Representations for weighted Moore-Penrose inverses of partitioned adjointable operators

Qingxiang Xu∗ Yonghao Chen† Chuanning Song‡

Abstract

For two positive definite adjointable operators M and N, and an adjointable operator A acting on a Hilbert C^*-module, some properties of the weighted Moore-Penrose inverse A_{MN}^\dagger are established. If $A = (A_{ij})$ is 1×2 or 2×2 partitioned, then general representations for A_{MN}^\dagger in terms of the individual blocks of A_{ij} are studied. In the case when A is 1×2 partitioned, a unified representation for A_{MN}^\dagger is presented. In the 2×2 partitioned case, an approach to the construction of the Moore-Penrose inverse from the non-weighted case to the weighted case is provided. Some results known for matrices are extended to the general setting of operators on Hilbert C^*-modules.

AMS classification: 15A09; 46L08

Keywords: Hilbert C^*-module; Weighted Moore-Penrose inverse; Partitioned operator

Introduction

The weighted Moore-Penrose inverse of an arbitrary (singular and rectangular) matrix has many applications in the weighted linear least-squares problems, statistics, neural network, numerical analysis and so on. For a partitioned matrix $A = (A_{ij})$, it has been of interest to derive general expressions for the weighted Moore-Penrose inverse of A in terms of the individual blocks of A_{ij}. If $A = (A_{11}, A_{12})$ is a 1×2 partitioned matrix, then some formulas for the (non-weighted) Moore-Penrose inverse A^\dagger, such as Cline [2] and Mihalyffy [8] are well-known. In the weighted case, a formula for A_{MN}^\dagger of a 1×2 partitioned matrix A was given by Miao [6]. Later, this formula was reproved by Chen [1], Wang and Zheng [10] by using different methods. Recently, another formula for A_{MN}^\dagger has been obtained by the first author [11]. In this paper, in the general context of Hilbert C^*-module operators, we will provide a unified representation for A_{MN}^\dagger (see Theorem 3.4 below). As a result, the equivalence of the formulas for A_{MN}^\dagger given respectively in [6] and [11] is derived.

∗Corresponding author. Department of Mathematics, Shanghai Normal University, Shanghai 200234, P.R. China, and School of Science, Shanghai Institute of Technology, Shanghai, 201418, P.R. China (qingxiang_xu@126.com, qxu@shnu.edu.cn). Supported by the National Natural Science Foundation of China under grant 11171222, and the Innovation Program of Shanghai Municipal Education Commission under grant 12ZZ129.

†Department of Mathematics, Shanghai Normal University, Shanghai 200234, P.R. China (chenyonghao6232@163.com).

‡Department of Mathematics, Shanghai Normal University, Shanghai 200234, P.R. China (songning1962@163.com, songning@shnu.edu.cn).
If \(A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \) is a \(2 \times 2 \) partitioned matrix, then things may become much more complicated. Most works in literature concerning representations for \(A^\dagger \) were carried out under certain restrictions on the blocks of \(A_{ij} \). In 1991, a general expression for \(A^\dagger \) without any restriction imposed on the blocks of \(A_{ij} \), was given by Miao in [7]. Since then, more than twenty years has passed. However, due to the complexity revealed in [3, 5, 7], there has not been much progress concerning the generalization of Miao’s result [7] from the non-weighted case to the weighted case. In this paper, we make such an effort in the general setting of Hilbert \(C^* \)-module operators.

The paper is organized as follows. In Section 1 in the general setting of Hilbert \(C^* \)-module operators, we will establish some properties on weighted Moore-Penrose inverses. Following the line initiated in [12], in Section 2 we will study the relationship between weighted Moore-Penrose inverses \(A_{MN}^\dagger \), where \(A \) is fixed, while \(M \) and \(N \) are variable. In Section 3 we will study unified representations for weighted Moore-Penrose inverses of \(1 \times 2 \) partitioned adjointable operators. In Section 4, an approach, initiated in [11] for \(1 \times 2 \) partitioned adjointable operators, is applied to study the general expressions for weighted Moore-Penrose inverses of \(2 \times 2 \) partitioned adjointable operators. Our key point is the construction of a commutative diagram in page 16 through which the main results of [7] are generalized from the non-weighted case to the weighted case.

1 Weighted Moore-Penrose inverses of adjointable operators

In this section, in a general setting of adjointable operators on Hilbert \(C^* \)-modules, we establish some properties on weighted Moore-Penrose inverses, most of which are known for matrices. Throughout this paper, \(\mathfrak{A} \) is a \(C^* \)-algebra, \(\mathbb{C} \) is the complex field, and \(\mathbb{C}^{m \times n} \) is the set of \(m \times n \) complex matrices. By a projection, we mean an idempotent and a self-adjoint element in a certain \(C^* \)-algebra. For any Hilbert \(\mathfrak{A} \)-modules \(H \) and \(K \), let \(\mathcal{L}(H, K) \) be the set of adjointable operators from \(H \) to \(K \). If \(H = K \), then \(\mathcal{L}(H, H) \), which we abbreviate to \(\mathcal{L}(H) \), is a unital \(C^* \)-algebra, whose unit is denoted by \(I_H \). For any \(A \in \mathcal{L}(H, K) \), the range and the null space of \(A \) are denoted by \(\mathcal{R}(A) \) and \(\mathcal{N}(A) \), respectively.

Throughout, the notations of “\(\oplus \)” and “\(\dagger \)” are used with different meanings. For any Hilbert \(\mathfrak{A} \)-modules \(H_1 \) and \(H_2 \), let

\[
H_1 \oplus H_2 = \left\{ \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \mid h_i \in H_i, i = 1, 2 \right\},
\]

which is also a Hilbert \(\mathfrak{A} \)-module whose \(\mathfrak{A} \)-valued inner product is given by

\[
\left\langle \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \right\rangle = \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle, \text{ for any } x_i \in H_1 \text{ and } y_i \in H_2, i = 1, 2.
\]

If both \(H_1 \) and \(H_2 \) are submodules of a Hilbert \(\mathfrak{A} \)-module \(H \) such that \(H_1 \cap H_2 = \{0\} \), then we define

\[
H_1 + H_2 = \{ h_1 + h_2 \mid h_i \in H_i, i = 1, 2 \} \subseteq H.
\]
If furthermore $H = H_1 + H_2$, then we call P_{H_1,H_2} the oblique projector along H_2 onto H_1, where P_{H_1,H_2} is defined by

$$P_{H_1,H_2}(h) = h_1, \text{ for any } h = h_1 + h_2 \in H \text{ with } h_i \in H_i, i = 1, 2.$$

Lemma 1.1. (cf. [4, Theorem 3.2] and [13, Remark 1.1]) Let H, K be two Hilbert \mathfrak{A}-modules and $A \in \mathcal{L}(H, K)$. Then the closeness of any one of the following sets implies the closeness of the remaining three sets:

$$\mathcal{R}(A), \mathcal{R}(A^*), \mathcal{R}(AA^*), \mathcal{R}(A^*A).$$

Furthermore, if $\mathcal{R}(A)$ is closed, then $\mathcal{R}(A) = \mathcal{R}(AA^*) = \mathcal{R}(A^*A)$ and with respect to the \mathfrak{A}-valued inner product, the following orthogonal decompositions hold:

$$H = \mathcal{N}(A) + \mathcal{R}(A^*), \; K = \mathcal{R}(A) + \mathcal{N}(A^*). \quad (1.1)$$

Throughout the rest of this section, H, K and L are three Hilbert \mathfrak{A}-modules.

Definition 1.1. An element M of $\mathcal{L}(K)$ is said to be positive definite, if M is positive and invertible in $\mathcal{L}(K)$.

Proposition 1.2. Let $M \in \mathcal{L}(K)$ be positive definite. Then with the inner-product given by

$$\langle x, y \rangle_M = \langle x, My \rangle, \text{ for any } x, y \in K,$$

K also becomes a Hilbert \mathfrak{A}-module.

Proof. With respect to $\langle \cdot, \cdot \rangle_M$, K is clearly an inner-product \mathfrak{A}-module [4, P. 2]. We prove that K is complete with respect to the norm induced by

$$\|x\|_M \overset{def}{=} \|\langle x, x \rangle_M\|^\frac{1}{2} = \|M^\frac{1}{2}x\|, \text{ for any } x \in K. \quad (1.3)$$

In fact, if we let $C_1 = \|M^{-\frac{1}{2}}\|^{-1} > 0$ and $C_2 = \|M^\frac{1}{2}\| > 0$, then by (1.3) we can get

$$C_1 \|x\| \leq \|x\|_M \leq C_2 \|x\|, \text{ for any } x \in K,$$

which means that $\|\cdot\|$ and $\|\cdot\|_M$ are equivalent norms on K. Since K is assumed to be complete with respect to the original norm $\|\cdot\|$, the completeness of K with respect to the induced norm $\|\cdot\|_M$ follows.

Remark 1.1. We use the notation K_M to denote the Hilbert \mathfrak{A}-module with the inner-product given by (1.2), and call K_M the weighted space (with respect to M). Following the notation, for any positive definite element N of $\mathcal{L}(H)$, $T \in \mathcal{L}(H, K)$, $x \in H$ and $y \in K$, we have

$$\langle Tx, y \rangle_M = \langle Tx, My \rangle = \langle x, T^*My \rangle = \langle x, N^{-1}T^*My \rangle_N.$$

So if we regard T as an element of $\mathcal{L}(H_N, K_M)$, then

$$T^\# = N^{-1}T^*M, \quad (1.4)$$

where $T^\# \in \mathcal{L}(K_M, H_N)$ is the adjoint operator of $T \in \mathcal{L}(H_N, K_M)$.

