Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

Hanane Laklai1, Yekaterina A Miroshnikova1, Michael W Pickup1, Eric A Collisson2, Grace E Kim3, Alex S Barrett4, Ryan C Hill3, Johnathon N Lakins1, David D Schlaepfer5, Janna K Mouw1, Valerie S LeBleu6, Nilotpal Roy7, Sergey V Novitskiy8, Julia S Johansen9, Valeria Poli10, Raghu Kalluri6, Christine A Iacobuzio-Donahue11, Laura D Wood12, Matthias Hebrok7, Kirk Hansen4, Harold L Moses8 & Valerie M Weaver1,13–16

Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.

PDAC fibrosis compromises drug delivery, impedes immune cell accessibility and promotes disease aggression and therapy resistance1–4. Inhibition of stromal sonic hedgehog (SHH) signaling in a mouse model has been shown to significantly reduce fibrosis and increase drug update to stabilize, at least transiently, the disease5. Similarly, using hyaluronidase to reduce the abundance of mouse tumor hyaluronan and treating xenografted human pancreatic tumors with an angiotensin inhibitor to reduce tissue tension facilitate chemotherapy delivery1,6. But phase 2 clinical trials targeting fibrosis did not increase patient survival7. Experiments in mouse models of PDAC revealed that, although depletion of proliferating α-smooth muscle actin (α-SMA)-positive stromal cells reduced fibrosis, the vasculature remained abnormal and the tumors were hypoxic and less differentiated, resulting in accelerated mortality8. Additionally, despite a reduction in fibrosis and enhancement of tissue vascularity, genetic ablation of SHH or treatment with a smoothened inhibitor resulted in mouse PDACs that were less differentiated and more aggressive9.

At first glance, these data imply that the stroma can both promote and restrain tumor progression and suggest stromal dependency may be context dependent. Nevertheless, these experimental and clinical manipulations were based on presumed similarities in tissue across PDACs regardless of tumor genotype; mediation of stromal remodeling in PDACs by a uniform population of stromal fibroblasts; and comparable physical impacts of fibrosis, including the restraint of tumor cells, impedace of tumor-associated vasculature and prevention of immune infiltration10–12. Yet the extent, nature and tumor cell response to tumor-associated fibrosis varies widely across cancers, tumor subtypes and even within the same tumor; the stromal cells that contribute to extracellular matrix (ECM) deposition and remodeling in tumors are heterogeneous13–16. Importantly, oncogenic transformation itself increases tumor cell tension, which can critically contribute to ECM remodeling and the malignant phenotype, as was demonstrated by a Ras-transformed epithelium whose ROCK-dependent contractility and fibrosis induction was essential for Wnt-dependent squamous growth.

1Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California, USA. 2Department of Pathology, University of California, San Francisco, San Francisco, California, USA. 3Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, Aurora, Colorado, USA. 4Department of Medicine, University of California, San Francisco, San Francisco, California, USA. 5Department of Pathology, University of California, San Francisco, San Francisco, California, USA. 6Department of Laboratory Medicine and Genetics, University of Colorado, Denver, Aurora, Colorado, USA. 7Department of Biochemistry, University of California, San Francisco, San Francisco, California, USA. 8Department of Pathology, David Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 9Department of Pathology, University of California, San Francisco, San Francisco, California, USA. 10Department of Surgery, University of California, San Francisco, San Francisco, California, USA. 11Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA. 12Department of Anatomy, University of California, San Francisco, San Francisco, California, USA. 13Department of Gastroenterology and Liver Disease, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 14Department of Gastroenterology and Liver Disease, Johns Hopkins University, Baltimore, Maryland, USA. 15Department of Pathology, University of California, San Francisco, San Francisco, California, USA. 16Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA. Correspondence should be addressed to V.M.W. (valerie.weaver@ucsf.edu).

Received 30 December 2015; accepted 11 March 2016; published online 18 April 2016; doi:10.1038/nm.4082
cancerous tissues. The authors studied a gene list of major fibrillar collagens and found that patients expressing high levels of collagen fibers adjacent to the epithelial lesions had a longer survival time. They also detected a progressive increase in level of phosphorylated myosin light chain-2 (p-MLC2) in the epithelial lesions in poorly differentiated collagen fibers. This suggests that an increased collagen fiber diameter may be associated with better patient prognosis. The findings support the use of antistromal therapies to improve patient outcomes.

RESULTS

Tissue tension and collagen thickness link to PDAC prognosis

Fibroblastic collagen has been implicated in PDAC progression and treatment resistance, yet recent findings suggest collagen abundance in PDAC may be associated with better outcomes. The authors used this signature to stratify publicly available PDAC data (GEO GSE21501). They found no significant association between expression of the major fibrillar collagens and patient survival. However, when stratified patient data according to expression of collagens Col1a2, Col2a1 and Col4a1, they found that patients expressing high levels of these specific collagens had a lower overall survival (log-rank $P \leq 0.04$) (Supplementary Fig. 1a).

To investigate the relationship between collagen and PDAC phenotype, the authors assessed total and fibrillar collagen in PDAC tissue with different degrees of differentiation and treatment resistance. They found that patients with a better prognosis had a higher level of fibrillar collagen, suggesting that an increased collagen fiber diameter may be associated with better patient outcomes. The findings support the use of antistromal therapies to improve patient outcomes.
of patients by survival (median survival <10 months versus median survival >24 months). Again, we found no association between total and fibrillar collagen or α-SMA-positive cells and patient survival (Fig. 1b and Supplementary Fig. 1d,e). However, the diameter of the collagen fibers adjacent to the pancreatic lesions was significantly thicker in patients with the shortest survival (Fig. 1b) (P ≤ 0.001). We also observed elevated p-MLC2 in the PDAC tissues from patients with the shortest survival, indicating increased actomyosin tension and a relationship between the contractile PDAC epithelium and the reorganized collagen bundles (Fig. 1b) (P ≤ 0.001).

TGFB signaling is often attenuated in patient PDACs, thus we assessed phosphorylation of SMAD2 (p-SMAD2) as a primary mediator of canonical TGFB signaling. We detected less p-SMAD2 in the least-differentiated PDAC lesions (Fig. 1a) (P ≤ 0.001) and the PDACs derived from the patients with the shortest survival (Fig. 1b) (P ≤ 0.001), suggesting they had compromised TGFB signaling. Next, we compared the stromal phenotype of patient PDACs with genetically altered SMAD4 to PDACs with wild-type SMAD4 (ref. 36).

To explore the relationship between TGFB signaling, collagen organization and tissue mechanics, we exploited three genetically engineered PDAC mouse models: KC (KrasLSL-G12D/+Ptf1a-Cre)37, KPC (KrasLSL-G12D/+Ptp53R172H/+Pdx1-Cre) and KTC (KrasLSL-G12D/+Tgfb2lox+/Ptf1a-Cre, which bears a loxP-flanked allele of Tgfb2) mice. By age 20 weeks, KC mice had progressed to pancreatic intraepithelial neoplasia (PanIN) lesions, whereas KPC and KTC mice developed PDAC lesions. Coincident with tumor formation, the pancreatic tissues of both KC and KTC mice were highly fibrotic, as indicated by abundant total and fibrillar collagen (data not shown). Targeted proteomics confirmed that many fibrillar collagens in KTC and KPC mice were present at similar levels (Supplementary Table 1).

