Abstract. We present some new nonparametric estimators of entropies and we establish almost sure consistency and central limit Theorems for some of the most important entropies in the discrete case. Our theoretical results are validated by simulations.

1. Introduction

1.1. Motivation. Consider an outcome A of a random experiment on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The information amount or content of the outcome A is (see Carter (2014))

$$I(A) = \log_2 \frac{1}{\mathbb{P}(A)},$$

where \log_2 is the logarithm base 2.

Let X be a discrete random variable defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and taking values in the finite countable space $X = \{c_1, c_2, \cdots, c_r\}$ with set of all possible values of X.

The probability distribution $p = (p_j)_{j=1, \cdots, r}$ of the events $(X = c_j)$, coupled with the information amount of every event $I(X = c_j)_{j=1, \cdots, r}$, forms a random variable whose expected value is the average amount of information, or entropy (more specifically, Shannon entropy) generated by this distribution.

Definition 1. Let X be a discrete random variable defined on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and taking values in the finite countable space $X = \{c_1, c_2, \cdots, c_r\}$ with $r \geq 2$ with probabilities mass function (p.m.f.) $(p_{\cdot, j})_{j=1, \cdots, r}$, that is, $p_j = \mathbb{P}(X = c_j) \quad \forall j \in J = \{1, \cdots, r\}$.

The Shannon entropy of the random variable X is given by

$$E_{Sh}(X) = \sum_{j=1}^{r} p_j \log_2 \frac{1}{p_j} = \mathbb{E}(\log_2(p)).$$

Entropy is usually measured in bits (binary information unit) (if \log_2), nats (if \ln), or hartley (if \log_{10}), depending on the base of the logarithm which is used to define it.

For ease of computations and notation convenience, we use the natural logarithm (\ln) since logarithms of varying bases are related by a constant.

In the sequel, we consider the entropy of the discrete random variable X as a function of discrete probabilities $p = (p_j)_{j \in J}$.

1.2. Generalizations of Shannon entropy. Inspired by the study of α-deformed algebras and special functions, various generalizations have been investigated.

Most notably, Rényi (1960) proposed a one parameter family of entropies extending Shannon entropy.
(b) The α–Rényi entropy of the random variable X is defined by

$$E_{R,\alpha}(p) = \frac{1}{1-\alpha} \ln \left(\sum_{j=1}^{r} p_j^\alpha \right),$$

with $\alpha \in (0,1) \cup (1, +\infty)$, which, in particular, reduces to the Shannon entropy in the limit $\alpha \to 1$.

(c) Also, the α–Tsallis entropy of the random variable X defined by (see Tsallis (1988)) :

$$E_{T,\alpha}(p) = \frac{1}{1-\alpha} \left(\sum_{j=1}^{r} p_j^\alpha - 1 \right), \quad \alpha \in (0,1) \cup (1, +\infty)$$

has generated a large burst of research activities.

Let cite a few other examples of entropies.

(d) The α–Landsberg-Vedral entropy also called normalized Shannon entropy of the random variable X is defined by (see Landsberg & Vedral (1998)) :

$$E_{L.V,\alpha}(p) = \frac{1}{1-\alpha} \left(1 - \frac{1}{\sum_{j=1}^{r} p_j^\alpha} \right) = \frac{E_{T,\alpha}(p)}{\sum_{j=1}^{r} p_j^\alpha}, \quad \alpha \in (0,1) \cup (1, +\infty).$$

(e) The α–Abe entropy of the random variable X is defined by (see Abe (1997)) :

$$E_{Ab,\alpha}(p) = -\frac{1}{\alpha - \alpha^{-1}} \sum_{j=1}^{r} (p_j^\alpha - p_j^{\alpha^{-1}}), \quad \alpha \in (0,1) \cup (1, +\infty).$$

(f) The κ-entropy of the random variable X is defined by the following expression (see Kaniadakis (2002)) :

$$E_{\kappa}(p) = \frac{1}{2\kappa} \sum_{j=1}^{r} (p_j^{1-\kappa} - p_j^{1+\kappa}), \quad \kappa \in (0,1).$$

(g) The Varma’s entropy of order α and type β of the random variable X is defined by

$$E_{V,\alpha,\beta}(p) = \frac{1}{\beta - \alpha} \ln \left(\sum_{j=1}^{r} p_j^{\alpha + \beta - 1} \right), \quad \text{for} \quad \beta - 1 < \alpha < \beta, \quad \beta \geq 1.$$

Interestingly, the Landsberg-Vedral and κ entropies reduce to the Shannon entropy in the limit $\alpha \to 1$ and $\kappa \to 0$ respectively.

From this small sample of entropies, we may give the following remarks :

(a) For most entropies, we may have computation problems. So without loss of generality, suppose

$$p_j > 0, \quad \forall j \in J = \{1, \cdots, r\} \quad \text{(BD)}.$$
and Poczos (2014), Krishnamurthy et al. (2014), Hall (1987), to cite a few.

(b) The power sum of order \(\alpha \in (0, 1) \cup (1, +\infty) \) of the distribution \(p \) over \(\{c_j, j \in J\} \) is

\[
S_\alpha(p) = \sum_{j \in J} p_j^\alpha,
\]

and, is related to Reyni, Tsallis, Landsberg-Vedral, Abel, \(\kappa \), and Varma entropies via

\[
E_{R,\alpha}(p) = \frac{1}{1 - \alpha} \ln (S_\alpha(p)), \quad E_{T,\alpha}(p) = \frac{1}{1 - \alpha} (S_\alpha(p) - 1),
\]

\[
E_{L.V,\alpha}(p) = \frac{1}{1 - \alpha} \left(1 - \frac{1}{S_\alpha(p)}\right), \quad E_{Ab,\alpha}(p) = -\frac{1}{\alpha - \alpha^{-1}} (S_\alpha(p) + S_{\alpha^{-1}}(p)),
\]

\[
E_{\kappa}(p) = \frac{1}{2\kappa} (S_{1-\kappa}(p) - S_{1+\kappa}(p)), \quad \text{and} \quad E_{V,\alpha,\beta}(p) = \frac{1}{\beta - \alpha} \ln (S_{\alpha+\beta-1}(p)).
\]

Hence establishing asymptotic limits of estimators of these ones is equivalent to establishing asymptotic limits of \(S_\alpha(\hat{p}_n) \).

1.3. Bibliography and applications. Although we are focusing on the aforementioned entropies in this paper, it is worth mentioning that there exist quite a few number of them.

Let us cite for example the ones named after: Fuzzy Entropy (see Luca & Termini (1972), Bhandari & Pal (1993), Kosko (1986), Pal & Bezdek (1994), Yager (2000)), Havrda-Charvát entropy (see Havrda & Charvát (1967)), Generalized Entropy also called \(f \)-divergence (see Liese & Vajda (2006), Balestrino et al. (2009)), Frank-Daffertshofer entropy (see Frank & Daffertshofer (2000)), Kapur measure (see Kapur (1986)), Hartley entropy, min entropy and max entropy (see Dodis el al. (2008)), collision entropy etc.

