Mesocrystalline Architecture in Hyaline Foraminifer Shells Indicates a Non-Classical Crystallisation Pathway

A. I. Arnsl, D. Evans2, R. Schiebel1, L. Fink3, M. Mezger4, E. Alig5, J. Linckens5, K. P. Jochum1, M. U. Schmidt6, A. Jantschke6, and G. H. Haug6

1Max Planck Institute for Chemistry, Mainz, Germany, 2Institute of Geosciences, Goethe University Frankfurt, Frankfurt, Germany, 3Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Frankfurt, Germany, 4Faculty of Physics, University of Vienna, Vienna, Austria, 5Institute of Geosciences, Johannes Gutenberg University Mainz, Mainz, Germany, 6Department of Earth Sciences, ETH Zürich, Zurich, Switzerland

Abstract Calcareous foraminifer shells (tests) represent one of the most important archives for paleoenvironmental and paleoclimatic reconstruction. To develop a mechanistic understanding of the relationship between environmental parameters and proxy signals, knowledge of the fundamental processes operating during foraminiferal biomineralization is essential. Here, we apply microscopic and diffraction-based methods to address the crystallographic and hierarchical structure of the test wall of different hyaline foraminifer species. Our results show that the tests are constructed from micrometer-scale oriented mesocrystals built of nanometer-scale entities. Based on these observations, we propose a mechanistic extension to the biomineralization model for hyaline foraminifers, centered on the formation and assembly of units of metastable carbonate phases to the final mesocrystal via a non-classical particle attachment process, possibly facilitated by organic matter. This implies the presence of metastable precursors such as vaterite or amorphous calcium carbonate, along with phase transitions to calcite, which is relevant for the mechanistic understanding of proxy incorporation in the hyaline foraminifers.

Plain Language Summary Foraminifers are single celled marine organisms typically half a millimeter in size, which form shells made of calcium carbonate. During their life, the chemical composition of their shells records environmental conditions. By analyzing fossil shells, past conditions can be reconstructed to understand ancient oceans and climate change. To do that correctly, we need to know exactly how foraminifers form their shell. We find that foraminifers build micrometer-sized mesocrystals which are made of smaller building blocks. This means that the smallest building blocks form first and assemble to form a larger grain, which is oriented in a specific direction. To align all the building blocks, it is possible that they are first unstable and undergo transformation on assembly, during which their composition may change. By understanding and quantifying this process, the composition of the final fossil shell may be understood, ultimately leading to more reliable reconstructions of past environmental change.

1. Introduction

Calcareous foraminifers are an abundant group of planktic and benthic marine unicellular organisms, which together constitute an important component of the global carbon cycle (Langer, 2008; Schiebel, 2002). Foraminifer shells (tests) can resist dissolution and diagenesis over millions of years, and hence provide an outstanding archive for climate reconstruction at high time resolution from sediment cores, which is possible via empirical calibration of chemical or physical characteristics of the shells of recent species (e.g., Fischer & Wefer, 1999; Katz et al., 2010). Despite their importance as a paleoclimate archive, the biomineralization of foraminifers is not mechanistically understood in detail, which leaves the fundamental relationship between environmental parameters and proxy data enigmatic. For example, the possible presence of residues of metastable carbonate phases such as vaterite was only recently discovered (Jacob et al., 2017), and the delivery of ions to the biomineralization site is an ongoing topic of debate (Bentov & Erez, 2006; Bentov et al., 2009; de Nooijer et al., 2014; Evans et al., 2018; Nehrke et al., 2013; Toyofuku et al., 2017).

The focus of this study are the hyaline calcareous foraminifers, which includes all planktic and the majority of benthic species (Loeblich & Tappan, 1984). In contrast to the miliolid foraminifers (discussed elsewhere, see e.g., Bé et al., 1979; Berthold, 1976; Debenay et al., 2000; Hemleben et al., 1986; Towe & Cifelli, 1967), the...
source of ions in hyaline foraminifer biomineralization is likely derived mainly from vacuolised seawater, which is transported through the cell cytoplasm towards the newly forming chamber (Bentov et al., 2009; de Nooijer et al., 2009, 2014; Erez, 2003; Evans et al., 2018; Khalifa et al., 2016). In addition, trans-membrane transport (TMT) of ions via ion pumps or channels has been suggested to be the major source of ions in some species (Nehrke et al., 2013). Seawater transport to the biomineralization site is known to occur, as large membrane-impermeable fluorescent molecules from labeled seawater are incorporated into test calcite (Bentov et al., 2009; Evans et al., 2018; Khalifa et al., 2016). The seawater chemistry inside the vacuoles or at the calcification site is known to be adjusted by the organism, which has been shown directly in the case of pH elevation (Bentov et al., 2009; de Nooijer et al., 2009; Toyofuku et al., 2017), and inferred in the case of some ion concentrations, such as for Mg$^{2+}$ (Bentov & Erez, 2006; de Nooijer et al., 2014; Erez, 2003; Evans et al., 2018). Compositional differences between the hyaline tests of low-Mg calcite planktic species and high-Mg calcite benthic species suggest differences in biochemical mechanisms or a different extent of utilization of intracellular ion dispersion pathways in these groups (Evans et al., 2018; van Dijk et al., 2017).

Based on light-microscopy observations and electron backscatter diffraction (EBSD) measurements, which show an alignment of test crystallite c-axes towards the outer surface of the chamber in hyaline planktic and benthic foraminifers, it has been hypothesized that organic layers act as a template for the directed crystallisation of foraminifer test calcite (Read, 2019; Towe & Cifelli, 1967; Weiner & Lowenstam, 1986; Yin et al., 2021). To date, investigations in (mostly) benthic foraminifer species reveal that the organic matter occluded in the test calcite contains sulfonated polysaccharides and a variety of proteins and polypeptides, but neither the exact role nor location of these macromolecules in the biomineralization process have yet been identified (Frontalini et al., 2019; King & Hare, 1972; Nagai, Uematsu, Chen, et al., 2018; Nagai, Uematsu, Wani, et al., 2018; Ni Flaithearta et al., 2013; Robbins & Brew, 1990; Robbins & Donachy, 1991; Sabbatini et al., 2014; Stathoplos & Tuross, 1991; Tyszka et al., 2021; Weiner & Erez, 1984).

The observation of metastable vaterite in the tests of planktic foraminifers suggests that the formation of the final Mg-calcite can progress via the transformation of metastable carbonate phases (Jacob et al., 2017). These may emerge as a remnant intermediate stage from the formation of amorphous CaCO$_3$ (ACC) and subsequent transformation into calcite. Formation and transformation of amorphous precursors as part of the biomineralization mechanism have been observed in a variety of organisms, and can be indicated by the presence of nanogranular fracture surfaces in the final shell ultrastructure (Addadi et al., 2003; Maclá-Sánchez et al., 2017; Raz et al., 2003; Rodríguez-Navarro et al., 2016; Seto et al., 2012; Wolf et al., 2016, 2021). A connection between non-classical crystal growth mechanisms of carbonates via attachment of nanoparticles, such as stabilized ACC, and a nanogranular morphology of the resulting crystal surface has been shown in numerous examples in precipitation experiments (e.g., De Yoreo et al., 2015; Gal et al., 2014; Rodríguez-Navarro et al., 2016; Seto et al., 2012; Sturm & Cölfen, 2016; Wolf et al., 2016). If the nanoparticular building units are crystallographically aligned within a larger framework, the resulting structure is a mesocrystal, which can result from oriented attachment of crystalline units or in-situ crystallisation of metastable precursor phases (Cölfen & Antonietti, 2005; Jehannin et al., 2019; Kim et al., 2014; Rao & Cölfen, 2017; Seto et al., 2012; Sturm & Cölfen, 2016).

The aim of this study is to assess biomineralization mechanisms of hyaline foraminifers based on the relation of nano-to mesosized structures, and to interpret the resulting structure-to-composition connections. To this end, the hierarchy and structural organization of the hyaline foraminiferal test calcite ultrastructure was analyzed crystallographically and microscopically at the nano- and mesoscale, including an estimation of the crystallite domain size, and contrasted to nanoscale aspects of miliolid tests. We discuss the implications of these findings for the possible involvement of amorphous and metastable crystalline precursor phases in the biomineralization process, as well as for the possible mechanisms of test formation.

