Skill of data based predictions versus dynamical models – case study on extreme temperature anomalies

Stefan Siegert*, Jochen Bröcker†, Holger Kantz‡

December 17, 2013

Abstract

We compare probabilistic predictions of extreme temperature anomalies issued by two different forecast schemes. One is a dynamical physical weather model, the other a simple data model. We recall the concept of skill scores in order to assess the performance of these two different predictors. Although the result confirms the expectation that the (computationally expensive) weather model outperforms the simple data model, the performance of the latter is surprisingly good. More specifically, for some parameter range, it is even better than the uncalibrated weather model. Since probabilistic predictions are not easily interpreted by the end user, we convert them into deterministic yes/no statements and measure the performance of these by ROC statistics. Scored in this way, conclusions about model performance partly change, which illustrates that predictive power depends on how it is quantified.

1 Introduction

In this contribution, as in most others of this collection of articles, Extreme Events are short-lived large deviations from a system’s normal state. More precisely, at least one relevant system variable or an order parameter (the latter being synonymous with “observation”, which is a way to characterise a microstate of a system on macroscopic scales) assumes a numerical value which is either much bigger or much smaller than “on average”. Without being more specific, one might assume that such a value occurs in the tail of the probability distribution for this quantity, and that “extreme” means to observe a deviation

*College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom, Email: s.siegert@exeter.ac.uk
†University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, United Kingdom, Email: j.broecker@reading.ac.uk
‡Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01189 Dresden, Germany, Email: kantz@pks.mpg.de
from the mean which exceeds typical deviations. Hence, Extreme Events are inevitably also rare events.

For some phenomena, there are active debates on whether or not extremes occur more frequently than in a Gaussian distribution (e. g., for rogue waves [Dysthe et al., 2008]). Indeed, for distributions with fat tails such as Lévy-stable distributions with $\alpha < 2$, power law tails lead to a much larger number of extremes and to a considerable percentage of extremes which are by orders of magnitude larger than normal events, as compared to Gaussian distributions. Since such distributions have diverging higher moments, this situation can robustly be detected in time series data by a lack of convergence of finite-time estimates of those moments. This can be nicely illustrated in earthquake time series, when released energy is considered instead of magnitudes. The running mean of the energy per event increases with every major earthquake and therefore does not converge to a finite value. This is in agreement with the fact that the probability distribution for released energy is observed to be a power law, $p(E) \propto E^{-\beta}$, with $\beta \approx 0.5$, which does not have a finite mean.

With the (trivial) observation that distributions and in particular the existence of higher moments is not a property which is invariant under nonlinear transformations of variables, it is not surprising that there are many natural phenomena where empirical magnitude-frequency distributions suggest that the underlying true distribution does not have diverging higher moments. We found that wind gusts even show exponential distributions, precipitation data do have some outliers in an otherwise exponential distribution, which cannot be easily interpreted, and river levels have a finite maximum. Nonetheless, also phenomena such as wind gusts, precipitation, air pressure and other atmospheric data can be studied under the aspect of extreme events. Moreover, passing over to a different macroscopic quantity, e. g., the induced costs due to damage associated with a natural extreme event, evidently changes the nature of a magnitude distribution.

In summary, in this contribution we will consider events as being extreme, whenever they are in the uppermost or lowermost range of values for a given quantity, regardless of how large the deviation from the mean value is. More specifically, we will discuss below extreme temperature anomalies, i. e., large deviations of the surface temperature from its climatological average for the corresponding day of the year, which are to a good approximation Gaussian distributed. We consider the performance of predictors for the temperature anomaly to overcome a given threshold on the following day for all possible threshold values. Under this setting one can speak of “prediction of extreme events” only in the limit of this threshold being very high, or, respectively, in the limit that the average event rate goes to zero. The unexpected result of this case study will be that the performance in this limit will differ when being measured through different scoring schemes, and that it is therefore not evident how predictable such extremes really are in an abstract, non-technical sense (for every precisely defined scoring scheme, there is certainly a precise number which characterises predictability). The other issue of this article will be to compare sophisticated physical dynamical models to simple data based predictors. Here,
the conclusion is that physical dynamical models are usually better than data based predictions. However, there are exceptions, and we present examples where a simple data-driven model outperforms a physical-dynamical weather model.

2 Forecast concepts

Prediction implies that we issue some statement about the future, based on information from the past, and that there is a time interval between the time when issuing the prediction and the time for which the prediction should apply. In weather forecasting this is called the lead time, in other contexts it is called prediction horizon. The measurement against which the prediction is eventually compared is called the verification. Prediction targets can be either discrete or continuous. In the former case, the target variable can take on only a finite number of values. In the case of only two possibilities, we speak of a binary target. A continuous target can take on an infinite number of possible values. In the context of weather forecasting, the target event “above or below 30°C” is binary, “cold/mild/warm/hot” (defined by precise temperature ranges) is discrete, and predicting an exact temperature value is a continuous prediction target. For each of these targets, predictions can be either deterministic or probabilistic. Deterministic prediction involves a dogmatic statement about the target event, such as “it will be above 30°C tomorrow at noon” (binary), or “the temperature in two days at noon will be exactly 35°C” (continuous). Probabilistic predictions, on the other hand, assign probabilities to express degrees of (un-)certainty about the prediction target. A binary probabilistic prediction is for example “the probability of having above 30°C tomorrow at noon is 70%”, and a continuous probabilistic prediction is “the probability distribution \(p(T) \) assigned to tomorrow’s temperature \(T \) at noon is a Gaussian with parameters \(\mu = 32°C \) and \(\sigma = 2°C \)”. Furthermore, prediction targets can refer to a given moment in time, or to a time interval, to a fixed location or to a geographical region, etc. Another extension is to consider multivariate variables such as wind velocity vectors or temperature fields. The actual realization of the target variable, the measurement against which the prediction is eventually compared, is referred to as the verification. The above discussion highlights that in every prediction problem a precise definition of the prediction target is crucial and not completely trivial, a point which might not be obvious at first sight.

Every forecasting algorithm is an input - output relation, where inputs are variables which characterise the knowledge about the system under concern at time \(t \), and the output is one of the forecast products discussed above. Already for a given set of input data and the same prediction target, one can design very different ways to actually produce a specific value for the output. The simplest forecast is a constant value independent of any inputs. This can make sense, e.g., in the case of continuous deterministic forecasts and of probabilistic binary forecasts. For the deterministic forecast, it could be the mean value of the prediction target (or should it be its median?), and for the probabilistic forecast
it could be the average frequency of occurrence of the target. But notice that already for this very simple scheme the optimality of a specific value depends on the way how the performance of a forecast is measured (e. g., whether to use the mean or the median depends on the performance measure). As a further complication, different forecast schemes for the very same target might use different sets of input variables.

There are many methods to detect and describe dependencies between input data and the target value on a training set. These include time series models, regression models, decision trees, or neural networks, just to name a few. In climate research, where physical models of the atmosphere-ocean systems are employed, the models differ in the way how different physical processes are resolved and how the non-resolved processes are parametrized, but also in the spatial and temporal resolution of the models.

In this contribution we will focus on two types of predictions, which we evaluate by two different types of performance measures. One prediction will be a probabilistic forecast for a binary event, which issues a probability p for “yes” and accordingly $1 - p$ for “no”. The other will be a binary deterministic prediction which will either predict “yes” or “no”, and it will be derived from the probabilistic forecast. These two types of predictions will be evaluated by proper skill scores and ROC (Receiver Operating Characteristic) analysis, respectively.

