Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape

Yonatan Savira, Elad Noorb, Ron Milob, and Tsvi Tlustya,1

aDepartment of Physics of Complex Systems and bDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel

Edited by George H. Lorimer, University of Maryland, College Park, MD, and approved December 17, 2009 (received for review October 8, 2009)

Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), probably the most abundant protein in the biosphere, performs an essential part in the process of carbon fixation through photosynthesis, thus facilitating life on earth. Despite the significant effect that Rubisco has on the fitness of plants and other photosynthetic organisms, this enzyme is known to have a low catalytic rate and a tendency to confuse its substrate, carbon dioxide, with oxygen. This apparent inefficiency is puzzling and raises questions regarding the roles of evolution versus biochemical constraints in shaping Rubisco. Here we examine these questions by analyzing the measured kinetic parameters of Rubisco from various organisms living in various environments. The analysis presented here suggests that the evolution of Rubisco is confined to an effectively one-dimensional landscape, which is manifested in simple power law correlations between its kinetic parameters. Within this one-dimensional landscape, which may represent biochemical and structural constraints, Rubisco appears to be tuned to the intracellular environment in which it resides such that the net photosynthesis rate is nearly optimal. Our analysis indicates that the specificity of Rubisco is not the main determinant of its efficiency but rather the trade-off between the carboxylation velocity and CO\textsubscript{2} affinity. As a result, the presence of oxygen has only a moderate effect on the optimal performance of Rubisco, which is determined mostly by the local CO\textsubscript{2} concentration. Rubisco appears as an experimentally testable example for the evolution of proteins subject both to strong selection pressure and to biochemical constraints that strongly confine the evolutionary plasticity to a low-dimensional landscape.

enzyme specificity | photosynthesis | protein evolution | carbon fixation

Photosynthetic carbon assimilation enables the storage of energy in the global ecosystem and produces most of the global biomass. Rubisco (\(\text{D-ribulose 1,5-bisphosphate carboxylase/oxygenase}\)), probably the most abundant enzyme in nature (1), catalyzes the addition of CO\textsubscript{2} and H\textsubscript{2}O (2, 3) to 1,5-bisphosphate bisphosphatase (RuBP) in the first major step of carbon fixation through photosynthesis. Rubisco is present in most autotrophic organisms from prokaryotes, such as photosynthetic anaerobic bacteria and cyanobacteria, to eukaryotes, such as algae and higher plants (4). The catalytic rate of Rubisco is remarkably slow. On top of that, Rubisco tends to catalyze the addition of O\textsubscript{2} instead of CO\textsubscript{2}, leading to photorespiration that entails an extra energy investment and a reduction in the net photosynthetic rate (5). The seeming contradiction between the importance of Rubisco and its apparent inefficiency motivated an ongoing effort to improve Rubisco by genetic manipulation (6) and directed evolution (7, 8), with very limited success so far. One would desire to increase the specificity of Rubisco to CO\textsubscript{2} and its rate of carboxylation. However, this task proves difficult because the specificity and the carboxylation velocity appear to be negatively correlated (9). A possible biochemical mechanism for this trade-off was recently proposed (10), following the hypothesis that Rubisco optimizes this trade-off according to its environment. The present work quantitatively addresses the questions regarding the optimality and inefficiency of Rubisco, which we suggest result from an interplay between constraints and evolutionary forces. Our analysis delineates a low-dimensional landscape shaped by underlying physico-chemical constraints in which Rubisco evolves. Comparison of cross-species data implies that Rubisco is nearly optimal in this constrained landscape.

Carbon fixation by Rubisco is a multistage process (Fig. 1A) (11, 12). In the first stage, Rubisco binds RuBP and the formed complex undergoes enolization. This is followed by an irreversible CO\textsubscript{2} addition (carboxylation) that results in a six-carbon intermediate. Then, steps of hydration and cleavage yield two molecules of a three-carbon compound, 3-phosphoglycerate, which are later used to make larger carbohydrates. In the competing reaction of oxygenation, the Rubisco–RuBP complex irreversibly captures O\textsubscript{2} and through similar steps of hydration and cleavage yields only one 3-phosphoglycerate molecule and one molecule of 2-phosphoglycolate. To retrieve the carbons in 2-phosphoglycolate a complicated process of photorespiration takes place, incurring a net loss of CO\textsubscript{2} (about one CO\textsubscript{2} molecule per two captured O\textsubscript{2} molecules) (5) and thus reduces the photosynthetic carboxylation rate.

