Clinical characteristics of COVID-19 hospitalized patients associated with mortality: A cohort study in Spain

Manuel Lozano, Adina Iftimi, Alvaro Briz-Redon, Juanjo Peiró, Lara Manyes, María Otero, Mayte Ballester, M. Dolores de las Marinas, Juan Carlos Catalá, José de Andrés, Carolina Romero

Keywords: COVID-19, SARS-CoV-2, Respiratory insufficiency, Mortality, Proportional hazard model, Coronavirus infections, Epidemiology

Abstract

Background: The heterogeneity of patients with COVID-19 may explain the wide variation of mortality rate due to the population characteristics, presence of comorbidities and clinical manifestations.

Methods: In this study, we analyzed 5342 patients’ recordings and selected a cohort of 177 hospitalized patients with a poor prognosis at an early stage. We assessed during 6 months their symptomatology, coexisting health conditions, clinical measures and health assistance related to mortality. Multiple Cox proportional hazards models were built to identify the associated factors with mortality risk.

Results: We observed that cough and kidney failure triplicate the mortality risk and both bilirubin levels and oncologic condition are shown as the most associated with the demise, increasing in four and ten times the risk, respectively. Other clinical characteristics such as fever, diabetes mellitus, breathing frequency, neutrophil-lymphocyte ratio, oxygen saturation, and troponin levels, were also related to mortality risk of in-hospital death.

Conclusions: The present study shows that some symptomatology, comorbidities and clinical measures could be the target of prevention tools to improve survival rates.

1. Introduction

Since the outbreak of coronavirus disease (COVID-19) began in December 2019, more than 149 million people have developed SARS-CoV-2 infection, and more than 3 million have died worldwide. In Spain, by mid-2021 up to 3.5 million cases were reported causing more than 77,000 deaths [1].

There are several studies describing the clinical characteristics and outcomes of hospitalized patients with SARS-CoV-2. The heterogeneity of patients treated in China [2], Italy [3], UK [4], USA [5–7] or Spain [8–10] may explain the wide variation of mortality rate due to the population characteristics, presence of comorbidities and clinical manifestations.

The first confirmed case of COVID-19 in Valencia, Spain, was reported on February 19, 2020. The Consorcio Hospital General Universitario de Valencia (CHGU), that assists approximately 364,000 patients, was designated as a COVID-19 center and described an infection rate with a heterogeneous distribution during the following 6 months. In this study, we analyze the
symptomatology, coexisting health conditions, clinical measures and health assistance, in a selected cohort of patients with a poor prognosis at an early stage in hospitalized patients from Valencia during this period and assess the clinical characteristics associated with mortality.

2. Materials and Methods

2.1 Study population

This observational prospective study was conducted at the Consorcio Hospital General Universitario of Valencia (CHGUV), an academic public hospital that serves the largest area in the city, consisting of approximately 364,000 patients. The study was approved by the institutional review board, and the requirement for informed consent was waived. All consecutive patients who were tested for COVID-19 were included from February 19 to August 31, 2020. A total of 5342 patients were treated during this period and 177 COVID-19 positive adults confirmed by PCR, admitted to the hospital due to clinical complications, with a World Health Organization ordinal scale 4 (oxygen by mask or nasal prongs) or 5 (noninvasive ventilation or high-flow oxygen) [11], and followed up until recovery or death, were selected. We adhered to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines [12].

