Dilution effects on the antiferromagnetic Kondo semiconductor CeOs$_2$Al$_{10}$

Y Okada1, J Kawabata1, Y Yamada1, Y Muro3 and T Takabatake1,2

1Graduate School of Advanced Sciences of Matter, 2Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
3Faculty of Engineering, Toyama Prefectural University, Izumi, Toyama 939-0398, Japan

E-mail: takaba@hiroshima-u.ac.jp

Abstract. We have studied the effects of dilution of Ce sublattice on the unusual antiferromagnetic (AFM) order in the Kondo semiconductor CeOs$_2$Al$_{10}$ at 28.5 K by the magnetic, transport and specific-heat measurements of single crystals of Ce$_{1-z}$La$_z$Os$_2$Al$_{10}$. The effective magnetic moment and paramagnetic Curie temperature hardly change with z up to 0.5, indicating that the 4f state remains unchanged at high temperatures. The suppression of the Néel temperature T_N is much weaker than that in 5d hole doped system, Ce(Os$_{1-y}$Re$_y$)$_2$Al$_{10}$. Therefore, the AFM interaction is robust against the violation of the coherent Ce sublattice. The activation energy in the resistivity decreases in parallel with T_N, confirming the argument that the presence of the c-f hybridization gap is a requisite for the unusual AFM order in this system.

1. Introduction

In the so-called Kondo semiconductors with renormalized gaps at the Fermi level, the ground states remain nonmagnetic due to the strong hybridization of the 4f states and conduction bands [1]. However, recently found Kondo semiconductors CeT$_2$Al$_{10}$ (T = Ru, Os) crystallizing in the orthorhombic YbFe$_2$Al$_{10}$-type structure order antiferromagnetically (AFM) at rather high temperature $T_N = 28$ K [2-4]. In order to elucidate the mechanism for the unusual AFM order, we have studied the effects of electron- and hole-doping on the magnetic and transport properties [5,6], electron tunneling [7] and spin-gap formation [8] in Ce(Os$_{1-y}$M$_y$)$_2$Al$_{10}$ (M = Re, Ir). These studies have revealed that 5d hole doping with Re substitution for Os moves CeOs$_2$Al$_{10}$ to a valence fluctuation regime while 5d electron doping with Ir substitution moves to a localized Kondo regime. Furthermore, the 5d hole doping suppresses the T_N more drastically than the 5d electron doping, whereby the suppressions of T_N are well correlated with those of the activation energy in the electrical resistivity. Because the activation energy is a measure of the hybridization gap, this correlation suggested that the hybridization gap is necessary for the unusual AFM order in this system.

The effect of dilution of the Ce 4f sublattice on the physical properties of CeRu$_2$Al$_{10}$ was studied by substituting La for Ce [9-11]. It was expected that the La substitution expands the lattice and therefore the 4f state would be more localized. As z is increased from 0 to 1 in Ce$_{1-z}$La$_z$Ru$_2$Al$_{10}$, the lattice parameters a and c increased by 0.25% and the b parameter increased by 0.15%. However, the magnetic susceptibility along the easy a axis for $T > 100$ K hardly changed with z up to $z = 0.7$ where the AFM order disappeared. Therefore, little change occurred in the effective magnetic moment per Ce atom and paramagnetic Curie temperature. The rather robust AFM order against dilution is in contrast with the
strong suppression of the AFM order observed in Ce(Os_{1-x}M_x)_{2}Al_{10} for M = Re and Ir [7]. In order to understand the contrasting responses to the substitution in the T sublattice and that in the Ce sublattice, we have studied the dilution effect on the AFM order in Ce_{1-x}La_{2}Os_{2}Al_{10}. Another issue in Ce_{1-x}La_{2}Ru_{2}Al_{10} is the reorientation of the ordered magnetic moment \(\mu_{AF} \) from //c to //b, which occurs at \(z \approx 0.07 \) [11]. In this work, we have examined whether such reorientation occurs in the Os system Ce_{1-x}La_{2}Os_{2}Al_{10}.

2. Experimental

Single crystals of Ce_{1-x}La_{2}Os_{2}Al_{10} were grown by the Al self-flux method as previously reported [4]. The chemical compositions were determined by the wave-length dispersive electron-probe microanalysis. The compositions of La (z) in the crystals were found to slightly deviate from the initial ones (Z). For example, starting with the compositions \(Z = 0.05, 0.10, 0.20, 0.30 \) and 0.5, the actual values of z were 0.043, 0.096, 0.15, 0.24 and 0.51, respectively. A small amount of impurity OsAl_{4} was detected. The X-ray diffraction analysis on the powdered samples indicated that \(a \) and \(c \) parameters increase linearly by 0.3% and the \(b \) parameter increases by 0.2% as \(z \) increases from 0 to 1.0.

