DIVIDE BOUNDED SETS INTO SETS HAVING SMALLER DIAMETERS

YANLU LIAN AND SENLIN WU

Abstract. For each positive integer m and each real finite dimensional Banach space X, we set $\beta(X, m)$ to be the infimum of $\delta \in [0, 1]$ such that each set $A \subset X$ having diameter 1 can be represented as the union of m subsets of A whose diameters are at most δ. Elementary properties of $\beta(X, m)$, including its stability with respect to X in the sense of Banach-Mazur metric, are presented. Two methods for estimating $\beta(X, m)$ are introduced. The first one estimates $\beta(X, m)$ using the knowledge of $\beta(Y, m)$, where Y is a Banach space sufficiently close to X. The second estimation uses the information about $\beta_X(K, m)$, the infimum of $\delta \in (0, 1]$ such that $K \subset X$ is the union of m subsets having diameters not greater than δ times the diameter of K, for certain classes of convex bodies K in X. In particular, we show that $\beta(l^p_n, 8) \leq 0.925$ holds for each $p \in [1, +\infty]$ by applying the first method, and we proved that $\beta(l^3_n, 8) < 1$ whenever X is a three-dimensional Banach space satisfying $\beta_X(B_X, 8) < \frac{22}{47}$, where B_X is the unit ball of X, by applying the second method. These results and methods are closely related to the extension of Borsuk’s problem in finite dimensional Banach spaces and to C. Zong’s computer program for Borsuk’s conjecture.

1. Introduction

Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an n-dimensional Banach space with unit ball B_X. For each $A \subset X$, we denote by $\text{int} A$ and $bd A$ the interior and the boundary of A, respectively. When A is nonempty and bounded, we denote by $\delta(A)$ the diameter of A. I.e., $\delta(A) = \sup \{\|x - y\| : x, y \in A\}$. A compact convex subset of X having interior points is called a convex body. Since any two norms on \mathbb{R}^n induce the same topology, K is a convex body (is bounded, resp.) in X if and only if it is a convex body (is bounded, resp.) in $\mathbb{E}^n = (\mathbb{R}^n, \|\cdot\|_E)$, where $\|\cdot\|_E$ is the regular Euclidean norm. Let K^n be the set of all convex bodies in \mathbb{E}^n. A bounded subset A of X is said to be complete if $x \notin A \Rightarrow \delta((A \cup \{x\})) > \delta(A)$. It is clear that each complete set is closed and convex. For each bounded subset A of X, there always exists a complete set A^c, called a completion of A, with diameter $\delta(A)$ containing A. Note that A may have different completions. Put

$$B^n = \{A \subset \mathbb{R}^n | A \text{ is bounded and } \delta(A) > 0\}, \quad C_X = \{A \in B^n | A \text{ is complete}\}.$$

In 1933, Borsuk [5] proposed the following:

Problem 1 (Borsuk’s Problem). Is it possible to divide every bounded subset of \mathbb{E}^n into $n + 1$ sets having smaller diameters?

The answer is affirmative when $n \leq 3$ (cf. [10, 14, 17], or [16]), is negative in each of the following cases: $n \geq 298$ (cf. [18]), $n \geq 65$ (cf. [3]), and $n = 64$ (cf. [20]), and is not clear in other cases.

Progresses have been made by providing upper bounds for $b(n) = \sup \{b(A) | A \in B^n\}$, where $b(A)$, called the Borsuk number of A, is the minimal positive integer m such that A is the union of m subsets having smaller diameter. For example, L. Danzer (cf. [9]), M. Lassak (cf. [22]), and O. Schramm (cf. [26] and [6]) showed that

$$b(n) \leq \sqrt{(n + 2)^3(2 + \sqrt{2})^{n-1}} \quad \text{and} \quad b(n) \leq 2^{n-1} + 1, \quad \text{and} \quad b(n) \leq 5n^2(4 + \log n)\left(\frac{3}{2}\right)^n,$$
respectively.

One can also study Problem [1] via estimating $\beta(n, m) = \sup \{ \beta(A, m) \mid A \in B^n \}$, where m is a positive integer and, for each $A \in B^n$,

$$\beta(A, m) = \inf \left\{ \frac{1}{\delta(A)} \max_{k \in [m]} \delta(A_k) \mid A = \bigcup_{k=1}^{m} A_k \right\}.$$

Here we used the shorthand notation $[m] := \{ i \in \mathbb{Z}^+ \mid 1 \leq i \leq m \}$.

In 2020, C. Zong (cf. [32]) proved that $\beta(A, m)$ is uniformly continuous on the space K^n endowed with the Hausdorff metric, and reformulated Problem [1] as the following:

Problem 2. Does there exists a positive number $\alpha_n < 1$ such that

$$\beta(K, n+1) \leq \alpha_n, \forall K \in D^n,$$

where $D^n = \left\{ K \in K^n \mid B^n_2 \subseteq K \subseteq \frac{\sqrt{n/(2n+2)}}{1 - \sqrt{n/(2n+2)}} B^n_2 \right\}$?

