PCR Primer Design for In-Silico Rapid Detection of Ocular Infection Caused by Candida Species in Humans

Abstract

Background: Computational analyses have shown great potentials for providing tools for the rapid detection and identification of fungi for medical, scientific and commercial purposes. Various bioinformatics tools have been developed for finding the specific regions within the ribosomal RNA (rRNA) gene complex. Candida is a genus of yeast that includes about 150 different species and is the most common cause of human ocular infections. In the present study, rapid detection method of Candida, based on specific regions (18S, 5.8S and 28S) of ribosomal RNA (rRNA) genes of eight (8) species e.g. C. albicans, C. krusei, C. parapsilosis, C. glabrata, C. guilliermondii, C. kefyr, C. lusitaniae and C. tropicalis has been developed. Rapid diagnosis and early identification of causative agent through computational based methods with high accuracy will result in effective treatment.

Objective: Development of rapid detection method and assay for Candida species based on bioinformatics tools.

Methodology: Ribosomal RNA (18S, 5.8S and 28S) sequences of eight Candida species were retrieved from GenBank/EMBL databases. A set of unique primers were designed based on the conserved region in the given yeast species. To verify the in-silico specificity of the designed primers, the NCBI-BLAST program was employed to search the primers in short, near exact sequences. The primers were further analyzed by the AmplifX tool to determine their specificity and sensitivity against Candida species.

Conclusions: The study resulted in the development of rapid and reproducible detection strategy of Candida species on the basis of computational PCR that will be very helpful for the doctors/practitioners to prescribe targeted medicine against Candida and related causative agents.

Introduction

Yeasts are the microorganisms commonly found in nature [1], among them Candida is famous genera containing a wide range of species and sub species. Although among Candida species, few are harmless endosymbionts for hosts such as humans. However, many species that are otherwise harmless but if present in improper place can cause disorders. Out of about 200 species of Candida; C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, C. dubliniensis, C. kefyr and C. lusitaniae are known to cause most human ocular infections [2]. A warm, moist climate and a rural agricultural environment may influence the sensitivity of healthy eyes to fungi and fungal infections [3].

To detect fungal species that can cause infections, specific computational polymerase chain reaction was developed that was effective and enabled scientists to know the root cause of fungal eye infections. Conserved regions of 18S ribosomal RNA genes were used to design specific primers to amplify the targeted regions of desired fungi, ultimately to diagnose Candida and infections developed by Candida. Because effective treatment of any disease can be done only when we know the root cause of disease and we are able to identify and detect the disease causing agents. In this sense computational polymerase chain reaction is more effective way for detection other than conventional microbiological techniques. Because in computational polymerase chain reaction, time saving is main advantage and accuracy of results is more than other techniques [4,5]. Genome of many Candida species is being sequenced, so polymerase chain reaction can specify them by using specific probes with 100% efficacy, sensitivity and specificity. Genome includes ribosomal RNA in this section for development of polymerase chain reaction methods to detect human fungal pathogens by focusing on 18S ribosomal RNA genes, 5.8S and the 5' end of 28S RNA gene in most of the studies conducted [6-8].

Citation: Kanwal A, Javed MR, Ali SW, Tusleem K, ul Qamar MT (2017) PCR Primer Design for In-Silico Rapid Detection of Ocular Infection Caused by Candida Species in Humans. Open J Bioinform Biostat 1(1): 004-009.
Due to many problems in traditional diagnosis methods for detection of fungal systematics and fungal infections, now it has become very necessary to develop rapid detection methods that should be specific and sensitive [9]. The manual assortment of optimum PCR oligonucleotide primer sets can be quite dull and thus offers itself very naturally for computational analysis. The basic cause which can affect function of the oligonucleotides and their melting temperatures as well as possible homology among primers are well defined and straightforward tasks that are easily encoded in computer software. Software provides a minimum number of candidate set of primers, so that the primers can be easily selected with the help of softwares. Scientists are taking benefits of accurate computed calculations and using all the versions of primer’s placements, length, correlation with other primers to find out efficient one that meet all the conditions given by the user. Among a wide range of primer pairs examined by computational methods, software can select only those that are appropriate for the experiment. So, by this method over all excellent quality primers can be selected [10,11]. Hundreds of programs have been designed to select and make primer’s sets having variations in specifications. Primers are also available commercially and primer designing software are also available that provides enhanced efficacy in results [12].

