Iberian Neanderthals in forests and savannahs

Juan Ochando, Gabiela Amorós, José S. Carrión, Manuel Munuera, Jon Camuera, Gonzalo Jiménez-Moreno, Penelope González-Sampériz, Francesc Burjachs, Ana B. Marín-Arroyo, Mirjana Roksandic and Clive Finlayson

Abstract: This article aims to delve into the reality of glacial refuges of forests and tree species (including conifers, mesothermophilous angiosperms and xerothermic scrub) during the cold dry phases of the Iberian Pleistocene in which there is evidence of occupation of Middle Palaeolithic people. The research framework focuses on the eastern sector of the Iberian Peninsula due to the physiographic, palaeobotanical and archaeological peculiarities, substantiated by recent studies. We contend that some Neanderthal occupations developed in the context of high geobiological complexity, high biological diversity and highly structured forest ecosystems. We highlight the importance of glacial refuges as local anomalies that, however, would be contingent on vegetational development, and on the survival of Palaeolithic groups in areas with a broad diversity of natural resources.

Introduction

In consonance with the long-standing prevalence of palaeoecological information from high latitudes, the traditional vision of cold-adapted Neanderthals (e.g. Trinkaus, 1981; Steegmann et al., 2002) has been connected with ‘mammoth steppes’, involving denuded environments with a scarcity of trees (e.g. Markova et al., 1995; Rudaya et al., 2017). Although not without resistance, this interpretation has been modified over time, to accept open forested (savannah) as a biotope relevant to Neanderthals (Carrión et al., 2006; Rosas, 2016; Stewart et al., 2016). While their taxonomic connection with H. heidelbergensis is still open to debate (Roksandic et al., 2018; Bermúdez de Castro et al., 2019; Carrión and Walker, 2019; Rosas et al., 2019), it does not affect the results of the present work, as Heidelbergs represent Neanderthals or at least an early part of the Neanderthal lineage.

In this paper, we review palaeopalynological data for the Iberian Peninsula supporting the perspective of forested habitats for Neanderthal humans during glacial stadials. For practical purposes, we have adopted a wide temporal range reviewing the time span between Marine Isotope Stage (MIS) 12 to the Last Glacial Maximum MIS 2. We need to be aware that the taxonomic boundaries of Homo neanderthalensis are diffuse. The oldest confirmed Neanderthals are found in the Iberian Peninsula, dated to at least 430 000 years ago (Atapuerca Sima de los Huesos; Bischoff et al., 2007; Meyer et al., 2016). While their taxonomic connection with H. heidelbergensis is still open to debate (Roksandic et al., 2018; Bermúdez de Castro et al., 2019; Carrión and Walker, 2019; Rosas et al., 2019), it does not affect the results of the present work, as Heidelbergs represent Neanderthals or at least an early part of the Neanderthal lineage.

With respect to their demise, it must be kept in mind that Neanderthals merged genetically with other archaic hominins that inhabited western Eurasia during the end of the last glacial
stage (Krause et al., 2010; Wall et al., 2013; Bermúdez de Castro et al., 2016; Kuhl wilm et al., 2016; Lalueza-Fox, 2017; Slon et al., 2018; Finlayson, 2019). The exact age of the last Neanderthal population is therefore far from clear, although it probably reached the end of MIS 3 in southern Iberia (Zilhão et al., 2017; Carrión et al., 2019c; Finlayson, 2019), while in the north of Iberia they disappeared as early as ca. 48–45 cal BP (Marín-Arroyo et al., 2018). It must also be recognized that the connections between human species taxonomy and lithic technology are not straightforward (Finlayson, 2019; Greenbaum et al., 2019; Haws et al., 2020). While the Mousterian is most likely an exclusively Neanderthal industry in Western Europe (but not in Western Asia) and the post-Aurignacian Upper Palaeolithic seems clearly attributable to Homo sapiens (Finlayson, 2019), it is still not clear who manufactured industries such as the Szeletian, Uluzzian, Chatelperronian,
Ahmarian and Protoaurignacian, among others, including some regional Aurignacian such as the Levantine (Shea, 2016; de la Peña, 2019). In addition, under some circumstances, technological complexes may well be associated with different environmental conditions (Cascalheira and Bicho, 2018), rather than different hominin groups. By scrutinizing the Middle to Upper Palaeolithic transitional industries across Europe from 45 to 30 ka, Finlayson and Carrión (2007) found that their distribution was correlated with sharp physiographical boundaries, suggesting that these transitional industries were made either by Neanderthals or early modern humans as independent responses to the abrupt climatic changes occurring in ecotones. Environmental stress may therefore create templates for technological innovation, regardless of the purported differences in cognitive abilities of fossil hominins.

The Iberian Peninsula could represent the centre of origin and dispersal (Bermúdez de Castro et al., 1997; Hublin, 2009; Meyer et al., 2016; Rosas et al., 2019), as well as one of the three most important glacial refugia (Bailey et al., 2008; Carrión et al., 2008). It was also very likely the last bastion of Neanderthal populations (Finlayson et al., 2006, 2008; Jennings et al., 2011; Zilhão et al., 2017; Carrión et al., 2019c), before they disappeared into our own species, leaving us multiple genetic traits that still persist (Sankararaman et al., 2014; Kolodny and Feldman, 2017; Enard and Petrov, 2018; Slon et al., 2018).

Our approach to reconstructing the landscape occupied by Neanderthals is to focus on palaeobotanical findings, mostly pollen sequences associated with excavation sites rather than conventional palynological basins (peat bogs, lake and marine environments), since we think that hominin adaptive processes are local/regional while the conventional pollen sequences lie frequently at a distance from sites (Figs. 1–3; Table 1). We acknowledge potential biases inherent in archaeological palynology (Dupré, 1988; Coles et al., 1989; Bottema and Woldring, 1994; Sánchez-Goni, 1994; Coles and Gilbertson, 1994; Carrión and Scott, 1999; McGarry and Caseldine, 2004), but, for the current analysis, most accepted pollen records have their own pitfalls. Admittedly, biases are implicit in pollen analyses of any kind, as well as in charcoal analysis (Badal García and Martínez Varea, 2018; Vidal-Matutano et al., 2020). For example, it is well-known that *Pinus* is more often over-represented in all kinds of deposits, and Asteraceae including *Artemisia* pollen is in poorly preserved pollen assemblages of archaeological sites, while for instance *Quercus, Juniperus, Pistacia, Castanea, Rhamnus, Phillyrea, Juglans, Arbutus and Buxus*, among others, are most frequently under-represented in caves including minerogenic

Figure 3. Distribution of Iberian Neanderthal pollen sites with respect to phytogeography and their number of mesophytic, Mediterranean and xerothermic woody taxa. [Color figure can be viewed at wileyonlinelibrary.com]
Site number	Site	Coordinates	Type of site	Age/MIS	Pollen (P), charcoal (C), macrofossil (M), phytoliths (Ph)	Dominant (Pinus) or codominant taxa	References
1	Bolomor	(39°30' N, 01°15'W, 100 m a.s.l.)	Archaeological site	MIS 9–5e	P, C	Pinus, Quercus	Ochando et al. (2019); Vidal-Matutano et al. (2019)
2	Teixoneres	(41°48'25"N, 02°09'02"E, 760 m a.s.l.)	Archaeological site	MIS 7–2	P	Pinus, Quercus	Ochando et al. (2020a)
3	Gorham's	(36°07'14"N, 05°20'31"W, 5 m a.s.l.)	Archaeological site	MIS 3–2	P, C	Pinus, Quercus	Carrión et al. (2008); Ward et al. (2012b)
4	Atapuerca	(42°21'1"N, 03°31'W, 1078 m a.s.l.)	Archaeological site	MIS 12–7	P	Pinus, Quercus	García-Antón and Sainz-Ollero (1991); Rodríguez et al. (2011)
5	Toll	(41°48'25"N, 2°09'02"E, 760 m a.s.l.)	Archaeological site	Middle Pleistocene-Holocene	P	Pinus, Quercus	Serra et al. (1957); Bergadà and Serrat (2001); Ochando et al. (2020b)
6	Romani	(41°31'43"N, 01°41'28"E, 300 m a.s.l.)	Archaeological site	MIS 5d–3	P, C	Pinus	Burguchs and Julià (1994); Allué et al. (2017); Billekin et al. (2019); Val-Péon et al. (2019); Ward et al. (2012a); Carrión et al. (2018)
7	Vanguard	(36°07'17"N, 05°20'30"W, 0 m a.s.l.)	Archaeological site	MIS 3	P	Pinus	Carrión et al. (2008)
8	Bajondillo	(36°32'02"N, 04°33'31"W, 0 m a.s.l.)	Archaeological site	MIS 3–2	P	Pinus, Quercus	López-Sáez et al. (2007); Cortes Sanchez et al. (2008)
9	Carhuela	(37°26'22"N, 03°26'12"W, 1020 m a.s.l.)	Archaeological site	MIS 5–2	P, C	Pinus	Carrión (1990, 1992b); Fernández et al. (2007); Carrión et al. (2019c)
10	Palomas	(37°47'54"N, 00°53'53"W, 120 m a.s.l.)	Archaeological site	MIS 4–3	P	Pinus, Quercus	Carrión (2003a)
11	Beneito	(38°48'08"N, 00°28'08"W, 680 m a.s.l.)	Archaeological site	MIS 3–2	P, C	Pinus, Quercus	Carrión (1991, 1992a, 1994); Carrión and Munuela (1997)
12	Permeras	(37°32'13"N, 01°26'34"W, 100 m a.s.l.)	Archaeological site	MIS 3–2	P	Pinus	Carrión et al. (1995)
13	Complejo del Humo (A3)	(36°45'22"N, 4°20'42"W, 5 m a.s.l.)	Archaeological site	Upper Pleistocene	P	Pinus, Quercus	Ochando et al. (2020c)
14	Pastor	(38°41'54"N, 00°28'25"W, 820 m a.s.l.)	Archaeological site	MIS 5–4	C	Pinus, Quercus, Juniperus	Vidal-Matutano et al. (2017); Vidal-Matutano and Pardo-Gordó (2020); Connolly et al. (2019)
15	Camino	(40°56'56"N, 03°46'11"W, 1114 m a.s.l.)	Archaeological site	MIS 4	C	Pinus	Arsuaga et al. (2010)
16	Antón	(38°03'51"N, 01°29'47"W, 356 m a.s.l.)	Archaeological site	MIS 5a–3	P	Pinus	Zilhão et al. (2016)
17	Salt	(38°41'14"N, 0°30'32"W, 680 m a.s.l.)	Archaeological site	MIS 3	C	Pinus	Vidal-Matutano and Pardo-Gordó (2020)
18	Coll Verdaguer	(41°23'35"N, 01°54'39"E, 448 m a.s.l.)	Archaeological site	MIS 3	P, C	Pinus	Daura et al. (2017)
19	Esquilleu	(41°12'05"N, 04°35'26"E, 150 m a.s.l.)	Archaeological site	MIS 3	C	Pinus	Baena et al. (2005)
20	Covalejos	(43°23'48"N, 03°55'58"W, 80 m a.s.l.)	Archaeological site	MIS 3	P, C	Pinus, Betula, Corylus, Ulmus, Fraxinus, Salix, Alnus	Ruiz-Zapata and Gil-García (2005)
21	Casares	(40°56'22"N, 02°17'31"W, 1050 m a.s.l.)	Archaeological site	MIS 4–3	P, C	Pinus, Quercus, Alnus	Alcaraz-Castaño et al. (2017)
Site number	Site	Coordinates	Type of site	Age/MIS	Pollen (P), charcoal (C), macrofossil (M), phytoliths (Ph)	Dominant (Pinus) or codominant taxa	References
-------------	---------------	------------------------------	-----------------------	---------	--	-------------------------------------	-------------------------------------
22	Zafarraya	(36°57'04"N, 04°07'38"W, 1022 m a.s.l.)	Archaeological site	MIS 3	P, C Pinus, Asteraceae, Poaceae, Artemisia, Ephedra	Lebreton et al. (2006); Vernet and Terral (2006)	
23	Morin	(43°23'00"N, 03°50'57"W, 57 m a.s.l.)	Archaeological site	Upper Pleistocene	P Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Leroy-Gourhan (1971)	
24	Otero	(43°21'00"N, 03°31'41"W, 60 m a.s.l.)	Archaeological site	MIS 2	P Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Leroy-Gourhan (1966)	
25	Quebrada	(39°42'08"N, 00°58'20"W, 728 m a.s.l.)	Archaeological site	MIS 5–3	C Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Carrión Marco et al. (2019)	
26	Figueira Brava	(38°28'23"N, 08°59'42"W, 0 m a.s.l.)	Archaeological site	MIS 5	C Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Zilhão et al. (2020)	
27	Amalda	(43°14'06"N, 02°13'38"W, 205 m a.s.l.)	Archaeological site	MIS 3	P Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Dupré (1990)	
28	Gran	(41°55'38"N, 00°48'46"E, 365 m a.s.l.)	Archaeological site	MIS 3–2	C Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	González-Sampériz et al. (2003)	
29	Arbeda	(42°09'36"N, 02°44'49"E, 200 m a.s.l.)	Archaeological site	MIS 5–2	P, C Pinus, Corylus, Poaceae, Artemisia, Asteraceae Pinus	Burjachs (1987); Burjachs and Renault-Miskovsky (1992)	
30	Gabasa	(42°00'00"N, 00°25'E, 780 m a.s.l.)	Archaeological site	MIS 3	P Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Burjachs (1987); Burjachs and Renault-Miskovsky (1992)	
31	Castillo	(43°17'30"N, 03°58'03"W, 170 m a.s.l.)	Archaeological site	Upper Pleistocene	C Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Uzquiano (1992c, 2007); Cabrera et al. (2005)	
32	Cobranz	(43°19'10"N, 03°31'44"W, 80 m a.s.l.)	Archaeological site	MIS 2	P, C Pinus, Olea, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Ruiz-Zapata and Gil-García (2005); Uzquiano (2005)	
33	Abanuiz	(43°0'00"N, 01°38'W, 600 m a.s.l.)	Archaeological site	MIS 2-Holocene	C Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	López-García (1982, 1986, 1987)	
34	Balma del Gai	(41°49'00"N, 02°08'19"E, 760 m a.s.l.)	Archaeological site	MIS 2 to Holocene	C Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Allué et al. (2007)	
35	Tubilla del Agua	(42°42'33"N, 03°48'14"W, 765 m a.s.l.)	Archaeological site	MIS 9 to Holocene	M Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	García-Amorena et al. (2011)	
36	Ambroza	(41°09'37"N, 02°29'54"W, 130 m a.s.l.)	Archaeological site	MIS 9 to Holocene	P Pinus, Cupressaceae, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Ruiz-Zapata et al. (2005)	
37	Pinedo (Tajo)	(39°51'00"N, 04°01'W, 500 m a.s.l.)	Archaeological site	Middle Pleistocene	P Salix, Olea, Alnus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Martín-Arroyo et al. (1996b, 2000); Martín Arroyo (1998); Ruiz-Zapata et al. (2004)	
38	Valdelykos	(39°51'00"N, 04°01'W, 500 m a.s.l.)	Archaeological site	Upper Pleistocene	P Quercus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Martín-Arroyo et al. (1996b, 2000); Martín Arroyo (1998)	
39	Verdelpino	(40°09'00"N, 02°05'W, 990 m a.s.l.)	Archaeological site	MIS 2 to Holocene	P Pinus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	López-García (1977)	
40	Ratlla del Buho	(38°16'45"N, 00°50'02"W, 400 m a.s.l.)	Archaeological site	Upper Pleistocene-Holocene	C Pinus, Quercus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Badal (1995)	
41	Santa Maria	(38°41'52"N, 00°12'52"W, 650 m a.s.l.)	Archaeological site	MIS 2 to Holocene	C Pinus, Quercus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Carrión-Marco (2003); Aura et al. (2005)	
42	Marinho	(41°45'38"N, 08°02'50"W, 1150 m a.s.l.)	Archaeological site	MIS 2 to Holocene	C Pinus, Quercus, Juniperus, Betula, Corylus, Alnus, Quercus Pinus	Figueiral (1993)	

