Effect of CeO$_2$ Nanoparticles on Interface of Cu/Al$_2$O$_3$ Ceramic Clad Composites

YaBo Fu$^{1,*}$, HaoNan Chen$^1$, ZhiQiang Cao$^2$ and YanQiu Huo$^1$

$^1$ Zhejiang Provincial Key Laboratory for Cutting Tools, School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China; Chenhaonan2333@163.com (H.C.); yqhuo@tzc.edu.cn (Y.H.)

$^2$ School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; caozq@dlut.edu.cn

* Correspondence: lgdfyb@163.com

Received: 15 February 2020; Accepted: 6 March 2020; Published: 9 March 2020

Abstract: Cu/Al$_2$O$_3$ ceramic clad composites are widely used in electronic packaging and electrical contacts. However, the conductivity and strength of the interfacial layer are not fit for the demands. So CeO$_2$ nanoparticles 24.3 nm in size, coated on Al$_2$O$_3$ ceramic, promote a novel CeO$_2$–Cu$_2$O–Cu system to improve the interfacial bonded strength. Results show that the atom content of O is increased to approximately 30% with the addition of CeO$_2$ nanoparticles compared with the atom content without CeO$_2$ in the interfacial layer of Cu/Al$_2$O$_3$ ceramic clad composites. CeO$_2$ nanoparticles coated on the surface of Al$_2$O$_3$ ceramics can easily diffuse into the metallic Cu layer. CeO$_2$ nanoparticles can accelerate to form the eutectic liquid of Cu$_2$O–Cu as they have strong functions of storing and releasing O at an Ar pressure of 0.12 MPa. The addition of CeO$_2$ nanoparticles is beneficial for promoting the bonded strength of the Cu/Al$_2$O$_3$ ceramic clad composites. The bonded strength of the interface coated with nanoparticles of CeO$_2$ is increased to 20.8% compared with that without CeO$_2$; moreover, the electric conductivity on the side of metallic Cu is 95% IACS. The study is of great significance for improving properties of Cu/Al$_2$O$_3$ ceramic clad composites.

Keywords: CeO$_2$ nanoparticles; bonded strength; Al$_2$O$_3$ ceramic; CeO$_2$–Cu$_2$O–Cu

1. Introduction

Cu/Al$_2$O$_3$ ceramic clad composites have anti-wear, anti-corrosion, and anti-high temperature characteristics of ceramics and maintain the high conductivity and machinability of copper. They have been widely used in rail transit, electronic packaging, and electrical contacts [1,2]. Although Cu/Al$_2$O$_3$ ceramic clad composites have the advantages of a ceramic and a copper, ceramic is brittle and difficult to process. Assembly and connection structures of ceramic and metal are often used. To obtain a stable and reliable Cu/Al$_2$O$_3$ ceramic clad structure, the wettability between metals and ceramics and the formation of brittle compounds at the interface must be addressed. These problem are of great research significance [3,4].

Many researchers have carried out the research. At present, brazing and diffusion bonding are the main methods to achieve connections between ceramics and metals. Breslin et al. [5] have suggested that the key problem was the interfacial wettability between the ceramics and metals, so a method of co-continuous ceramic composites was proposed [6,7]. The surface of ceramics coated a layer of Mo–Mn could improve wettability [8]. Active metals, such as Ag, Ti, Zr and V, have been added to study effects. However, general oxygen content was lower than 1 Pa to avoid oxidizing [9–11]. Burgess et al. [12,13] have used a Cu-Cu$_2$O eutectic liquid system to bond Cu layers with ceramics for the first time. However, Fan Jinglian et al. [14] have discovered that wettability between Cu and Al$_2$O$_3$ was still not significantly improved when the temperature was increased from 1200 to 1400 °C.
Results [15,16] have shown that the contact angle between the molten Cu and Al$_2$O$_3$ ceramic was 158°–170° under oxygen-free conditions at 1100–1300 °C, so they were non-wetting each other. Diemer et al. [17] have found that by controlling the oxygen partial pressure ($P_{O_2}$) and oxygen content in the copper simultaneously, contact angle could be varied between 125° and 22°. Evaluation of the Gibbs adsorption equation for the liquid/solid interface at 1300 °C suggests that adsorption of a Cu–O complex at that interface plays a key role in promoting wetting. Formation of CuAlO$_2$ and dissolution of Al$_2$O$_3$ in the melt also influence the contact angle, especially in the range of $P_{O_2}$ > 1 Pa. When the content of O was higher than 2 at.%, Cu began wetting the Al$_2$O$_3$. Huang [18] and Chatterjee [19] have found that the addition of oxides to metal solders could improve the wettability between Al$_2$O$_3$ ceramics and Cu layers. However, there are few reports on improving bonded strength between Cu and Al$_2$O$_3$ ceramics by the addition of rare earth oxides and reducing the bonded temperature. Thus, new methods are needed to solve these problems.

