Performance of NOMA-based mmWave D2D Networks under Practical System Conditions

LEILA TLEBALDIYEVA1, GALYMZHAN NAURYZBAYEV1, (Senior Member, IEEE), SULTANGALI ARZYKULOV2, (Member, IEEE), and AHMED M. ELTAWIL2, (Senior Member, IEEE)

1Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Z05H0K3, Kazakhstan (e-mail: {ltlebaldiyeva, galymzhan.nauryzbayev}@nu.edu.kz)
2Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (e-mail: {sultangali.arzykulov, ahmed.eltawil}@kaust.edu.sa)

Corresponding author: Galymzhan Nauryzbayev (e-mail: galymzhan.nauryzbayev@nu.edu.kz).

This work was supported by the Nazarbayev University Social Policy Grant and the Nazarbayev University Faculty Development Competitive Research Program under Grant no. 240919FD3935.

ABSTRACT This work elaborates the analysis on ergodic capacity, coverage probability, and average throughput for multi-user non-orthogonal multiple access (NOMA) based device-to-device communication networks, which operate in the millimeter-wave spectrum range and are constrained by practical system imperfections such as residual transceiver hardware impairments, imperfect channel state information, and non-ideal successive interference cancellation. More importantly, we consider that the proposed network model is limited by independent and non-identically distributed interference noises emerging from neighboring device nodes. Computationally effective and comprehensive closed-form expressions are delivered to evaluate the ergodic capacity with its upper and lower bounds, as well as coverage probability and average throughput expressions. Furthermore, the asymptotic analysis of ergodic capacity and coverage probability at high and low signal-to-noise-ratio regimes are analyzed and the corresponding closed-form expressions are presented. Valuable discussions on the fairness-based power allocation scheme for NOMA users have been provided. Moreover, a thorough Monte Carlo simulation is carried out to validate the corresponding analytical findings. Finally, simulation results have revealed that the system impairments aforementioned herein cause an ergodic capacity saturation phenomenon. Especially, interference plays a significant role as a performance limitation factor for the ergodic capacity and coverage probability.

INDEX TERMS Average throughput, coverage probability, device-to-device (D2D) communications, ergodic capacity, imperfect channel state information (CSI), successive interference cancellation (SIC), millimeter-wave (mmWave), non-orthogonal multiple access (NOMA), residual transceiver hardware impairment (RTHI).

I. INTRODUCTION

One of the main aims of fifth-generation (5G) communication systems is to support connections of up to 50 billion devices by 2025 [1]. To this extent, the device-to-device (D2D) communication [2]–[4], millimeter wave (mmWave) technology [5]–[8], and non-orthogonal multiple access (NOMA) [9]–[13] (enabling concurrent device connections) can fulfill this goal. The NOMA is particularly useful for efficient utilization of network resources such as time, code, frequency, as well as radio frequency (RF) chains dedicated per user equipment (UE). For instance, the in-field trials conducted by NTT DOCOMO (Japan) and Mediatek (Taiwan) demonstrated a 2.3-times spectral efficiency (SE) improvement for smartphone-sized NOMA users in comparison to the single-user multiple-input multiple-output (MIMO) scenario [14].

A. RELATED WORKS

In NOMA-based D2D networks, multiple and nearby located devices’ signals are compounded in the power domain to boost their SE. The D2D-empowered NOMA networks also demonstrated the increase in energy efficiency, data
Capacity performance was investigated. Moreover, the recent work [31] proposed a joint power control and beamforming technique. The authors in [30] evaluated the ergodic capacity and RTHI level [25].

It is well-known that the RF chains considerably contribute to the cost of communication systems due to their high power consumption and cost of analog-to-digital converters (ADCs)/digital-to-analog converters (DACs) in RF chains [18]. At the same time, low-grade transceiver equipment is often used in modern high-rate systems to reduce their CAPEX costs. This inevitably adds residual transceiver hardware impairments (RTHIs) from the phase noise [19], [20], amplifier non-linearity [21], and in-phase/quadrature-phase imbalance [22], [23] to the received signal. The RF front-end imperfections have a more negative impact on the mmWave spectrum range than in the conventional frequency range [24]; due to an inverse relationship between the transmission rate and RTHI level [25].

Although the assumption of an ideal transceiver is acceptable for systems with a low data rate, this assumption is not valid for high-speed communication systems [26]. Comparative analysis of 60 GHz commercial RF front-ends for orthogonal frequency division multiplexing (OFDM) systems was presented in [27] for intrinsic RF hardware imperfections and their effect on the system performance. Moreover, the authors proposed a practical link budget analysis to evaluate Error Vector Magnitude (EVM). According to [28], RTHI limits the capacity at the UE side with multiple antennas. Oppositely, the effects of RTHI and inter-cluster interference are less severe at the base stations that employ massive MIMO antennas. Therefore, it is essential to model the RTHI noise and interference in D2D networks.

Recent works on the RTHI, imperfect channel state information (CSI), and non-ideal successive interference cancellation (SIC) have considered the cooperative NOMA networks in [29]–[36]. For instance, the authors in [29] studied the two-user uplink NOMA-based mmWave networks and proposed a joint power control and beamforming technique. Moreover, the authors in [30] evaluated the ergodic capacity for amplify-and-forward (AF) and decode-and-forward (DF) MIMO relay systems with an arbitrary number of antennas and by considering the effect of RTHI. Similarly, a NOMA-based AF relay network constrained by RTHIs was studied in [31], where the outage probability along with the ergodic capacity performance was investigated. Moreover, the recent works [32] and [33] studied the RTHI and imperfect SIC while incorporating the energy harvesting capabilities in the overlay cognitive NOMA networks over Nakagami-m fading environment.

It was shown that the NOMA-based system outperforms the traditional orthogonal multiple access (OMA) system at the medium-to-high signal-to-noise (SNR) regime. Similarly, an approximate expression for the ergodic capacity was provided in the recent work [34] for both cooperative and non-cooperative NOMA networks considering the RTHI, imperfect CSI [37] and non-ideal SIC [38]. The authors in [35] studied the security aspects in NOMA-based AF relay cooperative networks by considering the RTHI noise, where the exact and asymptotic outage probability and intercept probability analysis were provided. The authors in [36] studied the cooperative NOMA-based coverage probability analysis for a mmWave network given an ideal system configuration; three potential relay selection schemes were proposed to justify the advantage of the cooperative NOMA approach over the traditional OMA one.

Next, the ergodic capacity analysis for NOMA-based uplink satellite networks with randomly deployed end-users under imperfect CSI and antenna-pointing errors was studied in [39]; however, this work did not study the other system impairments. Likewise, the work [40] studied the ideal NOMA network with two end-users and presented the outage probability and approximate ergodic capacity formulas.

The authors in [41] studied a different aspect of practical system imperfection in NOMA networks such as arbitrary user mobility profile at various antenna array ranges given the short packet transmission regime. The other authors in [42] introduced the heterogeneous mobility profile to group users that move at a certain speed by using a novel NOMA orthogonal frequency space modulation. Furthermore, the authors in [43] proposed a detection method and channel estimation algorithm for sky-ground uplink NOMA, where aerial users are moving while terrestrial users are static. The proposed method improved both the channel estimation and time-varying successive interference cancellation.

It is noted that the contemporary research in the field of NOMA-based mmWave D2D networks either has studied the ideal transceiver hardware or does not consider independent and non-identically distributed (i.n.i.d.) interference noise induced by neighboring device nodes. However, the authors in [44] discussed the importance of inter-cell and intra-cell interference analysis as a main limiting factor for NOMA-based 5G networks. On the other hand, they did not present an analytical performance analysis. Moreover, the authors in [45] considered a simple yet not accurate interference noise model for underlay cognitive radio NOMA networks, where several interfering nodes are treated as a Gaussian noise by applying a central limit theorem (CLT).

To the best of the authors’ knowledge, little attention has been paid to studying the impact of interference in mmWave D2D NOMA networks. This problem, as well as the other realistic system impairments (i.e., RTHI and...
imperfect CSI/SIC), are worth being addressed in forthcoming massively connected communication systems; therefore, these issues mentioned above are the main investigation aspects of this paper.

B. MAIN CONTRIBUTION

Motivated by the abovementioned discussion, in this work, we aim to study the essential sources of system impairments that degrade the performance of multi-user NOMA-based D2D mmWave networks and develop a unified framework to evaluate their performance. For statistical RTHI modeling, we adopt the power-dependent additive white Gaussian noise (AWGN) model to describe the aggregate effect of transceiver impairments due to its analytical tractability as well as its theoretical and practical validity supported by [26], [46]–[49]. Moreover, we incorporate an analytically tractable model for i.n.i.d. interference noise terms over Nakagami-m fading channels into our system model. To the best of the authors’ knowledge, no prior work derived the closed-form expressions for the ergodic capacity and coverage probability analysis considering M i.n.i.d. interference noises. Since channel conditions and signal power of interfering nodes may vary depending on their locations, it is important to consider i.n.i.d. Gamma variates to represent channel gains of Nakagami-m channel amplitudes. The authors in [50] presented a single Gamma approximation PDF for the summation of M i.n.i.d. Gamma RVs. This work enabled us to present all channel noises (a summation of M i.n.i.d. interference, RTHI, and imperfect CSI/SIC) as a single Gamma RV. This approach substantially simplified the analysis of the proposed system model.

