right\} \leq \exp \left\{ -\frac{ct^2}{n + 1 + g_{n+1}(t)} \right\}.
\]
For this we need to verify that for $g_{n+1}(t) \leq \alpha n$,

$$\frac{ap^2}{k + 1 + g_{n+1}(pt)} \geq \frac{c}{n + 1 + g_{n+1}(t)},$$

which is equivalent to

$$ap^2(n + 1 + g_{n+1}(t)) > c(k + 1 + g_{n+1}(pt)).$$

Using that

$$k = \lceil u \rceil \leq u + 1 = 1 + \frac{1}{1 + q^2} \left[n + g_{n+1}(qt) - q^2g_{n+1}(t) \right],$$

it is enough to show

$$n \left(ap^2 - \frac{c}{1 + q^2} \right) + ap^2 - 2c$$

$$+ \left[g_{n+1}(t)ap^2 - g_{n+1}(pt)c - \frac{c}{1 + q^2} \left(g_{n+1}(qt) - q^2g_{n+1}(t) \right) \right] > 0.$$

Note that if the coefficient of n is positive, then we can choose α in (1.8) small enough to make the above inequality hold. So in order to guarantee (1.12) (at least for large n) we only have to choose the parameter p so that

$$ap^2 - c > 0,$$

which implies that

$$ap^2 - \frac{c}{1 + q^2} > 0 \quad (1.13)$$

holds, and then select α small enough, keeping mind that we assume $\alpha n \geq 1$ and $k \leq n - 1$.

Next we treat the first and third terms in (1.11). Because of the remark above, it is enough to handle the first term. Let us examine the ratio of $C \exp\{-ct^2/(k + g_{n+1}(t))\}$ and $C \exp\{-ct^2/(n + 1 + g_{n+1}(t))\}$. Notice again that since $u + 1 \geq k$, the monotonicity of $g_{n+1}(t)$ and $g_{n+1}(t) \leq \alpha n$ implies

$$n + 1 - k \geq n - u = n - \frac{n + g_{n+1}(qt) - q^2g_{n+1}(t)}{1 + q^2}$$

$$\geq \frac{q^2n - (1 - q^2)g_{n+1}(t)}{1 + q^2}$$

$$\geq n \frac{q^2 - \alpha(1 - q^2)}{1 + q^2}$$

$$=: c_1n.$$

At this point we need that $0 < c_1 < 1$. Thus we choose α small enough so that

$$q^2 - \alpha(1 - q^2) > 0.$$

Also we get using $g_{n+1}(t) \leq \alpha n$ the bound

$$(n + 1 + g_{n+1}(t))(k + g_{n+1}(t)) \leq 2n^2(1 + \alpha)^2 =: c_2n^2,$$

which holds if n large enough. Therefore, we obtain for the ratio

$$\exp \left\{ -ct^2 \left(\frac{1}{k + g_{n+1}(t)} - \frac{1}{n + 1 + g_{n+1}(t)} \right) \right\} \leq \exp \left\{ -\frac{cc_1t^2}{c_2n^2} \right\} \leq e^{-1},$$
whenever \(cc_1 t^2/(c_2 n) \geq 1 \), that is \(t \geq \sqrt{c_2 n/(cc_1)} \). Substituting back into (1.11), for \(t \geq \sqrt{c_2 n/(cc_1)} \) and \(g_{n+1}(t) \leq \alpha n \) we obtain

\[
P\{M(1, n + 1) > t\} \leq \left(\frac{2}{e} \right) C + A \exp\{-ct^2/(n + 1 + g_{n+1}(t))\} \leq C \exp\{-ct^2/(n + 1 + g_{n+1}(t))\},
\]

where the last inequality holds for \(C > Ae/(e - 2) \).

Next assume that \(t < \sqrt{c_2 n/(cc_1)} \). In this case choosing \(C \) large enough we can make the bound \(> 1 \), namely

\[
C \exp\left\{-\frac{ct^2}{n + 1 + g_{n+1}(t)}\right\} \geq C \exp\left\{-\frac{cc_2 n}{cc_1 n}\right\} = Ce^{-c_2/c_1} \geq 1,
\]

if \(C > e^{c_2/c_1} \).

