QCD on the BlueGene/L Supercomputer

G. Bhanot, D. Chen, A. Gara, J. Sexton, and P. Vranas

* IBM T.J. Watson Research Center, Route 134, Yorktown Heights, NY 10598, USA.

In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

1. Introduction

Lattice gauge theory has been intimately connected to numerical simulations and computer hardware from the beginning. More specifically lattice field theories lend themselves naturally to numerical simulations on massively parallel supercomputers. These machines have defined the landmarks for computational speed through the years. There have only been a few and can all be remembered by name and by the new window they opened to research in field theory.

In this sense, when in June 2004 lattice QCD ran on a 1024 node 5.6 TeraFlop prototype BlueGene/L (BG/L) supercomputer at the IBM T.J. Watson Research lab for eight hours, at sustained speed exceeding 1 Teraflops, another landmark was crossed signaling the next generation of lattice gauge theory calculations. That simulation was dynamical QCD with Wilson fermions on a $32^3 \times 64$ lattice at $\beta = 5.2$ and $\kappa = 0.180$.

Figure 1 shows the thermalization of the chiral condensate from an ordered gauge configuration. Furthermore, using the full 2048 node 11.5 Teraflop prototype another dynamical run was done. It sustained more than 2 Teraflops for 3 hours ($V = 64^3 \times 16$, $\beta = 5.1$ and $\kappa = 0.180$). At the moment of this writing, the available QCD code can sustain up to about 19% of peak.

For details about BG/L see for example [1]. For other QCD related supercomputers see for example [2]. The largest planned BG/L installations will be a 115 Teraflops 20K node machine at IBM Watson and a 367 Teraflops 64K node machine at Lawrence Livermore National Lab in 2005. In the June 2004 ranking of the world’s fastest supercomputers a BG/L machine (located at IBM Rochester) rated number 4 and another one (located at IBM Watson) rated number 8.

Programming Lattice QCD to run efficiently on these large machines has always been a challenge. Here we describe the relevant BG/L hardware and how QCD is coded for it. We also present performance and scaling measurements.

2. The microchip

Figure 2 shows an abstraction of the BG/L chip (node). The chip has two embedded IBM 440 CPU cores. Each core has an enhanced floating point unit capable of two multiply/add (MADD) instructions per cycle. Therefore the chip is capable of a peak of 8 floating point instructions per cycle. At the operation speed of 700 MHz the chip delivers 5.6 GFlops of peak speed.
memory hierarchy is shown in figure 2.

![Diagram](image)

Figure 2. An abstraction of the BG/L node chip.

Several network controllers are built in on the chip. The main network connects the nodes in a 3-dimensional torus grid with nearest neighbor high speed interconnects. The hardware implements a sophisticated dynamic virtual cut-through network. Packets can be sent from any node to any other node without CPU intervention. Furthermore, the nodes are also connected via a global tree network that can efficiently perform global operations as well as file I/O. Also, the nodes are connected via separate interrupt and control networks. The system is fully symmetric with respect to the two CPU cores.

3. The BlueGene/L supercomputer

Two chips are assembled on a compute-card. Sixteen compute-cards are connected with connectors on a node-card. In case of a chip failure the compute-card can be easily replaced. Thirty-two node-cards are plugged into 2 vertical midplane cards. The 1024 node assembly is housed in a “refrigerator” sized cabinet (rack). Many racks can be connected with cables to form large systems. Figure 3 shows the 2 rack prototype at the IBM Watson lab. Also, a single rack can be configured as an $8 \times 8 \times 16$ torus or as two $8 \times 8 \times 8$ torus grids without having to be re-cabled.

4. QCD on the hardware

QCD can use the two CPU cores of the BG/L chip in two basic modes. 1) Co-processor mode where CPU0 does all the computations and CPU1 does all the communications (including MPI etc.). The 4th direction is internal to CPU0. Communications can overlap with computations but the peak performance is then limited to $5.6/2 = 2.8$ GFlops. 2) Virtual node mode where CPU0 and CPU1 act as independent “virtual nodes”, each with its own memory space. Each one does both computations and communications. The 4th direction is along the two CPUs that communicate via common memory. Computations and communications can not overlap but the peak performance is the full 5.6 GFlops.

5. The Wilson operator

The Wilson operator is coded in virtual node mode. The standard spin projection and reconstruction algorithm is used. The multiplication of the gauge field with a spinor is done using the spin projected two component spinors. Also, only two component spinors need to be transferred between nodes. All computations use the double multiply/add instructions. Computations overlap with load/stores. Local performance is bounded by memory access to L3. Communications do not overlap with computations or memory access. Because of the above there is an interesting tradeoff: For small local size one has fast L1 memory access but more communications (larger surface to volume ratio). For large local
size one has slower L3 memory access but less communications. The inner most kernel is written in “pseudo-assembly” (c or c++ inline assembly).

Figure 4. Performance vs. local lattice size.

6. Performance

Figure 4 shows the performance of D without communications, of D with communications and of the full inverter. Figure 5 shows the performance for a fixed $4^3 \times 16$ local lattice as a function of increasing machine size (here the CG inverter global sums were done on the torus).

7. Dream machines

Here are some examples of interesting machine configurations. Of course this is just a sample of what is possible. A full 1024 node rack, $(8, 8, 16, 2)$ CPUs, with a local lattice of $(4, 4, 4, 16)$ sites gives a lattice of $(32, 32, 64, 32)$ sites. This is appealing for next generation dynamical zero temperature calculations. A half node rack, 512 nodes, $(8, 8, 8, 2)$ CPUs with a local lattice of $(4, 4, 4, 4)$ sites gives a lattice of $(32, 32, 32, 8)$ sites. This is suitable for next generation thermodynamic calculations.

If 16 racks of the BG/L system at IBM Watson are configured as $(16, 32, 32, 2)$ and a local lattice of $(2, 2, 2, 32)$ is used then one has a lattice with $(128, 64, 64, 64)$ sites. Clearly these are dream machines for QCD.

Figure 5. Performance of the Wilson CG inverter vs. # of CPUs for a $4^3 \times 16$ local lattice.

8. Physics software

Most of the high level physics code is the Columbia C++ physics system (cps). The full system ported easily and worked immediately.

9. Conclusions

QCD crossed the 1 sustained-Teraflops landmark in June 2004. In the next year, because of analytical and supercomputer developments, dynamical QCD will likely get to $L/a = 32$ at physical quark masses and perhaps even more...

Acknowledgments

We would like to thank the QCDOC collaboration for useful discussions and for providing us with the Columbia physics system software.

REFERENCES

1. G. Bhanot, D. Chen, A. Gara, P. Vranas, Nucl. Phys. B119 (Proc. Suppl.) (2003) 114.
2. These proceedings: R. Ammendola; P. Boyle; D. Holmgren; F. Rapuano. A. Pochinsky et. al., Nucl. Phys. B119 (Proc. Suppl.) (2003) 1044.