1 The reader should be aware that as sets, $\mathcal{L}(H, K)$ and $\mathcal{L}(H_N, K_M)$ are the same.
Definition 1.2. Let $A \in \mathcal{L}(H, K)$ be arbitrary, and let $M \in \mathcal{L}(K)$ and $N \in \mathcal{L}(H)$ be two positive definite operators. The weighted Moore-Penrose inverse A_{MN}^\dagger (if it exists) is the element X of $\mathcal{L}(K, H)$, which satisfies

$$AXA = A, \ XAX = X, (MAX)^* = MAX \text{ and } (NXA)^* = NXA.$$ \hfill (1.5)

If $M = I_K$ and $N = I_H$, then A_{MN}^\dagger is denoted simply by A^\dagger, which is called the Moore-Penrose inverse of A.

Theorem 1.3. Let $A \in \mathcal{L}(H, K)$ be arbitrary, and let $M \in \mathcal{L}(K)$ and $N \in \mathcal{L}(H)$ be two positive definite operators. The self-adjoint, the last two equalities in (1.5) hold. Conversely, suppose that $\mathcal{R}(A)$ is closed in K, then $\mathcal{R}(A)$ is also closed in K_M, so by [13, Theorem 2.2 and Proposition 2.4] there exists uniquely an element $X \in \mathcal{L}(K_M, H_N)$ satisfying

$$AXA = A, \ XAX = X, (AX)^\# = AX \text{ and } (XA)^\# = XA.$$ \hfill (1.6)

By (1.4) we get $(AX)^\# = M^{-1}(AX)^*M$ and $(XA)^\# = N^{-1}(XA)^*N$. As M and N are self-adjoint, the last two equalities in (1.5) hold. □

Remark 1.2. Let $A \in \mathcal{L}(H, K)$ have a closed range, and let $M \in \mathcal{L}(K), N \in \mathcal{L}(H)$ be positive definite. As in the finite-dimensional case [9, Theorem 1.4.4], by [13, Theorem 2.2] we have

$$\mathcal{R}(A_{MN}^\dagger) = \mathcal{R}(A^\#) = \mathcal{R}(N^{-1}A^*M) = N^{-1}\mathcal{R}(A^*),$$

$$\mathcal{N}(A_{MN}^\dagger) = \mathcal{N}(A^\#) = \mathcal{N}(N^{-1}A^*M) = N^{-1}\mathcal{N}(A^*).$$

Proposition 1.4. (cf. [11, Lemma 0.1]) Let $A \in \mathcal{L}(H, K)$ have a closed range, and let $M \in \mathcal{L}(K)$ and $N \in \mathcal{L}(H)$ be positive definite. Then A_{MN}^\dagger is the unique element X of $\mathcal{L}(K, H)$ which satisfies

$$A^*MAX = A^*M, \ \mathcal{R}(NX) \subseteq \mathcal{R}(A^*).$$ \hfill (1.6)

Proof. By [13, Proposition 2.4] we know that A_{MN}^\dagger is the unique element X of $\mathcal{L}(K_M, H_N)$ which satisfies

$$AX = A_{MN}^\dagger \text{ and } \mathcal{R}(X) \subseteq \mathcal{R}(A^\#).$$ \hfill (1.7)

In view of (1.4), we know that (1.6) can be rewritten as

$$A^\#AX = A^\#; \ \mathcal{R}(X) \subseteq \mathcal{R}(A^\#).$$ \hfill (1.8)

Since $A^\#AA_{MN}^\dagger = A^\#$ and $(A_{MN}^\dagger)^\#A^\#AX = (AA_{MN}^\dagger)^\#AX = A_{MN}^\dagger AX = AX$, the equivalence of (1.7) and (1.8) follows. □

Lemma 1.5. (cf. [11, Lemma 0.3]) Let $A \in \mathcal{L}(H, K)$ have a closed range, and let $M \in \mathcal{L}(K)$ be positive definite. Then for any $X \in \mathcal{L}(K, H)$, the following two statements are equivalent:

(i) $AXA = A, (MAX)^* = MAX$;
(ii) $A^*MAX = A^*M$.

If condition (i) is satisfied, then for any positive definite element $N \in \mathcal{L}(H)$, X has the form

$$X = A^\dagger_{MN} + (I_H - A^\dagger_{MN}A)Y, \text{ for some } Y \in \mathcal{L}(K,H). \tag{1.9}$$

Proof. (1) Let N be any positive definite element of $\mathcal{L}(H)$. By (1.4) we know that conditions (i) and (ii) can be rephrased respectively as

$$AXA = A, \ (AX)^\# = AX, \tag{1.10}$$

$$A^\#AX = A^\#. \tag{1.11}$$

Suppose that (1.10) is satisfied. Then

$$A^\#AX = A^\#(AX)^\# = (AXA)^\# = A^\#. $$

Conversely, if (1.11) is satisfied, then it is easy to show that $(AXA - A)^\#(AXA - A) = 0$, so $AXA = A$. Furthermore,

$$(AX)^\# = X^\#A^\# = X^\#A^\#AX = (A^\#AX)^\#X = (A^\#)^\#X = AX.$$

(2) Suppose that $X \in \mathcal{L}(K,H)$ is given such that (1.11) is satisfied. Then

$$A^\#A(X - A^\dagger_{MN}) = A^\# - A^\# = 0 \implies (A(X - A^\dagger_{MN}))^\#A(X - A^\dagger_{MN}) = 0,$$

so $A(X - A^\dagger_{MN}) = 0$; or equivalently, $A^\dagger_{MN}A(X - A^\dagger_{MN}) = 0$, hence there exists $Y \in \mathcal{L}(K,H)$ such that $X - A^\dagger_{MN} = (I_H - A^\dagger_{MN}A)Y$. \qed

Definition 1.3. An element X of $\mathcal{L}(K,H)$ is said to be a $(1,3)$-inverse of $A \in \mathcal{L}(H,K)$, written $X \in A\{1,3\}$, if $AXA = A$ and $(AX)^* = AX$.

Proposition 1.6. Let $A \in \mathcal{L}(H,K)$ have a closed range. Then for any $X \in (AA^*)\{1,3\}$, we have $A^\dagger = A^*X$.

Proof. Put $Y = A^*X$. By (1.6) it is sufficient to verify that

$$A^*AY = A^*, \ \mathcal{R}(Y) \subseteq \mathcal{R}(A^*).$$

The second condition is obviously satisfied. Replacing A, M with AA^* and I_K respectively, by “(i)\implies (ii)” in Lemma 1.5 we obtain $AA^*AA^*X = AA^*$, therefore

$$A^*AY = A^*AA^*X = A^1(AA^*AA^*X) = A^1AA^* = A^*.$$ \qed

2 Relationship between weighted Moore-Penrose inverses

Throughout this section, H and K are two Hilbert \mathfrak{A}-modules, $M \in \mathcal{L}(K)$ and $N_1, N_2 \in \mathcal{L}(H)$ are three positive definite operators. The purpose of this section is to generalize [12, Lemma 2.4] from the finite-dimensional case to the Hilbert C^*-module case. For any $A \in \mathcal{L}(H,K)$, if $\mathcal{R}(A)$ is closed, then as in [12] we define

$$R_{M;N_1,N_2} = I_H + (I_H - A^\dagger_{MN_1}A)N_1^{-1}(N_2 - N_1) = A^\dagger_{MN_1}A + (I_H - A^\dagger_{MN_1}A)N_1^{-1}N_2. \tag{2.1}$$
Lemma 2.1. Let \(A \in \mathcal{L}(H, K) \) have a closed range. The operator \(R_{M;N_1,N_2} \) defined by (2.1) is invertible.

Proof. Let \(P = A_{M,N_1}^1 A, S = (I_H - P)N_1^{-1}N_2(I_H - P), H_1 = (I_H - P)H \) and \(S|_{H_1} : H_1 \to H_1 \) be the restriction of \(S \) to \(H_1 \).

First, we prove that \(S|_{H_1} \in \mathcal{L}(H_1) \) is invertible. By the last condition in (1.5) we get

\[
N_1 S = (I_H - P)^* N_2 (I_H - P) = (N_2^1 (I_H - P))^* (N_2^1 (I_H - P)).
\] (2.2)

As \(P \) is idempotent, we have \(\mathcal{N}(S) = \mathcal{N}(N_1 S) = \mathcal{N}(I_H - P) = \mathcal{R}(P) \), which means that \(\mathcal{N}(S|_{H_1}) = \mathcal{R}(P) \cap H_1 = \{0\} \). Furthermore, since \(\mathcal{R}((N_2^2 (I_H - P)) \) is closed, we may apply Lemma 1.1 to (2.2) to conclude that

\[
\mathcal{R}(S|_{H_1}) = \mathcal{R}(S) = N_1^{-1} \mathcal{R}(N_1 S) = N_1^{-1} \mathcal{R}((I_H - P)^* N_2^1)
\]

\[
= \mathcal{R}(N_1^{-1}(I_H - P)^*) = \mathcal{R}((I_H - P)N_1^{-1}) = \mathcal{R}(I_H - P) = H_1.
\]

This completes the proof of the invertibility of \(S|_{H_1} \).

