Antioxidant Activity of Some Nigerian Medicinal Plants Used in Malaria Treatment

Oluwafunke O. Oribayo1, Mbango A. Owolabi1*, Grace E. Ukpo1, Francis O. Shode2

1Natural Product Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Nigeria.
2Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, South Africa.

ABSTRACT

Free radicals are reactive molecules associated with many diseases including malaria; causing complications. Thus, there is need to explore compounds with free radical scavenging properties. Methanol extracts of the leaves of three medicinal plants (A. barteri, O. basilicum and H. indicum) used in Nigerian folkloric medicine for the treatment of malaria were evaluated for their antioxidant activity, total phenol and flavonoid contents. The antioxidant activity evaluation included various radicals or oxidation systems - ferric-reducing antioxidant power (FRAP), 2, 2’-azinobis-(3-ethylbenzthiazoline-6-sulfonate) radical (ABTS), and oxygen radical absorbance capacity (ORAC) assays. Total phenol and flavonoid contents were also evaluated. The leaves of A. barteri showed the highest levels of total phenol (222.30 ± 5.48 mg gallic acid equivalent/g), flavanol (22.90 ± 0.15 mg catechin equivalent/g) and flavonoid contents (93.32 ± 2.80 mg quercetin equivalent/g) compared to O. basilicum and H. indicum. The antioxidant activity of these plants increased with increase in their total phenol and flavonoid contents. The order of the antioxidant activity of the plants was A. barteri > O. basilicum > H. indicum. These results suggest that the leaves of these plants contain polyphenols and could serve as potential sources of antioxidants which could be explored as therapeutic agents in the attenuation of free radicals in malaria infection.

Keywords: Alafia barteri, Ocimum basilicum, Heliotropium indicum, antioxidant activity, free radical, malaria.

Introduction

Free radicals such as reactive oxygen species (ROS) are continuously produced by an organism’s normal use of oxygen.1 There are ample evidence that an imbalance between formation and removal of these free radicals can lead to a pathological condition called oxidative stress resulting in many physiological processes like aging and chronic diseases, such as cancer, arthritis, cardiovascular diseases and liver injury. However, the human body employs molecules known as antioxidants to counteract these free radicals thus repairing free radical damage by initiating cell regeneration or cell repair.2,3 This has led to keen interest and widespread researches in the investigation of plant materials with antioxidant activity that can protect against these reactive oxygen species such as superoxide radical, hydroxyl radical, peroxyl radical, and nitric oxide radical and thus may play a role in disease prevention.1,2,3,4,5

In recent times, studies have shown that free radicals associated with oxidative stress play crucial role in the development of complication caused by malaria.6 Plants contain high concentrations of antioxidants, including polyphenols, tocopherols, tocotrienols, ascorbic acid, glutathione, carotenoids, which are believed to be the effective nutrients in the prevention of oxidative stress-related diseases.1,3,4 A number of traditional herbs including the leaves of Mangifera indica, Artemisia annua, Carica papaya, Azadirachta indica, Melissa officinalis, Alafia barteri, Ocimum basilicum and Heliotropium indicum have been tested and used in the prevention and treatment of malaria.6,7,8,9,10,11 It is assumed that these plants may have antioxidant activity that would scavenge free radicals associated with malaria thus attenuating possible complications that may occur in malaria. Alafia barteri (Olive), a member of the Apocynaceae family, is a climbing shrub widely distributed in the tropics. It is commonly known as Guinea fowl's crest, agbari etu (Yoruba), oran zo (Igbo). In Nigerian traditional medicine, the stem and root decoctions are used to treat rheumatic pains, toothache and eye infections.11 The infusion of the leaves of this plant is used to treat sickle cell anaemia and malaria. The fibre of the stem is used as binding material for roofs, the roots are used as chewing stick; latex obtained from the stem has been used to adulterate for better latex by tampering with the composition of latex.12 Heliotropium indicum (Linn) family Boraginaceae is an annual plant that can grow to a height of 15 to 50 cm. It is known as Indian Heliotrope, cock’s comb, ogbe oru akaka (Yoruba), kakkashin korana (Hausa), aça yu zo (Igbo). It has small white flowers with a green calyx; it is usually associated with the moist rich soils of the lowland tropics near rivers and lakes, on the roadsides and in waste places. It is locally used for malaria fever, skin lesions, wounds, abscesses, gastric and varicose ulcerations, rashes and wounds.13 Ocimum basilicum, a member of the Lamiaceae family, is known as an aromatic and medicinal plant and is widely cultivated as an ornamental and field crop throughout the year in many countries. It is popularly known as sweet basil and locally as efirin wewe (Yoruba), ntong (Efik), Nhawanu (Igbo) or daido (Hausa). It has several therapeutic potentials and serves as a basic component of the Mediterranean diet. The leaves of O. basilicum are used in folk medicine as a tonic and vermifuge and an infusion of its leaves is used for the treatment of nausea, flatulence and dysentery. The oil of the plant has been found to be beneficial for the alleviation of mental fatigue, cold, spasms and rhinitis and as a first aid treatment for wasp stings and snakebites.14,15