(Continued)
Table 1. (Continued)

Site number	Site	Coordinates	Type of site	Age/MIS	Pollen (P), charcoal (C), macrofossil (M), phytoliths (Ph)	Dominant (Pinus) or codominant taxa	References
43	Salchicha (Tajo)	(39°51'N, 04°01'W, 490 m a.s.l.)	Archaeological site	Middle Pleistocene	P	Olea, Quercus, Salix	Martin-Arroyo et al. (1996b, 2000); Martin-Arroyo (1998); Ruiz-Zapata et al. (2004)
44	Puente Pino	(39°47'N, 5°08'W, 500 m a.s.l.)	Archaeological site	MIS 9-6	P	Pinus	Ruiz-Zapata et al. (2009)
45	Ventanas	(37°26'25"N, 03°26'00"W, 1056 m a.s.l.)	Archaeological site	MIS 3 to Holocene	P	Pinus	Carrión et al. (2001); Ochando et al. (2020d)
46	Moucide	(43°36'N, 07°21'W, 110 m a.s.l.)	Archaeological site	MIS 3 to Holocene	P	Quercus, Betula	Gómez-Orellana et al. (2001)
47	Sopera	(43°19'N, 04°56'W, 450 m a.s.l.)	Archaeological site	MIS 3-2	C	Juniperus	Pinto et al. (2006)
48	Chufín	(43°17'33"N, 04°27'36"W, 130 m a.s.l.)	Archaeological site	MIS 2	P	Pinus, Alnus	Boyer-Klein (1984)
49	Erralla	(43°24'O0"N, 02°10'57"W, 230 m a.s.l.)	Archaeological site	MIS 2	P	Pinus, Alnus, Corylus	Boyer-Klein (1985)
50	Santa Catalina	(43°22'38"N, 02°30'36"W, 35 m a.s.l.)	Archaeological site	MIS 2	C	Pinus, Betula, Quercus	Uzquiano (1992a, 1995)
51	Berroberría	(43°16'00"N, 01°30'30"W, 156 m a.s.l.)	Archaeological site	MIS 2 to Holocene	P	Pinus	Boyer-Klein (1984, 1988)
52	Parco	(41°54'48"N, 00°56'31"E, 420 m a.s.l.)	Archaeological site	MIS 2	P	Pinus, Quercus	Bergadá et al. (1999)
53	Villacastín	(40°47'52"N, 04°22'20"W, 1123 m a.s.l.)	Archaeological site	MIS 6-5e	P	Pinus, Quercus	Carrión et al. (2007)
54	Torrejones	(41°00'45"N, 03°15'10"W, 1100 m a.s.l.)	Archaeological site	MIS 4	P	Pinus	Carrión et al. (2007)
55	Buraca Escura	(39°55'N, 08°33'W, 270 m a.s.l.)	Archaeological site	MIS 3-2	C	Pinus	Aubry et al. (2001)
56	Buraca Grande	(39°55'9"N, 08°36'35"W, 350 m a.s.l.)	Archaeological site	MIS 2 to Holocene	C	Pinus, Buxus	Aubry et al. (1997); Figueiral and Terral (2002)
57	Pirulejo	(37°26'20"N, 04°11'13"W, 580 m a.s.l.)	Archaeological site	MIS 2	P	Pinus, Quercus	Díaz del Olmo et al. (1989)
58	Valiña	(42°46'57"N, 07°14'09"W, 620 m a.s.l.)	Archaeological site	MIS 3	C	Pinus, Quercus	Carrión-Marco (2005)
59	Oia	(42°00'N, 08°52'W, 0 m a.s.l.)	Archaeological site	MIS 2	P	Quercus, Corylus	Ramil-Regó and Gómez-Orellana (2002); Iriarte et al. (2005)
60	Conde	(43°17'23"N, 05°58'54"W, 180 m a.s.l.)	Archaeological site	MIS 3-2	C	Pinus	Uzquiano et al. (2008)
61	Akamira	(43°22'37"N, 04°07'12"W, 70 m a.s.l.)	Archaeological site	MIS 2	P, C	Salix, Juniperus	Uzquiano (1992b); Carrión and Dupré (2002)
62	Cendres	(38°41'10"N, 00°09'09"W, 45 m a.s.l.)	Archaeological site	MIS 3 to Holocene	C	Pinus, Juniperus	Badal and Carrión-Marco (2001); Badal García and Martínez Varea (2018); Villaverde et al. (2019)
63	Malladetes	(39°01'15"N, 00°17'57"W, 500 m a.s.l.)	Archaeological site	MIS 3-2	P	Pinus	Dupré (1980)

(Continued)
Site number	Site	Coordinates	Type of site	Age/MIS	Pollen (P), charcoal (C), macrofossil (M), phytoliths (Ph)	Dominant (Pinus) or codominant taxa	References
64	Pardo	(38°48'57"N, 00°17' 53"W, 650 m a.s.l.)	Archaeological site	MIS 2 to Holocene	P	Pinus	Soler et al. (2008)
65	Calaveres	(38°47'40"N, 00°00' 59"W, 70 m a.s.l.)	Archaeological site	MIS 2	P	Pinus	Dupré (1988)
66	Tossal de la Roca	(38°47'26"N, 00°16' 51"W, 691 m a.s.l.)	Archaeological site	MIS 2 to Holocene	P, C	Pinus	Cacho et al. (1995); Uzquiano and Arnanz (1997); Uzquiano (1988)
67	CM 5 Beliche	(37°16'N, 07°27"W, 25 m a.s.l.)	Archaeological site	MIS 2 to Holocene	P	Pinus, Quercus	Fletcher et al. (2007)
68	Candieira	(40°20'37"N, 07°34' 40"W, 1400 m a.s.l.)	Archaeological site	MIS 2 to Holocene	P	Pinus	van der Knaap and van Leeuwen (1995, 1997)
69	Alfàx	(37°08'41"N, 01°56' 39"W, 105 m a.s.l.)	Archaeological site	MIS 6–3	P	Pinus, Quercus Olea	Schulte et al. (2008)
70	Nerja	(36°45'43"N, 00°32' 17"E, 670 m a.s.l.)	Upper Pleistocene to Holocene	P, C	Pinus, Quercus, Juniperus	López-García (1988); Rodríguez-Ariza (2006)	
71	Ambrosio	(37°04'57"N, 02°05' 39"W, 1060 m a.s.l.)	Archaeological site	MIS 3 to Holocene	C	Pinus, Quercus	Badal (1990)
72	Estanya	(42°02'N, 00°32' 670m a.s.l.)	Lake	MIS 2 to Holocene	P	Pinus, Juniperus	González-Sampéritz et al. (2017)
73	Marboré	(42°41'44"N, 00°02' 24°E, 3228 m a.s.l.)	Lake	MIS 2 to Holocene	P	Pinus, Corylus, deciduous forest	Leunda et al. (2017)
74	Riera del Canyars	(41°17'46"N, 01°58' 47°E, 40 m a.s.l.)	Terraces	MIS 3	P, C, Ph	Pinus	Daura et al. (2013)
75	Padul	(37°00'21"N, 03°36' 41°W, 723 m a.s.l.)	Peat bog	MIS 7 to Holocene	P	Pinus	Pons and Reille (1988); Camuera et al. (2019)
76	Galloca	(40°57'27"N, 01°29' 22°W, 995 m a.s.l.)	Lagoon	MIS 2 to Holocene	P	Pinus	Burjachs et al. (1996)
77	KEB 25	(40°48'12"N, 00°59' 30°E, 88 water depth m)	Delta	MIS 2 to Holocene	P	Pinus	Yll (1995)
78	Laguillín	(42°52'51"N, 00°02' 25°W, 1850 m a.s.l.)	Lake	MIS 2 to Holocene	P	Pinus	García-Rovés (2007)
79	Sanabria	(42°07'21"N, 06°43' 09°W, 1800 m a.s.l.)	Lake	MIS 2 to Holocene	P	Pinus, Betula	Hannon (1985)
80	Llegua	(42°07'21"N, 06°43' 09°W, 1080 m a.s.l.)	Peat bog	MIS 2 to Holocene	P	Pinus, Quercus, Betula	Muñoz-Sobrino et al. (2004)
81	Fuentillejo	(42°07'21"N, 06°43' 09°W, 635 m a.s.l.)	Lagoon	MIS 2 to Holocene	P	Pinus, Juniperus	Ruiz-Zapata et al. (2008)
82	Salines	(38°30'02"N, 00°53' 18°W, 470 m a.s.l.)	Lagoon	MIS 6 to Holocene	P	Pinus, Cupressaceae, Quercus	Burjachs et al. (2007); Burjachs (2009, 2012)
83	Villena	(38°36'49"N, 00°55' 20°W, 502 m a.s.l.)	Lagoon	MIS 3 to Holocene	P	Pinus	Yll et al. (2003)
84	Navarrés	(39°04'N, 00°41'W, 225 m a.s.l.)	Peat bog	MIS 3 to Holocene	P	Pinus	Carrión and van Geel (1999)

