Epithelial expression of human ABO blood-group genes is dependent upon a downstream regulatory element functioning through an epithelial cell-specific transcription factor, Elf5

Rie Sano1*, Tamiko Nakajima1, Yoichiro Takahashi1, Rieko Kubo1, Momoko Kobayashi1, Keiko Takahashi1, Haruo Takeshita2, Kenichi Ogasawara3, Yoshihiko Kominnato1

1Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
2Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
3Japanese Red Cross Central Blood Institute, Tokyo, Japan

Running title: Transcriptional regulation of ABO

*To whom correspondence should be addressed: Rie Sano, Department of Legal Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511 Japan. Phone: +81 (27) 220-8031, FAX: +81 (27) 220-8035, e-mail: takagirie@gunma-u.ac.jp
†This author is deceased.

Key words; ABO, Elf5, transcription enhancer, ETS transcription factor family, tissue-specific transcription factor, CRISPR/Cas, epithelial cell, gene regulation

Abstract
The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system comprises complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

Introduction
The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The system comprises complex carbohydrate structures that are biosynthesized by the A- and B-transferases encoded by the A and B genes, respectively (1). The ABO genes consist of seven exons spanning more than 20 kb of genomic DNA, and two critical single-base substitutions in the last coding exon result in amino acid substitutions responsible for the difference in donor nucleotide sugar substrate specificity between A- and B-transferases (2). A single base deletion in exon 6 has been ascribed to a shift in the reading frame of codons and abolition of A-transferase activity in most O alleles. On the other hand, the distribution of the A- and B-antigens is cell-type-specific; for example, the antigens are expressed on red blood cells and epithelial cells as well as in salivary glands, although they are absent from the central nervous system, muscle
and connective tissue. Moreover, ABH antigens are known to be expressed during the maturation of erythroid as well as epithelial cells; for example, when erythroid cells differentiate in vitro, ABO is expressed at an undetectable level in the early phase, increases subsequently, and then decreases later (3,4). In addition to the normal cell differentiation process, changes in ABH antigen expression have also been documented in abnormal processes such as tumorigenesis (1). Reduction or complete deletion of A/B antigen expression in primary lung, bladder and colorectal carcinomas has been reported. This phenotypic change was well correlated with the invasive and metastatic potential of the tumors, and with patient 5- or 10-year mortality rates (5,6).

The DNA sequences in and around specific genes provide the code that dictates when, where and at what level specific genes are transcribed. This code comprises three parts: the core promoter, the region proximal to the core promoter, and the more distant enhancer sequences. It has become obvious that enhancers usually work in groups (i.e., the locus control region and super enhancers), each being bound by several transcription factors (TFs), forming a so-called enhanceosome. These enhanceosomes are nucleated by pioneer TFs early during differentiation, and are subsequently replaced by other TFs that trigger polymerase II recruitment. Enhancers recruit the preinitiation complex and TFs and interact with each other through a multilooped structure (7,8).

The regulatory mechanisms underlying ABO expression have been studied using cultured cells and human genetic analysis. A proximal promoter has been found within the ABO CpG island (CGI) (9,10). However, a cell-type-specific, distal promoter has been demonstrated at the 5' boundary of the CGI, although the amount of transcript from this promoter was very small (3). Since the ABO proximal promoter showed constitutive activity regardless of the cells examined in transfection experiments (3), it had been assumed that some cell-specific regulatory elements are involved in cell-type-specific ABO expression. Recently, a candidate for erythroid cell-specific regulatory element, named the +5.8-kb site, has been proposed in the first intron of ABO (11). Human genetic analysis demonstrated a 5.8-kb or 3.0-kb deletion including this site in individuals with subgroup Bm, where B-antigen expression is barely detectable on erythrocytes although the antigen is present in the saliva of secretor individuals (11,12). Moreover, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay have demonstrated that the transcription factors Run-related transcription factor 1 (RUNX1), GATA-1 and GATA-2 are bound to the site through their recognition motifs, mutations of which were shown to reduce the transcriptional activity of the site (4,11,13,14). Furthermore, natural deletion and mutation of their binding sites were involved in subgroups Am and Bm (13–16). On the other hand, no epithelial cell-specific regulatory element has yet been characterized.

Among various cell-specific TFs, the Ets transcription factors play a crucial cell-specific role in transcriptional regulation of genes involved in a variety of developmental and cellular responses, including tumorigenesis and differentiation (17). The Ets family is quite large, comprising at least 26 unique members in mouse, all of which contain an evolutionarily conserved DNA-binding domain called the ETS domain. All DNA-binding ETS domains recognize a GGAA/T core sequence motif, although different Ets proteins exhibit a preference for different flanking sequences in order to bind differentially to specific DNA sites. Moreover, Ets proteins are expressed in a wide variety of tissues and organs and include some members that are expressed ubiquitously and others that display cell- and tissue-specific expression. For example, some Ets proteins such as Ets1 and Ets2 are widely expressed during development and differentiation of many tissues. On the other hand, other Ets proteins such as ESE-1/Elf3, ESE-2/Elf5 and ESE-3/EHF are expressed specifically in epithelial cells of various tissues and organs. ESE-1/Elf3 is broadly expressed in organs such as lung, stomach, kidney, colon and skin, and shows particularly high expression in the small intestine (18–20). Elf5 displays a more restricted pattern of expression in tissues that are rich in glandular or secretory epithelial cells,
such as salivary gland, mammary gland, kidney and stomach (21,22). ESE-3/EHF is expressed constitutively in the bronchial and mucous gland epithelial cells of the lung in addition to prostate, pancreas, salivary gland and trachea (23–25).

In the present study, we identified an epithelial cell-specific regulatory element downstream of ABO for which an epithelial cell-specific transcription factor, Elf5, was indicated to be involved in its enhancer potential. These findings support the contention that ABO expression is dependent upon a downstream positive regulatory element binding to Elf5 in epithelial cells.

Results

Identification of an epithelial cell-specific regulatory element downstream of the ABO gene. Publicly available data of Open Chromatin by DNase1 HS from ENCODE/OpenChrom (Duke University) ENCODE July 2012 Freeze (26) from the UCSC genome browser on human Feb. 2009 (GRCh37/hg19) assembly (http://genome.ucsc.edu) showed genome-wide maps for DHSs in epithelial cells including pHTE, HPDE6-E6E7 and RWPE1 (Figure 1), where there were many DHSs located around −0.1-kb, +5.8-kb, +22.6-kb and +36.0-kb from the ATG translation start site of exon 1 of ABO. Figure 1 also shows DHSs in K562 cells representative of erythroid cells as well as skeletal muscle cells (SKMC), which are known not to express ABO, as controls. DHS −0.1-kb coincided with the proximal promoter within the ABO CpG island, while DHS +5.8-kb has been reported to correspond to an erythroid cell-specific regulatory element (11). Compared to those in K562 cells and skeletal muscle cells, DHS +22.6-kb seemed relatively specific to epithelial cells, whereas DHS +36.0-kb appeared without regard to cell type. Hereafter, we refer to the region comprising DHS around +22.6-kb or +36.0-kb as region +22.6 or +36.0, respectively.

Gastric cancer KATOIII cells are useful for investigating the mechanisms underlying ABO expression in epithelium, because B-antigens were expressed on the cell surface and DNA methylation was undetectable from the 5′ end of the ABO CGI to the proximal promoter in cells of genotype BB (4,9,11). K562 cells were used as erythroid cells expressing ABO, while OUMS-36T-1 cells were chosen because of their absence of ABO expression (11). To examine the epithelial-specific enhancer potential, region +22.6 was PCR-amplified and subcloned upstream of the ABO proximal promoter sequence in the same orientation as that of the promoter in luciferase reporter plasmid +22.6/SN, and subsequent transient transfection experiments were carried out using KATOIII cells. Introduction of region +22.6 resulted in an approximately 3.4-fold increase of luciferase activity relative to SN, although no significant increase was observed in K562 cells and OUMS-36T-1 cells (Figure 1). In sharp contrast, region +36.0 showed increase of luciferase activity independent of cell specificity. Those observations suggested that region +22.6 could contain a significant functional component specific to cells of epithelial lineage.

