Nonrestorative Treatments for Caries: Systematic Review and Network Meta-analysis
O. Urquhart, M.P Tampi, L. Pilcher, R.L. Slayton, M.W.B. Araujo, M. Fontana, S. Guzmán-Armstrong, M.M. Nascimento, B.B. Nový, N. Tinanoff, R.J. Weyant, M.S. Wolff, D.A. Young, D.T. Zero, R. Brignardello-Petersen, L. Banfield, A. Parikh, G. Joshi, and A. Carrasco-Labra

Appendix

Methods

SEARCH STRATEGIES AND ELECTRONIC DATABASES CONSULTED

Search current to June 2017.
MEDLINE. Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

1. sodium fluoride/ or acidulated phosphate fluoride/
2. sodium flouride*.ti,ab,kf.
3. sodium fluoride*.ti,ab,kf.
4. NaF.ti,ab,kf.
5. durafluor.ti,ab,kf.
6. duraphat.ti,ab,kf.
7. Tin Fluorides/
8. stannous fluoride*.ti,ab,kf.
9. stannous flouride*.ti,ab,kf.
10. SNF.ti,ab,kf.
11. SnF2.ti,ab,kf.
12. sodium monofluorophosphate*.ti,ab,kf.
13. MFP.ti,ab,kf.
14. Acidulated Phosphate Fluoride/
15. acid* phosphate fluoride*.ti,ab,kf.
16. acid* phosphate flouride*.ti,ab,kf.
17. or/1-16
18. Xylitol/
19. xylitol*.ti,ab,kf.
20. Sorbitol/
21. sorbitol*.ti,ab,kf.
22. (glucitol or medevac or sorbilax or val or klysma sorbit).ti,ab,kf.
23. Mannitol/
24. manitol*.ti,ab,kf.
25. Erythritol/
26. erythritol*.ti,ab,kf.
27. polyol*.ti,ab,kf.
28. sugar alcohol*.ti,ab,kf.
29. or/18-28
30. Chlorhexidine/
31. chlorhexidine*.ti,ab,kf.
32. peridex.ti,ab,kf.
33. periorx.ti,ab,kf.
34. cervitec.ti,ab,kf.
35. Calcium Phosphates/
36. calcium phosphate*.ti,ab,kf.
37. ACP.ti,ab,kf.
38. casein phosphopeptide.ti,ab,kf.
39. recaldent.ti,ab,kf.
40. CPP-ACP.ti,ab,kf.
41. MI paste.ti,ab,kf.
42. calcium sodium phosphosilicate.ti,ab,kf.
43. novamin.ti,ab,kf.
44. nano hydroxyapatite.ti,ab,kf.
45. Hydroxyapatites/
46. tri-calcium phosphate.ti,ab,kf.
47. Prebiotics/
48. prebiotic*.ti,ab,kf.
49. “1.5% arginine”.ti,ab,kf.
50. Probiotics/
51. probiotic*.ti,ab,kf.
52. or/30-51
53. Dietary Carbohydrates/
54. Dietary Fiber/
55. 53 or 54
56. limit 55 to yr="1998 - 2009"
57. 52 or 56
58. SDF.ti,ab,kf.
59. Silver Nitrate/
60. silver nitrate*.ti,ab,kf.
61. advantage arrest.ti,ab,kf.
62. silver diammine.ti,ab,kf.
63. diammine silver.ti,ab,kf.
64. silver fluoride*.ti,ab,kf.
65. silver fluoride*.ti,ab,kf.
66. ammonical silver.ti,ab,kf.
67. ammoniacal silver.ti,ab,kf.
68. or/58-67
70. Lasers/
71. lasers.ti,ab,kf.
72. caries infiltration.ti,ab,kf.
73. resin infiltration.ti,ab,kf.
74. (resin adj3 (caries or infiltration)).ti,ab,kf.
75. icon.ti,ab,kf.
76. or/70-75
79. Cariostatic Agents/
80. cariostatic agent*.ti,ab,kf.
81. cariostatic effect*.ti,ab,kf.
82. cariostatic effect/
83. or/79-82
84. difluorsilane.ti,ab,kf.
85. difluorosilane.ti,ab,kf.
86. 84 or 85
87. ammonium fluoride.ti,ab,kf.
88. fluor protectos.ti,ab,kf.
89. NH4.ti,ab,kf.
90. NH 4.ti,ab,kf.
91. Sodium Bicarbonate/
92. sodium bicarbonate.ti,ab,kf.
93. sodium hydrogen carbonate.ti,ab,kf.
94. baking soda.ti,ab,kf.
95. Calcium Hydroxide/
Updated Search from Wright 2016, with date limit of January 2013 to June 2017

MEDLINE. Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Search Strategy:
1. "Pit and Fissure Sealants"/
2. (tetric or bitremer or fluoroshield or delton or kerr or lispro or dyract or revolution or oralis or ketac or condise).tw.
Selection of primary studies and data extraction
We also extracted the criteria used to define the outcome of arrest or reversal. If the study reported the lesions as “inactive,” “hard,” or “not progressed,” we considered them acceptable synonyms for “arrest or reversal.” Additionally, if transition scores were reported (i.e., change in ICDAS score), we only considered negative scores (i.e., lesion score changed from ICDAS 2 to 1) as “reversals” if this was possible to parse out. We did not consider the outcome of “stabilization” to be analogous to “arrest or reversal,” except if the intervention was either sealants or resin infiltration. We prioritized the extraction of radiographic data over data using visual and tactile assessment. If radiographs were used for diagnosis, we favored the most sensitive method applied in the study (digital subtraction radiography > pairwise methods > visual assessment) (Dorri et al. 2015).

Assessment of risk of bias
Two reviewers (M.P.T. and A.C.L.) used the Cochrane Risk of Bias Tool to assess the risk of bias of included studies independently and in duplicate for the domains of random sequence generation, allocation concealment, blinding of participants/personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other sources of bias. We used signaling questions to assign judgments of high, unclear, or low risk of bias for each domain. Reviewers discussed any disagreements until consensus was reached.

Statistical analysis
We conducted NMA to obtain estimates of the relative effectiveness of all interventions for the primary outcome by combining direct and indirect evidence. We assumed that we were estimating average relative treatment effects and their variability, and thus we chose a random-effects model. All analyses were planned a priori, anticipating the presence of a sparse network. We implemented the analysis using the package netmeta in the software R.

If studies shared similar treatment doses and/or durations as determined by the expert panel, data were combined into one node. When there was more than one follow-up time reported within a study, we chose the time that was closest to all of the others in that network. If this was not possible, we chose the longest follow-up time.

Our sparse network limited the options for analysis. We used the common heterogeneity variance assumption to estimate a single between study heterogeneity across the network, as the lack of data made it unfeasible to allow for the heterogeneity parameter to vary across the network, regardless of whether we believed that the common heterogeneity assumption was sensible. We estimated this parameter using the generalized methods of moments estimate of the between-studies variance available.
in the software package that we used (Jackson et al. 2012). In addition, we chose a frequentist approach to avoid incorporating the uncertainty about the heterogeneity parameter that is accounted for when using Bayesian random-effects models.

We assessed the assumptions of transitivity and coherence, but we did not assess goodness of fit of the network because we did not believe it was appropriate owing to the few data points of our sparse network.

We assessed global incoherence of the network using the design-by-treatment interaction model (Higgins et al. 2012). We assessed local incoherence for each loop of evidence using the back calculation method (Dias et al. 2010). We assessed intransitivity for each estimate as per GRADE guidance. We used both the assessment of local incoherence and intransitivity in the assessment of the certainty of the evidence of each network estimate.

We did not plan to conduct any sensitivity analyses to explore the effect of small studies owing to the limited amount of evidence available. In addition, the expert panel strongly believed that all studies should be considered in the analyses.

Assessment of the certainty in the evidence

Two reviewers made the assessments independently, and solved any disagreement by consensus. The assessment of each of the network estimates considered the following:

1) **Certainty in the direct evidence:** The certainty of this body of evidence from RCTs started as high, but serious or very serious issues of risk of bias, inconsistency, indirectness, imprecision, and publication bias could reduce the certainty (Guyatt et al. 2008). We assessed risk of bias making an overall judgment based on the risk of bias of each study providing direct evidence for the comparison of interest. We assessed inconsistency using the I^2 statistic, Chi-squared test, and by visual assessment of forest plots. We assessed indirectness by judging to what extent the studies answered the target question. We assessed publication bias by focusing in the comprehensiveness of our search strategy, as there were no sufficient studies to use visual or statistical methods. We assessed imprecision using the confidence interval of the direct estimates, and a threshold of clinical importance of 10%. The assessment of imprecision of the paired comparisons did not influence the certainty of the network estimates (Brignardello-Petersen et al. 2018), but it was considered in the assessment of the direct estimates.

2) **Certainty in the indirect evidence:** We assessed the certainty in the indirect evidence based on the lowest of the certainty ratings of the direct comparisons forming the first order loop that contributed the most to an indirect estimate. Then, we assessed intransitivity by assessing the presence of any effect modification in the indirect comparisons. We did this by comparing the main characteristics of the patients, intervention, comparisons, and outcome measurement between the direct comparisons forming the loop of interest. Finally, we assessed imprecision using the confidence interval of the indirect estimate and the same criteria than for the direct evidence. The assessment of imprecision of the indirect estimates did not influence the certainty of the network estimates (Brignardello-Petersen et al. 2018), but it was considered in the assessment of such estimates.

3) **Certainty in the evidence from NMAs:** We assessed the certainty in the network estimate by judging the relative contribution of the direct and indirect evidence to the network estimate. The network estimate rating was based on the source of evidence that contributed to the network estimate the most, which was judged based on a visual comparison of width of the confidence interval of the direct and indirect estimates, and their similarity to the network estimate. Then, we assessed local incoherence by comparing how similar the direct and indirect estimates were using a visual assessment and the p-value obtained using the back-calculation method; as well as a judgment of whether incoherence had an important effect in the network estimates (Brignardello-Petersen et al. 2018). Finally, we assessed imprecision using the confidence interval of the network estimate and the same criteria than for the direct estimates. (Brignardello-Petersen et al. 2018; Puhan et al. 2014).
Discussion

Implications for Practice
Caries management involves not only prevention and management of the disease process at the individual level, but once caries lesions develop, additional site-specific targeted strategies are needed at the lesion and surface level. These lesion-targeted strategies aim to promote tooth remineralization in the area of the carious lesion (e.g., fluorides), isolate the lesion mechanically from the caries-promoting biofilm, arrest it mechanically (e.g., sealants), and/or alter the conditions of the site-specific biofilm responsible for the lesion progression to a state of symbiosis with the tooth (e.g., chlorhexidine varnish). Results of this systematic review support a range of strategies that are effective at arresting and/or reversing noncavitated and cavitated carious lesions.

In the case of noncavitated carious lesions the most effective strategies will not only arrest/reverse the carious lesion, but will also help preserve tooth structure (Schwendicke et al., 2016). Therefore, nonrestorative treatment should be considered preferred method for management of these lesions. In the case of advanced cavitated carious lesions, data from this systematic review supports that 38% SDF is an effective treatment to arrest these lesions, especially when reapplied periodically every 6 months, and should be considered as an effective alternative to restorative care. For some teeth and some patients this may be all that is needed. Yet, as this treatment does not restore the missing tooth structure (which in many cases can affect the function of the tooth), and esthetically the lesion will turn black, some patients may need or desire restorative care using fillings to manage cavitated carious lesions or improve on esthetic concerns. In fact, restorative care is considered the standard of care for management of cavitated carious lesions, as restoring the cavity can not only help control the disease process (i.e., by moving the biofilm to the surface of the tooth where it is easier again for the patient to control), but can help restore tooth function. Therefore, 38% SDF can be used to arrest advanced cavitated carious lesions without the need for restorative care, and these lesions can always be restored at a later time to solve function or aesthetic issues.

Data from this systematic review also highlights the need to closely monitor lesions that are being treated in order to determine if the treatment was effective at arresting and/or reversing the lesions. Lesions might require treatment and follow up over a long period of time before radiographic or clinical methods can determine that arrest or reversal has occurred.
Brignardello-Petersen R, Mustafa, R.A., Siemieniuk, R.A.C, Hassan Murad, M., Agoritsas, T.A., Izcovich, A., Schunemann, H.J., Guyatt, G.H. 2018. Grade approach to rate the certainty from a network meta-analysis: Addressing incoherence. Submitted to Journal of Clinical Epidemiology.

Dias S, Welton NJ, Caldwell DM, Ades AE. 2010. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 29(7-8):932-944.

Jackson D, White IR, Riley RD. 2012. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med. 31(29):3805-3820.

Schwendicke F, Frencken JE, Bjorndal L, Maltz M, Manton DJ, Ricketts D, Van Landuyt K, Banerjee A, Campus G, Domejean S et al. 2016. Managing carious lesions: Consensus recommendations on carious tissue removal. Adv Dent Res. 28(2):58-67.
APPENDIX FIGURE 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart of the screening and study selection process.
APPENDIX TABLE 1. Included studies

Study	Country	RCT study design	Age: Mean (SD) or Range in Years	Dentition	Caries experience	Surface	Follow-up time/s	N people (at follow-up)	
Pooled Data									
Agrawal, 2011	India	Parallel	9-16	Mixed	Noncavitated lesion	Facial/Lingual, Occlusal, and Any Surface	12 months	257	
Autio-Gold, 2001	United States	Parallel	3-5	Primary	Noncavitated lesion	Facial/Lingual, Occlusal, and Any Surface	9 months	142	
Baca, 2009	Spain	Parallel	Varnish: 78.24 (6.59)	Permanent	Cavitated and noncavitated lesions	Root	12 months	46	
			Placebo: 75.64 (7.11)						
Bakhshandeh, 2015	Greenland	Split-mouth	6.51	Primary	Noncavitated lesion	Occlusal	8-34 months (mean=22 months)	47	
Baysan, 2001	United Kingdom	Parallel	59 (12.84)	Permanent	Cavitated and noncavitated lesions	Root	3 month, 6 months¹	186	
Study	Arm (Brand name, Manufacturer, Country)	Dose/duration/frequency	Prophylaxis for all groups	Outcome reported in study					
-------	--	-------------------------	---------------------------	--------------------------					
Pooled Data									
Agrawal, 2011	1.23% APF gel (Fluorovil, Vishal Dentocare Pvt. Ltd.; India) + Oral health education	2 applications total (baseline and 6 months)	No	Number of active lesions that became inactive					
	No treatment + Oral health education²	N/A							
Autio-Gold, 2001	5% NaF varnish (Duraphat, Colgate, Palmolive) + 0.8 ppm F municipal water supply	2 applications total (baseline and 4 months later)	Not reported	Number of active lesions that became inactive					
	No treatment + 0.8 ppm F municipal water supply²	N/A							
Baca, 2009	1% chlorhexidine + 1% Thymol varnish (Cervitec, Vivadent, Spain) + 0.07 ppm F municipal water supply	7 applications total (twice in the week 1, then at 1, 3, 6, 9 and 12 months)	Not reported	Change in texture from soft to leathery or hard					
	Placebo Varnish + 0.07 ppm F municipal water supply²								
Bakhshandeh, 2015	Resin Infiltration (ICON, DMG Chemisch Pharmazeutische, Germany) + 5% NaF varnish (Duraphat, Woelm Pharma GmbH, Germany)	1 application of resin infiltration (baseline); 3 total applications of varnish	No	Progression					
	Resin Sealant (Delton, Dentsply DeTrey, Denmark) + 5% NaF varnish (Duraphat, Woelm Pharma GmbH, Germany)	1 application of sealant (baseline); 3 total applications of varnish							
	5% NaF varnish (Duraphat, Woelm Pharma GmbH, Germany)²	3 total applications of varnish							
Baysan, 2001	5,000 ppm dentifrice (Prevident 5000, Colgate, Palmolive)	Brushed once a day with soft toothbrush	Not reported	Hardness					
Study	Method to diagnose caries	Conflicts of interest	Source funding	Notes					
-------------------	--	------------------------	--	--					
Pooled Data									
Agrawal, 2011	Visual assessment and probe if needed. Lesion activity by criteria given by Nyvad and colleagues	NR	NR						
Auto-Gold, 2001	Visual and clinical assessment: Table on page 1249 from Nyvad and colleagues	NR	NR						
Baca, 2009	Beighton's methods (color, texture, height, width, distance from gingival margin) - we chose "texture" because this is what is reported in most studies	No conflicts of interest	Research Group CTS-167 (Consejería de Educación de Andalucía, Spain) and projects PI020997 and PI051172	Bitter taste was reported as an adverse event when the placebo varnish was used.					
Bakhshandeh, 2015	Pairwise radiographic assessment	No conflicts of interest	DMG Dental						
Baysan, 2001	Probe to measure hardness		Colgate Palmolive						
Study	Country	Design	Median/IQR: Sealant	Test (13.04)	Median/IQR: Control	Median/IQR: Control			
------------------	-------------	---------------	---------------------	--------------	---------------------	---------------------			
Borges, 2010	Brazil	Parallel	16 (12-19.5)	Permanent	13 (12-15)	Control (12.53)			
da Silveira	Brazil	Parallel	Test (13.04)	Permanent	Noncavitated lesion	Occlusal	12 months	70	
Ekstrand, 2008	Denmark	Parallel	81.6 (4.3)	Permanent	Cavitated Lesion	Root	8 months	181	
Ekstrand, 2010	Greenland	Split-mouth	7.2	Primary	Noncavitated lesion	Approximal	12 months	39	
Study Year	Country	Study Design	Baseline F Level	Treatment Details	Lesion Type	Baseline	Intervention	Outcome	
------------	---------	--------------	------------------	-------------------	-------------	----------	-------------	---------	
2013	Denmark	Parallel	81.5 (11.6)	Permanent Cavitated and Noncavitated Lesions	Root	8 months	125		
2010				No treatment + Oral health education + 1,100-1,500 ppm F toothpaste	No	1 application total (baseline)	No	Change in radiolucent area	
2010				Glass ionomer cement sealant (Vidrion R, SS White, Brazil) + Oral hygiene instructions + 1,100-1,500 ppm F toothpaste + Prophylaxis with pumice and water (co-intervention) + Municipal water supply	No	1 application total (baseline)	No	Change in radiolucent area; Clinical alterations	
2008				5,000 ppm dentifrice (Duraphat 5,000, Colgate Palmolive, UK) + 0.5 ppm F municipal water supply	No	Brushed twice a day with pea size amount	Sound and arrested		
2008				5% NaF varnish (Duraphat Fluoride Varnish, Woelm Pharma GmbH, Germany) + 1,450 ppm dentifrice (Colgate Ultra Cavity Protection, Colgate Palmolive, UK) + 0.5 ppm F municipal water supply	No	Dental hygienist brushed elder's teeth once a month for 8 months. In between visits, participants brushed their own teeth; it is unclear how often the varnish was applied for 120 seconds	Sound and arrested		
2010				5% NaF varnish (Duraphat, Woelm Pharma GmbH, Germany) + Oral hygiene instructions	No	3 total applications (baseline, 6 months and 12 months)	No progression		
Study	Methodology	Conflicts of interest	Notes						
---------------	---	-----------------------	--						
Ekstrand, 2013	5,000 ppm dentifrice (Duraphat 5,000, Colgate Palmolive, UK)		Brushed twice a day for 8 months						
	1.450 ppm dentifrice (Colgate Ultra Cavity Protection, Colgate Palmolive)		No						
			Arrest						
Borges, 2010	Exam of radiographs performed in a dark space with x2 magnifying glass	No conflicts of interest	In the resin-sealant arm, 88.5% (23/26) of teeth experienced full retention, 7.7% (2/26) experienced partial retention, and 3.85% (1/26) experienced total loss of sealant at a 12-month follow up.						
da Silveira	Radiographs and assessment with a 2x magnifying glass in a dark room²; Visually assessing the presence of visible cavitation	NR	NR						
			Throughout the 12 month study period, 40.74% (11/26) of teeth in the GIC sealant arm resulted in total retention of the sealant, 40.74% (11/26) resulted in one sealant replacement, and 18.52% (5/27) resulted in two sealant replacements.						
Ekstran, 2008	Visual assessment and probing	Financial support from Colgate Palmolive	Colgate Palmolive						
Ekstran, 2010	Radiograph², Visual assessment using ICDAS	Financial support from DMG Dental	DMG Dental						
Study	Country	Design	Cavity Type	Lesion Location	Follow-up	N			
------------------	----------	------------	-------------	-----------------	-----------	----			
Ekstrand, 2013		Visual assessment and probing	One author of this study is a Colgate Palmolive employee						
Florio, 2001	Brazil	Parallel	Permanent	Noncavitated lesion	Occlusal	12 months	34		
Gomez, 2005	Chile	Split-mouth	Mixed	Noncavitated lesion	Approximal	24 months	7		
Honkala, 2015	Kuwait	Split-mouth	Primary	Noncavitated lesion	Occlusal	12 months	106		
Li, 2016	China	Parallel	Permanent	Cavitated and noncavitated lesions	Root	12 month¹, 24 months, 30 months	75		
Study	Country	Design	Intervention:	Control:	Permanent	Noncavitated lesion	Root	Time	Total
-------	---------	--------	---------------	----------	-----------	---------------------	------	------	-------
Lynch, 2000	United Kingdom	Parallel	59 (13)	60 (13)	Yes	Yes	Yes	3 months	193
Florio, 2001			Resin modified glass ionomer sealant (Vitremer, 3M, Brazil)	1 application total (baseline); not reapplied if material was loss	Yes	Yes	Progression and no progression		
			0.2% NaF mouthrinse	Weekly					
			5% NaF (2.26% F) varnish (Duraphat, Inpharma, Germany) + 1,500 ppm toothpaste (co-intervention) + oral health instructions (co-intervention)^2	3 applications total (baseline and every 6 months)	Yes				
Gomez, 2005			Resin sealant (Concise Sealant, 3M ESPE) + 0.6 ppm F municipal water supply	1 application total (baseline)	No	No progression			
			5% NaF varnish (Duraphat, Colgate Oral Pharmaceuticals, USA) + 0.6 ppm F municipal water supply^2	5 total applications (baseline and once every 6 months)					
Honkala, 2015			Resin sealant (Clinpro, 3M ESPE) + Tooth brushing instructions + Municipal water supply	Resin sealant: 1 application total (baseline)	No	Progression and no progression			
			5% NaF varnish (DuraShield, Sultan Healthcare) + Municipal water supply^2	Tooth brushing instructions: 6 months before and after application of resin sealant					
Li, 2016			38% SDF solution (Saforide, Toyo Seyaku Kasei Co, Ltd., Japan) + Oral hygiene instructions + 1,450 ppm F toothpaste + Municipal water supply	3 applications total (baseline and once every 12 months)	Not reported	Arrest			
Study, Year	Solution/Instructions	Oral Hygiene	Retention	Findings					
------------	-----------------------	--------------	-----------	----------					
Lynch, 2000	38% SDF solution (Saforide, Toyo Seyaku Kasei Co, Ltd., Japan) + 2.36 mol/l potassium iodide (KI) (SIGMA-ALDRICH Co., USA) + Oral hygiene instructions + 1,450 ppm F toothpaste + Municipal water supply	Brushed once a day for one minute	Not reported	Hardness					
Lynch, 2000	Soda water with bitter taste + Oral hygiene instructions + 1,450 ppm F toothpaste + Municipal water supply								
Florio, 2001	1.1% NaF dentifrice (Prevident 5000 Plus, Colgate)	Radiographs using 5x magnification	NR	The use of a resin-modified glass ionomer sealant resulted in a 65.5% (23/35) retention rate at 12 month follow up.					
Gomez, 2005	1,100 ppm dentifrice (Winterfresh Gel, Colgate)	Radiographs with 2x magnifying viewer	NR						
Honkala, 2015	ICDAS	No conflicts of interest	Kuwait University (grant No. DD03/10)	Of the 345 resin-sealed occlusal surfaces 73% (252/345) were fully retained after one year follow up, where as 15.1% (52/345) experienced partial retention.					
Study, Date	Country	Design	Probe Type	Country & Split-mouth Lesion	Tooth Site	Duration	Mean Age		
-------------------	------------------	---------	--------------------	-------------------------------	------------	--------------	----------		
Li, 2016	ICDAS	No conflicts of interest	Research Grants Council of Hong Kong						
Lynch, 2000	Standard periodontal probe	NR	NR						
Martignon, 2006	Denmark and Colombia	Split-mouth	Colombia: median (range): 20 (15-32); Denmark: median (range): 27 (21-39)	Permanent	Noncavitated lesion	Approximal	18 months	72	
Martignon, 2010	Colombia	Split-mouth	5.3 (.7)	Primary	Noncavitated lesion	Approximal	30 months	56	
Martignon, 2012	Colombia	Split-mouth	21 (16-31)	Permanent	Noncavitated lesion	Approximal	12 months¹, 24 months, 36 months	38	
Meyer-Lueckel, 2012 (Paris 2010)	Germany	Split-mouth	Not reported	Permanent	Noncavitated lesion	Approximal	36 months	20	
Author	Country	Design	Treatment	Follow-up Duration	Progression Status				
------------------------	-------------	----------	--	--------------------	---				
Schaeken, 1991	Netherlands	Parallel	Permanent, Noncavitated lesion, Root	12 months	28				
Sitthisettapong, 2012	Thailand	Parallel	Experimental: 36.9 months (2.9 months)	6 months, 12 months	229				
Martignon, 2006			Resin sealant (Gluma One Bond Adhesive, Heraeus Kulzer; 10 Danes were sealed with Concise, 3M ESPE) + Flossing instructions + 1,000-1,500 ppm F toothpaste	1 application total (baseline)	Yes, Progression status (radiographic no change, regression, and progression)				
			Control + Flossing instructions + 1,000-1,500 ppm F toothpaste¹		Not reported				
Martignon, 2010			Resin sealant (Single One Bond, 3M ESPE) + Flossing advice	1 application total (baseline)	Yes, Stabilization and progression				
			Control + Flossing advice²		Not reported				
Martignon, 2012			Icon pre-product infiltration (ICON, DMG, Germany) + Flossing instructions	1 application total (baseline)	Not reported				
			Prime Bond NT Sealant (Dentsply, USA) + Flossing instructions		Stabilization				
			Placebo + Flossing instructions²						
Meyer-Lueckel, 2012			Resin infiltration (ICON, DMG)	1 application total (baseline)	Not reported				
(Paris 2010)					Progression of lesion depth by digital subtraction radiography (DSR)².				
Study	Treatment	Progression of lesion depth	Study details						
-------------------------------	---	------------------------------	--						
Schaeken, 1991	5% NaF varnish (Duraphat, Woelm, Germany) + Professional tooth cleaning and maintenance program	4 applications total (baseline and once every three months)	Not reported	Hardness					
	Control + Professional tooth cleaning and maintenance program²			Not reported	Hardness				
Sithisettapong, 2012	10% CPP-ACP w/v paste (Tooth Mousse, GC Corporation, Japan) + Oral hygiene instructions + 1,000 ppm F toothpaste + 0.1 ppm municipal water supply	0.4g every school day for one year	No	Regression and stabilization and progression					
	Placebo + Oral hygiene instructions + 1,000 ppm F toothpaste + 0.1 ppm municipal water supply²								
Martignon, 2006	Digital subtraction radiography using Compare Software by an external trained examiner²; Pair-wise visual assessment; Individual visual assessment	NR	Colluturo and the Universidad El Bosque						
Martignon, 2010	Radiographs (over a light box using a Matton’s magnifying glass) scoring system from Martignon 2006	No conflicts of interest	NR						
Martignon, 2012	Digital subtraction radiography of scanned images²; Visual score taken magnifying glass (pairwise reading of conventional radiographs)	Financial support from DMG Dental	DMG Dental						
Meyer-Lueckel, 2012 (Paris 2010)	DSR (digital subtraction radiography)²; lesion depth by pairwise reading of radiographs	NR	DMG Dental						
Study	Country	Design	Mean (SD)	tooth Type	lesion location	Time Points	Sample Size		
------------------------------	---------	--------	-----------	-------------	----------------	-------------	-------------		
Schaeken, 1991	NR	NR	NR	NR	NR	NR	NR		
Sitthisettapong, 2012	ICDAS	No conflicts of interest	Fogarty International NIH grant #D43TW007768						
Altenburger, 2010	Germany	Parallel	25.5 (1.9)	Permanent	Noncavitated lesion	Occlusal	3 weeks	32	
Bailey, 2009	Australia	Parallel	15.5 (12.3 - 18.9)	Mixed	WSL	Facial/Lingual and Any Surface	4 weeks, 8 weeks, 12 weeks	45	
Bonow, 2013	Brazil	Parallel	7-12	Mixed	Noncavitated lesion	Facial/Lingual	8 weeks	59	
Study	Country	Sample Type	Test	Permanent Lesions	Control Lesions	Root	Duration	Outcome	
----------------------	---------	-------------	------	-------------------	-----------------	------	----------	---------	
Brailsford, 2002	England	Parallel	Test: 85.6 (1.3)	Cavitated and noncavitated lesions	Control: 79.8 (1.4)	Root	12 months	78	
Un-pooled Data	Treatment	Comparator	Result	Outcome					
----------------	-----------	------------	--------	---------					
Altenburger, 2010	10% CPP-ACP cream (GC Tooth Mousse, GC Europe N.V., Belgium) + 1450 ppm F toothpaste	No treatment + 1450 ppm F toothpaste	N/A	Decrease in Ekstrand score (change in color and translucency)					
Bailey, 2009	10% CPP-ACP w/v cream (Tooth Mousse, GC Corporation, Japan) + 900 ppm F mouthrinse + 1,000 ppm F toothpaste	Placebo + 900 ppm F mouthrinse + 1,000 ppm F toothpaste	2 g morning and night for 12 weeks	Yes	Regression				
Bonow, 2013	1.23% APF gel (DFL, Sultan Topex, Brazil) + Oral health education + NaF toothpaste + Professional tooth brushing at each appointment	Placebo + Oral health education + NaF toothpaste + Professional tooth brushing at each appointment	9 applications total (baseline and once a week)	Not reported	Inactive Lesions				
Brailsford, 2002	1% Difluorsilane varnish (Fluor-protector, Ivoclar-Vivadent) + 1% chlorhexidine, 1% thymol in ethanol/ethylacetate (88% w/w), and polyvinylbutyrol (10% w/w) varnish (Cervitec, Ivoclar-Vivadent)	1% Difluorsilane varnish (Fluor-protector, Ivoclar-Vivadent) + Placebo gel	5 applications total (baseline and week 6, 13, 26 and 39)	No	Improvement in texture				
Unpooled Data	Visual assessment	No conflicts of interest	None	The use of 10% CPP-ACP daily for three weeks resulted in a 400% increase in caries arrestment (RR: 5.00, 95% CI: 0.25, 98.97) compared to 1450 ppm toothpaste daily at 3 weeks follow-up.					

