Elevated neurofilament light chain in plasma is associated with reduced right hippocampal and amygdala volume in Alzheimer's patients

Current Status: POSTED

Wei Li
822203867@qq.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-8413-4924

Ling Yue
Shanghai Mental Health Center

Ye Wu
University of North Carolina at Chapel Hill

Lin Sun
Shanghai Mental Health Center

xiaosuan2004@126.com Corresponding Author

Shifu Xiao
Shanghai Mental Health Center

xiaoshifu@msn.com Corresponding Author

DOI: 10.21203/rs.3.rs-18579/v1

Subject Areas
Cognitive Neuroscience

Keywords
NfL, AD, aMCI, hippocampal, amygdala
Abstract

Background

Plasma neurofilament light (NfL) levels have been considered as an especially promising biomarker for dementia, however, the mechanism of NfL regulating cognition is not very clear.

Methods

43 amnesic mild cognitive impairment (aMCI), 35 Alzheimer’s disease (AD) and 30 cognitively normal subjects were recruited. Plasma NfL levels were examined by the Single Molecule array (Simoa) technique; the volumes of the hippocampus and amygdala were calculated and compared by T1-weighted MRI; and cognitive function was assessed by the Beijing version of the Montreal Cognitive Assessment (MoCA)

Results

Our results showed significantly increased plasma NfL levels in AD group (29.42 pg/ml) compared to aMCI(15.92 pg/ml) group and normal (12.85 pg/ml) group (both p < 0.001), while there was no statistical difference (p>0.05) between aMCI group and normal group. And the results of partial correlation analysis showed that plasma NfL levels were negatively correlated (p<0.05) with MoCA total score (r=-0.415, p=0.013), right hippocampal volume (r=-0.335, p=0.036) and right amygdala volume (r=-0.337, p=0.048).

Conclusions

NfL in plasma of AD patients is significantly increased, and the protein is related to atrophy of right hippocampus and right amygdala.

1. Introduction

Neurofilament light chain (NfL) plays an important role in axon transmission and function maintenance, and is the most abundant intermediate filament protein in myelinated subcortical axons. Previous studies pointed that NFL is an ideal marker of large-caliber axonal degeneration, and increased NfL levels in cerebrospinal fluid (CSF) are like to reflect neurodegeneration-related axonal injury, such as Alzheimer’s disease (AD), frontotemporal lobar degeneration (FTLD), multiple sclerosis and amyotrophic lateral sclerosis. In addition, CSF NfL levels have also been proved to be
an effective way to distinguish FTLD from early-onset AD given that NfL levels in AD are lower in early onset compared to those in late onset presentations\(^5,6\). However, NfL in cerebrospinal fluid is not applicable and difficult to accept for many elderly people. Therefore, blood-based measurement of NfL might be more desirable, since the collection of blood sample is relatively less invasive and more applicable\(^7\).

So far, there have been a few studies on NfL expression patterns in the blood of AD patients in China. For example, Liu S\(^8\) et al found that gastric cancer subjects expressed lower plasma NfL levels but AD subjects expressed higher plasma NfL levels than normal controls. Hu H\(^9\) et al found that plasma NfL concentration and its rate of change had already increased abnormally in the preclinical phase of AD. And Lin YS\(^10\) et al also found that plasma NfL was significantly increased in the AD group, compared with the control, mild cognitive impairment (MCI), non-demented Parkinson's disease (PD), and Parkinson's disease dementia groups. These conclusions suggest NFL in plasma may represent a biomarker of cognitive decline in AD, and it is possible to mark the onset of neurodegeneration in subjects at risk for AD familial disease\(^1\). However, the mechanism of NfL regulating cognition is not very clear.

