Radiative transitions of charmonium states in a constituent quark model

Wei-Jun Deng, Li-Ye Xiao, Long-Cheng Gui, and Xian-Hui Zhong *
1) Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China and 2) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China

We study the electromagnetic (EM) transitions of the nS, nP ($n \leq 3$), and nD ($n \leq 2$) charmonium states with a constituent quark model. We obtain a reasonable description of the EM transitions of the well-established charmonium states J/ψ, $\psi(2S)$, $\chi_{cJ}(1P)$, $h_{c}(1P)$ and $\psi(3770)$. We find that the M2 transitions give notable corrections to some E1 dominant processes by interfering with the E1 transitions. Our predictions of EM decay properties for the higher charmonium states are also presented and compared with other model predictions. In particular, we discuss the EM decay properties of some “XYZ” states, such as $X(3823)$, $X(3872)$, $X(3915)$, $X(3940)$ and $X(4350)$ as conventional charmonium states. Assuming $X(3872)$ as the $\chi_{cJ}(2P)$ state, our predicted ratio $\Gamma[X(3872) \rightarrow \psi(2S)\gamma]/\Gamma[X(3872) \rightarrow J/\psi\gamma] \approx 4.0$ is consistent with BaBar’s measurement.

PACS numbers: 12.39.Jh, 13.40.Hq, 14.40.Pq

I. INTRODUCTION

During the past a few years, great progress has been made in the observation of the charmonia [1–3]. From the review of the Particle Data Group (PDG) [4], one can see that a fairly abundant charmonium spectroscopy has been established, and many new charmonium-like “XYZ” states above open-charm thresholds have been discovered from experiments. The observations of these new states not only deepen our understanding of the charmonium physics, but also bring us many mysteries in this field to be uncovered [4–5]. If these newly observed “XYZ” states are assigned as conventional charmonium states, some aspects, such as measured mass and decay properties are not consistent with the predictions. Thus, on one hand we should test the validity of the previous theoretical models in the descriptions of the new states, and at the same time develop new approaches to study these new states. On the other hand, one should consider these new charmonium-like “XYZ” states as exotic states and attempt to establish a new hadron spectroscopy [6].

Stimulated by the extensive progress made in the observation of the charmonia, in this work we study the electromagnetic (EM) transitions of charmonium in a constituent quark model. As we know, the EM decays of a hadron are sensitive to its inner structure. The study of the EM decays not only is crucial for us to determine the quantum numbers of the newly observed charmonium states, but also provides very useful references for our search for the missing charmonium states in experiments. To deal with the EM decays, beside the widely used potential models [7–11], some other models, such as lattice QCD [12–15], QCD sum rules [16–18], effective Lagrangian approach [19–20], nonrelativistic effective field theories of QCD [21–23], relativistic quark model [24], relativistic Salpeter method [25], light front quark model [26], and Coulomb gauge approach [27] have been employed in theory. Although some comparable predictions from different models have been obtained, strong model dependencies still exist.

The constituent quark model used in present work has been well developed and widely applied to meson photoproduction reactions [28–40]. Its recent extension to describe the process of πN and KN scattering [41–44] and investigate the strong decays of baryons [45–47] and heavy-light mesons [48–51] also turns out to be successful and inspiring. In this model, to describe the EM transitions of a composite system a special EM operator is adopted, in which the effects of binding potential is included. Furthermore, the possible higher EM multipole contributions to a EM transition process can be included naturally. We expect that our descriptions of the EM transitions of the heavy quarkonium are more successful than those of strong decays of heavy-light mesons or baryons. The reasons are that (i) there is no light quark in the heavy quarkonium, thus, the relativistic effects from the constituent quark are strongly suppressed; (ii) the quark-photon EM coupling used in the EM transitions is well-defined and model independent, however, the nonperturbative quark-meson strong couplings used in the strong decay processes are still effective interactions; (iii) the electric transitions are independent on the heavy constituent quark mass, however, the strong decay processes have some dependencies on the constituent quark mass; (iv) it is natural to consider the emitted photon as a pointlike particle in the EM transitions, however, it is only an approximation to consider the emitted light pseudoscalar meson as a pointlike particle in the strong decay processes.

The paper is organized as follows. In Sec. III a brief review of charmonium spectroscopy in the constituent quark model is given. In Sec. IV an introduction of EM transitions described in the constituent model is given. The numerical results are presented and discussed in Sec. IV. Finally, a summary is given in Sec. V.

II. CHARMONIUM SPECTROSCOPY

For a quarkonium $Q\bar{Q}$ state, its flavor wave function should have a determined C-parity. For a $C = +1$ state, its flavor
wave function is
\[
\Phi_S = \frac{1}{\sqrt{2}}(Q\bar{Q} + \bar{Q}Q),
\]
(1)
while for a \(C = -1\) state its flavor function is
\[
\Phi_A = \frac{1}{\sqrt{2}}(Q\bar{Q} - \bar{Q}Q).
\]
(2)

The usual spin wave functions are adopted. For the spin
\(S = 0\) state, it is
\[
\chi_0^0 = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow),
\]
(3)
and for the spin \(S = 1\) states, the wave functions are
\[
\chi_0^1 = \uparrow \uparrow, \quad \chi_0^{-1} = \downarrow \downarrow, \quad \chi_0^1 = \frac{1}{\sqrt{2}}(\uparrow \downarrow + \downarrow \uparrow).
\]
(4)

In this work, the space wave function of a charmonium state is adopted by the nonrelativistic harmonic oscillator wave
function, i.e., \(\psi_{jlm}^c = R_{n\ell}Y_{\ell m}\). Where \(n\) is the radial quantum number, \(L\) is the quantum number of relative orbital angular momentum between quark and antiquark, and \(m\) is the quantum number of the third component of \(L\). The detail of the space wave functions can be found in our previous work [48].

The total wave function of a \(Q\bar{Q}\) system is a product of the spin-, flavor-, spatial-, and color-wave functions, which should be antisymmetric under the exchange of the two quarks for the constraint of the generalized Pauli principle. The color wave function is always symmetric, thus, the product of the spin-, flavor-, and spatial-wave functions should be antisymmetric. The spectroscopy of some \(S\)-, \(P\)-, and \(D\)-wave charmonium states classified in the constituent quark model has been listed in Tab. II.

III. EM TRANSITIONS IN THE QUARK MODEL

In this section, we give an introduction of the model used in the calculations. The quark-photon EM coupling at the tree
level is described by
\[
H_e = -\sum_j e\bar{\psi}_j g\gamma^\mu A^\mu(k, r)\psi_j,
\]
(5)
where \(\psi_j\) stands for the \(j\)-th quark field in a hadron. The photon has three momentum \(k\), and the constituent quark \(\psi_j\) carries a charge \(e_j\). Replacing the spinor \(\psi_j\) by \(\psi_j^\dagger\) so that the \(\gamma\) matrices are replaced by the matrix \(\alpha\), the EM transition matrix elements for a radiative decay process can be written as [29]
\[
M = \langle f | \sum_j e_j \alpha_j \cdot ee^{-ikr} | i \rangle.
\]
(6)
where \(|i\rangle\) and \(|f\rangle\) stand for the initial and final hadron states, respectively, and \(e\) is the polarization vector of the photon.

\(nS^{1+}L_J\)	name	\(J^{PC}\)	\(M_{exp}\)	\(M_{NR,GI,SNR}\)	Wave function
1\(S\)	\(J/\psi\)	1\(-\)	3097	3090/3098/3097	\(\psi_{10}^{J/\psi} \Phi_A\)
1\(S\)	\(\eta_1(1S)\)	0\(+\)	2984	2982/2975/2979	\(\psi_{00}^{\eta_1} \Phi_A\)
2\(S\)	\(\psi(2S)\)	1\(-\)	3686	3672/3676/3673	\(\psi_{01}^{\psi} \Phi_A\)
2\(S\)	\(\eta_2(2S)\)	0\(+\)	3639	3630/3623/3623	\(\psi_{00}^{\eta_2} \Phi_A\)
3\(S\)	\(\psi(3S)\)	1\(-\)	4040	4072/4100/4022	\(\psi_{10}^{\psi} \Phi_A\)
3\(S\)	\(\eta_3(3S)\)	0\(+\)	3940?	4043/4064/3991	\(\psi_{00}^{\eta_3} \Phi_A\)
1\(P\)	\(\chi_{c2}(1P)\)	2\(+\)	3556	3556/3550/3554	\(\psi_{10}^{\chi_{c2}} \Phi_S\)
1\(P\)	\(\chi_{c1}(1P)\)	1\(+\)	3511	3505/3510/3510	\(\psi_{10}^{\chi_{c1}} \Phi_S\)
1\(P\)	\(\chi_{c0}(1P)\)	0\(+\)	3415	3424/3445/3433	\(\psi_{00}^{\chi_{c0}} \Phi_S\)
2\(P\)	\(\chi_{c2}(2P)\)	2\(+\)	3927	3972/3979/3937	\(\psi_{10}^{\chi_{c2}} \Phi_S\)
2\(P\)	\(\chi_{c1}(2P)\)	1\(+\)	3872?	3925/3953/3901	\(\psi_{10}^{\chi_{c1}} \Phi_S\)
2\(P\)	\(\chi_{c0}(2P)\)	0\(+\)	3918?	3852/3916/3842	\(\psi_{00}^{\chi_{c0}} \Phi_S\)
2\(P\)	\(\chi_{c1}(2P)\)	1\(+\)	3934/3956/3908	\(\psi_{10}^{\chi_{c1}} \Phi_S\)	
3\(P\)	\(\chi_{c3}(3P)\)	2\(+\)	4350?	4317/4337/4208	\(\psi_{10}^{\chi_{c3}} \Phi_S\)
3\(P\)	\(\chi_{c1}(3P)\)	1\(+\)	4271/4317/4378	\(\psi_{10}^{\chi_{c1}} \Phi_S\)	
3\(P\)	\(\chi_{c0}(3P)\)	0\(+\)	4202/4292/4131	\(\psi_{00}^{\chi_{c0}} \Phi_S\)	
3\(P\)	\(\chi_{c1}(3P)\)	1\(+\)	4279/4318/4184	\(\psi_{10}^{\chi_{c1}} \Phi_S\)	
1\(D\)	\(\psi_{1}(1D)\)	3\(+\)	3806/3849/3799	\(\psi_{00}^{\psi_{1}} \Phi_A\)	
1\(D\)	\(\psi_{1}(1D)\)	2\(+\)	3823	3800/3838/3798	\(\psi_{00}^{\psi_{1}} \Phi_A\)
1\(D\)	\(\psi_{1}(1D)\)	1\(+\)	3778	3785/3819/3787	\(\psi_{00}^{\psi_{1}} \Phi_A\)
1\(D\)	\(\eta_{1}(1D)\)	2\(+\)	3799/3837/3796	\(\psi_{00}^{\eta_{1}} \Phi_A\)	
1\(D\)	\(\psi_{1}(2D)\)	3\(+\)	4167/4217/4103	\(\psi_{00}^{\psi_{1}} \Phi_A\)	
2\(D\)	\(\psi_{1}(2D)\)	2\(+\)	4158/4208/4100	\(\psi_{00}^{\psi_{1}} \Phi_A\)	
2\(D\)	\(\psi_{1}(2D)\)	1\(+\)	4191	4142/4194/4089	\(\psi_{00}^{\psi_{1}} \Phi_A\)
2\(D\)	\(\eta_{1}(2D)\)	2\(+\)	4158/4208/4099	\(\psi_{00}^{\eta_{1}} \Phi_A\)	

For a composite system, the relativistic Hamiltonian is taken to be
\[
\hat{H} = \sum_j (\alpha_j \cdot p_j + \beta m_j) + \sum_i, j V(r_i - r_j).
\]
(7)

By using the identity [29, 52]
\[
\alpha_j \equiv i[\hat{H}, r_j],
\]
(8)
we have
\[
M = i \left(\int \left(\sum_j e_j \mathbf{r}_j \cdot \mathbf{e} e^{-ikr} \right) \psi \right)
+ i \left(\int \left(\sum_j e_j \mathbf{r}_j \cdot \mathbf{e} e^{-ikr} \right) \psi \right)
= -i(E_i - E_f - \omega_j)\langle f|g_i|l\rangle - i\omega_j\langle f|h_i|l\rangle,
\]
(9)
with
\[h_x = \sum_j e_j r_j \cdot \epsilon (1 - \alpha_j \cdot \hat{k}) e^{-i \mathbf{k} r_j}, \]
(10)

and
\[g_x = \sum_j e_j r_j \cdot \epsilon e^{-i \mathbf{k} r_j}. \]
(11)

In Eq. (2), \(E_i, E_f \) and \(\omega_i \) stand for the energies of the initial hadron state, final hadron state and emitted photon, respectively. In the initial-hadron-rest system, we have
\[E_i = E_f + \omega_i. \]
(12)

Thus, we obtain
\[\mathcal{M} = \mp i \omega_i \langle f | h_x | i \rangle. \]
(13)

It is interesting to find that the first and second terms in Eq. (14) are responsible for the electric and magnetic transitions, respectively. The second term in Eq. (14) is the same as that used in Ref. [7], while the first term in Eq. (14) differs from \((1/m_j)p_j \cdot \epsilon\) used in Ref. [7] for the effects of the binding potential is included in the transition operator.

