Finding the Maximal Empty Rectangle Containing a Query Point

Haim Kaplan† Micha Sharir‡

June 21, 2011

Abstract

Let P be a set of n points in an axis-parallel rectangle B in the plane. We present an $O(n\alpha(n)\log^4 n)$-time algorithm to preprocess P into a data structure of size $O(n\alpha(n)\log^3 n)$, such that, given a query point q, we can find, in $O(\log^4 n)$ time, the largest-area axis-parallel rectangle that is contained in B, contains q, and its interior contains no point of P. This is a significant improvement over the previous solution of Augustine et al. [4], which uses slightly superquadratic preprocessing and storage.

*Work by Haim Kaplan was partially supported by Grant 2006/204 from the U.S.–Israel Binational Science Foundation, and by Grant 822/10 from the Israel Science Fund. Work by Micha Sharir was partially supported by NSF Grant CCR-08-30272, by Grant 2006/194 from the U.S.–Israel Binational Science Foundation, by Grant 338/09 from the Israel Science Fund, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: haimk@post.tau.ac.il

‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA. E-mail: michas@post.tau.ac.il
1 Introduction

Let P be a set of n points in a fixed axis-parallel rectangle B in the plane. A P-empty rectangle (or just an empty rectangle for short) is any axis-parallel rectangle that is contained in B and its interior does not contain any point of P. We consider the problem of preprocessing P into a data structure so that, given a query point q, we can efficiently find the largest-area P-empty rectangle containing q. This problem arises in electronic design automation, in the context of the design and verification of physical layouts of integrated circuits (see, e.g., [21, Chapter 9]).

The largest-area P-empty rectangle containing q is a maximal empty rectangle, namely, it is a P-empty rectangle not contained in any other P-empty rectangle. Each side of a maximal empty rectangle abuts a point of P or an edge of B. See Figure 1 for an illustration. Maximal empty rectangles arise in the enumeration of “maximal white rectangles” in image segmentation [5].

![Figure 1: A maximal P-empty rectangle containing q.](image)

The problem considered here can be formulated in more general settings by considering other classes of shapes that have to contain the query point (and be P-empty), and other kinds of bounding regions. To the best of our knowledge this problem was first introduced by Augustine et al. [4], who studied the case where the regions containing the query point are disks and the case where these regions are axis-parallel rectangles. For the case of disks they give a data structure that requires $O(n^2)$ space, $O(n^2 \log n)$ preprocessing time, and can answer a query in $O(\log^2 n)$ time. For the case of rectangles (the one also considered here) they give a data structure whose storage and preprocessing time are both $O(n^2 \log n)$, and the query time is $O(\log n)$.

Our result. We significantly improve the result of Augustine et al. for the case of axis-parallel rectangles, in terms of storage and preprocessing costs. Specifically, we present a data structure that requires $O(n\alpha(n) \log^3 n)$ space and can be used to find the largest-area P-empty rectangle containing a query point q in $O(\log^4 n)$ time. The structure can be constructed in $O(n\alpha(n) \log^4 n)$ time. Here $\alpha(n)$ is the slowly increasing inverse Ackermann function.
In a nutshell, our algorithm computes all the maximal \(P\)-empty rectangles and preprocesses them into a data structure which is then searched with the query point. A major problem that one faces is that the number of maximal \(P\)-empty rectangles can be quadratic in \(n\) (see, e.g., Figure 5), so we cannot afford to compute them explicitly (this issue was ignored in [4]).

One of the main ingredients of our solution developed to overcome this difficulty and significant in itself, is a technique for handling partial inverse Monge matrices (see [1, 15, 16]). Specifically, we observe that the areas of certain subsets of maximal empty rectangles can be arranged in a matrix satisfying the inverse Monge property; see below for details. The structure of standard Monge (and inverse Monge) matrices supports linear or near-linear algorithms (in the number of rows and columns of the matrix) for finding all the row maxima (or minima) in such a matrix. These algorithms usually avoid an explicit representation of the matrix, and instead compute the row maxima or minima by accessing only a small number of entries, each of which can be retrieved in \(O(1)\) time. For full matrices only a linear number of entries is needed [1], and for certain kinds of structured partial matrices an almost linear number of entries suffices [15, 16].

We extend these basic techniques, and develop a data structure that supports efficient maxima queries in certain submatrices of a partial inverse Monge matrix. In a typical query of this kind we specify a row and a range of columns, and seek the maximum element of this row within this range. In another kind of queries, we specify a prefix of the rows and a prefix of the columns, and seek the maximum in the submatrix formed by these prefixes. A variation of our data structure has already been applied in a recent maximum flow algorithm for planar graphs [8]. Our data structure can be extended for general submatrix queries and is likely to find additional applications.

Related work. An easier problem that has been studied more extensively is that of finding the largest-area \(P\)-empty axis-parallel rectangle contained in \(B\). Notice that the largest \(P\)-empty square is easier to compute, because its center is a Voronoi vertex in the \(L_{\infty}\)-Voronoi diagram of \(P\) (and of the edges of \(B\)), which can be found in \(O(n \log n)\) time [12, 17]. There have been several studies on finding the largest-area bounded maximal empty rectangle [3, 10, 18]; the fastest algorithm to date, by Aggarwal and Suri [2], takes \(O(n \log^2 n)\) time and \(O(n)\) space. Nandy et al. [19] show how to find the largest-area axis-parallel empty rectangle avoiding a set of polygonal obstacles, within the same time bounds. Boland and Urrutia [7] present an algorithm for finding the largest-area axis-parallel rectangle inside an \(n\)-sided simple polygon in \(O(n \log n)\) time. Chaudhuri et al. [9] give an algorithm to find the largest-area \(P\)-empty rectangle, with no restriction on its orientation, in \(O(n^3)\) time.

The variant studied in this paper, of finding the largest \(P\)-empty rectangle containing a query point is newer and, as already mentioned, the only previous study of this problem that we are aware of is by Augustine et al. [4].
2 Preliminaries

We assume that the points of P are in general position, so that (i) no two points have the same x-coordinate or the same y-coordinate, and (ii) all the maximal P-empty rectangles have distinct areas.

One of the auxiliary structures that we use is a two-dimensional segment tree, which stores certain subsets of P-maximal empty rectangles. Here is a brief review of the structure, provided for the sake of completeness. Let \mathcal{M} be a set of N axis-parallel rectangles in the plane. We first construct a standard segment tree S on the x-projections of the rectangles in \mathcal{M}. This is a balanced binary search tree whose leaves correspond to the intervals between the endpoints of the x-projections of the rectangles. The span of a node v is the minimal interval containing all intervals corresponding to the leaves of its subtree.

