Ảnh hưởng của nhiệt độ và thời gian phản ứng đến một số thông số kỹ thuật keo phenol formaldehyde phân tử lượng thấp và thử nghiệm biến tính gỗ cao su bằng phương pháp polymer hóa

Phạm Thế Mạnh¹, Nguyễn Minh Hưng², Nguyen Văn Tụ³,
Vũ Mạnh Trường¹*, Nguyễn Thị Thuần¹, Chu Công Nghĩa³, Nguyễn Thành Trung²
¹Trường Đại học Lâm nghiệp - Phạm hiệu Đông Nai
²Trường Đại học Lâm nghiệp
³Trường Đại học Sư phạm Kỹ thuật TP. Hồ Chí Minh

Effect of temperature and reaction time on some technical parameters of low molecular weight Phenol Formaldehyde resin and testing of Hevea brasiliensis modification by polymerization method

Pham The Manh¹, Nguyen Minh Hung², Nguyen Van Tu³,
Vu Manh Tuong¹*, Nguyen Thi Thuan¹, Chu Cong Nghi³, Nguyen Thanh Trung²
¹Vietnam National University of Forestry - Dongnai Campus
²Vietnam National University of Forestry
³HCMC University of Technology and Education
*Corresponding author: manhtuong0209@gmail.com

https://doi.org/10.55250/jo.vnuf.13.6.2024.113-120

TÔM TẮT
Bài báo này trình bày nghiên cứu ảnh hưởng của nhiệt độ và thời gian phản ứng đến các tính chất của keo phenol-formaldehyde phân tử lượng thấp (LWPF) và khả năng ứng dụng trong biến tính gỗ cao su. Các chi tiêu như độ nở, hàm lượng khô, độ tan trong nước và thời gian đóng rắn của keo PF đã được xác định thông qua các thí nghiệm đã yêu tò. Kết quả cho thấy độ nở nhất của keo LWPF dao động từ 47-63 m.Pa.s và có xu hướng tăng khi nhiệt độ và thời gian phản ứng tăng. Hàm lượng khô của keo biến động từ 5,13% đến 56,2%, trong khi độ tan trong nước giảm từ 5,6 xuống 3,0 khi điều kiện phản ứng thay đổi. Thời gian đóng rắn của keo LWPF dao động từ 284-342 giây, với mối tương quan mạnh mẽ giữa nhiệt độ, thời gian phản ứng và các tính chất này. Chất lượng gỗ cao su sau khi được xử lý bằng dịch keo PF phân tử lượng thấp và gây ở nhiệt độ cao đã cải thiện rõ rệt. Khối lượng gỗ tăng trung bình 29,5%, trong khi thể tích gỗ tăng 6,3%, độ hút nước khoảng 67,3%, độ trương nở chiều dài khoảng 4,5%. Các kết quả này chỉ ra rằng keo LWPF đã thơm nhập vào các khoảng trống và vách tế bào gỗ, giúp nâng cao khả năng chịu nước và giảm độ trương nở của gỗ. Nghiên cứu cung cấp cơ sở dữ liệu quan trọng cho việc tổng hợp keo PF phân tử lượng thấp và ứng dụng phương pháp nghiệm tâm kết hợp polymer hóa bằng quá trình này nhiệt độ cao trong biến tính gỗ cao su.

ABSTRACT
This paper presents a study on the influence of temperature and reaction time on the properties of low molecular weight phenol-formaldehyde (LWPF) resin and its application in the modification of rubberwood (Hevea brasiliensis). Technical properties of the LWPF resin such as viscosity, solid content, water solubility, and curing time were determined through multifactorial experiments. The results show that the viscosity of the LWPF resin ranged from 47 to 63 m.Pa.s and tended to increase as temperature and reaction time increased. The solid content of the resin varied from 5.13% to 56.2%, while water solubility decreased from 5.6 to 3.0 as reaction conditions changed. The curing time of the LWPF resin ranged from 284 to 342 seconds, with a strong correlation between temperature, reaction time, and these properties. The quality of rubberwood treated with the LWPF resin solution and subjected to
1. ĐÁT VĂN ĐỀ

