Supporting Information

Rapid One-pot Detection of SARS-CoV-2 based on Lateral Flow Assay in Clinical Samples

Chao Zhang¹,², Tingting Zheng¹,², Hua Wang³, Wei Chen⁴, Xiaoye Huang⁵, Jianqi Liang⁶, Liping Qiu⁷, Da Han⁸*, and Weihong Tan⁹,¹,§,¶,*,

¹Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
²Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
³Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
⁴Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
⁵Clinical laboratory, Central Hospital of Loudi, Loudi, Hunan, China.
†Chao Zhang and Tingting Zheng contributed equally.

Corresponding Author
* Da Han: dahan@sjtu.edu.cn
* Weihong Tan: tan@hnu.edu.cn

Table of Contents:
Experimental section .. S2
Table S1. Detailed sequences for the current study .. S4
Table S2. Detailed sequences of synthetic pathogenic microorganism gene fragments. S6
Table S3. Details of 12 synthetic samples. ... S14
Table S4. Results of RT-qPCR and RT-LAMP-LFA for clinical samples. ... S15
Figure S1. RT-LAMP reaction with and without dUTP. .. S16
Figure S2. Illustrations of SARS-CoV-2 Orf1ab and N gene targeted by the primers S17
Figure S3. pH of RT-LAMP system treated with 50mM NaOH. ... S18
Figure S4. Confusion matrix and ROC analysis of RT-LAMP-LFA method with clinical samples. .. S19
Figure S5. Diagnostic results of 6 clinical Mycoplasma infection samples .. S20
Experimental section

Preparation of DNA Oligonucleotides. The oligonucleotide primers used in RT-LAMP assay are listed in Table S1 and purchased from Sangon (Shanghai, China). The storing solutions of DNA oligonucleotides (10 μM) were obtained by dispersing them with nuclease-free water. The synthetic positive plasmids of all pathogenic microorganism used in this study are listed in Table S2, which were synthesized by Tsingke Biotech (Beijing, China). All plasmids were resuspended at 10^{12} copy/mL in nuclease-free water and stored at -20°C.

Pseudovirus and RNA purification. Pseudovirus of SARS-CoV-2 were provided by Zeesan Biotech (Xiamen, China), product batch number: 20020101. The pseudovirus was composed of an adenovirus capsid with RNA fragments containing Orf1ab and N gene sequences of SARS-CoV-2 virus. All pseudovirus were resuspended at 10^{10} copy/mL in nuclease-free water and stored at -20°C. Viral RNA in pseudovirus was extracted using the QIAamp Viral RNA Mini Kit from Qiagen of Canada according to the manufacturer’s instructions.

Reaction System of the RT-LAMP Preamplification. The RT-LAMP amplification was performed by incubating 0.2 μM of each of forward outer primer (F3) and backward outer primer (B3), and 0.8 μM of forward inner primer (FIP) and backward inner primer (BIP) with a certain concentration of template in 25 μL of 1×isothermal master mix (ISO-RT004, OptiGene, UK), and adding 4 μM Fluorescein-12-dUTP (ThermoFisher Scientific, United States) for lateral flow readout. SybrGreen I dye (Solarbio, China) was used in fluorescence detection for qPCR. The reaction was performed at 63°C for 30 min by the LightCycler 480 PCR instrument (Roche). The resultant mixture was then stored at 4°C until used for visual detection or gel electrophoresis imaging.

Gel electrophoresis analysis. The gel electrophoresis analysis was conducted by mixing 5 μL of RT-LAMP samples and 1 μL of 6× loading buffer (New England Biolabs, United States) together at room temperature. The mixtures were then loaded into the notches of a freshly prepared 10% native-PAGE for electrophoresis at a constant voltage of 100 V. Finally, the gel was immersed in 3× Gelred dye solution (Sangon, China) for 15 minutes before being scanned by the Gel Doc EZ imager with an Image Lab analysis software (BioRad, United States).
Lateral flow assay readout. After completion of the LAMP preamplification step, 20 µL of amplicon was combined with 80 µL of the chromatography buffer. A lateral flow strip (Ustar, China) was then added to the reaction tube and a result was visualized after approximately 2 min. Only a single band close to the top of the strip (Control line) indicated a negative result, while when another band close to the sample application pad (Test line) appearances indicated a positive result.