Case 2. Now we must handle the case \(g_{n+1}(t) > \alpha n \). Here we apply the inequality

\[
P\{M(1, n + 1) > t\} \leq P\{M(1, n) > t\} + P\{|S(1, n + 1)| > t\}.
\]

Using assumption (1.6) and the induction hypothesis, we have

\[
P\{M(1, n + 1) > t\} \leq C \exp\left\{-\frac{ct^2}{n + g_n(t)}\right\} + A \exp\left\{-\frac{at^2}{n + 1 + g_{n+1}(t)}\right\}
\]

\[
\leq C \exp\left\{-\frac{ct^2}{n + g_{n+1}(t)}\right\} + A \exp\left\{-\frac{at^2}{n + 1 + g_{n+1}(t)}\right\}.
\]

We will show that the right side \(\leq C \exp\{-ct^2/(n + 1 + g_{n+1}(t))\} \). For this it is enough to prove

\[
\exp\left\{-ct^2\left(\frac{1 + g_{n+1}(t)}{n + g_{n+1}(t)} - \frac{1}{n + 1 + g_{n+1}(t)}\right)\right\} + \frac{A}{C} \exp\left\{-\frac{t^2(a - c)}{n + 1 + g_{n+1}(t)}\right\} \leq 1. \tag{1.15}
\]

Using the bound following from \(g_{n+1}(t) > \alpha n \) and recalling that \(\alpha n \geq 1 \) and \(0 < \alpha < 1 \), we get

\[
\frac{t^2}{(n + g_{n+1}(t))(n + 1 + g_{n+1}(t))} \geq \frac{\alpha^2 t^2}{(1 + \alpha)(1 + 2\alpha)g_{n+1}(t)^2} =: c_3 \frac{t^2}{g_{n+1}(t)^2},
\]

and

\[
\frac{t^2(a - c)}{n + 1 + g_{n+1}(t)} \geq \frac{t^2}{g_{n+1}(t)} \frac{a(a - c)}{1 + 2\alpha} =: \frac{t^2}{g_{n+1}(t)} c_4.
\]

Choose \(\delta > 0 \) so small such that \(0 < x \leq \delta \) implies \(e^{-c_3 x^2} \leq 1 - \frac{c_3}{2} x^2 \).

For \(t/g_{n+1}(t) \geq \delta \) the left-hand side of (1.15) is less then

\[
e^{-c_3 x^2} + \frac{A}{C},
\]

which is less than 1, for \(C \) large enough.
For \(t/g_{n+1}(t) \leq \delta \) by the choice of \(\delta \) the left-hand side of (1.15) is less then

\[
1 - \frac{cc_3}{2} \frac{t^2}{g_{n+1}(t)^2} + \frac{A}{C} \exp \left\{ - \frac{t^2}{g_{n+1}(t)} c_4 \right\},
\]

which is less than 1 if

\[
\frac{cc_3}{2} \frac{t^2}{g_{n+1}(t)^2} > \frac{A}{C} \exp \left\{ - \frac{t^2}{g_{n+1}(t)} c_4 \right\}.
\]

By (1.5), for any \(0 < \eta < 1 \) and all large enough \(n \), \(g_{n+1}(t) \{ g_{n+1}(t) > \alpha n \} \leq \eta t^2 \), so that for all large \(n \), whenever \(g_{n+1}(t) > \alpha n \), we have

\[
\frac{t^2}{g_{n+1}(t)^2} \geq t^{-2},
\]

and again by (1.5) for all large \(n \), whenever \(g_{n+1}(t) > \alpha n \), \(t^2/g_{n+1}(t) \geq (3/c_4) \log t \). Therefore for all large \(n \), whenever \(g_{n+1}(t) \alpha n \),

\[
\exp \left\{ - \frac{t^2}{g_{n+1}(t)} c_4 \right\} \leq t^{-3},
\]

which is smaller than \(t^{-2} \frac{cc_3}{2A} \), for \(t \) large enough, i.e. for \(n \) large enough. The proof is complete.

