Bjerkandera carnegieae comb. nov. (Phanerochaetaceae, Polyporales), a wood-decay polypore of cactus

Gerardo Robledo¹,²,³*, Karen K. Nakasone⁴* & Beatriz Ortiz-Santana⁴

Abstract. Poria carnegieae was described from Arizona growing on the woody ribs of the saguaro cactus, Carnegiea gigantea, and was transferred to Ceriporiopsis due to morphological evidence. Posterior phylogenetic studies showed a relationship of Poria carnegieae with Bjerkandera. New sequence data and morphologic evidence are presented to support the transfer of Ceriporiopsis carnegieae to Bjerkandera.

Key words: host specificity, phlebioid clade, phylogeny, taxonomy

Introduction

Poria carnegieae was described from Arizona growing on the woody ribs of the saguaro cactus, Carnegiea gigantea (Baxter 1941). Cultural characters, decay studies, and sexuality of the species were described and studied by Gilbertson and Canfield (1972) and Lindsey and Gilbertson (1977). Gilbertson and Canfield (1972: 1309) noted that the bipolar mating system and negative phenol oxidase reaction placed P. carnegieae with Bjerkandera adusta (syn. Polyporus adustus) based on Nobles’ 1965 key pattern of wood-decay fungal cultures. Because of morphological features such as an effused basidiome, light-colored pores, monomitc hyphal system with thin-walled, clamped generative hyphae, lack of cystidia, and thin-walled basidiospores, P. carnegieae was transferred to Ceriporiopsis by Gilbertson and Ryvarden (1985). In a multigene phylogenetic study of the order Polyporales by Justo et al. (2017), C. carnegieae was recovered in a clade with two species of Bjerkandera in the Phanerochaetaceae. Subsequent phylogenetic studies confirmed and supported this relationship (Chen et al. 2018; Motato-Vásquez et al. 2020; Wang et al. 2021). Due to differences in morphological features of the basidiome, such as its resupinate and effused habit and uniform, light-colored context lacking a dark brown zone or black line between the tube layer and subiculum, researchers refrained from transferring C. carnegieae to Bjerkandera pending more data (Motato-Vásquez et al. 2020; Wang et al. 2021).

The purpose of this study is to provide additional phylogenetic and morphological evidence to support the transfer of Poria carnegieae to Bjerkandera. We also review additional biological information relating to this taxon.

Materials and methods

Morphological study

Specimens from the Center for Forest Mycology Research (CFMR) fungarium were studied. For microscopic analysis, free-hand sections of basidiomes were mounted in 2% (w/v) aqueous potassium hydroxide (KOH) and 1% (w/v) aqueous phloxine or Melzer’s reagent. Cyanophily of hyphal and basidiospore walls was observed in 1% (weight/volume) cotton blue in 60% (w/v) lactic acid. Basidiospores were measured in KOH and phloxine mounts under oil immersion with at 100× magnification. Q values were calculated from average spore length divided by average spore width of at least 30 spores. Color codes and names follow Kornerup & Wanscher (1978). Micrographs of basidiomes were taken with an Olympus DP27 camera attached on an Olympus BX43 compound microscope.

DNA extraction, PCR amplification and sequencing

DNA extraction and amplification were performed from cultures at CFMR following a standard CTAB protocol (Mercado & Ortiz-Santana 2018). Sequencing was
Table 1. Taxon sampling: voucher specimens/cultures and GenBank accession numbers. New sequences generated in this study are in boldface. (T) = type specimen.

