RNA-Seq and differential gene expression analysis in *Temora stylifera* copepod females with contrasting non-feeding nauplii survival rates: an environmental transcriptomics study

Ennio Russo¹,², Chiara Lauritano¹, Giuliana d’Ippolito², Angelo Fontana², Diana Sarno¹, Eric von Elert³, Adrianna Ianora¹ and Ylenia Carotenuto¹*

Abstract

Background: Copepods are fundamental components of pelagic food webs, but reports on how molecular responses link to reproductive success in natural populations are still scarce. We present a de novo transcriptome assembly and differential expression (DE) analysis in *Temora stylifera* females collected in the Gulf of Naples, Mediterranean Sea, where this copepod dominates the zooplankton community. High-Throughput RNA-Sequencing and DE analysis were performed from adult females collected on consecutive weeks (May 23rd and 30th 2017), because opposite naupliar survival rates were observed. We aimed at detecting key genes that may have influenced copepod reproductive potential in natural populations and whose expression was potentially affected by phytoplankton-derived oxylipins, lipoxygenase-derived products strongly impacting copepod naupliar survival.

Results: On the two sampling dates, temperature, salinity, pH and oxygen remained stable, while variations in phytoplankton cell concentration, oxylipin concentration and oxylipin-per-diatom-cell production were observed. *T. stylifera* naupliar survival was 25% on May 23rd and 93% on May 30th. De novo assembly generated 268,665 transcripts (isoforms) and 120,749 unique ‘Trinity predicted genes’ (unigenes), of which 50% were functionally annotated. Out of the 331 transcript isoforms differentially expressed between the two sampling dates, 119 sequences were functionally annotated (58 up- and 61 down-regulated). Among predicted genes (unigenes), 144 sequences were differentially expressed and 31 (6 up-regulated and 25 down-regulated) were functionally annotated. Most of the significantly down-regulated unigenes and isoforms were *A5 Putative Odorant Binding Protein* (*Obp*). Other differentially expressed sequences (isoforms and unigenes) related to developmental metabolic processes, protein ubiquitination, response to stress, oxidation-reduction reactions and hydrolase activities. DE analysis was validated through Real Time-quantitative PCR of 9 unigenes and 3 isoforms.

(Continued on next page)
Conclusions: Differential expression of sequences involved in signal detection and transduction, cell differentiation and development offered a functional interpretation to the maternally-mediated low naupliar survival rates observed in samples collected on May 23rd. Down-regulation of AS Obp along with higher quantities of oxylipins-per-litre and oxylipins-per-diatom-cell observed on May 23rd could suggest oxylipin-mediated impairment of naupliar survival in natural populations of T. stylifera. Our results may help identify biomarker genes explaining variations in copepod reproductive responses at a molecular level.

Keywords: De novo transcriptome assembly, Differential gene expression, Copepod, Temora stylifera, Maternal effects, Reproduction, Environmental transcriptomics

Background

Among zooplankton, marine and freshwater copepods represent one of the most morphologically and functionally diverse groups [1], playing a central role in food web dynamics and biogeochemical cycles [2]. In this perspective, assessment of biotic and abiotic factors influencing copepod populations can be of primary importance to understand marine pelagic food web functioning. Phytoplankton-derived oxylipins potentially represent key factors affecting wild copepod populations [3]. These molecules are end products of well characterized enzymatic pathways activated after cell wounding, starting from lipolytic release of free fatty acids (FFAs) from complex lipids [4–6] and proceeding through oxygenation of FFAs by lipoxygenases (LOX) [5, 7–16].

In the last two decades, extensive evidence was reported about impaired reproductive success in copepod females fed oxylipin producing diatoms, which led to detrimental effects on egg production rates, egg hatching and survival of non-feeding nauplii (NI/NII) through a maternal effect [9, 17–25]. Since 2011, a number of studies have started to inspect the effects of oxylipin producing diatoms on the molecular responses of copepod females, evaluating variations in the quantitative expression of selected genes of interest [26–31] and applying a suppression subtractive library approach to gain insight into copepod responses at a transcriptomic level [32]. Very recently, the de novo assembled transcriptome of copepod females feeding on oxylipin-producing diatoms has been also generated [33].

Variations in copepod egg production, hatching success and naupliar survival in response to phytoplankton abundance and composition have been investigated in several copepod species through field surveys [3, 22, 34–42], but information about the molecular responses of adult females from natural populations are still limited to the Northern Ariatic Sea [35].

In the present survey, we investigated the molecular responses of adult females of the calanoid copepod Temora stylifera from the Gulf of Naples (GoN), where it dominates the autumnal copepod community [40, 43–46]. The GoN has been traditionally described as an oligotrophic basin showing low phytoplankton densities and consequent low oxylipin concentrations. However, we recently showed that high oxylipin-per-litre concentration and oxylipin-per-diatom-cell productions seasonally occur in this area [47]. Several studies have already investigated the population dynamics of T. stylifera in the GoN, exploring whether abiotic factors and life-history traits could explain the marked seasonality of this copepod in the area [40, 44, 48]. However, no genomic and transcriptomic information are available for this species.

Through a High-Throughput Sequencing approach, we generated a de novo assembled transcriptome of adult T. stylifera females. We also performed a Differential Expression (DE) analysis between specimens collected on two consecutive weeks (the 23rd and the 30th of May 2017), when early non-feeding nauplii with opposite survival rates (25% vs 93%, respectively) were laid.

Analyses of de novo assembled transcriptomes were reported to explore the biosynthetic pathways of gaseous signals [49], the enzymatic processes leading to hormone biosynthesis [50], reproductive processes [51, 52], including diapause [53–56] as well as responses to stress [57, 58] and phycotoxins [59] in several pelagic copepod species. Our results offer the opportunity to understand if molecular responses of T. stylifera females from natural populations can help to better explain different naupliar survival rates in relation to environmental (temperature, salinity, pH and oxygen), biological (phytoplankton abundance and composition) and biochemical (phytoplankton-derived oxylipins) variables [47].

Results

Environmental, chemical and biological variables

Information about abiotic (temperature, salinity, pH and oxygen), phytoplankton and oxylipin variations on the two selected dates are reported in Table 1. Abiotic variables did not show wide variations between the two sampling dates. In contrast, more pronounced variations were detected in phytoplankton community abundance and composition, when considering major phytoplankton groups (i.e. coccolithophores, dinoflagellates and phytoflagellates <10 μm) as well as the most abundant...
Table 1 Abiotic variables, phytoplankton composition and oxylipins

Variables	May 23rd	May 30th	Unit
Environmental variables			
Oxygen	5.36	5.32	mg/m³
pH	8.14	8.15	0–14 PSU
Salinity	37.65	37.88	°C
Temperature	20.74	21.18	
Phytoplankton			
Coccolithophores	221,568	199,411	cells/L
Dinoflagellates	652,637	351,862	
Phytoflagellates < 10 μm	8,973,507	10,701,737	
Chaetoceros	2,149,211	1,191,802	
Leptocylindrus	1,440,193	2,104,897	
Skeletonema	110,784	332,352	
Pseudo-nitzchia	625,186	1,528,819	
Thalassiosira	0	354,509	
Other diatoms	562,710	874,964	
TOTAL	**14,735,796**	**17,640,353**	**ng/L**
Oxylipins/L			
HDoHE	85.16	34.25	
EHDPF	48.9	87.3	
HEPE	92.27	97.19	
EHETE	20.5	26.48	
HHTETe	0	2.13	
EHHDE	0	4.69	
TOTAL	**202.82**	**173.47**	**ng/L**
Oxylipins/diatom cell			
HDoHE-cell	17.42	5.36	fg/cell
EHDPF-cell	1.00	1.37	
HEPE-cell	18.88	15.22	
EHETE-cell	4.19	4.15	
HHTETe-cell	0	0.73	
EHHDE-cell	0	0.33	
TOTAL-cell	**41.49**	**27.16**	**fg/cell**

List of the measured environmental variables, phytoplankton abundance and composition, oxylipin-per litre (Oxylipins/L) concentration and oxylipin-per-diatom-cell (Oxylipins/diatom-cell) production measured at LTER-MC on the 23rd and the 30th of May 2017. Measure units are shown. Major phytoplankton groups and main diatom genera are reported. Oxylipin species: HDoHE = hydroxy-docosahexaenoic acid, EHDPF = epoxy-hydroxy-docosapentaenoic acid, HEPE = hydroxy-epoxy-docosapentaenoic acid, EHETE = epoxy-hydroxy-epoxy-docosapentaenoic acid, HHTETe = hydroxy-hexadecaatrienoic acid, EHHDE = epoxy-hydroxy-hexadecadienoic acid

Chaetoceros occurred at higher concentrations on the 23rd of May than the 30th, while higher densities of phytoflagellates < 10 μm and of the “other diatoms” group were observed on the 30th of May than the 23rd. Similarly, oxylipin concentrations were also higher on the 23rd (202.82 ng/L) than the 30th (173.47 ng/L) of May. Also, oxylipin-per-cell production was higher on the 23rd of May (41.49 fg/diatom-cell) than the 30th (27.16 fg/diatom-cell).

T-test results demonstrated that early-life history traits estimated for T. stylifera on the two sampling dates (May 23rd and 30th) differed significantly in terms of survival rates of NI nauplii (25 and 93% of survival, respectively, \(p < 0.001, N = 15, \) Fig. 1). By contrast, non-significant differences (\(p > 0.01, N = 15 \)) were observed in the number of faecal pellets (an indirect measure of feeding rates) (61.6 ± 3.39 and 72.3 ± 4.13 pellets per female per day, respectively), the number of spawned eggs (62.8 ± 11 and 75.36 ± 11.19 eggs per female per day, respectively) and the percentage of egg hatching success (63.4 ± 12.3% and 89.95 ± 4.05%, respectively).

