Infecção periprotética do joelho – Parte 1: Fatores de risco, classificação e diagnóstico

Periprosthetic Knee Infection – Part 1: Risk Factors, Classification and Diagnosis

João Maurício Barretto¹, André Luiz Siqueira Campos², Nelson Hiroyuki Miyabe Ooka³,⁴

¹Hospital São Vicente da Gávea, Rio de Janeiro, RJ, Brasil
²Departamento de Ortopedia e Traumatologista, Hospital Federal dos Servidores do Estado, Rio de Janeiro, RJ, Brasil
³Departamento de Ortopedia e Traumatologista, Hospital Universitário Pedro Ernesto, Rio de Janeiro, RJ, Brasil
⁴Departamento de Ortopedia e Traumatologista, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, RJ, Brasil

Endereço para correspondência: João Maurício Barretto, PhD, Rua das Laranjeiras, 550/1001, Rio de Janeiro, RJ, 22240-006, Brasil (e-mail: joao.barretto1@gmail.com).

Resumo
A infecção é uma das complicações mais temidas no pós-operatório de artroplastias do joelho. Com o envelhecimento populacional progressivo e o aumento da incidência de doenças degenerativas articulares, observa-se um aumento exponencial do número de artroplastias realizadas e, consequentemente, do número de infecções pós-operatórias. O diagnóstico destas devem seguir um protocolo hierarquizado, com critérios bem definidos, que conduzam à conclusão diagnóstica, orientando, assim, o tratamento mais adequado. O objetivo do presente artigo de atualização é apresentar os principais fatores de risco, as classificações e, principalmente, guiar de forma organizada a investigação diagnóstica.

Keywords
► artroplasty, replacement, knee
► surgical site infection
► risk factors
► diagnosis

Abstract
Infection is one of the most feared complications in the postoperative period of knee arthroplasties. With the progressive aging of the population and the increased incidence of degenerative joint diseases, there is an exponential increase in the number of arthroplasties performed and, consequently, in the number of postoperative infections. The diagnosis of these should follow a hierarchical protocol, with well-defined criteria, which lead to diagnostic conclusion, thus guiding the most appropriate treatment. The aim of the present update article is to present the main risk factors, classifications and, mainly, to guide diagnostic investigation in an organized manner.

DOI https://doi.org/10.1055/s-0041-1729935.
ISSN 0102-3616.

© 2022. Sociedade Brasileira de Ortopedia e Traumatologia. All rights reserved.
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda., Rua do Matoxo 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Introdução

Nos últimos 20 anos, a longevidade da população mundial está aumentando nos países desenvolvidos e em desenvolvimento. Tal fato acarreta crescimento na incidência e prevalência das doenças degenerativas de maneira geral, incluindo as articulares.\(^1,2\) Portanto, é natural e esperado um aumento do número das artroplastias primárias e de revisões\(^3\) realizadas como tratamento destas referidas doenças.\(^3\) – \(^5\)

O impacto socioeconômico nos sistemas de saúde é significativo, particularmente no tratamento de eventuais infecções.\(^6\) – \(^8\)

A incidência das infecções periprotéticas do joelho em 2001 era de 2,09\% e, em 2009, de 2,18\%, com uma tendência de aumento.\(^2\) Tal complicação é uma das principais causas de reinternação,\(^9\) sendo responsável por entre 13 e 25\% das revisões realizadas.\(^3,5,10\)

O custo estimado do tratamento da infecção periprotética é entre três e quatro vezes maior do que o da artroplastia primária.\(^9,11,12\)

O objetivo do presente trabalho é revisar o que há de mais atual na prevenção, no diagnóstico e no tratamento da infecção periprotética do joelho.

Fatores de Risco

Os fatores de risco para infecção periprotética (IPP) podem ser modificáveis ou não modificáveis (\textit{Figura 1}).\(^13\)

Os fatores modificáveis mais constantemente encontrados na literatura, assim como na prática clínica, são artrite reumatoide, diabetes mellitus, obesidade (índice de massa corporal [IMC] > 30), corticoterapia, alcoolismo, tabagismo e desnutrição, tendo como referência a hipoalbuminemia.\(^14\) – \(^21\)

![Fig. 1 Fatores de risco para infecção periprotética - reprodução do Consenso Internacional em Infecções Musculoesqueléticas de 2018 (CIIM-2018).\(^13\)](image)
Alguns outros estudos demonstraram aumento do risco de infecção após ATJ em pacientes submetidos à infeção, por via hematogênia, em outro sítio protético. Situações de risco para esta complicação são: sexo feminino, artrite reumatoide, infecção por Methicillin-Resistant Staphylococcus aureus (MRSA) e pacientes que se apresentam com febre por ocasião do diagnóstico da primeira articulação infectada.

