Bicarbonate transport of airway surface epithelia in luminally perfused mice bronchioles

Libin Liu1, Akiko Yamamoto1, Makoto Yamaguchi1, Itsuka Taniguchi1, Nao Nomura1, Miyuki Nakakuki1, Yuka Kozawa1, Tomoya Fukuyasu1, Mayuko Higuchi1, Erina Niwa1, Tsutomu Tamada2 and Hiroshi Ishiguro1,3*

Abstract

HCO$_3^-$ secretion in distal airways is critical for airway mucosal defense. HCO$_3^-$/H^+ transport across the apical membrane of airway surface epithelial cells was studied by measuring intracellular pH in luminally microperfused freshly dissected mice bronchioles. Functional studies demonstrated that CFTR, ENaC, Cl$^-$-HCO$_3^-$ exchange, Na$^+$-H$^+$ exchange, and Na$^+$-HCO$_3^-$ cotransport are involved in apical HCO$_3^-$/H^+ transport. RT-PCR of isolated bronchioles detected fragments from Cftr, α, β, γ subunits of ENaC, Ae2, Ae3, NBCe1, NBCe2, NBCn1, NDCBE, NBCn2, Nhe1, Nhe2, Nhe4, Nhe5, Slc26a4, Slc26a6, and Slc26a9. We assume that continuous decline of intracellular pH following alkaline load demonstrates time course of HCO$_3^-$ secretion into the lumen which is perfused with a HCO$_3^-$-free solution. Forskolin-stimulated HCO$_3^-$ secretion was substantially inhibited by luminal application of CFTRinh-172 (5 μM), H$_2$DIDS (200 μM), and amiloride (1 μM). In bronchioles from a cystic fibrosis mouse model, basal and acetylcholine-stimulated HCO$_3^-$ secretion was substantially impaired, but forskolin transiently accelerated HCO$_3^-$ secretion in distal airways is critical for airway mucosal defense. HCO$_3^-$ secretion in bronchioles from a cystic fibrosis mouse model may be related to the pathogenesis of early lung disease in cystic fibrosis.

Keywords: Distal airway, HCO$_3^-$ secretion, Bronchiole, Microperfusion, Surface epithelial cells, Intracellular pH

Introduction

The airway surface liquid (ASL) is a thin layer of fluid covering the luminal surface of airway epithelium. The ASL is composed of inner periciliary liquid layer (PCL) and outer single-layer thin mucus. Proper volume/depth, viscosity, and pH of ASL are required for efficient mucociliary clearance and antimicrobial activity [11, 38, 47]. It is widely accepted that the volume/depth of PCL is determined by Cl$^-$ secretion via cystic fibrosis transmembrane conductance regulator (CFTR) and Ca$^{2+}$-activated Cl$^-$ channel (CaCC) and Na$^+$ absorption via epithelial Na$^+$ channel (ENaC) [30, 33]. In proximal airways, Cl$^-$ secretion is mostly derived from serous cells of submucosal glands [5, 8, 17]. In distal airways, submucosal glands are absent [10, 35] and concurrent Cl$^-$ secretion and Na$^+$ absorption was observed in surface epithelial cells [44]. Loss of CFTR function due to severe pathogenic variants in both alleles of the CFTR gene causes cystic fibrosis (CF). The initial event of CF lung disease is characterized by low PCL volume, which is thought to be achieved by defective CFTR-mediated Cl$^-$ secretion and abnormally elevated Na$^+$ absorption via ENaC [33]. Evidence has accumulated to indicate that HCO$_3^-$ transport is important in airway mucosal defense. HCO$_3^-$ concentration affects physical properties of mucus [4, 39].
and mucociliary transport in ex vivo pig trachea under acetylcholine (ACh) stimulation was more dependent on HCO₃⁻ secretion than Cl⁻ secretion [13]. ASL pH in vivo newborn CF pigs was more acidic compared to wild-type and the impaired bacterial-killing activity of CF ASL was rescued by adding NaHCO₃ [38]. Cellular mechanisms for HCO₃⁻ transport in airways have been studied using cultured human nasal epithelial cells [36, 37] and Calu-3 cells, a model of serous cells of submucosal glands [20, 25, 28]. However, HCO₃⁻ transport in distal airways/bronchioles is not well understood. ASL pH was more alkaline in lower airways than in upper airways in human [34]. Thus, a balance of HCO₃⁻ and H⁺ secretion may shift to HCO₃⁻ secretion in distal airways.

Distal airways contribute to 85–90% of the total epithelial surface area of conducting airways [10, 50]. Moreover, mucus plugging and obstruction of bronchioles are among the earliest events of CF lung disease, suggesting that regulation of epithelial ion transport in distal airways is critical for normal lung physiology [46]. However, the assessment of ion transport in distal airways/bronchioles has been limited because of the small size, complex anatomy and relative inaccessibility of structures [10]. Measurement of transepithelial potential in sheep, porcine, and human bronchioles identified Na⁺ and Cl⁻ conductive pathways [2, 6, 9]. Aquaporin-mediated transepithelial water permeability was identified in guinea pig bronchioles [18]. Measurement of transepithelial potentials by a capillary-Ussing chamber revealed concurrent fluid secretion and absorption and HCO₃⁻ secretion in human bronchioles [45]. However, characteristics and cellular mechanisms of HCO₃⁻ transport in distal airways/bronchioles have not been fully investigated.

In the present study, HCO₃⁻ transport in surface epithelial cells of native bronchioles was studied by measuring intracellular pH (pHi) in luminally microperfused freshly dissected mice bronchioles. HCO₃⁻ transport in bronchioles from a CF mouse model was also studied.

Methods

Ethics approval

The study was approved by the Ethical Committee of Nagoya University on Animal Use for Experiment (approval No. M210457-003) and the Recombinant DNA Experiment Safety Committee of Nagoya University (approval No. 20-93).

Isolation of bronchioles from mice lung

A CF mouse model in which the F508del mutation was introduced in the mouse Cftr with the C57BL/6j genetic background (ΔF mouse) [53] was purchased from the Jackson Laboratory (Bar Harbor, ME). ΔF mice and their wild-type littermates were bled in Center for Research of Laboratory Animals and Medical Research Engineering, Nagoya University. Mice (8–10 weeks of age) of either sex were sufocated with CO₂. The thorax was opened and the ice-cold standard HCO₃⁻-buffered solution was gently injected into the trachea to fill the lungs. The lungs were then removed and the segments of conducting bronchioles (the third or fourth branches, 150–180 μm in inner diameter) were micro-dissected using sharpened needles in the ice-cold standard HCO₃⁻-buffered solution.

