SHORT COMMUNICATION

Serological evidence of exposure of Bornean wild carnivores to feline-related viruses at the domestic animal–wildlife interface

Sergio Guerrero-Sánchez1,2,3 | Amanda Wilson3,4 | Macarena González-Abarzúa3 | Miriam Kunde3 | Benoit Goossens3,5,6,7 | Rosa Sipangkui7 | Liesbeth Frias3,8

1Centre for Applied One Health Research and Policy Advice, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
2Institute of Borneo Studies, University College Sabah Foundation, Kota Kinabalu, Malaysia
3Danau Girang Field Centre, Kota Kinabalu, Malaysia
4Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
5Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
6Sustainable Places Research Institute, Cardiff University, Cardiff, UK
7Sabah Wildlife Department, Kota Kinabalu, Malaysia
8Asian School of the Environment, Nanyang Technological University, Singapore, Singapore

Correspondence
Sergio Guerrero-Sánchez, Centre for Applied One Health Research and Policy Advice, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
Email: ekio0474@gmail.com
Liesbeth Frias, Asian School of the Environment, Nanyang Technological University, Singapore.
Email: liesbeth.frias@gmail.com

Present address
Sergio Guerrero-Sánchez, Sustainable Places Research Institute, Cardiff University, Cardiff, UK
Liesbeth Frias, Sabah Wildlife Department, Kota Kinabalu, Malaysia

Funding information
Panthera Small Cat Action Fund (LF); UMSGreat Grant (AW), Grant/Award Number: GUG0440-1/2020; Ocean Park Conservation Foundation Hong Kong (BG); Sime Darby Foundation (BG); Houston Zoo (BG); Nanyang Technological University Presidential Postdoctoral Fellowship (LF), Grant/Award Number: #020617-00001

Abstract
We conducted an exploratory serological survey to evaluate the exposure of Bornean wild carnivores to several viruses common to domestic felids, at interface areas between protected forest and industrial agriculture in the Kinabatangan floodplain (Sabah, Malaysia). Blood samples, collected from wild carnivores (n = 21) and domestic cats (n = 27), were tested for antibodies against feline coronavirus (FCoV), feline panleukopenia virus (FPLV), feline herpesvirus (FHV) and feline calicivirus (FCV), using commercial enzyme-linked immunosorbent assay (ELISA) test kits. Anti-FCoV antibodies were detected in most species, including one flat-headed cat (Prionailurus planiceps, [1/2]), leopard cats (Prionailurus bengalensis, [2/5]), Malay civets (Viverra tangalunga, [2/11]) and domestic cats ([2/27]). Anti-FCV antibodies were present in all domestic cats and one flat-headed cat, while anti-FPLV antibodies were identified in Sunda clouded leopards (Neofelis diardi, [2/2]), domestic cats ([2/27]) and Malay civets ([2/27]). Anti-FHV antibodies were only detected in domestic cats ([2/27]). Our findings indicate pathogen transmission risk between domestic and wild carnivore populations at the domestic animal–wildlife interface, emphasizing the concern for wildlife conservation for several endangered wild carnivores living in the area. Special consideration should be given to species that benefit from their association with humans and have the potential to carry pathogens between forest and plantations (e.g., Malay civets and...
1 | INTRODUCTION

Frequent encounters between domestic animals and wildlife, as a result of human-mediated encroachment and fragmentation of wildlife habitats, can be detrimental for wild populations, especially when endangered (Nyhus, 2016). Because domestic animals often outnumber wildlife hosts of shared pathogens, they can maintain the environmental circulation of pathogens that can drive smaller populations of wild animals to extinction. As an example, canine distemper virus initially spreading from domestic dogs to lions almost drove the local population to extinction in the Serengeti ecosystem (Cleaveland et al., 1995). Even after widespread dog vaccination had reduced the infection intensity can be defined as ‘low’, ‘moderate’ and ‘high’ according to pathogens to other wildlife, linking reservoir hosts to susceptible populations of wild carnivores (Caron et al., 2015).

2 | MATERIALS AND METHODS

To better understand the exposure of wild carnivores to pathogens common in domestic felids, we conducted an exploratory serological survey in the LKWS (5°18′N–5°42′N and 117°54′E–118°33′E) and surrounding oil palm plantations. Immunological tests are a useful tool to detect historical exposure to pathogens, as well as to assess the success of vaccination programs. Commercial immunological kits, such as enzyme-linked immunosorbent assays (ELISA), have provided valuable preliminary information regarding the health status of wildlife, both in captivity and free-ranging, and are more easily adaptable to field conditions (Franklin et al., 2007). The evaluation of diagnostic kits in domestic cats and several wild cats species further suggests that the risk of misinterpreting results due to species-specificity is low, when positive reactions are higher than the cut-off point (Naidenko et al., 2018).

