Selective and Serial Suzuki–Miyaura Reactions of Polychlorinated Aromatics with Alkyl Pinacol Boronic Esters

Sébastien Laulhé, ‡ J. Miles Blackburn, and Jennifer L. Roizen*

Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States

Supporting Information

ABSTRACT: Among cross-coupling reactions, the Suzuki–Miyaura transformation stands out because of its practical advantages, including the commercial availability and low toxicity of the required reagents, mild reaction conditions, and functional group compatibility. Nevertheless, few conditions can be used to cross-couple alkyl boronic acids or esters with aryl halides, especially 2-pyridyl halides. Herein, we describe two novel Suzuki–Miyaura protocols that enable selective conversion of polychlorinated aromatics, with a focus on reactions to convert 2,6-dichloropyridines to 2-chloro-6-alkylpyridines or 2-aryl-6-alkylpyridines.

The 2-alkylpyridyl motif is critically important within natural products, pharmaceutical agents, fragrances, ligands for catalysis, molecular electronic devices, and biomimetic scaffolds (Figure 1).1 Several powerful strategies have been reported recently to form new C(sp²)–C(sp³) bonds in order to access substituted pyridines.2–5 In terms of cross-coupling reactions, access to 2-pyridyl organometallic reagents6,7 is imperfect,8 as most remain difficult to isolate or have limited stability. Additionally, many of the associated reactions require toxic reagents or prove ineffective with primary alkyl electrophiles. By contrast, heteroaryl chlorides are readily accessible, but have remained challenging substrates9,10 particularly in Suzuki–Miyaura10,11 reactions. Herein, we disclose systems for the reaction of bench stable alkyl pinacol boronic esters with aryl chlorides, with a focus on polyhalogenated 2-pyridyl chlorides. Polyhalogenated six-membered heteroarenes12 react with predictable selectivity (Scheme 1, eq 1) and undergo successive cross-coupling reactions with distinct organoboron compounds to generate two new carbon–carbon bonds serially in a single reaction vessel (eq 2).

Scheme 1. Selective and Serial Reactions

Owing to their relatively low cost and broad commercial availability, heteroaryl chlorides offer practical value over heteroaryl bromides and iodides as substrates in Suzuki–Miyaura reactions. Nevertheless, this transformation is challenging due to (1) the strength of aryl chloride bonds relative to aryl iodide or bromide bonds13 and (2) the ability of heteroatoms to coordinate to and inhibit the reactivity of transition metal catalysts. Alkylboron reagents add to these challenges as they can contribute to formation of undesired byproducts through protodeboronation, protodehalogenation, oxidation, and homocoupling.

To overcome these limitations, we chose to focus on the reaction of 2,6-dichloropyridine (1a) with heptyl pinacol boronic ester (2a). We sought conditions to generate 2-chloro-6-alkylpyridine 3a selectively (Table 1). The optimal conditions would not furnish exhaustively cross-coupled 2,6-dialkylpyridine 4a.

Received: August 4, 2016
Published: August 18, 2016
The targeted bond-forming reaction proceeds with poor efficiency using many of the cutting-edge protocols designed to couple aryl halides with organoboron compounds (entries 1−4). We anticipated that use of sterically encumbered bidentate phosphine ligands would promote the desired reaction. Indeed, some bidentate ligands furnish 2-chloro-6-heptylpyridine (3a, entries 5−7).

The denticity of these bidentate ligands is not critical to reaction efficiency. When a monodentate analogue of DPEPhos, (o-MeOC6H4)PPh2, is employed, high catalyst turnover numbers are achieved, though reaction selectivity erodes (entry 8). Under the optimal conditions, a monodentate analogue of dppf, FcPPh2, is used as a ligand. To the best of our knowledge FcPPh2 has been described only once as a ligand for Suzuki−Miyaura reactions, though more sterically encumbered analogues are in common use.

Under the optimal conditions, 2,6-dichloropyridines react with heptyl boronic pinacol ester in 2:1 dioxane/H2O at 100 °C with K3PO4 as a base, 1 mol % Pd2(dba)3, and 6 mol % FcPPh2 to furnish desired 2-chloro-6-heptylpyridine (3a) in excellent selectivity and 74% isolated yield (entry 9).

