Evidence for a vector charmoniumlike state in $e^+e^- \to D_s^+D_{s2}^{(*)}(2573)^- + c.c.$

S. Jia, C. P. Shen, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, H. Atmacan, V. Aulchenko, T. Aushev, R. Ayad, I. Badhrees, P. Bohera, K. Belous, J. Bennett, D. Besson, V. Bhardwaj, T. Bilka, J. Biswal, G. Bonvicini, A. Bozek, M. Bračko, T. E. Browder, M. Campajola, D. Červenkov, T. Cheon, K. Chilikin, K. Cho, S.-K. Choi, S. Choudhury, S. Cunliffe, K. Inami, G. Inguglia, R. Itoh, M. Iwasaki, Y. Iwasaki, H. B. Jeon, Y. Jin, K. K. Joo, Y. Kwon, K. Lalwani, J. S. Lange, L. K. Li, Y. B. Li, J. Libby, K. Lieret, D. Liventsiev, J. MacNaughton, C. MacQueen, M. Matvienko, M. Merola, R. Mizuk, T. J. Moon, T. Mori, M. Mrvar, M. Nakao, N. K. Nisar, S. Nishida, S. Ogawa, H. Ono, P. Oskin, P. Pakhlov, P. Pakhlova, S. Patra, S. Patra, S. Paul, T. K. Pedlar, R. Pestotnik, L. E. Piilonen, T. Podobnik, V. Popov, E. Prencipe, M. T. Prim, A. Rostomyan, N. Rout, G. Russo, Y. Sakai, S. Sandilya, L. Santelj, T. Schindler, C. Schwanda, Y. Seino, M. E. Sevior, M. Shapkin, V. Shebalin, J.-G. Shiu, E. Solovieva, S. Stanič, M. Starič, Z. S. Stottler, D. Sumihama, W. Sutcliffe, M. Takizawa, R. Van Tonder, A. Vinokurova, C. H. Wang, M. Watanabe, E. Won, X. Xu, S. B. Yang, H. Ye, C. Z. Yuan, Z. P. Zhang, V. Zhilich, V. Zhukova, and V. Zhulanov

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3University of Bonn, 53115 Bonn
4Brookhaven National Laboratory, Upton, New York 11973
5Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
6Faculty of Mathematics and Physics, Charles University, 121 16 Prague
7Chonnam National University, Gwangju 61186
8University of Cincinnati, Cincinnati, Ohio 45221
9Deutsches Elektronen–Synchrotron, 22607 Hamburg
10Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
11Justus-Liebig-Universität Gießen, 35392 Gießen
12Gifa University, Gifa 501-1193
13SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
14Gyeongsang National University, Jinju 52828
15Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
16University of Hawaii, Honolulu, Hawaii 96822
17High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
18J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
19Higher School of Economics (HSE), Moscow 101000
20Forschungszentrum Jülich, 52425 Jülich
21IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
22Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
23Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
24Indian Institute of Technology Hyderabad, Hyderabad 502285
25Indian Institute of Technology Madras, Chennai 600036
26Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
We report the measurement of $e^+e^- \rightarrow D_s^+D_s^{*-}(2573)^- + c.c.$ via initial-state radiation using a data sample of an integrated luminosity of 921.9 fb$^{-1}$ collected with the Belle detector at the $\Upsilon(4S)$ and nearby. We find evidence for an enhancement with a 3.4σ significance in the invariant mass of $D_s^+D_s^{*-}(2573)^- + c.c.$ The measured mass and width are $(4619.8^{+8.9}_{-8.4}(\text{stat}) \pm 2.3(\text{syst}))$ MeV/c2 and $(47.0^{+3.4}_{-3.8}(\text{stat}) \pm 4.6(\text{syst}))$ MeV, respectively. The mass, width, and quantum numbers of this enhancement are consistent with the charmoniumlike state at 4626 MeV/c2 recently reported by Belle in $e^+e^- \rightarrow D_s^+D_s^{*-}(2573)^- + c.c.$ The product of the $e^+e^- \rightarrow D_s^+D_s^{*-}(2573)^- + c.c.$ cross section and the branching fraction of $D_s^+D_s^{*-}(2573)^- \rightarrow D_s^0\bar{K}^-$. measured from $D_s^+D_s^{*-}(2573)^- \rightarrow D_s^0\bar{K}^-$ to 5.6 GeV.

DOI: 10.1103/PhysRevD.101.091101

The past decade witnessed a remarkable proliferation of exotic charmoniumlike and bottomoniumlike resonances having properties which cannot be readily explained in the framework of the expected heavy quarkonium states [1–6]. Among the charmoniumlike states, there are many vector states with quantum numbers $J^{PC} = 1^{--}$ that are usually called Y states, including the $Y(4260)$ [7–11], $Y(4360)$ [12–16], and $Y(4660)$ [13–17]. The Y states show strong coupling to hidden-charm final states, in contrast to other vector charmonium states in the same mass region, e.g., $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$, which couple dominantly to open-charm meson pairs [18]. These Y states are good candidates for new types of exotic particles and have stimulated many theoretical interpretations, including tetraquarks, molecules, hybrids, and hadrocharmonia [1–6].