The Rubisco-catalyzed carboxylation and oxygenation are known to exhibit effective Michaelis–Menten (MM) kinetics (Fig. 1B) (13). The MM parameters for carboxylation are the maximal carboxylation velocity \(v_C\), which combines the steps of hydration and cleavage, and the MM constant for CO\textsubscript{2} addition, \(K_C\), which represents the effective affinity of the carbon dioxide molecule to the enolized Rubisco–RuBP complex. The carboxylation rate per Rubisco molecule, \(R_C\), when RuBP is in saturation, takes the familiar MM form, \(R_C = v_C/(1 + K_C[CO_2])\). Addition of oxygen sequesters a fraction of the available Rubisco–RuBP complexes and is represented by the factor \([O_2]/[CO_2]\) in the denominator, where \(K_O\) is the effective MM constant for oxygen binding. A similar expression is derived for the rate of oxygenation per Rubisco molecule, \(R_O\) (Fig. 1B). The specificity of Rubisco, \(S\), is the ratio of the normalized carboxylation and oxygenation rates, \(S = (R_C/R_O) \cdot ([O_2]/[CO_2]) = (v_C/K_C)/(v_C/K_O) = \bar{k}_{nCO}/\bar{k}_{nO},\) which depends solely on the ratio of the addition rates. The CO\textsubscript{2} and O\textsubscript{2} concentrations that affect the kinetic parameters are not determined solely by the ambient habitat conditions. Many species developed CO\textsubscript{2} concentrating mechanisms (CCM) that enable the accumulation of CO\textsubscript{2} at the carboxylation site (14–16).

It has been suggested that the oxygenation, which leads to the low specificity of Rubisco, is an inherent side effect of biochemical constraints on the reaction (2, 3, 17, 18). However, the specificity \(S\) and other kinetic parameters do vary among species (9), which implies that selection pressure may play a role in shaping Rubisco in response to environmental changes. Correlations among the kinetic parameters from various organisms, in particular, the negative \(S\) versus \(v_C\) correlation (9, 19, 20), provide evidence for an interplay between constraints and selection and support an underlying structural mechanism (10). For example, Rubisco that has adapted to low CO\textsubscript{2}/O\textsubscript{2} ratios tends to have high specificity but, on the other hand, low \(v_C\).

Author contributions: Y.S., E.N., R.M., and T.T. performed research and wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: tsvi.tlusty@weizmann.ac.il.

This article contains supporting information online at www.pnas.org/cgi/content/full/0911663107/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.0911663107
In the following, we examine the interplay between the carboxylation and oxygenation pathway, this is followed by practically irreversible CO₂ addition, which is required for the completion of the carboxylation process. We also test the possibility of separate power law correlations for prokaryotes and eukaryotes (Fig. S1). However, the analysis shows that the form I prokaryotes follow almost the same trends as form I eukaryotes, thus suggesting that the more relevant division is into form I and form II Rubisco that are subject to different constraints. The dependence of KC, S, and KO/KC solely on Vₐ indicates that the effective one-dimensionality of the data. The extracted power laws manifest inherent trade-offs between the kinetic parameters of Rubisco. For example, the specificity S decreases like the square root of the carboxylation velocity Vₐ.

There are two evident outliers, the only form II Rubisco of R. rubrum and R. sphaeroides, which were therefore excluded from the fit. We also tested the possibility of separate power law correlations for prokaryotes and eukaryotes (Fig. S1). However, the analysis shows that the form I prokaryotes follow almost the same trends as form I eukaryotes, thus suggesting that the more relevant division is into form I and form II Rubisco that are subject to different constraints. The dependence of KC, S, and KO/KC solely on Vₐ indicates that the effective one-dimensionality of the data. The extracted power laws manifest inherent trade-offs between the kinetic parameters of Rubisco. For example, the specificity S decreases like the square root of the carboxylation velocity Vₐ.