Specificity of the LAMP Assay. The specificity of the RT-LAMP assay was evaluated using synthetic plasmids of 13 common pathogenic microorganisms, including nucleoprotein gene of five different human coronaviruses (SARS-CoV, MERS-CoV, HCoV-NL63, HCoV-229E and HCoV-HKU1), Influenza A virus (H7N9, H5N1, H1N1 and H3N2) and Influenza B virus; 16S ribosomal RNA of *Chlamydia pneumoniae*, *Mycoplasma pneumoniae* and *Streptococcus pneumoniae*.

Preparation of the clinical RNA samples. The clinical RNA samples used in this research were isolated from anonymized surplus swab samples from the clinical laboratory of Central Hospital of Loudi. All positive samples had been analyzed using a standard RT-qPCR to confirm the presence of SARS-CoV-2. The study was approved by the Ethics Committee at the Central Hospital of Loudi. All methods were performed in accordance with the approved guidelines.
Table S1. Detailed sequences for the current study

Pathogens	Name	Sequence (5’→3’)
SARS-CoV-2 (N gene)	N1-FIP*	Biotin-TTCCCCCTACTGCTGCCTGGAGTTCTCATACGTAUTGCGG
	N1-BIP*	Biotin-TTCTCTGCTAGAATGGCTGGCTGTCAAGCAGCAGCAGAAAG
	N1-F3*	GGCAGTCAAGCTCTTCTCTC
	N1-B3*	TTGCTCTCAAGCTGGTTCGA
SARS-CoV-2 (Orf1ab gene)	O1-FIP*	Biotin-TTGTACTCAAACATACGGCATAAACCTCAATTAAAACACAGTCTGTACC
	O1-BIP*	Biotin-GCTGATGCGCAATCGGTATTAGTGACTAGTACTAGTGTGCTT
	O1-F3*	TTGTGCTAATGACCTGTC
	O1-B3*	TCAAAAGGCTCTGATACGA
SARS-CoV-2 (N gene)	N2-FIP	Biotin-TTCTCTACTGCTGCCTGGAGGCTGAGGTAUTGCTGCTCTTTCAATACAGTCTCTTTC
	N2-BIP	Biotin-TCGTACTGCTGAATGGCTGGCTGTCAAGCAGCAGCAGCAAAAG
	N2-F3	GCCAAAAGGCTCTTACGCA
	N2-B3	TTGCTCTCAAGCTGGTTCGA
SARS-CoV-2 (Orf1ab gene)	O2-FIP	Biotin-GGTCATTAGGCACAAGTTTAGTAGTATCAAATCCCTAAAGGATTTGTC
	O2-BIP	Biotin-AACACAGTCTGTACCGGTACTGAAGCATGGTTCCGAGGT
	O2-F3	CCCTGTCACACATAGTCA
	O2-B3	AACGATTGTGCACTAGCT
SARS-CoV-2 (N gene)	N3-FIP	Biotin-TCTGCCTAGAAGCTCTTGGCAAATGCTCAGTCATACGTAUTGCTAC
	N3-BIP	Biotin-GGCCTAGGAGCCTCTCAGTGTCGAGTTGAAAGGT
	N3-F3	CACCGGAAATCTCCTGTAAC
	N3-B3	CCAGGCCATCTCAGGAGGA
SARS-CoV-2 (Orf1ab gene)	O3-FIP	BiotinATAACCTTTTGACATACCGCAGACCCCTGTTGGGTTTACACT
	O3-BIP	Biotin-GTATGTTGTGATCACTCCCGAGATGCACTTACACCAGAACC

