Restenosis following balloon dilation of benign esophageal stenosis

Ying-Sheng Cheng, Ming-Hua Li, Ren-Jie Yang, Hui-Zhen Zhang, Zai-Xian Ding, Qi-Xin Zhuang, Zhi-Ming Jiang, Ke-Zhong Shang

INTRODUCTION
Balloon catheter dilation is a common nonsurgical treatment for benign esophageal stenosis. Its short-term effect is good, but its long-term effect is not so good, because esophageal restenosis is a major complication. The underlying mechanism of esophageal restenosis has not been understood yet. To study this mechanism, we established a benign esophageal stricture model and restenosis model in Sprague-Dawley (SD) rats. We performed quantitative histopathological image analysis of sections of the rat esophagus, and qualitative immunohistochemical analysis of the related indicators of proliferation and restenosis of mucous and striated muscle layers of rat esophagus dilated by a balloon catheter at different time points. This provided us with an effective experimental model for investigation of the causes of restenosis.

MATERIALS AND METHODS

Materials
All protocols used for animal experiment and maintenance were approved by the Animal Ethics Committee in our university and conformed to the highest international standards of humane care.

70 male Sprague-Dawley (SD) rats weighing 305±50 g were obtained from the Shanghai Experimental Animal Center (Shanghai, China). The animals were weighed on day 0 and then 1 day before sacrifice. After anesthesia with 10 % ketamine (80 mg/kg) by abdominal injection, the animals were placed in a supine position and stabilized on an operating table. A 3F segmental epidural catheter was inserted into the mouth, and 10 ml of edible vinegar was injected into the stomach. The epidural catheter was then replaced by two 3F percutaneous transluminal coronary angioplasty (PTCA) balloon catheters at the mid-to-lower segment of the esophagus. The two balloons were at least 2 cm apart. These balloons were simultaneously inflated with air until they expanded to cling to the wall of the esophagus. Then 5 ml of a freshly prepared 50 % sodium hydroxide solution was injected through the orifice of the balloon catheter. After three minutes the air was released from the balloon. Distilled water was injected repeatedly through the same orifice for rinsing for 1 minute. The balloon catheters were removed and the animals returned to their cages for feeding. An esophageal barium-contrast examination was performed 2 and 4 weeks later to ascertain whether benign esophageal strictures had formed. We achieved 49 animal models from the 70 rats. These 49 rats were divided into two groups: rats with benign esophageal stricture caused by chemical burn only (control group, n=21) and rats with their esophageal stricture treated with balloon catheter dilation (experimental group, n=28). Imaging analysis and immunohistochemistry were used for both quantitative and qualitative analyses of esophageal stenosis and RS formation in the rats, respectively.

RESULTS:
Cross-sectional areas and perimeters of the esophageal mucosal layer, muscle layer, and the entire esophageal layers increased significantly in the experimental group compared with the control group. Proliferating cell nuclear antigen (PCNA) was expressed on the 5th day after dilation, and was still present at 1 month. Fibronectin (FN) was expressed on the 1st day after dilation, and was still present at 1 month.

CONCLUSION:
Expression of PCNA and FN plays an important role in RS after balloon dilation of benign esophageal stenosis.

Cheng YS, Li MH, Yang RJ, Zhang HZ, Ding ZX, Zhuang QX, Jiang ZM, Shang KZ. Restenosis following balloon dilation of benign esophageal stenosis. World J Gastroenterol 2003; 9 (11): 2605-2608

http://www.wjgnet.com/1007-9327/9/2605.asp

Abstract
AIM: To elucidate the mechanism of restenosis following balloon dilation of benign esophageal stenosis.

METHODS: A total of 49 rats with esophageal stenosis were induced in 70 rats using 5 ml of 50 % sodium hydroxide solution and the double-balloon method, and an esophageal restenosis (RS) model was developed by esophageal stenosis using dilation of a percutaneous transluminal coronary angioplasty (PTCA) balloon catheter. These 49 rats were divided into two groups: rats with benign esophageal stricture caused by chemical burn only (control group, n=21) and rats with their esophageal stricture treated with balloon catheter dilation (experimental group, n=28). Imaging analysis and immunohistochemistry were used for both quantitative and qualitative analyses of esophageal stenosis and RS formation in the rats, respectively.

