Effects of Soil Fertility Status and Its Management on Productivity of Rice in Flood Plains of Wukari, Taraba State, Nigeria

A. T. Gani¹*, A. Ali², P. I. Agber² and S. O. I. Abagyeh²

¹Department of Soil Science and Land Resources Management, Federal University, Wukari, Nigeria.
²Department of Soil Science, College of Agronomy, University of Agriculture, Makurdi, Benue State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author ATG designed the study, performed the statistical analysis, managed literature search, wrote the protocol and wrote the first draft of the manuscript. Authors AA and PIA managed the analyses of the study and literature search. Author SOIA managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

An experiment was carried out to determine the soil fertility status and productivity of rice on flood plain soils at different locations in Wukari LGA of Taraba State in the southern guinea Savanna zone of Nigeria. The treatments consisted of five locations (Gidan-Idi, Gindin-Dorowa, Tsokundi, Rafin-Kada and Nwuko) that was laid out in a Randomized Complete Block Design (RCBD) and replicated three times. The field was cleared, ploughed and harrowed, and marked into plots of 5 m x 5 m with an alley of 1 m between replications and 0.5 m between plots. Rice seeds (faro 44 (sipi 6920233)) were sown by dibbling at 25 cm x 20 cm intra row. Nitrogen fertilizer was applied (at 3 to 4 weeks after planting as urea at the rate of 120 kg N ha⁻¹) by top dressing method. Phosphorus fertilizer was also applied at 5 to 8 weeks after planting in split doses at the rate of 40 kg P₂O₅ ha⁻¹ as single super phosphate and Potassium oxide fertilizer was applied 10 to 12 weeks after planting at 40 kg K₂O ha⁻¹ by top dressing method. Soil and plant data were collected and analyzed using standard procedures. The results were subjected to analysis of variance and means separated
Keywords: Productivity; flood plain; soil fertility status; rice.

1. INTRODUCTION

Flood plain soils are found generally adjacent to major rivers or streams. These soils are highly heterogeneous in fertility status due to the hydromorphic environment in which they are formed [1]. Flood plain soils as a natural resource can only be properly managed with proper understanding of its characteristics [2]. The agricultural productive potentials of river banks and floodplains such as the Nile valley have been identified as the origin of great human civilizations [3]. Floodplain soils tend to be more fertile than adjoining upland areas and availability due to better water holding capacity makes them suitable for year-round cropping [4]. Despite their potentials, the flood plain soils in Nigeria are largely underutilized. The complex nature of these soils, arduous agronomic task on management coupled with inadequate information on these soils in Nigeria has contributed to their underutilization [5].

Rice is grown on 156×10^6 ha with the production capacity of 660×10^6 tons worldwide [6]. Rice is not only the staple food for nearly half of the world’s population as the major daily source of calories and protein, but is also a key source of employment and income for rural people [7]. Rice is important in Nigeria for several reasons. It is a major contributor to internal and sub-regional trade. Rice is the staple for most of the peoples in the Niger-Benue trough which divides Nigeria into four parts, Sokoto-Rima Basin in the north-west, Chad Depression in the north-east, Hadejia-Jamaare trough in the extreme north, and Cross River trough in the south. Farmers find rice more adaptable than a high input requiring crops maize especially when there is declining soil fertility because of the huge array of varieties they can switch over to every year. Since it is becoming a staple crop, farmers seem to be willing to grow it all the time no matter the constraints they are facing.

Crops such as rice, tomatoes, sorrel, amaranthus, cabbage, sesame, okra, pepper and onions are largely cultivated under irrigation on the floodplain soils in Nigeria. The floodplain soils potential is high in Taraba State, based on available area for irrigation and free of forest cover and requires no drainage. These areas have potential for irrigation, using underground and surface water; they remain still underdeveloped thereby limiting significant commercial activities. [8] indicated that better understanding of the soil within a potential irrigation area is essential for economic and technical reasons. The design of the irrigation scheme itself is dependent on detail knowledge of soils lying within the floodplain areas. [9] stated that wetland soils are grossly underutilized in Nigeria for any kind of purpose, especially in the drier Guinea, Sudan and Sahel savannas where wetlands are loci for permanent agriculture. This important crop like any other crop requires increased productivity through the use of appropriate variety. The use of local varieties has attracted less attention by farmers due to low yield. Problems of pest and disease were observed affecting the performance of the crop.

