Cathepsin D deficiency in mammary epithelium transiently stalls breast cancer by interference with mTORC1 signaling

Stephanie Ketterer1,2,3, Julia Mitschke1, Anett Ketscher1, Manuel Schlimpert2,4,5, Wilfried Reichardt3,6, Natascha Baeuerle1, Maria Elena Hess1,2,7,8, Patrick Metzger1,2,7, Melanie Boerries1,3,7,8, Christoph Peters1,3,8,9, Bernd Kammerer5,9, Tilman Brummer1,3,9, Florian Steinberg5 & Thomas Reinheckel1,3,8,9✉

Cathepsin D (CTSD) is a lysosomal protease and a marker of poor prognosis in breast cancer. However, the cells responsible for this association and the function of CTSD in cancer are still incompletely understood. By using a conditional CTSD knockout mouse crossed to the transgenic MMTV-PyMT breast cancer model we demonstrate that CTSD deficiency in the mammary epithelium, but not in myeloid cells, blocked tumor development in a cell-autonomous manner. We show that lack of CTSD impaired mechanistic Target of Rapamycin Complex 1 (mTORC1) signaling and induced reversible cellular quiescence. In line, CTSD-deficient tumors started to grow with a two-month delay and quiescent Ctsd−/− tumor cells restarted proliferation upon long-term culture. This was accompanied by rewiring of oncogenic gene expression and signaling pathways, while mTORC1 signaling remained permanently disabled in CTSD-deficient cells. Together, these studies reveal a tumor cell-autonomous effect of CTSD deficiency, and establish a pivotal role of this protease in the cellular response to oncogenic stimuli.
Cathespin D (CTSD) is a major cellular endopeptidase with primary location in the endosomal/lysosomal compartment. Unlike most other lysosomal proteases dubbed cathepsin, which mostly rely on cysteine residues for cleaving peptide bonds, CTSD is using an aspartate for catalysis, which classifies CTSD as aspartic protease. Although mainly located and active in the acidic cell compartment, CTSD has been found to be secreted into the extracellular milieu and, in addition, to be transferred from the lysosome to the cytosol or the nucleus of cells where it has been implicated in cell death processes and gene regulation, respectively. Interestingly, and again in contrast to cysteine cathepsins, no bona fide CTSD protease inhibitors exist extracellularly or in the cytosol. Therefore, the role of CTSD in cysteine cathepsins, no bona fide CTSD protease inhibitors exist extracellularly or in the cytosol. Therefore, the role of CTSD in remodeling the extracellular matrix was studied under physiological conditions and in various disease states. Also the inactive zymogen of CTSD (the so-called pro-CTSD) is secreted and was shown to be mitogenic through interaction with several cell surface receptors.

Based on its generally high and ubiquitous expression, as well as its variable cellular localization, CTSD has raised much interest in studies concerning its role in diseases, with solid cancers being a prominent example for CTSD gain of function. In contrast to its excess, the lack of CTSD is also detrimental. Genetic deficiency of CTSD causes neuronal ceroid-lipofuscinosis type 10 (CLN10), a progressive hereditary neurodegenerative disease. Patients with congenital CLN10, caused by complete absence of CTSD activity, die within days after birth. In line with the human disease, mice deficient for CTSD develop a lysosomal storage disorder and neuronal death before they die prematurely around 26 days after birth.

The early death of mice with constitutive deficiency of CTSD has considerably complicated the analysis of CTSD functions in animal models of human disease. As a result, research on CTSD in tumor biology is lagging far behind that on cysteine-type cathepsins. Those have been readily examined in animal models for their potential use as drug targets, diagnostic imaging agents, and prodrug activators, even though there is functional redundancy and compensatory mechanisms between cysteine cathepsin family members. This backlog is hapless, because CTSD has a long-standing tradition of being associated with progression of cancer, especially breast cancer. Already in 1980, a glycoprotein of 52 kDa size was described that is synthesized and secreted by the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 in response to estradiol treatment. This protein was later identified as pro-CTSD and found to be secreted constitutively from triple-negative breast cancer (TNBC) cell lines (BT-20, MDA-MB231). This cancer cell-specific secretion of pro-CTSD can be targeted by antibodies to elicit an anti-tumor immune response. Pro-CTSD applied to human breast cancer cell cultures promotes proliferation in vitro and its down-regulation decreased xenograft growth and experimental lung metastasis in mice. In human breast cancer, CTSD was suggested as a tumor marker long time ago. Since then, many investigations aimed to link CTSD protein levels or activities to the clinical outcome of breast cancer patients. The most comprehensive study investigated tumor samples from 2810 breast cancer patients and output of breast cancer patients. The most comprehensive study investigated tumor samples from 2810 breast cancer patients and outcomes aimed to link CTSD protein levels or activities to the clinical outcome of breast cancer patients. The most comprehensive study investigated tumor samples from 2810 breast cancer patients and outcomes aimed to link CTSD protein levels or activities to the clinical outcome of breast cancer patients.

26 days after birth.

The early death of mice with constitutive deficiency of CTSD has considerably complicated the analysis of CTSD functions in animal models of human disease. As a result, research on CTSD in tumor biology is lagging far behind that on cysteine-type cathepsins. Those have been readily examined in animal models for their potential use as drug targets, diagnostic imaging agents, and prodruk activators, even though there is functional redundancy and compensatory mechanisms between cysteine cathepsin family members. This backlog is hapless, because CTSD has a long-standing tradition of being associated with progression of cancer, especially breast cancer. Already in 1980, a glycoprotein of 52 kDa size was described that is synthesized and secreted by the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 in response to estradiol treatment. This protein was later identified as pro-CTSD and found to be secreted constitutively from triple-negative breast cancer (TNBC) cell lines (BT-20, MDA-MB231). This cancer cell-specific secretion of pro-CTSD can be targeted by antibodies to elicit an anti-tumor immune response. Pro-CTSD applied to human breast cancer cell cultures promotes proliferation in vitro and its down-regulation decreased xenograft growth and experimental lung metastasis in mice. In human breast cancer, CTSD was suggested as a tumor marker long time ago. Since then, many investigations aimed to link CTSD protein levels or activities to the clinical outcome of breast cancer patients. The most comprehensive study investigated tumor samples from 2810 breast cancer patients and uncovered a positive correlation of high CTSD protein levels in tumor homogenates with cancer relapse and patient death. Furthermore, the amount of CTSD was suggested to predict prognosis independent of any other clinical prognostic factor. Other studies clarified that CTSD levels in the tumor specimen, but not its proteolytic activity in patient serum, has prognostic value. However, macrophages and stromal cells also express CTSD, and some research claims that there is no prognostic significance to cathepsin D expression in tumor cells, but in the stromal compartment of the tumor.
C57/BL6-Tg(MMTV-PyMT) mice are more resistant to oncogene-induced transformation of the mammary epithelium compared to FVB/N-Tg(MMTV-PyVT)634Mul/J, resulting in palpable tumors only at around 13 weeks of age in the C57/BL6 background25. To assess early tumorigenesis, we quantified dysplastic lesions in whole mounts of mammary glands obtained from 8-week-old tumor mice. The lesion burden was similar for control and LysM-cre;Ctsd–/– but significantly reduced in MMTV-cre;Ctsd–/– mice (Fig. 1a, b). We monitored tumor progression by palpation from 8 weeks on until the tumors reached an end-stage size of 1 cm³. By the age of 12 weeks, half of the LysM-cre;Ctsd–/– and control mice had developed at least one palpable tumor, while this took 21 weeks for MMTV-cre;Ctsd–/– mice (Fig. 1c). At 18 weeks of age, we performed volumetric ultrasound imaging of the two largest tumors detected per individual in 18-week-old PyMT mice of indicated genotypes (Controls: 4 × Ctsd+/fl + 8 × Ctsd/fl; *, two-sided log-rank test compared with controls). d Representative pictures and e quantification of volumetric ultrasound imaging of the two largest tumors detected per individual in 18-week-old PyMT mice of indicated genotypes (Controls: 2 × Ctsd+/fl + 8 × Ctsd/fl; n = 10 animals; two-sided Mann-Whitney test). f Kaplan–Meier analysis for tumors at end-stage (1 cm³) in PyMT mice of indicated genotypes (Controls: 4 × Ctsd+/fl + 8 × Ctsd/fl; *, two-sided log-rank test compared with controls). Bar charts show all data points with mean + SD and p-value. Source data are provided as a Source Data file.

Tumor cell-autonomous effects of CTSDeletion. In order to study the role of CTSD in PyMT cancer cells, we generated a tumor cell line from a Ctsd/fl;mTmG mouse and introduced a doxycycline (Dox)-inducible recombine expression system. In the presence of Dox, cells switch from a non-recombined (red fluorescent, CTSD-competent) to a recombinated state (green fluorescent, CTSD-deficient). However, 17% of the cells already recombined in absence of Dox due to leakiness of the cre expression system (Fig. 2a). Nevertheless, the remaining 83% of the cells still produced reasonable amounts of CTSD protein (Fig. 2b, Day 0). Most importantly, after one day of Dox treatment, the majority of cells (typically 60 to 88% of the cells) recombined and showed reduced CTSD protein levels. Continued Dox treatment enriched for the recombined cells (>90%) and abrogated protein levels of the mature double-chain form of CTSD to not detectable by Western Blotting (Fig. 2a). In order to achieve a balanced number of recombined and non-recombined cells in these assays, we seeded cells and allowed them to grow for 3 days before inducing recombination by adding Dox for 24 h. The cell cycle is desynchronizing during the three-day culture period. As cre-mediated recombination occurs preferentially during S-phase26, this regimen achieved a lower proportion of recombined cells (i.e., 60%; Fig. 2c, d) as compared to Dox application immediately after seeding (i.e., 84% in Fig. 2a). In these competitive cell growth experiments, recombined CTSD-deficient cells continuously decreased, while non-recombined CTSD-competent cells enriched (Fig. 2c). During tumor growth, cancer cells experience phases of nutrient restriction27. To mimic
limited nutrient supply, we used a mild starvation medium, in which fetal calf serum (FCS) was reduced from 10 to 1%. Except for an initial lag-phase, we found again that CTSD-competent cells did outcompete the CTSD-deficient cells, albeit with more variation between the biological replicates (Fig. 2d). Growth of these cells was also tested in vivo by orthotopic transplantation into the mammary fat pad of Ctsd wild-type mice (Fig. 2e). In this experiment we injected a cell population containing 88% recombined CTSD-deficient cells independently into 6 recipient mice and analyzed the resulting tumors by flow cytometry detecting the mTmG-fluorescence. On average, the proportion of CTSD-deficient cells decreased to 52% in the outgrown tumors, while CTSD-competent cells rose from 12 to 48% of the tumor masses. Hence, CTSD-expressing PyMT cells have also a clear growth advantage in vivo. Together, these assays recapitulate the growth disadvantage of CTSD-de®cient cells seen in the primary MMTV-cre;Ctsd−/− PyMT breast cancer model and provide evidence for tumor cell-autonomous functions of CTSD.

