ON STRONG SOLUTIONS FOR POSITIVE DEFINITE JUMP DIFFUSIONS

EBERHARD MAYERHOFER, OLIVER PFAFFEL, AND ROBERT STELZER

Abstract. We show the existence of unique global strong solutions of a class of stochastic differential equations on the cone of symmetric positive definite matrices. Our result includes affine diffusion processes and therefore extends considerably the known statements concerning Wishart processes, which have recently been extensively employed in financial mathematics.

Moreover, we consider stochastic differential equations where the diffusion coefficient is given by the \(\alpha \)-th positive semidefinite power of the process itself with \(0.5 < \alpha < 1 \) and obtain existence conditions for them. In the case of a diffusion coefficient which is linear in the process we likewise get a positive definite analogue of the univariate GARCH diffusions.

1. Introduction

A result of the general theory for affine Markov processes on the cone \(S^+_d \) of symmetric positive semidefinite matrices developed in [13] is that for a \(d \times d \) matrix-valued standard Brownian motion \(B \), \(d \times d \) matrices \(Q \) and \(\beta \), a symmetric constant drift \(b \), and a positive linear drift \(\Gamma : S^+_d \to S^+_d \), weak global solutions exist to the stochastic differential equation (SDE)

\[
\begin{align*}
 dX_t &= \sqrt{X_t} dB_t Q + Q^T dB_t^T \sqrt{X_t} + (X_t \beta + \beta^T X_t + \Gamma(X_t) + b) dt, \\
 X_0 &= x \in S^+_d,
\end{align*}
\]

whenever \(b - (d-1)Q^T Q \in S^+_d \). Above \(\sqrt{X} \) denotes the unique positive semidefinite square root of a matrix \(X \in S^+_d \). For \(\Gamma = 0 \) solutions to the SDE (1.1) are called Wishart processes and their existence has been considered in detail in the fundamental paper by Marie-France Bru [7]. Further probabilistic investigations on properties of Wishart processes have been carried out in [15, 22, 26], for instance, and references therein.

In the present paper, we focus on the existence of global strong solutions of (1.1) and generalisations of it including jumps and more general diffusion coefficients. Because of the non-Lipschitz diffusion at the boundary of the cone, this problem is a quite delicate one – a-priori it is only clear that a unique local solution of (1.1) exists until \(X_t \) hits the boundary of \(S^+_d \), since the SDE is locally Lipschitz in the interior of \(S^+_d \). Furthermore, known results for

2000 Mathematics Subject Classification. 60G51, 60H10, 60J60, 60J75.

Key words and phrases. affine diffusions, jump diffusion processes on positive definite matrices, local martingales on stochastic intervals, matrix subordinators, stochastic differential equations on open sets, strong solutions, Wishart processes.

The authors thank the anonymous referees for most helpful comments on a previous version of the present paper, in particular, for the suggestion of a shorter proof for Proposition 4.3. E.M. gratefully acknowledges financial support from WWTF (Vienna Science and Technology Fund), O.P. and R.S. the one from Technische Universität München - Institute for Advanced Study funded by the German Excellence Initiative and O.P. additionally the one from the International Graduate School of Science and Engineering (IGSEE).
pathwise uniqueness, for instance, that of the seminal paper of Yamada and Watanabe [42, Corollary 3], are essentially one-dimensional, and therefore do not apply. Hence, the present setting seems to be more complicated than, for instance, the canonical affine one (concerning diffusions on \(\mathbb{R}_+^m \times \mathbb{R}^n \), [23, Lemma 8.2]).

Positive semidefinite matrix valued processes are increasingly used in finance, particularly for stochastic modelling of multivariate stochastic volatility phenomena in equity and fixed income models, see [9, 10, 14–17, 21, 25, 27, 40]. See also [13] and the references therein. Most papers mentioned use Bru’s class of Wishart diffusions, as this results in multivariate analogues of the popular Heston stochastic volatility model and its extensions, Ornstein-Uhlenbeck type processes ([40]) giving a multivariate generalisation of the popular model of [3] or a combination of both ([31]). This motivated the research of [13] on positive semidefinite affine processes including all the aforementioned models and generalising the results of [21], which covered all of these models in the univariate setting. Appropriate multivariate models are especially important for issues like portfolio optimisation, portfolio risk management and the pricing of options depending on several underlyings, which are heavily influenced by the dependence structure.

Clearly \(S_d^+ \)-valued processes model the covariances, not the correlations, which are, however, preferable when interpreting the dependence structure. The results of the present paper are particularly relevant, when one wants to derive correlation dynamics (see e.g., [9, 10]), because one needs to assume boundary non-attainment conditions for a rigorous derivation.

The name “Wishart process” is, unfortunately, not always used in the same way in the literature. We follow the above cited applied papers in finance and call any solution to (1.1) with \(\Gamma = 0 \) “Wishart process” whereas in most of the previous probabilistic literature “Wishart process” also means \(\beta = 0 \) and the “Wishart processes with drift” of [20] are not even special cases of our “Wishart processes”. For \(\Gamma = \beta = 0 \) and \(b = nQ^TQ \) with \(n \in \mathbb{N} \) one may also speak of a “squared Ornstein-Uhlenbeck process”. In the univariate case the name “Wishart process” is not used, instead one typically uses “Cox-Ingersoll-Ross process” in the financial and “squared Bessel process” in the probability literature.

However, in this paper we do not limit ourselves to the analysis of (1.1). Instead, as a special case of a considerably more general result, we consider a similar SDE allowing for a general (not necessarily linear) drift \(\Gamma \) and an additional jump part of finite variation. This implies that many \(\mathbb{L} \)-driven SDEs on \(S_d^+ \) like the positive semidefinite Ornstein-Uhlenbeck (OU) type processes (see [4, 39]) or the volatility process of a multivariate COGARCH process (see [43]), where the existence of global strong solutions has previously been shown by pathwise arguments, are special cases of our setting. Thus our results allow to consider certain “jump diffusions” (in the sense of [12]), viz. mixtures of such jump processes and Wishart diffusions, in applications.

It should be noted that [3] also contains results on strong solutions for Wishart processes (see our upcoming Proposition 3.1 and Remark 4.8), however, they are derived under strong parametric restrictions, because her method requires an application of Girsanov’s theorem. The latter is based on a martingale criterion, which in the matrix valued setting seems hard to verify. Also, the general result (with a non-vanishing linear drift) only holds until the first time when two of the eigenvalues of the process collide. Our approach generalises her method of proof for the case \(\beta = 0 \) (vanishing linear drift) and avoids change of measure techniques.

The most general result of our paper, Theorem 3.4, also opens the way to use positive semidefinite extensions of the univariate GARCH diffusions of [30] or of so-called generalised
Cox-Ingersoll-Ross models (cf. e.g. [22, 23]), where the square root in the diffusion part of (1.1) is replaced by the α-th positive semidefinite power with $\alpha \in [1/2, 1]$, in applications (see Corollary 3.5).

The remainder of the paper is structured as follows. In the subsequent section we summarise some notation and preliminaries. In Section 3 we state our main result, Theorem 3.4 and its corollaries applying to Wishart processes, matrix-variate generalised Cox-Ingersoll-Ross and GARCH diffusions. Moreover, we compare our results to the work of Bru which is recalled in Proposition 3.1. In the following section we gradually develop the proof of our result. Our method relies on a generalisation of the so-called McKean’s argument, but avoids the use of Girsanov’s theorem. In Section 4.1 we thus provide a self-contained proof of a generalisation of McKean’s argument and then deliver the proof of Theorem 3.4 in Section 4.2. We conclude the paper with some final remarks in Section 5.

