A genome-wide association and prediction study in grapevine deciphers the genetic architecture of multiple traits and identifies genes under many new QTLs

Timothée Flutre,1,2,3 Loïc Le Cunff,1,2,4 Agota Fodor,1,2 Amandine Launay,1,2 Charles Romieu,1,2 Gilles Berger,1,2 Yves Bertrand,1,2 Nancy Terrier,1 Isabelle Beccavin,4 Virginie Bouckenoothe,2,4 Maryline Roques,2,4 Lucie Pinasseau,5 Amaud Verbaere,2 Nicolas Sommerer,5 Véronique Cheynier,1,2 Roberto Baciliieri1,2,1,2 Jean-Michel Boursiquot,1,2 Thierry Lacombe,1,2 Valérie Laucou,1,2 Patrice This,1,2 Jean-Pierre Pérès,1,2 and Agnès Doligez1,2

1AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
2UMT Géno-Vigne, 34398 Montpellier, France
3Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GGE—Le Moulon, 91190 Gif-sur-Yvette, France
4IFV, 30240 Le Grau-du-Roi, France
5SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France

*Corresponding author: AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France. Email: timothee.flutre@inrae.fr; *Corresponding author: AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France. Email: agnes.doligez@inrae.fr

Abstract

To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.

Keywords: GWAS; genomic prediction; grapevine; Vitis vinifera L; genotyping-by-sequencing; yield components; secondary metabolites; genetic architecture; candidate genes

Introduction

With the 2 major challenges facing perennial fruit crops in general and grapevine in particular, i.e. decreasing phytosanitary products such as fungicide treatments and adapting to climate change, harnessing existing genetic diversity (Wolkovich et al. 2018) and breeding new varieties (Adam-Blondon et al. 2011) are both important levers. For the latter, many studies aimed at deciphering the genetic architecture of traits of interest by mapping quantitative trait loci (QTLs) in bi-parental progenies (Vezzulli et al. 2019). However, this approach suffers from several drawbacks: the limited allelic diversity in parents, the low number of recombination events in the progeny, the upward bias of estimated QTL effects, and the underestimation of the polygenic contribution for prediction purposes (Cardon and Bell 2001). As a result, all traits currently involved in grapevine marker-assisted selection (Vezzulli et al. 2019) are controlled by major genes, such as resistance to downy and powdery mildews (Di Gaspero et al. 2007), black rot (Rex et al. 2014), sex (Picq et al. 2014), berry color (Fournier-Level et al. 2009), seedlessness (Mejía et al. 2011), and Muscat aroma (Duchène et al. 2009).

To overcome these limits, a few genome-wide association studies (GWASs) have been performed in cultivated grapevine diversity panels but, due to various reasons, failed to identify many new QTLs. Several articles (Myles et al. 2011; Zarouri 2016; Migicovsky et al. 2017; Laucou et al. 2018) harvested phenotypic data from genetic resources repositories collected without a proper experimental design. Moreover, the first 3 articles cited used at most 10k SNPs despite the low extent of linkage disequilibrium (LD) (Myles et al. 2011; Nicolas et al. 2016). Among other
In 2011 and 2012, the trial was not irrigated, and all the plants of the panel cultivars and controls were concurrently phenotyped. For each plant, we recorded the number of clusters (NClBlu) and harvested 3 clusters at 20°Brix, which provided the sampling date (SAMPlDAY, in days since January 1). We recorded mean cluster weight (MCW, in g), mean cluster length (in cm), mean cluster width (in cm), and cluster compactness (from 1 to 9 on the OIV 204 scale; OIV, 2009). One hundred berries randomly sampled from the central third of clusters were weighted, providing the mean berry weight (MBW, in g). In the winters of 2011–2012 and 2012–2013, the number of woody shoots (NBWS) and pruning weight (FRUW, in kg) were recorded for each plant. In 2011, the veraison date (onset of ripening, VER, in days since January 1) was also recorded. Two variables were computed from these traits: the veraison-maturity interval (VERMATU as D13C) as previously detailed (Pinasseau, Vallverdu-Queralt, et al. 2017). In 2012 were also determined glucose (GLU), fructose (FRU), malate (MAL), tartrate (TAR), shikimate (SHIK), and citrate (CIT) concentrations, all in μEq L−1, as previously described (Rienth et al. 2016). Six variables were computed from these traits: the sum of glucose and fructose (GLUFRU), glucose divided by fructose (GLUFRU/MALTAR), malate divided by either tartrate (MALTAR), shikimate (SHIKTAR), or citrate (CITAR) and the sum of glucose and fructose (GLUFRUTAR).

In 2014 and 2015, irrigation was applied to blocks C, D, and E only (Pinasseau, Vallverdu-Queralt, et al. 2017), and only panel cultivars were phenotyped. As above, 3 clusters per plant were harvested at 20°Brix, providing the MCW (in g). Berries sampled from different blocks with the same water treatment were pooled per cultivar. More details on berry sampling and processing, as well as polyphenols and δ13C measurements and analysis are described elsewhere (Pinasseau, Vallverdu-Queralt, et al. 2017). From the data available on the 105 different polyphenols in μg per berry (Pinasseau, Verbaere, et al. 2017), a few typos were corrected and 17 extra variables were calculated (Pinasseau, Vallverdu-Queralt, et al. 2017). In addition, 2 aroma precursors, δ-damascone (BDAM, in μg l−1) (Kotsou et al. 1999) and potential dimethyl sulfide (PDM5, in μg l−1) (Segurel et al. 2005) were also quantified. The volume and weight of juice samples were recorded, allowing to assess their effects when included as cofactors in the statistical analyses.

A total of 127 traits were phenotyped, from which 25 extra variables were computed. Because irrigation was applied to some blocks only in 2014–2015, the few traits phenotyped both in 2011–2012 and in 2014–2015 were analyzed separately. Overall, 152 response variables were analyzed (Supplementary Tables 1 and 2).

The sanitary status of cultivars regarding the presence of 5 viruses (CNA, GLRaV1, GLRaV2, GLRaV3, and GFkV) was assessed by ELISA from plants at INRAE Vassal (Marseillan, France). Flower sex (OIV 151) and berry skin color (OIV 225) of each panel cultivar were retrieved from (Laucou et al. 2018) and completed.
with the database of INRAE Vassal germplasm repository (https://bioweb.supagro.inra.fr/collections_vigne/Home.php?l=EN).

Berry weight was phenotyped on the Syrah × Grenache cross in 2005, 2006, and 2007 in the same way as on the panel (Doligez et al. 2013), except that 8 clusters per genotype and per block were harvested instead of 3.

Genotyping

Data acquisition and analysis of microarray SNPs

The panel and Syrah × Grenache progeny were genotyped with the GrapeReSeq 18k Vitis Illumina microarray (Laucou et al. 2018). Data processing (see Supplementary Text 1, Supplementary Figs. 2, 3, and Supplementary Table 2) resulted in 13,925 SNPs for 277 cultivars. After filtering on LD above 0.9 and minor allele frequency (MAF) below 0.05, 10,530 SNPs remained (see Supplementary Fig. 4), thereafter referred to as the “microarray-only” SNPs.

Data acquisition and analysis of sequencing SNPs

The panel was also genotyped by sequencing (GBS, Elshire et al. 2011). Keygene NV owns patents and patent applications protecting its Sequence Based Genotyping technologies. Data processing consisted in read checking with FastQC version 0.12.1 (Andrews 2010), demultiplexing with a custom script, cleaning, and trimming with CutAdapt version 1.8.1 (Martin 2011), followed by variant and SNP calling with GATK version 3.7 (DePristo et al. 2011), advised by Swarts et al. (2014), with window = 1,000, overlap = 450, ne = 10,000, and otherwise default parameters. After filtering for LD above 0.9, 50,007 SNPs remained (see Supplementary Fig. 3), and while subsequent filtering for MAF below 0.05 resulted in 63,105 SNPs (see Supplementary Fig. 4), thereafter referred to as the “microarray-GBS” SNPs. We also imputed the Syrah × Grenache SNP genotypes similarly using Beagle.

Joint imputation of microarray and GBS SNPs

The 13,925 microarray SNPs and 184,145 GBS SNPs for 277 common cultivars were combined into a set of 197,885 common SNPs (after duplicate removal) using coordinates on the 12Xv2 reference sequence (Canaguier et al. 2017). Missing data were imputed using LD with Beagle version 4.1-r862 (Browning and Browning 2009) as advised by Swarts et al. (2014) with window = 1,000, overlap = 450, ne = 10,000, and otherwise default parameters. After filtering for LD above 0.9, 50,007 SNPs remained (see Supplementary Fig. 3), and while subsequent filtering for MAF below 0.05 resulted in 63,105 SNPs (see Supplementary Fig. 4), thereafter referred to as the “microarray-GBS” SNPs. We also imputed the Syrah × Grenache SNP genotypes similarly using Beagle.