CTSD deletion induces a quiescent cell state and expands the acidic cell compartment. For mechanistic studies, we generated PyMT tumor cell lines from Ctsd+/- and MMTV-cre;Ctsd−/− tumor mice (Fig. 3a). A clear difference between the two cell lines manifested by culturing them in 1% FCS starvation medium. Ctsd−/− cells accumulated many large intracellular vesicles, while there were barely any of these in Ctsd+/- cells. Staining for acidic β-galactosidase activity was strongly positive in starved Ctsd−/− cells (Fig. 3b). As high β-galactosidase activity is often used as a marker for cellular senescence28, we analyzed proliferation by a fluorescent label-retention assay. The number of label-retaining non-proliferating cells was higher in Ctsd−/− cells compared to Ctsd+/- cells, especially under starvation (Fig. 3c). Senescent cell states are also associated with increased sensitivity towards so-called senolytic agents. Culturing PyMT cells for 10 days in 1% FCS medium and subsequently treating them for 24 h with the senolytic agent Navitoclax, killed twice as many Ctsd−/− cells as compared to Ctsd+/- cells (Fig. 3d). As stalled proliferation and increased Navitoclax sensitivity suggested a senescent phenotype, we next explored the secretion of IL-6, a major indicator of a senescence-associated secretory phenotype (SASP). However, IL-6 secretion from CTSD-deficient cells was not increased, thereby excluding a SASP (Fig. 3e). To address negative regulators of cell cycle, quantitative RT-PCR for the cyclin-dependent kinase inhibitors Cdkn2a/p16 and Cdkn1a/p21 was performed. This showed a significant increase of p16 mRNA in Ctsd−/− cells, while p21 expression was not affected (Fig. 3f). In summary, FCS-starved CTSD-deficient PyMT cells show an overall phenotype typical for quiescent cells as compared to the irreversible growth arrest occurring in bona fide cellular senescence29. The elevated activity of acidic β-galactosidase in Ctsd−/− cells also suggests an increase in the acidic vesicular cell compartment. To test this further, flow cytometry using LysoTrackerTM Green was performed. The majority of Ctsd+/- cells stained with medium intensity, both under normal and starving conditions, while Ctsd−/− cells showed high LysoTrackerTM intensity, especially during starvation (Fig. 4a). A three-way ANOVA considering the

Fig. 2 Tumor cell-autonomous growth deficit through CTSD deletion. a Flow cytometry-based monitoring of cre recombinator expression (Tomato: non-recombined, GFP: recombinated) in rtTA-tTS:tetO-cre:Ctsd−/−;mTmG PyMT cells treated for 0–4 days with doxycycline (Dox) (n = 3 independent experiments). b Analysis of CTSD expression by Western blot (with TUBA as loading control) in lysates from cells used in a. Pro/SC, zymogen/single-chain form; HC, heavy chain; LC, light chain. In vitro competitive growth assay of non-recombined and recombined rtTA-tTS:tetO-cre; Ctsd−/−;mTmG PyMT cells in 10% FCS (c) or 1% FCS (d) medium after a one-day pulse of Dox (n = 3 independent experiments for d 0 and d 1 in c and d 28 in d, n = 4 independent experiments for the rest). e In vivo competitive growth assay of non-recombined and recombined 10% FCS rtTA-tTS:tetO-cre:Ctsd−/−;mTmG PyMT cells. A one-day Dox-pulsed cell suspension of known ratio of non-recombined to recombined cells (left bar) was orthotopically transplanted into 6 recipient mice. The ratio was again determined by flow cytometry in the outgrown tumors (right bar) (n = 6 animals; two-sided one-sample t-test). Line and bar charts show all data points with mean ± SD and p-value. Source data are provided as a Source Data file.
CTSD deficiency results in macroautophagy. Cells cope with starvation by induction of macroautophagy, hereafter referred to as autophagy. During autophagy, the cytosolic form of microtubule-associated protein 1 light chain 3 (LC3-I) is converted to LC3-II on the expanding phagophore and associates with p62, a cargo receptor targeting ubiquitylated proteins for autophagy. Ctsd^{−/−} PyMT cells showed an increased recovery of the fluorescent signal. Blocking the endocytic substrate uptake by Cytochalasin D or preventing lysosomal acidification by Bafilomycin A1 reduced lysosomal proteolysis (Fig. 4f). However, total lysosomal proteolysis was comparable between Ctsd^{+/+} and Ctsd^{−/−} cells, with an increase under FCS starvation. Interestingly, individual members of the same protease class responded differently to CTSD deficiency and/or FCS starvation. For example, CTSL protein was always increased in Ctsd^{−/−} cells, but decreased in 1% FCS to a similar extent than in PyMT cells (n = 3 independent experiments; two-sided two-sample t-test). Bars chart shows all data points with mean ± SD and p-value. Source data are provided as a Source Data file.

Factors intensity of LysoTrackerTM, Ctsd genotype and FCS revealed significant dependence of the acidic cell compartment on Ctsd (p < 0.001) and the amount of FCS in the culture medium (p = 0.001). The distribution of LysoTrackerTM intensities in starved Ctsd^{−/−} cells was highly reminiscent of the one of Torin-treated Ctsd^{+/+} cells, the positive control for autophagy induction and lysosomal biogenesis. Consistent with an increased acidic cell compartment, we found elevated levels of the lysosomal-associated membrane protein 1 (LAMP1) when CTSD was missing (Fig. 4b). We also measured an upregulation of Lamp1 mRNA in Ctsd^{−/−} cells, which was more pronounced under starving conditions (Fig. 4c). To assess whether the lysosomes that are being induced are functional, activities of lysosomal aspartic (CTSD, CTSE, and napsin) and cysteine proteases (including CTSB, CTSL, and CTSK) were measured by cleavage of fluorogenic peptides in lysates from normal and starved cells. As expected, aspartic protease activity was low in Ctsd^{−/−} cells (Fig. 4d). In contrast to that, cysteine protease activity was not altered by CTSD deficiency, suggesting that absence of the major aspartic protease does not cause a general lack of lysosomal proteolysis (Fig. 4e). To test lysosomal proteolysis in intact PyMT cells, we loaded the acidic cell compartment with a quenched fluorogenic substrate by endocytosis. Degradation of this substrate by lysosomal proteases results in dequenching and recovery of the fluorescent signal. Blocking the endocytic substrate uptake by Cytochalasin D or preventing lysosomal acidification by Bafilomycin A1 reduced lysosomal proteolysis (Fig. 4f). However, total lysosomal proteolysis was comparable between Ctsd^{+/+} and Ctsd^{−/−} cells, with an increase under FCS starvation. Interestingly, individual members of the same protease class responded differently to CTSD deficiency and/or FCS starvation. For example, CTSL protein was always increased in Ctsd^{−/−} cells, but decreased in 1% FCS to a similar extent than in PyMT cells (n = 3 independent experiments; two-sided two-sample t-test). Bars chart shows all data points with mean ± SD and p-value. Source data are provided as a Source Data file.

Fig. 3 CTSD deficiency induces a quiescent cell state in short-term starved tumor cells. a Pictures of Ctsd^{+/+} and Ctsd^{−/−} PyMT cells cultured for 7–10 days in 10% FCS or 1% FCS medium. Bars, 50 μm. Representative of 5 independent experiments. b Staining for acidic β-galactosidase in 10% FCS and 1% FCS Ctsd^{+/+} and Ctsd^{−/−} PyMT cells. Bars, 50 μm. Representative of 3 independent experiments. c Quantification of label-retaining cells among 10% FCS and 1% FCS Ctsd^{+/+} and Ctsd^{−/−} PyMT cells (n = 7 independent experiments; two-sided two-sample t-test). d Amount of Annexin-V-7-AAD (living) cells among 1% FCS Ctsd^{+/+} and Ctsd^{−/−} PyMT cells treated with Navitoclax, relative to DMSO control and Ctsd^{+/+} (n = 3 independent experiments; two-sided one-sample t-test). e Quantification of IL-6 by alphaLISA in cell-conditioned media from 10% FCS and 1% FCS Ctsd^{+/+} and Ctsd^{−/−} PyMT cells (n = 2 independent experiments). f Relative Cdkn2a/p16 and Cdkn1a/p21 expression determined by RT-PCR in 10% FCS and 1% FCS Ctsd^{+/+} and Ctsd^{−/−} PyMT cells (n = 3 independent experiments; two-sided two-sample t-test). Bar charts show all data points with mean ± SD and p-value. Source data are provided as a Source Data file.
Fig. 4 CTSD deficiency expands the acidic cell compartment of short-term starved tumor cells.

a. Flow cytometry analysis of LysoTracker™ Green intensity in Ctsd+/+ and Ctsd−/− PyMT cells cultured for 7-10 days in 10% FCS or 1% FCS medium or treated with Torin (n = 3 independent experiments for Torin, n = 6 independent experiments for the rest; two-sided three-way ANOVA for the factors intensity of LysoTracker™, Ctsd genotype and FCS).

b. Analysis of LAMP1 expression by Western blot (with TUBA as loading control) in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells. Slight molecular weight changes due to different glycosylation pattern. Representative of 2 independent experiments. Quantification is below (n = 1 experiment).

c. Relative LAMP1 expression determined by RT-PCR in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells (n = 3 independent experiments; two-sided two-sample t-test). Activity assay with substrates specific for aspartic (d) or cysteine (e) proteases in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells (n = 2 independent experiments). f. Lyosomal activity assay using a quenched fluorogenic substrate in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells (n = 4 independent experiments for 10% FCS, n = 3 independent experiments for 1% FCS). Histogram including controls blocking the endocytic substrate uptake (Cytochalasin D) or lysosomal acidification (Bafilomycin A1) on the left, median fluorescence intensity (MFI) on the right.

g. Analysis of CTSL expression by Western blot (with TUBA as loading control) in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells. Pro, zymogen; SC, single-chain form; HC, heavy chain. Representative of 2 independent experiments. Quantification is to the right (n = 2 independent experiments).