Tre và gõ từ rừng trồng đã trở thành nguồn nguyên liệu quan trọng trong xây dựng, sản xuất đồ nội thất và các ứng dụng khác. Tuy nhiên, các loại gỗ này thường gặp hạn chế về độ ổn định kích thước, độ bền cơ học và khả năng kháng sinh vật hại, do tốc độ sinh trưởng nhanh và đặc điểm cấu trúc của chúng. Để khắc phục những hạn chế này, nhiều nghiên cứu đã tập trung vào phương pháp biến tính gỗ thông qua việc ngâm tâm như nhiệt, trong đó có keo phenol-formaldehyde (PF). Kỹ thuật này đã được chứng minh là cải thiện đáng kể các đặc tính cơ học, khả năng kháng sinh vật hại và độ ổn định kích thước của gỗ [1-7].

Keo PF thuộc nhóm keo gốc phenolic, được ứng dụng rộng rãi nhờ chi phí thấp, nguồn liệu sẵn có, quy trình tổng hợp đơn giản, và khả năng kết hợp tốt với nhiều vật liệu khác. Sản phẩm từ PF có khả năng chịu nước, chịu nhiệt và chịu chay cao, được sử dụng phổ biến làm chất kết dính và keo trong sản xuất ván gỗ công nghiệp, vật liệu cách nhiệt, sơn và vecni, cũng như các sản phẩm chịu nhiệt và giải phóng [8]. Các đặc tính này giúp PF trở thành lựa chọn ưu việt trong nhiều ngành công nghiệp, đặc biệt là trong xử lý biến tính gỗ làm sản phẩm sử dụng ở điều kiện khắc nghiệt như: nắng cao độ ổn định kích thước [9, 10], nắng cao khả năng chống mối [11], cải thiện khả năng chống mốc [12].

Trên thế giới, việc nghiên cứu và sản xuất keo PF phân từ lượng thấp đã đạt quy mô lớn và thương mại hóa. Tuy nhiên, tại Việt Nam, nghiên cứu hệ thống về các yếu tố công nghệ, như nhiệt độ và thời gian phản ứng, ảnh hưởng đến chất lượng keo PF phân từ lượng thấp còn hạn chế. Đặc biệt, chưa có nhiều nghiên cứu ứng dụng keo LWPF này trong biến tính gỗ rừng trồng như gỗ cao su.

Bài báo này nghiên cứu tác động của nhiệt độ và thời gian phản ứng đến một số chỉ tiêu kỹ thuật của keo PF phân từ lượng thấp, đồng thời thử nghiệm ứng dụng loại keo này trong xử lý biến tính gỗ cao su. Kết quả nghiên cứu sẽ cung cấp cơ sở khoa học cho việc nâng cao chất lượng gỗ rừng trồng và thúc đẩy ứng dụng hiện qua keo LWPF trong công nghiệp chế biến gỗ tại Việt Nam.

2. PHƯƠNG PHÁP NGHIên CỨU

2.1. Vật liệu nghiên cứu

- Nguyên liệu gỗ: Gỗ Cao su (Hevea brasiliensis) 26 tuổi, khai thác tại huyện Vĩnh Cửu, tỉnh Đồng Nai.
- Hoá chất: Phenol 98% (P); Dung dịch Formalin 37% (F); Dung dịch NaOH 40%

2.2. Phương pháp nghiên cứu

a. Tạo mẫu gỗ thí nghiệm

+ Tiêu chuẩn lấy mẫu: TCVN 8044:2014
+ Kích thước mẫu: Đo theo Xuyên tâm x Tiếp tuyến = 30mm x 20mm x 20mm
+ Độ ẩm mẫu gốc trước khi xử lý: 12-15%
+ Số lượng mẫu: 10 mẫu/chế độ xử lý

b. Tổng hợp dung dịch keo PF phân từ lượng thấp (LWPF)

