T-cell dysfunction in glioblastoma: Applying a new framework

Karolina I. Woroniecka¹, Kristen E. Rhodin¹, Pakawat Chongsathidkiet¹, Kristin A. Keith¹, Peter E. Fecci¹,*

¹Duke Brain Tumor Immunotherapy Program; Department of Neurosurgery; Duke University Medical Center; Durham, NC, USA; Department of Pathology; Duke University Medical Center; Durham, NC, USA

*Corresponding author: Peter E. Fecci, Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery; Duke University Medical Center; Box 3050, Durham, NC 27710. Telephone: (919) 684-8111, Fax: (919)-684-9045, E-mail: peter.fecci@duke.edu

Running Title: T cell dysfunction in glioblastoma

Conflicts of Interest: The authors have no conflicts of interest to declare.
ABSTRACT

A functional, replete T cell repertoire is an integral component to adequate immune surveillance and to the initiation and maintenance of productive anti-tumor immune responses. Glioblastoma (GBM), however, is particularly adept at sabotaging anti-tumor immunity, eliciting severe T cell dysfunction that is both qualitative and quantitative. Understanding and countering such dysfunction are among the keys to harnessing the otherwise stark potential of anti-cancer immune-based therapies. While T cell dysfunction in GBM is long described, newer immunologic frameworks now exist for re-classifying T cell deficits in a manner that better permits their study and reversal. Herein, we divide and discuss the various T cell deficits elicited by GBM within the context of the five relevant categories – Senescence, Tolerance, Anergy, Exhaustion, and Ignorance. Categorization is appropriately made according to the molecular bases of dysfunction. Likewise, we review the mechanisms by which GBM elicits each mode of T cell dysfunction and discuss the emerging immunotherapeutic strategies designed to overcome them.

INTRODUCTION

For more than a century, many have advanced an intimate role for the immune system in restricting cancer development. As early as 1909, Paul Erlich stipulated the actuality of “immune surveillance,” proposing that aberrant cells continuously arise during growth and development in a manner that would ultimately result in an enormous frequency of cancers if not for the host’s immunologic defense mechanisms (1). Conversely, Erlich postulated that cancer instead emerges when these aberrant cells outstrip and escape normal immune-surveillance function, winning the metaphoric tug-of-war. More recently, the term “immunoediting” has been commonly applied to describe this delicate tug-of-war between tumor elimination and immune escape (2).
In order to promote tumor survival and favor immune escape, tumor cells frequently hijack a host’s evolved immunoregulatory mechanisms. GBM, the most common primary malignant brain tumor, is a notoriously capable immune evader and is among the most immunosuppressive of solid tumors, despite confinement to the intracranial compartment (2). GBM remains universally lethal, with a median survival of 15-17 months following diagnosis, and immunotherapies have demonstrated only limited success (3). While the intracranial environment (4) certainly contributes restrictions to effective antitumor immunity, the tumor itself exhibits vast capacities for immune-subterfuge, provoking severe cellular and humoral immune deficits that have been catalogued for more than 40 years (5). Immunosuppressive mechanisms run the gamut, affecting both local and systemic immunity, and are extensively reviewed (2,6,7). Ultimately, tumor-imposed immunosuppression is often aimed at crippling the effector arm of the cellular immune response, therefore conjuring various modes of T cell dysfunction. The elicited insults to T cell function have historically been categorized quite simply as either quantitative or qualitative deficiencies. In the context of this division, quantitative deficits (i.e. lymphopenia) have been appreciated in malignant gliomas dating back to 1977, albeit without a characterized source (8). Qualitative deficits, in turn, have also been highlighted since the 1970s, arising when patients with primary intracranial tumors were first recognized to have defects in rosette-forming T cells (9). Since these early landmark studies by Brooks and Roszman, a wide variety of T cell deficiencies have been reported, but have often been placed under a single, all-inclusive label of “anergy.”

It is now clear, that the label of anergy is neither sufficient nor accurate for properly describing T cell dysfunction in GBM, or more broadly, in cancer. Without an accurate description or understanding of the mechanisms underlying tumor-induced T cell dysfunction, strategies for countering immune escape will be poorly informed and likely ill-fated. To date, many of the labels
applied in the literature are frequently confused or incorrectly interchanged. The goal of this review, then, will be to reassign long-observed T cell dysfunction in GBM into the appropriate categories: Senescence, Tolerance, Anergy, Exhaustion, and Ignorance.

73

SEnescence

T cell senescence is a hypo-functional state resulting from shortened telomeres (Fig 1). Excessive telomere erosion arises through two primary mechanisms: chronic proliferative activity (as seen in chronic inflammatory states and malignancy), or DNA damage resulting from increased production of reactive oxygen species (ROS) (10). Leonard Hayflick initially described cell senescence in 1961, when he demonstrated that fetal cells are limited to between 40 and 60 cellular divisions before entering a state of terminal non-division (11). The phenomenon of senescence reflects the “end replication problem” (12), or the shortening of telomeres with each cell division. Once telomeres shorten beyond a threshold, further cell replication is prohibited. Some cells, however, express telomerase, an enzyme capable of re-forming or extending telomeres. Telomerase activity becomes quite pertinent in the context of malignancy, as cancer cells (including GBM cells), may upregulate telomerase, thereby permitting tumor cells to specifically resist senescence (13) (14). Immune cells, however, have no such capacity, and may instead be pre-disposed to more rapid telomere shortening and a senescent state in the context of tumor-induced inflammation.

In human CD4+ and CD8+ T cells, telomere shortening appears to be the consequence of T cell stimulation. This is perhaps best illustrated in young patients with X-linked lymphoproliferative syndrome (XLP), a disease hallmarked by excessive T cell stimulation, in which young patients demonstrate shortened telomere lengths traditionally seen at a more
advanced age (15). Telomere shortening is also seen in states of chronic infection, such as HIV, (16) and in chronic inflammatory states (17), as often seen with cancer. Whether T cells in patients with GBM demonstrate decreased telomere lengths and corresponding senescent states remains an active area of investigation.

Phenotypic indicators of T cell senescence include CD57, a well-known marker of terminal differentiation in human T cells (18), as well as loss of the co-stimulatory molecules CD27 and CD28 (19). These changes correlate with critical telomere shortening and loss of telomerase activity. CD57+ CD27+ T cells have recently been categorized as incompletely differentiated tumor-infiltrating lymphocytes (TILs), which maintain the ability to proliferate after T cell receptor (TCR) stimulation but become senescent with further antigenic exposure (20). In GBM, immunosenescence of the CD4+ compartment has been correlated with poor prognosis: overall survival is significantly shorter in GBM patients with higher levels of CD4+CD28-CD57+ T cells (21).