Statistical modeling of phenotypic data

We performed a 2-stage analysis of each response variable using univariate regression models. In the first stage, estimates of total genotypic values were obtained (detailed in this section). In the second stage (see next section), these were regressed on SNP genotypes to identify QTLs, estimate their allelic effects and assess prediction accuracy.

To decrease the influence of potential outliers, all polyphenols (the compounds as well as the calculated variables) had their raw data automatically transformed with the natural log. For the other traits, when their raw phenotypic data were too skewed as visually assessed, they were also log-transformed (see Supplementary Fig. 5 and Supplementary Table 4).

Assessment of spatial heterogeneity

In 2011–2012, phenotypic data for the control were spatially analyzed (Cressie 1993) in a way similar to Hamann et al. (2002).

First, a global linear model was fitted with R/stats with fixed effects for block, year, block–year interaction, PRUW, NBWS, vigor, and all 5 viruses (PRUW and vigor were discarded when vigor itself was the response). Facilitated by R/RmMun version 1.40 (Bartoň 2017), model comparison was performed by maximum likelihood (ML), the best model being selected based on the corrected Akaike information criterion, AICc (Burnham and Anderson 2004). For each year separately, the empirical variogram of residuals from the best model was computed, on which several variogram models were fitted by ML with R/gstat version 1.1.5 (Pebesma 2004): exponential, spherical, gaussian, and Stein’s parameterization of the Matérn model. The variogram model with the smallest sum of squared errors was then used to perform spatial interpolation by kriging, i.e. best linear unbiased prediction (BLUP) of the control’s response variable at all locations. By visually assessing the slope of the best variogram model fitted to the empirical variogram (Supplementary Fig. 6) and the prediction errors from cross-validation (data not shown), it was concluded that there was no need to correct for spatial heterogeneity.

In 2014–2015, the control was not phenotyped, an irrigation treatment was applied, and samples from different blocks with the same irrigation level were pooled (Pinasseau, Vallverdú-Queralt, et al. 2017), hence preventing the assessment of any potential spatial heterogeneity as above.

Estimation of genotypic values

For each response variable, a global linear mixed model was defined with multiple fixed effects [for the 2011–2012 data set: block, year, block–year interaction, PRUW, NBWS, vigor, and all 5 viruses, PRUW and vigor being discarded when vigor itself was the response; for the 2014–2015 data set: irrigation, year, irrigation–year interaction, Brix (as there can be small deviations from 20°Brix)], and all 5 viruses, as well as the volume and weight of juice samples for BDAM and PDMS together with 2 random effects (genotype and genotype–year interaction). The global model was fitted by ML with R/lme4 version 1.1.19 (Bates et al. 2015). The output was given to R/lmerTest version 3.1-2 (Kuznetsova et al. 2017) to use its function “step.” Backward elimination of random-effect terms was performed using likelihood ratio test, followed by backward elimination of fixed-effect terms using F-test for all marginal terms, i.e. terms that can be dropped from the model while respecting the hierarchy of terms in the model, with a 0.05 F-value threshold for both types of terms. The final model after backward elimination was then refitted by restricted ML (ReML) to obtain unbiased estimates of variance components and empirical BLUPs of genotypic values. The acceptability of underlying assumptions (homoscedasticity, normality, independence) was visually assessed by plotting residuals and BLUPs. Broad-sense heritability on a genotype–mean basis (H²) was computed using 2 estimators. The first assumes a balanced design (Falconer and Mackay 2009):

\[H^2 = \frac{\sigma_G^2}{\sigma_G^2 + \left(\sigma_G^2/n_g + \sigma_{G:x}^2/n_y\right)} \]

where \(\sigma_G^2\) is the variance of the genotype values, \(\sigma_{G:x}^2\) is the variance of the genotype–year interactions, \(n_g\) is the arithmetic mean number of trials (years), \(n_y\) is the arithmetic mean number of replicates per trial. The second estimator, \(H^2_{\text{MLM}}\), allows for unbalanced data (see Oakey et al. 2006, for details). Robust confidence intervals for variance components, heritability and genotypic coefficient of variation were obtained by parametric bootstrap as recommended by Schweiger et al. (2016), using the percentile method (Carpenter and Bithell 2000) in the R/lme4 and R/boot packages. In the Syrah × Grenache progeny, empirical BLUPs of genotypic values for berry weight were obtained in the same way.
Statistical modeling of genotypic data
Genetic architecture assumed sparse

We used 2 types of models to perform genome-wide association testing and detect QTLs. The first is the SNP-by-SNP model as implemented in GEMMA version 0.97 (Zhou and Stephens 2012). For each SNP p, eBLUP\(\mathbf{g}\) = 1 + Ma,p \(\mathbf{P}\) \(\mathbf{g}\) + \(\mathbf{u}\) + e where eBLUP\(\mathbf{g}\) is a vector of responses of length N, \(\mathbf{M}_{a,p}\) is a vector of length N with the genotypes at the pth SNP (additive coding), \(\mathbf{P}\) is its effect modeled as fixed, \(\mathbf{u}\) \~\ N(0, \(\mathbf{C}^2\)) is a vector of length N corresponding to a polygenic effect modeled as random where the co-variance matrix \(\mathbf{A}\) contains additive genetic relationships (Vitezica et al. 2013), and e \~\ N(0, \(\mathbf{C}^2\)) with \(\mathbf{N}\) the Normal distribution of dimension N, \(\mathbf{0}\) a vector of zeros, and \(\mathbf{I}\) the identity matrix of dimension NxN. eBLUPs of \(\mathbf{g}\) were used instead of BLUES as they are known to be more accurate for prediction and selection purposes, notably thanks to the shrinkage property (Piepho et al. 2008). Our goal was to test the null hypothesis \(\mathbf{P}\) = 0 while controlling for relatedness between genotypes. Controlling the family-wise error rate at 5% to account for multiple testing, the effect of an SNP was deemed significant when the F value from the Wald test statistic was lower than the Bonferroni threshold.

The second type of models jointly analyzes all SNPs with the goal of selecting a subset of those with large effects while handling LD. This SNP selection can be achieved in a frequentist setting via stepwise regression (Segura et al. 2012). It starts with the SNP-by-SNP model, followed by inclusion, at every iteration, of the SNP with the smallest P value as an additional fixed effect, until the proportion of variance explained by the polygenic effect is close to zero. The SNP effects deemed significant were those of the best model selected according to the extended BIC. We fitted it with R/mlmG was v1.0.4 (Bonnafous et al. 2018) allowing a maximum of 50 iterations. SNP selection can also be achieved in a Bayesian setting with the following model: eBLUP(\(\mathbf{g}\)) = 1 + Ma \(\mathbf{P}\) \(\mathbf{g}\) + \(\mathbf{u}\) + e, where \(\mathbf{Ma}\) is a NxP matrix of SNP genotypes (additive coding), with the so-called spike-and-slab prior for each SNP \(\mathbf{p}\), \(\mathbf{Ma}\) ~ \(\mathbf{N}\)(0, \(\mathbf{C}^2\)) \(\mathbf{A}\), \(\mathbf{Ma}\) being a point mass at zero. We fitted it with the variational algorithm, faster than MCMC, implemented in R/varbvs version 2.5.7 (Carbonetto and Stephens 2012). An SNP was deemed significant when its posterior inclusion probability, PIP\(\mathbf{p}\) = Pr(\(\mathbf{P}\) \(\mathbf{p}\) \(\neq\) 0), was higher than 0.80.

Beyond this focus on statistical significance (McShane and Gal 2017), we provide all estimates of significant additive SNP effects with a quantification of their uncertainty (Supplementary Table 5).

QTL definition and annotation

QTLs were defined as intervals around significant SNPs based on LD decay (Bonnafous et al. 2018) (see Supplementary Text 3). A comparison was made between the QTLs detected in this study and (1) a list of already-published QTLs (Vezzulli et al. 2019), significant at a 5% genome-wide threshold, that were classified according to the Vitis INRAE ontology v2 (https://urgi.versailles.inra.fr/Species/Vitis/Annotations) and slightly edited for automatic processing (see Supplementary Text 3); and (2) a list of significant hits from a few GWAS publications after converting their coordinates on the genome reference we used.