Classificação

As classificações são importantes para estratificar e orientar a conduta nas diversas condições clínicas, assim como normalizar a comunicação entre colegas. Segawa et al., em 1999, publicaram um estudo retrospectivo propondo uma classificação e seus respectivos tratamentos, baseados na cronologia e na etiologia da infecção, dividindo as IPPs em: culturas positivas em colheita perioperatória, infecção superlativa de revisão, infecção superficial aguda, infecção profunda aguda, infecção crônica, e infecção hematogênica aguda. Entretanto, a classificação não leva em conta as condições do paciente, locais e sistêmicas, ou o agente etiológico. McPherson et al. descreveram um sistema de classificação de IPP para quadril e joelho baseado em uma análise retrospectiva de casos avaliando três fatores: tipo da infecção (aguda, hematogênica crônica), fatores do hospedeiro e fatores locais (Tabela 2). Esta classificação foi validada pelo Consenso Internacional de Infecção Musculoesquelética com índice de evidência moderada e 74% de concordância do painel.

Alt et al. propõem uma nova classificação baseada na classificação TNM para tumores, adaptando-a para infecção periprotética, onde se enfatiza a patogenicidade do agente etiológico.

Na classificação proposta, “T” seria a avaliação tecidual, “N” o fator celular não-humano (agente etiológico) e “M” a

Tabela 1 Classificação de McPherson para infecção periprotética

Fator	Grau	Descrição
Tipo	I	Infecção aguda (< 4 semanas de pós-operatório)
	II	Infecção hematogênica aguda (< 4 semanas de sintomas)
	III	Infecção crônica (> 4 semanas de sintomas)

Fatores do hospedeiro (comorbididades e imunidade)	A	Não comprometido
	B	Comprometido (1–2 fatores de comorbidade)
	C	Muito comprometido (> 2 fatores de comorbidade) ou um dos fatores abaixo:
		Contagem de neutrófilos < 1000
		Contagem de CD4 < 100
		Usuário de drogas IV
		Infecção ativa em outro sítio
		Tumor ou displasia do sistema imunológico

Fatores Locais	1	Não comprometido
	2	Comprometido (1–2 fatores de comorbidade)
	3	Muito comprometido (> 2 fatores de comorbidade)

Os fatores sistêmicos e locais estão descritos na Tabela 2.
Tabela 2 Fatores locais e sistêmicos para a classificação de McPherson

Fator	Descrição
Comprometimento sistêmico do hospedeiro (comorbidade ou imunidade)	
Idade ≥ 80 anos	
Alcoolismo	
Dermatite ou celulite crônica ativa	
Cateter permanente	
Desnutrição crônica (albumina ≤ 3,0g/dL)	
Uso crônico de nicotina (inalatório ou oral)	
Diabetes mellitus (requerendo tratamento medicamentoso)	
Insuficiência hepática (cirrose)	
Uso de drogas imunossupressoras (corticóide, MTX, ciclosporina)	
Neoplasia maligna (ativa ou história)	
Insuficiência pulmonar (SaO2 < 60% em ar ambiente)	
Insuficiência renal crônica em diálise	
Doença inflamatória sistêmica (Artrite Reumatoide, Lúpus Eritematoso Sistêmico)	
Comprometimento imunológico sistêmico por infecção ou imunodeficiência (AIDS, imunodeficiências adquiridas)	
Comprometimento do membro afetado (condições da ferida e do membro)	
Infecção ativa (> 3–4 meses)	
Múltiplas incisões – pontes cutâneas	
Perda de partes moles por trauma prévio	
Abscesso subcutâneo (extensão > 8 cm²)	
Fistula sinovial cutânea	
Fratura periarticular prévia ou trauma articular prévio (esmagamento)	
Irradiação local prévia	
Insuficiência vascular periférica – arterial ou venosa	

Fig. 2 Classificação TNM para IPP.

