Some arguments in support of the association of PSR B 1706−44 with the supernova remnant G 343.1−2.3

Douglas C.-J. Bock

Radio Astronomy Laboratory, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720, USA; dbock@astro.berkeley.edu

V. V. Gvaramadze

E.K.Kharadze Abastumani Astrophysical Observatory, Georgian Academy of Sciences, A. Kazbegi ave. 2-a, Tbilisi, 380060, Georgia; vgvaram@mx.iki.rssi.ru

Abstract. We present some arguments in support of the association of the pulsar PSR B 1706−44 with the supernova remnant G 343.1−2.3, based on the idea that these objects could be the result of a supernova explosion within a mushroom-like cavity (created by the supernova progenitor wind breaking out of the parent molecular cloud). We suggest that in addition to the known bright “half” of G 343.1−2.3 there should exist a more extended and weaker component, such that the actual shape of G 343.1−2.3 is similar to that of the well-known SNR VRO 42.05.01. We have found such a component in archival radio data.

1. Introduction

PSR B 1706−44 (Johnston et al. 1992) is superposed on the outer edge of an incomplete arc of radio emission discovered by McAdam, Osborne, & Parkinson (1993). McAdam et al. interpreted the arc as a shell-type supernova remnant (SNR), named G 343.1−2.3, and suggested that it is physically associated with PSR B 1706−44. This suggestion was questioned by Frail, Goss, & Whiteoak (1994) and Nicastro, Johnston, & Koribalski (1996) on three bases: Gaensler & Johnston’s (1995) statistical study, which suggests that young (< 25 000 yr) pulsars cannot overrun their parent SNR shells (the spin-down age of PSR B 1706−44 is ≃ 17 500 yr); an inconsistency between the implied and measured (scintillation) transverse velocities of the pulsar; and the absence of any apparent interaction between the pulsar and the SNR’s “shell”. In this paper we show how the existing observational data on PSR B 1706−44 and G 343.1−2.3 can be interpreted in favor of their physical association (cf. Dodson et al. 2001).
2. The supernova remnant G 343.1−2.3

2.1. Observational data
The 843 MHz image of G 343.1−2.3 by McAdam et al. (1993) shows a well-defined arc (a half-ellipse) of radio emission of maximum extent about 40′. A VLA image of the SNR obtained by Frail et al. (1994) shows the existence of weak, diffuse emission both inside and outside the bright arc. This emission fills a region similar to and about two times more extended than the bright arc (Dodson et al. 2001; see also Duncan et al. 1995 and Fig. 2).

2.2. The origin of the pulsar/SNR system
We suggest that the SNR G 343.1−2.3 is the result of an off-centered cavity supernova (SN) explosion. Fig. 1 schematically depicts a scenario for its origin. A massive star (the progenitor of the SN) ends its evolution within a mushroom-like cavity formed by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of much less density. The proper motion of the progenitor star results in a considerable offset of the SN explosion site from the geometrical center of the semi-spherical cavity created inside the cloud; we suggest that the SN exploded outside the cloud. The subsequent interaction of the SN blast wave with the reprocessed ambient medium determines the structure of the resulting SNR (e.g. Franco et al. 1991), which acquires a form reminiscent of the well-known SNR VRO 42.05.01. We speculate that the wind-driven cavity formed inside the cloud was surrounded by a shell of mass less than some critical value (for spherically-symmetric shells this value is about 50 times the mass of the SN ejecta; e.g. Franco et al. 1991), so that the SN blast wave was able to overrun the shell to propagate further into the unperturbed gas of the cloud, leaving behind the reaccelerated and gradually broadening turbulent shell. We suggest that the bright arc of G 343.1−2.3 corresponds to the shocked former wind-driven shell and that the diffuse radio emission comes from the “half” of the SN blast wave propagating into the molecular cloud (see Fig. 1). These two components of the SNR form the “stem” of the “mushroom”. We expect that a more extended component of the SNR (the “cap” of the “mushroom”) should exist to the southeast of the bright arc, which corresponds to the
The association of PSR B 1706−44 with the SNR G 343.1−2.3

“half” of the SN blast wave expanding in the intercloud medium. It is curious that the 2.4 GHz Parkes Survey (Duncan et al. 1995) reveals such a structure (Fig. 2). Although this structure could be a foreground or background object, its location in the “proper” place and its symmetry with respect to the bright arc of G 343.1−2.3 suggests that it could be physically related to this SNR.