Immunofluorescence staining showed that KTC and KPC tumors had similar stromal levels of collagen III, α-SMA and fibroblast-activated protein (FAP) (Supplementary Fig. 2a). GLI family zinc finger 1 (GLI1), which regulates PDAC fibrosis, was abundantly...
Figure 3 JAK-STAT3 signaling drives ECM remodeling and stiffening. (a) Immunofluorescence images (left) and quantification (right) of p-STAT3 and DAPI staining in epithelial and stromal tissue from 20-week-old KC, KPC and KTC mice; scale bar, 50 μm. (b) p-STAT3 and DAPI staining of tumor cells from KC, KPC and KTC mice; scale bar, 25 μm. (c) Collagen contraction, measured by total collagen gel area in 3D collagen gels with KTC tumor cells treated for 24 h with vehicle or ruxolitinib (rux). (d) Polarized light images and quantification of picrosirius red (PR)-stained color-coded fibrillar collagen diameter on gels from c; scale bar, 75 μm. (e) Immunoblot analysis and relative quantification of p-STAT3 in KC cells after exposure to KTC-conditioned medium (CM). (f) Total collagen gel area of gels with KC tumor cells incubated with vehicle (veh), KTC CM or KTC CM and ruxolitinib for 48 h. (g) Polarized light images and quantification of PR, color-coded fibrillar collagen diameter; scale bar, 75 μm. (h) Immunoblot analysis and quantification relative to total STAT3 and p-STAT3 in KC tumor cells cultured on soft or stiff polyacrylamide substrates. (i) Quantification of cytokine levels in the CM of KC cells cultured on soft or stiff polyacrylamide substrates relative to positive controls on the blots. For in vitro quantification (b–i), data are mean ± s.e.m. of three independent experiments, each with three technical replicates. For in vivo experiments (a), n = 5 mice per group. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, unpaired two-sided Student’s t-test or one-way ANOVA with Tukey’s method for multiple comparisons. a.u., arbitrary units.

and uniformly expressed in the KPC and KTC tumor stroma (Supplementary Fig. 2a). Nevertheless, and in agreement with our clinical findings, KTC PDAC lesions had thicker collagen bundles and a stiffer ECM in the periductal region (Fig. 2a–c) (P ≤ 0.001). Mass spectrometry and immunofluorescence analyses of the tumor ECM further revealed that the altered fibrillar collagen phenotype and the elevated ECM stiffness in KTC PDAC lesions was accompanied by a significant increase in tenasin C, fibronectin and collagen type XII α1 (P ≤ 0.05) (Supplementary Fig. 3b, Supplementary Table 2 and Fig. 2a,b). The KTC PDAC epithelium was also more contractile, as indicated by more p-MLC2 and myosin phosphatase target subunit 1 (p-MyPT1) (Fig. 2a and Supplementary Fig. 3a) (P ≤ 0.01–0.001) and higher mechanosignaling, as indicated by activated β1-integrin, phosphorylated focal adhesion kinase (p39/PTK2) (Fig. 2a and Supplementary Fig. 3a) (P ≤ 0.05–0.001) and nuclear Yorke activated protein (YAP1)39 (Fig. 2a and Supplementary Fig. 3a) (P ≤ 0.01–0.001). These data suggest that a reduction in TGF-β signaling increases actomyosin tension and mechanosignaling in a transformed pancreatic epithelium to induce a stiffer, periductal, matricellular-enriched fibrosis.

We next assessed the contractility phenotype of individual PDAC epithelial cells derived from KC, KPC and KTC mice using traction force microscopy (TFM). KTC tumor cells were more contractile than the KPC or KC cells (Supplementary Fig. 3c). KTC tumor cells promoted more Rho kinase-1 (ROCK1)-dependent but not ROCK2-dependent 3D collagen gel contraction than KPC or KC tumor cells (Supplementary Fig. 4a) (P ≤ 0.01–0.001) (Fig. 2d) and Supplementary Fig. 5a–d). The KTC tumor cells exhibited higher ROCK1-dependent tumor growth (Supplementary Fig. 4d). Myosin tension, as indicated by elevated traction force as well as p-MLC2 (Fig. 2e and Supplementary Fig. 4c), induced more nuclear YAP1 and YAP activity, as indicated by higher Ctgf expression (Supplementary Fig. 4f), and promoted greater fiber diameter (Fig. 2f). Fibers were also stiffer and enriched for the matricellular protein tenasin C (Fig. 2g–i) upon orthotopic injection of KTC cells into the pancreas of immunocompromised mice. These data demonstrate that a reduction of TGF-β signaling in the pancreatic epithelium increases tumor cell tension to induce a stiffer, matricellular fibrosis.

KTC tumor cells also showed a significant increase in anchorage-independent growth and colony formation (Supplementary Fig. 4f) (P ≤ 0.05–0.001), which is consistent with a reduced dependence
on ECM ligation for tumor cell survival and the enhanced metastasis incidence observed in patients with mutant SMAD4 (refs. 20,40). However, the size of the KTC tumors was significantly smaller (P < 0.0001) than those formed by KPC cells (Supplementary Fig. 4d,e). Thus, although pancreatic transformation is universally accompanied by progressive fibrosis and stiffening of the ECM, the nature of the fibrotic response and the mechanophenotype of the cancer can be modified by the genotype of the tumor.

JAK-STAT3 signaling drives ECM remodeling and stiffening

We next sought to clarify how reduced TGF-β signaling could increase tumor cell tension. G-protein-coupled-receptor-mediated Janus kinase (JAK) activation stimulates activation of both signal transducer and activator of transcription-3 (STAT3) and ROCK1 and induces actomyosin-mediated cell contractility, and STAT3 has been implicated in PDACs41–45. We observed significantly more p-STAT3 (P ≤ 0.001) in the pancreatic epithelium of KTC mice than in KPC or KC mice (Fig. 3a), even in PanINs from 8-week-old mice, where the amount of infiltrating immune cells was very low (Supplementary Fig. 6a). Although both the stroma and the PDACs in KPC and KTC mice stained positively for p-STAT3 (coincident with an abundant immune infiltrate)45, p-STAT3 was significantly higher (P ≤ 0.001) only in the tumor pancreatic epithelium in KTC mice (Fig. 3a). We also detected abundant p-STAT3 in vitro in nonstimulated KTC, but not KPC or KC, cells (Fig. 3b and Supplementary Fig. 5a). KTC tumor cell contraction and remodeling of collagen gels was blocked by treatment with the JAK inhibitor ruxolitinib (Fig. 3c,d and Supplementary Fig. 6b). We cultured KTC cells for 48 h, collected the medium (conditioned medium) and used it to treat KC cells. We noted that the conditioned medium activated p-STAT3 in cultured KC cells (Fig. 3e) and simultaneously increased the JAK-dependent ability of the KC cells to contract and remodel collagen gels (Fig. 3f and Supplementary Fig. 6c). A stiff ECM can enhance STAT3 activation46, and we observed higher steady-state p-STAT3 levels in KC tumor cells and higher levels of secreted cytokines in KTC-conditioned medium when they were plated on a stiff ECM (Fig. 3f–i and Supplementary Fig. 6d–f). These findings identify an epithelial JAK-ROCK-STAT3 signaling circuit as a candidate KTC tumor-cell-specific contractility mechanism that could induce ECM remodeling and foster the development of matricellular-enriched pancreatic fibrosis.