Results

Kinetic Parameters of Rubisco Are Confined to an Effectively 1D Landscape. In the following, we examine the interplay between the biochemical constraints and the evolutionary selection pressure to optimize Rubisco by analyzing the correlations among the measured in vitro kinetic parameters (Vₑ, KC, S, KO) from various organisms. Fig. 24 presents the kinetic parameters of 28 Rubiscos collected from 27 species (Table S1), both eukaryotes and prokaryotes, which are divided into six groups: photosynthetic bacteria, cyanobacteria, green and nongreen algae, and C₃ and C₄ higher plants. A few forms of Rubisco are known: Form I (L₄S₈) is composed of eight large and eight small subunits whereas form II consists of only large subunits (4). The Rubisco we had information for and analyzed here are all of the more abundant form I except for the form II Rubisco of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides.

Each species in the data set corresponds to a point in a four-dimensional space whose coordinates are the four kinetic parameters Vₑ, KC, S, and KO. When the data points are plotted in logarithmic scale (Fig. 2B), they appear to follow a straight line, which indicates that the data reside in an effectively one-dimensional space. To quantify this observation of reduced dimensionality, we performed principal component analysis (PCA) of the data (Methods). The PCA amounts to rotating the coordinate system such that as much as possible of the variability in the data lies along one axis called the first principal component, which is actually the straight line that best represents the data in terms of least squares.

We analyze the data in terms of the four parameters that determine the rates of carboxylation and oxygenation, that is, Vₑ, KC, S, and KO, the ratio KC/KO, and S. Surprisingly, we find that the first principal component captures ~91% of the variability in the data (Methods) and therefore the data are indeed effectively one-dimensional. The data exhibit strong power law correlations (Fig. 2) (two significant digits are shown),

\[
K_C \propto V_e^{0.92 \pm 0.02}
\]

\[
K_C \propto V_e^{1.5 \pm 0.2}
\]

\[
S \propto V_e^{-0.51 \pm 0.01}
\]

Fig. 1. Carboxylation/oxygenation by Rubisco. (A) Rubisco catalyzes the addition of CO₂ or O₂ to D-ribulose 1,5 bisphosphate (RuBP). Rubisco binds RuBP to form a complex that undergoes enolization. In the case of carboxylation (Upper pathway), this is followed by practically irreversible CO₂ addition that results in a six-carbon intermediate. Through steps of hydration and cleavage, the reaction produces two molecules of 3-phosphoglycerate (3-PGA). (B) Oxygenation follows similar steps (Lower pathway), through a five-carbon intermediate, and results in one 3-PGA and one 2-phosphoglycolate (2-PGY) (12). The Rubisco-catalyzed carboxylation and oxygenation exhibit effective Michaelis–Menten (MM) kinetics. The carboxylation rate per Rubisco molecule, Rₐ, and oxygenation rate per Rubisco molecule, Rₐe, when RuBP is in saturation, take the familiar MM form (see equations in the figure). The effective kinetics consist of two irreversible steps. The effective gas binding (kₑ,C and kₑ,O), which consists of the enolization of the Rubisco–RuBP complex, whose fraction is r = kₑ,C / kₑ,C + kₑ,O, and gas addition, determined by the rates kₑ,C and kₑ,O. This is followed by effective catalysis (Vₑ and VₑO), which includes the steps of hydration and cleavage. The MM constants for gas addition, Kₑ,C and Kₑ,O, are the effective affinities of the CO₂ and O₂ molecules to the Rubisco–RuBP complex (Methods).
Fig. 2. Power law correlations among kinetic parameters of Rubisco define the 1D landscape. (A) The four kinetic parameters of 28 Rubiscos from 27 species (Table S1): the effective Michaelis–Menten (MM) constant for CO₂ binding, K_C [μM]; the maximal carboxylation rate, v_C [1/sec]; the specificity, S; and the effective MM constant for O₂ binding, K_P [μM]. The parameters K_C and S are found for all 28 Rubiscos. For 25 Rubiscos K_P is known and for 16 Rubiscos all of the kinetic parameters are available. All Rubiscos in the dataset are of the more abundant form I besides the form II Rubiscos from R. rubrum and R. sphaeroides. (B) (Top Left) A 3D projection of the 4D kinetic parameter data. Data from the 16 species for which all four kinetic parameters are available are graphed in logarithmic scale. Each of the 16 species is represented by a point whose coordinates are its v_C, K_C, and S (blue circles). The plot depicts the PCA result that the data are confined to an effectively 1D space and follow, in logarithmic scale, a straight line (blue cylinder). The cylinder axis is the first principal axis and its radius is the standard deviation from this axis. There is one evident outlier (blue triangle), the Rubisco from R. rubrum, the only form II Rubisco in this set. (Top Right and Bottom) Total least-squares fit of the data from all 28 Rubiscos (Methods) to a 1D power law model (black lines). The fits are plotted in logarithmic scale and exhibit clear power law correlations between the kinetic parameters. The correlation coefficient, r, and the P value, p, are shown. As before, there are clear outliers (black triangles) that correspond to the form II species, R. rubrum and R. sphaeroides. Note that deviations of form II species from the model are significant mostly in its projections onto the specificity parameter S.