In $e^+e^- \rightarrow Y \rightarrow \pi^+\pi^-/\psi$ [9,10] and $\pi^+\pi^-/2S$ [13,14] ($Y = Y(4260)$, $Y(4660)$) processes, events in the $\pi^+\pi^-$ mass spectra tend to accumulate at the nominal $f_0(980)$ mass. Thus, it is natural to search for Y states with a $(c\bar{s})(c\bar{s})$ component. Very recently, Belle reported the first excited charmoniumlike state, called $Y(4626)$, decaying to a charmed-antistrange and anticharmed-strange meson pair $D_s^+D_{s1}(2536)^- + c.c.$ with a significance of 5.9σ [19]. The measured mass and width of the resonance are consistent with those of the $Y(4660)$ [18]. After the initial observation of the $Y(4626)$, several theoretical interpretations for this state were offered, including a molecular, diquark-antidiquark, tetraquark, or higher charmonium [20–26].

Here, we search for Y states in another charmed-antistrange and anticharmed-strange meson pair $D_s^+D_{s2}^{*-}(2573)^- + c.c.$ in e^+e^- annihilations via initial-state radiation (ISR) [27]. The data set used in this analysis corresponds to an integrated luminosity of 921.9 fb$^{-1}$ at center-of-mass (C.M.) energies of 10.52, 10.58, and 10.867 GeV collected with the Belle detector [28] at the KEKB asymmetric-energy e^+e^- collider [29,30].

We use PHOKHARA [31] to generate signal Monte Carlo (MC) events. In the generator, considering that D_s^+ and $D_s^{*-}(2573)^-$ are produced from a vector state, the polar angle θ of the D_s^+ in the $D_s^+D_s^{*-}(2573)^-$ rest frame is distributed according to $(1 + \cos^2 \theta)$ [32] for $e^+e^- \rightarrow D_s^+D_s^{*-}(2573)^-$. while the polar angle θ' of the K^- in the rest frame of the $D_s^{*-}(2573)^-$ is distributed according to $\cos^2 \theta'(1 - \cos^2 \theta')$ [33] for $D_s^{*-}(2573)^- \rightarrow \bar{D}^0K^-$. Generic MC samples of $Y(4S) \rightarrow B^+B^-/B^0\bar{B}^0$, $Y(5S) \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$, and $e^+e^- \rightarrow q\bar{q}(q = u, d, s, c)$ at $\sqrt{s} = 10.52, 10.58$, and 10.867 GeV with four times the luminosity of data are used to study possible backgrounds. The detector response is simulated with GEANT3 [34].

Selections of candidates in $e^+e^- \rightarrow \gamma_{ISR}D_s^+D_s^{*-}(2573)^- \rightarrow \bar{D}^0K^-$ use well-reconstructed tracks, particle identification, and the mass-constrained fitting technique in a way similar to the methods in Ref. [19,35].

To improve the reconstruction efficiency, we fully reconstruct γ_{ISR}, D_s^+, and K^-, but do not reconstruct the \bar{D}^0. The most energetic ISR photon is required to have energy greater than 3 GeV in the e^+e^- C.M. frame. The D_s^+ candidates are reconstructed using the following decay modes: $\phi\pi^+$, $K^0_sK^+$, $K^+(892)\rightarrow K^-\pi^+/K^0_s\pi^0$/$K^0_s\pi^0$/$\ell\nu$, $\rho\pi^0$, $K^+(892)\rightarrow K^0_s\pi^0$, $K^+(892)\rightarrow K^0_s\pi^0$, $K^0_s\pi^0$, $\eta\pi^+$, and $\eta'\pi^+$. Here, we select the intermediate resonances instead of the direct final states in the D_s^+ reconstructions in order to improve the signal-to-background ratios. The invariant masses of the $\phi\rightarrow K^+K^-$, $K^0_s\pi^0\rightarrow \gamma\gamma$, $K^+(892)\rightarrow K^-\pi^+$, $K^+(892)\rightarrow K^0_s\pi^0$, $\rho\rightarrow (\pi^+\pi^0)$, $K^+(892)\rightarrow (K^+\pi^0)$, $\eta\rightarrow \gamma\gamma$, $\eta'\rightarrow (\pi^+\pi^-\eta)$ candidates are required to be within 10, 10, 12, 50, 100, 50, 20, 10, and 10 MeV/c2 of the corresponding nominal masses [18] (>90% signal events are retained), respectively.
Next, we constrain the recoil mass of the $\gamma_{\text{ISR}}D^{+}\bar{K}^{-}$ to be the nominal mass of the D^{0} meson [18] to improve the resolution of the ISR photon energy for events within the \bar{D}^{0} signal region (see below). As a result, the exclusive $e^{+}e^{-}\rightarrow D^{+}\bar{D}^{*+}_{2}(2573)^{-}$ cross section can be measured according to the invariant mass spectrum of the $D^{+}\bar{D}^{*+}_{2}(2573)^{-}$, which is equivalent to the mass of mesons recoiling against γ_{ISR}.

