Cure and Hormonal Control After Prolactinoma Resection: Case Series and Systematic Review

Marisa C. Penn, B.S. 1, Tyler Cardinal, B.S. 1, Yanchen Zhang, M.D. 1, Brittany Abt, M.D. 1, Phillip A. Bonney, M.D. 1, Patricia Lorenzo, M.D. 2, Michelle Lin, M.D 1, Jack Rosner, M.D. 1, Martin Weiss, M.D. 1, Gabriel Zada, M.D. 1, 3 John D. Carmichael, M.D. 2, 3

1Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California
2Division of Endocrinology, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California
3USC Pituitary Center, Keck School of Medicine of USC, Los Angeles, California

Address correspondence to: Marisa C. Penn, BS, University of Southern California, Keck School of Medicine, USC Pituitary Center, 1520 San Pablo Street Suite 3800, Los Angeles, CA 90033. E-mail: marisape@usc.edu

Abstract Disclosures: None

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Object: While transsphenoidal surgical resection (TSSR) is important second-line therapy in prolactinoma patients, predictors of surgical cure and biochemical remission following TSSR remain sparse.

Methods: A retrospective review of prolactinoma patients undergoing TSSR at the USC Pituitary Center from 1995-2020 was conducted. Subjects were categorized as surgical cure (normalization of serum prolactin without medical treatment), surgical non-cure, biochemical control (prolactin normalization with or without adjuvant therapy), and non-biochemical control. A systematic review of the outcomes of surgically-managed prolactinomas was performed.

Results: The 40 females and 16 males had an average age of 35.6 years. Prior treatment included transsphenoidal resection (6, 11%) and DA treatment (47, 84%). The 40 macroadenomas and 15 microadenomas exhibited suprasellar extension (24, 43%) and parasellar invasion (20, 36%). Fifteen (27%) were purely intrasellar. Gross total resection was achieved in 25 patients (45%) and subtotal in 26 (46%). Surgical cure was achieved in 25 patients (46%) and biochemical control in 35 (64%). Surgical cure was more likely in smaller, noninvasive tumors, those that were fully resected, and patients with lower pre- (<1000ng/mL) and immediately postoperative (<7.6ng/mL) prolactin levels. Ten of 26 patients (38%) undergoing adjuvant therapy achieved biochemical control, which was less likely in males and those with higher preoperative prolactin or invasive tumors.

Conclusion: Surgical resection of prolactinomas is a safe procedure that, when offered judiciously, can achieve symptom and/or biochemical control in a majority of patients. A variety of predictors may be useful in advising patients on likelihood of postoperative remission.

Key Words: Prolactinoma, Neurosurgery, Pituitary Adenoma, Pituitary Tumor
Introduction

Background and Rationale for Study

Prolactinomas are prolactin-secreting adenomas arising from lactotroph cells of the pituitary gland, and comprise approximately 40% of pituitary tumors. There are two predominant categories of symptoms with which prolactinoma patients present: those due to elevated prolactin and its inhibition of gonadotropin releasing hormone (GnRH) and those due to tumor mass effect. An increase in prolactin secretion commonly results in reproductive and sexual dysfunction, including oligomenorrhea, galactorrhea and amenorrhea in women and decreased libido in men. Symptoms of mass effect include headaches, vision loss and hypopituitarism and are usually seen in patients with macroprolactinomas.

Standard of care for treatment of prolactinomas centers around dopamine agonist (DA) therapy, which in the majority of cases is remarkably effective. Surgical resection is usually reserved for patients who are intolerant or resistant to DA therapy, as well as for some women harboring tumors who are considering pregnancy. Prior studies have reported post-surgical biochemical control rates ranging between 50%-93% for microprolactinomas and between 30-80% for macroprolactinomas with mean follow-up of 19.6 to 138 months.

Although the effectiveness of surgical resection as a second-line therapy for prolactinomas has been reported, predictors of surgical cure (hormonal remission without postoperative DA therapy) and biochemical control with or without adjuvant postoperative DA therapy have not been extensively studied.

Objectives

We report a retrospective analysis of clinical and neuro-imaging features of surgically-treated prolactinoma patients at the University of Southern California (USC) Pituitary Center over the last two decades in order to identify predictors of persistent disease after surgery, with special attention given to identifying predictors of surgical cure as well biochemical control either with or
without adjuvant postoperative DA therapy. To supplement our analysis, we conducted a systematic literature review of surgically managed prolactinoma cases through PubMed database using PRISMA guidelines.¹⁴

Materials and Methods

Patient Selection and Preoperative Assessment

This study was approved by the USC Institutional Review Board (IRB HS-11-00702). Patients surgically treated by authors MW and GZ for prolactinomas at the USC Pituitary Center from 1995-2020 were identified from a prospectively maintained RedCap database and retrospectively reviewed. All patients had prolactinomas confirmed by histopathological assessment. One patient did not have pathology available as tumor was suspected to be suctioned before sample could be obtained however did have preoperative prolactin greater than 200ng/mL that was reduced with DA therapy and exhibited biochemical remission postoperatively. Resection was offered as second-line treatment for patients who failed DA therapy or had persistent significant symptoms secondary to mass effect. In some cases, the preoperative diagnosis was indeterminate and the diagnosis of prolactinoma was made following histopathological analysis. In rare cases, resection was offered as a first-line treatment if patients expressed a strong preference for surgery and a clinical decision was made that the tumor could be completely resected and potentially cured. All patients underwent a thorough preoperative workup including a complete history, physical examination, endocrine lab testing, ophthalmological exam when appropriate, and magnetic resonance imaging (MRI) to assess the size of the tumor and determine the extent of invasion when present. Extrasellar extension was defined on MRI as tumor growth into the cavernous sinus, frontal lobe, clivus, sphenoid sinus, or suprasellar region. Degree of invasion was determined and scored by an independent neuroradiologist for this analysis. The minimum follow-up time for inclusion was 3 months.
Surgical Technique

All patients underwent a standard direct microscopic or endoscopic endonasal transsphenoidal approach based on surgeon preference. Intraoperative CSF leaks were repaired using autologous adipose grafts for packing of the sella and/or fascial reconstruction of the sellar dura using a two layer fascial apposition technique.

