MOLECULAR DISTRIBUTION IN THE SPIRAL ARM OF M51

YOSHIMASA WATANABE1, NAMI SAKAI1,2, KAZUO SORAI3, JUNKO UEDA4,5, AND SATOSHI YAMAMOTO1

1 Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; nabe@taurus.phys.s.u-tokyo.ac.jp
2 RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
3 Department of Physics/Department of Cosmoscience, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
4 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2015 November 4; accepted 2016 January 25; published 2016 March 8

ABSTRACT

Molecular line images of 13CO, C18O, CN, CS, CH$_3$OH, and HNC are obtained toward the spiral arm of M51 at a 7$''$ × 6$''$ resolution with the Combined Array for Research in Millimeter-wave Astronomy. Distributions of the molecules averaged over a 300 pc scale are found to be almost similar to one another and to essentially trace the spiral arm. However, the principal component analysis shows a slight difference of distributions among molecular species, particularly for CH$_3$OH and HNC. These two species do not correlate well with the star formation rate, implying that they are not enhanced by local star formation activities but by galactic-scale phenomena such as spiral shocks. Furthermore, the distributions of HNC and CH$_3$OH are found to be slightly different, and their origins deserve further investigation. The present results provide us with an important clue for understanding the 300 pc scale chemical composition in the spiral arm and its relation to galactic-scale dynamics.

Key words: astrochemistry – galaxies: individual (M51) – galaxies: ISM – galaxies: spiral

1. INTRODUCTION

Recently, various molecular species have been readily detected in nearby galaxies owing to rapid improvements in sensitivities of radioastronomical observations, and the chemistry of molecular gas in external galaxies has attracted more attention of astronomers than before. So far, about 60 molecular species have been identified in external galaxies. Chemical studies for external galaxies have been mostly focused on nuclear regions, which usually give bright molecular emissions. Spectral line surveys have been extensively conducted in such regions to characterize the chemical nature of molecular gas (e.g., Martín et al. 2006; Aladro et al. 2011, 2013, 2015; Costagliola et al. 2011; Nakajima et al. 2011; Snell et al. 2011). The distributions of various molecular species around the nuclear regions have been revealed with radio interferometers such as ALMA, and they are used to investigate peculiar physical states of the nuclear regions (e.g., Izumi et al. 2013; Sakamoto et al. 2014; Takano et al. 2014; Martín et al. 2015; Meier et al. 2015; Nakajima et al. 2015).

On the other hand, there are relatively few chemical studies in the disk regions of external galaxies, because intensities of molecular line emissions are usually much weaker there than in the galactic nuclei. Meier & Turner (2005, 2012) imaged distributions of about 10 molecular species in the nuclear and bar regions of IC 342 and Maffei 2 with the OVRO and BIMA, and revealed significant chemical differentiation among giant molecular clouds (GMCs). For instance, CH$_3$OH, HNCO, and SiO are enhanced in the bar region. They concluded that large-scale shocks induced by gas dynamics specific to the bar structure are responsible for the enhancements. However, the chemical compositions observed toward external galaxies are those averaged over one or more GMCs within a telescope beam. Therefore, we need to pay particular attention to this point when we discuss the chemical compositions of external galaxies on the basis of astrochemical concepts established for sub-pc scale regions in Galactic molecular clouds. For instance, chemical evolutionary effects (e.g., Suzuki et al. 1992), which are important for sub-pc scale clouds, may not be very important in the GMC-scale chemical compositions because the timescale of the chemical equilibrium (10^6 years) is much shorter than the sound crossing time of GMCs ($>10^7$ years). Hence, it seems likely that the GMC-scale chemical compositions are more or less in chemical equilibrium, and mainly depend on the structures and environmental conditions of GMCs. To further understand chemical effects in starbursts, active galactic nuclei, and shocks in spiral arms and bar regions, we need to establish the “standard” chemical composition of GMCs without or almost without these specific effects. With this motivation, we have been studying the chemical composition in the spiral arm region of M51 (Watanabe et al. 2014).

