A geometric interpretation of the nilpotent part of local Langlands correspondence modulo ℓ

Jean-François Dat

Abstract

Let p and ℓ be two distinct primes. The aim of this paper is to show how, under a certain congruence hypothesis, the mod ℓ cohomology complex of the Lubin-Tate tower, together with a natural Lefschetz operator, provides a geometric interpretation of Vignéras’ local Langlands correspondence modulo ℓ.

Contents

1 Main theorem

2 Elliptic principal series
 2.1 Parametrization and decomposition matrix
 2.2 Corresponding representations
 2.3 Computation of some Ext groups

3 The cohomology complex
 3.1 The unipotent block
 3.2 The complex

4 Proof of the main theorem
 4.1 Computation of $R^*_\Gamma(\pi)$ for π an elliptic principal series
 4.2 The Lefschetz operator

1 Main theorem

Let K be a local non-archimedean field with ring of integers \mathcal{O} and residue field $k \simeq \mathbb{F}_q$, q a power of a prime p. Let ℓ be another prime number and d an integer. As in [9], we consider the cohomology complex

$$R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathbb{Z}_\ell) \in D^b(\text{Rep}^{\infty,c}_{\mathbb{Z}_\ell}(G \times D^X \times W_K))$$

of the height d Lubin-Tate tower of K. Here $G = \text{GL}_d(K)$, D is the division algebra which is central over K with invariant $1/d$, and W_K is the Weil group of K. The category $\text{Rep}^{\infty,c}_{\mathbb{Z}_\ell}$ consists of \mathbb{Z}_ℓ-representations of the triple product which are smooth for G and D^X and continuous for W_K. In [8], we defined a Lefschetz operator

$$L : R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathbb{Z}_\ell) \longrightarrow R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathbb{Z}_\ell)[2](1)$$

1
as the cup-product by the Chern class of the tautological invertible sheaf on the associated Gross-Hopkins period domain.

To an irreducible $\overline{\mathbb{F}}_\ell$-representation π of G, we associate its “derived π-coisotypical part”

$$R_\pi := R\text{Hom}_{\mathbb{Z}/\ell^r G}(R\Gamma_c(\mathcal{M}_{\text{LT}}^G, \mathbb{Z}_\ell), \pi) \in D^b(\text{Rep}_{\mathbb{Z}/\ell^r G}(D^\times \times W_K))$$

which inherits a morphism $L_\pi : R_\pi \to R_\pi[2](1)$. We also denote by R^*_π the total cohomology of R_π, a smooth graded \mathbb{F}_ℓ-representation of $W_K \times D^\times$, and by $L^*_\pi : R^*_\pi \to R^*_\pi[2](1)$ the corresponding morphism. Our aim here is to prove the following theorem, where we forget the grading.

Theorem.– Assume that the multiplicative order of q mod ℓ is d. Then for any unipotent irreducible representation π of $\text{GL}_d(K)$, there is an isomorphism

$$(R^*_\pi, L^*_\pi)^{ss} \simeq |L\text{J}(\pi)| \otimes (\sigma^{ss}(\pi), L(\pi)).$$

The congruence condition on q modulo ℓ will be called the **Coxeter congruence relation**, by analogy with the modular Deligne-Lusztig theory where this condition arises in the context of Broué’s conjecture, see [15] for example. The terminology unipotent was introduced by Vignéras to denote representations that belong to the same block as the trivial representation. Finite group theorists would rather call them principal block representations.

Let us explain the notation of the theorem. The symbol $L\text{J}(\pi)$ stands for the Langlands-Jacquet transfer of [10]. In general it is a virtual $\overline{\mathbb{F}}_\ell$-representation of D^\times, but under the congruence hypothesis, it is known to be effective up to sign, cf [10] (3.2.5)], so we can put $L\text{J}(\pi) = \pm |L\text{J}(\pi)|$ for some semi-simple $\overline{\mathbb{F}}_\ell$-representation of D^\times. The symbol $(\sigma^{ss}(\pi), L(\pi))$ denotes the (transposed) Weil-Deligne $\overline{\mathbb{F}}_\ell$-representation associated to π by the Vignéras correspondence of [26, Thm 1.8.2]. This is the Zelevinski-like normalization of the local Langlands correspondence mod ℓ. Therefore, to put it in english words, the above theorem offers a geometric interpretation of the nilpotent part1 of this Vignéras correspondence, at least for those unipotent representations such that $L\text{J}(\pi) \neq 0$.

Let us say a few words about the proof of the theorem. Note first that, since $L\text{J}(\pi)$ is most often 0, we are soon reduced to the case when π is a subquotient of the smooth representation $\text{Ind}_{\mathcal{B}}^G(\overline{\mathbb{F}}_\ell)$ induced from the trivial representation of some Borel subgroup. In section 2 we classify these subquotients in a suitable way, making thereby explicit the corresponding block of the decomposition matrix of G, and we compute the associated Weil-Deligne and D^\times representations. In section 3 we study the unipotent summand of the cohomoloy complex. In particular, thanks to our congruence hypothesis, we may split it in a non-trivial way according to weights. Note that, in principle, all this study can be carried out in a purely local way, using Yoshida’s model of the tame Lubin-Tate space. However, for reference convenience, we invoke at some point Boyer’s description of the cohomology of the whole tower in [3], the proof of which uses global arguments. An alternative argument uses the Faltings-Fargues isomorphism of [16]. Then in section 4 we prove the theorem, by some fairly explicit computations.

One crucial ingredient is that we easily, and without any computation, get a complete description of (R^*_π, L^*_π) for π the trivial representation, thanks to the properties of the

1Note that, in contrast to the ℓ-adic setting, this nilpotent part has no obvious arithmetic interpretation, in the sense that it cannot be related to any infinitesimal action of the ℓ-inertia of W_K.

2
Gross-Hopkins period map. The theorem above is expected to hold true for any smooth irreducible \(\overline{\mathbb{F}}_\ell \)-representation \(\pi \) under the congruence hypothesis, but we are still missing some control on the pair \((R'_\pi, L'_\pi)\) when \(\pi \) is a general Speh representation.

2 Elliptic principal series

By definition, an irreducible smooth \(\mathbb{F}_\ell \)-representation is called elliptic if it is not a linear combination of proper parabolically induced representations. Note that by [10, Thm 3.1.4], this is equivalent to \(\text{LJ}(\pi) \neq 0 \). According to [10, Cor 3.2.2], any elliptic principal series is an unramified twist of a subquotient of the induced representation \(\text{Ind}_B^G(\overline{\mathbb{F}}_\ell) \) for some Borel subgroup \(B \). The converse is not true in general, but it is true under the Coxeter congruence relation, as we will see below.

2.1 Parametrization and decomposition matrix

(2.1.1) A reminder on the \(\ell \)-adic case. We denote by \(B \) the subgroup of upper triangular matrices in \(G \) and by \(S \) the set of simple roots of the diagonal torus \(T \) in \(\text{Lie}(B) \). The power set \(\mathcal{P}(S) \) of \(S \) is in 1-to-1 correspondence with the set of parabolic subgroups containing \(B \). Namely, to each subset \(I \subseteq S \) is associated the unique parabolic subgroup \(P_I \) with \(\text{Lie}(P_I) = \text{Lie}(B) + \sum_{\alpha \in \mathbb{Z}(I)} \text{Lie}(G)_{\alpha} \). In particular we have \(P_\emptyset = B \) and \(P_S = G \).

DEFINITION. For any ring \(R \), we put \(i_I(R) := \text{Ind}_{P_I}^G(R) \), and

\[
v_I(R) := i_I(R) / \sum_{J \supset I} i_J(R).
\]

Let \(\delta_B \) denote the \(R \)-valued modulus character of \(B \). We assume that \(R \) contains a square root of \(q \) in \(R \) and we choose such a root in order to define \(\delta := \delta_B^{-1/2} \) as well as the normalized Jacquet functor \(r_B \) along \(B \). Write \(X := X_*(T) \otimes \mathbb{R} \), so that \(S \) is naturally a subset of the dual \(\mathbb{R} \)-vector space of \(X \). Following [5, 2.2.3], we associate to each subset \(I \in \mathcal{P}(S) \) a connected component

\[
X_I := \{ x \in X, \forall \alpha \in S, \varepsilon_I(\alpha)\langle x, \alpha \rangle > 0 \}
\]

of the complement of the union of simple root hyperplanes in \(X \). Here \(\varepsilon_I \) is the sign function on \(S \) which takes \(\alpha \) to \(-1\) if and only if \(\alpha \in I \). In particular, \(X_0 \) is the Weyl chamber associated to \(B \) and \(X_S \) is that associated to the opposite Borel subgroup.

FACT. ([5], Lemme 2.3.3) If \(R \) is a field of characteristic prime to \(\prod_{i=1}^d (q^i - 1) \), then the following hold:

i) for each \(I \subseteq S \), the \(R \)-representation \(v_I(R) \) is irreducible and we have

\[
r_B(v_I(R)) = \bigoplus_{w(X_2) \subseteq X_I} w^{-1}(\delta).
\]

where unfortunately the term elliptic has a slightly different meaning

2
ii) the multiset \(JH(\text{Ind}_G^G(R)) \) of Jordan-Hölder factors of \(\text{Ind}_G^G(R) \) has multiplicity one, hence is a set, and the map

\[
I \in \mathcal{P}(S) \mapsto v_I(R) \in JH(\text{Ind}_G^G(R))
\]

is a bijection.

Let us label \(t_0, t_1, \ldots, t_{d-1} \) the diagonal entries of an element \(t \in T \) (starting from the upper left corner). We get a labeling \(S = \{ \alpha_1, \ldots, \alpha_{d-1} \} \), where \(\alpha_i(t) := t_{i-1}t_i^{-1} \), and we get an identification of the Weyl group \(W \) of \(T \) with the symmetric group \(\mathfrak{S}_d \) of the set \(\{0, \ldots, d-1\} \). Then we see that the condition \(w(X_S) \subseteq X_T \) appearing in the summation of point i) above is equivalent to the condition

\[
I = \{ \alpha_i \in S, w(i-1) < w(i) \}.
\]

\(2.1.2\) Classification under the Coxeter congruence relation. Here the coefficient field is \(\mathbb{F}_l \) or \(\overline{\mathbb{F}}_l \) and we assume that the multiplicative order of \(q \) modulo \(l \) is exactly \(d \). Denote by \(\nu_G \) the unramified character \(g \mapsto q^{-\text{val}(\det(g))} \). Observe that \(\nu_G \) is trivial on the center of \(G \) and generates a cyclic subgroup \(\langle \nu_G \rangle \) of order \(d \) of the group of \(\overline{\mathbb{F}}_l \)-valued characters of \(G \).

We put \(\tilde{S} := S \cup \{ \alpha_0 \} \) where \(\alpha_0 \) denotes the opposite of the longest root of \(T \) in \(\text{Lie}(B) \). Thus, if the diagonal entries of \(t \in T \) are \(t_0, t_1, \ldots, t_{d-1} \) as above, then \(\alpha_0(t) = t_{d-1}t_0^{-1} \).

Note that \(\tilde{S} \) is stable under the action of the Coxeter element \(c \) of \(W = \mathfrak{S}_d \) which takes \(i < d-1 \) to \(i+1 \) and \(d-1 \) to \(0 \). In fact \(\tilde{S} \) is a principal homogeneous set under the cyclic subgroup \(\langle c \rangle \) of order \(d \) generated by \(c \). Therefore, it is convenient to identify \(\{0, \ldots, d-1\} \) with \(\mathbb{Z}/d\mathbb{Z} \) through the canonical bijection, so that we simply have

\[
c(\alpha_i) = \alpha_{i+1}, \forall i \in \mathbb{Z}/d\mathbb{Z}.
\]

We denote by \(\mathcal{P}'(\tilde{S}) \) the set of strict subsets of \(\tilde{S} \). For any \(I \in \mathcal{P}'(\tilde{S}) \) we can thus choose an \(i \in \tilde{S} \setminus I \). The translated subset \(c^{-1}(I) \) is then contained in \(\tilde{S} \) so we can consider the representation \(i_{c^{-1}}(\overline{\mathbb{F}}_l) \otimes \nu_G^c \).

\text{Lemma}.-- Up to semisimplification, the representation \(i_{c^{-1}}(\overline{\mathbb{F}}_l) \otimes \nu_G^c \) is independent of the choice of \(i \) in \(\tilde{S} \setminus I \). We denote by \([i_I]\) its class in the Grothendieck group \(\mathcal{R}(G, \overline{\mathbb{F}}_l) \).

Proof. Up to translation by a power of \(c \), we may assume that \(I \subseteq S \), so that we have to compare \(i_I(\overline{\mathbb{F}}_l) \) with \(i_{c^{-1}}(\overline{\mathbb{F}}_l) \otimes \nu_G^c \) (assuming that \(i \notin I \)). Note that the parabolic subgroups \(P_I \) and \(P_{c^{-1}I} \) are associated. More precisely, any element of the normalizer of \(T \) in \(G \) which projects to \(c^i \) will conjugate the Levi component \(M_{c^{-1}I} \) to \(M_I \).

Therefore, \[7\] Lemme 4.13 shows that in the Grothendieck group \(\mathcal{R}(G, \overline{\mathbb{F}}_l) \) we have the equality \([i_{c^{-1}}(1)] = [i_I(\gamma)]\) with \(\gamma = (\delta_{P_I}c^i(\delta_{P_{c^{-1}I}}^{-1}))^{\frac{1}{2}} \). Thus we have to prove that \(\gamma = \nu_G^{c^{-1}I} \).

Since restriction to \(T \) is injective on characters of \(M_I \), we may restrict both sides to \(T \). Using that \(\delta_{P_I}|_T = \delta_B^c \delta_{P_{c^{-1}I}}^{-1} \), we get that \(\gamma|_T = (\delta_B^c(\delta_B^{-1}))^{\frac{1}{2}} \).

For \(k = 0, \ldots, d-1 \), consider the smooth character of \(T \) defined by \(\varepsilon_k(t) = q^{-\text{val}(t_k)} \) where \(t_0, \ldots, t_{d-1} \) are the diagonal entries of \(t \in T \). Then we have

\[
\gamma|_T = \left(\prod_{k<i} \varepsilon_k \varepsilon_i^{-1} \prod_{k<i} \varepsilon_{k+i} \varepsilon_{i+k}^{-1} \right)^{\frac{1}{2}} = \prod_{k<i} \varepsilon_k \varepsilon_i^{-1} = \prod_{k<i} \varepsilon_{d-i} \prod_{i<l} \varepsilon_l^{-i}.
\]
Of course in the first equality, the indices $k+i$ and $l+i$ should be read modulo d. To get the second equality, we observe that for $0 \leq k < l < d$, we have $k+i > l+i (\text{mod } d) \Leftrightarrow k < d-i \Leftrightarrow l+i < k+i$. Now using the fact that $\varepsilon_k^d = 1$, we get $\gamma_T = \prod_k \varepsilon_k^{-i} = (\nu_G^{-1})|_T$ as desired. \hfill \Box

Remark.— The particular case $I = \emptyset$, $i = 1$ of the above lemma tells us that $[\text{Ind}^G_B (F_{\ell})] = [\text{Ind}^G_B (F_{\ell}) \otimes \nu_G]$. So the twisting action of the cyclic group $\langle \nu_G \rangle$ on the set of classes of irreducible representations preserves the multiset $JH(\text{Ind}^G_B (F_{\ell}))$.

