1. Introduction

Iron is an essential nutrient for almost all living cells [1]. In the form of ferrous (Fe$^{2+}$) or ferric (Fe$^{3+}$) ions, iron is usually incorporated into the protein structure. Ferric ions are non-toxic to cells, while ferrous ions produce hydroxyl radicals through the Fenton reaction [1]. This represents oxidative stress for the cell. Therefore, cells and organisms have developed the ability to eliminate the toxicity of ferrous ions. One of the mechanisms used by all biological systems is ferritin [2]. Ferritin particles are designed to transport and convert highly toxic ferrous ions into ferric ions inside the hollow ferritin envelope. The mineral core of the physiological native ferritin (NF) consists of ferrihydrite-like crystals. However, a recent study confirmed the presence of magnetite-like structures in the brain of a patient with Alzheimer’s disease compared to healthy brain tissue [3]. It is believed that the precursor of their formation is a ferrihydrite core in ferritin, which transforms to magnetite due to impaired iron homeostasis [4]. Such pathological ferritin particles have a permanent magnetic moment, so they can be modeled by magnetoferritin, which consists of a protein envelope and magnetite crystal [5]. Currently, a clinical, non-invasive methodology able to distinguish physiological and pathological ferritin does not exist. Therefore, the main goal of our study is to provide, with the help of magnetoferritin as a pathological ferritin model system, a measurement protocol that enables non-invasive and clear contrast differentiation of physiological and pathological ferritin in high-field MRI systems.

2. Materials and methods

Magnetoferritin was prepared by the incorporation of ferrous ions into the empty protein shell of native apoferritin by the synthesis method described in [5]. Several types of magnetoferritin samples with different loading factors (LFs), representing the average number of iron atoms per apoferritin, were prepared: MF1 (LF = 553), MF2 (LF = 733), MF3 (LF = 872). The LF of NF is 884.

MRI measurements were performed using a 7 T BioSpec Bruker system. Before the measurements, the magnetoferritin and NF were diluted to a concentration of iron oxide of 5×10^{-3}, 7.5×10^{-3}, 5×10^{-3}, 0.01, 0.0125, 0.015, 0.0175, or 0.02 mg/ml. The measurements were carried out for the samples of NF, MF1, MF2, and MF3. To determine the most suitable protocol for the comparative imaging of NF and magnetoferritin, two different (T_1 and T_2 parametric mapping) pulse sequences, with different measurement protocols were used:

DOI: 10.12693/APhysPolA.137.650

PACS/topics: magnetic resonance imaging, magnetoferritin, ferritin, relaxation time, contrast
Magnetic Resonance Contrast Imaging of Ferritin and Magnetoferritin at 7 T

- T_1 mapping rapid acquisition with refocused echoes (RARE) pulse sequence;
- T_2 mapping multi-slice multi-echo (MSME) pulse sequence.

The relative contrast and longitudinal and transversal relaxation times were analysed and compared. The relative contrast RC of iron oxide as a negative contrast agent ($I_0 > I$) is defined as follows [5]:

$$RC = \frac{I - I_0}{I_0},$$

where I_0 is the intensity without magnetite particles and I represents the signal intensity with magnetite nanoparticles.

Subsequently, the longitudinal and transversal relaxation times (T_1 and T_2) of the samples were determined by fitting with the following functions:

$$M(t) = A + M_0(1 - \exp(t/T_1)),$$

$$y = A + C \exp(-t/T_2),$$

where M_0 is the equilibrium magnetization, A is the absolute bias, t is the time, T_1 is the longitudinal recovery time, C is the signal intensity, and T_2 is the transversal relaxation time.

Equation (2) characterizes the return of the magnetic moment to the equilibrium and is dependent on the spin–lattice interaction with a transfer of energy. On the other hand, Eq. (3) describes transversal magnetization decrease due to the spin–spin interactions, with no transfer of energy.

The Paravision “Image Sequence Analysis” tool (Bruker, Germany) and OriginPro2019 (Originlab Corporation, Wellesley Hills, USA) were used for data processing.

3. Results

The NF and MF samples were measured with T_1 and T_2 mapping pulse sequences (RARE and MSME) to obtain the signal intensity (I_0 and I) and the relaxation time (T_1 and T_2) values at 7 T. We sought to determine the most suitable protocol for comparative imaging of NF and magnetoferritin. The main goal was to find out whether the magnetoferritin, as a pathological model system of iron accumulation, can be clearly distinguished from NF by comparison of the relative contrast and relaxation times. The following protocols were established as the most efficient in contrast imaging of our samples:

- T_1 mapping RARE pulse sequence, with repetition time $TR = 5500, 3000, 1500, 800, 400,$ and 200 ms, and echo time $TE = 7$ ms;
- T_2 mapping MSME pulse sequence, with repetition time $TR = 2000$ ms, starting echo time $TE = 8$ ms, spacing = 8 ms, and 25 images.

