ICD indication in hypertrophic cardiomyopathy: which algorithm to use?

Marcelo Antônio Oliveira Santos-Veloso¹,²*, Ândrea Virgínia Ferreira Chaves¹,²,³, Eveline Barros Calado⁴, Manuel Markman⁵, Lucas Soares Bezerra¹,², Sandro Gonçalves de Lima²,⁴, Brivaldo Markman Filho⁴, Dinaldo Cavalcanti de Oliveira¹

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease, with an estimated prevalence of 1–167 individuals.¹ It is recognized as the main cause of sudden death (SD) in young people.² It is commonly asymptomatic. When present, the main symptoms are chest pain, dyspnea, palpitation, and syncope.³

Through risk stratification strategies and prophylactic implantable cardioverter-defibrillator (ICD) indication, the mortality of patients with HCM has been reducing from 6 to <1% per year.⁴,⁵ However, recommendations for implantation of ICD are divergent and tend to over- or underestimate the real risk of SD, increasing the risk of unnecessary intervention in low-risk patients or nonindication in high-risk patients.⁶,⁷

Traditionally, the main risk factors for MS are age, report of syncope, family history of multiple sclerosis (MS), evidence of ventricular arrhythmia, and left ventricular hypertrophy (LVH) ≥30 mm⁶,⁷. Although widely validated, these parameters have low accuracy in predicting MS in low- and medium-risk patients, which correspond to the majority of patients with HCM.⁷

Some studies have shown that fragmented QRS (fQRS) on electrocardiogram (ECG) correlates with myocardial fibrosis and represents a potential precursor of heart failure (HF) and arrhythmic events.⁷ Despite this, the relevance of the fQRS in HCM is limited and its role in the prediction of SD is controversial.⁸

The aim of this study was to evaluate the agreement in the indication of ICD as primary prophylaxis of SD in HCM patients, according to the 2014 European Society of Cardiology (ESC) and
2020 American Heart Association (AHA) recommendations, and to evaluate the fQRS as a predictor of cardiovascular outcome.

METHODS

Type of study and population

This is a retrospective cohort study carried out in a university cardiology outpatient clinic specialized in HCM.

Inclusion criteria were diagnosis of HCM and age ≥16 years, while exclusion criteria were indication of ICD as secondary prophylaxis, follow-up time <1 year, and incomplete medical records.

The clinical variables collected were age, sex, clinical data (family history of SD, symptoms, ICD implantation), data from complementary examinations (ECG, transthoracic echocardiogram [ECOTT], cardiac magnetic resonance [CMR], 24 h Holter), clinical outcomes, and follow-up time.

The diagnosis of HCM was defined as LVH ≥15 mm in the largest segment (or ≥13 mm in those with a family history of HCM) in the absence of cardiac or systemic diseases that would justify ventricular overload\(^4\).

The definition of SD was any sudden-witnessed death with or without documented ventricular fibrillation (VF), death within 1 h of the onset of new symptoms, or nocturnal deaths without prior history of worsening symptoms\(^9\). Time of follow-up was determined by the difference in years between the initial assessment and the last visit or outcome. The functional class was determined by the New York Heart Association (NYHA).

In the case of shock administration by the ICD, the electrograms recorded by the device were retrieved and analyzed. Shocks were considered appropriate in the event of sustained VT and VF\(^10\).

The primary end point was the composite of SD or equivalent SD (SDE), namely, aborted MS and/or appropriate ICD shock.

The secondary end point, acronym SEHS, was composed of SDE, hospitalization for decompensated HF, and fatal or nonfatal stroke.

Statistical analysis

Continuous variables were expressed as mean±standard deviation or as median and range of 25th and 75th quartiles, as appropriate, and categorical variables as absolute and proportional values. The Shapiro-Wilk test was used to determine normality.

Unpaired Student’s t-test or Mann-Whitney U test was used in the analysis of continuous variables, while the \(\chi^2\) test or Fisher’s exact test was used for categorical variables.

