The Mammalian Stress Mechanism (MSM) Explains Radial Artery Spasm (RAS)

Lewis S. Coleman

Abstract:
Objective: Based on stress theory, this paper proposes a fresh explanation of Radial Artery Spasm (RAS), the nature of which remains unclear.
Data Sources: Published research papers accessed via PubMed
Study Selection: Abstract review
Data Extraction: Computerized Internet Search
Data Synthesis: Fresh information relevant to stress theory derived from unrelated research enabled the description of a testable “mammalian stress mechanism” (MSM) that explains the stress theory proposed by Hans Selye.
Conclusions: MSM activity explains the nature of RAS.
Keywords: Stress; Hans Selye; Coagulation; Radial artery spasm; RAS; Thrombosis; Angioplasty; Invasive monitoring

Introduction
Radial artery spasm (RAS) occurs after multiple unsuccessful attempts to cannulate the radial artery using small, short catheters for monitoring and blood sampling, where upon the radial pulse becomes impalpable and cannulation becomes futile. Persisting ulnar circulation presumably prevents ischemia, and the artery recovers if left unmolested, but sometimes hours after successful cannulation the pulse wave degenerates and the pulse becomes impalpable as far proximal as the elbow, particularly in the presence of pathology. Diverse treatments relieve RAS including radial nerve blockade, sympathetic ganglion blockade, warming the extremity, aspirating thrombus from the catheter tip, and flushing the artery with local analgesics, vasodilators, and anticoagulants[1,2].

Interventional radiologists have embraced the RAS acronym to explain the “entrapment syndrome” that occurs after the installation of larger and longer angioplasty catheters via the radial artery, causing painful arterial damage in accord with larger catheters and lesser arterial diameter. RAS can also prevent catheter insertion. Angioplasty RAS is routinely relieved by flushing the artery with heparin or cocktails of nitroglycerin and verapamil that lack neuromuscular effects[3].

Like other intracellular activities, muscle contraction is energized by ATPase enzymes that require Ca+ and ATP[5]. The sarcoplasmic reticulum releases Ca+ into myocyte cytoplasm to initiate contraction. ATPase then energizes the movement of fibrillar actin strands relative to adjacent myosin strands via a “ratcheting mechanism” to contract the muscle[6,7]. A calcium pump mechanism removes Ca+ from the cytoplasm and sequesters it within the sarcoplasmic reticulum to release the ratcheting mechanism, halt ATPase activity, and enable muscular relaxation. ATP depletion accordingly under mines muscle contraction.

The mitochondrial Krebs Cycle efficiently generates ATP in eukaryotic animal cells, but this necessitates oxygen and glucose, so that ATP generation is limited by tissue perfusion and oxygenation. This is readily observed during intense exercise, where cellular oxygen starvation causes skeletal muscle cells to revert to inefficient anaerobic ATP generation, causing muscle fatigue. Exercise conditioning induces angiogenesis (capillary proliferation) in muscle tissues that enhances oxygen delivery.
increases ATP generation, and improves exercise tolerance, but only up to a point[6-11].

Unlike skeletal muscle, vascular smooth muscle contracts slowly and enjoys close proximity to oxygenated blood, but its function nevertheless remains dependent on ATP generation. This is illustrated by Rigor Mortis, where the circulatory failure of death disrupts oxygen transport and delivery, causing cellular anoxia that halts ATP generation by the Krebs Cycle, so that universal muscle frailty ensues in the immediate aftermath of death, including vascular smooth muscle. The resilience of the calcium pump prevents rigor mortis in life. Anaerobic metabolism generates enough ATP to sustain the calcium pump for a few hours after death, but as the failing sarcoplasmic reticulum releases its calcium into the cytoplasm, the ratcheting mechanism locks in place for lack of ATP, causing rigor mortis in all types of muscle, including vascular smooth muscle.

Muscular spasm fails to explain why anticoagulants, which lack neuromuscular effects, can successfully prevent and relieve RAS, or why the incidence of RAS is exaggerated by seemingly unrelated diseases including congestive heart failure, hypertension, diabetes, obesity, and cancer.

Ultrasound detects thrombus in RAS; thrombus aspiration restores monitoring catheter function; and flushing the artery with anticoagulants prevents and relieves angioplasty RAS. These observations suggest that thrombus formation causes the RAS phenomenon, but this explanation is frustrated for lack of an effective hemostasis explanation. Such, however, may no longer be the case, because the recently discovered mammalian stress mechanism clarifies the nature of coagulation and its relationships with nervous activity, tissue repair, and disease[12-17].

Methods

The author’s curiosity about the recently discovered chimeric nature of coagulation factor VIII inspired a six-year review of published research via the Internet using advanced computer techniques. Factor VIII consists of enzymatically inert von Willebrand factor (VWF) and enzymatic factor VIIIC. The vascular endothelium manufactures VWF and releases it into blood circulation under nervous control, while VIIIC is continuously released by the liver. The two gigantic molecules bind together in blood circulation and exert their effects in concert. VWF stabilizes VIIIC and enables its enzymatic effects, which are otherwise so labile as to be nonexistent. Thus the factor VIII chimera links nervous activity to blood enzyme activity. Defects in VIIIC cause true hemophilia, a severe, sex-linked clotting diathesis. Defective VWF causes the von Willebrand coagulation diathesis, which is usually mild but in severe forms can mimic true hemophilia. VWF defects also cause angiodysplasia, because the VWF molecule maintains capillary structural integrity[18-24]. The unique characteristics of factor VIII served as a “Rosetta Stone” that deciphered the relationships between and among coagulation enzymes, nervous activity, coagulation, capillary hemostasis, atherosclerosis, bleeding diatheses, sickle cell anemia, angiodyplasia, angioneurotic edema, hemodynamic physiology, tissue repair, disease, and stress[25-30].

Results

The literature review successively identified testable mecha-
Coleman, L.S

Vol: 5 Issue: 1

The Three Products of the MSM

Combinations of nervous activity and tissue disruption alter the enzymatic interaction of factors VII, VIII, IX and X to regulate the magnitude, location, and speed of production of the three MSM products, which are thrombin, soluble fibrin, and insoluble fibrin. This focuses MSM activity to regulate hemodynamic physiology, hemostasis, and tissue repair. Stress induces MSM hyperactivity that produces these three products in excess, which manifests as disease. The constantly fluctuating levels of the three products produces bewildering blizzards of symptoms and manifestations that belie the relative simplicity of MSM operation.

Thrombin is the “universal enzyme of extracellular energy transduction.” Like intracellular ATPase enzymes, it requires Ca+ and ATP, and it transforms ATP energy into action⁶⁶-⁶⁸.

