Solvable Subgroups of Locally Compact Groups

Karl Heinrich Hofmann and Karl-Hermann Neeb

Abstract. It is shown that a closed solvable subgroup of a connected Lie group is compactly generated. In particular, every discrete solvable subgroup of a connected Lie group is finitely generated. Generalizations to locally compact groups are discussed as far as they carry.

Mathematics Subject Classification 2000: 22A05, 22D05, 22E15;
Key Words and Phrases: Connected Lie group, almost connected locally compact group, solvable subgroup, compactly generated, finitely generated.

A topological group G with identity component G_0 is said to be almost connected if G/G_0 is compact. We shall prove the following result.

Main Theorem. A closed solvable subgroup of a locally compact almost connected group is compactly generated.

This result belongs to a class of “descent” type results that are on record for compactly generated groups. The essay [8] provides a good background of their history. It follows, in particular, that a discrete solvable subgroup of an almost connected locally compact group is finitely generated.

Example S. The connected simple Lie group $\text{PSL}(2, \mathbb{R})$ contains a discrete free group of infinite rank; such a closed subgroup is not compactly generated.

We remark that a nonabelian free group is countably nilpotent (see e.g. [4], Definition 10.5); that is, the descending central series terminates at the singleton subgroup after ω steps. The Main Theorem therefore fails for transfinitely solvable subgroups in place of solvable ones.

The following example shows that subgroups of finitely generated solvable groups need not be finitely generated:

Example SOL. Let $\Gamma \subseteq \mathbb{Q} \times \mathbb{Q}^\times$ be the subgroup generated by the two elements $a := (0, 2)$ and $b := (1, 0)$. Then

$$\Gamma \cong \left(\frac{1}{2^\omega} \mathbb{Z} \right) \times \mathbb{Z},$$

is a 2-generator metabelian group, while the abelian subgroup $\frac{1}{2^\omega} \mathbb{Z} \times \{0\}$ is not finitely generated.

Thus, in the Main Theorem, the hypothesis “G/G_0 compact” cannot be relaxed to “G/G_0 compactly generated”.

1
For abelian subgroups the Main Theorem will allow us to derive a characterisation theorem for compactly generated locally compact abelian groups as follows.

Theorem. For a locally compact abelian group \(A \) the following conditions are equivalent:

1. \(A \) is compactly generated.
2. \(A \cong \mathbb{R}^k \oplus C \oplus \mathbb{Z}^n \) for a unique largest compact subgroup \(C \) and natural numbers \(k, n \).
3. The character group \(\hat{A} \) is a Lie group.
4. There is an almost connected locally compact group \(G \) and a closed subgroup \(H \) such that \(A \cong H \).

Proof.

1. \(\Rightarrow \) 2: See e.g. [3], Theorem 7.57(ii).

2. \(\Rightarrow \) 3: If \(\hat{A} \) is a Lie group, then \((\hat{A})_0 \) is open and isomorphic to \(\mathbb{R}^k \oplus \mathbb{T}^n \) for some \(k \) and \(n \); it is divisible, whence \(\hat{A} \cong (\mathbb{R}^k \oplus \mathbb{T}^n) \oplus D \) for a discrete subgroup \(D \). Hence \(A = \mathbb{R}^k \oplus \hat{D} \oplus \mathbb{T}^n \cong \mathbb{R}^k \oplus C \oplus \mathbb{Z}^n \) for the unique largest compact subgroup \(C \) of \(A \).

2. \(\Rightarrow \) 4: \(A \subseteq \mathbb{R}^k \times C \times \mathbb{R}^n \cong \mathbb{R}^{k+n} \oplus C \), an almost connected locally compact group.

4. \(\Rightarrow \) 1: Let \(G \) be an almost connected locally compact group and \(A \) a closed abelian subgroup. Then \(A \) is, in particular, solvable. Hence the Main Theorem provides the required implication.

By comparison with Example SOL, the situation for abelian groups is distinctly simpler than it is for metabelian groups:

Corollary. (Morris’ Theorem [5], [8]) A closed subgroup of a compactly generated locally compact abelian group is compactly generated.

