Ten times eighteen

Sebastian Böcker

Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany; sebastian.boecker@uni-jena.de

Abstract. We consider the following simple game: We are given a table with ten slots indexed one to ten. In each of the ten rounds of the game, three dice are rolled and the numbers are added. We then put this number into any free slot. For each slot, we multiply the slot index with the number in this slot, and add up the products. The goal of the game is to maximize this score. In more detail, we play the game many times, and try to maximize the sum of scores or, equivalently, the expected score. We present a strategy to optimally play this game with respect to the expected score. We then modify our strategy so that we need only polynomial time and space. Finally, we show that knowing all ten rolls in advance, results in a relatively small increase in score. Although the game has a random component and requires a non-trivial strategy to be solved optimally, this strategy needs only polynomial time and space.

1 Introduction

When I was in twelfth grade at school, my computer science teacher introduced us to the following game: Assume that you are given a table with ten slots indexed one to ten. The game proceeds in ten rounds. In each round, three dice are rolled and the numbers are added. Then, you are allowed to put this number into any free slot. In the end, your table is completely filled with numbers between three and 18. For each slot, you multiply the slot index with the number in this slot, and then you add up the products. An example is given in Fig. 1. The goal of the Ten times eighteen game is to maximize the sum of products. The smallest total score that you can reach is

\[(1 + 2 + \cdots + 9 + 10) \cdot 3 = 165,\]

the largest score is 990.

If you play Ten times eighteen, you will quickly come up with first ideas whether certain moves that are good or bad: For example, you should definitely put a “three” into slot number one, and you should put an eighteen into slot number ten. If these slots are not available, put them in the slot with the smallest or highest index available, respectively.

![Fig. 1. Example of a Ten times eighteen game. The first roll is ‘8’, and the player chooses to place it in slot #5, resulting in product score 40. The second roll is ‘4’, and the player chooses to place it in slot #1, resulting in product score 4 and sum of products 44. At the end of the game, the player has reached total score 698, an excellent score as we will see below, compare to Table 5. Note that due to incomplete information, the player has made several suboptimal choices.](image-url)
But what about a roll of “five”? And what do you do if you roll a “seven” and all even slots have been taken? Is this basically the same problem as rolling a seven when all odd slots have been taken? (In fact, it is.)

The question this boils down to, is: How do we maximize the sum of products? That is, we are searching for a strategy that maximizes our chances of winning, that is, the points we can obtain. Clearly, playing only a single game is not sufficient to judge a strategy, so we repeat the game many times and for all these games, we again sum up the sum of products. Formally speaking, this boils down to: What is a strategy that maximizes the expected sum of products?

Back in 1987, my schoolmates and I came up with many different strategies for Ten times 18: These were based on statistical considerations, and even some simple machine learning strategies (play the game repeatedly and see what moves are favorable). Funnily, it is rather straightforward to find an optimal strategy if you are familiar with the concept of dynamic programming — and a tiny twist. In fact, you do not need a fancy computer to find this strategy. And with a little more statistics, we can even find a strategy that optimally plays practically any variant of Ten times 18: That is, the strategy requires only polynomial time and space. Finally, we show how to compute the advantage of an “all-knowing” strategy, which is allowed to look into the future before placing the rolls: Interestingly, this advantage is relatively small.

Playing Ten times 18 is different from many other solitaire games in that rolling dice is involved. Combinatorial games without chance (such as Rubik’s cube) have been studied more frequently [1], in particular the complexity of playing an optimal strategy. The probably “closest relative” to Ten times 18 is Yahtzee, a popular dice game. Optimal solitaire strategies — again in the sense of maximizing the expected score — were independently developed by Tom Verhoeoff [5] and James Glenn [3] around 1999, but never formally published. To this end, further authors developed optimal strategies for the solitaire game [4, 6]. Obviously, Yahtzee is much more involved than Ten times 18, and so is the analysis of the game.

2 Preliminaries

Let $B := \{1, \ldots, 10\}$ be the slots, and let $A \subseteq B$ be the slots that have already been filled. The first important thing to notice, is that for finding the best move at this point, it does not matter what numbers have actually been inserted into the slots that have been filled: You can simply think of it as a new game where an incomplete table has been given to you, and your task is to maximize the sum of products for the incomplete table. Doing so, we also maximize the sum of products for the complete table. The score of the complete table obviously depends on the previously filled slots; but we cannot change a previous decision.

