QCD at finite chemical potential in and out-of equilibrium

Olga Soloveva¹, Pierre Moreau², Elena Bratkovskaya³,¹,⁴

¹ Institute for Theoretical Physics, University of Frankfurt, Frankfurt, Germany
² Department of Physics, Duke University, Durham, NC 27708, USA
³ GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
⁴ Helmholtz Research Academy Hessen for FAIR (HFHF), GSI Helmholtz Center for Heavy Ion Physics, Campus Frankfurt, 60438 Frankfurt, Germany

E-mail: E.Bratkovskaya@gsi.de

March 2021

Abstract. We review the transport properties of the strongly interacting quark-gluon plasma (QGP) created in heavy-ion collisions at ultrarelativistic energies, i.e. out-of equilibrium, and compare them to the equilibrium properties. The description of the strongly interacting (non-perturbative) QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature T_c from lattice QCD. We study the transport coefficients such as the ratio of shear viscosity and bulk viscosity over entropy density, diffusion coefficients, electric conductivity etc. versus temperature and baryon chemical potential. Based on a microscopic transport description of heavy-ion collisions we, furthermore, discuss which observables are sensitive to the QGP formation and its properties.

Keywords: quark-gluon plasma, heavy-ions, transport models

Submitted to: Phys. Scr.
1. Introduction

Numerous achievements of heavy-ion collision (HIC) experiments have dramatically changed the theoretical understanding of the QCD matter properties, especially the deconfined QCD matter created in the central interaction volume at relativistic energies. Initially the deconfined QCD matter - or the Quark-Gluon-Plasma (QGP) - has been considered as a weakly interacting system of massless partons (quarks and gluons) which might be described by perturbative QCD (pQCD). Measurements of the anisotropic particle flow and jet quenching at the Relativistic Heavy-Ion Collider (RHIC) revealed that in the vicinity of the quark-hadron phase transition the deconfined state of QCD matter (at high temperature and partonic density) behaves as a nearly perfect relativistic fluid with the lowest value of the specific shear viscosity among the known fluids [1–4]. Actual and future heavy-ion collision experiments will probe the QCD phase diagram at nonzero baryon density (or baryon chemical potential). At ultra-relativistic energies at the Large Hadron Collider (LHC) or the Relativistic Heavy-Ion Collider (RHIC) the quark-gluon plasma is formed with nearly zero baryon chemical potential and the phase transition from the partons to the hadrons is a rapid crossover. In order to quantify experimental findings one can employ transport or hydrodynamic simulations that successfully describe the differential distributions of produced particles in these HICs.

While there are a plethora of studies about the QCD medium in the confined hadronic phase the future facilities will explore the QCD medium at high net baryon density or baryon chemical potential. The QCD phase diagram can be understood from the thermodynamic point of view in terms of the temperature T and baryon chemical potential μ_B, where the most unexplored region is located at moderate temperatures and relatively high μ_B. This region is of particular interest in the Beam Energy Scan programs at RHIC [5] as well as the future experimental program of FAIR (Facility for Antiproton and Ion Research) [6] at GSI and the NICA(Nuclotron-based Ion Collider fAcility) facility at JINR [7]. In the region of vanishing baryon chemical potential one can apply lattice QCD (lQCD) techniques to describe the macroscopic properties of the QCD medium such as the equation of state; moreover one can extract transport coefficients of the QCD medium at $\mu_B = 0$. A primary difficulty in dealing with non-zero baryon chemical potentials is the fermion sign problem for QCD (the fermion determinant is not positive definite), which makes the current lattice QCD methods inapplicable in the low T and finite μ_B region.

An alternative approach, which can describe microscopic properties of the deconfined QCD medium in a wide range of baryon chemical potentials, is to use effective models on the basis of 'resummed' propagators and couplings. In this work we review the results of the transport properties and the evolution of the QCD medium at finite chemical potential μ_B in equilibrium while for the description of the deconfined phase - near and out equilibrium - effective models and the PHSD transport approach are applied. Considering the transport coefficients and the EoS of the QGP phase we
compare our results with the various results from the literature at vanishing chemical potential.

To quantify the strongly-interacting liquid one can apply hydrodynamic descriptions of the system. However, in order to perform hydrodynamical simulations of the time evolution of the quark-gluon matter at finite baryon chemical potential, one needs to estimate or know the transport coefficients of the matter in this region. The evaluation of the transport coefficients at finite μ_B depends on the underlying microscopic theory which describes the interaction between quarks and gluons, but we face a fundamental problem to construct and evaluate such a theory at finite T and μ_B from first principles.