De novo assembly and functional annotation of Temora stylifera transcriptome

Total RNA extracted from pools of T. stylifera females collected on May 23rd and 30th had an average concentration of 232.7 ng/μl, with RIN = 10 and 260/280 as well as 260/230 ratios ~ 2. Illumina-based RNA-Seq generated a total of ~ 132 million reads, after quality cleaning. The same number of reads was achieved for both the forward and the reverse cDNA filaments, supporting consistency in the sequencing output. Raw reads are stored into the NCBI Sequence Read Archive database under accession numbers PRJNA632714. The de novo assembly made with Trinity on high quality reads generated 268,665 transcripts (isoforms) (average length of 517.6 bp, \(N_{50} = 665 \)), and contained 120,749 ‘Trinity predicted genes’ (unigenes), i.e. non-redundant transcripts with unique TR#_c#_g# identifiers (Additional file 1: Table S1). Both the full (transcript isoforms) and the reference (unigenes) transcriptome, the latter consisting of the longest transcript isoform of each predicted gene, were processed for functional annotation. However, detailed description of annotation results is here provided only for the reference transcriptome.

Blast2Go mapping outputs indicated that almost 10% of the matching unigenes showed very high homology (\(0 < \text{E-value} < 10^{-100} \)) to similar sequences in the non-redundant protein database. Overall, more than 42% of the sequences showed high probability of homology (\(0 < \text{E-value} < 10^{-30} \)). Similarity values, which express the similarity percentage between the de novo assembled sequence and proteins in the non-redundant database, highlighted that a low fraction (1.7%) of the total
unigenes were almost identical (similarity between 95 and 100%), while 76.1% of the sequences had a similarity ranging from 100 to 60% (Additional file 2: Fig. S1). The species distribution of the best matches (top-hit) against the non-redundant protein database indicated that the largest fraction of matching unigenes showed similarities with sequences of the copepod *Eurytemora affinis*, followed by the copepod *Acartia pacifica*, the cladocerans *Daphnia pulex* and *Daphnia magna* and the copepod *Pseudodiaptomus poplesia*. The other top-hit species were mainly crustaceans or arthropods, while three molluscs and one brachiopod were among the other first 20 top-hit species (Additional file 2: Fig. S1).

Blast2Go annotation outputs showed that 31,346 unigenes, out of 62,648 that received significant matching in BLASTx, were functionally annotated (50.04%). In total, 126,358 GO annotation terms were assigned and distributed among GO categories for Biological Process (BP, 36.77%), Molecular Function (MF, 35.57%) and Cellular Component (CC, 27.66%) (Fig. 2). The majority of recognized unigenes were assigned to metabolic and cellular processes (29%), binding and catalytic activity (49.59 and 32.55%, respectively) and cell or cell part (both 20%).

Differential expression analysis and transcriptome validation

Analysis of expression levels of *T. stylifera* unigenes between samples collected on May 30th and May 23rd showed that a total of 144 unigenes were differentially expressed (FDR \(p \leq 0.05 \)). In particular, on May 23rd 108 genes were down-regulated, while 36 genes were up-regulated. Of the total 144 differentially expressed sequences, 31 (6 up-regulated and 25 down-regulated) received GO assignment and functional annotation (Table 2).

In order to have a wider spectrum of gene functions and to allow a more detailed description of the molecular responses of *T. stylifera* females on the two sampling dates, differential expression analysis was performed also on transcript isoforms. Among isoforms, 331 sequences were differentially expressed (FDR \(p \leq 0.05 \)), 199 were down-regulated and 132 were up-regulated. In total, 119 differentially expressed isoforms received GO assignment and were functionally annotated (58 up- and 61 down-regulated) (Additional file 3: Table S2). In total, 563 GO terms were associated to the differentially expressed isoforms and were assigned to the three main GO categories, which were almost equally divided among BP (37.18%) and MF (34.66%), while a smaller fraction described the CC category (28.16%). Analysis of GO distribution among the three main categories was also repeated dividing up- and down-regulated isoforms (Fig. 3). Results showed similar number of up-regulated and down-regulated sequences in the different GO in terms of BP, MF and CC categories.

Interestingly, a number of specific GO terms contained isoforms that were exclusively up- or down-regulated on May 23rd in comparison to May 30th (Fig. 3). Among BP sub-categories, sequences involved in ATP metabolism (6 sequences), cell communication (4 sequences), cellular response to stimulus (4 sequences), signal transduction (4 sequences), cellular development (1 sequence), cellular localization (1 sequence) and organism interaction (1 sequence) were specifically down-regulated. In contrast, sequences involved in catabolic processes (2 sequences), cellular component organization (2 sequences), anatomical structure morphogenesis (1 sequence), microtubule-based process (1 sequence), negative regulation of metabolic process (1 sequence), pattern specification process (1 sequence) and sexual reproduction (1 sequence) were exclusively up-regulated.

Consistent differences between replicates collected on May 30th and May 23rd were supported by clustering among objects (Q-mode analysis) described by raw
counts of both the differentially expressed unigenes and isoforms (Fig. 4). Also, such clustering was confirmed when raw counts of isoforms involved in specific molecular pathways were selected and analysed separately (Fig. 4).

Most of the significantly down-regulated unigenes and isoforms on May 23rd were described as *A5 Putative Odorant Binding Protein* (*Obp*, annotated as sequences involved in ‘response to stimulus’). Other down-regulated unigenes were annotated as sequences related to developmental metabolic processes (involving chitin and collagen), protein ubiquitination, response to stress (mainly *Heat Shock Protein 70*), oxidation-reduction reactions and hydrolase activities. Similarly, additional down-regulated isoforms were involved in respiration, protein binding, transmembrane transport and cellular development. The significantly up-regulated unigenes and isoforms were mainly involved in reproduction, cell development and proliferation (e.g. *Vitellogenin-like unigenes*, *RNA Helicase* and *Lipoprotein Receptor* unigenes), transmembrane transport and reception activity.

Based on these results, 9 unigenes and 3 isoforms were selected as Gene of Interests (GOIs) for transcriptome validation through RT-qPCR analysis depending on function, fold-change, significance (adjusted *p*-values), sequence length, E-value and sequence similarity percentage. Although unigenes offered a narrower array of functions in comparison to isoforms, most primers were selected from unigenes to reduce redundancy due to multiple transcript isoforms within the same Trinity gene cluster. Amplicons were all in the range of 111–228 bp and showed primer amplification efficiencies between 1.9 and 2.1. The full list of primer sequences for these selected sequences of interest is shown in Table 3.

For RT-qPCR analysis, the expression of GOIs was normalized considering 18S ribosomal RNA (18S) and Ubiquitin (*Ubi*) as reference genes (Additional file 4: Table S3). These two genes were indicated as the most stable ones among the five candidates selected as potential reference sequences according to results provided by RefFinder [60] (mean of ranking values: 1 and 1.68, respectively).
Table 2: Temora stylifera differentially expressed unigenes (Continued)

