A contact process with mutations on a tree

by Thomas M. Liggett,* Rinaldo B. Schinazi, Jason Schweinsberg†

University of California at Los Angeles,
University of Colorado at Colorado Springs
and University of California at San Diego

July 19, 2018

Abstract

Consider the following stochastic model for immune response. Each pathogen gives birth to a new pathogen at rate λ. When a new pathogen is born, it has the same type as its parent with probability $1 - r$. With probability r, a mutation occurs, and the new pathogen has a different type from all previously observed pathogens. When a new type appears in the population, it survives for an exponential amount of time with mean 1, independently of all the other types. All pathogens of that type are killed simultaneously. Schinazi and Schweinsberg (2006) have shown that this model on \mathbb{Z}^d behaves rather differently from its non-spatial version. In this paper, we show that this model on a homogeneous tree captures features from both the non-spatial version and the \mathbb{Z}^d version. We also obtain comparison results between this model and the basic contact process on general graphs.

1 Introduction

Schinazi and Schweinsberg (2006) have recently introduced a non-spatial and a spatial version of the following stochastic model for immune response. For the non-spatial version (Model 2 in their paper), each pathogen gives birth to a new pathogen at rate λ. When a new pathogen is born, it has the same type as its parent with probability $1 - r$. With probability r, a mutation occurs, and the new pathogen has a different type from all previously observed pathogens. When a new type appears in the population, it survives for an exponential amount of time with mean 1, independently of all the other types. All pathogens of that type are killed simultaneously.

For the spatial version (Model S2 in Schinazi and Schweinsberg (2006)), let S be the square lattice \mathbb{Z}^d or the homogeneous tree T_d in which every vertex has $d + 1$ neighbors. Let x be a site in S occupied by a pathogen and y be one of its nearest neighbors. There are $2d$ such neighbors in \mathbb{Z}^d and $d + 1$ in T_d. After a random exponential time with rate λ, the pathogen on x gives

*Partially supported by NSF grant DMS-0301795
†Partially supported by NSF grant DMS-0504882

Key words and phrases: mutation, immune system, branching process, spatial stochastic model, contact process

2000 Mathematics Subject Classification: 60K35
birth on y, provided y is empty (if y is occupied nothing happens). With probability $1 - r$ the new pathogen on y is of the same type as the parent pathogen on x. With probability r the new pathogen is of a different type. We assume that every new type that appears is different from all types that have ever appeared. As in the non-spatial model, we assume that each type survives for an exponential amount of time with mean 1, independently of all other types, and that all pathogens of a type are killed simultaneously.

Biological motivation has been provided in Schinazi and Schweinsberg (2006). There is also some obvious motivation for such a model for the spread of a virus in computer networks. In particular, when a virus is discovered in a computer network it is usually destroyed at once. It is also interesting to test the influence of particular network topologies on the spread of a virus; see for instance Pastor-Sattorras and Vespignani (2001), Berger et. al. (2005), Ganesh et. al. (2005), and Draief et al. (2006).

Schinazi and Schweinsberg (2006) have shown that the pathogens survive in the non-spatial model with positive probability if and only if $\lambda > 1$ and $r > 0$; see their Theorem 1.2. In contrast, for the spatial model on \mathbb{Z}^d they have shown that if λ is large enough then the pathogens survive with positive probability for large r and die out with probability 1 for small r; see their Theorem 4. Given that a ball of radius R has of the order of d^R sites in the homogeneous tree T_d one might conjecture that the behavior of the spatial model on T_d is similar to that of the non-spatial model (there are so many sites on the tree that space may not be a limitation). As the reader will see in the next section, this is not so. In fact, the model on the tree captures both features from the model on \mathbb{Z}^d and from the non-spatial model. These results will be stated in Section 2 and proved in Sections 4 and 5.

The basic contact process may be thought of as being a particular case of this model with $r = 1$. See Liggett (1999) for background and results on the contact process. For $r = 1$, all pathogens are of different types and therefore only one pathogen dies at a time. Hence, one might conjecture that the model with $r = 1$ has a better chance of surviving than any model with $r < 1$. This turns out to be true but requires nontrivial arguments. This will be done in Section 3. This comparison result applies to any graph.

2 Phase transitions

We say that the pathogens survive on a graph S if there is a positive probability that at all times there is at least one pathogen somewhere in S. If the pathogens do not survive they are said to die out.

Theorem 1. Consider the contact process with mutations on the homogeneous tree T_d with $d \geq 2$, started with a single pathogen of type 1.

1. If $\lambda > \frac{1}{d-1}$ then the pathogens survive for all $r > 0$.

2. If $\lambda \leq \frac{1}{d-1+2r}$ then the pathogens die out. In particular, if $\lambda \leq \frac{1}{d+1}$, the pathogens die out for all $r \geq 0$.

3. If $\frac{1-d+r\sqrt{(d-1)(7+9d)}}{2(d^2-1)} < \lambda < \frac{1}{d-1}$ the pathogens die out for r close to 0 and survive for r close to 1.
These results will be proved in Sections 4 and 5.

Note that for all \(d \geq 2 \), the left-hand side of the inequality in Theorem 1.3 is strictly smaller than the right-hand side. Therefore, Theorem 1.3 shows that for intermediate values of \(\lambda \) there is a phase transition in \(r \). Moreover, the difference between the right and left sides of Theorem 1.3 is asymptotic to \(\frac{2}{3d^2} \) as \(d \to \infty \). Combining Theorem 1.1 and 1.2, we see that the set of \(\lambda \)'s for which there is a phase transition in \(r \) is of size asymptotically at most \(\frac{2}{d^2} \). So, up to a factor of three, we have found the correct size of this set.

We now turn to another type of phase transition. Let \(A_t \) be the set of sites that are occupied by any pathogen. The process is started with a single pathogen at the site \(x \). Recall that pathogens are said to survive if

\[
P(A_t \neq \emptyset, \forall t > 0) > 0.
\] (1)

The pathogens are said to survive weakly if (1) holds and

\[
P(x \notin A_t \text{ for sufficiently large } t) = 1.
\] (2)

That is, with positive probability, there are pathogens somewhere in \(S \) for all times, but almost surely a given site gets infected only finitely many times. If \(P(x \in A_t \text{ for arbitrarily large } t) > 0 \), then the process is said to survive strongly.