We now formalize the problem a little bit: We model rolling the three dice as a random variable X with $X \in \{3, \ldots, 18\}$. We denote the probability that some happens by $P(\text{event})$. The probability that we roll a three is 1 in 216, which is formally written as $P(X = 3) = \frac{1}{216}$. Similarly, we are given the probabilities $P(X = 4) = \frac{3}{216}$ and so on, see Table [1]. We assume that X is always an integer, and that there exist integer bounds $x_{\text{min}}, x_{\text{max}}$ such that $x_{\text{min}} \leq X \leq x_{\text{max}}$. Using this formal variable, allows us to re-use our thoughts below for other variants of the Ten times 18 game: For example, the dices might be loaded; we might want to throw two or four dices instead of three; or, we might even throw five twelve-sided dice. For all of these variants, the solution introduced below works, though you have to repeat the calculations.

For a given random variable Y we denote its expected value as $E(Y)$. When the probabilities of all possible outcomes are known to us, we can compute the expected
value by summing over the products of the probability times the outcome. For the three dice example with random variable X we can calculate

$$E(X) = \frac{1}{216} \cdot 3 + \frac{3}{216} \cdot 4 + \cdots + \frac{1}{216} \cdot 18 = 10.5.$$

Clearly, there is a simpler way to calculate this: For two random variables X, Y we have $E(X + Y) = E(X) + E(Y)$. In other words, the expected value of the sum of three identical dice equals three times the expected value of a single dice. If we assume that X' is the random variable of a single dice, then $E(X) = 3E(X') = 3 \cdot 3.5 = 10.5$.

The simplest strategy that we can evaluate using the above considerations, is the “random strategy” where we assign each roll randomly to a slot. This strategy has expected score

$$(1 + 2 + \cdots + 9 + 10) \cdot 10.5 = 577.5.$$

This score is what we have to compare our strategy against in the future.

3 Why is this complicated?

Often, people who get to know Ten times 18 immediately start thinking about one or the other strategy to solve it. One particular, general approach easily comes into mind: Why not model the complete game as one large decision tree where nodes correspond to states of what has happened so far, and edges correspond to changing from one state to another? That is, we start with an initial state where all slots are empty. Then, we add 160 outgoing edges, one for each roll from 3 to 18 and one for each slot that we can fill with it. In the end, we will only have to store the optimal slot to be filled with each number; but as we are only in the process of determining this optimal slot, storing the complete tree appears to be inevitable.\footnote{Similar trees are used for many games, in particular two-player games with complete knowledge and without chance, such as chess.}

One can easily check that this approach suffers from the size of the tree that we have to compute and store: As noted above, there are $16 \cdot 10 = 160$ outgoing edges from the root node, resulting in the same number of nodes in the tree. Leaving every such node, there are $16 \cdot 9 = 144$ outgoing edges and a total of $160 \cdot 144 = 23040$ nodes at the next level. In total, we reach

$$16^{10} \cdot 10! = 16 \cdot \cdots \cdot 16 \cdot 10 \cdot 9 \cdot \cdots \cdot 2 \cdot 1 = 3.99 \cdot 10^{18}$$

at the last level of the tree. So, storing some value for each node of the tree is impossible on today’s computers, and even beyond the capacity of any hard disk, as it requires several exabytes of memory. Hence, this road is blocked, in particular if you want to play Ten times 18 with more than ten slots, see below.

From a computational complexity viewpoint, the arguably most interesting question is: can we decide with polynomial time and space upon the next optimal move, or is the problem NP-hard?\footnote{For a polynomial algorithm, we require that time and space are bounded by a polynomial in all aspects of the input: the number of highest roll and, in particular, the number of slots in the input. We will come back to this question in Sec. \ref{sec:complexity}} For a polynomial algorithm, we require that time and space are bounded by a polynomial in all aspects of the input: the number of highest roll and, in particular, the number of slots in the input. We will come back to this question in Sec. \ref{sec:complexity}.