Thrombin is generated when tissue factor, or TF (a glycoprotein in extravascular tissues), and Factor VII (a blood enzyme) meet in the presence of prothrombin. The selectively permeable vascular endothelium allows small quantities of TF to “leak” into blood circulation, and it allows small quantities of Factor VII to “penetrate” into extravascular tissues. This generates small quantities of thrombin throughout the body (from its precursor, prothrombin). This “background” thrombin generation energizes ongoing tissue maintenance and a capillary gate mechanism regulated by autonomic balance that governs hemodynamic physiology⁶⁹,7⁰.

When trauma disrupts the vascular endothelium (even minor damage at the capillary level), the MSM accelerates thrombin generation in those damaged tissues to energize hemostasis⁷¹. The MSM then maintains thrombin elevations within an optimal range to energize cellular tissue repair activities. It reduces thrombin generation to maintenance levels in healing tissues as the repair process nears completion, causing clot disintegration and apoptosis that shrinks granulation tissues to enable wound closure⁷²,7³.

Parathyroid glands regulate extracellular Ca+ within a narrow range that optimizes thrombin activity²⁴,⁶⁴-⁷⁷. Drugs and chemicals that elevate Ca+ levels exaggerate thrombin generation, and vice-versa. Mg+ competitively inhibits Ca+ and mitigates thrombin generation⁷⁴-⁷⁸,⁹⁴. Magnesium sulfate is used to treat eclampsia, a treatment readily explained by its thrombin inhibition.

Thrombin is essential for embryological development, tissue maintenance, tissue repair and for malignancy. Pharmacological effects and enzyme defects that inhibit thrombin generation also disrupt embryological development, tissue maintenance, tissue repair, and malignancy.

When cells thus far tested have PAR (thrombin receptors) on their outer surface that determine how they react to thrombin elevations. Four different types of PAR have been discovered. Individual cell types have characteristic PAR types and numbers that determine how the cell reacts to thrombin elevations. Like sails on tiny ships, these can be reconfigured by the cell to alter cell reactions to thrombin during embryological development, tissue repair, and malignancy⁷⁵,⁶²,63,9⁵-10².

Ordinarily thrombin elevations energize cellular activities and inhibit apoptosis while thrombin starvation initiates apoptosis in fibroblasts, but cells react to thrombin differently at
different times and in different contexts. Thrombin can energize apoptosis, inhibit apoptosis, or be toxic to the cell. Additional research is needed to clarify thrombin effects, as present understanding relies on in vitro studies that may not apply to living organism.

The following thrombin effects of thrombin reflect its universal role in extracellular ATP energy utilization.

- Chemotaxis of platelets, osteocytes, white blood cells, and other tissue repair cells [99,105-107]
- Mitosis [59,69,102,106]
- Metabolism [69]
- Hypertrophy [69,105,107-110]
- Angiogenesis [47,111,112]
- Platelet activation, chemotaxis, and thromboxane release [46]
- Proliferation, spreading and gap formation in the vascular endothelium [117,118]
- Chemokine, cytokine, interleukin, Bradykinins, caspase, and prostaglandin release [56,104,109,119-127]
- Bone, muscle, collagen, and immune protein production by osteocytes, myocytes, fibroblasts, and immune cell populations [154,63,65,105,108,110,118,128-131,132,133-139]
- Conversion of fibrinogen to soluble fibrin [72]
- Conversion of fibrillar soluble fibrin to three-dimensional insoluble fibrin [40-148]
- Stabilization of insoluble fibrin via "Thrombin-Activated Fibrinolysis Inhibitor" (TAFI) [145,149-152]
- Inflammation, which dissolves the "basement membrane" that binds cells in tight formation with one another and with the Vascular Endothelium to facilitate chemotaxis [66,99]
- Astrocyte and glial cell proliferation in brain tissue [102]
- Gelsolin activation [133,154]
- Complement activation [155] Complement cascade activity generates large amounts of thrombin.
- T-cell activation [99,133]
- Blast transformation in lymphocytes [113,133]
- Macrophage phagocytic activity [67,99,111,112,131,136,156]
- Plasma (immune) cell and neutrophil activation [136,147,157]
- "Tumor Necrosis Factor" release from microglial cells [158]
- Tumor growth, malignancy, and fibrosis [55,62,63,95,128,130,135,159,160,161]
- Inhibits apoptosis [74,57,95,100,101,162,163]
- Intracellular gap formation in the vascular endothelium [117]
- Defects in Factors VII, X and tissue factor lethally disrupt thrombin generation [164]

Soluble fibrin is the “universal protein of tissue repair.” Thrombin converts fibrinogen to soluble fibrin that appears in pus, exudates, scabs, scars, saliva, mucus, and milk [165,166]. It escapes the vascular system via inflammatory gaps in the vascular endothelium and infiltrates damaged tissues to promote fibrinolysis and collagen production that facilitates tissue repair [106,117,165]. Excessive insoluble fibrin causes tissue edema, organ dysfunction, fibrosis, and scar formation [139,167-178].

Insoluble fibrin is the “universal polymer of hemostasis.” Factor VIII accelerates thrombin generation to energize its enzymatic conversion of soluble fibrin into strands of insoluble fibrin that entangle blood cells, reduce pulsatile turbulence below a threshold, and bind blood cells into a viscoelastic clot or thrombus [12,33,56]. In capillaries, insoluble fibrin exaggerates flow resistance to regulate hemodynamic physiology [133]. Excessive insoluble fibrin exaggerates blood viscosity and coagulability, which decreases cardiac output, tissue perfusion, and tissue oxygenation, and invites infarction, thrombosis, embolism, and disseminated intravascular coagulation (DIC) [135]. Excessive insoluble fibrin generation exhausts clotting precursors [79,140].

Insoluble fibrin incorporates cross-links of plasminogen, which spontaneously degrades into plasmin that enzymatically disintegrates insoluble fibrin into “fibrin split products.” Thrombin-activated fibrinolysis inhibitor (TAFI) stabilizes plasminogen and preserves insoluble fibrin [145,149-152].

The Interaction of factors VII, VIII, IX, and X

Hepatic enzyme factors IX and X have prolonged half-lives and circulate at stable levels, but factors VII and VIIIC are labile, so that their fluctuating enzymatic activities alter the enzymatic interaction and determine the rate, magnitude, location and speed of production of thrombin, soluble fibrin, and insoluble fibrin.

Factor IX enhances factor VIII activity but lacks other effects.

Factor VIII links nervous activity to blood enzymes. It is a gigantic chimeric molecular complex consisting of continuously released hepatic enzyme factor VIIIC and von Willebrand factor (VWF) that is produced by the vascular endothelium and released into blood in accord with sympathetic activity [200]. These seemingly unrelated molecules bind together in blood circulation and exert their effects in concert, so that factor VIII fluctuates in accord with nervous activity, including emotion [26,29,181-183]. Factor VIII interacts with factors IX and X to generate factor XIII that adds “cross links” of fibronectin, vitronectin and plasminogen to molecular strands of soluble fibrin to generate insoluble fibrin in capillaries and flowing blood.