M51 is a grand-design spiral galaxy located at the distance of 8.4 Mpc (Feldmeier et al. 1997; Vinkó et al. 2012). The distribution and dynamics of molecular gas in this galaxy have been extensively studied using both single dish telescopes (Nakai et al. 1994; Kuno et al. 2007; Schuster et al. 2007; Miyamoto et al. 2014) and interferometers (Aalto et al. 1999; Helfer et al. 2003; Koda et al. 2009; Schinnerer et al. 2013). Spectral line survey observations have been conducted toward two positions in the spiral arm in the 2 and 3 mm bands (Watanabe et al. 2014) as well as the nuclear region in the 3 mm band (Aladro et al. 2015). The spectral patterns observed in the two positions (P1 and P2) were very similar to each other, indicating similar chemical compositions, although one (P1) shows a higher star formation activity than the other (P2). Toward the P1 position, 15 molecular species have been identified. The spectrum pattern is very different from that reported for high-mass star-forming regions such as Orion KL (e.g., Tercero et al. 2010; Watanabe et al. 2015), indicating that the observed chemical composition cannot simply be interpreted in terms of a composite of contributions from embedded star-forming cores. The GMC-scale distribution of molecules would mainly contribute to the spectrum. Indeed, we detected the cold dense gas tracer N$_2$H$^+$ in our observation toward M51, which is relatively weak in high-mass star-forming regions.
observed in the array configuration of D and E. These configurations cover a baseline range of $\sim 2-55$ k$. The system noise temperatures were about 160–380 K. The CH$_3$OH and CS lines and the C13O, HNCO, 13CO, and CN lines were observed in the lower sideband and the upper sideband, respectively. We employed six correlators for the six molecular lines. The bandwidth of each correlator is 125 MHz with a frequency resolution of 0.781 MHz. The bandpass calibration was done with the radio sources 3C273 and 3C279. 1419 + 543 was observed for 3 minutes every 15 minutes as a phase and gain calibrator. The absolute flux of 1419 + 543 was measured by comparing it with the flux of Mars. The uncertainty of the flux calibration is 20%. The data reduction and analysis were done by using the MIRIAD package. The synthesized beam size and the root mean square (rms) noise level of each molecule are summarized in Table 1. In the imaging procedure, the spectral channels were regidded. The final velocity resolutions are summarized in Table 1.

3. RESULTS

3.1. Overview of Molecules

The 13CO ($J = 1-0$), C13O ($J = 1-0$), CN ($N = 1-0$), CH$_3$OH ($J = 2_{k-1}k$), HNCO ($5_{0,5} - 4_{0,4}$), and CS($J = 2-1$) lines were successfully detected. Figure 2 shows the integrated intensity maps of the six molecular species. A primary beam correction was applied to these maps. The 13CO emission is found to be widely distributed along the spiral arm, nuclear bar, and molecular ring regions, which are defined by Hughes et al. (2013). Our 13CO($J = 1-0$) map is similar to the 13CO($J = 1-0$) map observed with the Owens Valley Radio Observatory mm-interferometer (Schinnerer et al. 2010), although the synthesized beam size of our map is coarser than their map ($2''9$). Since the intensity of the 13CO line is the strongest among the six molecules and the critical density is as low as 10^2 cm$^{-3}$, this line would trace an entire distribution of molecular gas, including relatively diffuse gas which cannot be traced by the other lines with higher critical densities. The distribution of C13O is more clumpier than that of 13CO. The C13O emission traces higher column-density regions because the optical depth of the C13O line is generally thinner than the 13CO line.

The critical densities of the CN, CH$_3$OH, HNCO, and CS lines ($\sim 10^5$ cm$^{-3}$) are much higher than those of the 13CO and C13O lines, and hence, these lines tend to trace molecular gas denser than the CO isotopologue lines. The CN emission is detected along the spiral arm and shows a strong peak at the P1 position. The CN distribution extends from the CN peak to the

(Watanabe et al. 2015). Assuming optically thin and local thermodynamic equilibrium (LTE) conditions, the excitation temperatures of CS, HNCO, and CH$_3$OH are estimated to be less than 10 K in M51 P1. This result indicates that most of the detected molecules reside in a cold (~ 10 K) and widespread molecular gas, although a part of the molecular emission may also come from the hot molecular gas, e.g., hot cores affected by the feedback from star formation activities.

However, the resolution of our previous line-survey observation is about 30$''$, which corresponds to the linear scale of 1 kpc. High angular resolution observations are needed to explore the origin and the nature of the molecular emission in more detail. In this study, we imaged the six molecular species in the spiral arm of M51 with the Combined Array for Research in Millimeter-wave Astronomy (CARMA).

2. OBSERVATIONS WITH CARMA

The observations were carried out with the CARMA in May and June 2014. It consists of six 10.4 m and nine 6.1 m antennas. The primary beams of the 10.4 m and 6.1 m antennas at 110 GHz are about 60$''$ and 100$''$, respectively. The phase-center coordinate is: (R.A., decl.) = (13:29:50.8, +47:11:19.5) in J2000 (Figure 1). Six molecular species, 13CO, C13O, CN, CH$_3$OH, HNCO, and CS (Table 1), were simultaneously detected along the spiral arm and shows a strong peak at the P1 position. This result indicates that most of the detected molecules reside in a cold (~ 10 K) and widespread molecular gas, although a part of the molecular emission may also come from the hot molecular gas, e.g., hot cores affected by the feedback from star formation activities.