h. Relative Ctsl mRNA expression determined by RT-PCR in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells (n = 3 independent experiments; two-sided two-sample t-test). i. Analysis of CTSB expression by Western blot (with TUBA as loading control) in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells. Pro, zymogen; SC, single-chain form. Representative of 2 independent experiments. Bar charts show all data points with mean ± SD and p-value. Source data are provided as a Source Data file.
LC3-II/LC3-I ratio as well as an induction of Lc3a mRNA expression when cultured in presence of 10% FCS (Fig. 5a–c). These differences did not reach significance in FCS-starved medium, most likely because of the induction of autophagy in Ctsd+/+ control cells. Together these data suggest that autophagy is induced and also successfully executed in Ctsd−/− cells. As a further indicator for that, protein levels of the autophagy cargo receptor p62 were reduced upon FCS starvation in Ctsd+/+ and Ctsd−/− cells, probably due to p62 degradation in the autolysosome (Fig. 5a). Of note, the Ctsd genotype did not affect p62

Fig. 5 CTSD deficiency induces autophagy in short-term starved tumor cells. a Analysis of LC3-I, LC3-II, and p62 protein levels by Western blot (with TUBA as loading control) in Ctsd+/+ and Ctsd−/− PyMT cells cultured for 7–10 days in 10% FCS or 1% FCS medium. Representative of 4 independent experiments. b Quantification of LC3 Western blots as in a, plotted as LC3-II/LC3-I ratio relative to 10% FCS Ctsd+/+ (n = 4 independent experiments; two-sided one-sample and two-sample t-test). Relative Lc3a (c) and p62 (d) expression determined by RT-PCR in 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells (n = 3 independent experiments; two-sided two-sample t-test). e Pictures of 10% FCS and 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells stained for LC3 (green), LAMP1 (red), and DNA (blue). Zoom shows enlargement of indicated image area in merge + DNA. Bars, 10 μm. Representative of 3 independent experiments. f Principle component analysis (PCA) of targeted metabolomics data from 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells (n = 3 independent experiments). g Clustering analysis of the relative abundance of all 20 canonical amino acids and cystine in 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells shown as heatmap (n = 3 independent experiments). Bar charts show all data points with mean ± SD and p-value. Source data are provided as a Source Data file.
protein levels, despite an upregulation of p62 mRNA in Ctsd−/−
cells (Fig. 5d). In order to further assess autophagic flux, cells in
FCS- and amino acid-free medium were treated with Bafilomycin
A1 or a combination of Pepstatin A and E64d to block lysosomal
acidification and protease activity, respectively (Supplementary
Fig. 2). Both treatments led to an increase of the LC3-II/LC3-I
ratio followed by the accumulation of p62 protein, independent of
the Ctsd genotype. This clearly indicates that the proteolytic
degradation of autolysosomal content in Ctsd−/− cells is intact,
which is also supported by the maintained global proteolytic
capacity of CTSD-deficient PyMT cells reported in Fig. 4f.
Consequently, the increased LC3-II/LC3-I ratio seen in Ctsd−/−
cells under FCS starvation is not a result of perturbed degradation but
represents an increase of autophagic flux. Furthermore, immu-
nofluorescence co-staining of autophagosomal LC3 and lysosomal
LAMP1 showed equal co-localization in Ctsd+/+ and Ctsd−/−
cells under normal and starving conditions (Fig. 5e). In synopsis,
the data suggest an unperturbed formation of autolysosomes and an
increased autophagic flux with the generation of free amino
acids in Ctsd−/− cancer cells. To test this, we performed a tar-
geted metabolomics approach to analyze the 20 canonical amino
acids and cysteine in starved Ctsd+/+ and Ctsd−/−
cells. The principal component analysis (PCA) of the data revealed a clear
separation of Ctsd+/+ and Ctsd−/− cells (Fig. 5f). CTSD-expressing
cells showed a relatively balanced amino acid composition with
average z-scores being positive for 10 amino acids and negative for
11 amino acids (Fig. 5g). Ctsd−/− cells differed from Ctsd+/+ cells
in that the majority of amino acids (16 of 21) had a positive
average z-score (Fig. 5g). These data indicate that CTSD deficiency
does not cause a general block of cellular protein degradation for
the generation of free amino acids and are in line with an increased
activity of macroautophagy in Ctsd−/− breast cancer cells.

Next, we complemented the cell culture studies by investigation
of primary cancers from MMTV-cre;Ctsd−/− and control PyMT
mice. The transcriptome of tumors from 18-week-old mice
obtained by RNA sequencing (RNA-Seq) showed a significant
number of genes important for lysosomal biogenesis and function
being upregulated in MMTV-cre;Ctsd−/− tumors compared to
tumors compared to controls (Supplementary Fig. 3a). A gene set enrichment analysis
(GSEA) revealed that among the autophagy-related GO terms
controls (Supplementary Fig. 3a). A gene set enrichment analysis
(GSEA) revealed that among the autophagy-related GO terms
was significantly overrepresented (q < 0.05) (Supplementary
Fig. 3b). These terms included macroautophagy but not selective
autophagy processes such as chaperone-mediated autophagy.
Thus, these analyses of primary tumors also provide evidence for
an upregulation of lysosomal biogenesis and autophagy during
CTSD deficiency.

Deregulated mTORC1 signaling in CTSD-deficient breast
cancer cells. To link the proliferation block and autophagy
induction with the deficiency of a lysosomal protease and star-
vation, we set out to investigate molecular pathways regulating
lysosomal biogenesis and autophagy. Phosphorylation of p38
MAPK has been shown to upregulate the transcription of lys-
some and autophagy genes through inhibition of the transcrip-
tional repressor ZKSCAN3. FCS starvation activated the stress-
responsive p38 MAPK irrespective of the Ctsd genotype (Fig. 6a).
However, in both FCS conditions, phosphorylation of p38 MAPK
was markedly reduced in Ctsd−/− cells as compared to Ctsd+/+
cells. Because these results cannot completely explain the
increased autophagy of FCS-starved Ctsd−/− cells, we next
examined the mTORC1 signaling pathway. mTORC1 controls
anabolic and catabolic processes in response to energy and
nutrient levels. In presence of growth factors and amino acids,
mTORC1 is known to be recruited to the lysosomal surface where
it is active. Subsequent phosphorylation of the 70 kDa ribosomal
Protein S6 Kinase B1 (P70S6K), with ribosomal protein S6 being
its main target, is crucial for promoting cell growth. Ctsd−/− cells
exhibited lower levels of phosphorylated P70S6K and S6 both
under normal and starving conditions, which fits the observed
phenotype of Ctsd−/− cells (Fig. 6b, c). Therefore, we wondered if
the impaired mTORC1 signaling might be attributed to a mis-
localization of mTORC1. We performed confocal immuno-
fluorescence co-staining of mTOR and LAMP1 and determined the
degree of co-localization by the Pearson correlation coefficient r
(Fig. 6d–g). mTOR showed a diffuse cytosolic staining pattern,
and lysosomes were more abundant in normal and amino acid-
starved Ctsd−/− cells. Co-localization of mTOR and LAMP1 in
Ctsd−/− cells was reduced in amino acid-starved conditions when
compared to complete medium (10% FCS: r = 0.406; w/o FCS,
AA: r = 0.241). Importantly, mTOR/LAMP1 co-localization was
essentially lost in Ctsd−/− cells (10% FCS: r = 0.081; w/o FCS,
AA: r = 0.056). We were able to rescue mTOR/LAMP1 co-
localization in amino acid-starved Ctsd−/− cells by the addition of
amino acids, but failed to do so in Ctsd+/− cells (Fig. 6f, g).
Notably, treating amino acid-starved Ctsd+/− cells with the
aspartic protease inhibitor Pepstatin A resulted in a displacement
of mTOR from the lysosome to a higher extent as compared to
amino acid starvation alone (Supplementary Fig. 4a, b).

Next, we aimed to address effects of CTSD deficiency on
factors known to tether mTOR to the lysosome and to investigate
mTORC1 assembly. Lysosomal localization of mTOR has been
shown to depend on RagGTPases that are recruited to the
lysosomal surface. First, we investigated protein levels of the two
interaction partners Raptor and RagC. Comparing Ctsd−/− to
Ctsd+/− cells, there was no lack of any of the two proteins
(Supplementary Fig. 5a). Second, we assessed the assembly of
mTORC1. To this end, the mTORC1 component mLST8 was
overexpressed as an EGFP-fusion protein in Ctsd−/− and Ctsd−/−
cells. Using GFP-Traps beads, we pulled down the EGFP-fusion
protein and its interaction partners. EGFP-mLST8 pull-downs
showed immunoreactivity with mTOR and Raptor antibodies,
while the EGFP-only control showed no signal (Supplementary
Fig. 5b). The EGFP-mLST8 pull-down was successful in both Ctsd
genotypes, indicating a correct mTORC1 assembly in Ctsd−/−
cells. Next, mTORC1-interacting proteins at the lysosomal
membrane were investigated for their expression levels and
localization in Ctsd+/+ and Ctsd−/− cells. Protein levels of Rheb,
the small GTPase important for growth factor signal transmission
and mTOR activation, as well as the Ragulator component
Lamtor4 were equally present (Supplementary Fig. 5c). Further-
more, LAMTOR4 co-localization with LAMP1 did not differ
between Ctsd+/+ and Ctsd−/− cells (Supplementary Fig. 5d).

Together, these data indicate that lysosomes of CTSD-deficient
cells are equipped with important mTORC1 interaction partners
and principal mTORC1 assembly is not impaired by CTSD
deficiency. However, mTORC1 association at the lysosomal
surface is substantially impaired in absence of CTSD. This
suggests that aberrant lysosomes may be the basis for the
sustained displacement of mTOR from lysosomes in Ctsd−/−
cells.

CTSD-deficient breast cancers escape the growth blockade with
a two-month delay. Tumorogenesis in MMTV-cre;Ctsd−/− mice is
delayed by about two months (Fig. 1c). However, once tumors had
developed in MMTV-cre;Ctsd−/− mice, they progressed to end-stage
as fast as in control mice (Fig. 7a). In addition, the Ctsd genotype
did not affect the metastatic burden in the lungs of end-stage cancer
ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18935-2 | www.nature.com/naturecommunications
mice (Fig. 7b). Apparently, cancers found a way to escape the growth arrest imposed by CTSD deficiency after a two-month latency period—just to grow and metastasize seemingly undisturbed. Of note, also end-stage MMTV-cre;Ctsd−/− tumors were CTSD-deficient in their cancer cell compartment (Supplementary Fig. 1b). We hypothesized that MMTV-cre;Ctsd−/− tumors may have acquired oncogenic mutations during the long latency of tumor development. Therefore, we sequenced the whole exome of tumors from 18-week-old mice (Fig. 7c, d). We identified single nucleotide variants (SNV) and small insertions or deletions (Indel) that arose through somatic mutations or loss of heterozygosity (LOH). In general, all tumors exhibited low numbers of mutations, which confirms previous reports showing highest genomic stability of PyMT tumors among all investigated breast cancer models [34]. Comparing the mutation types of MMTV-cre;Ctsd−/− and control tumors, we did not observe major differences in frequency, except for intergenic mutations (23 vs 11%) and the absence of splice region, non-coding, and stop mutations in MMTV-cre;Ctsd−/− tumors (Fig. 7c). Circos plots showed that the majority of mutations were unique for one individual and that tumors from MMTV-cre;Ctsd−/− mice on average did not have more mutations than the controls (Fig. 7d).

