Genetic Divergence Analysis of Rice Genotypes under Salt Stress Environment

Anuj Kumar1*, D. K. Dwivedi1, Pradeep K. Bharti1, Shivani1, Preeti Kumari2, Archana Devi2 and N. A. Khan1

1Department of Plant Molecular Biology and Genetic Engineering, Acharya Narendra Deva University of Agriculture and Technology, Kumar Ganj, Ayodhya, 224229, India.
2Department of Genetics and Plant Breeding, Acharya Narendra Deva University of Agriculture and Technology, Kumar Ganj, Ayodhya, 224229, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author AK designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors DKD and PKB managed the analyses of the study. Authors Shivani, PK, AD and NAK managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2020/v39i930604

Editors:
(1) Dr. Orlando Manuel da Costa Gomes, Lisbon Accounting and Business School (ISCAL), Lisbon Polytechnic Institute, Portugal.

Reviewers:
(1) Qi Cheng, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, China.
(2) Aba-Toumou Louie, University of Bangui, Central African Republic.
Complete Peer review History: http://www.sdiarticle4.com/review-history/56930

Received 28 February 2020
Accepted 05 May 2020
Published 08 May 2020

Original Research Article

ABSTRACT

The present investigations were conducted in randomized block design with three replications within the net house of the department of PMB&GE, A. N.D.U.A.T, Kumar Ganj, Ayodhya to estimate the genetic divergence under normal and salt stress conditions involving 20 rice genotypes during Kharif 2018-19, on the basis of relative parameters of D2 values, the clustering pattern of 20 rice genotypes under normal and salt stress conditions were grouped into five non-overlapped clusters. Under normal condition, Cluster III having highest 7 rice genotypes, Cluster II having 5 genotypes, cluster V having 4 genotypes and IV having highest 3 rice genotype. Cluster I having only one genotype. Under saline condition, Cluster I having highest rice 6 genotypes, cluster III having 5 genotypes and cluster II & IV having 4 genotypes respectively. Cluster V having only one genotype. It means the genetic similarity was found in the genotypes were expressed within the cluster and the pattern of distribution of genotypes in various clusters exhibited that topographical diversity wasn't

*Corresponding author: E-mail: ak87675@gmail.com;
associated with ancestral diversity as genotypes of same countryside were grouped into different cluster and vice-versa. The highest inter cluster distance was recorded between cluster 2 and cluster 5 (26108.030) followed by between cluster 1 and cluster 5 (18550.010), cluster 3 and cluster 5 (15231.860), cluster 4 and cluster 5 (5335.860) in normal condition and in saline condition the maximum inter cluster distance was existed between cluster 4 and cluster 5 (2344.091) followed by between cluster 3 and cluster 5 (2067.610), cluster 2 and cluster 5 (1447.564), cluster 1 and cluster 5 (1238.095). The results showed extensive variation from one cluster to other in respect of cluster means for all parameters, which represented that genotypes having distinctly different mean performance for various characters were reported into different clusters.

Keywords: Rice; genotypes; clusters and D^2 analysis.

1. INTRODUCTION

Rice (Oryza sativa L.) is one of the most important plants from poaceae. Rice is a cost-effective important food crop with nourishment diversification and useful in poverty eradication more than three billion of world populations. Rice is ranked as the world’s number one human food crop. In India, rice is grown in an area of 43.97 million hectares with the production and productivity levels of 104.32 million tonnes and 2372 kg/ha, respectively, (Indiastat, 2017-2018). Plant breeding programme with different genetic base could encourage a high level of crop yield. The narrow genetic base of semi-dwarf germplasm is likely to build them vulnerable to various biotic and abiotic stresses. Heterogeneity in rice has been contributed to breed high yielding varieties. Germplasm of rice are being assembled over past several decades to use them in crop improvement programmes to improve high yielding, resistant to biotic and abiotic stresses with good adaptability. The success of any breeding programme depends on the exploitation of existing diversity and therefore, it is desirable to assemble, examine and utilize the existed diversity for crop improvement to required a specific ecosystem. D^2 analysis among the ancestral is important because a cross involving genetic diversity of parents is likely to produce maximum heterogenetic effect and also more diversity could be expected in segregating generations. Therefore, a meaningful classification of genotypes will enable the breeder to identify the best ancestral with wide D^2 and to utilize some of the selected diverse parents in the hybridization programme.