| Bailey, 2009 | ICDAS | NR | CRC for Oral Health Science and GC Corporation, Japan | One or more adverse events were reported for 86% of participants (n=39), no information on the arm or the nature of them. There was also one or more reported GI symptoms in the CPP-ACP cream arm.

| Bonow, 2013 | A visual-tactile examination was performed. A probe was used to gently check for surface texture and loss of tooth structure | No conflicts of interest | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | Patients receiving 1.23% APF gel have a 65% increased probability for arresting/reversing in the buccal/lingual surfaces compared to the placebo arm after 8 weeks of follow-up (Adjusted RR: 1.65 (95% CI: 0.69-3.96)).

| Brailsford, 2002 | Lesion width and height | NR | The South Thames regional Health Authority and varnished provided by Ivoclar-Vivadent | The use of 1% difluorsilane varnish + (1% chlorhexidine and 1% thymol) 5 times in 10 months resulted in a 40% increase in caries arrestment (RR: 1.40, 95% CI: .97, 2.00) compared to 1% difluorsilane applied at the same frequency at one year follow-up. |
Study	Location	Design	Time (Years)	Tumor Type	Site	Survival Times	Number	
Duangthip, 2018b (Duangthip, 2016)	Hong Kong	Parallel	41 months (4)	Primary	Cavitated lesion	Any Surface	12 months, 18 months, 24 months, 30 months²	309
Duarte, 2008	Brazil	Parallel	Experimental: 13.01	Not reported	Noncavitated lesion	Any Surface	28 Days	170
Fung, 2018 (Fung, 2016, Duangthip 2018a)	Hong Kong	Parallel	3-4 years	Primary	Cavitated Lesion	Any Surface	30 months	799
Hedayati-Hajikand, 2015	Sweden	Parallel	Experimental: 2.4	Primary	Cavitated and noncavitated lesions	Any Surface	12 months	110
Heidmann, 1992	Denmark	Parallel	6 - 12	Permanent	Noncavitated lesion	Any Surface	36 months	1,083
Study	Intervention	Frequency	Outcome	Notes				
-------------------------------	--	--------------------	---------	--				
Duangthip, 2018b (Duangthip, 2016)	30% SDF solution (Cariestop, Biodinamica, Brazil)	Once a year	Arrest rate	Not reported				
	5% NaF varnish (Duraphat, Colgate Palmolive, USA)	3 applications total (baseline, week 1, and week 2)						
Duarte, 2008	0.12% chlorhexidine digluconate + 0.05% NaF mouthrinse	1 minute per day	Reduction in active lesions	Not reported				
	0.05% NaF Rinse							
Fung, 2018 (Fung, 2016, Duangthip 2018a)	12% SDF solution + F toothpaste + 0.5 ppm municipal water supply	Once every 12 months	Arrest	Not reported				
	38% SDF solution + F toothpaste + 0.5 ppm municipal water supply	Once every 6 months						
Hedayati-Hajikand, 2015	1x10 CFU ProBiora blend of three strains of probiotic bacteria (S. uberis KJ2TM, S. oralis KJ3TM, S. rattus JH145TM) wild cherry flavor sweetened with erythritol (EvoraKids, Oragenics Inc., USA) + Toothbrushing instructions + 1,100 ppm F toothpaste		Caries increment (Δds)	No				
	Placebo chewing tablet (EvoraKids, Oragenics Inc., USA)							
Heidmann, 1992	0.2% NaF mouthrinse	Not reported	Caries Development and progression	No				
	Water							
Black staining was reported as an adverse event. Duangthip 2016 only reports advanced lesions (ICDAS 5 and 6) while Duangthip 2018b reports moderate (ICDAS 3 and 4) and advanced (ICDAS 5 and 6) lesions.

Study	Methodology	Lesion severity	Source of Funding	Adverse Events					
Duangthip, 2018b (Duangthip, 2016)	ICDAS	No conflicts of interest	University of Hong Kong	Black staining was reported as an adverse event. Duangthip 2016 only reports advanced lesions (ICDAS 5 and 6) while Duangthip 2018b reports moderate (ICDAS 3 and 4) and advanced (ICDAS 5 and 6) lesions.					
Duarte, 2008	Diagnosis was made according to the following criteria (Table 1) for non-cavitated caries previously described by Nyvad et al (1999) and Pinelli et al (2002).	NR	FUNPESQUISTA (337/2002), Federal University of Santa Catarina, Brazil. Toothbrushes used in the study were provided by Condor (Brazil).	85.4% of non-cavitated lesions were arrested in the 0.05% NaF mouthrinse arm compared to 85.6% of arrested lesions in the 0.05% NaF mouthrinse + 0.12% chlorhexidine arm after 28 days.					
Fung, 2018 (Fung, 2016, Duangthip, 2018a)	Visual/tactile	No conflicts of interest	Research Grants Council of Hong Kong	Lesions treated with 38% SDF had a statistically significantly increased chance of becoming black compared to those receiving 12% SDF. Lesions treated semiannually also had a higher chance of becoming black compared to those treated annually. There was no significant difference in tooth pain, gum pain, gum swelling, or gum bleeding between the four groups; these adverse events affected a very small proportion of kids in each group.					
Hedayati-Hajikand, 2015	Visual assessment	No conflicts of interest	County Council, Region Skåne, Sweden. The study tablets were provided free of charge from Oragenics, FL, USA.	Out of 54 people in the probiotic tablet arm, 11% (n=5) of the enrolled patients experienced caries arrest compared to 7% (n=4) of the 56 participants in the arm that received placebo tablets after one year.					
Heidmann, 1992	Clinical and Radiographic assessment	NR	Danish Dental Association	In the 0.2% NaF mouthrinse arm, 62.5% (n=270), experienced no progression of non-cavitated lesion compared to 68.5% (n=292) in the placebo mouthrinse arm.					
Study	Country	Design	Erythritol	Xylitol	Treatment	Lesions Type	Duration	Sample Size	
------------------------------	-------------	-----------	------------------	---------------	----------------------------------	--------------	----------	-------------	
Honkala, 2014	Estonia	Parallel	8.6 (0.5)	8.2 (0.5)	Mixed	Cavitated and noncavitated lesions	Any Surface	12 months, 24 months, 36 months	374
					Control: 8.1 (0.6)				
Llodra, 2005	Cuba	Parallel	6.29 (.48)	Mixed	Cavitated lesions	Any Surface	36 months	373	
Meyer-Lueckel, 2016	Germany	Split-mouth	23 (6)	Mixed	Noncavitated lesion	Approximal	18 months	70	
Study	Intervention Details	Frequency	Outcomes	Study Details					
---------------------	--	-----------	---------------------------------	--					
Honkala, 2014	0.7 g Erythritol candies (Cargill R&D Center, Europe) + Dental health education + F toothpaste	3 candies four times per day	Not reported	Caries Development and progression					
	0.7g Xylitol candies (Cargill R&D Center, Europe) + Dental health education + F toothpaste								
	0.7g Sorbitol candies (Cargill R&D Center, Europe) + Dental health education + F toothpaste								
Llodra, 2005	38% SDF (Fluoroplast, Laboratorios NaF, Argentina) + 0.2% NaF mouthrinse + Toothbrushing instructions + Dietary recommendations + 0.9 ppm municipal water supply		SDF: 7 total applications (baseline and once every 6 months)	Surfaces with inactive caries					
	Control + 0.2% NaF mouthrinse + Toothbrushing instructions + Dietary recommendations + 0.9 ppm municipal water supply		Control: Not reported						
Meyer-Lueckel, 2016	Resin infiltration (ICON, DMG) + NaF varnish (co-intervention) + Oral hygiene instructions and dietary advice		Resin infiltration/Placebo: 1 application total (baseline)	Progression					
	Placebo (Mock Treatment) + NaF varnish (co-intervention) + Oral hygiene instructions and dietary advice		Fluoride varnish: applied decided by the respective dentist on the basis of a 6 month recall						
Honkala, 2014	ICDAS	No conflicts of interest	Cargill R&D Center Europe (Vilvoorde, Belgium)	There was no distinction between cavitated and noncavitated lesions in the study. In the erythritol arm, 30.5% (401/1,313) of surfaces experienced a decrease in ICDAS score compared to 29.8% (456/1,531) in the arm receiving sorbitol and 28.3% (449/1,584) in the arm receiving xylitol after three years follow-up.					
Llodra, 2005	Visual method by explorer and flat mirror	No conflicts of interest	Local government of the Balaeric Islands	After 36 months of follow-up, on average, the 38% SDF group had 0.3 surfaces with arrested caries whereas the control group had 0.1 (P < 0.05). The children in the SDF group had a higher percentage of black stains (97%), compared with the control group, in which only 48% of the inactive lesions were black (p < 0.001). Compared with the controls, the SDF-treated children had a higher proportion of black stains in inactive lesions (p < 0.001).					
Meyer-Lueckel, 2016	Pairwise comparisons radiographs (stage of baseline was scored and then the score at follow-up was obtained)	No conflicts of interest	DMG Dental	Additional fluoride varnish was applied at the discretion of respective dentist during the six-month recall. Therefore, this study was removed from the network because we could not account for background fluoride varnish. However, in the resin infiltration arm, 94.6% (176/186) participants experienced no progression, compared to 68.8% (128/186) participants in the mock treatment arm (RR: 1.38, C.I. 1.24, 1.52).					
Moberg Skold, 2005 (a)	Sweden	Parallel	13	Permanent	Cavitated and noncavitated lesions	Approximal	36 months	622	
------------------------	--------	----------	----	-----------	----------------------------------	-----------	-----------	-----	
Moberg Skold, 2005 (b)	Sweden	Parallel	13	Permanent	Noncavitated lesion	Approximal	36 months	758	
Study	Intervention Details	Number of Applications	Frequency	Yes, according to caries risk	Caries Incidence and Progression	Study Year			
-------	----------------------	------------------------	-----------	--------------------------------	--------------------------------	------------			
Moberg Skold, 2005 (a)	0.2% NaF mouthrinse (Meda AB, Sweden) + NaF varnish (co-intervention) + F toothpaste (co-intervention) + 0.1 ppm municipal water supply	18 applications total (rinsed the first three school day of every semester)	18	60	60	Moberg Skold, 2005 (a)			
		36 applications total (rinsed the first and last three school days of every semester)	36	60	60	Moberg Skold, 2005 (a)			
		81 applications total (rinsed three consecutive days, once a month during the semester)	81	60	60	Moberg Skold, 2005 (a)			
		Control + 0.1 ppm municipal water supply	N/A	N/A	N/A	N/A			
Moberg Skold, 2005 (b)	5% NaF varnish (Duraphat, Colgate, USA) + 0.1 - 0.2 ppm municipal water supply	7 applications total (0.3 mL at baseline and once every 6 months; children also received additional NaF varnish applications at their regular dental checkups)	7	60	60	Moberg Skold, 2005 (b)			
		9 applications total (three applications of 0.3 mL within one week, every 12 months; children also received additional NaF varnish applications at their regular dental checkups)	9	60	60	Moberg Skold, 2005 (b)			
		24 applications total (0.3 mL at baseline and once a month for 8 months; children also received additional NaF varnish applications at their regular dental checkups)	24	60	60	Moberg Skold, 2005 (b)			
	No treatment + 0.1 - 0.2 ppm F municipal water supply	Not reported; children also received additional NaF varnish applications at their regular dental checkups	Not reported	Not reported	Not reported	Not reported			
Bitewing radiographs were scored and analyzed according to Gröndahl et al. [1977] by one authorizing a light desk and a magnifying viewer

In patients receiving 0.2% NaF mouthrinse 12 times a year, 59% of caries that could have progressed were prevented compared to patients receiving six mouthrinses per year (PF=30%), 27 mouthrinses per year (PF=47%), and 20 mouthrinses per year (PF=41%).

The use of 5% NaF fluoride varnish twice a year at six month intervals resulted in a 17% increase in the chance of experiencing caries arrestment (RR: 1.17, 95% CI: 1.07, 1.27).

The use of 5% NaF fluoride varnish three times a year all in one week resulted in a 13% increase in the chance of experiencing caries arrestment (RR: 1.13, 95% CI: 1.03, 1.24).

