Multiple Jet Production at Low Transverse Energies in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

The DØ Collaboration *

Fermi National Accelerator Laboratory, Batavia, Illinois 60510

(November 4, 2018)

Abstract

We present data on multiple jet production for transverse energies greater than 20 GeV in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. QCD calculations in the parton shower approximation (PYTHIA) and in the next-to-leading order approximation (JETRAD) show discrepancies with data for three and four-jet production. This disagreement is especially apparent in multiple jet angular and transverse momentum distributions.

*Submitted to the International Europhysics Conference on High Energy Physics, July 12-18, 2001, Budapest, Hungary, and XX International Symposium on Lepton and Photon Interactions at High Energies July 23 – 28, 2001, Rome, Italy.
T. Nunnemann, G.Z. Obrant, D. O’Neil, V. Oguri, B. Olivier, N. Oshima, P. Padley, L.J. Pan, K. Papageorgiou, A. Para, N. Parashar, R. Partridge, N. Parua, M. Paterno, A. Patwa, B. Pawlik, J. Perkins, M. Peters, O. Peters, P. Pétroff, R. Piegaa, H. Piekarz, B.G. Pope, E. Popkov, H.B. Prosper, S. Protopopescu, J. Qian, R. Raja, S. Rajagopalan, E. Ramberg, P.A. Rapidis, N.W. Reay, S. Reucroft, M. Ridel, M. Rijssenbeek, T. Rockwell, M. Roco, P. Rubinov, R. Ruchti, J. Rutherfoord, B.M. Sabirov, A. Santoro, L. Sawyer, R.D. Schamberger, H. Schellman, A. Schwartzman, N. Sen, E. Shabalina, R.K. Shivpuri, D. Shpakov, M. Shupe, R.A. Sidwell, V. Simak, H. Singh, J.B. Singh, V. Sirotenko, P. Slattery, E. Smith, R.P. Smith, R. Snihur, G.R. Snow, J. Snow, S. Snyder, J. Solomon, V. Sorín, M. Sosebee, N. Sotnikova, K. Soustruznik, M. Souza, N.R. Stanton, G. Steinbrück, R.W. Stephens, F. Stichelbaut, D. Stoker, V. Stolin, A. Stone, D.A. Stoyanova, M. Strauss, M. Strovink, L. Stuttle, A. Sznaajder, M. Talby, W. Taylor, S. Tentindo-Repond, S.M. Tripathi, T.G. Trippe, A.S. Turcôt, P.M. Tuts, P. van Gemmeren, V. Vaniev, R. Van Kooten, N. Varelas, L.S. Vertogradov, F. Villeneuve-Segui, A.A. Volkov, A.P. Vorobiev, H.D. Wahl, H. Wang, Z.-M. Wang, J. Warchol, G. Watts, M. Wayne, H. Weerts, A. White, J.T. White, D. Whiteson, J.A. Wightman, D.A. Wijngaarden, S. Willis, S.J. Wimpenny, J. Womersley, D.R. Wood, R. Yamada, P. Yamin, T. Yasuda, Y.A. Yatsunenko, K. Yip, S. Youssef, J. Yu, Z. Yu, M. Zanabria, H. Zheng, Z. Zhou, M. Zielinski, D. Zieminska, A. Zieminski, V. Zutshi, G.Z. Zverev, A. Zylberstejn

(DØ Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Institute of High Energy Physics, Beijing, People’s Republic of China
5Universidad de los Andes, Bogotá, Colombia
6Charles University, Center for Particle Physics, Prague, Czech Republic
7Institute of Physics, Academy of Sciences, Center for Particle Physics, Prague, Czech Republic
8Universidad San Francisco de Quito, Quito, Ecuador
9Institut des Sciences Nucléaires, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France
10CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
11Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Orsay, France
12LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
13DAPNIA/Service de Physique des Particules, CEA, Saclay, France
14Universität Mainz, Institut für Physik, Mainz, Germany
15Panjab University, Chandigarh, India
16Delhi University, Delhi, India
17Tata Institute of Fundamental Research, Mumbai, India
18Seoul National University, Seoul, Korea
19CINVESTAV, Mexico City, Mexico
20FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
University of Nijmegen/NIKHEF, Nijmegen, The Netherlands

Institute of Nuclear Physics, Kraków, Poland

Joint Institute for Nuclear Research, Dubna, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

