Some factors influencing milk somatic cell count of Holstein Friesian and Brown Swiss cows under the Mediterranean climatic conditions

ATAKAN KOÇ and KADIR KIZILKAYA

Department of Animal Science, Faculty of Agriculture, Adnan Menderes University, Aydin, Turkey

Abstract

The aim of this study was to determine the influencing factors on somatic cell count (SCC) in the milk of Holstein Friesian (HF) and Brown Swiss (BS) cows raised on three dairy farms under the Mediterranean climatic conditions in Turkey. For a two-year period, farms were visited monthly to measure daily milk yield (DMY) and collect milk samples from each cow during the morning and evening milking. Total of 1 429 SCC readings from 67 HF and 16 BS cows were analyzed by using repeated measures. Breed \((P<0.01) \), lactation number (LN) \((P<0.01) \), milking time (MT) \((P<0.05) \), lactation month (LM) \((P<0.01) \) and the interactions of breed-LM \((P<0.05) \), herd-LM \((P<0.01) \) and LN-LM \((P<0.01) \) effects on SCC were statistically significant as did the co-variable DMY effect \((P<0.01) \). The effect of herd and herd-MT interactions on SCC were statistically insignificant \((P>0.05) \). The SCC means for BS and HF cows were 5.464±0.060 (291 072 cells/ml) and 5.654±0.029 (450 817 cells/ml), respectively. The SCC mean for morning milking (338 065 cells/ml) was 25 850 cells/ml lower than that of evening milking. The LN4 had the highest SCC mean (490 908 cells/ml) and was statistically different from those of LN1 \((P<0.01) \) and LN2 \((P<0.05) \). The SCC level was the highest in the first LM (601 174 cells/ml) and this level then decreased in the later months. Possible reasons for the difference in SCC means between the breeds are different resistance mechanisms against mastitis, different morphological conformations of udders and different milk yields between these two breeds. The insignificant differences found among herds show the similarities of management, milking hygiene and barn conditions. In order to decrease SCC in milk and increase udder health, some precautions need to be taken like improving milking management, hygiene and barn conditions, milking the cow at uniform intervals, feeding the cows after the milking and applying a mastitis control program.

Keywords: somatic cell count, Holstein Friesian, Brown Swiss, lactation month, milking time

Zusammenfassung

Einige die somatische Zellzahl beeinflussende Faktoren bei Holstein Friesian und Brown Swiss Kühen unter mediterranen Klimabedingungen

Untersucht wurden die somatische Zellzahl (SCC) beeinflussende Faktoren bei 67 Holstein Friesian (HF) und 16 Brown Swiss (BS) Kühen in drei Farmherden unter mediterranen Bedingungen der Türkei. In einem Zeitraum von zwei Jahren konnten monatlich die
täglichen Milchleistungen und insgesamt 1 429 Milchproben der Morgen- und Abendgemelke erfasst werden. Signifikante Einflüsse (P<0,01) auf die SCC wurden nachgewiesen für die Rasse, Laktationsnummer (LN) (P<0,01), Melkzeit (P<0,05), den Laktationsmonat (LM) (P<0,01) und die Interaktionen zwischen Rasse : LM (P<0,05), Herde : LM (P<0,01) und LN : LM (P<0,01) sowie den covariablen Effekt der Milchleistung. Nicht signifikant war der Einfluss der Herde sowie der Interaktion Herde : Melkzeit (P<0,05). Die durchschnittlichen SCC Zahlen betrugen für BS bzw. HF 291 071 bzw. 450 817 Zellen/ml, für das Morgengemelk 338 065 und für das Abendgemelk 363 915 Zellen/ml. Mit steigender Laktationsnummer erhöhten sich die SCC. Die Laktationsmonate beeinflussten signifikant die SCC. Der höchste Wert ergab sich im ersten Laktationsmonat mit 601 174 Zellen/ml und verringerte bereits im zweiten Monat auf 391 742 und im Laufe der Laktation auf 272 898 Zellen/ml. Als mögliche Ursachen für die Unterschiede zwischen den Rassen werden unterschiedliche Resistenzmechanismen gegenüber der Mastitis, unterschiedliche eutermorphologische Eigenschaften oder die Höhe der Milchleistung angenommen. Die nicht signifikanten Differenzen zwischen einzelnen Einflussgrößen werden auf Ähnlichkeiten im Betriebsmanagement, die Melkhygiene und Betriebsbedingungen zurückgeführt. Zur Reduzierung des SCC-Gehaltes wird eine Reihe von notwendigen Veränderungen im Betriebsmanagement empfohlen.

