Thread Safe Astronomy

Rob Seaman

National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ, USA

Key words methods: observational – surveys – standards

Observational astronomy is the beneficiary of an ancient chain of apprenticeship. Kepler’s laws required Tycho’s data. As the pace of discoveries has increased over the centuries, so has the cadence of tutelage (literally, "watching over"). Naked eye astronomy is thousands of years old, the telescope hundreds, digital imaging a few decades, but today’s undergraduates will use instrumentation yet unbuilt – and thus, unfamiliar to their professors – to complete their doctoral dissertations. Not only has the quickening cadence of astronomical data-taking overrun the apprehension of the science within, but the contingent pace of experimental design threatens our capacity to learn new techniques and apply them productively. Virtual technologies are necessary to accelerate our human processes of perception and comprehension to keep up with astronomical instrumentation and pipelined dataflows. Necessary, but not sufficient. Computers can confuse us as efficiently as they illuminate. Rather, as with neural pathways evolved to meet competitive ecological challenges, astronomical software and data must become organized into ever more coherent ‘threads’ of execution. These are the same threaded constructs as understood by computer science. No datum is an island.

1 Preface

The title case study in Oliver Sacks’ The Man Who Mistook His Wife for a Hat (Sacks 1998) concerns a gifted musician facing – not blindness – but a deficit in perceptive ability:

‘...not only did Dr P. increasingly fail to see faces, but he saw faces when there were no faces to see

Dr P’s cognition and sight itself were unaffected and he had no trouble recognizing geometric forms:

‘A dodecahedron, of course. And don’t bother with the others – I’ll get the icosahedron, too.’

Complex objects defied description, however. The patient’s ailing right hemisphere blocked comprehension, creating a blindness of knowing, not of seeing:

He took [a red rose] like a botanist or morphologist given a specimen, not like a person given a flower.

‘About six inches in length,’ he commented. ‘A convoluted red form with a linear green attachment.’

‘Yes,’ I said encouragingly, ‘and what do you think it is, Dr P.?’

‘Not easy to say,’ he seemed perplexed. ‘It lacks the simple symmetry of the Platonic solids, although it may have a higher symmetry of its own... I think this could be an inflorescence or flower.’

‘Could be?’ I queried. ‘Could be,’ he confirmed.

‘Smell it,’ I suggested. [He] took it to his nose. Now, suddenly, he came to life.

‘An early rose. What a heavenly smell!’

Reality, it seemed, might be conveyed by smell, not by sight.

Handed a glove, Dr P. offered no glimmer of recognition, but rather could only pursue a purely intellectual exploration of the anonymous object:

‘A continuous surface, [...] infolded on itself. It appears to have’ – he hesitated – ‘five outpouchings, if this is the word.’

It was only later upon donning the glove that Dr P. exclaimed, ‘My God! It’s a glove!’ As Sacks puts it:

[T]he right hemisphere [of the brain] controls the crucial powers of recognising reality [...] The left hemisphere, like a computer [is] designed for programs and schematics [...] [Dr P.] construed the world as a computer construes it, by means of key features and schematic relationships. The scheme might be identified – in an ‘identi-kit’ way – without the reality being grasped at all.

The original Identi-Kit® was marketed to the law enforcement community by Smith & Wesson (1968) as a tool for constructing facial composites from innumerable disjoint details related by observers (witnesses). Facial compositing is now often done with software, and in fact, an astronomical software package for matching schematic simulations (scientific models) to observations has previously been compared to Identi-Kit® (Hibbard 2004). As with the police sketch artist’s rendering of a suspect – a rendering compiled second-hand from witnesses’ conflicting recollections – so do astronomers apprehend the universe.
2 Through a Glass Darkly

Of all the sciences, astronomy is most dependent on what can be seen at a distance. Contraints such as field of view, resolving power, bandpass, signal/noise ratio, instrumental artifacts, relative motion, light travel time, foreground obscuration, and background emission – to name just a few – can confound our understanding of even familiar phenomena. Astronomers, however, are rarely faced with a task equivalent to identifying a commonplace flower or glove. The objects of our regard are the most mysterious in the universe, demanding much from our earthbound imaginations.

Overtly similar phenomena – e.g., types of supernovae – may be attributed to vastly different physical events. Alternatively, identical processes occurring to similar objects may appear very different depending on the context. Relatively simple objects may only be revealed through mind boggling means such as gravitational lensing. Other objects and processes are forever hidden by the cosmic censor.

If astronomical perception is to rise above Sacks’ stultified ‘identi-kit’, a coherent strategy must be followed of tying one observation (the astronomical counterpart of a sight, smell, touch or other human sensation) to other observations in a lucid gestalt - a coordinated workflow. There is a name for this in computer science: an execution ‘thread’. See, for example, Oaks & Wong (2004).

3 Threaded architectures

One can therefore state the First Law of Observing, namely: all observations are part of an empirical thread. This is true whether or not loose ends unravel, and is true both for time domain and static phenomena. Each observation requires context from earlier data-driven studies, and each observation provides context for steering future investigations.