2. Notation and general set-up

We assume given an appropriate filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+})$ satisfying the usual hypotheses (complete and right-continuous filtration) and rich enough to support all processes occurring. For short, we sometimes write just Ω when actually referring to this filtered probability space. B is a $d \times d$ standard Brownian motion on Ω and $d \in \mathbb{N}$ always denotes the dimension. Furthermore, we use the following notation, definitions and setting:

- $\mathbb{R}_+ := [0, \infty)$, M_d is the set of real valued $d \times d$ matrices and I_d is the identity matrix.
- $S_d \subset M_d$ is the space of symmetric matrices, and $S^+_d \subset S_d$ is the cone of symmetric positive semidefinite matrices in S_d and S^{++}_d its interior, i.e. the positive definite matrices. The partial order on S_d induced by the cone is denoted by \preceq, and $x > 0$, if and only if $x \in S^{++}_d$. We endow S_d with the scalar product $\langle x, y \rangle := \text{Tr}(xy)$, where $\text{Tr}(A)$ denotes the trace of $A \in M_d$. $\| \cdot \|$ denotes the associated norm, and $d(x, \partial S^+_d) = \inf_{y \in \partial S^+_d} \|x - y\|$ is the distance of $x \in S^+_d$ to the boundary ∂S^+_d.
- The usual tensor (Kronecker) product of two matrices A, B is denoted by $A \otimes B$ and the vectorisation operator mapping M_d to \mathbb{R}^{d^2} by stacking the columns of a matrix A below each other is denoted by $\text{vec}(A)$ (see [22, Chapter 4] for more details).
- A function $f : S^{++}_d \to U$ with U being (a subset of) a normed space is called locally Lipschitz if $\|f(x) - f(y)\| \leq K(C)\|x - y\| \forall x, y \in C$ for all compacts $C \subset U$. f is said to have linear growth if $\|f(x)\|^2 \leq K(1 + \|x\|^2) \forall x \in S^{++}_d$.
- An S_d-valued càdlàg adapted stochastic process X is called S^{++}_d-increasing, if $X_t \succeq X_s$ a.s. for all $t > s \geq 0$. Such a process is necessarily of finite variation on compacts by [4, Lemma 5.21] and hence a semimartingale. We call it of pure jump type provided $X_t = X_0 + \sum_{0 < s \leq t} \Delta X_s$, where $\Delta X_s = X_s - X_{s-}$.

For the necessary background on stochastic analysis we refer to one of the standard references like [30, 41, 42]. Moreover, we frequently employ stochastic integrals where the integrands or integrators are matrix- or even linear-operator valued. Thus, we briefly explain how they have to be understood. Let $(A_t)_{t \in \mathbb{R}_+}$ in M_d, $(B_t)_{t \in \mathbb{R}_+}$ in M_d be càdlàg and adapted processes and $(L_t)_{t \in \mathbb{R}_+}$ in M_d be a semimartingale (i.e. each element is a semimartingale). Then we denote by $\int_0^t A_s \, dL_s B_s$, the matrix C_t in M_d which has ij-th element $C_{ij,t} = \sum_{k,l=1}^d \sum_{s=1}^d \int_0^t A_{ik,s} B_{lj,s} \, dL_{kl,s}$. Equivalently such an integral can be understood in the sense of [53] by identifying it with the integral $\int_0^t A_s \, dL_s$ with A_t being for each fixed t the linear operator $M_d \to M_d$, $X \mapsto A_t X B_t$ and L being a semimartingale in the Hilbert
space M_d. Stochastic integrals of the form $\int_0^t K(X_s-)dJ_s$ with J being a semimartingale in M_d (coordinatewise or equivalently as in \cite[Section 10.9]{35}) and by noting that on a finite dimensional Hilbert space all norms are equivalent) and $K(x) : M_d \to M_d$ a linear operator for all x can be understood again as in \cite[Section 10]{35}. Alternatively, one can equivalently identify M_d with \mathbb{R}^{d^2} using the vec-operator and $K(x)$ with a matrix in M_{d^2,d^2} and then define the stochastic integral coordinatewise as above.

3. Statement of the main results

3.1. Wishart diffusions with jumps.

In order to illustrate the context of our result and, because it is of most relevance in applications, we discuss first the special case of Wishart diffusions with jumps. For $Q \in M_d$, $\delta > d - 1$, $\beta \in M_d$ and an M_d-valued standard Brownian motion B, a Wishart process is the strong solution of the equation

\begin{equation}
\begin{aligned}
dX_t & = \sqrt{X_t}dB_tQ + Q^TdB_t^\top \sqrt{X_t} + (X_t\beta + \beta^TX_t + \delta Q^TQ)dt, \\
X_0 & = x \in S_+^{++},
\end{aligned}
\end{equation}

on the maximal stochastic interval $[0,T_x)$, where T_x is naturally defined as

$$T_x = \inf\{t > 0 : X_t \in \partial S_+^{++}\}. $$

That such a unique local strong solution, which does not explode before or at time T_x, exists, follows from standard SDE theory, since all the coefficients in (3.1) are locally Lipschitz and of linear growth on S_+^{++}. To be more precise, this follows by appropriately localising the usual results as e.g. in \cite[Chapter V]{41} or by variations of the proofs in \cite[Chapter 3]{35}. A localisation procedure adapted particularly to certain convex sets like S_+^{++} is presented in detail in \cite[Section 6.7]{44}.

The following is a summary of the results \cite[Theorem 2, 2' and 2'']{7} – the to the best of our knowledge only known results regarding strong existence of Wishart processes:

Proposition 3.1. Let $\delta \geq d + 1$.

(i) If $Q = I_d$ and $\beta = 0$, then $T_x = \infty$.

Suppose additionally that the d eigenvalues of x are distinct.

(ii) If $Q \in S_+^{++}$, $-\beta \in S_+^+$ such that β and Q commute, then there exists a solution $(X_t)_{t \in \mathbb{R}_+}$ of (3.1) until the first time τ_x when two of the eigenvalues of X_t collide.

(iii) If $\beta = \beta_0 I_d$ and $Q = \gamma I_d$, where $\beta_0, \gamma \in \mathbb{R}$, then $T_x = \infty$ for the solution of $(X_t)_{t \in \mathbb{R}_+}$ of (3.1).

Consequently, for the respective choice of parameters, there exist unique global strong S_+^{++}-valued solutions of the SDE (3.1) on $[0,\tau_x)$ resp. on all of $[0,\infty)$.

The upcoming general Theorem 3.4 implies the following result for a generalisation of the Wishart SDE allowing for additional jumps and a non-linear drift Γ.