3. Reliability of the pulsar/SNR association

3.1. On the statistical argument against the association

Although it is now clear that PSR B 1706−44 is located (at least in projection) well within the SNR G 343.1−2.3 (Dodson et al. 2001), we note here that Gaensler & Johnston (1995) did not consider two very important effects: modification of the ambient medium by the ionizing emission and stellar wind of massive stars (the progenitors of most SNe), and the proper motion of SN progenitor stars (Gvaramadze 2000, 2002). Taking into account these two effects allows it to be shown that even a young pulsar moving with a moderate velocity (∼ 200 km s$^{-1}$) is able to escape the SNR’s shell, provided it was born not far from the edge of the wind-driven bubble. Alternatively, the apparent location of a pulsar on the edge of SNR’s shell could be due simply to the effect of projection in non-spherically-symmetric SNRs (see Fig. 1).

3.2. On the pulsar velocity

The implied pulsar transverse velocity, i.e. the velocity inferred from the angular displacement of PSR B 1706−44 from the geometrical center of the (bright) arc, is $V_{\text{imp}} \approx 700 \theta_20 D_{2.1} \tau_{17.5}^{-1}$ km s$^{-1}$, where θ_20 is the angular displacement in units of $20''$, $D_{2.1}$ is the distance to the pulsar in units of 2.1 kpc, and $\tau_{17.5}$ is the...
spin-down age of the pulsar in units of 17.5 kyr. Nicastro et al. (1996) compared
this estimate to one derived from scintillation measurements, finding the latter
anomalously low ($\leq 0.05 V_{\text{imp}}$). The inconsistency was used by Nicastro et al. to
suggest that the pulsar did not originate from the apparent center of SNR, and
that the pulsar and SNR are not associated. We agree with their first suggestion
(see §2.2) and therefore believe that the implied velocity can be reduced. On
the other hand we have found (Bock & Gvaramadze, in preparation) that if the
turbulent material of the reaccelerated former wind-driven shell (the bright arc
of SNR) is responsible for nearly all the scattering of PSR B1706−44, then the
pulsar moves in the same direction and with nearly the same (transverse) velocity
as does the part of the bright arc projected on the pulsar (cf. Gvaramadze 2001).
If so, one can use the non-detection of soft X-ray emission from the SNR (Becker,
Brazier, & Trümper 1995) to show that the pulsar transverse velocity should
indeed be less than V_{imp}, though it can be much larger than that calculated by
Nicastro et al. (1996). We also expect that the pulsar proper motion is from the
northeast to the southwest; this should be tested observationally.

3.3. On the absence of interaction between the pulsar and the SNR

The absence of any morphological signature of an interaction between PSR
B1706−44 and G343.1−2.3, despite the apparent proximity of the pulsar to
the bright arc of the SNR, can easily be explained if the SN indeed exploded
within a mushroom-like wind-driven cavity, as discussed above.

Acknowledgments. We are grateful to R. Dodson for providing his manuscript
in advance of publication. VVG is grateful to the LOC for financial support.

References

Becker W., Brazier K. T. S., & Trümper J. 1995, A&A, 298, 528
Dodson R., Golap K., Osborne J., UdayaShankar N., & Rao A. P. 2001, in IAU
Symp. 199, The Universe at Low Radio Frequencies, ed. A. Pramesh Rao
(San Francisco: ASP), in press (astro-ph/0111354)
Duncan A. R., Stewart R. T., Haynes R. F, & Jones K. L. 1995, MNRAS, 277,
36
Frail D. A., Goss W. M., & Whiteoak J. B. Z. 1994, ApJ, 437, 781
Franco J., Tenorio-Tagle G., Bodenheimer P., & Rózyczka M. 1991, PASP, 103,
803
Gaensler B. M., & Johnston S. 1995, Publ. Astron. Soc. Austr., 12, 76
Gvaramadze V. V. 2000, preprint (astro-ph/0005572)
Gvaramadze V. V. 2001, A&A, 369, 174
Gvaramadze V. V. 2002, these proceedings
Johnston, S., Lyne, A. G., Manchester, R. N., Kniffen, D. A., D’Amico, N., Lim,
J., & Ashworth, M. 1992, MNRAS, 255, 401
McAdam W. B., Osborne J. L., & Parkinson M. L. 1993, Nat, 361, 516
Nicastro L., Johnston S., & Koribalski B. 1996, A&A, 306, 49