Moreover, the meaning of ‘context’ here is precisely how the word is used in computer science. The full state (values of all variables, pointers, data structures, and program instructions) required to reconstitute a running program (software or observational) is efficiently saved such that other contexts can be swapped back in for running.

3.1 Multi-threading

One obvious aspect of a threaded architecture is that it supports multiple threads. All telescopes are scheduled in some fashion. It may be possible to say that all astronomical facilities – whether empirical, theoretical, virtual, or otherwise – must be scheduled. What is being scheduled in each case are alternative threads of execution, shadowed by a thread of some sort of data products or science products. Examples include competitively allocated, block scheduled, telescope time as provided by various national observatories. Threading is perhaps even more evident with queue scheduled facilities, where each project in an interleaved queue is serviced in turn as contingent conditions are encountered for each prioritized observing program.

Features of threaded computer science architecture map directly to a threaded astronomical (or in general, empirical) architecture. Lightweight and simultaneous observing tasks are pursued through time slicing of forked or replicated astronomical contexts.

3.2 Process safety

Lightweight threads are distinct from heavyweight process architectures, but a number of concepts apply at least by analogy. The execution of computer processes is governed by a scheduler common to all. Every aspect of the context of each process is controlled (as should be true of telescope and camera contexts). For example, this permits context switching at almost any point during execution, except during atomic system calls. Contexts can be swapped out to secondary storage, perhaps as a form of virtual memory – that is, common system facilities such as memory can themselves benefit from threaded handling. Memory is protected such that misbehavior in one context cannot sabotage another. Processes can interact in various ways through inter-process communication (IPC) protocols.

3.3 Thread safety

By contrast, threads operate with shared resources, such as a common address space. As with computer science architectures, what is required are thread safe astronomical systems. Provisions are required in our software interfaces, hardware implementations, and staff procedures to manage concurrency in access to resources of all types, i.e., semaphores are used in applications to avoid race conditions and permit reentrance. Translation: investigators must communicate with each other to avoid demanding the same resources at the same time, often by interrupting one observing program with another.

Better yet, however, would be to embed such protections in astronomical systems so as to apply to all observatory activities and thus all threads of empirical context and data.

4 Threads in autonomous astronomy

The challenge conceiving autonomous systems for astronomical purposes (Seaman et al. 2007) is not to build a single robotic telescope, rather it is to build a complete networked ecosystem of automated robotic assets like those of the Heterogeneous Telescope Networks (HTN) consortium (Allan et al. 2006). This can be extended by recognizing that automation, per se, is a convenience, not a necessity. Human mediated, as well as robotic, assets can form a procedural ‘system of systems’ (Humphrey 2006) for accomplishing astronomical goals (Smith, Seaman & Warner, 2008).
4.1 Some issues for an astronomy ecosystem

A prerequisite for any coordinated scientific activity is a reliance on robust technical and logistical standards. For astronomy, in addition to various familiar standards of the International Astronomical Union pertaining to nomenclature, for instance, or to software, e.g., FITS (Wells, Greisen, & Harten 1981), it is now clear that future developments will feature standards of the International Virtual Observatory Alliance (IVOA) – see for example, Brunner, Djorgovski, & Szalay (2001) – coordinated under Commission 5 of the IAU.

Observatory scheduling policies, new observing modes (Boroson, Davies, & Robson 1996) and other operational paradigms have a profound influence on how the resulting data products may be used. Data from a classically scheduled telescope will be more heterogeneous than data from a queue scheduled telescope, and both more so than from a robotic facility. Calibration data may be non-standard or missing. Metadata may require the observing logs to interpret. Those observing logs may be unavailable, even if the data are archived. However, a fully robotic telescope may not permit unplanned observing sequences or the exploration of creative new instrumental methods.

In a sense, remote observing, or telepresence, (Emerson & Clowes 1993) embodies an opposing suite of technologies from those employed by robotic telescopes. The observer’s influence is not automated, but extended from the mountaintop. These are not incompatible, however, but rather the question is how to optimize autonomous activities when these are called for, and how to optimize human influence when this is appropriate.

A completely proprietary observation means cutting the empirical thread – severing one observation from those that might otherwise follow from other investigators. No single observation can stand alone. Each benefits from the rich investigational fabric, community woven. An absolute policy of public data rights, however, is unsustainable in a research environment dependent on competitive funding and oversubscribed observing time. Many observatories rely on a finite proprietary period for most data products, with a mixture of immediate availability for some (e.g., transient alerts) and embargoed access for others (e.g., dissertation data).

Astronomy has long functioned in a medieval fashion of bartering observing opportunities and thus data on the one hand – and of treating these as state secrets on the other. Some are contemplating developing an astronomical market economy (Etherton, Steele, & Mottram 2004). Care must be taken to ensure that observations resulting from such pay-per-view modes of operation are properly curated and interpreted in their complete scientific context. Control Theory (Doyle, Francis, & Tannenbaum 1990) may supply a well-needed counter balance to free market chaos.

Data must be portable (in all senses of the word) to express their full value. Data transport (Seaman et al., 2005) is thus of key concern in preserving and extending connections from earlier observations to later ones. A single archival observation may intersect many threads: be used for multiple purposes and benefit multiple investigators. As each data product is transported, so must its links and metadata.