- **T**
 - T0a: Implante primário estável sem lesão de partes moles importante
 - T0b: Implante de revisão estável sem lesão de partes moles importante
 - T1a: Implante primário solto sem lesão de partes moles importante
 - T1b: Implante de revisão solto sem lesão de partes moles importante
 - T2a: Implante primário com grave lesão de partes moles
 - T2b: Implante de revisão com grave lesão de partes moles

- **N**
 - N0a: Sem formação de biofilme (antes agudo), pós-operatório imediato
 - N0b: Sem formação de biofilme (antes agudo), infecção hemotógena
 - N1a: Com biofilme maduro (antes crônico), sem bactéria multirresistente
 - N1b: Com biofilme maduro (antes crônico), cultura negativa
 - N2a: Com biofilme maduro (antes crônico), bactéria multirresistente
 - N2b: Com biofilme maduro (antes crônico), infecção polimicrobiana
 - N2c: Com biofilme maduro (antes crônico), infecção única

- **M**
 - M0: Sem comorbidades ou comorbidades leves (Charlson 0-1)
 - M1a: Paciente moderadamente comprometido (Charlson 2-3)
 - M1b: Paciente gravemente comprometido (Charlson 4-5)
 - M2a: Paciente recusa tratamento cirúrgico
 - M2b: Paciente não se beneficia do tratamento cirúrgico
 - M2c: Paciente não sobrevive ao tratamento cirúrgico

Se a infecção ocorrer em um implante previamente infectado, a situação é classificada como “reinfecção”, a letra “r” é colocada na frente da classificação, ex: rTT1aN1aM2
morbidade do hospedeiro, de acordo com a classificação de comorbididades de Charlson (► Figura 2).

A ideia de fazer uma classificação que inclua estes três fatores nos parece a forma mais apropriada; entretanto, não encontramos nenhum estudo validando a referida classificação.

Diagnóstico

O diagnóstico de infecção pós-artroplastia do joelho sempre foi um desafio. Nas primeiras semanas de pós-operatório, a ocorrência de dor, calor local e de incapacidade funcional podem ser normais e não estarem relacionadas com qualquer tipo de infecção bacteriana.

Portanto, é fundamental definir critérios que caracterizem a presença de infecção, que eles sejam reprodutíveis e que possam preencher critérios, os mais objetivos possíveis, no sentido de fechar o diagnóstico.

Seguindo o conceito de que o diagnóstico de infecção, quase sempre, é de análise multifatorial – dados clínicos, laboratoriais, de imagens e análise de líquido sinovial – é muito importante hierarquizar as ações de modo a construir este mesmo diagnóstico dentro de um raciocínio clínico lógico e progressivo.

Consideramos a estratégia definida pelo II-ICM-2018 a melhor opção de investigação diagnóstica, pois, além de “empurrar” o investigador para o próximo passo até que se chegue à conclusão de infecção, ou de ausência dela, ela congrega conhecimento científico de melhor evidência disponível, com a experiência de centenas de ortopedistas, infectologistas e microbiologistas ao redor do mundo. O algoritmo proposto foi testado e validado, apresentando altas taxas de sensibilidade (96,9%) e de especificidade (99,5%),

Seguindo este critério, o diagnóstico de infecção é definido pela presença de um dos chamados critérios maiores – fistula com comunicação articular ou duas culturas positivas para o mesmo microorganismo identificado usando meios de cultura – ou através de pontuação de variantes clínicas, séricas ou advindas de análise do líquido sinovial obtido por punção articular (► Figura 3).

A ocorrência de fistula encontra-se em cerca de 13% dos casos. Na ausência da mesma, quando o paciente apresenta dor no joelho operado, calor e, não raro, diminuição do arco de movimento, é imperiosa a solicitação de exames de sangue para avaliação da série branca, VHS, proteína c-reativa (PCR) e D-dímero.

A VHS e a PCR são marcadores inflamatórios utilizados como primeira linha na triagem do paciente com suspeita de infecção, com sensibilidade em torno de 75 a 88% e especificidade de entre 70 e 74%, respectivamente. A sensibilidade de ambos, combinados, varia de 84 a 86%, e a especificidade de 47 a 72,3%. A PCR atinge seu valor mais alto no terceiro dia de pós-operatório e se mantém

![Fig. 3 Critérios de diagnóstico da Sociedade de infecção musculoesquelética (reprodução do CIIM).](https://example.com/fig3.png)
acima do normal por 3 semanas ou mais.45 A VHS se mantém elevada por, pelo menos, 6 semanas.46 Vale lembrar que, em pacientes com artrite inflamatória, o valor de corte desses marcadores pode ser mais alto pela influência da doença base,47 assim como o uso de antibióticos pode gerar falso-negativo.48 Um estudo recente demonstrou maior sensibilidade (89\%) e especificidade (93\%) do D-dímero em relação aos tradicionais VHS e PCR.53 Outro estudo observou declínio aos níveis basais do D-dímero já no segundo dia de pós-operatório.46 É importante salientar que ~2,5% das infecções não apresentam alterações nos exames citados.37

