Title
Franck-Condon Tuning of Optical Cycling Centers by Organic Functionalization.

Permalink
https://escholarship.org/uc/item/0f15734x

Journal
Physical review letters, 126(12)

ISSN
0031-9007

Authors
Dickerson, Claire E
Guo, Han
Shin, Ashley J
et al.

Publication Date
2021-03-01

DOI
10.1103/physrevlett.126.123002

Peer reviewed
Franck-Condon tuning of optical cycling centers by organic functionalization

Claire E. Dickerson,\(^1\) Han Guo,\(^1\) Ashley J. Shin,\(^1\) Benjamin L. Augenbraun,\(^2\) Justin R. Caram,\(^1\) Wesley C. Campbell,\(^3\) and Anastassia N. Alexandrova\(^1\)

\(^1\)Department of Chemistry and Biochemistry, University of California Los Angeles
\(^2\)Department of Physics, Harvard University
\(^3\)Department of Physics and Astronomy, University of California Los Angeles

(Dated: October 12, 2020)

Laser induced electronic excitations that spontaneously emit photons and decay directly to the initial ground state ("optical cycling transitions") are used in quantum information and precision measurement for state initialization and readout. To extend this primarily atomic technique to organic compounds, we theoretically investigate optical cycling of alkaline earth phenoxides and their functionalized derivatives. We find that optical cycle leakage due to wavefunction mismatch is low in these species, and can be further suppressed by using chemical substitution to boost the electron withdrawing strength of the aromatic molecular ligand through resonance and induction effects. This provides a straightforward way to use chemical functional groups to construct optical cycling moieties for laser cooling, state preparation, and quantum measurement.

The use of isolated, complex systems in pure quantum states for computation, measurement, and sensing relies on the ability to determine the quantum state of the system. This applies not only to state measurement, but also state preparation (and cooling), where initialization of the system to a pure quantum state is necessary to achieve quantum advantage.\(^1\)

For state preparation and measurement (SPAM), spontaneously emitted photons following optical excitation are often employed as carriers of information (entropy) since they can be transported efficiently between systems that differ widely in temperature, mass, and size – characteristics that comprise the gap between the isolated quantum system and its effectively classical environment. However, the finite probability for detecting these photons (whose emission direction is usually randomized) means the cycle of excitation followed by spontaneous emission must be repeated many times (termed optical cycling) to achieve single shot quantum state readout of single emitters. Gas phase atoms driven by narrowband lasers can facilitate this process through selection rules governing how their quantum numbers change during spontaneous emission, and have for many years been used in laser cooling, trapping, and SPAM.\(^2\)\(^-\)\(^5\).

Molecules, on the other hand, have internal vibrational degrees of freedom that need not be constrained by angular momentum selection rules and therefore can decay to vibrationally excited levels of the ground state that lie below the excited state. This vibrational branching has largely precluded laser cooling of molecules and their use in quantum information, despite their highly desirable features.\(^6\)\(^-\)\(^14\). For precision measurement, the statistical sensitivity of molecule-based approaches (such as the ACME eEDM search\(^15\)\(^-\)\(^16\)) is limited by the fact that, due to vibrational branching to dark states, only a small fraction of the molecules in the experiment are detected during readout.

However, recently, a few molecules have been experimentally shown to have sufficiently closed optical cycling transitions to allow laser cooling.\(^17\)\(^-\)\(^22\). These molecules are characterized by vibrational branching ratios that strongly favor decay to a small number of ground-state vibrational levels, meaning only a handful of lasers are required to achieve optical cycling. Almost all of these molecules consist of an alkaline earth metal atom (M) ionically bonded to a molecular fragment in such a way that it optically behaves as a gas-phase M\(^+\) cation radical. Calculations have revealed that complex M-O-R (i.e., alkaline earth alkoxide) structures can be realized while retaining the ability to optically cycle.\(^23\)\(^-\)\(^26\). However, the principles governing which ligands (R) will retain or even potentially promote optical cycling are not well understood, and searches for acceptable species currently rely heavily on trial and error with state of the art calculations for each candidate.