2.2 Data collection

Data collected included patient demographics (residence, biological sex, and age, in years); treatment reason (symptomatology, contact or other, categorized as yes/no); the recorded symptomatology during the observation period (yes, no) such as fever, asthenia, altered consciousness, headache, myalgia, arthralgia, eczema, nasal congestion, anosmia, sore throat, dysnesia, cough, expectoration, pleuritic pain, hemoptysis, diarrhea, and nausea; intensive care admission (yes, no); presence of smoking habit (current, former or no smoker) and pregnancy (yes, no); comorbidities (yes, no) such as hypertension, cardiovascular disease, diabetes mellitus, obesity, chronic obstructive pulmonary disease, asthma, oncological process, immunosuppression, stroke, kidney and liver failure, and deep vein or pulmonary thrombosis; as well as laboratory tests and clinical characteristics, including mean arterial blood pressure (mmHg), cardiac frequency (beats/minute), oxygen saturation (%), breathing frequency (breaths/minute), lymphocytes (units/μL), neutrophil lymphocyte ratio, platelets (units/μL), D-dimer (ng/mL), activated partial thromboplastin time (seconds), international normalized ratio, fibrinogen (mg/dL), bilirubin (mg/dL), lactate dehydrogenase (units/L), ferritin (ng/mL), creatinine (mg/dL), and troponin (ng/L). Outcomes observed were the length of stay until recovery or death. Clinical examinations included chest radiography if necessary (unilobar, multilobar, clean or not performed).

2.3 Statistical analyses

Basic descriptive statistics were calculated for each collected covariate. Death in the whole sample was categorized (death status: yes, no) to run survival analyses as time-dependent response variable. Demographic information, symptomatology, intensive care admission, smoking habit, pregnancy, comorbidities, and radiography results were considered as predictive covariates. Kaplan–Meier survival curves were estimated to compare the survival during the observation period, overall, and stratified for sex and age range (20–50 years (n = 25); 51–60 years (n = 22); 61–70 years (n = 31); 71–80 years (n = 47); and ≥81 years (n = 52)). Simple Cox proportional hazards models were used to control sex and age as confounders, considering each covariate as predictive variable, with and without sex and age adjustment (Table S1). Multiple Cox proportional hazards models were built to identify the associated covariates with mortality risk. All multiple models were adjusted for sex and age. Each multiple model was built following three steps: 1) Obtaining a first multiple basal model by using all the symptomatology covariates previously associated with a p-value <0.2 in the simple analyses. Following a backward elimination procedure, all the symptomatology covariates associated with the mortality risk at a p-value level <0.1 in the likelihood ratio test were retained in the model; 2) comorbidities were added to this clinical symptomatology basal model individually and those with a p-value <0.2 were candidates to enter in the model. Following a backward elimination procedure, all these comorbidities candidate covariates associated with the mortality risk at a p-value level <0.1 were retained in the model; 3) The same procedure was repeated on the clinical symptomatology and comorbidities basal model using clinical covariates in order to obtain the final multiple model. Statistical analysis was carried out using R statistical software version 3.5.1 [13]. Kaplan–Meier curves were plotted and Cox regressions built by using the survival R package [13]. The final multiple model was validated by means of proportional hazards assumption testing based on weighted residuals [14] by using the cox.zph function. Influential outliers were assessed observing beta deviations with gcoxdiagnostics function of survminer package [15]. Nonlinearity was evaluated plotting the Martingale residuals and natural cubic splines with one or two internal knots were compared through Akaike (AIC) scores. Then, the lowest AIC nonlinear model and linear model were compared using graphical examination and the Likelihood Ratio test.
Significance level <0.05 was considered in all tests, although marginally significant effects (p-value <0.1) were also considered.