In terms of annotation, as a given locus can be a QTL for multiple response variables, we first merged our 489 reliable QTLs (found with at least 2 methods, see Results) across all response variables, which resulted in 134 distinct genomic intervals (Supplementary Table 9). These intervals had a median length of 100,001 kb (with a minimum of 100,001 kb and a maximum of 1,072,169 kb). We then searched for overlaps between them and the Vcost version 3 annotations totaling 42,413 gene models from Canaguier et al. (2017), also using the correspondence between IGGP (International Grapevine Genome Program) and NCBI RefSeq gene model identifiers provided by the URGI (https://urgi.versailles.inra.fr/Species/Vitis/Annotations).

Genetic architecture assumed dense

To estimate the proportion of variance of empirical BLUPs of genotypic values explained by the cumulative contribution of SNPs (Yang et al. 2010) (PVE\(\mathbf{SNPs}\)), we used the well-known multi-SNP model termed ridge regression (also known as “RRLUP”) which assumes a dense architecture: eBLUP(\(\mathbf{g}\)) = 1 + M\(\mathbf{a}\) \(\mathbf{P}\) \(\mathbf{g}\) + e where \(\mathbf{M}\) ~ \(\mathbf{N}\)(0, \(\mathbf{C}^2\)) \(\mathbf{D}\). It is known to be equivalent to the “GBLUP” model (Habier et al. 2007, Vitezica et al. 2013): eBLUP(\(\mathbf{g}\)) = 1 + \(\mathbf{g}\) + e where \(\mathbf{g}\) ~ \(\mathbf{N}\)(0, \(\mathbf{C}^2\)) with \(\mathbf{A}\), the NxN matrix of additive genetic relationships, proportional to the matrix product \(\mathbf{M}\mathbf{a}\mathbf{T}\) once \(\mathbf{Ma}\) is centered using allele frequencies. It is similar for the dominance genotypic values \(\mathbf{g}\) ~ \(\mathbf{N}\)(0, \(\mathbf{C}^2\)) \(\mathbf{D}\) where \(\mathbf{D}\) is the NxN matrix of dominance genetic relationships. Because the estimators of additive and dominance relationships from SNPs assume linkage equilibrium, a 0.5 LD threshold was applied when computing A and D. We fitted the models with R/lme4 and computed confidence intervals for variance components by bootstrap as above.

Genomic prediction

Out-of-sample prediction was assessed within the panel by 5-fold cross-validation repeated 10 times with R/caret version 6 (Kuhn 2018), using R/varbvs that assumes a sparse genetic architecture and R/rbBLUP version 4.5 (Endelman 2011) that assumes a dense architecture (infinitesimal model). Note that the QTL results from the GWAS analysis were not used when training each model, to avoid overfitting. We assessed prediction accuracy between empirical BLUPs of genotypic values and their predictions with various metrics: root mean square error, Pearson’s linear correlation coefficient (corP), Spearman’s rank correlation coefficient (corS), as well as outputs from the simple linear regression of observations on predictions such as the intercept, slope, adjusted coefficient of determination (\(R^2\)), and the F-value of the test for no bias.

Out-of-sample prediction was also assessed by training rbBLUP and varbvs methods on the whole panel and predicting empirical BLUPs of genotypic values for the 23 genotypes of the Syrah × Grenache cross.

Results

Estimation of broad-sense heritability and genetic coefficient of variation

We took advantage of the V. vinifera L. panel of 279 cultivars suitable for GWAS and representing the INRAE Vassal germplasm repository to set up a randomized-complete-block field trial (Supplementary Fig. 1). It was phenotyped for 127 traits from which 25 extra variables were computed. All 152 response variables displayed substantial variation (Supplementary Fig. 5). For some polyphenol variables, part of the variation was obviously associated with skin color, 137 cultivars out of 279 having colored skin berries. When phenotyped, the control cultivar allowed us to establish that (1) part of this variation was due to genetic differences between panel cultivars (Supplementary Fig. 5), and that (2) spatial heterogeneity was negligible (Supplementary Fig. 6).
The amount of missing data among response variables ranged from 15.78% to 43.93% (Supplementary Table 4). To account for such unbalance, we fitted linear mixed models and obtained BLUPs of genotypic values. After model selection, the final set of fixed and random effects differed between response variables (Supplementary Table 4), with year and genotype–year interaction effects being selected in most cases.

We then assessed the accuracy with which genotypic values were estimated using broad-sense heritability (the higher, the better). As shown in Fig. 1, 76.6% of broad-sense heritability estimates were above 0.5, with narrow confidence intervals (Supplementary Table 4). Two estimators, H^2_C and H^2_O, handling missing data differently, gave very similar estimates (Supplementary Table 4), thus indicating that genotypic values of all cultivars were accurately estimated for most response variables. Moreover, 92.7% of the genetic coefficients of variation were above 5% and 59.1% above 20% (Fig. 1; Supplementary Table 4).

Combining genotyping technologies to explain more genetic variance

We then aimed to explain the variance of these genotypic BLUPs with SNP genotypes. For that purpose, we used 2 sets of SNPs, the “microarray-only SNPs” (10,503 SNPs) and “microarray-GBS SNPs” (63,105 SNPs).

Because LD is known to be short in V. vinifera L. (Myles et al. 2011; Nicolas et al. 2016), we increased the SNP density initially obtained with the microarray by sequencing with complexity reduction (GBS). Raw reads had high quality along their sequences, although many displayed adapters’ content at their 5’ end, which had to be trimmed off. After demultiplexing, more than 95% of the reads were assigned to a cultivar. After alignment on the reference genome, the median coverage depth of regions having at least 1 read, averaged over cultivars, was 21.7, which allowed to accurately call both homozygous and heterozygous SNP genotypes after filtering out SNPs supported by <10 reads.

Compared with the microarray-only SNP set, the combined microarray-GBS set displayed a substantially higher SNP density along all chromosomes (Supplementary Fig. 4). We then estimated the additive genetic relationships between cultivars (Supplementary Fig. 7), confirming the weak structure in 3 subgroups corresponding to wine west, wine east, and table east. The matrix of genetic relationships was used to estimate the proportion of variance in genotypic BLUPs explained by SNPs (PVE_{SNPs}). Assuming an additive-only, polygenic architecture, PVE_{SNPs} was higher with microarray-GBS SNPs than with microarray-only SNPs for 97.8% of responses variables (Fig. 2; Supplementary Table 5). This showed the advantage of combining SNPs so that more QTLs are in LD with at least 1 genotyped SNP.

Models with both additive and dominance relationships either failed to converge or then, only with difficulty, most probably because the matrix of dominance relationships was very similar to the identity matrix, making it indistinguishable from the error term (Supplementary Fig. 7).

QTL detection by GWAS and identification of candidate genes

The GWAS methods used in the following were first checked on 2 previously phenotyped traits, flower sex and berry skin color, for which the already known genetic architecture consists in a major QTL. Results were coherent with the literature (Fournier-Level et al. 2009; Picq et al. 2014): a major QTL on chromosome 2 for flower sex (around coordinate 4,769,151) and for berry skin color (around coordinate 15,753,009). Other weaker QTLs were also found, on the Unknown chromosome for flower sex [note that Tello et al. (2019) found chunks of chromosome 2 in the Unknown chromosome when building genetic maps], and on chromosome 7 and 13 for berry skin color (consistent with QTLs for skin anthocyanidin content found by Guo et al. 2015).

Each response variable phenotyped in this study was analyzed with an SNP-by-SNP model to identify significant SNPs (Supplementary Table 6). For each response variable, QTLs were defined as LD-based intervals around each significant SNP (Supplementary Table 7), and then merged when overlapping (Supplementary Table 8). As summarized in Table 1, at least 1

Fig. 1. Estimation in a diverse panel of Vitis vinifera L. of (a) broad-sense heritabilities for 152 response variables using the estimator from Oakey et al. (2006), H^2_O, and (b) their genetic coefficients of variation, CV_g. Vertical lines indicate the median (plain), and quantiles at 0.25 and 0.75 (dotted).
SNP set (Table 1). Within multi-SNP methods, mlmm.gwas found least 1 QTL compared with the SNP-by-SNP model, whatever the SNP models that both provided more response variables with at microarray-only SNPs.

QTL was found for 66.4% of response variables with the

Table 1. Comparison between methods in terms of the number of QTLs (#QTLs) found in a diverse panel of Vitis vinifera L. for 2 SNP data sets, summed up over all response variables.

