A geometric construction of types for the smooth representations of PGL(2) of a local field

Paul Broussous

March 2012

Abstract

We show that almost all (Bushnell and Kutzko) types of PGL(2, F), F a non-Archimedean locally compact field of odd residue characteristic, naturally appear in the cohomology of finite graphs.

Introduction

Let F be a non-Archimedean locally compact field and G be the group PGL(2, F). We assume that the residue characteristic of F is not 2. In previous works (2, 3) we defined a tower of directed graphs (X_n)_{n⩾0} lying G-equivariantly over the Bruhat-Tits tree X of G. We proved the two following facts:

Theorem 1 (2, Theorem (3.2.4), page 502). Let (π, V) be a non-spherical generic smooth irreducible representation. Then (π, V) is a quotient of the cohomology space with compact support H^1_c(X_{n(π)}, C), where n(π) is the conductor of π.

Theorem 2 (3, Theorem (5.3.2), page 512). If (π, V) is supercuspidal smooth irreducible representation of G, then we have:

\[\dim_C \text{Hom}_G [H^1_c(X_{n(π)}, C), V] = 1. \]

In this paper we make the G-module structure of H^1_c(X_n, C) more explicit for all n ⩾ 0, and draw some interesting consequences.

Let us fix an edge [s_0, s_1] of X and denote by X_0 and X_1 the stabilizers in G of s_0 and [s_0, s_1] respectively. Then X_0 and X_1 form a set of representatives of the
two conjugacy classes of maximal compact subgroups in G. If n is even, we have a G-equivariant mapping $p_n : \tilde{X}_n \to X$ which respects the graph structures. We denote by Σ_n the subgraph $p_n^{-1}([s_0, s_1])$. If n is odd, then after passing to the first barycentric subdivisions, we have a G-equivariant mapping $p_n : \tilde{X}_n \to X$ which respects the graph structures. We denote by Σ_n the subgraph $p_n^{-1}(S(s_0, 1/2))$, where $S(s_0, 1/2)$ denotes the set of points x in X such that $d(x, s_0) \leq 1/2$ (here d is the natural distance on the standard geometric realization of X, normalized in such a way that $d(s_0, s_1) = 1$).

Then for all n, Σ_n is a finite graph, equipped with an action of K_1 if n is even, and K_0 if n is odd. So the cohomology spaces $H^1(\Sigma_n, \mathbb{C})$ provide finite dimensional smooth representations of K_1 or K_0, according to the parity of n.

For each $n \geq 0$, we define an finite set P_n of pairs (\mathcal{K}, λ) formed of a maximal compact subgroup $\mathcal{K} \in \{K_0, K_1\}$ and of an irreducible smooth representation of \mathcal{K}. By definition we have $(\mathcal{K}, \lambda) \in P_n$ if and only if there exists $k \in \{0, 1, \ldots, n\}$ such that (\mathcal{K}, λ) is an irreducible constituent of the representation $H^1(\Sigma_k, \mathbb{C})$. For $(\mathcal{K}, \lambda) \in P_n$ and $k \leq n$, we denote by m^k_λ the multiplicity of λ in $H^1(\Sigma_k, \mathbb{C})$ and we set $m_{n, \lambda} = m_\lambda = n^0_\lambda + \cdots + n^n_\lambda$. Note that n_λ depends on (\mathcal{K}, λ) and n.

The main results of this article are the following.

Theorem A. For all $n \geq 0$, we have the direct sum decomposition :

$$H^1_c(\tilde{X}_n, \mathbb{C}) = \text{St}_G \oplus \bigoplus_{(\mathcal{K}, \lambda) \in P_n} (c\text{-ind}^G_{\mathcal{K}} \lambda)^{m_\lambda}.$$

(Here St_G denotes the Steinberg representation of G).

Theorem B. For all $n \geq 0$, any element of P_n is

a) either a type in the sense of Bushnell and Kutzko’s type theory [2], which is not a type for the unramified principal series

b) or a pair of the form $(\mathcal{K}_0, \chi \circ \det \otimes \text{St}_{\mathcal{K}_0})$, where χ is a smooth character of F^\times of order 2, trivial on the group of 1-units in F^\times, and $\text{St}_{\mathcal{K}_0}$ is the representation inflated from the Steinberg representation of PGL(2) of the residue field of F,

c) or the pair $(\mathcal{K}_1, 1_{\mathcal{K}_1})$, where 1 denotes a trivial character.

Corollary C. Let $n \geq 0$. If $(\mathcal{K}, \lambda) \in P_n$ is a cuspidal type, then $m_{\lambda, n} = 1$.

Indeed this follows from Theorems 2 and A using Frobenius reciprocity for compact induction.

By Theorem 1, any Bernstein component of G, different from the unramified principal series component, must have a type in P_n for n large enough. Hence
the graphs \tilde{X}_n, $n \geq 0$, provide a geometric construction of types for almost all Bernstein components of G.

We conjecture that if $(\mathcal{K}, \lambda) \in \mathcal{P}_n$ is a type of G, then $n\lambda = 1$.

Finally let us observe that this construction gives a new proof that the irreducible supercuspidal representations of G are obtained by compact induction. Our proof differs from original Kutzko’s proof ([9], also see [4]) only at the exhaustion steps. Indeed our “supercuspidal” types are the same as Kutzko’s, but we prove that any irreducible supercuspidal representation contains such a type by using an argument based on [2] and [3], that is mainly on the existence of the new vector.

The article is organized as follows. The proof of Theorem A relies first on combinatorial properties of the graphs \tilde{X}_n that are stated and proved in §2. Using this combinatorial properties and some homological arguments, we show in §3 how to relate the cohomology of \tilde{X}_n to that of \tilde{X}_{n-1}. The irreducible components of $H^1(\Sigma_n)$ are determined in §4 when n is even, and in §5 and §6 when n is odd. A synthesis of the arguments of paragraphs 2 to 6, leading to a proof a theorem A and B, is given in §7.

We shall assume that the reader is familiar with the language of Bushnell and Kutzko’s type theory [5] and with the language of strata ([6], [4]).

1 Notation

We shall denote by

- F a non-Archimedean non-discrete locally compact field,
- \mathfrak{o} its valuation ring,
- \mathfrak{p} the maximal ideal of \mathfrak{o},
- ϖ the choice of a uniformizer of \mathfrak{o},
- $k = \mathfrak{o}/\mathfrak{p}$ the residue field of F,
- p the characteristic of k,
- $q = p^f$ the cardinal of k,
- G the group $\text{PGL}(2, F)$.
- t_ϖ the image of the matrix $\begin{pmatrix} 1 & 0 \\ 0 & \varpi \end{pmatrix}$ in G.

The results of this article are obtained under the

Hypothesis. The characteristic of k is not 2

We shall often define an element, a subset, or a subgroup of G by giving a (set of) representative(s) in $\text{GL}(2, F)$.

3
We write T for the diagonal torus of G and $B \supset T$ for the upper standard Borel subgroup. We denote by T^0 the maximal compact subgroup of T, i.e. the set of matrices with coefficients in \mathfrak{o}^\times, and by T^n the subgroup of matrices with coefficients in $1 + p^n$, $n > 0$.

Let k, l be integers satisfying $k + l \geq 0$. Then $A(k,l) = \begin{pmatrix} \mathfrak{o} & p^l \\ p^k & \mathfrak{o} \end{pmatrix}$ is an \mathfrak{o}-order of $M(2,F)$. We denote by $\Gamma_0(k,l)$ the image in G of its group of units.

There are two conjugacy classes of maximal compact subgroups of G. The first one has representative $K = \Gamma_0(0,0)$. A representative \tilde{I} of the second one is the semidirect product of the cyclic group generated by $\Pi = \begin{pmatrix} 0 & 1 \\ \pi & 0 \end{pmatrix}$ with the Iwahori subgroup $I = \Gamma_0(1,0)$.

The group K is filtered by the normal compact open subgroups $K_n = \begin{pmatrix} 1 + p^n & p^n \\ p^n & 1 + p^n \end{pmatrix}$, $n \geq 1$.