Trong nghiên cứu đã tham khảo phương pháp và quy trình tổng hợp keo PF phân từ lượng thấp, có thể tham trong nước của Nguyễn Minh Ngọc và Vũ Manh Trường [10] để làm cơ sở tiếp cận và thiết kế thông số quy hoạch thực nghiệm. Cơ bản như sau:

- Tỉ lệ mol trong hỗn hợp nguyên liệu đầu vào: F : P : NaOH : H2O = 1,85 : 1,0 : 0,20 : 8,0
- Các bước tiến hành:
 - Bước 1: Hòa lòng Phenol ở nhiệt độ 50-55°C, cẩn lưu Phenol cần dùng cho vào bình 3 cỏ.
 - Bước 2: Cho lượng dung dịch NaOH theo tính toán pha với nóng độ 40% vào bính ở Bước 1, phản ứng 10 phút, nhiệt độ duy trì 55°C.
 - Bước 3: Cho 80% lượng Formalin (37%) cần dùng vào bính ba cỏ ở Bước 2, tăng nhiệt độ lên 80°C, duy trì trong 60 phút.
Bước 4: Giảm nhiệt độ xuống 60°C, tiếp tục cho lường Formalin còn lại vào bình ở Bước 3. Tăng nhiệt độ lên nhiệt độ T°C, duy trì trong t phút. T và t là hai tham số sẽ thay đổi theo dữ liệu như bảng 1.

Bước 5: Làm người đến 40°C, thus sản phẩm nhựa PF phân từ lương thấp.

C. Quy hoạch thử nghiệm

Với mục tiêu xác định ảnh hưởng của nhiệt độ và thời gian tím hợp keo PF phân từ lương thấp sử dụng làm nguyên liệu xử lý biên tình gố và tre bằng phương pháp ngâm tâm. Trong nghiên cứu đã áp dụng phương pháp sử dụng phương pháp đáp ứng bê mặt/bề mặt chi tiêu (Response Surface Methods – RSM) với cách bố trí phức hợp tám (central composite design - CCD) để tiến hành thiết kế thí nghiệm quy hoạch thử nghiệm đã yêu tôi mô hình bậc 2. Các yếu tố thay đổi gồm nhiệt độ và thời gian ở giai đoạn trưng ngangs khi tím hợp keo LWPF như Bảng 1 và sự tác động của biến số thay đổi tối chi tiêu chất lượng keo LWPF được thiết hiện ở Bảng 2.

Nhiệt độ (°C)	Các mức thí nghiệm	Khoảng biến thiên				
Nhiệt độ (t)	-α	-	0	+	+α	
Thời gian duy trì (phút)	68	70	75	80	82	5
Thời gian duy trì (phút)	78	90	120	150	162	30
Nhiệt độ (t)	-α	-	0	+	+α	
Thời gian duy trì (phút)	68	70	75	80	82	5
Thời gian duy trì (phút)	78	90	120	150	162	30

d. Thử nghiệm sử dụng keo PF phân từ lương thấp xử lý biên tình gố cao su
- Phương pháp xử lý: nghiên cứu đã sử dụng phương pháp ngâm tâm chậm không đê dựa dụng dịch keo PF phân từ lương thấp vào gố cao su, sau đó sử dụng phương pháp xảy ở nhiệt độ cao để làm cho keo PF đồng rắn trong gố.
- Thông số công nghệ xử lý ngâm tâm:
 + Nồng độ dung dịch LWPF: 20 % (nồng độ dung dịch LWPF để ngâm tâm vào gố được tính bằng hàm lượng chất rắn có trong dung dịch).
 + Áp suất chân không: 650-700 mHg
 + Thời gian duy trì áp suất chân không: 1,5 giờ
 + Nhiệt độ khi tím: 23-30 °C
- Thông số công nghệ xảy ở nguồn: Mẫu sau khi tím hóa chất được đưa vào xảy ở nhiệt độ thay đổi theo 3 giai đoạn. Cụ thể:
 - Giai đoạn 1: 50-60 °C, thời gian 4 giờ
 - Giai đoạn 2: 90-105 °C, thời gian 6 giờ
 - Giai đoạn 3: 160 °C, thời gian 2 giờ
 - Giai đoạn 4: hạ nhiệt và để mẫu giữ nhiệt trong tự xảy.