Species voucher/cultures	GenBank accession numbers					
	ITS	LSU	tef1-α	rpb1	rpb2	
Outgroup						
Candelabrochaete africana						
FP-102987-sp						
	KP135294	KP135199	–	KP134872	KP134975	
Merulaceae						
Cerioporia gilvescens						
Niemela-5516						
BRNM 710166						
L3522sp						
	Hq659222	Hq659222	–	–	–	
Climacodon septentrionalis						
AFTOL-767						
	AY854082	AY684165	AY885151	AY864872	AY780941	
Hydnophlebia chrysorhiza						
FD-282						
	KP135338	KP135217	–	KP134848	KP134897	
Mycoacia fuscocatra						
HHB-10782-Sp						
	KP135365	KP135265	–	KP134857	KP134910	
Phlebia radiata						
AFTOL-484						
	AY854087	AF287885	AY885156	AY864881	AY218502	
Irpiceae						
Byssomerulius corium						
FP-102382						
	KP135007	KP135230	–	KP134802	KP134921	
Cerioporia reticulata						
RLG-11354-Sp						
	KP135041	KP135204	–	KP134794	KP134922	
Ejfula americana						
FP-102165						
	KP135016	KP135256	–	KP134808	KP134916	
Emmia lacera						
FP-55521-T						
	KP135024	KP135202	–	KP134805	KP134915	
Flavodon flavus						
WHC 1381						
	LC427029	LC427052	–	LC427064	–	
Gloeoporus dichrous						
BRNU 631507						
FP-151129						
	MG572751	MG572735	–	–	MG593280	
Gloeoporus pannocinctus						
L-15726-Sp						
	KP135060	KP135214	–	KP134867	KP134973	
Gloeoporus thelephoroides						
BZ-289						
	MG572757	MG572741	–	–	MG593286	
Hydnopolyopus fimbriatus						
Meijer3729 (O)						
	JN649346	JN649346	JX109904	–	JX109875	
Irpes lacteus						
FD-9						
	KP135026	KP135224	–	KP134806	–	
Mersulopsis cystidiata						
776308						
	MG572749	MG572733	–	–	MG593278	
Mersulopsis taxicola						
SK 0075 (GB)						
	JX109847	JX109847	JX109901	–	JX109873	
Trametopsis cervina						
TJV 93 216T						
	JN165020	JN164796	JN164882	JN164839	JN164877	
Phanerochaetaceae						
Bjerkandera adusta						
Dai 14516						
Dai 15665						
Dai 15495						
Dai 13201						
Dai 12640						
SFC20120409-08						
	KJ704814	KJ704829	–	–	–	
SFC20111029-15						
	KJ704813	KJ704828	–	–	–	
BRNM 771948						
	KT305935	KT305935	KT305938	–	–	
Species	voucher/cultures	ITS	LSU	tef1-α	rpb1	rpb2
------------------	------------------	----------------	----------------	-----------------	---------------	---------------
Bjerkandera albocinerea						
MV 346 (T)		MHO25421	MHO25421			
RP 317		MHO25420	–	–		
MWW559		MHO25419	MHO25419			
Dai 16411		MWS07102	MWS020207	–		
BJerkandera atroalba						
SP 446205, MW 425 (T)		KT305930	KT305930			
SP 445629, MWW 158		KT305932	KT305932	KT305940	–	
SP 445672, MWW 266		KT305931	KT305931	KT305939	–	
Dai 17457		MWS07103	MWS020208	–		
Bjerkandera carnegiaeae						
ERC-71-366		OL376625	OL376623	OL405698	–	OL405701
RLG 10553		OL376626	OL376624			
RLG-7277-T		KY948792	KY948854	OL405699	KY948935	OL405700
JIV1209/45		KX081134	–	–		
JIV0407/27-J		MWS07122	–	–		
Bjerkandera centroamerican						
JK0610/A13		KT305934	KT305934	KT305942	–	–
JK0610/A7 (T)		KT305933	KT305933	KT305941	–	–
JIV1700/97		MWS07104	–	–		
Bjerkandera ecuadoriensis						
JIV1906/C16-J (T)		MWS07105	–	–		
Bjerkandera fulgida						
Dai 16107 (T)		MWS07106	MWS020209	–		
Dai 12284		MWS07107	–	–		
Dai 13597		MWS07108	MWS020210	–		
Bjerkandera fumosa						
SFC20121009-04		KJ704824	KJ704839	–		–
BRNM771947		KT305937	KT305937	–		–
DAO M215869		DQ060097	AF287848	–		–
Dai 21100		MWS07109	MWS020211	–		–
Cui 10747		MWS07111	MWS020212	–		–
Dai 12674B		MWS07112	MWS020213	–		–
Homble 1900		KF698740	KF698751	–		–
Bjerkandera mikrofumosa						
MV 353		MHO25416	MHO25416	–		–
MV 363		MHO23526	MHO23526	–		–
MV 398		MHO23527	MHO23527	–		–
MV 420		MHO23525	MHO23525	–		–
MV 433		MHO25418	–	–		–
MV 435		MHO25417	MHO25417	–		–
Catania 3269		MHO25414	–	–		–
Robledo 1170		MHO25415	–	–		–
JIV1707/10J-1		MWS07113	–	–		–
JIV1707/10J-2		MWS07114	–	–		–
Bjerkandera minispora						
Dai 15234 (T)		MWS07115	MWS02014	–		–
Cui 5376		MWS07116	MWS02015	–		–
Bjerkandera resupinata						
Dai 16642 (T)		MWS07117	MWS02016	–		–
Cui 8017		KUS09526	–	–		–
Bjerkandera sp.						
JIV1512/13-J		KUS09714	–	–		–
L13104sp		KUS09526	–	–		–
conducted at the University of Wisconsin Biotechnology Center (UWBC) in Madison, WI. The internal transcribed spacer region (ITS), including ITS1, 5.8S and ITS2, was amplified with primer pair ITS1F/ITS4 (Gardes & Bruns 1993; White et al. 1990). The 5′ end of the 28S large subunit of the nuclear ribosomal RNA (LSU) was amplified with primers LR0R (Cubeta et al. 1991) and LR5 (Vilgalys & Hester 1990); tef1-α was amplified with primer pair EF1-983/EF1-1567R (Rehner & Buckley 2005) and rpb2 with primers bRPB2-6F and bRPB2-7.1R (Matheny 2005). Thermocycler conditions followed Kuo and Ortiz-Santana (2020). Newly generated sequences were edited with Sequencher 4.8 (Gene Codes Corp., Ann Arbor, Michigan).

