DIAGNOSIS OF HEART DISEASE USING AUTOMATA FINITE STATE ALGORITHM

Tony Yudianto Pribadi¹); Kartika Handayani²); Angelina Puput giovani³); Windu Gata⁴);
Masters in Computer Science
STMIK Nusa Mandiri
www.nusamandiri.ac.id
14002410@nusamandiri.ac.id; 14002416@nusamandiri.ac.id; 14002338@nusamandiri.ac.id; windu@nusamandiri.ac.id

(*) Corresponding Author

Abstract - The heart is a vital organ for humans. If our heart has a problem, it is very dangerous considering that many deaths are caused by heart disease. With minimal knowledge and information, it is impossible to maintain a healthy heart. Therefore we need an expert who is an expert on the heart and its various diseases. Based on the facts above, this research was created to help diagnose heart health and anticipate heart disease by designing and implementing a web-based pseudocode. In this application, the concept of Finite State Automata (FSA) is applied to realize and capture patterns of heart health diagnoses. In this application, Finite State Automata (FSA) is applied to read a given input symbol from initial state to final state so that the language can be recognized by the machine. Furthermore, the process will be carried out in accordance with the language being read.

Keywords: Finite State Automata Algorithm, Heart Disease, Pseudocode.

INTRODUCTION

In this modern era, The use of technology or computer science in the world of health is very important, this encourages experts to further develop technology. The computer science component has two main components, first, models and basic ideas about computing, second, engineering techniques for designing computational systems(Saptadi & Marwi, 2016). The expert system is a system that uses human knowledge(Nugroho, 2018). The knowledge is put into a computer and then used to solve problems that usually require human expertise or expertise.

Heart disease is the number one killer disease in the world. One of the diseases that we often encounter is coronary heart disease, besides that many cardiovascular diseases are also found, such as heart infections (endocarditis) and hypertension.(Ramadan & Winata, 2019). Most ordinary people pay very little attention to health, especially heart health. They are reluctant to have their heart health checked because of the lack of service to patients, a lack of medical personnel, especially heart specialists and limited doctor...
working hours. Based on the background of the problems above, a computer application or program is needed that can store the knowledge of an expert to diagnose heart disease and provide consistent, fast and precise results. Based on this opinion, researchers are interested in conducting research related to designing an expert system program (Septiana, 2016) who is able to make a diagnosis and provide accurate and fast solutions to the symptoms of heart disease. The method used is the Finite state Automata algorithm method (Allauzen & Riley, 2018) where Finite State Automata is an abstract machine in the form of a mathematical model system with discrete input and output that can recognize the simplest language (regular language) and can be implemented in real terms where the system can be in one of the a finite number of internal configurations are called state (Wicaksono, Amrizal, & Mumtahana, 2019). In this study, the problem raised was designing a computer application to diagnose heart disease using the Finite State Automata algorithm.

There have been many researches regarding the manufacture of disease diagnosis systems using the Forward Chaining Method to design an application or create a system. In the research entitled "Perancangan Sistem Pakar Diagnosa Penyakit Jantung dengan Metode Forward Chaining" (Nugroho, 2018), "Aplikasi Sistem Pakar Diagnosa Penyakit Pada Anak Bawah Lima Tahun Menggunakan Metode Forward Chaining" (Yanto, Werdiningih, & Purwanti, 2017) and the "Sistem Pakar Diagnosa Penyakit THT" (Lisnawita, Van FC, & Lianda, 2016)

Based on the studies that have been conducted, the researchers will discuss the application of the diagnosis of heart disease using the Finite State Automata algorithm. This system is designed to make it easier for users to check symptoms of heart disease easily and quickly.

This research is expected to provide the following benefits: For the general public to know in advance the early symptoms of heart disease so that they can take appropriate action to deal with the disease without the help of a heart disease specialist. For doctors who specialize in heart disease, this system can be used as an experienced assistant and relieve the workload based on the symptoms felt by the patient.

MATERIALS AND METHODS

The research that was carried out was completed through stages which were divided into three stages (Yusri, 2015), namely: (1) Needs analysis and data collection in the form of symptoms of heart disease, (2) System design (3) System implementation.

Figure 1 Research Methodology

The research stages, starting with the needs analysis and data collection stage, are collecting and analyzing the symptoms caused by heart disease through literature studies, while the data is collected to build the system. At the stage of making the system design, the use of finite state automata is applied to diagnose heart disease in the form of a flowchart (Nuraini, 2015). The next stage is the implementation and testing of the system, at this stage the system implementation is carried out in the form of a program and system testing and analysis of the implementation of the system that has been made are carried out, whether it is in accordance with the concept of diagnosing heart disease using finite state automata, if there are still errors then it is done improvements so as to get better results.