2. Materials and Methods

2.1. Samples

The low-Mg calcite planktic foraminifers Globigerinoides ruber ruber and Globigerinoides ruber albus (sensu stricto, s.s.; Morard et al., 2019), Triloculina sacculifer, Globigerina bulloides and the low-Mg calcite benthic Cibicidoides wuellerstorfi were selected from seafloor surface sediments obtained during R/V M.S. Merian Cruise MSM58 in the Madeira Basin (MSM58-57-1) at 0–15 cm sediment depth (Repschläger et al., 2018). Specimens
were picked from the 315–400 μm size fraction and washed with distilled water. From the same sample, specimens of the high-Mg calcite (miliolid or ‘porcelaneous’) Pyrgo sp. were picked to provide a comparison to the hyaline foraminifer tests. Live specimens of the high-Mg calcite planktic G. ruber albus were collected in 2019 from the North Atlantic (29.507°N, 15.005°W) from a water depth of 30–40 m with the research vessel S/Y Eugen Seibold. The samples were stored in hexamine buffered formalin solution at pH 8.2 at 4°C, picked, dried, and stored in microslides prior to analysis. Live specimens of the high-Mg calcite benthic foraminifer Operculina ammonoides were collected from a water depth of 20 m at Kepulauan Seribu, Jakarta (see sample SER in Evans et al., 2013). Tests of the high-Mg calcite benthic foraminifer species Amphistegina lessonii were collected from the Gulf of Aqaba/Eilat. The living benthic specimens were rinsed with tap water and the tests were stored dry at room temperature and ambient humidity prior to analysis. For comparison, fossil G. ruber specimens were picked from the Caribbean ODP Site 999A (10 H 04 35-37) from size fraction 315–400 μm. The age of the fossil 999A sample is 5.6 Ma (Öğretmen et al., 2020).

2.2. Electron Microscopy Assessment of Foraminifer Chamber Walls

Foraminifer tests were imaged by scanning electron microscopy (SEM) at the Max Planck Institute for Chemistry, using a Zeiss Leo 1530 field emission scanning electron microscope. The samples were sputtered with 15 nm gold. Maximum magnification was 85000×, and the minimum pixel size was 4 nm. Chambers were mechanically cracked using a preparation needle and placed on a carbon tape-coated sample holder stub with the fracture surface facing upwards to facilitate inspection of the internal structure of the chamber wall.

2.3. Electron Backscatter Diffraction on Foraminifer Test Walls

Electron Backscatter Diffraction (EBSD) measurements were conducted using a JEOL JSM 6490 SEM equipped with an HKL Nordlys EBSD detector at the Institute of Geosciences at Goethe University Frankfurt. A live-collected specimen of G. ruber albus was embedded in low-viscosity vacuum stable epoxy resin, gradually polished down (3 μm diamond paste, 1 μm diamond paste, 0.25 μm diamond paste, and 15 min of colloidal silica) and coated with carbon prior to measurement. Measurements were performed nearly perpendicularly to the chamber wall, enabled by careful polishing. The electron beam was set at an acceleration voltage of 15 kV, a beam current of ∼8 nA, and a working distance of 17–20 mm. Detailed investigations of selected sections were carried out at 0.2 μm step size. Data processing and indexing was conducted with the Channel5 software (Schmidt & Olesen, 1989), and included removal of wild spikes, filling of non-indexed pixels using five nearest neighbor approximation algorithms and autodetection of grains under the assumption of a grain boundary misorientation of >10°. One point per grain was selected to plot on an upper hemisphere equal area pole figure and contoured using a halfwidth of 15°. A calcite structure model was used for indexing, with Euler angle coloring used to display the crystallographic orientation.

2.4. Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry (fs-LA-ICP-MS)

Laser Ablation Inductively Coupled Plasma Mass spectrometry (LA-ICP-MS) measurements on single foraminifer chambers were conducted at the Max Planck Institute for Chemistry. Analysis of 23Na, 25Mg, 43Ca, and 88Sr were performed using a sector-field Thermo Element2 ICP-MS coupled to a 200 nm femtosecond laser ablation system (NWRFemto200), which has a pulse width of 130 fs. The laser spot size was set at 45 μm diameter. Ablation was conducted using a repetition rate of 15 Hz and 45 s ablation time, using He (0.7 l min⁻¹) as a carrier gas. The ThO/Th rate was <1%, at an RF power of 1078 W and Ar sample flow rate of 0.6 l min⁻¹. The synthetic silicate glass NIST SRM612 (Jochum et al., 2011) and pressed carbonate powder MACS-3 (Jochum et al., 2019) were used as reference materials and measured repeatedly in the same way as the samples. The foraminifers were placed in a sandbox containing pure quartz grains >250 μm during laser ablation. The penultimate (F-1) chamber of three specimens per species was targeted for analysis. The signal was limited to the bulk chamber wall to exclude portions that can be attributed to either encrustation on the outer surface or possible contamination by sedimentary particles on the inside of the chamber. Data evaluation included gas blank subtraction, normalization to an internal standard (43Ca), and external calibration to NIST SRM612, using the NIST values of Jochum.
et al. (2011) and the NIST Mg values of Evans and Müller (2018), following standard data reduction procedures (Heinrich et al., 2003). Accuracy, determined as measured/reported molar M/Ca values for MACS-3 from Jochum et al. (2019), was 0.939 for Na/Ca, 1.079 for Mg/Ca, and 0.886 for Sr/Ca. Precision, defined as 2 SD/mean of repeatedly measured molar M/Ca, ranged between 11.2% and 13.2% for the discussed ratios of MACS-3.

2.5. X-Ray Diffraction Measurements (XRD)

2.5.1. Bulk Foraminifer XRD

X-ray powder diffraction (XRD) measurements of bulk foraminifer samples were conducted on whole-shell monospecies assemblages, which contained up to 400 tests, depending on size of the specimens. The foraminifer samples were measured in rotating glass capillaries (ø = 0.7 mm) for bulk multi-specimen analyses. In the case of measurements conducted on samples that consisted of a small number of rather large individuals (3–10 tests of *O. ammonoides* and *A. lessonii*), the tests were crushed and filled in a small capillary (ø = 0.5 mm), which was placed and adjusted inside the 0.7 mm capillary. The measurements were performed in Debye-Scherrer geometry on a STOE STADI-P transmission diffractometer, using Mo-Kα₁ (λ = 0.70930 Å) and Cu-Kα₁ (λ = 1.5406 Å) radiation at the Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt. The instruments were equipped with a curved Ge (111)-monochromator and a Mythen 1K or linear PSD detector. For Mo-radiation, the measured range was 0–100° 2θ in 0.015° steps, at a Mythen 1K step size of 0.49° and an exposure time of 60.0 s per step. For Cu-radiation, the measured range was 2–115° 2θ in 0.010° steps, at a PSD step size of 0.2° and an exposure time of 25.0 s per step. The 2θ range was measured repeatedly (2 × 0–100° 2θ, 2 × 40–100° 2θ and 2 × 80–100° 2θ for Mo and 2 × 2–115° 2θ, 2 × 40–115° 2θ and 2 × 80–115° 2θ for Cu), following which the single ranges were combined to a high-quality data set suited for pair distribution function (PDF) calculations. Using the same measurement parameters and instrument geometry, the respective empty capillaries were measured for background determination. The data were processed with the Stoe WinXPOW software (STOE & Cie GmbH, 2011). For comparison, pieces of a large (∼5 cm) translucent birefringent rhombohedral geological calcite crystal were carefully ground and measured in the same way as the foraminifer samples.

2.5.2. Single Specimen Diffraction Measurements

Qualitative analyses of 1–3 specimens of live and fossil *G. ruber* were conducted using a Rigaku SmartLab diffractometer at the Max Planck Institute for Polymer Chemistry, Mainz, equipped with a Mo-Kα₁ source and a HyPix-3000 2-dimensional semiconductor detector. The measurement time was 120 min and the measured range for this geometry was 5.5–60° 2θ. Foraminifer specimens were placed in stationary 0.3 mm glass capillaries and measured in transmission. An empty capillary and a LaB₆ standard were measured using the same setup for background correction and calibration, respectively. The resulting 2D detector images of the foraminifer samples were calibrated for the instrument geometry using the known reflex positions of the LaB₆ standard material, radially integrated, and corrected for background scattering of air and sample holder using an internal Python script.