Schlüsselwörter: somatische Zellzahl, Holstein Friesian, Brown Swiss, Laktationsmonat, Melkzeit

Introduction

Somatic cell count (SCC) is one of the most important indicators of hygienic quality of milk. SCC level is also an indicator for the managerial conditions of the dairy farm and a primary trait for improving udder health in breeding programs in many countries (EUROPEAN COMMUNITY 1992, FAHR 2002, KALM 2002). Inefficient management and lack of mastitis control program increase SCC in milk (OMORE et al. 1999). ERSKINE (2001) reported that accepting 200 000 cells/ml as a threshold appears to be reasonable. It is assumed that this threshold distinguishes between healthy and diseased udders (HAAS 2003, SKRZYPEK et al. 2004).

RUPP and BOICHARD (2003) and GULYAS and IVANCSICS (2001) reported that resistance to mastitis varies by breed and genetic variability within a breed. Some European dairy breeds such as Montbeliarde, Abondance, Simmental and Brown Swiss (BS) had lower SCC levels and clinical mastitis frequency than Holsteins (BUSATO et al. 2000, AMIN et al. 2002, RUPP and BOICHARD 2003). The frequency of clinical mastitis increased over time for Holstein populations, due to genetic antagonism between milk production and mastitis resistance (GULYAS and IVANCSICS 2001, IMBAYARWO-CHIKOSI et al. 2001, RUPP and BOICHARD 2003). Morphological conformation of udder was also associated with SCC and the occurrence of mastitis (BUSTAO et al. 2000, BALTAY 2002, MIJIC et al. 2004). It was reported that udder health was one of the strong features of the BS breed (BULOT 2006).

Some research conducted in Turkey showed that the quality of milk is one of the most problems of dairy sector, because the SCC and total bacteria count was generally measured to be higher than EU countries (EYDURAN 2002, GÖNCÜ and ÖZKÜTÜK 2002, FAO 2007).
Production conditions in Turkey vary considerably between the western and the eastern parts of the country. Climatic conditions are more favorable in the western region, allowing the development of commercially oriented dairy farming. The farms in this region are generally small or middle-scale family farms and large scale dairy farms has been increasing mostly in the west part of Turkey, recently. The predominant cattle genotypes in the region are pure-bred HF or its crosses. BS, Simmental and Montbeliarde and their crosses are also raised in the province of Aydın.

This research was aimed to determine the influencing factors on SCC in milk produced at three HF and BS dairy farms under the conditions of Mediterranean climate.

Material and methods

Milk samples from 67 HF and 16 BS cows raised at three dairy farms were collected by monthly visits. Herds were selected randomly and assumed as representative of BS and HF rearing dairy herds in the province. The main source of income for these farms is milk. In addition to clover, hay, roughage and polybra, maize and barley are some of the major crops grown for silage in these farms. However, almost all of these farms buy concentrated feed from the feed factories as well. Some of the characteristics of the farms used in this study are shown in Table 1. The milk production, traits and lactation SCC means of these farms were discussed by KOÇ (2006) and the lactation milk yield mean of HF was reported to be 1 616.7 kg higher than that of BS.