Factor VII links tissue damage to blood enzymes. Tissue damage disrupts the vascular endothelium and exposes factor VII to tissue factor in extravascular tissues [184]. Tissue factor stabilizes labile factor VII, where upon it generates small amounts of thrombin that enable the activities of factors VIII, IX, and X. Factor VII thus functions as a “trigger” that initiates and localizes the enzymatic interaction.

The pivotal activities of factor X have yet to be fully elucidated. It interacts with factor VII and tissue factor to enable embryological development and tissue repair, and it interacts with factor VIIIC and VWF (factor VIII) to generate insoluble fibrin that enables hemostasis and capillary gate function.

The Vascular Endothelium

The vascular endothelium is a diaphanous layer of cells, one cell thick, that lines the inner surface of blood vessels and is the sole substance of capillaries. It regulates the enzymatic interaction of factors VII, VIII, IX and X to govern the rate, magnitude, and location of the production of thrombin, soluble fibrin, and insoluble fibrin.

The vascular endothelium insulates blood enzymes from tissue factor in extravascular tissues. Its traumatic disruption exposes tissue factor to blood enzymes and initiates coagulation and tissue repair. Harmful radiation and toxic chemicals increase its permeability to factors VII, X and tissue factor, which causes painful inflammation but does not induce coagula-
tion because the intact vascular endothelium remains impermeable to gigantic factor VIII. Abundant tissue factor exaggerates coagulability and malignancy in brain, nerves, lung, gonads, arteries, cervix, and placenta[184]. The vascular endothelium is “selectively permeable.” It allows the continuous “penetration” of factor VII from flowing blood into extravascular tissues, which generates small amounts of thrombin that energize tissue maintenance. It allows the continuous “leakage” of tissue factor into flowing blood, which enables the continuous “background” activity of factors VII, VIII, IX and X.

The cells of the vascular endothelium react to local factors and communicate with one another via electromagnetic signals[185]. They release VWF in accord with sympathetic tone to generate insoluble fibrin[26,186-190]. They release nitric oxide (NO) in accord with parasympathetic tone to disintegrate insoluble fibrin (nitrergic neurogenic vasodilation) [189,191-195].

The Tissue Disruption Pathway
The tissue disruption pathway is analogous to the extrinsic pathway of the coagulation cascade. Tissue damage disrupts the ubiquitous vascular endothelium, exposes tissue factor to blood enzymes, and triggers an intense enzymatic interaction of factors VII, VIII, IX and X that activates platelets, releases thromboxane, and generates strands of insoluble fibrin that entangle blood cells, reduce pulsatile blood turbulence below a threshold, and bind blood cells into a viscoelastic clot that restores the isolation of damaged tissues from flowing blood[73].

The Tissue Repair Mechanism
Due to its gigantic size, factor VIII cannot penetrate the clot of its own manufacture, and factor IX interacts only with factor VIII, so that clot formation is limited to the vicinity of tissue damage. The selectively permeable viscoelastic clots regulates the penetration of factors VII and X into damaged tissues, where they interact with tissue factor to generate thrombin that energizes inflammatory gaps between the cells of the vascular endothelium that increase its permeability. Thrombin energized inflammation loosens cell connections to facilitate thrombin energized chemotaxis of repair cells that move from adjacent undamaged into damaged tissues, where they engage in thrombin energized tissue repair. Thrombin-generated soluble fibrin escapes the vascular system through thrombin inflamed tissues to enter damaged tissues, where it facilitates thrombin energized fibroblast proliferation and collagen production that fills empty spaces. Thrombin energized immune activity fights infection and removes debris. Thrombin energized cell differentiation replaces damaged bone and tissues. Thrombin generation declines as tissue repair restores the vascular endothelium, and thrombin starvation induces clot disintegration and repair cell apoptosis that draws wound edges together to conclude the repair process[193].

The Capillary Gate Pathway
The capillary gate pathway is analogous to the intrinsic pathway of the coagulation cascade. Nervous activity releases von Willebrand factor (VWF) from the vascular endothelium into flowing blood to stabilize VIIIC and generate insoluble fibrin that increases blood viscosity and coagulability.

The Capillary Gate Mechanism
Capillary surface area is vastly greater than that of all larger vessels combined, and turbulence, flow rates and pressures are minimal at the capillary level. The capillary gate pathway regulates a submicroscopic “capillary gate mechanism” that governs capillary flow, capillary hemostasis, systemic vascular resistance, tissue perfusion, organ function, cardiac output, cardiac efficiency, blood pressure, and pulse rate. Autonomic balance and CO2 tissue accumulation regulate the capillary gate mechanism[196]. Sympathetic activity extrudes VWF from the inner walls of capillaries, next to binding sites for fibrinogen and fibrinectin. Factor VIIIC binds to VWF and accelerates thrombin generation to convert fibrinogen to strands of soluble fibrin. Factor VIII then converts factor X to factor XIII that adds “cross-links” of plasminogen and fibronection to molecular strands to soluble fibrin to generate insoluble fibrin that polymerizes into strands that “close” the capillary gate by increasing capillary flow resistance[73,180]. Plasminogen spontaneously degenerates into plasmin that enzymatically disintegrates insoluble fibrin into “fibrin split products” unless plasminogen is continuously stabilized by “thrombin-activated plasminogen inhibitor” (TAFI).Parasympathetic activity releases nitric oxide (NO) from the vascular endothelium[189,191-195]. NO is a gaseous molecule that diffuses into the capillary lumen and binds to Ca2+, which inactivates thrombin, accelerates the disintegration of insoluble fibrin, and “opens” the capillary gate (aka “nitrergic neurogenic vasodilation”). The opposing effects of epinephrine and insulin extend autonomic balance to peripheral tissues where direct autonomic innervation is lacking. Sympathetic activity releases epinephrine from the adrenal glands, which releases VWF from the vascular endothelium, increases factor VIII activity, and generates insoluble fibrin[197]. Parasympathetic activity releases insulin from the pancreas, which releases NO from the vascular endothelium, which accelerates insoluble fibrin disintegration[198].

