On the divisibility of q-trinomial coefficients

Ji-Cai Liu

Received: 13 December 2021 / Accepted: 24 January 2022 / Published online: 5 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

We investigate the divisibility of the q-trinomial coefficients introduced by Andrews and Baxter, which is analogous to the q-Wolstenholme theorem regarding the q-binomial coefficients. A congruence for sums of central q-binomial coefficients is also established.

Keywords q-Trinomial coefficients · q-Congruences · Cyclotomic polynomials

Mathematics Subject Classification 11A07 · 11B65 · 13A05 · 05A10

1 Introduction

We consider coefficients of the expanded form of the expression:

\[(1 + x + x^2)^n = \sum_{j=-n}^{n} \binom{n}{j} x^j.\]

The coefficients in (1.1) are called trinomial coefficients. Two simple formulas for the trinomial coefficients (see [20, p. 43]) are

\[\binom{n}{j} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{k+j},\]

and

This work was supported by the National Natural Science Foundation of China (Grant 12171370).

Ji-Cai Liu
jccliu2016@gmail.com

1 Department of Mathematics, Wenzhou University, Wenzhou 325035, People’s Republic of China
\[
\binom{n}{j} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2n - 2k}{n - j - k}.
\]

In 1987, Andrews and Baxter [3] introduced six apparently distinct \(q\)-analogues of the trinomial coefficients, such as

\[
\binom{n}{j}_q = \sum_{k=0}^{n} q^{k(j+k)} \left\lfloor \frac{n-k}{k+j} \right\rfloor,
\]

where the \(q\)-binomial coefficients are defined as

\[
\left\lfloor \frac{n}{k} \right\rfloor_q = \begin{cases}
(1-q^n)(1-q^{n-1})\cdots(1-q^{n-k+1}) \\
0, \quad \text{if } 0 \leq k \leq n,
\end{cases}
\]

otherwise.

These \(q\)-trinomial coefficients play an important role in the solution of a model in statistical mechanics (see [3]). In 1990, Andrews [1] investigated some interesting properties for the \(q\)-trinomial coefficients, which led him to finite versions of dissections of the Rogers–Ramanujan identities into even and odd parts.

In 1999, Andrews [2] showed that Babbage’s congruence [5]:

\[
\binom{2p-1}{p-1} \equiv 1 \pmod{p^2}
\]

possesses the following nice \(q\)-analogue:

\[
\left\lfloor \frac{2p-1}{p-1} \right\rfloor_q \equiv q^{\frac{p(p-1)}{2}} \left\lfloor \frac{p^2}{p_q} \right\rfloor_q, \quad (1.4)
\]

for any odd prime \(p\). Notice that Wolstenholme [27] proved that (1.3) holds modulo \(p^3\) for any prime \(p \geq 5\), which is known as the famous Wolstenholme’s theorem.

To understand (1.4), we recall some necessary notation. For polynomials \(A_1(q), A_2(q), P(q) \in \mathbb{Z}[q]\), the \(q\)-congruence

\[
A_1(q)/A_2(q) \equiv 0 \pmod{P(q)}
\]

is understood as \(A_1(q)\) is divisible by \(P(q)\) and \(A_2(q)\) is coprime with \(P(q)\). In general, for rational functions \(A(q), B(q) \in \mathbb{Z}(q)\),

\[
A(q) \equiv B(q) \pmod{P(q)} \iff A(q) - B(q) \equiv 0 \pmod{P(q)}.
\]
The q-integers are defined as $[n]_q = (1-q^n)/(1-q)$ for $n \geq 1$, and the nth cyclotomic polynomial is given by

$$\Phi_n(q) = \prod_{\substack{1 \leq k \leq n \\ (n,k)=1}} (q - \zeta^k),$$

where ζ denotes an nth primitive root of unity.