3. Results

Descriptive statistics of the study variables are displayed in Table 1. From all the Hospital COVID-19 patients (n = 5342), 177 were selected (3.3%). A total of 52 patients (27.4%) died in a time period (mean ± SD) of 18 (33.7) days. These non-survivors were 78.5 ± 11.1 years old, significantly older than survivors (66.3 ± 15.9 years, Wilcoxon test p-value <0.001). Differences regarding sex were not observed (Log-Rank test p-value = 0.400) but higher mortality risk was observed with increasing age (p = 0.009) (Supplemental Fig. S1). Almost 35% of patients who died were admitted in the intensive care unit during the observation period. Main symptomatology recorded among non-survivors was asthenia (Fisher’s test p-value = 0.022), altered consciousness (p <0.001), eczema (p = 0.082), and dyspnea (p = 0.001). Some co-existing conditions were associated with mortality, such as cardiovascular disease (p = 0.019), diabetes mellitus (p = 0.011), oncologic process (p = 0.030), stroke (p = 0.007), and kidney failure (p = 0.001). Clinical variables related to non-survivors were lower mean arterial blood pressure (Wilcoxon test p-value = 0.084), oxygen saturation (p <0.001), and lymphocytes count (p = 0.011), as well as higher breathing frequency (p = 0.005), D-dimer (p = 0.011), activated partial thromboplastin time p = (0.056), neutrophil lymphocyte and international normalized ratios, bilirubin, lactic acid dehydrogenase and troponin (p <0.001), ferritin (p = 0.071), and creatinine (p = 0.003). Performed thoracic X-rays showed multilobar outcome more frequently among non-survivors.

Simple Cox proportional hazards models, considering each covariate as predictive variable, did not indicate differences between models with and without sex and age adjustment (Supplemental Table S1). Multiple Cox proportional hazards model showed higher mortality risk with increasing age (hazards ratio HR [95% confidence in terval] = 1.06 [1.02–1.11]), the intensive care admission 5.27 [2.35–11.81], the presence of cough (2.61 [1.10–6.21], diabetes mellitus (1.73 [0.92–3.25]), and oncologic condition (10.13 [4.06–25.24], as well as higher breathing frequency (1.06 [1.02–1.10], neutrophil lymphocyte ratio (1.01 [1.00–1.02]), and troponin levels (1.0 [1.00–1.01]). Inverse relationships were found with fever (0.32 [0.16–0.66]) and marginally with oxygen saturation (0.97 [0.94–1.00]) (Fig. 1). The multiple Cox proportional hazards model passed the proportional hazards assumption (weighted least-squares test for the global model p-value = 0.197) (Supplemental Fig. S2). Comparing the magnitudes of the largest beta values to the regression coefficients suggested that none of the observations were influential individually (Supplemental Fig. S3). Linear model fitted better than nonlinear multiple Cox proportional hazards model (AIC = 408.31 and 418.79, respectively) and any variable showed associations in non-linear terms (results not shown). Kaplan–Meier curves stratifying by each significant covariate are shown in Supplemental Figures S4 to S17 (continuous covariates were categorized as binary by median cut-off).

4. Discussion

The COVID-19 pandemic outbreak is an ongoing crisis that is causing global uncertainty. This pandemic has become a health threat to the general population and healthcare workers worldwide, with uncertainty about new strains and its new unknown epidemiological factors. Given the high rate of transmission of the infection among humans, it is important to recognize the basis of its pathogenicity, mortality, and related clinical characteristics, which can lead to the discovery of effective treatments and prevention tools.

In this Spanish cohort study, we assessed the relationship between the symptomatology, coexisting health conditions, clinical measures and health assistance, and mortality risk in a screening sample from COVID-19 positive adults with oxygen by mask, nasal prongs, noninvasive ventilation or high-flow oxygen, and followed until recovery (70.6% or death (29.4%). Factors such as age and some clinical characteristics seem to play a role in this relationship. Overall, multiple model showed that patients who presented cough, specific comorbidities like diabetes mellitus, kidney failure and an oncologic process, as well as higher breathing frequency, neutrophil lymphocyte ratio and troponin levels, were related to an increased risk of in-hospital death. However, fever and oxygen saturation were associated with lower mortality risk. A relevant fact that has been elucidated in our results is the increased morbimortality detected in COVID-19 positive patients with chronic kidney disease almost tripled the mortality in our sample [16]. Perhaps creatinine could be a marker indicating the degree of severity of COVID-19 inpatients or perhaps it could be due to a possible direct involvement of the kidney by this coronavirus [17]. Until now, some authors have also established increased mortality in patients admitted for COVID-19 and those who developed acute kidney injury during the hospital stay [18].