e. Xác định các chỉ tiêu chất lượng của keo PF phân từ lương thấp

Trong nghiên cứu đã tiến hành xác định các chỉ tiêu cơ bản của dung dịch keo LWPF theo các quy định trong tiêu chuẩn Trung Quốc mã hiệu GB/T 14074-2017 - Testing methods for wood adhesives and their resins. Các chỉ tiêu chủ yếu đã được sử dụng làm thông số đầu ra của quy hoạch thử nghiệm gồm: độ pH, hàm lượng khô, độ nồng, độ tan trong nước, thời gian đồng rắn. Trong đó, nghiên cứu đã sử dụng máy đo độ nồng ND-85S để xác định độ nồng của dung dịch keo PF phân từ lương thấp do nghiên cứu tổng hợp.

f. Xác định các chỉ tiêu chất lượng gố cao su khi biến tính bằng nhựa PF phân từ lương thấp

- Đồ tăng khối lượng của gố (Weight Percent Gain - WPG)

 \[
 \text{WPG} = \left(\frac{m_1 - m_0}{m_0} \right) \times 100
 \]

 Trong đó: \(m_0\) khối lượng mẫu gố khô thiết; \(m_1\) khối lượng mẫu gố khô thiết sau sấy giai đoạn 3.

- Đồ tăng thể tích (Volumn Percent Gain - VPG)

 \[
 \text{VPG} = \left(\frac{V_1 - V_0}{V_0} \right) \times 100
 \]

 Trong đó: \(V_0\) thể tích mẫu gố khô thiết; \(V_1\) thể tích mẫu gố khô thiết sau khi sấy giai đoạn 3.

- Xác định độ hút nước (Water absorption - WA): Trong thị nghiệm, mẫu gố cao su xử lý (mẫu original) và mẫu gố cao su xử lý được ngâm nước trong thời gian 8 ngày ở nhiệt độ 25-30°C. Đồng thời xác định độ hút nước như sau:

 \[
 \text{WA} = \left(\frac{m_2 - m_1}{m_1} \right) \times 100
 \]

 Trong đó: \(m_1\) khối lượng mẫu gố khô thiết trước khi ngâm nước (g); \(m_2\) khối lượng mẫu gố sau khi ngâm nước (g).
3.1. Ánh hưởng của nhiệt độ và thời gian phân ứng ở giai đoạn trứng ngưng đến chất lượng keo PF phân từ lường thấp

Kết quả xác định mức độ ảnh hưởng của nhiệt độ và thời gian phân ứng ở giai đoạn trứng ngưng đến: hàm lượng khó, độ nhớt, độ tan trong nước, thời gian đồng rắn của keo PF phân từ lường thấp được trình bày trong Bảng 2.

Bảng 2. Kết quả xác định hàm lượng khó của keo LWPF theo các chế độ thí nghiệm

Thí nghiệm	T (°C)	t (phút)	Hhamster lượng khó (%)	Độ nhớt (m.Pa.s)	Độ tan trong nước (lần)	Thời gian đồng rắn (s)
1	75	78	53,0	50	4,5	342
2	80	150	54,9	50	3,2	284
3	82	120	52,1	53	3,0	290
4	68	120	54,1	53	5,2	286
5	80	90	53,5	55	4,2	335
6	75	120	54,2	63	3,5	311
7	75	120	52,5	61	4,0	305
8	70	150	54,7	60	4,5	285
9	75	120	52,6	61	4,7	295
10	75	120	53,0	63	3,5	298
11	70	90	56,2	47	5,6	315
12	75	120	51,3	62	3,9	295
13	75	162	55,3	56	3,1	290

