The complexity of recognizing minimally tough graphs

GYULA Y KATONA
Department of Computer Science and
Information Theory
Budapest University of Technology and
Economics
1111 Budapest, Műegyetem rkpt. 3, Hungary
and
MTA-ELTE Numerical Analysis and Large
Networks Research Group
kiskat@cs.bme.hu

ISTVÁN KOVÁCS
Department of Control Engineering and
Information Technology
Budapest University of Technology and
Economics
1111 Budapest, Műegyetem rkpt. 3, Hungary
kovika@iit.bme.hu

KITT VARGA
Department of Computer Science and
Information Theory
Budapest University of Technology and
Economics
1111 Budapest, Műegyetem rkpt. 3, Hungary
vkitti@cs.bme.hu

Abstract: Let \(t \) be a positive real number. A graph is called \(t \)-tough, if the removal of any cutset \(S \) leaves at most \(|S|/t \) components. The toughness of a graph is the largest \(t \) for which the graph is \(t \)-tough. A graph is minimally \(t \)-tough, if the toughness of the graph is \(t \) and the deletion of any edge from the graph decreases the toughness. The complexity class DP is the set of all languages that can be expressed as the intersection of a language in NP and a language in coNP. We prove that recognizing minimally \(t \)-tough graphs is DP-complete for any positive integer \(t \) and for any positive rational number \(t \leq 1/2 \).

Keywords: 3–6 keywords toughness, complexity, DP-complete

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let \(\omega(G) \) denote the number of components and \(\alpha(G) \) denote the independence number. For a graph \(G \) and a vertex set \(V \subseteq V(G) \), let \(G[V] \) denote the subgraph of \(G \) induced by \(V \).

The complexity class DP was introduced by C. H. Papadimitriou and M. Yannakakis [4].

Definition 1 A language \(L \) is in the class DP if there exist two languages \(L_1 \in \text{NP} \) and \(L_2 \in \text{coNP} \) such that \(L = L_1 \cap L_2 \).

We mention that DP \(\neq \text{NP} \cap \text{coNP} \), if NP \(\neq \text{coNP} \). Moreover, NP \(\cup \text{coNP} \subseteq \text{DP} \). A language is called DP-hard if all problems in DP can be reduced to it in polynomial time. A language is DP-complete if it is in DP and it is DP-hard.

\(^1\)Research is supported by the National Research, Development and Innovation Office NKFIH (grant number K108947)
A critical-type DP-complete problem is \textsc{CriticalClique} \cite{5}, in our proofs we use an equivalent form of it, \textsc{α-Critical}.

\textbf{CriticalClique}
\textit{Instance:} a graph G and a positive integer k.
\textit{Question:} is it true that G has no clique of size k, but adding any missing edge e to G, the resulting graph $G + e$ has a clique of size k?

By taking the complement of the graph, we can obtain \textsc{α-Critical} from \textsc{CriticalClique}.

\begin{definition}
A graph G is called \textsc{α-critical}, if $\alpha(G - e) > \alpha(G)$ for all $e \in E(G)$.
\end{definition}

\textbf{α-Critical}
\textit{Instance:} a graph G and a positive integer k.
\textit{Question:} is it true that $\alpha(G) < k$, but $\alpha(G - e) \geq k$ for any edge $e \in E(G)$?

Since a graph is clique-critical if and only if its complement is \textsc{α-critical}, \textsc{α-Critical} is also DP-complete.

\begin{corollary}
\textsc{α-Critical} is DP-complete.
\end{corollary}

The notion of toughness was introduced by Chvátal \cite{2}.

\begin{definition}
Let t be a positive real number. A graph G is called t-tough, if
\[\omega(G - S) \leq \frac{|S|}{t} \]
for any cutset S of G (i.e. for any S with $\omega(G - S) > 1$). The toughness of G, denoted by $\tau(G)$, is the largest t for which G is t-tough, taking $\tau(K_n) = \infty$ for all $n \geq 1$.

We say that a cutset $S \subseteq V(G)$ is a tough set if $\omega(G - S) = |S|/\tau(G)$.

For all positive rational number t we can define a separate problem:

\textbf{t-Tough}
\textit{Instance:} a graph G,
\textit{Question:} is it true that $\tau(G) \geq t$?