Immunosenescence, albeit not specifically T cell senescence, is perhaps also reflected in thymic senescence, a mode of dysfunction characterized by involution of the thymus. Thymic involution is a natural byproduct of aging but also accompanies states of chronic inflammation such as those seen with obesity, viral infection, and malignancy (22). It inevitably leads to a decrease in the output of immature T cells, also termed “recent thymic emigrants” (RTE) (23). Decreases in CD8+ RTE may be a component to the well-recognized, negative association between patient age and GBM prognosis (24). One study advancing this association quantified RTE by measuring T-cell receptor excision circles (TREC) in the peripheral blood of 24 newly diagnosed and 18 recurrent GBM patients. TREC are circular DNA molecules generated during TCR rearrangement in the thymus. The presence of TREC in blood is a clear indicator that TCR
rearrangement has occurred and is, therefore, considered a reliable tool for tracking and quantifying RTE as a surrogate of thymic activity (25). As an extension, the absence of detectable TREC can serve as a marker of thymic senescence. The aforementioned study showed that within GBM patients (comparisons to controls were never made), TREC levels correlated with the clinical outcome of GBM better than did patient age, with lower TREC levels predicting poorer clinical outcomes. Additionally, numbers of RTE maintained a stronger correlation with predicted clinical outcomes in vaccinated GBM patients than did immunological parameters, such as IFN-γ production (24). These findings were corroborated preclinically in studies that demonstrated decreased thymic function and decreased output of RTEs in murine models of intracranial glioma (26). In these murine models of glioma, thymic atrophy appeared to be secondary to increased Notch-1 and Jagged-1 signaling, resulting in the induction of apoptosis of thymocytes (27).

Overall, however, T cell senescence remains the most poorly studied mode of T cell dysfunction in GBM. The contribution of T cell telomere length, as well as detailed studies into the restrictions for immunotherapy posed by thymic senescence in an already aged population, remain areas ripe for further investigative advances. Continued characterization and opportunities for therapeutic intervention are desired.

TOLERANCE

Immune tolerance is the physiologic mechanism for preventing aberrant autoimmunity through the programmed induction of T cell unresponsiveness (28). Malignancies such as GBM, which overwhelmingly consist of mis-expressed self-antigens, can usurp physiologic tolerizing mechanisms to circumvent the anti-tumor immune response. Physiologic tolerance occurs and is enforced either centrally or peripherally. Central tolerance encompasses the process of negative
selection during T cell development, prior to the final maturation and circulation of T cells. Negative selection occurs in the thymus, where developing T cells expressing TCRs with overly high affinity for self-antigen/MHC complexes are necessarily eliminated (29). The process is not exhaustive, however, and self-reactive T cells, particularly those possessing specificity for organ-specific antigens not presented in the thymus, have the potential to elude elimination and gain access to the peripheral circulation (30). As a result, numerous mechanisms for the peripheral enforcement of tolerance have evolved to prevent continuous T cell self-reactivity and autoimmune (Fig 2). Modes of peripheral T cell tolerance include peripheral deletion (31), suppression by regulatory T cells (Treg) (32), and the activation of imprinted programs forcing T cells into a hyporesponsive state (33), (34). GBM exhibits the noteworthy capacity to usurp each of these tolerizing mechanisms, preventing an effective anti-tumor response. Understanding the molecular mechanisms underlying such subterfuge will permit future strategies for breaking T cell tolerance to cancer antigens while avoiding concomitant autoimmune damage.

Peripheral T Cell Deletion

The most obvious method for evading T cells is perhaps to eliminate them, a capacity recognized in GBM dating to the late 1990s. First described in melanoma, this mechanism for eliciting T cell apoptosis involves a FasL-mediated deletion of invading lymphocytes (35), which has subsequently been described in GBM (36,37). Both CD4+ and CD8+ T cells demonstrate increased susceptibility to apoptosis in GBM patients, with those T cells expressing Fas-L having significantly increased susceptibility (38). Indeed, one study revealed that 22.6% of GBM TILs are in the early stages of apoptosis, and less than 50% of the TILs present are even viable. It is important to note that deletion is also the final stage of T-cell exhaustion (39), and therefore
exhaustion (discussed later) may have unwittingly contributed significantly to the observations of early apoptosis in this study.

Regulatory T cells

Regulatory T cells (T_{reg}) contribute substantially to peripheral tolerance by suppressing T cell antigen-specific responses. T_{reg} are a subset of CD4^{+} T cells expressing the transcription factor Foxp3 (40). In a tumor setting, T_{reg} potently suppress anti-tumor responses and promote tolerance through secretion of the Th2-polarizing immunoregulatory cytokines, TGF-β and IL-10 (41). These, in turn, limit T cell IL-2 and IFN-γ production (42), resulting in impotence and even cytolysis of the effector cells necessary for the control and limitation of tumor growth (43). Patients with GBM demonstrate increased proportions of T_{reg} amongst CD4^{+} cells, both systemically and at the tumor site, contributing to the decreased cellular immunity observed in these patients (44,45). Likewise, countering or depleting T_{reg} has proven capable of restoring much of the T cell dysfunction that has been reported for decades in patients (44,46). This makes strategies to inhibit T_{reg} an attractive strategy in GBM and identifies tumor-induced tolerance as a key mode of T cell dysfunction in the context of these tumors.

Broadly, there are 2 classifications of T_{reg}: natural T_{reg} and induced T_{reg}. Natural T_{reg} (nT_{reg}) are selected in the thymus for their moderate affinity for self-antigen in the context of MHC Class II, and they play a pivotal role in maintaining immune homeostasis. Induced T_{reg} (iT_{reg}) are otherwise responder CD4^{+} T cells that acquire both CD25 and Foxp3 expression outside of the thymus in sub-immunogenic contexts of inflammation, autoimmunity, transplantation, or malignancy (47). Studies have shown nT_{reg} to be the predominant population responsible for immunotherapeutic failure, as thymectomized mice have significantly decreased numbers of
tumor-infiltrating T\(_{\text{reg}}\) (48). Additionally, the transcription factor Helios is expressed in nT\(_{\text{reg}}\), but not iT\(_{\text{reg}}\) (49). Helios\(^{+}\) T\(_{\text{reg}}\) have been shown to have a higher suppressive capability and predominate in human GBM (48).

GBM promotes expansion of T\(_{\text{reg}}\) representation and function through a variety of mechanisms. GBM-conditioned media induces the \textit{in vitro} expansion of T\(_{\text{reg}}\) (50), suggesting a direct role for tumor-elaborated factors. Less directly, the expression of indoleamine 2,3-dioxygenase (IDO) (discussed further below) by dendritic cells (DC) in tumor draining lymph nodes, has been implicated in inducing anti-tumor tolerance via the induction and recruitment of T\(_{\text{reg}}\) (51). The upregulation of CCL-2, a T\(_{\text{reg}}\) chemokine, is also commonly seen in patients with GBM (52). Likewise, T cell immunoglobulin and mucin domain-containing molecule 4 (TIM4), a molecule with a newly described role in immune-regulation, is expressed in GBM-derived macrophages. TIM4-expressing macrophages phagocytose tumor-specific T cells expressing phosphatidylserine (PS) and develop tolerogenic expression of aldehyde dehydrogenase and TGF-\(\beta\), resulting in the induction of T\(_{\text{reg}}\) within the tumor microenvironment (53). The pleiotropy of the systemic and infiltrating T\(_{\text{reg}}\) population found within GBM suggests similar variability in the mechanisms employed by GBM to expand T\(_{\text{reg}}\)-tolerizing capacities. Likewise, treatments designed to counter T\(_{\text{reg}}\) activity will need to be equally varied in their mechanistic targets.