3.1.1. Ánh hưởng nhiệt độ và thời gian phân ứng ở giai đoạn trứng ngưng đến hàm lượng khó của dùng dịch PF phân từ lường thấp

Từ kết quả Bảng 2 cho thấy hàm lượng khó của keo LWPF dao động trong khoảng 51,13% đến 56,2%, nhưng không tuân theo một quy luật rõ ràng khi nhiệt độ và thời gian phân ứng thay đổi. Kết quả này cũng được thể hiện bởi đồ thị tương quan giữa giá trị thực nghiệm và giá trị hồi quy (Hình 1), hệ số tương quan rất thấp (R² = 0,37), tức là mức độ phù hợp của mô hình hồi quy của hàm lượng khó với dữ liệu thực nghiệm là không cao.

Hình 1. Đồ thị tương quan giữa giá trị thực nghiệm và giá trị hồi quy của hàm lượng khó

Sự chênh lệch về hàm lượng khó của keo thu được từ các chế độ nhiệt độ và thời gian khác nhau có thể được lý giải bởi mức độ phân ứng giữa các phần từ phenol và formalin. Khi nhiệt độ và thời gian thay đổi, các phản ứng xảy ra ở mức độ không đồng đều, dẫn đến sự khác biệt trong hàm lượng khó. Điều này cho thấy rằng các yếu tố nhiệt độ và thời gian phân ứng ảnh
hướng đến cấu trúc và đặc tính của keo LWPF, nhưng mối quan hệ này phụ thuộc và cần có những nghiên cứu sâu hơn. Việc tối ưu hóa quá trình tổng hợp là rất cần thiết để đạt được chất lượng keo LWPF ổn định, phù hợp với các yêu cầu ứng dụng thực tiễn.

3.1.2. Ánh hướng nhiệt độ và thời gian phân ứng ở giai đoạn trưng ngưng đến độ nhớt của dụng dịch PF phân từ lượng thấp

Độ nhớt của dụng dịch keo PF phân từ lượng thấp là một chỉ tiêu quan trọng, đặc biệt khi sử dụng keo này trong xử lý biên giao hoặc tre. Độ nhớt thấp không chỉ phản ánh khả năng thẩm thấu tốt của dụng dịch vào vật liệu mà còn cho thấy phân từ lượng của LWPF thấp, một yếu tố cần thiết để đảm bảo hiệu quả xử lý. Vì vậy, việc kiểm tra và đánh giá độ nhớt có ý nghĩa thực tiễn cao trong việc kiểm soát chất lượng keo. Kết quả xác định độ nhớt của keo PF phân từ lượng thấp, được tổng hợp với các thông số công nghệ khác nhau, được trình bày trong Bảng 2.

Từ Bảng 2, có thể thấy độ nhớt của keo PF phân từ lượng thấp dao động trong khoảng 47–63 mPa.s và tăng dần khi nhiệt độ và thời gian phân ứng tăng. Hiển tượng này phù hợp với cơ chế tổng hợp keo LWPF, khi nhiệt độ cao hơn làm gia tăng tốc độ phân ứng giữa các phân tử phenol và formalin. Đồng thời, thời gian phân ứng keo dài tạo điều kiện để các phân tử kết hợp với nhau thành quản phân ứng trùng ngưng, dẫn đến sự gia tăng phân từ lượng và kéo theo độ nhớt tăng.

Ngoài ra, kết quả phân tích tương quan Hình 2 cho thấy giữa thời gian phản ứng và giám trị hội quy có sự phù hợp cao, với hệ số tương quan đạt R² = 0,97, thể hiện tính chính xác và đáng tin cậy của mô hình hội quy trong dự đoán độ nhớt của keo LWPF.

