Hepatic Insulin Clearance Is Closely Related to Metabolic Syndrome Components

Olga PivoVAROVA, Phd1,2 Wolfgang Bernigau, Msc3 Thomas Bobbert, Md4 Frank Isken, Md1,2 Matthias Mohlig, Md1 Joachim Spranger, Md1 Martin O. Weickert, Md1,2,4,5 Martin Osterhoff, Phd1,2 Andreas F.H. Pfeiffer, Md1,2 Natalia Rudovich, Md1,2

OBJECTIVE—Insulin clearance is decreased in type 2 diabetes mellitus (T2DM) for unknown reasons. Subjects with metabolic syndrome are hyperinsulinemic and have an increased risk of T2DM. We aimed to investigate the relationship between hepatic insulin clearance (HIC) and different components of metabolic syndrome and tested the hypothesis that HIC may predict the risk of metabolic syndrome.

RESEARCH DESIGN AND METHODS—Individuals without diabetes from the Metabolic Syndrome Berlin Brandenburg (MeSyBePo) study (800 subjects with the baseline examination and 189 subjects from the MeSyBePo recall study) underwent an oral glucose tolerance test (OGTT) with assessment of insulin secretion (insulin secretion rate [ISR]) and insulin sensitivity. Two indices of HIC were calculated.

RESULTS—Both HIC indices showed lower values in subjects with metabolic syndrome (P < 0.001) at baseline. HIC indices correlate inversely with waist circumference, diastolic blood pressure, fasting glucose, triglycerides, and OGTT-derived insulin secretion index. During a mean follow-up of 5.4 ± 0.9 years, 47 individuals developed metabolic syndrome and 33 subjects progressed to impaired glucose metabolism. Both indices of HIC showed a trend of an association with increased risk of metabolic syndrome (HICpeptide, odds ratio 1.13 [95% CI 0.97–1.31], P = 0.12, and HICISR 1.38 [0.88–2.17], P = 0.16) and impaired glucose metabolism (HICpeptide 1.12 [0.92–1.36], P = 0.26, and HICISR 1.31 [0.74–2.33] P = 0.36), although point estimates reached no statistical significance.

CONCLUSIONS—HIC was associated with different components of metabolic syndrome and markers of insulin secretion and insulin sensitivity. Decreased HIC may represent a novel pathophysiological mechanism of the metabolic syndrome, which may be used additionally for early identification of high-risk subjects.

From the 1Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; the 2Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany; the 3Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; the 4University Hospitals Coventry and Warwickshire NHS Trust, Coventry, U.K.; and the 5Division of Metabolic & Vascular Health, University of Warwick, Coventry, U.K. Corresponding author: Natalia Rudovich, rudovich@di.f.de. Received 21 June 2012 and accepted 29 May 2013. DOI: 10.2337/dc12-1203 O.P. and W.B. contributed equally to this study. © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

Diabetes Care 36:3779–3785, 2013
Hepatic insulin clearance and metabolic syndrome

phenotyping have previously been described (17), and all individuals with at least 3 years of follow-up time were recruited to repeat phenotyping (21). The baseline examination of participants included anthropometric measurements, blood sampling, a 75-g oral glucose tolerance test (OGTT) for 120 min, which was performed after overnight fast of 10 hours, and a personal interview on lifestyle habits and medical history. For the current study, we examined a consecutive series of 800 subjects (subjects with metabolic syndrome, \(n = 325 \); subjects without metabolic syndrome, \(n = 475 \)) at baseline and 189 subjects with follow-up data (incident metabolic syndrome, \(n = 47 \); incident impaired glucose metabolism [IGM], \(n = 33 \)). All subjects had no history of diabetes, cardiovascular diseases, malignant disease, liver or chronic kidney failure, or inflammatory diseases at baseline visit. The metabolic syndrome was diagnosed according to Harmonizing Criteria of the Metabolic Syndrome (22). Samples for insulin and C-peptide measurements were drawn at 0, 30, 60, 90, and 120 min of the OGTT.