Soil productivity is the capacity of a soil in its natural environment to produce a specific plant or sequence of plants under specific systems of management. Efficient management of natural resources is essential for ensuring food supplies and sustainability in agricultural development. The task of meeting demand without affecting the ecological assets for future generations is being given top priority by both scientists and planners. There is an urgent need to match the land resources with the current land use for sustainable production and to meet the needs of society, while conserving fragile ecosystems [10]. Therefore, this work was carried out to identify the soil fertility status and productivity of rice on floodplains of Wukari, Taraba State, Nigeria.

The objectives of the study include; to determine the physical and chemical properties of soils of the study area and to evaluate the productivity of rice on the floodplains.

2. MATERIALS AND METHODS

2.1 Experimental Site

The experiment was conducted during 2016 and 2017 dry seasons at Wukari flood plain, Taraba
State, North Eastern Nigeria (latitude 7°51’N and longitude 9°47’E). The area is sparsely populated, with an estimated population density of 19 to 22 people per km². Agriculture is the most important economic activity in the area, employing more than 90% of the labour force. Most of the farmers are subsistence oriented.

The area received an annual rainfall of 750 to 1600 mm. Rainfall distribution is unimodal, with much of the rain falling between May and October. The wettest months are August and September. The rainy season is followed by a long dry season. The temperature characteristics are typical of the West African savanna climate. Maximum temperature can reach 39°C particularly in April while minimum temperature can be as low as 18°C between December and January. The mean monthly temperature ranges from 26.7°C in the south to 27.8°C in the Northeastern part. Humidity is generally lowest in the dry season about 20% and is very high in the wet season about 80% in August. An increase in the humidity always precedes the onset of the rains in May.

The area is richly supplied with a network of river and streams. Rivers Bantaje and Gindin-Dorowa form the major rivers and joined by numerous tributaries. The topography is generally flat, becoming undulating and hilly toward the northeast.

2.2 Experimental Details

The land was cleared, ploughed and harrowed. The field was marked into plots of 5 m × 5 m with an alley of 0.5 m between plots and 1.0 m between replications. There were five locations, Gidan Idi, Gindin Dorowa, Tsokundi, Rafin Kada and Nwuko) replicated three times and laid out in a Randomized Complete Block Design (RCBD). The total land area of the experiment was 230 m² in each location.

2.3 Land Preparation and Planting

Early maturing variety, Faro 44 (sipi 6920233) was obtained from the Liaison Office of the Value Chain Development Project Wukari for planting. Prior to sowing, the seeds were soaked in water to determine its viability through floating method. Planting was done by direct seeding at a depth of 2-4 cm. Dibbling was done at an approximate spacing of 25 cm × 20 cm intra row. Nitrogen fertilizer was applied at 3 to 4 weeks after planting as urea at the rate of 120 kgN ha⁻¹ by top dressing method. Phosphorus fertilizer was also applied at 5 to 8 weeks after planting in split doses at the rate of 40 kg P₂O₅ ha⁻¹ as single super phosphate and Potassium oxide fertilizer was applied 10 to 12 weeks after planting at the rate of 40 kg K₂O ha⁻¹ by top dressing method. Manual weeding was done regularly especially during early stages of growth. Harvesting was done when 80-85 % of the grains turned straw colour to avoid shattering (i.e. 4-5 weeks after 50% flowering). The rice stem was cut with sickle at about 15-20 cm above the ground (to permit hand threshing). The panicles were tied in bundles and heaped for drying before threshing. The rice was dried to 12-14% moisture content before threshing.