Recently, there have been made several successful attempts in order to categorize the various entropy classes and their properties: Hanel & Thurner (2011), Hanel et al. (2014) classified the entropies according to their asymptotic scaling. Tempesta (2011) studied the Generalized entropies also called \(f \)-divergence (see Liese & Vajda (2006), Balestrino et al. (2009)), Frank-Daffertshofer entropy (see Frank & Daffertshofer (2000)), Kapur measure (see Kapur (1986)), Hartley entropy, min entropy and max entropy (see Dodis el al. (2008)), collision entropy etc.

Before coming back to our entropies estimation of interest, we want to highlight some important applications of them.

Indeed, entropy has proven to be useful in applications. Let us cite some of them:

(a) The entropy concept was born initially in thermodynamics by Clausius (1870) to measure the ratio of transferred heat through a reversible process in an isolated system and to measure of uncertainty about the system that remains after observing its macroscopic properties (pressure, temperature or volume). Since then, entropy has been of great theoretical and applied interest.

(b) In finance, Philippatos & Wilson (1972) were the first two authors who applied the concept of entropy to portfolio selection. It has been used as a risk measure for stock, for portfolio returns, for portfolio diversifications (see Ormos & Zibriczky (2014)), it has been applied as measure of investment risk in the discrete case (see Nawrocki & Harding (1986)), as well as a measure of dependence in return time series (see Maasoumi & Racine (2002)).

(c) While a significant number of other entropies have since been introduced, Rényi entropy is especially important because it is a well known one parameter generalization of Shannon entropy. It is often used as a bound on Shannon entropy (see Mokkadem (1989), Nemenman (2004), Harvey (2008), and
it replaces Shannon entropy as a measure of randomness (see Csiszár (1995), Massey (1994), Arikan (1996), etc.). It generalizes also Hartley, collision, and min-entropy. It has successfully been used in a
number of different fields, such as statistical physics, quantum mechanics, communication theory and
data processing (see Jizba & Arimitsu (2004), Csiszár (1995)), in the context of channel coding (see
Arimoto (1977)), secure communication (see Cachin (1997)), and Ayashi (2011)), multifractal analysis
(see Jizba & Arimitsu (2004)).

In the context of fractal dimension estimation, Rényi entropy forms the basis of the concept of gen-
eralized dimensions. It intervene as well in ecology and statistics as index of diversity.

Rényi entropy is also of interest in its own right, with diverse applications in unsupervised learning (see
Xu (1998), Jenssen et al. (2003), source adaptation (see Mansour et al. (2012), image registration (see
Ma et al. (2000), see Neemuchwala et al. (2006), and password guessability (see Arikan (1996), Pfister
and W. Sullivan (2004), Hanawal and R. Sundaresan (2011) among others. In particular, the Rényi
entropy of order 2 measures the quality of random number generators (see Knut (1973)), Oorschot and
M. J. Wiener (1999), determines the number of unbiased bits that can be extracted from a physical
source of randomness see Impagliazzo and Zuckerman (1989), Bennett et al. (1995), helps test graph
expansion Goldreich and Ron (2000) and closeness of distributions Batu et al. (2013), and characterizes
the number of reads needed to reconstruct a DNA sequence Motahari et al. (2013).

The Rényi entropy is important in ecology and statistics as index of diversity. It is also important in
quantum information, where it can be used as a measure of entanglement.

e) Varma’s entropy plays a vital role as a measure of complexity and uncertainty in different areas
such as physics, electronics and engineering to describe many chaotic systems

f) In the context of multi-dimensional harmonic oscillator systems, the Sharma–Mittal entropy has
previously been studied (see Uzengi et al. (2008)).

1.4. Previous work. The estimation of entropies have become growingly important for their wide
applications in the fields of neural science and information theory, etc.

For example Shannon entropy estimation has several applications, including measuring genetic diversity
(see Shenkin et al. (1991), quantifying neural activity (see Paninski (2003)), see Nemenman (2004),
network anomaly detection Lall et al. (2006), and others.

Most texts on entropy estimation deal with Shannon entropy estimation and use the plug-in method.

Xing (2013) showed that, if \{p_j, j \geq 1\} is non uniform distribution satisfying \(\mathbb{E}(\log P_X)^2 < \infty\),
and if there exists an integer valued function \(J(n)\) such that, \(J(n) \to +\infty, \quad J(n) = o(\sqrt{n})\) and
\(\sqrt{n} \sum_{j \geq J(n)} p_j \log p_j \to 0\), as \(n \to \infty\), then
\[
\sqrt{n}(\mathcal{E}_{Sh}(\hat{p}_n) - \mathcal{E}_{Sh}(p)) \sim N(0, \sigma_{Sh}^2(p)) \quad \text{as} \quad n \to +\infty
\]
where \(\sigma_{Sh}^2(p) = Var(-\log P_X) > 0\).

Zhang (2012) proposed a non parametric estimator of Shannon’s entropy on a countable alphabet
\[
\mathcal{E}^{(Z)}(\hat{p}_n) = \sum_{\ell=1}^{n-1} \ell \left\{ \frac{n^{\ell+1}[n-(\ell+1)]!}{n!} \sum_j \hat{p}_{nj}^{\ell-1} \prod_{i=0}^{\ell-1} \left(1 - \hat{p}_{ni} - \frac{i}{n} \right) \right\}
\]
and established that
\[
\mathbb{E} \left(\mathcal{E}^{(Z)}(\hat{p}_n) \right) - \mathcal{E}(p) = O \left(\frac{(1-p_0)^n}{n} \right)
\]
where \(p_0 = \min_{j \in J} \{ p_j \} \).

Later on Miller (1955), Basharin (1959), and Harris (1975) established that

\[
\mathbb{E} (\mathcal{E}_{Sh}(\hat{p}_n) - \mathcal{E}_{Sh}(p)) = -\frac{r-1}{2n} + \frac{1}{12n^2} \left(1 - \sum_{j=1}^r \frac{1}{p_k} \right) + O(n^{-3})
\]

\[
\text{Var} (\mathcal{E}_{Sh}(\hat{p}_n)) = \frac{1}{n} \left(\sum_{j=1}^r p_j \ln p_j \right)^2 - \left(\mathcal{E}_{Sh}(p) \right)^2 + \frac{r-1}{2n^2} + O(n^{-3})
\]

Antos & Kontoyiannis (2001) proved that

\[
\mathbb{E} (\mathcal{E}(\hat{p}_n) - \mathcal{E}(p)) \sim n^{-(\lambda - 1)/\lambda} \quad \text{and} \quad \text{Var} (\mathcal{E}(\hat{p}_n)) \leq O \left(\frac{(\log n)^2}{n} \right)
\]

provided that the probability distribution \((p_j)_{j \in J}\) satisfies \(p_j = C \lambda^j \), where \(\lambda > 1 \).

Under distributions \(p_j = C j^{-\lambda} \), a necessary condition for

\[
\sqrt{n} (\mathcal{E}(\hat{p}_n) - \mathcal{E}(p))
\]

to hold asymptotic normality is \(\lambda \geq 2 \).

Acharya (2016) focused on the number of samples needed to estimate the \(\alpha \)-Reyni entropy.