Adaptation of Rubisco in the 1D Landscape Is Nearly Optimal. A longstanding question is the level of adaptation of Rubisco to its environment. The correlations between the kinetic parameters suggest the existence of underlying biochemical and structural limitations that constrain the evolution of Rubisco. The power law relations between the kinetic parameters of Rubisco depict an effectively one-dimensional landscape that allows us to quantitatively examine the optimality of Rubisco under these “design constraints.” As a measure of the fitness of Rubisco we use the net photosynthesis rate (NPR) per Rubisco molecule, f, which is the difference between the fixed CO₂ and the CO₂ lost due to oxygenation (24). For each fixed mole of O₂ molecule $t \approx \frac{1}{2}$ mol of CO₂ is lost and the NPR is therefore, $f = v_C - t \cdot K_C$. The NPR depends on the four parameters, v_C, K_C, S, and K_P/K_O. However, these parameters are not independent and thus the NPR is a 1D landscape determined by one kinetic parameter, for example v_C, $f = \frac{v_C - 3 \times 10^{-3} \cdot ([O_2]/[CO_2])^{1/2} \cdot v_C^{3/2} + 5 \times 10^{-3} \cdot ([O_2]/[CO_2]) \cdot v_C^{1/2}}{1 + 1.3 \cdot v_C^2/[CO_2] + 5 \times 10^{-3} \cdot ([O_2]/[CO_2]) \cdot v_C^{1/2}}$.

where the concentrations are given in micromoles and v_C in units of 1/sec. The NPR in a given intracellular environment exhibits a clear maximum as a function of v_C. For example, Rubisco of C₃ plants, which lack a CCM, operate at [CO₂] of ~7–8 μM, whereas Rubisco of C₄ plants, which have a CCM, experience CO₂ concentrations that are at least 10 times larger (25). Comparison of the optimal v_C to the measured ones (Fig. 4A) indicates that the Rubisco from C₄ plants is nearly optimal at [CO₂] = 80 μM whereas C₃ plants are too slow for this environment. In the absence of oxygen ([O₂] = 0) the NPR is simply the carboxylation rate, $f = v_C = \frac{v_C (1 + K_C/CO_2)}{1}$ and the evidence optimum is the direct outcome of the trade-off between the CO₂ affinity and the carboxylation velocity, $K_C \sim v_C^2$. At the limit of low v_C, K_C is also low ($K_C << [CO_2]$) and the enzyme is in saturation. Thus, f increases linearly with v_C, $f \sim v_C$. At the other extreme of high v_C and K_C ($K_C \gg [CO_2]$) the NPR decreases due to the fact that the affinity increases faster than the velocity and thus, $f \sim 1/v_C$. We find simple expressions for the optimal values of the kinetic parameters that bring f to its optimum f^* in an anaerobic environment:

$$v_C^* \approx 0.86 \cdot [CO_2]^{1/2}$$

$$K_C^* \approx [CO_2]$$

$$S^* \approx 164 \cdot [CO_2]^{-1/4}$$

where f^* is the maximum NPR and is about half of the maximal carboxylation velocity, $f^* \sim v_C^*/2 \approx 0.43 \cdot [CO_2]^{1/2}$ s⁻¹. The coefficient of the specificity power law of ~160 indicates a difference between the gas addition barriers of ~3–5 k_BT that coincides with previous estimations (23).

