The baryon content of the Universe

Massimo Persic 1 and Paolo Salucci 2

1 Observatory Astronomic, I-34100 Trieste, Italy
2 SISSA/ISAS, via Beirut 4, I-34014 Trieste, Italy
E-mail: persic@ts.astro.it, salucci@sissa.it

Published, MN, 1992, 258, 14p

ABSTRACT

We estimate the baryon mass density of the Universe due to the stars in galaxies and the hot gas in clusters and groups of galaxies. The galaxy contribution is computed by using the Efstathiou, Ellis & Peterson luminosity function, together with van der Marel and Persic & Salucci’s mass-to-light versus luminosity relationships. We find $\Omega_b^{\text{stars}} \simeq 0.002$. For clusters and groups we use the Edge et al. X-ray luminosity function, and Edge & Stewart and Kriss, Cioffi & Canizares’ (gas mass) - luminosity relations. We find $\Omega_b^{\text{gas}} \simeq 0.001$. The total amount of visible baryons is then $\Omega_b \simeq 0.003$, i.e. less than 10 per cent of the lower limit predicted by standard primordial nucleosynthesis, implying that the great majority of baryons in the Universe are unseen.

Key words: galaxies: fundamental parameters - intergalactic medium - cosmology: observations - dark matter.

1 INTRODUCTION

The estimation of the baryon mass density of the Universe essentially involves, for each class of objects having a visible baryon content, an integration over luminosity of the product of the luminosity function (LF), $\phi(L)$, the luminosity, L, and the mass-to-light ratio for the baryon component, M_b/L, according to the expression

$$\rho_b = \sum T \int \phi(L) L \left(\frac{M_b}{L} \right) dL,$$

where T represents E/S0 galaxies, spiral galaxies, clusters and superclusters, and $\phi(L)$ and M_b/L refer to the relevant class of objects. In the case of galaxies, equation (1) deserves some comments. First, let us note that the baryon mass-to-light ratio corresponds to the mass-to-light ratio of stars, and not to the dynamical one which usually includes dark matter (DM). In fact, the presence of DM in the internal parts of spiral galaxies is very evident (Persic & Salucci 1991), so we cannot ignore its contribution to the mass of a galaxy. In addition, the importance of DM is a function of luminosity: low-luminosity galaxies are affected more strongly than high luminosity ones (Persic & Salucci 1988, 1990). Therefore, it is essential that the mass-to-light ratio of the visible baryon content be the quantity that enters equation (1). Furthermore, we emphasize that different populations are present in galaxies of different Hubble types. These have different LFs, different mean M_b/L ratios, and different scaling properties of (M_b/L) with luminosity. Finally, note that, since ρ_b scales as h^2_{20} (see equation 1), when estimated by dynamical arguments the baryon density parameter $\Omega_b = \rho_b/\rho_c$ with $\rho_c = 5 h_{20}^2 \times 10^{-30} g\,cm^3$, the critical density is independent of h_{20}.

In practice, the detailed information required by equation (1) has not previously been available. Standard estimates of ρ_b have assumed a typical value for the visible mass-to-light ratio of galaxies, usually inferred from the observed dynamics and supposed to be representative for galaxies of all luminosities and Hubble types. Then equation (1) reduces to

$$\rho_b = L \left(\frac{M_b}{L} \right),$$

where L is the galaxy luminosity density obtained by integrating the galaxy LF over luminosity and $< M_b/L >$ is an assumed mass-to-light ratio. In addition, the hot gas in clusters and groups of galaxies has often been neglected in the computation of Ω_b.

For purposes of illustration, in Table 1 we summarize previous calculations of Ω_b according to equation (2). Note that in most cases the dynamical rather than the stellar mass-to-light ratio is used. The range in the adopted values found in the literature does not reflect observational uncertainties but, rather, real differences in stellar populations, in proportions of DM and in the reference radius where the baryon density is measured.