Neuroimaging using Magnetic Resonance Imaging (MRI) has been widely used to describe the atrophy pattern of cognitive related brain regions in AD and FTLD as well as to find differential trajectories along the different disease stages\(^11-13\). And structural MRI of medial temporal atrophy (MTA) is considered to be a biomarker for an early diagnosis of MCI and AD\(^14,15\), specifically speaking, volume reduction of medial temporal lobe, including amygdala and hippocampus has been proved to be an early manifestation of AD\(^16\). The relationship between classical AD biochemical markers AD and neuroimaging features and their reciprocal influence have been studied during both the preclinical phases and clinical of the disease\(^3\). For example, Mattsson N\(^17\) et al pointed out that high plasma NfL levels in the MCI and AD cohort were associated with smaller hippocampal volumes, thinner cortices and larger ventricular. However, it is not known whether the above conclusions are applicable to
Chinese people. Therefore, in this context, our goals were (a) to provide a descriptive analysis of plasma NfL levels and structural patterns (amygdala volume and hippocampal volume) in early-onset AD, amnestic mild cognitive impairment (aMCI) and normal control (NC); (b) to study the relationship between early-onset AD, aMCI and NC brain structural measures/cognitive function and plasma NfL levels.

2. Materials And Methods

2.1 Data base

Data were obtained from the China Longitudinal Aging Study (CLAS)18 database, which was launched in 2013 as a large scale longitudinal cohort study in China and was led by principal investigator Shifu Xiao, MD and PhD. The CLAS participants were recruited from 20 target communities (ie, 2 rural and 18 urban) located in the eastern, mid, and western parts of China, and all of them were permanent residents aged 60 years or older19.

2.2 Participants

Our study enrolled 30 normal controls (NC), 43 aMCI subjects and 35AD subjects, who were matched in age, gender and education. All subjects diagnosed with AD fulfilled the following criteria: (a) age \geq 60 years; (b) met the National Institute on Aging-Alzheimer’s Association (NIA-AA) 2011 criteria for dementia and the DSM-V 2013 criteria20; (c) global Clinical Dementia Rating (CDR) scores between 0.5 and 2; (d) Mini-Mental State Examination (MMSE) scores below 24. All subjects diagnosed with aMCI fulfilled the following criteria21: (a) age \geq 60 years; (b) memory complaints; (c) objective memory impairment; (d) Mini-Mental State Examination (MMSE) scores below 25; (d) normal general cognitive function; (e) intact activities of daily living; and (f) absence of dementia: CDR scores of 0.5. The NCs fulfilled the following criteria: (a) age \geq 60 years; (b) no reports of experiencing memory loss; (c) CDR scores of 0 and MMSE scores between 25 and 30; and (d) absence of serious mental and physical diseases.

2.3 General demographic data

General demographic data, such as age, gender, education, smoking history, drinking history, tea
drinking history and disease history (diabetes and hypertension) were collected with standardized questionnaires, and in the form of self-report.

2.4 Plasma NfL

Plasma NFL was examined by a highly sensitive assay on the Single Molecule Array (Simoa™) platform22. SiMoA NfL assay advantage kits (product #103186) were commercially obtained from Quanterix corporation (MA, USA). Critical reagents including buffer quality controls and recombinant human NFL standards were supplied frozen for single use only23. And all the samples were measured in duplicate.

2.5 Neuropsychological Tests

Montreal Cognitive Assessment-Chinese Version (MoCA-CV)24 was used to assess the overall cognitive function of all subjects. The MOCA is an evaluation tool used to evaluate MCI, developed by Nasreddine25 et al. And it is able to differentiate between MCI and early dementia as well as between normal and MCI26. The MoCA cut-offs (-1 to -2 standard deviations) for cognitive impairment was ranged from <25 to <21 for the lowest educated and <26 to <24 for the highest educated, depending on different age groups27.

2.6 Magnetic Resonance Imaging

MR images were scanned by using Siemens Magnetom Verio 3.0T scanner (Siemens, Munich, Germany). T1-weighted images were obtained from 176 sagittal slices using 3D magnetization prepared rapid gradient echo acquisition sequence with the following parameters: Spatial resolution = 1.2 mm3, TE = 2.98 ms, TR = 2300 ms, Flip angle = 9°28. The MRI FLAIR data acquisition setting used the following parameters: matrix 256 \times 192, FOV = 24 cm, NEX = 1, TE = 140, InVTime = 2200, TR = 860029.