The interest in interacting particles on trees was sparked by Pemantle (1992). He proved that, in contrast to what happens on \(\mathbb{Z}^d \), there exists an intermediate range of \(\lambda \)'s for which the basic contact process on a homogeneous tree survives weakly; see Liggett (1999) for a complete description of the results and people involved. We next give a partial result in the same direction for the contact process with mutations.

Theorem 2. Consider the contact process with mutations on the homogeneous tree \(T_d \). If \(\frac{1}{d-1} < \lambda < \frac{1}{2\sqrt{d}} \) then the pathogens survive weakly for all \(r > 0 \).

This proves that for \(d \geq 6 \), there is a range of \(\lambda \) for which the contact process with mutations survives weakly. We believe this result to hold for all \(d \geq 2 \). Theorem 2 will be proved at the end of Section 3.

3 Comparison between the contact process with mutations and the basic contact process

Let \(S \) be a connected undirected graph. Let \(A_t \) be the set of sites occupied by a pathogen at time \(t \) for the contact process with mutations on \(S \). A typical state is a finite subset \(A \) of \(S \), together with a partition \(\{A_i\} \) of \(A \); \(A_i \) is the set of sites of type \(i \). Denote the semigroup and generator of the process by \(S_r(t) \) and \(L_r \). Note that the mutation model with \(r = 1 \) can be viewed as a version of the basic contact process, but only if all initial types are distinct; otherwise they are not the same. To make the comparison with the basic contact process, it is convenient to make it have the same birth mechanism as the multitype version. We will carry along the information about types, but ignore that information in the death mechanism – each individual dies separately at rate 1. We will use primes when referring to this process. Thus the generators are given by

\[
L_rg(A) = \sum_i [g(A \setminus A^i) - g(A)] + \lambda \sum_i \sum_{x \in A^i, y \not\in A, x \sim y} [rg(U^yA) + (1 - r)g(V^y_iA) - g(A)]
\]
and

\[L'_r g(A) = \sum_{x \in A} [g(A \setminus \{x\}) - g(A)] + \lambda \sum_{i} \sum_{x \in A', y \notin A, x \sim y} [rg(U^y A) + (1 - r)g(V^y_i A) - g(A)] \]

where \(U^y A = V^y_i A = A \cup \{y\} \) as sets, but with different partitions: In \(U^y A \), \(\{y\} \) is added as a new set in the partition, while in \(V^y_i A \), \(y \) is added to \(A' \). Here \(x \sim y \) means that \(x \) and \(y \) are neighbors in \(S \).

We begin with a result about the basic contact process, which is an extension of Theorem 6.2 of Harris (1974). His result is the following statement in the special case \(S = Z^d \) and \(C = Z^d \). The proof below is an adaptation of the proof of Proposition 5.9 of Chapter III of Liggett (1985).

As a historical note, we point out that Harris proved his result using coupling rather than duality. He didn’t discover contact process duality until two years later.) Here \(P^A \) refers to probabilities when \(A \) is the initial state of the process at time zero.

Lemma 3. For all \(A, B, C \subset S \) and every \(t > 0 \),

\[P^{A \cap B}(A'_t \cap C \neq \emptyset) + P^{A \cup B}(A'_t \cap C \neq \emptyset) \leq P^A(A'_t \cap C \neq \emptyset) + P^B(A'_t \cap C \neq \emptyset). \]

Proof. By checking cases, one sees that

\[1_{\{C \cap (A \cap B) \neq \emptyset\}} + 1_{\{C \cap (A \cup B) \neq \emptyset\}} \leq 1_{\{C \cap A \neq \emptyset\}} + 1_{\{C \cap B \neq \emptyset\}} \]

for all \(A, B, C \). Replacing \(C \) by \(A'_t \) and taking expectations gives

\[P^C(A'_t \cap (A \cap B) \neq \emptyset) + P^C(A'_t \cap (A \cup B) \neq \emptyset) \leq P^C(A'_t \cap A \neq \emptyset) + P^C(A'_t \cap B \neq \emptyset). \]

Now use duality (Theorem 1.7 of Chapter VI of Liggett (1985)).

Here is the basic comparison result:

Theorem 4. For every \(A, C \subset S \), \(0 \leq r \leq 1 \), and \(t \geq 0 \),

\[P^A(A_t \cap C \neq \emptyset) \leq P^A(A'_t \cap C \neq \emptyset). \]

Proof. Let \(f(A) = 1_{\{A \cap C \neq \emptyset\}} \). The integration by parts formula gives

\[P^A(A'_t \cap C \neq \emptyset) - P^A(A_t \cap C \neq \emptyset) = S'_r(t)f(A) - S_r(t)f(A) \]

\[= \int_0^t S_r(s)(L'_r - L_r)S'_r(t - s)f(A)ds. \]

The easiest way to check this identity is to integrate the derivative with respect to \(s \) of \(S_r(s)S'_r(t - s)f \) from 0 to \(t \), recalling that while the two semigroups do not commute, each semigroup commutes with its own generator. By the lemma, \(g(A) = S'_r(t - s)f(A) \) (note that \(g(A) \) depends on \(A \) only through the set of occupied sites – not on its partition by type) satisfies

\[g(A \cap B) + g(A \cup B) \leq g(A) + g(B) \]

for all \(A, B \). Thus it suffices to show that \((L'_r - L_r)g \geq 0 \) for all \(g \) that depend on \(A \) only through the set of occupied sites and satisfy (3). Of course, \(L_r g(A) \) does depend on the types. So, write
$A = \cup_i A^i$, where $\{A^i\}$ is the partition of A according to type. Then since the terms corresponding to births agree for the two generators,

$$
(L'_r - L_r)g(A) = \sum_{x \in A} [g(A \setminus \{x\}) - g(A)] - \sum_i [g(A \setminus A^i) - g(A)]
$$

$$
= \sum_i \left[\sum_{x \in A^i} [g(A \setminus \{x\}) - g(A)] - (g(A \setminus A^i) + g(A)) \right].
$$

We will check that this is nonnegative by checking that each summand (in the sum on i) is nonnegative. So, we need to check that if $B \subset A$, then

$$
\sum_{x \in B} g(A \setminus \{x\}) \geq g(A \setminus B) + (|B| - 1)g(A).
$$

To deduce this from (3), write $B = \{u_1, ..., u_k\}$. Then (3) implies that

$$
g(A \setminus \{u_j\}) \geq g(A \setminus \{u_1, ..., u_j\}) - g(A \setminus \{u_1, ..., u_{j-1}\}) + g(A)
$$

for each j. Now sum for $1 \leq j \leq k$ to complete the proof.

