Tapping Unexplored Macrofungi: Occurrence and Distribution of Amanita, Russula and Termitomyces Species in the Different Forest Divisions of Odisha, India

Abstract

A systematic study was done on the wild mushroom species of the forest regions of Odisha with the objective to generate information on macrofungal diversity at different forest divisions of Odisha. Six major forest divisions of Odisha viz. Northern tropical semi evergreen forest (Site-1), Northern tropical dry deciduous forest (Site-2), Secondary moist miscellaneous semi evergreen forest (Site-3), Northern tropical semi evergreen forest (Site-4), Mixed forests having combination of Northern tropical semi evergreen forest and Tropical moist deciduous forest (Site-5), Tropical dry deciduous forest and Northern tropical semi evergreen forest (Site-6) were the sites for experiment emphasizing on Amanita, Russula and Termitomyces species. Nineteen different macrofungal populations were observed where 6 species of Amanita, 8 species of Russula and 5 species of Termitomyces were recorded from different habitats. Russula brevipes, Russula rosea and Russula lepida were very luxuriantly present in (Site-5). The distribution frequency was the highest (53.84%) in Amanita vaginata among all other species of Amanita. The Amanita caesarea and Amanita chrysolaceae were observed with the least distribution (2.56%). Termitomyces occurred in many places of Odisha and was considered as a palatable mushroom. Occurrence of T. eurrhizus was the highest (30.76%) in Odisha forests while Termitomyces microcarpus showed the least distribution (2.56%). The findings of the study have concluded that the (Site 1,5,6) can be a potential site for the mushroom hunters.

Keywords: Macrofungi; Biodiversity; Amanita; Russula; Termitomyces

Introduction

Mushrooms are the key entities in the forest ecosystems being saprobic in nature. Mushroom belongs to the kingdom fungi, phylum Basidiomycetes, class Homo basidiomycetes and they are noted for producing fruiting bodies. There are millions of mushroom species in the world that grow in the wild forest and are classified into two groups, namely, the edible mushroom and non edible mushroom [1,2]. Mushrooms are a large group of organisms playing a significant role in the environment. Mushrooms in daily life are mostly seen as a food product. Sporocarps are non-uniform in distribution varying from a few scattered fruiting bodies to concentrated clusters of numerous fruit bodies [3]. This situation makes the grid method unreliable for the diversity studies of macrofungal population.

The biodiversity of mushrooms of Odisha has still not been well investigated due to a lack of experts. Although many of them have been widely recorded in Odisha together with information for edibility of various species, most of the names of reported species refer to species collected from the American or European species. The mushrooms available in different forest division are not well defined. Medicinal mushrooms have an established history of use in traditional oriental therapies. Modern clinical practice in different countries like Japan, China, Korea, and other countries continues to rely on mushroom derived preparations. Mushrooms have been used for many years in oriental culture as tea and nutritional food because of their special fragrance and texture [4]. The scientific community in searching for new therapeutic alternatives has studied many kinds of mushrooms and has found variable therapeutic activity such as anti-carcinogenic, anti-inflammatory, immune suppressor and antibiotic [5,6]. Collection of mushrooms and its consumption is a traditional practice in rural and tribal zones of Odisha such as in different forest zones and surrounding areas. In many cases, the collections of mushrooms are for the self-consumption rather than for the commercial value except few cases. Particularly, climatic conditions and diverse flora are the main causes for the development of macrofungal diversity. These facts have facilitated to the present study to locate mushrooms in the different area of forest divisions of Odisha.

Materials and Methods

Study area

A systematic plan was made to study certain sites like Northern tropical semi evergreen forest, Northern tropical dry deciduous forest, Secondary moist miscellaneous semi evergreen forest, Northern tropical semi evergreen forest, Mixed forest having combination of Northern tropical semi evergreen forest and Tropical moist deciduous forest, Tropical dry deciduous forest and Northern tropical semi evergreen forest for the presence and level of frequency to find these mushrooms. Six forests sites namely, Banei, Baliguda, Koraput, Similipal, Kalahandi and Chandaka of Odisha were surveyed for the presence of Mushrooms.
Sampling
Mushrooms were collected from vegetation zones and plant associations which included grassland, dead woody trunks, termite nests and anthills. Mushroom samples were collected by using an iron axe, spade, graduated measuring scale and paper bags. An axe was used to draw out the inner attachment of the mushrooms and a sharp spade for plucking mushroom fruit bodies. The samples thus taken were kept in paper bags in order to handle them without any desiccation and bring them for identification.