2.4 Soil Sampling and Analysis

Composite soil samples were collected from the plots before planting and after the planting based on the treatments. The collected samples were used to determine soil physical and chemical properties. Particle size distribution was determined by Bouyoucos hydrometer method of mechanical analysis [11]. The bulk density was determined by the core Sampler Method of known soil volume [12]. Available water holding capacity was determined with pressure plate apparatus as described by [13]. Soil pH was measured electrometrically using glass electrode pH meter in a solid-liquid ratio of 1:2.5 [14]. Total nitrogen was determined by macro-Kjeldahl digestion technique method [15]. Exchangeable bases were determined by the neutral ammonium acetate procedure buffered at pH 7.0 [16]. Exchangeable acidity was determined by a method described by [17]. Organic carbon was analyzed by wet digestion and the organic carbon content was multiplied by factor 1.724 to get the percentage organic matter [18]. Available phosphorous was determined by Bray I method according to the procedure of [18]. Cation Exchange Capacity was determined using neutral ammonium acetate leachate method [19]. Base saturation was computed as Total exchangeable bases divided by Cation Exchange Capacity.

2.5 Plant Data Collection

Agronomic data collected includes plant height, leaf area index, grain yield per hectare and test weight.

2.6 Statistical Analysis

The experimental data were analyzed statistically using analysis of variance (ANOVA) to check for
significant effects of studied parameters at 95% confidence limit using the procedure by [20]. When significant differences were observed, treatment means were separated using F-LSD. The analysis of variance (F-ratio) is a parametric test for significance among three or more variables. In this study, test for variations in the selected parameters over the different locations at different periods while the F-LSD test was used to test for significant association between pairs of locations or periods. SPSS 17.0 software (SPSS inc., Chikago, IL, USA) was used for the statistical analysis.

3. RESULTS AND DISCUSSION

3.1 Soil Status

The soil of the study area was clay loam in texture (Table 1). Generally, the mean values of the soil textural analysis indicate that the clay fraction dominated the fine earth separate. This was closely followed by the sand fraction, while the silt fraction was lowest. The soil textures in these areas are mainly clay loam, which is medium texture. Bulk density of the flood plains had lowest mean value of 1.30 g/cm³ and highest mean value of 1.33 g/cm³. These values also agree with [21] that density of clay loam surface normally ranged from 1.00 to 1.60 g/cm³. The bulk density values of the flood plains were < 1.6 g/cm³, thus rated medium, a range considered adequate not to impede the plant root penetration [22]. The lowest value of mean available water recorded in the flood plains is 0.25 m/m while the highest mean value is 0.28 m/m. Generally, the available water capacity of these soils is low.

Data (Table 2) shows the mean soil chemical properties of the flood plain soils. The soil pH measured in water was neutral to slightly acidic indicating that the pH range is optimum for the cultivation of most crops, but proper management should be maintained in order to reduce the chances of alkalinity hazards. The soils of the flood plains had mean pH values range from 6.47 to 7.05. Soil reaction was slightly acidic to neutral [23]. The value of the organic carbon content was of moderate (1.46 to 1.53%) indicating that the soil was moderate in organic matter content. The soils organic matter (OM) contents of the flood plains had highest mean value of 2.65% and lowest mean value of 2.52%. Organic matter is generally low in the soils according to [24] ratings (>20% very high, 10-20% high, 4-10% medium, 2-4% low and < 2% very low). The nitrogen content of the soil was low (0.123 to 0.175%). The available phosphorus content of these soils is high with highest mean value of 18 % and lowest mean value of 16.20 %. These high values may be due to the fact that phosphorus is characteristically immobile, and tend to remain fixed at the clay micelle. The exchangeable bases comprised of exchangeable Ca, Mg, K and Na. Calcium was the dominant exchangeable base in all the soils. The exchangeable Ca in the flood plains was rated medium range, the range in value of magnesium were moderate, potassium values were generally in the medium range and sodium values were generally in the medium range. Generally, the exchangeable bases occurred in the order Ca>Mg>K>Na in all the flood plains, this corroborates earlier reports on soils of the Nigerian savannah [25]. The exchange acidity comprises exchangeable hydrogen and exchangeable aluminium. The values were classified as generally in the medium range which suggests that the soils have little or no acidity problems, except for incipient acidity in some horizons. The CEC of Wukari flood plains were rated medium which matches with the findings of [26] who reported cation exchange capacity values of < 6, 6 - 12 and > 12 cmol(+)/kg as low, medium and high respectively. Base saturation (BS) of the flood plains had highest mean value of 55.90% and lowest mean value of 53.69%. The values were rated moderate being generally between 50-80%. The medium values indicate that the soils have moderate potentials for supplying plant nutrients; hence, the necessity for adequate soil management required especially in the upland [27].