Some known estimations of $\beta(n, m)$ are listed in Table 1 below (cf., [14], [21], [12], and [13]).

n	$\beta(n,m)$	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{6}$	$\sin \frac{\pi}{5}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$
2	$\sqrt{2}$	$\sqrt{2}$	$\geq \sin \frac{\pi}{5}$	$\leq \frac{\sqrt{2}}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$?
3	$\in [0.8880, 0.9887]$	$\in [\sqrt{2}/2, 0.9425]$	$\geq \frac{\sqrt{2}}{3}$	$\geq \frac{\sqrt{2}}{2}$	$\geq \frac{\sqrt{2}}{2}$		

Table 1. Known estimations on $\beta(n,m)$

Grunbaum extended Borsuk’s problem into Banach spaces and asked the following (cf. [15]):

Problem 3. Let $A \subset X = (\mathbb{R}^n, \| \cdot \|)$. What is the smallest positive integer m, denoted by $b_X(A)$, such that A can be represented as the union of m sets having smaller diameter.

Put

$$b(X) = \max \{ b_X(A) \mid A \in B^n \} = \max \{ b_X(A) \mid A \in K^n \},$$

$$B(n) = \max \{ b((\mathbb{R}^n, \| \cdot \|)) \mid \| \cdot \| \text{ is a norm on } \mathbb{R}^n \}.$$

It is clear that

(1)

$$b_X(K) \leq c(K), \forall K \in K^n,$$

where $c(K)$ is the least number of smaller homothetic copies of K needed to cover K. Since Hadwiger’s covering conjecture (see, e.g., [3], [24], [8], [31], [1]) asserts that $c(K) \leq 2^n$, $\forall K \in K^n$, it is reasonable to make the following conjecture (cf. [2, p. 75]):

Conjecture 1. For each integer $n \geq 3$, $B(n) = 2^n$.

When X is two-dimensional and $A \in B^2$, $b_X(A) \in \{2, 3, 4\}$ (cf. [3, §33]). Therefore, $B(2) = 4$.

L. Yu and C. Zong [30] proved that

(2)

$$b(l_3^p) \leq 8, \forall p \in [1, +\infty].$$

By the main result of [19] and [1], there exist universal constants c_1 and $c_2 > 0$ such that $B(n) \leq c_1 4^n e^{-c_2 \sqrt{n}}$, $\forall n \geq 2$. Despite of these progress, Conjecture [1] is still open when $n \geq 3$.

In this paper, we study Conjecture [1] by estimating
\[
\beta_X(A, m) = \inf \left\{ \frac{1}{\delta(A)} \max \{ \delta(A_k) \mid k \in [m] \} \mid A = \bigcup_{k=1}^{m} A_k \right\}
\]
for \(A \in \mathcal{B}^n \), and
\[
\beta(X, m) = \sup \{ \beta_X(A, m) \mid A \in \mathcal{B}^n \}.
\]
We focus mainly, but not only, on the case \(n = 3 \).

In Section 2, we present elementary properties of \(\beta(X, m) \), including its stability with respect to \(X \) in the sense of Banach-Mazur metric. In Section 3, we provide an estimation of \(\beta(X, 8) \) for three-dimensional Banach spaces \(X \) such that \(\beta_X(B^X, 8) \) is sufficiently small. In Section 4, we show that
\[
\beta(l^p_3, 8) \leq 0.925, \quad \forall p \in [1, +\infty],
\]
which can be viewed as a quantitative version of Yu and Zong’s result [2].

2. Elementary properties of \(\beta(X, m) \)

Proposition 1. For each finite dimensional Banach space \(X = (\mathbb{R}^n, \| \cdot \|) \) and each positive integer \(m \), we have
\[
\beta(X, m) = \sup \{ \beta_X(A, m) \mid A \in \mathcal{C}_X \}.
\]

Proof. Put \(\beta = \sup \{ \beta_X(A, m) \mid A \in \mathcal{C}_X \} \). We only need to show that \(\beta(X, m) \leq \beta \). Let \(A \) be an arbitrary set in \(\mathcal{B}^n \), and \(A^c \) be a completion of \(A \). For each \(\epsilon > 0 \), there exists a collection \(\{ B_i \mid i \in [m] \} \) of subsets of \(A^c \) such that
\[
A^c = \bigcup_{i \in [m]} B_i, \quad \text{and} \quad \frac{1}{\delta(A)} \max \{ \delta(X, B_k) \mid k \in [m] \} \leq \beta(X(A^c, m) + \epsilon.
\]
It follows that
\[
A = A \cap A^c = \bigcup_{i \in [m]} (A \cap B_i).
\]
Thus
\[
\beta_X(A, m) \leq \frac{1}{\delta(A)} \max \{ \delta(A \cap B_k) \mid k \in [m] \} \leq \beta_X(A^c, m) + \epsilon,
\]
which implies that \(\beta_X(A, m) \leq \beta_X(A^c, m) \). Thus \(\beta(X, m) \leq \beta \) as claimed. \(\square \)