Collection and preservation
Fruiting bodies were removed from the substratum attentively to avoid damage to the basal region of the macrofungi to reveal volva, buried substrata, any bulb or attachment. The soil was removed by a brush [7,8]. Formalin solution was used to preserve the samples as well as dried in the hot air oven at 50-60 °C and kept in the polybags with dichlorobenzene to avoid microbial attack and long term preservation. Before the collection, the habitat of respective mushrooms was well monitored for the perfect identification. All the mushrooms were brought to the laboratory and identified by observing all the macro morphological characteristics.

Identification
Collected macrofungi were identified on the basis of size, shape, colour, odour, texture, presence and absence of lamella and volva etc. In case of Pileus margin, colour, consistency, gill arrangement were observed. In case of stipe, rings, stuffness, presence of rhizoid and other different type of attachment of the base of the stipe were taken into consideration for identification.

Data analysis
The species were listed according to corresponding hosts viz. plants, termite comb, anthill and grassland with scattered leaf litter. Species frequency of different mushrooms was estimated in accordance with the scale including two or more collecting sites; at least one of them with numerous basidiocarps. The frequency and distribution of all the three species of special interest (considered to be rare in the literature or with lack of distribution data in Odisha) were also discussed.

Results and Discussion
The texture of the soils was sandy and loamy, including large variation in the floral diversity. It had a subtropical monsoon and humid climate with an average annual rainfall of 1500 mm, and temperature range of 20-38 °C and humidity range of 58-88% in semi evergreen forests accept in few forest sites where dry deciduous forest cover was present (Figure-1).

The study has listed five different types of Termitomyces. The frequency of distribution of T. heimii was the highest (20.51%) in (Site-2,6) regions where as it was completely absent in (Site-4) region [9]. T. eurrhizus was the maximum found mushrooms among the different Termitomyces species. Among five study sites, three of the study sites showed the higher in mushroom population (30.76%) where as these were absent in (Site-4) (Table 1 & 2) (Figure 2 & 3). Termitomyces clypeatus ranked the second highest mushroom in the survey study (28.22 %) with an ample amount in Site-5 when compared with (Site 1,4,6) whereas no patch of this species was recorded in (Site-2). T. heimii was often spotted by (Site-5,6) where it was picked up by the local tribes and eaten as food. A few patches of T. medius were recorded in all the forests except in (Site-1,2) with a frequency of 7.64 % which was scarce when compared to other species. The least population frequency was recorded in T. microcarpus (2.56 %) which was found only in (Site-3,5). The distribution behavior of these mushrooms were similar to the findings of Karwa & Rai [10] in the forest regions of Central India.
Tapping Unexplored Macrofungi: Occurrence and Distribution of Amanita, Russula and Termitomyces Species in the Different Forest Divisions of Odisha, India

Figure 3: Frequency (%) of occurrence of Russula in Odisha Forests.

Figure 4: Frequency (%) of occurrence of Termitomyces in Odisha Forests.

Table 1: Occurrence of wild mushrooms in different forests of Odisha.

Species and Forest Area	Baliguda	Banei	Chandaka	Koraput	Similipal	Kalahandi
Amanita Caesarea	-	-	-	-	+	-
Amanita chrysoleuca	+	-	-	-	-	-
Amanita craseoderma	+	-	-	-	-	-
Amanita loosii	-	-	-	-	+	+
Amanita Pantherina	-	+	-	-	+	-
Amanita Vaginata	+	+	+	+	+	+
Russula aurata	+	-	-	-	-	-
Russula brevipes	+	+	-	+	+	+
Russula lepida	+	+	+	+	+	+
Russula nigricans	-	-	+	-	+	-
Russula rosea	+	+	+	+	+	+
Russula vesca	+	-	-	-	-	-
Russula virescens	+	-	-	-	-	+
Russula xerampelina	+	-	-	-	+	-
Termitomyces eurrhizus	+	+	+	-	+	+
Termitomyces heimi	+	+	-	+	+	+
Termitomyces medius	-	-	+	+	+	+
Termitomyces microcarpus	-	-	+	-	+	-
Termitomyces clypeatus	+	-	+	-	-	+

Citation: Tripathy AA, Rajoriya A, Gupta N (2015) Tapping Unexplored Macrofungi: Occurrence and Distribution of Amanita, Russula and Termitomyces Species in the Different Forest Divisions of Odisha, India. Adv Plants Agric Res 2(6): 00074. DOI: 10.15406/apar.2015.02.00074
Table 2: Occurrence frequency of wild mushrooms in different forests of Odisha.

