Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin$_{1A}$ Receptor

Parijat Sarkar1 · Akrati Bhat1 · Amitabha Chattopadhyay1

Received: 7 June 2022 / Accepted: 5 August 2022 / Published online: 20 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin$_{1A}$ receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin$_{1A}$ receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin$_{1A}$ receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin$_{1A}$ receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin$_{1A}$ receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin$_{1A}$ receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.

Keywords GPCR · Thermal stability · Serotonin$_{1A}$ receptors · Cholesterol · CRAC · MβCD

Abbreviations
BCA Bicinchoninic acid
CRAC Cholesterol recognition/interaction amino acid consensus
GPCR G protein-coupled receptor
MβCD Methyl-β-cyclodextrin
FCS Fetal calf serum
PMSF Phenylmethylsulfonyl fluoride

Introduction
G protein-coupled receptors (GPCRs) are the largest and the most diverse class of proteins in higher eukaryotic plasma membranes that facilitate a gamut of signal transduction processes across the membrane (Katritch et al. 2013; Chattopadhyay 2014; Sakmar 2017). A common mechanism of signal transduction by GPCRs requires their activation by extracellular ligands followed by relay of signals to the cellular interior through coordinated structural changes in their transmembrane (or extramembranous) regions (Erlandson et al. 2018; Weis and Kobilka 2018; Pal and Chattopadhyay 2019; Wingler and Lefkowitz 2020). Since GPCRs regulate numerous crucial physiological processes that include cellular metabolism, neurotransmission, growth, immune response and cellular differentiation, they have emerged as major therapeutic targets (Jacobson 2015; Sriram and Insel 2018) and account for ~40% of current drug targets across all clinical areas (Chan et al. 2019; Insel et al. 2019). The serotonin$_{1A}$ receptor, an important neurotransmitter receptor which belongs to the GPCR family, is extensively studied among the serotonin receptors and mediates a multitude of neurological, behavioral and cognitive functions (Pucadyil et al. 2005; Kalipatnapu and Chattopadhyay 2007; Müller et al. 2007; Glikmann-Johnston et al. 2015; Sarkar et al. 2018, 2021). Due to the essential role of the serotonin$_{1A}$ receptor in human physiology, it represents a major therapeutic target in developing drugs against neuropsychiatric disorders such as depression, anxiety and even cancer (Lacivita et al. 2008; Fiorino et al. 2014).
The sensitivity of GPCRs to membrane cholesterol constitutes an exciting area of research in GPCR biology (Pucadyil and Chattopadhyay 2006; Paila and Chattopadhyay 2010; Oates and Watts 2011; Jafurulla and Chattopadhyay 2013; Gimpl 2016; Jafurulla et al. 2019). Work from our laboratory, using a judicious combination of experimental and simulation approaches, has previously established that the serotonin₁A receptor exhibits sensitivity toward membrane cholesterol in terms of its organization, dynamics, signaling and endocytosis (Pucadyil and Chattopadhyay 2004, 2007; Paila et al. 2008, 2011; Shrivastava et al. 2010; Jafurulla et al. 2014; Ganguly et al. 2011; Prasanna et al. 2016; Ganguly and Chattopadhyay 2010; Chakraborty et al. 2018; Kumar and Chattopadhyay 2020; Sarkar et al. 2020; Kumar et al. 2021). It has been proposed that the sensitivity of GPCRs toward membrane cholesterol could occur either through specific molecular interactions via structural motifs present in the receptor, or due to cholesterol-induced alterations in membrane physical properties, or by a combination of both these mechanisms (Paila and Chattopadhyay 2009; Jafurulla et al. 2019). In this backdrop, cholesterol interaction motifs such as the cholesterol recognition/interaction amino acid consensus (CRAC) motif offer putative interaction/binding sites on GPCRs that could promote the cholesterol-dependent function of these receptors.