Remark 5. By taking $C = S$ in Theorem 4, we get that for any graph S and any $\lambda > 0$, if the basic contact process dies out, then the contact process with mutations dies out for every $r \in [0, 1]$.

Proof of Theorem 2. By Theorem 1.1, the contact process with mutations survives for $\lambda > \frac{1}{d-1}$. Therefore, it remains only to verify (2) when $\lambda < \frac{1}{2\sqrt{d}}$. Recall that x is the location of the pathogen at time zero. Following Section 1.4 of Liggett (1999), define a function $\ell : T_d \to \mathbb{Z}$ such that $\ell(x) = 0$ and, for each $y \in T_d$, we have $\ell(z) = \ell(y) - 1$ for exactly one neighbor z of y, while $\ell(z) = \ell(y) + 1$ for the other d neighbors of y. We can think of $\ell(y)$ as being the generation number of y, with x belonging to generation zero.

For $0 < \rho < 1$, define

$$
w_\rho(A) = \sum_{x \in A} \rho^{\ell(x)}.
$$

For the basic contact process, we have

$$
E[w_\rho(A'_t)] \leq \exp(\gamma t) w_\rho(A'_0).
$$

This can be seen from the differential equation in (4.4) on p. 80 of Liggett (1999). Alternatively, equation (4.6) on p. 81 of Liggett (1999) gives (5) with equality for the branching random walk, so the inequality follows from comparing the contact process with the branching random walk.

Since initially there is just one pathogen at x, we have $w_\rho(A'_0) = 1$. Also, since (5) holds for all ρ, we can optimize the bound by choosing $\rho = 1/\sqrt{d}$. If $\lambda < \frac{1}{2\sqrt{d}}$, then $\gamma = \lambda \rho + \lambda \rho^{-1} - 1 < 0$. Since $w_\rho(A'_t) \geq 1$ whenever $x \in A'_t$, it follows that

$$
P(x \in A'_t) \leq E[w_\rho(A'_t)] \leq \exp(\gamma t).
$$
Since $\gamma < 0$, we have
$$\int_0^\infty P(x \in A_t) \, dt < \infty.$$

Using Theorem 4 with $A = C = \{x\}$ to compare the basic contact process and the contact process with mutations, we get $P(x \in A_t) \leq P(x \in A'_t)$ for all t. Thus,
$$E\left[\int_0^\infty 1_{\{x \in A_t\}} \, dt\right] = \int_0^\infty P(x \in A_t) \, dt < \infty. \quad (6)$$

On the event that x is infected infinitely many times, almost surely the Lebesgue measure of the set of infected times is infinite. Therefore, (2) follows from (6).

Remark 6. Because $P(x \in A_t) \leq P(x \in A'_t)$, we have
$$\lim_{t \to \infty} P(x \in A_t) = 0 \quad (7)$$

whenever this result holds for the basic contact process. In particular, if $\lambda < \lambda_2$, where λ_2 is the upper critical value for the contact process, that is, the infimum over the set of λ for which the contact process survives strongly, then (7) holds for all $r \in [0, 1]$. Pemantle (1992) showed that $\lambda_2 \geq 0.309$ when $d = 5$ and $\lambda_2 \geq 0.354$ when $d = 4$. These bounds, combined with Theorem 1.1, show that when $d = 4$ or $d = 5$, there is a range of λ such that for all $r \in [0, 1]$, the contact process with mutations survives but (7) holds. For $d \geq 6$, Theorem 2 gives the stronger result of weak survival for a range of λ.

Remark 7. Unlike the case of the contact process, many monotonicity statements for A_t are either false or hard to prove. To illustrate, we note that the following statement is false, even when S has only two elements:

“For all λ, t and r, $P^A(\{x\} \neq \emptyset)$ is increasing in A for sets A of a single type.”

To see this, let $S = \{x, y\}$, $f(A) = \lim_{\lambda \to \infty} P^A(\{x\} \neq \emptyset)$ for a fixed $t > 0$, and for simplicity take $r = 1/2$. Then it is not hard to check that
$$f(\{x, y\}) = e^{-t}, \quad f(\{x\}) = (1 + t)e^{-t}, \quad f(\{x\}) = \left(1 + \frac{t}{2}\right)e^{-t}.$$

(Here $\{x, y\}$ is the configuration with two particles of the same type, $\{x\}, \{y\}$ is the configuration with two particles of different types, and $\{x\}$ is the configuration in which x is occupied and y is vacant.) Therefore,
$$f(\{x, y\}) < f(\{x\}) < f(\{x\}, \{y\}).$$

In particular, we do not know whether the survival probability $P^x(\{x\} \neq \emptyset \forall t)$ is monotone in r for fixed λ, even though Theorem 4 suggests that this is probably the case.
4 Proofs of Theorems 1.1 and 1.2

We start with the proof of Theorem 1.1. The proof requires some extra care because of the monotonicity issues mentioned in Remark 7.

To prove this result, we first establish that our particle system dominates a particle system that obeys the same rules except that only one birth can ever happen on any given site, and no births can occur on sites y for which $\ell(y) < 0$, where ℓ is the function defined in the proof of Theorem 2. Note that this second restriction amounts to running the process on the rooted d-ary tree with x as the root, so that x has d neighbors and the other vertices have $d + 1$ neighbors. Therefore, it will suffice to give a condition for this modified particle system to survive.

