INNOVATIONS IN PROSTATE CANCER SPECIAL FEATURE: REVIEW ARTICLE

MR-guided radiotherapy for prostate cancer: state of the art and future perspectives

1,2KOBIKA SRITHARAN and 1,2ALISON TREE
1The Royal Marsden NHS Foundation Trust, London, United Kingdom
2The Institute of Cancer Research, London, United Kingdom

Address correspondence to: Dr Alison Tree
E-mail: alison.tree@icr.ac.uk

ABSTRACT
Advances in radiotherapy technology have increased precision of treatment delivery and in some tumour types, improved cure rates and decreased side effects. A new generation of radiotherapy machines, hybrids of an MRI scanner and a linear accelerator, has the potential to further transform the practice of radiation therapy in some cancers. Facilitating superior image quality and the ability to change the dose distribution online on a daily basis (termed “daily adaptive replanning”), MRI-guided radiotherapy machines allow for new possibilities including increasing dose, for hard to treat cancers, and more selective sparing of healthy tissues, where toxicity reduction is the key priority. These machines have already been used to treat most types of cancer, although experience is still in its infancy. This review summarises the potential and current evidence for MRI-guided radiotherapy, with a predominant focus on prostate cancer. Current advantages and disadvantages are discussed including a realistic appraisal of the likely potential to improve patient outcomes. In addition, horizon scanning for near-term possibilities for research and development will hopefully delineate the potential role for this technology over the next decade.

MR-GUIDED RADIOTHERAPY
In recent decades, advances in imaging and technology have led to improvements in target coverage and conformity in addition to normal tissue sparing in radiotherapy treatment delivery. From 3D conformal radiotherapy to intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and stereotactic body radiotherapy (SBRT), radiotherapy planning and delivery has become increasingly complex.

The benefits of integrating MRI into the radiotherapy treatment pathway has been reported as early as 1986.1 These include, but are not limited to, superior soft tissue contrast, the lack of ionising radiation, the ability to acquire non-invasive functional imaging and the possibility of real-time imaging during beam delivery. Most experience of MR in radiotherapy so far has been with respect to improved target delineation on MRI.

Image-guided radiotherapy (IGRT) has been a key development in the delivery of radiotherapy and is now utilised in most radiotherapy treatments. It refers to imaging that is taken in the treatment room at the start of, or during, each fraction followed by individual positional adjustments to increase accuracy and ensure the planned dose is delivered to the target.2 The most recent technological advancement is the creation of MRI-radiotherapy hybrid systems, by virtue of its superior image quality. MRI-guided RT (MRgRT) allows the possibility of acquiring MR images at any time point during the radiotherapy treatment and its implementation and use is rapidly expanding.

Radiotherapy is used in the treatment of half of all patients with cancer and cures up to 40% of patients.3 Prostate cancer is the most common cancer in the UK, with over 47,000 men diagnosed each year, accounting for over a quarter of all new male cancer diagnoses.4 The majority of patients diagnosed with localised disease are treated with external beam radiotherapy (EBRT). As the α/β ratio of prostate is low, at <2 Gy,5 many trials have proven hypofractionation (around 3 Gy per fraction) to be non-inferior to standard fractionation (2 Gy per fraction).6,7 There is now a body of Level II evidence suggesting that ultrahypofractionation with 5 fractions may be equivalent to 20 fraction treatments. This is being tested in the PACE B8 and PACE C trials.
This review explores the current role of the MR-Linac in clinical practice, its benefits, limitations, and potential role in the future, with a focus on prostate cancer.

MRigRT systems

Multiple MRigRT systems are available with varying magnetic field strengths (Table 1), of which only two are being used in a clinical setting.9,10 Strengths and limitations of MR linac systems are described in Table 2.