Wild carnivores were captured within and around the LKWS between 2019 and 2021. Sunda clouded leopards and civets were captured using cage traps, while leopard cats and flat-headed cats were netted. All wild animals were immobilized using different anaesthesia protocols for each species (Table 1). Health and body condition were assessed prior to sample collection. Adult domestic cats were sampled in plantation quarters with the permission and assistance of their owners. Physical examination suggested that both wild and domestic individuals were in good physical condition, and domestic cat owners declared that their pets had never been vaccinated. Blood samples were collected by venipuncture of the saphenous or cephalic veins and centrifuged in the field within 2 h of collection. Plasma was stored in the freezer until used for analysis. Plasma samples were tested for antibodies against feline coronavirus (FCoV) (ImmunoComb, Biogal Galed Lab. Acs. Ltd., Israel), feline panleukopenia virus (FPLV), feline herpes virus (FHV) and feline calicivirus (FCV) (VacciCheck, Biogal Galed Lab. Acs. Ltd., Israel). ImmunoComb has a reported specificity and sensitivity of 100% in domestic cats (Addie et al., 2015), while VacciCheck has a specificity of 91% for FCV, 96% for FHV and 98% for FPLV, and a sensitivity of 90% for FCV, 93% for FHV, and 89% for FPLV (Mazar et al., 2011). Although results provided by the kits are qualitative, reaction intensity can be defined as ‘low’, ‘moderate’ and ‘high’ according to the manufacturer’s instructions. These commercial kits have been previously tested in wild felids with satisfactory results (Naidenko et al., 2018).
FIGURE 1 Camera trap transects deployed at the boundary between forest and oil palm plantation estates, where both domestic and wild carnivores have been frequently recorded

TABLE 1 Seroprevalence of pathogens in Bornean wild and domestic carnivores

Species	IUCN	N	Anaesthesia protocol	FCoV (1:20) (%)	FPLV (1:80) (%)	FHV (1:16) (%)	FCV (1:32) (%)
Sunda clouded leopard (*Neofelis diardi*)	VU	2	Ket.–Med. (3–0.06)	0	100	0	0
Leopard cat (*Prionailurus bengalensis*)	LC	5	Ket.–Med. (5–0.05)	40	0	0	0
Flat-headed cat (*Prionailurus planiceps*)	EN	2	Ket.–Med. (5–0.06)	50	0	0	50
Malay civet (*Viverra tangalunga*)	LC	11	Ket.–Zol.–Med. (2–2–0.1)	18.2	18.2	0	0
Common palm civet (*Paradoxurus hermaphroditus*)	LC	1	Ket.–Zol.–Xy. (1.5–2–1.5)	0	0	0	0
Domestic cat (*Felis catus*)	–	27	–	7.4	44.4	7.4	100

Abbreviations: EN, endangered; FCoV, feline coronavirus; FCV, feline calicivirus; FHV, feline herpesvirus; FPLV, feline panleukopenia virus; IUCN, International Union for the Conservation of Nature; Ket., ketamine; LC, least concern; Med., medetomidine; VU, vulnerable; Xy., xylazine; Zol., zoletil.

*Anaesthesia protocols are given in mg/kg.

**Baseline titres to be considered as positive, according to manufacturer’s instructions.

[Correction added on 11 May 2022, after first online publication: “Ket.–Med. (5–0.06)” was changed to “LC” for Leopard cat under IUCN column.]

3 | RESULTS AND DISCUSSION

Wild carnivores tested positive for three out of the four pathogens studied (Table 1). All Sunda clouded leopards (n = 2), two Malay civets (18.2%; n = 11) and 12 domestic cats (44.4%; n = 27) tested positive for antibodies to FPLV. One flat-headed cat (50%; n = 2), two leopard cats (40%; n = 5), two Malay civets (18.2%) and two domestic cats (7.4%) tested positive for FCoV. All domestic cats and one flat-headed cat tested positive for FCV, while only two domestic cats (7.4%) were infected with FHV. The intensity of positive reactions varied among studied species and viruses. Positive reaction against FCoV was high in two out of the seven domestic cats, while the other five showed low reaction. Low reaction for FCoV was also observed in two leopard cats, one flat-headed cat and two Malay civets. For FPLV, out of the 17 positive domestic cats, seven indicated high reaction, five were moderate and the other five presented low reaction. One Sunda clouded leopard and one Malay civet presented moderate reaction to FPLV, while the other sampled individuals from these species had a low reaction to the virus. While domestic cats had a low reaction to FHV, all of them, including one flat-headed cat, had a high reaction to FCV.