Follow-Up and Outcome Measurements

In the immediate postoperative period, patients were monitored for diabetes insipidus (DI), hyponatremia secondary to syndrome of inappropriate antidiuretic hormone secretion (SIADH), and other electrolyte imbalances. Prolactin and electrolyte levels were drawn on postoperative days (POD) 1 and 2, and serum sodium levels were checked on POD7. After discharge, patients were followed by clinical assessment, MRI, prolactin levels, and visual field testing at intervals of 1.5, 3, and 6 months for the first year after surgery. Patients with residual tumor were evaluated for adjuvant medical therapy and radiation therapy or stereotactic radiosurgery (SRS), which was offered at the discretion of the treating radiation oncologist and neurosurgeon based on residual tumor size and location. Degree of resection was determined by an independent neuroradiologist.

Patients were divided into four groups for the purposes of analysis: Surgical cure, surgical non-cure, biochemical control, and non-biochemical control. Surgical cure was defined as normalization of prolactin levels following surgery without the need for postoperative DA, whereas biochemical control was defined as normalization of prolactin levels following surgery, either with or without the use of postoperative DA. These determinations were based on laboratory data and medical history at the time of their last known clinical visit. These categorizations are consistent with those used in prior literature and allow for overlap between outcome groups.

Whenever possible, postoperative MRI results and serum prolactin levels were used to determine prolactinoma recurrence (elevation of prolactin above normal) and progression (tumor growth on MRI). When postoperative MRI results were not available within the electronic medical
record (EMR), recurrence/progression was determined by review of evaluations made by board-certified endocrinologists, adhering to these definitions.

Statistical Analysis

Descriptive statistics were used to summarize patient characteristics. Categorical variables were analyzed with chi-squared analysis. Continuous variables were analyzed with independent t-test (for normally distributed data) or Mann-Whitney U test (if distribution was not normal). SPSS 25.0 statistical software (IBM Corp., Armonk, NY) was used to perform the statistical analysis and generate ROC curves. P-values less than 0.05 were considered to be statistically significant.

Prolactin Level Analysis

Preoperative prolactin levels were defined as the most recent prolactin level of patients while they were undergoing DA therapy prior to surgery (n=47). Subjects who did not undergo DA therapy prior to surgery were excluded from analysis of preoperative prolactin level calculations because they had disproportionally elevated prolactin levels that were not predictive of the surgical response to treated prolactinomas relative to the other patients in our study (n=9). For these patients, it is possible that DA therapy was either discontinued or not recorded in the EMR. POD1 prolactin was measured as a morning lab draw the first day after surgical resection using the Elecsys Prolactin II immunoassay (Roche Diagnostics).

Systematic Review

To aid in analysis of our results, a systematic review of studies reporting the surgical management of prolactinomas through the PubMed and GoogleScholar databases was conducted. Articles were included in the analysis if all cases in the series were surgically managed either as a primary mode of treatment, along with dopamine agonist (DA) therapy, radiotherapy, or a combination of these treatment modalities. Series of patients managed solely by DA therapy or
radiosurgery were excluded. Case reports, mixed-pituitary tumors, systematic and literature reviews, and cases looking at special populations, such as articles focused on pregnancy, pediatric adenomas, or multiple endocrine neoplasia type 1 (MEN1) syndrome patients were excluded. For practicality, all articles not in English and series that did not examine predictors of hormonal remission were also excluded. One hundred sixty studies were identified through PubMed and 17 additional studies were identified through Google Scholar and from citations of included papers, for a total of 177 initial records after duplicates were removed (Figure 1). Of these, 38 full-text articles were assessed for eligibility, and 19 studies published from 1992 to 2020 were included in the analysis.

Results

Patient Characteristics on Presentation

Of the 56 patients in this study, 40 were female (71%) and 16 were male (29%) with an average patient age of 35.6 years at surgery (SD 13.3). Fifty-three patients (95%) underwent surgery at Keck Hospital of USC and 3 patients (5%) were operated on at Los Angeles County (LAC) + USC Medical Center. Nineteen patients (34%) underwent endoscopic endonasal transsphenoidal resection and the other 37 (66%) underwent a microscopic endonasal transsphenoidal procedure. Common presenting symptoms included amenorrhea/oligomenorrhea (34 patients, 61%), galactorrhea (19 patients, 34%), headache (25 patients, 45%), visual loss (11 patients, 20%), decreased libido (11 patients, 20%), fatigue (8 patients, 14%), and dizziness (5 patients, 9%). Six patients (11%) had undergone prior transsphenoidal resection and 47 patients (84%) had prior DA treatment. Only 9 patients (16%) had received no treatment prior to surgery, either due to DA intolerance or a preference for surgery as a first-line treatment (Table 1). Mean preoperative prolactin levels in patients on a DA was 251.8ng/mL (SD 522.2).
Preoperative Tumor Neuro-Imaging Characteristics

Maximal tumor diameter was available for 45 patients with a mean of 1.6cm (SD 0.86). Forty were macroadenomas (73%) and 15 were microprolactinomas (27%), with 1 being a giant prolactinoma (>4cm). Twenty-four (43%) demonstrated suprasellar extension, 9 (16%) exhibited infrasellar extension into the sphenoid sinus, 1 (2%) extended to the clivus, and 20 (36%) invaded one or both of the cavernous sinuses. Fifteen prolactinomas (27%) were purely intrasellar (Table 1).

Pituitary adenoma pathology and immunostaining

All except 3 tumors in this study were classified as prolactinomas (53, 95%). Of the 3 patients whose tumors did not stain positively for prolactin, one was a very small microprolactinoma that was suctioned before pathology could be sent and 2 had tumors that were negative for all hormonal markers. In all 3 cases, patients had documented pretreatment prolactin levels >200ng/mL. In addition to prolactin (53, 95%), tumors also stained for adrenocorticotropin hormone (8, 14%), leutinizing hormone (6, 11%), growth hormone (6, 11%), follicle stimulating hormone (3, 5%), and thyroid stimulating hormone (2, 4%).