The group I is filtered by the normal compact subgroups I_n, $n \geq 1$, defined by:

$I_{2k+2} = \begin{pmatrix} 1 + p^{k+1} & p^{k+1} \\ p^{k+2} & 1 + p^{k+1} \end{pmatrix}$, $I_{2k+1} = \begin{pmatrix} 1 + p^{k+1} & p^k \\ p^{k+1} & 1 + p^{k+1} \end{pmatrix}$, $k \geq 0$.

The subgroups I_n, $n \geq 1$, are normalized by Π.

We denote by X the Bruhat-Tits building of G. This is a uniform tree with valency $q + 1$. As a G-set and as a simplicial complex X identifies with the following complex. Its vertices are the homothety classes $[L]$ of full \mathfrak{o}-lattices L in the vector space $V = F^2$. Two vertices $[L]$ and $[M]$ define an edge is and only if there exists a basis (e_1, e_2) of V such that, up to homothety, we have $L = \mathfrak{o}e_1 \oplus \mathfrak{o}e_2$ and $M = \mathfrak{o}e_1 \oplus pe_2$.

The vertices of the standard apartment (i.e. the apartment stabilized by T) are the $s_k = [\mathfrak{o} \oplus p^k]$, $k \in \mathbb{Z}$. The element t_∞ acts as $t_\infty s_k = s_{k+1}$, $k \in \mathbb{Z}$. The maximal compact subgroup K is the stabilizer of s_0 and \tilde{I} (resp. I) is the global stabilizer (resp. pointwise stabilizer) of the edge $[s_0, s_1]$. If $l \geq k$, the pointwise stabilizer of the segment $[s_k, s_l]$ is $\Gamma_0(l, -k)$.

2 Combinatorics of \tilde{X}_n

We recall the construction of the directed graphs \tilde{X}_n, $n \geq 1$.

For any integer $k \geq 1$, an oriented k-path in X is an injective sequence of vertices $(s_i)_{i=0,\ldots,k}$ in X such that, for $k = 0, \ldots, k - 1$, $\{s_i, s_{i+1}\}$ is an edge in X. We shall allow the index i to run over any interval of integers of length
\(k + 1\). Let us fix an integer \(n \geq 1\). The directed graph \(\hat{X}_n\) is constructed as follows. Its edge set (resp. vertex set) is the set of oriented \((n + 1)\)-paths (resp. \(n\)-paths) in \(X\). If \(a = \{s_0, s_1, ..., s_n\} \) is an edge of \(\hat{X}_n\), its head (resp. tail) is \(a^+ = \{s_1, s_2, ..., s_n\}\) (resp. \(a^- = \{s_0, s_1, ..., s_n\}\)). The graphs we obtain this way are actually simplicial complexes. The group \(G\) acts on \(\hat{X}_n\) is an obvious way; the action preserves the structure of directed graph.

When \(n = 2m\) is even, we have a natural simplicial projection \(p = p_n : \hat{X}_n \to X\) given on vertices by \(p(s_{m}, ..., s_0, ..., s_m) = s_0\). It is \(G\)-equivariant. Let \(e = \{s_0, t_0\}\) be an edge of \(X\). We are going to describe the finite simplicial complex \(p^{-1}(e)\). An edge in \(\hat{X}_n\) above the edge \(e\) corresponds to an oriented \((2m + 1)\)-path of one of the following forms:

i) \((s_{m}, s_{m+1}, ..., s_0, t_0, ..., t_{m-1}, t_m)\)

ii) \((t_{-1}, t_0, ..., s_m, s_0, ..., s_{m-1}, s_m)\)

Let \(C_{2m-1}(e)\) the set of \((2m - 1)\)-paths \(c = (s_{m+1}, ..., s_0, t_0, ..., t_{m-1})\). We say that \(c \in C_{2m-1}(e)\) lies above \(e\). Fix \(c \in C_{2m-1}(e)\) and consider the simplicial sub-complex \(\hat{X}_{2m}[e, c]\) of \(\hat{X}_{2m}\) whose edges correspond to the \((2m + 1)\)-paths of the form

\[(a, s_{m+1}, ..., s_0, t_0, ..., t_{m-1}, b)\]

So \(a\) (resp. \(b\)) can be any neighbour of \(s_{m+1}\) (resp. \(t_{m-1}\)) different from \(s_{m+2}\) (resp. \(t_{m-1}\)), with the convention that \(s_1 = t_0\) and \(t_{-1} = s_0\). The simplicial complex \(\hat{X}_{2m}[e, c]\) is connected. It is indeed isomorphic to the complete bipartite graph with sets of vertices:

\[\{a : \text{a neighbour of } s_{m+1}, a \neq s_{m+2}\} \text{ and } \{b : \text{b neighbour of } t_{m-1}, b \neq t_{m-2}\}\]

Lemma 2.1. Let \(e \text{ and } e'\) be two edges of \(X\) and \(c \in C_{2m-1}(e), c' \in C_{2m-1}(e')\). Then \(\hat{X}_{2m}[e, c] \cap \hat{X}_{2m}[e', c'] \neq \emptyset\) if and only if we are in one of the following cases:

i) \(e = e'\) and \(c = c'\) (so that \(\hat{X}_{2m}[e, c] = \hat{X}_{2m}[e', c']\))

ii) \(e \cap c'\) is reduced to one vertex of \(X\) and \(e \cup c'\) is an oriented \(2m\)-path in \(X\).

In that case \(\hat{X}_{2m}[e, c] \cap \hat{X}_{2m}[e', c']\) is reduced to the vertex of \(\hat{X}_{2m}\) corresponding to the \(2m\)-path \(e \cup c'\).

Proof. If \(\hat{X}_{2m}[e, c] \cap \hat{X}_{2m}[e', c']\neq \emptyset\), then \(e \cap c' = p(\hat{X}_{2m}[e, c]) \cap p(\hat{X}_{2m}[e', c'])\neq \emptyset\). Assume first that \(e = e'\). Then \(c = c'\) for if \(c \neq c'\), then \(\hat{X}_{2m}[e, c] \cap \hat{X}_{2m}[e', c'] = \emptyset\); indeed if \(\hat{s}\) is a vertex of \(\hat{X}_{2m}[e, c]\) then it determines \(c\) uniquely. Now assume that \(e \cap c'\) is a vertex. Let \(\hat{s} \in \hat{X}_{2m}[e, c] \cap \hat{X}_{2m}[e', c']\). Then \(\hat{s}\) contains \(c\) and \(c'\) as subsequences, with \(c \neq c'\). So by a length argument \(s = c \cup c'\). Conversely if \(c \cup c'\) is an oriented \(2m\)-path then \(c \cup c'\) is a vertex of \(X\) lying in \(\hat{X}_{2m}[e, c] \cap \hat{X}_{2m}[e', c']\).

Corollary 2.2. For any edge \(e\) of \(X\), the connected components of \(p^{-1}(e)\) are the \(\hat{X}_{2m}[e, c]\), where \(e\) runs over \(C_{2m-1}(e)\).

Define a 1-dimensional simplicial complex \(Y_{2m-1}\) in the following way. Its vertices are the connected components \(\hat{X}_{2m}[e, c]\), where \(e\) runs over the edges of
X and c over $C_{2m-1}(e)$, and two vertices $\tilde{X}_{2m}[e, c]$ and $\tilde{X}_{2m}[e', c']$ are linked by an edge if they intersect. Note that Y_{2m-1} is naturally a G-simplicial complex.

Corollary 2.3. As a G-simplicial complex Y_{2m-1} is canonically isomorphic to the complex \tilde{X}_{2m-1}.

Assume that $m \geq 1$. We say that an edge of \tilde{X}_{2m-1} lies above a vertex s_0 of X if as an oriented $2m$-path it has the form (s_1, \ldots, s_n, s_m). For any vertex s_0 of X we write $\tilde{X}_{2m-1}[s_0]$ for the subsimplicial complex of Y formed of the edges lying above s_0.

Lemma 2.5 When $m = 1$ the simplicial complexes $\tilde{X}_{2m-1}[s_0] = \tilde{X}_1[s_0]$ are connected.

