Research article

Protective effects of *Asystasia chelonoides* var. *chelonoides* Nees. (Acanthaceae) leaf extracts against Paracetamol-induced hepatotoxicity in Wistar rats

Geetha R. Nair¹*, Raghesh R. Nair², S. R. Suja² and M. Jayasree¹

¹P.G. Department and Research Centre, Mahatma Gandhi College, Thiruvananthapuram-695004, Kerala, India
²Ethnomedicine and Ethnopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram-695562, Kerala, India

*Corresponding Author: geethasgma@gmail.com

[Accepted: 05 July 2020]

Abstract: The ethanolic leaf extract of *Asystasia chelonoides* var. *chelonoides* Nees. was evaluated for the hepatoprotective properties against Paracetamol overdosage in Wistar rats. Paracetamol administration caused severe hepatic damage in rats as evidenced by the elevated serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and total bilirubin. Hepatoprotective potential of the plant extract was evident from the normalized biochemical parameters of hepatic injury like ALT, AST, ALP, GGT, SB, TGL, TC and TP along with the estimation of antioxidant status of the liver tissue (levels of Catalase, Superoxide dismutase, Glutathione and Malondialdehyde levels). The histopathological studies of liver samples showed recovery from Paracetamol-induced necrosis with almost normalized hepatic architecture in *A. chelonoides* extract-treated animals. The hepatoprotective effects exhibited by plant extract might be mediated through the inhibition of microsomal drug-metabolizing enzymes and in conclusion, the findings of the present study suggest that *A. chelonoides* leaf extract possesses potent hepatoprotective effect against Paracetamol induced hepatic damage in Wistar rats.

Keywords: *Asystasia chelonoides* - Paracetamol - Hepatotoxicity.

INTRODUCTION

The liver is the key organ of metabolism and, is continuously and variably exposed to xenobiotics, environmental pollutants, and chemotherapeutic agents (Opoku et al. 2007). When this natural protective mechanisms of liver is overpowered by such exposures, it will lead to hepatic injury. Liver diseases are a problem worldwide, and the conventional drugs used in the treatment of liver diseases are sometimes inadequate and can have serious adverse effects. Thus, interest and effort have shifted toward medicinal plants as new sources of hepatoprotective agents (Arhogho et al. 2009). Paracetamol or Acetaminophen (APAP) is a drug of the para-aminophenol group, which is generally considered quite safe at therapeutic doses and is effective as an analgesic to relieve mild to moderate pain, as well as an antipyretic to reduce fever. However, overdosing or chronic use may lead to severe damage to some tissues, especially in the liver. Liver toxicity impairs various normal physiological functions like metabolism; susceptibility of the liver to injury is much higher than any other organ because of its central role in metabolism as well as its ability to concentrate and biotransform xenobiotics (Kumar et al. 2015, Bedi et al. 2016). The present study was designed to investigate the biological effects of the plant using animal and biochemical methods. Here, we report the hepatoprotective activities of ethanolic extract of *A. chelonoides* in Paracetamol-induced hepatic necrosis in rat models.
MATERIALS AND METHODS

Plant material
The plant specimen [Asystasia chelonoides var. chelonoides Nees. (Acanthaceae)] were collected from Western Ghats regions of Thiruvananthapuram and Kollam district of Kerala state. Voucher specimens were taxonomically identified and deposited at the herbarium of the Jawaharlal Nehru Tropical Botanical Garden and Research Institute, Palode, India. Care was taken to select healthy plants of Asystasia chelonoides (AC). They were thoroughly washed with running water to remove the adherent impurities. The leaves were dried in shade, powdered using mechanical grinder and stored in air-tight glass containers and extracted with ethyl alcohol by Soxhlet’s extraction method to obtain ethanol leaf extract of Asystasia chelonoides (AC ETH).

Experimental animals
Male and female Wistar rats (150–200 gms) were obtained from the institutes Animal House. These animals were housed in polypropylene cages under standard laboratory conditions (temp 24–28°C, humidity 60–70%). They were fed with commercial rat feed (Lipton India Ltd., Mumbai, India) and boiled water at libitum. The study was carried out according to National Institute of Health (NIH) guidelines, after getting the approval of the Institute Animal Ethics Committee (IAEC).

