Fluid Overload and Mortality in Patients with Severe Acute Kidney Injury and Extracorporeal Membrane Oxygenation

Samantha Gunning,1 Fouad Kutuby,2 Rebecca Rose,3 Sharon Trevino,1 Tae Song,3 and Jay L. Koyner1

Abstract
Background Volume overload is increasingly being understood as an independent risk factor for increased mortality in the setting of AKI and critical illness, but little is known about its effect in the setting of extracorporeal membrane oxygenation (ECMO). We sought to evaluate the incidence of AKI and volume overload and their effect on all-cause mortality in adults after ECMO cannulation.

Methods We identified all adult patients who underwent ECMO cannulation at the University of Chicago between January 2015 and March 2017. We evaluated the incidence of KDIGO-defined AKI, RRT, and volume overload. Volume overload was defined as achieving a positive fluid balance of 10% above admission weight over the first 72 hours after ECMO cannulation. The primary outcome collected was 90 day all-cause mortality. Secondary outcomes included 30-day mortality, duration of ECMO and RRT therapy, length of stay, and dialysis independence at 90 days.

Results There were 98 eligible patients, 83 of whom developed AKI (85%); 48 (49%) required RRT and 19 (19%) developed volume overload at 72 hours. Patients with volume overload had increased risk of death at 90 days compared with those without volume overload (HR, 2.3; 95% CI, 1.3 to 4.2; P = 0.004). Patients with AKI-D had increased risk of death at 90 days compared with those without AKI-D (HR, 2.2; 95% CI, 1.3 to 3.8; P = 0.004). Volume overload remained an independent predictor of 90-day mortality when adjusting for RRT, APACHE score, weight (kg), diabetes, and heart failure (HR, 2.9; 95% CI, 1.4 to 6.0; P = 0.003).

Conclusions Volume overload and AKI are common and have significant prognostic value in patients treated with ECMO. Initiating RRT may help to control the deleterious effects of volume overload and improve mortality.

Introduction
Use of extracorporeal membrane oxygenation (ECMO) as a treatment for refractory cardiovascular and/or respiratory failure has increased substantially over the last decades (1–3). AKI is a frequent complication of critically ill patients receiving ECMO, with the mechanism of injury often being multifactorial (hemodynamic instability, inflammatory response to the membrane, related to the underlying disease process or premorbid conditions) (4–7). The incidence of AKI in the setting of ECMO is highly variable and depends on the AKI definition used and indications for ECMO; similarly, a significant number of these patients require RRT, with rates varying from 26% to 67% depending on the cohort (7–12). Kashani and colleagues have recently undertaken a meta-analysis of 41 cohort studies including >10,000 patients treated with ECMO; they demonstrated that the incidence rate of AKI remains high (pooled estimate incidence, 63%; 95% CI, 52% to 72%) but has not changed over time. Further, they demonstrated that in an adjusted analysis, patients with AKI requiring RRT (AKI-D) had an adjusted pooled odds ratio of 3.32 (95% CI, 2.21 to 4.99); I² = 82% for inpatient mortality compared with those on ECMO who did not require RRT (7).

Despite the growing literature, factors that determine increased mortality among patients with severe AKI and AKI-D on ECMO require further exploration. The effect of volume overload on general AKI populations and on pediatric patients treated with ECMO has been described (13–16). However, there are limited data on the effect of volume overload on adults requiring ECMO (17). In adult patients with AKI, volume overload (>10% increase in body weight) is associated with significantly more respiratory failure, need for mechanical ventilation, sepsis, and other adverse outcomes (18,19). Volume overload is deleterious in that it alters the volume of distribution of most drugs which can lead to inappropriate drug dosing, poor wound healing, and can even mask the presence of AKI.

1Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois; 2Section of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Illinois; 3Department of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee; and

Correspondence: Dr. Jay L. Koyner, Section of Nephrology, University of Chicago, 5841 South Maryland Avenue, Suite S-507, MC 5100, Chicago, IL 60637. Email: jkoyner@uchicago.edu

232 Copyright © 2020 by the American Society of Nephrology www.kidney360.org Vol 1 April, 2020
(20,21). Furthermore, after adjusting for severity of illness, patients with AKI and volume overload have significantly higher 90-day mortality (19). However, the effect of volume overload on adults requiring ECMO requiring RRT is unknown. Finally, although AKI and volume overload are both associated with adverse outcomes and are often interconnected, they may not always occur simultaneously. As such, we conducted a single-center, retrospective cohort study to examine the effect of AKI, AKI-D, and volume overload on patient outcomes in adults requiring ECMO.

Materials and Methods

The Institutional Review Board at the University of Chicago approved this study. We performed a single-center, retrospective chart review of all patients who were cannulated on venoarterial (VA) and venovenous (VV) ECMO from January 2015 to March 2017. Patients with ESKD and those who were cannulated on ECMO for <24 hours were excluded from study.

Demographic, clinical, and biochemical data were obtained from the University of Chicago electronic medical record. We collected admission data on age, race, sex, weight, and type of intensive-care unit (ICU). Clinical parameters including nephrotoxin use, presence of and Kidney Disease Improving Global Outcomes (KDIGO) stage of AKI, presence of sepsis, organ transplantation, and vasoactive use before ECMO cannulation were obtained. Baseline biochemical parameters including arterial pH, bicarbonate, and hemoglobin were obtained directly before initiation of ECMO cannulation. Baseline serum creatinine was defined as the mean outpatient value for the 6 months before the index hospital admission; when no outpatient values were available the admission creatinine was used. During the time of inpatient admission (13), cannulation that left a patient 10% above their weight at admission weight and significantly lower among patients who were volume overloaded at 72 hours (P=0.002). Patients with volume overload at 72 hours were less likely to have heart failure and diabetes (P=0.04 and P=0.06, respectively). Notably, there was no difference in critical illness scores (APACHE or sequential organ failure assessment [SOFA] score) based on volume status. All other baseline characteristics were similar between the two groups.

