A MARCINKIEWICZ MAXIMAL-MULTIPLIER THEOREM

RICHARD OBERLIN

(Communicated by Michael T. Lacey)

Abstract. For $r < 2$, we prove the boundedness of a maximal operator formed by applying all multipliers m with $\|m\|_{V^r} \leq 1$ to a given function.

1. Introduction

Given an exponent r and a function f defined on \mathbb{R}, consider the r-variation norm

$$\|f\|_{V^r} = \|f\|_{L^\infty} + \sup_{N, \xi_0 < \cdots < \xi_N} \left(\sum_{i=1}^{N} |f(\xi_i) - f(\xi_{i-1})|^r \right)^{1/r},$$

where the supremum is over all strictly increasing finite length sequences of real numbers.

The classical Marcinkiewicz multiplier theorem states that if $r = 1$ and a function m is of bounded r-variation uniformly on dyadic shells, then m is an L^p multiplier for $1 < p < \infty$ and

$$\|(m\hat{f})^{-}\|_{L^p} \leq C_{p,r} \sup_{k \in \mathbb{Z}} \|1_{D_k} m\|_{V^r} \|f\|_{L^p}, \tag{1.1}$$

where $D_k = [-2^{k+1}, -2^k) \cup (2^k, 2^{k+1}]$ and \cdot, \cdot^{-} denote the Fourier-transform and its inverse. Later, Coifman, Rubio de Francia, and Semmes [2] (see also [8]) showed that the requirement of bounded 1-variation can be relaxed to allow for functions of bounded 2-variation, and in fact (1.1) holds whenever $r \geq 2$ and $|\frac{1}{r} - \frac{1}{2}| < \frac{1}{r}$.

The estimate [2] does not discriminate between multipliers of bounded 2-variation and those of bounded r-variation where $r < 2$, and so one might ask whether there is anything to be gained by controlling the variation norm of multipliers in the latter range of exponents.

Defining the maximal-multiplier operator

$$\mathcal{M}_r[f](x) = \sup_{m: \|m\|_{V^r} \leq 1} |(m\hat{f})^{-}(x)|, \tag{1.2}$$

where the supremum is over all functions in the V^r unit ball, we have

Theorem 1.1. Suppose $1 \leq r < 2$ and $r < p < \infty$. Then

$$\|\mathcal{M}_r[f]\|_{L^p} \leq C_{p,r} \|f\|_{L^p}. \tag{1.3}$$

Received by the editors October 4, 2011.

2010 Mathematics Subject Classification. Primary 42A45; Secondary 42A20.

The author is supported in part by NSF Grant DMS-1068523.

©2013 American Mathematical Society

Reverts to public domain 28 years from publication
The case \(r = 1 \) was observed independently by Lacey \[4\].

Note that in the definition of \(M_r \), each \(m \) is required to have finite \(r \)-variation on all of \(\mathbb{R} \) rather than simply on each dyadic shell as in (1.1). This is necessary for boundedness, as can be seen from the counterexamples of Christ, Grafakos, Honzík and Seeger \[1\].

Although the maximal operator (1.2) would seem to be fairly strong, we do not yet know of an application for the bound above. We will, however, quickly illustrate a strategy for its use that falls an (important) \(\epsilon \) short of success. Let \(\Psi \) be (say) a Schwartz function, and for each \(\xi, x \in \mathbb{R} \) and \(k \in \mathbb{Z} \), consider the \(2^k \)-truncated partial Fourier integral

\[
S_k[f](\xi, x) = \text{p.v.} \int f(x-t)e^{2\pi i \xi t}\Psi(2^{-k}t)\frac{1}{t} \, dt.
\]

It was proven by Demeter, Lacey, Tao, and Thiele \[3\] that for \(q = 2 \) and \(1 < p < \infty \),

\[
\| \sup_{\|g\|_{L^q} = 1} \left(\text{sup} \right) (S_k[f](\cdot, x) \hat{g})^* \|_{L^p} \leq C_{p,q} \| f \|_{L^p}.
\]

If we had the bound

\[
\| S_k[f](\xi, x)\|_{L^p(2^{-k}V_r^\epsilon)} \leq C_{p,r} \| f \|_{L^p}
\]

for some \(r < 2 \), then an application of Theorem 1.1 would give (1.4) for \(q > r \) by rather different means than \[3\]. In fact, one can see by applying the method in Appendix D of \[6\] that (1.5) holds for \(r > 2 \) and \(p > p' \). Unfortunately, it does fail for \(r \leq 2 \).

2. Proof of Theorem 1.1

The following lemma was proven in \[2\]; see also \[5\].

