Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review

Chu Lei 1, Muthukumar Bagavathiannan 2, Huiyong Wang 1, Shaun M. Sharpe 3, Wenting Meng 1 and Jialin Yu 2,*

1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; chuleinjfu@njfu.edu.cn (C.L.); Wanghuiyong@njfu.edu.cn (H.W.); eng7220@outlook.com (W.M.)
2 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA; muthu.bagavathiannan@tamu.edu
3 Saskatoon Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada/Government of Canada, Saskatoon, SK S7N 0X2, Canada; shaun.sharpe@canada.ca
* Correspondence: yu.jalilin@tamu.edu; Tel.: +1-979-470-7647

Abstract: Abiotic stresses such as drought, extreme temperature, and salinity can negatively impact seed germination and plant growth and have become major limitations to crop production. Most crops are vulnerable to abiotic stress factors during their early growth phase, especially during seed germination and seedling emergence. Rapid crop seed germination and seedling establishment is known to provide competitive advantages over weeds and improve yields. Seed osmopriming is defined as a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination, but radicle protrusion has not occurred. The process of osmopriming involves prior exposure of seeds in low-water-potential solutions. Osmopriming can generate a series of pre-germination metabolic activities, increase the antioxidant system activities, and prepare the seed for radicle protrusion. Polyethylene glycol (PEG) is a popular osmopriming agent that can alleviate the negative impacts of abiotic stresses. This review summarizes research findings on crop responses to seed priming with PEG under abiotic stresses. The challenges, limitations, and opportunities of using PEG for crop seed priming are discussed with the goal of providing insights into future research towards effective application of seed priming in crop production.

Keywords: abiotic stress; drought stress; temperature stress; salinity stress; seed germination; seed priming

1. Introduction

Abiotic stresses are a common cause of crop yield reduction worldwide. Yield loss may occur when crops suffer from various abiotic stresses such as cold, heat, drought, freezing, flooding, heavy metals, UV-light, and mineral deficiency [1–6]. Abiotic stresses may occur individually, sequentially, or concurrently. However, plants may suffer greater detrimental effects when they are exposed to multiple abiotic stresses, such as cold and drought, heat, and heavy metal, as well as drought and heat, than when they are exposed to each individual stress [7–10].

In recent years, a growing amount of research has been conducted to investigate the impact of multiple stress factors on crop growth and productivity [7,11–14]. Various techniques such as proper agronomic practices (e.g., pest management, soil fertility management, and seed priming), traditional breeding, and modern biotechnology have been employed to enhance crop tolerance to abiotic stresses [15–17]. Traditional breeding methods such as hybridization and selection, as well as mutation breeding, have contributed considerably to the generation of stress-tolerant crops [16,18–22]; however, the process is fairly time-consuming. The ‘omic’ biotechnologies (e.g., transcriptomics, proteomics, and genomics) can be used to identify the genes that are associated with stress tolerance in crops.
The identified genes can be directly introduced into the elite crop varieties or silenced to make a transgenic plant, which is less time-consuming than traditional breeding [16,23–25]. Transgenic crops with improved stress tolerance have been successfully developed and cultivated in field conditions [26]. Nevertheless, transgenic technologies are not readily accepted in many countries [27,28].

Agronomic management approaches such as appropriate fertilization, irrigation, exogenous application of biostimulants, and/or selection of crop varieties have been shown to be valuable in mitigating the adverse effects of abiotic stresses [16,29,30]. Among these management approaches, seed priming is a common tactic to protect various vegetable and row crops against unfavorable environmental stresses without considerably affecting crop fitness and productivity [4,31–33]. Primed seeds generally show an improved germination rate, uniform germination, and early emergence [5,17,34,35]. During priming, seeds are hydrated in low water potential solutions to initiate germination, but radical protrusion through the testa has not yet happened [34,36]. When seeds are primed, the water supply is controlled at a level below that needed to complete seed germination, but is enough to activate a series of metabolic physiological reactions related to the initial germination [4,34,35,37–41].

Osmopriming is a commonly adopted priming technique and offers a highly attractive solution for improving seed germination performance and crop stand establishment [34,35]. A variety of chemicals, such as CaCl$_2$, KNO$_3$, KCl, K$_3$PO$_4$, NaCl, PEG, and mannitol, have been examined as potential osmopriming agents [5,35]. Among these, PEG is the most commonly used priming osmoticum. PEG is chemically inert and does not impose damaging effects on seed embryos [42]. In addition, PEG is non-damaging to proteins and does not penetrate seed tissues due to its large molecular size [42–46].

In most cases, PEG-primed plants exhibit positive effects on seed germination, seedling establishment, and yield, but the benefit is variable depending on several factors such as crop species and stress type [47–50]. Previous reviews on this topic have mainly focused on seed priming with various agents [4,35,51], but priming with PEG against abiotic stresses has not been well analyzed. Here, we review PEG-primed crop tolerance to drought, suboptimal temperature, salinity, or combined stresses. The effectiveness of PEG priming to improve seed germination and seedling establishment under adverse environmental conditions, and associated mechanisms are discussed by stress type with the aim of utilizing PEG priming in minimizing adverse environmental impacts on crop production and providing insights for future research.

2. Consequences of Abiotic Stresses and Their Mitigation through PEG

2.1. Drought Stress

Drought stress is a common abiotic stress affecting crop productivity [1,52]. Oxidative stress accompanies almost all abiotic stresses and occurs as a result of reactive oxygen species (ROS) in plants [53]. Under adverse conditions, plants increase the production of ROS including hydrogen peroxide (H$_2$O$_2$), hydroxyl radicals (·OH), superoxide radicals (O$_2^-$), and singlet oxygen (·O$_2$) [5,54,55]. These ROS interact with cellular constituents, leading to a series of oxidative damages on carbohydrates, chlorophyll, lipids, DNA, and protein [1,54,55]. Water deficit also causes other damaging effects on plant growth including epinasty, stomatal closure, and decreased photosynthesis [1,5,56].

