Appendix A Bat Algorithm

The bat algorithm is inspired by the echolocation behaviour of micro bats. Bats have extraordinary capability to find prey, avoid obstacles and differentiate between insects in the dark by using sonar. BA is formulated by mimicking the characteristics of bats based on the following rules:

- Bats use echolocation to estimate distance, find prey, avoid obstacles and distinguish between target by nature.
- Bats fly at a random velocity \(v_i \) at position \(x_i \) with fixed frequency \(f_{\text{min}} \), varying wave lengths \(\lambda \) and loundness \(A_o \) in order to search for potential prey. Bats have the capability to automatically adjust the wavelength (or frequency) of their emitted pulse and can adjust the pulse emission rate \(r \in [0, 1] \) depending on the position of target.
- The loudness of Bats can vary from a large value \(A_o \) to a constant minimum value \(A_{\text{min}} \).

Based on the aforementioned rules, BA algorithm is presented in Algorithm 1.

Algorithm 1 Bat Algorithm

Input: The objective function \(f(x), x = \{x_1, x_2, \ldots, x_d\} \)
Output: Optimal position of bat \(x^* \)
1: Initialize the bat population at position \(x_i \)
2: \(i = \{1, 2, 3 \ldots n\} \)
3: Define pulse frequency \(f_i \) at \(s_i \)
4: initialize pulse rate \(r_i \) and loudness \(A_i \)
5: while \(t < \text{max_iterations} \) do
6: generate new solutions by adjusting frequency \(f_i \), updating velocity \(v_i \) and location \(x_i \)
7: if \(\text{rand} > r_i \) then
8: select a solution among the best solutions
9: generate a local solution based on the selected solution
10: end if
11: generate a new solution by flying randomly
12: if \(\text{rand} < A_i \) and \(f(x_i) < f(x_s) \) then
13: Accept the new solutions
14: Increase \(r_i \) and \(A_i \)
15: end if
16: Rank the bats and find the current best \(x \)
17: end while
18: Return \(x^* \)

Appendix B Firefly Algorithm

FA is a meta-heuristic algorithm for optimization problems inspired by the flashing patterns and behavior of fireflies. Firefly algorithm is formulated by using following three rules:

- Fireflies are attracted to other fireflies based on the intensity of their brightness.
- The attractiveness and brightness of firefly decreases as it moves away from other fireflies. Fireflies start to move randomly if they are unable to find a brighter firefly.
- An objective function is used to determine the brightness of a particular firefly.

Based on the aforementioned rules, the pseudo code of FA is presented in algorithm 2.

Appendix C Grey wolf optimizer

GWO is a meta-heuristic algorithm inspired by the social hierarchy and hunting strategy of grey wolves. Grey wolves live in a pack of 5 to 12 and are divided in to 4 different classes (alpha, beta, delta and omega) based on individual responsibilities. Alpha wolf is the head of the pack (regardless of gender) and is responsible to organize, make decisions and lead the pack. Beta wolf is second to the superior in the pack. It assists alpha wolf in decision making and has the authority to take over the command in case of injury or senility of alpha wolf. Delta wolves are the scouts and have the responsibility for security and
Algorithm 2 Firefly Algorithm

Input: The objective function \(f(x), x = \{x_1, x_2, x_3 \ldots x_d\} \)

Output: brightest fireflies

1: Initialize the fireflies population \(x_i, i = \{1, 2, 3 \ldots n\} \)
2: Define light the Intensity \(I \) based on \(f(x) \)
3: Define the absorption coefficient \(\gamma \)
4: while \(t < \text{max Generation} \) do
 5: for \(i = 1 : n \) (all n fireflies) do
 6: for \(j = 1 : i \) (n fireflies) do
 7: if \(I_j > I_i \) then
 8: move firefly i toward firefly j
 end if
 9: Vary attractiveness with distance \(r \) via \(\exp(-\gamma r) \)
 end for
 10: Evaluate new solutions and update light intensity
 end for
5: end while
6: Rank fireflies and find the current best
7: Return brightest fireflies

Hunting activities for the pack. Finally, Omega wolves are the elders or the frail wolves. Mostly, they have the responsibility to take care of the off springs. Grey wolves are known for their extraordinary technique for hunting by employing following 3 steps:

- Track, tail and approach towards the prey.
- Encircle, harass and move towards the prey until it becomes to a stationary state.
- Simultaneously attack the prey.

Equation 1 shows the mathematical representation of encircling the prey characteristics of grey wolves.

\[
X(t + 1) = X_p(t) - A.\|C.X_p(t) - X(t)\| \tag{1}
\]

where \(X \) represents the position of the wolf, the current iteration is presented by \(t \) and \(X_p \) is the current location of the prey. The controlled coefficients \(A \) and \(C \) are calculated with the help of equation 2 and equation 3

\[
A = 2a.r_1 - a \tag{2}
\]

\[
C = 2a.r_2 \tag{3}
\]

where \(r_1 \) and \(r_2 \) are randomly generated during iterations from a range of \([0, 1]\) respectively. The controlled vector \(a \) linearly decreases from 2 to zero during the iterations as shown in equation 4.

\[
a(t) = 2 - 2.(t/T) \tag{4}
\]

where \(T \) represents the maximum number of iterations. The other wolves in the pack update their position based on the position of alpha (\(\alpha \)), beta (\(\beta \)) and delta (\(\delta \)) wolves as shown below:

\[
D_\alpha = \|C_1 \times X_\alpha - X\| \tag{5}
\]

\[
D_\beta = \|C_2 \times X_\beta - X\| \tag{6}
\]

\[
D_\delta = \|C_3 \times X_\delta - X\| \tag{7}
\]

\[
X_1 = X_\alpha - A_1.D_\alpha \tag{8}
\]
\[X_2 = X_\beta - A_2 D_\beta \]
\[X_3 = X_\delta - A_3 D_\delta \]
\[X(t + 1) = \frac{X_1 + X_2 + X_3}{3} \]

where the distance of current wolf from \(\alpha \), \(\beta \) and \(\delta \) is represented by Equation 5, Equation 6 and Equation 7 respectively. Consequently, Equation 8, Equation 9 and Equation 10 present the position of remaining grey wolves based on the current location of \(\alpha \), \(\beta \) and \(\delta \). Finally, Equation 11 is used to calculate the updated the position of the wolf. Based on the aforementioned explanation, the pseudo-code of GWO is presented in Algorithm 3.

Algorithm 3 Grey wolf optimizer Algorithm

Input: The objective function \(f(x), x = \{x_1, x_2, x_3 \ldots x_d\} \)
- control coefficient \(a \)
- number of iterations

Output: Optimal position of \(X_\alpha \)

1. Initialize the grey wolves population \(x_i, i = \{1, 2, 3 \ldots n\} \)
2. Identify \(X_\alpha, X_\beta \) and \(X_\delta \) based on objective function
3. **while** \(t < \text{max_Iterations} \) **do**
4. **for** each grey wolf in pack **do**
5. compute \(A \) and \(C \) by Eq. 2 and 3
6. Update the position of current wolf using \(X_\alpha, X_\beta \) and \(X_\delta \) by Eq. 11
7. **end for**
8. Update \(a, A \) and \(C \)
9. Calculate the fitness of each wolf
10. Update \(X_\alpha, X_\beta \) and \(X_\delta \)
11. **end while**
12. **Return** Best solution \(X_\alpha \)