Table 1
Characteristics of the dairy farms
Herd 1
Cows (n=83)
HF (n=67)
BS (n=16)
305 d MY per cow, kg
Barn type
Milking
Milking machine
Feeding
Udder massage
Milking interval, h

The milk samples were stored in an icebox and the direct microscopic somatic cell count (DMS MCC) procedure as outlined in form FDA-2400d was used to determine the SCC in the milk. The milk samples from the morning milking were analyzed on the same day, but the evening samples were stored in a refrigerator overnight and analyzed on the next day. Samples used for the analyses had no visible abnormality nor came from an abnormal udder.

Cows having at least 4 and at most 12 lactation months’ data were included into the analysis. The total number of observations used in the analyses were 1 429 test day SCC. Based-10-logarithmic transformation was applied to the SCC data to create a normal distribution (SHOOK 1982) and the linear mixed model was applied. This statistical model was used:
\[
\log_{10} \text{SCC}_{ijklmn} = \mu + H_i + B_j + P_k + M_l + T_m + (HM)_{ij} + (HT)_{im} + (BM)_{jl} + (PM)_{kl} + \\
+ b(X_{ijklmn} - \bar{X}) + e_{ijklmn}
\]

where is \(\mu \) the overall mean, \(H_i \) the \(i^{th} \) herd effect \((i=1,2,3)\), \(B_j \) the \(j^{th} \) breed effect \((j=BS, HF)\), \(P_k \) the \(k^{th} \) lactation number effect \((k=1,2,3,4)\), \(M_l \) the \(l^{th} \) lactation month effect \((l=1,2,\ldots,12)\), \(T_m \) the \(m^{th} \) milking time effect \((m=\text{morning, evening})\), \((HM)_{ij}\) the interaction between herd and lactation month, \((HT)_{im}\) the interaction between herd and milking time, \((BM)_{jl}\) the interaction between breed and lactation month, \((PM)_{kl}\) the interaction between lactation number and lactation month, \(b \) the regression coefficient of daily milk yield (DMY) per milking on \(\log_{10} \text{SCC} \), \(\bar{X} \) the average DMY per milking, \(X_{ijklmn} \) the DMY and \(e_{ijklmn} \) the residual random error.

The SAS mixed procedure (SAS Inst. 1999) was used to fit the linear mixed model shown in Equation 1 with corresponding \(R \) matrix, which is a block diagonal with blocks corresponding to the individuals and with each block having the compound-symmetry (CS) structure. The form of the \(R \) matrix was as follows:

\[
R = \begin{bmatrix}
R_1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & R_{83}
\end{bmatrix},
\]

where \(\begin{bmatrix}
\sigma^2 + \sigma_i & \sigma_i & \cdots & \sigma_i \\
\sigma_i & \sigma^2 + \sigma_i & \cdots & \sigma_i \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_i & \sigma_i & \cdots & \sigma^2 + \sigma_i
\end{bmatrix} \)

and \(i=1,2,\ldots,83 \) animals

Individual observations at each time interval (lactation month) were treated as repeated measurements of the corresponding experimental unit (cow within herd and breed). The compound-symmetry covariance structure, which was optimal for the \(\log_{10} \text{SCC} \) data set, was determined using Schwarz's Bayesian Criterion (LITTELL et al. 1997). Two unknown parameters, one modeling a common covariance (\(\sigma \)) and the other a residual variance (\(\sigma^2 \)) of \(R \) matrix and the common correlation \(\sigma_i / (\sigma_i + \sigma^2) \) were estimated in SAS. After significant effects of fixed factors were identified, differences between least square means of fixed factor levels were considered significant at \(P<0.05 \) (2-tailed) based on the Tukey adjustment type I error rate.

Results

The SCC least squares means, standard errors and differences between the means for breeds, herds, LN, LM and MT are given in Table 2. The effects of breed \((P<0.01) \), LN \((P<0.01) \), LM \((P<0.01) \), MT \((P<0.05) \) and co-variable DMY \((P<0.01) \) on SCC were found statistically significant. The interactions of LM with herd \((P<0.01) \), breed \((P<0.05) \) and LN \((P<0.01) \) effects were also found statistically significant. However, the influences of herd and the interaction between herd and MT were statistically insignificant \((P>0.05) \).

