New generalization of midpoint type inequalities for fractional integral

Hüseyin Budak · Rabia Kapucu

Abstract. In this paper, we firstly obtain a new generalized identity for Riemann-Liouville fractional integrals. Then, utilizing this equality, we obtain some Midpoint type inequalities for convex and concave functions. We also give several remarks and corollaries as special cases.

Keywords. Hermite-Hadamard inequality · fractional integral operators · convex function · concave function

Mathematics Subject Classification (2010) 26D15 · 26B25 · 26D10

1 Introduction

In recent years, the Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a natural geometrical interpretation and many applications, has drawn attention and much interest in elementary mathematics.

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable significant in the literature (see, e.g., [18, p.137], [6]). These inequalities state that if \(f : I \to \mathbb{R} \) is a convex function on the interval \(I \) of real numbers and \(a, b \in I \) with \(a < b \), then

\[
 f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq \frac{f(a) + f(b)}{2}. \tag{1.1}
\]

Both inequalities hold in the reversed direction if \(f \) is concave.

In [15], U. S. Kirmaci gives the following identity and using this identity, obtains some bounds for the left hand side of the inequality (1.1)
Lemma 1.1 Let \(f : I^\circ \to \mathbb{R} \) be differentiable function on \(I^\circ \), \(a, b \in I^\circ \) (\(I^\circ \) is interior of \(I \)) with \(a < b \). If \(f' \in L^1[a, b] \), then we have

\[
\frac{1}{b-a} \int_a^b f(t) dt - f\left(\frac{a+b}{2}\right) = (b-a) \left[\frac{1}{2} \int_0^1 tf'(ta+(1-t)b) dt + \int_0^1 (1-t)f'(ta+(1-t)b) dt \right].
\]

Over the last twenty years, the numerous studies have focused on to obtain new bound for left hand side and right side of the inequality (1.1). For some examples, please refer to ([1], [3], [4], [6], [7], [20], [21], [23], [24], [29]).

In the following we will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper.

Definition 1.2 Let \(f \in L^1[a, b] \). The Riemann-Liouville integrals \(J^\alpha_{a+}f \) and \(J^\alpha_{b-}f \) of order \(\alpha > 0 \) with \(a \geq 0 \) are defined by

\[
J^\alpha_{a+}f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) dt, \quad x > a
\]

and

\[
J^\alpha_{b-}f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) dt, \quad x < b
\]

respectively. Here, \(\Gamma(\alpha) \) is the Gamma function and \(J^\alpha_{a+}f(x) = J^\alpha_{b-}f(x) = f(x) \).

It is remarkable that Sarıkaya et al. [26] first give the following interesting integral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 1.3 Let \(f : [a, b] \to \mathbb{R} \) be a positive function with \(0 \leq a < b \) and \(f \in L^1[a, b] \). If \(f \) is a convex function on \([a, b] \), then the following inequalities for fractional integrals hold:

\[
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^\alpha} \left[J^\alpha_{a+}f(b) + J^\alpha_{b-}f(a) \right] \leq \frac{f(a) + f(b)}{2}
\]

with \(\alpha > 0 \).

Sarıkaya and Yıldırım also give the following Hermite-Hadamard type inequality for the Riemann-Liouville fractional integrals in [25].
Theorem 1.4 Let \(f : [a, b] \rightarrow \mathbb{R} \) be a positive function with \(a < b \) and \(f \in L_1[a, b] \). If \(f \) is a convex function on \([a, b]\), then the following inequalities for fractional integrals hold:

\[
f\left(\frac{a + b}{2}\right) \leq \frac{2^{\alpha - 1} \Gamma(\alpha + 1)}{(b - a)^\alpha} \left[J_\alpha^{\alpha} f(b) + J_\alpha^{\alpha} f(a) \right] \leq \frac{f(a) + f(b)}{2}.
\]

(1.4)

Whereupon Sarikaya et al. obtain the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, many authors have studied to generalize this inequality and establish Hermite-Hadamard inequality other fractional integrals such as \(k \)-fractional integral, Hadamard fractional integrals, Katugampola fractional integrals, Conformable fractional integrals, etc. For some of them, please see ([2], [5], [8], [10]-[13], [17], [19], [27], [28], [30]-[33]). For more information about fraction calculus please refer to ([9], [14], [16], [22]).

In the following section, we establish some new generalized midpoint type inequalities for Riemann-Liouville fractional integrals.

2 Generalized midpoint inequalities for Riemann-Liouville fractional integral operators

First, we give the following lemma which will be used frequently later.