Survival curves, together with the p-value of the log-rank test, were calculated using the Kaplan-Meier method. The analysis was adjusted for age, sex, family history of MS, NYHA (I–II vs. III–IV), maximal LVH, gradient in left ventricular outflow tract (LVOT), syncope, and the presence of VT or NSVT on 24 h Holter. Receiver operating characteristics curve (ROC), area under the curve (AUC), and Harrell C-statistics analyses were used to assess the accuracy of the guidelines for predicting appropriate ICD shock. The linearly weighted kappa coefficient was calculated to determine the degree of agreement between the recommendations of the 2014 ESC and 2020 AHA 2020. For all the analyses, p<0.05 was considered significant.

Ethical aspects

The study was submitted and approved by the Research Ethics Committee. All Brazilian legal norms and Helsinki Declaration principles were observed. Since it was a retrospective study, the collection of the informed consent form was waived.

RESULTS

From March 2019 to February 2021, 96 patients with HCM were identified, of which 15 were excluded from the study.
due to not meeting the established criteria; therefore, only 81 patients were included in the study.

The fQRS was diagnosed in 36 (44.4%) patients. There was no statistically significant difference between patients with and without fQRS regarding clinical, echocardiographic, fibrosis, and estimated risk of MS (Table 1).

During a mean follow-up of 4.8±3.4 years, no SD occurred, but 7 (20.6%) of 34 patients with ICD had at least one appropriate shock, 4 (4.9%) hospitalizations for decompensated HF, and 6 (7.4%) nonfatal cerebrovascular events. Three of the seven appropriate shocks occurred in patients considered to be at low or moderate risk by the 2014 ESC guidelines. In the case of the 2020 AHA guidelines, three of the appropriate shocks occurred in patients at moderate risk and four shocks in patients at high risk. The incidence of SDE was 10.2% and that of SEHS was 21.6%.

The agreement between the indications for ICD implantation according to the 2014 ESC and 2020 AHA guidelines was 64% (kappa 0.270; p=0.007) (Table 2).

The Kaplan-Meier curve showed a trend toward lower outcome-free survival in patients with fQRS (71.3 vs. 82.6%; p=0.515, Figure 1A). There was no statistical difference regarding the cumulative incidence of appropriate shock (10.5 vs. 16%, with and without fQRS; p=0.598, Figure 1B).

The incidence of SDE was 10.2% and that of SEHS was 21.6%.

The agreement between the indications for ICD implantation according to the 2014 ESC and 2020 AHA guidelines was 64% (kappa 0.270; p=0.007) (Table 2).

The Kaplan-Meier curve showed a trend toward lower outcome-free survival in patients with fQRS (71.3 vs. 82.6%; p=0.515, Figure 1A). There was no statistical difference regarding the cumulative incidence of appropriate shock (10.5 vs. 16%, with and without fQRS; p=0.598, Figure 1B).

DISCUSSION

In this study, we evaluated the agreement between the 2014 ESC and 2020 AHA guidelines in the indication of ICD as primary prophylaxis of MS in patients with HCM. Our results show significant divergence in the indication of ICD, with an overall agreement of 64%. The 2020 AHA algorithm indicated class IIa ICD in 69% of patients, compared to 40.7% by 2014 ESC. Two patients classified as low risk by ESC had appropriate shocks 1 and 5 years after ICD implantation. Of the 13 patients classified by the AHA as low risk, there was a divergence from the ESC in only one case.

The analysis of the agreement of indications resulted in a kappa of 0.270. Kappa coefficient between 0.21 and 0.39 represents minimal agreement, implying that only 4–15% of the indications analyzed between both guidelines are, in fact, reliable13.

Mattos et al. demonstrated that in relation to the 2011 AHA, the ESC algorithm also had low agreement and would

Table 1. Basic characteristics of the study population.