Proof. We proved \(2 \Leftrightarrow 3 \) in the Theorem independently of the Main Theorem. Thus if \(G \) is a locally compact compactly generated abelian group, then \(\hat{G} \) is an abelian Lie group. The character group \(\hat{A} \) of a closed subgroup \(A \) of \(G \), by duality, is a quotient of the Lie group \(\hat{A} \) and thus is a Lie group. Hence \(A \) is compactly generated.

As we now begin a proof of the main theorem we first reduce it to one on connected Lie groups and its closed subgroups:

Reduction. The Main Theorem holds if every closed solvable subgroup \(H \) of a connected Lie group \(G \) is compactly generated.

Proof. Indeed let \(G \) be an almost connected locally compact group and \(N \) a compact normal subgroup such that \(G/N \) is a Lie group. The existence of \(N \) is a consequence of Yamabe’s Theorem saying that each almost connected locally
compact group is a pro-Lie group ([9,10]). Then HN is a closed subgroup and HN/N is a closed solvable subgroup A of the Lie group $L = G/N$ with finitely many components. If our claim is true for connected Lie groups G, then $A \cap L_0$ is compactly generated. We may assume $L = L_0A$. Then $A \cap L_0$ has finite index in A. Therefore $A = HN/N$ is compactly generated. Then HN is compactly generated. So H is compactly generated. (See [1], Chap. VII, §3, Lemma 3. Also see [8].) □

This reduction allows us to concentrate on connected Lie groups G and closed solvable subgroups H. Since any locally compact connected group, and so in particular every connected Lie group, is compactly generated we shall have to prove that $\pi_0(H) \overset{\text{def}}{=} H/H_0$ is finitely generated.

Lemma 1. For a closed subgroup H of a connected solvable connected Lie group G any subgroup of $\pi_0(H)$ is finitely generated.

Proof. This is proved in [7], Proposition 3.8. □

This shows that the two generator metabelian group Γ of Example SOL cannot be realized as $\pi_0(H)$ for a closed subgroup H of a connected solvable Lie group G—let alone be discretely embedded into G.

Lemma 2. Let

$$1 \to A \to B \overset{q}{\to} C \to 1$$

be a short exact sequence of groups. If A and C have the property that each subgroup is finitely generated, then B has this property as well.

Proof. Each subgroup $\Gamma \subseteq B$ is an extension of the finitely generated group $q(\Gamma)$ by the finitely generated group $A \cap \Gamma$, hence is finitely generated itself. □

Lemma 3. Assume that the solvable Lie group G has the property that each subgroup of $\pi_0(G)$ is finitely generated. Let H be a closed subgroup of G. Then each subgroup of $\pi_0(H)$ is finitely generated.

Proof. Let $q: G \to \pi_0(G)$ denote the quotient map. Then we have a short exact sequence

$$1 \to \pi_0(H \cap G_0) \to \pi_0(H) \to q(H) \to 1.$$

As a subgroup of $\pi_0(G)$, the group $q(H)$ has the property that all its subgroups are finitely generated, and the group $\pi_0(H \cap G_0)$ has this property by Lemma 1. Now Lemma 2 implies that each subgroup of $\pi_0(H)$ is finitely generated. □

Lemma 4. If H is a closed solvable subgroup of $GL_n(\mathbb{C})$, then each subgroup of $\pi_0(H)$ is finitely generated.

Proof. Let S denote the Zariski closure of H. Then S is a solvable linear algebraic group, so that $\pi_0(S)$ is finite (see e.g. [6], Theorems 3.1.1 and 3.3.1). Since H is a closed subgroup of the Lie group S, the assertion follows from Lemma 3. □
In order to proceed we need a further line of lemmas. We shall call a Lie group *linear* if it has a faithful linear representation. The following statement is of independent interest.

Proposition 5. A connected linear Lie group has a faithful linear representation with a closed image.