However, no similar elevation of luciferase activity was demonstrated when KATOIII cells were transfected with luciferase reporter plasmid A−D/SN in which region +22.6 had been subcloned upstream of the promoter sequence in an orientation opposite to that of the promoter (Figure 2). To identify any important element involved in transcription, subsequent transfection into KATOIII cells was performed using reporter plasmids containing four subregions of region +22.6, because the orientation-dependent activity could be ascribable to a mixture of positive and negative regulatory elements within the region. The results indicated that a cis-acting element critical for reporter expression resided within subregion C between +22563 and +22781. Approximately nine-fold higher luciferase activity was observed when subregion C was inserted in the same direction as that of the promoter in plasmid rC/SN, whereas by guest on March 24, 2020http://www.jbc.org/Downloaded from
introduction of the sequence in the promoterless vector rC/Basic led to 4-fold higher luciferase activity relative to SN. These observations indicated that subregion C might have potential for enhancement of promoter activity as well as initiation of transcription.

Furthermore, subregion C was proved to activate the ABO promoter independently of the distance from it; introduction of the sequence downstream of luciferase resulted in an approximately 2-fold increase of luciferase activity relative to SN (SN/C, Figure 3). Next, subregion C was verified to function independently of the promoter; insertion of the sequence downstream of luciferase, which was driven by the SV40 or TK promoter, led to approximately 2-fold higher luciferase activity in comparison with SV or TK (SV/C, TK/C, Figure 3). Thus, subregion C appeared to be involved in positive transcriptional regulation.

When reporter construct SN/C was transfected into K562 and OUMS-36T-1 cells, luciferase activity was not increased relative to SN. These findings indicated that subregion C enhances ABO promoter activity in an epithelial cell-specific manner. Hereafter, we refer to subregion C as the +22.6-kb site.

Histone modifications were then examined to characterize the +22.6-kb site further. The ChIP assays comprised qPCR targets such as the ABO promoter, the +9.0-kb site, +22.6-kb site and human myoglobin exon 2. The +9.0-kb site is located 9.0-kb downstream from the ABO translation start site. The +9.0-kb site and the myoglobin exon 2 were used as negative controls, since publicly available data of Chromatin State Segmentation by Hidden Markov Model (HMM) from ENCODE/Broad from the UCSC genome browser suggested that the +9.0-kb site lacked any transcriptional regulatory element in human mammary epithelial cells (HMEC) and normal human lung fibroblasts (NHLF) (Figure 1) (27), and that the myoglobin exon 2 was not associated with any transcriptional regulatory element in HMEC, although it was a Polycomb-repressed region in NHLF, as also shown in the sessions that we have prepared (http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=RieSANO&hgS_otherUserSessionName=myoglobin). Compared to OUMS-36T-1 cells not expressing ABO, ChIP assays of KATOIII cells showed that the +22.6-kb site was subject to histone H3 monomethylation at lysine residue 4 (H3K4me1), while the ABO promoter was enriched for histone H3 trimethylation at lysine residue 4 (H3K4me3) (Figure 4). In addition to covering the promoter sequences, the +22.6-kb site was also enriched for histone H3 acetylation at lysine residue 27 (H3K27ac), which was used as another indicator of a positive regulatory region. In contrast, neither sequence was enriched for histone H3 trimethylation at lysine residue 27 (H3K27me3), which was used as an indicator of a negative regulatory region. On the other hand, cross-linked chromatin derived from OUMS-36T-1 cells indicated that the ABO promoter, the +9.0-kb site, the +22.6-kb site and the myoglobin exon 2 were enriched for H3K27me3, and that these regions were not enriched for the other modifications. Thus, these observations suggested that the +22.6-kb site is a positive regulatory element.

Reduction of ABO and B-antigen expression by biallelic deletion of the +22.6-kb site in KATOIII cells. To examine whether the +22.6-kb site was involved in regulation of transcription from ABO, the CRISPR/Cas9 system with a pair of genome-editing plasmids 5’Enhancer and 3’Enhancer was used to create genomic deletions of the +22.6-kb site in KATOIII cells of genotype BB. After transfection and cloning, three clones with biallelic deletion were verified by PCR36 amplification and subsequent cloning and sequencing. The sequencing revealed genomic deletion of the sequences +22579/+22740 and +22579/+22741 in clone A4, the sequences +22579/+22740 and +22579/+22742 in clone B3, and the sequences +22580/+22740 and +22580/+22742 in clone B4. As a control, the CRISPR/Cas9 system was also used to create genomic deletion from the promoter proximal to exon 1 in KATOIII cells, yielding clone 1E9 with genomic deletion of the sequences −116/+12 and −116/+15. Quantitative real-time PCR demonstrated that this biallelic deletion of the +22.6-kb site resulted in loss of 55-68% of the transcript amount relative to the wild-type sequence (Figure 5A). RNA-seq using the wild-type, A4, B3 and B4 cells yielded results similar
Transcriptional regulation of ABO

5

to those obtained by quantitative PCR (Figures 5B and 5C). Subsequent flow cytometric analysis demonstrated a moderate decrease of B-antigen expression on clones A4, B3 and B4 (Figure 5D, panels c–e). Compared to the median fluorescence intensity of the wild-type cells, those of the deletion cells B3 and B4 were significantly reduced (Figure 5E). In contrast, a large reduction of B-antigen expression was observed on 1E9 cells (Figures 5D and 5E), suggesting that transcription from the distal promoter might result in slight expression of B-antigen. Flow cytometric analysis might not be sufficiently sensitive for examining the effect of enhancer deletion. Because the glycosylation was stable and the reductions in the amounts of transcript were partial, deletion of the enhancer was expected to have a modest effect on the amount of B-antigen. On the basis of the overall data, we concluded that the +22.6-kb site plays an important role in transcriptional regulation of ABO expression in cells of epithelial lineage. However, biallelic deletion of the +22.6-kb site did not achieve complete loss of the expression, suggesting that another enhancer element may interact with the ABO promoter through a looped structure.

Involvement of Elf5 in cell-type-specific regulatory activity of the +22.6-kb site.

Inspection of the nucleotide sequence between +22563 and +22781 revealed five putative binding sites for Ets transcription factors (Figure 6A). RT-PCR showed that the ELF3 and ELF5 transcripts were expressed in KATOIII cells, but not in K562 and OUMS-36T-1 cells, and that EHF was detectable in those cells (data not shown). Considering its distribution in tissues rich in glandular or secretory epithelial cells, Elf5 could be involved in enhancer potential of the element. The relevant motifs for Elf5 were the sequences centered on positions +22628 and +22654, which were named sites E3 and E4, respectively. We examined whether the +22.6-kb site binds to the factor using EMSA with the labeled probe C-E4 involving site E4 (Figure 6A). The oligonucleotide C-E4 probe produced a major up-shifted band when the probe was mixed with the nuclear extract from KATOIII cells in the presence of a small amount of poly(dI-dC) (Figure 6B), whereas the DNA-protein complex was not observed in mixtures containing ordinary amounts of poly(dI-dC) ranging from 0.1 to 1 μg in 15 μl binding solution (data not shown). Formation of the up-shifted complexes, indicated by an arrow, was decreased by addition of competing unlabeled self-oligonucleotide or oligonucleotide Ccnd2 containing the Elf5 recognition motif in the Cyclin D2 promoter (28), but not by addition of oligonucleotide mCcnd2 containing substitutions of GGAA with CCAA in the core sequence motif or oligonucleotide mC-E4 which was a mutated version of C-E4 comprising the same mutations. Furthermore, formation of the DNA-protein complex was reduced when the anti-Elf5 antibody was incubated with the nuclear extract. The specificity of the antibody was verified by Western blotting using the nuclear extract from KATOIII cells (Figure 6C). In addition, formation of the DNA-protein complex was also reduced when an oligonucleotide mCcnd2 containing site E3 was incubated with the nuclear extract. These results suggested that Elf5 could be bound to the +22.6-kb site through sites E3 and E4. Next, ChIP assays were performed to evaluate the occupancy of Elf5 at the endogenous +22.6-kb site of ABO in KATOIII cells and K562 cells. Cross-linked chromatin was immunoprecipitated with the anti-Elf5 antibody and control IgG, and the precipitated DNA was subjected to ChIP-qPCR39 with specific primers for the +22.6-kb site (Figure 6D). These results demonstrated that Elf5 occupied the endogenous +22.6-kb site of ABO in KATOIII cells, but not in K562 cells. Thus, Elf5 seemed to be bound to the +22.6-kb site in epithelial cells.