By choosing \(g_n(t) = bt^\gamma \) for all \(n \geq 1 \) we see that Theorem 1.2 gives Theorem 1.1 as a special case. Also note that Theorem 1.2 remains valid for sums of Banach space valued random variables with absolute value \(\| \cdot \| \) replaced by norm \(\| \cdot \| \). Theorem 1.2 permits us to derive the following maximal versions of inequalities (1.3) and (1.4).

Application 1. In Example 1 one readily checks that the assumptions of Theorem 1.2 are satisfied with \(A = D^{-1} \) and \(a = D/d_1 \)

\[
g_n(t) = \left(\frac{td_2}{d_1} \right) \log n.
\]

We get the maximal version of inequality (1.3) holding for any \(0 < c < 1 \) and all \(n \geq 1 \) and \(t > 0 \)

\[
P \left\{ \max_{1 \leq m \leq n} |S_{n}(f)| \geq t \right\} \leq C \exp \left(- \frac{cDt^2}{nd_1 + td_2 \log n} \right),
\]

for some constant \(C \geq D^{-1} \) depending on \(c, D^{-1}, D/d_1 \) and \(\{g_n\}_{n \geq 1} \).

Application 2. In Example 2 one can verify that the assumptions of the Theorem 1.2 hold with \(A = D \) and \(a = D/v^2 \) and

\[
g_n(t) = \frac{M^2}{v^2} + \left(\frac{tM}{v^2} \right) (\log n)^2,
\]

which leads to the maximal version of inequality (1.4) valid for any \(0 < c < 1 \) and all \(n \geq 1 \) and \(t > 0 \)

\[
P \left\{ \max_{1 \leq m \leq n} |S_m| \geq t \right\} \leq C \exp \left(- \frac{cDt^2}{nv^2 + M^2 + tM (\log n)^2} \right)
\]
for some constant $C \geq D$ depending on c, D/v^2 and $\{g_n\}_{n \geq 1}$. See Corollary 24 of Merlevède and Peligrad [3] for a closely related inequality that holds for all $n \geq 2$ and $t > K \log n$ for some $K > 0$.

Remark There is a small oversight in the published version of the Kevei and Mason paper. Here are the corrections that fix it.

1. Page 1057, line -9: Replace “$1 \leq k \leq n$” by “$1 \leq k < n$”.
2. Page 1057, line -7: Replace this line with
 \[
 \leq P \{M (1, k) > t\} + P \{S (1, k + 1) > pt\} + P \{M (k + 2, n + 1) > qt\}.
 \]
3. Page 1058: Replace “$k + bp^2 \gamma t$” by “$k + 1 + bp^2 \gamma t$” in equations (2.4) and (2.5), as well as in line -13.
4. Page 1058: Replace “$ap^2 - c$” by “$ap^2 - 2c$” in line -9.

Acknowledgment
We thank a referee for a careful reading of the manuscript and a number of useful comments.

References

[1] R. Adamczak, *A tail inequality for suprema of unbounded empirical processes with applications to Markov chains*. Electron. J. Probab. 13 (2008), 1000–1034.

[2] P. Kevei and D.M. Mason, *A note on a maximal Bernstein inequality*. Bernoulli 17 (2011), 1054–1062.

[3] F. Merlevède and M. Peligrad, *Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples*. Ann. Probab. To appear.

[4] F. Merlevède, M. Peligrad, M. and E. Rio, *Bernstein inequality and moderate deviations under strong mixing conditions*. In: High Dimensional Probability V: The Luminy Volume, C. Houdré, V. Koltchinskii, D. M. Mason and M. Peligrad, eds., (Beachwood, Ohio, USA: IMS, 2009), 273–292.

[5] F.A. Móricz, R.J. Serfling and W.F. Stout, *Moment and probability bounds with quasisuperadditive structure for the maximum partial sum*. Ann. Probab. 10 (1982), 1032–1040.