We recently demonstrated a new multi-dimensional vectorially structured light beam from a simple laser cavity [1]. It has subsequently come to our attention that the theoretical background we provided in Section 1 of the supplementary material may not have been appropriately cited and thus interpreted as original work. Here we wish to make clear that this supplementary material theory on ray-wave duality in frequency-degenerate cavities is a venerable topic, dating back more than 50 years [2] as are SU(2) coherent states and their relevance to optics [3], with the two fields finding commonality over the past decade in the context of lasers (see for example Refs. [4–8] and references therein). Section 1 of our supplementary material is based substantially on Refs. [3–6], which we used to provide a background for the reader, and we regret if the manner in which we cited this body of work did not make this clear. The extensive references in [1] were meant to convey the fact that the theoretical foundation for ray-wave duality lasers is well known in the community.

REFERENCES

1. Y. Shen, X. Yang, D. Naidoo, X. Fu, and A. Forbes, “Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser,” Optica 7, 820–831 (2020).

2. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).

3. A. Perelomov, Generalized Coherent States and Their Applications (Springer, 2012).

4. Y. Chen, J. Tung, P. Chiang, H. Liang, and K. Huang, “Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state lasers with off-axis pumping,” Phys. Rev. A 88, 013827 (2013).

5. Y. Chen, S. Li, Y. Hsieh, J. Tung, H. Liang, and K. Huang, “Laser wavepacket representation to unify eigenmodes and geometric modes in spherical cavities,” Opt. Lett. 44, 2649–2652 (2019).

6. Y. Chen, C. Jiang, Y. Lan, and K. Huang, “Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity,” Phys. Rev. A 69, 053807 (2004).

7. Y. Chen, “Geometry of classical periodic orbits and quantum coherent states in coupled oscillators with SU(2) transformations,” Phys. Rev. A 83, 032124 (2011).

8. Y. Chen, Y. Hsieh, and K. Huang, “Originating an integral formula and using the quantum fourier transform to decompose the Hermite-Laguerre-Gaussian modes into elliptical orbital modes,” OSA Continuum 1, 744–754 (2018).