Institute for High Energy Physics, Protvino, Russia

Lancaster University, Lancaster, United Kingdom

Imperial College, London, United Kingdom

University of Arizona, Tucson, Arizona 85721

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720

University of California, Davis, California 95616

California State University, Fresno, California 93740

University of California, Irvine, California 92697

University of California, Riverside, California 92521

Florida State University, Tallahassee, Florida 32306

University of Hawaii, Honolulu, Hawaii 96822

Fermi National Accelerator Laboratory, Batavia, Illinois 60510

University of Illinois at Chicago, Chicago, Illinois 60607

Northern Illinois University, DeKalb, Illinois 60115

Northwestern University, Evanston, Illinois 60208

Indiana University, Bloomington, Indiana 47405

University of Notre Dame, Notre Dame, Indiana 46556

Iowa State University, Ames, Iowa 50011

University of Kansas, Lawrence, Kansas 66045

Kansas State University, Manhattan, Kansas 66506

Louisiana Tech University, Ruston, Louisiana 71272

University of Maryland, College Park, Maryland 20742

Boston University, Boston, Massachusetts 02215

Northeastern University, Boston, Massachusetts 02115

University of Michigan, Ann Arbor, Michigan 48109

Michigan State University, East Lansing, Michigan 48824

University of Nebraska, Lincoln, Nebraska 68588

Columbia University, New York, New York 10027

University of Rochester, Rochester, New York 14627

State University of New York, Stony Brook, New York 11794

Brookhaven National Laboratory, Upton, New York 11973

Langston University, Langston, Oklahoma 73050

University of Oklahoma, Norman, Oklahoma 73019

Brown University, Providence, Rhode Island 02912

University of Texas, Arlington, Texas 76019

Texas A&M University, College Station, Texas 77843

Rice University, Houston, Texas 77005

University of Virginia, Charlottesville, Virginia 22901

University of Washington, Seattle, Washington 98195

Petersburg Nuclear Physics Institute, Gatchina, Russia
The study of jet production at high transverse energy was one of the main goals of the 1993–1995 run of the Fermilab Tevatron collider, and the results have been compared with leading-order QCD predictions by both the CDF [1] and DØ [2] collaborations. These high-\(E_T\) data, where \(E_T\) is the transverse energy of the jet were described satisfactorily by complete tree-level leading order 2 \(\rightarrow\) \(N\) QCD calculations [3] and by the HERWIG parton shower Monte Carlo [4]. In this paper, we describe studies of the complementary kinematic region of \(Q^2/\hat{s} \ll 1\), where \(Q^2\) is the square of the momentum transfer between partons, which we set equal to \(E_T^2\), and \(\hat{s}\) is the square of center of mass energy in the rest frame of the collision. Here the BFKL [5] description of jet production differs significantly from that of the high-\(E_T\) DGLAP [6] kinematic domain of \(Q^2 \sim \hat{s}\). Measurement of jet production in this kinematic region can provide information on the evolution of higher-order jet processes.

We present results that extend our previous measurements of multiple jet production to lower \(E_T\). The data were collected with the DØ detector during 1993–1995 at a proton-antiproton center-of-mass energy of 1800 GeV. Jets were measured in the liquid-argon calorimeter, which has a segmentation of \(\Delta \eta \times \Delta \phi = 0.1 \times 0.1\), where \(\eta\) is pseudorapidity and \(\phi\) is azimuthal angle [7]. At least one calorimeter trigger tower \((\Delta \eta \times \Delta \phi = 0.2 \times 0.2)\) with \(E_T \geq 2\) GeV was required by the Level-1 trigger, and at least one jet with \(E_T \geq 12\) GeV was required by the Level-2 trigger [8]. Jets were reconstructed using a fixed cone algorithm with radius \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.7\) in \(\eta - \phi\) space. The jet reconstruction threshold was 8 GeV. If two jets overlapped and the shared transverse energy was more than 50% of the transverse energy of the lower-energy jet, the jets were merged; otherwise they were split into two jets. The integrated luminosity of this data sample was 1.96\(\pm\)0.29 nb\(^{-1}\). Instantaneous luminosity was restricted to be below 3 \(\times\)\(10^{30}\) cm\(^{-2}\)s\(^{-1}\) to minimize multiple \(p\bar{p}\) interactions.

To provide events of high quality, online and offline selection criteria were used to suppress multiple interactions, cosmic ray backgrounds, and spurious jets. Jets were restricted to the pseudorapidity interval \(|\eta| \leq 3\).