S4
	O3-F3	AAATACCTACAACCTTGTGCTAA
	O3-B3	ATCACTACTAGTCCTGTC
	O5-F3	AAATACCTACAACTTGTGCTAA
	O5-B3	TCTGCAAGCAGCAGCAAAG
	O4-F3	ACTTAAACACAGCTGTACCA
	O4-B3	TCAAAGCCCTGTATACGA
SARS-CoV-2	N4-FIP	Biotin-TGGCAGCTACGTTAGAAGGACTGGAACACGTTCCTCAGCTAGC
N gene	N4-BIP	Biotin-TTCAACTCCAGCGCAGTGAGCAGCAGCATCACGGC
	N4-F3	GCTGCAATCGTGCTACAAGT
	N4-B3	TCTGCAAGCAGCAGCAAAG
SARS-CoV-2	O4-FIP	Biotin-TGACTGAAGCATGGAGGGTTCGCTTACGTTGATGTGGAAAG
Orf1ab gene	O4-BIP	Biotin-GCTGATGCACAATCGTCTTCTTTAAGCAGCATCTACTAGTGCTGT
	O4-F3	ACTTAAAAACACAGCTGTACCA
	O4-B3	TCAAAGCCCTGTATACGA
SARS-CoV-2	N5-FIP	Biotin-CCTACTGCTGCTGGAGTTGAAGCCCTTTTCGTTCTCTGATAC
N gene	N5-BIP	Biotin-GCGGTGATGCTGCTTTGCTTTTGCCCTTTACCAGACA
	N5-F3	GGCTTCTACGCAGAAGGGA
	N5-B3	GTGACAGTTTTGCGCTTGTG
SARS-CoV-2	O5-FIP	Biotin-TGGTTTTAAGTGTAAACACACAGGAGGTAAGTATGTACAATAACCTAC
Orf1ab gene	O5-BIP	Biotin-AGTCTGTACCGTCTGCTGCTTTCGACCGTACCAGCATGG
	O5-F3	ATCCTAAAGGATTTTGTGACTT
	O5-B3	CCGTTTTAAAAACGATTGTGCA
H5N1	FIP*	Biotin-CGCACGAGACTTCTGTGTCCCTCAACTGCTGCTACTCATC
	BIP*	Biotin-GCAAGGATCACAATCCCTGCGAGGTTCGACTCCCTTTACTC
	F3*	GCCTCAAGCGAAACATGGA
	B3*	CCCCTTCGCTTTATCATCCGAA
H7N9	FIP*	Biotin-GCTCCAGATCTCTCCTCGGGAGAGAATGGATCCCGGATGTG
	BIP*	Biotin-TGCAGGTGCAAGCAGTGAAGGCGGCTGTTGATCCCTCGT
	F3*	AGAGCTCTCGTGCTACTG
	B3*	CCATTTTCGCTTCCAGAA

* Selected primer.
Table S2. Detailed sequences of synthetic pathogenic microorganism gene fragments.