	Baliguda	Banei	Koraput	Similipal	Kalahandi
No. of sites collected	9	6	9	10	6
Amanita Caesarea	0	0	0	33.33	0
Amanita chrysoleuca	11.11	0	0	0	0
Amanita craseoderma	11.11	0	0	0	0
Amanita loosii	0	0	0	66.66	16.66
Amanita Pantherina	0	16.66	0	11.11	0
Amanita Vaginata	88.88	33.33	22.22	77.77	33.33
Russula aurata	11.11	0	0	0	0
Russula brevipes	33.33	33.33	11.11	100	100
Russula lepida	100	33.33	33.33	100	100
Russula nigricans	0	0	22.22	90	0
Russula rosea	100	50	22.22	100	66.66
Russula vesca	11.11	0	0	0	0
Russula virescens	22.11	0	0	0	16.66
Russula xerampelina	33.11	0	0	80	0
Termitomyces eurrhizus	22.22	50	0	50	50
Termitomyces heimi	22.22	33.33	0	20	33.33
Termitomyces medius	0	0	11.11	10	16.66
Termitomyces microcarpus	0	0	0	10	0
Termitomyces clypeatus	22.22	0	11.11	70	16.66

The knowledge about species of the genus *Amanita* in which many of them are ectomycorrhizal with forest trees, is limited and only a few species have been reported from India [11,12]. Not surprisingly the population of *Amanita* in the Odisha region especially in (Site-5) was very high, may be due to the diverse vegetation and elevated land sites [13]. The frequency of occurrence of *Amanita vaginata* was maximum among all other *Amanita* species (953.84%) being the highest in (Site-1,5) regions followed by (Site-2,6). It has been also found that *A. vaginata* was luxuriantly present in all the forest divisions of Odisha. *Amanita pantherina* was found with the less population of mushroom when compared with the above varieties. It was not found in the (Site-1,3,4,6) regions due to which its occurrence frequency was only 5.12% (Figure 4). *Amanita loosi* ranked second highest found mushrooms in the forest divisions studied (17.94%). The habitat of mushroom found in the (Site-5) supported that there was a luxuriant growth of *A. loosi* and served as food of choice among the tribal. However, (Site-6) also showed an appreciable occurrence of this mushroom when compared with the other three regions where there was complete absence of this mushroom. The occurrence frequency of *A. caesarea* was 7.69 % which was solely present in (Site-5). According to the present study, a very few habitat supports its growth and hence this may be a suspected cause of very scarce in Indian context. The reasons for the lower distribution of this variety of mushrooms in the above mentioned sites may be due to the climatic conditions and vegetation. The presence of *Amanita chrysoleuca* and *Amanita craseoderma* was completely different and notable when related to the occurrence of *A. loosi* and *A. pantherina* i.e. they were completely absent in all other regions except Site-1. The findings of Walker *et al* [14] & Baptista *et al*. [15] showed that the number of macrofungal species were very well correlated with the temperature, humidity, and organic matter content which reflected its consistency with present results.

Data on fungal distribution and biodiversity are fragmentary, certain patterns are robust and are worthy of future consideration. Temperature and moisture are prerequisite factors for hunting mushrooms hence rainy season where temperature and moisture in the environment supports the growth of macrofungi was considered for the survey. Hurdles from seasonal variation such as rainfall variability affects fungal diversity, even their extreme diversity renders their inventoryization difficult [16]. Macrotermiteinae termites showed obligate symbiosis with the genus...
Termitomyces, however the beneficial relation and mode of association between both of them are not clearly known. Several studies explained that Termitomyces can play a significant role in the degradation of cellulose to smaller units that can be used by the fungus growing termites [17-21]. The distributions of these mushrooms are extensively found in Indian context at different forest regions [22-25].

