Non-Selective Cation Channels Mediate Chloroquine-Induced Relaxation in Precontracted Mouse Airway Smooth Muscle

Ting Zhang1,9, Xiao-Jing Luo1,9, Wen-Bo Sai1,9, Meng-Fei Yu1,9, Wen-Er Li1*, Yun-Fei Ma1, Weiwei Chen1, Kui Zhai2, Gangjian Qin3, Donglin Guo1,4, Yun-Min Zheng5, Yong-Xiao Wang5, Jin-Hua Shen1, Guangju Ji2, Qing-Hua Liu1*

1 Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China, 2 National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 3 Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 4 Lankenau Institute for Medical Research & Main Line Health Heart Center, Wynnewood, Pennsylvania, United States of America, 5 Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, United States of America

Abstract

Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs) or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs). In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs) precontracted with acetylcholine (ACH). In the presence of nifedipine (10 μM), ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs), and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs) were blocked by chloroquine. Pyrazole 3 (Pyr3), an inhibitor of transient receptor potential C3 (TRPC3) channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

Citation: Zhang T, Luo X-J, Sai W-B, Yu M-F, Li W-E, et al. (2014) Non-Selective Cation Channels Mediate Chloroquine-Induced Relaxation in Precontracted Mouse Airway Smooth Muscle. PLoS ONE 9(7): e101578. doi:10.1371/journal.pone.0101578

Received March 20, 2014; Accepted June 6, 2014; Published July 3, 2014

Copyright: © 2014 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support was provided by: contract grant sponsor: Ministry of Science and Technology of China (http://www.most.gov.cn/eng/), contract grant number: 2011CB809100 to QHL; contract grant sponsor: National Natural Science Foundation of China (http://www.nsfc.gov.cn/), contract grant numbers: 31140087 and 30971514 to QHL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: liu258q@yahoo.com (QHL); gj28@sun5.ibp.ac.cn (GJ)
△ These authors contributed equally to this work.
* Current address: Department of Cardiology and Pneumology, Georg-August-University of Göttingen, Göttingen, Germany

Introduction

In 1867, Schofield RH discovered “taste-goblets” in cat and dog tongues [1], which were then named taste buds [2]. Taste buds contain different types of receptor cells that sense various tastes, such as bitter, sweet, sour, salty, and umami [3,4]. Taste receptors type 2 (TAS2Rs) are responsible for detecting bitter sensation [5].

TAS2Rs have recently been found to be expressed in airway smooth muscle cells and bitter taste stimuli can affect airway muscle force [6–15]. These receptors mediate bitter tastant-induced relaxation in airway smooth muscle precontracted by muscarinic (M) receptor agonists. TAS2Rs can be activated by bitter tastants, once activated, they induce an increase in intracellular Ca2+ through the Gβγ-protein-PLCβ1/IP3/IP3,R pathway. This Ca2+ increase then activates BKs, resulting in membrane hyperpolarization and partial relaxation [8,10]. However, the bitter tastant chloroquine can inhibit BKs [9]. A recent study demonstrated that chloroquine-induced relaxation in precontracted airway smooth muscle is due to the inhibition of voltage-dependent L-type Ca2+ channels (VDLCCs) mediated by G proteins [16]. Therefore, the mechanism of bitter tastant-induced relaxation in precontracted airway smooth muscle remains unclear.

NSCCs represent a family of ion channels that generally conduct mono- (i.e., Na+, and K+) and divalent (i.e., Ca2+) cations with relatively poor discrimination. Thus, the activation of NSCCs results in Ca2+ influx-inducing contraction in muscle. In this study, we found that, in addition to VDLCCs, these NSCCs also play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

Materials and Methods

Reagents

Fluo-4 AM and fura-2 AM were purchased from Invitrogen (Eugene, OR, USA). The other reagents were purchased from...
Niflumic acid, fluo-4 AM, and fura-2 AM were dissolved in DMSO, and other agonists and antagonists were dissolved in physiological saline solution (PSS). In single cell experiments, the reagents were locally delivered onto the cells through a 200 μm diameter tube.