Tumor cell tension accelerates PDAC progression in mice

To test links between p-STAT3, tumor tension and fibrosis in PDAC progression, we crossed transgenic mice expressing Ptf1α-Cre with mice expressing a conditional V737N mutation in β1-integrin (β1-V737N mice) (Supplementary Fig. 7a), which recapitulates tension-dependent integrin clustering and promotes focal adhesion signaling and ROCK-dependent cell contractility in the pancreatic epithelium18,47,48. Immunofluorescence staining in the resulting β1-V737N mice confirmed elevated PTK2 activity (P ≤ 0.001) in the pancreatic epithelium and revealed higher epithelial contractility, as indicated by increased α-smooth muscle actin (α-SMA) and vimentin (vimentin) expression. We further observed that KTC tumors derived from β1-V737N mice were associated with increased p-MLC2, p-PTK2, p-ROCK1 and YAP1 expression (Supplementary Fig. 7b) compared to KTC tumors derived from β1-V737Δ mice. These findings suggest that p-STAT3 drives PDAC progression, potentially through increased tumor cell tension and fibrosis. Tumor cell tension accelerates PDAC progression in mice.

Figure 4 Tumor cell tension accelerates PDAC progression in mice. (a) Mouse manipulations used to study the impact of increasing pancreatic epithelial cell mechanosignaling using β1-V737N on KRAS-induced pancreatic malignancy. (b) Immunofluorescence staining and quantification of p397PTK2, p-MLC2, tenascin C, YAP1, p-STAT3 and CD68; polarized light images of picrosirius red staining and force maps of ECM stiffness in pancreatic tissue from 3-month-old KC and KC/β1-V737N mice. Scale bars are as follows: CD68, 50 µm; p397PTK2, p-MLC2, tenascin C, YAP1 and p-STAT3, 100 µm; PS staining, 75 µm. (c) Alcian blue and hematoxylin and eosin (H&E) staining of KC and KC/β1-V737N pancreatic tissue. Scale bars, 100 µm. (d) Quantification of histopathologic phenotypes present in KC and KC/β1-V737N mice. (e) Polarized light images and quantification of picrosirius red staining (scale bar, 75 µm) and immunofluorescence staining and quantification of tenascin C (scale bar, 75 µm), YAP1 (scale bar, 75 µm), p-STAT3 (scale bar, 25 µm) and DAPI in pancreatic tissue from nude mice injected with KTC tumor cells expressing either a scramble (control) shRNA or a shRNA against PTK2 (shPTK2). (f) Quantification of average elastic modulus (Pa) of control and PTK2 knockdown orthotopic tumors. For in vivo experiments (a–f), n = 5 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001; ****P < 0.0001, unpaired two-sided Student’s t-tests.
Figure 5 STAT3 induces fibrosis and accelerates PDAC. (a) Mouse crosses used for the activated STAT3 knockouts. (b) Immunofluorescence images and quantification of pancreatic tissues from 5-week-old KC and KC/STAT3C mice stained for p-STAT3 (scale bar, 75 µm), p397PTK2, and p-MLC2 (scale bars, 50 µm) and CD68 (scale bar, 100 µm) and polarized light images and quantification of pancreatic tissues from 5-week-old KTC-KO (control) and KTC-KO/STAT3-KO mice. (c) Kaplan–Meier survival curves for KC and KC/STAT3C mice. (d) Quantification of elastic modulus (Pa) of pancreatic tissue from KC and KC/Stat3C mice shown in b. (e) Mouse crosses used for the STAT3 knockout studies. (f) Immunofluorescence images and quantification of p-STAT3 (scale bar, 75 µm), p397PTK2 and p-MLC2 (scale bars, 50 µm), tenascin C (scale bar, 100 µm), CD68 (scale bar, 100 µm) and YAP1 (scale bar, 50 µm) and polarized light images and quantification of picrosirius red (scale bar, 75 µm) and H&E (scale bar, 100 µm) staining in pancreatic tissue from 5-week-old KTC-KO (control) and KTC-KO/STAT3-KO mice. (g) Kaplan–Meier survival curves for KTC-KO and KTC-KO/STAT3-KO mice. (h) Quantification of ECM stiffness on tissue in f. For in vivo experiments (a–h), n = 5 mice per group. Error bars, mean ± s.e.m. **P < 0.01, ***P < 0.001, ****P < 0.0001, unpaired two-sided Student’s t-test.

by increased p-MLC2 (P ≤ 0.001), and higher mechanosignaling, as indicated by nuclear localization of YAP targets including Ctgf (P ≤ 0.05; Supplementary Fig. 7b,c). Evidence of fibrosis was indicated by increased picrosirius red staining (Supplementary Fig. 7b), and second-harmonic generation revealed thicker, denser collagen (data not shown). AFM mechanical testing showed a significant (P ≤ 0.001) stiffening of the ECM surrounding the ductal epithelium (Supplementary Fig. 7b). The presence of p-STAT3-positive pancreatic epithelial cells in β1-V737N mice (P ≤ 0.05), even in the absence of activating oncogene or pre-existing inflammation, confirmed that epithelial tension can directly enhance STAT3 activation, altered cytokine expression and immune cell infiltration (Supplementary Fig. 7b–e). Consistently with these results, treatment of the β1-V737N mice with a PTK2 inhibitor reduced p-STAT3, p397PTK2 and p-MLC2 abundance as well as matricellular-enriched fibrosis (Supplementary Fig. 8a). Orthotopic injection of KTC cells expressing a short hairpin RNA (shRNA) against PTK2 (Supplementary Fig. 9a,b) into immunocompromised mice also reduced fibrosis (P ≤ 0.001), decreased stiffness (P ≤ 0.01) and lowered tenasin C levels (P ≤ 0.001) toward those of control tumors. The pancreatic tumor epithelium expressing shRNA against Ptk2 was less mechanically activated than tissue expressing scramble shRNA (controls), as indicated by reduced nuclear YAP1 (P ≤ 0.001), and had lower levels of nuclear p-STAT3 (P ≤ 0.001) (Fig. 4) than control tumors.