\begin{table}[h]
\centering
\begin{tabular}{|c|ccccccccccccccc|}
\hline
\textbf{x} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline
\hline
$216 \cdot P(X = x)$ & 1 & 3 & 6 & 10 & 15 & 21 & 25 & 27 & 27 & 25 & 21 & 15 & 10 & 6 & 3 & 1 \\
\hline
\end{tabular}
\caption{Probabilities for throwing three dice.}
\end{table}
4 Dynamic Programming

Dynamic programming solves complex problems by breaking them down into simpler subproblems. To solve a problem, we need to solve different parts of the problem (subproblems), then combine the solutions of the subproblems to reach an overall solution. We make sure that each subproblem is solved only once, thus reducing the number of computations. Top-down dynamic programming simply means storing the results for all subproblems that we encounter. In bottom-up dynamic programming, we try to solve smaller subproblems first, and deduce the solution of larger subproblems by combining those of smaller subproblems. We will concentrate on bottom-up dynamic programming, so that our solution does not require any recursive calls.

Assume that slots \(A \subseteq B := \{1, \ldots, 10\} \) have been filled before. We want to know what score we can reach for the rest of the game, if we play an “optimal strategy”. This optimality depends on the rolls that will happen in the future, so we cannot talk about the score that we will obtain. But what we can do is to talk about the expected value of the score that we can reach; it is this score that we want to maximize. To this end, let \(M[A] \) denote the maximum expected value of the score that we can reach using any strategy. Then, \(M[B] \) is the maximum expected score that we can reach for the complete game. In fact, we are rather interested in the strategy that leads to this maximum expected score, and not so much in the score itself. But as so often in dynamic programming, let us forget about the structure of the solution (that is, the strategy) for the moment and concentrate solely on its score. As it will turn out, it is rather simple to come up with the strategy as soon as the matrix has been filled.

There exist \(2^{|B|} \) subsets of the set \(B \), including the empty set and the full set. This comes down to \(2^{10} = 1024 \) subsets for \(B = \{1, \ldots, 10\} \). For each subset \(A \subseteq B \) we store the entry \(M[A] \). In implementation, the subsets \(A \) will be represented as bit vectors, and every subset \(A \) can be easily transformed into a number between 0 and \(2^{|B|} - 1 \).

We have noted above that one trick of dynamic programming is to compute the solutions for each subproblem only once, and to store it so it can be accessed multiple times. Here, this means that we want to compute the entries of table \(M \) in the right order, and to use previously computed entries of \(M \) for deriving the next one. In particular, we want to make sure that any entry of the matrix \(M \) is accessed only after it has been computed. To this end, we first need an initialization to start from: If none of the slots has been filled so far, then the best expected score is obviously zero for doing nothing, so \(M[\emptyset] = 0 \). It is a well-known trick to initialize the dynamic programming table for an entry where, in fact, nothing has happened so far. If you do not like the empty set initialization, you can instead initialize \(M[\{i\}] = i \cdot \mathbb{E}(X) \) for \(i = \min_{x}^{\max_{x}} \) because moving any number to the last remaining slot \(i \), the expected score for doing so is simply \(i \cdot \mathbb{E}(X) \). This initialization is slightly more complicated but leads to exactly the same results.

To make sure that we only access entries of the table that have been previously computed, we iterate \(k = 1, \ldots, |B| \), and in each step of the iteration we compute all entries \(M[A] \) for all subsets \(A \subseteq B \) with \(|A| = k \). (If you have initialized the one-element subsets you can leave out \(k = 1 \) in the iteration.) To this end, assume that the table \(M \) has been filled for all \(A \subseteq B \) where \(|A| \leq k - 1 \). We now show how to compute it for each entry \(A \subseteq B \) with \(|A| = k \). This means that we are allowed to distribute \(k \) rolls into the filled slots \(A \). We concentrate on the next roll: The probability that some \(x \) with \(\min_{x} \leq x \leq \max_{x} \) is rolled next, is \(\mathbb{P}(X = x) \). Possible rolls are lower bounded by \(\min_{x} \) and upper bounded by \(\max_{x} \). If we decide to put roll \(x \) into slot \(i \) for \(i \in A \) then we gain \(i \cdot x \).
in the sum of products. Playing the remaining slots, the best strategy will (by definition of M) reach expected score $M[A - \{i\}]$. Putting this together we get

$$M[A] = \sum_{x=x_{\text{min}}, \ldots , x_{\text{max}}} \mathbb{P}(X = x) \cdot \max_{i \in A} \left\{ i \cdot x + M[A - \{i\}] \right\}$$ \hspace{1cm} (1)