We now want to isolate a certain irreducible constituent of $[i_I]$. We follow the Zelevinski approach via degenerate Whittaker models, as in Vignéras’ work. First we associate a proper conjugacy class corresponds to a partition λ of d. Let $\lambda = \mu \vdash d$. For example, χ_i for $i < i$. We refer to [27, III.1] for the basics on the theory of derivatives and to [25, V.5] for the notion of degenerate Whittaker models. For any $\pi \in \mathcal{P}(\tilde{S})$ we have $\pi_{\emptyset, \{i\}} \simeq \pi_{\emptyset} \otimes \nu_G^i$. In particular, for any $i \in \tilde{S}$, we have $\pi_{\tilde{S} \setminus \{i\}} = \nu_G^i$. On the other hand π_{\emptyset} is the only generic constituent of $\text{Ind}^G_B (F_{\ell})$.

Before proceeding, we introduce some more notation. Similarly to the banal case, we consider the complement in X of the union of all hyperplanes attached to the roots in \tilde{S}. Its connected components are labeled by proper subsets of \tilde{S}, and given by

$$X_I := \{x \in X, \forall \alpha \in \tilde{S}, \varepsilon_I(\alpha) \langle x, \alpha \rangle > 0\}$$

where ε_I is the sign function attached to I as before. Note that $X_{\tilde{S}} = X_{\emptyset} = \emptyset$ and that $X_{\tilde{S}} = X_S$ is again the opposite Weyl chamber to B. However for I a strict subset of S, we have $X_I \neq X_I$.

Proposition.—

i) The multiset $JH(\text{Ind}^G_B (F_{\ell}))$ is a set (multiplicity one).

ii) The map $I \in \mathcal{P}(\tilde{S}) \mapsto \pi_I \in \text{JH}(\text{Ind}^G_B (F_{\ell}))$ is a bijection.

iii) For all $I \in \mathcal{P}(\tilde{S})$ the following equality holds in $\mathcal{R}(G, F_{\ell})$:

$$[i_I] = \sum_{J \supseteq I} [\pi_J].$$

iv) π_{\emptyset} is a cuspidal representation, and if $I \neq \emptyset$ then

$$r_B(\pi_I) = \bigoplus_{w(\chi_S) \subset \chi_I} w^{-1}(\delta).$$

Proof. i) Suppose π is a non-cuspidal irreducible subquotient of $\text{Ind}^G_B (F_{\ell})$. Let $P = M_P U_P$ be a parabolic subgroup such that $\pi_{U_P} \neq 0$. Since ℓ is banal for M_P, the Mackey
formula (or “geometric lemma”) shows that in fact \(\pi_{U_B} \neq 0 \). But the congruence relation and the Mackey formula imply that \(\text{Ind}_{\mathcal{G}}^G (\mathbb{F}_l)_{U_B} \) has the multiplicity one property, as a representation of \(T \). More precisely, we have \(r_B(\text{Ind}_{\mathcal{G}}^G (\mathbb{F}_l)) = \bigoplus_{w \in W} w(\delta) \), and \(\delta = \nu_{\mathcal{G}}^{-1} \prod_{i=0}^{d-1} \zeta_i \) is a \(W \)-regular character since \(q \) has order \(d \). Hence \(\pi \) occurs with multiplicity one in \(\text{Ind}_{\mathcal{G}}^G (\mathbb{F}_l) \). Now any cuspidal representation is generic, so there is at most one cuspidal subquotient of \(\text{Ind}_{\mathcal{G}}^G (\mathbb{F}_l) \).

ii) This follows from the proof of [10] Prop 3.2.4. However the latter reference rests on Vigneras’ classification [23] V.12, so in particular on a difficult result of Ariki’s on the classification of simple modules of Hecke-Iwahori algebras at roots of unity. In fact, in our context the latter can be avoided and replaced by the more elementary partial classification of [23] 2.17. Nevertheless, for the convenience of the reader, we sketch a complete and more direct proof.

Let us first show the injectivity of the map. Let \(\pi \) be some irreducible subquotient of \(\text{Ind}_{\mathcal{G}}^G (\mathbb{F}_l) \), and let \(\lambda = \lambda_\pi \) be the partition of \(d \) obtained from \(\pi \) by taking successive higher derivatives. Hence \(\lambda_1 \) is the order of the highest non-zero derivative of \(\pi \), \(\lambda_2 \) is that of the derivative \(\pi^{(\lambda_1)} \), etc. The partition \(\lambda \) is the greatest element in the set of all partitions \(\lambda' \) such that \(r_{\lambda'}(\pi) \) admits a generic subquotient. Here \(r_{\lambda'} \) denotes the normalized Jacquet functor associated to the standard parabolic subgroup \(P_{\lambda'} = U_{\lambda'} M_{\lambda'} \) associated to \(\lambda' \). Let \(\tau \) denote a generic subquotient of \(r_{\lambda'}(\pi) \). We can write \(\tau = \gamma(A_1) \otimes \cdots \otimes \gamma(A_{\lambda|}) \) where \(A_1 \sqcup \cdots \sqcup A_{\lambda|} = \{0, \ldots, d - 1\} \) is a set-theoretical partition with \(|A_i| = \lambda_i \), and for any subset \(A \subset \{0, \ldots, d - 1\} \), \(\gamma(A) \) denotes the unique generic subquotient of the normalized induction \(x_{A} \in A \nu^a - \frac{d-1}{2} \) (so this is a representation of \(GL_{|A|}(K) \)). If \(\pi = \pi_I \) for some \(I \), then \(\lambda = \lambda_I \) and a computation shows that for \(k = 1, \ldots, |I| \),

\[
A_k = \{ a \in \{0, \ldots, d - 1\}, \{\alpha_a, c^{-1} \alpha_a, \ldots, c^{-k} \alpha_a\} \subset I\} = \{ a \in \mathbb{Z}/d\mathbb{Z}, \{\alpha_a, \alpha_{a-1}, \ldots, \alpha_{a-k+2}\} \subset I\}.
\]

In particular, the following holds:

a) for all \(k = 1, \ldots, |I| - 1 \), we have \(A_{k+1} \subset c(A_k) = A_k + 1 \)
b) \(I = \{ \alpha_i \in \tilde{S}, i \notin A_1 \} \).

Hence we see that \(\pi_I \) determines \(I \), so that the map in point ii) is injective.

In order to prove the surjectivity, it is enough to prove that \(\text{Ind}_{\mathcal{G}}^G (\mathbb{F}_l) \) has at most \(2d - 2 \) irreducible non cuspidal constituents. If \(\pi \) is such a constituent, there is a Borel subgroup \(B' \) such that \(\pi \) is the unique irreducible quotient of the normalized induced representation \(\text{Ind}_{\mathcal{G}}^G (\mathbb{F}_l) \). However, the same argument as in [3] 2.5.4 shows that if both the chambers \(C(B') \) and \(C(B'') \) are contained in a component \(\tilde{X}_I \), then the canonical intertwining operator \(\overline{q}_{B'}(\delta) \rightarrow \overline{q}_{B''}(\delta) \) is an isomorphism. Indeed, we may assume as in loc.cit that \(B' \) and \(B'' \) are adjacent, with wall associate to some root \(r \). Then the representation theory for \(GL_2 \) (note that \(\ell \) is banal w.r.t to \(GL_2(K) \)) tells us that the canonical intertwining operator is invertible unless \(q^{l(r)} = q^{\pm 1} \) in \(\mathbb{F}_l \), where \(l(r) \) is the height of the root. With our congruence hypothesis and the general inequality \(l(r) \leq n - 1 \), this implies that \(l(r) \) is either \(1 \) or \(n - 1 \), which is equivalent to \(\pm r \in \tilde{S} \). This gives the desired bound.

iii) By ii), we only have to show that if \(J \) is any other strict subset of \(\tilde{S} \), then \(\pi_J \) occurs in \([i_J] \) if and only if \(J \supseteq I \). Start with \(J \supseteq I \) and choose \(i \in \tilde{S} \setminus J \). Then we have \(i_c(J) \otimes \nu_G^{-1} \subset i_c(I) \otimes \nu_G^{-1} \), so \(\pi_J \) occurs in \([i_J] \). Conversely, suppose that \(\pi_J \) occurs in \([i_J] \). Assume first that \(J \cup I \neq \tilde{S} \) and choose \(i \in \tilde{S} \setminus (J \cup I) \). Then we see that \([\pi_J \otimes \nu_G^{-1}] \)}
occurs in \(i_{c-i\cdot j}(\mathbb{F}_\ell) \cap i_{c-i\cdot j}(\mathbb{F}_\ell) = i_{c-i\cdot j}(\mathbb{F}_\ell) \). Hence \(\lambda_j \leq \lambda_{I \cup J} \), so \(\lambda_J = \lambda_{I \cup J} \) and finally \(I \cup J = J \), as desired. Assume now that \(J \cup I = \tilde{S} \), choose \(j \in J \setminus I \) and set \(J^* := J \setminus \{ j \} \). We get that \(\{ \pi_j \otimes \nu_{c-j} \} \) occurs in \(i_{c-i\cdot j}(\mathbb{F}_\ell) \cap i_{c-i\cdot j}(\mathbb{F}_\ell) = i_{c-i\cdot j}(\mathbb{F}_\ell) = i_{\tilde{S}\setminus\{0\}} = \pi_{\tilde{S}\setminus\{0\}} \). Hence \(\pi_J = \pi_{\tilde{S}\setminus\{j\}} \), so \(J = \tilde{S} \setminus \{ j \} \) which is impossible by definition of \(j \).

iv) We proved in point ii) that \(\text{Ind}^G_B(\mathbb{F}_\ell) \) has exactly \(2^d - 2 \) non-cuspidal irreducible subquotients. But we constructed \(2^d - 1 \) constituents, so \(\text{Ind}^G_B(\mathbb{F}_\ell) \) has exactly one cuspidal subquotient. We know it is generic, so it is, by definition, \(\pi_0 \). Now, fix some proper subset \(I \) of \(\tilde{S} \). Again by the proof of the surjectivity in point ii), there is a unique proper subset \(J \) such that

\[
\pi_J = \pi_{\tilde{S}\setminus\{j\}}.
\]

We still have to prove that \(I = J \). Note that the condition \(w(\tilde{X}_S) \subset \tilde{X}_J \) is equivalent to

\[
J = \{ \alpha_j \in \tilde{S}, wc^{-1}(j) < w(j) \}.
\]

Now, items a) and b) in the proof of the injectivity in ii) show that \(I \subseteq J \). Since the map \(I \mapsto J \) is a bijection, it has to be the identity.

\[
\square
\]

(2.1.3) The decomposition matrix for elliptic representations. Recall that an admissible smooth \(\mathbb{Q}_\ell \)-representation \(\pi \) of \(G \) is called \(\ell \)-integral if it contains a \(G \)-stable \(\mathbb{Z}_\ell \)-lattice. Then it is known that the reduction to \(\mathbb{F}_\ell \) of such a lattice only depends on \(\pi \) up to semisimplification, see [27] II.5.1.b. We denote by \(r_\ell(\pi) \) the semisimple \(\mathbb{F}_\ell \)-representation thus obtained.

Proposition. Let \(I \subseteq S \). Then we have

\[
r_\ell(v_I(\mathbb{Q}_\ell)) = [v_I(\mathbb{F}_\ell)] = \begin{cases} \{ \pi_I \} + [\pi_{I \cup \{0\}}] & \text{if } I \neq S \\ [\pi_S] & \text{if } I = S \end{cases}
\]

Proof. Since parabolic induction commutes with inductive limits, we have \(i_I(R) \simeq i_I(\mathbb{Z}) \otimes R \) for any ring \(R \). By its definition as a quotient \(v_I(R) = i_I(R) / \sum_{J > I} i_J(R) \), we also have \(v_I(R) = v_I(\mathbb{Z}) \otimes R \). Now, by [21] Coro 4. 5], we know that \(v_I(\mathbb{Z}) \) is free over \(\mathbb{Z} \). The first equality follows.

If \(I = S \), we have \(v_S(\mathbb{F}_\ell) = \pi_S = \mathbb{F}_\ell \) (trivial representation), so the second equality is clear in this case. Assume \(I \neq S \). By [21] Prop 6.13, the following simplicial complex is exact:

\[
0 \rightarrow i_S(\mathbb{Z}) \rightarrow \cdots \rightarrow \bigoplus_{J \supset I, |J| = |I| + 1} i_J(\mathbb{Z}) \rightarrow i_I(\mathbb{Z}) \rightarrow v_I(\mathbb{Z}) \rightarrow 0.
\]

Since it consists of free \(\mathbb{Z} \)-modules, it remains exact after base change to \(\mathbb{F}_\ell \). Thus we get the equality

\[
[v_I(\mathbb{F}_\ell)] = \sum_{S \supset J \supset I} (-1)^{|J\setminus I|} [i_J(\mathbb{F}_\ell)]
\]

in \(\mathcal{R}(G, \mathbb{F}_\ell) \). On the other hand, Proposition [2.1.2] iii) provides us with the equality

\[
[\pi_I] = \sum_{S \supset J \supset I} (-1)^{|J\setminus I|} [i_J].
\]
Thus we get
\[
\pi_I - [v_I(\overline{F}_\ell)] = \sum_{S \supset I \supset \{0\}} (-1)^{|S\setminus I|}[\pi_{I \cup \{0\}}].
\]

Alternatively, one could have used point iv) in Proposition (2.1.2) and the easy fact that for any \(I \subset S \), we have \(X_I = X_I \cup X_{\{0\}} \).

2.2 Corresponding representations

(2.2.1) Langlands-Jacquet transfer

We refer to [10] for the definition of the Langlands-Jacquet transfer map \(L_{\mathbb{F}_\ell} : \mathcal{R}(G, \mathbb{F}_\ell) \rightarrow \mathcal{R}(D^\times, \mathbb{F}_\ell) \), which is induced by carrying Brauer characters through the usual bijection between regular elliptic conjugacy classes of \(G \) and \(D^\times \). We will need the \(\mathbb{F}_\ell \)-valued unramified character \(\nu_D : d \mapsto q^{-\text{val} \circ \text{Nrd}(d)} \) of \(D^\times \).