Solutions

The standard HCO₃⁻-buffered solution contained (mM): 115 NaCl, 5 KCl, 1 CaCl₂, 1 MgCl₂, 10 d-glucose, and 25 mM NaHCO₃, and was equilibrated with 95% O₂–5% CO₂. The 25 mM HCO₃⁻–0% CO₂ solution was gassed with 100% O₂ (pH: ~7.8) and thus was nominally free of CO₂. The standard HCO₃⁻-buffered solution contained (mM): 130 NaCl, 5 KCl, 1 CaCl₂, 1 MgCl₂, 10 d-glucose, and 10 Na-Hepes, and was equilibrated with 100% O₂. The Cl⁻-free HCO₃⁻-buffered solution contained (mM): 115 Na-glucanate, 2.5 K₂HPO₄, 1 CaSO₄, 1 MgSO₄, 10 d-glucose, and 25 mM NaHCO₃, and was equilibrated with 95% O₂–5% CO₂. The Cl⁻-free HEPES-buffered solution contained 130 Na-glucanate, 2.5 K₂HPO₄, 1 CaSO₄, 1 MgSO₄, 10 d-glucose, and 10 Na-Hepes, and was equilibrated with 100% O₂. The Na⁺-free HCO₃⁻-buffered solution contained N-methyl-D-glucamine (NMDG) in place of NaCl, choline bicarbonate in place of NaHCO₃, and 10 μM atropine to prevent the possible activation of muscarinic receptors by choline. The Na⁺-free HEPES-buffered solution contained NMDG-Cl in place of NaCl, and HEPES-acid in place of Na-Hepes. In the HCO₃⁻-buffered solution containing 20 mM NH₄Cl, the concentration of NaCl was reduced to maintain osmolarity. All solutions, except for the 25 mM HCO₃⁻–0% CO₂ solution, were adjusted to pH 7.4 at 37 °C.

Microperfusion of isolated bronchioles

The lumen of the isolated bronchiole segments was microperfused by applying a method to microperfuse isolated pancreatic ducts [22]. One end of bronchiole was cannulated for luminal microperfusion (Fig. 1a and b). The concentric pipette arrangement consisted of an outer holding pipette, an inner perfusion pipette, and a silica inner capillary for exchange of solutions. The combination of inner silica capillary and waste line enables rapid exchange of luminal solutions. The lumen was perfused at 20–30 μl/min while the bath was perfused at ~3 ml/min and maintained at 37 °C. The luminal perfusate leaving the other end of the bronchiole was diluted and washed away by the much greater flow of solution.
through the bath, which prevented the luminal perfusate from gaining access to the basal surface of the bronchiole.

Measurement of intracellular pH of bronchiole surface epithelium

The intracellular pH (pHi) in the epithelial cells was estimated by microfluorometry using the pH-sensitive fluoroprobe 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). After cannulating a bronchiole for luminal microperfusion, the epithelial cells were loaded with BCECF by perfusing the lumen with a solution containing the acetoxymethyl ester BCECF-AM (5 μM) for 10 min. Small regions of the bronchiole surface epithelium (Fig. 1c) were illuminated alternately at 430 and 480 nm and fluorescence was measured at 530 nm (F_{480} and F_{430}). Values of pH_i were calculated from the F_{480}/F_{430} ratio after correction for the endogenous tissue fluorescence measured prior to loading with BCECF. Calibration data were obtained by the high K⁺-nigericin technique [36, 48].

Reverse transcriptase-polymerase chain reaction

Messenger RNA expression of several ion transporters and channels was examined in isolated bronchioles and tracheal mucosa by polymerase chain reaction (PCR) (Table 1). Primers were derived from published sequences with GenBank accession numbers. The PCR protocol was: 96 °C, 25 s; 60 °C, 30 s; 72 °C, 40 s; 35 cycles. Templates for positive controls were complementary DNAs (cDNAs) prepared from lung, kidney, heart, colonic mucosa, brain and stomach mucosa. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-specific primers (452 bp) were used for the positive controls.

Materials

BCECF-AM was obtained from Invitrogen (Carlsbad, USA); 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (H₂DIDS) was from Molecular Probes (Eugene, USA); forskolin, amiloride, CFTRinh-172 and other standard laboratory chemicals were from Sigma (St. Louis, USA).
Statistics
Data are presented as the means ± SD unless otherwise indicated. Tests for statistically significant differences were made with Student’s t-test.

Name	Accession number	Primer	Sequence (5′ → 3′)	Size (bp)
Cftr	NM_021050.2	Forward	(4070) atggaaatgagatggaagtt	399
		Reverse	(4468) ctatcttcttcgagagttca	
Slc26a3 (Dra)	NM_021353.3	Forward	(536) cctcttccctgcggcaacctc	385
		Reverse	(940) accagcttcaggcttttgaaata	
Slc26a4 (Pendrin)	NM_011867.4	Forward	(974) cgcgcaccttcctctactctcc	465
		Reverse	(1438) gcccacaactgccagaggaatc	
Slc26a6 (Pat1)	NM_134420.4	Forward	(2455) tgaagaagagagtgcggtgtaga	385
		Reverse	(2839) tccttcgaggctttaatgca	
Slc26a9	NM_177243.4	Forward	(4577) caagtcctctactctctgg	425
		Reverse	(1881) tgttctctctgaagaagagctt	
α-ENaC	NM_011324.2	Forward	(1496) cggccgaaatattcctcgc	451
		Reverse	(1946) ccttggctttgcttagaagat	
β-ENaC	NM_001272023.1	Forward	(1004) acatcgcttgaggctatgtg	282
		Reverse	(1285) ggcgtttggagcaagattgaag	
γ-ENaC	NM_0011326.3	Forward	(709) gaagaaatgctggtggtctcagc	367
		Reverse	(1075) gaaggggttctactctccg	
Slc4a2 (Ae2)	NM_001253892.1	Forward	(3298) aaccagatcagcagactc	471
		Reverse	(3768) tctctgtctacactcaccc	
Slc4a3 (Ae3)	NM_001357149.1	Forward	(1612) ggcgtttggagcaagattgaag	393
		Reverse	(2004) gaatcaaaatctcactcaca	
Slc4a4 (NBCe1)	NM_001136260.1	Forward	(2206) aaccagctgctcttctttc	412
		Reverse	(2617) ggcgaatcagcctacatgac	
Slc4a5 (NBCe2)	NM_001166067.1	Forward	(1814) agcctctctatcctctcagc	315
		Reverse	(2128) tgtgagttggtgaagtgctcag	
Slc4a7 (NBCn1)	NM_001033270.2	Forward	(676) acacctctgccacactcttg	393
		Reverse	(1068) ttctctgtctcttcactctc	
Slc4a8 (NDCE1)	NM_001347102.1	Forward	(381) gttggaagaggtggtgagggcc	434
		Reverse	(814) gatcctctctgctgctgagac	
Slc4a10 (NBCn2)	NM_001242378.1	Forward	(2967) gtctgtctgcctctcaaggaat	445
		Reverse	(3412) cacagtcgactctttgactct	
Slc9a1 (Nhe1)	NM_134647.4	Forward	(951) ggtgcgtgatacgaggagc	202
		Reverse	(1153) cctgtgctctgagaggagtc	
Slc9a2 (Nhe2)	NM_001033289.2	Forward	(2088) gcacagtctcggaggaagct	168
		Reverse	(2256) gtcgagcttgtggtctccttc	
Slc9a3 (Nhe3)	NM_001081060.2	Forward	(2046) acagaagggcagagtaagca	199
		Reverse	(2245) tatatccctgctccccagag	
Slc9a4 (Nhe4)	NM_177084.3	Forward	(2084) gaggacgtcctgaaatccaa	162
		Reverse	(2246) cccagctctctcggagaaagc	
Slc9a5 (Nhe5)	NM_001323971.2	Forward	(970) gcacaggtggagagaagtgg	182
		Reverse	(1152) ggcgtgagggccagagtgc	

