Stability of solutions to abstract differential equations

A.G. Ramm
Department of Mathematics
Kansas State University, Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract
A sufficient condition for asymptotic stability of the zero solution to an abstract nonlinear evolution problem is given. The governing equation is \(\dot{u} = A(t)u + F(t, u) \), where \(A(t) \) is a bounded linear operator in Hilbert space \(H \) and \(F(t, u) \) is a nonlinear operator, \(\|F(t, u)\| \leq c_0\|u\|^{1+p}, \) \(p = \text{const} > 0, \) \(c_0 = \text{const} > 0. \) It is not assumed that the spectrum \(\sigma := \sigma(A(t)) \) of \(A(t) \) lies in the fixed halfplane \(\Re z \leq -\kappa, \) where \(\kappa > 0 \) does not depend on \(t. \) As \(t \to \infty \) the spectrum of \(A(t) \) is allowed to tend to the imaginary axis.

MSC: 34G20; 447J05; 47J35

Key words: dynamical systems; stability; asymptotic stability

1 Introduction
Let \(H \) be a Hilbert space. Consider the problem

\[
\dot{u} = A(t)u + F(t, u), \quad t \geq 0,
\]

\[u(0) = u_0, \]

where \(\dot{u} = \frac{du}{dt} \) is the strong derivative, \(A(t) \) is a linear closed densely defined in \(H \) operator with the domain \(D(A) \), independent of \(t, \) \(u_0 \in D(A) \). We assume that \(F(t, u) \) is a nonlinear mapping, locally Lipschitz with respect to \(u, \) and satisfying the following inequality

\[\|F(t, u)\| \leq c_0\|u\|^{1+p}, \quad p > 0, \quad c_0 > 0, \]
where \(p \) and \(c_0 \) are constants. We also assume that

\[
\text{Re}(Au, u) \leq -\gamma(t)\|u\|^2, \quad \forall u \in D(A),
\]

where

\[
\gamma(t) > 0, \quad \lim_{t \to \infty} \gamma(t) = 0, \quad (5)
\]

\[
\gamma(t) = \frac{b_1}{(b_0 + t)^d}, \quad d = \text{const} \in (0, 1),
\]

\(b_0 \) and \(b_1 \) are positive constants. Assumptions (5) are satisfied by the function (6). However, our method can be applied to many other \(\gamma(t) \) satisfying assumptions (5).

Definition 1. The zero solution to equation (1) is called Lyapunov stable if for any \(\epsilon > 0 \), sufficiently small, there exists a \(\delta = \delta(\epsilon) > 0 \), such that if \(\|u_0\| < \delta \), then the solution to problem (1) exists on \([0, \infty)\) and \(\|u(t)\| \leq \epsilon \). If, in addition,

\[
\lim_{t \to \infty} \|u(t)\| = 0,
\]

then the zero solution is asymptotically stable.

Basic results on the Lyapunov stability of the solutions to (1) one finds in [1]-[4], and in many other books and papers. In [4] these results are established under the assumption that the operator \(A(t) \) is bounded, \(D(A) = H \), and \(A(t) \) has property \(B(\nu, N) \). This means ([4], p.178) that every solution to the equation

\[
\dot{u} = A(t)u
\]

satisfies the estimate

\[
\|u(t)\| \leq Ne^{-\nu(t-s)}\|u(s)\|, \quad t \geq s \geq 0,
\]

where \(N > 0 \) and \(\nu > 0 \) are some constants. The quantity

\[
\kappa := \lim_{t \to \infty} \frac{\ln \|u(t)\|}{t}
\]

is called the exponent of growth of \(u(t) \). If \(\Sigma \) is the set of \(\kappa \) for all solutions to (8), then

\[
\kappa_s := \sup_{\kappa \in \Sigma} \kappa
\]

is called senior exponent of growth of solutions to (8). The general exponent \(\kappa_g \) is defined as

\[
\kappa_g := \inf \rho,
\]
where ρ is the exponent in the inequality
\[
\|u(t)\| \leq Ne^{\rho(t-s)}\|u(s)\|, \quad t \geq s \geq 0.
\] (13)

