A BRUTE FORCE ANALYSIS OF THE COBE DMR DATA

Max Tegmark

Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München;
e-mail: max@ias.mpg.de

Emory F. Bunn

Department of Physics, University of California, Berkeley, CA 94720;
e-mail: bunn@leporello.berkeley.edu

Abstract

More than a dozen papers analyzing the COBE data have now appeared. We review the different techniques and compare them to a “brute force” likelihood analysis where we invert the full 4038×4038 Galaxy-cut pixel covariance matrix. This method is optimal in the sense of producing minimal error bars, and is a useful reference point for comparing other analysis techniques. Our maximum-likelihood estimate of the spectral index and normalization are $n \approx 1.15(0.95)$ and $Q \approx 18.2(21.3)$ μK including (excluding) the quadrupole. Marginalizing over the normalization C_9, we obtain $n \approx 1.10 \pm 0.29$ ($n \approx 0.90 \pm 0.32$). When we compare these results with those of the various techniques that involve a linear “compression” of the data, we find that the latter are all consistent with the brute-force analysis and have error bars that are nearly as small as the minimal error bars. We therefore conclude that the data compressions involved in these techniques do indeed retain most of the useful cosmological information.
1 Introduction

Since the first cosmic microwave background (CMB) anisotropies were detected by the COBE DMR experiment (Smoot et al. 1992), a plethora of different analysis techniques have been published. The aim of this paper is to compare them to a computationally cumbersome but statistically optimal method, to see how good they are. This is quite timely given the rate at which our data about the CMB sky is accumulating, since we wish to employ analysis techniques which are fast when faced with large data volumes and at the same time give error bars that are near the theoretical minimum.

All published COBE analysis techniques have involved two steps:

1. The full Galaxy-cut data set, consisting of say \(N = 4038\) numbers, is by some clever form of “data compression” reduced to a smaller data set with \(N' < N\) numbers.

2. Cosmological parameters are constrained by analyzing this reduced data set, usually by computing the likelihood function \(L(n, Q)\).

The reason for doing the data compression is to speed up the calculations in 2, which would otherwise involve repeated inversions of \(4038 \times 4038\) matrices in the case of the COBE DMR experiment. The idea is that if the compression method cleverly takes the physics into account, it mostly throws away noise and keeps the bulk of the cosmological information.

Bond (1994, hereafter B95), Görski et al. (1994a, 1994b, hereafter G94), and Bunn & Sugiyama (1995, hereafter BS95) all use linear data compression, where the reduced data is simply the original data vector multiplied by some matrix. Their reduced data sets contain 928, 957 and 400 numbers, respectively. In G94, the row vectors of the compression matrix are chosen to be those corresponding to the multipoles \(l = 2 - 30\), weighted with account to pixel noise and orthogonalized. In BS95, the row vectors are instead those that arise from a certain eigenvalue problem. [This technique is described further in Bunn et al. (1995) and White & Bunn (1995).] This data compression technique is often referred to as “expansion in signal-to-noise eigenfunctions” and is known in signal processing as the Karhunen-Loève expansion (Karhunen 1947). Given a prescribed “compression factor” \(N/N'\), it can be shown to be optimal in a certain sense (BS95). This method was independently introduced into cosmology in B95, where, after first reducing the data by a factor 4 by smoothing\(^2\) the effect of compressing further with

\(^2\) The “pixel level 5” data set was used, where each pixel is obtained by averaging four
various N' is studied in detail.

A second group of methods use quadratic data compression, where the reduced data are various quadratic combinations of the pixel values. Work in this category includes Smoot et al. (1992), Bennett et al. (1992), Scaramella & Vittorio (1993), Seljak & Bertschinger (1993), and Bennett et al. (1994), where the reduced data consist of bins of the observed correlation function, typically around 60. Wright et al. (1994b) and de Oliveira-Costa & Smoot (1995) use another set of quadratic statistics, the first 30 multipole moments of the data. Estimates of the quadrupole (Gould 1993) and the total pixel variance $(\Delta T/T)^2$ (Banday et al. 1994, Wright et al. 1994a) also fall into the quadratic category.