Biochemical analyses

All venous blood samples were immediately centrifuged and frozen at \(-70^\circ\text{C}\) until analysis. Capillary blood glucose concentrations were measured using the glucose oxidase method on a Super GL (Dr. Müller, Freital, Germany). HbA1c was measured using a Hi-Auto A1C HA-8140 system (Menarini Diagnostics, Berlin, Germany). Serum triglycerides, total cholesterol, and HDL cholesterol were measured by standard enzymatic assays, and LDL cholesterol was calculated from these data (certified laboratory for clinical chemistry). Serum insulin and C-peptide were measured using commercial ELISAs (insulin ELISA and C-peptide ELISA; Mercodia, Uppsala, Sweden).

Calculations and statistical analyses

Data are presented as mean \(\pm \) SD. Based on the OGTT data, we calculated the insulin secretion rate (ISR) using the two-compartment model of C-peptide kinetics (23). The HIC\(_{\text{C-peptide}}\) was determined as a ratio of the incremental areas under the curve (AUC) of OGTT (AUC\(_{\text{C-peptide 0–120 min}}\)/AUC\(_{\text{insulin 0–120 min}}\)) (12, 14, 24). In addition, we calculated HIC\(_{\text{ISR}}\) as a ratio of the incremental area under the ISR curve (AUC\(_{\text{ISR 0–120 min}}\)) to the incremental area under the peripheral insulin concentration curve (AUC\(_{\text{insulin 0–120 min}}\)) (12).

The OGTT-derived HIC\(_{\text{C-peptide}}\) was strong correlated with metabolic insulin clearance determined in hyperinsulinemic-euglycemic clamp experiments in our previous study (17). Insulin sensitivity was quantified from the OGTT by Gutt index (Gutt IS\(_{10,120}\)) (25). Insulin response to glucose in the OGTT was estimated by calculation of 1st-phase insulin secretion index: 1.283 + (1.829 * Ins\(_{10\text{ min}}\) [pmol] − (138.7 * blood glucose\(_{75\text{ min}}\) [mmol]) + (3.772 * Ins\(_{120\text{ min}}\) [pmol]), where Ins is insulin (26). The difference between groups was calculated by one-way ANOVA. The linear relationships between HIC and anthropometric as well as metabolic markers were calculated using Pearson correlation. To investigate the shape of the associations between both indices of HIC and 1st-phase insulin secretion, we used restricted cubic spline regressions (27) with knots at the 5th, 50th, and 95th percentiles. These models were compared with linear regression models. The effect and the term for nonlinearity of the restricted cubic spline regression were statistically tested. Binary logistic regression was used for the calculation of odds ratios (ORs). The power of avoiding a type II error for the estimation of the ORs of HIC on metabolic syndrome was calculated with SAS Power and Sample Size 3.12. The nominal significance level was 0.05. The statistical analyses were performed with SPSS 18 (SPSS, Chicago, IL) and SAS 9.3 (SAS Institute, Cary, NC).

RESULTS—At baseline, 325 of the participants fulfilled the criteria for metabolic syndrome (Table 1). These subjects had higher BMI, waist circumference, triglycerides, fasting glucose, and systolic and diastolic blood pressure, as well as surrogates markers of 1st-phase insulin secretion, and were more insulin resistant compared with subjects without metabolic syndrome. OGTT-derived indices of HIC were markedly lower in subjects with metabolic syndrome (HIC\(_{\text{C-peptide}}\) 6.7 \pm 2.6 vs. 5.5 \pm 2.3 arbitrary units [AU], \(P < 0.001 \), and HIC\(_{\text{ISR}}\) 2.2 \pm 0.8 vs. 1.9 \pm 0.8 pmol/min, respectively) and remained significant after adjustment for BMI and age. Moreover, subjects with normal glucose tolerance (NGT) and metabolic syndrome had decreased HIC compared with subjects without metabolic syndrome (HIC\(_{\text{C-peptide}}\) 5.90 \pm 2.54 vs. 6.73 \pm 2.60 AU, \(P < 0.05 \), and HIC\(_{\text{ISR}}\) 2.09 \pm 0.86 vs. 2.21 \pm 0.84 pmol/min, \(P < 0.05 \), respectively) (Table 1).