How long does it take to fill the matrix M? There exist $2^{|B|}$ many entries in the matrix. For each entry we iterate over $x_{\text{max}} - x_{\text{min}} + 1$ many values for x, and $|A| \leq |B|$ different values for i, a total of $O((x_{\text{max}} - x_{\text{min}} + 1) \cdot |B|)$ entries. In total, filling the complete matrix requires $O(2^{|B|} \cdot (x_{\text{max}} - x_{\text{min}} + 1) \cdot |B|)$ time: That is, we need less than $c \cdot 2^{|B|} \cdot (x_{\text{max}} - x_{\text{min}} + 1) \cdot |B|$ summations, multiplications, and comparisons for some multiplicative constant c.

Now, the maximum expected score that any strategy can reach, can be computed as

$$M[\{1, \ldots , 10\}] = 642.2393504256.$$

This score can be computed using those entries $M[A]$ where A has cardinality 9, see Table 2. Due to space constraints, we cannot show all 1024 entries of the table. Note that the expected score drops with higher i: This is as we would expect it, because for small i we have already used up more of the high-scoring slots.

5 Playing the game

How does knowledge about the maximum expected score, $M[A]$, help us to come up with a useful move? This, in fact, is quite simple: Assume that slots $A \subseteq B$ have previously been filled, and that number x has been rolled in this move. From the above, it is straightforward to show that the maximum expected score that we can reach after we have placed x is

$$\max_{i \in B - A} \left\{ i \cdot x + M[A \cup \{i\}] \right\}.$$ \hspace{1cm} (2)

This follows because $M[A \cup \{i\}]$ is the maximum expected value that we can reach when slot $A \cup \{i\}$ have been filled previously. So, all we have to do is search for i^* such that

$$i^* \cdot x + M[A \cup \{i^*\}] = \max_{i \in B - A} \left\{ i \cdot x + M[A \cup \{i\}] \right\}$$ \hspace{1cm} (3)

and then, place x in slot i^*. This can be achieved quickly: We need only $O(|B|)$ steps to find the maximum.

We have depicted the “maximum expected score” strategy for the first move of the game in Table 3, including the expected score that we can reach including this first move. There are at least two unexpected things to notice in this table: Firstly, even a roll of 6 should still be placed in the first slot, and similarly, even a roll of 15 should still be placed in the highest slot. This becomes understandable, though, if we consider that rolling a 3

The “big O” notation is used to describe the asymptotic behavior of some function, ignoring constant factors.
to 6 has total probability of less than 10%; and the same holds for rolling a 15 to 18. Second, it never pays off to put the first roll into slots #3 or #8. It is doubtful that there is a simple explanation for this fact; it simply comes out of our calculations.

We can also ask for the “closest call” of the “maximum expected score” strategy: In which move are two different slots the closest in the difference of expected score we will reach after this placement? For the first move, this is a roll of 9: If we place it into slot #3 (instead of the optimal slot #4) we can still reach an expected score of 630.39355, the difference being only 0.03455. Similarly, we can place a roll of 12 into slot #8 instead of slot #7, with the same difference in score. For the complete game, the closest call is placing a roll of 10 when seven consecutive slots are available: Here, the runner-up placement of the roll decreases the expected score by 0.02989.

6 Polynomial time and space

The above “maximum expected score” strategy requires us to compute and store an array with $2^{|B|}$ entries. This is not a problem for $|B| = 10$, as the total size of the table is only 1024. Even in the 1990s, practically every home computer came with a sufficient amount of memory to store such a table. But the important point is that memory requirement increases exponentially with the size of the set B. Whereas one could think of the analogous games with $|B| = 20, 30, 40$ as being twice (three times or four times, respectively) as hard as the original game, we need megabytes, gigabytes, or even terabytes to store the table M. This implies that for $|B| = 40$ tables are already much to large to be stored in the main memory of the average present-day computers. Given that the current rate of miniaturization integrated circuits is kept throughout the next years, it would still require more than a year so that we can increase the size of solvable instances by one. Even if every atom in the observable universe (approximately 10^{80}) would be used to store one entry of our table M, this would not allow us to play a game where $|B| > 265$. Therefore, it is an interesting question whether we can get away with less memory.