(Continued)
Site number	Site	Coordinates	Type of site	Age/MIS	Pollen (P), charcoal (C), macrofossil (M),	Reference(s)
85	Navamuño	(40°19'1N, 05°36'W)	Peat bog	MIS 2 to Holocene	P	López-Segura et al. (2020)
86	Villanuemado	(40°20'10N, 01°18'W)	Lake	MIS 2 to Holocene	P	González-Sampérez et al. (2013, 2020)
87	Area Longa	(39°35'N, 07°18'W)	Cliff	MIS 5c	P	Ramírez-Rojas et al. (2009)
88	Toma	(42°14'N, 07°18'W)	Cliff	MIS 2 to Holocene	P	Arenal et al. (2007)
89	Tramacastilla	(41°15'N, 07°18'W)	Lake	MIS 2 to Holocene	C	Montserrat Martí (1992)
90	Piella	(42°37'N, 15°22'W)	Archaeological site	MIS 2	P	Juniperus Aragonés et al. (2002)
91	Peña de los Besos	(42°15'N, 07°18'W)	Peat bog	MIS 2	P	Juniperus Aragonés et al. (2002)
92	San Rafael	(39°28'N, 06°59'W)	Lake	MIS 2 to Holocene	P	Allen et al. (1996)
93	Siles	(42°37'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
94	Poliedro	(39°20'N, 07°18'W)	Lake	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
95	Pozo de la Gloria	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
96	Pozo de los Barros	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
97	Pozo de las Pinzas	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
98	Pozo de la Cuesta	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
99	Pozo de las Troncheras	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
100	Pozo de las Manzanas	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
101	Camella	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
102	Brañagallones	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
103	Ajo	(42°42'N, 07°18'W)	Lake	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
104	Eslavo	(42°42'N, 07°18'W)	Lake	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
105	Salada de Mediana	(42°42'N, 07°18'W)	Peat bog	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
106	Estany	(42°42'N, 07°18'W)	Lake	MIS 3 to Holocene	P	Juniperus Aragonés et al. (2002)
Table 1. Continued

Site number	Site	Coordinates	Type of site	Age/MIS	Pollen (P), charcoal (C), macrofossil (M), phytoliths (Ph)	Dominant (Pinus or codominant taxa)	References
107	Baños	4°14’W, 52°0’N (211 m a.s.l.)	Lake	MIS 2 to Holocene	P	P	Pérez-Oblon and Jula (1994)
108	Quintanilla de la Sierra	4°10’W, 42°0’N (171 m a.s.l.)	Peat bog	MIS 2 to Holocene	P	P	Pérez-Oblon and Jula (1994)
109	Sierra	4°14’W, 42°0’N (171 m a.s.l.)	Lagoon	MIS 2 to Holocene	P	P	Pérez-Oblon and Jula (1994)
110	Leitaojos	4°17’W, 42°0’N (171 m a.s.l.)	Peat bog	MIS 2 to Holocene	P	P	Pérez-Oblon and Jula (1994)
111	Ingua	4°20’W, 42°0’N (171 m a.s.l.)	Peat bog	MIS 2 to Holocene	P	P	Pérez-Oblon and Jula (1994)
112	San Gregorio	4°20’W, 42°0’N (171 m a.s.l.)	Dune	MIS 2	P	P	Pérez-Oblon and Jula (1994)
113	Asperillo	4°20’W, 42°0’N (171 m a.s.l.)	Dune	MIS 2	P	P	Pérez-Oblon and Jula (1994)
114	MD95-2043	3°39’W, 42°0’N (171 m a.s.l.)	Marine record	MIS 3-2	P	P	Pérez-Oblon and Jula (1994)

Sediments and fossil dung samples (Carrión et al., 1999, 2009; Prieto and Carrión, 1999; Navarro et al., 2000, 2001, 2002; Carrión, 2002a). Several strictly insect-pollinated taxa such as Maytenus, Periplaca, Withania, Calicotome and Lycium are noticeably under-represented (Carrión, 2002a; Carrión et al., 2003a). This means that, in dealing with cave sites, relatively high pollen percentages of arboreal taxa excluding pines, and zoophilous scrub species of the xerothermic belt may indicate high local cover of the species involved. This must be kept in mind here. In either case, pollen spectra are not particularly well suited to the spatial inference in the palaeoecosystem (Carrión, 2002a), so it seems practical to give the palaeo-floristic contingent more weight than palaeoecological models based on pollen rain models from open depositional environments. Archaeological palynology is thus the fundamental evidence supporting the corollary of this work.

Palaeoecological records

Mixed forests in valleys of Eastern (Mediterranean) Iberia

Ochando et al. (2019) have produced palaeoenvironmental data for the Middle Pleistocene and early Late Pleistocene of Bolomor Cave, eastern Spain (Fig. 4). The excavations have uncovered Neanderthal remains (Arsuaga et al., 2012) and some of the earliest evidence of controlled use of fire in Southern Europe (Fernández Peris et al., 2012; Vidal-Matlutano et al., 2019). Mixed–oak forests persist throughout a long study period (MIS 9–5) and dominate the ecological scenario, which exhibits a variety of woody plants, including abundant Castanea, Olea and Juniperus, accompanied by broad-leaf trees such as Alnus, Betula, Celtis, Corylus, Fraxinus, Populus, Salix and Ulmus, as well as sclerophylls such as Pistacia, Myrtus, Arbutus, Calicotome, Cistus, Ephedra fragilis, Ligustrum, Myrica, Rhamnus and Viburnum (Fig. 4). With a few exceptions probably associated with cold spells, the xero-heliohypic cover with Artemisia, Amaranthaceae, Erica and Poaceae is relatively minor. Occurrences of some palynological types such as Ceratonia, Castanea, Rhododendron and Celtis are of note because they correspond to species that do not grow in the region at present.

Bolomor was characterized by a more forested habitat than has been reported from other sites during Pleistocene stadials (Carrión et al., 2003a, 2013; González-Sampérez et al., 2010). The human groups who inhabited Bolomor processed and consumed a diversity of animal species (ungulates, lago-morphs, tortoises, birds). Through the taphonomic study of faunal specimens, it was possible to demonstrate a broad-spectrum diet in the site (Sanchis-Serra and Fernández-Peris, 2008; Blasco and Fernández-Peris, 2012a,b; Blasco et al., 2013). To this, we can add a broad spectrum of edible plants such as hazelnut (Corylus avellana), chestnut (Castanea sativa), Mediterranean hackberry (Celtis australis), strawberry tree (Arbutus unedo), carob tree (Ceratonia siliqua), holly oak (Quercus ilex), olive (Olea europaea), elderberry (Sambucus nigra) and probably wild Rosaceae such as several species of Prunus, Rubus, Rosa and Sorbus (Ochando et al., 2019).

The Neanderthals of Bolomor must have possessed highly adaptive subsistence strategies in forested environments (Blasco et al., 2011, 2013). The low elevation of the site within an intramountainous valley, its proximity to marine resources and the large Pleistocene coastal platforms, as well as the availability of fresh water, make Bolomor a glacial refugium resembling the large phytodiversity reservoirs of the Balkans (Bennett et al., 1991; Willis, 1994; Okuda et al., 2001; Pros et al., 2015; Sadori et al., 2016;
Magri et al., 2017). It should be noted that Neanderthals occupied this relatively stable biotope for more than 300,000 years, with that well-known forest resilience capable of cushioning the numerous climatic oscillations of such a long period (Carrión, 2001).

The existence of glacial forest refugia in the central eastern region of Iberia had already been inferred from lacustrine and peatbog pollen sequences, such as Navarrés in Valencia (Carrión and Dupré, 1996; Carrión and van Geel, 1999). The rapidity of the late MIS 3 colonization of steppe pinelands by Mediterranean mixed forests in this valley pointed to the proximity of Mediterranean forests in the nearby mountain ranges (Figs. 5 and 6). The pollen record of the Palaeolithic Cova Beneito, including during its Mousterian occupation, supports this view by showing late MIS 3 expansions of Juniperus, Oleaceae and Quercus at the expense of open pinelands and grasslands (Carrión, 1992a; Carrión and Munuera, 1997).

Pines, including Mediterranean and high-elevation species, were certainly an abundant component of these levantine woodlands. In line with former anthracological works (Badal, 2001; Esteban et al., 2017), Real et al. (2021, this issue) have shown the widespread occurrence of cryophilous pines (P. nigra, P. sylvestris) in the forests of eastern Iberia during Neanderthal times, with Abrigo de la Quebrada (Carrión Marco et al., 2019), El Salt (Vidal-Matutano and...
Pardo-Gordó, 2020) and Abric del Pastor (Vidal-Matutano et al., 2017; Connolly et al., 2019; Vidal-Matutano and Pardo-Gordó, 2020) particularly relevant. Similarly, the appearance of xerophytic Mediterranean pines (P. halepensis, P. pinea) in Cueva Antón (Zilhão et al., 2016), Figueira Brava (Zilhão et al., 2020) and Gibraltar (Ward et al., 2012a,b) is remarkable. In addition, these studies and other fieldwork in the region have provided further evidence of plant foods which would be accessible to Neanderthals and modern humans, as evidenced by carpological remains of Celtis australis and Corema album (Ward et al., 2012a,b; Martínez-Varea et al., 2019; Martínez-Varea, 2020; Zilhão et al., 2020).

Farther north, at Bolomor in Barcelona, the pollen records of two adjacent Palaeolithic caves, Teixoneres and Toll, deserve attention. Although shorter than Bolomor, the pollen sequence of Teixoneres also shows the long-term permanence of a relatively dense forest ecosystem dominated by oaks and pines, accompanied by a variety of woody taxa such as Juniperus, Corylus, Castanea, Abies, Taxus, Acer, Alnus, Betula, Celtis, Fraxinus, Juglans, Fagus, Buxus, Populus, Salix and Ulmus, and several indicators of thermicity such as Calicotome, Olea, Ceratonia, Cistus, Ephedra fragilis, Myrtus, Pistacia, Phillyrea, Rhamnus and Viburnum (Fig. 7). The xerohelophytic component (Artemisia, Poaceae, Amaranthaceae, Erica, Ephedra fragilis) spread episodically (llb.1, llb.2, llb.1, IV.1 and IV.3), but it was never dominant on the landscape. The vertebrate assemblages also suggest a forested environment with local meadows (López-García et al., 2012).