Lemma 2.1. Let \(m \) be a compactly supported function on \(\mathbb{R} \) of bounded \(r \)-variation for some \(1 \leq r < \infty \). Then for each integer \(j \geq 0 \), one can find a collection \(\Upsilon_j \) of pairwise disjoint subintervals of \(\mathbb{R} \) and coefficients \(\{b_v\}_{v \in \Upsilon_j} \subset \mathbb{R} \) so that \(|\Upsilon_j| \leq 2^j \), \(|b_v| \leq 2^{-j/r} \| m \|_{V_r} \), and

\[
m = \sum_{j \geq 0} \sum_{v \in \Upsilon_j} b_v 1_v,
\]

where the sum in \(j \) converges uniformly.

The lemma above was applied in concert with Rubio de Francia’s square function estimate \[7\] to obtain (1.1). Here, we will argue similarly, exploiting the analogy between the Rubio de Francia square function estimate and the variation-norm Carleson theorem.

It was proven in \[7\] that for \(p \geq 2 \),

\[
\sup_{I} \| (\sum_{I \in \mathcal{I}} |(1_I \hat{f})|^2)^{1/2} \|_{L^p} \leq C_p \| f \|_{L^p},
\]

where the supremum above is over all collections of pairwise disjoint subintervals of \(\mathbb{R} \). Consider the partial Fourier integral

\[
S[f](\xi, x) = (1_{(\infty, \xi]} \hat{f})^*(x).
\]
It was proven in \[6\] that for \(s > 2\) and \(p > s'\),
\[
\|S[f](\xi, x)\|_{L^p(V_s^x)} \leq C_{p, s}\|f\|_{L^p}
\]
or, equivalently,
\[
(2.2) \quad \|\sup_I \left(\sum_{I \in I} |(1_I \hat{f})^{-s}| \right)^{1/s} \|_{L^p} \leq C_{p, s}\|f\|_{L^p}.
\]

Note that by standardizing limiting arguments, taking the supremum in \(1.2\) to be over all compactly supported \(m\) such that \(\|m\|_{V^r} \leq 1\) does not change the definition of \(M_r\). Applying the decomposition \(2.1\), we see that for any compactly supported \(m\) with \(\|m\|_{V^r} \leq 1\) we have
\[
|\hat{m}(f)(x)| \leq \sum_{j \geq 0} \sum_{\nu \in \nu_j} |b_{\nu}(1_{\nu} \hat{f})(x)|
\leq \sum_{j \geq 0} \sup_{\nu \in \nu_j} |b_{\nu}| \|\nu_j\|^{\frac{1}{s}} \left(\sum_{\nu \in \nu_j} |(1_{\nu} \hat{f})(x)|^s \right)^{1/s}
\leq C_{r, s} \sup_I \left(\sum_{I \in I} |(1_I \hat{f})(x)|^s \right)^{1/s},
\]
where, for the last inequality, we require \(s < r'\).

Provided that \(r < 2\) and \(p > r\) we can choose an \(s < r'\) with \(s > 2\) and \(p > s'\), giving \(2.2\) and hence \(1.3\).

The argument of Lacey \[4\] for \(r = 1\) follows a similar pattern, except with Marcinkiewicz’s method in place of \[2\] and the standard Carleson-Hunt theorem in place of \[6\].

References

1. Michael Christ, Loukas Grafakos, Petr Honzík, and Andreas Seeger, Maximal functions associated with Fourier multipliers of Mikhlin-Hörmander type, Math. Z. 249 (2005), no. 1, 223–240. MR2106977 (2005k:42024)
2. Ronald Coifman, José Luis Rubio de Francia, and Stephen Semmes, Multiplicateurs de Fourier de \(L^p(\mathbb{R})\) et estimations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 8, 351–354. MR934617 (89e:42009)
3. Ciprian Demeter, Michael T. Lacey, Terence Tao, and Christoph Thiele, Breaking the duality in the return times theorem, Duke Math. J. 143 (2008), no. 2, 281–355. MR2420509
4. Michael T. Lacey, personal communication.
5. , Issues related to Rubio de Francia’s Littlewood-Paley inequality, NYJM Monographs, vol. 2, State University of New York, University at Albany, Albany, NY, 2007. MR2293255 (2007k:42048)
6. Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, and James Wright, A variation norm Carleson theorem, J. Eur. Math. Soc. 14 (2012), no. 2, 421–464. MR2881301
7. José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1–14. MR806811 (87j:42057)
8. Terence Tao and James Wright, Endpoint multiplier theorems of Marcinkiewicz type, Rev. Mat. Iberoamericana 17 (2001), no. 3, 521–558. MR1900894 (2003c:42014)

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918

E-mail address: oberlin@math.lsu.edu