ISOMETRIC EMBEDDING WITH NONNEGATIVE GAUSS CURVATURE UNDER THE GRAPH SETTING

XUMIN JIANG

Abstract. We study the regularity of the isometric embedding $X : (B(O, r), g) \to (\mathbb{R}^3, g_{can})$ of a 2-ball with nonnegatively curved C^4 metric into \mathbb{R}^3. Under the assumption that X can be expressed in the graph form, we show $X \in C^{2,1}$ near P, which is optimal by Iaia’s example.

1. Introduction

Weyl posted the following problem in 1916 [15]: Consider a positively curved 2-sphere (S^2, g). Does there exist a global C^2 isometric embedding $X : (S^2, g) \to (\mathbb{R}^3, g_{can})$, where g_{can} is the standard flat metric on \mathbb{R}^3? Weyl himself suggested the continuity method to solve this problem and obtained a priori estimates up to the second derivatives. Lewy [9] solved the problem under the assumption the g is analytic. In 1953, Nirenberg [12] solved the Weyl problem under the mild smoothness assumption that the metric is C^4.

P. Guan and Y.Y. Li [3] considered the question that if the Gauss curvature of the metric g is nonnegative, whether does (S^2, g) still have a smooth isometric embedding? They proved in [3] that for any C^4 metric g on S^2, there is a global $C^{1,1}$ isometric embedding into \mathbb{R}^3. Examples in Iaia [7] show that for some analytic metrics with positive Gauss curvature on S^2 except at one point, there exists only a $C^{2,1}$ but not a C^3 global isometric embedding into \mathbb{R}^3.

Then a natural question, posted in [3], is that if a smooth metric g on S^2 has nonnegative Gauss curvature, whether does it have a $C^{2,\alpha}$, for some $0 < \alpha < 1$, or even a $C^{2,1}$ global isometric embedding? To study this problem, we can look at the degenerate Monge-Ampère equation

$$(1.1) \quad \det(D^2u) = k$$

where $k(x, y) \geq 0$, in $B_r(O)$ for small $r > 0$. Guan [2] considered the case $k \in C^\infty(B_r(O))$, and

$$(1.2) \quad \frac{1}{A}(x^{2n} + By^{2m}) \leq k(x, y) \leq A(x^{2n} + By^{2m}),$$

for some $A > 0, B \geq 0$ and positive integers $n \leq m$. It’s shown in [2] that a $C^{1,1}$ solution u of (1.1) is smooth near the origin if (1.2) holds, and if, additionally

$$(1.3) \quad u_{xx} \geq C_0 > 0.$$

Guan and Sawyer [4] improved this result by replacing (1.3) by a weaker condition \(\Delta u \geq C_0 > 0 \).

Daskalopoulos and Savin [1] considered (1.1) in the case that \(k \) is radial. It’s shown that in [1] that if \(k(x, y) = (x^2 + y^2)^{\frac{3}{2}} \) for some \(\delta > 0 \), then \(u \in C^{2, \epsilon} \) for a small \(\epsilon \) which depends on \(\delta \).

In this paper, we consider a \(C^{1,1} \) isometric embedding \(X : (B(O, r), g) \to (\mathbb{R}^3, g_{\text{can}}) \), where \(B(O, r) \) is a ball in \(\mathbb{R}^2 \), centred at the origin with radius \(r \), and \(g \) is a \(C^4 \) metric with Gauss curvature \(k \geq 0 \). We regard the image of \(X \), as the graph of a function \(u \). In fact, we can assume the isometric embedding is of form

\[
X : (x, y) \mapsto (\alpha(x, y), \beta(x, y), u(x, y)),
\]

where \(k = 0 \) at \(O \). Under normalization, we may assume

\[
u(0, 0) = 0, u_x(0, 0) = u_y(0, 0) = 0.
\]

Notice (1.5) implies that the \(\alpha \beta \)-plane in \(\mathbb{R}^3 \), is tangent to the image \(X(S^2) \) at \(X(O) \).

An example is that \(\alpha = x, \beta = y, u = r^3 = (x^2 + y^2)^{\frac{3}{2}} \).

Then \(g = dx^2 + dy^2 + du^2 \) is smooth in \(x, y \), \(k(x, y) = 18(x^2 + y^2)^{\frac{3}{2}} > 0 \) except at the origin, but the embedding is only \(C^{2,1} \).

First we have the following theorem when \(\alpha(x, y) \equiv x, \beta(x, y) \equiv y \), and the Gauss curvature only degenerates at a single point.

Theorem 1.1. Assume that we have a \(C^4 \) metric \(g \) on a ball \(B(O, r) \subseteq \mathbb{R}^2 \), for some \(r > 0 \), and that the Gauss curvature \(k > 0 \) in \(B(O, r) \setminus \{O\} \). Assume that a \(C^{1,1} \) isometric embedding \(X : (B(O, r), g) \to (\mathbb{R}^3, g_{\text{can}}) \) is of form

\[
X : (x, y) \mapsto (x, y, u(x, y)),
\]

under local coordinates \(x, y \) such that (1.5) holds. Then \(X \in C^{2,1}(B(O, r)) \).

Here we only need the sign of the Gauss curvature \(k \). By the example \(u = r^3 \), we see that the \(C^{2,1} \) smoothness of \(X \) is optimal.

Enlightened by Guan and Sawyer [4], if \(\Delta u \), or the mean curvature \(H \), has a uniform positive lower bound near but not necessarily at the origin, we have

Corollary 1.2. Assume the same assumptions as in Theorem 1.1. In addition, we assume that \(g \in C^\infty \), and \(\Delta u = u_{xx} + u_{yy} > C_0 > 0 \) for some constant \(C_0 \), around \(O \) but not necessarily at \(O \), then \(X \in C^\infty(B_g(P, r)) \).

For the Monge-Ampère equation (1.1), in the case that \(u \) is radial, we have the following corollary showing \(u \in C^{2,1} \), which is optimal by the example \(u = r^3 \). This result is expected to be true. We list it here as a quick corollary of lemmas in Section 2.

Corollary 1.3. Assume that a \(C^{1,1} \) convex function \(u \) satisfies (1.1) in \(B(O, \rho) \), the ball of radius \(\rho \) centered at the origin, and \(k \geq 0 \) in \(B(O, \rho) \setminus O \). In addition, we assume
that \(u = \Phi(r) \) for some function \(\Phi \), where \(r = \sqrt{x^2 + y^2} \), and \(k \in C^3(B(O, \rho)) \). Then \(u \in C^{2,1}(B(O, \rho)) \).

