Eigenvalue gaps for the Laplacian on hypersurfaces of the sphere

Demetrios A. Pliakis

February 14, 2014

Abstract

We provide lower estimates for the eigenvalues of the laplacian for hypersurfaces of the round sphere.

Introduction

The laplacian acting on functions on a compact riemannian manifold exhibits a discrete spectrum of positive eigenvalues counted with multiplicity:

\[0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \cdots \]

We provide an estimate for the gaps between eigenvalues:

\[\lambda_{i+1} - \lambda_i \geq C_i > 1 \]

in the case of a convex analytic hypersurface \(H \subset (S^{n+1}, e) \), \(n > 1 \) in the round sphere with constant depending on its second fundamental form. The problem appears interesting in the construction of minimal hypersurfaces with singularities and \(H \) is then a minimal hypersurface in \((S^{n+1}, e)\).

The harmonic extension method

We will apply the method of harmonic extension from \([CW]\) or \([SY]\) Let \(f : H \to \mathbb{R} \) be a function defined on a smooth hypersurface \(H \subset (S^{n+1}, e) \), dividing \((S^{n+1}, e)\) in two regions \(S_1, S_2 \) that we denote simply by \(S \). Let \(U : S \to \mathbb{R} \) be the solution of the following boundary value problem:

\[\Delta_S U = 0, \quad U|_H = f \]

Then we have that if \(N \) is chosen as the unit normal to \(H \) and \(H \) its mean curvature then

\[0 = \Delta_S U = N(NU) + \Delta_H f + nHNU \]

Hence we have that by an integration by parts

\[\int_S \Delta_S |\nabla U|^2 = -\int_H w(4\Delta_H f + 2nHw) - 2\int_H h(\nabla f, \nabla f) \] (1)

where \(w(x) = N(U) \). This identity will be the basis of our considerations. We assume that \(f \) possesses the unique continuation property on \(H \) while \(u \) is analytic in \(S \). Then \(N \) the normal vector field to \(H \) that satisfies the unique continuation property (e.g. for a minimal variety) then the set the analytic weight function \(w(x) \) and

\[N = \{ x \in H/w(x) = 0 \} \]

is a recitifiable set of finite multiplicity in the hypersurface \(H \subset (S^{n+1}, e) \). Actually Sard’s lemma asserts that for almost all \(\eta \in (0, \eta_0) \) the sets

\[N_\eta = \{ x \in H/|w(x)| \leq \eta \} \]

are smooth. Then we have the subsets

\[H_\pm = \{ x \in H/ \pm w(x) > 0 \} \]

where we need to choose \(f \) in order to estimate the integrals \(\int_{H_\pm} w \Delta_{H_\pm} f \). We will glue the two functions \(f_\pm \) with a partition of unity \(\chi_\pm \) and transition area a tubular neighbourhood \(N_\eta \) of \(N \) of thickness \(\eta \) after the Lojasiewicz inequality for analytic functions, adapted to the case of an analytic submanifold of the sphere \((S^{n+1}, e)\). Indeed we have that the localizing functions satisfy

\[\text{supp}(\chi_\pm) \subset H_\pm, \quad \chi_\pm = 1 \text{ in } H_\pm \backslash N_\eta = H_{\pm, \eta}, \quad |\nabla \chi_\pm| + \tau|\nabla^2 \chi_\pm| \leq \frac{C}{\tau} \]

for the parameter \(0 < \tau < 1 \) controlling the transition regions.
The choice of \(f \). We select as
\[
f = \frac{(u^2 + \alpha^2)}{(v^2 + \beta^2)}
\]
where \(u, v \) is the eigenfunction corresponding to the eigenvalue \(\lambda, \mu \) and the \(\pm \) sign depends on the \(\mathcal{H}_\pm \) region.

This function obeys the differential equation on \(\mathcal{H}, \delta = \lambda - \mu \)
\[
\Delta_H f = 2 [\delta + \Pi] f
\]
where
\[
\Pi = \frac{\lambda \alpha^2}{u + \alpha^2} - \frac{\mu \beta^2}{u^2 + \beta^2} - \frac{4uv \nabla u \cdot \nabla v}{(u^2 + \alpha^2)(v^2 + \beta^2)} + \frac{|\nabla u|^2}{u^2 + \alpha^2} - \frac{\zeta |\nabla v|^2}{v^2 + \beta^2}, \quad \zeta = \frac{b^2 - 5v^2}{v^2 + b^2}, \quad \zeta_0 \leq \zeta \leq 1
\]
where \(\zeta_0 \) is determined by \(\beta \).