The system to be built to diagnose heart disease is limited to 7 types and their respective symptoms as shown in Table 1

No.	Symptoms	Heart disease	Ischemic heart disease	Heart failure	Hypertensive heart disease	Heart valve disease	Cardiomegaly or hypertrophic heart	
T01	Chest pain	X						
T02	Left Shoulder feels bad	X						
T03	A cold sweat	X	X					
T04	Out of breath	X	X	X				
No.	Symptoms	Coronary heart disease	Heart muscle disease (cardiomyopathy)	Ischemic heart disease	Heart failure	Hypertensive heart disease	Heart valve disease	Cardiomegaly or hypertrophic heart
-----	-------------------------------	------------------------	---------------------------------------	------------------------	--------------	--------------------------	-------------------	----------------------------------
T05	Indigestion							
T06	Nausea							
T07	Irregular Heartbeat	X	X					
T08	Dizzy		X		X			
T09	Swollen foot	X	X					
T10	Heart palpitations				X			
T11	Tired Easily	X	X	X				
T12	Pain in the middle chest area	X	X	X	X			
T13	Sweating easily							
T14	Chest Tightening							
T15	Swelling of the heart							
T16	Heart dysfunction							
T17	Bleeding from the nose							
T18	Reddish face							
T19	Gough							
T20	Stomach ache							
T21	Fast heart rate							
T22	Pain in the area of the left arm		X					
T23	Back feels bad							
T24	Headache							

Figure 2 Diagnosis Process of Heart Disease

The design of the Heart Disease Diagnosis Process in Figure 2 is designed to take all the possibilities that can occur during the Heart Disease Diagnosis process. The process in the Figure above will be useful in designing the finite state automata design because all the possibilities are represented. Based on the Design of the Heart Disease Diagnosis Process in the Figure above, a finite state automata design can be made in stages. Every process that occurs is a state / condition in the finite state automata. In designing the diagram for diagnosing heart disease, Non Deterministic Finite Automata (N-DFA) are used. (Gopalakrishnan, 2019). The FSA diagram can be seen in Figure 3.

![FSA Diagram for Diagnosis of Heart Disease](image-url)

Figure 3 FSA Diagram for Diagnosis of Heart Disease

Figure 3 is a design process diagram of the FSA that was built. The FSA flow diagram steps can be described as follows: a) The start state of the state diagram process is a symptom of heart disease; b) Reading the input checking whether
experiencing the displayed symptoms or not; and c) Towards the final state in the form of diagnosis results whether or not you have heart disease by accepting checking input. The results of the diagnosis are in accordance with the symptoms experienced.

RESULTS AND DISCUSSION

This section will discuss in detail the design of the FSA diagram for diagnosing heart disease. This section will also cover the diagnostic process. Based on the symptoms in Table 1 and the design of the FSA diagram, the symptoms will be modeled into a more detailed finite state automata diagram to make a decision. The FSA diagram can be seen in the Figure below.

![Figure 4 N-DFA State Diagram for Diagnosis of Heart Disease](image)

In the N-DFA diagram for diagnosing heart disease, there are alphabets \{a, b\}. These symbols are compared to symptoms experienced and symptoms not experienced, a for having no symptoms and b for experiencing symptoms. Symbol T01-T024 is an existing state, namely symptoms of heart disease, while Symbols P0, P1, P2, P3, P4, P5, P6 and P7 are states that contain diagnostic results which will be explained as follows:

T01	Chest pain
T02	Left Shoulder feels bad
T03	A cold sweat
T04	Out of breath
T05	Indigestion
T06	Nausea
T07	Heartbeat Irregular
T08	Dizzy
T09	Swollen foot
T10	Heart palpitations
T11	Tired Easily
T12	Pain in the middle chest area
T13	Sweat easily
T14	Chest Tightening
T15	Swelling of the heart
T16	Heart function disorders
T17	Bleeding from the heart
T18	Face redness
T19	Cough
T20	Stomach ache
T21	Heartbeat fast
T22	Pain in the area of the left arm
T23	Back feels bad
T24	Headache
P0	Not Heart Disease
P1	Coronary heart disease
P2	Heart muscle disease (cardiomyopathy)
P3	Ischemic heart disease
P4	Heart Failure
P5	Hypertension Heart Disease
P6	Heart Valve Disease
P7	Cardiomegaly or hypertrophic heart