2. Microscopic properties of the QGP at finite chemical potential

For the full description of the QGP dynamics one needs to estimate first the microscopic properties of the relevant degrees of freedom such as the effective masses (and widths) of the partonic propagators as well as elastic cross-sections for the different partons. In the region of finite T and moderate baryon chemical potential μ_B one can rely on the estimates from effective models. We here consider essential features of the QGP medium in terms of strongly interacting quarks and gluons as given by the dynamical quasi-particle model (DQPM) [8–10]. The DQPM reproduces the equation of state of the partonic system above the deconfinement temperature T_c from lattice Quantum Chromodynamics (QCD) and predicts reasonable estimates for the QGP transport coefficients, which - as we will see later - are in agreement with the lQCD results available at $\mu_B = 0$. In the DQPM the quasi-particles are characterized by dressed propagators with complex self-energies, where the real part of the self-energies is related to dynamically generated thermal masses, while the imaginary part provides information about the lifetime and reaction rates of the partons (interaction widths),

$$G^R(\omega, p) = \frac{1}{\omega^2 - p^2 - M^2 + 2i\gamma \omega},$$

using $\omega = p_0$ for energy, while M and γ are the thermal mass and width of a parton. In the DQPM the spectral functions of the quasiparticles ρ_j ($j = q, \bar{q}, g$) or imaginary parts of the propagator $\rho_j = -2\text{Im}(G^R_j)$ are no longer δ-functions in the invariant mass squared but given by

$$\rho_j(\omega, p) = \frac{4\omega\gamma_j}{(\omega^2 - p^2 - M_j^2)^2 + 4\gamma_j^2\omega^2}$$

separately for quarks, antiquarks and gluons ($j = q, \bar{q}, g$).

All the microscopic properties as well as transport coefficients of the QCD matter are sensitive to the underlying coupling of the matter, which can be estimated within the DQPM using the entropy density from lQCD at $\mu_B = 0$. Although the coupling constant g^2 in general depends on temperature and baryon chemical potential, we start with the
determination of \(g^2(T, \mu_B = 0) \). The temperature dependence is parameterized via the entropy density \(s(T, \mu_B = 0) \) from lattice QCD from Refs. [11, 12] in the following way:

\[
g^2(T, \mu_B = 0) = d \left(\left(\frac{s(T, 0)}{s_{SB}^{QCD}} \right)^e - 1 \right)^f,
\]

with the Stefan-Boltzmann entropy density \(s_{SB}^{QCD} = \frac{19}{9} \pi^2 T^3 \) and the dimensionless parameters \(d = 169.934 \), \(e = -0.178434 \) and \(f = 1.14631 \). In order to obtain the coupling at finite baryon chemical potential \(\mu_B \), we use the ‘scaling hypothesis’ introduced in [13], which assumes that \(g^2 \) is a function of the ratio of the effective temperature \(T^* = \sqrt{T^2 + \mu_B^2/\pi^2} \) (where quark chemical potential is defined as follows \(\mu_q = \mu_u = \mu_s = \mu_B/3 \)) and the \(\mu_B \)-dependent critical temperature \(T_c(\mu_B) \) as [14]

\[
g^2(T/T_c, \mu_B) = g^2 \left(\frac{T^*}{T_c(\mu_B)}, \mu_B = 0 \right),
\]

with \(T_c(\mu_B) = T_c(1 - \alpha \mu_B^2)^{1/2} \) being the (pseudo)critical line of the DQPM (see Fig. 1), where \(T_c \) is the critical temperature at vanishing chemical potential (\(\approx 0.158 \) GeV) and \(\alpha = 0.974 \) GeV\(^{-2} \).

One can define the real part of the partonic self-energies by the dynamical quasi-particle masses (for gluons and quarks) which are assumed to be given by the HTL thermal masses in the asymptotic high-momentum regime by [19, 20]

\[
m_g^2(T, \mu_B) = \frac{g^2(T, \mu_B)}{6} \left(N_c + \frac{N_f}{2} \right) T^2 + \frac{N_c}{2} \sum_q \frac{\mu_q^2}{\pi^2}
\]
QCD at finite chemical potential in and out-of equilibrium

\[m_{q(g)}^2(T, \mu_B) = \frac{N_c^2 - 1}{8N_c} g^2(T, \mu_B) \left(T^2 + \frac{\mu_q^2}{\pi^2} \right), \]

where \(N_c = 3 \) is the number of colors, while \(N_f = 3 \) denotes the number of flavors. The strange quark has a larger bare mass which needs to be considered in its dynamical mass. Empirically we find \(m_s(T, \mu_B) = m_{u/d}(T, \mu_B) + \Delta m \) and \(\Delta m \approx 30 \text{ MeV} \). Furthermore, the quasi-particles in the DQPM have finite widths, which are adopted in the form

\[\gamma_i(T, \mu_B) = \frac{1}{3} C_i \frac{g^2(T, \mu_B) T}{8\pi} \ln \left(\frac{2c_m}{g^2(T, \mu_B)} + 1 \right), \]