MIB-1 labeling index was performed in 21 cases (38%) demonstrating a mean of 2.43 (SD 1.47). Staining for p53 was performed in 12 cases (21%) with 6 prolactinomas staining positively (50%) and 6 staining negatively (50%). Neither MIB-1 labeling index nor p53 staining was correlated with hormonal remission.

Postoperative Complications

The majority of patients (45, 80%) experienced no postoperative complications. Three patients (5%) experienced cerebrospinal fluid (CSF) leak, 2 of which required surgical repair and the other self-resolved. Three patients (5%) became hyponatremic, 4 (7%) had transient diabetes insipidus (DI), 2 experienced epistaxis (4%) and 2 (4%) had meningitis (Table 2). No patients experienced permanent DI and no patient death occurred.
Surgical Outcomes

The mean neuro-imaging follow-up time was 33.3 months (SD 36.2). Follow-up imaging was available for 51 patients (91%) and showed gross total resection (GTR) in 25 patients (49%) and subtotal resection (STR) in 26 patients (51%). Five patients (9%) experienced tumor progression after STR at a mean time of 41.3 months and 3 patients (5%) had tumor recurrence after GTR at a mean time of 30.7 months (Table 2).

Hormonal Outcomes

POD1 prolactin levels were available for 42 patients (75%) with a median of 10.2 ng/mL (IQR 3.4-67.2). The mean clinical follow-up time for all patients was 39.4 months (SD 42.1) with a median prolactin level of 16.7 ng/mL (IQR 9.1-60.4) in the 48 patients with available follow-up levels. Hormonal outcome data was available for all but one patient demonstrating biochemical control with or without adjuvant therapy in 35 patients (64%) and surgical cure (hormonal remission without postoperative DA therapy) in 25 patients (46%) (Table 2). This amounted to surgical cure of 73% of microadenomas (11/15) and 36% of macroadenomas (14/39) and biochemical control of 87% of microadenomas (13/15) and 56% of macroadenomas (22/39). No significant differences in surgical cure or biochemical control were noted between patients undergoing microscopic versus endoscopic transsphenoidal resection.

Adjuvant Therapy

Adjuvant therapy in the patients who did not experience surgical cure consisted of DA therapy, SRS, additional surgery, or a combination of treatments. Fourteen patients (25%) were prescribed DA alone, 4 of whom (7%) exhibited biochemical remission. Five patients (9%) underwent SRS alone, 2 of whom (4%) experienced biochemical control. Five patients (9%) had combination DA therapy and SRS, 3 of whom exhibited hormonal remission. One patient (2%) had combination DA therapy and repeat surgical resection and continued to be in non-remission and one patient (2%)
achieved remission after combination DA therapy, SRS, and repeat resection (Table 2). Four patients (7%) did not undergo adjuvant therapy in the follow-up period.

Differences Based on Patient Sex

Men were significantly older than women at the time of surgery (45.8 vs. 31.6 years, 95% CI: [-21.2, -7.3]; p<0.001) and presented with larger tumors (2.2cm vs. 1.4cm, 95% CI: [-1.4, -0.28]; p=0.004). Additionally, males were less likely to undergo surgical cure (19% vs. 57%, p=0.011). There were no significant differences between patient sex and pre- or postoperative day 1 prolactin levels, prolactinoma invasion characteristics, extent of resection (EOR), or rate of biochemical cure (Table 3).

Predictors of Surgical Cure

Male patients were less likely to remit from surgery alone (19% of males remitted vs. 57% of females, p=0.011). Additionally, patients with prior transsphenoidal surgery were less likely to experience surgical cure than those who had not (0% vs. 51%, p=0.018). There was an insignificant trend of lower mean preoperative prolactin levels in patients that experienced surgical cure (96.8ng/mL vs. 361ng/mL, 95% CI [-4.8, 533]; p=0.054). Patients with smaller prolactinomas were more likely to achieve surgical cure (1.3cm vs. 1.9cm, 95% CI [0.064, 1.1]; p=0.013). CSI was more common in the surgical failure group (57% vs. 12% in surgical cure group, p=0.001). There were no significant associations between surgical failure and suprasellar, infrasellar, clivus or frontal lobe extension, although this may be due to limited sample size. POD1 prolactin level was also significant predictor of surgical cure (95.5ng/mL in surgical failure group vs. 4.7ng/mL in surgical cure group, 95% CI: [39, 142]; p=0.001). Specifically, we found a POD1 prolactin level greater than 7.6ng/mL predicted non-surgical cure with a sensitivity of 79% and a specificity of 77% (AUC = 0.89, 95% CI 0.79 – 0.99; Figure 2). Patients who underwent GTR of their tumor were more likely to experience surgical cure than those who underwent STR (75% vs. 8%, p<0.001; Table 4).
Predictors of Biochemical Control

Mean preoperative prolactin levels were higher in the nonbiochemical control group than the biochemical control (with or without adjuvant therapy) group (512ng/ml vs. 89ng/ml, 95% CI: [23, 823]; p=0.032). Biochemical control was more likely to be achieved in patients with smaller prolactinomas (1.4cm vs. 2.0cm, 95% CI [0.02, 1.1]; p=0.042). POD1 prolactin levels were a significant prognosticator for biochemical control with or without adjuvant therapy (19ng/ml in biochemical control with or without adjuvant therapy group vs. 125ng/ml in non-biochemical control, 95% CI: [25, 186]; p=0.014). Patients who had undergone prior transsphenoidal surgery were less likely to achieve biochemical control than those who had not (17% vs. 69%, p=0.011). Additionally, biochemical control was more likely to be achieved in patients who underwent GTR than those who underwent STR (88% vs. 35%, p<0.001). No significant differences were noted between biochemical control and patient sex or tumor invasion characteristics.

Patients who experienced biochemical control after adjuvant therapy were more likely to have lower preoperative prolactin levels (69ng/mL vs. 673 ng/mL, 95% CI [48, 1159]; p=0.036) and have tumors that invaded the cavernous sinuses (81% vs. 18%, p=0.048). There were no differences in POD1 prolactin levels and biochemical control in patients who underwent additional treatment (Table 4).

