A search for transit timing variations and orbital decay in WASP-46b

R. Petrucci1,3 \& E. Jofré1, 3, L. V. Ferrero1, 3, V. Cúneo1, 3, L. Saker1, 3, F. Lovos1, 3, M. Gómez1, 3 and P. Mauas2, 3

1Universidad Nacional de Córdoba, Observatorio Astronómico, Laprida 854, X5000BGR, Córdoba, Argentina
2 Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Av. Inte. Güiraldes 2620, C1428ZAA, Buenos Aires, Argentina
3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

\dagger Partially based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 60.A-9022(A).
\§ Contact e-mail: romina@oac.unc.edu.ar
\‡ Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan.

1 INTRODUCTION

WASP-46b is a Hot Jupiter-like planet orbiting a main-sequence G6 star (V = 12.9, K = 11.4), discovered by Anderson et al. (2012) from data of the WASP photometric survey (Pollacco et al. 2006) taken during the years 2008 and 2009. Anderson et al. (2012) estimated a planet mass of \(M_p = 2.101 \pm 0.073 M_J \) and a planetary radius of \(R_p = 1.310 \pm 0.051 R_J \) from two transits observed with the 1.2-m Euler and 0.6-m TRAPPIST telescopes and 16 radial velocity measurements taken with the CORALIE spectrograph. The spectroscopic observations confirm the period of 1.43 days found from the photometric data. The detection of weak emission in the Ca II H+K lines of the CORALIE spectra and a rotational modulation of \(16 \pm 1 \) days found in the WASP data confirm that WASP-46 is an active star. Combining this photometric information with the spectroscopically determined rotation velocity, Anderson et al. (2012) inferred an inclination for the stellar spin axis of 41° with respect to the sky plane. They also found an inconsistency between the age of a few Gyr estimated from the lithium abundance and a gyrochronological age of 0.9-1.4 Gyr calculated from the stellar rotation period.

Recently, Maxted et al. (2015) used two improved methods to estimate the gyrochronological and isochronal ages of 28 transiting exoplanets. For about half the sample, including WASP-46b, they confirmed the discrepancy found by Anderson et al. (2012) between the age determined by the stellar rotation period and the one obtained by the isochrone fitting. Although there is still no conclusive evidence, the authors suggest as a possible explanation that...
tidaal interaction between the star and the planet has produced a transfer of angular momentum from the planetary orbit to the rotation of the star. This increase in the stellar spin makes the star appear younger than it really is, causing a smaller value for the gyrochronological age than the one measured by using isochrones.

Chen et al. (2014b) observed one secondary eclipse in the γ′, r′, i′, z′, J, H, and K bands simultaneously using the GROND instrument mounted on the MPG/ESO 2.2 m telescope at La Silla in Chile. They detected thermal emission in the J, H, and K bands. The brightness temperatures resulting from these measurements are consistent with a very poor heat redistribution efficiency in the atmosphere of WASP-46b. Also, Zhou et al. (2015) reported the detection of two full secondary eclipses of WASP-46b in the near IR band Ks with the IRIS2 infrared camera on the 3.9-m Anglo-Australian Telescope. For both eclipses, they measured depth values consistent with the result previously obtained by Chen et al. (2014b).

Kjurkchieva et al. (2015) obtained one complete transit of WASP-46b with a 0.40-m telescope and determined photometric parameters in agreement with those measured by Anderson et al. (2012). Subsequently, Ciceri et al. (2016) observed 10 primary transits of this exoplanet with telescopes of different sizes, ranging from 1.2- to 3.58-m. They determined a slightly lower and more precise value for the planetary radius ($R_p = 1.189 \pm 0.037 \, R_J$) than the one reported by Anderson et al. (2012). This result implies that the planet’s density is larger than initially thought. These authors also performed the first transit timing variation (TTV) study for this exoplanet. However, the data were not analysed homogeneously since they considered not only the measurements of their mid-transit times but also several values of T_0 directly extracted from the literature. Although their results indicate that a linear ephemeris is not a good fit to the observations, Ciceri et al. (2016) did not find any periodic variation and discarded the presence of a third body gravitationally bound to the system. However, they pointed out the need to acquire more precise mid-transit times and to perform a more homogeneous analysis of these data to firmly establish if there are TTVs or not. Finally, they reported a small orbital decay in the system.

The work by Ciceri et al. (2016) is the only TTVs study of WASP-46b. However, their results are not conclusive, perhaps due to the fact that not all the mid-transit times used to carry out the analysis were obtained applying the same fitting procedure and error treatment, which means the study is not fully homogeneous. Taking this into account, in this paper, we perform the first homogeneous TTVs study from the analysis of literature data and 12 new transit light curves of WASP-46b collected from three different telescopes. Furthermore, since a direct implication of the results obtained by Maxted et al. (2015) for WASP-46 is that the planetary orbit would be shrinking, we also investigate the possibility of orbital decay in the system.

This paper is organised as follows: In Section 2 we present our observations and briefly describe the data reduction. In Section 3 we obtain the fundamental stellar parameters and chemical abundances, and we determine the photometric and physical parameters of the system. We also compare the computed values with the results obtained by other authors. In Section 4 we present our study of transit timing variations and the results of the search for orbital decay. The analysis of long-term variations on depth (k) and orbital inclination (i) is also described here. Finally, in Section 5, we present a summary and the conclusions.

2 OBSERVATIONS AND DATA REDUCTION

We observed 12 new transits of WASP-46b between July 2012 and July 2016. In Table 1 we present a log of our observations. Five complete1 light curves were obtained with the Horacio Ghielmetti telescope (THG) located at Complejo Astronómico El Leoncito (CASLEO). The THG is an MEADE-RCX 400 telescope with a 0.40-m primary mirror, currently equipped with an Apogee Alta U16M camera and Johnson UBVRI filters. Due to a serious electric damage, the U16M was not available for the transit observed during the night of 2012, July 22. Therefore, only in this case, we used a different camera, an Apogee Alta U8300 with 3326 × 2504 5 μm-size pixels, a scale of 0.32 arcsec per pixel, and a FoV=189′×14′. The other 4 light curves were obtained with the Apogee Alta U16M camera with 4096 × 4096 9 μm-size pixels, FoV=49′×49′, and a scale of 0.57 arcsec per pixel. For each night we also took 10 bias and 10 dark frames. Sky flat-field images were not taken since we previously found that flat-fielding correction causes unwanted errors in the photometric data (Petrucci et al. 2013). Averaged bias and median-combined bias-corrected dark frames were subtracted from science images using standard IRAF2 routines.

Other 6 light curves were obtained with the 1.54-m telescope located at Estación Astrofísica de Bosque Alegre (EABA). This telescope, operated in Newtonian focus, is currently equipped with Johnson UBVRI filters and a 3070 × 2048 9 μm-size pixels Apogee Alta U9 camera, which provides a scale of 0.25 arcsec per pixel and a FoV=8′×12′. We used this configuration to obtain 5 light curves. However, as a consequence of an electric flaw, the U9 CCD had to be replaced, and for the transit observed during the night of 2016, June 10 we employed a different camera, an Apogee Alta F16M with 4096 × 4096 9 μm-size pixels, a scale of 0.25 arcsec per pixel, and a FoV=16.8′×16.8′. Except for one transit, all the light curves were observed complete with their four points of contact visible. The partial transit was acquired during the night of 2014, August 22. In this case, the presence of clouds prevented us from obtaining data before the ingress and between the first and second contact points. A total of 10 bias, 8 dark, and 15 dome flat-field frames were taken for each observation. We corrected the EABA images for bias and dark applying the same procedure adopted for the THG ones. These CCD images were divided by the master flat generated as the median combined bias- and dark-corrected flats in the corresponding band.