Whereas the use of 5% NaF fluoride varnish eight times a year with one month intervals resulted in a 15% increase in the chance of experiencing caries arrestment (RR: 1.15, 95% CI: 1.06, 1.26) compared to no additional fluoride varnish. All study arms received 5% NaF varnish regularly as part of a school program.
Study	Country	Study Design	N	Type	Location	Follow-up	Case Number	
Modeer, 1984	Sweden	Parallel	14	Permanent	Noncavitated lesion	Approximal	36 months	194
Petersson, 1991	Sweden	Parallel	11	Mixed	Noncavitated lesion	Approximal	36 months	146
Peyron, 1992	Sweden	Parallel	3 - 6	Primary	Noncavitated lesion	Approximal	12 months¹, 24 months	468
Study	Treatment Details	Control Details	Outcome					
-------	-------------------	-----------------	---------					
Modeer, 1984	5% NaF varnish (Duraphat, Woelm ICN Pharmaceutical, West Germany) + 0.2% NaF mouthrinse + 0.24 ppm municipal water supply	No treatment + 0.2% NaF mouthrinse + + 0.24 ppm municipal water supply	No					
Petersson, 1991	Fluoride varnish (Duraphat) + Oral health education + 0.1 ppm municipal water supply	Fluoride varnish (Duraphat) + Oral health education + 0.1 ppm municipal water supply	Not reported					
Peyron, 1992	Fluoride varnish (Duraphat, Woelm ICN Pharmaceutical, Germany) + Pumice (co-intervention) + 0.2 ppm municipal water supply	Control + 0.2 ppm municipal water supply	No					

Outcome categories: Progression, regression, and stabilization, Incidence and progression of proximal caries, Caries Progression, N/A
Author	Methodology	NR	NR	Description				
Modeer, 1984	Radiograph examination and read with the aid of a magnifying viewer	NR	NR	The use of 5% NaF varnish (every third month for three years) and 0.2% NaF mouthrinse (every 14 days) resulted in a 4% decrease in caries arrestment (RR: .96, 95% CI: 0.51, 1.80) compared to 0.2% NaF mouthrinse (every 14 days) at 3 years follow-up.				
Petersson, 1991	Radiograph examination	NR	NR	Patients receiving 5% NaF varnish (Duraphat) three times a week, once a year for three years reported 116 surfaces arrested and reversed compared to 78 surfaces arrested and reversed in those receiving 5% NaF varnish (Duraphat) every six months for three years (no total number of surfaces per arm reported).				
Peyron, 1992	Radiograph examination	NR	Patentmedelsfonden for Odontologisk Profylaxforskningsubventionen	After one year follow-up, out of 41 people in the 5% NaF varnish arm, 48.8% (n=20) of the enrolled patients with one or more superficial enamel caries lesions experienced no progression of caries lesions compared to 17.2% (n=5) of the 29 people with that did not receive 5% NaF varnish. After two years of follow-up, out of 42 people with one or more superficial enamel caries lesions receiving 5% NaF varnish, 33.3% (n=14) did not experience progression of caries lesions compared to 8.8% (n=3) of the 34 who did not receive 5% NaF varnish.				
Study	Country	Design	Age/Duration	Tooth Type	Lesion Type	Site	Follow-up Period	Sample Size
----------------------------	---------------	--------------	--------------------	------------	----------------------	------------	------------------	-------------
Trairatvorakul, 2011	Thailand	Split-mouth	13.15 (3.47)	Permanent	Noncavitated lesion	Approximal	12 months	26
Turska-Szybka, 2016	Poland	Parallel	Experimental: 3.9 (1.2)	Primary	WSL	Facial/Lingual	12 months	81
			Control: 3.6 (1.4)					
Wallace, 1993	United States	Parallel	60+ years	Permanent	Unclear	Root	12 months, 24 months, 36 months, 48 months\(^1\)	466
Wyatt, 2014	Canada	Parallel	83 year (SD=9.54, range 54-101 years)	Permanent	Unclear	Root	24 months	116
Study	Intervention	Outcome	Control	Outcome				
---------------	---	---------------	---	---------------				
Trairavarakul, 2011	Glass ionomer cement sealant (Fuji VII, GC Corporation, Japan) + 1.23% APF gel + 1,000 ppm F toothpaste + <0.3 ppm municipal water supply	No	Control + 1.23% APF gel + 1,000 ppm F toothpaste + <0.3 ppm municipal water supply²	Radiographic progression				
	Glass ionomer cement sealant: 1 application total (baseline)		1.23% APF gel: 2 total applications (baseline and 6 months)					
	1,000 ppm F toothpaste: two times daily		1,000 ppm F toothpaste: two times daily					
Turska-Szybka, 2016	Triethylene-glycol- dimethacrylate–based resin infiltration (ICON, DMG, Germany) + 5% NaF varnish (Duraphat, Colgate Palmolive, Germany) + Oral hygiene education	No	5% NaF varnish (Duraphat, Colgate Palmolive, Germany) + Oral hygiene education²	WSL Arrest				
	5 applications total (baseline and once every 3 months)		5 applications total (baseline and once every 3 months)					
Wallace, 1993	1.2% APF gel (Luride, Colgate-Hoyt Laboratories, USA) + F toothpaste	Not reported	Control + F toothpaste²	Reversed				
	9 applications total (baseline and once every 6 months)		Once a day for the duration of the study					
Wyatt, 2014	0.12% Chlorhexidine gluconate mouthrinse (Chlorhexidine gluconate 20% BP, Medisca Pharmaceutique, Canada)	Not reported	0.2% NaF mouthrinse (Fluorinse, Oral-B Laboratories, Canada)	Reversal				
	0.2% NaF mouthrinse		Placebo mouthrinse (4% isopropyl alcohol, 0.04% peppermint essence, distilled water)²					
	Once a day for the duration of the study							
Study	Method	Scoring System	Fund/Company	Findings				
-------	--------	----------------	--------------	----------				
Trairatvorakul, 2011	Radiographic (radiographic scoring system) by pairwise method	NR	Postgraduate Research Fund, Faculty of Dentistry, Chulalongkorn University	The use of sealants and 1.23% APF gel (at baseline and 6 months recall) resulted in a 1.950% increase in caries arrestment (RR: 20.05, 95% CI: 5.31, 79.21) compared to 1.23% APF gel (at baseline and 6 months recall) after one year of follow-up.				
Turska-Szybka, 2016	ICDAS	NR	NR	Of the 41 children treated with ICON RI + 2.26% (5% NaF) Duraphat fluoride varnish, 75.6% (n=31) showed no progression/continued activity of the treated spots at any examination. Of the 40 children treated with 2.26% (5% NaF) Duraphat fluoride varnish, 32.5% (n=13) of white spot lesions showed no progression/continued activity (total number of lesions not reported).				
Wallace, 1993	Visual tactile exam	NR	NIDR grant #ROI DE07030. Moutrinises supplied by Johnson and Johnson Dental Care Company, New Brunswick, NJ.	On average, patients receiving 1.23% APF gel had 0.10 less lesions arrested compared to those that did not receive treatment, however these results were not statistically significant (MD: -0.10; 95% CI: -0.50, 0.30). Those receiving 1.2% APF gel had on average 0.52 less lesions arrested compared to those receiving 0.05% NaF mouthrinse (MD: -0.52; 95% CI: -0.96, -0.08).				
Wyatt, 2014	Dental explorer used with light pressure to identify active caries lesions	NR	British Columbia Health Research Foundation Institutional Program Grant no. 212 (97-2)	On average, patients receiving 0.12% chlorhexidine mouthrinse had on 0.07 less lesions arrested compared to those that received 0.2% NaF mouthrinse, however these results were not statistically significant (MD: -0.07; 95% CI: -0.72, 0.58). Those receiving 0.12% chlorhexidine mouthrinse had on average 1.05 more lesions arrested compared to those receiving no treatment mouthrinse (MD: 1.05; 95% CI: 0.30, 1.80).				
Study	Country	Study Design	Follow-up	Type of Lesion	Surface Location	Follow-up Time	Participants	
------------	----------	--------------	-----------	---------------------------	------------------	----------------	--------------	
Yee, 2009	Nepal	Parallel	6 months, 12 months, 24 months	Primary Cavitated Lesion	Any Surface	5.2 (1.2)	634	
Zhang, 2013	China	Parallel	6 months, 12 months, 24 months, 36 months, 48 months	Permanent Cavitated and noncavitated lesions	Root	72.5 (5.7)	365	

Footnotes:

1. Follow up time analyzed.
2. Positive or negative control arm (comparator).
3. Assessment method analyzed.
| | Intervention | Intervention Details | End Point Reported | Analysis |
|------------------|---|--|--------------------|----------|
| **Yee, 2009** | 38% SDF (Bee Brand Medical Dental Company, Japan) + 0.03 ppm municipal water supply | 1 application total (baseline) | Not reported | Arrest |
| | 38% SDF (Bee Brand Medical Dental Company, Japan) + Tea as a reducing agent (tannic acid by boiling 2 Meccchi tea bags) + 0.03 ppm municipal water supply | | | |
| | 12% SDF (PROBEM-lab Prod. Farmaceuticos e Odontologicos, Brazil) + 0.03 ppm municipal water supply | | | |
| | No intervention + 0.03 ppm municipal water supply² | | N/A | |
| **Zhang, 2013** | 38% SDF (Saforide, Tokyo Seiyaku Kasei Co. Ltd, Japan) + Oral hygiene instructions (OHI) + 0.5 ppm municipal water supply | 2 applications total (baseline and every 12 months) | Not reported | Number of active lesions that became inactive |
| Study | Methodology | Conflicts of interest | Results |
|---------------|--|-----------------------|---|
| Yee, 2009 | Sharp sickle probe with the tip gently passed over the entire surface of the cavity to detect and confirm visual evidence of caries | NR | - 38% SDF + tea vs No treatment: MD: 1.20, 95% CI: 0.49, 1.91 |
| | | | -12% SDF vs No treatment: MD: 0.50, 95% CI: -0.21, 1.21 |
| | | | -38% SDF vs No treatment: MD: 1.10, 95% CI: 0.39, 1.81 |
| | | | -38% SDF vs 12% SDF: MD: 0.80, 95% CI: -0.23, 1.43 |
| | | | -38% SDF vs 38% SDF + Tea: MD: -0.10, 95% CI: -0.93, 0.73 |
| | | | -12% SDF vs 38% SDF + tea: MD: -0.70, 95% CI: -1.53, 0.13 |
| Zhang, 2013 | Sharp sickle probe with the tip gently passed over the entire surface of the cavity to detect and confirm visual evidence of caries | No conflicts of interest | On average, patients receiving 38% SDF + OHI + OHE had significantly more lesions arrested compared to those that only received OHI (MD: 0.29; 95% CI: 0.09, 0.49). Those that received 38% SDF + OHI, on average, had 0.24 more lesions arrested compared to those that received only OHI (MD: 0.24; 95% CI: 0.12, 0.36). When patients receiving 38% SDF + OHI + OHE were compared to those that received 38% SDF + OHI, there was not a significant difference in the average lesions arrested (MD: 0.05; 95% CI: -0.15, 0.25). |
APPENDIX TABLE 2. Excluded studies

Reference	Reason for Exclusion	
1. Acevedo, A.M.M., Carolina; Rivera, Luis E.; Wolff, Mark; Kleinberg, Israel, *The inhibitory effect of an arginine bicarbonate/calcium carbonate CaviStat-containing dentifrice on the development of dental caries in Venezuelan school children*. The Journal of clinical dentistry, 2005. 16(3): p. 63-70.	Outcome reported not of interest (incidence)	
2. Acevedo, A.M.M., Maglynerit; Rojas-Sanchez, Fatima; Machado, Carolina; Rivera, Luis Eduardo; Wolff, Mark; Kleinberg, Israel, *Clinical evaluation of the ability of CaviStat in a mint confection to inhibit the development of dental caries in children*. The Journal of clinical dentistry, 2008. 19(1): p. 1-8.	Outcome reported not of interest (incidence)	
3. Achong Ra, B.D.M.F.R.J.H.G.H.I.M.A.L.W.J., *Effect of chlorhexidine varnish in caries active pediatric patients [abstract]*. Pediatric Dentistry, 1997. 19(2).	Abstract	
4. Achong, R.A.B., D. M.; Hildebrandt, G. H.; Feigal, R. J.; Loesche, W. J., *Effect of chlorhexidine varnish mouthguards on the levels of selected oral microorganisms in pediatric patients*. Pediatric Dentistry, 1999. 21(3): p. 169-75.	Intervention applied on a population not of interest	
5. Adair, S.M.X., Q., *Antibacterial and probiotic approaches to caries management*. Advances in dental research, 2009. 21(1): p. 87-9.	Proceedings from a meeting	
6. Agouropoulos, A.T., S.; Pandis, N.; Kavvadia, K.; Papagiannoulis, L., *Caries-preventive effectiveness of fluoride varnish as adjunct to oral health promotion and supervised tooth brushing in preschool children: a double-blind randomized controlled trial*. Journal of Dentistry, 2014. 42(10): p. 1277-83.	Mixed caries population; outcome reported not of interest (incidence)	
7. Akin, M.B., Faruk Ayhan, *Can white spot lesions be treated effectively?* The Angle orthodontist, 2012. 82(5): p. 770-5.	Randomization is not reported; outcome reported not of interest	
8. Alamoudi, N.M.H., Azza G.; Masoud, Mohamad I.; Sabbagh, Heba J.; Almushayt, Abdullah S.; Masoud, Ibrahim M., *Effects of xylitol on salivary mutans streptococcus, plaque level, and caries activity in a group of Saudi mother-child pairs. An 18-month clinical trial*. Saudi medical journal, 2012. 33(2): p. 186-92.	Method to diagnose lesion is not acceptable	
9. Alexander, S.A.R., L. W., *Effects of self-applied topical fluoride preparations in orthodontic patients*. The Angle orthodontist, 2000. 70(6): p. 424-30.	Cannot construct 2x2 table; authors did not report outcome by arm	
10. Almeida, M.Q.d.C., Olivia Ximenes Izdiro; Ferreira, Jainara Maria Soares; Menezes, Valdenice Aparecida de; Leal, Rossana Barbosa; Sampaio, Fabio Correia, *Therapeutic potential of Brazilian fluoride varnishes: an in vivo study*. Brazilian Dental Journal, 2011. 22(3): p. 193-7.	Used 6% NaF varnish + 6% CaF₂; intervention not commercially available in the United States	
11. Amin, H.E., *Clinical and antibacterial effectiveness of three different sealant materials*. Journal of dental hygiene : JDH, 2008. 82(5): p. 45.	Outcome reported not of interest (incidence)	
12. Andersson, A.S.-L., Kerstin; Hallgren, Anders; Petersson, Lars G.; Twetman, Svante, *Effect of a dental cream containing amorphous cream phosphate complexes on white spot lesion regression assessed by laser fluorescence*. Oral health & preventive dentistry, 2007. 5(3): p. 229-33.	Cannot construct 2x2 table; authors only presented total percentage of lesions at baseline and follow-up	
13. Andruzzioli, M.C.D.F., Giselle; Nelson-Filho, Paulo; Romano, Fabio Lourenco; Matsumoto, Mirian Aiko Nakane, *Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic	Only surrogate outcomes were reported	
14. Anusavice, K.J., Efficacy of nonsurgical management of the initial caries lesion. Journal of dental education, 1997. 61(11): p. 895-905.	Not a randomized controlled trial	
---	---	
15. Arruda, A.O.S.K., Ragahavendra; Inglehart, Marita R.; Rezende, Cristiane T.; Sohn, Woosung, Effect of 5% fluoride varnish application on caries among school children in rural Brazil: a randomized controlled trial. Community Dentistry and Oral Epidemiology, 2012. 40(3): p. 267-76.	Cannot construct 2x2 table; authors only reported incidence	
16. Asi Aminabadi, N.B., Esrafil; Pouralibaba, Firoz, The Effect of 0.2% Sodium Fluoride Mouthwash in Prevention of Dental Caries According to the DMFT Index. Journal of dental research, dental clinics, dental prospects, 2007. 1(2): p. 71-6.	Outcome reported not of interest	
17. Axelsson, P.K., K.; Karlsson, R.; Bratthall, D., A 30-month longitudinal study of the effects of some oral hygiene measures on Streptococcus mutans and approximal dental caries. Journal of Dental Research, 1987. 66(3): p. 761-5.	Cannot construct 2x2 table; authors only report mean progression data	
18. Aykut-Yelkener, A.K., Nazan; Ates, Mustafa; Ersin, Nazan; Ertugrul, Fahinur, Does casein phosphopeptide amorphous calcium phosphate provide remineralization on white spot lesions and inhibition of Streptococcus mutans? The Journal of clinical pediatric dentistry, 2014. 38(4): p. 302-6.	Outcome reported not of interest	
19. Baca, P.J., Pillar; Bravo, Manuel; Baca, Adela P.; Munoz, M. Jose, Caries incidence in permanent first molars after discontinuation of a school-based chlorhexidine-thymol varnish program. Community Dentistry and Oral Epidemiology, 2003. 31(3): p. 179-83.	Cannot construct 2x2 table; authors only reported incidence	
20. Bader, J.D.V., William M.; Shugars, Daniel A.; Gilbert, Gregg H.; Amaechi, Bennett T.; Brown, John P.; Laws, Reesa L.; Funkhouser, Kimberly A.; Makhiya, Sonia K.; Ritter, Andre V.; Leo, Michael C., Results from the Xylitol for Adult Caries Trial (X-ACT). Journal of the American Dental Association (1939), 2013. 144(1): p. 21-30.	Outcome reported not of interest	
21. Baeshen, H.S., Sabin; Dam, Robel; Zawawi, Khalid H.; Birkhed, Dowen, Comparison of Fluoridated Miswak and Toothbrushing with Fluoridated Toothpaste on Plaque Removal and Fluoride Release. The journal of contemporary dental practice, 2017. 18(4): p. 300-306.	Cannot construct 2x2 table; authors reported the mean change in ICDAS II score	
22. Bagramian, R.A., A 5-year school-based comprehensive preventive program in Michigan, U.S.A. Community Dentistry and Oral Epidemiology, 1982. 10(5): p. 234-7.	Cannot construct 2x2 table; authors only reported incidence	
23. Banocy, J.N., J., Effect of amine fluoride (AmF)/stannous fluoride (SnF2) toothpaste and mouthwashes on dental plaque accumulation, gingivitis and root-surface caries. Proceedings of the Finnish Dental Society. Suomen Hammaslaakariseuran toimituksia, 1991. 87(4): p. 555-9.	Outcome reported not of interest	
24. Banting, D.W.P., A.; Clark, D. C.; Proskin, H. M.; Schultz, M.; Perry, R., The effectiveness of 10% chlorhexidine varnish treatment on dental caries incidence in adults with dry mouth. Gerodontology, 2000. 17(2): p. 67-76.	Outcome reported not of interest	
25. Baseggio, W.N., Fabiana Scarpato; Davidoff, Denise Cesar de Oliveira; Nahsan, Flavia Pardo Salata; Flury, Simon; Rodrigues, Jonas Almeida, Caries-preventive efficacy and retention of a resin-modified glass ionomer cement and a resin-based fissure sealant: a 3-year split-mouth randomised clinical	Outcome reported not of interest (incidence)	
Trial	Oral health & preventive dentistry, 2010. 8(3): p. 261-8.	
---	---	
26.	Bawden, J.W.G.; Holst, K.; Koch, G.; Krasse, P.; Rootzen, H.	Effect of mouthrinsing with a sodium fluoride solution in children with different caries experience. Swedish dental journal, 1980. 4(3): p. 111-7.
	Outcome reported not of interest (incidence)	
27.	Bechtold, T.E.S.; Markovic, M.; Becherburg, M.; Goz, G. R.	In vivo effectiveness of enamel sealants around orthodontic brackets. Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie, 2013. 74(6): p. 447-57.
	Method to diagnose lesion is not acceptable	
28.	Beerens, M.W.v.d.V.; van Beek, H.; ten Cate, J. M.	Effects of casein phosphopeptide amorphous calcium fluoride phosphate paste on white spot lesions and dental plaque after orthodontic treatment: a 3-month follow-up. European Journal of Oral Sciences, 2010. 118(6): p. 610-7.
	Intervention not of interest	
29.	Beiruti, N.F.; Van't Hof, M. A.; Taifour, D.; Van Palenstein Helderman, W. H.	Caries-predictive effect of a one-time application of composite resin and glass ionomer sealants after 5 years. Caries Research, 2006. 40(1): p. 52-59.
	Outcome reported not of interest (incidence)	
30.	Biesbrock, A.R.F.; R. V.; Bartizek, R. D.; Court, L. K.; Proskin, H. M.; Stockey, G. K.	The effect of chewing sugar-free gum after meals on clinical caries incidence. Journal of the American Dental Association (1939), 1998. 129(11): p. 1623-6.
	Intervention not of interest	
31.	Benham, A.W.C.; Phillip M.; Buschang, Peter H.	Effectiveness of pit and fissure sealants in reducing white spot lesions during orthodontic treatment. A pilot study. The Angle orthodontist, 2009. 79(2): p. 338-45.
	Abstract	
32.	Biesbrock, A.R.F.; R. V.; Bartizek, R. D.; Court, L. K.	Reversal of incipient and radiographic caries through the use of sodium and stannous fluoride dentifrices in a clinical trial. The Journal of clinical dentistry, 1998. 9(1): p. 5-10.
	Review article	
33.	Borna, N.P.; Judy; Brown, Ronald	Remineralizing agents with casein phosphoprotein-amorphous calcium phosphate (CPP-AP) can promote white spot regression for orthodontic patients UT Cat# 2512. Texas dental journal, 2013. 130(10): p. 1030.
	Outcome reported not of interest (incidence)	
34.	Borutta, A.K.; W.; Rubsam, F.	The caries-protective efficacy of 2 fluoride varnishes in a 2-year controlled clinical trial. Kariesprophylaktische Wirksamkeit zweier Fluridlacke in einer klinisch kontrollierten Zweijahresstudie., 1991. 79(7): p. 543-9.
	Outcome reported not of interest (incidence)	
35.	Borutta, A.R.; G.; Hufnagl, S.; Mobius, S.	Caries prevention with fluoride varnishes among preschool children. Kariesprophylaxe mit Fluoridlacken bei Vorschulkindern., 2006. 68(11): p. 731-4.
	Outcome reported not of interest (incidence)	
36.	Braga, M.M.M.; De Benedetto, M. S.	Effect of silver diammine fluoride on incipient caries lesions in erupting permanent first molars: a pilot study. Journal of dentistry for children (Chicago, Ill.), 2009. 76(1): p. 28-33.
	Cannot construct 2x2 table; authors reported the mean change in ICDAS II score	
37.	Brambilla, E.T.; A.; Felloni, A.; Gagliani, M.; Malerba, A.; Strohmenger, L.	The effect of biannual applications of amine fluoride solution on caries incidence in permanent first molars: a 5-year study. International Journal of Paediatric Dentistry, 1997. 7(1): p. 9-14.
39. Brochner, A.C., Carsten; Kristensen, Bjarne; Tranaeuf, Sofia; Karlsson, Lena; Sonnesen, Lilsette; Twetman, Svante, *Treatment of post-orthodontic white spot lesions with casein phosphopeptide-stabilised amorphous calcium phosphate*. Clinical Oral Investigations, 2011. **15**(3): p. 369-73.
Study authors reported no statistical significance between intervention and control arm

40. Brodzikowska, A., *Fluoride and chlorhexidine varnishes in treatment of root caries [abstract]*. Journal of Dental Research, 2003. **82**(Spec Iss B): p. B.