We store a rectangle R at each node v such that the x-projection of R contains the span of v but does not contain the span of the parent of v. The tree has $O(N)$ nodes, each rectangle is stored at $O(\log N)$ nodes, and the size of the structure is thus $O(N \log N)$. All the rectangles containing a query point q must be stored at the nodes on the search path of the x-coordinate of q in the tree.

For each node u of S we take the set \mathcal{M}_u of rectangles stored at u, and construct a secondary segment tree S_u, storing the y-projections of the rectangles of \mathcal{M}_u. The total size and the preprocessing time of the resulting two-dimensional segment tree is $O(N \log^2 N)$. We can retrieve all rectangles containing a query point q by traversing the search path π of (the x-coordinate of) q in the primary tree, and then by traversing the search paths of (the y-coordinate of) q in each of the secondary trees associated with the nodes along π. The rectangles stored at the secondary nodes along these paths are exactly those that contain q.

If we store at each secondary node only the rectangle of largest area among those assigned to that node, we can easily find the largest-area rectangle of \mathcal{M} containing a query point, in time $O(\log^2 N)$. Storing only one rectangle at each secondary node reduces the size of the segment tree to $O(N \log N)$, but the preprocessing time remains $O(N \log^2 N)$.

This simple-minded solution will be efficient only when the size of \mathcal{M} is linear or nearly linear in n. Unfortunately, as already noted, in general the number of maximal empty rectangles can be quadratic in the input size, so for most of them we will need an additional, implicit representation. The structure that we will use for this purpose is a partial inverse Monge matrix, so we first provide a brief background on Monge matrices.

Monge matrices: A brief review. A matrix M is a Monge matrix (resp., an inverse Monge matrix) if for every pair of rows $i < j$ and every pair of columns $k < \ell$ we have $M_{ik} + M_{j\ell} \leq M_{i\ell} + M_{jk}$ (resp., $M_{ik} + M_{j\ell} \geq M_{i\ell} + M_{jk}$). A matrix is totally monotone if, for every pair of rows $i < j$ and every pair of columns $k < \ell$, $M_{ik} \leq M_{i\ell}$ implies $M_{jk} \leq M_{j\ell}$. It is easy to verify that an inverse Monge matrix is totally monotone. Aggarwal et al. [1] gave an algorithm for finding all row maxima in a totally monotone $m \times n$ matrix in $O(m + n)$ time. A partial totally monotone matrix is a matrix some of whose entries are undefined, but it satisfies the total monotonicity condition for every pair of rows $i < j$ and every pair of columns $k < \ell$ for which all four entries $M_{ik}, M_{i\ell}, M_{jk},$ and $M_{j\ell}$, are defined. Klawe
and Kleitman [16] give an $O(n\alpha(m) + m)$-time algorithm for finding all row maxima of staircase totally monotone matrices. These are partial totally monotone matrices in which the defined part of each row is contiguous, starting from the first column, and the defined part of each row is not smaller than the defined part of the preceding row. Klawe [15] also present an $O(n\log \log m + m)$-time algorithm for finding all row maxima in skyline totally monotone matrices, where the defined part of each column is contiguous starting from the bottommost row. All these algorithms for partially totally monotone matrices can find row minima instead of row maxima within the same time bound.

3 The Data Structure

Let P be a set of n points inside an axis-parallel rectangular region B in the plane. Recall that our goal is to preprocess P into a data structure, so that, given a query point $q \in B$, we can efficiently find the largest-area axis-parallel P-empty rectangle containing q and contained in B.

3.1 Maximal rectangles with edges on the boundary of B

Let e_t, e_b, e_l, and e_r be the top, bottom, left, and right edges of B, respectively. We classify the maximal P-empty rectangles within B according to the number of their edges that touch the edges of B. We show that there are only $O(n)$ maximal P-empty rectangles with at least one edge on ∂B. We precompute these rectangles and store them in a two-dimensional segment tree S, as described above. At query time we find the rectangle of largest area among those special “anchored” rectangles that contain the query point q, by searching with q in S. (The segment tree S will also store additional rectangles that will arise in later steps of the construction; see below for details.)

Here is the classification and analysis of maximal P-empty rectangles R with at least one edge on ∂B.

(i) Three edges of R lie on ∂B. It is easy to verify that there are only four such rectangles, one for each triple of edges of B.

(ii) Two adjacent edges of R lie on ∂B. Suppose, without loss of generality, that the top and right edges of R lie on e_t and e_r, respectively. The other two edges of R must be supported by a pair of maxima of P (that is, points $p \in P$ for which no other point $q \in P$ satisfies $x_q > x_p$ and $y_q > y_p$), consecutive in the sorted order of the maxima (by their x- or y-coordinates). Since there are $O(n)$ pairs of consecutive maxima, the number of anchored rectangles of this kind is also $O(n)$. See Figure 2. The other three situations are handled in a fully symmetric manner.

(iii) Two opposite edges of R lie on two opposite edges of B. Suppose, without loss of generality, that the left and right edges of R lie on e_l and e_r, respectively. In this
Figure 2: Maximal P-empty rectangles with two adjacent edges on ∂B.

case the top and bottom edges of R must be supported by two points of P, consecutive in their y-order. Clearly, there are $O(n)$ such pairs, and thus also $O(n)$ rectangles of this kind. Again, handling the top and bottom edges of B is done in a fully symmetric manner. See Figure 3.

Figure 3: Maximal P-empty rectangles with two opposite edges on ∂B.

(iv) **One edge of R lies on ∂B.** Suppose, without loss of generality, that the right edge of R lies on e_r. Then the three other sides of R must be supported by points of P. For each point $p \in P$ there is a unique maximal P-empty rectangle whose right edge lies on e_r and whose left edge passes through p. This rectangle is obtained by connecting p to e_r by a horizontal segment h and then by translating h upwards and downwards until it first hits two respective points of P, or reaches ∂B. (In the latter situations we obtain rectangles of the preceding types.) Hence there are $O(n)$ rectangles of this kind too.

It is easy to compute all the maximal P-empty anchored rectangles of the above four classes, in overall $O(n \log n)$ time: Computing rectangles of type (i) and (iii) only requires sorting the points by their x or y coordinates. Computing rectangles of type (ii) (of the specific kind depicted in Figure 2) requires computing the list of maximal points. This can be done by scanning the points from right to left maintaining the highest point seen so far. A point p is maximal if and only if it is higher than the previous highest point. We can compute
the rectangles of type (iv) (of the specific kind depicted in Figure 4) also by traversing the points from right to left while maintaining the points already traversed, sorted by their y-coordinates, in a balanced search tree. When we process a point p then its successor and predecessor (if they exist) in the tree define the top and bottom edges of the rectangle of type (iv) whose left edge passes through p.