Proposition. For any strict subset \(I \subset \tilde{S} \) we have

\[
L_{\mathbb{F}_\ell}(\pi_I) = (-1)^{|\tilde{S}\setminus I|+1} \sum_{j \in \tilde{S}\setminus I} L_{\mathbb{F}_\ell}(\pi_{\tilde{S}\setminus \{j\}}).
\]

Proof. Since the map \(L_{\mathbb{F}_\ell} \) kills all parabolically induced representations [10, Thm 3.1.4], equality (2.1.3.2) shows that

\[
L_{\mathbb{F}_\ell}(\pi_I) = (-1)^{|\tilde{S}\setminus I|} \sum_{j \in \tilde{S}\setminus I} \nu_D j.
\]

On the other hand \(\pi_{\tilde{S}\setminus \{j\}} = \nu_D j = r_{\ell}(v_S(\mathbb{Q}_\ell)) \otimes \nu_D j \). By compatibility of the LJ maps with reduction modulo \(\ell \) [10, Thm 1.2.3] and with torsion by characters, we get that

\[
L_{\mathbb{F}_\ell}(\pi_{\tilde{S}\setminus \{j\}}) = (-1)^{|\tilde{S}|}\nu_D j.
\]

(2.2.2) Different operations on Weil-Deligne representations

Before we proceed to a description of the Galois-type representations attached to the \(\pi_I \)'s, we need to make precise some formal properties of Weil-Deligne representations.

It is convenient to work in a fairly general setting. So let \(\mathcal{C} \) be an essentially small, artinian, noetherian, abelian category and let \(\mathcal{C}^{ss} \) be the full subcategory of semisimple objects. The Jordan-Hölder theorem yields a map

\[
\text{Ob}(\mathcal{C})/\sim \rightarrow K_+(\mathcal{C}), \ V \mapsto [V]
\]

from the set of isomorphism classes of objects to the free monoid on simple objects. This map induces a bijection \(\text{Ob}(\mathcal{C}^{ss})/\sim \rightarrow K_+(\mathcal{C}) \).

Assume further that \(\mathcal{C} \) is endowed with an automorphism \(V \mapsto V(1) \) and denote by \(V \mapsto V(n) \) its \(n \)-th iteration. Consider the category \(\mathcal{N}(\mathcal{C}) \) with objects all pairs \((V, N) \) with \(V \in \text{Ob}(\mathcal{C}) \) and \(N : V \rightarrow V(-1) \) a nilpotent morphism. With the obvious notion of morphisms, \(\mathcal{N}(\mathcal{C}) \) is an artinian, noetherian, abelian category. The formalism of Deligne’s filtration [12, (1.6)] yields a map

\[
\text{Ob}(\mathcal{N}(\mathcal{C}))/\sim \rightarrow K_+(\mathcal{C})^{(N)}, \ (V, N) \mapsto [V, N]
\]

where the RHS is the set of almost zero sequences of elements in \(K_+(\mathcal{C}) \). Namely, we put \([V, N] := ([P_{-n}^N(V)])_{n \in \mathbb{N}} \) where \(P_{-n}^N \) is the primitive part of the \(i \)-graduate of Deligne’s filtration attached to \(N \). We leave the reader check the following fact.
Lemma. - The map \((V, N) \mapsto [V, N]\) induces a bijection \(\text{Ob}(\mathcal{N}(\mathcal{C}^{ss}))_{/\sim} \to K_+(\mathcal{C})^{(N)}\).

As a consequence, one gets:
- a “semi-simplification” process \(\text{Ob}(\mathcal{N}(\mathcal{C}))_{/\sim} \to \text{Ob}(\mathcal{N}(\mathcal{C}^{ss}))_{/\sim}\).
- a “transposition” process \(\text{Ob}(\mathcal{N}(\mathcal{C}^{ss}))_{/\sim} \to \text{Ob}(\mathcal{L}(\mathcal{C}))_{/\sim}\), where \(\mathcal{L}(\mathcal{C})\) denotes the category of pairs \((V, L)\) with \(L : V \to V(1)\) nilpotent.
- a map \(\text{Ob}(\mathcal{N}(\mathcal{C}^{ss}))_{/\sim} \to \text{Ob}(\mathcal{N}(\mathcal{C}^{ss}))_{/\sim}\) for any map \(K_+(\mathcal{C})' \to K_+(\mathcal{C})\).

As an example of application, let \(\mathcal{C} = \text{Rep}_{\mathbb{Q}_l}(W_K)\), resp. \(\mathcal{C}' = \text{Rep}_{\overline{\mathbb{Q}_l}}(W_K)\), be the category of finite dimensional representations of \(W_K\) with \(\overline{\mathbb{Q}_l}\) resp. \(\overline{\mathbb{Q}_l}\) coefficients. In this paper, a Weil-Deligne \(\overline{\mathbb{F}_l}\)-representation is an object of \(\mathcal{N}(\mathcal{C}^{ss})\) (so our convention is that the Weil part of a WD representation is semisimple). Applying the last item to the decomposition map \(r_\ell : K_+(\text{Rep}_{\overline{\mathbb{Q}_l}}(W_K)) \to K_+(\text{Rep}_{\mathbb{Q}_l}(W_K))\) we get a reduction process

\[(\sigma^{ss}, N) \mapsto r_\ell(\sigma^{ss}, N) = (r_\ell\sigma^{ss}, N)\]

for Weil-Deligne representations.

\textbf{(2.2.3) The Zelevinski-Vignéras correspondence.} According to [26 Thm 1.6], there is a unique map

\[\pi \mapsto \sigma^{ss}(\pi), \quad \text{Irr}_{\overline{\mathbb{F}_l}}(G) \to \{d\text{-dimensional semi-simple } \overline{\mathbb{F}_l}\text{-reps of } W_K\}_{/\sim}\]

which is compatible with the \(\ell\)-adic semi-simple Langlands correspondence via reduction modulo \(\ell\) in the following sense: if \(\pi\) is a constituent of \(r_\ell(\overline{\pi})\) for \(\overline{\pi} \in \text{Irr}_{\overline{\mathbb{Q}_l}}(G)\), then \(\sigma^{ss}(\pi) = r_\ell(\sigma^{ss}(\overline{\pi}))\). In [9], we gave a geometric realization of this map, as well as another proof of its existence.

Using her classification à la Zelevinski, Vignéras explained in [26, 1.8] that the above semi-simple Langlands correspondence extends uniquely to a bijection:

\[
\text{Irr}_{\overline{\mathbb{F}_l}}(G) \to \{d\text{-dimensional Weil-Deligne } \overline{\mathbb{F}_l}\text{-reps of } W_K\}_{/\sim}, \quad \pi \mapsto \sigma^Z(\pi) = (\sigma^{ss}(\pi), N^Z(\pi))
\]

such that the following compatibility with the \(\ell\)-adic Langlands correspondence via reduction modulo \(\ell\) holds: if \(\pi\) is a constituent of \(r_\ell(\overline{\pi})\) for \(\overline{\pi} \in \text{Irr}_{\overline{\mathbb{Q}_l}}(G)\), and if \(\lambda_{\pi} = \lambda_{\overline{\pi}}\), then \(\sigma^Z(\pi) = r_\ell(\sigma(Z(\overline{\pi})))\).

Here, \(Z\) denotes the Zelevinski involution for \(\overline{\mathbb{Q}_l}\)-representations, and the precise meaning of \(r_\ell\) in the context of WD representations was explained in the last paragraph. Further, \(\lambda_{\pi}\) is the partition of \(d\) attached to \(\pi\) by taking successive higher non-zero derivatives, as in the proof of point ii) of Proposition [2.1.2]. Note that the mere existence of a \(\overline{\pi}\) fulfilling the conditions above is highly non trivial in general, and rests on Ariki’s work on cyclotomic Hecke algebras.

Our aim in this paper is to provide a (partial) geometric interpretation of this enhanced correspondence, by means of a Lefschetz operator. Therefore we will focus on the “transposed” WD representation, as defined in the previous paragraph:

\[(\sigma^{ss}(\pi), L(\pi)) := t(\sigma^{ss}(\pi), N^Z(\pi)).\]

We now want to compute explicitly these transposed WD representations for the elliptic principal series. This will involve the \(\overline{\mathbb{F}_l}\)-character \(\nu_W : w \mapsto q^{-\text{val}((\text{Art}_K)^{-1}(w))}\) where \(\text{Art}_K\)
is the local class field homomorphism with takes a uniformizer to a geometric Frobenius. For simplicity, we will use the so-called “Hecke normalization” of Langland’s correspondence.

Proposition.— For any strict subset $I \subset \tilde{S}$, we have $\sigma^{ss}(\pi_I) \simeq \bigoplus_{i=0}^{d-1} \nu_W^i$ and in a good eigenbasis, $L(\pi_I)$ is given by the matrix $\sum_{\alpha_i \in I} E_{i-1,i}$

Proof. The correspondence is compatible with twisting in the sense that $\sigma^Z(\pi \otimes \nu_G) = \sigma^Z(\pi) \otimes \nu_W$. Since our proposed solution is also compatible with twisting, we may assume that $I \subset S$. In this case we know that π_I appears in $r_\ell(v_I(\mathbb{Q}_\ell))$. We also know that $\lambda_{\pi_I} = \lambda_{v_I(\mathbb{Q}_\ell)} = \lambda_I$. Therefore we have $(\sigma^{ss}(\pi_I), L(\pi_I)) = r_\ell(\sigma^{ss}(v_I(\mathbb{Q}_\ell)), L(v_I(\mathbb{Q}_\ell)))$.

But the latter was computed in [S 3.2.4].

2.3 Computation of some Ext groups

This section is rather technical in nature and should be skipped at first reading. We first check that some computations of Ext groups between the v_I’s and the i_I’s performed by Orlik in [20] remain valid in our present context, although Orlik’s hypotheses are not satisfied. Then we proceed to compute Ext groups between the π_I’s and i_I’s.

(2.3.1) Context and notation. We fix a uniformizer ϖ of K and we will consider Yoneda extensions in the category $\text{Rep}_F^\infty(G/\varpi^2)$ of smooth \mathbb{F}_ℓ-representations of G/ϖ^2. Recall that a subset $I \subset S$ determines a standard parabolic subgroup P_I, the standard Levi component of which is denoted by M_I. We also denote by W_I the Weyl group of T in M_I, which is also the subgroup of W generated by reflections associated to roots in I. We define a \mathbb{F}_ℓ-vector space

$$Y_I := X^*(M_I/Z(G)) \otimes_{\mathbb{Z}} \mathbb{F}_\ell$$

where X^* denotes the group of K-rational characters and Z means “center”.

Symbols r_P and i_P will stand for normalized parabolic functors along the parabolic subgroup P and δ_P will denote the modulus character of P. With this notation we have e.g. $i_I(\mathbb{F}_\ell) = i_{P_I}(\delta_{P_I}^{1/2})$. We will also put $\delta = \delta_B^{1/2}$. Finally, the symbol $\mathcal{E}xp(T, \sigma)$ denotes the set of characters of T occurring as subquotients of the admissible \mathbb{F}_ℓ-T-representation σ.

Lemma.— Let I be a strict subset of S.

i) If π, π' are two principal series of M_I, then

$$(W_I \cdot \mathcal{E}xp(T, r_{B\cap M_I}(\pi)) \cap W_I \cdot \mathcal{E}xp(T, r_{B\cap M_I}(\pi'))) = \emptyset \Rightarrow \text{Ext}_{M_I/\varpi^2}^*(\pi, \pi') = 0.$$

ii) $\text{Ext}_{M_I/\varpi^2}^*(\mathbb{F}_\ell, \mathbb{F}_\ell) = \bigwedge^* Y_I$

Proof. i) The assumption means that π and π' have disjoint cuspidal supports. Since ℓ is banal for M_I, the vanishing of Ext follows from [24 6.1].

ii) The argument in [20 Prop. 9] shows that $\text{Ext}_{M_I/\varpi^2}^*(\mathbb{F}_\ell, \mathbb{F}_\ell) = \text{Ext}_{M_I/MI_0/\varpi^2}^*(\mathbb{F}_\ell, \mathbb{F}_\ell)$ where $M_{I_0}^I$ is the subgroup of M_I generated by compact elements (note that ℓ is prime to the pro-index $[M_{I_0}^I : [M_I, M_I]]$). Since ℓ is also prime to the torsion in the abelian
that cosets in W be true in our context. By Frobenius reciprocity, we have

$$\text{Ext}^*(M_1/M_0^1 \omega Z, \mathbb{F}_\ell) = \wedge^* (\text{Hom}_{\text{grp}}(M_1/M_0^1 \omega Z, \mathbb{F}_\ell)) = \wedge^* (\text{Hom}_{\text{grp}}(M_1/M_0^1 \omega Z,
\mathbb{Z}) \otimes \mathbb{F}_\ell).$$

Finally, the usual map $\chi \mapsto \text{val}_K \circ \chi$ yields an isomorphism $X^*(M_1/Z(G)) \to \text{Hom}_{\text{grp}}(M_1/M_0^1 \omega Z, \mathbb{Z}).$

Remark. A consequence of item ii) of the foregoing lemma and Frobenius reciprocity is that for any representation π of $G/\omega Z$, the graded space $\text{Ext}^*_G(\pi, i_1(\mathbb{F}_\ell)) \cong \text{Ext}^*_M(\pi, i_1(w))$ is naturally a graded right module over the graded algebra $\wedge^* Y_I$. In particular there is a canonical graded map

$$\text{Hom}_{G/\omega Z} (\pi, i_1(\mathbb{F}_\ell)) \otimes_{\mathbb{F}_\ell} \wedge^* Y_I \to \text{Ext}^*_G(\pi, i_1(\mathbb{F}_\ell)).$$

This map is clearly functorial in π. It is also functorial in I in the sense that if $J \subseteq I$ we have a commutative diagram

$$\begin{array}{ccc}
\text{Hom}_{G/\omega Z} (\pi, i_1(\mathbb{F}_\ell)) \otimes_{\mathbb{F}_\ell} \wedge^* Y_I & \to & \text{Ext}^*_G(\pi, i_1(\mathbb{F}_\ell)) \\
\downarrow & & \downarrow \\
\text{Hom}_{G/\omega Z} (\pi, i_J(\mathbb{F}_\ell)) \otimes_{\mathbb{F}_\ell} \wedge^* Y_J & \to & \text{Ext}^*_G(\pi, i_J(\mathbb{F}_\ell))
\end{array}$$

where the vertical maps are induced by the inclusion $i_1(\mathbb{F}_\ell) \to i_J(\mathbb{F}_\ell)$ and the restriction map $Y_I \to Y_J$.