where we use the QCD color factors for quarks, \(C_q = C_F = \frac{N_c^2 - 1}{2N_c} = 4/3 \), and for gluons \(C_g = C_A = N_c = 3 \). Further, we fixed the parameter \(c_m = 14.4 \), which is related to a magnetic cut-off. We assume that the width of the strange quark is the same as that for the light \((u, d)\) quarks. Once the quasi-particle properties (or propagators) are fixed as described above, one can evaluate the entropy density \(s(T, \mu_B) \), the pressure \(P(T, \mu_B) \) and energy density \(\epsilon(T, \mu_B) \) in a straight forward manner by starting with the entropy density \(s_{\text{dqp}} \) and number density \(n_{\text{dqp}} \) in the propagator representation from Baym [21, 22] and then identifying \(s = s_{\text{dqp}} \) and \(n_B = n_{\text{dqp}} / 3 \) [23]. The isotropic pressure \(P_0 \) can then be obtained by using the Maxwell relation of a grand canonical ensemble:

\[P(T, \mu_B) = P(T_0, 0) + \int_{T_0}^{T} s(T', 0) \, dT' + \int_{0}^{\mu_B} n_B(T, \mu_B') \, d\mu'_B, \]

where the lower bound in temperature is chosen between \(0.1 < T_0 < 0.15 \text{ GeV} \). The energy density \(\epsilon \) then follows from the Euler relation

\[\epsilon = Ts - P + \mu_B n_B. \]

The differential cross section for a binary process of on-shell particles \((i + j \rightarrow c + d)\) in the center-of-momentum frame (CM), where the momenta of the colliding particles obey \(k_i + k'_j = p_c + p'_d = P = 0 \) and \(k^0_i + k^0_j = \sqrt{s} = p^0_c + p^0_d \), is given by

\[d\sigma_{ij \rightarrow cd}(\sqrt{s}, \Omega) = \frac{1}{64\pi^2 s} \frac{p_{\text{out}}}{p_{\text{in}}} |\tilde{M}|^2 d\Omega, \]

where \(\tilde{M}^2 \equiv \tilde{M}^2(k_{i_1} \ldots k_{i_m} \rightarrow p_{j_1} \ldots p_{j_m}) \) is the invariant matrix element squared averaged over the color and spin of the incoming particles and summed over those of the final particles. In (10) \(d\Omega \) is the differential solid angle corresponding to one of the final particles. The momenta of the initial \((p_{\text{in}})\) and final particles \((p_{\text{out}})\) in the CM frame are found to be

\[p_i = \frac{\sqrt{(s - (m_i + m'_i)^2) (s - (m_i - m'_i)^2)}}{2\sqrt{s}}, \]

where \(i = \text{in/out}, \) \(m_i \) and \(m'_i \) being the masses of the colliding partons.
QCD at finite chemical potential in and out-of equilibrium

The total cross section is obtained via:

\[
\sigma_{ij \rightarrow cd}^{\text{tot}}(\sqrt{s}) = \frac{1}{32\pi s} \frac{p_{\text{out}}}{p_{\text{in}}} \gamma_{ij} \int_{-1}^{1} d\cos(\theta) |\mathcal{M}|^2,
\]

where \(\theta\) is the final polar angle of one of the final particles in the CM frame, and \(\gamma_{ij} = 1 - \frac{1}{2} \delta_{ij}\) is the symmetry factor.

![Figure 2.](image)

The DQPM total cross-sections for different channels are shown in Fig. 2 as a function of temperature for \(\mu_B = 0\) and \(\mu_B = 0.4\) GeV. The total cross sections depend on temperature as \(\sigma_{ij} \sim 1/T^3\) or \(\sim 1/T^4\), which is governed by the \(T\)-dependence of the DQPM running coupling. The difference in the \(T\)-dependence for different channels arises from the combinations of \(s-, t-, u-\) channels: for \(q-q\), \(q-\bar{q}\) and \(q-g\) scatterings \(\sigma_{ij} \sim 1/T^3\), while for the \(g-g\) channel the terms \(1/T^3\), \(1/T^4\) have equivalent contributions to the total cross-section \(\sigma_{ij} \sim c_3/T^3 + c_4/T^4\), where \(c_3, c_4\) depend on \(\sqrt{s}, \mu_B\). The cross-sections decrease with increasing chemical potential as expected from the \(\mu_B\) dependence of the DQPM coupling. This trend is in agreement with the pQCD predictions for high temperatures and chemical potential, where the QGP can be described approximately by a free gas of quarks and gluons. We have found that the collisional widths from the DQPM and those evaluated from the interaction rates - by calculating the partonic differential cross-sections as a function of \(T\) and \(\mu_B\) for the leading tree-level diagrams - are in reasonable agreement. Accordingly, the quasi-particle limit holds sufficiently well [24].