Animals
Mature BALB/c male mice were purchased from Hubei Provincial Center for Disease Control and Prevention, Wuhan, China. Mice were housed under controlled temperatures (21–23°C) and light conditions (lights on 8:00–20:00) with ad libitum access to water and food.

This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All experiments were approved by the Institutional Animal Care and Use Committee at the South-Central University for Nationalities (Permit number: 2012-QHL-1). Mice were sacrificed by intraperitoneal injection of sodium pentobarbital (150 mg/kg) and tissues were then taken.

Force measurement in tracheal rings (TRs)
Muscle force was measured as previously described [17]. Briefly, mice were sacrificed following intraperitoneal injection of sodium pentobarbital (150 mg/kg), and tracheae were obtained and transferred to PSS (mM): 135 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES, and 10 glucose (pH = 7.4). The epithelium-denuded TRs were prepared and mounted in a 10-mL organ bath chamber with a preload of 0.5 g. After a 60-min equilibration, the TRs were precontracted with ACH (10^{-4} M), washed, and rested for 3 times. Following an additional 30 min rest, the experiments were started.

Figure 1. Nifedipine-insensitive pathway contributes to chloroquine-induced relaxation in ACH-precontracted mouse TRs. (A) Mouse TRs were precontracted by ACH. After contraction reached a steady-state, nifedipine was cumulatively added and induced relaxation. When the relaxation reached its maximum, chloroquine was added and the nifedipine-resistant contraction was inhibited. (B) Summary from 12 experiments shown in (A). (C) One representative of the 12 experiments for chloroquine-induced relaxation in ACH-precontracted mouse TRs. These results demonstrate that, in addition to VDLCCs, an unknown nifedipine-insensitive pathway plays a role in chloroquine-induced relaxation. doi:10.1371/journal.pone.0101578.g001

Sigma (St. Louis, MO, USA) and Tocris Bioscience (Bristol, UK). Niflumic acid, fluo-4 AM, and fura-2 AM were dissolved in DMSO, and other agonists and antagonists were dissolved in physiological saline solution (PSS). In single cell experiments, the reagents were locally delivered onto the cells through a 200 μm diameter tube.

Figure 2. Chloroquine inhibits nifedipine-insensitive relaxation. (A) Chloroquine completely blocked ACH-induced precontraction. (B) Dose-response of chloroquine. These results also indicate that an unknown pathway contributes to chloroquine-induced relaxation. doi:10.1371/journal.pone.0101578.g002

Figure 3. Chloroquine blocks the ACH-induced increase in Ca^{2+} and cell shortening in single ASMCs. (A) Single ASMCs were loaded with 2 μM fluo-4 AM. The intracellular Ca^{2+} and cell length were measured simultaneously in one cell. ACH evoked an increase in intracellular Ca^{2+}, which was inhibited by chloroquine. Three fluorescence and transmitted images, indicated at the different time points numbered 1, 2, and 3, respectively, further reveal the Ca^{2+} changes and cell length alterations, respectively. (B, C) Summary of the average changes in the Ca^{2+} levels and cell lengths. *: p<0.05; **: p<0.001. doi:10.1371/journal.pone.0101578.g003

NSCCs Mediate Chloroquine-Induced Relaxation in ASMCs
Isolation of single ASMCs

Single mouse ASMCs were enzymatically isolated as previously described [18]. Briefly, after the mice were sacrificed through an intraperitoneal injection of sodium pentobarbital (150 mg/kg), tracheae were removed and transferred to an ice-cold low-Ca\(^{2+}\) physiological saline solution (LCPSS) containing (mM) 135 NaCl, 5 KCl, 1 MgSO\(_4\), 10 glucose, 10 HEPES, and 0.1 CaCl\(_2\) (pH = 7.4). The epithelium-denuded trachealis tissues were minced and incubated for 20 min at 37\(^\circ\) C in LCPSS containing 1 mg/mL papain, 0.5 mg/mL dithioerythritol, and 1 mg/mL bovine serum albumin (BSA). The partially digested tissues were transferred to LCPSS containing 1 mg/mL collagenase H, 1 mg/mL dithiothreitol, and 1 mg/mL BSA at 37\(^\circ\) C for 20 min. The tissues were then washed 3 times and triturated in LCPSS to yield single ASMCs.