Supplemental Tables 1–3 demonstrate the same baseline characteristics stratified by volume overload at 7 days, RRT status, and ECMO type (VA or VV). Presence of volume overload at 7 days was associated with significantly lower admission weight and significantly higher number of vasoactives before ECMO cannulation. Receipt of RRT was more

Results

We identified 117 patients who underwent ECMO cannulation at our institution during the study period. A total of 19 patients were excluded from study, 12 patients for having received ECMO for <24 hours and seven patients for ESKD (Figure 1). In the final cohort of 98 patients, 83 (85%) developed AKI. Of those with AKI, 48 (58%) required RRT. The modality of treatment was continuous veno-venous hemodialysis (CVVHD) for all patients during the first 7 days after ECMO cannulation. Table 1 demonstrates the baseline characteristics of patients stratified by presence of volume overload at 72 hours. Admission weight was found to be significantly lower among patients who were volume overloaded at 72 hours (P=0.002). Patients with volume overload at 72 hours were less likely to have heart failure and diabetes (P=0.04 and P=0.06, respectively). Notably, there was no difference in critical illness scores (APACHE or sequential organ failure assessment [SOFA] score) based on volume status. All other baseline characteristics were similar between the two groups.

Statistical Methods

Qualitative data were recorded in a categoric fashion and quantitative covariates were measured as continuous variables. Categoric variables were reported as proportions and compared using the chi-squared test or Fisher exact test where appropriate. Continuous variables were reported as mean and SD or median and interquartile range and compared using the t test or Wilcoxon rank sum test where appropriate. The 30- and 90-day all-cause mortalities were examined using the Kaplan–Meier estimator of the survival function and survival curves were compared using the log rank test. Finally, multivariate Cox proportional hazards modeling was performed to obtain hazard ratios for 30- and 90-day mortality based on volume overload at 72 hours controlling for RRT status, Acute Physiology, Age, Chronic Health Evaluation (APACHE) score, weight (in kg), presence of diabetes mellitus, and presence of heart failure. All statistical tests were two sided and used an α level of 0.05 as a cutoff for statistical significance. Statistical analyses were performed using STATA 15 (StataCorp LP, College Station, TX).

Outcomes

Primary outcomes of 30- and 90-day all-cause mortality were observed. Secondary outcomes included volume overload after 72 hours of ECMO cannulation. Other measured outcomes included ICU length of stay, hospital length of stay, duration of ECMO cannulation, total duration of CRRT, and dialysis independence at 90 days.

ECMO, RRT, and Volume Overload, Gunning et al. 233
common in those with higher admission weight, coronary artery disease, and higher critical illness severity scores on the day of ECMO cannulation (as measured by APACHE and SOFA score). Patients cannulated with VA versus VV ECMO were more likely to be in the cardiac ICU, be on inotropic support, and have coronary artery disease and heart failure. On the basis of the SOFA score at ECMO cannulation, patients on VA ECMO had greater severity of illness than patients on VV ECMO, but this was not true when comparing APACHE score. We explored nephrotoxin use in the cohort and found that patients on RRT were less likely to have been exposed to angiotensin-converting enzyme inhibitors/angiotensin receptor blockers but were no more likely to be exposed to other common nephrotoxins (Supplemental Table 4).

Volume Overload and Patient Outcomes

We stratified outcomes by presence and absence of volume overload at 72 hours (Table 2). Volume overload at 72 hours was associated with significantly shorter length of stay and duration of ECMO therapy with higher 30-day and 90-day mortality rates. There were no differences in rates of AKI, RRT, or duration of CRRT comparing patients with and without volume overload. Supplemental Tables 5–7 demonstrate outcomes by volume overload at 7 days, RRT status, and ECMO type (VA or VV). Volume overload at 7 days was associated with a trend toward less dialysis independence at 90 days for patients with volume overload: one patient (6%) versus nine patients (30%) (P=0.07). A total of 15 patients who required RRT survived to 90 days and seven of those patients were dialysis independent at that time. Patients on VA ECMO had shorter total duration of ECMO therapy compared with patients on VV ECMO, but all other outcomes were the same between these groups.

For patients requiring RRT, mortality increased as volume status became increasingly positive. Patients who received RRT and were able to achieve negative fluid balance had the lowest 90-day mortality (64%; seven of 11 patients), whereas those with volume overload and RRT had a 90-day mortality of 100% (nine of nine patients) (Figure 2). Mortality did not increase with positive fluid balance in those who did not receive RRT; however, those meeting the definition of volume overload did have the highest 90-day mortality at 58% (seven of 12 patients).

There were no significant differences in achieving either negative fluid balance or volume overload between those requiring RRT and those not requiring RRT (P=0.50 and 0.23, respectively). There were no significant differences in severity of illness measured by APACHE score at the time of ECMO cannulation across volume status and RRT status (Supplemental Table 8). There was a significant difference in the mean 72-hour cumulative fluid balance in liters (mean [SD]) with those receiving RRT still being more net positive (10.1 [17.4]) compared with those without RRT (3.6 [7.9]; P=0.02). However, when looking only at fluid balance for those requiring RRT and comparing 72-hour cumulative balance in liters (mean [SD]) while receiving RRT versus not yet on RRT, those receiving RRT were less net positive (5.5 [7.5]) than those not yet on RRT (10.0 [15.9]; P=0.15) (Table 3).