Trinity ID number identifier	Length (bp)	log2-FC	p-adj	Description	GO IDs
DN48918_c10_g1_11	214	-3.13	0.0009	putative odorant-binding protein A5	
DN42279_c0_g1_11	359	-3.03	2.61	collagen-like protein	
DN41737_c0_g1_11	478	-2.95	0.01	---NA---	
DN42313_c0_g1_14	230	-2.93	4.87	---NA---	
DN48948_c2_g1_11	220	-2.85	3.64	putative odorant-binding protein A5	
DN48018_c8_g1_11	223	-2.82	0.0006	39S ribosomal protein L38, mitochondrial	
DN59703_c2_g3_11	286	-2.81	1.92	---NA---	
DN59015_c1_g1_13	1031	-2.78	0.04	S1 transposase InsAB	
DN52417_c2_g3_12	1136	-2.77	0.01	conserved hypothetical protein	
DN59703_c2_g1_12	239	-2.68	6.39	---NA---	
DN48788_c0_g2_14	1921	-2.68	0.009	dentin sialophosphoprotein isoform X2	
DN46462_c2_g1_11	271	-2.6	6.82	---NA---	
DN48918_c6_g2_12	368	-2.64	6.82	---NA---	
DN51686_c3_g3_12	821	-2.63	0.01	---NA---	
DN46462_c2_g2_13	229	-2.62	7.97	OV-16 antigen-like	
DN51574_c1_g2_13	2092	-2.60	0.04	23S rRNA (guanosine(2251)-2′,3′-O-methyltransferase RinB	
DN48918_c11_g1_11	229	-2.55	0.01	OV-16 antigen-like	
Trinity ID number identifier	Length (bp)	log2-FC	p-adj	Description	GO IDs
-----------------------------	------------	----------	-------	-------------	-------------------------
TRINITY_DN52057_c0_g1_i2	1042	-2.54	0.0001	---NA---	
TRINITY_DN56306_c1_g1_i2	347	-2.53	8.91	OV-16 antigen-like	
TRINITY_DN48919_c5_g1_i2	287	-2.53	3.50	putative odorant-binding protein A5	
TRINITY_DN48918_c6_g1_i2	327	-2.53	6.98	OV-16 antigen-like	
TRINITY_DN48918_c0_g1_i2	202	-2.52	0.01	OV-16 antigen-like	
TRINITY_DN48948_c0_g1_i1	1761	-2.5	0.03	uncharacterized protein LOC11700481	
TRINITY_DN48948_c1_g1_i2	298	-2.44	0.03	---NA---	
TRINITY_DN48948_c1_g2_i2	213	-2.44	0.01	---NA---	
TRINITY_DN48948_c1_g2_i1	216	-2.39	0.0007	putative odorant-binding protein A5	
TRINITY_DN48564_c3_g1_i5	1041	-2.36	6.85	protein D3	
TRINITY_DN48522_c5_g1_i1	273	-2.36	2.47	---NA---	
TRINITY_DN53544_c0_g3_i2	1498	-2.34	0.01	altered inheritance of mitochondria protein 3-like	
TRINITY_DN48948_c1_g1_i1	315	-2.32	3.64	---NA---	
TRINITY_DN44278_c0_g1_i1	204	-2.3	0.03	cytochrome c oxidase subunit I (mitochondrion)	
TRINITY_DN60327_c0_g1_i1	239	-2.22	0.02	---NA---	
TRINITY_DN53350_c0_g1_i1	250	-2.19	0.008	collagen alpha-1(XI) chain-like	
TRINITY_DN60534_c0_g1_i3	490	-2.16	0.02	---NA---	
TRINITY_DN48918_c3_g2_i4	1026	-1.88	0.02	uncharacterized protein LOC11714070	
TRINITY_DN48367_c6_g8_i4	224	-1.86	0.04	malate dehydrogenase, mitochondrial	
TRINITY_DN50562_c0_g1_i4	930	-1.86	0.02	cytochrome P450 2C9-like	
TRINITY_DN50562_c0_g1_i4	254	-1.84	0.03	---NA---	
TRINITY_DN43240_c1_g1_i1	243	-1.83	0.0006	---NA---	
TRINITY_DN48564_c3_g1_i5	290	-1.79	0.02	---NA---	
TRINITY_DN61944_c3_g2_i1	569	-1.78	0.03	DNA ligase 1-like isoform X2	
TRINITY_DN38322_c1_g1_i3	335	-1.76	0.01	heat shock protein 70	
TRINITY_DN60002_c1_g1_i1	2425	-1.75	0.001	ariadne protein	
TRINITY_DN53340_c0_g1_i1	1921	-1.75	0.003	Leukocyte receptor cluster member 9	
TRINITY_DN53139_c4_g1_i3	305	-1.95	0.0006	---NA---	
TRINITY_DN53118_c0_g1_i2	1123	-1.95	0.0004	cytochrome b5-like	
TRINITY_DN46104_c2_g1_i2	715	-1.94	0.03	hypothetical protein T11_14937	
TRINITY_DN59998_c0_g2_i5	1026	-1.88	0.02	uncharacterized protein LOC11714070	
TRINITY_DN48564_c3_g1_i5	224	-1.86	0.04	malate dehydrogenase, mitochondrial	
TRINITY_DN48367_c6_g8_i4	930	-1.86	0.02	cytochrome P450 2C9-like	
TRINITY_DN50562_c0_g1_i4	254	-1.84	0.03	---NA---	
TRINITY_DN53139_c4_g1_i3	243	-1.83	0.0006	---NA---	
TRINITY_DN43240_c1_g1_i1	290	-1.79	0.02	---NA---	
TRINITY_DN61944_c3_g2_i1	569	-1.78	0.03	DNA ligase 1-like isoform X2	
TRINITY_DN38322_c1_g1_i3	335	-1.76	0.01	heat shock protein 70	
TRINITY_DN60002_c1_g1_i1	2425	-1.75	0.001	ariadne protein	
TRINITY_DN53340_c0_g1_i1	1921	-1.75	0.003	Leukocyte receptor cluster member 9	
TRINITY_DN53139_c4_g1_i3	236	-1.74	0.03	---NA---	
TRINITY_DN50562_c0_g2_i2	866	-1.74	0.002	cytochrome P450 CYP3034A1	
TRINITY_DN50562_c0_g2_i2	866	-1.74	0.002	cytochrome P450 CYP3034A1	
Table 2 Temora stylifera differentially expressed unigenes (Continued)

Trinity ID number identifier	Length (bp)	log2-FC	p-adj	Description	GO IDs
TRINITY_DN57961_c5.g1.i1	370	-1.3	0.03	heat shock protein beta-1	GO:0005506
TRINITY_DN58353_c5.g2.i2	232	0.99	0.01	——NA——	
TRINITY_DN60192_c5.g2.i2	267	1.01	0.0008	——NA——	
TRINITY_DN60261_c1.g1.i2	259	1.07	0.01	——NA——	
TRINITY_DN48585_c5.g2.i2	257	1.07	0.01	transforming growth factor-beta-induced protein ig-h3-like	C:GO:0016021; P:GO:0006588; F:GO:0016202; C:GO:00055085
TRINITY_DN59826_c1.g2.i2	2210	1.11	0.005	organic cation transporter protein-like	C:GO:0016021; F:GO:0003824; GO:0006544; P:GO:00055085
TRINITY_DN47352_c2.g1.i1	566	1.11	0.002	uncharacterized protein	F:GO:0005506
TRINITY_DN61324_c6.g1.i4	1130	-1.28	0.003	arylsulfatase B-like	P:GO:0008152; F:GO:0008486
TRINITY_DN61324_c6.g1.i1	2085	-1.26	0.02	phosphatidylserine decarboxylase	F:GO:0004639; P:GO:00055064; P:GO:0005563; P:GO:0006544; P:GO:0008654; F:GO:00046486
TRINITY_DN60327_c0.g3.i1	431	-1.53	0.003	e3 ubiquitin-protein ligase Mdm2-like isoform X1	C:GO:0005576; P:GO:0006030; F:GO:0008061
TRINITY_DN51606_c3.g1.i1	201	-1.67	0.04	heat shock protein beta-1	
TRINITY_DN46142_c0.g1.i1	228	-1.62	0.03	peroxins 3-A1 precursor	
TRINITY_DN49225_c2.g1.i3	356	-1.54	0.02	——NA——	
TRINITY_DN54543_c0.g1.i1	244	-1.54	0.007	peroxidase, putative	
TRINITY_DN54585_c0.g1.i4	818	-1.53	0.003	——NA——	
TRINITY_DN55139_c3.g1.i1	302	-1.52	0.005	——NA——	
TRINITY_DN61324_c6.g2.i2	221	-1.48	0.02	arylsulfatase B-like	
TRINITY_DN37862_c0.g1.i2	292	-1.45	0.04	arylsulfatase B-like	P:GO:0008152
TRINITY_DN46682_c4.g1.i3	247	-1.4	0.01	ubiquitin	F:GO:0005515
TRINITY_DN55897_c0.g1.i1	2619	-1.37	0.007	sodium-dependent nutrient amino acid transporter 1-like	F:GO:0003528; P:GO:0006812; F:GO:0006836; C:GO:00016021
TRINITY_DN54635_c6.g2.i2	1086	-1.36	0.009	——NA——	
TRINITY_DN51606_c2.g1.i1	204	-1.32	0.03	heat shock protein beta-1-like	
TRINITY_DN57763_c0.g1.i1	850	-1.32	0.03	——NA——	
TRINITY_DN49317_c3.g1.i1	1068	-1.31	0.0008	Kelch-like protein 12	F:GO:0005515
TRINITY_DN51502_c2.g2.i2	599	-1.3	0.009	heat shock protein 70 E2	F:GO:0005524

(Continued)
Normalized expression of the selected GOIs for transcriptome validation supported RNA-Seq results, because 9 sequences out of 12 reflected the same up- or down-regulation patterns as in the differential expression analysis (Fig. 5). However, the genes Protein Obstructor E (Obst) and Heat Shock Protein 70 (Hsp70) as well as the isoform MOB Kinase Activator 1B (Mob1b) showed an opposite trend in comparison to RNA-Seq results. In general, log$_2$-fold change indicating differential expression in _T. stylifera_ females collected on May 23rd in comparison to those collected on May 30th was larger in the RNA-Seq output than RT-qPCR results. In particular, RNA-Seq log$_2$-fold-changes of the three selected isoforms (Mob1b, Vasa and Pafah; log$_2$-FC = −9.48, 7.14 and 6.93, respectively) were much higher than

Table 2 _Temora stylifera_ differentially expressed unigenes (Continued)

Trinity ID number identifier	Length (bp)	log$_2$-FC	p-adj	Description	GO IDs
TRINITY_DN44753_c2_g1_1i	282	1.13	0.003	---NA---	
TRINITY_DN46080_c1_g2_1i	298	1.23	0.003	---NA---	
TRINITY_DN47755_c1_g1_1i	231	1.34	0.001	---NA---	
TRINITY_DN39167_c0_g1_1i	458	1.43	0.03	vitellogenin receptor	
TRINITY_DN49031_c4_g1_1i	214	1.44	0.002	---NA---	
TRINITY_DN56235_c0_g1_1i	867	1.5	0.002	facilitated trehalose transporter Tret1-like	
TRINITY_DN48929_c1_g1_1i	272	1.57	0.0004	---NA---	
TRINITY_DN53823_c0_g1_1i	1704	1.58	0.01	---NA---	
TRINITY_DN50724_c4_g1_1i	259	1.68	0.003	---NA---	
TRINITY_DN47273_c4_g1_1i	201	1.77	0.002	---NA---	
TRINITY_DN47638_c5_g1_1i	269	2.09	0.004	---NA---	
TRINITY_DN46792_c0_g1_1i	419	2.15	0.001	---NA---	
TRINITY_DN48936_c0_g1_1i	2363	2.16	0.003	uncharacterized protein	LOC111698428
TRINITY_DN46832_c5_g1_1i	221	2.24	0.04	---NA---	
TRINITY_DN46134_c9_g2_1i	368	2.34	0.01	---NA---	
TRINITY_DN44469_c1_g3_1i	295	2.42	6.52$^{-10}$	---NA---	
TRINITY_DN48983_c0_g1_1i	2068	2.61	0.03	---NA---	
TRINITY_DN47725_c0_g1_1i	324	2.75	0.01	---NA---	
TRINITY_DN57759_c4_g3_1i	224	3.11	2.36e-07	---NA---	

Table 2 _Temora stylifera_ differentially expressed unigenes (Continued)

