Biochemical Activity of Vaborbactam

Ruslan Tsivkovski and Olga Lomovskaya

Qpex Biopharma, Inc.
San Diego, CA, USA
olomovskaya@qpexbio.com

Key words: vaborbactam, beta-lactamase inhibitors, beta-lactamases, kinetics of inhibition
Abstract

The most common mechanism of resistance to β-lactams antibiotics in Gram-negative bacteria is production of β-lactamase enzymes capable of cleaving the β-lactam ring. Inhibition of β-lactamase activity with small molecule drugs is a proven strategy to restore the potency of many β-lactam antibiotics. Vaborbactam (formerly RPX7009) is a cyclic boronic acid β-lactamase inhibitor (BLI) with a broad spectrum of activity against various serine β-lactamases, including KPC carbapenemases. The combination of vaborbactam and meropenem is approved in the US and Europe for the treatment of various nosocomial infections. We attempted to gain more insight into the mechanism of action of vaborbactam by conducting detailed kinetic characterization of its interaction with various recombinant His-tagged β-lactamases.

Vaborbactam demonstrated potent inhibition of class A and class C enzymes with K_i values ranging from 0.022 μM to 0.18 μM, while inhibition of class D enzymes was rather poor and no activity against class B β-lactamases was detected. Importantly, vaborbactam inhibited KPC-2, KPC-3, BKC-1 and SME-2 carbapenemases at 1:1 stoichiometry, while these numbers were higher for other class A and C enzymes. Vaborbactam was also shown to be a potent progressive inactivator of several enzymes including KPCs with inactivation constants k_2/K in the range of 3.4×10^3 to 2.4×10^4 M$^{-1}$* s$^{-1}$. Finally, experiments on the recovery of enzyme activity demonstrated high stability of the vaborbactam-KPC complex with 0.000040 s$^{-1}$ k_{off} values and corresponding residence time of seven hours, whereas release of vaborbactam bound to other serine β-lactamases was substantially faster. The biochemical characteristics of vaborbactam described in this study may facilitate further chemical optimization efforts to develop boronic BLIs with improved affinity and broader spectrum of inhibition.
Introduction

The most common mechanism of resistance to β-lactams antibiotics in Gram-negative bacteria is production of β-lactamase enzymes capable of cleaving the β-lactam ring, resulting in complete loss of antibacterial activity. This family of enzymes has demonstrated tremendous growth over the past two decades and currently is represented by several structural classes (1). Of greatest concern is the recently observed spread of carbapenemase enzymes that can hydrolyze carbapenem antibiotics and threatens their clinical usefulness. In clinical settings, carbapenem-resistant Enterobacteriaceae (CRE) infections are associated with high rates of morbidity and mortality worldwide due to limited treatment options (2).

Inhibition of β-lactamase activity with small molecule drugs is a proven strategy to restore the potency of many β-lactam antibiotics (3). The long-ago discovered β-lactamase inhibitors (BLI) clavulanic acid and tazobactam (Figure 1) are potent against various class A and class C enzymes, but lack activity against many clinically relevant carbapenemases. Additional medicinal chemistry efforts resulted in development of a new non-β-lactam-based BLI avibactam (Figure 1) possessing activity against numerous serine enzymes including KPC carbapenemases (4). It has been approved for clinical use in combination with ceftazidime to treat complicated urinary tract infections (cUTI), hospital-acquired and ventilator-associated bacterial pneumonia (HABP and VABP) and complicated intra-abdominal infections (cIAI) in combination with metronidazole (5). Several compounds based on the same structural core are now at various stages of preclinical or clinical development (6-8). However, resistance
development to avibactam both in vitro and in clinical settings due to target \(\text{bla}_{KPC} \) mutations has been reported in multiple instances (9-12).

As an alternative structural scaffold, boronic acids have undergone extensive evaluation as inhibitors of serine \(\beta \)-lactamases due to formation of a stable covalent bond between the boron moiety and the active site serine residue (13-15). For instance, boronic acid BLI S02030 (Figure 1) was demonstrated to target a wide variety of serine enzymes, including ADC-7, KPC-2, and SHV-1 with nanomolar potency (16, 17). Recently, our efforts to develop more efficient inhibitors of carbapenemases led to discovery of vaborbactam (formerly RPX7009, Figure 1) – a cyclic boronic acid BLI with a broad spectrum of activity against class A and C \(\beta \)-lactamases (18). The most prominent feature of vaborbactam is its ability to inhibit KPC enzymes and to potentiate the activity of various carbapenems in CRE strains carrying these \(\beta \)-lactamases (19, 20). The combination of vaborbactam and meropenem is approved in the US for the treatment of complicated urinary tract infections (cUTI) (21) and in Europe for cUTI, complicated intra-abdominal infection (cIAI) and HABP/VABP (22). Importantly, in vitro multistep resistance development studies with the meropenem-vaborbactam combination using numerous clinical isolates that harbored KPC failed to generate any target mutations in \(\text{bla}_{KPC} \) genes (23).

