Algerian Indigenous Dog: Hemato-Biochemical Profile in Healthy and Gastroenteritis Diseased Case

Hafid Nadia

ABSTRACT
The purpose of this study is primarily, to establish the haemato-biochemical reference values of the indigenous canine breed in Batna area of Algeria as related to the gender effect. For this reason, 20 apparently healthy local dogs were used. A complete blood count and the serum biochemical parameters analyzed here remained mostly within the physiological reference intervals. The effect of sex was only observed in the platelet count, which is higher in female dogs, whereas the creatinine level is higher in male dogs. The second part is devoted to evaluating the haemato-biochemical parameters in dogs with moderate to severe gastroenteritis infections. A total of 37 diseased dogs were selected and classified into two groups – diseased vaccinated dogs and diseased unvaccinated dogs – to establish the haemato-biochemical parameters. Haemato-biochemical investigation shows significant alteration in diseased unvaccinated dogs than other groups.

Keywords: Algerian indigenous dogs, Diseased, Gastroenteritis, Haemato-biochemical profile, Reference range.

INTRODUCTION
The Algerian indigenous dog is a breed native to Algeria, and they are popularly referred to as ‘Arab or Arabia’ by indigenes. They were raised mainly because of their easy adaptation to climatic and nutritional conditions. Moreover, they are considered rustic and resistant breeds. In general, it can only be said that they are a medium-sized domestic mesocephalic dog, as no data are available for a physical description or morphometry. Furthermore, hematological and biochemical data in indigenous Algerian dogs are never documented. However, gastroenteritis infections with multiple etiologies are frequently consulted in canine clinics. Most are often associated with clinical and para-clinical alterations, especially a haemato-biochemical profile.

The aim of this study was, first, to establish baseline data and study the effects of sex in clinically healthy dogs. Then, the haemato-biochemical alterations of gastroenteritis in native dogs from the Batna area in Algeria were evaluated.

MATERIALS AND METHODS
Animal source
A total of 57 dogs of the local area (local Arbia dog), with ages from 2 months and 9 years old, were presented in clinics at the veterinary department of Batna university during the period from 2017–2018. The animals were classified in two groups.

• The first group contains apparently and clinically healthy dogs (n=20, including 10 intact males and 10 intact females). These animals visited the clinic for a routine consultation (vaccination and/or deworming). They were used to determine the haemato-biochemical reference values of the local canine breed in this area.

• The second group includes clinically diseased dogs (n=37, including 10 vaccinated and 27 unvaccinated dogs).

Clinical and para-clinical examination (Coproscopic and CPV kit antigen test) were performed before the samples were taken. For the determination of reference values from healthy dogs, the samples were taken after fasting. In case of diseased dogs, samples were taken before treatment.

Hematological analysis
From the antibrachial cephalic vein of the dogs, 3 mL of blood were collected in tubes containing ethylenediaminetetraacetic acid (EDTA) as an anticoagulant. Immediately after collection, plasma was separated with a centrifuging at 3000 rpm for 10 minutes (Shyama and Vijayakumar, 2011).

Total erythrocyte cell (TEC), haemoglobin concentration (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), total leukocyte cells (TLC), and different numbers of leukocytes were determined using standard methods (Benjamin, 1985). The analysis was performed using an automatic hematology analyzer.
Biochemical analysis
For serum separation, 5mL of blood were collected in a simple test tube (Shyma and Vijayakumar, 2011) for the determination of some biochemical parameters. The concentrations of biochemical parameters (glucose, cholesterol, triglycerides (TG), total protein (TP), albumin, blood urea nitrogen (BUN), and creatinine), enzyme activity (ALT-alanine aminotransferase and AST-aspartate), and mineral parameters (calcium, inorganic phosphorus, sodium, potassium, and chloride) were determined by standard methods, using the commercial kits 'Spinreact' from Spain.

Statistical study
The data obtained were statistically evaluated by the Student’s test using the Statgraphics Centurion software, version 18.1.10. The results are expressed as mean and standard deviation (X ± SD).