In aerobic environments, the presence of oxygen reduces the net photosynthesis in two ways (Fig. 4A and B), sequestering a fraction for independently. Another possibility is that due to the relatively low O₂ concentrations, which are rarely above K_O (Fig. 2A), the strongly selected quantity is $K_{in,CO} = v_C/K_O$ and not v_C itself.
of the available Rubisco, akin to competitive inhibition, and the loss of CO₂ due to O₂ fixation, which substracts from f a factor of h – R₂O. Because of these two effects, the presence of oxygen shifts the optimal carboxylation velocity vC* to lower values, overall improving the specificity and reducing oxygen addition. For example, for [CO₂] = 80 μM, oxygen levels of 260 μM lead to a reduction of ~17% in NPR and 7% in vC* due to Rubisco sequestering, whereas another 3% reduction in NPR and 1% in vC* is due to O₂ fixation (Fig. 4A). It is evident that the optimal value of the carboxylation velocity vC* is dictated by the concentration of CO₂ and both effects of oxygen are only smaller corrections. Approximate expressions that include the effect of oxygen on the optimal kinetic parameters are

\[v_C^* = 0.86 \cdot [CO₂]^{1/2} (1 - \delta_O) \]

\[K_C^* = [CO₂] (1 - 2 \cdot \delta_O) \]

\[S_C^* = 164 \cdot [CO₂]^{-1/4} (1 + 0.5 \cdot \delta_O) \]

The small parameter \(\delta_O = 10^{-3} \cdot [O₂][CO₂]^{-1/4} \) accounts for the effect of oxygen, which for all relevant conditions ranges between

Fig. 3. The free energy trade-offs. (A) Representation of the effective Michaelis–Menten (MM) kinetics in terms of free energy profiles. The effective kinetics consist of two irreversible steps, effective gas binding (i.e., enolization and gas addition) and effective catalysis (i.e., hydrolysis and cleavage) (Fig. 1B), which correspond to two effective energy barriers. The first energy barriers are related to the rates of effective gaseous addition, \(k_{on-C} \sim \exp(-\Delta G_{1,C}) \) and \(k_{on-O} \sim \exp(-\Delta G_{1,O}) \). The second barriers are linked to the effective catalysis rates, \(k_{cat-C} \sim \exp(-\Delta G_{2,C}) \), \(v_C \sim \exp(-\Delta G_{2,O}) \). The specicity depends on the difference between the first energy barriers, \(S = \exp(\Delta G_{1,O} - \Delta G_{1,C}) \). (B) The power law correlation \(k_{on-C} \sim k_{cat-C} \sim 1/v_C \) (solid line, triangle is the R. rubrum outlier), indicates that a shift in the carboxylation barrier, \(\Delta G_{1,C} \), is accompanied by a shift by the same magnitude in the CO₂ addition barrier, such that their sum is conserved, \(\Delta G_{1,C} + \Delta G_{2,C} = \Delta G_{1,O} = \Delta G_{2,O} \). The change in \(\Delta G_{1,C} \) involves only a shift in the intermediate energy level but may also involve the shift in the catalysis transition-state level. (C) Another trade-off arises from the correlation between the effective addition rates of CO₂ and O₂, \(k_{on-C} = v_C/k_{cat-C} \sim 1/v_C \) (solid line, triangle is the R. rubrum outlier). This indicates that a decrease in the CO₂ addition barrier, \(\Delta G_{1,C} \), is associated with a smaller (by a factor of 3) decrease in the O₂ addition barrier, \(\Delta G_{1,O} \), such that \(0.5 \cdot \Delta G_{1,C} - \Delta G_{2,O} = \Delta G_{1,O} \). The negative correlation between \(v_C \) and \(S \) is the outcome of the two trade-offs. As \(v_C \) decreases, \(k_{on,C} \) increases and, as a result, \(k_{on,O} \) also increases, but by a smaller factor, and the difference between the gas addition barriers increases resulting in a decrease of the specificity, \(S = \exp(\Delta G_{1,O} - \Delta G_{1,C}) \).