Here \(k \) could vanish at infinite order at \(r = 0 \). We see that \(\Phi r \) is the square root of a \(C^4 \) function.

Under the general nonnegative Gauss curvature, Pogorelov’s counterexample in [13] shows that a \(C^{2,1} \) metric with nonnegative Gauss curvature may not have a \(C^2 \) isometric embedding. However, given a \(C^4 \) metric, under the graph setting, our result is positive.

Theorem 1.4. Assume that we have a \(C^4 \) metric \(g \) on a ball \(B(O, r) \subseteq \mathbb{R}^2 \), for some \(r \geq 0 \), with Gauss curvature \(k \geq 0 \). Assume that a \(C^{1,1} \) isometric embedding \(X : (B(O, r), g) \rightarrow (\mathbb{R}^3, g_{can}) \) is of form

\[
X : (x, y) \mapsto (x, y, u(x, y)),
\]

under local coordinates \(x, y \) such that the normalization (1.5) holds. If in addition, \(u \) is (weakly) convex, then \(X \in C^{2,1}(B(O, r')) \), for any \(r' < r \).

The paper is organized as follows. In Section 2 we will discuss the one dimensional model. In Section 3 we will prove Theorem 1.1. In Section 4 we prove Corollary 1.2. In Section 5 we prove Theorem 1.4.

Many thanks to Yanyan Li for introducing me this problem and the whole project. Thanks to Zheng-Chao Han for helpful discussions.

2. A Model in Dimension One

In this section, we derive \(C^{2,1} \) estimates of \(u \) in an one dimension model.

Assume a nonnegative function \(u = u(x) \in C^1(2I) \), where \(I = [-1, 1] \), and \(u(0) = 0 \). In addition, we assume that \(f = u^2 \) is in \(C^4(2I) \), and \(f'(x)x \geq 0 \). The goal is to show \(u \in C^{2,1}(I) \). The condition that \(f'(x)x \geq 0 \) is necessary, since there is a nonnegative function

\[
f(x) = e^{-\frac{1}{x^2}} \sin^2(\frac{1}{x}) + e^{-\frac{2}{x^2}}
\]

which is smooth, vanishes at infinite order at \(x = 0 \), and \((\sqrt{f})'' \) blows up when \(x \to 0 \). In fact, \(\sqrt{f} \in C^{1,\alpha} \) for any \(0 < \alpha < 1 \), and \((\sqrt{f})'' \leq C \frac{|f|}{|x|} \) for some fixed \(C \). \(x^4 \sqrt{f} \) is a \(C^{1,1} \) function. It shows that \(|u'''| = |(\sqrt{f})''| \) is not bounded when \(x \) tend to zero.

We have the following well known lemma,

Lemma 2.1. Assume \(f \in C^2(2I) \), where \(I = [-1, 1] \). \(f \geq 0 \) for \(x \in 2I \). Then for every \(x \in I \),

\[
|f'(x)| \leq \frac{3}{2} \frac{\|f\|_{C^2(2I)}^\frac{1}{2} f(x)^{\frac{1}{2}}}{|x|}.
\]
Proof. Assume first \(||f||_{C^2(2I)} = 1\). We only need to consider at \(x\) where \(f(x) > 0\). If \(f(x) \geq 1\) at some \(x \in I\), then \(|(\sqrt{f})'(x)| = \left|\frac{f'(x)}{2\sqrt{f(x)}}\right| \leq \frac{1}{2}||f||_{C^2(2I)} = \frac{1}{2}\). We assume \(0 < f(x) < 1\) at some \(x \in I\), then by the Taylor expansion, if \(x + t \in I\),

\[
f(x + t) = f(x) + f'(x)t + \frac{f''(\bar{x})}{2}t^2 \geq 0,
\]

for some \(\bar{x}\) between \(x\) and \(x + t\). Then

\[
f'(x)t \geq -f(x) - \frac{f''(\bar{x})}{2}t^2.
\]

When \(f'(x) > 0\), we set \(t = -f(x)^\frac{1}{2}\), and divide \(t\) on both hand sides to derive,

\[
0 < f'(x) \leq \frac{3}{2}f(x)^\frac{1}{2}.
\]

When \(f'(x) < 0\), we set \(t = -f(x)^\frac{1}{2}\), and divide \(t\) on both hand sides to derive,

\[
0 > f'(x) \geq -\frac{3}{2}f(x)^\frac{1}{2}.
\]

Notice the choice of \(t\) is valid, since \(|x + t| \leq |x| + |t| \leq |x| + \sqrt{f} < 2\).

So we derived,

\[
|f'(x)| \leq \frac{3}{2}f(x)^\frac{1}{2}.
\]

If general, when \(||f||_{C^2(2I)} \neq 1\), by a scaling, we see that

\[
|f'(x)| \leq \frac{3}{2}||f||_{C^2(2I)}^\frac{1}{2}f(x)^\frac{1}{2}.
\]

\(\Box\)

The following is a standard interpolation lemma,

Lemma 2.2. Assume that \(G(y)\) is a \(C^4\) function defined on \([-1, 0]\) such that \(G(y) \geq 0\), and is non-decreasing. Then there exist universal constants \(A, B\) such that

\[
|G'(0)| + |G''(0)| + |G'''(0)| \leq AG(0) + B \max_{y \in [-1, 0]} |G^{(4)}(y)|.
\]

Proof. By the Taylor expansion,

\[
G(-1) = G(0) + G'(0)(-1) + \frac{G''(0)}{2}(-1)^2 + \frac{G'''(0)}{6}(-1)^3 + \frac{G^{(4)}(\xi_1)}{24}(-1)^4,
\]

\[
G\left(-\frac{1}{2}\right) = G(0) + G'(0)(-\frac{1}{2}) + \frac{G''(0)}{2}(-\frac{1}{2})^2 + \frac{G'''(0)}{6}(-\frac{1}{2})^3 + \frac{G^{(4)}(\xi_2)}{24}(-\frac{1}{2})^4,
\]

\[
G\left(-\frac{1}{4}\right) = G(0) + G'(0)(-\frac{1}{4}) + \frac{G''(0)}{2}(-\frac{1}{4})^2 + \frac{G'''(0)}{6}(-\frac{1}{4})^3 + \frac{G^{(4)}(\xi_3)}{24}(-\frac{1}{4})^4,
\]

for some \(-1 < \xi_1 < 0, -\frac{1}{2} < \xi_2 < 0, -\frac{1}{4} < \xi_3 < 0\). Regard these as 3 linear equations in \(G'(0), G''(0), G'''(0)\), and solve them in terms of \(G(-1) - G(0), G\left(-\frac{1}{2}\right) - G(0), G\left(-\frac{1}{4}\right) - G(0)\).
Assume that Theorem 2.3. G(0), G^{(4)}(ξ_1), G^{(4)}(ξ_2), G^{(4)}(ξ_3). Since G(x) is non-decreasing and nonnegative, we have |G(1) - G(0)|, |G(1/2) - G(0)|, |G(-1/2) - G(0)| \leq G(0). Then the lemma follows. □

Next is the key theorem in this section.