Characteristic	Fragmented QRS (n=36)	No Fragmented QRS (n=45)	p-value
Age, years (years)	42.8±15.6	48.1±15.8	0.137
Gender male	17 (47.2)	23 (51.1)	0.728
SD family history	21 (58.3)	23 (51.1)	0.564
NYHA III/IV	3 (8.3)	2 (4.4)	0.470
Syncope history	13 (36.1)	19 (42.2)	0.168
ICD implant	14 (38.9%)	20 (44.5)	0.615
TTE			
LVEF (%)	67 (62–72)	69 (63–74)	0.284
Max LVH (mm)	20 (16.5–27.6)	20 (17–24)	0.668
LA (mm)	39 (34–46)	39 (38–44)	0.647
LVOT (mmHg)	0 (0–31)	0 (0–30)	0.668
Myocardial fibrosis (%)	3.5 (2.3–7.5)	3.5 (1.7–13.8)	0.542
ECG			
AFib	3 (8.3)	6 (13.3)	0.724
LVH	18 (50.0)	17 (37.8)	0.399
LAO	10 (27.8)	9 (20.0)	0.515
Stroke/TIA	2 (5.6)	6 (13.3)	0.284
SD risk in 5 years (%)	4.6 (2.7–7.3)	3.8 (2.1–6.1)	0.541

Values expressed as n (%), mean±standard deviation, or median (p25–75%). SD: sudden death; NYHA: New York Heart Association functional class; ICD: implantable cardioverter-defibrillator; TTE: transthoracic echocardiogram; LVEF: left ventricular ejection fraction; Max LVH: maximal left ventricular hypertrophy; LA: left atrium; LVOT: left ventricular outflow tract; AF: atrial fibrillation; LVH: left ventricular hypertrophy; LAO: left atrial overload; Stroke/TIA: stroke or transient ischemic stroke.

*Only 55 (67.9%) patients underwent CMR; **Student’s t-test; ***χ² test; ****Fisher’s exact test; *****Mann-Whitney U test.

Table 2. Implantable cardioverter-defibrillator indication agreement according to the degree of evidence.

Evidence	ESC 2014			
	AHA 2020	III	IIb	IIA
III	12	0	1	
IIb	w6	1	5	
IIA	16	13	27	

General agreement: 64.2%, kappa 0.270 (95%CI 0.118–0.422; p=0.003) ESC: European Society of Cardiology; AHA: American Heart Association. IIA, IIb, III: degrees of scientific evidence for implantable cardioverter-defibrillator implantation according to each guideline.
leave all patients (8/90) unprotected with appropriate shock\(^5\). Other studies have also demonstrated low sensitivity of the algorithm, especially in patients considered to be at low risk\(^{14,15}\). Our results showed low accuracy of the algorithm to predict MS, especially in the group considered low risk.

The 2020 AHA recommendations showed high sensitivity (100%), but their low specificity (17.6%) implies unnecessary indication of ICD in low-risk patients. ICD implantation is related to complications such as infection and inappropriate shocks, with an incidence of 2.1% per year\(^{16}\). In the C-statistics analysis, both guidelines showed similar discrimination in predicting appropriate shock.

In HCM studies, a good correlation has been shown between the presence of fQRS and fibrosis estimated by CMR and histology\(^{17}\). In our sample, it was not possible to demonstrate the association between fQRS and fibrosis. There was a trend toward a greater outcome-free survival in patients without fQRS, but this difference was not significant. There was no statistical difference between the cumulative incidence of appropriate shocks between patients with or without fQRS, despite a trend toward more shocks in the fQRS group (10 vs. 16%).

Few studies have evaluated the direct link between MS risk and appropriate ICD shock in patients with HCM and the presence of fQRS. One study evaluated the calculated risk of SD in 5 years of the 2014 ESC and showed that the presence of fQRS was related to a risk of SD >4%\(^{18}\). In the SHIFT study, the fQRS was included as a risk predictor with a hazard ratio of 3.6\(^2\). However, the study included only patients at low and moderate risk for MS, compromising its practical applicability.

The spectrum of clinical presentation of HCM is quite heterogeneous. The mechanisms underlying the occurrence of fibrosis and arrhythmia are not fully understood and appear to be influenced by epigenetic factors\(^{19}\). Rigid predictor models are unable to represent the complexity of individual risk, which reinforces the role of specialist experience in risk stratification and individualized indication of primary ICD prophylaxis.