Name	Sequence (5’-3’)
SARS-CoV	ATGTCTGATAATGGACCCCAATCAAACCAACGTAGTGCCCCCACCAGATTACATTTGGTGACCCACAGATTCAACGAGGTGGCTCACTCAATCCACATGAGCTGGAGAATAGCAGACGAGGACCCCTGCTGCACCTCGTGCTGTTTCCTTTGCCGATAACAATGAATAAACAAATACAAACCTATCTCGAGGTAGAGGACGTAATCCAAAACCAACGGAGCTGCACCAAATAACACTGTCTCTTGGTACACTGGGCTTACCCAACACGGGAAAGTCCCTCTTACCTTTCCACCTGGGCAGGGTGTACCTCTTAAAGGCCAAACACAGGCGACAGGACAAATTAATACCGGGAATGGAATTAAGCAACTGGCTCCCAGGTGGTACTTCTACTACACTGGAACTGGACCCGAAGCAGCACTCCCATTCCGGGCTGTTAAGGATGGCATCGTTTGGGTCCATGAAGATGGCGCCACTGATGCTCCTTCAACTTTTGGGACGCGGAACCCTAACAATGATTCAGCTATTGTTACACAATTCGCGCCCGGTACTAAGCTTCCTAAAACTTCCACATTGAGGGGACTGGAGGCAATAGTCAATCATCTTCAAGAGCCTCTAGCTTAAGCAGAAACTCTTCCAGATCTAGTTCACAAGGTTCAAGATCAGGAAACTCTACCCG
HCoV-NL63	ATGGCTAGTGTAAAAATTGGGCCGATGACAGAGCTGCTAGGAGAAGAAATTCTCCTCTCTTCTATTTGTGGTATGTCGTAAGGGCACCACCATGATAGGTGCTATCTTGTTGATAGTGTAATTCCAGGTGAACTTATTGTTCATCGTTAGTTGTTAGTTGTTGAGGATCGCTCTAATAACTCATCTCGTGCAGCAGTCGTTCTTCAACTCGTAACAACTCACGAGACTCTTCTCGTAGCCTTCAAGACAACAGTCTCGCACTCGTTCTGATTCTAACCAGTCTTCTTCAGATCTTGTTGCTGCTGTTACTTTGGCTTTAAAGAACTTAGGTTTTGATAACCAGTCGAAGTCACCTAGTTCTTCTGGTACTTCCACTCCTAAGAAACCATAAAGCTCCTTCTTCACACCCAGGGCTGATAAGCCTTCTCAGTTGAAGAAACCTCGTTGGAAGCGTTGTTCCTACCAGAGAGGAAAATGTTATTCAGTGCTTTGGTCCTCGTGATTTTAATCACAATATGGGGGAATTGCAGATCTTGTACAGAATGGTGTTGATGCCAAAGGTTTTCCACAGCTTGCTGAATTGATTCCTAATCAGGCTGCGTTATTCTTTGATAGTGAGGTTAGCACTGATGAAGTGGTGATAATGTTCAGATTACCTACACCTACAAAATGCTCTGTAAGGATAATAAAGACCTCTTTCTACAAGTTGGAATGTTGAAAAACGTTTCAATTTGAGATGATGCAGTTTCTCTTCTCCAGAATCTAAACCATTGGCTGATGATGATTCCAGCCATTATAGAAATTGTCAACGAGGTTTTGCATTAA
HCoV-229E	ATGGCTACAGTCAAAATGGGGCGATGACAGAGCTGCTAGGAGAAGAAATTCTCCTCTCTTCTATTTGTGGTATGTCGTAAGGGCACCACCATGATAGGTGCTATCTTGTTGATAGTGTAATTCCAGGTGAACTTATTGTTCATCGTTAGTTGTTAGTTGTTGAGGATCGCTCTAATAACTCATCTCGTGCAGCAGTCGTTCTTCAACTCGTAACAACTCACGAGACTCTTCTCGTAGCCTTCAAGACAACAGTCTCGCACTCGTTCTGATTCTAACCAGTCTTCTTCAGATCTTGTTGCTGCTGTTACTTTGGCTTTAAAGAACTTAGGTTTTGATAACCAGTCGAAGTCACCTAGTTCTTCTGGTACTTCCACTCCTAAGAAACCATAAAGCTCCTTCTTCACACCCAGGGCTGATAAGCCTTCTCAGTTGAAGAAACCTCGTTGGAAGCGTTGTTCCTACCAGAGAGGAAAATGTTATTCAGTGCTTTGGTCCTCGTGATTTTAATCACAATATGGGGGAATTGCAGATCTTGTACAGAATGGTGTTGATGCCAAAGGTTTTCCACAGCTTGCTGAATTGATTCCTAATCAGGCTGCGTTATTCTTTGATAGTGAGGTTAGCACTGATGAAGTGGTGATAATGTTCAGATTACCTACACCTACAAAATGCTCTGTAAGGATAATAAAGACCTCTTTCTACAAGTTGGAATGTTGAAAAACGTTTCAATTTGAGATGATGCAGTTTCTCTTCTCCAGAATCTAAACCATTGGCTGATGATGATTCCAGCCATTATAGAAATTGTCAACGAGGTTTTGCATTAA
GTGTTAGGCGCAAGAAATTCAGAACCAGAGATACCACACTTCAATCAAAA
GCCTCCCCAAATTGTTGTTACTGTTGAAGAACACTCTCCCGTGCTCCCT
TCCCGGTCTCAGTCGAGGTCGCAGAGTCGCGGTCGTGGTGAAATCCAAA
CTCTAATCTCCGAACCTCAGGGAAGATTCACATGTCGAGGATCG
ACATCATGAAGGCCAGTTGGTGCTGCCCTCAAATTTTTGTTGACAGG
CCTAGGAAAAAGATAGACAGCTGCAAAACCGGGTACTCTCTAGCTTTCA
GATAAACATGCAGACTTCTCTTCCTTCCACCTCCCAATTTGCGCTCT
AACAGGCAATCCAAACTTGGGTAAGTTTCTTGAGGAGTTAAATGCATTCA
CTAGAAAAGTCAAAACACTCCTCTTCTTTAACCTTAGTGACTAGAATTC
AACCCATCTCAAACATCCCTGCAATCGTGAAACCAGTCGATGAAAG
TTCTATTGAAACTGACATAATTTAGGAAGTTAAACTCTAA