The clinical characteristics of COVID-19 occur across a broad spectrum, ranging from asymptomatic infection to severe respiratory failure [19,20]. The main symptoms include fever, cough, myalgia, and dyspnea [19,20]. Headache, diarrhea, fatigue, sore throat, anosmia, ageusia, chest pain, hemoptysis, sputum production, rhinorrhea, nausea, vomiting, skin rash, impaired consciousness, and seizure have been also observed [19–21], but
Table 1
Descriptive statistics of study population screening.

Targeted testing	Population screening	All patients	All persons	Survivors	Non-survivors	p-value*
Sample size (n)	5342	177	125	52		
SARS-CoV-2 PCR positivity (% negative)	20.6	0	0	0		
Sex (% male)	46.5	54.4	61.5	0.410		
Age (mean±SD years)	45.3 (22.5)	69.9 (15.7)	66.3 (15.9)	78.5 (11.1)	<0.001	
Days from positivity until death (mean ± SD days)	3.7	29.4				
Days from positivity until death (mean ± SD years)	41.2 (47.2)	18.0 (33.7)				
Treatment reason (%)						
Symptomatology	84.0	84.0	90.4	0.590		
Contact	13.2	12.0	7.7			
Other	4.0	4.0	1.9			
Intensive care unit admission (% yes)	17.5	10.4	34.6	<0.001		
Symptomatology (% yes)						
Fever	75.7	80.0	65.4	0.054		
Asthenia	68.4	63.2	80.8	0.022		
Altered consciousness		22.6	13.6	44.2	<0.001	
Headache	33.3	31.2	38.5	0.384		
Myalgia / Arthralgia		41.2	40.0	44.2	0.619	
Eczema	9.0	6.4	15.4	0.082		
Nasal congestion	26.0	23.2	34.6	0.136		
Anosmia	27.7	26.4	30.8	0.583		
Sore throat	26.0	26.4	25.0	0.999		
Dyspnea	53.7	45.6	73.1	0.001		
Cough	73.4	70.4	80.8	0.192		
Expectoration	27.1	24.0	34.6	0.193		
Pleuritic pain	17.5	18.4	15.4	0.828		
Hemoptysis	11.3	9.6	15.4	0.301		
Diarrhea / Nausea	32.2	32.0	32.7	0.999		
Coexisting conditions (% yes)						
Current smoker	10.2	8.0	15.4	0.999		
Former smoker	23.7	24.8	21.2	0.999		
Hypertension	52.0	48.0	61.5	0.137		
Cardiovascular disease	29.4	24.0	42.3	0.019		
Diabetes mellitus	29.9	24.0	44.2	0.011		
Obesity	22.0	19.2	28.8	0.168		
Chronic obstructive pulmonary disease	14.7	12.8	19.2	0.351		
Asthma	6.8	7.2	5.8	0.999		
Oncologic condition	10.7	7.2	19.2	0.030		
Immunosuppressed condition	8.5	6.4	13.5	0.143		
Stroke	3.0	4.0	46.2	0.007		
Kidney failure	11.9	6.4	25.0	0.001		
Liver failure	2.3	2.4	1.9	0.999		
Pregnancy	0.6	0.0	1.9	0.294		
Deep vein / Pulmonary thrombosis	2.3	2.4	1.9	0.999		
Clinical variables (mean±SD)						
Mean arterial blood pressure (mm Hg)	94.5 (15.6)	95.8 (14.1)	91.3 (18.5)	0.084		
Cardiac frequency (beats/minute)	87.3 (18.4)	86.6 (17.4)	90.3 (20.6)	0.194		
Oxygen saturation (%)	91.1 (10.3)	93.1 (9.6)	86.0 (10.1)	<0.001		
Breathing frequency (breaths/minute)	22.4 (8.6)	20.9 (7.3)	26.0 (10.9)	0.005		
Lymphocytes (units/µL)	1141.8 (1224.0)	1167.2 (1084.6)	1080.8 (1518.0)	0.011		
Neutrophil lymphocyte ratio	8.6 (15.0)	5.8 (5.7)	15.3 (25.3)	<0.001		
Platelets (units/µL)	185,374.8 (83,337.2)	188,405.1 (83,825.2)	178,090.4 (82,500.4)	0.558		
D-dimer (ng/mL)	864.3 (1093.0)	726.5 (851.3)	1195.5 (1484.1)	0.11		
Activated partial thromboplastin time (seconds)	30.2 (8.6)	29.1 (6.7)	32.9 (11.6)	0.056		
International Normalized Ratio	1.4 (1.7)	1.1 (0.2)	1.99 (2.99)	<0.001		
Fibrinogen (mg/dL)	5893.0 (85.9)	574.0 (86.8)	626.0 (72.3)	<0.001		
Bilirubin (mg/dL)	0.8 (0.4)	0.7 (0.3)	0.9 (0.5)	<0.001		
Lactic acid dehydrogenase (units/L)	557.7 (255.7)	510.7 (211.9)	670.6 (313.2)	<0.001		
Ferritin (ng/mL)	669.3 (359.9)	596.0 (456.0)	845.3 (729.0)	0.071		
Creatinine (mg/dL)	1.0 (0.8)	0.9 (0.4)	1.4 (1.2)	0.003		
Troponin (ng/L)	38.4 (100.3)	18.5 (47.6)	86.3 (160.9)	<0.001		
Thoracic X-rays (% yes)						
Unilobar	35.6	44.0	15.4	<0.001		
Multilobar	40.7	36.0	51.9			
Clean	19.8	19.2	21.2			
Not performed	4.0	0.8	11.5			