Simple depletion of T\(_{\text{reg}}\) has been the most straightforward and frequently attempted counter to T\(_{\text{reg}}\) activity in tumors. It has been accomplished to date through several means, including anti-CD25 - denileukin diftitox (an engineered protein combining IL-2 with diphtheria toxin), anti-CTLA-4, and anti-GITR. The high affinity interleukin-2 (IL-2) receptor (IL-2R or CD25) has been a classic target due to its constitutive expression on T\(_{\text{reg}}\). Studies in mice have shown success inhibiting T\(_{\text{reg}}\) function with anti-CD25 (46), as well as prolonging survival in
murine models of glioma (46,54). Clinical trials in metastatic melanoma patients have demonstrated efficacy for the anti-IL-2R monoclonal antibody Daclizumab (55), and thus far in patients with GBM, a placebo-controlled pilot study (NCT00626015) has shown that administration of Daclizumab with a peptide vaccine against EGFRvIII and with temozolomide selectively depletes T\text{reg} (56).

Glucocorticoid-induced TNFR-related protein (GITR) is a receptor enriched on T\text{reg}, which when activated, inhibits T\text{reg} (57). Intracranial delivery of an agonistic anti-GITR antibody results in a significant increase in survival in mice-bearing GL261 gliomas, whereas, peripheral administration of the antibody has only a modest effect (58). Although peripheral administration of anti-GITR significantly decreased granzyme B expression by T\text{reg}, intratumoral administration results in selective depletion of T\text{reg} via FcγR-mediated destruction (58).

Cytotoxic T Lymphocyte Associated Molecule 4 (CTLA-4) is an immune checkpoint (discussed at length below) that additionally contributes to the suppressor function of T\text{reg} (59). CTLA-4 loss or inhibition on T\text{reg} results in reduced T\text{reg} function and may be a benefit associated with anti-CTLA-4 treatment. Indeed, recent studies showed that anti-CTLA-4 monoclonal antibody results in loss of intratumoral T\text{reg}, along with expansion of CD8+ effector T cells (T\text{eff}), leading to an enhanced T\text{eff}:T\text{reg} ratio (60).

Ultimately, targeting T\text{reg} through the above mechanisms has proven successful in small trials as a means of reversing T cell tolerance and licensing the anti-tumor immune response. Developing future methods for inhibiting T\text{reg} function in GBM may play a key role in targeted immunotherapy.

Signal transducer and activator of transcription
Signal transducer and activator of transcription (STAT3) is a transcription factor that plays a significant and pleiotropic role in both oncogenesis and immunosuppression in GBM. It is often upregulated in tumor cells and is a recognized negative prognostic factor (61). Within GBM cells, increased STAT3 expression or activity promotes tumor survival, proliferation, and invasion (62,63).

Ultimately, STAT3 activation proves crucial for tumor-induced immune tolerance and immune evasion within the GBM microenvironment (64,65). For instance, IL-2-mediated STAT3 activity expands tumor-associated Treg, enhancing the expression of Foxp3 in CD4^+CD25^+ T cells (66). STAT3 expression in antigen-presenting cells (APC), such as tumor-associated macrophages or microglia, results in suppression of antitumor mechanisms and tolerance to tumor antigens. STAT3 has been shown to skew effective Th1 responses toward suppressive Th17 responses (67). Inhibiting STAT3 via conditional knockout (66) or via the miRNA miR-124 (68) decreases Treg prevalence, while simultaneously enhancing T cell-mediated clearance of murine glioma. STAT3 inhibition also promotes TIL accumulation at the tumor site in the humanized U87 glioma model (69). Small molecule STAT3 pathway inhibitors, such as WP1066, demonstrate enhanced activation of T cells and APCs in murine models, with accompanying increases to production of immune-stimulatory cytokines and to T cell proliferation (70). Given these preclinical data, targeting the STAT3 pathway may present a therapeutic opportunity. A phase 1 trial investigating WP1066 in patients with either recurrent brain tumors or with melanoma metastatic to the brain is set to begin in the spring of 2018 (NCT01904123).

Indoleamine 2,3-Dioxygenase
Indoleamine 2,3-Dioxygenase (IDO), an enzyme produced in response to IFNγ, is involved in the metabolism of tryptophan into kynurenine. IDO-mediated tryptophan degradation and/or kynurenine accumulation has multiple immunosuppressive effects, including inhibition of T-cell proliferation, promotion of T-cell apoptosis, and the induction of T_{reg} (71). It is highly expressed in human GBM tissue (as compared to low-grade gliomas (72)), and GBM patients likewise have decreased serum tryptophan levels compared to non-GBM patients (65). Furthermore, the increased IDO expression observed in GBM negatively correlates with patient survival (73).

Preclinical studies have further elucidated the role of IDO in GBM, including the role of GBM tumor cell and host IDO expression. GBM-expressed IDO increases T_{reg} accumulation and negatively impacts overall survival in murine glioma models (73), in a manner independent of its canonical enzymatic role (74). Conversely, IDO inhibition in murine GBM cells through siRNA knockdown significantly extends survival (75). In seeming contrast, however, enzymatically-active host IDO1 appears instead pivotal for maximal response to immune checkpoint blockade (76). These findings potentially highlight the need for an IDO-targeting therapeutic that inhibits noncanonical IDO1 activity in GBM cells, without disrupting host IDO1 activity. Multiple IDO1 enzyme or pathway inhibitors are being tested in clinical trials, including epacadostat (Incyte), GDC-0919 (Genentech), PF-06840003 (Pfizer), and indoximod (D1-MT; New Link Genetics), but their ultimate efficacy in GBM remains to be demonstrated.

ANERGY

As alluded to earlier, T cell anergy has been a frequently mis-applied term, often serving as a “black box” for T cell dysfunction in the GBM and other cancer literature. Broadly, T cell anergy describes a mechanism by which lymphocytes become perpetually inactive following an
antigen encounter (Fig 3). Anergy was initially described in 1908, when Von Pirquet noted the loss of delayed type hypersensitivity (DTH) responses to tuberculin in individuals infected with measles (77). The same observation was made later in 1972 in patients with GBM, when they failed to respond to dinitrochlorobenzene (78). Alternatively, in 1980, anergy was used to describe the functional inactivation of B cells after tolerance induction with repeated antigen administration (79). Here, the term “clonal anergy” emerged due to the nature of the lost antigen-specific response. Presently, the term anergy is used to describe two separate phenomena: clonal or “in vitro” anergy, and adaptive tolerance or “in vivo” anergy (34). Although different modes of dysfunction, both terms encompass impairments to IL-2 production and T cell proliferation. Ultimately, however, clonal anergy and adaptive tolerance are distinct biochemical states: clonal anergy results primarily from defective co-stimulation resulting in RAS/MAPK dysfunction (80) whereas adaptive tolerance results from continuous low levels of antigen exposure and deficient Zap70 kinase activity, promoting impaired mobilization of calcium and NF-kB. It is important to note that anergy has primarily been studied in CD4+ T cells. Therefore, while many of its features may overlap with those of tolerance and exhaustion, these latter programs have been studied in more detail in CD8+ T cells, as will be discussed further.