The remaining transit was observed during the night of 2016, July 30 with the 2.15-m Jorge Sahade telescope at CASLEO. In this case, we used the Roper Scientific camera with 2048 × 2048 13.5 μm-size pixels, a Johnson R filter, and a focal reducer which provided a circular FoV of 9′ radius at a plate scale of 0.45 arcsec per pixel. We took 10 bias and 10 dome flat-field frames. Since the dark current level is quite low ($<1 \, e^-/hr/px$) dark frames were not taken. We corrected the CASLEO images for bias and dark applying the same procedure adopted for the THG ones. These images were divided by the master flat generated as the median combined bias- and dark-corrected flats applying the procedure previously explained.

Contrary to the results obtained for the THG images, in both, CASLEO and EABA images, the flat-fielding correction produces light curves with dispersion values equal or, most of the time,
smaller than those from light curves achieved without applying this correction.

Integration times ranging from 10 to 60 seconds and different CCD bin sizes for the science images were chosen depending on seeing, airmass, and atmospheric conditions during the night. The transits’ observations were mainly carried out in the R filter to decrease the effects of limb-darkening (Mallén-Ornelas et al. 2003). However, one transit was observed with no filter (clear), to increase the signal-to-noise ratio without losing temporal resolution. For all the observations we specially checked the focus of the telescope, to avoid any contamination from the faint star located near WASP-46 at a separation of 17.4′ (Anderson et al. 2012). Central times of the images were recorded in Heliocentric Julian Date based on Coordinated Universal Time (HJD/UTC).

Instrumental magnitudes (m_{inst}) were measured through aperture photometry by using the FOTOMCAP code (Petrucci & Jofré 2016). This is a new quasi-automatic program, written in IRAF, developed to determine precise instrumental magnitudes by applying the method of aperture correction (Howell 1989; Stetson 1990). FOTOMCAP has been demonstrated to significantly improve the results obtained with our previous code FOTOMCC (Petrucci et al. 2013, 2015), allowing not only a decrease in the standard deviation of the light curves but also an increase in the number of useful images to perform the aperture photometry. The main difference between both codes is that FOTOMCC uses the growth curves technique to determine instrumental magnitudes, that sometimes can lead to an incorrect determination of m_{inst} as a consequence of variable background behind the source, incorrect sky background subtraction, or some other errors that affect fainter objects more than brighter ones. FOTOMCAP overcomes these issues by using the method of aperture correction in which a constant is calculated for each image as the median value of the magnitudes obtained from the aperture that allows the highest signal-to-noise ratio (m_{SN}) minus those from the growth curves technique (m_{CC}) for the brightest stars (the range of tested aperture radii is specified in Table 1).

Then, the instrumental magnitudes of all the stars are computed by adding this constant or aperture correction to the magnitudes obtained from the aperture that allows the highest signal-to-noise ratio (m_{SN}) minus those from the growth curves technique (m_{CC}) for the brightest stars (the range of tested aperture radii is specified in Table 1). Differential magnitudes were obtained through the procedure explained in Petrucci et al. (2013), considering as comparison one or several stars of the same field with no indication of variability. It was not possible to use the same reference stars for all the transits because, as mentioned before, observations were carried out with several CCD cameras providing different fields of view. This fact prevented us from taking images of the exactly same stellar field and hence the same comparison stars for all the transits. However, in order to achieve the best light curve for each night, we selected as reference stars those which minimized the scatter in the resulting transit. We present our 12 transits with their best-fittings in Fig. 1 and the photometric data in Table 2.

2.1 Literature and public data

We supplemented our 12 transits of WASP-46b with 37 light curves available in the literature and public databases. We used 2 transits from Anderson et al. (2012): one observed in an $I+I′$ filter with the 0.60-m TRAPPIST telescope, and the other one acquired with the 1.2-m Euler-Swiss telescope in a Gunn $r′$ filter. Another 20 light curves from Ciceri et al. (2016) were kindly provided to us by the authors. Among them, three were observed with the 1.54-m Danish Telescope using a Bessell R filter, one with the 3.58-m New Technology Telescope (NTT) in a Gunn $g′$ filter, two with the 1.2-m Euler-Swiss telescope employing a Gunn $r′$ filter, three which were simultaneously observed in the four optical bands $g′r′i′z′$ with the GROND instrument on the 2.2-m MPG telescope, and finally one transit also obtained with GROND but only in the $g′z′$ filters. The remaining light curves were extracted from the Exoplanet Transit Database (Poddaný et al. 2010). We only included 15 complete and clearly visible transits of which 14 were observed without filter and the other one in the R filter. Some of these light curves do not include the photometric errors. In those cases, we adopted as error the standard deviation of the out-of-transit data points. These observations were obtained with telescopes whose primary mirrors range from 0.25- to 1.54-m.

3 DETERMINATION OF THE SYSTEM’S PARAMETERS

3.1 Fundamental parameters and chemical abundances

In order to derive the spectroscopic fundamental parameters ($T_{\text{eff}}, \log g, v_{\text{turb}}, [\text{Fe/H}]$) of WASP-46, we obtained 5 UVES high-resolution spectra from the ESO archive to produce a single spectrum (Fig. 2) with an average signal-to-noise ratio of S/N \sim 110 (around 6000 Å). We employed the classical procedure, as previously described in Jofré et al. (2015a,b); Petrucci et al. (2013). Briefly, fundamental parameters are computed from the equivalent widths (EWs) of iron lines (Fe I and Fe II) by imposing excitation and ionization equilibrium and the independence between abundances and EWs, using the FUNDPAR program (Saffe 2011). FUNDPAR employs the MOOG code (Sneed 1973) and ATLAS9 1D local thermodynamic equilibrium (LTE) model atmospheres (Kurucz 1993). The resulting parameters, along with their statistical uncertainties, are listed in Table 3. Intrinsic uncertainties are based on the scatter of the individual iron abundances from each individual line and the standard deviations in the slopes of the least-squares fits of iron abundances with reduced EWs, excitation, and ionization potential (Gonzalez & Vanture 1998). Overall, our parameters are consistent with those reported in the discovery paper (Anderson et al. 2012), however, our T_{eff} value is \sim160 K warmer. This discrepancy, within its quoted error, might be related not only to the different technique performed by Anderson et al. to obtain T_{eff} (spectral synthesis of the Hα line) but also due to the higher signal-to-noise of our UVES final spectrum compared with their CORALIE spectra of S/N \sim 50. Finally, we also computed the chemical abundances of 14 elements (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Y, Ba) from the EWs of several unblended lines using the MOOG program (abfind driver) as in Jofré et al. (2015a). The computed abundances, relative to the solar values of Anders & Grevesse (1989), along with their dispersions around the mean are also included in Table 3. Our [X/H] values are consistent, within the errors, with those reported by Anderson et al. However,
Table 1. Log of our observations

Date	Telescope	Camera	Filter	Bin-size	X	Exposure-Time (s)	N\textsubscript{obs}	σ(mag)	Aperture radii (px)
2012 Jul 22	0.40-m THG	U8300	clear	4x4	1.10 → 1.51	20	707	0.0095	1-25
2013 Aug 11	0.40-m THG	U16M	R	2x2	1.53 → 1.09	60	215	0.0085	1-25
2013 Aug 29	1.54-m EABA	U9	R	2x2	1.11 → 1.53	50	204	0.0025	1-20
2013 Oct 10	0.40-m THG	U16M	V	2x2	1.14 → 1.79	50	209	0.0074	1-25
2014 Jun 30	0.40-m THG	U16M	R	2x2	1.25 → 1.09 → 1.26	50	314	0.0103	1-5
2014 Jul 23	1.54-m EABA	U9	R	2x2	1.11 → 1.09 → 1.26	10	809	0.0034	1-20
2014 Aug 22	1.54-m EABA	U9	R	2x2	1.09 → 2.06	55	225	0.0034	1-15
2014 Sep 14	0.40-m THG	U16M	R	2x2	1.09 → 1.40	50	184	0.0046	1-25
2014 Oct 17	1.54-m EABA	U9	R	2x2	1.09 → 1.54	20	601	0.0050	1-15
2015 Sep 08	1.54-m EABA	U9	R	2x2	1.13 → 1.09 → 2.00	40	480	0.0060	1-20
2016 Jun 10	1.54-m EABA	F16M	R	2x2	1.86 → 1.09	50	298	0.0028	1-25
2016 Jul 30	2.15-m CASLEO	Roper	R	2x2	1.10 → 1.48	40	207	0.0027	1-12

Note: Date is given for the beginning of the transit, X is the airmass change during the observation, N\textsubscript{obs} is the number of useful exposures4, σ is the standard deviation of the out-of-transit data-points, and Aperture radii is the range of aperture sizes in pixels tested by FOTOMCAp.