Some limitations of this study were the sample size, the retrospective design, and the factor of being unicentric. The occurrence of appropriate shocks would not necessarily represent

![Survival and incidence curves for the primary outcome and appropriate shocks.](image1)

Figure 1. Survival and incidence curves for the primary outcome and appropriate shocks.

![Receiver operating characteristic curve comparing the incidence of appropriate shocks according to European Society of Cardiology 2014 and American Heart Association 2020 guidelines implantable cardioverter-defibrillator indication.](image2)

Figure 2. Receiver operating characteristic curve comparing the incidence of appropriate shocks according to European Society of Cardiology 2014 and American Heart Association 2020 guidelines implantable cardioverter-defibrillator indication.
Life-threatening events and the patients treated tended to present later diagnoses and greater severity.

CONCLUSIONS

The 2014 ESC and 2020 AHA MS risk stratification algorithms for HCM patients present discrepancies in the indication of ICD implantation, both with low accuracy. The European guideline showed better specificity, while the American guideline showed excellent sensitivity, despite similar discrimination using C-statistics.

REFERENCES

1. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2020;142(25):e558-631. https://doi.org/10.1161/CIR.0000000000000937
2. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242-55. https://doi.org/10.1016/S0140-6736(12)60397-3
3. Adamczak DM, Oko-Sarnowska Z. Sudden cardiac death in hypertrophic cardiomyopathy. Cardiol Rev. 2018;26(3):145-51. https://doi.org/10.1097/CRD.0000000000000184
4. Authors/Task Force members, Elliott PM, Anastasakis A, Borger MA, Borggreve M, Cecchi F, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). 2014;35(39):2733-79. https://doi.org/10.1093/eurheartj/ehu284
5. Mattos BPE, Sccoli FL, Garbin HI. Discrepancy between International Guidelines on the Criteria for Primary Prevention of Sudden Cardiac Death in Hypertrophic Cardiomyopathy. Arq Bras Cardiol. 2020;115(2):197-204. https://doi.org/10.36660/abc.20190161
6. Steriotis AK, Sharma S. Risk stratification in hypertrophic cardiomyopathy. Eur Cardiol. 2015;10(1):31-6. https://doi.org/10.15420/ecr.2015.10.01.31
7. Ruivo C, Montenegro Sá F, Correia J, Belo A, Loureiro MF, Morais J, et al. The SHIFT model combines clinical, electrocardiographic and echocardiographic parameters to predict sudden cardiac death in hypertrophic cardiomyopathy. Rev Port Cardiol (Eng Ed). 2019;38(12):847-53. https://doi.org/10.1016/j.rpcel.2019.05.012
8. Bi X, Yang C, Song Y, Yuan J, Cui J, Hu F, et al. Quantitative fragmented QRS has a good diagnostic value on myocardial fibrosis in hypertrophic obstructive cardiomyopathy based on clinical-pathological study. BMC Cardiovasc Disord. 2020;20(1):298. https://doi.org/10.1186/s12872-020-01590-2
9. O'Mahony C, Jichi F, Ommen SR, Christiansen I, Arbustini E, Garcia-Pavia P, et al. International external validation study of the 2014 European Society of Cardiology Guidelines on Sudden Cardiac Death Prevention in Hypertrophic Cardiomyopathy (EVIDENCE-HCM). Circulation. 2018;137(10):1015-23. https://doi.org/10.1161/CIRCULATIONAHA.117.030437
10. Magnusson P, Gadler F, Liv P, Mörner S. Risk markers and appropriate implantable defibrillator therapy in hypertrophic cardiomyopathy.

AUTHORS’ CONTRIBUTIONS

MAOSV: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Writing – original draft. AVFC: Data curation, Investigation, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing. EBC: Investigation, Resources. MM: Investigation, Resources. LSB: Resources (Supporting), Writing – review & editing. SGL: Methodology, Writing – review & editing. BMF: Supervision. DCO: Methodology, Supervision, Writing – review & editing.