2.6. Processing of Diffraction Data

Rietveld refinement of the measurements with Cu-radiation were conducted using TOPAS 6 academic (Coelho, 2016b). The size of the coherently scattering domain was refined by starting from a structural model of calcite (Graf, 1961) followed by stepwise release of parameters for scale, zero error, background, instrumental corrections using a full axial model, unit cell dimensions, and crystallite size and strain to yield a reproducible fit with a goodness-of-fit value close to 1 (Table S2 in Supporting Information S1). The domain size was determined from the integral breadth of the strongest reflexes (20–52° 2θ), using a Gaussian peak shape. The error of the crystallite size given below is the convolution of errors of the measurement and the refinement procedure, which is lined out in detail in the TOPAS 6 technical reference (Coelho, 2016a).

The pair distribution function G(r) was calculated for a radius of 1000 Å using the program pdfgetX3 (Juhás et al., 2013) from corrected and normalized 1D Mo XRD data (Egami & Billinge, 2003). Background corrections for detector noise, air scattering and contributions of the empty capillary were either performed beforehand by 1:1 signal to background reduction, or by using pdfgetX3 for adjustments. The total
Scattering structure function $F(Q)$ was adjusted with the program-internal polynomial fitting factor r_{poly} to yield a signal oscillating around 0 (Juhás et al., 2013). The data range was truncated both at small and large wavevector Q, to exclude measurement artifacts and to adjust the shortest distances in the PDF to chemically meaningful values. The maximum momentum transfer Q_{max} was chosen at the maximum value that yields stable signals in the calculated $G(r)$, which was $Q_{max} = 13.0−13.5$ Å for Mo-K$_\alpha$. The electron density of the foraminifer tests was estimated from averaged LA-ICP-MS analyses of the chamber composition. The ordering length resolvable with this method, that is, the minimal domain size of coherently scattering atoms within a crystallite, was approximated from the smallest interatomic distance at which oscillation of constant frequency allocated to artifacts from the Fourier transformation was observed. As such, long-range PDF supports crystallite domain size determination by Rietveld refinement.

3. Results

3.1. Elemental Composition of Foraminifer Tests

The test metal/Ca (M/Ca) composition of the investigated hyaline planktic and benthic foraminifers differs between low-Mg calcite and high-Mg calcite (Figure 1), as observed previously (e.g., Allen et al., 2016; Evans et al., 2018; Geerken et al., 2019; van Dijk et al., 2019). Planktic foraminifers (all low-Mg calcite, blue) and the low-Mg calcite benthic *C. wuellerstorfi* are characterized by a M/Ca of 2−5 mmol mol$^{-1}$. The high-Mg calcite producing benthic species (red) range between a M/Ca of 40−50 mmol mol$^{-1}$ (*A. lessonii*) and 135−145 mmol mol$^{-1}$ (*O. ammonoides*). Sr/Ca and Na/Ca are elevated in high-Mg calcite benthic species compared to low-Mg calcite species by a factor of approximately two (Figure 1).

3.2. Diffraction Measurements

3.2.1. Crystallographic Structure of Foraminifer Test Carbonates

Planktic and benthic foraminifer species consist of low-Mg and high-Mg calcite as primary (ontogenetic) shell material, as demonstrated by many previous studies (e.g., Berman et al., 1993; Blackmon & Todd, 1959; Debenay et al., 2000; Read, 2019; Towe & Cifelli, 1967) and confirmed here by XRD analyses (Figure 2a). Additional reflections and metastable carbonate phases, if present, were not observable above the detection limit in XRD measurements for the hyaline species. A faint amorphous background is visible in the XRD of live collected and fossil (sediment core, approx. age 5.6 Ma), consist of low-Mg calcite without resolvable metastable carbonate or secondary diagenetic crystalline phases (Figures 2a and 2b). Due to uncertainties regarding the exact location of the specimen in the sample holder and the small sample size and thus low intensities, confident analyses of live collected and fossil *G. ruber albus* are limited to qualitative assessment of the crystalline content and do not extend to the amorphous background.

Unit cell dimensions, as determined by Rietveld refinement, are similar for all low-Mg calcite species (Table 1, Figure 2c). In the case of the hyaline benthic species *C. wuellerstorfi*, the refined a dimension of the test calcite is significantly larger ($|a_{calcite}−a_{foram}| > 5$ SD, Table 1) than that of geological calcite (Graf, 1961). For *G. ruber albus*, the same is observed, albeit non-significantly (Table 1). The high-Mg calcite species show considerably smaller lattice parameters caused by the smaller size of the Mg$^{2+}$ ion incorporated in the structure. Refined average crystallite domain sizes of the foraminiferal calcites range between 70 and 85 nm for all investigated species, except for *C. wuellerstorfi* with crystallite domains of approximately 145 nm (Table 1, Figures 2c and 2d).
3.2.2. Pair Distribution Function Analysis

The pair distribution function (PDF) describes the probability of finding two atoms with an atom-atom distance r. The PDF is weighted with the scattering power of the two atoms and summed over all atom-atom pairs. The signal position and shape of short- and mid-range atomic distances (<20 Å) in the PDF of hyaline planktic low-Mg calcite foraminifers are similar, without visible deviations of the peak geometry within one data set (Figure 3a). In *C. wuellerstorfi* and *T. sacculifer*, individual signals differ from each other in shape, and signal broadening is observed, for example, for signals at 4.1, 9.5, and 12.9 Å (Figure 3a). In the high-Mg calcite species, peak shape and center of gravity differ to signals observed in low-Mg foraminiferal calcite, for example, for interactions at 3.1–3.5 (Ca-C), and 4–4.5 Å (incl. Ca-Ca, Figure 3a). An additional signal is present at 1.6 Å in both *A. lessonii* and *O. ammonoides*, which is not present in the other samples (Figure 3a).
The long-range PDF signals decay strongly in intensity for all hyaline foraminifers between 50 and 400 Å, with the presence of structure-related signal terminating at approximately 300–500 Å (30–50 nm, Figure 3b).

3.3. Scanning Electron Microscopic Imaging of Fractured Foraminifer Tests

Optical assessment of the foraminifer test walls shows distinct shell architectures for porcelaneous and hyaline foraminifers, as well as differences between high-Mg calcite benthic species and low-Mg calcite planktic foraminifers (Figure 4). The bulk test walls of the hyaline low-Mg planktic species are characterized by irregularly shaped entities ranging between 50 and 150 nm in size, which are predominantly spherical, and partly elliptical (Figure 4). No crystal facets, that is, edges or distinct surfaces are visible on these building blocks in the freshly fractured test wall. Residues of spines, which are embedded in the wall of spinose species, exhibit a smooth surface and distinct crystal facets at the tips (Figure S1 in Supporting Information S1). In T. sacculifer, the outer 0.5 μm of the test wall at a region close to the aperture shows planar surfaces and edges resembling crystal features, and no identifiable nanogranular internal morphology (Figure S1 in Supporting Information S1). In the investigated hyaline benthic species, two types of irregularly shaped entities are observed, which either range in size between 50 and 150 nm or several hundreds of nanometers in diameter (Figure 4). They appear to be either rounded or show faces and edges (Figure 4). The test wall of the miliolid Pyrgo sp. is made of elongated crystals of approximately 300–2000 nm length and 100 nm diameter. Distinct crystal facets are visible both at the rims and ends of the crystals (Figure 4).

3.4. Electron Backscatter Diffraction (EBSD) of Polished Foraminifer Chamber Walls

An EBSD map of the test wall of the hyaline G. ruber albus shows differently sized grains of mostly elongated and partly irregular shape, ∼3–10 μm in diameter (gray areas in the band contrast image, Figure 5a). A defined

![Figure 3](image)

Figure 3. Pair distribution function (PDF) calculations from bulk X-ray powder diffraction measurements for (a) short- and mid-range and (b) long-range interatomic distances of different foraminifer species, indicated in different colors. A geological calcite is displayed for comparison. In panel a, signals at 3.0–3.5 Å (Ca-C) and 3.9–4.4 Å (Ca-Ca) are highlighted by gray bars. PDFs are normalized to 1 for comparison.
orientation towards the outer surface of the chamber wall is present for the crystallographic c-axis \{0001\} of the calcite grains, as indicated by uncolored regions of similar coloration and in the upper hemisphere plot, whereas the a-axis \{11–20\} is randomly oriented (Figures 5b and 5c). The orientation of the analyzed specimens with respect to the polished surface is slightly tilted such that the map is not exactly perpendicular to the shell surface. Large parts of the test wall were not recognized as calcite by the automated indexing protocol (Figure 5).

