Concordance:
In-Flight Calibration of X-ray Telescopes
without
Absolute References

Herman L. Marshall (MIT), Vinay Kashyap, Jeremy Drake, Pete Ratzlaff, Paul Plucinsky (SAO), Matteo Guainazzi (ESA)

Yang Chen (Harvard, UMich.), Xiao-Li Meng (Harvard), Xufei Wang (Harvard, Two Sigma), David van Dyk (ICL)
The Goal

• The problems
 • Discrepant results from X-ray observatories in orbit
 • Cluster temperatures and fluxes
 • Blazar fluxes from simultaneous observations
 • SNR line fluxes
 • Imperfect ground cal, performance changes in flight
 ‣ Instrument area priors a_i differ from “true values” A_i
 • No absolute calibrators across all bands in flight: no “true” F_j

• Specific task: derive \hat{A}_i for optimal agreement

\Rightarrow Let flux $f_{ij} = c_{ij}/T_{ij}/a_i$
where $a_i = \text{prior on } A_i$
$c_{ij} = \text{observed counts}$
$T_{ij} = \text{known exposure time}$
Some Poor Methods

- Use the average flux as the ‘true’ flux: \(F_j = \langle f_{ij} \rangle \)
 - If statistical weighting, answer depends on \(T_{ij} \) and \(a_i \)
 - If no weighting, then “agnostic” but not stable
 - Problematic statistical inference: \(\hat{A}_i = \frac{c_{ij}}{T_{ij}F_j} \)
- Use one instrument as “given”: \(F_j = f_{Xj} \) for some \(X \)
 - Reference choice is subjective
 - Still problematic statistically

Let flux \(f_{ij} = \frac{c_{ij}}{T_{ij}/a_i} \)

where \(a_i = \text{prior on } A_i \)
\(c_{ij} = \text{observed counts} \)
\(T_{ij} = \text{known exposure time} \)
Better: Multiplicative Shrinkage

(Chen+ ’19)
Better: Multiplicative Shrinkage
(Chen+ ’19)

\[y_{ij} = B_i + G_j - \frac{\sigma_i^2}{2} + e_{ij} , \quad y_{ij} \equiv \log(c_{ij}/T_{ij}) , \quad B_i \equiv \log A_i , \quad G_j \equiv \log F_j \]
Better: Multiplicative Shrinkage
(Chen+ ’19)

\[y_{ij} = B_i + G_j - \frac{\sigma_i^2}{2} + e_{ij}, \quad y_{ij} \equiv \log(c_{ij}/T_{ij}), \quad B_i \equiv \log A_i, \quad G_j \equiv \log F_j \]

\[\hat{B}_i = W_i(\bar{y}_i - \bar{G}_i) + (1 - W_i)b_i \quad \text{and} \quad \hat{G}_j = \bar{y}_j - \bar{B}_j \]

\[W_i = \frac{M\sigma_i^{-2}}{\tau_i^{-2} + M\sigma_i^{-2}} \]
Better: Multiplicative Shrinkage
(Chen+ ’19)

\[y_{ij} = B_i + G_j - \frac{\sigma_i^2}{2} + e_{ij} \quad , \quad y_{ij} \equiv \log(c_{ij}/T_{ij}) \quad , \quad B_i \equiv \log A_i \quad , \quad G_j \equiv \log F_j \]

\[\hat{B}_i = W_i(\bar{y}_i. - \bar{G}_i) + (1 - W_i)b_i \quad \text{and} \quad \hat{G}_j = \bar{y}'_j - \bar{B}_j \]

EA prior uncertainties

\[W_i = \frac{M\sigma_i^{-2}}{\tau_i^{-2} + M\sigma_i^{-2}} \]
Better: Multiplicative Shrinkage
(Chen+ ’19)

\[y_{ij} = B_i + G_j - \frac{\sigma_i^2}{2} + e_{ij} \]

\[y_{ij} \equiv \log(c_{ij}/T_{ij}) \]

\[B_i \equiv \log A_i \]

\[G_j \equiv \log F_j \]

\[
\hat{B}_i = W_i(\bar{y}_i' - \bar{G}_i) + (1 - W_i)b_i \\
\text{and} \\
\hat{G}_j = \bar{y}_j' - \bar{B}_j
\]

\[
W_i = \frac{M\sigma_i^{-2}}{\tau_i^{-2} + M\sigma_i^{-2}}
\]

EA prior uncertainties \hspace{1cm} Data uncertainties
Better: Multiplicative Shrinkage