1 Throughout the paper, $h_{20} = H_0/(50\,\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1})$, where H_0 is the Hubble constant.
Table 1. Notes.\(^{(a)}\) Adopted luminosity density, in \(10^5 h_{50} L_\odot M_{\text{pc}}^{-3}\) (from \([1]\) Peebles 1971; \([2]\) Shapiro 1971; \([3]\) Kirshner, Oemler & Schechter 1979; \([4]\) Schechter 1976; \([5]\) unspecified; \([6]\) Efstathiou et al. 1988; \([7]\) unspecified).\(^{(b)}\) Adopted mass-to-light ratio, in solar units.\(^{(c)}\) Type of adopted mass-to-light ratio, classified according to its procedure of determination.

Author	\(L^{(a)}\)	\(< M/L >^{(b)}\)	Type\(^{(c)}\)	\(\Omega_b\)
Peebles 1971	1.5\(^{[1]}\)	10 \(h_{50}\)	dynamical	0.02
Gott et al. 1974	0.5\(^{[2]}\)	(2.5 – 7) \(h_{50}\)	dynamical	\(\geq 0.001\)
Olive et al. 1981	2 \(^{[3]}\)	(4 – 10) \(h_{50}\)	dynamical	0.003-0.007
Boerner 1988	0.5\(^{[4]}\)	(7 – 10) \(h_{50}\)	4.8 dynamical	0.011-0.016
Hogan 1990	1.5\(^{[5]}\)	2	unspecified	0.008\(^{h_{50}}\)
White 1990	1\(^{[6]}\)	1.5	stellar	0.003\(^{h_{50}}\)
Kolb & Turner 1990	1.2 \(^{[7]}\)	\(\leq 5 \ h_{50}\)	dynamical	\(\leq 0.01\)

2 THE MEAN BARYON DENSITY FROM GALAXIES AND CLUSTERS

In all cases, the LF will have the usual Schechter (1976) form:

\[
\phi(L) \frac{dL}{L_*} = \phi_\star \left(\frac{L}{L_*} \right)^{-\alpha} \frac{dL}{L_*} \tag{3}
\]

where \(\phi_\star\) is a normalization constant, \(\alpha\) is the slope of the LF at low luminosities, and \(L_*\) is the luminosity corresponding to the ‘knee’ of the LF; and the baryon mass-to-light versus luminosity relation will be a power law:

\[
\frac{M_b}{L} = a \left(\frac{L}{L_*} \right)^\eta \tag{4}
\]

where \(A\) the mass-to-light ratio at the characteristic luminosity \(L_*\). Inserting equations (3) and (4) into equation (2) we get

\[
\rho_b = \phi_\star L_* A \int_{x_{\min}}^{x_{\max}} x^{-\alpha + \eta} e^{-x^2} dx \tag{5}
\]

where \(x = L/L_*\) and \(x_{\min}\) and \(x_{\max}\) represent the observed minimum and maximum luminosities for a given class of objects. The values of the parameters \(\phi_\star, \alpha, L_*, x_{\min}, x_{\max}, A\) and \(T\) are observationally known and will be chosen accordingly for each class of objects. We shall treat separately elliptical (and S0) galaxies, spiral galaxies, groups and clusters of galaxies.

2.1 Ellipticals

From Efstathiou et al.’s (1988) field-galaxy LF we get \(\phi_\star = 8.5 \times 10^{-4} \ h_{50}^3 M_{\odot}^{-1} M_{\text{pc}}^{-3}\), \(\alpha = 0.48\) and \(L_* = 3.3 \times 10^{10} h_{50}^2 L_\odot\); we take \(x_{\min} = 0.04\) and \(x_{\max} = 8\). There is strong evidence that ellipticals do not have DM inside their optical radii, so their dynamical masses at the optical radius and their stellar masses coincide (see Djorgovski & Davis 1987). From van der Marel (1991) we have \(A = 4h_{50}^2 M_\odot/L_\odot\) and \(\eta = 0.35\) (all values refer to the B band). Inserting these values into equation (5), the integral takes a value of 0.97, and we then get \(\rho_b = 7.4 \times 10^{-33} h_{50}^2 g\ cm^{-3}\). Thus the baryon contribution of elliptical galaxies to the mean density is

\[
\Omega_b^{(E+S0)} = 1.5 \times 10^{-3} \ (E + S0\ galaxies). \tag{6}
\]

