A GRAPHICAL REPRESENTATION OF RINGS VIA AUTOMORPHISM GROUPS

N. MOHAN KUMAR AND PRAMOD K. SHARMA

Abstract. Let R be a commutative ring with identity. We define a graph $\Gamma_{\text{Aut}}(R)$ on R, with vertices elements of R, such that any two distinct vertices x, y are adjacent if and only if there exists $\sigma \in \text{Aut} R$ such that $\sigma(x) = y$. The idea is to apply graph theory to study orbit spaces of rings under automorphisms. In this article, we define the notion of a ring of type n for $n \geq 0$ and characterize all rings of type zero. We also characterize local rings (R, M) in which either the subset of units ($\neq 1$) is connected or the subset $M - \{0\}$ is connected in $\Gamma_{\text{Aut}}(R)$.

1. Introduction

Throughout this article, all rings are commutative with identity. We denote by \mathbb{Z}_n, the ring of integers modulo n, and by $U(R)$, the group of units of a ring R. We will also use the notation \mathbb{F}_q to denote a field of q elements, where of course, q is the power of a prime.

In the last decade, study of rings using properties of graphs has attracted considerable attention. In [2], I. Beck defined a simple graph on a commutative ring R with vertices elements of R where two different vertices x and y in R are adjacent, by which we mean as usual that they are connected by an edge, if and only if $xy = 0$. In [8], the authors defined another graph on a ring R with vertices elements of R such that two different vertices x and y are adjacent if and only if $Rx + Ry = R$.

In this article, we define another graph $\Gamma_{\text{Aut}}(R)$ with vertices elements of R where two different vertices $x, y \in \Gamma_{\text{Aut}}(R)$ are adjacent if and only if $\sigma(x) = y$ for some $\sigma \in \text{Aut} R$. It is proved that if $\Gamma_{\text{Aut}}(R)$ is totally disconnected, which is equivalent to deg x being zero for all $x \in R$, then R is either \mathbb{Z}_n or $\mathbb{Z}_2[X]/(X^2)$. As usual, the degree of a vertex is the number of edges emanating from it. Further, we define the notion of rings of type n and study the structure of rings of type n.

2000 Mathematics Subject Classification. 13M05.

Key words and phrases. Automorphisms of rings, Finite rings, Type of a ring.

The first author was partially supported by a grant from NSA.

All correspondences will be handled by the second author.
at most one. We also characterize finite local rings \((R, M)\) with either \(U(R) - \{1\}\) connected or \(M - \{0\}\) connected as subsets of \(\Gamma_{\text{Aut} R}(R)\).

In general, if for a ring \(R\), \(H\) is a subgroup of \(\text{Aut} R\), then we can define a graph structure on \(R\) using \(H\) instead of \(\text{Aut} R\). We shall denote this graph by \(\Gamma_H(R)\). We expect that this approach may be useful in the study of orbit space of \(R\) under \(\text{Aut} R\).

2. Preliminaries

We recall some basic notions from graph theory.

A simple graph \(\mathcal{G}\) is a non-empty set \(V\) together with a set \(E\) of unordered pairs of distinct elements of \(V\). The elements of \(V\) are called vertices and an element \(e = \{u, v\} \in E\) where \(u, v \in V\) is called an edge of \(\mathcal{G}\) joining the vertices \(u\) and \(v\). If \(\{u, v\} \in E\), then \(u\) and \(v\) are called adjacent vertices. In this case \(u\) is adjacent to \(v\) and \(v\) is adjacent to \(u\). We shall normally denote the graph just by \(\mathcal{G}\) and call \(|V|\), the cardinality of \(V\), the order of \(\mathcal{G}\). We shall sometimes write \(|G|\) for the order of \(G\).

For any vertex \(v \in G\), degree of \(v\), denoted by \(\deg v\), is the number of edges of \(G\) incident with \(v\). An automorphism \(\alpha\) of a graph \(\mathcal{G}\) is a permutation of the set of vertices \(V\) of \(G\) which preserves adjacency.

A subgraph of \(\mathcal{G}\) is a graph having all its vertices and edges in \(\mathcal{G}\). A graph \(\mathcal{G}\) is called complete if any two vertices in \(\mathcal{G}\) are adjacent. A clique of a graph is a maximal complete subgraph.

A graph \(\mathcal{G}\) is called connected if for all distinct vertices \(x, y \in \mathcal{G}\) there is a path from \(x\) to \(y\). A graph \(\mathcal{G}\) is called totally disconnected if there are no edges in \(\mathcal{G}\). That is, the edge set of \(\mathcal{G}\) is empty. We say that a graph \(\mathcal{G}\) can be embedded in a surface \(S\) if it can be drawn on \(S\) so that no two edges intersect. A graph is planar if it can be embedded in a plane.

For a ring \(R\), \(\text{Aut} R\) operates in a natural way on \(R\). If \(S \subset \Gamma_{\text{Aut} R}(R)\) is connected, then for any \(a, b \in S\), there is \(\sigma \in \text{Aut} R\) such that \(\sigma(a) = b\). For any \(x \in R\), we denote by \(O(x)\) the orbit of \(x\) under the action of \(\text{Aut} R\). In fact \(O(x)\) is the clique of \(\Gamma_{\text{Aut} R}(R)\) containing \(x\). Moreover, any clique of \(\Gamma_{\text{Aut} R}(R)\) is of the form \(O(x)\) for some \(x \in R\).