Corollary 3.2. Let $b \in S_d$, $Q \in M_d$, $\beta \in M_d$, and let

- J be an S_d-valued càdlàg adapted process which is S_+^+-increasing and of pure jump type,
- $\Gamma : S_+^{++} \to S_+^+$ be a locally Lipschitz function of linear growth and
- $K : S_+^{++} \to L(S_d^+,S_d^+)$ (the linear operators on S_d mapping S_+^+ into S_+^+) be a locally Lipschitz function of linear growth.
If \(b \geq (d + 1)Q^\top Q \), then the SDE
\[
(3.2) \quad dX_t = \sqrt{X_{t-}} dB_t + Q^\top dB_t^+ \sqrt{X_{t-}} + (X_{t-} - \beta^\top X_{t-} + \Gamma(X_{t-}) + b)dt + K(X_{t-})dJ_t,
\]
\[X_0 = x \in S_d^+,\]
has a unique adapted càdlàg global strong solution \((X_t)_{t \in \mathbb{R}_+} \) on \(S_d^+ \). In particular we have
\[T_x := \inf\{t \geq 0 : X_t \in \partial S_d^+ \text{ or } X_t \notin S_d^+\} = \infty \text{ almost surely.}\]

Proof. For the term on the right hand side of the upcoming condition (3.3) we obtain
\[\text{Tr}(2\beta) + \text{Tr}(\Gamma(x)x^{-1}) + \text{Tr}((b - (d + 1)Q^\top Q)x^{-1}) \geq 2\text{Tr}(\beta),\]
noting that \(x^{-1}, \Gamma(x) \) and \(b - (d + 1)Q^\top Q \) are positive semidefinite and that \(S_d^+ \) is a selfdual cone, which implies that \(\text{Tr}(zy) \geq 0 \) for any \(z, y \in S_d^+ \). Setting \(c(t) = 2\text{Tr}(\beta) \) an application of Theorem 3.4 concludes. \(\square\)

By choosing \(\Gamma \) linear and \(J = 0 \), we obtain a result for (1.1) which considerably generalises Proposition 3.1.

Remark 3.3.

(i) In the univariate case the condition \(b \geq (d + 1)Q^\top Q \) is known to be also necessary for boundary non-attainment (see [42, Chapter XI]).

(ii) A possible choice for \(J \) is a matrix subordinator without drift (see [2]), i.e. an \(S_d^+ \)-increasing Lévy process. By choosing \(\Gamma \neq 0 \) in (3.2) appropriately our results also apply to SDEs involving matrix subordinators with a non-vanishing drift.

(iii) Setting \(Q = 0, \Gamma = 0, K \) to the identity and \(b \) equal to the drift of the matrix subordinator, Equation (3.2) becomes the SDE of a positive definite OU type process, [4, 39]. Likewise, it is straightforward to see that the SDE of the volatility process of the multivariate COGARCH process of [43] is a special case of (3.2).

(iv) An OU-type process on the positive semidefinite matrices is necessarily driven by a Lévy process of finite variation having positive semidefinite jumps only (follows by slightly adapting the arguments in the proof of [39, Theorem 4.9]). This entails that a generalisation of the above result to a more general jump behaviour requires additional technical restrictions.

3.2. The general SDE and existence result.

The main result of this paper is the following general theorem concerning non-attainment of the boundary of \(S_d^+ \) and the existence of a unique global strong solution for a generalisation of the SDE (1.1). The proof of this result is gradually developed in the next sections.

Theorem 3.4. Let

- \(F, G : \mathbb{R}_+ \times S_d^+ \to M_d \), be functions such that \(G^\top \otimes F \) given by \(G^\top \otimes F(t, x) = (G(t, x))^\top \otimes F(t, x) \) is locally Lipschitz and of linear growth,
- \(H : \mathbb{R}_+ \times S_d^+ \to S_d \) be locally Lipschitz and of linear growth,
- \(J \) be an \(S_d \)-valued càdlàg adapted process which is \(S_d^+ \)-increasing and of pure jump type,
- \(K : S_d^+ \to L(S_d^+, S_d^+) \) (the linear operators on \(S_d \) mapping \(S_d^+ \) into \(S_d^+ \)) be a locally Lipschitz function of linear growth.

Suppose that there exists a function \(c : \mathbb{R}_+ \to \mathbb{R} \) which is locally integrable, i.e. \(\int_0^s |c(t)|dt < \infty \) for all \(s \in \mathbb{R}_+ \), such that
\[
(3.3) \quad c(t) \leq \text{Tr}(H(t, x)x^{-1}) - \text{Tr}(f(t, x)x^{-1}) \text{Tr}(g(t, x)x^{-1}) - \text{Tr}(f(t, x)x^{-1}g(t, x)x^{-1})
\]
for all $x \in S_{d}^{++}$ and $t \in \mathbb{R}_{+}$ where $f(t, x) := F(t, x)F(t, x)^{T}$, $g(t, x) = G(t, x)^{T}G(t, x)$.

Then the SDE

$$dX_{t} = F(t, X_{t-})dB_{t}G(t, X_{t-}) + G(t, X_{t-})^{T}dB_{t}^{T}F(t, X_{t-})^{T} + H(t, X_{t-})dt + K(X_{t-})dJ_{t},$$

$$X_{0} = x \in S_{d}^{++},$$

has a unique adapted càdlàg global strong solution $(X_{t})_{t \in \mathbb{R}_{+}}$ on S_{d}^{++}.

In particular, we have $T_{x} := \inf\{t \geq 0 : X_{t-} \in \partial S_{d}^{+} \text{ or } X_{t} \not\in S_{d}^{++}\} = \inf\{t \geq 0 : X_{t-} \in \partial S_{d}^{+}\} = \infty$ almost surely.

3.3. Positive definite extensions of generalised Cox-Ingersoll-Ross processes and GARCH diffusions.

In the univariate case generalised Cox-Ingersoll-Ross (GCIR) processes given by the SDE $dx_{t} = (b + ax_{t})dt + qx_{t}dB_{t}$ with $b \geq 0, q > 0, a \in \mathbb{R}$ and $\alpha \in [1/2, 1]$ are – as discussed in the introduction – of relevance in financial modelling. $\alpha = 1/2$ corresponds, of course, to the already discussed Bessel case, whereas $\alpha = 1$ gives the so-called GARCH diffusions. Given the popularity of the Wishart based models in nowadays finance, it seems natural to consider also positive semidefinite extensions of the GCIR processes. An application of our general theorem to the case where $F(X) = X^{\alpha}$, $G(X) = Q$ with $\alpha \in [1/2, 1]$ yields:

Corollary 3.5. (i) Let $\alpha \in [1/2, 1]$, $b \in S_{d}$, $Q \in M_{d}$, $\beta \in M_{d}$, and let

- J be an S_{d}-valued càdlàg adapted process which is S_{d}^{+}-increasing and of pure jump type,
- $\Gamma : S_{d}^{+} \to S_{d}^{+}$ be a locally Lipschitz function of linear growth and
- $K : S_{d}^{+} \to L(S_{d}^{+}, S_{d}^{+})$ (the linear operators on S_{d} mapping S_{d}^{+} into S_{d}^{+}) be a locally Lipschitz function of linear growth.

Suppose that for all $x \in S_{d}^{++}$

$$\text{Tr}(\Gamma(x)x^{-1} + bx^{-1}) \geq \text{Tr}(x^{2\alpha - 1})\text{Tr}(Q^{\top}Qx^{-1}) + \text{Tr}(x^{2\alpha - 2}Q^{\top}Q).$$

Then the SDE

$$dX_{t} = X_{t-}^{\alpha}B_{t}Q + Q^{\top}dB_{t}X_{t-}^{\alpha} + (X_{t-} - x + \beta^{\top}X_{t-} + \Gamma(X_{t-}) + b)dt + K(X_{t-})dJ_{t},$$

$$X_{0} = x \in S_{d}^{++},$$

has a unique adapted càdlàg global strong solution $(X_{t})_{t \in \mathbb{R}_{+}}$ on S_{d}^{++}. In particular we have

$$T_{x} := \inf\{t \geq 0 : X_{t-} \in \partial S_{d}^{+} \text{ or } X_{t} \not\in S_{d}^{++}\} = \inf\{t \geq 0 : X_{t-} \in \partial S_{d}^{+}\} = \infty$$

almost surely.