2.2 Spirals

From Efstathiou et al. (1988) we get \(\phi_\star = 1.1 \times 10^{-3} h_{50}^3 M_{\odot}^{-1} M_{\text{pc}}^{-3}\), \(\alpha = 1.24\) and \(L_* = 4.2 \times 10^{10} h_{50}^2 L_\odot\); we take \(x_{\min} = 0.01\) and \(x_{\max} = 8\). Dark and visible matter are already well mixed in the optical regions of spirals (e.g. Persic & Salucci 1991). From Persic & Salucci (1990) dynamical disk/halo mass decomposition of rotation curves, we get \(A = 1.2h_{50}^2 M_\odot/L_\odot\) and \(\eta = 0.35\) (all values refer to the B band). Inserting these values into equation (5), the integral takes a value of 0.94, so we get \(\rho_b = 3.5 \times 10^{-33} h_{50}^2 g\ cm^{-3}\), corresponding to

\[
\Omega_b^{(S)} \simeq 0.7 \times 10^{-3} \ (S\ galaxies). \tag{7}
\]

2.3 Rich clusters

The hot, X-ray emitting, diffuse intracluster gas is a distinctive dominant baryon component of clusters (e.g. Sarazin 1986). From Edge et al. (1990) we get \(\phi_\star = 6.9 \times 10^{-8} h_{50}^2 M_{\odot}^{-1} M_{\text{pc}}^{-3}\), \(\alpha = 1.65\) and \(L_* = 8.1 \times 10^{44} h_{50}^{-2}\ erg/sec;\) we take \(x_{\min} = 0.012\) and \(x_{\max} = 2.5\); relative to the gas mass within 0.5\(h_{50}^{-1}\) Mpc radius, from Edge & Stewart (1991a) we take \(A = 50 h_{50}^{-0.5}\ erg^{-1}\ sec\) and \(\eta = -0.62\) (All the X-ray data are relative to the (2 - 10) keV band). Inserting the above values into equation (5), the integral takes a value of 7.6, corresponding to (a contribution to) \(\Omega_b = 1.4 \times 10^{-4}\). This estimate refers to the gas mass contained within 0.5\(h_{50}^{-1}\) Mpc radius (i.e., within - 2 optical
core radii, see Bahcall 1977). In, at least some cases, however, there is evidence (Jones & Forman 1984) for significant amounts of gas at larger distances, $\sim 3 h_{50}^{-1} \text{Mpc}$. This distance is a good measure of the typical virialization radius of rich clusters [e.g., from a recent study of a large rich-cluster sample we have $R_{\text{vir}} = (3.0 \pm 0.2) h_{50}^{-1} \text{Mpc}$ (Biviano et al. 1992)], and corresponds to the Abell (1958) radius, i.e. the radius roughly encompassing most of the cluster’s member galaxies. The hot-gas surface-brightness profile can be described in terms of the so-called β-model,

$$S(r) = S_0 \left[1 + \left(r/a\right)^2\right]^{-\beta+1/2}$$

with a (the core radius) and β as free parameters, which implies a de-projected spatial gas density distribution of the form

$$\rho_{\text{gas}}(r) = p_0 \left[1 + \left(r/a\right)^2\right]^{-3\beta/2}$$

(e.g., Henriksen & Mushatzky 1985; David et al. 1990). Fits to Einstein IPC data far a survey of clusters give for β an average value of $<\beta> = 0.66 \pm 0.10$ (see Jones & Forman 1984; David et al. 1990). Therefore, on average, beyond a few core radii the hot-gas density falls off as $\rho_{\text{gas}} \propto r^{-2}$, and the mass in gas rises linearly with radius. We therefore estimate that the hot-gas contribution of rich clusters from within the Abell radius is

$$\Omega_0^{\text{cl, gas}} \simeq 8.6 \times 10^{-4} h_{50}^{-1.5} \text{ (intracluster gas)} \quad (8)$$