Let \(K/k\) be a field extension. Then for any subgroup \(H\) of \(\text{Aut} (K)\), \(k \subset \Gamma_H(K)\) is totally disconnected if and only if \(H \subset \text{Aut}_k(K)\).

We record some elementary results.

Lemma 2.1. Let \(R\) be an integral domain and \(G = \text{Aut} R\). For any \(\lambda \in R - R^G\), \(\lambda\) is integral over \(R^G\) if and only if the clique of \(\Gamma_{\text{Aut} R}(R)\) containing \(\lambda\) is finite.

The proof is standard.
Theorem 2.2. Let R be a Noetherian integral domain such that $\Gamma_{\text{Aut}}(R)$ has a finite number of cliques. Then R is a finite field.

Proof. The proof follows from [7, Corollary 16].

Next we define the notion of *type* of a ring R.

Definition 1. A ring R is called of type n if for all $x \in \Gamma_{\text{Aut}}(R)$, $\deg x \leq n$, and there exists at least one $y \in \Gamma_{\text{Aut}}(R)$ such that $\deg y = n$.

Remark 1. Assume that the ring R is a direct product of rings A and B. If R is of type n, then A and B are of type $\leq n$.

Example 1. For any prime p, $R = \mathbb{Z}_p[X]/(X^2)$ is a ring of type $p - 2$.

This can be seen as follows. Let us denote by x the image of X in R. If ψ is an automorphism of R, then $\psi(x) = ax$ for some $0 \neq a \in \mathbb{Z}_p$ and conversely, given such an $a \in \mathbb{Z}_p$, we can define an automorphism of R by sending $x \mapsto ax$. Then, it is clear that $\text{Aut } R$ has order $p - 1$. Therefore, for any $y \in R$, we have $\deg y = |O(y)| - 1 \leq p - 2$. On the other hand, $|O(x)| = p - 1$ and thus we see that R is of type $p - 2$.

Example 2. Let $n > 1$ be an odd integer. Then the ring $R = \mathbb{Z}_n[X]/(X^2)$ is of type $\varphi(n) - 1$, where $\varphi(n)$ denotes the Euler phi function.

As before, let us denote by x the image of X in R. Any element in R can be uniquely written as $ax + b$ with $a, b \in \mathbb{Z}_n$. Let $\psi \in \text{Aut } R$. Notice that $\psi(a) = a$ for all $a \in \mathbb{Z}_n$. Then $\psi(x) = ax + b$ for some $a, b \in \mathbb{Z}_n$. Since ψ is an automorphism, there exists an element $px + q \in R$ with $p, q \in \mathbb{Z}_n$ such that

$$x = \psi(px + q) = p\psi(x) + q = pa + pb + q.$$

Thus we get $pa = 1$ and so a must be a unit in \mathbb{Z}_n. Further, if $\psi(x) = ax + b$, with $a \in U(\mathbb{Z}_n)$, we must also have,

$$0 = \psi(x^2) = (ax + b)^2 = 2abx + b^2$$

and hence $2ab = 0$. Since n is odd and a is a unit, we have $b = 0$. So, any automorphism $\psi \in \text{Aut } R$ must have, $\psi(x) = ax$ for some unit $a \in R$. It is easy to see that any such map is indeed an automorphism. Thus we see that $\text{Aut } R \cong U(\mathbb{Z}_n)$, which has order $\varphi(n)$. Thus, as before, we get that $|O(y)| \leq \varphi(n)$ for all $y \in R$ and since $|O(x)| = \varphi(n)$, we see that R is of type $\varphi(n) - 1$.

Example 3. Let p be a prime and $n \geq 1$ be any integer. Then for the direct product ring $R = \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n} \times \cdots \times \mathbb{Z}_{p^n}$ (k-times), where $k < p^n$, $\text{Aut } R = S_k$, the symmetric group on k symbols. Thus R is of type $k! - 1$.

Theorem 2.3. Let (R, M) be a finite local ring which is not a field, such that $\deg x \leq 1$ for all $x \in M$. Then $\text{Aut } R$ is an Abelian group of order 2^m, $m \geq 0$.

Proof. Let $x \in M$. By assumption, $\deg x \leq 1$. Hence for any $\sigma \in \text{Aut } R$, $x, \sigma(x), \sigma^2(x)$ are not all distinct. Thus $\sigma^2(x) = x$ for all $x \in M$. Thus $\sigma^2 = \text{id}$ on M. Hence by [6, Theorem 2.5], $\sigma^2 = \text{id}$. Therefore $\text{Aut } R$ is Abelian of order 2^m, $m \geq 0$.

Example 4. Let (R, M) be a finite local ring which is not a field such that $\deg x \leq n$ for all $x \in M$. Then for every $\sigma \in \text{Aut } R$, order of σ is $\leq (n+1)!$.

Theorem 2.4. Let K be a perfect field of characteristic $p > 0$. Then K is of type n, if and only if $K = \mathbb{F}_{p^{n+1}}$.

Proof. As K is of type n, order of any $\sigma \in \text{Aut } (K)$ is at most $(n+1)!$ and in particular, the Fröbenius automorphism τ of K has finite order. If order of τ is m, then $x^{p^m} = x$ for all $x \in K$. Hence K is a finite field. As K is of type n, it is clear that $K = \mathbb{F}_{p^{n+1}}$. The converse is obvious.

Corollary 2.5. Let K be a field. Then K is perfect of characteristic $p > 0$ and is of type $n < \infty$ if and only if $\Gamma_{\text{Aut } K}(K)$ has finite number of cliques.