In 2014, the Viewray MRIdian system (ViewRay Inc, Oakwood Village, OH) was the first to be used to treat patients, combining a tricobalt-60 source with a 0.35T MR imaging system and since 2017, a 6-Megavoltage Linac with a 0.35T MRI.11,12 The Elekta Unity system (AB, Stockholm, Sweden) has been in clinical use since 2017 and has a 1.5T imaging system which is integrated with a 7-Megavoltage linear accelerator.13,14 Two other systems currently in development are being used primarily for research; an Australian15 and a Canadian system.16

STATE OF THE ART TECHNOLOGY: ADVANTAGES AND LIMITATIONS

Advantages

Superior image quality

The PTV (planning target volume) encompasses the target requiring treatment plus a margin to account for setup and patient movement error. This margin can be up to 15 mm for some radical treatments and will inevitably encompass surrounding healthy tissue. Target delineation is said to be the weakest link in the delivery of accurate radiotherapy.17

The primary advantage of an MR-integrated radiotherapy system is that of superior soft tissue contrast when compared to X-ray-based imaging.18 This is highlighted in Figure 1, which displays the difference between MR and CT when visualising soft tissue anatomy; the prostate and surrounding tissues, and their interfaces, are more clearly demarcated on the MRI.

In prostate cancer, the clinical target volume drawn on MR images has been shown to be smaller, by around 30%,19 and more consistent when compared to CT-derived contours.20,21 Contouring on MRIs has been shown to reduce interobserver variability in prostate cancer22 and improve precision in other tumour sites such as brain, nasopharynx as well as with critical structures such as the brachial plexus.23 Therefore, with a clearer anatomical picture the volume of normal tissue irradiated could be reduced, due to a combination of smaller volumes and margins.24 The smaller volumes could lead to a reduction in treatment toxicity.25,26

In addition, precise delivery of radiation dose to the PTV during the course of treatment is dependent on visualisation of the organs. Current IGRT techniques include kV-imaging and CBCTs, which can be affected by motion artefacts and poor tissue contrast.9,20

Whether the superior image quality of MRgRT truly offers a therapeutic benefit, when compared to the use of current image guidance techniques such as fiducials and cone beam CTs used with standard linacs, is yet to be seen. This is particularly pertinent in prostate cancer, where rates of cure are high and that of toxicity is low even with standard techniques.

Limitations

- Technical: Geometric distortions and artefacts can impact the MR image quality. Electron return effect. Lack of non-coplanar & electron beams
- Online adaptive radiotherapy
- Limitations with bore size & craniocaudal field size length
- Real-time cross-sectional imaging
- Longer treatment times. Noisy during imaging. Not suitable for claustrophobic patients
- No additional radiation exposure with imaging
- Multi-disciplinary team needed to deliver treatment daily
- Additional MR imaging possible daily during treatment including functional imaging
- E Currently a research tool

Table 1. MRigRT systems currently available, either commercially or for research purposes

MR-iRT system	Imaging strength	Linac	Bore size
Viewray MRIdian system (12)	0.35T	Integrates either tricobalt-60 or 6 MV linac	70cm closed bore
(Viewray Technologies Inc, Oakwood Village, OH)			
Elekta MR-Linac (13) (Elekta AB, Stockholm, Sweden)	1.5T	7 MV	70cm closed bore
Sydney Inline Australian system (15) (Australian MRI-Linac Program)	1.0T	6 MV	82cm open bore
Aurora RT system (16) (MagnetTx, Alberta, Canada)	0.6T	6 MV	60cm

MRigRT, MRI-guided RT.

Table 2. This table summarises the advantages and limitations of the MR-Linac. Each point is described in more detail in the text.

Benefits	Limitations
Superior image quality compared to CT	Technical: Geometric distortions and artefacts can impact the MR image quality. Electron return effect. Lack of non-coplanar & electron beams
Online adaptive radiotherapy	Limitations with bore size & craniocaudal field size length
Real-time cross-sectional imaging	Longer treatment times. Noisy during imaging. Not suitable for claustrophobic patients
No additional radiation exposure with imaging	Multi-disciplinary team needed to deliver treatment daily
Additional MR imaging possible daily during treatment including functional imaging	E Currently a research tool

MDT, multidisciplinary team.
Online adaptive radiotherapy

One of the unique features of MRigRT systems is the integration of online adaptive radiotherapy (ART). Although current IGRT techniques allow couch corrections to account for interfractional changes, it does not account for complex geometric changes such as target rotation, deformation and weight loss. Due to poorer soft tissue image quality, the accuracy of current IGRT techniques is limited and often large PTV margins are applied to account for this.