Spanning from before MIS 4 up to MIS 1, Toll Cave is an important palaeontological and archaeological site near Teixoneres. Palynological investigations in Toll parallel those at Teixoneres and reinforce the idea that both Neanderthal settlements belonged to an important Quaternary forest refugium (Ochando et al., 2020b). Again, the pollen record is characterized by the prevalence of pines and oaks with an important contribution of Corylus, Juniperus and Castanea, which were continuously accompanied by other trees such as Abies, Taxus, Acer, Betula, Carpinus betulus, Tilia, Celtis, Fraxinus, Juglans, Buxus, Ilex, Populus, Salix and Ulmus, as well as Mediterranean elements such as Pistacia, Myrtus, Calicotome, Cistus, Ephedra fragilis, Ligustrum, Rhamnus and Viburnum (Fig. 8). The heliophytic component (Artemisia, Poaceae, Amaranthaceae, Erica, Ephedra) would still have been relatively unimportant with the exception of in some phases (1.1, 2a.1, 2 c.2, crust 2 c.2.3a) (Fig. 8).

The pollen records of Teixoneres and Toll are particularly interesting in pointing to a high incidence of oak forests in a pleniglacial context and relatively high latitude within the Iberian Peninsula. These sequences must be therefore incorporated into the debates on glacial refugia for temperate trees in the Mediterranean Peninsulas (Bennett et al., 1991; Willis, 1994; Carrión et al., 1999, 2003a; Tzedakis et al., 2003; Giardini, 2007; Bhagwat and Willis, 2008; Margari et al., 2009; González-Sampériz et al., 2010; Sadori et al., 2016; Magri et al., 2017; Manzano et al., 2017; Sinopoli et al., 2018). The evidence of evergreen Quercus (mainly Quercus ilex) during the Quaternary glacial stages had so far suggested limited cover in northern Iberia (Uzquiano et al., 2016), as a result of stable isotope analyses of herbivore remains during MIS 3 (Jones et al., 2018, 2019). A moderate presence of deciduous oaks has nevertheless been observed in the Mediterranean–Eurosiberian ecotonal territories of the north (Blanco-Castro et al., 1997;
Based on counts of woody taxa of palaeobotanical sequences from the Iberian Pleistocene, Teixoneres and Toll rank at the top of a comparative abundance chart (Fig. 9), surpassing in number of trees and shrubs many sites in southern Iberia (Carrión et al., 2013). Apart from possible pollen-preservational biases, this high diversity might be because these caves are located in an ecotone between the Eurosiberian and Mediterranean regions.

Conifer forests and savannahs in continental territories

Pine forests, sometimes with junipers, were clearly abundant, and eventually dominant during cold stages of the peninsular Quaternary (Dupré, 1988; Burjachs and Renault-Miskovsky, 1992; Yll and Pérez-Obiol, 1992; Pérez-Obiol and Julià, 1994; González-Sampériz et al., 2003, 2010; Carrión et al., 2007, 2013; Val-Peón et al., 2019). Not far from the Mediterranean coast, under conditions of continentality, pines were the main constituents of wooded steppes and savannahs during cold dry phases, shown in sites such as in the Salines pollen record, inland Alicante (Julià et al., 1994; Giralt et al., 1999; Burjachs et al., 2007; Burjachs, 2009, 2012), which point to rapid developments of Mediterranean vegetation during the last glacial stage in the adjacent mountains (Giralt et al., 1999; Burjachs et al., 2007; Burjachs, 2009). Pinus and Juniperus are here the main components of cold-stage arboreal vegetation, but never indicating closed forests, rather open parklands. An open pine forest is also the main Pleistocene and Holocene vegetation type inferred from the Villena lake and Navarrés pollen sequences (Carrión and van Geel, 1999; Yll et al., 2003).

Abrid Romaní, a Middle Palaeolithic cave (Capellades, Barcelona, 300 m asl, 35 km from the coast) has a palynological sequence spanning MIS 5/4 to MIS 3 with a dominance of pines, although mesothermophilous plants (Quercus, Rhamnus cf. alaternus, Pinus cf. halepensis, Olea, Hedera, Prunus) are continuous between ca. 70 and 40 ka, with intermittent episodes characterized by increased steppic species (Burjachs and Julià, 1994, 1996; Burjachs, 2009; Allué et al., 2012) (Fig. 10). Charcoal analysis shows Pinus sylvestris as the main pine species (Allué, 2002).

The long pollen record of El Cañizar de Villarquemado palaeolake (40°30’N, 01°18’W, 987 m asl), in the southern Iberian Range, covers the end of the Middle Pleistocene, the
whole Upper Pleistocene and most of the Holocene, and it is in one of the most continental locations where palynological studies have been carried out within the Iberian Peninsula (Fig. 11). This location, intensively influenced by climatic extremes, undoubtedly affects the composition of the pollen assemblages, which even during interglacials and interstadials show a complex patched vegetation landscape with high incidence of junipers and/or pines, relatively low mesophytic arboreal cover and high proportions of fluctuating xerophytic herbs (mainly Artemisia, Chenopodiaceae/Amaranthaceae, Asteraceae). Thus, vast steppes and a parkland mosaic do not only exist during cold stages (MIS 6, MIS 4, MIS 2). By contrast, pine, oak and especially juniper savannahs spread during the climate amelioration phases such as MIS 5e, MIS 5c, MIS 5a, some intervals of MIS 3 and the Holocene (González-Sampériz et al., 2010, 2020; Aranbarri et al., 2014). The inertial nature of conifer formations, surprisingly led by junipers during MIS 5 (as occurred in mid-Pleistocene inner Iberian palynological sequences) and later by pines, resisting competitive displacement by oaks (both evergreen and semi-deciduous), mesophytes or Mediterranean taxa, demonstrates the intense resilience of vegetation formations in Iberia, which is also seen in inner regions such as the Villarquemado area.

The Atapuerca hominin-bearing sites (42°21'N, 03°31'W; 980 m asl) are located at low elevation in an area with maximum altitude of 1078 m in the Sierra de Atapuerca and are made up of karstified Cretaceous limestones that include galleries and chasms filled with Quaternary sedimentary deposits. The construction of a railway route at the end of the 19th century uncovered some of these sedimentary fillings, such as those that comprise the so-called Trinchera del Ferrocarril and which include Gran Dolina, Galería and Sima del Elefante. They have all provided numerous archaeological and palaeontological remains including hominin fossils belonging to Homo antecessor, H. heidelbergensis and H. neanderthalensis covering from the Lower Pleistocene to the late Middle Pleistocene (e.g. Bermúdez de Castro et al., 1997, 2011, 2016; Arsuaga et al., 1999; Falguères et al., 2013; Meyer et al., 2016; Bógalo et al., 2021).

By using habitat weighting methods on the record of vertebrates, charcoal and pollen, Rodríguez et al. (2011) inferred the past environmental conditions of Atapuerca between ca. 500 and 200 ka (Figs. 12 and 13). Of note is the coexistence of steppic species of vertebrates such as Stenocricetus gregaloides and Allocricetus bursae with temperate and thermophilous taxa such as Hystrix refossa and Crocidura. Overall, the herpetofauna suggests a significant local woodland
component, and the macrofauna indicates the coexistence of woodlands and open landscapes in the region. Palynological studies in the hominin-bearing levels of Atapuerca have been rather unrewarding (García-Antón and Sainz-Ollero, 1991; Burjachs, 2001) (Fig. 12), but the available data support Rodríguez et al.’s (2011) conclusion that Mediterranean and deciduous trees found refuge in the area, which embraced mosaic landscapes including woodlands, open-humid and open-dry meadows, watercourses, rocky habitats and steppes. The thermophilous component does not disappear from the assemblages, even when the whole sequence of up to 1 Myr is taken into account. The Galeria sequence shows peaks of Quercus and Pinus dominance together with Fagus, Betula, Corylus, Juglans, Fraxinus, Olea, Pistacia, Phillyrea, Myrtus, Celtis, Carpinus, Ligustrum, Rhamnus, Salix and the occasional presence of Picea. The herbaceous component is dominated by Ericaceae, Poaceae and Asteraceae (García-Antón and Sainz-Ollero, 1991) (Fig. 13).

For Sima de los Huesos, also in Atapuerca, García and Arsuaga (2011) reviewed the records of carnivores, ungulates and isotopes to construct a palaeoecological model, resolving that the dominant ecosystem was a savannah-like open woodland, in agreement with palynological data obtained from three clay-matrix samples (García-Antón, 1987), showing the abundance of pines together with oaks, Betula and Fagus. The carnivore assemblage (Homotherium, Ursus, Panthera, Felis, Lynx, Vulpes, Canis, Cuon, Meles, Mustela, Martes) was interpreted to represent a consequence of highly productive treelands.

Another important reference pollen sequence is Padul. This comes from a tectonic depression (37°00′21″N, 03°36′43″W) located about 22 km south of Granada, comprising a peaty area of about 2.5 × 3.5 km, at 700 m asl, east of Sierra Nevada. After the pioneering works of Menéndez-Amor and Florschütz (1962, 1964), the first systematic study was carried out by Florschütz et al. (1971), although there is no secure chronological control here. A subsequent study by Pons and Reille (1988) frames the sequence between isotopic stages 5 and 1. Another study on another core taken in the same area in the 1990s suggests that the deposition of peat begins about 400 000 years ago (Ortiz et al., 2004). The changes in vegetation and climate of the last two glacial-interglacial
cycles (~200 000 years) are described in the most recent work by Camuera et al. (2019).

In Padul, the end of the Middle Pleistocene (MIS 6) took place after a decline in Mediterranean forests and was characterized by the presence of a cold and arid climate indicated by high levels of xerophytes (Artemisia, Amaranthaceae, Ephedra) and the lowest PCI (Pollen Climate Index) values (Figs. 14 and 15). During MIS 6c and 6d the maximum peak of Abies occurred, in addition to an increase in Mediterranean and temperate-humid taxa (Quercus, Fraxinus, Acer, Alnus and Betula). Palaeoclimatic data support high rainfall conditions in the region. Artemisia, Ephedra and Amaranthaceae are
Figure 11. Synthetic pollen diagram of selected taxa (mainly woody component) in the sequence of El Cañizar de Villarquemado during the MIS 6–MIS 4 (135–60 ka BP) chronological interval. Redrawn from González-Sampériz et al. (2020). [Color figure can be viewed at wileyonlinelibrary.com]

Figure 12. Combined pollen diagram for the sequences of Gran Dolina (TD) and Galería (G) in the Atapuerca hominin-bearing site. Taxa are grouped according to reported ecological types. Redrawn from Rodríguez et al. (2011) and Carrión et al. (2013). [Color figure can be viewed at wileyonlinelibrary.com]
Mesothermic savannas in coastal shelves

The Sima de las Palomas (Torre Pacheco, Murcia, 125 m a.s.l., 5 km from the Mediterranean coast) includes a Neanderthal and Mousterian occupation dated from ca. 130 to 40 ka (Walker et al., 2004, 2008). Pollen analyses in an interval implying a time ca. 44–40 ka include a mix of plant taxa with very different ecological affinities (Carrión et al., 2003a, 2005; Yll and Carrión, 2003). In the context of the current climate of the southern coast of Murcia, with enclaves that do not exceed 200 mm of average annual rainfall, and high evapotranspiration values, the abundance of oaks is striking and, in particular, the presence of species that demand temperate–humid conditions such as hazel (Corylus avellana), ash (Fraxinus), strawberry tree (Arbutus unedo), box (Buxus) or birch (Betula cf. celtiberica) (Fig. 16). It is not easy to determine the exact area of origin of these tree populations, but there is no doubt that the oaks grew in the vicinity, since their pollen percentages range between 15 and 20% and, in a cave context, these cannot be due to long-distance dispersal (Prieto and Carrión, 1999; Navarro et al., 2001, 2002). A local landscape can be conceived to have been made up of a much more diverse mosaic of plant formations than is currently observed. This would include a prevalence of xerophytic Mediterranean savannas with pines (Pinus nigra, P. halepensis, P. pinea), oaks (Quercus rotundifolia, Q. cocifera, Q. lignea) and junipers, forest patches of pine and/or oaks with other deciduous trees, and an understory of Juniperus oxycedrus, Olea europaea, Phillyrea, Chamaerops humilis, Buxus, Rhamnus, Erica arborea, Maytenus europaea, Smilax aspera and Pistacia, as well as heliophiliotic formations with Periploca angustiloba, Osyris quadripartita, Asphodelus, Lamiaceae, Cistaceae, Cistaceae, Thymelaeae hirsuta, Calico‐tome intermedia, and other Genisteae and, finally, marshes with chenopods, Lycium and Whitania frutescens. It is probable that many trees behaved like phreatophytes, growing on riverbanks and streams. Because the sequence is within a glacial period, the diversity and abundance of thermophytes can be considered relevant. It should be noted that some species such as Periploca angustiloba and Maytenus senega‐lensis can hardly bear frost, so it is evident that the local climate was not much colder than it is today.