RESULTS: Cross-sectional areas and perimeters of the esophageal mucosal layer, muscle layer, and the entire esophageal layers increased significantly in the experimental group compared with the control group. Proliferating cell nuclear antigen (PCNA) was expressed on the 5th day after dilation, and was still present at 1 month. Fibronectin (FN) was expressed on the 1st day after dilation, and was still present at 1 month.

CONCLUSION: Expression of PCNA and FN plays an important role in RS after balloon dilation of benign esophageal stenosis.

Ying-Sheng Cheng, Ming-Hua Li, Qi-Xin Zhuang, Ke-Zhong Shang, Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai 200233, China
Ren-Jie Yang, Department of Interventional Diagnosis and Therapy, Clinical Oncology College of Beijing University, Beijing 100036, China
Hui-Zhen Zhang, Zhi-Ming Jiang, Department of Pathology, Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai 200233, China
Zai-Xian Ding, Department of Animal Experiment, Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai 200233, China

Supported by the National Key Technologies Research and Development Program of China During the 9th Five-Year Plan Period, No.96-907-03-04

Correspondence to: Dr. Ying-Sheng Cheng, Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai 200233, China. chengys@sh163.net
Telephone: +86-21-64368920 Fax: +86-21-64701361
Received: 2003-05-13 Accepted: 2003-06-02
Methods
Image analysis: Esophageal sections were stained with hematoxylin and eosin, and images were taken by a CCD camera (JVC, Osaka, Japan) and analyzed by a VIDAS imaging system (Carl Zeiss, Germany). The indicators used comprised the cross-sectional areas and perimeters of esophageal mucous layer, esophageal muscle layer, and the entire esophageal layers.

Immunohistochemical staining: ABC methods and SP methods were performed following the manufacturer’s instructions using an ABC kit (Vector, USA) and an SP immunochemistry kit (Zymed Maxim, USA). The source of antibodies and their effective concentrations are listed in Table 1. The presence of platelet-derived growth factor (PDGF) and fibronectin (FN) was tested by the ABC method, and proliferating cell nuclear antigen (PCNA) was tested by the SP method.

RESULTS
Models of benign esophageal stricture and esophageal restenosis
Of the 49 model rats with benign esophageal stricture, 28 rats with esophageal restenosis were established.

Morphologic changes in benign esophageal stricture and esophageal restenosis
The control group showed chemical-burn lesions with an inflammatory reaction on the mucous layer of the esophagus, and comparatively slight thickening on the muscle layer of the esophagus. No broken regions were found in the muscle layer of the esophagus, and the esophageal wall was intact. Besides chemical-burn lesions, the experimental group showed mechanical damage in the mucosa of the esophagus. The muscle layer of the esophagus was thickened and broken, with accompanying inflammatory reactions (Figure 1). On the 5th day after the procedure, the broken section of the muscle layer of the esophagus became thickening, and 14 days later the degree of thickening was obvious. The changes in the cross-sectional areas and perimeters of mucosa, muscle layers, and the entire esophagus wall are listed in Table 2.

Immunohistochemical staining of benign esophageal stricture and esophageal restenosis: In the control group, basal cells of the squamous epithelium and striated-muscle cells of the esophagus exhibited no PCNA expression. Five days after the dilation procedure, PCNA expression became obvious in the experimental group.

Table 1 Source of antigens and their effective concentrations

First antibody	Second antibody
Goat antihuman PDGF	Promega 1:40 Biotinylated house antigoat IgG Vector 1:200
Mouse antihuman FN	Life 1:20 Biotinylated house antimouse IgG Vector 1:200
Mouse antihuman PCNA	Maxim 1:20 Biotinylated house antimouse IgG Maxim 1:200

Statistical analysis: Data were expressed as the mean±SD. Statistical analysis was performed using the unpaired or paired t-test. A probability value less than 0.05 was considered significant.