Finally, we can relate the standard helicity amplitude \(\mathcal{A} \) of the EM decay process to the amplitude \(\mathcal{M} \) in Eq. (13) by the relation
\[\mathcal{A} = -i \sqrt{\frac{\omega_i}{2}} \langle f | h_x | i \rangle. \]
(15)

It is easily found that the helicity amplitudes for the electric and magnetic transitions are
\[\mathcal{A}^E = -i \sqrt{\frac{\omega_i}{2}} \langle f | \sum_j e_j r_j \cdot \epsilon e^{-i \mathbf{k} r_j} | i \rangle, \]
(16)
\[\mathcal{A}^M = +i \sqrt{\frac{\omega_i}{2}} \langle f | \sum_j \frac{e_j}{2m_j} \sigma_j \cdot (\epsilon \times \hat{k}) e^{-i \mathbf{k} r_j} | i \rangle. \]
(17)

In the initial-hadron-rest system for the radiative decay process, the momentum of the initial hadron is \(\mathbf{P}_i = 0 \), and that of the final hadron state is \(\mathbf{P}_f = -\mathbf{k} \). Without losing generality, we select the photon momentum along the \(\mathbf{z} \) axial (\(\mathbf{k} = k\hat{z} \)) and take the spin polarization vector of the photon with the right-hand form, i.e., \(\epsilon = -\frac{1}{\sqrt{2}}(1, i, 0) \), in our calculations. To easily work out the EM transition matrix elements, we use the multipole expansion of the plane wave
\[e^{-i \mathbf{k} r} = e^{-i k z} = \sum_l \sqrt{4\pi(2l + 1)}(-i)^l j_l(kr) Y_{l0}(\Omega), \]
(18)

where \(j_l(x) \) is the Bessel function. Then, we obtain the matrix element for the electric multipole transitions with angular momentum \(l \) (\(E_i \) transitions):
\[\mathcal{A}^E = \sqrt{\frac{\omega_i}{2}} \langle f | \sum_j (-i)^l B_l e_j r_j j_{l+1}(kr) Y_{l1}(\Omega) | i \rangle \]
\[+ \sqrt{\frac{\omega_i}{2}} \langle f | \sum_j (-i)^l B_l e_j r_j j_{l-1}(kr) Y_{l-1}(\Omega) | i \rangle, \]
(19)

where \(B_l \equiv \sqrt{\frac{2\pi(2l+1)}{2l+1}} \). We also obtain the matrix element for the magnetic multipole transitions with angular momentum \(l \) (\(M_i \) transitions):
\[\mathcal{A}^M = \sqrt{\frac{\omega_i}{2}} \langle f | \sum_j (-i)^l C_l e_j j_{l-1}(kr) Y_{l-1}(\Omega) | i \rangle. \]
(20)

where \(C_l \equiv i \sqrt{8\pi(2l-1)} \), and \(\sigma_+ = \frac{1}{2}(\sigma_x + i\sigma_y) \) is the spin shift operator. Obviously, the \(E_i \) transitions satisfy the parity selection rule: \(\pi_i \pi_f = -1 \); while the \(M_i \) transitions satisfy the parity selection rule: \(\pi_i \pi_f = (-1)^{l+1} \), where \(\pi_i \) and \(\pi_f \) stand for the parities of the initial and final hadron states, respectively.

Finally, using the parity selection rules, one can express the EM helicity amplitude \(\mathcal{A} \) with the matrix elements of EM multipole transitions in a unified form:
\[\mathcal{A} = \sum_l \left\{ \frac{1 + (-1)^{\pi_i \pi_f + l}}{2} \mathcal{A}^E + \frac{1 - (-1)^{\pi_i \pi_f + l}}{2} \mathcal{A}^M \right\}, \]
(21)

which is consistent with the standard multipole expansion in Ref. [8]. Combining the parity selection rules, we easily know the possible EM multipole contributions to a EM transition considered in present work, which are listed in Tab. II.

process	multipole contribution
\(n^3 S_1 \leftrightarrow m^1 S_0 \)	M1
\(n^3 P_1 \leftrightarrow m^3 S_1 \)	E1, M2
\(n^1 P_1 \leftrightarrow m^3 S_0 \)	E1
\(n^3 D_1 \leftrightarrow m^3 P_1 \)	E1, E3, M2, M4
\(n^1 D_1 \leftrightarrow m^1 P_1 \)	E1, E3
\(n^3 P_1 \leftrightarrow m^1 P_1 \)	M1, M3

With these helicity amplitudes \(\mathcal{A} \) worked out according to Eq. (21), one obtains the partial decay widths of the EM transitions by
\[\Gamma = \frac{|k|^2}{\pi} \frac{1}{2J_f + 1} M_f \sum_{J_i, J_z} |\mathcal{A}_{J_i, J_z}|^2, \]
(22)

where \(J_i \) is the total angular momenta of the initial mesons, \(J_z \) and \(J_c \) are the components of the total angular momentum.
along the z axis of initial and final mesons, respectively. In the calculation, the standard parameters of the quark model are adopted, no free parameters to be fitted. For the oscillator parameter in the harmonic oscillator wave function we use $a = 400 \text{ MeV}$, and for the constituent c quark mass we adopt $m_c = 1500 \text{ MeV}$. For the fine-structure constant, we use $\alpha_{\text{EM}} \equiv e^2/(4\pi) = 1/137$. For the well-established charmonium states, their masses are adopted the experimental average values from the PDG \cite{4}. While for the missing charmonium states, their masses are adopted from the theoretical predictions.

IV. RESULTS AND DISCUSSIONS

A. $J/\psi \rightarrow \eta_c(1S)\gamma$

The $J/\psi \rightarrow \eta_c(1S)\gamma$ is a typical M1 transition. According to our calculation, we find that the partial decay width of this process is proportional to ω_c^2/m_c^2. We note that the constituent quark mass $m_c \gg \omega_c$, thus, the transition rate of $J/\psi \rightarrow \eta_c(1S)\gamma$ is strongly suppressed by the factor ω_c^2/m_c^2.

About the transition $J/\psi \rightarrow \eta_c(1S)\gamma$, discrepancies still exist between the theoretical predictions and experimental measurements. For example, the calculations from NR potential model \cite{9} and Coulomb gauge approach \cite{27} give a large width $\Gamma[J/\psi \rightarrow \eta_c(1S)\gamma] \approx 2.9 \text{ keV}$, which is about a factor of 2 larger than the world average experimental value $\Gamma(J/\psi \rightarrow \eta_c\gamma) \approx 1.58 \pm 0.37 \text{ keV}$ from the PDG \cite{4}. In this work, our predicted partial decay width for the $J/\psi \rightarrow \eta_c(1S)\gamma$ transition is

$$\Gamma[J/\psi \rightarrow \eta_c(1S)\gamma] \approx 1.25 \text{ keV}, \quad (23)$$

which is close to the world average data \cite{4}, and also in agreement with the values 1.05 keV and $(1.5 \pm 1.0) \text{ keV}$ predicted in the frameworks of relativistic quark model \cite{24} and NR effective field theories of QCD \cite{21, 23}, respectively. However, the recent measurements at KEDR give a large partial decay width $\Gamma[J/\psi \rightarrow \eta_c(1S)\gamma] \approx 2.98 \pm 0.18^{+0.33}_{-0.29} \text{ keV} \ [54]$, which is consistent with the lattice QCD results 2.4 - 2.9 keV \ [12-15], the prediction of Coulomb gauge approach \cite{27}, and that of NR and GI potential models \cite{9} (see Tab. III). Finally it should be mentioned that Li and Zhao studied the intermediate hadronic meson loop contributions to the $J/\psi \rightarrow \eta_c(1S)\gamma$ process, which might provide explicit corrections to the M1 transition as well \ [55, 56]. We hope more efforts on the experimental side will be devoted to clarify the disagreement among various experiments.

B. Radiative transitions of 2S states

1. $\psi(2S)$

The $\psi(2S)$ resonance, i.e., $\psi(3686)$, can decay into $\chi_{cJ}(1P)\gamma$ and $\eta_c(1S, 2S)\gamma$ channels, which have been observed in experiments. The $\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma$ decay processes are governed by the E1 transitions. While the $\psi(2S) \rightarrow \eta_c(1S, 2S)\gamma$ are typical M1 transitions.

Our predicted partial decay widths for the $\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma$ processes are

$$\Gamma[\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma] \approx 26 \text{ keV}, \quad (24)$$
$$\Gamma[\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma] \approx 22 \text{ keV}, \quad (25)$$
$$\Gamma[\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma] \approx 14 \text{ keV}. \quad (26)$$

From Tab. IV, one can see that our results for the $\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma$ processes are in good agreement with the experimental data, and the predictions of the GI potential model \cite{9} and relativistic quark model \cite{24}. However, our prediction of the partial decay width $\Gamma[\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma] \approx 14 \text{ keV}$ is about a factor of 1.8 narrower than the world average data \cite{4}. It should be mentioned that according to the study in Ref. [57], the higher term corrections from the coupled-channel effects of intermediate charmed mesons to the $\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma$ processes are negligibly small.

Furthermore, it is interesting to find that our predicted partial width ratios

$$\Gamma[\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma] \approx 0.54, \quad (27)$$
$$\Gamma[\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma] \approx 0.85, \quad (28)$$

are in good agreement with the corresponding values 0.60 and 0.86 predicted with NR potential models \cite{9}, although their partial widths are larger than ours. We hope these ratios can be measured in future experiments.

Finally, it should be mentioned that the M2 transitions can affect the translations of $\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma$ slightly by interfering with the E1 transitions. Including the effects of M2 transitions, we find that the descriptions of the transitions of $\psi(2S) \rightarrow \chi_{cJ}(1P)\gamma$ become better compared with the data (see Tab. III). For the typical M1 transitions $\psi(2S) \rightarrow \eta_c(1S, 2S)\gamma$, our predicted partial decay widths are

$$\Gamma[\psi(2S) \rightarrow \eta_c(1S)\gamma] \approx 2.41 \text{ keV}, \quad (29)$$
$$\Gamma[\psi(2S) \rightarrow \eta_c(2S)\gamma] \approx 0.10 \text{ keV}. \quad (30)$$

From Tab. III, we see that our results are close to the average data from the PDG \cite{4} and the predictions of relativistic quark model \cite{24}. The prediction of $\Gamma[\psi(2S) \rightarrow \eta_c(1S)\gamma] \approx 0.48(8) \text{ keV}$ from Lattice QCD is notably smaller than our result \cite{13}. However, the partial decay width of $\Gamma[\psi(2S) \rightarrow \eta_c(1S)\gamma]$ is notably overestimated in the framework of GI and NR potential models \cite{9}. It should be emphasized that the intermediate hadronic meson loop might provide explicit corrections to the $\psi(2S) \rightarrow \eta_c(1S, 2S)\gamma$ process \ [55, 56]. More studies of the M1 transitions $\psi(2S) \rightarrow \eta_c(1S, 2S)\gamma$ are needed in theory.

2. $\eta_c(2S)$

The $\eta_c(2S)$ resonance can decay into $h_c(1P)\gamma$ and $J/\psi\gamma$ by the E1 and M1 transitions, respectively. Our predicted partial
the E1 transition, while in the by interfering with the E1 transitions. In the Lattice QCD as well [12, 13] and relativistic quark model [24] are about a factor of 2 larger than our result. While our predicted partial decay width
\[\Gamma[\eta_c(2S) \rightarrow J/\psi\gamma] \approx 1.64 \text{ keV}, \]
(32)
is in good agreement with the prediction of relativistic quark model [24] (see Tab. III). The recent calculation from Lattice QCD gives a fairly large width \(\Gamma[\eta_c(2S) \rightarrow J/\psi\gamma] = (15.7 \pm 5.7) \text{ keV} \) [58], which is about an order of magnitude larger than our prediction. Furthermore, the calculations from potential models also give a larger width \(\Gamma[\eta_c(2S) \rightarrow J/\psi\gamma] = (5.6 \sim 7.9) \text{ keV} \) [3]. The radiative transitions \(\eta_c(2S) \rightarrow h_c(1P)\gamma, J/\psi\gamma \) are still not measured in experiments. For the very different predictions of these decays in theory, we hope some observations can be carried out in future experiments.

C. Radiative transitions of \(1P \) states

1. \(\chi_{cJ}(1P) \)

For the triplet \(1P \) states \(\chi_{cJ}(1P) (J = 0, 1, 2) \), their main radiative transitions are \(\chi_{cJ}(1P) \rightarrow J/\psi\gamma \). In these decay processes, except for the dominant E1 transitions, the M2 transitions are allowed as well. Neglecting the effects of the M2 transitions, we find the partial decay widths of \(\Gamma[\chi_{cJ}(1P) \rightarrow J/\psi\gamma] \) are proportional to \((\omega_\gamma^2/\alpha^2)\omega_\gamma \). We note that the photon energy \(\omega_\gamma \) is very close to the oscillator parameter \(\alpha \) (i.e., \(\omega_\gamma \sim \alpha \)), thus, one can easily find that \(\Gamma[\chi_{cJ}(1P) \rightarrow J/\psi\gamma] \sim \omega_\gamma \). We calculate the partial decay widths \(\Gamma[\chi_{cJ}(1P) \rightarrow J/\psi\gamma] \), our results are
\[\Gamma[\chi_{c0}(1P) \rightarrow J/\psi\gamma] = 128 \text{ keV}, \]
(33)
\[\Gamma[\chi_{c1}(1P) \rightarrow J/\psi\gamma] = 275 \text{ keV}, \]
(34)
\[\Gamma[\chi_{c2}(1P) \rightarrow J/\psi\gamma] = 467 \text{ keV}. \]
(35)
From Tab. IV we find that our predictions of \(\Gamma[\chi_{cJ}(1P) \rightarrow J/\psi\gamma] \) are in good agreement with the world average data from the PDG [4]. While our prediction of \(\Gamma[\chi_{c2}(1P) \rightarrow J/\psi\gamma] \) is slightly (a factor of 1.26 \) larger than the present average data (371 \pm 34) \text{ keV} [4]. It is interesting to find that the E1 transitions of \(\chi_{cJ}(1P) \rightarrow J/\psi\gamma \) predicted by us are in good agreement with those of NR potential model [9]. Furthermore, to understand the radiative transition properties of \(\chi_{cJ}(1P) \) some studies were carried out from Lattice QCD as well [12, 14], however, good descriptions are still not obtained for some technical problems.