4. Discussion

4.1. Metastable and Amorphous Carbonates in Foraminifer Tests

The presence of crystalline metastable carbonate phases is not observed with the setup utilized here for hyaline species, even in specimens that were collected live (Figures 2a and 2b), that is, *G. ruber albus*, *A. lessonii*, and *O. ammonoides*. The specimens were stored under normal atmospheric conditions in plastic containers in the case of the high-Mg benthic foraminifers, and in formalin solution at 4°C in the case of *G. ruber albus*. As such, unintended initiation of a phase transition of metastable carbonates to calcite after collection is considered unlikely for the high-Mg benthic species, but possible in the case of *G. ruber albus*. Phase transformations in the CaCO$_3$ system can be initiated by, e.g., heating, application of mechanical energy, or placement in solution (e.g., Bots et al., 2012; Konrad et al., 2018; Ogino et al., 1987; Rodriguez-Blanco et al., 2011; Spanos & Koutsoukos, 1998). With the XRD setups used in this study the detection limit for crystalline phases is normally <1% such that...
crystalline accessory phases such as vaterite at amounts of >3% as reported by Jacob et al. (2017), are expected to be detectable. The lack of vaterite in samples of the low-Mg calcite species *G. ruber albus* could be attributed (a) to possible recrystallization in cold formalin solution before picking, (b) vaterite not always being formed and/or retained in hyaline low-Mg calcite foraminifer tests, or (c) the presence of vaterite as a nanocrystalline phase, which would not easily be detectable with laboratory XRD setups at the small sample size used in this study. In contrast, a general absence of vaterite in the high-Mg calcite species *A. lessonii* and *O. ammonoides* may be expected, as the formation of vaterite in seawater has only been observed in solutions with low Mg/Ca (Bots et al., 2011). This is valid under the assumption that the Mg/Ca of the ion pool present at their calcification site is generally higher than for low-Mg calcite forming species (Evans et al., 2018), and that Mg/Ca does exhibit influence on polymorph selection in foraminiferal biomineralization. While the absence of metastable vaterite in freshly collected planktic foraminifers disagrees with the results of Jacob et al. (2017), our findings do not preclude the presence of metastable carbonates as precursor or transitional phases, which may be directly involved in the biomineralization process of the shell on short time scales.

In freshly sampled *A. lessonii* and *O. ammonoides*, an amorphous background is observed, which could either be caused by amorphous or nanocrystalline CaCO$_3$ phases, or residues of organic cell material, which cannot be distinguished based on the present data (Figure 2a). For the freshly collected specimens of *G. ruber albus*, the presence or absence of amorphous content cannot be confirmed based on the present analyses. An amorphous background signal that could be attributed to amorphous or nanocrystalline material is not present in samples collected from sediment surfaces. While we were unable to unambiguously detect vaterite or ACC in these foraminifers, this may not be surprising. As calcite is substantially more stable than stabilized amorphous material, a biologically controlled mechanism allowing for fast transformation of an amorphous precursor material means that the preservation of large quantities of ACC in the shell is unlikely.

4.2. Crystallographic Structure of Foraminiferal Test Calcite

The crystallographic structure of foraminifer test calcite is similar for the investigated species within the categories of hyaline low-Mg calcite and hyaline high-Mg calcite, corresponding to likely broadly similar biomineralization mechanisms present within these groups (Bentov & Erez, 2006; de Nooijer et al., 2014; Evans et al., 2018). Among the investigated cations, Mg$^{2+}$ and Sr$^{2+}$ are expected to notably impact the crystal structure due to a difference in the M$^{2+}$-CO$_3^{2-}$ bond distances, as they are known to be incorporated in the calcite lattice as

Figure 5. Electron backscatter diffraction image of *G. ruber albus*. (a) Band contrast image and (b) indexed calcite, colored according to the crystallographic orientation using the Euler angle coloring. Those that are not colored could not be successfully indexed as calcite. Grain boundaries are assigned for a misorientation >10°. (c) Crystallographic orientations are indicated in upper hemisphere pole figures, for the c-axis (upper pole figure, {0001}) and a-axis (lower pole figure, {11–20}), for one point per grain, showing a strong alignment of the c-axis and random orientation of the a-axis perpendicular to the c-axis. The scale bar is 10 μm in both images.
substituents of Ca\(^{2+}\) (Nielsen et al., 2013; Paquette & Reeder, 1990; Yoshimura et al., 2017). From a comparison of the measured changes in unit cell parameters with the measured Mg/Ca of the shells of 3–150 mmol mol\(^{-1}\) (Table 1), it becomes apparent that the foraminifer test Mg/Ca is the dominant controlling parameter of crystallographic changes.

Sodium is present at approximately 6–8 mmol mol\(^{-1}\) in all shells of the low-Mg foraminifers (Figure 1), and could contribute to the crystallographic structure of foraminiferal calcite due to the necessity of creating defects along with the incorporation of monovalent ions (Ishikawa & Ichikuni, 1984; Yoshimura et al., 2017). However, as Na\(^{+}\) and Ca\(^{2+}\) have similar bond lengths in carbonates, a deviation of lattice parameters other than a reduction of symmetry is not expected with Na\(^{+}\) incorporation (Yoshimura et al., 2017). Moreover, preferred leaching of Na\(^{+}\) from foraminifer calcite indicates a chemical environment resembling organic-rich and disordered phases in planktic foraminifers (Yoshimura et al., 2017), which means that some of the measured sodium is likely to be located in inter-crystallite rims or associated with organics rather than in crystalline calcite. Hence, coupled with its low concentration, the contribution of Na\(^{+}\) to the crystallographic structure of foraminifers is negligible.

For C. wuellerstorfi, the foraminifer calcite is observed to exhibit significantly larger unit cell dimensions than geological calcite (Table 1), which can be attributed to lattice distortions caused by strain and defects. Lattice distortions are likely introduced to the crystal lattice by occluded organic material, which has been observed for other biominerals and reproduced in experimentally precipitated carbonates (Borukhin et al., 2012; Kim et al., 2011; Kontrec et al., 2004; Lang et al., 2020; Pokroy et al., 2004, 2006; Rae Cho et al., 2016; Seknazi & Pokroy, 2018; Zolotoyabko, 2017). The generation of internal strain and stress due to the presence of impurities seems to be a widespread mechanism in biominerals, as the organism benefits from mechanical advantages such as enhanced toughness and fracture-resistance (Pokroy et al., 2004; Polishchuk et al., 2017; Seknazi & Pokroy, 2018; Wolf et al., 2016; Wolf, 2021). Our observations indicate that this is the case in some foraminifer species as well, which should be confirmed by systematic high-resolution synchrotron studies.

In the pair distribution function (PDF), calculated from 1D bulk XRD measurements, different shapes and intensities are observed for individual signals at small interatomic distances <20 Å between low-Mg and high-Mg calcite forming species (Figure 3a). The difference in shape is present, for example, in signals at 3.1–3.2 Å (Ca-C) and 3.9–4.4 (Ca-Ca), which is consistent with a contraction of the lattice due to the partial replacement of Ca\(^{2+}\) for Mg\(^{2+}\). This is in agreement with the coordination environment of Mg\(^{2+}\) in foraminiferal calcite by Near-Edge X-ray Absorption Fine Structure as uniformly octahedrally coordinated, and hence substituting for Ca\(^{2+}\) in the calcite lattice (Branson et al., 2013). The difference observed for high-Mg calcite species in the 4.0–4.2 Å signal (Figure 3a), which includes Ca-Ca interactions in direction of the c-axis, might indicate a preferential incorporation of Mg\(^{2+}\) in direction of the c-axis of foraminifer test calcite, as also observed in other biogenic calcites (Graf, 1961; Zolotoyabko et al., 2010). The additional signal at 1.6 Å present for the high-Mg calcite benthic species (Figure 3a) is likely caused by Mg-O distances as well as artifacts of the Fourier transformation.