Next, let

\[
Y = P + (S|_{H_1})^{-1}(I_H - P) - (S|_{H_1})^{-1}(I_H - P)N_1^{-1}N_2 P.
\]

Then since \(R_{M;N_1,N_2} = P + (I_H - P)N_1^{-1}N_2 P + S \), it is easy to verify that \(R_{M;N_1,N_2} Y = Y R_{M;N_1,N_2} = I_H \).

Lemma 2.2. (cf. [12, Lemma 2.4]) Suppose that \(A \in \mathcal{L}(H, K) \) has a closed range. Then \(A_{M,N_2}^1 = R_{M;N_1,N_2}^{-1} A_{M,N_1}^1 \), where \(R_{M;N_1,N_2} \) is defined by (2.1).

Proof. Let \(A^* = N_1^{-1} A^* M \in \mathcal{L}(K_M, H_{N_1}) \) be the conjugate operator of \(A \in \mathcal{L}(H_{N_1}, K_M) \). To simplify the notation, we define

\[
X = R_{M;N_1,N_2}^{-1} \cdot (I_H - A_{M,N_1}^1 A)N_1^{-1}N_2.
\] (2.3)

Then

\[
(I_H - A_{M,N_1}^1 A)N_1^{-1}A^* = (I_H - A_{M,N_1}^1 A)A^* M^{-1} = 0,
\]

so by (2.3) we have

\[
X N_2^{-1} \mathcal{R}(A^*) = 0.
\] (2.4)

Since \(A_{M,N_1}^1 A(I_H - A_{M,N_1}^1 A) = 0 \), by (2.1) and (2.3) we have

\[
X(I_H - A_{M,N_1}^1 A) = (R_{M;N_1,N_2}^{-1} \cdot A_{M,N_1}^1 A + X)(I_H - A_{M,N_1}^1 A)
\]

\[
= R_{M;N_1,N_2}^{-1} \cdot (A_{M,N_1}^1 A + (I_H - A_{M,N_1}^1 A)N_1^{-1}N_2)(I_H - A_{M,N_1}^1 A)
\]

\[
= R_{M;N_1,N_2}^{-1} \cdot R_{M;N_1,N_2} \cdot (I_H - A_{M,N_1}^1 A) = I_H - A_{M,N_2}^1 A.
\] (2.5)

As \(I_H - A_{M,N_1}^1 A \) is the oblique projector of \(H \) along \(N_2^{-1} \mathcal{R}(A^*) \) onto \(\mathcal{N}(A) = \mathcal{R}(I_H - A_{M,N_1}^1 A) \), in view of (2.4) and (2.5) we conclude that \(I_H - A_{M,N_2}^1 A = X \). Furthermore, by (2.3) and (2.1) we have

\[
I_H - A_{M,N_2}^1 A = X = R_{M;N_1,N_2}^{-1} \cdot (I_H - A_{M,N_1}^1 A)N_1^{-1}N_2
\]

\[
= R_{M;N_1,N_2}^{-1} \cdot R_{M;N_1,N_2} - A_{M,N_1}^1 A = I_H - R_{M;N_1,N_2}^{-1} \cdot A_{M,N_1}^1 A.
\] (2.6)
Lemma 3.1. Let

\[A_{MN_2}^\dagger A = R_{M_1, N_1, N_2}^{-1} \cdot A_{MN_1}^\dagger. \] (2.7) \n
Note that \(AA_{MN_1}^\dagger = AA_{MN_2}^\dagger \) is the oblique projector of \(K \) along \(M^{-1}N(A^*) \) onto \(\mathcal{R}(A) \), so if we multiply \(A_{MN_1}^\dagger \) from the right on both sides of (2.7), then we may obtain

\[A_{MN_2}^\dagger = A_{MN_2}^\dagger AA_{MN_2}^\dagger = A_{MN_2}^\dagger AA_{MN_1}^\dagger = R_{M_1, N_1, N_2}^{-1} \cdot A_{MN_1}^\dagger. \]

Remark 2.1. With the notation of Lemma 2.2 by (2.6) we obtain

\[(I_H - A_{MN_2}^\dagger A)N_2^{-1} = R_{M_1, N_1, N_2}^{-1} \cdot (I_H - A_{MN_1}^\dagger A)N_1^{-1}. \] (2.8)

3 Unified representations for weighted Moore-Penrose inverses of \(1 \times 2 \) partitioned operators

Throughout this section, \(H_1, H_2 \) and \(H_3 \) are three Hilbert \(\mathfrak{A} \)-modules, \(A \in \mathcal{L}(H_1, H_3) \) and \(B \in \mathcal{L}(H_2, H_3) \) are arbitrary, \(M_1 \in \mathcal{L}(H_3) \) and

\[N = \begin{pmatrix} N_1 & L \\ L^* & N_2 \end{pmatrix} \in \mathcal{L}(H_1 \oplus H_2) \] (3.1)

are two positive definite operators, where \(N_1 \in \mathcal{L}(H_1), L \in \mathcal{L}(H_2, H_1) \) and \(N_2 \in \mathcal{L}(H_2) \). By [11] Section 5 we know that both \(N_1 \) and \(S(N) \) are positive definite, where \(S(N) \) is the Schur complement of \(N \) defined by

\[S(N) = N_2 - L^* N_1^{-1} L. \]

When \(A \) has a closed range, we put

\[C = (I_{H_3} - AA_{MN_1}^\dagger) B \in \mathcal{L}(H_2, H_3). \] (3.2)

Lemma 3.1. Let \(A \in \mathcal{L}(H_1, H_3) \) have a closed range. Then

(i) \(\mathcal{R}(A^*) = \mathcal{R}(A^*) \oplus \mathcal{R}(C^*) \);

(ii) \(\mathcal{R}(A^*) = \mathcal{N}(\{(I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1}\}). \)

Proof. (i) For any \(\xi, \eta \in H_3 \), let \(\zeta = (AA_{MN_1}^\dagger)^* \xi + (I_{H_3} - AA_{MN_1}^\dagger)^* \eta \). Then \(A^* \zeta = A^* \xi \) and \(C^* \zeta = C^* \eta \), so \((A^*) \zeta \in \mathcal{R}(A_{MN_1}^\dagger) \).

(ii) As \(AA_{MN_1}^\dagger A = A \), we have

\[\mathcal{R}(A^*) = \mathcal{R}((A_{MN_1}^\dagger A)^*) = \mathcal{N}(I_{H_1} - (A_{MN_1}^\dagger A)^*) \]

\[= \mathcal{N}(N_1(I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1}) = \mathcal{N}((I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1}). \]

Although the technique lemma in [1] ([1] Lemma 0.2) is no longer true in the infinite-dimensional case, we can still provide a formula for \((A, C)_{MN}^\dagger \) by following the line in [1] together with some modifications.
Theorem 3.2. (cf. [1 Theorem 1.1]) Let C be defined by (3.2), and suppose that $R(A, R(C)$ and $R(A, C)$ are all closed. Then

$$(A, C)_{MN}^1 = \left(A_{MN_1}^\dagger - \frac{(I_{H_1} - A_{MN_1}^\dagger)N_1^{-1}LU}{U} \right),$$

where

$$S = N_2 - L^*(I_{H_1} - A_{MN_1}^\dagger)N_1^{-1}L = S(N) + L^*A_{MN_1}^\dagger AN_1^{-1}L \in \mathcal{L}(H_2),$$

$$U = C_{MS}^\dagger - (I_{H_2} - C_{MS}^\dagger)S^{-1}L^*A_{MN_1}^\dagger \in \mathcal{L}(H_3, H_2).$$

Proof. Note that $A_{MN_1}^\dagger A$ is a projection on the weighted space $(H_1)_{N_1}$, so for any $\xi \in H_2$, we have

$$\langle L^*A_{MN_1}^\dagger AN_1^{-1}L\xi, \xi \rangle = \langle (A_{MN_1}^\dagger A)(N_1^{-1}L\xi), N_1^{-1}L\xi \rangle_{N_1} \geq 0,$$

hence $L^*A_{MN_1}^\dagger AN_1^{-1}L$ is positive definite. Note also that

$$C^*MA = B^*(I_{H_3} - AA_{MN_1}^\dagger)^*MA = B^*M(I_{H_3} - AA_{MN_1}^\dagger)A = 0.$$ \hfill (3.6)

Now let N_3 be any positive definite element of $\mathcal{L}(H_2)$. For any $X_1 \in \mathcal{L}(H_3, H_1)$ and $X_2 \in \mathcal{L}(H_3, H_2)$, by Proposition 1.4 we know that $(\begin{array}{c} X_1 \\ X_2 \end{array}) = (A, C)_{MN}^1$ if and only if

$$\begin{pmatrix} A^* \\ C^* \end{pmatrix} M(A, C) \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} A^* \\ C^* \end{pmatrix} M, \quad R \left(N \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \right) \subseteq R \left(\begin{pmatrix} A^* \\ C^* \end{pmatrix} \right).$$