As shown in Table 1, drought stress considerably decreased the germination performance of asparagus (Asparagus officinalis L.) [32], barley (Hordeum vulgare L.) [31], celery (Apium graveolens L.) [57], cumin (Cuminum cyminum L.), rice (Oryza sativa L.) [58,59], sorghum (Sorghum bicolor L. Moench) [5], and wheat (Triticum aestivum L.) [2]. However, under the conditions of drought stress, the above-mentioned crops pretreated with PEG have shown improved seed germination and seedling establishment [31,57,60–64].

In response to abiotic stress, plants utilize a complex antioxidant defense machinery that protects them against the damaging effect caused by oxidative stress [5,7,53]. The capacity of the antioxidant defense system comprises enzymatic and non-enzymatic an-
The main free radical scavenger of enzymatic antioxidants includes ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol peroxidase, glutathione reductase (GR), glutathione-S-transferase, glutathione peroxidase (GPX), monodehydroascorbate reductase, and superoxide dismutase (SOD), while the main non-enzymatic antioxidants include ascorbic acid (vitamin C), carotenoids, glutathione, and tocopherols (vitamin E) [53,65,66].

PEG priming caused a rapid enhancement of some antioxidant enzymes in seedlings exposed to drought stress, thus mitigating the detrimental effect on seed germination and stand establishment [5,58,67]. For example, PEG-primed rice exhibited higher seed germination and seedling growth rates with higher GPX activity compared to unprimed plants [58]. PEG-primed rice seedlings exhibited elevated levels of MnSOD in drought conditions [58]. Zhang et al. [67] reported that PEG-primed perilla mint (Perilla frutescens L. Britt) increased protective enzyme activities of CAT, peroxidase (POD), and SOD in plant leaves. In other research, Zhang et al. [5] found that unprimed sorghum seedlings demonstrated increased electrolyte leakage and O$_2^-$ content, and decreased membrane stability under drought conditions; PEG-primed sorghum seedlings exhibited less lipid peroxidation, improved cell membrane stability, and enhanced activities of APX, CAT, POD, and SOD. Overall, previous evidences collectively indicate that enhanced drought tolerance in PEG-primed plants is likely due to elevated antioxidant activities that restricted the accumulation of ROS [5,9,53,65–67].

2.2. Temperature Stress

Plants display optimal germination and emergence at an ideal range of temperature to which they have adapted [68–72]. In contrast, under unfavorable temperature conditions, seed germination and seedling establishment are negatively affected [70,73,74]. Temperature stress can be classified into low positive temperature stress (chilling), negative temperature stress (frost), or high temperature stress (heat) [70]. A great amount of research has been performed with the objective of improving crop performance under suboptimal temperature conditions [68,69,71,72]. However, temperature stress is still one of the major abiotic factors limiting crop productivity.

Seed priming with PEG resulted in earlier and synchronized seed germination in various crops such as alfalfa, cereal, turfgrasses, and vegetable crops upon exposure to low or high temperature stress (Table 1) [33,57,62,64,75–80]. For instance, seed priming with PEG effectively promoted seed germination and seedling establishment of soybean [Glycine max (L.) Merr.] [81] and masson pine (Pinus massoniana L.) [82] under negative temperature stress, as well as carrot [78] and leek [80] under high temperature stress. Priming benefits are more pronounced under temperature stress than in optimal temperature conditions [35,51,83]. For instance, Patané et al. [83] reported that the beneficial effect of PEG priming in sweet corn was only evident when plants were exposed to the suboptimal temperatures rather than optimal conditions.

Priming with PEG rapidly enhanced α-amylase activity and increased fructose and glucose content in rice [75]. Plants primed with PEG exhibited improved α-amylase and/or β-amylase activities, which facilitated starch degradation and sugar accumulation, leading to a greater respiration rate, seed viability, seed germination rate, and seedling establishment than unprimed plants [9,12,72,84–88]. Nevertheless, excessive priming, even in an optimal PEG solution, may disrupt α-amylase activity, and thus lower seed germination rate and cause abnormal plumule and radicle growth [89,90]. It has been suggested that appropriate priming regimes including priming solution concentration, priming duration, and priming temperature can all influence the effectiveness of seed priming [4,51,91–94].

Seed priming with PEG at low temperature conditions facilitated the differentiation and duplication of mitochondria [95]. The increased mitochondrial enzyme activity might help improve the enzymatic activities involved in seed reserve mobilization, such as fats, proteins, and sugars [96–98], enhancing the tolerance to chilling injury [99]. Priming with
PEG also enhanced the enzymatic activities of acid phosphatase and esterase, as well as RNA synthesis in various crop species such as celery, onion (*Allium cepa* L.), lettuce, soybean, and sweet corn (*Zea mays* L.) [100].

A review of current literature indicates that antioxidant machinery has not been extensively studied for PEG-primed plants under the condition of temperature stress. Bailly et al. [101] noted that CAT played an important role in promoting sunflower (*Helianthus annuus* L.) seed germination after priming with PEG. Recent evidences indicated that other osmotica can significantly enhance the enzymatic activity in plants growing under low temperature stresses [99,102–105]. For instance, Guan et al. (2009) noted that seed priming with chitosan enhanced CAT and POD activities, along with faster germination rate, increased shoot and root length, and overall plant biomass in two corn cultivars with distinct chilling stress tolerance. Kaur and Goyal [104] recently reported that antioxidants play a key role in improving tolerance of Egyptian clover (*Trifolium alexandrinum* L.) to low temperature stress after priming with salicylic acid.