4.3. Crystallite Size Determination by Rietveld and PDF

The crystallite size determination for hyaline low-Mg planktic and high-Mg benthic foraminifers based on Rietveld refinement yields values between 70 and 85 nm (Table 1, Figure 2d), which is in agreement with the ordering length (300–500 Å; 30–50 nm) we observed in the PDF (Table 1, Figure 3b). The refined crystallite domain sizes of the different hyaline foraminifer species are similar, except for C. wuellerstorfi, which exhibits an average crystallite size that is approximately two times that of the other investigated species (Table 1, Figure 2). This indicates that the general construction of the test might be similar within low-Mg planktic and high-Mg benthic foraminifers, but cannot be assumed to be identical for all hyaline species. For crystalline materials with domain sizes as large as tens of nanometers, laboratory-based PDF analysis can serve as an unequivocal measure only for the minimum ordering length, due to instrumental dampening and artifacts of the Fourier transformation (Engami & Billinge, 2003), which is why this discrepancy is not resolved here. Our findings are consistent with crystallite dimension of 20–50 nm found in TEM studies of few investigated planktic and benthic foraminifers (Jacob et al., 2017; Oaki et al., 2006), and are within a similar range as a coherence length of 110–160 nm for the benthic foraminifer *Patellina*, as determined by high-resolution synchrotron-based XRD (Berman et al., 1993).

The XRD measurements in this study were conducted on assemblages of whole foraminifer tests, which contain different materials such as ontogenetic calcite, encrustations, residues of spines, and possibly partially...
recrystallized material (cf. Figure S1 in Supporting Information S1). These different calcite phases exhibit different morphologies, are formed by different mechanisms, result in different M/Ca compositions, and are hence expected to differ in crystallographic aspects (Izumida et al., 2022; Schiebel & Hemleben, 2017). However, only one dominant crystalline Mg-calcite phase is visible in the diffraction patterns of the hyaline foraminifers (Figures 2a and 2b). Hence, the relative volume of alternative phases can be concluded to be small in comparison to the bulk wall material, and may qualitatively not interfere with results from refinements and PDF calculations (i.e., only the spine base remains present in the test wall, see Figure S1 in Supporting Information S1, and additional nanoparticulate phases are not resolved). In addition, element concentrations are highly heterogeneous in the bulk shell material on a micrometer scale (e.g., in bandings in some species, possibly in association with organic material), may differ between chambers, and vary with the ontogenetic stages of the individuals as shown for several species (Branson et al., 2015, 2016; Eggins et al., 2003; Erez, 2003; Fehrenbacher et al., 2017; Geerken et al., 2019, 2022; Khanolkar et al., 2021; Schiebel & Hemleben, 2017; Yoshimura et al., 2017). As heterogeneous element concentrations are likely to cause heterogeneous levels of incorporation of impurities into the foraminifer test calcite lattice, it is possible that different grains experience different concentrations of defects. Considering all of the above, our determination of foraminifer test calcite structural parameters and crystallite dimensions represent a good estimate of the dominant shell wall component.

4.4. Nanogranular Fracture Surfaces

Scanning electron microscopy images of fractured hyaline foraminifer tests show a nanogranular substructure of the chamber walls in both planktic and benthic species (50–150 nm rounded entities, Figure 4). This is different from the smooth cleavage planes that would be expected when fracturing a single crystal, and also different from an apparently random assemblage of crystal needles of the miliolid species (Figure 4). As the chambers were fractured mechanically and without any chemical treatment, the observed morphology may be created by fracture propagation along the weakest part of the material, which are nanometer sized grain boundaries (Seto et al., 2012; Wolf et al., 2016). This implies that hyaline foraminifer bulk chamber walls are composed of at least two distinct materials, that are calcite nanocrystallites and a separate inter-crystallite material, which may differ in composition and/or chemical properties. Nanogranular features in fracture surfaces of foraminifer chamber walls are observed in this study for hyaline foraminifers, which were either live-collected, or selected from surface sediment assemblages (Figure 4, approx. age 0–3 ka). The similarity of the texture of live (plankton tow), core-top, and fossil planktic foraminifers, as observed in this and many studies (e.g., Debenay et al., 1996; Dubicka et al., 2018; Edgar et al., 2015; Nagai, Uematsu, Chen, et al., 2018; Nagai, Uematsu, Wani, et al., 2018; Pearson et al., 2001; Schiebel & Hemleben, 2017; Sexton et al., 2006), demonstrates that the nanogranular texture can be readily preserved in empty tests. Disintegration of an energetically stabilized crystal, which may have been produced by dissolution/recrystallization during diagenesis, into densely packed nanometer-sized crystallites under conditions present in marine surface sediments is considered unlikely. For example, in some cases, fossil foraminifers known to have undergone partial recrystallization have been shown to be partly composed of much larger (rather than smaller) crystallites than the pristine modern samples utilized here (Kozdon et al., 2011). Hence, we argue that the nanogranular features observed here are representative of the original test structure. In other cases, it has been observed that nanogrannular structures can be present in fossils where geochemical data suggests diagenetic recrystallization has occurred (Edgar et al., 2015; Sexton et al., 2006). We suggest that this implies a highly localized diagenetic dissolution/recrystallization reaction of the crystallites, or their surface, rather than complete dissolution/recrystallization of the whole chamber wall. This could, for example, be facilitated by a confinement of the crystallites by a rim of organic and/or impurity rich material (Bergström et al., 2015; Brunner et al., 2020; Sommerdijk & de With, 2008; Wolf et al., 2016), supporting our inferences on shell microstructure given above.

4.5. Micrometer Sized Regions of Coherent Scattering

The EBSD map of the hyaline planktic foraminifer *G. ruber albus* shows 3–10 μm sized regions of coherent crystallographic orientation to be strongly aligned with the c-axis oriented perpendicular to the chamber surface (Figure 5). This organization seems to be a common principle observed in a variety of planktic and benthic foraminifers, with similar reports of grain sizes for planktic (~10 μm) and benthic (~20 μm) species (Pabich et al., 2020; Read, 2019; Yin et al., 2021). The strict crystallographic orientation of the test calcite c-axes is
thought to reflect the presence of a tightly controlled, biochemically-governed mechanism in hyaline foraminifers, which is facilitated by epitaxial crystallisation on organic templates (Nil Fhlaithearta et al., 2013; Towe & Cifelli, 1967; Weiner & Erez, 1984). The presence of distinct crystals rather than one continuously aligned entity is indicated by randomly oriented \(a\)-axes (Figure 5), which suggests that foraminiferal test formation is a discontinuous process, that directs crystallisation into different compartments, possibly by the presence of separating organic sheets (Nagai, Uematsu, Chen, et al., 2018; Nakajima et al., 2016; Tyszka et al., 2019). A strict direction of the crystallographic \(c\)-axis perpendicular to the shell surface has also been observed in other biominerals and has been suggested to serve mechanical as well as optical purposes (Gim et al., 2019; Harding et al., 2014; Jacob et al., 2017; Merkel et al., 2009; Sommerdijk & de With, 2008; Towe & Cifelli, 1967; Wolf, 2021; Wolf et al., 2016).

4.6. Mesocrystals and Non-Classical Crystal Growth in Hyaline Foraminifer Tests

A grain size of several micrometers observed via EBSD, together with a crystallite domain size of up to \(\sim 100 \text{ nm}\) as determined from diffraction experiments and SEM images, indicates that hyaline foraminifer chamber walls are mostly made of micrometer scale mesocrystals (Figures 2–5). Mesocrystals are constituted of distinguishable nanometer scale entities, which are crystallographically aligned in a superlattice, and hence display crystallographic properties similar to single crystals at the larger scale (Bergström et al., 2015; Cölfen & Antonietti, 2005; Kim et al., 2014; Seto et al., 2012; Sturm & Cölfen, 2016). As we show in this study, these criteria are met by hyaline foraminifer test calcites, which entails the necessity of considering chemical principles of mesocrystal formation for foraminiferal bio-mineralization models.