It should be emphasized that the M2 transitions have obvious corrections to the radiative transitions of \(\chi_{cJ}(1P) \rightarrow J/\psi\gamma \) by interfering with the E1 transitions. In the \(\chi_{c2}(1P) \rightarrow J/\psi\gamma \) process, the M2 transition has a constructive interference with the E1 transition, while in the \(\chi_{c1,0}(1P) \rightarrow J/\psi\gamma \) processes, the M2 transition has a destructive interference with the E1 transition. The corrections from the M2 transition might reach to \((10 \sim 20)\% \) of the partial decay widths (see Tab. IV). Furthermore, the partial width ratios were also obviously affected by the corrections from the M2 transition. For example, considering the M2 contributions, we find that the partial width ratio of
\[\frac{\Gamma[\chi_{c2}(1P) \rightarrow J/\psi\gamma]}{\Gamma[\chi_{c0}(1P) \rightarrow J/\psi\gamma]} \approx 3.64 \]
(36)
is notably larger than the value 2.54 without M2 contributions. This ratio is expected to be tested by more precise measurements in the future.

Recently, the coupled-channel effects of intermediate charmed mesons on the radiative transitions \(\chi_{cJ}(1P) \rightarrow J/\psi\gamma \) were also studied with an effective Lagrangian approach in Ref. [57], the results show that the coupled-channel effects on these decay processes are relatively weak.

2. \(h_c(1P) \)

For the singlet \(h_c(1P) \) state, its main radiative transition is \(h_c(1P) \rightarrow \eta_c(1S)\gamma \). It is a typical E1 transition. The partial width of \(\Gamma[h_c(1P) \rightarrow \eta_c(1S)\gamma] \) is also proportional to \((\omega_\gamma^2/\alpha^2)\omega_\gamma \). Thus, the width of \(\Gamma[h_c(1P) \rightarrow \eta_c(1S)\gamma] \) is the same order of magnitude as \(\Gamma[\chi_{cJ}(1P) \rightarrow J/\psi\gamma] \). Our predicted partial decay width
\[\Gamma[h_c(1P) \rightarrow \eta_c\gamma] \approx 587 \text{ keV}, \]
(37)
is in good agreement with the predictions from the relativistic quark model [24] and Lattice QCD [12], and also consistent with the data within its large uncertainties [4] (see table IV). The NR and GI potential models and Coulomb gauge approach [27] give a notably narrower width than ours [9]. It should be mentioned that the recent lattice calculation gave a larger width of \(\Gamma[h_c(1P) \rightarrow \eta_c\gamma] = 720(70) \text{ keV} \). Similar result was also obtained with a light front quark model [26]. As a whole, there are large discrepancies between different model predictions of \(\Gamma[h_c(1P) \rightarrow \eta_c\gamma] \). However, the present world data can not be used to test the various predictions for their large uncertainties. More accurate measurements for the transition \(h_c(1P) \rightarrow \eta_c\gamma \) are needed.

Finally, we give an estimation of partial decay width for the M1 transition \(h_c(1P) \rightarrow \chi_{c0}(1P)\gamma \). Our result is
\[\Gamma[h_c(1P) \rightarrow \chi_{c0}(1P)\gamma] = 0.39 \text{ keV}. \]
(38)
The corresponding branching ratio is
\[\mathcal{B}[h_c(1P) \rightarrow \chi_{c0}(1P)\gamma] \approx 5.6 \times 10^{-4}. \]
(39)
This sizeable transition rate indicates that the M1 transition \(h_c(1P) \rightarrow \chi_{c0}(1P)\gamma \) might be observed in forthcoming experiments.
D. Radiative transitions of 1D states

1. $\psi(3770)$

The $\psi(3770)$ resonance is primarily a $\psi_1(1D)$ state with small admixtures of $\psi(2S)$ [5]. It can decay into $\chi_{c1}(1P)\gamma$. These decay processes are dominated by the E1 transition. Furthermore, the higher order E3, M2 and M4 transitions are allowed as well.

Considering $\psi(3770)$ as a pure $\psi_1(1D)$ state, we calculate the radiative decay widths of $\Gamma[\psi(3770) \rightarrow \chi_{cJ}(1P)\gamma]$. Our results are

\[
\Gamma[\psi(3770) \rightarrow \chi_{c0}(1P)\gamma] \approx 218 \text{ keV},
\]

\[
\Gamma[\psi(3770) \rightarrow \chi_{c1}(1P)\gamma] \approx 70 \text{ keV},
\]

\[
\Gamma(\psi(3770) \rightarrow \chi_{c2}(1P)\gamma) \approx 2.6 \text{ keV},
\]

are consistent with the world average data from PDG [4], and also very close to the predictions of GI model [5] (see Tab. [7]). It is interesting to find that recently the BESIII Collaboration gave their precise measurement of the partial width of $\Gamma(\psi(3770) \rightarrow \chi_{c1}(1P)\gamma) = 67.5 \pm 10.8 \text{ keV}$ [79], which is in good agreement with our prediction. Furthermore, our predicted partial width ratio

\[
\frac{\Gamma[\psi(3770) \rightarrow \chi_{c0}(1P)\gamma]}{\Gamma[\psi(3770) \rightarrow \chi_{c1}(1P)\gamma]} \approx 3.1,
\]

is in good agreement with the experimental data 2.5 ± 0.6 from CLEO Collaboration as well [59].

It should be emphasized that the M2 transitions also have an obvious contribution [about $10 \sim 15\%$] to the radiative transitions of $\Gamma[\psi(3770) \rightarrow \chi_{cJ}(1P)\gamma]$ by interfering with the E1 transitions.

Finally, it should be mentioned that the present measurements for the radiative transitions of $\psi(3770) \rightarrow \chi_{cJ}(1P)\gamma$ are not precise enough to determine the small mixing angle between $\psi_1(1D)$ and $\psi(2S)$.

2. $X(3823)$

Recently, $X(3823)$ as a good candidate for $\psi_2(1D)$ was observed by the Belle Collaboration in the $B \rightarrow \chi_{c1}\gamma K$ decay with a statistical significance of 3.8σ [60]. Lately, this state was confirmed by the BESIII Collaboration in the process $e^+e^- \rightarrow \pi^+\pi^-X(3823) \rightarrow \pi^+\pi^-\chi_{c1}\gamma$ with a statistical significance of 6.2σ [61].

Considering $X(3823)$ as the $\psi_2(1D)$ state, we predict the radiative decay widths of $\Gamma[X(3823) \rightarrow \chi_{cJ}(1P)\gamma]$. Our results are

\[
\Gamma[X(3823) \rightarrow \chi_{c0}(1P)\gamma] \approx 1.42 \text{ keV},
\]

\[
\Gamma[X(3823) \rightarrow \chi_{c1}(1P)\gamma] \approx 227 \text{ keV},
\]

\[
\Gamma[X(3823) \rightarrow \chi_{c2}(1P)\gamma] \approx 42 \text{ keV}.
\]

Where we can find that the radiative transition rate of $X(3823) \rightarrow \chi_{c0}(1P)\gamma$ is relatively small. The radiative transitions of $X(3823)$ are dominated by the $\chi_{c1}(1P)\gamma$ channel. This can explain why the $X(3823)$ is firstly observed in the $\chi_{c1}(1P)\gamma$ channel, while not observed in the $\chi_{c0,2}(1P)\gamma$ channels. It should be mentioned that the M2 transitions could give a $\sim 15\%$ correction to $\Gamma[X(3823) \rightarrow \chi_{c2}(1P)\gamma]$ by interfering with the E1 transitions. Furthermore, our predicted partial width ratio,

\[
\frac{\Gamma[X(3823) \rightarrow \chi_{c2}(1P)\gamma]}{\Gamma[X(3823) \rightarrow \chi_{c1}(1P)\gamma]} \approx 19\%,
\]

is consistent with the observations $< 42\%$ [61]. Our predictions of the $\Gamma[X(3823) \rightarrow \chi_{c1,2}(1P)\gamma]$ are compatible with the other theoretical predictions [24, 62, 63].

According to the calculations from various models, the partial width of $\Gamma[X(3823) \rightarrow \chi_{c2}(1P)\gamma]$ is not small. Thus, looking for $X(3823)$ in the $\chi_{c}(1P)\gamma$ channel and an accurate measurement of the ratio $\Gamma[X(3823) \rightarrow \chi_{c2}(1P)\gamma]/\Gamma[X(3823) \rightarrow \chi_{c1}(1P)\gamma]$ are crucial to further confirm $X(3823)$ as the $\psi_2(1D)$ state.

3. $\psi_3(1D)$ and $\eta_c(2D)$

Another two 1D-wave states $\psi_3(1D)$ and $\eta_c(2D)$ have not been observed in experiments. According to theoretical predictions, their masses are very similar to that of $\psi_2(1D)$. If $X(3823)$ corresponds to the $\psi_1(1D)$ state indeed, the masses of the $\psi_3(1D)$ and $\eta_c(2D)$ resonances should be around 3.82 GeV.

For the singlet 1D state $\eta_c(1D)$, its main radiative transition is $\eta_c(1D) \rightarrow h_c(1P)\gamma$. This process is governed by the E1 transition, the effects from the E3 transition are negligibly small. Taking the mass of $\eta_c(1D)$ with $M = 3820 \text{ MeV}$, we predict the partial decay width

\[
\Gamma[\eta_c(1D) \rightarrow h_c(1P)\gamma] \approx 261 \text{ keV}.
\]

Our result is compatible with that from the relativistic quark model [24] and effective Lagrangian approach [19]. The predictions from the potential models [9, 10] are slightly larger than ours (see Tab. [VI]).

While for the triplet 1D state $\psi_3(1D)$, its common radiative transitions are $\psi_3(1D) \rightarrow \chi_{cJ}(1P)\gamma$. In these transitions, E1, E3, M2, M4 decays are allowed. Taking the mass of $\psi_3(1D)$ with $M = 3830 \text{ MeV}$, we calculate the partial decay widths $\Gamma[\psi_3(1D) \rightarrow \chi_{cJ}(1P)\gamma]$. Our results are

\[
\Gamma[\psi_3(1D) \rightarrow \chi_{c0}(1P)\gamma] \approx 0.87 \text{ keV},
\]

\[
\Gamma[\psi_3(1D) \rightarrow \chi_{c1}(1P)\gamma] \approx 0.82 \text{ keV},
\]

\[
\Gamma[\psi_3(1D) \rightarrow \chi_{c2}(1P)\gamma] \approx 226 \text{ keV}.
\]

The interferences between M2 and E3 transitions are responsible for the tiny partial decay widths of $\Gamma[\psi_3(1D) \rightarrow \chi_{c0,2}(1P)\gamma]$, while the E1 transitions govern the partial width of $\Gamma[\psi_3(1D) \rightarrow \chi_{c1}(1P)\gamma]$. The magnitude of the partial decay width of $\Gamma[\psi_3(1D) \rightarrow \chi_{c1}(1P)\gamma]$ predicted by us is compatible with that from the potential models [9, 10] and the relativistic quark model [24]. We hope the experimental Collaboration can carry out a search for the missing $\psi_3(1D)$ state in the $\chi_{c2}(1P)\gamma$ channel.
E. Radiative transitions of 2P states

1. $\chi_{c2}(2P)$

In the 2P charmonium states, only the $\chi_{c2}(2P)$ has been established experimentally. This state was observed by both Belle [64] and BaBar [65] in the two-photon fusion process $\gamma\gamma \rightarrow D\bar{D}$ with a mass $M \approx 3927$ MeV and a narrow width $\Gamma \approx 24$ MeV [4]. We analyze its radiative transitions to $\psi(1D)\gamma$, $J/\psi\gamma$ and $\psi(2S)\gamma$. We find the radiative transition rate to $\psi(1D)\gamma$ is very weak. The predicted partial decay widths are

\[
\Gamma_{\chi_{c2}(2P) \rightarrow \psi(3770)\gamma} \approx 0.32\text{ keV},
\]

\[
\Gamma_{\chi_{c2}(2P) \rightarrow \psi(2S)\gamma} \approx 15\text{ keV},
\]

\[
\Gamma_{\chi_{c2}(2P) \rightarrow \psi(3)\gamma} \approx 6.3\text{ keV}.
\]

In the calculation we take the mass of 3830 MeV for $\psi(1D)$. Our predictions of the $\Gamma_{\chi_{c2}(2P) \rightarrow \psi(3770)\gamma}$ and $\Gamma_{\chi_{c2}(2P) \rightarrow \psi(2S)\gamma}$ are roughly compatible with the results from the GI potential model [9] (see Tab. IV). However, our prediction of the $\Gamma_{\chi_{c2}(2P) \rightarrow \psi(3)\gamma}$ is about an order of magnitude smaller than that from the GI and NR potential models [9] (see Tab. V). Our predictions indicate that it might be a challenge to look for the missing charmonium state $\psi(3)\gamma$ via the radiative transition $\chi_{c2}(2P) \rightarrow \psi(3)\gamma$.

The $\chi_{c2}(2P)$ state might have large radiative decay rates into $J/\psi\gamma$ and $\psi(2S)\gamma$. In our calculations, we find

\[
\Gamma_{\chi_{c2}(2P) \rightarrow J/\psi\gamma} \approx 34\text{ keV},
\]

\[
\Gamma_{\chi_{c2}(2P) \rightarrow \psi(2S)\gamma} \approx 133\text{ keV}.
\]

It should be mentioned that the M2 transitions could give a $\sim 10 - 15\%$ correction to these radiative decay widths by interfering with the E1 transitions. The branching fractions of these two radiative decay processes could reach to

\[
\mathcal{B}[\chi_{c2}(2P) \rightarrow J/\psi\gamma] \approx 1.4 \times 10^{-3}\text{ keV},
\]

\[
\mathcal{B}[\chi_{c2}(2P) \rightarrow \psi(2S)\gamma] \approx 5.5 \times 10^{-3}\text{ keV}.
\]

Thus, the radiative transitions $\chi_{c2}(2P) \rightarrow \psi(2S)\gamma$, $J/\psi\gamma$ are most likely to be observed in forthcoming experiments.