Let \(T^n \) be the set of all non-singular linear transformations on \(\mathbb{R}^n \). The (multiplicative) Banach-Mazur metric \(d^M_{BM} : \mathcal{K}^n \times \mathcal{K}^n \to \mathbb{R} \) is defined by
\[
d^M_{BM}(K_1, K_2) = \inf \{ \gamma \geq 1 \mid \exists T \in T^n, v \in \mathbb{R}^n \text{ s.t. } T(K_2) \subset K_1 \subset \gamma T(K_2) + v \}, \quad \forall K_1, K_2 \in \mathcal{K}^n.
\]
The infimum is clearly attained. When both \(K_1 \) and \(K_2 \) are symmetric with respect to \(o \), we have
\[
d^M_{BM}(K_1, K_2) = \inf \{ \gamma \geq 1 \mid \exists T \in T^n \text{ s.t. } T(K_2) \subset K_1 \subset \gamma T(K_2) \}.
\]
In this situation, \(d^M_{BM}(K_1, K_2) \) equals to the Banach-Mazur distance between the Banach spaces \(X \) and \(Y \) having \(K_1 \) and \(K_2 \) as unit balls, respectively. I.e.,
\[
d^M_{BM}(K_1, K_2) = d^M_{BM}(X, Y) := \inf \{ \| T \| : \| T^{-1} \|, \mid T \text{ is an isomorphism from } X \text{ onto } Y \}.
\]
We have the following result showing the stability of \(\beta(X, m) \) with respect to \(X \) in the sense of Banach-Mazur metric.

Theorem 2. If \(X = (\mathbb{R}^n, \| \cdot \|_X) \) and \(Y = (\mathbb{R}^n, \| \cdot \|_Y) \) are two Banach space satisfying \(d^M_{BM}(X, Y) \leq \gamma \) for some \(\gamma \geq 1 \), then
\[
\beta(X, m) \leq \gamma \beta(Y, m), \quad \forall m \in \mathbb{Z}^+.
\]
Proposition 4. Let \(B_Y \subseteq B_X \subseteq \gamma B_Y \).

In this situation we have, for each \(x \in \mathbb{R}^n \),
\[
\|x\|_X = \inf \{ \lambda > 0 \mid x \in \lambda B_X \} \leq \inf \{ \lambda > 0 \mid x \in \lambda B_Y \}
\]
\[
= \|x\|_Y
\]
\[
= \inf \{ \lambda \gamma > 0 \mid x \in \lambda \gamma B_Y \}
\]
\[
= \gamma \inf \{ \lambda > 0 \mid x \in \lambda B_Y \}
\]
\[
\leq \gamma \inf \{ \lambda > 0 \mid x \in \lambda B_X \} = \gamma \|x\|_X.
\]

Hence,
\[
\|x\|_X \leq \|x\|_Y \leq \gamma \|x\|_X.
\]

In the rest of this proof, we denote by \(\delta_X (A) \) and \(\delta_Y (A) \) the diameter of a bounded subset \(A \) of \(\mathbb{R}^n \) with respect to \(\|\cdot\|_X \) and \(\|\cdot\|_Y \), respectively. By (3), we have
\[
\delta_X (A) \leq \delta_Y (A) \leq \gamma \delta_X (A), \forall A \in \mathcal{B}^n.
\]

Let \(A \) be a bounded subset of \(X \). Then \(A \) is also bounded in \(Y \). Let \(A^c \) be a completion of \(A \) in \(Y \). For any \(\varepsilon > 0 \), there exists a collection \(\{B_i \mid i \in [m]\} \) of subsets of \(A^c \) such that \(A^c \) is the union of this collection and that
\[
\frac{1}{\delta_Y (A^c)} \max \{ \delta_Y (B_i) \mid i \in [m] \} \leq \beta_Y (A^c, m) + \varepsilon.
\]

Then
\[
A = A \cap A^c = \bigcup_{i \in [m]} (B_i \cap A),
\]
and, by (4),
\[
\frac{1}{\delta_X (A)} \max \{ \delta_X (B_i \cap A) \mid i \in [m] \} \leq \frac{\gamma}{\delta_Y (A)} \max \{ \delta_Y (B_i) \mid i \in [m] \}
\]
\[
= \frac{\gamma}{\delta_Y (A^c)} \max \{ \delta_Y (B_i) \mid i \in [m] \}
\]
\[
\leq \gamma (\beta_Y (A^c, m) + \varepsilon).
\]

Therefore, \(\beta_X (A, m) \leq \gamma \beta_Y (A^c, m) \). It follows that \(\beta (X, m) \leq \gamma \beta (Y, m) \).

Corollary 3. If \(X = (\mathbb{R}^n, \|\cdot\|_X) \) and \(Y = (\mathbb{R}^n, \|\cdot\|_Y) \) are isometric, then \(\beta_X (X, m) = \beta_Y (X, m) \).

Proposition 4. Let \(l^\infty_\varepsilon = (\mathbb{R}^n, \|\cdot\|_\infty) \). Then \(\beta (l^\infty_\varepsilon, 2^n) = \frac{1}{2} \).