Formally N-DFA in Figure 4 is expressed in 5 tuples or \(M = (Q, \Sigma, \delta, S, F) \), meaning:

- \(Q \) = set of state / position
- \(\Sigma \) = the set of input / input / alphabetical symbols
- \(\delta \) = transition relation
- \(S \) = initial state
- \(F \) = set of final states

So to state Figure 4 is as follows:

\[
Q = (T01, T02, T03, T04, T05, T06, T07, T08, T09, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24), P0, P1, P2, P3, P4, P5, P6, P7
\]

\(\Sigma = \{a, b\} \)

\(S = \{T01\} \)

\(F = \{P0, P1, P2, P3, P4, P5, P6, P7\} \)

\(\Delta \) = transition relation can be seen in Table 2.

\(\Delta \)	A	B
T01	P0	P1
T02	P0	P1
T03	P0	P1
T04	P0	P1, P2, P4
T05	P0	P1, P6
T06	P0	P1
T07	P0	P1, P2, P7
T08	P0	P2, P5
T09	P0	P2, P6
T10	P0	P2, P6
T11	P0	P2, P5, P6
T12	P0	P3, P6, P7
T13	P0	P3
T14	P0	P3
T15	P0	P3, P4
T16	P0	P4
T17	P0	P5
T18	P0	P5
T19	P0	P6
T20	P0	P7
T21	P0	P7
T22	P0	P1, P3
T23	P0	P1
T24	P0	P5
P01	-	-
P02	-	-
P03	-	-
P04	-	-
P05	-	-
P06	-	-
P07	-	-

Table 2 Relationships
Transition relations can also be written by:
\[
\Delta = \left\{ \begin{array}{l}
((T01, a), p0), ((T01, b), p1), ((T02, a), p0), ((T02, b), p1), ((T03, a), p0), ((T03, b), p1), ((T04, a), p0), ((T04, b), p1, p2, p4), ((T05, a), p0), ((T05, b), p1, p6), ((T06, a), p0), ((T06, b), p1), ((T07, a), p0), ((T07, b), p1, p2, p7), ((T08, a), p0), ((T08, b), p2, p5), ((T09, a), p0), ((T09, b), p2, p6), ((T10, a), p0), ((T10, b), p2, p6), ((T011, a), p0), ((T011, b), p2, p5, p6), ((T012, a), p0), ((T012, b), p3, p6, p7), ((T013, a), p0), ((T013, b), p3), ((T014, a), p0), ((T014, b), p3), ((T015, a), p0), ((T015, b), p3, p4), ((T016, a), p0), ((T016, b), p4), ((T017, a), p0), ((T017, b), p5), ((T018, a), p0), ((T018, b), p5), ((T019, a), p0), ((T019, b), p6), ((T020, a), p0), ((T020, b), p7), ((T021, a), p0), ((T021, b), p7), ((T022, a), p0), ((T022, b), p1, p3), ((T023, a), p0), ((T023, b), p1), ((T024, a), p0), ((T024, b), p5) \end{array} \right.
\]

Based on the results of the N-DFA design in Figure 4, the overall N-DFA design will be discussed as follows.

Figure 5 N-DFA State Diagram for Undiagnosed Heart Disease

Figure 5 is the condition of the N-DFA design that is not diagnosed with heart disease. This condition is a condition where at symptom 1 or symptom 2 or symptom 3 or symptom 4 or symptom 5 or symptom 6 or symptom 7 or symptom 8 or symptom 9 or symptom 10 or symptom 11 or symptom 12 or symptom 13 or symptom 14 or symptom 15 or symptoms 16 or symptoms 17 or symptoms 18 or symptoms 19 or symptoms 20 or symptoms 21 or symptoms 22 or symptoms 23 or symptoms 24 not experienced by the user. Transition from state T01 to state T024, if one of the conditions is not fulfilled, it will lead to the final state p0. The final state p0 results in an undiagnosed heart disease.

Figure 6 N-DFA State Diagram for diagnosed coronary heart disease

Figure 6 is the condition of the N-DFA design results in which coronary heart disease is diagnosed. This condition is a condition in which symptom 1, symptom 2, symptom 3, symptom 4, symptom 5, symptom 6, symptom 7, symptom 22, and symptom 23 must be met all of the conditions. The state flow will then go to the final state p1 which results in a diagnosis of coronary heart disease.