Proof. The proof is immediate from Theorem 2.4 and [4] Theorem 1.1.

Theorem 2.6. Let $R = A_1 \times A_2 \times \cdots \times A_m$, where A_1, \ldots, A_m are local rings. Then

1. If A_i is not isomorphic to A_j for any $i \neq j$, $\text{Aut } R$ is isomorphic to $\prod_{1 \leq i \leq m} \text{Aut } A_i$.

2. If $m > 1$, and A_i is isomorphic to A_j for some $i \neq j$, Then $\text{Aut } R \neq \text{id}$. Further, if $\text{Aut } R$ is finite then it is of even order.

Proof. (1) Local rings have no non-trivial idempotents. Hence any idempotent of R is of the form $a = (a_1, a_2, \ldots, a_m)$ where $a_i = 0$ or $a_i = 1$ for each i. Denote by e_i the element

$$e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in R \quad i = 1, 2, \ldots, m$$

where 1 is the identity in A_i and is at the ith place. Then e_1, \ldots, e_m are m pairwise orthogonal idempotents in R such that $e_1 + e_2 + \cdots + e_m = 1$. For any $\sigma \in \text{Aut } R$, $1 = \sigma(e_1) + \cdots + \sigma(e_m)$
and $\sigma(e_1), \ldots, \sigma(e_m)$ are pairwise orthogonal idempotents in R. Thus $\sigma(e_i) = e_j$ for some j, and hence
\[
\sigma(A_i) = \sigma(Re_i) = Re_j = A_j.
\]
As A_i is not isomorphic to A_j for $i \neq j$, we conclude that $\sigma(e_i) = e_i$ for all i. Therefore the restriction of σ to A_i is an automorphism of A_i. This proves the first assertion.

(2) Without loss of generality, we may assume that A_1 is isomorphic to A_2. In fact, we can take $A_1 = A_2$. Then the map $\tau : R \to R$ given by
\[
a = (a_1, a_2, \ldots, a_m) \mapsto (a_2, a_1, \ldots, a_m)
\]
is a non identity automorphism of R such that $\tau^2 = 1$. Hence the second assertion follows.

\[\square\]

Remark 2. (1) If $\text{Aut } R$ is of odd order, then A_i is not isomorphic to A_j for $i \neq j$.

(2) The Theorem is valid even if we assume that A_i has no non-trivial idempotent for any i, instead of assuming A_i to be local.

Corollary 2.7. Let R, S be two local rings such that R is not isomorphic to S. Assume that for $a \in R$ and $b \in S$, we have $\deg a = m$, and $\deg b = n$. Then for the element $(a, b) \in R \times S$,
\[
\deg(a, b) = (\deg a + 1)(\deg b + 1) - 1.
\]

Proof. By the Theorem, $\text{Aut } (R \times S)$ is isomorphic to $\text{Aut } R \times \text{Aut } (S)$. Therefore, it is immediate that
\[
\deg(a, b) = (\deg a + 1)(\deg b + 1) - 1
\].

\[\square\]

Corollary 2.8. Let R be a local ring of type m and S be a local ring of type n, $m \neq n$. Then $R \times S$ is of type $(m + 1)(n + 1) - 1$.

Proof. The result is immediate from Corollary 2.7.

\[\square\]

Theorem 2.9. Let R be a finite ring. Then $\Gamma_{\text{Aut } R}(R)$ is planar if and only if R is of type ≤ 3.

Proof. If $\Gamma_{\text{Aut } R}(R)$ is planar, then it does not contain K_5 by [3, Theorem 11.13]. Hence $\deg x \leq 3$ for all $x \in R$. This proves R is of type ≤ 3. The converse is clear since K_n is planar for all $n \leq 4$ and $\Gamma_{\text{Aut } R}(R)$ is a union of K_n’s.

\[\square\]
Theorem 2.10. For any ring R, $\text{Aut}(R)$ is a subgroup of $\text{Aut}(\Gamma_{\text{Aut}(R)}(R))$, but the converse is not true in general.

Proof. Let $a, b \in \Gamma_{\text{Aut}(R)}(R)$ be connected. Then there exists $\sigma \in \text{Aut}(R)$ such that $\sigma(a) = b$. Now for any $\theta \in \text{Aut}(R)$, $\theta \sigma \theta^{-1}(a) = \theta(b)$. Thus the direct part holds. For the converse, if $R = \mathbb{Z}_4$, then $\text{Aut}(R) = \text{Id.}$, but $\text{Aut}(\Gamma_{\mathbb{Z}_4}) = S_4$.

3. Rings with $\Gamma_{\text{Aut}(R)}(R)$ totally disconnected

Let R be a finite ring. In this section, we shall study the structure of R with $\Gamma_{\text{Aut}(R)}(R)$ totally disconnected. Observe that $\Gamma_{\text{Aut}(R)}(R)$ is totally disconnected if and only if $\text{Aut}(R) = \text{Id}$. By [1, Theorem 8.7], any finite ring R is a direct product of finite local rings uniquely. As $\Gamma_{\text{Aut}(R)}(R)$ is totally disconnected, each of the factor local ring has trivial automorphism groups. Therefore we will study structure of R when R is local with $\text{Aut}(R) = \text{Id}$.

Theorem 3.1. Let (R, M) be a finite local ring such that $\Gamma_{\text{Aut}(R)}(R)$ is totally disconnected. Then R is isomorphic to \mathbb{Z}_{p^α} or $\mathbb{Z}_2[X]/(X^2)$ where p is a prime.