RESULTS AND DISCUSSION
The values of the means, SDs, and the results of the statistical analysis of the blood hematological and biochemical parameters analyzed are listed in Table 1–5. The data of clinical parameters and signs in healthy and diseased dogs are presented in Table 3.

Hematology values in healthy dogs
The mean values of the hematological parameters of the local canine breed obtained in this study are included in the range of standards presented by literature, as shown in Table 1.

In the current study, a slighter significant increase (p<0.05) in platelet counts was found in indigenous female dogs in Algeria; it aligns with reported findings of Mohammed et al., (2017). It may be attributed to the hormonal profile (Bain, 1985).

Biochemistry values in healthy dogs
The mean values of the serum biochemical parameters in the indigenous dogs are obtained in the range of the physiological norms presented in Table 2. This result implies that the dogs sampled had normal energy, protein, and mineral metabolism and electrolytic balance with no renal or hepatic impairment.

A comparison of the values of the serum biochemical parameters in males and females revealed a significant and slightly higher concentration of creatinine in male dogs than females (1.32 ± 0.07 vs. 0.86 ± 0.09 mg/dl; p<0.01). The same finding was observed by Chang et al., 2016. This increase reflects the larger muscle size and volume of male dogs. It can also be explained by variation in the tested animal's ages, body weights, or physical activity. The results in this study, however, disagree with the findings of Ariyibi et al., 2002; Dash et al., 2013 in Alsatian, Spitz, and Labrador breeds respectively, wherein female dogs had a higher creatinine level than male dogs.

Insignificant differences (p > 0.05) were observed between the rest of the determined biochemical values in

Table 1: Haematological values in local breed dogs, with gender effect (Mean ± SD).

| Parameters                          | All over dogs (n=20) | Males (n=10) | Females (n=10) | Signification | References values |
|------------------------------------|---------------------|-------------|---------------|---------------|------------------|
| TEC (x 10^9/l)                     | 5.90 ± 0.21         | 5.83 ± 0.14 | 5.98 ± 0.29   | NS            | 5.4 – 7.8        |
| Hb (g/dl)                          | 13.48 ± 0.41        | 12.79 ± 0.58| 14.17 ± 0.25  | NS            | 13 – 19; 12 – 18 (*) |
| PCV (%)                            | 39.45 ± 1.10        | 38.37 ± 1.14| 40.54 ± 1.07  | NS            | 37 – 55 (*)      |
| MCV (fl)                           | 70.66 ± 1.81        | 70.22 ± 2.06| 71.10 ± 1.56  | NS            | 64 – 74; 65 – 80 (*) |
| MCH (pg)                           | 24.05 ± 1.45        | 24.70 ± 1.21| 23.40 ± 1.60  | NS            | 22 – 27         |
| MCHC (%)                           | 34.74 ± 0.22        | 34.90 ± 0.10| 34.58 ± 0.34  | NS            | 34 – 36         |
| TLC (x 10^9/l)                     | 11.39 ± 1.01        | 11.64 ± 1.20| 11.14 ± 0.83  | NS            | 6 – 17          |
| Neutrophils (x 10^9/l)             | 8.23 ± 1.47         | 8.50 ± 1.55 | 8.07 ± 1.40   | NS            | 6 – 17 (*)      |
| Eosinophils (x 10^9/l)             | 0.35 ± 0.21         | 0.36 ± 0.23 | 0.20          | NS            | ~ 1.25         |
| Basophils (x 10^9/l)               | 0.00 ± 0.00         | 0.00 ± 0.01 | 0.01 ± 0.00   | NS            | Rare            |
| Lymphocytes (x 10^9/l)             | 2.22 ± 0.67         | 2.20 ± 0.64 | 2.24 ± 0.71   | NS            | 1.2 – 3.2 (*)   |
| Monocytes (x 10^9/l)               | 0.50 ± 0.06         | 0.51 ± 0.05 | 0.49 ± 0.07   | NS            | 0.15 – 1.35 (*) |
| Platelets (x 10^9/l)               | 265.29 ± 60.21      | 252.38 ± 54.22| 278.21 ± 66.20| a             | 160 – 430       |