Additionally, there were no reports of resistance development due to mutations in \(\beta \)-lactamase genes after extensive use of the meropenem-vaborbactam combination in clinical settings.

The vaborbactam structure represents a promising chemical scaffold for further development of BLIs with improved properties and broader spectrum of activity, which requires a deep understanding of the structural and kinetic aspects of interaction of the BLI with its enzymatic targets. Crystal structures of vaborbactam with CTX-M-15 and AmpC \(\beta \)-lactamases revealed the spatial orientation of the inhibitor molecule in the active site as well as a set of amino acid
residues involved in interaction with the BLI (18). However, a detailed kinetic characterization of vaborbactam interaction with various β-lactamases has been missing so far. In this investigation we attempted to gain more insight into the mechanism of vaborbactam binding kinetics with various serine β-lactamases with a specific emphasis on carbapenemases.

Results and Discussion

K\textsubscript{app} values of vaborbactam inhibition of various recombinant His-tagged β-lactamases from classes A, B, C and D were measured using a procedure previously employed for boronic BLIs (13, 24) ([Table 1](#)). Vaborbactam demonstrated the ability to inhibit the majority of class A serine carbapenemases. The activity of KPC-2 and KPC-3 enzymes was inhibited with 0.056 ± 0.015 μM and 0.050 ± 0.016 μM K\textsubscript{app} values, respectively. Also, recently discovered BKC-1 and FRI-1 carbapenemases (25, 26) that share very low homology with other serine β-lactamases were inhibited by vaborbactam with 0.018 ± 0.002 μM and 0.17 ± 0.06 μM K\textsubscript{app} values, respectively. The K\textsubscript{app} value of inhibition of the SME-2 enzyme from *S. marcescens* was 0.042 ± 0.005 μM. In addition to being a potent inhibitor of class A cabapenemases, vaborbactam demonstrated inhibitory activity against several ESBL as well as AmpC enzymes with K\textsubscript{i} values varying from 0.021 μM to 1.04 μM ([Table 1](#)). Vaborbactam demonstrated relatively poor inhibition of class D β-lactamases OXA-48 and OXA-23 resulting with K\textsubscript{app} values of 14 ± 5 μM and 66 ± 11 μM, respectively. Similar low affinity to OXA enzymes was reported for various arylboronic acid derivatives (27, 28). Crystal structures of some of these BLIs with OXA-24/40 revealed covalent bond formation between the boron and catalytic serine residues while various side chains attached to the arylboronate moiety were not involved in any specific interactions with the
generally hydrophobic catalytic site of the enzyme (28). Perhaps the lack of such interaction in
the oavorbactam-OXA complex could explain its significantly lower affinity. Interestingly,
inhibition experiments with a series of arylcycloboronate BLIs revealed that one of them
containing a cyclohexyl side chain inhibited various OXA enzymes with IC$_{50}$ values of 0.22 μM
and lower (29), suggesting that the constrained cycloboronate scaffold may be more suitable for
binding in the active site of class D enzymes.

No inhibition of the class B metallo-enzymes NDM-1 and VIM-1 by vaborbactam was detected.
This result is not surprising given the absence of a serine residue in the active site to form a
covalent bond with the inhibitor. However, several cycloboronate compounds were reported to
inhibit NDM-1, VIM-2 and BclII enzymes with IC$_{50}$ values ranging from 0.002 to 1 μM (29, 30),
suggesting a different mode of binding in the active site. Co-crystallization studies indeed
demonstrated interaction of the boron-bound oxygen atoms with the ZnI ion in the substrate
binding pocket, while the bicyclic benzoxaborinine ring creates hydrophobic interactions with
the conserved Trp and Phe residues (30).