Automated procedures were utilized to ascertain volumetric data. The automated assessment was described by using the Learning Embedding for Atlas Propagation (LEAP) algorithm30. The volume and asymmetry with hippocampus and amygdala as well as the brain size index of each subject were
3. Statistical Analyses

Continuous variables were expressed as mean ± SD and categorical variables were expressed as frequencies (%). Single sample Kolmogorov-Smirnov test was used to check whether the data conform to the normal distribution. Single factor ANOVA was used to compare the data of normal distribution among AD group, aMCI group and normal group, while Kruskal-Wallis H(K) test was used to compare the data of non-normal distribution. And chi square test was used to categorical variables among the three groups. Then partial correlation analysis (controlled for hypertension) was used to explore the association between plasma NfL and volume of cognitive related brain areas (hippocampus and amygdala). Two-tailed tests were utilized at a significance level of P < 0.05, and all statistical analyses were performed using SPSS 22.0 (IBM Corporation, Armonk, NY, USA).

4. Results

There were statistical differences (p<0.05) in hypertension, MoCA, left hippocampus, right hippocampus, left amygdala and right amygdala among AD group, aMCI group and normal group, but no significant differences (p>0.05) in age, education, gender, smoker, drinker, tea drinker and diabetes. Table 1 shows the results. Then further comparison showed that the MOCA scores of normal group, aMCI group and AD group decreased in turn. The volume of hippocampus and amygdala and in aMCI group and normal group were larger (p<0.05) than that in AD group, but there was no significant difference (p>0.05) between aMCI group and normal group. However, the concentration of plasma NfL in aMCI group and normal group were lower (p<0.05) than that in AD group, but there was no significant difference (p>0.05) between aMCI group and normal group (figure 1). And table 2 presents the results. Then by using partial correlation analysis and controlled of hypertension, we found that plasma NfL was negatively correlated (p<0.05) with MoCA total score (r=-0.415, p=0.013), right hippocampal volume (r=-0.335, p=0.036) and right amygdala volume (r=-0.337, p=0.048).

5. Discussion

In the present study, we analyzed and compared the plasma concentration of NfL as well as the volume differences in hippocampus and amygdala among patients with AD, patients with aMCI and normal elderly. Finally, we reached some interesting conclusions: a) the concentration of plasma NfL
in aMCI group and normal group were lower (p < 0.05) than that in AD group, but there was no
significant difference (p > 0.05) between aMCI group and normal group; b) the volume (both left and
right) of hippocampus and amygdala in aMCI group and normal group were larger (p < 0.05) than that
in AD group, but there was no significant difference (p > 0.05) between aMCI group and normal group;
c) plasma NfL was negatively correlated (p < 0.05) with MoCA total score (r = -0.415, p = 0.013), right
hippocampal volume (r = -0.335, p = 0.036) and right amygdala volume (r = -0.337, p = 0.048).
NfL is an important cytoarchitectural protein present primarily in large-caliber myelinated
axons31, and increased NfL in CSF will indicate damage or degeneration of these axons. This protein
appears to be relatively independent of tau and amyloid levels, and might correlate with
symptomology, progression, and survival32. Now NfL has been considered as an especially promising
biomarker for neurodegeneration because it can be measurable in plasma33. Single molecule array
(SiMoA) digital immunoassay platform can offer heightened sensitivity by miniaturizing the reaction
volume34, and several biomarkers indicative of peptide fragmentation and neuronal dysfunction can
be accurately quantified in peripheral blood. In our study, we used this Simoa technology to compare
the plasma NFL concentrations of AD, aMCI and normal elderly people (their gender, age and
education are matched), and found the concentration of plasma NfL in AD group were significantly
higher (p < 0.05) than that in aMCI group and normal group. Previous studies had confirmed that AD
was associated with elevated NFL in plasma, so our findings were consistent8,9. However, we did not
find any difference in plasma NfL between patients with aMCI and normal elderly, which was
inconsistent with the conclusion of Zhou W7 et al. So the relationship between NfL and aMCI needs to
be further verified.
Atrophy of the medial temporal lobe, a critical region involved in memory formation, is considered as
a recognized marker for AD35. The hippocampus and amygdala, both residing in the medial temporal
lobe, are proved to be associated with declarative memory and emotional processing, respectively36.
As the atrophy of hippocampal and amygdalar are already evident in the prodromal stage of AD37, the
volumetric measurements of hippocampus and amygdala have been used to assist the clinical diagnosis of AD38 and to predict the cognitive status of the elderly39. As expected, the volume of hippocampus and amygdala in AD patients was significantly smaller than that in aMCI and normal old people, in concordance with previous publications39–41. Then by using partial correlation analysis (adjusting hypertension), we found plasma NfL was negatively correlated with MoCA total score ($r=-0.415$, $p = 0.013$), right hippocampal volume ($r=-0.335$, $p = 0.036$) and right amygdala volume ($r=-0.337$, $p = 0.048$).

