The Association of Radiation Therapy and Chemotherapy on Overall Survival in Merkel Cell Carcinoma: A Population-Based Analysis

Aleksander Vayntraub 1, Nadine Tayeb 2, Bryan Squires 1, Janice M. Mehnert 3, Quais Hassan II 4, Nikhil T. Sebastian 5, Rohan Deryaniyagala 1, Thomas J. Quinn 1

1. Department of Radiation Oncology, Beaumont Health, Royal Oak, USA 2. Department of Radiation Oncology, Michigan State University College of Human Medicine, East Lansing, USA 3. Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 4. Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, USA 5. Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, USA

Corresponding author: Nadine Tayeb, tayebnad@msu.edu

Abstract

Purpose/objective(s)
Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous neoplasm traditionally managed with surgical resection followed by radiotherapy (RT). With the recent approval of checkpoint inhibitors, chemotherapy is less commonly utilized. We analyzed the impact of RT and chemotherapy on overall survival (OS) in patients with MCC using Surveillance, Epidemiology, and End Results (SEER), a population-level database.

Materials and methods
We performed retrospective analyses on SEER 18 Custom Data registries for MCC (ICD-0-3 8247). Data from 1980 to 2016 was queried for analysis, and an initial list of 9,792 patients was populated (ICD: C00, C07.9, C44, C80.9). Selection for cases with chemotherapy and RT status, single primary tumor, primary tumor location and surgery treatment type yielded 5,002 cases for analysis. Baseline characteristics were compared with Chi-square or Mann-Whitney U test. Univariate and multivariable analysis using Kaplan-Meier and Cox proportional hazards regression modeling were performed. Propensity-score matched analysis with inverse probability of treatment weighting (IPTW) was used to account for indication bias.

Results
Median follow-up time was 178 months (68 to 217 months). Independent prognostic factors positively correlated with increased OS, for both unadjusted Multivariate analysis and IPTW adjusted MVA were age, male sex, year of diagnosis, stage, RT status, and chemotherapy status. On adjusted MVA, use of chemotherapy was associated with worse OS (hazard ratio: 1.22 [95% CI 1.1-1.35], p<0.001), whereas RT was associated with improved OS (HR:0.9 [95% CI, 0.83-0.97], p=0.008).

Conclusions
The current study demonstrates that RT is associated with improved survival for patients with MCC. Chemotherapy was associated with worse OS. This supports the recent clinical shift towards immune checkpoints inhibitors as standard of care in the metastatic setting, and promising trials in the adjuvant and advanced settings.

Categories: Radiation Oncology
Keywords: chemotherapy, radiation therapy, overall survival, radiotherapy, chemo radiotherapy (chemo-rt), merkel cell carcinoma

Introduction
Merkel cell carcinoma (MCC) is an aggressive cutaneous malignancy of neuroendocrine origin. The incidence in the United States is rare: approximately 1,500 cases were diagnosed in 2007 with a projected increased annual incidence to 3,284 cases in 2025 [1]. MCC has high metastatic potential, and many patients develop recurrent disease. In a modern study by Fields et al., 108 of 364 patients (29.7%) with Stage I-III MCC who underwent complete resection experienced recurrences at local (10%), in-transit (11%), nodal (40%), and distant (39%) sites [2], and most recurrences occurred within two years. Higher recurrence rates are associated with advanced stage, age > 70, tumor size > 2 cm, positive lymph node status, lymphovascular stromal invasion (LVI), and male sex [5,4].

Historically, surgical resection with wide margins has been the mainstay of therapy. However, given the high rates of locoregional relapse (LRR) and radiosensitivity of MCC, radiation therapy (RT) has been increasingly
utilized as an adjuvant therapy since the 1980s [3]. In contrast, the current role for systemic therapy is limited and historically included cytotoxic chemotherapy but more recently, immunotherapy has become standard of care in the advanced and metastatic disease setting [5-8]. Adjuvant chemotherapy is not currently recommended, though clinical trial participation is encouraged [9].

Given the rarity of MCC and subsequent lack of Phase III clinical trials for RT and chemotherapy, retrospective analyses of population-based data, such as the Surveillance, Epidemiology, and End Results (SEER) database, offer an avenue to inform treatment and future studies. Most RT series and database analyses have supported the role of RT in the management of MCC. A SEER analysis of 1,665 MCC cases by Mojica et al. in 2007 demonstrated that the addition of RT to MCC treatment provided a median survival benefit of 18 months and noted a benefit for patients with lesions > 2 cm [10]. In the metastatic setting, immunotherapy has come to the forefront of standard of care with objective response rates (ORR) up to 68%6 and long durable response [11]. Although MCC shows objective responses to chemotherapy regimens, these responses are not durable [8]. Chemotherapy efficacy is further limited by toxicity, particularly among the frail. Retrospective studies have reported a response rate of ~ 55% in the setting of metastatic disease, while non-metastatic studies show varied response rates [9].