Proof. By [2], Theorem IV.3 a connected Lie group G is linear if and only if it is isomorphic to a semidirect product $B \rtimes H$ where B is a simply connected solvable Lie group and H is a linear reductive Lie group with compact center. We set $G = B \rtimes H$ and deduce that the commutator subgroup G' equals $(G, B) \rtimes (H, H)$. From [2], Theorem IV.5 it follows that G' is closed in G. The quotient group G/G' is a direct product $B/(G, B) \times H/(H, H) \cong B/(G, B) \times Z(H)_0/(Z(H)_0 \cap (H, H))$, where $B/(G, B)$ is a vector group and $Z(H)_0/(Z(H)_0 \cap (H, H))$ is a torus. This group has a representation mapping the vector group $B/(G, B)$ homeomorphically on a unipotent subgroup. That is, we have a representation $\rho: G \to \text{GL}(W)$ such that

$$\ker \rho = (G, B)H \quad \text{and} \quad \overline{\text{im} \rho} = \text{im} \rho,$$

the image being unipotent.

Now let $\pi: G \to \text{GL}(V)$ be a faithful linear representation and define $\zeta = \pi \oplus \rho$. We shall show that ζ has a closed image. Suppose this is not the case. Then there is an $X \in \mathfrak{g}$ such that $T \overset{\text{def}}{=} \overline{\zeta(\exp \mathbb{R}X)}$ is a torus not contained in $\zeta(G)$ (see [2], Proposition XVI.2.3 and Theorem XVI.2.4). In the Appendix we shall show that, under any representation of a connected Lie group G, the commutator subgroup G' has a closed image. Thus $\zeta(G')$ is closed and $\zeta(Z(H))$ is compact since H has a compact center. Thus $\zeta(G'Z(H)) = \zeta(G')\zeta(Z(H))$ is closed and contained in $\zeta(G)$. Accordingly, X cannot be contained in $\mathfrak{g}' + \mathfrak{z}(\mathfrak{h}) = [\mathfrak{g}, \mathfrak{b}] + \mathfrak{h}$. Thus by (1), $\exp \mathbb{R}X$ fails to be in $\ker \rho$. It follows that $\rho \circ \exp$ maps $\mathbb{R}X$ homeomorphically onto a unipotent one-parameter group. Then $\zeta \circ \exp$ maps $\mathbb{R}X$ homeomorphically as well, and that contradicts the fact that T is a torus. This contradiction proves the proposition. \(\square\)

We now complete the proof of the Main Theorem by proving the last lemma:

Lemma 6. Let G be a connected Lie group and H a closed solvable subgroup. Then H is compactly generated.

Proof. Let $Z = Z(G)$ be the center of G. Then $A \overset{\text{def}}{=} \overline{ZH}$ is a closed solvable subgroup of G containing H. By Lemma 3 for H to be compactly generated it will suffice to show that all subgroups of $\pi_0(A) = A/A_0$ are finitely generated. Let A_1 be a subgroup of A containing A_0. Then A_1 is open in A, and so A_1Z is open and thus closed in A. Therefore

$$A_1/(A_1 \cap (A_0Z)) \cong A_1Z/A_0Z.$$
By the modular law,

\[A_1 \cap (A_0 Z) = A_0 (A_1 \cap Z). \]

We have the following isomorphism of discrete groups

\[A_0 (A_1 \cap Z)/A_0 \cong (A_1 \cap Z)/(A_0 \cap (A_1 \cap Z)) = (A_1 \cap Z)/(A_0 \cap Z). \]

Taking (1), (2) and (3) together we recognize the following exact sequence

\[1 \to \frac{A_1 \cap Z}{A_0 \cap Z} \to \frac{A_1}{A_0} \to \frac{A_1 Z}{A_0 Z} \to 1. \]

In order to show that \(A_1/A_0 \) is finitely generated it therefore suffices that

(a) \((A_1 \cap Z)/(A_0 \cap Z) \) is finitely generated,

(b) \((A_1 Z)/(A_0 Z) \) is finitely generated.

Ad (a): The center \(Z \) of the connected Lie group \(G \) is compactly generated. (Indeed the fundamental group \(\pi_1(G/Z) \) is finitely generated abelian and \(\pi_0(Z) = Z/Z_0 \) is the kernel of the covering morphism \(G/Z_0 \to G/Z \) and is therefore finitely generated as a quotient of \(\pi_1(G/Z) \). Thus \(Z \) is compactly generated.) Since \(A_1 \) is open in \(A \), the group \(A_1 \cap Z \) is open in \(Z \) and thus compactly generated, and so (a) follows.