One has
\[
\kappa_s \leq \kappa_g,
\] (14)
and the case $\kappa_s < \kappa_g$ can occur (the Perron’s example, see [4], p.177). If $\kappa_g < 0$ then the zero solution to (8) is Lyapunov asymptotically stable. If $A(t) = A$ does not depend on t and A is a bounded linear operator, then $\kappa_g < 0$ if and only if the spectrum of A, denoted $\sigma(A)$, lies in the halfplane $\text{Re} z \leq \kappa_g < 0$. In this case
\[
\|e^{At}\| \leq N_0 e^{\kappa_g t},
\] (15)
and if $\|F(t,u)\| \leq q\|u\|, \ t \geq 0, \ \|u\| < \rho$, and $q < \frac{\kappa_g}{N_0}$, then equation (1) has negative general exponent also, so the zero solution to equation (1) is Lyapunov asymptotically stable (1, p.403).

If $A = A(t)$, and for any solution to (5) estimate (9) holds with $\nu > 0$, and if (3) holds, then for any solution to (1) with $\|u_0\| \leq \delta$ and $\delta > 0$ sufficiently small, estimate (10) holds with a different $N = N_1$ and $\nu = \nu_1$, $0 < \nu_1 \leq \nu$ (see [4], p.414). This means that the zero solution to (1) is asymptotically stable under the above assumptions.

The basic new result of our work, Theorem 1 in Section 2, generalizes the above results to the case when the assumption $\kappa_g < 0$ is not valid. We allow the spectrum $\sigma(A(t))$ to approach imaginary axis as $t \to \infty$. This is the principally new generalization of the classical Lyapunov-Krein theory. If \cap is the complex plane and l is the imaginary axis, then we assume that $\sigma(A(t)) \subset \cap$ for every $t \geq 0$, but we allow $\lim_{t \to \infty} d(\sigma(A(t)), l) = 0$, where $d(\sigma, l)$ is the distance between two sets σ and l. The new stability result is formulated in Theorem 1. In Lemma 1 an auxiliary result is formulated. A proof of Lemma 1 differs in details from the one in [7]. In Section 2 Theorem 1 and Lemma 1 are formulated. In Section 3 proofs are given. In Section 4 examples of applications of our method are given.

2 Formulation of the results

Lemma 1. Let the inequality
\[
\dot{g}(t) \leq -\gamma(t)g(t) + a(t)g^{1+p}(t) + \beta(t),
\] (16)
hold for $t \in [0, T)$, where $g(t) \geq 0$ has finite derivative from the right at every point t at which $g(t)$ is defined, $\gamma(t) \geq 0$, $a(t) \geq 0$ and $\beta(t) \geq 0$ are continuous on $\mathbb{R}_+ := [0, \infty)$ functions, and $p = \text{const} > 0$. Assume that there exists a $\mu(t) \in C^1[0, \infty)$, $\mu(t) > 0$, $\dot{\mu}(t) \geq 0$, such that

\[a(t)[\mu(t)]^{-1-p} + \beta(t) \leq \mu^{-1}(t)[\gamma(t) - \dot{\mu}(t)\mu^{-1}(t)], \quad t \geq 0, \quad (17) \]

\[\mu(0)g(0) < 1. \quad (18) \]

Then $g(t)$ exists for all $t \in [0, \infty)$ and

\[0 \leq g(t) < \mu^{-1}(t), \quad \forall t \geq 0. \quad (19) \]

Theorem 1. Assume that conditions (11)-(16) hold and $b_1 > 0$ is sufficiently large. Then the zero solution to (1) is asymptotically stable for any fixed initial data $u(0)$.

3 Proofs

Proof of Lemma 7. Let $v(t) := g(t)\int_0^t \gamma(s)ds := g(t)q(t)$. Then (16) yields

\[\dot{v}(t) \leq q(t)a(t)q^{-1+p}(t)v^{1+p}(t) + q(t)\beta(t), \quad v(0) = g(0), \quad t > 0. \quad (20) \]

We do not assume a priori that $v(t)$ is defined for all $t \geq 0$. This conclusion will follow from our proof. Denote $\eta(t) := q(t)\mu^{-1}(t)$, $\eta(0) = \mu^{-1}(0) > g(0)$. Using (18) and (20), one gets

\[\dot{v}(0) \leq a(0)v^{1+p}(0) + \beta(0) \leq \mu^{-1}(0)[\gamma(0) - \dot{\mu}(0)\mu^{-1}(0)] = \dot{\eta}(0). \quad (21) \]