Measurement of whole-cell intracellular Ca\(^{2+}\)

Intracellular Ca\(^{2+}\) was measured and analyzed as previously described [18], with some modifications. We used an LSM 700 laser scanning confocal microscope (Carl Zeiss, Jena, Germany) and XY scanning to measure the fluorescence intensity of fluo-4 AM. A pinhole set at 1 AU (29.5\(\mu\)m), scanning speed of 9, and a 40X/1.30 oil objective lens were used. Freshly isolated ASMCs were incubated with 2\(\mu\)M fluo-4 AM for 15 min at room temperature in the microscope recording chamber and then superfused with 5% CO\(_2\)/95% O\(_2\)-bubbled PSS for 10 min. The excitation was provided at 488 nm and the emitted fluorescence of fluo-4 AM was imaged through a 505 nm filter. XY images were acquired and fluorescence intensity was analyzed using Zen 2010 software (Carl Zeiss, Jena, Germany).

Simultaneous measurements of the changes in intracellular Ca\(^{2+}\) and cell length

To measure changes in cell length [18], we used a 488 nm laser light as transmitted light and the transmitted images were generated by a photomultiplier tube (PMT). The transmit image and the fluo-4 AM fluorescence images of single ASMCs were simultaneously measured using an LSM 700 laser scanning confocal microscope and analyzed using Zen 2010 software (Carl Zeiss, Jena, Germany).

Patch clamp

The ion channel currents were measured using an EPC-10 patch-clamp amplifier (HEKA, Lambrecht, Germany) [21,22]. The ACH-induced NSCC currents were recorded with a ramp using a perforated whole-cell configuration with a holding potential of −60 mV. The ramp was performed over 500 ms from −80 to +60 mV. The values at −70 mV were used to represent the NSCC currents. The pipette solution consisted of (mM) 18 CsCl, 108 Cesium acetate, 1.2 MgCl\(_2\), 10 HEPES, 3 EGTA, and 1 CaCl\(_2\) (pH adjusted to 7.2 with Tris) [23]. The free Ca\(^{2+}\) concentration was approximately 70 nM, calculated using WEBMAXC (www.stanford.edu/~cpatton/webmaxc/webmaxcS.htm). The pipette solution contained 300 \(\mu\)g/mL nystatin for perforation of the membrane of smooth muscle cells. The bath solution was PSS as described above, but with K\(^+\) omitted. We added 10 mM tetraethylammonium (TEA) chloride, 100 \(\mu\)M niflumic acid, and 10 \(\mu\)M nifedipine to the bath solution to block

![Figure 4. Chloroquine inhibits Ca\(^{2+}\) influx.](image)

Under Ca\(^{2+}\)-free conditions (0 Ca\(^{2+}\) and 0.5 mM EGTA), ACH induced a fast transient contraction. Following the addition of 2 mM Ca\(^{2+}\), a larger contraction occurred and was reversibly inhibited by chloroquine. These results demonstrate that chloroquine induces relaxation by blocking ACH-induced Ca\(^{2+}\) entry.

doi:10.1371/journal.pone.0101578.g004

![Figure 5. Chloroquine induces inhibition of ACH-induced NSCC currents.](image)

(A) The ramp used for recording the NSCC currents. (B) ACH induced NSCC currents at −70 mV that was blocked by 1 mM chloroquine. (C) Representative of net ramp currents at time points y and z (the leak currents at time point x were subtracted). These results indicate that chloroquine can inhibit NSCCs.

doi:10.1371/journal.pone.0101578.g005
the K^+, Cl^-, and VDLCC currents, respectively, to further purify NSCC currents.

Single NSCC currents were recorded using an outside-out approach. The single channel currents at -90 mV were acquired at a digitization rate of 4 kHz and filtered at 1 kHz. Events were detected and all-point amplitude histograms were plotted using the Clampfit 9 software (Axon Instruments, CA, USA). The histograms were fitted using the Gaussian distribution function, and amplitudes of single channels were obtained and used to calculate the single channel conductance (i.e., μS value). The pipette and bath solutions were similar as that previously used for single NSCC recordings with outside-out technique [24].