Results
Isolated bronchioles from CF mice (ΔF/ΔF mice) were used in experiments shown in Fig. 8. Isolated bronchioles from wild-type mice were used in the other experiments (Figs. 1, 2, 3, 4, 5, 6, 7).
Basal pH\textsubscript{i} in bronchiole epithelial cells and the response to luminal NH\textsubscript{4}+

When isolated bronchioles were bilaterally (bath and lumen) perfused with the standard HCO\textsubscript{3}−–CO\textsubscript{2}-buffered solution containing 25 mM HCO\textsubscript{3}− and 5% CO\textsubscript{2} (pH 7.4), basal pH\textsubscript{i} was 6.94 ± 0.03 (n = 64, mean ± SD). When isolated bronchioles were bilaterally perfused with the standard Hepes-buffered (HCO\textsubscript{3}−–CO\textsubscript{2}-free) solution (pH 7.4), basal pH\textsubscript{i} was 6.77 ± 0.03 (n = 40). Basal pH\textsubscript{i} in the presence of HCO\textsubscript{3}−–CO\textsubscript{2} was significantly (p < 0.01) higher compared to that in the absence of HCO\textsubscript{3}−–CO\textsubscript{2}. When NH\textsubscript{4}Cl (20 mM) was applied to the lumen in the presence of HCO\textsubscript{3}−–CO\textsubscript{2}, pH\textsubscript{i} showed typical time-course changes by NH\textsubscript{4}+ pulse [40]. Addition of NH\textsubscript{4}Cl caused quick alkalization (NH\textsubscript{3} influx) followed by slower decline and removal of NH\textsubscript{4}Cl caused quick acidification (NH\textsubscript{3} efflux) followed by slower recovery to the baseline (Fig. 1d). This suggests that H+/HCO\textsubscript{3}− transport is active in this preparation.

Effects of luminal HCO\textsubscript{3}−–CO\textsubscript{2} removal on pH\textsubscript{i} in microperfused bronchioles

When isolated bronchioles were first bilaterally perfused with the standard HCO\textsubscript{3}−-buffered solution and the lumen perfusate was switched to the standard Hepes-buffered (HCO\textsubscript{3}−–CO\textsubscript{2}-free) solution (Fig. 2a), pH\textsubscript{i} quickly increased from 6.94 ± 0.02 to 7.05 ± 0.02 (n = 8) and then gradually decreased towards a value (6.86 ± 0.03) lower than the baseline in 10 min. To distinguish between the separate effects of removal of CO\textsubscript{2} and HCO\textsubscript{3}− from the lumen, a solution was prepared which first contained 25 mM HCO\textsubscript{3}− but which was equilibrated with 100% O\textsubscript{2} (pH: ~ 7.8) and thus was nominally free of CO\textsubscript{2}. When the lumen perfusate was switched to the 25 mM HCO\textsubscript{3}−–0% CO\textsubscript{2} solution, pH\textsubscript{i} quickly increased to 7.21 ± 0.06 (n = 8) and the alkalinization was sustained (Fig. 2b). Thus, the transient alkalinization and the subsequent recovery (acidification) by removal of luminal HCO\textsubscript{3}−–CO\textsubscript{2} was most likely due to CO\textsubscript{2} diffusion of out of the cell followed by HCO\textsubscript{3}− efflux (Fig. 2a). Most of the HCO\textsubscript{3}− efflux was probably via the apical membrane due to the steep HCO\textsubscript{3}− gradient between the cell and the lumen (HCO\textsubscript{3}− concentration was close to zero). H+ influx was not likely involved in the subsequent acidification because Na+–H+ exchanger would work for H+ extrusion in this condition.

Effects of luminal application of forskolin, CFTR\textsubscript{inh}-172, H\textsubscript{2}DIDS, and amiloride on apical HCO\textsubscript{3}− efflux in bronchiole epithelial cells

The mechanisms for HCO\textsubscript{3}− efflux across the apical membrane were examined using the protocol of Fig. 2a. After HCO\textsubscript{3}−–CO\textsubscript{2} was removed from the luminal perfusate, forskolin (5 μM), the activator of adenylate cyclase, was applied to the lumen as indicated (Fig. 3a). Stimulation with forskolin transiently accelerated the pH\textsubscript{i} decline by 97% (p < 0.01) (n = 8, Fig. 3a and f) of control (without forskolin stimulation: blue line in Fig. 3a). The late phase of pH\textsubscript{i} decline (at midpoint pH\textsubscript{i} of 6.95) was also accelerated by 47% (p < 0.05) (Fig. 3a and g) of control. The
data suggest that elevation of intracellular cAMP activates HCO$_3^-$ secretion in a biphasic manner: initial large response followed by sustained activation, in mice bronchiole epithelial cells.

CFTR$_{inh}$-172 (5 μM) and H$_2$DIDS (200 μM) in the lumen inhibited the forskolin-stimulated transient pHi decline by 69% (n = 8, p < 0.01) (Fig. 3b and f) and 65% (n = 8, p < 0.01) (Fig. 3c and f), respectively. Luminal CFTR$_{inh}$-172 and H$_2$DIDS also slowed down the late phase of pHi decline (at midpoint pH$_i$ of 6.95) by 54% (p < 0.01) (Fig. 3b and g) and 33% (p < 0.05) (Fig. 3c and g), respectively. The data suggest that both CFTR and H$_2$DIDS-sensitive HCO$_3^-$ transporter and/or HCO$_3^-$-permeable anion channel partly mediate cAMP-stimulated HCO$_3^-$ secretion. The forskolin-stimulated transient pHi decline in the presence of both CFTR$_{inh}$-172 and H$_2$DIDS (Fig. 3d and f) was significantly (p < 0.05) smaller compared to that in the presence of CFTR$_{inh}$-172 or H$_2$DIDS alone (Fig. 3b, c and f). The late-phase of pHi decline in the presence of both CFTR$_{inh}$-172 and H$_2$DIDS (Fig. 3d and g) was significantly (p < 0.05) slower compared to that in the presence of H$_2$DIDS alone (Fig. 3c and g).

Luminal application of CFTR$_{inh}$-172 and H$_2$DIDS by themselves induced a transient small dip of pHi (Fig. 3b and c). The transient pHi dip largely disappeared when CFTR$_{inh}$-172 and H$_2$DIDS were simultaneously applied to the lumen (Fig. 3d). This suggests that CFTR and H$_2$DIDS-sensitive HCO$_3^-$ transporter/channel compensate each other for apical HCO$_3^-$ efflux. We speculate on the mechanisms as follows. CFTR inhibition would hyperpolarize the cell, which would induce transient HCO$_3^-$ efflux via a HCO$_3^-$-permeable anion channel or an electrogenic HCO$_3^-$ transporter (such as 1Cl$^-$/2HCO$_3^-$ exchanger). If H$_2$DIDS-sensitive HCO$_3^-$ transport is electrogenic, luminal H$_2$DIDS would hyperpolarize the cell, which would induce transient HCO$_3^-$ efflux via CFTR.