Trinity ID number identifier	Length (bp)	log$_2$-FC	p-adj	Description	GO IDs
TRINITY_DN43876_c0_g1_1i	848	3.42	1.39$^{-10}$	---NA---	
TRINITY_DN26125_c0_g1_1i	1469	3.55	0.02	probable serine/threonine-protein kinase samkA	
TRINITY_DN47135_c3_g1_1i	240	3.57	3.94$^{-10}$	---NA---	
TRINITY_DN41595_c0_g1_1i	1708	3.63	0.02	uncharacterized protein	LOC111704026 isoform X2
TRINITY_DN44116_c1_g1_1i	1536	3.76	0.0003	neuronal acetylcholine receptor subunit alpha-10-like isoform X1	
TRINITY_DN54042_c0_g1_1i	2084	4.07	0.01	---NA---	
TRINITY_DN57931_c1_g6_1i	814	5.11	0.01	N-acetylglucosamine 2-epimerase	
TRINITY_DN40267_c0_g1_1i	261	5.41	0.003	putative ATP-dependent RNA helicase me31b	
TRINITY_DN52242_c0_g2_1i	1104	6.73	1.32$^{-10}$	---NA---	
TRINITY_DN52242_c0_g2_1i	312	7.13	0.0003	---NA---	
TRINITY_DN40250_c2_g3_1i	201	8.75	0.01	---NA---	

| Trinity ID number with predicted gene and isoform identifiers, length (bp), log$_2$-Fold-Change (log$_2$-FC), adjusted p-value (p-adj) of statistical analysis (FDR) for each predicted genes, sequence description and functional annotation as provided by Blast2Go for the longest isoform. Unigenes are listed from the most down-regulated to the most up-regulated one, as indicated by log$_2$-FC

| Trinity ID number with predicted gene and isoform identifiers, length (bp), log$_2$-Fold-Change (log$_2$-FC), adjusted p-value (p-adj) of statistical analysis (FDR) for each predicted genes, sequence description and functional annotation as provided by Blast2Go for the longest isoform. Unigenes are listed from the most down-regulated to the most up-regulated one, as indicated by log$_2$-FC
RT-qPCR values. On the contrary, the expression ratio obtained after RT-qPCR analysis for the unigenes A5 Obp (log₂-FC = −4.6), Arih1 (log₂-FC = −0.85), Ppa2 (log₂-FC = −1.94), Arsb (log₂-FC = −1.78) and Crebl (log₂-FC = −1.28) resembled results obtained from the RNA-Seq analysis (log₂-FC = −4.55, −1.76, −3.72, −1.29 and −2.03, respectively).

Discussion

Estimating early-life history variables such as egg production, hatching success and survival rates of non-feeding (NI/NII) nauplii in field and laboratory studies has been traditionally considered to infer recruitment potential in copepod populations [18, 34, 40, 42]. In this perspective, understanding which molecular mechanisms contribute to define naupliar viability may help predict reproductive responses of natural copepod populations. In particular, our DE analysis may allow elucidating molecular mechanisms affecting naupliar viability in *T. stylifera* females collected from natural populations in the Gulf of Naples (GoN). Information about environmental variables, phytoplankton community composition and abundance, oxylipin-per-litre concentrations and oxylipin-per-diatom-cell production can elucidate the influence of these variables on molecular responses of copepod females and final naupliar viability. While on one side environmental variables were proposed as major factors affecting *T. stylifera* population in the GoN [44, 48], on the other side wide evidence has been provided about the detrimental effect of phytoplankton-derived oxylipins on the reproductive success of grazer copepods [9, 17–22, 24, 36], possibly in relation to differential expression of key genes involved in reproduction and stress responses [3, 26–33, 35].

The present transcriptome analysis resulted in 268,665 transcripts (isoforms) and 120,749 predicted genes (unigenes). These numbers were sensibly higher than results reported in other calanoid copepods, such as *Calanus helgolandicus* [33], *C. finmarchicus* [61], *Calanus sinicus* [62], *Temora longicornis* [57] and *Acartia tonsa* [58].
Rather, our de novo transcriptome assembly for *T. stylifera* was much closer to results presented by [52] for *C. finmarchicus*, because these authors reported 241,140 transcripts and 124,157 components (corresponding to our Trinity predicted genes). The vast majority of the 20 top-hits BLAST species for the present transcriptome was represented by crustaceans and the first two top-hit species were the copepods *Eurytemora affinis* and *Acartia pacifica*. High affinity of the blasted copepod sequences to crustaceans and arthropods is increasing in the last years [33, 57, 63] and this indicates that publicly available copepod genomic resources are improving. Nonetheless, only nearly 50% of *T. stylifera* transcripts and predicted genes found hits in BLASTx and around 25% of these sequences received GO annotation. These low percentages demonstrate that much effort is still needed to improve genomic resources for copepods, even if the present results suggest improvements from previous de novo transcriptomic analyses [61, 62]. Annotation output of *T. stylifera* transcriptome showed that most unigenes were annotated in metabolic and cellular processes BP sub-categories and in cell or cell part CC sub-categories, in good agreement with previous transcriptomic studies on calanoid copepods [33, 49, 57, 58, 62].

After an overview of the de novo transcriptomic assembly and annotation, we inspected if our differential analysis could help infer maternally-related molecular processes involved in naupliar survival. We compared expression rates in *T. stylifera* adult females generating highly viable nauplii (on May 30th) with those of females...
Table 3 List of unigenes and isoforms tested for *Temora stylifera* transcriptome validation

Name	A L (bp)	log₂-FC	p-adj	Primers	%E
A5	130	−4.61	9−12	F: GCCCTGTTGCCGAACATTGTT	110
				R: TCTGACCGGCTGACTC	
CREBL1	111	−2.04	2−3	F: GTACAAGCTGGAGAGGACCTG	103
				R: GCCCTATTGGCCCTCTCCCT	
me31b1	136	5.42	4−3	F: TCTGGACGAAGCGGAACAG	114
				R: CGCATGAAGGACTCGACCTG	
Ppa21	140	−3.72	1−3	F: GCTTGGCTTAACCTGGCTG	113
				R: CGCACGGTAAGTCACAGAG	
Obst-E	228	−1.62	9−5	F: CAAGATCGACTTGCTGGGCA	103
				R: CGAGCCTTTCACTCCACTT	
ARIH1	200	−1.76	2−3	F: AGATGGGGCTGCAACTAC	106
				R: CTCAATCTTCTCCAGCGCA	
ARSB1	116	−1.29	4−3	F: ACAAACAGGGGCTCAACACA	108
				R: TCAAACTCTGGCCACCCGTG	
Hsp701	133	−1.25	3−2	F: CCATTGGACTTACGAGGC	102
				R: TTGGCGTCAATTGCGAGGT	
VLDL1	132	1.44	4−2	F: ATGCGAGGGCTGATGGCTG	112
				R: TGGATCGTGGACACCTCTG	
MOB1B2	156	−9.48	4−10	F: TTGTCCTTGACATCGCACTG	89
				R: TTGCTGGAGAACAAGGACTC	
Vasa2	138	7.14	3−4	F: CGCCTTACAGTACACCCAGT	103
				R: GCGGAGAACATAGGCTGGT	
PAFAH2	163	6.93	2−3	F: GCCCTACCTCGCTCTCCAG	87
				R: AGGGCGTATTGCGATCCCTC	

Name, amplicon length (A L) (bp), log₂-Fold-Change (log₂-FC), adjusted p-value (p-adj), primer sequence and amplification efficiency percentage (%E) are shown. "1": unigenes; "2": isoforms.

Fig. 5 Comparison between RNA-Seq and RT-qPCR in *Temora stylifera*. Relative expression ratio (log₂-Fold-Change, FC) of 9 unigenes (A5, Obst, ARIH1, Ppa2, Arsb, Hsp-70, Vldlr, Me31b and Crebl2) and 3 isoforms (Mob1b, Vasa and PAFAH) in *Temora stylifera* from May 23rd vs 30th samples, measured through RNA-Seq (blue bars) or RT-qPCR (yellow bars). For RT-qPCR results, bars represented mean ± SD values and data are normalized to RNA 18S and Ubi reference genes.
generating nauplii with low survival rates (on May 23rd) and found that differentially expressed sequences were mostly involved in signal perception and transduction as well as in reproductive and developmental processes.

More in particular, most down-regulated transcripts on May 23rd were Putative Odorant-Binding Proteins. Most of them were A5-Binding Proteins (belonging to the Phosphatidylethanolamine-Binding Protein class), whose expression has been found in the palps and antenna of the mosquito Anopheles gambiae [64]. Odorant binding proteins (Obp) are part of the arthropod olfactory system, which has been extensively characterized in the model fly Drosophila melanogaster [65]. In this organism, suppression of Obp expression mediated an altered behavioural response [66] and modulation in the ingestion of bitter tastants [67]. In particular, inhibition of Obp A5 in D. melanogaster females led to differential responses to benzaldehyde and citral, to increased ingestion of N-phenylthiourea and papaverine as well as to reduced consumption of caffeine and denatonium benzoate. These results support that Obps in Drosophila are involved in detection of harmful chemicals. In fact, Obps were found to mediate a negative response (i.e. avoidance) of Drosophila sechellia to phyco-toxins, because the Obps 57d and 57e allowed recognition of the plant-derived hexanoic acid and octanoic acid [68, 69].