We can answer this question easily for one particular type of Ten times 18: That is, if we have only two possible outcomes for each throw (flipping a coin), such as 1 and 2. In this case, the problem becomes trivial: Just place any 1 into the first available slot (with smallest index), and place any 2 into the last available slot (with highest index). It is clear that this strategy reaches the optimum expected score, uses constant memory and performs each move in constant time.

But somewhat unexpectedly, we can still find a solution for our original game (and, in fact, any variant of Ten times 18 where slot multipliers are strictly increasing).
Unfortunately, we need a little more statistics to show that we can actually solve the problem with polynomial memory and time. Assume that there are \(k \) slots left, and that
\[
0 < \lambda_1 < \lambda_2 < \cdots < \lambda_k
\]
are the score multipliers. For any deterministic or random strategy, let \(Y_1, \ldots, Y_k \) be random variables such that \(Y_i \) is the roll the strategy places on slot \(i \). Now, \(Y := \lambda_1 Y_1 + \cdots + \lambda_k Y_k \) is the random variable for the score of this strategy, and we have
\[
\mathbb{E}(Y) = \mathbb{E}(\lambda_1 Y_1 + \cdots + \lambda_k Y_k) = \lambda_1 \mathbb{E}(Y_1) + \cdots + \lambda_k \mathbb{E}(Y_k). \quad (4)
\]
Note that the random variables \(Y_i \) are strongly correlated, as placing a roll of 18 into the highest slot will influence the expected values for all other slots; but \((4)\) also holds for correlated random variables. Assume that there exist \(i < j \) such that \(\mathbb{E}(Y_i) > \mathbb{E}(Y_j) \). Then, the strategy cannot be optimal: simply exchange all moves of the strategy to slots \(i \) and \(j \), what results in a strategy with expected score
\[
\mathbb{E}(Y) + (\mathbb{E}(Y_i) - \mathbb{E}(Y_j)) \cdot (\lambda_j - \lambda_i) > \mathbb{E}(Y)
\]
as \(\lambda_j > \lambda_i \) and, by our assumption, \(\mathbb{E}(Y_i) \geq \mathbb{E}(Y_j) \). This implies that for an optimal strategy, we have
\[
\mathbb{E}(Y_1) \leq \mathbb{E}(Y_2) \leq \cdots \leq \mathbb{E}(Y_k). \quad (5)
\]
Assume that \(k + 1 \) slots are empty, and that our roll is some \(x \in \{x_{\text{min}}, \ldots, x_{\text{max}}\} \) — where will the best strategy to maximize the expected score place this roll? From \((4)\) it is straightforward to understand that this roll must be placed on the \(i \)-th free slot such that \(\mathbb{E}(Y_{i-1}) \leq x \leq \mathbb{E}(Y_i) \); We can easily show that placing \(x \) into any other free slot, will result in a suboptimal expected score. This means that the \(\lambda_i \) are not taken into consideration for deciding upon the best move.

To this end, let us consider the “maximum expected score” strategy for \(j \) empty slots with strictly increasing slot weights: We define \(E_j[i] = \mathbb{E}(Y_i) \) as the expected value of the \(i \)-th slot. It is easy to understand how \(E_{j+1}[i] \) can be computed from \(E_j[i] \): For \(E_j[i] \) and \(x \in \{x_{\text{min}}, \ldots, x_{\text{max}}\} \) we define \(I_j(x) \) as the index such that
\[
E_j[i-1] \leq x \leq E_j[i] \quad \text{for } i = I_j(x).
\]
We may assume that \(E_j[0] = -\infty \) and \(E_j[j+1] = +\infty \). In case of a draw we can choose any such index. We infer the recurrence:

\[
E_j[i] = \sum_{x=x_{\text{min}}, \ldots, x_{\text{max}}} \mathbb{P}(X = x) \cdot \begin{cases}
E_{j-1}[i] & \text{for } i = 1, \ldots, I_j(x) - 1 \\
E_{j-1}[i] - 1 & \text{for } i = I_j(x) \\
E_{j-1}[i] & \text{for } i = I_j(x) + 1, \ldots, j
\end{cases} \quad (6)
\]
In the end, the expected score of the “maximum expected score” strategy can be calculated as \(\sum_{i=1}^k i \cdot E_k[i] \) which again results in the same score of 642.2393504256 as above.