To examine the role of ENaC in HCO$_3^-$ secretion, a relatively low concentration of amiloride (1 μM) [32] was applied to the lumen. Amiloride (1 μM) in the lumen inhibited the forskolin-stimulated transient pH$_i$ decline by 63% (n = 8, p < 0.01) (Fig. 3e and f), but did not significantly affect the late phase of pH$_i$ decline (Fig. 3e and g).

The data suggest that ENaC is involved in the regulation of HCO$_3^-$ secretion. The transient dip of pH$_i$ by luminal amiloride (Fig. 3e) likely indicates apical HCO$_3^-$ efflux which is accelerated by membrane hyperpolarization.

When isolated bronchioles were bilaterally perfused with the standard HCO$_3^-$-buffered solution, application of CFTR$_{inh}$-172 (5 μM) to the lumen caused a transient increase of pH$_i$ by 0.022 ± 0.003 unit (n = 8, data not shown). The pH$_i$ increase was not observed in the absence of HCO$_3^-$–CO$_2$ and enhanced by 77% (p < 0.05) by stimulation with forskolin (5 μM) (data not shown). The data suggest that CFTR is involved in HCO$_3^-$ secretion in a physiological condition.

Effects of luminal Cl$^-$ removal on pH$_i$ in bronchiole epithelial cells

To examine the activity of Cl$^-$/HCO$_3^-$ exchange in the apical membrane, effects of luminal Cl$^-$ removal on pH$_i$ were examined. When isolated bronchioles were bilaterally perfused with the standard HCO$_3^-$-buffered solution, removal of luminal Cl$^-$ (by replacement with gluconate) caused a slight decline of pH$_i$ (Fig. 4a and e). In contrast, when isolated bronchioles were bilaterally perfused with the standard HCO$_3^-$-buffered solution, removal of luminal Cl$^-$–CO$_2$ removal caused a reversible increase of pH$_i$ by 0.14 ± 0.03 unit (n = 8) over ~4 min period (Fig. 4b and e), most likely due to influx of luminal HCO$_3^-$ in exchange for intracellular Cl$^-$. When the activity of apical Cl$^-$/HCO$_3^-$ exchange is shown as the initial rate of pH$_i$ increase upon luminal Cl$^-$ removal, the activity is not affected by forskolin (5 μM) in the lumen (Fig. 4c and e) and largely (p < 0.01) inhibited by H$_2$DIDS (200 μM) in the lumen (Fig. 4d and e). The data suggest that H$_2$DIDS-sensitive Cl$^-$/HCO$_3^-$ exchanger is localized in the apical membrane.

Na$^+$-dependent H$^+$ extrusion across the apical membrane of bronchiole epithelial cells

To examine whether Na$^+-$H$^+$ exchanger (NHE) and Na$^+$–HCO$_3^-$ cotransporter (NBC) are localized in the apical membrane, luminal Na$^+$-dependent H$^+$ extrusion was examined. In the absence of HCO$_3^-$–CO$_2$ removal of luminal Na$^+$ (by replacement with NMDG) caused a continuous decline of pH$_i$ and restoration of Na$^+$ to the
lumen caused a recovery (Fig. 5a). When the activity of luminal Na⁺-dependent H⁺ extrusion is shown as the initial pH increment (ΔpH for 1 min) upon restoration of luminal Na⁺, the activity was completely (p < 0.01) inhibited by amiloride (100 μM) in the lumen (Fig. 5b and
The data suggest that NHE is localized in the apical membrane.

The activity of luminal Na⁺-dependent H⁺ extrusion in the presence of HCO₃⁻–CO₂ (Fig. 5c and f) was significantly (p < 0.05) greater compared to that in the absence of HCO₃⁻–CO₂ (Fig. 5a and f), partially inhibited by amiloride (100 μM) in the lumen (Fig. 5d and f), and completely inhibited by a combination of amiloride (100 μM) and H₂DIDS (200 μM) in the lumen (Fig. 5e and f). The data suggest that NBC is localized in the apical membrane.

Effects of luminal amiloride on pHᵢ in bronchiole epithelial cells

While lower concentrations of amiloride inhibit ENaC with IC₅₀ of 1 μM [32], higher concentrations of amiloride (0.5–1 mM) also inhibit apical NHE in human bronchial epithelium [49]. Figure 6 shows the effects of various concentrations of luminal amiloride (1, 10, and 100 μM) on basal pHᵢ (Fig. 6). To examine the relative contribution of ENaC and apical NHE in H⁺/HCO₃⁻ transport in a physiological condition, we examined concentration-dependent effects of luminal amiloride rather than a more specific inhibitor of NHE such as ethylisopropyl amiloride (EIPA).

In the absence of HCO₃⁻–CO₂, luminal application of amiloride caused concentration-dependent decline of pHᵢ (Fig. 6a, c, e, g).

In the presence of HCO₃⁻–CO₂, luminal application of 1 μM amiloride caused an increase in pHᵢ by 0.03 ± 0.01 (n = 8, Fig. 6b and g). Luminal 100 μM amiloride caused a transient increase followed by a continuous decline in pHᵢ by 0.06 ± 0.01 (n = 8) in 5 min (Fig. 6f and g). Luminal 10 μM amiloride (Fig. 5d and g) caused an intermediate pattern of pHᵢ changes of those by 1 μM and 100 μM amiloride.

Thus, the effects of lower concentration of apical amiloride on basal pHᵢ were dependent on the presence of HCO₃⁻–CO₂, which suggests that ENaC is involved in the regulation of HCO₃⁻ transport. The data also indicate that apical NHE is involved in the regulation of basal pHᵢ.

Messenger RNA expression of ion transporters and channels in bronchiole epithelial cells

Expression of Cftr, ENaC subunits, and Slc4, Slc9, and Slc26 families of transporters in isolated bronchioles and tracheal mucosa was examined by RT-PCR (Fig. 7). Amplified fragments from Cftr, α, β, γ subunits of ENaC, Slc4a2 (Ae2), Slc4a3 (Ae3), Slc4a4 (NBCe1), Slc4a5...
Slc9a3 (Nhe3) and Slc26a3 (Dra) were not detected in isolated bronchioles and tracheal mucosa. Fragments from Slc9a3 (Nhe3) and Slc26a3 (Dra) were not detected in isolated bronchioles and tracheal mucosa.