In prostate cancer, movement of the seminal vesicles and lymph nodes may occur independent to the prostate and, if in conflict, the prostate is prioritised, potentially missing the other targets. Interestingly, a study demonstrated that approximately a third of fractions would benefit from replanning, when the original plan is overlayed on the daily CBCT due to the difference in delivered dose compared to the planned dose. In some tumour types such as the brain, there is no evidence that conventional IGRT is inferior to MRigRT as intrafraction motion is negligible and thus, using X-ray based localisation is likely to be sufficient. MRIgRT provides new possibilities of biologically targeted adaptive dose delivery and these are currently being tested.

Online ART modifies the treatment based on changes in the anatomy on the day of the treatment. This will account for interfractional movement, changes to the target organ and varying shape and size of the organs at risk during radiotherapy; this is demonstrated in Figure 2, where the small bowel is seen to be moving in and out of the radiotherapy field on different days. The target itself may shrink during a course of treatment (e.g. cervix cancer) or the target may deform or swell during hypofractionated treatments. With daily adaptive recontouring and replanning, the need for rigid immobilisation and invasive tracking...
methods such as fiducial markers become redundant. This can lead to a shortening of the patient workflow and improvement of the patient experience.

The potential benefits highlighted above of online ART may become more pertinent in hypofractionated treatments. Hypofractionation is likely to become standard of care for some tumour types and has been shown to be effective in curing some of the more common tumour sites; prostate, lung and breast. With fewer fractions, the precision of radiotherapy delivery with each fraction becomes more important. MRIgRT may have a role to play in this context; the HERMES trial is currently studying two fraction versus five fraction MRIgRT for prostate cancer. With only two opportunities to deliver the intended dose, daily anatomical correction is considered mandatory. It is conceivable therefore that with ART, the overall dose to the target will increase and the dose to the organs at risk can be reduced, leading to a reduction in toxicity.

There is a limited capacity on MR linac machines, relative to standard machines and treatment times are longer. Therefore, informed by further research, patients and tumour types who will reap the most benefit from adaptive radiotherapy need to be prioritised.

Real-time imaging

Real-time cross-sectional imaging during treatment is a feature not commonly available with standard radiotherapy treatments. This allows monitoring of intrafractional movement of the target and organs at risk during treatment, thus giving the opportunity to gate treatment if necessary, such as pausing treatment when rectal gas passes through the rectum displacing the prostate. The prostate can move during treatment, either independently or due to increased bladder filling and/or movement of gas through the rectum. This movement has the potential to impact the dosimetric coverage. Studies have shown prostate displacement to occur during treatment; in one study a shift of >3 mm was seen over approximately 13% of the treatment time. A more recent study using data from patients treated on the MR-Linac for prostate cancer show only small anatomical displacements (<3 mm) in most patients. However, in those where larger displacements took place, the dose delivered was substantially different to that intended. It is anticipated that tracking and trailing of dose (i.e. dose follows the target if it moves) will soon be a reality for commercial MRIgRT systems.

Current IGRT techniques on standard linacs do not account for this movement and it is largely mitigated (in terms of target coverage) by the PTV margins. Cyberknife (Accuray, Sunnyvale), however, accounts for intrafraction movement by tracking fiducials with kV imaging throughout treatment. Yet, these treatments are sometimes lengthy and require the invasive procedure of inserting fiducials, and thus will not be suitable for all patients.

Radiation exposure

The use of MRI for image guidance removes the additional radiation exposure delivered from X-ray-based image guidance. MRIgRT thus allows frequent verification as well as continuous ‘real-time imaging’ radiation free. The dose from daily X-ray based image guidance (8–18 mGy daily) may be considered negligible in the setting of delivering large doses of curative radiation but continuous ‘real-time’ X-ray tracking daily over a course of treatment may increase this dose to a more clinically meaningful level.

