Exclusive $B \rightarrow K^{*\star}\gamma$ Decays in the QCD LCSR approach

A. S. Safir
DESY, Deutsches Elektronen-Synchrotron, D-22603 Hamburg, Germany
E-mail : safir@mail.desy.de

March 25, 2022

Abstract

We predict contributions of higher K-resonances to the radiative rare decays $b \rightarrow s\gamma$, in the framework of the QCD sum rules on the light cone (LCSR). Our calculations are restricted to the leading twist-two operators for $K^+(892)$ and to the asymptotic wave function for the other $K^{*\star}$-mesons. Using experimental data on the semileptonic $\tau \rightarrow K^{*\star}\nu_\tau$ decays, we extract the corresponding decay constants for vector and axial-vector $K^{*\star}$-mesons. We present results for the corresponding branching ratios and compare them with the existing theoretical predictions.

1 Introduction

The study of radiative decays based on the flavour-changing neutral $b \rightarrow (s,d) + \gamma$ current transition is of crucial importance for testing the flavour sector of the Standard Model and probing for new physics. In the standard model, the short distance contribution to rare B-decays is dominated by the top quark, and long distance contributions by form factors. Precise measurements of these transition will not only provide a good estimate of the top quark mass and the CKM matrix elements V_{td}, V_{ts}, V_{tb}, but also of the hadronic properties of B-mesons, namely form factors which in turn would provide a good knowledge of the corresponding dynamics and more hint for the non-perturbative regime of QCD.

Experimental measurements of exclusive $B \rightarrow K^*\gamma$ branching ratios have been reported by the BABAR, CLEO and BELLE Collaborations, with the results:

$$10^5 \text{Br}(B^0 \rightarrow \bar{K}^{*0}\gamma) = \begin{cases} 4.23 \pm 0.40 \pm 0.22 \text{[1]} \\ 4.55^{+0.72}_{-0.68} \pm 0.34 \text{[2]} \\ 4.96 \pm 0.67 \pm 0.45 \text{[3]} \end{cases}$$

and also of the inclusive rate [2–4]:

$$10^4 \text{Br}(B \rightarrow X_s\gamma) = (3.22 \pm 0.40)$$

*Talk presented at the XXXVIIth Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 March 2002.
However, the first observation of the rare B-decay to the orbitally excited strange mesons has been reported by CLEO \[2\], and recently by BELLE \[3\]:

$$10^5 \text{Br}(B \to K_2^*(1430)\gamma) = \left\{ (1.66^{+0.59}_{-0.53} \pm 0.13) \quad [2] \right\}$$

These important experimental measurements provide a crucial challenge to the theory. Whereas many theoretical approaches have been employed to predict the exclusive $B \to K^*(892)\gamma$ decay rate, less attention has been devoted to rare radiative B-decays to excited strange mesons \[5–8\]. Most of these theoretical approaches rely on non-relativistic quark models \[5, 6\], HQET \[7\] and relativistic model \[8\]. However there is a large spread between different results, due to different treatments of the long distance effects.

In this talk we present the results of \[9\], where a systematic analysis of the electromagnetic penguin form factor $F_{K^*}(0)$ governing the exclusive rare B-decays to orbitally excited K^*-mesons was performed in the framework of the QCD sum rules on the light cone \[10\].

2 General framework

At the quark level, the rare semileptonic decay $b \to s\gamma$ can be described in terms of the effective Hamiltonian obtained by integrating out the top quark and W^\pm bosons:

$$H_{\text{eff}} = -\frac{G_F}{\sqrt{2}} V_{ts} V_{tb} \sum_{i=1}^{8} C_i(\mu) O_i(\mu).$$

where V_{ij} are the corresponding CKM matrix elements and G_F is the Fermi coupling constant. Following the notation and the convention of ref. \[11\], regarding the operator basis, one can test the model dependence of the form factors for the exclusive decay in the ratio of the exclusive-to-inclusive radiative decay branching ratio:

$$R_{K^{**}} \equiv \frac{\text{BR}(B \to K^{**}\gamma)}{\text{BR}(B \to X_s\gamma)} \simeq F_1^{K^{**}}(0)^2 \zeta(m_s, m_b, m_{K^{**}}, ..)$$

where $\zeta(m_s, m_b, m_{K^{**}}, ..)$ is a kinematic function which can be found in \[9\]. With this normalization, one eliminates the uncertainties from the CKM matrix elements and the short distance contribution. Thus, we are left in (2) with unknown form factors $F_1^F(0)$, which we will derive using QCD sum rules on the light cone.