NS: no significant difference (p > 0.05); a: significant at 5% level (p<0.05).
TEC: total erythrocytes cell, Hb: haemoglobin concentration, PCV: packed cell volume, MCV: mean cell volume, MCH: mean cell haemoglobin, MCHC: mean cell haemoglobin concentration, TLC: total leukocytes cell.
Table 2: Biochemical values in local breed dogs, with gender effect (Mean ± SD).

| Parameters      | All over dogs (n = 20) | Male (n = 10) | Female (n = 10) | Signification | References values |
|-----------------|------------------------|---------------|-----------------|---------------|------------------|
| Glucose (mg/dL) | 109.43 ± 1.11          | 108.75 ± 1.13 | NS              | 60–125 (*)     |
| Cholesterol (mg/dL) | 136.92 ± 4.25  | 137.64 ± 4.20 | NS              | 116–254 (*)    |
| TG (mg/dL)      | 103.90 ± 5.80          | 103.54 ± 6.34 | NS              | 20–112 (*)     |
| TP (g/dL)       | 6.35 ± 0.12            | 6.29 ± 0.11   | NS              | 5.4–7.1; 5.5–7.5 (*) |
| Albumin (g/dL)  | 1.09 ± 0.08            | 0.86 ± 0.09   | b               | 0.5–1.5 (*)    |
| AST (IU/L)      | 27.01 ± 1.63           | 26.89 ± 1.02  | NS              | 0.0–66; 8.9–49 (*) |
| ALT (IU/L)      | 43.17 ± 2.65           | 42.84 ± 2.70  | NS              | -102.0; 8.2–57 (*) |
| Calcium (mg/dL) | 10.25 ± 1.10           | 10.11 ± 1.08  | NS              | 8.7–11.8 (*)   |
| Phosphorus (mg/dL) | 5.06 ± 0.99       | 5.10 ± 0.94   | NS              | 0.5–1.5 (*)    |
| Sodium (mmol/l) | 149.03 ± 0.98          | 145.10 ± 1.00 | NS              | 141.0–152.0 (*) |
| Potassium (mmol/l) | 5.05 ± 0.29        | 4.89 ± 0.33   | NS              | 4.4–5.3 (*)    |
| Chloride (mmol/l) | 109.88 ± 1.76       | 109 ± 1.69    | NS              | 105–115 (*)    |

NS: No significant differences (p > 0.05); b: Significant at 1% level (P<0.01).

TG: Triglycerides; TP: Total protein; BUN: Blood urea nitrogen; AST: aspartate aminotransferase; ALT: Alanine aminotransferase.

Table 3: Clinical parameters and signs in healthy and diseased dogs

| Parameters and signs | Healthy dogs (n = 20) | Diseased dogs (n = 37) | Diseased vaccinated dogs (n = 10) | Diseased unvaccinated dogs (n = 27) |
|---------------------|-----------------------|------------------------|-----------------------------------|-------------------------------------|
| HR (beat/ min)      | 87.00 ± 2.25 (60–140)(*) | 102.50 ± 1.55 b 95.00 ± 1.30 | 110.50 ± 1.80 a                    |                                     |
| RR (breath/ min)    | 25.50 ± 0.70 (10–35)(*) | 40.00 ± 0.62 b 37.00 ± 0.50 | 43. 00 ± 0.75 a                    |                                     |
| RT (°C)             | 37.80 ± 0.27 (38–38.5)(*) | 40.10 ± 0.35b 39.80 ± 0.20 | 40.40 ± 0.50a                      |                                     |
| Anorexia            | - 28/37 (75.67%)       | 6/10 (60%)            | 22/27 (81.48%)                     |                                     |
| Diarrhea            | Haemorrhagic - 20/37 (54.05%) | 4/10 (40%) | 16/27 (59.25%)                     |                                     |
| Non-haemorrhagic    | - 17/37 (45.94%)       | 6/10 (40.74%)         | 11/27 (51.85%)                     |                                     |
| Vomiting            | Haemorrhagic - 14/37 (37.83%) | 0/10 (0%) | 14/27 (51.85%)                     |                                     |
| Non-hemorrhagic     | - 15/37 (40.54%)       | 5/10 (50%)            | 10/27 (37.03%)                     |                                     |
| Dehydration         | Nil - 3/37 (8.10%)     | 0/10 (0%)             | 3/37 (11.11%)                      |                                     |
| Moderate            | - 10/37 (27.02%)       | 1/10 (10%)            | 9/27 (33.33%)                      |                                     |
| Marked              | - 17/37 (45.94%)       | 2/10 (20%)            | 15/27 (55.55%)                     |                                     |
| Othersclinical signs| - 11/37 (29.72%)       | 3/10 (30%)            | 9/27 (33.33%)                      |                                     |
| CPV rapid antigen detection tests | 17/37 (45.94%) | 2/10 (20%) | 15/27 (55.55%)                     |                                     |