2.3.2 Proposition. Let I, J be two subsets of S, with I a strict subset. Then the canonical map

$$\text{Hom}_{G/\omega Z} (i_J(\mathbb{F}_\ell), i_1(\mathbb{F}_\ell)) \otimes_{\mathbb{F}_\ell} \wedge^* Y_I \to \text{Ext}^*_G(\pi, i_J(\mathbb{F}_\ell), i_1(\mathbb{F}_\ell))$$

is an isomorphism. In other words, we have

$$\text{Ext}^*_G(i_J(\mathbb{F}_\ell), i_1(\mathbb{F}_\ell)) \cong \left\{ \begin{array}{ll}
\wedge^* Y_I & \text{if } J \supseteq I \\
0 & \text{otherwise}
\end{array} \right..$$

Moreover, the natural map $\text{Ext}^*_G(i_K(\mathbb{F}_\ell), i_1(\mathbb{F}_\ell)) \to \text{Ext}^*_G(i_J(\mathbb{F}_\ell), i_1(\mathbb{F}_\ell))$ is an isomorphism for any $J \supseteq K \supseteq I$.

Proof. We follow [20 Prop. 15] but we avoid Lemma 16 of loc. cit. which might fail to be true in our context. By Frobenius reciprocity, we have

$$\text{Ext}^*_G(i_J(\mathbb{F}_\ell), i_1(\mathbb{F}_\ell)) = \text{Ext}^*_M(i_M/w, i_1(\mathbb{F}_\ell)) = r_{\delta P_I} \circ i_{P_J}(\delta_{P_J}^{1/2}, \delta_{P_I}^{-1/2})$$

and by the geometric Mackey formula, $r_{P_J} \circ i_{P_J}(\delta_{P_J}^{1/2})$ has a filtration with graded pieces of the form $Q_w := i_{M_1 \cap w(P_J)} \left(w(\delta_{P_J \cap w^{-1}(I)}) \right)$, where w runs over all elements in W such that $w(J) \subseteq \Phi^+$ and $w^{-1}(I) \subseteq \Phi^+$ (this is a complete set of representatives of double cosets in $W_I \setminus W/W_J$). Using again the geometric Mackey formula we get

$$W_I \cdot \text{Exp} \left(T, r_{B \cap M_1}(Q_w) \right) = W_I \cdot \text{Exp} \left(T, r_{B \cap M_1}(w(\delta_{P_J \cap w^{-1}(I)}) \right) = W_I \cdot \{ w(\delta) \}. $$
On the other hand, we have
\[W_I \cdot \exp \left(T, r_{B \cap M_I}(\delta_{P_I}^{-1}) \right) = W_I \cdot \{ \delta \}. \]

Since \(\delta \) is \(W \)-regular, item i) of the above Lemma tells us that \(\Ext^*_{M_I/\omega \cap \omega} \left(Q_w, \delta_{P_I}^{-1} \right) = 0 \) unless \(w \in W_I \). In this case, we must have \(w = 1 \) so that \(Q_w = Q_1 = i_{M_I \cap P_I} \delta_{P_I}^{-1} \) is the top quotient of the geometric Mackey filtration and the canonical map
\[
\Ext^*_{M_I/\omega \cap \omega} \left(i_{M_I \cap P_I}(\delta_{P_I}^{-1}), \delta_{P_I}^{-1} \right) \longrightarrow \Ext^*_{G/\omega \cap \omega} \left(i_J(\mathbb{F}_\ell), i_I(\mathbb{F}_\ell) \right)
\]
is an isomorphism. Using Casselman’s reciprocity, the LHS identifies with
\[
\Ext^*_{M_{I \cap J}/\omega \cap \omega} \left(\delta_{P_I^{-1}, \omega \cap \omega}^{-1}, \delta_{P_I^{-1}} \right) = \Ext^*_{M_{I \cap J}/\omega \cap \omega} \left(\delta_{P_I^{-1}, \omega \cap \omega}^{-1}, \delta_{P_I^{-1}} \right)
\]
where \(\overline{P_I} \) is the opposite parabolic subgroup to \(P_I \) w.r.t \(M_I \) and \(P'_{I \cap J} \) is the semistandard parabolic subgroup with Levi component \(M_{I \cap J} \) and unipotent radical \(U_I(U_{I \cap J} \cap M_I) \). Let \(B' \) be the Borel subgroup with unipotent radical \(U_I(U_{I \cap J} \cap M_I)/(U_0 \cap M_{I \cap J}) \). Point i) of the previous Lemma tells us that the RHS of the last displayed formula vanishes unless there is \(w \in W_{I \cap J} \) such that \(w(B) = B' \). But then \(w(B) \cap M_{I \cap J} = B' \cap M_{I \cap J} \) hence \(w = 1 \), thus \(P'_{I \cap J} = P_{I \cap J} \) which is possible only if \(J \supseteq I \).

Eventually we have proved the desired vanishing when \(J \) does not contain \(I \), and we have proved that if \(J \supseteq I \), the canonical map
\[
\Ext^*_{M_I/\omega \cap \omega} \left(\delta_{P_I^{-1}, \omega \cap \omega}^{-1}, \delta_{P_I^{-1}} \right) \longrightarrow \Ext^*_{G/\omega \cap \omega} \left(i_J(\mathbb{F}_\ell), i_I(\mathbb{F}_\ell) \right)
\]
is an isomorphism. We conclude the computation using item ii) of the previous Lemma. The last assertion follows from the functorial nature of the above map. \(\square \)

(2.3.3) The complex (2.1.3.1) yields a spectral sequence
\[
E^{pq}_1 = \bigoplus_{K \supseteq J \cap K \setminus J = p} \Ext^q_{G/\omega \cap \omega} \left(i_K(\mathbb{F}_\ell), i_J(\mathbb{F}_\ell) \right) \Rightarrow \Ext^{p+q}_{G/\omega \cap \omega} \left(v_J(\mathbb{F}_\ell), i_I(\mathbb{F}_\ell) \right)
\]
whence in particular an edge map
\[\Ext^*_G(\overline{P_I}, i_J(\mathbb{F}_\ell)) \longrightarrow \Ext|S\setminus J|+*_{G/\omega \cap \omega} (v_J(\mathbb{F}_\ell), i_I(\mathbb{F}_\ell)). \]

Thanks to the last Proposition, the same argument as [20] Prop. 17] gives the following expression.

Corollary.— Let \(I, J \) be subsets of \(S \) with \(I \) a strict subset.

i) If \(I \cup J \neq S \) then \(\Ext^*_G(\overline{P_I}, i_J(\mathbb{F}_\ell)) = 0 \).

ii) If \(I \cup J = S \), then the map (2.3.3.1) is an isomorphism, so we get an isomorphism
\[
\Ext^*_G(\overline{P_I}, i_J(\mathbb{F}_\ell)) \simeq \bigwedge Y_I.
\]
Moreover, if \(I' \) is another strict subset of \(S \) which contains \(I \), then the natural map \(\Ext^*_G(\overline{P_I}, i_J(\mathbb{F}_\ell)) \longrightarrow \Ext^*_{G/\omega \cap \omega} (v_J(\mathbb{F}_\ell), i_I(\mathbb{F}_\ell)) \) is induced by the natural restriction map \(Y_{I'} \longrightarrow Y_I \).
Remark.– We may recast the foregoing corollary by stating that the canonical map

\[\Ext_{\Gamma/\omega}^{S,J} (v_J(\overline{F}_\ell), i_I(\overline{F}_\ell)) \otimes_{\overline{F}_\ell} Y_I \longrightarrow \Ext_{\Gamma/\omega}^{*+|S,J|} (v_J(\overline{F}_\ell), i_I(\overline{F}_\ell)) \]

is an isomorphism, and that \(\Ext_{\Gamma/\omega}^{S,J} (v_J(\overline{F}_\ell), i_I(\overline{F}_\ell)) \simeq \overline{F}_\ell \) if \(J \cup I = S \) and is zero otherwise.

Next we turn to extensions between the \(\pi_J \)’s and the \(i_I \)’s.

(2.3.4) Proposition.— Let \(J \) be a strict subset of \(\tilde{S} \), and \(I \) a strict subset of \(S \).

i) If \(0 \in J \), then \(\Ext_{\Gamma/\omega}^* (\pi_J, i_I(\overline{F}_\ell)) = 0 \).

ii) Otherwise, the natural map is an isomorphism

\[\Ext_{\Gamma/\omega}^* (v_J(\overline{F}_\ell), i_I(\overline{F}_\ell)) \longrightarrow \Ext_{\Gamma/\omega}^* (\pi_J, i_I(\overline{F}_\ell)). \]

Proof. Note first that ii) follows from i) since \([v_J(\overline{F}_\ell)] = [\pi_J] + [\pi_{J\cup\{0\}}] \). Now, in order to prove i) we first use Frobenius reciprocity to get

\[\Ext_{\Gamma/\omega}^* (\pi_J, i_I(\overline{F}_\ell)) = \Ext_{M_{\ell}/\omega}^* (\rho_P(\pi_J), \delta_P^{\ell - \frac{1}{2}}). \]

By Proposition [2.1.2] iv), we have \(\Exp \left(T, r_{B\cap M_{\ell}}(\rho_P(\pi_J)) \right) = \left\{ w^{-1}(\delta), \ w(\tilde{X_S}) \subset \tilde{X}_J \right\} \).

Since \(\Exp \left(T, r_{B\cap M_{\ell}}(\delta_P^{\ell - \frac{1}{2}}) \right) = \{ \delta \} \) and since \(\delta \) is \(W \)-regular, Lemma [2.3.1] shows that we are left to prove that \(\left\{ w \in W, \ w(\tilde{X_S}) \subset \tilde{X}_J \right\} \cap W_I = \emptyset \). Now, identifying \(W \) with \(\mathcal{G}_d \) as in paragraph [2.1.1] the condition \(w(\tilde{X_S}) \subset \tilde{X}_J \) is equivalent to the condition \(J = \{ \alpha_j \in \tilde{S}, \ wc^{-1}(j) < w(j) \} \), so in particular it implies the property \(w(n-1) < w(0) \). However, since \(I \) is proper, this property is never satisfied by some \(w \in W_I \).

\[\square \]

3 The cohomology complex

In this section, we focus on the useful part of the cohomology complex, namely on that which pertains to the unipotent block of the category of smooth \(\mathbb{Z}_\ell \)-representations.

3.1 The unipotent block

According to Vignéras [25 IV.6.2], the category \(\text{Rep}_{\ell}^{\infty}(G) \) is a product of indecomposable Serre subcategories called “blocks”. This product of blocks corresponds to the partition of the set of irreducible \(\mathbb{F}_\ell \)-representations according to the “inertia class of supercuspidal support”. Among them, the unipotent block is by definition the one which contains the trivial representation. In representation theory of finite groups, this would be rather called the “principal block”. Here we want to lift this block to \(\mathbb{Z}_\ell \)-representations. Note that the usual way of lifting idempotents via Hensel’s lemma is not adapted to the \(p \)-adic case, since Hecke algebras are not finitely generated modules over \(\mathbb{Z}_\ell \). Therefore, we will exhibit a progenerator of the desired block. In all this subsection, no congruence assumption on the pair \((q, \ell) \) is required.
(3.1.1) Unipotent blocks for a finite GL_n. For a finite group of Lie type G, we will denote by b_G the central idempotent in the group algebra $\mathbb{Z}_\ell[G]$ which cuts out the direct sum of all blocks which contain a unipotent \mathbb{F}_ℓ-representation (in the sense of Deligne-Lusztig).

Lemma. Let $P = MU$ be a parabolic subgroup of G, and let e_U be the idempotent associated to the p-group U. Then we have $e_U b_G = e_U b_M = b_M e_U$.

Proof. According to [1], an irreducible \mathbb{F}_ℓ-representation π satisfies $b_G \pi \neq \{0\}$ if and only if it belongs to the Deligne-Lusztig series associated to some semi-simple conjugacy class in the dual group G^\ast which consists of ℓ-elements. We call such a representation ℓ-unipotent. In this case, all irreducible subquotients of π_U are ℓ-unipotent representations of M. Indeed, this follows by adjunction of the “dual” statement that, if σ is an ℓ-unipotent representation of M then all irreducible subquotients of $\text{Ind}^G_M(\sigma)$ are ℓ-unipotent representations, see [17, Cor. 6]. This shows that, denoting by $b_G' := 1 - b_G$ the complementary idempotent, we have $b_M' e_U b_G = 0$ and $b_M' e_U b_G' = 0$. Then we get $e_U b_G = (b_M' + b_M) e_U b_G = b_M e_U b_G = b_M e_U (1 - b_G') = b_M e_U$.

Fact. Assume $G = \text{GL}_n(\mathbb{F}_q)$. Then an irreducible \mathbb{F}_ℓ-representation π of G satisfies $b_G \pi \neq 0$ if and only if it is a subquotient of $\text{Ind}^G_B(\mathbb{F}_\ell)$.

Proof. Any subquotient of $\text{Ind}^G_B(\mathbb{F}_\ell)$ occurs in the reduction of a unipotent irreducible \mathbb{F}_ℓ-representation, hence belongs to the category cut out by b_G. Conversely, fix π such that $b_G \pi \neq 0$. We may assume that π is cuspidal, since for $P = M \bar{U}$ a parabolic subgroup such that $\pi_{\bar{U}} \neq 0$ we also have $b_M(\pi_{\bar{U}}) \neq 0$ (as in the previous proof). But then in terms of the Dipper-James classification, π is of the form $D(s, 1)$ for some elliptic semi-simple ℓ-element of $G^\ast = G$, see [13, Coro 5.23]. Thus, in terms of the James-Dipper classification, it is also of the form $D(1, (n))$, see [14, Thm 5.1], which means that π is the only non-degenerate subquotient in $\text{Ind}^G_B(\mathbb{F}_\ell)$.

(3.1.2) Construction of the block. Here we put $G = \text{GL}_d(\mathbb{F}_q)$. We may view b_G as a central idempotent of the \mathbb{Z}_ℓ-algebra $H_{\mathbb{Z}_\ell}(\text{GL}_d(\mathcal{O}))$ of locally constant distributions on $\text{GL}_d(\mathcal{O})$. Then we put

$$P_b := \text{ind}^G_{\text{GL}_d(\mathcal{O})}(b_G H_{\mathbb{Z}_\ell}(\text{GL}_d(\mathcal{O})))$$

and we define $\text{Rep}_{\mathbb{Z}_\ell}^\infty(G)$ as the full subcategory of $\text{Rep}_{\mathbb{Z}_\ell}^\infty(G)$ consisting of all objects V that are generated by $b_G V$ over $\mathbb{Z}_\ell G$.

We will use similar notation to denote somewhat more familiar objects: letting e_G be the idempotent attached to the pro-p-radical of $\text{GL}_d(\mathcal{O})$, we also put

$$P_e := \text{ind}^G_{\text{GL}_d(\mathcal{O})}(e_G H_{\mathbb{Z}_l}(\text{GL}_d(\mathcal{O})))$$

and we define the category $\text{Rep}_{\mathbb{Z}_\ell}^\infty(G)$ as above. We recall the following result, which is a special case of “level decomposition”, see e.g. [2, App. A].