Before calculation of the D^{+} candidate mass, a fit to a common vertex is performed for charged tracks in the D^{+} candidate. After the application of the above requirements, D^{+} signals are clearly observed. We define the D^{+} signal region as $|M(D^{+}) - m_{D^{+}}| < 12$ MeV/c2 (\sim2σ). Here and throughout the text, m_{j} represents the nominal mass of particle j [18]. To improve the momentum resolution of the D^{+} meson candidate, a mass-constrained fit to the nominal D^{+} mass [18] is performed. The D^{+} mass sideband regions are defined as $1912.34 < M(D^{+}) < 1936.34$ MeV/c2 and $2000.34 < M(D^{+}) < 2024.34$ MeV/c2, each of which is twice as wide as the signal region. The D^{+} candidates from the sidebands are also constrained to the central mass values in the defined D^{+} sideband regions. The D^{+} candidate with the smallest χ^{2} from the D^{+} mass fit is kept. Besides the selected ISR photon and D^{+}, we require at least one additional K^{-} candidate in the event and retain all the combinations (the fraction of events with multiple candidates is 4%).

Figure 1 shows the recoil mass spectrum against the $\gamma_{\text{ISR}}D^{+}\bar{K}^{-}$ system after requiring the events be within the $D^{*+}_{2}(2573)^{-}$ signal region (see below) in data, where the yellow histogram shows the normalized $D^{*+}_{2}(2573)^{-}$ mass sidebands (see below). The \bar{D}^{0} signal is wide and asymmetric due to the asymmetric resolution function of the ISR photon energy and higher-order ISR corrections. We perform a simultaneous likelihood fit to the $M_{\text{rec}}(\gamma_{\text{ISR}}D^{+}\bar{K}^{-})$ distributions of all selected $D^{*+}_{2}(2573)^{-}$ signal candidates and the normalized $D^{*+}_{2}(2573)^{-}$ mass sidebands. The \bar{D}^{0} signal component is modeled using a Gaussian function convolved with a Novosibirsk function [36] derived from the signal MC samples, while normalized $D^{*+}_{2}(2573)^{-}$ mass sidebands are described by a second-order polynomial. The solid curve is the total fit; the \bar{D}^{0} signal yield is 224 ± 42. An asymmetric requirement of $-200 < M_{\text{rec}}(\gamma_{\text{ISR}}D^{+}\bar{K}^{-}) - m_{D^{0}} < 400$ MeV/c2 is defined for the \bar{D}^{0} signal region. Hereinafter the mass constraint to the recoil mass of the $\gamma_{\text{ISR}}D^{+}\bar{K}^{-}$ system is applied for events in the \bar{D}^{0} signal region to improve the resolution of the mass.

The recoil mass spectrum against the $\gamma_{\text{ISR}}D^{+}$ system after requiring the events within \bar{D}^{0} signal region is shown in Fig. 2. A $D^{*+}_{2}(2573)^{-}$ signal is evident. The signal shape is described by a Breit-Wigner (BW) function convolved with a Gaussian function (all the parameters are fixed to those from a fit to the MC simulated distribution), and a second-order polynomial is used for the backgrounds. The fit yields 182 ± 47 $D^{*+}_{2}(2573)^{-}$ signal events as shown in Fig. 2. We define the $D^{*+}_{2}(2573)^{-}$ signal region as $|M_{\text{rec}}(\gamma_{\text{ISR}}D^{+}) - m_{D^{*+}_{2}(2573)^{-}}| < 30$ MeV/c2 (\sim2σ), and sideband regions as shown by blue dashed lines, each of which is twice as wide as the signal region. To estimate the signal significance of the $D^{*+}_{2}(2573)^{-}$, we compute $\sqrt{-2\ln(L_{0}/L_{\text{max}})}$ [37], where L_{0} and L_{max} are the maximized likelihoods without and with the $D^{*+}_{2}(2573)^{-}$ signal, respectively. The statistical significance of the $D^{*+}_{2}(2573)^{-}$ signal is 4.1σ.

The $D^{+}D^{*+}_{2}(2573)^{-}$ invariant mass distribution is shown in Fig. 3 (top). There is an evident peak around 4620 MeV/c2, while no structure is seen in the normalized $D^{*+}_{2}(2573)^{-}$ mass sidebands shown as the yellow histogram. In addition, no peaking background is found in the $D^{+}D^{*+}_{2}(2573)^{-}$ mass distribution from generic MC samples. Therefore, we interpret the peak in the data as evidence for...
a charmoniumlike state decaying into $D_{s}^{+}D_{s2}^{(2573)^{-}}$, called $Y(4620)$ hereafter.

