SUPPLEMENTARY MATERIAL

Three new triterpenoid saponins from the roots of *Ardisia crenata* and their cytotoxic activities

Dai-Lin Liu a,b,*, Xue Zhang c, Yanmin Zhao a, Nai-Li Wang c and Xin-Sheng Yao c

aTianjin Key Laboratory for Prevention and Control of Occupational and Environmental hazard, Tianjin 300309, PR China; bDepartment of Pharmacognosy, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300309, PR China; cDepartment of Natural Products Chemistry, Shenyang Pharmaceutical University, No. 103 Wen-Hua Road, Shenhe District, Shenyang, 110016, PR China

Abstract

Three new triterpenoid saponins, ardisicrenoside O (1), ardisicrenoside P (2) and ardisicrenoside Q (3) together with three known compounds, 3β,16α-dihydroxy-30-methoxy-28, 30-epoxy-olean-12-en, cyclamiretin A 3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside and cyclamiretin A 3-O-β-D-glucopyranosyl-(1→4)-α-L-arabinopyranoside were isolated from the roots of *Ardisia crenata* Sims. Their structures were determined by one- and two-dimensional NMR techniques, including HSQC, HMBC and TOCSY experiments, as well as acid hydrolysis and GC analysis. All isolates were evaluated for the cytotoxic activities on two human cancer cell lines and compound 3, 5 and 6 showed significant cytotoxicity.

Keywords: *Ardisia crenata* Sims; Oleanane; triterpenoid saponins; cytotoxicity

*Corresponding author: Email address: dailinlch@163.com (D-L. Liu)
Tel:+86 22 84876772; Fax: +86 22 84876771
Figure S1 the structures of compound 1, 2 and 3

compound 1 \(R_1 = \text{Xyl} \) \(R_2 = \text{Glc} \)
compound 2 \(R_1 = \text{Rham} \) \(R_2 = \text{Glc} \)
compound 3 \(R_1 = \text{H} \) \(R_2 = \text{H} \)

Figure S2 the key HMBC correlations of compound 1
Position	H NMR	C NMR
1	1.44(s), 0.92 (o) 38.6 t	41.6 s
2	1.96 (o), 1.74 (o) 26.4 t	41.6 s
3	3.14 (dd, $J=11.6, 4.4$) 88.9 d	121.7 d
4	39.5 s 4	39.4 s 4
5	0.70 (d, $J=11.4$) 56.0 d	110.1 d
6	1.47 (o), 1.30 (o) 18.3 t	28.3 q
7	1.45 (m), 1.38 (o) 32.6 t	143.3 s
8	40.2 s 8	40.2 s 8
9	1.53 (o) 47.2 d 9	47.2 d 9
10	36.9 s 10	36.9 s 10
11	1.85 (2H, o) 23.6 t 11	18.3 t 12
12	5.34 (t, $J=2.9$) 121.7 d 12	121.7 d 12
13	143.3 s 13	143.3 s 13
14	43.2 s 14	43.2 s 14
15	2.24 (o), 1.68 (m) 37.0 t 15	37.0 t 15
16	3.56(m) 70.9 d 16	70.9 d 16
17	41.6 s 17	41.6 s 17
18	3.23 (s, $J=10.5$) 47.2 d 18	47.2 d 18
19	2.21 (o), 1.32 (o) 43.1 t 19	43.1 t 19
20	38.9 s 20	38.9 s 20
21	2.06 (o), 1.31(o) 31.6 t 21	31.6 t 21
22	2.31 (o), 2.19(o) 20.2 t 22	20.2 t 22
23	1.21 (s) 28.0 q 23	28.0 q 23
24	1.08 (s) 16.8 q 24	16.8 q 24
25	0.82 (s) 15.5 q 25	15.5 q 25
26	0.91 (s) 16.0 q 26	16.0 q 26
27	1.38 (s) 28.1 q 27	28.1 q 27
28	4.68 (d, $J=10.6, 3.73(o$) 78.6 t 28	78.6 t 28
29	0.98 (s) 28.2 q 29	28.2 q 29
30	4.43 (s) 110.1 d 30	110.1 d 30
31	3.44 (s) 55.6 q 30-OCH$_3$	3.44 (s) 55.6 q

Table S1

1H NMR (400MHz) and 13C NMR (100MHz) data of compound 1, 2 and 3 in C:D:O (δ in ppm, J in Hz).
	4.23 (o)	78.5 d	4	4.55 (o)	74.7 d	4	4.36 (o)	79.7 d
5	4.59 (d, J=4.0), 3.65 (o)	64.2 t	5	4.38 (o), 3.78 (o)	63.4 t	5	4.42 (o), 3.77 (o)	66.1 t

Terminal	4-Glc-1	5.48 (d, J=7.6)	104.9 d	Glc-1	5.33 (o)	105.4 d	4-Glc-1	5.25 (d, J=7.5)	106.8 d
2	4.07 (o)	76.2 d	2	4.05 (o)	76.3 d	2	4.03 (d, J=8.0)	75.8 d	
3	4.01 (o)	77.9 d	3	4.21 (o)	78.0 d	3	4.22 (o)	78.4 d	
4	4.24 (o)	71.8 d	4	4.22 (o)	71.7 d	4	4.23 (o)	71.3 d	
5	4.01 (o)	77.8 d	5	4.05 (o)	78.1 d	5	3.94 (o)	78.7 d	
6	4.39 (m), 4.54 (o)	63.0 t	6	4.36 (m), 4.45 (o)	62.8 t	6	4.52 (d, J=11.4), 3.58 (m)	62.6 d	

Inner Glc-1	4.99 (d, J=7.8)	104.2 d	Inner Glc-1	5.22 (d, J=7.8)	103.1 d
2	3.92 (o)	85.4 d	2	4.24 (o)	77.2 d
3	4.20 (o)	77.5 d	3	4.17 (o)	79.5 d
4	4.21 (o)	71.1 d	4	4.12 (o)	71.8 d
5	3.78 (o)	78.3 d	5	3.77 (o)	78.3 d
6	4.41 (o), 4.29 (o)	62.3 t	6	4.37 (o), 4.27 (o)	62.6 t

Xyl-1	4.90 (o)	107.6 d	Rham-1	6.38 (br s)	101.5 d
2	4.02 (o)	76.1 d	2	4.69 (o)	72.3 d
3	4.25 (o)	78.2 d	3	4.64 (o)	72.7 d
4	4.19 (o)	70.7 d	4	4.23 (o)	74.8 d
5	4.52 (o), 3.68 (o)	67.4 t	5	5.01 (o)	69.4 t
				1.78 (d, J=6.2)	18.8 q

a 400MHz, Pyr-d5; chemical shifts in ppm relative to TMS; coupling constants (J) in Hz.
b 100MHz, Pyr-d5; multiplicity was established from DEPT data.
1H NMR of compound 1

13C NMR of compound 1
DEPT 135 of compound 1

1H-1HCOSY of compound 1
HMBC of compound 1
NOESY of compound 1

TOCSY of compound 1
1H NMR of compound 2

13C NMR of compound 2
1H-1H COSY of compound 2

DEPT135 of compound 2
HMOC of compound 2

HMBC of compound 2
NOESY of compound 2

TOCSY of compound 2
1H NMR of compound 3

13C NMR of compound 3
1H-1HCOSY of compound 3

DEPT 135 of compound 3
HMQC of compound 3

HMBC of compound 3
TOCSY of compound 3