Fact. The category $\text{Rep}_{\mathbb{Z}_\ell}^\infty(G)$ is a direct factor of $\text{Rep}_{\mathbb{Z}_\ell}^\infty(G)$ and is pro-generated by P_e. In particular, there is an idempotent e of the center of the category $\text{Rep}_{\mathbb{Z}_\ell}^\infty(G)$ such that for any object V we have $eV = \sum_{g \in G/\text{GL}_d(\mathcal{O})} g e_G V$.

Now we can state the main result of this subsection.
PROPOSITION. – The category $\text{Rep}^\infty_b(G)$ is a direct factor of $\text{Rep}^\infty_e(G)$ and is pro-generated by P_b. It consists of all objects V, all irreducible subquotients of which are not annihilated by b_G.

Proof. From its definition, P_b clearly is a generator of the category $\text{Rep}^\infty_b(G)$, and is a finitely generated projective object of $\text{Rep}^\infty_z(G)$.

Let us prove that $\text{Rep}^\infty_b(G)$ is a Serre subcategory. For this, we will apply the general result of [18] Thm 3.1. For any vertex x of the semisimple building of G, we denote by G_x its stabilizer, G^+_x the pro-p-radical of its stabilizer and $\bar{G}_x := G_x/G^+_x$ the reductive quotient. We thus get an idempotent $b_x \in H_{\bar{G}_x}(G_x)$ by inflation from $b_{\bar{G}_x}$. If $g \in G$, we clearly have $b_{gx} = gb_xg^{-1}$. Therefore, to apply [18] Thm 3.1 we are left to check the two following properties (cf [18] Def 2.1):

i) $b_x b_y = b_y b_x$ for any adjacent vertices x, y.

ii) $b_x b_z b_y = b_x b_y$ whenever z is adjacent to x and belongs to the convex simplicial hull of $\{x, y\}$.

Note first that the definition of b_x extends to any facet F of the building. Further, let $e_F := e_{G^+_F}$ denote the idempotent associated to the pro-p-group G^+_F. We know that properties i) and ii) are satisfied by the system $(e_x)_x$, and more precisely we have $e_x e_y = e_{[x,y]}$ whenever x and y are adjacent vertices. Therefore, the above lemma shows that $b_x e_y = b_x e_{[x,y]} = b_{[x,y]}$ and thus $b_x b_y = b_{[x,y]} b_y$. As for property ii), starting from $e_x e_y = e_{[x,y]} e_{[x,y]}$, we get $b_x b_y = b_x b_z b_y = b_x b_z b_y$, as desired.

We now know that $\text{Rep}^\infty_b(G)$ is a Serre subcategory of the Serre subcategory $\text{Rep}^\infty_e(G)$ cut out by the system $(e_x)_x$. For a vertex x, define $b'_x := e_x - b_x$, which is lifted from the idempotent $1 - b_{\bar{G}}$ of $\mathbb{Z}_d[\bar{G}]$. The same argument as above shows that the system $(b'_x)_x$ satisfies properties i) and ii) and therefore cuts out a Serre subcategory of $\text{Rep}^\infty_e(G)$, which is easily seen to be a complement to $\text{Rep}^\infty_b(G)$. Therefore the latter is a direct factor in $\text{Rep}^\infty_e(G)$. The last statement of the proposition is clear.

\[\]

NOTATION.– We will denote by b the idempotent of the center of the category $\text{Rep}^\infty_b(G)$ which projects a representation V to its largest subobject bv in $\text{Rep}^\infty_b(G)$. Concretely, we have $bv = \sum_{g \in \text{GL}_d(K)/\text{GL}_d(O)} gbV$.

(3.1.3) PROPOSITION.– A representation $\pi \in \text{Irr}_{\bar{G}}(G)$ belongs to $\text{Rep}^\infty_b(G)$ if and only if it is an irreducible subquotient of some $\text{Ind}^G_B(\chi)$ with χ an unramified character of B. In particular, $\text{Rep}^\infty_b(G) \cap \text{Rep}^\infty_{\bar{G}}(G)$ is Vigneras’ unipotent block [23] IV.6.3.

Proof. Let $e_G \in H_{\bar{G}}(\text{GL}_d(O))$ be the idempotent associated to the kernel of the reduction map $\text{GL}_d(O) \rightarrow \text{GL}_d(F_q)$. By Mackey formula, the residual representation of \bar{G} on $e_G \text{Ind}_B^G(\chi)$ is isomorphic to $\text{Ind}_B^G(\bar{G})(\chi)$ with obvious notation. Since $\text{Ind}_B^G(\chi)$ belongs to the level zero subcategory $\text{Rep}^\infty_e(G)$, so does each one of its irreducible subquotients. Hence for such a subquotient π, $e_G \pi$ is a non-zero subquotient of $\text{Ind}_B^G(\bar{G})$, so that $b_G \pi \neq 0$ and π belongs to $\text{Rep}^\infty_b(G)$.

Conversely, let π be an irreducible \bar{G}-representation such that $b \pi \neq 0$. Choose a parabolic subgroup $P = MU$ and a supercuspidal \bar{F}_π-representation σ of M such that π occurs as a subquotient of $\text{Ind}_P^G(\sigma)$. As above, Mackey formula tells us that $e_G \text{Ind}_P^G(\sigma) \simeq \text{Ind}_P^G(e_M \sigma)$, with obvious notation. So by Lemma [3.1.1] we get $b_G \text{Ind}_P^G(\sigma) \simeq \text{Ind}_P^G(b_G \sigma)$ and finally $b_G \sigma \neq 0$. By [27], 3.15, we know that σ is of the form $\text{ind}_{M \cap \text{GL}_d(O)}^{\text{GL}_d(O)}(\bar{\sigma})$ for some
supercuspidal $\mathbb{F}_ℓ$-representation $\bar{\sigma}$ of the Levi subgroup \bar{M} of \bar{G}, image of $M \cap \text{GL}_n(\mathcal{O})$ by the projection to \bar{G}. Here, supercuspidal is equivalent to the fact that the semisimple elliptic class s associated to $\bar{\sigma}$ consists of ℓ'-elements. However, an easy computation [27, 3.14] shows that $b_M \bar{\sigma} = b_M \sigma$. Therefore $b_M \bar{\sigma}$ is non zero and s consists of ℓ-elements by definition. Hence $s = 1$, or equivalently, \bar{M} is a torus and $\bar{\sigma}$ the trivial representation of \bar{M}.

Remark.— In terms of the Langlands correspondence, the irreducible $\mathbb{F}_ℓ$-representations π of the principal/unipotent block are those such that $\pi(\pi)^{ss}$ is a sum of unramified characters. This formulation might extend to other p-adic groups, as suggested by the finite field picture.

3.2 The complex

In the first two paragraphs of this subsection, no congruence hypothesis on the pair (q, ℓ) is required. From paragraph [(3.2.3)] on, we will work under the Coxeter congruence relation.

(3.2.1) The tower and its cohomology complexes. We refer to [22] or [6, 3.1] for the definition of the Lubin-Tate space $M_{LT,n}$ of height d and level n, which we see as a \bar{K}-analytic space, endowed with a continuous action of D^\times, an action of $\text{GL}_d(\mathcal{O}/\varpi^n \mathcal{O})$ and a Weil descent datum to K. Although in this paper we will be mainly interested in the tame level $M_{LT,1}$, the formalism used to define the complex requires the whole “tower” $(M_{LT,n})_{n \in \mathbb{N}}$ and in particular the action of $G = \text{GL}_d(K)$ which can be defined on this tower. Maybe the most precise way to describe this action is to introduce the category $\mathbb{N}(G)$ with set of objects \mathbb{N} and arrows given by $\text{Hom}(n, m) := \{g \in G, gM_d(\mathcal{O})g^{-1} \subset \varpi^{m-n} M_d(\mathcal{O})\}$ and to note that the $M_{LT,n}$’s are the image of a functor from $\mathbb{N}(G)$ to the category whose objects are \bar{K}-analytic spaces with continuous action of D^\times and Weil descent datum to K, and morphisms to K, and morphisms are finite ´ etale equivariant morphisms. This allows one to define the complex

$$RT_c := R\Gamma_c(M_{LT,n}^\infty, \mathbb{Z}_\ell) \in D^b(\text{Rep}_{\mathbb{Z}_\ell}^\infty_c(G \times D^\times \times W_K))$$

as in [6, 3.3.3]. Let us note that the diagonal subgroup K^\times of $G \times D^\times$ acts trivially on the tower hence also on the cohomology.

It is technically important to recall that the tower is “induced” from a “sub-tower” denoted $(M_{LT,n}^{(0)})_{n \in \mathbb{N}}$ which is stable under the subgroup

$$(GDW)^0 := \{(g, \delta, w) \in G \times D^\times \times W_K, |\det(g)|^{-1}|\text{Nr}(\delta)||\text{Art}_K(w)| = 1\}. $$

So we have a complex $RT_c^{(0)} := R\Gamma_c(M_{LT}^{(0)}\mathcal{O}, \mathbb{Z}_\ell) \in D^b(\text{Rep}_{\mathbb{Z}_\ell}^\infty_c(GDW)^0)$ together with an isomorphism [6, (3.5.2)]

$$RT_c \simeq \text{ind}^{GDW}_{(GDW)^0} RT_c^{(0)}.$$

An important consequence of this is the following compatibility with twisting. For any smooth character χ of K^\times and any representation π of G, we have

$$(3.2.1.1) \quad R_{(\chi \circ \text{det}) \otimes \pi} \simeq (\chi \circ (\text{Nr} \cdot \text{Art}_K)) \otimes R_\pi \quad \text{in} \quad D^b(\text{Rep}_{\mathbb{Z}_\ell}(D^\times \times W_K)).$$

We need yet another variant. Let us fix a uniformizer ϖ of K and see it as a central element of G. Its action on the tower is free (it permutes the connected components), so
we may consider the quotient tower \((\mathcal{M}_{LT,n}/\mathcal{Z})_{n \in \mathbb{N}}\) and its cohomology complex

\[R\Gamma_{c,\infty} := R\Gamma_c(\mathcal{M}^{ca}_{LT}/\mathcal{Z}, \mathcal{Z}_\ell) \in D^b(\text{Rep}_{\mathbb{Z}_\ell}(G/\mathcal{Z} \times D^\times \times W)). \]

We then have isomorphisms (cf. [6, 3.5.3])

\[R\Gamma_{c,\infty} \simeq R\Gamma_c \otimes_{\mathcal{Z}_\ell[\mathcal{Z}]}^{L} \mathcal{Z}_\ell \simeq \text{ind}^{GW}_{GW} R\Gamma_c(0). \]

Because of the first isomorphism, if \(\pi\) is a representation on which \(\mathcal{Z}\) acts trivially, then \(R\pi \simeq \text{RHom}_{G/\mathcal{Z}}(R\Gamma_{c,\infty}, \pi)\). Since any irreducible representation may be twisted to achieve this condition \(\pi(\mathcal{Z}) = 1\), we see that we don’t lose any generality in restricting attention to \(R\Gamma_{c,\infty}\).

(3.2.2) The tame part

We take up the notation \(e, e_G\) of the previous subsection and denote by \(\mathcal{H}_e\) the commuting algebra \(\text{End}_{\mathcal{Z}_\ell[G]}(P_e)\), which identifies with the Hecke algebra of compactly supported \(\mathcal{Z}_\ell\)-valued \((1 + \mathcal{Z}\mathcal{M}(\mathcal{O}))\)-bi-invariant measures on \(G\).

The complex \(e_G R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathcal{Z}_\ell)\) is naturally an object of \(D^b(\text{Rep}_{\mathcal{H}_e}(D^\times \times W_K))\) and we recover the direct summand \(e_G R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathcal{Z}_\ell)\) via the usual equivalence of categories. Namely we have, as in [6, Lemme 3.5.9],

\[e_G R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathcal{Z}_\ell) \simeq P_e \otimes_{\mathcal{H}_e} e_G R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathcal{Z}_\ell). \]

Now, if we restrict the action to \(\text{GL}_d(\mathcal{O})\), we have by construction an isomorphism in \(D^b(\text{Rep}_{\mathcal{Z}_\ell}(G \times D^\times \times W_K))\).

\[e_G R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathcal{Z}_\ell) \sim \text{ind}_{G \times (DW)^0}^{G \times D^\times \times W_K} R\Gamma_c(\mathcal{M}^{ca,(0)}_{LT,1}, \mathcal{Z}_\ell). \]

The tame Lubin-Tate space \(\mathcal{M}^{(0)}_{LT,1}\) was studied by Yoshida in [28]. He exhibited in particular a certain affinoid subset \(\mathcal{N}\) of \(\mathcal{M}^{(0)}_{LT,1}\) which acquires good reduction over \(\bar{\mathcal{K}}[\mathcal{Z}]/(q^d - 1)\), with special fiber equivariantly isomorphic to the Deligne-Lusztig covering \(Y(c)\) associated to the Coxeter element of \(\bar{G}\). In [11], we showed that the restriction map induces an isomorphism \(R\Gamma(\mathcal{M}^{ca,(0)}_{LT,1}, \mathcal{Z}_\ell) \sim R\Gamma(\mathcal{N}^{ca}, \mathcal{Z}_\ell)\). Taking duals, we thus get an isomorphism in \(D^b(\text{Rep}_{\mathcal{Z}_\ell}(\bar{G}))\)

\[(3.2.2.1) \quad R\Gamma_c(Y(c), \mathcal{Z}_\ell) \sim R\Gamma_c(\mathcal{M}^{ca,(0)}_{LT,1}, \mathcal{Z}_\ell). \]

In particular we get the following important property.

Proposition.— The cohomology spaces of both the complexes \(e G R\Gamma_c\) and \(e G R\Gamma_{c,\infty}\) are torsion-free.

Indeed, the torsion-freeness for \(Y(c)\) follows from Lemma 3.9 and Corollary 4.3 of [11]. We emphasize the fact that no hypothesis on the pair \((q, \ell)\) is required here.

(3.2.3) The unipotent part: \(\ell\)-adic cohomology

From this paragraph on, we assume that the order of \(q\) in \(\mathbb{F}_\ell^\times\) is \(d\). We take up the notation of the previous subsection, and we consider the direct summand \(b R\Gamma_c(\mathcal{M}^{ca}_{LT}, \mathcal{Z}_\ell)\), or rather its variant \(b R\Gamma_{c,\infty}\). There is a fairly explicit description of the \(\mathcal{Q}_\ell\)-cohomology of this complex. We first recall a classical construction. Let \(\theta: \mathbb{F}_\ell^\times \to \mathbb{Q}_\ell^\times\) be a character which is \(\text{Frob}_q\)-regular. Define:
a representation $\rho(\theta) := \text{ind}_{O_{P}^0}^{O_{P}}(\theta)$ of D^\times, where O_{P}^0 acts via the reduction map $O_{P}^0 \rightarrow \mathbb{F}_q^\times$.