The lack of additional radiation exposure with MRI may make this an ideal treatment modality for paediatric patients for whom secondary malignancy risk is a key concern. This benefit will need to be weighed against potential drawbacks such as anaesthetising a child, if needed to ensure tolerability, and technical considerations such as MR safe anaesthetic equipment.

Limitations

Technical considerations

MR imaging, although superior to X-ray-based imaging, is also susceptible to external factors affecting quality such as random motion. Ensuring a high geometric fidelity of the MR images is also paramount, impacting dose calculation and spatial accuracy of the target and organs at risk. Patients with some metal implants may be unsuitable due to distortions affecting the image quality or safety.

The electron return effect or Lorentz force is where secondary electrons move in a circular manner due to the existence of a magnetic field. This effect is especially evident around the area where the beam exits and at tissue and air interfaces. This can impact the dose delivered, more so in certain tumour types such as whole breast and needs to be accounted for during the planning process.

MRIgRT systems currently do not allow non-coplanar beams or electron beams; both of which are used for multiple tumour types. Whilst dosimetric benefit of non-coplanar beams is not seen for all tumours, this does limit potential solutions for difficult plans.

Size limitations

The bore size of the MR-Linacs is fixed; the Elekta Unity MR Linac is 70 cm in diameter and closed. Patients who are larger in habitus, or those with significant claustrophobia, will not be suitable for treatment. The bore size can also limit the range of positions that can be reproduced.

The maximum field size in the craniocaudal patient direction on the Elekta Unity MR-Linac is 22 cm which is too small for some patients needing lymph node irradiation in the pelvis or other longer fields. With this field size, 80% of plans would be suitable for the MR-Linac with a 1 cm margin; all prostate and brain patients were found to be suitable. However, this falls to 61% with larger tumour volumes such as cervix and some head and neck plans.

Workflow and patient experience

Treatment times are much longer in duration compared to a standard linac; up to 1 hour has been reported for some sites and the average treatment duration for prostate cancer is 45 min in comparison to current treatment times on a standard linac with IMRT of approximately 10 min. Approximately 5% of patients...
have found the treatment on an MR linac lengthy.48 This is due to the time taken for recontouring by the clinician, optimisation of the plan to meet the constraints on the day and dose delivery.

The long treatment times may lead to greater intrafraction motion and thus the original plan created may no longer be valid and a positional shift and repeat optimisation of the plan may need to take place, further increasing the treatment time. Enhancing patient comfort on the couch is therefore crucial. Patients are provided with noise reducing headphones through which music can be played and interaction can occur between the patient and radiographers. Overall, the patient experience has been encouraging but the most frequently reported complaints were of noise (this was the most common complaint), parathesia and cold.49,50

Patients who complain of claustrophobia will be unsuitable for treatment on the MR linac as well as those who have contraindications to MR imaging such as cardiac implants.51

Resource intensive

Delivering each treatment on the MR-Linac requires a multidisciplinary team; a radiation oncologist, radiographers, and a physicist in comparison to treatment on a standard linac which usually only requires radiographers. For this reason, at The Royal Marsden Hospital, the standard MR Linac day would only treat up to seven patients a day, whereas on a standard linac the throughput is much higher. Work is underway to improve efficiency and reduce the number of staff needed at the console, e.g. training radiographers to contour52 and to plan. The use of this new technology will also require additional training for all staff in areas such as MR safety and MR anatomy.

Cost

The adoption of MR-Linacs is increasing rapidly but machines remain limited in number. The cost of MRgRT systems is much greater than conventional linacs and this is due to a combination of the initial capital cost but also the cost of preparation of the site and service contracts. Radiofrequency shielding is an additional cost, which is not required for conventional linacs.