To couple the two particle systems, we construct them from the same collection of Poisson processes. For each nonzero integer k, let $(T_i^k)_{i=1}^\infty$ be the times of a Poisson process of rate 1 on $[0, \infty)$. For each pair of adjacent vertices v and w in T_d, let $(T_i^{v,w})_{i=1}^\infty$ be the times of a Poisson process of rate λ on $[0, \infty)$ and let $(\xi_i^{v,w})_{i=1}^\infty$ be a sequence of i.i.d. Bernoulli random variables that are one with probability r and zero with probability $1 - r$. All of these processes are assumed to be independent of one another.

To construct the two particle systems, we start with an individual of type one at x. At the times $T_i^{v,w}$, if site v is occupied and site w is vacant, the individual at site v gives birth at site w, except that for the second particle system, this birth is suppressed if there was a previous birth at site w or if $\ell(w) < 0$. If $\xi_i^{v,w} = 0$, then the new individual born at site w has the same type as the individual at site v. If $\xi_i^{v,w} = 1$, then this individual has a new type. If this new type is the kth type that appears simultaneously in both particle systems, then we label it type k. If it is the kth type to appear in one particle system but not the other, then we label the type $-k$.

Therefore, the types indexed by positive integers are coupled, while those indexed by negative integers are not. At the times T_i^k, all individuals of type k (if there are any) die.

Let A_t be the set of occupied sites in the first particle system at time t, and let B_t be the set of occupied sites in the second particle system. For nonzero integers k, let A_t^k be the set of sites at time t inhabited by a type k individual in the first process, and let B_t^k be the set of sites at time t inhabited by a type k individual in the second process. The following lemma is sufficient to imply that the first process survives for all t whenever the second process does.

Lemma 8. For all t, we have $B_t^k = \emptyset$ for all $k < 0$ and $B_t^k \subseteq A_t^k$ for all $k > 0$.

Proof. Fix any vertex $w \in T_d$. Let v_0, v_1, \ldots, v_s be the vertices on the unique path from x to w, with $v_0 = x$ and $v_s = w$. Suppose $w \in \bar{B}_t$ for some t. This means that for $j = 1, \ldots, s$, the virus must have spread from v_{j-1} to v_j by time t. Therefore, $\ell(v_j) \geq 0$ for $j = 0, 1, \ldots, s$.

If $T_1^1 < T_1^{v_0,v_1}$, then the individual at v_0 dies before the virus spreads to v_1. In this case, the site v_1 can never become infected in the second process because, by the rules of the second process, v_0 can never be reinfected. Alternatively, if $T_1^1 > T_1^{v_0,v_1}$, then the site v_1 becomes infected in both particle systems at time $\tau_1 = T_1^{v_0,v_1}$, and by definition the site is assigned the same (positive) type number in both particle systems. Therefore, if v_1 is ever infected in the second particle system, then it is infected in both particle systems by particles of the same positive type at the same time τ_1.

Proceeding by induction, suppose it is true that if v_j is ever infected in the second particle system, then it is infected in both particle systems by a particle of the same type $m_j > 0$ at the same time τ_j. Then, if $\min\{T_i^{v_j,v_j+1} : T_i^{v_j,v_j+1} > \tau_j\} < \min\{T_i^{v_j,v_j+1} : T_i^{v_j,v_j+1} > \tau_j\}$, the individual
at \(v_j \) dies before spreading the infection to \(v_{j+1} \), and the site \(v_{j+1} \) can never become infected in the second particle system because \(v_j \) can never be reinfected. Otherwise, the site \(v_{j+1} \) becomes infected in both particle systems at time \(\tau_j + 1 = \min \{ T_i^{v_j, v_{j+1}} : T_i^{v_j, v_{j+1}} > \tau_j \} \) and therefore gets the same type number in both particle systems. Thus, if \(v_{j+1} \) is ever infected in the second particle system, then it is infected in both particle systems at the same time by particles of the same positive type.

By induction, we conclude that for all \(w \in T_d \), if \(w \) is ever infected in the second particle system, then it is infected in both particle systems at the same time by particles having the same positive type. This implies \(B_i^k = \emptyset \) for all \(k < 0 \). This also implies that the particle on site \(w \) will die at the same time in both particle systems. Since the site can never become reinfected in the second particle system, the result \(B_i^k \subset A_i^k \) for all \(k \) follows.

\[\text{Lemma 9. Let } U \text{ be the tree such that 1 is the root of the tree and } \ell \text{ is a child of } k \text{ if the first type } \ell \text{ individual in the second particle system has a type } k \text{ individual as its parent. Then } U \text{ is a Galton-Watson tree.} \]

\[\text{Proof. To prove this lemma, we will modify the Poisson process construction of the second particle system. Rather than working with the Poisson processes } (T_i^{v,w})_{i=1}^{\infty} \text{ and } (\xi_i^{v,w})_{i=1}^{\infty}, \text{ we will define, for each positive integer } k, \text{ a Poisson process } (T_{1i}^{v,w})_{i=1}^{\infty} \text{ of rate } \lambda \text{ on } [0,\infty) \text{ and a sequence } (\xi_i^{k,v,w})_{i=1}^{\infty} \text{ of i.i.d. random variables that are one with probability } r \text{ and zero with probability } 1-r. \text{ All of the processes are again assumed to be independent. We construct the particle system as before, except that when there is a type } k \text{ individual at the site } v, \text{ the times at which this individual attempts to give birth on the site } w \text{ are the times } T_{1i}^{v,w}, \text{ and the random variables } \xi_i^{k,v,w} \text{ determine whether the new individual born has a new type or a different type. Note also that is sufficient to consider only the vertices } v \text{ such that all vertices } w \text{ on the path from } x \text{ to } v \text{ satisfy } \ell(w) \geq 0. \text{ These vertices form a tree } T_d^{*}, \text{ which we can think of as being rooted at } x, \text{ in which } x \text{ has } d \text{ neighbors and the other vertices have } d+1 \text{ neighbors.} \]