Mechanism-based suicidal BLIs (clavulanic acid, tazobactam, sulbactam) function by acylating
the catalytic serine residue of the enzyme (31). The resulting covalent complex can be
hydrolyzed by a water molecule, similar to typical β-lactam substrates, that leads to release of an
intact β-lactamase and the open ring form of the BLI molecule; alternatively, this complex can
undergo structural rearrangements resulting in irreversible enzyme inactivation (32). The number
of BLI molecules required to inactivate one molecule of β-lactamase is known as the
stoichiometry of inactivation or partition ratio. Consequently, we determined the stoichiometry
of inhibition of various serine enzymes that demonstrated a reasonable level of inhibition by
vaborbactam (Table 2). KPC-2, KPC-3, BKC-1 and SME-2 were inhibited by vaborbactam at a
1:1 ratio, while CTX-M-15, FRI-1 and AmpC demonstrated 2:1, 8:1 and 16:1 stoichiometry of inhibition by vaborbactam, respectively. For SHV-12 and TEM-43 enzymes it was impossible to reach complete inhibition even at the highest (256:1) molar ratio. The >1 stoichiometry ratios are unlikely due to vaborbactam hydrolysis but rather because of the specific conditions of the experiment that require enzyme:BLI complex formation at 1 μM concentration of enzyme. Subsequent dilution of the reaction mixture to determine residual enzyme activity results in quick inhibitor dissociation due to high vaborbactam k_{off} rates for those enzymes (see below). Importantly, unlike many suicidal BLIs no degradation of vaborbactam was observed after the inhibitor was incubated with KPC-2 for 18 hours and subjected to subsequent LC/MS analysis (Figure S1).

Mechanism-based BLIs are characterized by a two-step kinetic reaction pathway of the inhibitor binding to the enzyme (31). When studied using the reporter substrate method, this is manifested by progressive enzyme activity inactivation shown in Figure 2 for tazobactam with KPC-2 (right panel). In contrast, early reported boronic BLIs (e.g. m-tolyboronic acid and 2-formylphenylboronic acid (33) showed a linear KPC-2 inactivation profile, indicating that equilibrium between enzyme and inhibitor is very quickly established (Figure S2). However, boronic acid inhibitor S02030 (Figure 1) that is structurally very similar to vaborbactam demonstrated kinetic behavior with KPC-2 and SHV-1 enzymes similar to tazobactam (17). This led us to hypothesize that vaborbactam may also exhibit progressive inactivation profiles typical of covalent irreversible or slow tight binding reversible inhibitors. Kinetics of KPC-2 inactivation by vaborbactam demonstrated a slow onset of inhibition and non-linear reaction profiles (Figure 2). Similar inactivation profiles were obtained for all other enzymes presented in Table 3. These results suggest that vaborbactam interaction with these β-lactamases follows a
two-step kinetic mechanism. The first step is the formation of a non-covalent complex EI_1 characterized by binding constant K. The second step is a covalent interaction between the catalytic Ser residue of the enzyme and the boron atom of vaborbactam to form the EI^* complex. This second step is characterized by the first-order rate constant k_2. Independent determination of these values was impossible due to the linear relationship between k_{obs} and vaborbactam concentration values up to the highest inhibitor concentration tested (Figure S3). The inability to separately determine K and k_2 values has been reported previously for various BLIs and β-lactamases from different structural classes (17, 34, 35). Therefore, the second-order rate constant k_2/K for the onset of inhibition was calculated. Vaborbactam demonstrated comparable k_2/K values of $5.5 \pm 0.5 \times 10^3$ and $6.7 \pm 0.3 \times 10^3$ M$^{-1}$s$^{-1}$ of inactivation of the KPC-2 and KPC-3 enzymes, respectively (Table 3). FRI-1 and SME-2 were inactivated by vaborbactam with similar efficiency, while BKC-1, CTX-M-15 and AmpC demonstrated higher efficiency of inactivation by vaborbactam with k_2/K ranging from 1.2×10^4 to 2.4×10^4 M$^{-1}$s$^{-1}$. Overall, k_2/K inactivation constants demonstrated only a four-fold difference between the lowest and highest values and were consistent with the results reported for other boronic BLIs (17). Interestingly, vaborbactam showed linear inactivation profiles with the SHV-12 and TEM-43 enzymes, which is characteristic of “fast on – fast off” boronic BLIs (Figure S2). This precluded calculation of the corresponding k_2/K values (data not shown). It is quite likely that interaction of vaborbactam with these enzymes proceeded through simple one step formation of a covalent complex between the catalytic serine residue and the boron atom of vaborbactam, which can be rapidly hydrolyzed by a water molecule to release intact vaborbactam.

There have been no reports on the ability of boronic BLIs to induce structural rearrangements in β-lactamases that would result in irreversible enzyme modification as was reported for various β-
lactam-like BLIs (31). In general, the chemical bond between the boron atom of the BLI and serine residues can be hydrolyzed by a water molecule, releasing intact inhibitor and enzyme.