However, to our knowledge, no results regarding the almost sure consistency and the asymptotic normality of the most of entropies, are known.

1.5. Main contribution.

Most texts on entropy estimation deal with Shannon entropy estimation whereas we deal with estimation of the most common entropies including Shannon, Tsallis, Reyni, Landsberg-Vedral, Abel entropies, etc by deriving their almost sure convergence and central limit Theorems.

Our method consist in getting first general laws for an arbitrary summation of the form

\[
J(p) = \sum_{j \in J} \phi(p_j),
\]

where \(\phi : (0, 1) \to \mathbb{R} \) is a twice continuously differentiable function.

The results on the summation \(J(p) \), which is also known under the name of \(\phi \)-entropy summation, will lead to results of entropies already mentioned above.
1.6. Overview of the paper.

The rest of the paper is organized as follows. In Section 2, we define estimators \(p_n^c_j \) of the p.m.f \(p_j \) and construct the plug-in estimators of the \(\phi \)–entropy summation \(J(p) = \sum_{j \in J} \phi(p_j) \), where \(\phi \) is a twice continuous differentiable function, from an i.i.d. sample of size \(n \) and according to \(p \). We end this section by giving our full results for the summation \(J(p) \).

In Section 3, we will particularize the results for specific entropies we already described. Section 4 provides the proofs and in Section 5 we present some simulations confirming our results. Finally, in Section 6, we conclude.

2. \(\phi \)–Entropy summation

2.1. Notations and main results.

Let \(X \) be a random variable defined on the probability space \((\Omega, \mathcal{A}, P)\) and taking values \(X = \{c_1, c_2, \cdots, c_r\} \) with p.m.f \(p = (p_j)_{1 \leq j \leq r} \) i.e.,

\[p_j = P(X = c_j), \quad \forall j \in J = \{1, 2, \cdots, r\}. \]

In general, the full probability distribution \(p = (p_j)_{1 \leq j \leq r} \) is not known and, in particular, in many situations only sets from which to infer entropies are available.

For example, it could be of interest to determine the entropies of a given DNA sequence. In such a case, one could estimate the probability of each element \(c_i \) to occur, \(p_i \).

Let \(X_1, \cdots, X_n \) be \(n \) i.i.d. random variables according to \(p \). For a given \(j \in J \), define the easiest and most objective estimator of \(p_j \), based on the i.i.d sample \(X_1, \cdots, X_n \), by

\[
\hat{p}_n^c_j = \frac{1}{n} \sum_{i=1}^{n} 1_{c_j}(X_i)
\]

where \(1_{c_j}(X_i) = \begin{cases} 1 & \text{if } X_i = c_j \\ 0 & \text{otherwise} \end{cases} \) for any \(j \in J \).

For a given \(j \in J \), this empirical estimator \(\hat{p}_n^j \) of \(p_j \) is strongly consistent and asymptotically normal. Precisely, when \(n \) tends to infinity,

\[
\hat{p}_n^j - p_j \overset{a.s.}{\to} 0
\]

\[
\sqrt{n}(\hat{p}_n^j - p_j) \overset{D}{\to} Z_{p_j}
\]

where \(Z_{p_j} \sim N(0, p_j(1 - p_j)) \)

We denote by \(\overset{a.s.}{\to} \) the almost sure convergence and \(\overset{D}{\to} \) the convergence in distribution. The notation \(\overset{d}{\sim} \) denote the equality in distribution.

These asymptotic properties derive from the law of large numbers and central limit theorem.

The entropy of \(p \) can be approximated by simply replacing the probabilities \(p_j \) by \(\hat{p}_n^j \) in the entropy summation. For example, the Shannon entropy \(\mathcal{E}_{Sh}(p) \) can be estimated by its counter part plug-in

\[
\mathcal{E}_{Sh}(\hat{p}_n) = - \sum_{j=1}^{r} \hat{p}_n^j \ln(\hat{p}_n^j)
\]
2.2. ϕ–entropy summation.

Definition 2. Let $\phi : (0, 1) \to \mathbb{R}$ a twice continuously differentiable function. The ϕ–entropy summation of the probability distribution $p = (p_j)_{j \in J}$ is given by

\[
J(p) = \sum_{j \in J} \phi(p_j).
\]

The results on the summation $J(p)$ will lead to those on the particular cases of the Shannon, Rényi, Tsallis, Landsberg-Vedral, Abe, Varma and κ–entropies.

Based on (2.1), we will use the following ϕ–entropy summation.

\[
J(\hat{p}_n) = \sum_{j \in J} \phi(\hat{p}_n^j).
\]

2.3. **Statement of the main result.** It concerns the almost sure efficiency and the asymptotic normality of the summation ϕ–entropy $J(\hat{p}_n)$.

Denote

\[
A_J(p) = \sum_{j \in J} |\phi'(p_j)|
\]

and

\[
\sigma^2(p) = \sum_{j \in J} p_j(1 - p_j)(\phi'(p_j))^2 - 2 \sum_{(i,j) \in J^2, i \neq j} (p_ip_j)^{3/2} \phi'(p_i)\phi'(p_j).
\]

Theorem 1. Let $p = (p_j)_{j \in J}$ a probability distribution and $\hat{p}_n = (\hat{p}_n^j)_{j \in J}$ be generated by i.i.d. sample X_1, \ldots, X_n copies of a random variable X according to p and (1.6) be satisfied. Then the following asymptotic results hold

\[
\limsup_{n \to +\infty} \frac{|J(\hat{p}_n) - J(p)|}{a_n} \leq A_J(p), \quad a.s.,
\]

\[
\sqrt{n}(J(\hat{p}_n) - J(p)) \overset{D}{\to} N(0, \sigma^2_J(p)), \quad \text{as } n \to +\infty.
\]

3. **Entropies asymptotic limit law**

(A-) Asymptotic behavior of $S_\alpha(\hat{p}_n)$.

For $\alpha \in (0, 1) \cup (1, +\infty)$, denote

\[
A_S(\alpha) = \sum_{j \in J} \left| \sum_{j \in J} \alpha^{\alpha - 1} p_j^\alpha - \alpha^{\alpha - 1} \right|
\]

and

\[
\sigma^2_S(\alpha) = \alpha^2 \left(\sum_{j \in J} (1 - p_j)p_j^{2\alpha - 1} - 2 \sum_{(i,j) \in J^2, i \neq j} (p_ip_j)^\alpha\right).
\]

Corollary 1. Under the same assumptions as in Theorem 1 and for $\alpha \in (0, 1) \cup (1, +\infty)$, the following hold

\[
\limsup_{n \to +\infty} \frac{|S_\alpha(\hat{p}_n) - S_\alpha(p)|}{a_n} \leq A_S(\alpha), \quad a.s.
\]

\[
\sqrt{n}(S_\alpha(\hat{p}_n) - S_\alpha(p)) \overset{D}{\to} N(0, \sigma^2_S(\alpha)), \quad \text{as } n \to +\infty.
\]
(B)- Asymptotic behavior of Shannon entropy estimator.