The starting point of our sum rule is to consider the correlation function

$$i \int dx \ e^{iqx} \times <K^{**}(p, \epsilon)|T \{ \bar{\psi}(x)\sigma_{\mu\nu}(\sigma_{\mu\nu}\gamma_5)q^\nu b(x)\bar{b}(0)i\gamma_5\psi(0) \}|0>$$

Hereafter we use ψ as a generic notation for the field of the light quark. The hadronic representation of (3) is obtained by inserting a complete set of states including the B-meson ground state, higher resonances and the non-resonant states with B-meson quantum numbers. After writing down the dispersion relation in $(p + q)^2$, we can separate the contribution of the B-meson as the pole contribution.

The possibility to calculate the correlator (3) in the region of large space-like momenta $(p + q)^2 < 0$ is based on the expansion of the T-product of the currents in (3) near the light-cone $x^2 = 0$ which is expressed through matrix elements of non-local operators, sandwiched in between the
Table 1: Central values of the pseudoscalar, vector, scalar and axial vector K^{**}-meson decay constants (in MeV) and the corresponding form factors.

$K^*(892)$	$K^*_1(1270)$	$K_1(1400)$	$K^*(1410)$	$K^*_0(1430)$	$K_1(1650)$	$K^*(1680)$	
J^P	1$^-$	1$^+$	1$^+$	1$^-$	0$^+$	1$^+$	1$^-$
f_i	210	122	91	86	79	86	86
$F_{K^{**}}(0)$	$0.32_{-0.06}^{+0.06}$	$0.14_{-0.03}^{+0.03}$	$0.098_{-0.02}^{+0.02}$	$0.094_{-0.02}^{+0.02}$	$0.091_{-0.02}^{+0.02}$	$0.091_{-0.02}^{+0.02}$	

Table 2: Comparison of our results for the ratio $R_F[\%]$ with previous works.

Meson	ref. [3]	ref. [7]	ref. [6]	ref. [5]	ref. [8]
K^*	10.0$^{+1.0}_{-1.0}$	16.8 ± 6.4	3.5 − 12.2	4.5	15$^{±3}$
$K^*(1430)$					forb.
$K_1(1270)$	2.0$^{+0.8}_{-0.4}$	4.3$^{+1.6}_{-0.9}$	4.5 − 10.1	forb./6.0	1.5$^{±0.5}$
$K_1(1400)$	0.9$^{+0.4}_{−0.4}$	2.1$^{+0.9}_{−0.9}$	6.0 − 13.0	forb./6.0	2.6$^{±0.6}$
$K_{2}^*(1430)$	5.0$^{+2.0}_{−2.0}$	6.2$^{+2.9}_{−2.9}$	17.3 − 37.1	6.0	5.7$^{±1.2}$
$K^*(1680)$	0.7$^{+0.3}_{−0.3}$	0.5$^{+0.2}_{−0.2}$	1.0 − 1.5	0.9	
$K_2(1580)$		1.7$^{±0.4}_{−0.4}$	4.5 − 6.4	4.4	
$K(1460)$					forb.
$K^*(1410)$	0.8$^{+0.4}_{−0.4}$	4.1$^{+0.6}_{−0.6}$	7.2 − 10.6	7.3	
$K^*_0(1950)$					forb.
$K_1(1650)$	0.8$^{+0.3}_{−0.3}$	1.7$^{±0.6}_{−0.6}$	not given	not given	

vacuum and the meson state. These matrix elements define the light-cone meson wave functions. We restricted our calculations to the leading twist-2 operator for the $K^*(892)$, as in [2], and to the asymptotic wave function for the other K^{**}-mesons. The latter choice is simply based on the fact that using QCD sum rules, it is impossible to get rid of the lower-lying states contributions from these higher resonances.

However, nothing is known about the corresponding K^{**}-decay constants, and one has to predict them. For that, we have used recent data [3] on semileptonic $\tau \to (K^{**})\nu_\tau$ decays [1] to obtain them [3]. We present in table [3] the corresponding decay constants. For $K_2^*(1430)$, we have constrained the corresponding decay constant with the recent data [3] on $B \to K_2^*(1430)\gamma$.

