Coulomb excitation of the $|T_2| = \frac{1}{2}$, $A = 23$ mirror pair

J. Henderson, G. Hackman, P. Ruotsalainen, J. D. Holt, S. R. Stroberg, C. Andreoiu, G. C. Ball, N. Bernier, M. Bowry, R. Caballero-Folch, S. Cruz, A. Diaz Varela, L. J. Evitts, R. Frederick, A. B. Garnsworth, M. Holl, J. Lassen, J. Measures, B. Olaizola, O. Paetkau, J. Park, J. Smallcombe, C. E. Svensson, K. Whitmore, and C. Y. Wu

1 Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
2 TRIUMF, Vancouver, BC V6T 2A3, Canada
3 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
4 University of Jyväskylä, Department of Physics, P. O. Box 35, FI-40014 University of Jyväskylä, Finland
5 Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada
6 Department of Physics, University of Washington, Seattle WA, USA
7 Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
8 Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z1, Canada
9 Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
10 Department of Astronomy and Physics, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3, Canada
11 Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom

(Dated: March 30, 2022)

Background: Electric-quadrupole (E2) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of $N = Z$ represent a convenient laboratory for testing deficiencies in such models, making use of the isospin-symmetry of the systems.

Purpose: Uncertainties associated with literature E2 strengths in 23Mg are some of the largest in $T_z = \frac{1}{2}$ nuclei in the sd-shell. The purpose of the present work is to improve the precision with which these values are known, to enable better comparison with theoretical models.

Methods: Coulomb-excitation measurements of 23Mg and 23Na were performed at the TRIUMF-ISAC facility using the TIGRESS spectrometer. They were used to determine the $E2$ matrix elements of mixed $E2/M1$ transitions.

Results: Reduced $E2$ transition strengths, $B(E2)$, were extracted for 23Mg and 23Na. Their precision was improved by factors of approximately six for both isotopes, while agreeing within uncertainties with previous measurements.

Conclusions: A comparison was made with both shell-model and ab initio valence-space in-medium similarity renormalization group calculations. Valence-space in-medium similarity-renormalization-group calculations were found to underpredict the absolute $E2$ strength - in agreement with previous studies.

I. INTRODUCTION

Electric-quadrupole (E2) transitions strengths are a powerful probe of nuclear structure, relating directly to the underlying quadrupole deformation of the nucleus. Simultaneously, they present a challenge to valence-space based theoretical models, with significant contributions to E2 strength arising from particle-hole excitations out of the model space. In the vicinity of the line of $N = Z$, mirror nuclei (nuclei with inverted numbers of protons and neutrons) are an excellent laboratory for nuclear physics, with isospin symmetry enforcing analogous structures for both nuclei. Studies of transition strengths in isobaric analogue transitions have been employed for a huge range of nuclei, from low-mass systems such as 7Be and 7Li [1], through the $f_{7/2}$ shell (e.g. Ref. [2]), and extending into the upper-fp and $g_{9/2}$ shell model spaces (e.g. Ref. [3]).

Within the sd-shell, one is able to compare modern ab initio techniques such as the valence-space in-medium similarity renormalization group (VS-IMSRG) to calculations utilising exceptionally successful empirical shell-model interactions such as the USDB [1]. Systematic studies of deficiencies in such models require, however, high-quality experimental data. In this work, we build on our previous studies of 22Mg [3] and 21Na [4] by presenting an improved experimental measurement of the low-lying $E2$ strength in the $|T_2| = \frac{1}{2}$, $A = 23$ mirror pair, 23Mg and 23Na. Prior to the present work, the $B(E2)$ value between the ground and first-excited state in 23Mg [3, 4] was the most imprecisely measured of all
900 of 42.9 MeV, while the \(^{23} \text{Na} \) beam provided by OLIS \cite{13} was used to determine the surface ionized contamination originating from \(^{23} \text{Na} \). Shown in the inset is the total time structure arising from the laser-ionization in the present measurement with the fitted area indicated.

\[T_z = -\frac{1}{4}, \text{sd-shell nuclei} \]
A detailed systematic study, comparing VS-IMSRG and shell-model calculations to the available data within the sd-shell is the subject of a separate publication \cite{10}.