Theorem 2.3. Assume that u is a C^4 function such that f = u_x^2 \in C^4(2I). In addition, assume that u_x(0) = 0 and f'(x)x is nonnegative.

Then u is C^5 in I - \{f = 0\}, and for every x \in I - \{f = 0\},

\begin{equation}
|u_{xxx}(x)| \leq C||f||_{C^4(2I)}^{1/2},
\end{equation}

for some universal constant C.

Proof. At x \in I - \{f = 0\}, f(x) > 0. So u_x = \sqrt{f} > 0 in a neighborhood of x, or u_x = -\sqrt{f} < 0 in a neighborhood of x. In both cases, f \in C^1(I) implies u is C^5 near x.

First we assume ||f||_{C^4(2I)} = 1. Our goal is to prove, for x \in I - \{f = 0\},

\begin{equation}
|u_{xxx}| = |(\sqrt{f})''| = \frac{2ff'' - (f')^2}{4f^{3/2}} \leq C,
\end{equation}

for some universal constant C.

Denote g = \frac{f}{x^2}, h = \frac{f}{x}. By Lemma (A.1), g, h \in C^2(2I) and the C^2 norms of g, h are bounded by C||f||_{C^4} = C for some universal constant C. Notice g, h are nonnegative. If we apply Lemma 2.1 to g, then we derive, for x \in I,

\begin{equation}
|x'g'| = \frac{x'g' - 2f}{x^2} \leq Cf^{1/2}.
\end{equation}

And applying Lemma 2.1 to h, we derive, for x \in I,

\begin{equation}
|h'| = \frac{x'g' - f'}{x^2} \leq C\left(\frac{f'}{x}\right)^{1/2} = C(xg' + 2f \frac{f}{x^2})^{1/2} \leq C(f^{1/2} + |x|^{-1} f^{1/2}).
\end{equation}

Case 1: Consider points x \in I - \{f = 0\}, such that f(x) \geq x^4. We see that |x|f^{1/2} \leq f^{1/2}, |x|f^{1/2} \leq f^{1/2}. Then by (2.3), (2.4),

\begin{equation}
|x^2g'| = |f' - 2f | \leq C f^{1/2},
\end{equation}

\begin{equation}
|xh'| = |f'' - f | \leq C f^{1/2},
\end{equation}

and by (2.3), (2.5), (2.6),

\begin{equation}
|fxh'| = f|xh'| \leq C f^{3/2},
\end{equation}

\begin{equation}
x^4(g')^2 = (x^2g')^2 \leq C f^{3/2},
\end{equation}

\begin{equation}
|xf^g| = f|g'| \leq C f^{3/2}.
\end{equation}

which further implies 2ff'' - (f')^2 = 2fxh' - x^4(g')^2 - 2xfg' is bounded by C f^{3/2}. So (2.2) holds.
Case 2: Consider points $x \in I - \{f = 0\}$, such that $f(x) \leq x^4$. We are to prove at such x,

\begin{equation}
|f'| \leq C f^\frac{3}{4}, |f''| \leq C f^\frac{1}{4}, |f^{(3)}| \leq C f^\frac{1}{4},
\end{equation}

for some universal constant C, which implies (2.2).

If $0 < \epsilon \leq x$, Lemma 2.2 can be applied to the function $G(y) = f(x + \epsilon y)$ for $-1 \leq y \leq 0$. Since

\begin{align*}
G'(0) &= \epsilon f'(x), \\
G''(0) &= \epsilon^2 f''(x), \\
G'''(0) &= \epsilon^3 f'''(x), \quad \max_{y \in [0, 1]} |G^{(4)}(y)| \leq \epsilon^4 \max_{x \in I} |f^{(4)}(x)|,
\end{align*}

we derive

\begin{equation}
\epsilon |f'(x)| + \epsilon^2 |f''(x)| + \epsilon^3 |f'''(x)| \leq Af(x) + \epsilon^4 B \max_{x \in I} |f^{(4)}(x)|.
\end{equation}

By setting $\epsilon = f(x)^{\frac{1}{2}} \leq x$, (2.8) implies (2.7). If for some x, $x < 0$ and $f(x) \leq x^4$, we set $G(y) = f(x - \epsilon y)$ for $-1 \leq y \leq 0$, then we derive (2.7) in a similar way.

In sum, (2.2) is verified, and we derive (2.1) by a scaling.

\begin{theorem}
Assume the same assumption as Theorem 2.3, and in addition, $u_{xx} \geq 0$ for any $x \in 2I - \{f = 0\}$. Then $u \in C^{2,1}(I)$, with (2.1) holds.
\end{theorem}

\begin{proof}
We show $u \in C^{2}(I)$, then the theorem follows from Theorem 2.3

First assume $f = 0$ only at $x = 0$. Taking the Taylor expansion of $f(x)$ at 0, if $f(x) = M x^2 + R(x)$, for some $M > 0$, and $R(x) \in O(x^3)$, then for $x \neq 0$,

\begin{equation}
u_{xx} = \text{sign}(x) \frac{f_x}{2 \sqrt{f}} = \text{sign}(x) \frac{2 M x + R_x}{2 \sqrt{M x^2 + R}},
\end{equation}

which approaches \sqrt{M} as x tends to 0. Also we check

\begin{equation}u_{xx}(0) = \lim_{x \to 0} \frac{u_{xx}(x)}{x} = \lim_{x \to 0} u_{xx}(x) = \sqrt{M}
\end{equation}

by L’Hospital’s Rule.