Method	Microarray-only SNPs	Microarray-GBS SNPs					
Model	Software	#RVs	#sSNPs	#QTLs	#RVs	#sSNPs	#QTLs
SNP-by-SNP GEMMA	SNP-by-SNP GEMMA	88	2,295	1,179	101	7,855	1,784
Multi-SNP mlmm.gwas	mlmm.gwas	148	1,257	1,243	125	703	1,784
Varbvs	Varbvs	118	266	257	119	258	257

Also indicated are the number of response variables with at least one QTL (#RVs), and the number of significant SNPs (#sSNPs).

To benefit from a potential gain in power, we fitted 2 multi-SNP models that both provided more response variables with at least 1 QTL compared with the SNP-by-SNP model, whatever the SNP set (Table 1). Within multi-SNP methods, mlmm.gwas found more significant SNPs and QTLs than varbvs, and for more response variables. Yet, the interpretation is not straightforward as these methods do not use the same criterion for declaring an SNP as significant. Surprisingly, for mlmm.gwas, the numbers of response variables with at least 1 QTL, significant SNPs and QTLs were lower with more tested SNPs.

By summing over the 150 response variables with at least 1 QTL, a total of 3,490 QTLs were found (Supplementary Table 8), which corresponded to an increase of 196% in the number of QTLs and of 70% in the number of response variables with at least 1 QTL, compared with applying the SNP-by-SNP method on the microarray-only SNPs. Among these QTLs, 136 were found by all 3 methods, while 3,001 were found by a single method only and 1,598 by multi-SNP methods only (Supplementary Fig. 9). Furthermore, over these 150 response variables, 26 had no QTL according to the SNP-by-SNP method but at least one found by both multi-SNP methods (Supplementary Fig. 10).

All chromosomes harbored at least 1 QTL (Supplementary Fig. 11), and most QTLs found only by the multi-SNP mlmm.gwas method fell far from QTLs found by other methods (Supplementary Fig. 12). Moreover, 90% of the QTLs found only by the SNP-by-SNP method GEMMA clustered on chromosome 2 for 64 response variables, all of them being polyphenols, in relation with the anthocyanin-related MYB genes on this chromosome (Matus et al. 2008). This was expected because GEMMA ignores LD between SNPs. In contrast, the multi-SNP varbvs method was more parsimonious, yet had enough power to identify significant SNPs in regions in which GEMMA did not identify any signal (Supplementary Fig. 12).

To prioritize QTLs for further investigation, 489 QTLs involving 124 response variables were deemed reliable as they were found by at least 2 methods (Supplementary Table 9 and Supplementary Fig. 13). They corresponded to 59% less QTLs but 41% more response variables with at least 1 QTL, compared with applying the SNP-by-SNP method on the microarray-only SNPs. All chromosomes harbored at least 1 such reliable QTL, except chromosome 19 (Fig. 3).

The 489 reliable QTLs were compared with the largest list of QTLs detected in grapevine bi-parental crosses compiled so far (Vezzulli et al. 2019). Among the 22 traits in common, QTLs were found on the same chromosome for 7 only (Supplementary Table 8): cluster number (on chromosome 7), berry weight (on chromosomes 1, 2, 8, 11, 15, and 17), malate (on chromosomes 9 and 18), glucose to fructose ratio (on chromosome 2), mean degree of polymerization of tannins (chromosome 17), total concentration of native anthocyanins (on chromosome 2), and %B-ring methylated anthocyanins (on chromosome 2).

We also compared our reliable QTLs with significant GWAS hits published in grapevine. Only 2 traits (cluster and berry weight) were phenotyped in at least 1 other study with at least 1 significant GWAS hit found (Zarouri 2016; Laucou et al. 2018; Guo et al. 2019). For berry weight, out of the 10 QTLs we found, 8 were deemed new on chromosomes 1, 2, 8, 11, 15, and 17. We also found 2 QTLs on chromosome 8 close to a known GWAS hit (Zarouri 2016), but did not recover other hits on chromosomes 5, 17, 18, and 19 as in Zarouri (2016) and Guo et al. (2019). For cluster weight, we found 2 new QTLs on chromosomes 1 and 3 but did not recover other hits on chromosomes 5 and 13 (Zarouri 2016; Laucou et al. 2018).

The comparison of our reliable QTLs with the reference gene annotations detected 1,926 distinct gene models (Supplementary Table 11). Out of these, only 980 had a proposed putative function (Supplementary Table 11).

Assessment of genomic prediction and insight into genetic architectures

We assessed the accuracy of genomic prediction by cross-validation within the panel of 279 cultivars (Supplementary Table 12). We compared 2 methods assuming contrasted genetic architectures: additive infinitesimal for rrBLUP and additive sparse for varbvs. Both the median Pearson and Spearman correlation coefficients between observed and predicted genotypic values fell between 0.37 and 0.44, similarly for both SNP sets and methods (Fig. 4). These correlations showed substantial correlation with broad-sense heritability (Supplementary Fig. 14), higher for varbvs (~0.65) than for rrBLUP (~0.54). However, the distributions of varbvs’ correlation coefficients were clearly multi-modal, with the majority being lower than rrBLUP’s but still a substantial fraction being higher. This confirmed the robustness of rrBLUP’s predictions irrespective of the underlying architecture (Wang et al. 2015). Yet varbvs can provide substantially better predictions than
rrBLUP for traits for which the genetic architecture is likely to be rather sparse.

Moreover, rrBLUP results did not seem to depend on the SNP set whereas they were slightly better with the microarray-GBS SNPs for varbvs. This suggests that, among the extra SNPs provided by GBS, varbvs managed to identify those that improved its prediction accuracy. Concerning the \(P \) value of the test for no bias, varbvs showed similar values across both SNP sets, higher than rrBLUP in general and above 0.05, suggesting an absence of bias. On the contrary, rrBLUP showed lower \(P \) values with the microarray-GBS SNPs, suggesting that its assumption of all SNP effects being nonzero may be too strong for these traits, especially when SNP density is high.

We also used the 279 cultivars panel as a training set to predict MBW in a subset of a Syrah x Grenache progeny. With rrBLUP (respectively, varbvs), this gave a Pearson correlation of 0.56 (0.35), an adjusted coefficient of regression of 0.28 (0.08), and a \(P \) value of \(1.6 \times 10^{-4} \) (3.5 \times 10^{-3}) when testing for no bias. The correlation is particularly promising for rrBLUP compared with varbvs, in agreement with the results obtained by cross-validation within the panel (Pearson correlation of 0.71 with rrBLUP and 0.61 with varbvs).

Finally, combining results from both genome-wide association and genomic prediction studies provides insight into the genetic architecture of the studied traits. In Table 2, trait classes are sorted according to the following metric: the difference between the accuracy of genomic prediction assuming a sparse additive genetic architecture (as implemented in varbvs) vs a dense one (as implemented in rrBLUP), using the Spearman correlation coefficient from the cross-validation above as a proxy of prediction accuracy (Supplementary Table 13).

Generally, the median of this metric is positive only for response variables corresponding to biochemical traits (mostly polyphenols), suggesting they display a sparse genetic architecture. All other trait classes have a negative median metric, suggesting a dense genetic architecture. When taking into account the
distribution of the metric, the classification in sparse or dense architecture is deemed more trustworthy when the quantile interval does not include 0, which is the case for phenological and morphological traits.

Apart from the abiotic stress variable $\delta^{13}C$, all response variables had a high median broad-sense heritability (around 0.7 and above), indicating a higher measurement quality, hence also contributing to increased trustworthiness in the suggested genetic architecture. Moreover, in the case of the biochemical response variables, the median number of reliable QTLs is higher than for the other trait classes, although there is a large variation. This is consistent with their genetic architecture deemed sparse, for which one expects to have QTLs with an effect large-enough to be found significant.

Discussion

Design and analysis of field trials for perennials

Acquiring phenotypic data from which genotypic values can be deduced with sufficient accuracy is a major challenge, especially because a large panel is a prerequisite to provide enough statistical power to detect QTLs (Nicolas et al. 2016). Our randomized block design certainly helped in reaching medium to high broad-sense heritability for most traits. Those with low heritability may be linked to the difficulty of sampling fruits at a similar physiological stage, a particularly pressing issue for grapevine due to the strong intra- and inter-cluster heterogeneity between berries (Shahood 2017). Automating new protocols (Bigard et al. 2018) remains to be done to phenotype large panels.