As the role for chemotherapy has not yet been analyzed in the SEER registry, the goal of the current study is to further evaluate and characterize the association between the use of chemotherapy and radiation therapy on overall survival (OS) in patients with stage I-IV MCC. Additionally, we evaluate other variables for MCC for their prognostic significance.

Materials And Methods

Data source

The Surveillance, Epidemiology, and End Results (SEER) Program (v8.3.6, The Surveillance Research Program of the Division of Cancer Control and Population Sciences, National Cancer Institute) collects and publishes cancer incidence and survival data from population-based cancer registries covering approximately 34% of the US population. We used the specialized Radiation/Chemotherapy Database (SEER 18 Custom Data, November 2018 Submission) as it contains information on RT and chemotherapy.

Cohort analyzed

From 1980 to 2016, the SEER 18 Custom database was queried for a diagnosis of Merkel Cell Carcinoma corresponding to International Classification of Disease for Oncology (ICD-0-3) code 8247 and topographical codes (ICD: C00, C07.9, C44, C80.9). Inclusion criteria were cases with indicated chemotherapy and RT status, single primary tumor, known primary tumor location, and known surgery treatment type. Exclusion criteria included primary anatomic sites other than "Trunk", "Upper Extremity", "Lower Extremity", "Head and Neck", and "Skin, Not otherwise specified (NOS)". A total of 5,002 patients with MCC were included in the final analysis (Figure 1).
FIGURE 1: CONSORT diagram of selection criteria for Merkel cell carcinoma (MCC) cases in the SEER 18 population-based cancer database.

From 9,747 total database entries, 5,002 cases of MCC without exclusion criteria were identified and evaluated further. SEER: Surveillance, Epidemiology, and End Results; CONSORT: Consolidated Standards Of Reporting Trials.

Statistical analysis

Baseline patient characteristics were assessed, before and after propensity score (PS) matching with inverse probability of treatment weighting (IPTW), using χ^2 and standard mean difference (SMD), where a SMD > 0.1 was considered imbalanced [12]. Univariate analysis (UVA) of patient characteristics' impact on overall survival (OS) was performed using the Kaplan-Meier (KM) method, with the log-rank method to assess for significance. Multivariate analysis (MVA) of patient characteristics and OS was performed using Cox proportional hazards regression modeling. Covariates with $p < 0.1$ in the UVA were incorporated in multivariate Cox proportional hazards regression modeling using backward stepwise methodology to mitigate collinearity of variables and overfitting of the final MVA model. These methods were performed as described in our previous work [13].

A PS-matched analysis was performed to account for indication bias. Propensity scores were estimated using binary logistic regression modeling for receipt of no/unknown chemotherapy or chemotherapy [13]. Next, IPTW were calculated as $1/\text{PS}$ and $1/(1-\text{PS})$ [14]. Stabilization of the IPTWs was performed by multiplying the standard IPTWs by the probability of undergoing treatment that each patient received [15]. Finally, IPTW-adjusted UVA and doubly robust, IPTW-adjusted MVA were performed as described previously [16].

All statistical tests were completed using SEER*Stat (v8.3.5, The Surveillance Research Program of the Division of Cancer Control and Population Sciences, National Cancer Institute) and R version 3.6.2 statistical software (R Foundation for Statistical Computing, Vienna, Austria). Furthermore, all statistical analyses were performed as two-sided with $p < 0.05$ considered statistically significant. R markdown for all analyses is available upon request.

Results

Patient demographics

MCC patient baseline and treatment characteristics in the SEER 18 dataset were tabulated (Table 1). The median age at diagnosis of MCC was 76 years. Median follow-up time was 14 years and 10 months. This cohort of patients was comprised mostly of those in the 60-79 years of age category (48%) and 80+ years of age (39%), with the remainder in the < 60 years age group (13%). Moreover, the vast majority of patients were diagnosed in 2000 or later, with "2000-2009" comprising 45%, and "2010 - 2016" comprising 42% of MCC diagnoses. Insurance status was "insured" for 51%, or "unknown" for 46% of cases, whereas "Medicaid"
and "uninsured" comprised 2.8% and 0.4%, respectively. The group distribution based on sex was predominantly male (59%).