The key contributions of this work are summarized as:

- Different from [34] and [39], we develop a practical framework for NOMA-based mmWave D2D networks while considering the compound effect of RTHI, imperfect CSI/SIC, and interference from side/back lobe antenna gains of the interfering nodes in the multi-user NOMA D2D network.
- In contrast to [34] and [40], where the authors delivered the approximate ergodic capacity analysis of NOMA-based networks due to the mathematical complexity of the exact analytical derivations, this work delivers compact and insightful closed-form expressions for the ergodic capacity and corresponding lower and upper bounds along with the asymptotic analysis at the high and low SNR regimes.
- Closed-form expressions for the coverage probability and average throughput have been presented in this work. To obtain deeper insights, the asymptotic behavior of the coverage probability is investigated at the high-SNR regime.
- The individual effect of each system impairment (i.e., RTHI, imperfect CSI/SIC, and M i.n.i.d. interference noise) is studied separately and compared with its ideal counterpart. Given a non-ideal system configuration, the closed-form power allocation (PA) scheme is proposed to ensure fairness among NOMA users. Finally, thorough Monte-Carlo simulations validate the correctness of all derived analytical expressions and demonstrate the advantage of the NOMA-based network over the OMA one.

C. NOTATIONS AND PAPER ORGANIZATION

Throughout the paper, the expectation operator is denoted as $\mathbb{E}\{\cdot\}$, $G^{m,n}_{p,q}(\cdot)$ represents the Meijer G-function, and $X \sim \mathcal{CN}(\mu, \sigma^2)$ stands for the circularly symmetric complex Gaussian random variable (RV) X with mean μ and σ^2 variance. In addition, $F_X(\cdot)$ and $f_X(\cdot)$ symbolize the cumulative distribution function (CDF) and probability density function (PDF) of RV X, correspondingly. Moreover, $\Gamma(m, \beta)$ is an incomplete Gamma function with m fading and $\beta > 0$ scale parameters, and $\psi(\cdot)$ is the digamma function [51, (8.360.1)]. $\Pr(\mathcal{C})$ is the probability of an event \mathcal{C}. Gamma RV \mathcal{X} with m fading and β scale parameters is denoted as $\mathcal{X} \sim \text{Gamma}(m, \beta)$.

The remainder of the paper is organized as follows. Section II defines the system model of a realistic NOMA-based mmWave D2D network limited by imperfect SIC/CSI, RTHIs, and interference. Next, Section III presents generic formulas to evaluate the ergodic capacities with its lower and upper bounds. Finally, Section IV validates the correctness of all derived analytical expressions and demonstrates the advantage of the NOMA-based network over the OMA one.

Fig. 1. An illustration of the NOMA-based mmWave D2D network with multiple N users surrounded by M interfering nodes.
upper bounds for the proposed system model. Furthermore, Section IV evaluates the ergodic capacity with its lower and upper bounds and corresponding asymptotic analysis for the NOMA-based mmWave D2D network under study over Nakagami-m fading channels. Section V presents the closed-form expression for the coverage probability and its high-SNR approximation. Section V-B showcases the closed-form expression for the average throughput formula for the system model under study. Furthermore, in Section VI, the fairness aspects of the power allocation are discussed and the closed-form solution is proposed. The main result discussions are drawn in Section VII, and Section VIII summarizes the key points of the work.

II. SYSTEM MODEL

Consider a downlink NOMA-based D2D mmWave network drawn in Section VII, and Section VIII summarizes the key upper bounds for the proposed system model. Furthermore, a fading parameter m models the line-of-sight (LOS)/non-LOS components of mmWave communication. In addition, Nakagami-m distribution scaled by analog beamforming gain is a mathematically tractable solution to model mmWave channel that simplifies the analysis of complex system models.

We model the mmWave channel by using Nakagami-m fading along with analog beamforming user association as in [55] and [56], where a fading parameter m models the side/back lobes of the other device nodes and the reference receiver’s side/back lobe with the main lobe or side/back lobe (Gm or Gs). In (2), hik is the channel between the D2D pair, while gik is the channel between the kth interference node and the reference receiver i within a given cluster, hi and gik are both Nakagami-m distributed channel amplitudes. Additionally, Ik is the average signal power from the interfering node k, RTHI noise components are modeled as \(\mu_k \sim \mathcal{CN}(0, \kappa_k^2 \sigma_i^2) \) and \(\tilde{\mu}_k \sim \mathcal{CN}(0, \kappa_k^2) \), where \(\mu_k \) and \(\tilde{\mu}_k \) are the RTHI levels measured by EVM [58]. The EVM metric is frequently applied to measure a mismatch between intended and actual signals. An ideal RF transceiver would have an EVM value equal to zero and lower values of EVM signify a higher quality of RF transceiver hardware [31]. Moreover, \(\omega_i \sim \mathcal{CN}(0, \sigma_i^2) \) is the AWGN term. Furthermore, the signal-to-interference-noise-distortion ratio (SINDR) at \(U_i \) to decode the signal \(x_j \) given \(j \leq i \) can be formulated by considering the RTHI, interference, and imperfect CSI/SIC as

\[
\begin{align*}
\gamma_j^{[i]} &= \frac{\alpha_j \rho_1 |h_i|^2}{\rho_1 |B_j|h_i|^2 + \Lambda[i] + \sum_{k=1}^{M} |g_{ik}|^2 (1 + \kappa_k^2) \tilde{\mu}_k}, \\
\end{align*}
\]

where \(\rho_1 = PG_m d_{i}^{-\tau}, \tilde{\mu}_k = \tilde{\mu}_k G_k d_{ik}^{-\tau}, \) and \(\Lambda[i] = \sigma_i^2 + \rho_1 (1 + \kappa_k^2) \sigma_i^2, \) Next, \(B_j = \left(\Phi_j + \tilde{\Phi}_j + \kappa_k^2 \right), \) where \(\Phi_j = \sum_{j=1}^{N} \alpha_j \) and \(\tilde{\Phi}_j = \sum_{r=1}^{j-1} \xi_r, \) for imperfect SIC range, \(0 \leq \xi_r \leq 1, \) such that \(\xi_r = 0 \) represents ideal SIC and \(\xi_r = 2It is reasonable to assume the equality of the PLE values, i.e., \(\tau = \tau^\prime \).

Note that the number of neighboring interfering nodes for \(U_i \) can be arbitrary.
1 stands for non-ideal SIC. We make the following variable substitutions for simplification purposes of SINDR as
\[
\gamma_{[i]} = \frac{a_{[i]}X_{[i]}}{b_{[i]}X_{[i]} + Z_{[i]} + \Lambda_{[i]}},
\]
where \(X_{[i]} = \hat{h}_{1}[i]^2\), \(\zeta_{[i]} = (1 + \kappa_{[i]^2})\hat{p}_{ik}\), \(Z_{[i]} = \sum_{k=1}^{M}Y_{[i]}[k]\), \(a_{[i]} = \alpha_{[i]}p_{[i]}\) and \(b_{[i]} = \rho_{[i]}(\Phi_{[i]} + \Phi_{[i]} + \kappa_{[i]^2})\). Note that \(U_{[i]}\) decodes its own signal \(x_{[i]}\) and treats other \(x_{[j]}\) messages as a noise with \(\Phi_{[i]} = \sum_{t=1}^{N}e_{[t]}\) and \(\Phi_{[i]} = 0\) parameters. The user \(U_{[i]}\) decodes the \(x_{[i]}\) signal by applying SIC and by evaluating \(\Phi_{[i]} = \sum_{r=1}^{N-1}e_{[r]}\alpha_{[r]}\).

III. GENERIC ERGODIC CAPACITY WITH BOUNDS

This section analyzes the ergodic capacity of NOMA-based mmWave D2D networks by considering RTHI, imperfect CSI/SIC, and i.n.i.d. interference noises. Inspired by [59], the general expressions for the ergodic capacity with its upper and lower bounds for a NOMA-based mmWave D2D network constrained by system impairments in arbitrary fading channels are formulated below.

A. ERGODIC CAPACITY

By definition, the ergodic capacity is given by
\[
C_{[i]}^{[i]} = \mathbb{E}\left\{\log_{2}\left(1 + \gamma_{[i]}^{[i]}\right)\right\} = \mathbb{E}\left\{\log_{2}\left(1 + \frac{a_{[i]}X_{[i]}}{\Lambda_{[i]} + Z_{[i]} + b_{[i]}X_{[i]}}\right)\right\}.
\]
By using the property of a logarithm function, (5) can be further written as a difference of two terms
\[
C_{[i]}^{[i]} = \mathbb{E}\left\{\log_{2}\left(X_{[i]}(a_{[i]}[i] + b_{[i]}X_{[i]}) + \Lambda_{[i]} + Z_{[i]}\right)\right\} - \mathbb{E}\left\{\log_{2}\left(\Lambda_{[i]} + Z_{[i]} + b_{[i]}X_{[i]}\right)\right\}.
\]
We make the following variable substitutions in (6) for simplification purposes: \(T_{[i]} = X_{[i]}(a_{[i]}[i] + b_{[i]}X_{[i]}) + \Lambda_{[i]} + Z_{[i]}\) that represents the summation of \((M+1)\) i.n.i.d. Gamma RVs and \(V_{[i]} = b_{[i]}X_{[i]} + Z_{[i]}\) is another summation of \((M+1)\) i.n.i.d. Gamma RVs with different fading and scale parameters. Hence, we get the following simplified representation for the ergodic capacity as
\[
C_{[i]}^{[i]} = \mathbb{E}\left\{\log_{2}\left(\Lambda_{[i]} + T_{[i]}\right)\right\} - \mathbb{E}\left\{\log_{2}\left(\Lambda_{[i]} + V_{[i]}\right)\right\}.
\]