We previously reported the presence of CRAC motifs in transmembrane helices 2, 5 and 7 of the serotonin₁A receptor that are conserved over natural evolution (Jafurulla et al. 2011; Sarkar and Chattopadhyay 2020; Fatakia et al. 2019, 2020). Notably, we recently attributed cholesterol dependence of serotonin₁A receptor signaling to a CRAC motif present in the transmembrane helix 2 of the receptor (CRAC motif I, see Fig. 1) that facilitates a preferential association with membrane cholesterol (Kumar et al. 2021). We showed that a key lysine residue (K101) in this CRAC motif of the serotonin₁A receptor establishes polar interaction with the hydroxyl headgroup of cholesterol and thereby acts as a molecular sensor of membrane cholesterol (Kumar et al. 2021). In addition to modulating organization, dynamics and function of the serotonin₁A receptor, we previously showed that membrane cholesterol stabilizes the receptor against thermal deactivation (Saxena and Chattopadhyay 2012). Although cholesterol sensitivity of the serotonin₁A receptor has been previously studied, the molecular basis of cholesterol-induced stability of the serotonin₁A receptor has not been explored yet. In this work, we addressed the possible role of the K101 residue in cholesterol-induced thermal stability of the serotonin₁A receptor.

Materials and Methods

Materials

Bovine serum albumin (BSA), EDTA, MgCl₂, MnCl₂, doxycycline, hygromycin B solution, methyl-β-cyclodextrin...
Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal...

(MβCD), phenylmethylsulfonyl fluoride (PMSF), penicillin, streptomycin, gentamicin sulphate, serotonin and Tris were obtained from Sigma Chemical Co. (St. Louis, MO). DMEM/F-12 [Dulbecco’s modified Eagle’s medium: nutrient mixture F-12 (Ham) (1:1)] and fetal calf serum (FCS) were obtained from Invitrogen/Life Technologies (Grand Island, NY). Bicinchoninic acid (BCA) assay reagent was from Pierce (Rockford, IL). Amplex red cholesterol assay kit was purchased from Molecular Probes/Invitrogen (Eugene, OR). [3H]8-OH-DPAT (specific activity 141.1 Ci/mmol) was purchased from MP Biomedicals (Santa Ana, CA). GF/B glass microfiber filters were from Whatman international (Kent, U.K.). All other chemicals used were of the highest purity available. Water was purified through a Millipore (Bedford, MA) Milli-Q system and used throughout.

Cells and Cell Culture

Human embryonic kidney (HEK-293) cells stably expressing N-terminal myc-tagged wild-type human serotonin1A receptors (termed HEK-5-HT1_A R cells) or K101A mutant were maintained in DMEM/F-12 (1:1) supplemented with 2.4 g/l of sodium bicarbonate, 10% (v/v) FCS, 60 μg/ml penicillin, 50 μg/ml streptomycin, 50 μg/ml gentamicin sulfate and 250 μg/ml hygromycin B (complete media). Cells were maintained in a humidified atmosphere with 5% CO₂ at 37 °C. The cell culture medium was supplemented with 1 μg/ml doxycycline for 24 h for induction of receptor expression prior to experiments.

Membrane Cholesterol Depletion and Estimation

Membrane cholesterol depletion from HEK-5-HT1_A R cells using MβCD (Pucadyil and Chattopadhyay 2007). For this, cells were treated with 10 mM MβCD in serum-free medium for 30 min at 37 °C. Subsequently, to remove the serum-free media containing MβCD, cells were washed with PBS and harvested using ice-cold hypotonic buffer [10 mM Tris, 5 mM EDTA and 0.1 mM PMSF (pH 7.4)]. Cholesterol content of cell membranes was estimated using the Amplex Red cholesterol assay kit (Amundson and Zhou 1999).

Cell Membrane Preparation

Cell membranes were isolated as described previously (Kalipatnapu et al. 2004). Briefly, cells were harvested in ice-cold hypotonic buffer and were homogenized for ~ 15 s with a polytron homogenizer at maximum speed. Following this, the cell lysate was centrifuged at 500×g for 10 min at 4 °C. The post-nuclear supernatant was further centrifuged at 40,000×g for 30 min at 4 °C and the final pellet containing membranes was resuspended in 50 mM Tris buffer (pH 7.4).