The average photorespiration factor, 0.5

\[0.5 = \frac{[CO₂] - [CO₂]^*}{[CO₂]} \]

is accompanied by a shift by the same magnitude in the CO₂ concentration. \([CO₂]^* \approx 80 \mu M \), is optimal in the CO₂-rich environment, \([CO₂]^* \approx 240 \mu M \), CO₂ plants, algae, and photosynthetic bacteria are optimal at intermediate CO₂ levels, \([CO₂]^* \approx 30–80 \mu M \). C₃ plants and nongreen algae, which are suspected to lack CCM, are optimal at low CO₂ levels, \([CO₂]^* \approx 5–15 \mu M \).

Fig. 4. The optimality of Rubisco. (A) Carboxylation rate, \(R_C \), oxygenation rate, \(R_O \), and net photosynthesis rate (NPR), \(f = R_C - 0.5 \cdot R_O \), as a function of carboxylation velocity, \(v_C \), for \([CO₂] = 80 \mu M \). In an anaerobic environment the NPR equals the carboxylation rate, \(f = R_C ([O₂] = 0) \) (blue dashed line) and exhibits a clear optimum. The presence of oxygen, \([O₂] = 260 \mu M \), reduces the NPR (green line) in two ways: \(R_C \) (blue line) is reduced because oxygen sequesters a fraction of the available Rubisco, an effect that is responsible for most of the NPR decrease. A smaller reduction of the NPR is due to the photorespiration factor, 0.5 – R₂O (red line). The presence of oxygen shifts the optimal carboxylation velocity \(v_C^* \) toward lower values (4). Most of the shift in \(v_C^* \) is due to the decrease in \(R_C \) rather than the increase in \(R_O \). For example, \(C₃ \) plants that operate at \([CO₂] = 7–8 \mu M \) are far from the optimal values for \([CO₂] = 80 \mu M \). However, \(C₄ \) plants possess CCM and operate at CO₂ concentrations that are at least 10 times larger than those of \(C₃ \) plants and their carboxylation rates are nearly optimal at \([CO₂] = 80 \mu M \). (B) The NPR as a function of \(v_C \) for three environments, \([CO₂] = 10, 80, \) and 250 μM, which correspond to groups with no CCM (\(C₃ \) plants and some algae), medium-range CCM (\(C₄ \) plants, some algae, and photosynthetic bacteria), and strong CCM (cyanobacteria). The average \(v_C \) of each class is plotted to be close to the values that yield maximal NPR. The solid and dashed curves correspond to aerobic and anaerobic conditions, \([CO₂] = 260 \) and 0 μM, respectively. The optimal parameters of Rubisco are determined mostly by the CO₂ concentration. (C) The CO₂ environments that are predicted to be optimal to the observed \(v_C \) from Eq. 4 (dashed line, anaerobic; solid line, \([O₂] = 260 \mu M \)), Cyanobacteria are optimal in the CO₂-rich environment, \([CO₂]^* \approx 240 \mu M \), \(C₃ \) plants, algae, and photosynthetic bacteria are optimal at intermediate CO₂ levels, \([CO₂]^* \approx 30–80 \mu M \). \(C₄ \) plants and nongreen algae, which are suspected to lack CCM, are optimal at low CO₂ levels, \([CO₂]^* \approx 5–15 \mu M \).
0 and 15%. In other words, the specificity of Rubisco is not the main determinant of its efficiency but rather the \(v_C-K_C \) trade-off between the carboxylation velocity and affinity is the dominant effect. The resulting optimal NPR is reduced by the presence of oxygen as \(f^* = 0.45 \cdot [\text{CO}_2]\) and the reduction ranges between 0 and 30%.