The Turbulence Mechanism
Familiar fluids such as water, oil, steam, and atmospheric gases are classified as “Newtonian” because they exhibit exponential increases in turbulent flow resistance when they are accelerated in pipes[199]. (see figure 3) In contrast, blood is a “non-Newtonian” fluid that exhibits exponential decreases in flow resistance when it is accelerated in arteries. This is because mammalian red cells spontaneously form “aggregates” during blood acceleration that inhibit turbulent flow resistance, which enables the heart to efficiently eject its contents in less than a tenth of a second[200]. The muscular arterial tree expands to accommodate cardiac ejection volume, and then functions as a “secondary heart” that propels blood toward capillary beds as it restores resting volume. However, blood flow momentarily reverses direction in the aorta at the outset of diastole, which closes the aortic valve. The reduced diameter of the distal aorta amplifies the momentary flow reversal, disrupts the aggregate patterns, and produces a burst of diastolic pulsatile turbulence that momentarily halts blood flow as it propagates toward the periphery of the arterial tree. Laminar blood flow resumes in the wake of the pulse wave. The pulsatile turbulence generates lateral forces that press on the inner walls of arteries. This explains blood pressure and the palpable pulse. The turbulence maintains arterial patency by dis-
integrating thromboses and mobilizing particulate deposits from the inner walls of arteries that would otherwise induce localized inflammation and tissue repair activities that cause atheroma formation. Decreasing arterial diameter exaggerates turbulence, and promotes thrombus formation. Capillary senescence exaggerates flow resistance, which undermines turbulent intensity, causes essential hypertension, promotes thrombus formation, accelerates atherosclerosis, and exaggerates cardiac work, which and causes congestive heart failure that further undermines pulsatile turbulent intensity. In reasonably healthy individuals, pulsatile blood turbulence maintains arterial patency in the aftermath of arterial cannula installation. However, co-existing disease inhibits turbulent intensity, which promotes thrombus formation and propagation that undermines the pulse wave and obstructs arterial flow hours later. This explains the close relationships of RAS and disease.

Nerve blockade promotes spontaneous thrombus disintegration by inhibiting sympathetic nervous activity that releases VWF from the vascular endothelium.

The unappreciated anticoagulant properties of local analgesics such as lidocaine, calcium channel blockers such as Verapamil, beta-blockers such as propranolol, furosemide, and other pharmaceuticals explain their ability to relieve RAS.

Multiple arterial piercings increase tissue factor exposure and trigger thrombus formation that mimics spasm and obstructs arterial flow. Soon thereafter, pulsatile turbulence “tunnels” through the thrombus, restores arterial patency, and mimics spasm relief.

Blood is ordinarily transparent to both X-rays and ultrasound, but pulsatile turbulence reflects the Doppler ultrasound signal, which facilitates cannula installation. Doppler ultrasound detects mature thrombus formation but cannot detect immature thrombus formation that nevertheless undermines the palpable pulse and blood flow.

Angioplasty catheters disrupt the vascular endothelium along their entire length and cause far greater tissue factor exposure than small monitoring catheters. This induces thrombus formation along the length of the catheter in accord with small arterial diameter, large catheter diameter, and catheter length. The viscoelastic thrombus is tough, sticky, and flexible, and it bonds to the catheter, causing entrapment. The entrapment eventually resolves as plasmin degrades the viscoelastic clot, but ensuing tissue repair activity causes permanent arterial damage. Anticoagulant heparin, lidocaine, and verapamil infusions prevent and relieve catheter entrapment via hemolysis.

Cold exaggerates blood viscosity and coagulability. Warming the extremity reduces blood viscosity and coagulability, accelerates thrombus disintegration, and restores the waveform.

Ultrasound releases NO from the vascular endothelium, disrupts insoluble fibrin, disintegrates the thrombus, and restores the waveform.

The MSM suggests simple, safe, inexpensive RAS treatments that can be synergistically combined. Ultrasound releases NO from the vascular endothelium and disintegrates insoluble fibrin. CO supplementation of inhaled gas mixtures opens the capillary gate and optimizes pulsatile turbulence intensity. EDTA, trisodium citrate, and MgSO4 are more potent than heparin, and they can be readily reversed with Ca++. They are inexpensive, and they have excellent safety records when used for chelation, dialysis, ecclampsia, and blood preservation.

Citation: Coleman, L.S. The Mammalian Stress Mechanism (MSM) Explains Radial Artery Spasm (RAS). (2018) J Anesth Surg 5(1): 81-94.
Conclusion

MSM activity here in does not refute spasm, but it offers an alternative explanation of RAS that invites further investigation. It is possible that a combination of spasm and coagulation causes the confusing manifestations of RAS. On the other hand, the Razor of Occam suggests that the simplest explanation is the one most likely to be correct. The coagulation hypothesis is simpler because it potentially explains all aspects of the RAS phenomenon.

The implications of the MSM exceed the bounds of medicine. In addition to enabling Selye’s “unified theory of medicine” that explains physiology, pathology and stress, it confers a “unified theory of biology” that explains embryology, evolution, anatomy, ethology, intelligence, emotion, taxonomy, paleontology, dinosaurs, the Cambrian explosion, and the origin of life. It paves the path for understanding of the gene code, with implications that presently remain in the realm of science fiction. A book that discusses the extended medical and biological implications of stress theory is in the hands of its publisher and will soon be announced via my website: www.stressmechanism.com.

Conflict of Interest: No financial support was provided to produce this paper.

Acknowledgment: The viewpoint presented in this paper is exclusively that of the author.