Although PEG-primed plants exhibited superior tolerance to abiotic stresses in a wide range of crop species [4,35], the use of PEG as an osmotica is not recommended for the seeds of high-tannin sorghum cultivars [106]. Tannins in the seed coat are desirable and protect seeds from weathering and reduce the vulnerability of seeds to birds, insects, and mold attacks [107]. High tannin content may also help improve seedling emergence under suboptimal temperature conditions [107]. However, tannins exhibit higher binding affinity with PEG (Silanikove et al., 1996). Patanè et al. [106] reported that after priming with PEG, tannin content consistently reduced in the seeds of high-tannin cultivar of sorghum [106,108], thus reducing the beneficial effect of seed priming. In order to preserve the benefits of seed priming, Patanè et al. [106] recommended the use of other osmotica (instead of PEG) or the adoption of biological agents for priming high-tannin sorghum cultivars.

2.3. Salinity Stress

Soil salinity is a serious problem limiting crop production. Salinity stress is especially problematic in arid and semi-arid regions of the world [13]. Salinity stress reduces soil water availability for plant roots by lowering osmotic potential [109]. The germination of most crops fails under severe or even moderate salinity stress [34,110,111]. Salinity negatively influences seed germination through ionic imbalances, osmotic stress, or mixed effects of these factors, causing detrimental impacts on enzymes, proteins, cell organelles, plasma membranes, thereby reducing respiration and photosynthetic rates [13,112]. In addition, salinity stress changes the signal balance in higher plants. Increasing salinity stress is linked with increases in abscisic acid and jasmonates as well as reductions in auxin, cytokinin, gibberellins [13,113]. Salinity stress can significantly delay seed germination and reduce the percentage of seeds that are capable of germinating [13]. Plants generally exhibit a decrease in biomass accumulation upon exposure to salinity stress [36].

The effectiveness of seed priming with inorganic salt, such as CaCl₂, KCl, KNO₃, and MgSO₄, for overcoming salinity stress has been noted in a variety of crop species (Table 1) [4,114–117]. Shahi-Gharahlar et al. [117] reported that priming with PEG was less effective for decreasing salinity damage than with NaCl in summer squash (*Cucurbita pepo* L.) [117]. Nevertheless, extensive studies revealed that PEG priming is a successful approach to improve germination performance in various plant species including amaranth (*Amaranthus* spp.) [118], pepper (*Capsicum annuum* L.) [119], tomato (*Solanum lycopersicum* L.) [120], sugarcane (*Saccharum officinarum* L.) [121], soybean [122], wheat [123], and sweet corn [83] under salinity stress.

Salt tolerance conferred by seed priming is linked to an enhanced ability for osmotic adjustment as primed plants exhibited elevated concentrations of Ca²⁺, K⁺, and Mg²⁺ ions and reduced concentrations of Cl⁻ or Na⁺ ions in roots and a greater amount of soluble sugars and organic acids in leaves compared to the unprimed plants [4,34,35]. Priming of wheat seeds with choline enhanced salinity tolerance by reducing the toxic elements of Na⁺ and Cl⁻, and by increasing the beneficial elements of Ca²⁺ and K⁺ [124]. Priming
with melatonin enhanced indole-3-acetic acid, total phenolic content, as well as Ca\(^{2+}\) and K\(^{+}\) in the leaves of faba bean (*Vicia faba* L.) under salinity stress [125]. However, these physiological parameters have not been studied in PEG-primed plants under salinity stress, and therefore further research is needed to understand the specific mechanisms of PEG priming in protecting plants against salinity stress.

2.4. Multiple Abiotic Stresses

The concurrent occurrence of multiple abiotic stresses may result in additive or synergistic effects on plant growth. Consequently, combined occurrence of multiple abiotic stresses can be more damaging than when they occur sequentially or individually [4, 68]. Under natural conditions, multiple abiotic stresses may commonly occur [55]. However, most PEG priming studies reported to date were conducted under the conditions of a single abiotic stress [5, 33, 64, 75, 80, 83, 126–128].

As shown in Table 1, a limited number of studies have investigated the effectiveness of PEG priming against multiple abiotic stresses and shown promising results [32, 126–129–132]. Priming with PEG effectively enhanced seed germination and early seedling establishment in asparagus and spinach (*Spinacia oleracea* L.), especially when exposed to combined drought and low temperature stresses [32, 129, 130, 132, 133]. Seed priming with PEG also enhanced tolerance to simultaneously occurring drought and salinity stresses in sunflower [131]. However, the specific mechanisms of improved seed germination and emergence for PEG priming under multiple abiotic stresses, particularly at the cellular and molecular levels, have not yet been elucidated.

Table 1. A summary of published reports on the effectiveness of PEG priming plants for abiotic stress tolerance in crops.

Abiotic Stress Type	Crop Species	Brief Summary
Drought stress	Asparagus	Priming with PEG resulted in early seed germination and seedling emergence, as well as superior seedling vigor [32].
	Barley	Priming with PEG improved seed germination rate, root and shoot length, and seedling biomass [31].
	Sorghum	Priming with PEG enhanced seed germination and seedling emergence. It also increased the antioxidant activities of APX, CAT, POD, and SOD, and improved the levels of several compatible solutes including free amino acid, proline, reducing sugar, soluble sugar, and soluble protein [5].
	Cumin	Priming with PEG accelerated seed germination and seedling stand uniformity [132].
	Rice	Priming with PEG improved seed germination and emergence rates, plumule height, and radicle length [89].
	Rice	PEG priming improved seed germination and seedling growth rate. In addition, PEG-primed plants had increased GPX activity and overexpressed MnSOD compared to unprimed plants under drought stress [58].
	Rice	PEG-primed plants exhibited improved seed vigor, seedling growth, and enhanced tolerance under drought stress [59].
	Mountain rye (*Secale montanum* L.)	PEG priming increased seed germination rate, seedling vigor, and seedling length [2].
	Wheat	PEG priming increased seed germination percentage, germination index, and seedling length. PEG priming also increased APX and CAT activities [60].
Table 1. Cont.

