On the first eigenvalue of the Laplacian for polygons

Emanuel Indrei
Department of Mathematics and Statistics, SHSU

Abstract: In 1947, Polya proved that if $n = 3, 4$ the regular polygon P_n minimizes the principal frequency of an n-gon with given area and suggested that the same holds for larger values of n. In 1951, Polya and Szego discussed the possibility of counterexamples. Recently, I constructed explicit $(2n - 4)$–dimensional polygonal manifolds and proved for n large that there exists an explicit non-empty set A_n such that P_n has the smallest principal frequency among n–gons in A_n. The techniques involve a partial symmetrization, tensor calculus, the spectral theory of circulant matrices, and $W^{2,p}$ estimates. An application is given in the context of electron bubbles.