The precision to which \(E^2 \) strengths are determined in odd-mass sd-shell nuclei is often limited by the fact that decays are of a mixed \(E^2/M1 \) nature. When the decay is dominated by \(M1 \) strength, as is the case in \(^{23} \text{Mg} \) and \(^{23} \text{Na} \), the leading uncertainty in determining the \(E^2 \) strength is typically the mixing ratio \(\delta \) between \(E^2 \) and \(M1 \) contributions determined, for example, from the angular correlations between emitted \(\gamma \) rays. By performing a Coulomb excitation measurement, rather than determining the \(E^2 \) strength from the decay properties, this source of uncertainty can be largely eliminated, allowing for a higher level of precision.

II. EXPERIMENTAL DETAILS

\(^{23} \text{Mg} \) and \(^{23} \text{Na} \) were investigated through Coulomb excitation using the TIGRESS facility \cite{11} at TRIUMF ISAC. \(^{23} \text{Mg} \) nuclei were produced by the impinging of 480-MeV protons onto a SiC ISAC target. The Mg atoms produced were then selectively laser ionized using three step resonant excitation (285.3 nm-880.8 nm-291.6 nm) into an auto-ionizing state and extracted. \(^{23} \text{Na} \) contamination was suppressed by the use of the ion-guide laser ionization source (IG-LIS) \cite{12}. A repeller plate is held at 40 V to suppress the extraction of surface-ionized contaminants by factors of up to \(10^6 \). \(^{23} \text{Na} \) ions were produced by the surface ion source of the TRIUMF offline ion source (OLIS) \cite{13}. The beams were then accelerated by the TRIUMF ISAC accelerator chain and delivered to TIGRESS. The \(^{23} \text{Mg} + ^{23} \text{Na} \) cocktail beam had an energy of 42.9 MeV, while the \(^{23} \text{Na} \) beam provided by OLIS was provided at energies of both 42.9 MeV and 39.4 MeV. The total beam intensity for the \(^{23} \text{Mg} \) portion of the experiment was maintained at roughly \(3 \cdot 10^5 \) particles per second - this includes a component from the remaining \(^{23} \text{Na} \) contamination. The \(^{23} \text{Na} \) beam intensity was maintained at approximately \(6 \cdot 10^7 \) particles per second. The beams were then impinged onto a 0.44-mg/cm\(^2\) thick, \text{nat} Ti target at the center of the TIGRESS array. Scattered beam and target-like nuclei were detected in an S3-type \cite{14} silicon detector, mounted 31-mm downstream of the target position. Gamma rays were detected using the TIGRESS array, which for the present measurement comprised fourteen clover-type HPGe detectors. The HPGe detectors were operated in their withdrawn configuration, with the face of the detectors 14.5 cm from the target and the BGO suppression shields forward, providing the best possible peak-to-background ratio and Doppler-correction.

While the use of IG-LIS heavily suppresses extraction of \(^{23} \text{Na} \), a degree of contamination remains which was monitored in two ways. First, a Bragg detector was used to provide an instantaneous measure of the beam composition. While the composition is being determined in this way experimental data cannot be acquired. For the second method, the 10 kHz signal used to synchronize the laser ionization system was used, with every second pulse triggering the generation of a ramping waveform, which could then be digitized. The amplitude of the digitized waveform thereby gave a proxy for the time of the detection relative to the laser-ionization pulse and could thus be used to distinguish laser-ionized beam components which had a 10 kHz pulsed structure from the continuous surface ionized contaminants. This method allowed for a continuous determination of contamination, allowing to monitor for sudden changes in the ISAC target behavior. Based on these analyses, the \(^{23} \text{Na} \) contribution to the beam cocktail was determined to be 15.2(9) % of the total, with the uncertainty being predominantly systematic and arising from the choice of fitting region. Figure \ref{fig1} shows the laser timing distribution, the tail of which was fit with an exponential and baseline to determine the relative contributions to the beam cocktail.