To investigate whether the function of the +22.6-kb site was dependent upon sites E3 and E4, we prepared reporter constructs SN/Cm3 and SN/Cm4 carrying the same mutations in sites E3 and E4, respectively, as those of oligonucleotide mC-E4 to abrogate Elf5 binding. Transient transfection into KATOIII cells demonstrated that neither mutation reduced any enhancer activity of the +22.6-kb site (Figure 3). However, mutations of both sites led to a 92% reduction in construct SN/Cm3+4. Therefore, it was likely that the transcriptional activity of the +22.6-kb site might be dependent upon either
Transcriptional regulation of ABO

Next, to examine whether Elf5 affects the transcriptional potential of the +22.6-kb site, the ELF5 or control shRNA expression plasmid was stably transfected into KATOIII cells. After limiting dilution of the cells stably transfected with the ELF5 shRNA plasmid, clone 1 was selected because qPCR showed the most significant reduction of the ELF5 transcripts within the cells compared to those obtained from the other four clones (Figure 7A). This clone was used in the subsequent experiments. Quantitative PCR indicated that approximately 80% of the ELF5 transcript was reduced in the cells transfected with ELF5 shRNA relative to that of cells transfected with control shRNA. Western blotting demonstrated that Elf5 protein was decreased in the ELF5 shRNA-transfected cells in comparison with the control cells transfected with shRNA (Figure 7B). When transient transfection experiments were performed using reporter plasmids SN/C and SN/Cm3+4, the difference of luciferase activity between these plasmids would indicate the enhancer potential that was dependent upon binding of Ets transcription factors to site E3 or E4. The difference was reduced in the knockdown cells relative to that in the control cells (Figure 7C). Therefore, Elf5 protein appeared to be involved in the enhancer potential of the +22.6-kb site through site E3 or E4. Also, quantitative PCR indicated that the amount of ABO transcript was decreased significantly in the knockdown cells in comparison with the control cells (Figure 7D). Although ELF5 shRNA expression resulted in loss of one third of the ABO transcripts in the knockdown cells relative to the control cells, this appeared to be compatible with the fact that half of the Elf5 protein was decreased in the knockdown cells and that approximately two thirds of the ABO expression was repressed by biallelic deletion of the +22.6-kb site bound to Elf5 (Figure 5A). Subsequent flow cytometric analysis indicated that the amount of B-antigen was moderately decreased in the knockdown cells relative to the control cells (Figure 7E). Because the ABO gene encodes glycosyltransferase, which produces blood group antigens, it was unlikely that the extent of transcript reduction was concordant with that of antigen loss. Therefore, we concluded that ABO expression is regulated by the +22.6-kb site, which is dependent upon binding of Elf5.

Discussion

In the present study, we have identified an epithelial cell-specific positive regulatory element, named the +22.6-kb site, downstream of ABO employing transient transfection experiments with luciferase reporter plasmids that were prepared on the basis of DHSs within a 50-kb region of genomic DNA in and around ABO in epithelial cells. The +22.6-kb site appeared to enhance the ABO promoter activity in an epithelial cell-specific manner. In addition, B-antigen expression was reduced in KATOIII cells after biallelic deletion of the site using the genome editing technique. Furthermore, subsequent EMSAs, ChIP assays and knockdown experiments revealed that the enhancer potential of the site was dependent upon binding of an epithelial-specific transcription factor, Elf5. Therefore, it is likely that ABO expression is dependent upon the tissue-specific enhancer, which is regulated by binding of Elf5 in epithelial cells.

Recently, genome-wide approaches for the discovery of enhancers have become available. Regulatory elements are often characterized by the presence of DHSs, which can mark the position where TFs bind to DNA. Other chromatin features found at distant regulatory elements are histone signatures including modifications associated with activation such as H3K4me1, H3K9ac and H3K27ac (29,30). All these features can be used to identify putative functional elements, and these powerful strategies are now being widely applied. Publicly available genome-wide data on histone modifications in human mammary epithelial cells (HMEC) and normal human epidermal keratinocytes (NHEK) on Chromatin State Segmentation by Hidden Markov Model (HMM) from ENCODE/Broad ENCODE Mar 2012 Freeze (June 2011 Analysis Pubs) have suggested that the +22.6-kb site is a weak/poised enhancer (Figure 1) (31). Based on data from CTCF Binding Sites by ChIP-seq in several cells, region +36.0 shows binding of the insulator protein CTCF (Figure 1) and the cohesin subunit RAD21 as shown in the session.
Transcriptional regulation of ABO

that we have prepared (http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=RieSANO&hgS_otherUserSessionName=ABOonstream_Enhancer_ver1), suggesting that the region might be an insulator and involved in chromatin looping (32). Although the region showed more transcriptional activities in the luciferase assays of OUMS-36T-1 cells than in KATOIII cells and K562 cells (Figure 1), further investigations are needed to characterize the region and reveal its involvement in transcriptional regulation.

The present results suggest that the enhancer potential of the +22.6-kb site is dependent upon binding of Elf5, which has been reported to be involved in regulation of epithelium-specific genes. For example, it modulates the differentiation of mammary gland and alveoli (33,34). On the other hand, loss of ELF5 in the mammary gland results in epithelial-mesenchymal transition (EMT) through derepression of SNAIL2 (35). EMT, which was first recognized by Hay, is a morphological change that allows the escape of epithelial cells from the structural constraints imposed by tissue architecture (35). In epithelial cancer cells, the EMT program has been implicated as the crucial mechanism for acquisition of malignant phenotypes (36). Interestingly, reduction or complete deletion of A/B antigen expression is reportedly correlated with progression of carcinomas such as lung carcinomas (5,6). Such poor prognosis is also suggested to be caused by high mobility of malignant cells that have lost these antigens (37). As to the mechanisms underlying this antigen reduction, Orlow et al. have reported cases of bladder cancer in which allelic loss appeared to lead to loss of A/B antigens (38). We and others have also demonstrated that hypermethylation of the ABO promoter could be responsible for the absence of ABO transcript and A-antigen in gastric and colon cancer cell lines (39,40). Using clinical samples of oral squamous cell cancer, Gao et al. showed that loss of A/B antigens was responsible for molecular events such as loss of the A/B allele or ABO promoter hypermethylation in two thirds of tissue samples they examined (41). Thus, an additional mechanism for loss of A/B antigens other than allelic loss or promoter hypermethylation remains to be clarified in one third of such cases. Consistently, the present observations suggest that loss or reduction of Elf5 could trigger the EMT process and down-regulate the enhancer potential of the +22.6-kb site of ABO in malignant cells, followed by invasion and metastasis of the cells with A/B antigen reduction, thus leading to poor outcome. This possibility will be investigated using clinical samples in the next study.

At present, the physiological role of the human ABO blood group system remains elusive, while pathogenic implications have been revealed such as host-pathogen interactions and differential susceptibility to Helicobacter pylori and Noroviruses among individuals with different glycosylation profiles (42, 43). In addition, genome-wide association studies have indicated associations between the ABO locus and cardiovascular diseases such as venous thromboembolism and coronary artery disease (44). Thus, the biological aspects of ABO blood groups have been clarified with delineation of transcriptional regulation, providing a basis for development of treatment that might reduce the risks for those diseases and ABO-incompatible organ transplantation.

Experimental procedures

Cells. Human gastric cancer cell line KATOIII (JCRB0611), human erythroleukemia cell line K562 (JCRB0019) and human embryo fibroblast cell line OUMS-36T-1 (JCRB1006.1) were cultured as described previously (3,11). OUMS-36T-1 is a normal human embryo fibroblast cell line transfected with the human telomerase reverse transcriptase (hTRT) gene.