In this serological survey, only one of the flat-headed cats tested positive for both FCoV and FCV, while the two Sunda clouded leopards presented antibodies against FPLV. Infection with FCoV is of concern, particularly in endangered populations, as it can result in fatal feline infectious peritonitis. Feline coronavirus is shed in faeces, and cats can become infected by ingesting or inhaling the virus. Feline calicivirus is extremely contagious, especially in areas with high feline densities (*Lenghaus et al., 2001*), as reflected by the seropositivity of all domestic
cats in this study. Feline panleukopenia virus is highly contagious and has been reported in felids, procyonids and viverrids (Inthong et al., 2019). It has also been associated with high morbidity and mortality, especially in young individuals (Steinel et al., 2001). On the other hand, FHV is relatively fragile and short-lived outside felines, so the external environment is not a long-term source of infection. Since all individuals, wild and domestic, were reported in good physical condition and with no clinical signs, our results only demonstrate viral circulation among carnivores, and no actual active disease.

Although the use of commercial kits have been shown to be effective in a wide range of wild felid species and recommended as an adequate alternative for disease monitoring and sero-surveillance (Franklin et al., 2007; Naidenko et al., 2018), there is still a risk of misinterpreting results when titre levels are low. The existence of endogenous par-voviruses in several mammal species (Kapoor et al., 2010) and the anti-genic diversity of coronaviruses (Kennedy et al., 2001), might favour cross-reactivity, especially for FPLV and FCoV. Our study highlights special concern for the high reaction of one flat-headed cat to FCV, as well as moderate reactions of one Sunda clouded leopard and one Malay civet to FPLV. Although low reactions should be taken cautiously due to the likelihood of cross-reactivity, the sero-prevalence found in domestic cats in the area suggests that the presence of these viruses in the carnivore community should not be readily dismissed. So far, there is no evidence on the performance of commercial ELISA test kits for viverrids, such as Malay and common palm civets. However, as some members of this family are susceptible to FPLV (Demeter et al., 2009; Steinel et al., 2001), viverrids should still be considered as a group of concern in areas where their interaction with domestic felids is high, especially since viral shedding can occur from asymptomatic individuals (Lorusso et al., 2019; Meli et al., 2013).

Our results provide the first data on exposure of Bornean wild carnivores to various viruses common to domestic felids with which they overlap. Among Bornean felids, the flat-headed cat is the least studied and it is listed as endangered, while the conservation status of the Sunda clouded leopard is reported as vulnerable. Flat-headed cats have been reported using oil palm plantations in the Kinabatangan floodplain (González-Abarzúa et al., 2021). In fact, one individual sampled in this study was captured within an oil palm estate, while the other was trapped at a plantation edge. The elusive nature and low densities of these two species make incidental observations like these highly valuable. Most importantly, our findings highlight an underestimated effect of oil palm plantations on the native community of carnivores, through the risk of infectious disease transmission from domestic animals due to increased inter-species interactions and habitat overlap. They also evidence the importance of including animal health and welfare programs as part of the management protocols of oil palm companies. Although serosurveys do not allow for the identification of active infection during sampling, they underline the importance of establishing continuous monitoring for diseases at the domestic animal–wildlife interface, and provide a relevant baseline in areas where these data are lacking.

During this study, we detected the presence of one Sunda clouded leopard roaming around the boundaries between oil palm and adjacent forest. While this species is more likely to avoid anthropogenic habitats (Hearn et al., 2018), all the other carnivores involved in the study, including domestic cats, have been reported using both forest and oil palm plantations, making them potential carriers of pathogens to more vulnerable species, including Sunda clouded leopards, flat-headed cats, smooth-coated and hairy-nosed otters (Lutrogale perspicillata, Lutra sumatrana), among other eight species of carnivores reported in the area under different conservation status. The design and implementation of preventive medicine programs, as part of oil palm plantation management strategies, can assist the responsible ownership of domestic carnivores within estates and minimize pathogen spillover to vulnerable wildlife. By incorporating continuous infectious disease monitoring of wild and domestic carnivores, conservation initiatives can additionally support the long-term survival of populations living in interface areas.