Systematic Review

The 19 articles in our systematic review included 1,536 prolactinoma cases treated via surgical resection.\(^8,12,16-32\) These studies identified tumor size (11/19),\(^8,16-19,21-23,25,29,31\) preoperative prolactin levels (10/19),\(^8,12,16-18,21,22,24,25,31\) postoperative prolactin levels (10/19),\(^12,19-24,26,28,29,32\) prior treatment (9/19),\(^12,16,17,20,21,23,26,28\) extrasellar invasion (7/19),\(^8,12,18,20,25,27,31\) CSI (7/19),\(^12,16,18,19,23,28,29\) and surgical approach (6/19)\(^18,19,22,25,28,32\) as main predictors of postoperative hormonal remission. Other significant predictors included patient age (1/19),\(^8\) gender (1/19),\(^8\) cystic tumor
(1/19), infiltration into the dura (1/19), tumor encasement by the pituitary gland (1/19), and plurihormonal vs. pure lactotroph adenoma on immunohistochemistry (1/19) (Table 5). Pooled analyses were performed on available data.

Fourteen studies reported patient gender, demonstrating 761 males and 560 females. All but one study reported patient age with mean ages ranging from 30-44 years and reported follow-up times in all but 2 studies ranged from 3-196 months. While not every study clearly delineated the number of patients receiving each treatment, in the studies that reported numbers 788 patients received surgical resection alone, 433 underwent surgical resection and postoperative DA therapy, and 68 received surgery with adjuvant DA and radiotherapy. Overall, hormonal remission occurred in 780 (50.7%) out of 1,536 cases. In studies that reported outcomes by treatment group, 256/646 patients (39.6%) remitted from surgery alone, 170/273 patients (62.3%) achieved remission from surgery and DA therapy, and 42/59 patients (71.2%) remitted after surgery, DA, and radiotherapy. Eleven patient mortalities were reported.

The 14 studies that reported prolactinoma size classification included 727 macroprolactinomas, 629 microprolactinomas, and 99 giant prolactinomas (>40mm). In studies that reported outcomes by prolactinoma size, 422/629 patients with microprolactinomas (67%), 260/727 patients with macroprolactinomas (36%), and 19/99 patients with giant prolactinomas (19%) achieved hormonal remission.

Six studies reported their findings according to gender, with a total of 145 surgically treated prolactinoma patients in 104 men and 41 women (47.7% and 28.3%, respectively). 73.1% of men and 61.0% of the women achieved remission at long-term follow up.

CSI was investigated as a predictive factor of remission for surgically managed prolactinomas in 7 studies, with 3 providing details amenable for pooled analysis. In these studies, there were 110 prolactinoma patients, 48.2% of whom had adenomas with CSI.
Discussion

We report a retrospective clinical analysis of our two-and-a-half-decade experience with the surgical treatment of patients with prolactinomas, demonstrating surgical cure or biochemical control in a majority of patients. Surgical resection of prolactinomas is typically reserved for tumors refractory to DA therapy, patients who are unable to tolerate medical therapy, or for those who are seeking to improve chances of successful pregnancy. In concordance with this standard of practice, our study of 56 patients in large part consisted of patients who presented with invasive tumors after failure of DA therapy. Our findings suggest that surgical intervention for prolactinoma should be recommended on a judicious basis, particularly when clinical predictors, such as smaller preoperative size and lower prolactin levels, support a favorable outcome of surgical cure or biochemical control. However, patients with large, highly invasive prolactinomas and prolactin levels above 500ng/mL rarely benefit from surgical intervention unless it is for treatment of rapid neurological deterioration. Multimodal treatment with DA therapy and fractionated radiation therapy may offer better long-term tumor control in these patients without the need for invasive surgery. Importantly, we suggest a POD1 prolactin level greater than 7.6ng/mL predicts a patient will not undergo biochemical control from surgical resection alone with a sensitivity of 79% and a specificity of 77%. In these patients, plans for adjuvant therapy can be made shortly after surgery to readily achieve biochemical control.

Our cohort consisted of patients of similar age and an average proportion of female patients compared to other surgical series, however our patients had fewer microprolactinomas and more macroprolactinomas. Our surgical cure rates were comparable to the higher rates found in current literature for both micro- and macroprolactinomas as was the overall rate of biochemical control we achieved with or without adjuvant therapy. The surgical complication rate and incidence of major morbidity and mortality were extremely low.

Presently, there remains a paucity of U.S. studies investigating the role of transsphenoidal resection in achieving biochemical control in previously treatment-refractory prolactinomas. Our
formal systematic review demonstrated studies have most commonly found tumor size, prolactin levels, and extrasellar invasion as significant predictors of biochemical control after surgical intervention. Microprolactinomas were associated with better outcomes than macro- and giant prolactinomas, and those with CSI were associated with poorer outcomes, suggesting size and invasion are predictors of success. Gender also played a significant role in patient outcomes, where men were more likely to achieve biochemical control. Although DA therapy remains the primary treatment option for prolactinomas, our review suggests that surgery is an effective adjuvant treatment to DA therapy in carefully selected cases. A recent systematic review on the efficacy of surgical resection for prolactinoma treatment demonstrated biochemical control in up to 81% of patients and surgical cure in up to 67% of patients. Unlike our systematic review, Zamanipoor et al. did not assess predictors of remission and focused solely on the success of transsphenoidal resection in the literature.

In contrast to the findings of our systematic review, we found prior surgical resection, tumor size, preoperative and POD1 prolactin levels, and EOR, but not tumor invasiveness or patient gender, significantly predicted postoperative biochemical control. While predictors of surgical cure were similar, there were some key differences. Specifically, preoperative prolactin levels were not significantly associated with surgical cure while patient gender and tumor invasiveness were. These findings are likely explained in part by the significant role EOR plays in surgical cure. Larger and more invasive tumors, especially those tumors invading the cavernous sinuses, are more difficult to fully resect. In our study male patients had larger tumors and although there was not a significant difference between EOR and patient gender, males may have had more advanced disease that was less amenable to cure via surgical resection alone. Additional investigation is merited to determine whether gender is an independent predictor for failure to achieve surgical cure or if other factors influence outcomes in male prolactinoma patients. With adjuvant therapy, the outcome disparity between genders was eliminated in our patients. Our finding that preoperative prolactin levels were...
not significantly associated with surgical cure but were associated with biochemical control may be a factor of limited sample size.