The situation described for Sima de las Palomas may be extended to the coastal areas from Murcia to Gibraltar and beyond into the Atlantic coasts of Huelva. Similar vegetation records have been described in Perneras Cave, Mazarroàn at Murcia province (Carrión et al., 1995), Gorham’s (Carrión et al., 2008) and Vanguard Caves in Gibraltar (Carrión et al., 2018), Mousterian Bajondillo (López-Sáez et al., 2007) and Abrigo del Humo (Ochando et al., 2020c) in Málaga. These records agree in suggesting the existence of a littoral location favourable for the survival of the greatest diversity of environments in the Iberian Peninsula during the last glacial in which the late survival and extinction of the Neanderthals took place (Finlayson et al., 2006; Carrión et al., 2018).

Gorham’s Cave demands particular attention. The cave is one several located in the basal and south-easternmost level of the Gibraltar Peninsula, on the edge of the current sea level at 36°07'13"N and 05°20'31"W. The excavations, carried out intensively since 1997, have produced a four-level stratigraphy (Finlayson et al., 1999, 2000, 2006), with level IV corresponding to a Mousterian occupation, dated between 32 560 and 23 780 a BP. However, there are three older basal dates of 44 090 a BP. Palaeobotanical studies at Gorham’s Cave include anthracological and palynological analyses of sediment and coprolites (Carrión et al., 2008; Ward et al., 2012b). The anthracological sequence for level IV is dominated by Pinus pinea-pinaster, with a small contribution from Pinus nigra-sylvestris, Juniperus, Fabaceae, Cistaceae, Olea and Erica. The sediment palynology of level IV is characterized by high frequencies of Juniperus, Pinus, Ericaceae, Poaceae, Asteraceae, Cistaceae and, to a lesser extent, Ilex aquifolium, Artemisia and Chenopodiaceae. Among the components of arboreal pollen are Olea, Pistacia, Betula, Corylus, Fraxinus, Copyright © 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 335–362 (2022)
Figure 14. Synthetic pollen diagram of Padul-15-05 core, with percentages calculated with respect to the total terrestrial pollen sum. Silhouettes in lighter colour show 10x exaggeration percentages. The Mediterranean forest taxa category is composed by Quercus total, Olea, Phillyrea and Pistacia. Redrawn from Camuera et al. (2019). [Color figure can be viewed at wileyonlinelibrary.com]

Figure 15. Illustration of plots showing, from bottom to top: (a) the Pollen Climate Index (PCI) with the horizontal black line (value ~2) indicating the boundary between glacial/stadial and interglacial/interstadial phases; (b) AP/NAP (arboreal pollen/non arboreal pollen) ratio (AP also includes Pinus), on a logarithmic scale; (c) percentages of Mediterranean sclerophyllous forest (orange) and temperate-humid forest (blue); (d) Mediterranean forest pollen percentages including Pinus (light green) and excluding Pinus (dark green) with respect to the total terrestrial pollen sum along with the filtered Mediterranean forest data (green line). Marine Isotope Stages (MIS) follow Sun and An (2005) and Fletcher et al. (2010). Redrawn from Camuera et al. (2019). [Color figure can be viewed at wileyonlinelibrary.com]
Quercus and Salix. Coprolite palynology places the results in the context of a mosaic landscape and complements the previous data (Figs. 6 and 17). The dominant types of pollen spectra are Pinus, Poaceae, Quercus and Juniperus. Other taxa that eventually reach important percentages are Artemisia, Cyperaceae, Cistaceae, Ericaceae and Asteraceae. Apart from the above, of note are the presence of Taxus, Pinus pinaster, Corylus, Alnus, Betula, Castanea, Ulmus, Fraxinus, Acer, Salix, Olea, Phillyrea, Buxus, Viburnum, Rhamnus, Maytenus, Myrtus, Calicotome, Ericaceae, Genisteae, Asphodelus, Artemisia and Plantago, among others. Carrión et al. (2008) postulated the existence of savannahs, riparian forests, heliophytic and chapparral thickets with many chamaephytes and hemicryptophytes, grasslands and areas of steppe, and halophytic and littoral vegetation. Potentially, savannahs – in their arboreal layer – species such as Pinus pinea, Juniperus phoenicea, Quercus ilex-rotundifolia, Quercus coccifera, Quercus suber, Erica arborea, Arbutus unedo and Pistacia terebinthus. During the contemporary period of Gorham’s Upper Palaeolithic, the vegetation did not change greatly, as expected in a coastal refuge (Finlayson et al., 2006, 2008; Finlayson and Carrión, 2007; Bailey et al., 2008).

Final remarks
The coastal shelves and mountains of southern Iberia where Neanderthals lived were certainly singular in floristic and eco-structural terms. Pine, oak and mixed savannahs may have been the dominant formation. Most interestingly, however, the coexistence of temperate, deciduous trees, cold-adapted pines currently growing in high altitudes, Mediterranean conifers, Mediterranean oaks and scrub, halophytic grasslands, and xerothermic North African matorral with palaeotropical elements represents a unique refugium ecosystem in the sense of a Noah’s Ark for plant species. This coexistence is not exclusive to the Pleistocene. However, it reaches the middle Holocene in some mountains such as Sierra de Gádor, Almería, a local reservoir of edaphic water and forest patches in the heart of a semi-desertic region (Carrión et al., 2003b).

Hominin refugia may have been preferentially distributed across regions with high levels of geological variability favouring the maintenance of mosaic habitats through time. This would include many coastlines (Carrión et al., 2008; Finlayson et al., 2008) which would have acted as corridors opening past expansion routes for humans (Bailey et al., 2008). The progressive Neanderthal extinction ending in southern Iberia can be depicted within a continental to oceanic gradient, ending in the southernmost extreme (Finlayson, 2008).

Here we also show evidence of woodlands rich in species and depicting a palaeoecosystem with a tremendous structural complexity in which we find Neanderthals and/or their lithics during cold dry stages of the Iberian Pleistocene. It is likely that these forests were maintained by strong edaphic conditions added to the regional climatic humidity. This possibility has analogues in other geographically complex regions. Recently, Barboni et al. (2019), working on the Aramis Member (Awash Valley, Ethiopia), have emphasized the importance of springs for the palaeoecology of hominin-bearing sites. Springs would have favoured structurally complex vegetation representing, at the landscape scale, hydro-refugia favouring increased gathering of animals, allowing migrations during dry periods. Albert et al. (2018) concluded similarly: though their research was on phytoliths and plant macrofossils, plants from fluvial channels, levées and backswamp environments were of particular importance for human evolution in Africa.
In the southern European context, glacial refugia may be regarded as biodiversity reservoirs during cold phases (Hampe et al., 2013). In other words, ‘local anomalies’ nevertheless have great relevance in terms of biological conservation and, with regard to the focus of this paper, multi-centennial and multi-millennial maintenance of hominin populations. Traditionally we have been highly dependent on palaeoenvironmental reconstructions that are actually based on ‘average’ pollen rain signals, reflecting the vegetation of broad continental environments (marine sequences) or very vast depositional basins (lakes) (e.g. Birks, 1986; see Carrión, 2004 for a discussion). These signals may be too coarse to facilitate reasonable speculation about the influences of plant ecology on the past ecology, biogeography or behaviour of human populations (Carrión et al., 1999).

In a certain sense, the traditional perspective on the physical environment’s influence on ecology and human evolution has been climaticist, in that most studies take as a general guideline the global data on astronomically induced climatic variation (Potts, 1998; Behrensmeyer, 2006). Not surprisingly, traditional deterministic views of vegetation-climate response are not satisfactory in explaining the observed patterns in the pollen diagrams of the Iberian Peninsula (Carrión, 2001; Carrión et al., 2011; González-Sampérez et al., 2020). We should consider a ‘glacier refugium’ as an entity endowed with spatial peculiarity and physiographical complexity, that is, plant mosaicity. Without a doubt, the Neanderthals of the Iberian Pleistocene were not everywhere. Here we see that some important occupations, otherwise permanent or quasi-permanent, suggest human preferences for the forest and tree savannah landscapes, probably because they presented environmental circumstances that favoured survival, including opportunities for hunting, gathering and shelter. The use of plant materials for food and technological items cannot be disregarded (Ward et al., 2012a,b; Hardy, 2018; Zilhão et al., 2020).

However, we should emphasize that Neanderthals adapted and responded properly to climatic changes, and the great diversity of palaeoenvironmental reconstructions show their occurrence from tundra to closed forests (Finlayson and Carrión, 2007). It is then clear that they were characterized by behavioural versatility, phenotypic plasticity and gene polymorphism (Antón et al., 2014). Our goal here is to stress that the forested environments have been somewhat neglected among the broad diversity of habitats where Neanderthals subsisted not only during interglacials and interstadials, but also (in refugial stations) during cold and dry stages.

The role of Iberian glacial refugia in the radiation and selection of the Neanderthal lineage is still unknown. Although not as extensive and crucial for human evolution as eastern and southern Africa, the Mediterranean region is a biodiversity...
hotspot (Spatheliella and Waite, 2007) with a high level of endemicism, and probably a remnant of a larger and more fragmented territory that functioned like an engineer of plant and animal diversity over the Cenozoic (Carrón et al., 2011). The Iberian Peninsula exhibits rugged and complex landscapes with a wide diversity of habitats, locally highly sensitive to climatic change (Schrest et al., 2002), and containing large amounts of evolutionary history, ecological interaction and biotic complexity (Bascou et al., 2006). Perhaps these factors affect diversification by inducing speciation and reducing extinction rates.

Acknowledgements. The development of this work was supported by Projects CGL2015-69160-R, CGL-BSOS2015-68604-P, funded by FEDER/Ministry of Science and Innovation – Agencia Estatal de Investigación, Project (PID2019-1049449GB-I00), funded by FEDER/Ministry of Science and Innovation – Agencia Estatal de Investigación and Fundación Séneca (grant no. 20788/P1/18). A.B.M.A.’s work has been partially funded by the Spanish Science Ministry (HAR2017-84997-P) and the ERC-CoG project (SUB-SILENCE Ref 818299).

Abbreviations. MIS, Marine Isotope Stages; PCI, Pollen Climate Index.

References

Albert RW, Barnford MK, Stanistreet IG et al. 2018. River-fed wetland palaeovegetation and palaeoecology at the HKW Wetland Site, Bed I, Olduvai Gorge. Review of Palaeobotany and Palynology 259: 223–241.

Alcazar-Castaño M, Alcolea-González J, Kehl M et al. 2017. A context for the last Neandertals of interior Iberia: Los Casares cave revisited. PLoS ONE 12 e0180823.

Allen JRM, Huntley B, Watts WA. 1996. The vegetation and climate of northwest Iberia over the last 14,000 years. Journal of Quaternary Science 11: 125–147.

Allué E. 2002. Dinámica de la vegetación y explotación del combustible leñoso durante el Pleistoceno Superior y el Holoceno del Noreste de la Península Ibérica a partir del análisis antropológico. Tesis Doctoral, Universitat Rovira i Virgili, Tarragona.

Allué E, Angelucci DE, Cáceres I et al. 2007. La Cativera (el Catllar, Tarragonès). Noves dades sobre el límit pleistocè mental del 14.500 al 10.000BP dans le Prépyrénées catalans: La cativera de la Cova del Toll (Moià): darreres aportacions. Modilianum.

Allué E, Martínez-Moreno J, Alonso N et al. 2012. Changes in the vegetation and human management of forest resources in mountain ecosystems at the beginning of MIS 1 (14.7–8 ka cal BP) in Balma Guilanyà (Southeastern Pre-Pyrenees, Spain). Comptes Rendus Palevol 11: 507–518.

Allué E, Martínez-Moreno J, Roy M et al. 2018. Montane pine forests in NE Iberia during MIS 3 and MIS 2. A study based on new ethnological evidence from Cova Gran (Santa Linya, Iberian pre-Pyrenees). Review of Palaeobotany and Palynology 258: 62–72.

Allué E, Sóle A, Burgart-Coca A. 2017. Fuel exploitation among Neanderthals based on the anthropological record from Abric Romani (Capellades, NE Spain). Quaternary International 431: 6–15.

Antón SC, Potts R, Aiello LC. 2014. Human evolution. Evolution of early Homo: an integrated biological perspective. Science 345: 1236828.

Aranbarri J, Bartolomé M, Alcolea M et al. 2016. Palaeobotanical insights from Early-Mid Holocene fluvial tufas in the Moncayo Natural Park and Rio Real, NE Spain: regional correlations and biogeographical implications. Review of Palaeobotany and Palynology 234: 31–43.

Aranbarri J, González-Sampériz P, Valero-Garcés B et al. 2014. Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of south-western Europe. Global and Planetary Change 114: 50–65.

Arsuaga JL, Barquero E, Pérez-González A et al. 2010. El yacimiento cártico del Pleistoceno Superior de la Cueva del Camino en el Calvero de la Higuera (Pinilla del Valle, Madrid). 1° Reunión de científico sotros cubiles de hiena (y otros grandes carnívoros) en los yacimientos arqueológicos de la Península Ibérica: 349–368.

Arsuaga JL, Fernández Peris J, Gracia-Téllez A et al. 2012. Fossil human remains from Bolomor Cave (Valencia, Spain). Journal of Human Evolution 62: 629–639.

Arsuaga JL, Martínez I, Lorenzo C et al. 1999. The human cranial remains from Gran Dolina Lower Pleistocene site (Sierra de Atapuerca, Spain). Journal of Human Evolution 37: 431–457.

Aubry T, Brugal JP, Chauviere FX et al. 2001. Modalités d’occurrences paléolithiques inférieures au grotte de Buraca Escura (Redinha, Pombal, Portugal). Revista Portuguesa de Arqueologia 4: 19–46.

Aubry T, Fontugne M, Moura M. 1997. Les occupations de la grotte de Buraca Grande depuis le Paléolithique supérieur et les apports de la séquence holocène à l. Bulletin de la Société Préhistorique Française 94: 182–190.

Aurà JE, Carrón Y, Estrelles E et al. 2005. Plant economy of hunter-gatherer groups at the end of the last Ice Age: plant macroremains from the cave of Santa María (Alcant, Spain) ca. 12000–9000 B.P. Vegetation History and Archaeobotany 14: 542–550.

Badal E. 1990. Aportaciones de la antropología al estudio del paisaje vegetal y su evolución en el Cuaternario reciente, en la costa mediterránea del País Valenciano y Andalucía (18,000–3,000 bp). Tesis Doctoral, Universitat de València.

Badal E. 1995. La vegetación carbonizada. Resultados antropológicos del País Valenciano. El cuaternario en el País Valenciano. Universitat de València: Valencia; 217–226.

Badal E. 2001. La recolección de piñas durante la prehistoria de la Cueva de Nerja (Málaga). In De Neandertales a Cromañones. El inicio del poblamiento humano en tierras valencianas, Villaverde V (ed.). Universitat de València: Valencia; 21–40.

Badal E, Carrión-Marco Y. 2001. Del Glacial al Interglacial: los paisajes vegetales a partir de los restos carbonizados hallados en las cuevas de Alicante. In De Neandertales a Cromañones. El inicio del poblamiento humano en tierras valencianas, Villaverde V (ed.). Universitat de València: Valencia; 21–40.

Baena J, Carrión E, Ruiz-Zapata MB et al. 2005. Palaeoecology and comportamiento humano durante el Pleistoceno superior en la comarca de la Líbana: la secuencia de la cueva de El Esquilleu (Occidente de Cantabria, España). In Neandertales cantábricos, estado de la cuestión, Montes R, Las Heras JA (eds). Monografías Museo de Altamira 20: Santander; 461–487.

Badal García E, Martínez, Varea CM. 2018. Different parts of the same plants. Charcoals and seeds from Cova de les Cendres (Alicante, Spain). Quaternary International 463: 391–400.

Bailey G, Carrión JS, Fa D et al. 2008. The coastal shelf of the Mediterranean and beyond: corridor and refugium for human populations in the Pleistocene. Quaternary Science Reviews 27: 2095–2099.

Barboni D, Ashley GA, Bourel B et al. 2019. Springs, palm groves, and the record of early hominins in Africa. Review of Palaeobotany and Palynology 266: 23–41.

Bascoupe J, Jordano P, Olesen JM. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431–433.

Behrensmeier AK. 2006. Atmospheric. Climate change and human evolution. Science 311: 476–478.

Bennett KD, Tzedakis PC, Willis KJ. 1991. Quaternary refugia of north European trees. Journal of Biogeography 18: 103–115.

Bergada MM, Serrat D. 2001. Secuencia sedimentaria i paleoambiental de la Cova del Toll (Moia): darreres aportacions. Mediariman. Revista d’Estudis del Moianés 24: 8–22.

Bermúdez de Castro JM, Arsuaga JL, Carbonell E et al. 1997. A hominid from the Lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans. Science 276: 1392–1395.

Bermúdez de Castro JM, Martínón-Torres M, Gómez-Robles A et al. 2011. Early Pleistocene human mandible from Sima del Elefante (TE) cave site in Sierra de Atapuerca (Spain): a comparative morphological study. Journal of Human Evolution 61: 12–25.
Copyright © 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 335–362 (2022)

Dupré M. 1988. *Palinología y paleoambiente. Nuevos datos españoles*. Referencias. Trabajos Varios 84, Servicio de Investigación Paleolitica: Valencia.

Enard D, Petrov DA. 2018. Evidence that RNA viruses drove adaptive introgression between Neandertals and modern humans. *Cell* 175: 360–371.e13.

Esteban I, Albert RM, Eixe A et al. 2017. Neandertal use of plants and past vegetation reconstruction at the Middle Paleolithic site of Abrigo de la Quebrada (Chelva, Valencia, Spain). *Archaeological and Anthropological Sciences* 9: 265–278.

Falgueiras C, Rahain JJ, Bischoff JL et al. 2013. Combined ESR/UL-serial chronology of Acheulian hominid-bearing layers at Trinchera Galería site, Atapuerca, Spain. *Journal of Human Evolution* 65: 168–184.

Fernández Peris J, González VB, Blasco R et al. 2012. The earliest evidence of hearths in southern Europe: the case of Bolomor Cave (Valencia, Spain). *Quaternary International* 247: 267–277.

Fernández S, Fuentes N, Carrión JS et al. 2007. The Holocene and Upper Pleistocene pollen sequence of Carrihuera Cave, southern Spain. *Geobios* 40: 75–90.

Figueiral I. 1993. Cabeço de Porto Marinho: una aporte paléoecológico. Premiers résultats. In *El hombre fósil de Ibeas y el Pleistoceno de la sierra de Atapuerca*. Eds. J. Sánchez, S. González and A. Uriarte, 181–221.

Finlayson C. 2008. On the importance of coastal areas in the survival and subclimatic reconstruction. *Quaternary Science Reviews* 27: 221–222.

Finlayson C. 2019. *The Smart Neandertal, Bird Catching, Cave Art and the Cognitive Revolution*. Oxford University Press: Oxford.

Finlayson C, Carrión JS. 2006. Neandertales y humanos modernos en los astrosistemas mediterráneos. In *Palaeoambientes y Cambio Climático Quaternar*. Carrión JS, Fernández S, Fuentes N (eds.). Fundación Séneca, Agencia Regional de Ciencia y Tecnología: Murcia.

Finlayson C, Carrión JS. 2007. Rapid ecological turnover and its impact on Neandertal and other human populations. *Trends in Ecology and Evolution* 22: 213–222.

Finlayson C, Carrión JS, Brown K et al. 2011. The Homo habitat niche: using the avian fossil record to depict ecological characteristics of Palaeolithic Eurasian hominins. *Quaternary Science Reviews* 30: 1525–1532.

Finlayson C, Fa DA, Jiménez Espejo F et al. 2008. Gorham’s Cave, Gibraltar—the persistence of a Neandertal population. *Quaternary International* 181: 64–71.

Finlayson C, Finlayson G, Fa D (eds.). 2000. *Gibraltar During the Late Pleistocene*. Asociación Española para el Estudio del Cuaternario, 167–172.

Finlayson C, Carrión JS. 2007. Rapid ecological turnover and its impact on Neandertal and other human populations. *Trends in Ecology and Evolution* 22: 213–222.

Finlayson C, Pacheco FG, Rodríguez-Vidal J et al. 2006. Late survival of Neandertals at the southernmost extreme of Europe. *Nature* 443: 850–853.

Fletcher WJ, Boski T, Moura D. 2007. Palynological evidence for environmental and climatic change in the lower Guadiana valley, Portugal, during the last 13 000 years. *Holocene* 17: 481–494.

Fletcher WJ, Sánchez Goñi MF. 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. *Quaternary Research* 70: 451–464.

Fletcher WJ, Sánchez Goñi MF, Álvarez L et al. 2010. Millennial-scale variability during the last glacial in vegetation records from Europe. *Quaternary Science Reviews* 29: 2819–2864.

Floreschitz F, Vélez-Ossorio J, Wijmstra T. 1971. Palynology of a thick Quaternary succession in S. Spain. *Palaeogeography, Palaeoclimatology, Palaeoecology* 10: 233–264.

García N, Arsuaga JL. 2011. El Sima de los Huesos (Burgos, northern Spain): paleoenvironment and habitats of Homo heidelbergensis during the Middle Pleistocene. *Quaternary Science Reviews* 30: 1413–1419.

García-Amorena I, Rubiales JM, Moreno Amat E et al. 2011. New macrofossil evidence of Pinus nigra Arnold on the northern Iberian Meseta during the Last Glacial. *Review of Palaeobotany and Palynology* 163: 281–288.