Lemma 2.1 Let \(f : [a, b] \rightarrow \mathbb{R} \) be a differentiable mapping on \((a, b)\) with \(a < b \). If \(f' \in L^1[a, b] \), then we have the following equality for fractional integrals

\[
\frac{\Gamma(\alpha + 1)}{b - a} \left((b - x)^{1-\alpha} J_{\alpha}^{a+b-x} f(a) + (x - a)^{1-\alpha} J_{\alpha}^{a+b-x} f(b) \right) = f(a + b - x)
\]

\[
= \frac{(x - a)^2}{b - a} \int_0^1 t^\alpha f'(t(a + b - x) + (1 - t)b) \, dt
\]

\[
- \frac{(b - x)^2}{b - a} \int_0^1 t^\alpha f'(t(a + b - x) + (1 - t)a) \, dt
\]

(2.1)

for all \(x \in [a, b] \).
Proof. By using the integration by parts, we obtain

\[I_1 = \int_0^1 t^\alpha f' (t(a+b-x) + (1-t)b) \, dt \]

\[= \frac{t^\alpha}{(b-x)} f(t(a+b-x)+(1-t)a) \left|_0^1 - \frac{\alpha}{b-x} \int_0^1 t^{\alpha-1} f(t(a+b-x)+(1-t)a) \, dt \right. \]

\[= \frac{1}{(b-x)} f(a+b-x) - \frac{\alpha}{b-x} \int_0^1 t^{\alpha-1} f(t(a+b-x) + (1-t)a) \, dt. \]

Using the change of variable, we have

\[I_1 = -\frac{\Gamma(\alpha+1)}{(b-x)^{\alpha+1}} J_a^\alpha f(a+b-x) - f(a) + \frac{1}{(b-x)} f(a+b-x). \quad (2.2) \]

Similarly, we establish

\[I_2 = \int_0^1 t^\alpha f' (t(a+b-x) + (1-t)b) \, dt \]

\[= \frac{\Gamma(\alpha+1)}{(x-a)^{\alpha+1}} J_a^\alpha f(b) + f(a) - \frac{1}{(x-a)} f(a+b-x). \quad (2.3) \]

From the equalities (2.2) and (2.3), we obtain

\[\frac{-(b-x)^2}{b-a} I_1 + \frac{(x-a)^2}{b-a} I_2 \]

\[= \frac{\Gamma(\alpha+1)}{b-a} \left[(b-x)^{1-\alpha} J_a^\alpha f(a+b-x) - f(a) + (x-a)^{1-\alpha} J_a^\alpha f(b) + f(b) \right] - f(a+b-x) \]

which completes the proof. \(\square \)

Theorem 2.2 Let \(f : [a,b] \rightarrow \mathbb{R} \) be a differentiable mapping on \((a,b)\) with \(0 \leq a < b \) and \(f' \in L^1 [a,b] \). If \(|f'| \) is convex on \([a,b]\), then we have the following inequality for fractional integrals

\[\left| \frac{\Gamma(\alpha+1)}{b-a} \left((b-x)^{1-\alpha} J_a^\alpha f(a+b-x) - f(a) + (x-a)^{1-\alpha} J_a^\alpha f(b) + f(b) \right) - f(a+b-x) \right| \]

\[\leq \frac{1}{(b-a)(\alpha+2)} \left[\frac{(b-x)^2 |f(a)| + (x-a)^2 |f'(b)|}{\alpha+1} + \frac{(x-a)^2 (b-x)^2}{(x-a)^2 + (b-x)^2} |f(a+b-x)| \right] \]
for all $x \in [a, b]$.

Proof. Taking the modulus in Lemma 2.1, we have

$$\left| \frac{\Gamma(\alpha+1)}{b-a} \left((b-x)^{1-\alpha} f^\alpha_{(a+b-x)} - f(a) + (x-a)^{1-\alpha} f^\alpha_{(a+b-x)} + f(b) \right) - f(a+b-x) \right|$$

$$\leq \frac{(x-a)^2}{b-a} \int_0^1 t^\alpha \left| f'(t(a+b-x)) \right| dt$$

$$+ \frac{(b-x)^2}{b-a} \int_0^1 t^\alpha \left| f'(t(a+b-x)) \right| dt.$$

Since $|f'|$ is convex, we get

$$\left| \frac{\Gamma(\alpha+1)}{b-a} \left((b-x)^{1-\alpha} f^\alpha_{(a+b-x)} - f(a) + (x-a)^{1-\alpha} f^\alpha_{(a+b-x)} + f(b) \right) - f(a+b-x) \right|$$