HCoV-HKU1

ATGCTTCTTACTCCGCGGTATTATGTTGAAAGCTTCTTTCTGGAA
TCGTTCCGAACTTCTCCACAAAGAAAAATCTTCTTGCTGAAACCATCTGGCA
AATTACCAAAACCTTTATAGAGGCAGAAAACCCAACCTTAATTCACTGCT
GTTCTACTCAACAAAGAGGAATACTACATACTCCCAAAATTATCTCCTCCT
GAGATCTAATTTTCAAAAAAGGTAGAGACTTTAATTTTCAGATGGTC
AAAGAGATCCCGCCATCTCTCTGGCTGAGTTGTGGCTCTAAAATGCTGCTCT
CAGAGGCTAATGTCTTCCAAAGGATGCTGAAACATTTTCTGTTTGAACTA
CTAGAAAAGTCAAAACACTCCTCTTCTTTAACCTTAGTGACTAGAATTC
AACCCATCTCAAACATCCCTGCAATCGTGAAACCAGTCGATGAAAG
TTCTATTGAAACTGACATAATTTAGGAAGTTAAACTCTAA

ATCCTATATGTGAAGACTCTGTTGCTTAA
| Chlamydia pneumoniae | GGAATAATGACTTCGTTTGGTTATTTAGTGCGGAAGGGTTAGTAGTACATAGATACTTCAGAATCCCTACATTGGGAGGAACGCTGGTGGGTAACGGCTCACCAAGGCGACGATACATAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAGACACGCCGAGACTCCTACGGGAGGCTGCAGTCGAGAATCTTTCGCAATGGACGAAAGTCTGACGAAGCGACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTAAGAGAAGAACGAGTGTGAGAGTGGAAAGTTCACACTGTGACGGTATCTTAACAGAAAGGGACGGCTAACTACGTGCCAGCAGCAGGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTAGATAAGTCTGAAGTTAAAGGCTGTGGCTTAACCATAGTAGGCTTTGG |
| Streptococcus pneumoniae | ATTTGATCCTCGCTAGCAAGCAGACGCTGGGCGGTCTCAATACAGTCAAGTGAGAAGGAGAGTGGATGTTGCATGACATTTGCTTAAGGTGCACTTGCATCACTACCAGATGGACCTGCGTTGTATTAGCTAGTGTTGGGGTAACGGCTCACCAAGGCGACGATACATAGCCGACCTGAGAGGGGTGATCGGCCACACTGGGACTGAGACACGCCGAGACTCCTACGGGAGGCTGCAGTCGAGAATCTTTCGCAATGGACGAAAGTCTGACGAAGCGACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCTCTGTTGTAAGAGAAGAACGAGTGTGAGAGTGGAAAGTTCACACTGTGACGGTATCTTAACAGAAAGGGACGGCTAACTACGTGCCAGCAGCAGGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTAGATAAGTCTGAAGTTAAAGGCTGTGGCTTAACCATAGTAGGCTTTGG |
Mycoplasma pneumoniae
AACTGGTTAAGTGCAAGAGGGGAGAGTTGGAAATTCATTGATGTGAG
CCGTGGATTGAGTGGAGGACGTCGCTAGCTGGGAAAGCTTGGGAGCAGCAACAG
GATTAGATACCCCTGGATCCACGGTCTGTAACATGACTAGTGGTCTTAA
GACCCCTTCCGCGTTAGTGCCTAAGCCCTAATAGCAACTCCCGCTCTCTCTCT
CCGGACAGAGGTGACAGGTGCTCTGTCCTGCGGACAGAGGGCAGGACAGGCTC
TCTGGCTTGAAGTCCCGCTAGGATTGCGAGCATGTGGTTTAATCCGAGCATCAGG
CAAGGCTCTGCTAGTTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTT
ACCATTTGCTCAGTTGCGCTAGTTGCGAGAGTTTTCCTCTTCGAGGACAGAGGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGCCTAATAACCGGAG
GAAGGTGGGAGTACGTGCAAATCATCATGCCCCTTATGACCTGGGCTACACGTGCTACAATGGCTGGTACAACGAGTCGCAAGCCGGTGACGGCAAGCTAATCTCTTAAAGCCAGTCTCAGTTCGGATTGTAGGCT
GCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGT
GAATACGTTCCCGGGCCTTGTACACACCCCGGTCACACCAGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCGTAAGGAGCCAGCCGCCTAAAGGTGGGATAGATGATTGGGGTGAAGTCTGTAACAAGGTCAGCCGTTTGGGAGA