Table 2 Morphologic changes in benign esophageal stricture and esophageal restenosis (area, mm²; perimeter, mm)

	Control group	Experimental group
A1	0.49±0.14	0.75±0.18
A2	1.70±0.42	1.97±0.33
A3	2.20±0.45	2.72±0.46
P1	4.83±1.52	6.65±1.22
P2	6.89±1.96	8.80±1.67
P3	9.86±2.25	14.19±2.89

*P <0.01, †P <0.05 vs control group and experimental group.

Abbreviations: A1: cross-sectional area of mucosa of esophagus, A2: cross-sectional area of muscle layer of esophagus, A3: cross-sectional area of entire esophagus wall, P1: perimeter of mucosa of esophagus, P2: perimeter of muscle layer of esophagus, P3: perimeter of entire esophagus wall.

Figure 1 In the experimental group, on the 5th day after the procedure, muscle layers of the rat esophagus exhibited an inflammatory reaction. H&E stain, ×4.

Figure 2 In the experimental group, on the 5th day after the procedure, the basal cells of the squamous epithelium in rat esophagus exhibited strong PCNA expression. Immunostaining, ×4.

Figure 3 In the experimental group, on the 30th day after the procedure, the substratum of the rat esophageal mucosa and muscle layers exhibited strong FN expression. H&E stain, ×4.

Immunohistochemical staining of benign esophageal stricture and esophageal restenosis: In the control group, basal cells of the squamous epithelium and striated-muscle cells of the esophagus exhibited no PCNA expression. Five days after the dilation procedure, PCNA expression became obvious in
basal cells of the squamous epithelium, and this positive expression lasted for 30 days (Figure 2). In the control group, 3–7 days after the dilation procedure, the basal layer of the esophagus exhibited weak positive expression. Fourteen days later there was no FN expression in the basal layer. In the experimental group, on the 1st day after the procedure, the collagen fibers in submucosa and in the striated-muscle layer of esophagus were positive for FN, and this was still the case on the 14th day. After 1 month, FN positive expression was still reasonably strong (Figure 3). PDGF was not expressed at all in striated-muscle cells from the 1st to the 30th day in both control and experimental groups.

DISCUSSION

Models of benign esophageal stricture and esophageal restenosis

The causes of benign esophageal stricture are numerous and complicated, and hence the models thereof are difficult to reproduce consistently. However, benign esophageal strictures eventually manifest as thickened scars and reduced luminal sizes. We used chemical burns to develop the model of benign esophageal stricture because it allowed timing to be controlled and exhibited a high rate of success. Early in the 1970s, Przymanowski et al[1] used sodium hydroxide to establish a model of benign esophageal stricture. Their method was to perform an abdominal midsection on rats, thereby exposing the lower segment of the esophagus. They used surgical thread to tightly tie the region 2-cm either side of the lower segment of the esophagus. They then inserted a stomach tube via the mouth until it reached the tied point. Sodium hydroxide solution was injected, and then rinsed out three times for 3 minutes with distilled water later. Then they withdrew the tube, cut the threads, and closed the abdomen. Based on their procedure, we developed a nonsurgical method to establish a model of benign esophageal stricture. Since our method did not involve surgery, it was simpler and faster. Our experimental observations demonstrated that the model was satisfactorily established. Our use of two balloon catheters made manipulation somewhat difficult. We intended to make a single catheter with two balloons, but this was found to be too difficult since the rats had a narrow esophagus that demanded fine catheters and balloons. In contrast, a double-balloon catheter with a larger caliber was easy to be constructed. Therefore, the double-balloon method was used to establish the model of benign esophageal stricture.

The technique used to establish the model of esophageal restenosis is easier. After ascertaining the stricture position by esophageal visualization, we performed balloon catheter dilation under X-ray. In this way, the esophageal restenosis model was established. In a very few cases of severe stricture, balloon dilation is therefore helpful to elucidate the mechanism of proliferation and migration of cells. In the control group, we noticed that the expression of FN in the basal mucosa of the esophagus was weak, which indicates that FN expression after a chemical burn is related to the esophageal stricture. In the experimental group, soon after the procedure the squamous epithelium and striated-muscle cells expressed a large amount of FN. This reaction might be related to regulated cellular proliferation and migration of cells. In the control group, we noticed that the expression of FN in the basal mucosa of the esophagus was weak, which indicates that FN expression after a chemical burn is related to the esophageal stricture. In the experimental group, soon after the procedure the squamous epithelium and striated-muscle cells expressed a large amount of FN. This reaction might be related to regulated cellular proliferation and migration of cells. In the control group, we noticed that the expression of FN in the basal mucosa of the esophagus was weak, which indicates that FN expression after a chemical burn is related to the esophageal stricture.