* Fisher’s Exact Test for Count Data; Wilcoxon rank sum test with continuity correction for continuous data.
most severe are usually older patients showing dyspnea, respiratory frequency ≥30/min, blood oxygen saturation ≤93%, some comorbidities (hypertension, diabetes mellitus, and cardiovascular disease), and abnormal chest imaging findings [22,23]. The fact that the variable disorientation was statistically significant in our results, may be due in part to the fact that the most severe patients had increased breathing effort associated with hypoxemia. This circumstance in turn corresponds to hypercapnia, which is a known contributing factor to disorientation and impairment of baseline neurological status.

Previous research about the clinical characteristics in demised COVID-19 patients is inconclusive. This fact may be explained by the heterogeneous affected population, health assistance systems and different virus strains coexisting in time. According to a meta-analysis carried out in 2401 deceased patients [24], common symptoms in non-survivors included fever (70.6%–100%), dyspnea (38.89%–85.7%), cough (22.4%–78%), fatigue (22%–61.9%), and relevant comorbidities such as hypertension, chronic cardiovascular disease, diabetes mellitus, and chronic cerebrovascular disease. Compared with the surviving COVID-19 patients, the deceased had lower platelet levels and higher C-reactive protein and lactate dehydrogenase at admission, which have not been shown significant in the multiple model of the present study. These results are supported by another wide meta-analysis performed in 34 studies with 5057 patients [25]. However, this second study also observed lymphopenia among dead patients (50.1%, 95% CI 38.0%–62.4%), which has been shown to be associated with mortality in our study.

On the other hand, other studies performed in COVID-19 non-survivors do show other coincident results with the present study. From a large Chinese study carried out in 1099 patients with laboratory-confirmed COVID-19, 67 died with fever and cough as the most common symptoms and lymphocytopenia was shown in 83.2% of them [19]. Lymphocytes decrease has been shown as the common clinical factor associated to an increased mortality risk in other studies [9,26–28]. Several studies have found that tobacco smoke is a protective factor and that it influences the clinical course of patients affected by COVID-19 by decreasing the severity of the manifestations [29–31]. However, in our sample, we didn’t find any relevant role for tobacco smoke and clinical severity.

