Editorial: Regulation of lipid metabolism in adipose tissue and skeletal muscle

Zhihao Jia1,2,* and Tizhong Shan3,4,5,*

1Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, China, 2Department of Animal Sciences, Purdue University, West Lafayette, IN, United States, 3College of Animal Sciences, Hangzhou, China, 4Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China, 5Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China

KEYWORDS
lipid metabolism, adipose tissue, skeletal muscle, metabolic disorder, T2D

Introduction

Obesity due to excessive deposition of lipids in adipose tissue (AT) has become a global epidemic. Obesity and its increased risks of chronic diseases including Type 2 Diabetes (T2D), chronic inflammation, hypertension, and cancer have posed formidable challenges to human health. Adipocytes are highly plastic and can uptake, esterify, and store excess lipids in the form of triacylglycerols (TAG) within lipid droplets (LDs), as well as undergo lipolysis to provide energy when nutrition is limited. Non-AT such as skeletal muscle, which has a comparatively high capacity for fatty acid oxidation to generate energy, becomes dysfunctional with “lipid overload”. Thus, the dysregulation of lipid metabolism in skeletal muscle highly contributes to obese-related insulin resistance. Thus, understanding how lipid storage and utilization are regulated in AT and skeletal muscle is critical for the development of therapeutics to overcome obesity. Indeed, interventions that increase AT/muscle fatty acid oxidation and/or limit lipid storage have been postulated as therapies for treating obesity-related conditions. Besides, lipid metabolism in AT and skeletal muscle are also closely associated with growth performance, meat quality, and reproduction in livestock farming. Therefore, this Research Topic aims to compile articles that expand our understanding of the lipid metabolism processes within the AT and skeletal muscle.
Beige/brown adipocyte thermogenesis

There are three types of adipocytes: brown adipocyte, white adipocyte, and beige adipocyte. Brown and beige adipocyte dissipate glucose and fatty acid (FA) to generate heat and play important roles in cold- and diet-induced thermogenesis (Kajimura et al., 2015). Therefore, genetically and pharmaceutically activation of beige/brown adipocyte has drawn great attention in the treatment of metabolic diseases. Li et al analyze and compare the transcriptomics of AT after drawn great attention in the treatment of metabolic diseases.

Thiemann et al. observe that a central role in lipid metabolism by processing triglyceride-rich lipoproteins (TRL). They state that postnatal AT remodeling is an ideal model that many circRNAs share similar expression patterns with their parental genes. In addition, they discover multiple microRNA (miRNA) binding sites from the differential expressed circRNAs, which indicates that circRNAs may act as miRNA sponges. However, the function of circRNA during adipogenesis requires to be further evaluated.

Epigenetic regulation

In the condition of overnutrition, AT is able to expand in two ways: Hyperplasia that is dependent on increasing adipocyte number through adipogenesis and hypertrophy by enlargement of adipocyte cell size (Ghaben and Scherer, 2019). Notably, targeting adipogenesis is now emerging for the treatment of obesity. Interest in the epigenetic roles of non-coding RNAs during adipogenesis has been growing rapidly (Sun et al., 2013). Zhang et al. review the recent advances in long non-coding RNAs (IncRNAs) that regulate AT development and metabolism. In particular, they summarize the potential involvement of IncRNAs in metabolic disorders and prospect the potential of targeting IncRNAs in the treatment of obesity and metabolic diseases by using antisense oligonucleotides (ASO). Besides non-coding RNA, RNA m6A methylation (m6A) also plays many aspects in various diseases (He and He, 2021). Wang et al. introduce the up-to-date research advances between m6A and lipid metabolism, especially those within non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiovascular diseases. This review provides insights into the possibilities that modify RNA m6A methylation in the fight against metabolic diseases.

Disease-relevant study

Besides its role in energy storage, AT also contributes to systemic metabolism as an endocrine organ, especially through the secretion of adipokines (Fasshauer and Blüher, 2015). Ji et al. review the role of retinol-binding protein 4 (RBP4) in lipid metabolism and highlight the emerging importance of RBP4 with cardiovascular diseases (CVDs). By comparing published datasets, they predict that RBP4 might not only be a new biomarker for CVD, but targeting RBP4 preserves therapeutic potentials.

For years, scientists have been investigating antihyperglycemic drugs to protect against tissue damage in T2D (Verma and McMurray, 2018). The administration of a sodium-glucose cotransporter 2 inhibitor (SGLT2i) has been proven as a candidate therapy for hyperglycemia in T2D patients (Chao and Henry, 2010). Nagayama et al. extend the application of SGLT2i to incomplete acquired lipodystrophy. They report a case wherein a patient is treated with a combination of metreleptin supplementation and SGLT2i to improve hyperglycemia and insulin sensitivity. This study provides the potential benefits of using SGLT2i for non-obese diabetic patients.