B. LOWER ERGODIC CAPACITY

By using the concavity property of \(\log_{2}(1 + u \exp(x))\) for variable \(x\) with \(u > 0\) and Jensen’s inequality [51, (12.41)], the ergodic capacity is lower-bounded as
\[
C_{[i]}^{L[i]} = \log_{2}\left(1 + \exp\left(\mathbb{E}\left\{\log_{2}\left(a_{[i]}X_{[i]}\right)\right\}\right)\right) = \log_{2}\left(1 + \exp\left(\mathbb{E}\left\{\log_{2}\left(\frac{a_{[i]}X_{[i]}}{\Lambda_{[i]} + V_{[i]}\right}\right)\right)\right). \quad (8)
\]
Next, by exploiting the property of a logarithmic function, we may re-write the lower bound ergodic capacity as
\[
C_{[i]}^{L[i]} = \log_{2}\left(1 + \exp\left(\mathbb{E}\left\{\log_{2}\left(\frac{a_{[i]}X_{[i]}}{\Lambda_{[i]} + V_{[i]}\right}\right)\right)\right) - \mathbb{E}\left\{\log_{2}\left(\frac{1}{\Lambda_{[i]} + V_{[i]}\right}\right)\right\}. \quad (9)
\]

C. UPPER ERGODIC CAPACITY

Since a logarithm is a concave function, Jensen’s inequality is applied to evaluate the generic upper ergodic capacity as
\[
C_{[i]}^{U[i]} = \log_{2}\left(1 + \mathbb{E}\left\{\gamma_{[i]}\right\}\right) = \log_{2}\left(1 + \mathbb{E}\left\{\frac{a_{[i]}X_{[i]}}{\Lambda_{[i]} + V_{[i]}\right\}\right) = \log_{2}\left(1 + a_{[i]}\mathbb{E}\left\{\frac{X_{[i]}}{\Lambda_{[i]} + V_{[i]}\right\}\right). \quad (10)
\]

IV. ERGODIC CAPACITY WITH BOUNDS IN NAKAGAMI-\(\beta\) FADE CHANNEL

This section demonstrates the approximated closed-form expressions for the ergodic capacity with its upper and lower bounds in for NOMA-based mmWave D2D network with system impairments over Nakagami-\(m\) fading channels.

Lemma 1: Consider \(X_{[i]}\) \((t=1, \ldots, Q)\) are non-negative i.n.i.d. Gamma RVs with \(m_{[i]}\) fading and \(\beta_{[i]}\) scale parameters, accordingly. The probability density function (PDF) of \(Z = \sum_{t=1}^{Q}X_{[i]}\) is given as
\[
\begin{aligned}
\int_{Z}\left(\frac{\Gamma(m_{[i]}\beta_{[i]})^{\mu}}{\Gamma(m_{[i]})\beta_{[i]}^{\mu}}\right) &= \exp\left(-\frac{Z}{m_{[i]}\beta_{[i]}}\right), \quad (11)
\end{aligned}
\]
where an approximated scale parameter of a single Gamma function, \(\beta_{[i]}\), is evaluated by solving a set of equations \(\frac{\mu}{2} - 2\sum_{t=1}^{Q}\frac{m_{[i]}\beta_{[i]}}{\beta_{[i]} + \beta_{[i]}} = 0\) and \(\mu = \sum_{t=1}^{Q}m_{[i]}\beta_{[i]}\). A shape parameter for the single Gamma function is evaluated from \(m_{[i]} = \frac{\beta_{[i]}}{\beta_{[i]}}\).

We derive an ergodic capacity with the aid of Lemma 1 to represent the summation of \((M+1)\) i.n.i.d. Gamma variates.

Proposition 1: The ergodic capacity for a NOMA-based mmWave D2D network in an analog beamformed Nakagami-\(m\) fading channel with RTHI, imperfect CSI/SIC, and \(M\)
i.n.i.d. interference constraints is given by

$$\tilde{C}_j = \frac{G_{3,2} \left(\frac{\beta_v}{\Lambda[j]} \right) \ln(2) \Gamma(m_v)}{\ln(2) \Gamma(m_v)} - \frac{G_{3,2} \left(\frac{\beta_v}{\Lambda[j]} \right) \ln(2) \Gamma(m_v)}{\ln(2) \Gamma(m_v)},$$

where \(\{\hat{\beta}_i, \hat{\beta}_v\} \) and \(\{\hat{m}_i, \hat{m}_v\} \) are the scale and fading parameters of \(T[i] \sim \Gamma(\hat{m}_i, \hat{\beta}_i) \) and \(V[i] \sim \Gamma(\hat{m}_v, \hat{\beta}_v) \) single Gamma representations of the sum of \(M+1 \) i.n.i.d. Gamma distributed noise components, accordingly.

Proof: Full proof is relegated to Appendix A.

There are other PDFs available that could be used to represent a summation of \(M \) i.n.i.d. Gamma variates. For instance, the work in [60] developed a summation PDF in terms of Fox \(H \)-function, which is mathematically very challenging to be integrated into the computation of ergodic capacity. In fact, the author in [61] represented the PDF for summation of \(M \) i.n.i.d. Gamma RVs as the semi-infinite summations with a recursive function. However, it is computationally intensive to use this PDF in our system model as well. It is possible to derive the compact ergodic capacity formula by using a single Gamma representation for the summation of \(M \) i.n.i.d. Gamma RVs [50].

Proposition 2 below presents a closed-form expression for the lower bound of ergodic capacity.

Proposition 2: The ergodic capacity for a NOMA-based mmWave D2D network with RTHI, imperfect CSI/SIC, and interference noise is lower bounded by

$$\tilde{C}_j^L = \frac{G_{3,2} \left(\frac{\beta_v}{\Lambda[j]} \right) \ln(2) \Gamma(m_v)}{\ln(2) \Gamma(m_v)} - \frac{G_{3,2} \left(\frac{\beta_v}{\Lambda[j]} \right) \ln(2) \Gamma(m_v)}{\ln(2) \Gamma(m_v)}.$$

Proof: See Appendix B.

Similarly, **Proposition 3** presents an upper ergodic capacity for the proposed system model.

Proposition 3: An upper bound of the ergodic capacity for a given NOMA-based mmWave D2D network with system impairments and \(M \) interference noise terms is evaluated by using (10) as

$$\tilde{C}_j^U = \frac{1 + a_j \beta_i \beta_v^2 \Lambda[i]}{\beta_v} \sim \Lambda[i]^{-1} - m_v \exp \left(\frac{\Lambda[i]}{\beta_v} \right) \times \Gamma \left(1 - \frac{\Lambda[i]}{\beta_v} \right).$$

Proof: The proof is relegated to Appendix C.

A. ASYMPTOTIC ANALYSIS

System imperfection noises, such as RTHI and imperfect CSI/SIC, are proportional to the transmit power. Therefore, it is particularly interesting to analyze the ergodic capacity at the high-SNR regime to elaborate their effect on the capacity ceiling. **Proposition 4** below provides the closed-form expression for asymptotic ergodic capacity formulas at the high-SNR regime.

Proposition 4: The asymptotic ergodic capacity formula for the proposed NOMA-based mmWave D2D network at high-SNR regime is evaluated as

$$\lim_{\text{SNR} \to \infty} \tilde{C}_j = \log_2 \left(1 + \frac{\alpha_j \beta_i m_i}{\Sigma_j B_j} \right).$$

Proof: The proof is in Appendix D.

Next, by using the SINDR in terms of \(\text{SNR}_i \) given in (38) and by taking the limit of the ergodic capacity when SNR tends to zero, we obtain low-SNR ergodic capacity

$$\lim_{\text{SNR} \to 0} \tilde{C}_j = \log_2 (1 + 0) \approx 0.$$

The ergodic capacity in the high-SNR regime is particularly important to verify whether the system impairments contribute to limit the performance of high-rate systems.

V. COVERAGE PROBABILITY

In the following section, the coverage probability analysis for the proposed system model has been performed. The coverage probability evaluates the probability of the received signal, \(x_j \) being correctly decoded at the reference receiver, \(U_i \), which is calculated by the probability of the SINDR being higher at the predefined rate threshold, \(v = 2R_{th} - 1 > 0, \) where \(R_{th} \) is the communication rate threshold.

$$P_c(v) = Pr \left[\frac{v}{\alpha_j x_i} > v \right], 0 < j \leq i, i \in N.$$

Proposition 5: For NOMA-based mmWave D2D network constrained by \(N \) i.n.i.d. interference, imperfect CSI/SIC, and RTHI, coverage probability is evaluated by applying (17) and Lemma 1 to approximate the summation of \(N \) interference noise as a single Gamma RV and shown on the top of the next page, where \(\omega_i = \frac{v}{\beta_i (\Lambda[i] - e^{\frac{a_j}{\alpha_j}})}.$$

Proof: A full derivation is shown in Appendix C.

