Anatomic Motor Point Localization of the Biceps Brachii and Brachialis Muscles

Injection of the neurolytic agents into motor points of the biceps brachii or brachialis muscles is an effective treatment of spasticity of the elbow flexors in many stroke survivors. Accurate localization of the motor points of each muscle is necessary for enhancing the efficacy of motor point blocks. To identify the precise locations of the motor points (terminal nerve endings) of the biceps brachii and brachialis muscles in relation to anatomic surface landmarks for motor point blocks, we dissected 23 limbs from 12 cadavers. A reference line was defined as a line connecting the coracoid process with the lateral epicondyle of the humerus. The location of the motor points of the biceps brachii and brachialis muscles was identified in reference to the reference line. The motor point of the biceps brachii muscle was found to be approximately half of the reference line. In the brachialis muscle, the location of the motor point was 70% of the reference line from the coracoid process and 2 cm medial to the line. The results are expected to facilitate effective localization of the motor point block of these muscles in selective motor nerve block.

Key Words: Elbow; Flexor; Muscle Spasticity; Nerve Endings; Nerve Block

INTRODUCTION

Elbow flexion synergy of stroke survivors may occur reflexively or as early stages of voluntary control when spasticity is present. However, when spasticity of the elbow flexors is marked, it may contribute to the typical upper extremity posture in hemiplegia and limit rehabilitation efforts to improve function or at least minimize impairments (1). For patients who are ambulatory, walking with the elbow flexed impairs balance and may be cosmetically unacceptable. The patients with spasticity of the elbow flexion are most likely to show the pronation of the forearm, which is not performed by the biceps brachii. Furthermore, a major flexor of the elbow is the brachialis muscle, that has no role in supination (2). Thus, blocking the brachialis is expected to reduce spasticity of elbow flexion without eliminating the ability to generate supination torques.

Chemodenervation of the musculocutaneous nerve with neurolytic agents is an effective treatment of spasticity of the elbow flexors. The flexion spasticity at the elbow can be treated using injections of neurolytic agents designed to block the musculocutaneous nerve at the level of the axilla or upper arm (3-6). Blocking the main nerve trunk may produce profound weakness of the hemiparetic upper extremity (7, 8). Neurolytic agents may be spilled over the adjacent arteries and have a direct effect on vascular smooth muscles, resulting in a significant vasoconstriction (9). There might be temporary dysesthetic pain over the distribution of the lateral antebrachial cutaneous nerve after neurolysis (8, 10).

To avoid undesirable complications, motor point blocks of the biceps brachii or brachialis muscle may be more satisfactory. For phenol or alcohol neurolysis, precise localization of the motor points of each muscle is necessary to avoid blocking the sensory or major motor nerve. Previous anatomic studies have defined the motor point as the location where the motor branch entered the muscle belly (11, 12). However, there have been few studies that have investigated the location of the motor points of the biceps brachii and brachialis muscles. The present study, therefore, was conducted to identify the location of the motor points of these muscles relative to anatomic landmarks in order to facilitate the efficacy of motor point block.

MATERIALS AND METHODS

Twenty-three limbs from 12 cadavers were dissected for the study. There were 5 male and 7 female cadavers with an...
average age at time of death of 66 yr (range, 31 to 87). One limb was unsuitable for the study due to significant contracture of the elbow joint. Each cadaver was placed supine with the elbow extended in the anatomic position.

The skin and subcutaneous tissue were dissected from the elbow crease, exposing the entire biceps brachii. After cutting the biceps brachii tendon at the elbow, the muscle was detached from the brachialis. The musculocutaneous nerve was identified and the branches to the brachialis and biceps brachii were observed. The center of the location where the motor branch entered the muscle belly was designated as the motor point of each muscle.

A tape measure was used to form a reference line connecting the coracoid process to the lateral epicondyle of the humerus (Fig. 1). For the brachialis muscle, the perpendicular line from the reference line to the motor point was measured and was recorded as an X value. The Y value was defined as the distance from the coracoid process to the point where the perpendicular line crossed the reference line. For the biceps brachii muscle, the X value was not measured as the location of the motor point was not fixed in a transverse plane after cutting the muscle at the elbow. The shortest distance between the coracoid process and the motor point was measured and was defined as the Y value. For both muscles, the Y value was also normalized into a percentage of the total length of the reference line and hence compared across all specimens.

RESULTS

The mean length of the reference line between the coracoid process and the lateral epicondyle of the elbow was 26.76±1.59 cm. Each head of the biceps muscle was consistently innervated by a single branch of the nerve, respectively. The motor points of the biceps brachii were found to be approximately half of the distance from the coracoid process to the lateral epicondyle of the humerus (Fig. 2). The motor point of the short head of the biceps muscle was located 12.91±1.99 cm (48.24±6.88% of the reference line) distal to the coracoid process. In the long head of the muscle, the location of the motor point from the coracoid process was 14.22±1.75 cm (53.19±6.21%).

