Scintigraphic assessment of bone status at one year following hip resurfacing

COMPARISON OF TWO SURGICAL APPROACHES USING SPECT-CT SCAN

H. W. Amarasekera, P. Roberts, M. L. Costa, N. Parsons, J. Achten, D. R. Griffin, N. R. Williams

From University of Warwick and University Hospital of Coventry and Warwickshire, Coventry, United Kingdom

Objectives
To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches.

Methods
In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach.

Results
One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy.

Conclusions
Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery.

Keywords: Hip resurfacing, Scintigraphy, Vascularity, Metabolic bone function, SPECT CT, Bone scanning

Article focus
Does a drop in intra-operative blood flow to the femoral head during the posterior approach influence long-term vascularity or metabolic bone function?

Key messages
One year after surgery, scintigraphic imaging could not demonstrate any residual difference in vascularity or metabolic bone function to the femoral head/neck region

Strengths and limitations
Bone scintigraphy is a functional imaging tool that enables vascularity and metabolic bone function to be quantitatively assessed, and this can be performed in the presence of metal implants. The study is limited by the small number of patients investigated

Introduction
The functional anatomy of the blood supply to the head and neck of the femur has been a point of debate for many years. However, since the femoral head and neck are removed during total hip replacement, the issue was mostly of academic interest to arthroplasty surgeons. The use of resurfacing arthroplasty, where the head and neck are preserved, has recently brought this debate back into focus. Traditionally, the posterior approach was favoured by the majority of surgeons...
teric flip approach described by Ganz et al.3 Several stud-
approaches may avoid such injury; including the trochan-
teric flip group this included the osteotomy site.
We studied the same group of patients who had taken
part in our previous intra-operative study.1 The aim of
this study was to compare the vascularity and metabolic
bone function at the proximal femur between posterior
and trochanteric flip groups at one year after hip resur-
facng, metabolic bone function is influenced by bone
vascularity and osteoblastic activity and was assessed by
a scintigraphic technique, using the relative uptake of a
bone-seeking radiopharmaceutical.

Patients and Methods

The Local Research Ethics Committee approved the
study and a licence was obtained from the Administra-
tion of Radioactive Substances Advisory Committee
(ARSAC).

All 24 patients who took part in the intra-operative
study were considered for inclusion. Of these, 13 patients
agreed to take part. A summary of patient details is given
in Table I.

**Planar and Single Photon Emission Computed Tomo-
graphy (SPECT/CT) scans.** Each patient had an injection
of 600 MBq Tc-99m-oxidronate (Technoscan; HDP
Covidien, Fareham, United Kingdom) through an intra-
venous cannula. An initial series of anterior planar
dynamic images (5 seconds per frame) were acquired
for 120 seconds starting at the time of injection (arterial
phase). An anterior planar static image was subsequently
acquired at 300 seconds post-injection (venous phase).
An anterior planar static image and a SPECT acquisi-
tion, with an accompanying low-dose CT, were performed
at three hours after the injection using a dual headed
SPECT/CT system (Hawkeye; GE Healthcare, Amersham,
United Kingdom) fitted with low energy high-resolution
collimators. SPECT images were acquired over 360° and
consisted of 120 projections (60 per head), each of
30 seconds duration; total emission image acquisition
time was 30 minutes. Immediately following emission
image acquisition, a low dose CT acquisition (120 kV,
2.5 mA, 10 mm slice thickness) was acquired without the
patient moving from the same bed position. Tomo-
graphic images were obtained by an iterative reconstruc-
tion technique incorporating a measured attenuation
correction map. Reconstruction filtration consisted of a
Butterworth low-pass filter with an order 15 and cut-off of
0.35 cycles/pixel. The data was saved in coronal, trans-
erse and sagittal slices. Total radiation exposure to the
patient was 4 mSv.

Image analysis. Images were analysed using a GE Xeleris
functional imaging workstation (GE Healthcare, Hatfield,
United Kingdom). The images were studied in two
phases; 1) the early phase images taken within 5 minutes
of isotope injection, and 2) delayed phase images taken
three hours after injection. The early phase was sub-
divided into arterial and venous phases. The dynamic
arterial phase images showed tracer in only major arterial
trunks; these images were not assessed further. The
venous images were assessed using defined regions of
interest (ROIs) derived from the delayed planar image.
The planar vascular and delayed images were aligned and
the three ROIs defined on the delayed image were applied
to both the vascular and delayed images (Fig. 1).