A third group of methods compress the data set by forming quantities that are higher-order combinations of the data than the above-mentioned linear and quadratic ones. This includes cubic quantities (Hinshaw et al. 1994), correlation of extrema (Kogut et al. 1995) or topological information such as genus and spot morphology (Smoot et al. 1994, Torres 1994) as the reduced data.

What do we mean by an analysis technique being good? Apart from the obvious requirement that it should give fairly unbiased estimates of the cosmological parameters, we want it to give as small error bars as possible. This is, of course, but one of several criteria one could choose to adopt. In particular, one could aim for a technique that was maximally robust to systematic errors such as residual Galactic contamination, or for a technique that was numerically inexpensive to implement. One might also decide to prefer techniques which are as model-independent as possible. Adopting the latter criterion might lead one to look unfavorably on the technique of BS95, as that method involves the choice of a “fiducial power spectrum” in choosing the basis functions. However, the “brute force” technique described herein does fare well by this criterion, since it assumes only that the CMB fluctuations are Gaussian. We have chosen not to consider the effect of systematic errors or Galactic contamination in this paper, although the reader should of course bear in mind that the choice of the data analysis technique used to derive the cosmological parameters and their uncertainties may not be as significant as unmodeled systematic effects in the data, such as Galactic emission. We also chose to disregard computational complexity as a factor when choosing a data analysis method, in the spirit that the computational work in the data analysis step will in any case be negligible pixels from the 6144 pixel data set.
compared to the amount of effort already spent on collecting the data set. In summary, we focus entirely on minimizing the statistical error bars.

The size of the resulting error bars clearly depends on the choice of data compression method. One would expect that the smallest error bars would result from an analysis in which no compression at all was performed. In the Appendix we show that all linear compression techniques give likelihood functions that are on average at least as broad as the likelihood function arising from an analysis done without compression, and it is reasonable to expect that the same is true of nonlinear techniques. For instance, a corollary of the Fisher-Cramér-Rao inequality (Fisher 1935; Kenney & Keeping 1951 p. 373), well-known to statisticians, implies that if there exists a best unbiased estimate of the parameters, it will simply be the maximum likelihood estimate using all the data.3

We carry out this compression-free analysis in the present paper, to answer the question of how small these optimal error bars are. Once this is done, we can easily rank the other methods by checking how close to optimal their error bars are. This may be termed “the brute force approach”, as the intuitive simplicity of avoiding data compression comes at the expense of a significant increase in CPU time. However, as we discuss below, the computations are in fact not as time-consuming as one may think. Also, since the brute force approach does not require any time-saving approximations, one can at no extra cost include additional elements of realism in the model. Thus we investigate the effect of correlated noise (Wright et al. 1994a; Lineweaver et al. 1994) and the effect of the standard method for dipole removal. As has been pointed out elsewhere, the latter tends to bias the estimates towards higher values of \(n \) if not properly accounted for.

In techniques based on linear compression, it is easy to account properly for the effects of monopole and dipole removal, either by applying the same projection operator to the data covariance matrix as was applied to the data, or by marginalizing over the unknown modes. The only way to remove the monopole and dipole bias from estimates based on nonlinear techniques is to perform Monte Carlo simulations.4

3 Asymptotically, i.e., in the limit of infinitely large sample size, the conclusion becomes even stronger: no other method, linear or not, can produce smaller error bars than a maximum likelihood analysis using all the data. Since the COBE data contain a large number of independent data points — there are about 100 signal-to-noise eigenmodes with eigenvalue greater than 1 (BS95) — we expect the asymptotic limit to be a good approximation.

4 In general, since quantities like \(n \) and \(Q \) are not linear in the data, no technique, linear
In the next section, we introduce some simplifying notation. In section 3, we describe how the pixel correlation is affected by removing the monopole, dipole and quadrupole. In section 4, we present our results, and in the discussion section we compare them to the previously published techniques.

2 Notation

As pointed out by numerous authors, COBE analysis is basically linear algebra, and both the equations and their interpretation tend to become simplified if we write the various quantities as vectors and matrices.