Our target is the prediction of weather extremes. Since true weather extremes are rare and any statistical analysis of the performance of any predictor is therefore strongly error prone, we will relax the requirement of “extreme” a bit and at the same time we will look at a quantity which exhibits “extremes” independent of season: We will study the fluctuations of temperature anomalies, and the prediction target is that the anomaly will exceed a fixed threshold on the next day, given that the anomaly of the present day is below that threshold. The latter restriction - prediction only if current temperature anomaly is “not extreme” - takes into account the aspect of “event”: Even though a heat wave, say, typically lasts several days, prediction of its onset seems to be more interesting than the prediction that it will continue on the next day. As said, we concentrate on temperature anomalies, which are the differences of the actual temperature and the climatological mean temperature at the given day of the year. Therefore, an extreme anomaly can occur at any season and hence the event rate is independent of the current season.

We will use two types of models for performing predictions: Simple data models, where we predict the temperature anomaly of the next day based only on measurement data, with an interdependence structure which is extracted from a long dataset of historic recordings. The other model type relies on a global general circulation model, i. e., a weather model which is fed with station data from the entire globe, and which contains a good portion of the physics of the atmosphere.

With these two types of model, we will predict the probability that the temperature anomaly will exceed a given threshold 24h ahead, if it is below that threshold at the time when the forecast is issued. Later we will convert these predicted probabilities into binary deterministic forecasts. Given the fact
that the weather model is by many orders of magnitude more complex and more costly than the data model, and that it also contains a factor of (at least) 10^5 more input data which characterize the current state of the atmosphere, we expect that it will outperform the data model by orders of magnitude, but by how many orders? This case study will give some surprising results.

3 The data

We consider a data set of temperature observations at 2 meters height for the location Hannover, Germany. The data set is provided by the DWD climatological data base [DWD, 2011]. It consists of $N = 23741$ daily temperature measurements T_n' taken at 12:00 UTC between 1946 and 2010. The time index n thus indicates “days since 1946/01/01”. The mean and variance of the time series are $\bar{T}' = 12.06^\circ C$ and $(T' - \bar{T}')^2 = (8.31^\circ C)^2$, respectively.

Since the number of really extreme surface temperature events, i. e., the number of exceptionally cold or exceptionally hot days per year, is rather small and clearly restricted to summer, resp. winter season, we consider anomalies. The anomalies T_n are defined as the deviation of the actual temperature T_n' from a typical, expected temperature value c_n, called the climatology. A pragmatic approach to estimate the climatology for day n is to average the observed temperature values on the same date over a number of previous years. However, the result even for 64 years (as they are available to us) is not a smooth function of n, as one would assume. We implement this smoothness assumption by modeling the climatology as a seasonal cycle which is composed of a constant component, a component proportional to $\sin(\omega n + \phi_1)$, and a component proportional to $\sin(2\omega n + \phi_2)$, where $\omega = 2\pi/(365.2425 \text{ days})$ is the rotational frequency of the Earth and ϕ_1 and ϕ_2 are phases that have to be estimated along with the proportionality constants. Higher harmonics could be taken into account as well but here we restrict the estimator to only the first two. The seasonal cycle c_n is estimated by choosing a coefficient vector $\beta = (\beta_0, \ldots, \beta_4)$ such that the sum of squared differences between the observed temperatures T_n' and

$$c_n = \beta_0 + \beta_1 \cos \omega n + \beta_2 \sin \omega n + \beta_3 \cos 2\omega n + \beta_4 \sin 2\omega n$$

is minimized. For the Hannover temperature time series (using $n = 1, \ldots, N$) the least squares fit of β is given by $\hat{\beta} = (12.1, -9.5, -2.9, -0.6, 0.2)$. The temperature anomalies are then constructed from the observed data and the climatology by

$$T_n = T_n' - c_n.$$

A three-year sample of the temperature data and the fitted seasonal cycle are shown in Fig. [1] The anomaly T_n is what we consider the non-trivial part of the temperature, the part that can not be easily predicted since it is strongly fluctuating. Our goal will be to predict whether or not future anomalies exceed some (possibly high) threshold, given that the current anomaly is below that threshold.
Figure 1: Black markers show a three-year sample of the daily temperature data for Hannover (Germany), which we analyze in this study. The fitted climatology c_n is shown as a red line.

Figure 2: Temperature anomalies are calculated by subtracting the climatology from the temperature time series. The anomaly distribution reconstructed by kernel density estimation (black line) is approximately Gaussian (red line). Negative anomalies appear more concentrated towards zero than what would be expected in a Gaussian distribution.
Figure 3: Autocorrelation function of the temperature anomalies T_n plotted in log-normal axes. It decays exponentially with a decay time of about 5 days.

The distribution of the temperature anomalies T_n is approximately Gaussian, as shown in Fig. 2. The density was fit using Gaussian kernel density estimation with automatic bandwidth selection, as implemented by the R-function density provided by the stats-package (R Development Core Team [2011], see also Silverman [1998]). The distribution differs from a Gaussian in that it is slightly right-skewed, indicating that the negative anomalies are less variable than the positive ones. In a log-normal plot (not shown), the tails of the fitted distribution decay even faster than that of the Gaussian. This is an artifact of the density estimation procedure where the tail behavior of the reconstructed distribution is governed by the tail of the kernel, which has a much smaller variance than the data whose distribution is estimated. We can thus not draw definite conclusions about the true tail behavior of our data.

The autocorrelation function of the temperature anomaly exhibits an approximately exponential decay with a decay time of about 5 days as shown in Fig. 3. The non-vanishing autocorrelation function for small lags indicates that the value of the anomaly at time n contains predictive information about the value of the anomaly at time $n + 1$. So, evidently, temperature anomalies are not white noise.

4 The forecast models

In order to make forecasts about the future, we need models of how information about the future is computed from knowledge about the present situation. In the following, we start from the simplest one-parameter model, then introduce
a dynamical data based model, and a complex weather model, together with an additional adjustment to observed data, so that we have a total of 4 models to be compared.

4.1 The base rate model

A data model extracts details of the dependencies between successive values of a time series which we can use for prediction. Many different such models co-exist. In machine learning, rather general but parameterised input-output relations are used. Learn pairs of input and corresponding output are used to adapt the model parameters to the observed data. Alternatively, one can use well established dynamical models, where the class of linear Gaussian models is the most prominent. In fact, in the following subsection, we will argue that a simple AR(1) process is an excellent compromise between model complexity and accuracy. Here, we start with an even simpler model.

A base rate model relies on the (known) average event rate \(r \). It issues predictions which are independent of time and independent of the present state of the true system, simply predicting that the event will take place with probability \(r \).

We want to predict whether the anomaly will exceed a certain threshold on the next day. But we are only interested in such a prediction if the present anomaly is below that threshold. This latter complication takes into account that we are interested in the prediction of “events”, i.e., of something that is a change with respect to the current situation. Therefore, we will not make any prediction at times \(n \) at which the anomaly is already above threshold, which means that for low thresholds we will have a strongly reduced number of prediction trials. The distribution of the temperature anomalies only over the days on which a forecast is issued has a cut-off at the value of the threshold. Due to autocorrelation, the anomaly distribution over days for which a prediction was issued has a smaller mean than the unconditional anomaly distribution shown in Fig. 2.