MR-LINAC IN CLINICAL PRACTICE AT OUR INSTITUTION

At our institution, an Elekta (Elekta AB, Stockholm, Sweden) Unity MR-Linac has been in clinical use since 2018. Patients are only treated within a clinical trial. We recruit all patients to the MOMENTUM study,53 which is a collaborative international database collecting technical, imaging and patient data on over 2000 patients to date. Initially, in prostate cancer, we also conducted the PRISM study,54,55 treating a total of 27 patients with intermediate risk prostate cancer with 20 fraction treatment. Currently, prostate patients treated on the MR-Linac mostly receive five fractions.

The workflow for treatment is shown in Figure 3. The online adaptive workflow produces a new radiotherapy plan for patients, based on their anatomy, for every fraction (Figure 4). Once the patient is set up in the correct position, a session image is acquired. The

Figure 3. Schematic of a treatment workflow on the MR Linac at the Royal Marsden Hospital (Figure adapted from prototype by Alex Dunlop and Helen McNair, RMH).
clinician or trained radiographer reviews the image and assesses for a change in anatomy. If present, the target, and/or organs at risk contours are modified or recontoured and reoptimisation of the plan is carried out by the physicist. A verification image is obtained to assess for intrafractional movement. If significant, a positional shift is applied to the new plan (‘Adapt-to-Position’) to ensure target coverage. The workflow for the Viewray MRIdian differs slightly and more details can be found in Tocco et al.46

FUTURE
MR-only workflow
MR-only workflow describes the procedures needed for radiotherapy planning based solely on MR, without a CT planning scan. This may reduce hospital visits for the patient by negating the need for pre-treatment planning imaging. It will also reduce costs and lower the total patient radiation dose.41 It will also overcome any contouring discrepancies caused by the introduction of systematic errors from inaccurate co-registration of the planning CT and MRI during the pre-planning process.46,56 In prostate cancer, this arises usually from a discrepancy in bladder and rectal volumes between the two scans.

The main necessary step in implementation is the generation of synthetic CTs to provide electron density information to enable dose calculation26 which require high geometric accuracy of the MR images. MR-only workflows have been shown to be feasible and have similar dosimetric accuracy as CT-based electron density planning in pelvic cancers.57 Clinical implementation of this approach is in process.

AUTOSEGMENTATION
Currently, contours are automatically propagated from the initial MR to the session MR on the day of treatment following deformable registration. Most radiation oncologists then modify these contours rather than starting from scratch. Autosegmentation may improve the workflow in the future by reducing the time needed for delineation and even avoiding the need for recontouring. This will also accelerate time to beam-on, reducing time for motion to occur.

Expansion of clinical roles
The role of the radiographer is likely to expand to take the lead in the online workflow. This may reduce the need for a clinician to be present during treatment and could improve patient throughput. A 'clinician-lite' approach has been adopted at the Christie for simple prostate treatments58 and at our institution, we are in the process of training the radiographers to perform online contouring. Pathmanathan et al demonstrated good agreement between radiographer contours and the gold-standard on MRI.51

Real-time imaging
Real-time imaging during radiotherapy can be invaluable for some tumour types. It offers the possibility of adjusting the patient, or even pausing treatment, when the internal anatomy changes during treatment leading to the target moving out of the field or when an organ at risk moves into a high dose area; this can occur in cases of peristalsis, air in the rectum and breathing.

Logically, one would presume that if there is a benefit for MR-guided adaptive radiotherapy, it would be largest for ultra-hypofractionation, due to the inclusion of MR guidance and in-beam imaging. Level I evidence is however currently lacking to demonstrate its benefit.

The ultimate goal would be that of intrafraction adaptive replanning whereby a plan is being adapted during beam delivery,59 and thus potentially negating the need for a PTV margin. This would be especially useful in ultra-hypofractionated regimens60 and would be expected to reduce toxicity of treatment.

Dose escalation and reirradiation
In prostate cancer, the dominant intraprostatic lesion (DIL) is known to be the most common site of local relapse. These can be visualised on MR sequences which offers the possibility of dose escalation under direct vision, expecting that this will lead to greater tumour control.51,62 MRgRT with adaptation offers the opportunity of reirradiation of tumours with reduced margins.