Figure 1. New transit observations presented in this work. Photometric data and their error bars (where errors are the measured ones) are indicated in blue, while the best-fittings are marked in solid lines. For each transit the observation date, observatory, and filter are also pointed out.
our abundances for all elements (except Mg and Sc) are systematically larger than those of Anderson et al. by ~0.06 dex on average. The discrepancies here could be caused by the use of different line list and/or higher errors in the determination of the EWs due to the differences in the quality of the used spectra.

3.2 Photometric parameters

To determine the most precise set of photometric parameters of the system, all the 49 light curves were modelled with the version 34 of the JKTEBOP code (Southworth et al. 2004). This code uses a Levenberg-Marquardt optimisation algorithm to get the model that best fits a transit, and includes Monte Carlo and bootstrapping routines for error analysis. For each transit we fitted the inclination (i), the sum of the fractional radii ($\Sigma = r_s + r_p$), the ratio of the fractional radii ($k = r_p/r_s$), the scale factor (i_0), and the mid-transit time (T_0). This new version of JKTEBOP allows polynomial fitting (up to fifth order) and sine curves simultaneously to the modelling. Therefore, to remove the smooth trends in the light curves caused by differences between the spectral types of the comparison and the exoplanet host-star, differential extinction, and stellar activity, we also fitted simultaneously the coefficients of a second order polynomial. Both orbital period (P) and eccentricity (e) were kept as fixed parameters. For the photometric parameters (i, Σ, and k) and P we adopted as initial values those obtained in Ciceri et al. (2016), while e was assumed to be zero as it was determined in Anderson et al. (2012) and I_0 equals to 1. All the light curves were modelled considering a quadratic limb-darkening (LD) law. The values of the linear and quadratic LD coefficients, q_1 and q_2 respectively, were computed by bilinearly interpolating T_{eff} and log g from the tables of Claret (2000) using the program IKTLD. However, these tabulations do not provide theoretical LD coefficients for several of the filters used to obtain the transits. In those cases, we adopted the tabulated values of filters with central wavelengths close to those in which the observations were made. Therefore, for the light curves observed in the $g^\prime r^\prime z^\prime$ bands with GROND, we used the values of the $g^\prime r^\prime z^\prime$ SLOAN filters. For those transits acquired with the Johnson R, the Gunn r^\prime, and the Bessell R filters, we used the values tabulated for the Cousin R filter, and for the light curves obtained with no filter we used the average of the values corresponding to the Johnson V and the Cousin R bands. For the transit observed in the Gunn g^\prime band we used the SLOAN g^\prime filter. Finally, for the observation made in the Cousins I-Sloan z^\prime band, we adopted the values of the Sloan z^\prime filter.

To achieve the best-fitting model for each transit, we examined the results obtained considering: a) both LD coefficients as free parameters, b) the linear coefficient slightly perturbed and the quadratic one freely varying, and c) both LD coefficients fixed at their initial values. In almost all the cases, option “a” gave un-physical results. Among the three possibilities, we choose the option that provided realistic parameters and the lowest value for the χ^2. Photometric errors were multiplied by the square-root of the reduced chi-squared of the fit to get $\chi^2 = 1$. As a final step, we ran 10000 Monte Carlo (MC) iterations and a residual permutation algorithm which considers the presence of red noise in the photometric data. We adopted as the best-fitting parameters for each transit the median values of the algorithm (MC or residual permutation) that resulted in the largest error, while their errors are the asymmetric uncertainties σ_Δ and σ_ℓ, defined by a range of 68.3% values of the selected distribution. In Table 4 we list the parameters for all the light curves.

We also evaluated the quality of each light curve, through the photometric noise rate (PNR), defined by Fulton et al. (2011) as,

$$ PNR = \frac{\text{RMS}}{\sqrt{T}} $$

where RMS is the standard deviation of the light curve residuals obtained by subtracting the JKTEBOP model from the photometric data, and T is the median number of exposures per minute. The red noise level was also estimated through the β parameter, which is

$$ \beta = \frac{\text{RMS}}{\text{RMS}_{\text{GROND}}} $$

Table 2. Photometry of WASP-46 obtained in this work. This table is available in its entirety in the online journal. A portion is shown here for guidance.

Telescope	0.40-m THG	0.40-m THG	0.40-m THG	0.40-m THG
BD/TDB	2456131.721802	2456131.722057	2456131.722312	2456131.722566
Relative Flux	1.005 ± 0.008	0.994 ± 0.008	1.004 ± 0.008	0.999 ± 0.008

Table 3. Fundamental parameters and chemical abundances of WASP-46 derived in this work from UVES spectra.

Parameter (unit)	Value ± σ^*
T_{eff} (K)	5761 ± 16
$\log g$ (cgs)	4.47 ± 0.06
v (km s$^{-1}$)	1.10 ± 0.05
[Fe/H]	-0.25 ± 0.04
[Na/H]	-0.21 ± 0.08
[Mg/H]	-0.28 ± 0.1
[Al/H]	-0.12 ± 0.09
[Si/H]	-0.25 ± 0.06
[Ca/H]	-0.20 ± 0.05
[Sc/H]	-0.21 ± 0.05
[Ti/H]	-0.15 ± 0.06
[V/H]	-0.14 ± 0.09
[Cr/H]	-0.23 ± 0.05
[Mn/H]	-0.33 ± 0.08
[Co/H]	-0.20 ± 0.05
[Ni/H]	-0.24 ± 0.06
[Y/H]	0.0 ± 0.05
[Ba/H]	0.28 ± 0.05

* For the fundamental parameters, the σ value represents the intrinsic uncertainties computed following (Gonzalez & Vanture 1998), while for chemical abundances σ is the standard deviation around the mean abundance obtained from all the measured lines.

7 http://www.astro.keele.ac.uk/jkt/codes/jktld.html

8 $r_s = \frac{a^3}{P^2}$ and $r_p = \frac{a^3}{2P^2}$ are the ratios of the absolute radii of the star and the exoplanet, respectively, to the semimajor axis (a).
defined by Winn et al. (2008) as $\beta = \frac{\sigma_r}{\sigma_i}$. Here, σ_r is determined by averaging the residuals into M bins of N points each and computing the standard deviation of the binned residuals, and σ_i represents the expected standard deviation, which in the absence of red noise is defined as,

$$\sigma_N = \frac{\sigma_i}{\sqrt{N}} \sqrt{\frac{M}{M - 1}},$$

where σ_i is the standard deviation of the unbinned out-of-transit data. Since for WASP-40b the ingress/egress duration of the transit is ~ 26 minutes, residuals were averaged in bins of between 16 and 36 minutes, and the median value was the adopted red noise factor. In Fig. 3 we show a plot of RMS as a function of the light curve bin size used to calculate the values of β for the 12 new transits. Magenta, blue and green lines represent the measured standard deviations of the binned residuals (σ_i) for the THG, EABA, and CASLEO data, respectively, and the black lines correspond to the expected standard deviations (σ_N). This plot along with columns 8 and 9 of Table 4 show that our whole sample is composed of light curves of different quality and red noise level.