Proof. We may identify the neighbour vertices of s_0 in X with the points of the projective line $\mathbb{P}^1(\tilde{M}) \simeq \mathbb{P}^1(k)$, where $s_0 = [M]$ and $\tilde{M} = M/p_KM$. The vertices of $\tilde{X}_1[s_0]$ are the oriented 1-paths (s_0, x), $(y, s_0), x, y \in \mathbb{P}^1(\tilde{M})$. Two oriented 1-paths of the form (x, s_0) and (s_0, y) are linked by the edge (x, s_0, y).

Let $(x, s_0), (y, s_0)$ be two oriented 1-paths with $x \neq y$. Since $|\mathbb{P}^1(k)| \geq 3$, there exists $z \in \mathbb{P}^1(\tilde{M})$ distinct from x and y. Then (x, s_0) is linked to (s_0, z) via the path (x, s_0, z) and (s_0, z) is linked to (y, s_0) via the path (y, s_0, z). For vertices of the form (s_0, x), (s_0, y) the proof is similar.

We now assume that $m > 1$. We write $C_{2m-2}(s_0)$ for the set $(2m - 2)$-paths of the form $(s, s_{m+1}, \ldots, s_0, \ldots, s_{m-1})$. For any $c \in C_{2m-2}(s_0)$, we consider the subsimplicial complex $\tilde{X}_{2m-1}[s_0, c]$ of \tilde{X}_{2m-1} whose edges corresponds to the $2m$-paths of the form $(a, s, s_{n+1}, \ldots, s_0, s_{n-1}, b)$. We have results similar to lemma 1.2, corollaries 2.2 and 2.3.

Lemma 2.6. i) For any vertex s_0 of X and for $c \in C_{2m-2}(s_0)$, $\tilde{X}_{2m-1}[s_0, c]$ is connected. It is indeed isomorphic to a complete bipartite graph constructed on two sets of $q = |k|$ elements.

ii) Let s and s' be vertices of X, $c \in C_{2m-2}(s)$ and $c' \in C_{2m-2}(s')$. Then $\tilde{X}_{2m-1}[s, c] \cap \tilde{X}_{2m-1}[s', c'] \neq \emptyset$ if and only if $s = s'$ and $c = c'$, or $\{s, s'\}$ is an edge in X and $c \cup c'$ is an oriented $2m-1$-path. In this last case $\tilde{X}_{2m-1}[s, c] \cap \tilde{X}_{2m-1}[s', c'] = \{\tilde{s}\}$, where the vertex \tilde{s} of \tilde{X}_{2m-1} corresponds to the $(2m - 1)$-path $c \cup c'$.

iii) For any vertex s of X, the connected components of $\tilde{X}_{2m-1}[s]$ are the $\tilde{X}_{2m-1}[s, c], c$ running over $C_{2m-2}(s)$.

We can consider the 1-dimensional simplicial complex Z_{2m-2} whose vertices are the connected components $\tilde{X}_{2m-1}[s, c], s$ running over the vertices of X and c over $C_{2m-2}(s)$, and where two connected components define an edge if and only if they intersect. Note that Z_m is naturally a G-simplicial complex.

Corollary 2.7. As a G-simplicial complex Z_{2m-2} is isomorphic to X_{2m-2}.
3 The cohomology of \tilde{X}_n: first reductions

If Σ is a locally finite 1-dimensional simplicial complex, we write Σ^0 (resp. $\Sigma^{(1)}, \Sigma^1$) for its set of vertices (resp. non-oriented edges, oriented edges). We let $C_0(\Sigma)$ (resp. $C_1(\Sigma)$) denote the \mathbb{C}-vector space with basis Σ^0 (resp. $\Sigma^{(1)}, \Sigma^1$). We define the space $C^0_c(\Sigma, \mathbb{C}) = C^0(\Sigma)$ (resp. $C^1_c(\Sigma, \mathbb{C}) = C^1(\Sigma)$) of oriented simplicial 0-cochains (resp. 1-cochains) with compact support by:

$$C^0_c(\Sigma) = \text{space of all linear forms } f : C_0(\mathbb{Z}) \to \mathbb{C} \text{ such that } f(s) = 0 \text{ except for a finite number of vertices } s;$$

$$C^1_c(\Sigma) = \text{space of all linear forms } \omega : C_1(\mathbb{C}) \to \mathbb{C} \text{ such that } f([a,b]) = 0 \text{ except for a finite number of oriented edges } [a,b] \text{ and } f([a,b]) = -f([b,a]).$$

We set $C^k_c(\Sigma) = 0$ for $k \in \mathbb{Z} \setminus \{0,1\}$ and define a coboundary map $d : C^0_c(\Sigma) \to C^1(\Sigma)$ by $df([a,b]) = f(b) - f(a)$. The cohomology of the cochain complex $(C^*(\Sigma), d)$ computes the cohomology with compact support $H^*_c(\Sigma, \mathbb{C}) = H^*_c(\Sigma)$ of (the standard geometric realization of) Σ. If Σ is acted upon by a group H whose action is simplicial then $(C^*_c(\Sigma), d)$ is in a straightforward way a complex of H-modules and its cohomology computes $H^1_c(\Sigma)$ as a H-module. When T is finite we drop the subscripts c.

Since the stabilizer of a finite number of vertices of X is open in G, we see that for $n \geq 1$, the G-modules $C^0_c(\tilde{X}_n), C^1_c(\tilde{X}_n)$ and therefore $H^1_c(\tilde{X}_n)$ are smooth.

In the sequel we fix $m \geq 1$ and we abbreviate $\tilde{X}_{2m} = \tilde{X}$. The disjoint union $\tilde{X} = \bigsqcup_{e \in X^{(1)}} \tilde{X}_e$, where $\tilde{X}_e = p^{-1}(e)$, induces an isomorphism:

$$C^1_c(\tilde{X}) \simeq \bigoplus_{e \in X^{(1)}} C^1_c(\tilde{X}_e)$$

Similarly the non-disjoint union $\tilde{X}^0 = \bigsqcup_{e \in X^{(1)}} \tilde{X}^0_e$ induces an injection:

$$j : C^0_c(\tilde{X}) \to \bigoplus_{e \in X^{(1)}} C^0_c(\tilde{X}_e)$$
We have the following commutative diagram of \(G\)-modules:

\[
\begin{array}{cccccccc}
H^0_c(\tilde{X}) & \longrightarrow & \bigoplus_{e \in X^{(1)}} H^0_c(\tilde{X}_e) & \longrightarrow & \text{coker} j \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & C^0_c(\tilde{X}) & \longrightarrow & \bigoplus_{e \in X^{(1)}} C^0_c(\tilde{X}_e) & \longrightarrow & \text{coker} j & \longrightarrow & 0 \\
\downarrow d & & \downarrow \oplus d_e & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & C^1_c(\tilde{X}) & \longrightarrow & \bigoplus_{e \in X^{(1)}} C^1_c(\tilde{X}_e) & \longrightarrow & 0 & \longrightarrow & 0 \\
\downarrow & & \downarrow \\
H^1_c(\tilde{X}) & \longrightarrow & \bigoplus_{e \in X^{(1)}} H^1_c(\tilde{X}_e) & \longrightarrow & 0
\end{array}
\]

Here, for \(e \in X^{(1)}\), \(d_e\) denote the coboundary map \(C^0_c(\tilde{X}_e) \to C^1_c(\tilde{X}_e)\). Since \(\tilde{X}\) is connected ([2] Lemma 4.1) and non compact, we have \(H^0_c(\tilde{X}) = 0\). So the snake lemma gives the kernel-cokernel exact sequence:

\[
0 \to \bigoplus_{e \in X^{(1)}} H^0_c(\tilde{X}_e) \to \text{coker} j \to H^1_c(\tilde{X}) \to \bigoplus_{e \in X^{(1)}} H^1_c(\tilde{X}_e) \to 0
\]

that is

\[
(3.3) \quad 0 \to \text{coker} j / \varphi \left(\bigoplus_{e \in X^{(1)}} H^0_c(\tilde{X}_e) \right) \to H^1_c(\tilde{X}) \to \bigoplus_{e \in X^{(1)}} H^1_c(\tilde{X}_e) \to 0
\]

Abbreviate \(Y = Y_{2m-1}\).