We collect these rectangles and store them in our two-dimensional segment tree S. Given a query point q, we can find the rectangle of largest area containing q among these rectangles by searching in S, as explained above, in $O(\log^2 n)$ time.

3.2 Maximal empty rectangles supported by four points of P

In the remainder of the paper we are concerned only with maximal P-empty rectangles supported by four points of P, one on each side of the rectangle. We refer to such rectangles as **bounded** P-empty rectangles. We note that the number of such rectangles can be $\Theta(n^2)$ in the worst case; see Figure 5 for an illustration of the lower bound. The upper bound follows by observing that there is at most one maximal P-empty rectangle whose top and bottom edges pass through two respective specific points of P. (To see this, take the rectangle having these points as a pair of opposite vertices and, assuming it to be P-empty, expand it to the left and to the right until its left and right edges hit two additional respective points.) Handling these (potentially quadratically many) rectangles has to be done implicitly, in a manner that we now proceed to describe.

We store the points of P in a two-dimensional range tree (see, e.g., [13]). The points are stored at the leaves of the primary tree T in their left-to-right order. For a node u of T, we denote by P_u the subset of the points stored at the leaves of the subtree rooted at u. We associate with each internal node u of T a **vertical splitter** ℓ_u, which is a vertical line separating the points stored at the left subtree of u from those stored at the right subtree. These splitters induce a hierarchical binary decomposition of the plane into vertical strips. The strip σ_{root} associated with the root is the entire plane, and the strip σ_u of a node u is the portion of the strip of the parent $p(u)$ of u which is delimited by $\ell_{p(u)}$ and contains P_u.

With each node u in T we associate a secondary tree T_u containing the points of P_u in a
bottom-to-top order. For a node v of T_u, we denote by P_v the points stored at the leaves of the subtree rooted at v. We associate with each internal node v of T_u a horizontal splitter ℓ_v, which is a horizontal line separating the points stored at the left subtree of v from those stored at the right subtree. These splitters induce a hierarchical binary decomposition of the strip σ_u into rectangles. The rectangle associated with the root of T_u is the entire vertical strip σ_u, and the rectangle B_v of a node v is the portion of the rectangle of the parent $p(v)$ of v which is delimited by $\ell_{p(v)}$ and contains P_v. See Figure 6.

In this way, the range tree defines a hierarchical subdivision of the plane, so that each secondary node v is associated with a rectangular region B_v of the subdivision. If v is not a leaf then it is associated with a horizontal splitter ℓ_v. If the primary node u associated with the secondary tree of v is also not a leaf then v is also associated with a vertical splitter ℓ_u. The vertical segment ℓ_u and the horizontal segment ℓ_v meet at a point o_v inside B_v, which we refer to as the origin of v.

A query point q defines a search path π_q in T and a search path in each secondary tree T_u of a primary node u on π_q. We refer to the nodes on these $O(\log n)$ paths as constituting the search set of q, which therefore consists of $O(\log^2 n)$ secondary nodes.

Let R be a bounded maximal P-empty rectangle containing q supported by four points p_t, p_b, p_l, and p_r of P, lying respectively on the top, bottom, left, and right edges of R. Let
u be the lowest common ancestor of p_t and p_v in the primary tree, and let v be the lowest common ancestor of p_t and p_b in T_u (clearly, both p_t and p_b belong to T_u). By construction, R is contained in B_v and contains both q and o_v. See Figure 7. Note that both v and u are internal nodes (each being an lowest common ancestor of two leaves) so o_v is indeed defined. Furthermore, one can easily verify that v is in the search set of q.

![Figure 7](image_url) Figure 7: A bounded maximal P-empty rectangle of the subproblem at v.

In the following we consider only secondary nodes v which are not leaves, and are associated with primary nodes u which are not leaves.

We define the subproblem at a secondary node v (of the above kind) as the problem of finding the largest-area bounded maximal P-empty rectangle containing q and o_v which lies in the interior of B_v. It follows that if we solve each subproblem at each secondary node v in the search set of q, and take the rectangle of largest area among those subproblem outputs, we get the largest-area bounded maximal P-empty rectangle containing q.

In the remainder of this section we focus on the solution of a single subproblem at a node v of a secondary tree T_u in the search set of q. We focus only on the points in P_v and for convenience we extend B_v to the entire plane and we move o_v to the origin. The line ℓ_u becomes the y-axis, and the line ℓ_v becomes the x-axis. Put $n_v = |P_v|$. We classify the bounded maximal P-empty rectangles contained in B_v and containing the origin according to the quadrants containing the four points associated with them, namely, those lying on their boundary, and find the largest-area rectangle containing q in each class separately.

(i) Three defining points in a halfplane. The easy cases are when one of the four halfplanes defined by the x-axis or the y-axis (originally ℓ_u and ℓ_v) contains three of the defining points. Suppose for specificity that this is the halfplane to the left of the y-axis; the other four cases are treated in a fully symmetric manner. See Figure 8. Consider the subset P_ℓ of points to the left of the y-axis. For each point p of P_ℓ there is (at most) a single rectangle in this family such that p is its left defining point. Similarly to the analysis in case (iv) of Section 3.1 we obtain this rectangle by connecting p to the y-axis by a horizontal segment, and shifting this segment up and down until it hits two other respective points of P_ℓ. Now we have a rectangle bounded by three points of P_ℓ whose right edge is anchored to the y-axis. Extend this rectangle to the right until its right edge hits a point to the right.
of the y-axis, to obtain the unique rectangle of this type with p on its left edge. (Here, and in the other cases discussed below, we assume that all the relevant points of P do exist; otherwise, the rectangle that we construct is not fully contained in the interior of B_v. This would be the case, for example, if the shift of the above rectangle to the right of the y-axis does not encounter any point of P_v.) Clearly, there are $O(n_v)$ bounded maximal empty rectangles of this type.

![Figure 8: A bounded maximal P-empty rectangle with three defining points to the left of the y-axis.](image)

We can find the part of each such rectangle which is to the left of the y-axis, by sweeping B_v with a vertical line from the y-axis to the left maintaining the points already seen in a balanced search tree, exactly as we computed the empty rectangles of type (iv) in Section 3.1. To find the part of each rectangle which is to the right of the y-axis we store the points to the right of the y-axis, sorted by their y-coordinates, in a search tree Σ_r. With each node of Σ_r we store the leftmost point stored in its subtree. We can identify the right edge of each rectangle R by using Σ_r to find, in logarithmic time, the leftmost point to the right of the y-axis between the top and the bottom edges of R.