Commercial kits
Commercial kits for the estimation of Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP), γ-Glutamyl transferase (GGT), Serum bilirubin (SB), Triglycerides (TGL), Total cholesterol (TC) and Total protein (TP) were purchased from Coral Clinical System, Goa, India.

Paracetamol (APAP) induced hepatotoxicity
Paracetamol induced hepatotoxicity was carried out according to the procedure of Suja et al. (2003). Wistar rats were divided into six groups (6 animals / group), Groups I and II were the normal control and Paracetamol intoxicated toxin group respectively. Both of them received a single daily dose of 0.5% Tween-80 (1 ml, p.o.) for all 6 days. Group III, IV and V were administered AC ETH reconstituted in 0.5% Tween- 80 at dosages (50, 150 and 450 mg kg⁻¹, p.o.) for all 6 days and Group VI was administered Silymarin, the standard hepatoprotective drug, at a dose of 100 mg kg⁻¹, p.o., for all 6 days. Paracetamol suspension (2.5 g kg⁻¹, p.o.) was administered to Groups II to VI on 5th day, 30 min after plantextract/Silymarin administration. On the 6th day after 24 h starvation, all the animals were sacrificed using CO₂ inhalation. Blood samples were collected from the carotid artery for evaluating the plasma markers of hepatic injury and liver tissue slices were collected for histopathological studies and antioxidant assays like the estimation of Malondialdehyde (MDA), assay of Catalase (CAT), determination of Reduced glutathione (GSH) and superoxide dismutase (SOD).

Statistical analysis
All the data were expressed as mean ± standard error of the mean (SEM). The significance of difference among the group was assessed using one way ANOVA followed by Dunnett’s posttest using GraphPad Prism Version 7.00.

RESULTS
Evaluation of hepatoprotective activity (Estimation of plasma markers of hepatic injury)
Wistar rats treated with over dose of APAP developed liver damage which is indicated by significant (p ≤0.05) increase in serum AST (270.32 ± 4.31 IU L⁻¹), ALT (223.13 ± 3.37 IU L⁻¹), ALP (260.35 ± 3.38 IU L⁻¹), GGT (25.23 ± 2.12 IU L⁻¹), SB (1.43 ± 0.42 mg dL⁻¹), TC (190.44 ± 2.91 mg dL⁻¹), TGL (256.61 ± 3.24 mg dL⁻¹) and decrease in TP (3.53 ± 0.13 g dL⁻¹) in toxin control group compared to normal control. Pre-treatment with AC ETH (50, 150 and 450 mg kg⁻¹ b. w., p.o) caused significant (p ≤0.05) protection against APAP toxicity by attenuating AST, ALT, ALP, GGT, SB, TC, TGL and elevation of TP as shown in dose dependent manner. For all the eight biochemical parameters studied, AC ETH showed potent activity in a dose dependent manner and from among the various doses, AC ETH (400 mg kg⁻¹) (AST: 110.21 ± 2.13 IU L⁻¹; ALT: 71.21 ± 2.34 IU L⁻¹; ALP: 122.21 ± 3.14 IU L⁻¹; GGT: 7.13 ± 0.19 IU/L⁻¹; SB: 0.548 ± 0.02 mg dL⁻¹; TC: 106.42 ± 3.28 mg dL⁻¹; TGL: 119.28 ± 1.43 mg dL⁻¹ and TP: 5.48 ± 0.14 g dL⁻¹) was found to be the significant dose among of A. chelonoides studied. The reduction in biochemical parameters exhibited by AC ETH (400 mg kg⁻¹) was almost comparable to that of Silymarin (100 mg kg⁻¹) (AST: 102.76 ± 2.32 IU L⁻¹; ALT: 67.82 ± 0.65 IU L⁻¹; ALP: 118.17 ± 2.12 IU L⁻¹; GGT 6.22 ± 0.21 IU L⁻¹; SB: 0.52 ± 0.04 mg dL⁻¹; TC: 110.24 ± 2.23 mg dL⁻¹; TGL: 126.21 ± 1.13 mg dL⁻¹ and TP: 5.23 ± 0.14 g dL⁻¹), the standard drug employed in the study as shown in table 1.
Table 1. Effect of AC ETH on plasma markers of hepatic injury in APAP intoxicated Wistar rats. Values are expressed as mean ± SEM, n=6, one way ANOVA followed by Dunnett’s multiple comparison test, * p ≤ 0.05 compared to normal control, *** p ≤ 0.05 compared to APAP toxin control.