Basal pH$_i$ and apical HCO$_3^-$ efflux in bronchiole epithelial cells from CF mice

Basal pH$_i$ in the presence of HCO$_3^-$–CO$_2$ in isolated bronchioles from ΔF/ΔF mice (6.97 ± 0.02, n = 6) was slightly but significantly (p < 0.05) higher compared to bronchioles from wild-type mice (6.94 ± 0.02, n = 8, blue line) (Fig. 8a and d). Initial increase of pH$_i$ (ΔpH) by removal of luminal HCO$_3^-$–CO$_2$ was also significantly (p < 0.01) greater in ΔF/ΔF bronchioles compared to wild-type bronchioles (Fig. 8a and e). The data suggest that basal HCO$_3^-$ secretion is impaired in CF bronchioles. The rate of pH$_i$ decline at midpoint pH$_i$ of 6.95 was significantly (p < 0.05) slower in CF bronchioles compared to wild-type bronchioles (Fig. 8a and g).

Stimulation with luminal forskolin (5 μM) transiently accelerated pH$_i$ decline (apical HCO$_3^-$ efflux) in ΔF/ΔF bronchioles (Fig. 8b and f) and the acceleration was comparable to wild-type bronchioles (blue line). Forskolin failed to accelerate the late phase of pH$_i$ decline (at midpoint pH$_i$ of 6.95) in ΔF/ΔF bronchioles (Fig. 8b and g). The data suggest that cAMP stimulation transiently activated HCO$_3^-$ secretion in CF bronchioles probably

\(\text{HCO}_3^- \text{–CO}_2 \)
via activation of a HCO_3^--permeable anion channel or a HCO_3^- transporter, but failed to induce sustained increase of HCO_3^- secretion.

Luminal application of ACh induced a transient increase of transepithelial ion current in mice and pig tracheal epithelium [16, 21]. Application of ACh (10 μM) to the lumen transiently accelerated pHi decline (apical HCO_3^- efflux) in wild-type bronchioles (blue line in Fig. 8c) and the acceleration was greater than forskolin (Fig. 8f, $p < 0.01$). The ACh-induced transient acceleration of pHi decline was reduced by 45% ($p < 0.01$) in ΔF/ΔF bronchioles (Fig. 8c and f). Luminal ACh did not affect the late phase of pHi decline in both wild-type and ΔF/ΔF bronchioles (Fig. 8c and g). The data indicate that ACh stimulation transiently activated HCO_3^- secretion in wild-type bronchioles and that the ACh-induced

Fig. 6 Effects of luminal amiloride on pHi in bronchiole epithelial cells. a–f Isolated bronchioles were first bilaterally perfused with the standard Heps-buffered HCO_3^-–CO_2-free solution (a, c, e) or the standard HCO_3^--buffered solution (b, d, f). Amiloride was applied to the lumen as indicated at concentrations of 1 μM (a, b), 10 μM (c, d) or 100 μM (e, f). Time course changes of pHi are shown as means ± SD of 8 experiments. g Increase or decrease of pHi (ΔpH for 5 min) by luminal application of amiloride at various concentrations.
Fig. 7 Messenger RNA expression of ion transporters and channels in bronchiole epithelial cells. Messenger RNA was extracted from tracheal mucosa (T), isolated bronchioles (B), colon (C), kidney (K), stomach (S), heart (H), lung (L), and brain (Br) and reverse transcribed. PCR was performed using each cDNA as template and with gene-specific primers (Table 1). GAPDH was used as a reference. – PCR was performed in the absence of RT enzyme. M: 100-bp DNA ladder.
enhancement of HCO_3^- secretion was substantially reduced in CF bronchioles. This suggests that CFTR partly mediates ACh-induced HCO_3^- secretion in addition to CaCC in mice bronchiole epithelial cells.

Discussion

In the present study, HCO_3^- transport in surface epithelial cells of native bronchioles was studied by measuring pH_i in luminally microperfused freshly dissected mice.
bronchioles. HCO$_3^-$ transport in bronchioles from CF mice was also studied. Although some connective tissue was attached to the outside of bronchioles (Fig. 1), surface epithelial cells were successfully loaded with BCECF from the lumen and pH$_i$ was measured as long as 30 min. The present study focused on HCO$_3^-$/H^+ transport across the apical membrane, since rapid exchange of luminal solutions was achieved in our preparation [22].

Intracellular pH in surface epithelial cells of mice bronchioles

Human and rodent bronchioles are lined with columnar to cuboidal epithelium which is composed of ciliated and nonciliated (Clara) cells [35]. In the present study, basal pH$_i$ of surface epithelial cells in isolated mice bronchioles was ~ 6.94 in bilateral (bath and lumen) presence of 25 mM HCO$_3^-$ and 5% CO$_2$. The value is similar to the basal pH$_i$ of cultured human nasal epithelial cells (~ 6.94) in the same experimental condition [37]. The relatively low basal pH$_i$ likely resulted from higher pCO$_2$ in the lumen compared to the physiological in vivo situation where the luminal side of the epithelial layer is exposed to air.

Ion transporters and channels localized in the apical membrane of bronchiole epithelial cells

In the present study, functional studies suggested that CFTR and H$_2$DIDS-sensitive HCO$_3^-$ transporter and/or HCO$_3^-$-permeable anion channel mediate cAMP-stimulated HCO$_3^-$ secretion and ENaC, H$_2$DIDS-sensitive Cl$^-$–HCO$_3^-$ exchangers, NHE, and NBC are involved in HCO$_3^-$/H^+ transport across the apical membrane of surface epithelial cells of mice bronchioles (Fig. 9). This is supported by mRNA expression of Cftr, ENaC subunits, and Slc4, Slc9, and Slc26 families of transporters (Fig. 7).

The activity of H$_2$DIDS-sensitive Cl$^-$–HCO$_3^-$ exchanger was detected in the apical membrane (Fig. 4) and probably mediated part of cAMP-stimulated HCO$_3^-$ secretion (Fig. 3c). The candidate molecules are Slc4a2 (Ae2), Slc4a3 (Ae3), Slc26a4 (Pendrin), Slc26a6, and Slc26a9 of which mRNA expression was detected in isolated bronchioles (Fig. 7). In human bronchial epithelia, Slc26A4 (Pendrin) colocalized with CFTR in the apical membrane of ciliated surface cells and mediated most of HCO$_3^-$ secretion when pretreated with IL-4 [24]. Slc26A9 is prominently expressed in brain and on apical membrane of airway epithelial cells and gastric mucosa [3, 31]. A missense variant of SLC26A9 found in a patient of diffuse bronchiectasis failed to activate CFTR in a heterologous expression system [7]. While Slc26a4 (Pendrin) is H$_2$DIDS-insensitive, Slc26a9 is sensitive to H$_2$DIDS. Thus, Slc26a9 is likely the major apical Cl$^-$–HCO$_3^-$ exchanger in mice bronchioles.

Apical H$^+$ secretion via H$^+$/K$^+$ ATPase and vacuolar H$^+$-ATPase was reported in airways [52]. Our present study identified the activities of NHE and NBC in the apical membrane of mice bronchioles (Figs. 5, 6) which may contribute to the regulation of intracellular and ASL pH.