Taking this into account, to avoid that final photometric parameters being affected by the results obtained from poor quality light curves, we estimated the best set of photometric parameters for the WASP-46 system considering only our most precise complete transits, i.e., light curves with $PNR \leq 3$ and $\beta \leq 1.25$. With this criterion we choose a total of 22 light curves (indicated in Table 4 with asterisks) and computed the parameters of the system i, Σ, and k as the weighted average of the values determined for each of the selected transits. Parameters uncertainties were calculated as the standard deviation of the sample relative to the number of data. From the 3rd law of Kepler and assuming $M_P \ll M_\star$ (where M_\star is the stellar mass), we also estimated the mean stellar density using

$$\rho_\star = \frac{4\pi^2}{GP^2} \left(\frac{1}{r_\star} \right)^3,$$

where G represents the gravitational constant and the value adopted for the orbital period is the one obtained with Eq. (5) of Section 4. The stellar-density uncertainty was computed through error’s propagation. In Table 5 we present our results compared with the values previously obtained by Anderson et al. (2012), Kjurkchieva et al. (2015), and Ciceri et al. (2016). Our parameters agree within the errors with those determined by Anderson et al. (2012), but are slightly different from the ones measured by Ciceri et al. (2016) (except for the value of k which is fully consistent), and those obtained by Kjurkchieva et al. (2015).

3.3 Physical parameters

Physical parameters were calculated using the JK_TABSDIM code (Southworth 2009), as explained in Petrucci et al. (2013, 2015). Briefly, this procedure requires as input certain photometric and spectroscopic parameters with their errors. In particular, the best value for the velocity amplitude of the planet is determined by linearly interpolating this parameter between three different stellar models: Y2 (Demarque et al. 2004), Padova (Girardi et al. 2000), and Teramo (Pietrinferni et al. 2004). For each stellar model, we considered several isochrones comprising the lifetime of the star in the main-sequence. In particular, we used isochrones in the ranges 1 Myr – 20 Gyr, 63 Myr – 18 Gyr, and 30 Myr – 16 Gyr for the Y2, Padova, and Teramo models, respectively. Then, we calculated the values of M_\star, R_\star, log g_\star, M_P, R_P, a, and age with their respective errors.

Planetary surface gravity (g_P), modified equilibrium temperature (T_{eq}'), and Safronov number (Θ) were determined independently on the stellar models, using Eq. (4) of Southworth et al. (2007) and Eqs. (5) and (6) of Southworth (2010). The modified equilibrium temperature is similar to the equilibrium temperature (i.e. the temperature that would have a planet if it were supposed as a black body heated only by its parent star) when the Bond albedo, A_\star, is considered equal to 1 – 4F, where F is a heat redistribution factor; while the Safronov number is an indicator of the efficiency with which a planet scatters other bodies (Fressin et al. 2009). Parameters uncertainties were calculated from the propagation of errors. In Table 6 we present our results along with the values previously obtained by Anderson et al. (2012) and Ciceri et al. (2016). It can be seen that, in general, our parameters are in good agreement with those computed in previous works. However, in the particular case of the planetary radius, our estimation is similar within the error to the value presented in the discovery paper (Anderson et al. 2012)

12 These values of PNR and β used to distinguish between high and poor quality transits, were arbitrarily determined from the available light curves to perform this study.

13 Although the light curves observed the nights of 2011, August 31 and 2012, July 27 have PNR ≤ 3 and $\beta \leq 1.25$, we did not include them in the analysis because they present anomalies during the transit probably produced by the passage of the planet in front of starspots.

14 http://www.astro.keele.ac.uk/jkt/codes/jktabsdim.html
but slightly larger than the result obtained by Ciceri et al. (2016).
Finally, although the density calculated in this work for WASP-46b agrees within errors with the ones previously determined, our value indicates that the planet is more dense than pointed out by Anderson et al. (2012) but not as much as claimed by Ciceri et al. (2016).

4 ANALYSIS OF TRANSIT TIMING VARIATIONS

We used the mathematical transformations described in Eastman et al. (2010) to convert measured times to BJD\(_{\text{TDB}}\). To carry out a fully homogeneous analysis of transit timing variations, mid-transit times were determined by fitting all the 49 light curves with the JKTEBOP code. Since \(T_0\) is not correlated with the photometric parameters, each individual light curve was modelled by assuming \(T_0\), \(i\), and the coefficients of the polynomial to fit the out-of-transit data-points as the only free variables. As initial values for \(i\), \(k\), and \(\Sigma\) we assumed those determined in Section 3.2.

We ran 10000 MC iterations and a residual permutation algorithm. For the mid-transit times, we finally adopted the mean values obtained from the ephemeris given by Eq. (3). Here, the error bars include the extra variance component of 4.32 minutes, added in quadrature to the mid-transit times errors, which was computed from a maximum-likelihood approach. In both panels, dashed lines indicate \(\pm \sigma\) (\(\sigma = 2.61\) minutes) which represents the standard deviation of the data.

\[
T_0(E) = 2455392.31738(36)BJD_{\text{TDB}} + E \times 1.43037126(50) \tag{3}
\]

where \(E\) represents the epoch, i.e., the number of transits since the minimum reference time. The errors for the orbital period and minimum reference time correspond to the last digits and were computed from the covariance matrix of the fit. We obtained a \(\chi^2 = 13.17\) which implies that a linear ephemeris does not properly represent the mid-transit times behaviour. In the bottom panel of Fig. 4 we plot O-C versus Epoch, where the O-C values shown in the Y-axis are the observed mid-transit times minus the ones predicted using the ephemeris given by Eq. (3). Here, dashed lines represent \(\pm \sigma\), i.e., the standard deviation of the sample (\(\sigma = 2.61\) minutes). In this case, it can be seen that the O-C data-points show some substantial scatter, probably due to the magnetic activity of the host-star. To fully account for the stellar activity influence or any other remaining uncorrelated noise, we introduced
an additional variance component (σ_i^2) in the ephemeris calculation. We estimated the value of this extra contribution using the same approach employed by Haywood et al. (2016, see their Section 4.1), who followed a procedure similar to the one described in Collier Cameron et al. (2006). This procedure basically consists in determining, through an iterative process, the value of σ_i that maximises the likelihood (\mathcal{L}),

$$
\ln(\mathcal{L}) = -\frac{N}{2} \ln(2\pi) - \frac{1}{2} \chi^2 - \frac{1}{2} \sum_{i=1}^{n} (t_{i}^{\text{diff}} + \phi_{i})^2
$$

where χ^2 is the chi-squared value of the $n = 45$ data-points with uncertainties σ_{time}. Through this approach, we estimated an extra-
Table 5. Photometric parameters derived in this work along with the values previously determined by Anderson et al. (2012), Kjurkchieva et al. (2015), and Ciceri et al. (2016)

Parameter	This work	Ciceri et al. (2016)	Kjurkchieva et al. (2015)	Anderson et al. (2012)
Orbital inclination, i (°)	82.53 ± 0.13	82.80 ± 0.17	82.015 ± 0.005	82.63 ± 0.38
Ratio of fractional radii, k	0.14074 ± 0.00068	0.14075 ± 0.00035	–	0.1468 ± 0.0017
Sum of fractional radii, $r_s + r_p$	0.1999 ± 0.0016	0.1950 ± 0.0013	–	0.1992 ± 0.0059
Stellar fractional radius, r_s	0.1750 ± 0.0014	0.1709 ± 0.0011	0.179 ± 0.0011	0.1742 ± 0.0057
Planetary fractional radius, r_p	0.02474 ± 0.00024	0.02403 ± 0.00021	0.02725 ± 0.00005	0.0250 ± 0.0010
Stellar density, ρ_{\star} (g cm$^{-3}$)	1.220 ± 0.031	1.310 ± 0.025	–	1.24 ± 0.10

Note: Photometric errors of Kjurkchieva et al. (2015) might be underestimated since they are just the formal values measured by the code used to fit the transits.