No patients in our study with preoperative prolactin above 500ng/ml achieved surgical cure and no patients with preoperative prolactin levels greater than 1000ng/ml remitted irrespective of adjuvant therapy. Importantly, patients who eventually exhibited biochemical control after adjuvant therapy had lower preoperative prolactin levels and were more likely to have tumors that invaded the cavernous sinuses. This latter finding is likely indicative of a more aggressive adjuvant therapy strategy in patients with known residual tumor in the cavernous sinuses that leads to improved disease control. In patients where prolactin normalization is not expected, goals of surgical treatment include tumor control and/or reduction in medication dose requirements.

An analysis comparing our male and female prolactinoma patients revealed differences consistent with recent literature. Males were more likely to be older and have larger tumors than their female counterparts. These differences in age likely result from differing surgical indications, where males receive surgery due to DA resistance and symptoms of mass effect, while women are more frequently intolerant of DA or desire pregnancy. However, despite the more progressed state of prolactinomas in males, no association was observed between gender and biochemical control rates in our study. Furthermore, despite having larger tumors with greater tumor symptomology, prolactinomas in males were not more likely to invade outside of the sella than prolactinomas in females. This finding may be limited to patients who proceed to surgical resection. Alternatively, the large, noninvasive prolactinomas found in males may lack tumor markers that promote invasion. This finding differs from some prior studies that have suggested that gender plays a predictive role in biochemical control, however a recent systematic review of pituitary adenoma outcomes also concluded that gender did not play a significant role in postoperative remission.
Limitations

This study is primarily limited by its retrospective nature and sample size. Additionally, our mean clinical and imaging follow-up times were complicated by multiple factors, including a transition to electronic medical record system with loss of original records and losing patients to follow-up. Due to sample size, conclusions about the role of SRS and sites of tumor invasion other than the cavernous sinus (frontal lobe, clivus, suprasellar, infrasellar) in surgical cure and biochemical control were unable to be drawn. We suspect this may have additionally impacted the lack of significance we noted between preoperative prolactin levels in patients who achieved surgical cure versus those who did not. Of note, 8 patients in our study were missing long-term follow-up prolactin levels. Biochemical control status for these 8 patients was made by review of clinical notes from board-certified endocrinologists and confirmed via follow-up phone call. Data from phone follow-up for these patients were patient-reported and assessed for normalization of prolactin levels and presence of symptomatology.

Conclusions

This retrospective series of 56 prolactinoma patients treated surgically at a tertiary pituitary center suggests that surgical resection can be an effective treatment for prolactinoma patients. Cavernous sinus invasion status, tumor size, POD1 prolactin levels, and extent of resection can be used to predict surgical cure. In particular, POD1 prolactin levels greater than 7.6ng/mL can reliably predict that a patient will not attain surgical cure. We suggest that significant preoperative prolactin elevations (>500ng/ml for surgical cure and >1000ng/ml for biochemical control regardless of postoperative DA therapy) may decrease the likelihood of surgical cure or biochemical control irrespective of DA therapy. Although surgical resection of prolactinomas is safe at experienced pituitary centers, it should be reserved for selected cases in which patients can achieve disease
control, relief of symptoms of mass effect, or reduction of dopamine agonist dosage. Realistic outcomes regarding biochemical control and ongoing dependence on medications should be provided to patients to aid in decision-making.

Data Availability Statement: Restrictions apply to the availability of some or all data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided.
References

1. Kars M, Dekkers OM, Pereira AM, Romijn JA. Update in prolactinomas. *Neth J Med.* Mar 2010;68(3):104-12.

2. Maiter D, Delgrange E. Therapy of endocrine disease: the challenges in managing giant prolactinomas. *Eur J Endocrinol.* Jun 2014;170(6):R213-27. doi:10.1530/EJE-14-0013

3. Wong A, Eloy JA, Couldwell WT, Liu JK. Update on prolactinomas. Part 1: Clinical manifestations and diagnostic challenges. *J Clin Neurosci.* Oct 2015;22(10):1562-7. doi:10.1016/j.jocn.2015.03.058

4. Molitch ME. Management of medically refractory prolactinoma. *J Neurooncol.* May 2014;117(3):421-8. doi:10.1007/s11060-013-1270-8

5. Schlechte JA. Long-term management of prolactinomas. *J Clin Endocrinol Metab.* Aug 2007;92(8):2861-5. doi:10.1210/jc.2007-0836

6. Melmed S, Casanueva FF, Hoffman AR, et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab.* Feb 2011;96(2):273-88. doi:10.1210/jc.2010-1692

7. Amar AP, Couldwell WT, Chen JC, Weiss MH. Predictive value of serum prolactin levels measured immediately after transsphenoidal surgery. *J Neurosurg.* Aug 2002;97(2):307-14. doi:10.3171/jns.2002.97.2.0307

8. Losa M, Mortini P, Barzaghi R, Gioia L, Giovanelli M. Surgical treatment of prolactin-secreting pituitary adenomas: early results and long-term outcome. *J Clin Endocrinol Metab.* Jul 2002;87(7):3180-6. doi:10.1210/jcem.87.7.8645
9. Hamilton DK, Vance ML, Boulos PT, Laws ER. Surgical outcomes in hyporesponsive prolactinomas: analysis of patients with resistance or intolerance to dopamine agonists. *Pituitary*. 2005;8(1):53-60. doi:10.1007/s11102-005-5086-1

10. Raverot G, Wierinckx A, Dantony E, et al. Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. *J Clin Endocrinol Metab*. Apr 2010;95(4):1708-16. doi:10.1210/jc.2009-1191