The published data on Russulaceae from the ecological aspect are sparse and insufficient [23]. All the species of these fungi are thought to be obligatory symbionts which in turn form ectomycorrhizal relation with many plants of Gymnosperms and Angiosperms family. This association is also reported to provide a barrier against the pathogenic attack [26-28]. Russula lepida was the highest distributed mushroom in all the regions of Odisha forests especially in the (Site-1,5,6) (76.92 %) followed by (Site-2,4) (Figure 5 & 6). R. rosea was the second highest occurred mushroom (71.79%) in the varied forest divisions. (Site-1,5) showed the highest number of this macrofungi. R. brevipes was luxuriantly distributed among the (Site-5,6) forests where as it was moderately distributed in the (Site-1,2). The frequency of the occurrence of R. xeramphelina and R. nigricans was nearly equal, where former as well as later was highly abundant in (Site-5) (28.22% and 28.20% respectively). R. vesca and R. aurata was the least occurred mushroom among all other Russula species studied, which was only found in the (Site-1). The frequency of distribution of R. virescens was 7.69 % which occurred in (Site-1,6). The presence of large spherical cells, ‘sphaerocysts’ in stipe is an important characteristic feature distinguishing the members of Russulaceae from other mushrooms [29]. All the Russula species were found through the early rainy season to the late rainy season during cool and humid climatic conditions and were distributed either in the form of dense clusters or as a shelving masses on the dead decaying leaf litter scattered in the grasslands mainly near the Shorea robusta trees. This may be a probable host for this organism. This observation matches with the findings of Karwa & Rai [9] who found that availability of macrofungal species greatly depends upon availability of a particular type of decomposing matter along with its current state.

Figure 5: Map of Odisha representing different sites of the collection of Mushrooms.

Figure 6: Representing the field photograph of Mushrooms.

Citation: Tripathy AA, Rajoriya A, Gupta N (2015) Tapping Unexplored Macrofungi: Occurrence and Distribution of Amanita, Russula and Termitomyces Species in the Different Forest Divisions of Odisha, India. Adv Plants Agric Res 2(6): 00074. DOI: 10.15406/apar.2015.02.00074
Conclusion

Thus, by summarizing previous scientific findings and present knowledge it may be concluded that mushrooms are an integral part of the forest ecosystem as they make micronutrients available as food for their partner. This survey study identified the presence of some uncommon but edible mushrooms species in the study areas. Diversified results were observed throughout the survey studies which lead to the conclusion that changes in vegetation structure and tree species composition play an important role for the species diversity, especially in the case of Russula which was scattered in the leaf litter embedded over the grassland. Change in the diversity of a Russula species of mushroom was not much related with altitude which may be the determining reason for macromycetes diversity and other macrofungi. The distribution of Amanita species may be an organism of interest whose population greatly varied with the change in altitude. The changing an ecosystem either by deforestations or by environmental driven policies adversely affects germination of delicate fungi. The changes in forest composition due to geographical succession, disturbance thus, directly interfere with the fructification of sporocarps, hence abundance and diversity of plant interactive mushrooms especially ectomycorrhizal fungi which mainly rely on carbohydrates from their tree hosts will be adversely effected.
This type of study correlates with the climatic change and floral diversity, thus, growth of macrofungi may be considered as a parameter for monitoring the ecological succession and other adverse urbanization effect such as environmental pollution.

Acknowledgement

The financial support from Ministry of Environment and Forests, Govt. of India (Project no. 22-24/2010 CS1) and Forest and Environment Department, Govt. of Odisha (State Plan Project) is gratefully acknowledged.