Let us write the CMB sky map as the \(N \)-dimensional vector \(\mathbf{x} \), defined by

\[
x_i = \frac{\Delta T}{T} (\hat{n}_i),
\]

where \(\hat{n}_i \) is a unit vector in the direction of the \(i \)th COBE pixel. \(N = 6144 \) for an all-sky map, and \(N = 4038 \) after a 20° Galactic cut. We write \(\mathbf{x} \) as a sum of three terms,

\[
\mathbf{x} = \mathbf{Y} \mathbf{a} + \mathbf{\varepsilon} + \mathbf{Z} \mathbf{b},
\]

which correspond to the contribution from cosmology, instrumental noise and “nuisance” multipoles, respectively, and will now be described in more detail.

The \(N \times \infty \)-dimensional spherical harmonic matrix \(Y \) is defined as

\[
Y_{\lambda} \equiv Y_{lm} (\hat{n}_i),
\]

where we have combined \(l \) and \(m \) into the single index \(\lambda \equiv l^2 + l + m + 1 = 1, 2, 3, \ldots \). (Throughout this letter, we use real-valued spherical harmonics, which are obtained from the standard spherical harmonics by replacing \(e^{im\phi} \) by \(\sqrt{2} \sin m\phi \), 1, \(\sqrt{2} \cos m\phi \) for \(m < 0 \), \(m = 0 \), \(m > 0 \) respectively.) Making the standard assumption that the CMB is Gaussian on COBE scales, \(\mathbf{a} \) is an infinite-dimensional Gaussian random vector with zero mean and with the diagonal covariance matrix

\[
\langle a_\lambda a_{\lambda'} \rangle = \delta_{\lambda\lambda'} C_l,
\]

or otherwise, is guaranteed \textit{a priori} to give unbiased parameter estimates; the only way to be sure that a particular technique is unbiased is to perform Monte Carlo simulations. Almost all of the cited techniques have been tested for bias in this way.
the angular power spectrum C_l being specified by some cosmological model. Because of the addition theorem for spherical harmonics, this leads to the covariance matrix of the cosmological term in equation (2) being given by

$$\langle Y a^t Y \rangle_{ij} = C(\hat{n}_i \cdot \hat{n}_j),$$

where the angular correlation function is defined as

$$C(\cos \theta) = \frac{1}{4\pi} \sum_{l=0}^{\infty} (2l + 1) C_l P_l(\cos \theta),$$

P_l denoting the lth Legendre polynomial.

The N-dimensional noise vector ε is assumed to be Gaussian with $\langle \varepsilon \rangle = 0$. To an excellent approximation, its covariance matrix can be written as $\langle \varepsilon_i \varepsilon_j \rangle = \sigma_i \sigma_j C^{(n)}(\hat{n}_i \cdot \hat{n}_j)$, where σ_i is the rms noise of pixel i, and the dimensionless noise correlation function $C^{(n)}$ has been computed by Lineweaver et al. (1994). To a good approximation, $\langle \varepsilon_i \varepsilon_j \rangle = \sigma_i^2 \delta_{ij}$, but due to the beam-switching strategy used in the COBE DMR experiment, there are some minor corrections to this, primarily a correlation of the order of 0.5% between pixels separated by 60°.

The third term in equation (2), the “nuisance term”, contains the unknown influence of the multipoles with $l \leq l_0$. Since we lack accurate a priori knowledge of both the current CMB temperature and our Galaxy’s peculiar velocity, we need to set $l_0 \geq 1$. Some authors are concerned about systematic errors in the quadrupole and therefore set $l_0 = 2$. The $N \times (l_0 + 1)^2$-dimensional matrix Z is simply the first $(l_0 + 1)^2$ columns of Y, and b is a $(l_0 + 1)^2$-dimensional constant vector whose value we a priori know nothing whatsoever about. Since the noise ε and the cosmic signal a are uncorrelated, the pixel covariance matrix

$$M \equiv \langle xx^t \rangle - \langle x \rangle \langle x \rangle^t$$

is given by

$$M_{ij} = C(\hat{n}_i \cdot \hat{n}_j) + \sigma_i \sigma_j C^{(n)}(\hat{n}_i \cdot \hat{n}_j).$$