NHE activity was detected in the apical membrane and mediated H$^+$ secretion in tracheal epithelial cells from sheep [1]. The candidate molecules of apical NHE in mice bronchioles are Slc9a1 (Nhe1), Slc9a2 (Nhe2), Slc9a4 (Nhe4), and Slc9a5 (Nhe5) of which mRNA expression was detected (Fig. 7). NHE2 is known to be expressed in the lung, predominantly localized to the apical membrane of epithelial cells [19], and relatively sensitive to
amiloride [51]. Thus, NHE2 is likely the major apical Na\(^+\)-H\(^+\) exchanger in mice bronchioles.

While SLC4A4 (NBCe1) and SLC4A5 (NBCe2) were identified in the basolateral membrane of Calu-3 cells [27], NBC isoforms have not been identified in the apical membrane of airway epithelium. Messenger RNA of all NBC isoforms: Slc4a4 (NBCe1), Slc4a5 (NBCe2), Slc4a7 (NBCn1), Slc4a8 (NDCBE), and Slc4a10 (NBCn2) was detected in isolated mice bronchioles (Fig. 7). Our present study cannot identify the membrane localization of the NBC isoforms.

Mechanisms and regulation of HCO\(_3\)\(^-\) secretion in bronchiolo epithelial cells

Surface airway epithelial cells as well as serous cells of the submucosal glands secrete Cl\(^-\) and HCO\(_3\)\(^-\) in response to agents increasing intracellular cAMP (VIP, noradrenaline, etc.) and/or Ca\(^{2+}\) (ACh, histamine, etc.) [41]. It is generally accepted that cAMP-mediated secretion involves CFTR and Ca\(^{2+}\)-mediated secretion involves CaCC encoded by TMEM16A/ANO1 [15]. Cyclic AMP- and Ca\(^{2+}\)-mediated agonists independently and additively increased HCO\(_3\)\(^-\) secretion in human bronchioles [45]. However, it has been noted that muscarinic responses of fluid secretion are reduced in submucosal glands from patients with cystic fibrosis [42] and a recent study demonstrated a crosstalk of CFTR and TMEM16A in CFBE cells [29].

We assume that continuous decline of pH\(_{i}\) following alkaline load (Figs. 2, 3, 8) demonstrates time course of HCO\(_3\)\(^-\) secretion into the lumen which is perfused with the HCO\(_3\)\(^-\)-free solution. Forskolin biphasically stimulated HCO\(_3\)\(^-\) secretion: transiently accelerated HCO\(_3\)\(^-\) secretion just after application and increased the rate of steady-state HCO\(_3\)\(^-\) secretion (Fig. 3a). ACh transiently accelerated HCO\(_3\)\(^-\) secretion, but did not increase the steady-state HCO\(_3\)\(^-\) secretion (Fig. 8c). The data indicate that both cAMP-mediated and Ca\(^{2+}\)-mediated pathways are involved in HCO\(_3\)\(^-\) secretion in mice bronchiolo epithelial cells.

Luminal CFTR\(_{\text{inh}-172}\) and H\(_2\)DIDS substantially inhibited both transient and steady-state phases of forskolin-stimulated HCO\(_3\)\(^-\) secretion (Fig. 3). CFTR was localized not only in serous cells of submucosal glands [17, 23], but also in the apical membrane of surface epithelium of proximal to distal airways in human [26]. GlyH101-sensitive HCO\(_3\)\(^-\) transport was detected in human bronchioles [45]. Our present data suggest that both CFTR and H\(_2\)DIDS-sensitive HCO\(_3\)\(^-\) transporter (likely SLC26A9 Cl\(^-\)/HCO\(_3\)\(^-\) exchanger shown in Fig. 4) and/or HCO\(_3\)\(^-\)-permeable anion channel are involved in apical HCO\(_3\)\(^-\) secretion (Fig. 9).

A relatively low concentration of amiloride in the lumen inhibited transient phase of forskolin-stimulated HCO\(_3\)\(^-\) secretion (Fig. 3e). The data suggest that ENaC is involved in the regulation of HCO\(_3\)\(^-\) transport, which is consistent with amiloride (1 μM)-induced pH\(_{i}\) increase in the presence of HCO\(_3\)\(^-\)-CO\(_2\) (Fig. 6). The cellular mechanisms for the involvement of ENaC in HCO\(_3\)\(^-\) secretion are not clear.

HCO\(_3\)\(^-\) secretion in CF bronchiole epithelial cells

ASL pH was more acidic in trachea of CF pigs under basal and methacholine-stimulated conditions [38]. Lower pH of ASL was also observed in nasal epithelium of CF patients [34, 52], while the other study did not find differences in ASL pH of bronchus between CF patients and control [43]. Combination of forskolin and 3-isobutyl-1-methylxanthine alkalinized ASL of cultured bronchial epithelium of normal subjects but acidified CF ASL [12].

In the present study, HCO\(_3\)\(^-\) secretion was studied in bronchioles isolated from a CF mouse model in which the F508del mutation (most frequent pathogenic variant of CFTR) was introduced (ΔF mouse) (Fig. 8). Although CF mice do not display severe lung disease as observed in humans, an impaired ability to stretch/expand the peripheral lung compartment and increased distances between gas exchange surfaces which are early pulmonary phenotype of human CF were found in young (8–16 weeks old) ΔF/ΔF mice [14]. Our present study demonstrated higher level of basal pH\(_{i}\) in the presence of HCO\(_3\)\(^-\)-CO\(_2\) and larger increase of pH\(_{i}\) by removal of luminal HCO\(_3\)\(^-\)-CO\(_2\) in CF bronchioles (Fig. 8), which indicate that basal HCO\(_3\)\(^-\) secretion is reduced in CF distal airways.

The effects of forskolin and ACh on HCO\(_3\)\(^-\) secretion in CF bronchioles (Fig. 8) were unexpected. While forskolin stimulation transiently accelerated HCO\(_3\)\(^-\) secretion in CF bronchioles (comparable to wild-type bronchioles, Fig. 8b), ACh-induced acceleration of HCO\(_3\)\(^-\) secretion was substantially reduced in CF bronchioles (Fig. 8c). The data are consistent with the presence of a crosstalk of cAMP- and Ca\(^{2+}\)-mediated pathways of HCO\(_3\)\(^-\) secretion. The data also suggest that a cAMP-activated HCO\(_3\)\(^-\)-permeable anion channel or HCO\(_3\)\(^-\) transporter was upregulated in CF bronchioles.

The present study has some limitations. (1) The intracellular buffering capacity is not measured and the rate of H\(^+\)/HCO\(_3\)\(^-\) flux is not inferred from changes in pH\(_{i}\). (2) Information of membrane potential is not available and the electrochemical potential gradient for HCO\(_3\)\(^-\) across the apical membrane is not accurately predicted. (3) RT-PCR of isolated bronchioles does not identify
the cell types (ciliated or nonciliated) and the membrane (apical or basolateral) in which transporters/channels are located.

In summary, we have characterized HCO_3^-/H^+ transport across the apical membrane of surface epithelial cells of native mice bronchioles. We have demonstrated that cAMP-mediated and Ca^{2+}-mediated pathways are involved in HCO_3^- secretion and that apical HCO_3^- secretion is largely mediated by CFTR and Cl^-/HCO_3^- exchange. The impairment of HCO_3^- secretion in CF bronchioles may be related to the pathogenesis of early lung disease in CF.

