Interpolation inequality and some applications

Abdellaziz Harrabi

Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
Institut Supérieur des Mathématiques Appliquées et de l’Informatique, Université de Kairouan, Tunisia

Abstract
We investigate explicit universal estimate of finite Morse index solutions to polyharmonic equations. Differently to previous works [3, 7, 8, 14], propose here a direct proof using a new interpolation inequality and a delicate bootstrap argument under large superlinear and subcritical growth conditions to show that the universal constant grows as a power function of the Morse index. Also, our interpolation inequality allows us to provide local \(L^p - W^{2,r,p} \) estimate.

Keywords: Interpolation inequality, Universal estimate, Morse index, Pohozaev identity, Bootstrap argument.

PACS: Primary 35G20, 35G30, Secondary 35B05, 35B09, 35B53.

1. Introduction

1.1. Interpolation inequalities.

Let \(n, r \geq 2 \) be two integer numbers and \(p \geq 2 \) a real number. We designate by \(\Omega \) an open subset of \(\mathbb{R}^n \) and \(B_R \) the ball of radius \(R > 0 \) centered at the origin. Let \(j = (j_1, j_2, \ldots, j_n) \) be a multi index, the weak \(j^{th} \) partial derivative and the magnitude of the \(q^{th} \) gradient of \(u \in W^{r,p}_{\text{loc}}(\Omega) \) are respectively defined in \(\Omega \) by

\[
D^j u = \frac{\partial^{|j|} u}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}}, \quad 1 \leq |j| \leq r \quad \text{and} \quad |\nabla^q u| = \left(\sum_{|j|=q} |D^j u|^p \right)^{\frac{1}{p}}, \quad 1 \leq q \leq r.
\]

(1.1)

Let \(\varepsilon \in (0, 1) \) and \(1 \leq q \leq r-1 \). From an obvious dilation argument, the standard interpolation inequality \([1]\) implies

\[
R^{(q-r)} \int_{B_R} |\nabla^q v|^p \leq \varepsilon \int_{B_R} |\nabla^r v|^p + C_\varepsilon R^{q-p} \int_{B_R} |v|^p, \quad v \in W^{r,p}(B_R).
\]

(1.2)

where \(C = C(n, p, r) \) is a positive constant. According to (1.2), one can establish the following weighted interpolation inequality (see \([14, 15, 20]\))

\[
R^{(q-r)} \Phi_q'(v) \leq \varepsilon \Phi_r'(v) + C_\varepsilon R^{q-p} \int_{B_R} |v|^p,
\]

(1.3)

where \(\Phi_q \) is a family of weighted semi-norms defined by

\[
\Phi_q(v) = \left(\sup_{0 < \alpha < 1} (1 - \alpha)^q \int_{B_R} |\nabla^q v|^p \right)^{\frac{1}{p}}, \quad 0 \leq q \leq r.
\]

Email address: abdellaziz.harrabi@yahoo.fr (Abdellaziz Harrabi)

Preprint submitted to Elsevier

January 23, 2024
Inequality (1.3) together with the following cut-off function \(\psi = \psi_{a,R} \in C_c^1(\mathbb{R}^n), a \in (0, 1) \)
\[
\psi(x) = \exp\left(\frac{|x|^2}{aR} - \frac{x}{R} - \alpha'\right)
\]
if \(aR < |x| < \alpha'R \), \(\psi \equiv 1 \) if \(|x| \leq aR \) and \(\psi \equiv 0 \) if \(|x| \geq \alpha'R \) where \(\alpha' = \frac{1 + \alpha}{2} \).

are quite useful to provide the energy estimate which is essential to classify stable at infinity weak solution of the \(p \)-polyharmonic equations [15] (see also [14, 20] for \(p = 2 \)). The reader may consults [1, 11, 10] for further applications of (1.3). When \(p \geq 2 \) we introduce a new interpolation inequality which will be more relevant in providing integral estimates in various contexts. In particular it will be helpful to establish explicit universal estimate and local \(L^p - W^{2/p} \)-estimate (see Appendix C). Moreover, our inequality relies on a more general cut-off function related to two bounded open subset \(\omega \) and \(\omega' \) such that \(\overline{\omega} \subset \omega' \subset \overline{\omega'} \subset \Omega \). Precisely, denote \(d = \text{dist}(\omega, \Omega \cap \omega') \), we have

Lemma 1.1. There exist \(\psi \in C_c^\infty(\omega') \) and a positive constant \(C \) depending only on \(n, p, k, m \) such that
\[
\begin{cases}
0 \leq \psi \leq 1 \text{ and } \psi \equiv 1 \text{ if } x \in \omega;
|\nabla^k \psi(x)|^p \leq Cd^{-k}p, \forall x \in \omega' \text{ and } k \in \mathbb{N}.
\end{cases}
\tag{1.4}
\]

Moreover, we have
\[
|\nabla^k \psi^m| \leq Cd^{-k}p^{m-k}, \forall x \in \omega' \text{ and } m > k.
\tag{1.5}
\]

As usual, we used the power function \(\psi^m, m > r \) as a cut-off function (see [6, 21, 14, 15]). Let \((q, k) \in \mathbb{N}^+ \times \mathbb{N}^+ \), \(q + k = r \), our main first result reads as follows.

Lemma 1.2. For every \(0 < \varepsilon < 1 \), there exists a positive constant \(C = C(n, r, p, m) \) such that for any \(u \in W^{r,p}_{\text{loc}}(\Omega) \), we have
\[
\int_\omega |\nabla^q u|^p |\nabla^k (\psi u)|^p \leq Cd^{-kp} \int_\omega |\nabla^q u|^p |\nabla^k (\psi u)|^p \leq \varepsilon \int_\omega |\nabla^q u|^p |\nabla^k (\psi u)|^p + C\varepsilon^{1-p'} d^{-pr} \int_\omega |u|^p |\nabla^{r-m} u|^r.
\tag{1.6}
\]

Consequently,
\[
\int_\omega |\nabla^q u|^p |\nabla^k u|^p \leq 2 \varepsilon \int_\omega |\nabla^q u|^p |\nabla^k u|^p + C\varepsilon^{1-p'} d^{-pr} \int_\omega |u|^p |\nabla^{r-m} u|^r.
\tag{1.7}
\]

and
\[
\int_\omega |\nabla^q u|^p |\nabla^k \psi u|^p \leq Cd^{-kp} \int_\omega |\nabla^q u|^p |\nabla^k \psi u|^p \leq C\varepsilon^{1-p'} d^{-pr} \int_\omega |u|^p |\nabla^{r-m} u|^r.
\tag{1.8}
\]

1.2. Explicit universal estimate.

Consider the following polyharmonic problem:
\[
(-\Delta)^j u = f(x, u), \text{ in } \Omega.
\tag{1.9}
\]

Here, \(\Omega \) is a proper domain of \(\mathbb{R}^n, u \in C^{2j}(\Omega) \), \(f \) and \(f' = \frac{\partial f}{\partial s} \) belong to \(C(\Omega \times \mathbb{R}) \). The associated quadratic form of (1.9) is defined by
\[
Q_u(h) = \int_\Omega |D_j h|^2 - \int_\Omega f'(x, u) h^2, \text{ } h \in C^1_c(\Omega),
\tag{1.10}
\]
where \(D_j h = \nabla \Delta^{j-1} h, |D_j h|^2 = |\nabla \Delta^{j-1} h|^2 \) if \(r = 2j - 1 \) and \(D_j h = \Delta^j h, |D_j h|^2 = (\Delta h)^2 \) if \(r = 2j, j \in \mathbb{N}^+ \). The Morse index of \(u \), denoted by \(\text{ind}(u) \) is defined as the maximal dimension of all subspaces \(V \) of \(C^1_c(\Omega) \) such that \(Q_u(h) < 0, \forall h \in V \setminus \{0\} \). In previous works [7, 8, 14], universal estimate has been established from blow-up technique and some available Liouville-type theorems classifying finite Morse index solutions (see also the case of positive solutions in [9, 19, 21, 22]). However, this procedure fails to derive explicit estimate and requires a restrictive asymptotic
Thanks to Lemma 1.2, we establish explicit universal estimate under the following large superlinear and subcritical growth conditions:

There exist \(s_0 > 0, c_1 > 1 \) and \(1 < p_1 \leq p_2 < \frac{n + 2r}{n - 2r} \) such that for all \((x, s) \in \Omega \times \mathbb{R} \setminus [-s_0, s_0], \)

\[(h_1) \quad \text{(Super-linearity)} \quad f'(x, s)s^2 \geq p_1 f(x, s)s; \]

\[(h_2) \quad \text{(Subcritical growth)} \quad (p_2 + 1)F(x, s) \geq f(x, s)s, \text{ where } F(x, s) = \int_{s_0}^s f(x, t)dt; \]

\[(h_3) \quad |(\nabla, F)(x, s)| \leq c_1(F(x, s))^s, \text{ for all } (x, s) \in \Omega \times \mathbb{R}; \]

\[(h_4) \quad |f'(x, s)| \leq c_1, \text{ for all } (x, s) \in \Omega \times [-s_0, s_0], \quad |f(x, 0)| \leq c_1 \text{ and } \pm f(x, \pm s_0) \geq \frac{1}{c_1} \text{ for all } x \in \Omega. \]

When \(f(x, s) = f(s) \) the above assumptions are reduced to \((h_1)-(h_2)\) (with \(f(\pm s_0) > 0 \)) and obviously are weaker than \((h_0)\). Let \(K \in C^1(\Omega) \) be a positive function such that \(K^{-1} |\nabla K| \in L^\infty(\Omega) \), and \(1 < p_1 < p_2 < \frac{n + 2r}{n - 2r} \) and denote \(s_\pm = \max(s, 0), s_\mp = \max(-s, 0) \). The nonlinearity \(f(x, s) = K(x)(s_\pm^{p_1} - s_\mp^{p_2}) \) satisfies \((h_1)-(h_2)\) but violates \((h_0)\).

Let \(\alpha \in (0, 1) \), \(y \in \Omega \). Denote \(\delta_1 = \text{dist}(y, \partial \Omega), \delta_2 = \inf(\alpha, \delta_1) \). We have

Theorem 1.1. Assume that \(f \) satisfies \((h_1)-(h_4)\). Then, there exist \(\alpha_0 \in (0, 1), \gamma_1 > 0, \gamma_2 > 0 \) and a positive constant \(C = C(\alpha_0, n, r, p_1, p_2, s_0, c_1) \) independent of \(\Omega \) such that for any finite Morse index solution \(u \) of \((1.9)\) and for every \(\alpha \in (0, \alpha_0) \), we have

\[
\sum_{j=0}^{2r-1} d_j^{|\nabla^j u(y)|} \leq C(1 + \delta_1)^{\gamma_1} d_1^{\gamma_1}, \quad \forall y \in \Omega. \tag{1.11}
\]

Precisely, if \(\frac{p_2 + 1}{p_2} < \frac{n}{2r} \) then \(\gamma_1 = \frac{4r^2(p_1 + 1)p_2}{(p_1 - 1)(2r(p_2 + 1) - n(p_2 - 1))} \) and \(\gamma_2 = \gamma_1 + \frac{2r(p_2 + 1)}{2r(p_2 + 1) - n(p_2 - 1)}. \)

Remark 1.1. Denote \(\Omega_\alpha = \{ y \in \Omega, \delta_1 \geq \alpha \}, \) \(\alpha \in (0, \alpha_0) \). As a direct consequence of \((1.11)\), we have

\[
||u||_{C^{2r-1}(\Omega_\alpha)} \leq C\alpha^{1-2r-\gamma_1}(1 + \delta_1)^{\gamma_1} \text{ and if } y \in \Omega \setminus \Omega_\alpha, \text{ then } \sum_{j=0}^{2r-1} |\nabla^j u(y)| \leq C(1 + \delta_1)^{\gamma_1} d_1^{1-2r-\gamma_1}. \]

To prove Theorem 1.1, we make use of Lemmas 1.1 and 1.2 to obtain a first integral estimate on a ring around \(y \) (see Section 3). By virtue of a variant of the Pohozaev identity, we extend this estimate to a ball centered at \(y \) as follows

\[
d_1^{n-1} \int_{B(y, d_1)} |f(x, u)|^{\frac{2r+1}{r}} \leq C \left(\frac{1 + \delta_1}{d_1}\right)^{\frac{2r+1}{n+1}} d_1^{\gamma_1+1}, \quad \forall y \in \Omega. \tag{1.12}
\]

As \(p_2 \) is subcritical, we used a delicate boot strap argument to end the proof of Theorem 1.1. Note that estimate \((1.12)\) holds when \(\frac{n + 2r}{n - 2r} < p_1 \leq p_2 \), but it is not clear which procedure would be helpful to derive \((1.11)\). Also, inequality \((1.12)\) could be extended to solutions of the \(p \)-polyharmonic equation. However, we do not dispose to any \(L^p \)-regularity result to start the boot strap procedure. Regarding the case of bounded domain, explicit \(L^p \)-bounds of

1 If \(\Omega \) is an unbounded domain we assume in addition that \(K(x) \geq c_0 > 0 \) for all \(x \in \Omega. \)

2 In the statement of Theorem 1.1 we used \((1.1)\) with \(p = 1. \)

3 Note that the boot strap argument requires a subcritical growth.
finite Morse index solutions of the second order Dirichlet boundary-value problem has been obtained in \cite{12, 13, 22} under similar assumptions of (h1)-(h4) which improve the a priori L^∞-estimates stated in \cite{3, 17}. Also, in \cite{16} the authors examined the influence of the type boundary conditions involving the biharmonic and triharmonic problems to provide similar explicit L^∞-bounds. The general higher order case $r \geq 4$, is more difficult since some needed local interior estimates near the boundary are so hard to achieve.

This paper is organized as follows: Section 2 is devoted to the proofs of Lemmas \ref{lemma1} and \ref{lemma2}. In section 3, we give the proof of Theorem \ref{theorem1}. In appendix C, we provide the proof of local L^p-$W^{2,p}$ estimate.

In the following, C (respectively C_r) denotes always generic positive constants depending only on (n, p, r, k, m) (respectively on (ℓ, n, p, r, m)) which could be changed from one line to another.

2. Proofs of Lemmas \ref{lemma1} and \ref{lemma2}

Proof of Lemma \ref{lemma1} Set $\omega_d = \{x \in \Omega, \text{dist}(x, \omega) < \frac{d}{4}\}$, where $d = \text{dist}(\omega, \Omega \setminus \omega')$, we have $\omega \subset \omega_d \subset \omega'$. Let $h = \chi_{\omega_d}$ be the indicator function of ω_d and $g \in C^\infty_c(\mathbb{R}^n)$ a nonnegative function such that $\text{supp}(g) \subset B_1$ and $\int_{\mathbb{R}^n} g(x)dx = 1$. Set

$$g_d(x) = \left(\frac{8}{d}\right)^n g \left(\frac{8x}{d}\right)$$

and $\psi(x) = \int_{\mathbb{R}^n} g_d(y)h(x-y)dy = \int_{B_8^c} g_d(y)h(x-y)dy$.

We have $0 \leq \psi \leq 1$ and $\text{supp}(\psi) \subset \omega_d + B_{\frac{d}{4}} \subset \omega'$ (see proposition 4.18 in \cite{4}). Since $\omega + B_{\frac{d}{4}} \subset \omega_d$, then $\psi(x) = 1$ if $x \in \omega$. Also, $\psi \in C^\infty_c(\mathbb{R}^n)$ with $D^i\psi(x) = \int_{B_8^c} D^i g_d(y)h(x-y)dy$ (see proposition 4.20 in \cite{4}). Therefore,

$$|D^i\psi(x)| \leq \int_{B_8} |D^j g_d|dy \leq \left(\frac{8}{d}\right)^{|j|} \int_{B_8} |D^j g(y)|dy \leq Cd^{-|j|}.$$

Now, from (1.1), one can see that $|\nabla^l \psi(x)|^p \leq Cd^{-lp}$, $\forall x \in \omega' \setminus \omega$ and $k \in \mathbb{N}$, where is $C = C(n, k, p) > 0$.