Let
\[A_{S_h}(\mathbf{p}) = \sum_{j \in J} |1 + \ln(p_j)| \]
and
\[\sigma^2_{S_h}(\mathbf{p}) = \sum_{j \in J} p_j (1 - p_j)(1 + \ln(p_j))^2 - 2 \sum_{(i,j) \in J^2, i \neq j} (p_i p_j)^{3/2}(1 + \ln(p_i))(1 + \ln(p_j)). \]

Corollary 2. Under the same assumptions as in Theorem 1, the following hold
\[
\limsup_{n \to +\infty} \frac{|\mathcal{E}_{S_h}(\hat{\mathbf{p}}_n) - \mathcal{E}_{S_h}(\mathbf{p})|}{a_n} \leq A_{S_h}(\mathbf{p}), \quad \text{a.s.}
\]
\[
\sqrt{n} (\mathcal{E}_{S_h}(\hat{\mathbf{p}}_n) - \mathcal{E}_{S_h}(\mathbf{p})) \overset{D}{\to} N(0, \sigma^2_{S_h}(\mathbf{p})), \quad \text{as } n \to +\infty.
\]

(C)- Asymptotic behavior of the Renyi entropy estimator.

The treatment of the asymptotic behavior of the Renyi-\(\alpha\) entropies estimator and of the \(\alpha, \beta\)-Varma entropy estimator is obtained by the application of the delta method.

For \(\alpha \in (0, 1) \cup (1, +\infty)\), denote
\[A_{R,\alpha}(\mathbf{p}) = \frac{\alpha}{|\alpha - 1|} S_{\alpha}(\mathbf{p}) \sum_{j \in J} p_j^{\alpha-1} \]
and
\[\sigma^2_{R,\alpha}(\mathbf{p}) = \left(\frac{\alpha}{|\alpha - 1|} S_{\alpha}(\mathbf{p}) \right)^2 \left(\sum_{j \in J} (1 - p_j)p_j^{2\alpha-1} - 2 \sum_{(i,j) \in J^2, i \neq j} (p_i p_j)^{\alpha+1/2} \right). \]

Corollary 3. Under the same assumptions as in Theorem 1 and for any \(\alpha \in (0, 1) \cup (1, +\infty)\), the following hold
\[
\limsup_{n \to +\infty} \frac{|\mathcal{E}_{R,\alpha}(\hat{\mathbf{p}}_n) - \mathcal{E}_{R,\alpha}(\mathbf{p})|}{a_n} \leq A_{R,\alpha}(\mathbf{p}), \quad \text{a.s.}
\]
\[
\sqrt{n} (\mathcal{E}_{R,\alpha}(\hat{\mathbf{p}}_n) - \mathcal{E}_{R,\alpha}(\mathbf{p})) \overset{D}{\to} N(0, \sigma^2_{R,\alpha}(\mathbf{p})), \quad \text{as } n \to +\infty.
\]

(D)- Asymptotic behavior of the Tsallis entropy estimator.

For \(\alpha \in (0, 1) \cup (1, +\infty)\), denote
\[A_{T,\alpha}(\mathbf{p}) = \frac{\alpha}{|\alpha - 1|} \sum_{j \in J} p_j^{\alpha-1} \]
and
\[\sigma^2_{T,\alpha}(\mathbf{p}) = \left(\frac{\alpha}{|\alpha - 1|} \right)^2 \left(\sum_{j \in J} (1 - p_j)p_j^{2\alpha-1} - 2 \sum_{(i,j) \in J^2, i \neq j} (p_i p_j)^{\alpha+1/2} \right). \]

Corollary 4. Under the same assumptions as in Theorem 1 and for \(\alpha \in (0, 1) \cup (1, +\infty)\), the following hold
\[
\limsup_{n \to +\infty} \frac{|\mathcal{E}_{T,\alpha}(\hat{\mathbf{p}}_n) - \mathcal{E}_{T,\alpha}(\mathbf{p})|}{a_n} \leq A_{T,\alpha}(\mathbf{p}), \quad \text{a.s.}
\]
\[
\sqrt{n} (\mathcal{E}_{T,\alpha}(\hat{\mathbf{p}}_n) - \mathcal{E}_{T,\alpha}(\mathbf{p})) \overset{D}{\to} N(0, \sigma^2_{T,\alpha}(\mathbf{p})), \quad \text{as } n \to +\infty.
\]
(E-) Asymptotic behavior of the Landsberg-Vedral entropy estimator.

For \(\alpha \in (0, 1) \cup (1, +\infty) \), denote
\[
A_{L.V,\alpha}(p) = \frac{\alpha}{|\alpha - 1|} \sum_{j \in J} p_j^{\alpha - 1}
\]
and \(\sigma^2_{L.V,\alpha}(p) = \left(\frac{\alpha}{|\alpha - 1|} \sum_{j \in J} (1 - p_j) p_j^{2\alpha - 1} - 2 \sum_{(i,j) \in J^2, i \neq j} (p_i p_j)^{\alpha + 1/2} \right)^2 \).

Corollary 5. Under the same assumptions as in Theorem 1 and for \(\alpha \in (0, 1) \cup (1, +\infty) \), the following hold
\[
\limsup_{n \to +\infty} \frac{|E_{L.V,\alpha}(\hat{p}_n) - E_{L.V,\alpha}(p)|}{a_n} \leq A_{L.V,\alpha}(p), \text{ a.s.}
\]
\[
\sqrt{n} (E_{L.V,\alpha}(\hat{p}_n) - E_{L.V,\alpha}(p)) \text{ } \overset{D}{\to} \text{ } N(0, \sigma^2_{L.V,\alpha}(p)) \text{ as } n \to +\infty.
\]

(F-) Asymptotic behavior of \(\alpha \)-Abel entropy estimator.

For \(\alpha \in (0, 1) \cup (1, +\infty) \), denote
\[
A_{Ab,\alpha}(p) = \frac{1}{|\alpha^2 - 1|} \sum_{j \in J} |\alpha^2 p_j^{\alpha - 1} - p_j^{(1/\alpha) - 1}| \]
and \(\sigma^2_{Ab,\alpha}(p) = \left(\frac{1}{|\alpha^2 - 1|} \sum_{j \in J} (1 - p_j) \left(\alpha^2 p_j^{\alpha - 1/2} - p_j^{(1/\alpha) - 1/2} \right)^2 \right.
\]
\[
- 2 \sum_{(i,j) \in J^2, i \neq j} \left[\alpha^2 p_i^{\alpha + 1/2} - p_i^{(1/\alpha) + 1/2} \right] \left[\alpha^2 p_j^{\alpha + 1/2} - p_j^{(1/\alpha) + 1/2} \right].
\]

Corollary 6. Under the same assumptions as in Theorem 1 and for any \(\alpha \in (0, 1) \cup (1, +\infty) \), the following hold
\[
\limsup_{n \to +\infty} \frac{|E_{Ab,\alpha}(\hat{p}_n) - E_{Ab,\alpha}(p)|}{a_n} \leq A_{Ab,\alpha}(p)
\]
\[
\sqrt{n} (E_{Ab,\alpha}(\hat{p}_n) - E_{Ab,\alpha}(p)) \text{ } \overset{D}{\to} \text{ } N(0, \sigma^2_{Ab,\alpha}(p)), \text{ as } n \to +\infty.
\]