In this study, CeO$_2$ nanoparticles coat the interface between Al$_2$O$_3$ ceramics and Cu to form a new CeO$_2$–Cu$_2$O–Cu system to increase interfacial strength. Under a special gas pressure and temperature, the poor strengths of the ceramic/copper composites will be improved. The new phases and elements diffusing at low temperatures are studied. A new Cu/Al$_2$O$_3$ ceramic clad composite with the addition of CeO$_2$ is fabricated.

2. Materials and Methods

The specimens were prepared in a vacuum tube furnace (Boyun Tong company, Nanjing, China), which was vacuumed to 0.01 MPa and then filled Ar gas at a pressure of 0.12 MPa. The Cu cubes (Zhejiang wanteng metal materials firm, Ningbo, China) were 99.90 wt.% Cu. The ceramic cubes (Shenzhen beilong electronic material factory, Shenzhen, China) were 99.9 wt.% Al$_2$O$_3$. The fabrication procedures were as follows: nanoparticles of CeO$_2$ coated the surface of Al$_2$O$_3$ ceramics → in situ Cu$_2$O formed in the Cu interface in the 40 °C air → the melting of Cu and Al$_2$O$_3$ ceramic clad composites at 1300 °C for 5 min in a furnace at an Ar pressure of 0.12 MPa → a cube with the dimensions 40 × 40 × 30 mm was formed, as shown in Figure 1.

![Figure 1. Sketch of experimental methods.](image)

After preparation, the samples were etched in a solution containing 3 g of FeCl$_3$, 2 mL of HCl, and 96 mL of C$_2$H$_5$OH. Their metallurgical structures and microstructures were examined by scanning electron microscopy (SEM S-4800, Hitachi, Tokyo, Japan), and backscattered electron imaging (BSE, Hitachi, Tokyo, Japan) under a control voltage of 20 kV. The electric conductivity was measured at 60 kHz using a digital portable eddy current tester (FD-102, Xiamen xinrui instrument Ltd., Xiamen, China). The bonded strength was measured with a nanomechanical test for Nano Test 600 (Micro M materials Ltd., Wrexham, UK). XRD patterns were obtained using a Bruker D8 Advance (Bruker Ltd., Karlsruhe, Germany) with Cu Kα radiation.

3. Results and Discussion

3.1. Structure and Hardness of Cu/Al$_2$O$_3$ Clad Composites

Figure 2 shows the SEM images of Cu/Al$_2$O$_3$ composites at bonded temperature of 1300 °C. When nanosized CeO$_2$ is not added, the metal Cu and Al$_2$O$_3$ ceramic could not form a new eutectic solution.
The wettability of the two ceramics was poor, so there are many cracks in the bonded interface at 1300 °C, as shown in Figure 2a. The measurements are taken at room temperature. However, a closely bonded interface is formed between the Cu and Al₂O₃ by addition of CeO₂ nanoparticles, as shown in Figure 2b. There are no cracks in the bonded interface at 1300 °C. The conductivity of the Al₂O₃ ceramic is 0% IACS (international annealed copper standard), whereas the conductivity of the side of metallic Cu is 95% IACS, so the conductivity of Cu in the clad composites is reserved. Figure 3 shows the bonded strengths of the interfacial layer of Cu/Al₂O₃ clad composites with CeO₂ and without CeO₂ at the bonded temperature 1300 °C. The bonded strength of Cu/Al₂O₃ interfacial layer with nanoparticles of CeO₂ is 990.3 MPa; however, that without CeO₂ is 820.1 MPa. The bonded strength of the interfacial layer coated with nanoparticles of CeO₂ increases 20.8% compared with that without CeO₂. Therefore, nanoparticles of CeO₂ can improve the bonded strength.