Abiotic Stress Type	Crop Species	Brief Summary
Temperature stress	Asparagus	Priming with PEG enhanced seed germination, seedling emergence, as well as seedling vigor under temperature stress [32].
	Alfalfa	Priming with PEG improved germination speed and germination rate [64].
	Soybean	PEG-primed plants exhibited early and synchronous germination at low temperature stress [81].
	Lettuce	Priming with PEG speeded seed germination and resulted in early emergence [61].
	Common carpetgrass (*Axonopus affinis* Chase); Centipedegrass [*Eremochloa ophiuroides* Munro. (Kunz)]	Priming with PEG increased seed germination percentage and resulted in early germination for common carpet grass and centipede grass [33].
	Dusty miller (*Senecio cineraria* DC.)	PEG priming increased the germination percentage and resulted in early seed germination [134].
	Leek	PEG-primed plants had improved germination rate and final percentage of germination at suboptimal temperatures [62].
	China aster	Priming with PEG resulted in early germination and increased germination index [126].
	Carrot	Priming with PEG improved seed germination performance under high temperature stress by increasing ethylene production [78, 79].
	Leek	Priming with PEG improved seed germination and seedling emergence at high temperature stress [80].
	Leek	Priming with PEG improved seed germination and seedling emergence at high temperature stress [80].
Salinity stress	Pepper	PEG-primed plants had improved germination performance and seedling growth under saline soil [119].
	Sunflower	Priming with PEG improved germination performance and seedling vigor under salinity stress [135].
	Amaranth	PEG priming increased seed germination and seedling growth [118].
	Sugarcane	PEG-primed plants had improved shoot growth, reduced leaf senescence, and exhibited better osmotic adjustment through accumulation of glycine betaine and dissolved ionic solutes [121].
	Sweet sorghum	The beneficial effects of PEG priming are evident under suboptimal temperatures rather than the optimal temperature [83].
	Tomato	PEG priming increased seed germination percentage, seedling vigor, and biomass [120].
	Wheat	PEG-primed wheat seeds showed improved germination and seedling emergence compared to non-primed seeds [123].
Drought + low temperature stress	Asparagus	PEG priming resulted in early seed germination and seedling emergence under drought and low temperature stresses [32].
Drought + low temperature stress	Spinach	PEG-primed plants exhibited improved seed germination percentage and seedling uniformity under drought and low temperature stresses [129].
Drought + salt	Sunflower	PEG priming increased seed germination percentage, germination rate, root and shoot length, seedling weight and vigor [131].

Abbreviations: APX, ascorbate peroxidase; CAT, catalase; GPX, glutathione peroxidase; PEG, polyethylene glycol; POD, peroxidase; SOD, superoxide dismutase.

3. Conclusions

The effectiveness of PEG priming against different abiotic stresses has been shown in a wide range of crop species. PEG primed seeds generally resulted in earlier and synchronized seed germination largely due to enzyme activation, increased germination-promoting metabolites, and osmotic adjustment. The reported mechanisms of PEG priming against drought, temperature, or salinity stress are summarized in Figure 1. However, only a very few studies have examined the effects PEG priming against combined abiotic stresses. The specific mechanisms of PEG priming against abiotic stresses, especially under the conditions of multiple stresses, are not yet fully understood and our knowledge of the cellular and molecular levels changes following plant seeds after seed priming remains limited. Future research in this report is expected to facilitate broader adoption of this technology.
Author Contributions: The idea on the structure and organization of this review paper came from C.L. and J.Y., C.L., M.B., S.M.S. and J.Y. wrote and/or revised the draft. H.W., W.M. and J.Y. collected the necessary references and prepared the table. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 32072498).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors thank Yiping Gao for his help in preparing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahmed, M.; Qadeer, U.; Ahmed, Z.I.; Hassan, F. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. *Arch. Agron. Soil Sci.* 2016, 62, 299–315. [CrossRef]

2. Ansari, O.; Azadi, M.; Sharif-Zadeh, F.; Younesi, E. Effect of hormone priming on germination characteristics and enzyme activity of mountain rye (Secale montanum) seeds under drought stress conditions. *J. Stress Physiol. Biochem.* 2013, 9, 61–71.

3. Kazemi, K.; Eskandari, H. Does priming improve seed performance under salt and drought stress. *J. Basic Appl. Biosci.* 2012, 2, 3503–3507.

4. Savvides, A.; Ali, S.; Tester, M.; Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible? *Trends Plant. Sci.* 2016, 21, 329–340. [CrossRef] [PubMed]

5. Zhang, F.; Yu, J.; Johnston, C.R.; Wang, Y.; Zhu, K.; Lu, F.; Zhang, Z.; Zou, J. Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. *PLoS ONE* 2015, 10, e0140620. [CrossRef]

6. Zheng, M.; Tao, Y.; Hussain, S.; Jiang, Q.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Seed priming in dry direct-seeded rice: Consequences for emergence, seedling growth and associated metabolic events under drought stress. *Plant. Growth Regul.* 2016, 78, 167–178. [CrossRef]