Treatment groups	Parameters	AST (IU L\(^{-1}\))	ALT (IU L\(^{-1}\))	ALP (IU L\(^{-1}\))	GGT (IU L\(^{-1}\))	SB (mg dL\(^{-1}\))	TC (mg dL\(^{-1}\))	TGL (mg dL\(^{-1}\))	TP (g dL\(^{-1}\))
Normal Control		82.22±1.12	60.24±2.32	93.42±2.01	5.43±1.12	0.34±0.04	96.32±1.71	122.33±3.73	6.33±0.55
Toxin Control		270.32±4.31*	223.13±3.37*	260.35±3.38*	25.23±2.12*	1.43±0.42*	190.44±2.91*	256.61±3.24*	3.53±0.13*
STD-Silymarin (100 mg kg\(^{-1}\))		102.76±2.32**	67.82±0.65**	118.17±2.21**	6.22±0.21**	0.52±0.04**	110.24±2.23**	126.21±1.13**	5.23±0.14**
AC ETH (50 mg kg\(^{-1}\))		242.23±2.41	188.43±3.27	229.48±2.63	21.24±3.21	1.34±0.05	176.22±2.17	227.46±2.42	4.03±0.23
AC ETH (150 mg kg\(^{-1}\))		138.28±1.27**	90.47±2.27**	137.24±2.46**	12.12±1.23**	0.61±0.03**	118.22±3.41**	135.26±1.20**	5.01±0.18**
AC ETH (400 mg kg\(^{-1}\))		110.21±2.13**	71.21±2.34**	122.21±3.14**	7.13±0.19**	0.48±0.02**	106.42±3.28**	119.28±1.43**	5.48±0.14**

Evaluation of in vivo antioxidant status of liver

Figure 1. Effect of ethanolic extract of *Asystasia chelonoides* (AC ETH) on hepatic CAT, SOD, GSH and MDA of Wistar rats in APAP induced hepatotoxicity study. Values are expressed as mean ± SEM, n=6, one way ANOVA followed by Dunnett’s multiple comparison test, * p ≤ 0.05 compared to normal control, *** p ≤ 0.05 compared to APAP toxin control.

Catalase activity was depleted significantly (p ≤ 0.05) in APAP intoxicated animals (62.14 ± 3.35 U mg\(^{-1}\) protein) of toxin group when compared to normal control group (157.32 ± 7.43 U mg\(^{-1}\) protein). The SOD levels in the toxin group was also reduced to 4.56 ± 0.62 U mg\(^{-1}\) protein when compared to the normal control group with 17.32 ± 1.25 U mg\(^{-1}\) protein. The level of GSH significantly (p ≤ 0.05) decreased in APAP intoxicated animals (11.48 ± 1.47 μmol g\(^{-1}\) tissue) when compared to normal control group (58.26 ± 3.36 μmol g\(^{-1}\) tissue) and all the drug doses showed significantly (p ≤ 0.05) increased the GSH values. In all the animals treated with various doses of AC ETH showed an increase in hepatic Catalase, SOD and GSH in a dose-dependent manner. AC ETH at 450 mg kg\(^{-1}\) showed maximum protection against APAP intoxication in animals which is evident from the higher levels of Catalase (146.32 ± 5.74 U mg\(^{-1}\) protein), SOD (14.05 ± 1.08 U mg\(^{-1}\) protein) and GSH (53.46 ± 2.94 μmol g\(^{-1}\) tissue). The MDA levels in the liver of toxin control animals (45.58 ± 3.42 μmol g\(^{-1}\) wet liver) were higher when compared to the normal control (13.28 ± 2.06 μmol g\(^{-1}\) wet liver). The MDA levels were found to be lower in the AC ETH treated groups compared to toxin control groups and the maximum
inhibition was obtained in AC ETH (450 mg kg$^{-1}$) treated groups (16.23 ± 0.74 nmol g$^{-1}$ wet liver) and it is almost comparable to that of the standard Silymarin (100 mg kg$^{-1}$) treated groups (17.22 ± 2.36 μmol g$^{-1}$ wet liver) as shown in figure 1.