Of the 48 patients requiring RRT during index hospitalization when ECMO was cannulated, 24 of them received CRRT in line with their ECMO circuit and 24 received CRRT through a central venous catheter and a circuit distinct from the ECMO machine. There were no significant differences in

Figure 1. This consort diagram of our study population shows those patients excluded from the final cohort as well as those with and without volume overload at 72 hours. ECMO, extracorporeal membrane oxygenation; VA, venoarterial; VV, venovenous.
volume status based on the circuit connection. We found 29% of patients achieved negative volume status at 72 hours with CRRT in line with ECMO circuit compared with 13% for separate circuit, and 25% of patients were volume overloaded with CRRT in line with ECMO circuit compared with 13% for separate circuit ($P=0.17$). There was no difference in 90-day mortality based on the circuit connection. We found 67% 90-day mortality for patients with CRRT in line with ECMO circuit compared with 13% for separate circuit ($P=0.17$).

Table 1. Clinical characteristics of those with and without volume overload on day 3 after ECMO cannulation

Characteristics	Volume Overload ($n=19$)	No Volume Overload ($n=79$)	P Value
Age (years)	55.2±19.8	54.7±12.8	0.90
Weight (kg)	75.1±19.9	89.8±18.1	0.002
Gender			0.60
Male	14 (73.7)	52 (65.8)	
Female	5 (26.3)	27 (31.2)	
Race			0.30
Black	8 (42.1)	36 (45.6)	
White	9 (47.4)	41 (51.9)	
Other	2 (10.5)	2 (2.5)	
Comorbid conditions			
CKD	7 (36.8)	28 (35.4)	1.00
Diabetes	3 (15.8)	32 (40.5)	0.06
Hypertension	9 (47.4)	50 (63.3)	0.30
Heart failure	4 (21.1)	38 (48.1)	0.04
Coronary disease	11 (57.9)	36 (45.6)	0.44
CVA	3 (15.8)	4 (5.1)	0.13
Cancer	5 (26.3)	8 (10.1)	0.12
ICU type			0.64
Cardiac	11 (57.8)	44 (55.6)	
CT surgical	6 (31.6)	26 (32.9)	
Surgical	0 (0.0)	2 (2.6)	
Medical	2 (10.5)	7 (8.9)	
Sepsis	2 (10.5)	11 (13.9)	1.00
Mechanical ventilation	17 (89.5)	76 (92.6)	0.25
Vasoactive use before ECMO	17 (89.5)	63 (79.8)	0.51
Number of vasoactives	2.0±1.1	1.6±1.1	0.22
Number of inotropes	1.2±0.9	1.4±0.89	0.49
Baseline serum creatinine	1.1±0.46	1.1±0.40	0.72
AKI before ECMO	10 (52.6)	35 (44.3)	0.61
Baseline pH	7.3±0.16	7.3±0.18	0.59
Baseline serum bicarbonate	19.2±5.5	20.9±6.4	0.29
APACHE	15 (13-29)	19 (13-25)	0.94
SOFA	7 (5–14)	8 (5–11)	0.67
ECMO type			1.00
VA	16 (84.2)	64 (81.0)	
VV	3 (15.8)	15 (19.0)	

Data are presented as n (%), mean±SD, or median (interquartile range) as appropriate. ECMO, extracorporeal membrane oxygenation; CVA, cerebral vascular accident; ICU, intensive-care unit; CT, computed tomography; APACHE, Acute Physiology, Age, Chronic Health Evaluation; SOFA, sequential organ failure assessment; VA, venaarterial; VV, venovenous.

Table 2. Outcomes of those with and without volume overload on day 3 after ECMO cannulation

Outcome	Volume Overload ($n=19$)	No Volume Overload ($n=79$)	P Value
Length of ICU stay	11 (5–31)	26 (11–51)	0.007
Length of hospital stay	11 (5–31)	32 (16–60)	0.002
AKI	18 (94.7)	65 (82.3)	0.29
CRRT	8 (42.1)	40 (50.6)	0.61
Duration of ECMO	4 (3–5)	7 (4–12)	0.006
Duration of CRRT	3 (1.5–10) ($n=8$)	10 (3.5–23.5) ($n=48$)	0.13
Serum creatinine day 90	1.6 (1.2–1.9) ($n=2$)	1.4 (1–1.6) ($n=32$)	0.61
Dialysis independence at 90 d	0 (0.0) ($n=8$)	10 (25.0) ($n=40$)	0.18
Mortality: 30 d	13 (68.4)	28 (35.4)	0.02
Mortality: 60 d	14 (73.7)	38 (48.1)	0.07
Mortality: 90 d	14 (73.7)	40 (50.6)	0.08

Data are presented as n (%), mean±SD, or median (interquartile range) as appropriate. ICU, intensive-care unit; CRRT, continuous RRT; ECMO, extracorporeal membrane oxygenation.
with ECMO circuit compared with 71% for separate circuit (P=0.75).

Survival Analyses
Patients with volume overload, RRT, and AKI had higher 30- and 90-day mortality compared with those without AKI. Figure 3A shows the 90-day survival curve for those with and without volume overload at 72 hours after ECMO cannulation; P=0.003 (90-day mortality 76% with volume overload versus 51% without volume overload). Figure 3B shows the 90-day survival curves for those with and without dialysis requirements; P=0.003 (90-day mortality 71% with RRT versus 42% without RRT). Figure 3C shows the 90-day survival curves for those with and without AKI; P=0.04 (90-day mortality 60% with AKI versus 40% without AKI).

Figure 4 demonstrates the survival curves stratified by RRT and volume overload status at 72 hours after ECMO cannulation. Patients with AKI-D and volume overload had the highest 90-day mortality (100%). Mortality was similar between those with AKI-D and no volume overload and those with volume overload without AKI-D. Patients without volume overload and no receipt of RRT had the highest survival with a 90-day mortality of 37%.