3.2 Rice Productivity within the Locations

The plant growth parameters analyzed are plant height (cm), leaf area index at 42 days after planting (LAI at 42 DAP) and leaf area indexes at 63 days after planting (LAI at 63 DAP) while the yield parameters analyzed are grain yield t/ha and test weight (g).

3.3 Plant Height

The results of the plant height from the flood plains showed that Nwuko flood plain had a mean plant height of 89 cm in 2016 and 89.84 cm in 2017; Tsokundi flood plain had a mean plant height of 86.877 cm in 2016 and 89.77 cm in 2017; Rafin-Kada flood plain had mean plant height of 85.97 cm in 2016 and 87.37 cm in
Gidan-Idi flood plain had mean plant height of 91.27 cm in 2016 and 98.37 cm in 2017 and Gindin-Dorowa flood plain had mean plant height of 91.17 cm in 2016 and 107.07 cm in 2017.

The highest mean rice plant height among the flood plains was 107.07 cm in 2017 at Gindin-Dorowa and the lowest was 85.97 cm in 2016 at Rafin Kada. The ANOVA test confirms the observed variations, in that, the differences amongst the different flood plain locations are statistically significant at 0.05 probability level for both the periods studied. The analysis of means using F-LSD at $P \leq 0.05$ showed that most of the location means are statistically different.

3.4 Leaf Area Index (LAI)

The results showed that Nwuko flood plain had mean LAI at 42 days after planting (DAP) of 4.2 in 2016 and 5.0 in 2017; Tsokundi flood plain had 4.3 in 2016 and 5.7 in 2017; Rafin-Kada had 4.0 in 2016 and 5.7 in 2017; Gidan-Idi flood plain had 4.3 in 2016 and 5.9 in 2017 and Gindin-Dorowa flood plain had mean leaf area indexes at 42 DAP of 4.4 in 2016 and 5.6 in 2017.

The highest mean LAI at 42 DAP of the flood plains was 5.9 at Gidan Idi in 2017 and the lowest was 4.0 in Rafin-Kada in the year 2016. The Analysis of Variance (ANOVA) test confirm the observed variations, in that, the differences amongst the different flood plain locations are statistically not significant at 0.05 probability level for both the periods studied (Table 3).

The results also indicated that Nwuko flood plain had mean leaf area index (at 63 DAP) of 11.2 in 2016 and 11.5 in 2017; Tsokundi flood plain had 9.3 in 2016 and 10.9 in 2017; Rafin-Kada flood plain had 10.7 in 2016 and 10.4 in 2017; Gidan-Idi flood plain had 9.9 in 2016 and 12.0 in 2017 and Gindin-Dorowa had 11.3 in 2016 and 10.7 in 2017.

The highest mean leaf area index at 63 (DAP) was 12.0 in 2017 at Gidan-Idi while the lowest was 9.3 in 2016 at Tsokundi. The ANOVA showed that the rice leaf area index at 63 DAPS were not significantly different for the different locations investigated ($P \leq 0.05$ level of significance) for both periods.

3.5 Grain Yield per Hectare

The results reveal that (Table 3) the grain yield from Nwuko flood plain was of 7.42 t/ha in 2016 and 7.82 t/ha in 2017; Tsokundi flood plain had mean grain yield of 8.33 t/ha in 2016 and 7.84 t/ha in 2017; Rafin-Kada flood plain had 7.36 t/ha in 2016 and 8.02 t/ha in 2017; Gidan-Idi had 8.00 t/ha in 2016 and 8.33 t/ha in 2017 while Gindin-Dorowa had mean grain yields of 7.92 t/ha in 2016 and 7.4 t/ha in 2017.