One of the most important features highlighted in the Obp modulation as response to olfactory stimuli in D. melanogaster is that Obp gene expression is combinatorial [66, 67]. This means that the response to an odorant stimulus is regulated by the expression of multiple Obps. Copepods base their feeding behaviour on mechanosensory setae, chemosensory sensilla (i.e. aesthetascs) or bimodal sensilla, present on antennules A1, antennas and the maxilliped. Such sensory organs allow copepods to distinguish prey morphology, to detect foraging stimuli and avoid food items on the basis of chemicals [70]. In spite of combinatorial regulation as in D. melanogaster, our differential analysis revealed down-regulation of only A5 Obps along with those sequences described as OV-16. This result could suggest specific involvement of A5 Obp in the response to algal-derived toxic compounds in T. stylifera females. Despite major differences in signal perception between aquatic and non-aquatic environments [71, 72], Obps in arthropods likely encode for proteins displaying similar functions. Several experiments have reported different copepod behaviours in response to specific preys or compound classes [73–75]. In particular, dissolved polyunsaturated aldehydes (PUAs), a class of volatile oxylipins, induced attraction of T. stylifera females in odour-choice experiments, suggesting that the copepods showed a behavioural preference for oxylipins [73]. Total oxylipin-per-litre concentration and oxylipin-per-diatom-cell production were both higher on May 23rd than 30th. Down-regulation of A5 Obps in T. stylifera could potentially suggest that detection capacity of phytoplankton-derived harmful molecules was reduced in copepod females collected on May 23rd, leading to unselective feeding, higher ingestion of oxylipin producing diatoms and negative effects on larval survival.

In contrast to wide functional information of Obp regulation in D. melanogaster, to the best of our knowledge this is the first time that differential expression of these sequences is reported in a copepod. Down-regulation of A5 Obp in T. stylifera females was confirmed by RT-qPCR results (log2-FC in RNA-Seq = −4.6; log2-FC in RT-qPCR = −4.55) and could have played a relevant role in determining ingestion of harmful preys and low reproductive output on May 23rd. These results suggest that Obps can represent important target genes and proteins to investigate how copepods respond to phytoplankton-derived chemicals.

In addition to sequences involved in signal perception, differential analysis supported altered functions in signal transduction, because four sequences classified in the signal transduction BP sub-category were down-regulated. The 1-Phosphatidylinositol 3-Phosphate 5-Kinase (Fab1b) showed the strongest down-regulation (log2-FC of −10.34). This enzyme catalyses phosphorylation of the Phosphatidylinositol 3-Phosphate to synthesize Phosphatidylinositol 3,5-Bisphosphate, PI (3, 5) P2. This molecule is one of the seven regulatory Polyphosphoinositides (PPIn) that are ubiquitous in eukaryotes, where they regulate membrane trafficking in endosomes and lysosomes [76]. Ablation of the Phosphoinositide kinase Pikfyve (the FAB1B counterpart in mammals) and consequent depletions in intracellular levels of PI (3,5) P2 have been demonstrated to induce embryonic and neonatal lethality in mammals [77]. In fact, PIP2 acts precursor for Phosphatidylinositol triphosphate (PIP3), a membrane lipid acting as a docking site for proteins involved in cell survival, proliferation and differentiation [78].

In support to the down-regulation of Fab1b, the significant up-regulation of the Platelet-Activating Factor Acetyl Hydrolase (Pafah) suggests repression of the PPIn pathway. In fact, PAFAH is a particular type of Phospholipase A2 that deacylates the Platelet-Activating Factor (PAF), inducing loss in its activity [79, 80]. PAF is one of the most potent lipid mediators and occurs in membrane phospholipids. In mammals, PAF is supposed to regulate reproductive cycle and pregnancy [80] by initiating the enzymatic reactions leading to activation of PIP3, which determines high survival of offspring [78]. PIP3 also induces calcium transients that activate the cAMP-responsive element-binding protein (CREB) through phosphorylation. CREB is known to be a fundamental regulator of the signalling mechanisms in the cell
and is fundamental during embryonic development [78]. In line with down-regulation of Fab1b and up-regulation of Pafah, Crebl2 (cAMP-Responsive Element-Binding Protein-Like 2) was down-regulated in copepod females collected on May 23rd, as also validated by RT-qPCR results. Therefore, differential expression of this gene could have key implications for cell cycle and cell differentiation [78, 81]. Additionally, PAFAH can target phospholipids and participate to oxidative-stress responses as well as to regulation of fertility and apoptosis [82]. In humans, the glycosylphosphatidylinositol (GPI) is known to induce pro-inflammatory responses [83, 84], thus differential expression of Fab1b and Pafah could potentially suggest also dysregulation of the inflammatory response as a consequence of an oxidative stress potentially mediated by oxylipins. Also in this perspective, a synergic response of PAFAH, FAB1B and CREBL in T. stylifera females could have contributed to determine low naupliar survival on the 23rd of May.

Low naupliar survival rates could also relate to down-regulation (validated also by RT-qPCR) of the Serine/Threonine Protein Phosphatase 2A (Ppa2), because the important role of this enzyme in regulation of apoptosis has been documented [85]. Serine/Threonine phosphatases, such as PP1, PP2A and PP2B, mediate dephosphorylation of Bcl-2/Bcl-X-associated death promoter (BAD), a pro-apoptotic protein, thus leading to cell death. PP2A activity can be regulated by Phosphodiesterases (PDEs), which repress PP2A activity through regulation of cAMP levels [86], influencing oocyte maturation in pre-ovulatory follicles and meiosis in oocytes [87, 88]. As highlighted by our DE analysis, Pde was down-regulated and this response could have led to higher cAMP levels and stronger stimulation of Ppa2 as compensatory mechanism to re-equilibrate dysregulated apoptosis.

Differentially expressed sequences directly involved in reproduction and development processes may also explain strong differences in naupliar survival rates at the molecular level. The enzyme Methylene-tetrahydrofolate Dehydrogenase (MTHFD) was listed among the up-regulated transcripts (log2-FC of 4.45). Folate one-carbon metabolism plays a fundamental role in development and disease response of animals [89, 90]. The folate metabolism is complex, because it involves the activity of several enzymes. The active folate form is the 5,10-Methylene derivatives which are key cofactors in the de novo synthesis of DNA [93]. For example, altered folate expression has been shown to drastically reduce fecundity of D. melanogaster females and to induce abnormal development in offspring [90]. Also, dysregulation of the gene expression pathway associated to folate metabolism was recently reported in Calanus helgolandicus females feeding on the oxylipin-producing diatom Skeletonema marinoi [33].

In this perspective, altered expression of MTHFD could potentially contribute to explain impairment of the final reproductive success of T. stylifera in our survey.

Also, the Trinucleotide repeat-containing gene 18 (Tnrc18) was significantly down-regulated. This protein is involved in cell differentiation and its contribution to development of copepod larvae may be important, because this gene is known to have a chromatin binding activity and has been proposed as a new marker gene for development in zebrafish embryos [94]. Additionally, Dermatopontin (Dpt) was also down-regulated. This gene encodes for a protein involved in collagen fibril orientation [95]; therefore its down-regulation and consequent impaired function could have led to negative effects on correct tissue formation in T. stylifera nauplii [96].

Previous laboratory experiments have reported variations in the expression of α- and β-Tubulin in copepods fed oxylipin-producing diatoms [3] and similar responses were quantified from natural populations of the copepod C. helgolandicus [35]. β-TUBULIN affects spindle formation and cell division; the up-regulation of this transcript could suggest an active response of T. stylifera females to high oxylipin concentrations potentially impairing reproductive success. In line with β-Tubulin, also the Protein Maelstrom (Mael) was up-regulated. MAEL has been reported as a required factor for the correct positioning of the microtubule-organizing centre (MTOC), in D. melanogaster [97]. Moreover, not only does MAEL act as a repressor for micro-RNA-7 in the nucleus, guaranteeing proper differentiation of germ line cells [98], but also contributes to oocyte determination [99].

Other sequences relevant for cell development and reproduction were up-regulated in T. stylifera collected on May 23rd, such as me31b (ATP-Dependent RNA Helicase), Vldlr (Very Low-Density Lipoprotein Receptor) and Vasa (ATP-Dependent RNA Helicase Vasa). These genes are known to play key roles in germ cell formation [100, 101] as well as in oocyte development and differentiation [102–104].

Down-regulation was observed also for other sequences encoding for key functions in development and reproduction. Among them, Obst-E (Protein Obstructor E) is known to encode for a chitin-binding protein [105] and is crucial for the correct cuticle development in arthropods [106]. In line with down-regulation of Obst-E, the unigenes Kelk 12 (Klhl12) and Arih1 (E3 Ubiquitin Protein Ligase), validated through RT-qPCR were also down-regulated. Klhl12 mediates ubiquitination and regulates the Wnt signalling pathway, thus playing a key role in cell fate determination and is fundamental for understanding copepod biology.
role in collagen export and embryonic cell development [107]. Similarly, Arih1 codifies for an E3 Ubiquitin-protein ligase and, together with Obst-E, was included by [51] in the list of the 31 genes involved in reproduction, growth and development in the calanoid copepod Eurytemora affinis, where ubiquitin genes were reported to affect gametogenesis. The down-regulated transcript Hsp-70 (Heat-Shock Protein 70) has close affinity with E3 Ubiquitin-protein ligase and it has been demonstrated to have a critical role in preventing apoptosis [108]. Hsp-70 expression is also involved in thermo-tolerance mechanisms as well as in protection to xenobiotic exposure and to general stress in copepods [29, 109–111]. Previous laboratory studies have reported down-regulation of Hsp-70 in the copepod C. helgolandicus fed oxylipin-producing diatoms [26, 28, 112], suggesting that down-regulation of Hsp-70 in T. stylifera could also have occurred in response to these chemicals.

Differential analysis also suggested altered functions in protein endocytosis and polysaccharide degradation, which we hypothesize could have contributed to the low naupliar viability observed on May 23rd. Among these sequences, the Adaptor Protein Complex 2 (Ap-2) showed a significant down-regulation (log2-FC of −7.41). Ap-2 is involved in clathrin-dependent endocytosis in which proteins are incorporated into vesicles surrounded by clathrin (CVV) [113]. Ap-2 is therefore strictly related to both the endosomal and the lysosomal systems [114] and is essential to fundamental cellular processes [113]. Also, Arsb (Arylsulfatase B), mainly related to digestion of polysaccharides [115], was an additional down-regulated unigene and such differential expression was supported by RT-qPCR results. ARSB plays a central role in degradation of glycosaminoglycans (GAG) and altered regulations of this gene can result in lysosomal excretion of polysaccharides [116].