3 On monopole, dipole and quadrupole removal

The standard way to eliminate the influence of the nuisance term is to “remove” the monopole, dipole and perhaps quadrupole from the data x before performing an analysis. Although often not thought of in such a way, this is
in fact a linear operation, corresponding to multiplying the data by a certain matrix D. Let us define the matrix \tilde{Z} to be an orthonormalized version of Z, i.e., a matrix whose columns are orthonormal and span the same space as the columns of Z. This can be achieved either by a standard technique such as Gram-Schmidt orthogonalization or singular-value decomposition, or by simply defining $\tilde{Z} \equiv Z(Z^t Z)^{-1/2}$ and computing the square root by Cholesky decomposition. In either case, the $N \times N$ matrix $\tilde{Z} \tilde{Z}^t$, which has rank $(l_0 + 1)^2$, acts as a projection operator onto the space spanned by the multipoles with $l \leq l_0$, and it is clear that the “removal matrix” D is given by $D \equiv I - \tilde{Z} \tilde{Z}^t$. Thus defining the corrected data as

$$\tilde{x} \equiv D x,$$

it is readily seen that $\langle \tilde{x} \rangle = DZb = 0$, so that the effect of the nuisance term has been eliminated. The covariance matrix for the corrected data is simply

$$\tilde{M} \equiv \langle \tilde{x} \tilde{x}^t \rangle = DMD^t.$$

We wish to stress that the covariance matrix for the corrected data can in general not be described by a correlation function (Bennett et al. 1994; Wright et al. 1994b). After the correction, the correlation M_{ij} between two pixels does not depend merely on the angle cosine between them, $\cos(\theta) = \hat{n}_i \cdot \hat{n}_j$, but also on the Galactic latitude of both pixels. In other words, the monopole and dipole removal breaks the rotational symmetry of the correlation function. This is due to the well-known fact that the Galactic cut destroys the orthogonality of the various multipoles, i.e., $Y^t Y \neq I$. Hence when the monopole is removed, other multipoles are affected – primarily the $m = 0$ components of the quadrupole and the hexadecupole. The dipole removal strongly affects the three components of the octupole that have $|m| \leq 1$, etc. The situation is illustrated in Figure 1.

Some of the first papers analyzing the COBE data computed the average correlation between pixels in various bins of angular separation. For the 53+90 GHz 2 year data, this produces the wiggly line in Figure 1. Cosmological parameters were then fitted by comparing this to the theoretical, rotationally symmetric correlation function given by equation (8) (the dashed line). As we have seen, this is not quite the correct thing to do. The wiggly line should be compared with the theoretical prediction for the same quantity (heavy solid line), using equation (10). Monte Carlo simulations (e.g. Seljak & Bertschinger 1993; Bennett et al. 1994) have shown that this effect leads to a small but non-negligible bias.
In addition, the figures show that the symmetry breaking is quite substantial, the correlations for any given angular separation varying within the shaded region. As the correlation function method throws away this information about azimuthal dependence by averaging in bins for fixed θ, one might expect the resulting error bars to be slightly larger than optimal.

For the reader with computational interests, we point out that the correction of M is quite a rapid procedure. No $N \times N$ matrices need to be multiplied together, since

$$\tilde{M} = DMD^t = M - (ZF^t + FZ^t) + Z(Z^tF)Z^t,$$

where $F \equiv MZ$.

4 Results

Assuming that the cosmic signal a is Gaussian (that it is a random vector whose probability distribution is a multivariate Gaussian), so is \tilde{x}. Thus given an observed data set \tilde{x}, the likelihood L is given by

$$-2 \ln L = \ln \det \tilde{M} + \tilde{x}^t \tilde{M}^{-1} \tilde{x},$$

up to an uninteresting additive constant. For a spectrum due to Sachs-Wolfe fluctuations from power law density perturbations,

$$C_l = \left(\frac{4\pi}{3}\right) \frac{\Gamma\left(\frac{9-n}{2}\right)}{\Gamma\left(\frac{3+n}{2}\right)} \frac{\Gamma\left(l + \frac{n-1}{2}\right)}{\Gamma\left(l + \frac{5-n}{2}\right)} Q^2,$$

