Targeting cannabinoid signaling for peritoneal dialysis-induced oxidative stress and fibrosis

Chih-Yu Yang, Yat-Pang Chau, Ann Chen, Oscar Kuang-Sheng Lee, Der-Cherng Tarng, An-Hang Yang

Abstract

Long-term exposure to bioincompatible peritoneal dialysis (PD) solutions frequently results in peritoneal fibrosis and ultrafiltration failure, which limits the life-long use of and leads to the cessation of PD therapy. Therefore, it is important to elucidate the pathogenesis of peritoneal fibrosis in order to design therapeutic strategies to prevent its occurrence. Peritoneal fibrosis is associated with a chronic inflammatory status as well as an elevated oxidative stress (OS) status. Beyond uremia per se, OS also results from chronic exposure to high glucose load, glucose degradation products, advanced glycation end products, and hypertonic stress. Therapy targeting the cannabinoid (CB) signaling pathway has been reported in several chronic inflammatory diseases with elevated OS. We recently reported that the intra-peritoneal administration of CB receptor ligands, including CB1 receptor antagonists
and CB₁ receptor agonists, ameliorated dialysis-related peritoneal fibrosis. As targeting the CB signaling pathway has been reported to be beneficial in attenuating the processes of several chronic inflammatory diseases, we reviewed the interaction among the cannabinoid system, inflammation, and OS, through which clinicians ultimately aim to prolong the peritoneal survival of PD patients.

Key words: Reactive oxygen species; Peritoneal fibrosis; Peritoneal dialysis; Cannabinoid signaling; Oxidative stress

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Long-term exposure to bioincompatible peritoneal dialysis (PD) solutions frequently results in peritoneal fibrosis and ultrafiltration failure, which limits the life-long use of PD therapy. Beyond uremia per se, oxidative stress (OS) also results from chronic exposure to high glucose load, glucose degradation products, advanced glycation end products, and hypertonic stress in PD patients. Therapy targeting the cannabinoid signaling pathway has been reported in several chronic inflammatory diseases with elevated OS. In this article, we review the interaction among the cannabinoid system, inflammation, and OS, through which the health-care professionals ultimately aim to prolong the peritoneal survival of PD patients.

Yang CY, Chau YP, Chen A, Lee OKS, Tarng DC, Yang AH. Targeting cannabinoid signaling for peritoneal dialysis-induced oxidative stress and fibrosis. World J Nephrol 2017; 6(3): 111-118 Available from: URL: http://www.wjgnet.com/2220-6124/full/v6/i3/111.htm DOI: http://dx.doi.org/10.5527/wjn.v6.i3.111

REVIEW ARTICLE

As chronic kidney disease progresses to end-stage renal disease, uremia ensues requiring the use of long-term dialysis therapy. Both uremia and dialysis give rise to elevated oxidative stress (OS)1-4, which is detrimental to the patients’ health. A recent survey indicated that approximately 11% of dialysis patients undergo peritoneal dialysis (PD) therapy worldwide, estimating to be more than 272,000 patients with an 8% annual growth rate globally5. Beyond uremia per se, PD patients are at an increased risk of inflammation and OS, both systemically and locally, because of the chronic exposure to high glucose load6-15, advanced glycosylated end products (AGEs)16-18, glucose degradation products (GDPs)18-21, and hypertonic stress22-24. After long-term exposure to various GDPs and AGEs, mesothelial cells of PD patients undergo a de-differentiation process, followed by peritoneal fibrosis and ultrafiltration failure25-29. In a large peritoneal biopsy study, peritoneal tissue samples from 212 subjects including healthy controls, hemodialysis and PD patients were examined. They found that peritoneal fibrosis was absent in normal individuals but was present in 28% of samples from hemodialysis patients and up to 56% of biopsies from PD patients30. Although whether a uremia-induced chronic inflammation status causes OS or OS leads to a proinflammatory process in uremic patients remains uncertain31, therapeutic strategies for peritoneal damage targeting OS have been reported, such as antioxidants12,18,32,33, scavenging agents for reactive oxygen species (ROS)34-36 and the trace element selenium37, and gaseous mediators38,39.