Both HIC indices correlated significantly with each other (\(r = 0.94, P < 0.001 \)). Positive linear correlation of HIC indices with Gutt IS\(_{10,120}\) was observed in subjects with metabolic syndrome (\(r = 0.44, P < 0.001 \), for HIC\(_{\text{C-peptide}}\) and \(r = 0.50, P < 0.001 \), for HIC\(_{\text{ISR}}\)) and in subjects without metabolic syndrome (\(r = 0.34, P < 0.001 \), for HIC\(_{\text{C-peptide}}\) and \(r = 0.39, P < 0.001 \), for HIC\(_{\text{ISR}}\)). Moreover, an inverse relationship was found between HIC and 1st-phase insulin secretion index (\(r^2 = 0.23, P < 0.001 \), for HIC\(_{\text{C-peptide}}\) and \(r^2 = 0.15, P < 0.001 \), for HIC\(_{\text{ISR}}\)) in the analysis of the general cohort. To investigate the mechanism by which insulin secretion interacts with HIC, we tested the relationship between these variables separately in subjects with and without metabolic syndrome (Fig. 1). We found close nonlinear relationships between HIC and 1st-phase insulin secretion only in the subjects with metabolic syndrome (\(r^2 = 0.26, P_{\text{nonlin}} (P\text{ value for nonlinear model}) < 0.007, \) for HIC\(_{\text{C-peptide}}\) (Fig. 1B)—not in subjects without metabolic syndrome (\(r^2 = 0.16, P_{\text{effect}} < 0.001 \), and \(r^2 = 0.16, P_{\text{nonlin}} = 0.24, \) for HIC\(_{\text{C-peptide}}\) and \(r^2 = 0.09, P_{\text{effect}} < 0.001, \) and \(r^2 = 0.09, P_{\text{nonlin}} = 0.63, \) for HIC\(_{\text{ISR}}\) (Fig. 1A, C, and D). Again, the results remained significant after adjustment for waist circumference, age, and sex.

An inverse correlation between different parameters of metabolic syndrome such as waist circumference, diastolic blood pressure, fasting glucose, and triglycerides was observed in the entire cohort (Table 2). In contrast, plasma HDL cholesterol correlated positively with HIC (\(r = 0.11, P = 0.003, \) for HIC\(_{\text{C-peptide}}\) and \(r = 0.11, P = 0.002, \) for HIC\(_{\text{ISR}}\)).

In the next step, we analyzed the relation between HIC and incident metabolic syndrome. We observed no statistically significant difference in either index of HIC between subjects with incident metabolic syndrome and subjects without metabolic syndrome (HIC\(_{\text{C-peptide}}\) 7.01 \pm 3.05 vs. 6.23 \pm 2.13 AU, \(P = 0.11, \) and HIC\(_{\text{ISR}}\) 2.32 \pm 0.98 vs. 2.09 \pm 0.73 pmol/min, \(P = 0.15, \) respectively). Logistic regression analysis indicates a trend that HIC independently predicted the risk of developing the metabolic syndrome (HIC\(_{\text{C-peptide}}\) OR 1.13 [95% CI 0.97–1.31], \(P = 0.12, \) and HIC\(_{\text{ISR}}\) 1.38 [0.88–2.17], \(P = 0.16 \)) (crude model). Additional adjustment for age, sex, waist circumference, index of 1st phase of insulin secretion, and time of follow-up (HIC\(_{\text{C-peptide}}\) OR 1.13 [95% CI 0.98–1.32],...
Table 1—Clinical characteristics of the study population