To assess the relationship between epithelial tension and PDAC development, we bred Ptf1a-Cre/β1-737N mice with KC mice (Fig. 4a) and found that the pancreatic epithelium in 5-week-old KC mice expressing β1-V737N (KC/β1-V737N mice) had significantly higher p397PTK2 (P ≤ 0.001) and p-MLC2 (P ≤ 0.01) than KC mice. The amount and distribution of collagen fibers and ECM stiffness were highest in the periductal region (Fig. 4b), similarly to our observations in the developing KTC lesions (Figs. 2a and 4b). Consistent with the matricellular-enriched fibrosis observed in both the patient samples lacking p-SMAD and the PDAC lesions in the KTC mice, we detected abundant tenasin C and higher levels of epithelial p-STAT3 in the KC/β1-V737N tumors (Fig. 4b). This phenotype was accompanied by an increase in infiltrating CD68+ macrophages (Fig. 4b), and FACS characterization of the immune cell population revealed an increase in CD45+CD11b myeloid cells and CD45+Ly6C monocytes (Supplementary Fig. 9d). Indeed, cytokine array analysis showed higher levels of proinflammatory factors C5α and IL1 in the pancreas in KC/β1-V737N mice than in KC mice (Supplementary Fig. 9e). Chronic pancreatitis was detectable in KC/β1-V737N mice.
by 3 months of age (Fig. 4c). Alcian blue staining of pancreatic tissue from 3-month-old KC/V737N mice showed that the lesions had progressed to advanced, high-grade PanINs and that these foci were evenly distributed throughout the tissue. By age 5–8 months, 38% of KC/B1-V737N mice developed frank PDACs with accompanying physiological trauma, including loss of body weight (Fig. 4d and Supplementary Fig. 9c). Orthotopic KTC tumor showed a marked loss of stromal fibrosis and matrix remodeling upon knockdown of Ptk2 compared to scrambled controls (Fig. 4e,f). These results reveal that increasing the cytoskeletal contractility in pancreatic tumor cells drives remodeling and stiffening of the periductal ECM, induces matricellular-enriched fibrosis and promotes pancreatic transformation.

STAT3 induces fibrosis and accelerates PDAC

We next explored the relationship between STAT3 activation, cell contractility and pancreatic matricellular-enriched fibrosis in PDAC. We crossed KC mice to mice expressing one allele of a constitutively active Stat3 (ref. 49) (Fig. 5a). The resulting STAT3C mice contained significantly more p-STAT3-positive cells in the pancreas (Supplementary Fig. 10a) ($P < 0.001$), and the level of p-STAT3 was further increased after expression of activated KRAS (Fig. 5b) compared to wild-type or Ptf1a-Cre and KC mice, respectively. We observed higher numbers of CD45+ immune cells ($P < 0.001$) and CD68+ macrophages ($P < 0.05$) within the STAT3C pancreatic tissues (Supplementary Fig. 10a); these immune infiltrates further increased with KRAS activation (Fig. 5b). Indeed, the pancreatic tissues in constitutively active STAT3 mice crossed to the KC model (KC/Stat3C mice) showed marked pancreatitis that developed into frank PDAC and shortened survival compared to KC mice (Fig. 5c). Consistent with a link between STAT3 and ROCK, although tumors were stiffer and p-MLC2 was abundant in the pancreatic tissue of STAT3C mice even in the absence of KRAS (Fig. 5b,d and Supplementary Fig. 10a), the pancreas of STAT3C mice contained abundant mature type I collagen (Supplementary Fig. 10a) ($P < 0.005$) and elevated p397PTK2 throughout (Supplementary Fig. 10a) ($P < 0.05$). These findings link STAT3 activation and tissue inflammation and suggest that p-STAT3 induces ROCK-dependent ECM remodeling and stiffening to drive fibrosis and elevate mechanosignaling in PDACs.

To establish a causal relationship between STAT3 activation, tissue mechanics and matricellular-enriched fibrosis and PDAC development, we crossed mice expressing KRAS and homozygous for loss of Tgfbr2 (ref. 21) (KrasL536S or Tgfbr2$^{−/−}$) to generate KTC/KO-STAT3C mice (Fig. 5e). Immunostaining confirmed deletion of STAT3 in the pancreatic epithelium (Stat3$^{−/−}$;Ptf1a-Cre) to generate KTC/KO-STAT3C mice (Fig. 5e). The resulting STAT3C mice, which carry a conditional Stat3 knockout50 in the pancreatic epithelium (Stat3$^{−/−}$;Ptf1a-Cre) to generate KTC/KO-STAT3C mice (Fig. 5e). Immunostaining confirmed deletion of STAT3 in the pancreatic epithelium (Fig. 5f) accompanied by significantly reduced CD68+ cell tissue infiltration ($P < 0.001$), consistent with decreased inflammation (Fig. 5f). Loss of epithelial STAT3 was also accompanied by a significant reduction in epithelial p397PTK2, p-MLC2 and nuclear YAP1 ($P < 0.001$) as well as YAP transcriptional activity, as indicated by significantly lower Ctgf expression (Fig. 5f and Supplementary Fig. 9b) ($P < 0.05$). Pancreatic tissues lacking epithelial STAT3 showed significant reduction in matricellular-rich fibrosis and ECM stiffness ($P < 0.001$) and a significant increase in mouse survival (Fig. 5f–h).

Direct links between a matricellular-rich fibrotic phenotype, mechanics and p-STAT3 were confirmed in a cohort of KTC mice treated with the JAK inhibitor ruxolitinib. Ruxolitinib treatment

Figure 6: STAT3 enhances epithelial contractility to induce PDAC fibrosis and aggression.

(a) Hematoxylin and eosin (H&E) staining (scale bar, 100 µm); second-harmonic generation (SHG) images and quantification of extracellular collagen architecture in the pancreatic tissue around the epithelial ductal region (scale bar, 75 µm); and immunofluorescence images and quantification of tenasin C, fibronectin, collagen XII α1 (collagen 12), p-STAT3, YAP1 and DAPI (scale bars, 75 µm (main) and 10 µm (inset)) in PDAC tumors from patients with a median short survival of 11–289 d ($n = 29$) and median long survival of 1,090–3,298 d ($n = 28$).

(b) H&E staining (scale bar, 100 µm); SHG images and quantification of periductal collagen (scale bar, 75 µm); and immunofluorescence and quantification of tenasin C, fibronectin, collagen 12, p-STAT3, YAP1 and DAPI (scale bars, 75 µm) in PDAC tumors from patients with wild-type (WT) SMAD4 ($n = 10$) or mutant (mut) SMAD4 ($n = 10$). Results are presented as mean ± s.e.m. *$P < 0.05$; **$P < 0.01$; ***$P < 0.001$; ****$P < 0.0001$, unpaired two-sided Student’s t-test.
inhibited p-STAT3 activity and significantly reduced p\(^{997}\)PTK2, p-MLC2, collagen fibrillogenesis, matricellular matrix enrichment and ECM stiffening (Supplementary Fig. 11c,d) (P ≤ 0.01–0.001) as well as YAP activation (data not shown). Moreover, in the absence of JAK-driven matricellular-rich fibrosis, mechanosignaling, STAT3-dependent inflammation and PDAC development were significantly reduced (Supplementary Fig. 11c,e) (P ≤ 0.01–0.001).

We investigated the clinical relevance of STAT3 activation in matricellular-enriched fibrosis and PDAC progression, and found elevated levels of tenasin C, fibronectin and collagen 12 (P ≤ 0.05), high nuclear YAP1 (P ≤ 0.05) (Fig. 6a) and elevated SOX2, vimentin (P ≤ 0.01; Supplementary Fig. 12a) and p-STAT3 (Fig. 6a; P ≤ 0.05) in the mesenchymal-like, vimentin-positive PDAC biopsies excised from patients with shorter median survival. The PDAC tissue with confirmed SMAD4 mutations also had elevated levels of epithelial p-STAT3 (P ≤ 0.001), tenasin C (P ≤ 0.001), fibronectin (P ≤ 0.01) and collagen type XII (P ≤ 0.05) (Fig. 6b). The epithelium in the PDAC tumors with mutant SMAD4 was more mechanically activated, as evidenced by a significant increase in nuclear YAP1 (P ≤ 0.01). Moreover, the samples with SMAD4 mutations had significantly higher nuclear SOX2 (P ≤ 0.01) and contained significantly more vimentin (P ≤ 0.001), which is consistent with a quasi-mesenchymal phenotype that typically has an aggressive disease pathology (Supplementary Fig. 12b).