Lemma 3.4. We have a canonical isomorphism of \(G\)-modules

\[
\text{coker} j / \varphi \left(\bigoplus_{e \in X^{(1)}} H^0_c(\tilde{X}_e) \right) \cong H^1_c(Y).
\]

Proof. From corollary 2.2 we have

\[
\bigoplus_{e \in X^{(1)}} C^0_c(\tilde{X}_e) = \bigoplus_{e \in X^{(1)}} \bigoplus_{c \in C(e)} C^0_c(\tilde{X}_{e,c}).
\]

So the map \(j\) is given by \(f \mapsto \bigoplus_{e \in X^{(1)}} \bigoplus_{c \in C(e)} f_{e,c}\), where \(f_{e,c} = f|_{C_0(\tilde{X}_{e,c})}\). Consider the \(G\)-equivariant morphism of vector spaces

\[
\psi : \bigoplus_{e \in X^{(1)}} \bigoplus_{c \in C(e)} C^0_c(\tilde{X}_{e,c}) \to C^1_c(Y)
\]
given as follows. If \(\sigma \) is an oriented edge of \(Y \) then there exist uniquely determined edges \(e_o, e'_o \) of \(X \), \(c_o \in C(e_o), c'_o \in C(e'_o) \), such that \(\sigma \) corresponds to the intersection \(\tilde{X}_{e_o,c_o} \cap \tilde{X}_{e'_o,c'_o} = \{ s_o \} \), \(s_o \in \tilde{X}^0 \). We then set

\[
\psi((f_{e,c})_{e,c})(\sigma) = f_{e'_o,c'_o}(s_o) - f_{e_o,c_o}(s_o).
\]

Then \(\psi \) is surjective and its kernel is precisely \(j(C^0_\varnothing(\tilde{X})) \). So we may identify \(\text{coker} \ j \) with \(C^1_c(Y) \). From corollary 2.2, we have

\[
\bigoplus_{e \in X^{(1)}} H^0(\tilde{X}_e) = \bigoplus_{e \in X^{(1)}} \bigoplus_{c \in C(e)} H^0(\tilde{X}_{e,c})
\]

so that we may identify \(\bigoplus_{e \in X^{(1)}} H^0(\tilde{X}_e) \) with \(C^0_\varnothing(\tilde{Y}) \). Under our identifications the map \(\varphi : \bigoplus_{e \in X^{(1)}} H^0(\tilde{X}_e) \to \text{coker} \ j \) corresponds to the coboundary map \(d : C^0_\varnothing(\tilde{Y}) \to C^1_c(Y) \), and we are done since all our identifications are \(G \)-equivariant.

Proposition 3.5. For \(m \geq 1 \), we have an isomorphism of \(G \)-modules:

\[
H^1_c(\tilde{X}_n) \cong H^1_c(\tilde{X}_{2m-1}) \oplus c\text{-ind}_{K_{e_o}} G H^1_c(\tilde{X}_{e_o})
\]

for any edge \(e_o \) of \(x \) and where \(K_{e_o} \) denotes the stabilizer of \(e_o \) in \(G \).

Proof. From the short exact sequence (3.3) and lemma 3.4, we have the exact sequence of \(G \)-modules:

\[
0 \to H^1_c(Y) \to H^1_c(\tilde{X}) \to \bigoplus_{e \in X^{(1)}} H^1(\tilde{X}_e) \to 0
\]

Since \(G \) acts transitively on the edges of \(X \), \(\bigoplus_{e \in X^{(1)}} H^1_c(\tilde{X}_e) \) identifies with the compactly induced representation \(c\text{-ind}_{\tilde{X}_e}^G H^1_c(\tilde{X}_{e_o}) \). Moreover by [Vign ??](Trouver la bonne référence) this induced representation is projective in the category of smooth complex representations of \(G \). So the sequence (3.7) splits.

We assume that \(m \geq 1 \) and we abbreviate \(\tilde{X} = \tilde{X}_{2m-1} \). The disjoint union \(\tilde{X}^1 = \bigsqcup_{s \in X^0} \tilde{X}^1_s \) induces an isomorphism:

\[
C^1_c(\tilde{X}) \cong \bigoplus_{s \in X^0} C^1_c(\tilde{X}_s)
\]

\[
\omega \mapsto (\omega_{|C_c(\tilde{X}_s)})_{s \in X^0}
\]

Similarly the non-disjoint union \(\tilde{X}^0 = \bigsqcup_{s \in X^0} \tilde{X}^0_s \) induces an injection:

\[
j : C^0_\varnothing(\tilde{X}) \hookrightarrow \bigoplus_{s \in X^0} C^0_\varnothing(\tilde{X}_s)
\]

\[
f \mapsto (f_{|C_\varnothing(\tilde{X}_s)})_{s \in X^0}
\]
We have the following commutative diagram of G-modules:

\[
\begin{array}{ccccccccc}
H^0_c(\tilde{X}) & \rightarrow & \bigoplus_{s \in X^0} H^0(\tilde{X}_s) & \xrightarrow{\varphi} & \text{coker} j \\
\downarrow & & \downarrow & & \\
0 & \rightarrow & C^0_c(\tilde{X}) & \xrightarrow{j} & \bigoplus_{s \in X^0} C^0(\tilde{X}_s) & \xrightarrow{\text{coker} j} & 0 \\
\downarrow & & \oplus d_s & & \downarrow & & \\
0 & \rightarrow & C^1_c(\tilde{X}) & \rightarrow & \bigoplus_{s \in X^0} C^1(\tilde{X}_s) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
H^1_c(\tilde{X}) & \rightarrow & \bigoplus_{s \in X^0} H^1(\tilde{X}_s) & \rightarrow & 0 \\
\end{array}
\]

Here, for $s \in X^0$, d_s denote the coboundary map $C^0_c(\tilde{X}_s) \rightarrow C^1_c(\tilde{X}_s)$. By Lemma 2.4, \tilde{X} is connected. So we have $H^0_c(\tilde{X}) = 0$ since \tilde{X} is non-compact. The snake lemma gives the kernel-cokernel exact sequence:

\[(3.9) \quad 0 \rightarrow \text{coker} j / \varphi \left(\bigoplus_{s \in X^0} H^0(\tilde{X}_s) \right) \rightarrow H^1_c(\tilde{X}) \rightarrow \bigoplus_{s \in X^0} H^1(\tilde{X}_s) \rightarrow 0\]

Lemma 3.10. We have a canonical isomorphism of G-modules

\[\text{coker} j / \varphi \left(\bigoplus_{s \in X^0} H^0(\tilde{X}_s) \right) \simeq H^1_c(\tilde{X}_{2m-2}).\]

Proof. It is similar to the proof of lemma 3.4 and relies on lemma 2.6 and corollary 2.7.

Proposition 3.11 For $m \geq 1$, we have an isomorphism of G-modules:

\[H^1_c(\tilde{X}_{2m-1}) \simeq H^1_c(\tilde{X}_{2m-2}) \oplus \text{c-ind}^G_{\hat{K}_{s_o}} H^1(\tilde{X}_{s_o})\]

for any vertex s_o and where \hat{K}_{s_o} denotes the stabilizer of s_o in G.

Proof. Similar to the proof of proposition 3.5.

Recall [3] that \tilde{X}_0 is different from X. This is a directed graph whose set of vertices is isomorphic to X^0 as a G-set and whose set of edges is isomorphic to the G-set of oriented edges of X.

4 Determination of the inducing representations – I

Let $m \geq 0$ be a fixed integer and $e_0 = [s_0, s_1]$ be the standard edge. The aim of this section is to determine the \mathcal{X}_{e_0}-module $H^1(\tilde{X}_{2m}(e_0))$. Here we have $\mathcal{X}_{e_0} = \tilde{I}$,
the normalizer in G of the standard Iwahori subgroup. We have the semidirect products:

$$\tilde{I} = \langle \begin{pmatrix} 0 & 1 \\ \omega & 0 \end{pmatrix} \rangle \rtimes I = E^\times I$$

for any totally ramified subfield extension $E/F \subset M(2, F)$ such that E^\times normalizes I.