HF breed had 159 745 cells/ml higher SCC in milk than BS breed and this difference between the breeds was found statistically significant \((P<0.01) \). On the other hand,
morning milking had 25,850 cells/ml lower SCC than that of evening milking. For LM, the highest SCC mean of 601,174 cells/ml was found in the first month of the lactation, the mean was decreased below 400,000 cells/ml level in the second month and it remained below this level until the month 11. The SCC level for the first LM was found to be different from the months 2-10 \((P<0.01)\), but it was similar to the months 11 and 12 \((P>0.05)\). The SCC level for the second LM was also found to be different from the 8th LM \((P<0.01)\) and 108,603 cells/ml difference was determined between these two months.

Table 2
Somatic cell count, least squares means and standard error for breed, herd, lactation number, milking time, lactation month and significance levels of the factors and differences between the means

Factor (no. of cow)	\(\bar{X} \pm S_x^{\text{log10SCC}}\)	SCC (cell/ml)
Breed (83)		
HF (67)	5.654±0.029\(^{\text{Aa}}\)	450,817
BS (16)	5.464±0.060\(^{\text{Bb}}\)	291,072
Herd		
H1 (33)	5.544±0.047	349,945
H2 (26)	5.583±0.048	382,825
H3 (24)	5.510±0.046	323,594
LN		
1 (38)	5.468±0.038\(^{\text{Aa}}\)	293,765
2 (10)	5.440±0.071\(^{\text{Ab}}\)	275,423
3 (17)	5.581±0.053\(^{\text{Abab}}\)	381,066
4 (18)	5.691±0.055\(^{\text{Bb}}\)	490,908
MT		
Morning (83)	5.529±0.034\(^{\text{Aa}}\)	338,065
Evening (83)	5.561±0.034\(^{\text{Bb}}\)	363,915
LM		
1 (72)	5.779±0.043\(^{\text{Aa}}\)	601,174
2 (74)	5.593±0.042\(^{\text{Bb}}\)	391,742
3 (75)	5.571±0.041\(^{\text{Bbc}}\)	372,392
4 (74)	5.522±0.041\(^{\text{Bbc}}\)	332,660
5 (72)	5.532±0.041\(^{\text{Bbc}}\)	340,408
6 (73)	5.474±0.041\(^{\text{Bbc}}\)	297,852
7 (69)	5.479±0.042\(^{\text{Bbc}}\)	301,301
8 (68)	5.452±0.042\(^{\text{Bc}}\)	283,139
9 (61)	5.511±0.045\(^{\text{Bbc}}\)	324,340
10 (45)	5.536±0.059\(^{\text{Bbc}}\)	343,558
11 (31)	5.657±0.080\(^{\text{Ababc}}\)	453,942
12 (18)	5.436±0.110\(^{\text{Ababc}}\)	272,898
DMY		\(-0.027±0.003\)
Breed × LM	*	–
Herd × LM	**	–
LN × LM	**	–
Herd × MT	ns	–

\(^{*}P<0.05, \,**P<0.01, \,ns\ not significant, \,A, B\ significant differences for \(P<0.01\), \,a, b, c\ significant differences for \(P<0.05\)
As shown in Table 2, the highest SCC mean was found for the fourth LN. The SCC mean for LN4 was similar to the SCC mean of LN3 ($P>0.05$), but it was statistically different from LN1 ($P<0.01$) and LN2 ($P<0.05$). LN4 had 197 143 and 215 485 cells/ml higher SCC in milk than those of LN1 and LN2, respectively.