DISCUSSION

Using clinical specimens and experimental mouse models, we identified a unique, highly rigid, matricellular-stromal phenotype linked specifically to a PDAC genotype that results in reduced epithelial TGF-β signaling and elevated tumor cell contractility. Our data suggest that the genetically induced tumor cell tension differentially 'tunes' the composition and mechanics of the periductal stroma in PDACs, regardless of the bulk stromal phenotype, to promote tumor progression and aggression by engaging mechanosignaling pathways linked to integrins and YAP. The findings are consistent with the mathematical predictions identifying two distinct stromal phenotypes termed 'normal' and 'activated' in PDAC subtypes of increasing aggression. Our findings provide the first direct evidence that tumor genotype \(\text{per se} \) can calibrate tumor cell contractility to modulate the fibrotic phenotype of the tissue and modify the pathology of the cancer. Our data further suggest that bulk collagen content is a poor surrogate for the multifaceted contributions of PDAC fibrosis to cancer aggression and advocate imaging approaches to visualize differential distribution of the stroma such as MR imaging and elastography. PDAC-associated fibrosis has been viewed as a constraint that can calibrate tumor cell contractility and indirectly increases interstitial fluid pressure to disrupt blood vessel integrity and induce hypoxia. This physical barrier compromises drug delivery, reduces immune cell accessibility and promotes disease aggression and therapy resistance, underscoring the critical importance of tissue mechanics to tumor biology. Notably, our data show that the fibrosis is not merely a passive physical restraint. Rather, the elevated tissue mechanics directly activate key pathways such as integrin-dependent signaling and YAP to promote tumor progression and aggression. To this end, our clinical findings revealed that poorly differentiated PDACs and the PDACs with impaired TGF-β signaling were the most mechanically activated and expressed elevated YAP1 and SOX2, which are transcriptional regulators that have been implicated in tumor aggression and epithelial-to-mesenchymal transition. Indeed, these same YAP1 and SOX2-expressing tumors expressed markers of a mesenchymal-like phenotype including vimentin, fibronectin and tenasin C. Our findings thus imply that the more aggressive phenotype of PDACs with a quasi-mesenchymal phenotype may be linked to their altered mechanobehavior. Moreover, given that YAP signaling can drive KRAS-independent PDAC growth and survival, our observations indicate that fibrotic PDAC tumors may naturally evolve toward KRAS independence and that this phenotype will be potentiated by specific tumor genotypes that increase tissue fibrosis including loss of TGF-β signaling. Our data thereby present a plausible reason for the mixed responses of PDAC cancer patients to antistromal therapies, and suggest that PTK2 and JAK inhibitors, which target both stromal- and epithelial-driven fibrosis and reduced YAP1 and tenasin induction in our studies, may comprise more efficacious therapeutic options.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank M. Dembo for the LIBTRC 2.0 traction force software. We thank M. Tempero for helpful discussions, and L. Korets and N. Korets for animal handling and tissue processing. This work was supported by US National Institutes of Health NCI grants U01 CA151925-01 (V.M.W. and H.L.M. and R.K.), R33 CA183685-01 (V.M.W. and K.H.), R01 CA138818-01A1 (V.M.W.), U54CA143836-01 (V.M.W.), CA102310 (D.D.S.), R01CA178015-02 (E.A.C.), R01 CA172045 (R.N. and M.H.), T32CA108462 (M.W.P.), F31CA180422 (A.S.B.).

AUTHOR CONTRIBUTIONS

V.M.W. conceived the project, and designed and directed all of the studies with input from all authors. H.L. conducted transgenic mouse experiments and treatments. H.L. performed histology, immunofluorescence and image analysis on mice and human samples, conducted experiments with the PA hydrogels, and performed 3D collagen and soft agar assays, cytokine arrays, immunoblotting and related analyses. H.L. and Y.A.M. performed AFM imaging and analysis. Y.A.M. performed TFM and two-photon imaging and analysis. H.L. and M.W.P. conducted orthotopic xenograft experiments. M.W.P. performed RT-PCR and bioinformatics. S.V.N. and M.W.P. performed flow sorting. J.N.L. designed and constructed expression constructs and the V375N transgenic mouse. E.A.C. and G.E.K. aided with pathological pancreatic cancer scoring of transgenic mice and human samples. J.S.J. and E.A.C. collected human samples from short- and long-survival patients and aided in the interpretation of the data. C.A.I.-D. and L.D.W. collected human samples from wild-type and mutant SMAD4 patients and aided in the interpretation of the data. R.K., V.S.L., M.H. and N.R. provided KPC pancreatic tissues. V.P. provided Stat3\(^{flox/flox}\) and constitutively active Stat3C transgenic mice. A.S.B., R.C.H. and K.H. performed LC-MS-MS and LC-SRM proteomic analysis. D.D.S. performed Ph2 inhibitor PND-1186. H.L.M. designed and provided KTC transgenic mouse, provided KC mice and aided in interpretation of data. V.M.W., H.L., Y.A.M., J.K.M. and M.W.P. wrote the manuscript with input from all authors.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Chauhan, V.P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).
2. Swartz, M.A. & Lund, A.W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer 12, 210–219 (2012).
3. Yu, M. & Tannock, I.F. Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer? Cancer Cell 21, 327–329 (2012).
4. Provenzano, P.P. & Hingorani, S.R. Hyaluronan, fluid pressure, and stromal resistance in pancreatic cancer. Br. J. Cancer 108, 1–8 (2013).
5. Olive, K.P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).
6. Provenzano, P.P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).
7. Rosow, D.E. et al. Sonic Hedgehog in pancreatic cancer: from bench to bedside. Cancer Med. 6, 318–329 (2017).
8. Özdemir, B.C. et al. Targeting ROCK inhibition for cancer therapy. Cancer Cell 17, 255–267 (2010).
9. Olive, K.P. et al. Multiplatform analysis of 12 cancer types reveals molecular signatures of drug response, and dormancy in murine models of pancreatic ductal adenocarcinoma. Cancer Discov. 2, 71–80 (2012).
10. Paszek, M.J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 19, 255–267 (2001).
11. Santinami, M. et al. Inhibition of Hedgehog signaling enhances delivery of nano-chemotherapy in a mouse model of pancreatic cancer. J. Control Release 208, 1–8 (2015).
12. Wang, W.Q. et al. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep. 13, 900–908 (2012).
13. Schultz, N.A. et al. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma. Mod. Pathol. 25, 1609–1622 (2012).
14. Pérez-Mancera, P.A., Guerra, C., Barbacid, M. & Tusvson, D.A. What we have learned about pancreatic cancer from mouse models. Gastroenterology 142, 1079–1092 (2012).
15. Macias, M.J., Martin-Malpartida, P. & Massagué, J. Structural determinants of Smad function in TGF-β signaling. Trends Biochem. Sci. 40, 296–308 (2015).
16. Shi, Y. & Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).
17. Yachida, S. et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin. Cancer Res. 18, 6339–6347 (2012).
18. Hingorani, S.R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).
19. Hingorani, S.R. et al. Tp531727H and Kras1202 cooperatively promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).
20. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).
21. Blackford, A. et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 15, 4674–4679 (2009).
22. Sanz-Moreno, V. et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20, 229–245 (2011).
23. Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011).
24. Lesina, M. et al. Stat35/5033 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).
25. Nagarathali, N.S. et al. Signal transducer and activator of transcription 3, mediated remodeling of the tumor microenvironment results in enhanced tumor drug delivery in a mouse model of pancreatic cancer. Gastroenterology 149, 1932–1943 (2015).
26. Ijichi, H. et al. Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J. Clin. Invest. 121, 4106–4117 (2011).
27. Schrader, J. et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53, 1192–1205 (2011).
28. Mouw, J.K. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014).
29. Li, R. et al. Activation of integrin αvβ3 by modulation of transmembrane helix associations. Science 300, 795–798 (2003).
30. Barbieri, I. et al. Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Ctn. Cancer Res. 70, 2558–2567 (2010).
31. Alonzi, T. et al. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation in the liver. Mol. Cell. Biol. 21, 1621–1632 (2001).
32. Luna, A. et al. Multiparametric MR imaging in abdominal malignancies. Magn. Reson. Imaging Clin. N. Am. 24, 157–186 (2016).
33. Chaughan, V.P. et al. Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 26, 14–15 (2014).
34. Herreros-Villanueva, M. et al. SOX2 promotes dedifferentiation and imparts stem-like features to pancreatic cancer cells. Oncogenesis 2, e61 (2013).
35. Shao, D.D. et al. KRAS and Yap1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).
36. Jiang, J. et al. Mir-1181 inhibits stem cell-like phenotypes and suppresses Sox2 and Stat3 in human pancreatic cancer. Cancer Lett. 356, 81–90 (2015).
37. Yilmazm, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).
38. Kohler, I. et al. Detailed analysis of epithelial-mesenchymal transition and tumor budding identifies predictors of long-term survival in pancreatic ductal adenocarcinoma. J. Gastroenterol. Hepatol. 30 (suppl. 1), 78–84 (2015).
39. Paron, I. et al. Tenasin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. PLoS ONE 6, e21684 (2011).
40. Esposito, I. et al. Tenascin C and annexin II expression in the process of pancreatic carcinogenesis. J. Pathol. 208, 673–685 (2006).
ONLINE METHODS