HR: heart rate, RR: respiratory rate, RT: rectal temperature. (*): a physiological range of values. a: significant at 5% level (p < 0.05); b: significant at 1% level (p<0.01).
male and female dogs as reported by Muhsen and Hasso (2010) in Iraq indigenous dogs, Choi et al. (2011) in Beagle dogs, and Atata et al. (2018) in Nigerian indigenous dogs. From our studies, it can reveal that the breed of dog does not significantly affect the hematological and biochemical parameters of clinically healthy dogs.

Clinical manifestation in diseased dogs
The clinical findings in Table 3 show a higher and significant variation of heart and respiratory rates and rectal temperature in diseased dogs compared to healthy dogs (P < 0.01). In the diseased group, hemorrhagic diarrhea was noted in 54.05% of cases, while non-hemorrhagic diarrhea was seen only in

### Table 4: Haematological values variations in diseased dogs with gastroenteritis infection (Mean ± SD)

| Parameters          | Diseased unvaccinated (n = 27) | Diseased vaccinated (n = 10) | Healthy group (n = 20) | Signification |
|---------------------|---------------------------------|------------------------------|------------------------|---------------|
| TEC (x 10^9/l)      | 4.74 ± 0.36                     | 5.01 ± 0.24                  | 5.90 ± 0.21            | a b NS        |
| Hb (g/dl)           | 10.79 ± 0.81                    | 12.51 ± 0.32                 | 13.48 ± 0.41           | a b NS        |
| PCV (%)             | 33.37 ± 1.14                    | 35.54 ± 0.97                 | 39.45 ± 1.10           | a c NS        |
| MCV (fl)            | 62.33 ± 1.22                    | 68.80 ± 0.48                 | 70.66 ± 1.81           | a b NS        |
| MCH (pg)            | 19.68 ± 1.02                    | 21.4 ± 0.53                  | 24.05 ± 1.45           | a b NS        |
| MCHC (%)            | 29.90 ± 1.10                    | 31.86 ± 1.64                 | 34.74 ± 0.22           | a b NS        |
| TLC (x 10^9/l)      | 6.24 ± 0.83                     | 12.68 ± 1.20                 | 11.39 ± 1.01           | c c a         |
| Neutrophils (x 10^9/l) | 4.56 ± 1.11                    | 9.89 ± 0.71                  | 8.23 ± 1.47            | c c a         |
| Eosinophils (x 10^9/l) | 0.31 ± 0.19                    | 0.34 ± 0.21                  | 0.35 ± 0.20            | NS NS NS      |
| Basophil (x 10^9/l)  | 0.02 ± 0.00                     | 0.01 ± 0.01                  | 0.00 ± 0.00            | NS NS NS      |
| Lymphocytes (x 10^9/l) | 0.86 ± 0.08                    | 1.96 ± 0.14                  | 2.22 ± 0.67            | b c NS        |
| Monocytes (x 10^9/l) | 0.49 ± 0.07                     | 0.48 ± 0.03                  | 0.50 ± 0.06            | NS NS NS      |
| Platelet (x 10^9/l) | 142.38 ± 36.18                  | 213.20 ± 43.61               | 265.29 ± 60.21         | c c NS        |

A: disease unvaccinated vs. disease vaccinated dogs; B: disease unvaccinated vs dogs healthy dogs; C: disease vaccinated dogs vs. healthy dogs.