In addition to the diffuse gas, further baryons in clusters are contributed by the stellar component of the member galaxies. However, recent direct estimates (see Edge & Stewart 1991b) indicate that, in the cores of clusters, the stellar mass is up to a factor of 3 smaller than the gas mass. Further out there are indications that the galaxy distribution drops more rapidly than the gas (e.g., Eyles et al. 1991), so that within a few core radii the stellar mass is significantly lower than the gas mass (roughly 10 per cent for a stellar mass-to-light ratio of 4; see David et al. 1990), and at the Abell radius the stellar component is negligible compared to the gas mass.

2.4 Poor clusters and groups

A population of poor clusters and groups of galaxies must certainly contribute to the baryon content. The information on the LF and the gas content at these mass scales is quite scanty. We extrapolate the Edge et al. (1990) cluster X-ray LF through the range of luminosities typical far these structures, $41 \leq \log L(2-10\text{keV}) \leq 43$ (see Kriss, Cioffi & Canizares 1983; Bahcall, Harris & Rood 1984; see Bahcall 1979 for a discussion of the continuity of cluster and group LFs). Thus in equation (5) we take the parameters of the Edge et al. (1990) cluster LF (see above), with $x_{\text{min}} = 1.2 \times 10^{-4}$ and $x_{\text{max}} = 0.012$. Relative to the hot-gas content within $0.5 h_{50}^{-1} \text{Mpc}$ radius, the Einstein data of Kriss et al. (1983) imply $A = 65 h_{50}^{-0.5}$ and $\eta = -0.5$ (in the 0.5-4.5 keV band). The integral in equation (5) takes a value of 13, so we derive $p_0 = 1.6 \times 10^{-33} \text{ cm}^{-3} \text{ s}^{-1} h_{50}^{-3} \text{ corresponding to a contribution to } \Omega_0 \simeq 3.2 \times 10^{-4} h_{50}^{-1.5}$. Allowing far any hot gas extending out to a typical group virialization radius ($\sim 1 h_{50}^{-1} \text{Mpc}$, see Pisani 1990), by the same argument used for the rich clusters we get

$$\Omega_0^{\text{gr,gas}} \simeq 6.4 \times 10^{-4} h_{50}^{-1.5} \text{ (intragroup gas)} \quad (9)$$

3 DISCUSSION

From equations (6)-(9), we conclude that the combined baryon contribution of galaxies and clusters to the mean density is:

$$\Omega_b \simeq 2.2 \times 10^{-3} + 1.5 \times 10^{-3} h_{50}^{-1.5} \quad (10)$$

As $1 \leq h_{50} \leq 2$ with a currently favored value of $= 1.5$ (e.g., Pierce & Tully 1988), the cluster/group density contribution (see equations 8 and 9) is probably $\Omega_{\text{gas}} \simeq 0.001$. The estimated contribution of the stellar populations of galaxies (see equations 6 and 7) is $\Omega_\ast \simeq 0.002$. This value is in very good agreement with the cosmological mass density of the damped Lyα system, which are un likely to be protogalactic discs and would give a present-day contribution of $\Omega_b(\text{Lyα}) \sim 0.002$ (see Wolfe 1988). Note that the explicit inclusion of the general trend of decreasing stellar mass-to-light ratio with decreasing luminosity and the accounting for different morphological classes has the effect of reducing the estimated baryon contribution of galaxies. In fact, the often-assumed values of $M_b/L_B = 8 h_{50}^{-1} \text{ for ellipticals and } M_b/L_B = 3 h_{50}^{-1} \text{ for spirals actually refer only to the brightest objects (i.e. } L_B > 6 L_\ast)$. Assuming such values as typical would overestimate the baryon contribution from stars by a factor of 2. As an example (of it), let us take our mass-to-light ratios at L_\ast as the typical values (i.e. 4 for ellipticals and 1.2 for spirals) to be used in equation (2). Let us also use separate LFs to compute the luminosity densities due to ellipticals and spirals (i.e., $0.25 \times 10^8 L_{8-B_B} h_{50}^2 \text{ Mpc}^{-3}$ and $0.54 \times 10^8 L_{8-B_B} h_{50}^2 \text{ Mpc}^{-3}$ respectively, from Efostathioiu et al. 1988). Then equation (2) would be written as