Univariate and Multivariate Cox Proportional Hazards Analyses
Table 4 displays the hazards of 90-day mortality in our univariate analyses and multivariate model. Volume overload at 72 hours after ECMO, AKI-D, and APACHE score were all significant predictors of 90-day mortality in univariate analysis. The relative risk of death at 90 days reported as a hazard ratio was 2.36 (95% CI, 1.32 to 4.24; P=0.003) for patients with volume overload, 2.22 (95% CI, 1.29 to 3.83; P=0.004) for patients with AKI-D, and 1.04 (95% CI, 1.02 to 1.09; P=0.001) with every one-point increase in APACHE score. Weight (in kg), presence of diabetes, and presence of heart failure were NS predictors of 90-day mortality in univariate analysis. In the multivariate analysis, the effect of volume overload on 90-day mortality was still significant after adjusting for AKI-D, APACHE score, weight, diabetes, and heart failure with a hazard ratio of 2.93 (95% CI, 1.44 to 5.96; P=0.003).

Discussion
We have demonstrated in a single-center cohort of patients receiving ECMO that patients who develop AKI-D or volume overload are at increased risk for morbidity and mortality. We analyzed the interplay between these two factors and found that, in our population, the combination of severe AKI and volume overload led to higher mortality compared with when just one of these factors was present. Before our investigation there was limited evidence investigating the effect RRT and volume overload have on ECMO patient mortality.

Schmidt et al. (17) performed a single-center, retrospective cohort study of 172 adults receiving VA and VV ECMO and demonstrated that patients who had positive fluid balance on ECMO day 3, regardless of RRT status, were more likely to experience 90-day mortality. In their adjusted analyses, day-3 fluid balance was an independent predictor of long-term mortality. Similar to our study, in their cohort, 60% (n=103) of patients received RRT in the setting of ECMO.

Day of ECMO	Net UF on RRT (Mean (SD) in L)	Net I-O Not Yet on RRT (Mean (SD) in L)	Mean Difference in L	P Value
1	1.4 (3.1) (n=28)	7.4 (15.1) (n=20)	–6.0	0.02
2	3.5 (5.6) (n=32)	3.5 (4.0) (n=15)	0.0	0.50
3	1.7 (3.2) (n=34)	1.6 (6.8) (n=11)	0.1	0.53
4	0.6 (2.1) (n=36)	0.4 (0.8) (n=9)	0.2	0.61
5	2.3 (4.8) (n=34)	2.0 (6.0) (n=8)	0.3	0.60
6	0.6 (3.6) (n=32)	1.6 (12.2) (n=6)	–1.0	0.25
7	0.1 (2.1) (n=35)	0.5 (2.7) (n=4)	–0.4	0.36
Cumulative 72 hr	5.5 (7.5)	10.0 (15.9)	–4.5	0.15

ECMO, extracorporeal membrane oxygenation; UF, ultrafiltration; I-O, ins-outs (ins minus outs).
and receipt of CRRT did not guarantee negative fluid balance. Our data echo these findings, confirming the importance of 72-hour volume status, even after controlling for severity of illness (APACHE). Often patients on ECMO require large volumes of intravenous fluids and blood products and CRRT (or dialysis in general) does not assure the physician that the patient will achieve negative fluid balance (17). It can, however, help to achieve a less positive fluid balance, which may be an important distinction. As our data clearly show, in the setting of AKI-D, less positive fluid balance over the first 72 hours improves a patient’s chance of survival at 90 days (Figure 4). Separately, Mallory et al. (13) performed a retrospective cohort study of 424 pediatric patients receiving VV and VA ECMO and demonstrated that volume overload, based on fluid balance and admission weight (identical to our definition), was associated with longer duration of mechanical ventilation and increased morbidity and mortality. In their cohort, 44% of patients received RRT and, as with our cohort, patients remained in positive fluid balance despite ECMO and RRT support (13).

Our study demonstrates that volume overload has significant prognostic value in patients treated with ECMO. Despite our limited numbers, initiating RRT in this critically ill population may help to control the deleterious effects of volume overload. Patients who were started on RRT and never achieved a 10% increase in their overall weight survived more frequently than those who did experience a volume overloaded state. Although there is a great deal of debate in the critical care nephrology literature around the ideal timing of RRT initiation, much of this work has focused on serum creatinine-based AKI rather than fluid overload (23–25). Perhaps future efforts in patients on ECMO could be focused on the effect of RRT initiation around the avoidance of volume overload, because several studies now point to a potential clinical benefit (13,17).

One of our study’s strengths is that we used a standardized definition of volume overload (>10% fluid accumulation from baseline). As discussed above, this definition/concept of fluid overload was born out of the pediatric AKI literature where small volumes of fluid administration can have significant consequences in the youngest and smallest
Goldstein and colleagues (14) were among the first to demonstrate that in a cohort of 272 pediatric patients receiving stem cell transplants, patients who experienced AKI and developed fluid overload had significantly increased mortality. Since that time this cutoff has been investigated and validated in adult populations. In the prospective observational multicenter Program to Improve Care in Acute Renal Disease (PICARD) study, 618 adult patients with AKI in the ICU were followed to determine the link between fluid accumulation and renal recovery and mortality (19). They demonstrated an adjusted odds ratio for death associated with fluid overload at the time of AKI of 3.14 (95% CI, 1.18 to 8.33). Additionally, they demonstrated a clear increasing trend in 60-day mortality for patients receiving RRT who were unable to achieve negative balance. Those achieving negative fluid balance had a <20% mortality, whereas those with a positive fluid balance >10% had a mortality >50% (19). Our findings mirror these PICARD findings with the notable difference being a much higher mortality rate (Figure 2). Our data show a similar stepwise increase in mortality with building fluid accumulation in patients with AKI-D. Our data in those not requiring RRT are not quite as straightforward, much like the no-RRT cohort from the PICARD study, and further investigation is likely needed to determine the effect of volume overload in patients on ECMO not requiring RRT.