(G-) Asymptotic behavior of \(\kappa \)-entropy

For \(\kappa \in (0, 1) \), denote
\[
A_{\kappa}(p) = \frac{1}{2\kappa} \sum_{j \in J} |(1 - \kappa)p_j^{-\kappa} - (1 + \kappa)p_j^\kappa|
\]
and \(\sigma^2_{\kappa}(p) = \frac{1}{4\kappa^2} \left(\sum_{j \in J} (1 - p_j) \left((1 - \kappa)p_j^{-\kappa + 1/2} - (1 + \kappa)p_j^{\kappa + 1/2} \right)^2 \right.
\]
\[
- 2 \sum_{(i,j) \in J^2, i \neq j} \left[(1 - \kappa)p_i^{-\kappa + 3/2} - (1 + \kappa)p_i^{\kappa + 3/2} \right] \left[(1 - \kappa)p_j^{-\kappa + 3/2} - (1 + \kappa)p_j^{\kappa + 3/2} \right].
\]

Corollary 7. Under the same assumptions as in Theorem 1 and for any \(\kappa \in (0, 1) \), the following hold
\[
\limsup_{n \to +\infty} \frac{|E_{\kappa}(\hat{p}_n) - E_{\kappa}(p)|}{a_n} \leq A_{\kappa}(p), \text{ a.s}
\]
\[
\sqrt{n}(E_{\kappa}(\hat{p}_n) - E_{\kappa}(p)) \text{ } \overset{D}{\to} \text{ } N(0, \sigma^2_{\kappa}(p)), \text{ as } n \to +\infty.
\]
(H -) Asymptotic behavior of Varma’s entropy of order α and type β.

For \(\beta - 1 < \alpha < \beta, \quad \beta \geq 1 \) denote

\[
A_{V, \alpha, \beta}(p) = \frac{\alpha + \beta - 1}{S_{\alpha + \beta - 1}} \sum_{j \in J} p_j^{\alpha + \beta - 2}
\]

and \(\sigma_{V, \alpha, \beta}^2(p) = \left(\frac{\alpha + \beta - 1}{(\beta - \alpha)S_{\alpha + \beta - 1}(p)} \right)^2 \left(\sum_{j \in J} (1 - p_j)p_j^{\alpha + 2\beta - 3} - 2 \sum_{(i,j) \in J^2, i \neq j} (p_ip_j)^{\alpha + 1/2} \right). \]

Corollary 8. Under the same assumptions as in Theorem 1 and for \(\beta - 1 < \alpha < \beta, \quad \beta \geq 1 \), the following hold

\[
\limsup_{n \to +\infty} \frac{|\mathcal{E}_{V, \alpha, \beta}(\hat{p}_n) - \mathcal{E}_{V, \alpha, \beta}|}{a_n} \leq A_{V, \alpha, \beta}(p), \quad a.s.
\]

\[
\sqrt{n}(\mathcal{E}_{V, \alpha, \beta}(\hat{p}_n) - \mathcal{E}_{V, \alpha, \beta}(p)) \xrightarrow{D} \mathcal{N}(0, \sigma_{V, \alpha, \beta}^2(p)), \quad \text{as } n \to +\infty.
\]

4. The proofs

Before we state our main results we introduce the following notations. For a fixed \(j \in J \), denote

\[
\Delta_{p_n}^{e_j} = \hat{p}_n - p_j, \quad \delta_n(p_j) = \sqrt{n/p_j} \Delta_{p_n}^{e_j},
\]

and \(a_n = \sup_{j \in J} |\Delta_{p_n}^{e_j}|. \)

We recall that, since for a fixed \(j \in D, \; n \hat{p}_n^{e_j} \) has a binomial distribution with parameters \(n \) and success probability \(p_j \), we have

\[
\mathbb{E}[\hat{p}_n^{e_j}] = p_j \quad \text{and} \quad \mathbb{V}[(\hat{p}_n^{e_j})] = \frac{p_j(1 - p_j)}{n}.
\]

And finally, by the asymptotic Gaussian limit of the multinomial law (see for example Lo et al. (2016), Chapter 1, Section 4), we have

\[
\left(\delta_n(p_j), \ j \in J \right) \overset{D}{\rightarrow} Z(p) \sim \mathcal{N}(0, \Sigma_p), \quad \text{as } n \to +\infty,
\]

where \(Z(p) = (Z_{p_j}, j \in J)^t \) is a centered Gaussian random vector of dimension \(\#(J) \) having the following elements:

\[
(\Sigma_p)_{(i,j)} = (1 - p_j)\delta_{ij} - \sqrt{p_ip_j(1 - \delta_{ij})}, \quad (i, j) \in J^2,
\]

where \(\delta_{ij} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases} \).

4.1. **Proof of Theorem 1.** For a fixed \(j \in J \), we have

\[
\phi(\hat{p}_n^{e_j}) = \phi(p_j + \Delta_{p_n}^{e_j}) = \phi(p_j) + \Delta_{p_n}^{e_j} \phi'(p_j + \theta_1(j)\Delta_{p_n}^{e_j})
\]

by the mean value Theorem applied to the function \(\phi \) and where \(\theta_1(j) \in (0, 1) \).

Apply again the mean value Theorem to the derivative of the function \(\phi' \)

\[
\phi'(p_j + \theta_1(j)\Delta_{p_n}^{e_j}) = \phi'(p_j) + \theta_1(j)\Delta_{p_n}^{e_j} \phi''(p_j + \theta_2(j)\Delta_{p_n}^{e_j})
\]

where \(\theta_2(j) \in (0, 1) \). We can write (4.3) as

\[
\phi(\hat{p}_n^{e_j}) = \phi(p_j) + \Delta_{p_n}^{e_j} \phi'(p_j) + \theta_1(j)\Delta_{p_n}^{e_j} \phi''(p_j + \theta_2(j)\Delta_{p_n}^{e_j})
\]
Now we have, by summation over \(j \in J \)

\[
J(\hat{p}_n) - J(p) = \sum_{j \in J} \Delta^{\epsilon_j}_{p_n} \phi'(p_j) \\
+ \sum_{j \in J} \theta_1(j)(\Delta^{\epsilon_j}_{p_n})^2 \phi''(p_j + \theta_2(j)\Delta^{\epsilon_j}_{p_n})
\]

Hence

\[
|J(\hat{p}_n) - J(p)| \leq a_n \sum_{j \in J} |\phi'(p_j)| + a_n^2 \sum_{j \in J} |\phi''(p_j + \theta_2(j)\Delta^{\epsilon_j}_{p_n})|,
\]

Therefore

\[
\limsup_{n \to +\infty} \frac{|J(\hat{p}_n) - J(p)|}{a_n} \leq A_J(p), \text{ a.s.,}
\]

since \(a_n \to 0 \) as \(n \to +\infty \) and

\[
\sum_{j \in J} |\phi''(p_j + \theta_2(j)\Delta^{\epsilon_j}_{p_n})| \to \sum_{j \in J} |\phi''(p_j)| < \infty \quad \text{as} \quad n \to +\infty.
\]

This prove (2.5).