Since $v(0) = g(0) < \eta(0) = \mu^{-1}(0)$ by (18), and $\dot{v}(0) \leq \dot{\eta}(0)$, it follows that

\[v(t) < \eta(t), \quad 0 \leq t < \tau, \quad (22) \]

where $\tau > 0$ is the right end of the maximal interval on which $v(t) < \eta(t)$, i.e., $\tau = \sup\{t : v(t) < \eta(t)\}$. Let us prove that $\tau = \infty$. Note that if (22) holds, then

\[\dot{v}(t) \leq \dot{\eta}(t), \quad 0 \leq t < \tau. \quad (23) \]

Indeed, using (17) and (20) one obtains

\[\dot{v}(t) = q(t)(\dot{g} + \gamma g) \leq q(t)\mu^{-1}(t)[\gamma(t) - \dot{\mu}(t)\mu^{-1}(t)] = \dot{\eta}(t), \quad (24) \]

as claimed. If $\tau < \infty$, then (22) and (23) imply

\[v(\tau - 0) - v(0) \leq \eta(\tau - 0) - \eta(0). \quad (25) \]
Since \(\eta(t) \in C^1[0, \infty) \) by definition, inequality (25) implies that \(v(\tau-0) < \infty \) and, since \(v(0) = g(0) < \mu^{-1}(0) = \eta(0) \), so that \(v(0) < \eta(0) \), one gets
\[
v(\tau-0) < \eta(\tau-0) < \infty.
\] (26)

Inequality \((26) \) implies that \(\tau = \infty \), because \(\tau \) is the maximal interval \([0, \tau)\) of the existence of \(v \), and if \(\tau < \infty \) is the right end of the maximal interval of the existence of \(v \) then \(\lim_{t\to\tau-0}v(t) = \infty \), which contradicts (26). Thus, \(\tau = \infty \) and, therefore, \(T = \infty \).

Proof of Theorem 1. Let \(\|u(t)\|=g(t) \). Multiply (1) by \(u(t) \), take the real part, and get
\[
g(t)\dot{g}(t) \leq -\gamma g^2(t) + c_0 g^{2+p}(t).
\] (27)

Since \(g \geq 0 \), inequality (27) is equivalent to
\[
\dot{g}(t) \leq -\gamma(t)g(t) + c_0 g^{1+p}(t).
\] (28)

If \(g(t) > 0 \), then (28) is obviously equivalent to (27). If \(g(t) = 0 \) \(\forall t \in \Delta \), where \(\Delta \subset \mathbb{R}_+ \) is an open set, then \(u(t) = 0 \) \(\forall t \in \Delta \), so \(u(t) = 0 \) \(\forall t \geq 0 \) by the uniqueness of the solution to the Cauchy problem for equation (11).

This uniqueness holds due to the assumed local Lipschitz condition for \(F \). If \(g(t_0)=0 \), but \(g(t) \neq 0 \) for \((t_0, t_0+\delta) \) for some \(\delta > 0 \), then one divides (27) by \(g(t) \) for \(t \in (t_0, t_0+\delta) \), then one passes to the limit \(t \to t_0+0 \) and gets (28) at \(t = t_0 \). Let us explain the meaning of \(\dot{g}(t_0) \) at a point where \(u(t_0) = 0 \). The function \(\dot{u}(t) \) is continuous and it is known that \(\frac{d\|u(t)\|}{dt} \leq \|\dot{u}(t)\| \). We define
\[
\dot{g}(t_0) = \lim_{s\to+0}\|u(t_0+s)\|s^{-1}.
\]
This limit exists and is equal to \(\|\dot{u}(t_0)\| \).

Choose
\[
\mu(t) = \mu(0)e^{\frac{1}{2}\int_0^t \gamma(s)ds}, \quad \mu^{-1}(t) = \gamma(t)/2.
\] (29)

Remark 1. Note that \(\lim_{t\to\infty} \mu(t) = \infty \) if and only if \(\int_0^\infty \gamma(t)dt = \infty \). If \(\lim_{t\to\infty} \mu(t) = \infty \), then \(\lim_{t\to\infty} \|u(t)\| = 0 \). Under the assumption (6) one has \(\int_0^\infty \gamma(t)dt = \infty \), and we use this to derive some results about asymptotic stability.