$$\leq \frac{(x-a)^2}{b-a} \int_0^1 \left[t^{\alpha+1} \left| f'(a+b-x) \right| + t^\alpha (1-t) \left| f'(b) \right| \right] dt$$

$$+ \frac{(b-x)^2}{b-a} \int_0^1 \left[t^{\alpha+1} \left| f'(a+b-x) \right| + t^\alpha (1-t) \left| f'(a) \right| \right] dt$$

$$= \frac{(x-a)^2}{b-a} \left[f'(a+b-x) \int_0^1 t^{\alpha+1} \, dt + f'(b) \int_0^1 t^\alpha (1-t) \, dt \right]$$

$$+ \frac{(b-x)^2}{b-a} \left[f'(a+b-x) \int_0^1 t^{\alpha+1} \, dt + f'(a) \int_0^1 t^\alpha (1-t) \, dt \right]$$

$$= \frac{1}{(b-a)(\alpha+2)} \left[\frac{(b-x)^2 f'(a) + (x-a)^2 f'(b)}{\alpha + 1} + [(x-a)^2 + (b-x)^2] f'(a+b-x) \right].$$

This completes the proof. \(\square\)
Corollary 2.3 Under assumptions of Theorem 2.2 with \(x = \frac{a+b}{2} \), we have the following inequality
\[
\left| \frac{\Gamma(\alpha+1)2^{\alpha-1}}{(b-a)^\alpha} \left[\frac{J_{\alpha+\frac{1}{2}}}{} f(a) + J_{\alpha+\frac{1}{2}} f(b) \right] - f \left(\frac{a+b}{2} \right) \right|
\leq \frac{b-a}{4(\alpha+2)} \left[\left| f'(a) \right| + \left| f'(b) \right| + 2 \left| f' \left(\frac{a+b}{2} \right) \right| \right]
\leq \frac{b-a}{4(\alpha+1)} \left[\left| f'(a) \right| + \left| f'(b) \right| \right]
\]
which is given by Sarikaya and Yıldırım in [25, Theorem 5 (for \(q = 1 \))].

Corollary 2.4 If we choose \(\alpha = 1 \) in Theorem 2.2, then we have
\[
\left| \frac{1}{b-a} \int_a^b f(t)dt - f(a+b-x) \right|
\leq \frac{1}{3(b-a)} \left[(b-x) \left| f'(a) \right| + (x-a) \left| f'(b) \right| + \frac{(x-a)^2 + (b-x)^2}{2} \left| f'(a+b-x) \right| \right].
\]

Remark 2.1 If we take \(x = \frac{a+b}{2} \) in Corollary 2.4, then we obtain
\[
\left| \frac{1}{b-a} \int_a^b f(t)dt - f \left(\frac{a+b}{2} \right) \right|
\leq \frac{b-a}{4} \left[\left| f'(a) \right| + \left| f'(b) \right| \right]
\]
which is given by Kirmaci in [15].

Theorem 2.5 Let \(f : [a, b] \to \mathbb{R} \) be a differentiable mapping on \((a, b) \) with \(0 \leq a < b \) and \(f' \in L^1[a, b] \). If \(|f'|^q, q > 1, \) is convex on \([a, b] \), then we have the following inequality for fractional integrals
\[
\left| \frac{\Gamma(\alpha+1)}{b-a} \left[(b-x)^{1-\alpha} J_{\alpha+\frac{1}{2}}^a f(a) + (x-a)^{1-\alpha} J_{\alpha+\frac{1}{2}}^b f(b) \right] - f(a+b-x) \right|
\leq \frac{1}{b-a} \left(\frac{1}{\alpha p + 1} \right)^\frac{1}{p} \left[(x-a)^2 \left| f'(a+b-x) \right|^q + \frac{1}{q} \right]
\leq (b-x)^2 \left[\frac{1}{q} \right] \left[\frac{1}{q} \right]^\frac{1}{q}
\]
for all \(x \in [a, b] \), where \(\frac{1}{p} + \frac{1}{q} = 1 \).
Proof. By the Lemma 2.1, we have

\[
\left| \frac{\Gamma(\alpha+1)}{b-a} \left[\frac{(b-x)^{1-\alpha} J^\alpha_{(a+b-x)} - f(a) + (x-a)^{1-\alpha} J^\alpha_{(a+b-x)} + f(b)}{2} \right] \right| (2.4)
\]

\[
- f(a + b - x) \mid
\]

\[
\leq \frac{(x-a)^2}{b-a} \int_0^1 t^\alpha \left| f' \left(t (a + b - x) + (1 - t) b \right) \right| \, dt
\]

\[
+ \frac{(b-x)^2}{b-a} \int_0^1 t^\alpha \left| f' \left(t (a + b - x) + (1 - t) a \right) \right| \, dt.
\]