Statistical Analysis

Significance levels were evaluated using a Student’s two-tailed unpaired t-test using GraphPad Prism software, version 4.0. Plots were generated using OriginPro 2022, version 9.9 (OriginLab, Northampton, MA).

Results and Discussion

Membrane Cholesterol Depletion from HEK-5-HT1_A R Cells Using MβCD

Membrane cholesterol depletion offers a convenient strategy to monitor cholesterol-dependent functions of GPCRs (Jafurulla et al. 2019). Physical depletion of cholesterol from the plasma membrane is achieved using sterol carriers such as MβCD, a water-soluble carbohydrate polymer with seven residues of methylated-glucose (Kilsdonk et al. 1995; Christian et al. 1997). MβCD selectively and efficiently extracts membrane cholesterol under carefully controlled conditions by including it in a central nonpolar
cavity (Zidovetzki and Levitan 2007; Mahammad and Parmryd 2015; Vahedi and Farnoud 2020). We depleted membrane cholesterol using 10 mM MβCD in HEK-293 cells stably expressing the wild-type or K101A mutant human serotonin1A receptors. We previously showed that the human serotonin1A receptor heterologously expressed in HEK-5-HT1AR cells harbors functional and pharmacological characteristics similar to the native receptor expressed in the hippocampus and can, therefore, be used to reliably explore aspects of receptor biology (Kumar et al. 2019). Figure 2 shows membrane cholesterol content in HEK-5-HT1AR cells expressing the wild-type or K101A mutant serotonin1A receptors upon treatment with 10 mM MβCD for 30 min. We observed ~45% reduction in membrane cholesterol content in cells expressing the wild-type serotonin1A receptor upon treatment with MβCD (Fig. 2). Cells expressing the K101A mutant serotonin1A receptor showed similar (~51%) reduction in membrane cholesterol content upon treatment with 10 mM MβCD. Importantly, we previously showed that membrane cholesterol depletion using 10 mM MβCD did not result in a notable effect on the plasma membrane localization of the wild-type and K101A mutant serotonin1A receptors in HEK-5-HT1AR cells (Kumar et al. 2021).

Cholesterol Stabilizes the Serotonin1A Receptor

We monitored the agonist binding activity of the serotonin1A receptor as a readout of receptor stability in membranes of varying cholesterol under high temperature that could affect receptor stability. To explore the effect of cholesterol depletion on the thermal stability of the serotonin1A receptor, we monitored ligand binding of the receptor at 25 °C in control and cholesterol-depleted membranes pre-treated at 37 °C for varying time periods. Figure 3a shows that in cells expressing the wild-type serotonin1A receptors, ligand binding exhibited a progressive reduction with an increase in the time of pre-treatment for both control (blue) and cholesterol-depleted (red) membranes. The reduction in ligand binding in these cases could be due to inactivation of the serotonin1A receptor since it is known that membrane proteins could exhibit a loss of structure and function due to thermal deactivation when exposed to high temperature (Moore and Wetlaufer 1973; González Flecha 2017; Ponleitner et al. 2022). Notably, the extent of reduction in ligand binding was found to be significantly more in case of cholesterol-depleted membranes relative to control membranes (see Fig. 3a, b). For example, after 4 h of pre-treatment at 37 °C, ligand binding was reduced to ~61% and ~30% relative to ligand binding values monitored in the absence of any pre-treatment (0 h) in control and cholesterol-depleted membranes, respectively. These results suggest that membrane cholesterol could provide considerable stability to the serotonin1A receptor against thermal deactivation since receptors in cholesterol-depleted membranes show a significant reduction in ligand binding activity relative to control membranes with normal cholesterol content. This is also apparent from different extents of reduction in ligand binding for control and cholesterol-depleted membranes when incubated for varying time points at 37 °C. These results are in agreement with our previous work where we showed that the serotonin1A receptor enjoys less sensitivity to thermal deactivation in membranes with relatively high cholesterol content relative to receptors in cholesterol-depleted membranes (Saxena and Chattopadhyay 2012).