References

1. Bhakta, P., Zaheer, H. Ultrasound-guided radial nerve block to relieve cannulation-induced radial arterial spasm. (2017) Can J Anaesth 64(12): 1269-1270. PubMed | CrossRef | Others
2. Backman, S.B. Radial artery spasm: Should we worry? (2017) Can J Anaesth 64(12): 1165-1168. PubMed | CrossRef | Others
3. Kristic, I., Lukenda, J. Radial artery spasm during transradial coronary procedures. (2011) J Invasive Cardiol 23(12): 527-531. PubMed | CrossRef | Others
4. Cannon, W.B. The wisdom of the body. (1932) (W.W. Norton & Company, New York,) xviii, 19-333. PubMed | CrossRef | Others
5. Ferjani, I., Fattoum, A., Manai, M., et al. Two distinct regions of calponin share common binding sites on actin resulting in different modes of calponin-actin interaction. (2010) Biochim Biophys Acta 1804(9): 1760-1767. PubMed | CrossRef | Others
6. Hanson, J. Huxley, H.E. Structural basis of the cross- striations in muscle. (1953) Nature 172(4377): 530-532 PubMed | CrossRef | Others
7. Huxley, H. Hanson, J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. (1954) Nature 173(4412): 973-976. PubMed | CrossRef | Others
8. Ades, P.A., Waldmann, M.L., Meyer, W.L., et al. Skeletal muscle and cardiovascular adaptations to exercise conditioning in older coronary patients. (1996) Circulation 94(3): 323-330. PubMed | CrossRef | Others
9. Prior, B.M., Lloyd, P.G., Yang, H.T., et al. Exercise-induced vascular remodeling. (2003) Exerc Sport Sci Rev 31(1): 26-33. PubMed | CrossRef | Others
10. Wijnen, J.A., Kool, M.J.F., van Baak, M.A., et al. Effect of exercise training on ambulatory blood pressure. (1994) Int J Sports Med 15(1): 10-15. PubMed | CrossRef | Others
11. Zanesco, A., Antunes, E. Effects of exercise training on the cardiovascular system: Pharmacological approaches. (2007) Pharmacol Ther 114(3): 307-317. PubMed | CrossRef | Others
12. Coleman, L.S. Insoluble fibrin may reduce turbulence and bind blood components into clots. (2005) Med Hypotheses 65(4): 820-821. PubMed | CrossRef | Others
13. Coleman, L.S. A capillary hemostasis mechanism regulated by sympathetic tone and activity via factor VIII or von Willebrand’s factor may function as a “capillary gate” and may explain angiodyplasia, angioneurotic edema, and variations in systemic vascular resistance. (2005) Med Hypotheses 66(4): 773-775. PubMed | CrossRef | Others
14. Coleman, L.S. To the Editor: Is von Willebrand Factor a Hormone that Regulates a Coagulation Mechanism? (2006) World J Surg 30(3): 479-481. PubMed | CrossRef | Others
15. Coleman, L.S. A capillary hemostasis mechanism regulated by sympathetic tone and activity via factor VIII or von Willebrand’s factor may function as a “capillary gate” and may explain angiodyplasia, angioneurotic edema, and variations in systemic vascular resistance. (2006) Med Hypotheses 66: 773-775. PubMed | CrossRef | Others
16. Coleman, L.S. A Stress Repair Mechanism that Maintains Vertebrate Structure during Stress. (2010) Cardiovasc Hematol Disord Drug Targets 10(2): 111-137. PubMed | CrossRef | Others
17. Coleman, L.S. in Hypotheses in Clinical Medicine, e. a. Shoja MM, Ed. (Nova Biomedical, New York, NY , 2012) chap. 29. PubMed | CrossRef | Others
18. Dreth, J.P., Nagengast, F.M. Aortic stenosis and intestinal blood loss from angiodyplasia: valve replacement is a therapeutic option. (2000) Ned Tijdschr Geneeskld 144: 2237-2240. PubMed | CrossRef | Others
19. Fujita, H., Tomyama, J., Chuganji, Y., et al. Diffuse angiodyplasia of the upper gastrointestinal tract in a patient with hypertrophic obstructive cardiomyopathy. (2000) Intern Med 39(5): 385-388. PubMed | CrossRef | Others
20. O’Brien, J.R. Angiodysplasia, haemostasis and capillaries. A hypothesis. (1996) Thromb Res 84(5): 385-387. PubMed | CrossRef | Others
21. Rosborough, T.K., Swaim, W.R. Acquired von Willebrand’s disease, platelet-release defect and angiodyplasia. (1978) Am J Med 65(1): 96-100 PubMed | CrossRef | Others
22. Tomori, K., Nakamoto, H., Kotaki, S., et al. Gastric angiodyplasia in patients undergoing maintenance dialysis. (2003) Adv Perit Dial 19: 136-142. PubMed | CrossRef | Others
23. Veyradier, A., Balian, A, Wolf, M., et al. Abnormal von Willebrand factor in bleeding angiodyplasias of the digestive tract. (2001)
56. Hedner, U. General haemostatic agents—fact or fiction? (2002) Pathophysiol Haemost Thromb 32(Suppl 1): 33-36. PubMed | CrossRef | Others

57. Mahajan, V.B., Pai, K.S., Lau, A., et al. Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. (2000) Proc Natl Acad Sci U S A 97(22): 12062-12067. PubMed | CrossRef | Others

58. Warkentin, T.E., Sikov, W.M., Lillicrap, D.P. Multicentric warfarin-induced skin necrosis complicating heparin-induced thrombocytopenia. (1999) Am J Hematol 62(1): 44-48. PubMed | CrossRef | Others

59. Fenton, J.W., Ofosu, F.A., Brezniak, D.V., et al. Thrombin and antithrombotics. (1998) Semin Thromb Hemost 24(2): 87-91. PubMed | CrossRef | Others

60. Stewart, A.J. Penman, I.D., Cook, M.K., et al. Warfarin-induced skin necrosis. (1999) Postgrad Med J 75(882): 233-235. PubMed | CrossRef | Others

61. Brummel, K.E., Paradis, S.G., Butenas, S., et al. Thrombin functions during tissue factor-induced blood coagulation. (2002) Blood 100(1): 148-152. PubMed | CrossRef | Others

62. Chalmers, C.J., Halmanno, K., Hadfield, K., et al. Thrombin inhibits Bim (Bel-2-interacting mediator of cell death) expression and prevents serum-withdrawal-induced apoptosis via protease-activated receptor 1. (2003) Biochem J 375(Pt 1): 99-109. PubMed | CrossRef | Others

63. Chimni, C., de Niese, M.R., Tew, D.J., et al. Thrombin, a survival factor for cultured myoblasts. (1999) J Biol Chem 274(14): 9169-9174. PubMed | CrossRef | Others

64. James, M.F., Roche, A.M. Dose-response relationship between plasma ionized calcium concentration and thrombelastography. (2004) J Cardiothorac Vasc Anesth 18(5): 581-586. PubMed | CrossRef | Others

65. Shapiro, M.J., Mistry, B. Calcium regulation and nonprotective properties of calcium in surgical ischemia. (1996) New Horiz 4: 134-138. PubMed | CrossRef | Others

66. Bobe, R., Yin, X., Roussanne, M.C., et al. Evidence for ERK1/2 activation by thrombin that is independent of EGFR transactivation. (2003) Am J Physiol Heart Circ Physiol 285(2): H745-754. PubMed | CrossRef | Others

67. Jeng, J.H., Chan, C.P., Wu, H.L., et al. Protease-activated receptor-1-induced calcium signaling in gingival fibroblasts is mediated by sarcoplasmic reticulum calcium release and extracellular calcium influx. (2004) Cell Signal 16(6): 731-740. PubMed | CrossRef | Others

68. Brass, E.P., Forman, W.B., Edwards, R.V., et al. Fibrin formation: effect of calcium ions. (1978) Blood 52(4): 654-658. PubMed | CrossRef | Others

69. Brostrom, M.A., et al. Ca2+ dynamics of thrombin-stimulated rat heart-derived embryonic myocytes: relationship to protein synthesis and cell growth. (2003) Int J Biochem Cell Biol 35(11): 1573-1587. PubMed | CrossRef | Others

70. Butenas, S., Brummel, K.E., Paradis, S.G., et al. Influence of factor VIIa and phospholipids on coagulation in “acquired” hemophilia. (2003) Arterioscler Thromb Vasc Biol 23(1): 123-129. PubMed | CrossRef | Others