Overall we can find all rectangles of this type associated with v in $O(n_v \log n_v)$ time. Summing this cost over all secondary nodes v, we obtain a total of $O(n \log^2 n)$ such rectangles, which can be constructed in $O(n \log^3 n)$ overall time.

We add all these rectangles to the global segment tree S. The size of the expanded tree S remains $O(n \log n)$ since it still suffices to store only the largest-area rectangle among all rectangles associated with each secondary node. The preprocessing time increases to $O(n \log^4 n)$ since each of the $O(n \log^2 n)$ rectangles is mapped to $O(\log^2 n)$ secondary nodes of S, and for each rectangle R and a node u to which R is mapped, we need to check whether R is the largest rectangle mapped to u. A query in S still takes $O(\log^2 n)$ time.

The remaining cases involve bounded maximal P-empty rectangles R such that each of the four half-planes defined by the y-axis or the x-axis contains exactly two defining points of R. This can happen in two situations: either there exist two opposite quadrants, each containing two defining points of R, or each quadrant contains exactly one defining point of R.
(ii) One defining point in each quadrant. The situation in which each quadrant contains exactly one defining point of \(R \) is also easy to handle, because again there are only \(O(n_v) \) bounded maximal \(P \)-empty rectangles of this type in \(B_v \). To see this, consider, without loss of generality, the case where the first quadrant contains the right defining point, \(p_r \), the second quadrant contains the top defining point, \(p_t \), the third quadrant contains the left defining point, \(p_{\ell} \), and the fourth quadrant contains the bottom defining point, \(p_b \). See Figure 9 (There is one other situation, in which the top defining point lies in the first quadrant, the right point in the fourth quadrant, the bottom point in the third, and the left point in the second; this case is handled in a fully symmetric manner.)

![Figure 9](image_url)

Figure 9: A bounded maximal \(P \)-empty rectangle with one defining point in each quadrant.

We claim that \(p_r \) can be the right defining point of at most one such rectangle. Indeed, if \(p_r \) is the right defining point of such a rectangle \(R \) then \(p_b \) is the first point we hit when we sweep downwards a horizontal line segment connecting \(p_r \) to the \(y \)-axis (assuming the sweep reaches below the \(x \)-axis; otherwise \(p_r \) cannot be the right defining point of any rectangle of the current type). Similarly, the point \(p_{\ell} \) is the first point that we hit when we sweep to the left a vertical line segment connecting \(p_b \) to the \(x \)-axis, \(p_t \) is the first point we hit when we sweep upwards a horizontal line segment connecting \(p_{\ell} \) to the \(y \)-axis, and finally \(p_r \) is the first point we hit when we sweep a vertical line segment connecting \(p_t \) to the \(x \)-axis. As noted, if any of the points we hit during these sweeps is not in the correct quadrant, or the last sweep does not hit \(p_r \) (e.g., because the point \(p_{\ell} \) is lower than \(p_r \)), or one of the sweeps does not hit any point before hitting \(\partial B_v \), then \(p_r \) is not the right defining point of any rectangle of this type.

We compute these \(O(n_v) \) bounded maximal \(P \)-empty rectangles using four balanced search trees. As for rectangles of type (i) we maintain the points to the right of the \(y \)-axis in a balanced search tree \(\Sigma_r \), sorted by their \(y \) coordinates, storing with each node the leftmost point in its subtree. Similarly, we maintain the points below the \(x \)-axis in a balanced search tree \(\Sigma_b \) sorted by their \(x \) coordinates, storing with each node the topmost point in its subtree. We maintain the points to the left of the \(y \)-axis and the points above the \(x \)-axis in symmetric search trees \(\Sigma_{\ell} \) and \(\Sigma_t \), respectively. We can find each rectangle in this family by four queries, starting with each point \(p_r \) in the first quadrant, first in \(\Sigma_b \) to identify \(p_b \), then in \(\Sigma_{\ell} \) to find \(p_{\ell} \), in \(\Sigma_t \) to find \(p_t \), and finally in \(\Sigma_r \) to ensure that we get back to \(p_r \).
Summing over all secondary nodes \(v \), we have \(O(n \log^2 n) \) such rectangles, which we can construct in \(O(n \log^3 n) \) overall time. We add them too to the global segment tree \(S \), without changing the asymptotic bounds on its performance parameters, as discussed earlier.

3.3 Two defining points in the first and third quadrants

The hardest case is where, say, each of the first and third quadrants contains two defining points of \(R \). (The case where each of the second and fourth quadrants contains two defining points is handled symmetrically.) The defining points in the first (resp., third) quadrant are consecutive minimal (resp., maximal) points of the subset of \(P_v \) in that quadrant. There are \(O(n_v) \) such pairs. Denote the sequence of maximal points of the third quadrant by \(E \), and the sequence of minimal points of the first quadrant by \(F \), both sorted from left to right (or, equivalently, from top to bottom).

Consider a consecutive pair \((a, b)\) in \(E \) (with \(a \) to the left and above \(b \)). Let \(M_1 \) be the unique maximal \(P \)-empty rectangle whose right edge is anchored at the \(y \)-axis, its left edge passes through \(a \), its bottom edge passes through \(b \), and its top edge passes through some point \(c \) (in the second quadrant); it is possible that \(c \) does not exist, in which case some minor modifications (actually, simplifications) need to be applied to the forthcoming analysis, which we do not spell out.

Let \(M_2 \) be the unique maximal empty rectangle whose top edge is anchored at the \(x \)-axis, its left edge passes through \(a \), its bottom edge passes through \(b \), and its right edge passes through some point \(d \) (in the fourth quadrant; again, we ignore the case where \(d \) does not exist). See Figure 10. Our maximal empty rectangle cannot extend higher that \(c \), nor can it extend to the right of \(d \). Hence its two other defining points must be a pair \((w, z)\) of consecutive elements of \(F \), both lying to the left of \(d \) and below \(c \). The minimal points which satisfy these constraints form a contiguous subsequence of \(F \).

That is, for each consecutive pair \(\rho = (a, b) \) of points of \(E \) we have a contiguous “interval” \(I_\rho \subseteq F \), so that any consecutive pair \(\pi = (w, z) \) of points in \(I_\rho \) defines with \(\rho \) a maximal empty rectangle which contains the origin, and these are the only pairs which can define with \(\rho \) such a rectangle. (Note that we can ignore the “extreme” rectangles defined by \(a, b, c \), and the highest point of \(I_\rho \), or by \(a, b, d \), and the lowest point of \(I_\rho \), since these rectangles have three of their defining points in a common halfplane defined by the \(x \)-axis or by the \(y \)-axis, and have therefore already been treated.)