Building upon the M-O-R motif,\(^22\)\(^-\)\(^25\), here we investigate functionalized phenyl rings for R and introduce a guiding principle by which the vibrational wavefunction overlap can be enhanced by straightforward chemical substitution within the molecular ligand. Using multireference wave functions and ground state and time-dependent density functional theory (TD-DFT) calculations,\(^27\) we investigate the Franck-Condon factors (FCFs, \(q_{\nu',\nu} \equiv |\langle \nu' | \nu \rangle|^2\), which in many cases approximate the vibrational branching ratio) of alkaline earth phenoxides. We show that (i) electronic transitions in Ca and Sr phenoxides are promising for optical cycling (see also\(^22\)) and (ii) electron-withdrawing substituents on the phenyl ring make the M-O bond more ionic via induction and resonance effects. This substitution suppresses the FCF-induced vibrational branching of spontaneous emission roughly in proportion to the total electron withdrawing strength of the substituents. In particular, making three \(H \rightarrow CF_3\) substitutions on the ring of calcium phenoxide, despite nearly doubling the number of atoms in the molecule, boosts the FCF limit on the ex-
optical cycling, the orbitals themselves qualitatively re-
In further support of the promise of these species for
desirable property for suppressing vibrational branching.
We then show how the vibrational branching can be tuned
by chemical substitution on the meta (3 and 5) and
para (4) positions of the phenyl ring (see Fig. 1). The
ability to control the Franck-Condon factors of large
molecules (and, in particular, those containing benzene)
may open the door to new applications in ultracold chem-
istry [28–29], quantum information [13, 30], and precision
measurement [21, 31, 32].

Many previous theoretical studies of optical cycling in
molecules have used complete active space self-consistent
field (CASSCF) and multireference configuration interac-
tion (MRCl) methods in order to produce highly accurate
results [33–37]. However, these methods generally be-
come prohibitively expensive when applied to relatively
large molecules. DFT and TD-DFT, on the other hand,
can computationally assess large species, but the accuracy
of these methods for calculating vibrational branching is
not well established. Hence, we first benchmarked DFT
and TD-DFT [38–41] against both CASMRCI calcula-
tions and experimental measurements for the smallest
MOR molecules, finding good agreement for the PBE0
hybrid functional [42] with the D3 dispersion corrections
[43], def2-tzvpdp basis set [44] and the double harmonic
approximation for Franck-Condon factors [45]. While the
accuracy of these methods for the large species considered
below will remain an open question until they are tested
by experiments, the FCFs we obtain from DFT and TD-
DFT for the comparatively smaller alkaline earth hydrox-
ides (MOH) and methoxides (MOCH3) are within 2% of
the experimentally measured branching ratios (see [27]
for details).

Using the techniques that produced the most accurate
results for the smaller species, we first investigate the
optical cycling properties of Ca- and Sr-phenoxide (i.e. a
benzene molecule functionalized with an MO optical cy-
cling center). Figure 1 shows electron iso-surfaces for the
highest occupied molecular orbital (HOMO, analog-
ous to the ground state wavefunction of the unpaired
valence electron on M) and the first few lowest unoccu-
pied molecular orbitals (LUMOs, the same for the excited
states). In all cases shown, the electron density remains
far from the molecular ligand, indicating that this valence
electron plays very little role in the molecular bonds, a
desirable property for suppressing vibrational branching.
In further support of the promise of these species for
optical cycling, the orbitals themselves qualitatively re-
sensible hydridized versions of the s and p_z, p_y and p_z
Cartesian-basis orbitals that constitute the optical cy-
cling transition of the gas-phase atomic M^+ ion. Transi-
tions between the HOMO and the LUMO and LUMO+1
correspond roughly to the X^2Σ^+ ↔ Σ^+Π_{0^+} fine structure
doublet in the smaller, linear MOR species while the
LUMO+2 is analogous to the B^2Σ^+ state of those species.
We label the electronic states as X, A, B, and C, in order of ascending energy.