7. Bai, Y.; Kissoudis, C.; Zhe, Y.; Visser, R.G.F.; Van Der Linden, G. Plant behaviour under combined stress. *Plant. J.* 2018, 93, 781–793. [CrossRef]
8. Lee, H.J.; Back, K. 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J. Pinet Res. 2016, 61, 303–316. [CrossRef]
9. Zhang, H.; Dou, W.; Jiang, C.-X.; Wei, Z.-J.; Liu, J.; Jones, R.L. Hydrogen sulfide stimulates β-amylase activity during early stages of wheat grain germination. Plant. Signal. Behav. 2010, 5, 1031–1033. [CrossRef]
10. Zhao, F.; Liu, W.; Zhang, S. Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J. Integr. Plant. Biol. 2009, 51, 942–950. [CrossRef]
11. Etesami, H.; Jeong, B.R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 2017, 147, 881–896. [CrossRef] [PubMed]
12. Li, Z.; Song, Z.; Yan, Z.; Qian, H.; Song, A.; Liu, L.; Yang, X.; Xia, S.; Liang, Y. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. a meta-analysis. Agron. Sustain. Dev. 2018, 38, 26. [CrossRef]
13. Liang, W.; Ma, X.; Lan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Co. 2018, 495, 286–291. [CrossRef]
14. Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Khan, N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018, 145, 104–120. [CrossRef]
15. Abedi, T.; Pakniyat, H. Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech., J. Gene. Plant. Breed. 2010, 46, 27–34. [CrossRef]
16. Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Ashraful Alam, M.; Syed, M.A.; Hossain, J.; Sarkar, S.; Saha, S.; Bhadra, P. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 2021, 11, 241. [CrossRef]
17. Marthandan, V.; Geetha, R.; Kumanth, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed priming: A feasible strategy to enhance drought tolerance in crop plants. Inter. J. Mol. Sci. 2020, 21, 8258. [CrossRef] [PubMed]
18. Abumhadi, N.M.; Atanassov, A.I. Future challenges of plant biotechnology and genomics. Rom. Biotechnol. Let. 2010, 15, 127–142. [CrossRef] [PubMed]
19. Bansal, K.C.; Lenka, S.K.; Mondal, T.K. Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant. Breed. 2014, 133, 1–11. [CrossRef]
20. Boscaiu, M.; Donat, P.M.; Llinares, J.; Vicente, O. Stress-tolerant wild plants: A source of knowledge and biotechnological tools for the genetic improvement of stress tolerance in crop plants. Not. Bot. Horti. Agrobot. Cluj. Napoca. 2012, 40, 323–327. [CrossRef]
21. Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop. Sci. 1981, 21, 943–946. [CrossRef] [PubMed]
22. Vinocur, B.; Altman, A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Curr. Opin. Biotechnol. 2005, 16, 123–132. [CrossRef] [PubMed]
23. Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabal, S.; Venkataraman, G. CRISPR for crop improvement: An update review. Front. Plant. Sci. 2018, 9, 985. [CrossRef]
24. Lone, A.A.; Khan, M.H.; Dar, Z.A.; Wani, S.H. Breeding strategies for improving growth and yield under waterlogging conditions in maize: A review. Magdica 2018, 61, 11. [CrossRef]
25. Wang, Y.; Li, D.; Gao, J.; Li, X.; Chen, P. The 2’-O-methyladenosine nucleoside modification gene OsTRM13 positively regulates cold and drought stress tolerance in rice. J. Exp. Bot. 2017, 68, 1479–1491. [CrossRef]
26. Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Transgenic approaches for abiotic stress tolerance in plants: Retrospect and future. Agron. Sustain. Dev. 2020, 40, 241. [CrossRef] [PubMed]
27. Raina, M.; Pandotra, P.; Salgotra, R.; Ali, S.; Mir, Z.A.; Bhat, J.A.; Ali, A.; Tyagi, A.; Upadhyay, D. Genetic Engineering and Environmental Risk. In Modern Age Environmental Problems and Their Remediation; Oves, M., Zain Khan, M., Ismail, M.I.I., Eds.; Springer: Cham, Switzerland, 2018; pp. 69–82. [CrossRef]
28. Scott, S.E.; Inbar, Y.; Wirz, C.D.; Brossard, D.; Rozin, P. An overview of attitudes toward genetically engineered food. Ann. Rev. Nutr. 2018, 38, 459–479. [CrossRef] [PubMed]
29. Ferrante, A.; Mariani, L. Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Inter. J. Mol. Sci. 2018, 20, 1031–1033. [CrossRef] [PubMed]
30. Mariani, L.; Ferrante, A. Agronomic management for enhancing plant tolerance to abiotic stresses—Drought, salinity, hypoxia, and lodging. Horticulturae 2017, 3, 52. [CrossRef]
31. Amini, R. Drought stress tolerance of barley (Hordeum vulgare L.) affected by priming with PEG. Inter. J. Farm. All. Sci. 2013, 2, 803–808. [CrossRef]
32. Bittencourt, M.; Dias, D.; Dias, L.; Araújo, E. Effects of priming on asparagus seed germination and vigour under water and temperature stress. Seed Sci. Technol. 2004, 32, 607–616. [CrossRef]
33. Bush, E.W.; Wilson, P.; Shepard, D.P.; McClure, G. Enhancement of seed germination in common carpetgrass and centipedegrass seed. HortScience 2000, 35, 769–770. [CrossRef]
34. Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant. Physiol. 2016, 192, 38–46. [CrossRef] [PubMed]
35. Jisha, K.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [CrossRef]
36. Abdelhamid, M.T.; El-Masry, R.R.; Darwish, D.S.; Abdalla, M.M.; Oba, S.; Ragab, R.; Sabagh, A.E.; El Kholo, M.H.; Omer, E. Mechanisms of Seed Priming Involved in Salt Stress Amelioration. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulou, V., Eds.; Springer: Singapore, 2019; pp. 219–251.

37. Farooq, M.; Basra, S.; Wahid, A.; Cheema, Z.; Cheema, M.; Khaliq, A. Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop. Sci. 2008, 194, 325–333. [CrossRef]

38. Farooq, M.; Irfan, M.; Aziz, T.; Ahmad, I.; Cheema, S. Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. Crop. Sci. 2013, 199, 12–22. [CrossRef]

39. Jisha, K.C.; Puthur, J.T. Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J. Crop. Sci. Biotechnol. 2014, 17, 209–219. [CrossRef]

40. Li, J.; Yin, L.; Jongsma, M.; Wang, C. Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Indus. Crop. Prod. 2011, 34, 1543–1549. [CrossRef]

41. Varier, A.; Vair, A.K.; Dadlani, M. The subcellular basis of seed priming. Cur. Sci. 2010, 99, 450–456.

42. Whitesides, G.M. Poly(ethylene glycol) chemistry biotechnical and biomedical applications. App. Biochem. Biotech. 1993, 41, 233–234. [CrossRef]

43. Branch, D.W.; Wheeler, B.C.; Brewer, G.J.; Leckband, D.E. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 2001, 22, 1035–1047. [CrossRef]