Proof of (1.5). The proof will be done by working inductively with respect $k \geq 1$. Observe that (1.5) is an immediate consequence of (1.4) if $k = 1$. Assume now that the following inequality holds for all $1 \leq l \leq k$ and $m > 1$

$$|\nabla^l \psi^m| \leq Cd^{-l}\psi^{m-1}, \quad \forall x \in \omega'. \quad (2.1)$$

Let $m > k + 1$, fix $j = (j_1, j_2, ..., j_n)$ such that $2 \leq |j| \leq k + 1$ and $i_0 \in \{1, 2, ..., n\}$ such that $j_{i_0} \neq 0$ and denote $j_\ast = (j_1, ..., j_{i_0} - 1, ..., j_n)$. According to Leibnitz’s formula, we have

$$D^j \psi^m = mD^k \left(\psi^{m-1} \frac{\partial \psi}{\partial x_{i_0}}\right) = m\psi^{m-1} D^j \psi + m \sum_{s+t+|j_{i_0}|=j_\ast \neq j_0} a_{j_\ast} D^s \psi^{m-1} D^t \frac{\partial \psi}{\partial x_{i_0}}, \quad \text{where } |s| + |t| = k, a_{j_\ast} \in \mathbb{R}.$$

From (1.4), we derive

$$|\nabla^j \psi^m| \leq C \left(d^{-k} \psi^{m-1} + \sum_{1 \leq s \leq k} d^{k-1-s} |\nabla^l \psi^{m-1}|\right), \quad \forall x \in \omega'. \quad (2.4)$$

According to our assumption (2.1), $m - 1 > k$ and the above inequality, we derive that (1.5) holds for $k + 1$. This achieves the proof of Lemma \ref{lemma1}. \hfill \Box

2.1. Proof of Lemma \ref{lemma2}

We will use the following elementary inequalities. For $p \geq 2$, $\varepsilon \in (0, 1)$, a, b and c positive real numbers, we have

$$b^p \leq 2a^p + C|a - b|^p, \quad ab^{p-2}c \leq \frac{1}{p}a^{1-p}b^p + \frac{p-2}{p}c^p + \frac{1}{p}b^p. \quad (2.2)$$
Let \(\psi \) the cut-off function defined in Lemma 1 and \(m > r \). Inequality (1.8) is an immediate consequence of (1.6) and (1.7). Also, inequality (1.7) follows from (1.6). In fact, from (1.3), we have \(|\nabla u|^p \psi^m = \sum_{|\alpha|=r} |D^\alpha u|^p \psi^m \). Thus, the first inequality of (2.2) (with \(a = |D^r (u \psi^m)| \) and \(b = |D^r (u \psi^m)| \) and Leibnitz’s formula [1] imply
\[
|\nabla u|^p \psi^m \leq 2|\nabla (u \psi^m)|^p + C \sum_{|\alpha|=r} |D^\alpha (u \psi^m) - D^\alpha (u) \psi^m|^p.
\]
In view of (1.5), we get \(\int_{\omega} |\nabla u|^p \psi^m \leq 2 \int_{\omega} |\nabla (u \psi^m)|^p + C \sum_{q+k=r} d^{-pk} \int_{\omega} |\nabla^q u|^p \psi^p(m-k). \) Hence, inequality (1.7) follows from (1.6).

Proof of (1.6). Set \(I_q = d^{-pk} \int_{\omega} |\nabla^q u|^p \psi^p(m-k). \) From (1.5), we have \(\int_{\omega} |\nabla^q u|^p \psi^p(m-k) \leq C I_q. \) Thus, to provide (1.6), we have only to prove the following inequality:
\[
I_q \leq \varepsilon I_r + C \varepsilon^{1-p} I_{r-1}, \hspace{1cm} 1 \leq q \leq r - 1.
\]
We divide the proof of (2.3) into two steps.

Step 1. We establish the following first-order interpolation inequality:
\[
I_q \leq \varepsilon I_{q+1} + C \varepsilon^{1-p} I_{q-1}, \hspace{1cm} 1 \leq q \leq r - 1.
\]
Recall that \(\psi \in C^\infty_c (\omega') \) and denote \(u_{\omega'} \) the restriction of \(u \) on \(\omega' \). Observe that by virtue of Meyers-Serrin’s density theorem [1] and using Lebesgue’s dominated convergence theorem [2], one can reduce the proof of (2.3) to \(u_{\omega'} \) belonging to \(C^\infty (\omega') \cap W^{r,p} (\omega') \). Let \(j = (j_1, j_2, ..., j_n) \) be a multi index with \(|j| = q \leq r - 1 \) and \(i_0 \in \{1, 2, ..., n\} \) such that \(j_{i_0} \neq 0 \). Set \(j_- = (j_1, ..., j_{i_0} - 1, ..., j_n), \hspace{1cm} |j_-| = q - 1 \) and \(j_+ = (j_1, ..., j_{i_0} + 1, ..., j_n), \hspace{1cm} |j_+| = q + 1 \). As \(p \geq 2 \) and \(|j| \leq r - 1 \), we have
\[
|D^j u|^p \psi^p(m-k) \in C^1 (\omega') \hspace{1cm} \text{and} \hspace{1cm} \frac{\partial (|D^j u|^p \psi^p(m-k))}{\partial x_{i_0}} = (p-1)|D^j u|^p D^j u.
\]
From (1.5) on has \(|\nabla \psi| \leq C d^{-1} \), then integration by parts yields
\[
d^{-pk} \int_{\omega} |D^j u|^p \psi^p(m-k) = d^{-pk} \int_{\omega} |D^j u|^p D^j u \frac{\partial |D^j u|^p \psi^p(m-k)}{\partial x_{i_0}} = -(p-1)d^{-pk} \int_{\omega} |D^j u|^p D^j u \frac{\partial |D^j u|^p \psi^p(m-k)}{\partial x_{i_0}}.
\]
Thus,
\[
d^{-pk} \int_{\omega} |D^j u|^p \psi^p(m-k) \leq Cd^{-pk} \int_{\omega} |D^j u|^p |\nabla^j u|^p |D^j u|^p \psi^p(m-k)\hspace{1cm} \text{and} \hspace{1cm} C d^{-pk} \int_{\omega} |D^j u|^p |\nabla^j u|^p |D^j u|^p \psi^p(m-k)\).
\]
Taking into account that \(I_q = \sum_{|\alpha|=r} d^{-pk} \int_{\omega} |D^\alpha u|^p \psi^p(m-k) \) with \(k = r - q \), so inequality (2.4) implies
\[
I_q \leq C(I_1 + I_2) \hspace{1cm} \text{where} \hspace{1cm} I_1 = d^{-pk} \int_{\omega} |D^j u|^p |\nabla^j u|^p |D^j u|^p \psi^p(m-k) \) and \(I_2 = d^{-(p+1)} \int_{\omega} |D^j u|^p |\nabla^j u|^p |D^j u|^p \psi^p(m-k)\).
\]
with \(a = d^{-(k+1)}|\nabla^{q-1}u|g^{m-(k+1)} \), \(b = d^{-(k+1)}|\nabla u|g^{r-k} \) and \(c = d^{-(k+1)}|\nabla^{q+1}u|g^{m-(k-1)} \) (respectively \(c = d^{-(k+1)}|\nabla u|g^{r-k} \)), implies

\[
J_1 \leq \frac{1}{p}e^{1-p}I_{q-1} + \frac{p-2}{p}\varepsilon I_q + \frac{1}{p}\varepsilon I_{q+1}, \quad \text{and} \quad J_2 \leq \frac{1}{p}e^{1-p}I_{q-1} + \frac{p-1}{p}\varepsilon I_q.
\]

Combining the above inequalities with (2.7), we deduce \((1-2C\varepsilon)I_q \leq C\varepsilon I_{q-1} + C\varepsilon I_{q+1} \). Hence, the inequality (2.4) follows by replacing \(\varepsilon \) by \(\frac{\varepsilon}{4(1 + C)} \).