For all positive integers \(k \), let \(X_k \) denote the number of children of the vertex labeled \(k \) (if there is one) in the tree \(U \). Fix a vertex \(u \in T_d \), and let \(v_0, v_1, \ldots, v_k \) be the vertices on the unique path from \(x \) to \(u \). Then, a type 1 individual gives birth to a new type on \(u \) if and only if, for \(j = 1, \ldots, k-1 \), the type 1 individual on site \(v_{j-1} \) gives birth to another type 1 individual on site \(v_j \), and then the type 1 individual on site \(k-1 \) gives birth to an individual of a new type on site \(k \), all before the type 1 individuals die. These events depend only on \(T_{1i}^{v,w} \) and the processes \((T_{1i}^{1,v,w})_{i=1}^{\infty} \) and \((\xi_i^{1,v,w})_{i=1}^{\infty} \), so there is a function \(f \) such that \(X_k = f(T_{1i}^{v,w}, (T_{1i}^{1,v,w})_{i=1}^{\infty}, (\xi_i^{1,v,w})_{i=1}^{\infty}) \).

Now, suppose there is a type \(k \) individual born at some time. Let \(\tau_k \) be the time at which the first type \(k \) individual is born, and let \(v_k \) be the vertex at which the first type \(k \) individual is born. Note that \(\tau_k \) and \(v_k \) depend only on the evolution of the first \(k-1 \) types and therefore are functions of \(T_{1i}^{1,v,w} \) and \((\xi_i^{1,v,w})_{i=1}^{\infty} \) for \(j = 1, \ldots, k-1 \). Also, note that type \(k \) individuals and their children can only be born in the subtree rooted at \(v_k \) (consisting of the vertices \(w \) such that the path from \(w \) to \(x \) includes \(v_k \)), which is empty until time \(\tau_k \). This means that the type \(k \) individuals evolve in the subtree rooted at \(v_k \) just as the as the type 1 individuals evolve in \(T_d^{*} \). More precisely, let \(\phi \) be a graph automorphism mapping \(T_d^{*} \) to the subtree of \(T_d^{*} \) rooted at \(v_k \) such that \(\phi(x) = v_k \). Also, let \(J_k = \min \{ i : T_{1i}^{v,k,w} > \tau_k \} \) and \(J_{1i}^{v,w} = \min \{ i : T_{1i}^{1,v,w} > \tau_k \} \). Then

\[X_k = f(T_{1i}^{k,v,w} - \tau_k, (T_{1i}^{k,v,w} - \tau_k)_{i=1}^{\infty}, (\xi_i^{k,v,w})_{i=1}^{\infty}). \]
From this fact and the translation invariance of Poisson processes, it follows that the conditional distribution of X_k given X_1, \ldots, X_{k-1} is the same as the unconditional distribution of X_1. This is enough to establish that U is a Galton-Watson tree.

Proof of Theorem 1.1. When $r = 1$, the result is a known fact about the basic contact process (see, for example, Theorem 4.1 on p. 79 of Liggett (1999)). Assume now that $r < 1$. By Lemma it suffices to prove that the second process survives with positive probability whenever $\lambda > 1/(d-1)$. Note that the second process survives for all times if and only if the Galton-Watson tree U is infinite. Therefore, we need to show that this Galton-Watson process is supercritical when $\lambda > 1/(d-1)$.

The mean of the offspring distribution can be computed explicitly. We will take $k = 1$ and count the expected number of type 1 individuals born, not counting the one alive at time zero. Note that for all $j \geq 1$, there are d^j vertices $x \in T^*_d$ such that $\ell(x) = j$. Also, if a type one vertex is born on a given site x, the probability that a type 1 vertex is born on a child of this site (that is, a neighboring vertex y such that $\ell(y) = \ell(x) + 1$) is the probability that this birth, which happens at rate $\lambda(1-r)$, happens before either a mutant is born on this site, which happens at rate λr, or the type dies, which happens at rate 1. Therefore, this probability is $\lambda(1-r)/(\lambda + 1)$. It follows that the probability that a type 1 individual is born on a given vertex $x \in T^*_d$ with $\ell(x) = j$ is $[\lambda(1-r)/(\lambda + 1)]^j$. Therefore, the expected number of type 1 individuals born is

$$\sum_{j=1}^{\infty} d^j \left(\frac{\lambda(1-r)}{\lambda + 1} \right)^j.$$

Since the expected number of new types born to type 1 individuals is $r/(1-r)$ times the expected number of type one individuals born, the mean of the offspring distribution of the tree U is

$$\frac{r}{1-r} \sum_{j=1}^{\infty} \left(\frac{d\lambda(1-r)}{\lambda + 1} \right)^j,$$

which is infinite if $r < (d-1)/d$ and $\lambda \geq 1/(d-1-dr)$. Otherwise, we have

$$\frac{r}{1-r} \sum_{j=1}^{\infty} \left(\frac{d\lambda(1-r)}{\lambda + 1} \right)^j = \frac{r}{1-r} \left(\frac{d\lambda(1-r)}{\lambda + 1 - d\lambda(1-r)} \right) = \frac{d\lambda r}{1 - (d-1)\lambda + d\lambda r},$$

which (when the mean of the offspring distribution is finite) is greater than one if and only if $\lambda > 1/(d-1)$. This completes the proof of Theorem 1.1.

We now turn to Theorem 1.2.

Proof of Theorem 1.2. When $r = 1$, the result is a known fact about the contact process. By using a comparison between the contact process and the branching random walk, one can deduce this result from Theorem 4.8 in Section 1.4 of Liggett (1999). When $r = 0$, all pathogens have the same type and therefore die out after an exponential time. Assume now that $0 < r < 1$.