Recently, Straub [21, Theorem 2.2] established a q-analogue of Wolstenholme–Ljunggren congruence:

$$\binom{ap}{bp} \equiv \binom{a}{b} \pmod{p^3},$$

for any prime $p \geq 5$, i.e.

$$\left[\begin{array}{c} an \\ bn \end{array} \right] \equiv \left[\begin{array}{c} a \\ b \end{array} \right] - (a - b) b \left(\frac{a}{b} \right) \frac{n^2 - 1}{24} (q^n - 1)^2 \pmod{\Phi_n(q)^3}. \quad (1.5)$$

The simple case $a = 2$ and $b = 1$ in (1.5) reads

$$\left[\begin{array}{c} 2n \\ n \end{array} \right] \equiv 1 - q^{2n^2} - \frac{n^2 - 1}{12} (q^n - 1)^2 \pmod{\Phi_n(q)^3}, \quad (1.6)$$

which is an extension of (1.4) (notice that $\left[\begin{array}{c} 2n-1 \\ n \end{array} \right] = \left[\begin{array}{c} 2n \\ n \end{array} \right]/(1 + q^n)$). We remark that Pan [19, Lemma 3.1] obtained another interesting q-analogue of the Wolstenholme–Ljunggren congruence and Zudilin [28] extended both Straub’s and Pan’s q-congruences.

In the past few years, congruences for q-binomial coefficients and truncated basic hypergeometric series attracted many experts’ attention (see, for example, [6–12, 14–17, 24, 26]). Nowadays, there is also an extensive literature on congruences for trinomial coefficients (see, for instance, [4, 18, 23, 25]). It is worth mentioning that Gorodetsky [7] investigated congruences for the q-trinomial coefficients $\left[\begin{array}{c} n \\ 0 \end{array} \right]_q$ modulo $\Phi_n(q)$. However, the literature is still sparse on congruences for q-trinomial coefficients.

The first aim of the paper is to prove the following congruence for the q-trinomial coefficients $\left[\begin{array}{c} n \\ 0 \end{array} \right]_q$.

Theorem 1.1 For any positive integer n, the following congruence holds modulo $\Phi_n(q)^2$:

$$\left(\begin{array}{c} n \\ 0 \end{array} \right) \equiv \begin{cases} (-1)^m (1 + q^m) q^{m(3m-1)/2}, & \text{if } n = 3m, \\ (-1)^m q^{m(3m+1)/2}, & \text{if } n = 3m + 1, \\ (-1)^m q^{m(3m-1)/2}, & \text{if } n = 3m - 1. \end{cases}$$
The elegant q-congruence (1.6) motivates us to establish the following congruence for the q-trinomial coefficients $\left(\begin{array}{c}2n \\ n\end{array}\right)_q$, which generalizes a conjectural q-congruence due to Apagodu and the author [4, Conjecture 1].

Theorem 1.2 For any positive integer n, the following congruence holds modulo $\Phi_n(q)^2$:

$$
\left(\begin{array}{c}2n \\ n\end{array}\right)_q \equiv \begin{cases}
2(-1)^m(1 + q^m)q^{m(3m-1)/2} - 3m(1 - q^{3m}) & \text{if } n = 3m, \\
2(-1)^m q^{m(3m+1)/2} - (3m + 1)(1 - q^{3m+1}) & \text{if } n = 3m + 1, \\
2(-1)^m q^{m(3m-1)/2} - (3m - 1)(1 - q^{3m-1}) & \text{if } n = 3m - 1.
\end{cases}
$$

The rest of the paper is organized as follows. In Sect. 2, we shall mainly establish an auxiliary congruence on sums of central q-binomial coefficients, which is interesting in itself. The proofs of Theorems 1.1 and 1.2 will be presented in Sects. 3 and 4, respectively.

2 An auxiliary result

To prove Theorems 1.1 and 1.2, we first recall the following two lemmas.