In this binary prediction, an event \(X_{n+1} = 1 \) is observed, whenever \(T_{n+1} > \tau \) for a threshold value \(\tau \), but we make a prediction only if \(T_n \leq \tau \), that is, if \(X_n = 0 \). Therefore, the event rate evaluated on \(N \) data is given by

\[
 r_\tau = \frac{\sum_{n=1}^{N-1} (1 - X_n) X_{n+1}}{\sum_{n=1}^{N-1} (1 - X_n)} . \tag{3}
\]

This base rate model will now predict that, given that \(X_n = 0 \) (i.e., \(T_n \leq \tau \)), then the anomaly on the following day will exceed the threshold \(\tau \) with a probability \(r_\tau \), independent of any information about the current weather. If \(X_n = 1 \) (\(T_n \leq \tau \)), no prediction will be made and the corresponding day is not considered a forecast instance. Therefore, we will refer to this model as the conditional exceedance base rate (CEBR) model.

The base rate model is the simplest model one can think of and it will therefore serve as a benchmark. The only parameter of this model is the rate
\(r_r \), which can be easily extracted from recorded data. In this sense, it is a purely data-driven model. Let us stress that a sophisticated weather model as it will be described below creates weather predictions through modeling of physical processes, and that there is no guarantee that such a model generates events with the correct base rate. Therefore, the benchmark provided by the base rate model is a serious one.

4.2 The AR(1) model

A more reasonable model than the base rate model should take into account our knowledge about the current weather state and thereby yield predictions which vary along the time axis. Based on the almost-Gaussianity of the temperature anomalies, and based on their almost-exponentially fast decay of autocorrelations, a reasonable model which makes use of current and past observations is a linear autoregressive (AR) process:

\[
T_{n+1} = \mu + \sum_{i=1}^{p} \alpha_i T_{n+1-i} + \epsilon_n,
\]

where \(p \) is the order of the model, \(\alpha_i \) are the constant AR parameters and the residuals \(\epsilon_n \) are white noise with zero mean and variance \(\sigma^2 \). We assume for the mean \(\mu = 0 \), because we consider anomalies whose mean is zero by construction. Given the order \(p \), the parameters could be adapted by minimisation of the root mean squared prediction error with respect to the \(\alpha_i \), or some modifications such as the Yule Walker equations. Different sophistications for the estimate of AR-coefficients and also of the order of AR-models exist [Schelter et al., 2007].

We split the full data set into a training and a test set, i.e. we fit the model coefficients on data from 1946 to 1978 (inclusive), and make predictions and compute their performance on the remaining data from 1979 onward. We use the R-function \texttt{ar} provided by the \texttt{stats}-package [R Development Core Team, 2011] to fit the AR parameters \(\alpha_i \), as well as the variance of the residuals \(\sigma^2 \) using maximum likelihood estimation. An optimal order of \(p = 6 \) is suggested by Akaike’s information criterion [Akaike, 1974].

In Fig. 4, it is shown that the parameters \(\alpha_2 \) through \(\alpha_6 \) of the optimal AR(6) are only of the order of 0.01, while the first parameter \(\alpha_1 \) is almost identical to that of the AR(1) process. We use this as a motivation to override Akaike’s suggestion and choose the AR(1) process as our best data-driven model of the temperature anomalies. That is, we model the temperature anomalies \(T_n \) by

\[
T_{n+1} = \alpha T_n + \epsilon_n,
\]

where \(\alpha = 0.72 \) and \(\epsilon_n \) is Gaussian white noise with variance \(\sigma^2 = 3.06^2 \).

In an AR(1) process with zero mean, parameter \(\alpha \) and variance of the residuals \(\sigma^2 \), it is straightforward to show that the marginal distribution has mean zero and variance \(\sigma^2_2 = E(T^2) \) equal to \(\sigma^2/(1-\alpha^2) \). Using our parameter estimates of \(\sigma \) and \(\alpha \), we get \(\sigma^2_2 = 4.42^2 \) which is in agreement with the variance of the anomaly distribution shown in Fig. 2.
Figure 4: Coefficients of autoregressive models of order one (triangle) and of order 6 (crosses), plotted in normal (left) and logarithmic (right) ordinates. In the AR(6) model, which is suggested as the optimal model by AIC, the parameters α_2 through α_6 are on the order of 10^{-2} while the parameter α_1 is very close to that of the AR(1) model.

From Eq. 5 one can conclude that, in an AR(1) process, the probability distribution of the state at time instance $n+1$, conditional on the state at instance n is a Gaussian with mean equal to αT_n and variance equal to σ^2, that is

$$ \mathbb{P}(T_{n+1} \mid T_n = t) = 1 - \Phi_{\alpha t, \sigma}(\tau) $$

respectively. If subscripts are missing, the conventions $\Phi \equiv \Phi_{0,1}$ and $\varphi \equiv \varphi_{0,1}$ apply. According to Eq. 6, the probability of exceeding a threshold τ in an AR(1) process, conditional on the present value T_n, is given by

$$ \mathbb{P}(T_{n+1} > \tau \mid T_n = t) $$

If the true process that generates T_{n+1} is indeed an AR(1) process, Eq. 6 provides the most complete information as to the occurrence of an exceedance event.
4.3 The weather model

The physical processes in the atmosphere are pretty well understood, although not in full detail (e.g., Holton [2004]). General circulation models (GCMs) are models based on the hydrodynamic transport equations for the wind field plus the thermodynamics of the transported air masses and their interaction through the temperature dependent density of air. For more realism, further processes have to be included, such as transport of different phases of atmospheric water and their transitions, the energy budget has to be adjusted, topography must be included, just to mention some. For detailed descriptions of state-of-the-art atmospheric models see ECMWF [2009], NOAA [2011], or DWD [2012].

For the forecast of temperature anomaly exceedances we use output from the NCEP reforecast project [Hamill et al., 2005]. The reforecast project provides a dataset of global ensemble weather forecasts. In a long reforecast project, global temperature forecasts were issued using the same computational model for the period 1979-present. I.e., although this model was truly operational only for a few years, it has been employed a posteriori to perform predictions on past observations, and it has been continued to perform predictions until today even if since long better models have been available. This is an invaluable source of data, since serious statistical analysis of forecasts is possible if the same model is operated for several decades. Initialized daily at 0:00 UTC, the model outputs forecasts on a $2.5^\circ \times 2.5^\circ$ grid in 12-hourly intervals up to 15 days into the future.

An ensemble of 15 forecasts is produced by slightly varying the initial conditions using so-called Bred perturbations [Toth and Kalnay, 1997]. See Leutbecher and Palmer [2008] for a review of methods and applications of ensemble forecasting.

In order to issue temperature anomaly exceedance forecasts for Hannover, using the ensemble forecast, we proceed as follows. Hannover’s geographical coordinates are 52.37N, 9.73E and the NCEP model has a grid point very close to these coordinates, namely at 52.5N, 10.0E. We use the values of the ensemble members at this grid point as an ensemble forecast for Hannover. We subtract from the ensemble members the climatology in order to transform the temperature forecast into an anomaly forecast. In the data-driven forecast, we used today’s measurement to estimate the probability of occurrence of an exceedance event 24 hours in the future. Here, we use the 36 hours lead time model forecast, in order to account for the time lag between measuring the present state and actually having access to the model results.