All brachialis muscles were innervated by one or two bran-
Motor Point of the Biceps and Brachialis

Dorothy A. Neuwirth

The motor point of the biceps brachii muscle is located at approximately half of the length of the humerus. In the brachialis muscle, it is located at approximately the halfway point of the upper arm. The motor point can be easily identified by the use of a surface stimulator on the skin of the mid arm. A needle electrode is then used to more accurately determine the location of the motor points of the muscle. In addition, our data may be helpful in determination of the recording location of the biceps muscle. In standard needle electromyography, the needle electrode is placed over the bulk of the biceps muscle (20). The lack of knowledge regarding the location of the motor points of the biceps muscle may lead to an erroneous placement of the needle electrode because the maximum bulk of the muscle may be found more distally in elbow extension.

In summary, the motor point of the biceps brachii muscle was located at approximately half of the arm. In the brachialis muscle innervated by one or two branches of the musculocutaneous nerve, the location of the motor points was likely to be 2 cm medial to distal one third of a reference line from the coracoid process to the lateral epicondyle of the elbow. However, the needle electrode is then used to more accurately determine the location of the motor points of the muscle.
2. Calais-Germain B. The elbow. In: Anderson S, editor. Anatomy of movement. Seattle: Eastland Press, 1993; 131-46.
3. Keenan MA, Tomas ES, Stone L, Gersten LM. Percutaneous phenol block of the musculocutaneous nerve to control elbow flexor spasticity. J Hand Surg Am 1990; 15: 340-6.
4. Garland DE, Rhoades ME. Orthopedic management of brain-injured adults. Part II. Clin Orthop Relat Res 1978; 131: 111-22.
5. Keenan MA. Management of the spastic upper extremity in the neurologically impaired adult. Clin Orthop Relat Res 1988; 233: 116-25.
6. Khalili AA, Betts HB. Isolated block of musculocutaneous and perineal nerves in the management of spasticity with special reference to the use of a nerve stimulator. Anesthesiology 1967; 28: 219-22.
7. Garland DE, Thompson R, Waters RL. Musculocutaneous neuroectomy for spastic elbow flexion in non-functional upper extremities in adults. J Bone Joint Surg Am 1980; 62: 108-12.
8. Glenn MB. Nerve blocks for the treatment of spasticity. In: Katz RT, editor. Physical medicine and rehabilitation: state of the art reviews. Philadelphia: Hanley & Belfus 1994; 481-505.
9. Johnson ME, Sill JC, Brown DL, Halsey TJ, Uhl CB. The effect of the neurolytic agent ethanol on cytoplasmic calcium in arterial smooth muscle and endothelium. Reg Anesth 1996; 21: 6-13.
10. Kong KH, Chua KS. Neurolysis of the musculocutaneous nerve with alcohol to treat poststroke elbow flexor spasticity. Arch Phys Med Rehabil 1999; 80: 1234-6.
11. Albert T, Yelnik A, Colle F, Bonan I, Lassau JP. Anatomic motor point localization for partial quadriceps block in spasticity. Arch Phys Med Rehabil 2000; 81: 285-7.
12. Kim HS, Hwang JH, Lee PK, Kwon JY, Oh-Park MY, Kim JM, Chun MH. Localization of the motor nerve branches and motor points of the triceps surae muscles in Korean cadavers. Am J Phys Med Rehabil 2002; 81: 765-9.
13. Buchanan TS, Erickson JC. Selective block of the brachialis motor point. An anatomic investigation of musculocutaneous nerve branching. Reg Anesth 1996; 21: 89-92.
14. Kim JS, Kwon JY, Kang SY, Park JW. Anatomical locations of the motor points of the biceps brachii and brachialis muscles. J Korean Acad Rehabil Med 2004; 28: 592-5.
15. Jenkins DB. Hollinshead’s functional anatomy of the limbs and back. 8th ed. Philadelphia: Saunders; 2002.
16. Johnson D, Ellis H. Upper arm. In: Standring S, Ellis H, Healy JC, Johnson D, Williams A, Collins P, Wigley C, editors. Gray’s anatomy: the anatomical basis of clinical practice. 39th ed. Edinburgh: Churchill Livingstone 2005; 851-8.
17. Ip MC, Chang KS. A study on the radial supply of the human brachialis muscle. Anat Rec 1968; 162: 363-71.
18. Mahakanukrauh P, Somsarp V. Dual innervation of the brachialis muscle. Clin Anat 2002; 15: 206-9.
19. Blackburn SC, Wood CP, Evans DJ, Watt DJ. Radial nerve contribution to brachialis in the UK Caucasian population: position is predictable based on surface landmarks. Clin Anat 2007; 20: 64-7.
20. DeLagi EF, Perotto A, Iazzetti J, Morrison D. Anatomic guide for the electromyographer the limbs. 2nd ed. Springfield (IL): Charles C Thomas; 1981.