Mycoplasma pneumoniae
GGGATAACATGTTGAAAGAAGCTAGCTAATACCGCATAAAGAAACTTTGGTT
GCCAGAATACAAAGTTGAAAGGACCTCGAAGGTTGGTAAATTCGACGGTAGGA
GAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
CTTGGACTGTACATAGGTAAGTAAAGCCTGTTAGGAAAGACAGGTCG
AGCCCATATCTACCGGGAGCACAGTAGGGAATTTCTCATAATGAGGCT
GAAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
GCGGTAATACATAGGTCGCAAGCGTCTTATCCGGATTTATGGGCGTAAAAGC
AACGAGCCAGGGGATGAAAGCTCTGGTGTAAAGGCGACTGCTTAAAC
GTTTGAGCTTGCAATGAGGCTGAAATGCATTGAGGTAATGACAGG
ATACGCTGGCGGCATGCTCATTAATATCATGCAAGTTCGATCGAAAGGTAGTAATATCCTTAAAGGGAGGCGGATGCTGATTAACACGTATCCACCTACCTCATATAATG
GGGATAACATGTTGAAAGAAGCTAGCTAATACCGCATAAAGAAACTTTGGTT
GCCAGAATACAAAGTTGAAAGGACCTCGAAGGTTGGTAAATTCGACGGTAGGA
GAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
CTTGGACTGTACATAGGTAAGTAAAGCCTGTTAGGAAAGACAGGTCG
AGCCCATATCTACCGGGAGCACAGTAGGGAATTTCTCATAATGAGGCT
GAAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
GCGGTAATACATAGGTCGCAAGCGTCTTATCCGGATTTATGGGCGTAAAAGC
AACGAGCCAGGGGATGAAAGCTCTGGTGTAAAGGCGACTGCTTAAAC
GTTTGAGCTTGCAATGAGGCTGAAATGCATTGAGGTAATGACAGG
ATACGCTGGCGGCATGCTCATTAATATCATGCAAGTTCGATCGAAAGGTAGTAATATCCTTAAAGGGAGGCGGATGCTGATTAACACGTATCCACCTACCTCATATAATG
GGGATAACATGTTGAAAGAAGCTAGCTAATACCGCATAAAGAAACTTTGGTT
GCCAGAATACAAAGTTGAAAGGACCTCGAAGGTTGGTAAATTCGACGGTAGGA
GAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
CTTGGACTGTACATAGGTAAGTAAAGCCTGTTAGGAAAGACAGGTCG
AGCCCATATCTACCGGGAGCACAGTAGGGAATTTCTCATAATGAGGCT
GAAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
GCGGTAATACATAGGTCGCAAGCGTCTTATCCGGATTTATGGGCGTAAAAGC
AACGAGCCAGGGGATGAAAGCTCTGGTGTAAAGGCGACTGCTTAAAC
GTTTGAGCTTGCAATGAGGCTGAAATGCATTGAGGTAATGACAGG
ATACGCTGGCGGCATGCTCATTAATATCATGCAAGTTCGATCGAAAGGTAGTAATATCCTTAAAGGGAGGCGGATGCTGATTAACACGTATCCACCTACCTCATATAATG
GGGATAACATGTTGAAAGAAGCTAGCTAATACCGCATAAAGAAACTTTGGTT
GCCAGAATACAAAGTTGAAAGGACCTCGAAGGTTGGTAAATTCGACGGTAGGA
GAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
CTTGGACTGTACATAGGTAAGTAAAGCCTGTTAGGAAAGACAGGTCG
AGCCCATATCTACCGGGAGCACAGTAGGGAATTTCTCATAATGAGGCT
GAAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
GCGGTAATACATAGGTCGCAAGCGTCTTATCCGGATTTATGGGCGTAAAAGC
AACGAGCCAGGGGATGAAAGCTCTGGTGTAAAGGCGACTGCTTAAAC
GTTTGAGCTTGCAATGAGGCTGAAATGCATTGAGGTAATGACAGG
ATACGCTGGCGGCATGCTCATTAATATCATGCAAGTTCGATCGAAAGGTAGTAATATCCTTAAAGGGAGGCGGATGCTGATTAACACGTATCCACCTACCTCATATAATG
GGGATAACATGTTGAAAGAAGCTAGCTAATACCGCATAAAGAAACTTTGGTT
GCCAGAATACAAAGTTGAAAGGACCTCGAAGGTTGGTAAATTCGACGGTAGGA
GAAGCTTTATGAGGCAATGCGGCTCTTTCAGCCAGGCTAACAGGAGTGAAGTT
Sequence