If $M = 0$, then $f(x) = O(x^4)$. After a scaling, we assume $f(x) \leq x^4$. Then for x near the origin,

\begin{equation}
u_{xx} = \text{sign}(x) \frac{f_x}{\sqrt{f}} \leq C f_x^\frac{3}{2} = C \sqrt{f},
\end{equation}

which approaches \sqrt{M} as x tends to 0. Also we check

\begin{equation}u_{xx}(0) = \lim_{x \to 0} \frac{u_{xx}(x)}{x} = \lim_{x \to 0} u_{xx}(x) = \sqrt{M}
\end{equation}

by L’Hospital’s Rule.
by (2.7). So \(u_{xx}(0) \) exists and equals 0.

Secondly, if \(f = 0 \) at some \(x_0 \neq 0 \), without loss of generality, assume \(x_0 > 0 \). Since \(f'(x)x \geq 0 \), \(f \) is non-decreasing as \(x > 0 \). Then \(f \equiv 0 \), for \(0 \leq x \leq x_0 \). Denote \(x_1 = \max\{x \in 2I : f(x) = 0\} \). We only have to consider \(u_{xx} \) at \(x_1 \) if \(x_1 \in I \). We can use a new coordinate that translates \(x_1 \) to the origin, and apply an argument like (2.10) to show \(u_{xx}(x_1) = 0 \). □

Example \(u = |x|^3 \) shows that in general \(u \notin C^3(\frac{1}{2}I) \) under the assumption of Theorem 2.5 even if \(f \in C^\infty(I) \).

For the case \(f > 0 \) in \(2I \), we see that \(u \) is a \(C^5 \) function on \(2I \).

Corollary 2.6. Assume \(u \) is a \(C^2 \) function such that \(f = u_x^2 \in C^4(2I) \). In addition, \(f > 0, u_{xx} \geq 0 \) in \((-2, 2)\). Then for every \(x \in I \),

\[
|u_{xxx}(x)| \leq C||f||_{C^4(2I)}^{\frac{1}{2}},
\]

for some universal constant \(C \).

Proof. \(u_{xx} \geq 0 \) implies \(f \) is non-increasing or non-decreasing on \((-2, 2)\), depending on the sign of \(u_x(0) \). Without loss of generality, we shift the origin to \(-2\), and assume \(f \) is non-decreasing on \((0, 4)\).

Assume \(||f||_{C^4(2I)} = 1 \) first. Our goal is to prove (2.7) in \([1, 3]\). In fact, for any \(x \in [1, 3] \), we can derive (2.8) for \(\epsilon \in (0, x) \). We select \(\epsilon = \left(\frac{1}{2} f(x)\right)^{\frac{1}{4}} < f(x)^{\frac{1}{4}} \leq 1 \leq x \). The rest follows as Theorem 2.3. □

For the applications in Section 3 and 5, we need a scaling version of Theorem 2.3, 2.5. Assume \(u \) is a \(C^{1,1} \) function such that \(f = u_x^2 \in C^4(2sI) \) for some \(0 < s < 1 \). In addition, \(u_x(0) = 0 \) and \(f'(x)x \) is nonnegative. In addition \(u_{xx} \geq 0 \) in \(2sI - \{f = 0\} \). We define

\[
\bar{u}(x) = u(s^{-1}x),
\]

then \(\bar{u} \) satisfies the assumption of Theorem 2.3. We derive \(\bar{u} \in C^2(I) \) and

\[
|\bar{u}_{xxx}| \leq C||\bar{u}_x^2||_{C^4(2I)}^{\frac{1}{2}},
\]

in \(I - \{\bar{u}_x = 0\} \), implying \(u \in C^2(sI) \), and

\[
|u_{xxx}| \leq Cs^{-3}||u_x^2||_{C^4(2sI)}^{\frac{1}{2}},
\]

in \(sI - \{u_x = 0\} \). (2.12) is also right under the assumption of Corollary 2.6 if we shrink the interval by multiplying the factor \(s \).
3. Two Dimensional Case with One Singular Point

In this section, we prove Theorem 1.1. Maybe making r a bit smaller, we assume that the $C^{1,1}$ function u in (1.6) is defined in $rI \times rI$. In addition, we assume that $f = u_x^2 > 0$, u_x exists and be positive, except at the origin. Here u_{xx} exists in $B(O, r) - \{O\}$, since the Gauss curvature $k > 0$ except at the origin. Then by the classic theory of Monge-Ampère equations, g is C^4 implies that u is $C^{3,\alpha}$, except at the origin, for any $\alpha \in (0, 1)$. See Section 10.3 of [14].

For $(x, y) \neq 0$, \{u_x = 0\} is locally a curve, since at any point except the origin, $u_{xx}(x, y) > 0$, then we can solve out $x = A(y)$ as a function of y from the equation $u_x(x, y) = 0$. Furthermore, $\frac{d}{dy} A(y) = \frac{u_{xy}(y)}{u_{xx}(A(y), y)}$, which is uniformly bounded when $y \in (\delta, r) \cup (-r, -\delta)$ for any $\delta > 0$. In addition, for each y, we can only have at most one x, such that $u_x(x, y) = 0$, since u_x is strictly increasing. Though the gradient of $A(y)$ may blow up when y approaches 0, we show that \{u_x = 0\} is a continuous curve.

Lemma 3.1. Assume that $u \in C^{1,1}(rI \times rI)$, $u_x(0, 0) = 0$ and u_x is an increasing function in x for any fixed y. Then \{u_x = 0\} is a continuous curve near the origin.

Proof. We only have to show $A(y)$ is continuous at $y = 0$, i.e. for any $\epsilon \in (0, 1)$, we can find an $\delta > 0$, such that $-\delta < y < \delta$ implies $-\epsilon < A(y) < \epsilon$.

On the segment \{(x, y) : -r \leq x \leq r, y = 0\}, u_x is increasing. Assume $u_x(\epsilon, 0) > \eta$, and $u_x(-\epsilon, 0) < -\eta$, for some $\eta > 0$. Then there is an $\delta > 0$, such that when $|y| < \delta$, $u_x(\epsilon, y) > 0$, $u_x(-\epsilon, y) < 0$.

The choice of δ depends on $\eta, ||u||_{C^{1,1}}$. Hence, for any fixed $y \in (-\delta, \delta)$, the zero of u_x must be unique and the value of x lies in $(-\epsilon, \epsilon)$, by the assumption that u_x is an increasing function in x for any fixed y. So we derive $-\epsilon < A(y) < \epsilon$ as $|y| < \delta$. \hfill \square

Now we prove Theorem 1.1.