Condition (18) is satisfied if
\[
\mu(0) < [g(0)]^{-1},
\] (30)
and we choose \(\mu(0) \) so that this inequality holds. Using (29), one sees that inequality (17) is satisfied if
\[
2c_0 \mu^{-p}(0) \leq \gamma(t)e^{\frac{1}{2}\int_0^t \gamma(s)ds}, \quad \forall t \geq 0.
\] (31)
Inequality (31) is satisfied if
\[2c_0\mu^{-p}(0) \leq \gamma(0), \] (32)
provided that
\[\gamma(0) \leq \gamma(t)e^{\int_0^t \gamma(s)ds} \quad \forall t \geq 0. \] (33)
Let us first use assumption (6) with \(d \in (0,1)\):
\[\int_0^t \gamma(s)ds = b_1 \left(b_0 + t \right)^{1-d} - b_0^{1-d} \frac{1}{1-d}, \quad 0 < d < 1. \] (34)
In this case \(\gamma(0) = b_1 b_0^{-d}\), and inequality (33) holds if
\[2d < pb_1 b_0^{1-d}. \] (35)
Inequality (35) is a sufficient condition for the function on the right of (33) to have non-negative derivative for all \(t \geq 0\), i.e., to be monotonically growing on \([0, \infty)\), if \(\gamma(t)\) is defined in (6). Conditions (32) and (35) hold if
\[2c_0\mu^{-p}(0) \leq b_1 b_0^{-d} \quad \text{and} \quad 2d < pb_1 b_0^{1-d}. \] (36)
For any fixed four parameters \(d, c_0, p,\) and \(\mu(0) < [g(0)]^{-1}\), where \(d \in (0,1)\), \(c_0 > 0, p > 0,\) and \(\mu(0) > 0\), inequalities (36) can be satisfied by choosing sufficiently large \(b_1 > 0\). With the choice of \(\mu(t)\), given in (29), and the parameters \(\mu(0), b_0\) and \(b_1\), chosen as above, one obtains inequality (19):
\[0 \leq g(t) < \frac{e^{-b_1 \ln \left(\frac{b_0 + t}{b_0} \right)^{1-d} b_0^{1-d}}}{\mu(0)}, \quad d \in (0,1). \] (37)
Since \(g(t) = \|u(t)\|\), inequality (37) implies asymptotic stability of the zero solution to equation (1) for any initial value of \(u_0\), that is global asymptotic stability. Moreover, (37) gives a rate of convergence of \(\|u(t)\|\) to zero as \(t \to \infty\).
Consider now the case \(d = 1, \gamma(t) = b_1(b_0 + t)^{-1}\),
\[\int_0^t \gamma(s)ds = b_1 \ln \frac{b_0 + t}{b_0}, \quad e^{b_1 \gamma(s)ds} = \left(\frac{b_0 + t}{b_0} \right)^{b_1}. \] (38)
In this case the choice of \(\mu(t)\) in (29) yields
\[\mu(t) = \mu(0) \left(\frac{b_0 + t}{b_0} \right)^{b_1/2}. \] (39)
Choose \(\mu(0) \) so that (30) holds, and fix it. Then inequality (31) holds if
\[
2c_0\mu^{-p}(0) \leq \frac{b_1}{b_0 + t} \left(\frac{(b_0 + t)^{b_1p}}{b_0^2} \right), \quad \forall t \geq 0.
\] (40)

Choose \(b_1 \) so that
\[
b_1p > 2, \quad p > 0.
\] (41)

Then (40) holds if and only if it holds for \(t = 0 \), that is:
\[
2c_0\mu^{-p}(0) \leq \frac{b_1}{b_0}.
\] (42)

Inequality (42) is satisfied if either \(b_1 \) is chosen sufficiently large for any fixed \(b_0 \), or \(b_0 \) is chosen sufficiently small for any fixed \(b_1 > 2p^{-1} \) (see (41)). In either case one concludes that the zero solution to equation (11) is globally asymptotically stable.