To examine vibrational leakage from the optical cycle,
we calculate the Franck-Condon factors (FCFs) for transi-
tions from the vibrational ground state of the A and
C electronic excited states to the electronic ground state
in the Born-Oppenheimer approximation. Due to the
lack of spectroscopic data and the difficulty of perform-
ing highly accurate calculations with large species (and
since we will be interested in the marginal effect of the
the chemical substitutions, discussed below), we use the cal-
culated FCF as a proxy for the true spontaneous emission
branching. Since these effects are expected to decrease
the branching probability to the absolute ground state,
we refer to η_00 ≡ 90_0 / (1−90_0) as the Franck-Condon limit
of the expected number of spontaneously emitted photons
before a leakage event when no vibrational repumping
lasers are applied.

For the A → X transitions in both Ca- and Sr-
phenoxide, we find that the FCFs are indeed highly di-
agonal, as expected, with CaOC6H5 capable of emitting
an average of η_00 = 22 photons before FCF-induced vi-
brrational branching (we refer to the FCFs as “diagonal”
if the Franck-Condon matrix q is approximately equal
to the identity). We also find that the C → X transitions
have even higher overlap, corresponding to both Ca- and
Sr-phenoxide yielding η_00 > 150 photons before FCF-
induced vibrational branching. However, we find that
vibronic coupling among the excited electronic states is
likely to lead to perturbations that increase the vibra-
tional branching ratios for B and C from those predicted

![FIG. 1. (a) Substitution positions investigated on the metal (Sr, Ca)-oxygen phenyl ring. (b) Global minimum structures and molecular orbitals (isosurface value of 0.03) for SrOC6H5 show the atom-like character of the electron distribution for the ground and first three excited states. The lack of electron density on the ligand suggests very little structural change will be involved in the electronic transitions.](image-url)
by the unperturbed state analysis (see, e.g., [46][47] and [27]), and we therefore focus on the FCF-boosting effect of chemical substitution on $\tilde{\sigma}$, which is likely to be the most closed transition.

Fundamentally, the large values of $q_{0,0}$ attained by these species can be traced to the highly ionic nature of the M-O bond; the bonding electron of neutral M is pulled sufficiently far from the M$^+$ ion core that excitations of the remaining electron on the core do not perturb the bond. This suggests (see also [22]) that if the electron withdrawing strength of the ligand can be increased, the FCF limit on the number of emitted photons would likewise increase [48]. However, if electron withdrawing chemical groups are located too close to the metal atom, they pull on it and bend the bond, significantly degrading the diagonal FCFs. We therefore require an approach that allows the placement of electron-withdrawing chemical groups far from the M atom while still retaining sufficient chemical intercourse with M to increase the ionicity of the M-O bond.

For this, we employ substituents at the 3, 4, and 5 positions of the phenyl ring which withdraw electrons via resonance and inductive effects and influence the M-O bond without compromising its linearity. As a predictor of their expected influence on the M-O bond ionicity, we apply the concept of Hammett σ constants [49], dimensionless parameters that are empirically determined from ionization of organic acids in liquid and have been tabulated for many functional groups and substitution locations (see e.g. [50]). Despite the seeming conceptual disconnect between the chemistry of species in solution and optical cycling, we show that the Hammet σ constants effectively provide a guide for the effect of substituents on Franck-Condon overlap since they quantify the electron donating or withdrawing effect of each substitution. Roughly speaking, positive Hammet constants indicate electron withdrawing strength with negative constants indicating electron donation, so we therefore expect large, positive totals for the Hammet constants of the substituted functional groups to suppress FCF-induced vibrational branching.

![Graphical representation](image)

FIG. 2. The calculated vibrationless $\tilde{\sigma} \rightarrow \tilde{X}$ Franck-Condon factors for substituted MOC$_6$H$_5$ derivatives show a strong correlation with the total of the Hammett σ constants of their substituted CaOR (SrOR) species are shown in blue (red). Solid curves are fits to Gaussians centered at the x-intercept of the bond length change vs. Hammett total trends (Table I).