III. ANALYSIS

The data were unpacked using the GRSISort \cite{15} software package, built in a ROOT \cite{16} framework. Gamma-ray events were Doppler corrected event-by-event on the basis of the beam and target kinematics determined from the hit location in the annular silicon detectors and whether the detected particle had beam-like or target-like kinematic properties. Gamma-ray spectra for \(^{23} \text{Na} \) at 39.4 MeV, and the \(^{23} \text{Mg} + ^{23} \text{Na} \) cocktail beam are shown in Fig. 2 and Fig. 3 respectively. Relative \(\gamma \)-ray detection efficiencies for TIGRESS were determined using a standard suite of \(^{152} \text{Eu} \), \(^{133} \text{Ba} \) and \(^{60} \text{Co} \) sources. \(^{23} \text{Na} \) data were split into forty-eight groups: twelve angular bins for both beam-like and target-like detection, repeated
FIG. 2. Doppler-corrected γ-ray spectra on the basis of 23Na (red) and 48Ti (black) kinematics for a 23Na beam energy of 39.4 MeV. Top: Detection of a target-like recoil (48Ti) in the downstream annular silicon detector. Bottom: Detection of a beam-like recoil (23Na) in the downstream annular silicon detector. The additional width of the 23Na peak in the top figure arises from the wide angles at which the scattering occurs, leading to significant slowing in the target material. Other lines in the titanium corrected (black) spectra arise from isotopes of titanium with a lower natural abundance than 48Ti (73.8%).

FIG. 3. As Fig. 2 but for a cocktail 23Mg ($\approx 85\%$) and 23Na ($\approx 15\%$) beam at an energy of 42.9 MeV.

FIG. 4. Fit of the γ-ray peaks observed in TIGRESS corresponding to the de-excitation of the first-excited state in 23Mg and the analogue state in the stable contaminant and mirror nucleus, 23Na. These data were coincident with events from the first four rings of the downstream annular silicon detector, corresponding to angles of $19.5^\circ \rightarrow 25.8^\circ$. This fitting method can be used for all cases where the beam-like particle was detected. See the text for details of the analysis for target-like particle detection.
FIG. 5. Low-lying levels in ^{23}Mg and ^{23}Na relevant to the present analysis. The $5/2^+ \rightarrow 3/2^+$ transition (red) was investigated and other transitions were included within the GOSIA analysis. Gray transitions indicate mixed $E2/M1$. Data taken from Ref. [9].

FIG. 6. χ^2 surface resulting from the GOSIA2 analysis of ^{23}Mg from which transition and diagonal matrix-elements were extracted.

FIG. 7. χ^2 surface resulting from the GOSIA2 analysis of ^{23}Na from which transition and diagonal matrix-elements were extracted.

Extracted matrix elements are summarized in Tab. I, along with other properties derived from the present results. We compare the present results with those calculated from two theoretical models. VS-IMSRG calculations were performed using the EM1.8/2.0 interaction [19, 20], which was generated by SRG evolution [21] of the chiral N3LO NN interaction of Entem and Machleidt [22], and adding a non-locally regulated N2LO 3N interaction with the low energy constants adjusted to reproduce the triton binding energy and the ^4He matter radius. Calculations are performed in a harmonic oscillator basis of $\hbar \omega = 20 \text{ MeV}$ with $2n + \ell \leq e_{\text{max}} = 12$ and with a truncation on the three body matrix elements $e_1 + e_2 + e_3 \leq E_{3\text{max}} = 16$. All operators are truncated at the normal-ordered two-body level. A diagonalization was then performed using the NuShellX [23] code. Shell-model calculations were also performed in NuShellX, making use of the USDB interaction [4] with effective charges of $e_\pi = 1.36$ and $e_\nu = 0.45$.

Table II shows the present results compared to those calculated using the aforementioned models. The shell-model (USDB) calculations well reproduce the observed $B(E2)$ values. VS-IMSRG values, meanwhile, are considerably lower than the experimentally determined ones. This deficiency is consistent with that observed in our previous studies of $|T_z| = 1$ mirror pairs [5]. While the VS-IMSRG values are deficient, it should be noted that the relative $B(E2)$ strengths are better reproduced by the ab initio calculations. Defining the ratio...
TABLE I. $B(E2)$ values, spectroscopic quadrupole moments and mixing ratios deduced from the present work with statistical and systematic uncertainties quoted, in that order. Where available, literature values are shown for comparison. Mixing ratios were deduced one the basis of the literature lifetimes and the presently determined $B(E2)$ values.