41. Brown, J.P.A., Bennett T.; Bader, James D.; Gilbert, Gregg H.; Makhia, Sonia K.; Lozano-Pineda, Juanita; Leo, Michael C.; Chen, Chuhe; Vollmer, William M.; X. Act Trial Collaborative Group; Shugars Da, Ritter A. V. Robinson D. S. Anabtawi M. Z. Vega A. T. Radcliffe B. Vitolas B. Olivo N. Laws R. L. Funkhouser K. A. Eubanks D. J. Kirk K. Reck D. Bardsley J. Dixon A. R. Estberg E. J. Atkinson J. C. *Visual scoring of non cavitated caries lesions and clinical trial efficiency, testing xylitol in caries-active adults*. Community Dentistry and Oral Epidemiology, 2014. **42**(3): p. 271-8.

42. Bruun, C.B., J.; Hansen, K. T.; Kann, J.; Qvist, V.; Thylstrup, A., *Three-year caries increments after fluoride rinses or topical applications with a fluoride varnish*. Community Dentistry and Oral Epidemiology, 1985. **13**(6): p. 299-303.
Not a randomized controlled trial

43. Burns, J.H., *Nano Silver Fluoride for preventing caries*. Evidence-based dentistry, 2015. **16**(1): p. 8-9.

44. Burton, J.P.D., Bernadette K.; Chilcott, Chris N.; Tagg, John R.; Thomson, W. Murray; Hale, John D. F.; Wescombe, Philip A., *Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial*. Journal of medical microbiology, 2013. **62**(Pt 6): p. 875-84.

45. Burwell, A.K.L., L. J.; Greenspan, D. C., *Calcium sodium phosphosilicate (NovaMin): remineralization potential*. Advances in dental research, 2009. **21**(1): p. 35-9.
Article includes animal and in-site studies

46. Cagetti, M.G.C., G.; Cocco, F.; Sale, S.; Congiu, G.; Mura, A.; Strohmenger, L.; Lingstrom, P.; Campus, G.; Italian Experimental Group on Oral, Health; Bosso M, Campus G. Cagetti M. G. Cocco F. Congiu G. Conti G. Corridone D. Lingstrom P. Mastroberardino S. Mura A. Polimeni A. Sale S. Sanna G. Strohmenger L., *Effect of Fluoridated Sealants on Adjacent Tooth Surfaces: A 30-mo Randomized Clinical Trial*. Journal of Dental Research, 2014. **93**(7 Suppl): p. 595-65S.

47. Cagliar, E., *Efficacy of silver diamine fluoride for caries reduction in primary teeth and first permanent molars of schoolchildren: 36-month clinical trial*. Journal of Dental Research, 2007. **86**(1): p. 95-95.
Letter to the Editor

48. Cagliar, E.K., Ozgur Onder; Selvi Kuvvetli, Senem; Kavaloglu Cildir, Sule; Sandalli, Nuket; Twetman, Svante, *Short-term effect of ice-cream containing Bifidobacterium lactis Bb-12 on the number of salivary mutants streptococci and lactobacilli*. Acta Odontologica Scandinavica, 2008. **66**(3): p. 154-8.
Only surrogate outcomes were reported

49. Cagliar, E.S., Nuket; Twetman, Svante; Kavaloglu, Sule; Ergeneli, Semra; Selvi, Senem, *Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutants streptococci and lactobacilli in young adults*. Acta Odontologica Scandinavica, 2005. **63**(6): p. 317-20.
Only surrogate outcomes were reported
| No. | Authors | Title | Journal | Year | Outcome Reported Not of Interest |
|-----|---------|-------|---------|------|----------------------------------|
| 50. | Campus, G.C., G.; Cagetti, M. G.; Bossu, M.; Sale, S.; Cocchi, F.; Conti, G.; Nardone, M.; Sanna, G.; Strohmenger, L.; Lingstrom, P.; Italian Experimental Group on Oral, Health; Bossu M, Campus G. Cagetti M. G. Caria G. P. Carta G. Cocchi F. Congiu G. Conti G. Corridone D. Lingstrom P. Mastrobernardino S. Mura A. Polimeni A. Sale S. Sanna G. Strohmenger L., | Fluoride concentration from dental sealants: a randomized clinical trial. | Journal of Dental Research, 2013. | 92(7 Suppl): p. 23S - 8S. | Outcome reported not of interest |
| 51. | Campus, G.C., Maria Grazia; Sale, Silvana; Petruzzi, Massimo; Solinas, Giuliana; Strohmenger, Laura; Lingstrom, Peter, | Six months of high-dose xylitol in high-risk caries subjects--a 2-year randomised, clinical trial. | Clinical Oral Investigations, 2013. | 17(3): p. 785-91. | Outcome reported not of interest (incidence) |
| 52. | Chambers, M.S.F., T. J.; Toth, B. B.; Lemon, J. C.; Craven, T. E.; Bouwsma, O. J.; Garden, A. S.; Espeland, M. A.; Keene, H. J.; Martin, J. W.; Sipos, T., | Erratum to “Clinical evaluation of the introral fluoride releasing system in radiation-induced xerostomic subjects. Part 2: Phase I study” (DOI:10.1016/j.oraloncology.2005.12.029). | Oral Oncology, 2007. | 43(1): p. 98-105. | Erratum |
| 53. | Chambers, M.S.M., James R.; Keene, Harris J.; Bouwsma, Otis J.; Garden, Adam S.; Sipos, Tibor; Fleming, Terence J., | Clinical evaluation of the introral fluoride releasing system in radiation-induced xerostomic subjects. Part 2: Phase I study. | Oral Oncology, 2006. | 42(9): p. 946-53. | Outcome reported not of interest |
| 54. | Chandak, S.B., Ashish; Bhardwaj, Amit; Pimpale, Jilesh; Chandwani, Manisha, | Comparative evaluation of the efficacy of fluoride varnish and casein phosphopeptide - Amorphous calcium phosphate in reducing Streptococcus mutans counts in dental plaque of children: An in vivo study. | Journal of International Society of Preventive & Community Dentistry, 2016. | 6(5): p. 423-429. | Only surrogate outcomes were reported |
| 55. | Cheng, J.C., B. W.; Cheng, N. F.; Gansky, S. A.; Featherstone, J. D. B., | Understanding treatment effect mechanisms of the CAMBRA randomized trial in reducing caries increment. | Journal of Dental Research, 2015. | 94(1): p. 44-51. | Intervention group individualized care based on risk |
| 56. | Chestnutt, I.G., | Chlorhexidine varnish has caries-reducing potential. | Evidence-based dentistry, 2006. | 7(4): p. 93. | Review article |
| 57. | Chestnutt, I.G.C., Barbara Lesley; Hutchings, Simon; Piayle, Rebecca; Pickles, Timothy; Lisles, Catherine; Kirkby, Nigel; Morgan, Maria Zeta; Hunter, Lindsay; Hodell, Ceri; Withers, Beverly; Murphy, Simon; Morgan-Trimmer, Sarah; Fitzsimmons, Deborah; Phillips, Ceri; Nuttall, Jacqueline; Hood, Kerenza, | Protocol for “Seal or Varnish?” (SoV) trial: a randomised controlled trial to measure the relative cost and effectiveness of pit and fissure sealants and fluoride varnish in preventing dental decay. | BMC Oral Health, 2012. | 12: p. 51. | Protocol |
| 58. | Chi, D.L.T., Ohnmar, Milgrom, Peter, | Cluster-randomized xylitol toothpaste trial for early childhood caries prevention. | Journal of dentistry for children (Chicago, Ill.), 2014. | 81(1): p. 27-32. | Mixed caries population; outcome reported not of interest (incidence) |
| 59. | Chu, C.H.L., E. C. M.; Lin, H. C., | Effectiveness of silver diamine fluoride and sodium fluoride varnish in arresting dentin caries in Chinese preschool children. | Journal of Dental Research, 2002. | 81(11): p. 767-70. | Not a randomized controlled trial |
| 60. | Chu, C.H.L., Edward C. M., | Microhardness of dentine in primary teeth after topical fluoride | Study population includes a non-random sample that was added after the initiation of the study |
| Number | Reference | Outcome or Notes |
|--------|---|---|
| 61 | Chu, C.-H.G., Sherry Shiqian; Li, Samantha Ky; Wong, May Cm; Lo, Edward Cm, The effectiveness of the biannual application of silver nitrate solution followed by sodium fluoride varnish in arresting early childhood caries in preschool children: study protocol for a randomised controlled trial. Trials, 2015; 16; p. 426. | Study still in progress |
| 62 | Clark, D.C.S., J. W.; Quee, T. C.; Robert, G., Results of the Sherbrooke-Lac Megantic fluoride varnish study after 20 months. Community Dentistry and Oral Epidemiology, 1985. 13(2); p. 61-4. | Mixed caries population; outcome reported not of interest (incidence) |
| 63 | Cocco, F.C., Giovanna; Cagetti, Maria Grazia; Strohmenger, Laura; Lingstrom, Peter; Campus, Guglielmo, The caries preventive effect of 1-year use of low-dose xylitol chewing gum. A randomized placebo-controlled clinical trial in high-caries-risk adults. Clinical Oral Investigations, 2017. | Authors only report prevalence |
| 64 | Cosyn, J.W.; De Rouck, Tim; Collys, Kris; Bottenberg, Peter; Matthijs, Stefan; Sabzevar, Mehran Moradi, Short-term anti-plaque effect of two chlorhexidine varnishes. Journal of clinical periodontology, 2005. 32(8); p. 899-904. | Only surrogate outcomes were reported |
| 65 | Curtis, B.W.; E.; Policicino, C.; Evans, R. W.; Schwarz, E.; Sbaraini, A., The Monitor Practice Programme: is non-invasive management of dental caries in private practice cost-effective? Australian Dental Journal, 2011. 56(1); p. 48-55. | Outcome reported not of interest |
| 66 | de Amorim, R.G.L., Soraya Coelho; Bezerra, Ana Cristina Barreto; de Toledo, Orlando Aytorn, Association of chlorhexidine and fluoride for plaque control and white spot lesion remineralization in primary dentition. International Journal of Paediatric Dentistry, 2008. 18(6); p. 446-51. | Cannot construct 2x2 table |
| 67 | de Moura, M.S.d.M.S., Alexandre Henrique; Cury, Jaime Aparecido, In-vivo effects of fluoridated antiplaque dentifrice and bonding material on enamel demineralization adjacent to orthodontic appliances. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2006. 130(3); p. 357-63. | Outcome reported not of interest (incidence) |
| 68 | Demito CFR, Gustavo Vivaldi; Ramos, Adilson Luiz; Bowman, S. Jay, Efficacy of a fluoride varnish in preventing white-spot lesions as measured with laser fluorescence. Journal of clinical orthodontics : JCO 2011;45(1);25-40. | Outcome reported not of interest (incidence) |
| 69 | Derks, A.F., Jo; Bronkhorst, Ewald; Kuipers-Jagtman, Anne Marie; Katsaros, Christos, Effect of chlorhexidine varnish application on mutans streptococci counts in orthodontic patients. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2008. 133(3); p. 435-9. | Only surrogate outcomes were reported |
| 70 | Detsomboonrat, P.T., C.; Pisamturakit, P. P., Similar 1-year caries increment after use of fluoride or non-fluoride toothpaste in infants and toddlers. Fluoride, 2016. 49(3); p. 313-326. | Mixed caries population; outcome reported not of interest (incidence) |
| 71 | Divaris, K.P., J. S.; Slade, G. D., Surface-specific efficacy of fluoride varnish in caries prevention in the primary dentition: results of a community randomized clinical trial. Caries Research, 2013. 47(1); p. 78-87. | Mixed caries population; outcome reported not of interest (incidence) |
| Reference | Summary |
|---|--|
| 72. Dos Santos, V.E., Jr.; de Vasconcelos, Flavia M. N.; Ribeiro, Andrea G.; Rosenblatt, Aronita. *Paradigm shift in the effective treatment of caries in schoolchildren at risk.* International dental journal, 2012. 62(1): p. 47-51. | Intervention not of interest |
| 73. Driscoll, W.S.N.-R., R.; Heifetz, S. B.; Li, S. H.; Selwitz, R. H., Evaluation of the comparative effectiveness of fluoride mouthrinsing, fluoride tablets, and both procedures in combination: interim findings after five years. Journal of public health dentistry, 1990. 50(1): p. 13-7. | Mixed caries population; outcome reported not of interest (incidence) |
| 74. Driscoll, W.S.N.-R., R.; Selwitz, R. H.; Li, S. H.; Heifetz, S. B., A comparison of the caries-preventive effects of fluoride mouthrinsing, fluoride tablets, and both procedures combined: final results after eight years. Journal of public health dentistry, 1992. 52(2): p. 111-6. | Mixed caries population; outcome reported not of interest (incidence) |
| 75. Du, M.C., Ning; Tai, Baojun; Jiang, Han; Li, Jing; Bian, Zhuan, Randomized controlled trial on fluoride varnish application for treatment of white spot lesion after fixed orthodontic treatment. Clinical Oral Investigations, 2012. 16(2): p. 463-8. | Method to diagnose lesion is not acceptable |
| 76. Du Mq, L.Q.J.H.T.B., Effect of Duraphat on enamel demineralization after fixed orthodontic treatment. 2nd Meeting of IADR Pan Asian Pacific Federation (PAPF) and the 1st Meeting of IADR Asia/Pacific Region (APR), 2009; p. 277. | Abstract from conference proceeding |
| 77. Du, M.Q.; B. J.; Jiang, H.; Lo, E. C. M.; Fan, M. W.; Bian, Z., A two-year randomized clinical trial of chlorhexidine varnish on dental caries in Chinese preschool children. Journal of Dental Research, 2006. 85(6): p. 557-9. | Mixed caries population; outcome reported not of interest (incidence) |
| 78. Duane, B., 5,000 ppm F dentifrice for caries prevention in adolescents. Evidence-based dentistry, 2012. 13(2): p. 43-4. | Commentary |
| 79. Duane, B.G., No evidence of caries reduction found in a school xylitol and erythritol lozenge programme. Evidence-based dentistry, 2011. 12(4): p. 102-3. | Review article |
| 80. Ebrahimi, M.M., Maryam; Ahrari, Farzaneh; Parisay, Iman; Jahantigh, Maliheh, The effects of three remineralizing agents on regression of white spot lesions in children: A two-week, single-blind, randomized clinical trial. Journal of clinical and experimental dentistry, 2017. 9(5): p. e641-e648. | Outcome reported not of interest |
| 81. Edwards, M., Regular rinsing with chlorhexidine does not reduce caries in older adults. Evidence-based dentistry, 2009. 10(1): p. 13-4. | Review article |
| 82. Erdemir, U.S., Hande Sar; Yaman, Batu Can; Ozel, Selva; Yucel, Taner; Yildiz, Esra, Clinical comparison of a flowable composite and fissure sealant: a 24-month split-mouth, randomized, and controlled study. Journal of Dentistry, 2014. 42(2): p. 149-57. | Outcome reported not of interest (incidence) |
| 83. Ersin, N.K.E., Ecet, Eronat, Nesrin; Totu, Fusun Irem; Ates, Mustafa, Effectiveness of 2-year application of school-based chlorhexidine varnish, sodium fluoride gel, and dental health education programs in high-risk adolescents. Quintessence international (Berlin, Germany : 1985), 2008. 39(2): p. e45-51. | Outcome reported not of interest (incidence) |
| 84. Esenlik, E.U.C., E.; Bolat, E., Efficacy of a casein phosphopeptide amorphous calcium phosphate (CPP-ACP) paste in preventing white spot lesions in patients with fixed orthodontic appliances: A prospective clinical trial. European journal of paediatric dentistry : official journal of European Academy of Paediatric Dentistry, 2016. 17(4): p. 274-280. | Outcome reported not of interest (incidence) |
85. Evans, D., *APF foam does reduce caries in primary teeth*. Evidence-based dentistry, 2007. 8(1): p. 7. Review article

86. Fadl, A.N.E., Magda M.; Dowidar, Karin L.; Mokhles, Nadia; El Tantawi, Maha M., *Effect of Tooth Mousse on Streptococcus Mutans in the Plaque of High-Caries-risk Preschool Children: A Triple-Blind, Randomized Clinical Trial*. Pediatric Dentistry, 2016. 38(4): p. 300-4. Outcome reported not of interest

87. Falony, G.H., Sisko; Runnel, Riina; Olak, Jana; Nommela, Rita; Russak, Silvia; Saag, Mare; Makinen, Pirkko-Liisa; Makinen, Kauko; Vahlberg, Tero; Honkala, Eino, *Long-Term Effect of Erythritol on Dental Caries Development during Childhood: A Posttreatment Survival Analysis*. Caries Research, 2016. 50(6): p. 579-588. Mixed caries population

88. Featherstone, J.D.B.W., J. M.; Hoover, C. I.; Rapozo-Hilo, M.; Weintraub, J. A.; Wilson, R. S.; Zhan, L.; Gansky, S. A., *A randomized clinical trial of anticaries therapies targeted according to risk assessment (caries management by risk assessment)*. Caries Research, 2012. 46(2): p. 118-29. Outcome reported not of interest

89. Feng, Y.Y., Wei; Hu, De-yu; Zhang, Yunpo; Pretty, Iain A.; Ellwood, Roger P., *Detection and prevention of early caries after fluoride dentifrice application using quantitative light-induced fluorescence in vivo*. Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 2008. 26(6): p. 607-10. Outcome reported not of interest (incidence)

90. Ferreira, J.M.S.A., Ana Karla Ramalho; Rosa, Adriana Dias Batista; Sampaio, Fabio Correia; Menezes, Valdenice Aparecida de, *Therapeutic effect of two fluoride varnishes on white spot lesions: a randomized clinical trial*. Brazilian Oral Research, 2009. 23(4): p. 446-51. Used 6% NaF varnish + 6% CaF₂; intervention not commercially available in the United States

91. Frostell, G.B., D.; Edwardsson, S.; Goldberg, P.; Petersson, L. G.; Priwe, C.; Winholt, A. S., *Effect of partial substitution of invert sugar for sucrose in combination with Duraphat treatment on caries development in preschool children: the Malmo Study*. Caries Research, 1991. 25(4): p. 304-10. Cannot construct 2x2 table

92. Forgie, A.H.P., M.; Pine, C. M.; Pitts, N. B.; Nugent, Z. J., *A randomised controlled trial of the caries-preventive efficacy of a chlorhexidine-containing varnish in high-caries-risk adolescents*. Caries Research, 2000. 34(5): p. 432-9. Cannot construct 2x2 table; authors did not report data clearly by outcome

93. Fure, S.L., *Evaluation of different fluoride treatments of initial root carious lesions in vivo*. Oral health & preventive dentistry, 2009. 7(2): p. 147-54. Intervention not of interest

94. Gabre, P.B., D.; Gahnberg, L., *Fluoride retention of a mucosa adhesive paste compared with other home-care fluoride products*. Caries Research, 2008. 42(4): p. 240-6. Only surrogate outcomes were reported

95. Gerardu, V.A.M.B., Mark; van Loveren, Cor; Ten Cate, Jacob M., *Plaque formation and lactic acid production after the use of amine fluoride/stannous fluoride mouthrinse*. European Journal of Oral Sciences, 2007. 115(2): p. 148-52. Only surrogate outcomes were reported