Let prove (2.6). By going back to (4.4), we get

\[
\sqrt{n}(J(\hat{p}_n) - J(p)) = \sum_{j \in J} \sqrt{p_j} \delta_n(p_j) \phi'(p_j) + \sqrt{n} R_n,
\]

where

\[
R_n = \sum_{j \in J} \theta_1(j)(\Delta^{\epsilon_j}_{p_n})^2 \phi''(p_j + \theta_2(j)\Delta^{\epsilon_j}_{p_n}).
\]

Using Formula (4.1) above, we get

\[
\sum_{j \in J} \sqrt{p_j} \delta_n(p_j) \phi'(p_j) \overset{D}{\to} \sum_{j \in J} \phi'(p_j) \sqrt{p_j} Z_{p_j}, \quad \text{as} \quad n \to +\infty,
\]

which follows a centered normal law of variance \(\sigma^2_j(p) \) since

\[
\text{Var} \left(\sum_{j \in J} \phi'(p_j) \sqrt{p_j} Z_{p_j} \right) = \sum_{j \in J} \text{Var} \left(\phi'(p_j) \sqrt{p_j} Z_{p_j} \right) + 2 \sum_{j \in J} \text{Cov} \left(\phi'(p_j) \sqrt{p_j} Z_{p_j}, \phi'(p_j) \sqrt{p_j} Z_{p_j} \right)
\]

\[
= \sum_{j \in J} p_j(1-p_j)(\phi'(p_j))^2 - 2 \sum_{(i,j) \in J^2, i \neq j} p_ip_j \sqrt{p_i p_j} \phi'(p_i) \phi'(p_j).
\]

The proof will be complete if we show that \(\sqrt{n} R_n \) converges to zero in probability.

We have

\[
|\sqrt{n} R_n| \leq \sqrt{n} a_n^2 \sum_{j \in J} \phi''(p_j + \theta_2(j)\Delta^{\epsilon_j}_{p_n}).
\]

By the Bienaymé-Tchebychev inequality, we have, for any fixed \(\epsilon > 0 \) and for any \(j \in J \)

\[
\mathbb{P}(\sqrt{n}(\hat{\epsilon}_n - p_j)^2 \geq \epsilon) = \mathbb{P} \left(|\hat{\epsilon}_n - p_j| \geq \frac{\sqrt{\epsilon}}{n^{1/2}} \right) \leq \frac{p_j(1-p_j)}{\epsilon n^{1/2}}.
\]

Hence \(\sqrt{n} a_n^2 = o_P(1) \), which proves (2.6).

All this ends the proof of Theorem 1.
4.2. Proofs of Corollaries.

A-) The Proofs of Corollaries 1 and 2 are direct adaptations of Theorem 1 with respectively \(\phi(s) = s^\alpha \) and \(\phi(s) = -s \ln s \).

B-) Proof of Corollary 3. For \(\alpha \in (0, 1) \cup (1, +\infty) \), \(\alpha \)-Reyni entropy is expressed through the power sum \(S_\alpha(p) = \sum_{j \in J} \phi(p_j) \) with \(\phi(s) = s^\alpha \). We have

\[
E_{R,\alpha}(\mathcal{P}_n) - E_{R,\alpha}(p) = \frac{1}{\alpha - 1} (\ln S_\alpha(\mathcal{P}_n) - \ln S_\alpha(p)),
\]

by using a Taylor expansion of \(\ln(1 + y) \) it follows that, almost surely,

\[
\ln S_\alpha(\mathcal{P}_n) - \ln S_\alpha(p) = \ln \left(1 + \frac{S_\alpha(\mathcal{P}_n) - S_\alpha(p)}{S_\alpha(p)} \right) = \frac{S_\alpha(\mathcal{P}_n) - S_\alpha(p)}{S_\alpha(p)} + O_{a.s}(\alpha_n^2).
\]

Finally this, combined with (3.1) of Corollary 1, proves (3.5).

Now recall by going back to (4.4), we can write

\[
\sqrt{n}(S_\alpha(\mathcal{P}_n) - S_\alpha(p)) = \sqrt{n} \sum_{j \in J} \Delta_{\mathcal{P}_n}^{\alpha} \phi'(p_j) + o_P(1)
\]

here \(\phi'(p_j) = \alpha p_j^{\alpha - 1} \).

Hence dividing each member by \(\sqrt{n} S_\alpha(p) \), we get

\[
\frac{S_\alpha(\mathcal{P}_n)}{S_\alpha(p)} = 1 + \sum_{j \in J} \frac{\Delta_{\mathcal{P}_n}^{\alpha} \phi'(p_j)}{S_\alpha(p)} + o_P(1).
\]

Now by Taylor expansion of \(\ln(1 + y) \), it follows that, almost surely,

\[
\ln S_\alpha(\mathcal{P}_n) - \ln S_\alpha(p) = \ln \left(1 + \frac{\sum_{j \in J} \Delta_{\mathcal{P}_n}^{\alpha} \phi'(p_j)}{S_\alpha(p)} \right) = \sum_{j \in J} \frac{\Delta_{\mathcal{P}_n}^{\alpha} \phi'(p_j)}{S_\alpha(p)} + O_P \left(\frac{1}{n} \right)
\]

therefore

\[
\sqrt{n} (E_{R,\alpha}(\mathcal{P}_n) - E_{R,\alpha}(p)) = \frac{1}{\alpha - 1} \sum_{j \in J} \sqrt{n} \frac{\Delta_{\mathcal{P}_n}^{\alpha} \phi'(p_j)}{S_\alpha(p)} + o_P(1)
\]

using (4.5) and where

\[
\sigma_{R,\alpha}^2(p) = \left(\frac{\alpha}{(\alpha - 1)S_\alpha(p)} \right)^2 \left(\sum_{j \in J} (1 - p_j)p_j^{2\alpha - 2} - 2 \sum_{(i,j) \in J^2, i \neq j} (p_i p_j)^{\alpha - 1/2} \right).
\]

This proves (3.6) and ends the proof of the Corollary 3.

C-) Proof of Corollary 4. Since \(\alpha \)-Tsallis entropy is related to the power sum \(S_\alpha(p) \), the proof follows directly from Corollary 1.

D-) Proof of Corollary 5. Since Landsberg-Vedral and Tsallis \(\alpha \)-entropies are related by
\[
\mathcal{E}_{L,V,\alpha}(\mathbf{p}) = \frac{\mathcal{E}_{T,\alpha}(\mathbf{p})}{S_{\alpha}(\mathbf{p})},
\]

the proof of this Corollary results directly from the Corollary 4.

E-) The proof of Corollary 8 is similar to the one of Corollary 3 with the power sum
\[S_{\alpha+\beta-1}(\mathbf{p}) = \sum_{j \in J} \phi(p_j)\]
with \(\phi(s) = s^{\alpha+\beta-1}\).

F-) Corollaries 6 and 7 are, as for Corollaries 1 and 2, adaptations of Theorem 1 with this time
\[\phi(s) = \frac{1}{s^{\alpha-\alpha}}(s^{\alpha} - s^{\alpha-1})\]
and \(\phi(s) = \frac{1}{2\kappa}(s^{1+\kappa} - s^{1-\kappa}), \quad \kappa \in (0, 1)\), respectively.