Lemma 2.1 (See [13, Lemma 2.3]) For any non-negative integer n, we have

$$
(1 - q^n) \sum_{k=0}^{[n/2]} (-1)^k q^{k(k-1)/2} \left\lfloor \frac{n - k}{k} \right\rfloor = \begin{cases}
(-1)^m(1 + q^m)q^{m(3m-1)/2}, & \text{if } n = 3m, \\
(-1)^m q^{m(3m+1)/2}, & \text{if } n = 3m + 1, \\
(-1)^m q^{m(3m-1)/2}, & \text{if } n = 3m - 1,
\end{cases}
$$

where $\lfloor x \rfloor$ denotes the integral part of real x.

Lemma 2.2 (See [24, Lemma 3.3]) For $k = 1, \ldots, n - 1$, we have

$$
\left\lfloor \frac{2k - 1}{k} \right\rfloor \equiv (-1)^k q^{k(3k-1)/2} \left\lfloor \frac{n - k}{k} \right\rfloor \pmod{\Phi_n(q)}.
$$

We also require the following congruence on sums of the central q-binomial coefficients $\left[\frac{2k}{k}\right]$.

Proposition 2.3 For any positive integer n, we have

$$
\sum_{k=1}^{[n/2]} q^{-k(k-1)/2} \left[\frac{2k}{k}\right] \equiv \frac{(1 - q)(1 - \mathcal{R}_n(q))}{1 - q^n} \pmod{\Phi_n(q)},
$$

where $\mathcal{R}_n(q)$ denotes the right-hand side of (2.1).
Remark

Sun [22, Theorem 1.1] proved that for any prime \(p \geq 5 \),

\[
\sum_{k=1}^{(p-1)/2} \frac{\binom{2k}{k}}{k} \equiv (-1)^{(p+1)/2} \frac{8p}{3} E_{p-3} \pmod{p^2},
\]

(2.4)

where \(E_0, E_1, E_2, \ldots \) are Euler numbers. Notice that (2.3) is a \(q \)-analogue of (2.4) modulo \(p \).

Proof of (2.3).

By (2.2) and \(q^n \equiv 1 \pmod{\Phi_1(n)} \), we have

\[
\sum_{k=1}^{[n/2]} \frac{q^{-k(k-1)/2}}{[2k]_q} \left[\frac{2k}{k} \right] = (1 - q) \sum_{k=1}^{[n/2]} \frac{q^{-k(k-1)/2}}{1 - q^{2k}} \left[\frac{2k}{k} \right] \\
= (1 - q) \sum_{k=1}^{[n/2]} \frac{q^{-k(k-1)/2}}{1 - q^k} \left[\frac{2k - 1}{k} \right] \\
\equiv (1 - q) \sum_{k=1}^{[n/2]} \frac{(-1)^k q^{k(k+1)/2}}{1 - q^k} \left[\frac{n - k}{k} \right] \\
\equiv (q - 1) \sum_{k=1}^{[n/2]} \frac{(-1)^k q^{k(k+1)/2}}{1 - q^{n-k}} \left[\frac{n - k}{k} \right] \pmod{\Phi_1(n)).
\]

(2.5)

We can rewrite (2.1) as

\[
\sum_{k=1}^{[n/2]} (-1)^k q^{k(k-1)/2} \left[\frac{n - k}{k} \right] = \frac{\mathcal{R}_n(q) - 1}{1 - q^n}.
\]

(2.6)

Substituting (2.6) into the right-hand side of (2.5) gives

\[
\sum_{k=1}^{[n/2]} \frac{q^{-k(k-1)/2}}{[2k]_q} \left[\frac{2k}{k} \right] \equiv \frac{(1 - q)(1 - \mathcal{R}_n(q))}{1 - q^n} \pmod{\Phi_1(n)}.
\]

(2.7)

as desired.