*Corresponding author. E mail: mowolabi@unilag.edu.ng
Tel: +234 802 943 8968

Citation: Oribayo OO, Owolabi MA, Ukpo GE, Shode FO. Antioxidant activity of some Nigerian medicinal plants used in malaria treatment. Trop J Nat Prod Res. 2018; 2(1):18-22. doi.org/10.26538/tjnpr/v2i1.4.

© 2018 Natural Product Research Group, Faculty of Pharmacy, University of Benin. All rights reserved.
Following reports that free radicals are involved in malaria disease \(^1\) and the knowledge that plants contain antioxidants which are known to scavenge free radicals; there is need to explore plant materials that are used in the treatment of malaria for their free radical scavenging and or antioxidant activity. The present study was therefore designed to evaluate the free radical scavenging activity of methanol extract of the leaves of *Alafia barteri, Ocimum basilicum* and *Heliotropium indicum* using various *in-vitro* analytical methods.

Materials and Methods

Chemicals

The chemicals and reagents used were of analytical grade obtained from Sigma Aldrich (Germany) unless otherwise stated. Potassium peroxodisulphate, Folins-Ciocalteu’s reagent, dihydrogen sodium phosphate buffer and DMACA (4-Dimethylamino-cinnamaldehyde) were obtained from Merck (Germany).

Plant collection and extract preparation

The leaves of *A. barteri, H. indicum* and *O. basilicum* were harvested from Ifo, Ogun state, Nigeria in June 2014. They were authenticated in the herbarium unit of the Department of Botany, University of Lagos, Nigeria. Voucher specimens with voucher numbers LUH 6465, LUH 3672 and LUH 5562 for *A. barteri, H. indicum* and *O. basilicum*, respectively were deposited. The plant materials were dried at room temperature (25 ± 3°C) for 7 days and powdered using a domestic blender. The dried powdered plant materials (500 g each) were extracted thrice by percolation in 1000 mL methanol for 24 h with constant stirring. Each extract was filtered and the combined filtrate was concentrated in vacuum at 40°C using a rotary evaporator at reduced pressure. Thereafter, the crude extracts were air-dried. The extract residues were stored in impervious air-tight containers at -20°C until used.

Phytochemical analysis

Phytochemical screening of the crude extracts of the plants was done using standard procedures.\(^1\), \(^2\)

Determination of total phenol content

Total phenolic contents were determined with Folin-Ciocalteu reagent (FCR) using the method of Shaver et al.,\(^3\) with slight modifications. Briefly, 25 µL of the extracts (5 mg/mL in methanol) were mixed with 125 µL of Folin-Ciocalteu reagent and allowed to stand at room temp for 5 min; 100 µL of Na₂CO₃ (75 g/L) solution were then added to each micro plate. The mixtures were allowed to stand for 2 h and the absorbance was measured at 725 nm. A calibration curve was prepared for gallic acid at concentrations 0 - 500 mg/L and total phenol content was extrapolated from the generated gallic acid calibration curve. Results were expressed as milligram gallic acid equivalent per gram extract (mg GAE/g extract).

