On the growth of modular symbols

Anton Deitmar

Introduction

Let f be a holomorphic cusp form of weight two for the group $\Gamma = \Gamma_0(N)$. Then $f(z)dz$ is a Γ-invariant holomorphic differential on the upper half plane \mathbb{H} in \mathbb{C}. For $\gamma \in \Gamma$ define the modular symbol

$$\langle \gamma, f \rangle \overset{\text{def}}{=} -2\pi i \int_{z_0}^{\gamma z_0} f(z) \, dz,$$

which is independent of the choice of the point $z_0 \in \mathbb{H} \cup \mathbb{Q} \cup \{i\infty\}$. The modular symbol for fixed f is a group homomorphism from Γ to the additive group of complex numbers. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ let $\|\gamma\| = \max(|a|, |b|, |c|, |d|)$.

In this paper we show that for given f the modular symbol as logarithmic growth, i.e.,

$$|\langle \gamma, f \rangle| \leq A \log \|\gamma\| + B$$

for some $A, B \geq 0$. In [2, 3], D. Goldfeld conjectured that the modular symbol has moderate growth if also f is allowed to vary among the normalized newforms. The result of the present paper reduces Goldfeld’s conjecture to a statement on the growth of the modular symbol on a set of generators of the group $\Gamma_0(N)$.

Note that, as f is a cusp form, the modular symbol vanishes on parabolic elements, that is, $\langle p, f \rangle = 0$ for every parabolic element p of Γ.

1
1 Growth of an additive homomorphism

Let $SL_2(\mathbb{R})$ denote the group of real 2×2 matrices of determinant one. Let G be the group $PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/\pm 1$.

For $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ let $\|x\| = \max(|a|, |b|, |c|, |d|)$. Let M be a subset of G. A function $f: M \to \mathbb{C}$ is said to be of logarithmic growth, if there are constants $A, B \geq 0$ such that

$$|f(x)| \leq A \log \|x\| + B$$

holds for every $x \in M$.

Theorem 1.1 Let Γ be a lattice in $PSL_2(\mathbb{R})$ and let $\psi: \Gamma \to \mathbb{C}$ be a group homomorphism with $\psi(p) = 0$ for every parabolic element of Γ. Then ψ is of logarithmic growth.

Proof: Let \mathbb{H} denote the upper half plane in \mathbb{C} equipped with the hyperbolic metric $ds^2 = \frac{dx^2 + dy^2}{y^2}$. Choose $z_0 \in \mathbb{H}$ which is not a fixed point of an elliptic element of Γ, and let \mathcal{F} denote the corresponding Dirichlet fundamental domain, also called the Dirichlet polygon [1], as it is a hyperbolic polygon with finitely many sides. It is defined as

$$\mathcal{F} = \{z \in \mathbb{H} : d(z, z_0) < d(\gamma z, z_0) \forall \gamma \in \Gamma \setminus \{1\}\},$$

where $d(z, w)$ denotes the hyperbolic distance of two points in the upper half plane \mathbb{H}. Let $S = S^{-1}$ be a finite set of generators of the group Γ. For $\gamma \in \Gamma$ we write $\gamma = s_1 \cdots s_n$ as a shortest word, so $n = l_S(\gamma)$, the word length of γ with respect to S. Then,

$$|\psi(\gamma)| = |\psi(s_1 \cdots s_n)| = \left| \sum_{j=1}^{n} \psi(s_j) \right| \leq C_S l_S(\gamma),$$

where $C_S \geq 0$ is the maximum of the values $|\psi(s)|$ for $s \in S$.

We first consider the case of a uniform lattice Γ, i.e., the quotient $\Gamma \setminus G$ is compact. Then the closure $\bar{\mathcal{F}}$ of \mathcal{F} in \mathbb{H} is compact. According to Theorem IV
23 of [4], for every \(z \in \mathbb{H} \) there exists \(\lambda \geq 1, C \geq 0 \) with \(l_S(\gamma) \leq \lambda d(\gamma z, z) + C \) for every \(\gamma \in \Gamma \). For \(z = i \) this implies

\[
|\psi(\gamma)| \leq C_S \lambda d(\gamma i, i) + C_S C.
\]

By Theorem 7.2.1 of [1] one has for \(z, w \in \mathbb{H} \),

\[
d(z, w) = \log \left(\frac{|z - \bar{w}| + |z - w|}{|z - \bar{w}| - |z - w|} \right).
\]