The effect of DMY on SCC was also found to be statistically significant ($P<0.01$) and a negative association was determined between SCC and DMY. As shown in Figure 1, the LM SCC means for BS cows were different from those of HF cows. The mean SCC level for BS cows decreased until month eight, and then increased gradually to the month 11. However, for HF cows, the SCC level was decreased until the third month and then fluctuated until the end of lactation. For every LM, BS breed had lower SCC level in milk than that of HF breed. The first LM SCC mean for HF was 346 139 cells/ml higher than that of BS. For HF, the first month was found to be different from the other months ($P<0.05$). However, for BS the first month was found to be statistically different only from months 6-8 ($P<0.01$). For both breeds, there was an increase during the last few LMs SCC levels until the month 11, but the level then decreased during the last month.

![Figure 1](image.png)

Figure 1
Lactation month SCC means and differences within breeds

SCC nach Laktationsmonaten und Rassen

Figure 2 shows the LM SCC means within LN. The SCC levels for the first six months for LN4 were clearly higher than those of other LNs. For the months 7-10, the levels become very close to each other. After a reduction from the beginning of lactation, an increase was observed until the end of lactation for all LNs.

The first month SCC level for LN4 was found to be different from months 6-9 ($P<0.05$). For LN1, the first month was different from 3-8 ($P<0.05$). For LN2, the first month was different from the months 2, 4-8 and for LN3, the first month was different from months 6 and 8 ($P<0.05$).
KOÇ and KIZILKAYA: Factors influencing milk somatic cell count of cows under Mediterranean climate

Figure 2
SCC means for lactation number and differences between lactation months
SCC nach Laktationsmonaten und Laktationsnummern

Figure 3
Lactation month SCC means for herd and differences between lactation months
SCC nach Laktationsmonaten und Herden
The interaction between herd and LM was found to be statistically significant \((P<0.01)\). As shown in Figure 3, all herds SCC means at the first month of lactation were high, the levels were decreased sharply during the second month of lactation and the reduction were continued until the months 8, 4 and 7 for Herd1, Herd2 and Herd3, respectively. The SCC means then increased to the 11th month of lactation for Herd1 and Herd2. The first LM SCC means for all herds were different from almost all of the middle LMs \((P<0.05)\) but it was similar to the last few months \((P>0.05)\).

Discussion

A statistically significant difference between the SCC means of BS and HF found in this study agrees with the studies of BUSATO et al. (2000), RUPP and BOICHARD (2003). BUSATO et al. (2000) and GÖYACHE et al. (2005) reported that different morphological conformations of udders and different milking characteristics between the breeds could cause varying infection risks of mammary glands. The SCC level for BS cows found in this study was higher than the results of BUSATO et al. (2000). EYDURAN (2002) and GÖNCÜ and ÖZKÜTÜK (2002) reported relatively higher SCC levels for dairy farms in Turkey than the levels found in this study. Similarly, AMIN et al. (2001) reported that mastitis incidence was higher in Egyptian HF than in German HF. However, the average herd SCC levels found in this study were higher than those found in research conducted in European countries (BUSATO et al. 2000, TOLEDO et al. 2002, GÖYACHE et al. 2005).

A statistically significant effect of MT on SCC found in this study agreed with BALTAY (2002), KOÇ (2004) and NIELSEN et al. (2005). ERSKINE (2001) reported a lower SCC level for morning milking than evening milking. The statistically significant difference between MTs SCC means could result mainly from the different milking intervals and different milk yield.

A higher SCC level for the first LM found in this study agrees with the studies of HAAS (2003) and HINRICHS et al. (2006). ERSKINE (2001) reported a temporarily but greatly elevated SCC just after calving due to adaptation of the udder from non-lactating to lactating status. A gradual increase towards the end of lactation before drying off for HF and BS breeds found in this study agreed with ERSKINE (2001), SANTOS et al. (2004) and HINRICHS et al. (2006).