Table 6. Physical parameters derived in this work along with the values previously determined by Anderson et al. (2012) and Ciceri et al. (2016)

Parameter	This work	Ciceri et al. (2016)	Anderson et al. (2012)
Stellar mass, M_{\star} (M_{\odot})	0.907 ± 0.033	0.828 ± 0.067 ± 0.036	0.956 ± 0.034
Stellar radius, R_{\star} (R_{\odot})	0.905 ± 0.013	0.858 ± 0.024 ± 0.013	0.917 ± 0.028
Planetary mass, M_{p} (M_{\oplus})	2.031 ± 0.072	1.91 ± 0.11 ± 0.06	2.101 ± 0.073
Planetary radius, R_p (R_{\oplus})	1.244 ± 0.019	1.174 ± 0.033 ± 0.017	1.310 ± 0.051
Planetary surface gravity, g_p (m s$^{-2}$)	32.4 ± 3.0	34.3 ± 1.1	28.0$^{1.7}_{3.0}$
Planetary density, ρ_p (ρ_{\oplus})	1.054 ± 0.062	1.103 ± 0.050 ± 0.016	0.94 ± 0.011
Planetary modified equilibrium temperature, T_{eq} (K)	1704 ± 18	1636 ± 44	1654 ± 50
Safronov number, Θ	0.0863 ± 0.0045	0.0916 ± 0.0035 ± 0.0014	–
Semimajor axis, a (AU)	0.02407 ± 0.000029	0.02335 ± 0.00063 ± 0.00034	0.02448 ± 0.000028
Age (Gyr)	3.6 ± 1.9	9.6$^{3.1+1.4}_{2.2-3.5}$	0.9-1.4a Gyr

Note: The modified equilibrium temperature is similar to the equilibrium temperature (i.e. the temperature that would have a planet if it were supposed as a black body heated only by its parent star) when the Bond albedo, A, is considered equal to 1 – 4F, where F is a heat redistribution factor; while the Safronov number is an indicator of the efficiency with which a planet scatters other bodies (Fressin et al. 2009).

Figure 5. Lomb-Scargle periodogram of the O-C values corresponding to the 45 analysed light curves (continuous blue line). The most significant peak (P = 92.4 epochs) with FAP = 42% is marked. Here, "epoch" represents the number of transits since the minimum reference time shown in Eq. (5), while FAP (False Alarm Probability) is the probability that random noise produces a peak with power similar or higher than the one of the most significant peak in a certain period range. In this case, FAP was estimated through 10000 Monte Carlo simulations.

\[T_0(E) = 2455392.3170(4)BJD_{TDB} + E \times 1.43037148(53). \]

In this case, we obtained $\chi^2 = 0.32$. The O-C values computed from Eq. (5) are shown in the upper panel of Fig. 4. Here, it is possible to observe that considering an additional variance contribution of 4.32 minutes, the O-C data-points are within the level of the error bars. To search for a periodicity in these data we ran two different tasks to the O-C values: a Lomb-Scargle (LS) periodogram (Horne & Baliunas 1986) and a Phase Dispersion Minimization (PDM) algorithm (Stellingwerf 1978) provided by IRAF. Both routines find very similar peaks at $P = 92.4$ epochs with a FAP of 42% for the LS periodogram (Fig. 5), and $P = 91.9$ epochs with $\Theta = 0.835$ for the PDM algorithm. These high values for the false alarm probabilities and the absence of a clear periodic behaviour in the O-C data-points seem to indicate that the period

a: This is the value obtained by Anderson et al. (2012) for the gyrochronological age.
found around 92 epochs is not real. However, in the upper panel of Fig. 4 it is clear that some points strongly deviate from the predicted mid-transit times. We explored the causes of these departures looking for possible correlations between the O-C values and several indicators of the light curve quality.

In Fig. 6, we plot the absolute values of O-C versus PNR (Fig. 6a) and β (Fig. 6b). Gibson et al. (2009) have demonstrated that the duration of the observations before/after the transit ingress/egress might play an important role in the normalization of the light curve and therefore in the determination of T_0. Bearing this in mind, we also plot in Figs. 6c and 6d, the IO-CI values versus the duration of the out-of-transit observations before ingress (OOT$_{in}$) and the out-of-transit observations after egress (OOT$_{eg}$), respectively. In all the plots we distinguish between transits with PNR \leq 3 and β \leq 1.25 (blue circles) and those with PNR > 3 and/or β > 1.25 (red triangles). The 4 light curves excluded from the ephemeris computation were also not considered in this analysis. For each figure, we performed a linear fit (solid line) to the data and computed the correlation coefficient r. We regarded -1 \leq r \leq -0.8 or 0.8 \leq r \leq 1 as strongly, -0.8 $< r$ < -0.5 or 0.5 $< r$ < 0.8 moderately, and -0.5 $\leq r$ \leq 0 or 0 $< r$ \leq 0.5 weakly (positive or negative) correlated parameters. Taking this classification into account, no strong correlations between the absolute values of O-C and PNR, β, OOT$_{in}$, and OOT$_{eg}$ are observed.

However, it is interesting to note that, with the exception of only one point, which corresponds to the epoch 561, the IO-CI data-points from the best quality transits (blue circles) do not exceed 2.4 minutes, whereas those derived from light curves of less quality (red triangles) show deviations up to 7.6 minutes. Moreover, mid-transit times errors are, on average, 4.34 and 4.51 minutes for the blue circles and the red triangles, respectively. These results would imply a possible connection between the transit quality and the calculated value of T_0 and its uncertainty. We investigated this possibility by plotting in Figs. 7a and 7b the errors in T_0 (e_{T_0}) versus PNR and β, respectively. In Fig. 7b we obtained a coefficient r of 0.447, which suggests a weak correlation between e_{T_0} and red noise. However, this correlation is fully dependent on the data-point with a β factor of 3.3, which corresponds to the epoch 1316. If this transit is removed, r decreases to 0.062, showing almost no correlation between both quantities. On the other hand, in Fig. 7a we show with a solid line the best linear fit to the data-points. In this case, we found a moderate correlation (r = 0.672) between the errors in the determination of the mid-transit times and PNR, suggesting that less quality light curves provide less accurate values of T_0.

Considering these results, we decided to re-calculate the ephemeris including only those light curves with mid-transit times uncertainties smaller than 1 minute according to the values presented in Table 7 and no visible anomalies (Fig. 8). This reduced our sample to 31 transits spanning 6 complete years. By performing a maximum-likelihood analysis similar to that applied for determining Eq. (5), we obtained

$$T_0(E) = 2455392.3176(BJD_{TDB} + E \times 1.43037123(26)),$$

with χ^2_t = 0.83. In this case, the estimated extra variance component added in quadrature to the errors in T_0, was 1.7 minutes. Contrary to the results obtained taking the 45 transits into account, an LS periodogram of the 31 data-points does not show any significant peak, which confirms that the period of 92 epochs determined before is not real. This is in agreement with the finding by Ciceri et al. (2016) who did not find any periodic signal in the data. We also investigated if the use of different filters might affect the measurement of ephemerides. For the light curves corresponding to the nights of 2012 October 16 and 2013 April 24 observed with the GROND z' and g' filters, respectively, we repeated the fitting procedures explained in Section 3.2 and at the beginning of this section. However, this time, we took as initial values for the limb-darkening coefficients those corresponding to a different filter (the Johnson V filter). Then, we used the values and errors of the mid-transit times obtained from these fits and re-computed ephemeris, which was compared with that presented in Eq. (3). Given that the

Epoch	T_0 (BJD$_{TDB}$)	e_{T_0}
3	2455396.607854	0.000618
40	2455449.530824	0.00265
231	245572.731779	0.00229
255	245575.061951	0.000941
289*	245580.693185	0.00205
326	245588.618330	0.000898
501	245610.827057	0.000941
503	245611.794218	0.001159
503	245611.794240	0.001150
503	245611.794547	0.001167
516	245613.388946	0.000415
517	245613.814561	0.001116
519*	245613.676108	0.000289
561	245614.759161	0.000270
577	245621.641274	0.000147
577	245621.641561	0.001132
584	245622.655743	0.000604
710	245640.880958	0.000154
710	245640.880849	0.000176
710	245640.881483	0.000282
710	245640.881594	0.000426
747	245646.802527	0.000173
747	245646.805193	0.000263
747	245646.804500	0.000243
747	245646.805467	0.000643
782	245650.868182	0.000602
782	245650.869693	0.000150
786	245651.856674	0.001191
789	245652.800123	0.000637
798	245653.752605	0.000707
798	245653.754796	0.000152
828	245656.662886	0.001087
837	245658.541970	0.000899
851	245660.566526	0.000426
1012	245683.854400	0.001226
1028	245686.740854	0.000482
1042	245688.765657	0.000726
1044	245688.624920	0.000529
1049*	245692.775958	0.000957
1065	245691.660396	0.001232
1065	245692.838802	0.000784
1088	245694.563838	0.000740
1316	245724.684578	0.001838
1330	245729.708862	0.001400
1509	245750.747972	0.000306
1539	245759.656023	0.000242
1544	245760.809853	0.000393
1551	245761.822857	0.00203