Let \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \) we get

\[
d(\gamma i, i) = \log \left(\frac{|a i + b c + d i| + |a i + b + c - d i|}{|a i + b c + d i| - |a i + b + c - d i|} \right)
\]

\[
= \log \left(\frac{\sqrt{(b - c)^2 + (a + d)^2} + \sqrt{(b + c)^2 + (a - d)^2}}{\sqrt{(b - c)^2 + (a + d)^2} - \sqrt{(b + c)^2 + (a - d)^2}} \right).
\]

Now \((b - c)^2 + (a + d)^2 - ((b + c)^2 + (a - d)^2) = -4bc + 4ad = 4 \), as the determinant of \(\gamma \) is 1. Therefore,

\[
d(\gamma i, i) = \log \left(\left(\frac{\sqrt{(b - c)^2 + (a + d)^2} + \sqrt{(b + c)^2 + (a - d)^2}}{2} \right)^2 \right) - 2 \log 2
\]

\[
\leq 2 \log \left(\sqrt{8 \| \gamma \|^2} + \sqrt{8 \| \gamma \|^2} \right) - 2 \log 2
\]

\[
= 2 \log \| \gamma \| + 3 \log 2.
\]

This gives the Theorem in the case of \(\Gamma \) being a uniform lattice.

Next assume that \(\Gamma \) is not uniform. Then the fundamental domain \(\mathcal{F} \) has cusps. We assume that \(z_0 \) is chosen in a way that no two cusps of \(\mathcal{F} \) are equivalent under \(\Gamma \). So the cusps of \(\mathcal{F} \) are a set of representatives of the set of cusps of \(\Gamma \) in the boundary \(\partial \mathbb{H} \) of \(\mathbb{H} \) modulo \(\Gamma \)-equivalence. For each cusp \(c \in \partial \mathbb{H} \) fix some \(\sigma_c \in G \) with \(c = \sigma_c \infty \). We do so in a \(\Gamma \)-compatible way, i.e., for \(\gamma \in \Gamma \) we suppose that \(\sigma_{\gamma c} \sigma_c^{-1} \) lies in \(\Gamma \).
Let $T > 1$ and set

$$\mathcal{F}_T = \{ z \in \mathcal{F} : \text{Im}(\sigma_c^{-1}z) \leq T \text{ for every cusp } c \}.$$

We choose T so large that \mathcal{F}_T equals \mathcal{F} minus cusp sections. Let \mathbb{H}_T be the union of all sets $\gamma \mathcal{F}_T$ where γ ranges over Γ. Then \mathbb{H}_T equals \mathbb{H} minus a countable number of open horoballs. Thus \mathbb{H}_T is a Riemannian manifold with boundary. Let d_T denote the distance function on \mathbb{H}_T. Note that if $z, w \in \mathbb{H}_T$, and the geodesic in \mathbb{H} joining them lies completely in \mathbb{H}_T, then $d_T(z, w) = d(z, w)$.

For a cusp c let

$$H_{c,T} = \sigma_c(\{ \text{Im}(z) > T \})$$

be the T-horoball attached to c. Increasing T if necessary, we can make sure, that the geodesic $z_0, \gamma z_0$ in \mathbb{H} is disjoint to $\mathcal{F} \cap H_{c,T}$ for every cusp c of \mathcal{F} and every $\gamma \in \Gamma$. Note that for every cusp c of Γ, which is not a cusp of \mathcal{F}, the intersection $\mathcal{F} \cap H_{c,T}$ is empty.

Let $\gamma \in \Gamma$ and suppose that the geodesic $z_0, \gamma z_0$ in \mathbb{H} does not completely lie in \mathbb{H}_T. Then this geodesic meets some horoball $H_{c,T}$. After applying σ_c^{-1}, one can assume $c = \infty$. Then there is a generator p_c of the stabilizer group Γ_c of the cusp c, such that the distance $d(z_0, p_c \gamma z_0)$ is then strictly less than $d(z_0, \gamma z_0)$. From this it follows that if $d(z_0, \gamma z_0) \leq d(z_0, p \gamma z_0)$ for every parabolic $p \in \Gamma$, then the geodesic $z_0, \gamma z_0$ lies completely in the set \mathbb{H}_T.

By Theorem IV 23 in [4], there are $\lambda \geq 1$ and $C \geq 0$ with $l_S(\gamma) \leq \lambda d_T(z_0, \gamma z_0) + C$ for every $\gamma \in \Gamma$.