Clonal T cell anergy has been shown to be a long-lived defect in cell-cycle progression and effector function and, while predominately irreversible, some have reported a degree of correction with strong stimuli. More specifically, anergic T cells produce negligible amounts of IL-2, which is crucial for clonal expansion; however, addition of high levels of exogenous IL-2 can sometimes reverse the phenotype (81). The source of decreased IL-2 production is decreased IL-2 transcription, secondary to further defects in the upstream mitogen-activated protein kinase (MAPK) family (82). Diminished IL-2 production in GBM patients was first noted when
peripheral blood lymphocytes (PBL) were found to have fewer phytohemagglutinin (PHA)-responsive cells, and these PHA-activated cells produced significantly lower levels of IL-2 as compared to healthy controls (83). Subsequently, however, this phenomenon was attributed at least in part to increased T\textsubscript{reg} activity in patients with GBM (thereby making it more reversible), and is, therefore, perhaps more closely associated with T cell tolerance than with anergy, the latter term likely then having been misapplied in the study (by the same authors as this review) (44). Although decreased transcription of IL-2 in T cells does not appear to be solely related to the program of clonal anergy (as it had been so far perhaps incorrectly defined in GBM), mechanisms for inducing clonal anergy may still be relevant. For instance, tumor-induced CTLA-4 upregulation on T cells results in decreased co-stimulatory signals through CD28. CD28 expression on T cells typically leads to a co-stimulatory signal upon interaction with APC-expressed CD80 and CD86, resulting in activation and initiation of effector function. High levels of CTLA-4 expression on T cells, however, creates competition with CD28 and results in insufficient co-stimulation, resulting in loss of T cell proliferation and function. It remains to be seen whether other mechanisms of clonal anergy play roles in GBM or in other solid tumors, or how these mechanisms might be countered through more appropriate immunotherapeutic design.

The role of adaptive tolerance in GBM and other cancers is less clear at this time, and it may be difficult to truly distinguish from other modes of dysfunction. Defects in Zap70 kinase have been found to be a key instigator of adaptive tolerance in T cells (80); this same mechanism, however, has also been implicated in T cell exhaustion (84), which similarly results from continuous low levels of antigen exposure. Likewise, the transcription factor nuclear factor of activated T cells (NFAT), downstream of Zap70, plays a primary role in both exhaustion and adaptive tolerance (85). In a B16 melanoma model, one study showed that T cells from NFAT-1
deficient mice were resistant to tumor-induced anergy, resulting in delayed tumor appearance and slowed tumor growth (86). We propose that the terms “in vivo anergy” and “adaptive tolerance” might best be absorbed into the definition of T cell exhaustion, as the mechanisms of these processes appear to be the same in both CD4+ and CD8+ T cells. Using one term to describe the phenomenon of chronic and, perhaps, suboptimal antigen exposure leading to defects in calcium mobilization via NF-kB and NFAT will facilitate discussion and reviews on this topic, as well as effective targeting strategies.

EXHAUSTION

T cell exhaustion is a hyporesponsive (not unresponsive) state resulting from repeated antigenic exposure under suboptimal conditions (Fig 4) (87). It was initially discovered in CD8+ T cells in the setting of chronic viral infection (39,87), where the exhausted state serves as an adaptive “stalemate” between host and pathogen meant to limit collateral auto-immune destruction under chronic inflammatory conditions. Cancers, however, have now also been shown to disrupt T cell function and elicit similar modes of T cell exhaustion, which assuredly are tumor-adaptive (88).

Exhaustion represents a specific transcriptional program in T cells, resulting in a hierarchical loss of effector functions following their initial acquisition in the context of antigenic exposure. Many transcription factors have been implicated in programmed T cell exhaustion, including T-bet, Eomesodermin (Eomes), and NFAT. T-bet and Eomes are related transcription factors that regulate the process of memory T cell formation, and the classic LCMV-induced T cell exhaustion signature reveals inverse functions for T-bet and Eomes (89). Exhausted T cells contain high levels of Eomes and low levels of T-bet, with these two transcription factors
differentially regulating T cell exhaustion in part through direct modulation of inhibitory receptors, such as PD-1 (90). The transcription factor, NFAT, is involved in both CD8+ T cell activation and exhaustion. When bound to AP-1, the complex results in differentiation into effector T cells; however, in the absence of AP-1, NFAT binds regulatory regions and results in the transcription of genes associated with an exhausted state (91). Apart from reduced effector function, this unique transcriptional program and metabolic state is characterized by the increased surface expression of multiple classical, as well as more newly characterized, co-inhibitory immune checkpoints (89).

The term “immune checkpoint” refers to specific molecular interactions at the interface between T cells and APCs, resulting in restrictions to the proliferative capacity of T cells. Certain T cell inhibitory receptors, such as PD-1 and CTLA-4 (the so called “classical” immune checkpoints), serve to inhibit clonal T cell proliferation and are a recognized component to physiologic immune auto-regulation. Cancer cells, however, are able to usurp this physiologic mechanism and either upregulate or bind inhibitory immune checkpoints on T cells, resulting in their dysfunction.

Antibodies blocking immune checkpoints perpetuate the activity of T cells and can, in some instances, even reverse their exhausted phenotype and functional defects (89). Blockade of the classical immune checkpoints, CTLA-4 and PD-1, constitutes an FDA-approved strategy in many solid tumors, while clinical trials remain ongoing in GBM (NCT03367715, NCT02311920, NCT02017717, NCT03233152).

While PD-1 and CTLA-4 represent the classical immune checkpoints, newer characterized checkpoints with implications for T-cell exhaustion include: TIM-3, LAG-3, BTLA, 2B4, CD160, TIGIT, and CD39, among others (92). TIM-3 mediates immune suppression via binding of its ligands, including galectin 9 and CEACAM. Increased TIM-3 expression levels are associated with higher tumor grades and lower Karnofsky Performance Status (KPS) scores in patients with
glioma (93). The frequent co-expression of TIM-3 and PD-1 represents a “deeply” exhausted state (94). Human GBM TILs which co-express PD-1, TIM-3, and LAG-3 are non-functional (95). TIM-3 has been targeted preclinically in glioma, generally in combinatorial strategies. One such study blocked TIM-3 alone and in combination with a blocking agent to CEACAM-1, achieving 80% long term survival in the combinatorial group in the GL261 glioma model (96). Likewise, combinatorial therapy with anti-PD-1, anti-TIM-3, and focal radiation resulted in regression of murine GL261 gliomas (97). A phase I trial is currently underway, testing anti-TIM-3 monoclonal antibody alone and in combination with anti-PD-1 in patients with advanced solid tumors (NCT02817633).

LAG-3, is expressed on activated T cells (98). LAG-3 shares approximately 20% homology with the CD4 co-stimulatory molecule and, when present, competes with CD4 for MHC II, conferring instead a negative regulatory function upon binding (99). In addition, LAG-3 enhances the immunomodulatory function of T_{reg} through cytokine- and contact-dependent mechanisms within the tumor (100). T_{reg} can acquire MHC class II through the process of trogocytosis, where T cells complexed with APCs develop the ability to express different cell surface molecules (101). T_{reg} expressing MHC class II are then able to engage LAG-3 on effector T cells and mediate suppression (102). Despite the homology with CD4, activated CD8⁺ T cells also demonstrate increased LAG-3 expression. LAG-3 is exclusively expressed in conjunction with PD-1 on human GBM TILs (95). A phase I clinical trial is currently employing anti-LAG-3 antibody alone and in combination with anti-PD1 in recurrent GBM (NCT02658981).