Plasmids. Luciferase reporter plasmids SN and +5.8/SN were described previously (11). The ABO proximal promoter located between −150 and −2 relative to the translation start site was subcloned upstream of the luciferase gene in reporter SN, while region +5.8 located between +4602 and +7196 was inserted upstream of the promoter in the same orientation to the promoter in reporter +5.8/SN. DNA regions +22.6 and +36.0 were PCR-amplified using the genomic DNA obtained from K562 cells. Sequences of the primers used and conditions for PCR36 and 37 are shown in Tables 1 and 2,
respectively. The PCR products were subsequently cloned into the pUC118 vector using a Mighty Cloning Reagent Set (Blunt End) (TaKaRa, Shiga, Japan). The nucleotide sequences of the amplified fragments were determined with a BigDye® Terminator v1.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA) with both M13 forward and reverse primers, specific primers for the target, and the primers used for PCR. The sequencing run was performed on a Genetic Analyzer (Thermo Fisher Scientific). DNA region +22.6 was subcloned at the SacI and MluI sites just upstream of the ABO proximal promoter sequence in the same orientation to the promoter in reporter plasmid +22.6/SN. Also, both sites were used to insert the subregions of region +22.6, which were prepared by restriction enzyme digestion, upstream of the promoter sequence in an orientation opposite to that of the promoter in constructs A/SN, B/SN, C/SN, D/SN, A−D/SN, B−D/SN, B−C/SN and C/SN. Subregion C was inserted upstream of the promoter sequence in the same orientation as that of the promoter in reporter plasmid rC/SN, and inserted into the BamHI and SalI sites downstream of luciferase to generate construct SN/C. Subregion C was also inserted upstream of luciferase in an orientation opposite to, or the same as that of luciferase in the promoter-less constructs C/Basic and rC/Basic, respectively. Subregion C was also subcloned downstream of luciferase, which was driven by the SV40 promoter and the thymidine kinase (TK) promoter in constructs SV/C and TK/C, respectively. Mutation of the Ets motif in subregion C was generated by overlapping PCR mutagenesis in constructs SN/Cm3, SN/Cm4 and SN/Cm3+4. Region +36.0 was prepared by SacII- and BamHI-digestion of the PCR37 product, and the region was also inserted upstream of the ABO proximal promoter in the same orientation as that of the promoter in reporter plasmid +36.0/SN.

The directions of the inserts for all of the constructs used in this study were verified by detailed restriction enzyme mapping and DNA sequence analysis as described above. Plasmid DNA was purified using a HiSpeed® Plasmid Maxi Kit (QIAGEN GmbH, Hilden, Germany).

Transfection and luciferase assay. Transient transfection of K562 cells or OUMS-36T-1 cells was performed as reported previously (11). Transient transfection of KATOIII cells was carried out using Lipofectamine LTX reagent (Thermo Fisher Scientific) with 1 μg of reporter plasmid and 0.001 μg of pRL-SV40 Renilla reporter in accordance with the manufacturer’s instructions. The human ELF5 expression plasmid was purchased from Sino Biological, Beijing, China. After collecting the cells, cell lysis and luciferase assays were performed using the Dual Luciferase Reporter Assay System (Promega, Madison, WI) to measure the activities of firefly and Renilla luciferases. Variations in transfection efficiency were normalized to the activities of Renilla luciferase expressed from the cotransfected pRL-SV40 Renilla luciferase reporter.

ChIP assay. ChIP assay was performed using a HighCell# ChIP Kit (Diagenode, Liège, Belgium) in accordance with the manufacturer’s instructions. The antibodies employed were anti-H3K4me1, anti-H3K4me3, anti-H3K27me3 (Diagenode), anti-H3K27ac antibodies (ab4729, Abcam, Cambridge, UK) and anti-Elf5 antibody (C–18; Santa Cruz Biotechnology, Dallas, TX). The anti-Elf5 is a goat polyclonal antibody raised against a peptide mapped at the C-terminus of Elf-5 of human origin. ChIP experiments were analyzed using quantitative real-time PCR (qPCR), named ChIP-qPCR38, 39 and 40, employing StepOne and SYBR Select (Thermo Fisher Scientific). The qPCR was carried out in 20 μl of reaction mixture containing 10 μl of SYBR Select Master Mix (2×), 4 pmol each primer and 2 μl of the ChIP sample. The primers for the ABO proximal promoter, the +22.6-kb site and the +9.0-kb site in ChIP-qPCR38, 39 and 40, respectively, are shown in Table 1, and the PCR conditions are shown in Table 2. The primers for human myoglobin exon 2 were purchased from Diagenode and the qPCR conditions employed were described previously (4).

Genome-editing plasmids, transfection and screening clones. Single guide RNA (sgRNA)–specifying sequences were chosen to
minimize the likelihood of off-target cleavage based on publicly available on-line tools (45). Each sgRNA specified sequences corresponding to the ABO proximal promoter or the +22.6-kb site with respect to genomic DNA of NCBI reference sequence NT_035014.4. Genome-editing plasmids 5'Promoter, 3'Promoter, 5'Enhancer and 3'Enhancer were produced using oligonucleotide pairs Pro−101, Pro+11, +22.6-kb+22578 and +22.6-kb+22741, respectively (Table 3). One hundred pmol of each oligonucleotide corresponding to the upper or lower strand of the targeted sequence was mixed respectively in a 20 μl final volume containing 40 mM Tris-HCl, 50 mM NaCl and 20 mM MgCl₂. Annealed DNA fragments were subcloned into the BbsI site of the pX330-U6-Chimeric BB-CBH-hSpCas9 vector (42230, Addgene, Cambridge, MA) using DNA Ligation Kit Mighty Mix (TaKaRa) in accordance with the manufacturer’s instructions. For all constructs, the inserted sequences were confirmed by subsequent sequencing using a BigDye® Terminator v1.1 Cycle Sequencing Kit with specific primers for the pX-330 plasmid.

Despite their complex karyotype, KATOIII cells exhibited karyotype stability and two copies were present for chromosome 9 when biallelic deletion of the promoter or the +22.6-kb site was verified (data not shown). One hundred thousand cells were cotransfected with 2.5 μg of the genome-editing plasmids 5'Promoter and 3'Promoter as well as the plasmids 5'Enhancer and 3'Enhancer using Lipofectamine LTX reagent. Two days after the transfection, 30 cells per 96-well plate were cultured to isolate single cell-derived clones. Biallelic deletion clones were defined when PCR amplification detected the deletion band whose sequence was subsequently verified by cloning into the pUC118 vector and nucleotide determination.

Flow cytometric analysis. Flow cytometric analysis was performed on a Cytomics FC 500 flow cytometer (Beckman Coulter, Brea, CA) according to the method described previously (4).

Reverse transcription (RT)–PCR and quantitative real-time PCR (qPCR). RNA purification and cDNA preparation were performed as reported previously (4,11). Quantification of the ABO and human β-actin transcripts was performed using StepOne and SYBR Select (4). RT–PCR of the ELF3, ELF5 and EHF transcripts was performed using the RT² qPCR Primer Assay (QIAGEN) in accordance with the manufacturer’s protocol. Quantification of the ELF5 transcript was also performed using the same kit in accordance with the manufacturer’s protocol.

RNA-seq. RNA-seq analyses were performed by DNA ChIP Research Inc. The details are as follows. Total RNA obtained from each sample was subjected to sequencing library construction using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs, MA) in accordance with the manufacturer’s protocol. The quality of the libraries was assessed with an Agilent 2200 TapeStation High Sensitivity D1000 (Agilent Technologies, Santa Clara, CA). The pooled libraries of the samples were sequenced using the illumina HiSeq system in 51-base-pair (bp) single-end reads.

Sequencing adaptors, low-quality reads, and bases were trimmed with Trimmomatic-0.32 tool (46). The sequence reads were aligned to the human reference genome (GRCh37/hg19) using Tophat 2.0.13 (bowtie2-2.2.3) (47), which can adequately align reads onto the location including splice sites in the genome sequence. Files of the gene model annotations and known transcripts were downloaded from the Illumina iGenomes web site (http://support.illumina.com/sequencing/sequencing_software/igenome.html), being necessary for the whole transcriptome alignment with Tophat.