Phylogenetics analyses

New DNA sequences generated in the present work were combined with sequences retrieved from GenBank (NCBI) to construct two datasets. Scientific names and GenBank Accession Numbers of sequences are listed in Table 1. Dataset 1 was composed of ITS, LSU, rpb1, rpb2 and tef1-α sequences of four Bjerkandera species with at least one coding marker and 31 species of the ‘phlebioid clade’ with representatives from the Phanerochaetaceae, Irpicaceae and Meruliaceae (Binder et al. 2013; Justo et al. 2017; Chen et al. 2018, 2020). Candelabrochaete africana was selected as outgroup (Justo et al. 2017; Chen et al. 2018). Dataset 2 was composed of ITS and LSU sequences of 13 Bjerkandera species with Porostereum (P. spadiceum and P. fulvum) as outgroup taxa (Mota-To-Vásquez et al. 2020; Wang et al. 2021).

ITS region was aligned using ProbCons 1.12 (Do et al. 2005), whereas LSU, rpb1, rpb2 and tef1-α were individually aligned using MAFFT 7 (Katoh et al. 2017) using the G-INS-i alignment method. Alignments were manually inspected and adjusted using MEGA 6 (Tamura et al. 2013). ModelFinder (Kalyaanamoorthy et al. 2017) as implemented in the IQ-Tree software (Nguyen et al. 2015) was used to estimate the best-fit partitioning strategy and the best-fit model of nucleotide evolution for the dataset using 16 data blocks (ITS1; 5.8S; ITS2; LSU; rpb1 codon positions, 1stpos, 2ndpos, and 3rdpos; rpb1 introns; rpb2 codon positions, 1stpos, 2ndpos, and 3rdpos; rpb2 introns; tef1-α codon positions 1stpos, 2ndpos, and 3rdpos and tef1-α introns). Models were restricted for those implemented in MrBayes 3.2 (Ronquist et al. 2012). Bayesian inference (BI) and maximum likelihood (ML) phylogenetic analyses were applied to the concatenated datasets using the partition scheme and evolutionary models defined by ModelFinder. BI was performed following Robledo et al. (2020) in the CIPRES science gateway (Miller et al. 2010; http://www.phylo.org/). Maximum
likelihood searches were conducted with IQ-TREE. The analyses initially involved 100 ML searches, each one starting from one randomized stepwise addition parsimony tree. Branch supports were calculated using the UFBoot (ultrafast bootstrap approximation) (Hoang et al. 2018) implemented in IQ-TREE with 1000 replications. A node was considered strongly supported with BPP ≥ 0.95 or BS ≥95% (Hyde et al. 2013; Minh et al. 2020).