Data analysis

The results are expressed as mean ± SEM. Comparisons between two groups were performed with Student’s t-test using Origin 9.0 software (OriginLab, Northampton, USA). Differences with $p<0.05$ were considered significant.

Results

Chloroquine blocks nifedipine-insensitive precontraction in mouse airway smooth muscle

We first observed relaxation following blockade of VDLCCs in this study. TRs were contracted with ACH (100 μM). When contraction reached a steady-state, nifedipine, a selective blocker of VDLCCs, was cumulatively added to the organ chambers, which resulted in a series of relaxations (Figure 1A, B). When nifedipine (10 μM) induced maximal relaxation (86.2±5.2%, 12 rings/12 mice), chloroquine (3 mM) was added, which resulted in a maximal relaxation to 98.5±1.0% (Figure 1A, B). When only chloroquine (3 mM) was added, significant relaxation (85.5±2.6%, 12 rings/12 mice) was also observed (Figure 1C). These data suggest that chloroquine induces relaxation in precontracted mouse airway smooth muscle through both VDLCC-dependent and -independent pathways.

To further confirm the existence of nifedipine-insensitive component, we conducted the following experiments. We used 10 μM nifedipine (a concentration that completely inhibits VDLCCs; cf Fig. 1A) to incubate the TRs for 10 min, which can completely inhibited VDLCC-mediated contraction, as shown in Figure 1A; we then observed the relaxant actions of chloroquine in ACH-induced precontraction (Figure 2). The ACH-induced steady-state contraction was gradually inhibited following cumulative addition of chloroquine; maximal relaxation was 105.0±4.2% (8 rings/8 mice) at 3.16 mM (i.e., Log$_{10}$2.5) chloroquine. These results further indicate that a VDLCC-independent pathway plays a pivotal role in chloroquine-induced relaxation.
Chloroquine simultaneously inhibits Ca\(^{2+}\) elevation and cell shortening induced by ACH in single ASMCs

To further investigate the mechanism of the VDCC-independent pathway in chloroquine-induced relaxation, we simultaneously observed chloroquine-induced changes in intracellular Ca\(^{2+}\) and cell length in fluo-4 AM loaded ASMCs (Figure 3A). Following the application of 100 \(\mu\)M ACH, intracellular Ca\(^{2+}\) sharply increased, quickly decreased, and then maintained a plateau. The Ca\(^{2+}\) plateau was completely inhibited following the addition of 1 mM chloroquine (upper in Figure 3A, a concentration was used in the following experiments performed on single cells). The Ca\(^{2+}\) level at resting state, peak, and sustained phrase were indicated by numbers 1, 2, and 3 and the corresponding cell lengths were indicated using three single images (bottom in Figure 3A). The mean Ca\(^{2+}\) levels (Figure 3B) and change in cell lengths (Figure 3C) from 16 cells at these three time points were calculated. These results indicate that the VDCC-independent pathway-mediated relaxation in precontracted airway smooth muscle is due to a decrease in intracellular Ca\(^{2+}\).

Chloroquine induces an inhibition of Ca\(^{2+}\) influx

To further investigate a reduction in intracellular Ca\(^{2+}\) induced by chloroquine, the following experiments were conducted. Under Ca\(^{2+}\)-free conditions (0 Ca\(^{2+}\) and 0.5 mM EGTA), ACH was added, which triggered a transient contraction through intracellular Ca\(^{2+}\) release. When the contraction reached a steady-state, 2 mM Ca\(^{2+}\) was restored in the organ chamber and a strong and sustained contraction subsequently occurred. Following the addition of chloroquine (3 mM), the contraction was inhibited by 104.9±3.0% (8 rings/8 mice), and the contraction was reversed following washout (Figure 4). These experiments demonstrate that the chloroquine-induced intracellular Ca\(^{2+}\) decrease is due to inhibition of Ca\(^{2+}\) influx, which will be responsible for VDCC-independent pathway-mediated decrease in intracellular Ca\(^{2+}\) and relaxation in precontracted airway smooth muscle.