AGTTGGTCTCACGTTCAAGGTTGGGGCTGCAATTCTCGTCCTCATGAAGTCGGAATCACTAGTAATCGCGAATCAGC
TATGTCGCGGTGAATACGTTCTCGGGTCTTGTACACACCGCCCGTCAAACTATGAAAGCTGGTAATATTTAAAAACGTGTTGCTAACCATTAGGAAGCGCATGTCAAGGATAGCACCGGTGATTGGAGTTAAGTCGTAACAAGGTACCCCTACGAGAACGTGGGGGTGGATCCTCCTTT
AGAATTCTATTGGCTGCCACTGATGACAAGAAAACCGAGTTCCAGAAGAAAAAGAATGCCAGAGATGTCAAAGAAGGAAAGAAGAAATAGATCACAACAAAACAGGAGGCACCTTTTACAAGATGTTAAGAGATGATAAACAACATTAGATCACAAAGGATAGAATAAGTGGTTGCAATCAAAG
ATGGCGTCTCAAGGCACCAAACGATCATATGAACAAATGGAGACTGGTGGGGAGCGCCA
GGTGCTTTCTGGAATCGGGAGATTCTACATCCAAATGTGCACTGAACTCAAACTCAGTGATTATGATGGACGACTAATCCAGAATAGCATAACAATAGAGGATTGTCGCTTTCTGCTTTTGATGAGAGAAGAAATAAATACCTAAAGAGCAGACAGTTCCAGAAGATCAGGTGCTACTGGTGTTGCAATCAAAGGAGGTGGAACCTTAGTGGCTGAAGCCATTCGGTTTATAGGAAGAGCAATTGGCAGACAGGGCTATTGAGAGACATCAAAGCCAAGACTGCC
AGAGTATCGAAGGCTGCTTCAGTTCAAGGTTGGGGCTGCAATTCTCGTCCTCATGAAGTCGGAATCACTAGTAATCGCGAATCAGC
TATGTCGCGGTGAATACGTTCTCGGGTCTTGTACACACCGCCCGTCAAACTATGAAAGCTGGTAATATTTAAAAACGTGTTGCTAACCATTAGGAAGCGCATGTCAAGGATAGCACCGGTGATTGGAGTTAAGTCGTAACAAGGTACCCCTACGAGAACGTGGGGGTGGATCCTCCTTT
AGAATTCTATTGGCTGCCACTGATGACAAGAAAACCGAGTTCCAGAAGAAAAAGAATGCCAGAGATGTCAAAGAAGGAAAGAAGAAATAGATCACAACAAAACAGGAGGCACCTTTTACAAGATGTTAAGAGATGATAAACAACATTAGATCACAAAGGATAGAATAAGTGGTTGCAATCAAAG
ATGGCGTCTCAAGGCACCAAACGATCATATGAACAAATGGAGACTGGTGGGGAGCGCCA
GGTGCTTTCTGGAATCGGGAGATTCTACATCCAAATGTGCACTGAACTCAAACTCAGTGATTATGATGGACGACTAATCCAGAATAGCATAACAATAGAGGATTGTCGCTTTCTGCTTTTGATGAGAGAAGAAATAAATACCTAAAGAGCAGACAGTTCCAGAAGATCAGGTGCTACTGGTGTTGCAATCAAAGGAGGTGGAACCTTAGTGGCTGAAGCCATTCGGTTTATAGGAAGAGCAATTGGCAGACAGGGCTATTGAGAGACATCAAAGCCAAGACTGCC
Influenza A virus H3N2
Influenza A virus H5N1