Results
Phylogenetic analyses
Dataset 1 included 50 terminals and 6143 characters, of which 1990 were parsimony informative, 2527 were variable and 3213 constants. The partitions and evolutionary models selected were: GTR+F+G4 (ITS1, ITS2, rpb1 3rdpos), JC+I+G4 (5.8S), K2P+I+G4 (LSU, tef1-α 1stpos, tef1-α 2ndpos and rpb1 2ndpos), GTR+F+I+G4 (tef1-α 3rdpos, rpb1 1stpos), HKY+F+I+G4 (tefl-α introns, rpb2 introns, rpb2 1stpos), SYM+I+G4 (rpb1 introns, rpb2 2ndpos and rpb2 3rdpos). Bayesian and ML analyses resulted in identical topologies. The ML tree is presented in Figure 1. The topology showed 3 main lineages at family level recovered with maximum support: Phanerochaetaceae, Irpicaceae and Meruliaceae. This is congruent with previous works (Justo et al. 2017; Chen et al. 2018). Within Phanerochaetaceae, Bjerkandera conform a lineage with maximum support including B. adjusta, type species of the genus, and C. Carnegieae like previous works (Justo et al. 2017; Chen et al. 2018). These multi-loci phylogenetic analyses support the taxonomic position of C. carnegieae within Bjerkandera.

Dataset 2 included 58 terminals and 1988 characters, of which 155 were parsimony informative, 197 variable and 1787 constants. The partitions and evolutionary models selected were: K2P+G4 (ITS1 and ITS2), K2P+I (5.8S and LSU). Bayesian and ML analyses resulted in similar topologies. The ML tree is presented in Figure 2. In this ITS-LSU tree, C. Carnegieae is in a basal position within Bjerkandera consistent with previous work (Motato-Vásquez et al. 2020; Wang et al. 2021).

Taxonomy
Based on strong phylogenetic evidence presented above and new morphological observations presented below, we propose the transfer of Poria carnegieae to Bjerkandera. This transfer implies a slight modification of Bjerkandera concept, now including species with resupinate effused and adnate basidiomes and with a uniform context without a dark line or dark zone separating the tube layer from the context.

Bjerkandera carnegieae (D. V. Baxter) Robledolo, Nakasone & B. Ortiz, comb. nov. (Fig. 3A–F)
MycoBank MB 841466
Basionym: Poria carnegieae D. V. Baxter, Papers of the Michigan Academy of Sciences 26: 110. 1941.
≡ Ceriporiopsis carnegieae (D. V. Baxter) Gilb. & Ryvarden, Mycotaxon 22 (2): 364, 1985.

Descriptions and illustrations. Baxter (1941), Lowe (1966: 82), Gilbertson and Canfield (1972, basidiome and culture), Lindsey & Gilbertson (1977, culture), Gilbertson and Ryvarden (1986: 189–190). Photograph of the specimen JV1209/45 (GenBank accession number KX081134) included in the phylogeny (Fig. 2) is available at the Poly pore Collection of Dr. Josef Vlasák, Hluboká nad Vltavou, Czech Republic, Edition 18.11. 2015, http://mykoweb.prf.jcu.cz/polyposes/index.html accessed October 28, 2021.

Remarks. Descriptions and illustrations of the basidiome are readily available (see above), and our observations generally agree except as follows: (1) The subicular trama is composed primarily of slightly thick- to thick-walled subicular hyphae 3–5.5 µm diam with walls thin to 1.5 µm thick. (2) The trama hyphae are 3–3.5 µm diam with walls thin to 0.5 µm thick. (3) Basidia are clavate, 15–21× 5–5.5 µm. (4) Basidiospores are slightly wider than previously reported, (4.5–)4.7–5.8 ×(2.7–)2.8–3 µm, Q = 1.6–2, average of 33 spores = 5.3 ± 0.4 × 3 ± 0.2 µm, Q = 1.8.

Basidiomes of B. carnegieae are entirely effused and adnate with nearly white to ivory-white pores when fresh that darken slightly to light brown or buff, and a uniform, cream-colored context. The pore layer is very fragile and brittle when dried. These characters differ from most species of Bjerkandera which are pileate, effuse-reflexed, except the resupinate species B. resupinata. In addition, most species in the genus have dark gray to buff-colored pores that typically darken to black when bruised in contrast to the light-colored pores in B. carnegieae that darken to light brown. Furthermore, the context in B. carnegieae is uniformly light-colored, whereas other species of Bjerkandera have a tan, brown or black zone or line between the base of the tubes or pores and context. Motato-Vásquez et al. (2020) and Wang et al. (2021) have summarized some critical morphological characters of accepted species in Bjerkandera and included keys.