Jet energies have been corrected for calorimeter response, shower development, different sources of noise, and contributions from the underlying event [9]. These corrections comprise the largest source of systematic uncertainty on the jet cross section. The typical value of the correction to jet energy is 15 - 30%, with an uncertainty of 2-4%. In our study, we consider jets with \(E_T > 20\) GeV. For an \(n\)-inclusive jet event, the \(n\) leading jets must have transverse energy above the threshold value. The trigger efficiency is 0.85 for the inclusive \((n = 1)\) jet sample for energies near threshold, rising rapidly to unity at larger \(E_T\). The efficiency is essentially unity for \(n > 1\).

To compare with data, Monte Carlo (MC) events were generated using the PYTHIA 6.127 [10] and JETRAD [11] programs. These generators simulate particle-level jets in the parton-shower approximation, and parton-level jets in the next-to-leading order approximation, for PYTHIA and JETRAD, respectively. The smearing of jet transverse energies was implemented using the experimentally determined jet energy resolution [9], which is \(\approx 20\%\) at \(E_T = 20\) GeV. In PYTHIA, jets were reconstructed at the particle level using the DØ algorithm, and in JETRAD, at the parton level, using the Snowmass algorithm [8].

Distributions in transverse energy for the leading jet for \(n=1\) to \(n=4\) inclusive jet events are shown in Fig. 1 together with the results from PYTHIA simulations. In these and all other plots, the data has been corrected for inefficiencies and energy calibration, but not
for contributions from an underlying event. Also, we normalize the theory (increased by a factor of 1.3) to the observed two-jet cross section Fig. 1(b) for $E_T > 40$ GeV. Figure 2 shows the fractional difference (Data - Theory) / Theory for the E_T spectra in Fig. 1 with the systematic uncertainties, arising from uncertainties in jet-energy calibration and resolution. The theory is in agreement with the data for the single-inclusive jet sample in the entire E_T interval, and with the two-jet sample for most of the energy interval (some excess of data is observed at low E_T). However, for the three and four-jet samples, there is large excess relative to theory at low E_T and a deficit near 75 GeV. The shapes of the experimental and theoretical spectra are clearly different, and not reconcilable through re-normalization.

The systematic uncertainty on the cross section is due primarily to the uncertainty in the energy calibration. The uncertainty from energy resolution represents the main uncertainty in the MC. The uncertainty from the energy calibration can be estimated by considering spectra with ± 1 standard-deviation corrections to jet E_T. The same procedure can be used to derive the uncertainty due to jet resolution in the MC. At 25 GeV uncertainty in the three-jet cross section due to calibration is 36%, and the uncertainty in the MC due to resolution is 17%. In Fig. 2, the relative systematic uncertainties corresponding to the energy calibration added to a 15% uncertainty in luminosity are shown (in quadrature) by the solid lines centered about zero. The uncertainties from energy smearing are shown by the dashed lines near the data points. The total systematic uncertainties on the ratio are shown by the dotted lines. Because the systematic uncertainties are highly correlated in E_T (a change of the cross section in one bin is accompanied by a corresponding change in neighboring bins), the departure of the ratio from zero cannot be explained solely by systematic uncertainties.

To explore the discrepancies in three and four-jet production, we turn to observations of azimuthal distributions, distributions in summed transverse momenta, and three-jet studies. In Fig. 3(a) we plot the azimuthal difference between the leading two jets in events with two or more jets. Figures 3(b)-3(d) show the azimuthal difference between the first and second, first and third, and second and third highest-E_T jets in a three-jet event. In Fig. 3(a) we see the strong anticorrelation (in the transverse plane) expected of two-jet events. The distribution widens substantially in the three-jet sample (Fig. 3(b)-3(d)). The peaks correspond to the kinematic constraint of transverse momentum conservation for jets produced in hard QCD subprocesses. Altough, in general, PYTHIA reproduces the observed shapes, there is a large excess of events in the three-jet sample not consistent with expectation. In particular, there is a significant contribution to three-jet events with two jets back-to-back in the transverse plane near ($\Phi = \pi$).