Hình 2. Đồ thị tương quan giữa giám trị thực nghiệm và giám trị hội quy của độ nhớt keo LWPF

3.1.3. Ánh hướng nhiệt độ và thời gian phân ứng ở giai đoạn trưng ngưng đến độ tan trong nước của dụng dịch PF phân từ lượng thấp

Cùng tương tự như đã nói, độ tan trong nước của keo LWPF cũng là một chỉ tiêu quan trọng. Độ tan trong nước ảnh hưởng trực tiếp đến khả năng pha loãng và điều kiện công nghệ sử dụng keo LWPF trong quá trình xử lý biên giao. Nếu độ tan trong nước thấp, việc pha loãng keo dễ ngấm tản vào gổ hoặc sẽ gây nhiều khó khăn, làm giảm hiệu quả xử lý.

Kết quả đo độ tan trong nước của keo PF phân từ lượng thấp với các thông số công nghệ khác nhau được trình bày trong Bảng 2.

Dựa trên số liệu Bảng 2, độ tan trong nước của keo LWPF biến động trong khoảng 3,0–5,6%, và có xu hướng giảm khi thời gian và nhiệt độ phân ứng tăng. Kết quả này phù hợp với kết quả thí nghiệm xác định độ nhớt của keo LWPF ở phần trên, do quá trình tăng nhiệt độ và kéo dài thời gian phân ứng tạo điều kiện cho nhiều phân tử phenol kết hợp với nhau thông qua phân ứng trùng ngưng, làm tăng phân từ lượng của keo và giảm độ tan trong nước.

Một quan hệ giữa nhiệt độ, thời gian phân ứng và độ tan trong nước được biểu thị rõ rệt qua Hình 3, với hệ số tương quan đạt R² = 0,79, cho thấy mối liên hệ chặt chẽ giữa các yếu tố này.
Kết quả phân tích này cho thấy có thể sử dụng mô hình hồi quy dựa trên quy hoach thực nghiệm để tiến hành các nghiên cứu tới ưu hoa, nhằm xác định nhiệt độ và thời gian phân ứng tối ưu trong giai đoạn trắng ngung, phục vụ cho việc tổng hợp keo PF phân từ lượng thấp có chất lượng phù hợp với yêu cầu công nghệ.

3.1.4. ảnh hưởng nhiệt độ và thời gian phân ứng ở giai đoạn trắng ngung đến thời gian dòng rắn của ứng đich PF phân từ lượng thấp

Thời gian dòng rắn của keo LWPF dòng vai trò quan trọng trong việc thiết lập các thông số công nghệ xử lý gỗ sau quá trình ngâm tẩm. Thời gian này cần đảm bảo keo LWPF dòng rắn hoàn toàn, từ đó đạt hiệu quả biến tính tối ưu cho gỗ. Vi vậy, việc nghiên cứu và xác định thời gian dòng rắn của keo LWPF là cần thiết, đặc biệt khi xem xét mối tương quan giữa nhiệt độ và thời gian phân ứng. Nghiên cứu này không chỉ giúp cải thiện chất lượng keo mà còn có ý nghĩa thực tiễn lớn trong việc tối ưu hóa quy trình công nghệ xử lý gỗ.

Kết quả xác định thời gian dòng rắn của keo PF phân từ lượng thấp, được trình bày bằng Hình 2, cho thấy thời gian dòng rắn dao động trong khoảng từ 284 đến 342 giây. Quy luật biến động này khá rõ ràng, phản ánh mối tương quan chất chứa giữa nhiệt độ và thời gian phản ứng trong quá trình tổng hợp keo với thời gian dòng rắn của keo. Mối quan hệ này được thể hiện rõ hơn qua đồ thị trong Hình 4, với hệ số tương quan đạt 0,94.