To further examine the optimality of Rubisco, we have to consider the intracellular environments of various organisms that are characterized by the concentrations of carbon dioxide and oxygen at the carboxylation site. Many species have the capacity to increase the local concentration of \(\text{CO}_2 \) above the passive concentration by CCM. Therefore, besides the environment of \([\text{CO}_2] = 80 \, \mu \text{M} \), which corresponds to medium-range CCM (some \(C_3 \) plants, some algae, and anaerobic bacteria) \((15, 16, 25-28)\), we also plot the net photosynthesis rate for two other typical carbon dioxide concentrations (Fig. 4B): \([\text{CO}_2] = 10 \, \mu \text{M} \), which corresponds to the groups of no CCM (\(C_3 \) plants and some algae) \((14-16, 28)\), and \([\text{CO}_2] = 250 \, \mu \text{M} \), which corresponds to strong CCM (cyanobacteria) \((15, 16, 28, 29)\). As there is only limited knowledge of the accurate values of \([\text{CO}_2] \) and \([\text{O}_2] \) for each species, the values we use are merely gross estimates that represent coarse classification into three typical environments.

For all classes of species, we find that the observed carboxylation velocity and \(\text{CO}_2 \) effective binding affinity are close to the optimal values, \(v_C^* \) and \(K_C^* \). This is also demonstrated in Fig. 4C, which shows the optimal environment, \([\text{CO}_2]^*\), that corresponds to a measured carboxylation velocity. We find that the cyanobacteria are optimal in a \(\text{CO}_2 \)-rich environment, \([\text{CO}_2]^* \approx 240 \, \mu \text{M} \), whereas \(C_3 \) plants, algae, and photosynthetic bacteria are optimal in intermediate \(\text{CO}_2 \) levels, \([\text{CO}_2]^* \approx 30-80 \, \mu \text{M} \). Finally, \(C_3 \) plants and nongreen algae that are believed to lack CCM are optimal at \(\text{CO}_2 \) levels of \(5-15 \, \mu \text{M} \). As a measure for the performance of Rubisco, it is instructive to look at a landscape of the normalized NPR (Fig. 5A), where a value of unity means that the Rubisco performs at the maximal possible NPR for the given environment.

Discussion

Several scenarios could lead to the observed effectively one-dimensional landscape (Fig. 5B). The constraints may be strict and all feasible kinetic parameters are therefore close to the line. In another scenario, the constraints are only upper limits on the kinetic parameters and it is selection that pushes Rubisco to this limit. In both cases, the resulting observed landscape is one-dimensional, but the two scenarios differ in the accessible phenotypes. In the first, mutations cannot yield phenotypes far from the line, whereas in the latter, phenotypes far from the line are feasible but are expected to vanish rapidly by the strong selective forces. A hint that supports the latter scenario comes from the observed fluctuations of the kinetic parameters around the line. Combinations of parameters that strongly affect the NPR tend to exhibit much smaller variability. For example, the NPR does not depend directly on \(K_O \) but rather on the affinity ratio \(K_C/K_O \) (Fig. 1). Indeed, the correlation coefficient between \(K_O \) and \(v_C \) is \(\sim 0.5 \), indicating large overlap, whereas the correlation coefficient between \(K_C \) and \(v_C \) is much larger, 0.95. A possible experimental test that could map the accessible phenotypes is a statistical survey of Rubisco phenotypes (i.e., their kinetic parameters) resulting from point mutations.

The fact that the only outliers are the form II Rubisco of \(R. \, \text{rubrum} \) and \(R. \, \text{sphaeroides} \), which lack the small subunits of form I, may indicate that the two forms of Rubisco may be subject to different constraints. Measurements of the activity of isolated large subunits, especially from the Rubisco of \(\text{Synechococcus} \) \((32-35)\), indicate that the \(v_C \) is drastically reduced whereas the specificity is relatively unchanged. However, the main deviation of the form II Rubisco from the correlations is in the specificity \(S \) (Fig. 2B and C) whereas its \(K_C \) and \(v_C \), which are the main determinants of the NPR, obey the same power law correlations of the form I Rubisco. This may hint that this trade-off is linked to the large subunit, whereas the trade-off between \(k_{\text{on,C}} \) and \(k_{\text{on,O}} \) is related to the small subunit. Measurements of other form II Rubisco may further clarify the origin of this deviation.