(ii) Any of the following sets of conditions implies (i):

- (a) $b + \Gamma(x) \geq \text{Tr}(x^{2\alpha - 1})Q^{\top}Q + x^{\alpha - 1/2}Q^{\top}Qx^{\alpha - 1/2}$ for all $x \in S_{d}^{++}$.
- (b) $b + \Gamma(x) \geq \text{Tr}(x^{2\alpha - 1})Q^{\top}Q + \lambda_{Q^{\top}Q}x^{2\alpha - 1}$ for all $x \in S_{d}^{++}$ with $\lambda_{Q^{\top}Q}$ denoting the largest eigenvalue of $Q^{\top}Q$.
- (c) $\alpha = 1$ and $b + \Gamma(x) \geq \text{Tr}(x^{2\alpha - 1})Q^{\top}Q + \lambda_{Q^{\top}Q}x$ for all $x \in S_{d}^{++}$.
- (d) $b \geq 0$ and $\Gamma(x) \geq 2\text{Tr}(x^{2\alpha - 1})Q^{\top}Q$ for all $x \in S_{d}^{++}$.
- (e) $b \geq 0$ and $\Gamma(x) \geq 2(\text{Tr}(x) + d(2\alpha - 1)^{2-2\alpha})Q^{\top}Q$ for all $x \in S_{d}^{++}$ (and setting $0^{0} := 1$ for $\alpha = 1/2$).
- (f) $b \geq 0$ and $\Gamma(x) \geq 2(\text{Tr}(x) + d)Q^{\top}Q$ for all $x \in S_{d}^{++}$.
- (g) $\alpha > 1/2, d = 1, \Gamma(x) \geq 0$ for all $x \in \mathbb{R}_{+}$ and $b > 0$.

Proof. One easily calculates the right hand side of (3.3) to be equal to $\text{Tr}(2\beta + \Gamma(x)x^{-1} + bx^{-1}) - \text{Tr}(x^{2\alpha - 1})\text{Tr}(Q^\top Qx^{-1}) - \text{Tr}(x^{2\alpha - 2}Q^\top Q)$ and hence (i) follows from Theorem 3.3.

Turning to the proof of (ii) using the selfduality of S^+_d as in the proof of Corollary 3.2 gives (a). Next we observe that $Q^\top Q \preceq \lambda Q^\top Q I_d$ and, hence, $x^{\alpha - 1/2}Q^\top Q x^{\alpha - 1/2} \preceq \lambda Q^\top Q x^{2\alpha - 1}$. This gives (b) and (c) is simply the special case for $\alpha = 1$.

Since for $A, B \in S^+_d$ we have that $\text{Tr}(AB) \leq \text{Tr}(A)\text{Tr}(B)$ due to the Cauchy-Schwarz inequality and the elementary inequality $\sqrt{ab} \leq \sqrt{a} + \sqrt{b}$ for all $a, b \in \mathbb{R}_+$, we have that $\text{Tr}(x^{2\alpha - 2}Q^\top Q) \leq \text{Tr}(x^{2\alpha - 1})\text{Tr}(Q^\top Qx^{-1})$. Hence, (3.5) is implied by $\text{Tr}(\Gamma(x)x^{-1} + bx^{-1}) \geq 2\text{Tr}(x^{2\alpha - 1})\text{Tr}(Q^\top Qx^{-1})$. Using once again the selfduality gives (d).

Since the trace is the sum of the eigenvalues, $\lambda \geq \lambda^{2\alpha - 1}$ for all $\lambda \geq 1$ and $\alpha \in [1/2, 1]$ and $\lambda^{2\alpha - 1} \leq \lambda + \max_{\lambda \in [0,1]} \{\lambda^{2\alpha - 1} - \lambda\}$ for all $\lambda \in [0,1]$ and $\alpha \in [1/2, 1]$, we immediately obtain (e) from (d), because $\max_{\lambda \in [0,1]} \{\lambda^{2\alpha - 1} - \lambda\} = (2\alpha - 1)^{2-2\alpha}$. In turn (f) follows from (e) noting that $\max_{\lambda \in [0,1]} \{\lambda^{2\alpha - 1} - \lambda\} \in [0,1]$.

Turning to (g) we have for the right hand side of (3.3) in the univariate case

$$\ell(x) = 2\beta + \Gamma(x)/x + bx - 2Q^2/x^{2-2\alpha}.$$

Now one notes that the second term is non-negative and that for $b > 0$ the term $bx - 2Q^2/x^{2-2\alpha}$ is bounded from below on \mathbb{R}^+, because $\lim_{x \to 0, x > 0} x^{-1/2}x^{2-2\alpha} = \infty$. Hence, Theorem 3.2 concludes. \hfill \Box

In the different cases of (ii) a valid choice of b and Γ is always obtained by taking them equal to the right hand side of the inequalities. It should be noted that (c) shows that in the positive semidefinite GARCH diffusion generalisation one can always take a linear drift. Likewise, (e) and (f) show that a linear drift is possible for the generalized CIR. For $\alpha = 1/2$ the case (d) is again sharp in the univariate setting, but for general dimensions it is a stronger condition than the one given in Corollary 3.2.

The last case (g) in particular recovers the well-known univariate result for $dx_t = (b + ax_t)dt + q x_t dB_t$ with $b \geq 0, q > 0, a \in \mathbb{R}$ and $\alpha \in [1/2, 1]$. In our matrix-variate case for $\alpha > 1/2$ a result similar to the univariate one, viz. that a strictly positive constant drift is all that is needed to ensure boundary non-attainment, seems to be out of reach. When one tries to use arguments similar to (e) in general, one would need something like $\text{Tr}(bx^{-1}) \geq k\text{Tr}(x^{2\alpha - 1})\text{Tr}(Q^\top Qx^{-1}) + K$ with some constants $k > 0$ and K to ensure (3.5). However, when the process comes close to the boundary of the cone, this only means that at least one eigenvalue gets close to zero. Hence, $\text{Tr}(bx^{-1})$ and $\text{Tr}(Q^\top Qx^{-1})$ should then go to infinity at a comparable rate. However, all the other eigenvalues of x may still be arbitrarily large and so there is no appropriate upper bound on the term $\text{Tr}(x^{2\alpha - 1})$.

4. Proofs

In this section we gradually prove our main result. As a priori all processes involved are only defined up to a stopping time, we collect first some basic definitions regarding stochastic processes defined on stochastic intervals following mainly [33].

Definition 4.1. Let $A \in \mathcal{F}$ and let T be a stopping time.