In final instance, several differentially expressed transcripts involved in the oxidative phosphorylation chain, such as Cytochrome oxidase subunit I and Cytochrome oxidase subunit II, were also down-regulated (log2-FC ranging from −2.73 to −5.75). Considering that oocyte mitochondrial dysfunction in terms of respiration and electron transport can alter fertility and embryo development [117, 118], this response is in line with the low naupliar viability observed in samples collected on May 23rd. The potential effects of phytoplankton-derived oxylipins on these transcripts is plausible, because significant down-regulation of the Cytochrome P450–4 (Cyp) was also reported in wild C. helgolandicus females from the Northern Adriatic Sea, when collected at sampling sites showing high diatom and oxylipin concentrations [35]. These results were confirmed in the laboratory after feeding C. helgolandicus females from the Northern Adriatic Sea and the English Channel with the oxylipin-producing diatom Skeletonema marinoi [26].

Conclusions

In general, information collected at the transcriptomic level revealed that T. stylifera females generating nauplii with low viability showed down- or up-regulation of sequences encoding for proteins involved in metabolic processes crucial for final reproductive success. In particular, key genes involved in ATP synthesis, cell differentiation and signal transduction could explain at a molecular level the maternally-mediated low naupliar survival observed on May 23rd. Differentially expressed sequences can also indicate molecular pathways regulated by T. stylifera females to counteract negative reproductive potential. In this perspective, some differentially expressed genes are known to encode for interconnected proteins participating in cellular biochemical patterns finally regulating apoptosis, cell cycle, yolk protein precursors (YPP), gene expression and autophagy. These processes could partially disentangle coordinated molecular pathways leading to altered naupliar viability. Interestingly, key genes involved in detoxification such as aldehyde dehydrogenases, superoxide dismutase or glutathione synthase were not differentially expressed in T. stylifera from the GoN.

Although we cannot exclude that biotic and abiotic factors not considered in this study may have mediated molecular responses of copepods, our data suggest that temperature, oxygen, pH and salinity played a marginal role, because these factors remained constant in the two sampling dates. Also, T. stylifera responses did not seem to be mediated by food deficiency, because differences in faecal pellet production were not significant despite the higher phytoplankton concentration on the 30th of May than the 23rd. Interestingly, both oxylipin-per litre concentrations and oxylipin-per-diatom-cell production were higher on the 23rd of May. Involvement of these chemicals in differential molecular responses and impaired naupliar survival in copepods from natural populations is plausible. Down-regulation of A5 Obp could suggest impaired detection of harmful preys in females collected on May 23rd, higher ingestion of oxylipins and lower naupliar survival. Indeed, our interpretation is tempting, but needs to be supported by larger datasets exploring wider temporal variations in the reproductive success and the molecular responses of natural T. stylifera populations. Our transcriptomic analysis could offer a guideline to identify biomarker genes of interest explaining at a molecular level copepod reproductive responses to biotic and abiotic variables, both in laboratory experiments and in the natural environment.
Methods

Field sampling and physiological responses of Temora stylifera

Environmental variables (temperature, salinity, pH and oxygen), phytoplankton community composition and phytoplankton-derived oxylipins were measured from surface water sampled at the Long-Term Ecological Research station-MareChiara (LTER-MC) [119] on the 23rd and the 30th of May 2017 as described by Russo et al. [47]. Briefly, abiotic variables were measured by deploying a SBE911 CTD. For phyttoplankton and oxylipin analysis, surface water was collected with a bucket deployed from the boat. Phytoplankton cells were left to sediment in a Utermöhl chamber and counted under a Zeiss Axiovert200 optic microscope (Zeiss, Oberkochen, Germany). For oxylipin analysis, phytoplankton cells were accumulated on polycarbonate filters (2 µm mesh size). Cells were re-suspended with water and sonicated. Oxylipins were finally extracted with dichloromethane and methylated before the LC-MS/MS analysis, performed with a Q Exactive Hybrid Quadrupole Orbitrap (Thermo Scientific, Waltham, USA) using a methanol: water gradient [14].

Zooplankton samples were collected the same days at LTER-MC by the SZN Unit through oblique towing of a 200 µm Nansen net (113 cm mouth diameter) equipped with a 200 µm filtering cod-end, on-board of the R/V “Vettoria”. A maximum of 15 females of T. stylifera were sorted from the zooplankton community. They were individually incubated (20 ºC, 12 h,12 h dark:light cycle) in crystallizing dishes filled with 100 ml of 50 µm pre-filtered surface seawater collected the same day at LTER-MC. After 24 h, the females were removed from the crystallizing dishes and the number of spawned and chewed eggs as well as the number of faecal pellets were counted under an inverted microscope (Zeiss Axiovert25) at 25x magnification [120].

The crystallizing dishes were incubated (20 ºC, 12 h,12 h dark:light cycle) for additional 48 h to allow eggs to hatch. Subsequently, the number of dead nauplii (stage NI) laying on the bottom of the crystallizing dishes was counted under the inverted microscope, in order to assess survival of first non-feeding nauplii (NI), and thus, maternally-related larval survivorship. The content of the crystallizing dish was then fixed by adding 15 ml of ethanol (96%), and the number of hatched membranes, the non-viable eggs and total nauplii present in the container were counted. Hatching success of the eggs as well as naupliar survival rates were calculated following [40]:

\[
\text{Hatching success} = \frac{N \text{ (membranes)}}{N \text{ (laid eggs)}} \times 100
\]

\[
\text{Naupliar survival} = 100 - \left(\frac{N \text{ (dead nauplii)}}{N \text{ (membranes)}} \times 100 \right)
\]

Differences in faecal pellet and egg productions (N per female per day), egg hatching (%) and NI naupliar survival (%) between samples collected on May 23rd and 30th were analysed on the basis of t-tests considering Welch’s correction for unequal variances (N = 15). To avoid type I error, statistical significance was considered at 99%.

RNA extraction and de novo transcriptome assembly

A number of 30–60 adult females of T. stylifera were sorted from the zooplankton sample collected on the 23rd and the 30th of May 2017 at LTER-MC and transferred to three replicate 1.5 ml Eppendorf tubes per date. In particular, two replicates from May 23rd consisted of 8 individuals, while one replicate contained 10 individuals. The three replicates from May 30th all consisted of 10 specimens. Samples were immediately frozen in liquid nitrogen after removing excess water and finally stored at –80 ºC for later total RNA extraction. These dates were selected because of the opposite naupliar survival rates measured in these two consecutive samples (25 and 93%, respectively; t-test considering unequal variances; N = 15; see results).

Total RNA from pools of T. stylifera females (8–10 individuals per pool), was extracted using the RNeasy Micro Kit (Qiagen, Hilden, Germany) [112], following manufacturer’s specification and performing on-column DNase-I treatment. The RNA was finally eluted in 15 µl of RNase-free water. RNA concentration (ng/µl) and purity were assessed through Nanodrop ND-1000 UV-Vis spectrophotometer (Marshall Scientific, Hampton, USA), Overall RNA integrity and DNA contamination were checked by electrophoresis of at least 200 ng of RNA on a 1% agarose gel in 0.5x Tris Borate EDTA buffer (TBE) and by analysing 150–200 ng of RNA in a 6000 Nano LabChip of an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, USA), which defines RNA quality as RNA Integrity Number (RIN) [121]. RIN values > 8 were considered suitable for NGS analysis.

At least 2 µg of extracted RNA per sample (200 ng/µl) were delivered to GenomiX4Life S.r.l. (Laboratory of Molecular Medicine and Genomics of the University of Salerno, Salerno, Italy) for library preparation, sequencing and de novo transcriptome assembly. Six cDNA libraries, each one generated from a single RNA sample extracted from groups of 8–10 individuals, were prepared using TruSeq RNA Sample Prep Kit (Illumina) according to manufacturer’s recommendations and pooled such that each index-tagged sample was present in equal-molar amounts. The pooled samples were subjected to cluster generation and multiplexed sequencing using an
Illumina HiSeq 2500 platform (Illumina, San Diego, USA) in a 2 x 100 paired-end format. Raw reads were cleaned, trimmed and clipped with BBduk (https://jgi.doe.gov/data-and-tools/bbtools/) setting a minimum phred score (Q) of 20 (base call accuracy of 99%), and a minimum length of 35 nucleotides. The quality of the reads before and after trimming was checked with the software FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). High quality paired-end reads from all samples were used as input for transcriptome assembly using Trinity [122]. A filter for contaminants was performed by BLASTing the transcripts against the NCBI nr database, discarding all the sequences having a significant hit (E-value ≤0.0001) against bacteria or vegetal cells. Two different transcriptomes were generated, a ‘full’ transcriptome comprising all Trinity assembled transcripts (isoforms) and a ‘reference’ transcriptome of ‘Trinity predicted genes’, consisting of assembled transcripts with unique TR#_c#_g# identifiers (unigenes). This latter transcriptome contained either singletons (transcripts with a single isoform, i1) as well as the longest isoform of transcripts having multiple ‘Trinity predicted isoforms’ (TR#_c#_g#_i#) [123].

Differential expression analysis and functional annotation of Temora stylifera transcriptome

Quantification of de novo assembled transcripts (isoforms) and unigenes abundance for each sample was assessed using RSEM software provided by the Trinity package [124], after mapping back the reads on the ‘full’ and the ‘reference’ transcriptome, respectively, using STARS [125]. Mean expression levels of isoforms and unigenes read counts, expressed as Counts Per Million (CPM), were used as input to perform Differential Expression (DE) analysis between samples collected on May 23rd and May 30th, using the Trinity DeSeq2 package [126]. Statistical significance was obtained by performing a hypergeometric test and corrected p-value using the False Discovery Rate (FDR) method [127] and isoforms or unigenes having a FDR ≤0.05 were considered differentially expressed.