Lemma 1.2 Let $\gamma \in \Gamma \setminus \{1\}$ be given. There are parabolic elements p_1, \ldots, p_n of Γ such that with $\gamma_s = p_n \cdots p_1 \gamma$ one has $d(z_0, \gamma_s z_0) \leq d(z_0, \gamma z_0)$ and the geodesic $z_0, \gamma_s z_0$ lies in \mathbb{H}_T.

Proof: Assume first that for every parabolic element $p \in \Gamma$ the distance $d(z_0, \gamma z_0)$ is less than or equal to $d(z_0, p \gamma z_0)$. Then the geodesic $z_0, \gamma z_0$ lies in \mathbb{H}_T. We set $\gamma_s = \gamma$ and we are done.

Now if there exists a parabolic $p_1 \in \Gamma$ such that $d(z_0, p_1 \gamma z_0) < d(z_0, \gamma z_0)$, then replace γ with $p_1 \gamma$. After that, either the condition above is satisfied or we find a parabolic p_2 such that $d(z_0, p_2 p_1 \gamma z_0) < d(z_0, p_1 \gamma z)$.

Iteration yields
a sequence $p_1, p_2, \cdots \in \Gamma$. This process terminates, as for a given radius r there are only finitely many Γ-conjugates of z_0 in distance $\leq r$. □

To finish the proof of the theorem let $\gamma \in \Gamma$ and consider γ_s as in the lemma. Then $|\psi(\gamma)| = |\psi(\gamma_s)| \leq C_S l_S(\gamma_s) \leq C_S \lambda d_T(z_0, \gamma_s z_0) + C_S C$ and

$$d_T(z_0, \gamma_s z_0) = d(z_0, \gamma_s z_0) \leq d(z_0, \gamma z_0) \leq d(z_0, i) + d(i, \gamma i) + d(\gamma i, \gamma z_0) \leq 2 \log ||\gamma|| + 3 \log 2 + 2d(z_0, i).$$

□

The value of these results with respect to the Goldfeld conjecture hinges on the control over the constants C, C_S, λ as the group Γ shrinks. The constant C_S depends on the group Γ and on the homomorphism ψ, i.e., if ψ is a modular symbol, on the cusp form f. The constants C and λ, however, do not depend on ψ, therefore they are easier to control. The following explicit estimate might be useful.

Let R be the diameter of \mathcal{F}_T and let B be the closed ball in \mathbb{H}_T around z_0 of radius R. Let $S = \{s \in \Gamma : sB \cap B \neq \emptyset\}$. Then $S = S^{-1}$ is a finite set of generators of Γ. Let

$$r = \inf\{d(B, \gamma B) : \gamma \in \Gamma \setminus S\}.$$

Lemma 1.3 The number r is > 0 and

$$|\psi(\gamma)| \leq C_S \left(\frac{2}{r} \log ||\gamma|| + \frac{3}{r} \log 2 + 1 \right).$$

Proof: Let $r_T = \inf\{d_T(B, \gamma B) : \gamma \in \Gamma \setminus S\}$. The proof of Theorem IV 23 of [4] together with the proof of our theorem yields

$$|\psi(\gamma)| \leq \frac{C_S}{r_T} \left(2 \log ||\gamma|| + 3 \log 2 + 2d(z_0, i) \right) + C_S$$

Now $r \geq r_T$ and the argument for $r_T > 0$ also implies $r > 0$. Further, varying z_0 the distance $d(z_0, i)$ can be chosen arbitrarily small. □
References

[1] Beardon, A.F.: *The geometry of discrete groups*. Graduate Texts in Mathematics, 91. Springer-Verlag, New York, 1983.

[2] Goldfeld, D.: *Modular elliptic curves and Diophantine problems*. Number theory (Banff, AB, 1988), 157–175, de Gruyter, Berlin, 1990.

[3] Goldfeld, D.: *Modular forms, elliptic curves and the ABC conjecture*. A panorama of number theory or the view from Baker’s garden (Zürich, 1999), 128-147, Cambridge Univ. Press, Cambridge, 2002.

[4] de la Harpe, P.: *Topics in geometric group theory*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.

[5] Shimura, G.: *On the factors of the jacobian variety of a modular function field*. J. Math. Soc. Japan 25, 523-544 (1973).