For the scatterings of the on-shell partons (i.e. the energies of the particles are taken to be \(E^2 = p^2 + M^2\) with \(M\) being the pole mass) the interaction rate \(\Gamma_{\text{on}}\) is obtained as follows,

\[
\Gamma_{i}^{\text{on}}(p_i, T, \mu_q) = \sum_{j=q, \bar{q}, g} \int \frac{d^3p_j}{(2\pi)^3} d_j f_j v_{\text{rel}} \int d\sigma_{ij \rightarrow cd}^{\text{on}} (1 \pm f_c)(1 \pm f_d),
\]

(13)
where $v_{\text{rel}} = \sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2 \over E_i E_j}$ denotes the relative velocity in the c.m. frame, d_j is the degeneracy factor for spin and color (for quarks $d_q = 2 \times N_c$ and for gluons $d_g = 2 \times (N_c^2 - 1)$), using the shorthand notation $f_j = f_j(E_j, T, \mu_q)$ for the distribution functions. In Eq. (13) and in all the following sections, the notation $\sum_{j=q,q\bar{q},g}$ includes the contribution from all possible partons which in our case are the gluons and the (anti-)quarks of three different flavors (u, d, s). The parton interaction rate $\Gamma_i(p_i, T, \mu_q)$ can be used for the estimation of the parton relaxation time, which is the key ingredient for transport coefficients from kinetic theory.

3. Transport coefficients of the QCD at finite chemical potential

We start with the transport coefficients at vanishing baryon chemical potential. We compute the ratio of the shear and bulk viscosities to the entropy density, i.e., η/s and ζ/s, the electric conductivity σ_0/T, as well as the baryon-diffusion coefficient κ_B/T^2 and found that the ratios η/s and ζ/s as well as σ_0/T are in accord with the available results from lQCD at $\mu_B = 0$.

The most popular transport coefficients - shear and bulk viscosities - have been evaluated within various models in the hadronic and the partonic phase. The shear viscosity reflects the strength of the interaction inside the QGP medium; it can be related to the parton interaction rates, which is a challenge to evaluate on the basis of first principles. Various theoretical models show that the temperature dependence of the QCD specific shear viscosity is qualitatively different in the confined and deconfined phases. Starting from the hadronic phase below the pseudo-critical temperature $T < T_c$, η/s monotonically decreases with T because the system is dominated by pions with weaker interactions at lower T. For the partonic phase above the pseudo-critical temperature $T > T_c$, η/s increases with temperature because the interaction attenuates at high T. Approaching the phase transition from hadronic to partonic phase at vanishing chemical potential the specific shear viscosity shows a dip followed by an increase with temperature. A similar temperature dependence of the specific shear viscosity η/s is also seen for other fluids such as H_2O and He.

While first only the shear viscosity was considered in the hydrodynamical simulations it was found later that the bulk viscosity of the QGP should be non-zero, at least in the vicinity of the phase transition [25]. The bulk viscosity reduces the speed of the radial expansion and thus influences the mean momentum of produced particles. It is known that the bulk viscosity is identically zero in conformal fluids and it is expected that the QCD medium approaches a conformal behaviour in the high-energy or temperature limit. Nevertheless, the lQCD results on the enhanced trace anomaly close to T_c have shown that it is probably not the case for the deconfined QCD medium in the vicinity of the phase transition.

One way to evaluate the viscosity coefficients of QCD matter is the Kubo formalism [26, 27], which was used to calculate the viscosities for a previous version of the DQPM within the PHSD transport approach in a box with periodic boundary conditions (cf.
The method becomes notoriously difficult for the partonic phase. A more simple way to estimate the transport coefficient is to imply the effective Boltzmann equation in the relaxation-time approximation (RTA) \([29]\).

The DQPM results of viscosities for the partonic phase are shown in Fig. 3 (red lines) in comparison with the lQCD data, estimates from non-conformal holographic models \([30, 31]\), predictions from the Baesyn analysis of the experimental heavy-ion data \([32]\), and the far-from-equilibrium time-dependent value of \(\eta/s\) in a holographic model \((\text{in a region of } t_{\text{avg}} = 0.24 - 0.59 \text{fm})\) \([33]\). Furthermore, the ratio of the shear viscosity \(\eta\) over entropy density \(s\), i.e. \(\eta/s\), as evaluated within the relaxation time approximation (RTA) from the collisional widths, agrees well with those calculated on the basis of the Kubo formalism, as well as with lQCD calculations for pure SU(3) gauge theory \([34–37]\) for \(\mu_B = 0\). Moreover, we show the results for the hadronic phase from the transport models URQMD (blue line with open circles) \([38]\) and SMASH (grey solid line with rhombuses) \([39, 40]\). The PHSD results for the hadronic phase are shown by the violet solid line with triangles and for the partonic phase by violet solid line with circles \([28]\). The specific shear viscosity for the partonic phase from the PHSD is in a good agreement with the estimates from the DQPM, while in case of the bulk viscosity the previous PHSD result is higher than the actual DQPM calculations. This is related to the fact that in the early PHSD study in Ref. \([28]\) the QGP phase has been realized with a DQPM parametrization with slightly different quasiparticle properties (masses and widths) that have been fitted to the entropy density of earlier lQCD data \([41]\). Also the present DQPM partonic cross sections are evaluated from leading order scattering diagrams and depend on \(T, \mu_B, \sqrt{s}\) and the scattering angle while the previous cross sections in Ref. \([28]\) were only depending on the energy density, i.e. on temperature. The differences show up more pronounced in the bulk viscosity than in the shear viscosity due to the terms related to the mass derivative and speed of sound \(c_s^2\) in the expression for the bulk viscosity which are sensitive to the actual form of the temperature dependence of the masses and cross sections.