Parameter	Subjects with MS at baseline	Subjects without MS at baseline								
	Subjects with NGT	IGT and IFG	All	All	Subjects with MS at follow-up	Subjects without MS at follow-up	P^b	Subjects with MS at follow-up	Subjects without MS at follow-up	P^c
N (male/female)	120 (40/80)	205 (53/152)	325 (93/232)	475 (119/356)	47 (14/33)	69 (17/52)	<0.001	55.9 ± 10.4	53.1 ± 11.3	0.177
Age (years)	53.9 ± 10.8	57.4 ± 11.1†	56.1 ± 11.1	51.9 ± 12.7	<0.001	59.7 ± 10.4	<0.001	59.2 ± 10.4	53.1 ± 11.3	0.177
BMI (kg/m²)	32.1 ± 4.5	31.6 ± 5.5	31.8 ± 5.1	27.5 ± 5.0†	<0.001	29.1 ± 4.6	0.527			
Waist circumference (cm)	103.4 ± 11.6	101.0 ± 12.7	101.9 ± 12.3	89.4 ± 13.4†	<0.001	93.2 ± 11.1	0.484			
Total cholesterol (mmol/L)*	5.5 ± 1.1	5.6 ± 1.1	5.6 ± 1.1	5.4 ± 1.0	0.124	5.7 ± 1.0	0.021			
HDL cholesterol (mmol/L)*	1.2 ± 0.3	1.3 ± 0.3†	1.3 ± 0.3	1.5 ± 0.3†	<0.001	1.5 ± 0.3	0.967			
Triglyceride (mmol/L)*	2.1 ± 0.9	1.8 ± 0.9†	1.9 ± 0.9	1.1 ± 0.5†	<0.001	1.2 ± 0.5	0.004			
Systolic blood pressure (mmHg)**	131.4 ± 15.1	132.1 ± 16.2	131.8 ± 15.7	117.1 ± 13.1†	<0.001	119.3 ± 12.4	0.635			
Diastolic blood pressure (mmHg)**	83.5 ± 8.7	81.2 ± 8.8	82.1 ± 8.8	74.2 ± 8.1†	<0.001	74.8 ± 8.7	0.688			
Fasting glucose (mmol/L)	4.9 ± 0.5	5.3 ± 0.5†	5.2 ± 0.5	4.9 ± 0.5	<0.001	5.0 ± 0.4	0.173			
Glucose 120 min	6.2 ± 0.9	8.5 ± 1.2†	7.6 ± 1.5	6.5 ± 1.3	<0.001	6.9 ± 1.7	0.810			
Fasting insulin (pmol/L)	66.0 ± 43.0	64.2 ± 37.5	64.9 ± 39.6	42.1 ± 25.6†	<0.001	45.4 ± 22.0	0.315			
1st-phase insulin secretion	1177.6 ± 537	901.0 ± 503†	1003.5 ± 578	810.8 ± 422†	<0.001	778.4 ± 446	0.710			
HIC-C-peptide (AU)	5.90 ± 2.54	5.27 ± 2.19†	5.50 ± 2.34	6.73 ± 2.60†	<0.001	7.01 ± 3.05	0.110			
HIC_{ISR} (pmol/min)	2.09 ± 0.86	1.77 ± 0.71†	1.89 ± 0.78	2.21 ± 0.84†	<0.001	2.32 ± 0.98	0.153			
Gutt ISF₁₂₀, OGTT	80.6 ± 19.4	58.0 ± 17.0†	66.4 ± 20.9	91.9 ± 36.7	<0.001	81.7 ± 23.2	0.764			

Data are means ± SD unless otherwise indicated. The studied cohort includes NGT or impaired fasting glucose/impaired glucose tolerance subjects with complete insulin and C-peptide data from 2-h OGTT and BMI ≥50 kg/m² and not treated with antidiabetes drugs. All values obtained from subjects after an overnight fast without beverage intake. P_b: the comparison by one-way ANOVA. Boldface data indicate P values < 0.05. MS, metabolic syndrome. *Defined by Harmonized Metabolic Syndrome criteria (22). †Subjects without MS vs. subjects with MS at baseline. ‡Subjects without MS vs. subjects with MS at follow-up examination. ††P < 0.05 compared with NGT subjects with MS. *Subjects not treated with lipid-lowering drugs (448 subjects without MS at baseline/288 subjects with MS at baseline/66 subjects without MS at follow-up/42 subjects with MS at follow-up). **Subjects not treated with antihypertension drugs (386 subjects without MS at baseline/193 subjects with MS at baseline/60 subjects without MS at follow-up/38 subjects with MS at follow-up).