4.2 Implementation independence

Note is often taken of the technological choices of some new facility in implementing component subsystems. Rather, the choice of solving a particular problem in hardware or software – or even ‘bioware’ (Bahill & Dean 2007) – is a detail like all others to be traded off against requirements. The art of system design is in recognizing that the system has an existence beyond its prototypes. Tools such as the Unified Modeling Language (Fowler 2004) can aid in comprehending the features of a system independent of technical distractions.

For example, the trade-off between hardware, software, and bioware (procedural recipes requiring staff or user actions) often depends on real-world issues like the necessity of interoperating with legacy systems, or the availability of commercial-off-the-shelf (COTS) solutions. Hardware options may be state of the art, but expensive as a consequence. Software, on the other hand, is often regarded as inexpensive and flexible. The minimal up-front software costs may well be balanced, however, by increased maintenance.

4.3 An example of threading: the VOEvent lifecycle

The IVOA VOEvent standard (Seaman et al. 2006) implements a publish/subscribe mechanism for conveying alerts of transient celestial events (Williams & Seaman 2006). It is the nature of such alerts to generate follow-up observations and thus a sequence of additional alerts. VOEvent provides a citation mechanism for connecting rich threads of such follow-ups, including logistical options such as tying two threads into one, dividing one thread in two, or retracting an alert and thus cutting the thread. References embedded in VOEvent packets link to archival data and to dynamic web services, extending threads further.

It is these threads of data products that convey (Seaman & Warner 2006) and create telescope behavior through execution threads of the telescope and instrument interfaces of robotic environments such as HTN, as well as the traditional computerized and human mediated environments typical of both classically and service operated telescopes.

5 Summary

A coherent view of the observing process and of the ubiquitous threads of astronomical data is required to avoid the empty understanding of identikit astronomy. Astronomical techniques benefit from the realization that these threads are rigorously analogous to the threads of computer science.
The NOAO ToO System

Fig. 1 The NOAO Target of Opportunity observing system is an example of threads in action. Transient alerts in the form of VOEvent packets trigger behavior from observatory facilities and personnel. In turn, execution threads in the form of autonomous and human-mediated commands to telescope and instrument subsystems trigger follow-up observations and the resulting data products. Threads from multiple projects and investigators are adaptively interleaved. The system, and thus the need for protected threaded execution, encompasses the observing and virtual assets of the entire astronomical community.

References

Allan, A., et al.: 2006, AN 327, 744

Bahill, A.T., Dean, F.: 2007, http://www.sie.arizona.edu/sysengr/whatis/whatis.html

Boroson, T., Davies, J., Robson, I., eds.: 1996, *New Observing Modes for the Next Century*, ASP Conf. Ser. 87

Brunner, R.J., Djorgovski, S.G., Szalay, A.S., eds.: 2001, *Virtual Observatories of the Future*, ASP Conf. Ser. 225

Doyle, J., Francis, B., Tannenbaum, A., *Feedback Control Theory*, 1990, (New York: Macmillan)

Emerson, D.T., Clowes, R.G., eds.: 1993, *Observing at a distance*, (Singapore: World Scientific)

Etherton, J., Steele, I.A., Mottram, C.J.: 2004, in Optimizing Scientific Return for Astronomy through Information Technologies, Proc. SPIE Vol. 5493

Fowler, M.: 2004, *UML Distilled 3rd Ed.*, (Reading, MA: AW)

Hibbard, J.: 2004, Identikit: An N-body/Data Visualization Tool, http://www.cv.nrao.edu/~jhibbard/Identikit/identikit.html

Humphrey, W.: 2006, *System of Systems: Scaling Up the Development Process*, http://www.sei.cmu.edu/pub/documents/...06.reports/pdf/06tr017.pdf

Oaks, S. & Wong, H.: 2004, *Java Threads*, (Sebastopol, CA: ORA)

Sacks, O.: 1998, *The Man Who Mistook His Wife for a Hat*, (New York: Touchstone)

Seaman, R., et al.: 2005, in ASP Conf. Ser. 347, ADASS XIV, ed. P. Shopbell, M. Britton, & R. Ebert (San Francisco: ASP), 679

Seaman, R., et al.: 2006, VOEvent: Sky Event Reporting Metadata, http://www.ivoa.net/Documents/latest/VOEvent.html

Seaman, R., et al.: 2007, in ASP Conf. Ser. 376, ADASS XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell (San Francisco: ASP), 683

Smith, R.C., Seaman, R., Warner, P.: 2006, in Observatory Operations, Proc. SPIE Vol. 6270

Smith, R.C., Seaman, R., Warner, P.: 2008, in this volume

Smith & Wesson: 1968, Identikit, http://www.identikit.net

Wells, D.C., Greisen, E.W., & Harten, R.H.: 1981, A&AS, 44, 363

Williams, R., Seaman, R.: 2006, in ASP Conf. Ser. 351, ADASS XV, ed. C. Gabriel, C. Arviset, D. Ponz, & E. Solano (San...
Francisco: ASP), 637