MR imaging during treatment
The MR-Linac offers the ability to collect multiple MRI images daily, before and during treatment. The quality of these images are not as high as those obtained from a 3T diagnostic MRI machine, yet it provides a wealth of data which otherwise would have been difficult to obtain, as daily diagnostic MR imaging is expensive and time consuming. This information will enable radiation oncologists to study changes in tumours during the course of radiation treatment and carry out dose-response studies.

One of the more exciting possibilities of MR-guided radiotherapy is the ability to perform functional imaging such as diffusion-weighted imaging (DWI) during treatment.63 DWI is sensitive to the Brownian motion of water within tissues and can be used to discriminate malignant from benign tissue. Malignant tumours have a low ADC value.64 DWI images are also used to monitor response to treatment, post-chemotherapy or radiotherapy, to differentiate post-therapy changes from active tumour and to detect recurrent tumour.65
This can provide information about the biology about the tumour and may act as a predictive biomarker for certain tumour sites as well as an indicator of tumour response to treatment. It has been demonstrated that changes on DWI images may be useful for prediction and early assessment of pathologic response to radiotherapy with a better accuracy than volumetric measurements in rectal cancer. In prostate cancer, the ADC values have been shown to increase in the initial few weeks of therapy, more markedly in those patients who have better clinical outcomes. The same pattern has been seen in other tumour sites. ADC as an imaging biomarker is sensitive but lacks specificity; it can be affected by factors such as necrosis and altered vasculature.

Obtaining functional MR images could be done during the online workflow, hence would not take additional time. With these images, daily response assessment can be carried out which can influence the dose delivered to parts of the organ; e.g. dose escalation to areas with persistent restricted diffusion as these areas are likely to harbour a more radioresistant phenotype of the tumour. The MR-Linac has been shown to identify these areas in some tumours. The clinical value of these biological markers are yet to be determined and needs further exploration.

CONCLUSIONS

MR-guided radiotherapy remains in its early stages but is exciting and rapidly evolving. It offers greater possibilities for image-guided radiotherapy, thus offering opportunities for dose-escalation and reduction in toxicity. The development of individualised treatment plans is possible due to the combination of superior soft tissue contrast, real-time imaging and online daily adaptation. We may see a reduction of margins, increase in the dose per fraction and the use of functional data to guide treatment. However, at present, it remains resource and time intensive to deliver and is not yet widely available. Although the theoretical possibilities of this new technology is numerous, prospective randomised clinical trials and extensive clinical validation are required before clear benefits for MRgRT can be claimed.

ACKNOWLEDGEMENTS

AT would like to acknowledge the support of Cancer Research UK (C33589/A28284 and C7224/A28724). KS and AT would like to thank the Royal Marsden Cancer Charity for their support. This paper represents independent research part funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at the Royal Marsden NHS Foundation Trust and the Institute of Cancer Research. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

COMPETING INTERESTS

AT declares research grants from Elekta, Varian and Accuray and travel assistance/honoraria from Elekta, Accuray and Janssen.
Adaptive radiotherapy - a systematic review. *Radiother Oncol* 2016; 119: 371–80. https://doi.org/10.1016/j.radonc.2016.04.014

Langen KM, Willoughby TR, Meeks SL, Santhanam A, Cunningham A, et al. Observations on real-time prostate gland motion using electromagnetic tracking. *Int J Radiat Oncol Biol Phys* 2008; 71: 1084–90. https://doi.org/10.1016/j.ijrobp.2007.11.054

Menten MJ, Mohajer JK, Nilawar R, Berberoth J, Dunlop A, et al. Automatic reconstruction of the delivered dose of the day using mr-linac treatment log files and online mr imaging. *Radiother Oncol* 2020; 145: 88–94. https://doi.org/10.1016/j.radonc.2019.12.010