- a representation $\sigma(\theta) := \text{ind}_{I_K}^{W_K}(\theta)$ where $I_K \rho_d$ acts via the tame inertia map $I_K \rightarrow \mu_{q^{d-1}} \simeq \mathbb{F}_q^{d-1}$.

- a representation $\pi(\theta) := \text{ind}_{\text{GL}_d(O)^{\times}}^{\mathbb{Q}^\times}(\pi_{\theta})$ where π_{θ} is the cuspidal representation of $\text{GL}_d(\mathbb{F}_q)$ associated to θ by the Green (or Deligne-Lusztig) correspondence.

All these representations are irreducible and depend only on the Frobenius-conjugacy class of θ. Moreover, they are associate by the Langlands and Jacquet-Langlands correspondences.

FACT. Let $I_{\mathcal{M}} := \mathbb{Z}_\ell[G \times D^\times \times W_K/(GDW)^0]$.

i) For $i = 1, \ldots, d - 1$, there is an isomorphism

$$\mathcal{H}^{d-1+i}(bR\Gamma_{c,\mathcal{M}}) \otimes \mathbb{Q}_\ell \sim \psi_{(1, \ldots, i)}(\mathbb{Q}_\ell)(-i) \otimes I_{\mathcal{M}}.$$

ii) For $i = 0$, there is a (split) exact sequence

$$0 \rightarrow \mathcal{K} \rightarrow \mathcal{H}^{d-1}(bR\Gamma_{c,\mathcal{M}}) \otimes \mathbb{Q}_\ell \rightarrow v_0(\mathbb{Q}_\ell) \otimes I_{\mathcal{M}} \rightarrow 0$$

and an isomorphism $\mathcal{K} \otimes \mathbb{Q}_\ell \simeq \bigoplus_{\theta} \pi(\theta) \otimes \rho(\theta)^{\sim} \otimes \sigma(\theta)^{\sim}$, where θ runs over Frobenius-conjugacy classes of Frob_q-regular characters $F^\times_q \rightarrow \mathcal{Z}_\ell$ which are ℓ-congruent to the trivial character.

Proof. The shortest argument here is to invoke Boyer’s description of the \mathbb{Q}_ℓ-cohomology of the whole Lubin-Tate tower in [3] (see [6, 4.1.2] for an account featuring a notation consistent with that of the present paper), together with the characterization of irreducible objects of the unipotent block in Proposition [3.1.3]. We note that the maps $\mathcal{H}^{d-1+i}(bR\Gamma_{c,\mathcal{M}}) \otimes \mathbb{Q}_\ell \rightarrow v_{(1, \ldots, i)}(\mathbb{Q}_\ell)(-i)$ are induced by the canonical morphism

$$(3.2.3.1) \quad R\Gamma_c(\mathcal{M}_{\text{LT}}^{\text{ca}}(0), \mathbb{Z}_\ell) \rightarrow R\Gamma_c(\mathcal{M}_{\text{LT}}^{\text{ca}}(0), \mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell[O_{D}]} \mathbb{Z}_\ell.$$

Alternatively, if one wants to avoid Boyer’s machinery, it is possible to derive almost everything from Yoshida’s construction [28], via isomorphism (3.2.2.1). More precisely, put $w_i := \mathcal{H}^{d-1+i}(bR\Gamma_{c,\mathcal{M}} \otimes L_{\mathbb{Z}[O_{D}]} \mathbb{Z}_\ell)$. Then, by using a similar feature of Deligne-Lusztig varieties, one can show that the above morphism of complexes induces isomorphisms $\mathcal{H}^{d-1+i}(bR\Gamma_{c,\mathcal{M}}) \otimes \mathbb{Q}_\ell \sim w_i \otimes \mathbb{Q}_\ell$ for $i > 0$, as well as an exact sequence

$$\mathcal{K} \hookrightarrow \mathcal{H}^{d-1}(bR\Gamma_{c,\mathcal{M}}) \otimes \mathbb{Q}_\ell \rightarrow w_0 \otimes \mathbb{Q}_\ell.$$

Further, one finds an isomorphism $e_{G}w_i \simeq e_{G}(v_{(1, \ldots, i)}(\mathbb{Z}_\ell) \otimes I_{\mathcal{M}})$. However, what is a priori missing is enough information on Hecke operators acting on $e_{G}w_i$ in order to recognize w_i as isomorphic to $v_{(1, \ldots, i)}(\mathbb{Z}_\ell) \otimes I_{\mathcal{M}}$. One highly non trivial way to get around this problem is to invoke the Faltings-Fargues isomorphism of [16] (see [6, 3.4] for a brief description) to move to the so-called Drinfeld tower (see [6, 3.2] for an overview on this tower). Then the morphism of complexes (3.2.3.1) is carried to

$$(3.2.3.2) \quad R\Gamma_c(\mathcal{M}_{\text{Dr}}^{\text{ca}}(0), \mathbb{Z}_\ell) \rightarrow R\Gamma_c(\mathcal{M}_{\text{Dr},0}^{\text{ca}}(0), \mathbb{Z}_\ell)$$

and the right hand side is the Drinfeld upper half space whose cohomology is computed by combinatorics, and shown by Schneider and Stuhler to be isomorphic to $v_{(1, \ldots, i)}(\mathbb{Z}_\ell)$. \hfill \Box
We let Π be a uniformizer of D such that $\Pi^d = \varpi$, and we fix a “geometric” Frobenius element φ in W_K. We are going to decompose the complex $bR\Gamma_{c,\varpi}$ in the category $D^b(\text{Rep}_{\mathbb{Z}}(G/\varpi^2))$ according to the action of Π and φ. Since K_{diag}^* acts trivially on the tower, the action of Π on $R\Gamma_{c,\varpi}$ is obviously killed by the polynomial $X^d - 1$. Further, as a corollary to the description above and to the torsion-freeness result of Corollary (3.2.2), we get:

COROLLARY. For any integer $0 \leq i \leq d - 1$, the action of φ on $H^{d-1+i}(bR\Gamma_{c,\varpi})$ is killed by the polynomial $X^d - q^d$.

3.2.4 The unipotent part : splitting. Put $P_\varphi(X) := \prod_{i=0}^{d-1}(X^d - q^d)$. By the above corollary and [6, Lemme A.1.4 i]), $P_\varphi(\varphi)$ acts by zero on the whole complex $bR\Gamma_{c,\varpi}$. The ring $A_\varphi := \mathbb{Z}[X]/P_\varphi(X)$ is a semi-local ring, hence decomposes as a product $A_\varphi = \prod_{m} A_{\varphi_m}$ of its localizations at maximal ideals. Since q is a primitive d-root of unity in \mathbb{F}_ℓ by our congruence hypothesis, the maximal ideals of this ring are $m_i := (\ell, X - q^i)$, $i = 0, \cdots, d - 1$ and we denote $A_{\varphi} = \prod_{i=0}^{d-1} A_{\varphi,i}$ the associated decomposition. Accordingly we get a decomposition $[19 \text{ Prop 1.6.8}]

$$bR\Gamma_{c,\varpi} \simeq \bigoplus_{i=0}^{d-1} (bR\Gamma_{c,\varpi})_i \text{ in } D^b(\text{Rep}_{\mathbb{Z}}^\infty(G/\varpi^2)).$$

Similarly, the ring $A_\Pi := \mathbb{Z}[X]/(X^d - q^d)$ is semi-local with maximal ideals $(\ell, X - q^j)$, $j = 0, \cdots, d - 1$ and we get a sharper decomposition

$$bR\Gamma_{c,\varpi} \simeq \bigoplus_{i,j=0}^{d-1} (bR\Gamma_{c,\varpi})_{i,j} \text{ in } D^b(\text{Rep}_{\mathbb{Z}}^\infty(G/\varpi^2)).$$

Note that each one of these direct summands is preserved by the action of φ and Π, but not necessarily by that of I_K and O_D^{φ}. Let ζ denote the Teichmüller lift of q, i.e. the only primitive d-root of unity in \mathbb{Z}_ℓ which is ℓ-congruent to q. By construction, the action of Π on $(bR\Gamma_{c,\varpi})_{i,j}$ is by multiplication by ζ^j, while that of φ is killed by the polynomial $\prod_{k}(X - q^{-k}\zeta^k)$.

Moreover these direct summands satisfy the following properties.

(3.2.4.1) \[(bR\Gamma_{c,\varpi})_{i,j} \simeq \zeta^{j \cdot \text{val}_K} \circ \text{det}^{-1} (bR\Gamma_{c,\varpi})_{i,-j,0} \]

with action of φ and Π twisted by ζ^j.

This follows indeed from (3.2.1.1).

There is a distinguished triangle

(3.2.4.2) \[c_i[0] \rightarrow (bR\Gamma_{c,\varpi})_{i,0}[d-1] \rightarrow h_i(-i)[-i] \xrightarrow{\imath} \]

with c_i a cuspidal ℓ-torsion free representation and h_i a G-invariant lattice in $v_{\{1,\cdots,i\}}(\mathbb{Q}_\ell)$.

This follows from Fact (3.2.3) and Proposition (3.2.2). Note that by convention we set $\{1,\cdots,i\} = \emptyset$ if $i = 0$.

Let us put $\hat{h}_i := h_i \otimes \mathbb{F}_\ell$. By Proposition (2.1.3) we have the following equality in the Grothendieck group:

(3.2.4.3) \[[\hat{h}_i] = [v_{\{1,\cdots,i\}}(\mathbb{F}_\ell)] = [\pi_{\{1,\cdots,i\}}] + [\pi_{\{0,\cdots,i\}}], \]

19
Remark.– For \(i \neq d - 1 \), it can be shown that \(\bar{v}_i \) is not isomorphic to \(v_{(1, \ldots, i)}(\mathbb{F}_\ell) \). More precisely, \(v_{(1, \ldots, i)}(\mathbb{F}_\ell) \) is a non-split extension of \(\pi_{(0, \ldots, i)} \) by \(\pi_{(1, \ldots, i)} \), while \(\bar{v}_i \) is a non-trivial extension going the other way. The same phenomenon appears for the Deligne-Lusztig variety, see in particular [15, Thm 4.1] which provides a description of the finite field analogue of \(\bar{v}_i \). In the present context, let us simply mention without proof that the morphism \((3.2.3.3) \) induces a map

\[
(3.2.4.4) \quad H^{d-1+i}(M^\mathrm{ca}_{D_r,1}, \mathbb{F}_\ell) = \bar{v}_i \twoheadrightarrow H^{d-1+i}(M^\mathrm{ca}_{D_r,0}, \mathbb{F}_\ell) = v_{(1, \ldots, i)}(\mathbb{F}_\ell)
\]

which is non-zero, with kernel and cokernel both isomorphic to \(\pi_{(0, \ldots, i)} \). Of course this map is also induced by the morphism \((3.2.3.1) \).

4 Proof of the main theorem

Let \(\pi \) be a \(\mathbb{F}_\ell \)-representation of \(G \). Recall the definition of the graded vector space \(R^*_\pi \) from the introduction. For convenience, we will shift this definition by \([1 - d], \) i.e. we consider now

\[
R^*_\pi := \mathcal{H}^*(R\mathrm{Hom}_{\mathbb{Z}_\ell G}(R\Gamma_c[1-d], \pi)).
\]

This is a graded smooth \(\mathbb{F}_\ell \)-representation of \(D^\times \times W_K \), whose grading is supported in the range \([1 - d, d - 1] \) by [9, Prop 2.1.3].

In all this section, we work under the Coxeter congruence hypothesis, i.e. we assume that the order of \(q \) in \(\mathbb{F}_\ell \) is \(d \).

4.1 Computation of \(R^*_\pi \) for \(\pi \) an elliptic principal series

4.1.1 Preliminaries. Assume now that \(\pi \) belongs to the unipotent block and that its central character is trivial on \(\varpi \). Then we have \(R^*_\pi = \mathcal{H}^*(R\mathrm{Hom}_{\mathbb{Z}_\ell G}(R\Gamma_c[1-d], \pi)) \), and according to \([3.2.4] \) we may decompose it as

\[
R^*_\pi = \bigoplus_{i,j=0}^{d-1} (R^*_\pi)_{i,j}, \quad \text{where} \quad (R^*_\pi)_{i,j} := \mathcal{H}^*(R\mathrm{Hom}_{\mathbb{Z}_\ell G}(\mathbb{Z}_\ell \varpi^i \oplus \mathbb{Z}_\ell \varpi^j, \pi)).
\]

Concretely, \((R^*_\pi)_{i,j} \) is the intersection of the generalized \(q^{-i} \)-eigenspace of \(\varphi \) with the generalized \(q^{-j} \)-eigenspace of \(\Pi \). As already mentioned, these summands need not be stable under the action of \(I_K \) and \(\mathcal{O}^\times_D \). However, the description of the \(\ell \)-adic cohomology of \(bR^*_D \) in \([3.2.3] \) together with the the \(\ell \)-torsion freeness of its integral cohomology show that both \(I_K \) and \(\mathcal{O}^\times_D \) act trivially on the \(D^\times \times W_K \) semi-simplifications \(\mathcal{H}^k(bR^*_D \mathbb{Z}_\ell \varpi^i \oplus \mathbb{Z}_\ell \varpi^j, \mathbb{F}_\ell) \), \(k \in \mathbb{N} \). Therefore, the same is true for \(R^*_\pi^{ss} \). As a consequence, letting \(I_K \) and \(\mathcal{O}^\times_D \) act trivially on each \((R^*_\pi)_{i,j} \), we get the following equality in \(\mathcal{R}(D^\times \times W_K, \mathbb{F}_\ell) \):

\[
(4.1.1.1) \quad R^*_\pi^{ss} \simeq \bigoplus_{i,j=0}^{d-1} (R^*_\pi)_{i,j}^{ss} = \bigoplus_{i,j=0}^{d-1} (\nu_D^i \oplus \nu_W^j)^{\dim_{\mathbb{F}_\ell}(R^*_\pi)_{i,j}}.
\]

Recall also from property \([3.2.1.1] \) that we have \(R^*_{\nu_D} \simeq (\nu_D \oplus \nu_W) \otimes R^*_\pi \). Therefore we get isomorphisms

\[
(4.1.1.2) \quad (R^*_{\nu_D})_{i,j} \simeq (R^*_\pi)_{i-1,j-1}.
\]

The aim of this subsection is to prove Theorem \([4.1.3] \) below, which describes explicitly each \((R^*_\pi)_{i,j} \). We first introduce some notation.
For an integer k between 0 and $d - 1$ and a subset I of S, we put
\[
\partial_I(k) := k - \delta(k, I) \quad \text{where} \quad \delta(k, I) := |I \cup \{1, \ldots, k\}| - |I \cap \{1, \ldots, k\}|.
\]
These functions already appear in [5], see in particular Lemma 4.4.1 of loc. cit. The following property is elementary.