To answer queries with respect to these rectangles, we process the data as follows. We compute the chain \(E \) of maximal points in the third quadrant and the chain \(F \) of minimal points in the first quadrant, ordered as above. This is done in \(O(n_v \log n_v) \) time in the same way as we computed the chain of maximal points of \(P \) in Section 3.1. For each pair \(\rho = (a, b) \) of consecutive points in \(E \) we compute the corresponding delimiting points \(c \) (in the second quadrant) and \(d \) (in the fourth quadrant). Formally, \(c \) is the lowest point in the second quadrant which lies to the right of \(a \), and \(d \) is the leftmost point in the fourth quadrant which lies above \(b \). We then use \(c \) and \(d \) to “carve out” the interval \(I_\rho \) of \(F \), consisting of those points that lie below \(c \) and to the left of \(d \). We can find \(c \) by a binary search in the chain of \(y \)-minimal and \(x \)-maximal points in the second quadrant, and find \(d \) by a binary
search in the chain of \(x \)-minimal and \(y \)-maximal points in the fourth quadrant. These chains can be computed in the same way as in the construction of \(E \) and \(F \). Once we have the chains we can find, for each consecutive pair \(\rho = (a, b) \) in \(E \), the corresponding entities \(c, d, \) and \(I_{\rho} \), in \(O(\log n) \) time.

We next define a matrix \(A \) as follows. Each row of \(A \) corresponds to a pair \(\rho \) of consecutive points in \(E \) and each column of \(A \) corresponds to a pair \(\pi \) of consecutive points in \(F \). If at least one point of \(\pi \) is not in \(I_{\rho} \) then the value of \(A_{\rho\pi} \) is undefined. Otherwise, it is equal to the area of the (maximal empty) rectangle defined by \(\rho \) and \(\pi \). By the preceding analysis, the defined entries in each row form a contiguous subsequence of columns. It is easy to verify that if \(\rho_2 \) follows (i.e., lies more to the right and below) \(\rho_1 \) on \(E \) then the left (resp., right) endpoint of \(I_{\rho_2} \) cannot be to the right of the left (resp., right) endpoint of \(I_{\rho_1} \); See Figure 11.

It follows that in each column of \(A \) the defined entries also form a contiguous subsequence of rows. We refer to such partially defined matrix \(A \) in which the defined part of each row and of each column is consecutive as a double staircase matrix.

The following simple lemma plays a crucial role in our analysis.

Lemma 3.1. Let \(x_1, x_2, y_1, y_2 \) be four points in the plane, so that \(x_1 \) and \(x_2 \) lie in the first quadrant, \(y_1 \) and \(y_2 \) lie in the third quadrant, \(x_1 \) lies northwest to \(x_2 \), and \(y_1 \) lies northwest to \(y_2 \). For any point \(w \) in the third quadrant and any point \(z \) in the first quadrant, let \(R(w, z) \) denote the rectangle having \(w \) and \(z \) as opposite corners, and let \(A(w, z) \) denote the area of \(R(w, z) \). Then we have

\[
A(y_1, x_1) + A(y_2, x_2) > A(y_1, x_2) + A(y_2, x_1).
\]
Proof. The situation is depicted in Figure 12. In the notation of the figure we have
\[
A(y_1, x_1) + A(y_2, x_2) = A(y_1, x_2) + A(y_2, x_1) + A_1 + A_2,
\]
where \(A_1 \) and \(A_2 \) are the areas of the two shaded rectangles.

\[\text{Figure 12: The inverse Monge property of maximal rectangles.}\]

Lemma 3.1 asserts that if \(A_{\rho_1 \pi_1}, A_{\rho_2 \pi_2}, A_{\rho_1 \pi_2}, \) and \(A_{\rho_2 \pi_2} \), for \(\rho_1 < \rho_2 \) and \(\pi_1 < \pi_2 \), are all defined then
\[
A_{\rho_1 \pi_1} + A_{\rho_2 \pi_2} > A_{\rho_1 \pi_2} + A_{\rho_2 \pi_1},
\]
or, equivalently,
\[
A_{\rho_1 \pi_1} - A_{\rho_2 \pi_1} > A_{\rho_1 \pi_2} - A_{\rho_2 \pi_2}. \tag{2}
\]
Hence \(A \) satisfies the inverse Monge property, with respect to its defined entries, so it is a partial inverse Monge (and thus also totally monotone) matrix.

3.3.1 Answering a query in the first (or third) quadrant

The next step is to compute the column maxima in \(A \). That is, for each pair \(\pi \) of consecutive points in \(F \), we compute the value \(A_{\max}(\pi) = \max_{\rho} A_{\rho \pi} \), where \(\rho \) ranges over all consecutive
pairs in E for which π is contained in I_ρ. The fact that A is only partially defined makes this task slightly more involved than the similar task for totally defined inverse Monge matrices. Intuitively, this computation is similar to the construction of an upper envelope of pseudo-segments in the plane. Indeed, we can think of the entries of a particular row ρ as forming the graph of a (discrete) partially defined function $\hat{A}_\rho(\cdot)$, mapping indices π of columns to the areas $A_{\rho\pi}$ of the corresponding rectangles. Equation (2) implies that these functions behave as pseudo-segments. Specifically, we extend the domain of definition of each function \hat{A}_ρ to a segment, delimited by the first and last pairs π at which $A_{\rho\pi}$ is defined, by linearly interpolating between each pair of π-consecutive points on its graph. Then (2) implies that each pair of the resulting connected polygonal curves intersect at most once.

The complexity of the upper envelope of m pseudo-segments is $O(m \alpha(m))$ (see [20]). More precisely, this expression bounds the number of breakpoints of the envelope (points where two distinct graphs intersect on the envelope; for technical reasons we also regard the leftmost and rightmost points of each graph as breakpoints), and ignores the complexity of the individual functions (the graph of each of our functions consists of many segments, one fewer than the number of columns where A is defined at the corresponding row, and these individual complexities are ignored in the bound above); this comment is crucial for the complexity analysis of our procedure. Since we can find the intersection of any pair of pseudo-segments \hat{A}_ρ_1 and \hat{A}_ρ_2 in $O(\log n)$ time, by a binary search through the relevant columns, we can compute this upper envelope in $O(m \alpha(m) \log m \log n)$ time, by a simple divide-and-conquer algorithm, or in $O(m \log m \log n)$ time, using the more elaborate algorithm of Hershberger [14].