P = 0.14, and HIC_{ISR} 1.41 [0.87–2.29], P = 0.16), which slightly attenuated results, but HIC still remained an independent predictor of future metabolic syndrome (Fig. 2A–B).

In addition, HIC_{ISR} showed a trend for association with increased risk of IGM incidents after adjustment for age, sex, waist circumference, time of follow-up, and 1st-phase of insulin secretion (HIC_{C-peptide} OR 1.12 [95% CI 0.92–1.36], P = 0.26, and HIC_{ISR} 1.31 [0.74–2.33], P = 0.36), although point estimates reached no statistical significance. Additional adjustment for waist-to-hip ratio, diastolic blood pressure, HDL cholesterol, triglycerides, and baseline fasting and 2-h glucose again modified results, but point estimates remained comparable with the crude analysis for incident metabolic syndrome and incident IGM (data not shown).

The power (the probability of avoiding a type II error) for the estimation of the ORs of HIC on metabolic syndrome was 0.30 and 0.32 for HIC_{C-peptide} and HIC_{ISR}, respectively.

CONCLUSIONS—Decreased HIC is an early phenotypical marker of disturbances in insulin metabolism and was observed in various disorders associated with metabolic syndrome and T2DM (6,13–16,28). However, most studies were not designed to test the hypothesis that insulin clearance is strongly associated with existing metabolic syndrome and may predict this condition. In this large-cohort prospective study, we found an association between two OGTT-derived indices of HIC and different components of metabolic syndrome and a trend indicating their possible association with an increased risk of incident metabolic syndrome and IGM. Moreover, we observed an inverse nonlinear correlation between HIC and 1st-phase insulin secretion index in subjects with metabolic syndrome and a positive linear correlation between HIC and OGTT-derived index of insulin sensitivity for the general MeSyBePo cohort.

In our study, we identified highly significant correlations between OGTT-derived HIC indices and different components of metabolic syndrome, in agreement with previous results from other studies (4,6,13). The imbalance of hepatic insulin metabolism appears to be a first change in the development of weight–gain–related insulin resistance (29).

Conversely, weight loss increases HIC in both humans (29) and animals (30). In accordance with this, our study subjects with NGT and metabolic syndrome had lower HIC compared with subjects without metabolic syndrome, suggesting that impairment of insulin clearance may occur before the development of disturbances in glucose metabolism. Moreover, we found a trend for the association between two OGTT-derived indices of HIC and increased risk of incident metabolic syndrome and IGM, although point estimates reached no statistical significance. The OGTT-derived HIC was strongly correlated with metabolic insulin clearance, as determined in hyperinsulinemic-euglycemic clamp experiments in our previous study (17), and
may be helpful for the identification of subjects with high risk of metabolic syndrome, even in the absence of other signs of IGM.

Reduced hepatic insulin elimination may intensify insulin resistance via chronic elevations of circulating fasting and postprandial insulin concentrations (20,31,32). The Gutt insulin sensitivity index, calculated as a ratio of postloading glucose disposal to the mean of fasting and 2-h postinsulin concentrations, has been suggested as the best predictor of T2DM after 5–8 years of follow-up (33). Our data showed a significant and positive correlation between the Gutt insulin sensitivity index and HIC, supporting complete capture of other important domains of T2DM in this index (32). In accordance with previously published data (11,34–36), we observed an inverse relationship between insulin secretion and HIC, potentially representing a physiological mechanism by which insulin secretion may regulate HIC. Thus, decreased HIC in subjects with metabolic syndrome may not compensate for lower insulin sensitivity but, rather, represent an additional element of insulin disturbance, possibly directly dependent on changes in insulin secretion. We can

Figure 1—Relationship between HIC estimated as HIC_ISR (C and D) and HIC_C-peptide (A and B) and OGTT-derived indices of insulin secretion (1st-phase insulin secretion index [IS] [26]) in the entire cohort (n = 800; subjects with metabolic syndrome, n = 325; subjects without metabolic syndrome, n = 475). \(R^2\) was calculated for linear and nonlinear restricted cubic spline regression models.