Figure 2. SEM images of Cu/Al₂O₃ composites at bonded temperature 1300 °C: (a) without CeO₂ and (b) with CeO₂.

Figure 3. Bonded strength of interfacial layer.

3.2. EDS of Interface

The element distributions of the interfaces of the composite materials are presented in this section. Figure 4 shows the energy-dispersive X-ray spectroscopy (EDS) of the Cu/Al₂O₃ interface without
CeO$_2$. In the range of 0–40 µm, the contents of Al and O are high, whereas the content of Cu is the lowest, which indicate that 40 µm is the dividing line of the interface of the clad composites. However, in the range of 40–150 µm, the content of Cu is the highest, and a small amount of Al and O can diffuse to the copper layer.

![Figure 4](image-url)  
**Figure 4.** Energy-dispersive X-ray spectroscopy (EDS) of Cu/Al$_2$O$_3$ ceramic interface without CeO$_2$: (a) interface, (b) Cu, (c) Al, (d) O.

On the bonding surface coated with nanoparticles of CeO$_2$, the contents of these elements are different from that without CeO$_2$, as shown in Figure 5. In the range of 0–40 µm, the contents of Al and O are higher than Cu, whereas the content of Cu is the lowest in all. This indicates that 40 µm is the dividing line of the interface for the clad composites. The content of O is significantly increased to 30% with addition of CeO$_2$ compared with that without CeO$_2$, which indicate that CeO$_2$ could raise the content of O in the interface. The atom content of O tested by EDS is 15.4% when CeO$_2$ nanoparticles are not coated in the surface of Al$_2$O$_3$ ceramic; however, the atom content of O is increased to 20.4% when CeO$_2$ nanoparticles are coated. Again, the results prove that the atom content of O is 30% higher compared with that without CeO$_2$.

Moreover, the content of Ce arises from the range of 0–150 µm due to the addition of CeO$_2$. Figure 5b shows that the CeO$_2$ coated on the surface of the alumina ceramics can easily diffuse into the metallic Cu layer, but not to the Al$_2$O$_3$ ceramics. O and Cu easily form a eutectic liquid of Cu$_2$O–Cu under certain conditions [12,13], so CeO$_2$ can accelerate to form the eutectic liquid of Cu$_2$O–Cu by storing or releasing O at Ar pressure of 0.12 MPa. However, in the range of 40–150 µm, the content of Cu is the highest, and the contents of O and Al are reduced. The eutectic liquid of Cu$_2$O–Cu is the key factor in improving the wettabilities of the Cu and Al$_2$O$_3$ layers.
3.3. Mechanisms Discussion

Figure 6 shows the XRD patterns of the nanoparticles of CeO$_2$, the size of which are 24.3 nm for $28.5^\circ$ according to the Peak Search Report of XRD. Thus, rare earth oxide coated on the surface of Al$_2$O$_3$ ceramics is CeO$_2$. Figure 7 shows the SEM image of CeO$_2$. Due to the presence of nanoparticles of CeO$_2$, elements are active and easily diffused into the layers, which is beneficial for reducing the bonding temperature. Figure 8 shows the BSE images of the interface at bonded temperatures of 1300 and 1500 $^\circ$C. At 1500 $^\circ$C, Al and Cu easily diffuse into each other to form the compound of CuAlO$_2$. Which is beneficial to the improvement of wettability [8]. At 1300 $^\circ$C, the diffusion rates of the elements are decreased and oxidation cannot occur in time; however, the interface coated with CeO$_2$ shows that Al and Cu can diffuse into each other quickly in 5 min. Consequently, slags and cracks cannot form at low temperatures. The results show that the addition of nanoparticles CeO$_2$ is beneficial for reducing the bonding temperature.
Figure 6. XRD patterns of CeO$_2$.

Figure 7. SEM image of CeO$_2$ nanoparticles.