However, the resolution of our previous line-survey observation is about 30$''$, which corresponds to the linear scale of 1 kpc. High angular resolution observations are needed to explore the origin and the nature of the molecular emission in more detail. In this study, we imaged the six molecular species in the spiral arm of M51 with the Combined Array for Research in Millimeter-wave Astronomy (CARMA).

![Figure 1](image_url)
Figure 1. A field of view of the observation with the CARMA (large circle) superposed on the contours of the CO integrated intensity (PAWS: Schinnerer et al. 2013). The small circles indicate the beam size ($25''$) of the IRAM 30 m telescope at the 100 GHz toward the P1 and P2 positions (Watanabe et al. 2014). The hatched ellipse indicates the synthesized beam ($6''9 \times 5''5$ with the position angle of 79$''$) of the CARMA observation at 97 GHz.

Table 1

Molecule	Transition	Frequency (GHz)	Sideband	Beama	Vel. Res.b	rmsc
CH$_3$OH	$2_0 - 1_0 a^+$	96.741375	LSB	$6''9 \times 5''5$, 79$''$	10.0	13.9
CS	$J = 2 - 1$	97.980953	LSB	$6''7 \times 5''4$, 76$''$	10.0	14.7
C13O	$J = 1 - 0$	109.782173	USB	$6''7 \times 4''8$, 79$''$	10.0	15.7
HNCO	$6_{0,6} - 5_{0,5}$	109.905749	USB	$6''7 \times 4''8$, 79$''$	10.0	16.0
13CO	$J = 1 - 0$	110.201354	USB	$6''7 \times 4''8$, 77$''$	5.0	21.9
CN	$N = 1 - 0 J = 3/2 - 1/2$	113.490970	USB	$5''8 \times 4''7$, 78$''$	10.0	24.9

Notes.

a FWHM size of the major axis, FWHM size of the minor axis, and position angle of the synthesized beam.

b Velocity resolution of spectrometer channels.

c Sensitivity of the image at the velocity resolution listed in this table.
northern direction. The CS emission is also distributed along the spiral arm, and extends to the northern direction from the peak at the P1 position. On the other hand, CH$_3$OH shows a rather compact distribution without any extended structures toward the northern direction from the peak at the P1. HNCO shows a single peak at the P1 position, probably due to an insufficient sensitivity of this observation. The HNCO peak coincides with the CH$_3$OH peak. Although the distributions of all the molecules are along the spiral arm, we recognize a slight variation among molecular species.

3.2. Missing Flux

The missing fluxes in the CARMA observations are evaluated by comparing them with the fluxes obtained with the IRAM 30 m telescope (Watanabe et al. 2014). The angular resolution of the CARMA maps is adjusted by convolving the Gaussian beam to match the beam size of the IRAM 30 m telescope. The convolution is carried out by using the task convol of the MIRIAD software package. The angular resolution of the IRAM 30 m observation for each molecular...
line is summarized in Table 2. Figure 3 shows the spectra of CH3OH, CS, 13CO, HNCO, 13CO, and CN toward M51 prepared by convolving the CARMA data and the corresponding spectra obtained with the IRAM 30 m telescope. The spectral profile and intensity of the convolved spectrum is similar to the single dish spectrum for each molecule, although the spectral lines of HNCO and CN obtained with CARMA are significantly weaker than those with the IRAM 30 m telescope.

The integrated intensities of both observations are shown in Table 2. If the uncertainties of intensity calibrations (20% both for the IRAM 30 m observations and the CARMA observations) are taken into account, most of the fluxes are recovered in the CARMA observation, except for CN and HNCO. As for HNCO, the missing flux is probably due to the poor signal-to-noise ratio (S/N) in the CARMA observation. On the other hand, the missing flux of CN, which is estimated to be 42%, is puzzling. Since the missing flux of 13CO is small, this implies that CN is more extended than 13CO. Weak CN emission extended outside the arm region may be resolved out in the CARMA observation. Although we cannot in principle rule out the possibility that the missing flux of CN just originates from imperfect calibration, this possibility is unlikely, because the missing flux of most of the molecules are negligible. In any case, the CN abundances estimated in the latter sections tend to be lower than those estimated in Watanabe et al. (2014).

Figure 4. Positions of the C18O peaks (cross marks) superposed on the C18O integrated intensity map. The contour levels are 0.5 K km s\(^{-1}\) (2, 4, 6, 8, 10, 12). The angular resolution of the C18O map is set to be the same as that of the CH3OH map by convolution.