Taken together, this suggests that inhibition of β-lactamases by vaborbactam could be completely reversible upon removal of the BLI. The recovery of enzyme activity after complete inhibition by vaborbactam was studied by the jump dilution method (35). Activity recovery profiles for some enzymes are presented in Figure 3. Unlike k_2/K the inactivation constant, the calculated k_{off} values demonstrated a much higher degree of variation from 0.000030 s^{-1} for KPC-3 to 0.0052 s^{-1} for AmpC (Table 3). When these numbers were converted to residence time of enzyme-BLI complex, it resulted in a value of $559 \pm 28 \text{ min}$ for KPC-3 versus 3.2 ± 0.2 minutes for AmpC. Thus, vaborbactam forms remarkably stable complexes with KPC-2 and KPC-3 enzymes, while the stability of its complex with AmpC is substantially weaker. The k_{off} values for the SHV-12 and TEM-43 enzymes could not be determined by the jump dilution method due to inability to completely inhibit their activity by vaborbactam, even at a very high 256:1 molar ratio. Next, K_d values were calculated using k_2/K and k_{off} kinetic parameters (Table 3). They ranged from 4.4 nM for the KPC-3 enzyme and up to 509 nM for FRI-1. Such a high degree of variation can be attributed to the wide range of k_{off} values whereas the difference between k_2/K was not as dramatic. Interestingly, for KPC-2 and KPC-3 enzymes K_d values were almost 10-fold lower than the corresponding K_{app} values (Table 1). The difference could be attributed to the fact that K_{app} measurements were done after enzyme incubation with BLI for 10 min while K_d values reflect enzyme affinity at equilibrium.

In summary, we demonstrated that vaborbactam is a potent inhibitor of various serine β-lactamases belonging to structural classes A and C, including several carbapenemases. Of particular importance is the inhibition of clinically relevant KPC carbapenemases, which
contribute very strongly to the world-wide spread of CRE infections (36). Additionally, three
structurally diverse carbapenemase enzymes SME-2, BKC-1 and FRI-1 are also inhibited by
vaborbactam with reasonable potency. Regarding the mechanism of inhibition, with the majority
of the tested enzymes, vaborbactam behaves as a slow tight binding inhibitor that requires two
distinct kinetic steps for enzyme inactivation. Crystal structures of vaborbactam complexes with
CTX-M-15 and AmpC β-lactamases demonstrated an extensive interaction network formed
between the amino acid residues surrounding the enzyme substrate binding pocket and the
carboxy and amide groups of the inhibitor molecule (18). One might speculate that this
interaction could possibly contribute to the biphasic kinetic behavior of vaborbactam with certain
enzymes. Another important finding in this study is almost irreversible binding of vaborbactam
to the KPC carbapenemases, with calculated residence times reaching several hours. Comparison
of molecular structures of vaborbactam complexes with KPC-2 (manuscript in preparation) vs
other enzymes may shed light on the structural elements responsible for this phenomenon. The
increased residence time of the BLI:enzyme complex may also have a positive effect on the in
vivo potency of vaborbactam in animal infection models (37). Overall, the biochemical
characteristics of vaborbactam described in this study will be useful for further chemical
optimization efforts to develop boronic BLIs with improved affinity and a broader spectrum of
inhibition.

Materials and Methods
Purification of KPC-2 and KPC-3 proteins for biochemical studies. Full KPC-2 and KPC-3 gene coding sequences were cloned into pET28a vector that produced an expression construct with periplasmic protein secretion and 6xHis-tag on its C-terminus. The recombinant plasmids were transformed into BL21(DE3) pLys strain. 2 mL of overnight culture was inoculated in 1L of LB media with 50 μg/mL of kanamycin and 20 μg/mL of chloramphenicol and grown at 37°C with 300RPM shaking until reaching OD₆₀₀=0.7-0.8. IPTG was added to 0.2 mM concentration and cells continued to grow for additional 3h. Cells were harvested by centrifugation and the pellet was resuspended in 40 mL of ice-cold 50 mM TrisHCl pH 8.0, 500 mM sucrose, 1 mM EDTA and 1 tablet of complete protease inhibitor (Roche-Sigma-Aldrich, St. Louis, MO USA). The suspension was incubated on ice with six cycles of 15 sec vortexing with five minutes pause in-between. The suspension was centrifuged 30 min at 30000xg, the supernatant collected, then sonicated for 30 sec to reduce viscosity and MgCl₂ and imidazole were added to 2 mM and 5 mM concentrations, respectively. The lysate was loaded by gravity flow onto a 1mL column with HisPur Cobalt Resin (Thermo Scientific, USA) pre-equilibrated with 50 mM Na-phosphate pH7.4, 300 mM NaCl, 5 mM imidazole buffer. The column was washed with 40 mL of the same buffer and consequently His-tag protein was eluted with 50 mM Na-phosphate pH7.4, 300 mM NaCl, 70 mM imidazole buffer. All wash and elution fractions were analyzed by 8-16% SDS-PAGE. Fractions containing target protein were pooled, concentrated and dialyzed against 50 mM Na-phosphate pH 7.0. Purity of all proteins were at least 95% as determined by SDS-PAGE. Protein preparations were aliquoted and stored at -20°C until further use.