FACT.– The map $k \in \{0, \ldots, d - 1\} \mapsto \partial_I(k) \in \mathbb{Z}$ is non-decreasing, with image \{-|I|, -|I| + 2, \ldots, |I| - 2, |I|\}. More precisely, writing $I = \{i_1, \ldots, i_{|I|}\}$ and putting $i_0 := 0$ and $i_{|I|+1} := d$, we have $\partial_I^{-1}(-|I| + 2j) = \{i_j, \ldots, i_{j+1} - 1\}$.

In the next statement, we extend the function ∂_I to \mathbb{Z} by making it d-periodic.

Theorem.– Let I be a strict subset of \hat{S} and let i, j be integers between 0 and $d - 1$. We have
\[
(R_{\pi_I}^*)_{i,j} \simeq \begin{cases}
\mathbb{F}_\ell[\partial_{c,I}(i-j)] & \text{if } j \not\in I \\
0 & \text{if } j \in I
\end{cases}
\]

Since $\pi_I \simeq \nu_I^* \pi_{c-I}$, we see that the statement above is compatible with the twisting property (4.1.2). Therefore we only have to prove it when $j = 0$. We will treat separately the vanishing statement (when $0 \in I$) and the non-zero cases (when $0 \not\in I$), and we start with a special case.

The case $|I| = d - 1$. Here we prove Theorem (4.1.3) for characters, i.e. for $|I| = d - 1$. By the above remark on the effect of twisting by ν_G, we may assume that $I = S$, so that $\pi_I = \mathbb{F}_\ell$ is the trivial representation of G. In this case, we have
\[
R_{\pi_I}^* = \mathcal{H}^* \left(R\text{Hom}_{\mathbb{F}_\ell} \left(\mathbb{F}_\ell \otimes_{\mathbb{F}_\ell[G]} R\Gamma_c, \mathbb{F}_\ell \right) [1 - d] \right).
\]

By the second Lemma of paragraph (A.1.1) in [9], we have
\[
\mathcal{H}^* \left(\mathbb{F}_\ell \otimes_{\mathbb{F}_\ell[G]} R\Gamma_c \right) \simeq H^*(\mathbb{P}^{d-1,ca}, \mathbb{F}_\ell) = \bigoplus_{i=0}^{d-1} \mathbb{F}_\ell[-2i](-i),
\]
where the action of D^a is trivial and that of W_K is described by the Tate twists. Forgetting about technicalities, this merely expresses the fact that G acts freely on the tower $(\mathcal{M}_{\text{LT},n})_{n \in \mathbb{N}}$ and that the quotient is the so-called Gross-Hopkins period space, which is isomorphic to the projective space \mathbb{P}^{d-1} over \overline{K}^{nr}. It follows that
\[
R_{\pi_I}^* = \bigoplus_{i=0}^{d-1} (\nu_i^0 \otimes \nu_i^1)[1 - d + 2i].
\]

Since $\partial_S(i) = 1 - d + 2i$, we have proved Theorem (4.1.3) for $I = S$, and thus for any $I \subset \hat{S}$ of cardinality $d - 1$.

Vanishing when $j \in I$. As already mentioned, we may assume that $j = 0$. Fix a strict subset I of \hat{S} which contains 0. We will prove in this paragraph that

\[
(4.1.5.1) \quad \text{for all } i = 0, \ldots, d - 1, \text{ we have } (R_{\pi_I}^*)_{i,0} = 0.
\]
We argue by decreasing induction on \(|I|\). The case \(|I| = d - 1\) was treated in \((4.1.4)\) so let us assume \(|I| < d - 1\). Recall from Lemma \((2.1.2)\) and Proposition \((2.1.2)\) iii) that for any \(k \in \tilde{S} \setminus I\), we have \(c^{-k}I \subset S\) and

\[
[v_G^k \otimes i_{c^{-k}I}(\overline{F}_\ell)] = [i_I] = \sum_{J \supseteq I} [\pi_J].
\]

Therefore, using the induction hypothesis, it is enough to find a \(k \in \tilde{S} \setminus I\) such that

\[
R\text{Hom}_{Z_d(G/\omega^z)}((b\Gamma_{c,z},i,0),\nu_G^k \otimes i_{c^{-k}I}(\overline{F}_\ell)) = 0.
\]

Let us start with a random \(k\) in \(\tilde{S} \setminus I\). By \((3.2.4.2)\) and Frobenius reciprocity, we have an isomorphism

\[
\mathcal{H}^s(R\text{Hom}_{Z_d(G/\omega^z)}((b\Gamma_{c,z},i,0),\nu_G^k \otimes i_{c^{-k}I}(\overline{F}_\ell))) \cong \text{Ext}^{s+i}_{\Gamma(G/\omega^z)}(\nu_G^{-k} \otimes \bar{h}_i, i_{c^{-k}I}(\overline{F}_\ell)).
\]

Further, by \((3.2.4.3)\) we have \([\nu_G^{-k} \otimes \bar{h}_i] = [\pi_{c^{-k}(0,d,i)}] + [\pi_{c^{-k}(1,d,i)}]\). Therefore, applying Proposition \((2.3.4)\) ii) and Corollary \((2.3.3)\) i) tell us that

\[
\text{Ext}^s_{G/\omega^z}(\nu_G^{-k} \otimes \bar{h}_i, i_{c^{-k}I}(\overline{F}_\ell)) = 0 \text{ whenever } k \in \{1, \cdots, i\}.
\]

In other words, if \(k \in \{1, \cdots, i\}\), we are done. Let us thus assume that \(k \notin \{1, \cdots, i\}\). In this case, Proposition \((2.3.4)\) ii) and Corollary \((2.3.3)\) i) tell us that

\[
\text{Ext}^s_{G/\omega^z}(\nu_G^{-k} \otimes \bar{h}_i, i_{c^{-k}I}(\overline{F}_\ell)) = 0 \text{ whenever } c^{-k}\{1, \cdots, i\} \cup c^{-k}I \neq S.
\]

This means that if \(I \cup \{1, \cdots, i\} \neq \tilde{S} \setminus \{k\}\), we are done. In particular, if \(i = 0\) (in which case \(\{1, \cdots, i\} = \emptyset\) by convention), we are done, because \(|I| < d - 1\). Now let us assume the contrary, i.e. \(I \cup \{1, \cdots, i\} = \tilde{S} \setminus \{k\}\) (and therefore \(i \geq 1\)). Again because of \(|I| < d - 1\), this means that \(\{1, \cdots, i\}\) contains an element \(k'\) which does not belong to \(I\). Applying \((4.1.5.2)\) to this \(k'\), we get

\[
\text{Ext}^s_{G/\omega^z}(\nu_G^{-k'} \otimes \bar{h}_i, i_{c^{-k'}I}(\overline{F}_\ell)) = 0
\]

and this finishes the proof of \((4.1.5.1)\).

\((4.1.6)\) Computation when \(j \notin I\). Again we may assume that \(j = 0\), and hence that \(I \subset S\). The vanishing property of \((4.1.5)\) shows that the map \(\pi_I \mapsto v_I := v_I(\overline{F}_\ell)\) induces isomorphisms

\[(R^p_{\pi_I})_{i,0} \cong (R^p_{v_I})_{i,0} \text{ for } i = 0, \cdots, d - 1\]

because the cokernel \(v_I/\pi_I\) is isomorphic to \(\pi_{I \cup \{0\}}\).

Now, we will use the exact sequence \((2.1.3.1)\) in order to compute \((R^p_{v_I})_{i,0}\). It provides us with a spectral sequence

\[E_1^{pq} = \bigoplus_{S \supseteq J \supseteq I, |J| > p} (R^p_{v_I})_{i,0} \Rightarrow (R^{p+q}_{v_I})_{i,0}\]

where we have abbreviated \(i_J := i_J(\overline{F}_\ell)\). A priori, this spectral sequence vanishes outside the range \(-|S \setminus I| \leq p \leq 0\) and \(q \geq -i\). Its differential \(d_1\) has degree \((1,0)\), and is given

22
by the natural maps $(R^*_{i,j})_{i,0} \to (R^*_{i,j})_{i,0}$ with signs associated to the simplicial set of subsets of $S \setminus I$.

The graded space $R^*_{i,j}$ is already known for $J = S$ by (4.1.4): we have $R^*_{i,s} = \overline{F}_{\ell}[1 - d + 2i]$. Let us thus fix $J \subsetneq S$. Using Frobenius reciprocity and (3.2.4.2) we then have isomorphisms

$$\Ext^{*+i}_{G/\mathfrak{w}z}(\bar{h}_i, i, j) \cong (R^*_{i,j})_{i,0}$$

for $i \in \{0, \ldots, d - 1\}$. Further, using equality (3.2.4.3), Proposition (2.3.4) and Corollary (2.3.3) ii), we get isomorphisms

$$(R^*_{i,j})_{i,0} \cong \Ext^{*+i}_{G/\mathfrak{w}z}(\bar{h}_i, i, j) \cong \Ext^{*+i}_{G/\mathfrak{w}z}(\pi_{\{1, \ldots, i\}, i, j}) \cong \Ext^{*+i}_{G/\mathfrak{w}z}(\nu_{\{1, \ldots, i\}, i, j})$$

$$\cong \begin{cases} \Ext^{*+i-|S\setminus\{1, \ldots, i\}|}_{G/\mathfrak{w}z}(\overline{F}_{\ell}, i, j) \cong \bigwedge^{*+2i+1-d}Y_j & \text{if } \{i + 1, \ldots, d - 1\} \subseteq J \\ 0 & \text{otherwise} \end{cases}$$

Observe that the smallest J which contributes is $J(i, I) := I \cup \{i + 1, \ldots, d - 1\}$. In particular, the E_1 page of the spectral sequence is supported in the vertical strip defined by $-|S \setminus I| \leq p \leq -|J(i, I) \setminus I|$. Moreover, since $\dim Y_j = d - 1 - |J|$, we see that for each p in the above range, the column E_1^{*p} is supported in the range

$$d - 1 - 2i \leq q \leq 2d - 2 - 2i - p - |I|.$$

In other words, the E_1 page is supported in the half square with left corner $(-|S \setminus I|, d - 1 - 2i)$ and right corners

$$(-|J(i, I) \setminus I|, d - 1 - 2i) \text{ and } (-|J(i, I) \setminus I|, 2d - 2 - 2i - |J(i, I)|).$$

Now, we observe that the E_1^{\bullet} of our spectral sequence is the same, up to some shifts, as that which occurs in [20, Proof of Thm 1] and [2, Ch. X, Prop 4.7]. We still have to compare the differential d_1 with that of these two references. Using Corollary (2.3.4) ii) again, we see that for $J' \supseteq J$ with J' a strict subset of S, the non-zero map $(R^*_{i,j})_{i,0} \to (R^*_{i,j})_{i,0}$ is induced by the natural map $Y_{J'} \to Y_j$. It follows that for $p > -|S/I|$ (i.e. everywhere except maybe on the first non-zero column), the differential d_1^{*p} is the same as that of the two references cited above. In fact the only possible difference concerns $d_1^{-|S/I|, d - 1 - 2i}$ for which we have no control yet in our setting, except in the trivial case where $i = 0$, because in this case, the E_1 is supported on one point. For $i > 0$, in order to ensure that $d_1^{-|S/I|, d - 1 - 2i}$ is the same as in the two references cited above, we have to prove that each map

(4.1.6.2) $$(R^*_{i,j})_{i,0} \cong \overline{F}_{\ell} \to (R^*_{i,j})_{i,0} \cong \overline{F}_{\ell}$$

is an isomorphism. However, since we know that all the other maps $(R^*_{i,j})_{i,0} \to (R^*_{i,j})_{i,0}$ for $J' \subset J \subsetneq S$ are isomorphisms, it is sufficient to prove that (4.1.6.2) is an isomorphism for a single J ! For this, we look at the special case $I = \emptyset$, so that the left corner is $(1 - d, d - 1 - 2i)$. If all the maps (4.1.6.2) were zero, we would have
The case involving isomorphisms (4.1.1.2). Thanks to (4.2.1.1), we may restrict our attention to where equality merely means that these morphisms are part of a commutative diagram (4.2.1.1).

Recalling the relevant details when necessary in the proof of Theorem (4.2.2) below. We still need to compute the schift \(a = -(2d - 2 - 2i) \). Observe first that
\[
2d - 2 - 2|J(i, I)| = 2|\{1, \cdots, i\} \setminus I|.
\]
Then, using \(i - |\{1, \cdots, i\} \setminus I| = |\{1, \cdots, i\} \cap I| \), we get
\[
a = 2|\{1, \cdots, i\} \cap I| - |I| = |\{1, \cdots, i\} \cap I| + |\{1, \cdots, i\} \cup I|.
\]
Eventually, using the equality \(i + |I| = |\{1, \cdots, i\} \cap I| + |\{1, \cdots, i\} \cup I| \), we get
\[
a = |\{1, \cdots, i\} \cap I| - |\{1, \cdots, i\} \cup I| + i = \partial_I(i).
\]

The proof of Theorem (4.1.3) is now complete. However, it will be important to keep some track of the isomorphism \((R_{X_I}^{-\partial_I(i)}, i) \), we have just obtained, when we study the Lefschetz operator in next subsection. We may decompose this isomorphism in four steps:

1) The spectral sequence provides the isomorphism
\[
(R_{X_I}^{-\partial_I(i)}, i) \simeq (R_{X_{J_{(I,I)}}}^{-\partial_I(i)} + [J(i, I)]_{i,0}).
\]

2) Corollary (2.3.3) and Remark (2.3.3) exhibit an isomorphism
\[
(R_{X_{J_{(I,I)}}}^{d-1,2i}, i) \otimes \bigwedge \max \{Y_{j, (i, I)} \} \simeq (R_{X_{J_{(I,I)}}}^{-\partial_I(i)} + [J(i, I)]_{i,0}).
\]

3) The inclusion \(\mathbb{F}_\ell = I_S \hookrightarrow i_{J_{(I,I)}} \) induces the isomorphism \((R_{X_{J_{(I,I)}}}^{d-1,2i}, i) \simeq (R_{X_{J_{(I,I)}}}^{d-1,2i}, i) \), as was shown in the above proof.

4) The geometric input from (4.1.4) provides the isomorphism
\[
(R_{X_{J_{(I,I)}}}^{d-1,2i}, i) \simeq \mathbb{F}_\ell.
\]

4.2 The Lefschetz operator

We now study the Lefschetz operator recalled in the Introduction. We refer the reader to [S] 2.2.4 for the precise definition of this operator and will contend ourselves with recalling the relevant details when necessary in the proof of Theorem (4.2.2) below.