Characteristics	N = 5002	IPTW-adjusted				
Chemotherapy Status						
No/Unknown	4354 (87%)	No/Unknown 4387.9	Yes 624.3			
Yes	648 (13%)	67 (66, 83)	Age at Diagnosis (median [IQR]) 76 (667, 83)			
Age at Diagnosis (months)	76 (66, 83)	Age Category 76 (67, 83)				
Age Category	76 (67, 83)	0.97				
<60	663 (13%)	66 (66, 83)	Age at Diagnosis (median [IQR]) 76 (667, 83)			
60-79	2397 (48%)	60-79 2101.6 (47.9)	283.6 (45.4)			
80+	1942 (39%)	80+ 1697.1 (38.7)	273.4 (43.8)			
Insurance Status						
Insured	2555 (51%)	Insured 2221.7 (50.6)	Yes 292.9 (46.9)			
Medicaid	140 (2.8%)	Medicaid 124.3 (2.8)	16.7 (2.7)			
Uninsured	21 (0.4%)	Uninsured 17.4 (0.4)	3.9 (0.6)			
Unknown	2286 (46%)	Unknown 2024.4 (46.1)	310.7 (49.8)			
Sex		Sex 0.727				
Female	2068 (41%)	Female 1795.7 (40.9)	264.4 (42.3)			
Male	2934 (59%)	Male 2592.2 (59.1)	359.9 (57.7)			
Year of Diagnosis						
1980-1999	637 (13%)	1980-1999 574 (13.1)	82.1 (13.2)			
2000-2009	2244 (45%)	2000-2009 1966.5 (44.8)	316 (50.6)			
2010-2016	2121 (42%)	2010-2016 1847.3 (42.1)	226.1 (36.2)			
Follow-up Time (months)	178 (68, 217)	Follow-up Time (median [IQR]) 178 (68.52, 217)	162.53 (69, 215)			
Tumor Location		Primary Site 0.948				
Trunk	489 (9.8%)	Trunk 430.7 (9.8)	61.6 (9.9)			
Head and Neck	2201 (44%)	Head and Neck 1918.7 (43.7)	276.7 (44.3)			
Lower Extremity	791 (16%)	Lower Extremity 687.4 (15.7)	103.4 (16.6)			
Skin, NOS	257 (5.1%)	Skin, NOS 254.9 (5.8)	39.3 (6.3)			
Upper Extremity	1284 (25%)	Upper Extremity 1096.3 (25)	143.3 (22.9)			
Tumor Grade		Grade 0.977				
I	12 (0.2%)	I 9.3 (0.2)	0.7 (0.1)			
II	13 (0.3%)	II 11.4 (0.3)	1.6 (0.3)			
III	455 (9.1%)	III 403.1 (9.2)	54.4 (8.7)			
IV	285 (5.7%)	IV 260.9 (5.9)	37.4 (6)			
Unknown	4237 (85%)	Unknown 3703.2 (84.4)	530.2 (84.9)			
SEER Summary Stage		SEER Summary Stage 0.832				
Localized	2226 (45%)	Localized 1936.2 (44.1)	283.9 (45.5)			
Regional	1752 (35%)	Regional 1524.6 (34.7)	211.5 (33.9)			
Characteristic	IPTW Adjusted UVA	IPTW Adjusted MVA				
---------------	------------------	------------------				
	HR	95% CI	p-value	HR	95% CI	p-value
Tumor characteristics						
MCC tumor characteristics in the SEER 18 dataset included the following anatomic distribution: Trunk (9.8%), Head and Neck (44%), Lower Extremity (16.8%), Upper Extremity (25%) and Skin, not-otherwise-specified (NOS) (5.1%). Histologic grade was unknown in most cases (85%). The remaining data was separated by Grade 1 (0.2%), Grade 2 (0.3%), Grade 3 (9.1%) and Grade 4 (de-differentiated) at 5.7% of the dataset. Most patients presented with locoregionally confined disease with 45% categorized as "localized", and 35% "regional"; only 7.8% had distant metastases at diagnosis while the remaining 13% were staged as "unknown". Slightly more than half (51%) of patients received RT. Chemotherapy administration was reported in 13% of cases. Most patients underwent definitive surgical resection defined as "local excision" (30%) and "wide local excision" (49%). In contrast, only 22% of patients underwent "biopsy/local destruction" and 9.5% were categorized as having "no surgery". Following PS-matching and IPTW, all baseline patient and tumor characteristics assessed were similar, regardless of receipt of chemotherapy (Table 2).						
Age Category	—	—	—	—	—	—
--------------	---	---	---	---	---	---
<60	1.43	1.23, 1.66	<0.001	1.39	1.19, 1.61	<0.001
60-79	2.04	1.76, 2.36	<0.001	1.86	1.60, 2.17	<0.001
80+	—	—	—	—	—	—
Race	—	—	—	—	—	—
White	0.9	0.64, 1.27	0.5	0.96	0.68, 1.36	0.8
Black	0.83	0.65, 1.05	0.12	0.82	0.64, 1.04	0.1
Other	—	—	—	—	—	—
Insurance Status	—	—	—	—	—	—
Insured	—	—	—	—	—	—
Medicaid	1.19	0.92, 1.55	0.2	1.29	0.99, 1.69	0.06
Uninsured	0.94	0.49, 1.79	0.8	0.89	0.47, 1.71	0.7
Unknown	2.36	2.19, 2.55	<0.001	1.91	1.71, 2.13	<0.001
Sex	—	—	—	—	—	—
Female	1.24	1.16, 1.34	<0.001	1.34	1.24, 1.44	<0.001
Male	—	—	—	—	—	—
Year of Diagnosis	—	—	—	—	—	—
1980-1999	—	—	—	—	—	—
2000-2009	0.72	0.66, 0.79	<0.001	0.84	0.76, 0.93	<0.001
2010-2016	0.38	0.34, 0.42	<0.001	0.76	0.66, 0.88	<0.001
Primary Site	—	—	—	—	—	—
Trunk	—	—	—	—	—	—
Head and Neck	1.01	0.89, 1.14	>0.9	1.05	0.93, 1.20	0.4
Lower Extremity	0.93	0.81, 1.08	0.4	1.03	0.89, 1.20	0.7
Skin, NOS	0.96	0.79, 1.16	0.7	1.14	0.92, 1.41	0.2
Upper Extremity	0.8	0.70, 0.92	0.002	0.93	0.80, 1.07	0.3
SEER Summary Stage	—	—	—	—	—	—
Localized	—	—	—	—	—	—
Regional	1.04	0.96, 1.12	0.4	1.15	1.06, 1.26	<0.001
Distant	1.47	1.31, 1.65	<0.001	1.48	1.30, 1.68	<0.001
Unknown	0.53	0.46, 0.62	<0.001	0.64	0.55, 0.75	<0.001
Surgery	—	—	—	—	—	—
Biopsy/Local Destruction	—	—	—	—	—	—
Local Excision	0.72	0.65, 0.79	<0.001	0.92	0.83, 1.02	0.13
Wide Local Excision	0.92	0.84, 1.01	0.081	1.01	0.92, 1.11	0.8
No Definitive Excision	0.94	0.82, 1.07	0.3	0.98	0.84, 1.15	0.8
Radiation Therapy	—	—	—	—	—	—
No	—	—	—	—	—	—
Yes	0.85	0.79, 0.91	<0.001	0.9	0.83, 0.97	0.008
TABLE 2: Univariate and multivariate weighted analysis of SEER 18 MCC dataset.