Fig. 6 CTSD deficiency impairs mTORC1 localization and activity at the lysosomal membrane. a Analysis of phosphorylated (p-p38 MAPK) and total p38 MAPK protein levels by Western blot (with TUBA as loading control) in Ctsd+/+ and Ctsd−/− PyMT cells cultured for 7–10 days in 10% FCS or 1% FCS medium. Representative of 2 (p-p38 MAPK) and 1 (p38 MAPK) independent experiments. b Analysis of phosphorylated (p-P70S6K and p-S6) and total P70S6K and S6 protein levels by Western blot (with TUBA as loading control) in 10% FCS, 1% FCS, and mTOR inhibitor Torin-treated medium. Representative of 2 (p-p38 MAPK) and 1 (p38 MAPK) independent experiments. c Analysis of phosphorylated (p-p38 MAPK) and total p38 MAPK protein levels by Western blot (with TUBA as loading control) in 10% FCS, 1% FCS, and mTOR inhibitor Torin-treated Ctsd+/+ and Ctsd−/− PyMT cells. Representative of 2 (p-p38 MAPK) and 1 (p38 MAPK) independent experiments. d Analysis of phosphorylated (p-P70S6K and p-S6) and total P70S6K and S6 protein levels by Western blot (with TUBA as loading control) in 10% FCS, 1% FCS, and mTOR inhibitor Torin-treated Ctsd+/+ and Ctsd−/− PyMT cells. Representative of 2 (p-P70S6K and p-S6) independent experiments. e Quantification of (p-p38 MAPK) Western blots as in b, plotted as p-P70S6K/P70S6K ratio relative to 10% FCS Ctsd+/+ (n = 3 independent experiments; two-sided one-sample and two-sample t-test). Pictures of 10% FCS (d), FCS- and amino acid (AA)-starved (e), and acutely AA-stimulated (f) Ctsd+/+ and Ctsd−/− PyMT cells stained for mTOR (green), LAMP1 (red), and DNA (blue). Zoom shows enlargement of indicated image area in merge+DNA. Bars, 10 μm. Representative of 2 independent experiments. g Quantification of mTOR/LAMP1 co-localization in d–f (n = 6 images for acutely AA-stimulated Ctsd+/+, n = 7 images for acutely AA-stimulated Ctsd−/− and 10% FCS, n = 8 images for w/o FCS, AA; two independent experiments; two-sided two-sample t-test). Bar charts show all data points with mean ± SD and p-value. Source data are provided as a Source Data file.
Fig. 7 CTSD-deficient tumors overcome the initial growth arrest independent of somatic mutations. a Time from first palpation to end-stage for tumors of PyMT mice of indicated genotypes (n = 12 animals for controls (4× Ctsd+/− + 8× Ctsd−/−), n = 10 animals for MMTV-cre:Ctsd−/−). b Metastatic burden in lungs from PyMT mice of indicated genotypes with end-stage tumors (n = 12 animals for controls (4× Ctsd+/− + 8× Ctsd−/−), n = 10 animals for MMTV-cre:Ctsd−/−). c Proportion of different types of somatic and loss of heterozygosity (LOH) mutations detected by whole exome sequencing in tumors from 18-week-old PyMT mice of indicated genotypes (Controls: Ctsd+/−, n = 4 animals). d Circos plots showing mutations from c along the chromosomes per individual control (left) and MMTV-cre:Ctsd−/− (right) tumor (represented as separate concentric rings). Deletion of Ctsd exon 2 is highlighted in red. Continuous gray lines mark positions of homologs of frequently mutated genes in human breast cancer. e Pictures of unstained (left) and acidic β-galactosidase-stained (right) Ctsd+/− (top) and Ctsd−/− (bottom) PyMT cells cultured for ≥8 weeks in 1% FCS medium (1% FCS LT). Compare to Fig. 3a, b for short-term 1% FCS Ctsd+/+ and Ctsd−/− PyMT cells. Bars, 50 μm. Representative of 2 independent experiments. f Quantification of label-retaining cells among 1% FCS LT Ctsd+/+ and Ctsd−/− PyMT cells (n = 6 independent experiments; two-sided two-sample t-test). Short-term conditions (10% FCS, 1% FCS) as presented in Fig. 3c are included for convenient comparison. Bar charts show all data points with mean ± SD and p-value. Source data are provided as a Source Data file.
The only consistent genetic alteration we found in tumors of MMTV-cre;Ctsd−/− mice was the deletion of the intentionally targeted exon 2 of the Ctsd gene. Furthermore, none of the observed mutations mapped to the 10 most frequently mutated genes in human breast cancer. To conclude, there was no accumulation of DNA damage that could explain the eventual tumor outgrowth in MMTV-cre;Ctsd−/−PyMT mice.

To further study the escape of the transient growth block caused by CTSF deficiency, we extended the cultivation time of tumor cells in 1% FCS starvation medium from < 2 weeks to ≥ 8 weeks, a condition we defined as 1% FCS long-term (1% FCS LT). Remarkably, 1% FCS LT Ctsd−/− tumor cells lost their β-galactosidase-positive vesicles (Fig. 7e; compare to Fig. 3b) and numbers of non-proliferating cells were not different from 1% FCS LT Ctsd+/− cells (Fig. 7f). The increase of lysosomal LAMP1 protein seen in short-term starved CTSF-deficient cells declined upon LT starvation (Supplementary Fig. 6a). Similarly, the LC3-II/LC3-I ratio as well as p62 protein and mRNA returned to levels as found in 10% FCS (Supplementary Fig. 6b–d), indicating that macroautophagy returned to its basic flux state. In stark contrast to this reversion of the quiescent cell state, phosphorylation of P70S6K and S6 in 1% FCS LT Ctsd−/− cells (Supplementary Fig. 6e) was as low as in 1% FCS short-term Ctsd−/− cells and mTORC1 co-localization with LAMP1 was still significantly reduced in 1% FCS LT Ctsd−/− cells (Supplementary Fig. 6f–h). Thus, mTORC1 signaling continues to be perturbed in 1% FCS LT Ctsd−/− cells and resumption of proliferation must occur by different mechanisms.

CTSD-deficient cells rewire oncogenic cellular signaling and gene expression upon long-term FCS starvation. To address the rescue mechanisms in long-term starved Ctsd−/− cells, we performed RNA-Seq transcriptome analysis with short- and long-term starved Ctsd+/+ and Ctsd−/− cells. Of the 12483 quantified transcripts, we identified the expressed genes with a significant differential regulation of at least two (log2 fold change (FC) | > 1; adjusted p-value < 0.05). The 1066 downregulated and the 1429 upregulated genes were subjected to STRING, the Search Tool for proteins for targeting and interaction (Supplementary Fig. 7). While the aforementioned large clusters were mitosis (Supplementary Fig. 8: violet nodes in I), proteins that were differentially phosphorylated in 1% FCS LT Ctsd−/− vs 1% FCS short-term Ctsd−/− cells and in 1% FCS LT Ctsd−/− vs 1% FCS LT Ctsd+/+ cells, but not in Ctsd+/− vs Ctsd+/+ cells kept for short-term in 1% FCS. This was exclusively true for CREB, the cAMP-Responsive Element Binding protein (Fig. 8a). CREB phosphorylation on Ser133 activates transcription of its target genes, which have been compiled in a specific gene set. Making use of our RNA-Seq data, we plotted the log2 FC of its target genes, which have been compiled in a specific gene set (Supplementary Fig. 8). The rescue of proliferation seen in 1% FCS LT Ctsd−/− was also evident on transcriptome level, but could not be attributed to a single KEGG signaling pathway (Table 1).

As kinase activity is essential for cellular signaling, we evaluated the phosphorylation status of kinase substrates by antibody arrays. To pinpoint pathways explaining the rescue of Ctsd−/− cell proliferation in long-term cultures, we performed enrichment analysis on transcripts expressed and significantly regulated (log2FC up; log2FC down) in Ctsd+/− PyMT cells cultured for ≥ 8 weeks in 1% FCS medium (1% FCS LT) compared to 1% FCS Ctsd+/− PyMT cells and corrected for long-term 1% FCS culture effects in Ctsd−/− PyMT cells (n = 3). Top 10 pathways with false discovery rate (FDR).

Table 1 Re-growing CTSD-deficient tumor cells upregulate oncogenic signaling pathways.

Downregulated FDR	Ctsd+/−	Ctsd−/−
Tight junction	1.90E−04	
Arginine and proline metabolism	1.25E−02	

Upregulated FDR	Ctsd+/−	Ctsd−/−
Pathways in cancer	3.75E−06	
Rapi signaling pathway	1.18E−05	
Focal adhesion	1.51E−05	
PI3K-Akt signaling pathway	2.65E−05	
ECM-Receptor interaction	1.30E−04	
AGE-RAGE signaling pathway in diabetic complications	5.20E−04	
Axon guidance	5.70E−04	
Relaxin signaling pathway	6.30E−04	
MAPK signaling pathway	7.90E−04	
Ras signaling pathway	1.40E−03	

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) -based KEGG pathway enrichment analysis on transcripts expressed and significantly regulated (log2FC up; log2FC down) in Ctsd+/− PyMT cells cultured for ≥ 8 weeks in 1% FCS medium (1% FCS LT) compared to 1% FCS Ctsd+/− PyMT cells and corrected for long-term 1% FCS culture effects in Ctsd−/− PyMT cells (n = 3). Top 10 pathways with false discovery rate (FDR).
Fig. 8 CTSD-deficient tumor cells having escaped quiescence activate tumorigenic CREB.

(a) Phospho-kinase antibody arrays with lysates from Ctsd+/+ and Ctsd−/− PyMT cells cultured for 7–10 days (1% FCS) or for 28 weeks (1% FCS LT) in 1% FCS medium. Changes in phosphorylation are plotted as log2 fold change (FC) for indicated comparisons (n = 2 independent experiments).

(b) Transcriptome analysis of 1% FCS and 1% FCS LT Ctsd+/+ and Ctsd−/− PyMT cells (n = 3 independent experiments). Change in expression of significantly regulated genes of the CREB gene set for indicated comparisons. Red dashed lines, borders for gene up- and downregulation (|log2 FC| > 1).