A. **ASYMPTOTIC ANALYSIS: HIGH-SNR APPROXIMATION**

In this subsection, we present the coverage analysis using asymptotic high-SNR behaviour for the NOMA-based mmWave D2D networks under interference noise, RTHI, and imperfect CSI/SIC. By considering the high-SNR regime for (39), the asymptotic coverage probability is evaluated as

$$P_c(v) = \frac{X[i]}{\alpha_j x_i} > v \Rightarrow \frac{\alpha_j X[i]}{\beta_j X[i]} > v \Rightarrow \text{Pr} \left(X[i] > \frac{v(1+\kappa v^2 \sigma_{ci})}{\alpha_j - v B_j} \right) = 1 - F_X[i] \left(\frac{v(1+\kappa v^2 \sigma_{ci})}{\alpha_j - v B_j} \right),$$

where \(X[i] \sim \text{Gamma}(m_i, \beta_i) \) and generic CDF of Gamma RV \(X[i] \) is given as \(F_{X[i]}(x) = \frac{\gamma(a+b)}{x^{a+b}} \), that may be represented in a series form as

$$F_{X[i]}(x; a, b) = 1 - \exp \left(\frac{x}{b} \right) \sum_{t=0}^{a-1} \left(\frac{x}{b} \right)^t.$$

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Next, by using (19) and (20), the asymptotic coverage probability at high-SNR region is given as

\[
P_{c}^{[i]}(v) = \exp \left(\frac{v(1 + k_i^2 \sigma_e^2)}{\alpha_v - v \beta_j} \right) \sum_{t=0}^{m_i-1} \left(\frac{v(1 + k_i^2 \sigma_e^2)}{\alpha_v - v \beta_j} \right)^t \frac{1}{t!}
\]

(21)

B. AVERAGE THROUGHPUT ANALYSIS

In this subsection, the average throughput evaluation formula is given for the NOMA-based mmWave D2D network under system impairments.

Proposition 6: Consider a NOMA-based mmWave D2D network that is constrained by RTHI, imperfect CSI/SIC noise, and i.i.d. interference noise. The average throughput formula is given as

\[
P^{[i]}(v) = \sum_{t=0}^{m_i-1} \frac{\omega^t}{\Gamma(m_i)} \beta_i^m \sum_{k=0}^{t} \frac{\Lambda^{t-k}}{k! \beta_i^k} \left(\omega_i + \frac{1}{\beta_i} \right)^{-k-m_i} \exp(-\omega_i \Lambda^{[i]} \Gamma(k + m_i)), \quad 0 \leq v < \frac{a^{[i]}_+}{b^{[i]}_+}
\]

(18)

\[
P^{[i]}(v) = \exp \left(\frac{v(1 + k_i^2 \sigma_e^2)}{\alpha_v - v \beta_j} \right) \sum_{t=0}^{m_i-1} \left(\frac{v(1 + k_i^2 \sigma_e^2)}{\alpha_v - v \beta_j} \right)^t \frac{1}{t!}
\]

(21)

Proof: By definition, the average throughput is the multiplication of the ergodic capacity by the coverage probability as \(R^{[i]} = \mathbb{E} \{ \log_2(1 + \gamma_j^{[i]}(v)) \} P_{c}^{[i]} \) [62]. Hence, the average throughput closed-form expression is found by multiplying (12) and (17) that stand for the ergodic capacity and coverage probability, correspondingly.

VI. FAIRNESS-BASED POWER ALLOCATION

In addition to the presented comprehensive performance analysis, in this section, we obtain a closed-form adaptive PA solution based on the fair treatment of NOMA users to provide them with equal ergodic capacity/coverage/throughput metrics to NOMA users. The previously derived analytical findings on the ergodic capacity, coverage probability, and average throughput performance metrics are based on fixed PA factors, where users are allocated power depending on their channel conditions. Hence, users obtain different ergodic capacity and coverage probability results. The more obvious way of finding the optimal PA for NOMA users is to retrieve them from the closed-form expressions of ergodic capacity in (12) and coverage probability in (18). However, due to the complexity of those equations, the derivation of optimal PAs becomes very challenging or even intractable. Therefore, we equalize the SINDR values of NOMA users to the optimal SINDR, denoted by \(\gamma \). It is pertinent to note that NOMA is recommended for use only in the case of two users since the NOMA-induced processing complexity non-linearly depends on the number of active user devices [63]. The system complexity aspects become more essential when the SIC-caused error propagation happens [64]. Moreover, we show in Fig. 2 that NOMA networks provide the best capacity performance for \(N = 2 \) compared to the cases when \(N > 2 \). With that, the design of a closed-form optimal PA scheme becomes infeasible for the considered system model, with \(N > 2 \). Hence, considering above-mentioned discussions, we provide a closed-form optimal PA solution for a two-user case with \(\gamma_1 \) and \(\gamma_2 \). Thus, to find the optimal PA and SINDR, we formulate the problem as follows

\[
\begin{align*}
\text{minimize} & \quad |\gamma_1 - \gamma_2| \geq \Psi \\
\text{subject to} & \quad \gamma_i = \bar{\gamma}, \quad \forall i \in \{1, 2\}, \\
& \quad \alpha_i \leq 1.
\end{align*}
\]

(23)

The corresponding solution for (23) is found by making \(\gamma_1 = \bar{\gamma} \) and \(\gamma_2 = \bar{\gamma} \), which can be written as

\[
\begin{align*}
\frac{\alpha_1 \rho_1 \hat{|h_1|}^2}{\rho_1 \hat{|h_1|}^2 + \alpha_2 \hat{|h_2|}^2 + \Lambda^{[i]} + Z^{[i]}} &= \bar{\gamma}, \\
\frac{\alpha_2 \rho_2 \hat{|h_2|}^2}{\rho_2 \hat{|h_2|}^2 + \alpha_2 \hat{|h_2|}^2 + \Lambda^{[i]} + Z^{[i]}} &= \bar{\gamma}.
\end{align*}
\]

(24)

(25)

Then, from (24) and (25), we derive \(\alpha_1 \) and \(\alpha_2 \) as

\[
\begin{align*}
\alpha_1 &= \gamma_2 \alpha_2 + \gamma \bar{I}_2, \\
\alpha_2 &= \gamma_2 \bar{\alpha}_1 + \gamma \bar{I}_2,
\end{align*}
\]

(26)

(27)

where \(\bar{I}_2 = \frac{\hat{I}_2}{\hat{|h_2|}^2} \) and \(\bar{I}_i = \kappa_i \hat{|h_i|}^2 + \delta_i \), with \(\forall i \in \{1, 2\} \). Then, after substituting (27) into (26), \(\alpha_1 \) can be written as a function of \(\bar{\gamma} \) as

\[
\alpha_1 = \gamma_2 \bar{I}_2 + \gamma \bar{I}_2.
\]

(28)

Finally, substituting (28) into (27), \(\alpha_2 \) can be rewritten as a function of \(\bar{\gamma} \) as

\[
\alpha_2 = \gamma_2 \bar{\alpha}_1 + \gamma \bar{I}_2.
\]

(29)

Furthermore, after inserting (28) and (29) into \(\alpha_1 + \alpha_2 \leq 1 \) and after some mathematical manipulations, the optimal SINDR can be written as

\[
\bar{\gamma} = \sqrt{(\bar{I}_1 + \bar{I}_2)^2 - (\bar{I}_1 + \bar{I}_2) - 4(\bar{I}_2 + \bar{I}_1 \bar{\alpha}_1 + \bar{\gamma})}.
\]

(30)

Finally, we obtain optimal \(\alpha_1 \) and \(\alpha_2 \) by inserting (30) into (28) and (29), respectively.
Table 1. Simulation parameters.

Parameter	Value
LOS/NLOS fading parameter, \(m_i\)	\([4; 2]\)
LOS fading parameter at \(U_k, m_k, k \in \{1, \cdots, M\}\)	4
The PA factors, \(N = 2, \{\alpha_1, \alpha_2\}\)	\([0.8, 0.2]\)
PLE for LOS/PLE for NLOS, \(\tau\)	\([2; 4]\)
PLE for LOS at \(U_k, \tau^*\)	2
Distance from \(S\) to \(U_1, d_1\)	100 m
Distance from \(S\) to \(U_2, d_2\)	50 m
Main lobe antenna gain, \(G_m\)	12 dB
Side/back lobe antenna gain, \(G_s\)	\(-1.1092\) dB
Radius of the clusters, \(R\)	30 m
Interference-to-noise power ratio, \(1/\sigma_i^2\)	15 dB

VII. RESULTS DISCUSSION

This section provides some numerical examples to corroborate our analytical derivations on the ergodic capacity, coverage probability, and average throughput under different levels of system imperfections such as RTHI, imperfect CSI/SIC, and i.n.i.d. interference noise. These findings are fully validated through the averaged results via Monte-Carlo simulation. We assume the following simulation parameters unless it stated otherwise: each reference \(U_i\) is surrounded by \(M\) interference users that are located at different radial distances\(^3\), i.e., \(d_{ik} = \{8; 15; 22\}\) m, from \(U_i\); all device nodes are equipped with \(L = 16\) antennas that produce a main lobe gain of \(G_m = L = 16\) in linear scale (or \(G_m = 12\) in dB scale) and a side lobe gain calculated using \(G_s = 0.7746 = -1.1092\) dB [3, Table I]; all channel links are LOS and interfering nodes hit the side lobes of the reference \(U_i\) either by the main or side lobes; an equal ratio of main and side lobes of interferers; finally, the remaining simulation parameters are drawn in Table 1, which mostly follow the ones in [34], [65], [66]. The Figs. 2–7 and Figs. 9–15 are plotted as a function of transmit SNR by setting the AWGN noise variance to \(\sigma_i^2 = -80\) dBm as in [67], [68]. To obtain a full vision on the system performance, we study both fixed (in Figs. 2–8) and fair, that is, adaptive, (in Figs. 9–15) PA schemes. The selection of the fixed or fair PA schemes is a matter of the system preferences.