Despite these macromorphological differences with other species in the genus, B. carnegieae shares important characters such as a monomitic, clamped hyphal system of thin- to thick-walled generative hyphae with thick-walled hyphae dominating in the subicum and trama (Fig. 3C–D), and basidia and basidiospores that are similar in shape and size. Furthermore, cultures of B. carnegieae, B. adjusta, and B. fumosa share some important biological features, such as developing arthroconidia and a negative or weakly positive reaction on gallic acid agar with some mycelial growth and a negative or positive reaction on tannic acid agar, but no growth (Nobles 1948: 350; Gilbertson & Canfield 1972; Lombard et al. 1992). Finally, these three species have a heterocytic nuclear behavior and a bipolar mating system (Gilbertson & Canfield 1972; David 1988; Lombard et al. 1992). It is noteworthy that cultures of B. mikrofumosa and B. atroalba develop chlamydospores and not arthroconidia (Motato-Vásquez et al. 2016, 2020).

Specimens examined. (All on saguaro, Carnegiea gigantea at CFMR): U.S.A., Arizona. Pinal County, Santa Rosa Valley, Papago Indian Reservation, Gu Komelik, 11 November 1971, E. R. Canfield, ERC 71-366 and ERC 71-367; Chiu Chiuschu, 11 November 1971, R. L. Gilbertson, RLG 10553. Pima County,
Figure 1. Maximum Likelihood (ML) tree of Phanerochaetaceae based on concatenated dataset of ITS + LSU + rpb1 + rpb2 + tef1-α sequence data. Branch support values are shown as BPP/BS, Bayesian posterior probability above 0.7 and Bootstrap values above 70%. ★ = type species of Bjerkandera.
Figure 2. Maximum Likelihood (ML) tree of *Bjerkandera* based on concatenated dataset of ITS + LSU sequence data. Branch support values are shown as BPP/BS, Bayesian posterior probability above 0.7 and Bootstrap values above 70%.
Bjerkandera carnegieae was originally described by Baxter (1941) from southern Arizona as an important agent of decay in the saguaro cactus, *Carnegiea gigantea*. Most specimens of this species are from saguaro, but a few specimens are also known on other woody *Cactaceae*, such as *Pachycereus* sp and *Lemaireocereus* sp, from desert areas of Mexico (Lindsey & Gilbertson 1977; and data retrieved from MycoPortal, October 15, 2021). ITS BLAST searches in GenBank have recovered some environmental samples with 100% sequence identity with *B. carnegieae*, mostly from Arizona, but also from Puerto Rico and Brazil (Fröhlich-Nowoisky et al. 2012).

Although the fungal diversity growing in saguaro has been recorded (Gilbertson et al. 1974; Lindsey & Gilbertson 1975), tree-like cacti are ‘under sampled’ in other parts of America. The biographical connection of desert areas from USA and Central Argentina has been previously reported, not only in similar physiognomic structure, spiny bush and trees and tree-like cacti, but in plant taxa, i.e. *Prosopis* spp., and polypores are not the exception. See for instance *Inocutis texana*, originally described from North America that has been registered in xerophitic areas of central Argentina (Robledo & Urcelay 2009; Rajchenberg & Robledo 2013). The only polypore so far registered in a tree-like cactus in Central Argentina has been *Ceriporia xylostromatoides*, growing inside a dead falling *Stetsonia coryne* (Robledo & Urcelay 2009).

Acknowledgements

This work was supported by FONCYT (PICT 0830 to G. Robledo) and Fundación Fungicosmos. The authors would also...
like to acknowledge the Center for Forest Mycology Research (CFMR) for making available culture and collections for this study. The assistance of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Córdoba, both of which supported the facilities used in this work, is also acknowledged.

References

Baxter, D. W. 1941. Some resupinate polypores from the region of the Great Lakes. XII. Papers of the Michigan Academy of Science, Arts and Letters 26: 107–121.