(c) Clustering analysis of the log2 FC of CREB genes with significantly regulated genes of the CREB gene set for indicated comparisons. Red, yellow, blue, and green clusters represent 16 upregulated, 21 upregulated, 32 upregulated, and 21 downregulated genes, respectively. Source data are provided as a Source Data file.
Ctsd^{−/−} cells, while this ratio remained unaffected in long-term FCS-starved Ctsd^{+/+} cells (Supplementary Fig. 10c). This difference in p-CREB levels translated into differential sensitivity to the CREB inhibitor KG-501. The EC₂₀, EC₅₀ and EC₈₀ values for KG-501 were reduced by approximately 20% in 1% FCS LT Ctsd^{−/−} compared to 1% FCS LT Ctsd^{+/+} cells (Supplementary Fig. 10d).

Taken together, the data provide evidence for higher CREB phosphorylation and a CREB-associated oncogenic gene expression pattern in long-term starved CTSD-deficient PyMT cells. In consequence, Ctsd^{−/−} cancer cells are able to re-install growth in 1% FCS LT conditions despite the continued impairment of mTORC1 signaling. It remains to be investigated whether additional molecular pathways help cancer cells to adapt to the deficiency of this major lysosomal aspartic protease.

Discussion

The lethal phenotype of constitutive CTSD knockout mice precluded in vivo tumor studies, thus hindering addressing the long-suspected role of CTSD in breast cancer by means of this approach. Using conditional CTSD knockout PyMT mice, we show that abrogating CTSD expression in mammary epithelial cells, but not in myoepithelial cells, delayed tumor development substantially. The PyMT antigen activates Ras and PI3K-Akt signal transduction³⁷. Those pathways are very frequently deregulated in human breast cancer³⁸. In PyMT cells, CTSD deficiency stalled tumor cell proliferation under short-term starvation by preventing the recruitment of mTORC1 and its activation at the lysosomal membrane resulting in enhanced autophagic flux and cellular quiescence. CTSD-deficient tumor cells were able to adapt to long-term FCS starvation as indicated by resumed proliferation. We argue that this phenomenon is in analogy to the regrowth of the primary CTSD-deficient tumors after a lag-phase of about two months. We identified CREB as one of the molecular players that mediate the development of cancer cell-intrinsic resistance to the CTSD knockout.

The novelty of our study is the investigation of cell type-specific functions of CTSD in vivo in a relevant primary breast cancer model. We provide evidence for a tumor cell-specific effect of CTSD deficiency on tumor development in PyMT mice. This is important, as macrophages possess large amounts of CTSD and thus constitute a major part of stromal CTSD, which was claimed important, as macrophages possess large amounts of CTSD and of CTSD de

Discussion

The lethal phenotype of constitutive CTSD knockout mice precluded in vivo tumor studies, thus hindering addressing the long-suspected role of CTSD in breast cancer by means of this approach. Using conditional CTSD knockout PyMT mice, we show that abrogating CTSD expression in mammary epithelial cells, but not in myoepithelial cells, delayed tumor development substantially. The PyMT antigen activates Ras and PI3K-Akt signal transduction³⁷. Those pathways are very frequently deregulated in human breast cancer³⁸. In PyMT cells, CTSD deficiency stalled tumor cell proliferation under short-term starvation by preventing the recruitment of mTORC1 and its activation at the lysosomal membrane resulting in enhanced autophagic flux and cellular quiescence. CTSD-deficient tumor cells were able to adapt to long-term FCS starvation as indicated by resumed proliferation. We argue that this phenomenon is in analogy to the regrowth of the primary CTSD-deficient tumors after a lag-phase of about two months. We identified CREB as one of the molecular players that mediate the development of cancer cell-intrinsic resistance to the CTSD knockout.

The novelty of our study is the investigation of cell type-specific functions of CTSD in vivo in a relevant primary breast cancer model. We provide evidence for a tumor cell-specific effect of CTSD deficiency on tumor development in PyMT mice. This is important, as macrophages possess large amounts of CTSD and thus constitute a major part of stromal CTSD, which was claimed important, as macrophages possess large amounts of CTSD and of CTSD de

Discussion

The lethal phenotype of constitutive CTSD knockout mice precluded in vivo tumor studies, thus hindering addressing the long-suspected role of CTSD in breast cancer by means of this approach. Using conditional CTSD knockout PyMT mice, we show that abrogating CTSD expression in mammary epithelial cells, but not in myoepithelial cells, delayed tumor development substantially. The PyMT antigen activates Ras and PI3K-Akt signal transduction³⁷. Those pathways are very frequently deregulated in human breast cancer³⁸. In PyMT cells, CTSD deficiency stalled tumor cell proliferation under short-term starvation by preventing the recruitment of mTORC1 and its activation at the lysosomal membrane resulting in enhanced autophagic flux and cellular quiescence. CTSD-deficient tumor cells were able to adapt to long-term FCS starvation as indicated by resumed proliferation. We argue that this phenomenon is in analogy to the regrowth of the primary CTSD-deficient tumors after a lag-phase of about two months. We identified CREB as one of the molecular players that mediate the development of cancer cell-intrinsic resistance to the CTSD knockout.

The novelty of our study is the investigation of cell type-specific functions of CTSD in vivo in a relevant primary breast cancer model. We provide evidence for a tumor cell-specific effect of CTSD deficiency on tumor development in PyMT mice. This is important, as macrophages possess large amounts of CTSD and thus constitute a major part of stromal CTSD, which was claimed important, as macrophages possess large amounts of CTSD and of CTSD de

Discussion

The lethal phenotype of constitutive CTSD knockout mice precluded in vivo tumor studies, thus hindering addressing the long-suspected role of CTSD in breast cancer by means of this approach. Using conditional CTSD knockout PyMT mice, we show that abrogating CTSD expression in mammary epithelial cells, but not in myoepithelial cells, delayed tumor development substantially. The PyMT antigen activates Ras and PI3K-Akt signal transduction³⁷. Those pathways are very frequently deregulated in human breast cancer³⁸. In PyMT cells, CTSD deficiency stalled tumor cell proliferation under short-term starvation by preventing the recruitment of mTORC1 and its activation at the lysosomal membrane resulting in enhanced autophagic flux and cellular quiescence. CTSD-deficient tumor cells were able to adapt to long-term FCS starvation as indicated by resumed proliferation. We argue that this phenomenon is in analogy to the regrowth of the primary CTSD-deficient tumors after a lag-phase of about two months. We identified CREB as one of the molecular players that mediate the development of cancer cell-intrinsic resistance to the CTSD knockout.

The novelty of our study is the investigation of cell type-specific functions of CTSD in vivo in a relevant primary breast cancer model. We provide evidence for a tumor cell-specific effect of CTSD deficiency on tumor development in PyMT mice. This is important, as macrophages possess large amounts of CTSD and thus constitute a major part of stromal CTSD, which was claimed to have prognostic relevance²⁰. Based on our results, we would rather agree with studies assigning CTSD in tumor cells prognostic significance³⁹. A growth-inhibitory effect of CTSD deficiency in tumor cells has also been described by others⁴⁰. In MDA-MB-231 breast cancer cells this is probably due to the lack of mitogenic pro-CTSD secretion, although those knock-down studies could not discriminate between intra- and extracellular CTSD functions. In contrast to that, our competitive growth assays suggest a secretion-independent mechanism. CTSD knockout PyMT cells showed a clear growth disadvantage in vitro and in vivo despite being surrounded by CTSD-expressing PyMT or stromal cells, respectively. From this, we infer an intrinsic proliferation block in tumor cells lacking CTSD.

Experiments with constitutive CTSD knockout tumor cells support this hypothesis. Under limited nutrient supply, CTSD deficiency induced high β-galactosidase activity, resulting in reduced proliferation, and increased sensitivity to the senolytic agent Navitoclax. Together with apoptosis, cellular quiescence, which is characterized by a reversible cell cycle-arrest, controls growth and maintains tissue homeostasis⁴¹. We think that cellular quiescence is the reason why CTSD-deficient tumors were blocked in their development for two months. Strikingly, macroautophagy, a stress response closely related to quiescence, was triggered⁴¹. Starved CTSD-deficient cells showed an increased autophagic flux, the rate at which autophagy substrates are recognized, segregated and degraded. This resulted in high levels of free amino acids as evidenced by targeted amino acid analysis by LC-MS/MS of whole cell lysates. In this respect, it has been shown that autophagy, which is stimulated by mTORC1 inhibition, can positively regulate quiescence and thus suppress malignant transformation of normal cells⁴¹. Lysosomal and cytosolic amino acids usually activate Rag GTPases associated with the Ragulator complex on the lysosomal membrane resulting in mTORC1 recruitment to the lysosomal surface as prerequisite for mTORC1 kinase activity⁴². We provide evidence that major components recruiting mTORC1 to the lysosome as well as the proteins that activate lysosome-associated mTOR are present at normal levels in Ctsd^{−/−} cells. We also show by mLST8-GFP pull-down experiments that mTORC1 is able to assemble properly in CTSD-deficient cells. To our surprise, mTOR co-localization with the lysosomal membrane protein LAMP1 was strongly reduced in CTSD-deficient cells, despite the presence of high levels of free amino acids. Also, experiments with amino acid starvation and re-addition of amino acids had very little effect on the disturbed association of mTOR with the lysosome. As mTORC1 tethering to the lysosome is a key determinant for its activity, we suspected impaired mTOR signaling in the CTSD knockout. Indeed, phosphorylation of a major mTORC1 target, namely the P70S6K, was reduced indicating impaired mTORC1 activity in CTSD-deficient tumor cells. As integrator of proliferation signals and the internal metabolic state of cells mTORC1 decides in favor of cell growth and division or metabolic adaptation, e.g., by induction of autophagy. Taken together, all our cellular and molecular readouts strongly suggest disturbed lysosomal mTORC1 localization and therefore a strongly reduced mTOR signaling. Up to now, we cannot explain how CTSD deficiency affects the assembly of the mTORC1 multiprotein complex at the lysosomal surface. As described above, there is no lack of amino acids or individual proteins required for mTORC1 assembly or activity. However, patients with inherited CTSD deficiency develop neuronal ceroid-lipofuscinosis type 10, which is characterized by an altered lipid metabolism in the postmitotic neurons^{7,8}. We assume that also in Ctsd^{−/−} cancer cells changes in lysosomal lipid composition hinder the fine-tuning of mTORC1 assembly at the lysosomal surface.