(Chen+ '19)

\[y_{ij} = B_i + G_j - \frac{\sigma_i^2}{2} + e_{ij}, \quad y_{ij} \equiv \log(c_{ij}/T_{ij}), \quad B_i \equiv \log A_i, \quad G_j \equiv \log F_j \]

\[\hat{B}_i = W_i(\tilde{y}_i' - \tilde{G}_i) + (1 - W_i)b_i \quad \text{and} \quad \hat{G}_j = \tilde{y}_j' - \tilde{B}_j \]

\[\tilde{y}_i' = \bar{y}_i + 0.5\sigma_i^2, \quad \bar{y}_i = \frac{\sum_{j=1}^M \tilde{y}_{ij}\sigma_i^{-2}}{\sum_{j=1}^M \sigma_i^{-2}}, \quad \tilde{y}_j' = \frac{\sum_{i=1}^N \tilde{y}_{ij}\sigma_i^{-2}}{\sum_{i=1}^N \sigma_i^{-2}}, \quad \tilde{G}_i = \frac{\sum_{j=1}^M \hat{G}_j\sigma_i^{-2}}{\sum_{j=1}^M \sigma_i^{-2}}, \quad \tilde{B}_j = \frac{\sum_{i=1}^N \hat{B}_i\sigma_i^{-2}}{\sum_{i\in I_j} \sigma_i^{-2}} \]

\[W_i = \frac{M\sigma_i^{-2}}{\tau_i^{-2} + M\sigma_i^{-2}} \quad \text{EA prior uncertainties} \]

\[\text{Data uncertainties} \]
Input Data

- **Paper I**
 - 1E0102 with 13 instruments (N=13), O & Ne (M=2)
 - 2XMM catalog targets, N=3, M=41; soft, medium, hard
 - XCAL bright targets, N=3, M=94-108; soft, medium, hard

- **New paper (Marshall+, in prep.)**
 - Same 3 sets as in Paper I
 - Also Capella with Chandra gratings, N=8, M=15
 - Added correlations of XMM hard, medium, soft
 - Added correlations of O, Ne fluxes of 1E0102
 - Used heterogeneous tau values

Table 5. 2XMM Concordance Fluxes – Medium Band

Target	f_{ij}	σ_{ij}	f_{ij}	σ_{ij}	f_{ij}	σ_{ij}
1127-145	0.481	0.049	0.496	0.053	0.490	0.052
1E0919+515	0.053	0.053	0.069	0.066	0.068	0.065
4C06.41	0.131	0.015	0.142	0.017	0.143	0.018
APM08279+5255	0.085	0.041	0.088	0.042	0.082	0.040
CenX-4	0.088	0.035	0.089	0.022	0.091	0.023
CoD-33 7795	0.275	0.136	0.287	0.143	0.276	0.136
ESO323-G077	0.425	0.184	0.438	0.202	0.439	0.203
GRB00944117	0.348	0.006	0.415	0.008	0.419	0.009
Holmberg IX	0.514	0.083	0.517	0.084	0.556	0.090
IRAS13317-1627	0.938	0.818	0.914	0.793	1.000	0.873
LBQS1228+1116	0.154	0.009	0.156	0.010	0.162	0.010
M31 NN1	0.173	0.005	0.196	0.007	0.195	0.007
MS0205.7+3509	0.283	0.087	0.304	0.095	0.293	0.092
MS1229.2+6430	0.326	0.086	0.356	0.092	0.355	0.101
NGC 1313	0.200	0.021	0.212	0.023	0.215	0.023
NGC 4278	0.281	0.032	0.291	0.035	0.307	0.037
NGC 5204 X-1	0.140	0.032	0.140	0.033	0.148	0.036
NGC 5204 X-1	0.192	0.034	0.195	0.035	0.196	0.036
NGC 5252	0.326	0.092	0.327	0.095	0.328	0.091

Sample Data (Marshall+ in prep.)
Complications I: Flux Measurements

Concordance: find A_i where $C_{ij} = T_{ij}A_i F_j$, $A(E) = A_i \alpha_i(E)$

- Fluxes in band (E_1, E_2) derived by an inversion process
- Input: observation c_{ijk} for counts in channel k

Then fit to model $C'_{ijk} = t_{ij} a_i f_{ij} \frac{\int_{E_1}^{E_2} \alpha_i(E) q_j(E) \Phi_k(E) dE}{\int_{E_1}^{E_2} q_j(E) dE} = T_{ijk} a_i f_{ij}$

where $f_{ij} = \int_{E_1}^{E_2} n_E(\Theta_{ij}) dE = n_{ij} \int_{E_1}^{E_2} q_j(E) dE$ and $\tilde{A}(E) = a_i \alpha_i(E)$ define shape functions $q_j(E)$ and $\alpha_i(E)$, the detector response is $\Phi_k(E)$, and $\sum_k \Phi_k(E) = 1$

Now, $C_{ij} = \sum_k C_{ijk}$, $T_{ij} = \sum_k T_{ijk}$
Complications II: Eff. Area Correlations

- Assume we have EA parameters $\vec{\xi}$ giving $\log \tilde{A}(E; \vec{\xi}) = \tilde{B}(E; \vec{\xi})$ with $p(\vec{\xi})$