Finally, it should be pointed out that our predicted partial width ratio

\[
\frac{\Gamma_{\chi_{c2}(2P) \rightarrow \psi(2S)\gamma}}{\Gamma_{\chi_{c2}(2P) \rightarrow J/\psi\gamma}} \approx 4,
\]

is in good agreement with that of GI and NR potential model, though their predicted partial widths are about a factor of 2 - 3 larger than our results. Our predicted ratio is slightly larger than the result 2.95 ± 0.5 predicted with an effective Lagrangian approach [19]. To better understand the properties of the $\chi_{c2}(2P)$ state and test the various theoretical predictions, this ratio is suggested to be measured in experiments.

2. $\chi_{c1}(2P)$

The $X(3872)$ resonance has the same quantum numbers as $\chi_{c1}(2P)$ (i.e., $J^{PC} = 1^{++}$) and a similar mass to the predicted value of $\chi_{c3}(2P)$. However, its exotic properties can not be well understood with a pure $\chi_{c1}(2P)$ state [5, 6]. To understand the nature of $X(3872)$, measurements of the radiative decays of $X(3872)$ have been carried out by the BaBar [66], Belle [67], and LHCb [68] collaborations, respectively. Obvious evidence of $X(3872) \rightarrow J/\psi\gamma$ was observed by these collaborations. Furthermore, the BaBar and LHCb Collaborations also observed evidence of $X(3872) \rightarrow \psi(2S)\gamma$. The branching fraction ratio

\[
\frac{R^{\exp}_{\psi(2S)\gamma/\psi\gamma}}{R^{\exp}_{\psi(3770)\gamma/\psi\gamma}} \approx 3.4 \pm 1.4,
\]

obtained by the BaBar Collaboration [66] is consistent with the recent measurement $R^{\exp}_{\psi(2S)\gamma/\psi\gamma} = 2.46 \pm 0.93$ of LHCb Collaboration [68].

Considering the $X(3872)$ as a pure $\chi_{c2}(2P)$ state, we calculate the radiative decays $X(3872) \rightarrow J/\psi\gamma, \psi(2S)\gamma$. Our predicted radiative decay partial widths are

\[
\Gamma[X(3872) \rightarrow J/\psi\gamma]] \approx 14.4\text{ keV},
\]

\[
\Gamma[X(3872) \rightarrow \psi(2S)\gamma] \approx 57.1\text{ keV}.
\]

It should be mentioned that the M2 transitions could give a $\sim 10\%$ correction to the radiative decay widths. Combining these predicted partial widths, we can easily obtain the ratio

\[
\frac{R^{th}_{\psi(2S)\gamma/\psi\gamma}}{R^{th}_{\psi(3770)\gamma/\psi\gamma}} \approx 4.0,
\]

which is consistent with the BaBar’s measurement [66], and close to the upper limit of the observations from LHCb [68]. The ratio predicted by us is also in agreement with the result $R^{th}_{\psi(2S)\gamma/\psi\gamma} \approx 4.4$ from a relativistic Salpeter method [10, 25].

It should be mentioned that Barnes and Godfrey gave a ratio $R^{th}_{\psi(2S)\gamma/\psi\gamma} = 6$ [8], which is obviously larger than ours although their predicted partial widths are close to ours.

Furthermore, considering $X(3872)$ as a pure $\chi_{c2}(2P)$ state, we calculate the radiative decays into the D-wave states $\psi(3770)$ and $\psi(2S)(1D)$ (i.e., $X(3823)$):

\[
\Gamma[X(3872) \rightarrow \psi(3770)\gamma] \approx 1.8\text{ keV},
\]

\[
\Gamma[X(3872) \rightarrow \psi(2S)\gamma(1D)] \approx 0.77\text{ keV}.
\]

These partial widths are much smaller than the partial widths into the S-wave states. Combining the measured width of $X(3872)$ (i.e., $\Gamma < 1.2$ MeV) from the PDG [4], we estimate the branching ratios

\[
\mathcal{B}[X(3872) \rightarrow \psi(3770)\gamma]] > 1.9 \times 10^{-3},
\]

\[
\mathcal{B}[X(3872) \rightarrow \psi(2S)\gamma(1D)] > 6.4 \times 10^{-4}.
\]

The sizeable decay rates indicate that the decay modes $\psi(3770)\gamma$ and $\psi(2S)\gamma(1D)$ might be observed in experiments if $X(3872)$ corresponds to the $\chi_{c2}(2P)$ state indeed.

As a whole, from the view of branching fraction ratio $R_{\psi(2S)\gamma/\psi\gamma}$, our result supports $X(3872)$ as a candidate of $\chi_{c2}(2P)$, which is in agreement with the predictions in Refs. [10, 25]. More observations in the $\psi(3770)\gamma$ and $\psi(2S)\gamma(1D)$ channels are useful to understand the nature of $X(3872)$.
3. $\chi_{c0}(2P)$

The $\chi_{c0}(2P)$ state is still not well-established, although $X(3915)$ was recommended as the $\chi_{c0}(2P)$ state in Ref. [69], and also assigned as the $\chi_{c0}(2P)$ state by the PDG [4] recently. Assigning the $X(3915)$ as the $\chi_{c0}(2P)$ state will face several serious problems [70, 71]. For example, the mass splitting between $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$, the production rates, and limits on the $\omega J/\psi$ and $D\bar{D}$ branching fractions of $X(3915)$ cannot be well explained. Guo and Meissner refitted the BaBar and Belle data of $\gamma\gamma \rightarrow D\bar{D}$ separately, their analysis indicates that the broad bump in the invariant mass spectrum could be assigned as the $\chi_{c0}(2P)$ state [70]. Its average mass and width are $M = (3837.6 \pm 11.5)$ MeV and $\Gamma = (221 \pm 19)$ MeV, respectively [70]. The extracted mass of $\chi_{c0}(2P)$ is consistent with the predictions in the screened potential model [10] and relativistic quark model [24]. Recently, Zhou et al. carried out a combined amplitude analysis of the $\gamma\gamma \rightarrow D\bar{D}, \omega J/\psi$ data [72]. They demonstrated that $X(3915)$ and $X(3930)$ can be regarded as the same state with $J^{PC} = 2^{++}$ (i.e., $\chi_{c2}(2P)$). To establish the $\chi_{c0}(2P)$ state and clarify the controversial situation of $X(3915)$, a study of the radiative transitions of $\chi_{c0}(2P)$ in both theory and experiment is necessary.

FIG. 1: (Color online) The partial widths of the radiative transitions of $\chi_{c0}(2P)$, and their ratios as a function of the mass in the range of $(3820 \sim 3940)$ GeV.

The $\chi_{c0}(2P)$ state can decay via the radiative transitions $\chi_{c0}(2P) \rightarrow \psi(3770)\gamma, \psi(2S)\gamma, J/\psi \gamma$. For we do not know the accurate mass of $\chi_{c0}(2P)$, we calculate the properties of these radiative transitions as a function of the mass in the region $(3820 \sim 3940)$ GeV. Our results are shown in Fig. 1. From the figure, one can find that the radiative transitions of $\chi_{c0}(2P) \rightarrow \psi(3770)\gamma, \psi(2S)\gamma$ are sensitive to the mass of $\chi_{c0}(2P)$.

If $\chi_{c0}(2P)$ has a low mass of $M = 3840$ MeV as suggested by Guo and Meissner [70], $\psi(2S)\gamma$ and $J/\psi\gamma$ are the important radiative decay modes. The predicted partial decay widths are

$$\Gamma[\chi_{c0}(2P) \rightarrow J/\psi\gamma] \approx 8.6 \text{ keV},$$

$$\Gamma[\chi_{c0}(2P) \rightarrow \psi(2S)\gamma] \approx 32 \text{ keV},$$

$$\Gamma[\chi_{c0}(2P) \rightarrow \psi(3770)\gamma] \approx 2.1 \text{ keV},$$

and the predicted partial width ratios are

$$\frac{\Gamma[\chi_{c0}(2P) \rightarrow \psi(2S)\gamma]}{\Gamma[\chi_{c0}(2P) \rightarrow J/\psi\gamma]} \approx 3.7,$$

$$\frac{\Gamma[\chi_{c0}(2P) \rightarrow \psi(3770)\gamma]}{\Gamma[\chi_{c0}(2P) \rightarrow J/\psi\gamma]} \approx 0.24.$$

On the other hand, if $\chi_{c0}(2P)$ has a high mass of $M = 3915$ MeV as suggested by the PDG [4], the radiative decay mode $\psi(3770)\gamma$ also becomes important. Our predicted partial decay widths are

$$\Gamma[\chi_{c0}(2P) \rightarrow J/\psi\gamma] \approx 14 \text{ keV},$$

$$\Gamma[\chi_{c0}(2P) \rightarrow \psi(2S)\gamma] \approx 92 \text{ keV},$$

$$\Gamma[\chi_{c0}(2P) \rightarrow \psi(3770)\gamma] \approx 21 \text{ keV},$$

While the predicted partial width ratios are

$$\frac{\Gamma[\chi_{c0}(2P) \rightarrow \psi(2S)\gamma]}{\Gamma[\chi_{c0}(2P) \rightarrow J/\psi\gamma]} \approx 6.6,$$

$$\frac{\Gamma[\chi_{c0}(2P) \rightarrow \psi(3770)\gamma]}{\Gamma[\chi_{c0}(2P) \rightarrow J/\psi\gamma]} \approx 1.5.$$

According to our calculations, we find that the properties of the radiative transitions of $\chi_{c0}(2P)$ between the low- and high-mass cases are very different. Thus, we suggest our experimental colleagues observe the $\chi_{c0}(2P)$ state in the $\psi(2S)\gamma, J/\psi\gamma, \psi(3770)\gamma$ decay channels and measure these partial width ratios, which might provide us a good chance to clarify the puzzles about the $\chi_{c0}(2P)$ state.

4. $h_c(2P)$

There is no information of $h_c(2P)$ from experiments. According to the model predictions, the mass-splitting between $\chi_{c2}(2P)$ and $h_c(2P)$ is about $M_{\chi_{c2}(2P)} - M_{h_c(2P)} = (30 \pm 10)$ MeV [9, 11]. Thus, the mass of $h_c(2P)$ is most likely to be $M_{h_c(2P)} \approx 3900$ MeV. The typical radiative decay channels of $h_c(2P)$ are $\eta_c(1S, 2S)\gamma$ and $\eta_c(1D)\gamma$.

Considering the uncertainties of the mass, in Fig. 2 we plot the partial decay widths as a function of mass in the range of $M_{h_c(2P)} = (3900 \pm 20)$ MeV. It is found that the radiative transition rate of $h_c(2P) \rightarrow \eta_c(1D)\gamma$ is very weak. While $h_c(2P)$ has large transition rates to the $\eta_c(1S)\gamma$ and $\eta_c(2S)\gamma$ channels.
The small partial decay widths of χ_J should be mentioned that the possibility of the Belle Collaboration observed the processes $\chi_J \to \psi \gamma$ are also predicted with potential models \cite{9, 11}. Recently, $\chi_{J=1}$ and $\chi_{J=2}$ states are still not established, thus, we calculate the partial decay widths of the radiative transitions $\psi(4040) \to \chi_{J=1}(2P)\gamma$ as functions of the masses of the $\chi_{J=2}(2P)$ and $\chi_{J=2}(2P)$ states in a possible region. Our results are shown in Fig. 3 if the $X(3872)$ is the $\chi_{J=2}(2P)$ state, our predicted partial decay width of the process $\psi(4040) \to \chi_{J=2}(2P)\gamma$ is

$$
\Gamma[\psi(4040) \to \chi_{J=2}(2P)\gamma] \approx 38 \text{ keV.}
$$

While if the mass of $X(3872)$ is ~ 3840 MeV as suggested in Refs. \cite{14, 70}, the predicted partial decay width of the process $\psi(4040) \to \chi_{J=2}(2P)\gamma$ is

$$
\Gamma[\psi(4040) \to \chi_{J=2}(2P)\gamma] \approx 22 \text{ keV.}
$$

Thus, if $X(3872)$ is identified as $\chi_{J=2}(2P)$ indeed, and $\chi_{J=2}(2P)$ has a low mass of ~ 3840 MeV, both $\chi_{J=1}(2P)$ and $\chi_{J=2}(2P)$ could be produced through the radiative decays of $\psi(4040)$, and established in the $J/\psi \gamma$ and $\psi(2S)\gamma$ final states.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig2.png}
\caption{(Color online) The partial decay widths of $h_c(2P)$ as a function of its mass in the range of $M_{h_c(2P)} = (3900 \pm 20)$ MeV.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig3.png}
\caption{(Color online) The partial decay widths of the radiative transitions $\psi(4040) \to \chi_{J=1}(2P)\gamma$ as functions of the masses of the final states $\chi_{J=1}(2P)$ and $\chi_{J=2}(2P)$.}
\end{figure}

The $h_c(2P) \to \eta_c(1S)\gamma$ transition shows some sensitivities to the mass of $h_c(2P)$. With $M_{h_c(2P)} \approx (3900 \pm 20)$ MeV, our predicted partial widths are

$$
\Gamma(h_c(2P) \to \eta_c(1S)\gamma) \approx 151 \pm 30 \text{ keV},
$$

$$
\Gamma(h_c(2P) \to \eta_c(2S)\gamma) \approx 43 \pm 5 \text{ keV.}
$$

Thus, the radiative transitions $h_c(2P) \to \eta_c(1S, 2S)\gamma$ are worth to observing in experiments.