Step 2. End of the proof of (2.5). The case \(r = 2 \), or \(r \geq 3 \) and \(q = 1 \) is an immediate consequence of (2.4). Let \(r \geq 3, 2 \leq q \leq r-1 \) and \(2 \leq t \leq q \) and set \(S_t = \sum_{i=2}^{t} I_i \). We apply (2.4) where one substitutes \(q \) by \(t - i \) and \(\varepsilon \) by \(\varepsilon^{r-i} \), we derive \(C\varepsilon^{r-i} I_{r-t} \leq C^{r+1}\varepsilon^{r-i} I_{r-t+1} + C\varepsilon I_{r-t+1} \). Since \(S_t \leq S_q \) and \(0 < \varepsilon < 1 \), the summation of the above inequalities from \(i = 0 \) to \(i = t-1 \) yields

\[
I_t \leq C\varepsilon^{r-i} I_0 + \varepsilon I_{r+1} + C\varepsilon S_q \quad \text{if} \quad 2 \leq t \leq q.
\]

Summing now (2.8) from \(t = 2 \) to \(t = q \) and substituting \(\varepsilon \) by \(\frac{\varepsilon}{2(1 + C)} \), we arrive at \(S_q \leq C\varepsilon^{r-i} I_0 + \varepsilon I_{r+1} \), for all \(1 \leq q \leq r-1 \). Combining (2.8) with \(t = q \) and the last inequality, we obtain

\[
I_q \leq C\varepsilon^{r-i} I_0 + \varepsilon I_{r+1}, \quad 1 \leq q \leq r-1.
\]

To end the proof of (2.5), we iterate (2.9) as follows

\[
\begin{align*}
I_q & \leq C\varepsilon^{r-i} I_0 + I_{r+1}, \\
I_{q+1} & \leq C\varepsilon^{r-i} I_0 + I_{r+1}, \\
& \vdots \\
I_{r-1} & \leq C\varepsilon^{r-i} I_0 + \varepsilon I_r.
\end{align*}
\]

Hence, the summation of the above inequalities yields \(I_q \leq C\varepsilon^{r-i} I_0 + \varepsilon I_r \), which is the desired inequality (2.5). The proof of Lemma 1.2 is completed. \(\square \)

3. **Proof of Theorem 1.1**

3.1. **Preliminary results.**

\(B(y, \lambda) \) stands for the ball of radius \(\lambda > 0 \) centered at \(y \in \mathbb{R}^n \). Let \(\psi \) be the cut-off function defined in Lemma 1.1 related to two open subset \(\omega \) and \(\omega' \) of \(B(y, \lambda) \). Thanks to Lemma 1.2 with \(p = 2 \), we establish the following technical lemma:

Lemma 3.1. For every \(0 < \varepsilon < 1 \), there exists a positive constant \(C_\varepsilon = C(n, m, r, \varepsilon) \) such that, for all \(u \in H'(B(y, \lambda)) \), we have

\[
\int_{B(y, \lambda)} |D\psi|^2 \leq C_\varepsilon \left(\int_{B(y, \lambda)} |D\psi|^2 + d^{-2r} \int_{B(y, \lambda)} |u|^2 \psi^{2(m-r)} \right);
\]

\[
\int_{B(y, \lambda)} |D\psi|^{2m} \leq C_\varepsilon \left(\int_{B(y, \lambda)} |D\psi|^{2m} + d^{-2r} \int_{B(y, \lambda)} |u|^2 \psi^{2(m-r)} \right);
\]

\[
\int_{B(y, \lambda)} |\nabla\psi|^2 \leq C_\varepsilon \left(\int_{B(y, \lambda)} |D\psi|^{2m} + d^{-2r} \int_{B(y, \lambda)} |u|^2 \psi^{2(m-r)} \right);
\]

\[
\int_{B(y, \lambda)} |\nabla\psi|^2 \leq C_\varepsilon \left(\int_{B(y, \lambda)} |D\psi|^{2m} + d^{-2r} \int_{B(y, \lambda)} |u|^2 \psi^{2(m-r)} \right);
\]
Collecting now, inequalities (3.6), (3.7), (1.7) and (1.8), we have

\[
\int_{B(y, \lambda)} |D_t u \cdot D_t (\nabla u \cdot (x-y))\psi^{2m} - D_t u \cdot D_t (\nabla u \cdot (x-y))\psi^{2m}| \leq C(1 + \frac{\lambda}{d}) \left(\sum_{1 \leq q \leq r} d^{2(r-q)} \int_{\omega \setminus \omega'} |\nabla^q u|^2 + d^{-2r} \int_{\omega'} |u|^2 \right).
\]

(3.4)

Proofs of Lemma 3.1
For \(v \in H'(B(y, \lambda)) \) and \(\eta \in C_c^\infty(B(y, \lambda)) \), set \(A(\eta, v) := D_t (\eta v) - \eta D_t v \). A simple computations yield

\[
|D_t (u \eta)|^2 - \eta^2 |D_t u|^2 = 2 \eta D_t u \cdot A(\eta, u) + |A(\eta, u)|^2, \quad \eta^2 D_t u \cdot D_t v - D_t u \cdot D_t (\eta v^2) = -D_t u \cdot A(\eta^2, v),
\]

and \(|A(\eta, v)| \leq C \sum_{q+k=r, \eta \neq r} |\nabla^q v| |\nabla^r \eta| \). Therefore,

\[
|D_t (u \eta)|^2 - \eta^2 |D_t u|^2 \leq C \sum_{q+k=r, \eta \neq r} \left(|D_t u| |\nabla^q u| |\nabla^r \eta| + |\nabla^q \eta| \right) + |\nabla^q u| |\nabla^r \eta|).
\]

Choosing now \(\eta = \psi^m \) and using (1.5), we obtain

\[
\int_{B(y, \lambda)} \left| \left(\psi^{2m} D_t u \cdot D_t v - D_t u \cdot D_t (\psi^{2m}) \right) \right| \leq CS_1 (u, v); \quad (3.5)
\]

\[
\int_{B(y, \lambda)} \left| D_t (u \psi^m) \right|^2 - \psi^{2m} |D_t u|^2 \leq C(S_1 (u, u) + S_2 (u)); \quad (3.6)
\]

where \(S_1 (u, v) = \int_{\omega \setminus \omega'} |\nabla^r u| \left(\sum_{0 \leq q \leq r-1} d^{-q} |\nabla^q u| |\psi^{2m+q-r}| \right) \) and \(S_2 (u) = \int_{\omega \setminus \omega'} \left(\sum_{0 \leq q \leq r-1} d^{-q} |\nabla^q u|^2 |\psi^{2m+2-2(r-q)}| \right). \)

We invoke Cauchy-Schwarz’s inequality:

\[
\left| \sum_{q=0}^{r-1} a_q \right|^2 \leq e |a_q|^2 + C_e \sum_{q=0}^{r-1} |a_q|^2, \quad (a_0, a_1, ..., a_e) \in \mathbb{R}^{r+1},
\]

with \(a_e = |\nabla^r u| |\psi^m| \) and \(a_q = d^{-q-1} |\nabla^q u| |\psi^{(m+q-r)}| \) if \(q = 0, 1, ..., r-1 \). As \(pm - (r-q) = (p-1)m + (m-r-q) \), we arrive at

\[
S_1 (u, u) + S_2 (u) \leq e \int_{B(y, \lambda)} |\nabla^r u|^2 |\psi^{2m}| + C_e \sum_{q+k=r, \eta \neq r} d^{-2k} \int_{B(y, \lambda)} |\nabla^q u|^2 |\psi^{2m+k-2(r-q)}|.
\]

(3.7)

Hence, inequality (3.1) follows from (3.5) (with \(v = u \), (3.7) and inequalities (1.7), (1.8) of Lemma 1.2.

Collecting now, inequalities (3.6), (3.7), (1.7) and (1.8), we obtain

\[
\int_{B(y, \lambda)} \left| D_t u \psi^{2m} - D_t (u \psi^m) \right|^2 - \leq e \int_{B(y, \lambda)} |\nabla^r (u \psi^m)|^2 + C_e d^{-2r} \int_{B(y, \lambda)} |u|^2 |\psi^{2m-2(r-q)}|.
\]

(3.8)

\[^4\text{Both } D_t \text{ and } A(\eta, v) \text{ are respectively scalar operators if } r \text{ is even, and } n\text{-vectorial operators if } r \text{ is odd.}\]

\[^5\text{Observe that } |D_t u| \leq C |\nabla^r u|.\]
Thus, the proof of (3.4) follows by collecting (3.5), (3.11). This ends the proofs of Lemma 3.1.