and the likelihood $L(n, Q)$ becomes a function of merely two parameters, the spectral index n and the quadrupole normalization Q. (Q is denoted $Q_{\text{rms} - \text{PS}}$ in many papers.) We have evaluated L numerically on a grid of points, and the resulting normalized likelihood is shown in Figure 2. With $l_0 = 1$ (monopole and dipole removed), the maximum likelihood estimate is $(n, Q) = (1.15, 18.2\mu K)$, and with $l_0 = 2$ (quadrupole removed as well), it is $(n, Q) = (0.95, 21.3\mu K)$. The normalized marginal likelihood for n is plotted in Figure 3 (the shaded distribution), together with that obtained in G94 and BS95. As in those papers, we used the combined 53 and 90 GHz maps (including also the 31 GHz map gave us almost no error bar reduction, as its noise level is so much higher), and a uniform prior. We use pixel by pixel minimum variance weighting when combining the data sets.
for different channels and frequencies. In other words, a pair of data sets \(\{x'_i, \sigma'_i\} \) and \(\{x''_i, \sigma''_i\} \) are combined into a new data set \(\{x_i, \sigma_i\} \) according to the formulas

\[
x_i = \frac{\sigma'^{-2}_i x'_i + \sigma''^{-2}_i x''_i}{\sigma'^{-2}_i + \sigma''^{-2}_i}, \tag{14}
\]

\[
\sigma_i = \left(\frac{\sigma'^{-2}_i + \sigma''^{-2}_i}{2}\right)^{-1/2}. \tag{15}
\]

As expected, our brute force technique gives the smallest error bars, i.e., the narrowest distribution, corresponding to the highest peak. Also in agreement with our expectations, the other techniques are seen to be fairly close to optimal, with only marginally broader distributions. Our 1\(\sigma \) confidence intervals are \(n = 1.10 \pm 0.29 \), \(Q = (20.2 \pm 4.6) \mu \text{K} \). For the former, we have followed G94 in marginalizing over the normalization at the “pivot point”, in our case \(C_9 \). Marginalizing over \(Q \) instead (which simply corresponds to using a different Bayesian prior) makes only a minor difference: \(n = 1.07 \pm 0.30 \). Conditioning on \(n = 1 \), \(Q = (20.3 \pm 1.5) \mu \text{K} \). Choosing \(l_0 = 2 \) (removing the quadrupole as well) is seen to yield a lower \(n \)-estimate, \(n = 0.90 \pm 0.32 \), just as reported by other authors (since the observed quadrupole is relatively small, it tends to favor power spectra with greater slope). Note that quadrupole removal also increases the error bars, as it amounts to throwing out a considerable amount of cosmological information.

In computing the curves in Figure 3, we have assumed uncorrelated noise. We also computed the \(l_0 = 1 \) curve using the 1st year noise correlation given by Lineweaver et al. (1994), but omit this from the plot as the difference is so small that it is hardly visible. The combined 2 year noise correlation is of course weaker still. In other words, uncorrelated noise is an excellent approximation.

In contrast, the approximation that the correlations are not affected by monopole and dipole removal turns out not to be very good, which is hardly surprising in view of Figure 3. The shaded curve was computed by removing the monopole and dipole from the data and using the corrected covariance matrix given by equation (10). The curve resulting from using the naive covariance matrix \(M \) instead is seen to peak further to the right, the approximation causing a shift of about the same magnitude as the quadrupole removal, but in the opposite direction. We carried out Monte Carlo simulations with \((n, Q) = (1, 20 \mu \text{K}) \) fake skies, which verified that the latter approximation was biased high whereas the exact treatment appeared to be fairly unbiased. It is easy to understand the sign of this effect on physical
grounds: since the non-orthogonal multipoles couple mainly to \(l \)-values differing by small even numbers, removing the monopole and dipole covertly removes parts of other low multipoles, which increases the slope of the best fit power spectrum.

In linear techniques, this effect can be removed simply by proper treatment of the covariance matrix; in nonlinear techniques one must resort to Monte Carlo techniques. All of the analyses that quote estimates of \(n \) make some such attempt to account for potential bias. Bennett et al. (1994) have reported and removed just such a bias from their estimates. Smoot et al. (1994) check for bias with Monte Carlo simulations and find none. Wright et al. (1994b) use Monte Carlo simulations to compute the correct covariance matrix for their multipole estimates, and argue that this is sufficient to remove bias.