Role of CRAC Motif in Cholesterol-Induced Thermal Stability

What are the molecular factors that allow the serotonin1A receptor to respond to changes in membrane cholesterol levels in terms of altered thermal stability? To address this, we explored whether mutations in the CRAC motif I of the serotonin1A receptor could make the thermal stability of the mutant receptor insensitive to cholesterol. For this, we monitored the role of K101 residue in CRAC motif I conferring such stability and selectively mutated the lysine residue in the 101 position in this motif to an alanine residue. The rationale behind our approach was that if the K101 residue is involved in providing cholesterol-dependent thermal
Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin1A Receptor, a Mutant Receptor harboring a different residue in place of K101 should be thermally stable, irrespective of membrane cholesterol content. In other words, mutations in amino acids that are involved in providing cholesterol-induced stability by sensing membrane cholesterol, should not support cholesterol-dependent changes in receptor thermal stability (as observed with the wild-type receptor). Importantly, we previously showed that the K101A mutation does not affect receptor expression and downstream signaling (Kumar et al. 2021).

We observed that the K101A mutant did not exhibit any appreciable difference in ligand binding activity upon cholesterol depletion relative to control (normal cholesterol) membranes pre-treated at 37 °C for different time points, thereby implying that the stability of the mutant receptor is independent of membrane cholesterol content (Fig. 3c, d). Although ligand binding values exhibited a progressive reduction with increasing time of pre-treatment for both control (without MβCD, shown in blue) and cholesterol-depleted (red) membranes harboring the K101A mutant serotonin1A receptor, we did not observe any significant difference in ligand binding values for control and cholesterol-depleted membranes even after 4 h at 37 °C (see Fig. 3c, d). For example, after 4 h of pre-treatment at 37 °C, ligand binding was reduced to ~46% and ~47% relative to ligand binding values monitored in the absence of any pre-treatment (0 h) in control and cholesterol-depleted membranes for the K101A mutant serotonin1A receptors, respectively.

![Figure 3](image-url)

Fig. 3 Effect of membrane cholesterol content on temperature sensitivity of ligand binding of the human serotonin1A receptor. The effect on the stability of the serotonin1A receptor due to change in membrane cholesterol content in a, b wild-type and c, d K101A mutant HEK-293 cells, respectively. Membranes isolated following MβCD treatment were incubated at 37 °C for varying times (1, 2 and 4 h) and radioligand binding assay was performed at 25 °C. Values are expressed as percentages of specific binding obtained in membranes in the absence of pre-treatment at 37 °C (0 h) in respective conditions. As shown in the figure, the sensitivity of receptor thermal stability to membrane cholesterol content is lost in the case of the K101A mutant, suggesting a possible role of K101 (in CRAC motif I) in conferring cholesterol-induced stability to the serotonin1A receptor. Data represent means ± SE of three independent experiments (⁎ and *** correspond to significant (p < 0.05 and p < 0.001, respectively) difference in specific [3H]8-OH-DPAT binding to wild-type serotonin1A receptors in cholesterol-depleted membranes relative to wild-type receptors in membranes without MβCD and pre-incubated for the same time). Blue (■) and red (●) symbols represent radioligand binding data for control (without MβCD treatment) and cholesterol-depleted membranes, respectively (the lines are provided merely as viewing guides). See “Materials and Methods” for more details.
Taken together, these results suggest that the K101 residue in CRAC motif I of the receptor is responsible for the cholesterol-induced thermal stability observed in wild-type serotonin1A receptors.