Proof. Put \(X = l^\infty_\varepsilon \). Then every complete set in \(X \) is a homothetic copy of \(B_X \), see [11] and [27]. Therefore,
\[
\beta_X (A, 2^n) = \beta_X (B_X, 2^n), \forall A \in \mathcal{C}_X.
\]
Thus it suffices to show \(\beta_X (B_X, 2^n) = \frac{1}{2} \).

On the one hand, \(B_X = \frac{1}{2} B_X + \frac{1}{2} V \), where \(V \) is the set of vertices of \(B_X \). Since the cardinality of \(V \) is \(2^n \), we have \(\beta_X (B_X, 2^n) \leq \frac{1}{2} \).

On the other hand, suppose that \(B_X \) is the union of \(2^n \) of its subsets \(B_1, \cdots, B_{2^n} \). For each \(i \in [2^n] \), let \(B_i^c \) be a completion of \(B_i \). Then
\[
B_X \subseteq \bigcup_{i \in [2^n]} B_i^c.
\]
It follows that
\[
\text{vol } B_X \leq \sum_{i \in [2^n]} \text{vol } B_i^c \leq \sum_{i \in [2^n]} \left(\frac{1}{2^n} \right) \max \{ \delta_X(B_i^c) \mid i \in [2^n] \} \text{vol } B_X,
\]
which implies that \(\max \{ \delta_X(B_i^c) \mid i \in [2^n] \} \geq 1 \). Thus \(\beta_X(B_X, 2^n) \geq \frac{1}{2} \), which completes the proof. \(\square \)

Corollary 5. Let \(X = (\mathbb{R}^n, \| \cdot \|) \). If \(d_{BM}(X, l_{\infty}^n) < 2 \), then \(\beta(X, 2^n) < 1 \).

We end this section with the following result.

Proposition 6. \(\sup \{ \beta(X, 4) \mid X \text{ is a two-dimensional Banach space} \} = \frac{\sqrt{2}}{2} \).

Proof. Put \(\eta = \sup \{ \beta(X, 4) \mid X \text{ is a two-dimensional Banach space} \} \). Let \(K \subset \mathbb{R}^2 \) be a planar convex body. By the main result in [23], \(K \) can be covered by four translates of \(\frac{\sqrt{2}}{2} K \). It follows that \(\beta_X(K, 4) \leq \frac{\sqrt{2}}{2} \) holds for each two-dimensional Banach space \(X \). Thus, \(\eta \leq \frac{\sqrt{2}}{2} \).

Let \(X = i^2 \) and \(B_X \) be the unit disk of \(i^2 \). To show that \(\eta \geq \frac{\sqrt{2}}{2} \), we only need to prove \(\beta_X(B_X, 4) \geq \frac{\sqrt{2}}{2} \). Suppose the contrary that \(B_X \) is the union of \(A_1, A_2, A_3, A_4 \), where
\[
\max \{ \delta(A_i) \mid i \in [4] \} < \frac{\sqrt{2}}{2}.
\]
Let \(v_1, v_2, v_3, \) and \(v_4 \) be the vertices of a square inscribed in the unit circle \(S_X \) of \(X \). Then for any \(\{i, j\} \subset [4] \)
\[
\|v_i - v_j\| \geq \sqrt{2}.
\]
Assume without loss of generality that \(v_1 \in A_1 \) and \(v_2 \in A_2 \), then
\[
\frac{v_1 + v_2}{\|v_1 + v_2\|} \notin A_1 \cup A_2.
\]
Assume that \(\frac{v_1 + v_2}{\|v_1 + v_2\|} \in A_3 \). Then \(v_3, v_4 \notin A_1 \cup A_2 \cup A_3 \) and \(A_4 \) cannot contain both \(v_3 \) and \(v_4 \), a contradiction. Thus, \(\beta_X(B_X, 4) \geq \frac{\sqrt{2}}{2} \) as claimed. \(\square \)

3. Estimating \(\beta(X, m) \) via \(\beta_X(B_X, m) \)

Let \(S \) be a simplex in \(X = (\mathbb{R}^n, \| \cdot \|) \). If the distance between each pair of vertices of \(S \) all equals to \(\delta(S) \), then we say that \(S \) is equilateral.

Proposition 7. Let \(T \) be a triangle in \(\mathbb{R}^2 \) and \(X = (\mathbb{R}^2, \| \cdot \|) \). Then \(\beta_X(T, 4) \leq \frac{1}{2} \). If \(T \) is equilateral in \(X \), then \(\beta_X(T, 4) = \frac{1}{2} \).

Proof. We only need to consider the case when \(T \) is equilateral. Assume without loss of generality that \(\delta(T) = 1 \). It is clear that \(\beta_X(T, 4) \leq \frac{1}{2} \). Denote by \(\{a, b, c\} \) the set of vertices of \(T \), and by \(\{p, q, r\} \) the set of midpoints of three sides of \(T \). Then \(\|p - q\| = \|p - r\| = \|q - r\| = \frac{1}{2} \).