Ad (b): The adjoint representation \(\text{Ad}: G \to \text{Aut} g \subseteq \text{GL}(g) \) induces a faithful linear representation of \(G/Z \). Then by Lemma 4 and Proposition 5, \(A_1 Z/Z \), a closed solvable subgroup of \(G/Z \), is compactly generated. Then the discrete factor group \(A_1 Z/A_0 Z \cong (A_1 Z/Z)/(A_0 Z/Z) \) is finitely generated. Thus (b) is proved as well and this completes the proof of Lemma 6 and thereby the proof of the Main Theorem. \(\square \)

Appendix

In the proof of Proposition 5 we used the following

Theorem A. For any finite dimensional representation of a connected Lie group \(G \), the image of the commutator subgroup is closed.

Proof. It is no loss of generality to assume that \(G \) is simply connected. Then we have Levi decomposition \(G = R \times_\alpha S \) and \(G' = (G, R) \times S \). Let \(\pi: G \to \text{GL}(V) \) be a finite dimensional representation and let

\[V_0 = \{0\} \subseteq V_1 \subseteq \cdots \subseteq V_n = V \]

be a maximal flag of \(G \)-submodules of \(V \) such that all quotient modules \(V_{j+1}/V_j \) are simple. Since \(\pi|S \) is a semisimple representation, we may choose \(S \)-invariant decompositions \(V_j = V_{j-1} \oplus W_j \). Then

\[\pi(G) \subseteq G_F \overset{\text{def}}{=} \{ g \in \text{GL}(V) : (\forall j) gV_j = V_j \}, \]
and we have a semidirect decomposition \(G_F = U_F \rtimes L_F \), where

\[
U_F = \{ g \in \text{GL}(V) : (\forall j)(g - 1)(V_j) = V_{j-1} \}
\]

and \(L_F = \prod_j \text{GL}(W_j) \). Note also that \(\pi(S) \subseteq L_F \). Furthermore, Theorem I.5.3.1 of [1] implies that the ideal \([g, r]\) acts trivially on each simple \(g \)-module and so \(\pi((G, R)) \subseteq U_F \). Hence \(\pi((G, R)) \) is a unipotent analytic group and is therefore closed. Moreover, \(\pi(S) \) is closed (see [2], Chapter XVI) and this shows that \(\pi(G') \cong \pi((G, R)) \rtimes \pi(S) \) is closed.

The proof of Theorem A can be derived from the theory of algebraic groups, since the commutator algebra of a linear Lie algebra is the Lie algebra of an algebraic group [6]. We gave a more direct proof inspired by the discussion of linear Lie groups in [2].

References

[1] Bourbaki, N., Groupes et algèbres de Lie, Chap. I-III, reprinted by Springer-Verlag, Berlin etc., 1989.

[2] Hochschild, G., The Structure of Lie Groups, Holden Day, San Francisco, 1965.

[3] Hofmann, K. H. and S. A. Morris, The Structure of Compact Groups, W. DeGruyter, Berlin 1998 and 2006.

[4] —, The Lie Theory of Connected Pro-Lie Groups, European Mathematical Society Publishing House, Zürich, 2007.

[5] Morris, S. A., Locally compact abelian groups and the variety of topological groups generated by the reals, Proc. Amer. Math. Soc. 34 (1972), 290–292.

[6] Onishchik, A. L., and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin etc., 1990.

[7] Raghunathan, M. S., “Discrete Subgroups of Lie Groups,” Ergebnisse der Math. 68, Springer, Berlin etc., 1972.

[8] Ross, K., Closed subgroups of compactly generated LCA group are compactly generated, http://www.uoregon.edu/~ross1/subgroupsofCGLCA6.pdf.

[9] Yamabe, H., *On the Conjecture of Iwasawa and Gleason*, Ann. of Math. 58 (1953), 48–54.

[10] —, *Generalization of a theorem of Gleason*, Ann. of Math. 58 (1953), 351–365.