$$\rho_0 = [\mathcal{L} < (M_b/L_B)>]_{E/SO} + [\mathcal{L} < (M_b/L_B)>]_S$$

$$= (0.25 \times 10^8 \times 4) + (0.54 \times 10^8 \times 1.2) h_{50}^2 M_\odot / \text{Mpc}^{-3}$$

Thus we would find (from the above equation) contributions to $\Omega_b,\text{galaxies}$ of 1.4×10^{-3} and 0.9×10^{-3} for the two classes separately. This example shows that the discrepancy between some previous estimates of Ω_\ast (claimed to agree with nucleosynthesis limits) and our own estimate arises mainly because these calculations used dynamical and unrealistic mass-to-light ratios and, to a lesser extent, because they did not use separate LFs for different morphologies. Further baryons, in the form of hot ($T \geq 10^7 K$) diffuse gas, could be supplied by superclusters. However, the observational limit to any diffuse X-ray emission from candidate supercluster cores (see Persic et al. 1990), alongside the spatial frequency of superclusters (i.e., $\sim 10^8 h_{50}^{-1} \text{Mpc}^{-3}$), indicates a negligible contribution:

$$\Omega_0^{\text{SC,gas}} \sim 10^{-5}$$

Another reservoir of baryons could be cold diffuse HI gas in the local intergalactic medium (IGM). However, the absence of the Gunn-Peterson (1965) trough on local scales places a severe upper bound to any such contribution: $\Omega_{HI} \lesssim 5 \times 10^{-7}$ (See Davidsen et al 1977)

Therefore we derived that the expected value of Ω_0 in equation (10) gives a close representation of the actual visible baryon content of the local Universe. (Fabian’s) recent estimate of the baryon density in the Shapley supercluster, $\Omega_0 \simeq 0.18 h_{50}^{-1.5}$ is not necessarily in contradiction with our estimate. In fact, Fabian’s high value re-
lates to a most exceptional region of $\sim 35 h_{50}^{-1} \text{Mpc}$ size and with $\delta \rho/\rho \approx 0.8\Omega_0^{-1}$, while our low value refers to the whole nearby Universe out to a radius of $\sim 300 h_{50}^{-1} \text{Mpc}$ and with $\delta \rho/\rho \sim 0$. Our value, $\Omega_0 \approx 0.003$, is substantially lower than the prediction of standard cosmic nucleosynthesis, $0.04 < \Omega_0 h_{50}^2$ with a probable value of $\Omega_0 \approx 0.06$ (e.g., Kolb & Turner 1990; Peebles et al. 1991). Comparing the observed and the predicted baryon abundances, we conclude that the stars and gas of galaxies and clusters/groups account for only ≤ 10 per cent of the primordially synthesized baryons (see also Hogan 1990; Kolb & Turner 1990). Where are the 90 per cent of missing baryons? We have only taken an inventory of the visible baryons associated with visible structures. Additional baryons, unaccounted for by the present census, can either be clumped in some dark form, for instance forming dark haloes around galaxies, or be distributed in a diffuse ionized background. [Note that the diffuse DM associated with clusters, exceeding the gas mass by at most a factor of -3 (e.g., Eyles et al. 1991), could not solve the discrepancy with standard nucleosynthesis even if it were completely baryonic.] Let us consider each of the two possibilities in turn.