11. Babey M, Sahli R, Vajtai I, Andres RH, Seiler RW. Pituitary surgery for small prolactinomas as an alternative to treatment with dopamine agonists. *Pituitary*. Sep 2011;14(3):222-30. doi:10.1007/s11102-010-0283-y

12. Qu X, Wang M, Wang G, et al. Surgical outcomes and prognostic factors of transsphenoidal surgery for prolactinoma in men: a single-center experience with 87 consecutive cases. *Eur J Endocrinol*. Apr 2011;164(4):499-504. doi:10.1530/EJE-10-0961

13. Menucci M, Quiñones-Hinojosa A, Burger P, Salvatori R. Effect of dopaminergic drug treatment on surgical findings in prolactinomas. *Pituitary*. Mar 2011;14(1):68-74. doi:10.1007/s11102-010-0261-4

14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. Jul 2009;339:b2535. doi:10.1136/bmj.b2535

15. Liu JK, Das K, Weiss MH, Laws ER, Couldwell WT. The history and evolution of transsphenoidal surgery. *J Neurosurg*. Dec 2001;95(6):1083-96. doi:10.3171/jns.2001.95.6.1083

16. Ogiwara T, Horiuchi T, Nagm A, Goto T, Hongo K. Significance of surgical management for cystic prolactinoma. *Pituitary*. Apr 2017;20(2):225-230. doi:10.1007/s11102-016-0766-6
17. Képénékian L, Cebula H, Castinetti F, Graillon T, Brue T, Goichot B. Long-term outcome of macroprolactinomas. *Ann Endocrinol (Paris).* Dec 2016;77(6):641-648. doi:10.1016/j.ando.2016.07.004

18. Shimon I, Sosa E, Mendoza V, et al. Giant prolactinomas larger than 60 mm in size: a cohort of massive and aggressive prolactin-secreting pituitary adenomas. *Pituitary.* Aug 2016;19(4):429-36. doi:10.1007/s11102-016-0723-4

19. Vale FL, Deukmedjian AR, Hann S, Shah V, Morrison AD. Medically treated prolactin-secreting pituitary adenomas: when should we operate? *Br J Neurosurg.* Feb 2013;27(1):56-62. doi:10.3109/02688697.2012.714817

20. Vroonen L, Jaffrain-Rea ML, Petrossians P, et al. Prolactinomas resistant to standard doses of cabergoline: a multicenter study of 92 patients. *Eur J Endocrinol.* Nov 2012;167(5):651-62. doi:10.1530/EJE-12-0236

21. Tamasauskas A, Sinkunas K, Bunevicius A, Radziunas A, Skiriute D, Deltuva VP. Transsphenoidal surgery for microprolactinomas in women: results and prognosis. *Acta Neurochir (Wien).* Oct 2012;154(10):1889-93. doi:10.1007/s00701-012-1450-x

22. Sinha S, Sharma BS, Mahapatra AK. Microsurgical management of prolactinomas - clinical and hormonal outcome in a series of 172 cases. *Neurol India.* 2011 Jul-Aug 2011;59(4):532-6. doi:10.4103/0028-3886.84332

23. Yu C, Wu Z, Gong J. Combined treatment of invasive giant prolactinomas. *Pituitary.* 2005;8(1):61-5. doi:10.1007/s11102-005-5087-0

24. Asano S, Ueki K, Suzuki I, Kirino T. Clinical features and medical treatment of male prolactinomas. *Acta Neurochir (Wien).* 2001;143(5):465-70. doi:10.1007/s007010170075

25. Gökalp HZ, Deda H, Attar A, Uğur HC, Arasli E, Egemen N. The neurosurgical management of prolactinomas. *J Neurosurg Sci.* Sep 2000;44(3):128-32.
26. Merola B, Colao A, Panza N, et al. Clinical management of prolactinomas: a ten-year experience. Med Oncol Tumor Pharmacother. 1992;9(2):93-9. doi:10.1007/BF02989660
27. Zada G, Kelly DF, Cohan P, Wang C, Swerdloff R. Endonasal transsphenoidal approach for pituitary adenomas and other sellar lesions: an assessment of efficacy, safety, and patient impressions. J Neurosurg. Feb 2003;98(2):350-8. doi:10.3171/jns.2003.98.2.0350
28. Gsponer J, De Tribolet N, Déruaz JP, et al. Diagnosis, treatment, and outcome of pituitary tumors and other abnormal intrasellar masses. Retrospective analysis of 353 patients. Medicine (Baltimore). Jul 1999;78(4):236-69. doi:10.1097/00005792-199907000-00004
29. Zielinski G, Ozdarski M, Maksymowicz M, Szamotulska K, Witek P. Prolactinomas: Prognostic Factors of Early Remission After Transsphenoidal Surgery. Front Endocrinol (Lausanne). 2020;11:439. doi:10.3389/fendo.2020.00439
30. Micko A, Vila G, Höftberger R, Knosp E, Wolfsberger S. Endoscopic Transsphenoidal Surgery of Microprolactinomas: A Reappraisal of Cure Rate Based on Radiological Criteria. Neurosurgery. 10 2019;85(4):508-515. doi:10.1093/neuros/nyy385
31. Kreutzer J, Buslei R, Wallaschofski H, et al. Operative treatment of prolactinomas: indications and results in a current consecutive series of 212 patients. Eur J Endocrinol. Jan 2008;158(1):11-8. doi:10.1530/EJE-07-0248
32. Jho HD, Carrau RL, Ko Y, Daly MA. Endoscopic pituitary surgery: an early experience. Surg Neurol. Mar 1997;47(3):213-22; discussion 222-3. doi:10.1016/s0090-3019(96)00452-1
33. Zamanipoor Najafabadi AH, Zandbergen IM, de Vries F, et al. Surgery as a Viable Alternative First-Line Treatment for Prolactinoma Patients. A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 03 2020;105(3)doi:10.1210/clinem/dgz144
34. Primeau V, Raftopoulos C, Maiter D. Outcomes of transsphenoidal surgery in prolactinomas: improvement of hormonal control in dopamine agonist-resistant patients. *Eur J Endocrinol*. May 2012;166(5):779-86. doi:10.1530/EJE-11-1000

35. Roelfsema F, Biermasz NR, Pereira AM. Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. *Pituitary*. Mar 2012;15(1):71-83. doi:10.1007/s11102-011-0347-7
Figure and Table Legends

Table 1. Overview of presenting patient and tumor characteristics

Table 2. Postoperative outcomes and adjuvant therapy

Table 3. Comparison of Male and Female Patients

Table 4. Comparison of Patients with and without Surgical Cure and Patients with and without Biochemical control

Table 5. Systematic Review of Series Reporting Outcomes after Surgical Resection of Prolactinomas

Figure 1. PRISMA flow diagram for systematic review of surgical management of prolactinomas. The flow diagram template was adopted from the PRISMA Statement (24).