Our findings suggest a clinical imperative toward using strategies to mitigate volume overload early in the ECMO treatment course to improve survival outcomes. However, there is no clear evidence to suggest targeting a negative cumulative fluid balance because we were unable to demonstrate a survival advantage among those patients achieving negative fluid balance. As above, questions remain regarding the optimal timing for using strategies to mitigate volume overload as well as better understanding of competing risks such as hemodynamic instability and blood loss during treatment with ECMO.

Our study has several other strengths: it is one of the largest cohort studies to investigate the interactions between AKI, RRT, and volume overload in the setting of ECMO. Additionally, we used previously validated definitions of both volume overload (14,19) and AKI (22). Compared with previously published papers, we have a significant number of black patients in our cohort (44%)—a group that has been under-represented in the AKI and ECMO literature. However, our study suffers from all of the inherent limitations of a single-center, retrospective cohort. As such we can only
discuss associations rather than causation when attempting to link volume overload, severe AKI, and mortality. Importantly, it is our single-center electronic medical record that allowed us access to accurately calculate severity-of-illness scores, ensure excellent patient follow-up, and access to highly accurate fluid balance data. We were limited in that we lacked data specific to nonrenal ECMO complications and we were unable to account for all confounders and factors that may affect fluid balance or mortality, including insensible losses, underlying disease states, and information around interventions before arriving at the University of Chicago.

Our study is the first of its kind, identifying that using a standardized definition of volume overload is of prognostic significance in adult patients during their 72 hours of treatment with ECMO. We have also confirmed findings in the growing literature regarding the prognostic significance of volume overload and AKI-D during treatment with ECMO. Further investigation of the causal pathways and potential prevention of AKI and AKI-D are needed. Similarly, further confirmation of our findings regarding the importance of mitigating volume overload and the optimal strategies and timing of this suggested imperative are required.

Author Contributions
S. Gunning wrote the original draft; S. Gunning and J. Koyner conceptualized the study and were responsible for formal analysis; S. Gunning, J. Koyner, F. Kutuby, R. Rose, and T. Song reviewed and edited the manuscript; S. Gunning, F. Kutuby, R. Rose, T. Song, and S. Trevino were responsible for data curation; J. Koyner was responsible for investigation, methodology, and project administration; and J. Koyner and T. Song were responsible for supervision.

Disclosures
J. Koyner reports personal fees from Baxter, grants from Nxtstage Medical, and grants from Satellite HealthCare during the conduct of the study; grants and personal fees from Astute Medical and personal fees from Sphingetoc outside the submitted work. S. Gunning, F. Kutuby, R. Rose, T. Song, and S. Trevino have nothing to disclose.

Funding
J. Koyner was supported by R21 DK113420-01.

Supplemental Material
This article contains the following supplemental material online at http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.000402019/-/DSSupplemental.
Supplemental Table 1. Clinical characteristics of those with and without volume overload at day 7 after ECMO cannulation.
Supplemental Table 2. Clinical characteristics of those with and without RRT.
Supplemental Table 3. Clinical characteristics of those with VA versus VV ECMO.
Supplemental Table 4. Nephrotoxin use stratified by RRT status.
Supplemental Table 5. Outcomes of those with and without volume overload at 7 days after ECMO cannulation.
Supplemental Table 6. Outcomes of those with and without RRT.
Supplemental Table 7. Outcomes of those with VA versus VV ECMO.
Supplemental Table 8. APACHE scores by volume and RRT status.