96. Gizani, S.P., Georgia; Twetman, Svante; Caroni, Cris; Makou, Margarita; Papagianoulis, Lisa, *Effect of the probiotic bacterium Lactobacillus reuteri on white spot lesion development in orthodontic patients*. Caries Research, 2007. 41(6): p. 517-23. Outcome reported not of interest (incidence)
| No. | Reference | Notes | | | | | | |
|---|---|---|---|---|---|---|---|---|
| 98 | Gokalp, S.B., Meserret, *Use of laser fluorescence in monitoring the durability and cariostatic effects of fluoride and chlorhexidine varnishes on occlusal caries: a clinical study*. Quintessence international (Berlin, Germany : 1985), 2005. 36(3): p. 183-9. | Method to diagnose lesion is not acceptable |
| 99 | Greig, V.C., David I., *Fluoride varnish was effective at reducing caries on high caries risk school children in rural Brazil*. Evidence-based dentistry, 2012. 13(3): p. 78-9. | Review article |
| 100 | Guclu, Z.A.A., Alev; Coleman, Nichola Jayne, *A 12-Week Assessment of the Treatment of White Spot Lesions with CPP-ACP Paste and/or Fluoride Varnish*. BioMed Research International, 2016. 2016: p. 8357621. | Used 23.3% xylitol chewing gum; intervention not commercially available in the United States |
| 101 | Gugwad, S.C.S., Preetam; Lodaya, Rahul; Bhat, Chetan; Tandon, Piyush; Choudhari, Shantanu; Patil, Shankargouda, *Caries prevention effect of intensive application of sodium fluoride varnish in molars in children between age 6 and 7 years*. The journal of contemporary dental practice, 2011. 12(6): p. 408-13. | Outcome reported not of interest (incidence) |
| 102 | Gupta, D.G., Rajendra Kumar, *Investigation of antibacterial efficacy of Acacia nilotica against salivary mutans streptococci: a randomized control trial*. General Dentistry, 2015. 63(1): p. 23-7. | Only surrogate outcomes were reported |
| 103 | Hambire, C.U.J., Rashmi; Patil, Amol; Wani, Vaibhav R.; Kulkarni, Ankur A.; Nehete, Parag B., *Comparing the antiplaque efficacy of 0.5% Camellia sinensis extract, 0.05% sodium fluoride, and 0.2% chlorhexidine glucanate mouthwash in children*. Journal of International Society of Preventive & Community Dentistry, 2015. 5(3): p. 218-26. | Only surrogate outcomes were reported |
| 104 | Hanno, A.G.A., Najiaa M.; Almushayt, Abdullah S.; Masoud, Mohammed I.; Sabbagh, Heba J.; Farsi, Najat M., *Effect of xylitol on dental caries and salivary Streptococcus mutans levels among a group of mother-child pairs*. The Journal of clinical pediatric dentistry, 2011. 36(1): p. 25-30. | Mixed caries population |
| 105 | Hardman, M.C.D., G. M.; Duxbury, J. T.; Davies, R. M., *A cluster randomised controlled trial to evaluate the effectiveness of fluoride varnish as a public health measure to reduce caries in children*. Caries Research, 2007. 41(5): p. 371-6. | Outcome reported not of interest |
| 106 | Haugejorden, O.N., A., *Caries incidence after topical application of varnishes containing different concentrations of sodium fluoride: 3-year results*. Scandinavian Journal of Dental Research, 1991. 99(4): p. 295-300. | Mixed caries population |
| 107 | Haakila, G.P., S., *Effect of a varnish containing chlorhexidine and thymol (Cervitec) on approximal caries in 13- to 16-year-old schoolchildren in a low caries area*. Caries Research, 2003. 37(3): p. 185-9. | Cannot construct 2x2 table; authors only report mean progression data |
| 108 | Hausen, H.K., S.; Seppa, L., *Application of the high-risk strategy to control dental caries*. Community Dentistry and Oral Epidemiology, 2000. 28(1): p. 26-34. | Not a randomized controlled trial |
| 109 | Hausen, H.S., L.; Poutanen, R.; Niinimaa, A.; Lahti, S.; Karkkainen, S.; Pietila, I., *Noninvasive control of dental caries in children with active initial lesions. A randomized clinical trial*. Caries Research, 2007. 41(5): p. 384-91. | Intervention not of interest |
| 110 | Hauser-Gerspach, I.P.-S., Victoria; Dahnhardt, Jan Eric; Meyer, Jurgen; Lussi, Adrian, *Comparison of the immediate effects of gaseous ozone and chlorhexidine gel on bacteria in cavitated carious...* | Intervention applied on a population not of interest |
| ID | Reference | Outcome Description |
|-----|---|---|
| 111 | Hay, K.D.T., W. Murray, A clinical trial of the anticaries efficacy of casein derivatives complexed with calcium phosphate in patients with salivary gland dysfunction. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 2002. 93(3): p. 271-5. | Mixed caries population |
| 112 | He, T.L., Xue; Dong, Ying; Zhang, Na; Zhong, Yisi; Yin, Wei; Hu, Deyu, Comparative assessment of fluoride varnish and fluoride film for remineralization of postorthodontic white spot lesions in adolescents and adults over a 6-month period: A single-center, randomized controlled clinical trial. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2016. 149(6): p. 810-9. | Method to diagnose lesion is not acceptable |
| 113 | Hegazy, S.A.S., R. I., Antiplaque and remineralizing effects of Biorepair mouthwash: A comparative clinical trial. Pediatric Dental Journal, 2016. 26(3): p. 89-94. | Method to diagnose lesion is not acceptable |
| 114 | Heidmann, J.M.A., D.; Poulsen, S.; Kirkegaard, E.; Laurbjerg, L., Development of caries in a group of Danish school-age children after cessation of systematic fluoride rinsing. Kariesudvikling hos en gruppe danske skoleborn efter ophor af systematiske flurskyllinger., 1993. 155(38): p. 2995-8. | Outcome reported not of interest (incidence) |
| 115 | Heidmann, J.P., S., Comparative three-year caries protection from an aluminum-containing and a fluoride-containing toothpaste. Caries Research, 1997. 31(2): p. 85-90. | Mixed caries population |
| 116 | Heifetz, S.B.D., W. S.; Creighton, W. E., The effect on dental caries of weekly rinsing with a neutral sodium fluoride or an acidulated phosphate-fluoride mouthwash. Journal of the American Dental Association (1939), 1973. 87(2): p. 364-8. | Mixed caries population |
| 117 | Hoffman, D.A.C., Andrew E.; Rody, Wellington J., Jr.; McGorray, Susan P.; Wheeler, Timothy T., A prospective randomized clinical trial into the capacity of a toothpaste containing NovaMin to prevent white spot lesions and gingivitis during orthodontic treatment. Progress in orthodontics, 2015. 16: p. 25. | Outcome reported not of interest (incidence) |
| 118 | Holm, G.B.H., K.; Mejlare, I., The caries-preventive effect of a fluoride varnish in the fissures of the first permanent molar. Acta Odontologica Scandinavica, 1984. 42(4): p. 193-7. | Cannot construct 2x2 table; authors did not clearly state which participants had caries at baseline |
| 119 | Hoszek, A.S., Isabel; Jozefowicz, Agata; Wojcieszek, Danuta; Wierzbicka, Maria; Wretlind, Katarina; Ericson, Dan, Chlorhexidine-containing glass ionomer cement. A clinical investigation on the fissure caries inhibiting effect in first permanent molars. Swedish dental journal, 2005. 29(3): p. 89-96. | Cannot construct 2x2 table; authors did not clearly state which participants had caries at baseline |
| 120 | Hu, D. Y.; Yin, W.; Li, X.; Feng, Y.; Zhang, Y. P.; Cummins, D.; Mateo, L. R.; Ellwood, R. P., A clinical investigation of the efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride, as sodium monofluorophosphate in a calcium base, on primary root caries. Journal of Clinical Dentistry, 24(Spec Iss A), A23-A31. | Used 1.5% arginine plus 1450 ppm dentifrice toothpaste; intervention not commercially available in the United States |
| 121 | Huang, G.J.R.-C., Brie; Mills, Brian E.; Shalchi, Salma; Spiekerman, Charles; Korpk, Anna M.; Starrett, Jeri L.; Greenlee, Geoffrey M.; Drangsholt, Ross J.; Matunas, Jack C., Effectiveness of Ml Paste Plus and PreviDent fluoride varnish for treatment of white spot lesions: a randomized controlled trial. | Outcome reported not of interest; authors only report mean change in percentage improvement score |
| Study Still in Progress | Cannot Construct 2x2 Table | Outcome Reported Not of Interest (Incidence) | Only Surrogate Outcomes Were Reported | Outcome Reported Not of Interest (Incidence) | Outcome Reported Not of Interest (Incidence) | Outcome Reported Not of Interest | Mixed Caries Population; Outcome Reported Not of Interest (Incidence) | Intervention Not of Interest |
|------------------------|----------------------------|---|--------------------------------------|---|---|--------------------------------------|---|-----------------------------|
| 122. Innes, N.P.T.C., Jan E.; Speed, Chris; Douglas, Gail V. A.; Maguire, Anne; Fi, Ction Trial Collaboration; Innes Np, Clarkson J. E. Douglas G. V. Maguire A. Chadwick B. Deery C. Duggal M. Wong F. Speed C. Palmer M. Keightley A. Deverill M. Evans D. J. Freeman R. McColl E. Pitts N. B. Steen I. N. Chestnut I. Fayle S. Longbottom C. Marshman Z. Rodd H. Steele J. Treasure E. Welbury R. Laird M. Caldwell-Nichols A. Barker E. Thompson S. Philpott B. Howell B. Lais S. O'Rourke S. Mills-Ball J. Tement L. Ryan V., *The Fiction Dental Trial Protocol* - Filling Children's Teeth: Indicated or Not? *BMC Oral Health*, 2013. 13: p. 25. | 123. Irigoien-Camacho, M.E.L.-A., Maria I.; Amador-Pedraza, Yazmine; Zepeda-Zepeda, Marco A.; Villanueva-Gutierrez, Teresa; Sanchez-Perez, Leonor, *[Comparison of Varnishes and Fluoridated Toothpaste for the Prevention of Dental Caries in School Children]*. Comparacion de barnices y dentífrico con fluor en la prevencion de caries en escolares., 2015. 17(5): p. 801-814. | 124. Jenatschke, F.E., E.; Welte, H. D.; Schlagenhauf, U., Influence of Repeated Chlorhexidine Varnish Applications on Mutans Streptococci Counts and Caries Increment in Patients Treated with Fixed Orthodontic Appliances. *Journal of Orofacial Orthopedics = Fortschritte der Kieferorthopadie : Organ/Official Journal Deutsche Gesellschaft Fur Kieferorthopadie*, 2001. 62(1): p. 36-45. | 125. Jenkins, S.A., M.; Newcombe, R., Evaluation of a mouthrinse containing chlorhexidine and fluoride as an adjunct to oral hygiene. *Journal of Clinical Periodontology*, 1993. 20(1): p. 20-5. | 126. Jiang, E.M.L.; Edward Chin Man; Chu, Chun Hung; Wong, May Chun Mei, Prevention of Early Childhood Caries (Ecc) through Parental Toothbrushing Training and Fluoride Varnish Application: a 24-Month Randomized Controlled Trial. *Journal of Dentistry*, 2014. 42(12): p. 1543-50. | 127. Jiang, H.B., Z.; Tai, B. J.; Du, M. Q.; Peng, B., The Effect of a Bi-Annual Professional Application of APF Foam on Dental Caries Increment in Primary Teeth: 24-Month Clinical Trial. *Journal of Dental Research*, 2005. 84(3): p. 265-8. | 128. Jiang, H.H., Fang; Yao, Liping; Tai, Baojun; Du, Minquan, Effect of 1.23% Acidulated Phosphate Fluoride Foam on White Spot Lesions in Orthodontic Patients: a Randomized Trial. *Pediatric Dentistry*, 2013. 35(3): p. 275-8. | 129. Jiang, H.T.; Baojun; Du, MinQuan; Peng, Bin, Effect of Professional Application of APF Foam on Caries Reduction in Permanent First Molars in 6-7-Year-Old Children: 24-Month Clinical Trial. *Journal of Dentistry*, 2005. 33(6): p. 469-73. | 130. Jiang, H.T.; Baojun; Du, Min-quan; Huang, Wei; Guo, Ying, [A Two-Year Randomized Clinical Trial of 1.23% Fluoride Foam on Dental Caries Increment in Primary Teeth] Zhonghua Kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese Journal of Stomatolgy, 2007. 42(8): p. 456-9. | 131. Johansson, E.V.D., J. W. V.; Karlsson, L.; Andersson-Wenckert, I., Treatment Effect of Ozone and Fluoride Varnish Application on Occlusal Caries in
| Reference | Title | Journal | Year | Issue | Pages | Notes |
|-----------|-------|---------|------|-------|-------|-------|
| 132 | Joharji, R.M.A., J. O., | Prevention of pit and fissure caries using an antimicrobial varnish: 9 month clinical evaluation. | Journal of Dentistry, 2001. | 29(4) | 247-54 | Mixed caries population |
| 133 | Juarez-Lopez, M.L.A.H.-P., R. D.; Hernandez-Guerrero, J. C.; Jimenez-Farean, D.; Molina-Frechero, N., | Preventive and remineralization effect over incipient lesions of caries decay by phosphopeptic phosphate of calcium amorphous. | Revista de Investigacion Clinica, 2014. | 66(2) | 144-151 | Not a randomized controlled trial |
| 134 | Kallestal, C., | The effect of five years’ implementation of caries-preventive methods in Swedish high-risk adolescents. | Caries Research, 2005. | 39(1) | 20-6 | Mixed caries population |
| 135 | Kandelman, D.G., G., | Clinical results after 12 months from a study of the incidence and progression of dental caries in relation to consumption of chewing-gum containing xylitol in school preventive programs. | Journal of Dental Research, 1990. | 69(11) | 1771-5 | Not a randomized controlled trial |
| 136 | Karjalainen, S.E., A. L.; Ruokola, M.; Toivonen, A., | Caries development after substitution of supervised fluoride rinses and toothbrushings by unsupervised use of fluoride toothpaste. | Community Dentistry and Oral Epidemiology, 1994. | 22(6) | 421-4 | Outcome reported not of interest (incidence) |
| 137 | Karlsson, L., Lars-Erik; Trollsas, Karin; Angmar-Mansson, Birgit; Tranaeus, Sofia, | Effect of supplementary amine fluoride gel in caries-active adolescents. A clinical QLF study. | Acta Odontologica Scandinavica, 2007. | 65(5) | 284-91 | Method to diagnose lesion is not acceptable |
| 138 | Keightley, A.J.T., Greig D., | Fluoride varnish applications and caries incidence in pre-schoolers. | Evidence-based dentistry, 2014. | 15(3) | 83-4 | Review article |
| 139 | Keller, M.K.K., B. J.; Twetman, S., | Fluoride varnish or fluoride mouth rinse? A comparative study of two school-based programs. | Community dental health, 2016. | 33(1) | 23-6 | Outcome reported not of interest (incidence) |
| 140 | Keller, M.K.N.L., I.; Karlsson, I.; Twetman, S., | Effect of tablets containing probiotic bacteria (Lactobacillus reuteri) on early caries lesions in adolescents: a pilot study. | Beneficial microbes, 2014. | 5(4) | 403-7 | Method to diagnose lesion is not acceptable |
| 141 | Keltjens, H.M.S., M. J.; van der Hooven, J. S.; Hendriks, J. C., | Caries control in overdenture patients: 18-month evaluation on fluoride and chlorhexidine therapies. | Caries Research, 1990. | 24(5) | 371-5 | Outcome reported not of interest (incidence) |
| 142 | Kleber, C.J.M., J. L.; Davidson, K. R.; Putt, M. S.; Triol, C. W.; Winston, A. E., | Treatment of orthodontic white spot lesions with a remineralizing dentifrice applied by toothbrushing or mouth trays. | The Journal of clinical dentistry, 1999. | 10(1 Spec No) | 44-9 | Not a randomized controlled trial |
| 143 | Knosel, M.E., | Durability of esthetic improvement following ICON resin infiltration of multibracket-induced white spot lesions compared with no therapy over 6 months: a single-center, split-mouth, randomized clinical trial. | American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2013. | 144(1) | 86-96 | Method to diagnose lesion is not acceptable |
| ID | Authors | Title | Journal and Volume | Page(s) | Notes |
|-----|---|--|---------------------|---------|-------|
| 145 | Kolmakow, S.H., E.; Borovsky, E. V.; Kuzmina, E. M.; Vasina, S. A. | Effect of the mineralizing agent on the permanent teeth. | The Journal of clinical pediatric dentistry, 1991. 15(3) | p. 179-87 | Intervention not of interest |
| 146 | Korkut, B.T., D.; Yanikoglu, F.; Tagtekin, D. | Clinical assessment of demineralization and remineralization surrounding orthodontic brackets with FluoreCam. | Asian Pacific journal of tropical biomedicine, 2017. 7(4) | p. 373-377 | Authors did not clearly state randomization of participants |
| 147 | Kralivaphan, P.A., C.; Triratana, T.; Mateo, L. R.; Ellwood, R.; Cummins, D.; DeVizio, W.; Zhang, Y. P. | Two-year caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine, an insoluble calcium compound and 1,450 ppm fluoride. | Caries Research, 2013. 47(6) | p. 582-90 | Mixed caries population; outcome reported not of interest (incidence) |
| 148 | Kritikadatta, J.F., Chain; Abarajithan, Mohan; Kandaswamy, Deivanayagam | Remineralisation of occlusal white spot lesion with a combination of 10% CPP-ACP and 0.2% sodium fluoride evaluated using Diagnodent: a pilot study. | Oral health & preventive dentistry, 2013. 11(2) | p. 191-6 | Method to diagnose lesion is not acceptable |
| 149 | Küköle, M.P. | Changes in the appearance and form of the spots of macula cariosa alba in treatment with fluoride gel. | Folia medica, 2002. 44(1-2) | p. 64-9 | Not a randomized controlled trial |
| 150 | Küköle, M.P. | Treatment of incipient caries in children with fluoride gel. | Folia medica, 2002. 44(1-2) | p. 50-5 | Not a randomized controlled trial |
| 151 | Kumar Jena, A.P.S.; Satinder; Kumar Utreja, Ashok | Efficacy of resin-modified glass ionomer cement varnish in the prevention of white spot lesions during comprehensive orthodontic treatment: a split-mouth study. | Journal of orthodontics, 2015. 42(3) | p. 200-7 | Outcome reported not of interest (incidence) |
| 152 | Lang, N.P.R., K. | Use of oral irrigators as vehicle for the application of antimicrobial agents in chemical plaque control. | Journal of clinical periodontology, 1981. 8(3) | p. 177-188 | Only surrogate outcomes were reported |
| 153 | Lawrence, H.P.B., Darlene; Douglas, Jan; McKeown, Lynda; Switzer, Bonita; Figueiredo, Rafael; Laporte, Audrey | A 2-year community-randomized controlled trial of fluoride varnish to prevent early childhood caries in Aboriginal children. | Community Dentistry and Oral Epidemiology, 2008. 36(6) | p. 503-16 | Mixed caries population |
| 154 | Lee, W.S., Charles; Heima, Masahiro; Eggertsson, Haifstein; Ferretti, Gerald; Milgrom, Peter; Nelson, Suchitra | The effectiveness of xylitol in a school-based cluster-randomized clinical trial. | Caries Research, 2015. 49(1) | p. 41-9 | Outcome reported not of interest (incidence) |
| 155 | Legier-Vargas, K.M.-S., S. A.; Featherstone, J. D.; Gwinner, L. M. | Effects of sodium bicarbonate dentifrices on the levels of cariogenic bacteria in human saliva. | Caries Research, 1995. 29(2) | p. 143-7 | Only surrogate outcomes were reported |
| 156 | Lenkner, A.-M.H.P.; Kaisu; Hurme, Saia; Alanen, Pertti | The caries-preventive effect of xylitol/maltitol and erythritol/maltitol lozenges: results of a double-blinded, cluster-randomized clinical trial in an area of natural fluoridation. | International Journal of Paediatric Dentistry, 2012. 22(3) | p. 180-90 | Mixed caries population; outcome reported not of interest (incidence) |
| 157 | Levin, K.A.J., Colwyn M.; Wight, Christine; Valentine, Carolyn; Topping, Gail V. A.; Naysmith, Robert | Fluoride rinsing and dental health inequalities in 11-year-old children: an evaluation of a supervised school-based fluoride rinsing programme in Edinburgh. | Community Dentistry and Oral Epidemiology, 2009. 37(1) | p. 19-26 | Authors only report prevalence |
| 158 | Lexner, M.O.B., Susanne; Dahlen, Gunnar; Twetman, Svante | Microbiological profiles in saliva and supragingival plaque from caries-active | | | Outcome reported not of interest |
| Reference | Type |
|---|---|
| 159. Li, X.Z., Yisi; Jiang, Xianjun; Hu, Deyu; Mateo, Luis R.; Morrison, Boyce M., Jr.; Zhang, Yun-Po, *Randomized clinical trial of the efficacy of dentifrices containing 1.5% arginine, an insoluble calcium compound and 1450 ppm fluoride over two years.* The Journal of clinical dentistry, 2015. 26(1): p. 7-12. | Mixed caries population; outcome reported not of interest (incidence) |
| 160. Liptak LB, Nora; Twetman, Svante; Madlena, Melinda, The effect of a chlorhexidine-fluoride varnish on mutans streptococci counts and laser fluorescence readings in occlusal fissures of permanent teeth: A split-mouth study. Quintessence international (Berlin, Germany : 1985) 2016;47(9):767-73. | Mixed caries population |
| 161. Liu, B.Y.L., E. C. M.; Chu, C. H.; Lin, H. C., *Randomized clinical trial on fluorides and sealants for fissure caries prevention.* Journal of Dental Research, 2012. 91(8): p. 753-8. | Mixed caries population; outcome reported not of interest (incidence) |
| 162. Liu, B.Y.X., Yue; Chu, Chun Hung; Lo, Edward Chin Man, *Glass ionomer ART sealant and fluoride-releasing resin sealant in fissure caries prevention--results from a randomized clinical trial.* BMC oral health, 2014. 14: p. 54. | Interventions not clearly stated; concentrations, brand, and manufacturers names are not reported |
| 163. Liu Y, R.W.Z.X.W.M.J.Q.W.W., *[Caries prevention effect of resin based sealants and glass ionomor sealants]. Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology, 2014. 49(4): p. 199. | Outcome reported not of interest (incidence) |
| 164. Llena, C.L., A. M.; Forner, L., *CPP-ACP and CPP-ACFP versus fluoride varnish in remineralisation of early caries lesions. A prospective study.* European journal of paediatric dentistry : official journal of European Academy of Paediatric Dentistry, 2015. 16(3): p. 181-6. | Method to diagnose lesion is not acceptable |
| 165. Llena-Puy, C., *Mi paste plus and PreviDent fluoride varnish appear no more effective than normal home care for improving the appearance of white spot lesions.* The journal of evidence-based dental practice, 2013. 13(3): p. 114-6. | Duplicate |
| 166. Llena-Puy, C., *Mi Paste Plus and PreviDent Fluoride Varnish appear no more effective than normal home care for improving the appearance of white spot lesions [commentary].* Journal of Evidence-Based Dental Practice, 2013. 13(3): p. 114. | Commentary |
| 167. Lo, O.J., J.; Torjek, C.; Xie, R.; Manaog, G.; Misner, D.; Parry, J.; Sawyer, C.; Hovan, A., *Challenging the gold standard of daily fluoride tray use for the prevention of caries in H&N radiotherapy patients.* Supportive Care in Cancer, 2012. 20: p. S120. | Abstract |
| 168. Lobo, P.L.D.d.C., C. B. M.; Fonseca, S. G. C.; de Castro, R. S. L.; Monteiro, A. J.; Fonteles, M. C.; Fonteles, C. S. R., *Sodium fluoride and chlorhexidine effect in the inhibition of mutans streptococci in children with dental caries: a randomized, double-blind clinical trial.* Oral Microbiology and Immunology, 2008. 23(6): p. 486-91. | Only surrogate outcomes were reported |
| 169. Lobo, P.L.D.F., Cristiane Sa Roriz; Marques, Lidia Audrey Rocha Valadas; Jamacaru, Francisco Vagnaldo Fechine; Fonseca, Said Goncalves da Cruz; de Carvalho, Cibele Barreto Mano; de Moraes, Maria Elisabete Amaral, *The efficacy of three formulations of Lippia sidoides Cham. essential oil in the reduction of salivary Streptococcus mutans in children with caries: a randomized, double-blind, controlled study.* Phytomedicine : international | Only surrogate outcomes were reported |
| ID | Reference | Notes |
|-----|---|--|
| 170 | Lopez, R.M.U., Manuel Ribera; Rodriguez, Belisa Olmo; Casasempere, Immaculada Vela; Comparison between amine fluoride and chlorhexidine with institutionalized elders: a pilot study. Gerodontology, 2013. 30(2): p. 112-8. | Not a randomized controlled trial |
| 171 | Luoma, H.N., A.; Toivonen, A.; Soderholm, S.; Nuuja, T.; Kantero, R. L.; Hassinen, M. L.; Jokela, M.; Nummikoski, P.; Ranta, H.; Thesleff, I., Effect on caries in mentally handicapped children of addition of fluoride and bicarbonate-phosphate to dietary sugar products. Scandinavian Journal of Dental Research, 1979. 87(3): p. 197-207. | Intervention not of interest |
| 172 | Ly, K.A.M., Peter; Roberts, Marilyn C.; Yamaguchi, David K.; Rothen, Marilynn; Mueller, Greg, Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664]. BMC oral health, 2006. 6: p. 6. | Mixed caries population; outcome reported not of interest |
| 173 | Machiulskienė, V.N., B.; Baelum, V., Caries preventive effect of sugar-substituted chewing gum. Community Dentistry and Oral Epidemiology, 2001. 29(4): p. 278-88. | Mixed caries population; outcome reported not of interest |
| 174 | Machiulskienė, V.N., Bente; Baelum, Vibeke, Determinants of dropout in a community intervention trial on the caries-preventive effect of chewing gums. Journal of public health dentistry, 2002. 62(1): p. 21-7. | Mixed caries population |
| 175 | Makinen, K.K.H., P. P.; Bennett, C. A.; Isokangas, P.; Isotupa, K.; Pape, H. R., Jr.; Makinen, P. L., A descriptive report of the effects of a 16-month xylitol chewing-gum programme subsequent to a 40-month sucrose gum programme. Caries Research, 1998. 32(2): p. 107-12. | Cannot construct 2x2 table; outcome was only measured in the experimental group |
| 176 | Makinen, K.K.M., P. L.; Pape, H. H., Jr.; Allen, P.; Bennett, C. A.; Isokangas, P. J.; Isotupa, K. P., Stabilisation of rampant caries: polyol gums and arrest of dentine caries in two long-term cohort studies in young subjects. International dental journal, 1995. 45(1 Suppl 1): p. 93-107. | Not a randomized controlled trial |
| 177 | Marinho, V., Fluoride gel inhibits caries in children who have low caries-risk but this may not be clinically relevant. Evidence-based dentistry, 2004. 5(4): p. 95. | Commentary |
| 178 | Marks, R.G.C., A. J.; Moorhead, J. E.; Cancro, L.; D'Agostino, R. B., Results from a three-year caries clinical trial comparing NaF and SMFP fluoride formulations. International dental journal, 1994. 44(3 Suppl 1): p. 275-85. | Intervention not of interest |
| 179 | Mattos-Silveira, J.F., Isabela; Ferreira, Fernanda R.; Viganò, Maria E. F.; Frizzo, M. A.; Reyes, Alessandra; Novaes, Tatiane F.; Moriyama, Caroline M.; Raggio, Daniela P.; Imparato, Jose C. P.; Mendes, Fausto M.; Braga, Mariana M., New proposal of silver diamine fluoride use in arresting proximal caries: study protocol for a randomized controlled trial. Trials, 2014. 15: p. 448. | Study still in progress |
| 180 | Mattos-Silveira, J.F., I.; Ferreira, F. R.; Viganò, M. E. F.; Frizzo, M. A.; Reyes, A.; Novaes, T. F.; Moriyama, C. M.; Raggio, D. P.; Imparato, J. C. P.; Mendes, F. M.; Braga, M. M., New proposal of silver diamine fluoride use in arresting proximal caries: Study protocol for a randomized controlled trial. Trials, 2015: p. no pagination. | Protocol |
| Reference | Outcome or Intervention Reported Not of Interest |
|-----------|---|
| 181. Mehta, A.P., Ganesh; Chugh, Vinay Kumar; Singh, Surjit; Halkai, Sudha; Kumar, Santosh, *Effect of light-curable fluoride varnish on enamel demineralization adjacent to orthodontic brackets: an in-vivo study*. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2015. 148(5): p. 814-20. | Outcome reported not of interest (incidence) |
| 182. Memarpour, M.F., Ebrahim; Dadanein, Shorangize; Vossoughi, Mehrdad, *Efficacy of fluoride varnish and casein phosphopeptide-amorphous calcium phosphate for remineralization of primary teeth: a randomized clinical trial*. Medical principles and practice : international journal of the Kuwait University, Health Science Centre, 2015. 24(3): p. 231-7. | Outcome reported not of interest |
| 183. Mertz-Fairhurst, E.J.C., J. W., Jr.; Ergle, J. W.; Rueggeberg, F. A.; Adair, S. M., *Ultraconservative and cariostatic sealed restorations: results at year 10*. Journal of the American Dental Association (1939), 1998. 129(1): p. 55-66. | Intervention not of interest |
| 184. Milgrom, P.L., Kiet A.; Tut, Ohnmar K.; Mancl, Lloyd; Roberts, Marilyn C.; Briand, Kennan; Gancio, Mary Jane, *Xylitol pediatric topical oral syrup to prevent dental caries: a double-blind randomized clinical trial of efficacy*. Archives of pediatrics & adolescent medicine, 2009. 163(7): p. 601-7. | Outcome reported not of interest (incidence) |
| 185. Milleman, J.L.M., Kimberly R.; Santos, Sylvia L.; Proskin, Howard M.; Battershell, Kirstin K.; DiMarino, James C., *Subjective Assessment of Enamelon Preventive Treatment Gel in a Self-Reported Dry-Mouth Population*. Compendium of continuing education in dentistry (Jamesburg, N.J. : 1995), 2016. 37(8): p. e5-8. | Intervention not of interest |
| 186. Milsom, K.M.B., A. S.; Walsh, T.; Worthington, H. V.; Kearney-Mitchell, P.; Whitehead, H.; Tickle, M., *A cluster-randomized controlled trial: fluoride varnish in school children*. Journal of Dental Research, 2011. 90(11): p. 1306-11. | Outcome reported not of interest (incidence) |
| 187. Mishra, R.T., Shobha; Rathore, Monika; Banerjee, Molay, *Antimicrobial Efficacy of Probiotic and Herbal Oral Rinses against Candida albicans in Children: A Randomized Clinical Trial*. International journal of clinical pediatric dentistry, 2016. 9(1): p. 25-30. | Only surrogate outcomes were reported |
| 188. Mohan, P.V.M.U.U., K. S.; Vinay, C.; Rao, R. Chandrasekhar, *In vivo comparison of cavity disinfection efficacy with APF gel, Propolis, Diode Laser, and 2% chlorhexidine in primary teeth*. Contemporary clinical dentistry, 2016. 7(1): p. 45-50. | Outcome reported not of interest |
| 189. Molina, M.X.R., F. G.; Urbina, T.; Vargas, S., *Effect of weekly mouthrinses with 0.2% neutral NaF solution on caries incidence in first permanent molars*. Efecto de enjuagatorios semanales con una solucion neutra de NaF al 0.2% en la incidencia de caries en primeros molares definitivos, 1989. 37(1): p. 176-82. | Outcome reported not of interest (incidence) |
| 190. Monse, B.H.-W., Roswiita; Mulder, Jan; Holmgren, Christopher; van Palenstein Helderman, Wim H., *Caries preventive efficacy of silver diammine fluoride (SDF) and ART sealants in a school-based daily fluoride toothbrushing program in the Philippines*. BMC oral health, 2012. 12: p. 52. | Outcome reported not of incidence |
| 191. Morgan, M.V.A., G. G.; Bailey, D. L.; Tsao, C. E.; Fischman, S. L.; Reynolds, E. C., *The anticariogenic effect of sugar-free gum containing CPP-ACP nanocomplexes on approximal caries determined* Used CPP-ACP gum; intervention not commercially available in the United States. | |
| ID | Reference | Status/Annotation |
|----|---|--|
| 192 | Muller-Bolla, M.L.-P., Laurence; Bardakjian, Hrant; Velly, Ana M., Effectiveness of school-based dental sealant programs among children from low-income backgrounds in France: a pragmatic randomized clinical trial. Community Dentistry and Oral Epidemiology, 2013. 41(3): p. 232-41. | Outcome reported not of interest (incidence) |
| 193 | Munjal, D.G., Shalini; Dhindsa, Abhishek; Sidhu, Gagandeep Kaur, Sethi, Harsimran Singh, Assessment of White Spot Lesions and In-Vivo Evaluation of the Effect of CPP-ACP on White Spot Lesions in Permanent Molars of Children. Journal of clinical and diagnostic research : JCDR, 2016. 10(5): p. ZC149-54. | Not a randomized controlled trial |
| 194 | Naidu, S.T., Shobha; Nayak, Rashmi; Ratnanag, P. Venkat; Prajapati, Deepesh; Kamath, Namitha, Efficacy of Concomitant Therapy with Fluoride and Chlorhexidine Varnish on Remineralization of Incipient Lesions in Young Children. International journal of clinical pediatric dentistry, 2016. 9(4): p. 296-302. | Interventions not clearly stated; concentrations, brand, and manufactures names are not reported |
| 195 | Nascimento, M.M., The combined use of chlorhexidine and fluoride therapy can reduce the risk for dental caries. The journal of evidence-based dental practice, 2013. 13(3): p. 123-4. | Review article |
| 196 | Nemes, J.B., J.; Wierzbicka, M.; Rost, M., Clinical study on the effect of amine fluoride/stannous fluoride on exposed root surfaces. The Journal of clinical dentistry, 1992. 3(2): p. 51-3. | Outcome reported not of interest |
| 197 | Nord, A.H., O., [Two-year trial of the fluoride-containing varnishes Duraphat and Carex]. Kariesinsidens etter to ars bruk av de fluoridholdige lakkene Duraphat og Carex., 1991. 101(2): p. 46-9. | Outcome reported not of interest (incidence) |
| 198 | Nordstrom, A.B., D., Preventive effect of high-fluoride dentifrice (5,000 ppm) in caries-active adolescents: a 2-year clinical trial. Caries Research, 2010. 44(3): p. 323-31. | Cannot construct 2x2 table; authors only reports mean lesion progression |
| 199 | Nowjack-Raymer, R.E.S., R. H.; Kingman, A.; Driscoll, W. S., The prevalence of dental fluorosis in a school-based program of fluoride mouthrinsing, fluoride tablets, and both procedures combined. Journal of public health dentistry, 1995. 55(3): p. 165-70. | Outcome reported not of interest (incidence) |