Determination of flavonoid content

Determination of flavonols

The flavan content in the extracts was determined according to the method described by Treuter, 1989 with slight modifications.\(^4\) Briefly, 50 µL of extracts (5 mg/mL in methanol) were mixed with 250 µL of 4-Dimethylamino-cinnamaldehyde. The absorbance of each mixture was read at 640 nm after 30 min. A calibration curve was prepared for catechin at concentrations 0 - 27.2 mg/L and total flavonol content was extrapolated from the generated catechin calibration curve. Results were expressed as milligram catechin equivalent per gram extract (mg CE/g extract).

Determination of flavonoids

Total flavonoids in each extract was determined using the method of Srivastava et al.,\(^5\) Briefly, 1.0 mL of 2% (w/v) AlCl₃ in methanol and 1.5 mL of 5% sodium acetate solutions were added to 12.5 µl of each extract (5 mg/mL in methanotol) solution. Each mixture was incubated in water bath at 37°C for 30 min and absorbance taken at 440 nm. A calibration curve was prepared for quercitin at concentrations 0 - 100 mg/L and flavonol content was estimated by extrapolated from the standard curve. Results were expressed as milligram quercitin equivalent per gram extract (mg QE/g extract).

Antioxidant activity

ABTS Radical Scavenging activity

The relative abilities of antioxidants to scavenge ABTS radical cation (ABTS⁺) were measured by comparison with the antioxidant potency of standard amounts of trolox (6-hydroxy-2, 5, 7, 8-tetramethylyl chroman-2-carboxylic acid) following the method of Shirwaiker et al.,\(^6\) ABTS⁺ was prepared by a reaction between 5 mL of 0.0192 g of ABTS⁺ in distilled water and 264 µL of the potassium persulphate solution and incubated in a dark room for 18 h at room temperature. Twenty-five micro liters of the extracts (5 mg/mL in methanol) were mixed with 300 µL of ABTS⁺ solution. The micro plates were left for 30 min at room temperature and absorbance measured at 734 nm. A standard curve was obtained with trolox standard solution at various concentrations (0 - 1000 µM). The scavenging potential of the extracts was measured by extrapolation from trolox standard curve. Results were expressed in terms of Trolox Equivalent Antioxidant Capacity (TEAC), as micro molar trolox equivalents per gram extract (µM TE/g extract).

Oxygen radical absorbance capacity assay

The oxygen radical absorbance capacity (ORAC) assay measures the antioxidant inhibition of peroxyl radical (‘OOH) induced oxidations, thus reflects classical radical chain-breaking antioxidant activity by hydrogen atom transfer. The method followed the work of Alarcon et al.,\(^7\) In the procedure, 12 µL of the extracts (5 mg/mL in methanol) were mixed with 138 µL of 10 µL fluorescein stock solution in 2 µL phosphate buffer, 240 µL of this solution diluted in 15 µL phosphate buffer and 50 µL of 2,2'-azobis-(2-methylpropionamide) dihydrochloride: AAPH (150 mg AAPH and 6 µL phosphate buffer). The Area under the curve (AUC) was measured using a fluorescence microplate reader. A standard curve was generated using the AUC for trolox (0 - 1000 µM) and trolox equivalents of the sample was calculated using calibration function (γ = 15.272x + 21.396; R²= 0.985; where γ = trolox concentration (µM) and x = net area under the fluorescence decay curve). Results were expressed in µM TE/g extract.

Ferric reducing antioxidant power (FRAP) assay

The ferric reducing antioxidant power (FRAP) assay uses oxidation/reduction reaction to measure the ability of a sample to reduce ferric ion (Fe³⁺) to ferrous ion (Fe²⁺). Procedurally, FRAP reagent was generated by mixing 25 mL of 0.3 M sodium acetate buffer (pH 3.6), 2.5 mL of 10 mM tripyridyltriazine (TPTZ) solution in HCl and 2.5 mL of 20 mM FeCl₃·6H₂O. Then 10 µL of the extracts (5 mg/mL in methanol) were mixed with 300 µL of the FRAP reagent. The test tubes were left for 30 min at room temperature and absorbance measured at 593 nm.\(^5\) Ascorbic acid was used as standard (0 - 1000 µM) and results expressed in µM extract as extrapolated from the calibration function.