Using the Hölder’s inequality and convexity of \(|f'|^q\), we obtain

\[
\int_0^1 t^\alpha \left| f' \left(t (a + b - x) + (1 - t) b \right) \right| \, dt \leq \left(\int_0^1 \left| f' \left(t (a + b - x) + (1 - t) b \right) \right|^p \, dt \right)^{\frac{1}{p}} \left(\int_0^1 \left(\frac{|f|^q + (1-t)|f'(b)|^q}{2} \right) \, dt \right)^{\frac{1}{q}}.
\]

Similarly, we have

\[
\int_0^1 t^\alpha \left| f' \left(t (a + b - x) + (1 - t) a \right) \right| \, dt \leq \left(\int_0^1 \left| f' \left(t (a + b - x) + (1 - t) a \right) \right|^p \, dt \right)^{\frac{1}{p}} \left(\frac{|f|^q + |f'(a)|^q}{2} \right)^{\frac{1}{q}}.
\]

If we substitute the inequalities (2.5) and (2.6) in (2.4), then we obtain the desired result.

\[\square\]
Corollary 2.6 Under assumption of Theorem 2.5 with \(x = \frac{a+b}{2} \), we have the following inequality

\[
\left| \frac{2^\alpha - 1}{(b-a)^\alpha} \left(J^\alpha \left(\frac{a+b}{2} \right) - f \left(\frac{a+b}{2} \right) \right) \right| \leq \frac{b-a}{4} \left(\frac{1}{\alpha p+1} \right)^{\frac{1}{q}} \left[\left(\frac{1}{4} \left(|f'(a)|^q + 3 |f'(b)|^q \right) \right)^{\frac{1}{q}} + \left(\frac{3 |f'(a)|^q + |f'(b)|^q}{4} \right)^{\frac{1}{q}} \right]
\]

Proof. The proof of the first inequality in (2.7) is obvious from convexity of \(|f'|^q \). For the proof of second inequality, let \(a_1 = 3 |f'(a)|^q, b_1 = 3 |f'(b)|^q \) and \(a_2 = |f'(a)|^q, b_2 = |f'(a)|^q \). Using the fact that

\[
\sum_{k=1}^{n} (a_k + b_k)^s \leq \sum_{k=1}^{n} a_k^s + \sum_{k=1}^{n} b_k^s, 0 \leq s < 1,
\]

the desired result can be obtained straightforwardly.

\(\square \)

Remark 2.2 If we choose \(\alpha = 1 \) in Theorem 2.5, then we have

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(t)dt - f(a + b - x) \right|
\]

\[
\leq \frac{1}{b-a} \left(\frac{1}{p+1} \right)^{\frac{1}{q}} \left[(x-a)^2 \left(\frac{|f'(a+b-x)|^q + |f'(a)|^q}{2} \right)^{\frac{1}{q}} + (b-x)^2 \left(\frac{|f'(a+b-x)|^q + |f'(b)|^q}{2} \right)^{\frac{1}{q}} \right]
\]

which is proved by Qaisar and Hussain in [23, Theorem 4].

Theorem 2.7 Let \(f : [a,b] \rightarrow \mathbb{R} \) be differentiable mapping on \((a,b) \) with \(0 \leq a < b \) and \(f' \in L^1 [a,b] \) . If \(|f'|^q, q \geq 1 \), is convex on \([a,b] \), then we have the following inequality for fractional integrals

\[
\text{...}
\]
New generalization of midpoint type inequalities for fractional integral

\[\left| \frac{\Gamma(\alpha+1)}{b-a} \left[(b-x)^{1-\alpha} f_{\alpha, b-x}^a - f(a) + (x-a)^{1-\alpha} f_{\alpha, a-b}^b + f(b) \right] - f(a+b-x) \right| \]

\[\leq \frac{1}{b-a} \left(\frac{1}{\alpha+1} \right)^{1-\frac{1}{q}} \left[(x-a)^2 \left(\frac{1}{\alpha+2} |f'(a+b-x)|^q + \frac{1}{(\alpha+1)(\alpha+2)} |f'(b)|^q \right)^{\frac{1}{q}} \right.