Combining the above two conditions with (3.6), we may apply Lemma 3.1 to conclude that $(\begin{array}{c} X_1 \\ X_2 \end{array}) = (A, C)_{MN}^1$ if and only if the following four equations hold:

$$A^*M X_1 = A^*M;$$

$$C^*MC X_2 = C^*M;$$

$$(I_{H_1} - A_{MN_1}^\dagger)N_1^{-1}(N_1X_1 + LX_2) = 0; \hfill (3.10)$$

$$(I_{H_2} - C_{MN_3}^\dagger)N_3^{-1}(L^*X_1 + N_2X_2) = 0. \hfill (3.11)$$

By (3.9) we have

$$X_1 = A_{MN_1}^\dagger + (I_{H_1} - A_{MN_1}^\dagger)Y_1, \hfill (3.12)$$

$$X_2 = C_{MN_3}^\dagger + (I_{H_2} - C_{MN_3}^\dagger)Y_2, \hfill (3.13)$$

for some $Y_1 \in \mathcal{L}(H_3, H_1)$ and $Y_2 \in \mathcal{L}(H_3, H_2)$. It follows from (3.10) and (3.12) that

$$(I_{H_1} - A_{MN_1}^\dagger)Y_1 + (I_{H_1} - A_{MN_1}^\dagger)N_1^{-1}LX_2 = 0.$$

Combining the above equality with (3.12) we get

$$X_1 = A_{MN_1}^\dagger - (I_{H_1} - A_{MN_1}^\dagger)N_1^{-1}LX_2. \hfill (3.14)$$
It follows from (3.11), (3.14) and (3.18) that
\[(I_{H_2} - C_{M N_3}^\dagger) N_3^{-1} L^* A_{M N_1}^\dagger + (I_{H_2} - C_{M N_3}^\dagger) N_3^{-1} S X_2 = 0. \tag{3.15}\]

By (3.13) we have
\[(I_{H_2} - C_{M N_3}^\dagger) N_3^{-1} S X_2 = (I_{H_2} - C_{M N_3}^\dagger) N_3^{-1} S C_{M N_3}^\dagger + (I_{H_2} - C_{M N_3}^\dagger) N_3^{-1} S (I_{H_2} - C_{M N_3}^\dagger) Y_2. \tag{3.16}\]

So, if we let \(N_3 = S\), then by the above equality we get
\[(I_{H_2} - C_{M S}^\dagger) X_2 = (I_{H_2} - C_{M S}^\dagger) Y_2. \tag{3.17}\]

The expression for \(U\) given by (3.5) follows from (3.13), (3.17) and (3.15) by letting \(N_3 = S\). The conclusion then follows from (3.14).

Theorem 3.3 below was proved in [1, 6, 10] for matrices by using different methods. In the context of Hilbert \(C^*\)-module operators, we can give a general proof as follows:

Theorem 3.3. Under the conditions of Theorem 3.2 we have
\[(A, B)_{M N}^\dagger = \left(A_{M N_1}^\dagger - \left(D + (I_{H_1} - A_{M N_1}^\dagger A) N_1^{-1} L \right) \tilde{U} \right), \tag{3.18}\]

where
\[
D = A_{M N_1}^\dagger B \in \mathcal{L}(H_2, H_1), \tag{3.19}
\]
\[
\tilde{S} = N_2 - L^*(I_{H_1} - A_{M N_1}^\dagger A) N_1^{-1} L + D^* N_1 D - D^* L - L^* D \in \mathcal{L}(H_2), \tag{3.20}
\]
\[
\tilde{U} = C_{M S}^\dagger + (I_{H_2} - C_{M S}^\dagger C)(\tilde{S})^{-1}(D^* N_1 - L^*) A_{M N_1}^\dagger \in \mathcal{L}(H_3, H_2). \tag{3.21}
\]

Proof. Let \(T = \begin{pmatrix} I_{H_1} & -D \\ 0 & I_{H_2} \end{pmatrix} \in \mathcal{L}(H_1 \oplus H_2)\). Then \(T\) is invertible with \(T^{-1} = \begin{pmatrix} I_{H_1} & D \\ 0 & I_{H_2} \end{pmatrix}\).

In view of (3.12) and (3.19), we have
\[(A, B) T = (A, C), \tag{3.22}\]

which means that \(\mathcal{R}(A, B) = \mathcal{R}(A, C)\) is closed, so \((A, B)_{M N}^\dagger\) exists. Furthermore, by (1.6) and (3.22) we know that \((A, B)_{M N}^\dagger\) is the unique solution \(\tilde{X} = \left(\frac{\tilde{X}_1}{\tilde{X}_2} \right) \in \mathcal{L}(H_3, H_1 \oplus H_2)\) to the equation
\[(A, C)^* M (A, C) T^{-1} \tilde{X} = (A, C)^* M, \tag{3.23}\]
\[R(T^* N T \cdot T^{-1} \tilde{X}) \subseteq R((A, C)^*). \tag{3.24}\]

It follows from (1.6) that \(T^{-1} \tilde{X} = (A, C)_{M N}^\dagger\), where
\[
\tilde{N} = T^* N T = \begin{pmatrix} N_1 & L - N_1 D \\ L^* - D^* N_1 & N_2 - D^* L - L^* D + D^* N_1 D \end{pmatrix}. \tag{3.25}\]
By the definition of D we get $(I_{H_1} - A_{MN_1}^\dagger A)D = 0$ and
\[
D^*N_1(I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1} = B^*(A_{MN_1}^\dagger)^*N_1(I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1} = B^*(A_{MN_1}^\dagger)^*(I_{H_1} - A_{MN_1}^\dagger A)^* = 0.
\]
In view of (3.4), if we replace N_2, L with $N_2 - D^*L - L^*D + D^*N_1D$ and $L - N_1D$ respectively, and define
\[
\tilde{S} = (N_2 - D^*L - L^*D + D^*N_1D) - (L - N_1D)^*(I - A_{MN_1}^\dagger A)N_1^{-1}(L - N_1D)
\]
then by Theorem 3.2 we conclude that
\[
T^{-1}\tilde{X} = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}
\]
with
\[
V_2 = C_{MS}^\dagger - (I_{H_2} - C_{MS}^\dagger C)(\tilde{S})^{-1}(L - N_1D)^*(I - A_{MN_1}^\dagger A)N_1^{-1}A_{MN_1}^\dagger, \quad (3.26)
\]
\[
V_1 = A_{MN_1}^\dagger - (I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1}(L - N_1D)V_2
\]
\[
= A_{MN_1}^\dagger - (I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1}LV_2. \quad (3.27)
\]
As $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = T(\begin{pmatrix} V_1 \\ V_2 \end{pmatrix})$, (3.21) and (3.18) then follow from (3.26) and (3.27).

Now we are ready to give a unified representation for $(A, B)_{MN}^\dagger$ in terms of $C_{MN_3}^\dagger$, where $N_3 \in \mathcal{L}(H_2)$ can be an arbitrary positive definite operator.

Theorem 3.4. Under the conditions of Theorem 3.2 we have
\[
(A, B)_{MN}^\dagger = \begin{pmatrix} A_{MN_1}^\dagger - (D + (I_{H_1} - A_{MN_1}^\dagger A)N_1^{-1}L)V \\ V \end{pmatrix}, \quad (3.28)
\]
where $N_3 \in \mathcal{L}(H_2)$ is arbitrary positive definite, D and \tilde{S} are defined by (3.19) and (3.20) respectively, and
\[
R_{M;N_3,\tilde{S}} = I_{H_2} + (I_{H_2} - C_{MN_3}^\dagger C)N_3^{-1}(\tilde{S} - N_3),
\]
\[
V = R_{M;N_3,\tilde{S}}^{-1}\left(C_{MN_3}^\dagger + (I_{H_2} - C_{MN_3}^\dagger C)N_3^{-1}(D^*N_1 - L^*)A_{MN_1}^\dagger\right). \quad (3.29)
\]

Proof. By Lemma 2.2 we have $C_{MS}^\dagger = R_{M;N_3,\tilde{S}}^{-1}C_{MN_3}^\dagger$. Furthermore, by (2.5) we can get
\[
(I_{H_2} - C_{MS}^\dagger C)(\tilde{S})^{-1} = R_{M;N_3,\tilde{S}}^{-1}(I_{H_2} - C_{MN_3}^\dagger C)N_3^{-1}.
\]
The conclusion then follows from (3.18) and (3.21).