We have depicted the complete table \(E_j[i] \) for \(j = 1, \ldots, 10 \) and \(i = 1, \ldots, j \) in Table \ref{table}. This table allows us to play the complete game using the “maximum expected score” strategy: Assume that there are \(j + 1 \) free slots and we have to place a roll of \(x \). Find \(i \in \{1, \ldots, j+1\} \) such that \(E_j[i-1] \leq x \leq E_j[i] \). (Recall that we assume \(E_j[0] = -\infty \) and \(E_j[j+1] = +\infty \).) Place \(x \) into the \(i \)-th free slot, sorted from smallest to largest multiplier.

As an example, assume that half of the slots have been filled, so \(j + 1 = 5 \). Row \(E_4 \) from Table \ref{table} tells us that rolls 3 to 8 will be placed into the first free slot with smallest multiplier; roll 9 is placed into the second free slot; rolls 10 and 11 are placed into the third free slot; roll 12 is placed into the fourth free slot; and, finally, rolls 13 to 18 are placed into the last free slot with highest multiplier.
Table 4. The expected values $E_j[i]$ necessary to decide upon any optimal move in Ten times 18. The first row ($j = 10$) is not needed to play the game but only to compute the expected score of the strategy.

7 Knowing the future

The maximum expected score that we can reach, is significantly higher than the score of the random strategy, but not to an extend that one might initially think. In particular, the maximum expected score of 642.2 is much smaller than the highest score of 990. But the highest score can only be reached if we have ten rolls of 18, and the chances that this is going to happen are

$$1/22107391972073357899776 = 4.52 \cdot 10^{-24}.$$

For all other Ten times 18 instances, the highest score is naturally unreachable. But with the same probability, we have ten rolls of 3, and any strategy will result in the minimum score of 165.

A better way of evaluating the performance of our strategy, is to compare it against an “all-knowing” strategy which is allowed to look into the future: To this end, assume that our strategy knows the outcome of all ten rolls before having to place the first roll. This “all-knowing” strategy will simply sort all rolls and then place them accordingly.

Again, we cannot judge the performance of this strategy by evaluating a single game. Instead, we play many games and sum up the scores; this again boils down to the expected score of the strategy. This can be computed using “classical” dynamic programming; we do not have to take into account the set of slots that have been filled so far. Let $L := |B|$. We define $Q[y, l]$ as the partial score obtained by the “all-knowing” strategy for placing $L - l$ rolls $x \geq y$, whereas for the remaining l rolls we know $x < y$ but these have not been scored so far (that is, l free slots). Then, $Q[x_{\text{max}}, L]$ is the expected score of the “all-knowing” strategy. We infer the recurrence

$$Q[y, l] = \sum_{k=0}^{l} \binom{l}{k} p_y^k (1 - p_y)^{l-k} \cdot \left(y \cdot S(l - k + 1, l) + Q[y - 1, l - k] \right)$$

where

$$p_y := \Pr(X = y | X \leq y) = \frac{\Pr(X = y)}{\sum_{x \leq y} \Pr(X = x)}$$

and

$$S(i, j) := \sum_{k=i}^{j} k = \frac{1}{2}((j+1)j - i(i-1)).$$

We initialize $Q[y, 0] = 0$ for all $y = x_{\text{min}}, \ldots, x_{\text{max}}$, and $Q[x_{\text{min}} - 1, l] = 0$ for all $l = 0, \ldots, L$.

We reach an expected score of 652.93403 for the “all-knowing” strategy. Somewhat surprisingly, this expected score is not much higher than the 642.23935 that our strategy can reach without knowing the future: Knowing the future only gives us an expected upper hand of about ten points. All scores are summarized in Table 5.
Minimum possible score & 165.0 \\
Median score of the “random” strategy & 577 \\
Expected score of the “random” strategy & 577.5 \\
Expected score of the “maximum expected score” strategy & 642.23935 \\
Median score of the “maximum expected score” strategy* & 646 \\
Expected score of the “all-knowing” strategy & 652.947393 \\
Median score of the “all-knowing” strategy & 654 \\
Maximum possible score & 990.0 \\

Table 5. Different important scores for the Ten times 18 game. *Median scores where experimentally determined from one million runs, see Sec. 8.