Chloroquine inhibits whole-cell NSCC currents

To define the chloroquine-inhibited Ca\(^{2+}\) influx pathway, we studied the effect of chloroquine on ACH-induced NSCC currents, as ACH activates NSCCs through muscarinic (M) receptors, resulting in intracellular Ca\(^{2+}\) increase [23,26]. We used a ramp (Figure 5A) to record the NSCC currents. The current values at −70 mV were chosen to represent the ACH-activated NSCC currents. NSCC currents (peak currents were 18.0±3.3 pA, \(n = 7\)) were induced by ACH and completely inhibited following the application of 1 mM chloroquine (Figure 5B). Representative ramp currents are depicted in Figure 5C. The reversal potential for ACH-induced currents was −0.11±0.35 mV (\(n = 7\)), which is close to 0 mV, further indicating these currents are NSCC currents. These data suggest that chloroquine results in the inhibition of NSCCs.

Chloroquine inhibits single NSCC activity

In order to further explore the mechanism of chloroquine-induced inhibition of NSCCs, we observed the effect of chloroquine on single NSCC activity. Single NSCC currents were recorded at −90 mV using the outside-out configuration, which were completely blocked by 1 mM chloroquine (Figure 6A). NSCC conductance was calculated on the basis of the amplitude distribution (Figure 6B), which was 18.1±0.8 pS (\(n = 6\)). This value is close to 14.8 pS measured in guinea-pig ventricular cells [27] and 23.0 pS in rabbit portal vein myocytes [24]. These results indicate that chloroquine can directly block NSCCs.

Pyr3 inhibits ACH-induced contraction, Ca\(^{2+}\) rise, and NSCC currents

To further define the role of NSCCs, we used pyrazole 3 (Pyr3, 10 \(\mu\)M) to inhibit TRPC3 channels [28], which are one type of NSCCs, and observed its effect on the responses induced by ACH. ACH (100 \(\mu\)M) induced a typical steady-state contraction in TRs, which was inhibited by Pyr3 in a dose-dependent manner. When the Pyr3-inhibited inhibition reached a maximum, chloroquine (3 mM) was added and reduced contraction to baseline (Figure 7A). The dose-response curve was plotted based on the similar experiments in 4 TRs/4 mice (Figure 7B). Pyr3, at 30 \(\mu\)M, induced maximal inhibition (56.8±2.8%). These results were also supported by Ca\(^{2+}\) measurements using fluo-2 AM dye. As shown in Figure 8A, ACH induced a Ca\(^{2+}\) increase, which was partially inhibited by Pyr3 (10 \(\mu\)M), and the Pyr3-resistant component was blocked by chloroquine (1 mM). The Ca\(^{2+}\) levels at the time points indicated by number 1, 2, and 3 were analyzed as shown in Figure 8B. These data indicate that the inactivation of TRPC3 channels plays a role in chloroquine-induced relaxation in precontracted airway smooth muscle.

To further support these findings, we recorded ACH-activated NSCC currents. We found that the currents were partly blocked by Pyr3 (10 \(\mu\)M) and the remaining components were inhibited by chloroquine (1 mM). Pyr3 and chloroquine decreased the currents from −14.74±1.66 pA to −6.59±0.65 pA and −0.19±0.07 pA (n = 6 cells from 4 mice), respectively (Figure 9). These results further suggest that inactivation of TRPC3 channels play a partial role in chloroquine-induced relaxation.

Discussion

In the present study, our data demonstrated that chloroquine can induce relaxation in precontracted airway smooth muscle through inhibition of VDCCs and NSCCs. The mechanism of inhibition on NSCCs is due to direct blockade by chloroquine.

M receptor agonists can induce the activation of both VDCCs and NSCCs, which in turn lead to Ca\(^{2+}\) influx to increase intracellular Ca\(^{2+}\), triggering a contraction in airway smooth muscle [16,25,26]. In this study, we used the M receptor agonist ACH to precontract TRs. We found chloroquine can inhibit nifedipine-insensitive relaxation (Figure 1A,B). It has previously been reported that chloroquine can result in inactivation of VDCCs [16], hence, in this study, we only focused on defining the pathway that was insensitive to nifedipine and sensitive to...
chloroquine (Figures 1A,B and 2). Thus, all experiments were done in the presence of 10 μM nifedipine.