Table 3

Position	R.A. (J2000)	Decl. (J2000)
A	13\(^h\) 29\(^m\) 50\(^s\) 3	+47° 11’ 40” 5
B	13\(^h\) 29\(^m\) 50\(^s\) 1	+47° 11’ 31” 4
C	13\(^h\) 29\(^m\) 50\(^s\) 1	+47° 11’ 25” 1
D	13\(^h\) 29\(^m\) 50\(^s\) 8	+47° 11’ 9” 7
E	13\(^h\) 29\(^m\) 51\(^s\) 1	+47° 11’ 3” 4

Note. *Positions (A–E) shown in Figure 4.*

3.3. Spectra at C18O Peaks

The spectral line parameters are derived for the five peaks of the C18O integrated intensity (Figure 4 and Table 3) because the C18O peaks coincide with most of the other molecular line peaks and likely represent association of GMCs. In order to compare the spectra at the same angular resolution, the 13CO, C18O, CN, CS, and HNCO maps are convolved with the Gaussian beam for the CH3OH map (6\(^\prime\)9 \times 5\(^\prime\)5) by using the

Figure 3. Spectral line profiles observed toward the M51 P1 with the CARMA (solid line) and the IRAM 30 m telescope (dotted line: Watanabe et al. 2014). The CARMA spectra are prepared by convolving the cleaned map with the resolution of the CH3OH map.
Figure 5. Spectra of the six molecules sampled at the five C18O peak positions (Table 3). The spectra are obtained after the spatial resolution is converted to the resolution of the CH$_3$OH map (6$''$0 × 6$''$9 with the position angle of 79$^\circ$.9), which is the beam size of the CH$_3$OH map. The angular resolution of the CH$_3$OH map is used as the reference resolution, since the angular resolution is the coarsest. The intensity scale is the main beam temperature.

MIRIAD task *convol*. The angular resolution of the final maps is thus the same as that of CH$_3$OH. Figure 5 shows the spectra obtained at the five C18O peaks. Table 4 summarizes peak intensities, integrated intensities, line of sight velocities, and line widths of the spectra. In the case of non-detection, the 3σ upper limits of the peak temperature and the integrated intensity are given. The line profiles of CN are different from those of the other molecules because the four hyperfine lines are blended. Therefore, the linewidths and the line of sight velocities are not evaluated for the CN lines.

3.4. Molecular Abundances

The beam-averaged column densities of 13CO, C18O, CN, CH$_3$OH, HNCO, and CS are evaluated for the C18O peak positions (Table 3) under the LTE assumption by using the
The Astrophysical Journal, 819:144 (11pp), 2016 March 10

Table 4
Line Parameters at the 13CO Peaks

Position	Molecule	T Peaka (mK)	I_{peak} (K km s$^{-1}$)	V_{LSR} (km s$^{-1}$)	FWHM (km s$^{-1}$)
A	13CO	419 ± 38	16.52 ± 0.79	480 ± 5	40 ± 5
	13CO	116 ± 35	4.29 ± 0.92	480 ± 10	40 ± 10
	CN	86 ± 31	4.15 ± 0.92
	CH$_3$OH	<3.8	<1.0
	CH$_3$OH	<32	<0.84
	CS	49 ± 12	1.70 ± 0.31	480 ± 10	30 ± 10
	13CO	516 ± 38	21.10 ± 0.94	485 ± 5	40 ± 5
	13CO	125 ± 23	5.69 ± 0.65	485 ± 10	50 ± 10
	CN	80 ± 29	5.44 ± 1.16
	CH$_3$OH	61 ± 30	2.72 ± 0.80	490 ± 10	30 ± 10
	HNCO	<26	<0.74
	CS	56 ± 39	2.49 ± 1.04	480 ± 10	50 ± 10
	13CO	644 ± 38	21.93 ± 0.93	495 ± 5	35 ± 5
	13CO	156 ± 38	5.31 ± 1.07	490 ± 10	30 ± 10
	CN	95 ± 43	5.43 ± 1.43
	CH$_3$OH	103 ± 31	3.02 ± 0.71	500 ± 10	20 ± 10
	HNCO	58 ± 16	1.29 ± 0.40	490 ± 10	20 ± 10
	CS	64 ± 13	2.08 ± 0.30	490 ± 10	30 ± 10
D	13CO	431 ± 34	12.70 ± 0.64	510 ± 5	25 ± 5
	13CO	120 ± 18	2.97 ± 0.36	510 ± 10	20 ± 10
	CN	33 ± 31	1.72 ± 0.89
	CH$_3$OH	62 ± 33	1.65 ± 0.74	510 ± 10	30 ± 10
	HNCO	<26	<0.58
	CS	48 ± 22	1.35 ± 0.49	510 ± 10	30 ± 10
E	13CO	290 ± 46	8.24 ± 0.76	515 ± 5	25 ± 5
	13CO	72 ± 22	1.87 ± 0.44	515 ± 10	20 ± 10
	CN	<39	<0.78
	CH$_3$OH	<46	<0.92
	HNCO	<30	<0.60
	CS	<41	<0.83

Note. The errors are 3σ.