Parbo P42 et al pointed that plasma NfL levels were inverse correlated with levels of inflammation in cortical areas in AD. Mattsson N33 et al found that faster increase in plasma NfL levels correlated with faster rates of atrophy and hypometabolism, and faster worsening in global cognition in aMCI and AD. And Weston PSJ43 et al also found that serum NfL correlated with baseline brain volume and whole-brain atrophy rate in patients with familial Alzheimer disease. So we had jointly confirmed that there was a certain correlation between plasma NfL and cognitive related brain regions. However, we only found that plasma NfL was related to the right hippocampus and right amygdala, but not to the left.

Wang L44 et al found that the functional connectivity between the right hippocampus and a set of regions (such as medial prefrontal cortex, right inferotemporal cortex, right cuneus extending into precuneus, ventral anterior cingulate cortex, left cuneus, right superior and middle temporal gyrus and posterior cingulate cortex) was disrupted in AD. Sohn WS45 et al also believed that the right hippocampal connectivity was relatively by AD progression. And López-Jaramillo C46 et al also found that lithium-treated bipolar I disorder patients had larger right thalamus than unmedicated patients and controls. Therefore, we speculated that plasma NFL had some intrinsic relationship with the right hippocampus and the right amygdala, although the mechanism was not fully understood.

Our study has certain limitations: first, it’s just a cross-sectional study that could not establish a causal link; second, the relatively small sample size reduced the reliability of the study; third, we lacked the gold standard to diagnose AD and aMCI.

6. Conclusions
NFL in plasma of AD patients was significantly increased, and the protein was related to atrophy of right hippocampus and right amygdala.

7. Abbreviations

NfL: Plasma neurofilament light
aMCI: amnesic mild cognitive impairment
AD: Alzheimer’s disease
Simoa: Single Molecule array
MoCA: Montreal Cognitive Assessment
CSF: Incerebrospinal fluid
FTLD: Frontotemporal lobar degeneration
MCI: Mild cognitive impairment
PD: Parkinson's disease
MRI: Magnetic Resonance Imaging
MTA: Medial temporal atrophy
NC: Normal control
CLAS: China Longitudinal Aging Study
NIA-AA: National Institute on Aging-Alzheimer’s Association
CDR: Clinical Dementia Rating
LEAP: Learning Embedding for Atlas Propagation

8. Declarations

8.1 Ethics approval and consent to participate

This study was conducted in accordance with the principles of Declaration of Helsinki, and approved by the Research Ethical Committee of the affiliated mental health center of Shanghai Jiaotong University School of Medicine. All participants had signed the informed consent written informed consent before the start of the study.

8.2 Consent for publication

Not applicable.
8.3 Availability of data and materials
The data base generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

8.4 Competing interests
The authors declare that they have no competing interests.

8.5 Funding
This work was supported by grants from the China Ministry of Science and Technology (2009BAI77B03), National Natural Science Foundation of China (number 81671402), Clinical research center project of Shanghai Mental Health Center (CRC2017ZD02), the National Key R&D program of China (2017YFC1310501500), the Cultivation of Multidisciplinary interdisciplinary Project in Shanghai Jiao Tong University (YG2019QNA10) and curriculum reform of Medical College of Shanghai Jiao Tong University.