The highest mean rice grain yield of the flood plains was 8.36 t/ha obtained from Rafin-Kada in 2016 and the lowest mean rice grain yield of the flood plains was 7.41 t/ha obtained from Gidan-Idi in 2017. The ANOVA showed that rice grain yield of the floodplains were significantly different.

Table 1. Mean soil physical properties of Wukari flood plains

Soil depth (cm)	Location	Particle size distribution	Textural class	Bulk density (g/cm3)	WHC (m/m)									
		% sand	% silt	% clay										
0-20	NWRS	35.0	27.6	37.4	CL	1.32	0.27							
	TSRS	37.0	25.7	36.9	CL	1.31	0.26							
	RKRS	39.1	24.9	36.7	CL	1.33	0.26							
	GIRS	39.0	25.0	36.0	CL	1.32	0.25							
	GDRS	35.1	27.5	37.4	CL	1.32	0.26							
	NWRS	36.0	27.0	37.0	CL	1.31	0.27							
	TSRS	36.7	26.3	37.0	CL	1.30	0.26							
20-40	RKRS	37.7	26.3	36.0	CL	1.33	0.26							
	GIRS	38.0	25.0	37.0	CL	1.32	0.26							
	GDRS	35.5	27.1	37.4	CL	1.31	0.26							
	NWRS	35.4	27.2	37.3	CL	1.31	0.26							
	TSRS	37.0	26.0	37.0	CL	1.31	0.26							
40-60	RKRS	37.0	27.0	36.0	CL	1.33	0.25							
	GIRS	37.7	25.3	37.0	CL	1.31	0.27							
	GDRS	35.5	27.1	37.4	CL	1.31	0.28							
Depth (cm)	Locn	pH (H₂O)	EC dS/m	OC %	OM %	Total N %	Avail P %	K	Ca	Mg (⁺)/kg	Na cmol	EA	CEC	BS %
-----------	------	-----------	---------	------	------	------------	-----------	----	----	-----------	---------	-----	------	------
NWRS	6.73	1.23	1.46	2.52	0.165	16.20	0.32	4.3	0.81	0.21	5.15	10.79	52.1	
TSRS	7.03	1.27	1.48	2.56	0.123	17.00	0.26	4.1	0.73	0.23	4.78	10.13	52.8	
0-20	RKRS	6.47	0.81	1.52	2.62	0.163	17.18	0.29	4.5	0.86	0.21	4.50	10.39	56.67
GIRS	6.80	1.41	1.53	2.64	0.124	17.03	0.28	4.7	0.83	0.24	5.11	10.88	52.69	
GDRS	6.67	1.26	1.47	2.54	0.163	16.88	0.29	4.7	0.82	0.23	4.51	10.55	57.33	
NWRS	6.83	1.23	1.46	2.51	0.175	16.20	0.31	4.3	0.80	0.25	5.94	11.59	48.7	
TSRS	7.03	1.27	1.48	2.56	0.125	18.00	0.27	4.2	0.73	0.24	4.85	10.28	52.9	
20-40	RKRS	6.64	0.82	1.53	2.64	0.164	17.05	0.28	4.6	0.86	0.22	4.52	10.46	56.59
GIRS	6.81	1.42	1.53	2.64	0.125	16.87	0.29	4.6	0.82	0.24	5.17	11.12	55.57	
GDRS	6.78	1.26	1.47	2.53	0.163	16.97	0.28	4.6	0.82	0.25	4.52	10.53	57.13	
NWRS	6.82	1.31	1.43	2.47	0.173	17.20	0.32	4.5	0.83	0.25	5.16	11.09	53.4	
TSRS	7.05	1.26	1.51	2.56	0.126	17.74	0.26	4.2	0.72	0.23	4.87	10.28	52.6	
40-60	RKRS	6.88	0.79	1.53	2.65	0.166	17.01	0.29	4.6	0.86	0.22	4.49	10.45	57.04
GIRS	6.81	1.42	1.53	2.64	0.125	16.93	0.30	4.7	0.83	0.24	5.14	11.22	54.23	
GDRS	6.81	1.26	1.47	2.53	0.131	16.47	0.29	4.7	0.80	0.23	4.51	10.44	56.84	

Key: NWRS-Nwuko floodplains, TSRS-Tsokundi floodplains, RKRS-Rafinkada floodplains, GIRS-Gidan-Idi Floodplains NWRS-Nwoko flood plains
for the different locations investigated (Ps≤0.05 level of significance) in 2016 but were not significantly different for the different locations (Ps≤0.05 level of significance) in 2017. The means separation using F-LSD at 0.05 probability level showed that the differences among some of the mean rice grain yield of the floodplain locations are statistically significant.