Figure 7 N-DFA State Diagram for a Diagnosed Heart muscle disease

Figure 7 is the condition of the N-DFA design that diagnosed heart muscle disease. This condition is a condition where symptom 4, symptom 7, symptom 8, symptom 9, symptom 10, and symptom 011 must all be met. The state flow will then go to the final
state p2 which results in a diagnosis of heart muscle disease.

Figure 8 N-DFA State Diagram for a Diagnosed Ischemic Heart Disease

Figure 8 is the condition of the N-DFA design that is diagnosed with ischemic heart disease. This condition is a condition where symptom 12, symptom 13, symptom 14, symptom 15, and symptom 022 must all be fulfilled. The state flow will then lead to the final state p3 which results in a diagnosis of ischemic heart disease.

Figure 9 N-DFA State Diagram for a Diagnosed Heart failure

Figure 9 is the condition of the N-DFA design that diagnosed heart failure. This condition is a condition where symptom 4, symptom 15, and symptom 016 all conditions must be met. The state flow will then go to the final state p4 which results in a diagnosis of heart failure.

Figure 10 N-DFA State Diagram for a Diagnosed of Hypertensive Heart Disease

Figure 10 is a condition of the results of the N-DFA design in which hypertensive heart disease is diagnosed. This condition is a condition where symptom 8, symptom 11, symptom 17, symptom 18, and symptom 024 must all be fulfilled. The state flow will then lead to the final state p5 which results in a diagnosis of hypertension heart disease.

Figure 11 N-DFA State Diagram for a Diagnosed Heart valve disease

Figure 11 is the condition of the N-DFA design in which heart valve disease is diagnosed. This condition is a condition where symptom 5, symptom 9, symptom 10, symptom 11, symptom 12 and symptom 019 must be met all of the conditions. The state flow will then go to the final state p6 which results in a diagnosis of heart valve disease.
Figure 12 is the condition of the N-DFA design that is diagnosed with hypertrophic heart disease. This condition is a condition where symptom 7, symptom 12, symptom 20, and symptom 021 must be met. The state flow will then lead to the final state p7 which results in a diagnosis of hypertrophic heart disease.

The algorithm for diagnosing heart disease is based on the previously made Non Deterministic Finite Automata (N-DFA) design (Barua & Gupta, 2019). The algorithm is in the form of steps to solve problems in the form of diagnosing heart disease. This algorithm will be used to facilitate the preparation of pseudocode before making it into program form. The pseudocode of the process of diagnosing heart disease is as follows:

Diagnosis of Heart_Disease Program
start_state, final_state state,
alphabet: string
Start
start_state = "diagnosis of heart disease"
Write (start_state)
Read the alphabet
IF alphabet == "chest pain" AND alphabetical == "left shoulder feels bad" AND alphabet == "cold sweat" AND alphabet == "shortness of breath" AND alphabet == "indigestion" AND alphabet == "nausea" AND alphabetical == "irregular heartbeat" AND alphabetical == "left arm feels bad" AND alphabetical == "back feels bad" THEN final_state = "Coronary Heart Disease"
write (final_state)
end if
else
final_state = "no heart disease"
write (final_state)
read alphabetically
IF alphabetical == "heart palpitations" AND alphabetical == "easily tired" AND alphabetical == "irregular heartbeat" THEN final_state = "Heart Muscle Disease (Cardiomyopathy) "
write (final_state)
end if
else
final_state = "no heart disease"
write (final_state)
end if
else
final_state = "no heart disease"
write (final_state)
read alphabetically
IF alphabetical == "pain in the middle chest area" AND alphabetical == "easy to sweat" AND alphabetical == "chest tightens" AND alphabetical == "pain in the left arm area" AND alphabetical == "tendon achilles thickening" THEN final_state = "Ischemic Heart Disease"
write (final_state)
end if
read alphabetically
IF alphabetical == "shortness of breath" AND alphabetical == "swelling of the heart" AND alphabetical == "abnormal heart function" THEN final_state = "Heart Failure"
write (final_state)
read alphabetically
IF alphabetical == "headache" AND alphabetical == "bleeding from the nose" AND alphabetical == "dizzy" AND alphabetical == "reddish face" AND alphabetical == "easily tired" THEN final_state = "Hypertension Heart Disease"
write (final_state)
end if
else
final_state = "no heart disease"
write (final_state)
read alphabetically
IF alphabetical == "stomachache" AND alphabetical == "irregular heartbeat" AND alphabetical == "fast heart rate" AND alphabetical == "chest pain" THEN final_state = "Hypertrophic Heart Disease (Cardiomegaly)"
write (final_state)
end if
else
final_state = "no heart disease"

write (final_state)
end if
end

The algorithm for diagnosing heart disease that has been created is applied to making pseudocode into a simple structural programming language. The pseudocode declares the variables to be used and the functions to be used. The existing symptoms are declared as start state and state, while the diagnosis results are in the final state variable. In addition to symptoms and diagnosis, the answers to each symptom question are accommodated in alphabetical variables.