8.6 Authors’ contributions
Wei Li and Lin Sun contributed to the study concept and design. Ling Yue acquired the data. Ye Wu collected the data. Shifu analyzed the data and drafted the manuscript. All authors have read and approved the final manuscript.

8.7 Acknowledgement
Not applicable.

9. Reference
1. Alirezaei Z, Pourhanifeh MH, Borran S, Nejati M, Mirzaei H, Hamblin MR. Neurofilament Light Chain as a Biomarker, and Correlation with Magnetic Resonance Imaging in Diagnosis of CNS-Related Disorders. Mol Neurobiol. 2020;57(1):469-491.

2. Zetterberg H, Hietala MA, Jonsson M, et al. Neurochemical aftermath of amateur boxing. Arch Neurol. 2006;63(9):1277-1280.

3. Falgas N, Ruiz-Peris M, Perez-Millan A, et al. Contribution of CSF biomarkers to early-onset Alzheimer's disease and frontotemporal dementia neuroimaging signatures.
4. Hu YY, He SS, Wang XC, et al. Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. *Neurosci Lett.* 2002;320(3):156-160.

5. Olsson B, Portelius E, Cullen NC, et al. Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders. *JAMA Neurol.* 2019;76(3):318-325.

6. Portelius E, Olsson B, Hoglund K, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. *Acta Neuropathol.* 2018;136(3):363-376.

7. Zhou W, Zhang J, Ye F, et al. Plasma neurofilament light chain levels in Alzheimer's disease. *Neurosci Lett.* 2017;650:60-64.

8. Liu S, Huang Z, Zhang L, et al. Plasma Neurofilament Light Chain May Be a Biomarker for the Inverse Association Between Cancers and Neurodegenerative Diseases. *Front Aging Neurosci.* 2020;12:10.

9. Hu H, Chen KL, Ou YN, et al. Neurofilament light chain plasma concentration predicts neurodegeneration and clinical progression in nondemented elderly adults. *Aging (Albany NY).* 2019;11(17):6904-6914.

10. Lin YS, Lee WJ, Wang SJ, Fuh JL. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. *Sci Rep.* 2018;8(1):17368.

11. Canu E, Agosta F, Mandic-Stojmenovic G, et al. Multiparametric MRI to distinguish early onset Alzheimer's disease and behavioural variant of frontotemporal dementia. *Neuroimage Clin.* 2017;15:428-438.

12. Moller C, Hafkemeijer A, Pijnenburg YA, et al. Joint assessment of white matter
integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study. *Neuroimage Clin.* 2015;9:418-429.

13. Sala-Llonch R, Llado A, Fortea J, et al. Evolving brain structural changes in PSEN1 mutation carriers. *Neurobiol Aging.* 2015;36(3):1261-1270.

14. Ten Kate M, Barkhof F, Boccardi M, et al. Clinical validity of medial temporal atrophy as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. *Neurobiol Aging.* 2017;52:167-182.e161.

15. van de Pol LA, Korf ES, van der Flier WM, et al. Magnetic resonance imaging predictors of cognition in mild cognitive impairment. *Arch Neurol.* 2007;64(7):1023-1028.

16. Yue L, Wang T, Wang J, et al. Asymmetry of Hippocampus and Amygdala Defect in Subjective Cognitive Decline Among the Community Dwelling Chinese. *Front Psychiatry.* 2018;9:226.

17. Mattsson N, Andreasson U, Zetterberg H, Blennow K. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. *JAMA Neurol.* 2017;74(5):557-566.

18. Xiao S, Li J, Tang M, et al. Methodology of China's national study on the evaluation, early recognition, and treatment of psychological problems in the elderly: the China Longitudinal Aging Study (CLAS). *Shanghai Arch Psychiatry.* 2013;25(2):91-98.