Cannabinoid (CB) signaling has also been reported to be effective in treating a variety of disease entities with elevated OS, including diabetic macrovascular and microvascular complications40-50, cardiomyopathies51-57, liver injury and fibrosis58-64, cholangiopathies65, colitis66,70, drug nephrotoxicity68,69, and autoimmune diseases70 (Table 1). Since the peritoneum of long-term PD patients is under a chronic pro-inflammatory status, it is possible that the CB receptor (CBR) signaling system may be inappropriately modulated. In this article, we reviewed the sources and influence of OS in PD patients, and the therapeutic rationale and mechanisms of targeting the CB signaling system to reduce OS.

HIGH GLUCOSE AND GDP INCREASE OS

Uremia per se and dialysis therapy both lead to a pro-oxidant status, which can lead to increased OS in patients receiving hemodialysis or PD therapy1-4. In particular, PD patients are exposed to hypertonic glucose solution on a long-term basis, which is not only toxic to mesothelial cells6,71 but also promotes immune cell apoptosis72. Moreover, the high-temperature sterilization process produces GDPs such as methylglyoxal (MGO), acetaldehyde, formaldehyde, and 3-deoxyglucosone in PD dialysate73-76. GDPs possess strong oxidative properties and toxicity, and can induce AGEs77. In addition, it has been demonstrated that MGO, a key GDP, in PD dialysates inhibits the insulin signaling pathway, resulting in increased endogenous ROS production and subsequent cell injury78. Furthermore, 2-33 μmol/L of MGO has been reported to be present in commercial glucose-based PD fluids79,80.

After long-term exposure to various GDPs and AGEs, mesothelial cells undergo a de-differentiation process and peritoneal fibrosis ensues25-29. Furthermore, these sites of chronic inflammatory have been associated with progressive peritoneal angiogenesis26,81-83, and finally a reduction in the efficacy of PD. However, therapeutic strategies for these pathogenic processes have not been fully developed84, and so some PD patients still develop peritoneal fibrosis or even encapsulating peritoneal sclerosis, a disastrous and highly fatal condition.

Low GDP PD dialysates can prevent peritoneal injury by PD-induced OS. However, the relatively high cost limits their full implementation. Moreover, even though the concentration of GDPs in the new generation of PD dialysates is low, it still exists84-86. Meanwhile, as long as the PD dialysate is glucose-based, glucose load per se results in ROS production86-91. Fortunately,
Our recent study suggested that using CBR ligands as an additive in PD dialysate may be a promising solution to treat dialysis-induced peritoneal inflammation[89]. There are two subtypes of CBRs, type 1 CB receptor (CB1R) and type 2 CB receptor (CB2R). The former mainly exists in the brain and regulates inhibitory neurotransmitters on neurons through the psychoactive drug cannabis or endocannabinoids such as anandamide. Nevertheless, it has recently been found that CB2R also exists in tissues other than that of the central nervous system, and that its function varies in different organs[73]. CB1R antagonists and CB2R agonists have been shown to decrease inflammation and OS[87], and previous studies have also shown that CBR plays an important role in liver fibrogenesis[50-54, 90-96]. Moreover, hepatic fibrosis can be rescued by knockout of the CB1 gene or by administration of the CB1R antagonist[93,95,96]. In contrast, CB2R is located on immune cells and modulates cytokine release[95,98]. Recent studies have shown that the activation of CB2R ameliorates liver fibrogenesis through inhibiting myofibroblast cell proliferation[96,99]. Furthermore, CBR ligands such as cannabidiol have been proven to be well-tolerated without adverse effects when administered to humans on a long-term basis[100].

Only a few studies have been published on pharmacological modulation targeting peritoneal inflammation and fibrogenesis using CBR ligands[100]. Our recent study indicated that the pharmacological effects of CBR ligands against dialysate-induced peritoneal fibrosis may involve a diverse signaling system including the TGF-β1-P13K pathway[89], and that this offers a promising therapeutic strategy for the prevention of peritoneal fibrosis in patients receiving long-term PD. Therefore, we suggest that CBR signaling might play an important role in the patho-