Bauer et al. proved the following.

\begin{theorem}[\cite{1}]
For any positive rational number t, \textsc{t-Tough} is coNP-complete.
\end{theorem}

The critical form of this problem is minimally toughness.

\begin{definition}
A graph G is minimally t-tough, if $\tau(G) = t$ and $\tau(G - e) < t$ for all $e \in E(G)$.
\end{definition}

Given t we define:

\textbf{Min-t-Tough}
\textit{Instance:} a graph G,
\textit{Question:} is it true that G is minimally t-tough?

Our main result is the following.

\begin{theorem}
\textsc{Min-t-Tough} is DP-complete for any positive integer t and for any positive rational number $t \leq 1/2$.
\end{theorem}

First we prove this theorem for $t = 1$, then we generalize that proof for positive integers, and finally we prove it for any positive rational number $t \leq 1/2$. 2
2 Preliminaries

In this section we prove some useful lemmas.

Proposition 8 Let G be a connected noncomplete graph on n vertices. Then $\tau(G) \in Q^+$, and if $\tau(G) = a/b$, where a, b are positive integers and $(a, b) = 1$, then $1 \leq a, b \leq n - 1$.

Proof: By definition,

$$\tau(G) = \min_{S \subseteq V(G)} \frac{|S|}{\omega(G - S)}$$

for a noncomplete graph G. Since G is connected and noncomplete, $1 \leq |S| \leq n - 2$ and since S is a cutset, $2 \leq \omega(G - S) \leq n - 1$. □

Corollary 9 Let G and H be two connected noncomplete graphs on n vertices. If $\tau(G) \neq \tau(H)$, then

$$|\tau(G) - \tau(H)| > \frac{1}{n^2}.$$

Claim 10 For every positive rational number t, Min-t-Tough \in DP.

Proof: For any positive rational number t,

Min-t-Tough $= \{G$ graph $| \tau(G) = t$ and $\tau(G - e) < t$ for all $e \in E(G)\} =$

$= \{G$ graph $| \tau(G) \geq t\} \cap \{G$ graph $| \tau(G) \leq t\} \cap$

$\cap\{G$ graph $| \tau(G - e) < t$ for all $e \in E(G)\}.$

Let

$L_{1,1} = \{G$ graph $| \tau(G - e) < t$ for all $e \in E(G)\},$

$L_{1,2} = \{G$ graph $| \tau(G) \leq t\}$

and

$L_2 = \{G$ graph $| \tau(G) \geq t\}.$

$L_2 \in \text{coNP}$, a witness is a cutset $S \subseteq V(G)$ whose removal leaves more than $|S|/t$ components. $L_{1,1} \in \text{NP}$, the witness is a set of cutsets: $S_e \subseteq V(G)$ for each edge e whose removal leaves more than $|S_e|/t$ components.

Now we show that $L_{1,2} \in \text{NP}$, i.e. we can express $L_{1,2}$ in a form of

$L_{1,2} = \{G$ graph $| \tau(G) < t + \varepsilon\},$

which belongs to NP. Let a, b be positive integers such that $t = a/b$ and $(a, b) = 1$, and let G be an arbitrary graph on n vertices. If G is disconnected, then $\tau(G) = 0$, and if G is complete, then $\tau(G) = \infty$, so in both cases G is not minimally t-tough. By Proposition 8, if $1 \leq a, b \leq n - 1$ does not hold, then G is also not minimally t-tough. So we can assume that $t = a/b$, where a, b are positive integers, $(a, b) = 1$ and $1 \leq a, b \leq n - 1$. With this assumption

$L_{1,2} = \{G$ graph $| \tau(G) \leq t\} = \left\{G$ graph $| \tau(G) < t + \frac{1}{|V(G)|^2}\right\},$

so $L_{1,2} \in \text{NP}$.

Since $L_{1,1} \cap L_{1,2} \in \text{NP}, L_2 \in \text{coNP}$ and Min-t-Tough $= (L_{1,1} \cap L_{1,2}) \cap L_2$, we can conclude that Min-t-Tough \in DP. □
Claim 11 Let \(t \) be a positive rational number and \(G \) a minimally \(t \)-tough graph. For every edge \(e \) of \(G \),

1. the edge \(e \) is a bridge in \(G \), or
2. there exists a vertex set \(S = S(e) \subseteq V(G) \) with
 \[
 \omega(G - S) \leq \frac{|S|}{t} \quad \text{and} \quad \omega((G - e) - S) > \frac{|S|}{t},
 \]
 and the edge \(e \) is a bridge in \(G - S \).

