Additional File 2

Figure S1: Identification of forty novel RNAi target genes in *Tribolium castaneum*

A

Gene	Survival %	Days post injection	Doses	Legend
Ebony/neg. control	![Graph](image1.png)	d2, d4, d6, d8, d10	3ng, 30ng, 100ng, 300ng, 1000ng	
L 2/pka-r1	![Graph](image2.png)	d2, d4, d6, d8, d10		
L 3/pros beta6	![Graph](image3.png)	d2, d4, d6, d8, d10		
L 5/surf4	![Graph](image4.png)	d2, d4, d6, d8, d10		
L 7/pros alpha6	![Graph](image5.png)	d2, d4, d6, d8, d10		
L 9/pros alpha1	![Graph](image6.png)	d2, d4, d6, d8, d10		
L 14/snRN P-U1-70K	![Graph](image7.png)	d2, d4, d6, d8, d10		
L 17/C G 2063	![Graph](image8.png)	d2, d4, d6, d8, d10		
L 25/rpn11	![Graph](image9.png)	d2, d4, d6, d8, d10		
L 27/vhaSFD	![Graph](image10.png)	d2, d4, d6, d8, d10		
L 32/rpn12	![Graph](image11.png)	d2, d4, d6, d8, d10		
L 37/sec23	![Graph](image12.png)	d2, d4, d6, d8, d10		
L 39/nito	![Graph](image13.png)	d2, d4, d6, d8, d10		
L 42/sec61 alpha	![Graph](image14.png)	d2, d4, d6, d8, d10		
L 43/sam-s	![Graph](image15.png)	d2, d4, d6, d8, d10		
L 52/uba1	![Graph](image16.png)	d2, d4, d6, d8, d10		
L 54/chc	![Graph](image17.png)	d2, d4, d6, d8, d10		
L 56/atpsyn-beta	![Graph](image18.png)	d2, d4, d6, d8, d10		
L 58/cas	![Graph](image19.png)	d2, d4, d6, d8, d10		
L 61/pros beta5	![Graph](image20.png)	d2, d4, d6, d8, d10		
L 62/pl6	![Graph](image21.png)	d2, d4, d6, d8, d10		
Based on data of the iBeetle screen, the 100 most efficient RNAi target genes were selected and retested using different dsRNA concentrations. (A) The results for the most efficient 40 lethal genes are shown. The corresponding results of the top eleven candidates are shown in Figure 1. See further details in figure legend of Figure 1. (B) The Tribolium orthologs of the two less effective RNAi target genes published by Baum et al., 2007 [1] are displayed.
The most efficient eleven RNAi target genes were also tested at two different concentrations (3ng/μl, 100ng/μl) by injections into adult beetles. (A) *Tc-ebony* was used as negative control. (B-M) All RNAi target genes are lethal in adult stages as well but at lower concentrations, the efficiency was slightly lower compared to larval injections shown in Figure 1.
Figure S3: Phylogenetic trees of the novel RNAi target genes

A
L10/Cact

B
L11/Srp54k
(A-L) The *Tribolium* protein sequences were blasted against *Drosophila melanogaster*, *Apis mellifera*, *Aedes aegypti*, *Acyrthosiphon pisum* and *Mus musculus* RefSeq protein collection [2] at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The alignments were done using ClustalW as implemented in the Geneious program (v.5.6.4) (Biomatters, Auckland, New Zealand) and trimmed to remove unclear parts of the alignments. The phylogenetic trees were calculated using the Geneious Tree Builder with the Jukes Cantor genetic distance model, neighbor-joining [3] as tree building method, and a number of 10,000 replicates for

Tribolium Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
adult male body											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
adult male body											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
central nervous system, larvae L3											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
salivary gland, larvae L3											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
digestive system, larvae L3											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
fat body, larvae L3											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
carcass, larvae L3											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
low expression											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
moderate expression											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
high expression											

Drosophila Expression Level	L10	L11	L44	L47	L50	L55	L67	L76	L80	L82	L84
very high expression											
creation of the bootstrap consensus tree [4]. Dm *Drosophila melanogaster*, Am *Apis mellifera*, Aa *Aedes aegypti*, Ap *Acyrthosiphon pisum*, Mm *Mus musculus*.