Henke LE, Green OL, Schiff J, Rodriguez VL, Mutic S, et al. First reported case of pediatric radiation treatment with magnetic resonance image guided radiation therapy. *Adv Radiat Oncol* 2019; 4: 233–36. https://doi.org/10.1016/j.adro.2019.01.008

van Herk M, Remeijer P, Rasch C, Lesesque JV, et al. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. *Int J Radiat Oncol Biol Phys* 2000; 47: 1121–35. https://doi.org/10.1016/s0360-3016(00)00351-4

Pathmanathan AU, Schmidt MA, Brand DH, Kouzi E, van As NJ, et al. Improving fiducial and prostate capsule visualization for radiotherapy planning using mr. *J Appl Clin Med Phys* 2019; 20: 27–36. https://doi.org/10.1002/acm2.12529

Pathmanathan AU, McNair HA, Schmidt MA, Brand DH, Delacroux L, et al. Comparison of prostate delineation on multimodality imaging for mr-guided radiotherapy. *Br J Radiol* 2019; 92(1095): 20180948. https://doi.org/10.1259/bjr.20180948

Parker CC, Damyanovich A, Haycock T, Haider M, Bayley A, et al. Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration. *Radiother Oncol* 2003; 66: 217–24. https://doi.org/10.1016/s0360-3016(00)00347-3

Pollack A, Walker G, Horowitz EM, Price R, Feigenberg S, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. *J Clin Oncol* 2013; 31: 3860–68. https://doi.org/10.1200/JCO.2013.51.1972

Fakis AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase ii study. *Int J Radiat Oncol Biol Phys* 2009; 75: 677–82. https://doi.org/10.1016/j.ijrobp.2008.11.042

Whelan TJ, Pignon J-P, Levine MN, Julian JA, MacKenzie R, et al. Long-term results of hypofractionated radiation therapy for breast cancer. *N Engl J Med* 2010; 362: 513–20. https://doi.org/10.1056/NEJMoa0906260

Hormuzdi AJ, Cheung AK, Leibovich BC, et al. The association between radiation dose and the risk of second primary cancers in prostate cancer survivors. *Radiat Oncol* 2016; 11(1): 80. https://doi.org/10.1186/s13014-016-0230-8

Menten MJ, Fast MF, Nill S, et al. Lung stereotactic body radiation therapy with an mr-linac – Quantifying the impact of the magnetic field and real-time tumor tracking—the impact of a magnetic field and real-time MLC tumor tracking on lung SBRT. *Radiother Oncol* 2016; 119(3): 461–6. https://doi.org/10.1016/j.radonc.2016.04.014

Br J Radiol 95:20210800
and a ct-based radiotherapy workflow for prostate treatments. *Radiat Oncol* 2009; 4: 54. https://doi.org/10.1186/1748-717X-4-54

57. Bird D, Henry AM, Sebag-Montefiore D, Buckley DL, Al-Qaisieh B, et al. A systematic review of the clinical implementation of pelvic magnetic resonance imaging-only planning for external beam radiation therapy. *Int J Radiat Oncol Biol Phys* 2019; 105: 479–92. https://doi.org/10.1016/j.ijrobp.2019.06.2530

58. Hales RB, Rodgers J, Whiteside L, McDaid L, Berresford J, et al. Therapeutic radiographers at the helm: moving towards radiographer-led mr-guided radiotherapy. *J Med Imaging Radiat Sci* 2020; 51: 364–72. https://doi.org/10.1016/j.jmir.2020.05.001

59. Kontaxis C, Bol GH, Lagendijk JJW, Raaymakers BW, et al. A new methodology for inter- and intrafraction plan adaptation for the mr-linac. *Phys Med Biol* 2015; 60: 7485–97. https://doi.org/10.1088/0031-9155/60/19/7485

60. Pathmanathan AU, van As NJ, Kerkmeijer LGW, Christodoulou J, Lawton CAI, et al. Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment? *Int J Radiat Oncol Biol Phys* 2018; 100: 361–73. https://doi.org/10.1016/j.ijrobp.2017.10.020

61. Cellini N, Morganti AG, Mattiucci GC, Valenti V, Leone M, et al. Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. *Int J Radiat Oncol Biol Phys* 2002; 53: 595–99. https://doi.org/10.1016/s0360-3016(02)02795-5