We first assume that $m \geq 1$. By Corollary (2.2), we have the disjoint union:

$$\tilde{X}_{2m}[e_0] = \coprod_{c \in C_{2m-1}(e_0)} \tilde{X}_{2m}[e_0, c].$$

The group \tilde{I} acts transitively on $C_{2m-1}(e_0)$. This comes from the standard fact that I, the pointwise stabilizer of e_0 acts transitively on the apartments of X containing e_0.

Let $c_0 \in C_{2m-1}(e_0)$ be the path

$$s_{-m+1}, \ldots, s_0, s_1, \ldots, s_m.$$

The global stabilizer of $\tilde{X}_{2m}[e_0, c_0]$ in \tilde{I} is the pointwise stabilizer of c_0 in \tilde{I}, that is

$$\Gamma_0(m, m-1) = \begin{pmatrix} \sigma^x & p^{m-1} \\ p^m & \sigma^x \end{pmatrix} = T^0 I_{2m-1}.$$

It follows that

$$(4.1) \quad H^1(\tilde{X}_{2m}[e_0]) = \text{ind}_{T^0 I_{2m-1}}^{\tilde{I}} H^1(\tilde{X}_{2m}[e_0, c_0]).$$

On the other hand, an easy calculation shows that the pointwise stabilizer of $\tilde{X}_{2m}[e_0, c_0]$ is $T^1 I_{2m}$, where T^1 is the congruence subgroup of T given by

$$T^1 = \begin{pmatrix} 1 + p & 0 \\ 0 & 1 + p \end{pmatrix}.$$

So the $T^0 I_{2m-1}$-module $H^1(\tilde{X}_{2m}[e_0, c_0])$ may be viewed as a representation of the finite group $T^0 I_{2m-1}/T^1 I_{2m}$, that is a semidirect product of the cyclic group k^\times with the abelian group $I_{2m-1}/I_{2m} \simeq k \oplus k$.

Set $\Gamma = \tilde{X}_{2m}[e_0, c_0]$. This is a finite directed graph. Let Σ_m (resp. Σ_{m+1}) denote the set of verticed of X that are neighbours of s_{-m+1} and different from s_{-m+2} resp. neighbours of s_m and different from s_{m-1}. Then the vertex set of Γ is

$$\Gamma^0 = \{(a, s_{-m+1}, \ldots, s_0, \ldots, s_m) : a \in \Sigma_m \} \coprod \{(s_{-m+1}, \ldots, s_0, \ldots, s_m, b) : b \in \Sigma_{m+1} \} \simeq \Sigma_m \coprod \Sigma_{m+1}$$

and its edge set is
\[\Gamma^1 = \{(a, s_{-m+1}, \ldots, s_0, \ldots, s_m, b) : a \in \Sigma_{-m}, b \in \Sigma_{m+1}\} \cong \Sigma_{-m} \times \Sigma_{m+1}. \]

In particular \(\Gamma \) is a bipartite graph based on two sets of \(q \) elements. In particular, its Euler character is given by

\[\chi(\Gamma) = 1 - \dim \mathbb{C}H^1(\Gamma) = 2q - q^2, \]

so that

\[\dim \mathbb{C}H^1(\Gamma) = q^2 - 2q + 1 = (q - 1)^2. \tag{4.2} \]

Let \(\mathbb{C}[\Gamma^1] \) be the space of complex function on \(\Gamma^1 \) and \(\mathcal{H}(\Gamma) \) be the space of harmonic 1-cochains on \(\Gamma \):

\[\mathcal{H}(\Gamma) = \{ f \in \mathbb{C}[\Gamma] ; \sum_{a \in \Gamma^1, s \in a} [a : s]f(a) = 0, \text{ all } s \in \Gamma^0 \}. \]

Here \([a : s] \) denote an incidence number. In our case:

\[\begin{align*}
\text{(Harm)} \quad f \in \mathcal{H}(\Gamma) \text{ iff } \\
&\sum_{a \in \Sigma_{-m}} f(a, s_{-m+1}, \ldots, s_m, b) = 0, \text{ all } b \\
&\sum_{b \in \Sigma_{m+1}} f(a, s_{-m+1}, \ldots, s_m, b) = 0, \text{ all } a
\end{align*} \]

This is a standard result (see e.g. [3] Lemma (1.3.2)), that, as a \(T^0/I_{2m-1}/T^1I_{2m} \)-module, \(H^1(\Gamma) \) is isomorphic to the contragredient module of \(\mathcal{H}(\Gamma) \).

An easy computation shows that we may identify \(\Gamma^1 \) with \(k \times k \) in such a way that:

1) an element of \(I_{2m-1} = \left(\begin{array}{cc} 1 + p^m & p^{m-1} \\ p^m & 1 + p^m \end{array} \right) \) acts as

\[(1 + \left(\begin{array}{cc} \omega^m a & \omega^{m-1} b \\ \omega^m c & \omega^m d \end{array} \right)) (x, y) = (x + \bar{b}, y + \bar{c}) \]

for \(a, b, c, d \in \mathfrak{o}, x, y \in \mathbf{k} \), and

2) an element of \(T^0 \) acts as

\[\left(\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right) (x, y) = (\bar{a} \bar{d}^{-1} x, \bar{d}^{-1} y) \]

and the condition (Harm) writes:

\[f \in \mathcal{H}(\Gamma) \text{ iff } \begin{cases} \\
\sum_{x \in \mathbf{k}} f(x, y) = 0, \text{ all } y \in \mathbf{k} \\
\sum_{y \in \mathbf{k}} f(x, y) = 0, \text{ all } x \in \mathbf{k}
\end{cases} \]
A basis of $\mathbb{C}[\Gamma]$ is formed of the functions $\chi_1 \otimes \chi_2(x, y) = \chi_1(x)\chi_1(y)$, where, for $i = 1, 2$, χ_i runs over the characters of $(k, +)$. It is clear that the $(q - 1)^2$ dimensional subspace of $\mathbb{C}[\Gamma]$ generated by the $\chi_1 \otimes \chi_2$, $\chi_1 \neq 1$, $\chi_2 \neq 1$, is contained in $\mathcal{H}(\Gamma)$. So using (4.2), we obtain:

\begin{equation}
\mathcal{H}(\Gamma) = \text{Span}\{\chi_1 \otimes \chi_2 \mid \chi_i \in \tilde{k}^\times, \chi_i \neq 1, i = 1, 2\}.
\end{equation}

It follows from (4.3) that as an I_{2m-1}/I_{2m}-module, the space $\mathcal{H}(\Gamma)$ is the direct sum of 1-dimensional representations corresponding to the characters $\alpha = \alpha(\chi_1, \chi_2)$ given by

$$\alpha(1 + \begin{pmatrix} \varpi^m a & \varpi^{m-1} b \\ \varpi^m c & \varpi^m d \end{pmatrix}) = \chi_1(a)\chi_2(b).$$

In particular $\mathcal{H}(\Gamma)$ is isomorphic to its contragredient and therefore isomorphic to $H^1(\Gamma)$ as an I_{2m-1}/I_{2m}-module. In the language of strata (the reader may refer to [4]§4), for $\chi_i \neq 1$, $i = 1, 2$, the character $\alpha(\chi_1, \chi_2)$ corresponds to a stratum of the form $[3, 2m, 2m - 1, \beta]$, where β is the standard Iwahori order and $\beta \in M(2, F)$ is an element of the form $\Pi^{2m-1}(u \begin{pmatrix} 0 \\ 0 \end{pmatrix} v)$, $u, v \in \mathfrak{o}^\times$. In the terminology of [3]§4, page 98, this stratum is a ramified simple stratum.

We now have enough material to prove the following result.