CONCLUSION

Based on the design, manufacture and implementation of a pseudocode for diagnosing heart disease with the finite state automata algorithm method, diagnosing heart disease with the finite state automata algorithm method is quite helpful in making early diagnoses of heart disease that is felt by ordinary people. In addition, this method is highly dependent on the ability of doctors who are a source of knowledge in making this system. This system is very helpful for everyone because it can be used by many people anywhere and anytime, because it can be web-based and can be a solution for people before consulting directly with a heart specialist.

REFERENCE

Allauzen, C., & Riley, M. D. (2018). Algorithms for weighted finite automata with failure transitions. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10977, LNCS, 46–58. https://doi.org/10.1007/978-3-319-94812-6_5

Barua, R., & Gupta, K. C. (2019). Finite automata. In Handbook of Mathematical Models for Languages and Computation (pp. 47–86). Institution of Engineering and Technology. https://doi.org/10.1049/PBPC026E_ch5

Gopalakrishnan, G. L. (2019). Nondeterministic Finite Automata. In Automata and Computability (pp. 81–92). Chapman and Hall/CRC. https://doi.org/10.1201/9781315148175-9

Lisnawita, L., Van FC, L. L., & Lianda, E. (2016). Sistem Pakar Diagnosa Penyakit THT. INOVTEK Polbeng - Seri Informatika, 1(2), 95. https://doi.org/10.35314/isi.v1i2.120

Nugroho, F. A. (2018). Perancangan Sistem Pakar Diagnosa Penyakit Jantung dengan Metode Forward Chaining. Jurnal Informatika Universitas Pamulang, 3(2), 75. https://doi.org/10.32493/informatika.v3i2.1431

Nuraini, R. (2015). Desain Algoritma Operasi Perkalian Matriks Menggunakan Metode Flowchart. Jurnal Teknik Komputer Amik Bsi, 1(1), 144–151.

Ramadhan, M., & Winata, H. (2019). Sistem Pakar Mendiagnosa Gangguan Fungsi Kardiovaskular Dengan Metode Theorema Bayes. Seminar Nasional Sains & Teknologi Informasi, 513(1), 510–513.

Saptadi, N. T. S., & Marwi, H. C. (2016). Penyusunan Sistem Evaluasi Kinerja Layanan Dalam Membangun Tata Kelola TI Berbasis Komputasi Awan 1, 2. jatisi, 2(2), 75–86.

Saputra, T. I., Fauziah, F., & Gunaryati, A. (2018). Simulasi Vending Machine Dengan Mengimplementasikan Finite State Automata. JOINTECS (Journal of Information Technology and Computer Science), 3(3). https://doi.org/10.31328/jointecs.v3i3.819

Septiana, L. (2016). Perancangan Sistem Pakar Diagnosa Penyakit Ispa Dengan Metode Certainty Factor Berbasis Android. Jurnal TECHNO Nusa Mandiri, XIII(2), 89.

Wicaksono, T. H., Amrizal, F. D., & Mumtahana, H. A. (2019). Pemodelan Vending Machine dengan Metode FSA (Finite State Automata). DoubleClick: Journal of Computer and Information Technology, 2(2), 66–69. Retrieved from http://ejournal.unipma.ac.id/index.php/doubleclick

Yanto, B. F., Werdiningisih, I., & Purwanti, E. (2017). Aplikasi Sistem Pakar Diagnosa Penyakit Pada Anak Bawah Lima Tahun Menggunakan Metode Forward Chaining. Journal of Information Systems Engineering and Business Intelligence. https://doi.org/10.20473/jisebi.3.1.61-67

Yusri. (2015). Sistem Informasi Perpustakaan Berbasis Web Pada Smp Frater Makassar. Jurnal Jupiter, 16(2), 66–77. Retrieved from http://ejournal.unsamandiri.ac.id/ejournal/index.php/pilar/article/view/181/157