A novel UV pumped white-emitting phosphor \(\text{La}_3\text{SbO}_7:\text{Dy}^{3+}\) for white light-emitting diodes

Simei Liu\(^1\), Bin Deng\(^1\)*, Jun Chen\(^1\), Hui Liu\(^1\), Chong-song Zhou\(^1\), Ruijin Yu\(^2\)

\(^1\)College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, Hunan, P. R. China

\(^2\)College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China

Abstract. The dysprosium activating \(\text{La}_3\text{SbO}_7\) white-emitting phosphors were prepared via solid-state route at 1350°C in air atmosphere and its photoluminescence properties were examined by X-ray diffraction (XRD) and photoluminescence spectra in details. \(\text{La}_3\text{SbO}_7:\text{Dy}^{3+}\) phosphor with excitation at 353 nm emitted blue light (490 nm) and yellow (580 nm) which were assigned to \(4F_{9/2} \rightarrow 6H_{15/2}\) transitions (\(J=15, 13\)), respectively. Moreover, the transition \(4F_{9/2} \rightarrow 6H_{13/2}\) was the strongest emission intensity between two typical emission bands. The CIE of prepared phosphors entered into white region. The optimal emission intensity of the \(\text{La}_3\text{SbO}_7:\text{Dy}^{3+}\) luminescent materials was realized when \(x=0.15\) and the concentration quenching mechanism of \(\text{Dy}^{3+}\) has also been tested. And the \(\text{La}_3\text{SbO}_7:\text{Dy}^{3+}\) can be as a white-emitting phosphor applied in n-UV LEDs on results.

1. Introduction

Considerable interest was paid to develop w-LEDs arising from energy-saving, eco-friendliness and great prospect for commercial applications [1]. Nevertheless, most of them can’t gratify us owning to flat quantum efficiency and inferior thermal stability. At present, the commercial w-LEDs have been integrated with a blue InGaN LED (specific wavelength within the 450–480nm areas) with a yellow phosphor, \(\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}^{3+}\) (YAG: Ce\(^{3+}\)) [2]. High color temperature and low color rendering index (CRI) have been brought out by the kind of W-LEDs because of the shortage of red color. To make use of near-UV LEDs chips coupled with multi-phosphors of red, green and blue phosphor is some other useful method [3, 4].

Being a significant activator, \(\text{Dy}^{3+}\) ions emit tricolor emission bands to achieve white light in a single-phase which are assigned to \(4F_{9/2} \rightarrow 4H_{15/2}\) at 488 nm (blue) and \(4F_{9/2} \rightarrow 4H_{13/2}\) at 580 nm (yellow), and \(4F_{9/2} \rightarrow 4H_{11/2,1}\) at 680 nm (red) [2, 5]. According to reports, the antimonate can be hosts for phosphors because of great optical properties.

As is well known for all, no report has been covered on \(\text{Dy}^{3+}\)-doped \(\text{La}_3\text{SbO}_7\) phosphors. From this perspective, the \(\text{La}_{3-x}\text{Dy}_x\text{SbO}_7\) (\(x=0.02–0.25\)) is successfully prepared and its photoluminescence (PL) characteristics as well as applications within W-LEDs are investigated comprehensively and systematically.
2. Experimental Procedure

The powder samples La$_{3-x}$Dy$_x$SbO$_7$ ($x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20$, and 0.25) was synthesized by conventional solid state reaction in air. The doped concentration of Dy$^{3+}$ was altered from 2 to 25 mol%. The starting materials La$_2$O$_3$ (A.R.), Sb$_2$O$_3$ (A.R.) and Dy$_2$O$_3$ (99.99%) were mixed and ground homogeneously. Mixtures were preheated at 600 °C in air for 3 h in an alumina crucible and then reground. After that, the final products would be obtained by keeping at 1350 °C for 5 h. As we can see, the correlated chemistry reaction is as follows:

\[
\text{Sb}_2\text{O}_3 + (3-x)\text{La}_2\text{O}_3 + x\text{Dy}_2\text{O}_3 \xrightarrow{1350°C \times 5h} 2\text{La}_{3-x}\text{Dy}_x\text{SbO}_7
\]

X-ray powder diffraction (XRD) patterns which are about samples were showed by Philips X’Pert MPD (Philips, Netherlands) with Cu Kα radiation ($λ = 1.5418$ Å). The data of structural properties were taken out in the range of 2θ = 10°−70°. And the photoluminescence properties of the synthesized phosphors were recorded at room temperature via the F-4600 spectrometer (Hitach, Japan).