To date, three large Spanish studies have been found assessing the associated factors with mortality risk. One
of them reported the first 1255 adult cases in Madrid and also carried out multiple Cox models, observing some similar results regarding older age (HR 1.07, 95% CI 1.06–1.09), diabetes mellitus (HR 1.45, 95% CI 1.09–1.92), and lymphocytopenia (HR 1.62, 95% CI 1.20–2.20) [9]. The second one was also performed in Madrid in 1,828 patients during the same period with a fatality rate of 14.6%, although no associated factors to survival were assessed [10]. A third observational multicenter study described clinical characteristics of very old patients (≥80 years old) in 150 Spanish hospitals (2772 patients), observing similar associations between higher mortality risk and diabetes mellitus (25.6% of cases), oxygen saturation (<90%), unilateral-bilateral infiltrates on chest x-rays, neutrophils (≥7.5 x 10^9 /µL), and lymphocytes (<0.8 x 10^9 /µL). However, higher fever was related to an increased mortality risk by using logistic regressions [28].

Lymphocytopenia has been one of the most common clinical characteristic associated with COVID-19 patient’s mortality across studies. An explanation for the relationship between the virus and the lower lymphocytes levels has been proposed by means of immune responses activation, which may overproduce proinflammatory cytokines, causing uncontrolled inflammatory responses in patients with severe COVID-19. This condition may lead to lymphopenia and lymphocyte dysfunction [32]. Among comorbidities, diabetes mellitus has been shown to be reiterative. Patients with severe COVID-19 and diabetes mellitus have the lowest lymphocyte counts compared with those with severe COVID-19 without Diabetes Mellitus, and those with non-severe COVID-19 with or without diabetes mellitus. Partially decreased lymphocyte subsets, age and diabetes mellitus were closely related to disease progression and prognosis [33], since diabetes mellitus could lead to dysfunctional cellular immunity [34].

In conclusion, we assessed the relationship between symptomatology, coexisting health conditions, clinical measures and health assistance, with mortality risk in severe COVID-19 patients. We observed that cough and kidney failure triplicate the mortality risk and both bilirubin levels and oncologic condition are shown as the most associated with the demise, increasing in four and ten times the risk, respectively. Other clinical characteristics such as fever, diabetes mellitus, breathing frequency, neutrophil-lymphocyte ratio, oxygen saturation and troponin levels, were also related to mortality risk of in-hospital death. The present study shows that some symptomatology, comorbidities and clinical measures could be the target of prevention tools to improve survival rates.

Author contribution

Manuel Lozano: Conceptualization, Writing- Original draft preparation; Adina Iftimi: Methodology, Conceptualization, Writing – review & editing; Alvaro Briz-Redon: Visualization, Investigation, Writing – review & editing. Juanjo Peiró: Software, Validation, Writing – review & editing; Lara Manyes: Validation, Writing – review & editing; María Otero: Data curation, Writing – review & editing; Mayte Ballester: Data curation, Writing – review & editing; Dolores de las Marinas: Data curation, Writing – review & editing; Juan Carlos Catalá: Data curation, Writing – review & editing; José de Andrés: Supervision, Writing – review & editing; Carolina Romero: Conceptualization, Supervision, Writing – review & editing.

Data availability

The data that support the findings of this study are available from CHGU. Restrictions apply to the availability of these data, which were used under license for this study.

Funding sources

This study was supported by the Innovation, Universities, Science and Digital Society Council through the Valencia Innovation Agency (AVI); grant 851255 from the European Research Council under the European Union’s Horizon 2020 research and innovation program; and from the Universitat de València.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics statement

The study was approved by the institutional review board, and the requirement for informed consent was waived.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.imj.2022.04.002.