Substituent	Hammett Total	$\sum \sigma$	$\Delta \tilde{\sigma}$ change (Å)	$q_{0,0}$ CaOR $\tilde{\sigma} \rightarrow \tilde{X}$	$q_{0,0}$ SrOR $\tilde{\sigma} \rightarrow \tilde{X}$
4-OH	0.40	0.01027	0.02077	0.922	0.922
3,4-OH	0.40	0.01027	0.02077	0.922	0.922
3,4,5-OH	0.40	0.01027	0.02077	0.922	0.922
(none)	0.40	0.01027	0.02077	0.922	0.922
4-F	0.40	0.01027	0.02077	0.922	0.922
3-OH	0.40	0.01027	0.02077	0.922	0.922
3-Cl	0.40	0.01027	0.02077	0.922	0.922
3,5-OH	0.40	0.01027	0.02077	0.922	0.922
3-F	0.40	0.01027	0.02077	0.922	0.922
3-CF$_3$	0.40	0.01027	0.02077	0.922	0.922
3,4-CF$_3$	0.40	0.01027	0.02077	0.922	0.922
3,5-CF$_3$	0.40	0.01027	0.02077	0.922	0.922
3,4,5-CF$_3$	0.40	0.01027	0.02077	0.922	0.922

TABLE I. Calculated changes in the M-O bond length (positive indicates bond lengthening upon emission) and Franck-Condon factors for the $\tilde{\sigma} \rightarrow \tilde{X}$ transitions in M-phenoxide with various functional groups on the 3, 4, and 5 positions of the phenyl ring. The Hammet σ constants of each substituent are summed to indicate the additional electron withdrawing strength contributed by the substitution.
tons ($\eta_{h,0}$) by more than a factor of 20\times compared to the unaltered variant.

The effect of chemical substitution on vibrational branching in these species can be traced largely to their geometry. Table I shows that the length change of the M-O bond for the $\tilde{A} \to \tilde{X}$ transition is approximately linearly correlated with the Hammett total of the substituents. In all cases, the largest geometry change from ground to excited state was the M-O bond length. All other bond lengths remained unchanged from ground to excited state within the calculated accuracy (0.005 angstroms). Extrapolation of the linear trend to zero bond length change can be used to build a simplified model for how the FCFs should depend upon the Hammett total. Since vibrational ground states are approximately Gaussian and the transition’s bond length change is linear in the Hammett total, the vibrationless FCFs ($q_{h,0}$) will be Gaussian in Hammett total. The solid curves in Fig. 2 are Gaussian fits to the calculated points, which appear consistent with this model.

In all MOC$_5$H$_5$ derivatives, the $\tilde{A} \to \tilde{X}$ transition’s off-diagonal FCFs were dominated by a normal mode strongly associated with stretching of M-O. Figure 3 shows the diagonal FCF (the fundamental transition) and the largest two off-diagonal FCFs, labeled with their associated normal modes for the unsubstituted and trifluoromethyl-substituted SrOC$_5$H$_5$ and CaOC$_5$H$_5$. For both SrOC$_5$H$_5$ and CaOC$_5$H$_5$, the largest leakage pathways are normal modes with almost entirely M-O stretch character. As more electron-withdrawing substituents are added, this isolated stretch mode incorporates more and more bending behavior, until the largest electron-withdrawing group case, MOC$_5$H$_2$F$_9$, has a leakage pathway dominated by a vibrational mode with combined M-O stretching and bending character. In addition, analysis of second-order coupling to nearby vibronic levels predicts induced loss channels smaller than 10$^{-3}$ on $\tilde{A} \to \tilde{X}$, suggesting that these FCFs can be used as a guide to investigate optical cycling in these species since they are all less than ≈ 0.999 \cite{27}.

The use of electron-withdrawing functional groups to boost the FCF of the optical cycling transitions in large molecules relies on two basic properties of the metal and ligand. First, the (possibly substituted) ligand’s HOMO/LUMO gap must be large enough to fit the electronic excitation of the metal in the gap. For example, benzene and adamantane have a naturally large HOMO/LUMO gap which can easily append a metal with an unpaired electron such as Sr or Ca, and can be decorated with electron-withdrawing substituents. The new HOMO/LUMO gap for these M-O-R species becomes the metal to metal electronic transition, creating an isolated electronic transition. Second, it is important that electron withdrawing substituents do not delocalize the optically active electron. For example, we find that if 4-NO$_2$ is substituted on the phenyl group, it promotes delocalization through the π system of its molecular orbitals, unlike trifluoromethyl substituents, and spreads the electronic wavefunction across NO$_2$ and the benzene ring. This reorders the unoccupied orbitals such that the new LUMO is the electron density delocalized on the benzene ligand instead of localized on the metal. This can also be seen as electron density mixing of metal and NO$_2$ in natural transition orbitals \cite{27}. As a result, substituents that favor delocalized π bonds are poor candidates for FCF tuning.