The aligned reads were subjected to downstream analyses using StrandNGS 2.6 software (Agilent Technologies). The read counts allocated for each gene and transcript (UCSC version 2013.12.31) were quantified using a Trimmed Mean of M-value (TMM) method (48).

Preparation of nuclear extracts and EMSA. A nuclear extract from KATOIII cells and probe were prepared as reported previously (9). The EMSA was carried out according to the method described previously (11), except for use of 0.05 μg of poly(dI-dC) in 15 μl binding solution. The double-stranded oligonucleotides C-E3, C-
E4, mC-E4, Ccnd2 and mCcnd2 were obtained by annealing two chemically synthesized strands (Table 3). Two microliters of the anti-Elf5 antibody or control IgG was added to the nuclear extracts overnight at 4°C before addition of the radiolabeled probe. The DNA-protein complex was quantified with a BAS-1800 image analyzer (FujiFilm, Tokyo, Japan).

Transfection of short hairpin RNA (shRNA).

The shRNA expression plasmids for human *ELF5* and control plasmid, MISSION® shRNA plasmid DNA (NM_001422) and MISSION® TRC2 pLKO.5—puro Non-Mammalian shRNA Control Plasmid DNA, respectively, were purchased from Sigma-Aldrich, St.Louis, MO. The shRNA expression plasmid (2.5 μg) was transfected into KATOIII cells (2.5×10^5 cells per transfection) using Lipofectamine 3000 (Thermo Fisher Scientific) in accordance with the manufacturer’s protocol. Two days after transfection, the cells transfected with the *ELF5* shRNA expression plasmid were subjected to limiting dilution in growth medium containing 2 μg/mL puromycin (Thermo Fisher Scientific) to isolate single cell-derived stable clones. However, the cells transfected with the control plasmid were not cloned. One or two weeks after transfection, colonies surviving in the medium containing puromycin were harvested. We routinely pooled 50 to 200 colonies, and aliquots were kept in liquid nitrogen for further investigation. We propagated the transfectants in the presence of puromycin for the minimum amount of time necessary to accumulate sufficient cells for quantification of the *ELF5*, *ABO* and human β-actin transcripts, quantification of Elf5 and β-actin proteins, and B-antigen expression. A whole-cell lysate prepared from the transfectants using a Total Protein Extraction Kit (TaKaRa) was used for Western blot analysis with the anti-Elf5 antibody, followed by densitometry measurements with a LAS-3000 and MultiGauge v3.0 (FujiFilm). B-antigen expression was analyzed by flow cytometry.

Statistical analyses. All data are expressed as mean values and error bars representing standard deviation from at least three independent experiments. Data analyses for the two groups were performed using Student’s *t* test (*, *p*<0.05; **, *p*<0.01)
Acknowledgements: This work was supported in part by a Grant-in-Aid from the Japan Society for the Promotion of Science (25460861 to T.N., 25860486 to Y.T., 26293161 to Y.K.). We thank Tomoko Miwa for preparation of this manuscript. We express our profound grief and pay our last respects to T.N for her enthusiasm in ABO research.

Conflicts of Interest: The authors declare no competing financial interests.

Authorship Contributions: R.S. conceived, designed, coordinated, performed research, analyzed data, and wrote the paper; T.N., R.K., M.K., K.T. and K.O. performed research; Y.T. designed genome-editing plasmids; H.T. and Y.K. wrote the paper.
References

1. Daniels G. (2013) Human Blood Groups (3rd ed.). West Sussex, UK: WILEY-BLACKWELL, 21-25
2. Yamamoto F. (2000) Molecular genetics of ABO. *Vox Sang*. 78, 91–103
3. Kominato Y, Hata Y, Takizawa H, Matsumoto K, Yasui K, Tsukada J, and Yamamoto F. (2002) Alternative promoter identified between a hypermethylated upstream region of repetitive elements and a CpG island in human ABO histo-blood group genes. *J. Biol. Chem.* 277, 37936–37948
4. Sano R, Nogawa M, Nakajima T, Takahashi Y, Takahashi K, Kubo R, Kominato Y, Yokohama A, Tsukada J, Yamao H, Kishida T, Ogasawara K, and Uchikawa M. (2015) Blood group B gene is barely expressed in *in vitro* erythroid culture of Bm-derived CD34⁺ cells without an erythroid cell-specific regulatory element. *Vox Sang.* 108, 302–309
5. Lee JS, Ro JY, Sahin AA, Hong WK, Brown BW, Mountain CF, and Hittelman WN. (1991) Expression of blood-group antigen A–a favorable prognostic factor in non-small-cell lung cancer. *N. Engl. J. Med.* 324, 1084–1090
6. Matsumoto H, Muramatsu H, Shimotakahara T, Yanagi M, Nishijima H, Mitani N, Baba K, Muramatsu T, and Shimazu H. (1993) Correlation of expression of ABH blood group carbohydrate antigens with metastatic potential in human lung carcinomas. *Cancer* 72, 75–81
7. Vernimmen D. (2014) Uncovering enhancer functions using the α–globin locus. *PLOS Genetics* 10, e1004668
8. Levine M, Cattoglio C, and Tjian R. (2014) Looping Back to leap forward: transcription enters a new era. *Cell* 157, 13–25
9. Kominato Y, Tsuchiya T, Hata N, Takizawa H, and Yamamoto F. (1997) Trancription of human ABO histo-blood group genes is dependent upon binding of transcription factor CBF/NF-Y to minisatellite sequence. *J. Biol. Chem.* 272, 25890–25898
10. Hata Y, Kominato Y, Yamamoto F, and Takizawa H. (2002) Characterization of the human ABO gene promoter in erythroid cell lineage. *Vox Sang.* 82, 39–46
11. Sano R, Nakajima T, Takahashi K, Kubo R, Kominato Y, Tsukada J, Takeshita H, Yasuda T, Ito K, Maruhashi T, Yokohama A, Isa K, Ogasawara K, and Uchikawa M. (2012) Expression of ABO blood-group genes is dependent upon an erythroid cell-specific regulatory element, which is deleted in persons with the Bm phenotype. *Blood* 119, 5301–5310
12. Sano R, Kuboya E, Nakajima T, Takahashi Y, Takahashi K, Kubo R, Kominato Y, Takeshita H, Yamao H, Kishida T, Isa K, Ogasawara K, and Uchikawa M. (2015) A 3.0-kb deletion including an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene in an individual with the B_m phenotype. *Vox Sang.* 108, 310–313
13. Nakajima T, Sano R, Takahashi Y, Kubo R, Takahashi K, Kominato Y, Tsukada J, Takeshita H, Yasuda T, Uchikawa M, Isa K, and Ogasawara K. (2013) Mutation of the GATA site in the erythroid cell-specific regulatory element of the ABO gene in a B_m subgroup individual. *Transfusion* 53, 2917–2927
14. Takahashi Y, Isa K, Sano R, Nakajima T, Kubo R, Takahashi K, Kominato Y, Tsuneyama H, Ogasawara K, and Uchikawa M. (2014) Deletion of the RUNX1 binding site in the erythroid cell-specific regulatory element of the ABO gene in two individuals with the A_m phenotype. *Vox Sang.* 106, 165–175
15. Thuresson B, Hellberg A, and Olsson ML. (2013) Disruption of a binding site for the erythroid transcription factor GATA-1 in intron 1 of the ABO gene in A_m and B_m subgroup samples. *Vox Sang.* 105 (Suppl. 1), 43–43
16. Oda A, Isa K, Ogasawara K, Kameyama K, Okuda K, Hirashima M, Ishii H, Kimura K, Matsukura H, Hirayama F, and Kawa K. (2015) A novel mutation of the GATA site in the erythroid cell-specific regulatory element of the ABO gene in a blood donor with the A_mB phenotype. *Vox Sang.* 108, 425–427
17. Sharrocks AD. (2001) The ETS-domain transcription factor family. *Nat. Rev. Mol. Cell Biol.* 2, 827–837.
18. Tymms MJ, Ng Ay, Thomas RS, Schutte BC, Zhou J, Eyre HJ, Sutherland GR, Seth A, Rosenberg M, and Papas T. (1997) A novel epithelial-expressed ETS gene, ELF3: human and murine cDNA sequences, murine genomic organization, human mapping to 1q32.2 and expression in tissues and cancer. *Oncogene* **15**, 2449–2462