Recently, the BESIII Collaboration observed a new neutral charmonium-like particle $Z_c(3900)^0$ in the $e^+e^- \to \pi^0\pi^0 J/\psi$ process \cite{73}, which is likely the isospin partner of $Z_c(3900)^+$. It should be mentioned that the possibility of the $Z_c(3900)^0$ as a candidate of $h_c(2P)$ should be considered carefully as well.

F. Radiative transitions of $3S$ states

1. $\psi(4040)$

The $\psi(4040)$ resonance is commonly identified with the $\psi(3S)$ state \cite{11}. This state can decay into $\chi_{J=1}(1P)\gamma$ and $\chi_{J=2}(2P)\gamma$ via the radiative transitions. We have calculated these processes. According to our calculations, it is found that the radiative transition rates of $\psi(4040) \to \chi_{J=1}(1P)\gamma$ are relatively weak. Our predicted partial widths are

$$
\Gamma[\psi(4040) \to \chi_{J=1}(1P)\gamma] \approx 3.1 \text{ keV},
$$

$$
\Gamma[\psi(4040) \to \chi_{J=2}(1P)\gamma] \approx 3.0 \text{ keV},
$$

$$
\Gamma[\psi(4040) \to \chi_{J=2}(2P)\gamma] \approx 2.2 \text{ keV.}
$$

The small partial decay widths of $\Gamma[\psi(4040) \to \chi_{J=1}(1P)\gamma]$ are also predicted with potential models \cite{9, 11}. Recently, the Belle Collaboration observed the processes $e^+e^- \to \chi_{J=1,2}(1P)\gamma$ \cite{74}, they only gave upper limits on branching fractions $B[\psi(4040) \to \chi_{J=1}(1P)\gamma] = 3.4 \times 10^{-3}$ and

$$
B[\psi(4040) \to \chi_{J=2}(1P)\gamma] = 5.5 \times 10^{-3}.
$$

Combing the measured decay width, one obtains the partial decay widths of $\Gamma[\psi(4040) \to \chi_{J=1}\gamma] < 272 \text{ keV}$ and $\Gamma[\psi(4040) \to \chi_{J=2}\gamma] < 440 \text{ keV}$ from experiments. The upper limits of these partial widths from experiments are too large to give any constraints of the theoretical predictions. It might be a challenge to carry out accurate observations of the radiative transitions $\psi(4040) \to \chi_{J=1}(1P)\gamma$ in experiments for their small decay rates.
2. $\eta_c(3S)$

The $\eta_c(3S)$ state is not established in experiments. According to model predictions, its mass is about 40–100 MeV lower than that of $\psi(4040)$ \cite{2,10}. Thus, its mass is most likely to be in the range of 3940–4000 MeV. The $X(3940)$ resonance observed by the Belle Collaboration in $e^+e^- \rightarrow J/\psi X$ \cite{75,76} is a good candidate of $\eta_c(3S)$ by comparing the observed decay mode, width, and mass with those predicted in theory \cite{1}.

Considering $X(3940)$ as the $\eta_c(3S)$ state, we calculate the radiative transitions $\eta_c(3S) \rightarrow h_c(1P)\gamma, h_c(2P)\gamma$. Our predicted partial decay widths

$$\Gamma[\eta_c(3940) \rightarrow h_c(1P)\gamma] \approx 1.8 \text{ keV},$$
$$\Gamma[\eta_c(3940) \rightarrow h_c(2P)\gamma] \approx 1.7 \text{ keV},$$

are relatively small. Combining the observed width of $X(3940)$, i.e., $\Gamma \approx 37$ MeV, we easily predict the branching fractions

$$\mathcal{B}[\eta_c(3940) \rightarrow h_c(1P)\gamma] \approx 4.9 \times 10^{-5},$$
$$\mathcal{B}[\eta_c(3940) \rightarrow h_c(2P)\gamma] \approx 4.6 \times 10^{-5}.$$

The small branching ratios indicate that if $X(3940)$ is the $\eta_c(3S)$ state, it might be difficult to be observed in the radiative decay channels $h_c(1P)\gamma$ and $h_c(2P)\gamma$. Note that we have taken the mass of $h_c(2P)$ with $M_{h_c(2P)} = 3.9$ GeV in the calculation. Finally, it should be mentioned that our predicted partial widths are notably smaller than those of NR and GI potential models \cite{9} (see Tab. V).

G. Radiative transitions of 2D states

I. $\psi(4160)$

The 1^{-+} state $\psi(4160)$ is commonly identified with the 2^3D_1 state. The average experimental mass and width from the PDG are $M = 4191 \pm 5$ MeV and $\Gamma = 70 \pm 10$ MeV, respectively \cite{9}. The $\psi(4160)$ resonance can decay into $\chi_{c1}(1P)\gamma$ and $\chi_{c2}(2P)\gamma$ via the radiative transitions.

Considering $\psi(4160)$ as a pure 2^3D_1 state, we predict

$$\Gamma[\psi(4160) \rightarrow \chi_{c0}(1P)\gamma] \approx 21 \text{ keV},$$
$$\Gamma[\psi(4160) \rightarrow \chi_{c1}(1P)\gamma] \approx 6.5 \text{ keV},$$
$$\Gamma[\psi(4160) \rightarrow \chi_{c2}(2P)\gamma] \approx 8.8 \text{ keV}.$$

Our predictions of $\Gamma[\psi(4160) \rightarrow \chi_{c0,1}(1P)\gamma]$ are close to those of potential models \cite{9}, however, our prediction of $\Gamma[\psi(4160) \rightarrow \chi_{c2}(1P)\gamma]$ is about one order of magnitude larger than that of potential models \cite{9} (see Tab. V). It should be mentioned that the $M2$ transitions could give a $10 \sim 30\%$ correction to the radiative decay widths by interfering with the E1 transitions. Combining the measured decay width of $\psi(4160)$ with our predicted partial widths, we estimate the branching fractions:

$$\mathcal{B}[\psi(4160) \rightarrow \chi_{c0}(1P)\gamma] \approx 3.0 \times 10^{-4},$$
$$\mathcal{B}[\psi(4160) \rightarrow \chi_{c1}(1P)\gamma] \approx 1.0 \times 10^{-4},$$
$$\mathcal{B}[\psi(4160) \rightarrow \chi_{c2}(2P)\gamma] \approx 1.3 \times 10^{-4}.$$

The CLEO Collaboration only gave upper limits of $\mathcal{B}[\psi(4160) \rightarrow \chi_{c1}(1P)\gamma] < 7 \times 10^{-3}$ and $\mathcal{B}[\psi(4160) \rightarrow \chi_{c2}(1P)\gamma] < 13 \times 10^{-3}$ \cite{77}. Our predictions are in the region of the measurements. Of course, we expect that more accurate observations can be carried out in future experiments.

Furthermore, we calculate the partial decay width of $\Gamma[\psi(4160) \rightarrow \chi_{c2}(2P)\gamma]$. Our result

$$\Gamma[\psi(4160) \rightarrow \chi_{c2}(2P)\gamma] \approx 5.9 \text{ keV},$$

is in agreement with the predictions in various potential models \cite{9,78}. At the same time, we can easily estimate the branching fraction

$$\mathcal{B}[\psi(4160) \rightarrow \chi_{c2}(2P)\gamma] \approx 8.1 \times 10^{-5}.$$

The small branching fraction indicates that the $\chi_{c2}(2P)\gamma$ decay mode might be difficult to be observed in experiments.

The $\chi_{c0}(2P)$ and $\chi_{c1}(2P)$ states are still not established, thus, we calculate the partial decay widths of the radiative transitions $\psi(4160) \rightarrow \chi_{c0}(2P)\gamma, \chi_{c1}(2P)\gamma$ as functions of the masses of the $\chi_{c0}(2P)$ and $\chi_{c1}(2P)$ states in a possible region. Our results are shown in Fig. 4. From the figure, it is seen that although the partial decay widths of $\Gamma[\psi(4160) \rightarrow \chi_{c0}(2P)\gamma, \chi_{c1}(2P)\gamma]$ are sensitive to the mass of the final charmonium states, the partial decay widths are still fairly large when we take the upper limits for the masses of the final charmonium states. Thus, $\psi(4160)$ might be a good source to be used to look for the missing $\chi_{c0}(2P)$ and $\chi_{c1}(2P)$ states via the radiative transitions $\psi(4160) \rightarrow \chi_{c0}(2P)\gamma, \chi_{c1}(2P)\gamma$, which is also suggested by Li, Meng and Chao in Ref. \cite{78}.

![Graph](image-url)

FIG. 4: (Color online) The partial decay widths of the radiative transitions $\psi(4160) \rightarrow \chi_{c0}(2P)\gamma, \chi_{c1}(2P)\gamma$ as functions of the masses of the final states $\chi_{c0}(2P)$ and $\chi_{c1}(2P)$.

Considering $X(3872)$ as the $\chi_{c1}(2P)$ state, we predict partial decay width and branching fraction of the process $\psi(4160) \rightarrow \chi_{c1}(2P)\gamma$:

$$\Gamma[\psi(4160) \rightarrow \chi_{c1}(2P)\gamma] \approx 140 \text{ keV},$$
$$\mathcal{B}[\psi(4160) \rightarrow \chi_{c1}(2P)\gamma] \approx 2.0 \times 10^{-3}.$$
While if the mass of $\chi^c(2P)$ is ~ 3840 MeV as predicted in Refs. [11,70], the predicted partial decay width and branching fraction of the process $\psi(4160) \rightarrow \chi^c(2P)\gamma$ are

$$\Gamma(\psi(4160) \rightarrow \chi^c(2P)\gamma) \approx 259 \text{ keV},$$ \hspace{1cm} (100)

$$\mathcal{B}(\psi(4160) \rightarrow \chi^c(2P)\gamma) \approx 8.6 \times 10^{-3}.$$ \hspace{1cm} (101)

According to our calculations, if $X(3872)$ is $\chi^c(2P)$ and the mass of $\chi^c(2P)$ is ~ 3840 MeV indeed, these states should be easily observed in the radiative transitions $\psi(4160) \rightarrow \chi^c(2P)\gamma$, for their large branching fractions. To clarify the puzzles in $X(3872)$ and $\chi^c(2P)$, we strongly suggest our experimental colleagues carry out observations of the radiative transitions $\psi(4160) \rightarrow \chi^c(2P)\gamma$, $\chi^c(2P)\gamma$ in the future.

2. $\psi_2(2D)$

The $\psi_2(2D)$ state is still not observed in experiments. Combined the measured mass of $\psi_1(2D)$ and the $2^1D_2 - 2^3D_1$ mass splitting from the quark model [9], the mass of $\psi_2(2D)$ may be about $M_{\psi_2(2D)} \approx 4208$ MeV. The study of the radiative transitions $\psi_2(2D) \rightarrow \chi^c(1P,2P)\gamma$ may be helpful to look for $\psi_2(2D)$ in experiments.

According to our calculations, we find that the partial widths of $\Gamma[\psi_2(2D) \rightarrow \chi^c(1P,2P)\gamma]$ are negligibly small. The $\chi^c(1P)$, $\chi^c(2P)$ states are well-established, thus, we can easily predict that

$$\Gamma[\psi_2(2D) \rightarrow \chi^c(1P)\gamma] \approx 26 \text{ keV},$$ \hspace{1cm} (102)

$$\Gamma[\psi_2(2D) \rightarrow \chi^c(2P)\gamma] \approx 10 \text{ keV},$$ \hspace{1cm} (103)

$$\Gamma[\psi_2(2D) \rightarrow \chi^c(2P)\gamma] \approx 64 \text{ keV},$$ \hspace{1cm} (104)

which are close to the predictions of NR potential model [9]. It should be mentioned that the E3 together with the M2 transitions have obvious corrections to the partial widths by interfering with E1 transitions (see Tab. VI).

The $\chi^c(2P)$ state is still not established, thus, we calculate the partial decay width of the radiative transition $\psi_2(2D) \rightarrow \chi^c(2P)\gamma$ as a function of the mass of the $\chi^c(2P)$ state in a possible region. Our results are shown in Fig. 5. From the figure, it is seen that $\psi_2(2D)$ has a large transition rate into $\chi^c(2P)\gamma$. The radiative partial width of $\Gamma[\psi_2(2D) \rightarrow \chi^c(2P)\gamma]$ is about 100keV, which is in agreement with the potential model predictions [9]. If $X(3872)$ is assigned as the $\chi^c(2P)$ state, we predict that

$$\frac{\Gamma[\psi_2(2D) \rightarrow \chi^c(2P)\gamma]}{\Gamma[\psi_2(2D) \rightarrow \chi^c(1P)\gamma]} \approx 5.6.$$ \hspace{1cm} (105)

This ratio might be interesting to test the nature of $X(3872)$ in future experiments.

3. $\psi_3(2D)$

The $\psi_3(2D)$ state is still not established. Combined the measured mass of $\psi_1(2D)$ and the $2^1D_2 - 2^3D_1$ mass splitting from the quark model [9], the mass of $\psi_3(2D)$ is about $M_{\psi_3(2D)} \approx 4208$ MeV. We study the typical radiative transitions $\eta_{c2}(2D) \rightarrow h_1(1P,2P)\gamma$. We find that $\eta_{c2}(2D)$ might have strong decay rates into both $h_1(1P)\gamma$ and $h_1(2P)\gamma$ channels. We predict that

$$\Gamma[\eta_{c2}(2D) \rightarrow h_1(1P)\gamma] \approx 39 \text{ keV},$$ \hspace{1cm} (106)

$$\Gamma[\eta_{c2}(2D) \rightarrow h_1(2P)\gamma] \approx 385 \text{ keV},$$ \hspace{1cm} (107)

which are compatible with the potential model results [9].