Note: Asterisks indicate the transits excluded from the calculation of ephemeris.
A search for TTV and orbital decay in WASP-46b

Figure 6. O-C data-points versus photometric noise rate (PNR), red noise (β), time before ingress (OOT$_{ing}$), and time after egress (OOT$_{eg}$). Here PNR and β denote photometric accuracy of the light curves. Blue circles indicate high quality transits with PNR \leq 3 and β \leq 1.25, while red triangles correspond to those poor quality light curves with PNR > 3 and/or $\beta > 1.25$. Solid lines represent the best-fitting to the data and the r parameters are the correlation coefficients. We regarded $-1 < r \leq -0.8$ or $0.8 \leq r < 1$ as strongly, $-0.8 < r < -0.5$ or $0.5 < r < 0.8$ moderately, and $-0.5 \leq r < 0$ or $0 < r \leq 0.5$ weakly (positive or negative) correlated parameters. Taking this classification into account, no strong correlations between the O-C values and PNR, β, OOT$_{ing}$, and OOT$_{eg}$ are observed.

result of this comparison shows that the change in the ephemeris is within its 1\(\sigma\) error bars, we conclude that the ephemeris, and hence the measured mid-transit times, are not affected by the filters used to carry out the observations.

On the other hand, it is known that WASP-46 is an active star with a rotation period of 16 days, determined from the photometric variations produced by spots of magnetic origin (Anderson et al. 2012). Several works (Oshagh et al. 2013; Ioannidis et al. 2016) caution that asymmetries in the light curves due to the passage of the planet in front of one or several spots during transit may lead to measure mid-transit times that strongly deviate from the predicted ones. Therefore, some of the outliers observed in Fig. 8, which deviate more than $\sigma = 1.66$ minutes from the predictions, can be due to anomalies during the transit produced by the presence of unseen stellar spots.

For completeness, we assessed if our standard deviation in the O-C data-points might be compatible with the amplitude of the TTV expected by the Applegate effect17 (Applegate 1992). According to Eq. (13) of Watson & Marsh (2010), this amplitude would be of less than 1 second in 6 years, which is far below the $\sigma \sim 1.6$ minutes found in our data. Hence, we can discard the variations in the quadrupole moment of WASP-46 as the cause of the observed dispersion in our mid-transit times.

Finally, using Eq. (33) of Agol et al. (2005) with the TTV dispersion determined for the 31 transits with $e_T < 1$ less than 1 minute, we found that it is possible to exclude perturbers with masses larger than 2.3, 4.6, 7, and 9.3 M_{\oplus} located in the positions of the first-order mean-motion resonances 2:1, 3:2, 4:3, and 5:4 with WASP-46b, respectively.

17 The Applegate effect is a mechanism that produces changes in the orbital period of the components of a binary system, due to quasi-periodic variations in the stellar quadrupole moment caused by magnetic activity cycles. This same effect is also expected to occur in planetary systems when the host-star is magnetically active (Watson & Marsh 2010).
Figure 7. Uncertainties in mid-transit times (e_{T_0}) versus PNR (panel a) and β (panel b) factors. The black solid line represents the best-fitting to the data-points whose equation is indicated in the figure, and the r parameter is the correlation coefficient. For the data in panel b, we obtain $r = 0.447$ which suggests a weak correlation between e_{T_0} and red noise. However, this correlation is fully dependent on the data-point with $\beta = 3.3$, which corresponds to the epoch 1316. If this transit is removed, r decreases to 0.062 showing almost no correlation between both quantities. On the other hand, for the data in panel a, we find a positive moderate correlation ($r = 0.672$) between the errors in the determination of the mid-transit times and PNR, suggesting that less quality light curves provide less accurate values of T_0.

Figure 8. O-C data-points versus Epoch. Here, O-C values are the observed mid-transit times minus the mid-transit times predicted using the ephemeris given by Eq. (6), while Epoch represents the number of transits since the minimum reference time shown in the same equation. We only plot the 31 light curves with uncertainties in their mid-transit times smaller than 1 minute according to the values presented in Table 7. Dashed lines indicate $\pm \sigma$ ($\sigma = 1.66$ minutes) which represents the standard deviation of the data, while the red continuous line is the quadratic fit obtained from Eq. (11). Error bars include an additional variance component of 1.7 minutes, added in quadrature to the mid-transit times errors, which was computed from a maximum-likelihood approach.

4.1 Analysis of long-term variations in transit depth and orbital inclination

The presence of a third body (exomoon, ring, or another planet) in the system can also cause periodic variations in depth and/or orbital inclination. To study this possibility we analysed the long-term behaviour of the photometric parameters k and i as a function of time for the 45 light curves without visible anomalies in their transits. To pursue this aim, we ran the JKTEBOP code individually on each light curve considering the depth, the scale factor, and the coefficients of the polynomial to fit the out-of-transit data-points as free parameters, while the remaining ones were fixed to the values obtained in Section 3.2. We repeated the same procedure for the orbital inclination but, in this case, the sum of the fractional radii was also allowed to vary because i and Σ are correlated parameters. As before, we excluded from this study the incomplete light curve and the 3 light curves showing visible anomalies during the transit. In Fig. 9 we present our results. In both cases, we ran an LS periodogram and no significant peak was found in the data. However, for the k parameter some transits present depth values that depart from the standard deviation of the sample (here $\sigma = 0.0104$), similar to what we obtained for the mid-transit times. We suspect that these departures are consequence of the stellar activity present in WASP-46 (see e.g. Czesla et al. 2009; Croll et al. 2015). Since our sample consists of light curves observed in 11 different filters, including wavelengths from 477 to around 914 nm, we extended the analysis performed by Ciceri et al. (2016) and explored the behaviour of the planetary radius as a function of wavelength. With this purpose, the 45 measurements of k were grouped together according to the filter in which they were observed. Then, for each dataset we computed a weighted average of k and adopted as error its standard deviation. These values are shown in Table 8. By fitting a linear model through weighted least-squares to this data, we obtained a slope $m = -0.88 \times 10^{-5}$ which is fully consistent with the value found by Ciceri et al. (2016). Assuming a scaling law for the cross section of the dominant species given by $\sigma = \sigma_0(\lambda/\lambda_0)^{\gamma}$ (Lecavelier Des Etangs et al. 2008), the slope m will depend on the planet’s atmospheric properties as follows:

$$m = \frac{\gamma T_{eq} k_B}{\mu g_p},$$

where k_B is the Boltzmann constant, μ the mean molecular weight,
The measured values of $\lambda\tau$ and their errors as a function of the wavelength. The linear model that best fits the data is indicated by a continuous black line. Furthermore, the upper panel of Fig. 9 shows that all the values of i agree, considering the errors, with the mean value measured for the orbital inclination.