A. FIXED POWER ALLOCATION

In Fig. 2, we evaluate the sum-rate of normalized ergodic capacity both for the multi-user NOMA and multi-user OMA networks with \(N = 2, 3, 4\) users for ideal system parameters (given by \(\kappa_i = 0, \sigma_i^2 = 0\) and \(\xi_i = 0\)) in the presence of \(M = 24\) i.n.i.d. interfering nodes. In this figure, we assume the fixed PA coefficients for the two-user NOMA network are set to \(\alpha_1 = 0.8\) and \(\alpha_2 = 0.2\) [34], whereas, for the three and four-user NOMA networks, the fixed power coefficients are evaluated as \(\alpha_i = \frac{2^{N-1} - P}{2^{N-1}}\) [69]. Based on this figure, one could witness a minor advantage of the two-user NOMA network at the mid-SNR region as opposed to the \(N = 3\) and \(N = 4\) counterparts. To support this, the authors in [34] also demonstrated that the NOMA networks have the best performance for the two-user case. Therefore, we will carry out further numerical analysis for the two-user NOMA network. Similarly, the two-user OMA network also performs better than the three- and four-user OMA networks. From Fig. 2, the overall ergodic capacity for the two-user NOMA network performs higher than the two-user OMA network. For example, at the transmit SNR of 50 and 60 dB, the sum-rate of ergodic capacity for the NOMA network achieves 5.55 and 8.96 bits/s/Hz, whereas the OMA network supports 4 and 7 bits/s/Hz, respectively.

In Fig. 3, we make a comparison of the normalized er-
Ergodic capacities between NOMA U_1/U_2 and OMA\(^4\) U_1/U_2 users as the transmit SNR ranges from 20 to 40 dB in an ideal NOMA network with ideal transceiver hardware, perfect CSI/SIC, as well as under the presence of AWGN and interference, i.e., $\kappa_i = 0$, $\sigma^2_{ei} = 0$, $\xi_i = 0$, and $M = 24$. From the NOMA results, one can notice that U_2 outperforms U_1 which can be explained by the SIC implementation at U_2. At the same time, U_1 experiences saturation above the transmit SNR of 25 dB since the signal of U_2 contributes to the SINDR of U_1 as an additional noise power, and it has the more substantial effect at higher SNR values. Compared to the OMA users, the NOMA ones are characterized by higher ergodic capacity, i.e., NOMA U_2 outperforms OMA U_2 by at least 1 bits/Hz while NOMA U_1 outperforms OMA U_1 up to 32.5 dB. However, when the transmit SNR increases further, OMA U_1 starts outperforming NOMA U_1 mainly due to the interference caused by NOMA U_2. Fig. 3 also presents the plots for the lower and upper bounds for the ergodic capacity for NOMA U_1/U_2. The lower and upper bounds of ergodic capacity are tight to ergodic capacity. Therefore, these formulas could be alternatively used to analyze the ergodic capacity accurately.

In Figs. 4-7, we study each system impairment (i.e., RTHL, imperfect CSI/SIC) and interference separately from the rest to quantify their effect on the ergodic capacity of the considered NOMA-based system given a fixed PA method between NOMA users.

Fig. 4 aims to analyze the RTHL level impact on the ergodic capacity for U_1/U_2 given $\kappa_i = \{0, 0.1, 0.2\}$. At low and medium SNR values (up to 37 dB), U_1 and U_2 result in similar ergodic capacity values. However, when SNR values rise above 37 dB, the ergodic capacities become sensitive to RTHL. It appears that U_2 is more susceptible to higher κ_i values. On the one hand, the ergodic capacity degradation from the perfect hardware case to $\kappa_i = 0.1$ case is 23% and $\kappa_i = 0.2$ is 49.48%, accordingly, at SNR $= 50$ dB for U_2. On the other hand, the ergodic capacity diminishes for ideal hardware at $\kappa_i = 0.1$ to 6.575% and at $\kappa_i = 0.2$ to 8.44% for U_1 given SNR $= 50$ dB. Due to the proportionality of the RTHI level to transmit power and the fact that the power level of U_2 is higher than U_1, the RTHI level has more effect on U_2. In Fig. 4, we also plot the asymptotic ergodic capacity results when the transmit SNR approaches infinity, i.e., high-SNR approximation. In this case, RTHI creates an ergodic capacity ceiling. For instance, when $\kappa_i = 0.1$, U_1 is bounded by 2.3 bits/Hz and U_2 by 4.4 bits/Hz, correspondingly.

In Fig. 5, we present the ergodic capacity performance versus transmit SNR for different imperfect CSI variance values, $\sigma^2_{ei} = \{0.005, 0.01, 0.05\}$. Both U_1/U_2 operate at similar ergodic capacity rates when the transmit SNR is below 40 dB. However, it is observed that U_2 is more influenced by erroneous CSI as opposed to U_1. This matter can also be explained by the proportionality of CSI error to the transmit power of U_2 as it was studied above in the discussion of Fig. 4. One can observe that the erroneous CSI starts deteriorating the performance of U_2 for the transmit SNR above 55 dB. Even a small growth of the error variance, i.e., from the ideal case to $\sigma^2_{ei} = 0.005$, bounds the normalized ergodic capacity at 7.3 bits/Hz, whereas at the ideal CSI case for SNR $= 75$ dB the ergodic capacity reaches to 11.7 bits/Hz. Likewise, the ergodic capacity is bounded at 6.1 bits/Hz for $\sigma^2_{ei} = 0.01$. In addition, considering the performance of U_1, there is ~ 0.8 bits/Hz difference between the ideal CSI and erroneous CSI plots when the transmit SNR is above 50 dB.

In Fig. 6, we study the impact of imperfect SIC on the performance of U_2. Therefore, the SIC factor varies as $\xi_i = \{0, 0.1, 0.2\}$.

\(^4\)Note that the OMA users are assumed to operate in TDMA mode, when each user transmits in a dedicated time slot. Therefore, the ergodic capacity for OMA $U_i \forall i \in \{N\}$ is evaluated as $U_i^{\text{OMA}} = \frac{1}{\ln 2} \log_2 (1 + \gamma_i^{[i]})$.
Fig. 6. Normalized ergodic capacity at $\xi_1 = \{0, 0.005, 0.01, 0.05\}$, $\kappa_1 = 0$, $\sigma_{e_1}^2 = 0$, and $M = 24$.

Fig. 7. Normalized ergodic capacity at $\xi_1 = 0$, $\kappa_1 = 0$, $\sigma_{e_1}^2 = 0$, and $M = \{0, 12, 24, 48\}$.

Fig. 8. Normalized ergodic capacity of NOMA U_1/U_2 at $\xi_1 = 0$, $\kappa_1 = 0$, $\sigma_{e_1}^2 = 0$, $M = 24$, and SNR = $\{30, 40, 50\}$ dB.

More precisely, at 30 dB, fair PA coefficients are given by $\alpha_1 = 0.8$ and $\alpha_2 = 0.2$. Similarly, the transmit SNRs of 40 dB and 50 dB correspond to the allocation coefficients $\alpha_1 = 0.84$; $\alpha_2 = 0.16$ and $\alpha_1 = 0.91$; $\alpha_2 = 0.09$, respectively. Therefore, it becomes obvious that the PA scheme needs adaptiveness to maintain some fairness among the users.

B. ADAPTIVE POWER ALLOCATION

In Figs. 9–15, we investigate the ergodic capacity under an optimal fairness-based PA scheme (please refer to Section VI) over all the SNR regions. Our goal is to compare the normalized ergodic capacity of NOMA users at the fair (optimal) and fixed (non-optimal) PA coefficients. If the fairness-based PA coefficients, $\alpha_{i,j}$, are adjusted based on the received powers
of U_1 and U_2, the fixed PA coefficients are set as $\alpha_1 = 0.8$ and $\alpha_2 = 0.2$.

In Fig. 9, we set $\xi = 0$, $\sigma^2_{ei} = 0$, $M = 24$ and vary $\kappa_i = \{0.05, 0.16, 0.25\}$ for both fair and fixed PA schemes. From this figure, one can witness the lack of fairness in resource allocation for U_1/U_2 in the fixed PA scheme, which leads to a considerable difference in their performance. For instance, U_2 grows as SNR increases at $\kappa_i = 0.05$ and U_1 plots start saturating above 55 dB for $\kappa_i = \{0.05, 0.16, 0.25\}$ near $2 - 2.25$ bits/s/Hz. However, when the distortion noise level increases to $\kappa_i = 0.16$ for U_2, the ergodic capacity saturates around 3.2 bits/s/Hz. Similarly, we notice that U_2 saturates at 2 bits/s/Hz for $\kappa_i = 0.25$. When the fair PA scheme is applied, both users obtain the similar capacity performance, i.e., $\{4.3, 2.7, 2.1\}$ bits/s/Hz, in the high-SNR regime for $\kappa_i = \{0.05, 0.16, 0.25\}$, respectively. Both fair and fixed PA schemes obtain very similar normalized ergodic capacity sum-rate performances.