44. Janes, B.E. The effect of molecular size, concentration in nutrient solution, and exposure time on the amount and distribution of polyethylene glycol in pepper plants. Plant. Physiol. 1974, 54, 226–230. [CrossRef] [PubMed]

45. Michel, B.E.; Kaufmann, M.R. The osmotic potential of polyethylene glycol 6000. Plant. Physiol. 1973, 51, 914–916. [CrossRef]

46. Parera, C.A.; Cantliffe, D.J. Presowing seed priming. Plant. Physiol. 2015, 161, 232–242. [CrossRef]

47. Paparella, S.; Araujo, S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant. Cell Rep. 2015, 34, 1281–1293. [CrossRef]

48. Harris, D.; Joshi, A.; Khan, P.; Gothikar, P.; Sodhi, P. On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using participatory methods. Experi. Agric. 1999, 35, 15–29. [CrossRef]

49. Mouradi, M.; Bouizgaren, A.; Farissi, M.; Latrach, O.; Ghoum, C. Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa (Medicago sativa L.)—Rhizobia symbiosis under drought stress. Sci. Hortic. 2016, 213, 232–242. [CrossRef]

50. Tabassum, T.; Ahmad, R.; Farooq, M.; Basra, S.M.A. Improving seed stress tolerance in barley by osmopriming and biopriming. Int. J. Agric. Biol. 2018, 20, 2455–2464.

51. Paparella, S.; Araujo, S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant. Cell Rep. 2015, 34, 1281–1293. [CrossRef]

52. Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105.

53. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 2010, 48, 909–930. [CrossRef] [PubMed]

54. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trend. Plant. Sci. 2002, 7, 405–410. [CrossRef]

55. Mittler, R. Abiotic stress, the field environment and stress combination. Trend. Plant. Sci. 2006, 11, 15–19. [CrossRef] [PubMed]

56. Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.I.; Kolapo, K. Drought stress in a range of smallholder rice varieties. In Drought Tolerance and Breeding of Rice for Smallholder Farmers; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 219–251.

57. Abrams, M.; Abreu, L.; Jouve, S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant. Cell Rep. 2015, 34, 1281–1293. [CrossRef]

58. Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105.

59. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 2010, 48, 909–930. [CrossRef] [PubMed]

60. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trend. Plant. Sci. 2002, 7, 405–410. [CrossRef]

61. Mittler, R. Abiotic stress, the field environment and stress combination. Trend. Plant. Sci. 2006, 11, 15–19. [CrossRef] [PubMed]

62. Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.I.; Kolapo, K. Drought stress in a range of smallholder rice varieties. In Drought Tolerance and Breeding of Rice for Smallholder Farmers; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 219–251.
66. Ahmad, P.; Sarwat, M.; Sharma, S. Reactive oxygen species, antioxidants and signaling in plants. *J. Plant. Biol.* 2008, 51, 167–173. [CrossRef]

67. Zhang, C.; He, P.; Yu, Z.; Hu, S. Effect of zinc sulphate and PEG priming on ageing seed germination and antioxidase activities of Perilla frutescens seedlings. *China J. Chin. Mater. Med.* 2010, 35, 2372–2377.

68. Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadi, S.; Nasim, W.; Adkins, S.; Saud, S. Crop production under drought and heat stress: Plant responses and management options. *Front. Plant. Sci.* 2017, 8, 1147. [CrossRef] [PubMed]

69. Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. *Physiol. Plant.* 2008, 132, 220–235. [CrossRef]

70. Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. *J. Exp. Bot.* 2012, 63, 1593–1608. [CrossRef] [PubMed]

71. Urano, K.; Kurihara, Y.; Seki, M.; Shinozaki, K. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. *Curr. Opin. Plant. Biol.* 2010, 13, 132–138. [CrossRef] [PubMed]

72. Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. *J. Exp. Bot.* 2010, 61, 1959–1968. [CrossRef] [PubMed]

73. Mahan, J.; McMichael, B.; Wanjura, D. Methods for reducing the adverse effects of temperature stress on plants: A review. *Environ. Exp. Bot.* 1995, 35, 251–258. [CrossRef]

74. Ruelland, E.; Zachowski, A. How plants sense temperature. *Environ. Exp. Bot.* 2010, 69, 225–232. [CrossRef]

75. Lee, S.; Kim, J. Total sugars, α-amylose activity, and germination after priming of normal and aged rice seeds. *Korean J. Crop. Sci.* 2000, 45, 108–111.

76. Murray, G.; Swensen, J.B.; Gallian, J.J. Emergence of sugar beet seedlings at low soil temperature following seed soaking and priming. *HortScience* 1993, 28, 31–32. [CrossRef]

77. Murray, G.A.; Swensen, J.B.; Beaver, G. Emergence of spring- and summer-planted onions following osmotic priming. *HortScience* 1992, 27, 409–410. [CrossRef]

78. Nascimento, W.; Huber, D.; Cantliffe, D. Carrot seed germination and respiration at high temperature in response to seed maturity and priming. *Seed Sci. Technol.* 2013, 41, 164–169. [CrossRef]

79. Nascimento, W.M.; Huber, D.J.; Cantliffe, D.J. Carrot seed germination and ethylene production at high temperature in response to seed osmopriming. *Hortic. Bras.* 2013, 31, 554–558. [CrossRef]

80. Parera, C.A.; Cantliffe, D.J. Priming leek seed for improved germination and emergence at high temperature. *HortScience* 1992, 27, 1077–1079. [CrossRef]

81. Bodsworth, S.; Bewley, J. Osmotic priming of seeds of crop species with polyethylene glycol as a means of enhancing early and synchronous germination at cool temperatures. *Can. J. Bot.* 1981, 59, 672–676. [CrossRef]