TIGIT is a member of the CD28 family. TIGIT inhibits T cell immune responses in both cell extrinsic and cell intrinsic manners. TIGIT competes with the stimulatory ligand CD226 (DNAM-1) for binding with the receptors CD155 (PVR) and CD112 (PVRL2). Cell extrinsic
ligand competition for PVR and PVRL2 results in TIGIT phosphorylation and recruitment of SHP1, which inhibits signaling through the MAPK and Akt pathways (103). Intrinsic T cell TIGIT engagement inhibits their proliferation and cytokine production (103). TIGIT has recently been shown to be expressed on human GBM TIL (95).

CD39 is an ectonucleotidase present on various cell types, including both GBM (104) and its infiltrating immune cells. CD39 promotes an immunosuppressive state via conversion of extracellular ATP to adenosine, which binds a variety of receptors to exert a constraining influence over immune cells (105). Adenosine enhances the immunosuppressive functions of T_{reg} and macrophages, in addition to inhibiting the effector function of both T cells and NK cells (105). In the context of GBM, a study has shown increased expression of CD39 on T_{reg}, correlating with shortened survival (104). CD39 is also found on non-functional human GBM CD8^{+} TILs (95).

In addition to restricting the proliferation of T cells, some immune checkpoints contribute to exhaustion via their influence on the metabolic functions of both T cells and tumor cells. Within the tumor microenvironment, tumor cells compete with neurons, glia, and TILs for glucose. GBM cells express high levels of GLUT1, allowing them to exceed normal brain tissue glucose uptake (106). T cells express GLUT1 and are highly dependent on glucose to support their glycolytic metabolism and cellular demands (107). Studies have demonstrated that PD-1 signals decrease GLUT1 expression on T cells, subsequently lowering glucose uptake (108). Additionally, PD-1 alters glycolytic pathways and T cell glucose utilization (108). On tumor cells, PD-1 and PD-L1 expression have been observed to promote glycolysis (109). By expressing PD-1 and PD-L1, GBM not only inhibits T cell proliferation and induces T cell exhaustion, but also suppresses T cell glucose access and utilization, while simultaneously promoting its own. CTLA-4 expression on T cells also results in inhibited expression of GLUT1, thereby inhibiting T cell metabolism (108).
IGNORANCE

T cell ignorance results from competent T lymphocytes failing to mount a productive immune response, despite the presence of antigen, due to either anatomical barriers sequestering the antigen from immune surveillance (i.e. immune privileged location) or to antigen expression levels being at insufficient concentrations (Fig 5) (30). In contrast to tolerant T-cells, ignorant T cells are fully functional, though antigen-inexperienced and naïve. If ignorant T cells become exposed to antigen or activated by external stimuli, ignorance can in theory be easily overcome.

T cell ignorance in GBM would at first glance appear to be quite relevant, given historic notions of immune privilege within the CNS. The concept of the “immunologic privilege” bestowed upon the brain had its first origins in 1923, when Medawar’s experiments showed that foreign homologous tissues grafted to the brain do not provoke an immune response (110). The lack of immunogenicity was believed due to the absence of a brain lymphatic drainage system, the presence of the blood-brain barrier (BBB), and the lack of resident specialized APC within the CNS. With a variety of newer studies highlighting that CNS immune access is not quite so precluded (111) (112), it is now more widely accepted that the brain is more immunologically “distinct” than “privileged,” (113), and the contribution of an immunologically distinct CNS to perceived T cell ignorance is less clear. Likewise, while GBM is not a heavily T cell-infiltrated tumor, activated T cells clearly traffic into GBM to represent anywhere from 4-40% of immune cells present (reviewed in (114)), with such infiltration potentially associated with greater overall survival (115).

While the contributory role of anatomic barriers, such as the BBB, to a conceptual T cell ignorance remains somewhat indeterminate, one very novel contributing mechanism newly
discovered in GBM is that of T cell sequestration. Our group has recently found that large numbers of mature T cells become trapped in the bone marrow of patients and mice with GBM, a phenomenon that appears to characterize tumors of the intracranial compartment exclusively. The observed sequestration exists in the context of significant pre-treatment lymphopenia and newly described hyposplenism in the GBM patient population. According to our analysis of 300 treatment-naïve GBM patients, substantial reductions in spleen size (>50%) and severe T cell lymphopenia are found with an approximate 25-30% frequency. Both CD4+ and CD8+ T cell counts significantly drop in peripheral blood, and approximately 15-20% of patients present with AIDS-level CD4+ counts (<200/uL) (116). Multiple mouse glioma models recapitulate these findings. Importantly, sequestration of T cells in bone marrow appears to result from loss of the sphingosine-1-phosphate receptor 1 (S1P1) from the T cell surface in the tumor bearing state, precluding marrow egress. Conversely, stabilization of S1P1 genetically on T cells extricates them from the bone marrow, obviates sequestration-imposed ignorance, and licenses T cell activating therapies in murine models of GBM (116). Thus, T cell sequestration appears to be a new mode of T cell dysfunction in GBM, most appropriately categorized as T cell ignorance.

CONCLUSION

The immune system is increasingly recognized for its role in preventing the development and restraining the progress of cancer. Failure of the immune system to function adequately, whether by immunodeficiency or autoimmunity, is associated with increased prevalence of cancer. Furthermore, many tumors themselves can leave patients in an immune-deficient state, more likely to succumb to infections or other illnesses. Among these is GBM, the most common and the most lethal primary brain tumor. GBM is capable of expertly inhibiting the immune system, eliciting
the full array of T cell dysfunction, including senescence, anergy, tolerance, exhaustion, and ignorance. Each of these states reflects several shared features of T cell dysfunction, ultimately converging upon decreased proliferative capacity and effector function. To date, these shared features have often resulted in confusion of the relevant terms for dysfunction within the literature. In this review, we clarify the unique molecular mechanisms and transcriptional programs underlying each mode of GBM-induced T cell dysfunction, with the hope that a better understanding may enable the development of targeted and preventative therapeutics, improving the efficacy of immunotherapies for GBM.

1. Erlich P. Über den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd 1909;5:273-90.
2. Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery 2012;71(2):201-22; discussion 22-3 doi 10.1227/NEU.0b013e31824f840d.
3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine 2005;352(10):987-96 doi 10.1056/NEJMoa043330.
4. Soeda A, Hara A, Kunisada T, Yoshimura S, Iwama T, Park DM. The evidence of glioblastoma heterogeneity. Scientific reports 2015;5:7979 doi 10.1038/srep07979.
5. Brooks WH, Horwitz DA, Netsky MG. Evidence for tumor-specific immune response in patients with primary brain tumors. Surgical forum 1972;23(0):430-2.
6. Nduom EK, Weller M, Heimberger AB. Immunosuppressive mechanisms in glioblastoma. Neuro-oncology 2015;17 Suppl 7:vii9-vii14 doi 10.1093/neuonc/nov151.
7. Fecci PE, Heimberger AB, Sampson JH. Immunotherapy for primary brain tumors: no longer a matter of privilege. Clinical cancer research : an official journal of the American Association for Cancer Research 2014;20(22):5620-9 doi 10.1158/1078-0432.CCR-14-0832.
8. Brooks WH, Roszman TL, Mahaley MS, Woosley RE. Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clinical and experimental immunology 1977;29(1):61-6.
9. Brooks WH, Roszman TL, Rogers AS. Impairment of rosette-forming T lymphocytes in patients with primary intracranial tumors. Cancer 1976;37(4):1869-73.
10. Akbar AN, Henson SM, Lanna A. Senescence of T Lymphocytes: Implications for Enhancing Human Immunity. Trends in immunology 2016;37(12):866-76 doi 10.1016/j.it.2016.09.002.

11. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Experimental cell research 1961;25:585-621.

12. Watson JD. Origin of concatemeric T7 DNA. Nature: New biology 1972;239(94):197-201.

13. Shay JW, Zou Y, Hiyama E, Wright WE. Telomerase and cancer. Human molecular genetics 2001;10(7):677-85.

14. Hayat MA. Tumor dormancy, quiescence, and senescence: aging, cancer, and noncancer pathologies. volume <1> p.

15. Plunkett FJ, Franzese O, Belaramani LL, Fletcher JM, Gilmour KC, Sharifi R, et al. The impact of telomere erosion on memory CD8+ T cells in patients with X-linked lymphoproliferative syndrome. Mechanisms of ageing and development 2005;126(8):855-65 doi 10.1016/j.mad.2005.03.006.

16. Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, et al. Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. Aids 1996;10(8):F17-22.

17. Wu K, Higashi N, Hansen ER, Lund M, Bang K, Thestrup-Pedersen K. Telomerase activity is increased and telomere length shortened in T cells from blood of patients with atopic dermatitis and psoriasis. Journal of immunology 2000;165(8):4742-7.

18. Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. Journal of leukocyte biology 2010;87(1):107-16 doi 10.1189/jlb.0809566.

19. Strioga M, Pasukoniene V, Characiejus D. CD8+ and CD8+ CD57+ T cells and their role in health and disease. Immunology 2011;134(1):17-32 doi 10.1111/j.1365-2567.2011.03470.x.

20. Wu RC, Hwu P, Radvanyi LG. New insights on the role of CD8(+)CD57(+) T-cells in cancer. Oncoimmunology 2012;1(6):954-6 doi 10.4161/oni.20307.

21. Fornara O, Odeberg J, Wolmer Solberg N, Tammik C, Skarman P, Peredo I, et al. Poor survival in glioblastoma patients is associated with early signs of immunosenescence in the CD4 T-cell compartment after surgery. Oncoimmunology 2015;4(9):e1036211 doi 10.1080/2162402X.2015.1036211.

22. Lamas A, Lopez E, Carrio R, Lopez DM. Adipocyte and leptin accumulation in tumor-induced thymic involution. International journal of molecular medicine 2016;37(1):133-8 doi 10.3892/ijmm.2015.2392.

23. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nature immunology 2004;5(2):133-9 doi 10.1038/ni1033.

24. Wheeler CJ, Black KL, Liu G, Ying H, Yu JS, Zhang W, et al. Thymic CD8+ T cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. Journal of immunology 2003;171(9):4927-33.

25. Somech R. T-cell receptor excision circles in primary immunodeficiencies and other T-cell immune disorders. Current opinion in allergy and clinical immunology 2011;11(6):517-24 doi 10.1097/ACI.0b013e32834c233a.
26. Prins RM, Graf MR, Merchant RE, Black KL, Wheeler CJ. Thymic function and output of recent thymic emigrant T cells during intracranial glioma progression. Journal of neuro-oncology 2003;64(1-2):45-54.

27. Andaloussi AE, Han Y, Lesniak MS. Progression of intracranial glioma disrupts thymic homeostasis and induces T-cell apoptosis in vivo. Cancer Immunother 2008;57(12):1807-16 doi 10.1007/s00262-008-0508-3.

28. Triantafyllopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nature immunology 2017;18(7):716-24 doi 10.1038/nri.3731.

29. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nature immunology 2017;18(7):716-24 doi 10.1038/nri.3731.

30. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nature reviews Immunology 2005;5(10):772-82 doi 10.1038/ni1707.

31. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends in immunology 2014;35(2):51-60 doi 10.1016/j.it.2013.10.001.

32. Redmond WL, Marincek BC, Sherman LA. Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. Journal of immunology 2005;174(4):2046-53.

33. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature immunology 2010;11(1):7-13 doi 10.1038/ni.1818.

34. Gilliet M, Kuchroo VK. T cell peripheral tolerance. Immunological Reviews 2011;245(1):150-62 doi 10.1111/j.1600-065X.2011.01371.x.

35. Hahne M, Rimoldi D, Schröter M, Romero P, Schreier M, French LE, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996;274(5291):1363-6.

36. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--a mechanism of immune evasion? Nature medicine 1996;2(12):1361-6.

37. Didenko VV, Ngo HN, Minchew C, Baskin DS. Apoptosis of T lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism. Journal of neurosurgery 2002;96(3):580-4 doi 10.3171/jns.2002.96.3.0580.

38. Walker DG, Chuaa T, Rist Mj, Pender MP. T-cell apoptosis in human glioblastoma multiforme: implications for immunotherapy. Journal of neuroimmunology 2006;175(1-2):59-68 doi 10.1016/j.jneuroim.2006.03.006.

39. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. Viral immune evasion due to persistence of activated T cells without effector function. The Journal of experimental medicine 1998;188(12):2205-13.

40. Maloy KJ, Erdmann I, Basch V, Sierro S, Kramps TA, Zinkernagel RM, et al. Intralymphatic immunization enhances DNA vaccination. Proceedings of the National Academy of Sciences of the United States of America 2001;98(6):3299-303 doi 10.1073/pnas.051630798.
42. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. The Journal of experimental medicine 2001;193(11):1303-10.

43. Hall ED, Travis MA. Attenuation of progressive brain hypoperfusion following experimental subarachnoid hemorrhage by large intravenous doses of methylprednisolone. Exp Neurol 1988;99(3):594-606.

44. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006;66(6):3294-302 doi 10.1158/0008-5472.can-05-3773.

45. Andaloussi AE, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme1. Neuro-Oncology 2006;8(3):234-43 doi 10.1215/15228517-2006-006.

46. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clinical cancer research : an official journal of the American Association for Cancer Research 2006;12(14 Pt 1):4294-305 doi 10.1158/1078-0432.CCR-06-0053.

47. Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009;30(5):626-35 doi 10.1016/j.immuni.2009.05.002.

48. Wainwright DA, Sengupta S, Han Y, Lesniak MS. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro-oncology 2011;13(12):1308-23 doi 10.1093/neuonc/nor134.

49. Thornton AM, Korty PE, Tran DQ, Wohlert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. Journal of immunology 2010;184(7):3433-41 doi 10.4049/jimmunol.0904028.

50. Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by glioblastoma cells lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro-oncology 2012;14(5):584-95 doi 10.1093/neuonc/nos014.

51. Choi BD, Fecci PE, Sampson JH. Regulatory T cells move in when gliomas say "I Do". Clinical cancer research : an official journal of the American Association for Cancer Research 2012;18(22):6086-8 doi 10.1158/1078-0432.CCR-12-2801.

52. Heimberger AB, Kong LY, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Wei J, et al. The role of tregs in human glioma patients and their inhibition with a novel STAT-3 inhibitor. Clin Neurosurg 2009;56:98-106.