Histopathological investigations

Histological studies of control animals showed normal hepatic architecture with distinct hepatic cells and sinusoidal space. The liver sections of the toxin control group of animals exhibited disarrangement of normal hepatic cells, intense congestion, hydropic degeneration, pyknosis, centrilobular necrosis, sinusoidal congestion, infiltration of the lymphocytes, Kupffer cells around the central vein, loss of cell boundaries and ballooning degeneration were observed after the intoxication of acetaminophen. The liver histology of Silymarin treated animals showed normal hepatic architecture with few fatty globules and infiltration of Kupffer cells. The liver histology of the animals treated with higher doses of AC ETH showed normal hepatic cords and absence of severe congestion, pyknosis and occasional necrosis and the normal cellular architecture was retained as compared to those of the control rats as shown in figure 2.

![Figure 2](image)

Figure 2. Effect of ethanolic extract of *Asystasia chelonoides* (AC ETH) on the histopathology of APAP induced liver damage in Wistar rats (×50, H & E staining): **A**, Normal control rat liver histology showing normal hepatic architecture; **B**, Toxin control rat liver showing Centrilobular necrosis, sinusoidal congestion, Kupffer cells infiltration and cellular disintegration; **C**, Standard Silymarin treated group showing almost normal hepatic architecture with mild degree of damage; **D, E & F**, AC ETH (50, 150 and 450 mg kg$^{-1}$ respectively) treated groups showing reduced hepatic damage in a dose depended manner.

www.tropicalplantresearch.com
DISCUSSION

Chemical toxins include paracetamol, which is often used as the model substance causing experimental hepatocyte injury in both in-vivo and in-vitro conditions (Remien et al. 2014). Frequent use of Paracetamol is considered as a major cause of acute liver failure in many countries. Cytochrome P450 enzymes convert a relatively minor portion of paracetamol to the highly reactive intermediate metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is thought to be responsible for paracetamol-induced hepatic toxicity. Under normal physiological conditions, NAPQI conjugates with glutathione (GSH) and is detoxified. In paracetamol overdose, NAPQI is produced in excess of GSH detoxification capacity, and only part of it can be detoxified by conjugation with GSH. The remaining part of NAPQI subsequently binds to liver proteins and induces oxidative stress, mitochondrial dysfunction, and necrotic cell death. Oxidative stress is recently reported to play a major role in acetaminophen (APAP)-induced hepatotoxicity (Mousah et al. 2016).

Paracetamol overdose is also known to be associated with inflammation, marked by an increase in the inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin, as well as the up regulation of nitrogen oxide from serum, macrophages, and hepatocytes (Ghosh et al. 2010). Numerous reports are indicating that paracetamol-mediated oxidative stress or hepatotoxicity is attenuated by the use of naturally occurring antioxidants and or free radical scavengers such as vitamins, phenols, terpenoids and flavonoids (Janbaz et al. 2004, Ajith et al. 2007, Durga et al. 2014). Recently, flavonoids have been found to play important roles in non-enzymatic protection against oxidative stress (Elsayed 2006). The free radical scavenging and antioxidant potential of these biomolecules are responsible for many of their beneficial effects and confers a therapeutic potential in diseases such as cardiovascular diseases, gastric or duodenal ulcers, and cancer and hepatic pathologies (Gonzalez-Gallego et al. 2007, Bouhali et al. 2015).

The liver is highly affected primarily by toxic agents, and hence the liver marker enzymes are very sensitive markers of toxicity and be of great importance in the assessment of hepatic damage. Activities of ALT, AST, ALP, and the level of serum bilirubin are largely used as the most common biochemical markers to evaluate liver injury. Paracetamol -induced hepatic injury is considered as one of the most commonly used models and reliable method for screening of hepatoprotective agents (Remien et al. 2014). In the current study, the significant elevation of the enzyme levels, particularly AST, ALT, ALP and bilirubin level in rats treated with paracetamol, are indicative of cellular leakage and loss of functional integrity of the liver cell membrane (Sabiu et al. 2014). This is in agreement with previous studies, which reported that overdose of APAP could be toxic to the hepatocytes (Gini et al. 2010). The serum levels of transaminases return to normal with the healing of hepatic parenchyma and the regeneration of hepatocytes (Ahmed et al. 2001, Pawlikowska-Pawlega et al. 2007).