- A random variable X on A is a mapping $A \to \mathbb{R}$ which is measurable with respect to the σ-algebra $A \cap \mathcal{F}$.
- A family $(X_t)_{t \in \mathbb{R}_+}$ of random variables on $\{t < T\}$ is called a stochastic process on $[0, T]$. If X_t is $\{t < T\} \cap \mathcal{F}_t$-measurable for all $t \in \mathbb{R}_+$, then X is said to be adapted.
An adapted process M on $[0,T]$ is called a continuous local martingale on the interval $[0,T]$ if there exists an increasing sequence of stopping times $(T_n)_{n \in \mathbb{N}}$ and a sequence of continuous martingales $(M^{(n)})_{n \in \mathbb{N}}$ (in the usual sense on $[0,\infty)$) such that $\lim_{n \to \infty} T_n = T$ a.s. and $M_t = M^{(n)}_t$ on $\{t < T_n\}$. Other local properties for adapted processes on $[0,T]$ are defined likewise.

A semimartingale on $[0,T)$ is the sum of a càdlàg local martingale on $[0,T)$ and an adapted càdlàg process of locally finite variation on $[0,T)$.

For a continuous local martingale on $[0,T)$ the quadratic variation is the $\mathbb{R} \cup \{\infty\}$-valued stochastic process $[M,M]$ defined by

$$[M,M]_t = \sup_{n \in \mathbb{N}} [M^{(n)}, M^{(n)}]_{t \wedge T_n} \text{ for all } t \in \mathbb{R}_+.$$

4.1. McKean’s argument.

In this section we finally establish Proposition 4.3 which generalises an argument of [34, p. 47, 4.1. McKean’s argument.] Since it may also be helpful in other situations, we state our result and its proof in detail.

Lemma 4.2. Let M be a continuous local martingale on a stochastic interval $[0,T)$. Then on $\{T > 0\}$ it holds almost surely that either $\lim_{t \uparrow T} M_t$ exists in \mathbb{R} or that $\lim \sup_{t \uparrow T} M_t = -\lim \inf_{t \uparrow T} M_t = \infty$.

Proof. Combine [33, Theorem 3.5] with analogous arguments to the proof of [42, Chapter V, Proposition 1.8].

Proposition 4.3 (McKean’s Argument). Let $Z = (Z_s)_{s \in \mathbb{R}_+}$ be an adapted càdlàg $\mathbb{R}^+ \setminus \{0\}$-valued stochastic process on a stochastic interval $[0,\tau_0)$ such that $Z_0 > 0$ a.s. and $\tau_0 = \inf\{0 < s \leq \tau_0 : Z_s = 0\}$. Suppose $h : \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}$ is continuous and satisfies the following:

(i) For all $t \in [0,\tau_0)$, we have $h(Z_t) = h(Z_0) + M_t + P_t$, where

(a) P is an adapted càdlàg process on $[0,\tau_0)$ such that $\inf_{t \in [0,\tau_0 \wedge T)} P_t > -\infty$ a.s. for each $T \in \mathbb{R}^+ \setminus \{0\}$,

(b) M is a continuous local martingale on $[0,\tau_0)$ with $M_0 = 0$,

(ii) and $\lim_{z \downarrow 0} h(z) = -\infty$.

Then $\tau_0 = \infty$ a.s.

Above, $\tau_0 = \inf\{0 < s \leq \tau_0 : Z_s = 0\}$ is not to be understood as the definition of τ_0, but it means that the already defined stopping time τ_0 is also the first hitting time of Z_s at zero. Since Z is only defined up to time τ_0, one cannot take the infimum over \mathbb{R}^+.

Proof. Since $h(Z) = h(Z_0) + P_t - M_t - P_t$ is a.s. bounded from below on compacts, we have $\tau_0 = \inf\{s > 0 : M_s = -\infty\}$ and further $\tau_0 > 0$ due to the right continuity of Z. Assume, by contradiction, that $\tau_0 < \infty$ on a set $A \in \mathcal{F}$ with $\mathbb{P}(A) > 0$. Hence, $\lim_{t \uparrow \tau_0} M_t = -\infty$ on A and this contradicts Lemma 4.2.\square

4.2. Proof of Theorem 3.4.

Before we provide a proof of Theorem 3.4, we recall some elementary identities from matrix calculus and provide some further technical lemmata. For a differentiable function $f : M_d \to \mathbb{R}$, we denote by ∇f the usual gradient written in coordinates as $(\partial f/\partial x_i)_{ij}$.

Lemma 4.4. On S_d^{++}, we have
(i) $\nabla \det(x) = \det(x)(x^{-1})^T = \det(x)x^{-1}$,

(ii) $\frac{\partial^2}{\partial x_i \partial x_k} \det(x) = \det(x)((x^{-1})_{kl}(x^{-1})_{ij} - (x^{-1})_{il}(x^{-1})_{jk})$.

Proof. The first identity in (i) can be found in [32, Section 9.10] and the second is an immediate consequence of restricting to symmetric matrices. Now (ii) follows using $\frac{\partial}{\partial x_k} x^{-1} = -x^{-1} \left(\frac{\partial}{\partial x_k} x \right) x^{-1}$ and finally the symmetry:

$$\frac{\partial}{\partial x_{kl} x_{ij}} \det(x) = \frac{\partial}{\partial x_{kl} (x^{-1})_{ij}} = \det(x) \left((x^{-1})_{ik}(x^{-1})_{ji} + \frac{\partial}{\partial x_{kl}} (x^{-1})_{ji} \right)$$

$$= \det(x) \left((x^{-1})_{ik}(x^{-1})_{ji} - (x^{-1})_{jk}(x^{-1})_{ii} \right).$$

□

For a semimartingale X we denote by X^c as usual its continuous part. All semimartingales in the following will have a discontinuous part of finite variation, i.e. $\sum_{0 < s \leq t} \|\Delta X_s\|$ is finite for all $t \in \mathbb{R}^+$. Thus we define $X_t^c = X_t - \sum_{0 < s \leq t} \Delta X_s$ and note that the quadratic variation of a semimartingale is the one of its local continuous martingale part plus the sum of its squared jumps.

The continuous quadratic variation of X solving (3.3) is only influenced by the Brownian terms and, hence, we have a general version of [7, Equation (2.4)] which is proved just as [1, Lemma 2]:

Lemma 4.6. Consider the solution X_{t} of (3.3) on $[0, T_x)$. Then

$$\frac{d[X_{ij}, X_{kl}]_t}{dt} = (FF^T(t, X_{t-}))_{ik}(G^T G(t, X_{t-}))_{jl} + (FF^T(t, X_{t-}))_{il}(G^T G(t, X_{t-}))_{jk}$$

$$+ (FF^T(t, X_{t-}))_{jk}(G^T G(t, X_{t-}))_{il} + (FF^T(t, X_{t-}))_{jl}(G^T G(t, X_{t-}))_{ik}.$$

Here $G^T G(t, x) := G(t, x)^T G(t, x)$ and $FF^T(t, x) := F(t, x) F(t, x)^T$ to ease notation.

Moreover, we shall need the following result where a Brownian motion on a stochastic interval $[0, T)$ is defined as a continuous local martingale on $[0, T)$ with $[\beta, \beta]_t = t$.

Lemma 4.5. Consider the solution X_{t} of (3.3) on $[0, T_x)$. Then

$$\frac{d[X_{ij}, X_{kl}]_t}{dt} = (FF^T(t, X_{t-}))_{ik}(G^T G(t, X_{t-}))_{jl} + (FF^T(t, X_{t-}))_{il}(G^T G(t, X_{t-}))_{jk}$$

$$= \int_0^t \sqrt{\text{Tr}(h(X_{u-})^T h(X_{u-}))} d\beta_{u}^{h}.$$

holds on $[0, T)$.