References
1. Thiagarajan RR, Barbaro RP, Rycus PT, Rycus PT, McMullan DM, Conrad SA, Fortenberry JD, Paden ML; ELSO member centers: Extracorporeal life support organization registry international report 2016. ASAIO J 63: 60–67, 2017
2. Brodie D, Bacchetta M: Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med 365: 1905–1914, 2011
3. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanyi MM, Hibbert CL, Truesdale A, Clemens F, Cooper N, Firmin RK, Elbourne D; CESAR trial collaboration: Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial [published correction appears in Lancet 374: 1330, 2009]. Lancet 374: 1351–1363, 2009
4. Ostermann M, Connor M Jr, Kashani K: Continuous renal replacement therapy during extracorporeal membrane oxygenation: Why, when and how?Curr Opin Crit Care 24: 493–503, 2018
5. Thajudeen B, Kamel M, Arumugam C, Ali SA, John SG, Meister EE, Mosier JM, RY, Madhiria M, Thompson J, Sussman AN: Outcome of patients on combined extracorporeal membrane oxygenation and continuous renal replacement therapy: A retrospective study. Int J Artif Organs 38: 133–137, 2015
6. Luy L, Long C, Hei F, Ji B, Liu J, Yu K, Chen L, Yao J, Hu Q, Caio G: Plasma free hemoglobin is a predictor of acute renal failure during adult venous-arterial extracorporeal membrane oxygenation support. J Cardiothorac Vasc Anesth 30: 891–895, 2016
7. Thongprayoon C, Cheungpasitporn W, Lertjibanpong P, Aeddulla NR, Bathini T, Watthanasuntorn K, Srivali N, Mao MA, Kashani K: Incidence and impact of acute kidney injury in patients receiving extracorporeal membrane oxygenation: A meta-analysis. J Clin Med 8: E981, 2019
8. Delmas C, Zapetskaia T, Conil JM, Georges B, Vardon-Bouanes F, Seguin T, Crognier L, Fourcade O, Brouchet L, Minville V, Silva S: 3-month prognostic impact of severe acute renal failure under veno-venous ECMO support: Importance of time of onset. J Crit Care 44: 63–71, 2018
9. Killburn DJ, Shekar K, Fraser JF: The complex relationship of extracorporeal membrane oxygenation and acute kidney injury: Caussion or association? BioMed Res Int 2016: 1094296, 2016
10. Zangrillo A, Landoni G, Biondi-Zoccai G, Greco M, Greco T, Frati G, Patroniti N, Antonelli M, Pesenti A, Pappalardo F: A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit Care Resusc 15: 172–178, 2013
11. Kielsstein JT, Heiden AM, Beutel G, Gottlieb J, Wiesner O, Hafer C, Hadem J, Reising A, Haverich A, Kühn C, Fischer S: Renal function and survival in 200 patients undergoing ECMO therapy. Nephrol Dial Transplant 28: 86–90, 2013
12. Antonucci E, Lamanna I, Fagnoul D, Vincent JL, De Backer D, Silvio Taccone F: The impact of renal failure and renal replacement therapy on outcome during extracorporeal membrane oxygenation. Artif Organs 40: 746–754, 2016
13. Mallory PP, Selewski DT, Askenazi DJ, Cooper DS, Fleming GM, Paden ML, Murphy L, Sahay R, King E, Zappitelli M, Bridges BC: Acute kidney injury, fluid overload, and outcomes in children supported with extracorporeal membrane oxygenation for a respiratory indication. ASAIO J 66: 319–326, 2020
14. Michael M, Kuehnle I, Goldstein SL: Fluid overload and acute renal failure in pediatric stem cell transplant patients. Pediatr Nephrol 19: 91–95, 2004
15. Ricci Z, Morelli S, Vitale V, Di Chiara L, Cruz D, Picardo S: Management of fluid balance in continuous renal replacement therapy: Technical evaluation in the pediatric setting. Int J Artifi Organs 30: 896–901, 2007
16. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network: Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 6: 966–973, 2011
17. Schmidt M, Bailey M, Kelly I, Hodgson C, Cooper DJ, Scheinkestel C, Pellegrino V, Bellomo R, Pilcher D: Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med 40: 1256–1266, 2014
18. Claure-Del Granado R, Mehta RL: Fluid overload in the ICU: Evaluation and management. BMC Nephrol 17: 109, 2016
19. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL; Program to Improve Care in Acute Renal Disease (PICARD) Study Group: Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76: 422–427, 2009
20. Liu KD, Thompson BT, Ancukiewicz M, Steingrub JS, Douglas IS, Matthay MA, Wright P, Peterson MW, Rock P, Hyzy RC, Anzueto A, Truwit JD; National Institutes of Health National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network: Acute kidney injury in patients with acute lung injury: Impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med 39: 2665–2671, 2011
21. Ostermann M, Straaten HM, Forni LG: Fluid overload and acute kidney injury: Cause or consequence? Crit Care 19: 443, 2015
22. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2: 1–138, 2012
23. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, Boanta A, Gerb J, Meersch M: Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA 315: 2190–2199, 2016
24. Barbar SD, Clere-Jehl R, Bourredjem A, Hernu R, Montini F, Bruyère R, Lebert C, Bohé J, Badie J, Eraldi JP, Rigaud JP, Levy B, Siami S, Louis G, Bouadma L, Constantin JM, Mercier E, Klouche K, du Cheyron D, Piton G, Annane D, Jaber S, van der Linden T, Blasco G, Mira JP, Schwebel C, Chimoto L, Guiot P, Naim MA, Meziani F, Helms J, Roger C, Louart B, Trusson R, Dargent A, Binquet C, Quenot JP; IDEAL-ICU Trial Investigators and the CRICS TRIGGERSEP Network: Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 379: 1431–1442, 2018
25. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, Boyer A, Chevrel G, Lerrole N, Carpentier D, de Prost N, Lautrette A, Bretagnol A, Mayaux J, Neeir S, Megarbene B, Thirion M, Forel JM, Maizel J, Yonis H, Markowicz P, Thiery G, Tubach F, Ricard JD, Dreyfuss D; AKIKI Study Group: Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375: 122–133, 2016

Received: November 4, 2019 Accepted: March 3, 2020
Supplemental Table of Contents

Supplemental Table 1 - Clinical characteristics of those with and without volume overload at Day 7 after ECMO Cannulation

Supplemental Table 2 - Clinical characteristics of those with and without RRT

Supplemental Table 3 - Clinical characteristics of those with VA versus VV ECMO

Supplemental Table 4 – Nephrotoxin Use Stratified by RRT Status

Supplemental Table 5 - Outcomes of those with and without Volume Overload at 7 Days after ECMO Cannulation

Supplemental Table 6 - Outcomes of those with and without RRT

Supplemental Table 7 - Outcomes of those with VA versus VV ECMO

Supplemental Table 8 - APACHE scores by Volume and RRT Status
	Volume Overload (n=32)	No Volume Overload (n=66)	p-value
Age	55.3 ± 16.0	54.6 ± 13.6	0.82
Weight (kg)	80.9 ± 22.2	89.8 ± 17.1	0.03
Gender			0.65
Male	23 (71.9)	43 (65.2)	
Female	9 (28.1)	23 (34.8)	
Race			0.16
African American	15 (46.9)	29 (43.9)	
Caucasian	14 (43.8)	36 (54.6)	
Other	3 (9.4)	1 (1.5)	
Co-morbid conditions			
CKD	13 (40.6)	22 (33.3)	0.51
Diabetes	12 (37.5)	23 (34.9)	0.83
Hypertension	17 (53.1)	42 (63.6)	0.38
Heart Failure	11 (34.4)	31 (47.0)	0.28
Coronary Disease	19 (59.4)	28 (42.4)	0.14
CVA	4 (12.5)	3 (4.6)	0.21
Cancer	7 (21.9)	6 (9.1)	0.11
ICU Type			0.82
Cardiac	19 (59.4)	36 (54.6)	
CT Surgical	10 (31.3)	22 (33.3)	
Surgical	1 (3.1)	1 (1.5)	
Medical	2 (6.2)	7 (10.6)	
Sepsis	3 (9.4)	10 (15.2)	0.54
Mechanical Ventilation	30 (93.8)	63 (95.5)	0.66
Vasoactive use prior to ECMO	29 (90.6)	51 (77.3)	0.16
Number of Vasoactives	2.1 ± 1.0	1.5 ± 1.1	0.01
Inotrope use	26 (81.2)	52 (78.8)	1.00
Number of Inotropes	1.3 ± 0.82	1.3 ± 0.90	0.85
Baseline serum Creatinine	1.1 ± 0.43	1.1 ± 0.41	0.52
AKI Prior to ECMO	17 (53.1)	28 (42.2)	0.40
Baseline pH	7.26 ± 0.16	7.29 ± 0.19	0.52
Baseline Serum Bicarbonate	19.5 ± 5.4	21.1 ± 6.5	0.25
APACHE	18.5 (13.5, 27.5)	18.5 (13, 24)	0.66
SOFA	8.5 (4.5, 11.5)	8 (6, 11)	0.85
ECMO Type			0.78
VA	27 (84.4)	53 (80.3)	
VV	5 (15.6)	13 (19.7)	