Proof. As $\Gamma_{\text{Aut}(R)}(R)$ is totally disconnected, $\text{Aut}(R) = \text{Id}$. Since R is a finite local ring, its characteristic is p^α for some prime p. Then $\mathbb{Z}_{p^\alpha} \subset R$.

Thus the characteristic of R/M is p.

If $R = \mathbb{Z}_{p^\alpha}$, we have nothing to prove. So we assume that $R \neq \mathbb{Z}_{p^\alpha}$.

The structure of the proof is as follows.

(1) We first show that there is a subring $B \subset R$ of the form $\mathbb{Z}_{p^\alpha}[T]/(f(T))$ where $f(T)$ is a monic polynomial in $\mathbb{Z}_{p^\alpha}[T]$ such that the induced map $B \to R/M$ is onto.

(2) If $B = R$ then we show that R has non-trivial automorphisms contradicting our hypothesis.

(3) If $B \neq R$, we choose a maximal subring $B \subset A \subset R$ and show that R has non-trivial automorphisms over A, again contradicting our hypothesis, except when $p = 2$ and the only exception being when $R = \mathbb{Z}_2[X]/(X^2)$.

We show that there is a subring $B \subset R$ of the form $\mathbb{Z}_{p^\alpha}[a]$ such that the natural map $B \to R/M$ is onto. If $R/M = \mathbb{Z}_p$, we may take $B = \mathbb{Z}_{p^\alpha}$. So, let us assume that $R/M \neq \mathbb{Z}_p$. As \mathbb{Z}_p is a perfect field and R/M is a finite separable extension of \mathbb{Z}_p, R/M is a simple field extension of \mathbb{Z}_p and thus $R/M = \mathbb{Z}_p[\bar{x}]$ for some element $0 \neq \bar{x} \in R/M$. Let $f_1(T)$ be the irreducible polynomial of \bar{x} over \mathbb{Z}_p. Choose $f(T) \in R[T]$, a monic polynomial, such that $f_1(T)$ is the image of $f(T)$.
in $R/M[T]$. Since \mathfrak{p} is separable over \mathbb{Z}_p, by Hensel’s Lemma, there exists a lift $a \in R$ of \mathfrak{p} such that $f(a) = 0$. Denote by B the subring $\mathbb{Z}_{p^\alpha}[a]$ of R. It is clear that the natural map $B \rightarrow R/M$ is onto.

Next we claim that $\mathbb{Z}_{p^\alpha}[T]/(f(T))$ is isomorphic to B. Consider the natural \mathbb{Z}_{p^α}-epimorphism:

$$\theta : \mathbb{Z}_{p^\alpha}[T] \longrightarrow B, \quad T \mapsto a.$$

Then, clearly $f(T) \in \text{Ker} \theta$. Hence θ induces an epimorphism:

$$\overline{\theta} : \mathbb{Z}_{p^\alpha}[T]/(f(T)) \longrightarrow B.$$

Notice that, as $\mathbb{Z}_p[T]/(f_1(T))$ is a field, $\overline{\mathfrak{p}}$, the image of p in \mathbb{Z}_{p^α}, generates the unique maximal ideal in $\mathbb{Z}_{p^\alpha}[T]/(f(T))$. Consequently, every ideal in $\mathbb{Z}_{p^\alpha}[T]/(f(T))$ is generated by a power of \mathfrak{p}. In particular so is $\text{Ker} \overline{\theta}$ and so let this ideal be $(\overline{\mathfrak{p}}^k)$ for some integer k. Then $\overline{\theta}(\overline{\mathfrak{p}}^k) = \overline{\mathfrak{p}}^k = 0$ in R. This implies $k = \alpha$. Thus $\text{Ker} \overline{\theta} = 0$. Hence $\overline{\theta}$ is an isomorphism proving our claim.

We, now, consider the case $B = R$. In this case R is isomorphic to $\mathbb{Z}_{p^\alpha}[T]/(f(T))$ and since we have assumed that $R \neq \mathbb{Z}_{p^\alpha}$, we see that the monic polynomial f has degree greater than one. Its image $f_1(T)$ in $\mathbb{Z}_p[T]$ is an irreducible polynomial. Consider the Fröbenius automorphism τ of $\mathbb{Z}_p[T]/(f_1(T)) = R/M$. Since $\deg f_1(T) > 1$ the automorphism τ can not be identity.

For any automorphism β of $\mathbb{Z}_p[T]/(f_1(T))$, the composite map

$$\mathbb{Z}_p[T] \xrightarrow{\pi} \mathbb{Z}_p[T]/(f_1(T)) \xrightarrow{\beta} \mathbb{Z}_p[T]/(f_1(T))$$

is onto and if $\beta \circ \pi(T) = u$, then $f_1(u) = 0$. We know that $f_1(T)$ is irreducible over \mathbb{Z}_p. Hence u is a simple root of $f_1(T)$. We have $f(X) \in \mathbb{Z}_{p^\alpha}[X] \subset R[X]$, and its image is $f_1(X)$ in $\mathbb{Z}_p[X] \subset R/M[X]$. As seen above, by Hensel’s Lemma, there exists a lift $a \in R$ of u such that $f(a) = 0$. Then consider the homomorphism:

$$\psi : \mathbb{Z}_{p^\alpha}[T] \rightarrow R = \mathbb{Z}_{p^\alpha}[T]/(f(T)) \quad T \mapsto a$$