Purification of OXA-23, BKC-1, FRI-1 and SME-2 proteins for biochemical studies. Coding sequences for all four proteins were cloned into a pET28a vector that produced an expression construct with cytoplasmic protein localization and N-terminal 6xHis-tag. The recombinant
plasmids were transformed into BL21(DE3) strain. 25 mL of overnight culture grown in LB at 30°C was inoculated in 1L of MagicMedia™ (ThermoFisher Scientific, USA) with 25 µg/mL of kanamycin and grown at 18°C with 300RPM shaking for 32h. Cells were harvested by centrifugation and the pellet was resuspended in 40 mL of ice-cold 50 mM Na-phosphate pH 7.5, 300 mM NaCl, 1 tablet of complete protease inhibitor tablet. The suspension was subjected to six cycles of one min sonication with five minutes pause in-between on ice. The suspension was centrifuged 1h at 30000xg, the supernatant was collected, and imidazole was added to 5 mM concentrations. Further enzyme purification was performed using the same approach as with KPC-2 and KPC-3.

All other enzymes used in the study were expressed and purified by Emerald Biostructures (Bainbridge Island, WA, USA).
Determination of vaborbactam K_i values for various β-lactamases. Protein was mixed with various concentrations of inhibitors in 50 mM Na-phosphate pH7.0, 0.1mg/ml of BSA buffer (reaction buffer) and incubated for 10 min at 37°C. 50 μM NCF (10 μM for SHV-12 and 25 μM for BKC-1) was added and substrate cleavage profiles were recorded at 490 nm every 10 sec for 10 min. NCF concentrations for K_i determinations were selected not to exceed K_m values by more than 2-fold to prevent “saturation” of enzyme activity with substrate. K_{app} values were calculated by method of Waley SG (24).

Stoichiometry of β-lactamase inhibition by vaborbactam. Enzyme at 1 μM in reaction buffer was mixed with BLI at molar ratios varying from 256 to 0.0625. After 30 min incubation at 37°C, the reaction mixture was diluted 200-fold and enzyme activity was measured with NCF as described above. Stoichiometry of inhibition was determined as minimal BLI:enzyme ratio reducing enzyme activity to less than 10%.

Determination of vaborbactam k_2/K inactivation constant for various β-lactamases. Inactivation kinetic parameters were determined by reporter substrate method for slow tight binding inhibitor kinetic scheme (38).

\[
\begin{align*}
K & \quad k_2 \\
E + I & \leftrightarrow EI & \leftrightarrow EI^* \\
& \quad k_2 \\
\end{align*}
\]

Protein was quickly mixed with 100 μM nitrocefin and various concentrations of BLI in reaction buffer and absorbance at 490 nm was measured immediately every two seconds for 180 sec on SpectraMax plate reader (Molecular Devices, San Jose, CA, USA) at 37°C. Resulting progression curves of OD$_{490}$ vs time at various BLI concentrations were imported into Prism.
software (GraphPad, San Diego, CA, USA) and pseudo first-order rate constants k_{obs} were calculated using the following equation

$$P = V_s \cdot (1 - e^{-k_{\text{obs}} t}) / k_{\text{obs}}$$

where V_s - enzyme NCF cleavage rate in the absence of BLI. k_{obs} values calculated at various vaborbactam concentrations were fitted in the following equation

$$k_{\text{obs}} = k_2 + k_2 / K \cdot [I] / (1 + [NCF] / K_m(\text{NCF}))$$

where

- k_2 / K - inactivation constant
- $[I]$ – inhibitor concentration
- $[NCF]$ – nitrocefin concentration
- $K_m(\text{NCF})$ - Michaelis constant of NCF for β-lactamase