(4.2.1) Our aim is to describe the operator \(L_{X}^{\ast} : R_{X}^{\ast} \rightarrow R_{X}^{\ast}[2](1) \) for \(\pi \) a unipotent elliptic representation. Since this operator is \(D^{\times} \times W_{K} \)-equivariant, it decomposes as a sum \(L_{X}^{\ast} = \sum_{i,j} (L_{X}^{\ast})_{i,j} \) with

\[
(L_{X}^{\ast})_{i,j} : (R_{X}^{\ast})_{i,j} \rightarrow (R_{X}^{i+j+2})_{i-1,j}.
\]

It also satisfies the following compatibility with torsion:

(4.2.1.1) \[
(L_{X_{(i,j)}}^{\ast})_{i,j} = (L_{X_{(i,j)}}^{\ast})_{i-1,j-1},
\]

where equality merely means that these morphisms are part of a commutative diagram involving isomorphisms (4.1.1.2). Thanks to (4.2.1.1), we may restrict our attention to the case \(j = 0 \).
Now, recall from Theorem (4.1.3) that each \((R^*_{\pi_J})_{i,0}\) is zero unless \(I \subseteq S\). In the latter case, it is 1-dimensional and concentrated in degree \(-\partial_I(i)\). Therefore \((L^*_{\pi_I})_{i,0}\) is necessarily 0 as soon as \(\partial_I(i) \neq \partial_I(i-1) + 2\), which by Fact (4.1.2) is equivalent to \(i \notin I\). The following theorem asserts that \((L^*_{\pi_I})_{i,j}\) is non-zero in the remaining cases.

Theorem (4.2.2) — Let \(I\) be a subset of \(S\) and let \(i \in I\). Then the operator

\[
(L^*_{\pi_I})_{i,0} : (R^*_{\pi_I})_{i,0} \cong \mathbb{F}_\ell[\partial_I(i)] \to (R^*_{\pi_I})_{i-1,0}[2] \cong \mathbb{F}_\ell[\partial_I(i-1) + 2]
\]

is non-zero, and thus is an isomorphism.

Proof. As in the proof of Theorem (4.1.3), the crucial input comes from geometry, which rules out the case of the trivial representation \(\mathbb{F}_\ell = \pi_S\). Indeed, recall from (4.1.4) that the period map provides us with isomorphisms

\[
R^*_{\pi_S}[1-d] \cong \left(H^*(\mathbb{P}^{d-1,\text{ca}}, \mathbb{F}_\ell)\right)^{\vee} = \bigoplus_{i=0}^{d-1} \mathbb{F}_\ell[2i](i).
\]

But by its mere definition, the Lefschetz operator of \(\mathbb{S}_{2,2.4}\) induces the tautological Lefschetz operator on \(\mathbb{P}^{d-1}\), namely that given by the Chern class of the tautological sheaf. It is well known to induce isomorphisms \(H^i(\mathbb{P}^{d-1,\text{ca}}, \mathbb{F}_\ell) \to H^{i+2}(\mathbb{P}^{d-1,\text{ca}}, \mathbb{F}_\ell)(1)\) for \(0 \leq i < 2d - 2\), thereby proving the theorem for \(I = S\).

We now consider a general \(I \subseteq S\). We will use the four steps gathered in the end of Paragraph (4.1.6), and which summarize the origin of the isomorphism \((R^*_{\pi_I})_{i,0} \cong \mathbb{F}_\ell\). Motivated by step iii) in that list, we consider for any \(J \subseteq S\) the following commutative diagram, which is functorially induced by the inclusion map \(i_S \mapsto i_J\)

\[
\begin{array}{ccc}
(R^d_{i_S})_{i,0}[-2i] & \to & (R^d_{i_J})_{i,0}[-2i] \\
L^d_{i_S} & & L^d_{i_J} \\
(R^d_{i_S})_{i-1,0}[-2i+2] & \to & (R^d_{i_J})_{i-1,0}[-2i+2]
\end{array}
\]

The two horizontal maps were shown to be isomorphisms in (4.1.6) and the left vertical map has just been shown to be so. We conclude that \((L^d_{i_J})_{i,0}\) is an isomorphism.

Further, let us consider the diagram for \(k \in \mathbb{N}\)

\[
\begin{array}{ccc}
(R^d_{i_J})_{i,0} \otimes_{\mathbb{F}_\ell} \mathbb{Y}_J & \to & (R^d_{i_J})_{i,0} \otimes_{\mathbb{F}_\ell} \mathbb{Y}_J \\
L^d_{i_J} \otimes \text{Id} & & L^d_{i_J} \otimes \text{Id} \\
(R^d_{i_J})_{i-1,0} \otimes_{\mathbb{F}_\ell} \mathbb{Y}_J & \to & (R^d_{i_J})_{i-1,0} \otimes_{\mathbb{F}_\ell} \mathbb{Y}_J
\end{array}
\]

The horizontal maps are explained in Remark (2.3.1) and the functoriality of these maps insures that the diagram is commutative. It follows from the identification \((R^d_{i_J})_{i,0} \cong \text{Ext}^{d+i}_{\mathbb{F}^{\pi_S}(\mathbb{V}_{(1,\ldots,j)}, i_J)}\) explained in the course of (4.1.6) together with Remark (2.3.3) that these maps are isomorphisms. Since the left vertical map has just been shown to be an isomorphism, so is the right one \((L^d_{i_J})_{i,0}\).
Recall now the notation $J(i,I) = I \cup \{i + 1, \ldots, d - 1\}$ of (4.1.6) and observe that $J(i - 1, I) = J(i, I)$ since we assume $i \in I$. Recall also that $\partial_f(i) = \partial_f(i - 1) + 2$ under this assumption, and consider the diagram

$$(R^{-\partial_f(i)}_{\pi_I})_{i,0} \longrightarrow (R^{-\partial_f(i)+|J(i,I)\setminus I|}_{\pi_I})_{i,0}$$

$$L^{-\partial_f(i)}_{\pi_I} \downarrow \quad \downarrow L^{-\partial_f(i)+|J(i,I)\setminus I|}_{\pi_I}$$

$$(R^{-\partial_f(i-1)}_{\pi_I})_{i-1,0} \longrightarrow (R^{-\partial_f(i-1)+|J(i,I)\setminus I|}_{\pi_I})_{i-1,0}$$

where the horizontal maps are provided by the spectral sequence considered in (4.1.6) (these are edge maps once we know enough on the support of the spectral sequence). These maps were shown to be isomorphisms in (4.1.6) and we have just proved that the vertical right hand map is also an isomorphism. We conclude that $L^{-\partial_f(i)}_{\pi_I}$ is an isomorphism, as desired.

\[\square\]

(4.2.3) Recollection and proof of the Main Theorem. We now prove the theorem announced in the Introduction. In particular we forget all gradings. We first assume that π is a unipotent (or principal series) elliptic representation. Let I be the strict subset of \hat{S} such that $\pi \simeq \pi_I$. By (4.1.1.1) and (4.1.3) we have

$$R^{ss}_{\pi} \simeq \bigoplus_{i,j=0}^{d-1} (R^{*}_{\pi_I})_{i,j} \simeq \bigoplus_{j \notin I} \nu^j_D \otimes (R^{ss}_{\pi})_{j} \text{ with } (R^{ss}_{\pi})_{j} := \bigoplus_{i=0}^{d-1} (R^{*}_{\pi_I})_{i,j} = \bigoplus_{i=0}^{d-1} \nu^i_W.$$

According to Theorem (4.2.2) and the explicit description of Proposition (2.2.3) we have

$$((R^{ss}_{\pi})_{0}, L^{*}_{\pi}) \simeq (\sigma^{ss}(\pi), L(\pi)).$$

Applying again Theorem (4.2.2) to $c^{-j} I$ and using compatibility with twisting (4.2.1.1), we get for any $j \notin I$

$$((R^{ss}_{\pi})_{j}, L^{*}_{\pi}) \simeq \nu^j_W \otimes (\sigma^{ss}(\pi_{c^{-j} I}), L(\pi_{c^{-j} I})) \simeq (\sigma^{ss}(\pi), L(\pi)).$$

Recalling now Proposition (2.2.1) we eventually get

$$(R^{*}_{\pi}, L^{ss}_{\pi}) \simeq |\mathcal{L}(\pi)| \otimes (\sigma^{ss}(\pi), L(\pi)),$$

as desired.

In order to finish the proof of the Main Theorem, we still have to deal with the case when π is not elliptic. In this case we must show that $R^{*}_{\pi} = 0$. Here we use the full force of the Vignéras-Zelevinski classification in [25] V.12\footnote{A more detailed account of this classification will appear in a current work by Minguez and Secherre}. Following this classification, there is a proper parabolically induced representation ι which contains π as a subquotient with multiplicity one, and all other subquotients π' of which satisfy the condition $\lambda_{\pi'} < \lambda_{\pi}$. Here, λ_{π} is the partition associated to π via the successive highest derivatives. Hence, arguing by induction on λ_{π}, we see that it suffices to prove that $R^{*}_{\iota} = 0$. Write $\iota = i\pi(\tau)$ for some proper standard parabolic subgroup $P = MU$ and some irreducible representation τ. Then $R^{*}_{\iota} = \bigoplus_{i=0}^{d-1} \text{Ext}^{*}_{M}(r_{P}^{-1}_{M}(\iota), \tau)$. But since π is not elliptic, the cuspidal support of τ is disjoint from $W.\delta$. Therefore, item i) of Lemma (2.3.1) shows that each Ext group occuring in the above sum vanishes.
Remark on non-unipotent representations. The Main Theorem may remain true for any irreducible \mathbb{F}_ℓ-representation π of G, under the Coxeter congruence hypothesis. In fact, much is already known; Boyer has described the cohomology of the whole tower and has announced recently that the integral cohomology is torsion-less. This allows to split the full complex according to weights. Then our arguments, which are somehow inductive on the “Whittaker level”, work fine for arbitrary elliptic representations, except that the induction has to be initialized at some point. For unipotent representations, the initialization was the computation of $(R_{\mathbb{F}_\ell}^\ast, L_{\mathbb{F}_\ell}^\ast)$ thanks to the period map.

All in all, our arguments show that the Main Theorem is true for any representation π, provided it holds true for any super-Speh representation, in the sense of [10, Def 2.2.3].

References

[1] C. Bonnafé and R. Rouquier. Coxeter orbits and modular representations. *Nagoya Math. J.*, 183:1–34, 2006.

[2] A. Borel and N. Wallach. *Continuous cohomology, discrete subgroups, and representations of reductive groups*. Number 94 in Annals Math. Studies. P.U.P., 1980.

[3] P. Boyer. Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples. *Invent. Math.*, 177(2):239–280, 2009.

[4] M. Broué and J. Michel. Blocs et séries de Lusztig dans un groupe réductif fini. *J. Reine Angew. Math.*, 395:56–67, 1989.

[5] J.-F. Dat. Espaces symétriques de Drinfeld et correspondance de Langlands locale. *Ann. Scient. Éc. Norm. Sup.*, pages 1–74, 2006.

[6] J.-F. Dat. Théorie de Lubin-Tate non-abélienne et représentations elliptiques. *Invent. Math.*, 169:75–152, 2007.

[7] J.-F. Dat. Finitude pour les représentations lisses de groupes p-adiques. *J. Inst. Math. Jussieu*, 8(2):261–333, 2009.

[8] J.-F. Dat. Opérateur de Lefschetz sur les tours de Drinfeld et Lubin-Tate. *To appear in Compositio Math.*

[9] J.-F. Dat. Théorie de Lubin-Tate non-abelienne ℓ-entièr e. *preprint*, http://www.math.jussieu.fr/~dat/recherche/travaux.html, 2010.

[10] J.-F. Dat. Un cas simple de correspondance de Jacquet-Langlands modulo ℓ. *preprint*, http://www.math.jussieu.fr/~dat/recherche/travaux.html, 2010.

[11] J.-F. Dat. A lemma on nearby cycles and its application to the tame lubin-tate space. *preprint*, http://www.math.jussieu.fr/~dat/recherche/travaux.html, 2011.

[12] P. Deligne. La conjecture de Weil II. *Inst. Hautes Études Sci. Publ. Math.*, (52):137–252, 1980.

[13] R. Dipper. On quotients of Hom-functors and representations of finite general linear groups. II. *J. Algebra*, 209(1):199–269, 1998.

[14] R. Dipper and G. James. Identification of the irreducible modular representations of $\text{GL}_n(q)$. *J. Algebra*, 104(2):266–288, 1986.
[15] O. Dudas. Coxeter orbits and Brauer trees. arXiv:math.RT/1011.5476v1, 2010.

[16] L. Fargues. L'isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques. In L'isomorphisme entre les tours de Lubin-Tate et de Drinfeld, volume 262 of Progr. Math., pages 1–321. Birkhäuser, 2008.

[17] G. Lusztig. On the finiteness of the number of unipotent classes. Invent. Math., 34(3):201–213, 1976.

[18] R. Meyer and M. Solleveld. Resolutions for representations of reductive p-adic groups via their buildings. J. Reine Angew. Math., 647:115–150, 2010.

[19] A. Neeman. Triangulated categories, volume 148 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2001.

[20] S. Orlik. On extensions of generalized Steinberg representations. J. Algebra, 293(2):611–630, 2005.

[21] P. Schneider and U. Stuhler. The cohomology of p-adic symmetric spaces. Invent. Math., 105:47–122, 1991.

[22] M. Strauch. Deformation spaces of one-dimensional formal modules and their cohomology. Adv. Math., 217(3):889–951, 2008.

[23] M.-F. Vignéras. À propos d’une conjecture de Langlands modulaire. In Finite reductive groups (Luminy, 1994), volume 141 of Progr. Math., pages 415–452. Birkhäuser Boston, Boston, MA, 1997.

[24] M.-F. Vignéras. Extensions between irreducible representations of p-adic GL(n). Pacific J. of Maths., 181(3):349–357, 1997.

[25] M.-F. Vignéras. Induced R-representations of p-adic reductive groups. Selecta Math. (N.S.), 4(4):549–623, 1998.

[26] M.-F. Vignéras. Correspondance de Langlands semi-simple pour GL(n,F) modulo ℓ ≠ p. Invent. Math., 144:177–223, 2001.

[27] M.F. Vignéras. Représentations l-modulaires d’un groupe p-adique avec l différent de p. Number 137 in Progress in Math. Birkhäuser, 1996.

[28] T. Yoshida. On non-abelian Lubin-Tate theory via vanishing cycles. In Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), volume 58 of Adv. Stud. Pure Math., pages 361–402. Math. Soc. Japan, Tokyo, 2010.