In a first approach, we transform the ensemble into a predictive distribution function by Gaussian kernel density estimation, the same method that we used to estimate the anomaly distribution in Sec. 3. That is, we convert the discrete set of predicted temperature anomaly values into a continuous probability density function. Applied to ensemble forecasts, kernel density estimation is also referred to as ensemble dressing. Each ensemble member is dressed with a Gaussian kernel function with zero mean and width σ_k, which we calculate by Silverman’s rule of thumb [Silverman 1998]. For an ensemble of size K and
Figure 5: Illustration of ensemble dressing. Each ensemble member (red markers) is dressed with a Gaussian kernel of zero mean and width σ_k (blue lines). The superposition of all the dressing kernels provides the predictive distribution (red line). From this distribution, the exceedance probability of a threshold τ can be calculated (red shaded area).

standard deviation $\bar{\sigma}$, this rule estimates the dressing kernel width σ_k as

$$\sigma_k = \left(\frac{4\bar{\sigma}^5}{3K}\right)^{1/5}. \quad (10)$$

Once the kernel width is estimated, the ensemble $e = (e_1, \cdots, e_K)$ is transformed into a density for the temperature anomaly by

$$p(T \mid e) = \frac{1}{K} \sum_{i=1}^{K} \varphi_{e_i,\sigma_k}(T). \quad (11)$$

Fig. 5 illustrates this method, as well as the calculation of the exceedance probability of a threshold τ. Note that, unlike suggested by Fig. 5, the ensemble members do not have to be ordered. We refer to the above method of obtaining the exceedance probabilities as the raw ensemble forecast.

4.4 Calibrated weather model

When using only the raw ensemble predictions, we ignore a very important point concerning physical dynamical forecast models, namely that past prediction errors can (and should) be used to improve future forecasts. With this insight we enter the world of model output statistics (MOS; Glahn and Lowry [1972], Wilks and Hamill [2007]).

The numerical model is only a sketch of the true atmosphere and thus model errors are inevitable. However, some of these model errors are systematic, such that they can be corrected for. Two notorious systematic errors in weather models are seasonal bias and underdispersiveness. The bias is the average difference
between ensemble mean and verification, which is non-zero and displays seasonality in the NCEP model (see Fig. 6). Underdispersiveness means that the ensemble variance underestimates the mean squared difference between ensemble members and verification. Both model errors are prevalent in the ensemble, and in the following we correct for both of them.

Here we employ one of different possible calibration schemes. It shifts the values of every ensemble member by the same season-dependent value and corrects the ensemble dispersion by an adjustment of the width of the dressing kernels. More precisely, in analogy to our fitting of the climatology to the temperature data in Sec. 3, we fit a second order trigonometric polynomial to the time series of the bias. The ensemble is bias-corrected by shifting the ensemble mean according to the seasonal bias known from the two years preceding the year of the forecast.

In order to correct for ensemble underdispersiveness, we inflate the width of the Gaussian kernels. In Wang and Bishop [2005] a method was proposed to estimate the kernel width for underdisperse ensembles under a second moment constraint. Denote by $\overline{d^2}$ the average squared difference between ensemble mean and verification, by $\overline{s^2}$ the average ensemble variance, and by K the number of ensemble members. The kernel width proposed by Wang and Bishop [2005] is then given by

$$\sigma_k^2 = \overline{d^2} - \left(1 + \frac{1}{K}\right)\overline{s^2}. \quad (12)$$

With these model corrections which require and archive of past observations and
forecasts we can perform improved temperature anomaly exceedance forecasts. Clearly, as in the AR(1)-model, we respect causality and we use only past data for our re-calibration. The exceedance predictions are calculated as for the raw ensemble, but after correcting for the bias and inflating the dressing kernels. We refer to these predictions as the post-processed ensemble forecasts.

5 Probabilistic prediction of extreme anomalies

All of our four models can be used to issue forecasts of the probability that the temperature anomaly will exceed a predefined threshold on the next day. Before we can compare the performances of these different models, we have to define how to measure the skill of a probabilistic forecast.

5.1 Scoring rules and the Brier Skill Score

One way to evaluate probabilistic predictions is by means of strictly proper scoring rules [Gneiting and Raftery 2007]. A scoring rule is a function \(S(p, X) \) that combines a probabilistic forecast \(p \in [0, 1] \) and the corresponding event indicator \(X \in \{0, 1\} \), where \(X = 1 \) if the event happens and \(X = 0 \) otherwise. The scoring rule is proper if it forces the forecaster to issue his probability honestly. Take the Brier Score [Brier, 1950], for example, which is given by

\[
Br(p, X) = (X - p)^2.
\]
(13)

The Brier Score is negatively oriented and zero for a perfect forecast that assigns probability 1 to an event that actually occurs, probability 0 to an event that does not occur. A forecaster who thinks that the probability of occurrence of \(X \) is \(p \) can choose to issue a probability \(q \) as his forecast. He can calculate his subjective expectation value of the Brier Score of the forecast \(q \) by

\[
E(X - q)^2 = p(1 - q)^2 + (1 - p)q^2,
\]
(14)

where he assumes that the true rate of occurrence is his own estimate \(p \). This expectation is minimized if and only if \(q = p \) which makes the Brier Score a strictly proper scoring rule, i.e., the forecaster has no chance to improve his score by issuing a forecast \(q \) that is different from his best guess \(p \). The same reasoning applies for the following scenario: Let \(p \) be the true rate of occurrence, and let \(q \) be the best guess of the forecaster. Then that forecaster performs best whose estimate is closest to the true value. Let us stress that there are other, at first sight equivalent scoring rules, which lack this property: replacing, e.g., \((X - q)^2\) by \(|X - q|\) leads to an improper score, which can be improved by predicting \(q = 1 \) whenever \(p > 1/2 \) and \(q = 0 \) otherwise. Propriety of a scoring rule is thus a reasonable property to ask for. A further popular example of a strictly proper scoring rule is the Ignorance Score [Roulston and Smith 2002], given by

\[-\log_2(p(X)).\]

In the following we will compare different probabilistic forecasting schemes by means of the Brier Score. A common way to compare scores of different
forecasts is by means of a skill score \cite{Wilks2006}. Let \bar{S}_1 and \bar{S}_2 be the empirical averages of the Brier Score of forecasting schemes 1 and 2, respectively. Then the Brier Skill Score (BSS) is defined by

$$\text{BSS} = 1 - \frac{\bar{S}_1}{\bar{S}_2}. \quad (15)$$

The Brier Skill Score indicates the fraction of improvement of forecasting scheme 1 over scheme 2 in terms of the Brier Score. A BSS of one indicates that the forecasts issued by scheme 1 are perfect, i.e., the forecast probability is unity each time the event happens and is zero each time the event does not happen. A BSS of zero indicates no improvement and a negative BSS indicates that scheme 1 is inferior to scheme 2.