One possible background, which is not included in the $D_{s2}^{(2573)^{-}}$ mass sidebands, is from $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$, where the photon from the D_{s}^{+} remains undetected. To estimate such a background contribution, we measure this process with the data following the same procedure as used for the signal process. We require an extra photon with $E_{\gamma} > 50$ MeV in the barrel or $E_{\gamma} > 100$ MeV in the endcaps [38] to combine with the D_{s}^{+} to form the $D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ candidate. The mass and vertex fits are applied to the D_{s}^{+} candidates to improve their momentum resolutions. In events with multiple candidates, the best candidate is chosen using the lowest χ^2 value from the mass-constrained fit. The same \bar{D}^{0} signal region requirement on $M_{\text{rec}}(\gamma_{\text{ISR}}D_{s}^{+}K^{-})$ and the \bar{D}^{0} mass constraint are applied as in the previous analysis of $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s1}^{(2536)^{-}}$ [35]. In the recoil mass spectrum of the $\gamma_{\text{ISR}}D_{s}^{+}$, 1.5 ± 22.5 $D_{s2}^{(2573)^{-}}$ signal events are observed. After requiring the recoil mass spectrum of the $\gamma_{\text{ISR}}D_{s}^{+}$ to be within the $D_{s2}^{(2573)^{-}}$ signal region as before in $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s1}^{(2536)^{-}}$ [35], the $D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ invariant mass distribution is shown in Fig. 3 (bottom). No evident signal is seen. The number of residual events is almost zero after subtracting the normalized $D_{s2}^{(2573)^{-}}$ sidebands. The contribution from $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ to $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ is normalized to correspond to $N_{\text{obs}}^{\text{obs}}(2573^{-})/e_{\text{fit}}^{2573^{-}}D_{s2}^{(2573)^{-}}/e_{\text{fit}}^{2573^{-}}D_{s2}^{(2573)^{-}}$ events. Here, $e_{\text{fit}}^{2573^{-}}D_{s2}^{(2573)^{-}}$ are the reconstruction efficiencies of $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ to be reconstructed as $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ and $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ to be reconstructed as $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$, respectively, where the ratio of efficiencies is (1.01 ± 0.02), and $N_{\text{obs}}^{\text{obs}}(2573^{-})$ is the yield of $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ signal events in data after subtracting the normalized $D_{s2}^{(2573)^{-}}$ sidebands and the $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ background contribution. The number of normalized $e^{+}e^{-} \to D_{s}^{+}\bar{D}_{s2}^{(2573)^{-}}$ background events in the $Y(4620)$ signal region is 1.7 ± 1.5, which corresponds to an upper limit of 4.3 at 90% confidence level by using the frequentist approach [39] implemented in the POLE (Poissonian limit estimator) program [40].

We perform an unbinned maximum likelihood fit simultaneously to the $M(D_{s}^{+}D_{s2}^{(2573)^{-}})$ distributions of all selected $D_{s2}^{(2573)^{-}}$ signal candidates and the normalized $D_{s2}^{(2573)^{-}}$ mass sidebands. The following components are included in the fit to the $M(D_{s}^{+}D_{s2}^{(2573)^{-}})$ distribution: a resonance signal, a nonresonant contribution, and the $D_{s2}^{(2573)^{-}}$ mass sidebands. A D-wave BW function convolved with a Gaussian function (its width fixed at 5.0 MeV/c^{2} according to the MC simulation), multiplied by an efficiency function that has a linear dependence on $M(D_{s}^{+}D_{s2}^{(2573)^{-}})$ and the differential ISR effective luminosity [41] is taken as the signal shape. Here the BW formula used has the form [42]

$$\text{BW}(\sqrt{s}) = \sqrt{\frac{12\pi\Gamma_{\gamma e}B_{\gamma}}{s-M^{2}+iMT}} \frac{\Phi_{2}(\sqrt{s})}{\Phi_{2}(M)},$$

(1)

where M is the mass of the resonance, Γ and $\Gamma_{\gamma e}$ are the total width and partial width to $e^{+}e^{-}$, respectively, $B_{\gamma} = B(Y(4620) \to D_{s}^{+}D_{s2}^{(2573)^{-}}) \times B(D_{s2}^{(2573)^{-}} \to \bar{D}^{0}K^{-})$ is the product branching fraction of the $Y(4620)$ into the final state, and Φ_{2} is the D-wave two-body decay phase-space form that increases smoothly from the mass threshold with \sqrt{s}. The D-wave two-body phase space form $[\Phi_{2}(\sqrt{s})]$ is also taken into account for the nonresonant contribution. The $D_{s2}^{(2573)^{-}}$ mass sidebands are parametrized with a threshold function. The threshold function is

$$x^{2} = e^{[\beta_{1}x+\beta_{2}x^{2}]}$$

(2)

where the parameters α, β_{1}, and β_{2} are free; $x = M(D_{s}^{+}D_{s2}^{(2573)^{-}}) - x_{\text{thr}}$, and the threshold parameter x_{thr} is fixed from generic MC simulations.