García-Antón M. 1987. Estudio polínico preliminar de los yacimientos de la sierra de Atapuerca (Burgos). In *El hombre fósil de Ibeas y el Pleistoceno de la sierra de Atapuerca*. Aguirre E, Carbonell E, Bermúdez de Castro JM (eds.). Junta de Castilla y León: Soria; 55–59.

García-Antón M. 1989. Estudio palinológico de los yacimientos mesopleistocenos de Atapuerca (Burgos): reconstrucción paisajística y paleoclimática. *PhD Thesis, Universidad Autónoma de Madrid*.

García-Antón M, Sainz-Ollero H. 1991. Pollen records from Middle Pleistocene Atapuerca site (Burgos, Spain). *Palaeogeography, Palaeoclimatology, Palaeoecology* 85: 199–206.

García-Antón M. 1992. Paleovegetación del Pleistoceno medio de Atapuerca a través del análisis polínico. In: *Actas: Evolución humana en Europa y los yacimientos de la sierra de Atapuerca*. 1, Carbonell E, Arsuaga JL (eds.); 147–165.

García-Mijangos I, Campos JA, Biurrun I et al. 2015. Marcescent forests of the Iberian Peninsula: fluvial and climatic characterization, *Geobotany Studies*. Springer: Berlin; 119–138.

García-Rovés E. 2007. Dinámica de la Paleovegetación y cambios climáticos durante el Tardiglacial y Holoceno en secuencias sedimentarias de la provincia de León. Tesis Doctoral, Universidad de León: Léon.

Giardini M. 2007. Late Quaternary vegetation history at Stracciacappa (Rome, central Italy). *Vegetation History and Archaeobotany* 6: 301–316.

Gil García MJ, Valiño MD, Rodríguez AV et al. 2002. Late-glacial and Holocene palaeoclimatic record from Sierra de Cebollera (northern Iberian range, Spain). *Quaternary International* 93–94: 13–18.

Gil-Romera G, González-Sampériz P, Lasheras-Álvarez L et al. 2014. Biomass-modulated fire dynamics during the Last Glacial–Interglacial Transition at the Central Pyrenees (Spain). *Palaeogeography, Palaeoclimatology, Palaeoecology* 402: 113–124.

Giralt S, Burjachs F, Roca JR et al. 1999. Late Glacial to Early Holocene environmental adjustment in the Mediterranean semi-arid zone of the Salines playas-lakes (Alacante, Spain). *Journal of Paleolimnology* 21: 449–460.

Gómez-Orellana I, Ramlí-Regó P, Muñoz, Sobrino C. 2007. The Würm in NW Iberia, a pollen record from Area Longa (Galicia). *Quaternary Research* 67: 438–452.

Gómez-Orellana I, Ramlí-Regó P, Muñoz-Sobrino C. 1998. Una nueva secuencia polínica y cronológica para el depósito pleistoceno de Mougás (NW de la Península Ibérica). *Revue de Paleobiologie* 17: 35–47.

Gómez-Orellana I, Ramlí-Regó P, Muñoz-Sobrino C et al. 2001. Análisis polínico y cronológico de los depósitos pleistocenos de Moucades (Cangas de Foz, Lugo) y Río Boí (Muras, Lugo). In *Palinología: Diversidad y Aplicaciones, Tombellas-Blanco MA, Fernández González D, Valencia Barrera RM* (eds.). Secretariado de Publicaciones, Universidad de León: León; 153–160.

Góñi MS, C I, T J et al. 2002. Synchronicity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. *Climate Dynamics* 19: 95–105.

González-Sampériz P. 2004. Evolución paleoambiental del sector central de la cuenca del Ebro durante el Pleistoceno superior y Holoceno. Instituto Pirenaico de Ecología-ICMZ (eds.). Secretariado de Publicaciones, Universidad de León: León; 59–68.

González-Sampériz P, Aranbarri J, Pérez-Sanz A et al. 2017. Environmental and climate change in the Southern Central Pyrenees since the Last Glacial Maximum: A view from the lake records. *CATENA* 149: 668–688.

González-Sampériz P, García-Prieto E, Aranbarri J et al. 2013. Reconstrucción paleoambiental del último ciclo glacial-terciario en la Iberia continental: la secuencia del Caiñar de Villarquemado (Teruel). *Cuadernos de Investigación Geográfica* 39: 49–76.

González-Sampériz P, Gil-Romera G, García-Prieto E et al. 2020. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: the Villarquemado sequence in NE Iberia. *Quaternary Science Reviews* 242.
González-Sampériz P, Leroy SAG, Carrión JS et al. 2010. Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Review of Palaeobotany and Palynology 162: 427–457.

González-Sampériz P, Montes L, Utrilla P. 2003. Pollen in hyena coprolites from Gabasa Cave (northern Spain). Review of Palaeobotany and Palynology 126: 7–15.

González-Sampériz P, Valero-Garcés B, Carrión JS. 2004. Was the Ebro valley a glacial refugium for temperate trees? Anales de Biología 26: 13–20.

González-Sampériz P, Valero-Garcés BL, Carrión JS et al. 2005. Glacial and Lateglacial vegetation in Northeastern Spain: new data and a review. Quaternary International 140–141: 4–20.

González-Sampériz P, Valero-Garcés BL, Moreno A et al. 2006. Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research 66: 38–52.

Greenbaum G, Friesem DE, Hovers E. 2019. Was inter-population connectivity of Neandertal and modern humans the driver of the Upper Palaeolithic transition rather than its product? Quaternary Science Reviews 2017: 316–329.

Haile-Selassie Y, Latimer BM, Alene M et al. 2010. An early Australopithecus aethiopicus postcranium from Woranso-Mille, Ethiopia. Proceedings of the National Academy of Sciences of the United States of America 107: 12121–12126.

Happe A, Rodríguez-Sánchez F, Dobrowski S et al. 2013. Climate refugia: from the species to the Glacial Maximum to the twenty-first century. New Phytologist 197: 16–18.

Hannon GE. 1985. Late Quaternary vegetation of Sanabria Marsh, North West, Spain. MSc Thesis, Trinity College: Dublin.

Hardy K. 2018. Plant use in the Lower and Middle Palaeolithic: food, medicine and raw materials. Quaternary Science Reviews 191: 393–405.

Haws JA, Benedetti MM, Talamo S et al. 2020. The Early Aurignacian dispersal of modern humans into westernmost Eurasia. Proceedings of the National Academy of Sciences of the United States of America 117: 25414–25422.

Hublin JJ. 2009. Out of Africa: modern human origins special feature: The origin of Neanderlats. Proceedings of the National Academy of Sciences of the United States of America 106: 16022–16027.

Iriarte MJ, Gómez-Orellana L, Muñoz-Sobrino C et al. 2005. La dinámica de la vegetación en el NW peninsular durante la transición del Paleolítico medio al Paleolítico Superior. Monografías del Museo de Altamira 20: 231–253.

Jennings R, Finlayson C, Fa D et al. 2011. Southern Iberia as a refuge for the last Neandertal populations. Journal of Biogeography 38: 1873–1885.

Jones JR, Richards MP, Reade H et al. 2019. Multi-isotope investigations of ungulate bones and teeth from el Castillo and Covalejos caves (Cantabria, Spain): implications for paleoenvironment reconstructions across the Middle–Upper Palaeolithic transition. Journal of Archaeological Science: Reports 23: 1029–1042.

Jones JR, Richards MP, Straus LG et al. 2018. Changing environments during the Middle–Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones. Scientific Reports 8: 14842.

Julia R, Negendank JFW, Seret G et al. 1994. Origin and evolution of desertification in the Mediterranean environment in Spain. Informe Final del Proyecto Europeo EVS1-CT91–0037. Bruxelas.

Kolodny O, González Echegaray J, García Guinea MA, Begines Ramírez A (eds). 2011. Monografías Institut de Paleontología Humana, Junta de Andalucía, Consejería de Cultura: Málaga; 629–660.

Lebreton V, Renault-Miskovksy J, Carrión JS et al. 2006. Etude palynologique du remplissage de la grotte du Boquete de Zalarraya. In: La Grotte du Boquete de Zalarraya, Barroso C, de Lumley H (eds). Monografías Institut de Paleontología Humana, Junta de Andalucía, Consejería de Cultura: Málaga: 629–660.

Leroi-Gourhan A. 1966. Análisis polínico de la cueva de el Otero. In Excavaciones en la cueva del Otero (Santander). Excavaciones arqueológicas en España 53, González Echegaray J, García Guinea MA, Begines Ramírez A (eds). Ministerio de Educación: Madrid; 83–85.

Leroi-Gourhan A. 1971. Análisis polínico de la cueva Morín. In Cueva Morín: excavaciones 1966–1968. Publicaciones del Patronato de las cuevas prehistóricas de la provincia de, González Echegaray J, Freeman LG (eds). Santander: Santander; 359–365.

LeUnda M, González-Sampériz P, Gil-Romera G et al. 2017. The Late- Glacial and Holocene Marboré Lake sequence (2612 m asl, Central Pyrenees, Spain): testing high altitude sites sensitivity to millennium scale vegetation and climate variability. Global and Planetary Change 157: 214–231.

López-García JM, Blain H-A, Burjachs F et al. 2012. A multi-disciplinary approach to reconstructing the chronology and environment of southwestern European Neandertals: the contribution of Teixoneres cave (Moïà, Barcelona, Spain). Quaternary Science Reviews 43: 33–44.

López-García P. 1977. Análisis polínico de Verdelino (Cuenca). Trabajos de Prehistoria 34: 82–88.

López-García P. 1982. Análisis polínico. Trabajos de Arqueología Navarra 3: 355–358.

López-García P. 1986. Estudio palinológico del Holoceno español a través del análisis de yacimientos arqueológicos. Trabajos de Prehistoria 43: 143–158.

López-García P. 1987. Datos polínicos del Holoceno de Navarra y Aragón, In Actas del VI Simposio de Palinología APLE, septiembre de 1986. Acta Salmanticensis 65, Civís Llobera J, Valle Hernández MF (eds). Universidad de Salamanca: Salamanca; 315–320.

López-García P. 1988. Análisis palinológico. La cueva de Ambrosio (Vélez Blanco, Almería) y su posición cronoestratigráfica en el Mediterráneo Occidental. British Archaeological Reports 462: 127–134.

López-Merino L. 2009. Paleoambiente y antropización en Asturias durante el Holoceno. Tesis Doctoral, Universidad Autónoma de Madrid.

López-Sáez JA, Carrasco RM, Turu V et al. 2020. Late Glacial–Early Holocene vegetation and environmental changes in the western Iberian Central System inferred from a key site: the Navamuño record, Béjar range (Spain). Quaternary Science Reviews 230.

López-Sáez JA, López-García P, Cortés, Sánchez M. 2007. Paleovegetación del Cuaternario reciente: estudio arqueoepicotálico. In: Cueva Bajondilido (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente en la Bahía de Málaga, Cortés Sánchez M (ed.). Centro de Ediciones de la Diputación de Málaga, Junta de Andalucía, Universidad de Málaga, Fundación Cueva de Nerja y Fundación Obra Social Unica de Málaga; 139–156.

Magri D, Di Rita F, Aranbarri J et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 23–55.

Manzano S, Carrión JS, López-Merino L et al. 2017. Mountain strongholds for woody angiosperms during the Late Pleistocene in SE Iberia. CATÉN 25: 107–112.

Margari V, Gibbard PL, Bryant CL et al. 2009. Character of vegetational and environmental changes in Southern Europe during the last glacial period; evidence from Lesvos Island, Greece. Quaternary Science Reviews 28: 1317–1339.

Marín-Arroyo AB, Rios-Garaiz J, Straus LG et al. 2018. Chronological reassessment of the Middle to Upper Paleolithic transition and early Upper Palaeolithic cultures in Cantabrian Spain. PLoS ONE 13: e0194708.