| 200 | Ogaard, B.A., A. Alzelius; Larsson, E.; Adolffson, U., A prospective, randomized clinical study on the effects of an amine fluoride/stannous fluoride toothpaste/mouthrinse on plaque, gingivitis and initial caries lesion development in orthodontic patients. European journal of orthodontics, 2006. 28(1): p. 8-12. | Outcome reported not of interest (incidence) |
| 201 | Ogaard, B.L., E.; Glans, R.; Henriksson, T.; Birkhed, D., Antimicrobial effect of a chlorhexidine-thymol varnish (Cervitec) in orthodontic patients. A prospective, randomized clinical trial. Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie, 1997. 58(4): p. 206-13. | Cannot construct 2x2 table; authors reported prevalence |
| 202 | Ogaard, B.L., E.; Henriksson, T.; Birkhed, D.; Bishara, S. E., Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its | Outcome reported not of interest (incidence) |
| Citation | Description |
|--|--|
| 203. O'Keefe E. 10% chlorhexidine varnish did not reduce caries in an adult population. Evidence-based dentistry 2012;13(2):45. | Commentary |
| 204. Oliveira, B.H.S., M.; Carvalho, D. M.; Falcao, A.; Campos, K.; Nadanovsky, P., Biannual fluoride varnish applications and caries incidence in preschoolers: a 24-month follow-up randomized placebo-controlled clinical trial. Caries Research, 2014. 48(3): p. 228-36. | Mixed caries population; outcome reported not of interest |
| 205. Olivier, M.B., J. M.; Simard, P. L., Efficacy of APF treatments without prior toothcleaning targeted to high-risk children. Community Dentistry and Oral Epidemiology, 1992 20(1): p. 38-42. | Mixed caries population; outcome reported not of interest (incidence) |
| 206. O'Reilly, M.M.F., J. D., Demineralization and remineralization around orthodontic appliances: an in vivo study. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 1987, 92(1): p. 33-40. | Outcome reported not of interest (incidence) |
| 207. Oscaron, P.L.H., P.; Sjostrom, I.; Twelman, S.; Stecksen-Blicks, C., Influence of a low xylitol-dose on mutans streptococci colonisation and caries development in preschool children. European archives of paediatric dentistry : official journal of the European Academy of Paediatric Dentistry, 2006. 7(3): p. 142-7. | Mixed caries population |
| 208. Pakhomov, G.N.M., I. J.; Atanassov, N. P.; Kabackchicheva, R. I.; Sharkov, N. I., Effect of an amine fluoride dentifrice on dental caries used in a community-based oral health education program. Journal of public health dentistry, 1997. 57(3): p. 181-3. | Intervention not of interest |
| 209. Papas ASV, W. M.; Guillou, C. M.; Bader, J.; Laws, R.; Fellows, J.; Hollis, J. F.; Maupome, G.; Singh, M. L.; Snyder, J.; Blanchard, P.; Pacs Collaborative, Group; White A, Blanchard P. Deane J. A. Hamburger K. Johnson J. Johnson K. Marangi-Marsden R. Molina N. O'Connor K. Tavano J. Torresyap G. Maupome G. Begay M. Goldtooth T. Haskie J. Honanie E. Masaquaptewa A. Oht J. Peaches R. Phipps K. Robertson L. D. Ryczek S. Talayumptewa C. Papas A. Arkema E. Brown A. Burns V. Casey M. Corrado P. Douglas M. Ganda K. Gulati H. Harrington D. Krizova L. Lee K. O'Connor J. Ragone L. Russell D. Singh M. Singh M. Soter J. C. Stevens G. Sundaralingam S. Tzavaras E. Snyder J. Bernel D. Brittan J. Brooks L. Carlston J. Cheek P. Clark D. Downing J. Farrel K. Gleason D. Hankins J. Hollis J. Johnson C. Laterriere D. Little S. J. Massinger L. Muesig K. Olson O. L. Richards K. Snyder C. Strong B. Vollmer W. M. Bader J. Bardsley J. Booker K. Chen C. Chen P. Dixon A. Donald J. Elder C. Fellows J. Funkhouser K. Giullion C. Kirk K. Laws R. Machen C. Meltesen G. Rasathurai S. Reck D. Efficacy of chlorhexidine varnish for the prevention of adult caries: a randomized trial. Journal of Dental Research 2012;91(2):150-5. | Outcome reported not of interest (incidence) |
| 210. Paraskevas, S.D., M. M.; Timmerman, M. F.; van der Velden, U.; van der Weijden, G. A., Amine fluoride/stannous fluoride and incidence of root caries in periodontal maintenance patients. A 2 year evaluation. Journal of clinical periodontology, 2004. 31(11): p. 965-71. | Intervention not of interest |
| ID | Author(s) | Title | Details |
|------|---|--|--|
| 211 | Pardi, V.P.; Antonio Carlos; Ambrosano, Glaucia Maria Bovi; Meneghim, Marcelo de Castro | Clinical evaluation of three different materials used as pit and fissure sealant: 24-months results. The Journal of clinical pediatric dentistry, 2005. 29(2): p. 133-7. | Outcome reported not of interest (incidence) |
| 212 | Paschos, E.K., Natascha; Huth, Karin C.; Hansson, Claia S.; Rudzki-Janson, Ingrid | Failure rate of brackets bonded with antimicrobial and fluoride-releasing, self-etching primer and the effect on prevention of enamel demineralization. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2009. 135(5): p. 613-20. | Outcome reported not of interest (incidence) |
| 213 | Pearce, E.I.C., E. W.; Suckling, G. W. | Stability of fluoride levels in surface layer of normal enamel during a 21-month fluoride mouthrinsing program. Community Dentistry and Oral Epidemiology, 1980. 8(8): p. 396-400. | Cannot construct 2x2 table; authors did not clearly state which teeth had initial lesions at baseline |
| 214 | Peng, B.P., Poul Erik; Bian, Zhuan; Tai, Baojun; Jiang, Han | Can school-based oral health education and a sugar-free chewing gum program improve oral health? Results from a two-year study in PR China. Acta Odontologica Scandinavica, 2004. 62(6): p. 328-32. | Mixed caries population; outcome reported not of interest (incidence) |
| 215 | Perrini, F.L.; Luca; Arreghini, Angela; Medori, Silvia; Siciliani, Giuseppe | Caries prevention during orthodontic treatment: In-vivo assessment of high-fluoride varnish to prevent white spot lesions. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2016. 149(2): p. 238-43. | Outcome reported not of interest (incidence) |
| 216 | Peters Mc, T.F.N.M.D.W.B.S.C., | Resin infiltration effects in caries-active environment [abstract]. Proceedings of the General Session of the International Association for Dental Research:, 2013: p. Abstract. | Abstract |
| 217 | Petersson LGM, K.; Andersson, H.; Almqvist, B.; Twetman, S. | Effect of quarterly treatments with a chlorhexidine and a fluoride varnish on approximal caries in caries-susceptible teenagers: a 3-year clinical study. Caries Research 2000;34(2):140-3. | Outcome reported not of interest (incidence) |
| 218 | Petersson, L.G.M., Kerstin; Hakestam, Ulf; Baigi, Amir; Twetman, Svante | Reversal of primary root caries lesions after daily intake of milk supplemented with fluoride and probiotic lactobacilli in older adults. Acta Odontologica Scandinavica, 2011. 69(6): p. 321-7. | Cannot construct 2x2 table |
| 219 | Pitchika, V.K., Claudia J.; Andreeva, Jana; Crispin, Alexander; Hickel, Reinhard; Kuhnisch, Jan; Heinrich-Weltzien, Roswitha | Effectiveness of a new fluoride varnish for caries prevention in pre-school children. The Journal of clinical pediatric dentistry, 2013. 38(1): p. 7-12. | Not a randomized controlled trial |
| 220 | Plonka, K.A.P., M. L.; Holcombe, T. F.; Barnett, A. G.; Walsh, L. J.; Seow, W. K. | Randomized controlled trial: a randomized controlled clinical trial comparing a remineralizing paste with an antibacterial gel to prevent early childhood caries. Pediatric Dentistry, 2013. 35(1): p. 8-12. | Outcome reported not of interest (incidence) |
| 221 | Pomarico, L.V.; Michele; Maia, Lucianne Cople | In vivo effect of titanium tetrafluoride and sodium monofluorophosphate dentifrice on remineralization: a preliminary split-mouth clinical trial. General Dentistry, 2012. 60(4): p. e249-54. | Intervention not of interest |
| Reference | Description | Outcome or Intervention |
|--|---|-------------------------|
| Poulsen S, B.N.S.N., A comparison of retention and the effect on caries of fissure sealing with a glass-ionomer and a resin-based sealant. Community Dentistry and Oral Epidemiology, 2001. 29(4): p. 298. | | Outcome reported not of interest (incidence and retention) |
| Powell, K.R.B., P. D.; Craig, G. G., Effect of stannous fluoride treatments on the progression of initial lesions in approximal surfaces of permanent posterior teeth. Journal of Dental Research, 1981. 60(9): p. 1648-54. | Used SnF₂ dentifrice; intervention not commercially available in the United States |
| Powell, L.V.P., R. E.; Kiyak, H. A.; Hujoel, P. P., Caries prevention in a community-dwelling older population. Caries Research, 1999. 33(5): p. 333-9. | | Outcome reported not of interest (incidence) |
| Pukallus, M.L.P., Kathryn A.; Barnett, Adrian G.; Walsh, Laurence J.; Holcombe, Trevor F.; Seow, W. Kim. A randomised, controlled clinical trial comparing chlorhexidine gel and low-dose fluoride toothpaste to prevent early childhood caries. International Journal of Paediatric Dentistry, 2013. 23(3): p. 216-24. | Mixed caries population; outcome reported not of interest (incidence) |
| Pukallus, M.L.P.; Barnett, Adrian G.; Walsh, Laurence J.; Seow, W. Kim. A randomized controlled trial of a 10 percent CPP-ACP cream to reduce mutans streptococci colonization. Pediatric Dentistry, 2013. 35(7): p. 550-5. | Mixed caries population; outcome reported not of interest (incidence) |
| Quissell, D.O.B., Lucinda L.; Braun, Patricia A.; Cudei, Diana; Johs, Nikolas; Smith, Vongphone L.; George, Carmen; Henderson, William G.; Albino, Judith. Preventing caries in preschoolers: successful initiation of an innovative community-based clinical trial in Navajo Nation Head Start. Contemporary clinical trials. 2014. 37(2): p. 242-51. | Protocol |
| Rai, P.P., R. K.; Khanna, Richa, Qualitative and Quantitative Effect of a Protective Chlorhexidine Varnish Layer Over Resin-infiltrated Proximal Carious Lesions in Primary Teeth. Pediatric Dentistry. 2016. 38(4): p. 40-5. | Not a randomized controlled trial |
| Ramos-Gomez, F.J.G., Stuart A.; Featherstone, John D. B.; Hue, Bonnie; Gonzalez-Beristain, Rocío; Santo, William; Martinez, Ed; Weintraub, Jane A., Mother and youth access (MAYA) maternal chlorhexidine, counselling and paediatric fluoride varnish randomized clinical trial to prevent early childhood caries. International Journal of Paediatric Dentistry. 2012. 22(3): p. 169-79. | Mixed caries population |
| Raucci-Neto, W.d.C.-R., Larissa Moreira Spinola; Leprí, Cesar Penazzo; Faraoni-Romano, Juliana Jendiroba; Gomes da Silva, Jaciara Miranda; Palma-Dibb, Regina Guenka, Nd:YAG laser in occlusal caries prevention of primary teeth: a randomized clinical trial. Lasers in Medical Science, 2015. 30(2): p. 761-8. | Outcome reported not of interest (incidence) |
| Ravald, N.B., D., Prediction of root caries in periodontally treated patients maintained with different fluoride programmes. Caries Research, 1992. 26(6): p. 450-8. | Cannot construct 2x2 table; authors did not clearly state the outcome measure by arm |
| Rechmann, P.C., D. A.; Rechmann, B. M. T.; Le, C. Q.; Featherstone, J. D. B., In-vivo occlusal caries prevention by pulsed CO2-laser and fluoride varnish treatment - A clinical pilot study. Lasers in surgery and medicine, 2013. 45(5): p. 302-310. | Outcome reported not of interest (incidence) |
| Reed, M.W.K., J. D., A clinical evaluation of a sodium fluoride dentifrice. Pharmacology and Therapeutics in Dentistry, 1975. 2(2): p. 77-82. | Intervention not of interest |
| Rekola, M., Changes in buccal white spots during 2-year consumption of dietary sucrose or xylitol. Acta Odontologica Scandinavica, 1986. 44(5): p. 285-90. | Not a randomized controlled trial |
| 235. | Restrepo, M.B., Diego G.; Jeremias, Fabiano; Cordeiro, Rita C. L.; Magalhaes, Ana C.; Palomari Spolidorio, Denise M.; Santos-Pinto, Lourdes. Control of white spot lesion adjacent to orthodontic bracket with use of fluoride varnish or chlorhexidine gel. *TheScientificWorldJournal*, 2015. 2015: p. 218452. | Not a randomized controlled trial |
| 236. | Restrepo MB, D. G.; Jeremias, F.; Cordeiro, R. C. L.; Raveli, D. B.; Magalhaes, A. C.; Candolo, C.; Santos-Pinto, L. Control of White Spot Lesions with Use of Fluoride Varnish or Chlorhexidine Gel During Orthodontic Treatment A Randomized Clinical Trial. *The Journal of clinical pediatric dentistry* 2016;40(4):274-80. | White spot lesions were artificially induced |
| 237. | Restrepo, M.J., Fabiano; Santos-Pinto, Lourdes; Cordeiro, Rita C; Zuanon, Angela Cc. Effect of Fluoride Varnish on Enamel Remineralization in Anterior Teeth with Molar Incisor Hypomineralization. *The Journal of clinical pediatric dentistry*, 2016. 40(3): p. 207-10. | Method to diagnose lesion is not acceptable |
| 238. | Reynolds, E.C.C., F.; Shen, P.; Walker, G. D., Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. *Journal of Dental Research*, 2003. 82(3): p. 206-11. | Review article |
| 239. | Reynolds, E.C.C., F.; Cochrane, N. J.; Shen, P.; Walker, G. D.; Morgan, M. V.; Reynolds, C., Fluoride and casein phosphopeptide-amorphous calcium phosphate. *Journal of Dental Research*, 2008. 87(4): p. 344-8. | Review article |
| 240. | Ripa, L.W.L., G. S.; Sposato, A.; Rebich, T., Supervised weekly rinsing with a 0.2 percent neutral NaF solution: final results of a demonstration program after six school years. *Journal of public health dentistry*, 1983. 43(1): p. 53-62. | Not a randomized controlled trial |
| 241. | Ritter, A.V.B., J. D.; Leo, M. C.; Preisser, J. S.; Shugars, D. A.; Vollmer, W. M.; Amaechi, B. T.; Holland, J. C., Tooth-surface-specific effects of xylitol: randomized trial results. *Journal of Dental Research*, 2013. 92(6): p. 512-7. | Outcome reported not of interest (incidence) |
| 242. | Robertson, M.A.K.; Chung How; English, Jeryl D.; Lee, Robert P.; Powers, John; Nguyen, Jennifer T., *MI Paste Plus to prevent demineralization in orthodontic patients: a prospective randomized controlled trial*. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2011. 140(5): p. 660-8. | Cannot construct 2x2 table; authors did not separate data for each type of tooth |
| 243. | Rodrigues, C.R.M.D.M.; Marcela; Barros, Lucia Pereira; Grande, Rosa Helena Miranda; Myaki, Silvio Issao; Kabakura, Viviane; Miyamura, Adriana, Effect of chlorhexidine-thymol varnish on caries lesion development in first permanent molars. *The Journal of clinical dentistry*, 2008. 19(1): p. 18-21. | Outcome reported not of interest (incidence) |
| 244. | Rodriguez, G.R., B.; Faleiros, S.; Vistoso, A.; Marro, M. L.; Sanchez, J.; Urzua, I.; Cabello, R., Probiotic Compared with Standard Milk for High-caries Children: A Cluster Randomized Trial. *Journal of Dental Research*, 2016. 95(4): p. 402-7. | Mixed caries population |
| 245. | Rollings, S.G.; Louise; Borrie, Felicity; Lamont, Thomas, Small trial finds beneficial effect for MI Paste in preventing white spot lesions during orthodontic treatment. Evidence-based dentistry, 2012. 13(4): p. 117-8. | Commentary |
| 246. | Ruiken, R.T., G. J.; Konig, K.; Vogels, A.; van ’t Hof, M., Clinical cariostatic effectiveness of a NaF rinse in a low prevalence child population. Community | Mixed caries population |
| Page | Reference | Notes |
|------|---|---|
| 57-9 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Cannot construct 2x2 table; only one arm of study is of interest |
| 92 | Santos, V.E.d., Jr.; Vasconcelos Filho, Arnoldo; Targino, Andrea Gadelha Ribeiro; Flores, Miguel Angel Pelagio; Galembeck, Andre; Caídas, Arnaldo Franca, Jr.; Rosenblatt, Aronita, A new "silver-bullet" to treat caries in children--nano silver fluoride: a randomised clinical trial. Journal of Dentistry, 2014. 42(8): p. 945-51. | Used nano silver fluoride; intervention not commercially available in the United States |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Cannot construct 2x2 table; only one arm of study is of interest |
| 269-278 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Outcome reported not of interest |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | All study participants were not randomized |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | All study participants were not randomized |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Cannot construct 2x2 table |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Method to diagnose lesion is not acceptable |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Outcome reported not of interest (incidence) |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Outcome reported not of interest (incidence) |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Outcome reported not of interest (incidence) |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Outcome reported not of interest (incidence) |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Outcome reported not of interest (incidence) |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Outcome reported not of interest (incidence) |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Mixed caries population |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Review article |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Commentary |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Authors did not clearly state baseline caries status of each group at baseline |
| 358-67 | Santamaria, R.M.I., N. P. T.; Machiulskiene, V.; Evans, D. J. P.; Splieth, C. H., Caries management strategies for primary molars: 1-yr randomized control trial results. Journal of Dental Research, 2014. 93(11): p. 1062-9. | Mixed caries population |
| Reference | Note |
|--|---|
| **ECC in Urban China.** The Chinese journal of dental research: the official journal of the Scientific Section of the Chinese Stomatological Association (CSA), 2016. 19(1): p. 55-63. | |
| 261. Sighary-Deljavan, A.R., S. D.; Samii, M.; Rikhtegaran, S. A.; Fekrazad, R., Using photoactivated disinfection and chemical agents in remineralization of initial caries. Medicina Oral, Patología Oral y Cirugía Bucal, 2012. 17: p. S139. | Method to diagnose lesion is not acceptable |
| 262. Sim, C.P.C.W., Joseph; Xu, Ying; Cheung; Yin-Bun; Soong, Yoke-Lim; Manton, David J., Anti-caries effect of CPP-ACP in irradiated nasopharyngeal carcinoma patients. Clinical Oral Investigations, 2015. 19(5): p. 1005-11. | Cannot construct 2x2 table; inconsistencies in the total number of lesions |
| 263. Singh, S.S., Satinder Pal; Goyal, Ashima; Utreja, Ashok Kumar; Jena, Ashok Kumar, Effects of various remineralizing agents on the outcome of post-orthodontic white spot lesions (WSLs): a clinical trial. Progress in orthodontics, 2016. 17(1): p. 25. | Method to diagnose lesion is not acceptable |
| 264. Sinha, N.G., A.; Logani, A., Shah, N., Remineralizing efficacy of silver diamine fluoride and glass ionomer type VII for their proposed use as indirect pulp capping materials - Part II (A clinical study). Journal of conservative dentistry : JCD, 2011. 14(3): p. 233-6. | Co-intervention not of interest |
| 265. Sintes, J.L.E., C.; Stewart, B.; McCool, J. J.; Garcia, L.; Volpe, A. R.; Triol, C., Enhanced anticaries efficacy of a 0.243% sodium fluoride/10% xylitol/silica dentifrice: 3-year clinical results. American Journal of Dentistry, 1995. 8(5): p. 231-5. | Mixed caries population |
| 266. Sithisettapong, T.D., Takashi; Nishida, Yuhei; Kambara, Masaki; Phantumvanit, Prathip, Effect of CPP-ACP Paste on Enamel Carious Lesion of Primary Upper Anterior Teeth Assessed by Quantitative Light-Induced Fluorescence: A One-Year Clinical Trial. Caries Research, 2015. 49(4): p. 434-41. | Method to diagnose lesion is not acceptable |
| 267. Sjogren, K.B., D.; Rangmar, B., Effect of a modified toothpaste technique on proximal caries in preschool children. Caries Research, 1995. 29(6): p. 435-41. | Outcome reported not of interest (incidence) |
| 268. Skold, L.S., B.; Eriksson, B.; Edeland, C., Four-year study of caries inhibition of intensive Duraphat application in 11-15-year-old children. Community Dentistry and Oral Epidemiology, 1994. 22(1): p. 8-12. | Outcome reported not of interest |
| 269. Skold UML, A. M.; Rasmussson, C. G.; Birkhed, D.; Klock, B. Caries incidence in adolescents with low caries prevalence after cessation of weekly fluoride rinsing. Acta Odontologica Scandinavica 2001;59(2):69-73. | Authors did not clearly report study design used and randomization |
| 270. Skold-Larsson, K.S., Ola; Peterson, Lars G.; Twetman, Svante, Effect of topical applications of a novel chlorhexidine-thymol varnish formula on mutans streptococci and caries development in occlusal fissures of permanent molars. The Journal of clinical dentistry, 2009. 20(7): p. 223-6. | Outcome reported not of interest (incidence) |
| 271. Slade, G.D.B., Ross S.; Roberts-Thomson, Kaye; Leach, Amanda J.; Raye, Iris; Endean, Colin; Simmons, Bruce; Morris, Peter, Effect of health promotion and fluoride varnish on dental caries among Australian Aboriginal children: results from a community-randomized controlled trial. Community Dentistry and Oral Epidemiology, 2011. 39(1): p. 29-43. | Mixed caries population |
| 272. Sonesson, M.T., Svante; Bondemark, Lars, Effectiveness of high-fluoride toothpaste on enamel remineralization during orthodontic treatment a | Outcome reported not of interest (incidence) |
| Study Reference | Summary or Evidence | Notes |
|-----------------|---------------------|-------|
| 273. Souza MLRC, J. A.; Tenuta, L. M. A.; Zhang, Y. P.; Mateo, L. R.; Cummins, D.; Ellwood, R. P. | Comparing the efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride to a dentifrice containing 1450 ppm fluoride alone in the management of primary root caries. Journal of Dentistry 2013;41 Suppl 2:S35-41. | Used 1.5% arginine gel plus 1450 ppm dentifrice; intervention not commercially available in the United States. |
| 274. Spak, C.J.J., G.; Ekstrand, J. | Caries incidence, salivary flow rate and efficacy of fluoride gel treatment in irradiated patients. Caries Research, 1994. 28(5): p. 388-93. | Outcome reported not of interest (incidence). |
| 275. Spets-Happonen, S.L., H.; Forss, H.; Kentala, J.; Alaluusua, S.; Luoma, A. R.; Gronroos, L.; Syväoja, S.; Tapaninen, H.; Happonen, P. | Effects of a chlorhexidine-fluoride-strontium rinsing program on caries, gingivitis and some salivary bacteria among Finnish schoolchildren. Scandinavian Journal of Dental Research, 1991. 99(2): p. 130-8. | Mixed caries population. |
| 276. Spiketh, C.S.H.B., Christine; Alkilzy, Mohammad; Treuner, Anja. | Efficacy of semiannual topical fluoride application in schoolchildren. Quintessence international (Berlin, Germany : 1985), 2011. 42(9): p. 753-60. | Mixed caries population. |
| 277. Spiketh, C.S., H.; Rosin, M.; Welk, A. | Caries prevention with chlorhexidine-thymol varnish in high risk schoolchildren. Community Dentistry and Oral Epidemiology, 2000. 28(6): p. 419-23. | Outcome reported not of interest (incidence). |
| 278. Srinagesh, J.K., Pushpanjali; Somanna, Shivaraj N. | Antibacterial efficacy of triphala against oral streptococci: an in vivo study. Indian journal of dental research : official publication of Indian Society for Dental Research, 2012. 23(5): p. 696. | Only surrogate outcomes were reported. |
| 279. Srinagesh, J.P., Krishnappa. | Assessment of antibacterial efficacy of triphala against mutans streptococci: a randomised control trial. Oral health & preventive dentistry. 2011. 9(4): p. 387-93. | Only surrogate outcomes were reported. |
| 280. Srisilapanan, P.K., N.; Yin, W.; Chuensuwonkul, C.; Mateo, L. R.; Zhang, Y. P.; Cummins, D.; Ellwood, R. P. | Comparison of the efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride to a dentifrice containing 1450 ppm fluoride alone in the management of early coronal caries as assessed using Quantitative Light-induced Fluorescence. Journal of Dentistry, 2013. 41 Suppl 2: p. S29-34. | Method to diagnose lesion is not acceptable. |
| 281. Stecksen-Blicks, C.H., Pernilla Li; Twetman, Svante, Effect of xylitol and xylitol-fluoride lozenges on approximal caries development in high-caries-risk children. International Journal of Paediatric Dentistry, 2008. 18(3): p. 170-7. | Outcome reported not of interest. |
| 282. Stecksen-Blicks, C.R., G.; Oscaron, N. D.; Bergstrand, F.; Twetman, S. | Caries-preventive effectiveness of a fluoride varnish: a randomized controlled trial in adolescents with fixed orthodontic appliances. Caries Research, 2007. 41(6): p. 455-9. | Cannot construct 2x2 table; authors reported mean caries progression. |
| 283. Suetenkov, D.Y.P., A. P.; Khantonova, T. L. | Photo activated disinfection efficiency of low-intensity laser and comprehensive prevention of caries and gingivitis in adolescents using bracket system. Journal of Innovative Optical Health Sciences, 2015. 8(3): p. no pagination. | Outcome reported not of interest (incidence). |
| 284. Sundell, A.L.U., Christer; Koch, Goran, Evaluation of preventive programs in high caries active preschool children. Swedish dental journal, 2013. 37(1): p. 23-9. | Outcome reported not of interest (incidence). |
| Id | Reference | Description |
|----|---|--|
| 285 | Suwansingha, O.R., Praphasri, Effect of fluoride varnish on caries prevention of partially erupted permanent molar in high caries risk. The Southeast Asian journal of tropical medicine and public health, 2012. 43(3): p. 808-13. | Outcome reported not of interest (incidence) |
| 286 | Symington, J.M.P., Ross; Kumar, Ashish; Schiff, Robert, Efficacy of a 10% chlorhexidine coating to prevent caries in at-risk community-dwelling adults. Acta Odontologica Scandinavica, 2014. 72(7): p. 497-501. | Outcome reported not of interest (incidence) |
| 287 | Szake J, B.J.P.H.M., The effect of sorbitol based chewing gum use after eating on caries: A longitudinal clinical trial. (Abstract: 44th ORCA Congress, July 2-5, 1997, Dundee, UK). Caries Research, 1997. 31(4). | Abstract |
| 288 | Taipale, T.P., K.; Alanen, P.; Jokela, J.; Soderling, E., Administration of Bilidobacterium animalis subsp. lactis BB-12 in early childhood: a post-trial effect on caries occurrence at four years of age. Caries Research, 2013. 47(5): p. 364-72. | Mixed caries population |
| 289 | Tang, L.S., L.; Yuan, S.; Lv, J.; Lu, H., Effectiveness of 3 different methods in prevention of dental caries in permanent teeth among children. Shanghai kou qiang yi xue = Shanghai journal of stomatology, 2014. 23(6): p. 736-739. | Outcome reported not of interest (incidence) |
| 290 | Tapias, M.A.D.M, G.; Jimenez-Garcia, R.; Gonzalez, A.; Dominguez, V., Incidence of caries in an infant population in Mostoles, Madrid. Evaluation of a preventive program after 7.5 years of follow-up. International Journal of Paediatric Dentistry, 2001. 11(6): p. 440-6. | Not a randomized controlled trial |
| 291 | ten Cate, J.M.C., D., Fluoride toothpaste containing 1.5% arginine and insoluble calcium as a new standard of care in caries prevention. The Journal of clinical dentistry, 2013. 24(3): p. 79-87. | Review article |
| 292 | Tickle, M.M., Keith M.; Donaldson, Michael; Killough, Seamus; O’Neill, Ciaran; Crealey, Grainne; Sutton, Matthew; Noble, Solveig; Greer, Margaret; Worthington, Helen V., Protocol for Northern Ireland Caries Prevention in Practice Trial (NIC-PiP) trial: a randomised controlled trial to measure the effects and costs of a dental caries prevention regime for young children attending primary care dental services. BMC oral health, 2011. 11: p. 27. | Protocol |
| 293 | Tolvanen, M.L., Satu; Poutanen, Raija; Seppa, Lisa; Pohjola, Vesha; Hauser, Hannu, Changes in children’s oral health-related behavior, knowledge and attitudes during a 3.4-yr randomized clinical trial and oral health-promotion program. European Journal of Oral Sciences, 2009. 117(4): p. 390-7. | Review article |
| 294 | Torell, P.G., P. O., Fortnightly fluoride rinsing combined with topical painting of fluoride solutions containing Al-, Fe-, and Mn-ions. Scandinavian Journal of Dental Research, 1977. 85(1): p. 38-40. | Outcome reported not of interest (incidence) |
| 295 | Toumba, K.J.C., M. E. J., A clinical trial of a slow-releasing fluoride device in children. Caries Research, 2005. 39(3): p. 195-200. | Mixed caries population |
| 296 | Truin, G.-J.v.t.H., Martin, The effect of fluoride gel on incipient carious lesions in a low-carries child population. Community Dentistry and Oral Epidemiology, 2007. 35(4): p. 250-4. | Cannot construct 2x2 table |
| 297 | Truin, G.J.v.t.H., M. A., Caries prevention by professional fluoride gel application on enamel and dentinal lesions in low-carries children. Caries Research, 2005. 39(3): p. 236-40. | Cannot construct 2x2 table |
| 298 | Tsao, C.E.M., M. V., Does chewing sucrose-free chewing gum after meals reduce the development of carious lesions? Medical Journal of Australia, 2005. 182(2): p. 85-86. | Critical summary |
| Reference | Description | Notes |
|-----------|-------------|-------|
| 299. Tufekci, E.P., Daniel R.; Mitchell, John C.; Best, Al M.; Lindauer, Steven J., Efficacy of a fluoride-releasing orthodontic primer in reducing demineralization around brackets: an in-vivo study, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2014. 146(2): p. 207-14. | Outcome reported not of interest (incidence) | |
| 300. Twetman, S.P., L.G., Interdental caries incidence and progression in relation to mutans streptococci suppression after chlorhexidine-thymol varnish treatments in schoolchildren. Acta Odontologica Scandinavica, 1999. 57(3): p. 144-8. | Not a randomized controlled trial | |
| 301. Twetman, S.S.-B., Christina, Effect of xylitol-containing chewing gums on lactic acid production in dental plaque from caries active pre-school children. Oral health & preventive dentistry, 2003. 1(3): p. 195-9. | Not a randomized controlled trial | |
| 302. Ueberschar, M.G., H., [Root caries incidence with regular use of AmF/SnF2 mouth rinse]; Wurzelkaries-Inzidenz unter AmF/SnF2-Mundspulung., 1991. 46(8): p. 566-8. | Intervention not of interest | |
| 303. Unal, M.O., F.; Kapdan, A.; Durer, S., A comparative clinical study of three fissure sealants on primary teeth: 24-month results. The Journal of clinical pediatric dentistry, 2015. 39(2): p. 113-9. | Outcome reported not of interest (incidence) | |
| 304. Uysal, T.A., Mihri; Ozcan, Suat; Koyuturk, Alp Erdin; Sagdic, Deniz, Effect of antibacterial monomer-containing adhesive on enamel demineralization around orthodontic brackets: an in-vivo study. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2011. 139(5): p. 650-6. | Outcome reported not of interest (incidence) | |
| 305. van der Kaaij, N.C.W.v.d.V., Monique H.; van der Kaaij, Marleen A. E.; ten Cate, Jacob M., A prospective, randomized placebo-controlled clinical trial on the effects of a fluoride rinse on white spot lesion development and bleeding in orthodontic patients. European Journal of Oral Sciences, 2015. 123(3): p. 186-93. | Intervention not of interest | |
| 306. Vashisht, R.I., Rajamani; Ramachandran, S.; Kumar, Anil; Srinivasan, Manali Ramakrishnan, Role of casein phosphopeptide amorphous calcium phosphate in remineralization of white spot lesions and inhibition of Streptococcus mutans? Journal of conservative dentistry : JCD, 2013. 16(4): p. 342-6. | Method to diagnose lesion is not acceptable | |
| 307. Vermaire, J.H.P., J. H. G.; van Herwijnen, L.; van Loveren, C., A three-year randomized controlled trial in 6-year-old children on caries-preventive strategies in a general dental practice in the Netherlands. Caries Research, 2014. 48(6): p. 524-33. | Mixed caries population | |
| 308. Vivaldi-Rodrigues, G.D., Carina Faleiros; Bowman, S. Jay; Ramos, Adisson L., The effectiveness of a fluoride varnish in preventing the development of white spot lesions. World journal of orthodontics, 2006. 7(2): p. 138-44. | Outcome reported not of interest (incidence) | |
| 309. Vogel, G.L., RE: Shen P, Cai F, Nowicki A, Vincent J, Reynolds EC (2001). Remineralization of enamel subsurface lesions by sugar-free chewing gum containing phosphopeptide-amorphous calcium phosphate. J Dent Res 80:2066-2070. Journal of Dental Research, 2002. 81(4): p. 228. | Letter to the Editor | |
| 310. Vollmer, W.M.P., Athena S.; Bader, James D.; Maupome, Gerardo; Gullion, Christina M.; Hollis, Jack F.; Snyder, John J.; Fellows, Jeffrey L.; Laws, Reesa L.; White, B. Alexander; Pacs Collaborative Protocol | |