Cholesterol has been previously shown to increase the thermal stability of membrane proteins such as the Ca2+/Mg2+-ATPase (Ortega et al. 1996), the nicotinic acetylcholine receptor (Perez-Ramirez 1994), the oxytocin receptor (Gimpl and Fahrenholz 2002) and the β\textsubscript{2} adrenergic receptor (Yao and Kobilka 2005; Zocher et al. 2012). However, the molecular basis underlying the cholesterol-induced stability of membrane receptors remains elusive. In this work, we showed that a lysine residue (K101) in the CRAC motif in transmembrane helix 2 is crucial for providing cholesterol-mediated thermal stability to the serotonin1A receptor. Interestingly, it should be noted here that the conformation of the subtype Gi-proteins that couple to the serotonin1A receptor (Emerit et al. 1990; Harikumar and Chattopadhyay 1999; Rao et al. 2020), has previously been reported to be sensitive to temperature (Wong et al. 1985). The reduction in agonist binding observed by us could be due to irreversible thermal denaturation of G-proteins during incubation at 37 °C (Javedekar-Subbedar and Chattopadhyay 2004). We have previously shown using molecular dynamics simulations that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin1A receptor and lowers conformational fluctuations (Patra et al. 2015). Interestingly, molecular dynamics simulations have shown that membrane cholesterol specifically interacts with transmembrane helices of GPCRs (Genheden et al. 2017) such as rhodopsin (Khelashvili et al. 2009), human \(\text{A}_{2\text{A}}\) adenosine receptor (Lyman et al. 2009; Lee and Lyman 2012) and \(\beta_2\) adrenergic receptor (Manna et al. 2016), thereby stabilizing different helices of the receptor. Cholesterol was previously reported to improve the thermal stability of the \(\beta_2\)-adrenergic receptor (Yao and Kobilka 2005), and is necessary for crystallization of the receptor (Cherezov et al. 2007). In addition, cholesterol hemisuccinate, a soluble analog of cholesterol, was shown to stabilize the \(\beta_2\)-adrenergic receptor and improve thermal stability (Hanson et al. 2008). In this overall context, our results could have potential implications in future efforts in structural biology of GPCRs and design of thermally stabilized receptors for drug development.

Acknowledgements A.C. gratefully acknowledges support from CSIR Bhatnagar Fellowship. P.S. was supported as a Senior Project Associate by a CSIR FBR Grant to A.C. (MLP 0146). A.B. was supported as a Project Associate-I by A.C’s CSIR Bhatnagar Fellowship. We gratefully acknowledge members of the Chattopadhyay laboratory for their comments and suggestions.

Author Contributions AC and PS conceptualized the project and designed experiments; PS and AB performed experiments and analyzed data; PS, AB and AC wrote the manuscript; AC edited the manuscript, organized access to research facilities and funding, and provided overall supervision and mentoring.

Data Availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

References

Amundson DM, Zhou M (1999) Fluorometric method for the enzymatic determination of cholesterol. J Biochem Biophys Methods 38:43–52

Bruns RF, Lawson-Wendling K, Pugsley TA (1983) A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem 132:74–81

Chakraborty H, Jafurulla M, Clayton AHA, Chattopadhyay A (2018) Exploring oligomeric state of the serotonin\(_{1A}\) receptor utilizing photobleaching image correlation spectroscopy: implications for receptor function. Farad Discuss 207:409–421

Chan HCS, Li Y, Dahoun T, Vogel H, Yuan S (2019) New binding sites, new opportunities for GPCR drug discovery. Trends Biochem Sci 44:312–330

Chattopadhyay A (2014) GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol 2014:143023

Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human \(\beta_2\)-adrenergic G protein-coupled receptor. Science 318:1258–1265

Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

Emerit MB, El Mestikawy S, Gozlan H, Rouot B, Hamon M (1990) Physical evidence of the coupling of solubilized 5-HT\(_{1A}\) binding sites with G regulatory proteins. Biochem Pharmacol 39:7–18

Erlandsson SC, McMahon C, Kruse AC (2018) Structural basis for G protein-coupled receptor signaling. Annu Rev Biophys 47:9.1-9.18

Fatakia SN, Sarkar P, Chattopadhyay A (2019) A collage of cholesterol interaction motifs in the serotonin\(_{1A}\) receptor: an evolutionary implication for differential cholesterol interaction. Chem Phys Lipids 221:184–192

Fatakia SN, Sarkar P, Chattopadhyay A (2020) Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix v of the serotonin\(_{1A}\) receptor. Chem Phys Lipids 232:104955

Fiorino F, Severino B, Magli E, Ciano A, Caliendo G, Santagada V, Frecentese F, Perissutti E (2014) 5-HT\(_{1A}\) receptor: an old target as a new attractive tool in drug discovery from central nervous system to cancer. J Med Chem 57:4407–4426