3 Proof of Theorem 1.1

For \(1 \leq k \leq \lfloor n/2 \rfloor \), we have

\[
\binom{n}{k} = \frac{(1 - q^n)(1 - q^{n-1}) \ldots (1 - q^{n-k+1})}{(1 - q) \ldots (1 - q^k)} \\
\equiv \frac{(1 - q^n)(1 - q^{n-1}) \ldots (1 - q^{-k+1})}{(1 - q) \ldots (1 - q^k)}
\]

\(\square \)}
\[
\begin{align*}
&= (-1)^k q^{-k(k-1)/2} (1 - q^n) \\
&\equiv (-1)^k q^{-k(k+1)/2} (1 - q^n) \\
&\quad \pmod{\Phi_n(q)^2},
\end{align*}
\]

where we have used the fact that \(1 - q^n \equiv 0 \pmod{\Phi_n(q)}\). It follows from (1.2), (2.6) and the above that

\[
\binom{n}{0}_q = \sum_{k=0}^{[n/2]} q^{k^2} \begin{bmatrix} n \k \n - k \end{bmatrix} = 1 + \sum_{k=1}^{[n/2]} q^{k^2} \begin{bmatrix} n \k \n - k \end{bmatrix}
\equiv 1 + (1 - q^n) \sum_{k=1}^{[n/2]} (-1)^k q^{k(k-1)/2} \begin{bmatrix} n - k \k \end{bmatrix}
= \mathcal{R}_n(q) \pmod{\Phi_n(q)^2}.
\]

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Note that for \(1 \leq k \leq \lfloor n/2 \rfloor\), we have

\[
\begin{align*}
\begin{bmatrix} 2n \k \n + k \end{bmatrix} &= \frac{(1 - q^{2n})(1 - q^{2n-1}) \cdots (1 - q^{2n+1-k})}{(1 - q)(1 - q^2) \cdots (1 - q^k)} \\
&\equiv \frac{2(1 - q^n)(1 - q^{-1}) \cdots (1 - q^{-k+1})}{(1 - q)(1 - q^2) \cdots (1 - q^k)} \\
&\equiv \frac{2(-1)^{k-1}(1 - q^n)q^{-k(k-1)/2}}{1 - q^k} \quad \pmod{\Phi_n(q)^2},
\end{align*}
\]

and

\[
\begin{align*}
\begin{bmatrix} 2n - k \k \n - k \end{bmatrix} &= \frac{2n}{(1 - q^{n+1}) \cdots (1 - q^n)(1 - q^{n-k})(1 - q^{n-k+1}) \cdots (1 - q^{2n})} \\
&\equiv \frac{(-1)^k q^{-k(3k-1)/2}}{2} \begin{bmatrix} 2n \k \n \end{bmatrix} \begin{bmatrix} k \k - 1 \end{bmatrix} \quad \pmod{\Phi_n(q)}.
\end{align*}
\]

where we have utilized the fact \(q^n \equiv 1 \pmod{\Phi_n(q)}\).
It follows from (1.2), (4.1) and (4.2) that

\[
\binom{2n}{n}_q = \sum_{k=0}^{\lfloor n/2 \rfloor} q^{k(n+1-k)} \binom{2n}{k} \binom{2n-k}{n+k}
\]

\[
= \binom{2n}{n} + \sum_{k=1}^{\lfloor n/2 \rfloor} q^{k(n+1-k)} \binom{2n}{k} \binom{2n-k}{n+k}
\]

\[
= \binom{2n}{n} - (1-q^n) \frac{2n}{n} \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{q^{-k(k-1)}}{1-q^k} \binom{2k-1}{k} \pmod{\Phi_1(q)^2}.
\]

By (1.6), we have

\[
\binom{2n}{n} \equiv 1 + q^{n^2}
\]

\[
= 2 - (1-q^n)(1 + q^n + q^{2n} + \cdots + q^{(n-1)n})
\]

\[
= 2 - n(1-q^n) \quad (\text{mod } \Phi_1(q)^2).
\]

Finally, substituting (2.3) and (4.4) into the right-hand side of (4.3) gives

\[
\binom{2n}{n}_q \equiv 2 \mathcal{R}_n(q) - n(1-q^n) \quad (\text{mod } \Phi_1(q)^2),
\]

as desired.