References

[1] Johns Hopkins Coronavirus Resource Center. COVID-19 Map. Johns Hopkins Coronavirus Resource Center. Published 2021. Accessed April 29, 2021. https://coronavirus.jhu.edu/map.html.
[2] X Yang, Y Yu, J Xu, et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir. Med. 8 (5) (2020) 475–481, doi:10.1016/S2213-2600(20)30079-5.
[3] G Grasselli, A Zangrillo, A Zanella, et al., Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy, JAMA 323 (16) (2020) 1574–1581, doi:10.1001/jama.2020.5394.
4. AB Docherty, EM Harrison, CA Green, et al., Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study, BMJ 369 (2020) m1985, doi:10.1136/bmj.m1985.

5. S Richardson, JS Hirsch, M Narasimhan, et al., Presenting Characteristics, Comorbidities, and Outcomes Among 57000 Patients Hospitalized With COVID-19 in the New York City Area, JAMA 323 (20) (2020) 2052–2059, doi:10.1001/jama.2020.6775.

6. M Arentz, E Yim, L Klaff, et al., Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State, JAMA 323 (16) (2020) 1612–1614, doi:10.1001/jama.2020.4326.

7. LC Myers, SM Parodi, GJ Escobar, et al., Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California, JAMA 323 (21) (2020) 2195–2198, doi:10.1001/jama.2020.7202.

8. A Rodríguez, M Ruiz-Botella, I Martín-Loeches, et al., Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain, Critical Care 25 (1) (2021) 63, doi:10.1186/s13054-021-03487-8.

9. CG Rodríguez-Gonzalez, E Chamorro-de-Vega, M Valerio, et al., COVID-19 in hospitalized patients in Spain: a cohort study in Madrid, Int J Antimicrob Agents 57 (2) (2021) 106249, doi:10.1016/j.ijantimicag.2020.106249.

10. C Giesen, L Díez-Izquierdo, CM Saa-Requejo, et al., Epidemiological characteristics of the COVID-19 outbreak in a secondary hospital in Spain, Am J Infect Control 49 (2) (2021) 143–150, doi:10.1016/j.ajic.2020.07.014.

11. WHO. COVID-19 Therapeutic Trial Synopsis. Published 2020. Accessed April 30, 2021. https://www.who.int/publications-detail-redirect/covid-19-therapeutic-trial-synopsis.

12. E von Elm, DG Altman, M Egger, et al., The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies, J Clin Epidemiol 61 (4) (2008) 344–349, doi:10.1016/j.jclinepi.2007.11.008.

13. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2017.

14. PM GRAMBSCH, TM THERNEAU, Proportional hazards tests and diagnostics based on weighted residuals, Biometrika 81 (3) (1994) 515–526, doi:10.1093/biomet/81.3.515.

15. A Kasambara, M Kosinski, P Biecek, et al., Survminer: Drawing survival curves using ‘ggplot2’R package version 0.4.4. https://CRAN.R-project.org/package=survminer.

16. IMD Peecly, RB Azevedo, ES Muxfeldt, et al., COVID-19 and chronic kidney disease: a comprehensive review, J Bras Nefrol 43 (3) (2021) 383–399, doi:10.1590/2175-8239-JBN-2020-0203.

17. E Ahmadian, SM Hoseiniy Khatibi, S Razi Soofiyani, et al., Covid-19 and kidney injury: Pathophysiology and molecular mechanisms, Rev Med Virol 31 (3) (2021) e2176, doi:10.1002/rmv.2176.

18. JH Ng, JS Hirsch, A Hazan, et al., Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury, Am J Kidney Dis 77 (2) (2021) 204–215 e1, doi:10.1053/j.ajkd.2020.09.002.

19. Guan W jie, Ni Z yi, Y Hu, et al., Clinical Characteristics of Coronavirus Disease 2019 in China, New England Journal of Medicine 382 (18) (2020) 1708–1720, doi:10.1056/NEJMoa2002352.