In accordance with the remark made in the preceding paragraph, we note that in the algorithm just sketched we do not attempt to compute and output the upper envelope explicitly—this will take $\Omega(n)$ time at each recursive step, for filling in the value of the envelope at every column. Instead, we only compute its breakpoints, which partition the columns into $O(m \alpha(m))$ blocks, so that for all π in the same block, $\max_\rho A_{\rho\pi}$ is attained by the same row. This implicit representation is significantly cheaper when $m \ll n$, and is crucial to obtain the running time asserted above.

Remark. Rather than adapting the divide-and-conquer algorithm for upper envelopes, just mentioned above, to our discrete settings, we can use an algorithm of Klawe [15] for computing row maxima in staircase (inverse) Monge matrices. Recall that a staircase matrix is a partially defined matrix in which the defined portion of each row is contiguous starting at the leftmost column, and the defined part of each row is not smaller than the defined part of the preceding row. We shall also refer as a staircase matrix to a matrix that can be made staircase by inverting the order of the rows and the columns. (Note that the operation of inverting the order of the rows and the columns preserves the inverse Monge property.) Klawe shows how to find row maxima in a staircase totally monotone matrix in $O(n \alpha(m) + m)$ time, where m is the number of rows and n is the number of columns.

We can use Klawe’s algorithm as follows; refer to Figure 13. We split the matrix into four submatrices A_1, \ldots, A_4 at the middle row, where A_1 and A_2 are formed by the first half of the rows and A_3 and A_4 are formed by the second half. We take the contiguous block of
columns whose defined portions intersect the middle row, split each of these columns at the middle row, and form A_1 from the top parts of these columns and A_3 from from the bottom parts. The submatrix A_2 (resp., A_4) is defined by the rows above (resp., below) the middle row and by the columns whose defined portions are fully contained in this range of rows. Clearly, A_1 and A_3 are two staircase submatrices (one straight and one inverted).

It follows that we can find column maxima in A_1 and A_3 by two applications of Klawe’s algorithm to A_1 and A_3, and then by taking the maximum of the two relevant outputs for each column. (Formally, Klawe’s algorithm finds row maxima and we need column maxima, but since the transpose operation preserves the inverse Monge property, the application of Klawe’s algorithm to the transposed matrix yields the desired column maxima.) We then recursively apply the algorithm to the submatrices A_2, A_4. Note that A_2 and A_4 are disjoint submatrices of A, each with half as many rows, and their column ranges are disjoint, and also disjoint from the column ranges of A_1 and A_3. This is easily seen to imply that the running time of this recursive algorithm is $O(m \alpha(n) \log m + n)$.

Although this algorithm is faster (when $n = O(m)$) than the one based on computing the upper envelope of pseudo-segments, the latter will be used again later, when we show how to handle query points in the second or fourth quadrants.

By construction, the upper envelope of the pseudo-segments corresponding to the rows of A records the column maxima of A. Specifically, we scan the upper envelope from left to right, and the maximum for each column occurs at the row that attains the upper envelope at that column. (We can afford to perform this scan once, upon termination of the whole procedure, but not at each of the recursive steps of constructing sub-envelopes.)

After computing the column maxima in A we build a range-maxima data structure storing these column maxima, so that we can efficiently retrieve the maximum in any query contiguous subsequence of the columns. Such a structure can be constructed in time (and storage) linear in the number of columns, and a query can be answered in $O(1)$ time (see [6] and the reference therein for the original results). For our purpose, though, since we have to search F to identify the interval of columns that the query point q “controls”, we might as well use a standard binary search tree over the columns, instead of the more sophisticated structure of [6]. We store in each subtree of the tree the maximum of the column maxima, over all columns stored at the subtree, which allows us to find the maximum in a query.

Figure 13: The recursive construction using Klawe’s algorithm.
The query point \(q \) itself, if it lies in the first quadrant, defines a contiguous subsequence \(J_q \) of the sequence \(F \) of minimal points in the first quadrant, namely, those that lie above \(q \) and to its right. Only consecutive pairs within this subsequence can form the top and right defining points of a maximal empty rectangle containing \(q \) of the type considered here. So we compute \(J_q \), in logarithmic time, and compute \(\max_\pi A_{\max}(\pi) \), over all pairs \(\pi \) contained in \(J_q \), using the range-maxima data structure just described, and output the corresponding rectangle.

As described so far we need two search trees, one is the range-maxima data structure over the column maxima of \(A \), and the other is a search tree over \(F \) which we use to identify the subsequence \(J_q \) carved out from \(F \) by a query point \(q \). Since a column in \(A \) corresponds to a pair of consecutive points of \(F \) we can in fact use only one search tree for both purposes. This search tree is over the points in \(F \) and it stores in each node \(v \) the largest of the column maximum of the columns which are associated with pairs of consecutive points in the subtree of \(v \).

A query with a point in the third quadrant is handled in a fully symmetric manner, using a symmetric data structure in which the roles of \(E \) and \(F \) are interchanged. The cases where the query is in the second or fourth quadrants will be considered next.

This structure for queries in the first quadrant uses an additional binary search tree for range maxima queries, for each secondary node in \(T \). The total size of these structures is \(O(n \log^2 n) \), and they can all be constructed in \(O(n \log^4 n) \) overall time, using Hershberger’s algorithm \[14\] (In each secondary node \(v \) we need \(O(n_v \log^2 n_v) \) time to compute the upper envelope of the functions defined by the rows of the matrix associated with \(v \).) A query takes \(O(\log^3 n) \) time, because we spend logarithmic time at each secondary node \(v \) of \(T \) on the search paths, for which \(q \) is in the first or third quadrant of \(B_v \).

3.3.2 Answering a query in the second (or fourth) quadrant

Consider next the case where \(q \) is in the second quadrant of \(B_v \) (the case where \(q \) is in the fourth quadrant is handled in a symmetric manner). Consider the prefix \(F_q \) of \(F \) consisting of points whose \(y \)-coordinate is larger than that of \(q \), and the prefix \(E_q \) of \(E \) consisting of points whose \(x \)-coordinate is smaller than that of \(q \). The rectangles defined by pairs of consecutive points in \(E \) and in \(F \) which contain \(q \) are exactly those defined by pairs with at least one point in \(E_q \) and one point in \(F_q \). See Figure 14 for a schematic depiction of this structure.

Here is an overview of our approach. We use the same matrix \(A \) defined in the preceding subsection. We store the rows of \(A \) in a balanced binary search tree \(T_h \). Each node \(u \) of \(T_h \) stores the upper envelope \(\mathcal{E}_u \) of the pseudo-segments corresponding to the rows in the subtree of \(u \). Given a query \(q \) in the second quadrant, we compute \(E_q \), retrieve the pair \(\rho_q \) formed by the last point of \(E_q \) and the next point of \(E \) (if such a point exists; otherwise we form the last pair in \(E_q = E \)), and represent the first \(\rho_q \) rows of \(A \) as the disjoint union of \(O(\log n_v) \) canonical subsets of rows, corresponding to a collection \(N_q \) of \(O(\log n_v) \) respective nodes of \(T_h \). See Figure 15 for a schematic depiction of this structure.