In Fig. 10, the individual normalized ergodic capacity is under study at $\xi = 0$, $\kappa_i = 0$, $M = 24$, and $\sigma^2_{ei} = \{0.001, 0.05, 0.1\}$ for both fair and fixed PA schemes. As seen from this figure, the fair PA scheme provides even ergodic capacity performance for U_1/U_2 as opposed to the fixed scheme. For example, when transmit SNR = 55 dB, the corresponding ergodic capacities for U_1 at $\sigma^2_{ei} = \{0.001, 0.05, 0.1\}$ are recorded as $\{2.17, 2.1, 2.03\}$ bits/s/Hz and for U_2 are $\{5.08, 3.46, 2.79\}$ bits/s/Hz. The fair PA scheme supports the ergodic capacities at the transmit SNR = 55 dB equal to 3.62, 2.85 and 2.49 bits/s/Hz for $\sigma^2_{ei} = \{0.001, 0.05, 0.1\}$, respectively.

In Fig. 11, we investigate how the LOS/NLOS fading parameters with corresponding PLE values influence on the normalized ergodic capacity of the system with $\xi = 0$, $\kappa_i = 0$, $\sigma^2_{ei} = 0$, $M = 24$ given $m_i = \{2, 4\}$ and $\tau = \{2, 3, 4\}$. Similar to [3], [52], we consider $m_i = 4$ and $\tau = 2$ for the LOS links and $m_i = 2$ and $\tau = \{3, 4\}$ for the NLOS links. As expected, the LOS parameters play a crucial role in the ergodic capacity performance for both fixed and fair PA schemes, especially at low and medium SNR regions. The worst performance was achieved in the NLOS plots with $m_i = 2$ and $\tau = 4$, even a unit difference in PLE made a substantial distinction in the ergodic capacity in comparison to the case with $m_i = 2$ and $\tau = 3$. For instance, for U_2, the $\tau = 3$ plot reaches 2.5 bits/s/Hz at 60 dB, whereas the $\tau = 2$ plot attains 0.1332 bits/s/Hz. Similarly, the $\tau = 3$ and $\tau = 2$ plots achieve 5.625 bits/s/Hz and 0.976 bits/s/Hz at 70 dB, respectively. Moreover, for U_2, the LOS plot with $m_i = 4$.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
and $\tau = 2$ outperforms the NLOS with $m_i = 2$ and $\tau = 4$ for ~ 4 bits/s/Hz. In addition, both fair and fixed PA schemes show similar poor performance under the NLOS conditions, when $m_i = 2$ and $\tau = 4$.

In Fig. 12, we investigate the coverage probability versus the transmit SNR for the multi-user NOMA network with $N = \{2, 3, 4\}$ users that apply the fair PA scheme and two-user OMA network given $\xi_i = 0$, $\sigma_i^2 = 0$, $\kappa_i = 0$, and $M = 24$. When $P_c^{[i]} = 0.1$, there is a 5 dB performance degradation from the NOMA $N = 3$ to $N = 2$ case, and similarly, there is 3.7 dB drop from the NOMA $N = 3$ to $N = 4$ scenario. It is imperative to note that a two-user NOMA network has shown the advantage over the three-/four-user NOMA network. From this figure, OMA U_1 shows a higher coverage probability performance than the optimized NOMA U_i. However, optimized NOMA U_i performs better than the OMA U_2.

In Fig. 13, we studied the coverage probability versus number of i.n.i.d. interfering nodes, $M = \{6 : 6 : 48\}$, for different numbers of antenna elements per device node, $L = \{2, 8, 10, 14, 16\}$, at the transmit $SNR = 40$ dB, $\xi_i = 0$, $\sigma_i^2 = 0$, $\kappa_i = 0$, and $N = 2$. This figure showcases the essence of the number of interfering nodes on the performance of the coverage probability. There is an alternating slope of change in the coverage probability plots due to the alternating antenna gain factors of $G_s \times G_s$ and $G_m \times G_c$. Moreover, this figure justifies that a higher number of antenna elements per device node tackles the problem of interference since a higher number of antenna elements increases antenna gain and suppresses the side/back lobe antenna gains. From $L = 2$ to $L = 16$, a network from being at the idle state above $M = 6$ shows the lowest coverage probability performance of 0.6 at $M = 48$.

In Fig. 14, we analyze how the imperfect SIC/CSI level deteriorate the coverage probability versus the rate threshold, R_{th}, given $\xi_i = \{0, 0.01, 0.05\}$, $\kappa_i = \{0, 0.1, 0.2, 0.3\}$, $\sigma_i^2 = \{0, 0.05, 0.1\}$, $M = 24$ and transmit SNR of 40 dB. For the low rate requirements (up to 0.5 bits/s/Hz), the system obtains the same performance irrespective of the amount and type of considered impairments. However, at higher rate thresholds, one can observe that the coverage metric degrades fast and non-linearly (even for the ideal case) as R_{th} increases. For instance, for the rate thresholds given by $R_{th} = \{0.6, 0.8, 1\}$ bits/s/Hz, the system with ideal settings achieves the coverage probability of $P_c^{[i]} =$.
The average throughput at $\xi = 0$, $\sigma_{ci}^2 = 0$, $M = 24$, and $\kappa_i = \{0, 0.1, 0.2, 0.3\}$ for the two-user NOMA network.

\[\{0.8, 0.75, 0.56\}, \text{accordingly. Moreover, it is noted that the} \]

hardware imperfections have the most significant impact on the coverage metric. Imperfect SIC has less influence on the coverage probability. At the same time, it is apparent that the considered system model is more robust to the imperfect CSI compared to the other impairments.

Finally, in Fig. 15, we study the average throughput performance versus the transmit SNR given $\xi = 0$, $\sigma_{ci}^2 = 0$, $M = 24$, and $\kappa_i = \{0, 0.1, 0.2, 0.3\}$ for the two-user NOMA network. From this figure, we notice that the RTHI level greatly influences the average throughput that causes performance saturation at the SNR above 40 dB. Below 40 dB all the plots demonstrate similar average throughput performance. For instance, a plot with $\kappa_i = 0.1$ saturates at average throughput, 3.4 bits/s/Hz, $\kappa_i = 0.2$ saturates at 2.4 bits/s/Hz, and $\kappa_i = 0.3$ saturates at 1.8 bits/s/Hz. In the mid-SNR region (at 55 dB), the ideal case results in 3.65 bits/s/Hz, $\kappa_i = 0.1$ at 2.96 bits/s/Hz, $\kappa_i = 0.2$ at 2.96 bits/s/Hz, and $\kappa_i = 0.3$ at 1.7 bits/s/Hz of average throughput, correspondingly. Hence, there is a twice performance degradation from the ideal case to the $\kappa_i = 0.3$ case. This figure justifies the significance of the RTHI impact on the high-rate systems.

VIII. CONCLUSION

In this work, we have studied the integrated model of 5G technologies as D2D communication and NOMA operating on mmWave frequencies by considering practical system limitations such as RTHI, imperfect CSI/SIC, and i.n.i.d. interference noises. These system imperfections inevitably limit the ergodic capacity performance of future communication systems; especially, interference has a strong influence on the ergodic capacity. Interference may be combated by increasing the number of antenna elements per device node, introducing additional costs to the network. The simulation results of this work carefully investigated each system impairment separately and proved the importance of practical system settings. We obtained mathematically tractable ergodic capacity formulas with their tight upper and lower bounds as well as asymptotic ergodic capacity expressions that provide valuable insights into the effect of each system impairment. Moreover, we have derived comprehensive coverage probability and average throughput formulas that enable further performance analysis of the proposed system model. The user-fairness-based PA scheme presented in this work provides a fair resource allocation for all NOMA users.

APPENDIX A DERIVATION OF THE ERGODIC CAPACITY

The closed-form expression for ergodic capacity in (12) is evaluated by using (11) and (7), as shown in (31), at the top of the next page. Since $T[i]$ is the summation of $X[i](a_j[i] + b_j[i])$ and $Z[i]$ RVs, we first approximate the fading and scale parameters of $Z[i]$ RV, which represents a summation of M i.n.i.d. interfering nodes. With this in mind, we define $Z[i] \sim \text{Gamma}(\hat{m}_i, \hat{\beta}_i)$, where \hat{m}_i and $\hat{\beta}_i$ are evaluated as given in Lemma 1. Similarly, the second round of approximation is applied to find the fading and scale parameters for $T[i]$, as $T[i] \sim \text{Gamma}(m_i, \beta_i)$. Next, we re-write the $E\{\ln(1 + TF[i])\}$ term with the aid of Meijer G-function as $G^{1,2}_{1,1}(\frac{i}{\Lambda}, 1, 1)$ from [70, (8.4.6.5)] and evaluate the integral A_1 by using [51, (7.813.1)] as

\[
A_1 = \int_0^{\infty} t^{m_i - 1} \exp\left(-\frac{t}{\hat{\beta}_i}\right) G^{1,2}_{2,2}\left(\frac{t}{\Lambda[0]}, 1, 1, 1, 1, 0\right) dt
\]

\[
= G^{1,3}_{3,2}\left(\frac{\hat{\beta}_i}{\Lambda[0]}, 1 - m_i, 1, 1, 1, 0\right). \quad (32)
\]

Similarly, $V[i]$ is the summation of $f[i]X[i]$ and $Z[i]$ RVs. A single gamma approximation for $T[i]$ RV is approximated by $V[i] \sim \text{Gamma}(\hat{m}_i, \hat{\beta}_i)$ and evaluated as

\[
A_2 = \int_0^{\infty} v^{m_i - 1} \exp\left(-\frac{v}{\hat{\beta}_i}\right) G^{1,2}_{2,2}\left(\frac{v}{\Lambda[0]}, 1, 1, 1, 1, 0\right) dv
\]

\[
= G^{1,3}_{3,2}\left(\frac{\hat{\beta}_i}{\Lambda[0]}, 1 - m_i, 1, 1, 1, 0\right). \quad (33)
\]

Now, by using (22) and (23), we obtain the ergodic capacity formula in (12).

