Breast Milk Monitoring Programs (BMMPs): Worldwide Early Warning System for Polyhalogenated POPs and for Targeting Studies in Children's Environmental Health

(See Gladen et al., p. 459)

Dniprodzerzhinsk, Kyiv, and Qzyl-Orda, names unfamiliar to most of us, are cities located literally on the other side of the globe. 12 time zones away, in the former Soviet Union countries of the Caucasus or Central Asia. Two exposure assessments of polychlorinated persistent organic pollutants (POPs), including the organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzodioxins and furans (PCDDs/PCDFs), are part of longer term studies of children’s health in these regions, and are described in this and recent issues of EHP (1–3). These studies use breast milk as a convenient, noninvasive means of estimating body burdens of these POPs in the mother, fetus, infant, and child. They illustrate the global interest in children’s environmental health, particularly from exposures to POPs, whose stability makes them intrinsically hazardous, and hint at the formidable challenges, both scientific and nonscientific, that await researchers undertaking such studies.

Breast milk is an ideal medium for assessing exposures to POPs. POPs enter humans largely as contaminants of dietary animal products, where they sequester in adipose tissue, serum, and breast milk and equilibrate at similar levels on a fat weight basis. With long (5–10 year) half-lives, POPs persist in humans and in breast milk as they do in the environment. Breast milk mimics sediments of rivers or lakes as a storage reservoir for POPs, serves as an indicator of past human exposures or environmental conditions, and complements environmental monitoring data in air, water, soil, and food.

POPs can be especially hazardous because, once released into the environment, they invariably end up in breast milk and in the infant. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) levels, for example, in the infant at birth are 25% of the maternal levels (4). Breast-fed infants typically ingest TCDD at 50–100-fold higher levels than adults, on a body-weight basis (5,6). Infants absorb 90% of the ingested TCDD (7) and may exceed the adult acceptable daily intake.

Breast milk monitoring programs (BMMP) are valuable as early warning systems for POPs. BMMPs, using standardized collection and analytical protocols established by the World Health Organization (8), operate in several European countries including Sweden, Germany, and the Netherlands. Time-trend data from BMMPs indicate the effectiveness of regulatory actions and provide early warning of POP chemicals of emerging concern. Time-trend data, for example, from BMMPs indicate that POP levels are declining in many Western European countries (Figure 1) (9, 10), indicating effective regulation. Recent published results from a Swedish BMMP show a dramatic 5-fold increase over the past decade in contaminant levels of a polybrominated diphenyl ether (PBDE), a flame retardant, in breast milk (Figure 1) (9), indicating a new chemical of concern. There are no BMMPs to determine past or present PBDE levels or time trends in the United States. As seen from the studies described below, more is known about the breast milk contamination and POP body burdens of the mother, infant, and child living in Ukraine or Kazakhstan than, for example, about similar groups living in California (Figure 2) (11, 12).

What do the studies in Ukraine and Kazakhstan show? First, they are the first robust assessments of POP body burdens in former Soviet Union countries, albeit with different objectives and study designs. Second, they demonstrate the versatile and valuable role of breast milk analysis in exposure assessment. Third, the contamination measured was not as severe as anticipated, although body burdens of some POPs were 5- to 30-fold higher than in European countries.

In the Ukraine study, Gladen et al. measured levels of several POPs in a large number (200) of participants in a reproduction/child health study of urban populations in which samples of colostrum (milk ≤ 5 days after birth) were collected and archived from the two major cities of Dniprodzerzhinsk and Kyiv. Mothers were selected without regard to parity, with half under 30 years of age (81% primiparae) and half older (33% primiparae). The small (5 mL) sample volume and use of gas chromatography with electron-capture detector (GC/ECD) limited chemical analysis to major POPs that were present at high (nanograms per gram of fat) levels, including 2,3,7,8-tetrachlorodibenzo-p-dioxin and 18 major PCB congeners. Using GC/ECD, large numbers of samples can be analyzed relatively cheaply.

Viable comparisons with European countries could be made because POP levels in colostrum and milk had been shown to be similar in earlier studies: median levels

---

Figure 1. Persistent organochlorine pollutant levels in breast milk in Stockholm, Sweden. Abbreviations: PBDE, polybrominated diphenyl ether; PCDD/PCDF/PCB, polychlorinated dibenzodioxin and dibenzofuran and polychlorinated biphenyl, TEO, toxic equivalent. Adapted from Noren and Merironyte (9) with permission from Organohalogens Compounds (Eciinforma Press).