Functional annotation of *T. stylifera* ‘full’ (isoforms) and ‘reference’ (unigenes) transcriptomes was performed using the comprehensive bioinformatics tool Blast2Go [128, 129]. Sequence similarity was found using BLASTx function (E-value cut-off set to 1^-30) [130], which compares a nucleotide query sequence translated in all reading frames against a non-redundant protein sequence database (nr) used to find potential translation products of an unknown nucleotide sequence. Default parameters were selected, with a number of HITs equal to 1. Subsequently, Gene Ontology annotation was associated to mapped sequences and divided by the three GO terms: Biological Process (BP), Molecular Function (MF) and Cellular Component (CC).

Differences between samples from May 23rd and May 30th were highlighted through heat-maps based on log-transformed raw counts of differentially expressed unigenes and isoforms. Moreover, separate heat-maps were represented to highlight differences in *A5 Odorant Binding Protein* isoforms and in isoforms annotated as sequences involved in reproduction and cell development processes. Euclidean distance was calculated among variables, which were clustered on the basis of the ‘complete-linkage’ method. Cluster analysis and heat-map representation was performed using R 3.6.3 implemented in R-Studio.

Transcriptome validation through RT-qPCR

To validate Illumina sequencing and differential expression results, six reference genes (RGs), previously optimized in *Calanus helgolandicus* [27, 28], were tested in *T. stylifera* through RT-qPCR to identify the most stable genes in samples used for transcriptome assembly. RGs were: *Actin (Act)*, *Histone 3 (Hist)*, two ribosomal units (18S RNA and the ribosomal protein S20) and *Ubiquitin (Ubi)*. Firstly, primer specificity and amplification efficiency of the six reference genes were assessed. Complementary DNA (cDNA) needed as template for RT-qPCR analysis was retro-transcribed from 1 μg of *T. stylifera* total RNA, extracted as described before, in a final volume of 20 μl using iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, USA) following the manufacturer’s instructions. PCRs were performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, USA), with 2 μl of 10× PCR reaction buffer (Roche), 2 μl of 10 × 2 mM dNTPs (Roche), 0.8 μl of 5 U/μl Taq polymerase (Roche), 1 μl of 20 pmol/μl of each primer (forward and reverse), 1 μl of *T. stylifera* template cDNA and nuclelease-free water to 20 μl of final volume. The PCR program consisted of a denaturation step at 95°C for 3 min, 40 cycles at 95°C for 30 s, 60°C for 1 min and 72°C for 30 s, and a final extension step at 72°C for 7 min. Amplified PCR products were analysed by electrophoresis on 1.5% agarose gel in 0.5x TBE buffer to check proper length specificity of the cDNA products.

RT-qPCR reactions for primer amplification efficiency were then performed in a MicroAmp Optical 384-Well reaction plates (Applied Biosystem, Foster City, USA) with optical adhesive covers (Applied Biosystem, Foster City, USA), using a Vii7 Real Time PCR system (Applied Biosystem, Foster City, USA). The final PCR volume for each sample was 10 μl with 5 μl of SensiFAST SYBR Green Master Mix (Meridian Inc., Cincinnati, USA), 1 μl of cDNA template and 4 μl (concentration of 0.7 pmol/μl) of each primer pair. All RT-qPCR reactions
were carried out in triplicate to capture intra-assay variability. Three negative controls (consisting of 1 μl of water instead of the cDNA template) were considered for each primer pair. PCR conditions for all samples analysed were set as follows: 95°C for 20 s, 40 cycles of 95°C for 1 s, and 60°C for 20 s. Dissociation protocol with a gradient (0.5°C every 30 s) from 65°C to 95°C was also used to investigate the specificity of the primers and presence of primer dimers. Gene-specific amplification was confirmed by a single peak in the melting curve analysis. To quantify gene expression, primer amplification efficiencies were calculated through six serial dilutions of cDNA (1, 1:5, 1:10, 1:50, 1:100 and 1:500) for all primer pairs. The reference equation for efficiency calculations of cDNA (1, 1:5, 1:10, 1:50, 1:100 and 1:500) of T. stylifera cDNA template. Settings of qPCR reactions were the same as described before. As for RGs, gene-specific amplification was confirmed by a single peak in the melting curve analysis.

To validate differential expression analysis results, cDNA obtained from T. stylifera samples used for transcriptome analysis was used as template (1:10 dilution) for RT-qPCR reactions. Relative expression levels of each target gene in the samples collected on the 23rd of May was compared to samples collected on the 30th of May through the Pfaffl equation [131], using the tool REST (Relative Expression Software Tool) [132]. Results were analysed based on the following equation, where the relative expression of a target gene is compared in a ‘test’ sample (copepod collected on the 23rd of May) versus a ‘control’ (copepod collected on the 30th of May), normalized to each reference gene [131]:

\[
\text{Ratio} = \frac{E(\text{Target})^{\Delta C_{t} \text{(target-Control-Sample)}}}{E(\text{Reference})^{\Delta C_{t} \text{(reference-Control-Sample)}}}
\]

The E (target) is the RT-qPCR efficiency of target gene primers; E (ref) is the RT-qPCR efficiency of the reference gene primers; \(\Delta C_{t}\text{(target)}\) is the Ct deviation of control-sample of the target gene transcript; \(\Delta C_{t}\text{(reference)}\) is the Ct deviation of control-sample of reference gene transcript.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-07112-w.

Additional file 1 Table S1: De novo transcriptome assembly of Temora stylifera. Number of reads counted in the forward and the reverse filament are shown along with the number of assembled transcripts and Trinity predicted genes (unigenes), transcripts with unique TR#_c#_g# identifiers. The latter list includes singletons as well as the longest isoform of each predicted gene. Average transcript length, median and N50 are also indicated.

Additional file 2 Figure S1: Blast2Go statistics output for Temora stylifera de novo reference transcriptome assembly (unigenes).
Additional file 3 Table S2: *Temora stylifera* differentially expressed isoforms that received functional annotation in Blast2GO. Trinity ID number with predicted gene and isoform identifiers, length (bp), log2-Fold-Change (log2-FC), adjusted p-value (p-adj) of statistical analysis (FDR) for each predicted genes, sequence description and functional annotation as provided by Blast2GO are shown. Sequences are ordered by p-adj values within each down-regulated (negative log2-FC) and up-regulated (positive log2-FC) isoforms.

Additional file 4 Table S3: List of Reference Genes (RGs) tested in *Temora stylifera*. Protein name, function, amplicon length (Aa) in base pairs (bp), primer sequence and amplification efficiencies (E%) are shown.

Abbreviations
HDoHE: Hydroxy docosahexaenoic acid; RIN: RNA integrity number; FDR: False discovery rate; GO: Gene ontology; Obp: Odorant binding protein; Obst-E: Protein obstetric E-like; Hsp70: Heat shock protein 70; Mob1b: Mob kinase activator 1b; Vasa: ATP-dependent RNA helicase vasa-like; PaFah: Platelet-activating factor homolog 2; Arth1-1-like; Arnb: Ankyrin B-like; Crebl: cAMP responsive element binding protein-like2; Ppa2: Serine/Threonine protein phosphatase; Mthfd: Methylene tetrahydrofolate dehydrogenase; Trnc18: Trinucleotide repeat-containing gene 18; Dpt: Dermatopontin; Mael: Protein maestrom; PiP: Phosphatidylinositol phosphate; Me31b: Putative ATP-dependent RNA helicase; Khn12: Kelk 12; GAG: Glycosaminoglycans; VPP: Yolk protein precursors; PPrn: Phosphatidylinositol, LTR-MC: Long-term ecological research station MareChiara, DE: Differential expression; Cmp: Counts per million; Bp: Biological process; Mf: Molecular function; Cc: Cellular component; lst: Histone-3; Ub: Ubiquitin; Act: Actin

Acknowledgements
We thank Gianluca Zazo, Augusto Passarelli, Ferdinando Tramontano, Marco Cannavacciuolo and all members of the MEDA Unit of the Stazione Zoologica Anton Dohrn for field samples. We also thank Dr. Francesca Margiotta of the MEDA Unit for providing environmental data and the BIOINforMA group of the Stazione Zoologica Anton Dohrn (https://bioinfo.szn.it/) for technical support in sequence deposition.

Authors’ contributions
YC conceived the study and designed the experiment, provided reagents/materials and was a major contributor in the interpretation of the data and writing the manuscript. ER carried out the experiments, acquired, analysed and interpreted the data, wrote the manuscript and prepared the figures and the Tables. CL provided reagents/material and contributed to the interpretation of data. GdI provided reagents/material and contributed to the analysis of the data. AF provided reagents/material and contributed to the interpretation of the data. DS contributed to the analysis of the data. EvE and the Tables. CL provided reagents/material and contributed to the analysis of the data. EvE contributed to the design of the study and the interpretation of the data, AI provided reagents/material and contributed to the design of the study. All authors reviewed drafts of the manuscript and approved its final version.

Funding
Ennio Russo has been supported by a Ph. D. fellowship funded by Stazione Zoologica Anton Dohrn (Open University-Stazione Zoologica Anton Dohrn Ph. D. Program).

Availability of data and materials
Raw reads are stored into the NCBI Sequence Read Archive database under accession number PRJNA632714.

Ethics approval and consent to participate
Not applicable. No approval was required because experimental work was accomplished with an unregulated marine invertebrate.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
2. Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
3. Universität zu Köln, Aquatic Chemical Ecology Group, Zülpicher Straße 47b, D-50674 Cologne, Germany.