Data are presented as n(%), mean ± standard deviation, or median (interquartile range) as appropriate.
CKD-Chronic Kidney Disease, CVA-Cerebral Vascular Accident, ICU-Intensive Care Unit
Supplemental Table 2-Clinical characteristics of those with and without RRT	RRT (n=48)	No RRT (n=50)	p-value
Age	54.9 ± 13.3	54.8 ± 15.4	0.97
Weight (kg)	90.4 ± 18.4	82.7 ± 18.6	0.04
Gender			0.77
Male	33 (68.75)	33 (66.0)	
Female	15 (31.25)	17 (34.0)	
Race			0.83
African American	23 (47.9)	21 (42.0)	
Caucasian	23 (47.9)	27 (54.0)	
Other	2 (4.2)	2 (4.0)	
Co-morbid conditions			
CKD	20 (41.7)	15 (30.0)	0.23
Diabetes	17 (35.4)	18 (36.0)	0.95
Hypertension	30 (62.5)	29 (58.0)	0.65
Heart Failure	19 (39.6)	23 (46.0)	0.52
Coronary Disease	28 (58.3)	19 (38.0)	0.04
CVA	4 (8.3)	3 (6.0)	0.65
Cancer	9 (18.75)	4 (8.0)	0.12
ICU Type			0.25
Cardiac	29 (60.4)	26 (52)	
CT Surgical	17 (35.4)	16 (32)	
Surgical	0 (0)	2 (4)	
Medical	2 (4.2)	6 (12)	0.94
Sepsis	6 (12.5)	6 (12.0)	
Mechanical Ventilation	46 (95.8)	47 (94.0)	0.68
Vasoactive use prior to ECMO	42 (87.5)	37 (74.0)	0.09
Number of Vasoactives	2.0 ± 1.2	1.4 ± 1.1	0.01
Inotrope use	39 (81.25)	39 (78.0)	0.69
Number of Inotropes	1.4 ± 0.9	1.3 ± 0.9	0.39
Baseline serum Creatinine	1.13 ± 0.38	1.06 ± 0.44	0.40
AKI Prior to ECMO	29 (60.4)	16 (32.0)	0.005
Baseline pH	7.28 ± 0.17	7.28 ± 0.19	1.00
Baseline Serum Bicarbonate	20.0 ± 5.8	21.0 ± 6.6	0.43
APACHE	22 (15.75, 30.25)	15.5 (12, 19)	0.004
SOFA	10 (6, 12.25)	7 (5, 9.75)	0.03
ECMO Type			0.34
VA	41 (85.4)	39 (78.0)	
VV	7 (14.6)	11 (22.0)	

Data are presented as n(%), mean ± standard deviation, or median (interquartile range) as appropriate. CKD-Chronic Kidney Disease, CVA-Cerebral Vascular Accident, ICU-Intensive Care Unit
Supplemental Table 3-Clinical characteristics of those with VA versus VV ECMO

	VA ECMO (n=80)	VV ECMO (n=18)	p-value
Age	55.5 ± 14.2	52.1 ± 15.2	0.36
Weight (kg)	87.8 ± 19.3	83.1 ± 19.3	0.36
Gender			0.16
Male	51 (63.75)	15 (83.3)	
Female	29 (36.25)	3 (16.7)	
Race			0.91
African American	36 (45.0)	8 (44.4)	
Caucasian	41 (51.25)	9 (50.0)	
Other	3 (3.75)	1 (5.6)	
Co-morbid conditions			
CKD	32 (40.0)	3 (16.7)	0.10
Diabetes	30 (37.5)	5 (27.8)	0.60
Hypertension	51 (63.75)	8 (44.4)	0.18
Heart Failure	40 (50.0)	2 (11.1)	0.003
Coronary Disease	43 (53.75)	4 (22.2)	0.02
CVA	6 (7.5)	1 (5.6)	1.00
Cancer	10 (12.5)	3 (16.7)	0.70
ICU Type			<0.001
Cardiac	53 (66.25)	2 (11.1)	
CT Surgical	26 (32.5)	6 (33.3)	
Surgical	0 (0.0)	2 (11.1)	
Medical	1 (1.25)	8 (44.4)	
Sepsis	11 (13.75)	2 (11.1)	1.00
Mechanical Ventilation	76 (95.0)	17 (94.4)	1.00
Vasoactive use prior to ECMO	67 (83.75)	13 (72.22)	0.31
Number of Vasoactives	1.8 ± 1.1	1.4 ± 1.2	0.17
Inotrope use	73 (91.25)	5 (27.8)	<0.001
Number of Inotropes	1.5 ± 0.76	0.50 ± 0.86	<0.001
Baseline serum Creatinine	1.1 ± 0.43	0.86 ± 0.23	0.01
AKI Prior to ECMO	39 (48.5)	6 (33.3)	0.30
Baseline pH	7.25 ± 0.17	7.34 ± 0.19	0.10
Baseline Serum Bicarbonate	19.6 ± 5.6	25.0 ± 6.8	0.006
APACHE	19 (13, 27)	16 (15, 21)	0.54
SOFA	9 (5, 12)	7.5 (3, 9)	0.05