4.2 Searching for a possible orbital decay

Considering the close proximity of WASP-46b to its host-star (a ≈ 0.024 AU), it is interesting to study the possibility of orbital decay. According to Matsumura et al. (2010) planetary systems are “Darwin unstable” (i.e., they have no tidal equilibrium states) when the ratio of the total angular momentum of the system (L_{tot}) to some critical value (L_{crit}) is lower than 1. Here,

\[
L_{\text{tot}} = L_{\text{orb}} + (C_+ + C_p)n = \frac{M_\star M_p}{\sqrt{M_\star + M_p}} \sqrt{Ga(1-e^2)} + (C_+ + C_p)n
\]

and,

\[
L_{\text{crit}} = 4 \left(\frac{G^2 M_\star^3 M_p^3}{27 M_\star + M_p} (C_+ + C_p) \right)^{\frac{1}{2}}
\]

where L_{orb} is the orbital angular momentum, G the gravitational constant, n the mean motion, and $C_+ = aMR^2 \frac{m_\star}{M_\star}$ the moment of inertia. Using Eqs. (8) and (9) for the system under study, we calculated $L_{\text{orb}}/L_{\text{crit}} \sim 0.11^{+1}$ which means that the final fate of WASP-46b is to eventually fall onto the stellar surface. In this case, since e is nearly zero and the orbit is supposed to be synchronised, the tidal forces acting on the exoplanet can be considered negligible. However, since the stellar rotation period is larger than the orbital period, it is expected that tides continue to act on the host-star, decreasing the semimajor axis until the planet reaches its Roche limit (a_R) and is tidally disrupted (Penev et al. 2012). According to Faber et al. (2005), the critical separation from which the planet starts to lose mass via its Roche lobe, a_R, is given by,

$$R_p = 0.462\eta^{1/3}a_R$$

where $\eta = M_p/M_\star$ is supposed ≪ 1. This relation between R_p and a_R is based on the Roche lobe radius determined by Paczyński (1971), who considered the classical stellar two-body problem supposing both stars as point masses in a circular orbit. In our case, adopting the stellar and planetary masses and the planet radius computed in Section 3.3, we found $a_R = 0.00972$ AU. Assuming the current value of $a = 0.02407$ AU determined in this work, this result implies that WASP-46b has not crossed its Roche limit yet. However, we cannot rule out the possibility that the planet is losing mass through evaporation due to stellar radiation, given that this mechanism is not contemplated in the Roche limit calculation.

Orbital decay manifests as a systematic decrease of the orbital period. This implies that successive transits begin at times earlier than predicted ones, and therefore O-C values become systematically negative. The usual method to search for this shortening in the orbital period is to fit the mid-transit times with a quadratic and a linear ephemeris and compare which of both models better represents the data.

In this particular case, we performed a maximum-likelihood analysis to fit the mid-transit times corresponding to the 31 light curves for which $e_{T0} < 1$ minute with the quadratic ephemeris equation of Adams et al. (2010),

$$T_0(E) = T_{\text{minref}} + E \times P + \delta P \times \frac{E(E-1)}{2}$$

where T_{minref} is the reference minimum time and $\delta P = P \times \dot{P}$. In Fig. 8, the red continuous line represents the quadratic fit to the data. We obtained a variation of the orbital period per epoch (δP) of ($-5.41 \pm 2.25) \times 10^{-9}$ days and consequently a variation of the orbital period per year (\dot{P}) of -0.119 ± 0.069 s yr$^{-1}$.

These small values for δP and P would be consistent with a constant orbital period. Following the methodology used in previous studies (see e.g. Chen et al. 2014a; Hoyer et al. 2016b), we applied to both the linear and the quadratic models the Bayesian Information Criterion (BIC) defined as,

$$\text{BIC} = k_{\text{FP}} \ln N,$$

where k_{FP} is the number of free parameters for the adjustment and N is the number of data-points. BIC is a useful tool to evaluate which of the fits better represents the data. In this sense, the best-fitting will be the one with the lowest value of BIC. For WASP-46b we obtained BIC = 33 for the linear model and BIC = 28 with a $\chi^2 = 0.56$ for the quadratic fit. These results indicate that a quadratic ephemeris is a better representation of the mid-transit times as a function of epoch. However, although we cannot rule out a possible slow decreasing rate of the period, we caution the reader that this evidence is still not significant and more observations are required before we can make conclusive statements on the orbital decay of the system.

Although the analysis presented above did not reveal any periodic variation in the mid-transit times or a significant shortening in the orbital period, the information obtained is useful to determine a
lower limit on the tidal quality factor Q_\star. This parameter is related to the rate of tidal dissipation within the host-star and hence has an influence on the rate of orbital decay (Penev et al. 2012). Larger values of Q_\star imply slower orbital evolutions. This points out the importance of this parameter in the theories looking to explain the formation of close-in planets and their subsequent dynamic evolution. However, in spite of the theoretical effort put on the determination of Q_\star (see e.g. Matsumura et al. 2010; Penev et al. 2012), the mechanisms of tidal dissipation in planets and stars are not well understood yet. Recently, several groups (Croll et al. 2015; Hoyer et al. 2016a,b; Maciejewski et al. 2016) have started to estimate the values of the tidal quality factor through observations of individual systems. We followed the procedure applied in these previous works and using a 1σ value based on our measured orbital decay, we adopted -0.07 s yr$^{-1}$ as the upper limit of the estimated value for \dot{P}. Based on this number, we calculated $Q_\star > 7 \times 10^3$ for WASP-46 from Eq. (5) of Birkby et al. (2014). Although this value for the tidal quality factor is much lower than those normally assumed (between 10^5 - 10^{10}), it is physically plausible given that small values of Q_\star have been also obtained in previous studies (see e.g. Adams et al. 2010; Blecic et al. 2014). Finally, we used the value of the lower limit determined for Q_\star to compute a lower limit for the remaining lifetime of > 0.34 Myr before WASP-46b falls onto the star.

5 SUMMARY AND CONCLUSIONS

In this work we present 12 new transits of WASP-46b observed between 2012 and 2016. We use these observations and another 37 light curves collected from previous works and the Exoplanet Transit Database to re-determine the system’s parameters and to compute new ephemeris. From the complete (full transit cover-
A search for TTV and orbital decay in WASP-46b

We also perform the first homogeneous TTV study for this system over 6 years of observations. For the 45 O-C data-points corresponding to those light curves without visible anomalies during the transit, we get a dispersion of 2.61 minutes although we do not find any periodicity. To explain this high value of σ, we search for possible correlations between IO-Cl and PNR, β, and the duration of the out-of-transit observations before ingress and after egress, but no significant correlation is detected. However, two interesting results arise from this analysis. First, best quality light curves (complete transits with PNR $\lesssim 3$ and $\beta \lesssim 1.25$), with the exception of epoch 561, show IO-Cl values up to 2.4 minutes with an average error of 4.34 minutes, while transits of poor quality present IO-Cl values as much as 7.6 minutes with a mean error of 4.51 minutes. Second, we find a moderate correlation ($r = 0.672$) between the errors in the mid-transit times and PNR. This finding agrees with the results obtained in previous works and shows that poor quality transits imply not only less accurate values of T_0, but also larger errors. Since ephemerides are generally computed through weighted least-squares, the values of P and reference minimum time are only slightly affected by poor quality light curves. However, these poor quality transits (often used in TTV’s studies based on observations acquired with ground-based facilities) could mimic the variations in the O-C data-points produced by another body. Therefore, caution must be taken when these low quality observations are included in this kind of analysis.

Given that we showed that low-quality data usually provide less accurate values of mid-transit times with errors often underestimated, to calculate the ephemeris we only consider the 31 complete light curves with errors in T_0 smaller than 1 minute. In this case, we find a standard deviation of 1.66 minutes for the O-C data-points, which is significantly smaller than the one obtained considering all the 45 data-points. Since no periodic variation is detected in the data, we exclude the possibility that a second body gravitationally bound to the system can explain this result. We also discard the Applegate effect as a possible cause, since the amplitude of the variations produced by this phenomenon (less than 1 second) is significantly lower than the dispersion found (~ 1.6 minutes). Alternatively, the high standard deviation we obtain can be due to stellar activity. In addition, our TTV dispersion allows us to exclude bodies with masses larger than 2.3, 4.6, 7, and 9.3 M_\oplus at the first-order mean-motion resonances 2:1, 3:2, 4:3, and 5:4 with WASP-46b, respectively. Moreover, we do not detect any periodic behaviour in depth and orbital inclination for the 45 light curves. Several values of k differ more than $\pm \sigma$ from the mean value, probably due to the effect of unseen stellar spots in the light curves.