In biominerals as well as in experimental studies, mesocrystallisation has been proposed to be realized via a non-classical crystal growth mechanism, that is, attachment of nanoparticles to a growing crystal surface, in contrast to classical growth by single ions (Bergström et al., 2015; Cölfen & Antonietti, 2005; De Yoreo et al., 2015; Floquet & Vielzeuf, 2012; Gal et al., 2014; Jehannin et al., 2019; Rao & Cölfen, 2017; Sturm & Cölfen, 2016). These nanoparticles can either be nanocrystals, which attach in an oriented manner (oriented attachment), or metastable (amorphous, colloidal or liquid) phases, which crystallize upon interaction with the mineral surface (Bergström et al., 2015; De Yoreo et al., 2015; Gal et al., 2014; Huang et al., 2018; Rao & Cölfen, 2018; Rodríguez-Navarro et al., 2016; Seto et al., 2012; Sturm & Cölfen, 2016; Wolf, 2021). The presence of a non-classical mechanism resulting in a mesocrystal can mean that the final average crystallite domain size does not exceed the size of the attaching unit, which we confirm for hyaline foraminiferal test calcite by XRD methods (crystallite domain sizes range nanometer dimensions, Table 1, Figures 2 and 3; as well as Berman et al., 1993). At the same time, the lattice orientation remains the same between different nanocrystallites of the same mesocrystal, which results in diffraction patterns similar to single crystals for each distinct mesocrystal, visible as, for example, spots instead of rings in XRD (Bergström et al., 2015; Cölfen & Antonietti, 2005; Gal et al., 2014; Jehannin et al., 2019; Sturm & Cölfen, 2016). This is confirmed for hyaline foraminifer calcite by EBSD (micrometer-sized regions of coherent crystallographic orientation, Figure 5; and Pabich et al., 2020; Read, 2019; Yin et al., 2021).

Crystallographic orientation and/or formation of the nanoparticles within the mesocrystals has been suggested to be achieved (a) by epitaxial crystallisation through mineral bridging, (b) with the guidance of a meshwork of organics, (c) by nucleation of ACC within an organic network and in situ crystallisation, (d) by oriented attachment of a previously formed nanocrystal, (e) by interface-driven nucleation, (f) via a polymer-induced liquid precursor (PILP), or (g) by accretion and crystallisation of amorphous colloids (Bergström et al., 2015; Cölfen & Antonietti, 2005; De Yoreo et al., 2015; Jehannin et al., 2019; Oaki et al., 2006; Pouget et al., 2009; Rao & Cölfen, 2017; Rao et al., 2019; Rodríguez-Navarro et al., 2016; Seto et al., 2012; Sommerdijk & de With, 2008; Sturm & Cölfen, 2016; Wolf, 2021; Wolf et al., 2016, 2012; Zhu et al., 2021). Either of these mechanisms may have different implications for the formation of geochemical signals in foraminiferal shell calcite, as they might employ transitional carbonate phases such as ACC and phase transformations to thermodynamically stable calcite, which have the potential to exert control over the evolution of element distributions during test formation (Dietzel et al., 2020; Evans et al., 2020; Mavromatis et al., 2017).

In order to stabilize nanoparticles against growth and prevent the fusion of mesocrystals into a single crystal (devoid of distinguishable building units), organic matter can act as a surfactant or confining matrix, which separates nucleating nanoparticles and prevents coalescence (Bergström et al., 2015; Cölfen & Antonietti, 2005;
Jehannin et al., 2019; Oaki et al., 2006; Rao & Cölfen, 2017; Sturm & Cölfen, 2016). This is consistent with a spherical and irregular shape of the nanocrystals devoid of crystal facets observed in hyaline foraminiferal calcite (Figure 4), which suggests preservation of the initial nanoparticle dimension upon crystallisation. Further confinement of the nanocrystallite might be provided by the formation of a grain boundary of organic matter and/or inorganic impurities during propagation of a crystallisation front within the nanogranule, as observed or proposed for abiogenic and biogenic calcites in the presence and absence of organic matter (Cölfen & Antonietti, 2005; Huang et al., 2018; Jehannin et al., 2019; Oaki et al., 2006; Rao & Cölfen, 2017; Sommerdijk & de With, 2008; Wolf et al., 2016; Wolf, 2021). A distinct inter-crystallite amorphous phase has been observed at grain boundaries in different hyaline foraminifer species in TEM studies from focused ion beam milled wedges of foraminifer shells (Jacob et al., 2017), which could possibly be a stabilized amorphous carbonate-organic composite material (Seto et al., 2012; Wolf et al., 2012, 2016).

Organic matter comprising different proteins and polysaccharides is known to be present at the site of biomineralization and within foraminifer test calcite in both hyaline benthic and planktic species (Cuif et al., 2008; Nagai, Uematsu, Chen, et al., 2018; Ní Fhlaithearta et al., 2013; Robbins & Brew, 1990; Robbins & Donachy, 1991; Sabbatini et al., 2014; Weiner & Erez, 1984). While the spatial distribution of this organic matter with respect to the mesocrystals is unclear, it is known from investigation of (e.g.) the δ^{15}N proxy that a share of N-containing matter is present in fossil shells even after rigorous cleaning protocols (e.g., Knapp et al., 2005). This implies that a portion of the organic matter is strongly protected within the shell, for which the interior of the mesocrystal is a plausible environment, both in between and within the nanocrystallites (cf. Section 4.2). Hence, it is hypothesized that occlusion of organic matter necessarily happens before or at crystallisation, which would consequently be either during formation of a carbonate phase in contact with organic matter or during nanoparticle attachment and final assembly of the mesocrystal.

Further, it is plausible that the processes outlined above take place in a delimited biomineralization space of a few micrometers width (Erez, 2003; Nagai, Uematsu, Chen, et al., 2018; Tyszka et al., 2019). Confinement of a crystallizing system to a small volume profoundly impacts critical properties such as nucleation dynamics, polymorph selection, and can dictate shape and crystallographic orientation, which is relevant for foraminiferal biomineralization at both the nano- and mesoscale (see Meldrum and O’Shaughnessy (2020) and references within). As such, the three-dimensional structure of the growing mesocrystals as well as their geochemistry are likely to be influenced by this aspect as well.

4.7. Model Extension of Foraminifer Chamber Crystallisation Including Non-Classical Formation Mechanisms

Based on the similarity of features observed for different planktic and benthic species in this study, which cover a wide range of symbiont-barren and symbiont-bearing species consisting of low-Mg and high-Mg calcite (Schiebel & Hemleben, 2017), we hypothesize that the presence of mesocrystalline chamber walls is a common feature of the hyaline foraminifers. Following the evidence given above, we extend the existing hyaline foraminifer biomineralization models (e.g., Bentov & Erez, 2006; Bentov et al., 2009; de Nooijer et al., 2014; Erez, 2003; Evans et al., 2018; Nehrke et al., 2013) by including a step of tightly controlled non-classical mesocrystallisation. We theorize that during formation of the test wall, growth of the mesocrystal can be facilitated by non-classical addition of either a previously formed nanoparticulate metastable carbonate phase, or by in situ formation of such a phase in the vicinity of a previously existing growth front. This model and its implications tie into the following existing key observations for foraminiferal biomineralization:

1. The preservation of a nanogranular fracture surface and nanocrystalline coherence lengths suggest that the nanocrystalline entities generally reflect the dimensions of the units which initially contributed to the growth of the mesocrystal. These dimensions are consistent with ACC precipitated in seawater-like inorganic experimental model solutions, which could serve as an initial precursor phase (Evans et al., 2019).
2. The alignment of the mesocrystal c-axis toward the chamber surface suggests that the final crystallisation of the nanoparticulate units happens at or after a step of attachment, possibly in direct interaction with an organic template.
3. The presence of organic material within the mesocrystals implies that either formation of a distinct carbonate phase or nanoparticle assembly to the mesocrystal happens within, or in contact with, an organic matrix which possibly plays a role in guiding the final stage of crystallisation (Sturm & Cölfen, 2016; Wolf et al., 2016).
This is consistent with a chamber precipitation template or delimited biomineralization space formed by a meshwork of organic linings (Cuif et al., 2008; Erez, 2003; Frontalini et al., 2019; Nagai, Uematsu, Chen, et al., 2018; Tyszka et al., 2019; Weiner & Erez, 1984).

