K-theory of torus manifolds

V.Uma

Abstract

The torus manifolds have been defined and studied by Masuda and Panov ([7]) who in particular also describe its cohomology ring structure. In this note we shall describe the topological K-ring of a class of torus manifolds (those for which the orbit space under the action of the compact torus is a homology polytope whose nerve is shellable) in terms of generators and relations. Since these torus manifolds include the class of quasi-toric manifolds this is a generalisation of our earlier results ([11]).

1 Introduction

We shall first briefly recall the notations and basic definitions from [7].

Let M be a $2n$-dimensional closed connected orientable smooth manifold with an effective smooth action of an n-dimensional torus $T = (S^1)^n$ such that $MT \neq \emptyset$. Since $\dim(M) = 2\dim(T)$ and M is compact, the fixed point set M^T is a finite set of isolated points.

A closed connected codimension-two submanifold of M is called characteristic if it is the connected component of the set fixed pointwise by a certain circle subgroup of T and contains at least one T-fixed point. Since M is compact there are only finitely many characteristic submanifolds. We denote them by $M_i (i = 1, \ldots, m)$. Note that each M_i is orientable. We say that M is omnioriented if an orientation is fixed for M and for every characteristic submanifold M_i. Further, M is called a torus manifold when it is omnioriented.

Let $Q := M/T$ denote the orbit space of M and $\pi : M \to Q$ the quotient projection. We define the facets of Q to be the orbit spaces of the characteristic submanifolds: $Q_i := \pi(M_i), i = 1, \ldots, m$. Every facet is a closed connected subset in Q of codimension 1. We refer to a non-empty intersection of k-facets as a codimension-k preface, $k = 1, \ldots, n$. Hence a preface is the orbit space of some non-empty intersection $M_{i_1} \cap \cdots \cap M_{i_k}$ of characteristic submanifolds. We refer to the connected components of prefaces as faces. We also regard Q itself as a codimension-zero face; other faces are called proper faces. A space X is acyclic if $H_i(X) = 0$ for all i. We say that Q is face-acyclic if all of its faces (including Q itself) are acyclic. We call Q a homology polytope if all its prefaces are acyclic (in particular, connected). Note that $Q = M/T$ is a homology polytope if and only if it is face-acyclic and all non-empty multiple intersections of characteristic submanifolds M_i are connected.

We say that a torus manifold M is locally standard if every point in M has an invariant neighbourhood U weakly equivariantly diffeomorphic to an open subset $W \subset \mathbb{C}^n$ (invariant under the standard T-action on \mathbb{C}^n). The latter means that there is an automorphism $\psi : T \to T$ and a diffeomorphism $f : U \to W$ such that $f(ty) = \psi(t)f(y)$ for all $t \in T, y \in U$.

Any point in the orbit space Q of a locally standard torus manifold M has a neighbourhood diffeomorphic to an open subset in the positive cone

$$\mathbb{R}^n_+ = \{(y_1, \ldots, y_n) \in \mathbb{R} : y_i \geq 0, i = 1, \ldots, n\}.$$

Moreover, this local diffeomorphism preserves the face structures in \(Q\) and \(\mathbb{R}^m\) (that is, a point from a codimension-k face of \(Q\) is mapped to a point with at least \(k\) zero coordinates). By the definition, this identifies \(Q\) as a manifold with corners. In particular \(Q\) is a manifold with boundary \(\partial Q = \cup_i Q_i\). Let \(K\) denote the nerve of the covering of \(\partial Q\) by the facets. Thus \(K\) is an \((n-1)\)-dimensional simplicial complex on \(m\)-vertices. The \((k-1)\)-dimensional simplices of \(K\) are in one-one correspondence with the codimension-\(k\) prefaces of \(Q\).

We assume that a torus manifold \(M\) is locally standard. Then the orbit space \(Q\) is a manifold with corners. The facets of \(Q\) are the quotient images \(Q_i\) of characteristic submanifolds \(M(i)\) (\(i\) = 1, ..., \(m\)). Let \(\Lambda : \{1, \ldots, m\} \to H_2(BT) = Hom(S^1, T) \cong \mathbb{Z}^n\) be a map sending \(i\) to \(a_i\), where the circle subgroup determined by \(a_i\), that is, \(a_i(S^1)\), is the one which fixes \(M_i\) (see Prop. 2.5 and §3.2 of \([11]\)). Further, the characteristic map \(\Lambda\) satisfies the following non-singular condition:

If \(Q_{i_1} \cap \cdots \cap Q_{i_k}\) is non-empty, then \(\Lambda(i_1), \ldots, \Lambda(i_k)\) span a \(k\)-dimensional unimodular subspace (i.e. extend to a \(Z\)-basis) of \(Hom(S^1, T) \cong \mathbb{Z}^n\).