Disease model	Species	Ref.
In vivo	Human, rat, mouse	[49,50]
In vivo	Mouse	[43,44]
In vivo	Mouse, rat	[45-47]
In vivo	Mouse, rat	[40,41]
In vitro	Mouse	[57]
In vitro	Mouse	[55]
In vitro	Human cardiomyocyte	[56]
In vitro	Human cardiomyocyte	[57]
In vitro	Human cardiomyocyte	[56]
In vitro	Human cardiomyocyte	[57]
In vitro	Human cardiomyocyte	[58,60,63,64]
In vitro	Mouse	[66,69]
In vitro	Mouse	[59]
In vitro	Mouse	[59]
In vitro	Mouse	[62]
In vitro	Human, rat, mouse	[58,60,63,64]
In vitro	Mouse	[65]
In vitro	Mouse cholangiocyte	[65]
In vitro	Mouse	[66]
In vitro	Mouse	[67]
In vitro	Mouse	[70]

Table 1 Summary of cannabinoid signaling on modulation of diseases with increased oxidative stress

THE CANNABINOID SIGNALING PATHWAY AND ITS MOLECULAR MECHANISMS ON INFLAMMATION AND FIBROSIS

In addition to low GDP PD dialysates, non-glucose-based PD dialysates such as icodextrin are free of GDPS and have been shown to be beneficial in fluid control and small solute clearance[87]. It has also been reported that peritoneal OS is reduced when using icodextrin compared with conventional PD dialysates[88].

However, other studies have reported conflicting results in that the osmotic stress, a type of stress resulted from hypertonic PD dialysate exposure, leads to oxidative DNA damage of peritoneal mesothelial cells through lipid peroxidation. Such peritoneal oxidative injury may then lead to mesothelial cell death either through apoptosis or necrosis[9,22-24]. Therefore, persistent efforts are warranted to develop an optimal solution.

HYPERTONIC DIALYSATE-INDUCED OSMOTIC STRESS AND OXIDATIVE INJURY

In addition to low GDP PD dialysates, non-glucose-based PD dialysates such as icodextrin are free of GDPS and have been shown to be beneficial in fluid control and small solute clearance[87]. It has also been reported that peritoneal OS is reduced when using icodextrin compared with conventional PD dialysates[88].

However, other studies have reported conflicting results in that the osmotic stress, a type of stress resulted from hypertonic PD dialysate exposure, leads to oxidative DNA damage of peritoneal mesothelial cells through lipid peroxidation. Such peritoneal oxidative injury may then lead to mesothelial cell death either through apoptosis or necrosis[9,22-24]. Therefore, persistent efforts are warranted to develop an optimal solution.

THE CANNABINOID SIGNALING PATHWAY AND ITS MOLECULAR MECHANISMS ON INFLAMMATION AND FIBROSIS

Our recent study suggested that using CBR ligands as an additive in PD dialysate may be a promising solution to treat dialysis-induced peritoneal inflammation[89]. There are two subtypes of CBRs, type 1 CB receptor (CB1R) and type 2 CB receptor (CB2R). The former mainly exists in the brain and regulates inhibitory neurotransmitters on neurons through the psychoactive drug cannabis or endocannabinoids such as anandamide. Nevertheless, it has recently been found that CB2R also exists in tissues other than that of the central nervous system, and that its function varies in different organs[73]. CB1R antagonists and CB2R agonists have been shown to decrease inflammation and OS[87], and previous studies have also shown that CBR plays an important role in liver fibrogenesis[50-54, 90-96]. Moreover, hepatic fibrosis can be rescued by knockout of the CB1 gene or by administration of the CB1R antagonist[93,95,96]. In contrast, CB2R is located on immune cells and modulates cytokine release[95,98]. Recent studies have shown that the activation of CB2R ameliorates liver fibrogenesis through inhibiting myofibroblast cell proliferation[96,99]. Furthermore, CBR ligands such as cannabidiol have been proven to be well-tolerated without adverse effects when administered to humans on a long-term basis[100].

Only a few studies have been published on pharmacological modulation targeting peritoneal inflammation and fibrogenesis using CBR ligands[100]. Our recent study indicated that the pharmacological effects of CBR ligands against dialysate-induced peritoneal fibrosis may involve a diverse signaling system including the TGF-β1-P13K pathway[89], and that this offers a promising therapeutic strategy for the prevention of peritoneal fibrosis in patients receiving long-term PD. Therefore, we suggest that CBR signaling might play an important role in the patho-

Table 1 Summary of cannabinoid signaling on modulation of diseases with increased oxidative stress
genesis of dialysis-induced peritoneal inflammation and ROS production, which required further studies.