Binder, M., Justo, A., Riley, R., Salamov, A., Lopez-Giraldez, F., Jökvist, E., Copeland, A., Foster, B., Sun, H., Larson, E., Larsson, K. H., Townsend, J, Grigoriev, I. V. & Hibbett, D. S. 2013. Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105: 1350–1373. https://doi.org/10.3852/mycologia.39.28010

Chen, C-C., Wu, S-H. & Chen, C-Y. 2018. Hydnophoraherucha and Odontoperibula, two new genera of phanerochaetoid fungi (Polyporales, Basidiomycota) from East Asia. MycoKeys 39: 75–96. https://doi.org/10.3897/mycokeys.39.28010

Chen, C-C., Chen, C-Y., Lim, Y-W. & Wu, S-H. 2020. Phylogeny and taxonomy of Ceriporia and other related taxa and description of three new species. Mycologia 112: 64–82. https://doi.org/10.1080/00275514.2019.1664097

Cubeta, M.A., Echandi, E., Abernethy, T. & Vilgalys, R. 1991. Characterization of anastomosis groups of basidiomycetes using restriction analysis of an amplified ribosomal RNA gene. Molecular Plant and Pathology 81: 1395–1400.

David, A. 1988. Bedeutung des Studiums des Kernverhaltens in der Systematik der Polyporaceae. In: Wolkinger, F. (ed.), Internationales Aphyllorales-Symposium Eisenstadt 1982, pp. 23–28. Graz: Austrian Academy of Sciences.

Do, C. B., Mahabhashyam, M. S., Brudno, M. & Batzoglou, S. 2005. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Researc 15(2): 330–340. https://doi.org/10.1101/gr.2821705

Fröhlich-Novosky, J., Burrows, S. M., Salamov, A., Lopez-Giraldez, F., Jökvist, E., Copeland, A., Foster, B., Sun, H., Larson, E., Larsson, K. H., Townsend, J, Grigoriev, I. V. & Hibbett, D. S. 2013. Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105: 1350–1373. https://doi.org/10.3852/mycologia.39.28010

Gardes, M. & Bruns, T. D. 1993. ITS primers with enhanced specificity for Basidiomycota. Nucleic Acids Research 21: 1600–1602.

Gilbertson, R. L., Martin, K. J. & Lindsey, J. P. 1974. Annotated check list and host index for Arizona wood-rotting fungi. Papers of the Arizona Agricultural Experiment Station Technical Bulletin 209: 1–48.

Gómez-Montoya, N., Drechsler-Santos, E. R., Ferreira Lopes, V., Tomkovský, M., Urcelay, C. & Robledo, G. L. 2017. New insights on Trametesgöm-Tomkovský (Polyporales Gáun) based on phylogenetic evidences and morphological analyses of neotropical species. Phytotaxa 311(2): 155–167. https://doi.org/10.11646/phytotaxa.311.2.3

Hoang, T. S., Chernomor, O., von Hae塞尔, A., Minh, B. Q. & Vinh, L. S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Hyde, K. D., Udayanga, D., Manamgoda, D. S., Tedesoo, L., Larson, E., Abarenkov, K., Bertrand, Y. J.K., Oxelman, B., Hartmann, M., Kauerser, H., Ryberg, M., Kristiassen, E. & Nilsson, R. H. 2013. Incorporating molecular data in fungal systematics: a guide for aspiring researchers. Current Research in Environmental and Applied Mycology 3: 1–32.

Justo, A., Miettinen, O., Floudas, D., Ortiz-Santana, B., Sjökivist, E., Lindner, D., Nakason, K., Niemelä, T., Larson, K. H., Ryvarden, L. & Hibbett, D. S. 2017. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121: 798–824. https://doi.org/10.1016/j.funbio.2017.05.010

Kalyaanamoorthy, S., Minh, B., Wong, T., von Hae塞尔, A. & Jer- miin, L. S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Katoh, K., Rozewicki, J. & Yamada, K. D. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Kornerup, A. & Wanscher, J. H. 1978. Methuen Handbook of Colour. London: Eyre Methuen.

Kuo, M. & Ortiz-Santana, B. 2020. Revision of leccinoid fungi, with emphasis on North American taxa, based on molecular and morphological data. Mycologia 112(1): 197–211. https://doi.org/10.1080/00275514.2019.1665351

Lindsey, J. P. & Gilbertson, R. L. 1977. Some aspects of bipolar heterothallism and other cultural characters of Poria carneigii. Mycologia 69(4): 761–772.