ACKNOWLEDGEMENTS
We thank research assistants at the Danau Girang Field Centre for logistical support, plantation managers for granting us access to estates, and animal owners in plantations for kindly participating in our research. This study was financially supported by Panthera through its Small Cat Action Fund to LF and by Universiti Malaysia Sabah through its UMSGreat Grant (GUG0440-1/2020) to AW. Additional funding was provided by Ocean Park Conservation Foundation Hong Kong, Sime Darby Foundation and Houston Zoo to BG. LF is supported by a Nanyang Technological University Presidential Postdoctoral Fellowship (#020617-00001).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ETHICS STATEMENT
Animal handling and sampling protocols were designed and conducted by veterinarians, and reviewed and authorized by Sabah Wildlife Department and the Sabah Biodiversity Centre (JKM/MBS.1000-2/2 JLD.8 [110]; JKM/MBS.1000-2/2 JLD.10 [57,59]) as part of the procedures to authorize access to natural resources, as well as for trapping and handling wildlife.

DATA AVAILABILITY STATEMENT
The authors confirm that the data supporting the findings of this study are available within the article.

REFERENCES
Abram, N. K., Meijaard, E., Ancenazi, M., Runting, R. K., Wells, J. A., Gaveau, D., Pellier, A. S., & Mengersen, K. (2014). Spatially explicit perceptions of ecosystem services and land cover change in forested regions of Borneo. Ecosystem Services, 7, 116–127. https://doi.org/10.1016/j.ecoser.2013.11.004
Addie, D. D., Le Poder, S., Burr, P., Decaro, N., Graham, E., Hofmann-Lehmann, R., Jarrett, O., McDonald, M., & Meli, M. L. (2015). Utility of feline coronavirus antibody tests. Journal of Feline Medicine and Surgery, 17(2), 152–162. https://doi.org/10.1177/1098612x14533873
Caron, A., Cappelle, J., Cumming, G. S., de Garine-Wichatitsky, M., & Gaidet, N. (2015). Bridge hosts, a missing link for disease ecology in
multi-host systems. Veterinary Research, 46(1), 1–11. https://doi.org/10.1186/s13567-015-0217-9

Cleaveland, S., & Dye, C. (1995). Maintenance of a microparasite infecting several host species: Rabies in the Serengeti. Parasitology, 111(S1), S33–S47. https://doi.org/10.1017/S0031182000007580

Demeter, Z., Gál, J., Palade, E. A., & Rusvai, M. (2009). Feline parvovirus infection in an Asian palm civet (Paradoxurus hermaphroditus). The Veterinary Record, 164(7), 213. https://doi.org/10.1136/vr.164.7.213

Franklin, S. P., Troyer, J. L., TerWee, J. A., Lyren, L. M., Kays, R. W., Riley, S. P., Boyce, W. M., Crooks, K. R., & Vandalouwede, S. (2007). Variability in assays used for detection of lentiviral infection in bobcats (Lynx rufus), pumas (Puma concolor), and acelots (Leopardus pardalis). Journal of Wildlife Diseases, 43(4), 700–710. https://doi.org/10.7589/0090-3558-43.4.700

González-Abarzúa, M. C., Kunde, M. N., Fitri, M. S., & Goossens, B. (2021). First capture of a flat-headed cat in an oil palm plantation in Sabah, Borneo. CATNews, 72, 37–38.

Hearn, A. J., Cushman, S. A., Ross, J., Goossens, B., Hunter, L. T., & Macdonald, D. W. (2018). Spatio-temporal ecology of sympatric felids on Borneo. Evidence for resource partitioning? PLoS One, 13(7), e0200828. https://doi.org/10.1371/journal.pone.0200828

Hearn, A. J., Ross, J., Bernard, H., Bakar, S. A., Goossens, B., Hunter, L. T., & Macdonald, D. W. (2019). Responses of Sunda clouded leopard Neofelis diardi population density to anthropogenic disturbance: Refining estimates of its conservation status in Sabah. Orx, 53(4), 643–653. https://doi.org/10.1017/S0030605317001065

Inthong, N., Sutach, K., Kaewmongkol, S., Sinsiri, R., Sribuward, K., Sirinarumitr, K., & Sirinarumitr, T. (2019). Feline panleukopenia virus as the cause of diarrhea in a banded linsang (Prionodon linsang) in Thailand. Journal of Veterinary Medical Science, 81(12), 1763–1768. https://doi.org/10.1292/jvms.19-0238

Kapoor, A., Simmonds, P., & Lipkin, W. I. (2010). Discovery and characterization of mammalian endogenous parvoviruses. Journal of Virology, 84(24), 12628–12635. https://doi.org/10.1128/JVI.01732-10

Kennedy, M., Citino, S., Dolorico, T., McNabb, A. H., Moffat, A. S., & Kania, S. (2001). Detection of feline coronavirus infection in captive cheetahs (Acinonyx jubatus) by polymerase chain reaction. Journal of Zoo and Wildlife Medicine, 32(1), 25–30. https://doi.org/10.1638/1042-7260(2001)032[0025:DOVFII2.0.CO;2] PMID:12790391

Lenghaus, C., Stuedert, M. J., & Gavier-Widen, D. (2001). Calicivirus infections. In E. S. Williams & I. K. Barker (Eds.), Infectious diseases of wild mammals. Williams. (pp. 280–291). Iowa State University Press.