At the first stage of the analysis, we chose to include PRUW, the number of woody shoots and vigor as explanatory factors in the global model, but neither flower sex nor berry color. Our rationale was that the former 3 are more influenced by the way the field trial is conducted than the latter 2, which are under a stronger genetic determinism (Fournier-Level et al. 2009; Picq et al. 2014). This approach would hence keep most genetically based variation between genotypes for the second stage of the analysis (genome-wide association and genomic prediction). More generally, this raises the question of how to deal with multiple traits to exploit their correlations (Supplementary Table 14 and Supplementary Fig. 15). Most multivariate linear models place all the traits on the same level, which complicates the understanding of their genetic architecture (Kemper et al. 2018). A more ambitious approach would leverage functional-structural plant
models (Sievanen et al. 2014) but it notably requires the phenotyping of key phenological stages for the whole panel, as well as the nondestructive phenotyping of major physiological processes over time.

Increase of genotyping density
Validating heterozygous SNP genotypes from GBS data is notoriously difficult (Swarts et al. 2014). We hence looked at the proportion of variance in BLUPs of genotypic values explained by SNP genotypes (PVE SNP). The improvement obtained with the microarray-GBS set increased our trust in the genotyping and imputation procedures. Yet, PVE SNP, did not equal 1 for all response variables. Several factors can underlie this discrepancy. First, empirical BLUPs of genotypic values are not fully accurate versions of the “true” genotypic values, as reflected by broad-sense heritability. Second, the microarray-GBS SNPs may not be in strong enough LD with all “true” QTLs. The number of SNPs required might reach half a million in grapevine (Nicolas et al. 2016), a value likely to be similar in other perennial fruit crops with low LD. Moreover, many pan-genome structural variations could remain undetected, which calls for whole-genome sequencing (Marroni et al. 2014).

Sensitivity and specificity of QTL detection
Our study which detected many reliable QTLs benefited from a highly favorable context combining a representative panel, an adequate experimental design and a large number of phenotyped traits. When comparing GWAS methods, a major misleading factor is LD, which SNP-by-SNP methods do not take into account whereas multi-SNP methods do, albeit differently depending on the details of each method. We hence compared the 3 methods in terms of QTLs, defined here as intervals around significant SNPs, instead of significant SNPs directly. We used the genome-wide distribution of LD to define the extent of QTLs, which ignores local variations along the genome. Haplotype-based methods could provide complementary information, but is beyond the scope of this work.

We compared our reliable QTLs with those from the literature on bi-parental crosses passing a 5% genome-wide significance threshold. Therefore, when we deemed one of our QTLs new, it may have been found at a chromosome-wide significance threshold, nevertheless, it is reported as reliable for the first time in our study. This comparison could be achieved for a very small subset of common traits only. Part of the reason why may be that the traits studied here include an exhaustive list of polyphenols that have rarely been quantified elsewhere. In addition, we faced the notorious difficulty to assess whether the same trait acronym used in different articles indeed corresponded to the same biological trait. A wider usage of a trait ontology, such as the Vitis ontology, seems the only way forward (Krajewski et al. 2015).

Furthermore, when comparing our results on cluster and berry weights with those from the literature obtained by GWAS, we found discrepancies: several of our QTLs were new, and several QTLs reported by others were not found in our analysis. This may be due to 4 types of differences, (1) the composition of the association panels, (2) the genotyping densities, (3) the phenotyping protocols, and (4) the statistical models. Reanalyzing these data sets was out of the scope of this work but could be done in the future depending on data availability.

Focus on some candidate genes
For various traits, our association study identified many QTLs (Supplementary Tables 8 and 9) containing numerous genes (Supplementary Tables 10 and 11). As such, this large database is of interest per se for further investigations. We chose to focus here our discussion on a subset of traits, i.e. phenolic compounds, organic acids and δ13C.

Candidate genes for phenolic compounds
Our results confirm known features of the genetic regulation of phenolic compounds in grape, such as the region on chromosome 2 containing the MybA genes cluster. It governs not only the amount and quality of anthocyanins, but also the traits concerning flavonols as already observed (Malacarne et al. 2015). Our study also confirms a large QTL for tannins composition, located on chromosome 17 and already detected in a Syrah x Grenache progeny (Huang et al. 2012), which contains the candidate gene VvLAR2 (leucoanthocyanidin reductase, Vitvi17g00371). LAR was initially characterized as being able to catalyze the formation of catechin terminal units (Bogs et al. 2005), but it was demonstrated more recently that VvLAR could have an additional role in controlling the degree of polymerization (Yu et al. 2019).

Our study also identified new regions for already-studied traits, such as one involved in anthocyanin acylation and trihydroxylation on chromosome 13. This QTL was not detected neither in a Syrah x Pinot Noir progeny (Costantini et al. 2015), nor in a Red Globe x Muscat of Hamburg progeny (Sun et al. 2020), and is distinct from either the functionally validated anthocyanin acyltransferase on chromosome 3 (Rinaldo et al. 2015) and the Flavonoid 3’,5’-hydroxylase cluster located on chromosome 6. This region contains 2 WRKY transcription factors (Vitvi13g00189 and Vitvi13g01916) orthologous of AtWRKY55 and AtWRKY54/57 (Wang et al. 2014). WRKRY transcription factor mediates stress responses in plants (Phukan et al. 2016), and AtWRKY70 was also described to control JA-induced anthocyanins accumulation (Li et al. 2006). In grape, anthocyanin acylation and hydroxylation are affected under abiotic stress (Ollé et al. 2011), thus these WRKY transcription factors appear as candidate genes to modulate anthocyanin composition.

Moreover, this is the first GWAS in grape for some phenolic compounds such as phenolic acids or dihydrolflavonols. A region on chromosome 6 controlling the amount of aslinbin, resulting from the rhamnosylation of taxifolin, contains 4 uncharacterized flavonoid O-glycosyltransferases (Vitvi06g01093, Vitvi06g01097, Vitvi06g01099, Vitvi06g01100) that could be involved in this reaction.

Candidate genes for organic acids and δ13C
No QTL for citrate had yet been found, but our study yielded one on chromosome 3. This 56-kb region contains several candidates’ genes: 5 copies of allene oxide synthase (Vitvi03g00391 to 5), and the long chain acyl coA synthase 2 (Vitvi03g00388). Oxylipins formed by allene oxide synthases are precursors of jasmonates (Farmer and Goossens 2019) involved in rewiring central metabolism, thus decreasing the levels of those metabolites associated with active growth such as citrate (Savchenko et al. 2019).

Moreover, the closest homologue of the last gene in Arabidopsis participates in oil synthesis in seed endoplasmic reticulum, where its overexpression triggers the activation of genes involved in glycolysis (Ding et al. 2020). Acyl coA synthase 2 and citrate synthase may hence compete for AcetylCoA, which yields citrate when condensed with oxaloacetate.

Regarding malate, Vitvi09g00195 located on chromosome 9, possibly in a QTL found by Bayo-Carriha et al. (2019) in a parental genetic map from a bi-parental progeny, encodes a chloroplastic glyoxylic/succinic semialdehyde reductase 2 which has 2 connections with malate synthesis. First, this enzyme may scavenge
glyoxylate in the chloroplast matrix and protect photosynthesis from its adverse effects (Simpson et al. 2008). Glyoxylate is, with acetyl CoA, the direct substrate of malate synthase in glyoxysome and such diversion from the classical photorespiratory pathway was documented in Chlorella (Xie et al. 2016). Second, succinic semialdehyde dehydrogenase is the last enzyme in the gamma-aminobutyric acid shunt of the TCA cycle (Zarei et al. 2017), forming succinate that is readily oxidized to fumarate, the precursor of malate in mitochondria. In another new malate QTL on chromosome 12, Vitvi12g00505 encodes a cytosolic aconitate hydratase that may complement the activities of the mitochondrial and glyoxysomal ones, respectively, involved in the metabolism of dicarboxylate and glyoxylate. On chromosome 18, Vitvi18g01038 encodes V-type proton ATPase subunit a2, a part of the hydrophobic V0 rotor that generates the membrane potential essential for the storage of organic acids in grapevine fruit (Terrier et al. 2001). Noticeably, in a Riesling × Gewurztraminer progeny, subunits G of V-ATPase on chromosomes 8 and 13 were suggested as candidate genes for acidity QTLs (Duchêne et al. 2020).

Relevant candidate genes were also found under novel QTLs for δ13C, in particular Vitvi08g02203 on chromosome 8 that encodes the transcriptional regulator TACI-like. In rice it corresponds to a major QTL controlling tiller angle, with a direct influence on leaf exposition to light (Yu et al. 2007). We also noticed the presence of different candidate genes involved in stele expansion or differentiation, such as CASP-like proteins and Lonesome Highway (LHW) transcription factor.