Proposition (4.4). Let λ be an irreducible constituent of $H^1(\bar{X}_{2m}[e_0])$. Then the compactly induced representation $c - \text{Ind}_I \lambda$ is irreducible, whence supercuspidal.

Proof. It is a standard result that an irreducible compactly induced representation is supercuspidal (see [10] or [8], page 194).

The proof of the irreducibility is also standard by an argument due to Kutzko. But we repeat it for convenience. By Frobenius reciprocity, the restriction of λ to I_{2m-1} contains a character α corresponding to a (ramified) simple stratum. Since λ is irreducible and since \tilde{I} normalizes I_{2m-1}, the restriction $\lambda|_{I_{2m-1}}$ is a direct sum $\alpha_1 \oplus \cdots \alpha_r$ of \tilde{I}-conjugates of $\alpha(\chi_1, \chi_2)$. They all correspond to simple strata. Let $g \in G$ be an element intertwining λ with itself. Then by restriction it intertwines a character α_i with a character α_j for some $j = 1, \ldots, r$. By [3] Lemma (16.1), page 111, such an element G must belong to \tilde{I}. It follows that the G-intertwining of λ is equal to \tilde{I} and that the representation $c - \text{Ind}_I^G \lambda$ is irreducible according to Mackey’s irreducibility criterion ([8] Proposition (1.5), page 195).

We finally consider the case $m = 0$. The directed graph \bar{X}_0 has X^0 as vertex set. An edge $\{t, s\}$ in X gives rise to two edges $[s, t]$ and $[t, s]$ in \bar{X}_0. Since the
action of G on \tilde{X}_0 preserves the structure of digraph, the G-module $H^1_c(\tilde{X}_0)$ may be computed using the following complex:

$$0 \rightarrow C^0_c(\tilde{X}_0) \rightarrow C^{(1)}_c(\tilde{X}_0) \rightarrow \ldots$$

where $C^{(1)}_c(\tilde{X}_0)$ is the space of (unoriented) 1-cochains, that is the space of maps from $\tilde{X}_0^{(1)}$ (unoriented edges) to C with finite support. The coboundary map is here given by $df[s,t] = f(t) - f(s)$. Consider the G-equivariant injection $j : C^{(1)}_c(X) \rightarrow C^{(1)}_c(\tilde{X}_0)$ given by $j(\omega) : [s,t] \mapsto \omega([s,t])$. We have the commutative diagram of G-modules:

\[
\begin{array}{ccccccc}
0 & \rightarrow & C^0_c(X) & \xrightarrow{\text{id}} & C^0_c(\tilde{X}_0) & \rightarrow & 0 & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & C^1_c(X) & \xrightarrow{j} & C^1_c(\tilde{X}_0) & \rightarrow & C^{(1)}_c(\tilde{X}_0)/\text{Im}j & \rightarrow & 0
\end{array}
\]

The quotient $C^{(1)}_c(\tilde{X}_0)/\text{Im}j$ identifies with the subspace of $C^{(1)}_c(\tilde{X}_0)$ formed of those functions f satisfying $f([s,t]) = f([t,s])$ for all edges $\{s,t\}$ of X. This subspace is nothing other than the compactly induced representation $c - \text{Ind}^G_f 1_f$. The cokernel exact sequence writes:

$$0 \rightarrow H^1_c(X) \rightarrow H^1_c(\tilde{X}_0) \rightarrow c\text{-ind}^G_f 1_f \rightarrow 0$$

Now we use the following two facts:

- the representation $c - \text{Ind}^G_f 1_f$ is a projective object of the category of smooth representations of G,
- the G-module $H^1_c(X)$ is isomorphic to the Steinberg representation St_G of G (\cite{7})

to obtain:

Proposition (4.5). The G-module $H^1_c(\tilde{X}_0)$ is isomorphic to $\text{St}_G \oplus c - \text{Ind}^G_f 1_f$.

5 The inducing representations – II

We now determine the \mathcal{K}_{s_0}-module $H^1(\tilde{X}_{2m+1}[s_0])$. The arguments are very often similar to those of the previous section and we will not give all details. Since the case $m = 0$ requires slightly different techniques we postpone it to the end of the section and assume first that $m > 0$.

Recall that the stabilizer \mathcal{K}_{s_0} of s_0 in G is the image K of $\text{GL}(2,\mathfrak{o})$ in G.

Let $c_0 \in C_{2m}(s_0)$ be the path $(s_{-m}, ..., s_0, ..., s_m)$. Its pointwise stabilizer is $\Gamma_0(m, m) = T^0 K_m$. So as a K-module, $H^1(\tilde{X}_{2m+1}[s_0])$ is isomorphic to the
induced representation $\text{Ind}_{T_0 K_m}^{K_m} H^1(\tilde{X}_{2m} \{ s_0, c_0 \})$. Moreover the pointwise stabilizer of $\tilde{X}_{2m+1} \{ s_0, c_0 \}$ is $T^1 K_{m+1}$ and $H^1(\tilde{X} \{ s_0, c_0 \})$ may be viewed as a representation of $T^0 K_m / T^1 K_{m+1}$.

As in the previous section, one may consider the bipartite graph Ω whose both vertex sets identify with K_m equipped with an action of K_m on Ω^1 given by

$$[I_2 + w^m \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)](x, y) = (x + \tilde{b}, y + \tilde{c}) ,$$

the action of T^0 being given by

$$\left(\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right).(x, y) = (\tilde{a}d^{-1}x, \tilde{d}a^{-1}y) .$$

Then the contragredient of the $T^0 K_m / T^1 K_{m+1}$-module $H^1(\tilde{X} \{ s_0, c_0 \})$ is isomorphic to the space $\mathcal{H}(\Omega)$ of harmonic cochains on Ω. As in the previous section this later space is generated by the functions $\chi_1 \otimes \chi_2$, where $\chi_i, i = 1, 2$, runs over the non trivial characters of $(k, +)$. The line $\mathbb{C}\chi_1 \otimes \chi_2$ is acted upon by K_m via the character $\alpha(\chi_1, \chi_2)$ given by

$$\alpha(\chi_1, \chi_2) [I_2 + w^m \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)] = \chi_1(b)\chi_2(a) .$$

It follows that $\mathcal{H}(\Omega)$ is isomorphic to its contragredient and that $H^1(\tilde{X}_{2m} \{ s_0, c_0 \})$ is the direct sum of the characters $\alpha(\chi_1, \chi_2), \chi_i \neq 1, i = 1, 2$.

For $\chi_i \neq 1, i = 1, 2$, the character $\alpha(\chi_1, \chi_2)$ corresponds to a stratum of the form $[M(2, \sigma), m, m - 1, \beta]$, where $\beta \in M(2, F)$ is given by $w^{-m} \left(\begin{array}{cc} 0 & u \\ v & 0 \end{array} \right)$, $u, v \in \tilde{k}^\times$. This stratum is either simple and non-scalar or split fundamental according to whether $uv \mod p$ is a square in k^\times or not (here we have used the fact that $\text{Char}(k) \neq 2$.

It is clear that T^0 leaves the set of characters corresponding to simple strata (resp. split fundamental strata) stable. So we may write

$$H^1(\tilde{X}_{2m} \{ s_0, c_0 \}) = H^1(\tilde{X}_{2m} \{ s_0, c_0 \})_{\text{simple}} \oplus H^1(\tilde{X}_{2m} \{ s_0, c_0 \})_{\text{split}}$$

where $H^1(\tilde{X}_{2m} \{ s_0, c_0 \})_{\text{simple}}$ (resp. $H^1(\tilde{X}_{2m} \{ s_0, c_0 \})_{\text{split}}$) is the sub-$T^0 K_m$-module which decomposes as a K_m / K_{m+1}-module as a direct sum of (characters corresponding to) simple non-scalar strata (resp. split fundamental strata).

We have a result similar to proposition (4.4), whose proof uses the same arguments.

Proposition (5.1). Let λ be an irreducible constituent of

$$\text{Ind}_{T_0 K_m}^{K_m} H^1(\tilde{X}_{2m+1} \{ s_0, c_0 \})_{\text{simple}} \subset H^1(\tilde{X}_{2m+1} \{ s_0 \}) .$$
Then the compactly induced representation $c\text{-ind}_{K}^{G} \lambda$ is irreducible, whence supercuspidal.