FcPPh2 proves to be more effective in this reaction than many standard ligands, including PPh3 (entry 10). Relative to a phenyl group, the ferrocenyl group is more sterically encumbering and better able to stabilize adjacent partial positive charge. These features have great effect, as PPh3 furnishes desired 3a in only 21% 1H NMR yield.

Under these selective conditions, chloropyridines react in good yields with alkyl pinacol boronic esters that are saturated, or incorporate distal functional groups including an olefin, an acetal masked aldehyde, and a primary alkyl chloride (Table 2). These conditions are tolerant of nitro and ketone functional groups, transforming electron-deficient chlorobenzene analogues efficiently (Table 3, entries 1, 2).

Electronic perturbations influence reactivity: electron-rich 4-chloroanisole does not react under these conditions (Table 3, entry 3).

These conditions face expected limitations in terms of substrate scope. Aromatic compounds that are sensitive to the combination of water and base, such as 2,4- and 2,5-dichloropyrimidine, degrade under the reaction conditions. The reaction proceeds selectively to generate the 2-chloro-6-alkylpyridine rather than the 2,6-dialkylpyridine. In principle, the selectivity of the reaction may arise from the 6-alkyl substituent performing the following roles: (a) hindering precoordination of the catalyst by sterically shielding the pyridine nitrogen, (b) raising the transition state barrier for oxidative addition based on sterically induced strain, (c) disfavoring transmetalation by sterically encumbering the reactive aryl−Pd species, or (d) increasing the barrier to oxidative addition or transmetalation electronically. To evaluate these possibilities, we probed the differences in substrate reactivity (Table 3). If the steric size of the alkyl substituent were the principal determinant of selectivity, we would expect to see statistical mixtures of coupled products for substrates with distal chlorides, yet these substrates couple selectively (entries 4−6).

Furthermore, these conditions affect the chemoselective reaction of 1,3-dichloroisouquinoline at the more sterically encumbered C(1) position (entry 7). The observed selectivity complements known reactions to install an aryl group at C(1). Moreover, this selectivity has been predicted and rationalized by comparing the expected bond dissociation energies of 1,3-dichloroisouquinoline at C(1) and C(3). This
same logic predicts that 2,8-dichloroquinoline will undergo cross-coupling at C(2), as is observed (entry 8). As selectivity is not principally steric in origin, electron donation by the new alkyl substituent must increase the barrier either to oxidative addition or to transmetalation. This hypothesis is consistent with the remarkably efficient transformation of 2-chloro-6-tert-butoxypyridine, which incorporates an inductively withdrawing group meta- to the activated C−Cl bond (entry 9), and the diminished reactivity of 5-chloro-2-methoxypyridine, which includes a resonance donating group para- to the targeted C−Cl bond (entry 10).

The power of this cross-coupling method can be demonstrated through the combination of our method with Burke’s conditions8d to transform 2,6-dichloropyridine to an antimycoplasmal agent25 (Scheme 2) via 2-chloro-6-butyropyridine (Table 2, entry 4).

We sought to merge the selective method with a compatible reaction, which would obviate the need to isolate the 2-chloro-6-alkylpyridine intermediate. The resultant one-pot serial reaction relies on the rapid rate of transmetalation of aryloboron compounds relative to alkylboron reagents (Table 4). These conditions transform a wide range of aryloboron compounds, including aryloboronic acids and esters, trifluoroborate salts,8e and N-methyl-iminodiacetic acid (MIDA) boronate esters27 (entries 1−4). The reaction can convert furyl, thiophenyl, and pyridyl boron compounds, as well as an estrone derivative (entries 6−9) to furnish high value differently substituted pyridines efficiently.