82. Yu, F.; Liu, Y. Effects of PEG pretreatment on seed vigour of Masson pine. *J. Nanjing For. Uni.* 2010, 24, 38–40.

83. Patané, C.; Cavallaro, V.; Cosentino, S.L. Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. *Indust. Crop. Prod.* 2009, 30, 1–8. [CrossRef]

84. Fu, K.; Lu, D. Reaction kinetics study of α-amylose in the hydrolysis of starch size on cotton fabrics. *J. Text. Inst.* 2014, 105, 203–208. [CrossRef]

85. Goswami, A.; Jain, M.; Paul, B. α-and β-Amylases in seed germination. *Biol. Plant.* 1977, 19, 469–471. [CrossRef]

86. Kirschbaum, D.M. The action of α-amylose on starch. *Biochem. Educ.* 1983, 11, 152–153. [CrossRef]

87. Martínez, J.L.; Meza, E.; Petranovic, D.; Nielsen, J. The impact of respiration and oxidative stress response on recombinant α-amylase production by *Saccharomyces cerevisiae*. *Met. Eng. Com.* 2016, 3, 205–210. [CrossRef]

88. Sun, Z.; Henson, C.A. A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. *Arch. Biochem. Biophys.* 1991, 284, 298–305. [CrossRef]

89. Lee, S.; Kim, J.; Hong, S.; Yun, S.; Park, E. Priming effect of rice seeds on seedling establishment under adverse soil conditions. *Korean J. Crop. Sci.* 1998, 43, 194–198.

90. Lee, W.S.; Slaughter, D.; Giles, D. Robotic weed control system for tomatoes. *Precis. Agric.* 1999, 1, 95–113. [CrossRef]

91. Chiu, K.; Chen, C.; Sung, J. Effect of priming temperature on storability of primed sh-2 sweet corn seed. *Crop. Sci.* 2002, 42, 1996–2003. [CrossRef]

92. Debbarma, A.; Devi, J.; Barua, M. Seed priming durations and concentrations influence on germination and seedling growth of bitter gourd. *Veg. Sci.* 2018, 45, 137–139.

93. Girolamo, D.G.; Barbanti, L. Treatment conditions and biochemical processes influencing seed priming effectiveness. *Ita. J. Agron.* 2012, 7, e25. [CrossRef]

94. Stephen, K.; Khan, F.; Bhat, S.; Narayan, S.; Mir, S.; Mir, M.; Hussain, K.; Gul, M.; Khurshid, A.; Siddiqi, I. Optimizing priming concentration and duration of various priming agents for improved seed germination in chilli (*Capsicum annum* L.). *J. Pharm. Phytochem.* 2018, 7, 2689–2693.

95. Yang, Y.; Chen, W.; Guo, J. Effects of PVA and PEG pretreatment on development and ultrastructure of plumular root mitochondria in soybean seed during low temperature imbibition process. *J. Integr. Plant. Biol.* 1992, 34, 432–436.

96. Morohashi, Y. Patterns of mitochondrial development in reserve tissues of germinated seeds: A survey. *Physiol. Plant.* 1986, 66, 653–658. [CrossRef]
97. Noctor, G.; De Paepe, R.; Foyer, C.H. Mitochondrial redox biology and homeostasis in plants. *Trends Plant. Sci.* 2007, 12, 125–134. [CrossRef] [PubMed]

98. Smiri, M.; Chaoui, A.; El Ferjani, E. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. *J. Plant. Physiol.* 2009, 166, 259–269. [CrossRef] [PubMed]

99. Fu, Y.; Zhang, Z.; Liu, J.; Chen, M.; Fan, R.; Hu, W.; Guan, Y.; Hu, J. Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. *J. Plant. Growth Regul.* 2020, 39, 669–679. [CrossRef]

100. Khan, A.A.; Tao, K.L.; Knyp, J.; Borkowska, B.; Powell, L.E. Osmotic conditioning of seeds: Physiological and biochemical changes. *Acta Hortic.* 1977, 83, 267–278. [CrossRef]

101. Bailly, C.; Benamar, A.; Corbineau, F.; Côme, D. Antioxidant systems in sunflower (*Helianthus annuus* L.) seeds as affected by priming. *Seed Sci. Res.* 2000, 10, 35–42. [CrossRef]

102. Guan, Y.; Hu, J.; Wang, X.; Shao, C. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. *J. Zhejiang Univ. Sci.* 2009, 10, 427–433. [CrossRef]

103. Hussain, S.; Hussain, S.; Khaliq, A.; Ali, S.; Khan, I. Physiological, Biochemical, and Molecular Aspects of Seed Priming. In *Priming and Pretreatment of Seeds and Seedlings*; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Singapore, 2019; pp. 43–62.

104. Kaur, H.; Goyal, M. Salicylic acid priming enhances low temperature stress tolerance in Egyptian clover (*Trifolium alexandrinum* L.) by influencing antioxidant system. *Indian J. Exp. Biol.* 2019, 24, 291–295.

105. Shah, T.; Latif, S.; Khan, H.; Munisif, F.; Nie, L. Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan. *Agronomy 2019*, 9, 757. [CrossRef]

106. Patanè, C.; Cavallaro, V.; D’Agoro, G.; Cosentino, S. Plant emergence of PEG-osmoprimed seeds under suboptimal temperatures in two cultivars of sweet sorghum differing in seed tannin content. *J. Agron. Crop. Sci.* 2008, 194, 304–309. [CrossRef]

107. Harris, H.B.; Burns, R.E. Influence of tannin content on preharvest seed germination in sorghum. *Agron. J.* 1948, 40, 853–856. [CrossRef]

108. Kantar, F.; Pilbeam, C.; Heblethwaite, P. Effect of tannin content of faba bean (*Vicia faba*) seed on seed vigour, germination and field emergence. *Ann. Appl. Biol.* 1996, 128, 85–93. [CrossRef]

109. Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M.; Menzies, N.W. The effect of salinity on plant-available water. *Plant. Soil* 2017, 418, 477–491. [CrossRef]

110. Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. *Environ. Sci. Pol. Res.* 2015, 22, 4056–4075. [CrossRef] [PubMed]

111. Volkmar, K.; Hu, Y.; Steppuhn, H. Physiological responses of plants to salinity: A review. *Can. J. Plant. Sci.* 1998, 78, 19–27. [CrossRef]

112. Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. *Agron. Sust. Develop.* 2012, 32, 181–200. [CrossRef]

113. Gupta, S.; Goyal, M.R.; Singh, A. Physiological and biochemical changes in plants under soil salinity stress: A review. In *Engineering Practices for Management of Soil Salinity*; Apple Academic Press: New York, NY, USA, 2018; pp. 159–200.