One cause of relaxation is intracellular Ca$^{2+}$ decrease. Thus, we found that chloroquine inhibited the ACh-induced Ca$^{2+}$ rise and corresponding cell shortening (Figure 3). The Ca$^{2+}$ decrease was due to chloroquine blocking Ca$^{2+}$ influx; as chloroquine can reversibly block Ca$^{2+}$ influx-induced contraction (Figure 4).

We then defined which pathway was responsible for the Ca$^{2+}$ influx. Previous studies have demonstrated that the activation of M receptor results in the activation of NSCCs in ASMCs. The activated NSCCs in turn mediate Ca$^{2+}$ influx, leading to a rise in cytosolic Ca$^{2+}$ [23,26]. Therefore, we measured the ACh-induced NSCC currents and found that these currents were inhibited by 1 mM chloroquine (Figure 5). This suggests that inactivation of NSCCs might be the reason for the chloroquine-induced relaxation. Moreover, our results (shown in Figure 6) indicated that chloroquine can directly block NSCCs because it can block single NSCC currents.

Since TRPC1-7 are NSCCs, we used Pyr3, a blocker of TRPC3, to test whether these channels are involved in chloroquine-induced relaxation [29]. We found that Pyr3 caused a partial relaxation in ACH-precontracted mouse airway smooth muscle (Figure 7), suggesting that TRPC3 is one type of NSCC. These results were further confirmed by Ca$^{2+}$ measurement (Figure 8) and whole-cell NSCC current recordings (Figure 9); however, we can not exclude STIM1/Orai1 channels because these channels are also inhibited by Pyr3 [30].

In summary, chloroquine can induce relaxation in precontracted mouse airway smooth muscle through inactivation of VDCCs and NSCCs. The inactivation of NSCCs is a result of direct blockade on the channels. Therefore, both VDCCs and NSCCs should be blocked when treating airway hyperresponsive-ness.

Acknowledgments

The authors thank Li Tan, Jin-Chao Xu, Ming-Yu Wei, and Hai-Xia Cheng (College of Life Sciences, South-Central University for Nationalities) for their technical assistance. The authors also thank Bioscience Editing Solutions (http://www.bioscienceeditsolutions.com) for the English language editing of this paper.

Author Contributions

Conceived and designed the experiments: DG YMY YXYW GJ QHL. Performed the experiments: TZX JWL WBS WEL YFM WC KZ. Analyzed the data: TZX JWL WBS WEL YFM. Contributed reagents/materials/analysis tools: JHS QHL. Wrote the paper: MFGQ GJQ DG YMZ YXW GJ QHL.