62. Pathmanathan AU, Alexander EJ, Huddart RA, Tree AC, et al. The delineation of intraprostatic boost regions for radiotherapy using multimodality imaging. *Future Oncol* 2016; 12: 2495–2511. https://doi.org/10.2217/fon-2016-0129

63. Kooreman ES, van Houtry JD, Newe ME, van Pelt VWJ, Tijssen RHN, et al. Feasibility and accuracy of quantitative imaging on a 1.5 t mr-linear accelerator. *Radiother Oncol* 2019; 133: 156–62. https://doi.org/10.1016/j.ijrobp.2019.01.011

64. Datta A, Aznar MC, Dubec M, Parker GJM, O’Connor JPJB, et al. Delivering functional imaging on the mri-linac: current challenges and potential solutions. *Clin Oncol (R Coll Radiother)* 2018; 30: 702–10. https://doi.org/10.1016/j.clon.2018.08.005

65. Padhani AR, Liu G, Kols DM, Chenevert TL, Thiery HC, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. *Neoplasia* 2009; 11: 102–25. https://doi.org/10.1593/neo.81328

66. Yang Y, Cao M, Sheng K, Gao Y, Chen A, et al. Longitudinal diffusion mri for treatment response assessment: preliminary experience using an mri-guided tri-cohalt 60 radiotherapy system. *Med Phys* 2016; 43: 1369–73. https://doi.org/10.1118/1.4942381

67. Lambrecht M, Vandezande V, De Keyzer F, Roels S, Peninckx F, et al. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. *Int J Radiat Oncol Biol Phys* 2012; 82: 863–70. https://doi.org/10.1016/j.ijrobp.2010.12.063

68. Park SY, Kim CK, Park BK, Park W, Park HC, et al. Early changes in apparent diffusion coefficient from diffusion-weighted mri imaging during radiotherapy for prostate cancer. *Int J Radiat Oncol Biol Phys* 2012; 83: 749–53. https://doi.org/10.1016/j.ijrobp.2011.06.209

69. Decker G, Mürtze P, Gieske J, Traber F, Block W, et al. Intensity-modulated radiotherapy of the prostate: dynamic ad monitoring by dwi at 3.0 t. *Radiother Oncol* 2014; 113: 115–20. https://doi.org/10.1016/j.radonc.2014.07.016

70. Liu L, Wu N, Ouyang H, Dai J-R, Wang W-H, et al. Diffusion-weighted mri in early assessment of tumour response to radiotherapy in high-risk prostate cancer. *Br J Radiol* 2014; 87: 1043. https://doi.org/10.1259/bjr/20140359

71. Ho JC, Allen PK, Bhosale PR, Rauch GM, Fuller CD, et al. Diffusion-weighted magnetic resonance imaging as a predictor of outcome in cervical cancer after chemoradiation. *Int J Radiat Oncol Biol Phys* 2017; 97: 546–53. https://doi.org/10.1016/j.ijrobp.2016.11.015

72. Kim SH, Lee JM, Hong SH, Kim GH, Lee JY, et al. Locally advanced rectal cancer: added value of diffusion-weighted mri imaging in the evaluation of tumor response to neoadjuvant chemoo- and radiation therapy. *Radiology* 2009; 253: 116–25. https://doi.org/10.1148/radiol.2532090027

73. Wang ZX, Wang B, Gao ZQ, Liu JG, Liu ZQ, et al. Diffusion-weighted imaging of prostate cancer: correlation between apparent diffusion coefficient values and tumor proliferation. *J Magn Reson Imaging* 2009; 29: 1360–66. https://doi.org/10.1002/jmi.21797

74. Shaverdian N, Yang Y, Hu P, Hart S, Sheng K, et al. Feasibility evaluation of diffusion-weighted imaging using an integrated mri-radiotherapy system for response assessment to neoadjuvant radiotherapy in rectal cancer. *Br J Radiol* 2017; 90(1071): 20160739. https://doi.org/10.1259/bjr/20160739