Since $f(a) = 0$, this map induces an endomorphism

$$\overline{\psi} : R = \mathbb{Z}_{p^\alpha}[T]/(f(T)) \longrightarrow R = \mathbb{Z}_{p^\alpha}[T]/(f(T))$$

and the diagram:

$$\begin{array}{ccc}
\mathbb{Z}_{p^\alpha}[T]/(f(T)) & \xrightarrow{\overline{\psi}} & \mathbb{Z}_{p^\alpha}[T]/(f(T)) \\
\downarrow & & \downarrow \\
\mathbb{Z}_p[T]/(f_1(T)) & \xrightarrow{\beta} & \mathbb{Z}_p[T]/(f_1(T))
\end{array}$$

is commutative. As β is obtained from $\overline{\psi}$ after tensoring with \mathbb{Z}_p over \mathbb{Z}_{p^α}, $\overline{\psi}$ is onto. Hence, as R is finite, $\overline{\psi}$ is an automorphism. Finally,
taking $\beta = \tau$ and since $\tau \neq \text{id}$, $\bar{\psi} \neq \text{id}$. Thus we arrive at a contradiction to our hypothesis that $\text{Aut } R$ is trivial, in this case.

Lastly, we look at the case when $B \neq R$. Then we may choose a subring A of R, with $B \subset A$, $A \neq R$ and maximal with respect to this property. Then A is a local ring with maximal ideal $M_A = M \cap A$, and $R = A[\lambda]$ for every $\lambda \in R - A$.

Since B maps onto R/M, so does A. If $M \subset A$, and in particular, if $M = M_A$, then this would force $A = R$, which is not the case. So, $M \neq M_A$.

Since R is a finitely generated module over A, by Nakayama’s lemma, we also have $M_AR + A \neq R$. But, $A \subset M_AR + A \subset R$ and $M_AR + A$ is naturally a subring of R and thus by maximality, we must have $A = M_AR + A$ and thus $M_AR \subset A$. Since $1 \notin M_AR$, and $M_A \subset M_AR \subset A$, we see that $M_AR = M_A$. So, we have shown,

$$M_AR = M_A \subset M$$ \hfill (1)

Choose $\lambda \in M - M_A$ such that $\lambda^2 \in A$. This can always be done as elements of M are nilpotent. Thus $R = A[\lambda]$ where $\lambda \in R - A$ and $\lambda^2 \in A$ and in fact in M_A. Now, consider the A-algebra epimorphism:

$$\psi : A[T] \rightarrow R, \quad T \mapsto \lambda.$$

One clearly has $\psi(T^2 - \lambda^2) = 0$. Similarly, for any element $a \in M_A$, $a\lambda \in M_A$ by equation (1) above. Thus we see that,

$$\text{Ker } \psi \supseteq (T^2 - \lambda^2, aT - a\lambda) = J$$

where a runs through elements of M_A.

We claim that the above inclusion is an equality. If $f(T) \in \text{Ker } \psi$, then, we can write

$$f(T) = (T^2 - \lambda^2)g(T) + aT - b$$

where $g(T), aT - b \in A[T]$. By assumption,

$$0 = f(\lambda) = a\lambda - b.$$

This forces a to be in M_A, since otherwise a is a unit, and in that case $\lambda = a^{-1}(a\lambda) = a^{-1}b \in A$ contradicting our choice of λ. Thus $aT - b = aT - a\lambda \in J$ establishing our claim. Thus we have,

$$\bar{\psi} : A[T]/J \simeq R.$$

Let a be the socle of A. If $a = A$, then A is a field. From the above isomorphism, we have $R = A[T]/(T^2)$ since $\lambda^2 \in M_A = 0$ and $aT - b = 0$ since $a,b \in M_A = 0$ and thus $J = (T^2)$. If $u \in A$ is a unit, then $T \mapsto uT$ gives an automorphism of R and it is non-trivial.
if \(u \neq 1 \). So, we may assume that 1 is the only unit in \(A \) and then \(A = \mathbb{Z}_2 \), leading us to the exception mentioned in the theorem.

So, from now on, let us assume that \(a \subset M_A \). Now, we show that \(R \) has a non-trivial automorphism as \(A \)-algebras, proving the theorem.

Define an ideal \(I \) of \(A \) by,

\[
I = (0 : \lambda)_A = \{ x \in A \mid x\lambda = 0 \}.
\]

Since \(\lambda \neq 0 \) clearly \(I \neq A \) and hence \(I \subset M_A \). We look at two cases, either \(a \) is contained in \(I \) or not. First we consider the case when \(a \subset I \).

Let \(0 \neq v \in a \) and consider the \(A \)-algebra automorphism,

\[
\alpha : A[T] \to A[T], \ T \mapsto T + v.
\]

We want to show that \(\alpha \) respects the ideal \(J \). We have,

\[
\alpha(T^2 - \lambda^2) = (T + v)^2 - \lambda^2
\]

\[
= (T^2 - \lambda^2) + 2vT + v^2
\]

\[
= (T^2 - \lambda^2) + 2vT - 2v\lambda + 2v\lambda + v^2
\]

\[
= (T^2 - \lambda^2) + (2vT - 2v\lambda)
\]

since \(v^2 = 0 \) because \(v \in a \subset M_A \) and \(2v\lambda = 0 \) since \(v \in I \). Thus \(\alpha(T^2 - \lambda^2) \in J \). Similarly, for \(a \in M_A \),

\[
\alpha(aT - a\lambda) = a(T + v) - a\lambda = aT - a\lambda + av = aT - a\lambda
\]

since \(av = 0 \). Thus, \(\alpha(aT - a\lambda) \in J \). So, we get an induced surjective \(A \)-algebra homomorphism,

\[
\overline{\alpha} : R = A[T]/J \to A[T]/J = R,
\]

which then must be an automorphism. Since \(T \mapsto T + v \) and \(v \neq 0 \), this is a non-trivial automorphism.