In the first case, we define \(S = S(e) = \emptyset \).

Proof: Let \(e \) be an arbitrary edge of \(G \), which is not a bridge. Since \(G \) is minimally \(t \)-tough, \(\tau(G - e) < t \).
So there exists a cutset \(S = S(e) \subseteq V(G - e) = V(G) \) in \(G - e \) satisfying \(\omega((G - e) - S) > |S|/t \). On the other hand, \(\tau(G) = t \), so \(\omega(G - S) \leq |S|/t \). This is only possible if \(e \) connects two components of \((G - e) - S \). \(\Box \)

Finally we cite a Lemma that our proof relies on.

Lemma 12 (Problem 14 of 8 in [3]) If we replace a vertex of an \(\alpha \)-critical graph with a clique, and connect every neighbor of the original vertex with every vertex in the clique, then the resulting graph is still \(\alpha \)-critical.

3 Recognizing minimally 1-tough graphs

To show that \textsc{Min-1-Tough} is DP-hard, we reduce \textsc{\(\alpha \)-Critical} to it.

Theorem 13 \textsc{Min-1-Tough} is DP-complete.

Proof: In Claim 10 we have already proved that \textsc{Min-1-Tough} \(\in \) DP.

Let \(G \) be an arbitrary connected graph on the vertices \(v_1, \ldots, v_n \). Let \(G_\alpha \) be defined as follows. It will be easy to see that it can be constructed from \(G \) in polynomial time. For all \(i \in [n] \), let

\[
V_i = \{v_{i,1}, v_{i,2}, \ldots, v_{i,\alpha}\}
\]

and place a clique on the vertices of \(V_i \). For all \(i, j \in [n] \), if \(v_iv_j \in E(G) \), then place a complete bipartite graph on \((V_i; V_j) \). For all \(i \in [n] \) and for all \(j \in [\alpha] \) add the vertex \(u_{i,j} \) to the graph and connect it to \(v_{i,j} \). Let

\[
V = \bigcup_{i=1}^{n} V_i
\]

and

\[
U = \{u_{i,j} \mid i \in [n], j \in [\alpha]\}.
\]

Add the vertex set

\[
W = \{w_1, \ldots, w_\alpha\}
\]

to the graph and for all \(j \in [\alpha] \) connect \(w_j \) to \(v_{1,j}, \ldots, v_{n,j} \).
Figure 1: The graph G_{α}.

We need to prove that G is α-critical with $\alpha(G) = \alpha$ if and only if G_{α} is minimally 1-tough. First we prove the following lemma.

Lemma 14 Let G be a graph with $\alpha(G) \leq \alpha$. Then G_{α} is 1-tough.

Proof: Let $S \subseteq V(G_{\alpha})$ be a cutset. We show that $\omega(G_{\alpha} - S) \leq |S|$.

Case 1: $W \subseteq S$. If a vertex of U has only one neighbor in $V(G_{\alpha}) \setminus S$, then we can assume that this vertex is not in S. Then there are two types of components in $G_{\alpha} - S$: isolated vertices from U and components containing at least one vertex from V. There are at most $\alpha(G)$ components of the second type and (exactly) $|V \cap S| = |S| - \alpha$ components of the first type. Thus $\omega(G_{\alpha} - S) \leq |S| - \alpha + \alpha(G) \leq |S|$.

Case 2: $W \not\subseteq S$. First, we make two convenient assumptions for S.

1. $U \cap S = \emptyset$.

It is easy to see that if $u_{i,j} \in S$, then we can assume that $v_{i,j} \not\in S$. Now there are two cases.

 Case 2.1: $v_{i,j}$ is not isolated in $G_{\alpha} - S$. Then we can consider $S' = (S \setminus \{u_{i,j}\}) \cup \{v_{i,j}\}$ instead of S.