Following the basic steps of the QCD sum rules on the light-cone, as described above, and using the experimental K^{**}-decay constants, we show in table [3] the corresponding form factors. Finally, in table [2] we compare our results for the ratio $R_{K^{**}}[\%]$ with previous works [3][8].

3 Summary

Motivated by the first observation of the radiative decay $B \to K_2^*(1430)\gamma$, we have investigated rare radiative B decays to orbitally excited K^{**}-mesons. First, we have presented an alternative method of calculating the transition form factors and related decays using the QCD sum rules on the light-cone. For that, We have extracted the unknown K^{**}-decay constants using the recent

These quantities contribute to the transition rates for pseudoscalar, vector, scalar and axial vector emission.
data on semileptonic $\tau \to K^{*}\nu_\tau$ decays.

For $K_2^*(1430)$, we have constrained the corresponding decay constant with the recent data on $B \to K_2^*(1430)\gamma$. We find that if $f_{K_2^*(1430)} = (140 - 180)$ MeV, a substantial fraction (3.0 - 7.0)% of the inclusive $b \to s\gamma$ branching ratio goes into the $K_2^*(1430)$ channel, in a good agreement with recent CLEO data. Our prediction for the $B \to K^*(892)\gamma$ branching fraction yields to (6.0 - 14.0)% also in good agreement with the experimental data.

In order to make comparison of our results with previous calculations, we have tabulated our results together with results of [5], [6], [7] and [8] in table 2. As far as decays into higher K-resonances are concerned, our results are in general in much better agreement with [7] than [5] and [6], apart from the $K^*(1410)$-channel where the difference is more significant. Finally, it should be noticed that the theoretical uncertainties in our light-cone sum rules are the wave functions and the decay constants of the K^{**}-mesons. The accuracy of our calculation can be substantially improved by taking into account the wave functions of twist-3 and twist-4 for the $B \to K^*(892)\gamma$ decay, and going beyond the asymptotic form for the other decay modes. To reduce the uncertainties on the K^{**}-mesons decay constants, one can determine them independently using QCD sum rules for the two-point correlator of the corresponding currents.

Acknowledgments

I would like to thank the Organizers of the XXXVIIth Rencontres de Moriond for their financial support. I express my gratitude to A. Ali for critical reading of the manuscript.

References

[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 88, 101805 (2002).
[2] CLEO Collaboration, Phys. Rev. Lett. 84 (2000) 5283; hep-ex/9908022; hep-ex/0108032.
[3] BELLE Collaboration, hep-ex/0104045; hep-ex/0107065.
[4] ALEPH Collaboration, R. Barate et al., Phys. Lett. B429 (1998) 169.
[5] T. Altomari, Phys. Rev. D 37, 677 (1988).
[6] A. Ali et al., Phys. Lett. B298, 195 (1993).
[7] S. Veseli and M.G. Olsson, Phys.Lett.B367 (1996)309.
[8] D. Ebert et al., Phys. Lett. B495 (2000) 309; Phys.Rev.D64 (2001) 054001.
[9] A. S. Safir, Eur. Phys. J. directC 15, 1 (2001).
[10] I. I. Balitsky et al., Sov. J. Nucl. Phys. 44 (1986) 1028; Nucl. Phys.B312 (1989) 509; V. M. Braun and I. E. Filyanov, Z. Phys. C48 (1990) 239; V. L. Chernyak, A. R. Zhitnisky, Phys.Rep. 112 (1984) 173; A. S.Gorsky Sov. J. Nucl. Phys. 41 (1985) 1008; ibid. 45 (1987) 512.
[11] A. Ali and C. Greub, Z. Phys. C49 (1991) 431; A. J. Buras et al. Nucl. Phys. B424 (1994) 374; K. Chetyrkin at al., Phys. Lett. B400 (1997) 206; Erratum-ibid B425 (1998) 414.
[12] A. Ali, V. M. Braun and H. Simma, Z. Phys. C67 (1994) 437.
[13] Particle Data Group, Lepton Summary Table, Eur. Phys. J. C15 (2000) 23.