Lastly, we consider the case when the socle is not contained in \(I \), but the socle is contained in \(M_A \). Then choose an element \(v \) in the socle not contained in \(I \). Consider the \(A \)-algebra automorphism

\[
\beta : A[T] \to A[T], \ T \mapsto (1 + v)T.
\]

As before, we proceed to check that this map respects the ideal \(J \).

\[
\beta(T^2 - \lambda^2) = (1 + v)^2T^2 - \lambda^2
\]

\[
= (T^2 - \lambda^2) + 2vT^2 + v^2T^2
\]

\[
= (T^2 - \lambda^2) + 2v(T^2 - \lambda^2) + 2v\lambda^2 + v^2T^2
\]

\[
= (1 + 2v)(T^2 - \lambda^2)
\]

since \(v^2 = 0 \) and \(v\lambda^2 = 0 \) by virtue of the fact that \(v \) is in the socle as well as in \(M_A \) and \(\lambda^2 \in M_A \). So, \(\beta(T^2 - \lambda^2) \in J \).
Similarly, for any $a \in M_A$ one has,
\[\beta(aT - a\lambda) = a(1 + v)T - a\lambda = (aT - a\lambda) + avT = aT - a\lambda, \]
since $av = 0$. Thus $\beta(aT - a\lambda) \in J$. So, we get an induced A-algebra surjection,
\[\overline{\beta} : R \to R, \]
which is an isomorphism. Further, since $\overline{\beta}(\lambda) = \lambda + v\lambda$ and $v\lambda \neq 0$ since $v \not\in I$, this is a non-trivial automorphism.
This concludes the proof of the theorem.

\[\square \]

Corollary 3.2. Let R be a finite ring such that $\Gamma_{Aut,R}(R)$ is totally disconnected. Then R is a finite product of rings of the type \mathbb{Z}_{p^n} and $\mathbb{Z}_2[X]/(X^2)$.

Proof. Since R is a finite ring, by [1, Theorem 8.7], R is a finite product of local rings. Further, as $\Gamma_{Aut,R}(R)$ is totally disconnected, $Aut R = id$. Hence each of the local ring in the decomposition of R has automorphism group trivial. Therefore the result follows from Theorem 3.1. \[\square \]

Remark 3. Let (R, M) be finite local ring with characteristic of $R/M = p$. If $[R/M : \mathbb{F}_p] > 2$, then R is of type at least 2. This can be deduced from the proof of Theorem 3.1.

4. **Some connected subsets of $\Gamma_{Aut,R}(R)$**

In this section, we study the structure of a finite local ring R for which certain subsets of $\Gamma_{Aut,R}(R)$ are connected.

Theorem 4.1. Let (R, M) be a finite local ring and $U(R)$ be the set of units of R. If $U(R) - \{1\}$ is a connected subset of $\Gamma_{Aut,R}(R)$, then R is one of the following.

1. $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4$ or \mathbb{F}_4.
2. $\mathbb{Z}_2[X_1, \ldots , X_m]/I$ where I is the ideal of $\mathbb{Z}_2[X_1, \ldots , X_m]$ generated by $\{X_iX_j | 1 \leq i, j \leq m\}$.

Proof. If $U(R) = \{1\}$, then $M = 0$ since $1 + x$ is a unit for all $x \in M$. Therefore, in this case, $R = \mathbb{Z}_2$.

Now assume $U(R) - \{1\} \neq \emptyset$. Let p^n be the characteristic of R so that $\mathbb{Z}_{p^n} \subset R$. The number of units in \mathbb{Z}_{p^n} is $p^{n-1}(p-1)$. For any $\sigma \in Aut R$, σ is identity on \mathbb{Z}_{p^n}. Thus all elements of $U(\mathbb{Z}_{p^n}) \subset U(R)$ have orbits consisting of just one element. If $U(R) - \{1\}$ is connected, it follows that the cardinality of $U(\mathbb{Z}_{p^n})$ can not be greater than two. Thus $p^{n-1}(p-1) \leq 2$. We deduce that either $p = 2, n = 1, 2$ or $p = 3, n = 1$.

If $M \supseteq \mathfrak{p}\mathbb{Z}_p^n$, then for any $x \in M$, with $x \not\in \mathfrak{p}\mathbb{Z}_p^n$, $1 + x$ is a unit not in \mathbb{Z}_p^n. Therefore, in the cases $p = 2, n = 2$ or $p = 3, n = 1$, one sees that $U(R) - \{1\}$ is not connected. Consequently $M = \mathfrak{p}\mathbb{Z}_p^n$, if $p = 2, n = 2$ or $p = 3, n = 1$.

