Molecular Characterization of Heat Tolerance Chickpea (*Cicer arietinum* L.) Genotypes using Random Amplified Polymorphic DNA (RAPD) Markers

Devendra Vasht1*, S.K. Dwivedi1, Yogendra Singh2, R.K. Samaiya1, A. Babbar2, S.K. Pooniya3 and Vinod Kumar2

1Department of Plant Physiology, 2Department of Plant Breeding & Genetics, 3Department of Biotechnology, Jawaharlal Nehru KrishiVishwaVidyalaya, Jabalpur (MP), India

*Corresponding author

A B S T R A C T

Chickpea (*Cicer arietinum* L.) is most important pulse crop of India in term of area and production and is extensively grown from human consumption mainly in South Asia and Middle East. Chickpea (*Cicer arietinum* L.) is a cool season legume crop and is grown in several countries worldwide as a food source. Molecular markers and variation in genomic DNA sequences have played a major role in varietal characterization and improvement of many crop species and have contributed to our abilities to assess biodiversity, reconstruct accurate phylogenetic relationships and transferring of particular traits. The polymorphism % ranged from 33.33 % (OPX-2) to 100% (OPB-6, OPX-4, OPB-12, OPA-17, OPA-11). The dendrogram was generated and 20 genotypes were aligned in 3 groups i.e. A has 10 genotypes, B has only one genotype and C has 9 genotypes. For molecular characterization of 20 genotypes, 10 RAPD primers showing polymorphism were used.

Keywords

DNA Isolation, RAPD primers, Polymorphism

Article Info

Accepted: 10 June 2019
Available Online: 10 July 2019

Introduction

Chickpea (*Cicer arietinum* L.) commonly known as ‘Bengal gram or garbanzo’ is one of the world’s most important grain legume, the seed is a major source of plant-based dietary protein, carbohydrates and minerals especially for the human. Chickpea is a dry and cool season crop largely grown rained on residual soil moisture after the rainy season. The center of origin of chickpea is South East Turkeys and Syria. Chickpea is the third most important food legume crop India is the largest producer contributing to 65% of world’s chickpea production. Chickpea is an essential crop for arid and semi-arid regions and is mostly cultivated in dry and rainfed areas (Varshney *et al.*, 2009). According to the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) chickpea seeds contain on average- 23% protein, 64% total carbohydrates (47% starch,6% soluble sugar), 5% fat, 6% crude fiber and 3% as The chickpea genotypes can be evaluated for heat
tolerance in the semi-arid tropics environment by delaying the sowing time as the reproductive growth in late sown crops often coincides with high atmospheric temperature. Molecular markers and variation in genomic DNA sequences have played a major role in varietal characterization and improvement of many crop species and have contributed to our abilities to assess biodiversity, reconstruct accurate phylogenetic relationships and transferring of particular traits. Molecular genetic markers have brought phenomenal changes in the area of plant biotechnology by their ability to produce unique DNA profiles in various crops. The invention of the polymerase chain reaction (PCR) to amplify short segments of DNA gave rise to second generation of faster and less expensive PCR-based markers. RAPD-PCR technique employed for testing of genetic diversity and it’s rapidly being used in research field crops improvement.

The technique is useful in examining genetic diversity, phylogenetic studies, gene tagging, genome mapping and evolutionary biology in a wide range of crop specie (Koutu et al., 2017, 2019). The aim of present study was molecular characterization in chickpea genotype employing RAPD markers.

Materials and Methods

Plant material

A total of 20 genotypes (Table 1) were collected from Research Farm Adhartal, Department of Plant Breeding and Genetics, JNKVV, Jabalpur (M.P.). Leaf samples were obtained from plants (Table 1) for genomic DNA isolation.

Genomic DNA isolation

DNA was isolated from young leaves of chickpea using CTAB Protocol (Saghai-Marroof et al., 1984) with some modifications. Chemical used for the DNA isolation 100mM Tris-HCl (pH 8.0), 20mM EDTA (pH 8.0), 0.5M NaCl, 24:1 Chloroformisoamyl alcohol (IAA), 3M sodium acetate (pH4.8), Isopropanol (-20°C), 70% ethanol, 5M NaCl. DNA quality was tested by (0.8%) agarose gel electrophoresis and visualized under UV light.

PCR Amplification and data analysis

The PCR amplification of DNA components and their concentration used in the RAPD analysis. PCR amplification reactions volume of 20μl 2μl of PCR buffer 1X, 2.4μl of MgCl2 2.5mM, 0.2μl of Tag Polymerase (5Unit/μl) 0.5μl of dNTPs10mM, 0.2μl of Primer 10pM, 2μl of genomic DNA 50ng and nuclease free water was used to make up the total volume 20μl. PCR cycling parameters for RAPD-PCR an initial denaturation step at 94°C for 4 min followed by 45 cycles at 94°C for 45 second, 38°C for 1 min annealing and 72°C for 2 min elongation. In the final cycle, the elongation step at 72°C was extended by 5 min. PCR product RAPD primers were scored on the agarose gel as presence (1) or absence (0) of bands of molecular weight size and dendrogram generated by DARwin software (2006).