Ganguly S, Chattopadhyay A (2010) Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin\(_{1A}\) receptor: a zFCS study. Biophys J 99:1397–1407

Ganguly S, Clayton AHA, Chattopadhyay A (2011) Organization of higher order oligomers of the serotonin\(_{1A}\) receptor explored utilizing homo-FRET in live cells. Biophys J 100:361–368

Genheden S, Essex JW, Lee AG (2017) G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim Biophys Acta 1859:268–281
Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal…

Gimml G (2016) Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids 199:61–73

Gimml G, Fahrenholz F (2002) Cholesterol as stabilizer of the oxytocin receptor. Biochim Biochim Acta 1564:384–392

Glikmann-Johnston Y, Saling MM, Reutens DC, Stout JC (2015) Hippocampal 5-HT1A receptor and spatial learning and memory. Front Pharmacol 6:289

González Flecha FL (2017) Kinetic stability of membrane proteins. Biophys Rev 9:563–572

Gnanasekar M, Cherezov V, Griffith MT et al (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905

Harikumar KG, Chattopadhyay A (1999) Differential discrimination of G-protein-coupling of coupled serotonin1A receptors from bovine hippocampus by an agonist and antagonist. FEBS Lett 457:389–392

Insel PA, Sridam K, Gorr MW, Wiley SZ,Michkov A, Salmerón C, Chinn AM (2019) GPCRomics: an approach to discover GPCR drug targets. Trends Pharmacol Sci 40:378–387

Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98:541–555

Jafurulla M, Chattopadhyay A (2013) Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem 20:47–55

Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404:569–573

Jafurulla M, Rao BD, Sreedevi S, Royassaeh J-M, Covey DF, Chattopadhyay A (2014) Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta 1838:158–163

Jafurulla M, Kumar GA, Rao BD, Chattopadhyay A (2019) A critical analysis of molecular mechanisms underlying membrane cholesterol sensitivity of GPCRs. Adv Exp Med Biol 1115:21–52

Javadk-Subbedar V, Chattopadhyay A (2004) Temperature-dependent interaction of the bovine hippocampal serotonin1A receptor with G-proteins. Mol Membr Biol 21:119–123

Kalipatnapu S, Chattopadhyay A (2007) Membrane organization and function of the serotonin1A receptor. Cell Mol Neurobiol 27:1097–1116

Kalipatnapu S, Pucadyil TJ, Harikumar KG, Chattopadhyay A (2004) Ligand binding characteristics of the human serotonin1A receptor heterologously expressed in CHO cells. BioSci Rep 24:101–115

Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H (2009) Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations. Proteins 76:403–417

Kilsdonk EPC, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H, Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the serotonin1A receptor. Biochemistry 52:2628–2641

Kumar GA, Chattopadhyay A (2020) Statin-induced chronic cholesterol depletion switches GPCR endocytosis and trafficking: insights from the serotonin1A receptor. ACS Chem Neurosci 11:453–465

Kumar GA, Sarkar P, Jafurulla M, Singh SP, Srinivas G, Pande G, Chattopadhyay A (2019) Exploring endocytosis and intracellular trafficking of the human serotonin1A receptor. Biochemistry 58:2628–2641

Kumar GA, Sarkar P, Stepniewski TM, Jafurulla M, Singh SP, Selent J, Chattopadhyay A (2021) A molecular sensor for cholesterol in the human serotonin1A receptor. Sci Adv 7:eabj2922

Lacivita E, Leopoldo M, Berardi F, Perrone R (2008) 5-HT1A receptor, an old target for new therapeutic agents. Curr Top Med Chem 8:1024–1034

Lee JY, Lyman E (2012) Predictions for cholesterol interaction sites on the A2A adenosine receptor. J Am Chem Soc 134:16512–16515

Lyman E, Higgs C, Kim B, Lupyany D, Shelley JC, Farid R, Voth GA (2009) A role for a specific cholesterol interaction in stabilizing the apo configuration of the human A2A adenosine receptor. Structure 17:1660–1668