Isotope	J_i^P	J_f^P	This Work	Ref.
^{23}Na	$\frac{1}{2}^+$	$\frac{1}{2}^+$	$0.252 \pm 0.003 \pm 0.004$	0.237$^{+0.014}_{-0.015}$
$B(E2; \frac{1}{2}^+ \to \frac{3}{2}^+)$ e2fm4	106 \pm 3 \pm 3	93 \pm 12		
^{23}Mg	$\frac{1}{2}^+$	$\frac{3}{2}^+$	$0.285 \pm 0.015 \pm 0.004$	0.23$^{+0.07}_{-0.10}$
$B(E2; \frac{1}{2}^+ \to \frac{3}{2}^+)$ e2fm4	135$^{+15}_{-14}$ \pm 4	86 \pm 58		
$Q_{\lambda}(\frac{1}{2}^+)$ e	$-0.22^{+0.28}_{-0.22}$ \pm 0.04	$-0.22^{+0.25}_{-0.22}$ \pm 0.04		
$\delta_{E2/M1}$	0.0038 \pm 0.0004	0.0034$^{+0.0004}_{-0.0003}$		

VI. ACKNOWLEDGEMENTS

The authors would like to thank the TRIUMF beam delivery group for their efforts in providing high-quality stable and radioactive beams. This work has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation and the British Columbia Knowledge Development Fund. TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. Computations were performed with an allocation of computing resources on Cedar at WestGrid and Compute Canada, and on the Oak Cluster at TRIUMF managed by the University of British Columbia department of Advanced Research Computing (ARC). Work at LLNL was performed under contract DE-AC52-07NA27344. This work was supported by the Office of Nuclear Physics, U.S. Department of Energy, under grants desc0018223 (NUCLEI SciDAC-4 collaboration) and by the Field Work Proposal ERKBP72 at Oak Ridge National Laboratory (ORNL). SRS is supported by the U.S. Department of Energy under contract DE-FG02-97ER41014. JH is supported at the University of Surrey under UKRI Future Leaders Fellowship grant no. MR/T02264/1.

Fig. 5 was created using the SciDraw scientific figure preparation system [21]. The codes imsrg++ [25] and nutbar [26] used in this work make use of the Armadillo library [27].

[1] S. L. Henderson, T. Ahn, M. A. Caprio, P. J. Fasano, A. Simon, W. Tan, P. O’Malley, J. Allen, D. W. Bar-
A. E. McCoy, S. Moylan, C. S. Reingold, S. Y. Strauss, and R. O. Torres-Isea, Phys. Rev. C 99, 064320 (2019).

[2] A. Boso, S. Mihe, M. Lopez, F. Recchia, S. Lenzi, D. Rudolph, M. Labiche, X. Pereira-Lopez, S. Afara, F. Amei, T. Arici, S. Aydin, M. Axiotis, D. Barriongto, G. Benzoni, B. Birkenbach, A. Boston, H. Boston, P. Bouthakis, A. Bracco, A. Bruce, B. Bruyneel, B. Cederwall, E. Clement, M. Cortez, D. Cullen, P. Desesquelles, Z. Dombradi, C. Domingo-Pardo, J. Eberth, C. Faehnder, M. Gelain, V. Gonzalez, T. Grahn, L. Grassi, T. Habermann, L. Hanksett-Brennan, T. Henry, H. Hess, I. Kojouharov, W. Koerten, N. Lalovic, M. Lettmann, C. Lizarazo, C. Louchart-Hening, R. Menegazzo, D. Mengoni, E. Merchand, C. Michelagnoli, B. Million, V. Modamio, T. Moeller, D. Napoli, J. Nyberg, B. Nara Singh, H. Pai, N. Pietralla, S. Pietri, Z. Podolyak, R. Perez Vidal, A. Pullia, D. Ralet, G. Rainovski, M. Reese, P. Reiter, M. Salscar, E. Sanchis, L. Sarmiento, H. Schaffner, L. Scruton, P. Singh, C. Stahl, S. Uthayakumar, J. Valiente-Dobon, M. Williams, and O. Wieland, Phys. Rev. C 99, 051301(R) (2019).