4. As non-membrane-permeable dyes from labeled seawater are included into the ontogenetic calcite, either formation of the solid nanoparticulate (metastable) carbonate phase or mesocrystal assembly must happen in direct contact with endocytosed seawater (Erez, 2003; Bentov et al., 2009; Evans et al., 2018).

5. Conclusions

Here, we infer aspects of the biomineralization mechanisms of hyaline foraminifers from data generated using diffraction-based methods and electron microscopy, targeting the morphological and crystallographic structure of the foraminiferal test. We find that hyaline foraminifer tests are characterized by the presence of nanocrystallites with a diameter of ~100 nm, which build mesocrystals of approximately 3–10 μm strictly oriented with their crystallographic c-axis perpendicular to the outer test surface. The presence of mesocrystals may imply test formation via non-classical attachment of nanoparticulate units in the hyaline foraminifer species analyzed here. Consequently, we propose an extension of existing models of hyaline foraminifer biomineralization, which includes formation of metastable nanoparticulate carbonate phases in a delimited biomineralization space, construction of a mesocrystal by non-classical attachment, and directed in situ crystallisation of the mesocrystal. Together with observational evidence on organic linings in foraminifer biomineralization (Branson et al., 2016; Nagai, Uematsu, Chen, et al., 2018; Tyszka et al., 2019), these processes are likely supported or directed by organic compounds and/or templates.

As evidence for such mechanisms have been observed in different hyaline foraminifers in this and previous studies, including planktic and benthic species, symbiont-barren and symbiont bearing species consisting of low-Mg and high-Mg calcite phases, non-classical mesocrystal growth mechanism of tests may be a general feature of hyaline foraminifer test formation. Further understanding of the impact of such a mechanism in foraminiferal biomineralization on proxy formation has the potential to decrease uncertainties arising from “vital effects”, and hence contribute to more accurate and precise paleoenvironmental information.

Data Availability Statement

The data obtained for this research is available at https://doi.org/10.17617/3.D7HN31 (Arns et al., 2022).

Acknowledgments

We thank Ulrike Weis and Brigitte Stoll (MPIC) for conducting the LA-ICP-MS measurements, and Antje Sorowka (MPIC) for SEM imaging. We are grateful to Michael Steiert (MPIP) for performing XRD measurements. Further, we would like to thank two anonymous reviewers for thoughtful and constructive comments which improved this manuscript. Open Access funding enabled and organized by Projekt DEAL.

References

Addadi, L., Raz, S., & Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 15(12), 959–970. https://doi.org/10.1002/adma.200300381
Allen, K. A., Honisch, B., Egging, S. M., Haynes, L. L., Rosenthal, Y., & Yu, J. (2016). Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera. Geochimica et Cosmochimica Acta, 193, 197–221. https://doi.org/10.1016/j.gca.2016.08.015
Arns, A. I., Evans, D., Schiebel, R., Fink, L., Mezger, M., Alig, E., et al. (2022). Mesocrystalline architecture in hyaline foraminifer shells indicated by synchrotron radiation diffraction-based methods and electron microscopy, targeting the morphological and crystallographic structure of the foraminiferal test formation. Further understanding of the impact of such a mechanism in foraminiferal biomineralization on proxy formation has the potential to decrease uncertainties arising from “vital effects”, and hence contribute to more accurate and precise paleoenvironmental information.

Data Availability Statement

The data obtained for this research is available at https://doi.org/10.17617/3.D7HN31 (Arns et al., 2022).

Acknowledgments

We thank Ulrike Weis and Brigitte Stoll (MPIC) for conducting the LA-ICP-MS measurements, and Antje Sorowka (MPIC) for SEM imaging. We are grateful to Michael Steiert (MPIP) for performing XRD measurements. Further, we would like to thank two anonymous reviewers for thoughtful and constructive comments which improved this manuscript. Open Access funding enabled and organized by Projekt DEAL.
Harding, J. H., Freeman, C. L., & Duffy, D. M. (2014). Oriented crystal growth on organic monolayers. CrystEngComm, 16(8), 1430–1438. https://doi.org/10.1039/c3ee41677a

Heinrich, C. A., Pettie, T., Halter, W. E., Aigner-Torres, M., Audéat, A., Günther, D., et al. (2003). Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta, 67(18), 3473–3477. https://doi.org/10.1016/S0016-7037(03)00844-X

Hernleben, C., Anderson, O. R., Berthold, W.-U., & Spindler, M. (1986). Calcification and chamber formation in foraminifera—A brief overview (pp. 237–249). Biomimeralization in Lower Plants and Animals.

Huang, Y. C., Gindele, M. B., Knaus, J., Rao, A., & Gebauer, D. (2018). On mechanisms of mesocystal formation: Magnesium ions and water environments regulate the crystallization of amorphous minerals. CrystEngComm, 20(31), 4395–4405. https://doi.org/10.1039/c8ce00241j

Ishikawa, M., & Ichikuni, M. (1984). Uptake of sodium and potassium by calcite. Chemical Geology, 42(1–4), 137–146. https://doi.org/10.1016/0009-2541(84)90010-X

Jacob, D. E., Wirth, R., Agbaje, O. B. A., Branson, O., & Eggers, S. M. (2017). Planktic foraminifera form their shells via metastable carbonate phases. Nature Communications, 8(1), 1265. https://doi.org/10.1038/s41467-017-01955-0

Jehannin, M., Rao, A., & Cölfen, H. (2019). New horizons of nonclassical crystallization. Journal of the American Chemical Society, 141(26), 10120–10136. https://doi.org/10.1021/jacs.9b08188

Jochum, K. P., Jenkxen, A., Schiebel, R., Stoll, B., Weiss, U., Leitner, J., et al. (2019). High-resolution Mg/Ca measurements of foraminifer shells using femtosecond LA-ICP-MS for paleoclimate proxy development. Geochimica et Geophysica, Geosystems, 20(4), 2053–2063. https://doi.org/10.1029/2019GC008091

Jochum, K. P., Weiss, U., Stoll, B., Kuzmin, D., Yang, Q., Racek, I., et al. (2011). Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and Geospatial Analitical, 35(4), 397–429. https://doi.org/10.1111/j.1751-7910.2011.01200.x

Julias, P., Davis, T., Farrow, C. L., & Billinge, S. J. L. (2013). PDFGeX3: A rapid and highly automatic program for processing powder diffraction data into total scattering pair distribution functions. Journal of Applied Crystallography, 46(2), 560–566. https://doi.org/10.1107/S0021889813005190

Katz, M. E., Cramer, B. S., Hönisch, B., Miller, K. G., Rosenthal, Y., & Wright, J. D. (2010). Traditional and emerging geochemical proxies in foraminifera. Journal of Foraminiferal Research, 40(2), 165–192. https://doi.org/10.2113/gsjfr.40.2.165

Kim, Y.-Y., Ganesan, K., Yang, P., Kulak, A. N., Borukhin, S., Pechouk, S., et al. (2011). An artificial biomaterial formed by incorporation of copolymer micelles in calcite crystals. Nature Materials, 10(11), 890–896. https://doi.org/10.1038/nmat3103

King, K., & Hare, P. E. (1972). Amino acid composition of planktonic foraminifera: A paleobiological approach to evolution. Science, 175(4029), 1461–1463. https://doi.org/10.1126/science.175.4029.1461

Knapp, A. N., Sigman, D. M., & Lipschutz, F. (2005). N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series Study site. Global Biogeochemical Cycles, 19(1), 1–15. https://doi.org/10.1029/2004GB002320

Konrad, P., Purtscher, B., Gallien, P., Manvromatis, V., Gane, P., & Dietzel, M. (2018). Influence of aqueous Mg concentration on the transformation of amorphous calcium carbonate. Journal of Crystal Growth, 498, 381–390. https://doi.org/10.1016/j.jcrysgro.2018.07.018

Kontrec, J., Kralj, D., Brečević, L., Falini, G., Furnari, S., Nothig-Laso, V., & Miroslavčević, K. (2004). Incorporation of inorganic anions in calcite. European Journal of Inorganic Chemistry, 23, 4579–4585. https://doi.org/10.1002/ejic.200400268