Fix now where the above Cauchy-Schwarz’s inequality, yields

\[S_1(u, v) = \int_{\Omega} |\nabla u| \sum_{0 \leq q < 1} d^{-q} |\nabla^q v| \rho^{2m+q-r} \]

the above Cauchy-Schwarz’s inequality, yields

\[S_1(u, v) \leq \int_{\omega} |\nabla u|^2 + C \sum_{0 \leq q \leq r} d^{-q} \int_{\omega} |\nabla^q v|^2. \]

(3.10)

Fix now \(v = \nabla u \cdot (x-y) \) and taking into account that

\[|\nabla^q (\nabla u \cdot (x-y))|^2 \leq C (|x|^{q+1} |u|^2 + |\nabla u|^2) \leq C (\frac{d^2}{d}) |\nabla^{q+1} u|^2 + |\nabla u|^2, \]

we deduce that

\[S_1(u, v) \leq C (1 + (\frac{d^2}{d}) \sum_{0 \leq q \leq r} d^{-q} \int_{\omega} |\nabla^q u|^2 + d^{-2} \int_{\Omega} |u|^2. \]

(3.11)

Thus, the proof of (3.4) follows by collecting (3.5), (3.11). This ends the proofs of Lemma 3.1. □

At last, in view of assumptions (h1)-(h3), we have (see the proof in Appendix A):

Lemma 3.2. Let \(t > 1 \) and set \(q_1 = \frac{p_2 + 1}{p_2} \). There exists a positive constant \(C = C(s_0, p_1, p_2, c_1) \) such that for all \((x, s) \in \Omega \times \mathbb{R}, \) we have

- [1] \(f'(x, s)s^2 \geq p_1 f(x, s) - C; \)
- [2] \((p_2 + 1)F(x, s) \geq f(x, s)s - C; \)
- [3] \(|s|^{p_1 + 1} \leq C f(x, s)|s| + 1, \) \(|f(x, s)s| \leq f(x, s)s + C \) and \(F(x, s) \leq C f(x, s) + 1; \)
- [4] \(|f(x, s)|^2 \leq C f(x, s) + 1 \) and \(|f(x, s)| \leq C |s|^{1}; \)
- [5] For all \(\epsilon \in (0, 1), 0 \leq a \leq 1 \) and \(b > 0 \) we have \(as^b \leq C + \epsilon |f(x, s)| |s|^{\frac{p_1}{2}} + e^{\frac{\epsilon}{|s|}} b^{\frac{p_1}{2}}. \)

3.2. End of the proof of Theorem 1.1

Recall that \(d_j = \inf(\alpha, \delta_j), \) where \(\delta_j = \text{dist}(y, \partial \Omega), y \in \Omega \) and \(\alpha \in (0, 1). \) For \(j = 1, 2, \cdots, i(u) + 1, \) set

\[A_j := \{ x \in \mathbb{R}^n : a_j < |x - y| < b_j \}, \quad \alpha_j = \frac{2(j + i(u))}{4(i(u) + 1)} d_j, \quad b_j = \frac{2(j + i(u)) + 1}{4(i(u) + 1)} d_j, \]

and

\[A_j' := \{ x \in \mathbb{R}^n : a_j' < |x - y| < b_j' \}, \quad \alpha_j' = \frac{2(j + i(u)) - 1}{4(i(u) + 1)} d_j, \quad b_j' = \frac{2(j + i(u)) + 1}{4(i(u) + 1)} d_j. \]

Observe that \(\mathbb{A} \subset A_j' \subset A_j \subset B(y, d_j) \) and let \(\psi_j \in C^\infty(B(y, d_j) \) be the cut-off function defined in Lemma 1.1 with \(\omega = A_j \) and \(\omega' = A_j' \) and satisfying \(\supp(\psi_j) \subset A_j', 0 \leq \psi_j \leq 1 \) if \(x \in A_j' \) and \(\psi_j = 1 \) if \(x \in A_j. \) Moreover, we have

\[|\nabla^k (\psi_j^2)(x)|^2 \leq C \psi_j^{2m-k} \left(\frac{1 + i(u)}{d_j} \right)^{2k}, \]

(3.12)
From inequality (1.8) we derive
\[
\sum_{1 \leq q \leq r} d^{-p(r-q)} \int_{\lambda_i} |\nabla^q u|^p \leq e \int_{B(y,d_y)} |\nabla' (u^m_j)|^2 + C_{s} \left(\frac{1 + i(u)}{d_y} \right)^{2r} \int_{B(y,d_y)} u^2 \psi_j^{(m-r)}.
\] (3.13)

In the sequel we choose \(m = \frac{(p_1 + 1)r}{2} \) so that \(m > r \) and \(\frac{(p_1 + 1)(m - r)}{p_1 - 1} = m \). Thus, point 5 of Lemma 3.2 with \(s = u, a = \psi_j^{(m-r)} \) and \(b = \left(\frac{1 + i(u)}{d_y} \right)^{-2} \), yields
\[
\left(\frac{1 + i(u)}{d_y} \right)^{-2r} \int_{B(y,d_y)} u^2 \psi_j^{(m-r)} \leq C d_y^m + e \int_{B(y,d_y)} |f(x,u)u| \psi_j^{2m} + C tersuch that
\[
C_{s} \left(\frac{1 + i(u)}{d_y} \right)^{2r} \int_{B(y,d_y)} u^2 \psi_j^{(m-r)}.
\] (3.14)

Next observe that \(\text{supp}(u_j^m) \cap \text{supp}(u_j^m) = \emptyset, \forall 1 \leq l \neq j \leq 1 + i(u) \), then according to the definition of the quadratic form (3.15) we derive
\[
Q_a \left(\sum_{1 \leq j \leq m} \lambda_j u^2 \right) = \sum_{1 \leq j \leq m} \lambda_j^2 Q_a (u^2).
\]
in view of the definition of \(i(u) \), there exists \(j_0 \in \{1, 2, ..., 1 + i(u)\} \) such that \(Q_a (u^2)_{j_0} \geq 0 \). Therefore, point 1 of Lemma 3.2 implies
\[
p_1 \int_{B(y,d_y)} f(x,u)u \psi_j^{2m} - C d_y^m \leq \int_{B(y,d_y)} f' (x,u)^2 \psi_j^{2m} \leq \int_{B(y,d_y)} |D_j (u \psi_j^{2m})|^2.
\] (3.15)

We divide the proof into three steps.

Step 1. We shall prove the following estimate
\[
\sum_{1 \leq q \leq r} d^{-p(r-q)} \int_{\lambda_i} |\nabla^q u|^p \leq e \int_{B(y,d_y)} |\nabla' (u^m_j)|^2 + C_{s} \left(\frac{1 + i(u)}{d_y} \right)^{2r} \int_{B(y,d_y)} u^2 \psi_j^{(m-r)}.
\] (3.16)

Multiplying equation (1.9) by \(-\frac{1 + p_1}{2} u \psi_j^{2m} \), integrating by parts, we obtain
\[
- \frac{1 + p_1}{2} \int_{B(y,d_y)} f(x,u)u \psi_j^{2m} = - \frac{1 + p_1}{2} \int_{B(y,d_y)} D_j u D_j (u \psi_j^{2m}).
\]

We combine the last equality with (3.15) and point 3 of Lemma 3.2 yields
\[
p_1 \int_{B(y,d_y)} f(x,u)u \psi_j^{2m} + \int_{B(y,d_y)} |D_j (u \psi_j^{2m})|^2 \leq C d_y^m + \frac{p_1 - 1}{2} \int_{B(y,d_y)} |D_j (u \psi_j^{2m})|^2 - D_j u D_j (u \psi_j^{2m}).
\]

It follows from (3.1) and (3.9) that
\[
\int_{B(y,d_y)} |\nabla' (u^m_j)|^2 + \int_{B(y,d_y)} |f(x,u)u| \psi_j^{2m} \leq C d_y^m + \epsilon \int_{B(y,d_y)} |\nabla' (u^m_j)|^2 + C_{s} \left(\frac{1 + i(u)}{d_y} \right)^{2r} \int_{B(y,d_y)} u^2 \psi_j^{(m-r)}.
\]

Collecting the last inequalities with (3.13) and (3.14), we get\(^6\)
\[
\sum_{1 \leq q \leq r} d^{-p(r-q)} \int_{\lambda_i} |\nabla^q u|^p + \int_{B(y,d_y)} |f(x,u)u| \psi_j^{2m} \leq C d_y^m \left(\frac{1 + i(u)}{d_y} \right)^{2r} \int_{B(y,d_y)} u^2 \psi_j^{(m-r)}.
\]

\(^6\)Observe that \(d_y^m \leq d_y^m \left(\frac{1 + i(u)}{d_y} \right)^{2r} \) as \(d_y = \text{inf}(\alpha, \delta_y) < 1 \).
Therefore, inequality (3.16) follows as \(\psi_j(x) = 1 \) if \(x \in A_{j_0} \).