The fit results are shown in Fig. 3 (top), where the solid blue curve is the best fit, the blue dotted curve is the sum of the backgrounds, and the red dot-dashed curve is the result of the fit to the normalized $D_{s2}^{(2573)^{-}}$ mass sidebands. The yield of the $Y(4620)$ signal is 66_{-20}^{+26}. The statistical
significance of the $Y(4620)$ signal is 3.7σ, calculated from the difference of the logarithmic likelihoods $[-2\ln(\mathcal{L}_0/\mathcal{L}_{\text{max}}) = 19.6]$, where \mathcal{L}_0 and \mathcal{L}_{max} are the maximized likelihoods without and with a signal component, respectively, taking into account the difference in the number of degrees of freedom ($\Delta\text{ndf} = 3$). By changing mass resolution by 10% and efficiency function by 10.4% (see below), the signal significance is not changed. By changing the nonresonant background shape from a D-wave two-body phase space form to a threshold function, the upper bound of the fitted range from 5.6 GeV/c^2 to 5.0 GeV/c^2, and the constant width to a mass-dependent width, the signal significance decreases to 3.6σ, 3.4σ, and 3.5σ. Finally, the significance including systematic uncertainties is 3.4σ.

The above sources of systematic uncertainties will be also considered in the determination of the uncertainties of the $Y(4260)$ mass and width. The fitted mass and width for the $Y(4620)$ are $(4619.8^{+8.9}_{-8.0}$ (stat.)± 2.3 (syst.)$)$ MeV/c^2 and $(47.0^{+31.3}_{-14.3}$ (stat.)± 4.6 (syst.)) MeV, respectively. The value of $\Gamma_{ee} \times B(Y(4620) \to D_{s}^+ D_{s}^*(2573)^-)$ is computed as $13.3^{+2.9}_{-2.8}$ (stat.)± 1.3 (syst.)± 1.3 (Monte Carlo) eV. The systematic uncertainties are discussed below.

The $e^+ e^- \to D_{s}^+ D_{s}^*(2573)^-$ cross section is extracted from the background-subtracted $D_{s}^+ D_{s}^*(2573)^-$ mass distribution. The product of the $e^+ e^- \to D_{s}^+ D_{s}^*(2573)^-$ dressed cross section σ [43] and the decay branching fraction $B(D_{s}^*(2573)^- \to \bar{D}^0 K^-)$ for each $D_{s}^+ D_{s}^*(2573)^-$ mass bin from threshold to 5.6 GeV/c^2 in steps of 20 MeV/c^2 is computed as

$$N^{\text{obs}} \frac{\sum(e_i \times B_i) \times \Delta \mathcal{L}}{\Sigma_i(e_i \times B_i \times \Delta \mathcal{L}},} \quad (3)$$

where N^{obs} is the number of observed $e^+ e^- \to D_{s}^+ D_{s}^*(2573)^-$ signal events after subtracting the normalized $D_{s}^*(2573)^-$ mass sidebands in data, $\Sigma_i(e_i \times B_i)$ is the sum of the product of reconstruction efficiency and branching fraction for each D_{s}^+ decay mode (i), and $\Delta \mathcal{L}$ is effective luminosity in each $D_{s}^+ D_{s}^*(2573)^-$ mass bin, respectively. The values used to calculate $\sigma(e^+ e^- \to D_{s}^+ D_{s}^*(2573)^-) \times B(D_{s}^*(2573)^- \to \bar{D}^0 K^-)$ are summarized in the Supplemental Material [45]. The resulting $\sigma(e^+ e^- \to D_{s}^+ D_{s}^*(2573)^-) \times B(D_{s}^*(2573)^- \to \bar{D}^0 K^-)$ distribution is shown in Fig. 4 with statistical uncertainties only.