In the present study, paracetamol intoxication also decreased serum TP and Alb, whereas it increased serum bilirubin. The liver is the major source of most of the serum proteins, in which the parenchymal cells are responsible for synthesis of Alb, fibrinogen, and other coagulation factors and most of the α- globulins and β- globulins (Thapa et al. 2007). TP reflects the functional status of the liver, because the liver is furnished with machineries for synthesizing serum proteins excluding γ-globulins. Thus, liver damage is characterized by hypoproteinemia and decreased Alb, which can affect the whole physiological status of animals (Iweala et al. 2010). Albumin, being the most abundant plasma protein, accounts for 60% of the total serum protein and is incorporated in many physiological processes. Qualitative and quantitative disturbance of protein synthesis is a consequence of impaired hepatic function. The observed decrease in Alb by paracetamol administration in the current study could be a result of a decline in the number of cells responsible for Alb synthesis in the liver through necrosis. The direct interference with the Alb-synthesizing mechanism in the liver as a result of inflammation may also be implicated for decrease in Alb (Jaeschke et al. 2003).

Formation of toxic free radicals, such as peroxynitrite, from the reaction of superoxide and nitric oxide, subsequently forming nitrotyrosine adducts inside the mitochondria also induce hepatotoxicity. GSH repletion not only provides surplus cysteine as an energy substrate for the Krebs cycle, it also serves the important role of scavenging for free radicals and peroxynitrite (Jaeschke 2012). Mitochondria, which are critical for cellular respiration and metabolism, suffer damage by the actions of reactive oxygen species and peroxynitrite compounds leading to cessation of ATP synthesis and hepatocytic damage (Yuan & Kaplowitz 2013). Administration of overdose of APAP had shown to develop fulminant centrilobular necrosis in mice and hamsters similar to that observed in humans (Davis et al. 1974, Potter et al. 1974).

Over dosage of APAP administration caused a complex sequence of events as mentioned above leading to liver injury and the transport function of the hepatocytes gets disturbed, resulting in the leakage of the plasma
zymes normally located in the cytosol are released into bloodstream. The estimation of these parameters in serum is a useful quantitative marker for the extent and type of hepatocellular damage (Ansari et al. 1991). In this study, paracetamol-induced hepatic damage is evident from the significant increase in the level of serum marker enzymes, namely AST, ALT, ALP and GGT in APAP administered groups as compared to the normal control. The animal group treated with AC ETH have shown a decrease in the liver enzyme levels in a dose-dependent manner and AC ETH (450 mg kg\(^{-1}\)) showed reduced enzyme level similar to the standard hepatoprotective drug, Silymarin (100 mg kg\(^{-1}\)) administered group. The lowering of enzyme levels in the extracts administered group may be attributed to the hepatoprotective activity offered by the bioactive phytoconstituents in AC ETH against APAP induced liver toxicity. Increased levels of serum bilirubin in APAP administered toxin group may be due to the excessive destruction of hepatocytes, blockage of the biliary tract, mass inhibition of the conjugation reaction of hepatic enzymes or the release of unconjugated bilirubin from damaged and dead hepatocytes (Mazer & Perrone 2008). AC ETH administered groups showed significantly lower bilirubin levels compared to the toxin group which reveals the ability of the plant extract to bring the liver function into normal mainly by promoting conjugation reaction and maintaining cellular integrity of hepatocytes. Biochemical serum parameters like TC and TGL were also significantly increased in APAP alone treated rats, when compared to normal control. The plant drug also possesses hypolipidemic activity which is evident from the significant reduction in of TC and TGL level. Protein synthesis is the major function of the liver and healthy functioning of liver is required for the synthesis of serum proteins except for the γ-globulins. The decreased Total Protein (TP) in the toxin control group may be due to decreased protein metabolism and lipid peroxidation in the liver and is a feature of chronic hepatic damage (Kanchana & Sadiq 2011). It is worth to note that the AC ETH (450 mg kg\(^{-1}\)) effectively enhanced the protein metabolism and reduced the hepatic damage when compared to the toxin control group.