53. Xu L, Xiao H, Xu M, Zhou C, Yi L, Liang H. Glioma-derived T cell immunoglobulin- and mucin domain-containing molecule-4 (TIM4) contributes to tumor tolerance. J Biol Chem 2011;286(42):36694-9 doi 10.1074/jbc.M111.292540.

54. El Andaloussi A, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. Journal of neurosurgery 2006;105(3):430-7 doi 10.3171/jns.2006.105.3.430.

55. Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg NM, et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody...
treatment: a phase I/II study in metastatic melanoma patients. Clinical cancer research: an official journal of the American Association for Cancer Research 2010;16(20):5067-78 doi 10.1158/1078-0432.CCR-10-1757.

56. Sampson JH, Schmitting R, Archer GE, Congdon KL, Nair SK, Reap EA, et al. A pilot study of IL-2Ralpha blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PloS one 2012;7(2):e31046 doi 10.1371/journal.pone.0031046.

57. Ronchetti S, Ricci E, Petrillo MG, Cari L, Migliorati G, Nocentini G, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015;2015:171520 doi 10.1155/2015/171520.

58. Miska J, Rashidi A, Chang AL, Muroski ME, Han Y, Zhang L, et al. Anti-GITR therapy promotes immunity against malignant glioma in a murine model. Cancer Immunol Immunother 2016;65(12):1555-67 doi 10.1007/s00262-016-1912-8.

59. Tai X, Van Laethem F, Pobezinsky L, Guinter T, Sharrow SO, Adams A, et al. Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood 2012;119(22):5155-63 doi 10.1182/blood-2011-11-388918.

60. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer immunology research 2013;1(1):32-42 doi 10.1158/2326-6066.CIR-13-0013.

61. Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong L-Y, et al. The Incidence, Correlation with Tumor Infiltrating Inflammation, and Prognosis of p-STAT3 Expression in Human Gliomas. Clinical cancer research: an official journal of the American Association for Cancer Research 2008;14(24):8228-35 doi 10.1158/1078-0432.CCR-08-1329.

62. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009;9(11):798-809 doi 10.1038/nrc2734.

63. Piao Y, Henry V, Tiao N, Park SY, Martinez-Ledesma J, Dong JW, et al. Targeting intercellular adhesion molecule-1 prolongs survival in mice bearing bevacizumab-resistant glioblastoma. Oncotarget 2017 doi 10.18632/oncotarget.18859.

64. Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I, et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer research 2007;67(20):9630-6 doi 10.1158/0008-5472.CAN-07-1243.

65. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-oncology 2006;8(3):261-79 doi 10.1215/15228517-2006-008.

66. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature medicine 2005;11(12):1314-21 doi 10.1038/nm1325.

67. Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. Journal of immunology 2007;178(11):6730-3.
Wei J, Wang F, Kong LY, Xu S, Doucette T, Ferguson SD, et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer research 2013;73(13):3913-26 doi 10.1158/0008-5472.CAN-12-4318.

Akiyama Y, Nonomura C, Ashizawa T, Iizuka A, Kondou R, Miyata H, et al. The anti-tumor activity of the STAT3 inhibitor STX-0119 occurs via promotion of tumor-infiltrating lymphocyte accumulation in temozolomide-resistant glioblastoma cell line. Immunol Lett 2017;190:20-5 doi 10.1016/j.imlet.2017.07.005.

Hussain SF, Kong L-Y, Jordan J, Conrad C, Madden T, Fokt I, et al. A Novel Small Molecule Inhibitor of Signal Transducers and Activators of Transcription 3 Reverses Immune Tolerance in Malignant Glioma Patients. Cancer Research 2007;67(20):9630.

Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl Immunol 2006;17(1):58-60 doi 10.1016/j.trim.2006.09.017.

Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery 2013;72(6):1031-8; discussion 8-9 doi 10.1227/NEU.0b013e31828cf945.

Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clinical cancer research : an official journal of the American Association for Cancer Research 2012;18(22):6110-21 doi 10.1158/1078-0432.CCR-12-0514.

Hanihara M, Kawataki T, Oh-Oka K, Mitsuka N, Nakao A, Kinouchi H. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. Journal of neurosurgery 2016;124(6):1594-601 doi 10.3171/2015.5.JNS141901.
81. Beverly B, Kang SM, Lenardo MJ, Schwartz RH. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. International immunology 1992;4(6):661-71.

82. Fathman CG, Lineberry NB. Molecular mechanisms of CD4+ T-cell anergy. Nature reviews Immunology 2007;7(8):599-609 doi 10.1038/nri2131.

83. Elliott LH, Brooks WH, Roszman TL. Cytokine basis for the impaired activation of lymphocytes from patients with primary intracranial tumors. Journal of immunology 1984;132(3):1208-15.

84. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. The Journal of experimental medicine 2012;209(6):1201-17 doi 10.1084/jem.20112741.

85. Martinez GJ, Pereira RM, Aijo T, Kim EY, Marangoni F, Pipkin ME, et al. The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells. Immunity 2015;42(2):265-78 doi 10.1016/j.immuni.2015.01.006.

86. Abe BT, Shin DS, Mocholi E, Macian F. NFAT1 supports tumor-induced anergy of CD4(+) T cells. Cancer research 2012;72(18):4642-51 doi 10.1158/0008-5472.CAN-11-3775.

87. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. Journal of virology 2003;77(8):4911-27.

88. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients.

89. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Molecular signature of CD8(+ T cell exhaustion during chronic viral infection. Immunity 2007;27(4):670-84 doi 10.1016/j.immuni.2007.09.006.

90. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson MA, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8(+) T cells in HIV infection. PLoS pathogens 2014;10(7):e1004251 doi 10.1371/journal.ppat.1004251.

91. Bengsch B, Wherry EJ. The Importance of Cooperation: Partnerless NFAT Induces T Cell Exhaustion. Immunity 2015;42(2):203-5 doi https://doi.org/10.1016/j.immuni.2015.01.023.

92. Gupta PK, Godec J, Wolski D, Adland E, Yates K, Pauken KE, et al. CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS pathogens 2015;11(10):e1005177 doi 10.1371/journal.ppat.1005177.

93. Liu Z, Han H, He X, Li S, Wu C, Yu C, et al. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol Lett 2016;11(3):1829-34 doi 10.3892/ol.2016.4142.

94. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010;207(10):2187-94 doi 10.1084/jem.20100643.

95. Woroniecka K, Chongsathidkiet P, Rhodin KE, Kemeny HR, DeChant CA, Farber SH, et al. T cell exhaustion signatures vary with tumor type and are severe in
96. Li J, Liu X, Duan Y, Liu Y, Wang H, Lian S, et al. Combined Blockade of T Cell Immunoglobulin and Mucin Domain 3 and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Results in Durable Therapeutic Efficacy in Mice with Intracranial Gliomas. Med Sci Monit 2017;23:3593-602.

97. Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clinical cancer research : an official journal of the American Association for Cancer Research 2016 doi 10.1158/1078-0432.CCR-15-1535.

98. Huard B, Gaulard P, Faure F, Hercend T, Triebel F. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 1994;39(3):213-7 doi 10.1007/bf00241263.

99. Huard B, Tournier M, Hercend T, Triebel F, Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol 1994;24(12):3216-21 doi 10.1002/eji.1830241246.

100. Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, et al. LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol 2010;184(11):6545-51 doi 10.4049/jimmunol.0903879.