Data are presented as n(%), mean ± standard deviation, or median (interquartile range) as appropriate. CKD-Chronic Kidney Disease, CVA-Cerebral Vascular Accident, ICU-Intensive Care Unit.
Nephrotoxin Use	RRT (n=48)	No RRT (n=50)	p-value
Any Nephrotoxin Use	39 (81.25)	41 (82)	0.92
ACEi/ARB	1 (2.1)	11 (22)	0.003
MRA	4 (8.3)	4 (8)	0.95
Diuretic	27 (56.25)	32 (64)	0.49
NSAID	1 (2.1)	5 (10)	0.16
Aminoglycoside	3 (6.25)	7 (14)	0.21
Amphotericin	1 (2.1)	3 (6)	0.33
Calcineurin Inhibitor	4 (8.3)	11 (22)	0.06
Contrast	23 (47.9)	20 (40)	0.43
Supplemental Table 5 - Outcomes of those with and without Volume Overload at 7 Days after ECMO Cannulation

	Volume Overload (n=32)	No Volume Overload (n=66)	p-value
Length of ICU Stay	14.5 (6, 43)	25 (11, 47)	0.11
Length of Hospital Stay	15.5 (6, 45)	31 (16, 60)	0.03
AKI	30 (93.75)	53 (80.3)	0.13
CRRT	18 (56.3)	30 (45.5)	0.39
Duration of ECMO	5 (3, 6.5)	7 (4, 15)	0.03
Duration of CRRT	8 (4, 23)	9 (2, 23)	0.93
Serum Creatinine Day 90	1.6 ± 0.31	1.5 ± 0.80	0.92
Dialysis independence at 90 days	1 (5.6)	9 (30.0)	0.07
30 day mortality	19 (59.4)	22 (33.3)	0.02
60 day mortality	22 (68.8)	30 (45.5)	0.03
90 day mortality	23 (71.9)	31 (47.0)	0.03

Data are presented as n(%), mean ± standard deviation, or median (interquartile range) as appropriate.

ICU- Intensive Care Unit; n/a - Not Applicable
	RRT (n=48)	No RRT (n=50)	p-value
Length of ICU Stay	21 (8.5, 54)	23 (12, 33.75)	0.93
Length of Hospital Stay	27 (10, 60)	31 (16, 46.75)	0.65
Duration of ECMO	6.5 (4, 20.25)	5 (3, 9.75)	0.08
Duration of CRRT	9.5 (3.25, 23)	n/a	n/a
AKI			
Serum Creatinine Day 90	1.5 (1.1, 1.6)	1.4 (1.1, 1.6)	0.96
Negative Cumulative Fluid Balance	17 (35.4)	21 (42.0)	0.50
Volume Overload	19 (39.6)	14 (28.0)	0.23
Dialysis independence at 90 days	7 (14.6)	n/a	n/a
30 day mortality	27 (56.3)	15 (30.0)	0.009
60 day mortality	32 (66.7)	21 (42.0)	0.014
90 day mortality	33 (68.8)	21 (42.0)	0.002

Data are presented as n(%), mean ± standard deviation, or median (interquartile range) as appropriate.

ICU- Intensive Care Unit; n/a -Not Applicable
Outcome	VA ECMO (n=80)	VV ECMO (n=18)	p-value
Length of ICU Stay	21 (9, 46)	32 (22, 55)	0.04
Length of Hospital Stay	27 (10, 49)	39.5 (26, 65)	0.06
AKI	70 (87.5)	13 (72.2)	0.14
RRT	41 (51.25)	7 (38.9)	0.44
Duration of ECMO	5 (3, 10.5)	10.5 (5, 22)	0.02
Duration of CRRT	8 (3, 22)	18 (2.24)	0.45
Serum Creatinine Day 90	1.4 (1, 1.6)	1.4 (1.1, 2.5)	0.29
Dialysis independence at 90 days	7 (17.1)	3 (42.9)	0.15
30 day mortality	34 (42.5)	7 (38.9)	1.00
60 day mortality	43 (53.75)	9 (50.0)	0.80
90 day mortality	46 (57.5)	8 (44.4)	0.43

Data are presented as n(%), mean ± standard deviation, or median (interquartile range) as appropriate.

ICU- Intensive Care Unit; n/a - Not Applicable
Supplemental Table 8- APACHE scores by Volume and RRT Status

	Net Negative fluid balance	Neither negative or Positive	Fluid Overload	P value
Whole Cohort regardless of RRT status	16 (12, 21) (n=25)	19.5 (14, 25.5) (n=48)	18 (14, 29) (n=21)	0.242
Entire RRT Cohort (N=48)	20 (15, 30) (n=11)	21 (16.5, 28.5) (n=28)	29 (27, 34) (n=9)	0.264
CRRT started Prior to ECMO (N=11)	15 (15, 15) (n=1)	21 (20, 27) (n=9)	27 (27, 27) (n=1)	0.142
CRRT started After ECMO (n=37)	20 (15, 30) (n=10)	21 (13, 31) (n=19)	30.5 (21, 35) (n=8)	0.408
Never on CRRT (n=50)	13.5 (12, 19) (n=14)	17 (13, 20) (n=20)	15 (12.5, 18) (n=12)	0.463