Step 2. We shall use the following identity (see the proof in appendix B):

\[
D_i u D_i (\nabla u \cdot (x - y)) = \frac{1}{2} \nabla|D_i u|^2 \cdot (x - y) + r|D_i u|^2,
\]

(3.17)

to establish a variant of the Pohozaev identity and we exploit (3.16) to prove that:

\[
d^2 \int_{B(y, \frac{d}{2})} |f(x, u)|^p \leq C \left(\frac{1 + i(u)}{d^\gamma} \right)^{\frac{2n+1}{p^2-1}}.
\]

(3.18)

Recall that \(A_{j_0} = \{ x \in \mathbb{R}^n; \ a_{j_0} < |x-y| < b_{j_0} \} \). We invoke again Lemma 3.1 with \(\omega = B(y, a_{j_0}) \), \(\omega' = B(y, b_{j_0}) \) and let \(\psi \in C_0^\infty(B(y, b_{j_0})) \) such that

\[
\psi \equiv 1 \text{ for all } x \in B(y, a_{j_0}) \text{ and } |\nabla^2 \psi| \leq C \left(\frac{1 + i(u)}{d^\gamma} \right)^{k} \psi^{2m-k} \forall x \in A_{j_0} \text{ and } k = 1, \ldots, r.
\]

(3.19)

Multiplying equation (1.9) by \(u \psi^{2m} \) (respectively by \((\nabla u \cdot (x - y)) \psi^{2m} \)) and integrating by parts, we get

\[
\int_{B(y, d)} D_i u D_i (u \psi^{2m}) = \int_{B(y, d)} f(x, u)u \psi^{2m} \text{ respectively } \int_{B(y, d)} D_i u D_i (u \nabla u \cdot (x - y) \psi^{2m}) = \int_{B(y, d)} f(x, u) \nabla u \cdot (x - y) \psi^{2m}.
\]

According to identity (3.2) (respectively by (3.4), (3.19) and (3.16)), we derive

\[
\int_{B(y, d)} |D_i u|^2 \psi^{2m} - \int_{B(y, d)} f(x, u)u \psi^{2m} \leq C \int_{B(y, d)} |D_i \psi|^2 + C \left(\frac{1 + i(u)}{d^\gamma} \right)^{2r} \int_{B(y, d)} u^2 \psi^{2(m-r)};
\]

(3.20)

\[
\int_{B(y, d)} \psi^{2m} D_i u D_i (u \nabla u \cdot (x - y)) \leq \int_{B(y, d)} f(x, u) \nabla u \cdot (x - y) \psi^{2m} + Cd_1 \left(\frac{1 + i(u)}{d^\gamma} \right)^{2r} + C \left(\frac{1 + i(u)}{d^\gamma} \right)^{-2r} \int_{A_{j_0}} u^2 \psi^{2(m-r)}.
\]

As above, using point 5 of Lemma 3.2 and (3.16), there holds that

\[
C \left(\frac{1 + i(u)}{d^\gamma} \right)^{-2r} \int_{A_{j_0}} u^2 \psi^{2(m-r)} \leq C d_1 + \frac{1}{2} \int_{A_{j_0}} |f(x, u)u \psi^{2m} + C d_1 \left(\frac{1 + i(u)}{d^\gamma} \right)^{\frac{2n+1}{p^2-1}} \leq C d_1 \left(\frac{1 + i(u)}{d^\gamma} \right)^{\frac{2n+1}{p^2-1}}.
\]

(3.21)

Combining these inequalities we get

\[
\int_{B(y, d)} \psi^{2m} D_i u D_i (u \nabla u \cdot (x - y)) \leq \int_{B(y, d)} f(x, u) \nabla u \cdot (x - y) \psi^{2m} + C d_1 \left(\frac{1 + i(u)}{d^\gamma} \right)^{\frac{2n+1}{p^2-1}}.
\]

(3.22)

In one hand, integration by parts of the first term of the right hand-side, gives

\[
\int_{B(y, d)} f(x, u) \nabla u \cdot (x - y) \psi^{2m} = -n \int_{B(y, d)} F(x, u) \psi^{2m} - \int_{A_{j_0}} F(x, u)(\nabla \psi^{2m} \cdot (x - y)) + \int_{B(y, d)} (\nabla \cdot F)(x, u) \cdot (x - y) \psi^{2m};
\]

Invoking now assumption (h3) with points 2-3 of Lemma 3.2, 3.19 and using again (3.16), it follows that imply

\[
\int_{B(y, d)} f(x, u) \nabla u \cdot (x - y) \psi^{2m} = (C \alpha + \frac{n}{p^2 + 1}) \int_{B(y, d)} f(x, u)u \psi^{2m} + C d_1 \left(\frac{1 + i(u)}{d^\gamma} \right)^{\frac{2n+1}{p^2-1}}.
\]

(3.23)
On the other hand, using (3.17) and integrating by parts we derive
\[
\int_{B(y,d_\lambda)} \psi^{2m} D_{\alpha} u D_{\alpha} (\nabla u \cdot (x-y)) = \frac{2r-n}{2} \int_{B(y,d_\lambda)} |D_{\alpha} u|^2 \psi^{2m} - \frac{1}{2} \int_{B(y,d_\lambda)} |D_{\alpha} u|^2 (\nabla u \cdot (x-y)).
\]
As $|D_{\alpha} u|^2 \leq |\nabla u|^2$ and $|x-y| \leq 1$, it follows from (3.19) and (3.16) that
\[
\int_{B(y,d_\lambda)} \psi^{2m} D_{\alpha} u D_{\alpha} (\nabla u \cdot (x-y)) = \frac{2r-n}{2} \int_{B(y,d_\lambda)} |D_{\alpha} u|^2 \psi^{2m} + C d_\lambda^n \left(\frac{1 + i(u)}{d_y} \right)^{\frac{2n}{(p+1)(n-2r)} + 1}.
\]
Collecting inequalities (3.22), (3.23) and the last equality we arrive at
\[
\left(\frac{2n}{(p+1)(n-2r)} - \frac{C\alpha}{(n-2r)} \right) \int_{B(y,d_\lambda)} f(x,u) u \psi^{2m} - \frac{1}{2} \int_{B(y,d_\lambda)} |D_{\alpha} u|^2 \psi^{2m} \leq C d_\lambda^n \left(\frac{1 + i(u)}{d_y} \right)^{\frac{2n}{(p+1)(n-2r)} + 1}.
\]
(3.24)
We choose $\alpha = \alpha_0 \in (0,1)$ small enough so that
\[
\frac{2n}{(p+1)(n-2r)} - \frac{C\alpha_0}{(n-2r)} > 1
\]
and we combine the above inequality with (3.20) and (3.3), we deduce that
\[
\int_{B(y,d_\lambda)} |\nabla u|^2 \psi^{2m} + \int_{B(y,d_\lambda)} f(x,u) u \psi^{2m} \leq C \int_{B(y,d_\lambda)} |\nabla(u \psi^m)|^2 + C \left(\frac{1 + i(u)}{d_y} \right)^{\frac{2n}{(p+1)(n-2r)} + 1}.
\]
(3.25)
Inequality (3.21) and points 3 of Lemma 3.2 imply
\[
\int_{B(y,d_\lambda)} |\nabla(u \psi^m)|^2 + \int_{B(y,d_\lambda)} |f(x,u) u | \psi^{2m} \leq C d_\lambda^n \left(\frac{1 + i(u)}{d_y} \right)^{\frac{2n}{(p+1)(n-2r)} + 1}.
\]
(3.26)
Observe now that $\psi \equiv 1$ for all $x \in B(y,\frac{d_y}{2}) \subset B(y,a_y)$, so estimate (3.18) follows from the above inequality and point 4 of Lemma 3.2.

Step 3. Boot-strap procedure. Set $\lambda = \frac{d_y}{2} < 1$, $u_\lambda(x) = u(y + \lambda x)$ and $g_\lambda(x) = f(y + \lambda x, u(y + \lambda x))$, $x \in B_1$, then u_λ satisfies
\[
(-\Delta u_\lambda)^{\frac{1}{2}} = \lambda^{\frac{1}{2}} g_\lambda \text{ in } B_1.
\]
By virtue of (3.18), we have
\[
\int_{B_1} |g_\lambda|^{p_1} = 2^n d_\lambda^n \int_{B(y,\frac{d_y}{2})} |f(x,u)|^{p_1} \leq C \left(\frac{1 + i(u)}{d_y} \right)^{\frac{2n}{(p+1)(n-2r)} + 1}.
\]
(3.26)
We invoke local L^p-$W^{2,p}$ estimate (see Corollary 3.1 in the Appendix C) and Rellich-Kondrachov’s theorem [11]. Let $q > 1$, then point 3 of Lemma 3.2 implies 8
\[
|u_\lambda|_{L^q(B_\frac{d_y}{2})} \leq C |u_\lambda|_{W^{2,p}(B_1)} \leq C (\|g_\lambda\|_{L^q(B_1)} + |u_\lambda|_{L^q(B_1)}) \leq C (\|g_\lambda\|_{L^q(B_1)} + 1),
\]
where $q^* = \frac{qn}{n - 2rq}$ if $2rq < n$ and for all $q^* > 1$ if $q = \frac{n}{2r}$.
(3.27)