68
Reference	Title	Abstract/Outcome
311. Vrbic V, K.B.R.C.,	Caries reduction after topical application of 4% NaF-P sub 4. Three years’ study.	Outcome reported not of interest (incidence)
312. Vrbic V, K.B.R.C.,	A 3 year study among Yugoslavian schoolchildren on caries reduction after topical application of 4% NaF-P sub 4.	Outcome reported not of interest (incidence)
313. Wang, J.-x.Y., Yan; Wang, Xiu-jing,	Clinical evaluation of remineralization potential of casein phosphopeptide amorphous calcium phosphate nanocomplexes for enamel decalcification in orthodontics.	Outcome reported not of interest
314. Wang, L.J., J.; Lu, H. F.,	Efficiency of resin infiltration versus fluoride varnish for treatment of post-orthodontic white spot lesions.	Outcome reported not of interest
315. Weinstein, P.S., C.; Milgrom, P.,	Randomized equivalence trial of intensive and semiannual applications of fluoride varnish in the primary dentition.	Cannot construct 2x2 table; authors only reported incidence
316. Weintraub, J.A.R.-G., F.; Jue, B.; Shani, S.; Hoover, C. I.; Featherstone, J. D. B.; Gansky, S. A.,	Fluoride varnish efficacy in preventing early childhood caries.	Outcome reported not of interest (incidence)
317. Weiss, M.W., J.; Muller-Hartwich, R.; Meier, B.; Jost-Brinkmann, P. G.,	Chlorhexidine in cleft lip and palate patients with multibracket appliances. Results of a prospective study on the effectiveness of two different chlorhexidine preparations in a cleft lip and palate patients with multibracket appliances.	Outcome reported not of interest (incidence)
318. Wicht M.J.	Arresting root caries: Chlorhexidine-containing varnishes vs sealing therapy. (ORCA abstract).	Abstract
319. Wicht, M.J.H., Rainer; Lummert, Daniel; Noack, Michael J.,	Treatment of root caries lesions with chlorhexidine-containing varnishes and dentin sealants.	Cannot construct 2x2 table
320. Wong, M.C.M.L., K. F.; Lo, E. C. M.,	Bayesian analysis of clustered interval-censored data.	Statistical methods paper
321. Wong, M.C.M.L., K. F.; Lo, Edward C. M.,	Analysis of multilevel grouped survival data with time-varying regression coefficients.	Statistical methods paper
322. Wright, W.T., Stephen; Anopa, Yulia; McIntosh, Emma; Wu, Olivia; Conway, David I.; Macpherson, Lorna M. D.; McMahon, Alex D.,	Comparison of the caries-protective effect of fluoride varnish with treatment as usual in nursery school attendees receiving preventive oral health support through the Childsmile oral health improvement programme - the Protecting Teeth@3 Study: a randomised controlled trial.	Protocol
Entry	Title	Abstract/Remarks
-------	-------	------------------
323.	Xhemnica, L.S.; D.; Roico, R.; Hysi, D.	Fluoride varnish application: a new prophylactic method in Albania. Effect on enamel carious lesions in permanent dentition. European journal of paediatric dentistry: official journal of European Academy of Paediatric Dentistry, 2008. 9(2): p. 93-6. Outcome reported not of interest (incidence)
324.	Xu, X.L.; Ji Yao; Zhou, Xue Dong; Xie, Qian; Zhan, Ling; Featherstone, John D. B.	Randomized controlled clinical trial on the evaluation of bacteriostatic and cariostatic effects of a novel povidone-iodine/fluoride foam in children with high caries risk. Quintessence international (Berlin, Germany: 1985), 2009. 40(3): p. 215-23. Interventions not clearly stated; concentrations not reported
325.	Yang, G.L.; Ju Hong; Wang, Jin-Hua; Jiang, Lin.	[Evaluation of the clinical effect of fluoride varnish in preventing caries of primary teeth]. Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 2008. 26(2): p. 159-61. Outcome reported not of interest (incidence)
326.	Yazicioglu, O.U.	The investigation of non-invasive techniques for treating early approximal carious lesions: an in vivo study. International dental journal, 2014. 64(1): p. 1-11. Cannot construct 2x2 table; authors only reported statistical significance among treatment and control group
327.	Yin, W.H.; Fan, X.; Zhang, Y. P.; Cummins, D.; Mateo, L. R.; Pretty, I. A.; Ellwood, R. P.	A clinical investigation using quantitative light-induced fluorescence (QLF) of the anticaries efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride as sodium monofluorophosphate. The Journal of clinical dentistry, 2013. 24 Spec no A: p. A15-22. Method to diagnose lesion is not acceptable
328.	Yin, W.H.; Li, X.; Fan, X.; Zhang, Y. P.; Pretty, I. A.; Mateo, L. R.; Cummins, D.; Ellwood, R. P.	The anti-caries efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride as sodium monofluorophosphate assessed using Quantitative Light-induced Fluorescence (QLF). Journal of Dentistry, 2013. 41 Suppl 2: p. S22-8. Method to diagnose lesion is not acceptable
329.	Zanata, R.L.N.; Maria Fidelia de Lima; Pereira, Jose Carlos; Franco, Eduardo Batista; Lauris, Jose Roberto P.; Barbosa, Silvia Helena	Effect of caries preventive measures directed to expectant mothers on caries experience in their children. Brazilian Dental Journal, 2003. 14(2): p. 75-81. Outcome reported not of interest (incidence)
330.	Zhan, L.C.; Chang, P.; Ngo, M.; Denbesten, P. K.; Hoover, C. I.; Featherstone, J. D. B.	Effects of xylitol wipes on cariogenic bacteria and caries in young children. Journal of Dental Research, 2012. 91(7 Suppl): p. 85S-90S. Outcome reported not of interest (incidence)
331.	Zhang, D.Z.; Peng, H.; Sun, H.	Casein phosphopeptide-amorphous calcium phosphate nanocomplexes as a preventive agent for radiation caries and dental sensitivity in irradiated head and neck cancer patients. Chinese Journal of Clinical Oncology, 2014. 41(20): p. 1293-1296. Outcome reported not of interest (incidence)
332.	Zhang, Q.v.t.H.	Caries-inhibiting effect of chlorhexidine varnish in pits and fissures. Journal of Dental Research, 2006. 85(5): p. 469-72. Outcome reported not of interest (incidence)
333.	Zhi, Q.H.L.; Edward Chin Man; Lin, Huan Cai	Randomized clinical trial on effectiveness of silver diamine fluoride and glass ionomer in arresting dentine caries in preschool children. Journal of Dentistry, 2012. 40(11): p. 962-7. Intervention of not interest; soft decayed tissue was removed
334.	Zhou, Z.Z.	Effects of topical application of immunoglobulin yolk on mutans streptococci in dental plaque, Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 2003. 21(4): p. 295-7. Mixed caries population
335. Zielinska, R.D.P., D.; Ostrowska, A.; Boltacz-Rzepkowska, E., The evaluation of caries lesion progression after infiltration with a low-viscous resin: In vivo study. Dental and Medical Problems, 2016. 53(3): p. 358-364.	Could not translate article to English	
---	---	
336. Zimmer, S.B., M.; Seemann, R.; Witzke, S.; Roulet, J. F., The effect of a preventive program, including the application of low-concentration fluoride varnish, on caries control in high-risk children. Clinical Oral Investigations, 2001. 5(1): p. 40-4.	Outcome reported not of interest (incidence)	
337. Zingler, S.P., Maria; Wrede, Dirk J.; Ludwig, Bjorn; Bister, Dirk; Kneist, Susanne; Lux, Christopher J., A randomized clinical trial comparing the impact of different oral hygiene protocols and sealant applications on plaque, gingival, and caries index scores. European journal of orthodontics, 2014. 36(2): p. 150-63.	Outcome reported not of interest (incidence)	
338. Zotti, F.L., L.; Fontana, P.; Dalessandri, D.; Bonetti, S., Effects of fluorotherapy on oral changes caused by a vegan diet. Minerva Stomatologica, 2014. 63(5): p. 179-88.	Cannot construct 2x2 table; authors reported the net white spot lesions at follow up	
APPENDIX FIGURE 2. Risk of bias of included studies.
APPENDIX TABLE 3. Grade assessments for each network meta-analysis.