We next compute \(F_q \) and its “last pair” \(\pi_q \), defined analogously to \(\rho_q \). What we need to
do is to compute \(\max\{\mathcal{E}_u(\pi) \mid \pi \leq \pi_q\} \), over all nodes \(u \in N_q \), and return the largest of these values (along with its corresponding rectangle).

However, we cannot afford to enumerate the values of the envelopes \(\mathcal{E}_u \) for all nodes \(u \in T_h \) explicitly, because we may have \(\Theta(n_v) \) envelopes, each consisting of \(\Theta(n_u) \) values, so we may need quadratic storage for an explicit representation of the envelopes. (This is the same problem that we faced in the preceding subsection.) We therefore need an implicit representation that would still allow us to compute the maximum of an envelope within a query prefix range \(\pi \leq \pi_q \), in polylogarithmic time.

To do so, we use the compact representation of an envelope by its breakpoints, as used in the preceding case. The divide-and-conquer construction of the upper envelope of the entire range of rows of \(A \), described in the preceding subsection, yields as a by-product all the upper envelopes \(\mathcal{E}_u \), over all nodes \(u \) of \(T_h \). Each envelope \(\mathcal{E}_u \) is represented as a sequence of \(O(m_u \alpha(m_u)) \) intervals of columns, where \(m_u \) is the number of rows stored at \(u \) (the size of the subtree of \(u \)), so that, over each interval, \(\mathcal{E}_u \) is attained by some fixed row.

We thus face the following subproblem. We are given an upper envelope \(\mathcal{E}_u \), defined at a node \(u \) of \(T_h \) which spans \(m_u \) rows of \(A \), as a sequence of \(O(m_u \alpha(m_u)) \) intervals of columns delimited by breakpoints of \(\mathcal{E}_u \) (as above some of these breakpoints may be endpoints of the domains of definition of some rows). Our goal is to preprocess \(\mathcal{E}_u \) into a data structure so that, given a prefix range of columns \(\pi \leq \pi_q \), we can compute \(\max\{\mathcal{E}_u(\pi) \mid \pi \leq \pi_q\} \) efficiently. In the spirit of the preceding discussion, the preprocessing has to take time that is near-linear in \(m \), and cannot afford an explicit enumeration of \(\mathcal{E}_u \). Instead, we use the following approach.

The compact representation of \(\mathcal{E}_u \) calls for the design of a black-box routine that receives
as input a row ρ and an interval $[\pi_1, \pi_2]$ of columns, and returns $\max\{A_{\rho\pi} \mid \pi_1 \leq \pi \leq \pi_2\}$. Having such a routine at hand, we first compute, by repeated calls to the black-box routine, the maximum value of \mathcal{E}_u over each of its $O(m_u \alpha(m_u))$ intervals (recalling that within each of these intervals \mathcal{E}_u is attained by a single row), then compute the cumulative maxima, for each prefix of this sequence of intervals, and store these prefix maxima in an array. Then, given a query index π_q, we find the largest prefix of intervals that fully precede π_q, retrieve the cumulative maximum of this prefix, and make one more call to the black-box routine to retrieve $\max\{A_{\rho\pi} \mid \pi_{\max} + 1 \leq \pi \leq \pi_q\}$, where π_{\max} is the index of the last column of the last complete interval in the prefix, and where ρ is the row attaining the envelope \mathcal{E}_u at the next interval. We return the maximum of the output of this call and the retrieved prefix maximum.

To implement this black-box routine, we apply a simpler variant of the construction described so far, to the transposed matrix A^t. That is, we store the rows of A^t (originally, columns of A) in a balanced binary tree T^t_h, and apply a divide-and-conquer procedure for computing, for each node w of T^t_h, the upper envelopes \mathcal{E}^t_w of the pseudo-segments corresponding to the rows of A^t stored at w, again, representing each envelope \mathcal{E}^t_w as a sequence of $O(m_w \alpha(m_w))$ intervals, where m_w is the size of the subtree of w. Now, given a query $(\rho, [\pi_1, \pi_2])$, we search in T^t_h and obtain a representation of the interval $[\pi_1, \pi_2]$ as the disjoint union of $O(\log n_v)$ canonical intervals of rows of A^t (columns of A), corresponding to $O(\log n_v)$ nodes of T^t_h. For each such node w, we retrieve $\mathcal{E}^t_w(\rho)$, in $O(\log m_w)$ time, by searching with ρ through the sequence of intervals representing \mathcal{E}^t_w. The maximum of these $O(\log n_v)$ values $\mathcal{E}^t_w(\rho)$ is the desired maximum that we seek. The overall cost of this computation is $O(\log^2 n_v)$.
To complete the analysis, we next bound the storage, preprocessing cost, and query time for the entire structure.

Both trees T_h and T'_h associated with a secondary node v of the range tree T are of size $O(n_v \alpha(n_v) \log n_v)$, including all secondary search trees over the upper envelopes, and it takes a total of $O(n_v \alpha(n_v) \log^2 n_v)$ time to construct them. (The divide-and-conquer algorithm does in fact produce all the sub-envelopes at all the nodes of T_h or of T'_h, at a particular secondary node v, within the above time bound.) For each node $u \in T_h$ we compute the maximum in each interval of E_u using T'_h. This takes $O(n_v \alpha(n_v) \log^3 n_v)$ time.

Summing over all secondary nodes v in T, we obtain that the size of the entire range tree (including the respective trees T_h and T'_h and a search tree over each envelope E_u (resp., E'_u) for each node u in T_h (resp., T'_h)) is $O(n \alpha(n) \log^3 n)$. The total preprocessing time is $O(n \alpha(n) \log^5 n)$ time, because the cost of processing each block of each envelope E_u, for nodes u of T_h, is $O(\log^2 n_v)$, using the black-box routine.