Proof. By the assumption, the metric

$$g = dx^2 + dy^2 + du^2 = (1 + u_x^2)dx^2 + u_x u_y dx dy + u_x u_y dy dx + (1 + u_y^2)dy^2$$

is C^4, which implies that $u_x^2, u_y^2, u_x u_y \in C^4$. Hence $u_x^2 \in C^4$ for any $z = lx + my$, where l, m are fixed numbers in \mathbb{R}. At points except the origin, $k > 0$. Then the classic theory of Monge-Ampère equation shows that $u \in C^{2,\alpha}$ at any point (x, y) away from the origin. We get $u_{zz} > 0$ except at the origin.

Now fix a small $\epsilon << r$. Assume $u_x(-\epsilon, 0) < -2\eta_1, u_x(\epsilon, 0) > 2\eta_1$ for some $\eta_1 > 0$. Then $u_x(-\epsilon, y) < -\eta_1, u_x(\epsilon, y) > \eta_1$, if $|y| < \delta_1 = \frac{\eta_1}{||u||_{C^{1,1}(rI \times rI)}}$. We set

$$s = \max_{|y| < \delta_1} \{\epsilon - A(y), \epsilon + A(y)\},$$

which has bound $\epsilon \leq s \leq 2\epsilon$. Then the interval $[A(y) - 2s, A(y) + 2s] \subset I$ since ϵ is small. And for any $y \in (-\delta_1, \delta_1), f(x, y) = u_x^2(x, y) > \eta_1^2$,
if \(x = A(y) - 2s \) or \(A(y) + 2s \). So by (2.12), for any \(y \in (-\delta_1, \delta_1) \), \(u \) has \(C^{2,1} \) estimates for \(x \in [A(y) - s, A(y) + s] \), which depends only on \(s, |g|_{C^4(rI \times rI)} \). For points \((x, y) \in (rI - [A(y) - s, A(y) + s]) \times \delta_1 I\),

\[
 f(x, y) = u_x^2(x, y) > \eta_1^2,
\]

and hence by (2.2),

\[
 |u_{xxx}| = \left| \frac{2ff'' - (f')^2}{4f^2} \right| \leq \eta_1^{-3}||f||_{C^2(rI \times rI)}.
\]

Now \(u \in C^3(rI \times rI - (0, 0)) \), since the metric \(g \in C^4 \). In \(rI \times \delta_1 I \), \(u \) has \(C^{2,1} \) estimates in \(x \), which depends only on \(\eta_1, \epsilon, |g|_{C^4} \), that is,

\[
 ||u_{xxx}(x, y)|| \leq C(\eta_1, \epsilon, |g|_{C^4}),
\]

for \((x, y) \in rI \times \delta_1 I - (0, 0)\).

Similarly, switching \(x \) and \(y \), we can find \(\eta_2 \) such that

\[
 ||u_{yyy}(x, y)|| \leq C(\epsilon, \eta_2, |g|_{C^4}),
\]

for \((x, y) \in \delta_2 I \times rI - (0, 0)\), where \(\delta_2 = \frac{\eta_2}{||u||_{C^4(rI \times rI)}} \).

Apply the same argument to coordinates \(z = \frac{x+y}{2} \) and \(w = \frac{x-y}{2} \), we have

\[
 u_{zzz} = u_{xxx} + 3u_{xxy} + 3u_{xyy} + u_{yyy},
\]

\[
 u_{www} = u_{xxx} - 3u_{xxy} + 3u_{xyy} - u_{yyy},
\]

are uniformly bounded in two rectangular neighborhoods of the origin minus the origin, respectively, where the bounds only depend on \(\epsilon, \eta_1, \eta_2, \eta_3, \eta_4, |g|_{C^4} \).

So we derive the bounds of \(u_{xxy}, u_{xyy} \) in a neighborhood of the origin, since

\[
 u_{xxy} = \frac{u_{zzz} - u_{wwww} - 2u_{yyy}}{6},
\]

\[
 u_{xyy} = \frac{u_{zzz} + u_{wwww} - 2u_{xxx}}{6}.
\]

We derived that \(u \) has uniform \(C^3 \) estimates except at the origin. Then, by a basic argument in calculus, we derive that \(u \in C^{2,1} \) near the origin. \(\square \)

4. PROOF OF COROLLARIES

Proof of Corollary 1.2. By Theorem 1.1 \(u \) is \(C^{2,1} \) in \(x, y \). By the assumption, \(\Delta u > C_0 > 0 \) around the origin but not necessarily at the origin. Without loss of generality, under a rotation of coordinates, we assume for coordinates \(\hat{x}, \hat{y} \),

\[
 u_{\hat{x}\hat{x}}(0, 0) \geq C_0 > 0, \quad u_{\hat{y}\hat{y}}(0, 0) = 0
\]

which should hold for some \(\hat{x}, \hat{y} \), since the Gauss curvature \(k = 0 \) at the origin.
We can rotate x, y a little bit, such that none of the x, y direction confirms with the \tilde{y} direction, and so

$$u_{xx} > C_1 > 0, u_{yy} > C_1 > 0,$$

for some C_1 depends only on C_0 and the angle between the x, y direction and the \tilde{y} direction. This does not change that fact that $u_{xx}u_{yy} - u_{xy}^2 = 0$ at the origin, so we cannot apply the classic theory for Monge-Ampère equations.

Recall in the proof of Theorem 2.5, for the one dimensional model, if $u_{xx} > C_1 > 0$, we derive $f = u_x^2 = Mx^2 + Rx^3$, where $M > C_1^2$ is independent of x, and R is smooth by the assumption that $f = g_{xx} - 1$ is smooth. Then

$$u_x = \text{sign}(x) \cdot \sqrt{Mx^2 + Rx^3} = x\sqrt{M + Rx},$$

which has C^k bounds for any integer $k > 0$, which only depends on $M, k, ||f||_{C^{k+3}}$. In sum, $|D_x^k u| \leq B_k(M, k, ||f||_{C^{k+3}})$ for any k, and explicitly we have

$$D_x^2 u(0) = \sqrt{M},$$

$$D_x^3 u(0) = \frac{R(0)}{\sqrt{M}},$$

$$D_x^4 u(0) = \frac{12R_x(0)M - 3R(0)^2}{4M^4},$$

$$\ldots$$

Then we check the two dimensional model, and derive $|D_x^k u| \leq B_k(M, k, ||f||_{C^{k+3}})$ around the origin. The estimates also hold for the two pairs of coordinate systems $z = \frac{x+y}{2}, w = \frac{x-y}{2}, z_1 = \frac{x+2y}{5}, w_1 = \frac{2x-y}{5}$, if none of these four coordinates points to the \tilde{y} or $-\tilde{y}$ direction. We can rotate the x, y coordinates system a little bit if one of them does. Then

$$D_x^4 u = u_{xxxx} + 4u_{xxxy} + 6u_{xxyy} + 4u_{xyyy} + u_{yyyy}$$

$$D_x^4 u = u_{xxxx} - 4u_{xxxy} + 6u_{xxyy} - 4u_{xyyy} + u_{yyyy}$$

$$D_x^4 u = u_{xxxx} + 8u_{xxxy} + 24u_{xxyy} + 32u_{xyyy} + 16u_{yyyy}$$

are bounded, implying $u \in C^4$ near the origin.