We first construct the original particle system from Poisson processes in a slightly different way. For each positive integer k, let $(T_{i}^{k})_{i=1}^{\infty}$ be the times of a rate one Poisson process on $[0,\infty)$. For each pair of adjacent vertices v and w in T_d and each positive integer k, let $(T_{v,w}^{k})_{i=1}^{\infty}$ be
a Poisson process of rate λ on $[0, \infty)$. For each positive integer k and each vertex v in T_d, let $(\xi^{k,v}_{i=1})$ be a sequence of i.i.d. random variables that are one with probability r and zero with probability $1-r$. All type k individuals die at the times T^k_i. If, at time T^k_i, there is a type k individual at site v and the site w is vacant, then the individual at site v gives birth onto the site w at this time. To determine the type of this new individual, we examine the random variable $\xi^{k,w}_{j}$ if this is the jth time that a type k individual has given birth onto w. If $\xi^{k,w}_{j} = 0$, then the new individual also has type k. Otherwise, it has a new type. No types are assigned negative numbers, and the ℓth type to appear will be called type ℓ. Let A^k_t be the set of sites having type k at time t, and let A_t be the set of occupied sites at time t.

To make our comparison argument work, we will define for each positive integer k an additional process consisting only of type k individuals. We will define the new process from the same collection of Poisson processes as the original process. If the first type k individual in the original process is born at site v_k at time τ_k, then the new process will be empty until time τ_k, at which time a type k individual appears at the site v_k. Thereafter, the new process evolves with the same rules as the original process, except that individuals of types other than k are killed instantly after being born. Let D^k_t be the set of occupied sites in this process at time t.

Let $\zeta_k = \min\{T^k_i : T^k_i > \tau_k\}$, which is the time at which the type k individuals die in both processes, so $A^k_t = D^k_t = \emptyset$ for $t \geq \zeta_k$. For all $w \in T_d$, let $g(w) = \min\{j : \xi^{k,w}_{j} = 0\}$. Note that for both processes, there is a type k individual born at site w if and only if there are at least $g(w)$ times before ζ_k when a type k individual gives birth on site w. Also, note that once a type k individual is born on site w, there can be no further births on site w until time ζ_k, so there can never be more than $g(w)$ times at which a type k individual gives birth on site w. Let $h_{A,w}(t)$ be the number of times in the original process that a type k individual gives birth on the site w by time t, and let $h_{D,w}(t)$ be the number of times in the additional process that an individual gives birth on the site w by time t.

We claim that $h_{A,w}(t) \leq h_{D,w}(t)$ for all $t \in [\tau_k, \zeta_k]$ and all $w \in T_d$, and that $A^k_t \subset D^k_t$ for all $t \in [\tau_k, \zeta_k]$. Since we clearly have $h_{A,w}(t) \leq h_{D,w}(t)$ and $A^k_t \subset D^k_t$ when $t = \tau_k$ and the type k individuals die at the same time in both processes, we need only to show that these results do not break down at any of the times T^k_i when type k births may take place. Suppose $t = T^k_i$, and that we have $h_{A,w}(t-) \leq h_{D,w}(t-)$ and $A^k_{t-} \subset D^k_{t-}$. If $v \notin A^k_{t-}$, then there can be no birth in the original process at time t, and therefore $h_{A,w}(t) \leq h_{D,w}(t)$ and $A^k_t \subset D^k_t$. Suppose instead $v \in A^k_{t-} \subset D^k_{t-}$. Then there are four possibilities.

- If $w \in A_{t-} \text{ and } w \notin D^k_{t-}$, then there is no birth at time t in either process, so $h_{A,w}(t) \leq h_{D,w}(t)$ and $A^k_t \subset D^k_t$.
- If $w \in A_{t-} \text{ and } w \notin D^k_{t-}$, then $h_{A,w}(t) = h_{A,w}(t-) \text{ and } h_{D,w}(t) = h_{D,w}(t-) + 1$. Again it is clear that $h_{A,w}(t) \leq h_{D,w}(t)$ and $A^k_t \subset D^k_t$.
- If $w \notin A_{t-} \text{ and } w \notin D^k_{t-}$, then there is a birth at time t in both processes. Therefore, $h_{A,w}(t) = h_{A,w}(t-) + 1 \text{ and } h_{D,w}(t) = h_{D,w}(t-) + 1$, so we have $h_{A,w}(t) \leq h_{D,w}(t)$. If the individual born in the original process has type k, then $h_{A,w}(t) = g(w)$, which implies $h_{D,w}(t) = g(w)$ and therefore a type k individual is born in both processes. Thus, we still have $A^k_t \subset D^k_t$.
- If $w \notin A_{t-} \text{ and } w \in D^k_{t-}$, then it is clear that $A^k_t \subset D^k_t$. Also, the individual at site w at time $t- \text{ in the additional process must have type } k$, as only type k individuals appear

10
in this process. This means that $h_{D,w}(t−) = g(w)$. Since $h_{A,w}(t) ≤ g(w)$ for all t, the inequality $h_{A,w}(t) ≤ h_{D,w}(t)$ holds also.

These observations imply the claim.

Now, let Y_k be the number of new types born to type k individuals at the site w in the original process, and let Z_k be the number of new types born to type k individuals at the site w in the additional process. Note that $Y_k = \min\{g(w) − 1, h_{A,w}(\zeta_k)\}$ and $Z_k = \min\{g(w) − 1, h_{D,w}(\zeta_k)\}$. Therefore, it follows from the claim that $Y_k ≤ Z_k$. Also, because T_d is a transitive graph, the conditional distribution of Z_k given $Z_1, \ldots, Z_{k−1}$ and given that a type k individual appears at some time is the same as the distribution of Z_1.

Using the original process, define the tree V such that 1 is the root of the tree and ℓ is a child of k if the first type ℓ individual has a type k individual as its parent. Note that the vertex k has Y_k descendants in the tree V. Since $Y_k ≤ Z_k$ for all k, it follows that the distribution of the total progeny of V is stochastically dominated by the distribution of the total progeny in a Galton-Watson tree whose offspring distribution is the same as the distribution of Z_1. Therefore, if $E[Z_1] ≤ 1$, then V is finite almost surely, which implies that the process dies out almost surely.