Furthermore, in our calculations we find that the partial decay widths of $\Gamma[\psi_3(2D) \rightarrow \chi^c(2P)\gamma]$ are negligibly small, while the $\Gamma[\psi_3(2D) \rightarrow \chi^c(1P)\gamma]$ are sizeable. Our results are

$$\Gamma[\psi_3(2D) \rightarrow \chi^c(1P)\gamma] \approx 8.5 \text{ keV},$$ \hspace{1cm} (108)

$$\Gamma[\psi_3(2D) \rightarrow \chi^c(2P)\gamma] \approx 9.1 \text{ keV}.$$ \hspace{1cm} (109)

It should be pointed out that in these two decay processes the E1 transitions are nearly forbidden. Their partial widths are mainly contributed by the E3 translations.

4. $\eta_{c2}(2D)$

There is no information of $\eta_{c2}(2D)$ from experiments. Combined the measured mass of $\psi_1(2D)$ and the $2^1D_2 - 2^3D_1$ mass splitting from the quark model [9], the mass of $\eta_{c2}(2D)$ is $M_{\eta_{c2}(2D)} \approx 4208$ MeV. We study the typical radiative transitions $\eta_{c2}(2D) \rightarrow h_1(1P,2P)\gamma$. We find that $\eta_{c2}(2D)$ might have strong decay rates into both $h_1(1P)\gamma$ and $h_1(2P)\gamma$ channels. We predict that

$$\Gamma[\eta_{c2}(2D) \rightarrow h_1(1P)\gamma] \approx 39 \text{ keV},$$ \hspace{1cm} (110)

$$\Gamma[\eta_{c2}(2D) \rightarrow h_1(2P)\gamma] \approx 385 \text{ keV},$$ \hspace{1cm} (111)
where we take the mass of $h_c(2P)$ with $M_{h_c(2P)} = 3900$ MeV. Our predictions are in agreement with those from potential models \(^{[6]}\) in magnitude (see Tab. \(\text{VI}\)). According to our analysis, the observations of the decay chain: $\eta_c(2D) \to h_c(2P)\gamma$, $h_c(2P) \to \eta_c(1S)\gamma$ might be useful for the search for $\eta_c(2D)$ and $h_c(2P)$ in experiments.

H. Radiative transitions of 3P states

Until now, no 3P charmonium states, $\chi_{c0,1,2}(3P)$ and $h_c(3P)$, have been established in experiments. Their predicted masses from various quark models have large uncertainties. The possible masses of the $\chi_{c0}(3P)$, $\chi_{c1}(3P)$, $\chi_{c2}(3P)$, and $h_c(3P)$ are in the ranges of (4.13 – 4.30) GeV, (4.17 – 4.38) GeV, (4.20 – 4.39) GeV, and (4.18 – 4.34) GeV, respectively \(^{[9–11]}\). Considering the uncertainties of their predicted masses, we plot the partial radiative decay width as a function of mass in Fig. 6. From the figure, one can see that the radiative decay properties of the 3P charmonium states are very sensitive to their masses. The EM decays of $\chi_{c0}(3P)$ and $h_c(3P)$ are governed by the $\psi(3S)\gamma$ and $\eta(3S)\gamma$ channels, respectively. The partial widths of the 3P charmonium states decaying into the 2S states are also sizeable. If the 3P charmonium states have a larger mass, their partial width decaying into the 2D states will become comparable to those of into the 2S states.

It is interesting to note that the new $X(4350)$ state observed by the Belle Collaboration \(^{[80]}\) was recommended as the $\chi_{c2}(3P)$ state by Liu et al. \(^{[69]}\). If $X(4350)$ corresponds to $\chi_{c2}(3P)$, its partial decay widths decaying into the $\psi(1S, 2S, 3S)\gamma$ channels are

$$
\Gamma[X(4350) \to \psi(3S)\gamma] \approx 341 \text{ keV},
$$

$$
\Gamma[X(4350) \to \psi(2S)\gamma] \approx 39 \text{ keV},
$$

$$
\Gamma[X(4350) \to \psi(1S)\gamma] \approx 8 \text{ keV}.
$$

Combining these predicted partial widths with the measured width $\Gamma_{\exp} \approx 13$ MeV of $X(4350)$, we can estimate the branching fractions:

$$
\mathcal{B}[X(4350) \to \psi(2S)\gamma] \approx 2.6 \times 10^{-2},
$$

$$
\mathcal{B}[X(4350) \to \psi(1S)\gamma] \approx 2.2 \times 10^{-3},
$$

$$
\mathcal{B}[X(4350) \to \psi(1S)\gamma] \approx 6.2 \times 10^{-4}.
$$

The large branching fractions of $\mathcal{B}[X(4350) \to \psi(2S, 3S)\gamma]$ indicate that $X(4350)$ should be observed in the $\psi(3S)\gamma$ and $\psi(2S)\gamma$ channels. Furthermore, as a candidate of $\chi_{c2}(3P)$ the radiative transition rate of $X(4350) \to \psi(2D)\gamma$ should be sizeable. Our predicted partial width and branching fraction are

$$
\Gamma[X(4350) \to \psi(2D)\gamma] \approx 31 \text{ keV},
$$

$$
\mathcal{B}[X(4350) \to \psi(2D)\gamma] \approx 2.4 \times 10^{-3}.
$$

Thus, if the $X(4350)$ state is the $\chi_{c2}(3P)$ state indeed, $X(4350)$ might provide us a good source to look for the missing state $\psi(2^1D_3)$ via its radiative transition.

If $X(4350)$ is identified as the $\chi_{c2}(3P)$ state, its mass is very close to the predictions of GI potential model, thus, the masses of $\chi_{c0}(3P)$, $\chi_{c1}(3P)$ and $h_c(3P)$ might be ≈ 4.33 GeV \(^{[9]}\). To compare our predictions of the radiative transition properties of the 3P states with the potential models', in Tab. \(\text{VI}\) we further list our results predicted with the masses from GI, NR \(^{[9]}\), and SNR \(^{[10]}\) potential models, respectively. It is found that the dominant decay channels predicted by us are consistent with those of potential models, although our predicted values show some obvious differences from those models'.

V. SUMMARY

In the constituent quark model framework, we systematically study the EM transitions of nS, nP $(n \leq 3)$, and nD $(n \leq 2)$ charmonium states. Without introducing any free parameters, we obtain a reasonable description of the EM transitions of the well-established low-lying charmonium states $J/\psi, \psi(2S), \eta_c(1P), h_c(1P)$ and $\psi(3770)$. It should be emphasized that the M2 transitions might give obvious corrections to some E1 dominant processes by interfering with the E1 transitions. We summarize our major results as follows.

For the radiative transition $J/\psi \to \eta_c(1S)\gamma$, there still exist puzzles in both theory and experiments. Our prediction of $\Gamma[J/\psi \to \eta_c(1S)\gamma] \approx 1.25$ keV is consistent with the average experimental data from the PDG \(^{[4]}\), and the calculations with a relativistic quark model \(^{[24]}\). However, the calculations from potential models \(^{[9]}\) and a recent lattice QCD approach \(^{[15]}\) gave a large partial decay width, which is consistent with the recent measurements at KEDR $\Gamma[J/\psi \to \eta_c(1S)\gamma] \approx 2.98$ keV \(^{[54]}\). To clarify the discrepancies between different experiments and test various model predictions, more accurate observations of the $J/\psi \to \eta_c(1S)\gamma$ transition are needed in future experiments.

For the radiative transitions of 2S states, only some measurements for $\psi(2S)$ can be obtained until now. About the radiative transitions of $\eta_c(2S)$ it is found that our predictions have notable differences from the other predictions. While, our predictions about $\psi(2S)$ are comparable to the experimental observations and other model predictions. The partial width ratios for $\psi(2S)$, $\Gamma[\psi(2S)\to\chi_{c1}(1P)\gamma]$ and $\Gamma[\psi(2S)\to\chi_{c2}(1P)\gamma]$, have a strong model dependence. These partial width ratios for $\psi(2S)$, and the radiative transitions of $\eta_c(2S) \to h_c(1P)\gamma$, $J/\psi\gamma$ are worth to measuring to test various theoretical approaches.

For the radiative transitions of 1P charmonium states, our predictions are in reasonable agreement with the observations. There are large discrepancies between different model predictions of $\Gamma[h_c(1P) \to \eta_c\gamma]$, however, the present world data can not be used to test the various predictions for their large uncertainties. We hope more accurate measurements of the total decay widths of $\chi_{c1}(1P)$ and $h_c(1P)$, together with the observations of the $\chi_{c1}(1P) \to J/\psi\gamma$ and $h_c(1P) \to \eta_c\gamma$ processes can be carried out in future experiments.

For the radiative transitions of 1D charmonium states $\psi(3770)$ and $X(3823)$, our predictions are consistent with the observations. For the missing 1D charmonium states $\eta_c(1D)$ and $\psi(1D)$, they have large radiative transition rates into $h_c(1P)\gamma$ and $\chi_{c2}(1P)\gamma$, respectively. Their corresponding par-
We find that the partial width ratios setting its mass with 3840 MeV and 3915 MeV, respectively. The radiative transition properties. Our predicted branching fractions of \(\Gamma_{X(3770) \rightarrow \gamma} \) are about 10\(^{-6}\) (see Table 1), which indicates that if X(3872) is a candidate of \(\chi^{c}(2\,P) \), which is fairly large, which is about an order of magnitude larger than that of the \(\psi(4040) \rightarrow \chi^{c}(1\,P) \) processes. How-

ever, the radiative transition rates of \(\psi(4040) \rightarrow \chi^{c}(2\,P) \) are small. Their branching ratios are about 10\(^{-5}\), which indicates that if X(3940) is a candidate of the \(\eta_{c}(3\,S) \) state, it might be difficult to be observed in its radiative transitions.

Taking the \(\psi(4160) \) as a pure \(\psi(1\,2D) \) state, we calculate its radiative transition properties. We predict that the radiative transition rates of \(\psi(4160) \) into the \(2\,P \) states \(\chi^{c}(1\,P) \) are fairly large, the branching ratios of \(\psi(4160) \rightarrow \chi^{c}(2\,P) \) are about 10\(^{-2}\) - 10\(^{-3}\). Thus, \(\psi(4160) \) might be a very good source to be used to look for the missing states \(\chi^{c}(2\,P) \) and \(\chi^{c}(1\,P) \) states via the radiative transitions \(\psi(4160) \rightarrow \chi^{c}(2\,P) \). For the missing \(2\,P \) states \(\chi^{c}(2\,P) \), we predict that the partial decay widths of \(\Gamma_{\psi(3\,S) \rightarrow \chi^{c}(1\,P)} \) is only 2 - 3 keV. It might be a challenge to carry out accurate observations of the radiative transitions \(\psi(4040) \rightarrow \chi^{c}(1\,P) \) in experiments for their small decay rates. How-

ever, the radiative transition rates of \(\psi(4040) \rightarrow \chi^{c}(2\,P) \) is fairly large, which is about an order of magnitude larger than that of the \(\psi(4040) \rightarrow \chi^{c}(1\,P) \). The missing states \(\chi^{c}(2\,P) \) and \(\chi^{c}(2\,P) \) may be produced through radiative decays of \(\psi(4040) \), and be established in the \(J/\psi \) and \(\psi(2\,S) \) final states. Considering the X(3940) as a candidate of the \(\eta_{c}(3\,S) \) state, we predict the radiative transition rates of \(\eta_{c}(3\,S) \rightarrow h_{c}(1\,P) \) are small. Their branching ratios are about 10\(^{-5}\), which indicates that if X(3940) is the \(\eta_{c}(3\,S) \) state, it might be difficult to be observed in its radiative transitions.

For the radiative transitions of the \(\psi(3\,S) \) state, i.e. \(\psi(4040) \), we predict that the partial decay widths of \(\Gamma_{\psi(3\,S) \rightarrow \chi^{c}(1\,P)} \) is only 2 - 3 keV. It might be a challenge to carry out accurate observations of the radiative transitions \(\psi(4040) \rightarrow \chi^{c}(1\,P) \) in experiments for their small decay rates. How-

ever, the radiative transition rates of \(\psi(4040) \rightarrow \chi^{c}(2\,P) \) is fairly large, which is about an order of magnitude larger than that of the \(\psi(4040) \rightarrow \chi^{c}(1\,P) \). The missing states \(\chi^{c}(2\,P) \) and \(\chi^{c}(2\,P) \) may be produced through radiative decays of \(\psi(4040) \), and be established in the \(J/\psi \) and \(\psi(2\,S) \) final states. Considering the X(3940) as a candidate of the \(\eta_{c}(3\,S) \) state, we predict the radiative transition rates of \(\eta_{c}(3\,S) \rightarrow h_{c}(1\,P) \) are small. Their branching ratios are about 10\(^{-5}\), which indicates that if X(3940) is the \(\eta_{c}(3\,S) \) state, it might be difficult to be observed in its radiative transitions.

For the radiative transitions of the \(\psi(3\,S) \) state, i.e. \(\psi(4040) \),
keV). It is possible to establish the missing states \(\psi_2(2D) \), \(\psi_1(2D) \) and \(\eta_c(2D) \) in the radiative decays \(\psi(2D) \rightarrow \chi_{c1}(2P) \gamma \rightarrow \psi(3S) \gamma \), \(\psi_1(2D) \rightarrow \chi_{c2}(2P) \rightarrow \psi(2S) \gamma \gamma \), and \(\eta_c(1D_2) \rightarrow h_c(2P) \rightarrow \eta_c(1S) \gamma \gamma \), respectively.