We also tested an alternative approach to handling the bias from dipole subtraction, used in BS95. If one uses the uncorrected data \(x \) instead of \(\tilde{x} \), the likelihood function becomes

\[
-2 \ln L = \ln \det M + (x - Zb)^t M^{-1} (x - Zb),
\]

where the unknown multipoles \(b \) remain as nuisance parameters. We computed the marginal distribution over \((n, Q)\) by simply integrating \(L \) over all \(b \). This integral can readily be done analytically, and is of course independent of the value of the unknown nuisance multipoles. The result was virtually indistinguishable from that of the other method, and is therefore not plotted.

For readers with computational interests, we conclude this section with a few practical comments. The \(N \times N \) matrix \(M \) is quite well-conditioned, due to the large noise contributions to its diagonal, and can be readily Cholesky decomposed. With an optimized code, only \(N(N+1)/2 \) numbers need to be stored in RAM, as it is symmetric and the result can be computed in such an order as to gradually overwrite the original matrix. On a good (1994) workstation, this takes about ten minutes with \(N = 4038 \). The matrix \(\tilde{M} \), on the other hand, is singular, as it by construction has rank \(N - (l_0 + 1)^2 \).

(The pixels are not independent when we know that their mean is zero, their dipole is zero, etc.) Thus the statistically correct thing to do is to throw away \((l_0 + 1)^2 \) arbitrary pixels before the likelihood analysis. The resulting matrix inversion is not as well-conditioned as that for \(M \), so whereas single precision suffices for \(M \), double precision should be used here. As a stability test, we repeated the analysis with an additional 100 random pixels thrown away,
which greatly increases the condition number of the covariance matrix, and obtained virtually identical results.

5 Discussion

In this letter, we have carried out a “brute force” analysis of the two-year COBE DMR data which is optimal in the sense of giving the smallest possible error bars. The results, \(n = 1.10 \pm 0.29 \), agree well with previous work, reinforcing the conclusion that the large-scale CMB fluctuations are consistent with the standard inflationary scenario.

We draw the following conclusions:

1. All the published linear methods of estimating the COBE power spectrum (B95, G94, BS95) are close to optimal, in the sense of giving error bars near the theoretical lower limit.

2. The routine removal of the monopole and dipole can introduce a bias, tending to lead to a slight overestimate of the spectral index \(n \). In linear techniques, this problem can be simply dealt with by using the appropriate covariance matrix. When using the (quadratic) correlation function technique, either the theoretical correlation function should be corrected as shown in Figure 4, or Monte-Carlo simulation should be used to subtract the resulting bias. Published work using the latter approach agrees well with our results.

3. It is well-known that the slight noise correlation reported by Lineweaver et al. (1994) has only a small impact on CMB results. We have evaluated this impact numerically, by including the full noise-covariance matrix, and confirmed that the effect is negligible even at the high accuracy used here.

4. The quadratic methods have the advantage of giving sharp constraints with very few \(\lesssim 100 \) reduced data points, which also tend to be easy to interpret physically (correlation function, multipoles). One drawback is that their probability distribution is no longer Gaussian, and if a Gaussian approximation is made, the computation of their covariance matrix can be rather cumbersome (Seljak & Bertschinger 1993; Wright et al. 1994b; de Oliveira-Costa & Smoot 1995) compared to the linear case.

5. The above techniques all assume Gaussian fluctuations. Although topological methods may not be the most efficient way to constrain the...
power spectrum, they will no doubt provide very interesting tests of
the Gaussianity hypothesis as angular resolution improves.

In the future, as much larger data sets may become available through pro-
posed experiments such as the COBRAS/SAMBA satellite, the brute-force
approach used here will hardly be feasible. It is thus encouraging that the
faster methods reviewed give results that are so close to optimal.

The authors wish to thank Krysztof Górski, Dag Jonsson, Douglas Scott,
George Smoot, and Philip Stark for useful comments, Charley Lineweaver
for providing the numerical noise correlation data, and Angélica de Oliveira
Costa for help with IDL plots. The COBE data sets were developed by
the NASA Goddard Space Flight Center under the guidance of the COBE
Science Working Group and were provided by the NSSDC.