Proof. We define for $t \in [0, T)$,

$$\beta_{t}^{h} := \sum_{i,j=1}^d \int_0^t \frac{h(X_{u-})_{ij}}{\sqrt{\text{Tr}(h(X_{u-})^T h(X_{u-}))}} dB_{u,ji},$$

and since the numerator equals zero, whenever the denominator vanishes, we use the convention $\frac{0}{0} = 1$. Clearly for each i, j and for all $u \in [0, T)$ we have

$$\left| \frac{h(X_{u-})_{ij}}{\sqrt{\text{Tr}(h(X_{u-})^T h(X_{u-}))}} \right| \leq 1$$
which ensures that \(\beta^h \) is well-defined, square-integrable and a continuous local martingale on \([0, T]\) by stopping at a sequence of stopping times announcing \(T \). Furthermore, by construction

\[
[\beta^h, \beta^h]_t = \sum_{i,j=1}^d \int_0^t \frac{h(X_{u^-})_{ij}^2}{\text{Tr}(h(X_{u^-}^+) h(X_{u^-}))} du = t
\]

and therefore \(\beta^h \) is a Brownian motion on \([0, T]\).

Finally by the very definition of \(\beta^h \), we have

\[
\text{Tr}(h(X_t-)dB_t) = \sum_{i,j=1}^d h(X_{t^-})_{ij} dB_{t, ji} = \sqrt{\text{Tr}(h(X_{t^-}^+) h(X_{t^-}))} d\beta^h_t,
\]

which proves identity (4.1).

Finally, we state a variant of It\'o’s formula which we later employ. It follows easily from the usual versions like [3, Theorem 3.9.1] by arguments similar to [33, Theorem 5.4] and [4, Proposition 3.4].

Lemma 4.7. Let \(X \) be an \(S^+_d \)-valued semimartingale on a stochastic interval \([0, T]\) and \(f : S^+_d \to \mathbb{R} \) a twice continuously differentiable function. If \(X_t \in S^+_d \) for all \(t \in [0, T] \) and \(\sum_{0 < s \leq t} \|D_X s\| < \infty \) for \(t \in [0, T] \), then \(f(X) \) is a semimartingale on \([0, T]\) and

\[
f(X_t) = f(X_0) + \text{Tr} \left(\int_0^t \nabla f(X_{s^-})^\top dX_s^c \right) + \frac{1}{2} \sum_{i,j,k,l=1}^d \int_0^t \frac{\partial^2 f(X_{s^-})}{\partial x_{ij} \partial x_{kl}} d[X_{ij}, X_{kl}]_c^c + \sum_{0 < s \leq t} (f(X_s) - f(X_{s^-})).
\]

We are now prepared to provide a proof of Theorem [3.4]. Note that to shorten our formulae we use the following differential notation and not integral notation as above.

Proof of Theorem [3.4] Since

\[
\text{vec}(F(t, X_t-)dB_t G(t, X_t-')) = \left(G(t, X_t-)^\top \otimes F(t, X_t-) \right) \text{vec}(dB_t),
\]

it is easy to see that all coefficients of \([3.4]\) are locally Lipschitz and of linear growth. Hence, standard SDE theory implies again the existence of a unique càdlàg adapted non-explosive local strong solution until the first time \(T_x = \inf \{ t \geq 0 : X_t \in \partial S^+_d \} \) or \(X_t \notin S^+_d \) when \(X \) hits the boundary or jumps out of \(S^+_d \). Hence, we have to show \(T_x = \infty \).

By the choice of \(K \) and \(J \), all jumps have to be positive semidefinite and hence the solution \(X \) cannot jump out of \(S^+_d \). This implies that \(T_x = \inf \{ t \geq 0 : X_t \in \partial S^+_d \} \).

In the following, all statements are meant to hold on the stochastic interval \([0, T_x]\). Note that by the right continuity of \(X_t \), a.s. \(T_x > 0 \). Moreover, we set \(T_n = \inf \{ t \in \mathbb{R}_+ : d(X_t, \partial S^+_d) \leq 1/n \text{ or } \|X_t\| \geq n \} \). Then \((T_n)_{n \in \mathbb{N}}\) is an increasing sequence of stopping times with \(\lim_{n \to \infty} T_n = T_x \), hence \(T_x \) is predictable.

We define the following processes and functions according to the notation of Proposition [4.36]

\[
Z_t := \det(X_t), \quad h(z) := \ln(z), \quad r_t := h(Z_t).
\]

Then \(T_x = \inf \{ t > 0 : r_t = -\infty \} \).
By Lemma 4.3 and using the abbreviation $f = FF^T$, $g = G^T G$, we obtain

$$
\text{Tr}(\nabla (\det(X_{t-}))dX_t) = \det(X_{t-}) \left[2 \sqrt{\text{Tr} \left(f(t, X_{t-})X_{t-}^{-1}g(t, X_{t-})X_{t-}^{-1} \right)} dW_t + \text{Tr} (H(t, X_{t-})X_{t-}^{-1}) dt \right],
$$

with some one-dimensional Brownian motion W on $[0, T_x)$, whose existence is guaranteed by Lemma 4.6. Furthermore, by Lemma 4.4 (ii), Lemma 4.5 and elementary calculations we have that

$$\frac{1}{2} \sum_{i,j,k,l} \frac{\partial^2}{\partial x_{ij}\partial x_{kl}} \det(X_{t-})d[X_{ij}, X_{kl}]_t^c$$

$$= \frac{\det(X_{t-})}{2} \sum_{i,j,k,l} \left[(X_{t-}^{-1})_{kl}(X_{t-}^{-1})_{ij} - (X_{t-}^{-1})_{il}(X_{t-}^{-1})_{jk} \right] f(t, X_{t-})_{ik}g(t, X_{t-})_{jl}$$

$$+ f(t, X_{t-})_{ij}g(t, X_{t-})_{jk} + f(t, X_{t-})_{jk}g(t, X_{t-})_{il} + f(t, X_{t-})_{jl}g(t, X_{t-})_{ik}$$

$$= \det(X_{t-}) \left(\text{Tr} (f(t, X_{t-})X_{t-}^{-1}g(t, X_{t-})X_{t-}^{-1}) - \text{Tr} (f(t, X_{t-})X_{t-}^{-1}) \text{Tr} (g(t, X_{t-})X_{t-}^{-1}) \right) dt.$$

According to Itô’s formula, Lemma 4.7 we therefore obtain by summing up the two equations,

$$dZ_t = 2 \det(X_{t-}) \sqrt{\text{Tr} (f(t, X_{t-})X_{t-}^{-1}g(t, X_{t-})X_{t-}^{-1})} dW_t + \det(X_t) - \det(X_{t-})$$

$$+ \det(X_{t-}) \left[\text{Tr} (H(t, X_{t-})X_{t-}^{-1}) + \text{Tr} (f(t, X_{t-})X_{t-}^{-1}g(t, X_{t-})X_{t-}^{-1}) \right]$$

$$- \text{Tr} (f(t, X_{t-})X_{t-}^{-1}) \text{Tr} (g(t, X_{t-})X_{t-}^{-1}) dt.$$