The estimates of the specific shear viscosity in the hadronic phase decrease when approaching the phase transition; meanwhile one can see a difference in the vicinity of the phase transition in the \(T\)-dependence for the transport models, which can be understood as a difference in the methods for the evaluation of the viscosities as well as the difference between the model description. Additionally, we show the RTA estimations from the \(N_f = 2\) linear sigma model \((\text{for vacuum sigma mass } m_0 = 600 \text{ MeV})\) \([42]\) and the \(N_f = 3\) PNJL model \([43]\).

Furthermore, the electric conductivity and baryon conductivity of QGP matter, produced in HICs, are of fundamental importance. It is known that the electric conductivity determines the soft photon spectra \([20, 52, 53]\) and is directly related to their emission rate \([54]\). Moreover, the electric conductivity affects the generation and evolution of electromagnetic fields produced in HICs \([55–58]\). The DQPM results for the electric (left) and baryon conductivities (right) are shown in Fig. 4 as a function of the scaled temperature \(T/T_c\). We find a good agreement with the lQCD
calculations for σ_Q/T for $N_f = 2$: red circle-shaped point [46], yellow circle-shaped points [47], and for $N_f = 2 + 1$: black spheres [48] and blue stars [49]. The scaled electric and baryon conductivity have a similar temperature dependence: the ratios rise quadratically with temperature above T_c which is due to the increasing quark density with temperature. We compare also to the estimate from the Chapman-Enskog method using cross-sections for massless quarks and gluons as in Ref. [50], which are fixed in order to describe the Kovtun-Son-Starinets bound for the shear viscosity to entropy density ratio $(\eta/s)_{KSS} = 1/(4\pi)$ [44], leading to $\sigma_{tot} \approx 0.72/T^2$. We also find a good agreement in the vicinity of T_c. Furthermore, there are calculations for σ_Q/T from the non-conformal holographic model [31], which are close to our results in the vicinity of the transition $T_c = 1.5T_c$, however, the temperature dependence of the ratio differs and the values at high temperatures are lower than the DQPM predictions. There are also predictions for the electric conductivity by solving the relativistic transport equations for partons in a box with periodic boundary conditions in the presence of an external
electric field as in Refs. [59, 60].

The baryon conductivity is expected to be more sensitive to the net baryon density of the system. Fig. 4 (right) shows the actual results for the baryon diffusion coefficient in the range of temperature and non-zero baryon chemical potential $\mu_B = 0.3$ GeV as well as $\mu_B = 0$. We compare the DQPM results to the estimates from the non-conformal holographic model [31] and the estimates for the hadron gas within the Chapman-Enskog method [50]. In the vicinity of T_c the DQPM values for the diffusion coefficient are in agreement with the calculations within the Chapman-Enskog first-order approximation using cross-sections for massless quarks and gluons in Ref. [50]. However, for higher temperatures the ratio σ_B^{RTA}/T grows with temperature in the DQPM while the Chapman-Enskog results stay approximately constant $\sigma_B^{CE}/T\sim 0.048$ for all temperatures. Recently, estimates for the full diffusion coefficient matrix of the QGP have shown rather small difference between the Chapman-Enskog method in comparison to the RTA method [61], where the parton microscopic properties are described by the DQPM.

The DQPM results for non-zero baryon chemical potential, obtained within the relaxation-time approximation, are presented in Fig. 5. Here we compare the DQPM calculations for σ_Q/T and $\sigma_B/T \equiv \kappa_B/T^2$ to the results from the first-order Chapman-Enskog method [31] and the estimates for the hadron gas within the SMASH transport model [51]. The dark red dashed-dotted line corresponds to the estimations from the Einstein-Maxwell-Dilaton (EMD) holographic model [31]. The grey solid line with rhombuses corresponds to the estimations from the SMASH transport model [51]. The dark red dashed-dotted line corresponds to the RTA estimations for $N_f = 2$ linear sigma model [42]. The dark green dashed line presents RTA estimations for $N_f = 3$ PNJL model [43].