Inductively, we can prove u is C^k near the origin by introducing more pairs of coordinate systems, and the corollary is verified.

In Theorem 1.1 The forms of α, β that are allowed can be slightly generalized.

Corollary 4.1. Assume that $(B(O, r), g)$ satisfies the same assumption as in Theorem 1.1. If a $C^{1, 1}$ isometric embedding $X : (B(O, r), g) \rightarrow (\mathbb{R}^3, g_{can})$ which is of form (1.4) under local coordinates near O, satisfies the normalization (1.5), and if α, β are C^5 in x, y, then $X \in C^{2, 1}(B_0(O, r))$.

\[\square\]
Proof. Under the assumption of Corollary 4.1 in any domain which does not include the origin, we have \(u \in C^{2,\mu} \ (0 < \mu < 1) \), and
\[
(4.1) \quad u_{\alpha\alpha} > 0, \quad u_{\alpha\alpha}u_{\beta\beta} - u_{\alpha\beta}u_{\alpha\beta} > 0,
\]
if we regard \(u \) as a function of \(\alpha, \beta \). Notice we does not necessarily have \(u_{xx} > 0 \).

The system of equations
\[
\alpha^2 + \beta^2 + u_x^2 = g_{xx}, \quad \alpha_x\alpha_y + \beta_x\beta_y + u_xu_y = g_{xy}, \quad \alpha^2 + \beta^2 + u_y^2 = g_{yy},
\]
implies
\[
\begin{align*}
 u_{\alpha\alpha}^2 &= g_{xx}x_{\alpha}^2 + 2g_{xy}x_{\alpha}y_{\alpha} + g_{yy}y_{\alpha}^2 - 1 \\
 u_{\beta\beta}^2 &= g_{xx}x_{\beta}^2 + 2g_{xy}x_{\beta}y_{\beta} + g_{yy}y_{\beta}^2 - 1 \\
 u_{\alpha\beta} &= g_{xx}x_{\alpha}y_{\beta} + g_{xy}(x_{\beta}y_{\beta} + x_{\alpha}y_{\alpha}) + g_{yy}y_{\alpha}y_{\beta},
\end{align*}
\]
where the terms on the right hand side are \(C^4 \) in \(\alpha, \beta \) by the assumption of Corollary 4.1. Here \(x, y \) can be regarded as \(C^5 \) functions of \(\alpha, \beta \), since at the origin, we may choose \(x, y \) as normal coordinates, and after a rotation, we assume \(\alpha_y(0,0) = 0, \beta_x(0,0) = 0 \).

Then at the origin
\[
\begin{align*}
 \alpha_x^2 &= g_{xx} = 1, \quad \beta_y^2 = g_{yy} = 1.
\end{align*}
\]

The Jacobian \(\frac{\partial(\alpha, \beta)}{\partial(x, y)} = 1 \) at the origin. By the implicit function theorem, we can solve out \(x, y \) as functions of \(\alpha, \beta \).

We derive that \(u_{\alpha\alpha}, u_{\beta\beta}, u_{\alpha\beta} \in C^4 \) and (4.1) holds. We can apply the same method as in Section 3 to derive \(u \in C^{2,1} \) near the origin. Then Corollary 4.1 follows. \(\square \)

Proof of Corollary 1.3. Without loss of generality, we assume (1.5) holds and \(k = 0 \) at \(O \). Since \(u = \Phi(r) \), we can check \(\Phi \in C^{1,1} \), as \(u \in C^{1,1} \). We compute,
\[
\det(D^2 u) = \frac{\Phi_r \Phi_{rr}}{r} = k.
\]
So \(k = \Psi(r) \), for some \(C^3 \) function \(\Psi \) in \(r \), by the assumption that \(k \) is \(C^3 \) in \(x, y \) and Lemma A.2. For \(r < 0 \), we define \(\Phi(r) = \Phi(-r), k(-r) = k(r) \). Then \(\Phi \in C^{1,1}(\rho I) \), \(\Psi \in C^{2,1}(\rho I) \), since \(\Phi(0) = \Phi_r(0) = k(0) = k_r(0) = 0 \). And when \(r < 0 \), \(\Phi_r, \Phi_{rr} = \Psi r \) still holds. Notice \(\Psi r \) is \(C^3(\rho I) \). Then
\[
\Phi_r^2 = \int_0^r \Psi(s)sds,
\]
and \(\Phi(0) = \Phi_r(0) = 0 \). Notice \(\int_0^r \Psi(s)sds \) is in \(C^4(\rho I) \) and \(\frac{\partial}{\partial r} \int_0^r \Psi(s)sds \cdot r = \Psi(r)r^2 \geq 0 \).

Then we can apply (2.12), and derive
\[
\Phi \in C^{2,1}(\frac{\rho}{2} I),
\]
which further implies u is a $C^{2,1}$ function.

5. Nonnegative Gauss curvature case

Set $\delta = \frac{r}{\eta}$ in this section. Assume we have the Gauss curvature $k \geq 0$ on $(B(P, r), g)$. In addition, we assume u is convex, which implies

\begin{equation}
(5.1) \quad u_{xx}, u_{yy}, u_{zz}, u_{ww} \geq 0,
\end{equation}

(at where they exist) in $B_g(P, r)$. Here (z, w) is the new coordinate system such that $z = \frac{x+y}{2}, w = \frac{x-y}{2}$. Note that convexity of u is necessary, since we have an example

$$u = \text{sign}(x) \cdot (x^2 + |y|^2),$$

where u_x^2 and the metric of the graph are smooth, with nonnegative Gauss curvature, but u is not C^2 with respect to x on the y-axis. The main obstruction is that the graph of u is not convex.