101. Davis DM. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nature reviews Immunology 2007;7(3):238-43 doi 10.1038/nri2020.

102. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nature Reviews Immunology 2014;15:45 doi 10.1038/nri3790.

103. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. Journal of immunology 2011;186(3):1338-42 doi 10.4049/jimmunol.1003081.

104. Mostafa H, Pala A, Högel J, Hlavac M, Dietrich E, Westhoff MA, et al. Immune phenotypes predict survival in patients with glioblastoma multiforme. Journal of Hematology & Oncology 2016;9(1):77 doi 10.1186/s13045-016-0272-3.

105. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunological Reviews 2017;276(1):121-44 doi 10.1111/imr.12528.

106. Guo H, Nan Y, Zhen Y, Zhang Y, Guo L, Yu K, et al. miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. Tumor Biology 2016;37(10):13751-61 doi 10.1007/s13277-016-5219-3.

107. Macintyre Andrew N, Gerriets Valerie A, Nichols Amanda G, Michalek Ryan D, Rudolph Michael C, Deoliveira D, et al. The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function. Cell Metabolism 2014;20(1):61-72 doi https://doi.org/10.1016/j.cmet.2014.05.004.

108. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. 2015;6:6692 doi 10.1038/ncomms7692.

https://www.nature.com/articles/ncomms7692#supplementary-information.
109. Chang C-H, Qiu J, O'Sullivan D, Buck Michael D, Noguchi T, Curtis Jonathan D, et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015;162(6):1229-41 doi https://doi.org/10.1016/j.cell.2015.08.016.

110. Murphy JB, Sturm E. Conditions Determining the Transplantability of Tissues in the Brain. The Journal of experimental medicine 1923;38(2):183-97.

111. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337-41 doi 10.1038/nature14432.

112. Laman JD, Weller RO. Drainage of Cells and Soluble Antigen from the CNS to Regional Lymph Nodes. Journal of Neuroimmune Pharmacology 2013;8(4):840-56 doi 10.1007/s11481-013-9470-8.

113. Heimberger AB, Sampson JH. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro-oncology 2011;13(1):3-13 doi 10.1093/neuonc/noq169.

114. Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B. Immune microenvironment of gliomas. Lab Invest 2017;97(5):498-518 doi 10.1038/labinvest.2017.19.

115. Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clinical cancer research : an official journal of the American Association for Cancer Research 2011;17(13):4296-308 doi 10.1158/1078-0432.CCR-10-2557.

116. Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, et al. S1P1 loss mediates T-cell sequestration in bone marrow amidst glioblastoma. Nature Medicine, in revision.

839

840

841

842

843

844

845

846
FIGURES

Figure 1: Senescence. A) T cell senescence results from telomere shortening as a result of T cell proliferation/activation or through DNA damage (eg. exposure to reactive oxygen species (ROS)). CD57 serves as a marker for senescent T cells. B) Thymic involution, or thymic shrinkage, occurs with age and is prominent in GBM, as evidenced by reduced recent thymic emigrants (RTE) and T-cell Receptor Excision Circles (TRECs). Redrawn from an illustration by Megan Llewellyn, MSMI; copyright Duke University with permission under a CC-BY 4.0 license.

Figure 2: Tolerance. A) Peripheral deletion is a form of peripheral tolerance. Peripheral deletion in GBM is accomplished through FasL-mediated apoptosis. B) T_{reg} induce immunosuppressive effects both peripherally and at the tumor site in GBM. STAT3 and IDO both modulate T_{reg} function, resulting in further immunosuppression. Redrawn from an illustration by Megan Llewellyn, MSMI; copyright Duke University with permission under a CC-BY 4.0 license.

Figure 3: Anergy. A) Historically, anergy described the lack of delayed type hypersensitivity (DTH) responses when GBM patients failed to react to recall antigens. B) Clonal or in vitro anergy describes a mostly unresponsive state elicited by insufficient co-stimulation resulting in defective RAS/MAPK activation. Defective RAS/MAPK activation results in decreased AP-1 transcription,
preventing T cell activation. C) Adaptive tolerance, or *in vivo* anergy, results from continuous low-
levels of antigen exposure, leading to impairments in IL-2 production and T cell proliferation
through deficits in Zap70 kinase activity. Defective Zap70 activation results in impaired
mobilization of calcium and NF-kB. Redrawn from an illustration by Megan Llewellyn, MSMI;
copyright Duke University with permission under a CC-BY 4.0 license.

Figure 4: Exhaustion. Physiologic coupling of NFAT and AP-1 results in expression of activating
genes (i.e. IL-2). In the course of chronic antigen exposure, failure of NFAT to complex AP-1
leads to expression of inhibitory checkpoints. Redrawn from an illustration by Megan Llewellyn,
MSMI; copyright Duke University with permission under a CC-BY 4.0 license.

Figure 5: Ignorance. A) The brain has long been characterized as immunologically “privileged,”
with limited ability of the immune system to infiltrate. Today, the brain is recognized as
“immunologically distinct,” where immune cells can and do infiltrate, yet the microenvironment
may result in unique forms of immunosuppression. B) Clinically significant lymphopenia in GBM
patients in part due to bone marrow T cell sequestration as a result of S1P1 loss. Redrawn from an
illustration by Megan Llewellyn, MSMI; copyright Duke University with permission under a CC-
BY 4.0 license.
Figure 1:

A T-cell senescence

- Telomere shortening
- Reactive oxygen species
- CD57
- Decreased proliferative ability

B Thymic involution

- T-cell receptor excision circles
- Recent thymic emigrants
- Reduced RTE
- Reduced TREC
Figure 2:

A) Peripheral deletion
- GBM
- FasL
- Fas
- Microglial cell
- Upregulation
- Treg suppression
- Treg
- T-cell apoptosis
- Decreased IL-2 and IFNγ
- TGFβ
- IL-10
- STAT3

B) Treg suppression
- Tumor-associated macrophage
- Dendritic cell
- STAT3
- Increased proliferation
- IDO
- Treg recruitment
- Promotes T-cell apoptosis
- Decreased IL-2 and IFNγ
- Stimulates secretion of IL-10
- Teff
Figure 3:

A. Lack of DTH

Small reaction to tuberculin challenge after a repeat exposure to the antigen

B. Clonal anergy

Recall antigen (e.g., tuberculin antigen)

No DTH reaction

No AP-1 transcription

No NFAT activation

No IL-2 transcription

No co-stimulation

Insufficient co-stimulation

CTLA-4 competes with CD28

No RAS/MAPK activation

C. Adaptive tolerance

No IL-2 transcription
Figure 4:

Expression of activating genes

Decreased effector function

Overexpression of immune checkpoints

Chronic antigen exposure

- IL-2
- AP-1
- NFAT
- Teff
- Chronic antigen exposure
- TIM-3
- LAG-3
- PD-1
- CTLA-4
- BTLA
- 2B4
- TIGIT
- CD160
- CD39

Research.
Figure 5:

A Privilege

B Sequestration

GBM

SIP1

Naive T cell
Clinical Cancer Research

T-Cell Dysfunction in Glioblastoma: Applying a New Framework
Karolina I. Woroniecka, Kristen E Rhodin, Pakawat Chongsathidkiet, et al.

Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-18-0047

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2018/03/28/1078-0432.CCR-18-0047. Click on “Request Permissions” which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.