Suppose the contrary that \(\beta_X(T, 4) < \frac{1}{2} \). Then there exist four subsets \(T_1, T_2, T_3, T_4 \) of \(T \) such that \(T = \bigcup_{i \in [4]} T_i \) and that \(\max \{ \delta(T_i) \mid i \in [4] \} < \frac{1}{2} \). We may assume that \(a \in T_1, b \in T_2, \) and \(c \in T_3 \). Since \(\{p, q, r\} \cap \bigcup_{i \in [3]} T_i = \emptyset \), we have \(\{p, q, r\} \subseteq T_4 \), which is impossible. Thus \(\beta_X(T, 4) = \frac{1}{2} \) as claimed. \(\square \)

Proposition 8. Let \(T \) be a simplex in \(X = (\mathbb{R}^3, \| \cdot \|) \). Then \(\beta_X(T, 8) \leq \frac{9}{16} \).
It is known that diameters are not larger than β_8. Then one can show that $T \circ T = T$. Therefore, it follows that
\[
\sum (X^{i} T)^{\lambda_{i}} - o = \sum (X^{i} T)^{\lambda_{i}} - \frac{1}{4} \sum \frac{1}{2} \lambda_{i} v_{i}.
\]
Suppose that $\sum_{\lambda_{i} v_{i} \in T_{\lambda}}$. Then
\[
\sum_{\lambda_{i} v_{i} \in T_{\lambda}} = \sum_{\lambda_{i} v_{i} \in T_{\lambda} - 4T}. \text{Thus } T_{\lambda} \subset -\frac{3}{T}.
\]
It follows that $\sum_{\lambda_{i} v_{i} \in T_{\lambda}} \in -\frac{3}{T}$. Therefore, $\beta_{X}(T, 8) \leq \frac{9}{17}$.

Proposition 9. Let T be a simplex in $X = (\mathbb{R}^{3}, ||||)$. Then
\[
\beta_{X}(T, 9) \leq \frac{9}{17}.
\]

Proof. We use the idea in the proof of Proposition 8. For each $i \in [4]$, put $T_{i} = \frac{8}{17} v_{i} + \frac{9}{17} T$. Then the portion of T not covered by $\bigcup_{i \in [4]} T_{i}$ is
\[
T_{\lambda} = \left\{ \sum_{i \in [4]} \lambda_{i} v_{i} \mid \lambda_{i} \in \left[0, \frac{8}{17}\right], \forall i \in [4], \sum_{i \in [4]} \lambda_{i} = 1 \right\}.
\]
As in the proof of Proposition 8, $T_{\lambda} \subset -\frac{16}{17} T$. By using the idea in the proof of Proposition 8 again, one can show that $\beta_{X}(T, 5) \leq \frac{2}{5}$. Therefore, T_{λ} is the union of 5 subsets of T_{λ} whose diameters are not larger than $\frac{4}{17} \delta(T)$. It follows that $\beta_{X}(T, 9) \leq \frac{9}{17}$. \hfill \square

Remark 10. The estimations in Proposition 8 and Proposition 9 are independent of the choice of norm on \mathbb{R}^{3}.

For a convex body K, the Minkowski measure of symmetry, denoted by $s(K)$, is defined as
\[
s(K) = \min \{ \lambda > 0 \mid \exists x \in X \text{ s.t. } K + x \subset -\lambda K \}.
\]
It is known that
\[
1 \leq s(K) \leq n, \forall K \in K^{n};
\]
the equality on the left holds if and only if K is centrally symmetric, and the equality on the right holds if and only if K is a simplex (cf. [29]).

The following lemma shows the stability of $\beta_{X}(K, m)$ with respect to K.

Lemma 11. Let \(X = (\mathbb{R}^n, \|\cdot\|) \) and \(K \) and \(L \) be two convex bodies in \(X \). If there exist a number \(\gamma \geq 1 \) and a point \(c \in \mathbb{R}^n \) such that
\[
K \subseteq L \subseteq \gamma K + c,
\]
then, for each \(m \in \mathbb{Z}^+ \), we have
\[
\beta_X(L, m) \leq \gamma \beta_X(K, m).
\]

Proof. For each \(\varepsilon > 0 \), there exists a collection \(\{K_i \mid i \in [m]\} \) of subsets of \(\gamma K + c \) such that
\[
K = \bigcup_{i \in [m]} K_i
\]
and
\[
\delta(K_i) \leq \gamma \delta(K) \beta_X(K, m) + \varepsilon \leq \gamma \delta(L) \beta_X(K, m) + \varepsilon, \quad \forall i \in [m].
\]
Since \(\varepsilon \) is arbitrary, \(\beta_X(L, m) \leq \gamma \beta_X(K, m) \) as claimed.