NS: no significant differences (p > 0.05); a: significant at 5% level (P < 0.05); b: significant at 1% level (P < 0.01); c: significant at 1‰ level (P < 0.001).

### Table 5: Biochemical values variations in diseased dogs with gastroenteritis infection (Mean ±SD)

| Parameters          | Diseased unvaccinated (n = 27) | Diseased Vaccinated (n = 10) | Healthy group (n = 20) | Signification |
|---------------------|---------------------------------|------------------------------|------------------------|---------------|
| Glucose (mg/dl)     | 78.75 ± 1.50                    | 114.15 ± 1.09                | 109.43 ± 1.11          | c c NS        |
| Cholesterol (mg/dl) | 134.64 ± 4.41                   | 139.23 ± 2.66                | 136.92 ± 4.25          | NS NS NS      |
| TG (mg/dl)          | 123.64 ± 2.40                   | 107.50 ± 3.11                | 103.90 ± 5.80          | a a NS        |
| TP (g/dl)           | 5.24 ± 0.31                     | 6.89 ± 0.28                  | 6.35 ± 0.12            | b a a         |
| Albumin (g/dl)      | 2.30 ± 0.17                     | 3.15 ± 0.20                  | 2.89 ± 0.17            | b a a         |
| BUN (mg/dl)         | 39.28 ± 3.65                    | 30.79 ± 1.83                 | 26.93 ± 1.07           | b c a         |
| Creatinine (mg/dl)  | 1.67 ± 0.07                     | 1.32 ± 0.04                  | 1.09 ± 0.08            | a b a         |
| AST (IU/L)          | 33.82 ± 2.41                    | 29.43 ± 1.85                 | 27.01 ± 1.63           | a b NS        |
| ALT (IU/L)          | 50.66 ± 1.75                    | 45.50 ± 2.13                 | 43.17 ± 2.65           | a b NS        |
| Calcium (mg/dl)     | 8.24 ± 2.26                     | 9.86 ± 2.43                  | 10.25 ± 1.10           | a b NS        |
| Phosphorus (mg/dl)  | 4.10 ± 1.43                     | 4.81 ± 0.74                  | 5.06 ± 0.99            | NS a NS       |
| Sodium (mmol/l)     | 142.40 ± 1.82                   | 146.14 ± 2.35                | 149.03 ± 0.98          | NS a NS       |
| Potassium (mmol/l)  | 3.53 ± 0.42                     | 4.72 ± 0.35                  | 5.05 ± 0.29            | a b NS        |
| Chloride (mmol/l)   | 89.54 ± 3.91                    | 98.76 ± 1.85                 | 109.88 ± 1.76          | a b a         |

A: disease unvaccinated vs. disease vaccinated dogs; B: disease unvaccinated vs dogs healthy dogs; C: disease vaccinated dogs vs. healthy dogs.

NS: no significant differences (p > 0.05); a: Significant at 5% level (P < 0.05); b: Significant at 1% level (P < 0.01); c: Significant at 1‰ level (P < 0.001).

TG: Triglycerides; TP: Total protein; BUN: Blood urea nitrogen; AST: aspartate aminotransferase; ALT: Alanine aminotransferase.
45.94%. However, the opposite was observed for vomiting (37.83% for hemorrhagic vomiting vs. 40.54% for non-hemorrhagic vomiting). However, most dogs were anorexic (75.67%) and dehydrated (72.97%).

In the same group, diseased vaccinated dogs had a slight decrease in clinical parameters (P<0.05) and moderated clinical manifestation than unvaccinated dogs (Table 3).