In the special case of the preceding theorem where $N_3 = S(N)$, we regain the main technique result of [11] as follows:

Theorem 3.5. (cf. [11] Theorem 5.1) Under the conditions of Theorem 3.2 we have
\[
(A, B)_{MN}^\dagger = \begin{pmatrix} A_{MN_1}^\dagger - (\Sigma + N_1^{-1}L)\Omega \\ \Omega \end{pmatrix}, \quad (3.30)
\]

10
where C and D are defined by (3.2) and (3.19) respectively, and

$$
\Sigma = A^\dagger_{MN}(B - AN_1^{-1}L) = D - A^\dagger_{MN}AN_1^{-1}L, \quad (3.31)
$$

$$
Y = (I - C^\dagger_{MS(N)}C)S(N)^{-1}, \quad (3.32)
$$

$$
\Omega = (I + Y\Sigma^*N_1\Sigma)^{-1}(Y\Sigma^*N_1 \cdot A^\dagger_{MN} + C^\dagger_{MS(N)}). \quad (3.33)
$$

Proof. Let \tilde{S} be given by (3.20) and define

$$
\Delta = \tilde{S} - S(N) = L^*A^\dagger_{MN}AN_1^{-1}L + D^*N_1D - D^*L - L^*D. \quad (3.34)
$$

By definition we have

$$
\Sigma^* = D^* - L^*A^\dagger_{MN}AN_1^{-1}, \quad \text{so} \quad \Sigma^*N_1 = D^*N_1 - L^*A^\dagger_{MN}A. \quad (3.35)
$$

It follows that $\Sigma^*N_1A^\dagger_{MN} = D^*N_1A^\dagger_{MN} - L^*A^\dagger_{MN}$. Therefore,

$$
(I - C^\dagger_{MS(N)}C)S(N)^{-1}(D^*N_1 - L^*)A^\dagger_{MN} = Y\Sigma^*N_1A^\dagger_{MN}. \quad (3.36)
$$

By the definition of D, we have $A^\dagger_{MN}AD = D$, so by (3.35) and (3.31) we have

$$
\Sigma^*N_1 \Sigma = (D^*N_1 - L^*A^\dagger_{MN}A)(D - A^\dagger_{MN}AN_1^{-1}L)
\begin{align*}
&= D^*N_1D - D^*(A^\dagger_{MN}A)^*L - L^*A^\dagger_{MN}AD + L^*A^\dagger_{MN}AN_1^{-1}L \\
&= D^*N_1D - D^*L - L^*D + L^*A^\dagger_{MN}AN_1^{-1}L = \Delta. \quad (3.37)
\end{align*}
$$

It follows that

$$
R_{M,S(N),\tilde{S}} = I + Y\Delta = I + Y\Sigma^*N_1\Sigma. \quad (3.38)
$$

Finally, by the definitions of D and Σ we get

$$
D + (I - A^\dagger_{MN}A)N_1^{-1}L = \Sigma + N_1^{-1}L. \quad (3.39)
$$

Expression (3.33) for Ω follows from (3.29), (3.38) and (3.36). Formula (3.30) for $(A, B)^\dagger_{MN}$ then follows from (3.28) and (3.31).

4 Representations for weighted Moore-Penrose inverses of 2×2 partitioned operators

4.1 Non weighted case

Following the line initiated in [7], in this section we study the representations for the (non-weighted) Moore-Penrose inverse A^\dagger of a general 2×2 partitioned operator matrix

$$
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \in \mathcal{L}(H_1 \oplus H_2, K_1 \oplus K_2), \quad (4.1)
$$

where H_1, H_2, K_1 and K_2 are four Hilbert \mathfrak{A}-modules, $A_{11} \in \mathcal{L}(H_1, K_1)$, $A_{12} \in \mathcal{L}(H_2, K_1)$, $A_{21} \in \mathcal{L}(H_1, K_2)$ and $A_{22} \in \mathcal{L}(H_2, K_2)$. In the case when A_{11} has a closed range, let $S(A)$ be the Schur complement of A defined by

$$
S(A) = A_{22} - A_{21}A_{11}^\dagger A_{12} \in \mathcal{L}(H_2, K_2). \quad (4.2)
$$
4.1.1 Special case

Lemma 4.1. Suppose that A_{11} has a closed range. Then both $F_1(A)^\dagger$ and $F_2(A)^\dagger$ exist, where

\[
F_1(A) = \begin{pmatrix} -A_{11}^\dagger A_{12} & 0 \\ A_{11}^\dagger A_{11} & 0 \end{pmatrix} \in \mathcal{L}(H_2, H_1 \oplus H_2),
\]

\[
F_2(A) = -A_{21}A_{11}^\dagger I_{K_2} \in \mathcal{L}(K_1 \oplus K_2, K_2).
\]

Furthermore, the following equalities hold:

(i) $F_1(A)^\dagger \cdot \begin{pmatrix} A_{11}^\dagger A_{11} & A_{11}^\dagger A_{12} \\ 0 & 0 \end{pmatrix} = F_1(A)^\dagger - (0, I_{H_2})$;

(ii) $F_2(A)^\dagger = F_2(A)^\dagger - \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix}$.

Proof. By definition we have $F_2(A)F_2(A)^* = I_{K_2} + (A_{21}A_{11}^\dagger)(A_{21}A_{11}^\dagger)^*$, which is invertible, hence by Proposition 1.6 we have

\[
F_2(A)^\dagger = F_2(A)^* \cdot (F_2(A)F_2(A)^*)^{-1}.
\]

It follows from (4.1) and (4.5) that

\[
\begin{pmatrix} A_{11}A_{11}^\dagger & 0 \\ A_{21}A_{11}^\dagger & 0 \end{pmatrix} F_2(A)^\dagger = \begin{pmatrix} -(A_{21}A_{11}^\dagger)^* \\ -(A_{21}A_{11}^\dagger)(A_{21}A_{11}^\dagger)^* \end{pmatrix}(F_2(A)F_2(A)^*)^{-1}
= \left[F_2(A)^* - \begin{pmatrix} 0 \\ F_2(A)F_2(A)^* \end{pmatrix} \right](F_2(A)F_2(A)^*)^{-1} = F_2(A)^\dagger - \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix}.
\]

The proof of (i) is similar. □

Theorem 4.2. (cf. [7, Theorem 2]) Suppose that both A_{11} and $S(A)$ have closed ranges, and

\[
(I_{K_1} - A_{11}A_{11}^\dagger)A_{12} = 0, \ A_{21}(I_{H_1} - A_{11}A_{11}^\dagger) = 0.
\]

Then

\[
A^\dagger = X_L(A) \text{diag}(A_{11}^\dagger, 0) X_R(A) + F_1(A) S(A)^g F_2(A),
\]

where $F_1(A)$ and $F_2(A)$ are defined by (4.3) and (4.4) respectively, and

\[
S(A)^g = S(A)^\dagger_{[F_2(A)(F_2(A)^*)^{-1}F_1(A)^*]^{-1}}, \ F_1(A) \in \mathcal{L}(K_2, H_2),
\]

\[
X_L(A) = I_{H_1\oplus H_2} - F_1(A) [I_{H_2} - S(A)^gS(A)] F_1(A)^\dagger \in \mathcal{L}(H_1 \oplus H_2),
\]

\[
X_R(A) = I_{K_1\oplus K_2} - F_2(A)^\dagger [I_{K_2} - S(A)S(A)^g] F_2(A) \in \mathcal{L}(K_1 \oplus K_2).
\]

Proof. It follows from (4.1), (4.3), (4.4) and (4.6) that

\[
AF_1(A) = \begin{pmatrix} 0 \\ S(A) \end{pmatrix} \quad \text{and} \quad F_2(A)A = (0, S(A)),
\]

(4.11)
which implies that
\[AX_L(A) = A \text{ and } X_R(A)A = A. \] (4.12)

To simplify the notation, let
\[\lambda_1(A) = I_{H_2} - S(A)^g S(A) \text{ and } \lambda_2(A) = I_{K_2} - S(A)S(A)^g. \] (4.13)

Then by (ii) of Lemma 4.11 we have
\[
A \text{ diag}(A_{11}^†, 0) X_R(A) = \begin{pmatrix} A_{11} A_{11}^† & 0 \\ A_{21} A_{11}^† & 0 \end{pmatrix} X_R(A)
\]
\[
= \begin{pmatrix} A_{11} A_{11}^† & 0 \\ A_{21} A_{11}^† & 0 \end{pmatrix} - \begin{pmatrix} A_{11} A_{11}^† & 0 \\ A_{21} A_{11}^† & 0 \end{pmatrix} F_2(A)^\dagger \lambda_2(A) F_2(A)
\]
\[
= \begin{pmatrix} A_{11} A_{11}^† & 0 \\ A_{21} A_{11}^† & 0 \end{pmatrix} - F_2(A)^\dagger \lambda_2(A) F_2(A) + \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix} \lambda_2(A) F_2(A). \] (4.14)

Furthermore, by the first equality in (4.11) we get
\[
AF_1(A) S(A)^g F_2(A) = \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix} S(A) S(A)^g F_2(A)
\]
\[
= \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix} (I_{K_2} - \lambda_2(A)) F_2(A) = \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix} F_2(A) - \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix} \lambda_2(A) F_2(A) \] (4.15)
\[
= \begin{pmatrix} 0 \\ I_{K_2} \end{pmatrix} - \begin{pmatrix} A_{21} A_{11}^† & 0 \\ -A_{21} A_{11}^† & I_{K_2} \end{pmatrix} \lambda_2(A) F_2(A).
\]

Now let Z be the right side of (4.7). Then by the first equality in (4.12), (4.14) and (4.15), we get
\[
AZ = \text{ diag}(A_{11} A_{11}^†, I_{K_2}) - F_2(A)^* (F_2(A) F_2(A)^*)^{-1} \lambda_2(A) F_2(A), \] (4.16)

which means that \((AZ)^* = AZ\), since by the definitions of \(S(A)^g\) and \(\lambda_2(A)\) we have
\[
\lambda_2(A)^* = (F_2(A) F_2(A)^*)^{-1} \lambda_2(A) (F_2(A) F_2(A)^*).
\]