Continued exposure of CTSD-deficient tumor cells to nutrient restriction did not culminate in cell death, in contrast to neurons that already succumb to death by CTSD deficiency alone. Instead, proliferation and tumor development were resumed after a rather long lag-phase. While mTORC1 signaling remained impaired, lysosomal mass and autophagic flux were brought back to basic levels. The ability of the tumor cells to adapt to such a stress condition let us hypothesize that they acquired some sort of plasticity while being stalled in quiescence. Importantly, we could exclude the occurrence of mutations in oncogenes or tumor suppressors by whole-exome sequencing of Ctsd^{−/−} tumors. Rather we found that CTSD-deficient tumor cells that escaped quiescence changed from an epithelial to a mesenchymal-like morphology, suggesting EMT. Indeed, CTSD-deficient cells, which had resumed proliferation, downregulated keratins, desmosome and tight junction components and upregulated EMT-inducing transcription factors as well as typical mesenchymal marker proteins.

Regarding the escape from quiescence, we show by RNA-Seq a compensatory transcriptional activation of oncogenic signaling such as the Ras-ERK and PI3K-Akt pathways. One downstream target of these kinases specifically activated by phosphorylation in CTSD-deficient previously quiescent tumor cells was CREB. Overexpression of this transcription factor has been linked to
tumorogenesis and resistance to Raf/MEK/ERK and PI3K/Akt inhibitors. Interestingly, tumor cells with chronic PI3K/mTOR inhibition are able to resume proliferation through CREB stabilization. Furthermore, progression of hypoxic tumors in PyMT mice is accompanied by CREB activation. Based on its activity, phosphorylation and transcriptional induction of its target genes, we think that CREB is important for CTSD-deficient tumor cells to overcome the proliferation block during starvation. In a recent paper Jewell et al. report mTORC1 inhibition downstream of GPCR signaling through PKA-mediated Raptor phosphorylation. Concomitantly, PKA also phosphorylated CREB. However, in this report Raptor phosphorylation did not block mTORC1 association with the lysosome upon amino acid stimulation as we observed in Ctsd−/− PyMT cells. In addition, our data show mTORC1 inactivation preceding the increase of CREB phosphorylation. Therefore, mTORC1 in CTSD-deficient PyMT cells is unlikely to be actively downregulated by PKA-mediated Raptor phosphorylation, while we cannot exclude a contribution of PKA signaling to CREB activation in the long term.

In summary, our data demonstrate that deficiency for a major lysosomal proteinase, i.e., CTSD, interferes with a dominant oncogenic signaling pathway in breast cancer, i.e., PI3K-mTOR signaling. Initially, attenuated mTORC1 output results in reduced oncogenic signaling pathway in breast cancer, i.e., PI3K-mTOR signaling. Hyaluronidase I-S and Collagenase IV (5 ml each) were washed twice with PBS. These freshly isolated cells were then cultured until spontaneous immortalization before performing experiments. PyMT cells were cultured in DMEM/f12 medium supplemented with 10% FCS, 2 mM l-glutamine, and 1% Penicillin-Streptomycin, and cultured on plastic.

Tumor cell lines were generated from end-stage tumors of Ctsd−/− PyMT mice, Ctsd−/+ and MMTV-crocTsd−/+ (CrocTsd−/−) PyMT mice. To induce cre expression cells were treated with 2 µg/ml Dox for 4 days or, in case of competitive growth assays, for 24 h. The senolytic agent Navitoclax (AdooQ Biosciences, 10 µM) for 1 h and overnight, respectively. For autophagic experiments, cells were transfected with plVX-puro-EGFP, plVX-puro-EGFP-MLST8, together with pPAK2 (packaging) and pMD2.G (envelope) plasmids (ratio 5:3:1:5, respectively) using Superfect. Two days after transfection, HEK293R cells were harvested and lysed with 1% Triton X-100 lysis buffer. Cell lysates were subjected to SDS-PAGE and transferred onto nitrocellulose membrane. Membranes were probed with primary antibodies to CREB, Phospho CREB, acetylated histone H4, or β-actin, and were visualized using horseradish peroxidase-conjugated secondary antibodies and chemiluminescent reagents. Band intensities were quantified using ImageJ software.

Methods

Mice. All animal procedures were approved by the local ethics committee at the regional council Freiburg (registration number: G14/18) and were performed in accordance with the German law for animal welfare. Animals were kept at 21–23 °C, 45–60% humidity and a 12 h dark/12 h light cycle. All mouse strains, except for immunocompromised mice, were maintained on a C57BL/6 N background. Mice heterozygous or homozygous for the targeted Ctsd allele, or the conditional Ctsd allele flanked by loxP sites (Ctsdfl/fl; Ctsd−/−) are CTSD competent and summarized as Controls. For myeloid- and mammary epithelium-specific deletion of CTSD (Ctsd−/−) the Ly5c− cre deleter strain from Jackson Laboratory (B6.129P2-Ly5m2(cre/wt)) or the MMTV-cre deleter strain from Prof. Dr. Rolf Kemler (Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany) were used, respectively. We visualized in vivo cre-mediated recombination using a global double-fluorescence cre reporter mouse (C57BL/6-Tg(pCA-RTmG)), abbreviated as mTmG. As tumor model we used MMTV-PyMT mice expressing the polyoma virus middle T oncogene (PyMT) under the control of the mouse mammary tumor virus (MMTV) LTR promoter23, abbreviated as PyMT mice. Tumor growth was monitored by palpation, twice per week from 8 weeks onwards until tumor harvest at indicated time points or at end-stage size (1 cm3). Female BALB/c-Rag2−/− mice deficient for lymphocytes and NK cells49 were used for orthotopic transplantsations.

Ultrasound imaging. Eighteen-week-old tumor-bearing mice were anesthetized under spontaneous breathing conditions with isoflurane (1.5%, 0.8 l/min) and immobilized on a dedicated animal platform with a built-in animal monitoring system. The respiration rate was continuously monitored and kept at a constant level. The two largest tumors were depilated to reduce imaging artefacts and washed twice with PBS. These freshly isolated cells were then cultured until spontaneous immortalization before performing experiments. PyMT cells were cultured in DMEM/f12 medium supplemented with 10% FCS, 2 mM l-glutamine, and 1% Penicillin-Streptomycin, and cultured on plastic.

Cell culture, transfection, transduction and treatments. Bone marrow cells from tibia and femur were collected and pelleted (290x g for 10–15 min). After erythrocyte lysis (155 mM NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA), cells were washed with PBS and cultured in macrophage differentiation medium (RPMI 1640 + 10% FCS). For FCS starvation FCS levels were reduced to 1%, a condition that was applied to cells for <2 weeks (1 FCS) or for long-term, meaning >2 weeks (1 FCS LT). For acute amino acid stimulation, cells were starved in a special starvation medium (DMEM Low Glucose, w/o Amino Acids, Pyruvic Acid (USBiologicals, D9800-13) and 1% Penicillin/Streptomycin, 1% sodium pyruvate, and 1% Penicillin-Streptomycin for 30 min, followed by 30 min amino acid starvation (medium supplemented with DMEM Amino Acids Solution (PAN Biotech, P08-30010) and 1% Penicillin-Streptomycin, and cultured on plastic.

Ctsd−/− PyMT tumor cells were stably transduced with a two-component Dox-inducible cre expression system and by two consecutive infections. For retrovirus production Plat-E cells were transfected with 8 µg DNA using polyethyleneimine (PEI). Two days after transfection, Plat-E supernatant was filtered (0.45 µm), concentrated in case of pSH461MK-Cre with Lenti-X™浓缩缓冲液, and complemented with polybrene to a final concentration of 8 µg/mL. Target cells were seeded 24 h before infection with the pSH582 construct, encoding the Dox-regulated transactivation and suppressor proteins, followed by Blasticidin selection 24 h after infection. Drug-resistant cells were cultured in medium supplemented with pSH461MK-Cre and selected with Puromycin (2 µg/mL). Ctsd−/− PyMTg tumor cells transfected with pSH582 and pSH461MK-Cre are referred to as rtTA-TSclero-o-crocCtsd−/− PyMTg cells.

Ctsd−/− and Ctsd+/− PyMT cells were stably transduced with an EGFP or Erk-GFP-MLT88 expression vector. For retrovirus production HEK293 cells were transfected with plVX-puro-EGFP or plVX-puro-EGFP-MLST8, together with pPAK2 (packaging) and pMD2.G (envelope) plasmids (ratio 5:3:1:5, respectively) using Superfect. Two days after transfection, HEK293R cells were harvested and lysed with 1% Triton X-100 lysis buffer. Cell lysates were subjected to SDS-PAGE and transferred onto nitrocellulose membrane. Membranes were probed with primary antibodies to CREB, Phospho CREB, acetylated histone H4, or β-actin, and were visualized using horseradish peroxidase-conjugated secondary antibodies and chemiluminescent reagents. Band intensities were quantified using ImageJ software.

To induce cre expression cells were treated with 2 µg/ml Dox for 4 days or, in case of competitive growth assays, for 24 h. The senolytic agent Navitoclax (AdoQ BioScience, A10022) was incubated at 100 nM for 24 h with cells starved for 10 days, followed by analyzing apoptosis by flow cytometry. To inhibit mTOR signaling and induce lysosomal biogenesis, cells were treated with 500 nM Torin 1 (Tocris, 4247) for 1 h and overnight, respectively. For autophagic flux experiments, cells were treated with 3.3 nM Bafilomycin A1 (InvivoGen, trl-baf1) or a combination of 10 µM Pepstatin A (Sigma-Aldrich, P5318) and 10 µM E64d (Bachem, N-1650) additionally to starvation in DMEM Low Glucose, w/o Amino Acids, Pyruvic Acid, Pyruvic Acid (USBiologicals, D9800-13) for 0.5 or 6 h, respectively. In immunofluorescence staining experiments, Pepstatin A treatment started 3 days prior to starvation/ stimulation/ fixation and was refreshed after 48 h. The CREB inhibitor KG-501 (Selleckchem, S8409) was incubated at concentrations ranging from 6 to 60 µM for 24 h with 1% FCS LT, followed by analyzing cell metabolic activity by MTT assay. Cell morphology was regularly checked and documented with pictures using a Nikon Eclipse TS100 microscope.

Orthotopic transplantation. Dox-pulsed rtTA-TSclero-o-crocCtsd−/− PyMTg cells (0.5 x 106 cells in 50 µl of a 1:1 PBS-Cultrex™ (Trevigen, 343200501) mixture)
were transplanted into the right inguinal mammary gland of female Rag2−/−;γc−/− mice via a 5 mm lateral incision. Tumor growth was monitored by palpation once a week until the tumor had reached an end-stage size (1 cm³). Tumors were processed as described for the generation of tumor cell lines, followed by flow cytometry analysis of primary tumor cells.

Cell proliferation dye labeling. Cells were labeled with the cell proliferation dye eFluor® 670 (Thermo Fisher, 650840) following the manufacturer’s recommendations and analyzed 72 hours after cultivation. Unstained and freshly stained cells were used as controls.