Tương tự như đồ mặt và đồ tan trong nước, kết quả nghiên cứu về thời gian dòng rắn cũng có ý nghĩa thông kê, mở ra cơ hội ứng dụng trong việc tối ưu hóa quy trình công nghệ. Các kết quả này có thể được áp dụng để giải quyết bài toán tối ưu nhu thực hiện thêm các thì
đề tiến hành tổng hợp keo PF phân từ lượng thấp ở quy mô phòng thí nghiệm. Quy trình tổng hợp được thực hiện theo phương pháp đã trình bày trong mục phương pháp nghiên cứu. Cuối hề, nhiệt độ và thời gian phản ứng trong giai đoạn trứng ngưng được thiết lập như sau:
- Nhiệt độ: 70°C
- Thời gian duy trì: 90 phút
Chi tiêu kỹ thuật của keo thu được với thông số công nghệ này được trình bày trong Bảng 3.

Bảng 3. Chỉ tiêu kỹ thuật keo LWPF dùng để xử lý cổ cao su

TT	Chỉ tiêu đánh giá	Đơn vị tính	Giá trị	Phương pháp đánh giá
1	Mẫu sắc	-	Nâu đỏ	Mật thương
2	Độ nhớt	mPa.s	50	GB/T 14074-2017
3	Hỗn lượng khô	%	52,5	GB/T 14074-2017
4	Đồ hóa tan trong nước	Lần	> 5	GB/T 14074-2017
5	Đồ pH	-	10	Giảy pH

Sau khi tiến hành xử lý biển tính cổ cao su theo công nghệ polymer hóa gốm, nghiên cứu đã thu được mẫu cổ cao su biến tính bằng keo PF phân từ lượng thấp với các chỉ tiêu chất lượng thế hiện trong Bảng 4.

Bảng 4. Tính chất của cổ cao su biến tính bằng keo PF phân từ lượng thấp

Chỉ tiêu kiểm tra	Đơn vị tính	Giá trị trung bình	Độ lệch chuẩn
Độ tăng khối lượng (WPG)	%	29,5	2,8
Độ tăng thể tích (VPG)	%	6,3	0,7
Độ hút nước sau 8 ngày (WA)	%	67,3	3,2
Độ tương nở thể tích (VS)	%	4,55	0,82

Từ Bảng 4 có thể thấy, sau khi cổ cao su được xử lý bằng dung dịch keo PF phân từ lượng thấp và sấy ở nhiệt độ cao được keo LWPF dòng rắn trong gốm, các tính chất của cổ cao su đã thay đổi đáng kể. Cụ thể, khối lượng cổ tăng trung bình khoảng 29,5%, độ mở thể tích cổ tăng 6,3%. Điều này cho thấy trong quá trình xử lý, các phần từ keo LWPF đã tham gia vào các khoảng trống trong gốm, thay đổi cấu trúc tế bào gốm, được phân tích qua mức độ tăng khối lượng và thể tích.

Kết quả nghiên cứu này cũng trùng với nghiên cứu của Furuno [1] cũng đã chỉ ra rằng các tính chất của cổ thay đổi khi keo LWPF thẩm vào và liên kết trong việc tế bào gốm. Kết quả kiểm tra độ hút nước và độ tương nở thể tích của cổ cao su biến tính trong nghiên cứu này cho thấy các giá trị đều giảm đáng kể. Điều này có thể là do keo LWPF đã thẩm nhập sâu vào các tế bào gốm và đồng rắn, làm giảm khả năng hấp thụ nước và hạn chế sự dãn nở của gốm.

4. KẾT LUẬN

Nghiên cứu đã xác định anh hưởng của nhiệt độ và thời gian phản ứng đến chất lượng keo phenol-formaldehyde phân từ lượng thấp. Kết quả cho thấy độ nhớt của keo thay đổi từ 47-63 mPa.s, và tăng khi nhiệt độ và thời gian phản ứng cao hơn. Hỗn lượng khô của keo dao động từ 5,13% đến 56,2%, với hệ số tương quan R² = 0,37, cho thấy sự biến động không rõ ràng. Độ tan trong nước giảm từ 5,6 đến 3,0 khi nhiệt độ và thời gian tăng, với hệ số tương quan 0,79. Thời gian dòng rắn của keo PF biến động từ 284-342 giây, có mối tương quan mạnh với nhiệt độ và thời gian phản ứng (R² = 0,94).