3. Results and discussion

![Figure 1 XRD pattern for the La$_{3-x}$SbO$_7$: xDy$^{3+}$ phosphors (x= 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25).](image)

The XRD is used to describe the phase purity of the La$_3$SbO$_7$:Dy$^{3+}$ phosphors. As is showed in the Fig. 1, the standard card (No.23-1138) is in red for the La$_3$SbO$_7$ and all the diffraction peaks of the sample were indexed to its. There are not any impurity peaks that can be observed indicating that successfully synthesized phosphors are single-phase. The comparisons indicate that the La$^{3+}$ ions were occupied perfectly by Dy$^{3+}$ ions in La$_3$SbO$_7$ are the result of the close ionic radius of Dy$^{3+}$ (0.912 Å) and La$^{3+}$ (1.16 Å) when coordination number = 6.

![Figure 2 Excitation spectra of La$_3$SbO$_7$:0.15Dy$^{3+}$ phosphor (λ$_{em} =$ 480 nm).](image)
Fig. 2 depicts the excitation spectra of La3SbO7:0.15Dy3+ phosphor monitored at 480 nm. Other sharp PLE peaks were observed in the range from 250 to 425 nm are attributed to f–f transition of Dy3+ ions [6]. The main excitation band centered at 322, 360 and 382 nm corresponded to the 6H15/2 → 4P3/2, 6H15/2 → 4P7/2 and 6H15/2 → 4F7/2 transition, respectively [7]. The strongest peak is at 346 nm which results from 6H15/2 → 4I15/2 transition. Thus, the La3SbO7:Dy3+ phosphors may be suitable for w-LEDs which is built on InGaN-chip.

In the Fig. 3, the emission spectra of La3SbO7:0.15Dy3+ contains two emission bands at 450-750 nm corresponding to the 4F9/2 → 6HJ/2 (J = 15, 13) transitions of Dy3+ respectively when is excited with 346 nm. And the two sharp lines center at 480 nm (blue), 581 nm (yellow). To our knowledge, 4F9/2 → 6H13/2 transition of Dy3+ attributes to hypersensitive transitions. When it is stronger than 4F9/2 → 6H15/2 transition, Dy3+ is at a low-symmetry local site. And then the yellow emission performs a leading role in emission spectra. Otherwise the result is inverse [8, 9]. In our experiment, it displays that the blue emission is a leading role. So it is clear to know that Dy3+ ions mainly occupy in high-symmetrical site.

The La3SbO7:xDy3+ phosphors are synthesized with different doping concentrations of Dy3+ (ranging from 0.02 to 0.25) and the PL intensities are exhibited in Figure 4. It obviously presents that the emission intensity keeps increasing when Dy3+ concentration ranges from 2 mol% to 25 mol%, and after that it decreases. Therefore, the optimal doping Dy3+ ion content for La3SbO7:xDy3+ phosphor is about 15 mol%.

According to Blasse, the critical energy transfer distance (Rc) between Dy3+ ions in La3-xDy3SbO7 phosphors can be calculated as follows [10]:

$$R_c = \frac{\lambda}{2\pi n^2}$$
\[R_c = 2 \left(\frac{3V}{4\pi x_c N} \right)^{1/3} \]

(1)

where \(V \) means the unit cell volume, \(x_c \) is the critical concentration of Dy\(^{3+} \) and \(N \) represents the number of cations in the unit cell. In the \(\text{La}_3\text{SbO}_7: \text{Dy}^{3+} \) phosphors \(V, N, \text{and} \ x_c \), 640.48 Å\(^3\), 4, and 0.15, the \(R_c \) can be worked out to be about 29 Å. The calculated \(R_c \) is larger than 5 Å, therefore, the multipole–multipole interaction mainly could be the concentration quenching mechanism of Dy\(^{3+} \) ions.