HR: hazard ratio; CI: confidence interval; IPTW: inverse probability of treatment weighting; NOS: not-otherwise-specified; UVA: univariate analysis; MVA: multivariate analysis; MCC: Merkel cell carcinoma.

Univariate analysis

The impact of patient, tumor, and treatment characteristics on OS were evaluated using the Kaplan-Meier method (KM) [14]. Table 2 provides the UVAs for the unadjusted and PS-matched IPTW-adjusted no/unknown and yes chemotherapy. In the unadjusted population, older age at diagnosis, male sex, distant disease, and receipt of chemotherapy (Figure 2A, HR 1.31 [95% CI, 1.18-1.45] p < 0.001) were poor prognostic features. Conversely, later calendar year of diagnosis, upper extremity location, definitive surgical resection, and receipt of RT (HR 0.84 [95% CI 0.78-0.9] p < 0.001) were protective. Following PS-matching and IPTW, the aforementioned factors remained prognostic (Table 2).
FIGURE 2: Overall survival (OS) for MCC in SEER 18 stratified by chemotherapy status. A: OS derived from raw unadjusted data. B: OS after IPTW adjustment.

HR: hazard ratio; CI: confidence interval; IPTW: inverse probability of treatment weighting; NOS: not-otherwise-specified; UVA: univariate analysis; MVA: multivariate analysis; MCC: Merkel cell carcinoma; OS: overall survival.