Authors’ contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LL, AY, MY, IT, NN, MN, YK, TF, MH, EN, TT, and HI. The first draft of the manuscript was written by LL and HI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding
Libin Liu received Japanese Government (MEXT) Scholarship and China Scholarship Council (CSC) Scholarship. This work was supported by grants from the Japan Society for the Promotion of Science and the Japanese study group for pediatric rare and intractable hepatobiliary-pancreatic diseases provided by the Ministry of Health, Labour, and Welfare of Japan.

Availability of data and materials
All data generated or analyzed during this study are included in the manuscript.

Code availability
Not applicable.

Declarations
Ethics approval and consent to participate
The study was approved by the Ethical Committee on Animal Use for Experiment (approval No. M210457-003) and the Recombinant DNA Experiment Safety Committee (approval No. 20-93) of Nagoya University.

Consent for publication
Not applicable.

Competing interests
The authors have no conflicts of interest to declare that are relevant to the content of this article.

Author details
1 Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan. 2 Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan. 3 Research Center of Health, Physical Fitness, and Sports, Nagoya University, Furo-cho E5-2 (130), Chikusa-ku, Nagoya 464-8601, Japan.

Received: 26 December 2021 Accepted: 14 February 2022
Published online: 23 February 2022

References
1. Acelvedo M, Steele LW (1993) Na$^+$/H$^+$ exchanger in isolated epithelial tracheal cells from sheep. Involvement in tracheal proton secretion. Exp Physiol 78:383–394. https://doi.org/10.1113/expphysiol.1993.sp003692
2. Al-Bazzaz FJ, Tarka C, Farah M (1991) Microperfusion of sheep bronchioles. Am J Physiol 260:L594–602. https://doi.org/10.1152/ajplung.1991.260.6.L594
3. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515. https://doi.org/10.1016/j.mam.2012.07.009
4. Ambort D, Johansson ME, Gustafsson JK, Ermund A, Hansson GC (2012) Perspectives on mucus properties and formation–lessons from the biochemical world. Cold Spring Harb Perspect Med 2:a014159. https://doi.org/10.1101/cshperspect.a014159
5. Antlake H, Tamada T, Murakami K, Gamo S, Nara M, Kazama I, Ichinose M, Sugura H (2021) Effects of indacaterol on the LPS-evoked changes in fluid secretion rate and pH in swine tracheal membrane. Pflugers Arch 473:883–896. https://doi.org/10.1007/s00424-021-02560-z
6. Ballard ST, Schepens FM, Falcone JC, Meiningger GA, Taylor AE (1992) Regional bioelectrical properties of porcine airway epithelium. J Appl Physiol 73:201–207. https://doi.org/10.1152/jappl.1992.73.5.201
7. Bakouh N, Bienvenu T, Thomas A, Ehrenfeld J, Lioite H, Rousset D, Duquesnoy P, Farman N, Viel M, Cherif-Zahar B, Anseme S, Taam RA, Edelman A, Planelles G, Sermet-Gaudelus I (2013) Characterization of SLC26A9 in patients with CF-like lung disease. Hum Mutat 34:1404–1414. https://doi.org/10.1002/humu.22382
8. Ballard ST, Spadafora D (2007) Fluid secretion by submucosal glands of the tracheobronchial airways. Respir Physiol Neurobiol 159:278–282. https://doi.org/10.1016/j.resp.2007.03.007
9. Blouquit-Laye S, Chinet T (2007) Ion and liquid transport across the bronchial epithelium. Respir Physiol Neurobiol 159:278–282. https://doi.org/10.1016/j.resp.2007.03.007
10. Coakley RD, Boucher RC (2001) Regulation and functional significance of airway surface liquid pH. JOP 2:294–300
11. Coakley RD, Grubb BR, Paradiso AM, Gatzy JT, Johnson LG, Kreda SM, Hodges CA, Drumm ML, Jacono FJ (2016) Early pulmonary disease manifestations in cystic fibrosis mice. J Cyst Fibros 15:736–744. https://doi.org/10.1016/j.jcf.2016.05.002
12. Danahay H, Gosling M (2020) TMEM16A: an alternative approach to restoring airway ion and bicarbonate secretion. Am J Physiol Lung Cell Mol Physiol 304:184–190. https://doi.org/10.1152/ajplung.00143.2012
13. Cooper JL, Quinton PM, Ballard ST (2013) Mucociliary transport in porcine trachea: differential effects of inhibiting chloride and bicarbonate secretion. Am J Physiol Lung Cell Mol Physiol 304:184–190. https://doi.org/10.1152/ajplung.00143.2012
14. Darrah RJ, Mitchell AL, Campanaro CK, Barbato ES, Litman P, Sattar A, Hodges CA, Drumm ML, Jacono FJ (2016) Early pulmonary disease manifestations in cystic fibrosis mice. J Cyst Fibros 15:736–744. https://doi.org/10.1016/j.jcf.2016.05.002
15. Dittrich NP, Kummer W, Clausius KG, Fronius M (2015) Luminal acetylcysteine does not affect the activity of the CFTR in tracheal epithelia of pigs. Int Immunopharmacol 21:196–205. https://doi.org/10.1016/j.intimp.2015.08.010
16. Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 2:240–248. https://doi.org/10.1038/ng192-240
17. Folkestad HG, Matthay MA, Frigeri A, Verkman AS (1996) Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport. J Clin Invest 98:674–681. https://doi.org/10.1172/JCI18463
18. Foster DG, Alexander RT (2014) Traditional and emerging roles for the SLC39 Na$^+$/H$^+$ exchangers. Pflugers Arch 466:61–76. https://doi.org/10.1007/s00424-013-1408-b
19. Garnett JP, Hickman E, Tunkamnedthai O, Cuthbert AW, Gray MA (2013) Protein phosphatase 1 coordinates CFTR-dependent airway epithelial HCO$_3^-$ secretion by reciprocal regulation of apical and basolateral membrane Cl$^-$-HCO$_3^-$ exchangers. Br J Pharmacol 168:1946–1960. https://doi.org/10.1111/bph.12085
20. Hollohorst MJ, Lips KS, Wolff M, Wass J, Jerbig S, Takats Z, Kummer W, Fronius M (2012) Luminal cholinergetic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca$^{2+}$-dependent pathways. J Physiol 594:5721–5733. https://doi.org/10.1113/jphysiol.2012.246810
21. Hollenhorst MI, Lips KS, Wolff M, Wass J, Jerbig S, Takats Z, Kummer W, Fronius M (2012) Luminal cholinergetic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca$^{2+}$-dependent pathways. J Physiol 594:5721–5733. https://doi.org/10.1113/jphysiol.2012.246810
22. L594
Cl and K+ channels. Br J Pharmacol 166:1388–1402. https://doi.org/10.1111/1476-5381.20188.x