The study of $\text{Ind}_{K_{0}K_{m}}^{K} H^{1}(\tilde{X}_{2m+1}[s_{0}, c_{0}])_{\text{split}}$ is the aim of the next section.

We are now going to determine the K-module structure of $H^{1}(\tilde{X}_{1}[s_{0}])$. Set $G = \text{PGL}(2, k) \simeq K/K^{1}$ and write B and T for the upper Borel subgroup and diagonal torus of G respectively. Let U be the unipotent radical of B. As a K-set the set of neighbour vertices of s_{0} is isomorphic to $P_{1}(k) = G/B$.

The graph $\Omega = \tilde{X}_{1}[s_{0}]$ has for vertex set the set of paths of the form (s, s_{0}) or (s_{0}, s) where s runs over the neighbour vertices of s_{0} in X. So the space $C^{0}(\Omega)$ of 0-cochains identifies with the space $F(P_{1}(k) \bigsqcup P_{1}(k))$ of complex valued functions on the disjoint union $P_{1}(k) \bigsqcup P_{1}(k)$. So has a G-module $C^{0}(\Omega)$ is isomorphic to $1_{G} \oplus \text{St}_{G} \oplus 1_{G} \oplus \text{St}_{G}$, where 1 denotes a trivial representation and St a Steinberg representation.

The G-set Ω^{1} is the set of paths of the form (s, s_{0}, t), where s and t are two different neighbour vertices of s_{0}. This G-set is isomorphic to the quotient G/T. The space $C^{1}(\Omega)$ of unoriented 1-cochains identifies as G-module with the space $F(G/T)$.

Fix a non-trivial character ψ of U. It is well knows that the induced representation $\text{Ind}_{U}^{G} \psi$ is multiplicity free. Its irreducible constituent form by definition the generic (irreducible) representations of G. Moreover an irreducible representation is generic if and only if it is not a character.

We have a natural G-equivariant map $\Phi : F(G/T) \longrightarrow \text{Ind}_{U}^{G} \psi$, given by

$$\Phi(f)(g) = \sum_{u \in U} f(gu) \psi(u), \quad f \in F(G/T), \quad g \in G.$$

If a function f lies in the kernel of Φ, then we have $\sum_{u \in U} f(\theta(u) = 0$, for all $g \in G$ an all non-trivial character θ of U. Indeed it suffices to use the fact that the action of T on U by conjugation acts transitively on the non-trivial characters of U and the right invariance of f under the action of T. So the kernel of Φ consists of the function f such that $u \mapsto f(\theta(u)$ is constant function on U, for all $g \in G$.

In other words $\text{Ker} \Phi = F(G/B) \simeq 1_{G} \oplus \text{St}_{G}$. By a dimension argument, we see that Φ is surjective. It follows that

$$C^{1}(\Omega) \simeq \text{Ind}_{U}^{G} \psi \oplus 1_{G} \oplus \text{St}_{G}.$$

We have the cochain complex of G-modules:

$$0 \longrightarrow C^{0}(\Omega) \longrightarrow C^{1}(\Omega) \longrightarrow 0$$

16
Since Ω is connected the kernel of the coboundary operator is the trivial module \mathbb{C}. Hence in the Grothendieck groups of G-modules, we have: $dC^0(\Omega) \simeq 2.1_G + 2.\text{St}_G - 1_G = 1_G + 2.\text{St}_G$. Therefore

$$H^1(\Omega) = C^1(\Omega)/dC^0(\Omega) \simeq \text{Ind}_U^G\psi + 1_G + \text{St}_G - 1_G - 2.\text{St}_G = \text{Ind}_U^G\psi - \text{St}_G.$$

Since $q = |k|$ is odd, there exists a unique non-trivial character of $k^\times/(k^\times)^2$, that we denote by χ_0. The irreducible constituents of the Gelfand-Graev representation $\text{Ind}_U^G\psi$ are the following:

- the irreducible cuspidal representations of G,
- the principal series $\text{Ind}_B^G\chi \otimes \chi^{-1}$, where $\chi : k^\times \to \mathbb{C}^\times$ is a character such that $\chi^2 \neq 1$ (i.e. $\chi \notin \{1, \chi_0\}$).
- the steinberg representation St_G,
- (when q is odd) the twisted representation $\text{St}_G \otimes \chi_0$.

If σ is a cuspidal representation of $G = K/K^1$, then the induced representation $c\text{-ind}_K^K\sigma$ is irreducible and supercuspidal ([4], (11.5), page 81). Such a representation of G is called a level 0 supercuspidal representation.

A principal series of $G = K/K^1$ may be written as $\text{Ind}_I^K\rho$, where ρ is a character of I/I^1. The pair (I, ρ) is actually a type in the sense of Bushnell and Kutzko’s type theory. For technical reason we postpone definitions and references to the next section. Since the representation $\text{Ind}_I^K\rho$ is irreducible, it is a type for the same constituent as (I, ρ).

To sum up, we have proved the following.

Proposition (5.2). An irreducible constituent λ of $H^1(\tilde{X}_1[\mathfrak{s}_0])$ is of one of the following forms

(i) the inflation of a cuspidal representation of G; in that case $c\text{-ind}_K^K\lambda$ is a level 0 irreducible supercuspidal representation of G.

(ii) the inflation to K of the representation $\text{St}_G \otimes \chi_0$,

(iii) a type of the form $\text{Ind}_I^K\rho$, where the ρ is inflated from a character of $I/I^1 \simeq (k^\times \times k^\times)/k^\times$ of the form $\chi \otimes \chi^{-1}$, $\chi^2 \neq 1$.

Note that in (iii), the pair $(K, \text{Ind}_I^K\rho)$ is a principal series type.

6 The inducing representations – III

We keep the notation as in the previous section. To determine the structure of $\text{Ind}_{K^0 K^m}^K H^1(\tilde{X}_{2m+1}[\mathfrak{s}_0, c_0])$ split, we first recall crucial facts on split strata and types for principal series representations. The basic reference for type theory is [5].
Let χ be a character of T, that we view as a character of T^0 by restriction. Assume that the conductor of χ is $n > 0 : T^n \subset \ker \chi$ and n is minimal for this property. Set

$$J_\chi = \begin{pmatrix} o^x & 0 \\ p^n & o \times \end{pmatrix} = \Gamma_0(p^n).$$

If U and \bar{U} denotes the groups of upper and lower unipotent matrices respectively, then J_χ has an Iwahori decomposition:

$$J_\chi = (J_\chi \cap \bar{U}).(J_\chi \cap T).(J_\chi \cap U)$$

and one may define a character ρ_χ of J_χ by

$$\rho_\chi(\bar{u}t^0u) = \chi(t^0), \quad \bar{u} \in J_\chi \cap \bar{U}, \quad u \in J_\chi \cap U, \quad t^0 \in T^0.$$

Let $R_{[T,T]}$ be the Bernstein component of the category of smooth representations of G whose objects are the representations V satisfying the following property: any irreducible subquotient of V occurs in a parabolically induced representation $\text{Ind}_G^T(\chi \otimes \chi_0)$, where B is a Borel subgroup with Levi component T and χ_0 an unramified character of T. We then have.

Theorem (6.1) (A. Roche) The pair (J_χ, ρ_χ) is a type for $R_{[T,T]}$.

This is indeed Theorem (7.7) of [11]. Note that our J_χ is not exactly Roche’s one, but a conjugate under an element of T (see [11], Example (3.5)).

Proposition (6.2). With the notation as before, assume that $\chi|_{T^0}$ is not of the form $\alpha \circ \text{Det}$, where α is a character of \mathfrak{o}^\times (necessarily of order 2). Then the induced representation $\text{Ind}_{J_\chi}^G(\rho_\chi)$ is irreducible. In particular it is a type for $R_{[T,T]}$.