IMBAYARWO-CHIKOSI et al. (2001), GÖNCÜ and ÖZKÜTÜK (2002), AMIN et al. (2002), HAAS (2003), BIREFLDT et al. (2004) and HINRICHS et al. (2006) reported an increase in SCC level as the LN increased. The differences among the LNs found in this study are obvious for the first six months of lactation (Figure 2). The higher SCC level for LN4 could be resulted from higher yielding stress and also different defense mechanisms against mammary infection late in life (HAAS 2003). A negative association between SCC and DMY was found in this study agrees with the results of AMIN (2001), IMBAYARWO-CHIKOSI et al. (2001), BIREFLDT et al. (2004) and MIJIC et al. (2004).

An insignificant herd effect on SCC found in this study shows that the milking management and hygiene were not very different among the herds. However, higher herd SCC means shows that some extra precautions need to be taken. These precautions are milking the cow in a parlor, feeding the cow after milking, using teat dipping before and after milking, using dry cow therapy, applying udder massage, giving extra care to the cow just before and after calving especially for HF cows and also the high yielding
cows, keeping equal milking intervals, practicing CMT periodically, improving managerial factors, barn conditions and hygiene. In conclusion the lower SCC means found in this study in comparison to other studies in Turkey could be the result of an increasing effort to produce quality milk by improving managerial factors, barn conditions and hygiene. A lower SCC mean for BS in comparison to HF for all lactation months could be attributed to breed differences in milk yield, resistance mechanisms against mastitis and udder conformation. The higher herd SCC mean also shows higher prevalence of sub-clinic mastitis among these herds. To reduce the occurrence of mastitis and to increase milk quality, milking management, hygiene and barn conditions need to be improved in addition to applying a mastitis control program for each herd.

References

Amin AA (2001) Lactation and sample test-day multi-trait animal model for genetic evaluation of somatic cell scores in Hungarian Holstein Friesian crossbreeds. Arch Tierz 44, 263-75
Amin AA, Gere T, Kishk W (2002) Genetic and environmental relationship among udder conformation traits and mastitis incidence in Holstein Friesian into two different environments. Arch Tierz 45, 129-38
Baltay Z (2002) Influence of time of day the milk and season on the somatic cell count under Hungarian conditions. Arch Tierz 45, 349-57
Bielfeldt JC, Badertscher R, Tolle KH, Krieter J (2004) Factors influencing somatic cell score in Swiss dairy production systems. Schweiz Arch Tierheilk 146, 555-60
Bulot O (2006) Strengths of the Dairy Swiss breeds – a breed comparison from France. The Dairy Mail http://www.dairyconnect.co.za/NewFiles/june_2006/FOCUS_ON_SA_DAIRY_SWISS.pdf [last accessed: 25.02.2009]
Busato A, Trachsel P, Schallibaum M, Blum JW (2000) Udder health and risk factors for subclinical mastitis in Organic Dairy Farms in Switzerland. Prev Vet Med 44, 205-20
Erskine RJ (2001) Mastitis control in dairy herds herd. Health Food Animal Production Medicine, 3rd Ed. Radostitis OM (Ed), WB Saunders, Philadelphia, 19106-3399
Eyduran E (2002) Determination of milk somatic cell counts in dairy cattle. MSc Thesis Ankara University Faculty of Agriculture, Dept of Animal Science
European Community (EU) (1992) Council directive 92/46/EEC laying down the health rules for the production and placing on the market of raw milk heat treated milk and milk based products 16 June 1992
Fahr R-D (2002) Influencing milk quality and composition: options and limits. Arch Tierz 45 SI, 51-9 [in German]
FAO (2007) Overview of the Turkish dairy sector within the framework of EU-accession. FAO Regional Office for Europe and Central Asia Policy Assistance Branch. Rome
Fernandes AM, Oliveira CAF, Tavolaro P (2004) Relationship between somatic cell counts and composition of milk from individual Holstein cows. Arq Ins Biol Sao Paulo 71, 163-6
Goyache F, Diez J, Lopez S, Pajares G, Santos B, Fernandez I, Prieto M (2005) Machine learning as an aid to management decisions on high somatic cell counts in dairy farms. Arch Tierz 48, 138-48
Gökçu S, Özikutük K (2002) Factors effective at somatic cell count (SCC) in the milk of Black and White cows kept in intensive dairy farms at Adana province and their relationship with mastitis. Hayvansal Üretim (J Anim Prod) 43, 44-53 [in Turkish]
Gulyas L, Ivancsics J (2001) Relationships between the somatic cell count and certain udder-morphologic traits. Arch Tierz 44, 15-22 [in German]
Haas de Y (2003) Somatic cell count pattern Improvement of udder health by genetic and management. PhD Thesis, University Wageningen
Hinrichs D, Stamer E, Junge W, Kalm E (2006) Genetic analysis of several disease categories using test day threshold models in German Holstein Friesian cows. Arch Tierz 49, 3-16
Imbayawo-Chikosi EV, Makuza SM, Wollny CAB, Banda JW (2001) Genetic and phenotypic parameters for individual cow somatic cell counts in Zimbabwean Holstein Friesian cattle. Arch Tierz 44, 129-37
Kalm E (2002) Development of cattle breeding strategies in Europe. Arch Tierz 45, 5-12
Koç A (2004) Somatic cell count changes of Holstein and Brown Swiss cows raised in Aydin province. 4th National Anim Sci Cong SDU, Fac Of Agri, Dept of Anim Sci Isparta Turkey