The sources of systematic uncertainties for the cross section measurement include detection-efficiency-related uncertainties, branching fractions of the intermediate states, the MC event generator, background subtraction, and MC statistics as well as the integrated luminosity. The detection-efficiency-related uncertainties include those for tracking efficiency (0.35%/track), particle identification efficiency (1.1%/kaon and 0.9%/pion), K^0_S selection efficiency (1.4%), π^0 reconstruction efficiency (2.25%/π^0), and photon reconstruction efficiency (2.0%/photon). The above individual uncertainties from different D_{s}^+ decay channels are added linearly, and weighted by the product of the detection efficiency and D_{s}^+ branching fraction. These uncertainties are summed in quadrature to obtain the final uncertainty related to the reconstruction efficiency. For $e^+ e^- \to D_{s}^+ D_{s}^*(2573)^-$, the uncertainty from the θ dependence assumption is estimated to be 2.0% by comparing the difference in detection efficiency between a phase space distribution and the angular distribution of $(1 + \cos^2 \theta)$. Uncertainties for the D_{s}^+ decay branching fractions are taken from Ref. [18]; the final uncertainties on the D_{s}^+ branching fractions are summed in quadrature over all the D_{s}^+ decay modes weighted by the product of the efficiency and the D_{s}^+ branching fraction. The PHOKHARA generator calculates the ISR-photon radiator function with 0.1% accuracy [31]. The uncertainty attributed to the generator can be neglected.

The systematic uncertainty associated with the combinatorial background subtraction is due to an uncertainty in the scaling factor (1.7%) for the $D_{s}^*(2573)^-$ sideband estimation. We evaluate its effect on the signal yield for each bin and conservatively assign a maximum value, 3%. The statistical uncertainty in the determination of efficiency from signal MC sample is about 2.0%. The total luminosity is determined to 1.4% uncertainty using wide-angle Bhabha scattering events. All the uncertainties are summarized in Table I. Assuming all the sources are independent, we sum them in quadrature to obtain the total systematic uncertainty.

The following systematic uncertainties on the measured mass and width of the $Y(4620)$, and the $\Gamma_{ee} \times B(Y(4620) \to D_{s}^+ D_{s}^*(2573)^-)$ are considered. The MC simulation is known to reproduce the resolution of mass peaks within 10% over a large number of different systems. The resultant systematic uncertainties attributed to the mass resolution in the width and $\Gamma_{ee} \times B(Y(4620) \to D_{s}^+ D_{s}^*(2573)^-)$ are 0.2 MeV and 0.1 eV, respectively. By changing
the nonresonant background shape from a D-wave two-body phase space form to a threshold function, the differences of 0.2 MeV/c² and 1.9 MeV in the measured mass and width, and 0.7 eV for the \(\Gamma_{ee} \times B(Y(4620) \to D_s^+ D_s^-) \) in the first time. We report evidence for a vector charmonium-like state from the 3B cross section and the decay branching fraction \(B(D_s^+ D_s^-) \to \bar{D}^0 K^- \), respectively, are taken as systematic uncertainties. By changing the upper bound of the fitted range from 5.6 GeV/c² to 5.0 GeV/c², the related changes on the mass, width, and \(\Gamma_{ee} \times B(Y(4620) \to D_s^+ D_s^-) \times B(D_s^+ D_s^-) \to \bar{D}^0 K^- \) are 2.0 MeV/c², 3.3 MeV, and 2.3 eV. The signal-parametrization systematic uncertainty is estimated by replacing the constant total width with a mass-dependent width of \(\Gamma = \Gamma_0 \frac{\Phi_1(M(D_s^+ D_s^-))}{\Phi_1(M(Y(4620)))} \), where \(\Gamma_0 \) is the width of the resonant, \(\Phi_1(M(D_s^+ D_s^-)) \) is the phase-space form for a D-wave two-body system, and \(\Phi_1(M(Y(4620))) \) is the value at the \(Y(4620) \) mass. The differences in the measured \(Y(4620) \) mass and width, and \(\Gamma_{ee} \times B(Y(4620) \to D_s^+ D_s^-) \times B(D_s^+ D_s^-) \to \bar{D}^0 K^- \) are 1.0 MeV/c², 2.3 MeV, and 2.1 eV, respectively, which are taken as the systematic uncertainties. The uncertainty in the efficiency correction from detection efficiency, branching fractions, MC statistics, and luminosity is 10.4%. Changing the efficiency function by 10.4% gives a 0.1 MeV/c² change on the mass, 0.2 MeV on the width, and 1.5 eV on the \(\Gamma_{ee} \times B(Y(4620) \to D_s^+ D_s^-) \times B(D_s^+ D_s^-) \to \bar{D}^0 K^- \) are 2.3 MeV/c², 4.6 MeV, and 3.6 eV, respectively.