Immunohistochemical observation of benign esophageal stricture and esophageal restenosis

PCNA was a type of nuclear protein equivalent to the binding protein of DNA polymerase. It coordinates the synthesis of DNA up and down strands. The quantity of PCNA is minimal in normal cells at the G0, whereas at the M stage the quantity of PCNA in transforming cells changes dramatically. The quantity of PCNA mostly declines at stage G2/M. This quantitative change coincides with DNA synthesis. Therefore, PCNA is used as an indicator to assess cell proliferation. There were a number of reports on the application of immunohistochemical methods to the study of tumor-cell proliferation[2-3]. In our study, we used the new method involving PCNA to investigate the basal-cell proliferation of the squamous epithelium in benign esophageal stricture by the procedure of balloon dilation. We found that there was no PCNA expression in the control group in basal cells of the squamous epithelium of the esophagus. However, in the experimental group, PCNA was expressed strongly from day 5 onwards 30 days later, PCNA expression was still positive. This consistently high proliferation of basal cells illustrated their importance in the development of esophageal restenosis.

FN was a glucoprotein with multiple functions[3]. As a noncollagenous substance in the extracellular matrix, it participates in various reactions between cells as well as between cells and the extracellular matrix, including adhesion, migration, injury, restoration, and tumor metastasis. FN has two forms: a soluble dimerization in humor and a barely soluble polymerization in the extracellular matrix. After combining with its receptor through a tripeptide sequence Arg-Gug-(RGD), FN transmits cellular signals and facilitates cells’ interfacing and kinetics. The study of FN expression in the lesion of benign esophageal stricture caused by balloon dilation is therefore helpful to elucidate the mechanism of proliferation and migration of cells. In the control group, we noticed that the expression of FN in the basal mucosa of the esophagus was weak, which indicates that FN expression after a chemical burn is related to the esophageal stricture. In the experimental group, soon after the procedure the squamous epithelium and striated-muscle cells expressed a large amount of FN. This reaction might be related to regulated cellular proliferation and chemotaxis. Previous studies have shown that FN has the similar functions as a growth factor in fibroblast cells. Even in small doses it can accelerate proliferation. An *in vitro* study has also shown that fibroblasts could adhere directly to the FN matrix or adhere to collagen through FN. FN can also facilitate unfolding of cells that adhere to the matrix. We also noticed that in the experimental group, FN was strongly expressed at both early and later stages after the procedure. This illustrates that FN is one of the key factors in the production of esophageal restenosis, especially at the late stage.

PDGF could stimulate the proliferation of fibroblasts *in vitro*[11-13]. Initially it was found in platelet granules, and afterwards its secretion was also found in normal cells and transformed cells. It exists in three biologically active isoforms: PDGF-AB, PDGF-AA, and PDGF-BB; comprising PDGF-A and PDGF-B polypeptide chains. It acts on target cells through receptors consisting of two subunits, α and β. PDGF-AB...
combines αα and ββ functions. In our experiment, PDGF was not expressed in striated muscle cells of the esophagus, which indicates that PDGF is not a key factor in esophageal restenosis produced by balloon dilated esophageal stricture. However, the enhanced expression of PDGF was involved in the proliferation of smooth-muscle cells. In the study of restenosis, PDGF was regarded as a strong split promoter and chemotactic factor, playing an important role in the formation of blood vessel restenosis. The full length of the esophagus in SD rats (as used in our experiments) comprised striated muscle, and hence PDGF and its function could not be shown in esophageal restenosis in these rats. Besides, in clinical settings, relatively severe chemical burns of the esophagus are usually located at the middle and lower segments of the esophagus, while the upper segment is rarely involved. The middle and lower segments of the esophagus comprise smooth muscle, while the upper segment is striated muscle. This indirectly demonstrates that PDGF expressed in smooth-muscle cells plays a greater role than that in striated-muscle cells in the formation of benign esophageal stricture and restenosis.