Figure 4. Scaled electric (Left) and baryon (Right) conductivities as a function of scaled temperature T/T_c at $\mu_B = 0$. The DQPM results obtained by the RTA approach with the interaction rate [23] are presented by the red solid lines. The symbols corresponds to the IQCD results for $N_f = 2$: red circle-shaped point [46], yellow circle-shaped points [47], and for $N_f = 2 + 1$: black spheres [48] and blue stars [49]. Blue, violet and orange dashed lines show the estimations for HRG obtained within the Chapman-Enskog method [50]. The light green dotted line and dashed black line correspond to the estimations from the Einstein-Maxwell-Dilaton (EMD) holographic model [31]. The grey solid line with rhombuses corresponds to the estimations from the SMASH transport model [51]. The dark red dashed-dotted line corresponds to the RTA estimations for $N_f = 2$ linear sigma model [42]. The dark green dashed line presents RTA estimations for $N_f = 3$ PNJL model [43].
Enskog approximation for a simplified pQCD medium at $\mu_B = 0$ taken from Ref. [50] and find a reasonable agreement.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5.png}
\caption{The DQPM results for the ratios of shear viscosity to entropy density η/s, bulk viscosity to entropy density ζ/s, electric conductivity to temperature σ_0/T, the baryon-diffusion coefficient to the temperature squared κ_B/T^2 for non-zero μ_B as a function of the scaled temperature $T/T_c(\mu_B)$ and the baryon chemical potential μ_B from Ref. [23]. The solid blue lines correspond to the results from the first-order Chapman-Enskog approximation taken from Ref. [50]. The lQCD calculations for $\mu_B = 0$ are taken from Refs. [34,35,46–48,62].}
\end{figure}

We find only a rather weak dependence of the transport coefficients on μ_B. The shear and bulk viscosities, and electric conductivities of the QGP increase slightly with increasing μ_B while the baryon-diffusion coefficient decreases. The latter has important consequences for the transport results for HIC observables, e.g., the baryon diffusion might enhance the difference between proton and antiproton elliptic flow $v_2(p_T)$ and mean transverse momenta.

4. Dynamics of the QCD at finite chemical potential

To study the evolution of the QCD medium produced in HICs one can rely on microscopic transport approaches, which provide the full time evolution of the system.
Nevertheless, the evolution of the deconfined QCD phase has been successfully described within hydrodynamic simulations and hybrid methods, too. The parton-hadron-string dynamics (PHSD) approach is an off-shell transport approach based on Kadanoff-Baym equations in first-order gradient expansion which allows for simulations of both the hadronic and the partonic phases. Whereas the hadronic part is essentially equivalent to the conventional HSD approach [63], the partonic dynamics is based on the dynamical quasi-particle model (DQPM) described above. The phase transition from the partonic to hadronic degrees-of-freedom (for light quarks/antiquarks) is described by the dynamical hadronization, where covariant transition rates for the fusion of quark-antiquark pairs to mesonic resonances (or three quarks (antiquarks) to baryonic states) are used [64, 65]. We mention that an out-of equilibrium study on the μ_B dependence of the QGP - created in HICs - has been performed within the PHSD transport approach, extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross-sections based on the DQPM and evaluated at the actual temperature T and baryon chemical potential μ_B in each individual space-time cell where partonic scattering takes place [24, 66].

We found only a small influence of a μ_B dependence of the QGP in heavy-ion observables, since when decreasing the collision energy and thus increasing μ_B, the QGP volume decreases rapidly and the hadronic phase becomes dominant [24, 66, 67]. Therefore even for low collision energies the influence of the QGP matter is washed out. Nevertheless, observables for strange hadrons – kaons and especially anti-strange hyperons – as well as for antiprotons show a more pronounced effect of the μ_B dependence of QGP interactions. This gives an experimental hint for the search of finite-μ_B traces of the QGP for experiments at the future FAIR and NICA accelerators, even if it will be a very challenging experimental task.