(M) Expression levels of the eleven RNAi target genes of *Tribolium* adult male body were obtained from RNA-Seq data of the *Tribolium* au2 gene set (http://bioinf.unigreifswald.de/tcas/genes/au2/) and compared to the expression levels of the orthologous *Drosophila* genes in the adult male body obtained from modENCODE high-throughput RNA-Seq data in Flybase [5]. *Tribolium* expression levels were calculated and categorized into four expression strengths: low expression with 0-1.5, moderate expression with 1.6-3, high expression with 3.1-4.5 and very high expression with ≥4.6 number of reads per position. The comparison revealed similar expression levels only for L10, L11 and L76 in the adult male body of *Tribolium* and *Drosophila*.

Figure S4: GO term analysis of top 40 RNAi target genes reveals additional targets
Annotation Cluster 1	Enrichment Score: 4.26			
Category	Term	Count	%	PValue
SP_PIR_KEYWORDS	proteasome	7	19	1.6E-09
GOTERM_CC_FAT	GO:0000502*proteasome complex	7	19	1.0E-06
KEGG_PATHWAY	dme03505:Proteasome	7	19	1.3E-06
GOTERM_MF_FAT	GO:0004175*endopeptidase activity	7	19	1.2E-02
GOTERM_BP_FAT	GO:0006508*proteolysis	8	22	2.3E-02
GOTERM_MF_FAT	GO:0070011*peptidase activity, acting on L-amino acid peptides	7	19	4.3E-02
Genes	CG16916, CG5378, CG18174, CG4157, CG4904, CG1782, CG4097, CG12323			

Annotation Cluster 2	Enrichment Score: 3.37			
Category	Term	Count	%	PValue
SP_PIR_KEYWORDS	threonine protease	3	8	1.7E-03
INTERPRO	IP001353:Proteasome, subunit alpha/beta	3	8	3.4E-03
GOTERM_MF_FAT	GO:0004298*threonine-type endopeptidase activity	3	8	5.0E-03
GOTERM_MF_FAT	GO:0070003*threonine-type peptidase activity	3	8	5.0E-03
GOTERM_CC_FAT	GO:0005839*proteasome core complex	3	8	9.7E-03
Genes	CG4904, CG4097, CG12323			

Annotation Cluster 3	Enrichment Score: 7.22			
Category	Term	Count	%	PValue
GOTERM_BP_FAT	GO:0008104*protein localization	7	19	4.2E-03
GOTERM_BP_FAT	GO:0015031*protein transport	6	16	4.7E-03
GOTERM_BP_FAT	GO:0006886*intracellular protein transport	5	14	4.9E-03
GOTERM_BP_FAT	GO:0045184*establishment of protein localization	6	16	5.2E-03
GOTERM_BP_FAT	GO:0034613*cellular protein localization	5	14	5.4E-03
Genes	CG4659, CG15811, CG9539, CG6625, CG9012, CG5848, CG13281			

Annotation Cluster 4	Enrichment Score: 2.10			
Category	Term	Count	%	PValue
GOTERM_BP_FAT	GO:0007268*synaptic transmission	5	14	6.6E-03
GOTERM_BP_FAT	GO:0019226*transmission of nerve impulse	5	14	7.5E-03
GOTERM_BP_FAT	GO:0007267*cell-cell signaling	5	14	9.7E-03
Genes	CG15811, CG18102, CG42341, CG6625, CG9012			