REFERENCES

1. Przymanowski Z. Dilatational treatment of the esophageal constrictor inversion by burning in the light of experimental investigations and clinical observations (author’s transl). Aeta Biol Med 1970; 15: 55-116
2. London RL, Trotman BW, Dimarino AJ Jr, Oleaga JA, Freiman DB, Ring EJ, Rosato EF. Dilatation of severe esophageal strictures by an inflatable balloon catheter. Gastroenterology 1981; 80: 173-175
3. Chang TS, Wang W, Huang OL. One-stage reconstruction of esophageal defect by free transfer of jejunum: treatment and clinical observations (author's transl). Ann Plast Surg 1985; 15: 492-496
4. Kochhar R, Nabi B, Mehta SK. Balloon catheter dilatation of esophageal strictures. Indian J Gastroenterol 1988; 7: 97-98
5. Othersen HB Jr, Parker EF, Smith CD. The surgical management of esophageal stricture in children. A century of progress. Ann Surg 1988; 207: 590-597
6. Shemesh E, Czerniak A. Comparison between Savary-Gilliard and balloon dilatation of benign esophageal strictures. World J Surg 1990; 14: 518-522
7. Wang C, Wang CL, Chen CX. Four-year experience in the treatment of upper gastrointestinal strictures with balloon dilatation. Chin Med J 1991; 104: 114-118
8. Strautman PR, Dorfman GS. Use of metallic stents to salvage and maintain patency in surgically created esophagocutaneous fistulas. J Vasc Inter Raitol 1992; 13: 131-133
9. Davies RP, Linke RJ, Davey RB. Retrograde esophageal balloon dilatation: salvage treatment of caustic-induced stricture. Cardiovasc Inter Raitol 1992; 15: 186-188
10. Song HY, Han YM, Kim HK, Kim CS, Choi KC. Corrosive esophageal stricture: safety and effectiveness of balloon dilation. Radiology 1992; 184: 373-378
11. Chen PC. Endoscopic balloon dilation of esophageal strictures following surgical anastomosis, endoscopic varical sclerotherapy, and stenosis caused by esophageal varices. Gastrointest Endosc Clin N Am 1999; 9: 387-389
12. Broor SL, Lahoti D. Balloon dilation of corrosive esophageal strictures. Gastrointest Endosc 1993; 39: 597-598
13. De Wilde I, Pieper CH, Moore SW, Hoffman B. Oesophageal stricture caused by washing powder ingestion. S Afr M ed J 1995; 85: 121
14. Sinha KN. Foley catheter self dilatation for strictures of the upper end of oesophagus. Indian J Chest Dis Allied Sci 1996; 38: 91-93
15. Hwang TL, Chen MF. Surgical treatment of gastric outlet obstruction after corrosive injury-can early definitive operation be used instead of staged operation? Int Surg 1996; 81: 119-121
16. Panieri E, Millar AJ, Rode H, Brown RA, Cywes S. Ltracheogenic esophageal perforation in children: patterns of injury, presentation, management, and outcome. J Pediatr Surg 1996; 31: 890-895
17. Fan S, Jiang Y, Li Z. Intraluminal stent and balloon of intraluminal stent for prevention of esophageal stenosis due to alkalai corrosive injury: experimental and clinical studies. Zhonghua Wai Ke Za Zhi 1996; 34: 170-172
18. Cheng YS, Shang KZ, Zhang QX, Li MH, Xu JR, Yang SX. Interventional therapy and cause of restenosis of esophageal benign stricture. Huanan Xin Xiu Zhi 1996; 6: 791-794
19. Kadakia SC, Wong RKH. Graded pneumatic dilation using Rigiflex achalasia dilators in patents with primary esophageal achalasia. Am J Gastroenterol 1993; 88: 34-38
20. Misra SP, Dwivedi M. Entrapment of guide-wire during esophageal dilation. Trip Gastroenterol 1997; 15: 117-118