5.2 Theoretical skill of the base rate model

Before we test our models on the observed temperature anomalies, we compute the theoretical values of the performance measures for our data models, i.e., the base rate model and the AR(1)-model. Let us assume for a moment that the temperature anomalies are really generated by an AR(1) process with parameters α and σ. We define the exceedance threshold τ to be the q-quantile of the climatological distribution of the temperature anomalies. As argued before, this distribution has zero mean and variance $\sigma^2_C = \sigma^2/(1 - \alpha^2)$. Thus τ is defined such that

$$q = \Phi_0,\sigma_C(\tau) = \Phi\left(\frac{\tau}{\sigma_C}\right). \quad (16)$$

Averaged over all observations, a fraction of $(1 - q)$ of the temperature anomalies will be larger than τ. However, we only issue predictions on days when the temperature anomaly is below τ. Under this constraint, the average event rate r_τ is not equal to $(1 - q)$, as the following calculations show. The event rate r_τ in our setting is given by

$$r_\tau = \mathbb{P}(T_{n+1} > \tau \mid T_n \leq \tau) \quad (17)$$

which can be estimated from a data set using Eq. 3. In a true AR(1) process, we can calculate r_τ as a function of the AR parameters as follows:

$$r_\tau = \mathbb{E}[\mathbb{P}(T_{n+1} > \tau \mid T_n = t) \mid t \leq \tau]$$

$$= \mathbb{E}[1 - \Phi_{\alpha,t,\sigma}(\tau) \mid t \leq \tau] \quad (18)$$

$$= 1 - (\Phi_{0,\sigma_C}(\tau))^{-1} \int_{-\infty}^{\tau} dt \Phi_{\alpha,t,\sigma}(\tau) \varphi_{0,\sigma_C}(t), \quad (19)$$

where we made use of Eq. 9 and the fact that T_n is marginally distributed according to the climatological Gaussian distribution with zero mean and variance σ^2_C. Note that Eq. 19 is equal to $(1 - q)$ only if $\alpha = 0$. The probability r_τ provides the CEBR forecast in this setting.
Figure 7: Conditional exceedance base rate r_τ for AR(1)-data of a threshold τ at instance $n+1$, conditional on not exceeding τ at instance n, plotted over the q-value of τ in the climatological distribution. Different lines indicate different values of the AR parameter α. The line that corresponds to our temperature anomaly time series is shown red. Note that the climatological distribution is different for different values of α. As we define the threshold relative to the standard deviation of the climatological distribution, these curves are independent of σ.
We numerically integrated the expressions in Eq. 20 (using the R-function \texttt{integrate} provided by the \texttt{stats}-package, [R Development Core Team, 2011]) to produce the conditional exceedance rates in Fig. 7. The threshold τ that defines the exceedance event is defined with respect to the climatological distribution which itself depends on the parameters of the process σ and α. Its q-value is shown on the abscissa. Since in all functions in Eq. 20 the arguments are scaled by σ, the curves of Fig. 7 do not depend on σ.

Fig. 7 shows that it might not be a good idea to issue $1 - q$ as an exceedance forecast if τ is the climatological q-quantile. Due to the correlation of the process, the probability of hopping over the threshold, conditional on being below the threshold at forecast time is reduced compared to this probability in the uncorrelated process where $\alpha = 0$. The process has a tendency to stay below the threshold if it is already below the threshold. This tendency is more pronounced, the higher the value of α, that is, the stronger the correlation. Since forecasts are only issued if the present state is below the threshold, forecasting $1 - q$ would overestimate the CEBR if $\alpha > 0$.

The event $X : (T_{n+1} > \tau \mid T_n \leq \tau)$ occurs with a rate r_τ, given by Eq. 20. The expectation value of the Brier Score of a probabilistic forecast that constantly issues r_τ as a probability for X is readily calculated as follows:

\[
EBr(r_\tau, X) = (1 - r_\tau)^2P(X = 1) + (0 - r_\tau)^2P(X = 0)
\]

\[
= r_\tau(1 - r_\tau).
\]

This is the expected Brier Score of the CEBR forecast where the time series is assumed to possess AR(1)-correlations and where the conditional base rate is correspondingly smaller than one minus the probability corresponding to the quantile. We will compare all further forecasts to this benchmark in terms of the Brier Skill Score.

The expected Brier Scores given by Eq. 22 are shown as gray lines in Fig. 8. The maxima of all these curves assume the value $1/4$, located at that quantile where the conditional rate $r_\tau = 1/2$.

We regard the CEBR as our null-model, the simplest possible prediction that a forecaster who has access to a historical data set of temperature anomalies could issue. A more sophisticated forecasting scheme would always have to be compared to this simple null-model. We would only accept a more complicated forecasting scheme if it can beat the CEBR forecast.

5.3 Theoretical skill of the AR(1) model

One forecast that is definitely more sophisticated than the CEBR forecast can be obtained by issuing the true exceedance probability of the AR process at the present value of T_n, namely $1 - \Phi_\alpha T_n, \sigma(\tau)$ as given by Eq. 9. As was mentioned before, this is the most complete information as to the occurrence of an exceedance event in a true AR(1) process. The expected Brier Score of this
The term in the curly brackets of Eq. 23 is the expected Brier Score at a fixed value of $T_n = t$ and this term is averaged over all values of $t \leq \tau$, weighted by the marginal distribution.

We numerically integrate Eq. 23 for different AR(1) parameters to produce Fig. 8. In an uncorrelated process, where $\alpha = 0$, the expected Brier Score of the true exceedance probability and that of the CEBR are identical, because the two forecast probabilities are identical. If the true process is uncorrelated, no prediction skill can be gained by assuming correlation. For processes with $\alpha > 0$, however, the expected Brier Score of the CEBR is always higher (i.e., worse) than that of the true exceedance probability. Explicitly conditioning the forecast probability on the current state T_n leads to a significant gain in forecast skill. This gain is monotonically increasing in the AR parameter α. The maxima of all curves occur at those points where the corresponding CEBR curves in Fig. 7 cross the horizontal line $p = 0.5$. At this point the uncertainty
of the forecaster as to the occurrence or non-occurrence of an exceedance event is maximal, thus leading to the Brier Score being maximized. As τ approaches $+\infty$ or $-\infty$, all Brier Scores go to zero, that is, all forecasts become more and more perfect. This can be seen as a result of the growing certainty about the occurrence or non-occurrence of an exceedance event if the threshold becomes ever smaller or larger.

Substituting Eq. 22 and Eq. 23 into Eq. 15 we compute the Brier Skill Score that compares the Brier Score of the AR(1) forecast to that of the constant CEBR forecast. Skill scores for different values of α are shown in Fig. 9.

In the range between these extremes, where τ is roughly between the 5- and the 95-percentile of the climatological distribution of the process, the BSS is approximately constant. In this range, the BSS is the larger, the larger the AR-parameter α is, that is, the more correlated the process is. While it is evident that the Brier Score tends to zero when the event rate tends to either 1 or 0, it is less evident that the Brier Skill Score for the AR-model does the same. The curves shown in Fig. 9 are generated by numerical integration and seem to converge to zero for large and small τ but we do not have any analytical estimates for the Brier Skill Score in these limits.

In Figs. 7, 8 and 9 the red lines report the theoretical results for that value of the AR-parameter α which we obtain by a fit of an AR(1) model to our
temperature anomaly data. Hence, we expect the empirical skill of the AR-model on these data to be discussed in the next section to be similar.

5.4 Empirical skill of the AR(1) model

We now issue AR(1)-model predictions for the Hannover temperature anomaly time series and compare these predictions to CEBR forecasts. We use the time period between 1946-1978 (inclusive) to estimate the climatology, the AR(1) parameters α and σ as well as the CEBR as a function of the threshold τ. Based on this information we issue probabilistic predictions for the event that a threshold τ will be exceeded by the temperature anomaly, using the CEBR and using the AR(1) model. We compare the probabilistic predictions to the actual outcomes of the events using the Brier Score. Substituting the empirical averages of these scores into Eq. 15 yields the Brier Skill Score.

This Brier Skill Score comparing the predictions issued by the AR(1) model to those of the CEBR model is shown in Fig. 10 and compared to the analytical result provided by comparing Eq. 22 and Eq. 23 for $\alpha = 0.72$, which is the empirical value of the AR-parameter. Obviously, in the temperature anomaly time series, predictions can be issued as to the occurrence of an exceedance event that are significantly more skilful than the CEBR. This result holds for a wide
range of threshold values. Only for very large negative and positive anomalies does the confidence band overlap zero so that we can not assume significant improvement of the AR forecast over the CEBR forecast. The analytical curve is fully contained in the confidence band, thus reassuring that the calculations above are correct, and that the temperature anomalies can indeed be modeled by an AR(1) process.