As \(\lambda_2(A)(0, S(A)) = 0\), we may combine (4.16) with the second equality in (4.11) to get
\[
AZA = \text{ diag}(A_{11} A_{11}^†, I_{K_2}) A = A.
\]

Similarly, as \(F_1(A)^\dagger = (F_1(A)^* F_1(A))^{-1} F_1(A)^*\) and
\[
\text{ diag}(A_{11}^† A_{11}, I_{H_2}) X_L(A) = X_L(A) - \text{ diag}(I_{H_2} - A_{11}^† A_{11}, 0),
\]
we can prove that
\[
ZA = \text{ diag}(A_{11}^† A_{11}, I_{H_2}) - F_1(A) \lambda_1(A) (F_1(A)^* F_1(A))^{-1} F_1(A)^*
\]
with \((ZA)^* = ZA\) and \(ZA Z = Z\), therefore \(Z = A^\dagger\).
Corollary 4.3. Let \(A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^* & A_{22} \end{pmatrix} \in \mathcal{L}(K_1 \oplus K_2) \) be positive, where \(A_{ij} \in \mathcal{L}(K_j, K_i) \) for \(i, j = 1, 2 \). If both \(\mathcal{R}(A_{11}) \) and \(\mathcal{R}(S(A)) \) are closed, then

\[
A^\dagger = X_L(A) \text{diag}(A_{11}^\dagger, 0) X_R(A) + F_1(A) S(A)g F_1(A)^*, \tag{4.17}
\]

where \(F_1(A) \) is defined by (4.3), \(S(A)g, X_L(A) \) and \(X_R(A) \) are given respectively as (4.8), (4.9) and (4.10) by letting \(F_2(A) \) be replaced with \(F_1(A)^* \). In addition, a \(\{1,3\} \)-inverse of \(A \) can be given by

\[
A^{(1,3)} = \text{diag}(A_{11}^\dagger, 0) X_R(A) + F_1(A) S(A)g F_1(A)^*. \tag{4.18}
\]

Proof. Since \(A \) is positive, by [13, Corollary 3.5] we have

\[
A_{11} \geq 0, \quad A_{12} = A_{11} A_{11}^\dagger A_{12} \quad \text{and} \quad S(A) \geq 0. \tag{4.19}
\]

As \((A_{11}^\dagger)^* = A_{11}^{\dagger*} \), conditions in (4.6) are satisfied. Note that in this case \(F_3(A) = (F_1(A))^* \), (4.17) follows from (4.7). Let \(A^{(1,3)} \) be the operator given by (4.18). As \(AX_L(A) = A \) we have \(AA^{(1,3)} = AA^\dagger \), so \(A^{(1,3)} \) is a \(\{1,3\} \)-inverse of \(A \). \(\square \)

4.1.2 General case

Let

\[
E = AA^* \overset{def}{=} \begin{pmatrix} E_{11} & E_{12} \\ E_{12}^* & E_{22} \end{pmatrix} \in \mathcal{L}(K_1 \oplus K_2). \tag{4.20}
\]

If \((A_{11}, A_{12}) \) has a closed range, then as \(E_{11} = (A_{11}, A_{12})(A_{11}, A_{12})^* \), by Lemma 1.1 and Proposition 4.6 we know that \(E_{11}^\dagger \) exists such that \((A_{11}, A_{12})^\dagger = (A_{11}, A_{12})^* E_{11}^\dagger \). Let \(S(E) = E_{22} - E_{12}^* E_{11} E_{12} \) be the Schur complement of \(E \). Assuming further that both \(A \) and \(S(E) \) have closed ranges, then for any \(\{1,3\} \)-inverse \(E^{(1,3)} \) of \(E \), we have \(A^\dagger = A^* E^{(1,3)} \). In particular, by (4.18) we have

\[
A^\dagger = A^* \cdot \left[\text{diag}(E_{11}^\dagger, 0) X_R(E) + F_1(E) S(E)g F_1(E)^* \right], \tag{4.21}
\]

where

\[
F_1(E) = \left(-E_{11}^\dagger E_{12} \right) \in \mathcal{L}(K_2, K_1 \oplus K_2), \tag{4.22}
\]

\[
S(E)^g = S(E)_{[F_1(E)^* F_1(E)]^{-1}} F_1(E)^* F_1(E) \in \mathcal{L}(K_2), \tag{4.23}
\]

\[
X_R(E) = I_{K_1} K_2 - (F_1(E)^*)^\dagger (I_{K_2} - S(E) S(E)^g) F_1(E)^* \in \mathcal{L}(K_1 \oplus K_2). \tag{4.24}
\]

4.2 The weighted case

Following the line initiated in [11] for \(1 \times 2 \) partitioned operators, in this subsection we provide an approach to the construction of Moore-Penrose inverses of \(2 \times 2 \) partitioned operators from the non-weighted case to the weighted case. A detailed description of our idea can be illustrated as follows.
For any Hilbert \(\mathfrak{A} \)-module \(X \), and any projection \(P \) of \(\mathcal{L}(X) \), let \(X_1 = PX \) and \(X_2 = (I_X - P)X \), and define \(\lambda_X : X \rightarrow X_1 \oplus X_2 \) by

\[
\lambda_X(x) = \begin{pmatrix} Px \\ x - Px \end{pmatrix}, \text{ for any } x \in X. \tag{4.25}
\]

Then \(\lambda_X \) is a unitary operator with \(\lambda_X^* = \lambda_X^{-1} \), where \(\lambda_X^{-1} : X_1 \oplus X_2 \rightarrow X \) is given by

\[
\lambda_X^{-1}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 + x_2, \text{ for any } x_1 \in X_i, i = 1, 2.
\]

Now let \(H_1 \) and \(H_2 \) be two Hilbert \(\mathfrak{A} \)-modules,

\[
N = \begin{pmatrix} N_{11} & N_{12} \\ N_{12}^* & N_{22} \end{pmatrix} \in \mathcal{L}(H_1 \oplus H_2) \tag{4.26}
\]

be a positive definite operator, where \(N_{11} \in \mathcal{L}(H_1), N_{12} \in \mathcal{L}(H_2, H_1) \) and \(N_{22} \in \mathcal{L}(H_2) \). Let \(S(N) = N_{22} - N_{12}^* N_{11}^{-1} N_{12} \) be the Schur complement of \(N \). Define

\[
a = N_{11}^{-1} N_{12}, \quad P = \begin{pmatrix} I_{H_1} & a \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad X = (H_1 \oplus H_2)_N. \tag{4.27}
\]

Then \(P^2 = P \) and \(NP = P^* N \), so \(P^* = N^{-1} P^* N = P \), which means that \(P \in \mathcal{L}(X) \) is a projection of \(\mathcal{L}(X) \), where \(X \) is the weighted space defined by \((4.27) \) whose inner-product is given by

\[
\langle \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \rangle_N = \langle \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, N \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \rangle = \langle x_1, N_{11} x_2 + N_{12} y_2 \rangle + \langle y_1, N_{12}^* x_2 + N_{22} y_2 \rangle
\]

for any \(x_i \in H_1 \) and \(y_i \in H_2, i = 1, 2 \). By \((4.27) \) we have

\[
X_1 = PX = \left\{ \begin{pmatrix} h_1 + a h_2 \\ 0 \end{pmatrix} \bigg| h_i \in H_i \right\} = \left\{ \begin{pmatrix} u \\ 0 \end{pmatrix} \bigg| u \in H_1 \right\}, \tag{4.28}
\]

\[
X_2 = (I_X - P)X = \left\{ \begin{pmatrix} -a h_2 \\ h_2 \end{pmatrix} \bigg| h_2 \in H_2 \right\}. \tag{4.29}
\]

With the inner products inherited from \(X \), both \(X_1 \) and \(X_2 \) are Hilbert \(\mathfrak{A} \)-modules. Let \(j_{H_1} : (H_1)_{N_{11}} \rightarrow X_1 \) and \(j_{H_2} : (H_2)_{S(N)} \rightarrow X_2 \) be defined by

\[
j_{H_1}(h_1) = \begin{pmatrix} h_1 \\ 0 \end{pmatrix} \quad \text{and} \quad j_{H_2}(h_2) = \begin{pmatrix} -a h_2 \\ h_2 \end{pmatrix}, \text{ for any } h_i \in H_i, i = 1, 2.
\]

It is easy to verify that both \(j_{H_1} \) and \(j_{H_2} \) are unitary operators with

\[
j_{H_1}^{-1} \begin{pmatrix} h_1 \\ 0 \end{pmatrix} = h_1 \quad \text{and} \quad j_{H_2}^{-1} \begin{pmatrix} -a h_2 \\ h_2 \end{pmatrix} = h_2, \text{ for any } h_i \in H_i, i = 1, 2.
\]

Let \(j_{H_1} \oplus j_{H_2} : (H_1)_{N_{11}} \oplus (H_2)_{S(N)} \rightarrow X_1 \oplus X_2 \) be the associated unitary operator defined by

\[
(j_{H_1} \oplus j_{H_2}) \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} j_{H_1}(h_1) \\ j_{H_2}(h_2) \end{pmatrix} = \begin{pmatrix} h_1 \\ 0 \\ -a h_2 \\ h_2 \end{pmatrix}, \text{ for any } h_i \in H_i, i = 1, 2.
\]
Then clearly,
\[(j_{H_1} \oplus j_{H_2})^\# = (j_{H_1} \oplus j_{H_2})^{-1} = j_{H_1}^{-1} \oplus j_{H_2}^{-1} = j_{H_1}^\# \oplus j_{H_2}^\#\]

Now suppose that \(K_1\) and \(K_2\) are two additional Hilbert \(\mathfrak{A}\)-modules, and \(M = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix} \in \mathcal{L}(K_1 \oplus K_2)\) is a positive definite operator, where \(M_{11} \in \mathcal{L}(K_1), M_{12} \in \mathcal{L}(K_2, K_1)\) and \(M_{22} \in \mathcal{L}(K_2)\). Let \(S(M) = M_{22} - M_{12}^* M_{11}^{-1} M_{12}\) be the Schur complement of \(M\), and define

\[b = M_{11}^{-1} M_{12}, \quad Q = \begin{pmatrix} I_{K_1} & b \\ 0 & 0 \end{pmatrix} \text{ and } Y = (K_1 \oplus K_2)^M.\]

Similarly, define \(Y_1 = QY, Y_2 = (I_Y - Q)Y, \lambda_Y : Y \to Y_1 \oplus Y_2, j_{K_1} : (K_1)_{M_{11}} \to Y_1\) and \(j_{K_2} : (K_2)_{S(M)} \to Y_2\).