6 References

Banday, A. J. et al. 1994, ApJ, 436, L99.
Bennett, C.L. et al. 1992, ApJ, 396, L7.
Bennett, C.L. et al. 1994, ApJ, 436, 423.
Bond, J. R. 1995, Phys. Rev. Lett., 74, 4369 (“B95”).
Bunn, E.F., Scott, D., & White, M. 1995, ApJ, 441, L9.
Bunn, E.F. & Sugiyama, N. 1995, ApJ, 446, 49 (“BS95”).
de Oliveira Costa, A. & Smoot, G.F. 1995, ApJ, 448, 477.
Fisher, R. A. 1935, J. Roy. Stat. Soc., 98, 39.
Górski, K. M. 1994, ApJ, 430, L85.
Górski, K. M. et al. 1994, ApJ, 430, L89 (“G94”).
Gould, A. 1993, ApJ, 403, L51.
Hinshaw, G. et al. 1994, ApJ, 431, 1.
Karhunen, K., Über lineare Methoden in der Wahrscheinlichkeitsrechnung (Kir-
japaino oy. sana, Helsinki, 1947).
Kenney, J. F. & Keeping, E. S. 1951, Mathematics of Statistics, Part II, 2nd ed.
(Van Nostrand, New York).
Kogut, A. et al. 1995, ApJ, 439, L29.
Lineweaver, C.H., Smoot, G.F., Bennett, C.L., Wright, E.L., Tenorio, L., Kogut,
A., Keegstra, P.B., Hinshaw, G., & Banday, A.J. 1994, ApJ, 436, 452.
Seljak, U. & Bertschinger, E. 1993, ApJ, 417, L9.
Smoot, G. F. et al. 1992, ApJ, 396, L1.
Smoot, G. F. et al. 1994, ApJ, 437, 1.
Appendix

In this Appendix we prove the statement that linear data compression can never give a likelihood function that is more sharply peaked, on average, than the likelihood function of the uncompressed data.

Let us begin by establishing some notation. Let x be an N-dimensional vector representing the uncompressed data. We assume as usual that x is Gaussian distributed with zero mean, and we denote its covariance matrix $\langle xx^T \rangle$ by M_x. Let A be an $N' \times N$ “compression matrix” (with $N' < N$), and let $y = Ax$ be the N'-dimensional compressed data vector.

Since x is a Gaussian random vector, its likelihood function is given by

$$\Lambda_x = x^T M_x^{-1} x + \ln \det M_x = \text{Tr} \left(M_x^{-1} xx^T + \ln M_x \right), \quad (17)$$

where $\Lambda_x = -2 \ln L_x$. (Throughout this Appendix, we will find it convenient to denote explicitly by subscripts the random variable with respect to which we are computing likelihoods.) Suppose we are trying to estimate some parameter q. We wish to compute the “width” of the likelihood function, viewed as a function of q. We quantify this width as follows. Compute L_x as a function of q and find its maximum. Near the maximum, we can approximate $\ln L_x$ as a quadratic, and we see that the width of the peak is inversely proportional to the square root of the second derivative of $\ln L_x$ evaluated at the peak. Our concern will be with the average width of the likelihood function, so we will be interested in the parameter

$$\gamma_x = \langle \Lambda''_x \rangle, \quad (18)$$

where primes denote derivatives with respect to q and the derivative is evaluated at the point where $\Lambda'_x = 0$. (This is the same parameter that was adopted for the optimization problem in BS95.) We want to show that replacing the full data vector x by the compressed data y can never cause γ to decrease. In other words, we want to prove that

$$\gamma_y \geq \gamma_x. \quad (19)$$
We begin by extending the matrix A to a nonsingular $N \times N$ matrix \tilde{A} as follows. Add $N - N'$ rows to the bottom of A, making sure that the added rows are linearly independent of each other and of the rows of A, and are orthogonal to the rows of A with respect to the inner product $\langle \mathbf{p}, \mathbf{q} \rangle \equiv \mathbf{p}^T M \mathbf{q}$. Let $\tilde{\mathbf{y}} \equiv \tilde{A} \mathbf{x}$. $\tilde{\mathbf{y}}$ is an N-dimensional vector whose first N' elements are the elements of \mathbf{y}. Let \mathbf{z} be a vector consisting of the other $N - N'$ elements of $\tilde{\mathbf{y}}$:

$$
\tilde{\mathbf{y}} = \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix}.
$$