[3] C. Morse, H. Iwasaki, A. Lemasson, A. Dewald, T. Braunroth, V. Bader, T. Baugher, D. Bazin, J. Berryman, C. Campbell, A. Gade, C. Langer, I. Lee, C. Loelius, E. Lunderberg, F. Recchia, D. Smalley, S. Stroberg, R. Wadsworth, C. Walz, D. Weisshaar, A. Westerberg, K. Whitmore, and K. Wimmer, Phys. Rev. C 74, 034315 (2006).

[4] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).

[5] J. Henderson, G. Hackman, P. Ruotsalainen, S. Stroberg, K. Launey, J. Holt, F. Ali, N. Bernier, M. Bentley, M. Bowry, R. Caballero-Folch, L. Evitts, R. Frederick, A. Garnsworthy, P. Garrett, B. Jigmuedorj, A. Kilic, J. Lassen, J. Measures, D. Muecher, B. Olaizola, E. O’Sullivan, O. Paetkau, J. Park, J. Smallcombe, C. Svensson, R. Wadsworth, and C. Wu, Phys. Rev. C 83, 031301(R) (2011).

[6] P. Ruotsalainen, J. Henderson, G. Hackman, G. H. Sargsyan, K. D. Launey, A. Saxena, P. C. Srivastava, S. R. Stroberg, T. Grahn, J. Pakarinen, G. C. Ball, R. Julin, P. T. Greenlees, J. Smallcombe, C. Andreon, N. Bernier, M. Bowry, M. Buckner, R. Caballero-Folch, A. Chester, S. Cruz, L. J. Evitts, R. Frederick, A. B. Garnsworthy, M. Holl, A. Kurkjjan, D. Kišliuk, K. G. Leach, E. McGee, J. Measures, D. Mičher, J. Park, F. Sarazin, J. K. Smith, D. Southall, K. Starosta, C. E. Svensson, K. Whitmore, M. Williams, and C. Y. Wu, Phys. Rev. C 99, 051301(R) (2019).

[7] E. K. Warburton, J. J. Kolata, and J. W. Olness, Phys. Rev. C 8, 1385 (1973).

[8] P. Tikkanen, J. Keinonen, K. Arstila, A. Kuronen, and B. H. Wildenthal, Phys. Rev. C 42, 581 (1990).

[9] NNDC, “Evaluated Nuclear Structure Data File (ENSDF),” (2022).

[10] S. Raeder, H. Heggen, J. Lassen, F. Ames, D. Bishop, P. Bricault, P. Kunz, A. Mjes, and A. Teigelhofer, Review of Scientific Instruments 85, 033309 (2014).

[11] K. Jayamanna, F. Ames, G. Cojocaru, R. Baartman, P. Bricault, R. Dube, R. Laxdal, M. Marchetto, M. McDonald, P. Schmor, G. Wight, and D. Yuan, Review of Scientific Instruments 79, 2 (2008).

[12] Micron Semiconductor Ltd., “Micron catalogue,” (2019).

[13] “GRSISort,” https://github.com/GRIFFINCollaboration/GRSISort/ (2022).

[14] R. Brun and F. Rademakers, Nucl. Instr. Meth. in Phys. Res. A 389, 81 (1997).

[15] T. Czonsnyka, D. Cline, and C. Y. Wu, Bull. Am. Phys. Soc. 28, 745 (1983).

[16] N. J. Stone, Atomic Data and Nuclear Data Tables 111, 1 (2016).

[17] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, Phys. Rev. C 83, 031301(R) (2011).

[18] J. Simonis, K. Hebeler, J. D. Holt, J. Menendez, and A. Schwenk, Phys. Rev. C 93, 011302(R) (2016).

[19] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001(R) (2007).

[20] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

[21] B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014).

[22] M. Caprio, Comput. Phys. Commun. 107, 171 (2005).

[23] https://github.com/ragnarstroberg/imsrg (2022).

[24] https://github.com/ragnarstroberg/nutbar (2022).

[25] C. Sanderson, Technical Report, NICTA (2010).