With the notation as above and suppose further that \(A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in \mathcal{L}(H_1 \oplus H_2, K_1 \oplus K_2)\), where \(A_{11} \in \mathcal{L}(H_1, K_1), A_{12} \in \mathcal{L}(H_2, K_1), A_{21} \in \mathcal{L}(H_1, K_2)\) and \(A_{22} \in \mathcal{L}(H_2, K_2)\). Then we have the following commutative diagram:

\[
\begin{array}{ccc}
(H_1)_{N_{11}} \oplus (H_2)_{S(N)} & \xrightarrow{j_{H_1} \oplus j_{H_2}} & X_1 \oplus X_2 \\
B & \xrightarrow{j_{K_1} \oplus j_{K_2}} & Y_1 \oplus Y_2 \xrightarrow{\lambda_Y^{-1}} A \\
(K_1)_{M_{11}} \oplus (K_2)_{S(M)} & & (K_1 \oplus K_2)^M
\end{array}
\]

where

\[B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = (j_{K_1}^{-1} \oplus j_{K_2}^{-1}) \circ \lambda_Y \circ A \circ \lambda_X^{-1} \circ (j_{H_1} \oplus j_{H_2}),\]

with

\[
\begin{align*}
B_{11} &= A_{11} + M_{11}^{-1} M_{12} A_{21}, \\
B_{12} &= A_{12} + M_{11}^{-1} M_{12} A_{22} - A_{11} N_{11}^{-1} N_{12} - M_{11}^{-1} M_{12} A_{21} N_{11}^{-1} N_{12}, \\
B_{21} &= A_{21}, \\
B_{22} &= A_{22} - A_{21} N_{11}^{-1} N_{12}.
\end{align*}
\]

Since \(\lambda_X, \lambda_Y, j_{H_1} \oplus j_{H_2}\) and \(j_{K_1} \oplus j_{K_2}\) are all unitary operators, by [4.32] we get

\[A_{MN}^\dagger = \lambda_X^{-1} \circ (j_{H_1} \oplus j_{H_2}) \circ B_{\text{diag}(M_{11}, S(M)), \text{diag}(N_{11}, S(N))}^\dagger \circ (j_{K_1}^{-1} \oplus j_{K_2}^{-1}) \circ \lambda_Y.\]

So if we let

\[B_{\text{diag}(M_{11}, S(M)), \text{diag}(N_{11}, S(N))}^\dagger = \begin{pmatrix} (B_{11})_{11} & (B_{11})_{12} \\ (B_{12})_{21} & (B_{12})_{22} \end{pmatrix},\]

where

\[
\begin{align*}
(B_{11})_{11} &\in \mathcal{L}((K_1)_{M_{11}}, (H_1)_{N_{11}}), \\
(B_{11})_{12} &\in \mathcal{L}((K_2)_{S(M)}, (H_1)_{N_{11}}), \\
(B_{12})_{21} &\in \mathcal{L}((K_1)_{M_{11}}, (H_2)_{S(N)}), \\
(B_{12})_{22} &\in \mathcal{L}((K_2)_{S(M)}, (H_2)_{S(N)}),
\end{align*}
\]
then by (4.37) we conclude that $A_{MN}^*(4.38)–(4.36)$ we have

\[
A_{MN}^* = \begin{pmatrix}
(A_{MN}^*)_{11} & (A_{MN}^*)_{12} \\
(A_{MN}^*)_{21} & (A_{MN}^*)_{22}
\end{pmatrix}
\]

with $(A_{MN}^*)_{11} \in \mathcal{L}(K_1, H_1)$, $(A_{MN}^*)_{12} \in \mathcal{L}(K_2, H_1)$, $(A_{MN}^*)_{21} \in \mathcal{L}(K_1, H_2)$, and $(A_{MN}^*)_{22} \in \mathcal{L}(K_2, H_2)$, such that

\[
\begin{align*}
(A_{MN}^*)_{11} &= (B^*)_{11} - N_{11}^{-1} N_{12} (B^*)_{21}, \\
(A_{MN}^*)_{12} &= (B^*)_{11} M_{11}^{-1} M_{12} + (B^*)_{12} - N_{11}^{-1} N_{12} (B^*)_{21} M_{11}^{-1} M_{12} - N_{11}^{-1} N_{12} (B^*)_{22}, \\
(A_{MN}^*)_{21} &= (B^*)_{21}, \\
(A_{MN}^*)_{22} &= (B^*)_{21} M_{11}^{-1} M_{12} + (B^*)_{22}.
\end{align*}
\]

(4.38) (4.39) (4.40) (4.41)

Note that $(H_1)_{N_{11}}, (H_2)_{S(N)}, (K_1)_{M_{11}}$ and $(K_2)_{S(M)}$ are all Hilbert \mathfrak{A}-modules, the Moore-Penrose inverse of $B_{11} \in \mathcal{L}((H_1)_{N_{11}}, (K_1)_{M_{11}})$ equals $(B_{11})_{M_{11},N_{11}}^\dagger$, and the adjoint operator B_{11}^\dagger of $B_{11} \in \mathcal{L}((H_1)_{N_{11}}, (K_1)_{M_{11}})$ equals $N_{11}^{-1} B_{11}^\dagger M_{11} \in \mathcal{L}(K_1, H_1)$. Since formula (4.21) is valid for any Hilbert \mathfrak{A}-module operators, we may use this formula to get a concrete expression for $B_{diag(M_{11},S(M)),diag(N_{11},S(N))}^\dagger$, and then obtain an expression for A_{MN}^* by (4.38)–(4.41).

5 A numerical example

Example 5.1. Let $M = \begin{pmatrix}
2 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$, $N = \begin{pmatrix}
2 & 1 & 1 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$ and $A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}$

with

\[
A_{11} = \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, A_{12} = \begin{pmatrix}
1 & -1 \\
1 & 3
\end{pmatrix}, A_{21} = \begin{pmatrix}
0 & -2 \\
0 & 0
\end{pmatrix} \text{ and } A_{22} = \begin{pmatrix}
0 & 2 \\
0 & 0
\end{pmatrix}.
\]

Then $M_{11} = \begin{pmatrix}
2 & 0 \\
0 & 1
\end{pmatrix}$, $N_{11} = \begin{pmatrix}
2 & 1 \\
1 & 2
\end{pmatrix}$, $S(M) = \begin{pmatrix}
\frac{1}{2} & 0 \\
0 & 1
\end{pmatrix}$ and $S(N) = \begin{pmatrix}
\frac{1}{3} & 0 \\
0 & 1
\end{pmatrix}$. By (4.33)–(4.36) we have

\[
B_{11} = \begin{pmatrix}
1 & -1 \\
0 & 0
\end{pmatrix}, B_{12} = \begin{pmatrix}
0 & 0 \\
1 & 3
\end{pmatrix}, B_{21} = \begin{pmatrix}
0 & -2 \\
0 & 0
\end{pmatrix}, B_{22} = \begin{pmatrix}
-\frac{2}{3} & -2 \\
0 & 0
\end{pmatrix}.
\]

Note that the matrix $B = (B_{ij})_{1 \leq i,j \leq 2}$, regarded as an element of

\[
\mathcal{L}((H_1)_{N_{11}} \oplus (H_2)_{S(N)}, (K_1)_{M_{11}} \oplus (K_2)_{S(M)})
\]

\[
= \mathcal{L}((H_1 \oplus H_2)_{diag(N_{11},S(N)), (K_1 \oplus K_2)_{diag(M_{11},S(M))}}),
\]

whose conjugate $B^\#$ is given by

\[
B^\# = \text{diag}(N_{11},S(N))^{-1} \cdot B^* \cdot \text{diag}(M_{11},S(M)) = \begin{pmatrix}
2 & 0 & \frac{1}{3} & 0 \\
-2 & 0 & -\frac{2}{3} & 0 \\
0 & 3 & -1 & 0 \\
0 & 3 & 1 & 0
\end{pmatrix}.
\]
Let $E = BB^\# = \begin{pmatrix} E_{11} & E_{12} \\ E_{12} & E_{22} \end{pmatrix} \in \mathcal{L}((K_1)_{M_{11}} \oplus (K_2)_{S(M)})$, where

$$E_{11} = \begin{pmatrix} 4 & 0 \\ 0 & 12 \end{pmatrix}, E_{12} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 4 & 4 \\ 0 & 0 \end{pmatrix} \text{ and } E_{22} = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}.$$