Lindsey, J. P. & Gilbertson, R. L. 1975. Wood-inhabiting Homobasiidymycetes on sauguro in Arizona. Mycotoxicology 2: 83–103. https://doi.org/10.1080/00275514.1977.12020121

Lombard, F. B., Larsen, M. J. & Dorworth, E. B. 1992. Reassessment of the sexual incompatibility system and cultural characteristics of Bjerkandera fima. Mycologia 84(3): 406–410. https://doi.org/10.1080/00275514.1992.12026154

Lowe, J. L. 1966. Polyporaceae of North America. The genus Polyporaceae. Technical publications, New York State College of Forestry at Syracuse University No. 90: 1–183.

Matheny, P. B. 2005. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Molecular Phylogenetics and Evolution 35: 1–20. https://doi.org/10.1016/j.ympev.2004.11.014

Mercado, E. M. & Ortiz-Santana, B. 2018. Mountain pine beetle mutualist Leptographium longiclavatum presence in the southern Rocky Mountains during a record warm period. Sydowia 70: 1–10. https://doi.org/10.12905/0380.sydowia70-2018-0001

Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), IEEE: 1–8.

Minh, B. Q., Hahn, M. W. & Lanfear, R. 2020. New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37: 2727–2733. https://doi.org/10.1093/molbev/msaa106

Motato-Vásquez, V., Pires, R. M., Vitali, V. M. V. & Gugliotta, A. M. 2016. Cultural and ligninolytic activity studies of some polypores and other related taxa and description of Ceriporia albocinerea. Phytotaxa 22: 363–365.

Motato-Vásquez, V., Pires, R. M., Vitali, V. M. V. & Gugliotta, A. M. 2016. Cultural and ligninolytic activity studies of some polypores and other related taxa and description of Ceriporia albocinerea. Phytotaxa 22: 363–365.

Nobles, M. K. 1948. Studies in forest pathology. VI. Identification of cultures of wood-rotting fungi. Canadian Journal of Research, Section C 26: 281–431.
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. *Molecular Biology and Evolution* 32: 268–274. https://doi.org/10.1093/molbev/msu300

Rajchenberg, M. & Robledo, G. 2013. Pathogenic polypores in Argentina. *Forest Pathology* 43(3): 171–184. https://doi.org/10.1111/efp.12032

Rehner, S. A. & Buckley, E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. *Mycologia* 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84

Robledo, G. L. & Urcelay, C. 2009. Hongos de la madera en árboles nativos del centro de Argentina. Editorial Universitaria, Universidad Nacional de Córdoba. Córdoba, Argentina.

Robledo, G. L., Palacio, M., Urcelay, C., Vasco-Palacios, A. M., Crespo, E., Popoff, O., Põldmaa, K., Ryvarden, L. & Costa-Rezende, D. H. 2020. Mystery unveiled: *Diacanthodes* Singer—a lineage within the core polyporoid clade. *Systematics and Biodiversity* 19: 725–741. https://doi.org/10.1080/14772000.2020.1776784

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Molecular Biology and Evolution* 30: 2725–2729. https://doi.org/10.1093/molbev/msu197

Tomišovský, M., Menkis, A. & Vasaitis, R. 2010. Phylogenetic relationships in European *Ceriporiopsis* species inferred from nuclear and mitochondrial ribosomal DNA sequences. *Fungal Biology* 114: 350–358. https://doi.org/10.1016/j.funbio.2010.02.004

Vilgalys, R. & Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Wang, C-G., Vlasák, J. & Dai, Y-C. 2021. Phylogeny and diversity of *Bjerkandera* (*Polyporales, Basidiomycota*), including four new species from South America and Asia. *Mycology* 79: 149–172. https://doi.org/10.3897/mycokeys.79.63908

White, T. J., Bruns, T., Lee, S. S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (eds), PCR protocols: A guide to methods and applications, pp. 315–322. Academic Press, New York.

Zhao, C. L. & Cui, B. K. 2014. Phylogeny and taxonomy of *Ceriporiopsis* (*Polyporales*) with descriptions of two new species from southern China. *Phytotaxa* 164: 17–28. https://doi.org/10.11646/phytotaxa.164.1.2

Zhao, C. L. & Wu, Z. Q. 2017. *Ceriporiopsis kunmingensis* sp. nov. (*Polyporales, Basidiomycota*) evidenced by morphological characters and phylogenetic analysis. *Mycological Progress* 16: 93–100. https://doi.org/10.1007/s11557-016-1259-8