Non-radiative energy transition results from three reasons: radiation reabsorption, an exchange interaction or multipole–multipole interaction. The emission intensity (\(I \)) per dopant concentration follows the equation [11]:

\[\frac{I}{x} = K [1 + \beta(x)^{\theta/3}]^{1/\theta} \]

(2)

where \(\chi \) represents the activator doping concentration, \(K \) and \(\beta \) are constants for the same excitation for each interaction, \(\theta \) equals 3, 6, 8, or 10, meaning nearest-neighbor ions, dipole–dipole, dipole–quadrupole or quadrupole–quadrupole interaction, respectively [12,13]. The relation between \(\log I/x \) and \(\log x \) is shown in Fig. 5, which is nearly linear. And the curves clearly shows that the slope is -0.99, whose linear fitting is \(-\theta/3\). Therefore, \(\theta = 3 \), demonstrating that the energy transfer is dominated to result in concentration quenching in the \(\text{La}_3\text{SbO}_7: \text{Dy}^{3+} \) phosphor.

The CIE chromaticity diagram of Dy\(^{3+}\)-doped \(\text{La}_3\text{SbO}_7 \) were measured under 346 nm excitation in the light of the PL spectra. As is presented in Fig. 6, all the CIE chromaticity coordinates denoted as stars...
of La₃SbO₇:xDy³⁺ locate at the white light region. Hence, La₃SbO₇:Dy³⁺ phosphor may possess a potential application for WLEDs exciting at 346 nm.

4. Conclusion

In short, a series of antimonate white-emitting La₃SbO₇: Dy³⁺ phosphors have been successfully synthesized via solid-state-reaction method. As is presented in the XRD patterns, the space group P2₁/c where all the samples crystallize in it. In the PL spectrum of phosphor for La₃SbO₇: Dy³⁺, a strong blue-emitting emission is showed as well as the yellow-emitting emission exciting at 346 nm, which originate from Dy³⁺ ions. The phosphor appeared concentration quenching phenomenon when the doping concentration was studied at 15 mol%. The CIE chromaticity coordinates suggested the phosphor can emit white light. All above properties indicated the Dy³⁺-activating La₃SbO₇ phosphors possess potential value for the application of white light-emitting diode.

Acknowledgment

The authors thank Natural Science Foundation of Shaanxi Province (Grant No. 2018JM5055), Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications (2019XGJSKFJ01), the Construction Program of the key discipline in Hunan Province, the Projects of the Education Department of Hunan Province (No.18A465), and Science and Technology Plan Project of Chenzhou city (jsyf2017014).

References

[1] Z. Xia, Q. Liu, Prog. Mater Sci. 84, 59 (2016)
[2] L. Bo, C. Shi, Z. Qi, Appl. Phys. Lett. 86, 930 (2005)
[3] R.J. Xie, H. Naoto, Y. Li, T. Takashi, Materials 3, no (2010)
[4] A. Fan, J. Wang, M. Yuan, T. Qin, R. Yu, T. Li, V. Rotello, Opt. Mater. Express 6, 2397 (2016)
[5] Q. Su, H. Liang, C. Li, H. He, Y. Lu, J. Li, Y. Tao, J. Lumin. 122, 927 (2007)
[6] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49, 4447 (1968)
[7] S. Liu, S. Liu, J. Wang, P. Sun, Y. Zhong, J.H. Jeong, B. Deng, R. Yu, Mater. Res. Bull. 108, 275 (2018)
[8] S. Liu, J. He, Z. Wu, J.H. Jeong, B. Deng, R. Yu, J. Lumin. 200, 164 (2018)
[9] YU, LIN, WANG, FU, WANG, Chem. Mater. 14(5), 2224 (2002)
[10] G. Blasse, B.C. Grabmaier, X-Ray Phosphors and Scintillators, 1994.
[11] D.W. Wen, G.H. Yang, H. Yang, J.X. Shi, M.L. Gong, M.M. Wu, Mater. Lett. 125, 63 (2014)
[12] D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22(6), 1063 (1954)
[13] L. Zhao, P. Xu, F. Fan, J. Yu, Y. Shang, Y. Li, L. Huang, R. Yu, J. Lumin. 207, 520 (2019)