The disclosed methods couple inexpensive and readily available chloroaryl subunits with bench and air stable pinacol boronic esters. A chemoselective transformation mediated by FcPPh2/Pd2(dba)3 predictably and selectively converts polychlorinated pyridine or benzene starting materials to monoalkylated products. These conditions allow efficient access to an antimycoplasmal agent. Additionally, a one-pot sequential Suzuki−Miyaura reaction of alkyl- and then aryloboron compounds has been developed to access differentially substituted pharmacologically relevant motifs.

Table 3. Selectivity Based on Electronic Bias

entry	ArCl	product	yield (%)
1c	MeCl	3k	69
2e	R1	3l	91
3e	R2	3m, nd	
4	Cl	3n, 47	
5	3-Cl	3o, 85	
6	5-Cl	3p, 80	
7f	BuO	3q	69
8	Cl	3r, 73	
9c	MeO	3s, 98	
10	Cl	3t, nd	

General reaction conditions: 1.0 equiv of aryl chloride, 0.13 M dioxane/H2O (2:1), 2.3 equiv of R2(CH2)2Bpin, 1 mol % Pd2(dba)3, 6 mol % FcPPh2, 6.0 equiv of K2PO4, 18−20 h, 100 °C. Isolated yield.

General reaction conditions: 1.5 equiv of R2(CH2)2Bpin, 3.0 equiv of K2PO4. Not detected by 1H NMR. Exhaustively coupled product (6% yield) was detected by crude 1H NMR. Isolated after reaction with trifluoroacetic acid.

General reaction conditions: 2 mol % Pd2(dba)3, 12 mol % FcPPh2.

“General reaction conditions: 1.0 equiv of aryl chloride, 0.13 M dioxane/H2O (2:1), 2.3 equiv of R2(CH2)2Bpin, 1 mol % Pd2(dba)3, 6 mol % FcPPh2, 6.0 equiv of K2PO4, 18−20 h, 100 °C. Isolated yield. Exhaustively coupled product (6% yield) was detected by crude 1H NMR. Isolated after reaction with trifluoroacetic acid.

Table 4. Iterative Cross-Coupling Reactions

entry	organoboron	product	yield (%)
1	PhB(OH)2	5a	80
2	PhBpin	5b	78
3	PhB(MIDA)	5c	78
4	PhBF 3	5d	75
5	N 2O 2	5e	62
6	N 2O 2	5f	75
7	N 2O 2	5g	80

General reaction conditions: 1.0 equiv of aryl chloride, 0.13 M dioxane/H2O (2:1), 2.3 equiv of R2(CH2)2Bpin, 1 mol % Pd2(dba)3, 6 mol % FcPPh2, 6.0 equiv of K2PO4, 18 h, 100 °C then 2.0 equiv of organoboron reagent, 18−20 h unless noted. Isolated yield. 5 h.
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b02323.

Full experimental details, copies of NMR spectra (PDF)

REFERENCES

ASSOCIATED CONTENT

AUTHOR INFORMATION

Corresponding Author

E-mail: j.roizen@duke.edu.

Present Address

1Department of Chemistry and Chemical Biology, IUPUI, Indianapolis, IN 46202.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project was funded by the American Chemical Society Petroleum Research Fund Doctoral New Investigator Program (PRF# 54824-DNI1) and by Duke University. J.M.B. was supported by the National Institute of General Medical Sciences (T32GM007105-41). Characterization data were supported by the National Institute of General Medical Sciences (5074-1) and by Duke University. J.M.B. was financed.

AUTHOR INFORMATION

Notes

† For select 2-pyridyl zinc reagents, see: (a) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174−2177. (b) Colombe, J. R.; Bernards, S.; Stathakis, C.; Buchwald, S. L.; Knoechel, P. Org. Lett. 2013, 15, 5754−5757. (c) Lazung, M. R.; Patel, J. S.; Yin, J. J. Org. Chem. 2010, 75, 8330−8332. For select 2-pyridinyl boron reagents, see: (d) Dick, G. R.; Woerly, E. M.; Burke, M. D. Angew. Chem., Int. Ed. 2012, 51, 2667−2672. (e) Sakashita, S.; Takizawa, M.; Sugai, J.; Ito, H.; Yamamoto, Y. Org. Lett. 2013, 15, 4308−4311. (f) Billingsley, K. L.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 4695−4698. For 2-pyridyl tin reagents, see: (g) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 6343−6348. (h) Bailey, T. R. Tetrahedron Lett. 1986, 27, 4407−4410. For 2-pyridyl aluminum reagents, see: (i) Chen, X.; Zhou, L.; Li, Y.; Xie, T.; Zhou, S. J. Org. Chem. 2014, 79, 230−239.