The technique presented here of using chemical substitution to bolster optical cycling introduces a principle for informed design of species for quantum information and precision measurement applications. By using Hammett constants to choose electron-withdrawing substituents, the expectation that increasing the number of vibrational modes (and therefore decay channels) will compromise optical cycle closure can be circumvented. Indeed, we have shown here that optical cycling can actually be improved by adding more complexity to the organic ligand by deliberately utilizing its size and aromatic properties to allow these functional groups to operate far from the optical cycling center — a capability that only large molecules can provide. While we have focused here on a few particular features of large molecules that can promote optical cycling, the observation that new features can emerge as complexity increases supports the claim that more aspects of polyatomic molecules are likely to be identified in the future to allow increased quantum control of molecular species.

Acknowledgments This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award #DE-SC0019245. The au-
thors acknowledge helpful discussions with Eric Hudson.

* C.D. and H.G. contributed equally to this work.
† Corresponding author

[1] D. P. DiVincenzo, Fortschritte der Physik 48, 771 (2000).
[2] J. D. Wineland, R. E. Drullinger, and F. L. Walls, Phys. Rev. Lett. 40, 1639 (1978).
[3] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[4] W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[5] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, J. Res. Nat. Inst. Stand. Tech. 103, 259 (1998).
[6] D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).