Regarding confidence intervals, note that in Fig. 10 as well as in all other Figures, the intervals are to be taken as pointwise confidence intervals, and not as confidence bands for the complete curve. If the confidence intervals referred to the complete curve, they would be much wider. This distinction is especially relevant if the points along the curve are not independent, which is clearly the case if they refer to predictive skill with respect to different threshold values. If predictive skill is particularly good at a threshold value of, say, 0.8, it is reasonable to assume that predictive skill at threshold value 0.81 is also good.

5.5 Skill of the raw and post-processed ensemble forecast compared to the AR(1)-model

We evaluate the exceedance forecasts produced by the raw and post-processed ensemble, which are documented in Sec. 4.3 and Sec. 4.4. Using the Brier Skill Score we compare their Brier Score to the Brier Score of the CEBR forecast. For reference and comparison, we include the Brier Skill Score of the AR(1) forecast.

Fig. 11 shows, as a function of the threshold, the Brier Skill Scores of the raw ensemble, of the post-processed ensemble, and of the AR(1) forecast. For thresholds with \(p \)-values around 0.2, the ensemble can hardly beat the CEBR, as indicated by a skill score close to zero. In this range, the AR(1) forecast clearly outperforms the raw ensemble. For larger thresholds on the other hand, the raw ensemble outperforms the AR(1) predictions.

A valid question regarding Fig. 11 is, how can it be that a complex physical dynamical model is outperformed by the simple data-driven AR(1) model? A weakness of the atmospheric model is that, unlike the AR(1) model, it is not automatically calibrated to the observations. Systematic model errors, for example due to unresolved topography, or errors in the estimation of the initial model state can cause mis-calibration of the ensemble-based exceedance forecasts, even though the weather model incorporates a thorough understanding of the physical processes in the atmosphere. However, as discussed in Sec. 4.4, observation data can be used to recalibrate the output of the ensemble predictions.

We rerun the ensemble-based exceedance forecasts after applying bias correction and variance inflation as described in Sec. 4.4. We model an operational forecasting scenario by using data from the past two years to apply corrections to forecast during a given year. That is, the seasonal bias as well as the width of the dressing kernel are calculated using ensemble output and observation data from the two years preceding the year of a given prediction. By this procedure we account for non-stationarity in the model output, e. g. due to varying observation data. Note, however, that the post-processed ensemble can only produce
Figure 11: Brier Skill Scores of the raw ensemble, the post-processed ensemble, and the AR(1) forecast. 95 percent confidence intervals are included.
forecasts starting in 1981, since no calibration data is available for the first two years in the data base.

Fig. 11 shows Brier Skill Scores of the post-processed ensemble forecast, taking the CEBR forecast as the reference forecast. The post-processed ensemble forecast is constantly better than the AR(1) forecast, as one would expect from a sophisticated physical dynamical model. The skill score of the AR(1) forecast is exceeded by up to 0.3 by that of the post-processed ensemble. Furthermore, the ensemble post-processing substantially improved the skill of the raw ensemble at all thresholds, most remarkably at values of around 0.2.

For very high and very low thresholds, the confidence intervals become very wide. The skill scores of the three forecasts do not differ significantly. All of them seem to tend to zero for very large thresholds. In this respect, the ensemble forecasts share this property with the theoretical performance of the AR(1) model shown in Fig. 9.

The skill (or lack of skill) of probabilistic predictions can have different causes. An additive decomposition of the Brier score was proposed by Murphy [1973] which quantifies two desirable forecast attributes, namely reliability and resolution (also referred to as calibration and sharpness by Gneiting et al. [2007]). We will not perform such an analysis of our forecasts here, as it is the subject of a forthcoming paper. We note however, that the forecasts produced by the raw ensemble are very unreliable, while the AR(1) forecasts and the post-processed ensemble forecasts are almost perfectly reliable for all values of the threshold τ. The resolution of the two ensemble forecasts is generally better than the resolution of the AR(1) forecasts.

6 From probabilistic to deterministic predictions of extreme anomalies

In certain situations, an end user might prefer a deterministic forecast over a probabilistic one. This is in particular the case if the specific action which the end user has to take in response to the forecast does not allow for a gradual adjustment, but consists of exactly two alternatives. Such a situation is typical of extreme weather: If, e. g., a public event is sensitive to strong wind gusts, the two possible actions in response to the forecast “probability p for thunderstorm” are only to ignore this danger or to cancel the event.

If such a decision has to be made repeatedly under a constant cost/loss scenario, the end user will fix a certain threshold ζ, and will act as if the forecast was a deterministic “yes” if the predicted probability p_n is larger than ζ. If $p_n < \zeta$, the end user will act as if a “no” was predicted. A systematic way to evaluate such predictions for different values of ζ is ROC analysis.

6.1 The ROC analysis

ROC (Receiver Operating Characteristic) analysis [Egan, 1975] is a performance analysis for evaluating binary predictions (0/1), unfortunately without a
straightforward generalization to more than two classes. ROC analysis was originally introduced in signal processing: Assume that a binary signal (high/low) is sent over a noisy channel. The receiver has the task to reconstruct the alternation of high/low by using an adjustable threshold. The noisy channel leads to errors in this reconstruction.

Translated into prediction, we assume that the observations \(X \) are either “0” or “1”, and that the predictions \(Y \) are as well either “0” or “1”. If predicted value and observed value coincide, \(X_n = Y_n \), this prediction was evidently successful. However, there are two different types of potential mis-prediction: The forecast can be (a) \(Y_n = 1 \) and the observation \(X_n = 0 \) or (b) vice versa. Skill scores such as the root mean squared prediction error would weight these two errors identically. In many applications, and in particular for extreme event prediction, but also in medical screening, this can be very misleading: The real world costs for a missed hit (case b) are usually very different from a false alarm (case a). Also, if the event rate is very small, optimization of the root mean squared prediction error might lead to assigning a better score to the trivial prediction which says “0” all of the time (no false alarms, only a few missed hits) than to one which makes a fair attempt to predict some “1” and thus suffers from both types of errors.

In view of these complications, a commonly used performance measure for such binary prediction is the ROC curve. It assumes that the prediction scheme possesses a sensitivity parameter \(\zeta \), by which the relative number of \(Y_n = 1 \) predictions can be controlled. The ROC curve is a plot of the hit rate versus the false alarms rate parametrized by the sensitivity parameter \(\zeta \) ranging from insensitive (no “1” predicted, i.e., no false alarms, no hits) to maximally sensitive (always “1” predicted, i.e., full record of hits, but also maximum number of false alarms). Formally, the hit rate \(H(\zeta) \) is the probability of issuing alarms at sensitivity \(\zeta \), given that the event actually occurs:

\[
H(\zeta) = P(p_n > \zeta \mid X_n = 1) = P(Y_n = 1 \mid X_n = 1) \approx \frac{\sum_n X_n Y_n}{\sum_n X_n}, \quad (24)
\]

and the false alarm rate \(F(\zeta) \) the probability of alarms given that no event occurs:

\[
F(\zeta) = P(p_n > \zeta \mid X_n = 0) = P(Y_n = 1 \mid X_n = 0) \approx \frac{\sum_n (1 - X_n) Y_n}{\sum_n (1 - X_n)}. \quad (25)
\]

This scoring scheme has a number of advantages with respect to others:

(a) a simple benchmark is a predictor which, at a given rate, produces \(Y_n = 1 \) irrespective of any information, so that the pairs \((X_n, Y_n)\) consist of two independent random variables. The ROC curve of this trivial predictor is the diagonal. Hence, the ROC curve of every nontrivial predictor has to be above the diagonal.