Given the short distance between WASP-46b and the star, we also search for a possible orbital decay. Through the computation of the total angular momentum of the system, we conclude that the planetary orbit is unstable and WASP-46b will eventually spiral in toward its host-star. We also estimate that the planet has not crossed its Roche limit yet. Furthermore, we find that a quadratic fit to the 31 best mid-transit times is a better ($\text{BIC} = 28$) representation of the data than the linear model ($\text{BIC} = 33$), which prevents us from ruling out the possibility that the orbital period of WASP-46b might be decreasing. However, from the quadratic model we estimated small values for $\Delta P = (-5.41 \pm 2.25) \times 10^{-3}$ days and -0.119 ± 0.089 s yr$^{-1}$, suggesting that if a decay in the planetary orbit is actually taking place, the variation rate of the period is very low. Moreover, it is important to mention that even considering a typical light curve precision of 2×10^{-3} and 6 years of observations, our results cannot significantly demonstrate a slow decrease of the orbital period of WASP-46b. Hence, this trend is not conclusive and needs to be confirmed by extending the baseline of transit observations. This value of P allows us to compute a lower limit on the tidal dissipation coefficient of $Q_\tau > 7 \times 10^5$. On the other hand, according to Eq. (7) of Birkby et al. (2014) and assuming our current light curve precision and O-C dispersion of 1.6 minutes as the expected transit time shift, we would be able to rule out values of $Q_\tau < 10^5$ after 6 additional years of transit observations. Given that there is still no clear evidence to decide if the orbit of the planet is decaying or not, the transfer of angular momentum from the planetary orbit to the stellar surface proposed by Maxted et al. (2015) remains a possibility that might explain the discrepancy between the gyrochronological and isochronal ages.

ACKNOWLEDGEMENTS

R. P. and E. J. acknowledge the financial support from CONICET in the form of postdoctoral fellowships. R. P. also thanks to Dr. Simona Ciceri for kindly providing the light curves of her work. R. P. and E. J. are also grateful to the operators of the 1.54-m telescope at EABA, Cecilia Quiñones and Luis Tapia, for their support during the observing runs, and to Estefanía Vendedor for observing the transit of 2014 August 22. R. P. thanks Martin Mašek for nicely providing information about the observations of WASP-46b published in the ETD. The authors acknowledge support from the PIP 2013-2015 GI 11220120100497 of CONICET (Argentina). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France and NASA’s Astrophysics Data System. We also thank the referee for a thorough review of the manuscript and constructive comments and suggestions, which improved the content and quality of the paper.

REFERENCES

Adams E. R., López-Morales M., Elliot J. L., Seager S., Osip D. J., 2010, ApJ, 721, 1829
Agol E., Steffen J., Sari R., Clarkson W., 2005, MNRAS, 359, 567
Anders E., Grevesse N., 1989, Geochemich Cosmochimica Acta, 53, 197
Anderson D. R., et al., 2012, MNRAS, 422, 1988
Applegate J. H., 1992, ApJ, 385, 621
Birkby J. L., et al., 2014, MNRAS, 440, 1470
Blecic J., et al., 2014, ApJ, 781, 116
Chen G., et al., 2014a, A&A, 563, A40
Chen G., van Boekel R., Wang H., Nikolov N., Seemann U., Henning T., 2014b, A&A, 567, A8
Ciceri S., et al., 2016, MNRAS, 456, 990
Claret A., 2000, A&A, 363, 1081
Collier Cameron A., et al., 2006, MNRAS, 373, 799
Croll B., Rappaport S., Levine A. M., 2015, MNRAS, 449, 1408
Czesla S., Huber K. F., Wolter U., Schröter S., Schmitt J. H. M. M., 2009, A&A, 505, 1277
Demarque P., Woo J.-H., Kim Y.-C., Yi S. K., 2004, ApJS, 155, 667
Eastman J., Siverd R., Gaudi B. S., 2010, *PASP*, 122, 935
Faber J. A., Rasio F. A., Willems B., 2005, *Icarus*, 175, 248
Fressin F., Guillot T., Nesta L., 2009, *A&A*, 504, 605
Fulton B. J., Shporer A., Winn J. N., Holman M. J., Pál A., Gazak J. Z., 2011, *AJ*, 142, 84
Gibson N. P., et al., 2009, *ApJ*, 700, 1078
Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, *A&AS*, 141, 371
Gonzalez G., Vanture A. D., 1998, *A&A*, 339, L29
Haywood R. D., et al., 2016, *MNRAS*, 457, 3637
Horne J. H., Baliunas S. L., 1986, *ApJ*, 302, 757
Howell S. B., 1989, *PASP*, 101, 616
Hoyer S., Palle E., Dragomir D., Murgas F., 2016a, preprint, (arXiv:1603.01144)
Hoyer S., López-Morales M., Rojo P., Minniti D., Adams E. R., 2016b, *MNRAS*, 455, 1334
Ioannidis P., Huber K. F., Schmitt J. H. M. M., 2016, *A&A*, 585, A72
Jofré E., Petrucci R., Safie C., Saker L., de la Villarmois E. A., Chavero C., Gómez M., Mauas P. J. D., 2015a, *A&A*, 574, A50
Jofré E., Petrucci R., García L., Gómez M., 2015b, *A&A*, 584, L3
Kjurkchieva D., Petrov N., Popov V., Ivanov E., 2015, Bulgarian Astronomical Journal, 22, 21
Kurucz R., 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13. Cambridge, Mass.: Smithsonian Astrophysical Observatory, 1993., 13
Lecavelier Des Etangs A., Pont F., Vidal-Madjar A., Sing D., 2008, *A&A*, 481, L83
Maciejewski G., et al., 2016, *A&A*, 588, L6
Mallén-Ornelas G., Seager S., Yee H. K. C., Minniti D., Gladders M. D., Mallén-Fullerton G. M., Brown T. M., 2003, *ApJ*, 582, 1123
Matsumura S., Peale S. J., Chavero C., Gómez M., 2010, *ApJ*, 725, 1995
Maxted P. F. L., Sernelli A. M., Southworth J., 2015, *A&A*, 577, A90
Oshagh M., Santos N. C., Boisse I., Boué G., Montalto M., Dumusque X., Haghighipour N., 2013, *A&A*, 556, A19
Paczyński B., 1971, *ARA&A*, 9, 183
Penev K., Jackson B., Spada F., Thom N., 2012, *ApJ*, 751, 96
Petrucci R., Jofré E., 2016, preprint, (arXiv:1603.04507)
Petrucci R., Jofré E., Schwartz M., Cúneo V., Martínez C., Gómez M., Bucicino A. P., Mauas P. J. D., 2013, *ApJ*, 779, L23
Petrucci R., Jofré E., Melita M., Gómez M., Mauas P., 2015, *MNRAS*, 446, 1389
Pietrinferni A., Cassisi S., Salaris M., Castelli F., 2004, *ApJ*, 612, 168
Poddany S., Brát L., Pejcha O., 2010, *New Astron.*, 15, 297
Pollacco D. L., et al., 2006, *PASP*, 118, 1407
Saffe C., 2011, Rev. Mex. Astron. Astrofis., 47, 3
Snedden C. A., 1973, PhD thesis, THE UNIVERSITY OF TEXAS AT AUSTIN.
Southworth J., 2009, *MNRAS*, 394, 272
Southworth J., 2010, *MNRAS*, 408, 1689
Southworth J., 2012, *MNRAS*, 426, 1291
Southworth J., Maxted P. F. L., Smalley B., 2004, *MNRAS*, 351, 1277
Southworth J., Wheatley P. J., Sams G., 2007, *MNRAS*, 379, L11
Stellingwerf R. F., 1978, *ApJ*, 224, 953
Stetson P. B., 1990, *PASP*, 102, 932
Watson C. A., Marsh T. R., 2010, *MNRAS*, 405, 2037
Winn J. N., et al., 2008, *ApJ*, 683, 1076
Zhou G., Bayliss D. R., Kedziora-Chudczer L., Tinney C. G., Bailey J., Salter G., Rodriguez J., 2015, *MNRAS*, 454, 3002

This paper has been typeset from a TeX/LaTeX file prepared by the author.