Theorem 12. Let \(X = (\mathbb{R}^3, \|\cdot\|) \), \(m \in \mathbb{Z}^+ \), and
\[
\eta = \sup \{ \beta_X(T, m) \mid T \text{ is a simplex in } \mathbb{R}^3 \}.
\]
We have
\[
\beta_X(T, m) \leq \min_{\varepsilon \in (0, 1/3)} \max \left\{ \left(1 + \frac{4\varepsilon}{1-3\varepsilon}\right) \eta, \frac{2(3 - \varepsilon)}{4 - \varepsilon} \beta_X(B_X, m) \right\}.
\]

Proof. Let \(K \) be a complete set in \(X \), \(\varepsilon \) be a number in \((0, \frac{1}{3})\). We distinguish two cases.

Case 1. The Banach-Mazur distance from \(K \) to three-dimensional simplices is bounded from the above by
\[
1 + \frac{4\varepsilon}{1-3\varepsilon}.
\]
Then there exist a tetrahedron \(T \) and a point \(c \in \mathbb{R}^3 \) such that
\[
T \subseteq K \subseteq \left(1 + \frac{4\varepsilon}{1-3\varepsilon}\right) T + c.
\]
By Lemma 11, we have
\[
\beta_X(K, m) \leq \left(1 + \frac{4\varepsilon}{1-3\varepsilon}\right) \eta.
\]

Case 2. The Banach-Mazur distance from \(K \) to three-dimensional simplex is at least
\[
1 + \frac{4\varepsilon}{1-3\varepsilon}.
\]
From Theorem 2.1 in [25], it follows that
\[
s(K) \leq 3 - \varepsilon.
\]
Denote by \(R(K) \) the circumradius of \(K \). Theorem 1.1 in [7] shows that
\[
s(K) = \frac{R(K)/\delta(K)}{1 - R(K)/\delta(K)}.
\]
It follows that
\[R(K) \leq \frac{3 - \varepsilon}{4 - \varepsilon}. \]
By a suitable translation if necessary, we may assume that
\[K \subseteq \frac{3 - \varepsilon}{4 - \varepsilon} \delta(K) B_X. \]
For each \(\gamma > 0 \), there exists a collection \(\{B_i \mid i \in [8]\} \) such that
\[B_X = \bigcup_{i \in [8]} B_i \quad \text{and} \quad \delta(B_i) \leq 2\beta_X(B_X, m) + \gamma, \forall i \in [m]. \]
It follows that
\[\beta_X(K, m) \leq \frac{2(3 - \varepsilon)}{4 - \varepsilon} \beta_X(B_X, m) + \frac{3 - \varepsilon}{4 - \varepsilon} \gamma. \]
Hence
\[\beta_X(K, m) \leq \frac{2(3 - \varepsilon)}{4 - \varepsilon} \beta_X(B_X, m). \]
This completes the proof. \(\square \)

Corollary 13. Let \(X = (\mathbb{R}^3, \|\cdot\|) \). If \(\beta_X(B_X, 8) < \frac{221}{328} \), then \(\beta(X, 8) < 1 \).

Proof. Since \(\frac{2(3 - \varepsilon)}{4 - \varepsilon} \frac{221}{328} = 1 \) and \(\frac{2(3 - \varepsilon)}{4 - \varepsilon} = 2 \frac{2}{4 - \varepsilon} \) is continuous with respect to \(\varepsilon \) on \((0, \frac{1}{3}) \), there exists a number \(\varepsilon_0 < \frac{7}{27} \) such that
\[\frac{2(3 - \varepsilon_0)}{4 - \varepsilon_0} \beta_X(B_X, 8) < 1. \]
It follows that
\[\beta(X, 8) \leq \max \left\{ \left(1 + \frac{4\varepsilon_0}{1 - 3\varepsilon_0} \right) \frac{9}{16}, \frac{2(3 - \varepsilon_0)}{4 - \varepsilon_0} \right\} \beta_X(B_X, 8) < 1. \]
In particular, Corollary 13 shows that \(\beta(l_1^3, 8) < 1 \) since the unit ball of \(l_1^3 \) can be covered by 8 balls having radius \(\frac{2}{3} < \frac{221}{328} \). By solving the optimization problem
\[\min_{\varepsilon \in (0, 1/3)} \max \left\{ \left(1 + \frac{4\varepsilon}{1 - 3\varepsilon} \right) \frac{9}{16}, \frac{2(3 - \varepsilon)}{4 - \varepsilon} \right\}, \]
one can show that \(\beta(l_1^3, 8) \leq 0.989 \ldots \) This estimation can be improved, see the next section.

4. \(\beta(l_3^p, 8) \)

Lemma 14. For each \(p \in [1, 2] \), \(d_{HM}^M (l_3^p, l_3^\infty) \leq \frac{\sqrt{13} \pi}{10} \approx 1.85 \).