Mahammad S, Parmryd I (2015) Cholesterol depletion using methyl-β-cyclodextrin. Methods Mol Biol 1232:91–102

Manna M, Niemelä M, Tynkkynen J, Javanainen M, Kulig W, Müller DJ, Rog T, Vattulainen I (2016) Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol. elife 5:e18432

Moore WV, Wettlaufer DB (1973) Circular dichroism of nerve membrane fractions: effects of temperature, pH and electrolytes. J Neurochem 20:135–149

Müller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A receptors. Prog Neurobiol 81:133–178

Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–807

Ortega A, Santiago-Garcia J, Mas-Oliva J, Lepock JR (1996) Cholesterol increases the thermal stability of the Ca2+/Mg2+-ATPase of cardiac microsomes. Biochim Biophys Acta 1283:45–50

Paila YD, Chattopadhyay A (2009) The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj J 26:711–720

Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466

Paila YD, Mutry MRVS, Vairamani M, Chattopadhyay A (2008) Signaling by the human serotonin1A receptor is impaired in cellular model of Smith-Lemli-Opitz syndrome. Biochim Biophys Acta 1778:1508–1516

Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2011) Oligomerization of the serotonin1A receptor in live cells: a time-resolved fluorescence anisotropy approach. J Phys Chem B 115:11439–11447

Pal S, Chattopadhyay A (2019) Extramembranous regions in G protein-coupled receptors: cinderella in receptor biology? J Membr Biol 252:483–497

Patha SM, Chakraborty S, Shahane G, Prasanna X, Sengupta D, Maiti PK, Chattopadhyay A (2015) Differential dynamics of the serotonin1A receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation. Mol Membr Biol 32:127–137

Perez-Ramirez B (1994) Thermal stability of Torpedo californica acetylcholine receptor in a cholesterol lipid environment. Mol Cell Biochem 132:91–99

Ponleitner M, Szöllősi D, El-Kasaby A, Koban F, Freissmuth M, Stocker T (2022) Thermal unfolding of the human serotonin transporter: differential effect by stabilizing and destabilizing mutations and cholesterol on thermodynamic and kinetic stability. Mol Pharmacol 101:95–105

Prasanna X, Sengupta D, Chattopadhyay A (2016) Cholesterol-dependent conformational plasticity in GPCR dimers. Sci Rep 6:31858

Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200

Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333

Pucadyil TJ, Chattopadhyay A (2007) Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin1A receptor in the plasma membrane of living cells. Biochim Biophys Acta 1768:655–668
Sarkar P, Chattopadhyay A (2020) Cholesterol interaction motifs in G
protein-coupled receptors: slippery hot spots? Wiley Interdiscip
Rev Syst Biol Med 12:e1481
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A (2021) Structure,
dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev
13:101–122
Saxena R, Chattopadhyay A (2012) Membrane cholesterol stabilizes the human serotonin_1A receptor. Biochim Biophys Acta 1818:2936–2942
Shrivastava S, Pucadyil TJ, Paila YD, Ganguly S, Chattopadhyay A (2010) Chronic cholesterol depletion using statin impairs the function
and dynamics of human serotonin_1A receptors. Biochemistry 49:5426–5435
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 93:251–258
Vahedi A, Farnoud AM (2020) Cyclodextrins for probing plasma membrane lipids. In: Prasad R, Singh A (eds) Analysis of membrane lipids. Springer, New York, pp 143–160
Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919
Wingler LM, Lefkowitz RJ (2020) Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol 30:736–747
Wong SKF, Martin BR, Tolkovsky AM (1985) Pertussis toxin substrate is a guanosine 5’-β-thio-diphosphate-, ethylmaleimide-, Mg²⁺- and temperature-sensitive GTP-binding protein. Biochem J 232:191–197
Yao Z, Kobilka B (2005) Using synthetic lipids to stabilize purified β2
adrenoceptor in detergent micelles. Anal Biochem 343:344–346
Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324
Zocher M, Zhang C, Rasmussen SG, Kobilka BK, Müller DJ (2012) Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc Natl Acad Sci USA 109:E3463–E3472

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.