Using the samples cut along the principal axes, we measured the electrical resistivity \(\rho \), magnetic susceptibility \(\chi \), and specific heat \(C \) in the temperature range from 2 to 300 K. The measurement of \(\chi(T) \) was performed by the ac four-terminal method. Along the three principal axes, \(\rho(T) \) was measured with bar shaped samples longer than 0.4 mm. A SQUID magnetometer (Quantum Design MPMS) was used for \(\chi(T) \) measurements. The magnetization up to 14 T was measured by the extraction method using the Quantum Design PPMS. The measurement of \(C(T) \) was performed by the thermal relaxation method on the PPMS.

3. Results and Discussion

The magnetic susceptibility \(\chi \) of Ce_{1-x}La_{2}Os_{2}Al_{10} along the a axis is shown in figure 1 as \(1/\chi \) vs temperature \(T \). The value is normalized per Ce mol. The Curie Weiss fit to the data above 200 K yielded the effective magnetic moment \(\mu_{eff} \) which stays at \(2.62 - 2.66 \mu_{B}/\text{Ce} \) for \(0 \leq z \leq 0.51 \). The absolute values of the paramagnetic Curie temperature \(\Theta_{p} \) stays at 22 – 30 K, as is shown in the inset of figure 1. Both \(\mu_{eff} \) and \(\Theta_{p} \) are insensitive to the La substitution, which are in common with those observed for Ce_{1-x}La_{2}Ru_{2}Al_{10} [9-11]. This result indicates that the 4f hole doping does not alter the c-f hybridization at high temperatures. It is in contrast with the strong effect of 5d hole doping by Re substitution for Os, which shifts the system to the valence fluctuation regime as is evidenced by the large increase in \(|\Theta_{p}| \) (see the inset of figure 1) [5]. This opposite effect is not due to the volume effect because the unit cell volume increases by a similar ratio for both substitutions, La for Ce and Re for Os. In the latter, the a

![Figure 1](image1.png)

Figure 1. Temperature dependence of the inverse magnetic susceptibility \(1/\chi \) measured in \(B//a = 1 \text{ T} \) for Ce_{1-x}La_{2}Os_{2}Al_{10}. The inset shows the absolute values of the paramagnetic Curie temperature \(|\Theta_{p}| \) for \(B//a \) as a function of the doped hole concentration in Ce_{1-x}La_{2}Os_{2}Al_{10} and Ce(Os_{1-x}Re_{x})_{2}Al_{10} [5].
and c parameters enlarge by 0.2% and the b parameter enlarges by 0.3% as the Re content increases from 0 to 0.5 [5], whose elongations are comparable in the former as described in the previous section. We note here that the χ_b and χ_c at $T > 50$ K are essentially unchanged with z but the drop in χ_b and χ_c at $T < T_N$ for $z = 0$ disappeared for $z > 0.24$.

The presence of the hybridization gap in CeOs$_2$Al$_{10}$ manifests in the thermal activation type behaviour of resistivity, $\rho(T) = \rho_0 \exp(\Delta/2k_B T)$ [4]. The results of $\rho(T)$ along the three principal axes for Ce$_{1-z}$La$_z$Os$_2$Al$_{10}$ are presented in figure 2 together with the Arrhenius plot of $\rho(T)$ along the a axis [4]. The vertical lines denote T_N’s determined by the specific heat measurement as will be described below. For $z = 0$, the thermal activation behaviour is observed in two regions, $5 < T < 16$ K and $30 < T < 80$ K. The increase in $\rho(T)$ at $T < T_N$ becomes stronger for $z = 0.043$ but is weakened as z is further increased to 0.096. However, the thermal activation behaviour above T_N remains in $\rho(T)$ along the a axis as shown in the inset. For $z = 0.24$, $\rho(T)$’s no longer follow the activation type form. We note here that the magnitudes of $\rho(T=2.5$ K) for $z = 0.043$ and 0.096 are several times larger than those of the corresponding sample Ce$_{1-z}$La$_z$Ru$_2$Al$_{10}$ [10]. The larger enhancement in the Os system than in the Ru system is consistent with the smaller value of the Sommerfeld coefficient γ in the former, as shown below.

Figure 3 shows the temperature dependence of C/T for Ce$_{1-z}$La$_z$Os$_2$Al$_{10}$. The midpoint of the jump in C/T was taken as T_N for $z=0$. With increasing z, the jump at the AFM order shifts to lower temperatures and becomes broader. A weak anomaly is noticeable at 10 K for $z = 0.24$ but no jump is observed down to 2 K for $z = 0.35$. The Sommerfeld coefficient γ was estimated by extrapolating
the C/T vs T^0 plot to $T = 0$. We discuss later the dependence of γ on z in comparison with other doped systems. The dependences of T_N and the thermal activation energy Δ_e in the resistivity along the a axis are plotted in the inset of figure 3. It is noteworthy that the decrease in T_N follows that of Δ_e. This relation supports our argument that the hybridization gap is a requisite for the unusual AFM order, which has been derived from our systematic investigation of Ce(Os$_{1-x}$M$_x$)$_2$Al$_{10}$ for $M = $ Re and Ir [5,6].