Figure 8. Backscattered electron imaging (BSE) images at samples’ bonded temperatures: (a) without CeO$_2$ at bonded temperature 1300 °C, (b) without CeO$_2$ at bonded temperature 1500 °C, and (c) with CeO$_2$ at bonded temperature 1300 °C.
Al$_2$O$_3$ and Cu usually do not wet each other. The contact angle between the molten Cu and Al$_2$O$_3$ ceramic is 158°–170° under oxygen-free conditions at 1100–1300 °C [15,16]. Thus, the Cu and Al$_2$O$_3$ are completely non-wetting when the Cu is molten. To achieve excellent properties of Cu/Al$_2$O$_3$ clad composite, it is necessary to improve the wettability between them. A small amount of O could reduce the wetting angle between Cu and Al$_2$O$_3$ [17]. When the content of O is higher than 2 at.%, Cu begins wetting the Al$_2$O$_3$. Moreover, Cu and Cu$_2$O could form a eutectic liquid [20]. However, CuO is easily formed at this temperature, so its formation must be strictly prevented. Therefore, reducing the content of O to prevent the formation of CuO and promoting the formation of Cu–Cu$_2$O are the key factors. In this study, CeO$_2$ can react with copper to form Cu$_2$O instead of CuO, promoting the formation of the Cu–Cu$_2$O eutectic solution. Yang, Y.M. [21] declared that in CeO$_2$ crystal structure Ce$^{+4}$ was easily converted to Ce$^{+3}$, or vice versa, which makes the nanoparticles of CeO$_2$ have strong functions of storing and releasing oxygen, as shown in chemical Equation (1). Chemical Equation (2) shows that Cu$_2$O can be formed under the condition of trace oxygen content. The chemical equations are as follows:

$$\text{CeO}_2 \leftrightarrow \text{CeO}_{2(1-x)} + x\text{O}_2 (0 \leq x \leq 0.25)$$

(1)

$$\text{Cu} + \text{O}_2 \rightarrow \text{Cu}_2\text{O}$$

(2)

The reduction of CeO$_2$ to Ce$_2$O$_3$ has been reported in the high temperature sintering of fine CeO$_2$ particles by [22,23]. The authors in reference [24] have also proved the conclusion by High Resolution Transmission Electron Microscopy (HRTEM) imaging and Fast Fourier Transformation (FFT) diffraction. Thus, nanoparticles of CeO$_2$ can improve the bonded strength, as CeO$_2$ nanoparticles have strong functions of oxygen storage and release and, thus, the addition of CeO$_2$ nanoparticles play an important role for a novel system of CeO$_2$–Cu$_2$O–Cu at an Ar pressure of 0.12 MPa.

The authors in [17] reported that, due to the mutual diffusion and redistribution of chemicals in the melting process, these oxides react with Al$_2$O$_3$ under certain conditions to form CuAlO$_2$, which is beneficial to the improvement of wettability [8]. The corresponding Gibbs free energies ($\Delta G^0$) [25] are as follows:

$$2\text{Cu}_2\text{O} + \text{O}_2 \rightarrow 4\text{CuO} \quad \Delta G^0 = -62354 + 44.89 \text{ T}$$

(3)

$$2\text{Cu}_2\text{O} + \text{O}_2 \rightarrow 4\text{CuO} \quad \Delta G^0 = -62354 + 44.89 \text{ T}$$

(4)

Equations (3) and (4) show that the Gibbs free energies of the above reactions are negative at 1300 °C, so CeO$_{2(1-x)}$ can absorb a small amount of O$_2$ to prevent CuO formation, and CuAlO$_2$ can also be formed spontaneously.

The reaction temperature of 1300 °C is 65 °C higher than the melting point of Cu$_2$O (1235 °C). Thus, Cu$_2$O reacts rapidly with Al$_2$O$_3$ to form compounds of CuAlO$_2$ at the interface in only 5 min. The formation of these low melting point copper oxides and interfacial compounds (CuAlO$_2$) is beneficial for the liquid phase copper wetting of the alumina ceramic (melting point of CuO is 1200 °C). Under certain conditions, CeO$_2$ is decomposed at 1000 °C and easily diffuses to the Cu layer, accelerating the formation of the CeO$_2$–Cu$_2$O–Cu eutectic, as shown in Figure 9. Figure 10 shows the SEM images and EDS of the interface. A strong structure, which is the key to strengthening the bonding interface, is formed due to the triangular type of the Cu$_2$O, and Y type of CeO$_2$ and CuAlO$_2$. 
4. Conclusions