Markova AK, Smirnov NG, Kozharinov AV et al. 1995. Late Pleistocene distribution and diversity of mammals in northern Eurasia. Paleontologia i Evolucio 28–29: 5–143.

Martín Arroyo T. 1998. Paleoecología y Paleoambiente durante el Paleolítico medio y Superior en el valle del Tajo. Tesis Doctoral, Universidad de Alcalá de Henares.
Meyer-M, Arsuaga JL, de Filippo C Martínez Navarro C, Carrión JS, Munuera M Montserrat Martí J. 1992. Copyright 360 JOURNAL OF QUATERNARY SCIENCE

Muñoz Sobrino C, Ramil. 2020. Gathering in the dunes. Seeds and fruits from the dune ecosystem of the La Albufera-Rojano area (Almería, Spain). Review of Palaeobotany and Palynology 281: 1–12.

Pons A, Reille M. 1988. The Holocene and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66: 243–263.

Potts R. 1998. Environmental hypotheses of hominin evolution. American Journal of Physical Anthropology 27: 93–136.

Rego P, Gómez del Norte de la Península Ibérica. Cambios naturales y perturbaciones durante el último interglaciar. In: Fornos-Bermejo et al. 1994. Climatic change on the Iberian Peninsula during the Holocene. Rodríguez C, Gutián MA. 2001. Vegetation in the mountains of northwest Iberia during the last glacial-interglacial transition. Vegetation History and Archaeobotany 10: 7–21.

Roche D, Ségalen L, Senut B 2004. The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies. Organic Geochemistry 35: 1243–1260.

Santamaria-Vera CM, cement-Gallejo PP, Raigón MD et al. 2019. Corema album archaeobotanical remains in western Mediterranean basin. Assessing fruit consumption during Upper Palaeolithic in Cova de les Cendres (Alcante, Spain). Quaternary Science Reviews 207: 1–12.

Martín-Obiol R, Julià R. 1994. Climatic change on the Iberian Peninsula recorded in a 30,000 yr pollen record from Lake Banjole, Quaternary Research 41: 91–98.

Díaz S 2021. Could the hypodigm of Homo heidelbergensis, a view from the eastern Mediterranean. Quaternary International 466: 66–81.

Okuda M, Yasuda Y, Setoguchi T. 2001. Middle to Late Pleistocene vegetation history and climatic changes at Lake Kopsa, Southeast Greece, Boreas 30: 73–82.

Ochando J, Carrión JS, Rodríguez-Vidal J et al. 2020d. Palynology and chronology of hyaena coprolites from the Pihar karstic Caves Las Vícar Innanas and Carthelu, southern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 552.

Ochando J, López-Sáez JA, Pérez-Díaz S et al. 2020c. A new pollen sequence from southern Iberia suggesting coastal Pleistocene phytodiversity hotspot. Review of Palaeobotany and Palynology 281.

Pantaleón-Cano J, Vélez-Orozco et al. 2003. Palynological evidence for vegetational history in semi-arid areas of the western Mediterranean (Almería, Spain). Holocene 13: 109–119.

Peñalba MC, Arnold M, Quiot J et al. 1997. Termination of the last glaciation in the Iberian Peninsula inferred from the pollen sequence of Quintanar de la Sierra. Quaternary Research 48: 205–214.

Pérez-Oblíb R, Julia R. 1994. Climatic change on the Iberian Peninsula recorded in a 30,000 yr pollen record from Lake Banjole, Quaternary Research 41: 91–98.

Potts R. 1998. Environmental hypotheses of hominin evolution. American Journal of Physical Anthropology 27: 93–136.

Priot C, Carrión JA. 1999. Tafonomía polinica: sesgos abióticos y bióticos del registro polínico en cuevas. Archivos de la Asociación Paleontológica Argentina 6: 59–64.

Press J, Kotsedendris A, Christians K et al. 2015. The 1.5-Ma-long terrestrial climate archive of Tenaghi Philippion, northeastern Greece: evolution, exploration, and perspectives for future research. Newsletters on Stratigraphy 48: 253–276.

Ramil-Rogo P, Gómez-Orellana L, 2002. Nuevos planteamientos para la periodización climática de los territorios Cantábrico-Atlánticos de la península ibérica durante el último interglaciar. In: Fornos-Bermejo et al. 1994. Climatic change on the Iberian Peninsula during the Holocene. Rodríguez C, Gutián MA. 2001. Vegetation in the mountains of northwest Iberia during the last glacial-interglacial transition. Vegetation History and Archaeobotany 10: 7–21.

MNHNP. 2001. Climatic change on the Iberian Peninsula during the Holocene. Rodríguez C, Gutián MA. 2001. Vegetation in the mountains of northwest Iberia during the last glacial-interglacial transition. Vegetation History and Archaeobotany 10: 7–21.

MNHNP. 2001. Climatic change on the Iberian Peninsula during the Holocene. Rodríguez C, Gutián MA. 2001. Vegetation in the mountains of northwest Iberia during the last glacial-interglacial transition. Vegetation History and Archaeobotany 10: 7–21.

MNHNP. 2001. Climatic change on the Iberian Peninsula during the Holocene. Rodríguez C, Gutián MA. 2001. Vegetation in the mountains of northwest Iberia during the last glacial-interglacial transition. Vegetation History and Archaeobotany 10: 7–21.
Uzquiano P, Arbizu M, Arsuaga JL et al. 2008. Datos paleoambientales en la cuenca media del Nalón entre 40–32 ka. Un análisis de la cueva de Comalies (Santo Adriano, Asturias). In: Actas XII Reunión Nacional de Cuaternario AEQUA. Ávila, 21-23 Junio 2007 Cuaternario y Geomorfología, Baena J, Lario J (eds). 22: 121–133.

Uzquiano P, Arbizu AM. 1997. Consideraciones paleoambientales del tardiglacial y holoceno inicial en el Levante español: macrorrostros vegetales de el Tossal de la Roca (Vall d’Alcalá, Alicante). Anales del Jardín Botánico de Madrid 55: 125–133.

Uzquiano P, Ruiz-Zapata M, Gil-García M et al. 2016. Late Quaternary developments of Mediterranean oaks in the Atlantic domain of the Iberian Peninsula: the case of the Cantabrian region (N Spain). Quaternary Science Reviews 153: 63–77.

Val-Peón C, Expósito I, Soto M et al. 2019. A taphonomic approach to the pollen assemblage from layer M of the Abric Romani archaeological site (NE Iberian Peninsula). Review of Palaeoecology and Palynology 270: 19–39.

van der Knaap WO, van Leeuwen JFN. 1997. Late Glacial and Early Holocene vegetation succession, altitudinal vegetation zonation, and climatic change in the Serra de Estrella, Portugal. Review of Palaeoecology and Palynology 97: 239–285.

Vernet JL, Terral JF. 2006. Les charbons de bois des niveaux de la Cueva Antón: un échantillon du domaine de la poste-glaciation dans le Sud de la France. In: La Cueva Antón. Estudi de l’evolució de la vegetació i del clima durant el Tardiglacial i el Postglacial a partir del análisis palinológico del Delta de l’Ebre i de Menorca. Publicacions de la Universitat Autònoma de Barcelona. Edició Microfotogràfica. ETD Micropublicacions, SL.

Vidal-Matutano P, Blasco R, Sáñudo P et al. 2019. The anthropogenic use of firewood during the European Middle Pleistocene: charcoal evidence from Levels XIII and XI of Bolomor Cave, Eastern Iberia (210–160 ka). Environmental Archaeology 24: 269–284.

Vidal-Matutano P, Henrí A, Carrón-Marcó Y et al. 2020. Disentangling human from natural factors: taphonomical value of micro-anatomical features on Wood and charcoal assemblages. Journal of Archaeological Sciences 31.

Vidal-Matutano P, Henrí A, Thiery-Parisot I. 2017. Dead wood gathering among Neanderthal groups: charcoal evidence from Abric del Pastor and El Salt (eastern Iberia). Journal of Archaeological Science 80: 109–121.

Vidal-Matutano P, Pardo-Gordó S. 2020. Predictive Middle Palaeolithic climatic conditions from eastern Iberia: a methodological approach based on charcoal analysis and modelling. Archaeological and Anthropological Sciences 12: 36.

Villaverde V, Real C, Roman D et al. 2019. The early Upper Palaeolithic of Cova de les Cendres (Alicante, Spain). Quaternary International 515: 92–124.

Villaverde V, Sanchis A, Badal E et al. 2021. Cova de les Malladetes (Valencia, Spain): New Insights About the Early Upper Palaeolithic in the Mediterranean Basin of the Iberian Peninsula. Journal of Palaeolithic Archaeology 4.

Walker MJ, Gilbert J, López MV et al. 2008. Late Neanderthals in southeastern Iberia: Sima de las Palomas del Cabezo Gordo, Murcia, Spain. Proceedings of the National Academy of Sciences of the United States of America 105: 20631–20636.

Walker MJ, Gilbert J, Rodríguez-Estrella T et al. 2004. Neanderthals and their landscapes: middle Palaeolithic land use in the Segura Basin and adjacent areas of south-eastern Spain. In: Settlement Dynamics of the Middle Palaeolithic and Middle Stone Age. Tübingen Publications in Archaeology Vol. II, Conard N (ed.): 461–512.

Wall JD, Yang MA, Jay F et al. 2013. Higher levels of Neanderthal ancestry in East Asians than in Europeans. Genetics 194: 199–209.

Ward S, Gale R, Carruthers W. 2012a. Late Pleistocene vegetation reconstruction at Vanguard Cave. In: Neanderthals in Context. A Report of the 1995–1998 Excavations at Gorham’s and Vanguard Caves, Gibraltar, Barton RNE, Stringer CB, Finlayson C (eds). Institute of Archaeology, University of Oxford: Oxford; 218–223.

Ward S, Gale R, Carruthers W. 2012b. Late Pleistocene vegetation reconstruction at Gorham’s Cave. In: Neanderthals in Context: A Report of the 1995–1998 Excavations at Gorham’s and Vanguard Caves, Gibraltar, Barton RNE, Stringer CB, Finlayson C (eds). Institute of Archaeology, University of Oxford: Oxford, Oxford, 89–101.

Willis KL. 1994. The vegetational history of the Balkans. Quaternary Science Reviews 13: 769–788.

Wood B, Strait D. 2004. Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution 46: 119–162.

Yll EL. 1995. Estudio de la evolución de la vegetación en el clima durante el Tardiglacial I el Postglacial a partir del análisis palinológico del Delta de l’Ebre i de Menorca. Publicacions de la Universitat Autònoma de Barcelona. Edició Microfotogràfica. ETD Micropublicacions, SL.

Yll EL, Carrión JS, Pantaleón J et al. 2003. Palinología del Cuaternario reciente en la Laguna de Villena (Alicante). Anales de Biología 25: 65–72.

Yll EL, Pérez-Obiol R. 1992. Instalación de los bosques deducida a partir del análisis polínico de un sondeo marino del Delta del Ebro (Tarragona, España). Orsis 7: 21–30.

Yll R, Carrión JS. 2003. Restos glaciares de vegetación mediterránea y su relación con la ocupación humana en el Ibérico. Polen 13: 1–12.

Zilhão J, Ajas A, Badal E et al. 2016. Cueva Antón: a multi-proxy MIS 3 to MIS 5a paleoenvironmental record for SE Iberia. Quaternary Science Reviews 146: 251–273.

Zilhão J, Anesin D, Aubry T et al. 2017. Precise dating of the Middle-to-Upper transition in Murcia (Spain) supports late Neanderthal persistence in Iberia. Heliyon 3: e00435.

Zilhão J, Angelucci DE, Igreja MA et al. 2020. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367: 6485.