Root Network

Treatment 1	Treatment 2	Risk of bias	Inconsistency	Indirectness	Publication bias	Direct Preliminary Rating	Imprecision	Direct Final Rating
1% chlorhexidine + 1% thymol varnish	38% SDF solution	-	-	-	-	-	-	-
1% chlorhexidine + 1% thymol varnish	38% SDF solution + potassium iodide	-	-	-	-	-	-	-
1% chlorhexidine + 1% thymol varnish	5% NaF varnish	-	-	-	-	-	-	-
1% chlorhexidine + 1% thymol varnish	5,000 ppm F (1.1% NaF) toothpaste or gel	-	-	-	-	-	-	-
1% chlorhexidine + 1% thymol varnish	No treatment	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
38% SDF solution	38% SDF solution + potassium iodide	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
38% SDF solution	5% NaF varnish	-	-	-	-	-	-	-
38% SDF solution	5,000 ppm F (1.1% NaF) toothpaste or gel	-	-	-	-	-	-	-
38% SDF solution	No treatment	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
38% SDF solution + potassium iodide	5% NaF varnish	-	-	-	-	-	-	-
38% SDF solution + potassium iodide	5,000 ppm F (1.1% NaF) toothpaste or gel	-	-	-	-	-	-	-
38% SDF solution + potassium iodide	No treatment	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
5% NaF varnish	5,000 ppm F (1.1% NaF) toothpaste or gel	-	-	-	-	-	-	-
5% NaF varnish	No treatment	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
5,000 ppm F (1.1% NaF) toothpaste or gel	No treatment	Serious	Serious	None	Undetected	Low	None	Low
Root Network (cont.)

Common Comparator	Tmt 1 vs common comparator rating	Middle comparison	Tmt 2 vs common comparator rating	Lowest of them	Intransitivity	Indirect Preliminary Rating	Imprecision	Indirect Final Rating	Highest between direct and indirect	Starting Rating	Incoherence	Imprecision	Network rating final
No Treatment	Moderate	Moderate	Moderate	Not serious	Moderate	Very serious	Very low	Indirect	Moderate	N/A	Very Serious	Very Low	
No Treatment	Moderate	Moderate	Moderate	Not serious	Moderate	Very serious	Very low	Indirect	Moderate	N/A	Very Serious	Very Low	
No Treatment	Moderate	Moderate	Moderate	Not serious	Moderate	Very serious	Very low	Indirect	Moderate	N/A	Very Serious	Very Low	
No Treatment	Moderate	Low	Low	Not serious	Low	Serious	Very low	Indirect	Low	N/A	Serious	Very Low	
-	-	-	-	-	-	-	-	Direct	Moderate	N/A	Very Serious	Very Low	
No Treatment	Moderate	Moderate	Moderate	Not serious	Moderate	Very serious	Very low	Indirect	Moderate	N/A	Very Serious	Very Low	
No Treatment	Moderate	Low	Low	Not serious	Low	Serious	Very low	Indirect	Low	N/A	Very Serious	Very Low	
-	-	-	-	-	-	-	-	Direct	Moderate	N/A	Very Serious	Very Low	
No Treatment	Moderate	Low	Low	Not serious	Low	Very serious	Very low	Indirect	Low	N/A	Very Serious	Very Low	
-	-	-	-	-	-	-	-	Direct	Moderate	N/A	Very Serious	Very Low	

Legend:
- Direct: Moderate
- Indirect: Moderate
- Network rating final: Very Low
Approximal Network

Comparison	Direct Evidence							
	Risk of bias	Inconsistency	Indirectness	Publication bias	Preliminary Rating	Imprecision	Direct Final Rating	
Treatment 1	Treatment 2							
5% NaF varnish	Resin Infiltration	-	-	-	-	-	-	
5% NaF varnish	Resin Infiltration + 5% NaF varnish	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
5% NaF varnish	Sealant	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
5% NaF varnish	No treatment	-	-	-	-	-	-	
Resin Infiltration	Resin Infiltration + 5% NaF varnish	-	-	-	-	-	-	
Resin Infiltration	Sealant	Serious	None	None	Undetected	Moderate	Very Serious	Very Low
Resin Infiltration	No treatment	Serious	Serious	None	Undetected	Low	None	Low
Resin Infiltration + 5% NaF varnish	Sealant	-	-	-	-	-	-	
Resin Infiltration + 5% NaF varnish	No treatment	-	-	-	-	-	-	
Sealant	No treatment	Serious	Serious	None	Undetected	Low	None	Low
Approximal Network (cont.)

Common Comparator(s)	Tmt 1 vs common comparator rating	Tmt 2 vs common comparator rating	Lowest of them	Intransitivity	Indirect Preliminary Rating	Imprecision	Indirect Final Rating	Highest between direct and indirect	Starting Rating	Incoherence	Imprecision	Network rating final
Sealant	Moderate	Moderate	Not serious	Moderate	Very Serious	Very Low		Direct	Moderate	N/A	Very Serious	Very Low
-	-	-	-	-	-	-		Direct	Moderate	N/A	Very Serious	Very Low
Sealant	Moderate	Low	Not serious	Low	Very Serious	Very Low		Indirect	Low	N/A	Very Serious	Very Low
Sealant, 5% NaF varnish	Moderate	Moderate	Moderate	Not serious	Moderate	Very Serious	Very Low	Indirect	Moderate	N/A	Very Serious	Very Low
No treatment	Moderate	Low	Not serious	Low	Very Serious	Very Low		Direct	Moderate	Not serious	Very Serious	Very Low
Sealant	Moderate	Low	Not serious	Low	Very Serious	Very Low		Direct	Moderate	Not Serious	Serious	Low
5% NaF varnish	Moderate	Moderate	Not serious	Low	Very Serious	Very Low		Indirect	Low	N/A	Very Serious	Very Low
5% NaF varnish, Sealant	Moderate	Moderate	Not serious	Low	Very Serious	Very Low		Indirect	Low	N/A	Very Serious	Very Low
Resin Infiltration	Moderate	Moderate	Not Serious	Moderate	Very Serious	Very Low		Direct	Low	Not serious	None	Low
Occlusal Network

Comparison	Direct Evidence							
Treatment 1	Treatment 2	Risk of bias	Inconsistency	Indirectness	Publication bias	Preliminary Rating	Imprecision	Direct Final Rating
0.2% NaF mouthrinse	1.23% APF gel	-	-	-	-	-	-	-
0.2% NaF mouthrinse	5% NaF varnish	Serious	None	None	Undetected	Moderate	Serious	Low
0.2% NaF mouthrinse	5% NaF varnish + Resin Infiltration	-	-	-	-	-	-	-
0.2% NaF mouthrinse	Sealant	Serious	None	None	Undetected	Moderate	Serious	Low
0.2% NaF mouthrinse	No treatment	-	-	-	-	-	-	-
1.23% APF gel	5% NaF varnish	-	-	-	-	-	-	-
1.23% APF gel	5% NaF varnish + Resin Infiltration	-	-	-	-	-	-	-
1.23% APF gel	5% NaF varnish + Sealant	-	-	-	-	-	-	-
1.23% APF gel	Sealant	-	-	-	-	-	-	-
1.23% APF gel	No treatment	-	-	-	-	-	-	-
5% NaF varnish	5% NaF varnish + Resin Infiltration	Serious	None	None	Undetected	Moderate	Serious	Low
5% NaF varnish	5% NaF varnish + Sealant	Serious	None	None	Undetected	Moderate	None	Moderate
5% NaF varnish + Resin Infiltration	Sealant	Serious	None	None	Undetected	Moderate	None	Moderate
5% NaF varnish + Resin Infiltration	No treatment	Serious	None	None	Undetected	Moderate	None	Moderate
5% NaF varnish + Resin Infiltration	Sealant	-	-	-	-	-	-	-
5% NaF varnish + Sealant	No treatment	-	-	-	-	-	-	-
Sealant	No treatment	Serious	None	None	Undetected	Moderate	None	Moderate
Occlusal Network (cont.)

Common Comparator(s)	Tmt 1 vs common comparator rating	Middle comparison	Tmt 2 vs common comparator rating	Lowest of them	Intraneveness	Indirect Preliminary Rating	Imprecision	Indirect Final Rating	Highest between direct and indirect	Starting Rating	Incoherence	Imprecision	Network rating final
Sealant, No treatment	Moderate	Moderate	Moderate	Moderate	Not serious	Moderate	Serious	Low	Indirect	Moderate	N/A	Serious	Low
Sealant	Moderate	-	Moderate	Moderate	Not serious	Moderate	Very serious	Very low	Direct	Moderate	Not serious	Serious	Low
5% NaF varnish	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Indirect	Moderate	N/A	Not serious	Moderate
5% NaF varnish	Moderate	-	Moderate	Moderate	Not serious	Moderate	Very serious	Very low	Direct	Moderate	Not serious	Serious	Low
Sealant	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Indirect	Moderate	N/A	Not serious	Moderate
No treatment	Moderate	-	Moderate	Moderate	Not serious	Moderate	Serious	Low	Indirect	Moderate	N/A	Serious	Low
No treatment, 5% NaF varnish	Moderate	Moderate	Moderate	Moderate	Not serious	Moderate	Serious	Low	Indirect	Moderate	N/A	Serious	Low
No treatment, 5% NaF varnish	Moderate	Moderate	Moderate	Moderate	Not serious	Moderate	Serious	Low	Indirect	Moderate	N/A	Serious	Low
No treatment	Moderate	Moderate	Moderate	Moderate	Not serious	Moderate	Serious	Low	Indirect	Moderate	N/A	Serious	Low
5% NaF varnish + Sealant	Moderate	Moderate	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Direct	Moderate	Not serious	Not serious	Moderate
5% NaF varnish + Sealant	Moderate	Moderate	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Direct	Moderate	N/A	Not serious	Moderate
Sealant	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Direct	Moderate	Not serious	Not serious	Moderate
5% NaF varnish	Moderate	-	Moderate	Moderate	Not serious	Moderate	Serious	Low	Direct	Moderate	Not serious	Serious	Low
5% NaF varnish	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Indirect	Moderate	N/A	Not serious	Moderate
5% NaF varnish	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Indirect	Moderate	N/A	Not serious	Moderate
5% NaF varnish	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Indirect	Moderate	N/A	Not serious	Moderate
Any surface Network (noncavitated)

Comparison

Treatment 1	Treatment 2	Risk of bias	Inconsistency	Indirectness	Publication bias	Preliminary Rating	Imprecision	Direct Final Rating
1.23% APF gel	10% CPP-ACP Paste	-	-	-	-	-	-	-
1.23% APF gel	5% NaF varnish	-	-	-	-	-	-	-
1.23% APF gel	No treatment	Serious	None	None	Undetected	Moderate	None	Moderate
10% CPP-ACP Paste	5% NaF varnish	-	-	-	-	-	-	-
10% CPP-ACP Paste	No treatment	Serious	None	None	Undetected	Moderate	Serious	Low
5% NaF varnish	No treatment	Serious	None	None	Undetected	Moderate	None	Moderate

Indirect Evidence

Common Comparator(s)	Tmt 1 vs common comparator rating	Middle comparison	Tmt 2 vs common comparator rating	Lowest of them	Intransitivity	Indirect Preliminary Rating	Imprecision	Indirect Final Rating	Highest between direct and indirect	Starting Rating	Incoherence	Imprecision	Network rating final
No treatment	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Indirect	Moderate	N/A	Not serious	Moderate
No treatment	Moderate	-	Moderate	Moderate	Not serious	Moderate	Serious	Low	Indirect	Moderate	N/A	Serious	Low
No treatment	Moderate	-	Moderate	Moderate	Not serious	Moderate	Not serious	Moderate	Indirect	Moderate	N/A	Not serious	Moderate
-	-	-	-	-	-	-	-	-	Direct	Moderate	N/A	None	Moderate
-	-	-	-	-	-	-	-	-	Direct	Moderate	N/A	None	Moderate

Network

Highest between direct and indirect	Starting Rating	Incoherence	Imprecision	Network rating final
Indirect	Moderate	N/A	Not serious	Moderate
Indirect	Moderate	N/A	Serious	Low
Direct	N/A	None	Moderate	
Direct	N/A	None	Serious	Low
Direct	N/A	None	None	Moderate

Any surface Network (noncavitated) (cont.)
APPENDIX FIGURE 3: Network meta-analysis forest plots.
APPENDIX TABLE 4. Relative Risks (95% CIs) and Certainty in the Evidence for Nonrestorative treatments for the Arrest or reversal of moderate cavitated carious lesions (ICDAS 3 and 4) on Any Coronal Surface (12- to 20-mo Follow-up)

Study: *n / n*, Surface, Follow-up	Study Arm (Dose, Duration, Frequency)	Relative Risks (95% CI), Certainty in the Evidence
Duangthip et al. (2016), Duangthip, Wong, et al. (2018)	30% SDF solution (once a year, applied annually)	30% SDF solution once a year vs. 30% SDF solution once a week, for three weeks: 30 mo, 1.00 (0.82, 1.23); Moderate (Due to serious issues of imprecision)
	30% SDF solution (once a week for three weeks, not applied annually)	24 mo, 1.03 (0.86, 1.23); Moderate (Due to serious issues of imprecision)
	5% NaF varnish (once a week for three weeks, not applied annually)	18 mo, 0.94 (0.80, 1.11); Moderate (Due to serious issues of imprecision)
	12 mo, 1.02 (0.89, 1.16); Moderate (Due to serious issues of imprecision)	12 mo, 1.02 (0.89, 1.17); Moderate (Due to serious issues of imprecision)
n – 309 people at follow-up, *n* – 649 lesions at longest follow-up	30% SDF solution once a year vs. 5% NaF varnish once a week, for three weeks: 30 mo, 0.87 (0.71, 1.06); Moderate (Due to serious issues of imprecision)	
Mixed (occlusal, proximal, facial/lingual)	24 mo, 0.92 (0.76, 1.11); Moderate (Due to serious issues of imprecision)	
6, 12, 18, 24 and 30 mo	18 mo, 0.89 (0.76, 1.04); Moderate (Due to serious issues of imprecision)	
	12 mo, 1.00 (0.87, 1.15); Moderate (Due to serious issues of imprecision)	30% SDF solution once a week, for three weeks vs. 5% NaF varnish once a week, for three weeks:
	30 mo, 0.86 (0.71, 1.05); Moderate (Due to serious issues of imprecision)	30 mo, 0.89 (0.75, 1.07); Moderate (Due to serious issues of imprecision)
	24 mo, 0.89 (0.75, 1.07); Moderate (Due to serious issues of imprecision)	24 mo, 0.89 (0.75, 1.07); Moderate (Due to serious issues of imprecision)
	18 mo, 0.89 (0.76, 1.04); Moderate (Due to serious issues of imprecision)	18 mo, 0.89 (0.76, 1.04); Moderate (Due to serious issues of imprecision)
	12 mo, 1.00 (0.87, 1.15); Moderate (Due to serious issues of imprecision)	12 mo, 1.00 (0.87, 1.15); Moderate (Due to serious issues of imprecision)