3.6 Test Weight (g)

The results of the 1000 grain weight showed that Nwuko flood plain had 6.95 g in 2016 and 27.42 g in 2017; Tsokundi had mean thousand (1000) grain weights of 26.53 g in 2016 and 26.95 g in 2017; Rafin-Kada had 25.80 g in 2016 and 26.78 g in 2017; Gidan-Idi had 27.08 g in 2016 and 27.39 g in 2017 and Gindin-Dorowa had 28.92 g in 2016 and 26.78 g in 2017 (Table 3).

The highest mean test weight of rice was 27.42 g at Nwuko and the lowest was 25.80 g at Rafin-Kada. The 1000 grain weight is a factor of the weight of grain and the number of the grain (1000). This implies that the result depends on the weight individual seeds. A plant with the lowest yield but few grains can still have higher 1000 grain weight than a plant with higher grain weight but more grains [13]. Sometimes rice plants accelerate the phase of vegetative development under nutrient and water stress and push more grain filling at the expense of vegetative development. In other words, every available photosynthetic product is pushed to sinks and these can increase the grain weight [28]. The ANOVA showed that the one thousand (1000) grain weights were not significantly different for the different locations investigated (Ps≤0.05 level of significance) for both periods of study.

4. CONCLUSION

The soils of Wukari Floodplains are mostly clay loam in texture having very slightly acid to neutral soil reaction, moderate organic matter, low total N, available P, exchangeable bases and CEC. This indicates that if adequate soil management practices are not employed, these soils will deteriorate and may not support sustainable crop production.

The flood plain soils were moderate in fertility, a confirmation of the general characteristics of Savanna soils reported by earlier researchers. There were significant variations among the flood plain soils at the different locations. They are highly to marginally suitable for rice production based on the quantitative method as this method considered permanent factors which are not easily changed. It has implication on land productivity of Wukari to meet food and fiber demand of the growing population. This study had revealed the possible sodicity status of the soils of the area and there is need for their proper management. It also revealed information on the limitation of the soils for sustainable rice production. The study also implies that low input was responsible for low outputs recorded by most farmers in the study area.