2. MATERIALS AND METHODS

Rice germplasm a total twenty rice genotypes were used in this study, which were IR68144-2B-2-2-3-1-120, IR-68144-2B-2-2-3-1-127, IR-91167-99-1-1-1-3, IR-91167-133-1-1-2-3, NUD-3, NDR-359, IR-28, FL-478, NUD-2, CSR-13, AYYAR, NDRK-2008, IR-64, SWARNA, IR-92953-49-1-3, IR-91171-66-3-2-1-3, IR-83668-35-2-2-2, SAMBHA MANSURI, TARAMON and MTU-1010.

The experiments were conducted in Randomized Block Design with three replications in normal and salt stress conditions in the green house of the department of PMB&GE, A. N.D.U.A.T, Kumar Ganj, Ayodhya during Kharif 2018-19. The data were recorded on days to 50% flowering, plant height, panicle bearing tillers/plants, panicle length (cm), spikelets/panicle, grains/panicle, spikelet fertility (%), test weight (g), biological yield (g), harvest index (%), grain yield (g) Na⁺ content, K⁺ content (mg g⁻¹) and Na⁺/K⁺ ratio. Observations were recorded on randomly selected five plants from each variety in each replication at maturity except for days to 50% flowering which were recorded on the plot basis at flowering stage.

2.1 Estimation of Genetic Divergence (D^2)

The genetic divergence analysis of 20 genotypes of rice was worked out using Mahalanobis [1] D^2 statistics Rao, [2].

2.2 The Calculation of D^2 Values Involved Following Steps

1. A set of uncorrelated linear combinations (y’s) was obtained by pivotal condensation of the common dispersion matrix Rao, [2] of a set of correlated variables (x’s). The common dispersion matrix was arranged with the help of error mean sum of squares and mean sum of products.

2. The combination between y’s and x’s the mean values of various genotypes for different characters (X1 to X10) were transformed into the mean values of a set of uncorrelated linear combinations (Y1 to Y10).
3. The D_2^2 values between i^{th} and j^{th} genotypes for kth characters is calculated as:

$$D_{2ij}^2 = K (Y_{it} - Y_{jt})^2$$

Where, $t = 1$

2.3 The K Components were Calculated Separately and Added to get D_{2ij}^2

1. The ‘K’ components of ‘D_{2ij}^2’ for each combination were ranked in descending order of magnitude.
2. These ranks were added up for each component D_{2ij}^2 over all combinations of i and jth rank totals were obtained.

2.4 Group Constellation

The D_2^2 values were arranged in an increasing order of magnitude. The grouping of the strains into various clusters was done using Tocher's method Rao, [2]. The two widely related groups were chosen and third groups were found which had the smaller average D_2^2 value from the first two. Similarly, the fourth was chosen to have the smallest average D_2^2 from the first three and so on. The D_2^2 value did not fit in with the former group and was, therefore, taken as another cluster.

2.5 Intra and Inter-Cluster Distance

The inter-cluster D_2^2 was calculated as the sum of $n(n-1)/2$ genotypes within a cluster divided by total number of combinations. All possible D_2^2 values between the groups of two clusters were added and then divided by $n_1 \times n_2$ for computing inter-cluster distance. Where, n_1 and n_2 = The number of genotypes in two clusters.

2.6 Cluster Mean

The cluster mean for the distinct character is the summation of mean values of the genotypes included in a cluster classified by number of genotypes in the cluster.

3. RESULTS AND DISCUSSION

The selection of appropriate various oldsters for sexual union is a vital feature of any crop breeding programmes as a result of parental diversity in optimum magnitude is needed to get superior genotypes in segregating generations Moll et al. [3]. The importance of genetic divergence in crop improvement has been stressed by many scientists Griffing and Lindstrom, [4]; felon et al., 1962 Arunachalam [5] and Hawkas (1981). D_2^2 analysis has been used by many employees for the assessment of genetic divergence in many crops Malhotra and Singh [6].