Our analysis yields simple quantitative predictions for the response of Rubisco to changing environments (Eq. 4), which can be experimentally tested. For example, one may vary the ambient \(\text{CO}_2 \) levels or alternatively manipulate the CCM to affect the concentration at the carboxylation site. We expect that the kinetic parameters of Rubisco will adapt to the change to optimize its performance. Another possibility is to replace the Rubisco of one species by a heterologous Rubisco from a species that lives in a different environment and trace its adaptation to the environment of the host organism. We note that the NPR, \(f \), measures the effect of Rubisco on fitness and that the overall fitness of a species should take into account resources (light, water, etc.). However, our conclusion regarding the one-dimensional landscape of Rubisco does not depend on the measure of optimality.

Our results indicate that Rubisco is close to optimality in the NPR and therefore cannot be significantly improved by point mutations. To improve the performance of Rubisco one may perhaps focus on improving the CCM rather than mutating the Rubisco itself. Nevertheless, the results do not preclude the possibility that a drastic change, such as the change between forms I and II, may result in Rubisco that is subject to different constraints, which may perhaps allow better performance.

Savir et al.

PNAS | February 23, 2010 | vol. 107 | no. 8 | 3479
Here we show that Rubisco sets an example for a protein whose plasticity is confined to a low-dimensional landscape by underlying constraints. In this confined landscape, selection forces drive it toward optimality. It demonstrates how the interplay between selection and constraints limits the plasticity of proteins and their ability to explore the phenotype space to improve their fitness. Similar trade-offs may shape the evolution of other multistage enzymes.

Methods

Effective Michaelis–Menten Parameters. The CO$_2$/O$_2$ addition to the enolized Rubisco–RubP complex is practically irreversible, $k_{\text{a}} \cdot k_{\text{cat}} \cdot k_{\text{off}} > 0$ (12, 36) and thus the apparent Michaelis–Menten constants for CO$_2$ addition (K_{CO_2}) and O$_2$ addition (K_{O_2}) are (Fig. 1b) $K_{\text{CO}_2} = (v_{\text{CO}_2}k_{\text{a}} + k_{\text{cat}}k_{\text{off}})$ and $K_{\text{O}_2} = (v_{\text{O}_2}k_{\text{a}} + k_{\text{cat}}k_{\text{off}})$.

$\alpha = 0$ and $v = k_{\text{a}} + k_{\text{cat}}k_{\text{off}}$. If the gaseous addition and hydration are concerted, then $v = k_{\text{a}} + k_{\text{cat}}k_{\text{off}}$ and $v = k_{\text{a}}k_{\text{off}}$.

The confidence bounds (95%) for the prefactor and the exponent are in brackets. In the total loss-squares process, we excluded two evident outliers, the form II of *R. rubrum* and *R. sphaeroides* (R. sphaeroides was not part of the PCA data).

ACKNOWLEDGMENTS. We thank J. Berry, G. Farquhar, A. Kaplan, I. Matsumura, A. Bar-Even, L. Almola, U. Alon, M. Gurevitz, Y. Marcus, E. Moses, Y. Hart, M. Holbrook, D. Bensimon, A. Libchaber, P. Gulubinoff, and A. Schertz and the support of the Minerva foundation and Israel Science Foundation.

PCA and Total-Least-Squares Analysis. The data set contains four variables that determine the NPR (K_{CO_2}, v, K_{O_2}, and K_{O_2}) and represents points in a 4D space. For 28 Rubiscos K_{CO_2} and K_{O_2} are known. From these 28, for 25 Rubiscos K_{CO_2} is known and from these 25, for 16 Rubiscos v is known. We performed PCA (40) on the data from the 16 Rubiscos for which all four kinetic parameters are available, excluding the form II of *R. rubrum* outliers. The eigenvalues of the covariance matrix (the latent vector) are [3.6, 0.25, 0.09, 0.02] and their proportion are [91%, 6%, 2%, 1%]. To account for the rest of the Rubiscos, we performed a total least-squares fit on the entire set. We find the parameters that minimize the distance between the data points in a low-rank curve fit.