Materials and Methods

Retrieval of nucleotide sequences and their alignment:

The rRNA (18S, 5.8S and 28S) nucleotide sequences of eight (8) ocular infection causing Candida species; Candida albicans, Candida kefyr, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida lusitaniae, Candida glabrata, and Candida guilliermondii were retrieved from NCBI (www.ncbi.nlm.nih.gov) and there accession No. are listed in the Table 1. The selected sequences were aligned by using ClustalW (www.genome.jp/tools/clustalw/) to determine the conserved regions. The templates of conserved regions (18S, 5.8S & 28S) were predicted with their corresponding species along with sequence and product size ranges from 110-111 and 190-194 bp [13].

Designing of universal primers against conserved regions

For the sake of designing primers, conserved regions (18S, 5.8S & 28S) were used into the Geneious (version 10.0.9) tool (www.geneious.com/). Two primer sets were designed with the size of 19bp (ACGGGAAACTCACCAGGTCCA), (TCCCAG-CACGACGGGATT) and 22bp (GTATGCCCCCTAGACGTTCTGG), (GGCCAGGGACTAATACCGCA) respectively.

Primers were then improved and updated primers were then re-analyzed with the help of AmplifX (1.7.0 version) tool (www.amplifx.software.informer.com/1.7/). The modified primers were checked by using parameters such as oligocalc [14] and to make sure that primer have good quality, (Tm (melting temperature), Length of primer, GC content, 3’ end stability, hairpins and Poly X tail parameters were determined.

Analysis and selection of restriction site for Candida species

With the help of NEBcutter (V 2.0) tool (www.neb.com/NEBcutter2/) the eight Candida species sequences were subjected to restriction digestion using the restriction endonucleases type –II, listed in the REBASE database (www.rebase.neb.com/) that select the enzymes to cut the sequences differently at not more than 5 cleavage sites [15].

Results and Discussion

In newborns, candidal retinitis is the most common intra ocular fungal infection [16,17]. Endogenous candidal chorioretinitis causes pain and decrease in vision due to associated anterior uveitis [18]. The full length sequences of eight Candida species namely C. albicans, C. krusei, C. parapsilosis, C. glabrata, C. guilliermondii, C. kefyr, C. lusitaniae and C. tropicalis were retrieved from NCBI and all these 8 Candida species were then subjected to alignment by using online tool clustalW. The 18S, 5.8S and 28S rRNA nucleotides were chosen as the target regions for this study [19]. Figures 1,2 shows the positions of the primers sequences obtained from “GENEIOUS” software.

Table 1: Fungal Candida Species with their accession numbers.

Sr. No	Species	Accession No
1.	Candida albicans	M60302.1
2.	Candida tropicalis	M60308.1
3.	Candida parapsilosis	M60307.1
4.	Candida kefyr	M60303.1
5.	Candida krusei	M60305.1
6.	Candida guilliermondii	M60304.1
7.	Candida lusitaniae	M60306.1
8.	Candida glabrata	M60311.1

Citation: Kanwal A, Javed MR, Ali SW, Tusleen K, ul Gamar MT (2017) PCR Primer Design for In-Silico Rapid Detection of Ocular Infection Caused by Candida Species in Humans. Open J Bioinform Biostat 1(1): 004-009.
Figure 1: Shows the alignment of eight *Candida* species.

Figure 2: Shows the "GENEIOUS" output of primers that were designed against *Candida* species.

Organism	Template Sequence	Length (bp)
Candida albicans	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	111
Candida glabrata	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	110
Candida guilliermondii	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	111
Candida krusei	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	110
Candida kefyr	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	109
Candida lusitaniae	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	108
Candida parapsilosis	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	111
Candida tropicalis	GTGATGCTTATGGAGCTTTCTGGGCCGCGACCGGCCTACACGTGAGGGAGGAGGAGGAGGCTCTGGGAAACTTTGGAAC	111

Citation: Kanwal A, Javed MR, Tusleem K, ul Qamar MT (2017) PCR Primer Design for In-Silico Rapid Detection of Ocular Infection Caused by *Candida* Species in Humans. Open J Bioinform Biostat 1(1): 004-009.
parameters with the help of AmplifX tool are shown in Table 2. These parameters confirmed that new primers were of good quality. Primer amplification efficiencies are given in Table 5 [20, 21].

AmplifX was used to seek in a collection of primers, it was used to amplify a fragment into a target sequence. The information was automatically computed by AmplifX (like Tm, Quality, length) associated with each primer.

The selected species were differentiated by using the restriction enzyme digestion of the PCR products. Candida speciation would be an important aid to effective patient treatment, facilitating the application of species-specific antifungal therapy, thereby avoiding problems of drug resistance.