Table 2—Relationship between indexes of HIC and markers of metabolic syndrome

Parameter	\(r\)	\(P\)	\(r\)	\(P\)
Waist circumference	-0.28	<0.001	-0.11	0.001
Plasma triglycerides*	-0.17	<0.001	-0.17	<0.001
HDL cholesterol*	0.11	0.003	0.11	0.002
Systolic blood pressure**	-0.08	0.062	-0.08	0.058
Diastolic blood pressure**	-0.12	0.005	-0.12	0.003
Fasting glucose	-0.13	<0.001	-0.13	<0.001

The studied cohort includes NGT or impaired fasting glucose/impaired glucose tolerance subjects with complete insulin and C-peptide data from 2-h OGTT and BMI ≤50 kg/m² and not treated with antidiabetes drugs (n = 800; 475 subjects without metabolic syndrome/325 subjects with metabolic syndrome). All data except waist circumference were adjusted for age, sex, and BMI; waist circumference was adjusted for age and sex. *Subjects not treated with lipid-lowering drugs (n = 732). **Subjects not treated with antihypertension drugs (n = 579).
speculate that the decrease in the HIC may also be an important mechanism in the case of insulin secretion–stimulating diets like diets with a high glycemic index and the phenomenon of soft drink–induced metabolic syndrome being associated with nonalcoholic steatohepatitis (37).

On the other hand, based on the epidemiological character of our study, we cannot entirely rule out the fact that HIC may simply cluster with metabolic syndrome without necessarily belonging to the syndrome as one of the defining components.

However, mechanisms leading to the alteration of insulin degradation in humans are complex and not understood in detail (31). The insulin-degrading enzyme (IDE) is thought to be a major enzyme responsible for insulin degradation (31). All insulin-sensitive cells contain IDE and remove and degrade insulin. However, the liver is the main site of insulin clearance, removing ~75% during the first portal passage (31,36). Hyperglycemia downregulates the insulin-induced IDE activity in the liver cell model (19) and in this way may provoke the known decrease of IDE activity in T2DM (31). On the other hand, insulin clearance is a highly heritable trait (8), and polymorphisms in the IDE gene are associated with increased T2DM risk and decreased OGTT-derived HIC in nondiabetic subjects (17).

We observed a close correlation between HIC and HDL cholesterol, a marker of liver fat metabolism. HIC correlated inversely with liver fat content and hepatic glucose production in diabetic and nondiabetic subjects (16). Taken together, decreased HIC is possibly the earliest marker of hepatic insulin resistance and is directly linked to insulin action in the liver with consequent effects on the hepatic lipid metabolism and liver inflammation.

Limitations of our study need to be mentioned. We measured HIC indirectly in two ways, based on previously reported techniques of insulin clearance calculation (12,17). Although direct assessment of portal concentration of hormones in human subjects has been established (36), this is not a practicable method for the use in large cohorts. In addition, the power to detect more moderate changes of HIC in our prospective study population is likely to be insufficient, and doing so would require the investigation of considerably larger prospective cohorts.

In conclusion, we found decreased HIC in middle-aged subjects with metabolic syndrome. The decrease of HIC showed a trend for association with a risk of incident metabolic syndrome and incident impaired glucose homeostasis independent of obesity and age. Both indices of HIC significantly correlated with different components of metabolic syndrome. Thus, OGTT-derived indices of HIC may be helpful for the identification of people with high risk of metabolic syndrome.