Using again Itô’s formula, we have

$$dr_t = 2 \sqrt{\text{Tr} (f(s, X_{s-})X_{s-}^{-1}g(s, X_{s-})X_{s-}^{-1})} dW_s + \ln(\det(X_t)) - \ln(\det(X_{t-}))$$

$$+ \left[\text{Tr} (H(s, X_{s-})X_{s-}^{-1}) - \text{Tr} (f(s, X_{s-})X_{s-}^{-1}g(s, X_{s-})X_{s-}^{-1}) \right.$$

$$\left. - \text{Tr} (f(s, X_{s-})X_{s-}^{-1}) \text{Tr} (g(s, X_{s-})X_{s-}^{-1}) \right] dt.$$

Hence, we have $r_t = r_0 + M_t + P_t$, where

$$M_t = 2 \int_0^t \sqrt{\text{Tr} (f(s, X_{s-})X_{s-}^{-1}g(s, X_{s-})X_{s-}^{-1})} dW_s,$$

$$P_t = \int_0^t \left[\text{Tr} (H(s, X_{s-})X_{s-}^{-1}) - \text{Tr} (f(s, X_{s-})X_{s-}^{-1}g(s, X_{s-})X_{s-}^{-1}) - \text{Tr} (f(s, X_{s-})X_{s-}^{-1} \text{Tr} (g(s, X_{s-})X_{s-}^{-1})) \right] ds + \sum_{0 < s < t} (\ln(\det(X_s)) - \ln(\det(X_{s-}))).$$

We infer that $(M_t^{(n)})_{t \geq 0}$ defined by

$$M_t^{(n)} := 2 \int_0^t \sqrt{\text{Tr} (f(s, X_{s-}^{T_n})X_{s-}^{T_n,-1}g(s, X_{s-}^{T_n})X_{s-}^{T_n,-1})} dW_s$$
is a continuous martingale. Obviously, $M_t = M_t^{(n)}$ on $\{t < T_n\}$ and thus M is a continuous local martingale on $[0, T_x]$. Furthermore, $X_s - X_{s-} \geq 0$ for all $s \in [0, T)$ and hence $\det(X_s) \geq \det(X_{s-})$ using $[25, \text{Corollary 4.3.3}]$. Therefore, we have that $P_t \geq \int_0^t c(s)ds$ on $[0, T_x)$.

Finally, by Proposition 4.3, we have that $T_x = \infty$ a.s. noting that c is assumed to be locally integrable.

Remark 4.8. Bru’s method for proving her proposition $[3, \text{4}]$ for Wishart diffusions consists of the following two steps:

(i) First assume $\beta = 0$. By applying the original McKean’s argument twice, one derives that $h(\det(X))$ is a local martingale. This is proved separately for $\delta = d + 1$ and $\delta > d + 1$ by choosing $h(z) = \ln(z)$ in the first case and $h(z) = z^{d+1-\delta}$ in the second one. Therefore, the existence of a unique global strong solution on S_d^{++} is settled.

(ii) One may therefore suppose that X_t is an S_d^{++}-valued solution on $[0, \infty)$ of

$$dX_t = \sqrt{X_t} dB_t Q + Q^\top dB_t \sqrt{X_t} + \delta Q^\top Q dt, \quad X_0 = x \in S_d^{++},$$

where $Q \in \text{GL}(d)$ and $\delta \geq d + 1$. Now, Girsanov’s Theorem is applied which allows to introduce a drift by changing to an equivalent probability measure. This step generalises a one-dimensional method by Pitman and Yor, see $[2, \text{p. 748}]$. The involved arguments and calculations, which are not presented in detail in $[2]$, appear rather complicated and work seemingly only in the special case given in Proposition 4.3(ii).

The technical details of $[2]$ concerning strong solutions are explained in more detail in $[38]$.

Our proof above circumvented the problems associated to the use of Girsanov’s theorem by extending the approach outlined in (i).

5. Conclusion

In this paper we have extended the previously known sufficient boundary non-attainment conditions for certain Wishart processes to more general SDEs on S_d^{++}, which include affine diffusions with state-independent jumps of finite variation. This allowed to infer the existence of strong solutions of a large class of affine matrix valued processes. Moreover, we have thus obtained strong existence results for SDEs which can be considered as positive semidefinite extensions of GARCH diffusions and generalised Cox-Ingersoll-Ross processes.

However, this results in several open questions related to our SDE $[1, \text{1}]$ which will hopefully be addressed in future work. The following questions are beyond the scope of the present paper, since they are obviously rather non-trivial and apparently need very different techniques than the ones employed here. For $d > 1$ and the Wishart diffusions it is not clear, whether the condition $b \geq (d + 1) Q^\top Q$ for the drift is a necessary non-attainability condition or not. Only in the case $\beta = 0, \Gamma = 0, Q = I_d$ and $b = \delta I_d$ with $\delta \in (d-1, d+1)$ it is known from $[20, \text{Theorem 1.4}]$ that the boundary is hit. On the other hand, one knows that in the case $d = 1$ pathwise uniqueness holds, hence there exists a strong solution for all $b \geq 0$ (even in the general setting of CBI processes, see $[18, \text{Theorem 5.1}]$). For $d \geq 2$, the situation seems in general to be rather complicated and therefore existence of global strong solutions remains an open problem when $b \notin (d + 1) Q^\top Q$ (and the conditions for the existence of weak solutions of $[13]$ are satisfied). Likewise, it is a very interesting problem in the case of the GCIR processes with $\alpha > 1/2$ whether a state dependent drift away from the boundary is really necessary and what happens if one has only a constant drift towards the interior of S_d^{++}.
Finally, we remark that our method of proof could be generalised to state-spaces D other than S^+_d, as long as the existence of an appropriate function $g : D \to \mathbb{R}_+$ is guaranteed, such that $g^{-1}(0) = \partial D$. For instance, similar (but simpler) arguments to the ones of the proof of Theorem 3.1 yield a rigorous proof of the non-attainment condition formulated in Section 6 for affine jump diffusions on the canonical state space $\mathbb{R}^m_+ \times \mathbb{R}^n$. Here one takes $g(x_1, x_2, \ldots, x_m) = x_1 \cdot x_2 \cdots \cdot x_m$.

References

[1] A. Ahdida and A. Alfonsi. Exact and high order discretization schemes for Wishart processes and their affine extensions. Preprint, 2010. available at: http://adsabs.harvard.edu/abs/2010arXiv1006.2281A.

[2] O. Barndorff-Nielsen and V. Pérez-Abreu. Matrix Subordinators and related Upsilon Transformations. *Theory Probab. Appl.*, 52:1–23, 2008.

[3] O. E. Barndorff-Nielsen and N. Shephard. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in Financial Economics (with discussion). *J. R. Stat. Soc. B Statist. Methodol.*, 63:167–241, 2001.

[4] O. E. Barndorff-Nielsen and R. Stelzer. Positive-Definite Matrix Processes of Finite Variation. *Probab. Math. Statist.*, 27:3–43, 2007.

[5] K. Bichteler. *Stochastic Integration with Jumps*, volume 89 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, 2002.

[6] M. Borkovec and C. Klüppelberg. Extremal behavior of diffusion models in finance. *Extremes*, 1:47–80, 1998.

[7] M.-F. Bru. Wishart Processes. *J. Theoret. Probab.*, 4:725–751, 1991.

