Commentary

An adequate human T cell repertoire from a single T cell progenitor: Lessons from an experiment of nature

Kirsten Canté-Barrett, Frank J.T. Staal*1

Leiden University Medical Center, Leiden, the Netherlands

A R T I C L E I N F O

Article History:
Received 7 September 2020
Accepted 7 September 2020

The study of human T cell development is hampered by the lack of genetic tools that have been successfully used in mice. In both mice and humans, T lymphocytes develop in the thymus from progenitors that originate in the bone marrow. In mice, targeted mutations (“knockout” mice) and transgenics have provided a better understanding of T cell development [1,2]. Mostly descriptive studies exist for human T cell development, although patients with rare genetic defects, such as SCID patients have been instrumental in obtaining insight into this intricate process.

A healthy human immune repertoire includes billions of T cells with different T cell receptors (TCRs) to help recognize and respond to virtually any pathogenic invasion. During T cell development, this diverse repertoire is generated by gene recombination of V, (D), and J TCR segments. Progenitors from hematopoietic stem cells (HSCs) in the bone marrow migrate to the thymus where they proliferate and differentiate into mature T cells. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID case [4], reporting a somatic reversion of the IL2RG mutation in all T cells but not in other immune cells. As such an event is extremely rare, the authors hypothesise that this reversion did not happen in more than one progenitor cell. The rescue of T cell development is illustrated by the presence of a functioning, albeit limited T cell repertoire. Surprisingly, only a subset of these progenitors is needed to reconstitute a diverse repertoire of human T cells in immune-deficient mice [3]. Partially due to data from mouse studies, it is generally assumed that an early thymocyte progenitor has lost the long-term self-renewal potential, but whether a self-renewing T cell progenitor exists in humans is not known.
transplantation. The T cell progenitor will likely not be identified solely by the existing surface markers since they have been used extensively and not led to early novel progenitor subsets. Instead, epigenetic studies or single-cell sequencing in combination with single-cell functional studies may provide a better chance at identifying the subtle differences between various lineage-biased multipotent progenitors that appear similar on the surface. A potential alternative is the in vitro generation of T cell progenitors using the Notch ligand DLL4, as has been proposed [10] and is now tried in clinical studies.

Collectively, the careful analysis of unique patients such as the one reported by Kury and colleagues remains invaluable for a better understanding of human lymphopoiesis.

Fig. 1. Potential origin of the T cell progenitor (in red) with long-term self-renewal ability.

Declarations of Interests

Authors have nothing to disclose.

Acknowledgements

KCB and FJTS are supported in part by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 755170 (RECOMB).

References

[1] Garcia-Perez L, Famili F, Cordes M, Brugman M, van Eggermond M, Wu H, et al. Functional definition of a transcription factor hierarchy regulating T cell lineage commitment. Sci Adv 2020;6(31):eaaw7313.
[2] Rothenberg EV. Programming for T-lymphocyte fates: modularity and mechanisms. Genes Dev 2019;33(17-18):1117–35.
[3] Brugman MH, Wiekmeijer AS, van Eggermond M, Wolvers-Tettero I, Langerak AW, de Haas EF, et al. Development of a diverse human T-cell repertoire despite stringent restriction of hematopoietic clonality in the thymus. Proc Natl Acad Sci U S A 2015;112(44):E6020–7.
[4] Kury P, Fühser M, Fuchs S, Lorenz MR, Giorgetti OB, Bakhtiar S, et al. Long-term robustness of a T-cell system emerging from somatic rescue of a genetic block in T-cell development. EBioMedicine 2020;59:102961.
[5] Wiekmeijer AS, Pike-Overzet K, H J, Brugman MH, Wolvers-Tettero IL, Lankester AC, et al. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells. J Allergy Clin Immunol 2016;137(2):517-26.e3.
[6] Spits H, Blom B, Jaleco AC, Weijer K, Verschuren MC, van Dongen JJ, et al. Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol Rev 1998;165:75–86.
[7] Cavazzana M, Six E, Lagresle-Peyrou C, Andre-Schmutz I, Hacein-Bey-Abina S. Gene therapy for X-linked severe combined immunodeficiency: where do we stand? Hum Gene Ther 2016;27(2):108–16.
[8] Carrelha J, Meng Y, Kettleyme LM, Luis TC, Norfo R, Alcolea V, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018;554(7690):106–11.
[9] Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017;19(4):271–81.
[10] Reimann C, Six E, Dal-Cortivo L, Schiavo A, Appourchaux K, Lagresle-Peyrou C, et al. Human T-lymphoid progenitors generated in a feeder-cell-free Delta-like-4 culture system promote T-cell reconstitution in NOD/SCID/γc(-/-) mice. Stem Cells 2012;30(8):1771–80.