The data \((Q, \Lambda)\) determines the torus manifold \(M\) if the orbit quotient \(Q\) of \(M\) satisfies \(H^2(Q) = 0\) (see Lemma 3.6 of \([7]\) and Prop. 1.8 of \([11]\)).

Let \(Q\) be a homology polytope (or even a simple convex polytope) with \(m\) facets \(Q_1, \ldots, Q_m\). Let \(k\) be a commutative ground ring with unit. Then the Stanley-Reisner face ring of its nerve \(K\) can be identified with the ring

\[k[Q] = k[v_{Q_1}, \ldots, v_{Q_m}] / (v_{Q_{i_1} \cap \cdots \cap Q_{i_k}} \quad \text{if} \quad Q_{i_1} \cap \cdots \cap Q_{i_k} = \emptyset)\]

called the face ring of \(Q\) (see §4 of \([7]\)).

2 Main Theorem

This section is devoted to proving our main result Theorem 2.3.

Proposition 2.1. There exists a complex line bundle \(L_j\) on \(M\) admitting a section \(s_j\) whose zero locus is the characteristic submanifold \(M_j\) for \(1 \leq j \leq m\).

Proof: Let \(\nu_j\) denote the normal bundle of \(M_j\) in \(M\) and let \(p : \nu_j \to M_j\) be the canonical projection and let \(E(\nu_j)\) denote the total space of \(\nu_j\). The rank 2 real vector bundle \(\nu_j\) on \(M_j\) admits a Riemannian metric (since \(M_j\) is compact) and in fact its structure group can be reduced to \(O(2)\). Fixing orientations on \(M\) and \(M_j\) determines a canonical orientation for every \(\nu_j\) for \(1 \leq j \leq m\). Therefore the normal bundle \(\nu_j\) admits reduction of structure group to \(SO(2)\). We can identify \(SO(2)\) with \(S^1\) so that the principal \(SO(2)\) bundle associated to \(\nu_j\) is in fact an \(S^1\) bundle and the complex line bundle associated to it by the standard action of \(S^1\) on \(\mathbb{C}\) has \(\nu_j\) as its underlying real vector bundle.

By the tubular neighbourhood theorem, \(E(\nu_j)\) is diffeomorphic to a tubular neighbourhood \(D_j\) of \(M_j\) and the diffeomorphism maps the image of the zero section of \(\nu_j\) onto \(M_j\). Further, the total space of the principal \(S^1\) bundle can be identified with \(\partial(D_j)\), the boundary of the tubular neighbourhood. Let \(p^*(\nu_j)\) be the pull back of \(\nu_j\) to \(D_j\). Since \(\nu_j\) is associated to the principal \(S^1\) bundle, its pull back to \(\partial(D_j)\) (its total space) is trivial and since \(\partial(D_j)\) is a deformation retract of \(D_j - M_j\), by the homotopy property of vector bundles it follows that the restriction of \(p^*(\nu_j)\) to \(D_j - M_j\) is trivial.

The vector bundle \(p^*(\nu_j)\) is endowed with a section \(\sigma_j\) namely the diagonal section whose zero locus \(Z(\sigma_j) = M_j\).

Let \(\epsilon\) be the trivial complex line bundle on \(M - int(D_j)\). Note that \(p^*(\nu_j)\) and \(\epsilon\) agree on a neighbourhood of \(D_j \cap (M - int(D_j)) = \partial(D_j)\). Thus we can construct a complex line bundle \(L_j\) on the whole of \(M\) which
agrees with $p^*(\nu_j)$ on D_j and with ϵ on $M - \text{int}(D_j)$ (see [6]). Further, the section σ_j of ν_j extends to give a section s_j for L_j whose zero locus $Z(s_j) = M_j$. □

We now recall the notion of a shellable simplicial complex (see Def 2.1, page 79 of [3]).