(20)

Since \mathbf{x} and $\tilde{\mathbf{y}}$ are related via a nonsingular linear transformation, the likelihoods derived from them are the same, up to an overall multiplicative constant. Furthermore, because of the orthogonality condition we have imposed, the covariance matrix of $\tilde{\mathbf{y}}$ is block diagonal:

$$
M_{\tilde{\mathbf{y}}} = \begin{pmatrix} M_{\mathbf{y}} & 0 \\ 0 & M_{\mathbf{z}} \end{pmatrix}.
$$

(21)

The likelihood $L_{\tilde{\mathbf{y}}}$ therefore factors:

$$
L_{\tilde{\mathbf{y}}} = L_{\mathbf{y}} L_{\mathbf{z}}
$$

(22)

Since γ is linear in $\ln L$, we know that $\gamma_{\tilde{\mathbf{y}}} = \gamma_{\mathbf{y}} + \gamma_{\mathbf{z}}$. Since $\gamma_{\mathbf{x}} = \gamma_{\tilde{\mathbf{y}}}$, all we have to do to prove the inequality (19) is show that $\gamma_{\mathbf{z}} \geq 0$. This follows immediately from the following relation, proved in BS95:

$$
\gamma = \text{Tr} \left((M^{-1} M')^2 \right).
$$

(23)

Since $\gamma_{\mathbf{z}}$ is the trace of the square of a matrix, it can never be negative.

5 This is always possible. Since $M_{\mathbf{x}}$ is positive definite, the function $\langle \cdot, \cdot \rangle$ is a perfectly good inner product, and we can therefore perform ordinary Gram-Schmidt orthogonalization to generate the extra rows.

6 This is easy to see by direct computation: the covariance matrix of \mathbf{y} is $M_{\mathbf{y}} = A M_{\mathbf{x}} A^T$, so $\Lambda_{\mathbf{y}} = \mathbf{y}^T M_{\mathbf{x}}^{-1} \mathbf{y} + \ln \det M_{\mathbf{y}} = \mathbf{x}^T (A M_{\mathbf{x}} A^T)^{-1} \mathbf{x} + \ln \det (A M_{\mathbf{x}} A^T) = \mathbf{x}^T M_{\mathbf{x}}^{-1} \mathbf{x} + \ln \det M_{\mathbf{x}} + 2 \ln \det A = \Lambda_{\mathbf{x}} + 2 \ln \det A$.

13
Figure 1: How dipole removal alters the correlation function. The pixel correlation $\langle x_i x_j \rangle$ is plotted as a function of the angle between the two pixels. The dashed curve shows the naive correlation function corresponding to $n = 1, Q = 18 \mu K$. The shaded region shows the range of correlations actually occurring after the monopole, dipole and quadrupole are removed outside of a 20° Galactic cut, the heavy solid curve showing the average correlation. The wiggly line is the correlation function naively extracted from the 53+90 GHz 2 year COBE data. The bumps around $\theta = 60^\circ$ are due to the noise correlation reported by Lineweaver et al. (1994).
Figure 2: The normalized likelihood.
The Bayesian probability distribution for the spectral index n and the normalization Q is plotted (bottom) using the combined 53 and 90 GHz two year COBE data and a uniform prior. The three contours (top) show the areas containing 68%, 95% and 99% of the probability, respectively. The “+” shows the maximum-likelihood estimate, $(n, Q) \approx (1.15, 18.2\mu K)$.
Figure 3: Marginal likelihoods for n.
In order of decreasing peak height, the curves are obtained by the naive brute force method (not corrected for “dipole bias”), the brute force method (shaded), Bunn & Sugiyama 1994 (dashed), Górski et al. 1994 (dotted) and the brute force method with quadrupole removed, respectively. All five curves are based on the combined 53 and 90 GHz two year COBE data and are marginalized over the normalization at the “pivot point”. All but the last curve include the quadrupole.