The regions of interest were defined as:

ROI 1: the femoral head-neck bone, extending from the
margin of the femoral implant into the inter-trochanteric
region. This includes the head-neck junction and the neck
region. This corresponds to the bone studied intra-
operatively using the LASER Doppler flow meter in our
previous study.1

ROI 2: the inter-trochanteric region of bone between
the neck of the femur and the inter-trochanteric line. This
also includes the greater and lesser trochanters. In the tro-
chanteric flip group this included the osteotomy site.

ROI 3: the upper shaft to midshaft of femur. This region
was used as a control.

The inter-trochanteric region (ROI 2) was adjusted,
when necessary, to avoid overlying any major blood ves-
sels on the venous images. For both the venous and
delayed planar images the mean count in the femoral
neck and inter-trochanteric regions (ROI 1 and 2) were
calculated and expressed as a ratio to the mean count in
the corresponding femoral region (ROI 3), which was
used as a control.

For the delayed SPECT/CT images all coronal slices
were summed to allow regional quantification of tracer
uptake. The regions of interest were defined as for the pla-
nar images but with two additional ROIs to quantify back-
ground (non-bone) activity in the region of the prosthesis
(ROI 4) and mid-femur (ROI 5) (Fig. 2).

Characteristic	Trochanteric flip (n = 5)	Posterior (n = 8)	
Surgical approach	Male:female	4:1	3:5
Mean age (yrs) (range)	62.8 (60 to 71)	51.3 (32 to 60)	
Side (right:left)	1:4	6:2	
Mean time since surgery (mths) (range)	10.6 (10 to 12)	11.1 (10 to 12)	
Statistical analysis. Average background corrected counts derived from the femoral neck and intertrochanteric ROIs were calculated and expressed as a ratio to the background corrected counts from the mid femur region. Differences in radionuclide uptake between approaches (Trochanteric flip and Posterior) were displayed graphically using box and whisker plots and formally tested using Mann-Whitney tests, with significance set at the 5% level.

In order to assess the reliability of the definition of the ROIs for the SPECT/CT image data, three experienced assessors assessed images and independently determined appropriate ROIs. Intraclass correlation coefficients (ICC) were calculated for each ROI and used to assess interobserver variation using the ratings suggested by Landis and Koch9,10 to assess agreement: 0 to 0.2 poor, 0.2 to 0.4 fair, 0.4 to 0.6 moderate, 0.6 to 0.8 substantial, and 0.8 to 1.0 almost perfect.

Results
The dynamic arterial phase images were visually assessed as showing no increased activity around the prosthesis for any patient; therefore these data were not analysed further.

For both the venous and delayed planar images the mean count in the femoral neck and intertrochanteric regions (ROIs 1 and 2) were calculated and expressed as a percentage of the mean count in the corresponding femoral region (ROI 3). Figure 3 shows boxplots of these data for ROI 1 and ROI 2 for both early and late data. The median radionuclide uptake and range for ROI 1 in the trochanteric-flip and posterior approach groups were 1.20% (1.00% to 1.33%) and 1.32% (1.14% to 1.43%) for early data and 2.75% (1.97% to 3.50%) and 2.97% (2.24% to 3.83%) for the late data. Equivalent figures for ROI 2 were 1.18% (1.03% to 1.43%) and 1.17% (0.95% to 1.28%) for early data and 3.02% (2.59% to 3.41%) and 2.11% (1.52% to 2.80%) for the late data. There was no statistically significant difference in radionuclide uptake between the posterior approach group and the trochanteric flip approach group in the head/neck region (ROI 1) for either early or late data (p = 0.127 and p = 0.683, respectively; Mann-Whitney test). However, for the intertrochanteric region (ROI 2), patients who underwent the trochanteric flip approach showed a significant increase in uptake compared with the posterior approach for late phase (p = 0.028; Mann-Whitney test), but not for the early phase (p = 0.943).

For SPECT/CT image data, uptake in ROI 1 and ROI 2 was expressed as a percentage of the average count in the
The estimated ICCs based on three independent observations of the SPECT/CT images for ROI 1 and 2 were 0.694 (95% bootstrapped confidence interval (CI) 0.388 to 0.827) and 0.666 (95% CI 0.438 to 0.889), indicating that there was substantial agreement between assessors in the definition of both ROI 1 and ROI 2.