Multivariable analysis

On doubly robust MVA (Table 2), the Hazard Ratio for death was both worse and statistically significant for the following factors: age 60-79 (HR 1.39 [95% CI, 1.19-1.61] p < 0.001), age 80+ (HR 1.86 [95% CI, 1.60-2.17], p < 0.001), male sex (HR 1.34 [95% CI 1.24-1.44], p < 0.001) and distant disease (HR 1.48 [95% CI, 1.30-1.68], p < 0.001), and receipt of chemotherapy (HR 1.22 [95% CI 1.10-1.35] p < 0.001). In contrast, year of diagnosis 2000-2009 (HR 0.84 [95% CI 0.76-0.93] p < 0.001); year of diagnosis 2010-2016 (HR 0.76 [95% CI, 0.66-0.88] p < 0.001) and use of radiation therapy (HR 0.9 [95% CI 0.83-0.97], p = 0.008) were associated with improved OS. No impact on OS was found based on anatomic location, race, insurance status, or surgery type.

Exploratory subgroup analysis

To explore possible subgroups of MCC which may benefit from chemotherapy, we conducted a series of subgroup analyses reported as a Forest plot (Figure 3). Subgroups included age of diagnosis, calendar year of diagnosis, insurance type, laterality, marital status, anatomic subsite, race, RT status, stage, and surgery type. For all of the subgroups analyzed, there did not appear to be any OS improvement with the addition of chemotherapy. However, for the highest risk patients (80+ years old, distant metastatic disease, and no definitive surgery), chemotherapy was not associated with worse OS.
FIGURE 3: Forest plot describing the estimated effect of the interaction of chemotherapy with other prognostic factors on MCC overall survival.

Discussion

MCC remains a rare aggressive cutaneous neoplasm with a high propensity for recurrence and distant metastasis. Given its rarity, randomized trials for MCC are difficult to accrue. Large-database retrospective analysis can still help guide clinical management and inform investigation of future treatments. Not surprisingly, our analysis shows worse outcomes are correlated with increasing age and earlier calendar decade of diagnosis, as these are surrogates for poorer general health and older staging and treatment techniques. Male sex was also found to be a risk factor in our study, matching prior reports [3]. Retrospective analyses, series, and database studies comprise most of the available data guiding adjuvant management for MCC. Following optimal surgical excision for non-metastatic disease, most studies document a benefit to the use of adjuvant RT [9].

A multi-center retrospective study in 2011 by Ghadjar et al. looked at 180 patients with local or regional MCC treated between 1988 and 2009 in which surgery alone was compared with surgery and post-operative RT (n=131), surgery alone (n=49) or radical RT alone (n=13). With a median follow-up of 5 years, there was a significant benefit with the use of post-operative RT for LRFS (93% vs 64%), RRFS (76% vs 27%), DMFS (70% vs 42%), DFS (59% vs 4%) and CSS (65% vs 49%) in the radiotherapy group; however, there was no benefit to OS [17]. In a National Cancer Database (NCDB) study, a multi-variate analysis of 6,908 MCC patients found
an OS benefit with the addition of adjuvant RT for patients with node-negative MCC compared with surgery alone (stage I: HR = 0.71, 95% CI = 0.64 to 0.80, p < 0.001; stage II: HR = 0.77, 95% CI = 0.66 to 0.89, p < 0.001) but not in those patients who were node positive (stage III: n = 2065) [18]. In a randomized trial by Joura et al. evaluating the role of regional nodal irradiation, following wide local excision stage I MCC patients were randomized to adjuvant nodal and local tumor bed RT versus adjuvant local tumor bed RT alone. Accrual was stopped prematurely. Although no improvements to OS were found in patients (n = 470) with a median follow-up of 57.7 months, there was a significant improvement in regional recurrence from 16% to 0% [19]. An analysis of the SEER registry by Mojica et al. in 2007 evaluated 1,667 cases with stage I-III MCC and demonstrated a survival benefit with the use of adjuvant radiotherapy. Median survival improved from 45 months for those who did not receive adjuvant irradiation to 63 months with adjuvant irradiation [10]. In contrast to the prior SEER study in 2007, our analysis studies the variable of chemotherapy use, included approximately three times as many patients, and included more patients treated in the modern era. Our results further support the use of RT in the management of MCC, as we noted a decreased risk of death (HR 0.9, [95% CI: 0.85 - 0.97] p = 0.008) on doubly robust MVA. Although sequence of therapy was unavailable in the SEER data, because 69% of the cohort had definitive local surgical therapy with an additional 22% having “biopsy/local destruction” this benefit is likely carried by the adjuvant RT cohort.