Figure 2. ROC curve demonstrating the ability of POD1 prolactin to predict need for adjuvant treatment in our patient population.
Table 1. Overview of presenting patient and tumor characteristics

Patient characteristic	No. (%)
Female	40 (71%)
Male	16 (29%)
Age at surgery, years (Mean ± SD)	35.6 ± 13.3
Mean clinical follow-up time (months)	39.4 ± 42.1
Mean neuroimaging follow-up time (months)	33.3 ± 36.2

Type of surgical resection

- Endoscopic endonasal transsphenoidal: 19 (34%)
- Microscopic endonasal transsphenoidal: 37 (66%)

Presenting symptoms

- Amenorrhea/oligomenorrhea: 34 (61%)
- Galactorrhea: 19 (34%)
- Headache: 25 (45%)
- Visual loss: 11 (20%)
- Decreased libido: 11 (20%)
- Fatigue: 8 (14%)
- Dizziness: 5 (9%)

Prior treatment

- Prior DA therapy: 47 (84%)
- Prior transsphenoidal resection: 6 (11%)
- No prior treatment: 9 (16%)

Neuroimaging characteristics

- Maximal tumor diameter (cm): 1.6 ± 0.86
- Macroadenomas: 40 (73%)
- Microadenomas: 15 (27%)
- Giant prolactinoma: 1 (2%)
- Suprasellar extension: 24 (43%)
- Sphenoid sinus invasion: 9 (16%)
- Clival extension: 1 (2%)
- Cavernous sinus invasion: 20 (36%)
- Purely intrasellar: 15 (27%)
| Postoperative complications | No. (%) |
|---------------------------------|---------|
| Transient DI | 4 (7) |
| Hyponatremia | 3 (5) |
| CSF Leak | 3 (5) |
| Epistaxis | 2 (4) |
| Meningitis | 2 (4) |
| **Surgical outcomes** | |
| Gross total resection | 25 (49) |
| Subtotal resection | 26 (51) |
| Tumor progression | 5 (9) |
| Tumor recurrence | 3 (5) |
| **Hormonal outcomes** | |
| Surgical cure | 25 (46) |
| Biochemical control | 35 (64) |
| **Adjuvant therapy** | |
| DA therapy | 14 (25) |
| Stereotactic radiosurgery | 5 (9) |
| DA therapy + SRS | 5 (9) |
| DA therapy + additional resection | 1 (2) |
| DA therapy + SRS + additional resection | 1 (2) |
Table 3. **Comparison of Male and Female Patients.**

	Male (n=16)	Female (n=40)	95% CI	p-value
Mean Age at Time of Surgery (years)	45.8	31.6	-21.2, -7.3	<0.001*
Preoperative prolactin (ng/mL)	307 ± 798	231 ± 388	-436, 285	0.675$^+$
Mean Maximal Tumor Diameter (mm)	2.2cm	1.4cm	-1.4, -0.28	0.004$^+$
Suprasellar extension	9 (56%)	23 (56%)	-	0.932*
Cavernous sinus invasion	8 (50%)	28 (70%)	-	0.158*
Purely intrasellar	13 (81%)	28 (70%)	-	0.39$^+$
Postoperative day 1 prolactin	46 ± 76	62 ± 112	-55, 87	0.652$^+$
Gross total resection	5 (31%)	20 (50%)	-	0.148$^+$
Surgical cure	3 (19%)	22 (57%)	-	0.011$^+$
Biochemical control	8 (50%)	27 (68%)	-	0.178$^+$

*independent samples t-test, $^+$chi-squared analysis
95% CI = 95% Confidence Interval
Table 4. **Comparison of Patients with and without Surgical Cure and Patients with and without Biochemical control.**

	Surgical cure (n=25)	No Surgical Cure (n=30)	p-value, 95% CI	Biochemical control (n=35)	Non-biochemical control (n=20)	p-value, 95% CI
Gender						
Male	13 (52%)	22 (73%)	0.288	8 (24%) male, 27 (77%)	8 (40%) male, 12 (60%) female	0.121
Female	12 (48%)	7 (27%)		28 (86%) female	12 (60%) female	
Mean age at surgery (years)	33.3 ± 13	37.7 ± 13.6	0.228	36.3 ± 14	34.5 ± 12.7	0.633
Prior transsphenoidal resection	0 (0%)	6 (20%)	0.018	1 (3%)	5 (25%)	0.011
Mean preoperative prolactin level (ng/mL)	96.7 ± 96.9	361 ± 658	0.054	89.3 ± 38.3	512 ± 776	0.044
Mean postoperative day 1 prolactin level (ng/mL)	4.7 ± 4.1	95.5 ± 122.5	0.001	19.3 ± 36.4	125 ± 144	0.014
Maximal diameter (cm)	1.3 ± 7.3	1.9 ± 9.2	0.028	1.4 ± 0.72	2.0 ± 1.1	0.042
Suprasellar extension	8 (32%)	16 (53%)	0.113	13 (37%)	11 (55%)	0.201
Cavernous sinus invasion	3 (12%)	17 (57%)	0.001	12 (34%)	8 (40%)	0.672
Purely intrasellar	11 (44%)	3 (10%)	0.004	11 (31%)	3 (15%)	0.181
Gross total resection	18 (90%)	2 (10%)	<0.001	21 (70%)	9 (30%)	<0.001