APPENDIX B DERIVATION OF THE LOWER ERGODIC CAPACITY

To compute the lower ergodic capacity, it is essential to find the expressions $E\{\ln(a_j[i]X[i])\}$ and $E\{\ln(\Lambda[i] + V[i])\}$. The first term is obtained with the aid of [51, (4.352.1)] and the PDF of Nakagami-m fading with m_i fading and β_i scale parameters [60, (5.14)] as

\[
E\{\ln(a_j[i]X[i])\} = \int_0^{\infty} \ln(t) f_{X[i]}(t) dt
\]
\[C_j^{[i]} = \mathbb{E} \left\{ \log_2 \left(\Lambda^{[i]} + T^{[i]} \right) \right\} - \mathbb{E} \left\{ \log_2 \left(\Lambda^{[i]} + V^{[i]} \right) \right\} = \mathbb{E} \left\{ \log_2 \left(\Lambda^{[i]} \left(1 + \frac{T^{[i]}}{\Lambda^{[i]}} \right) \right) \right\} - \mathbb{E} \left\{ \log_2 \left(\Lambda^{[i]} \left(1 + \frac{V^{[i]}}{\Lambda^{[i]}} \right) \right) \right\} \]

\[= \int_0^\infty \log_2 \left(1 + \frac{t}{\Lambda^{[i]}} \right) f_{T^{[i]}(t)} \, dt - \int_0^\infty \log_2 \left(1 + \frac{v}{\Lambda^{[i]}} \right) f_{V^{[i]}(v)} \, dv. \quad (31) \]

\[= \ln \left(\alpha_j^{[i]} \right) + \frac{1}{\Gamma(m_i) \beta_i^{m_i}} \int_0^\infty x^{m_i-1} \exp \left(- \frac{x}{\beta_i} \right) \ln(x) \, dx \]

\[= \ln \left(\alpha_j^{[i]} \beta_i \right) + \psi \left(m_i \right). \quad (34) \]

Moreover, \(\mathbb{E} \{ \ln \left(\Lambda^{[i]} + V^{[i]} \right) \} \) is evaluated similarly to (34). Hence, the final expression for the lower ergodic capacity is displayed in (13).

APPENDIX C DERIVATION OF THE UPPER ERGODIC CAPACITY

Key components to evaluate the upper ergodic capacity analysis are \(\mathbb{E} \{ X^{[i]} \} \) and \(\mathbb{E} \left\{ 1 / \left(\Lambda^{[i]} + V^{[i]} \right) \right\} \). We begin with the calculation of \(\mathbb{E} \{ X^{[i]} \} \) below

\[\mathbb{E} \{ X^{[i]} \} = \int_0^\infty \frac{x^{m_i-1} \exp \left(- \frac{x}{\beta_i} \right)}{\Gamma(m_i) \beta_i^{m_i}} \, dx = \frac{\beta_i \Gamma(1 + m_i)}{\Gamma(m_i)} = \beta_i m_i. \quad (35) \]

Next, we evaluate the second component as

\[\frac{1}{\Lambda^{[i]} + V^{[i]}} = \int_0^\infty \frac{v^{m_v-1} \exp \left(- \frac{v}{\beta_v} \right)}{\Gamma(m_v) \beta_v^{m_v}} \, dv \]

\[= \frac{\Lambda^{[i]} (1 + m_v) \beta_v^{m_v} \exp \left(\frac{\Lambda^{[i]}}{\beta_v} \right) \Gamma \left(1 - m_v, \frac{\Lambda^{[i]}}{\beta_v} \right)}{\beta_v^{m_v}}. \quad (36) \]

By applying (35) and (36) into (10), we obtain the expression for the upper ergodic capacity in (14).

APPENDIX D DERIVATION OF THE ASYMPTOTIC ERGODIC CAPACITY AT HIGH-SNR REGIME

To evaluate the asymptotic ergodic capacity formula at high-SNR, regime the SINR formula in (3) is revisited. Next, by using the definition of transmit SNR, \(\text{SNR}_t = \frac{a_{ij}^2}{\sigma_i^2} \), one could rewrite the SINR in terms of \(\eta \)

\[\eta^{[i]} = \frac{\alpha_j \text{SNR}_t X^{[i]}}{B_j \text{SNR}_t X^{[i]} + 1 + \text{SNR}_t (1 + \kappa_t^2) \sigma_{si}^2 + \frac{\eta}{\sigma_i^2}}. \quad (37) \]

where \(X^{[i]} = |\hat{n}_i|^2 \) and \(\eta \) represents the interference term as \(\eta = \sum_{k=1}^M g_{i,k}^2 (1 + \kappa_k^2) \bar{p}_{ik} \). Now, let us divide both the numerical and denominator parts in (37) by \(\text{SNR}_t \) to obtain the simplified representation of the SINR as

\[\gamma^{[i]} = \frac{\alpha_j \text{SNR}_t X^{[i]}}{B_j \text{SNR}_t X^{[i]} + \frac{1}{\text{SNR}_t} + (1 + \kappa_t^2) \sigma_{si}^2 + \frac{\eta}{\sigma_i^2 \text{SNR}_t}}. \quad (38) \]

First, we find the SINDR at high-SNR regime by taking the limit of the SINDR in (38) when the SNR tends to infinity as

\[\gamma^{[i]} = \lim_{\text{SNR}_t \rightarrow \infty} \gamma^{[i]} = \frac{\alpha_j X^{[i]}}{B_j X^{[i]} + 1 + \kappa_t^2 \sigma_{ei}^2}. \quad (39) \]

By applying the high-SNR approximated SINDR in (39) and by using Jensen’s inequality, we derive the asymptotic ergodic capacity as

\[C_j^{[i]} = \mathbb{E} \{ \log_2 (1 + \gamma^{[i]} \} = \log_2 \left(1 + \mathbb{E} \{ \gamma^{[i]} \} \right) = \log_2 \left(1 + \frac{\mathbb{E} \{ \alpha_j X^{[i]} \}}{\mathbb{E} \{ B_j X^{[i]} + (1 + \kappa_t^2) \sigma_{ei}^2 \}} \right). \quad (40) \]

The evaluation of the denominator \(\Xi \) in (40) is given as

\[\Xi = \int \left(B_j x + (1 + \kappa_t^2) \sigma_{ei}^2 \right) x^{m_v-1} \exp \left(- \frac{x}{\beta_i} \right) \, dx \]

\[= (1 + \kappa_t^2) \sigma_{ei}^2 + B_j \beta_i m_i. \quad (41) \]

Derivation of the numerator part \(\Xi \) is obtained identically to (35) and written as \(\mathbb{E} \{ \alpha_j X^{[i]} \} = \alpha_j \beta_i m_i \). Hence, we present the final asymptotic ergodic capacity (i.e., capacity ceiling) in (15).

APPENDIX E DERIVATION OF THE COVERAGE PROBABILITY

The proof of Proposition 4 that presents the coverage probability for the proposed system model is calculated below

\[P_e^{[i]}(v) = \Pr \left(\frac{a_{ij}^2 X^{[i]}}{b_{ij}^2 X^{[i]} + Z + \Lambda^{[i]}} > v \right) = \int_0^\infty \left(1 - F_X^{[i]} \left(\frac{v (\Lambda^{[i]} + z)}{a_{ij}^2 \sigma_{ei}^2} \right) \right) f_z(z) \, dz, \quad (42) \]

when \(0 \leq v < \frac{a_{ij}^2}{b_{ij}^2} \); otherwise, it equals to 0. The CDF of \(X^{[i]} \) Gamma RV is given in (20).

Now, (42) may be evaluated as

\[P_e^{[i]}(v) = \int_0^\infty \exp \left(-\omega_i (\Lambda^{[i]} + z) \sum_{l=0}^{m_i-1} \frac{1}{l!} (\omega_i (\Lambda^{[i]} + z))^l \right) \]

\[\times \left(1 - F_X^{[i]} \left(\frac{v (\Lambda^{[i]} + z)}{a_{ij}^2 \sigma_{ei}^2} \right) \right) f_z(z) \, dz. \]
Let us assign \(\omega_i = \frac{v^i}{\beta_i(a^i)^{1/2}b^{i/2}} \) for simplicity. With the aid of the power of binomials [51, (1.111)], we expand \(\omega_i (\Lambda[i] + z) \). Now, by placing the expanded term into (43), we get the following

\[
P_i(z) \approx \frac{1}{\Gamma(m_i)\beta_i^{m_i}} \sum_{t=0}^{m_i-1} \frac{\omega_i^t}{t!} \sum_{k=0}^{t} \binom{t}{k} \Lambda[i]^{t-k} \times \int_0^{\infty} z^{k+m_i-1} \exp \left(-\omega_i (\Lambda[i] + z) - \frac{z}{\beta_w}\right) dz.
\]

The integral in (44) is evaluated by using [51, (8.310.1)] and the closed-form expression for the coverage probability is obtained in (18).

References

[1] “5G,” Fifth Generation of Mobile Technologies”, [Online]. Available: https://www.itu.int/en/mediacentre/backgrounders/Pages/5G-fifth-generation-of-mobile-technologies.aspx. [Accessed: 18- Aug- 2020].

[2] R. I. Ansari et al., “5G D2D Networks: Techniques, Challenges, and Future Prospects,” IEEE Syst. J., vol. 12, no. 4, pp. 3970-3984, Dec. 2018.