Lorusso, E., Mari, V., Losurdo, M., Lanave, G., Trota, A., Dowgier, G., Colaianni, M. L., Zatelli, A., Elia, G., Buonavoglia, D., & Decaro, N. (2019). Discrepancies between feline coronavirus antibody and nucleic acid detection in effusions of cats with suspected feline infectious peritonitis. Research in Veterinary Science, 125, 421–424. https://doi.org/10.1016/j.rvsc.2017.10.004

Mazar, S., DiGangi, B., & Dubovi, E. (2011). Sensitivity-specificity and accuracy of the ImmunoComb Feline VacciCheck Antibody Test Kit for Feline Calici, Herpes and Panleukopenia Viruses. https://www.biogal.com/wp-content/uploads/2020/03/SS-FVV-Study-17.12.12.pdf

Meli, M. L., Burr, P., Decaro, N., Graham, E., Jarrett, O., Lutz, H., McDonald, M., & Addie, D. D. (2013). Samples with high virus load cause a trend toward lower signal in feline coronavirus antibody tests. Journal of Feline Medicine and Surgery, 15(4), 295–299. https://doi.org/10.1177/1098612X12467995

Naidenko, S. V., Hernandez-Blanco, J. A., Pavlova, E. V., Efroeeva, M. N., Sorokin, P. A., Litvinov, M. N., Kotlyar, A. K., Sulikhan, N. S., & Rozhnov, V. V. (2018). Primary study of seroprevalence to virus pathogens in wild felids of South Primorie, Russia. Canadian Journal of Zoology, 96(8), 839–846. https://doi.org/10.1139/cjz-2017-0192

Nyhus, P. J. (2016). Human-wildlife conflict and coexistence. Annual Review of Environment and Resources, 41, 143–171. https://doi.org/10.1146/annurev-environ-110615-085634

Rajaratnam, R., Sunquist, M., Rajaratnam, L., & Ambu, L. (2007). Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. Journal of Tropical Ecology, 23(2), 209–217. https://doi.org/10.1017/S0266474006003841

Ross, J., Hearn, A. J., Macdonald, D. W., Alfred, R., Cheyne, S. M., Mohamed, A., Boonratana, R., Bernard, H., Hon, J., Brodie, J. F., Giordano, A., Heydon, M., Semiadi, G., Mathai, J., Fredriksson, G., Marshall, A. J., Pilgrim, J. D., van Berkel, T., Belant, J. L.,…Wiling, A. (2016). Predicted distribution of the Malay civet Viverra tangalunga (Mammalia: Carnivora: Viverridae) on Borneo. Raffles Bulletin of Zoology, 33, 78–83.

Sepúlveda, M. A., Singer, R. S., Silva-Rodriguez, E. A., Eguren, A., Stowhas, P., & Pelican, K. (2014). Invasive American mink: Linking pathogen risk between domestic and endangered carnivores. EcoHealth, 11(3), 409–419. https://doi.org/10.1007/s10393-014-0917-z

Steinel, A., Parrish, C. R., Bloom, M. E., & Truyen, U. (2001). Parvovirus infections in wild carnivores. Journal of Wildlife Diseases, 37(3), 594–607. https://doi.org/10.7589/0090-3558-37.3.594

Viana, M., Cleaveland, S., Matthiopoulos, J., Halliday, J. O., Packer, C., Craft, M. E., Hampson, K., Czupryna, A., Dobson, A. P., Dubovi, E. J., Ernest, E., Fyugawma, R., Hoare, R., Hopcraft, J. G. C., Horton, D. L., Kaare, M. T., Kanellos, T., Lankester, F., Mentzel, C.,…Lembo, T. (2015). Dynamics of a morbillivirus at the domestic-wildlife interface: Canine distemper virus in domestic dogs and lions. Proceedings of the National Academy of Sciences, 112(5), 1464–1469. https://doi.org/10.1073/pnas.1411623112

How to cite this article: Guerrero-Sánchez, S., Wilson, A., González-Abarzúa, M., Kunde, M., Goossens, B., Sipangkui, R., & Frias, L. (2022). Serological evidence of exposure of Bornean wild carnivores to feline-related viruses at the domestic animal–wildlife interface. Transboundary and Emerging Diseases, 1–5. https://doi.org/10.1111/tbed.14549