In the present study, the twenty genotypes of rice were grouped into five different non-overlapping clusters under normal and saline conditions (Table 1a and b), suggesting considerable amount of genetic diversity in the materials. under control condition Yadav, Pratibha, et al. [7]. Cluster III having highest rice genotypes (7) namely NDR-359, IR-29, CSR 13, AYYAR, NDRK2008, IR-92953-49-1-3 and IR-83668-35-2-2-2, Cluster II having five genotypes i.e. IR-68144-2B-2-2-3-1-120, FL-478, NUD-2, TARAMON and MTU-1010. Cluster V having four genotypes i.e. IR-68144-2B-2-2-3-1-127, NUD-3, IR-64 and SWARNA, Cluster IV having three genotypes i.e. NDR-359, IR-91171-66-3-2-1-3 and SAMBA MASURI. Cluster I having only one genotype i.e. IR-91167-133-1-1-2-3. While in saline condition Cluster I having highest rice genotypes (6) namely, IR-68144-2B-2-2-3-1-120, IR-91167-133-1-1-2-3, NDR-359, IR-29, NUD-2 and CSR 13, Cluster III having five genotypes i.e. IR-68144-2B-2-2-3-1-127, NUD-3, NDRK-2008, SAMBA MASURI and TARAMON, Cluster II & IV having four genotypes i.e. FL-478, AYYAR, IR64, SWARNA and IR-91167-99-1-1-1-3, IR-92953-49-1-3, IR-83668-35-2-2-2, IR-91171-66-3-2-1-3, respectively. Cluster V having one genotypes i.e. MTU-1010. It means the general genetic similarity was found within the genotypes were reported within the cluster and therefore the pattern of distribution of genotypes in various clusters exhibited that topographical diversity wasn’t related with genetic diversity as genotypes of same countryside were grouped into various cluster and vice-versa, as supported by earlier finding of Devi et al. [8]; Devi M, et al. [9]; Devi Shashi and Dwivedi, [10]; Devi et al. [11]; Mall et al. [12] and Ovung et al. [13].

The estimates of average intra and inter cluster distances for presented in Table 2a and Table 2b revealed that the maximum intra cluster distance was exhibited by the genotypes of cluster 5 followed by cluster 4, cluster 3, cluster 2 and cluster 1. The highest inter cluster distance was recorded between cluster 2 and cluster 5 (26108.030) followed by between cluster 1 and cluster 5 (18550.010), cluster 3 and cluster 5 (15231.860), cluster 4 and cluster 5 (5335.860) under normal condition while, under saline condition the highest intra cluster distance was...
recorded by cluster 5 followed by cluster 4, cluster 3 and cluster 2. The highest inter cluster distance was recorded between cluster 4 and cluster 5 (2344.091) followed by between cluster 3 and cluster 5 (2067.610), cluster 2 and cluster 5 (1447.564), cluster 1 and cluster 5 (1238.095) reported good diversity between them and genotypes in these clusters could be used as ancestral in breeding programme to improve desirable line because crosses between genetically divergent lines will generate heterotic segregates. As heterosis can be best exploited and chances of getting transgressive segregates are high when generating divergent lines are hybridized Zaman et al. [14] and Saxesena et al., [15]. Many researchers in various crops have also reported that selection of ancestral for breeding should be done from two clusters having wide inter-cluster distance to get maximum diversity in segregating generations. Heterosis is generally attributed to genetic divergence among the ancestral lines involved in the cross. Nevertheless, the genetic divergence for the maximum expression of the heterotic effects has a limit Moll et al. [3] and Arunachalam et al., [16].

Table 1a. Clustering pattern of 20 rice genotype on the basis on D² analysis for 14 characters in controlled condition

Cluster No.	No. of genotypes	Genotypes
I	1	IR-91167-133-1-1-2-3
II	5	IR-68144-2B-2-2-3-1-120, FL-478, NUD-2, TARAMON, MTU-1010
III	7	NDR-359, IR-29, CSR 13, AYYAR, NDRK-2008, IR-92953-49-1-3, IR-83668-35-2-2-2
IV	3	NDR-359, IR-91171-66-3-2-1-3, SAMBA MASURI
V	4	IR-68144-2B-2-2-3-1-127, NUD-3, IR-64, SWARNA

Table 1b. Clustering pattern of 20 rice genotype on the basis on D² analysis for 14 characters in saline condition

Cluster No.	No. of genotypes	Genotypes
I	6	IR-68144-2B-2-2-3-1-120, IR-91167-133-1-1-2-3, NDR-359, IR-29, NUD-2, CSR 13
II	4	FL-478, AYYAR, IR-64, SWARNA
III	5	IR-68144-2B-2-2-3-1-127, NUD-3, NDRK-2008, SAMBA MASURI, TARAMON
IV	4	IR-91167-99-1-1-1-3, IR-92953-49-1-3, IR-83668-35-2-2-2, IR-91171-66-3-2-1-3
V	1	MTU-1010