8 Recall that $\frac{2n}{(p+1)(n-2r)} > 1$.

9 Observe that $\lambda = \frac{d_y}{2} < 1$.

and
\[\|u_i\|_{C^{\alpha}(eta_2)} \leq C\|u_i\|_{W^{1,\alpha}(eta_2)} \leq C(\|g_i\|_{L^1(B_1)} + \|u_i\|_{L^1(B_1)}) \leq C(\|g_i\|_{L^1(B_1)} + 1), \text{ if } 2rq > n. \]
\[(3.28) \]

So, inequality (3.27) and point 4 of Lemma 3.2 give
\[\|g_i\|_{L^1(B_2)} \leq C(\|g_i\|_{L^1(B_1)} + 1)^{p_2}, \text{ if } 2rq \leq n. \]
\[(3.29) \]

If \(2rq_1 \geq n \) (respectively \(2rq_1 = n \)) the desired estimate (1.11) follows from (3.26) and (3.28) (with \(q = q_1 \)) (respectively (3.26), (3.27) (with \(q = q_1 \)) and (3.28), (3.29) (with \(q = p_2 \)). The case \(2rq_1 < n \) needs more involving analysis. As \(q_1 = \frac{p_2 + 1}{p_2} \) and \(1 < p_2 < \frac{n + 2r}{n - 2r} \), we have
\[q_1^n = \frac{(p_2 + 1)n}{n - 2r} > \frac{(p_2 + 1)n}{n - 2r} > \frac{1}{q_1} - \frac{2rp_2}{(n - 1)} < 0. \]

Set \(q_2 = \frac{q_1^n}{p_2} \) and \(q_{k+1} = \frac{q_{k+1}^n}{p_2} \). We claim that there exists \(k_0 \in \mathbb{N}^+ \) such that
\[2rq_{k+1} > n \text{ and } 2rq_{k_0} < n. \]
\[(3.30) \]

Suppose by contradiction that \(2rq_k < n \) for all \(k \in \mathbb{N}^+ \). Then, \(\frac{1}{q_{k+1}} = \frac{p_2}{q_k} - \frac{2rp_2}{n} \) and therefore
\[\frac{1}{q_{k+1}} = \frac{p_2}{q_k} - \frac{2rp_2}{n} - p_{k+1} = p_2 \left(\frac{1}{q_1} - \frac{2rp_2}{n} \right) + \frac{2rp_2}{n(p - 1)}. \]
\[(3.31) \]

We reach a contradiction since \(\frac{1}{q_k} \to -\infty \). Set now
\[\beta = \frac{2rp_2}{n(p - 1)} \left(\frac{2rp_2}{n(p - 1)} - \frac{1}{q_1} \right) ^{-1} = \frac{2r(p + 1)}{2r(p + 1) - n(p - 1)}. \]
From (3.31), we have \(p_{k_0} < \beta \) and \(p_{k+1} > \beta \). Hence, iterating (3.29), we obtain
\[\|g_i\|_{L^1(B_3)} \leq C(\|g_i\|_{L^1(B_1)} + 1)^{\beta}. \]

Set \(\gamma_1 = \frac{(p_1 + 1)\beta}{q_1} = \frac{2r(p_1 + 1)p_2}{2r(p_2 + 1) - n(p_2 - 1)} \) and \(\gamma_2 = \beta + \frac{2r}{p_1 - 1} \gamma_1 \). As \(rq_{k_0} > n \), the last inequality with (3.28) and (3.26) imply
\[\|u_i\|_{C^{\alpha}([s_0, s_0])} \leq C(1 + i(u)^{2})^{\frac{2r}{p_1 - 1} \gamma_1}. \]

According to the definition of \(u_i \), we get
\[\sum_{j=0}^{2r-1} d_j^i \|\nabla u_i\| (-\frac{\beta}{2r}) \leq C(1 + i(u)^{2})^{\frac{2r}{p_1 - 1} \gamma_1}. \] This achieves the proof of Theorem 1.1.

Appendix A: Proof of Lemma 3.2
In the following, \(C \) denotes generic positive constant depending only on the parameters \((s_0, p_1, p_2) \) and the constant \(c_1 \) of assumptions \((h_1)-(h_6)\). The following inequalities are an immediate consequence of \((h_4)\):
\[|F(x,s)|, |f(x,s)| \leq C, \forall (x,s) \in \Omega \times [-s_0, s_0]. \]
\[(3.32) \]
Hence, points 1 and 2 follow from (h1)-(h2). Also, in view of (3.32) and the fact that the nonlinearity \(-f(x,s)\) satisfies (h1)-(h4), we need only to prove points 3 and 4 for all \((x, s) \in \Omega \times [s_0, \infty)\).

Proof of point 3. According to (h1), we have

\[
f''(x, s)s \geq p_1f(x, s), \forall (x, s) \in \Omega \times [s_0, \infty)
\]

which implies \(\left(\frac{f(x, s)}{s^{p_1}}\right)'' \geq 0\). As \(f(x, s_0) \geq \frac{1}{c_1}\) for all \(x \in \Omega\) (see (h4)), we derive

\[
f(x, s) \geq \frac{s^{p_1}}{c_1s_0^{p_1}} \text{ and } f(x, s) \geq \frac{s^{p_1+1}}{c_1s_0}, \forall (x, s) \in \Omega \times [s_0, \infty),
\]

which imply the first inequality of point 3. Integrating now over \([s_0, s]\) and using (h2), we derive \(\frac{f(x, s)s}{p_2 + 1} \leq F(x, s) \leq \frac{f(x, s)s}{p_1 + 1} + C, (x, s) \in \Omega \times [s_0, \infty)\) which pmlies the second and third inequalities of point 3.

Proof of point 4. According to (h2), we have \(\left(\frac{F(x, s)}{s^{p_1+1}}\right)'' \leq 0, \forall (x, s) \in \Omega \times [s_0, \infty)\) which with (3.32) imply \(F(x, s) \leq C s^{p_1+1} \forall (x, s) \in \Omega \times [s_0, \infty)\). Hence, from (h2) and point 2, we get \(|f(x, s)|^{\frac{1}{2}} \leq C|x|, \forall (x, s) \in \Omega \times [s_0, \infty)\). Consequently, for \(t > 0\) and \(q_1 = \frac{p_2 + 1}{p_1}\), we derive

\[|f(x, s)|^{\frac{1}{2}} \leq C|f(x, s)| s \text{ and } |f(x, s)|^{\frac{1}{2}} \leq C|x|, (x, s) \in \Omega \times [s_0, \infty).\]

Proof of point 5. In view of Young’s inequality, we obtain \(as^2b \leq \varepsilon s^{p_1+1}a \frac{\alpha_1}{\alpha_2} + \varepsilon \frac{1}{\alpha_2} b \frac{\alpha_1}{\alpha_2}\). Recall that \(0 \leq a \leq 1\) and using point 3, we derive point 5. This end the proof of Lemma 3.2. \(\square\)

Appendix C: Proof of (3.17). Noticing that (3.17) is trivial for \(r = 1\). Let \(k \in \mathbb{N}^+\). If \(r = 2k\), i.e. \(D_r = \Delta^k\), apply Leibnitz’s formula, we have

\[
\Delta^k(\nabla u \cdot (x - y)) = \nabla(\Delta^k u)(x - y) + 2k\Delta^k u.
\]

Multiplying (3.35) by \(\Delta^k u\) and taking into account that \(\Delta^k u \nabla(\Delta^k u) \cdot (x - y) = \frac{1}{2} \nabla((\Delta^k u)^2) \cdot (x - y)\), This achieves the proof of (3.17).

If \(r = 2k + 1\), that is \(D_r = \nabla \Delta^k\). According to (3.35) we derive

\[
D_r u \cdot D_r(\nabla u \cdot (x - y)) = \nabla \Delta^k \nabla(\Delta^k u)(x - y) + (r - 1)|D_r u|^2.
\]

Therefore, (3.17) follows as \(\nabla w \cdot \nabla(\nabla w \cdot (x - y)) = \frac{1}{2} \nabla((\nabla w)^2) \cdot (x - y) + |\nabla w|^2\), \(\forall w \in C^1(\mathbb{R}^n)\).