5. Simulation

To assess the performance of our estimators, we present a simulation study.

Let \(X\) a random variable defined on a measurable space \((\Omega, \mathcal{A}, \mathbb{P})\) and with range \(\mathcal{X} = \{1, 2, 3\}\) with their respective probabilities mass
\[p_1 = 0.4, \quad p_2 = 0.25, \quad p_3 = 0.35.
\]
We plot the entropies estimators and construct histograms and Q-Q plots to see whether data are normally distributed.

In each figure, the left panel represents the plot of entropy estimator, built from sample sizes of \(n = 100, 200, \ldots, 30000\), and the true entropy (represented by horizontal black line). The middle panel shows the histogram of the data and the red line represents the plot of the theoretical normal distribution calculated from the same mean and the same standard deviation of the data. The right panel concerns the Q-Q plot of the data which display the observed values against normally distributed data (represented by the red line).

As we can see from **FIGURES 1 2, 3 and 4**, our entropies estimators are asymptotically normally distributed.

![Figure 1](image)

Figure 1. Plots of Shannon and Renyi entropies estimators when samples sizes increase, histograms and normal Q-Q plots versus \(\mathcal{N}(0, 1)\).
Figure 2. Plots of Tsallis and Landsberg-Vedral entropies estimators when samples sizes increase, histograms and normal Q-Q plots versus $N(0,1)$.

Figure 3. Plots of Abel and Kappa entropies estimators when samples sizes increase, histograms and normal Q-Q plots versus $N(0,1)$.
6. Conclusion

We have derived a new nonparametric estimator for entropies in the discrete case and on finite sets. We adopted the plug-in method and we derived almost sure rates of convergence and central limit Theorems for some of the most important entropies in the discrete case. We also demonstrated their efficiency using a simulation study.

References

Carter, Tom (March 2014). An introduction to information theory and entropy (PDF). Santa Fe.

Jizba, P.; Arimitsu, T. (2004). The world according to Rényi: thermodynamics of multifractal systems. Ann. Phys., 312, 17–59.

Landsberg P.T. and Vedral V. (1998), Phys. Lett. A 247, 211

S. Abe (1997), Phys. Lett. A 224, 326.

Kaniadakis G., Phys. Rev. E 66, 056125.

Csizár, I. (1995). Generalized cutoff rates and Rényi’s information measures. IEEE Trans. Inf. Theory, 41, 26–34.

Uzengi A.O., Akturk, Akturk E., Tomak M. (2008). Can Sobolev Inequality be written for Sharma-Mittal Entropy? Int J Theor Phys 47: 3310-3320 DOI 10.1007/s10773-008-9766-2.

P. S. Shenkin, B. Erman, and L. D. Mastrandrea, “Information-theoretical entropy as a measure of sequence variability, Proteins, vol. 11, no. 4, pp. 297–313.

L. Paninski (2003), Estimation of entropy and mutual information, Neural Computation, vol. 15, no. 6, pp. 1191–1253.

I. Nemenman, W. Bialek, and R. R. de Ruyter van Steveninck, “Entropy and information in neural spike trains: Progress on the sampling problem,” Physical Review E, vol. 69, pp. 056 111–056 111.

A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data streaming algorithms for estimating entropy of network traffic,” SIGMETRICS Perform. Eval. Rev., vol. 34, no. 1, pp. 145-156, Jun.

A. Mokkadem, “Estimation of the entropy and information of absolutely continuous random variables,” IEEE Transactions on Information Theory, vol. 35, no. 1, pp. 193–196, 1989.

N. J. A. Harvey, J. Nelson, and K. Onak, Sketching and streaming entropy via approximation theory, in 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, 2008, pp. 489–498
J. Massey (1994), "Guessing and entropy", in Information Theory, 1994. Proceedings., IEEE International Symposium on, Jun 1994, pp. 204–.

E. Arikan, "An inequality on guessing and its application to sequential decoding," IEEE Transactions on Information Theory, vol. 42, no. 1, pp. 99–105, 1996.

D. Xu (1998), *Energy, entropy and information potential for neural computation*, Ph.D. dissertation, University of Florida.

R. Jenssen, K. Hild, D. Erdogmus, J. Principe, and T. Eltoft, Clustering using Renyi's entropy, in *Proceedings of the International Joint Conference on Neural Networks*. IEEE.

Y. Mansour, M. Mohri, and A. Rostamizadeh (2012), Multiple source adaptation and the Renyi divergence, *CoRR*, vol. abs/1205.2628, 2012.

B. Ma, A. O. H. III, J. D. Gorman, and O. J. J. Michel(2000), *Image registration with minimum spanning tree algorithm*, in ICIP, pp. 481-484.

H. Neemuchwala, A. O. Hero, S. Z., and P. L. Carson(2006), Image registration methods in high dimensional space, *Int. J. Imaging Systems and Technology*, vol. 16, no.5, pp. 130-145.

C.E. Pfister and W. Sullivan, Renyi entropy, guesswork moments, and large deviations, *IEEE Transactions on Information Theory*, vol. 50, no. 11, pp. 2794–2800.

M. K. Hanawal and R. Sundaresan(2011), Guessing revisited: A large deviations approach, *IEEE Transactions on Information Theory*, vol. 57, no. 1, pp. 70–78.

D. E. Knuth(1973), *The Art of Computer Programming, Volume III: Sorting and Searching*. Addison-Wesley.

P. C. V. Oorschot and M. J. Wiener, Parallel collision search with cryptanalytic applications, *Journal of Cryptology*, vol.12, pp. 1-28.

R. Impagliazzo and D. Zuckerman(1989), *How to recycle random bits*, in FOCS.

C. Bennett, G. Brassard, C. Crepeau, and U. Maurer, Generalized privacy amplification, *IEEE Transactions on Information Theory*, vol. 41, no. 6.

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, Testing closeness of discrete distributions, *J. ACM*, vol. 60, no. 1, p. 4.

O. Goldreich and D. Ron(2000), On testing expansion in bounded-degree graphs, *Electronic Colloquium on Computational Complexity* (ECCC), vol. 7, no. 20.

A. Motahari, G. Bresler, and D. Tse(2013), Information theory of dna shotgun sequencing, *Information Theory*, IEEE Transactions on, vol. 59, no. 10, pp. 6273-6289.

Philippatos, G.C. and Wilson, C.J (1972). Entropy, market risk, and the selection of efficient portfolios. *Appl. Econ.*, 4, 209–220.

Sharma B.D. and Mittal D.P.(1975), *J. Math. Sci*. 10 28.

T.D. Frank and A. Daffertshofer, (2000) *Physica A* 285(34)351.

Bă A.D., LO G.S., Bă D. Divergence Measures Estimation and Its Asymptotic Normality Theory Using Wavelets Empirical Processes I DOI: 10.2991/jsta.2018.17.1.12

Hall,P. (1987). On Kullback-Leibler loss and density estimation. *The Annals of Statistics*, Vol.15(4), pp.1491-1519.