Figure 4 shows boxplots of these data for ROI 1 and ROI 2 data. The median radionuclide uptake and range for ROI 1 in the trochanteric-flip and posterior approach groups were 4.12% (2.76% to 5.06%) and 3.56% (2.59% to 4.62%), respectively, and in ROI 2 were 3.22% (2.85% to 3.72%) and 1.83% (1.45% to 3.37%), respectively. There was no statistically significant difference in radionuclide uptake between the posterior approach group and the trochanteric flip approach group in the head/neck region (ROI 1) (p = 0.724, Mann-Whitney test). However, for the inter-trochanteric region (ROI 2), patients who underwent...
the trochanteric flip approach showed a significant increase in uptake compared with the posterior approach ($p = 0.011$, Mann-Whitney). A replication of the Mann-Whitney tests based on the definitions of the ROIs by the secondary assessors gave p-values of 1.000 and 0.284 for ROI 1, and 0.003 and 0.006 for ROI 2. Therefore, the inferences drawn from these data were not dependent on the individual assessor used to define the ROIs.

In summary, the results in both delayed and late phases of planar images and the SPECT CT images did not show any statistically significant difference in ROI 1 (the head/neck region) between the groups, but increased uptake was seen in trochanteric flip group in ROI 2 (the intertrochanteric region) in late and SPECT CT images.

Discussion

Previous studies have shown a clear decrease in the blood supply to the junction of the head and neck during hip surgery. The posterior approach appears to cause a larger decrease than other approaches, so alternatives such as the trochanteric-flip osteotomy have been used in an attempt to preserve the vascularity. Our intra-operative blood flow study showed a 40% drop in the posterior approach group in comparison with only a 11% drop seen with the trochanteric flip approach. However, the clinical importance of this intra-operative reduction in blood flow, and the potential for recovery in the early post-operative period, have not been investigated as extensively.

The post-operative assessment of the femoral head and neck using imaging remains a challenge: especially in the presence of metal implants. Of the modalities that are available, the most suitable would appear to be functional bone imaging with SPECT-CT or PET–CT scans. Sodium fluoride-positron emission tomography (PET) scans have a higher sensitivity but availability is currently limited. We decided to use SPECT-CT in this study for several reasons including the wide use of the general imaging technique, the availability of the facility and cost.

Using planar data imaging, we found that there was no statistically significant difference of radionuclide uptake in the femoral head/neck region (ROI 1) between the posterior approach and the trochanteric-flip approach one year after a resurfacing arthroplasty of the hip both during early ($p = 0.127$) and delayed phases ($p = 0.683$). This indicates that the intra-operative reduction in blood flow, which we identified in our patients having a posterior approach, does not give rise to any compromise in vascularity as assessed by a scintigraphic technique at one year after surgery. The initial loss of blood supply may be transient but appears to recover during the post-operative period. However, we cannot say exactly when it recovers within the period of one year.

It is well known that chronic ischemia stimulates collateral vessel formation in many tissues, including bone. This was shown by Freeman and later tested by Whiteside et al using a canine model. It is possible that the reduction in blood flow caused during surgery may lead to the development of collateral circulation in the proximal femur. The only statistically significant difference between the two groups occurred in the delayed phase of inter-trochanteric region (ROI 2), where the trochanteric flip group showed increased bone activity compared with the posterior group ($p = 0.028$). This can be explained by the increased osteoblastic activity in this region caused by the healing of the trochanteric flip osteotomy. This suggests that the osteotomy site is still active even after one year. However in the same region (ROI 2) during the vascular phase there was no difference between the two groups ($p = 0.943$), supporting our hypothesis that post-operative vascularity is the same in both groups.

Further analysis of the images using SPECT-CT data showed similar findings. SPECT-CT has been used in many clinical scenarios and of the various methods available to detect post-operative bone function, SPECT seems to be the most appropriate for this group of patients. Bone SPECT has a lower false negative rate than plain bone scans in diagnosing impaired or enhanced bone function, and therefore this technique has been recommended as a tool to assess post-operative bone activity in orthopaedic patients. MRI is another option, but the metal resurfacing implants interfere with the results, particularly around the head and neck of the femur.