+ \left. (b-x)^2 \left(\frac{1}{\alpha+2} |f'(a+b-x)|^q + \frac{1}{(\alpha+1)(\alpha+2)} |f'(a)|^q \right)^{1-\frac{1}{q}} \right]

\]

for all \(x \in [a, b] \)

Proof. By the Lemma 2.1 and the power mean inequality, we have

\[\left| \frac{\Gamma(\alpha+1)}{b-a} \left[(b-x)^{1-\alpha} f_{\alpha, b-x}^a - f(a) + (x-a)^{1-\alpha} f_{\alpha, a-b}^b + f(b) \right] - f(a+b-x) \right| \]

\[\leq \frac{(x-a)^2}{b-a} \int_0^1 t^\alpha \left| f'(t(a+b-x) + (1-t)b) \right| \ dt

+ \frac{(b-x)^2}{b-a} \int_0^1 t^\alpha \left| f'(t(a+b-x) + (1-t)a) \right| \ dt

\leq \frac{(x-a)^2}{b-a} \left(\int_0^1 t^\alpha \ dt \right)^{1-\frac{1}{q}} \left(\int_0^1 t^\alpha \left| f'(t(a+b-x) + (1-t)b) \right|^q \ dt \right)^\frac{1}{q}

+ \frac{(b-x)^2}{b-a} \left(\int_0^1 t^\alpha \ dt \right)^{1-\frac{1}{q}} \left(\int_0^1 t^\alpha \left| f'(t(a+b-x) + (1-t)a) \right|^q \ dt \right)^\frac{1}{q} .

Using the convexity of \(|f'|^q \), we obtain

\[\int_0^1 t^\alpha \left| f'(t(a+b-x) + (1-t)b) \right|^q \ dt \]

\[\leq \int_0^1 t^\alpha \left[t \left| f'(a+b-x) \right|^q + (1-t) \left| f'(b) \right|^q \right] \ dt

= \frac{1}{\alpha+2} \left| f'(a+b-x) \right|^q + \frac{1}{(\alpha+1)(\alpha+2)} \left| f'(b) \right|^q

\]
and similarly we have
\[
\int_0^1 t^\alpha |f'(t(a+b-x)+(1-t)a)|^q \, dt
\leq \frac{1}{\alpha + 2} |f'(a+b-x)|^q + \frac{1}{(\alpha + 1)(\alpha + 2)} |f'(a)|^q.
\]
This completes the proof. \(\square\)

Corollary 2.8 Under assumption of Theorem 2.7 with \(x = \frac{a+b}{2}\), we have the following inequality
\[
|2^{\alpha-1} \Gamma(\alpha+1) \left[\int_{a+b}^{b} f(a) + \int_{a+b}^{a} f(b) \right] - f\left(\frac{a+b}{2}\right)|
\leq \frac{b-a}{4} \left(\frac{1}{\alpha + 1} \right)^{1-\frac{1}{q}}
\times \left[\left(\frac{1}{\alpha + 2} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{1}{(\alpha + 1)(\alpha + 2)} \left| f'(b)\right|^q \right)^{\frac{1}{q}} + \left(\frac{1}{\alpha + 12} \left| f'\left(\frac{a+b}{2}\right)\right|^q + \frac{1}{(\alpha + 1)(\alpha + 2)} \left| f'(a)\right|^p \right)^{\frac{1}{q}} \right]
\leq \frac{b-a}{4} \left(\frac{1}{\alpha + 1} \right)^{1-\frac{1}{q}}
\times \left[\left(\frac{1}{2(\alpha + 2)} |f'(a)|^q + \frac{\alpha + 3}{2(\alpha + 1)(\alpha + 2)} |f'(b)|^q \right)^{\frac{1}{q}} + \left(\frac{1}{2(\alpha + 2)} |f'(b)|^q + \frac{\alpha + 3}{2(\alpha + 1)(\alpha + 2)} |f'(a)|^q \right)^{\frac{1}{q}} \right].
\]

Remark 2.3 If we choose \(\alpha = 1\) in Theorem 2.7, then we have
\[
\left| \frac{1}{b-a} \int_a^b f(t) \, dt - f(a+b-x) \right|
\leq \frac{1}{2(b-a)} \left(\frac{1}{3} \right)^{\frac{1}{2}} \left[(x-a)^2 (2 |f'(a+b-x)|^q + |f'(b)|^q)^{\frac{1}{2}}
+ (b-x)^2 (2 |f'(a+b-x)|^q + |f'(a)|^p)^{1-\frac{1}{2}} \right]
\]
which is proved by Qaisar and Hussain in [23, Theorem 5].