CELLULAR SOURCES OF REACTIVE OXYGEN SPECIES IN PD-INDUCED FIBROSIS

In vitro data showed that, upon GDP and AGE exposure during PD, cellular OS of human peritoneal mesothelial cells were induced through activation of protein kinase C, nicotinamide adenine dinucleotide phosphate oxidase, and mitochondrial metabolism. In turn, the generated ROS upregulate fibronectin expression by mesothelial cells\(^7\). An in vivo study demonstrated 8-hydroxy-2' deoxyguanosine (8-OHdG)-positive cells, indicating cells with increased OS, were observed throughout the fibrotic peritoneal tissue. Further immunofluorescent analysis revealed that 8-OHdG-positive cells also co-stained with mesothelin (mesothelial cells), CD68 (macrophages), CD31 (vascular endothelial cells), and α-smooth muscle actin (fibroblasts)\(^34\), suggesting that OS was also increased in cells other than mesothelial cells. However, whether these fibroblasts with increased cellular OS were derived from an epithelial-mesenchymal transition (EMT)-like process of mesothelial cells is unknown.

As aforementioned, it has been reported that CBR is located on immune cells and modulates cytokine release\(^97,98\). The CBR expression of human lymphocytes was downregulated by TGF-β stimulation\(^101\), which was not seen in human mesothelial cells\(^89\). These findings suggest that TGF-β1 might have different physiological function in different cell types. Meanwhile, CBR activation might exert its anti-fibrotic effects not directly to cells undergoing fibrotic change but indirectly through modulating the immune cells. Such interaction among different types of cells underlines the pathophysiologically role of CBR signaling pathway in uremic and/or dialysis injuries, which is partly supported by a recent study showing that systemic administration of interleukin-10, an anti-inflammatory cytokines secreted by M2 macrophages, significantly reduced fibrous peritoneal thickening\(^102\). Therefore, current evidence indicates that beyond mesothelial cells, macrophages and vascular endothelial cells also contribute to ROS production during PD-induced peritoneal fibrosis.

THERAPEUTIC POTENTIAL OF CANNABINOID SIGNALING ON PD-INDUCED OS AND INFLAMMATION

It has been reported that modulating the CB signaling system is beneficial in treating various diseases resulting from increased OS including diabetic macrovascular and microvascular complications\(^41,43,46,57\), cardiomyopathies\(^51,55-57\), liver injury and fibrosis\(^58,60-64,103\), cholangiopathies\(^65\), colitis\(^66,67\), drug nephrotoxicity\(^58,69\), and autoimmune diseases\(^70\). At present, evidences of the therapeutic benefit of CBR ligands on peritoneal OS are lacking and deserve investigations.

Furthermore, recent studies have also shown significant anti-fibrogenic effects of CBR ligands in the liver\(^91-93,95,96,99\). However, the effects of CBR ligands on peritoneal tissue have rarely been studied, with only one recent study reporting that the CBR agonist reduced the number of peritoneal macrophages in a murine peritonitis model induced by thioglycollate, an AGE derivative\(^104\). Furthermore, we recently demonstrated that both the selective CB1R antagonist (AM281) and the selective CB2R agonist (AM1241) were able to ameliorate MGO-induced peritoneal fibrosis in vivo, indicating that pharmacological modulation of CBR may be a feasible approach to optimize the biocompatibility of peritoneal dialysis fluid. However, ACEA, a CB1R agonist, has been shown to have an opposite effect to AM281 with regards type I collagen

Figure 1 Peritoneal dialysis-induced oxidative stress and peritoneal fibrosis. PD: Peritoneal dialysis; GDPs: Glucose degradation products; EMT: Epithelial-mesenchymal transition; ROS: Reactive oxygen species.

Uremia per se PD per se High glucose, GDPs Osmotic stress Advanced glycation end products Peritoneal inflammation EMT-like de-differentiation ROS Anti-oxidants ROS scavengers Cannabinoids (?) Anti-inflammation Cannabinoids Peritoneal fibrosis

Yang CY et al. PD-induced oxidative stress
expression in cultured mesothelial cells, indicating specific anti-fibrogenic activity of the CB1/R antagonist [109].