Kozdon, R., Kelly, D. C., Kita, N. T., Fournelle, J. H., & Valley, J. W. (2011). Planktonic foraminiferan oxygen isotope analysis by ion microprobe technique suggests warm water surface temperatures during the Early Paleogene. Paleoceanography, 26(3). https://doi.org/10.1029/2010PA002056

Lang, A., Mijowska, S., Polishchuk, I., Furnari, S., Falini, G., Katsman, A., et al. (2020). Acidic monosaccharides become incorporated into calcite single crystals. —A European Journal, 26(70), 16860–16868. https://doi.org/10.1002/chem.202003344

Langer, M. R. (2008). Assessing the contribution of foraminiferan protists to global ocean carbonate production. The Journal of Eukaryotic Microbiology, 55(3), 163–169. https://doi.org/10.1111/j.1550-7408.2008.00321.x

Loeblich, A. R., & Tappan, H. (1984). Suprageneric classification of the Foraminiferida (Protozoa). Micropaleontology, 30(1), 1. https://doi.org/10.1002/jeic.200400268

Maclsa-Sánchez, E., Willinger, M. G., Pina, C. M., & Checa, A. G. (2017). Transformation of ACC into aragonite and the origin of the nanogranular structure of nacre. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-12673-0

Morard, R., Füllberg, A., Brummer, G. J. A., Greco, M., Jonkers, L., Wizemann, A., et al. (2019). Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoids. PLoS One, 14(12), 1–30. https://doi.org/10.1371/journal.pone.0225246

Nagai, Y., Uematsu, K., Chen, C., Wani, R., Tyszka, J., & Toyofuku, T. (2018). Weaving of biominalerization framework in rotoidal foraminifera: Implications for paleoceanographic proxies. Biogeosciences, 15(22), 6773–6789. https://doi.org/10.5194/bg-15-6773-2018

Nagai, Y., Uematsu, K., Wani, R., & Toyofuku, T. (2018). Reading the fine print: Ultra-microstructures of foraminiferal calcification revealed using focused ion beam microscopy. Frontiers in Marine Science, 5, 1–15. https://doi.org/10.3389/fmars.2018.00067

Nakajima, K., Nagai, Y., Suzuki, M., Oaki, Y., Naito, K., Tanaka, Y., et al. (2016). Mesoscopic crystallographic textures on shells of a hyaline radial foraminifer: Ammonia Beccari. CrystEngComm, 18(37), 7135–7139. https://doi.org/10.1039/c6ce01611a
Nehke, G., Keul, N., Langer, G., deNooijer, L. J., Bijma, J., & Meibom, A. (2013). A new model for biominerailization and trace-element signatures of foraminifera tests. Biogeosciences Discussions, 10(6), 9797–9818. https://doi.org/10.5194/bgd-10-9797-2013

Nielsen, L. C., De Yoreo, J. J., & DePaolo, D. J. (2013). General model for calcite growth kinetics in the presence of impurity ions. Geochemistry and Cosmochimica Acta, 115, 100–114. https://doi.org/10.1016/j.gca.2013.04.001

Ní Fhlaithhearta, S., Errst, S. R., Nierop, K. G. J., de Lange, G. J., & Reichart, G. J. (2013). Molecular and isotopic composition of foraminiferal organic linings. Marine Micropaleontology, 102, 69–78. https://doi.org/10.1016/j.marmicro.2013.06.004

Ögretmen, N., Schiebel, R., Jochum, K. P., Stoll, B., Weis, U., Repschläger, J., et al. (2020). Deep thermohaline circulation across the closure of the central American Seaway. Paleoceanography and Paleoclimatology, 35(12). https://doi.org/10.1029/2020PA004049

Oaki, Y., Kotachi, A., Miura, T., & Imai, H. (2006). Bridged nanocrystals in biominerals and their biominetics: Classical yet modern crystal growth on the nanoscale. Advanced Functional Materials, 16(10), 1633–1639. https://doi.org/10.1002/adfm.200600262

Ogino, T., Suzuki, T., & Sawada, K. (1987). The formation and transformation mechanism of calcium carbonate in water. Geochemistry and Cosmochimica Acta, 51(10), 2757–2767. https://doi.org/10.1016/0016-7037(87)90155-4

Pabich, S., Vollner, C., & Gussone, N. (2020). Investigating crystal orientation patterns of foraminiferal tests by electron backscatter diffraction analysis. European Journal of Mineralogy, 32(6), 613–622. https://doi.org/10.1016/j.ejmin.123-613-2020

Paquette, J., & Reeder, R. J. (1990). Single-crystal X-ray structure refinements of two biogenic magnesian calcite crystals. American Mineralogist, 75(9–10), 1151–1158.

Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., et al. (2001). Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs. Nature, 413(6855), 481–487. https://doi.org/10.1038/35097000

Pokroy, B., Flīch, A., & Zolotoyabko, E. (2006). The microstructure of biogenic calcite: A view by high-resolution synchrotron powder diffraction. Advanced Materials, 18(18), 2363–2368. https://doi.org/10.1002/adma.200600714

Pokroy, B., Quintana, J. P., Caspi, E. N., Berner, A., & Zolotoyabko, E. (2004). Anisotropic lattice distortions in biogenic aragonite. Nature Materials, 3(12), 900–902. https://doi.org/10.1038/nmat1263

Polishchuk, I., Bracha, A. A., Bloch, L., Levy, D., Kozackevich, S., Einger-Geller, Y., et al. (2017). Coherently aligned nanoparticles within a biogenic single crystal: A biological prepressing strategy. Science, 358(6368), 1294–1298. https://doi.org/10.1126/science.aag2156

Pouget, E. M., Romans, P. H. H., Goos, J. A. C. M., Frederick, P. M., deWith, G., & Sommerdijk, N. A. J. M. (2009). The initial stages of calcite growth on the nanoscale. Nature Communications, 7(1), 10187. https://doi.org/10.1038/ncomms10187

Rao, A., & Cölfen, H. (2018). From solute, fluidic and particulate precursors to complex organizations of matter. New perspectives on mineral nucleation and growth: From solution precursors to solid materials (pp. 155–183). Springer International Publishing. https://doi.org/10.1007/978-3-319-45669-0_8

Rao, A., & Cölfen, H. (2018). From solute, fluidic and particulate precursors to complex organizations of matter. The Chemical Record, 18(7–8), 1203–1221. https://doi.org/10.1002/tcr.201800003

Rao, A., Roncal-Herrero, T., Schmid, E., Drechsler, M., Scheffner, M., Gebauer, D., et al. (2019). On biominerailization: Enzymes switch on mesocrystal assembly. ACS Central Science, 5(1), 357–364. https://doi.org/10.1021/acscentsci.8b00853

Raz, S., Hamilton, P. C., Witt, F. H., Weiner, S., & Addadi, L. (2003). The transient phase of amorphous calcium carbonate in sea urchin larval spicles: The involvement of proteins and magnesium ions in its formation and stabilization. Advanced Functional Materials, 13(6), 480–486. https://doi.org/10.1002/adfm.200304285

Read, E. (2019). Diffraction and spectroscopy of marine calcite biominerals: Insights into structure and geochemistry. Retrieved from https://www.repository.cam.ac.uk/handle/1810/307395

Repschläger, J., Auderset, A., Blanz, T., Bremer, K., Böttner, C., Eich, C., et al. (2018). North Atlantic Subtropical Gyre Azores front (NASA‘G). September 10, 2016–October 7, 2016. Cruise No. MS58/1.

Robbins, L. L., & Brew, K. (1990). Proteins from the organic matrix of core-top and fossil planktonic foraminifera. Geochimica et Cosmochimica Acta, 54(8), 2285–2292. https://doi.org/10.1016/0016-7037(90)90052-M

Robbins, L. L., & Donachy, J. E. (1991). Proteins from the organic matrix of core-top and fossil planktonic foraminifera. Geochimica et Cosmochimica Acta, 54(9), 2285–2292. https://doi.org/10.1016/0016-7037(90)90052-M

Rodezni, E., & Koutsoukos, P. G. (1998). The transformation of vaterite to calcite: Effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth, 191(4), 783–790. https://doi.org/10.1016/S0022-0248(98)00385-6