(i) Baryons in haloes. The dark haloes of spiral galaxies may well extend out to 10-20 times the size of the optical discs. Thus it is not difficult to conceive that, by integrating the dynamical mass-to-light ratio of galaxies (computed at such extended radii) over the LP, the nucleosynthesis value of $\Omega_0 \approx 0.06$ might be easily reached. An attractive way of hiding the missing baryons, therefore, is to assume that they constitute the DM in galaxy haloes. This possibility may find support from the evidence that cooling flows may be producing baryonic DM in the form of low-mass stars or brown dwarfs (e.g., Fabian, Nulsen & Canizares 1984). Based on cooling flow analogies, Thomas & Fabian (1990) have argued that baryonic DM only forms on fairly large mass-scales where gas cooling is quasi-static, while Ashman (1990) has suggested that baryonic DM forms on galactic and subgalactic scales, following rapid gas cooling (Ashman & Carr 1991).

(ii) ionized IGM. The second possibility is to suppose that galaxy formation is extremely inefficient, so that only 10 per cent of gas in the Universe is now in collapsed structures such as galaxies. This could arise if gas was never incorporated into galaxies, or if gas was expelled from protogalaxies by supernova explosions or galactic winds (Bookbinder et al. 1980). In this scenario, most baryons in the Universe now constitute a smooth ionized IGM, in agreement with the lack of any Gunn-Peterson trough in the spectra of quasars both (see Davis et al. 1980; Davis & Peebles 1983) supports the conventional view on the need for non-baryonic extra dark matter.

4 ACKNOWLEDGMENTS

We thank Dennis Sciama for stimulating conversions that motivated us to undertake this calculation and for continuous encouragement. We also thank Keith Ashman for discussing with us the role of baryonic dark matter. Finally, we acknowledge the referee’s useful advice which has helped us to improve the presentation of this work.

5 REFERENCES

Abell, G. O., 1958. Astrophys. J. Suppl., 3, 211.
Ashman, K. M., 1990. Astrophys. J., 359, 15.
Ashman, K. M. & Carr, B. J., 1991. Mon. Not. R. Astr. Soc., 249, 13. Bahcall, N. E., 1977. Ann. Rev. Astr. Astrophys., 15, 505.
Bahcall, N. E., 1979. Astrophys. J., 232, 689.
Bahcall, N. E., Harris, D. E. & Rood, H. J., 1984. Astrophys. J. Lett., 284, L29.
Biviano, A., Girardi, M., Giuricin, G., Mardirossian, F. & Mezzetti, M., 1992. Astrophys. J., in press.
Bookbinder, J., Cowie, L. L., Krolik, J. H., Ostriker, J. P. & Rees, M., 1980. Astrophys. J., 237, 647.
Borner, G., 1988. The Early Universe, Springer-Verlag, Berlin.
Carr, B. J., 1990. Comm. Astrophys., 14, 257.
David, L. P., Arnaud, K. A., Forman, W. & Jones, c., 1990. Astrophys. J., 356, 32.
Davidson, A. F., Hartig, G. F. & Fastie, W. O., 1977. Nature, 269, 203.
Davis, M. & Peebles, P. J. E., 1983. Astrophys. J., 267, 465.
Davis, M., Toorly, J., Huchoa, J. & Latham, D. W., 1980. Astrophys. J. Lett., 238, L113.
Djorgovski, S. & Davis, M., 1987. Astrophys. J., 313, 59.
Edge, A. C. & Stewart, G. C., 1991a. Mon. Not. R. astr. Soc., 252, 414.
Edge, A. C. & Stewart, G. C., 1991b. Mon. Noi. R. astr. Soc., 252, 428.
Edge, A. c., Stewart, G. c., Fabian, A. C. & Arnaud, K. A., 1990. Mon. Not. R. astr. Soc., 245, 559.
Efstathiou, G., Ellis, R. S. & Peterson, B. A., 1988. Mon. Not. R. astr. Soc., 232, 431.
Eyles, C. J. et al., 1991. Astrophys. J., 376, 273.
Fabian, A. C., 1991. Mon. Not. R. astr. Soc., 253, 91p.
Fabian, A. c., Nulsen, P. E. J. & Canizares, C. R., 1984. Nature, 311, 733.
Gott, J. R., Gunn, J. E., Schramm, D. N. & Tinsley, B. M., 1974. Astrophys. J., 194, 543.
Gunn, J. E. & Peterson, B. A., 1965. Astrophys. J., 142, 1633.
Henriksen, M. J. & Mushotzky, R. F., 1985. Astrophys. J., 292, 441.
Hogan, C. J., 1990. In: Baryonic Dark Matter, p. 1, eds Lynden-Bell, B. & Gilmore, G. L., Kluwer, Dordrecht.
Jones, C. & Forman, W., 1984. Astrophys. J., 376, 38.
Kirshner, R. P., Oemler, A., Jr & Schechter, P. L., 1979. Astr. J., 84, 951.
The baryon content of the Universe