There have been concerns regarding the validity of the attenuation correction technique used to obtain the SPECT-CT images, due to the adjacent metal of the prosthesis. To validate the attenuation correction, we conducted a separate phantom modelling study that confirmed the attenuation correction method works adequately even in the presence of the resurfacing prosthesis. This was done by making phantom models of the hip with point sources of the radionuclide Tc99m, kept under and adjacent to the resurfacing metal implants. SPECT-CT images were acquired with the implants initially and the tests repeated without using the implants. There was no significant difference in corrected uptake between the two groups, indicating that the attenuation correction system functioned correctly even in the presence of a resurfacing implant.

The main limitation is the relatively small number of subjects available for this study. Our initial study of intra-operative blood flow included a formal sample size calculation. However, the nature of the current investigation meant that several of the 24 subjects included in the earlier study had to be excluded or declined to take part. This raises the possibility of both a type II error, that is a lack of statistical power resulting in our false acceptance of the null hypothesis of no difference between the surgical approaches, or a type I error, false rejection of the null hypothesis, caused by the disproportionate influence of a
small number of measurements. However, the relatively narrow ranges observed for both planar and SPECT CT image data (Figs 3 and 4) indicate good precision in our data, with no obvious outliers with strong leverage on the analysis. Also, the fact that a highly significant difference was observed for ROI 2 suggests that if there were actually similar differences between the two groups for ROI 1, there was sufficient power to reject the null hypotheses in these cases. For these reasons, and the strong evidence of substantial reliability in definitions of ROIs (ICCs of 0.694 and 0.666 for ROI 1 and ROI 2, respectively), we believe that the results do provide evidence for differences in metabolic bone function in the inter-trochanteric region (ROI 2) and no significant difference at the head/neck junction (ROI 1) despite the small number of patients. The second limitation is that we have not included direct measurements from the part of the bone directly covered by the metal implant i.e. the head-neck region is a ‘surrogate’ for the activity under the implant itself. However, our previous intra-operative study addressed the blood-flow in this same head/neck region and demonstrated clear differences between the approaches in this area.

Despite our results, loosening, fractures and avascular necrosis do still occur in the early post-operative period in some patients. The cause of such complications is likely to be multi-factorial, with the blood flow to this region of bone playing a role. This is clinically extremely relevant, to be multi-factorial, with the blood flow to this region of metabolic bone activity even one year after surgery.

In conclusion, this study demonstrates that the decrease in vascularity at the head/neck junction shown during the intra-operative period appears to be transient and vascularity and bone metabolism is the same in both groups at one year after surgery. Secondly, the study shows that the trochanteric osteotomy site still shows metabolic bone activity even one year after surgery. Further studies may be needed to determine when and how this blood flow recovers.

The authors would like to acknowledge the contribution of S. Manketlow and R. Penny, Department of Nuclear Medicine, University Hospitals of Coventry and Warwickshire. This study was performed on behalf of the University Hospital Coventry and Warwickshire Resurfacing Arthroplasty Group. This group consists of Mr S. Krikker, Mr U. Prakash, Mr P. Fuguet, Mr R. King, Professor M. Costa and Professor D. Griffin.