Acknowledgments—This study was supported by a grant from the Deutsche Forschungsgesellschaft (DFG) (DFG Grant Pf164/021002 to N.R. and A.F.H.P.), the German Academic Exchange Service (to O.P.), and Deutsches Zentrum für Diabetes Forschung (DZD Grant Pfeiffer-2013). No potential conflicts of interest relevant to this article were reported.
Hepatic insulin clearance and metabolic syndrome

O.P., W.B., T.B., F.I., and M.M. contributed to the conception and design of the project, contributed to discussion, collected and analyzed data, and drafted, reviewed, and edited the manuscript. J.S., M.O.W., and M.O. contributed to the conception and design of the project, researched data, contributed to discussion, and reviewed and edited the manuscript. A.F.H.P. and N.R. contributed to the conception and design of the project, contributed to discussion, collected and analyzed data, and drafted, reviewed, and edited the manuscript. O.P., W.B., and N.R. are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

The authors thank all study participants for their cooperation. The authors are thankful for the technical assistance of Andreas Wagner, Sandra Grosch, Melanie Hannemann, Katrin Sprengel, and Svetlana Baeker. The authors thank June Inderthal for carefully reading the manuscript.

References
1. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607.
2. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 1992;41:715–722.
3. Meigs JB. Invited commentary: insulin resistance syndrome? Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am J Epidemiol 2000;152:908–911.
4. Bonnet F, Dulceuza PH, Gastaldelli A, et al.; RISC Study Group. Liver enzymes are associated with hepatic insulin resistance, insulin secretion, and glucagon concentration in healthy men and women. Diabetes 2011;60:1660–1667.
5. Mittelman SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 1992;41:715–722.
6. Ferrannini E, Balkau B. Insulin: in search of a syndrome. Diabet Med 2002;19:724–729.
7. Kotonen A, Vehkavaara S, Seppälä-Lindroos A, Bergholm R, Yki-Järvinen H. Effect of liver fat on insulin clearance. Am J Physiol Endocrinol Metab 2007;293:E1709–E1715.
8. Goodarzi MO, Cui J, Chen YD, Hsueh WA, Guo X, Rotter JI. Fasting insulin reflects heterogeneous physiological processes: role of insulin clearance. Am J Physiol Endocrinol Metab 2011;301:E402–E408.
9. Madshid S, Kehlet H, Hilsted J, Trionier B. Discrepancy between plasma C-peptide and insulin response to oral and intravenous glucose. Diabetes 1983;32:436–438.
10. Shuster LT, Go VL, Rizza RA, O'Brien PC, Service FJ. Incretin effect due to increased secretion and decreased clearance of insulin in normal humans. Diabetes 1988;37:200–203.
11. Meier JJ, Holst JJ, Schmidt WE, Nauck MA. Reduction of hepatic insulin clearance after oral glucose ingestion is not mediated by glucagon-like peptide 1 or gastric inhibitory polypeptide in humans. Am J Physiol Endocrinol Metab 2007;293:E849–E856.
12. Rudovich NN, Rochlitz HJ, Pfeiffer A.F. Reduced hepatic insulin extraction in response to gastric inhibitory polypeptide compensates for reduced insulin secretion in normal-weight and normal glucose tolerant first-degree relatives of type 2 diabetic patients. Diabetes 2004;53:2359–2365.
13. Arslanian SA, Saad R, Lewy V, Danadian K, Janosky J. Hyperinsulinemia in african-american children: decreased insulin clearance and increased insulin secretion and its relationship to insulin sensitivity. Diabetes 2002;51:3014–3019.
14. Uwalo GI, Fallon EM, Chin J, Elberg J, Parikh SJ, Yanovski JA. Indices of insulin action, disposal, and secretion derived from fasting samples and clamps in normal glucose-tolerant black and white children. Diabetes Care 2002;25:2081–2087.