Theorem 2.9 Let \(f : [a, b] \rightarrow \mathbb{R} \) be a differentiable mapping on \((a, b)\) with \(0 \leq a < b\) and \(f' \in L^1[a, b] \). If \(|f'|^q\), \(q > 1,\) is concave on \([a, b]\), then we have the following inequality for fractional integrals

\[
\left| \frac{\Gamma(\alpha+1)}{b-a} \left[(b-x)^{1-\alpha}J^\alpha_{(a+b-x)}f(a) + (x-a)^{1-\alpha}J^\alpha_{(a+b-x)}f(b) \right] - f(a+b-x) \right|
\leq \frac{1}{b-a} \left(\frac{1}{\alpha p+1} \right)^{\frac{1}{q}} \left[(x-a)^2 \left| f'(\frac{a+2b-x}{2}) \right| + (b-x)^2 \left| f'(\frac{2a+b-x}{2}) \right| \right]
\]

for all \(x \in [a, b] \), where \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof. By Lemma 2.1 and the Hölder inequality, we have

\[
\frac{\Gamma(\alpha+1)}{b-a} \left[(b-x)^{1-\alpha}J^\alpha_{(a+b-x)}f(a) + (x-a)^{1-\alpha}J^\alpha_{(a+b-x)}f(b) \right] + f(a+b-x)
\leq \frac{(x-a)^2}{b-a} \int_0^1 t^\alpha \left| f'(t(a+b-x) + (1-t)b) \right| dt \tag{2.9}
\]

\[
+ \frac{(b-x)^2}{b-a} \int_0^1 t^\alpha \left| f'(t(a+b-x) + (1-t)a) \right| dt
\leq \frac{(x-a)^2}{b-a} \left(\int_0^1 (t^\alpha)^p \, dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(t(a+b-x) + (1-t)b)|^q \, dt \right)^{\frac{1}{q}}
\]

\[
+ \frac{(b-x)^2}{b-a} \left(\int_0^1 (t^\alpha)^p \, dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(t(a+b-x) + (1-t)a)|^q \, dt \right)^{\frac{1}{q}}
\]

Since \(|f'|^q\) is concave on \([a, b]\), by using Jensen integrals inequality, we obtain
\[\int_{0}^{1} |f'(t(a+b-x) + (1-t)b)|^q \, dt \]
\[\leq |f'\left(\frac{1}{0} \left(t(a+b-x) + (1-t)b \right) \right)|^q \]
\[= \left| f'\left(\frac{a+2b-x}{2} \right) \right|^q \]

and similarly,
\[\int_{0}^{1} |f'(t(a+b-x) + (1-t)a)|^q \, dt \leq \left| f'\left(\frac{2a+b-x}{2} \right) \right|^q. \]

By using the inequality (2.10) and (2.11) and the equality
\[\int_{0}^{1} (t^\alpha p) \, dt = \frac{1}{\alpha p+1}, \]

in (2.9), we obtain the desired result.

\[\square \]

Corollary 2.10 Under assumptions of Theorem 2.9, if we choose \(x = \frac{a+b}{2} \), then we have the inequality
\[\left| \frac{\Gamma(\alpha+1)}{(b-a)^\alpha} \left[J_{a+\frac{3}{2}} f(b) + J_{a+\frac{3}{2}} f(a) - f\left(\frac{a+b}{2} \right) \right] \right| \]
\[\leq \left(\frac{1}{\alpha p+1} \right)^\frac{1}{p} \left(\frac{b-a}{4} \right) \left[\left| f'\left(\frac{a+3b}{4} \right) \right| + \left| f'\left(\frac{3a+b}{4} \right) \right| \right]. \]

Remark 2.4 If we choose \(\alpha = 1 \) in Theorem 2.9, then we have
\[\left| \frac{1}{b-a} \int_{a}^{b} f(t) \, dt - f(a+b-x) \right| \]
\[\leq \frac{1}{b-a} \left(\frac{1}{p+1} \right)^\frac{1}{p} \left[(x-a)^2 \left| f'\left(\frac{a+2b-x}{2} \right) \right| + (b-x)^2 \left| f'\left(\frac{2a+b-x}{2} \right) \right| \right] \]

which is proved by Qaisar and Hussain in [23, Theorem 7].
Theorem 2.11 Let $f : [a, b] \to \mathbb{R}$ be differentiable mapping on (a, b) with $0 \leq a < b$ and $f' \in L^1[a, b]$. If $|f'|^q$, $q \geq 1$, is concave on $[a, b]$, then we have the following inequality for fractional integrals

$$\left| \frac{\Gamma(\alpha+1)}{b-a} \left((b-x)^{1-\alpha} f_{(a+b-x)}^\alpha - f(a) + (x-a)^{1-\alpha} f_{(a+b-x)}^\alpha + f(b) \right) + f(a+b-x) \right|$$