By direct computation we have

$$(E_{11})_{M_{11},M_{11}}^\dagger = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{12} \end{pmatrix}, F_1(E) = \begin{pmatrix} -(E_{11})_{M_{11},M_{11}}^\dagger E_{12} \\ I_{K_2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} & 0 \\ -\frac{1}{6} & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$F_1(E)^\# = S(M)^{-1} \cdot F_1(E)^* \cdot \text{diag}(M_{11}, S(M)) = \begin{pmatrix} -1 & -\frac{1}{3} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$F_1(E)^\# \cdot F_1(E) = \begin{pmatrix} \frac{47}{36} & 0 \\ 0 & 1 \end{pmatrix}, S(E) = E_{22} - E_{21} \cdot (E_{11})_{M_{11},M_{11}}^\dagger \cdot E_{12} = \begin{pmatrix} \frac{7}{3} & 0 \\ 0 & 0 \end{pmatrix},$$

$$Z_1 \overset{\text{def}}{=} S(M)F_1(E)^\# F_1(E) = \begin{pmatrix} \frac{47}{72} & 0 \\ 0 & 1 \end{pmatrix}, Z_2 \overset{\text{def}}{=} S(M)(F_1(E)^\# F_1(E))^{-1} = \begin{pmatrix} \frac{47}{36} & 0 \\ 0 & 1 \end{pmatrix}.$$

Note that $((K_2)_{S(M)})F_1(E)^\# F_1(E) = (K_2)Z_1$ and $((K_2)_{S(M)}) (F_1(E)^\# F_1(E))^{-1} = (K_2)Z_2$, so by the Lemma we have

$$S(E)^g = S(E)_{Z_2,Z_1}^\dagger = \begin{pmatrix} \frac{3}{7} & 0 \\ 0 & 0 \end{pmatrix}.$$

Let $T = \begin{pmatrix} -1 & -\frac{1}{3} \\ 0 & 0 \end{pmatrix} \in \mathcal{L}((K_1)_{M_{11}}, (K_2)_{S(M)})$ and $Z_3 = \text{diag}(M_{11}, S(M))$. As

$$F_1(E)^\# = (T, I_{K_2}) \in \mathcal{L}((K_1)_{M_{11}} \oplus (K_2)_{S(M)}, (K_2)_{S(M)}) = \mathcal{L}((K_1 \oplus K_2)Z_3, (K_2)_{S(M)}),$$

if we replace $H_1, H_2, H_3, A, B, N_1, L$ and N_2 with $K_1, K_2, K_2, T, I_{K_2}, S(M), M_{11}, 0$ and $S(M)$ respectively, then we may apply Theorem 3.3 to get

$$(F_1(E)^\#)_{S(M),Z_3}^\dagger = \begin{pmatrix} T_{S(M),M_{11}}^\dagger \tilde{U} - \tilde{D} \tilde{U} \end{pmatrix},$$

where

$$D = T_{S(M),M_{11}}^\dagger = \begin{pmatrix} -\frac{9}{11} & 0 \\ -\frac{6}{11} & 0 \end{pmatrix}, \quad \tilde{S} = S(M) + D^* M_{11} D = \begin{pmatrix} \frac{47}{36} & 0 \\ 0 & 1 \end{pmatrix},$$

$$C = I_{K_2} - TT_{S(M),M_{11}}^\dagger = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad C_{S(M),\tilde{S}}^\dagger = C,$$

$$\tilde{U} = C_{S(M),\tilde{S}}^\dagger + (I_{K_2} - C_{S(M),\tilde{S}}^\dagger \tilde{S})^{-1} D^* M_{11} T_{S(M),M_{11}}^\dagger = \begin{pmatrix} \frac{36}{7} & 0 \\ 0 & 1 \end{pmatrix}.$$
Therefore,

\[
(F_1(E)^\#)^\dagger_{S(M),Z_3} = \begin{pmatrix}
-\frac{9}{17} & 0 \\
-\frac{6}{17} & 0 \\
\frac{36}{17} & 0 \\
0 & 1
\end{pmatrix}.
\]

It follows from (4.24) that

\[
X_R(E) = I_{K_1} \oplus K_2 - (F_1(E)^\#)^\dagger_{S(M),Z_3} \left(I_{K_2} - S(E)S(E)^g \right) F_1(E)^\# = \text{diag}(1, 1, 1, 0),
\]

hence by (4.21) we get

\[
B^\dagger \cdot \text{diag}(M_{11},S(M)) = B^\# \cdot \text{diag}(E_1^\dagger_{M_{11},M_{11}},0) X_R(E) + F_1(E)S(E)^g F_1(E)^\# = \begin{pmatrix}
(B^\dagger)_{11} & (B^\dagger)_{12} \\
(B^\dagger)_{21} & (B^\dagger)_{22}
\end{pmatrix},
\]

where

\[
(B^\dagger)_{11} = \begin{pmatrix}
\frac{4}{7} & \frac{1}{17} \\
-\frac{3}{7} & \frac{1}{12}
\end{pmatrix}, \quad (B^\dagger)_{12} = \begin{pmatrix}
-\frac{1}{17} & 0 \\
-\frac{1}{14} & 0
\end{pmatrix},
\]

\[
(B^\dagger)_{21} = \begin{pmatrix}
\frac{9}{17} & \frac{13}{28} \\
-\frac{3}{11} & \frac{5}{28}
\end{pmatrix}, \quad (B^\dagger)_{22} = \begin{pmatrix}
-\frac{9}{17} & 0 \\
\frac{3}{11} & 0
\end{pmatrix}.
\]

It follows from (4.38)–(4.41) that

\[
(A^\dagger_{MN})_{11} = \begin{pmatrix}
\frac{1}{7} & -\frac{2}{7} \\
\frac{3}{14} & \frac{5}{28}
\end{pmatrix}, \quad (A^\dagger_{MN})_{12} = \begin{pmatrix}
\frac{3}{7} & 0 \\
-\frac{11}{28} & 0
\end{pmatrix},
\]

\[
(A^\dagger_{MN})_{21} = \begin{pmatrix}
\frac{9}{14} & \frac{13}{28} \\
\frac{3}{14} & \frac{5}{28}
\end{pmatrix}, \quad (A^\dagger_{MN})_{22} = \begin{pmatrix}
-\frac{9}{28} & 0 \\
\frac{3}{28} & 0
\end{pmatrix},
\]

therefore,

\[
A^\dagger_{MN} = \begin{pmatrix}
\frac{1}{7} & -\frac{2}{7} & \frac{3}{7} & 0 \\
-\frac{3}{14} & \frac{5}{28} & -\frac{11}{28} & 0 \\
\frac{6}{14} & \frac{13}{28} & -\frac{9}{28} & 0 \\
-\frac{3}{14} & \frac{5}{28} & \frac{3}{28} & 0
\end{pmatrix}.
\]

Acknowledgements

We sincerely thank Professor Richard A. Brualdi for his help, and the referee for his/her very useful comments and suggestions.
References

[1] Y. Chen, Using the defining equation of the weighted Moore-Penrose inverse $A^{†}_{MN}$ to deduce the explicit expression of $[A, B]^{†}_{MN}$ (Chinese), J. of Nanjing Normal Univ. (Natural Science) 27 (4) (2004) 6–10.

[2] R. E. Cline, Representations for the generalized inverse of a partitioned matrix, SIAM J. Appl. Math. 12 (1964) 588–600.

[3] R. E. Hartwig, Singular value decomposition and the Moore-Penrose inverse of bordered matrices, SIAM J. Appl. Math. 31 (1976) 31–41.

[4] E. C. Lance, Hilbert C^*-modules–A toolkit for operator algebraists, Cambridge University Press, 1995.

[5] C. D. Meyer, The Moore-Penrose inverse of a bordered matrix, Linear Algebra Appl. 5 (1972) 375–382.

[6] J. Miao, Representations for the weighted Moore-Penrose inverse of a partitioned matrix, J. Comput. Math. 7 (1989) 321–323.

[7] J. Miao, General expressions for the Moore-Penrose inverse of a 2×2 block matrix, Linear Algebra Appl. 151 (1991) 1–15.

[8] L. Mihalaffy, An alternative representation of the generalized inverse of partitioned matrices, Linear Algebra Appl. 4 (1971) 95–100.

[9] G. Wang, Y. Wei and S. Qiao, Generalized inverses: theory and computations, Science Press, Beijing/New York, 2004.

[10] G. Wang and B. Zheng, The weighted generalized inverses of a partitioned matrix, Appl. Math. Comput. 155 (2004) 221–233.

[11] Q. Xu, Moore-Penrose inverses of partitioned adjointable operators on Hilbert C^*-modules, Linear Algebra Appl. 430 (2009) 2929–2942.

[12] Q. Xu, X. Hu and Y. Wei, Perturbation estimations for weighted pseudoinverses, preprint.

[13] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^*-modules, Linear Algebra Appl. 428 (2008) 992–1000.