During peritoneal fibrosis, mesothelial cells undergo a process of myofibroblastic conversion. This is a complex process which has been reported to be associated with increased levels of TGF-β1, leptin, metalloproteinase-2, vascular endothelial growth factor, Snail, and the receptor for advanced glycosylated end products [79,105,106]. TGF-β1 has long been known to play crucial roles in the fibrogenic process of the peritoneum [107,108]. A previous study demonstrated that a high glucose load stimulates the production of TGF-β1 in peritoneal mesothelial cells [109]. Moreover, AGEs have been shown to increase the expression of TGF-β1, contribute to the development of sub-mesothelial fibrosis [108], and significantly contribute to increases in peritoneal OS. Meanwhile, our recent study showed that such EMT-like processes can be attenuated by the selective CB1/R antagonist, AM281 [88]. It is quite possible that OS is involved in the CBR-related pharmacological effects against peritoneal fibrosis. However, the exact pathogenic mechanisms between the CBR signaling pathway and uremic and/or dialysis injuries remain largely unknown.

CONCLUSION

Compared with hemodialysis patients, the chronic use of PD dialysate exposes PD patients to additional OS. The influence of such OS on the patients’ health can be both systemic and local, leading to cardiovascular diseases and peritoneal fibrosis, respectively. It has been shown that OS plays a critical role in the pathogenesis of chronic inflammatory diseases, and therefore targeting the CB signaling system may offer a potential therapeutic strategy to reduce dialysis-induced peritoneal fibrosis and eventually to prolong the peritoneal survival of PD patients.

REFERENCES

1. Marques de Mattos A, Marino LV, Ovidia PP, Jordão AA, Almeida CC, Chiarello PG. Protein oxidative stress and dyslipidemia in dialysis patients. Ther Apher Dial 2012; 16: 68-74 [PMID: 22248198 DOI: 10.1111/j.1744-9987.2011.01009.x]
2. Diepeveen SH, Verhoeven GH, van der Palen J, Dikkeschei BL, van TIts BL, Kolsters G, Offerman JJ, Bilo HJ, Stalenhoef AF. The effect of the initiation of renal replacement therapy on lipid profile and mitochondrial DNA damage in peritoneal mesothelial cells. ZhongNan DaXue XueBao YiXue Ban 2013; 38: 1085-1091 [PMID: 24316930]
3. Gotloib L, Wajsbrov V, Shostak A. Acute oxidative stress induces peritoneal hyperpermeability, mesothelial loss, and fibrosis. J Lab Clin Med 2004; 143: 31-40 [PMID: 14749683 DOI: 10.1016/j.lab.2003.09.005]
4. Duan S, Yu J, Liu Q, Wang Y, Pan P, Xiao L, Ling G, Liu F. Epithelial-to-mesenchymal transdifferentiation of peritoneal mesothelial cells mediated by oxidative stress in peritoneal fibrosis rats. ZhongNan DaXue XueBao YiXue Ban 2011; 36: 34-43 [PMID: 21311137]
5. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kameda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000; 404: 787-790 [PMID: 10783895 DOI: 10.1038/35008121]
6. Ishibashi Y, Sugimoto T, Ichikawa Y, Akatsuka A, Miyata T, Nagakura M, Tagawa H, Kurokawa K. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit Dial Int 2002; 22: 11-21 [PMID: 11929138]
7. Yim YM, Yim HS, Lee C, Kang SO, Check PB. Protein glycation: creation of catalytic sites for free radical generation. Ann N Y Acad Sci 2001; 928: 48-53 [PMID: 11795527 DOI: 10.1111/j.1749-6632.2001.tb05634.x]
8. Wautier MP, Chappey O, Cordia S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metabol 2001; 280: E685-E694 [PMID: 11287350]
9. Noh H, Kim JS, Han HK, Lee GT, Song JS, Chung SH, Jeon JS, Ha H. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int 2006; 69: 2022-2028 [PMID: 16641917 DOI: 10.1038/sj.ki.5001506]
10. Müller-Krebs S, Kühn LP, Zeier B, Gross ML, Wieslander A, Haug U, Zeier M, Schwenger V. Glucose degradation products result in cardiovascular toxicity in a rat model of renal failure. Perit Dial Int 2010; 30: 35-40 [PMID: 20056977 DOI: 10.3747/pdi.2009.00031]
11. Diaz-Buxo JA, Gotloib L. Peritoneal dialysis solutions: at a crossroad. Minerva Urol Nefrol 2006; 58: 145-160 [PMID: 16767068]
12. Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int 2003; 63: 298-305 [PMID: 12472796 DOI: 10.1046/j.1523-1755.2003.00705.x]
13. Gotloib L, Wajsbrov V, Shostak A. Mesothelial dysplastic changes and lipid peroxidation induced by 7.5% icodextrin. Nephron 2002;
34. Kotliov I, Wajsbrod V, Shostak A. Icodextrin-induced lipid peroxidation disrupts the mesothelial cell cycle engine. Free Radic Biol Med 2003; 34: 419-428 [PMID: 12566607 DOI: 10.1016/S0891-5849(02)01296-0]