Chất lượng cổ cao su khi xử lý bằng dung dịch keo PF phân từ lượng thấp và sấy ở nhiệt độ cao đã có sự thay đổi rõ rệt. Cuối hề, công
lượng gỗ biến tính tăng 29,5%, và thể tích gỗ tăng 6,3% so với gỗ cau không biến tính.

Lời cám ơn

Nghiên cứu này là kết quả nghiên cứu của luận văn thạc sĩ với tiêu đề “Nghiên cứu ảnh hưởng của thời gian và nhiệt độ đến chất lượng keo phenol formaldehyde (PF) phân tử lượng thấp”. Tác giả xin trân trọng cảm ơn B. Khoa học và Công nghệ đã tạo điều kiện hỗ trợ nguồn lực để hoàn thành đề tài luận văn thạc sĩ thông qua việc cấp kinh phí cho đề tài “Nghiên cứu chế tạo vật liệu composit tấm lợp từ nhựa Phenol Formaldehyde (PF) và tre làm nguyên liệu cho đóng tàu cá và tấm lót đường”.

TÀI LIỆU THAM KHẢO

[1]. T. Furuno, Y. Imamura & H. Kajita (2004). The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Science and Technology. 37(5): 349-361.

[2]. Manabendra Deka & C. N. Saikia (2000). Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Bioresource Technology. 73(2): 179-181.

[3]. Lý Tuấn Trương & Vũ Mạnh Trương (2016). Ảnh hưởng của thời gian cây đến một số tính chất của composit từ gỗ Keo lai và đơn thể phenon fommandéhyt. Nông nghiệp và Phát triển Nông thôn. (11): 108-112.

[4]. Andi Hermawan, Toru Nakahara, Hiroki Sakagami, Noboru Fujimoto & Kiyotaka Uchikura (2013). Performance of Sugi lamina impregnated with low-molecular weight phenolic resin. Journal of Wood Science. 59(4): 299-306.

[5]. Stamm AJ & Seborg RM (1943). Resin-treated wood (Impreg). Research paper FPL report 1380. forest products laboratory, USDA Forest Service. 1-9.

[6]. T. Furuno, Y. Imamura & H. Kajita (2003). The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Science and Technology. 37(5): 349-361.

[7]. Hui Wan & Moon G. Kim (2008). Distribution of phenol-formaldehyde resin in impregnated southern pine and effects on stabilization. Wood Fiber Sci. 40(2): 181-189.

[8]. P. V. Berdnikova, E. G. Zhizhina & Z. P. Pai (2021). Phenol-Formaldehyde Resins: Properties, Fields of Application, and Methods of Synthesis. Catalysis in Industry. 13(2): 119-124.

[9]. Chris P. Gabrielli & Frederick A. Kamke (2010). Phenol–formaldehyde impregnation of densified wood for improved dimensional stability. Wood Science and Technology. 44(1): 95-104.

[10]. Nguyễn Minh Ngọc & Vũ Mạnh Trương (2017). Nghiên cứu một số tính chất vật lý của composit từ gỗ Bồ đề (Styrax tonkiensis) và nhựa phenol formaldehyde. Khoa học và Công nghệ Lâm nghiệp, Trường Đại học Lâm nghiệp. (1): 61-68.

[11]. P. Gascon-Garrido, H. Militz, C. Mai & M.-F. Thévenon (2015). Enhanced termite resistance of Scots pine (Pinus sylvestris l.) Solid wood by phenol-formaldehyde treatment. Wood Research. 60(6): 873-880.

[12]. V. Biziks, S. Bick & H. Militz (2016). Decay resistance of beech wood and plywood treated with different type of phenol-formaldehyde (PF) resins. In: IRG (ed.) The International Research Group of Wood Protection. Stockholm, Sweden.