These clinical manifestations are related to the gastroenteritis infection, which is a term used to describe a syndrome characterized by the sudden onset of vomiting and/or diarrhea caused by inflammation of the gastrointestinal mucosa, thus causing the onset anorexia, fever, and weight loss. Furthermore, fluid and blood losses stimulate cardio-respiratory adapter mechanisms via catecholamine and cause compensatory tachycardia and tachypnoea (Greene and Decaro, 2012). However, variations in the clinical signs in different dogs may be due to individual host resistance, the virulence of the causative agent, and nutritional status of the individual dog (Banja et al., 2002).

According to the paraclinical exam, neither gastrointestinal parasites nor protozoa were found in any of the dogs studied. In 17 cases (45.94 %), the cause of gastroenteritis was parvoviral as canine parvoviral antigen (CPV–2) was detected. The causative agent of enteritis or gastroenteritis in the remaining 20 dogs could not be determined in this study (Table 3).

**Hematology variation in diseased dogs**

For the hematology data, diseased unvaccinated dogs had significantly lower levels (p < 0.05, p < 0.01, p < 0.001) in erythrogram (TEC, Hb, PVC, MCV, MCH, MCHC), leukogram (neutrophil, lymphocyte), and platelet count compared with diseased vaccinated and healthy dogs (Table 4). These results were in accordance with Abd El-Bakyet et al., (2017). A non-significant change in eosinophils, basophils, and monocytes counts were noted in this study was confirmed by other research (Ramprabhu et al., 2002).

According to the paraclinical data revealed in our study, the quasi-totalities of the diseased unvaccinated dogs were CPV positive. Thus, in this case, the microcytic hypochromic anemia, leucopenia due to neutropenia and/or lymphopenia, and thrombocytopenia are the result of the direct effect of parvovirus on bone marrow, leading to a decrease of the cell lines production (granulocytes, erythroid, and megakaryocytes) (Terzungwe, 2018).

A haemogram did not show statistically significant differences between the diseased vaccinated dogs and healthy group, which is probably related to non-bleeding clinical manifestations. However, the leukocyte and neutrophil values of the latter were significantly higher than the control and diseased unvaccinated dogs. This finding may be due to the general reaction of the immune system to bacterial infection and inflammatory processes in GIT. In fact, interleukin-1 stimulates neutrophilia and results in the adherence of leukocytes (Bhat et al., 2013).

### Biochemical variations in diseased dogs

The statistical analysis of the biochemical parameters by the t-test between healthy and diseased dogs are presented in Table 5 above.

Compared with healthy dogs and diseased vaccinated dogs, diseased unvaccinated dogs had significantly lower concentrations of glucose, TP, albumin, calcium, sodium, potassium, and chloride. These data are related to those of Mylonakis et al. (2016). They also had significantly increased concentrations of BUN and creatinine but a slighter increase of serum activities of AST and ALT (Table 5) as reported by Bhat et al., (2013). A significant increase of triglyceride was noted in diseased unvaccinated dogs rather than other groups; the same result was reported by Salem et al., (2018).

In gastroenteritis infection, hypoglycaemia resulting in an interaction between severe malnutrition may be due to inappetence/anorexia complemented by malabsorption from the intestine (Bhat et al., 2013). The hypertriglyceridemia was attributed to modifications in lipid metabolism and acute phase response (Yilmaz and Senturk, 2007).

However, the damage of intestinal villi by the effect of a causative agent might cause a condition of protein-losing enteropathy. Also, the generation of acute-phase proteins as a reaction to inflammation and tissue impairment comes with the expanse of albumin synthesis. Increased BUN reflects pre-renal uremia, probably due to the reduced rate of renal glomerular filtration because of haemo-concentration and the catabolic breakdown of tissues as a result of fever. Moreover, dehydration as a consequence of vomiting and diarrhea might be linked to BUN elevation and creatinine concentration, as reported by Atata, (2017). However, the elevation in serum activities AST and ALT may occur as hepatic hypoxia secondary to severe hypovolemia or the absorption of toxic substances due to the loss of the intestinal barrier (Shah et al., 2013).