(b) As the reasoning in (a) shows, there is no explicit dependence of the ROC curve on the event rate, in contrast to, e.g., the Brier score. Therefore, ROC curves are suitable to compare predictive skill of different event classes, which
also differ in their base rate.

(c) If costs for individual false alarms and for missed hits can be quantified and are known, then one can determine the working point of a predictor, i. e., the optimal sensitivity which minimizes the total costs.

A widely used summary index of a ROC curve is the area under the curve (AUC, Egan [1975]), defined as

$$\text{AUC} = \int_0^1 dF \ H(F). \quad (26)$$

Since the trivial ROC curve is the diagonal, the trivial AUC value, which should be exceeded by a nontrivial predictor, is equal to 0.5. The perfect value of AUC equals unity and indicates a predictor that differentiates between events and non-events perfectly. We apply ROC analysis in the following section to deterministic predictions of temperature anomaly exceedances.

Note that measures like the hit rate or AUC are fundamentally different from proper scoring rules, as they cannot assign a value to a single forecast-verification pair and can therefore not be written as averages over individual pairs. This renders a quantitative comparison between ROC analysis and proper scoring rules difficult.

6.2 Comparison of the four models by ROC

We now want to predict temperature anomaly exceedance events by deterministic predictions of the yes/no type. In other words, each day we want to predict either “yes, next day’s anomaly will exceed the threshold τ” or “no, it will not”. Evidently, there are many ways how one can arrive at such predictions. The most trivial and least useful one would be to simply toss a coin, in other words to issue alarms randomly with a certain rate. However, this is not as useless as it seems, since this provides a benchmark for every serious prediction attempt: A predictor has to perform better than coin tossing in order to be useful. At a given exceedance threshold, the base rate model of Sec. 4.1 pre-defines the rate at which the coin should predict “yes”. In the ROC analysis we can try all possible rates. But since all these predictions are independent of the events, we create a diagonal line in the ROC plot, according to the arguments in Sec. 6.1.

For the three other models, we convert the predicted probabilities into deterministic yes/no predictions by the very simple rule mentioned above: Let the predicted probability by either the AR(1) forecast, or the raw ensemble, or the post-processed ensemble be p_n. We issue $Y_n = 1$ if $p_n > \zeta$ and $Y_n = 0$ otherwise. The threshold ζ adjusts the sensitivity: If ζ close to 1, then very few Y_n will be set to 1, whereas for ζ close to zero $Y_n = 1$ on many occasions. One might speculate that setting ζ such that the relative number of 1’s among the Y_n is the same as among the verifications X_n is somehow optimal. Actually, in terms of calibration, this would be the best choice, but in practice different values of ζ might be preferred, as we will discuss below. In the following we use the algorithm presented in Fawcett [2006] to calculate ROC curves. AUC’s and their confidence intervals are calculated according to DeLong et al. [1988].
Figure 12: ROC curves for deterministic predictions of temperature anomaly exceedances, obtained by converting the probabilistic predictions issued by the AR(1) model and the two versions of the ensemble forecast. Two exceedance thresholds are shown: the 35-percentile, where the AR(1) model is superior to the raw ensemble forecast in terms of the Brier Skill Score (Fig. 11) and the 95-percentile, which corresponds to exceedance events of very large thresholds. The black squares denote the hit rate and false alarm rate of a predictor which randomly issues alarms with a rate equal to the corresponding CEBR.

In Fig. 12 we show two ROC curves for deterministic exceedance forecasts calculated from the probabilistic ones. For the first selected τ-value, the AR(1) model and the raw ensemble forecasts have about the same predictive skill in terms of Brier Skill Score (Fig. 11). Conversely, in terms of its ROC curve, the raw ensemble is closer to the post-processed ensemble than to the AR(1) forecast. Once again, the post-processed ensemble is superior to both. The second τ-value corresponds to exceedance events of very large thresholds. The ROC curves of the three nontrivial prediction schemes are closer to the optimal point $(0, 1)$ than at the smaller exceedance threshold τ. However, at this larger threshold and at low values of the sensitivity parameter ζ, the ROC of the AR(1) forecast lies above that of the raw ensemble forecast. At high false alarm rates, the AR(1) based forecast has a higher hit rate than the raw ensemble forecast.

The ROC plots in Fig. 12 are typical of all other τ-values, the main variation being how closely the individual curves approach the desired upper left corner $\left(H = 1, F = 0\right)$. A coin-tossing model, generating $Y = 1$-predictions with any rate, will generate the diagonal. The black squares indicate the performance of such a model if the rate is taken as the true conditional exceedance base rate, Eq. [3]. One possible conclusion of this plot is: The base rate model causes a given percentage of false alarms. If we accept the same number of false alarms for the more sophisticated models, we have a much better hit rate. Or vice versa, the base rate model has a given fraction of hits. If our improved models are to be operated such that their hit rate is the same, then they would produce much less false alarms.

In Fig. 13 we report the dependence of AUC on the threshold τ for the
Figure 13: The area under curve, AUC, as a function of the exceedance threshold value, for the three models. 95 percent confidence intervals are included. The more the AUC-value exceeds 1/2, and the closer it is to the maximum of 1, the better the average performance.
three nontrivial predictors. As for the Brier Skill Score (Fig. 11) we observe systematic differences for different exceedance thresholds \(\tau \) and significant differences between the three prediction schemes. There are, however, a number of notable differences to the BSS. At the low thresholds, where the AR(1) model outperforms the raw ensemble in terms of the BSS, the raw ensemble is much better in terms of the AUC, and even close to the post-processed ensemble. At very large thresholds, on the other side, the AR(1) model has a significantly higher AUC than the raw ensemble. This deficiency is eliminated by the post-processing. Another interesting behavior is the apparent increase of the AUC with increasing values of \(\tau \). That means that, the more “extreme” the events get, the better they become predictable in the ROC sense. This effect has been previously observed for different prediction targets in [Hallerberg et al., 2007]. The BSS, on the other hand, tends to zero for very large thresholds.

A possible explanation for these systematic differences between the evaluation criteria BSS and AUC is as follows: We have introduced an additional parameter, the sensitivity \(\zeta \), which is a kind of implicit re-calibration. Assume a probabilistic model and a modification of that by simply dividing all predicted probabilities by two. The modified model would have exactly the same ROC curve and AUC as the original one because these measures are invariant with respect to monotonic transformations. On the other hand, the modified model would usually have a worse Brier Skill Score because the Brier Score is indeed sensitive to such a transformation. One could therefore argue that ROC analysis only measures forecast resolution, which is the higher, the better informed a forecaster is. The increase of performance of the weather model becomes thus more obvious. However, a formal connection between the AUC and forecast resolution in the sense of the reliability-resolution-uncertainty decomposition of the Brier Score [Murphy, 1973] has yet to be established.

The fact that the ensemble post-processing improves the ROC measures shows that our ensemble post-processing is not the same as a simple linear recalibration of the forecast probabilities. As stated above, ROC measures are invariant under such a recalibration. But since we modify the raw ensemble and not the forecast probabilities, and since the seasonal bias correction alters the probabilities nonlinearly, we are able to significantly improve ROC curves and AUC of the exceedance forecasts by the ensemble post-processing.