114. Biswas, S.; Rasal-Monir, M.; Islam, M.; Modak, S.; Kabir, M.H. Induction of salt tolerance in tomato through seed priming. *Plant. Growth Regul.* 2019, 7, 47. [CrossRef]

115. Chatterjee, P. Sodium chloride primed seeds modulate glutathione metabolism in legume cultivars under NaCl stress. *Amer. J. Plant. Physiol.* 2018, 13, 8–22. [CrossRef]

116. Senturk, B.; Sivritepe, H.O. NaCl priming alleviates the inhibiting effect of salinity during seedling growth of peas (*Pisum sativum* L.). *Fresen. Environ. Bull.* 2016, 11, 4202.

117. Shahi-Gharahlah, A.; Farhoudi, R.; Mosavi, M. Effect of seed pretreatment on summer squash (*Cucurbita pepo*) seed germination and seedling characteristics under salinity condition. *Seed Sci. Biotechnol.* 2009, 3, 15–23.

118. Moosavi, A.; Tavakkol Afshari, R.; Sharifi-Zadeh, F.; Aynehband, A. Seed priming to increase salt and drought stress tolerance during germination in cultivated species of Amaranth. *Seed Sci. Technol.* 2009, 37, 781–785. [CrossRef]

119. Amjad, M.; Ziaf, K.; Iqbal, Q.; Ahmad, I.; Riaz, M.; Saqib, Z.A. Effect of seed priming on seed vigour and salt tolerance in hot pepper. *Pak. J. Agri. Sci.* 2007, 44, 408–416.

120. Pradhan, N.; Prakash, P.; Manimurugan, C.; Tiwari, S.K.; Sharma, R.; Singh, P. Screening of tomato genotypes using osmopriming with PEG 6000 under salinity stress. *Res. Environ. Life Sci.* 2015, 8, 245–250.

121. Patade, V.Y.; Bhargava, S.; Suprasanna, P. Better osmotic adjustment mediates salt and PEG stress tolerance in primed plants of contrasting cultivars of sugarcane. *Sugar Tech.* 2015, 17, 348–355. [CrossRef]

122. Bejandi, T.K.; Sedghi, M.; Sharifi, R.S.; Namvar, A.; Molaei, P. Seed priming and sulfur effects on soybean cell membrane stability and yield in saline soil. *Pes. Agro. Bra.* 2009, 44, 1114–1117. [CrossRef]

123. Ghiyasi, M.; Myandoab, M.P.; Tajbakhsh, M.; Salehzadeh, H.; Meshkat, M. Influence of different osmopriming treatments on emergency and yield of maize (*Zea mays* L.). *Res. J. Biological. Sci.* 2008, 3, 1452–1455.

124. Salama, K.H.; Mansour, M.M.; Hassan, N.S. Choline priming improves salt tolerance in wheat (*Triticum aestivum* L.). *Aust. J. Basic. Appl. Sci.* 2011, 5, 126–132.

125. Dawood, M.G.; El-Awadi, M.E. Alleviation of salinity stress on *Vicia faba* L. plants via seed priming with melatonin. *Acta Biológica Colom.* 2015, 20, 223–235. [CrossRef]
126. Farooq, M.; Tabassum, R.; Afzal, I. Enhancing the performance of direct seeded fine rice by seed priming. *Plant. Prod. Sci.* **2006**, *9*, 446–456. [CrossRef]

127. Liu, Z.; Jia, G.; Yu, X. Water uptake and WUE of apple tree-corn agroforestry in the loess hilly region of China. *Agric. Wat. Manag.* **2020**, *234*, 106138. [CrossRef]

128. Liu, Z.; Zhang, H.; Yu, X.; Jia, G.; Jiang, J. Evidence of foliar water uptake in a conifer species. *Agric. Wat. Manag.* **2021**, *255*, 106993. [CrossRef]

129. Chen, K.; Arora, R.; Arora, U. Osmopriming of spinach (*Spinacia oleracea* L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. *Seed Sci. Technol.* **2010**, *38*, 36–48. [CrossRef]

130. Frett, J.; Pilli, W. Germination characteristics of osmotically primed and stored impatiens seeds. *Sci. Hortic.* **1989**, *40*, 171–179. [CrossRef]

131. Moghanibashi, M.; Karimmojeni, H.; Nikneshan, P. Seed treatment to overcome drought and salt stress during germination of sunflower (*Helianthus annuus* L.). *J. Agrobiol.* **2013**, *30*, 89–96.

132. Rahimi, A. Seed priming improves the germination performance of cumin (*Cuminum cyminum* L.) under temperature and water stress. *Ind. Crop. Prod.* **2013**, *42*, 454–460. [CrossRef]

133. Liu, Z.; Jia, G.; Yu, X. Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain. *Agric. Ecosys. Environ.* **2020**, *287*, 106697. [CrossRef]

134. Carpenter, W.J. Priming dusty miller seeds: Role of aeration, temperature, and relative humidity. *HortScience* **1990**, *25*, 299–302. [CrossRef]

135. El-Saidy, A.E.; Farouk, S.; El-Ghany, H.A. Evaluating of different seed priming on seedling growth, yield and quality components in two sunflower (*Helianthus annuus* L.) cultivars. *Trends App. Sci. Res.* **2011**, *6*, 977–991. [CrossRef]