Skeletal muscle metabolism

The skeletal muscle is the largest metabolic organ in the body and is extremely important for energy homeostasis (Sheffield-Moore and Urban, 2004). Antony et al. investigate the role of UCHL1 in skeletal muscle lipid metabolism. They observe that in fasting or glucose starvation conditions, UCHL1 protein levels are decreased in both skeletal muscle and differentiated myotubes. Muscle-specific Uchl1 knockout reduces lipid
content and improves glucose tolerance, which may be correlated with the stabilization of Perilipin 2. In another research article on patients with spinal cord injury (SCI), Goldsmith et al. show that increased visceral adiposity, and inflammatory signaling, as well as reduced testosterone levels, predict mitochondrial dysfunction in these patients. However, due to the restriction in patient size of the current study, it remains unclear the complex causal relationships among those factors with chronic SCI. To better address the limitations more effectively, a large multi-centered trial is highly warranted.

Comparative studies

In addition to its association with human health, lipid metabolism in AT and skeletal muscle are also extremely popular among non-medical researchers, especially for those working in agriculture. Conserved signaling pathways that govern adipose and skeletal muscle development and metabolism have been investigated in agricultural animals, such as liver kinase B1 (LKB1) (Shan et al., 2014; Shan et al., 2016). Xiong et al. report a role of LKB1 in goat intramuscular preadipocytes differentiation via the focal adhesion kinase (FAK) pathway. The results indicate that targeting LKB1 might be a potential strategy to manipulate intramuscular fat deposition to improve the meat quality of goat. Pig farming requires stable temperature control as piglets lack the ability for thermogenesis. For this purpose, Xu et al. explore the effect of acute cold exposure on carcass indicators, enzyme activity, fatty acid composition, and gene expression profiles in the longissimus dorsi muscle (LDM) of growing-finishing pigs. The results suggest that chronic cold exposure significantly changes fatty acid profile and lipid metabolism, which emphasizes the importance of pre-slaughter temperature conditions in the fatty acid metabolism of pork. However, no difference is found in the content of amino acids, which needs to be further investigated in a longer time of cold treatment.

Conclusion

In sum, the 12 articles in this Research Topic are representative of the depth content of lipid metabolism in AT and skeletal muscle, as well as their application in metabolic diseases. Results from the aforementioned articles could help better unravel the selective and specific biomarkers and therapeutic targets of various metabolic diseases.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Chao, E. C., and Henry, R. R. (2010). SGLT2 inhibition—A novel strategy for diabetes treatment. Nat. Rev. Drug Discov. 9, 551–559. doi:10.1038/nrd3180
Fasshauer, M., and Blüher, M. (2015). Adipokines in health and disease. Trends Pharmacol. Sci. 36, 461–470. doi:10.1016/j.tips.2015.04.014
Ghishan, A. L., and Scherer, P. E. (2019). Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258. doi:10.1038/s41580-018-0093-x
He, P. C., and He, C. (2021). m6A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 40, e105977. doi:10.15252/embj.2020105977
Kajimura, S., Spiegelman, B. M., and Seale, P. (2015). Brown and beige fat: Physiological roles beyond heat generation. Cell Metab. 22, 546–559. doi:10.1016/j.cmet.2015.09.007
Shan, T., Xiong, Y., Zhang, P., Li, Z., Jiang, Q., Bi, P., et al. (2016). Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3. Nat. Commun. 7, 12205–12211. doi:10.1038/ncomms12205
Shan, T., Zhang, P., Liang, X., Bi, P., Yue, F., and Kuang, S. (2014). Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem cells 32, 2893–2907. doi:10.1002/stem.1788
Sheffield-Moore, M., and Urban, R. J. (2004). An overview of the endocrinology of skeletal muscle. Trends Endocrinol. Metab. 15, 110–115. doi:10.1016/j.tem.2004.02.009
Sun, L., Goff, L. A., Trapnell, C., Alexander, R., Lo, K. A., Hacisueleyman, E., et al. (2013). Long noncoding RNAs regulate adipogenesis. Proc. Natl. Acad. Sci. U. S. A. 110, 3387–3392. doi:10.1073/pnas.1222643110
Verma, S., and McMurray, J. J. (2018). SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 61, 2108–2117. doi:10.1007/d0125-018-4670-7