5. Conclusions and Outlook

We have presented recent results on the transport properties of the QCD at finite chemical potential. Starting with the description of the microscopic properties of the parton degrees of freedom we have discussed the transport coefficients of the partonic phase obtained within the dynamical quasi-particle model (DQPM) and compared the results at vanishing chemical potential with numerous predictions from the literature. We have found a good agreement with the available lQCD calculations for transport coefficients at $\mu_B=0$. Furthermore, we have shown that the presence of a non-zero chemical potential can affect the transport coefficients already in the region of moderate baryon chemical potential $\mu_B \leq 500$ GeV, where a cross-over phase transition likely takes place.
Acknowledgements

The authors acknowledge inspiring discussions with Jörg Aichelin, Wolfgang Cassing, Lucia Oliva and Taesoo Song. O.S. acknowledges support from the Helmholtz Graduate School for Heavy Ion research. P.M. acknowledges support by the U.S. D.O.E. under Grant No. DE-FG02-05ER41367. Furthermore, we acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): grant CRC-TR 211 'Strong-interaction matter under extreme conditions' - Project number 315477589 - TRR 211; by the European Union’s Horizon 2020 research and innovation program under grant agreement No 824093 (STRONG-2020) and by the COST Action THOR, CA15213. The computational resources have been provided by the LOEWE-Center for Scientific Computing and the "Green Cube" at GSI, Darmstadt.

References

[1] Arsene I et al. (BRAHMS) 2005 Nucl. Phys. A 757 1–27 (Preprint nucl-ex/0410020)
[2] Adams J et al. (STAR) 2005 Nucl. Phys. A 757 102–183 (Preprint nucl-ex/0501009)
[3] Shuryak E V 1978 Phys. Lett. B 78 150
[4] Gyulassy M and McLerran L 2005 Nucl. Phys. A 750 30–63 (Preprint nucl-th/0405013)
[5] Odyniec G (STAR) 2019 PoS CORFU2018 151
[6] Senger P 2020 JPS Conf. Proc. 32 010092
[7] Sissakian A and Sorin A (NICA) 2019 J. Phys. G 36 064069
[8] Peshier A and Cassing W 2005 Phys. Rev. Lett. 94 172301 (Preprint hep-ph/0502138)
[9] Cassing W 2007 Nucl. Phys. A 795 70–97 (Preprint 0707.3033)
[10] Cassing W 2007 Nucl. Phys. A 791 365–381 (Preprint 0704.1410)
[11] Borsanyi S, Endrodi G, Fodor Z, Katz S, Krieg S, Ratti C and Szabo K 2012 JHEP 08 053 (Preprint 1204.6710)
[12] Borsanyi S, Fodor Z, Hoelbling C, Katz S D, Krieg S and Szabo K K 2014 Phys. Lett. B 730 99–104 (Preprint 1309.5258)
[13] Cassing W 2009 Eur. Phys. J. ST 168 3–87 (Preprint 0808.0715)
[14] Berrehrah H, Bratkovskaya E, Steinert T and Cassing W 2016 Int. J. Mod. Phys. E 25 1642003 (Preprint 1605.02371)
[15] Cea P, Cosmai L and Papa A 2014 Phys. Rev. D 89 074512 (Preprint 1403.0821)
[16] Guenther J N 2020 (Preprint 2010.15503)
[17] Borsanyi S, Fodor Z, Guenther J N, Kara R, Katz S D, Parotto P, Pasztor A, Ratti C and Szabo K K 2020 Phys. Rev. Lett. 125 052001 (Preprint 2002.02821)
[18] Bazavov A et al. (HotQCD) 2019 Phys. Lett. B 795 15–21 (Preprint 1812.08235)
[19] Bellac M L 2011 Thermal Field Theory Cambridge Monographs on Mathematical Physics (Cambridge University Press) ISBN 978-0-511-88506-8, 978-0-521-65477-7
[20] Linnyk O, Bratkovskaya E and Cassing W 2016 Prog. Part. Nucl. Phys. 87 50–115 (Preprint 1512.08126)
[21] Vanderheyden B and Baym G 1998 J. Stat. Phys. [J. Statist. Phys.93,843(1998)] (Preprint hep-ph/9803300)
[22] Blaizot J P, Iancu E and Rebhan A 2001 Phys. Rev. D 63 065003 (Preprint hep-ph/0005003)
[23] Soloveva O, Moreau P and Bratkovskaya E 2020 Phys. Rev. C 101 045203 (Preprint 1911.08547)
[24] Moreau P, Soloveva O, Oliva L, Song T, Cassing W and Bratkovskaya E 2019 Phys. Rev. C 100 044911 (Preprint 1903.10257)
[25] Ryu S, Paquet J F, Shen C, Denicol G S, Schenke B, Jeon S and Gale C 2015 Phys. Rev. Lett. 115 132301 (Preprint 1502.01675)
QCD at finite chemical potential in and out-of equilibrium