19. Andreoli, JM, Jang SI, Chung E, Coticchia CM, Steinert PM, and Markova NG. (1997) The expression of a novel, epithelium-specific ets transcription factor is restricted to the most differentiated layers in the epidermis. *Nucleic Acids Res.* **25**, 4287–4295

20. Ng AY, Waring P, Risteveski S, Wang C, Wilson T, Pritchard M, Hertzog P, and Kola, I. (2002) Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. *Gastroenterology* **122**, 1455–1466

21. Zhou J, Ng AY, Tymms MJ, Jermiin LS, Seth AK, Thomas RS, and Kola I. (1998) A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11p13-15, a region subject to LOH and rearrangement in human carcinoma cell lines. *Oncogene* **17**, 2719–2732

22. Lapinskas EJ, Palmer J, Ricardo S, Hertzog PJ, Hammacher A, and Pritchard MA. (2004) A major site of expression of the ets transcription factor Elf5 is epithelia of exocrine glands. *Histochem. Cell Biol.* **122**, 521–526

23. Bochert MA, Kleinbaum LA, Sun LY, and Burton FH. (1998) Molecular cloning and expression of Elfh, a new member of the ets transcription factor/oncoprotein gene family. *Biochem. Biophys. Res. Commun.* **246**, 176–181

24. Silverman ES, Baron RM, Palmer LJ, Le L, Hallock A, Subramaniam V, Riese RJ, McKenna MD, Gu X, and Libermann TA. (2002) Constitutive and cytokine-induced expression of the ETS transcription factor ESE-3 in the lung. *Am. J. Respir. Cell Mol. Biol.* **27**, 697–704

25. Kas K, Finger E, Grall F, Gu X, Akbarali Y, Boltax J, Weiss A, Oettgen P, Kapeller R, and Libermann TA. (2000) ESE-3, a novel member of an epithelium-specific ets transcription factor subfamily, demonstrates different target gene specificity from ESE-1. *J. Biol. Chem.* **275**, 2986–2998

26. ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57–74.

27. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE. (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. *Nature* **473**, 43–49.

28. Escamilla-Hernandez R, Chakrabarti R, Romano RA, Smalley K, Zhu Q, Lai W, Halmon MS, Buck MJ, and Sinha S. (2010) Genome-wide search identifies Ccnd2 as a direct transcriptional target of Elf5 in mouse mammary gland. *BMC Mol. Biol.* **11**, 68–68

29. Zhu Y, Sun L, Chen Z, Whitaker JW, Wang T, and Wang W. (2013) Predicting enhancer transcription and activity from chromatin modifications. *Nucleic Acids Res.* **41**, 10032–10043

30. Creighton MP, Cheng AW, Welstead GG, Kooststra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. *Proc. Natl. Acad. Sci. USA.* **107**, 21931–21936

31. Ernst J and Kellis M. (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. *Nat. Biotechnol.* **28**, 817–825

32. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell* **159**, 1665–1680

33. Zhou J, Chehab R, Tkalcicic J, Naylor MJ, Harris J, Wilson TJ, Tsao S, Tellis I, Zavarsek S, Xu D, Lapinskas EJ, Visvader J, Lindeman GJ, Thomas R, Ormandy CJ, Hertzog PJ, Kola I, and Pritchard MA. (2005) Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. *EMBO J.* **24**, 635–644
34. Choi YS, Chakrabarti R, Escamilla-Hernandez R, and Sinha S. (2009) Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: Failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev. Biol. 329, 227–241
35. Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukačičin M, Romano RA, Smalley K, Liu S, Yang Q, Ibrahim T, Mercatali L, Amadori D, Haflty BG, Sinha S and Kang Y. (2012) Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat. Cell Biol. 14, 1212–1222
36. Hay ED. (1995) An overview of epithelio-mesenchymal transformation. Acta. Anat. 154, 8–20
37. Thiery JP. (2002) Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454
38. Ichikawa D, Handa K, Withers DA, and Hakomori S. (1997) Histo-blood group A/B versus H status of human carcinoma cells as correlated with haptotactic cell motility: approach with A and B gene transfection. Cancer Res. 57, 3092–3096
39. Orlow I, Lacombe L, Pellicer I, Rabbani F, Delgado R, Zhang ZF, Szijan I, and Cordón-Cardó C. (1998) Genotypic and phenotypic characterization of the histoblood group ABO(H) in primary bladder tumors. Int. J. Cancer 75, 819–824
40. Kominato Y, Hata Y, Takizawa H, Tsuchiya T, Tsukada J, and Yamamoto F. (1999) Expression of human histo-blood group ABO genes is dependent upon DNA methylation of the promoter region. J. Biol. Chem. 274, 37240–37250
41. Iwamoto S, Withers DA, Handa K, and Hakomori S. (1999) Deletion of A-antigen in a human cancer cell line is associated with reduced promoter activity of CBF/NF-Y binding region, and possibly with enhanced DNA methylation of A transferase promoter. Glycoconj. J. 16, 659–666
42. Gao S, Worm J, Guldberg P, Eiberg H, Krogdahl A, Liu CJ, Reibel J, and Dabelsteen E. (2004) Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma. Int. J. Cancer 109, 230–237
43. Yamamoto F, Cid E, Yamamoto M, and Blancher A. (2012) ABO research in the modern era of genomics. Trans. Med. Rev. 26, 102–118
44. Zhou S, and Welsby I. (2014) Is ABO blood group truly a risk factor for thrombosis and adverse outcomes? World J. Cardiol. 26, 985–992
45. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, and Zhang F. (2013) Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308
46. Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30, 2114–2120
47. Langmead B and Salzberg S. (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9,357-359
48. Robinson MD and Oshlack A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25
Transcriptional regulation of ABO

Figure Legends

Figure 1. A map of the 50-kb region of genomic DNA from upstream to downstream of the human ABO gene. The top diagram indicates ABO gene exons 1–7 as represented by vertical lines with coordinates in hg19. The second diagram from the top indicates DHS signal tracks, which were constructed using the UCSC genome browser among various cells; pHTE, primary tracheal epithelial cells; HPDE6-E6E7, pancreatic duct cells immortalized with the E6E7 gene of human papillomavirus; RWPE1, prostate epithelial cells; K562, erythroleukemia cells; SKMC, skeletal muscle cells. The third diagram from the top indicates Chromatin State Segmentation by the Hidden Markov Model (HMM) from ENCODE/Broad. Each of the tracks from the various cell lines are shown: HMEC, human mammary epithelial cells; NHEK, normal human epidermal keratinocytes; K562 cells; NHLF, normal human lung fibroblasts. The colored segmentations are represented as follows: bright red, active promoter; light red, weak promoter; purple, poised promoter; orange, strong enhancer; yellow, weak/poised enhancer; blue, insulator; dark green, transcriptional elongation; light green, weakly transcribed; gray, polycomb repressed; light gray, low signal or repetitive/copy number variation. The fourth diagram shows CTCF binding sites of HeLa cells, K562 cells and NHLF from CTCF Binding Sites by ChIP-seq from ENCODE/University of Washington. The fifth diagram indicates locations of DNA fragments that were subcloned upstream of the ABO promoter in reporter plasmids +5.8/SN, +22.6/SN and +36.0/SN. Positions of regions +22.6 and +36.0 are denoted in Table 1. Transient transfection into KATOIII, K562 and OUMS-36T-1 cells was performed using firefly luciferase reporter plasmids and the Renilla luciferase reporter vector. The diagram at the bottom shows the relative activities of individual reporter plasmids, when the activity of reporter plasmid SN containing the promoter was assigned an arbitrary value of 1.0, indicated by a clear box. All data represent means from more than three independent experiments, and the standard deviations are also shown. The significance of increases in reporter activities was determined by Student’s t test at a significance level of p <0.01 (**).