Appendix C: Local \(L^p\)–\(W^{2,p}\)-estimate, \(t \in \mathbb{N}^+, p \geq 2\). Consider the linear higher order elliptic problem of the form

\[
Lu = g \text{ in } \Omega.
\]

Here \(\Omega\) is a domain of \(\mathbb{R}^n\) and

\[
L = \left(- \sum_{i,k=1}^{n} a_{ik}(x) \frac{\partial^2}{\partial x_i \partial x_k} \right) + \sum_{|\beta| \leq r-1} b_{\beta}(x) D^\beta
\]

where \(b_{\beta} \in L^\infty(\Omega), a_{ik} \in C^{2-r}(\Omega)\) and \(L\) is a local uniformly elliptic operator, that is for all bounded open subset \(S\) of \(\Omega\) there exists a constant \(\lambda_0 > 0\) with \(\lambda_0 |g|^2 \leq \sum_{i,k=1}^{n} a_{ik}(x) \xi_i \xi_k \leq \lambda_0 |g|^2\) for all \(\xi \in \mathbb{R}^n, x \in \Omega\). Let \(A\) and \(A'\) be two bounded open subset of \(\Omega\) such that \(\overline{A} \subseteq A' \subseteq \overline{A'} \subseteq \Omega\) and \(\omega'\). When \(p \geq 2\) by virtue of Lemma 3.2 we establish local analogue of the celebrated \(L^p\)–\(W^{2,p}\) estimate of Agmon-Douglas-Nirenberg. Set \(d = \text{dist}(A, \Omega \setminus A')\).
Applying again (1.8) with $r = \|\omega\|$ and depending only on ω, in the following we insert the above inequality in the right-hand side of (3.37) and we choose $C_{\text{Corollary 3.1}}$. This achieves the proof of Corollary 3.1.

Proof of Corollary 3.1.
In the following C denotes a generic positive constant which depends on the parameters stated in Corollary 3.1. As A is a compact subset of A', we can find $x_i \in A$, $i = 1, 2, \ldots, i_0$ such that for any $u \in W_{\text{loc}}^{2,p}(\Omega)$ a weak solution of (3.37), we have

$$\|u\|_{W^{2,p}(A)} \leq C \left(\|g\|_{L^p(A)} + \|u\|_{L^p(A')} \right).$$

Using now inequality (1.8) with $r = \|\omega\|$ and $\omega' = B(x_i, \frac{d}{2})$. A simple computations give

$$L(u\psi^m) = u\psi^m + uL(\psi^m) + b_0 u\psi^m + \sum_{1 \leq i < j \leq p} c_{i,j} D^i u D^j(\psi^m),$$

where $c_{i,j} \in L^\infty(A')$. As $u\psi^m \in W^{2,p}(\Omega') \cap W_0^{2,p}(\Omega')$ with ω' is of class C^{2r}, Agmon-Douglis-Nirenberg's global estimate [2] and (1.8) imply

$$\sum_{1 \leq i \leq 2r} \int_{\Omega'} |\nabla^i (u\psi^m)|^p \leq C \left(\|g\|_{L^p(\Omega')}^p + \|u\|_{L^p(\Omega')}^p \right) + \sum_{1 \leq i \leq 2r-1} \sum_{1 \leq q \leq s} \int_{\Omega'} |\nabla^i u|^p |\nabla^{s-q} \psi^m|^p. \tag{3.37}$$

Using now inequality (1.8) with $r = s$, we obtain

$$\sum_{1 \leq i \leq 2r} \int_{\Omega'} |\nabla^i u|^p |\nabla^{s-q} \psi^m|^p \leq C \int_{\Omega'} |\nabla^s (u\psi^m)|^p + C_{\text{Corollary 3.1}} \int_{\Omega'} |u|^p |\psi^{(m-s)}|^p.$$

Applying again (1.8) with $r = s + 1$ and replacing ϵ by $\frac{d}{2}$, we obtain

$$\int_{\Omega'} |\nabla^s u|^p |\nabla^{s-q} \psi^m|^p \leq \int_{\Omega'} |\nabla^s u|^p |\nabla^{(m-s)}|^p \leq C \int_{\Omega'} |\nabla^s (u\psi^m)|^p + C_{\text{Corollary 3.1}} \int_{\Omega'} |u|^p |\psi^{(m-s-1)}|^p.$$

Collecting the two last inequalities, we derive

$$\sum_{1 \leq i \leq 2r-1} \sum_{1 \leq q \leq s} \int_{\Omega'} |\nabla^i u|^p |\nabla^{s-q} \psi^m|^p \leq C \int_{\Omega'} |\nabla^s (u\psi^m)|^p + C_{\text{Corollary 3.1}} \int_{\Omega'} |u|^p.$$

We insert the above inequality in the right-hand side of (3.37) and we choose $\epsilon = \frac{1}{2C}$, it follows that

$$\|u\psi^m\|_{W^{2,p}(\Omega')} \leq C \left(\|g\|_{L^p(\Omega')} + \|u\|_{L^p(\Omega')} \right).$$

Since $\psi(x) = 1$ if $x \in \omega$, we obtain

$$\|u\|_{W^{2,p}(B(x_i, \frac{d}{2}))}^p \leq C \left(\|g\|_{L^p(\Omega')}^p + \|u\|_{L^p(\Omega')}^p \right) \leq C \left(\|g\|_{L^p(A')}^p + \|u\|_{L^p(A')}^p \right).$$

As $A \subset \bigcup_{1 \leq i \leq i_0} B(x_i, \frac{d}{2})$ and i_0 depends only on A and d, we derive

$$\|u\|_{W^{2,p}(A')}^p \leq C_{i_0} \left(\|g\|_{L^p(A')}^p + \|u\|_{L^p(A')}^p \right).$$

This achieves the proof of Corollary 3.1. □
References

[1] R.A. Adams, J.J.F. Fournier, Sobolev Spaces. Pure and Applied Mathematics. Academic Press, London, 2nd edn. xiii+305 pp (2003).

[2] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623–727.

[3] A. Bahri and P.A. Lions, Solutions of superlinear elliptic equations and their Morse indices. Comm. Pure Appl. Math. 45 (1992), 1205-1215.

[4] H. Brezis, Functional Analysis, Sobolev spaces and Partial Differential Equations, Universitext. Springer (2011).

[5] F. Colasuonno, P. Pucci, Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations. Nonlinear Analysis 74 (17) (2011) 5962-5974.

[6] M. G. Crandall and P. H. Rabinowitz, Some continuation and variation methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rat. Mech. Anal. 58 (1975), 207-218.

[7] J. Dávila, L. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal. 261 (2011), 218-232.

[8] A. Farina, On the classification of solutions of the Lane–Emden equation on unbounded domains of \(\mathbb{R}^N \), J. Math. Pures Appl. 87 (2007), 537–561.

[9] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations. 6 (1981), 883-901.

[10] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd edition, Grundlehren 224, Springer, Berlin-Heidelberg-New York-Tokyo (1983).

[11] F. Gazzola, H. Christoph Grunau, G. Sweers, Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, vol.1991, Springer, Berlin, Heidelberg, New York-Tokyo (2010).

[12] H. Hajlaoui, A. Harrabi and F. Mtiri, Morse indices of solutions for super-linear elliptic PDEs, Nonlinear Analysis 116 (2015), 180-192.

[13] M. K. Hamdani, A. Harrabi, \(L^\infty \)-norm Estimates of Weak Solutions via their Morse indices for the m-Laplacian Problems, Results in Mathematics. 74 (2019), article number (69).

[14] A. Harrabi, High-order Bahri-Lions Liouville type theorems, Annali di Matematica Pura ed Applicata. 198 (2019), 1675–1692.

[15] A. Harrabi, F. Mtiri, Liouville-type theorems and existence results for stable at infinity solutions of higher order m-polyharmonic problems, To appear in JMMA (2021).

[16] A. Harrabi, F. Mtiri and D. Ye, Explicit \(L^\infty \)-norm estimates via Morse index, the bi-harmonic and tri-harmonic semilinear problems, Manuscripta Math. 270 (2019), 57–79.

[17] A. Harrabi, S. Rebhi and A. Selmi, Solutions of superlinear equations and their Morse indices II, Duke. Math. J. 94 (1998), 141-157.

[18] S.I. Pohozaev, Eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0 \), Sov. Math. Doklady 5 (1965), 1408-1411.

[19] P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. Journal. 139 (3) (2007), 555-579.

[20] W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half space for higher-order elliptic Dirichlet problems, Math. Z. 261 (2009), 805-827.

[21] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), 79-142.

[22] X.F. Yang, Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDE’s. J. Funct. Anal. 160 (1998), 223-253.