In contrast to the benefit we found with radiotherapy, our results indicate that chemotherapy is associated with worsened OS, with an increased risk of death (HR 1.3, p < 0.001) on doubly robust MVA. Only on subgroup analysis for the highest risk patients (80+ years old, distant metastatic disease, and no definitive surgery), chemotherapy was not associated with worse OS but also did not offer benefit for OS. This may be due to limited power within the subgroup. The lack of OS benefit with chemotherapy use coincides with the published literature, as studies report significant objective response rates, but short progression-free survival and no survival advantage [20-22]. Because of similar neuroendocrine origin, many of the traditional cytotoxic regimens used to treat MCC have been extrapolated from small cell carcinoma therapy. Treatments such as cyclophosphamide, doxorubicin and vincristine (CAV) or carboplatin and etoposide (EP) have reported response rates of 29% to 75% in the advanced and metastatic settings [9]. In a report on 107 MCC cases with locally advanced or metastatic disease, Voog et al. showed a reasonable objective response rate of 61% with first-line chemotherapy and 45% with second-line chemotherapy. But overall, there was no adequate cure rate using chemotherapy, and a high incidence of toxic death was reported (7.7% with first-line treatment) [23]. A more recent evaluation for patients with metastatic MCC by Becker et al. in 2017 demonstrated a low objective response rate of 8.8% with a median duration of 1.9 months with second-line or later chemotherapy [24]. Newer studies demonstrating immunotherapy efficacy have established a new standard of care with ORR up to 68%, durable responses [6] and upon interim analysis, suggestion that long-term OS may be possible even in the metastatic setting [11] - examples include immune checkpoint inhibitors such as avelumab, Nivolumab (Checkmate 358) [6], PD-1 inhibitors [25], and more unique therapies such as talimogene laherparepvec (TVEC) [9]. In the JAVELIN Merkel 200 phase II study, 88 patients receiving 10 mg/kg of avelumab by one-hour intravenous infusion every two weeks until progression, unacceptable toxicity, or disease response demonstrated a 33% objective response rate with 74% of responses lasting > 1 year and median durable objective response not yet reached at the time of the updated analysis. One-year PFS and OS rates were 50% and 52%, respectively [11]. Although responses appeared more effective for those with fewer prior lines of systemic therapy, less burden of disease, and PD-L1 positive tumors, durable responses occurred in all subgroups irrespective of baseline factors. This led to FDA approval of avelumab in the treatment of metastatic MCC. Additionally, a recently published phase II trial (Cancer Immunotherapy Trials Network-09/Keynote-01) found that patients with advanced MCC demonstrated favorable OS and durable tumor control using pembrolizumab compared to historical series using chemotherapy [7]. Given these results, immune therapy is standard of care, and both pembrolizumab and avelumab are available for metastatic disease.

In addition to the metastatic setting where immune therapy is standard of care [7,11], clinical practice in the advanced and adjuvant settings also appears to be shifting towards an immune agent approach. The STAMP trial is evaluating pembrolizumab for patients with completely resected stage I-III MCC [26] and other ongoing phase III studies are evaluating the role for immunotherapy for MCC in the adjuvant (NCT03271372) and advanced disease (NCT03783078) settings. The ADAM protocol (NCT03271372) is evaluating the role for adjuvant avelumab after definitive surgical or radiotherapy in stage III MCC, and KEYNOTE-913 is evaluating the role for pembrolizumab as first line therapy for stage IV MCC (NCT03783078) [27]. Although clinical practice has shifted towards an immune agent approach, a multi-modality approach integrating chemotherapy is still under study. A phase II Australian, TROG 96-07 study examined the role for post-operative synchronous carboplatin (AUC 4.5) and IV etoposide (80 mg/m2) delivered on days 1-3 for 4 cycles concurrent with 50 Gy in 25 fractions for 53 non-metastatic MCC patients with high-risk features. Overall survival, LRC, and distant control were reported to be 76%, 75%, and 76% at 3-years, encouraging further evaluation of chemotherapy with RT for high-risk MCC in future phase III trials [28]. A National Cancer Database (NCDB) study by Chen et al. published in 2015 examined 4,815 patients with head and neck MCC and found that on MVA, post-operative chemo-RT (HR 0.62) and RT (HR 0.80) provided an overall survival benefit over surgery alone with Mohs surgery. Adjuvant CRT appeared to improve OS over adjuvant RT in patients with positive margins (HR 0.48), tumor size at least 3 cm (HR 0.52), and male sex (HR 0.69) [29]. However, we compare these results with caution when explaining the benefit for chemotherapy seen because a primary head and neck MCC may have unique features that differ from MCC in other body sites. In our study, nearly half of the patients in the SEER 18 dataset (44%) had primary head and
Merkel cell carcinoma (MCC) is a rare cutaneous malignancy of neural crest origin with a high rate of metastasis and recurrence. Our analysis provides further evidence supporting the use of radiotherapy. In contrast, there was insufficient evidence to support the use of chemotherapy for MCC - which appears to reflect its ineffective use particularly in the metastatic setting as compared to immune checkpoint inhibitors. Immune therapy has emerged as the standard of care in the setting of metastatic MCC, and ongoing trials in the adjuvant and advanced settings are highly anticipated.