15. Ciampelli M, Fulghesu AM, Cucinelli F, et al. Heterogeneity in beta cell activity, hepatic insulin clearance and peripheral insulin sensitivity in women with polycystic ovary syndrome. Hum Reprod 1997;12:1897–1901.
16. Kotonen A, Juurinen L, Tikkainen M, Vehkavaara S, Yki-Järvinen H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 2008;135:122–130.
17. Rudovich N, Pivovarova O, Fisher E, et al. Polymorphisms within insulin-degrading enzyme (IDE) gene determine insulin metabolism and risk of type 2 diabetes. J Mol Med (Berl) 2009;87:1145–1151.
18. Machicao F, Stauger H, Fritsche A, et al. Association of the -514C→T polymorphism in the hepatic lipase gene (LIPC) promoter with elevated fasting insulin concentrations, but not insulin resistance, in non-diabetic Germans. Horm Metab Res 2004;36:303–306.
19. Pivovarova O, Gogebakan O, Pfeiffer AF, Rudovich N. Glucose inhibits the insulin-induced activation of the insulin-degrading enzyme in HepG2 cells. Diabetologia 2009;52:1656–1664.
20. Bergman RN. Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein? Diabetologia 2000;43:946–952.
21. Bobbert T, Schwarz F, Fischer-Rosinsky A, et al. Fibroblast growth factor 21 predicts the metabolic syndrome and type 2 diabetes in Caucasians. Diabetes Care 2013;36:145–149.
22. Alberti KG, Eckel RH, Grundy SM, et al.; International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–1645.
23. Polonsky KS, Given BD, Hirsch L, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest 1988;81:435–441.
24. Polonsky K, Frank B, Pugh W, et al. The limitations to and valid use of C-peptide as a marker of the secretion of insulin. Diabetes 1986;35:379–386.
25. Gutt M, Davis CL, Spitzer SB, et al. Validation of the insulin sensitivity index (ISI (0,120)): comparison with other measures. Diabetes Res Clin Pract 2000;47:177–184.
26. Stumvoll M, Mitroakou A, Pimenta W, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000;23:295–301.
27. Durrlemann S, Simon R. Flexible regression models with cubic splines. Stat Med 1989;8:551–561.
28. Erdmann J, Kallabis B, Oppel U, Sympchenko O, Wagenpleil S, Schusdziarra V. Development of hyperinsulinemia and insulin resistance during the early stage of weight gain. Am J Physiol Endocrinol Metab 2008;294:E568–E575.
29. Viljanen AP, Isozzo P, Borra R, et al. Effect of weight loss on liver free fatty acid uptake and hepatic insulin resistance. J Clin Endocrinol Metab 2009;94:50–55.
30. Bowman TA, Ramakrishnan SK, Kaw M, et al. Caloric restriction reverses hepatic insulin resistance and steatosis in rats with low aerobic capacity. Endocrinology 2010;151:5157–5164.
31. Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and potential. Endocr Rev 1998;19:608–624.
32. Kim SH, Reaven GM. Insulin resistance and hyperinsulinemia: you can’t have one without the other. Diabetes Care 2008;31:1433–1438.
33. Hanley AJ, Williams K, Gonzalez C, et al.; San Antonio Heart Study; Mexico City Diabetes Study; Insulin Resistance Atherosclerosis Study. Prediction of type 2 diabetes using simple measures of insulin resistance: combined results from the San Antonio Heart Study, the Mexico City Diabetes Study, and the Insulin Resistance Atherosclerosis Study. Diabetes 2003;52:463–469

34. Tillil H, Shapiro ET, Miller MA, et al. Dose-dependent effects of oral and intravenous glucose on insulin secretion and clearance in normal humans. Am J Physiol 1988;254:E349–E357

35. Polonsky K, Jaspan J, Emmanouel D, Holmes K, Moossa AR. Differences in the hepatic and renal extraction of insulin and glucagon in the dog: evidence for saturability of insulin metabolism. Acta Endocrinol (Copenh) 1983;102:420–427

36. Meier JJ, Veldhuis JD, Butler PC. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 2005;54:1649–1656

37. Valera Mora ME, Scarfone A, Calvani M, Greco AV, Mingrone G. Insulin clearance in obesity. J Am Coll Nutr 2003;22:487–493