O próximo passo na sequência da investigação é a artrocentese com envio do líquido sinovial para análise laboratorial de celularidade (citometria) e cultura/antibiograma. Não há contraindicação formal à aspiração articular.37,49 Neste procedimento, que fecha o diagnóstico em 65\% dos casos, é primordial que se obedeça aos critérios de barreira máxima à contaminação, realização por um profissional experiente, acondicionamento adequado e envio imediato do material ao laboratório.37

Na fase aguda, a presença no líquido sinovial de $\geq 10,000$ leucócitos/µL, com pelo menos 90\% de polimorfonucleares (PMNs) e, na fase crônica, $\geq 3,000$ leucócitos/µL, com pelo menos 70\% de PMN, indicam infecção.37

Quanto à cultura do líquido aspirado, alguns critérios devem ser seguidos para minimizar o risco de falso-negativo. É importante que se realize tempo prolongado de cultura, tendo em vista que boa parte das amostras negativas, na verdade, são infecções por germes de crescimento demorado, interrompido antes do tempo adequado.50

O líquido articular coletado pode, ainda, ser utilizado para outros dois testes: alfa-defensina e estearase leucocitária.37

A alfa-defensina é um peptídeo antimicrobiano produzido pelos neutrófilos em resposta aos patógenos.51,52 Este marcador pode ser pesquisado no líquido sinovial através de imunoensaio laboratorial ou pelo teste de fluxo lateral, que é um teste rápido com kit específico e que pode ser realizado no centro cirúrgico com resultado em alguns minutos. O teste de fluxo lateral apresenta taxa de sensibilidade de 78,5\% e especificidade de 93,3\%, conforme revisão sistemática realizada pelo II-ICM-2018 com dados agrupados de 486 pacientes.41 O imunoensaio apresenta taxa de sensibilidade de 98,1\% e de especificidade de 96,4\%.54 A alfa-defensina não é influenciada pelo uso recente de antibiótico, por traços de sangue na amostra, nem por comorbididades como doenças inflamatórias. O teste rápido necessita de pequeno volume de líquido sinovial (15µL), o que pode ser uma grande vantagem nos casos de ausência de derrame articular.53,54 Por outro lado, na presença de metalose, pode apresentar falso-negativo em até 30\% dos casos, e também pode ser influenciado por artropatia por cristais (gota) e não deve ser feito em aspirado de hematomat.53

A estearase leucocitária é um exame com sensibilidade de 85,7\% e especificidade de 94,4\% segundo a revisão sistemática realizada pelo II-ICM-2018 com dados agrupados de 2.061 pacientes.41 Este teste também não sofre influência de uso recente de antibiótico,55 porém a presença de sangue na amostra altera a legibilidade do teste e pode ser necessária a centrifugação para neutralizar a interferência dos eritrócitos.37,56

Nos casos em que não seja possível aspirar conteúdo suficiente para análise (punção seca) ou cujas culturas sejam negativas (17\% dos casos) os achados intraoperatori de pus, análise histológica, cultura de tecido e sequenciamento de nova geração podem auxiliar no diagnóstico de infecção.41 Não é apropriado realizar lavado articular nos casos de punção seca.41

Mesmo com todo o arsenal de exames e o algoritmo estruturado e validado, em 5\% dos casos, não se consegue confirmar o diagnóstico de infecção.41

Alguns exames de imagem podem auxiliar no planejamento do tratamento, mas apresentam baixa especificidade quanto ao diagnóstico.57 Sinais de soltura precoce na radiografia convencional levam à suspeita de infecção.58 A tomografia computadorizada (especialmente a artrotomografia) e a ressonância magnética (RM) com supressão de metal também podem mostrar sinais de soltura, defeitos ósseos e, eventualmente, osteomielite;57 porém, pelo alto custo e baixa especificidade, não são recomendados como medidas diagnósticas.58,59

Por outro lado, outros exames têm sido utilizados para diferenciar soltura asséptica de infecção, especialmente nos casos de punção seca, como a combinação de cintilografia com leucócitos marcados e tomografia computadorizada por emissão de fóton único (SPECT-CT), que ainda tem a vantagem de mostrar a extensão do comprometimento da infecção, tanto óssea quanto de partes moles, podendo ser de grande valia no planejamento da cirurgia.57

Suporte Financeiro
Os autores declararam que não receberam apoio financeiro de fontes públicas, comerciais ou sem fins lucrativos.

Conflito de Interesses
Os autores declararam não haver conflito de interesses. Dr. Barreto informa que recebeu honorários pessoais da Stryker Latin America, fora do presente trabalho.