24. De Vriese AS, Tilton RG, Motter S, Lameire NH. Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uromaia. Nephrol Dial Transplant 2006; 21: 2549-2555 [PMID: 16757496 DOI: 10.1093/ndt/gfl271]

23. Jiménez-Heffernan JA, Aguilera A, Aroceia LS, Lara-Pezzi E, Bajo MA, del Peso G, Ramírez G, Malagüelo C, Sánchez-Tomero JA, Alvarez V, López-Cabrera M, Selgas R. Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis. Virchows Arch 2004; 444: 247-256 [PMID: 14749929 DOI: 10.1007/s00428-003-0963-3]

22. Radisky DC. Epithelial-mesenchymal transition. J Cell Sci 2005; 118: 4325-4326 [PMID: 16179065 DOI: 10.1242/jcs.02552]

21. Yáñez-Mó M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Bátkai S, Rajesh M, Czifra N, Harvey-Strihou C, Kurokawa K. Efficient in vitro lowering of carbonyl stress by the glyoxalase system in conventional glucose peritoneal dialysis patients: a novel approach to suppress oxidative stress in the peritoneal cavity. Med Gas Res 2013; 3: 14 [PMID: 23816239 DOI: 10.1002/mag.20091-3-14]

20. Steffens S, Veillard NR, Arnaud C, Pelli G, Burger F, Staab C, Karsak M, Zimmer A, Frossard JL, Mach F. Low dose oral cannabinnoid therapy reduces progression of atherosclerosis in mice. Nature 2005; 434: 782-786 [PMID: 15815632 DOI: 10.1038/nature03389]

19. Wheel AJ, Cipriano M, Fowler CJ, Randall MD, O’Sullivan S. Cannabidiol improves vasorelaxation in Zucker diabetic fatty rats through cyclooxygenase activation. J Pharmacol Exp Ther 2014; 351: 457-466 [PMID: 25212218 DOI: 10.1124/jpet.114.217125]

18. Wang D, Couture R, Hong Y. Activated microgria in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 2014; 728: 59-66 [PMID: 24508519 DOI: 10.1016/j.euphar.2014.01.057]

17. El-Remessy AB, Rajesh M, Mukhopadhyay P, Horváth B, Patel V, Al-Gayyar MM, Pillai BA, Pacher P. Cannabinoid 1 receptor activation contributes to vascular inflammation and cell death in a mouse model of diabetic retinopathy and a human retinal cell line. Diabetologia 2011; 54: 1567-1578 [PMID: 21373835 DOI: 10.1007/s00125-011-2061-4]

16. El-Remessy AB, Al-Shabraawy M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol 2006; 168: 235-244 [PMID: 16400026 DOI: 10.2353/ajpath.2006.050500]

15. Ulugol A, Karadag HC, Ipci Y, Tamer M, Dokmeci I. The effect of WIN 55,212-2, a cannabinoid agonist, on tactile allodynia in diabetic rats. Neurosci Lett 2004; 371: 167-170 [PMID: 15519750 DOI: 10.1016/j.neulet.2004.08.061]

14. Toth CC, Jedrzejewski NM, Ellis CL, Frey WH. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Mol Pain 2010; 6: 16 [PMID: 20256333 DOI: 10.1186/1744-8609-6-16]

13. Ellington HC, Cotter MA, Cameron NE, Ross RA. The effect of cannabinoids on capsaicin-evoked calcitonin gene-related peptide (CGRP) release from the isolated paw skin of diabetic and non-diabetic rats. Nephrol Dial Transplant 2002; 17: 921-926 [PMID: 11588242 DOI: 10.1093/ndt/17.4.921]

12. Nakayama M, Iizumi G, Nemoto Y, Shibata K, Hasegawa T, Numata M, Wang K, Kawaguchi Y, Hosoya T. Suppression of N(epsilon)-(carboxymethyl)lysine generation by the antioxidant N-acetylcysteine. Perit Dial Int 1999; 19: 207-210 [PMID: 10433156]