Both enzymatic and non-enzymatic antioxidant system is essential for cellular response to deal with oxidative stress under physiological condition. Therefore, antioxidant enzymes such as CAT, SOD and non-enzymatic electron receptors such as GSH are affected and used as indexes to evaluate the level of oxidative stress. Equilibrium between free radicals formed due to the increased level of NAPQI (a highly reactive APAP metabolic intermediate) and enzymatic antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT) are crucial and important for preventing hepatic damage by oxidative stress. Superoxide production is generated from various sources such as auto-oxidation of leukoflavins and the products of mitochondrial respiration. The role of superoxide dismutase depletion in the pathogenesis of APAP intoxication was supported by various studies (Patel et al. 2012). High amounts of superoxide radicals inhibit CAT, another important antioxidant enzyme which decomposes hydrogen peroxide and protects tissue from reactive hydroxyl radicals is widely distributed in all animal tissues. Glutathione is an important non-enzymatic antioxidant that protects the liver against APAP induced damage by forming conjugates with the harmful NAPQI and removing it from the hepatocytes. The depletion of cellular GSH level in the hepatic cells is known to play a key role in APAP toxicity. Results obtained in the present investigation showed a decreased level of CAT, SOD and GSH indicating an oxidative stress in the APAP alone treated group.

Administration of AC ETH effectively enhanced the production of enzymes like CAT and SOD which resulted in the release of oxidative stress by radical scavenging in hepatocytes during APAP metabolism. AC ETH also enhanced the GSH level, which resulted in the effective removal of reactive NAPQI through bile and urine. Malondialdehyde (MDA) is one of the end-products of polyunsaturated fatty acid peroxidation and is a good indicator of the degree of lipid peroxidation, which can be related to APAP induced hepatic damage. The decreased level of antioxidant enzymes like CAT and SOD results in an increased lipid peroxidation rate indicated by high levels of MDA. In the present study, a significant increase in the MDA level observed in liver homogenate of APAP-intoxicated rats was reduced by treatment with the AC ETH, indicating its ability to break the chain reaction of lipid peroxidation. Maximum inhibition of MDA formation was shown by AC ETH (450 mg kg\(^{-1}\)) and the results was comparable to the standard Silymarin (100 mg kg\(^{-1}\)) treated group. Antioxidant and anti-lipid peroxidation activity of AC ETH is one of the main reasons behind the hepatocytic membrane stabilization, which helped to maintain normal serum enzyme levels and antioxidant status of the liver.

CONCLUSION

In conclusion, the findings of the present study suggest that the hepatoprotective effect of extract of Asystasia chelonoides against paracetamol-induced hepatotoxicity in Wistar rats may be due to the presence of bioactive phytoconstituents. These studies need to be extended for the isolation and characterization of the
active compounds offering protection against various liver ailments.

ACKNOWLEDGEMENT

The authors are thankful to the Director, JNTBGRI, Palode, Thiruvananthapuram, Kerala for providing necessary facilities to carry out the research work.

REFERENCE

Ahmed MB & Khater MR (2001) Evaluation of the protective potential of Ambrosia maritima extract on acetaminophen induced liver damage. Journal of Ethnopharmacology 75: 169–174.

Ajith TA, Hema U & Aswathy MS (2007) Zingiber officinale Roscoe prevents acetaminophen-induced hepatotoxicity by enhancing hepatic antioxidant status. Food Chemistry and Toxicology 45: 2267–2272.

Ansari RA, Tripathi SC, Pattnaik GK & Dhawan BN (1991) Antihepatotoxic properties of picroliv: an active fraction from rhizomes of Picrorhiza kurrooa. Journal of Ethnopharmacology 34: 61–68.

Arhogho EM, Ekpo KE, Anosike EO & Ibhe GO (2009) Effect of aqueous extract of bitterleaf (Vernonia amygdalina Del) on carbon tetrachloride (CCl4) induced liver damage in albino Wistar rats. European Journal of Scientific Research 26: 122–130.

Bedi O, Bijjem KRVS, Kumar P & Gauttam V (2016) Herbal induced hepatoprotection and hepatotoxicity: a critical review. Indian Journal of Physiology and Pharmacology 60: 6–21.

Bouhali IE, Tayaa H & Tahraoui A (2015) Quercetin, a natural flavonoid, mitigates fenthion induced locomotor impairments and brain acetylcholinesterase inhibition in male Wistar rat. Middle-East Journal of Scientific Research 23: 55–58.