following formula:

$$W_c = \frac{8\pi^2 S \mu_d^2 \nu N}{3kU(T_{\text{rot}})} \left[1 - \exp \left(\frac{h\nu/kT_{\text{rot}}}{(h\nu/kT_{bg}) - 1} \right) \right] \exp \left(-\frac{E_a}{kT_{\text{rot}}} \right),$$

(1)

where W_c, S, μ_d, ν, N, T_{rot}, $U(T_{\text{rot}})$, h, T_{bg}, and E_a are the integrated intensity, line strength, dipole moment, transition frequency, total column density, Boltzmann constant, rotation temperature, partition function, Planck constant, cosmic microwave background temperature, and upper state energy, respectively. The rotation temperature is assumed to be 10 K on the basis of the single dish result for a few molecules (Watanabe et al. 2014). Since the beam sizes of all molecular data are the same as that of CH$_3$OH (see Section 3.3), a correction of a beam filling factor is not applied to each molecular line. Hence, these column densities are averaged over the 6$''$0 × 6$''$9 scale. The result is summarized in Table 5, and the errors are estimated from the rms noise of the spectrum and the calibration uncertainty (20%). The column densities are sensitive to the assumed rotation temperature. When we assume the rotation temperatures of 5 and 20 K, the derived column densities vary by factors of 3 and 2, respectively, for the largest cases. In the following analyses, we discuss the fractional abundances relative to H$_2$ instead of the column densities in order to mitigate the systematic errors caused by the assumption of the rotation temperature.

Fractional abundances relative to H$_2$ are derived for the 13CO peak positions by using H$_2$ column densities estimated from C18O, where the [H$_2$]/[C18O] ratio of 2.9 × 106 is assumed (Meier & Turner 2005). The fractional abundances are summarized in Table 6. They are less affected by the assumed rotation temperature than the column densities. Indeed, a difference of the fractional abundance is estimated to be, at most, within a factor of 2 for the rotation temperature range from 5 to 20 K, where the maximum case is for HNCO.

4. DISCUSSION

4.1. Principal Component Analysis

We conduct a principal component analysis (PCA) to evaluate quantitatively the similarities and differences among maps of the different molecular lines. The PCA has been used as a common analytical technique to quantify the morphological correlation of molecular distributions in molecular clouds and external galaxies (e.g., Ungerechts et al. 1997; Meier & Turner 2005). In addition to the molecular distributions obtained with the CARMA, a surface density distribution of the star formation rate (SFR) is included in the PCA. The SFR is estimated from the intensities of the Hα and 24 μm emission observed by Kennicutt et al. (2003). In order to compare the SFR map with our molecular maps, the angular resolutions of the Hα and 24 μm maps are convolved to be the resolution of the CH$_3$OH map. After the convolution, the SFR is evaluated by using the method given by Calzetti et al. (2007), as shown in Figure 6. We used SFR(M$_*$ yr$^{-1}$) = 5.3 × 10$^{-42}$ [L(Hα)$_{\text{obs}}$ + (0.031 ± 0.006) L (24 μm)], where L (Hα)$_{\text{obs}}$ and L (24 μm) are the observed luminosities of Hα and 24 μm in erg s$^{-1}$, respectively.

Table 5
Column Densities at the C18O Peaks

Position	13CO $\times 10^{16}$ (cm$^{-2}$)	C18O $\times 10^{16}$ (cm$^{-2}$)	CN $\times 10^{13}$ (cm$^{-2}$)	CH$_3$OH $\times 10^{13}$ (cm$^{-2}$)	HNCO $\times 10^{13}$ (cm$^{-2}$)	CS $\times 10^{13}$ (cm$^{-2}$)
A	1.6 ± 0.3	4.3 ± 1.2	3.5 ± 1.0	<3.3	<1.1	0.8 ± 0.2
B	2.1 ± 0.4	5.6 ± 1.3	4.6 ± 1.3	8.9 ± 3.2	<1.0	1.1 ± 0.5
C	2.2 ± 0.4	5.3 ± 1.5	4.5 ± 1.5	9.9 ± 3.1	1.7 ± 0.6	1.0 ± 0.2
D	1.3 ± 0.3	2.9 ± 0.7	1.4 ± 0.8	5.4 ± 2.7	<0.8	0.6 ± 0.3
E	0.8 ± 0.2	1.9 ± 0.6	<0.7	<3.0	<0.8	<0.4

Note. Errors in the column densities are estimated by taking into account the rms noise and calibration uncertainty (20%). The column densities are calculated under the LTE approximation with a rotation temperature of 10 K.
The PCA is conducted in the same way as Meier & Turner (2005) reported. The molecular line maps are convolved and regridded to the same angular resolution for the CH$_3$OH emission. Then, the pixel values of the molecular maps and the SFR are normalized and mean-centered (Appendix). After these preprocesses, a correlation matrix is calculated from the preprocessed maps, and its eigenvalues and eigenvectors are then calculated by diagonalizing the correlation matrix. Tables 7 and 8 show the correlation matrix and the eigenvectors, respectively. Figure 7 shows the maps of the first, second, and third principal components.