$$\leq \frac{1}{b-a} \left(\frac{1}{\alpha+1} \left[(x-a)^2 \left| f' \left(\frac{\alpha+1}{\alpha+2} (a-x) + b \right) \right| \right. \right.$$

$$+ \left. \left. (b-x)^2 \left| f' \left(\frac{\alpha+1}{\alpha+2} (b-x) + a \right) \right| \right] \right)$$

for all $x \in [a, b]$

Proof. From the inequality (2.8) we have

$$\left| \frac{\Gamma(\alpha+1)}{b-a} \left((b-x)^{1-\alpha} f_{(a+b-x)}^\alpha - f(a) + (x-a)^{1-\alpha} f_{(a+b-x)}^\alpha + f(b) \right) + f(a+b-x) \right|$$

$$\leq \frac{1}{b-a} \left(\int_0^1 t^\alpha dt \right)^{1-\frac{1}{q}} \left(\int_0^1 |t^\alpha| \left| f' \left(t (a+b-x) + (1-t) b \right) \right|^q dt \right)^{\frac{1}{q}}$$

$$+ \frac{(b-x)^2}{b-a} \left(\int_0^1 t^\alpha dt \right)^{1-\frac{1}{q}} \left(\int_0^1 |t^\alpha| \left| f' \left(t (a+b-x) + (1-t) a \right) \right|^q dt \right)^{\frac{1}{q}}.$$

By the Jensen inequality, we obtain

$$\int_0^1 |t^\alpha| \left| f' \left(t (a+b-x) + (1-t) b \right) \right|^q dt$$

$$\leq \left(\int_0^1 t^\alpha dt \right) f' \left(\frac{1}{\int_0^1 t^\alpha dt} \int_0^1 t^\alpha t (a+b-x) + (1-t) b dt \right)^q$$

$$= \left(\frac{1}{\alpha+1} \right) f' \left(\frac{\alpha+1}{\alpha+2} (a+b-x) + \frac{1}{\alpha+2} b \right)^q$$

$$= \left(\frac{1}{\alpha+1} \right) f' \left(\frac{\alpha+1}{\alpha+2} (a-x) + b \right)^q$$
and similarly,

\[
\int_0^1 \left| t^\alpha \right| \left| f' \left((a + b - x) + (1 - t) a \right) \right| dt \\
\leq \left(\frac{1}{\alpha + 1} \right) \left| f' \left(\frac{(\alpha + 1)}{(\alpha + 2)} (b - x) + a \right) \right|^q.
\]

The proof is completed. \(\Box\)

Corollary 2.12 Under assumptions of Theorem 2.11 with \(x = \frac{a+b}{2} \), then we have the inequality

\[
\left| \frac{2^{\alpha-1} \Gamma(\alpha + 1)}{(b-a)^\alpha} \left[J_\alpha^{\alpha+1} \left(f(a) + J_\alpha^{\alpha+1} f(b) \right) - f \left(\frac{a+b}{2} \right) \right] \right|
\leq \frac{b-a}{4} \left(\frac{1}{\alpha + 1} \right)^{2-\frac{2}{\alpha}} \left[\left| f' \left(\frac{(\alpha+3) b + (\alpha + 1) a}{2 (\alpha + 2)} \right) \right| \\
+ \left| f' \left(\frac{(\alpha+3) a + (\alpha + 1) b}{2 (\alpha + 2)} \right) \right| \right]
\]

Remark 2.5 If we choose \(\alpha = 1 \) in Theorem 2.11, then we have

\[
\left| \frac{1}{b-a} \int_a^b f(t) dt - f(a + b - x) \right|
\leq \frac{1}{2 (b-a)} \left[(x-a)^2 \left| f' \left(\frac{2a+3b-2x}{3} \right) \right| \\
+ (b-x)^2 \left| f' \left(\frac{3a+2b-2x}{3} \right) \right| \right]
\]

which is proved by Qaisar and Hussain in [23, Theorem 8].

References

1. ALOMARI, M.; DARUS, M.; KIRMACI, U.S. – Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), no. 1, 225-232.
2. ANASTASSIOU, G.A. – Generalised fractional Hermite–Hadamard inequalities involving \((s, m)\)-convexity, Facta Univ. Ser. Math. Inform., 28 (2013), no. 2, 107-126.
3. AZPETITIA, A.G. – Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), no. 1, 7-12.
New generalization of midpoint type inequalities for fractional integral

4. de la Cal, J.; Cárcamo, J.; Escauriaga, L. – A general multidimensional Hermite-Hadamard type inequality, J. Math. Anal. Appl., 356 (2009), no. 2, 659-663.