5. RECOMMENDATIONS

On the basis of the two year study, the rice growers of the 4 floodplains of Nigeria are recommended to adopt the measures such as the return of crop residues and organic manure addition, minimization of tillage operation, introduction of viable crop rotation techniques and judicious application of chemical fertilizers must be adopted to sustain the fertility and
continued productivity of these soils. The water sources used for irrigating the floodplains are relatively safe hence little or no treatment for soluble salts is required.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Effiong GS, Ibia TO. Characteristics and constraints of some river flood plain soils to crop production in South Eastern Nigeria. Agricultural Journal. 2009;4(2):103-108.
2. Idoga S, Abagye SO, Agber PI. Characteristics and classification of crop production potentials of soils of the Aliade plain, Benue State, Nigeria. Journal of Soil Science. 2005;15:101-110.
3. Carating RB, Galanta RG, Bacatio CD. The soils of the Philippines: The Lowlands. 2014;346.
4. Ogban PI, Babalola D. Characteristics, classification and management of inland valley bottom soils for crop production in Sub Humid South Western Nigeria. Journal of Tropical Agriculture, Food and Environment. 2009;8:1-13.
5. Ukabiala ME. Characterization and classification of River Benue flood plain soils in Bassa Local Government Area of Kogi State, Nigeria. M.Sc Thesis, Kogi State University, Anyigba; 2012.
6. Dengiz O. Land Suitability Assessment for Rice Cultivation Based on GIS Modelling. Turkish Journal of Agriculture and Forestry. 2013;37:326-334.
7. FAO. Rice irrigation in the Near East: Current situation and prospects for improvement. FAO Regional Office for the Near East, Cairo, Egypt; 2003.
8. FAO. Soil Survey investigation for irrigation. Revised Bulletin 42. FAO. Rome; 1986.
9. Ojanuga AG, Okusami TA, Lekwa G. Wetland Soils of Nigeria. Status of Knowledge and Potentials. Monograph No. 2. Second edition Soil Science Society of Nigeria. Session, 21st September; 1996.
10. FAO. Guidelines for Land-Use Planning. FAO Development Series No: 1, Rome; 1993.
11. Trout TJ, Garcia-Castillas IG, Hart WE. Soil Engineering field and laboratory manual. Perks. Indiana. 1987;43-44.
12. Fuller WH, Warrick AW. Soils in waste treatment and utilization. D.R.E. Press. Florida. 1985;1: 51.
13. Singh BT, Nandini DK, Bijen KY, Bishworjit N, Nongdren KSL, Herojit SA. Characterization and evaluation for crop suitability in lateritic soils. African Journal of Agricultural Research. 2013;8(37):4628-4636.
14. Hendershot WH, Lalande H, Dequette E. Soil reaction and exchangeable acidity. In: Carter, M.R (ed). Soil Sampling and Methods of Analysis Canadian Soc. of Sci, Lawis Pub, London. 1993;141-145.
15. Bremner JM. Nitrogen Total. In Sparks DL, (ad). Methods of Soils Analysis, Parts Chemical methods 2nd ed, SSSA book series No5, SSSA, Madison WI. 1996;1085-1125.
16. Thomas GW. Exchangeable bases. In: Methods of analysis part 2. Page AL, Miller, RH and Keeney DR (eds). American Society of Agronomy Madison Wisconsin. 1982;159-165.
17. McLean EO. Soil pH and lime requirement. In: Methods of soil analyses. Part II. Agronomy. 9th Ed. A. L. Page. Am. Soc. of Agron. Madison. W. I. USA. 1982;199-234.
18. Nelson DW, Sommers LE. Total carbon, organic matter. In: Pages AL, Miller RH, Kenney DR (Eds). Methods of soil analysis, Part 2 Amer Soc. Agron. Madison, WI, USA. 1982;539-579.
19. Summer ME, Miller WP. Cation Exchange Capacity. In: DL Sparks (eds) Methods of Soil Analysis. Part 2: Chemical Properties. (3rd ed) ASA, SSSA, CSSA, Madison, W.I. USA. 1996;1201-1229.
20. Steel GD, Torrie JH. Procedures of Statistics. A Biometrical approach 2nd ed. New York: McGraw Hill, Book Company. 1980;63.
21. Brady NC. The Nature and properties of soils. Macmillan, New York. 1990;621.
22. Donahue RL, Raymond MW, Schick Line JC. Soils: An introduction to soils and plant growth. Prentice Hall of India. 1990;667.
23. Malgwi, W.B. Characterization of salt affected soils in some selected location in the North Western Zone of Nigeria. An unpublished PhD Thesis submitted to Soil Science Department, Ahmadu Bello University, Zaria; 2001.
24. Landon JR. Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and
25. Raji BA. Pedogenesis of Ancient dune soils in the Sokoto Sedimentary Basin, North Western Nigeria. Unpublished Ph.D. Thesis. 1995.

26. Adepetu JA, Aduagi EA, Alofa CA. A preliminary of fertility status of some soils in Ondo State under Traditional Cultivation. Ife Journal of Agriculture. 1979;134:149.

27. Brady NC, Weil RR. The nature and properties of soil. New Jersey, Pearson Education, Inc. 2002;837.

28. Murata Y. In: photosynthesis and utilization of solar energy. Level 1 experiments Report 1, August 1967. JIBP/PP-Photosynthesis local productivity Group, National Sectional Committee for PP/JPP; 1967.

© 2020 Gani et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/58211