Singh S. and Poczos, B. (2014). Generalized Exponential Concentration Inequality for Rényi Divergence Estimation. *Journal of Machine Learning Research*.Vol.6. Carnegie Mellon University.

Akshay K., Kirthevasan K., Poczos B., and Wasserman, L.(2014). Nonparametric Estimation of Rényi Divergence and Friends. *Journal of Machine Learning Research* Workshop and conference Proceedings, 32. Vol.3, pp. 2.

Luca, A.D.; Termisi, S. (1972) A definition of non-probabilistic entropy in the setting of fuzzy sets theory. *Inf. Control*, 20, 301–312.

Bhandari, D.; Pal, N.R. (1993). Some new information measures for fuzzy sets. *Inf. Sci.*,67, 209–228.

Kosko, B. (1986). Fuzzy entropy and conditioning. *Inf. Sci.* 40, 165–174.

Pal, N.R.; Bezelek, J.C. (1994). Measuring fuzzy uncertainty. *IEEE Trans. Fuzzy Syst.*, 2. 107-118.

Yager, R.R.(2000). On the entropy of fuzzy measures. *IEEE Trans. Fuzzy Syst.*, 8. 453-461.

Havrda, J., Charvát, F. (1967), Quantification method of classification processes: concept of structural α–entropy. *Kybernetika*, 3,30-35.
Liese, F., and Vajda, I. (2006). On divergences and informations in statistics and information theory. *IEEE Trans. Inform. Theory*. 2006, 52, 4394-4412.

Balestrino, A., Cai†i, A., Crisostomi, E. (2009). Generalised entropy of curves for the analysis and classification of dynamical systems. *Entropy*, 11, 249-270.

Kapur J.N. (1986), Ind. Jour. Pure and Appl. Maths. 17 429.

Dodis Y., Ostrovsky R., Reyzin L., and Smith A. (2008). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data, *SIAM Journal on Computing* 38, 1, 97-139.

Hanel R. and Thurner S. (2011), EPL 93 20006.

Hanel, R., Thurner, S. and M. Gell-Mann, (2014). PNAS 111 6905

Tempesta, (2011). *Phys. Rev. E*, 84(2) 021121.

T. S. Bíró and G. G. Barnaf (2015), *Physica A* 417 215.

Ilić V. M. and M. S. Stanković (2011), *Physica A* 411 138.

Zhao H.C., Lall A., Ogihara, M, Spatscheck O., Wang J., and Xu J. (2007). A data streaming algorithm for estimating entropies of OD flows. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pages 279-290.

Rongxi Z., Ru C., and Guanqun T.. (2013). Applications of entropy in finance: A review. *Entropy*, 15, 4909-4931, doi:10.3390/e15114909.

Arimoto, S. (1977). Information Mesures and Capacity of Order α for Discrete Memoryless Channels. In Topics in Information Theory; Colloquia Mathematica Societatis János Bolyai; Csiszár, I., Elias, P., Eds.; János Bolyai Mathematical Society and North-Holland: Budapest, Hungary,; Volume 16, pp. 493-519.

Cachin, C. (1997). Entropy Measures and Unconditional Security in Cryptography. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.

Hayashi, M. (2011). Exponential decreasing rate of leaked information in universal random privacy amplification. *IEEE Trans. Inf. Theory*, 57, 3989-4001.

Kirchner U., Zunckel C. (2011) Measuring Portfolio Diversification. arXiv preprint arXiv:11024722.

Dionisio A., Menezes R., Mendes D.A. (2006) An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market. *The European Physical Journal B* 50: 161–164. DOI: 10.1140/epjb/e2006-00113-2.

Nawrocki D.N., Harding WH (1986) State-value weighted entropy as a measure of investment risk. *Applied Economics* 18:411-419. DOI: 10.1080/00036848600000038.

Maasoumi E., Racine J.(2002) Entropy and predictability of stock market returns. *Journal of Econometrics* 107: 291–312. DOI: 10.1142/s0003642810000038.

Lo, G.S.(2016). Weak Convergence (IA). Sequences of random vectors. SPAS Books Series. Saint-Louis, Senegal - Calgary, Canada. Doi : 10.16929/sbs/2016.0001. Arxiv : 1610.05415. ISBN : 978-2-9559183-1-9

Clausius R. (1870) XVI. On a mechanical theorem applicable to heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40: 122–127. DOI: 10.1080/14786447008640370.

C. E. Shannon, *Bell Syst. Tech. J.* 27, 379 (1948).

Cover, L., and Thomas, J.(1991), Elements of information theory. *Wiley series in telecommunications*, New-York.

T.M. Cover and J.A. Thomas (2006), *Elements of Information Theory*, John Wiley and Sons Ltd., Canada.

Rényi A.(1960), in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 547 . *Rényi, Probability Theory*, Amsterdam, North Holland (1970).

Rényi, A. (1960), On measures of information and entropy, *Proc. 4th Berkeley Symposium on Mathematics, Statistics and Probability*, pp 547-561.

C. Tsallis(1988), *J. Stat. Phys.* 52, 479.

Xing Z. (2013). Asymptotic normality of entropy estimators. *IEEE Trans. Inform. Theory*. 17 4394-4412.
Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, *J. Stat. Physics* vol. 2 pp 479-487.

Vallée, V. (2001), Dynamical Sources in Information Theory: Fundamental Intervals and Word Prefixes, *Algorithmica* vol. 29, pp 262-306.

Ormos M, Zibriczky D (2014), Entropy- Based Financial Asset Pricing. *PLoS ONE* 9(12): e115742. doi:10.1371/journal.pone.0115742.

Shannon, C., 1948, A mathematical theory of communication. *Bell Syst. Techn. J.* vol. 27, pp 379-423 and pp 623-656.

C. E. Shannon and W. Weaver (1949), *The Mathematical Theory of Communication*, Univ. of Illinois Press, Urbana, IL.

Miller, G.A. and Madow, W.G. (1954). On the maximum likelihood estimate of the Shannon-Wiener measure of information, *Air Force Cambridge Research Center Technical Report* 54-75.

Miller, G.A. (1955). Note on the bias of information estimates, Information theory in psychology II-B, *ed. H. Quastler, Glencoe, IL*: Free Press, 95-100.

Basharin, G. (1959). On a statistical estimate for the entropy of a sequence of independent random variables, *Theory of Probability and Its Applications*, 4, 333-336.

Harris, B. (1975). The statistical estimation of entropy in the non-parametric case, Topics in Information Theory, edited by I. Csiszar, *Amsterdam*: North-Holland, 323-355.

Antos, A. and Kontoyiannis, I. (2001). *Convergence properties of functional estimates for discrete distributions, Random Structures and Algorithm*, 19, 163-193.

J. Acharya1, A. Orlitsky, A. T. Suresh, and H. Tyagi(2016). Estimating Renyi Entropy of Discrete Distributions. *arXiv*: 1408.1000v3[cs.IT] 10 mars 2016.

Roulston, M.S.(1999). Estimating the errors on measured entropy and mutual information. *Physica D*, vol 125, Issue 3-4, p. 285-294.

E-mail address: ba.amadou-diadie@ugb.edu.sn

E-mail address: gane-samb.lo@ugb.edu.sn