The computation for $E[Z_1]$ differs from the computation in the proof of Theorem 1.1 in two ways. First, there are $(d + 1) \cdot 2^{d−1}$ vertices at a distance j from x. Second, because new types die immediately, if there is a type one present on a given site, a type one will be born on a child at rate $\lambda(1−r)/(\lambda(1−r) + 1)$ because this birth only must happen before the type dies. Therefore, the expected number of new types born to type 1 individuals in this model is

$$\frac{(d + 1)r}{d(1 − r)} \sum_{j=1}^{\infty} \left(\frac{d\lambda(1−r)}{\lambda(1−r) + 1} \right)^j.$$

This is infinite when $\lambda ≥ 1/[(d − 1)(1−r)]$. Otherwise, we have

$$\frac{(d + 1)r}{d(1 − r)} \sum_{j=1}^{\infty} \left(\frac{d\lambda(1−r)}{\lambda(1−r) + 1} \right)^j = \frac{(d + 1)r}{d(1 − r)} \left(\frac{d\lambda(1−r)}{\lambda(1−r) + 1 − d\lambda(1−r)} \right) = \frac{(d + 1)r\lambda}{1 − (d − 1)(1−r)\lambda},$$

which is less than or equal to one if and only if $\lambda ≤ 1/(d − 1 + 2r)$.

\section{Proof of Theorem 1.3}

In this section, we adapt the proof of Theorem 2.2(ii) of Pemantle (1992) to prove that the process sometimes survives even for $\lambda < 1/(d−1)$. We begin with the following general result.

\textbf{Lemma 10.} Let X_t be a pure jump Markov process on a countable set S with transition rates $q(x,y), x \neq y$, set $q(x) = \sum_{y: y \neq x} q(x,y)$, and let f be a nonnegative function on S. Suppose that there exist positive ϵ and M so that

(i) $f(y) − f(x) ≥ −M$ whenever $q(x,y) > 0$

and

(ii) $\sum_{y: |f(y) − f(x)| \leq M} q(x,y)[f(y) − f(x)] ≥ \epsilon q(x)$ for all $x \in S$.
Then there is an $\alpha > 0$ so that $E^x \exp[-\alpha f(X_t)]$ is a decreasing function of t for all $x \in S$. In particular, if $f(x) > 0$, τ is the hitting time of $\{y : f(y) = 0\}$, and this set is absorbing, then $P^x(\tau < \infty) < 1$.

11
Proof. Choose $\gamma > 0$ so that $e^u \leq 1 + u + u^2$ for $|u| \leq \gamma$, and write for $0 < \alpha \leq \gamma/M$

$$\frac{d}{dt}E^x e^{-\alpha f(X_t)} \bigg|_{t=0} = \sum_y q(x,y) \left[e^{-\alpha f(y)} - e^{-\alpha f(x)} \right]$$

$$\leq e^{-\alpha f(x)} \sum_{y : |f(y) - f(x)| \leq M} q(x,y) \left[e^{\alpha [f(x) - f(y)]} - 1 \right]$$

$$\leq e^{-\alpha f(x)} \sum_{y : y \neq x, |f(y) - f(x)| \leq M} q(x,y) \left[\alpha [f(x) - f(y)] + \alpha^2 M^2 \right]$$

$$\leq e^{-\alpha f(x)} \left[-\epsilon \alpha q(x) + \alpha^2 M^2 q(x) \right],$$

which is ≤ 0 provided that $\alpha M^2 \leq \epsilon$. Setting $\alpha = \min(\gamma/M, \epsilon/M^2)$ and using the Markov property gives the monotonicity result. To check the final statement, use the fact that if $P^x (\tau < \infty) = 1$, then $f(X_t)$ is eventually 0. This would contradict the monotonicity statement. \square

Returning to the mutation process, for a configuration A, let $N(A)$ be the number of types in A, and $C(A)$ be the number of components of A. We will apply the lemma with $f(A) = \alpha N(A) + \beta C(A)$ for an appropriate choice of $\alpha > 0$ and $\beta > 0$. Note that $N(A)$ can only increase by 1 or decrease by 1 at each transition. On the other hand, $C(A)$ can decrease by at most d (if a particle is born at a site with all neighbors occupied), but can increase by arbitrarily large amounts (if a type that is connected to a large number of other types dies). So $f(A_t)$ has bounded downward jumps but unbounded upward jumps, unlike the situation Pemantle considered. Nevertheless, by choosing M sufficiently large, which we now do, we satisfy (i) of the lemma.

Turning to assumption (ii), we consider first the contributions coming from changes in $N(A)$. The number of types decreases by one at rate $N(A)$, since each type dies at rate 1. The number of types increases by one at rate

$$\lambda r \#((x,y) : x \in A, y \notin A) = \lambda r [(d-1)|A| + 2C(A)].$$

This is exactly the same as Pemantle’s computation, except that there is an extra factor of r coming from the fact that each new particle is of a new type with probability r. Combining these observations leads to

$$\sum_B q(A,B) [N(B) - N(A)] = -N(A) + \lambda r [(d-1)|A| + 2C(A)].$$

The rate at which $C(A)$ decreases as the result of particle births is at most $(d+1)\lambda C(A)$, as shown by Pemantle. The major difference between Pemantle’s situation and ours comes next. Consider one component C of A with $k \geq 2$ types, in which type i is connected to j_i other types. As Pemantle showed,

$$\sum_{i=1}^k (j_i - 1) = k - 2. \quad (8)$$
If the \(i\)th type dies, \(j_i - 1\) new components are formed. Thus we need to find a lower bound for

\[
\sum_{i:j_i \leq M+1} (j_i - 1).
\]

In doing so, we will use (8), together with the simple inequalities

\[j_i \leq (d - 1)|A^i| + 2, \quad (9) \]

\[|C| = \sum_{i=1}^{k} |A^i| \geq \sum_{i:j_i > M+1} |A^i| + \sum_{i:j_i \leq M+1} 1 \]

and (using (8) and the fact that \(j_i \geq 1\))

\[k - 2 \geq \sum_{i:j_i > M+1} (j_i - 1) \geq (M + 1) \sum_{i:j_i > M+1} 1. \quad (11) \]