Figure 2. Summary of the relative luciferase activities of reporter constructs containing various parts of DNA region +22.6 in ABO. Transient transfection into KATOIII cells was performed using reporter plasmids in which various parts of region +22.6 were subcloned upstream of the ABO promoter sequence. Below the map of restriction enzyme sites with positions relative to the translation start site of exon 1, region +22.6 was subdivided into regions A to D. Construct names are indicated to the left of the square, and the locations of the fragments that were inserted upstream of the ABO promoter sequence are shown; the fragments were inserted in the same direction to that of the promoter in constructs +22.6/SN, rC/SN and rC/Basic; in the other constructs, the fragments were inserted in a direction opposite to that of the promoter. Arrows to the right represent the inserts oriented in the same direction to that of the promoter. The +22563 to +22781 sequence (subregion C or the +22.6-kb site) is indicated by a solid box with an arrow. Basic represents the promoter-less pGL3-basic vector. Each construct as depicted on the left was used for transient transfection, and the luciferase activity obtained was normalized as shown in the right panel. To facilitate comparison of the corresponding reporter activity of each construct, the activity of reporter plasmid SN was assigned an arbitrary value of 1.0. The results are expressed as the relative activities observed. All data represent means from more than three independent experiments, and the standard deviations are also shown.

Figure 3. Mutation of the Ets transcription factor binding motifs reduces the regulatory potential of the +22.6-kb site. Subregion C or the +22.6-kb site was subcloned downstream of luciferase which was driven by the ABO, SV40 and TK promoters in constructs SN/C, SV/C and TK/C, respectively. The site was inserted downstream of luciferase in the same orientation to each promoter in the constructs. We also prepared mutant construct SN/Cm3, SN/Cm4 or SN/Cm3+4 carrying “GGAA” to “CCAA” substitutions in the putative Ets factor binding site E3, E4 or both, respectively. These plasmids were transiently transfected into KATOIII cells. Boxes indicate the locations of sites E3 and E4. The clear circles represent mutated sequences of the sites. To facilitate comparison of the corresponding reporter activity of each construct, the activity of reporter plasmid SN, SV or TK was assigned an arbitrary value of 1.0. The results are expressed as the relative activities observed. All data represent means from more
than three independent experiments, and the standard deviations are also shown. The significance of differences was determined by Student’s t test at a significance level of p < 0.01 (**).

Figure 4. Quantitative ChIP assay for evaluating histone modifications of the +22.6-kb site of ABO. Cross-linked chromatin derived from KATOIII cells and OUUMS-36T-1 cells was immunoprecipitated with anti-H3K4me1, anti-H3K4me3, anti-H3K27ac and anti-H3K27me3 antibodies and control IgG. The precipitated DNA was subjected to qPCR with specific primers for the ABO promoter, the +9.0-kb site, the +22.6-kb site and human myoglobin exon 2, calculating the percentage of the amount of precipitated DNA relative to the amount of input DNA for each target. The percentage for each target was divided by the percentage of the amount of DNA precipitated by control IgG to obtain the relative fold enrichment for target DNA precipitated by an individual antibody. The top diagram indicates the ABO gene exons 1–7 and myoglobin exons 1–3, which are denoted by vertical lines. Horizontal bars represent qPCR targets for the ABO promoter, the +9.0-kb site, the +22.6-kb site and myoglobin exon 2. The diagrams under the top diagram indicate histone modifications such as H3K4me1, H3K4me3, H3K27ac and H3K27me3 in KATOIII cells and OUUMS-36T-1 cells. Black bars show the relative fold enrichment in each target region in KATOIII cells, and clear bars denote that in OUUMS-36-T1 cells. The y-axis represents the relative fold enrichment of the target sequence immunoprecipitated by each individual antibody relative to the DNA precipitated by IgG, while the x-axis indicates the locations of the target. The results are expressed as the relative enrichments observed. All data represent means from three independent experiments, and the standard deviations are also shown. The significance of differences in enrichment between KATOIII cells and OUUMS-36-T1 cells in each region was determined by Student’s t test at a significance level of p < 0.05 (*) or p < 0.01 (**).

Figure 5. Decrease of ABO and B-antigen expression on KATOIII cells harboring biallelic deletion of the +22.6-kb site. A. Quantitative analysis of the transcripts from the B-allele in the wild-type and mutant cells including clones A4, B3 and B4 using primers ABO+3 and ABO+98 which corresponded to exons 1 and 2, respectively. Ratio of the target transcripts was calculated by dividing by the copy number of β-actin. When the relative amount of the B-transcript in wild-type KATOIII cells was assigned an arbitrary value of 1.0, those of B-transcripts were calculated in the other clones. The results are indicated as the relative expressions observed. All data represent means from three independent experiments, and the standard deviations are also shown. The significance of differences was determined by Student’s t test at a significance level of p value <0.01 (**). Since the region corresponding to primer ABO+3 was deleted in 1E9 cells, quantitative analysis was not undertaken for those cells. B. RNA-seq read alignment coverage of ABO. Read alignment coverages in the wild-type and mutant cells – including clones A4, B3 and B4 – are displayed above ABO visualized with IGV version 2.3.47. C. TMM-normalized count of the ABO transcripts in the wild-type or mutant cells obtained from RNA-seq. The y-axis represents the transcript count after normalization of TMM. D. Flow cytometric analysis of B-antigens on the wild-type and mutant KATOIII cells. The wild-type and mutant cells including clones 1E9, A4, B3 and B4 were stained with mouse monoclonal anti-B IgG antibody and goat anti-mouse IgG conjugated to phycoerythrin. In the histograms, fluorescence is displayed on the x-axis on a logarithmic scale and the number of cells on the y-axis. Individual panel a–e shows representative histograms of cell surface B-antigen expression, as indicated in gray, of the wild-type, 1E9, A4, B3 or B4 cells, respectively. Thin lines display the negative control cells that were not stained with the anti-B antibody. Median fluorescence intensity (MFI) of the wild-type or mutant cells is shown in each panel. E. Quantitative analysis of MFIs in the wild-type and mutant cells 1E9, B3 and B4. Relative MFIs were calculated when the MFI of the wild-type cells was assigned an arbitrary value of 1.0. The results are expressed as the relative MFIs observed. All data represent means from three independent experiments, and the standard deviations are also shown. The significance of differences was determined by Student’s t test at a significance level of p <0.01 (**). A4 cells were not available due to the problems with recovery from frozen stock.

Figure 6. The +22.6-kb site binds to transcription factor Elf5. A. Nucleotide sequences of the +22.6-kb site. The sequence from positions +22563 to +22781 is shown relative to the ATG translation start site of ABO. The sequence JN863720 was derived from the genomic DNA of K562 cells. The motifs for
several relevant transcription factors and the E-box are indicated by overbars. The oligonucleotides C-E3, C-E4 and mC-E4 used in EMSA are shown under the sequences. The position and identity of the mutations in the GGAA/T core sequence motif are represented in oligonucleotide mC-E4. B. The +22.6-kb site binds to a nuclear factor through site E3 or E4. EMSAs were performed using the nuclear extract from KATOIII cells. DNA-protein interaction was investigated using radiolabeled probe C-E4 in the presence or absence of a 200-fold molar excess of competing unlabeled oligonucleotides such as C-E3, C-E4 and a mutated version of oligonucleotide C-E4 or mC-E4, as well as oligonucleotides Ccnd2 and mCcnd2 which included a wild and mutated type of Elf5 recognition motif in the Cyclin D2 promoter, respectively. Oligonucleotide mCcnd2 comprised two-nucleotide substitutions in the GGAA core sequence motif with CCAA. The major shifted complex is indicated by an arrow. The nuclear extract presence or absence of a 200-fold molar excess of competing unlabeled oligonucleotides such as C-E3, C-E4 and the quantity of the represents means from three independent experiments, and the standard deviations are also shown. The activity of SN/C is expressed when that of SN/Cm3+4 is assigned an arbitrary value of 1.0. All data calculated by dividing by the copy number of an arbitrary value of 1.0. The results are indicated as the relative expressions observed. The data represent shRNA, when that in the cells with control shRNA was assigned