References

1. Kadri HA (2008) Classification of mushroom into two groups, Poisonous (toad stools) and edible mushroom. New Jersey Journal of Mycology 1: 1-8.
2. Chandrawati NK Tripathi NN (2006) Diversity of wild mushrooms in forest of Gorakhpur region. National Symposium on Microbial Diversity and Plant Health Problems, Gorakhpur: p. 31.
3. Water JR, Mc Kelvey KS, Luomr DL, Zabel CJ (1997) Forest Ecology and Management 96: 155-166.
4. Manzi P, Gambelli L, Marconi S, Vivanti V, Pizzoferrato L (1999) Nutrients in edible mushroom: An inter-species comparative study. Food Chemistry 65: 477-482.
5. Asfors KE, Ley K (1993) Sulfated polysaccharides in inflammation. Journal of Laboratory and Clinical Medicine 121: 201-202.
6. Longvah T, Deosthale YG (1998) Compositional and nutritional studies on edible wild mushrooms from northeast India. Food Chemistry 63: 331-334.
7. Stojchev G, Asan A, Gucin, F (1998) Some macrofungi species of European part of Turkey. Turkish journal of Botany 22: 341-346.
8. Swapna S, Abrar S, Krishnapa M (2008) Diversity of macrofungi in semi-evergreen and moist deciduous forest of Shimoga District, Karnataka, India. Journal of Mycology and Plant Pathology 38(1): 21-26.
9. Karwa A, Rai MK (2010) Tapping into the edible fungi biodiversity of Central India. Biodiversitas 11(2): 97-101.
10. Sawhase NP, Worapon GJ, Vinijamun T (2011) Morphological and molecular studies of selected Termitomyces species collected from 8 districts of Kanchanaburi Province, Thailand. Thai Journal of Agricultural Science 44: 183-196.
11. Senthiralaaru G (2014) Diversity of agaries (gilled mushrooms) of Maharashtra, India. Current Research in Environmental & Applied Mycology 4(1): 58-78.
12. Sathe AV, Deshpande S (1980) Agaricales (Mushrooms) of Maharashtra State. Agaricales (Mushrooms) of South West India. Maharashtra Association for the Cultivation of Science, Research Institute 8: 9-42.
13. Sammee R, Tulloss RE, Lumyong B, Dell B, Lumyongs S (2008) Studies on Amanita (Basidiomycetes: Amanitaceae) in Northern Thailand. Fungal Diversity 32: 97-123.
14. Walker JF, Miller OK, Horton JL (2005) Hyperdiversity of ectomycorrhizal fungi assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains. Molecular Ecology 14: 829-838.
15. Baptista P, Martins A, Tavares RM, Lino-Neto T (2010) Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Tra’s-os-Montes region (Northeast Portugal). Fungal Ecology 3: 9-19.
16. Muller GM, Bills GF, Foster MS (2004) Biodiversity of fungi inventory and monitoring method. Elsevier Academic Press San Diego.
17. Martin MM, Martin JS (1978) The distribution and origins of the cellulolytic enzymes of the higher termite, Macrotermes natalensis. Physiological Zoology 52: 11-21.
18. Martin MM (1987) Invertebrate microbial interaction. Ingested fungal enzymes in arthropod biology. Comstock, Ithaca, New York.
19. Rouland C, Lenoir F, Lebape M (1991) The role of the symbiotic fungus in the digestive metabolism of several species of fungus growing termites. Comparative Biochemistry and Physiology 99(4): 657-663.
20. Ati NS, Saini SS, Kaur A (2000) Taxonomical studies on Agarics from Punjab - The genus Leptia (Pers. ex Fr) Gray. Mush Res 9(2): 71-78.
21. Pegler N, Vanhaeckem (1994) Termitomyces of Southeast Asia. Kew Bulletin 49: 717-736.
22. Vrinda VB, Prindeep CK, Abraham TK (2002) Termitomyces umkowaanii (Cook and Mass) Rekl- an edible Mushroom from Western Ghats. Mushroom Research 11: 7-8.
23. Adamčík S, Rípková S, Zaliberová M (2006) Diversity of Russulaceae in the Vihorlatské vrchy Mts. (Slovakia). Czech Mycology 58(1-2): 43-66.
24. Tibuwad D (2012) Termitomyces species from Tanzania, their cultural properties and unequaled basidiopores. Journal of Biology and Life Science 3: 140-159.
25. Tibuwad D, Kivaisia K, Magingof SS (2010) Utility of the macro-micromorphological characteristics used in classifying the species of Termitomyces. Tanzanian Journal of Science 36: 31-45.
26. Marx DH (1997) Forest application of ectomycorrhizal fungus Pisolithus tinctorius. The Marcus Wallenberg foundation, Sweden.
27. Agger R (2002) Color Atlas of Ectomycorrhiza. 12th delivery, Einhorn Verlag Edward, Dientenurger, Germany.
28. Beenien L (2004) Die Gattung Russula. Untersuchungen zu ihrer Systematik anhand von Ektomykorrhizen. University of Munchen, Munchen, Germany.

Citation: Tripathy AA, Rajoriya A, Gupta N (2015) Tapping Unexplored Macrofungi: Occurrence and Distribution of Amanita, Russula and Termitomyces Species in the Different Forest Divisions of Odisha, India. Adv Plants Agric Res 2(6): 00074. DOI: 10.15406/apar.2015.02.00074
29. Mohanan C (2014) Macrophungal diversity in the Western Ghats, Kerala, India: members of Russulaceae. Journal of Threatened Taxa 6(4): 5636-5648.