MTT assay. Cells were seeded 24 h before treatment with the inhibitor or solvent control. After 24 h of treatment, cells were incubated for 4 h with MTT-containing medium, stained cells were used as controls. After 24 h of treatment, cells were incubated for 4 h with MTT-containing medium, stained cells were used as controls.

Staining acidic compartments in live cells. Cells were trypsinized and incubated with 0.1 μM LysoTracker™ Green (Invitrogen, I7526) and 1 μg/ml propidium iodide (PI) in FACS buffer (PBS, 2% FCS, and 5 mM EDTA) for 15 min at 37°C. After washing twice with PBS cells were resuspended in FACS buffer and analyzed by flow cytometry.

Flow cytometry. Cells were resuspended in FACS buffer (PBS, 2% FCS, and 5 mM EDTA) or Annexin-V-binding buffer (0.1 M HEPES (pH 7.4), 14 mM NaCl, and 25 mM CaCl2). For apoptosis assay cells at a concentration of 1 × 10⁶ cells/ml were incubated with Annexin-V-FLTC (BD, 556419) for 15 min at RT and subsequently with 0.2% Saponin in PBS for 5 min at RT for appropriate dilutions. Analysis was performed using a LSR II flow cytometer with FACSdiva and FlowJo software (all BD Bioscience). Cell debris and doublets were excluded using forward and side scatter. Further analysis depended on the experiment (see Supplemental Fig. 11 for all gating strategies). For competitive growth assays the ratio of Tomo+ and Tomo− cells to Tomo− cells was determined by flow imaging using the Keyence BZ-9000 device. For apoptosis assays the amount of Annexin-V−/7-AAD (living) cells relative to DMSO-treated control and normalized to Ctsd+/− is given.

Acidic β-galactosidase staining. Staining for acidic β-galactosidase was performed in cells grown to confluence on collagen-coated cover slips (NeuVitro Corporation, GG-12-15-Collagen) according to the manufacturer’s recommendations (Cell Signaling, 9860). Cells were imaged with a 40× objective using the Keyence BZ-9000 device.

Immunofluorescence. 10% FCS, 1% FCS, FCS- and amino acid-starved, and acutely amino acid-stimulated Ctsd+/− and Ctsd−/− cells were seeded on collagen-coated cover slips (NeuVitro Corporation, GG-12-15-Collagen). After fixation in a 1:1 mixture of 4% PFA in PBS and culture medium for 5 min, followed by fixation in 4% PFA in PBS for 15 min at 4°C, cells for CREB and p-CREB staining were additionally treated with 100% methanol for 10 min at −20°C. Permeabilization for all cells was done with 0.2% Saponin in PBS for 5 min with shaking, unspecific antibody binding was blocked with 0.1% Saponin/1% BSA in PBS for 20 min. Primary antibodies for p-CREB (Cell Signaling, 9198; 1:200), CREB (Cell Signaling, 9197; 1:200), LAMTOR4 (Cell Signaling, 2775; 1:200), LAMP1 (Abcam, ab35245; 1:750), and LAMP2 (Cell Signaling, 2583; 1:200) were applied for 1.5 h at RT or overnight at 4°C. Subsequently, cover slips were washed and incubated with the corresponding secondary antibodies donkey-anti-rabbit-AF488 (Life Technologies, A21206; 1:1000) and goat-anti-rat-AF594 (Life Technologies, A11007; 1:1000) for 45 min at RT. After staining with Hoechst (Sigma, R2616) for 3 min, cover slips were mounted with PermaFlour. Double immunostainings were imaged in a confocal fluorescence microscope (Leica SP8, 63× objective) using Leica LAS software. Images were processed, analyzed, and exported using the Volocity software package (PerkinElmer). The Pearson correlation coefficient for mTOR/LAMPI co-localization was determined with the Volocity co-localization tool after setting uniform thresholds across all conditions. The average co-localization was quantified across at least 5 images from 2 independent experiments. CREB and p-CREB immunostainings were imaged in an Axio Observer.Z1 fluorescence microscope (Zeiss) and evaluated with ImageJ (Fiji, National Institutes of Health). The mean gray value of CREB and p-CREB immunofluorescence was determined in each nucleus per image. The median of the mean gray values was quantified for each condition in 3 independent experiments. Subsequently, the ratio of p-CREB to CREB was calculated.

RNA isolation and RT-PCR. Total RNA from snap-frozen tissue or tumor cells was isolated and purified using the RNeasy Mini kit (Qiagen). cDNA was generated using the iScript™ cDNA synthesis kit (BioRad) and analyzed by real-time PCR (RT-PCR) in a CFX96 Real-Time system (BioRad) using SYBR Select master mix for CFX (Applied Biosystems) with the following intron-spanning primer pairs: beta actin (Actb), forward 5′-AACCAGAGATCTGGACAG3′, reverse 5′-GGACGGTGGCGGAGGCGAT3′; calmodulin (Cld), forward 5′-GACGGCTTTCTTATGGA-3′, reverse 5′-CCACCTGCCGAATTTCTCTCA-3′; lysosomal-associated membrane protein 1 (Lamp1), forward 5′-GTGACAGGGTGGTTCTGTTGGA-3′, reverse 5′-GCTTCTGATAGGGCGGGTGAC-3′; microtubule-associated protein 1 light chain 3 (Map1lc3a = Lc3a), forward 5′-5.5 for asparagine modified lysosomal activity assay

Protease activity assay. Cells were resuspended in sodium acetate buffer (100 mM sodium acetate, 1 mM EDTA, 0.05% Brij 35, and 1 mM DTT; pH 4.0 or pH 5.5 for asparagine modified lysosomal activity assay

Lysosomal activity assay. Lysosomal activity was determined with the Lysosomal Intracellular Activity Assay Kit (Abcam, ab234622) following the manufacturer’s recommendations. Cells were incubated with 1× Cytochalasin D (included in Assay Kit), 50 nM Bafilomycin A1 (InvivoGen, ivity-lbf) or without any substrate served as controls. Cells were analyzed by a BD® LSR II flow cytometer.

Western blot. Lysates of cells or tissue containing 20–40 μg protein were subjected to SDS-PAGE and transferred to a PVDF membrane (GE Healthcare) via a wet blot system (BioRad). Membranes were blocked with 3% BSA in TBS-Tween (0.1%) and incubated with primary antibodies for ACTB (MP, 691001; 1:2000), CDH2 (Cell Signaling, 4061; 1:5000), CTSD (R&D, AF1029; 1:2000), CTSL (R&D, AF1515; 1:2000), GFP (Cell Signaling, 2555; 1:2000), LAMP1 (Cell Signaling, 3243; 1:5000), LAMTOR4 (Cell Signaling, 12284; 1:5000), LAM (Cell Signaling, 32037; 1:5000), mTOR (Cell Signaling, 2983; 1:2000), p-p38 MAPK (Cell Signaling, 9211; 1:1000), p38 MAPK (Cell Signaling, 9212; 1:1000), p62 MAPK (Cell Signaling, 5114; 1:5000), p-P70S6K (Cell Signaling, 9205; 1:5000), p70S6K (Enzo, ADI-KAP-CC035-E; 1:250), RHEB (Cell Signaling, 13879; 1:1000), RPTOR (Cell Signaling, 2280; 1:1000), RRAGC (Cell Signaling, 5466; 1:1000), p-S6 (Cell Signaling, 4857; 1:1000), S6 (Cell Signaling, 2317; 1:1000), TUBA (Sigma, P6266; 1:1000), and VIM (BD, 550513; 1:500) mostly overnight at RT. Membranes were washed, incubated with the corresponding secondary antibodies goat-anti-mouse-peroxidase (Sigma, A0168; 1:5000), goat-anti-rabbit-peroxidase (BioRad 172-1019; 1:2000), and rabbit-anti-goat-peroxidase (Sigma, A4502; 1:5000) for 45–60 min at RT, washed again, and developed using West Pico/Femto Chemiluminescent Substrate (Thermo Scientific) or PURECL Dura Substrate (Vilber Lourmat, PU400050). Signals were detected and analyzed using a Fusion SL Detection System and FusionCapt Advance software (Vilber Lourmat). Whenever signals from phosphorylated and total proteins were detected on separate membranes, they were first normalized to the corresponding loading control before calculating ratios of phosphorylated to total protein. Ratios of LC3-II/LC3-I and p-P70S6K/p70S6K are given relative to 10% FCS Ctsd+/−.

Co-immunoprecipitation. Cells were lysed in CHAPS buffer (40 mM HEPES (pH 7.5), 120 mM NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate, 10 mM β-glycerophosphate, 1.5 mM NaVO3, 0.3% CHAPS, one tablet phosphatase inhibitors (Roche) and one tablet EDTA-free protease inhibitors (Roche)). EGFP-fusion proteins were immunoprecipitated from cell lysates using GFP-Trap beads (Chromotek, gta-20) followed by the manufacturer’s instructions. The immunoprecipitates were fractionated by SDS-PAGE and co-immunoprecipitated proteins were detected by Western blot.
Phospho-kinase antibody array. Lyases from 1% FCS and 1% FCS LT Ctsd+/− and Ctsd−/− cells were prepared and incubated with membranes spotted with antibodies of specified phosphoamino acid sequences according to the manufacturer’s instructions. Signals were detected using a Fusion SL Detection System (Vilber Lourmat) and analyzed with HImage+ software (R&D).

AlphaLISA and AlphaLISA SureFire Ultra assays. CREB, phosphorylated CREB and IL-6 levels in cells and cell-conditioned media were measured with the AlphaLISA® SureFire® Ultra CREB Total Assay Kit (ALSU-TCREB-A300), AlphaLISA® SureFire® Ultra CREB (Ser133) Assay Kit (ALSU-PCREB-A500), and the AlphaLISA Mouse Interleukin 6 (mIL6) Kit (ALSU C04) from PerkinElmer, respectively. The assays were performed following the manufacturer’s recommendations in a 384-well OptiPlate (PerkinElmer, 6002790). Cells were seeded in 24-well plates and cultivated for 48 h in 500 µl medium. Cell-conditioned media were harvested at equal cell confluence and the AlphaLISA was performed as per p-CREB and CREB AlphaLISA, cells were harvested in 200 µl 1× AlphaLISA SureFire Ultra lysis buffer. AlphaLISA SureFire Ultra assay results were normalized to the protein concentration of the respective cell lysate as determined by Pierce® BCA® Protein-Assay (Thermo Fisher, 23225).