Figure 2. TCDD levels in breast milk and serum from residential populations. KZ, Kazakhstan. Numbers above bars indicate numbers of donors.

*Data from the International Agency for Research on Cancer (IARC). *Stockton, California; data from Hooper et al. (11). *Data from Hooper et al. (12). *Data from Hooper et al. (17) (n = 17 in zone A (53 pg/g) and n = 23 in zone B (21 pg/g)). *Serum geometric mean from zone A residents sampled in 1992–1993; data from Landi et al. (14).
of some PCBs and dichlorodiphenyl-
dichloroethylene (DDE) in milk 6 weeks
after birth were 80–90% of levels measured
in colostrum (12). Most chlorinated pesticides and
PCB congeners in the Ukraine were com-
parable to levels of Western Europe, but DDE
was 2–5-fold higher, and β-hexachlorocyclo-
hexane (β-HCH) levels were 3–10-fold
higher. POP levels were higher in the industri-
al city of Dniprodzerzhinsk than in the capital
city of Kyiv. More importantly, Gladen et al.
show the utility and convenience of colostrum
as a monitoring medium, with the advantage of
collection at hospitals.

The Kazakhstan study (1–3) was the first
comprehensive, congener-specific evalua-
tion of polychlorinated contaminants in a
former Soviet Union country, analyzing the
17 PCDs/PCDFs and 40 dioxinlike co-
planar PCBs in breast milk by gas chro-
matography-high resolution mass spectrom-
etry (HRGC/HRMS), and 19 OCPs by
GC/ECD (1–3). Congener-specific analyses
of PCDs/PCDFs and PCBs by HRGC/
HRMS, in contrast to the Ukraine study,
required large individual volumes (100 mL)
of breast milk and cost 5-fold more than
GC/ECD. Thus, selection of participants
was critical. POP levels in breast milk
change with age and parity of the mother;
TCDD, for example, increases with age
of the mother and decreases with increasing
parity (roughly 20–25% with each breast-
fed child) (13). Selection of the study popula-
tions (n = 145) controlled for parity
and lactation period (2–8 weeks) and avoided economic and cultural
selection biases.

POP levels were similar to those of
Western Europe, except that β-HCH levels
were 2–40-fold higher and levels of TCDD
were remarkably high in samples from rural
villages in a southern cotton-growing region
(1,2). The TCDD levels, 20-fold higher
than U.S. levels, approached present levels
found in trichlorophenol or 2,4,5-trichloro-
phenoxyacetic acid (2,4,5-T) production
workers with past occupational exposures
(10) or in residents contaminated by an
industrial explosion in zone A of Sevso,
Italy (14) (Figure 2).

Congener-specific analysis was powerful in
identifying the center of the TCDD contami-
nation in Kazakhstan and the likely source
of exposure. The distinctive PCD/PCDF con-
genер profile found in the milk samples, with
TCDD as the dominant congener, resembled
the “signature” profile for the defoliants
2,4,5-T and Agent Orange (50% 2,4,5-T).
TCDD-contaminated batches of 2,4,5-T were
produced in Russia in the 1960s. The rural
region lies in the fourth largest cotton-growing
region in the world, and defoliants were
reported to be applied on cotton for 20
years, from 1965 to 1985 (3).

Congener-specific profiles and ratios
pinpointed TCDD contamination to a clus-
ter of cotton-growing state farms adjoining
an agricultural catchment basin (3). The
food supply was widely contaminated. The
exposure, apparently chronic and long term
(> 20 years), still persists. Future efforts
focus on identifying the major sources of
TCDD exposures (e.g., fish in the adjacent
reservoir) and on adverse health outcomes
in women, infants, and children.

As seen in these studies, BMMPs perform
valuable functions: they identify areas of POP
contamination; they assess maternal and peri-
natal body burdens; and they identify at-risk
populations of mothers, infants, and children
in need of follow-up health outcome studies.
They also evaluate the effectiveness of regu-
latory strategies for POPs, including pollution
prevention and hazardous waste manage-
ment, and provide data for successful regu-
latory decision making. BMMPs are needed in
the United States for data gaps, especially
for PCDs/PCDFs, PCBs, PBDEs, and other
emerging POPs of interest. A network of
health care providers could function as a
national B MMP, with maternity health
maintenance organizations collecting
colostrum samples to assess POP levels in
the general population. Lower income groups
may have higher risks for POP exposures.
Supplemental Nutrition Program for
Women, Infants, and Children (WIC)
Centers could collect milk samples to assess
levels in these underserved populations.