Results and Discussion

RAPD analysis revealed DNA polymorphism among the 20 chickpea genotype (Table 1) were used for molecular characterization with each primer yielded distinct and easily detectable alleles of variable intensity of 10 RAPD markers (Table 2). The average number of bands per primer was 4.6 and maximum number of 9 alleles was produced by OPX-03 and OPD-11. While minimum numbers of alleles were produced by OPX-02, OPX-04 and OPA-04.H. The polymorphism % ranged from 33.33 % (OPX-2) to 100% (OPB-6, OPX-4, OPB-12, OPA-17, and OPA-11) (Fig. 1). The genetic similarity matrix was further analyzed using UPGMA clustering.
algorithm by software programme DARwin 5.0.128 (Figure 2). The radial clustering clearly delineated the genotypes into three major clusters with sub groups. A having 10 genotypes (JG12XJG16-1, JG12XICC07110, BDNGXNARSINGPUR BOLD, JAKI9218XJG14, PA003 (303), JG2017-49, JG 36, JG74XJG11551, JG 24, JG12XJG16-3), B have only one genotype (JG 14 X JG 226) and C having 9 genotypes (JG 12, JG74XJG315-2, JG16XICC9029, ICCV15118, ICC96029XJG11551, JG 14, JG74XJG14, JG12X14, JG11XJG14).

Genetic fingerprinting in chickpea, for a long time was hampered by low variability in the chickpea genome. To have more compared data-sets by using combination of more competent markers has become a priority. More so, being a self-pollinated winter crop, available germplasm of cultivated chickpea shows a low genetic variation profile. The present study determines DNA polymorphism in chickpea accessions as revealed by RAPD markers. Overall the study ascertained that RAPD marker provide powerful tools in revealing genetic diversity in chickpea.

Table.1 List of genotypes

S. No.	Genotypes
1	JG74XJG11551
2	JG12XJG16-3
3	ICCV15118
4	ICC96029XJG11551
5	JG14XJG226
6	PA003 (303)
7	JG74XJG14
8	JG11XJG14
9	BDNGXNARSINGPUR BOLD
10	JG16XICC9029
11	JAKI9218XJG14
12	JG12XICC07110
13	JG12XJG16-1
14	JG74XJG315-2
15	JG12X14
16	JG2017-49
17	JG24
18	JG12
19	JG14
20	JG36
Table 2 Number of alleles obtaining using RAPD markers

S.No.	Name of Primer	No. of Monomorphic band	No. of Polymorphic band	% of Polymorphism
1	OPX-2	2	1	33.33%
2	OPX-3	2	7	77.77%
3	OPB-6	0	4	100%
4	OPX-4	0	2	100%
5	OPD-11	1	8	88.88%
6	OPB-12	0	4	100%
7	OPD-7	2	2	00.00%
8	OPA-4	1	2	100%
9	OPA-17	0	3	100%
10	OPA-11	0	5	100%

Table 3 RAPD primers used in this study

S. No.	Primers	Sequences (5’-3’)	Temperature (oC)
1	OPX-2	TTCCGCCACC	36
2	OPX-3	TGGCGCAGTG	36
3	OPB-6	TGCTCTGCCC	36
4	OPX-4	CCGCTACCGA	36
5	OPD-11	AGCGCCATTG	36
6	OPB-12	CTTTGACGCA	36
7	OPD-7	AGCGCCATTG	36
8	OPA-4	AATCGGGCTG	36
9	OPA-17	GACCGCTTGT	36
10	OPA-11	CAATCGCCGT	36

Fig.1 RAPD PCR amplifications of 20 genotypes using OPX-3 marker
Fig. 2 Dendrogram of chickpea genotypes based on RAPD marker

The RAPD markers detect variation at DNA level in chickpea accession. Such genetic variation obtained from RAPD markers may be useful in discriminating chickpea accessions which needs to be complemented with the morphological traits data. Further, the genetic variation that exists between these chickpea accessions can efficiently be used as directives in planning future chickpea breeding programmes. Such genetic diversity data can provide practical information for selection of parental material and thus may assist in forecasting chickpea breeding strategies.

Acknowledgment

Author is highly thankful to Govt. of India, Ministry of Science and Technology, Department of Science and technology, Technology Bhavan New Mehrauli Road New Delhi for providing INSPIRE Fellowship (IFIF 160873) during Ph.D. programme.

References

G.K. Koutu, A. Srivastava, M.S.Bhale, Yogendra Singh S.K. Singh and D. K. Mishra (2017). DNA Fingerprinting and Genetic Divergence analysis of Rice Cultivars using SSR markers. Indian Research Journal of Genetics and Bio Technology. 09 (03): 361--368.

G.K. Koutu, A. Srivastava, Yogendra Singh and S. Tiwari (2019). Molecular Characterization and Genetic Diversity Assessment of Soybean Varieties using
SSR Markers. International Journal of Current Microbiology and Applied Sciences. 08(04):173-182.

Perrier X., Jacquemoud-Collet J.P. (2006). DARwin software http://darwin.cirad.fr/

Rajeev K. Varshney and S. Murali Mohan (2009). Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnology Advances Volume 31, Issue 8, December 2013, Pages 1120-1134

Saghai M, M. Soliman AKM, Jorgensen RA and Allard RW 1984. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, Proc. Nati. Acad. Sci. (81): 8014-8018.

Yogendra Singh and U.S. Singh (2012). Simple Sequence Repeats markers and grain quality characteristics for genetic divergence and selective identification of aromatic rices. International Journal of Advanced Biotechnology & Research.03 (03): 711-719.

Yogendra Singh, D.R. Pani, Dharmendra Khokhar and U.S. Singh (2013). Agromorphological Characterization and Molecular Diversity analysis of Aromatic Rice Germplasm Using RAPD Markers. ORYZA.50 (01): 26-34.

How to cite this article:

Devendra Vasht, S.K. Dwivedi, Yogendra Singh, R.K. Samaiya, A. Babbar, S.K. Pooniya and Vinod Kumar. 2019. Molecular Characterization of Heat Tolerance Chickpea (Cicer arietinum L.) Genotypes using Random Amplified Polymorphic DNA (RAPD) Markers. Int. J. Curr. Microbiol. App. Sci. 8(07): 933-938. doi: https://doi.org/10.20546/ijcmas.2019.807.112