Targeted amino acid analysis by LC-MS/MS. 1% FCS Ctsd+/− and Ctsd−/− cells were washed three times with 0.9% NaCl before being detached on ice by scraping in methanol/water (90:10) containing 1 µg/ml O-Methyl-L-tyrosine (Alfa aesar, H63096.03) as internal standard. Cells were lysed using glass beads and a Precellys homogenizer (5 × 15 at 6500 rpm, 10 s break, −10 °C). Homogenized lysates were centrifuged (21,000 g, 10 min, 4 °C) and 1 µl of metabolite-containing supernatant was spotted for LC-MS/MS analysis (dried under nitrogen at 100 °C, resuspended in 100 µl water and centrifuged (20,000 g, 5 min, 4 °C), whereas the pellet was resuspended in the remaining supernatant for fluorometric DNA quantification (20 µl were incubated with 80 µl Hoescht solution (20 µg/ml) for 30 min at RT and emission of fluorescence was measured at 460 nm (excitation at 346 nm) using an EnSpire multimode plate reader). 80 µl of each metabolite-containing supernatant were transferred to LC-MS glass vials containing inserts for small volume injection (Agilent Technologies). Injection volume was set to 5 µl. 20 µl of each supernatant were used to prepare a pool sample serving as quality control. Samples were injected in randomized order. LC-MS/MS analysis of the extracted metabolites was performed on a 1290 Infinity UHPLC system coupled to a 6460 triple quadrupole mass spectrometer (Agilent Technologies) via an electrospray ionization source (ESI Jetstream, Agilent Technologies). For separation of amino acids a Waters Acquity UPLC BEH Amide column (150 mm × 2.1 mm, 1.8 µm) was used at 50 °C and a flow rate of 0.6 ml/min with water +0.1% formic acid as buffer A and acetonitrile (Roth, AE70.2) +0.1% formic acid as buffer B. The gradient following was applied: 0.0–0.1 min at 90% B, 0.1–0.2 min to 85% B, 0.2–1.0 min to 75% B, 1.0–2.0 min to 40% B. Finally, the column was washed for 3 min at 50% B and reequilibrated for 4 min at 90% B. The total run time was set to 9 min. The following MS settings were applied: capillary voltage, 4000 V; nozzle voltage, 500 V; gas temperature, 300 °C; sheath gas flow, 7 l/min; sheath gas temperature, 350 °C; sheath gas flow, 11 l/min; nebulizer pressure, 50 psi. MS/MS spectra were acquired in dMRM mode. Mass spectral transitions were optimized using the built-in MassHunter Optimizer tool (Agilent Technologies, Waldbronn, Germany)35. LC-MS/MS data analysis was performed using MassHunter Quant B07 (Agilent Technologies, Waldbronn, Germany) and results were exported to CSV table for further processing. The resulting data were preprocessed to normalize the internal standard methyl-tyrosine and to DNA content of the sample, followed by blank subtraction. Using MetaboAnalyst a protein association network analysis with MCL clustering and a GSEA were performed on significantly deregulated genes (adj. p-value < 0.05, log2 FC > 1, expression > 1.3) for 1% FCS LT Ctsd−/− versus 1% FCS Ctsd+/−. The ‘lysoform biogenesis and function’ gene set was taken from Sardiello et al.35 and modified by adding ‘Ctsd’. Log2 FC were plotted for all genes of this gene set, independent of p-values. A GSEA for autophagy-related GO pathways was performed using gage. All pathways containing 5–500 genes are plotted with their corresponding q-value.

Data presentation and statistics. Data in line and bar charts were expressed as the mean ± SD, if not stated differently. n represents independent experiments (biological replicates). Statistical analyses were carried out with OriginPro 2018G-2020 (OriginLab). Significance in the Kaplan–Meier analyses was calculated using the two-sided log-rank test. Significance of lesion area, in vitro and in vivo cell growth, cell viability, mRNA levels, protein levels, and Pearson correlation coefficients between CTSD-competent and CTSD-deficient settings was determined by two-sided one-sample/two-sample t-test. mRNA levels normalized to Actb and protein levels normalized to 10% FCS Ctsd+/− were log-transformed before statistical analysis. Statistical significance of tumor volumes was calculated by the non-parametric Mann–Whitney test (two-sided). A two-sided three-way ANOVA was performed for the factors intensity of LysoTracker37, Ctsd genotype and FCS. PCA was used as unsupervised multivariate analysis to visualize global alterations between Ctsd+/− and Ctsd−/− datasets. Hierarchical cluster analyses were performed using group average clustering method with Euclidean distance and plotted as heatmap with dendrogram.

Data availability
The exome and transcriptome data have been deposited in the BioProject database under the accession code PRJNA663951 and in the Gene Expression Omnibus (GEO) database under the accession code GSE133328, respectively. The CREB gene set and the list of mutated genes in human breast carcinoma referenced during the study are available in public repositories from the harmonize (http://amp.pharm.mssm.edu/Harmonize/gene_set/CRCB/MotifMap+Predicted+Transcription+Factor+Targets) and COSMIC (https://cancer.sanger.ac.uk/cosmic/browse/tissuedata/). The hippocampal, hypothalamic, and thalamic websites, respectively. The mice used in this study and cells derived thereof are available upon request after completion of an appropriate material and tissue transfer agreement. All the other data supporting the findings of this study are available within the article and its supplementary information files and from the corresponding author upon reasonable request. A reporting summary for this article is available as a Supplementary Information file. Source data are provided with this paper.

Received: 2 August 2019; Accepted: 18 September 2020;
Published online: 12 October 2020

References
1. Yamanoto, K. Cathepsin E and Cathepsin D. In Proteases New Perspectives 59–71 (Birkhäuser Basel, 1999).
2. Fritsch, J. et al. TNF induced cleavage of HS990 by cathepsin D potentiates apoptotic cell death. Oncotarget 7, 75774–75789 (2016).
3. Bach, A.-S. et al. Nuclear cathepsin D enhances TRPS1 transcriptional activation in breast cancer cells. J. Immunol. 196, 6463–6474 (2015).
4. Hasan, L. et al. Function of liver activation-regulated chemokine/CC chemokine ligand 20 is differently affected by cathepsin B and cathepsin D processing. J. Immunol. 196, 28103 (2015).
5. Hasan, L. et al. Function of liver activation-regulated chemokine/CC chemokine ligand 20 is differently affected by cathepsin B and cathepsin D processing. J. Immunol. 196, 28103 (2015).
6. Masson, O. et al. Pathophysiological functions of cathepsin D: targeting its catalytic activity versus its protein binding activity? Biochimie 92, 1635–1643 (2010).
involved in growth control. Proc. Natl Acad. Sci. USA 103, 19290–19295 (2006).

38. TCGA. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

39. Lösch, A. et al. Prognostic value of cathepsin D expression and association with histomorphological subtypes in breast cancer. Br. J. Cancer 78, 205–209 (1998).

40. Gliemnioudis, M. et al. Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene 21, 5127–5134 (2002).

41. Cho, I. J. et al. Mechanisms, hallmarks, and implications of stem cell quiescence. Stem Cell Rep. 12, 1190–1200 (2019).

42. Steven, A. & Seliger, B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 7, 35454–35465 (2016).

43. Muranen, T. et al. ERK and p38 MAPK activities determine sensitivity to PHK/mTORC1 inhibition via regulation of MYC and YAP. Cancer Res. 76, 7168–7180 (2016).

44. Polytarchou, C. et al. Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res. 71, 4720–4731 (2011).

45. Jewell, J. L. et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of raptor. Elife 8, 1–26 (2019).

46. Wang, L. et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Rep. 21, 773–783 (2017).

47. Bousadssia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kelmser, R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).

48. Shinai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 65, 855–867 (1992).

49. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor y chain. Immunity 2, 223–238 (1995).

50. Kühler, M. et al. B-Raf deficiency impairs tumor initiation and progression in a murine breast cancer model. Oncogene 38, 1324–1339 (2019).

51. Kvainicas, A. et al. Retromo and TBR1/D5 maintain late endosomal RAB7 domains to enable amino acid-induced mTORC1 signaling. J. Cell Biol. 218, 3019–3038 (2019).

52. Muschet, C. et al. Removing the bottlenecks of cell culture metabolomics: fast normalization procedure, correlation of metabolites to cell number, and impact of the cell harvesting method. Metabolomics 12, 151 (2016).

53. Schlimpert, M. et al. Metabolic phenotyping of Ank3 depletion in mMDM3-3 cells - a putative nephropathies candidate. Sci. Rep. 8, 1–11 (2018).

54. Chong, J. et al. MetaboAnalyzerR 2.0: from raw spectra to biological insights. Metabolites 9, 57 (2019).

55. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

56. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

57. Koboldt, D. C., Larson, D. E. & Wilson, R. K. Using varscan 2 for germline variant calling and somatic mutation detection.Curr. Protoc. Bioinformatics 44, 15.4.1–15.4.17 (2013).

58. Yang, H. & Wang, K. Geometric variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 10, 1556–1566 (2015).

59. Tate, J. G. et al. COSMIC: the catalogue of Somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

60. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

61. R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.r-project.org/ (2008).

62. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

63. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

64. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Nature 325, 473–477 (2009).

Acknowledgements

The authors thank Nicole Klemm, Susanne Dollweit-Mack and Ulrike Reif for their continuous expert technical assistance. Further, we would like to thank the Life Imaging Center (LIC) of the University of Freiburg for their support in cell imaging and the team of the Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany, for their sequencing service. This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) SFB 850 subprojects B4 (T.B.), B7 (T.R. and C.P.), C9 and Z1 (M.R.), as well as Z2 (W.R.). The work was further supported by the...
DFG grant (RE1584/6-2 to T.R.), a DFG-Heisenberg professorship (to T.B.) and a DFG Emmy Noether grant (STE2310/1-1 to F.S.). The German Cancer Consortium (DKTK) program Oncogenic Pathways supported with project L625 (to M.B.) and L627 (to T.R., C.P. and T.B.). Additional support was received from the German Federal Ministry of Education and Research (BMBF) within the framework of the eMed research and funding concept CoNfiirm (FKZ 01ZX1708F to M.B.) and by MIRACUM within the Medical Informatics Funding Scheme (FKZ 01ZZ1801B to P.M. and M.B.).

Author contributions

S.K. and T.R. designed the study and wrote the manuscript. S.K., J.M., A.K., N.B. and T.R. performed experiments and/or analyzed data. M.H., P.M. and M.B. performed whole-exome sequencing-, RNA sequencing- and bioinformatics analysis. M.S. and B.K. performed the targeted amino acid analysis. W.R. provided expertise for the ultrasound imaging of primary breast tumors. F.S. performed the quantitative immunofluorescence co-localization studies and provided EGFP-mLST8 expression constructs. T.B. provided inducible expression systems. T.R., T.B. and C.P. created the scientific strategy for the project. All authors read, critically revised, and approved the final version of the manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-18935-2.