Putting these together gives:

\[
\sum_{i:j_i \leq M+1} (j_i - 1) = (k - 2) - \sum_{i:j_i > M+1} (j_i - 1)
\]

\[
\geq (k - 2) - \sum_{i:j_i > M+1} [(d - 1)|A^i| + 1]
\]

\[
\geq (k - 2) - \sum_{i:j_i > M+1} 1 - (d - 1) \left[|C| - \sum_{i:j_i \leq M+1} 1 \right]
\]

\[
= (k - 2) - (d - 1)|C| + (d - 1)k - d \sum_{i:j_i > M+1} 1
\]

\[
\geq kd - 2 - (d - 1)|C| - d \frac{k - 2}{M + 1}
\]

\[
\geq kd \frac{M}{M + 1} - (d - 1)|C| - 2.
\]

We have used (9) in the first inequality, (10) in the second, and (11) in the third. Note that this inequality is trivially true in the case \(k = 1\) in which the entire component is of one type.

Summing the above inequality over all components gives

\[
\sum_{i=1}^{N(A)} (j_i - 1)\mathbb{1}_{\{j_i \leq M+1\}} \geq N(A)d \frac{M}{M + 1} - (d - 1)|A| - 2C(A).
\]

It follows that

\[
\sum_{B:|C(B) - C(A)| \leq M} q(A,B)[C(B) - C(A)] \geq N(A)d \frac{M}{M + 1} - (d - 1)|A| - 2C(A) - (d + 1)\lambda C(A).
\]

Now take \(f(A) = \alpha N(A) + \beta C(A)\). Note that when \(M\) is sufficiently large, we can only have \(|f(B) - f(A)| > M\) with \(q(A,B) > 0\) when the death of a single type leads to the creation
of many components. That is, \(|f(B) - f(A)| > M\) if and only if \(N(B) - N(A) = -1\) and \(C(B) - C(A) > (M + \alpha)/\beta\). It follows that for sufficiently large \(M\),

\[
\sum_{B: |f(B) - f(A)| \leq M} q(A, B)[f(B) - f(A)] \\
\geq \sum_{B} q(A, B)[N(B) - N(A)] + \sum_{B: |C(B) - C(A)| \leq M/\beta} q(A, B)[C(B) - C(A)] \\
\geq \alpha \left[-N(A) + \lambda r(d - 1)|A| + 2\lambda rC(A) \right] \\
+ \beta \left[N(A)d \frac{M}{M + \beta} - (d - 1)|A| - 2C(A) - (d + 1)\lambda C(A) \right] \\
= N(A) \left[-\alpha + \beta d \frac{M}{M + \beta} \right] + |A| \left[\alpha \lambda r(d - 1) - \beta(d - 1) \right] + C(A) \left[2\lambda r\alpha - 2\beta - \beta(d + 1)\lambda \right].
\]

Since the total jump rate \(q(A)\) is bounded above by a multiple of \(|A|\), and \(N(A) \leq |A|\), assumption (ii) in the lemma will be satisfied if, in the expression above, the coefficient of \(|A|\) is strictly positive, the sum of the coefficients of \(N(A)\) and \(|A|\) is strictly positive, and the coefficient of \(C(A)\) is nonnegative. This will be true for large \(M\) if \(\alpha \lambda r > \beta\), \(\beta > \alpha[1 - \lambda r(d - 1)]\), and \(2\lambda r\alpha \geq \beta[2 + \lambda(d + 1)]\).

There exist positive \(\alpha\) and \(\beta\) satisfying these inequalities if \(\lambda r(d - 1) \geq 1\), or if \(\lambda r(d - 1) < 1\) and

\[
\frac{2 + \lambda(d + 1)}{2\lambda r} < \frac{1}{1 - \lambda r(d - 1)},
\]

i.e., if \(\lambda\) is greater than the positive root of

\[
\lambda^2 r(d^2 - 1) + \lambda(2rd - d - 1) - 2 = 0.
\]

Applying the lemma, we now have the following result.

Theorem 11. The contact process with mutations survives if

\[
\lambda > \frac{d + 1 - 2rd + \sqrt{(d + 1)^2 + 4r(d + 1)(d - 2) + 4d^2r^2}}{2r(d^2 - 1)}. \tag{12}
\]

Combining this result with Theorem 1.2, we see that for

\[
\frac{1 - d + \sqrt{(d - 1)(7 + 9d)}}{2(d^2 - 1)} < \lambda < \frac{1}{d - 1},
\]

the process dies out for small \(r\) and survives for \(r\) close to 1. Note also that while Theorem 11 gives a better lower bound than Theorem 1.1 when \(r\) is close to one, the lower bound in Theorem 1.1 is better for small \(r\), as the expression on the right-hand side of (12) approaches infinity as \(r \to 0\).
References

N. Berger, C. Borgs, J. Chayes, and A. Saberi (2005). On the spread of viruses on the internet. In *Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms*, 301-310.

M. Draief, A. Ganesh and L. Massoulié (2006). Thresholds for virus spread on networks. Preprint, arXiv:math.PR/0606514.

A. Ganesh, L. Massoulié, and D. Towsley (2005). The effect of network topology on the spread of epidemics. In *Proceedings of IEEE INFOCOM 2005*, 1455–1466.

T. E. Harris (1974). Contact interactions on a lattice. *Ann. Probab.*, 2, 969–988.

T. M. Liggett (1985). *Interacting Particle Systems*. Springer, New York.

T. M. Liggett (1999). *Stochastic Interacting Systems: Contact, Voter and Exclusion Processes*, Springer, Berlin.

R. Pastor-Satorras and A. Vespignani (2001). Epidemic spreading in scale-free networks. *Phys. Rev. E*, 86, 3200-3203.

R. Pemantle (1992) The contact process on trees. *Ann. Probab*, 20, 2089–2116.

R. B. Schinazi and J. Schweinsberg (2006). Spatial and non-spatial stochastic models for immune response. To appear in *Markov Process. Related Fields*.