19. Xu H, Wang Y, Yuan Y, et al. Gender differences in the protective effects of green tea against amnestic mild cognitive impairment in the elderly Han population. *Neuropsychiatr Dis Treat.* 2018;14:1795-1801.

20. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.
21. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment.
 Arch Neurol. 2001;58(12):1985-1992.

22. Hendricks R, Baker D, Brumm J, et al. Establishment of neurofilament light chain
 Simoa assay in cerebrospinal fluid and blood. *Bioanalysis.* 2019;11(15):1405-1418.

23. Midde KK, Broadnax A, Binion B, et al. Evaluation of single molecule array digital
 immunoassay technology to quantitate neurofilament light chain. *Bioanalysis.*
 2020;12(4):221-229.

24. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment,
 MoCA: a brief screening tool for mild cognitive impairment. *J Am Geriatr Soc.*
 2005;53(4):695-699.

25. Atkins AS, Khan A, Ulshen D, et al. Assessment of Instrumental Activities of Daily
 Living in Older Adults with Subjective Cognitive Decline Using the Virtual Reality
 Functional Capacity Assessment Tool (VRFCAT). *J Prev Alzheimers Dis.* 2018;5(4):216-234.

26. Pinto TCC, Machado L, Costa MLG, et al. Accuracy and Psychometric Properties of the
 Brazilian Version of the Montreal Cognitive Assessment as a Brief Screening Tool for
 Mild Cognitive Impairment and Alzheimer's Disease in the Initial Stages in the
 Elderly. *Dement Geriatr Cogn Disord.* 2019;47(4-6):366-374.

27. Borland E, Nagga K, Nilsson PM, Minthon L, Nilsson ED, Palmqvist S. The Montreal
 Cognitive Assessment: Normative Data from a Large Swedish Population-Based
 Cohort. *J Alzheimers Dis.* 2017;59(3):893-901.

28. Lin S, Yang Y, Qi Q, et al. The Beneficial Effect of Physical Exercise on Cognitive
 Function in a Non-dementia Aging Chinese Population. *Front Aging Neurosci.*
 2019;11:238.
29. Wang T, Shi F, Jin Y, Jiang W, Shen D, Xiao S. Abnormal Changes of Brain Cortical Anatomy and the Association with Plasma MicroRNA107 Level in Amnestic Mild Cognitive Impairment. *Front Aging Neurosci.* 2016;8:112.

30. Wolz R, Schwarz AJ, Yu P, et al. Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images. *Alzheimers Dement.* 2014;10(4):430-438.e432.

31. Elder GA, Friedrich VL, Jr., Bosco P, et al. Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. *J Cell Biol.* 1998;141(3):727-739.

32. Merluzzi AP, Vogt NM, Norton D, et al. Differential effects of neurodegeneration biomarkers on subclinical cognitive decline. *Alzheimers Dement (N Y).* 2019;5:129-138.

33. Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. *JAMA Neurol.* 2019;76(7):791-799.

34. Song L, Lachno DR, Hanlon D, et al. A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-beta 1-42 peptide in human plasma with utility for studies of Alzheimer's disease therapeutics. *Alzheimers Res Ther.* 2016;8(1):58.

35. Duara R, Loewenstein DA, Potter E, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. *Neurology.* 2008;71(24):1986-1992.

36. Guzman-Velez E, Warren DE, Feinstein JS, Bruss J, Tranel D. Dissociable contributions of amygdala and hippocampus to emotion and memory in patients with Alzheimer's disease. *Hippocampus.* 2016;26(6):727-738.

37. Rozzini L, Chilovi BV, Trabucchi M, Padovani A. Re: Predictors of progression from
mild cognitive impairment to Alzheimer disease. *Neurology*. 2008;70(9):735; author reply 735-736.

38. Tang X, Holland D, Dale AM, Younes L, Miller MI. Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting. *Hum Brain Mapp*. 2014;35(8):3701-3725.

39. den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MM. Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. *Arch Gen Psychiatry*. 2006;63(1):57-62.

40. Lin TW, Shih YH, Chen SJ, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. *Neurobiol Learn Mem*. 2015;118:189-197.