[26] Kubo R 1957 J. Phys. Soc. Jap. 12 570–586
[27] Aarts G and Martinez Resco J M 2002 JHEP 04 053 (Preprint hep-ph/0203177)
[28] Ozvenchuk V, Linnyk O, Gorenstein M I, Bratkovskaya E L and Cassing W 2013 Phys. Rev. C 87 064903 (Preprint 1212.5393)
[29] Chakraborty P and Kapusta J 2011 Phys. Rev. C 83 014906 (Preprint 1006.0257)
[30] Attems M, Casalderrey-Solana J, Mateos D, Papadimitriou I, Santos-Olivian D, Sopuerta C F, Triana M and Zilhão M 2016 JHEP 10 155 (Preprint 1603.01254)
[31] Rougemont R, Critelli R, Noronha-Hostler J, Noronha J and Ratti C 2017 Phys. Rev. D 96 014032 (Preprint 1704.05558)
[32] Bernhard J E, Moreland J S and Bass S A 2019 Nature Phys. 15 1113–1117
[33] Wondrak M F, Kaminski M and Bleicher M 2020 Phys. Lett. B 811 135973 (Preprint 2002.11730)
[34] Astrakhantsev N, Braguta V and Kotov A 2017 JHEP 04 101 (Preprint 1701.02266)
[35] Astrakhantsev N, Braguta V and Kotov A 2018 Phys. Rev. D 98 054515 (Preprint 1804.02382)
[36] Nakamura A and Sakai S 2005 Phys. Rev. Lett. 94 072305 (Preprint hep-lat/0410099)
[37] Meyer H B 2008 Phys. Rev. Lett. 100 162001 (Preprint 0710.3717)
[38] Demir N and Bass S A 2009 Phys. Rev. Lett. 102 172302 (Preprint 0812.2422)
[39] Rose J B, Torres-Rincon J M, Schäfer A, Oliinychenko D R and Petersen H 2018 Phys. Rev. C 97 055204 (Preprint 1709.03826)
[40] Rose J B, Torres-Rincon J M and Elfner H 2020 J. Phys. G 48 115005 (Preprint 2005.03647)
[41] Aarts G, Allton C, Amato A, Giudice P, Hands S and Skullerud J I 2015 JHEP 02 186 (Preprint 1412.6411)
[42] Astrakhantsev N, Braguta V V, D’Elia M, Kotov A Y, Nikolaev A A and Sanfilippo F 2020 Phys. Rev. D 102 054516 (Preprint 1910.08516)
[43] Greif M, Fotakis J A, Denicol G S and Greiner C 2018 Phys. Rev. Lett. 120 242301 (Preprint 1711.08680)
[44] Rose J B, Greif M, Hammelmann J, Fotakis J A, Denicol G S, Elfner H and Greiner C 2020 Phys. Rev. D 101 114028 (Preprint 2001.10606)
[45] Turbide S, Rapp R and Gale C 2004 Phys. Rev. C 69 014903 (Preprint hep-ph/0308085)
[46] Akamatsu Y, Hamagaki H, Hatsuda T and Hirano T 2011 J. Phys. G 38 124184 (Preprint 1106.5870)
[47] Yin Y 2014 Phys. Rev. C 90 044903 (Preprint 1312.4434)
[48] Tuchin K 2013 Phys. Rev. C 88 024911 (Preprint 1305.5806)
[49] Inghirami G, Mace M, Hirono Y, Del Zanna L, Kharzeev D E and Bleicher M 2019 (Preprint 1908.07605)
[50] Denicol G S, Molnár E, Niemi H and Rischke D H 2019 Phys. Rev. D 99 056017 (Preprint 1902.01699)
[51] Oliva L 2020 Eur. Phys. J. A 56 255 (Preprint 2007.00560)
[52] Cassing W, Linnyk O, Steinert T and Ozvenchuk V 2013 Phys. Rev. Lett. 110 182301 (Preprint 1302.0906)
[53] Pugliš A, Plumari S and Greco V 2014 Phys. Rev. D 90 114009 (Preprint 1408.7043)
[54] Fotakis J A, Soloveva O, Greiner C, Kaczmarek O and Bratkovskaya E 2021 (Preprint 2102.08140)
[55] Amato A, Aarts G, Allton C, Giudice P, Hands S and Skullerud J I 2013 Phys. Rev. Lett. 111
172001 (Preprint 1307.6763)

[63] Cassing W and Bratkovskaya E 1999 Phys. Rept. 308 65–233
[64] Cassing W and Bratkovskaya E 2009 Nucl. Phys. A 831 215–242 (Preprint 0907.5331)
[65] Bratkovskaya E, Cassing W, Konchakovski V and Linnyk O 2011 Nucl. Phys. A 856 162–182 (Preprint 1101.5793)
[66] Soloveva O, Moreau P, Oliva L, Voronyuk V, Kireyeu V, Song T and Bratkovskaya E 2020 Particles 3 178–192 (Preprint 2001.05395)
[67] Moreau P, Soloveva O, Grishmanovskii I, Voronyuk V, Oliva L, Song T, Kireyeu V, Coci G and Bratkovskaya E 2021 Properties of the QGP created in heavy-ion collisions 9th International Workshop on Astronomy and Relativistic Astrophysics (Preprint 2101.05688)