Figure 8 shows the projection of each species on the first, second, and third PC axes. On the first principal component (PC1) axis, all the species have positive projections with a similar magnitude (0.24–0.45). Hence, PC1 represents an averaged distribution of molecules and SFR, which essentially traces the spiral arm structure (Figure 7). On the second and third principal component (PC2 and PC3, respectively) axes, 13CO, CH$_3$OH, CS, and CN have relatively smaller projections than the other molecules. The PC2 mainly highlights the CH$_3$OH, HNCO, and SFR distributions, which is characteristic in distributions around the peak C of C18O (PC2 in Figure 7). The SFR has an opposite sign to those of CH$_3$OH and HNCO on the PC2 axis, indicating that the distributions of the SFR and the CH$_3$OH–HNCO group tend to be anticorrelated. PC3 characterizes the different distributions between CH$_3$OH and HNCO. The PC2–PC3 plane shows that CN is the only molecule which has same direction as SFR, although the magnitude of CN is relatively small. In this way, the PCA sensitively shows the slight difference among the distributions of the molecules and the SFR at a 300 pc scale in the spiral arm.

4.2. Radial Distribution of Abundance

Figure 9 shows the fractional abundances of 13CO, CN, CS, CH$_3$OH, and HNCO relative to H$_2$ and the star formation efficiencies (SFE) which are derived by dividing the SFR by the H$_2$ gas mass, at the C18O peak positions. They are indicated as a function of the galactocentric distance, where the galactocentric distances are estimated by assuming the distance to M51 of 8.4 Mpc, an inclination angle of 22$^\circ$, and a position angle of 173$^\circ$ (Colombo et al. 2014). The fractional abundances of 13CO and CS are found to be almost constant over the observed regions along the spiral arm. On the other hand, the fractional abundances of the other molecules and the SFE slightly depends on their positions. The fractional abundances of CN and the SFE are higher at Positions A, B, and C than at D and E by a factor of 2–1.5. The fractional abundance of CN and the SFE may be correlated with each other along the spiral arm, as the PCA shows a hint of correlation between the integrated intensity map of CN and the SFR distribution. In contrast, the fractional abundance of CH$_3$OH is lower at Position A than at the other positions. It apparently differs from the trend in the SFE.

4.3. CH$_3$OH

In this study we find that CH$_3$OH has a relatively high fractional abundance ($\sim 6 \times 10^{-9}$). In addition, we also recognize that CH$_3$OH is distributed differently from the other molecules. CH$_3$OH is thought to be formed on the cold dust mantles through hydrogenation of CO, since the CH$_3$OH formation in the gas phase is not efficient (Garrod et al. 2007). Some liberation mechanisms are necessary for CH$_3$OH to be detected in the gas phase. In the Galactic objects, the enhancement of CH$_3$OH is usually found in hot cores and hot corinos in star-forming regions (e.g., Bachiller & Pérez-Gutiérrez 1997; Jørgensen et al. 2005; Bisschop et al. 2007). The radiative heatings and/or the shocks induced by star formation activities, such as protostellar outflows, are thought to be the main desorption mechanisms of CH$_3$OH. However, the observed CH$_3$OH abundance is not clearly correlated, but slightly anticorrelated with the SFE in the spiral arm of M51. This result is consistent with the result of our previous observation with the IRAM 30 m telescope at a 1 kpc scale (Watanabe et al. 2014). No relevance of the CH$_3$OH enhancement to star formation activities at a GMC-scale was found in the bar regions of IC 342 and Maffei 2 (Meier & Turner 2005, 2012), either. Hence, it is most likely that the star formation feedback does not contribute to the gas-phase CH$_3$OH abundance in M51 at a 300 pc scale.