Proof. Put \(c_1 = (3, 3, -2), c_2 = (-2, 3, 3), c_3 = (3, -2, 3) \). Denote by \(Q \) the parallelepiped having
\[\left\{ \sum_{i \in [3]} \sigma_i c_i \mid \sigma_i \in \{-1, 1\}, \forall i \in [3] \right\} \]
as the set of vertices. We have
\[
\max \left\{ \sum_{i \in [3]} \sigma_i c_i \mid i \in [3] \right\} = \max \left\{ \| (4, 4, 4) \|_p, \| (-2, 8, -2) \|_p, \| (8, -2, -2) \|_p, \| (2, 2, -8) \|_p \right\}
\]
\[
= \max \left\{ \| (4, 4, 4) \|_p, \| (-2, 8, -2) \|_p \right\}
\]
\[
= \| (-2, 8, -2) \|_p = 2 \| (-1, 4, -1) \|_p = 2 \| (1, 1, 4) \|_p.
\]
It follows that
\[
\frac{1}{2} \| (1, 1, 4) \|_p Q \subset B^3_p,
\]
where \(B^3_p \) is the unit ball of \(l^3_p \). Let \(q \) be the number satisfying
\[
\frac{1}{p} + \frac{1}{q} = 1,
\]
and let \(f_1, f_2, f_3 \) be linear functionals defined on \(l^3_p \) such that, for any \((\alpha, \beta, \gamma) \in \mathbb{R}^3\),
\[
f_1((\alpha, \beta, \gamma)) = \frac{1}{100} (15\alpha - 5\beta + 15\gamma),
\]
\[
f_2((\alpha, \beta, \gamma)) = \frac{1}{100} (-5\alpha + 15\beta + 15\gamma),
\]
\[
f_3((\alpha, \beta, \gamma)) = \frac{1}{100} (15\alpha + 15\beta - 5\gamma).
\]
Then
\[
c_3 + \text{span} \{c_1, c_2\} = \{x \in \mathbb{R}^3 \mid f_1(x) = 1\},
\]
\[
c_2 + \text{span} \{c_1, c_3\} = \{x \in \mathbb{R}^3 \mid f_2(x) = 1\},
\]
\[
c_1 + \text{span} \{c_2, c_3\} = \{x \in \mathbb{R}^3 \mid f_3(x) = 1\}.
\]
Thus the distances from the origin \(o \) to the facets of \(Q \) all equals to
\[
\frac{100}{\| (15, -5, 15) \|_q}.
\]
It follows that
\[
\frac{1}{2} \| (1, 1, 4) \|_p Q \subset B^3_p \subset \frac{\| (15, -5, 15) \|_q}{100} Q = \frac{\| (1, 1, 4) \|_p \| (3, 1, 3) \|_q}{10} = \frac{1}{2} \| (1, 1, 4) \|_p Q,
\]
which implies that
\[
d^p_{BM}(l^3_p, l^3_{\infty}) \leq \frac{\| (1, 1, 4) \|_p \| (3, 1, 3) \|_q}{10} \leq \frac{\| (1, 1, 4) \|_2 \| (3, 1, 3) \|_2}{10} = \frac{\sqrt{18} - 19}{10}. \quad \square
\]

Remark 15. The last inequality in Lemma 14 can be verified in the following way. Put
\[
f(p) = (4^p + 2)^\frac{1}{p} \left(2 \cdot 3 \cdot \frac{p}{p+1} + 1 \right)^\frac{1}{p}.
\]
Numerical results show that \(f'(p) = 0 \) has a unique solution \(p_0 \approx 1.320 \) in \([1, 2]\), and
\[
f(p_0) \approx 17.550 < f(2).
\]
Moreover, \(f(1) < f(2) \). Thus \(f(p) \) is maximized at \(p = 2 \).

Numerical results show that when \(p \in [1, 1.736] \),
\[
\frac{\| (1, 1, 4) \|_p \| (3, 1, 3) \|_q}{10} \leq \frac{9}{5}.
\]
The estimation in Lemma 14 could be improved by choosing points \(c_1, c_2, c_3 \) more carefully for different \(p \in [1, 2] \).

Theorem 16. We have the following estimation:

\[
\beta(t_p^3, 8) \leq \begin{cases}
\frac{21}{20}, & p \in [1, 2), \\
\frac{3}{2}, & p \in [2, +\infty].
\end{cases}
\]

Proof. First we consider the case when \(p \in [2, +\infty] \). By Proposition 37 in [25], \(d_{BM}^M(t_p^3, t_\infty^2) = \frac{3}{p} \), this together with Theorem 2, implies that \(\beta(t_p^3, 8) \leq \frac{3}{2p} \leq \frac{3}{2} \).

The case when \(p \in [1, 2] \) follows directly from Lemma 14 and Theorem 2. \(\square \)

5. **Acknowledgements**

This work is supported by the National Natural Science Foundation of China (grant numbers: 11921001 and 12071444), the National Key Research and Development Program of China (2018YFA0704701), and the Natural Science Foundation of Shanxi Province of China (201901D111141). The authors are grateful to Professor C. Zong for his supervision and discussion.