(7) For a select coupling reaction, see: Llaveria, J.; Leonori, D.; Aggarwal, V. K. J. Am. Chem. Soc. 2015, 137, 10958−10961.

(8) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722−9723. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550−9561.

(9) For select Negishi and Kumada reactions, see: (a) Malhotra, S.; Seng, P. S.; Koenig, S. G.; Deese, A. J.; Ford, K. A. Org. Lett. 2013, 15, 3698−3701. (b) Fürstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2003, 42, 308−311. (c) Getmanenko, Y. A.; Twieg, R. J. J. Org. Chem. 2008, 73, 830−839. For cross-electrophile reactions, see: (d) Everson, D. A.; Buonorno, J. A.; Weix, D. J. Synlett 2014, 25, 233−238.

(10) (a) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461−1473. (b) Billingsley, K.; Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 3484−3488. (c) Li, L.; Zhao, S.; Joshi-Pang, A.; Diane, M.; Biscoe, M. R. J. Am. Chem. Soc. 2014, 136, 14027−14033. (d) Jouffroy, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475−478.

(11) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457−2483. (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412−443.

(12) (a) Rossi, R.; Bellina, F.; Lessi, M. Adv. Synth. Catal. 2012, 354, 1181−1255. (b) Fairlamb, I. Chem. Soc. Rev. 2007, 36, 1036−1045.

(13) (a) Bedford, R. B.; Casin, C. S. J.; Holder, D. Coord. Chem. Rev. 2004, 248, 2283−2321. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176−4211.

(14) (a) Li, Q.; Sisiky, C. W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 8575−8765. (b) Yang, C. T.; Zhang, Z. G.; Tajuddin, H.; Wu, C. C.; Liang, J.; Liu, J. H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 528−532.

(15) Hartwig, J. F. Synlett 2006, 2006, 1283−1294.

(16) Milde, B.; Lohan, M.; Schreiner, C.; Ruffer, T.; Lang, H. Eur. J. Inorg. Chem. 2011, 2011, 5437−5449.

(17) (a) Pickett, T. E.; Roca, F. X.; Richards, C. J. Org. Chem. 2003, 68, 2592−2599. (b) Liu, S.-Y.; Choi, M. J.; Fu, G. C. Chem. Commun. 2001, 2408−2409.

(18) The mass balance for this reaction is principally accounted for by starting material and the desired product.

(19) Otto, S. J. Chem. Crystallogr. 2001, 31, 185−190.

(20) Allenmark, S. Tetrahedron Lett. 1974, 15, 371−374.

(21) Legault, C. Y.; Garcia, Y.; Merlic, C. A.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 12664−12665 and references therein.

(22) Ford, A.; Sinn, E.; Woodward, S. J. Chem. Soc., Perkin Trans. 1 1997, 927−934.

(23) Handy, S. T.; Zhang, Y. Chem. Commun. 2006, 299−301.

(24) Garcia, Y.; Schoenebeck, F.; Legault, C. Y.; Merlic, C. A.; Houk, K. N. J. Am. Chem. Soc. 2009, 131, 6632−6639.

(25) Pippel, P. J.; Van der Goor, H.; Timmerman, H.; Nauta, W. T. Eur. J. Med. Chem. 1994, 19, 399−404.

(26) Molander, G. A. J. Org. Chem. 2015, 80, 7837−7848.

(27) (a) Mancilla, T.; Contreras, R.; Wrackmeyer, B. J. Organomet. Chem. 1986, 307, 1−6. (b) Li, J.; Grillo, A. S.; Burke, M. D. Acc. Chem. Res. 2015, 48, 2297−2307.