Human samples. Formalin-fixed, paraffin-embedded human PDAC tissue sections, lacking any patient-identifying information, were commercially purchased from US Biomax (PA961a) or obtained from a cohort of patients on the basis of long and short survival. For noncommercial human samples, the study was approved by Regional Scientific Ethics Committee of the Capital Region of Denmark (protocol H-KA-20060181) in Region Hovedstaden, Denmark. The use of control materials was approved by the Ethical Committees in Bergen, Norway, and in Heidelberg, Germany. Informed consent was obtained from human subjects. Snap-frozen human PDAC tissues were collected from autopsy participants with stage IV disease in association with the Gastrointestinal Cancer Rapid Medical Donation Program (GICRMDP), and the study was approved by the Johns Hopkins Institutional Review Board (protocol 36610).

Mouse studies. All mice were maintained in accordance with University of California Institutional Animal Care and Use Committee guidelines under protocol number AN105326-01D. Transgenic mouse strains Kras^{G12D};Ptf1a-Cre (KC);⁷⁷ Kras^{G12D};Tvglb^{gslox}/or Tgfb^{gslox}/Ptf1a-Cre (KTC);⁷² Kras^{G12D};Tvglb^{gslox}/Ptf1a-Cre (KPC);⁷⁶ LSL-B1;V737N^{Stat3}Cre (LG1)⁴⁷; and constitutively active STAT3C (ref. 49) were described previously. Mice were interbred and maintained in mixed background. Age-matched littermates not expressing Cre as well as Ptf1a-Cre and Pdx1-Cre mice were used as controls; mixed sexes were used for all experiments except xenograft studies, which included only female mice.

For PTK2 (FAK) inhibition studies, Ptf1a-Cre/B1;V737N mice were treated with FAK inhibitor PND-1186 at 0.5 mg/ml in 5% sucrose in the drinking water, control mice were provided 5% sucrose as drinking water (n = 5 per group). Treatment started at 3 weeks of age. At this time point, mice exhibit pancreatic tumors and fibrosis at 3 weeks of age and mice were killed after 3 weeks owing to animal protocol guidelines. For Jak inhibition, KTC mice were treated with Jak inhibitor ruxolitinib twice daily by oral gavage at 60 mg per kg body weight (mg/kg) in 0.5% methylcellulose in water. Control mice were provided 0.5% methylcellulose in water (n = 5 per group). Treatment started at 3 weeks and mice were killed after 3 weeks.

For orthotopic xenografts, 5 × 10⁵ firefly-luciferase-mApple-expressing cells in Matrigel (BD Biosciences) were injected into the pancreas of 8-week-old nude mice (Simonsen laboratory) (n = 5 per group), and tumor growth was monitored by weekly bioluminescence imaging. Mice were sacrificed at 2 weeks after the cell injection per animal protocol. Female mice were used in the xenograft studies.

Bioluminescence imaging, animals were injected intraperitoneally with 3 mg of d-luciferin and imaged using IVIS spectrum imaging system. Living Image 4.3 was used for analysis of the images after acquisition. For all animal studies, animals were randomly distributed among different conditions by the investigator as the animals did not show any size or appearance differences at the onset of the experiments. No animals were excluded, and the investigator was not blinded to group allocation during the experiment.

Histology. Paraffin-embedded or fresh-frozen pancreatic tissues were analyzed by hematoxylin and eosin (H&E), picrosirius red, Masson's trichrome or Alcian blue according to the manufacturer's instructions. For mouse and clinical studies, staining intensity of tissue sections was scored by a pathologist blinded to mouse genotype.

LC-MS-MS and LC-SRM proteomic analysis. Proteomic analysis was performed in triplicate on 5 mg of fresh-frozen KC, KPC, and KTC pancreatic tissues as previously described⁶⁰. Briefly, tissues were minced in liquid nitrogen followed by sequential extraction of cellular proteins, soluble ECM proteins, and insoluble ECM proteins. Tryptic digests of all fractions were analyzed by liquid chromatography–select reaction monitoring (LC-SRM) mass spectrometry (MS). Stable isotope labeled (SIL) peptides were used for absolute quantification of ECM proteins by LC-SRM.