Kim Hooper
Hazardous Materials Laboratory
California Environmental
Protection Agency
Berkeley, California

REFERENCES AND NOTES

1. Hooper K, Petreas MX, She J, Visita P, Winkler J, McKinney M, Mok M, Sy F, Garcia J, Gill M, et al. Analysis of breast milk to assess exposure to chlori-
nated contaminants in Kazakhstan: PCBs and
organochlorine pesticides in southern Kazakhstan. Environ Health Perspect 105:1250–1254 (1997).
2. Hooper K, Petreas MX, Chuvakova T, Kazbekova G, Druz N, Seminova G, Sharmanov T, Hayward D, She
J, Visita P, et al. Analysis of breast milk to assess exposure to chlorinated contaminants in Kazakhstan:
high levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) in agricultural villages of southern Kazakhstan. Environ Health Perspect 106:797–806 (1998).
3. Hooper K, Chuvakova T, Kazbekova G, Hayward D, Tuleanova A, Petreas MX, Wade TJ, Benedict K,
Cheng Y, Grassman J. Analysis of breast milk to assess exposure to chlorinated contaminants in
Kazakhstan: sources of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposures in an agricultural region of
southern Kazakhstan. Environ Health Perspect 107:447–457 (1999).
4. Koppe JG, Glie K, Van Wijnen J. Placental transport of dioxins from mother to fetus. Dev Pharmacol Ther
18:9–13 (1992).
5. Lindstrom B, Hooper K, Petreas M, Stephens R, Gilman A. Workshop on perinatal exposure to dioxin-
like compounds. I. Summary. Environ Health Perspect 103(suppl 2):135–142 (1995).
6. Patandin S, Dagnelie PC, Mulder PDH, Op de Coul E, van de Veer JE, Wensing-Kupens N, Sauer PJ. Food
exposure to polychlorinated biphenyls and dioxins from infancy until adulthood: a comparison between
breast-feeding, toddler, and long-term exposure. Environ Health Perspect 107:45–51 (1999).
7. Abraham K, Knoll A, Ende M, Papke O, Helge H. Intake, fecal excretion, and body burden of polychlo-
rinated dibenz-p-dioxins and dibenzofurans in breast-fed and formula-fed infants. Pediatr Res 40:671–679 (1996).
8. WHO. Levels of PCBs, PCDs and PBDEs in Breast Milk: Results of WHO-coordinated Interlaboratory
Quality Control Studies and Analytical Field Studies (Yripanhelki EJ, ed). Environmental Health Series Rpt
34. Copenhagen:World Health Organization Regional Office for Europe, 1989.
9. Noren K, Meiranyte D. Contaminants in Swedish human milk. Decreasing levels of organochlorine
and increasing levels of organobromine compounds. Organohalogen Compounds 38:1–4 (1999).
10. IARC. Polychlorinated dibenz-p-dioxins. In: IARC Monographs on the Evaluation of Carcinogenic Risks
to Humans. Vol 69: Polychlorinated Dibenzo-dioxins and Dibenzofurans. Lyon: International Agency for
Research on Cancer. 1997:33–436.
11. Hooper K, Petreas MX, She J, Visita P, Winkler J, McKinney M, Cheng Y, Reiseberg B, Ruhstaller K.
Analysis of Breast Milk to Assess Exposure to Chlorinated Contaminants in Ethnically Diverse
Populations of Stockton, California. HML Report
Berkeley, CA:Hazardous Materials Laboratory, 1999.
12. Ragan WR, Gladen BC, McKinney JD, Carreras RN, Hardy P, Thullien J, Tinglestad J, Tally M.
Polychlorinated biphenyls (PCBs) and dichloro-
diphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation. Am J
Public Health 76:172–177 (1986).
13. Beck H, Dross A, Mathar W. PCDD and PCDF expo-
sure and levels in humans in Germany. Environ Health Perspect 102(suppl 1):173–185 (1994).
14. Landi MT, Consomni D, Patterson DG Jr, Needham LL, Lucier G, Brambilla P, Cazzaniga MA, Mocarelli P,
Pesatori AC, Bertazzi PA, et al. 2,3,7,8-Tetrachloro-
dibenzo-p-dioxin plasma levels in Seveso 20 years
after the accident. Environ Health Perspect 106:273–277 (1998).