For finding the genotype of a particular Candida species and identification of gene, software NEB Cutter was used. This cutter was used for the linear DNA analysis and the restriction enzymes were used to cleave the DNA without need for expensive gene sequencing [22]. In similar manner restriction enzymes were used to digest genomic DNA.

After finalization, the results of each Candida species, the number of restriction sites, nucleotide position of each cut, list of enzymes and specificity of common and unique enzymes were separated manually as shown in Tables 6, 7. The enzyme...
TspRI was found as a common restriction enzyme present in all eight species.

While five enzymes were unique; HinFI, MseI, CviQI, TaqI and BsrDI that would subsequently allow identification of C. glabrata, C. guilliermondii, C. kefyr, C. krusei, C. lusitanae species. These five unique restriction enzymes provide greatest level of species discrimination.

Table 4: Detail of Primers Designed against Selected Candida species.

Primer Name	Sequence of Primers (5′ → 3′)	Primer Length (bp)
1st reverse primer	TCCCAGCACGACGGAGTTT	19
3rd reverse primer	GGGCAGGGACGTAATCAACGCA	22
1st forward primer	ACGGGGAAACTCACCAGGTCCA	22
3rd forward primer	GTGATGCCCTTAGACGTTCTGG	22

Table 5: AmplifX output to show the parameters of newly designed primers.

Region	Parameters for (new) forward primers	Parameters for (new) reverse primers
18S, 5.8S and 28S		
3rd forward primer	TM 57.4 Good	TM 61.7 Good
GC percent	54 Good	GC percent 59 Good
3′ end stability	3 Good	3′ end stability 3 Good
polyX	0 Good	polyX 0 Good
Self Dimer	12 Good	Self Dimer 14 Good
Self End Dimer	0 Good	Self End Dimer 0 Good
1st forward primer	TM 61.8 Good	TM 58.3 Good
GC percent	59 Good	GC percent 57 Good
3′ end stability	4 Bad	3′ end stability 2 Good
polyX	0 Good	polyX 0 Good
Self Dimer	16 Good	Self Dimer 12 Good
Self End Dimer	0 Good	Self End Dimer 0 Good

Table 6: Common enzymes present in eight species.

Enzyme	Specificity	Cut Positions	Product
Alu	AGCT	170	24
Apol	RAATTY	144/148	50
Bfai	CTAG	150/152	44
BseYI	CCCCAGC	105/109	89
BsmFI	GGGAC(N)10NNNN	*170/174	24
BspQI	GCTTCTCNNN	138/141	56
BssHII	GCGGCC	*30/34	164
Ddel	CTNAG	9/12	185
Earl	CTTCTCNNN	138/141	56
EcoRI	GAATTC	144/148	50
Hpy99I	CGWCG	*103/98	91
MboII	GAAGA(N)7N	125/124	69
NlaV	GGNNC	*47	147
SapI	GCTTCTCNNN	138/141	56
Styl	CCWWGG	63/67	131
TspRI	NNCASTGNN	44/35	150

Table 7: Unique enzymes present in species.

Unique Enzymes in sp.	Enzyme	Specificity	Cut Positions	Product
glabrata	HinFI	GANTC	*54/57	140
guilliermondii	Mly	GAGTC(N)5	63	131
	Ple	GAGTCNNNN	62/63	132
kefyr	CviQI	GTAC	55/57	139
krusei	HaeIII	GGCC	59/61	135
lusitanae	Phol	GGCC	66	128

Table 7: Unique enzymes present in species.

Identification Strategy

1. **Candida Species**
 - TspRI (Common enzyme in 8 species, Product size = 150 bp)
 - (Unique enzymes)
 - **C. glabrata**
 - HinFI
 - **C. guilliermondii**
 - MseI
 - **C. kefyr**
 - CviQI
 - **C. krusei**
 - TaqI
 - **C. lusitanae**
 - BsrDI

Conclusion

We found that rapid identification of Candida species has become more important because of an increase in ocular infections. An advantage of genotypic identification of Candida species is its rapidity and therefore it will be very helpful for the doctors to detect the specific species and help them to prescribe relevant medicine. Furthermore, traditional methods which were used for the identification of Candida species including morphological and biochemical analysis, and serotyping are based on phenotypic expression, which make them unreliable. Traditional tests are also time consuming. However, computational techniques make identification of Candida species very rapid. In limited medical facilities, the prediction of Candida sp. involved in ocular infection will be a valuable addition of information in the field of medicine.

Acknowledgement

We are thankful to the members of PCR Laboratory,
Pakistan Institute of Nuclear Medicine (PINUM) Cancer Hospital, Faisalabad, Pakistan and Bioprocess Engineering Lab, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan for their valuable contributions.