A simplicial complex Δ is said to be pure if each of its facets (or maximal face) has the same dimension. We say that a pure simplicial complex Δ is shellable if its facets can be ordered F_1, \ldots, F_s such that the following condition holds: Let Δ_j be the subcomplex generated by F_1, \ldots, F_j, i.e:

$$\Delta_j = 2F_1 \cup \cdots \cup 2F_j$$

where $2F = \{G : G \subseteq F\}$. Then we require that for all $1 \leq i \leq s$ the set of faces of Δ_i which do not belong to Δ_{i-1} has a unique minimal element (with respect to inclusion). (When $i = 1$, we have $\Delta_0 = \emptyset$ and $\Delta_1 = \Delta_0$ has the unique minimal element \emptyset.) The linear order F_1, \ldots, F_s is called a shelling order or a shelling of Δ. Given a shelling F_1, \ldots, F_s of Δ, we define the restriction $r(F_i)$ of F_i to be the unique minimal element of $\Delta_i - \Delta_{i-1}$.

Henceforth we assume that M is a torus manifold with orbit space a homology polytope Q whose nerve K is a shellable simplicial complex.

Let d be the number of vertices of Q so that the simplicial complex K has d facets (or maximal dimensional faces). Let F_1, \ldots, F_d be a shelling of K (see Def 2.1, page 79 of [3]) and let $r(F_i)$ denote the restriction of F_i. Thus (by immediate consequence of the definition of a shelling) we have a disjoint union:

$$K = [r(F_1), F_1] \sqcup \cdots \sqcup [r(F_d), F_d].$$

Let S_1, \ldots, S_d denote the vertices of the polytope which correspond respectively to F_1, \ldots, F_d. Further, let T_i be the face of Q corresponding to the face $r(F_i)$ of K for $1 \leq i \leq d$. Thus it follows that every face of Q belongs to $[S_i, T_i]$ for a unique $1 \leq i \leq d$ (where $[S_i, T_i]$ stands for the faces of Q which contain the vertex S_i and lie on the face T_i). We isolate this property as follows: For every face $Q_I = Q_{j_1} \cap \cdots \cap Q_{j_k}$ of Q where $I = \{j_1, \ldots, j_k\}$ there is a unique $1 \leq i \leq d$ such that:

$$Q_I \in [S_i, T_i]$$

(\#)

Let $\tau_i := \dim(T_i)$. Further, if \hat{T}_i denotes the subset of T_i obtained by deleting all faces of T_i not containing S_i. Since Q is a manifold with corners, \hat{T}_i is identified with $\mathbb{R}_{\geq 0}^{\tau_i}$. Then we note that $\pi^{-1}(\hat{T}_i)$ identified with \mathbb{C}^{τ_i} for $1 \leq i \leq d$ give a cellular decomposition of M where $\pi : M \to Q$ is the quotient projection (see Construction 5.15 on page 66 of [3] and §3 of [3]). Hence we can summarise as follows:

Lemma 2.2. Let M be a torus manifold with orbit space Q a homology polytope. Let K be the nerve of Q. If K is shellable then the shelling gives a perfect cellular decomposition of M with cells only in even dimensions.

Theorem 2.3. Let Q_1, \ldots, Q_m denote the facets of Q. Let a_i denote the element $\Lambda(i)$ in $H_2(BT)$, where Λ is the characteristic homomorphism. Consider the polynomial algebra $\mathbb{Z}[v_{Q_1}, \ldots, v_{Q_m}]$. We denote by I the ideal generated by the following two types of elements:

$$v_{Q_{j_1}} \cdots v_{Q_{j_k}}, \ 1 \leq j_p \leq m,$$

where $\cap_{i=1}^k Q_{j_i} = \emptyset$ in Q, and the elements

$$\prod_{j, (t,a_j) > 0} (1 - v_{Q_j})^{(t,a_j)} - \prod_{j, (t,a_j) < 0} (1 - v_{Q_j})^{-(t,a_j)}$$

(\#)

for $t \in H^2(BT)$. Let $R = \mathbb{Z}[v_{Q_1}, \ldots, v_{Q_m}] / I$ and let $K^*(M)$ denote the topological K-ring of X. Then the map $\psi : R \to K^*(M)$ sending v_{Q_j} to $[L_j] - 1$ is a ring isomorphism.
We now state the following lemma which is used for proving Theorem 2.3.

Lemma 2.4. The monomials \(v_{T_i} \), \(1 \leq i \leq d \) span \(R \) as a \(\mathbb{Z} \)-module.