[3] N. Venugopal, M. C. Valenti, and R. W. Heath, “Device-to-device Millimeter Wave Communications: Interference, Coverage, Rate, and Finite Topologies,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6175-6188, Sept. 2016.

[4] J. Zhao et al., “NOMA-Based D2D Communications: Towards 5G,” IEEE Global Commun. Conf. (GLOBECOM), Washington, DC, 2016.

[5] A. N. Uwaechia and N. M. Mahyuddin, “A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges,” IEEE Access, vol. 8, pp. 62367-62414, 2020.

[6] J. G. Andrews et al., “Modeling and Analyzing Millimeter Wave Cellular Systems,” IEEE Trans. Commun., vol. 65 no. 1, pp. 403-430 Jan. 2017.

[7] Z. Ding P. Fan, and H. V. Poor, “Random Beamforming in Millimeter-wave NOMA Networks,” IEEE Access, vol. 5 pp. 7667-7681, 2017.

[8] S. Rangan, T. S. Rapaport, and E. Erkip, “Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges,” Proc. IEEE, vol. 102, no. 3, pp. 366-385, Mar. 2014.

[9] Z. Ding et al., “A survey on Non-orthogonal Multiple Access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, Oct. 2017.

[10] S. M. R. Islam et al., “Power-Domain Non-orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721-742, 2nd Quart. 2017.

[11] L. Zhu et al., “Millimeter-Wave Communications With Non-Orthogonal Multiple Access for 5G,” IEEE Access, vol. 7, pp. 116123-116132, 2019.

[12] S. M. R. Islam et al., “Resource Allocation for Downlink NOMA Systems: Key Techniques and Open Issues,” IEEE Wireless Commun., vol. 25 no. 2 pp. 40-47 Apr. 2018.

[13] Y. Saito et al., “Non-orthogonal Multiple Access (NOMA) for Cellular Future Radio Access,” Proc. IEEE VTC Spring pp. 1-5 Jun. 2013.

[14] 5G Laboratory, Research Laboratories, “Field Trials of Improving Spectral Efficiency by Using a Smartphone-sized NOMA Chipset,” NTT DOCOMO Technical Journal, 2018.

[15] S. M. A. Kazmi et al., “Coordinated Device-to-Device Communication With Non-Orthogonal Multiple Access in Future Wireless Cellular Networks,” IEEE Access, vol. 6, pp. 39860-39875, 2018.

[16] Y. Dai et al., “Joint Mode Selection and Resource Allocation for D2D-Enabled NOMA Cellular Networks,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6721-6733, July 2019.
[41] N. Miridakis et al., “Performance of Uplink NOMA with User Mobility Under Short Packet Transmission,” arXiv:2108.04677, 2021.

[42] Z. Ding et al., “OFFS-NOMA: An Efficient Approach for Exploiting Heterogenous User Mobility Profiles,” IEEE Trans. on Commun., vol. 67, no. 11, pp. 7950-7965, Nov. 2019.

[43] D. Darsena, I. Judice, and F. Verde, “Reception Strategies for Skyground Uplink Non-orthogonal Multiple Access,” arXiv:2108.06713 [eess.SP], 2021.

[44] K. S. Ali et al., “Non-Orthogonal Multiple Access for Large-Scale 5G Networks: Interference Aware Design,” IEEE Access, vol. 5, pp. 21204-21216, 2017.

[45] S. Arzykulov et al., “Performance Analysis of Underlay Cognitive Radio Nonorthogonal Multiple Access Networks,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 9318-9322, Sept. 2019.

[46] C. Studer, M. Wenk, and A. Burg, “MIMO Transmission with Residual Transmit-RF Impairments,” Proc. ITG/IEEE Workshop Smart Antennas (WSA), pp. 189–196, Feb. 2010.

[47] X. Zhang et al., “On the MIMO Capacity with Residual Transceiver Hardware Impairments,” Proc. IEEE Int. Conf. Commun., Jun. 2014, pp. 5299–5305.

[48] A. Papazafeiropoulos et al., “Impact of Residual Additive Transceiver Hardware Impairments on Rayleigh-Product MIMO Channels With Linear Receivers: Exact and Asymptotic Analyses,” IEEE Trans. Commm., vol. 66, no. 1, pp. 105-118, Jan. 2018.

[49] O. Taghizadeh et al., “Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems,” Trans. Veh. Technol., vol. 67, no. 8, pp. 7450-7464, Aug. 2018.

[50] S. Kusaladharma, W. Zhu, and W. Ajib, “Outage Performance and Average Rate for Large-Scale Millimeter-Wave NOMA Networks,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1280-1291, Feb. 2020.

[51] T. Bai and R. W. Heath, “Coverage and Rate Analysis for Millimeter-wave Cellular Networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1100-1114, Feb. 2015.

[52] Z. Ding, H. Dai, and H. V. Poor, “Relay Selection for Cooperative NOMA,” IEEE Wireless Commun. Lett., vol. 5, no. 4, pp. 416-419, Aug. 2016.

[53] A. K. Gupta and J. F. Buckwalter, “Linearity Considerations for Low-EVM, Millimeter-Wave Direct-Conversion Modulators,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3272-3285, Oct. 2012.

[54] C. Zhong et al., “Generic Ergodic Capacity Bounds for Fixed-Gain AF Dual-Hop Relaying Systems,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3814-3824, Aug. 2011.

[55] I. S. Ansari et al., “On the Sum of Gamma Random Variables with Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channels,” IEEE 13th Int. Workshop Sign. Proc. Advances Wireless Commun. (SPAWC), Cesme, 2012, pp. 394-398.

[56] P. Moschopoulos, “The Distribution of the Sum of Independent Gamma Random Variables,” Ann. Inst. Stat. Math., vol. 37, no. 3, pp. 541-544, 1985.

[57] Y. Akhmetkaziyev et al., “Performance of NOMA-Enabled Cognitive Satellite-Terrestrial Networks With Non-Ideal System Limitations,” IEEE Access, vol. 9, pp. 35392-35406, 2021.

[58] Z. Ding, M. Peng, and H. V. Poor, “Cooperative Non-Orthogonal Multiple Access in 5G Systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462-1465, Aug. 2015.

[59] A. K. Gupta and J. F. Buckwalter, “Linearity Considerations for Low-EVM, Millimeter-Wave Direct-Conversion Modulators,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3272-3285, Oct. 2012.

[60] I. S. Ansari et al., “On the Sum of Gamma Random Variables with Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channels,” IEEE 13th Int. Workshop Sign. Proc. Advances Wireless Commun. (SPAWC), Cesme, 2012, pp. 394-398.

[61] J. Wildman et al., “Outage Performance Analysis of Randomly Accessing Systems Underlaying Millimeter-wave Cellular Networks,” IEEE Trans. Wireless Commun., vol. 67, no. 11, pp. 7780-7800, Dec. 2014.

[62] S. Arzykulov et al., “Outage Performance of Underlay CR-NOMA Networks,” 10th Int. Conf. Wireless Commun. Signal Process. (WCSP), Hangzhou, China, 2018, pp. 1-6.

[63] A. K. Gupta and J. F. Buckwalter, “Linearity Considerations for Low-EVM, Millimeter-Wave Direct-Conversion Modulators,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3272-3285, Oct. 2012.

[64] I. S. Ansari et al., “On the Sum of Gamma Random Variables with Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channels,” IEEE 13th Int. Workshop Sign. Proc. Advances Wireless Commun. (SPAWC), Cesme, 2012, pp. 394-398.

[65] P. Moschopoulos, “The Distribution of the Sum of Independent Gamma Random Variables,” Ann. Inst. Stat. Math., vol. 37, no. 3, pp. 541-544, 1985.

[66] Y. Akhmetkaziyev et al., “Performance of NOMA-Enabled Cognitive Satellite-Terrestrial Networks With Non-Ideal System Limitations,” IEEE Access, vol. 9, pp. 35392-35406, 2021.

[67] Z. Ding, M. Peng, and H. V. Poor, “Cooperative Non-Orthogonal Multiple Access in 5G Systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462-1465, Aug. 2015.

[68] O.L.A. Lopez et al., “Aggregation and Resource Scheduling in Machine-type Communication Networks: A Stochastic Geometry Approach,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4750-4765, July 2018.

[69] E. Bjornson, M. Matthaiou, and M. Debbah, “A New Look at Dual-Hop Relaying: Performance Limits with Hardware Impairments,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4512-4526, Nov. 2013.

[70] X. Yan et al., “NOMA-based Multiple-antenna and Multiple-relay Networks over Nakagami-m Fading Channels with Imperfect CSI and SIC Error,” IET Commun., vol. 12, no. 17, pp. 2087-2098, Oct. 2018.

[71] X. Liu and J. Mo, “Spectral-energy efficiency maximization for wireless powered low-latency NOMA systems with full-duplex relaying,” EURASIP J. Wireless Commun. Netw., 2019, 206 (2019).

[72] C. Garcia, M. Camana, and I. Koo, “Joint Beamforming and Artificial Noise Optimization for Secure Transmissions in MISO-NOMA Cognitive Radio System with SWIPT”, Electronics, vol. 9, no. 11, p. 1948, 2020.

[73] S. Arzykulov et al., “Outage Performance of Underlay CR-NOMA Networks,” 10th Int. Conf. Wireless Commun. Signal Process. (WCSP), Hangzhou, China, 2018, pp. 1-6.