[7] F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, New J. Phys. 16, 075001 (2014).
[8] M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, The Journal of Chemical Physics 144, 094301 (2016) https://doi.org/10.1063/1.4942928.
[9] J. A. Blackmore, L. Caldwell, P. D. Gregory, E. M. Bridge, R. Savant, J. Aldegunde, J. Mur-Petit, D. Jaksh, J. M. Hutson, B. E. Sauer, M. R. Tarbutt, and S. L. Cornish, Quantum Sci. Technol. 4, 041010 (2019).
[10] K.-K. Ni, T. Rosenband, and D. D. Grines, Chem. Sci. 9, 6830 (2018).
[11] E. J. Wineland and W. C. Campbell, Phys. Rev. A 98, 040302 (2018).
[12] P. Yu, L. W. Cheuk, I. Kozyryev, and J. M. Doyle, New J. Phys. 21, 093049 (2019).
[13] W. C. Campbell and E. R. Hudson, Phys. Rev. Lett. 125, 120501 (2020).
[14] V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, Nature 562, 355 (2018).
[15] C. D. Panda1, C. Meisenhelder, M. Verma, D. G. Ang, J. Chow, Z. Lasner, X. Wu, D. DeMille, J. M. Doyle, and G. Gabrielse, J. Phys. B: At. Mol. Opt. Phys. 52, 23500 (2019).
[16] E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, Phys. Rev. Lett. 103, 223001 (2009).
[17] M. T. Hammon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, Phys. Rev. Lett. 110, 143001 (2013).
[18] S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Nature Physics 13, 1173 (2017).
[19] I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, and J. M. Doyle, Phys. Rev. Lett. 118, 173201 (2017).
[20] B. L. Augenbraun, Z. D. Lasner, A. Frenett, H. Sawaoka, C. Miller, T. C. Steimle, and J. M. Doyle, New J. Phys. 22, 022003 (2020).
[21] M. V. Ivanov, F. H. Bangerter, P. Wójcik, and A. I. Krylov, The Journal of Physical Chemistry Letters 11, 6670 (2020) pMID: 32787222, https://doi.org/10.1021/acs.jpclett.0c01960.
[22] I. Kozyryev, L. Baum, K. Matsuda, and J. M. Doyle, ChemPhysChem 17, 3641 (2016) https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201601051.
[23] M. V. Ivanov, S. Gulania, and A. I. Krylov, The Journal of Physical Chemistry Letters 11, 1297 (2020) pMID: 31973526, https://doi.org/10.1021/acs.jpclett.0c00021.
[24] J. Klos and S. Kotochigova, Phys. Rev. Research 2, 013384 (2020).
[25] B. L. Augenbraun, J. M. Doyle, T. Zelevinsky, and I. Kozyryev, Phys. Rev. X 10 (2020), 10.1103/physrevx.10.031022.
[26] See Supplemental Material at [URL will be inserted by publisher] for details of the calculations.
[27] R. V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008).
[28] N. Balakrishnan, The Journal of Chemical Physics 145, 150901 (2016) https://doi.org/10.1063/1.4964096.
[29] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New Journal of Physics 11, 055049 (2009).
[30] I. Kozyryev and N. R. Hutzler, Phys. Rev. Lett. 119, 133002 (2017).
[31] P. Jansen, H. L. Bethlem, and W. Ubachs, The Journal of Chemical Physics 140, 010901 (2014) https://doi.org/10.1063/1.4853735.
[32] Y. Hao, L. F. Pašeta, L. Visscher, P. Aggarwal, H. L. Bethlem, A. Boeschoten, A. Borschevsky, M. Denis, K. Essajis, S. Hoekstra, K. Junghann, V. R. Marshall, T. B. Meijkaun, M. C. Mooij, R. G. E. Timmermans, A. Touwen, W. Ubachs, L. Willman, Y. Yin, and A. Zapara, The Journal of Chemical Physics 151, 034302 (2019) https://doi.org/10.1063/1.5098540.
[33] S. Kang, F. Kuang, G. Jiang, and J. Du, Molecular Physics 114, 810 (2016) https://doi.org/10.1080/00268976.2015.1121294.
[34] S. N. Tohme and M. Korek, Journal of Quantitative Spectroscopy and Radiative Transfer 167, 82 (2015).
[35] M. K. Nayak and R. K. Chaudhuri, Journal of Physics B: Atomic, Molecular and Optical Physics 39, 123 (2006).
[36] M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko, Phys. Rev. A 56, R3326 (1997).
[37] F. Furchec and R. Ahlrichs, The Journal of Chemical Physics 117, 7433 (2002) https://doi.org/10.1063/1.1508368.
[38] J. Liu and W. Liang, The Journal of Chemical Physics 135, 014113 (2011) https://doi.org/10.1063/1.3605504.
[39] J. Liu and W. Liang, The Journal of Chemical Physics 135, 184111 (2011) https://doi.org/10.1063/1.3659312.
[40] R. Bauernschmitt and R. Ahlrichs, Chemical Physics Letters 256, 454 (1996).
[41] J. P. Perdew, M. Ernzerhof, and K. Burke, The Journal of Chemical Physics 105, 9982 (1996) https://doi.org/10.1063/1.472933.
[42] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
[43] D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).
[44] V. Mozhaevskiy and A. Krylov, “ezSpectrum,” http://openshell.usc.edu/downloads.
[45] E. T. Mengesha, A. T. Le, T. C. Steimle, L. Cheng, C. Zhang, B. L. Augenbraun, Z. Lasner, and J. Doyle, “Branching ratios, radiative lifetimes and transition dipole moments for YbOH,” (2020), arXiv:2002.05849 [physics.atom-ph].
[46] L. Baum, N. B. Vlas, C. Hallas, B. L. Augenbraun, S. Raval, D. Mitra, and J. M. Doyle, “Establishing a highly closed cycling transition in a polyatomic
molecule,” (2020), arXiv:2006.01769.
[48] M. V. Ivanov, F. H. Bangerter, and A. I. Krylov, Phys.
Chem. Chem. Phys. 21, 19447 (2019).
[49] P. Hammet, Louis, J. Am. Chem. Soc. 59, 96 (1937).

[50] C. Hansch, A. Leo, and R. W. Taft, Chemical Reviews 91, 165 (1991), https://doi.org/10.1021/cr00002a004.