Acknowledgements The author would like to thank Ofir Gorodetsky for discussions on \(q\)-trinomial coefficients and useful suggestions regarding the paper. The author is also grateful to the anonymous referee for his/her helpful comments which helped to improve the exposition of the paper.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

1. Andrews, G.E.: Euler’s “exemplum memorabile inductionis fallacis” and \(q\)-trinomial coefficients. J. Am. Math. Soc. 3, 653–669 (1990)
2. Andrews, G.E.: \(q\)-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher. Discret. Math. 204, 15–25 (1999)
3. Andrews, G.E., Baxter, R.J.: Lattice gas generalization of the hard hexagon model III: \(q\)-trinomial coefficients. J. Stat. Phys. 47, 297–330 (1987)
4. Apagodu, M., Liu, J.-C.: Congruence properties for the trinomial coefficients. Integers 20, 38 (2020)
5. Babbage, C.: Demonstration of a theorem relating to prime numbers. Edinburgh Philos. J. 1, 46–49 (1819)
6. El Bachraoui, M.: On supercongruences for truncated sums of squares of basic hypergeometric series. Ramanujan J. 54, 415–426 (2021)
7. Gorodetsky, O.: q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon. Int. J. Number Theory 15, 1919–1968 (2019)
8. Guo, V.J.W.: q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping. Adv. Appl. Math. 120, 102078 (2020)
9. Guo, V.J.W., Liu, J.-C.: q-Analogues of two Ramanujan-type formulas for 1/π. J. Differ. Equ. Appl. 24, 1368–1373 (2018)
10. Guo, V.J.W., Schlosser, M.J.: A family of q-supercongruences modulo the cube of a cyclotomic polynomial. Bull. Aust. Math. Soc. (2021). https://doi.org/10.1017/S0004972721000630
11. Guo, V.J.W., Zudilin, W.: A q-microscope for supercongruences. Adv. Math. 346, 329–358 (2019)
12. Li, L., Wang, S.-D.: Proof of a q-supercongruence conjectured by Guo and Schlosser. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114, 190 (2020)
13. Liu, J.-C.: Some finite generalizations of Euler’s pentagonal number theorem. Czechoslovak Math. J. 142, 525–531 (2017)
14. Liu, J.-C.: On a congruence involving q-Catalan numbers. C. R. Math. Acad. Sci. Paris 358, 211–215 (2020)
15. Liu, J.-C., Huang, Z.-Y.: A truncated identity of Euler and related q-congruences. Bull. Aust. Math. Soc. 102, 353–359 (2020)
16. Liu, J.-C., Petrov, F.: Congruences on sums of q-binomial coefficients. Adv. Appl. Math. 116, 102003 (2020)
17. Liu, Y., Wang, X.: Some q-supercongruences from a quadratic transformation by Rahman. Results Math. 77, 44 (2022)
18. Ni, H.-X., Pan, H.: On the lacunary sum of trinomial coefficients. Appl. Math. Comput. 339, 286–293 (2018)
19. Pan, H.: Factors of some lacunary q-binomial sums. Monatsh. Math. 172, 387–398 (2013)
20. Sills, A.V.: An invitation to the Rogers–Ramanujan identities. CRC Press, New York (2018)
21. Straub, A.: Supercongruences for polynomial analogs of the Apéry numbers. Proc. Am. Math. Soc. 147, 1023–1036 (2019)
22. Sun, Z.-W.: Super congruences and Euler numbers. Sci. China Math. 54, 2509–2535 (2011)
23. Sun, Z.-W.: Congruences involving generalized central trinomial coefficients. Sci. China Math. 57, 1375–1400 (2014)
24. Tauraso, R.: q-Analogs of some congruences involving Catalan numbers. Adv. Appl. Math. 48, 603–614 (2012)
25. Wang, C., Sun, Z.-W.: Congruences involving central trinomial coefficients, preprint (2019). arXiv:1910.06850
26. Wei, C.: Some q-supercongruences modulo the fourth power of a cyclotomic polynomial. J. Comb. Theory Ser. A 182, 105469 (2021)
27. Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5, 35–39 (1862)
28. Zudilin, W.: Congruences for q-binomial coefficients. Ann. Comb. 23, 1123–1135 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.