Atomic force microscopy measurements. Atomic force microscopy (AFM) and analysis were performed as previously described⁸¹. Frozen tissue blocks were cut into 20-µm-thick sections. Prior to AFM measurement, each section was immersed in PBS and thawed at room temperature. The samples were maintained in protease inhibitor in PBS (protease inhibitor cocktail, Roche 14 Diagnostics, 1183617001) supplemented with propidium iodide (Sigma P4170, 20 µg/ml) during the AFM session. Five samples for each group were used for AFM quantification of Young's elastic modulus of the cancer-associated stroma. AFM indentations were performed using an MFP3D-BIO inverted optical AFM (Asylum Research) mounted on a Nikon TE2000-U inverted fluorescent microscope as previously described⁸¹. Briefly, we used silicon nitride cantilevers with spring constant of 0.06 N/m with borosilicate glass spherical tip with 5 µm in diameter (Novascan Tech). The cantilever was calibrated using the thermal oscillation method before each experiment. Samples were indented at a 20 µm/s loading rate, with a maximum force of 2 nN. Five AFM force maps were typically obtained on each sample, each map as a 10 × 10 µm raster series of indentations using the FMAP function of the IGOR PRO build supplied by Asylum Research. The Hertz model was used to determine the elastic properties of the tissue (E1). Tissue samples were assumed to be incompressible and a Poisson's ratio of 0.5 was used in the calculation of the Young's elastic modulus.

Two-photon second-harmonics microscopy and image analysis. Two-photon imaging of pancreatic tissues and collagen gels was performed and quantified as previously described⁸². For two-photon imaging, we used custom resonant-scanning instruments based on published designs containing a 5-PMT array (Hamamatsu, C7950) operating at video rate⁸³. The setup was used with two-channel simultaneous video rate acquisition via two PMT detectors and an excitation laser (2W Multi-Tai Ti:Sapphire laser, 710–920 nm excitation range). Second-harmonics imaging was carried out on a Prairie Technology Ultima System attached to an Olympus BX-51 fixed stage microscope equipped with 25× (numerical aperture (NA) 1.05) water-immersion objective. Unfixed, hydrated samples were exposed to polarized laser light at a wavelength of 830 nm and emitted light was separated with a filter set (short-pass filter, 720 nm; dichroic mirror, 495 nm; band-pass filter, 475/40 nm). Images of x and y planes of 284 by 284 µm at a resolution of 0.656 µm/pixel were captured using Micro-Manager Open Source Microscopy Software (Micro-Manager). Quantification of collagen fibers was achieved by setting a minimal threshold in the second-harmonic signal. The threshold was maintained for all images across all conditions. The area of regions that was covered by the minimal threshold was calculated, and three images per sample were averaged together (Image, Image Processing and Analysis in Java). Collagen fiber diameter data were visualized and analyzed using Imaris (Bitplane AG) and MATLAB (MathWorks).

Cell culture and establishment of primary pancreatic cell lines. Establishment of primary pancreatic tumor cells was performed as described previously⁸⁴. Cells were maintained in RPMI-1640 medium containing 10% FBS (Clontech). All experiments were performed within eight passages to avoid possible gross genomic changes during long-term in vitro culture. Cells were verified by epithelial morphology in two dimensions (2D), expression of the epithelial marker cytokeratin 19 and the ability to form tumors in vivo. Cells were tested for mycoplasma contamination using a commercially available kit (PCR-Mycoplasma Test Kit 1/C, Promokine PK-CA91-1024) according to manufacturer's manual at the onset of the study (test was negative) and exhibited no contamination signs after the test. Derivative cells were transduced in vitro with a lentiviral vector encoding firefly Luciferase and mApple fluorescent protein for combined bioluminescent imaging and flow sorting. To ensure that all cell lines expressed similar levels of Luciferase, mApple-expressing cells were flow sorted before injection into animals.

Soft-agar assay. Anchorage-independent growth was assessed using a soft-agar assay⁸⁵. In brief, 25,000 cells in 1.5 ml 0.35% agarose containing 1× growth medium were overlaid with 1.5 ml 0.5% agarose containing 1× growth medium, and colonies larger than 30 µm in diameter were scored positive after 14 d.

Lentivirus-mediated shRNA knockdown. Lentiviral shRNA targeting ROCK1, ROCK2 and FAK and non-targeting shRNA control were cloned in the pLKO vector. The clone IDs for shRNA are as follows: sh-ROCK1 (TRCN0000022903),
Preparation of luciferase-mApple-virus-infected cells. Lentivirus infection was performed with pLKO EEF1x mApple luc2 lentiviral vector for combined flow sorting and in vitro imaging. This was constructed from the pLKO.1 puro vector (Sigma-Aldrich) by inserting an in-frame fusion of mApple with the sh-ROCK2 (TRCN0000022922), sh-FAK (TRCN0000023485) and eGFP sequence as a nonspecific control cloned into the lentiviral pLKO.1 puro vector (Sigma-Aldrich).

Quantitative real-time PCR. RNA was extracted by TRIzol-chloroform isolation followed by Ambion mirVana kit (Thermo Fisher Scientific, AM1560). Real-time PCR was reverse-transcribed using random primers (Amersham Biosciences), and β-actin primers were used to control for cDNA concentration in a separate PCR reactions for each sample. LightCycler Fast Start DNA Master SYBR Green Mix (Roche) was added to each PCR reaction along with cDNA and 1 pmol primer in a total volume of 10 μl. Quantitative PCR (qPCR) was performed on an Eppendorf RealPlex2 Mastercycler using the real-time primers provided, according to the manufacturer’s instructions. Ct values were converted to fold expression changes (2^(-ΔΔCt) values) following normalization to β-actin. Primer sequences were as follows: CTGF forward, 5'GAGTGACTGTCCTCAACAGCAGC-3', reverse, 5'TAGTTGGCTGTCGGCCAAAT-3'; Actb forward, 5'GTTGGCCGCCTTAGGGACACA-3'; reverse, 5'CCTGTTGCGCTAGGTTCAAGG-3'.

Traction-force microscopy. Traction of pancreatic cells was measured as previously described. Images of cells on PA gels containing fluorescent beads were collected before and after trypsinization using a Nikon Inverted Eclipse TE300 microscope and a Photometric Cool Snap HQ camera (Roper Scientific). TFMIs were calculated on the basis of differences in bead displacement induced by substrate deformation and relaxation using a software analysis program.

Three-dimensional collagen-contraction assay. Collagen contraction assay was performed as previously described. Briefly, collagen I solution was prepared by neutralizing acid-solubilized rat tail collagen I (BD Bioscience) with 1 N NaOH and DMEM buffer. Neutralized collagen was added at 300 μl/well in 24-well plates and polymerized at 37 °C. Cells were seeded on top of collagen and allowed to adhere overnight. Collagen gel area was quantified using NIH Image analysis software.

Polyacrylamide substrates. Basement-membrane-conjugated polyacrylamide hydrogels were prepared as previously described with one modification: n-succinimidyl acrylamidohepxanionic acid crosslinker was conjugated to polyacrylamide substrates using 0.01% bisacrylamide, 0.025% IgGcature 2959 0.002% di(trimethylolpropane) tetracrylate (Sigma) and 0.01% n-succinimidyl acrylamidohepxanionic acid.

Cytokine antibody array. Proteins from pancreatic cells or tissues were screened using the Mouse Cytokine Antibody Array A (R&D A1006) according to the manufacturer’s instructions. In brief, conditioned medium or protein lysate was collected and subjected to the antibody array incubation. The amount of conditioned medium used was normalized by the cell number. The membranes were washed and incubated with primary biotin-conjugated antibody and then incubated with horseradish-peroxidase-conjugated streptavidin, and the protein spots were detected using the ECL western blotting detection reagents (GE Healthcare) according to the manufacturer’s instructions. The spot density was quantified and compared between different conditions.