References

1. K. Bezdek and Muhammad A. Khan, *The geometry of homothetic covering and illumination*, Discrete Geometry and Symmetry, Springer Proc. Math. Stat., vol. 234, Springer, Cham, 2018, pp. 1–30. MR 3816868
2. V. Boltyanski and I.T. Gohberg, *Results and problems in combinatorial geometry*, Cambridge University Press, Cambridge, 1985, Translated from the Russian. MR 821465
3. V. Boltyanski, H. Martini, and P.S. Soltan, *Excursions into Combinatorial Geometry*, Universitext, Springer-Verlag, Berlin, 1997. MR 1439963
4. A. Bondarenko, *On Borsuk’s conjecture for two-distance sets*, Discrete Comput. Geom. 51 (2014), no. 3, 509–515. MR 3201240
5. K. Borsuk, *Drei sätze über die n-dimensionale euklidische sphäre.*, Fundamenta 20 (1933), 177–190.
6. J. Bourgain and J. Lindenstrauss, *On covering a set in \(R^N \) by balls of the same diameter*, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 138–144. MR 1122618
7. R. Brandenberg and B. González Merino, *The asymmetry of complete and constant width bodies in general normed spaces and the Jung constant*, Israel J. Math. 218 (2017), no. 1, 489–510. MR 3625137
8. P. Brass, W. Moser, and J. Pach, *Research Problems in Discrete Geometry*, Springer, New York, 2005. MR 2163782 (2006i:52001)
9. L. Danzer, *Über Durchschnittseigenschaften n-dimensionaler Kugelfamilien*, J. Reine Angew. Math. 208 (1961), 181–203. MR 142059
10. H.G. Eggleston, *Covering a three-dimensional set with sets of smaller diameter*, J. London Math. Soc. 30 (1955), 11–24. MR 67473
11. , *Sets of constant width in finite dimensional Banach spaces*, Israel J. Math. 3 (1965), 163–172. MR 0200695
12. V.P. Filimonov, *Covering planar sets*, Sb. Math. 201 (2010), no. 7-8, 1217–1248. MR 2907825
13. , *On the covering of sets in \(R^n \)*, Mat. Sb. 205 (2014), no. 8, 95–138. MR 3288206
14. B. Grünbaum, *A simple proof of Borsuk’s conjecture in three dimensions*, Proc. Cambridge Philos. Soc. 53 (1957), 776–778. MR 90072
15. , *Borsuk’s partition conjecture in Minkowski planes*, Bull. Res. Council Israel Sect. F 7F (1957/58), 25–30. MR 103440
16. A. Heppes, *On the partitioning of three-dimensional point-sets into sets of smaller diameter*, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 413–416. MR 0095450
17. A. Heppes and P. Révész, *Zum Borsukschen Zerteilungsproblem*, Acta Math. Acad. Sci. Hungar. 7 (1956), 159–162. MR 80897
18. A. Hinrichs and C. Richter, *New sets with large Borsuk numbers*, Discrete Math. 270 (2003), no. 1-3, 137–147. MR 1997894
19. Han Huang, Boaz A. Slomka, Tomasz Tkocz, and Beatrice-Helen Vritsiou, *Improved bounds for hadwiger’s covering problem via thin-shell estimates*, 2020.
20. T. Jenrich and A.E. Brouwer, *A 64-dimensional counterexample to Borsuk’s conjecture*, Electron. J. Combin. 21 (2014), no. 4, Paper 4.29, 3. MR 3292266
21. A.B. Kupavski˘ı and A.M. Raigorodski˘ı, *On the partition of three-dimensional sets into five parts of smaller diameter*, Mat. Zametki 87 (2010), no. 2, 233–245. MR 2731474
22. M. Lassak, *An estimate concerning Borsuk partition problem*, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), no. 9-10, 449–451 (1983). MR 703571
23. M. Lassak, *Covering a plane convex body by four homothetical copies with the smallest positive ratio*, Geom. Dedicata 21 (1986), no. 2, 157–167. MR 861193 (88c:52013)
24. H. Martini and V. Soltan, *Combinatorial problems on the illumination of convex bodies*, Aequationes Math. 57 (1999), no. 2-3, 121–152. MR 1689190 (2000h:52006)
25. R. Schneider, *Stability for some extremal properties of the simplex*, J. Geom. 96 (2009), no. 1-2, 135–148. MR 2659606
26. O. Schramm, *Illuminating sets of constant width*, Mathematika 35 (1988), no. 2, 180–189. MR 986627
27. V.P. Soltan, *A theorem on full sets*, Dokl. Akad. Nauk SSSR 234 (1977), no. 2, 320–322. MR 0482541
28. N. Tomczak-Jaegermann, *Banach-Mazur Distances and Finite-dimensional Operator Ideals*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
29. G. Toth, *Measures of symmetry for convex sets and stability*, Universitext, Springer, Cham, 2015. MR 3410930
30. Long Yu and Chuanming Zong, *On the blocking number and the covering number of a convex body*, Adv. Geom. 9 (2009), no. 1, 13–29. MR 2493260 (2010d:52007)
31. Chuanming Zong, *A quantitative program for Hadwiger’s covering conjecture*, Sci. China Math. 53 (2010), no. 9, 2551–2560. MR 2718847 (2012c:52040)
32. Chuanming Zong, *A computer program for Borsuk’s conjecture*, 2020.

Email address: yanlu_lian@tju.edu.cn

Email address: wusenlin@nuc.edu.cn