According to our data, the unbalanced electrolytes revealed in gastroenteritis infections could be due to a loss of potassium in the diarrheal fluid as well as to sodium and bicarbonate. Additionally, the colon retains sodium but not potassium and is lost in excess, leading to hypokalaemia. Hypochloraemia may be due to a severe loss of chloride ions by vomiting and a loss of chloride ions in the secretion of intestinal fluid during diarrhea (Bhat et al., 2015).

For vaccinated dogs, in general, moderate to severe fluid loss by diarrhea and vomiting is expressed by some alteration of serum biochemical parameters as TP and albumin. Increased TP and albumin concentrations observed due to haemo-concentration because of dehydration. Our finding agrees with previous reports (Salem, 2014). The observed normal concentrations of blood glucose in this study agreed with the data of Atata, (2017), proving that glucose concentrations was not adversely affected by dehydration—thus agreeing with the notion that blood glucose level is tightly regulated because of its role in maintaining the central nervous system function (Rodriguez et al., 2005).
Conclusion
The haemato-biochemical values obtained from this study can serve as reference data in differentiating the healthy and diseased animals in local climatic conditions and support the proper clinical-pathological diagnosis of diseases in dogs raised in the Batna area, Algeria. Further work should be done to investigate the effect of age, reproductive stage, diet, and physical activity of the animals on the different blood haemato-biochemical profile.

Severe changes in complete blood count and serum biochemical profile have been reported in unvaccinated diseased dogs with gastroenteritis infection. These profiles can easily be used as paraclinical indicators to differentiate healthy from diseased animals. Alternatively, diseased vaccinated dogs had moderate clinical manifestation and a high rate of cure. Thus, we need to popularise and recommend vaccinating the local dog population in the Batna area to protect the animals better.