Statistical analysis

The results are reported as mean ± standard deviation (SD). Statistical analysis was done using one-way analysis of variance (ANOVA) followed by Tukey’s test. Differences were considered significant at P < 0.05.

Results and Discussion

This study investigated the total phenol and flavonoid contents as well as the antioxidant activity of three Nigerian medicinal plants mostly used in the treatment of malaria among traditional healers. Methanol had been reported to be the most suitable solvent for extracting phenolic compounds from plant materials compared with chloroform, ethyl acetate and water, \(^8\) thus, this study employed methanol as solvent for extraction. Phytochemical tests of the plants showed the presence of various secondary metabolites (Table 1), the abundant presence of flavonoids in these plants may explain their possible effectiveness as antioxidants in malaria treatment and other ailments related to oxidative stress. Flavonoids are the most abundant polyphenols and are known for their role in ameliorating excess free radicals, which are involved in biological activities including anti-carcinogenic, anti-inflammatory, anti-atherosclerosis and antimarial activities.\(^9\)
In the oxygen radical scavenging assay, the body has a presence of free radical scavengers and help to relieve oxidative stress partly by their ability to act as hydrogen or electron donors, metal chelators, or singlet oxygen quenchers thus preventing free radicals from damaging biomolecules such as proteins, DNA, and lipids.

The leaves of these plants showed rich polyphenolic contents (flavonoids and phenol), with the leaves of *A. barteri* showing significantly (p < 0.05) higher content of phenol, flavanols and flavonols (222.30 ± 5.48 mg, 22.90 ± 0.15 mg and 93.32 ± 2.80 mg, respectively) compared to the leaves of *O. basilicum* (44.59 ± 3.18 mg, 14.24 ± 0.48 mg and 88.17 ± 2.31 mg) and *H. indicum* (6.58 ± 4.80 µM/g, 14.0 ± 2.05 µM/g and 82.69 ± 4.29 µM/g) (Table 2). The high content of these phenolic secondary metabolites may be responsible for the high antioxidants potentials of these plants, thus their significant free radicals scavenging activity. Phenolic antioxidants are important plant constituents, efficient free-radical scavengers and help to relieve oxidative stress partly by their ability to act as hydrogen or electron donors, metal chelators, or singlet oxygen quenchers thus preventing free radicals from damaging biomolecules such as proteins, DNA, and lipids by breaking the chain reaction of lipid peroxidation at the initiation stage.[36-39]