References
1. Amarasekera HW, Costa ML, Fuguet P, et al. The blood flow to the femoral head/neck junction during resurfacing arthroplasty: a comparison of two approaches using Laser Doppler flowmetry. J Bone Joint Surg [Br] 2008;90-B:442–445.
2. Crock HV. Anatomy of the medial femoral circumflex artery and its surgical implications. J Bone Joint Surg [Br] 2001;83-B:149–150.
3. Ganz R, Gill TJ, Gautier E, et al. Surgical dislocation of the adult hip: a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Joint Surg [Br] 2001;83-B:1119–1124.
4. Beaulé PE, Campbell P, Shim P. Femoral head blood flow during hip resurfacing. Clin Orthop Relat Res 2007;456:148–152.
5. Khan A, Yates P, Lovering A, Bannister GC, Spencer RF. The effect of surgical approach on blood flow to the femoral head during resurfacing. J Bone Joint Surg [Br] 2007;89-B:21–25.
6. Steffen RT, Smith SR, Urban JP, et al. The effect of hip resurfacing on oxygen concentration in the femoral head. J Bone Joint Surg [Br] 2005;87-B:1468–1474.
7. Beaulé PE, Campbell P, Lu Z, et al. Vascularity of the arthritic femoral head and hip resurfacing. J Bone Joint Surg [Am] 2006;88-A(Suppl 3):48–96.
8. McMahon SJ, Young D, Balkiz Z, et al. Vascularity of the femoral head after Birmingham hip resurfacing: a technetium Tc 99m bone scan/single photon emission computed tomography study. J Arthroplasty 2006;21:514–521.
9. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–174.
10. Koch GG, Landis JR, Freeman JL, Freeman DH Jr, Lehnen RC. A general methodology for the analysis of experiments with repeated measurement of categorical data. Biometrics 1977;33:133–158.
11. Steffen RT, Fern D, Norton M, Murray DW, Gill HS. Femoral oxygenation during hip resurfacing through the trochanteric flip approach. Clin Orthop Relat Res 2009;467:934–939.
12. Forrest N, Welch A, Murray AD, et al. Femoral head viability after Birmingham resurfacing hip arthroplasty: assessment with use of [18F] fluoride positron emission tomography. J Bone Joint Surg [Am] 2006;88-A(Suppl 3):84–99.
13. van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Goethard M, Oyen WJ. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med 2010;40:93–105.
14. Ghomarezaneshad A, Mirpour S, Mariani G. Future of nuclear medicine: SPECT versus PET. J Nucl Med 2009;50:N18–N19.
15. Cheng D, Wang Y, Liu X, et al. Comparison of 18F PET and 99mTc SPECT imaging in phantoms and in tumor mice. Bioconjug Chem 2010;21:1565–1570.
16. Freeman MA. Some anatomical and mechanical considerations relevant to the surface replacement of the femoral head. Clin Orthop Relat Res 1978;134:19–24.
17. Whiteside LA, Lange DR, Capellos WR, Fraser B. The effects of surgical procedures on the blood supply to the femoral head. J Bone Joint Surg [Am] 1983;65-A:1127–1133.
18. Mariani G, Bruselli L, Kuwert T, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 2010;37:1595–1585.
19. Scharf S. SPECT/CT imaging in general orthopedic practice. Semin Nucl Med 2009;39:293–307.
20. Linke R, Kuwert T, Uder M, Forst R, Wuest W. Skeletal SPECT/CT of the peripheral extremities. AJR Am J Roentgenol 2010;194:W329–W335.
21. Collidor BD, Carrera GF, Johnson RP, et al. Detection of femoral head avascular necrosis in adults by SPECT. J Nucl Med 1985;26:677–687.
22. Calder SJ, McCaskie AW, Belton IP, Finlay DB, Harper WM. Single-photon emission computed tomography compared with planar bone scan to assess femoral head vascularity. J Bone Joint Surg [Br] 1995;77-B:637–639.
23. Ruy JS, Kim JS, Moon DH, et al. Bone SPECT is more sensitive than MRI in the detection of early osteonecrosis of the femoral head after renal transplantation. J Nucl Med 2002;43:1006–1011.
24. Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med 2006;36:298–294.
25. Thickman D, Axel L, Kressel HY, et al. Magnetic resonance imaging of avascular necrosis of the femoral head. Skeletal Radiol 1986;15:133–140.
26. Fordyce MJ, Solomon L. Early detection of avascular necrosis of the femoral head by MRI. J Bone Joint Surg [Br] 1993;75-B:356–367.
27. Amarasekera HW, Costa ML, Parsons M, et al. SPECT/CT bone imaging after hip resurfacing arthroplasty: is it feasible to use CT attenuation correction in the presence of metal implants? Nucl Med Commun 2011;32:289–297.
28. Shimmim AJ, Bare J, Back DL. Complications associated with hip resurfacing arthroplasty. Orthop Clin North Am 2005;36:187–193.
29. Carrothers AD, Gilbert RE, Jaiswal A, Richardson JB. Birmingham hip resurfacing: the prevalence of failure. J Bone Joint Surg [Br] 2010;92-B:1344–1350.
30. Bolland BJ, Latham JM, Whitwell D. Hip resurfacing: early failures cause concern. BMJ 2010;341:5632.
31. Patterson AH, Coleman JH. Hip resurfacing: a fresh look at an alternative to total joint arthroplasty. JAAAPA 2010;23:44–47.
32. Jiang Y, Zhang K, Die J, et al. A systematic review of modern metal-on-metal total hip resurfacing vs standard total hip arthroplasty in active young patients. J Arthroplasty 2011;26:419–426.
33. Prime MS, Palmer J, Khan WS. The National Joint Registry of England and Wales. Orthopedics 2011;34:107–110.