71. Davies, M.S., Flannery, M.C., McCollum, C.N. Calcium alginate as haemostatic swabs in hip fracture surgery. (1997) J R Coll Surg Edinb 42(1): 31-32. PubMed | CrossRef | Others

72. Gurrieri, M.A. Thrombin-fibrinogen interaction: release of fibrinopeptides and the effects of ATP. (1990) Medicina (Firenze) 10(1): 51-52. PubMed | CrossRef | Others

73. Murdoch, I.A., Qureshi, S.A., Huggon, I.C. Perioperative haemodynamic effects of an intravenous infusion of calcium chloride in children following cardiac surgery. (1994) Acta Paediatr 83(6): 658-661. PubMed | CrossRef | Others

74. Sakata, Y., Aoki, N. Cross-linking of alpha 2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. (1980) J Clin Invest 65(2): 290-297. PubMed | CrossRef | Others

75. von Brecht, J.H., Flanigan, M.J., Freeman, R.M., et al. Regional anticoagulation: hemodialysis with hypertonic trisodium citrate. (1986) Am J Kidney Dis 8(3): 196-201. PubMed | CrossRef | Others

76. Zuccala, G., Pahor, M., Landi, F., et al. Use of calcium antagonists and need for perioperative transfusion in older patients with hip fracture: observational study. (1997) BMJ 314(7081): 643-644. PubMed | CrossRef | Others

77. Zuccala, G., Pedone, C., Cocchi, A., et al. Use of calcium antagonists and hemoglobin loss in hospitalized elderly patients: a cohort study. Gruppo Italiano di Farmacoepidemiologia nell’Anziano (GIFA) investigators. (2000) Clin Pharmacol Ther 67(3): 314-322. PubMed | CrossRef | Others

78. Barbagallo, M., Dominguez, L.J., Resnick, L.M. Magnesium metabolism in hypertension and type 2 diabetes mellitus. (2007) Am J Ther 14(4): 375-385. PubMed | CrossRef | Others

79. Baker, S.B., Worthley, L.I. The essentials of calcium, magnesium and phosphate metabolism: part II. Disorders. (2002) Crit Care Resusc 4(4): 307-315. PubMed | CrossRef | Others

80. Baker, S.B., Worthley, L.I. The essentials of calcium, magnesium and phosphate metabolism: part I. Physiology. (2002) Crit Care Resusc 4(4): 301-306. PubMed | CrossRef | Others

81. James, M.F., Cronje, L. Pheochromocytoma crisis: the use of magnesium sulfate. (2004) Anesth Analg 99(3): 680-686. PubMed | CrossRef | Others

82. Dedhia, H.V., Banks, D.E. Pulmonary response to hyperoxia: effects of magnesium. (1994) Environ Health Perspect 102(Suppl 2): 727-731. PubMed | CrossRef | Others

83. Elsharnouby, N.M., Elsharnouby, M.M. Magnesium sulphate as a technique of hypotensive anaesthesia. (2006) Br J Anaesth 96(6): 727-731. PubMed | CrossRef | Others

84. Elin, R.J. Magnesium metabolism in health and disease. (1988) Dis Mon 34(4): 161-218. PubMed | CrossRef | Others

85. Erodi, A. Magnesium—an anticoagulant physiological electrolyte. (1973) Med Klin 68: 216-219. PubMed | CrossRef | Others

Coleman, L.S Vol: 5 Issue: 1 page no: 89/94
its proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. (2006) J Thorac Cardiovasc Surg 131(1): 21-27.

98. Bretschneider, E., Kaufmann, R., Braun, M., et al. Evidence for proteinase-activated receptor-2 (PAR-2)-mediated mitogenesis in coronary artery smooth muscle cells. (1999) Br J Pharmacol 126(8): 1735-1740.

99. Day, J.R., Taylor, K.M., Lидington, E.A., et al. Aprotinin inhibits its proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. (2006) J Thorac Cardiovasc Surg 131(1): 21-27.

90. Rukshin, V ., Shah, P.K., Cercek, B., et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and eptifibatide in a canine model of stent thrombosis. (2002) Circulation 105(16): 1970-1975.

91. Mussoni, L., Sironi, L., Tedeschi, L., et al. Magnesium inhibits arterial thrombi after vascular injury in rat: in vivo impairment of coagulation. (2001) Thromb Haemost 86(5): 1292-1295.

92. Rukshin, V., Shah, P.K., Cercek, B., et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and epifibatide in a canine model of stent thrombosis. (2002) Circulation 105(16): 1970-1975.

93. Scheibe, F., Haupt, H., Vlastos, G.A. Preventive magnesium supplement reduces ischemia-induced hearing loss and blood viscosity in the guinea pig. (2000) Eur Arch Otorhinolaryngol 257(7): 355-361.

94. Seelig, M.S. Increased need for magnesium with the use of combined oestrogen and calcium for osteoporosis treatment. (1990) J Clin Endocrinol Metab 70(3): 724-730.

95. Pagel, C.N., de Niese, M.R., Abraham, L.A., et al. Inhibition of osteoblast apoptosis by thrombin. (2003) Bone 33(4): 733-743.

96. Naldini, A., Carney, D.H., Pucci, A., et al. Human alpha-thrombin stimulates proliferation of interferon-gamma differentiated, growth-arrested U937 cells, overcoming differentiation-related changes in expression of p21CIP1/WAF1 and cyclin D1. (2002) J Cell Physiol 191(3): 290-297.

97. Brass, L.F., Molino, M. Protease-activated G protein-coupled receptors on human platelets and endothelial cells. (1997) Thromb Haemost 78(1): 234-241.

98. Bretschneider, E., Kaufmann, R., Braun, M., et al. Evidence for proteinase-activated receptor-2 (PAR-2)-mediated mitogenesis in coronary artery smooth muscle cells. (1999) Br J Pharmacol 126(8): 1735-1740.

99. Day, J.R., Taylor, K.M., Lидington, E.A., et al. Aprotinin inhib- its proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. (2006) J Thorac Cardiovasc Surg 131(1): 21-27.

90. Rukshin, V., Shah, P.K., Cercek, B., et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and eptifibatide in a canine model of stent thrombosis. (2002) Circulation 105(16): 1970-1975.

91. Mussoni, L., Sironi, L., Tedeschi, L., et al. Magnesium inhibits arterial thrombi after vascular injury in rat: in vivo impairment of coagulation. (2001) Thromb Haemost 86(5): 1292-1295.

92. Rukshin, V., Shah, P.K., Cercek, B., et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and epifibatide in a canine model of stent thrombosis. (2002) Circulation 105(16): 1970-1975.