The following enzyme NCF K_m values were used for k_2 / K calculation: KPC-2 - 49±5 μM, KPC-3 - 49±2 μM, BKC-1 – 9.4±1.4 μM, FRI-1 - 75±4 μM, SME-2 - 59±3 μM, CTX-M-15 - 24±3 μM, AmpC - 33±3 μM.
Determination of k_{off} rates of enzyme activity recovery after inhibition by vaborbactam. Purified enzyme at 1 μM concentration in reaction buffer was mixed with BLIs at 8-fold higher concentration than its stoichiometry ratio (determined in preliminary stoichiometry experiments). After 30 min incubation at 37°C, the reaction mixture was diluted from 100-fold to 30000-fold depending on the enzyme in reaction buffer and 100 μL of diluted enzyme was mixed with 100 μL of 400 μM NCF in reaction buffer. Absorbance at 490 nm was recorded every minute during 4h at 37°C. Resulting reaction profiles were fitted into the following equation using Graph Pad Prizm software to obtain k_{off} values: $P=V_s*t+(V_o-V_s)*(1-e^{-k_{\text{off}}t})/k_{\text{off}}$, where V_s – uninhibited enzyme velocity, measured in the reaction with enzyme and no inhibitor, V_o – completely inhibited enzyme velocity, measured in the reaction with no enzyme and NCF only.

Statistical analysis. All kinetic results are presented as average ± standard deviation of minimum three replicates.

Funding Information.

This project was funded in part by Federal funds from the Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), under contract HHSO100201400002C with Rempex Pharmaceuticals, a wholly-owned subsidiary of The Medicines Company and agreement HHSO100201600026C with The Medicines Company.

Acknowledgments
The authors are grateful to Sandra McCurdy, Mark Redell, and Scott Hecker for the critical reading of the manuscript and useful comments.

References

1. Bush K. 2018. Past and Present Perspectives on beta-Lactamases. Antimicrob Agents Chemother 62:1-20.

2. Lutgring JD. 2019. Carbapenem-resistant Enterobacteriaceae: An emerging bacterial threat. Semin Diagn Pathol 36:182-186.

3. Bush K, Bradford PA. 2019. Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat Rev Microbiol 17:295-306.

4. Stachyra T, Levasseur P, Pechereau MC, Girard AM, Claudon M, Miossec C, Black MT. 2009. In vitro activity of the beta-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 64:326-9.

5. Sharma R, Park TE, Moy S. 2016. Ceftazidime-Avibactam: A Novel Cephalosporin/beta-Lactamase Inhibitor Combination for the Treatment of Resistant Gram-negative Organisms. Clin Ther 38:431-44.

6. Blizzard TA, Chen H, Kim S, Wu J, Bodner R, Gude C, Imbriglio J, Young K, Park YW, Ogawa A, Raghoobar S, Hairston N, Painter RE, Wisniewski D, Scapin G, Fitzgerald P, Sharma N, Lu J, Ha S, Hermes J, Hammond ML. 2014. Discovery of MK-7655, a beta-lactamase inhibitor for combination with Primaxin(R). Bioorg Med Chem Lett 24:780-5.
7. Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N. 2017. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother 72:1373-1385.

8. Morinaka A, Tsutsumi Y, Yamada M, Suzuki K, Watanabe T, Abe T, Furuuchi T, Inamura S, Sakamaki Y, Mitsuhashi N, Ida T, Livermore DM. 2015. OP0595, a new diazabicyclooctane: mode of action as a serine beta-lactamase inhibitor, antibiotic and beta-lactam 'enhancer'. J Antimicrob Chemother 70:2779-86.

9. Gottig S, Frank D, Mungo E, Nolte A, Hogardt M, Besier S, Wichelhaus TA. 2019. Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo. J Antimicrob Chemother doi:10.1093/jac/dkz330.

10. Hemarajata P, Humphries RM. 2019. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother 74:1241-43.

11. Livermore DM, Warner M, Jamrozy D, Mushtaq S, Nichols WW, Mustafa N, Woodford N. 2015. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother 59:5324-30.

12. Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi Y, Kreiswirth BN, Nguyen MH, Clancy CJ. 2017. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob Agents Chemother 61:e02097-16.

13. Crompton IE, Cuthbert BK, Lowe G, Waley SG. 1988. Beta-lactamase inhibitors. The inhibition of serine beta-lactamas by specific boronic acids. Biochem J 251:453-9.
14. Morandi F, Caselli E, Morandi S, Focia PJ, Blazquez J, Shoichet BK, Prati F. 2003. Nanomolar inhibitors of AmpC beta-lactamase. J Am Chem Soc 125:685-95.