Referências
1. Beard JR, Officer A, de Carvalho IA, et al. The World report on ageing and health: a policy framework for healthy ageing. Lancet 2016;387(10033):2145–2154
2. Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014;73(07):1323–1330
3. Bozic KJ, Kurtz SM, Lau E, et al. The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 2010;468(01):45–51
4. Patel A, Pavlou G, Mújica-Mota RE, Toms AD. The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J 2015; 97-B(08):1076–1081
5. Delanois RE, Mistry JB, Gwam CU, Mohamed NS, Choksi US, Mont MA. Current Epidemiology of Revision Total Knee Arthroplasty in the United States. J Arthroplasty 2017;32(09): 2663–2668
Huerfano E, Bautista M, Bonilla G, Llinas A. Screening for Infection Before Revision Hip Arthroplasty: A Meta-analysis of Likelihood Ratios of Erythrocyte Sedimentation Rate and Serum C-reactive Protein Levels. J Am Acad Orthop Surg 2017;25(12):809–817

Barretto JM, Loures FB, Albuquerque RS, Bezerra FD, Faro RV, Cavanellas NT. Evaluation of serum levels of C-reactive protein after total knee arthroplasty. Rev Bras Ortop 2017;52(02):176–181

Lee YS, Lee YK, Han SB, Nam CH, Parvizi J, Koo KH. Natural progress of D-dimer following total joint arthroplasty: a baseline for the diagnosis of the early postoperative infection. J Orthop Surg Res 2018;13(01):36

Cipriano CA, Brown NM, Michael AM, Moric M, Sporer SM, Della Valle CJ. Serum and synovial fluid analysis for diagnosing chronic periprosthetic infection in patients with inflammatory arthritis. J Bone Joint Surg Am 2012;94(07):594–600

Shahi A, Deirmengian C, Higuera C, et al. Premature Therapeutic Antimicrobial Treatments Can Compromise the Diagnosis of Late Periprosthetic Joint Infection. Clin Orthop Relat Res 2015;473(07):2244–2249

Yui JC, Preskill C, Greenlund LS. Arthrocentesis and Joint Injection in Patients Receiving Direct Oral Anticoagulants. Mayo Clin Proc 2017;92(08):1223–1226

Yoon HK, Cho SH, Lee DY, et al. A Review of the Literature on Culture-Negative Periprosthetic Joint Infection: Epidemiology, Diagnosis and Treatment. Knee Surg Relat Res 2017;29(03):155–164

Gehrke T, Lausmann C, Citak M, Bonanzinga T, Frommelt L, Zahar A. The Accuracy of the Alpha Defensin Lateral Flow Device for Diagnosis of Periprosthetic Joint Infection: Comparison with a Gold Standard. J Bone Joint Surg Am 2018;100(01):42–48

Frangiamore SJ, Gajewski ND, Saleh A, Farias-Kovac M, Barsoum WK, Higuera CA. α-Defensin Accuracy to Diagnose Periprosthetic Joint Infection-Best Available Test? J Arthroplasty 2016;31(02):456–460

Bauer TW, Bedair H, Creech JD, et al. Hip and Knee Section, Diagnosis, Laboratory Tests: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019;34(25):S351–S359

Shahi A, Parvizi J, Kazarian GS, et al. The Alpha-defensin Test for Periprosthetic Joint Infections Is Not Affected by Prior Antibiotic Administration. Clin Orthop Relat Res 2016;474(07):1610–1615

Shahi A, Alvand A, Ghanem E, Restrepo C, Parvizi J. The Leukocyte Esterase Test for Periprosthetic Joint Infection Is Not Affected by Prior Antibiotic Administration. J Bone Joint Surg Am 2019;101(08):739–744

Li X, Li R, Ni M, et al. Leukocyte Esterase Strip Test: A Rapid and Reliable Method for the Diagnosis of Infections in Arthroplasty. Orthopedics 2018;41(02):e189–e193

Diaz-Ledezma C, Espinosa-Mendoza R, Gallo J, et al. General Assembly, Diagnosis, Imaging: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019;34(25):S215–S223

Springer BD. The Diagnosis of Periprosthetic Joint Infection. J Arthroplasty 2015;30(06):908–911

Della Valle C, Parvizi J, Bauer TW, et al; American Academy of Orthopaedic Surgeons. American Academy of Orthopaedic Surgeons clinical practice guideline on: the diagnosis of periprosthetic joint infections of the hip and knee. J Bone Joint Surg Am 2011;93(14):1355–1357