(1) The atom content of O is increased to approximately 30% with addition of CeO$_2$ nanoparticles 24.3 nm in size compared with the atom content without CeO$_2$ nanoparticles in the interfacial layer of the Cu/Al$_2$O$_3$ ceramic clad composites, so the addition of CeO$_2$ could raise the atom content of O;

(2) CeO$_2$ nanoparticles coated on the surface of the Al$_2$O$_3$ ceramics can easily diffuse into the metallic Cu layer, but they do not in Al$_2$O$_3$ ceramics. CeO$_2$ nanoparticles can accelerate to form the eutectic liquid of Cu$_2$O–Cu, as they have strong functions of storing and releasing O at an Ar pressure of 0.12 MPa;

(3) The addition of CeO$_2$ nanoparticles is beneficial for promoting the bonded strength of Cu/Al$_2$O$_3$ ceramic clad composites. The bonded strength of the interface coated with nanoparticles of CeO$_2$ is 20.8% higher than that without CeO$_2$; however, the electric conductivity of metallic Cu is 95% IACS.
Author Contributions: Conceptualization, Y.F.; methodology, Y.F. and Z.C.; validation, Y.F.; formal analysis, Y.F.; investigation, H.C.; resources, Y.F.; data curation, Z.C.; writing—original draft preparation, Y.F.; writing—review and editing, Y.F.; visualization, Y.H.; supervision, Y.F.; project administration, Y.F.; funding acquisition, Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant numbers 51574058, 51771041 and 51571160); and the Basic Public Welfare Foundation of Zhejiang (LGG20E010004).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, D.; Zhang, G.D.; Li, Z.Q. Current status and development trend of metal matrix composites. Mater. China 2010, 29, 1–7. Available online: http://en.cnki.com.cn/Article_en/CJFDOTAL-XJKB201004004.htm (accessed on 14 February 2020).
2. Clyne, T.W. An introductory overview of metal matrix composites systems, types and developments. Compr. Compos. Mater. II 2018, 4, 1–21. [CrossRef]
3. Hammad, I.A.; Talic, Y.F. Designs of bond strength tests for metal-ceramic complexes: Review of the literature. J. Prosthet. Dent. 1996, 75, 602–604. [CrossRef]
4. Feng, J.C.; Zhang, L.X.; Cao, J. Bonding Technology between Ceramics and Metals; Science Press: Beijing, China, 2016.
5. Breslin, M.C.; Ringnalda, J.; Seeger, J.; Marasco, A.L.; Daehn, G.S.; Fraser, H.L. Alumina/aluminum co-continuous ceramics composite (C4) materials produced by solid/liquid displacement reactions: Processing kinetics and microstructure. In Ceramic Engineering and Science Proceedings; Wang, J.Y., Kriven, W., Fey, T., Eds.; The American Ceramic Society: New York, NY, USA, 2019; pp. 104–109. [CrossRef]
6. Liu, A.H.; Li, B.S.; Sui, Y.W.; Guo, J.J. Current research status of wettability in liquid metal/ceramic system. Hot Work. Technol. 2010, 39, 90–93. Available online: http://en.cnki.com.cn/Article_en/CJFDOTAL-SGY201024026.htm (accessed on 14 February 2020).
7. Szaghar, A.; Movahhedy, M.R.; Mahnama, M.; Sohrabpour, S. A molecular dynamics study of bond strength and interface conditions in the Al/Al2O3 metal-ceramic composites. Comp. Mater. Sci. 2015, 109, 200–208. [CrossRef]
8. Wang, W.X. Study on the Interface Wettability and Mechanical Properties of Al2O3/Cu Composites; Xi’an University of Technology: Xi’an, China, 2019.
9. Wang, Z.Q.; Cao, J.; Si, X.Q.; Chun, L.; Qi, J.L.; Feng, J.C. Review of research on reactive air brazing ceramics. J. Netshape Form. Eng. 2018, 1, 1–9. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-JMCX201801003.htm (accessed on 14 February 2020).
10. Friant, J.R.; Meier, A.; Darsell, J.T.; Weil, K.S. Transitions in wetting behavior between liquid Ag-CuO alloys and Al2O3 Substrates. J. Am. Ceram. Soc. 2012, 95, 1549–1555. [CrossRef]
11. Si, X.Q.; Cao, J.; Song, X.G.; Qu, Y.; Feng, J.C. Reactive air brazing of YSZ ceramic with novel Al2O3 nanoparticles reinforced Ag-CuO-Al2O3 composite filler: Microstructure and joint properties. Mater. Des. 2017, 114, 176–184. [CrossRef]
12. Burgess, J.F.; Neugebauer, C.A.; Flanagan, G. The direct bonding of metals to ceramics by the gas-metal eutectic method. J. Electrochem. Soc. 1975, 122, 688–690. Available online: https://iopscience.iop.org/article/10.1149/1.2134293/pdf (accessed on 14 February 2020). [CrossRef]
13. Burgess, J.F.; Neugebauer, C.A.; Flanagan, G.; Moore, R.E. The direct bonding of metals to ceramics and application in electronics. Electrocomp. Sci. Technol. 1976, 2, 233–240. [CrossRef]
14. Fan, J.L.; Liu, X.; Huang, B.Y.; Ling, G.L.; Liu, T. Hot pressing of Ni, Cu-Al2O3 nano-ceramic powders. Powder Metall. Technol. 2005, 23, 120–124. Available online: http://en.cnki.com.cn/Article_en/CJFDOTAL-FMY200502012.htm (accessed on 14 February 2020).
15. Véronique, G.; Dominique, C. Morphologies adopted by Al2O3 single-crystal surfaces in contact with Cu droplets. J. Am. Ceram. Soc. 2004, 85, 961–964. [CrossRef]
16. Shen, P.; Fujii, H.; Matsumoto, T.; Nogi, K. Influence of substrate crystallographic orientation on the wettability and adhesion of α-Al2O3 single crystals by liquid Al and Cu. J. Mater. Sci. 2005, 40, 2329–2333. [CrossRef]
17. Diemer, M.; Neubrand, A.; Trumble, K.P.; Rödel, J. Influence of oxygen partial pressure and oxygen content on the wettability in the copper–oxygen–alumina system. J. Am. Ceram. Soc. 1999, 82, 2825–2832. [CrossRef]
18. Huang, J.; Lu, J.S. Interfacial reaction for brazing Al₂O₃ ceramics in atmospheric environment with CuO auxiliary Ag₂Cu₂₉ eutectic solder. *Mater. Mechanical Eng.* **2016**, *40*, 43–46. [CrossRef]