41. Fjell AM, Walhovd KB, Fennema-Notestine C, et al. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease. *J Neurosci*. 2010;30(6):2088-2101.

42. Parbo P, Madsen LS, Ismail R, et al. Low plasma neurofilament light levels associated with raised cortical microglial activation suggest inflammation acts to protect prodromal Alzheimer's disease. *Alzheimers Res Ther*. 2020;12(1):3.

43. Weston PSJ, Poole T, Ryan NS, et al. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration. *Neurology*. 2017;89(21):2167-2175.

44. Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. *Neuroimage*. 2006;31(2):496-504.

45. Sohn WS, Yoo K, Na DL, Jeong Y. Progressive changes in hippocampal resting-state connectivity across cognitive impairment: a cross-sectional study from normal to Alzheimer disease. *Alzheimer Dis Assoc Disord*. 2014;28(3):239-246.
Characteristics

Characteristics	aMCI (n=43)	AD (n=35)	Normal (n=30)
Age, years	72.21±6.151	71.80±10.737	70.00±4.202
Education, years	11.84±3.804	12.14±5.621	12.33±2.631
Male, n(%)	17(39.5)	8(22.9)	11(36.7)
Smoker, n(%)	7(16.3)	7(16.5)	4(3.7)
Drinker,n(%)	10(9.3)	5(4.6)	2(1.9)
Tea drinker, n(%)	19(44.2)	10(28.6)	15(50)
Hypertension,n(%)	28(65.1)	9(25.7)	16(53.3)
Diabtes, n(%)	5(11.6)	3(8.6)	5(16.7)
Moca	20.48±3.430	2495.03±466.353	3383.87±189.653
Left hippocampus,mm³	3401.71±389.866	2684.93±418.750	3605.23±201.807
Right hippocampus,mm³	3409.89±388.144	688.208±248.970	1219.90±103.600
Left Amygdala,mm³	1275.81±250.030	688.208±248.970	1423.06±217.733
Right Amygdala,mm³	1345.66±173.892	873.992±199.471	1423.06±217.733
Plasma NFL, pg/ml	15.92±6.521	29.42±23.182	12.85±2.138

Table 1. General demographic data and clinical characteristics of subjects

Table 2. Multiple comparison among three groups (aMCI, AD and Normal)

Variables	Group 1	Group 2	Mean difference	Standard error	p	95% confidence interval
MoCA	aMCI	AD	14.762	0.912	<0.001*	-7
	AD	Normal	-5.274	0.972	<0.001*	-2
	aMCI	AD	906.682	163.441	<0.001*	574
	AD	Normal	-20.036	1.010	<0.001*	-2
	aMCI	AD	17.84	177.932	0.921	-34
	AD	Normal	-888.84	186.086	<0.001*	-12
	aMCI	AD	724.968	151.568	<0.001*	416
	AD	Normal	-195.34	165.006	0.245	-53
	aMCI	AD	587.605	96.963	<0.001*	390
	AD	Normal	-55.913	105.560	0.600	-15
	aMCI	AD	553.692	110.397	<0.001*	-75
	AD	Normal	471.668	79.833	<0.001*	309
Amygdala	aMCI	AD	-77.396	86.912	0.379	-25
	AD	Normal	-549.064	90.894	<0.001*	-73
Plasma NFL	aMCI	AD	-13.495	3.157	<0.001*	-19
	AD	Normal	3.075	3.299	0.353	-3.4
	AD	Normal	16.570	3.450	<0.001*	9.7
Variable 1	Variable 2	relativity	p			
-----------------------	---------------------	------------	-----			
Plasma NFL	Moca	-0.415	0.013*			
	Left hippocampus	-0.207	0.232			
	Right hippocampus	-0.355	0.036*			
	Left Amygdala	-0.207	0.232			
	Right Amygdala	-0.337	0.048*			

Figures

Figure 1. Comparison of NFL among three groups

NS means p>0.05; ** means p<0.001

Figure 1
Figure 2. Correlation of NfL with hippocampus and amygdala