A. The \(\mathcal{H}_{+, \eta} \) region. In order to bound \(\Pi \) we appeal to Harnack and Berstein inequalities proved in \([P2] \). Specifically, exhausting the region \(\mathcal{H}_\eta \) through \(0 < \theta < 1 \):
\[
\mathcal{H}_\eta = \bigcup_{j=1}^N G_j, \quad G_j = \{ x \in \mathcal{H}/\eta \theta^j \leq w(x) \leq \eta \theta^j \}
\]

We have that for numerical constants \(c_1, c_2 > 0, d \geq 1 \) and near \(|u| \geq \rho \) and \(|v| \geq \rho \):
\[
\sup_{\mathcal{H}_\eta} |\nabla u| \leq c_1 (\eta \theta^j)^{\frac{d}{d-2}} \lambda^{d+n+1} \rho
\]
\[
\sup_{\mathcal{H}_\eta} |\nabla v| \leq c_2 (\eta \theta^j)^{\frac{d}{d-2}} \mu^{d+n+1} \rho
\]

If we assume that the hypersurface is real analytic - it holds for the minimal case- then the \(\rho \) tubular neighbourhood of the nodal sets of \(u, v \) varies as \(\rho \lambda^{n-1} \), \(\rho \mu^{n-1} \), and hence selecting \(\rho \) analogously we can make this arbitrarily small. Young’s inequality allows us to write that:
\[
\Pi \geq \frac{\lambda \alpha^2 + (1 - 2 \epsilon) |\nabla u|^2}{u^2 + \alpha^2} - \frac{\mu \beta^2 + \left(\frac{2}{d} + \zeta \right) |\nabla v|^2}{v^2 + \beta^2}
\]

Careful consideration of the preceding bounds allows us to select \(\alpha, \beta, \theta \) so that for \(n > 2 \)
\[
\theta = \frac{1}{(2\mu)^{\frac{n-2}{d}} \mu^{n(n-2)}}, \quad \alpha = 2 \sqrt{c_1 (\eta \theta^j)^{\frac{d}{d-2}} \lambda^{d+n} \rho}, \quad \beta = c_3 \rho
\]

The \(n = 2 \) case requires that
\[
\theta = \frac{1}{\mu}, \quad \alpha = 2 \sqrt{c_1 (\eta \theta^j)^{d} \lambda^{2d} \rho}, \quad \beta = c_3 \rho
\]

We conclude that
\[
\Pi \geq \frac{1}{2} \delta
\]

B. The region \(\mathcal{H}_{-, \eta} \). In this part of the bounding hypersurface \(\mathcal{H} \) we choose \(-f\) and use the same tricks as before.

C. The region \(\mathcal{N}_\eta \) Selecting accordingly we have that for \(\chi_0 = 1 - \chi_- - \chi_+ \) we have that
\[
\int_{\mathcal{N}_\eta} \chi_0 w \Delta_H f \leq C \eta^\ell
\]
for suitable \(\ell \).
Gluing patches together Finally we have that for appropriate choice of η relative to ϵ we have that:

$$4\delta \int_{\mathcal{H}_{\pm,\eta}} wf - \eta - 2 \int_{\mathcal{H}} (2Hw^2 + h(\nabla f, \nabla f)) \geq 2n \int_{\mathcal{H}} wf$$

Therefore we have that for minimal hypersurfaces then $H = 0$ and selecting $\mathcal{S}_1, \mathcal{S}_2$ so that $h(\nabla f, \nabla f) > 0$ we conclude that:

$$\delta > \frac{n}{2}$$

References

[CW] Choi, Wang A first eigenvalue estimate for minimal hypersurfaces, Jour. Diff. Geom., 18, (1983), 559-563

[DF] Donnelly H., Fefferman C., Nodal sets of eigenfunctions in riemannian manifolds, Invent. Math., 93, (1988), 161-183

[P1] Pliakis D., A generalized Hardy’s inequality, to appear in Asian Journal of mathematics

[P2] Pliakis D., The size of the nodal sets for the eigenfunctions of the smooth laplacian: \texttt{arXiv:1304.7143}

[SY] Schoen R., Yau S. T. Lectures on Differential Geometry, Int’l Press, 1994