19. Chatterjee, D.K.; Ketcham, T.D.; Julien, D.J.S. Conductive Coatings, Sealing Materials and Devices Utilizing such Materials and Method of Making. U.S. Patent 20,100,140,330 A1, 10 June 2010.

20. Shrestha, A.; Asthana, R.; Lacksonen, T.K.; Singh, M. Synthesis and characterization of air-sintered Al₂O₃-bronze composites. *J. Mater. Eng. Perform.* **2009**, *18*, 1041–1045. [CrossRef]

21. Yang, Y.M. *Study on the Mechanism of Electro-Diposition and Properties of CeO₂ Thin Film*, Zhejiang University: Hangzhou, China, 2018.

22. Zhou, Y.; Rahaman, M.N. Effect of redox reaction on the sintering behavior of cerium oxide. *Acta Mater.* **1997**, *45*, 3635–3639. [CrossRef]

23. Ozawa, M. Effect of oxygen release on the sintering of fine CeO₂ powder at low temperature. *Scr. Mater.* **2004**, *50*, 61–64. [CrossRef]

24. Wang, X.; Peng, X.; Tan, X.; Wang, F. The reactive element effect of ceria particle dispersion on alumina growth: A model based on microstructural observations. *Sci. Rep.* **2016**, *6*, 1–10. [CrossRef] [PubMed]

25. Shi, Y.G. *Study on the Regulation of Copper Infiltrated Alumina and Al₂O₃/Cu Composites*, Xi’an University of Technology: Xi’an, China, 2018.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).