\begin{table}[ht]
\centering
\caption{Fractional Abundances Relative to H$_2$ at the C18O Peaks}
\begin{tabular}{|c|c|c|c|c|}
\hline
Position & 13CO & CN & CH$_3$OH & HNCO & CS \\
\hline
A & (1.3 \pm 0.4) \times 10^{-6} & (2.9 \pm 1.1) \times 10^{-9} & < 2.7 \times 10^{-9} & < 9.2 \times 10^{-10} & (6.5 \pm 2.4) \times 10^{-10} \\
B & (1.5 \pm 0.5) \times 10^{-6} & (3.0 \pm 1.3) \times 10^{-9} & (5.6 \pm 2.4) \times 10^{-9} & < 6.1 \times 10^{-10} & (6.9 \pm 3.6) \times 10^{-10} \\
C & (1.5 \pm 0.5) \times 10^{-6} & (1.7 \pm 1.0) \times 10^{-9} & (6.4 \pm 3.6) \times 10^{-9} & < 9.2 \times 10^{-10} & (7.4 \pm 3.6) \times 10^{-10} \\
D & (1.5 \pm 0.6) \times 10^{-6} & < 1.2 \times 10^{-9} & < 5.5 \times 10^{-9} & < 1.5 \times 10^{-9} & < 6.9 \times 10^{-10} \\
E & (1.3 \pm 0.4) \times 10^{-6} & (2.5 \pm 1.1) \times 10^{-9} & < 2.7 \times 10^{-9} & < 9.2 \times 10^{-10} & (6.5 \pm 2.4) \times 10^{-10} \\
\hline
\end{tabular}
\end{table}
Meier & Turner (2005, 2012) concluded that the CH$_3$OH distribution traces large-scale shocks induced by gas orbital resonance in the bar regions. Indeed, other shock tracers, such as SiO, are found to be enhanced in the bar regions (Usero et al. 2006; Meier & Turner 2012). Although our observed position of M51 is not the bar region, spiral shocks may occur in the spiral arm (e.g., Fujimoto 1968; Roberts 1969; Shu et al. 1972). Such a spiral shock could be responsible for the evaporation of CH$_3$OH. If the spiral shock causes the enhancement of CH$_3$OH, the non-uniform distribution of the CH$_3$OH would originate from variations of shock effects in the spiral arm (i.e., variation of shock strength and/or internal structure of the arm). Another possible mechanism of the CH$_3$OH liberation is non-thermal desorption such as a cosmic-ray induced UV photon, as discussed in Watanabe et al. (2014).

The abundance of CH$_3$OH estimated in this observation is on the same order as that in the cold quiescent core TMC-1 (10^{-9}), where the non-thermal desorption is thought to be responsible for the widely distributed CH$_3$OH (Soma et al. 2015). Hence, the non-thermal desorption could also explain the observed CH$_3$OH abundance in the spiral arm of M51.

In addition to the liberation mechanisms, the efficiency of the CH$_3$OH formation on the grain mantle would also affect the

Table 7

Map Name	SFR	13CO	C18O	CS	CN	CH$_3$OH	HNCO
SFR	1.0000
13CO	0.4912	1.0000
C18O	0.4301	0.9204	1.0000
CS	0.4870	0.7901	0.7607	1.0000
CN	0.5132	0.7556	0.6990	0.6889	1.0000
CH$_3$OH	0.0435	0.6693	0.5976	0.5817	0.5551	1.0000	...
HNCO	0.1202	0.3472	0.3919	0.3723	0.3855	0.3545	1.0000

Table 8

Map Name	PC1	PC2	PC3	PC4	PC5	PC6	PC7
SFR	0.2674	-0.7293	-0.2900	0.2289	-0.2694	0.4313	-0.0402
13CO	0.4516	-0.0617	0.1707	-0.3364	0.2379	0.1283	0.7596
C18O	0.4407	0.0074	0.1318	-0.5163	0.2661	0.2086	-0.6383
CS	0.4264	-0.0549	0.0753	-0.1477	-0.6293	-0.6247	-0.0377
CN	0.4159	-0.0890	-0.0269	0.5860	0.5525	-0.4010	-0.0942
CH$_3$OH	0.3403	0.4947	0.3786	0.4463	-0.3127	0.4455	-0.0269
HNCO	0.2444	0.4568	-0.8483	-0.0587	-0.0316	0.0668	0.0550

Eigenvalue percentage (%): 61.1 14.7 10.4 5.2 4.2 3.4 1.0

Note. Eigenvalue percentages indicate the fractions of the total variance treated by each PC component.

Figure 7. Maps of the first, second, and third principal components. The black contours and dashed contours indicate positive and negative values, respectively.
CH$_3$OH distribution in the spiral arm. For dust temperature higher than 30 K, the CH$_3$OH formation is inefficient on the grain mantle because CO depletion does not occur above 20 K (e.g., Aikawa et al. 2008). Schinnerer et al. (2010) found that the gas kinetic temperature decreases with the galactocentric distance in M51 on the basis of the LVG analysis of their CO observation. In our observation, the CH$_3$OH abundance is relatively low in Position A. This position is the closest to the nuclear region of M51, where the temperature may be higher than the other positions.

Above all, the characteristic distribution of CH$_3$OH would be originated from a combination of evaporation mechanisms and formation mechanisms of CH$_3$OH. For further understanding of CH$_3$OH in the spiral arm, sensitive multi-line observations of CH$_3$OH in other regions including inter-arm regions where the spiral shock does not occur, as well as detailed analyses of kinematics and physical conditions of molecular gas, are necessary. These are left for future studies.