21. De Peppo F, Zaccara A, Dall’ Oglio L, Federici A, Abriola G, Ponticelli A, Marchetti P, Luccioni MC, Rivosecchi M. Stenting for caustic strictures: esophageal replacement replaced. J Pediatr Surg 1998; 33: 54-57
22. Karnak I, Tanyel FC, Buyukpamukcu N, Hisammez A. Esophageal perforations encountered during the dilation of caustic esophageal strictures. J Cardiovasc Surg 1998; 39: 373-377
23. Al-Jadaa S, Bass J. Retrograde esophageal balloon dilatation for caustic stricture in an outpatient clinic setting. Can J Surg 1999; 42: 48-50
24. Hunt DR, Wills VL, Weis B, Jorgensen JO, DeCarle DJ, Coo J. Management of esophageal perforation after pneumatic dilation for achalasia. J Gastrointest Surg 2000; 4: 411-415
25. Huang YC, Chen SJ, Hsu WM, Li YW, Ni YH. Balloon dilation of double strictures after corrosive esophagitis. J Pediatr Gastroenterol Nutr 2001; 32: 496-498
26. Wilsy M Jr, Scheimann AO, Gilger MA. The role of upper gastrointestinal endoscopy in the diagnosis and treatment of caustic ingestion, esophageal strictures, and achalasia in children. Gastrointest Endosc Clin N Am 2001; 11: 767-787
27. Gehanno P, Guedon C. Inhibition of experimental esophageal lye strictures by penicillin. Arch Otolaryngol 1961; 107: 145-147
28. Rivera EA, Maves MD. Effects of neutralizing agents on esophageal burns caused by disc batteries. Ann Oto Rhin Log 1987; 96: 362-366
29. Alexandrov VA, Novikov AI, Zabezhinsky MA, Stolovar VA, Petrov AS. The stimulating effect of acetic acid, alcohol and thermalburn on esophagus and forestomach carcinogenesis induced by N-nitrososarcosin ethyl ester in rats. Cancer Lett 1989; 47: 179-185
30. Demirbilek S, Bernardi, Rizalar R, Baris S, Gurses N. Effects of estradiol and progesterone on the synthesis of collagen in corrosive esophageal burns in rats. J Pediatr Surg 1994; 29: 1425-1428
31. Takagi K, Tashiro T, Yamamori H, Mabishina Y, Nakajima N, Sunakha K. Recombinant human growth hormone and protein metabolism of burned rats and esophagectomized patients. Nutrition 1995; 11: 22-26
32. Yoshikawa T, Aki S, Takekawa Y, Kida A, Ishikawa K. Experimental investigation of battery-induced esophageal burn injury in rabbits. Crit Care Med 1997; 25: 2039-2044
33. Bingol-Kaloglu M, Tanyel FC, Muftugolu S, Renda N, Cakar N, Buyukpamukcu N, Hisammez A. The preventive effect of heparin on stricture formation after caustic esophageal burns. J Pediatr Surg 1999; 34: 291-294
34. Kaygusuz I, Celik O, Ozyayla O, Yalcin S, Keles E, Cetinkaya T. Effects of interferon-alpha-2b and octreotide on healing of esophageal corrosive burns. Laryngoscope 2003; 113(II P11): 1999-2004
35. Corton MJ, Lardelli M, Sadowitz AK, Roth MJ, Davey SM, Qiao YL, Chen W. Polyacrylic aromatic hydrocarbons identified in soil extracts from domestic coal-burning stoves of Henan Province, China. Environ Sci Technol 2001; 35: 1943-1952
36. Arzbacheer R, Jenkins JM. A review of the theoretical and experimental bases of transesophageal atrial pacing. J Electrocardiol 2002; 35(Suppl): 137-141
37. Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Demirbilek S, Amadesi S, Bajaj S, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Gigetti P. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 2002; 5: 546-551
38. Demirbilek S, Aydin G, Yucesen S, Vural H, Bitiren M. Polyunsaturated phosphatidylcholine lowers collagen deposition in a rat model of corrosive esophageal burn. Eur J Pediatr Surg 2002;12: 8-12

Edited by Zhang JZ and Wang XL