The radiative decay properties of the 3P charmonium states are very sensitive to their masses. The EM decays of \(\chi_{c2}(3P) \) and \(h_c(3P) \) are governed by the \(\psi(3S) \gamma \) and \(\eta(3S) \gamma \) channels, respectively. The partial widths of the 3P charmonium states decaying into the 2S states are also sizeable. The partial decay widths for the transitions \(\chi_{c2}(3P) \rightarrow \psi(3S) \gamma \) and \(h_c(3P) \rightarrow \eta(3S) \gamma \) are about 100s–1000s of keV. Thus, the observations of the missing 3P charmonium states in the \(\psi(3S) \gamma \) and \(\eta(3S) \gamma \) channels are necessary in experiments. Furthermore, taking the newly observed resonance \(X(4350) \) as \(\chi_{c2}(3P) \) as suggested by Liu et al. [69], we find that the branching ratios of \(B(\chi(4350) \rightarrow \psi(3S) \gamma \gamma) \) and \(B(\chi(4350) \rightarrow \psi(2S) \gamma \gamma) \) are \(\sim 10^{-2} \) and \(\sim 10^{-3} \), respectively. The \(X(4350) \) resonance is most likely to be observed in the \(\psi(2S,3S) \gamma \) channels. We also find \(X(4350) \) has a large branching ratio \(B(X(4350) \rightarrow \psi_1(2D) \gamma \gamma) \approx 2.4 \times 10^{-3} \), thus, \(X(4350) \) might provide us a good source to look for the missing \(\psi_4(2D) \) via its radiative transition.

Finally, it should be pointed out that the harmonic oscillator wave functions used by us might bring some uncertainties to our predictions. Furthermore, the couple-channel effects (i.e., the intermediate hadronic meson loops) might provide important corrections to the EM decay properties of the charmonium states lying above the open charm thresholds [57], which might affect our conclusions of the higher charmonium states. Our quark model approach is also used to study the EM decay properties of bottomonium states. For clarity, our results about the bottomonium states will be reported in another work.

Acknowledgement

This work is supported, in part, by the National Natural Science Foundation of China (Grants No. 11075051, No. 11375061, and No. 11405053), and the Hunan Provincial Natural Science Foundation (Grant No. 13JJ1018).

[1] E. Eichten, S. Godfrey, H. Mahlke and J. L. Rosner, Quarkonia and their transitions, Rev. Mod. Phys. 80, 1161 (2008) [hep-ph/0701208].
[2] N. Brambilla et al., Heavy quarkonium: progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011) [arXiv:1101.5827 [hep-ph]].
[3] A. J. Bevan et al., [Babar and Belle Collaborations], The Physics of the \(B \) Factories, Eur. Phys. J. C 74, 3026 (2014) [arXiv:1406.6311 [hep-ex]].
[4] K. A. Olive et al. [Particle Data Group Collaboration], Review of Particle Physics, Chin. Phys. C 38, 090001 (2014).
[5] M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008) [arXiv:0711.4556 [hep-ph]].
[6] S. L. Olsen, A New Hadron Spectroscopy, Front. Phys. China. 10, 121 (2015) [arXiv:1411.7738 [hep-ex]].
[7] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189 (1985).
[8] T. Barnes and S. Godfrey, Charmonium options for the \((3872) \), Phys. Rev. D 69, 054008 (2004) [hep-ph/0311162].
[9] T. Barnes, S. Godfrey and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005) [hep-ph/0505002].
[10] B. Q. Li and K. T. Chao, Higher charmonia and \(X(3872) \) states with Screened Potential, Phys. Rev. D 79, 094004 (2009) [arXiv:0903.5506 [hep-ph]].
[11] L. Cao, Y. C. Yang and H. Chen, Charmonium states in QCD-inspired quark potential model using Gaussian expansion method, Few Body Syst. 53, 327 (2012) [arXiv:1206.3008 [hep-ph]].
[12] J. J. Dudek, R. G. Edwards and D. G. Richards, Radiative transitions in charmonium from lattice QCD, Phys. Rev. D 73, 074507 (2006) [hep-ph/0601137].
[13] J. J. Dudek, R. Edwards and C. E. Thomas, Exotic and excited-state radiative transitions in charmonium from lattice QCD, Phys. Rev. D 79, 094504 (2009) [arXiv:0902.2241 [hep-ph]].
[14] Y. Chen et al., Radiative transitions in charmonium from \(N_c = 2 \) twisted mass lattice QCD, Phys. Rev. D 84, 034503 (2011) [arXiv:1104.2655 [hep-lat]].
[15] D. Becirevic and F. Sanfilippo, Lattice QCD study of the radiative decays \(J/\psi \rightarrow \eta_c \gamma \) and \(h_c \rightarrow \eta_c \gamma \), JHEP 1301, 028 (2013) [arXiv:1206.1445 [hep-lat]].
[16] A. Y. Khodjamirian, Dispersion Sum Rules for the Amplitudes of Radiative Transitions in Quarkonium, Phys. Lett. B 90, 460 (1980).
[17] V. A. Belin and A. V. Radysushkin, Quantum Chromodynamic Sum Rules and \(J/\psi \rightarrow \eta_c \gamma \) Decay, Nucl. Phys. B 260, 61 (1985).
[18] S. L. Zhu and Y. B. Dai, Radiative decays of heavy hadrons from light cone QCD sum rules in the leading order of HQET, Phys. Rev. D 59, 114015 (1999) [hep-ph/9810243].
[19] F. De Fazio, Radiative transitions of heavy quarkonium states, Phys. Rev. D 79, 054015 (2009) [Phys. Rev. D 83, 099901 (2011)] [arXiv:0812.0716 [hep-ph]].
[20] Z. G. Wang, Analysis of the radiative decays among the charmonium states, Int. J. Theor. Phys. 51, 1518 (2012) [arXiv:1101.0474 [hep-ph]].
[21] N. Brambilla, Y. Jia and A. Vairo, Model-independent study of magnetic dipole transitions in quarkonium, Phys. Rev. D 73, 054005 (2006) [hep-ph/0512369].
[22] N. Brambilla, P. Pietrulewicz and A. Vairo, Model-independent Study of Electric Dipole Transitions in Quarkonium, Phys. Rev. D 85, 094005 (2012) [arXiv:1203.3020 [hep-ph]].
[23] A. Pineda and J. Segovia, Improved determination of heavy quarkonium magnetic dipole transitions in potential nonrelativistic QCD, Phys. Rev. D 87, 074024 (2013) [arXiv:1302.3528 [hep-ph]].
[24] D. Ebert, R. N. Faustov and V. O. Galkin, Properties of heavy quarkonia and \(B \) mesons in the relativistic quark model, Phys. Rev. D 67, 014027 (2003) [hep-ph/0210381].
[25] T. H. Wang and G. L. Wang, Radiative E1 decays of \(X(3872) \), Phys. Lett. B 697, 233 (2011) [arXiv:1006.3363 [hep-ph]].
[26] H. W. Ke, X. Q. Li and Y. L. Shi, The radiative decays of \(0^+ \) and \(1^+ \) heavy mesons, Phys. Rev. D 87, 054022 (2013) [arXiv:1301.4014 [hep-ph]].
[27] P. Guo, T. Yépez-Martinez and A. P. Szczepaniak, Charmonium
meson and hybrid radiative transitions, Phys. Rev. D 89, 116005 (2014) [arXiv:1402.5863 [hep-ph]].

[28] Z. P. Li, The Kaon photoproduction of nucleons in the chiral quark model, Phys. Rev. C 52, 1648 (1995) [hep-ph/9502218].

[29] Z. P. Li, H. X. Ye and M. H. Lu, An unified approach to pseudoscalar meson photoproductions off nucleons in the quark model, Phys. Rev. C 56, 1099 (1997) [arXiv:nucl-th/9706010].

[30] Q. Zhao, Eta-prime photoproduction near threshold, Phys. Rev. C 63, 035205 (2001).

[31] B. Saghai and Z. p. Li, Quark model study of the eta photoproduction: Evidence for a new S11 resonance?, Eur. Phys. J. A 11, 217 (2001) [nucl-th/0104084].

[32] Q. Zhao, J. S. Al-Khalili, Z. P. Li and R. L. Workman, Pion photoproduction on the nucleon in the quark model, Phys. Rev. C 65, 065204 (2002) [nucl-th/0202067].

[33] J. He, B. Saghai and Z. Li, Study of η photoproduction on the proton in a chiral constituent quark approach via one-gluon-exchange model, Phys. Rev. C 78, 035204 (2008) [arXiv:0802.3816 [nucl-th]].

[34] J. He and B. Saghai, Combined study of γp → ηp and πp → γp.

TABLE III: Partial widths (keV) of the M1 radiative transitions for some low-lying S-wave charmonium states.

Initial state	Final state	E_x (MeV)	Γ_M (keV)	Γ_{EM} (keV)
J/ψ				
$\psi(2S)$				
$\eta_c(1S)$				
$\eta_c(2S)$				
$\eta_c(2P)$				
$\eta_c(1P)$				
$\eta_c(1D)$				
$\eta_c(2D)$				
$\eta_c(3S)$				
$\eta_c(3P)$				

TABLE IV: Partial widths (keV) of the radiative transitions between the established charmonium states. For comparison, the predictions from the relativistic quark model [24], NR and GI models [9] and SNR model [10] are listed in the table as well. The experimental average data are taken from the PDG. Γ_E and Γ_{EM} stands for the E1 and EM transition widths, respectively.

Initial state	Final state	E_x (MeV)	Γ_E (keV)	Γ_{EM} (keV)
TABLE V: Partial widths (keV) for the radiative transitions whose initial and/or final charmonium states have not been established. In the calculations, the masses of these well-established states are taken the average values from the PDG. While, the masses of the missing charmonium states are adopted the NR, GI and SNR potential model predictions, which correspond to our three quark model predictions QM, QM$_2$ and QM$_3$, respectively, for each radiative transition. For comparison, the predictions from the NR and GI models [35] and SNR model [36] are listed in the table as well.

Initial state	Final state	E_γ (MeV)	Γ_{Ed} (keV)	Γ_{Em} (keV)							
		NR/GI [9]	SNR [10]	QM$_{123}$	NR/GI [9]	SNR$_{123}$ [10]	QM	QM$_2$	QM$_3$		
$\psi(3S)$	$\chi_{c1}(2P)$	113 /145	113 /86 /137	39 / 43	12	5.5	21	13	5.7	22	
$\chi_{c0}(2P)$	184 /180	184 /122 /193	54 / 22	16	5.1	19	18	5.5	21		
$\eta_c(3S)$	$h_c(2P)$	108 /108	108 /107 /82	105 / 64	32	31	14	32	31	14	
	$h_c(1P)$	485 /111	485 /503 /439	9.1 / 28	6.9	8.7	3.6	6.9	8.7	3.6	
$\chi_{c2}(2P)$	$\psi_1(1D)$	163 /128	119 /77 /126	88 / 29	12.0	3.4	14.1	11.7	3.3	13.8	
$\chi_{c1}(2P)$	$\psi_1(3D)$	123 /113	101 /128 /77	35 / 18	6.6	13	3.0	6.6	13	3.0	
$\psi(1D)$	152 /179	144 /171 /121	22 / 21	6.2	10	3.7	6.8	11	4.1		
$\phi(2S)$	232 /258	182	232 /258 /209	183 / 183	103 / 60	120	161	90	111	148	84
$\chi_{c0}(2P)$	$\psi_1(1D)$	81 /143	73 /136 /3	13 / 51	3.4	21	2.2	3.5	22	2.3	
$\psi(2S)$	162 /223	152	257 /223 /248	64 / 135	61 / 44	159	108	144	133	93	121
$\chi_{c1}(3P)$	$\psi_2(2S)$	268 /213	268 /287 /165	509 / 199	235	278	63	257	306	66	
$\psi(2S)$	585 /602	585 /602 /490	55 / 30	24	29	8.2	30	35	9.7		
J/ψ	1048 /1063	1048 /1063 /964	34 / 19	4.6	5.2	2.1	6.5	7.5	3.0		
$\chi_{c1}(3P)$	$\psi_2(2D)$	112 /108	112 /108 /77	58 / 35	18	16	6.0	18	16	6.0	
$\psi_1(2D)$	111 /121	79 /124 /0	19 / 15	2.2	8.0	0.0	2.3	8.7	0		
$\psi_1(1D)$	445 /452	425 /466 /340	0.035 / 4.6	2.0	3.5	0.47	2.5	4.4	0.60		
$\psi_1(1D)$	472 /512	465 /505 /381	0.014 / 0.39	1.1	1.9	0.32	1.5	2.6	0.41		
$\phi(3S)$	225 /212	225 /268 /136	303 / 181	148	235	36	137	215	35		
$\phi(2S)$	545 /585	545 /585 /463	45 / 8.9	16	24	5.8	13	20	5.0		
J/ψ	1013 /1048	1013 /1048 /941	31 / 22	3.4	4.6	1.7	2.4	3.2	1.3		
$\chi_{c0}(3P)$	$\psi_1(2D)$	43 /97	11 /100 /0	4.4 / 35	0.02	17	0	0.02	18	0	
$\phi(3S)$	410 /490	403 /483 /338	0.037 / 9.7	1.9	5.8	0.60	2.1	6.8	0.66		
$\phi(2S)$	159 /188	159 /245 /85	109 / 145	57	185	11	51	156	10		
$\phi(3S)$	484 /563	484 /563 /421	32 / 0.045	7.7	19	3.2	5.4	13	2.3		
J/ψ	960 /1029	960 /1029 /905	27 / 1.5	2.1	3.9	1.2	0.95	1.7	0.58		
$\bar{h}_c(3P)$	$\eta_{c2}(2D)$	119 /109	119 /109 /84	99 / 48	28	22	10	28	22	10	
$\eta_{c2}(2D)$	453 /454	453 /454 /370	0.16 / 5.7	3.9	4.0	1.1	6.3	6.4	1.8		
$\bar{h}_c(3P)$	$\eta_{c2}(2S)$	229 /246	229 /247 /189	276 / 208	156	189	92	156	189	92	
$\bar{h}_c(3P)$	$\eta_{c2}(2S)$	593 /627	592 /626 /510	75 / 43	39	54	16	39	54	16	
$\eta_{c2}(1S)$	1103 /1311	1099 /1128 /1028	72 / 38	6.9	8.6	3.8	6.9	8.6	3.8		

η in a chiral constituent quark approach, Phys. Rev. C 80, 015207 (2009) [arXiv:0812.1617 [nucl-th]].
[35] J. He and B. Saghai, η production off the proton in a Regge-plus-chiral quark approach, Phys. Rev. C 82, 035206 (2010)
[36] X. H. Zhong and Q. Zhao, η photoproduction on the quasi-free nucleons in the chiral quark model, Phys. Rev. C 84, 045207 (2011) [arXiv:1106.2892 [nucl-th]].
TABLE VI: Partial widths (keV) for the radiative transitions of unestablished D-wave charmonium states. In the calculations, the masses of these well-established states are taken from the average values from the PDG. While, the masses of the missing charmonium states are adopted the NR, GI and SNR potential model predictions, which correspond to our three quark model predictions QM₁, QM₃; and QM₁, respectively, for each radiative transition. For comparison, the predictions from the relativistic quark model [24], NR and GI models [4], and SNR model [10] are listed in the table as well.