Proof: The proof of this lemma is exactly as of Prop. 2.1 of [11] (also see Lemma 2.2 of [10]). Thanks to the key observation (*), the arguments work analogously in this setting too (the setting of a torus manifold with quotient a homology polytope whose nerve is shellable). We omit the details. \(\square \)

Proof of Theorem 2.3. By Lemma 2.1 there exists a complex line bundle \(L_j \) on \(M \) with section \(s_j \) whose zero locus \(Z(s_j) = M_j \). Thus its first chern class, \(c_1(L_j) = [M_j] \) for \(1 \leq j \leq m \), where \([M_j]\) denotes the fundamental class of \(M_j \) in \(H^2(M;\mathbb{Z}) \). Further, \(M \) has a cellular decomposition with cells only in even dimensions (see Lemma 2.2). Now, by Corollary 6.8 of [7], \(H^*(M;\mathbb{Z}) \) is generated by \(c_1(L_1), \ldots, c_1(L_m) \in H^2(X;\mathbb{Z}) \). Hence by Theorem 4.1 of [10], it follows that \(K^*(M) = K^0(M) \) is generated by \([L_1], \ldots, [L_m]\) in \(K^0(M) \).

Let \(L_t := \prod_{j=1}^m L_j^{(t,a_j)} \). Since \(c_1(L_t) = \sum_{j=1}^m (t,a_j)[M_j] = 0 \) it follows that \(L_t \) is a trivial line bundle for every \(t \in H^2(BT) \).

Let \(Q_j \cap \cdots \cap Q_jk = \emptyset \) in \(Q \). Then we have \(M_j \cap \cdots \cap M_jk = \emptyset \) in \(M \). Therefore the vector bundle \(V = L_j1 \oplus \cdots \oplus L_jk \) admits a section \(s = (s_j, \ldots, s_jk) \) which is nowhere vanishing. Hence applying the \(\gamma^k \) operation in \(K(M) \) we obtain \(\gamma^k(\oplus_{p=1}^k L_jp - k) = \gamma^k(\oplus_{p=1}^k (L_jp - 1)) = \prod_{p=1}^k [L_jp] - 1 \). Since \(V \) has geometric dimension at most \(k - 1 \) we have: \(\prod_{p=1}^k ([L_jp] - 1) = 0 \).

By the above arguments it follows that the map \(\psi : R \to K^*(X) \) which sends \(v_{Q_j} \) to \([L_j] - 1 \) is well defined and surjective.

Since \(M \) has a cell decomposition with cells only in even dimensions it follows that \(K^*(M) = K^0(M) \) is free abelian of rank \(d \) which is the number of even dimensional cells (see [1]). Further, by Lemma 2.4 we know that \(R \) is generated by \(d \) elements \(v_{T_1}, \ldots, v_{T_d} \). Hence it follows that the map \(\psi \) is a ring isomorphism. \(\square \)

Acknowledgement: I thank P. Sankaran for helpful discussions.

References

[1] M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math., pp. 7-38, Vol III (1961) AMS Providence, RI.
[2] A. Bronsted, An introduction to convex polytope, (1983), Springer-Verlag, NY.
[3] V.M. Buchstaber and T.E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lect. Series-24,(2002), AMS, Providence, RI.
[4] M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. Jour. 62,(1991), 417-451.
[5] W. Fulton, Introduction to toric varieties, Ann Math Studies 131,(1993), Princeton Univ. Press, Princeton, NJ.
[6] M. Karoubi, K-Theory, Grundlehren der Mathematischen Wissenschaften 226, Springer-Verlag, Berlin, 1978.
[7] M. Masuda and T. Panov, On the cohomology of torus manifolds, arXiv:math.AT/0306100 v1 2003.
[8] J.W. Milnor, J.D. Shasheff, Characteristic classes, Ann. Math. Studies 76,(1974), Princeton Univ. Press, Princeton, NJ.
[9] R.P. Stanley, Combinatorics and commutative algebra, Progress in Mathematics 41, Birkhauser, Boston.

[10] P. Sankaran and V. Uma, Cohomology of toric bundles, Comment. Math. Helv., 78,(2003), 540-554. Errata, 79,(2004), 840-841.

[11] P. Sankaran and V. Uma, K-theory of quasi-toric manifolds, Osaka Journal of Mathematics, to appear.

[12] G. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, 152. Springer-Verlag, New York, 1995.

Department of Mathematics
I.I.T Madras,
Chennai-600 036
INDIA.
E-mail:vuma@iitm.ac.in
uma@cmi.ac.in