As mentioned in the introduction, the direction of AFM ordered moments μ_{AF} in Ce$_{1-x}$La$_x$Ru$_2$Al$_{10}$ changes from $//c$ to $//b$ as z is increased to 0.07 [10]. In order to examine whether such reorientation occurs in Ce$_{1-x}$La$_x$Os$_2$Al$_{10}$, we have measured the magnetization curves $M(B)$ up to 14 T at 2 K. The results of $M(B)$ for $B//c$ are shown in figure 4. The metamagnetic anomaly at 6.5 T for $z = 0$ is the manifestation of the spin flop transition from $\mu_{AF}//c$ to $\mu_{AF}//b$ [4,5]. When z increases to 0.24, the metamagnetic anomaly still exists at $B//c = 2.5$ T, indicating the direction of μ_{AF} to be kept along the c axis. This result is consistent with the AFM structure for $z = 0.1$ with $\mu_{AF} //c = 0.23\mu_b$ which was determined by neutron diffraction experiments [12]. We note that the $M(B)$ curves for $B//a$ and $B//b$ did not show any anomaly up to 14 T (not shown).

Figure 5 shows the variations of T_N and the γ value as a function of doping amount for the three systems: $4f$ hole doped systems Ce$_{1-x}$La$_x$Os$_2$Al$_{10}$ and Ce$_{1-x}$La$_x$Ru$_2$Al$_{10}$ [9-11] and $5d$ hole doped system Ce(Os$_{1-x}$Re$_x$)$_2$Al$_{10}$ [5]. Between the two La substituted systems, the degree of suppression of T_N for the Os compound is stronger than that for the Ru compound. However, it is much milder when compared with that of Re substituted system. This is well correlated with the gradual increases in the γ value as a function of z in Ce$_{1-x}$La$_x$Os$_2$Al$_{10}$ and Ce$_{1-x}$La$_x$Ru$_2$Al$_{10}$ which are slower than that as a function of $2y$ in Ce(Os$_{1-x}$Re$_x$)$_2$Al$_{10}$. Therefore, we conclude that the gapped electronic state in CeOs$_2$Al$_{10}$ below T_N is much weakly affected by $4f$ hole doping compared with the $5d$ hole doping.

4. Summary

We have studied the effect of dilution of the $4f$ sublattice on the unusual AFM order in the Kondo semiconductor CeOs$_2$Al$_{10}$ by measuring the magnetic, thermal and transport properties of Ce$_{1-x}$La$_x$Os$_2$Al$_{10}$. The measurements indicate that the $4f$ hole doping hardly change both the Ce valence state and the c-f hybridization strength. The AFM order is mildly suppressed by the doping of $4f$ holes,
in contrast with the strong suppression caused by the $5d$ hole doping. The contrasting effects provide a strong constraint for the theory to explain the mechanism of the unusual AFM order in the presence of the hybridization gap in the Kondo semiconductor.

Acknowledgements
We acknowledge valuable discussions with K Umeo, T Onimaru, D T Adroja, S Kimura, T Yokoya. We thank H Tanida and M Sera for providing us with the specific heat data of Ce$_{1-x}$La$_x$Ru$_2$Al$_{10}$. This work was partly supported by JSPS KAKENHI Grant Numbers Nos. 26400363, 16H01076, 15K05180 and 15J01007.

References
[1] Takabatake T, Teshima F, Fujii H, Nishigori S, Suzuki T, Fujita T, Yamaguchi Y, Sakurai J and Jaccard D 1990 Phys. Rev. B 41, 9607
[2] Strydom A M 2009 Physica B 404 2981
[3] Nishioka T, Kawamura Y, Takesaka T, Kobayashi R, Kato H, Matsumura M, Kodama K, Matsubayashi K and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 123705
[4] Muro Y, Kajino J, Umeo K, Nishimoto K, Tamura R and Takabatake T 2010 Phys. Rev. B 81 214401
[5] Kawabata J, Takabatake T, Umeo K and Muro Y 2014 Phys. Rev. B 89 094404
[6] Yamada Y, Kawabata J, Onimaru T and Takabatake T 2015 J. Phys. Soc. Jpn. 84 084705
[7] Kawabata J, Ekino T, Yamada Y, Sakai Y, Sugimoto A, Muro Y and Takabatake T 2015 Phys. Rev. B 92 201113(R)
[8] Bhattacharyya A, Adroja D T, Strydom A M, Kawabata J, Takabatake T, Hillier A D, Sakai V G, Taylor J W and Smith R I 2014 Phys. Rev. B 90 174422
[9] Tanida H, Tanaka D, Sera M, Moriyoshi C, Kuroiwa Y, Takesaka T, Nishioka T, Kato H and Matsumura M 2010 J. Phys. Soc. Jpn. 79 043708
[10] Oogane Y, Kawamura Y, Nishioka T, Kato H, Matsumura M, Yamamoto Y, Kodama K, Tanida H and Sera M 2012 J. Phys.: Conf. Ser. 400 032073
[11] Yoshida K, Okubo R, Tanida H, Matsumura T, Sera M, Nishioka T, Matsumura M, Moriyoshi C and Kuroiwa Y 2015 Phys. Rev. B 91 235124
[12] Adroja D T et al. 2015 Phys. Rev. B 92 094425