Genomic prediction, and the wider goal of understanding genetic architectures

The accuracy of genomic prediction, assessed for the first time for such a large number of traits by cross-validation within a grapevine diversity panel, reached promising levels according to the median Pearson correlation (around 0.4), even though the coefficient of determination remains substantially lower (around 0.17, Fig. 4). Nevertheless, breeders mostly aim at accurately predicting the ranks of candidate genotypes, and the median Spearman correlation around 0.4 is relevant for that purpose.

Cross-validation results are interesting per se as they provide an upper threshold for prediction accuracy. Yet, the ultimate goal for breeders lies in training a model on a reference panel to predict genotypic BLUPs in a segregating population. When testing this with a subset of a Syrah × Grenache progeny not belonging to the panel, the accuracy metrics were lower than with the within-panel cross-validation, although they displayed the same trend in terms of methods. Ridge regression model (rrBLUP) performed better than the sparse regression model (varbvs), which may be due to the essentially infinitesimal architecture of the trait despite a few larger QTL segregating for this trait in the progeny (Doligez et al. 2013). This promising result was studied in more details with other traits and other progenies in grapevine (Brault et al. 2022), as well as in other perennial fruit crops (Minamikawa et al. 2017; Roth et al. 2020).

In terms of genetic architectures, we focused on additive ones and attempted to distinguishing trait classes with a sparse vs dense architecture. Leaving aside the trait class “abiotic stress” that had low broad-sense heritability, our results based on prediction accuracy indicated a sparser architecture for biochemical traits, vs a denser one for phenological, morphological and agronomical traits. In the framework of genotype–phenotype maps, this may correspond to the fact that biochemical traits are closer, in a causal sense, to genetic variation (such traits are sometimes called “endophenotypes”), hence making QTL detection easier. On the opposite, the other trait classes are more integrated, in the sense of resulting from multiple developmental and ecophysiological processes (Granier and Vile 2014). Moreover, the determination of genetic architecture is also known to depend on sample size and LD extent (Wimmer et al. 2013). In contrast to what is expected on annual plant breeding populations, we identified traits with better prediction accuracy assuming a sparse architecture rather than a dense one, in spite of the rather small sample size of our panel. This was likely due to the short LD within this diversity panel, a notable feature of perennial plants, although these results may not stand for grapevine bi-parental breeding populations with longer LD.

Conclusion

This work demonstrated the feasibility of performing a GWAS in a perennial fruit crop such as grapevine for numerous, mostly complex traits related to various aspects of plant biology and breeding. A key ingredient for field trials remains the experimental design necessary to achieve high broad-sense heritability. We also provided dense genotyping data for further studies on the panel, although, given the low LD, an even higher number of SNPs would be advantageous. In terms of GWAS, we confirmed that a gain in power is possible when using multiple-SNP models. Overall, we identified new QTLs as well as promising genes under them, leading to mechanistic hypotheses yet to be tested. In terms of genomic prediction, we provided a distribution of prediction accuracy across many traits likely to have various genetic architectures. We confirmed the usage of the RRBLUP/GLMUP model assuming a dense architecture as a relevant default. Yet, we showed that a model assuming a sparse architecture can reach higher prediction accuracy for some traits, notably in the case of traits closer to the genetic variation. As such, our work provided important results for the contribution of genomic prediction to perennial crop species breeding.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were carried out.

Data availability

The data that support the findings of this study are openly available, for sequences at the NCBI as BioProject PRJNA489354 and, for all the rest, at the Data INRAE repository at https://doi.org/10.15454/8DHKGL. The code that supports the findings of this study is openly available at the Data INRAE repository at https://doi.org/10.15454/8DHKGL. Many of the custom functions we used are available in a R package for reproducibility purposes, rutilstim-flutre (Flutre 2019).

Supplemental material is available at https://doi.org/10.15454/8DHKGL.

Acknowledgments

We thank all the agents from the grapevine germplasm collection maintained at INRAE Vassal, Valérie Miralles and Jean-François Ballester from AGAP-PPB for phenotyping of organic acids, Pierre Mournet from AGAP-GPTR and the GenoToul platform for genotyping by sequencing, Bertrand Pitotall and the South Green platform for computing, and Philippe Chatellet for useful suggestions on the text.
PT, AD, JMB, and LLC initiated the project. AD and JPP conceived the experimental design in the field. GB and YB installed and managed the field trial under the supervision of JPP and LLC. GB, YB, JPP, AD, LLC, RB, TL, JMB, VL, and PT collected phenotypic data on clusters and berries in 2010–2012. CR and LLC collected organic acid data from berries in 2011–2012. LLC, VC and JPP conceived the experimental design in 2014–2015. AF, GB, YB, and LLC collected phenotyping data in 2014–2015 and extracted DNA samples for the first GBS phase. IB tested the presence of viruses. MR, GB, YB, and LLC prepared samples before polyphenols, samples for the first GBS phase. IB collected phenotyping data in 2014–2015. AF, GB, YB, and LLC received the experimental design in 2014–2015. AF, GB, YB, and LLC made the libraries. TF wrote all the code and performed the statistical analyses. TF, AD and CR interpreted the results. CR and NT analyzed candidate genes. TF drafted the manuscript. All authors contributed critical revisions of the work and approved the manuscript.

Funding

This work was funded by several projects: GrapeReSeq (ANR, 2009–2011), DLVitis (ANR, 2010–2012), Innovine (KBBE, 2014–2015), “Créer les cépages de demain avec les outils d’aujourd’hui” (CASDAR, 2011–2013), and FruitSelGen (INRA métaprogramme Selgen, 2015–2016).

Conflicts of interest

None declared.

Literature cited

Adam-Blondon A-F, Martínez-Zapater JM, Kole C, editors. Genetics, Genomics and Breeding of Grapes. 2011. doi:10.1201/b10948.

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2016. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Barton K. MuMIn: Multi-model Inference. 2017. https://CRAN.R-project.org/package=MuMIn.

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):48. doi:10.18637/jss.v067.i01 [accessed 2017 Sep 25]. http://www.jstatsoft.org/v67/i01/.

Bayo-Canha A, Costantini L, Fernández-Fernández JL, Martínez-Cutillas A, Ruiz-García L. QTLs related to berry acidity identified in a wine grape population grown in warm weather. Plant Mol Biol Rep. 2019;37(3):157–169. doi:10.1007/s11105-019-01145-6.

Bigard A, Berthe DT, Maoddi E, Sire Y, Boursiquot J-M, Ojeda H, Péros J-P, Doligez A, Romieu C, Torregrosa L. Vitis vinifera L. fruit diversity to breed varieties anticipating climate changes. Front Plant Sci. 2018;9:455. doi:10.3389/fpls.2018.00455.

Bots J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 2005;139(2):652–663. doi:10.1104/pp.105.064238.

Bonnafous F, Fivet G, Blanchet N, Boniface M-C, Carrère S, Couzy J, Legrand L, Margé G, Bret-Mestreis E, Munos S, et al. Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theor Appl Genet. 2018;131(2):319–332. doi:10.1007/s00122-017-3003-4.

Brault C, Segura V, This P, Cunff LL, Flutre T, François P, Pons T, Péros J-P, Doligez A. Across-population genomic prediction in grapevine opens up promising prospects for breeding. Genetics. 2022. 9:uhac041. doi:10.1007/b97636 [accessed 2017 Jan 10].

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics. 2013;193(2):327–345. doi:10.1534/genetics.112.143313.

Canaguier A, Grimplet J, Di Gaspero G, Scalabrín S, Duchêne E, Choisne N, Mohellibi N, Guichard C, Rombouts S, Le Clainche I, et al. A new version of the grapevine reference genome assembly (12X v2) and of its annotation (VCost.v3). Genom Data. 2017;14:56–62. doi:10.1016/j.gdata.2017.09.002.

Carbonetto P, Stephens M. Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Anal. 2012;7(1):73–108. doi:10.1214/11-ba703.

Cardon LR, Bell JJ. Association study designs for complex diseases. Nat Rev Genet. 2001;2(2):91–99. doi:10.1038/35052543.

Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Statist Med. 2000;19(9):1141–1164. doi:10.1002/(SICI)1097-0258(20000519)19:9<1141::AID-SIM479>3.0.CO;2-F.

Costantini L, Malacarne G, Lorenzi S, Troggio M, Mattivi F, Moser C, Grando MS. New candidate genes for the fine regulation of the colour of grapes. J Exp Bot. 2015;66(15):4427–4440. doi:10.1093/jxb/erv159.

Cressie NAC. Statistics for Spatial Data. Hoboken (NJ): John Wiley & Sons, Inc.; 1993. (Wiley Series in Probability and Statistics). [accessed 2018 Jul 19]. http://doi.wiley.com/10.1002/9781119115151.

DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, Angel G, Rivas M, Hanna M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–498. doi:10.1038/ng.806.

Di Gaspero G, Cipriani G, Adam-Blondon A-F, Testolin R. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. Theor Appl Genet. 2007;114(7):1249–1262. doi:10.1007/s00122-007-0516-2.

Ding L-N, Gu S-L, Zhu F-G, Ma Z-Y, Li J, Li M, Wang Z, Tan X-L. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BMC Plant Biol. 2020;20(1):217. doi:10.1186/s12870-020-2240-x.

Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Essault F, Dias S, Berger G, François P, Pons T, et al. New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol. 2013;13(217). doi:10.1186/1471–2229-13–217.

Duchêne É, Butterlin G, Claudel P, Dumas V, Jaegli N, Merdinoğlu D. A grapevine (Vitis vinifera L.) deoxy-o-xylulose synthase gene colocalates with a major quantitative trait loci for terpenol content. Theor Appl Genet. 2009;118(3):541–552. doi:10.1007/s00122-008-0919-8.

Duchêne É, Dumas V, Butterlin G, Jaegli N, Rustenholz C, Chaveau A, Bérard A, Le Paslier MC, Gaillard I, Merdinoğlu D. Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium. Theor Appl Genet. 2020;133(3):993–1008. doi:10.1007/s00122-019-05324-9.
Elshire R, Glaubitz J, Sun Q, Poland J, Kawamoto K, Buckler E, Mitchell S. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.doi: 10.1371/journal.pone.0019379.

Endelman J. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome J. 2011;4(3):250–255. doi: 10.3835/plantgenome2011.08.0024.

Falconer DS, Mackay TFC. Introduction to Quantitative Genetics, 4th edn. Harlow: Pearson, Prentice Hall, 2009. 16 print.

Farmer EE, Goossens A. Jasmonates: what ALLENE OXIDE SYNTHASE does for plants. J Exp Bot. 2019;70(13):3373–3378. doi: 10.1093/jxb/erz254.

Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet J-M, Cheynier V, This P. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics. 2009;183(3):1127–1139. doi: 10.1534/genetics.109.103929.

Flutre T. rutilusimflutre: R package providing functions useful to quantitative geneticists, v0.170.0, Zenodo, doi:10.5281/zenodo.3580267.

Granier C, Vile D. Phenotyping and beyond: modelling the relationships between traits. Curr Opin Plant Biol. 2014;18:96–102. doi: 10.1016/j.opb.2014.02.009.

Guo D-L, Zhao H-L, Li Q, Zhang G-H, Jiang J-F, Liu C-H, Yu Y-H. Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Hortic Res. 2019;6(11). doi: 10.1038/s41438-018-0089-z.

Guo Y, Xue R, Lin H, Su K, Zhao Y, Zhendong L, Ma H, Shi G, Niu Z, Li K, et al. Genetic analysis and QTL mapping for fruit skin anthocyanin in grape (Vitis vinifera). Pak J Bot. 2015;47(5):1765–1771.

Habier D, Fernando R, Dekkers J. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177(4):2389–2397. doi: 10.1534/genetics.107.081190.

Hamann A, Namkoong G, Koshy MP. Improving precision of breeding values by removing spatially autocorrelated variation in forestry field experiments. Silvae Genetica. 2002;51(5-6):2010-2215. doi: 10.7939/t34t6f673.

Huang Y, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet J-M, et al. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol. 2012;12(1):30.doi: 10.1186/1471–2229-12–30.

Kemper KE, Bowman PJ, Hayes BJ, Visscher PM, Goddard ME. A multi-trait Bayesian method for mapping QTL and genomic prediction. Genet Sel Evol. 2018;50(1). doi:10.1186/s12711-018-0377-y. https://gejoournal.biomedcentral.com/articles/10.1186/s12711-018-0377-y [accessed 2018 Sep 4].

Kotseridis Y, Baumes RL, Skouroumounis GK. Quantitative determination of free and hydrolytically liberated β-damascenone in red grapes and wines using a stable isotope dilution assay. J Chromatogr A. 1999;849(1):245–254. doi:10.1016/S0021-9673(99)00540-3.

Krawjewski P, Chen D, Cwiek H, van Dijk A, Fiorani F, Kersey P, Klukas C, Lange M, Markiewicz A, Nap J, et al. Towards recommendations for metadata and data handling in plant phenotyping. J Exp Bot. 2015;66(18):5417–5427. doi: 10.1093/jxb/eru271.

Kuhn M. caret: Classification and Regression Training. 2018. https://CRAN.R-project.org/package=caret.

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82(13):1–26. doi: 10.18637/jss.v082.i13.

Lauvou C, Launay A, Baciileri R, Lacombe T, Adam-Blondon A-F, Bérard A, Chauveau A, de Andrés MT, Hausmann L, Ibáñez J, et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS One. 2018;13(2):e0192540.doi: 10.1371/journal.pone.0192540.

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio; 2013. [accessed 2018 Dec 12]. http://arxiv.org/abs/1303.3997.

Li, Brader G, Kariola T, Tapio Palva E. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 2006;46(3):477–491. doi: 10.1111/j.1365-313X.2006.02712.x.

Malacarne G, Costantini L, Collier E, Battilana J, Velasco R, Vrhosvek U, Grando MS, Moser C. Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. J Exp Bot. 2015;66(15):4441–4453. doi:10.1093/jxb/erv243.

Marroni F, Pinosio S, Morgante M. Structural variation and genome complexity: is dispensable really dispensable? Curr Opin Plant Biol. 2014;18:31–36. doi: 10.1016/j.pbi.2014.01.003.

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 2011;17(1):10.doi:10.14806/ej.17.1.200.

Matus J, Aquaia F, Arce-Johnson P. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol. 2008;8(1):83.doi:10.1186/1471-2228-8-83.

McShane BB, Gal D. Statistical significance and the dichotomization of evidence. J Am Stat Assoc. 2017;112(519):885–895. doi:10.1080/01621459.2017.1289846.

Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, de L, Ángeles Micconó M, Ramos R, Le Cunff N, Boursiquot J-M, et al. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol. 2011;11(1):57.doi:10.1186/1471–2229–11–57.

Meuwissen T, Hayes B, Goddard M. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–1829.

Migovciovsky Z, Sawler J, Gardner KM, Aradhyia MK, Prins BH, Schwaninger HR, Bustamante CD, Buckler ES, Zhong G-Y, Brown PJ, et al. Patterns of genomic and phenomic diversity in wine and table grapes. Hortic Res. 2017;4:17035.doi: 10.1038/hortres.2017.15.

Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, Goto S, Yoshioka T, Imai A, Hamada H, Hayashi T, et al. Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep. 2017;7(4721):1–13. doi:10.1038/s41598-017-05100-x. http://www.nature.com/articles/s41598-017-05100-x [accessed 2019 Mar 6].

Myles S, Boyko A, Owens C, Brown P, Grassi F, Aradhyia M, Prins B, Reynolds A, Chia J-M, Ware D, et al. Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A. 2011;108(9):3530–3535. doi:10.1073/pnas.1009363108.

Naegele RP, Londo JP, Zou C, Cousins P. Identification of SNPs associated with magnesium and sodium uptake and the effect of their accumulation on micro and macro nutrient levels in Vitis vinifera. PLoS One. 2013;8(9):e70773.doi: 10.1371/journal.pone.0070773.

Nicolas S, Péros J-P, Lacombe T, Launay A, Le Paslier M-C, Bérard A, Mangin B, Valière S, Martins F, Le Cunff L, et al. Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L.) diversity panel newly designed for association studies. BMC Plant Biol. 2016;16(74):1–19. doi:10.1186/s12870-016-0754-z.
Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H. Joint modeling of additive and non-additive genetic line effects in single field trials. Theor Appl Genet. 2006;113(5):809–819. doi:10.1007/s00122-006-0333-z.

Ollé D, Guiraud JL, Souquet JM, Terrier N, Ageorges A, Cheynier V, Verries C. Effect of pre- and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development: water stress and flavonoid biosynthesis. Aust J Grape Wine Res. 2011;17(1):90–100. doi:10.1111/j.1755-0238.2010.00121.x.

Pebesma EJ. Multivariable geostatistics in S: the gstat package. Comput Geosci. 2004;30(7):683–691. doi:10.1016/j.cageo.2003.04.002.

Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016;7(690):1–14. doi:10.3389/fpls.2016.00670. http://journal.frontiersin.org/Article/10.3389/fpls.2016.00670/abstract [accessed 2021 Jan 5].