A query in each secondary node v in which q falls in the second or fourth quadrant of B_v takes $O(\log^3 n_v)$ time. This running time follows since we need to perform one binary search in T_h to locate the $O(\log n_v)$ nodes N_q representing the prefix E_q. In each such node $u \in N_q$ we perform another binary search in E_u to find the longest prefix of intervals that fully precede π_q and retrieve the cumulative maximum of this prefix. Finally in each such node u we make one more query to the data structure representing T'_h to retrieve $\max\{A_{\rho \pi} | \pi_{\text{max}} + 1 \leq \pi \leq \pi_q\}$, where π_{max} is the index of the last column of the last complete interval in the prefix of intervals fully preceding π_q, and where ρ is the row attaining the envelope E_u at the next interval, which contains π_q. This last query takes $O(\log^2 n_v)$ time, from which the overall cost of $O(\log^3 n_v)$ at v follows. This dominates the logarithmic query cost at nodes v where q lies in the first or third quadrant, and, summed over all secondary nodes v of T, yields an overall $O(\log^5 n)$ query time.

We recall that the entire presentation caters to maximal P-empty rectangles having two defining points in the first quadrant of B_v and two in the third quadrant. To handle rectangles having two defining points in each of the second and fourth quadrants, we prepare a second, symmetric version of the structure in which the roles of quadrants are appropriately interchanged, and query both structures with q.

We can reduce the query time and the preprocessing time required at a secondary node v by a logarithmic factor using fractional cascading [11]. This technique allows us to insert bridges between the envelopes corresponding to the nodes w of T'_h so that once we locate the interval covering a particular column ρ (of A') in E'_w, we could locate the interval containing ρ in the envelope $E'_{w'}$ of a node w' adjacent to w in $O(1)$ time. This allows us to construct a data structure over T'_h so the maximum in a particular row ρ of A and a range of columns $[\pi_1, \pi_2]$ of A can be found in $O(\log n_v)$ time instead of $O(\log^2 n_v)$ time. This modification does not incur any space overhead.

In summary, we obtain the following main result of the paper.

Theorem 3.2. The data structure described above requires $O(n \alpha(n) \log^3 n)$ storage, and can be constructed in $O(n \alpha(n) \log^4 n)$ time. Using the structure, one can find the largest-area P-empty rectangle contained in B and containing a query point q in $O(\log^4 n)$ time.
4 Submatrix maxima in totally monotone matrices

Consider a partially defined totally monotone $n \times n$ matrix A in which the defined entries in each row are consecutive.

The range minima data structure that we associated with a secondary node in Section 3.3.1 is in fact a general data structure for preprocessing such a matrix A, in $O(n \log^2 n)$ time, so that we can find the maximum of any row within an interval of columns in $O(1)$ time. (To get a constant query time we need one of the more sophisticated range maxima data structures mentioned there.) The size of this data structure is linear in n.

If A is a double staircase matrix (so the defined entries of each column are also consecutive) then we showed in Section 3.3.2 how to construct a data structure so that we can find the maxima in any submatrix of A defined by a prefix of the rows and a prefix of the columns, in $O(\log^2 n)$ time. This data structure takes $O(n\alpha(n) \log n)$ space and $O(n\alpha(n) \log^2 n)$ time to construct.

The latter data structure can be easily extended so that it can find the maxima in any contiguous submatrix of A. The bounds remain the same. Since our application does not require general submatrix queries, we leave out the details of this extension, which are straightforward. Nevertheless, hoping that applications of this extended structure will arise in the future, we state the result explicitly:

Theorem 4.1. Given a double-staircase totally monotone $n \times n$ matrix A, one can preprocess it, in $O(n\alpha(n) \log^2 n)$ time, into a data structure of size $O(n\alpha(n) \log n)$, so that, given any contiguous submatrix B of A, the maximum entry of B can be computed in $O(\log^2 n)$ time.

References

[1] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor, and R. E. Wilber, Geometric applications of a matrix-searching algorithm, *Algorithmica* 2 (1987), 195–208.

[2] A. Aggarwal, and S. Suri, Fast algorithms for computing the largest empty rectangle, in *Proc. 3rd Annu. Sympos. Computational Geometry*, 1987, 278–290.

[3] M. J. Atallah and G. N. Frederickson, A note on finding a maximum empty rectangle, *Discrete Applied Math.* 13 (1986), 87–91.

[4] J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, and S. Sarvattomananda, Recognizing the largest empty circle and axis-parallel rectangle in a desired location, in http://arxiv.org/abs/1004.0558, 2010.

[5] H. S. Baird, S. E. Jones, and S. J. Fortune, Image segmentation by shape-directed covers, in *Proc. 10th Internat. Conf. Pattern Recognition*, Vol. 1, 1990, 820–825.

[6] M. A. Bender and M. Farach-Colton, The LCA problem revisited, in *Proc. 4th Latin American Sympos. Theoretical Informatics*, 2000, 88–94.
[7] R. P. Boland and J. Urrutia, Finding the largest axis-aligned rectangle in a polygon in $O(n \log n)$ time, in Proc. 13th Canad. Conf. Comput. Geom, 2001, 41–44.

[8] G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen, Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time, in http://arxiv.org/abs/1105.2228, 2011.

[9] J. Chaudhuri, S. C. Nandy, and S. Das, Largest empty rectangle among a point set, J. Algorithms 46 (2003), 54–78.

[10] B. Chazelle, R. L. Drysdale III, and D. T. Lee, Computing the largest empty rectangle, SIAM J. Comput. 15 (1986), 300–315.

[11] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (1986), 133–162.

[12] L. P. Chew and R. L. Drysdale III, Voronoi diagrams based on convex distance functions, in Proc. 1st Annu. Sympos. Computational Geometry, 1985, 235–244.

[13] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd Edition, Springer-Verlag, Berlin 2008.

[14] J. Hershberger, Finding the upper envelope of n line segments in $O(n \log n)$ time, Inform. Process. Letts. 33 (1989), 169–174.

[15] M. M. Klawe, Superlinear bounds for matrix searching problems, J. Algorithms 13 (1992), 55–78.

[16] M. M. Klawe and D. J. Kleitman, An almost linear time algorithm for generalized matrix searching, SIAM J. Discrete Math. 3 (1990), 81–97.

[17] D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2 (1987), 9–31.

[18] A. Naamad, D. T. Lee, and W. L. Hsu, On the maximum empty rectangle problem, Discrete Appl. Math. 8 (1984), 267–277.

[19] S. Nandy, A. Sinha, and B. Bhattacharya, Location of the largest empty rectangle among arbitrary obstacles, in Foundation of Software Technology and Theoretical Computer Science (P. Thiagarajan, ed.), Lecture Notes in Computer Science, Vol. 880, Springer-Verlag, Berlin / Heidelberg, 1994, 159–170.

[20] M. Sharir, and P. K. Agarwal, Davenport-Schinzel Sequences and their Geometric Applications, Cambridge University Press, New York, NY, 1996.

[21] J. D. Ullman, Computational Aspects of VLSI, W. H. Freeman & Co., New York, NY, 1984.