 Case 2.2: $v_{i,j}$ is isolated in $G_{\alpha} - S$. Since there are no isolated vertices in G, there exists $k \in [n]$ such that $v_i v_k \in E(G)$. Then $v_{k,j} \in S$, so $u_{k,j} \not\in S$, which means that w_j is not isolated in $G_{\alpha} - S$, so we can consider $S' = (S \setminus \{u_{i,j}\}) \cup \{w_j\}$ instead of S.

2. For all $i \in [n]$, either $V_i \subseteq S$ or $V_i \cap S = \emptyset$.

After the assumption (1), assume that only a proper subset of V_i is contained in S. Let v be an element of this subset. We can consider the cutset $S \setminus \{v\}$ instead of S, since this decreases the number of components by at most one. So we can repeat this procedure until $V_i \cap S = \emptyset$.

So in $G_{\alpha} - S$ there are isolated vertices from U and one more component containing the remaining vertices of W and V. So there are less than $|V \cap S|$ isolated vertices, thus

$$\omega(G_{\alpha} - S) \leq |V \cap S| \leq |S|.$$

So G_{α} is 1-tough. \square

We show that G is α-critical with $\alpha(G) = \alpha$ if and only if G_{α} is minimally 1-tough.
Let us assume that G is α-critical with $\alpha(G) = \alpha$. So by Lemma 14 G_α is 1-tough. Let $e \in E(G_\alpha)$ be an arbitrary edge. If e has an endpoint in U, then this endpoint has degree 2, so $\tau(G_\alpha - e) < 1$. If e does not have an endpoint in U, then it connects two vertices of V. By Lemma 12 $G_\alpha[U]$ is α-critical, so in $G_\alpha[V] - e$ there exists an independent vertex set I of size $\alpha(G) + 1$. Let $S = (V \setminus I) \cup W$. Then $|S| = (|V| - \alpha(G) - 1) + \alpha = |V| - 1$ and $\omega((G_\alpha - e) - S) = |V|$, so $\tau(G_\alpha - e) < 1$.

Let us assume that G is not α-critical with $\alpha(G) = \alpha$.

Case 1: $\alpha(G) > \alpha$. Let I be an independent vertex set of size $\alpha(G)$ in $G_\alpha[V]$ and let $S = (V \setminus I) \cup W$. Then $|S| = (|V| - \alpha(G)) + \alpha < |V|$ and $\omega(G_\alpha - S) = |V|$, so $\tau(G_\alpha) < 1$, which means that G_α is not minimally 1-tough.

Case 2: $\alpha(G) \leq \alpha$. Since G is not α-critical there exists an edge $e \in E(G)$ such that $\alpha(G - e) \leq \alpha$. By Lemma 14 $(G - e)_\alpha$ is 1-tough, but we can obtain $(G - e)_\alpha$ from G_α by edge-deletion, which means that G_α is not minimally 1-tough. □

4 Further results

Theorem 15 For every positive integer t, Min-t-Tough is DP-complete.

To prove this more general theorem, first we generalize the construction on Figure 1. We follow a similar argument to show that this construction has the required properties. However, due to the more complicated construction, the proof is harder.

The case when $t \leq 1/2$ is also covered in the paper.

Theorem 16 For every positive rational number $t = a/b \leq 1/2$, Min-t-Tough is DP-complete.

It is shown that Min-1-Tough can be reduced to this problem. The construction and the proof uses different ideas than the previous proofs.

We were not able to prove the DP-completeness for the remaining t values, but we make the following conjecture.

Conjecture 17 Min-t-Tough is DP-complete for any positive rational number t.

References

[1] D. Bauer, S. L. Hakimi, and E. Schmeichel, Recognizing tough graphs is NP-hard, Discrete Applied Mathematics 28 (1990), 191–195.

[2] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Mathematics 5 (1973), 215–228.

[3] L. Lovász, Combinatorial problems and exercises, AMS Chelsea Publishing, Providence, Rhode Island, 2007.

[4] C. H. Papadimitriou and M. Yannakakis, The Complexity of Facets (and Some Facets of Complexity), Journal of Computer and System Sciences 28 (1984), 244–259.

[5] C. H. Papadimitriou and D. Wolfe, The Complexity of Facets Resolved, Journal of Computer and System Sciences 37 (1988), 2–13.