- Then $\hat{B}(E) = \int \tilde{B}(E; \vec{\xi}) p(\vec{\xi}) d\vec{\xi}$ is the best (prior) estimate of B and $\tau^2(E) = \int [\tilde{B}(E; \vec{\xi}) - \hat{B}(E)]^2 p(\vec{\xi}) d\vec{\xi}$ should be the prior’s variance

- Consider two energies, E_i and $E_{i'}$, then the correlation between these is $\rho_{i,i'} = \frac{1}{\tau(E_i)\tau(E_{i'})} \int [\tilde{B}(E_i; \vec{\xi}) - \hat{B}(E_i)][\tilde{B}(E_{i'}; \vec{\xi}) - \hat{B}(E_{i'})] p(\vec{\xi}) d\vec{\xi}$

- In reality, a Monte Carlo method is used to compute the correlations…

Table 8. Correlation matrix for 2XMM and XCAL Analyses

Band	Soft band	Medium band	Hard band
Soft band	1	0.60	0.13
Medium band	0.60	1	0.53
Hard band	0.13	0.53	1
Complications III: Assessing Priors

- Collecting **prior** (fractional) uncertainties on effective areas
- Cal scientists assessed their instruments

Table 1. Effective Area Uncertainty Priors (τ)

Instrument	0.15-0.33	0.33-0.54	0.54-0.8	0.8-1.2	1.2-1.8	1.8-2.2	2.2-3.5	3.5-5.5	5.5-10
Astrosat SXT	⋮	15	15	10	10	10	10	10	10
Chandra ACIS	3	3	3	2.6	3.3	3.3	4.9	5	
Chandra HETGS	⋮	10	5	4	4	4	5	7	
Chandra LETGS	5	7	7	7	7	10	10		
ROSAT PSPC	10	10	10	10	10				
Suzaku XIS1	⋮	20	15	10	10	15	5	5	5
Suzaku XIS0,2,3	⋮	15	10	10	10	15	5	5	5
Swift PC/WT	⋮	15	7.5	7.5	10	5	5	5	
XMM MOS1,2	20	10	6	6	6	6	6	10	
XMM pn	2	2	2	2	2	2	2	2	3
XMM RGS	⋮	8	5	5	5				

The τ values are given as percentages. The ellipses indicate bandpasses where the instrument has an insignificant effective area.

Table 2. Effective Area Uncertainty Priors (τ)

Instrument	2.2-3.5	3.5-5.5	5.5-10	15-25	25-50	50-100	100-300
Astrosat CZTI	⋮	⋮	⋮	20	20	20	25
Astrosat LAXPC	⋮	15	15	15	15	20	⋮
INTEGRAL IBIS	⋮	⋮	⋮	8	15	20	⋮
INTEGRAL SPI	⋮	⋮	⋮	5	5	5	5
NuSTAR	⋮	4	3	3	15	20	⋮
RXTE PCA	5	10	3	3	10	50	⋮
RXTE HEXTE	⋮	⋮	⋮	5	5	5	⋮
Suzaku HXD	⋮	⋮	⋮	20	20	20	20
Swift BAT	⋮	⋮	⋮	15	4	4	12

The τ values are given as percentages.
Concordance 1: 1E0102

O7 & O8

Large τ for Suzaku

HETG and S3 corr’d w/ Ne

Instruments

ACIS-I3
ACIS-S3
ACIS/HETG
Suzaku/XIS0
Suzaku/XIS1
Suzaku/XIS2
Suzaku/XIS3
Swift/XRT-PC
Swift/XRT-WT
XMM/MOS1
XMM/MOS2
XMM/pn
XMM/RGS1

Tau
- Correlated EAs
- Heterogeneous
- $\tau = 0.025$
- $\tau = 0.05$
Concordance 2: 2XMM

- Based on 42 sources from the 2XMM catalog
- Unaffected by pileup
- Fixed τ: no EA change required
- Result (hetero. τ): 1% for pn indicated, 5-7% for MOS
Concordance 3: XMM Blazars

- 117 bright XMM sources from Matteo Guainazzi
- PSF clipped to reduce effect of pileup
- Result (fixed τ): 5% adjustment to pn indicated, 1-2% for MOS
- Result (hetero. τ): 1% for pn indicated, 5-7% for MOS
Concordance 4: Capella

- Lines from Chandra grating spectra
 - Ne x, Fe xxvii (15 Å), Fe xxvii (17 Å), O VIII
- 5 sets of adjacent observations compared
- Not all instruments used each time
- Result: ±1 generally consistent, LETGS are low of HETGS

Marshall+ in prep.
Conclusions

• We can bring observations into Concordance

• Simple situations give reasonable answers: consistent with other analyses

• More complex situations:
 • Outliers handled with t distribution
 • Fluxes in bands are related globally, not independent
 • Instrument areas are time-dependent