Kolb, E. W. & Turner, M. S., 1990. In: The Early Universe, AddisonWesley Publishing Company, California.

Kriss, G. A., Cioffi, D. F. & Canizares, C. R., 1983. Astrophys. J., 272, 439.

Miralda-Escude, J. & Ostriker, J. P., 1990. Astrophys. J., 350, 1.

Olive, K. A., Schramm, D. N., Steigman, G., Turner, M. S. & Yang, J., 1981. Astrophys. J., 246, 557.

Persic, M. & Salucci, P., 1988. Mon. Not. R. astr. Soc., 234, 131.

Persic, M. & Salucci, P., 1990. Mon. Not. R. astr. Soc., 245, 577.

Persic, M. & Salucci, P., 1991. Astrophys. J., 368, 60.

Persic, M., Jahoda, K., Rephaeli, Y., Boldt, E., Marshall, F. E., Mushotzky, R. F. & Rawley, G., 1990. Astrophys. J., 364, 1.

Pier, M. J. & Tully, R. B., 1988. Astrophys. J., 330, 579.

Pisani, A., 1990. PhD thesis, SISSA, Trieste.

Rephaeli, Y. & Szalay, A. S., 1981. Phys. Lett., 106B, 73.

Sarazin, C. L., 1986. Rev. Mod. Phys., 58, 1.

Sargent, W. L. W. & Steidel, C. C., 1990. In: Baryonic Dark Matter, p. 223, eds Lynden-Bell, D. & Gilmore, G., Kluwer, Dordrecht.

Schechter, P. L., 1976. Astrophys. J., 203, 297.

Sciama, D. w., 1982. Mon. Not. R. astro Soc., 198, 1p.

Shapiro, S., 1971. Astr. J., 76, 291.

Silk, J., Wyse, R. & Shields, G. H., 1987. Astrophys. J. Lett., 322, L59.

Songaila, A., Cowie, L. L. & Lilly, S. J., 1990. Astrophys. J., 348, 371.

Thomas, P. A. & Fabian, A. c., 1990. Mon. Not. R. astr. Soc., 248, 156.

van der Marel, R. P., 1991. Mon. Not. R. astr. Soc., 253, 710.

White, S. D. M., 1990. In: Physics of the Early Universe, Proc. 36th Scottish Universities Summer School in Physics, eds Peacock, J. A., Heavens, A. F. & Davies, A. T.

Wolfe, A. M., 1988. In: QSO Absorption Lines: Probing the Universe, Proc. Space Telescope Science Institute Symp. No.2, p. 297, eds Blades, J. C., Turnshek, D. & Norman, C. A., Cambridge University Press, Cambridge.