Conclusions
MCC is a rare cutaneous malignancy of neural crest origin with a high rate of metastasis and recurrence. Our analysis provides further evidence supporting the use of radiotherapy. In contrast, there was insufficient evidence to support the use of chemotherapy for MCC - which appears to reflect its ineffective use particularly in the metastatic setting as compared to immune checkpoint inhibitors. Immune therapy has emerged as the standard of care in the setting of metastatic MCC, and ongoing trials in the adjuvant and advanced setting are promising. Future database analyses exploring the impact of immunotherapy as well as the interaction between RT and immunotherapy in MCC are warranted.

Additional Information
Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements
We thank Dr. Sandra P. D’Angelo from Memorial Sloan Kettering Cancer Center, for her contribution to the revision of the manuscript.

References
1. Paulson KG, Park SY, Vandeven NA, et al.: Merkel cell carcinoma: current US incidence and projected increases based on changing demographics. J Am Acad Dermatol. 2018, 78:457-465.e2. 10.1016/j.jaad.2017.10.028
2. Fields RC, Busam KJ, Chou JF, et al.: Recurrence after complete resection and selective use of adjuvant therapy for stage I through III Merkel cell carcinoma. Cancer. 2012, 118:3311-20. 10.1002/cncr.26626
3. Prewett SL, Ajithkumar T: Merkel cell carcinoma: current management and controversies. Clin Oncol (R Coll Radiol). 2015, 27:456-44. 10.1016/j.clon.2015.04.007
4. Lemos BD, Storer BE, Iyer JG, et al.: Pathologic nodal evaluation improves prognostic accuracy in Merkel cell carcinoma: analysis of 5825 cases as the basis of the first consensus staging system. J Am Acad Dermatol. 2010, 63:751-61. 10.1016/j.jaad.2010.02.056

5. Kaufman HL, Russell J, Hamid Q, et al.: Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016, 17:1574-85. 10.1016/S1470-2045(16)30564-5

6. Topalian SL, Bhatia S, Hellebrekke A, et al.: Abstract CT074: Non-comparative, open-label, multiple cohort, phase 1/2 study to evaluate nivolumab (NIVO) in patients with virus-associated tumors (CheckMate 358): Efficacy and safety in Merkel cell carcinoma (MCC). Cancer Res. 2017, 77:1158-745S.AM2017-CT074

7. Nghiem P, Bhatia S, Lipson EJ, et al.: Durable tumor regression and overall survival in patients with advanced Merkel cell carcinoma receiving pembrolizumab as first-line therapy. J Clin Oncol. 2019, 37:693-702. 10.1200/JCO.18.01986

8. Schmults CD: Merkel cell carcinoma. NCCN. 2021.

9. Steven N, Lawton P, Poulsen M: Merkel cell carcinoma - current controversies and future directions. Curr Clin Oncol (R Coll Radiol). 2019, 31:789-96. 10.1016/j.cclinon.2019.08.012

10. Mojica P, Smith D, Ellenhor JD: Adjuvant radiation therapy is associated with improved survival in Merkel cell carcinoma of the skin. J Clin Oncol. 2007, 25:1045-7. 10.1200/JCO.2006.07.9519

11. Kaufman HL, Russell JS, Hamid Q, et al.: Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after ≥1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018, 6, 10.1186/s40425-017-0310-x

12. Austin PC: Goodness-of-fit diagnostics for the propensity score model when estimating treatment effects using covariate adjustment with the propensity score. Pharmacoepidemiol Drug Saf. 2008, 17:1202-17. 10.1002/pds.1675

13. Almahairi MF, Quinn TJ, Siddiqui ZA, et al.: Post-mastectomy radiotherapy is associated with improved overall survival in T3N0 patients who do not receive chemotherapy. Radiother Oncol. 2020, 145:229-37. 10.1016/j.radonc.2020.01.022