93. Scheibe, F., Haupt, H., Vlastos, G.A. Preventive magnesium supplement reduces ischemia-induced hearing loss and blood viscosity in the guinea pig. (2000) Eur Arch Otorhinolaryngol 257(7): 355-361.

94. Seelig, M.S. Increased need for magnesium with the use of combined oestrogen and calcium for osteoporosis treatment. (1990) J Clin Endocrinol Metab 70(3): 724-730.

95. Pagel, C.N., de Niese, M.R., Abraham, L.A., et al. Inhibition of osteoblast apoptosis by thrombin. (2003) Bone 33(4): 733-743.

96. Naldini, A., Carney, D.H., Pucci, A., et al. Human alpha-thrombin stimulates proliferation of interferon-gamma differentiated, growth-arrested U937 cells, overcoming differentiation-related changes in expression of p21CIP1/WAF1 and cyclin D1. (2002) J Cell Physiol 191(3): 290-297.

97. Brass, L.F., Molino, M. Protease-activated G protein-coupled receptors on human platelets and endothelial cells. (1997) Thromb Haemost 78(1): 234-241.

98. Bretschneider, E., Kaufmann, R., Braun, M., et al. Evidence for proteinase-activated receptor-2 (PAR-2)-mediated mitogenesis in coronary artery smooth muscle cells. (1999) Br J Pharmacol 126(8): 1735-1740.

99. Day, J.R., Taylor, K.M., Lидington, E.A., et al. Aprotinin inhib- its proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. (2006) J Thorac Cardiovasc Surg 131(1): 21-27.

90. Rukshin, V ., Shah, P.K., Cercek, B., et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and epifibatide in a canine model of stent thrombosis. (2002) Circulation 105(16): 1970-1975.

91. Mussoni, L., Sironi, L., Tedeschi, L., et al. Magnesium inhibits arterial thrombi after vascular injury in rat: in vivo impairment of coagulation. (2001) Thromb Haemost 86(5): 1292-1295.

92. Rukshin, V., Shah, P.K., Cercek, B., et al. Comparative antithrombotic effects of magnesium sulfate and the platelet glycoprotein IIb/IIIa inhibitors tirofiban and epifibatide in a canine model of stent thrombosis. (2002) Circulation 105(16): 1970-1975.

93. Scheibe, F., Haupt, H., Vlastos, G.A. Preventive magnesium supplement reduces ischemia-induced hearing loss and blood viscosity in the guinea pig. (2000) Eur Arch Otorhinolaryngol 257(7): 355-361.

94. Seelig, M.S. Increased need for magnesium with the use of combined oestrogen and calcium for osteoporosis treatment. (1990) Magnes Res 3(3): 197-215.

95. Pagel, C.N., de Niese, M.R., Abraham, L.A., et al. Inhibition of osteoblast apoptosis by thrombin. (2003) Bone 33(4): 733-743.

96. Naldini, A., Carney, D.H., Pucci, A., et al. Human alpha-thrombin stimulates proliferation of interferon-gamma differentiated, growth-arrested U937 cells, overcoming differentiation-related changes in expression of p21CIP1/WAF1 and cyclin D1. (2002) J Cell Physiol 191(3): 290-297.

97. Brass, L.F., Molino, M. Protease-activated G protein-coupled receptors on human platelets and endothelial cells. (1997) Thromb Haemost 78(1): 234-241.

98. Bretschneider, E., Kaufmann, R., Braun, M., et al. Evidence for proteinase-activated receptor-2 (PAR-2)-mediated mitogenesis in coronary artery smooth muscle cells. (1999) Br J Pharmacol 126(8): 1735-1740.

99. Day, J.R., Taylor, K.M., Lидington, E.A., et al. Aprotinin inhib- its proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. (2006) J Thorac Cardiovasc Surg 131(1): 21-27.
113. Horstman, G., Hemker, H.C. Clot-promoting effect of platelet-vas-
sel wall interaction: influence of dietary fats and relation to arterial
thrombus formation in rats. (1979) Haemostasis 8(3-5): 211-226.
PubMed | CrossRef | Others

114. Horstman, G. Platelet - vessel wall interaction: role of blood clot-
ting. (1981) Philos Trans R Soc Lond B Biol Sci 294(1072): 355-
371. PubMed | CrossRef | Others

115. Henriksen, R.A., Samokhin, G.P., Tracy, P.B. Thrombin-induced
thromboxane synthesis by human platelets. Properties of an- 	ion binding exosite I-independent receptor. (1997) Arterioscler
Thromb Vasc Biol 17(12): 3519-3526. PubMed | CrossRef | Others

116. Tate, B.F., Rittenhouse, S.E. Thrombin activation of human plate-
lets causes tyrosine phosphorylation of PLC-gamma 2. (1993) Biochim
Biophys Acta 1178(3): 281-285. PubMed | CrossRef | Others

117. Garcia, J.G., Pavalko, F.M., Patterson, C.E. Vascular endothelial
cell activation and permeability responses to thrombin. (1995)
Blood Coagul Fibrinolysis 6(7): 609-626. PubMed | CrossRef | Others

118. Asero, R., Tedeschi, A., Riboldi, P., et al. Plasma of patients with
chronic urticaria shows signs of thrombin generation, and its
intradermal injection causes wheal-and-flare reactions much more
freely than autologous serum. (2006) J Allergy Clin Immunol
117(5): 1113-1117. PubMed | CrossRef | Others

119. Naldini, A., Witkowska – Pelc, E., Filippi, I., et al. Thrombin in-
hhibits IFN-gamma production in human peripheral blood mononu-
clear cells by promoting a Th2 profile. (2006) J Interferon Cyto-
kine Res 26(11): 793-799. PubMed | CrossRef | Others

120. Naldini, A., Bernini, C., Pucci, A., et al. Thrombin-mediated IL-
10 up-regulation involves protease-activated receptor (PAR)-1 ex-
pression in human mononuclear leukocytes. (2005) J Leukoc Biol
78(3): 736-744. PubMed | CrossRef | Others

121. Naldini, A., Carraro, F., Baldari, C.T., et al. The thrombin peptide,
TP508, enhances cytokine release and activates signaling events.
(2004) Peptides 25(11): 1917-1926. PubMed | CrossRef | Others

122. Naldini, A., Aarden, L., Pucci, A., et al. Inhibition of interleu-
kin-12 expression by alpha-thrombin in human peripheral blood
mononuclear cells: a potential mechanism for modulating Th1/
Th2 responses. (2003) Br J Pharmacol 140(5): 980-986. PubMed | CrossRef | Others

123. Naldini, A., Pucci, A., Carney, D.H., et al. Thrombin enhancement
of interleukin-1 expression in mononuclear cells: involvement of
proteinase-activated receptor-1. (2002) Cytokine 20(5): 191-199.
PubMed | CrossRef | Others