Let us first look at the cases, $p = 2, n = 2$ and $p = 3, n = 1$. In these cases, $M = \mathfrak{p}\mathbb{Z}_p^n$ from above. The set $U(\mathbb{Z}_p^n) - \{1\}$ has exactly one element and it is invariant under all automorphisms of R. Thus, this single element set is a connected component of $U(R) - \{1\}$, and since this set is assumed to be connected, we see that $U(R) - \{1\} = U(\mathbb{Z}_p^n) - \{1\}$. This implies $\mathbb{Z}_p^n - \mathfrak{p}\mathbb{Z}_p^n = R - M$, Thus $R = \mathbb{Z}_p^n$ proving the theorem in these cases.

We are left with the last case, when $p = 2$ and $n = 1$. In this case $\mathbb{Z}_2 \subset R$. If R is a field, then $R = \mathbb{F}_q$ where $q = 2^s$. The automorphism group of \mathbb{F}_q has order s and thus the orbits have cardinality at most s. Since the cardinality of $U(\mathbb{F}_q)$ is $q - 1$, we get that $2^s - 2 = q - 2 \leq s$. One easily sees that this implies $s \leq 2$. Since we are assuming that $U(R) - \{1\} \neq \emptyset$, this forces $s = 2$ and $R = \mathbb{F}_4$. One easily checks that in this case, $U(R) - \{1\}$ is connected.

Finally we may assume that $M \neq 0$. Let $0 \neq x \in M$. If $u \neq 1$ is any unit, then the connectedness of $U(R) - \{1\}$ implies that there exists a $\sigma \in \text{Aut} R$ such that $\sigma(1 + x) = u$ and hence $u \equiv 1 \mod M$. This implies $R/M \cong \mathbb{Z}_2$. Next we show that $M^2 = 0$. For this it suffices to show that for any $x \in M - M^2$ and any $y \in M$, $xy = 0$. If $xy \neq 0$, then there exists an automorphism τ of R so that $\tau(x + 1) = 1 + xy$ which implies that $\tau(x) = xy$. But, then $\tau(x) \in M - M^2$ and $xy \in M^2$, which is a contradiction. So $M^2 = 0$.

Now, let $\{a_1, \ldots, a_m\}$ be a minimal set of generators for M. Then consider the surjective homomorphism

$$f : \mathbb{Z}_2[X_1, \ldots, X_m] \rightarrow R, \quad X_i \mapsto a_i$$

As $M^2 = 0$, $|M| = 2^m$, since $m = \dim_{R/M} M/M^2$ and $R/M = \mathbb{Z}_2$. Therefore $|R| = 2|M| = 2^{m+1}$ and Ker $f = I$ is the ideal generated by X_iX_j with $1 \leq i, j \leq m$. As $|\mathbb{Z}_2[X_1, \ldots, X_m]/I| = 2^{m+1}$, it follows that $\mathbb{Z}_2[X_1, \ldots, X_m]/I$ is isomorphic to R. It is easy to see that in this case, $U(R) - \{1\}$ is indeed connected. \qed

Theorem 4.2. Let (R, M) be a finite local ring with characteristic p^n. If $M - \{0\}$ is connected, then $R = \mathbb{F}_q$ or $\mathbb{F}_q[X_1, \ldots, X_m]/I$ where \mathbb{F}_q is a finite field with q elements and I is the ideal generated by elements of the form X_iX_j with $1 \leq i, j \leq m$. By convention, we will include the case $R = \mathbb{F}_q$, when $m = 0$.
Proof. If \(M - \{0\} = \emptyset \), then \(R \) is a field and hence \(\mathbb{F}_q \) for some \(q \). So, let us assume that \(M \neq 0 \).

As characteristic of \(R \) is \(p^n \geq \mathbb{Z}_{p^n} \subset R \). Exactly as in Theorem 4.1 we can see that \(M^2 = 0 \). Now, note that \(M \cap \mathbb{Z}_{p^n} = (\overline{p}) \). Hence \(n \leq 2 \).

First we consider the case \(n = 2 \). In this case, if \(p > 2 \), then for any \(1 < u < p \), the two elements \(u\overline{p}, \overline{p} \) are distinct non-zero elements of \(M \) and for any \(\sigma \in \text{Aut } R, \overline{p} = \overline{p} \) and \(\sigma(u\overline{p}) = u\overline{p} \). This contradicts the fact \(M - \{0\} \) is connected. Hence \(p = 2 \). In this case \(M = \{ \overline{2}, 0 \} \) since \(\sigma(\overline{2}) = \overline{2} \) for any automorphism \(\sigma \) of \(R \) and \(M - \{0\} \) is connected. If \(R \neq \mathbb{Z}_4 \), then choose \(\lambda \in R - \mathbb{Z}_4 \). Clearly \(\lambda \notin M \) and hence is a unit. Now, note that \(\overline{2} \) and \(\lambda \overline{2} \) are in \(M = \{ \overline{2}, 0 \} \). Therefore \(\lambda \overline{2} = \overline{2} \) and hence \((\lambda - 1)\overline{2} = 0 \). Since \(\overline{2} \neq 0 \), this implies that \(\lambda - 1 \in M \) and and since \(M \subset \mathbb{Z}_4 \), we see that \(\lambda \in \mathbb{Z}_4 \), contradicting our choice of \(\lambda \). Thus, in this case \(R = \mathbb{Z}_4 \).