In summary, the product of the \(e^+ e^- \to D_s^+ D_s^- \) cross section and the decay branching fraction \(B(D_s^+ D_s^-) \to \bar{D}^0 K^- \) is measured over the C.M. energy range from the \(D_s^+ D_s^- \) mass threshold to 5.6 GeV for the first time. We report evidence for a vector charmonium-like state decaying to \(D_s^+ D_s^- \) with a significance of 3.4\(\sigma \). The measured mass and width are \((4619.5^{+8.0}_{-8.0}) \text{MeV/c}^2 \) and \((47.0^{+31.3}_{-14.8}) \text{MeV/c}^2 \) respectively, which are consistent with the mass of \((4625.9^{+6.2}_{-6.0}) \text{MeV/c}^2 \) and width of \((49.8^{+13.6}_{-11.4}) \text{MeV/c}^2 \) for the \(Y(4626) \) observed in \(e^+ e^- \to D_s^+ D_s^- \) [19], and also close to the corresponding parameters of the \(Y(4660) \) [18]. We measure \(\Gamma_{ee} \times B(Y(4620) \to D_s^+ D_s^-) \times B(D_s^+ D_s^-) \to \bar{D}^0 K^- \) to be \((14.7^{+5.9}_{-4.5}) \text{MeV/c}^2 \) eV.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoids; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETWork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau- Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, No. FT13010303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 1176114009; No. 11705209; No. 11975076; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2016R1D1A1B02010135, No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294, No. 2019K1A3A7A0903840, No. 2019R1-1A3A-01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/ GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; Russian Science Foundation (RSF), Grant No. 18-12-00226; Russian Foundation for Basic Research, Grant No. 18-32-00091; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

TABLE I. Summary of the systematic uncertainties (\(\sigma_{\text{syst.}} \)) on the product of \(e^+ e^- \to D_s^+ D_s^- (2573)^- \) cross section and the decay branching fraction \(B(D_s^+ D_s^-) \to \bar{D}^0 K^- \).