4.4. Other Molecules

In this study, we find a hint that the fractional abundance of CN is correlated with the SFE. If so, the CN production may be related to photodissociation of HCN by UV photons from star formation activities or from the nuclear region (e.g., Ginard et al. 2015). In this case, enhancement of other molecules related to the PDR (photodissociation region), such as CCH and CO$^+$, could be expected (e.g., Pety et al. 2005; Fuente et al. 2006; Ginard et al. 2015). Sensitive observations of these molecules are thus interesting.

Meier & Turner (2005, 2012) suggested that HNCO comes from the grain mantle by the shock evaporation, because the distribution of HNCO is similar to that of CH$_3$OH in IC 342 and Maffei 2. The fractional abundance of HNCO in M51 is similar to that in IC 342 $\approx (1-3) \times 10^{-5}$ (Meier & Turner 2005). The peak position of HNCO almost coincides with that of CH$_3$OH in M51, and hence, HNCO in our observation may also come from the grain mantle. On the other hand, our PCA suggests that the distribution of HNCO is slightly different from those of the other molecules including CH$_3$OH, although sensitivity of the HNCO observation is not good. Indeed, the HNCO is detected only in one of five positions (C) although the S/N is 3.2. From observations of the Galactic GMCs, HNCO has been detected with relatively strong intensities in the GMCs near the Galactic center (e.g., Jackson et al. 1984; Armstrong & Barrett 1985; Cummins et al. 1986). The fractional abundance toward the hot core of Sgr B2(N) is 1.6×10^{-7} (Marcelino et al. 2010), while that toward the hot core of Orion KL is much lower (9×10^{-5}) (Zinchenko et al. 2000) than Sgr B2(N). The HNCO abundance is also known to be enhanced in the shocked region L1157 B1 ($(0.4-1.8) \times 10^{-8}$), where HNCO is liberated from the grain mantle (Rodriguez-Fernández et al. 2010). On the other hand, the HNCO abundance is as low as $(1-5) \times 10^{-10}$ in cold clouds (Marcelino et al. 2009), where the gas-phase production is considered to be dominant. The fractional abundances in M51 are much lower than the abundances in Sgr B2(N) and L1157 B1, while it is slightly higher than that in cold clouds. Hence, evaporation of the grain mantle seems to contribute to the gas-phase abundance of HNCO. Considering poor correlation with the SFR, a galactic shock may play an important role to some extent, as in the case of CH$_3$OH. Since the surface binding energy of HNCO (2850 K) is lower than that of CH$_3$OH (4930 K) (McElroy et al. 2013), the difference of their distribution may be due to shock strength. It is suggested that HNCO is thought to be unstable under strong UV field (Roberge et al. 1991; Martín et al. 2008), and this may cause the slight difference between CH$_3$OH and HNCO distribution. Thus, the meaning of the distribution of HNCO is left for future studies.

5. CONCLUDING REMARKS

Our interferometric observations of the six molecular species toward the spiral arm of M51 at a spatial resolution of 300 pc reveal that the molecular distributions almost look similar to one another and mainly trace the spiral arm structure. A detailed look at the distributions by the PCA and evaluation of the fractional abundances as a function of the galactocentric distance shows a slight chemical differentiation. It should be noted that the CH$_3$OH distribution is not well correlated to the SFR. Hence, the effect of the star formation and its feedback is not significant in the CH$_3$OH distribution averaged over the 300 pc scale under a mild star formation activity environment.
Similar results are obtained for HNCO and CS. Rather, as a function of the galactocentric distance the spiral shocks, would be responsible for the slight chemical differentiation.

The authors thank Susanne Aalto for invaluable discussions. The authors are grateful to the CARMA staff for their excellent support. Support for CARMA construction was derived from the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. This study is supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 21224002, 21740132, and 25108005).

APPENDIX
PREPROCESSING PROCEDURE IN THE PCA

In order to compare the different physical quantities of the integrated intensities of molecules and the SFR, the pixel values of a map are normalized and mean-centered as follows:

$$\bar{I}_{ij} = \frac{I_{ij} - \bar{I}}{\sigma_i},$$

where \bar{I}_{ij}, I_{ij}, \bar{I}, and σ_i are a processed pixel value, an index of molecules or star formation rate, an index of the pixel, a pixel value of the original map, a mean pixel value, and an unbiased estimate of variance of the pixel value, respectively. The mean pixel value is given as:

$$\bar{I} = \frac{1}{n} \sum_{j=1}^{n} I_{ij},$$

where n is the number of pixel. The unbiased estimate of variance of the pixel value is denoted as:

$$\sigma_i^2 = \frac{1}{n-1} \sum_{j=1}^{n} (I_{ij} - \bar{I})^2.$$