Tissue processing and immunostaining. Fresh tumors were harvested and embedded in O.C.T. medium (TissueTek) before freezing in liquid nitrogen. Frozen sections 5 μm thick were fixed in PFA for 15 min. Paraaffin-embedded harvested tumors were formalin fixed before paraaffin embedding. Sections 5 μm thick were deparaffinized, rehydrated and boiled for 1 h in 10 mM citrate buffer at pH 6.0. For all stains, the tissue sections were blocked with 5% NGS, 0.3% Triton X-100 in PBS for 60 min at room temperature. Sections were then incubated with primary antibodies overnight at 4 °C followed by incubation with fluorochrome-conjugated secondary antibodies for 1 h at room temperature. 1% BSA, 0.3% Triton X-100 in PBS was used to dilute primary and secondary antibodies. DAPI was used to stain cell nuclei. All stainings were quantified using NIH Image analysis software with the same threshold for each stain; positivity was analyzed in five visual fields for each sample, and results were expressed as the mean percentage staining per visual field.

Antibodies and reagents. Antibodies were as follows: α-SMA (Sigma-Aldrich C6198, 1:1,000), GLI-1 (Thermo Scientific PA5-32206, 1:500), tenasin C (Abcam AB108930, 1:500), fibronectin (Abcam AB2413, 1:500), Collagen 12A1 (Santa Cruz Biotechnology E-15 sc-68449, 1:200), SOX2 (Abcam ab97959, 1:500), Vimentin (Cell Signaling 7541S, 1:200), FAP (Abcam AB53066, 1:500), Collagen III (Abcam AB7778, 1:500), YAP (Cell signaling 4912, 1:200), β1-integrin (EMD Millipore MABT409, 1:500), pY397-FAK (P397PTK2) (Invitrogen 44625, 1:200), Collagen Hydrolysis (BD Biosciences 610088, 1:1,000), ROCK1 (Cell Signaling C887, 1:1,000), ROCK2 (Cell Signaling D1B1, 1:1,000), p-MLC2 (Cell Signaling 3671, 1:200), p-MyPT1 (Millipore AB545, 1:200), p-STAT3 (Cell Signaling 9145, 1:200), p-SMAD2/3 (Cell Signaling 8828, 1:200), p-STAT3 (Cell Signaling 9132, 1:1,000), GADPH (Cell Signaling 2118, 1:5,000), CD45 (BD Biosciences 550539, 1:200), CD68 (Thermo Scientific Ab-3, 1:200), Alexa-Fluor-conjugated goat secondary anti-mouse IgG and anti-rabbit IgG antibodies (Invitrogen A10112, 1:1,000 and A11005, 1:1,000) and HRP-conjugated rabbit secondary antibody (GE Healthcare Life Sciences NA9345V, 1:5,000).

Immunoblotting. Immunoblotting analyses were performed as previously described. In brief, equal amounts of cell protein lysate (Laemmli) were separated on reducing SDS-PAGE gels, transferred to nitrocellulose membranes, and probed with primary antibody. Bands were visualized and quantified using a PAXI 6 Touch (Syngene), in conjunction with HRP-conjugated secondary antibodies and ECL (Amersham Pharmacia).

Flow sorting. Weighed tumors were minced and digested in a mixture of 1 mg/ml of collagenase P (Roche 11213857001), 0.1 mg/ml collagenase I (Sigma, C0130), 0.1 mg/ml dispase II (Roche, 04942078001) and DNase (5 μM/ml, Calbiochem, 402609) in DMEM at 37 °C for 30 min. The tissue lysate was filtered through a 40-μm mesh before immunostaining. The resulting single-cell suspension was stained with fixable viability dye eFlour 780, anti-CD45–APC-Cy7 (101315, 1:200), anti–CD11b–FITC (101205, 1:100) and anti–Ly6/C–PE (128007, 1:100). Cells were filtered on CD45 positivity. Unstained, live/dead only, and single stain served as controls. Doublets were gated out using forward/scatter width/height and side-scatter width/height event characteristics.

Bioinformatics. Patient expression data were pulled from a publicly available data set (GEO GSE11501). After baseline normalization, expression values for Col1a2, Col2a1, and Col4a1 were used to create a median centroid value representing each patient’s expression score for each patient. These values were then divided into high and low expression on the basis of median centroid value for the patient set and graphed as survival of each group over time. Kaplan–Meier survival curves were analyzed by Mantel–Cox log–rank analysis.

Statistical analysis. All quantitative results were assessed by unpaired Student’s t-test after confirming that the data met appropriate assumptions (normality, homogenous variance, and independent sampling), nonparametric Wilcoxon–Mann–Whitney exact test (using the normal approximation for the U-score), or the Kolmogorov–Smirnov distribution test, all two-tailed. For all in vitro experiments, three technical replicates were analyzed for each experiment, and results are presented as the mean ± s.e.m. of three biological replicates. For all in vitro experiments, five biological replicates were analyzed for each condition, and results are presented as the mean ± s.e.m. Subsequent statistical analysis was performed with either unpaired two-sided student t-tests or one-way ANOVA with Tukey’s method for multiple comparisons. For survival analysis, the log–rank (Mantel–Cox) test was used. Prism software was used to conduct the statistical analysis of all data. P < 0.05 was considered to be significant.
Sample size estimation was initially performed using the Mann–Whitney test as a guide and taking into consideration previous experience with assay sensitivity, tissue collection and the different animal strains used. For the listed sample size per group at each time point, the numbers provide a minimum of 85% power to detect an effect size of 2.5 (tumor size, stiffness, gene expression, protein expression) with two-sided type I error = 5% (P ≤ 0.05). The effect size is defined (where applicable). For mouse and clinical studies, staining intensity of tissue sections was scored in a ‘blinded’ manner.

Hill, R.C., Calle, E.A., Dzieciatkowska, M., Niklason, L.E. & Hansen, K.C. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol. Cell. Proteomics 14, 961–973 (2015).

Lopez, J.I., Kang, I., You, W.-K., McDonald, D.M. & Weaver, V.M. In situ force mapping of mammary gland transformation. Integr. Biol. (Camb) 3, 910–921 (2011).

Pickup, M.W. et al. Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-β-deficient mouse mammary carcinomas. Cancer Res. 73, 5336–5346 (2013).

Bullen, A., Friedman, R.S. & Krummel, M.F. Two-photon imaging of the immune system: a custom technology platform for high-speed, multicolor tissue imaging of immune responses. Curr. Top. Microbiol. Immunol. 334, 1–29 (2009).

Aguirre, A.J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).

Damiano, L. et al. Oncogenic targeting of BRM drives malignancy through C/EBPβ-dependent induction of αv5 integrin. Oncogene 33, 2441–2453 (2014).

Reinhart-King, C.A., Dembo, M. & Hammer, D.A. Endothelial cell traction forces on RGD-derivatized polyacrylamide substrate. Langmuir 19, 1573–1579 (2003).

Lakins, J.N., Chin, A.R. & Weaver, V.M. Methods Mol. Biol. 916, 317–350 (2012).

Paszek, M.J. et al. The cancer glyocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014).

Mann, M.D., Crouse, D.A. & Prentice, E.D. Appropriate animal numbers in biomedical research in light of animal welfare considerations. Lab. Animal Sci. 41, 6–14 (1991).