15. Weston GS, Blazquez J, Baquero F, Shoichet BK. 1998. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase. J Med Chem 41:4577-86.

16. Nguyen NQ, Krishnan NP, Rojas LJ, Prati F, Caselli E, Romagnoli C, Bonomo RA, van den Akker F. 2016. Crystal Structures of KPC-2 and SHV-1 beta-Lactamases in Complex with the Boronic Acid Transition State Analog S02030. Antimicrob Agents Chemother 60:1760-6.

17. Rojas LJ, Taracila MA, Papp-Wallace KM, Bethel CR, Caselli E, Romagnoli C, Winkler ML, Spellberg B, Prati F, Bonomo RA. 2016. Boronic Acid Transition State Inhibitors Active against KPC and Other Class A beta-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrob Agents Chemother 60:1751-9.

18. Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, King P, Tsivkovski R, Sun D, Sabet M, Tarazi Z, Clifton MC, Atkins K, Raymond A, Potts KT, Abendroth J, Boyer SH, Loutit JS, Morgan EE, Durso S, Dudley MN. 2015. Discovery of a Cyclic Boronic Acid beta-Lactamase Inhibitor (RPX7009) with Utility vs Class A Serine Carbapenemases. J Med Chem 58:3682-92.

19. Castanheira M, Rhomberg PR, Flamm RK, Jones RN. 2016. Effect of the beta-Lactam Inhibitor Vaborbactam Combined with Meropenem against Serine Carbapenemase-Producing Enterobacteriaceae. Antimicrob Agents Chemother 60:5454-8.

20. Hackel MA, Lomovskaya O, Dudley MN, Karlowsky JA, Sahm DF. 2018. In Vitro Activity of Meropenem-Vaborbactam against Clinical Isolates of KPC-Positive Enterobacteriaceae. Antimicrob Agents Chemother 62:e01904-17.
21. FDA. 2017. VABOMERE® (meropenem and vaborbactam) for injection, for intravenous use, prescribing information, on Melinta Therapeutics, Inc. [http://www.vabomere.com/media/pdf/vabomere-us-prescribing-information.pdf]. Accessed

22. EMA. 2018. Vaborem (meropenem-vaborbactam) prescribing information [https://www.ema.europa.eu/en/documents/product-information/vaborem-epar-product-information_en.pdf]. Accessed

23. Sun D, Rubio-Aparicio D, Nelson K, Dudley MN, Lomovskaya O. 2017. Meropenem-Vaborbactam Resistance Selection, Resistance Prevention, and Molecular Mechanisms in Mutants of KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 61:e01694-17.

24. Waley SG. 1982. A quick method for the determination of inhibition constants. Biochem J 205:631-3.

25. Dortet L, Poirel L, Abbas S, Oueslati S, Nordmann P. 2015. Genetic and Biochemical Characterization of FRI-1, a Carbapenem-Hydrolyzing Class A beta-Lactamase from Enterobacter cloacae. Antimicrob Agents Chemother 59:7420-5.

26. Nicoletti AG, Marcondes MF, Martins WM, Almeida LG, Nicolas MF, Vasconcelos AT, Oliveira V, Gales AC. 2015. Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil. Antimicrob Agents Chemother 59:5159-64.

27. Tan Q, Ogawa AM, Painter RE, Park YW, Young K, DiNinno FP. 2010. 4,7-Dichloro benzothien-2-yl sulfonylaminomethyl boronic acid: first boronic acid-derived beta-lactamase inhibitor with class A, C, and D activity. Bioorg Med Chem Lett 20:2622-4.
28. Werner JP, Mitchell JM, Taracila MA, Bonomo RA, Powers RA. 2017. Exploring the potential of boronic acids as inhibitors of OXA-24/40 beta-lactamase. Protein Sci 26:515-526.

29. Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J, Spencer J, Fishwick CW, McDonough MA, Schofield CJ, Brem J. 2017. Cyclic Boronates Inhibit All Classes of beta-Lactamases. Antimicrob Agents Chemother 61:1-13.

30. Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jimenez-Castellanos JC, Avison MB, Spencer J, Fishwick CW, Schofield CJ. 2016. Structural basis of metallo-beta-lactamase, serine-beta-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 7:12406.

31. Drawz SM, Bonomo RA. 2010. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23:160-201.

32. Bush K, Macalintal C, Rasmussen BA, Lee VJ, Yang Y. 1993. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob Agents Chemother 37:851-8.

33. Beesley T, Gascoyne N, Knott-Hunziker V, Petursson S, Waley SG, Jaurin B, Grundstrom T. 1983. The inhibition of class C beta-lactamases by boronic acids. Biochem J 209:229-33.

34. Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Durand-Reville TF, Lahiri S, Thresher J, Livchak S, Gao N, Palmer T, Walkup GK, Fisher SL. 2013. Kinetics of avibactam inhibition against Class A, C, and D beta-lactamases. J Biol Chem 288:27960-71.
35. Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, Walkup GK, Fisher SL. 2012. Avibactam is a covalent, reversible, non-beta-lactam beta-lactamase inhibitor. Proc Natl Acad Sci U S A 109:11663-8.

36. van Duin D, Doi Y. 2017. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 8:460-469.

37. Copeland RA, Pompliano DL, Meek TD. 2006. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730-9.

38. De Meester F, Joris B, Reckinger G, Bellefroid-Bourguignon C, Frere JM, Waley SG. 1987. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol 36:2393-403.

Table 1. K_{iapp} values of vaborbactam inhibition of various β-lactamases

Enzyme	Class	Carbapenemase	$K_{iapp} (\mu M)$
KPC-2	A	+	0.056 ± 0.015
KPC-3	A	+	0.050 ± 0.016
BKc-1	A	+	0.018 ± 0.002
FRI-1	A	+	0.17 ± 0.06
SME-2	A	+	0.042 ± 0.005
CTX-M-14	A	-	0.033 ± 0.013
CTX-M-15	A	-	0.030 ± 0.004
SHV-12	A	-	0.021 ± 0.004
TEM-10	A	-	0.14 ± 0.04
TEM-43	A	-	1.04 ± 0.20
Table 2. Stoichiometry* of vaborbactam inhibition of various β-lactamase enzymes

Enzyme	Stoichiometry	\(K_{IC50} \) (M* s\(^{-1}\))	\(k_{off} \), s\(^{-1}\)	Residence time, min	\(K_d \), nM
KPC-2	1	5.5 ± 0.5 \times 10^1	0.000043 ± 0.000006	394 ± 50	7.8
KPC-3	1	6.7 ± 0.3 \times 10^1	0.000030 ± 0.000001	559 ± 28	4.4
BKC-1	1	1.2 ± 0.1 \times 10^1	0.00040 ± 0.00008	43 ± 8	33
FRI-1	8	3.4 ± 0.1 \times 10^1	0.0017 ± 0.0001	9.8 ± 0.7	509
SME-2	1	5.0 ± 0.2 \times 10^1	0.00024 ± 0.00002	71 ± 7	47
CTX-M-15	2	2.3 ± 0.2 \times 10^1	0.0009 ± 0.0002	19 ± 1	40

* number of inhibitor molecules required to reduce enzyme activity by less than 10%

Table 3. Kinetic parameters of vaborbactam inactivation of various β-lactamases

Enzyme	\(k_2/K \) (M\(^{-1}\) * s\(^{-1}\))	\(k_{off} \), s\(^{-1}\)	Residence time, min	\(K_d \), nM
KPC-2	5.5 ± 0.5 \times 10^1	0.000043 ± 0.000006	394 ± 50	7.8
KPC-3	6.7 ± 0.3 \times 10^1	0.000030 ± 0.000001	559 ± 28	4.4
BKC-1	1.2 ± 0.1 \times 10^1	0.00040 ± 0.00008	43 ± 8	33
FRI-1	3.4 ± 0.1 \times 10^1	0.0017 ± 0.0001	9.8 ± 0.7	509
SME-2	5.0 ± 0.2 \times 10^1	0.00024 ± 0.00002	71 ± 7	47
CTX-M-15	2.3 ± 0.2 \times 10^1	0.0009 ± 0.0002	19 ± 1	40
Figure 1. Chemical structures of various BLIs

Figure 2. Kinetic profiles of KPC-2 inactivation by vaborbactam and tazobactam. Vaborbactam and tazobactam at indicated concentration (in μM) were quickly mixed with 1.2 nM KPC-2 enzyme and 100 μM NCF as reporter substrate and absorbance at 490 nm was recorded immediately every 2 sec using plate reader.
Figure 3. Kinetic profiles of activity recovery of various β-lactamases after inhibition by vaborbactam using jump dilution method. Enzymes at 1 μM concentration were mixed with vaborbactam at concentration 8-fold higher than stoichiometry ratio and incubated for 30 min. After appropriate dilution 100 μM NCF was added to the reaction mixture and absorbance at 490 nm was recorded every 10 sec using plate reader. Reaction without addition of BLI was also recorded and used to calculate uninhibited enzyme velocity \(V_\text{s} \).