References
Abd El-Baky, A. A., Mousa, S. A., Kelany, W. M. (2017). Diagnosis of hemorrhagic gastroenteritis in dogs. Bioscience Research, 14(4): 1223-1229.
Adebiyi, O. E., Ajayi, J. O., Olayemi, F. O. (2014). Haematology of Rottweiler dog in a tropical environment. New York Science Journal, 7(9): 1-4.
Ariyibi, A. A., Oyeyemi, M. O., Ajadi, R. A. (2002). A comparative study of some hematology and biochemical parameters of clinically healthy Alsatian and local dogs. African Journal of Biomedical Research, 5(3).
Atata, J. A., Esievo, K. A. N., Adamu, S., Abdulsalam. (2018). Baseline haematological, serum biochemical and some urine parameters in Nigerian indigenous dogs. Savannah Veterinary Journal, 1:1-5.
Atata, J.A. (2017). Effects of dehydration on haematology, clinical biochemistry and urinalysis of dogs. MSc thesis, Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria.
Bain, B. J. (1985). Platelet count and platelet size in males and females. Scandinavian Journal of Haematology, 35(1): 77-79.
Banja, B. K., Sahoo, N., Panda, H. K., Ray, S. K., Das, P. K. (2002). Epizootioloigical status of canine viral haemorrhagic gastro-enteritis in Bhubaneswar city. Indian Veterinary Journal. 79: 850-851
Benjamin, M. M. (1985). Outline of Veterinary Clinical Pathology. 3rd ed. Kalyani Publishers, New Delhi, pp. 351.
Bhat, A. A., Wadhwa, D. R., Mandal, R. K., Sharma, A., Katoch, A., Sharma, P. (2015). Clinico-biochemical alterations and therapeutic management of canine gastroenteritis. Journal of Animal Research, 5(1): 149.
Bhat, A. A., Wadhwa, D. R., Singh, S. P., Singh, I. (2013). Haematological and biochemical analysis in canine enteritis. Veterinary World, 6(7).
Chang, Y. M., Hadox, E., Szladovits, B., Garden, O. A. (2016). Serum biochemical phenotypes in the domestic dog. PloS one, 11(2), e0149650.17p.
Choi, S. Y., Hwang, J. S., Kim, I. H., Hwang, D. Y., Kang, H. G. (2011). Basic data on the hematology, serum biochemistry, urology, and organ weights of beagle dogs. Laboratory animal research, 27(4): 283-291.
Dash, S. K., Singh, C., Ahuja, C. S., Singh, D. (2013). A comparative study of some hematological and serum biochemical parameters of clinically healthy Labrador and Spitz. International Journal of Advanced Veterinary Science and Technology, 2(1): 52-58.
Dash, S., Das, M. R., Sathapathy, S., Patra, R. C., Senapati, S. K., Jena, G. R. (2017). Haematological, serum biochemical alterations and efficacy of different therapeutic regimens in haemorrhagic gastro-enteritis with special reference to canine parvo virus infection. Global Journal of Bio-science and Biotechnology, 6 (2): 267-271.
Dulman, O. M., Anton, A., Solcan, G. (2015). Variations in standard blood count and biochemical parameters in dogs with atopic dermatitis. Bulletin UASVM Veterinary Medicine, 72(1): 86-89.
Greene, C.E. and Decaro, N. (2012). Canine viral enteritis. In: Greene CE, Infectious diseases of the dog and cat, Fourth edition, WB Saunders, Elsevier, pp: 67- 74.
Kaneko, J. J., Harvey, J. W., Bruss, M. L. (2008). Clinical biochemistry of domestic animals. Academic press, pp. 928.
Meyer, D. J. and Harveyj J. W. (2004): Veterinary laboratory medicine, 3rd ed, WB Saunders. Philadelphia, pp. 310.
Mohammed, N. A., Ahmed, S. H., Omer, S. A., Sammad, G. H. A. (2017). Platelet indices in male and female german shepherd dogs in the Sudan. Journal of Agriculture and Veterinary Science. 10 (7): 60-63.
Muhesen, R. K. and Hasso, R. M. (2010). Effect of age and sex on the serum biochemical profile of Local dogs. AL-Qadisiyah Journal of Veterinary Medicine Sciences, 9(1): 24-26.
Mylonakis, M. E., Kalli, I., Rallis, T. S. (2016). Canine parvoviral enteritis: an update on the clinical diagnosis, treatment, and prevention. Veterinary Medicine: Research and Reports, 7: 91.
Ramprabhu, R., Prathaban, S., Nambi, A. P., Dhanapalan, P. (2002). Haemorrhagic gastroenteritis in dogs: A clinical profile. Indian Veterinary Journal, 79(4): 374-376.
Rodriguez, P., Tortosa, F. S., Villafuerte, R. (2005). The effects of fasting and refeeding on biochemical parameters in the red-legged partridge (Alectoris rufa). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140(1): 157-164.
Salem, N. Y. (2014). Canine viral diarrhoea: Clinical, hematologic and biochemical alterations with particular reference to in-clinic rapid diagnosis. Global Veterinaria, 13(3): 302-307.
Salem, N. Y., Yehia, S. G., Farag, H. S., Soliman, S. M. (2018). Evaluation of hepcidin level and clinico-pathological modifications in canine parvovirus enteritis. International Journal of Veterinary Science, 7(2): 93-96.
Shah, S. A., Sood, N. K., Wani, N., Gupta, K., Singh, A. (2013). Haematobiochemical changes in canine parvovirus infection. Indian Veterinary Journal of Pathology, 37(2): 131-133.
Shyama, V. H., and Vijayakumar, K. (2011). Haematobiochemical studies in dogs affected with bacterial dermatitis. Journal of Veterinary and Animal Science, 42: 20-22.
Terzungwe, T. M. (2018). Hematological parameters of dogs infected with canine parvovirus enteritis in sumy Ukraine. World Journal of Innovative Research, 5(3).
Yilmaz, Z., and Senturk, S. (2007). Characterisation of lipid profiles in dogs with parvoviral enteritis. Journal of Small Animal Practice, 48(11): 643-650.