In the last case of \(n = 1 \), we have \(\mathbb{Z}_p \subset R \). So \(\mathbb{Z}_p \subset R/M \) is a finite separable extension and so as in Theorem 3.1 there exists a finite field \(\mathbb{F}_q \subset R \) such that \(\mathbb{F}_q \) is isomorphic to \(R/M \). Now, let \(\{a_1, \ldots, a_m\} \) be a minimal set of generators for \(M \). Then consider as before the surjective map

\[
 f : \mathbb{F}_q[X_1, \ldots, X_m] \to R, \quad X_i \mapsto a_i
\]

Again \(\text{Ker } f \) is the ideal \(I \) generated by elements of the form \(X_iX_j \) with \(1 \leq i, j \leq m \). Note that, as seen above, \(m = \dim_{R/M} M \). Thus \(|R| = q^{m+1} \) and similarly \(|\mathbb{F}_q[X_1, \ldots, X_m]/I| = q^{m+1} \). Consequently \(f \) is an isomorphism. Hence the proof is complete. \(\square \)

Theorem 4.3. Let \(K/E \) be a field extension, and let \(\text{Aut}_EK = H \). Assume \(K - E \subset \Gamma_H(K) \) is connected. Then either \(K/E \) is algebraic or all elements of \(K - E \) are transcendental over \(E \). Moreover, \(K^H = E \). Further, if \(K/E \) is algebraic and not equal, then \(E = \mathbb{F}_2 \) and \(K = \mathbb{F}_4 \).

Proof. Let \(a, b \in K - E \) be two distinct elements such that \(a \) is algebraic over \(E \). Since \(K - E \subset \Gamma_H(K) \) is connected, there exists \(\sigma \in H \) such that \(\sigma(a) = b \). Therefore \(b \) is also algebraic over \(E \). This proves the first part of the statement.

Next, note that \(E \subset K^H \). Then, as \(K - E \subset \Gamma_H(K) \) is connected, it is clear that \(K^H - E = \emptyset \), or in other words \(K^H = E \).

Now, let \(K/E \) be algebraic. We shall consider the cases of \(K \) being infinite or finite separately.

First consider the case when \(K \) is infinite. If \(K - E \neq \emptyset \), let \(\lambda \in K - E \). Let \(p(T) \) be the irreducible polynomial of \(\lambda \) over \(E \). Then for any \(\sigma \in H \), \(\sigma(\lambda) \) must be a root of \(p(T) \) and in particular the orbit of \(\lambda \) is finite. Since \(K - E \) is connected, this means that \(K - E \) is the orbit of \(\lambda \) and thus \(K - E \) is a finite set. Thus, \(K \) is a finite dimensional
vector space over E and so E must be infinite too. For any $0 \neq a \in E$, $a\lambda \in K - E$ and these are distinct. So, $K - E$ is infinite, which is a contradiction. So, K cannot be infinite.

Next, let us consider the case when K is finite. Let $E = \mathbb{F}_q$ and let $|K : \mathbb{F}_q| = t > 1$. Then H is a cyclic group of order t generated by an appropriate power of the Frobenius. For any $\lambda \in K - E$, the cardinality of the orbit of λ is therefore at most t. Since $K - E$ is connected, we have $|K - E| \leq t$. On the other hand, $|K - E| = q^t - q$ and thus we get $q^t - q \leq t$. It is easy to check that this can happen only when $q = 2$ and $t = 2$. This proves the theorem.

If $E = \mathbb{F}_2$ and $K = \mathbb{F}_4$, then it is trivial to check that $\mathbb{F}_4 - \mathbb{F}_2$ is indeed connected.

\[\square \]

Let K/k be a field extension where K and k are algebraically closed. Let $H = \text{Aut}_k(K)$. Then, it is easy to check that $K - k \subset \Gamma_H(K)$ is connected. We, now, ask the converse:

Question 1. Let k be an algebraically closed field and let K/k be a field extension with $H = \text{Aut}_k(K)$. Assume $K - k \subset \Gamma_H(K)$ is connected. Is K algebraically closed?

This question is a slight variant of part of Conjecture 2.1 in [4].

After the work was done, Roger Wiegand pointed out that Theorem 3.1 and Corollary 3.2 have also been proved in [5]. However, the proof is different.

REFERENCES

[1] M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR MR0242802 (39 #4129)

[2] István Beck, *Coloring of commutative rings*, J. Algebra 116 (1988), no. 1, 208–226. MR MR944156 (89i:13006)

[3] Frank Harary, *Graph Theory*, Narosa Publ. House, 1969.

[4] Kiran S. Kedlaya and Bjorn Poonen, *Orbits of automorphism groups of fields*, J. Algebra 293 (2005), no. 1, 167–184. MR MR2173971 (2006h:12006)

[5] Neeraj Kayal and Nitin Saxena, *Complexity of ring morphism problems*, Computational complexity 15 (2007), 342-390.

[6] Pramod K. Sharma, *A note on automorphisms of local rings*, Comm. Algebra 30 (2002), no. 8, 3743–3747. MR MR1922308 (2003g:13027)

[7] ______, *Orbits of automorphisms of integral domains*, Ill. Jour. Math. 30 (2009), 645–652.

[8] Pramod K. Sharma and S. M. Bhatwadekar, *A note on graphical representation of rings*, J. Algebra 176 (1995), no. 1, 124–127. MR MR1345297 (96f:05079)
DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY IN ST. LOUIS, ST. LOUIS, MISSOURI, 63130, U.S.A.

E-mail address: kumar@wustl.edu
URL: http://www.math.wustl.edu/~kumar

SCHOOL OF MATHEMATICS, VIGYAN BHAWAN, KHANDWA ROAD, INDORE–452 001, INDIA.

E-mail address: pksharma1944@yahoo.com