Fig. 2. Empirical score distribution for the random strategy (dotted line), the “maximum expected score” strategy (solid line), and the “all-knowing” strategy (dashed line). Calculated from one million runs, binned using bin width 10.

8 Implementations and simulations

All algorithms presented in this paper were implemented in Groovy 1.8.6 and run on a laptop computer. All computations were carried out with high precision (40+ digits). In addition, we implemented both variants of the “maximum expected score” strategy and the “all-knowing” strategy and performed simulations. After one million runs, the average score of the “maximum expected score” strategy was 642.272639 (for both variants), and the average score of the “all-knowing” strategy was 652.947393. This agrees well with the theoretical values computed above. Running times of our computations were negligible. We have also computed median scores from these evaluations, see again Table 5.

The empirical distributions of scores are depicted in Fig. 2. We have smoothed the curves by binning ten values in each bin, \(\{10n, \ldots, 10n + 9\} \) for \(n = 15, \ldots, 99 \).

9 Variants of Ten times 18

We have noted above that our computations are not limited to the Ten times 18 variant where three six-sided dice are thrown. To exemplify this claim, let us consider one more variant, namely throwing two “slightly loaded” twelve-sided dice: For each die, the probability for a roll of “12” is \(\frac{2}{13} \), and the probability of all other rolls is \(\frac{1}{13} \). The probabilities for throwing two loaded, twelve-sided dice are depicted in Table 6. The expected value of a single roll is 13.84615.

Again, we can calculate the table of expected scores for all positions, see Table 7. Assuming slot multipliers 1 to 5, we reach a score of 231.11229 for the “maximum expected score” strategy, and 236.97840 for the “all-knowing” strategy. In comparison, the random strategy reaches an expected score of 207.69231.
Table 6. Probabilities for throwing two loaded, twelve-sided dice.

x	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
$1969 \cdot P(X = x)$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Table 7. The expected values $E_i[j]$ necessary to decide upon any optimal move in the game with two loaded twelve-sided dice. The first row ($j = 5$) is not needed to play the game but only to compute the expected score of the strategy.

$E_i[j]$	$i = 1$	2	3	4	5
$j = 5$	9.038	11.713	13.868	16.012	18.599
4	9.680	12.613	15.113	17.978	
3	10.532	13.861	17.146		
2	11.753	15.939			
1	13.846				

10 Conclusion

We have presented the game Ten times 18, plus a strategy to maximize the expected score. In addition, we have shown how to compute the expected score of an omniscient strategy.

Playing the strategy maximizing the expected score, does not maximize your chances to win a two-player game: That is, two players are given the same rolls and compete against each other to maximize the score reached in a single game. The player that wins the most games wins the match. Again, we assume that a sufficiently large number of games is played. Here, the “maximum expected score” strategy introduced in this paper will be hard to beat. But if you know your opponent is playing this strategy, then you can still get an upper hand against the score-optimal strategy: It is enough to be a few points ahead in most games, whereas the score of any lost game is unimportant. This takes us into the realms of game theory; in particular, there is no longer one optimal strategy but instead, there may be cases where strategy A beats strategy B, B beats C, but C beats A. Things will become even more complicated in multi-player games where several strategies compete simultaneously. But at least, it should be possible to come up with a strategy that beats the score-optimal strategy in a two-player game: we only have to consider the chances of some score being higher than that of the score-optimal strategy in every move. The state space will increase considerably, because now we have to consider the filled slots and the score obtained so far.

Acknowledgments. I want to thank my school teacher, Klaus Bovermann, for introducing this game to us, and getting us into developing strategies for it.

References

1. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical Plays, volume 1–4. Taylor & Francis, second edition, 2001–2004.
2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.
3. J. Glenn. An optimal strategy for Yahtzee. Technical Report CS-TR-0002, Loyola College, Department of Computer Science, Maryland, 2006.
4. O. Vancura. Advantage Yahtzee: The Official Handbook. Huntington Press, 2001.
5. T. Verhoeff. Solitaire Yahtzee: Optimal player and proficiency test. Open Source Software, 2010. [http://www.win.tue.nl/~wstomv/misc/yahtzee/]
6. P. Woodward. Yahtzee: The solution. Chance, 16(1):18–22, 2003.