References

1. Manolakaki D, Velmahos G, Kourkoumpetis T, Chang Y, Alam HB, et al. (2010) Candida infection and colonization among trauma patients. Virulence 1: 367-375. [Link: https://goo.gl/t230J3]

2. Jenkinson HF, Douglas LJ (2002) Interactions between Species in Humans. Open J Bioinform Biostat 1(1): 004-009.

3. Klotz SA, Penn CC, Negvesky GJ, Butrus SI (2000) Fungal and parasitic infections of the eye. Clin micro biol rev 13: 662-685. [Link: https://goo.gl/bAqkJk]

4. Rickerts V, Mousset S, Lambrecht E, Tintelnot K, Schwerdtfeger R, et al. (2007) Comparison of histopathological analysis, culture, and polymerase chain reaction assays to detect invasive mold infections from biopsy specimens. Clin infect dis 44: 1078-1083. [Link: https://goo.gl/7nPPUW]

5. Russell, GELDER V Laboratory Diagnosis of Ocular Infectious Disease. 4: 1. [Link: https://goo.gl/qbicbN]

6. Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40: 87-109. [Link: https://goo.gl/7Cw0ZU]

7. Gaudio PA, Gopinathan U, Sangwan V, Hughes TE (2002) Polymerase chain reaction based detection of fungi in infected corneas. Br J ophthalmol 86: 755-760. [Link: https://goo.gl/xEL707]

8. Khot PD, Ko DL, Fredricks DN (2009) Sequencing and analysis of fungal rRNA Operons for development of broad-range fungal PCR assays. App Envir Microb 75: 1559-1565. [Link: https://goo.gl/9MFHMo]

9. White PL, Shetty A, Barnes RA (2003) Detection of seven Candida species using the Light-Cycler system. J med microbiol 52: 229-238. [Link: https://goo.gl/xWR8R7]

10. Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic acids res 17: 8543-8551. [Link: https://goo.gl/DnVML]

11. Lowe T, Sharefkin J, Yang SQ, Dieffenbach CW (1990) A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids Re 18: 1757-1761. [Link: https://goo.gl/QmDBX]

12. Dieffenbach CW, Lowe TMJ, Dveksler GS (1993) General Concepts for PCR Primer Designata compiled. In 2011 Publication by Cold Spring Harbor Laboratory Press. Supp 3: 30-37. [Link: https://goo.gl/h21MS2]

13. Madico G, Quinn TC, Boman J, Gaydos CA (2000) Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 165-235 spacer rRNA genes. J Clin Microbiol 38: 1085-1093. [Link: https://goo.gl/LK9NH]

14. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35: W43–W46. [Link: https://goo.gl/bwuwOd]

15. Romi W, Keisam S, Ahmed G, Jeyaram K (2014) Reliable differentiation of Meyerozymaguilliermondii from Meyerozymacaribbica by internal transcribed spacer restriction fingerprinting. BMC Microbiol 14: 52. [Link: https://goo.gl/e5jqU0]

16. Palmer EA (1980) Endogenous Candida endophthalmitis in infants. Am J Ophthalmol 89: 388-395. [Link: https://goo.gl/4gmi6T]

17. Baley JE, Annable WL, Kliegman RM (1981) Candida endophthalmitis in the premature infant. Journal of pediatr 98: 458-461. [Link: https://goo.gl/Qq1D03]

18. Ahuja Y, Couch SM, Razonable RR, Bakri SJ (2008) Infectious retinitis. Ret Phys. [Link: https://goo.gl/KBXN1C]

19. Williams DW, Wilson MJ, Lewis MA, Potts AJ (1995) Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA. J clin microbiol 33: 2476-2479. [Link: https://goo.gl/2oOtPk]

20. Thomas MC, Thomas DK, Selinger LB, Inglis GD (2011) spyder, a new method for in silico design and assessment of 16S rRNA gene primers for molecular microbial ecology. FEMS Microbiol Letter 320: 152–159. [Link: https://goo.gl/JSeYF]

21. Culley TM, Stamper TI, Stokes RL, Brzyski JR, Hardiman NA, et al. (2013) An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. App Plant Sci 1: 1300027. [Link: https://goo.gl/dmMaOo]

22. Rasmussen HB (2012) Restriction fragment length polymorphism analysis of PCR-amplified fragments (PCR-RFLP) and gel electrophoresis—valuable tool for genotyping and genetic fingerprinting. In Tech. [Link: https://goo.gl/yMwAF]