5. Chen, H.; Katugampola, U.N. – Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), no. 2, 1274-1291.

6. Dragomir, S.S.; Pearce, C.E.M. – Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University of Technology, 2000, Online:[http://rgmia.org/papers/monographs/Master2.pdf].

7. Dragomir, S.S.; Agarwal, R.P. – Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), no. 5, 91-95.

8. Farid, G.; Ur Rehman, A.; Zahir, M. – On Hadamard-type inequalities for k-fractional integrals, Komal J. Math., 4 (2016), no. 2, 79-86.

9. Gorenflo, R.; Mainardi, F. – Fractional calculus: integral and differential equations of fractional order. Fractals and fractional calculus in continuum mechanics, (Udine, 1996), 223-276, CISM Courses and Lect., Springer, Vienna, 378 (1997).

10. Iqbal, M.; Qaisar, S.; Mudassar, M. – A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl., 21 (2016), no. 5, 946-953.

11. İscan, İ.; Wu, S. – Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Compt., 238 (2014), 237-244.

12. İscan, İ. – Generalization of different type integral inequalities for s-convex functions via fractional integrals, Appl. Anal., 93 (2014), no. 9, 1846-1862.

13. Jleli, M.; Samet, B. – On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function, J. Nonlinear Sci. Appl., 9 (2016), no. 3, 1252-1260.

14. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. – Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

15. Kirmaci, U.S. – Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), no. 1, 137-146.

16. Miller, K.S.; Ross, B. – An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, USA, 1993.

17. Noor, M.A.; Awan, M.U. – Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech., 5 (2013), no. 2, 129-136.

18. Pečarić, J.E.; Proschan, F.; Tong, Y.L. – Convex functions, partial orderings and statistical applications, Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 187 (1992).

19. Özdemir, M.E.; Avci-Ardıç, M.; Kavurmacı-Önal, H. – Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals, Turkish J. Science, 1 (2016), no. 1, 28-40.

20. Özdemir, M.E. ; Avci, M.; Set, E. – On some inequalities of Hermite-Hadamard-type via m-convexity, Appl. Math. Lett., 23 (2010), no. 9, 1065-1070.

21. Özdemir, M.E.; Avci, M.; Kavurmacı, H. – Hermite–Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61 (2011), no. 9, 2614-2620.

22. Podlubny, I. – Fractional Differential Equations, Academic Press, San Diego, 1999.

23. Qaisar, S.; Hussain, S. – On Hermite-Hadamard type inequalities for functions whose first derivative absolute values are convex and concave, Fasc. Math., 58 (2017), 155-166.

24. Sağlam, A.; Yildirim, H.; Sarikaya, M.Z. – Some new inequalities of Hermite-Hadamard’s type. Kyungpook Math. J., 50 (2010), no. 3, 399-410.

25. Sarikaya, M.Z.; Yildirim, H. – On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), no. 2, 1049-1059.

26. Sarikaya, M.Z.; Set, E.; Yıldız, H.; Başak, N. – Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57 (2013), no. 9-10, 2403-2407.

27. Sarikaya, M.Z.; Budak, H. – Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30 (2016), no. 5, 1315-1326.
28. Sarikaya, M.Z.; Akkurt, A.; Budak, H.; Yildirim, M.E.; Yildirim, H. – Hermite-Hadamard’s inequalities for conformable fractional integrals, Int. J. Optim. Control. Theor. Appl. (IJOCTA), 9 (2019), no. 1, 49-59.

29. Set, E.; Ozdemir, M.E.; Sarikaya, M.Z. – New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications, Facta Univ. Ser. Math. Inform., 27 (2012), no. 1, 67-82.

30. Set, E.; Sarikaya, M.Z.; Ozdemir, M.E.; Yildirim, H. – The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform. (JAMSI), 10 (2014), no. 2, 69-83.

31. Wang, J.R.; Li, X.; Feckan, M.; Zhou, Y. – Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (2012), no. 11, 2241-2253.

32. Wang, J.R.; Li, X.; Zhu, C. – Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), no. 4, 655-666.

33. Zhang, Y.; Wang, J.R. – On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. J. Inequal. Appl., 220 (2013), 1-27.

Received: 24.XI.2019 / Accepted: 01.IV.2020

Authors

Hüseyin Budak (Corresponding author),
Department of Mathematics,
Faculty of Science and Arts,
Düzce University,
Düzce, Turkey,
E-mail: hsyn.budak@gmail.com

Rabia Kapucu,
Department of Mathematics,
Faculty of Science and Arts,
Düzce University,
Düzce, Turkey,
E-mail: rabiakapucu.7@gmail.com