Distributions in the square of the summed vector transverse momenta of jets $Q_T^2 = (E_{T1} + E_{T2} + \cdots + E_{Tn})^2$ shown in Fig. 4(a-c) indicate that the excess corresponds to events with a large imbalance. In fact, when these events are removed (with a requirement of a good balance in transverse momentum), the three-jet data and theory come into better agreement at small E_T. The shoulder at $Q_T^2 \sim 1600$ GeV2 in Fig. 4(a) is eliminated when the event sample is restricted to just two jets with E_T above 20 GeV, and no other jets between 8 and 20 GeV. This shoulder can consequently be associated with higher-order radiation.
To find the pair of jets \(\{i, j\}\) most likely to originate from the hard interaction (rather then from gluon Brehmsstrahlung), we define the scaled summed dijet vector transverse momenta: \(\mathbf{q}_{ij} = (\mathbf{E}_{Ti} + \mathbf{E}_{Tj}) / (\mathbf{E}_{Ti} + \mathbf{E}_{Tj})\). We choose the pair with the smallest magnitude of this vector and plot the distribution of the relative azimuthal angle \(\Phi_c\) between the jets in that pair Fig. 5(a). The data lie above theory in the region where two jets, reflecting a hard scatter, appears back-to-back \((\Phi_c = \pi)\). PYTHIA shows a broader distribution, and the prediction from JETRAD is peaked away from \(\Phi_c = \pi\) due to the presence of the third (radiated) jet.
Fig. 2. (Data - Theory)/Theory as a function of the transverse energy of the leading jet for (a) single-jet inclusive, (b) two-jet inclusive, (c) three-jet inclusive and (d) four-jet inclusive event samples.

Figures 5(b) and Fig. 5(c) show the azimuthal separation of the third jet from each of the two jets that correspond to the minimum q_{ij}^2. These distributions contain events only for $\pi - \Phi_c \leq 0.4$; that is, events in which the balanced jets are essentially back-to-back. When the third jet is correlated with the balanced jets, it will be expected to be emitted along or opposite to the balanced jets. The uncertainties from the energy calibration and luminosity are shown by the solid lines, and from the energy resolution by dashed lines. We see that the data has a wider distribution than PYTHIA, and much wider distribution than JETRAD. The third jet appears to be uncorrelated with the balanced jets, and is emitted at all angles. Our studies indicate that the observed differences in shape are not sensitive to modeling of the underlying event or contributions from multiple-parton scattering.
In summary, our data on multiple-jet production at low E_T show significant discrepancies with PYTHIA and JETRAD. This is observed in the distributions of the transverse energy of the leading jets (Fig. 1), in the square of the summed vector transverse momenta Q^2_T (Fig. 2), and in the three-jet angular distributions that suggest the presence of an uncorrelated jet (Fig. 3). Additional corrections to QCD calculations are therefore required to accommodate these results; higher-order or BFKL processes are possible candidates.

We thank the staffs at Fermilab and collaborating institutions for their contributions to this work, and acknowledge support from the Department of Energy and National Science Foundation (U.S.A.), Commissariat à L’Energie Atomique (France), State Committee for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), and CONICET and UBACyT (Argentina).
FIG. 4. Distributions in the square of the summed vector transverse momenta Q_T^2, for two-jet inclusive, three-jet inclusive and four-jet inclusive event samples (a-c). Histograms show the PYTHIA simulation.

FIG. 5. The distribution of the relative azimuthal angle in three-jet events, between the jets in the pair with the minimal scaled summed transverse momentum (a), and between the third jet and the other two leading E_T jets in the pair (b-c). Histograms show the PYTHIA simulation, and the open symbols the JETRAD simulation.
REFERENCES

[1] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 75, 608 (1995).
[2] S. Abachi et al. (DØ Collaboration), Phys. Rev. D 53, 6000 (1996).
[3] F.A. Berends and H. Kuijf, Nucl. Phys. B 353, 59 (1991);
 F.A. Berends, W.T. Giele and H. Kuijf, Nucl. Phys. B 333, 120 (1990); Phys. Lett. B 232, 266 (1990).
[4] G. Marchesini and B. Webber, Nucl. Phys. B 310, 461 (1988);
 G. Marchesini et al., Computer Phys. Commun. 67, 465 (1992).
[5] V. S. Fadin, E. A. Kuraev and L. N. Lipatov, Phys. Lett. B 60, 50 (1975);
 L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976);
 E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976); Sov. Phys. JETP 45, 199 (1977);
 Ya. Ya. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).
[6] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438, 675 (1972);
 L. N. Lipatov, Sov. J. Nucl. Phys. 20, 94, (1975);
 G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977);
 Yu. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
[7] S. Abachi et al. (DØ Collaboration), Nucl. Instr. and Methods A 338, 185 (1994).
[8] B. Abbott et al. (DØ Collaboration), Accepted by Phys. Rev. D (2001); FERMILAB-Pub-00/216-E; [hep-ex/0012046].
[9] B. Abbott et al. (DØ Collaboration), Phys. Rev. Lett. 86, 1707 (2001).
[10] T. Sjostrand, Computer Phys. Commun. 82, 74 (1994).
[11] W. T. Giele, E. W. N. Glover and David A. Kosower, Nucl. Phys. B403, 633 (1993);
 Phys. Rev. Lett. 73, 2019 (1994).