Antioxidant activity has been proposed to be related to reducing power. Therefore, the antioxidant activity of the crude extracts of *A. barteri*, *O. basilicum* and *H. indicum* were investigated for their ability to reduce ferric tripyridyltriazine (Fe(III)-TPTZ) complex to the ferrous tripyridyldithionate (Fe(II)-TPTZ) (Figure 1). FRAP assay has been used for the assessment of antioxidant activity of various food products. It is suggested to be essential and effective in the assay for antioxidant activity since most of the secondary metabolites are redox-active compounds that can be picked up in the FRAP assay.[36] The highest ferric reducing antioxidant power (FRAP) was evident in *A. barteri* (1292.10 ± 69.77 µM/g) followed by *O. basilicum* (305.68 ± 19.21 µM/g). The ABTS** scavenging activity also reflects hydrogen-donating ability. It is known that high molecular weight phenolics (tannins) have more ability to quench ABTS**. The low ABTS** scavenging activity of these plants especially *O. basilicum* and *H. indicum* may be explained from the trace amount of tannins present in these leaves. However, the scavenging activity of *A. barteri* was significantly higher (p < 0.05) than *O. basilicum* and *H. indicum*. In the oxygen radical scavenging assay, *A. barteri* was shown to have a particularly high oxygen radical absorbance capacity (Figure 1). The order of scavenging activity was *A. barteri* (3326.09 ± 20.87 µM TE/g extract) > *O. basilicum* (941.98 ± 47.75 µM TE/g extract) > *H. indicum* (449.80 ± 2.83 µM TE/g extract). In biological system, there is large production of peroxyl radical which would interfere with biological activities especially in malaria infection. The results of this study in the scavenging of oxygen radicals may also well explain the good use of *A. barteri* in scavenging free radical in malaria disease in folkloric medicine. The implications of free radicals through oxidative stress in the physiopathogenesis of malaria has been documented. Malaria parasites release free radicals causing oxidative stress during the part of their life cycle when they inhabit erythrocytes. As the infection progresses, they also activate macrophages, one consequence of which is extracellular release of reactive oxygen species (ROS), with the propensity of inducing oxidative damage and cell destruction.[36-38] A study by Sohail et al.,[6] reported a significant decrease in the level of antioxidant enzyme, glutathione-S-transferase (GST), and increase in lipid peroxidation during pathology of Plasmodium vivax malaria. Treatment of malarial infection with chloroquine, has been shown to significantly increase the level and activities of superoxide dismutase (SOD) and catalase (CAT) in experimental animals,[36] however, some workers reported that chloroquine, primaquine and derivatives of artemisinin are inducers of free radical production during malarial treatment.[39-41] In all these, the body has a number of defense mechanisms including the production of antioxidants, glutathione peroxidase (GSH-Px), CAT, SOD, glutathione, glutathione reductase, glutathione S-transferase and glucose 6-phosphate dehydrogenase, to reduce the effects of free radicals.[42]
Conclusion

Finding from this study has shown that A. barteri leaves have good antioxidant activity and when properly harnessed could serve as a good source of antioxidant supplement against free radical-induced diseases.

Conflict of interest

The authors declare no conflict of interest.

Authors’ Declaration

The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgements

The authors are thankful to the members of staff of Oxidative Stress Research Centre, Cape Peninsula University of Technology, Bellville, South Africa for allowing the use of their laboratory.