Received: 6 May 2020 Accepted: 29 September 2020
Published online: 06 October 2020

References
1. Steinberg DK, Landry MR. Zooplankton and the ocean carbon cycle. Annu Rev Mar Sci. 2017;9:413–44.
2. Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceano. 2015;13:205–48. https://doi.org/10.1016/j.pocean.2014.08.005.
3. Russo E, Ianora A, Carotenuto Y. Re-shaping marine plankton communities: effects of diatom oxylipins on copepods and beyond. Mar Biol. 2018;166:9.
4. Adelfi MG, Vitale RM, d’ippolito G, Nuzzo G, Gallo C, Amredo P, et al. Patatin-like lipolytic acyl hydrolases and galactolipid metabolism in marine diatoms of the genus *Pseudo-nitzschia*. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:181–90. https://doi.org/10.1016/j.bbalip.2018.11.008.
5. d’ippolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miraldo A, et al. The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom *Skeletonema costatum*. Biochim Biophys Acta. 1686;2004:100–7.
6. Cutignano A, d’ippolito G, Romano G, Lamari N, Cimino G, Febbraio F, et al. Chloroplastic glycolipids fuel aldehyde biosynthesis in the marine diatom *Thalassiosira rotula*. ChemBioChem. 2006;7:450–6. https://doi.org/10.1002/cbi.200503943.
7. d’ippolito G, Lamari N, Montresor M, Romano G, Cimignano A, Gerecht A, et al. 15S-Lipoxygenase metabolism in the marine diatom *Pseudo-nitzschia delicatissima*. New Phytol. 2009;183:1064–71.
8. Lamari N, Ruggiero MV, d’ippolito G, Kooistra WHCF, Fontana A, Montresor M. Specificity of lipoxygenase pathways supports species delineation in the marine diatom genus *Pseudo-nitzschia*. PLoS One. 2013;8:1–10.
9. d’ippolito G, Romano G, Iadicicco O, Miralto A, Ianora A, Cimino G, et al. New birth-control aldehydes from the marine diatom *Skeletonema costatum*: characterization and biogenesis. Tetrahedron Lett. 2002;43:6133–6.
10. d’ippolito G, Lamari N, Caruso T, Spinella A, Cimino G, Fontana A. Production of octadienal in the marine diatom *Skeletonema costatum*. Org Lett. 2003;5:885–7.
11. d’ippolito G, Cutignano A, Briante R, Febbraio F, Cimino G, Fontana A. New C16 fatty-acid-based oxylipin pathway in the marine diatom *Thalassiosira rotula*. Org Biomol Chem. 2005;3:4065–70.
12. d’ippolito G, Cutignano A, Tucci S, Romano G, Cimino G, Fontana A. Biosynthetic intermediates and stereochemical aspects of aldehyde biosynthesis in the marine diatom *Thalassiosira rotula*. Phytochemistry. 2006;67:314–22.
13. Fontana A, d’ippolito G, Cutignano A, Miraldo A, Ianora A, Romano G, et al. Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem. 2007;79:481–90.
14. d’ippolito G, Nuzzo G, Sordo A, Manzo E, Gallo G, Fontana A. Lipoxigenases and lipoxigenase products in marine diatoms. In: Methods in Enzymology. 2018. p. 69–100.
15. Nanjappa D, d’ippolito G, Gallo C, Zingone A, Fontana A. Oxylipin diversity in the diatom family Leptocylindraceae reveals DHA derivatives in marine diatoms. Mar Drugs. 2014;12.
16. Gerecht A, Carotenuto Y, Ianora A, Romano G, Fontana A, d’ippolito G, et al. Oxylipin production during a mesocosm bloom of *Skeletonema marinoi*. J Exp Mar Bio Ecol. 2013;446:159–65.
17. Fontana A, d’ippolito G, Cutignano A, Romano G, Lamari N, Gallucci AM, et al. LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem. 2007;8:1810–8.
18. Ianora A, Miraldo A, Poulet SA, Carotenuto Y, Buttino I, Romano G, et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature. 2004;429:403–7.
calanoid copepod *Acartia* tone* exposed to nickel nanoparticles. Chromoshere. 2018;209:163–72. https://doi.org/10.1610/chromosphere.2018.06096.

59. Roncalli V, Cieslak MC, Lenz PH. Transcriptomic responses of the calanoid copepod *Calanus finmarchicus* to the saxitoxin producing dinoflagellate *Alexandrium fundyense*. Sci Rep. 2016;6:25708. https://doi.org/10.1038/srep25708.

60. Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80:75–84. https://doi.org/10.1007/s11103-012-9885-2.

61. Lenz PH, Roncalli V, Hassett RP, Wu LS, Cieslak MC, Hartline DK, et al. De novo assembly of a transcriptome for *Calanus finmarchicus* (crustacea, copepoda) - the dominant zooplankter of the North Atlantic Ocean. PLoS One. 2014;9.

62. Ning J, Wang M, Li C, Sun S. Transcriptome sequencing and *de novo* assembly of a transcriptome for *Calanus finmarchicus* using 454 GS FLX. PLoS One. 2013;8.

63. Almada AA, Tarrant AM. Vibrio elicits targeted transcriptional responses across putative olfactory genes in the *Anopheles gambiae* insect. Mol Biol. 2005;14:575–89.

64. Biemmann H, Le D, Walter MF. Microarray-based survey of a subset of putative olfactory genes in the *Anopheles gambiae* insect. Mol Biol. 2005;14:575–89.

65. Su CY, Menuz K, Carlson JR. Olfactory perception: receptors, cells, and circuits. Cell. 2009;139:455–59.

66. Swarup S, Williams TJ, Anholt RRH. Functional dissection of odorant binding protein genes in *Drosophila melanogaster*. Genes Brain Behav. 2011;10:648–57.

67. Swarup S, Morozova TV, Sridhar S, Nokes M, Anholt RRH. Modulation of feeding behavior by odorant-binding proteins in *Drosophila melanogaster*. Chem Senses. 2014;39:125–32.

68. Matsuo T. Genes for host-plant selection in *Drosophila*. J Neurogenet. 2008;22:195–201.

69. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y. Odorant-binding proteins OBPs71d and OBPs7e affect taste perception and host-plant preference in *Drosophila sechellia*. PLoS Biol. 2007;5:e118. https://doi.org/10.1371/journal.pbio.0050118.

70. Heuschele J, Selander E. The chemical ecology of copepods. J Plankton Res. 2016;38:1–11.

71. Giordano G, Carbone M, Ciavatta ML, Silvano E, Gavagnin M, Garson MJ, et al. Odorant binding proteins: a transcriptomic analysis in a marine copepod. Front Immunol. 2019;10:180.

72. Matsuo T, Goto M, Takeda K, Otsubo Y, Amemiya T, Sugaya S, et al. Odorant-binding proteins 24A6.5d and 24A6.5e are involved in the modulatory function of OBPs in *Drosophila melanogaster*. J Chem Ecol. 2010;36:156–65.

73. Giordano G, Carbone M, Ciavatta ML, Silvano E, Gavagnin M, Garson MJ, et al. Odorant binding proteins: a transcriptomic analysis in a marine copepod. Front Immunol. 2019;10:180.

74. Michalec FG, Kâ S, Holzner M, Souissi S, Ianora A, Hwang JS. Changes in the grazing during spring blooms: can *Calanus finmarchicus* to *Platymonas* feeding, survivorship and reproductive success of the calanoid copepod *Acartia tonsa*. Front Mar Sci. 2018;5:40. https://doi.org/10.3389/fmars.2018.00013.

75. Leising AW, Pierson JJ, Halsband-Lenk C, Horner R, Postel J. Copepod grazing during spring blooms: can *Calanus finmarchicus* to *Platymonas* feeding, survivorship and reproductive success of the calanoid copepod *Acartia tonsa*. Front Mar Sci. 2018;5:40. https://doi.org/10.3389/fmars.2018.00013.

76. Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80:75–84. https://doi.org/10.1007/s11103-012-9885-2.

77. Hazenbos W, Förster I, Clausen B, Takeda K, Kinoshita T. In: Omine M, Kinoshita T, editors. Inflammatory defects caused by GPI-anchor deficiency in macrophages BT - paroxysmal nocturnal hemoglobinuria and related disorders. Tokyo: Springer Japan; 2003. p. 247–9.

78. Klumpp S, Kriegstein J. Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol. 2002;2:498–62. https://doi.org/10.1016/S1542-0963(02)00076-5.

79. Antic BM, Schillinger M, de Boer BJ, van der Graaf MT. The effects of methotrexate on platelet activating factor (PAF) acetylhydrolase: an overview and update. Biochim Biophys Acta. 2019, 1864:922–31. https://doi.org/10.1016/j.bbabio.2018.07.006.

80. Franca CT, CSN LWS, Carmagnac A, Lin E, Kiniboro B, Siba P, et al. IgG antibodies to synthetic GPI are biomarkers of immune-status to both *Plasmodium falciparum* and *Plasmodium vivax* malaria in young children. Malar J. 2017;16:386. https://doi.org/10.1186/s12936-017-2042-2.

81. Hoornaert I, Marynen P, Baens M. CREBL2, a novel transcript from the *Drosophila melanogaster* genome. J Genet. 2011;90:135–42. https://doi.org/10.1007/s10909-010-0144-1.

82. Kono N, Arih A. Platelet-activating factor acetylhydrolases: an overview and update. Biochim Biophys Acta. 2019, 1864:922–31. https://doi.org/10.1016/j.bbabio.2018.07.006.

83. Franca CT, CSN LWS, Carmagnac A, Lin E, Kiniboro B, Siba P, et al. IgG antibodies to synthetic GPI are biomarkers of immune-status to both *Plasmodium falciparum* and *Plasmodium vivax* malaria in young children. Malar J. 2017;16:386. https://doi.org/10.1186/s12936-017-2042-2.