For a point $(x_0, y_0) \in [-\delta, \delta] \times [-\delta, \delta]$, if $u_x(x_0, y_0) = 0$ and $u_x(x, y_0) < 0$ for every $x \in (-\delta, x_0)$, we call (x_0, y_0) a left touch point of u_x. Notice the left touch point is unique for any $y \in [-\delta, \delta]$ if it exists, according to (5.1). Similarly, we can define right touch points.

Lemma 5.1. Assume $u(x, y) \in C^{1,1}(rI \times rI)$, $u_x^2 \in C^4(rI \times rI)$, u_{xx} exists and $u_{xx} \geq 0$ in $\delta I \times \delta I$. Then in the square $[-\delta, \delta] \times [-\delta, \delta]$, the left and right touch points, form two sets of measure zero in \mathbb{R}^2.

Proof. Without loss of generality, we only consider set of the left touch points. Define the left touch function $T_L(y)$ on $[-\delta, \delta]$, where $T_L(y_0)$ equals x_0 if we can find an x_0 such that (x_0, y_0) is the left touch point on the line $y = y_0$, which is unique if any; otherwise, $u_x(x, y_0) \geq 0$ for $x \in (-\delta, \delta)$, for which case we set $T_L(y_0) = -\delta$, or $u_x(x, y_0) < 0$ for $x \in (-\delta, \delta)$ for which case we set $T_L(y_0) = \delta$.

We check T_L is a lower semi-continuous function. If $T_L(y) = -\delta$, then it’s trivial since $T_L(x) \geq -\delta$.

If $T_L(y) = x$ for some $x > -\delta$, then (x, y) is a touch point, or $x = \delta$. In this case, for any $\epsilon \in (0, \delta + x)$, $u_x(x - \epsilon, y) < 0$, so there is a neighborhood of $(x - \epsilon, y)$ in \mathbb{R}^2, such that $u_x < 0$ in the neighborhood. So there is a $\eta > 0$, for any $y_1 \in (y - \eta, y + \eta)$, $u_x(x - \epsilon, y_1) < 0$, implying $T_L(y_1) > x - \epsilon$.

So T_L is measurable as a lower semi-continuous function, and by the Fubini Theorem, its graph has measure zero.

Lemma [5.1] shows that u_{xxx} exists and is uniformly bounded in $\delta I \times \delta I$ minus the sets of left and right touch points, i.e. u_{xxx} exists and is uniformly bounded, almost everywhere in $rI \times rI$.

We are ready to prove Theorem [1.3] using mollifiers to help with applying (3.1).
proof of Theorem 1.4. Consider the x direction first. Denote $r_0 = 6\delta, r_1 = \sqrt{r^2 - \delta^2}$. Then for any $x_0 \in (-2\delta, 2\delta)$, we have

$$-r_1 < x_0 - r_0 < x_0 + r_0 < r_1,$$

(5.2)

$$x_0 + \frac{r_0}{2} \geq \delta,$$

$$x_0 - \frac{r_0}{2} \leq -\delta.$$

On each integral curve of $\frac{\partial}{\partial x}$ in $[-2\delta, 2\delta] \times \delta I$, we check whether $f = u_x^2$ has a zero.

If not on the segment $[-2\delta, 2\delta] \times \{y_0\}$, we apply Corollary 2.6 to show u is $C^{2,1}$ in x on $[\delta, \delta] \times \{y_0\}$ and (2.12) holds with $s = \delta$.

If there is any zero on the segment $[-2\delta, 2\delta] \times \{y_0\}$, we apply Corollary 2.6 to show u is $C^{2,1}$ in x on $[\delta, \delta] \times \{y_0\}$ and (2.12) holds with $s = \delta$.

Hence u_{xx} exists everywhere in $\delta I \times \delta I$ and is Lipschitz in x on every integral curve of $\frac{\partial}{\partial x}$. In addition, by Lemma 5.3, u_{xxx} exists almost everywhere in $\delta I \times \delta I$, and has uniform bound (2.12) with $s = \delta$. Consider the regulation of u using the mollifier (A.1),

$$u_\tau(x, y) = \tau^{-2} \rho\left(\frac{x}{\tau}, \frac{y}{\tau}\right) * u(x, y).$$

By Lemma A.3, $|(u_\tau)_{xxx}| \leq C(r, g)$ in $B(P, \frac{\delta}{2})$, for any $\tau < \text{dist} (\partial(\delta I \times \delta I), \partial B(P, \frac{\delta}{2}))$.

We have similar results in the y, z, w direction. In the ball $B(P, \frac{\delta}{2})$, $u_{xz}, u_{xw}, u_{yzz}, (u_\tau)_{zzz}, (u_\tau)_{yyyy}, (u_\tau)_{yyyy}, (u_\tau)_{yyyy}$ have a uniform bound which is independent of τ. Thus, u_τ has a uniform C^3 bound as well. Now that u_τ has a uniform C^3 bound, so we can apply the Arzela-Ascoli Theorem to derive $u \in C^{2,1}(B(P, \frac{\delta}{2}))$.

\[\square\]

Appendix A. Calculus lemmas

Lemma A.1. Assume that f satisfies conditions of Theorem 2.3. Then for $g = \frac{f'}{x^2}, h = \frac{f''}{x^3}$, we have $g, h \in C^2(I)$, and

$$\|g\|_{C^2(I)} + \|h\|_{C^2(I)} \leq C\|f\|_{C^4(I)},$$

for some universal constant C.

Proof. We can express

$$f(x) = \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \int_0^x \int_0^{s_1} \int_0^{s_2} \int_0^{s_3} f^{(4)}(s_4) ds_4 ds_3 ds_2 ds_1.$$
Then \(g'' \) includes terms like
\[
\frac{1}{x^2} \int_0^x \int_0^{s_3} f^{(4)}(s_4) ds_4 ds_3 \\
\frac{1}{x^3} \int_0^x \int_0^{s_2} \int_0^{s_3} f^{(4)}(s_4) ds_4 ds_3 ds_2 \\
\frac{1}{x^4} \int_0^x \int_0^{s_1} \int_0^{s_2} \int_0^{s_3} f^{(4)}(s_4) ds_4 ds_3 ds_2 ds_1
\]
which are all bounded by \(||f||_{C^4(I)} \). In addition, as \(x \to 0 \), all these terms have limits by L'Hospital's rule, which shows \(g'' \) is continuous.