Theorem 1 is proved. \(\square \)

4 Additional results. Examples

Example 1. Consider two equations:
\[
\dot{u}(t) = Au(t), \quad (43)
\]
\[
\dot{v}(t) = Av(t) + B(t)v(t), \quad t \geq 0, \quad (44)
\]
where \(A \) and \(B(t) \) are bounded linear operators in \(H \), \(A \) does not depend on \(t \), and
\[
\int_0^\infty \|B(t)\|dt < \infty. \quad (45)
\]

We assume that all the solutions to (43) are bounded. Then by the Banach-Steinhaus theorem the following inequality holds:
\[
\sup_{t \geq 0} \|e^{tA}\| \leq c < \infty. \quad (46)
\]

This implies Lyapunov’s stability of the zero solution to (43), and the inclusion \(\sigma(A) \subset \cap := \{ z : \ Re(z) \leq 0 \} \), which implies \(Re(Au, u) \leq 0 \ \forall u \in H \). A well-known result is (see, e.g., [2]):

If (45) and (46) hold then the zero solution to (44) is Lyapunov stable.

The usual proof (see [2], where \(H = \mathbb{R}^n \)) is based on the Gronwall inequality. We give a new simple proof based on Lemma 1. Let \(g(t) := \|v(t)\| \).
Multiply (44) by \(u \), take the real part and use the inequality \(\text{Re}(Av, v) \leq 0 \) to get: \(g\dot{g} \leq \|B(t)\|g^2(t) \), \(t \geq 0 \). Using the inequalities \(g(t) \geq 0 \) and (45), one obtains

\[
\dot{g}(t) \leq \|B(t)\|g(t), \quad g(t) \leq g(0)e^{\int_0^t \|B(s)\|ds} := c_1 g(0). \tag{47}
\]

Therefore, the zero solution to (44) is Lyapunov stable. Moreover, since \(|\dot{g}(t)| \in L^1(\mathbb{R}_+) \), it follows that there exists the finite limit: \(\lim_{t \to \infty} \|v(t)\| := V. \)

Example 2. Consider a theorem of N. Levinson in \(\mathbb{R}^n \) (see [6] and [5], pp. 159-164):

If (45) and (46) hold, then for every solution \(v \) to (44) one can find a solution \(u \) to (43) such that

\[
\lim_{t \to \infty} \|u(t) - v(t)\| = 0. \tag{48}
\]

We give a new short proof of a generalization of this theorem to an infinite-dimensional Hilbert space \(H \). If (15) and (16) hold, then, as we have proved in Example 1, \(\sup_{t \geq 0} \|v(t)\| < \infty \), \(\sup_{t \geq 0} \|u(t)\| < \infty \). If \(u(0) = u_0 \), then \(u(t) = e^{tA}u_0 \) solves (43). Let \(v(t) \) solve the equation

\[
v(t) = e^{tA}u_0 - \int_t^\infty e^{(t-s)A}B(s)v(s)ds. \tag{49}
\]

A simple calculation shows that \(v(t) \) solves (44) and

\[
\|v(t) - u(t)\| \leq \int_t^\infty \|e^{(t-s)A}\|\|B(s)\|\|v(s)\|ds \leq C \int_t^\infty \|B(s)\|ds \to 0, \quad t \to \infty,
\]

where

\[
C = \sup_{t \geq 0} \|e^{tA}\| \sup_{t \geq 0} \|v(t)\| < \infty.
\]

The generalization of Levinson’s theorem for \(H \) is proved. \(\square \)

Equation (49) is uniquely solvable in \(H \) by iterations for all sufficiently large \(t \) because for such \(t \) the norm of the integral operator in (49) is less than one. The unique solution to (49) for sufficiently large \(t \) defines uniquely the solution \(v \) to (44) which satisfies (48).

Remark 2. Our methods are applicable to the equation (1) with a force term: \(\dot{u} = A(t)u + F(t, u) + f(t) \).
References

[1] E. Barbashin, Introduction to the theory of stability, Wolters-Noordhoff, Groningen, 1970.

[2] R. Bellman, Stability theory of differential equations, Mcgraw-Hill, New York, 1952.

[3] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer-Verlag, New York, 1971.

[4] Yu. Daleckii and M. Krein, Stability of solutions of differential equations in Banach spaces, Amer. Math. Soc., Providence, RI, 1974.

[5] B. Demidovich, Lectures on the mathematical theory of stability, Nauka, Moscow, 1967.

[6] N. Levinson, The asymptotic behavior of system of linear differential equations, Amer. J. Math, 68, (1996), 1-6.

[7] N.S. Hoang and A. G. Ramm, A nonlinear inequality and applications, Nonlinear Analysis, 71, (2009), 2744-2752.