Figure 7. ELF5 knockdown with shRNA reduces endogenous ABO transcription and B-antigen expression in KATOIII cells. A. ELF5 knockdown with shRNA reduces endogenous ELF5 transcripts in the clones obtained. KATOIII cells were stably transfected with the ELF5 or control shRNA expression plasmid. Based on subsequent antibiotic selection and limiting dilution, five stable clones transfected with the ELF5 shRNA plasmid were obtained, followed by quantification of the ELF5 and β-actin transcripts using qPCR. However, the cells transfected with the control plasmid were not cloned. Relative expression of the target ELF5 transcripts was calculated relative to the copy number of β-actin transcripts. Subsequently, the relative expression of ELF5 was calculated for the clones in the presence of ELF5 shRNA, assigning that in the cells with control shRNA an arbitrary value of 1.0. The panel indicates the relative expression of ELF5 in the control shRNA-transfected cells and clones 1–5. All the data represent the means of triplicates, and the standard deviations are also shown. The significance of differences was determined by Student’s t test at a significance level of p <0.01 (**). B. Reduction of Elf5 protein in the ELF5 shRNA-transfected cells. Amounts of Elf5 and β-actin protein were evaluated by Western blotting using whole-cell lysates prepared from the control and ELF5 shRNA-transfected cells, followed by densitometry measurements. Molecular weight of each protein was estimated using Precision Plus Protein™ Kaleidoscope™ (BIO-RAD). The relative amount of Elf5 protein in the ELF5 shRNA-transfected cells is indicated above the images when that of the control shRNA-transfected cells is assigned an arbitrary value of 1.0. C. Decreased enhancer potential of shRNA-transfected cells. Luciferase assays with reporter vectors SN/C and SN/Cm3+4 were performed using the control and knockdown cells. The average relative luciferase activity of SN/C is expressed when that of SN/Cm3+4 is assigned an arbitrary value of 1.0. All data represent means from three independent experiments, and the standard deviations are also shown. The significance of differences was determined by Student’s t test at a significance level of p <0.01 (**). D. Reduction of the ABO transcripts in KATOIII cells stably transfected with the ELF5 shRNA expression plasmid. Real-time PCR was performed to measure the quantity of the ABO and β-actin transcripts. Relative amounts of the target ABO transcripts were calculated by dividing by the copy number of β-actin. Relative expression of ABO was calculated in KATOIII cells in the presence of ELF5 shRNA, when that in the cells with control shRNA was assigned an arbitrary value of 1.0. The results are indicated as the relative expressions observed. The data represent
mean values from three independent experiments, and the standard deviation is also shown. The significance of differences was determined by Student’s t test at a significance level of $p < 0.05$ (*). Clear and solid bars indicate the relative expression in the control shRNA-transfected cells and the ELF5 shRNA-transfected cells, respectively. E. Reduction of B-antigen expression on the ELF5 shRNA-transfected cells. Flow cytometric analysis of B-antigens was carried out on the control and knockdown cells. These cells were stained with mouse monoclonal anti-B IgG antibody and goat anti-mouse IgG conjugated to phycoerythrin. B-antigen expression is indicated in gray. MFI of the control cells and the knockdown cells is shown in each panel. For comparison, thin lines display B-antigen expression of the control 1E9, which was stained with the anti-B antibody and the goat anti-mouse antibody.
Table 1. Sequences of oligonucleotides used for PCR.

Oligonucleotide*	5'-primer (5'→3')	Application	Target
ABO+21806†	CGTGTGGCTGGCTTTCCAG	PCR36	region +22.6
ABO+23386†	CCTACCTGCCCAACTGATG	PCR36	region +22.6
ABO+35008†	ACTGTTGCTGGCTTTTCCAG	PCR37	region +36.0
ABO+22581	GTGGGCAATCTGGTGTGAG	ChIP-qPCR39	+22.6-kb site
ABO+22666	AATGGGGAGGAAAGGTT	ChIP-qPCR39	+22.6-kb site
ABO+8997	GTGGCCGACATCTAAGTAC	ChIP-qPCR40	+9.0-kb site
ABO+9093	GGTGGCCGACATCTAAGTAC	ChIP-qPCR40	+9.0-kb site

*Oligonucleotide names involve numerals showing 5' positions relative to the ATG translation start site of exon 1 in ABO on genomic DNA of NCBI reference sequence NT_035014.4.
†Oligonucleotide primers were used for PCR amplification of genomic DNA to prepare reporter plasmid constructs +22.6/SN and +36.0/SN. Region +36.0 between +35848 and +36819 was prepared by SacII- and BamHI-digestion of the PCR37 product.

Table 2. PCR conditions for qPCR and genomic DNA amplification.

PCR*	Initial denaturation	Cycles;	Denaturation	Annealing	Extension	Incubation
PCR36	94ºC for 3 min	35 cycles;	98 ºC for 10 sec	60 ºC for 15 sec	68 ºC for 2 min	68 ºC for 7 min.
PCR37	94ºC for 3 min	35 cycles;	98 ºC for 10 sec	60 ºC for 15 sec	68 ºC for 3 min	68 ºC for 7 min.
ChIP-qPCR38	95ºC for 3 min	35 cycles;	95 ºC for 3 sec	66 ºC for 30 sec		
ChIP-qPCR39	95ºC for 3 min	35 cycles;	98 ºC for 3 sec	60 ºC for 30 sec		
ChIP-qPCR40	95ºC for 3 min	35 cycles;	98 ºC for 3 sec	60 ºC for 30 sec		

* PCR36 and 37 by the three-step PCR method, and ChIP-PCR38–40 were performed by the two-step PCR method.

Table 3. Sequences of oligonucleotides used for construction of genome-editing plasmids and EMSA.

Oligonucleotide pair	Sequences*
Pro–101	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
Pro+11	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
+22.6-kb+22578	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
+22.6-kb+22741	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
C-E3	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
C-E4	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
mC-E4	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
Ccnd2	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'
mCcnd2	5'-CACCGTTGTTGCTGGCCCTGGAAGTGAG-3' and 5'-AAACGGACTTCCGGCGCGGCAAACAG-3'

*The sequences of each oligonucleotide are shown. The double-stranded oligonucleotides were obtained by annealing two chemically synthesized strands. The sequences underlined in oligonucleotide pairs Pro–101, Pro+11, +22.6-kb+22578 and +22.6-kb+22741 represent the sequences corresponding to targeted genome. The sequences underlined in oligonucleotides mC-E4 and mCcnd2 indicates the sites of the specific mutations.
Figure 3

Transcriptional regulation of ABO
Figure 4

Transcriptional regulation of ABO

![Diagram showing transcriptional regulation of ABO and myoglobin](image-url)
Figure 5

A

	WT	A4	B3	B4
Relative Expression		**	**	**

B

Coordinate	136120000	136140000	136150000
WT			
A4			
B3			
B4			

E

	WT	1E9	B3	B4
Relative MFI	**	**	**	**

D

Cell Number	30	20	10	0
Log Fluorescence Intensity	10^0	10^1	10^2	10^3

Cell Number	30	20	10	0
Log Fluorescence Intensity	10^0	10^1	10^2	10^3

- a: 98.56
- b: 1.52
- c: 64.28
- d: 47.40
- e: 33.37
Figure 7

A

Relative ELF5 Expression

B

shRNA: control ELF5

Elf5

β-Actin

C

Relative Luciferase Activity

D

Relative ABO Expression

E

Cell Number

Log Fluorescence Intensity
Epithelial Expression of Human ABO Blood-Group Genes is Dependent Upon a Downstream Regulatory Element Functioning through an Epithelial Cell-Specific Transcription Factor, Elf5

Rie Sano, Tamiko Nakajima, Yoichiro Takahashi, Rieko Kubo, Momoko Kobayashi, Keiko Takahashi, Haruo Takeshita, Kenichi Ogasawara and Yoshihiko Kominato

J. Biol. Chem. published online September 1, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.730655

Alerts:
 - When this article is cited
 - When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts