Greening of the land surface in the world’s cold regions consistent with recent warming

T. F. Keenan1,2,* and W. J. Riley1

1 Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 2 Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA. *e-mail: trevorkeenan@lbl.gov

Abstract

Global ecosystem function is highly dependent on climate and atmospheric composition, yet ecosystem responses to environmental changes remain uncertain. Cold, high-latitude ecosystems in particular have experienced rapid warming1, with poorly understood consequences2,3,4. Here, we use a satellite-observed proxy for vegetation cover—the fraction of absorbed photosynthetically active radiation5—to identify a decline in the temperature limitation of vegetation in global ecosystems between 1982 and 2012. We quantify the spatial functional response of maximum annual vegetation cover to temperature and show that the observed temporal decline in temperature limitation is consistent with expectations based on observed recent warming. An ensemble of Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) mischaracterized the functional response to temperature, leading to a large overestimation of vegetation cover in cold regions. We identify a 16.4\% decline in the area of vegetated land that is limited by temperature over the past three decades, and suggest an expected large decline in temperature limitation under future warming scenarios. This rapid observed and expected decline in temperature limitation highlights the need for an improved understanding of other limitations to vegetation growth in cold regions3,4,6, such as soil characteristics, species migration, recruitment, establishment, competition and community dynamics.

Main

A global increase in green vegetation has been observed over recent decades7,8 and widely attributed to both direct and indirect anthropogenic influences—primarily elevated atmospheric CO\textsubscript{2}, but also changes in climate, nitrogen deposition and land use change8,9,10,11. The global greening has contributed to changes in biophysical feedbacks such as evapotranspiration and albedo12, along with an increased terrestrial carbon sink13, which together have served to slow the rate of global warming2. However, uncertainties remain regarding the drivers of the reported greening and their spatial variation, and thus the likelihood of continued greening.

Ecosystems in cold regions in particular have exhibited rapid increases in green vegetation3,7. Plot-scale evidence suggests a link to warming4,6, but direct attribution of observed regional trends to environmental changes...
has been elusive. Regional studies have relied on multi-factorial simulation experiments with global vegetation models8,11,14, but vegetation models are known to perform poorly for high-latitude and cold-limited ecosystems15,16,17, overestimating both the extent of green vegetation and the trend in recent decades17. Model results suggest a role of climate change and CO\textsubscript{2} in the observed greening trend8,10,11,14,18, but direct attribution is hindered by model spread and uncertainty14.

Here, we develop a data-based approach19,20, using three decades of remotely sensed estimates of the fraction of absorbed photosynthetically active radiation (fAPAR)—a proxy for productive foliage cover21—to characterize the relationship between maximum annual foliage cover (F_{max}) and the summer warmth index (SWI_5; the sum of the monthly mean temperatures above 5 °C). We use the approach, which was originally developed for water-limited ecosystems19,20, to identify the spatial distribution of ecosystems in which F_{max} is limited by temperature, and thus to track changes in temperature limitation over time. By estimating the temperature (T) sensitivity of F_{max} (γFT) using spatial gradients, and comparing this with expected changes in F_{max} due to observed changes in temperatures, we show a long-term increase in foliage cover that is consistent with the expected influence of recent warming. The observed greening occurred together with a large decline in the spatial extent of temperature limitation over recent decades, in particular for northern high-latitude ecosystems. Finally, we use an ensemble of global Earth system models (ESMs) from the recent Coupled Model Intercomparison Project Phase 5 (CMIP5) to examine the impact of future projected temperature changes on the spatial extent of temperature limitation, and to assess the ability of ESMs to estimate the sensitivity of maximum foliage cover to changes in temperature.

Our functional responses analysis of global satellite observations from the Global Inventory Modeling and Mapping Studies third-generation fAPAR data product (GIMMS3g5) shows the spatial dependence of vegetation cover on temperature (Fig. 1), with low maximum foliage cover in colder regions (low SWI\textsubscript{5}) and high maximum foliage cover in warmer regions. We examined the ninety-fifth percentile of the distribution of annual F_{max} (F_{95} (%)), which characterizes the maximum F_{max} attained globally for a given annual SWI\textsubscript{5}. We delineated the regions where temperature strongly affected F_{max} and found that it depended linearly on SWI\textsubscript{5} under colder conditions (Fig. 1). The slope of the F_{95} edge quantifies γFT (the percentage change in F_{95} per degree change in SWI\textsubscript{5}; % °SWI−15SWI5−1), and the temperature at saturation (mean ± s.d. SWI\textsubscript{5} = 43.2 ± 1.36 °C) delineates the region where F_{max} is limited by temperature (Fig. 1 and Supplementary Fig. 1).
We examined changes in the slope and intercept of F_{95} during the GIMMS3g observational record (1982–2012) and found both an increasing intercept (mean ± 95% confidence interval: 4.16 ± 1.47% decade$^{-1}$) and a declining slope (−0.10 ± 0.05% decade$^{-1}$) (Fig. 2) for F_{95} relative to the baseline SWI$_5$ from 1982–1984. An increasing intercept indicates an increase in F_{95} in regions that were temperature limited at the start of the measurement record, with a 26.5 ± 1.9% increase in F_{95} in the most temperature-limited regions (Fig. 2 and Supplementary Fig. 2). A decreasing slope implies that regions that were more temperature limited at the start of the observational record are greening faster than regions that were less temperature limited. The changes in the relationship between F_{max} and SWI$_5$ in temperature-limited regions are consistent with accelerated warming in colder regions1 and could indicate a change in temperature limitation over time.
Figure 2. a, b. Slope (a) and intercept (b) of the relationship between F_{95} and SWI_5. Error bars represent 95% confidence intervals. The red dashed lines show fitted linear regressions, with slope m (a, \% SWI_5 yr$^{-1}$; b, \% yr$^{-1}$) and P values indicated.

We used a space for time substitution to examine whether the observed changes in F_{max} in temperature-limited regions are consistent with observed long-term (1982–2012) changes in temperature. To do so, we predicted the expected change in F_{95} ($F_{95} = I + \gamma \gamma \gamma \gamma F\text{T}\text{SWI}_5$), where I and $\gamma \gamma \gamma \gamma F\text{T}$ are estimated as the intercept and slope of the relationship between F_{95} and SWI_5 from the start of the observational record (1982–1984), and SWI_5 is temporally dynamic throughout the observational record. The change in F_{95} over time, predicted based on temporally static spatial changes in F_{95}, was statistically equivalent to the observed long-term change ($P < 0.01$, Chow test; Fig. 3). Observed temperature changes implied a somewhat lower increase in F_{95} in the most temperature-limited regions ($19.12 \pm 2.27\%$; Fig. 3), but with a smaller decline in the F_{95} slope over time than observed. The concordance of the observed and expected change in F_{95} suggests that the observed long-term increase in F_{max} is consistent with a response to long-term warming, although other factors such as CO_2 fertilization and nitrogen deposition could also play a role.
Fig. 3: Observed and predicted changes in F_{95}. Each solid line represents the observed F_{95} for a specific three-year period, starting from 1982–1984 (black) and ending in 2010–2012 (blue). Grey lines show F_{95} for intermediate three-year periods. The red dashed line represents the predicted temporal change in F_{95} based on the observed spatial sensitivity to SWI$_5$ and observed long-term changes in SWI$_5$.

Ecosystems below the temperature-limitation threshold in the relationship between F_{95} and SWI$_5$ (Fig. 1) represented 19.87 ± 0.67% of the total vegetated area of the extratropical northern latitudes at the start of the measurement record (1982–1984), and are primarily located at high latitudes and on the Tibetan Plateau (Fig. 4). Our results indicate that the spatial extent of temperature limitation of F_{max} has declined by 16.35 ± 0.64% over the observational record. The release from temperature limitations was largely experienced at the southern edge of high-latitude ecosystems. We estimate 45 and 85% reductions in the temperature-limited area by 2100 for CMIP5 ensemble warming projections under Representative Concentration Pathways (RCPs) 4.5 and 8.5, respectively (Fig. 4).
Fig. 4: Current and predicted changes in the relative spatial extent of temperature-limited area of vegetated land. a,b, Shaded areas represent areas where F_{max} indicated temperature limitation at the start of the observational record (1982–1986), but did not by the corresponding year. Green areas represent the change in the observational record to 2010, whereas other shades represent projected changes based on temperature projections from the CMIP5 models under RCP4.5 (a) and RCP8.5 (b). c, Proportion of vegetated areas that are temperature limited over time, relative to the extent of vegetated areas that were temperature limited at the end of the measurement record (2010–2012). The means (dashed lines) and standard errors (shaded areas) of ten ESMs (Supplementary Table 1) from the CMIP5 ensemble under RCP4.5 (blue) and RCP8.5 (green) are shown.

By focusing on the ninety-fifth percentile, the space for time substitution utilized here minimizes the influence of other limitations to growth19,20, thus allowing for identification of the independent temperature sensitivity. However, in reality, multiple factors limit maximum vegetation cover in cold regions, including nutrient availability, rooting depth, permafrost dynamics and soil moisture. We estimate that 44% of the vegetated land surface identified as temperature limited is primarily temperature limited, defined as being within ±10% of the potential F_{max} (Supplementary Figs. 3 and 4). This proportion suggests that the vegetation cover response to warming of the remaining 56% will probably be mediated by other factors. Indeed, the mean (± s.e.) long-term increase in maximum vegetation cover for vegetated areas that are primarily temperature limited was 1.48 ± 0.05% decade$^{-1}$, whereas vegetated areas limited by both temperature and other factors had smaller increases of 0.8 ± 0.03% decade$^{-1}$. The predicted declines in the temperature-limited area therefore do not necessarily translate into a uniform increase in vegetation cover. For instance, warming also extends the growing season length, which may lead to earlier snow-melt, increase peak season water stress, and thus reduce vegetation
In addition, the space for time approach inherently assumes a climate–vegetation equilibrium, which may lead to overestimated rates of change due to the inability of species-range shifts to keep pace with warming23,24. Finally, we note that long-term satellite records are subject to uncertainty related to orbital effects and platform changes, although such issues are expected to be lower at high latitudes25.

The temperature sensitivity of F_{95} in the examined CMIP5 ESMs spanned a large range (Fig. 5), from a positive γ_{FT} of 1.56\% SWI^{-1} in the CanESM2 model to a relatively flat temperature sensitivity in the CCSM4 and NorESM models, which both use the CLM4 land surface model (Supplementary Table 1), and are the only models to include an explicit nitrogen cycle. On average, the models underestimated the observed γ_{FT} by a mean ± s.d. of 63.53 ± 50.8\%, with only CanESM2 giving a temperature sensitivity larger than that observed. The underestimated sensitivity was reflected in an overestimated F_{95} at low temperatures (Fig. 5b and Supplementary Fig. 5) of 77.48 ± 41.45\%. The overestimated F_{95} and underestimated γ_{FT} in the CMIP5 models are consistent with, and shed light on, previous reports that vegetation cover is consistently overestimated at high latitudes in CMIP5 models15,16 and dynamic vegetation models17. Combined with reports of a persistent underestimation of photosynthetic capacity at high latitudes in terrestrial biosphere models26, these results suggest that models of cold-limited ecosystems need improvement, and call into question their utility for attribution8,14. Our results provide a benchmark for model development, although further analysis is needed to identify the responsible processes that govern the relationship between temperature and vegetation cover.
The greening of the Earth is a widespread phenomenon—one that models have primarily attributed to changes in atmospheric CO$_2$ and climate8,11. Here, we use direct observations to isolate the functional response of vegetation cover to temperature in temperature-limited regions, and report an observed greening consistent with the effect of long-term temperature changes. The identified temperature sensitivity shows that growing season warmth is a dominant factor for vegetation production in cold regions, confirming previous reports of temperature controls on both spatial and temporal vegetation dynamics27,28,29. Our analysis also suggests a large reduction in ecosystem temperature limitation under future warming, although other limitations will probably play a large role in mediating the extent to which high-latitude ecosystems green. For example, arctic tundra soils are nutrient poor and, through stoichiometric requirements, impose limits on potential biomass, although mineralization of previous frozen soil nitrogen may30 or may not31 offset those limitations. Similarly, the waterlogged soils of extensive northern wetlands are unsuitable for dense
vegetation, regardless of the temperature limitation. Other limitations include the limited ability of species to migrate and adapt to the distinct environmental conditions of high-latitude ecosystems23,24. Current models need to accurately reproduce the effect of temperature on vegetation cover. That said, the expected release from temperature limitation under future warming highlights the importance of non-temperature limitations in mediating ecosystem responses to future climate change.

Methods

Satellite data

We used estimates of the fAPAR from GIMMS3g5, available for the period 1982–2012. Datasets are provided biweekly at 0.083\degree spatial resolution and were regridded to match the spatial resolution of the climate data. F_{max} was calculated as the maximum recorded value during each year. fAPAR is closely related to the photosynthetic activity of plants, and therefore constitutes an indicator of the presence and productivity of live vegetation.

Climatic variables

Monthly fields of air temperature at a 0.5\degree spatial resolution were obtained from the Climatic Research Unit high-resolution gridded datasets version 3.24 (ref. 32). The monthly mean air temperature values were converted to annual values of summer warmth by summing all monthly temperature values above a baseline of 5 \degreeCelsius (SWI\textsubscript{5}). This approach is designed to account for changes in temperatures that effect vegetation growth, while minimizing changes in temperatures that are too low to influence vegetation. Using a base temperature of 0 \degreeCelsius (SWI\textsubscript{0}) led to the inclusion of low-temperature and low-fAPAR pixels that were relatively insensitive to temperature change, but did not affect the overall results (Supplementary Fig. 6).

Breakpoint regression analysis

Three-year running-mean F_{max} values were binned according to their corresponding temperature values for 5\degree temperature bins19,20. For each bin, the upper and lower ninety-fifth, ninetieth and seventy-fifth percentiles were determined for each running-mean block. Breakpoint regression was applied to the ninety-fifth percentile values (F_{95}) using multi-phase linear regression. We estimated uncertainties of fit parameters through Monte Carlo simulations of zero-mean deviates based on the Cholesky decomposition of the covariance matrix. The regression of the ninety-fifth percentile of F_{max} represents the maximum F_{max} attainable for a given SWI\textsubscript{5}, thus minimizing the influence of other factors, such as precipitation or aridity, on the derived responses (Supplementary Fig. 8). The breakpoint of the regression identifies the region where the vegetation–temperature relationship plateaus and vegetation ceases to be temperature limited. Note that the breakpoint temperature was relatively insensitive to the percentile used (Supplementary Fig. 7). We constructed time series of the
slopes and intercepts of the breakpoint regression, and determined linear
trends for both variables using changes in the F_{max}-SWI$_5$ relationship but
keeping SWI$_5$ fixed to that experienced in the first three-year window of the
observational record (1982-1984). As running means were used to
construct the time series, non-independent running-mean blocks were
removed before determining the strength and significance of trends.

CMIP5 simulations

We analysed output from ten CMIP5 coupled carbon-climate models
(Supplementary Table 1) obtained from the Program for Climate Model
Diagnosis and Intercomparison Earth System Grid (ESG) (https://esgf-
ode.llnl.gov/search/cmip5). The land components of these ESMs differ in
their representations of vegetation types, soil properties, human
disturbances, and carbon and nitrogen pools. We used model outputs of
leaf area and air temperature at native spatial resolution, and converted to
the fAPAR using the standard conversion of Beer’s law, which accounts for
the exponential decline in absorbed radiation with increasing leaf area.
Values of F_{max}, F_{95} and SWI$_5$ were calculated through a functional response
analysis, as with the remote sensing observations. We used historical
simulations (1980-1990) for the comparison of spatial responses of F_{max}
with SWI$_5$, and projections of future monthly temperatures from 2010-2100
under two RCPs: 4.5 and 8.5.

Code availability

All code relating to this study is available from the corresponding author
upon request.

Data availability

The data that support the findings of this study are publicly available. The
satellite fAPAR data are hosted on NASA NEX (see instructions at
http://sites.bu.edu/cliveg/datacodes/). The CMIP5 simulation outputs are
available from the Program for Climate Model Diagnosis and
Intercomparison ESG (https://esgf-node.llnl.gov/search/cmip5/). The
climate data used (CRU3.24) can be downloaded from
https://crudata.uea.ac.uk/cru/data/hrg/.

References

Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature
feedbacks in contemporary climate models. Nat. Geosci. 7, 181-184 (2014).
2. Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks
during the past three decades. Nat. Clim. Change 7, 432-436 (2017).
3. Epstein, H. E. et al. Dynamics of aboveground phytomass of the
circumpolar Arctic tundra during the past three decades. Environ. Res. Lett.
7, 015506 (2012).
4. Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. *Nat. Clim. Change* 2, 453–457 (2012).

5. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI3g) and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. *Remote Sens.* 5, 927–948 (2013).

6. Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. *Nat. Clim. Change* 5, 887–891 (2015).

7. Myneni, R. B. et al. Increased plant growth in the northern high latitudes from 1981 to 1991. *Nature* 386, 698–702 (1997).

8. Zhu, Z. et al. Greening of the Earth and its drivers. *Nat. Clim. Change* 6, 791–795 (2016).

9. De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E. & Dent, D. L. Analysis of monotonic greening and browning trends from global NDVI time-series. *Remote Sens. Environ.* 115, 692–702 (2011).

10. Los, S. O. Analysis of trends in fused AVHRR and MODIS NDVI data for 1982-2006: indication for a CO$_2$ fertilization effect in global vegetation. *Glob. Biogeochem. Cycles* 27, 318–330 (2013).

11. Mao, J. et al. Human-induced greening of the northern extratropical land surface. *Nat. Clim. Change* 6, 959–963 (2016).

12. Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. *Science* 356, 1180–1184 (2017).

13. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO$_2$ due to enhanced terrestrial carbon uptake. *Nat. Commun.* 7, 13428 (2016).

14. Zhu, Z. et al. Attribution of seasonal leaf area index trends in the northern latitudes with ‘optimally’ integrated ecosystem models. *Glob. Change Biol.* 23, 4798–4813 (2017).

15. Anav, A. et al. Evaluation of land surface models in reproducing satellite derived leaf area index over the high-latitude northern hemisphere. Part II: Earth system models. *Remote Sens.* 5, 3637–3661 (2013).

16. Mahowald, N. et al. Projections of leaf area index in Earth system models. *Earth Syst. Dynam.* 7, 211–229 (2016).

17. Murray-Tortarolo, G. et al. Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude northern hemisphere. Part I: uncoupled DGVMs. *Remote Sens.* 5, 4819–4838 (2013).

18. Le Quéré, C. et al. Global carbon budget 2016. *Earth Syst. Sci. Data* 8, 605–649 (2016).
19. Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO$_2$ effects on vegetation. *Nat. Clim. Change* 6, 75–78 (2015).

20. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO$_2$ fertilization on maximum foliage cover across the globe’s warm, arid environments. *Geophys. Res. Lett.* 40, 3031–3035 (2013).

21. Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. *Remote Sens. Environ.* 49, 200–211 (1994).

22. Barichivich, J. et al. Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. *Remote Sens.* 6, 1390–1431 (2014).

23. Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. *Nat. Ecol. Evol.* 1, 1649–1654 (2017).

24. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. *Nature* 507, 492–495 (2014).

25. Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. *Remote Sens. Environ.* 163, 326–340 (2015).

26. Rogers, A. et al. Terrestrial biosphere models underestimate photosynthetic capacity and CO$_2$ assimilation in the Arctic. *New Phytol.* 216, 1090–1103 (2017).

27. Arft, A. M. et al. Responses of tundra plants to experimental warming: a meta-analysis of the International Tundra Experiment. *Ecol. Monogr.* 69, 491–511 (1999).

28. Jia, G. J., Epstein, H. E. & Walker, D. A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. *Glob. Change Biol.* 12, 42–55 (2006).

29. Bhatt, U. S. et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. *Environ. Res. Lett.* 12, 055003 (2017).

30. Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. *Environ. Res. Lett.* 13, 054029 (2018).

31. Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. *Proc. Natl Acad. Sci. USA* 112, 3752–3757 (2015).

32. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. *Int. J. Climatol.* 34, 623–642 (2014).

Acknowledgements
The authors are very grateful to the University of East Anglia Climatic Research Unit for providing the climate data used in this study, the CMIP5 project and ESG Federation for making ESM simulations publicly available, and the Vegetation Remote Sensing and Climate Research group at Boston University for making the satellite fAPAR data available. T.F.K. acknowledges support from NASA Terrestrial Ecology Program IDS Award NNH17AE86I. T.F.K. and W.J.R. were supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract DE-AC02-05CH11231 as part of the Reducing Uncertainty in Biogeochemical Interactions through Synthesis and Computation Scientific Focus Area. We thank M. Torn for discussions on the interpretation and implication of the results, and A. Ukkola and I. C. Prentice for early methodological discussions.