Table 2a. Estimation of average inter cluster D² value under control condition

Cluster no.	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Cluster 1	710.163	2072.070	2170.370	4805.715	18550.010
Cluster 2	1276.286	867.018	9190.650	3981.772	26108.030
Cluster 3			811.451	5335.071	15231.860
Cluster 4				0.000	
Cluster 5					

Table 2b. Estimation of average inter cluster D² value under saline condition

Cluster no.	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Cluster 1	422.428	823.908	825.924	1072.397	1238.095
Cluster 2	361.387	927.603	1455.013	1447.564	
Cluster 3	522.126	1195.375	2067.610		
Cluster 4	837.769	2344.091			
Cluster 5					597.118
Table 3a. Cluster mean of 20 rice genotypes under control condition

Characters	Days to 50% flowering	Plant height (cm)	Panicle bearing tillers/plant	Panicle length (cm)	Spikelet/panicle	Grains/panicle	Spikelet fertility (%)	Test weight (g)	Biological yield/plant (g)	Harvest index (%)	Na’	K’	Na’/K’	Grain yield/plant (g)
Cluster 1	90.74	85.56	5.86	20.73	170.41	143.58	84.17	22.85	47.86	3.69	25.98	0.14	19.62	47.86
Cluster 2	95.63	105.90	6.81	20.93	138.16	114.93	82.81	23.16	49.85	3.71	23.58	0.15	21.29	49.85
Cluster 3	94.76	114.09	6.30	21.60	146.82	122.50	82.98	25.94	44.67	3.64	28.32	0.12	18.62	44.67
Cluster 4	94.77	86.00	6.61	21.80	140.38	121.20	86.19	23.24	41.90	3.23	32.95	0.09	17.03	41.90
Cluster 5	98.86	92.77	8.91	16.85	195.99	173.85	88.89	22.81	57.20	3.53	39.56	0.08	17.82	57.20

Table 3b. Cluster mean of 20 rice genotypes under saline condition

Characters	Days to 50% flowering	Plant height (cm)	Panicle bearing tillers/plant	Panicle length (cm)	Spikelet/panicle	Grains/panicle	Spikelet fertility (%)	Test weight (g)	Biological yield/plant (g)	Harvest index (%)	Na’	K’	Na’/K’	Grain yield/plant (g)
Cluster 1	88.08	89.03	5.54	21.47	97.47	80.48	82.37	17.80	27.56	3.29	25.77	0.12	10.90	27.56
Cluster 2	95.87	90.94	5.11	22.70	165.10	143.43	86.91	20.51	30.82	3.01	26.32	0.11	12.26	30.82
Cluster 3	102.37	85.60	4.64	24.18	118.71	98.82	83.51	21.67	31.57	3.61	26.06	0.14	11.01	31.57
Cluster 4	91.65	88.87	5.94	19.17	122.33	98.29	80.78	18.63	29.29	3.02	34.69	0.08	11.60	29.29
Cluster 5	89.21	103.8	4.62	19.15	95.49	77.43	80.79	18.63	36.76	3.24	26.22	0.12	14.21	36.76
The comparison of cluster means revealed considerable differences among the clusters of various characters under control and salty soil (Table 3a and 3b). Under control condition, cluster mean for days to 50% flowering ranged from 90.74 (cluster 1) to 98.86 days (cluster 5). Early flowering genotypes were grouped in cluster 1 (90.74) followed by cluster 2 (95.67) and cluster 5 (98.86), while in salt stress, cluster mean for days to 50% flowering ranged from 88.08 (cluster 1) to 102.37 days (cluster 3). Early flowering genotypes were grouped in cluster 1 (88.08) followed by cluster 5 (89.21), cluster 4 (91.65) and cluster 2 (95.87). The results showed wide diversity from one cluster to another in respect of cluster means for all characters, which indicated wide variation from one cluster to another in respect of cluster means for all characters, which indicated