References

1. Schofield RH (1876) Observations on Taste-Goblets in the Epiglottis of the Dog and Cat. J Anat Physiol 10: 474 472–477.
2. Torrey TW (1931) The Relation of Taste-Buds to Their Nerve-Fibres. Proc Natl Acad Sci U S A 17: 591 594.
3. Chandrasekhar J, Hoon NJ, Zaker GS (2006) The receptors and cells of human airway epithelium. Nature 444: 268 274.
4. Fujiyama R, Miyazaki T, Miyamoto T, Okada Y, Mizuno A, et al. (1998) Intracellular free calcium concentration in human taste bud cells increases in response to taste stimuli. FEBS Lett 454: 47–50.
5. Prandi S, Bronke M, Huber S, Voigt A, Boehm U, et al. (2013) A subset of mouse colonic goblet cells express the bitter taste receptor ta2c121. PLoS One 8: e58280.
6. Shah AS, Ben-Shahar Y, Meninger TO, Kline JN, Welch MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325: 1111–1114.
7. Deshpande DA, Wang WC, McEmoye EL, Robinett KS, Schilling RM, et al. (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16: 1299–1304.
8. Bellin MG, Dale N, Birell MA, Caumling BJ (2011) Bronchodilator activity of bitter tastants in human tissue. Nat Med 17: 776–778. author reply 776–778.
9. Zhang CH, Chen C, Lifshitz LM, Fogarty KE, Zhu MS, et al. (2012) Activation of BK channels may not be required for bitter taste-induced bronchodilation. Mol Genet Metab 106: 645–650; author reply 650–641.
10. An SS, Robinett KS, Deshpande DA, Wang WC, Liebert SB (2012) Reply to: Activation of BK channels may not be required for bitter taste-induced bronchodilation. Nat Med 18: 645–646; author reply 650.
11. Liu QH, Zheng YM, Korde AS, Li XQ, Ma J, et al. (2009) Protein kinase C epsilon regulates local calcium signaling in airway smooth muscle cells. Am J Respir Cell Mol Biol 40: 663–671.
12. Liu QH, Zheng YM, Korde AS, Yadav VR, Rathore R, et al. (2009) Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci U S A 106: 11418–11423.
13. Zhang YM, Wang QS, Liu QH, Rathore R, Yadav V, et al. (2008) Heterogeneous gene expression and functional activity of rodaside receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells. J Vasc Res 45: 469–478.
14. Pulkkinen V, Manson ML, Safholm J, Adner M, Dahlen SE (2012) The bitter receptor Operated and store-operated Ca(2+) entry pathways. Br J Pharmacol 167: 1712–1722.
15. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, et al. (2009) Selective and potent antagonist for the bitter taste receptor TRPV5. J Pharmacol Exp Ther 328: 170–179.
16. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, et al. (2009) Selective and potent antagonist for the bitter taste receptor TRPV5. J Pharmacol Exp Ther 328: 170–179.
17. Liu QH, Zheng YM, Korde AS, Li XQ, Ma J, et al. (2009) Protein kinase C epsilon regulates local calcium signaling in airway smooth muscle cells. Am J Respir Cell Mol Biol 40: 663–671.
18. Liu QH, Zheng YM, Korde AS, Yadav VR, Rathore R, et al. (2009) Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci U S A 106: 11418–11423.
19. Zhang YM, Wang QS, Liu QH, Rathore R, Yadav V, et al. (2008) Heterogeneous gene expression and functional activity of rodaside receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells. J Vasc Res 45: 469–478.
20. Liu QH, Fleischmann BK, Hordowicz B, Maier CC, Turka LA, et al. (2002) Modulation of Kv channel expression and function by TCR and costimulatory signals during peripheral CD4(+) lymphocyte differentiation. J Exp Med 196: 897–909.
21. He B, Soderlund DM (2014) Functional Expression of Rat Nalv6 6 Voltage-Gated Sodium Channels in HEK293 Cells: Modulation by the Auxiliary beta1 Subunit. PLoS One 9: e85188.
22. Rueda A, Fernandez-Velasco M, Benitah JP, Gomez AM (2013) Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice. PLoS One 8: e53321.
23. Albert AP, Large WA (2002) A Ca2+-permeable non-selective cation channel activated by depletion of internal Ca2+ stores in single rabbit portal vein myocytes. J Physiol 536: 717–728.
24. Albert AP, Large WA (2001) The effect of external divalent cations on spontaneous non-selective cation channel currents in rabbit portal vein myocytes. J Physiol 536: 409–420.
25. Wang YX, Fleischmann BK, Koolhoff M (1997) M2 receptor activation of nonselective cation channels in smooth muscle cells: calcium and G(i/o) requirements. Am J Physiol 273: C500–508.
26. Fleischmann BK, Wang YX, Koolhoff M (1997) Muscarinic activation and calcium permeation of nonselective cation currents in airway myocytes. Am J Physiol 272: C381–389.
27. Ehara T, Noma A, Ono K (1988) Calcium-activated non-selective cation channels in smooth muscle cells: calcium and Gi/G(o) requirements. Am J Physiol 273: C500–508.
28. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, et al. (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106: 5400–5405.
29. Abramovitz J, Birnbaumer L (2009) Physiologic and pathophysiologic of canonical cation receptor potential channels. FASEB J 23: 297–308.
30. Schleifer H, Doleshah B, Lichtenegger M, Oppenrieder R, Derler I, et al. (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca2+ entry pathways. Br J Pharmacol 167: 1712–1722.