Piepho HP, Möhring J, Melchinger AE, Büchse A. BLUE for phenotypic selection in plant breeding and variety testing. Euphytica. 2008;161(1–2):209–228. doi:10.1007/s10681-007-9449-8.

Pinasseau L, Vallverdu-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Péros J-P, Ageorges A, Sommerer N, Boulet J-C, et al. Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci. 2017;8:1826. doi:10.3389/fpls.2017.01826.

Pinasseau L, Verbaere A, Roques M, Meudec E, Vallverdu-Queralt A, Ollier L, Marlin T, Guiraud J-L, Berger G, Bertrand Y, et al. Innovine WP3: 105 phenolic compound quantification of 2014 and 2015 mature grape berries from a core-collection of 279 irrigated and non-irrigated Vitis vinifera cultivars; 2017. doi:10.5281/ZENODO.574857. [accessed 2020 Aug 27]. https://zenodo.org/record/574857.

Rex F, Fechter I, Hausmann L, Töpfer R. QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock ‘Borner’ (V. riparia Gm183 × V. cinera Arnold). Theor Appl Genet. 2014;127(7):1667–1677. doi:10.1007/s00122-014-2329-4.

Rienth M, Torregrosa I, Sarah G, Ardisson M, Brillouet J-M, Romieu C. Temperature desynchronizes sugar and organic acid metabolism in ripening grape fruits and remodels their transcriptome. BMC Plant Biol. 2016;16(164):1–23. doi:10.1186/s12870-016-0850-0.

Rinaldo A, Cavallini E, Jia Y, Moss SMA, McDavid DAJ, Hooper LC, Robinson SP, Tornielli GB, Zenoni S, Ford CM, et al. A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiol. 2015;169:1897–1916. doi:10.1104/pp.15.01255.

Roth M, Muranty H, Di Guardo M, Guerra W, Patocchi A, Costa F. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. Hortic Res. 2020;7(1):148. doi:10.1007/s41438-020-00370-5.

Sargolzaei M, Maddalena G, Bitsadze N, Maghradze D, Bianco PA, Failla O, Toffolatti SL, De Lorenzis G. Rpvp29, Rpvp30 and Rpvp31; three novel genomic loci associated with resistance to Plasmopara viticola in Vitis vinifera Front Plant Sci. 2020;11:562432. doi:10.3389/fpls.2020.562432.

Schweiger R, Kaufman S, Laaksonen R, Kleber ME, März W, Eskin E, Rosset S, Halperin E. Fast and accurate construction of confidence intervals for heritability. Am J Hum Genet. 2016;98(6):1181–1192. doi:10.1016/j.ajhg.2016.04.016.

Segura V, Viljalimsson B, Platt A, Korte A, Seren U, Long Q, Nordborg M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. 2012;44(7):825–830. doi:10.1038/ng.2314.

Segurel MA, Razungles AJ, Ricou C, Triguero MGL, Raumes RL. Ability of possible DMS precursors to release DMS during wine aging and in the conditions of heat-alkaline treatment. J Agric Food Chem. 2005;53(7):2637–2645. doi:10.1021/jf048273r.

Shahood R. La baie au sein d’une vendange asymétrique: Un nouveau paradigme vers l’interprétation quantitative des flux de sucres et acides en tant qu’osmotiques et substrat respiratoires majeurs lors du développement bimodal du raisin [PhD]. [Montpellier, France]: Montpellier SupAgro; 2017. https://www.theses.fr/fr/s206075.

Sievanen R, Godin C, Dejong TM, Nikinmaa E. Functional-structural plant models: a growing paradigm for plant studies. Ann Bot. 2014;114(4):599–603. doi:10.1093/aob/mcu175.

Simpson JP, Di Leo R, Dhanoo PK, Allan WL, Mukhmoudova A, Clark SM, Hoover GJ, Mullen RT, Shelp BJ. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification. J Exp Bot. 2008;59(9):2545–2554. doi:10.1093/jxb/ern123.

Sun L, Li S, Jiang J, Tang X, Fan X, Zhang Y, Liu J, Liu C. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC Plant Biol. 2020;20(1):302. doi:10.1186/s12870-020-02517-x.

Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell S, Elshire RJ, et al. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. 2014;7(3):1–12. doi:10.3835/plantgenome2014.05.0023.

Tello J, Roux C, Chouikhi H, Laucou V, Sarah G, Weber A, Santoni S, Flutre T, Pons T, This P, et al. A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. Theor Appl Genet. 2019;138(2):2237–2252. doi:10.1007/s00122-019-03351-y.

Terrier N, Sauvage F-X, Ageorges A, Romieu C. Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta. 2001;213(1):20–28. doi:10.1007/s004250000472.

Vezzulli S, Doligez A, Bellin D. Molecular mapping of grapevine genes. In: D Cantu, MA Walker, editors. The Grape Genome (Compendium of Plant Genomes). Cham: Springer International Publishing; 2019. p. 103–136. http://link.springer.com/10.1007/978-3-030–18601-2_7 [accessed 2021 Feb 4].

Vezzulli S, Zulini L, Stefanini M. Genetics-assisted breeding for downy/powdery mildew and phylloxera resistance at fern. BIO Web Conf. 2019;12:01020. doi:10.1051/bioconf/20191201020.

Vitezica Z, Varona L, Legarra A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics. 2013;195(4):1223–1230. doi:10.1534/genetics.113.155176.

Wang M, Vannozzi A, Wang G, Liang Y-H, Tornielli GB, Zenoni S, Cavallini E, Pizzotti M, Cheng Z-M. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res. 2014;1(1):14016. doi:10.1038/hortres.2014.16.

Wang X, Yang Z, Xu C. A comparison of genomic selection methods for breeding value prediction. Sci Bull. 2015;60(10):925–935. doi:10.1007/s11434-015–0791-2.
Wimmer V, Lehermeier C, Albrecht T, Auinger H-J, Wang Y, Schon C-C. Genome-wide prediction of traits with different genetic architecture through efficient variable selection. Genetics. 2013;195(2):573–587. doi:10.1534/genetics.113.150078.

Wolkovich EM, García de Cortázar-Atauri I, Morales-Castilla I, Nicholas KA, Lacombe T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nature Clim Change. 2018;8(1):29–37. doi:10.1038/s41558-017-0016-6.

Xie X, Huang A, Gu W, Zang Z, Pan G, Gao S, He L, Zhang B, Niu J, Lin A, et al. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light. New Phytol. 2016;209(3):987–998. doi:10.1111/nph.13659.

Xu S. Theoretical basis of the Beavis effect. Genetics. 2003;165(4):2259–2268.

Yang J, Benyamin B, McEvoy B, Gordon S, Henders A, Nyholt D, Madden P, Heath A, Martin N, Montgomery G, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–569. doi:10.1038/ng.608.

Yang X, Guo Y, Zhu J, Niu Z, Shi G, Liu Z, Li K, Guo X. Genetic diversity and association study of aromatics in grapevine. J Amer Soc Hort Sci. 2017;142(3):225–231. doi:10.21273/JASHS04086-17.

Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 2007;52(5):891–898. doi:10.1111/j.1365-313X.2007.03284.x.

Yu K, Jun JH, Duan C, Dixon RA. VvLAR1 and VvLAR2 are bifunctional enzymes for proanthocyanidin biosynthesis in grapevine. Plant Physiol. 2019;180(3):1362–1374. doi:10.1104/pp.19.00447.

Zarei A, Brikis CJ, Bajwa VS, Chiu GZ, Simpson JP, DeEll JR, Bozzo GG, Shelp BJ. Plant glyoxylate/succinic semialdehyde reductases: comparative biochemical properties, function during chilling stress, and subcellular localization. Front Plant Sci. 2017;8:1399.doi:10.3389/fpls.2017.01399.

Zarouri B. Association study of phenology, yield and quality related traits in table grapes using SSR and SNP markers. Universidad Politécnica de Madrid; 2016. http://oa.upm.es/43315/1/BELKACEM_ZAROURI.pdf.

Zhang H, Fan X, Zhang Y, Jiang J, Liu C. Identification of favorable SNP alleles and candidate genes for seedlessness in Vitis vinifera L. using genome-wide association mapping. Euphytica. 2017;213(7):1–13. doi:10.1007/s10681-017-1919-z. http://link.springer.com/10.1007/s10681-017-1919-z [accessed 2018 Mar 9].

Zhang Y-M, Jia Z, Dunwell JM. Editorial: the applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci. 2019;10:100.doi:10.3389/fpls.2019.00100.

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44(7):821–824. doi:10.1038/ng.2310.

Communicating editor: A. Paterson