Koç A (2006) Lactation milk yields and somatic cell counts of Holstein Friesian and Brown Swiss cattle reared in Aydin Province. Hayvansal Üretim (J Anim Prod) 47, 1-8 [in Turkish]

Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1997) SAS system for mixed models. SAS Institute Inc Cary NC

Mijic P, Knezevic I, Domacinovic M (2004) Connection of milk flow curve to the somatic cell count in bovine milk. Arch Tierz 47, 551-6

Naumann I, Fahr R-D, Lengerken von G (1998) Relationship between somatic cell count of milk and special parameters of milk flow curves of cows. Arch Tierz 41, 237-50 [in German]

Nielsen NI, Larsen T, Bjerring M, Ingvartsen KL (2005) Quarter health milking interval and sampling time during milking affect the concentration of milk constituents. J Dairy Sci 88, 3186-200

Omore AO, Mcdermott JJ, Arimi SM, Kyule MN (1999) Impact of mastitis control measures on milk production and mastitis indicators in smallholder dairy farms in Kaimbu District Kenya. Trop Anim Health and Pub 31, 347-61

Rupp R, Boichard D (2003) Genetics of resistance to mastitis in dairy cattle. Vet Res 34, 671-88

Santos JEP, Cerri RLA, Ballou MA, Higginbotham GE, Kirk JH (2004) Effect of timing of first clinical mastitis occurrence on lactation and reproductive performance of Holstein dairy cows. Anim Reprod Sci 80, 31-45

SAS (1999) Statistical Analysis System for Windows v8.2. SAS Institute Inc Raleigh North Carolina USA

Shook GE (1982) Approaches to summarizing somatic cell count which improve interpretability. In: Proc 21st Ann Meeting of the National Mastitis Council Arlington VA National Mastitis Council Arlington VA, 150-166

Skrzypek R, Wojtowski J, Fahr R-D (2003) Hygiene quality of cow bulk tank milk depending on the method of udder preparation for milking. Arch Tierz 46, 405-11

Swalve HH (2003) New breeding approaches for functional traits. Arch Tierz 46 SI, 63-71 [in German]

Toledo P, Andren A, Björck L (2002) Composition of raw milk from sustainable production systems. Intern Dairy J 12, 75-80

Received 14 August 2008, accepted 5 December 2008.

Corresponding author:
Asst. Prof. Dr. ATAKAN KOÇ
email: atakankoc@yahoo.com or akoc@adu.edu.tr

Animal Breeding Unit, Department of Animal Science, Faculty of Agriculture, Adnan Menderes University, 09100 Aydin, Turkey