Source	\(\sigma_{\text{syst.}} \)
Detection efficiency	4.6%
Branching fractions	9.0%
Background subtraction	3.0%
MC statistics	2.0%
Luminosity	1.4%
Quadratic sum	10.9%
[1] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[2] N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014).
[3] A. Esposito, A. L. Guerrieri, F. Piccinini, A. Pilloni, and A. D. Polosa, Int. J. Mod. Phys. A 30, 1530002 (2015).
[4] H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Phys. Rep. 639, 1 (2016).
[5] F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao, and B. S. Zou, Rev. Mod. Phys. 90, 015004 (2018).
[6] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, arXiv: 1907.07583.
[7] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142001 (2005).
[8] Q. He et al. (CLEO Collaboration), Phys. Rev. D 74, 091104 (2006).
[9] C. Z. Yuan et al. (Belle Collaboration), Phys. Rev. Lett. 99, 182004 (2007).
[10] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013).
[11] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 092001 (2017).
[12] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 212001 (2007).
[13] X. L. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 142002 (2007).
[14] X. L. Wang et al. (Belle Collaboration), Phys. Rev. D 91, 112007 (2015).
[15] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 96, 032004 (2017); 99, 019903(E) (2019).
[16] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 89, 111103 (2014).
[17] G. Pakhlova et al. (Belle Collaboration), Phys. Rev. Lett. 101, 172001 (2008).
[18] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[19] S. Jia et al. (Belle Collaboration), Phys. Rev. D 100, 111103 (2019).
[20] X. K. Dong, Y. H. Lin, and B. S. Zou, Phys. Rev. D 101, 076003 (2020).
[21] Y. Tan and J. L. Ping, Phys. Rev. D 101, 054010 (2020).
[22] J. T. Zhu, Y. Liu, D. Y. Chen, and L. Y. Jiang, and J. He, arXiv:1911.03706.
[23] C. R. Deng, H. Chen, and J. L. Ping, Phys. Rev. D 101, 054039 (2020).
[24] J. He, Y. Liu, J. T. Zhu, and D. Y. Chen, Eur. Phys. J. C 80, 246 (2020).
[25] J. Z. Wang, R. Q. Qian, X. Liu, and T. Matsuki, Phys. Rev. D 101, 034001 (2020).
[26] J. F. Giron and R. F. Lebed, arXiv:2003.02802 [Phys. Rev. D (to be published)].
[27] Throughout this analysis, for any given mode, the corresponding charge-conjugate mode is implied.
[28] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also see Section II in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[29] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this Volume.
[30] T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013), and references therein.
[31] G. Rodrigo, H. Czyż, J. H. Kühn, and M. Szopa, Eur. Phys. J. C 24, 71 (2002).
[32] Y. Tosa, Report No. DPNU-34-1976, 1976, http://inspirehep.net/record/109354.
[33] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 43, 031001 (2019).
[34] R. Brun et al., CERN Report No. CERN DD/EE/84-1, 1984, https://cds.cern.ch/record/119728.
[35] S. Jia et al. (Belle Collaboration), Phys. Rev. D 98, 092015 (2018).
[36] The Novosibirsk function is defined as \(f(x) = \exp[-\frac{1}{2}(\ln^2(1+\Lambda(x-x_0))/\sigma^2 + x^2)] \) with \(\Lambda = \sinh(\tau/\sqrt{\ln 4})/(\sigma\sqrt{\ln 4}) \). The parameters represent the mean \((x_0) \), the width \((\sigma) \) and the tail asymmetry \((\tau) \).
[37] S. S. Wilks, Ann. Math. Stat. 9, 60 (1938).
[38] H. Ikeda et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 441, 401 (2000).
[39] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[40] J. Conrad, O. Botner, A. Hallgren, and C. Perez de los Heros, Phys. Rev. D 67, 012002 (2003).
[41] E. A. Kuraev and V. S. Fadin, Yad. Fiz. 41, 733 (1985) [Sov. J. Nucl. Phys. 41, 466 (1985)].
[42] X. Y. Gao, C. P. Shen, and C. Z. Yuan, Phys. Rev. D 95, 092007 (2017).
[43] The dressed cross section is \(\sigma = \sigma^B / |1 - \Pi|^2 \), where \(\sigma^B \) is the Born cross section, and \(|1 - \Pi|^2 = 0.94 \) is the vacuum polarization factor [44].
[44] S. Actis et al., Eur. Phys. J. C 66, 585 (2010).
[45] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.101.091101 for a summary of the values for the effective luminosity, the total reconstruction efficiency, the number of fitted signal events, and the product of the dressed cross section and the decay branching fraction \(\sigma(e^+e^- \rightarrow D_s^+D_s^{*+}(2573)^- \times B(D_s^{*+}(2573)^- \rightarrow D^0K^-) \) in each \(D_s^+D_s^{*+}(2573)^- \) mass bin.
Author/s:
Jia, S; Shen, CP; Adachi, I; Aihara, H; Al Said, S; Asner, DM; Atmacan, H; Aulchenko, V; Aushev, T; Ayad, R; Badhrees, I; Behera, P; Belous, K; Bennett, J; Besson, D; Bhardwaj, V; Bilka, T; Biswal, J; Bonvicini, G; Bozek, A; Bracko, M; Browder, TE; Campajola, M; Cervenkov, D; Chang, P; Chen, A; Cheon, BG; Chilikin, K; Cho, K; Choi, S-K; Choi, Y; Choudhury, S; Cinabro, D; Cunliffe, S; Dash, N; De Nardo, G; Di Capua, F; Dolezal, Z; Dong, T; Eidelman, S; Epifanov, D; Fast, JE; Ferber, T; Ferlewynicz, D; Fulsom, BG; Garg, R; Gaur, V; Gabyshev, N; Garmash, A; Giri, A; Goldenzweig, P; Golob, B; Grzymkowska, O; Hartbrich, O; Hayasaka, K; Hayashii, H; Hou, W-S; Hsu, C-L; Inami, K; Inguglia, G; Ishikawa, A; Itoh, R; Iwasaki, M; Iwasaki, Y; Jeon, HB; Jin, Y; Joo, KK; Karyan, G; Kawasaki, T; Kiesling, C; Kim, BH; Kim, DY; Kim, K-H; Kim, SH; Kim, Y-K; Kinoshita, K; Kodys, P; Korpar, S; Kotchetkov, D; Krizan, P; Kroeger, R; Krokovny, P; Kulasiri, R; Kuzmin, A; Kwon, Y-J; Lalwani, K; Lange, JS; Lee, SC; Li, K; Li, YB; Li Gioi, L; Libby, J; Lieret, K; Liventsev, D; MacNaughton, J; MacQueen, C; Masuda, M; Matsuda, T; Matvienko, D; Merola, M; Mizuk, R; Moon, TJ; Mori, T; Mrvar, M; Nakao, M; Nayak, M; Nisar, NK; Nishida, S; Ogawa, S; Ono, H; Oskin, P; Pakhlov, P; Pakhlova, G; Pardi, S; Patra, S; Paul, S; Pedlar, TK; Pestotnik, R; Piilonen, LE; Podobnik, T; Popov, V; Prencipe, E; Prim, MT; Rostomyan, A; Rout, N; Russo, G; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Savinov, V; Schnell, G; Schueler, J; Schwanda, C; Seino, Y; Senyo, K; Sevior, ME; Shapkin, M; Shebalin, V; Shiu, J-G; Shwartz, B; Solovieva, E; Stanic, S; Staric, M; Stottler, ZS; Strube, JF; Sumihama, M; Sumiyoshi, T; Sutcliffe, W; Takizawa, M; Tanida, K; Tenchini, F; Uchida, M; Uglow, T; Unno, Y; Uno, S; Usov, Y; Van Tonder, R; Varner, G; Vinokurova, A; Wang, CH; Wang, E; Wang, M-Z; Wang, P; Wang, XL; Watanabe, M; Won, E; Xu, X; Yan, W; Yang, SB; Ye, H; Yuan, CZ; Yusa, Y; Zhang, ZP; Zhilich, V; Zhukova, V; Zhulanov, V

Title:
Evidence for a vector charmoniumlike state in e(+)e(-) -> Ds+Ds2*(2573)(-) + c.c

Date:
2020-05-12