1 independent samples t-test, 2 chi-squared analysis

95% CI = 95% Confidence Interval
Table 5. Systematic Review of Series Reporting Outcomes after Surgical Resection of Prolactinomas

Study authors	N	% Female	Number of Patients Achieving Hormonal Remission	Criteria for Hormonal Remission	Follow Up Time (months)	Prognostic Variables
Ogiwara et al.	5	60.00%	5/5 (100%)	Surgical w/ chemical cure	Mean: 3	Preoperative prolactin levels, tumor size, cavernous sinus invasion, previous treatment, cystic nature
Képénékian et al.	20	44.68%	-	Surgical w/ chemical cure	Mean: 196 ± 100	Preoperative baseline prolactin levels, tumor size, previous treatment
Shimon et al.	8	11.11%	-	Surgical w/ chemical cure	Mean: 93.6 ± 61.2	Giant prolactoma (tumor size), cavernous sinus invasion, extrasellar involvement, surgical approach, preoperative prolactin levels
Vale et al.	13	61.54%	1/1 (100.00%)	Surgical w/ chemical cure	Mean: 48	Tumor size, cavernous sinus invasion, postoperative prolactin levels, previous treatment
Vroonen et al.	56	60.98%	-	Surgical w/ chemical cure	Mean: 150	Extrasellar involvement, previous treatment, postoperative prolactin level
Tamasauskas et al.	32	100%	19/32 (59.38%)	Surgical w/ chemical cure	Median: 88.5	Tumor size, previous treatment, preoperative prolactin levels, postoperative prolactin levels, postoperative prolactin levels, postoperative prolactin levels
Sinha et al.	122	41.28%	10/12 (83.33%)	Surgical w/ chemical cure	Mean: 50.4 ± 32.4	Tumor size, surgical approach, preoperative prolactin levels, postoperative prolactin levels
Qu et al.	87	0%	13/18 (72.22%)	Surgical w/ chemical cure	Median: 45.0	Extrasellar involvement, cavernous sinus invasion, previous treatment, preoperative prolactin level, postoperative prolactin level
Yu et al.	18	13.33%	-	Surgical w/ chemical cure	Mean: 31.7	Giant prolactoma (tumor size), cavernous sinus invasion, preoperative medical treatment, surgical approach, postoperative prolactin levels
Asano et al.	8	0%	-	Surgical w/ chemical cure	Mean: 42.48 ± 14.52	Preoperative prolactin levels, postoperative prolactin levels
Gokalp et al.	550	28.36%	200/311 (64.01%)	Surgical Cure	Mean: 56.4	Tumor size, extrasellar involvement, surgical approach, preoperative baseline prolactin levels
Jho et al.	5	80.00%	-	Surgical w/ chemical cure	Not reported	Postoperative prolactin levels, surgical approach
Merola et al.	49	75.40%	24/25 (96.00%)	Surgical w/ chemical cure	60	Postoperative prolactin levels, preoperative medical treatment
Zada et al.	20	Not reported	-	Surgical Cure	Median: 16	Extrasellar involvement, preoperative medical treatment
Gsponer et al.	52	77.48%	16/25 (64.00%)	Surgical w/ chemical cure	Not reported	Surgical approach, cavernous sinus invasion, preoperative medical treatment, postoperative prolactin levels
Zielinski et al.	48	92%	-	Surgical w/ chemical cure	84	Cavernous sinus invasion (Knoep score), tumor size, plurihormonal vs. pure lactotroph adenomas, postoperative prolactin levels
Losa et al.	120	77.5%	46/59 (78%)	Surgical cure	Mean: 50.2 ± 3.0	Age, sex, preoperative prolactin levels, tumor size, extrasellar involvement, dural infiltration
Micko et al.	60	83%	-	Surgical cure	Mean: 37	Tumor enclosed by pituitary gland or not
Kreutzer et	212	63%	47/56	Surgical cure	Mean:	Preoperative prolactin levels,
al.	(84.8%)	19.6	tumor size, extrasellar involvement			
-----	---------	------	-----------------------------------			
Present Study	56	71.0%	Surgical Cure	Median: 39.4		
	11/15 (73%)	14/39 (36%)	46%	Cavernous sinus invasion, postoperative day 1 prolactin levels, tumor size, gender, prior transsphenoidal resection, extent of resection		
Present Study	56	71.0%	Surgical w/ chemical cure	Median: 39.4		
	13/15 (87%)	22/39 (56%)	64%	Preoperative prolactin levels, postoperative day 1 prolactin levels, tumor size, prior transsphenoidal surgery, extent of resection, cavernous sinus invasion		
Figure 1

Identification

- Records identified through database searching (n = 160 using PubMed MeSH & text words)
- Additional records identified through other sources (n = 23)

Records after duplicates removed (n = 183)

Screening

- Records excluded (n = 104)
 - Reviews/editorials/commentaries/letters/notes (n = 55)
 - Case reports (n = 26)
 - Not obtainable (n = 8)
 - Not in English (n = 15)
 - Records excluded (medically managed, MEN 1 case reports, mixed pituitary tumors, pediatric or pregnant populations) (n = 47)

Records screened (n = 177)

- Reviews/editorials/commentaries/letters/notes (n = 55)
- Case reports (n = 26)
- Not obtainable (n = 8)
- Not in English (n = 15)

Records with prolactinomas surgically managed (n = 79)

- Unrelated (n = 14)
- Not Surgically Managed (n = 22)
- MEN 1 Patients (n = 1)
- Pregnant Population (n = 3)
- Pediatric Population (n = 6)
- Mixed pituitary tumors (n = 1)

Eligibility

Full-text articles assessed for eligibility for prolactinoma outcomes (n = 32)

Full-text articles/abstracts excluded (no data suitable for meta-analysis) (n = 13)

Studies included in quantitative synthesis (meta-analysis) (n = 19)
Figure 2

ROC Curve

Sensitivity

1 – Specificity

Diagonal segments are produced by ties.