20. C Huang, Y Wang, X Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet 395 (10223) (2020) 497–506, doi:10.1016/S0140-6736(20)30185-5.

21. T Guo, Y Fan, M Chen, et al., Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19), JAMA Cardiol 5 (7) (2020) 811–818, doi:10.1001/jamacardio.2020.1017.

22. A Krishnan, JP Hamilton, SA Alghathani, et al., A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations, Intern Emerg Med (2021) Published online January 16, doi:10.1007/s11739-020-02616-5.

23. C Huang, J Soleimani, S Hersaei-vijeh, et al., Clinical Characteristics, Treatment, and Outcomes of Critically Ill Patients With COVID-19: A Scoping Review, Mayo Clinic Proceedings 96 (1) (2021) 183–202, doi:10.1016/j.mayocp.2020.10.022.

24. P Qiu, Y Zhou, F Wang, et al., Clinical characteristics, laboratory outcome characteristic, comorbidities, and complications of related COVID-19 deceased: a systematic review and meta-analysis, Aging Clinical and Experimental Research 32 (9) (2020) 1869–1878, doi:10.1007/s40520-020-01664-3.

25. MJ Nasirri, S Haddadi, A Tahvildari, et al., COVID-19 Clinical Characteristics, and Sex-Specific Risk of Mortality: Systematic Review and Meta-Analysis, Frontiers in Medicine 7 (2020), doi:10.3389/fmed.2020.00459.

26. W Jiang, H Wei, J Liu, Clinical characteristics of 21 cases of COVID-19 induced death: A retrospective study, Journal of Xian Jiaotong University (Medical Sciences) 42 (2) (2021) 197–200, doi:10.7652/jjumss202102005.

27. LQ Li, T Huang, YQ Wang, et al., COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis, Journal of Medical Virology 92 (6) (2020) 577–583, doi:10.1002/jmv.25757.

28. JM Ramos-Rincon, V Busnaitto, M Ricci, et al., Clinical Characteristics and Risk Factors for Mortality in Very Old Patients Hospitalized With COVID-19 in Spain, J Gerontol A Biol Sci Med Sci 76 (3) (2021) e28–e37, doi:10.1093/gerona/glaa243.

29. MD Shastri, SD Shukla, WC Chong, et al., Smoking and COVID-19: What we know so far, Respir Med 176 (2021) 106237, doi:10.1016/j.rmed.2020.106237.

30. P Russo, S Bonati, R Giacconi, et al., COVID-19 and smoking: is nicotine the hidden link? Eur Respir J 55 (6) (2020) 2001116, doi:10.1183/13993003.01116-2020.

31. G Landoni, A Zangrillo, CS Romero Garcia, et al., Nations with high smoking rate have low SARS-CoV-2 infection and low COVID-19 mortality rate, Acta Biomed 91 (4) (2020) e2020168, doi:10.23750/abm.v91i4.10721.

32. M Delshad, N Tavakolina, A Pourbagheri-Sigaroodi, et al., The contributory role of lymphocyte subsets, pathophysiology of lymphopenia and its implication as prognostic and therapeutic opportunity in COVID-19, International Immunopharmacology 95 (2021), doi:10.1016/j.ijitmph.2021.107586.

33. D Liu, Y Wang, B Zhao, et al., Overall reduced lymphocyte especially T and B subsets closely related to the poor prognosis and the disease severity in severe patients with COVID-19 and diabetes mellitus, Diabetes and Metabolic Syndrome 13 (1) (2021), doi:10.1186/s13098-020-00622-3.

34. K Hodgson, J Morriss, T Briddon, et al., Immunological mechanisms contributing to the double burden of diabetes and intraacellular bacterial infections, Immunology 144 (2) (2015) 171–185, doi:10.1111/imn.12934.