14. Cole SR, Hernán MA: Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008, 168:656-64. 10.1093/aje/kvn164

15. Austin PC, Stuart EA: Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015, 34:5661-79. 10.1002/sim.6607

16. Thompson AB, Quinn TJ, Siddiqui ZA, Almahairi MF, Grills IS, Stevens CW: Addition of radiotherapy to surgery and chemotherapy improves survival in localized malignant pleural mesothelioma: A Surveillance, Epidemiology, and End Results (SEER) study. Lung Cancer. 2020, 146:120-6. 10.1016/j.lungcan.2020.05.032

17. Ghadjar P, Kaanders JH, Poortmans P, et al.: The essential role of radiotherapy in the treatment of Merkel cell carcinoma: a study from the Rare Cancer Network. Int J Radiat Oncol Biol Phys. 2011, 81:a583-91. 10.1016/j.ijrobp.2011.05.028

18. Bhatia S, Storer BE, Iyer JG, et al.: Adjuvant radiation therapy and chemotherapy in Merkel cell carcinoma: survival analyses of 6908 cases from the national cancer data base. J Natl Cancer Inst. 2016, 108:10.1093/jnci/djw042.

19. Jouary T, Lefranc C, Derou B, et al.: Adjuvant prophylactic regional radiotherapy versus observation in stage I Merkel cell carcinoma: a multicentric prospective randomized study. Ann Oncol. 2012, 23:1074-80. 10.1093/annonc/mdr318

20. Satpute SR, Ammakkanavar NR, Einhorn LH: Role of platinum-based chemotherapy for Merkel cell tumor in adjuvant and metastatic settings. Journal of Clinical Oncology. 2014, 32:9049. 10.1200/jco.2014.32.15_suppl.9049

21. Iyer JG, Blom A, Doumani R, et al.: Response rates and durability of chemotherapy among 62 patients with metastatic Merkel cell carcinoma. Cancer Med. 2016, 5:2294-301. 10.1002/cam4.815

22. Cowey CL, Mahnke L, Espirito J, Helwig C, Oksen D, Bharmal M: Real-world treatment outcomes in patients with metastatic Merkel cell carcinoma treated with chemotherapy in the USA. Future Oncol. 2017, 13:1699-710. 10.2217/fon-2017-0187

23. Voog E, Biron P, Martin JP, Blay JY: Chemotherapy for patients with locally advanced or metastatic Merkel cell carcinoma. Cancer. 1999, 85:2589-95. 10.1002/(sici)1097-0248(19990615)85:12<2589::aid-cncr115-5.0.co;2-f

24. Becker JC, Lorenz E, Ugurel S, et al.: Evaluation of real-world treatment outcomes in patients with distant metastatic Merkel cell carcinoma following second-line chemotherapy in Europe. Oncotarget. 2017, 8:79731-41. 10.18632/oncotarget.19218

25. Nghiem PT, Bhatia S, Lipson EJ, et al.: PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016, 374:2542-52. 10.1056/NEJMoa1603702

26. NIH wcg. Pembrolizumab compared to standard of care observation in treating patients with virus-associated tumors (CheckMate 358): Phase 3 randomized, open-label, non-inferiority, multicenter, global, non-comparative, controlled study. NCT03712605. (2017). Accessed: 8/15/2021. https://clinicaltrials.gov/ct2/show/NCT03712605

27. Angeles CV, Sabel MS: Immunotherapy for Merkel cell carcinoma. J Surg Oncol. 2021, 123:775-81. 10.1002/jso.26319

28. Poulsen M, Rischin D, Walpole E, et al.: High-risk Merkel cell carcinoma of the skin treated with synchronous carboplatin/etoposide and radiation: a Trans-Tasman Radiation Oncology Group Study--TROG 2007, J Clin Oncol. 2003, 21:4571-6. 10.1200/JCO.2003.05.154

29. Chen MM, Roman SA, Sosa JA, Judson BL: The role of adjuvant therapy in the management of head and neck Merkel cell carcinoma: an analysis of 4815 patients. JAMA Otolaryngol Head Neck Surg. 2015, 141:157-61. 10.1001/jamaoto.2014.3052

30. Kim JA, Choi AH: Effect of radiation therapy on survival in patients with resected Merkel cell carcinoma: a propensity score survival analysis. JAMA Dermatol. 2013, 149:851-8. 10.1001/jamadermatol.2013.409

2021 Vayntraub et al. Cureus 13(9): e18276. DOI 10.7759/cureus.18276 12 of 12