7 Discussion and conclusions

We gave an overview over different forecast products related to extreme events. The forecast itself, regardless of the specific forecast product, is an input-output relationship. Depending on availability, one may use physical dynamical models, statistical learning algorithms, or data based prediction schemes in order to make use of input data. The evaluation of such predictions, and hence the decision which forecast product is optimal for a given problem, requires the definition of a performance measure. Since there are many different possibilities for scoring, there might be several optimal predictors.
As a specific example, we discuss the prediction of temperature anomalies exceedance events. We compare two prediction schemes: one results from a dynamical weather model, the other is a simple time series model fitted to past data of the measurement station under consideration. The difference in model complexity, in computational effort, and in the dimensionality of input data is tremendous. Nonetheless, the performance of the time series model is not as bad as one might naively expect: The improvement over a benchmark predictor is in some sense of the same order of magnitude. Interestingly, there are even prediction tasks where the uncalibrated weather model performs worse than the time series model.

In weather forecasting, the calibration of a dynamical model to the local statistics is essential in order to provide good forecasts, because model errors introduce systematic biases. In situations where such calibration functions are unknown, such predictions may be systematically wrong and hence misleading. Such lack of calibration is evidently given in areas of the world where there are no measurement stations which might be used to calibrate the local forecasts. In view of climate change and extreme weather, this calibration issue leads to another problem: How the model post-processing has to be modified under changed climatic conditions can only be guessed. Unfortunately, for the estimate of the relative frequency of extreme anomalies, this calibration is essential, as can be seen in Fig. 11. Since observation data for a climate different from the present one is unavailable, the probability of extreme weather events can only be estimated by dynamical models, even if they are not perfect. In settings where a dynamical model is unavailable due to lack of equations that describe the physics of the system, data based modeling is a serious alternative; its performance might be better than the performance of an uncalibrated dynamical model.

By converting predicted probabilities into deterministic binary forecasts and evaluating these by ROC statistics, different properties of the forecast scheme are evaluated. A violation of calibration becomes irrelevant, hence the raw ensemble performs almost as well as the post-processed ensemble. The last item confirms what we said in the introduction: We can only speak about the optimal predictor after we have decided how we wish to evaluate the skill of predictions.

Extreme event prediction is rare event prediction, i.e., prediction in the limit of the base rate tending to zero. Hence, we should compare the Brier Skill Score and the Area Under the Curve in the rightmost part of Figs. 11 and 13, which both compare a more sophisticated forecast to a base rate forecast. Whereas Fig. 11 suggests that predictability tends to disappear (no improvement over the trivial base rate forecast), Fig. 13 suggests the opposite: Events become the better predictable the higher we adjust the threshold of what we call extreme. This contradiction shows how relevant the choice of the performance measure, and related to that, the choice of the forecast product is.

The present study provides a number of directions for future studies: We have only considered forecasts 24 hours ahead. We expect the scores of all prediction models to decrease for higher lead times. We expect the raw ensemble forecast to systematically outperform the AR(1) model at higher lead times.
Furthermore, the reasons for the low Brier Skill Score of the raw ensemble can be worked out more carefully by a decomposition of the Brier Score into reliability, resolution and uncertainty [Murphy, 1973]. Lastly, we compared rather simple forecasting models both from the data-based and from the physical dynamical family of models. Neither the weather model nor the data-driven prediction model can be considered state-of-the-art. The performance of the NCEP reforecast model is surely not representative of state-of-the-art weather models. The conclusions might change if different prediction models are used.

Acknowledgments

We would like to thank an anonymous reviewer for helpful comments.

References

Akaike, H. A new look at the statistical model identification, IEEE Transactions on Automatic Control 19(6):716–723 (1974).

Brier, G.W. Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1): 1–3, 1950.

DeLong, E.R., DeLong, D.M. and Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a non-parametric approach, Biometrics 44(3): 837–845 (1988).

Deutscher Wetterdienst. Climatological Database [www.dwd.de] [online; accessed 2011/04/13]

DWD (Deutscher Wetterdienst) Core documentation of the COSMO-model, [http://www.cosmo-model.org/content/model/documentation/core/], [online, accessed 2012/07/05] (2012).

Dysthe, K., Krogstad, H.E. and Müller, P. Oceanic Rogue Waves, Annual Review of Fluid Mechanics 40: 287-310 (2008).

ECMWF (European Centre for Medium-Range Weather Forecasting), Integrated Forecast System Documentation CY33r1, [http://www.ecmwf.int/research/ifsdocs/CY33r1/index.html] [online, accessed 2012/07/05] (2009).

Egan, J.P. SIGNAL DETECTION THEORY AND ROC ANALYSIS, Academic Press, New York, 1975.

Fawcett, T. An introduction to ROC analysis, Pattern recognition letters 27(8): 861–874 (2006).
Glahn, H.R. and Lowry, D.A. *The use of model output statistics (MOS) in objective weather forecasting*, Journal of Applied Meteorology 11(8): 1203–1211 (1972).

Gneiting, T. and Raftery, A.E. *Strictly proper scoring rules, prediction, and estimation*, Journal of the American Statistical Association 102(477): 359–378 (2007).

Gneiting, T., Balabdaoui, F. and Raftery, A. *Probabilistic forecasts, calibration and sharpness*, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(2): 243–268 (2007).

Hallerberg S., Altmann, E.G., Holstein, D. and Kantz, H. *Precursors of extreme increments*, Phys. Rev. E 75 016706 (2007).

Hamill, T.M., Whitaker, J.S., and Mullen, S.L. *Reforecasts, an important data set for improving weather predictions*. Bulletin of the American Meteorological Society, 87(1): 33–46, 2005.

Holton, J.R. *An Introduction to Dynamic Meteorology*, Elsevier, (2004).

Leutbecher, M. and Palmer, T.N. *Ensemble Forecasting*, Journal of Computational Physics 227(7):3515–3539 (2008).

Murphy, A.H. *A new vector partition of the probability score*, Journal of Applied Meteorology 12(4):595–600 (1973).

NOAA (National Oceanic and Atmospheric Administration) *The Global Forecast System (GFS) - Global Spectral Model (GSM) Version 9.0.1*, http://www.emc.ncep.noaa.gov/GFS/doc.php [online, accessed 2012/07/05] (2011).

Pepe, M.S. *The Statistical Evaluation of Medical Tests for Classification and Prediction*, Oxford University Press, New York, 2003.

R Development Core Team *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2011 http://www.R-project.org.

Roulston, M.S. and Smith, L.A. *Evaluating probabilistic forecasts using information theory*. Monthly Weather Review, 130(6):1653–1660, 2002.

Schelter, B., Winterhalder, M., and Timmer, J. *Handbook of Time Series Analysis: Recent Theoretical Developments and Applications*, Wiley-Vch (2007).

Silverman, B.W. *Density estimation for statistics and data analysis*. Chapman Hall/CRC, 1998.

Toth, Z. and Kalnay, E. *Ensemble forecasting at NCEP and the breeding method*, Monthly Weather Review 125(12): 3297–3319 (1997).
Wang, X. and Bishop, C.H. *Improvement of ensemble reliability with a new dressing kernel*. Quarterly Journal of the Royal Meteorological Society, 131(607):965–986, 2005.

Wilks, D.S. *Statistical methods in the atmospheric sciences*, Academic Press (2006).

Wilks, D.S. and Hamill, T.M. *Comparison of ensemble-MOS methods using GFS reforecasts*, Monthly weather review 135(6): 2379–2390 (2007).