124. Naldini, A., Carney, D.H., Pucci, A., et al. Thrombin regulates the
expression of proangiogenic cytokines via proteolytic activation of
protease-activated receptor-1. (2000) Gen Pharmacol 35(5): 255-
259. PubMed | CrossRef | Others

125. Naldini, A., Sower, L., Bocci, V., et al. Thrombin receptor expres-
sion and responsiveness of human monocytic cells to thrombin is
linked to interferon-induced cellular differentiation. (1998) J Cell
Physiol 177(1): 76-84. PubMed | CrossRef | Others

126. Ben Amor, N., Pariente, J.A., Salido, G.M., et al. Caspases 3 and
9 are translocated to the cytoskeleton and activated by thrombin in
human platelets. Evidence for the involvement of PKC and the ac-
tin filament polymerization. (2005) Cell Signal 18(8): 1252-1261.
PubMed | CrossRef | Others

127. Ueno, A., Murakami, K., Yamanouchi, K., et al. Thrombin stimu-
lates production of interleukin-8 in human umbilical vein endothe-

cial cells. (1996) Immunology 88(1): 76-81. PubMed | CrossRef | Others

128. Hua, Y., Keep, R.F., Schallert, T., et al. A thrombin inhibitor re-
duces brain edema, glioma mass and neurological deficits in a rat
glioma model. (2003) Acta Neurochir 86(Suppl): 503-506. PubMed | CrossRef | Others

129. Song, S.J., Pagel, C.N., Campbell, T.M., et al. The role of pro-
tease-activated receptor-1 in bone healing. (2005) Am J Pathol
166(3): 857-868. PubMed | CrossRef | Others

130. Howell, D.C., Goldsack, N.R., Marshall, R.P., et al. Direct throm-
binder inhibition reduces lung collagen, accumulation, and connec-
tive tissue growth factor mRNA levels in bleomycin-induced pul-
monary fibrosis. (2001) Am J Pathol 159(4): 1383-1395.
PubMed | CrossRef | Others

131. Howells, G.L., Macey, M., Curtis, M.A., et al. Peripheral blood
lymphocytes express the platelet-type thrombin receptor. (1993)
Br J Haematol 84(1): 156-160. PubMed | CrossRef | Others

132. Tordai, A., Fenton, J.W., Andersen, T., et al. Functional thrombin
receptors on human T lymphoblastoid cells. (1993) J Immunol
150(11): 4876-4886. PubMed | CrossRef | Others

133. Naldini, A., Carney, D.H. Thrombin modulation of natural killer
activity in human peripheral lymphocytes. (1996) Cell Immunol
172(1): 35-42. PubMed | CrossRef | Others

134. Naldini, A., Carney, D.H., Bocci, V., et al. Thrombin enhances T
cell proliferative responses and cytokine production. (1993) Cell
Immunol 147(2): 367-377. PubMed | CrossRef | Others

135. Huang, Y.Q., Li, J.J., Karpatkin, S. Thrombin inhibits tumor cell
growth in association with up-regulation of p21 (waftc1p) and
caspases via a p53-independent, STAT1-dependent pathway.
(2000) J Biol Chem 275(9): 6462-6468. PubMed | CrossRef | Others

136. Kuznik, B.I., Malezhik, L.P., Al’fonov, V.V., et al. Effect of thombo-
bin on macrophage and lymphocyte functional activity. (1985)
Bull Exp Biol Med 99(5): 597-598. PubMed | CrossRef | Others

137. Tran, T., Stewart, A.G. Protease-activated receptor (PAR)-inde-
pendent growth and pro-inflammatory actions of thrombin on
human cultured airway smooth muscle. (2003) Br J Pharmacol
138(5): 865-875. PubMed | CrossRef | Others

138. Vlahos, R., Lee, K.S., Guida, E., et al. Differential inhibition of
thrombin- and EGF-stimulated human cultured airway smooth
 muscle proliferation by glucocorticoids. (2003) Pulm Pharmacol
Ther 16(3): 171-180. PubMed | CrossRef | Others
Akassoglou, K., Kombrinck, K.W., Degen, J.L., et al. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. (2000) J Cell Biol 149(5): 1157-1166.

Kario, K., Matsuo, T., Hagnevik, K., et al. Per- and post-operative changes in coagulation and fibrinolytic variables during abdominal hysterectomy under epidural or general anaesthesia. (1986) Acta Anaesthesiol Scand 30(3): 204-210.

Bredbacka, S., Blomback, M., Wiman, B. Soluble fibrin: a predictor for the development and outcome of multiple organ failure. (1994) Am J Hematol 46(4): 289-294.

Bredbacka, S., Blomback, M., Hagievik, K., et al. Per- and post-operative changes in coagulation and fibrinolytic variables during abdominal hysterectomy under epidural or general anaesthesia. (1986) Acta Anaesthesiol Scand 30(3): 204-210.

Fairley, J.K., Owen, J.E., Birch, D.F. Protein composition of urinary casts from healthy subjects and patients with glomerulonephritis. (1983) Br Med J (Clin Res Ed) 287(6408): 1538-1540.

Ventura, J.E., Villa, M., Mizraji, R., et al. Acute renal failure in pregnancy. (1997) Ren Fail 19(2): 217-220.

Rath, W., Faridi, A., Dudenhausen, J.W. HELLP syndrome. (2000) Br J Haematol 10(Suppl F): 28-35.

Kvasnicka, T. [NO (nitric oxide) and its significance in regulation of vascular homeostasis]. (2003) Vnitr Lek 49(4): 291-296.

Goudemand, M. [Plasma fibronectin]. (1983) Rev Fr Transfus Immunohematol 26(3): 279-298.

Kario, K., Matsuo, T. Increased incidence of cardiovascular attacks in the epicenter just after the Hanshin-Awaji earthquake. (1995) Thromb Haemost 74(4): 1207.

Kario, K., Matsuo, T., Kayaba, K., et al. Earthquake-induced cardiovascular disease and related risk factors in focusing on the Great Hanshin-Awaji Earthquake. (1998) J Epidemiol 8(3): 159-167.

Kario, K., Matsuo, T., Kayaba, K., et al. Earthquake-induced cardiovascular disease and related risk factors in focusing on the Great Hanshin-Awaji Earthquake. (1998) J Epidemiol 8(3): 131-139.

Fleck, R.A., Rao, L.V., Rapaport, S.I., et al. Localization of human tissue factor antigen by immunostaining with monospecific, polyclonal anti-human tissue factor antibody. (1990) Thromb Res 59(2): 421-437.
Submit your manuscript to Ommega Publishers and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in all major indexing services
- Maximum visibility for your research

Submit your manuscript at https://www.ommegaonline.org/submit-manuscript