Proof. Let W be the extended affine Weyl group of G w.r.t. T and set $W_\chi = \{w \in W ; \; w\chi = \chi\}$. Then by Theorem (4.14) of [11], the G-intertwining of ρ_χ is $J_\chi W_\chi J_\chi$. The hypothesis on χ forces $W_\chi = T/T^0$. So $(J_\chi W_\chi J_\chi) \cap K = J_\chi T^0 J_\chi = J_\chi$, and we may apply Mackey’s criterion of irreducibility.

For $n > 0$ and $q \in \{0, ..., n\}$, define compact open subgroups of G as follows:

$$q_{\mathfrak{h}}_1 = \begin{pmatrix} 1 + p^n & p^q \\ p^{n+1} & 1 + p^n \end{pmatrix} \text{ and } q_{\mathfrak{h}}_2 = \begin{pmatrix} 1 + p^{n+1} & p^q \\ p^{n+1} & 1 + p^{n+1} \end{pmatrix}.$$

These groups are particular cases of groups considered in [1], §(2.3). The quotients $q_{\mathfrak{h}}_1/q_{\mathfrak{h}}_2$, $q = 0, ..., n$, are abelian, and for $\alpha \in \mathfrak{k}^\times$, one may define a character ψ_α of $q_{\mathfrak{h}}_1/q_{\mathfrak{h}}_2$ by the formula:

$$\psi_\alpha(I_2 + \begin{pmatrix} \varpi^n a & \varpi^q b \\ \varpi^{n+1} c & \varpi^n d \end{pmatrix}) = \psi(\alpha(a - d)).$$
where \(\psi \) is a fixed non-trivial character of \((k, +)\). In fact, \((\psi_\alpha)|_{n\mathfrak{h}_1}\) is the restriction to \(n\mathfrak{h}_1\) of a split fundamental stratum of \(K_n/K_{n+1}\). We shall need the following result.

Lemma (6.3). If a smooth representation of \(K\) contains \((\psi_\alpha)|_{n\mathfrak{h}_1}\) by restriction, then it contains the character \((\psi_\alpha)|_{n\mathfrak{h}_1}\).

Proof. Since the characteristic of \(k\) is not 2, then \(\alpha \neq -\alpha (\psi_\alpha)|_{n\mathfrak{h}_1}\) is the restriction to \(n\mathfrak{h}_1\) of a split fundamental stratum of \(K_n/K_{n+1}\). Our lemma is then a particular case of [12], Lemma (2.4.5).

Proposition (6.4). Let \(\lambda\) be an irreducible constituent of \(\text{Ind}_{\Gamma_0K_m}^{K} H^1(\tilde{X}_{2m+1}[s_0, c_0])_{\text{split}}\). Then with the notation as above, \(\lambda\) is of the form \(\text{Ind}_{\rho, \chi}^{J_1, \rho_\chi}\), for some principal series type \((J_\chi, \rho_\chi)\) with \(\chi\) of conductor \(m + 1\).

Proof. We know that such a \(\lambda\) contains a split fundamental stratum of the form \([M(2, \sigma), m, m - 1, b]\), where \(b = \varpi^{-m} \begin{pmatrix} 0 & u \\ v & 0 \end{pmatrix}\), \(u, v \in \sigma^\times\), and \(uv\) is a square modulo \(p\). If \(\alpha \in \sigma\) is such that \(\alpha^2 \equiv uv \mod p\), then the stratum is equivalent to a \(K\)-conjugate of \([M(2, \sigma), m, m - 1, b']\), where \(b' = \varpi^{-m} \begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix}\). So we deduce that \(\lambda\) contains this latter stratum by restriction. Now consider the group \(n\mathfrak{h}_1\) for \(n = m\). The representation \(\lambda\) contains the character \((\psi_\alpha)|_{n\mathfrak{h}_1}\) by restriction. By applying Lemma (6.3) we obtain that it contains the character \((\psi_\alpha)|_{n\mathfrak{h}_1}\). This character clearly extends to \(T_0K_1 = \Gamma_0(m + 1, 0)\) and the quotient \(T_0K_1/\Gamma_0\) is abelian. It follows that \(\lambda\) contains and extension of \(\psi_\alpha\) to \(\Gamma_0(m + 1, 0)\). Such an extension is of the form \((J_\chi, \rho_\chi)\), for some character \(\chi\) of \(T\) of conductor \(m + 1\). The fact that \(\lambda\) is induced from \((J_\chi, \rho_\chi)\) follows from Proposition (6.2).

7 Synthesis

We now prove Theorems A and B of the introduction.

By Proposition (3.5) and (3.11), we have isomorphisms of \(G\) modules:

\[
H^1_c(\tilde{X}_{2m}) \simeq H^1_c(\tilde{X}_{2m-1}) \oplus c\text{-ind}_{\chi_1}^{\chi_2} H^1(\Sigma_{2m}), \ m \geq 1.
\]

(1)

\[
H^1_c(\tilde{X}_{2m+1}) \simeq H^1_c(\tilde{X}_{2m}) \oplus c\text{-ind}_{\chi_0}^{\chi_2} H^1(\Sigma_{2m+1}), \ m \geq 0.
\]

(2)

Recall that with the notation of the introduction, we have:

- \(\Sigma_{2m} = (\tilde{X}_{2m})_{c_0}, \Sigma_{2m+1} = (\tilde{X}_{2m+1})_{s_0}\),
- \(\chi_0 = \chi_{s_0}, \chi_1 = \chi_{c_0}\).

19
Moreover, by Proposition (4.5), we have

\[H^1_c(\tilde{X}_0) \simeq St_G \oplus c\text{-}ind^G_{\tilde{X}_1} H^1(\Sigma_0) \]

so that (1) holds for \(m = 0 \). Hence Theorem A follows from (1) and (2) by a straightforward inductive argument.

Theorem B follows from the discription of the irreducible components of \(H^1(\Sigma_n) \) given in Proposition (4.4) \((n \text{ even and } n > 0) \), Proposition (4.5) \((n = 0) \), and Propositions (5.1) and (6.4) \((n \text{ odd}) \).

References

[1] P. Broussous, *Minimal strata for GL(m,D)*, J. reine angew. Math. 514 (1999), 199-236.

[2] P. Broussous, *Simplicial complexxes lying equivariantly over the affine building of GL(N)*, Math. Annalen, 329 (2004), 495–511.

[3] P. Broussous, Representations of PGL(2) of a local field and harmonic cochains on graphs, Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), no. 3, 495–513.

[4] C.J. Bushnell and G. Henniart, *The local Langlands conjecture for GL(2)*, Grundlehren des Math. Wiss. vol. 335, Springer, (2006).

[5] C.J. Bushnell and P.C. Kutzko, *Smooth representations of reductive p-adic groups; structure theory via types*, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634.

[6] C.J. Bushnell and P.C. Kutzko, *Smooth representations of reductive p-adic groups: structure theory via types*, Proc. London Math. Soc. (3) 77 1998, 582-634.

[7] A. Borel and J.–P. Serre, *Cohomologie à supports compacts des immeubles de Bruhat-Tits; applications la cohomologie des groupes S-arithmétiques*, C. R. Acad. Sci. Paris Sér. A-B 272 1971 A110A113.

[8] H. Carayol, *Représentations cuspidales du groupe linéaire*, Ann. Sci. Ecole Norm. Sup. (4) 17 no. 2 1984, 191-225.

[9] P.C. Kutzko, *On the supercuspidal representations of GL(2), I, II*, Amer. J. Math. Vol. 100, 1978, 43-60 and 705-716.

[10] F.I. Mautner, *Spherical functions over \(\mathfrak{P} \)-adic fields. II*, Amer. J. Math. 86 (1964), 171-200.

[11] A. Roche, *Types and Hecke algebras for principal series of split reductive p-adic groups*, Ann Sci. Ecole Norm. Sup. (4) 31 no. 3 1998 361-413.
Laboratoire de Mathématiques et
UMR 7348 CNRS
SP2MI - Téléport 2
Bd M. et P. Curie BP 30179
86962 Futuroscope Chasseneuil Cedex
France

E-mail : paul.broussous@math.univ-poitiers.fr