12. Ishiguro H, Steward MC, Yamamoto A (2011) Microperfusion and micro-puncture analysis of ductal secretion. Pancreas Exocrine Pancreas Knowl Base. https://doi.org/10.3989/panc.2011.16

13. Jacquod J, Puchelle E, Hinnrasky J, Fuchsly C, Bettinger C, Spilmont C, Bonnet N, Dieterle A, Dreyer D, Pavirani A, Dalemans W (1993) Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands. Eur Respir J 6:169–176

14. Kim D, Huang J, Biller A, Abu-Anish A, Goepp J, Matthews E, Tewfik MA, Frenkel S, Hanrahan JW (2019) Pendrin mediates bicarbonate secretion and enhances cystic fibrosis transmembrane conductance regulator function in airway surface epithelia. Am J Respir Cell Mol Biol 60:705–716. https://doi.org/10.1165/rcmb.2018-0158OC

15. Kim D, Kim J, Burghardt B, Best L, Steward MC (2014) Role of anion exchangers in Cl− and HCO3− secretion by the human airway epithelial cell line Calu-3. Am J Physiol Cell Physiol 307:208–219. https://doi.org/10.1152/ajpcell.00283.2014

16. Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, Boucher K (2012) Amiloride acts as a chloride channel blocker in porcine bronchial submucosal gland serous acinar cells. Am J Physiol Lung Cell Mol Physiol 308:2127–2138. https://doi.org/10.1152/ajplung.00363.2011

17. Lérias J, Pinto M, Benedetto R, Greger R, Kunzelmann K (2008) The pH regulation of the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis nasal epithelia. Am J Physiol Lung Cell Mol Physiol 298:L210-231. https://doi.org/10.1152/ajplung.00036.2004

18. Lérais J, Pinto M, Benevento R, Schreiber R, Amara M, Aureli M, Kunzelmann K (2018) Compartamentalized crosstalk of CFTR and TMEM16A (ANO1) through EPAC1 and ADCY1. Cell Signal 44:10–19. https://doi.org/10.1016/j.cellsig.2018.01.008

19. Lee RJ, Fossett JK (2010) Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells. Am J Physiol Lung Cell Mol Physiol 298:L210-231. https://doi.org/10.1152/ajplung.00036.2004

20. Loihi H, Kujala M, Makela S, Lehtonen E, Kestila M, Saarialho-Kere U, Markovich D, Kere J (2002) Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J Biol Chem 277:14246–14254. https://doi.org/10.1074/jbc.M111822000

21. Mall M, Bleich M, Gregor R, Schreiber R, Kunzelmann K (1998) The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J Clin Invest 102:15–21. https://doi.org/10.1172/JCI2729

22. Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Schreiber R, Kunzelmann K (2011) Flow cytometric localization of CFTR protein in airway epithelial cells by porcine bronchial submucosal gland serous acinar cells. Am J Physiol Lung Cell Mol Physiol 298:L210-231. https://doi.org/10.1152/ajplung.00036.2004

23. Mullot C, Biasioli P, Tijssen JG, Staal M, van der Westijn M, Geuskens A, Tjon A, Snippe H, Vink L (2003) Absorption of water and electrolytes in airway surface liquid in the porcine respiratory bronchioles. Am J Physiol Lung Cell Mol Physiol 285:L462–L472. https://doi.org/10.1152/ajplung.00036.2004

24. Parisky AM (1997) ATP-activated basolateral Na+/H+ exchange in human normal and cystic fibrosis airway epithelium. Am J Physiol 273:L48–L58. https://doi.org/10.1152/ajplung.1997.273.L148

25. Parisky AM, Coakley RD, Boucher RC (2003) Polarized distribution of HCO3− transport in human normal and cystic fibrosis nasal epithelia. J Physiol 548:203–218. https://doi.org/10.1113/jphysiol.2002.034447

26. Pezzulo AA, Tang XX, Hoejjger MJ, Abou Alawa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Banni B, Honswill AR, Stoltz DA, McCoy PB Jr, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487:100–113. https://doi.org/10.1038/nature11390

27. Quinton PM (2008) Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372:415–417. https://doi.org/10.1016/S0140-6736(08)61626-9

28. Roos A, Borton WF (1981) Intracellular pH. Physiol Rev 61:296–434. https://doi.org/10.1152/physrev.1981.61.2.296

29. Saint-Criq V, Gray MA (2017) Role of CFTR in epithelial physiology. Cell Mol Life Sci 74:93–115. https://doi.org/10.1007/s00018-016-2391-y

30. Salinas D, Haggie PM, Thiagarajah JR, Song Y, Rosbe K, Finkbeiner WE, Nielson DW, Verkman AS (2005) Submucosal gland dysfunction as a primary defect in cystic fibrosis. FASEB J 19:431–433. https://doi.org/10.1096/fj.04-2879fn

31. Schultz A, Uzvudi V, Borsiov SM, Shaw NC, Klintm K, Berry LI, Montgomery ST, Nguyen T, Kreda SM, Kicic A, Noble PB, Button B, Stick SM (2017) Airway surface liquid pH is not acidic in children with cystic fibrosis. Nat Commun 8:1409. https://doi.org/10.1038/s41467-017-00532-5

32. Shamsuddin AK, Quinton PM (2012) Surface fluid absorption and secretion in small airways. J Physiol 590:3561–3574. https://doi.org/10.1113/jphysiol.2012.220714

33. Shamsuddin AKM, Quinton PM (2019) Concurrent absorption and secretion of airway surface liquids and bicarbonate secretion in human bronchioles. Am J Physiol Lung Cell Mol Physiol 316:953–960. https://doi.org/10.1152/ajplung.00545.2018

34. Sheppard MN (1995) The pathology of cystic fibrosis. In: Hodson ME, Geddes DM (eds) Cystic fibrosis. Chapman & Hall Medical, London, pp 131–149

35. Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal normal airway surface fluid. Cell 82:229–236. https://doi.org/10.1016/0092-8674(96)87010-5

36. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218. https://doi.org/10.1012/bi00578a012

37. Urbach V, Helix N, Renaudon B, Harvey BJ (2002) Cellular mechanisms for apical ATP effects on intracellular pH in human bronchial epithelium. J Physiol 543:13–21. https://doi.org/10.1113/jphysiol.2001.015180

38. Weibel ER (1963) Morphometry of the Human Lung. Springer, Berlin.

39. Weibel ER (1963) Morphometry of the Human Lung. Springer, Berlin.

40. Xu H, Ghishan FK, Kielar PR (2018) SLC9 gene family: function, expression, and regulation. Compr Physiol 8:555–583. https://doi.org/10.1002/cphy.c170027

41. Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I (2021) Airway surface liquid pH regulation in airway epithelium: current understandings and gaps in knowledge. Int J Mol Sci 22:8130. https://doi.org/10.3390/ijms22138384

42. Zeiler BG, Eichwald E, Zabner J, Smith JH, Puga AP, McCray PB Jr, Capacechi MR, Welsh MJ, Thomas KR (1995) A mouse model for the delta F508 allele of cystic fibrosis. J Clin Invest 96:2051–2064. https://doi.org/10.1172/JCI118253

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.