4. CONCLUSION

In the present study, the genetic divergence for fourteen characters of 20 genotypes of rice were grouped into five different non-overlapping clusters under normal and saline conditions, suggesting considerable amount of genetic diversity in the materials. Under control condition, Cluster III having highest seven rice genotypes, while in saline condition, Cluster I having highest six rice genotypes. It means the general genetic similarity was found within the germplasm were presented within the cluster the estimates of average intra and inter cluster distances for 20 rice genotypes. The maximum intra cluster distance was exhibited by the genotypes of cluster 5 followed by cluster 4, cluster 3, cluster 2 and cluster 1 under normal condition while, under saline condition the highest intra cluster distance was recorded by cluster 5 followed by cluster 4, cluster 3 and cluster 2. suggesting wide diversity between them and germplasm in these clusters could be used as parents in hybridization programme to develop desirable type because crosses between genetically divergent lines will generate heterotic segregates. The comparison of cluster means revealed considerable differences among the clusters of different characters, cluster mean of days to 50% flowering showed considerable difference Under both conditions. The results showed wide variation from one cluster to another in respect of cluster means for all characters, which indicated
that varieties having distinctly different mean performance for various characters.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Mahalanobis. D² and metro glyph analysis in mid duration genotypes of rice. Agric. Sci. J. 1936;56(3):151-156.
2. Rao CR. Advanced statistical method in biometrical research. Edn. John wiley and sons, New York. 1952:390.
3. Moll RN, Lonniquist JH, Jhonson EC. The relation of heterosis and genetic divergence in maize. Genetics. 1965;52:139-144.
4. Griffin B, Lindstrom EW. A study of the combining ability of corn hybrids having varying proportions of Corn Belt and non-corn belt germplasm. Agron. J. 1954;46:545-552.
5. Arunachalam V. Genetic distance in plant breeding. Indian J genet. 1981;41(2):226-236.
6. Malhotra RS, Singh KB. Multivariate analysis in blackgram (Phaseolus mungo Roxb).Indian J Agric. Sci. 1971;41:757-760.
7. Devi RK, Venkanna V, Hari Y, Chandra SB, Lingaiah N, Rajendra KP. Studies on genetic diversity and variability for yield and quality traits in promising germplasm lines in rice (Oryza sativa L.). The Pharma Innovation Journal. 2020;9(1):391-399.
8. Devi M, Jyothula DBP, Krishnaveni B, Rao VS. Genetic divergence studies in rice (Oryza sativa L.) hybrids for yield, yield component traits and quality parameters. Int. J. Curr. Microbiol. App. Sci. 2019;8(06):1577-1583.
9. Devi S, Dwivedi DK. Molecular studies on salinity tolerance in rice (Oryza sativa L.). Thesis Ph.D. N.D.U.A.T., Ayodhya; 2016.
10. Devi SL, Das A, Pandey MK, Kole CR. Depiction of genetic diversity in rice. Crop Res. 2006;32(3):459-491.
11. Mall AK, Swain P, Singh ON. Genetic divergence studies in drought promising rice genotypes based on quality characters. Indian J of Plant Genetic Resources. 2011;24(2):172-176.
12. Ovung YC, Lal GM, Rai PK. Studies on genetic diversity in rice (Oryza sativa L.). J. of Agril. Tech. 2012;8(3):1059-1065.
13. Zaman MR, Paul DNR, Kabir MS, Mahbub MAA, Bhuiya MAA. Assessment of character contribution to the divergence for some rice varieties. Asian J Plant Sci. 2005;4(4):388-391.
14. Saxesena RR, Lal GM, Yadav PS, Vishwakarma MK. Diversity analysis and identification ofpromising lines for hybridization in field pea (Pisum sativum L.). The Bioscan. 2013;8(4):1437-1440.
15. Arunachalam V, Bandyopadhyay A. Limit to genetic divergence for occurrence of heterosis: Experimental evidence from crop plants. Indian J Genet. 1984;44:548554.
16. Singh M, Chaudhari P, Bhandarkar S, Singh L. Studies on genetic divergence analysis in rice germplasm (Oryza sativa L.). International Journal of Chemical Studies. 2020;8(1):2254-2256.
17. Gaurav, Dwivedi DK. Molecular studies on salinity tolerance in rice (Oryza sativa L.). Thesis Ph.D. N.D.U.A.T. Ayodhya; 2018.
18. Yadav P, Dwivedi DK, Harishchandra P, Kumari P, Devi A. Genetic divergence analysis of rice genotypes over environments. journal of Pharmacognosy and Phytochemistry. 2019;SP5:347-351.

© 2020 Kumar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/56930