S12
Influenza A virus H7N9

TCTTCCAGGGCCGGAGGTCTTCGAGCTCTCGGACGAAAAGGCAACG
AACCCGATCGTGCCTTCCTTTGACATGAGTAATGAAGGATCTTATTTCTT
CGGAGACAATTCAGAGGAATATGACAATTGAAGAAAAATACCTCTTGT
CTACT
Table S3. Details of 12 synthetic samples.

Sample	Pseudovirus concentrations	Sample type
1	1.5×10^4 copies/mL	Nasopharynx swab
2	1.5×10^4 copies/mL	Nasopharynx swab
3	1.5×10^4 copies/mL	Nasopharynx swab
4	1.5×10^5 copies/mL	Nasopharynx swab
5	1.5×10^5 copies/mL	Nasopharynx swab
6	1.5×10^6 copies/mL	Nasopharynx swab
7	1.5×10^6 copies/mL	Nasopharynx swab
8	1.5×10^6 copies/mL	Nasopharynx swab
9	1.5×10^7 copies/mL	Nasopharynx swab
10	1.5×10^7 copies/mL	Nasopharynx swab
11	1.5×10^7 copies/mL	Nasopharynx swab
12	1.5×10^7 copies/mL	Nasopharynx swab
Table S4. Results of RT-qPCR and RT-LAMP-LFA for clinical samples.

Sample	RT-qPCR (Ct value)	RT-LAMP-LFA
1	31	Positive
2	33	Positive
3	30	Positive
4	29	Positive
5	30	Positive
6	32	Positive
7	28	Positive
8	32	Positive
9	Not detected	Negative
10	Not detected	Negative
11	Not detected	Negative
12	Not detected	Negative

For RT-qPCR: Ct < 35: positive; Ct > 35: retest; Ct = not detected: negative.
For RT-LAMP-LFA: Positive: Both C and T lines are red; Negative: C line is red, T line is not red; Retest: C line is not red.
Figure S1. Comparison of RT-LAMP amplification efficiency with and without dUTP.

The fluorescence kinetics data are presented as the mean ± s.d., n = 3 independent experiments.
Figure S2. Illustrations of SARS-CoV-2 Orf1ab and N gene targeted by the primers.
Figure S3. pH of RT-LAMP system treated with 50mM NaOH.
Figure S4. Confusion matrix and ROC analysis of RT-LAMP-LFA method with clinical samples. Clinical samples: 8 SARS-CoV-2 infection samples and 4 healthy donors.
Figure S5. Diagnostic results of 6 clinical Mycoplasma infection samples. The negative control contains NaOH-treated water as amplification template, and the positive control contains 1000 copies SARS-CoV-2 pseudovirus as amplification template.