11. Wakabayashi K, Hamada C, Kanda R, Nakano T, Ito H, Horikoshi S, Tomino Y. Oral Astaxanthin Supplementation Prevents Peritoneal Fibrosis in Rats. Perit Dial Int 2014; 35: 506-516 [PMID: 25292409 DOI: 10.3747/pdi.2013.00317]

10. Zareie M, Tangelder GJ, ter Wee PM, Hekking LH, van Lambalgen AA, Keuning ED, Schadee-Eemstens IL, Schalkwijk CG, Beelen RH, van den Born J. Beneficial effects of aminoguanidine on peritoneal microrcirculation and tissue remodelling in a rat model of PD. Nephrol Dial Transplant 2005; 20: 2783-2792 [PMID: 16024206 DOI: 10.1093/ndt/gfi138]

9. Inagi R, Miyata T, Ueda Y, Yoshino A, Nangaku M, van Ypersele de Strihou C, Kurokawa K. Efficient in vivo loss of carbonyl stress by the glyoxalase system in conventional glucose peritoneal dialysis fluid. Kidney Int 2002; 62: 679-687 [PMID: 12110033 DOI: 10.1046/j.1523-1755.2002.00488.x]

8. Liu J, Zeng L, Zhao Y, Zhu B, Ren W, Wu C. Selenium suppresses lipopolysaccharide-induced fibrosis in peritoneal mesothelial cells through inhibition of epithelial-mesenchymal transition. Biol Trace Elem Res 2014; 161: 202-209 [PMID: 25108639 DOI: 10.1007/s12011-014-0091-8]

7. Lu Y, Shen H, Shi X, Feng S, Wang Z, Shi Y. Hydrogen sulfide ameliorates high-glucose toxicity in rat peritoneal mesothelial cells by attenuating oxidative stress. Nephron Exp Nephrol 2014; 126: 157-165 [PMID: 24863338 DOI: 10.1159/000358436]

6. Terawaki H, Hayashi Y, Zhu WJ, Matsuyama Y, Terada T, Kabayama S, Watanabe T, Era S, Sato B, Nakayama M. Transperitoneal administration of dissolved hydrogen for peritoneal dialysis patients: a novel approach to suppress oxidative stress in the peritoneal cavity. Med Gas Res 2013; 3: 14 [PMID: 23816239 DOI: 10.1002/mag.20091-3-14]

5. Steffens S, Veillard NR, Arnaud C, Pelli G, Burger F, Staab C, Karsak M, Zimmer A, Frossard JL, Mach F. Low dose oral cannabinnoid therapy reduces progression of atherosclerosis in mice. Nature 2005; 434: 782-786 [PMID: 15815632 DOI: 10.1038/nature03389]
May 6, 2017 | Volume 6 | Issue 3 |

Yang CV et al. PD-induced oxidative stress
peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. *J Am Soc Nephrol* 2007; 18: 2004-2013 [PMID: 17568021 DOI: 10.1681/ASN.2006111292]

82 Staveniuter AW, Schilte MN, Ter Wee PM, Beelen RH. Angio-
genesis in peritoneal dialysis. *Kidney Blood Perox Res* 2011; 34: 245-252 [PMID: 21691127 DOI: 10.1159/000326953]

83 Schilte MN, Celie JW, Wee PM, Beelen RH, van den Born J. Factors contributing to peritoneal tissue remodeling in peritoneal dialysis. *Perit Dial Int* 2009; 29: 605-617 [PMID: 19910560]

84 Jörres A, Bender TO, Witowski J. Glucose degradation products and the peritoneal mesothelium. *Perit Dial Int* 2000; 20 Suppl 5: S19-S22 [PMID: 11229607]

85 Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: Effects on the peritoneal membrane. *Kidney Int* 2004; 66: 1257-1265 [PMID: 15327425 DOI: 10.1111/j.1523-1755.2004.00879.x]

86 Mittelmaier S, Niwa T, Pischetsrieder M. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis. *J Ren Nutr* 2012; 22: 181-185 [PMID: 22200439 DOI: 10.1053/j.jrn.2011.10.014]

87 Qi H, Xu C, Yan H, Ma J. Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. *Perit Dial Int* 2011; 31: 179-188 [PMID: 21119069 DOI: 10.3747/pdi.2009.00264]