Annotation Cluster 5	Enrichment Score: 2.09			
Category	Term	Count	%	PValue
GOTERM_BP_FAT	GO:0030163*protein catabolic process	6	16	1.2E-03
GOTERM_BP_FAT	GO:0044265*cellular macromolecule catabolic process	6	16	1.9E-03
GOTERM_BP_FAT	GO:0051602*protein synthesis involved in cellular protein catabolic process	5	14	5.9E-03
GOTERM_BP_FAT	GO:0044257*cellular protein catabolic process	5	14	5.9E-03
Genes	CG4659, CG16916, CG18102, CG4147, CG42341, CG11154, CG1782, CG7269, CG2674, CG8566			

Annotation Cluster 6	Enrichment Score: 2.01			
Category	Term	Count	%	PValue
SP_PIR_KEYWORDS	nucleotide-binding	9	24	6.5E-04
GOTERM_MF_FAT	GO:0032555*purine ribonucleotide binding	10	27	1.3E-02
GOTERM_MF_FAT	GO:0032553*ribonucleotide binding	10	27	1.3E-02
GOTERM_MF_FAT	GO:0017076*purine nucleotide binding	10	27	2.0E-02
GOTERM_MF_FAT	GO:0032559*adenylnucleotide binding	8	22	3.7E-02
Genes	CG4659, CG16916, CG18102, CG4147, CG42341, CG11154, CG1782, CG7269, CG2674, CG8566			

Annotation Cluster 7	Enrichment Score: 1.92			
Category	Term	Count	%	PValue
GOTERM_BP_FAT	GO:000226*microtubule cytoskeleton organization	6	16	6.3E-03
GOTERM_BP_FAT	GO:0007052*mitotic spindle organization	5	14	7.2E-03
GOTERM_BP_FAT	GO:0007051*spindle organization	5	14	1.2E-02
Genes	CG8749, CG42341, CG4157, CG12323, CG7269, CG11522			

Annotation Cluster 8	Enrichment Score: 1.66			
Category	Term	Count	%	PValue
GOTERM_BP_FAT	GO:0043623*cellular protein complex assembly	4	11	4.4E-03
GOTERM_BP_FAT	GO:0034622*cellular macromolecular complex assembly	4	11	2.8E-02
GOTERM_BP_FAT	GO:0006461*protein complex assembly	4	11	2.9E-02
GOTERM_BP_FAT	GO:0070271*protein complex biogenesis	4	11	2.9E-02
Genes	CG4659, CG15811, CG6625, CG13281			

Annotation Cluster 9	Enrichment Score: 1.62			
Category	Term	Count	%	PValue
GOTERM_BP_FAT	GO:0010324*membrane invagination	5	14	1.9E-02
GOTERM_BP_FAT	GO:0006897*endocytosis	5	14	1.9E-02
GOTERM_BP_FAT	GO:0016044*membrane organization	5	14	3.8E-02
Genes	CG18102, CG6625, CG9012, CG5848, CG13281			

Annotation Cluster 10	Enrichment Score: 1.56			
Category	Term	Count	%	PValue
GOTERM_BP_FAT	GO:0050657*nucleic acid transport	3	8	2.6E-02
GOTERM_BP_FAT	GO:0050658*RNA transport	3	8	2.6E-02
GOTERM_BP_FAT	GO:0051236*establishment of RNA localization	3	8	2.7E-02
GOTERM_BP_FAT	GO:0015931*nucleoside, nucleotide and nucleic acid transport	3	8	3.0E-02
Genes	CG17332, CG9012, CG7269			
The functional clusters as revealed by GO term analysis (DAVID database) using our top forty RNAi target genes are displayed. GOTERM_BP_FAT where BP means biological process; GOTERM_CC_FAT where CC means cellular component; GOTERM_MF_FAT where MF means molecular function; SP_PIR_KEYWORDS where PIR means protein information resource.

Supplementary References

1. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J: Control of coleopteran insect pests through RNA interference. Nat Biotechnol 2007, 25:1322–1326.

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403–410.

3. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406–25.

4. Felsenstein J: Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39:783–791.

5. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, et al.: The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471:473–479.