Davis DC, Potter WZ, Jollow DJ & Mitchell JR (1974) Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Science 14: 2099–2109.

Durga M, Nathiya S & Devasena T (2014) Immunomodulatory and antioxidant actions of dietary flavonoids. International Journal of Pharmacy and Pharmaceutical Science 6: 50–56.

Elsayed ASI (2016) Effects of green tea and curcumin on non-enzymatic antioxidants in normal mice. Pakistan Journal of Nutrition 15: 1–8.

Ghosh J, Das J, Manna P & Sil PC (2010) Acetaminophen induced renal injury via oxidative stress and TNF-alpha production: therapeutic potential of argunolic acid. Toxicology 268: 8–18.

Gini CK & Muraleedhara GK (2010) Hepatoprotective effect of Spirulina lonar on paracetamol induced liver damage in rats. Asian Journal of Experimental Biological Science 1: 614–623.

Gonzalez-Gallego J, Sánchez-Campos S & Tuñón MJ (2007) Anti-inflammatory properties of dietary flavonoids. Nutricon Hospitalaria 22: 287–293.

Iweala EEJ & Osundiya AO (2010) Biochemical, haematological and histological effects of dietary supplementation with leaves of Gnetum africanum Welw on paracetamol-induced hepatotoxicity in rats. International Journal of Pharmacology 6: 872–879.

Janbaz KH, Saeed SA & Gilani AH (2004) Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine 11: 424–430.

Kanchana N & Sadiq AM (2011) Hepatoprotective effect of Plumbago zeylanicaon paracetamol induced liver toxicity in rats. International Journal of Pharmacy and Pharmaceutical 3(1): 151–154.

Kumar V, Kalita J, Misra UK & Bora HK (2015) A study of dose response and organ susceptibility of copper toxicity in a rat model. Journal of Trace Elements in Medicine and Biology 29: 269–274.

Mazer M & Perrone J (2008) Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. Journal of Medical Toxicology 4: 2–6.

Mousah HA, Sahib HB & Kadhum HH (2016) Protective effect of L-Carnitine, Atorvastatin, and Vitamin A on acetaminophen induced hepatotoxicity in rats. International Journal of Pharmaceutical Sciences Review and Research 36: 21–27.

Opoku AR, Ndlovu IM, Terblanche SE & Hutchings AH (2007) In vivo hepatoprotective effects of Rhoicissus tridentata subsp. cuneifolia, a traditional Zulu medicinal plant, against CCl₄-induced acute liver injury in rats. South African Journal of Botany 73: 372–377.
Patel SJ, Milwid JM, King KR, Bohr S, Iracheta-Velle A, Li M, Vitalo A, Parekkadan B, Jindal R & Yarmush ML (2012) Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. *Nature Biotechnology* 30: 179–183.

Pawlikowska-Pawlega B, Gruszecki WI, Misiak L, Paduch R, Piersiak T & Zarzyka B (2007) Modification of membranes by quercetin, a naturally occurring flavonoid, *via* its incorporation in the polar head group. *Biochimica et Biophysica Acta* 1768: 2195–2204.

Potter WZ, Thorgeirsson SS, Jollow DJ & Mitchell JR (1974) Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. *Pharmacology* 12(3): 129–143.

Remien CH, Sussman NL & Adler FR (2014) Mathematical modeling of chronic acetaminophen metabolism and liver injury. *Mathematical Medicine and Biology* 31: 302–317.

Sabiu S, Wudil AM & Sunmonu TO (2014) Combined administration of *Telfaira occidentalis* and *Vernonia amygdalina* leaf powders ameliorates garlic-induced hepatotoxicity in Wistar rats. *Pharmacologia* 5: 191–198.

Suja SR, Latha PG, Rajasekharan S & Pushpangadan P (2003) Antihepatotoxic activity of *Spilanthes ciliata* on paracetamol-induced liver damage in rats. *Pharmaceutical Biology* 41: 536–541.

Thapa BR & Walia A (2007) Liver function tests and their interpretation. *The Indian Journal of Pediatrics* 74: 663–671.

Yuan L & Kaplowitz N (2013) Mechanisms of drug-induced liver injury. *Clinical Liver Disease* 17: 507–518.

Zimmerman HJ & Maddrey WC (1995) Acetaminophen hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure. *Hepatology* 22: 767–773.