References

1. Tiwari AK. Antioxidants: new- generation therapeutic base for treatment of polygenic disorders. Curr Sci. 2004; 86:1092-1102.
2. Bhattacharya S. Reactive Oxygen Species and Cellular Defense System. In Free Radicals in Human Health and Disease. V. Rani and U.C.S. Yadav (eds.), Springer, India; 2015. 25 p.
3. Jaouad B, Torsten B. Exogenous antioxidants-Double-edged swords in cellular redox state. Oxid Med Cell Longev. 2010; 3(4):28-37.
4. Adebisi OY, Olayemi FO, Ning-Hua T, Guang-Zhi Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef University J Basic Appl Sci. 2017; 6:10-14.
5. Kapadiya DB, Dabhi BK, Aparnathi KD. Spices and herbs as a source of natural antioxidants for food. Int J Curr Microbiol Appl Sci. 2016; 5(7):280-288.
6. Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Capistrano MT, Oliveira WV, et al. Characterization of Some Phytochemicals from Indian Traditional Plants. Biotechnol Res Int 2012; 2012:1-8.
7. Shirwaikar A, Shirwaikar Rajendran A. In vitro antioxidant studies on the benzyl tetraquinoline alkaloid berberine, Biol. Pharm. Bull. 2006; 29:1906-1910.
8. Alarcon E, Campos AM, Edwards AM, Lissi E, Lopez-Alarcon C. Antioxidant capacity of herbal infusions and tea extracts: a comparison of ORAC fluorescein and ORAC pyrogallol red methodologies. Food Chem. 2008; 107:1114-1119.
9. Gulcin I. Antioxidant activity of caffeine acid (3, 4-dihydroxyphenethylamine). Toxicol. 2006; 217:213-220.
10. Yao LH, Jiang YM, Datta N, Sингanuorong R, Liu X, Duan J. HPLC analyses of flavonoids and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 2004; 84:253-263.
11. Bhattacharya S. Reactive Oxygen Species and Cellular Defense System. In Free Radicals in Human Health and Disease. V. Rani and U.C.S. Yadav (eds.), Springer, India; 2015. 25 p.
12. Halvorsen BL, Carlsen MH, Phillips KM, Bohn SK, Holte K, Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, et al. Antioxidant capacity of herbal infusions and tea extracts: a comparison of ORAC fluorescein and ORAC pyrogallol red methodologies. Food Chem. 2008; 107:1114-1119.
13. Shirwaikar A, Shirwaikar Rajendran A. In vitro antioxidant studies on the benzyl tetraquinoline alkaloid berberine, Biol. Pharm. Bull. 2006; 29:1906-1910.
14. Alarcon E, Campos AM, Edwards AM, Lissi E, Lopez-Alarcon C. Antioxidant capacity of herbal infusions and tea extracts: a comparison of ORAC fluorescein and ORAC pyrogallol red methodologies. Food Chem. 2008; 107:1114-1119.
15. Gulcin I. Antioxidant activity of caffeine acid (3, 4-dihydroxyphenethylamine). Toxicol. 2006; 217:213-220.
16. Narsaria M, Mohanty C, Das BK, Mishra SP, Prasad R. Oxidative stress in children with severe malaria. J Trop Pediatr. 2012; 58:147-150.
17. Talukdar AD, Choudhary MD, Chakraborty M, Dutta BK. Phytochemical screening and TLC profiling of plant extracts Cynethia rigantea (Wall. Ex. Hook.) Haltl, and Cynethia brunoniana (Wall.ex.Hook). (Cl. & Bak)., Assam University J Sci Technol: Biol Environ Sci. 2010; 5(1):70-74.
18. Evans WC (2002). Trease and Evans Pharmacognosy 15th ed. London: Baillier-Tindall, WB Saunders Company Ltd. Macmillan Publishers. 214-253 p.
19. Shaver LA, Leung SH, Puderbaugh A, Angel SA. Two methods of determining total phenolic content of foods and juices in a general organic and biological (GOB) chemistry lab. J Chem. Educ. 2011; 88(4):492-495.
20. Tretter D. Chemical reaction detection of catechins and proanthocyanidins with 4-Dimethylaminononamaldehyde. J Chromatogr 1989; 467:185-193.
21. Srivastava N, Chauhan AS, Sharma B. Isolation and Characterization of Some Phytochemicals from Indian Traditional Plants. Biotechnol Res Int 2012; 1-8.
22. King CC, Kremsner PG, Hittner JB, Misukonis MA, Clark IA, Chaudhri G, Cowden WB. Some ro...
37. Sohail M, Kaul A, Raziuudin M, Adak T. Decreased glutathione-S-transferase activity: Diagnostic and protective role in vivax malaria. Clin. Biochem. 2007; 40:377-382.
38. Iyawe HOT, Onigbinde AO. Effect of an antimalaria and micronutrient supplementation on respiration induced oxidative stress. Pak J Nutr. 2004; 3(6):318-321.
39. Pandey AV, Bisht H, Babbarwal VK, Srivastava J, Pandey KC, Chauhan VS. Mechanism of malarial haem detoxification inhibition by chloroquine. Biochem. J. 2001; 355:333-338.
40. Bolchoz LJ, Gelasco AK, Jollow DJ, McMillan DC. Primaquine-induced hemolytic anemia: Formation of free radicals in rat erythrocytes exposed to 6-methoxy-8-hydroxylaminoquinoline. J Pharmacol Exp Ther. 2002; 303:1121-1129.
41. Haynes RK, Krishna S. Artemisinins: Activities and actions. Microbes Infect. 2004; 6:1339–1346.
42. Valko M, Leibfritz D, Moncol J, Cronin M, Mazur M, Telser JC. Free radicals and antioxidants in normal physiological functions and human disease. Intl J Biochem Cell Biol. 2007; 39:44-48.