For \(h \), the proof is similar.

\[\Box\]

Lemma A.2. If \(k = k(x,y) \) lies in \(C^3(B(O,\rho)) \), and \(k = \Psi(r) \), where \(r = \sqrt{x^2 + y^2} \), then \(\Psi \in C^3((0,\rho)) \).

Proof. It follows directly from the fact that \(\Psi(r) = k(r,0) \).

Denote \(T = \frac{\partial}{\partial x_1} \), a tangential vector on \(\mathbb{R}^n \). Then it’s integral curves are lines \((x_2,x_3,\cdots,x_n) = \text{const.}\) Then we have the following lemma,

Lemma A.3. Assume \(w \) is a measurable function on \(\Omega \subseteq \mathbb{R}^n \), and absolute continuous on every integral curves of \(T \). In addition, \(Tw \) exists almost everywhere, and it is integrable in \(\Omega \). Then \(Tw \) is a derivative of \(w \) in the weak sense, i.e., for any smooth function \(v \) which has compact support in \(\Omega \),
\[
\int_\Omega Tw \cdot v dx = -\int_\Omega w \cdot T v dx
\]

Proof. We need to show the one-dimensional case, then the general case is done by the Fubini’s theorem. Denote \(T = \frac{\partial}{\partial x} \). By the assumption, \(w \) is a continuous function, and \(Tw \) exists almost everywhere.

It’s integration by parts. In fact,
\[
Twv = Tw \cdot v + w \cdot Tv.
\]

\(wv \) is absolute continuous so we can integrate the equation using the fundamental theorem of calculus.

Consider a mollifier, for \(x \in \Omega \subseteq \mathbb{R}^n \),

(A.1)
\[
\rho(x) = c \exp \left(\frac{1}{|x|^2 - 1} \right),
\]
when \(|x| < 1 \), and \(\rho(x) = 0 \) when \(|x| \geq 1 \). Here \(c \) is selected such that \(\int_{\mathbb{R}^n} \rho(x) dx = 1 \). For any \(w \in L^1(\Omega) \) and \(\tau > 0 \), the regulation of \(w \) is defined to be
\[
w_\tau(x) = \tau^{-n} \int_{\Omega} \rho \left(\frac{x-y}{\tau} \right) w(y) dy,
\]
where $\tau < \text{dist}(x, \partial \Omega)$. Then w_τ is a smooth function in a domain Ω', if $\overline{\Omega'} \subseteq \Omega$ and $\tau < \text{dist}(\partial \Omega', \partial \Omega)$.

Lemma A.4. Assume that w satisfies the assumption of Lemma A.3. In addition, $|T_w| < C$ in Ω. Then $|T_{w_\tau}| < C$ in a domain Ω', if $\overline{\Omega'} \subseteq \Omega$ and $\tau < \text{dist}(\partial \Omega', \partial \Omega)$.

Proof.

$$T_{w_\tau}(x) = \tau^{-n} \lim_{\epsilon \to 0} \int_{\Omega} \rho \left(\frac{x}{\tau} \right) \cdot \frac{w(x - y + \epsilon e_1) - w(x - y)}{\epsilon} dy,$$

where $e_1 = (1, 0, \cdots, 0) \in \mathbb{R}^n$. Since w is absolute continuous on the integral curves of T,

$$\left| \frac{w(x - y + \epsilon e_1) - w(x - y)}{\epsilon} \right| = \left| \frac{1}{\epsilon} \int_{0}^{\epsilon} T_w(x - y + se_1) ds \right| < C.$$

By the dominated convergence theorem,

$$T_{w_\tau}(x) = \tau^{-n} \int_{\Omega} \rho \left(\frac{x}{\tau} \right) \cdot T_w(x - y) dy,$$

and has uniform bound C. □

If we reduce the absolute continuity condition to being continuous on integral curves of T, then the lemma is not right. Cantor function in the one dimensional case is a counterexample.

References

[1] P. Daskalopoulos, O. Savin, *On Monge-Ampère Equations with Homogeneous Right-Hand Sides*, Comm. Pure Appl. Math. Vol. LXII, 0639-0676 (2009).

[2] P. Guan, Regularity of a class of quasilinear degenerate elliptic equations, Advances in Mathematics 132, 24-45 (1997)

[3] P. Guan, Y. Y. Li, *The Weyl problem with nonnegative Gauss curvature*, J. Diff. Geom. 39(1994) 331-342.

[4] Guan, P., Sawyer, E. *Regularity of subelliptic Monge-Ampère equations in the plane*, Trans. Amer. Math. Soc. Vol. 361, no. 9, Sep. 2009, 4581-4591.

[5] Q. Han, X. Jiang, *Boundary expansions for minimal graphs in the hyperbolic space*, arXiv:1412.7608

[6] J. Hong, C. Zuily, *Isometric embedding of the 2-sphere with non negative curvature in \mathbb{R}^3*, Math. Z. 219, 323-334(1995)

[7] Iaia, J., *The Weyl problem for surfaces of nonnegative curvature*, Geometric Inequalities and Convex Bodies, Invited Talks of the Special Session at the Amer. Math. Soc. Meeting, Denton, Tex., 1990.

[8] Iaia, J., *Isometric embeddings of surfaces with nonnegative curvature in \mathbb{R}^3*, Duke Math. J. 67 (1992), no. 2, 423-459.

[9] Lewy, H., *On the existence of a closed convex surface realizing a given Riemannian metric*, Proc. Nat. Acad. Sci. 24 (1938), no. 2, 104-106.

[10] Y.Y. Li, G. Weinstein, *A priori bounds for co-dimension one isometric embeddings*, Amer. J. of Math. 121(1999), 945-965.

[11] Lin, C. S. *The local isometric embedding in \mathbb{R}^3 of 2-dimensional Riemannian manifolds with non-negative curvature*, J. Diff. Geom. 21 (1985), no. 2, 213-230.
[12] L. Nirenberg. *The Weyl and Minkowski problems in differential geometry in the large*, Comm. Pure Appl. Math. 6 (1953), 337-394.

[13] A.V. Pogorelov. *An example of a two-dimensional Riemannian metric admitting no local realization in E_3*, Soviet Math. Doklady, 12(1):729-730, 1971.

[14] F. Schulz. *Regularity theory Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions*, Lect. Note. in Math. 1445, ISBN 978-3-540-46678-9

[15] H. Weyl, *über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement*, Vierteljahresschrift Naturforsch. Gesellschaft 61 (1916), 40-72.

Department of Mathematics, Rutgers University, New Brunswick, NJ 08901
E-mail address: xj60@math.rutgers.edu