88 Canepa A, Verrina E, Perfumo F. Use of new peritoneal dialysis solutions in children. *Kidney Int Suppl* 2008; 108: S137-S144 [PMID: 18379537 DOI: 10.1111/j.1523-1755.2008.00526.x]

89 Yang CY, Chau YP, Lee HT, Kuo HY, Lee OK, Yang AH. Cannabinoid receptors as therapeutic targets for dialysis-induced peritoneal fibrosis. *Am J Nephrol* 2013; 37: 50-58 [PMID: 1990345726]

90 Bátkai S, Járai Z, Wagner JA, Goparaju SK, Liu J, Yang CY, Kusano E, Yanagiba S, Miyata Y, Ando Y, Muto S, Lagrue-Oertza M, Ortiz A, Selgas R. Pharmacological modulation of peritoneal injury induced by dialysis fluids: is it an option? *Nephrol Dial Transplant* 2012; 27: 478-481 [PMID: 21965583 DOI: 10.1093/ndt/gfr543]

91 Gardner B, Zu LX, Sharma S, Liu Q, Makriyannis A, Taskin DP, Dabinett SM. Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-beta. *Biochem Biophys Res Commun* 2002; 290: 91-96 [PMID: 11779138 DOI: 10.1006/bbrc.2001.6179]

92 Onishi A, Akimoto T, Urabe M, Hirahara I, Muto S, Ozawa K, Nagata D, Kusano E. Attenuation of methylglyoxal-induced peritoneal fibrosis: immunomodulation by interleukin-10. *Lab Invest* 2015; 95: 1353-1362 [PMID: 26367488 DOI: 10.1038/lab.2015.110]

93 Siegmund SV, Uchimania H, Osawa Y, Brenner DA, Schwabe RF. Anandamide induces necrosis in primary hepatic stellate cells. *Hepatology* 2005; 41: 1085-1095 [PMID: 15841466 DOI: 10.1002/hep.20667]

94 Willecke F, Zeschky K, Ortiz Rodriguez A, Colberg C, Auwärter V, Kneisel S, Hutter M, Ložkin A, Hoppe N, Wolf D, von zur Mühlen C, Moser M, Hilgenfort I, Bode C, Zürflh A. Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. *PLoS One* 2011; 6: e19405 [PMID: 21541300 DOI: 10.1371/journal.pone.0019405]

95 Hirahara I, Kusano E, Yanagiba S, Miyata Y, Ando Y, Muto S, Asano Y. Peritoneal injury by methylglyoxal in peritoneal dialysis. *Perit Dial Int* 2006; 26: 380-392 [PMID: 16722033]

96 Yang AH, Huang SW, Chen JY, Lin JK, Chen CY. Leptin antagonist of endocannabinoid CB1 receptor in a rat model of CCl4-induced advanced cirrhosis. *Lab Invest* 2012; 92: 384-395 [PMID: 22184091 DOI: 10.1038/lab.2011.191]

97 Yang Y, Lin HC, Huang YT, Lee TY, Hou MC, Wang YW, Lee FY, Lee SD. Effect of chronic CB1 cannabinoid receptor antagonism on livers of rats with biliary cirrhosis. *Clin Sci (Lond)* 2007; 112: 533-542 [PMID: 17167248 DOI: 10.1046/j.1365-2176.2006.06206.x]

98 Denmark DG, Mollerman A. Cannabinoid signalling. *Life Sci* 2006, 78: 549-563 [PMID: 16109430 DOI: 10.1016/j.lfs.2005.05.055]

99 Pertwee RG. Cannabinoid pharmacology: the first 66 years. *Br J Pharmacol* 2006; 147 Suppl 1: S163-S171 [PMID: 16420100 DOI: 10.1038/sj.bjp.0706406]

100 Montecucco F, Burger F, Mach F, Steffens S. CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. *Am J Physiol Heart Circ Physiol* 2008; 294: H1145-H1155 [PMID: 18177818]

101 González-Mato GT, Areola LS, López-Cabrera M, Ortega M, Ortiz A, Selgas R. Pharmacological modulation of peritoneal injury induced by dialysis fluids: is it an option? *Nephrol Dial Transplant* 2012; 27: 478-481 [PMID: 21965583 DOI: 10.1093/ndt/gfr543]