[8] M.-F. Bru. Diffusions of Perturbed Principal Component Analysis. *J. Multivariate Anal.*, 29:127–136, 1989.

[9] A. Buraschi, A. Cieslak, and F. Trojani. Correlation Risk and the Term Structure of Interest Rates. Working paper, Imperial College, UK, 2007.

[10] A. Buraschi, P. Porchia, and F. Trojani. Correlation Risk and Optimal Portfolio Choice. *J. Finance*, 65:393 – 420, 2010.

[11] P. Cheridito, D. Filipović, and M. Yor. Equivalent and Absolutely Continuous Measure Changes for Jump-Diffusion Processes. *Ann. Appl. Probab.*, 15:1713–1732, 2005. ISSN 1050-5164.

[12] R. Cont and P. Tankov. *Financial Modelling with Jump Processes*. CRC Financial Mathematical Series. Chapman & Hall, London, 2004.

[13] C. Cuchiero, D. Filipović, E. Mayerhofer, and J. Teichmann. Affine Processes on Positive Semidefinite Matrices. *Ann. Appl. Probab.*, 21:397–463, 2011.

[14] J. Da Fonseca, M. Grasselli, and C. Tebaldi. Option Pricing when Correlations are Stochastic: An Analytical Framework. *Review of Derivatives Research*, 10:151–180, 2007.

[15] J. Da Fonseca, M. Grasselli, and F. Ielpo. Hedging (Co)Variance Risk with Variance Swaps. Working paper, University St.Gallen, 2008.

[16] J. Da Fonseca, M. Grasselli, and F. Ielpo. Estimating the Wishart Affine Stochastic Correlation Model using the Empirical Characteristic Function. Working paper, 2008.

[17] J. Da Fonseca, M. Grasselli, and C. Tebaldi. A Multifactor Volatility Heston model. *J. Quant. Finance*, 8:591–604, 2008.

[18] D. A. Dawson and Z. Li. Skew Convolution Semigroups and Affine Markov processes. *Ann. Probab.*, 34:1103–1142, 2006.
[19] C. Donati-Martin. Large Deviations for Wishart Processes. *Probab. Math. Statist.*, 28:325–343, 2008.

[20] C. Donati-Martin, Y. Doumerc, H. Matsumoto, and M. Yor. Some Properties of the Wishart Processes and a Matrix Extension of the Hartman-Watson Laws. *Publ. Res. Inst. Math. Sci.*, 40:1385–1412, 2004.

[21] D. Duffie, D. Filipović, and W. Schachermayer. Affine Processes and Applications in Finance. *Ann. Appl. Probab.*, 13:984–1053, 2003.

[22] V. Fasen, C. Klüppelberg, and A. Lindner. Extremal behavior of stochastic volatility models. In A. N. Shiryaev, M. R. Grossinho, P. E. Oliveira, and M. L. Esquível, editors, *Stochastic finance*, pages 107–155, New York, 2006. Springer.

[23] D. Filipović and E. Mayerhofer. Affine Diffusion Processes: Theory and Applications. In *Advanced Financial Modelling*, volume 8 of *Radon Ser. Comput. Appl. Math.* Walter de Gruyter, Berlin, 2009.

[24] C. Gourieroux and R. Sufana. Derivative Pricing with Wishart Multivariate Stochastic Volatility. *J. Bus. Econom. Statist.*, 28:438–451, 2010.

[25] C. Gourieroux and R. Sufana. Wishart Quadratic Term Structure. Working paper, CREST, CEPREMAP and University of Toronto, 2007.

[26] P. Graczyk and L. Vostrikova. The Moments of Wishart Processes via Itô calculus. *Theory Probab. Appl.*, 51:609–625, 2007.

[27] M. Grasselli and C. Tebaldi. Solvable Affine Term Structure Models. *Math. Finance*, 18 (1):135–153, 2008.

[28] R. A. Horn and C. R. Johnson. *Matrix Analysis*. Cambridge University Press, Cambridge, 1985.

[29] R. A. Horn and C. R. Johnson. *Topics in Matrix Analysis*. Cambridge University Press, Cambridge, 1991.

[30] J. Jacod and A. N. Shiryaev. *Limit theorems for stochastic processes*, volume 288 of *Fundamental Principles of Mathematical Sciences*. Springer-Verlag, Berlin, second edition, 2003.

[31] M. Leippold and F. Trojani. Asset Pricing with Matrix Affine Jump Diffusions. Working paper, 2010. available from: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1274482

[32] J. R. Magnus and H. Neudecker. *Matrix differential calculus with applications in statistics and econometrics*. Wiley, Chichester, 1988.

[33] B. Maisonneuve. Une mise au point sur les martingales locales continues définies sur un intervalle stochastique. In *Séminaire de Probabilités, XI (Univ. Strasbourg, Strasbourg, 1975/1976)*, volume 581 of *Lecture Notes in Math.*, pages 435–445, Berlin, 1977. Springer.

[34] H. P. McKean. *Stochastic Integrals*. Academic Press, 1969.

[35] M. Métivier and J. Pellaumail. *Stochastic Integration*. Academic Press, New York, 1980.

[36] D. B. Nelson. ARCH models as diffusion approximations. *J. Econometrics*, 45:7–38, 1990.

[37] J. R. Norris, L. C. G. Rogers, and D. Williams. Brownian Motions of Ellipsoids. *Trans. Amer. Math. Soc.*, 294:757–765, 1986.

[38] O. Pfaffel. Wishart Processes. Project thesis, Zentrum Mathematik, Technische Universität München, 2008. available from: http://www-m4.ma.tum.de

[39] C. Pigorsch and R. Stelzer. On the Definition, Stationary Distribution and Second Order Structure of Positive Semi-definite Ornstein-Uhlenbeck type Processes. *Bernoulli*, 15:754–773, 2009.
[40] C. Pigorsch and R. Stelzer. A Multivariate Ornstein-Uhlenbeck Type Stochastic Volatility Model. Working paper, Technische Universität München, 2009. available from: http://www-m4.ma.tum.de

[41] P. E. Protter. Stochastic Integration and Differential Equations, volume 21 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2005. Second edition. Version 2.1, Corrected third printing.

[42] D. Revuz and M. Yor. Continuous Martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1991.

[43] R. Stelzer. Multivariate COGARCH(1,1) Processes. Bernoulli, 16:80–115, 2010.

[44] R. J. Stelzer. Multivariate Continuous Time Stochastic Volatility Models Driven by a Lévy Process. PhD thesis, Centre for Mathematical Sciences, Munich University of Technology, Garching, Germany, 2007. available from: http://mediatum2.ub.tum.de/node?id=624065.

[45] S. Watanabe and T. Yamada. On the Uniqueness of Solutions of Stochastic Differential Equations II. J. Math. Kyoto Univ., 11:553–563, 1971.

Vienna Institute of Finance, University of Vienna and Vienna University of Economics and Business Administration, Heiligenstädterstraße 46-48, 1190 Vienna, Austria
E-mail address: eberhard.mayerhofer@vif.ac.at

TUM Institute for Advanced Study & Zentrum Mathematik, Technische Universität München, Boltzmannstrasse 3, D-85747 Garching bei München, Germany
E-mail address: pfaffel@ma.tum.de

Institute of Mathematical Finance, Ulm University, Helmholtzstrasse 18, D-89081 Ulm, Germany
E-mail address: robert.stelzer@uni-ulm.de