Initial state	Final state	E_γ (MeV)	Γ_{EM} (keV)	Γ_{EM} (keV)		
$\psi_3(1D)$	$\chi_3(2'(1P))$	250 242/282 236	156 272/296 284/223 167 256 155	175 271 162		
	$\chi_3(1P)$	284/323/277	0 0 0	0.54 1.1 0.48		
	$\chi_3(1P)$	371/40/365	0 0 0	0.60 1.2 0.53		
$\eta_2(1D)$	$h_1(1P)$	275 264/307 260	245 339/344 575/375 214 302 208	214 302 208		
$\psi_3(2D)$	$\chi_3(2'(1P))$	566/609	29/16	13 21 7.0	16 25 8.5	
	$\chi_3(1P)$	604/674/549	0 0 0	6.2 9.1 3.6		
		684/726/630	0 0 0	6.2 8.5 4.0		
$\psi_2(2D)$	$\chi_3(1P)$	558/602	7.1/0.62	3.1 4.8 1.7	6.7 10 3.8	
		597/640	26/23	14 21 8.0	17 26 10	
$\eta_2(2D)$	$h_1(2P)\psi$	585/534	40/25	16 25 9.2	26 39 15	
$\psi_3(2D)$	$\chi_3(2'(2P))$	190/231	233/280/172	239/272/230	202 330 87	212 349 90
	$\chi_3(2P)$	235/256/197	0.24 0.42 0.07	0.44 0.72 0.16		
	$\chi_3(2P)$	303/290/253	0.65 0.49 0.19	0.70 0.52 0.20		
$\psi_2(2D)$	$\chi_3(2P)$	182/223	225/272/169	52/65	46 76 21	39 64 19
		226/247	226/247/194	298/225	140 178 92	140 178 92
$\psi_1(2D)$	$\chi_3(2P)$	227/234	258/231/280	168/114	110 82 137	92 70 113
		296/269	325/266/334	483/191	268 162 287	240 146 256

[37] X. H. Zhong and Q. Zhao, η' photoproduction on the nucleons in a chiral quark model, Phys. Rev. C 84, 065204 (2011) [arXiv:1110.5466 [nucl-th]].

[38] L. Y. Xiao, X. Cao and X. H. Zhong, Neutral pion photoproduction on the nucleon in a chiral quark model, Phys. Rev. C 92, no. 3, 035202 (2015) [arXiv:1505.06396 [nucl-th]].

[39] Q. Zhao, Z. p. Li and C. Bennhold, Vector meson photoproduction with an effective Lagrangian in the quark model, Phys. Rev. C 58, 2393 (1998) [nucl-th/9806100].

[40] Q. Zhao, Z. p. Li and C. Bennhold, Omega and rho photoproduction with an effective quark model Lagrangian, Phys. Lett. B 436, 42 (1998) [nucl-th/9803015].

[41] X. H. Zhong, Q. Zhao, J. He and B. Saghai, Study of $\pi^-\rightarrow\eta\pi$ at low energies in a chiral constituent quark model, Phys. Rev. C 76, 065205 (2007) [arXiv:0706.3543 [nucl-th]].

[42] X. H. Zhong and Q. Zhao, The $K'\rightarrow\Sigma^0\pi^0$ reaction at low energies in a chiral quark model,” Phys. Rev. C 79, 045202 (2009) [arXiv:0811.4212 [nucl-th]].

[43] X. H. Zhong and Q. Zhao, Low-energy reactions $K'\rightarrow\Sigma^0\pi^0$, $\Lambda\pi^0$, $K'\eta$ and the strangeness $S = -1$ hyperons, Phys. Rev. C 88, 015208 (2013) [arXiv:1307.1186].

[44] L. Y. Xiao and X. H. Zhong, Low-energy $K'\rightarrow\Lambda\eta$ reaction and the negative parity resonances, Phys. Rev. C 88, 065201 (2013) [arXiv:1309.1923 [nucl-th]].

[45] X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev. D 77, 074008 (2008) [arXiv:0711.4645 [hep-ph]].

[46] L. H. Liu, L. Y. Xiao and X. H. Zhong, Charm-strange baryon strong decays in a chiral quark model, Phys. Rev. D 86, 034024 (2012) [arXiv:1205.2943 [hep-ph]].

[47] L. Y. Xiao and X. H. Zhong, Ξ baryon strong decays in a chiral quark model, Phys. Rev. D 87, 094002 (2013) [arXiv:1302.0079 [hep-ph]].

[48] X. h. Zhong and Q. Zhao, Strong decays of heavy-light mesons in a chiral quark model, Phys. Rev. D 78, 014029 (2008) [arXiv:0803.2102 [hep-ph]].

[49] X. H. Zhong and Q. Zhao, Strong decays of newly observed D(s) states in a constituent quark model with effective Lagrangians, Phys. Rev. D 81, 014031 (2010) [arXiv:0911.1856 [hep-ph]].

[50] X. H. Zhong, Strong decays of the newly observed D(2550), D(2600), D(2750), and D(2760), Phys. Rev. D 82, 114014 (2010) [arXiv:1009.0359 [hep-ph]].

[51] L. Y. Xiao and X. H. Zhong, Strong decays of higher excited heavy-light mesons in a chiral quark model, Phys. Rev. D 90, 074029 (2014) [arXiv:1407.7408 [hep-ph]].

[52] S. J. Brodsky and J. R. Primack, The Electromagnetic Interactions of Composite Systems, Annals Phys. 52, 315 (1969).

[53] L. Durand, P. C. DeCelles and R. B. Marr, Lorentz Invariance and the Kinematic Structure of Vertex Functions, Phys. Rev. 126, 1882 (1962), doi:10.1103/PhysRev.126.1882.

[54] V. A. Anashin et al., Measurement of $J/\psi \rightarrow \gamma\eta\pi$ decay rate and $\eta\pi$ parameters at KEDR, Phys. Lett. B 738, 391 (2014) [arXiv:1406.7644 [hep-ex]].

[55] G. Li and Q. Zhao, Hadronic loop contributions to J/ψ and ψ' radiative decays into $\gamma\eta$ or $\gamma\eta'$, Phys. Lett. B 670, 55 (2008) [arXiv:0709.4639 [hep-ph]].

[56] G. Li and Q. Zhao, Revisit the radiative decays of J/ψ and ψ' into $\gamma\eta(\gamma\eta')$, Phys. Rev. D 84, 074005 (2011) [arXiv:1107.2037 [hep-ph]].

[57] C. W. Zhao, G. Li, X. H. Liu and F. L. Shao, Effects of heavy meson loops on heavy quarkonium radiative transitions, Eur.
Phys. J. C 73, 2482 (2013).

[58] D. Becirevi, M. Kruse and F. Sanfilippo, Lattice QCD estimate of the \(\eta_c(2S) \rightarrow J/\psi \gamma \) decay rate, JHEP 1505, 014 (2015) [arXiv:1411.6426 [hep-lat]].

[59] R. A. Briere et al. [CLEO Collaboration], Observation of \(\psi(3770) \rightarrow \gamma \chi_{c0}(c) \), Phys. Rev. D 74, 031106 (2006) [hep-ex/0605070].

[60] V. Bhardwaj et al. [Belle Collaboration], Evidence of a new narrow resonance decaying to \(\chi_{c1}\gamma \) in \(B \rightarrow \chi_{c1}\gamma K \), Phys. Rev. Lett. 111, 032001 (2013) [arXiv:1304.3975 [hep-ex]].

[61] M. Ablikim et al. [BESIII Collaboration], Observation of the \(\psi(1^3D_2) \) state in \(e^+e^- \rightarrow \pi^+\pi^-\gamma \chi_{c1} \) at BESIII, Phys. Rev. Lett. 115, 011803 (2015) [arXiv:1503.08203 [hep-ex]].

[62] E. J. Eichten, K. Lane and C. Quigg, B meson gateways to missing charmonium states, Phys. Rev. Lett. 89, 162002 (2002).

[63] C. F. Qiao, F. Yuan and K. T. Chao, A crucial test for color-octet production mechanism in \(Z^0 \) decays, Phys. Rev. D 55, 4001 (1997) [hep-ph/9609284].

[64] S. Uehara et al. [Belle Collaboration], Observation of a charmed prime(c2) candidate in \(\gamma \gamma \rightarrow D\bar{D} \) production at BELLE, Phys. Rev. Lett. 96, 082003 (2006) [hep-ex/0512035].

[65] B. Aubert et al. [BaBar Collaboration], Observation of the \(\chi_{c2}(2p) \) meson in the reaction \(\gamma \gamma \rightarrow D\bar{D} \) at BaBar, Phys. Rev. D 81, 092003 (2010) [arXiv:1002.0281 [hep-ex]].

[66] B. Aubert et al. [BaBar Collaboration], Evidence for \(X(3872) \rightarrow \psi(2S)\gamma \) in \(B \rightarrow c\bar{c}\gamma K \), Phys. Rev. Lett. 102, 132001 (2009) [arXiv:0809.0042 [hep-ex]].

[67] V. Bhardwaj et al. [Belle Collaboration], Observation of \(X(3872) \rightarrow J/\psi \gamma \) and search for \(X(3872) \rightarrow \psi(2S)\gamma \) in B decays, Phys. Rev. Lett. 107, 091803 (2011) [arXiv:1105.0177 [hep-ex]].

[68] R. Aaij et al. [LHCb Collaboration], Evidence for the decay \(X(3872) \rightarrow \phi(2S)\gamma \), Nucl. Phys. B 886, 665 (2014) [arXiv:1404.0275 [hep-ex]].

[69] X. Liu, Z. G. Luo and Z. F. Sun, X(3915) and X(4350) as new members in P-wave charmonium family, Phys. Rev. Lett. 104, 122001 (2010) [arXiv:0911.3694 [hep-ph]].

[70] F. K. Guo and U. G. Meissner, Where is the \(\chi_{c0}(2P) \)?, Phys. Rev. D 86, 091501 (2012) [arXiv:1208.1134 [hep-ph]].

[71] S. L. Olsen, Is \(X(3915) \) the \(\chi_{c0}(2P) \) ?, Phys. Rev. D 91, 057501 (2015) [arXiv:1410.6534 [hep-ex]].

[72] Z. Y. Zhou, Z. Xiao and H. Q. Zhou, Could the \(X(3915) \) and the \(X(3930) \) Be the Same Tensor State?, Phys. Rev. Lett. 115, 022001 (2015) [arXiv:1501.00879 [hep-ph]].

[73] M. Ablikim et al. [BESIII Collaboration], Observation of \(Z_{c}(3900)^\pm \) in \(e^+e^- \rightarrow \pi^\pm\pi^\mp\psi(2S) \), Phys. Rev. Lett. 115, 112003 (2015) [arXiv:1506.06018 [hep-ex]].

[74] Y. L. Han et al. [Belle Collaboration], Measurement of \(e^+e^- \rightarrow \gamma \chi_{c1} \) via initial state radiation at Belle, Phys. Rev. D 92, 012011 (2015) [arXiv:1506.05229 [hep-ex]].

[75] K. Abe et al. [Belle Collaboration], Observation of a new charmonium state in double charmonium production in \(e^+e^- \) annihilation at \(\sqrt{s} = 10.6 \) GeV, Phys. Rev. Lett. 98, 082001 (2007) [hep-ex/0507019].

[76] P. Pakhlov et al. [Belle Collaboration], Production of New Charmoniumlike States in \(e^+e^- \rightarrow D^{(*)}\bar{D}^{(*)} \) at \(s^{**(1/2)} \) at \(\sqrt{s} = 10.6 \) GeV, Phys. Rev. Lett. 100, 202001 (2008) [arXiv:0708.3812 [hep-ex]].

[77] T. E. Coan et al. [CLEO Collaboration], Charmonium decays of \(Y(4260), \psi(4160) \) and \(\phi(4040) \), Phys. Rev. Lett. 96, 162003 (2006) [hep-ex/0602034].

[78] B. Q. Li, C. Meng and K. T. Chao, Search for \(\chi_{c1}(2P) \) from Higher Charmonium E1 Transitions and \(X,Y,Z \) States, arXiv:1201.4155 [hep-ph].

[79] M. Ablikim et al. [BESIII Collaboration], Measurement of \(\mathbb{B} \rightarrow \phi(3770) \rightarrow \chi_{c1} \gamma \) and search for \(\psi(3770) \rightarrow \gamma \chi_{c2} \), Phys. Rev. D 91, 092009 (2015) [arXiv:1504.07450 [hep-ex]].

[80] C. P. Shen et al. [Belle Collaboration], Evidence for a new resonance and search for the \(Y(4140) \) in the \(\gamma \gamma \rightarrow \phi J/\psi \) process, Phys. Rev. Lett. 104, 112004 (2010) [arXiv:0912.2383 [hep-ex]].