The relaxation time T_1 of samples acquired with the T_1 mapping RARE pulse sequence is shown in Fig. 1a. We observe a decrease in T_1 with increasing concentration of iron oxide. The only exception is the lowest concentration (2.5 µg/ml) (Fig. 1a), where the increase in relaxation time T_1 is observed, behaving as a positive contrast agent. However, in general, magnetoferritin shortens the relaxation time T_1 compared to ferritin (Fig. 1a, c).
Figure 1b describes the relaxation time T_2 acquired with the T_2 mapping MSME pulse sequence. The relaxation time T_2 of all MF samples significantly decreases with an increasing concentration of iron oxide. The difference between NF and MF is clearly visible in the T_2 plot (Fig. 1b), as well as in the relative change plot (NF = 100%), where the change ranges from a 2 to 15% increase (Fig. 1d).

Figure 2a shows the relative contrast decrease caused by the T_1 mapping RARE pulse sequence. The relative contrast change (NF = 100%) of MF samples ranges from ≈ 100 to 330% in comparison with NF (Fig. 2c). Figure 2b describes the significant contrast change caused by the T_2 mapping MSME pulse sequence. It is accompanied by the sharp shortening of the transversal relaxation time T_2 (Fig. 1b) in comparison with the longitudinal relaxation time T_1 (Fig. 1a).

4. Discussion

Currently, biological iron imaging is highly sought after in clinical practice since a significant number of pathological processes are associated with iron oxide nanoparticle accumulation. However, a clinically usable methodology is still missing. The crucial point is to establish imaging parameters that allow a reproducible and clear differentiation of physiological and pathological iron. We focused on the T_1 and T_2 mapping pulse sequences that are widespread in clinical practice and have relatively short time of signal acquisition. We found that all magnetoferritin samples shorten both the T_1 and T_2 relaxation times. However, as can be seen in Fig. 1, the decrease in T_2 time is considerably larger. This indicates that the T_2 relaxation mechanism prevails in magnetoferritin at 7 T, which is in accordance with previous results for lower fields [5]. The same situation as with the relaxation time, occurs with the comparison of the relative contrast acquired with both sequences, as described in Fig. 2. We observed the clear differentiation of all MF LFs and iron oxide concentrations in comparison with NF. The prevailing T_2 shortening must be considered during development of an MRI methodology for comparative imaging of NF and pathological ferritin. In addition, another important feature must be taken into account: a positive signal from the lowest magnetoferritin concentration, which is valid for all LFs of MF, but not for NF (Fig. 1a). The precise molecular mechanism is unknown. However, the same process was also observed in synthetically prepared magnetite nanoparticles [6].

5. Conclusions

The main goal of our study was to distinguish the NF and MF as a model system of pathological ferritin by standard T_1 and T_2 mapping pulse sequences at 7 T. Our data clearly show the discrimination of pathological ferritin in comparison with NF for both sequences. However, we found the significant prevailing effect of T_2 relaxation in MF that was not observed in NF. These results can contribute to the development of a methodology required for non-invasive diagnosis of pathological processes associated with biogenic iron accumulation of biogenic iron.

Acknowledgments

This work was supported by the projects: Ministry of Health (2018/11-UKMT-7), VEGA (2/0016/17, 2/0044/20), APVV (APVV-015-0453), and Competence Center Martin (ITMS code: 2622020153).

References

[1] J. Wang, K. Pantopoulos, Biochem. J. 434, 365 (2011).
[2] N.D. Chasteen, P.M. Harrison, J. Struct. Biol. 126, 182 (1999).
[3] L. Bossoni, L.G. Moursel, M. Bulk, et al., J. Phys. Condens. Matter 29, 415801 (2017).
[4] J. Dobson, FEBS Lett. 496, 1 (2001).
[5] O. Strbak, L. Balejcikova, L. Baciak, J. Kovac, M. Masarova-Kozelova, A. Krafcik, D. Dobrota, P. Kopcansky, J. Phys. D Appl. Phys. 50, 365401 (2017).
[6] I. Khmara, O. Strbak, V. Zavisova, et al., J. Magn. Magn. Mater. 474, 319 (2019).