Proteomic Expression Profile in Human Temporomandibular Joint Dysfunction

Andrea Duarte Doetzer 1*, Roberto Hirochi Herai 1, Marilia Afonso Rabelo Buzalaf 2 and Paula Cristina Trevilatto 1

Abstract: Temporomandibular joint dysfunction (TMD) is a multifactorial condition that impairs human's health and quality of life. Its etiology is still a challenge due to its complex development and the great number of different conditions it comprises. One of the most common forms of TMD is anterior disc displacement without reduction (DDWoR) and other TMDs with distinct origins are condylar hyperplasia (CH) and mandibular dislocation (MD). Thus, the aim of this study is to identify the protein expression profile of synovial fluid and the temporomandibular joint disc of patients diagnosed with DDWoR, CH and MD. Synovial fluid and a fraction of the temporomandibular joint disc were collected from nine patients diagnosed with DDWoR (n = 3), CH (n = 4) and MD (n = 2). Samples were subjected to label-free nLC-MS/MS for proteomic data extraction, and then bioinformatics analysis were conducted for protein identification and functional annotation. The three TMD conditions showed different protein expression profiles, and novel proteins were identified in both synovial fluid and disc sample. TMD is a complex condition and the identification of the proteins expressed in the three different types of TMD may contribute to a better comprehension of how each pathology develops and evolves, benefitting the patient with a focus–target treatment.

Keywords: temporomandibular joint; protein expression; temporomandibular joint dysfunction

1. Introduction

Temporomandibular dysfunction (TMD) is a disorder of the masticatory system and it is characterized by pain, loss of function of one or both articulations, and impairment of the masticatory system. TMD impacts not only jaw function, but the life quality of affected patients, increasing their treatment costs and work absence [1]. According to the National Institute of Health [2], TMD management in the USA costs approximately 4 billion dollars per year. A diagnostic protocol developed for research named Research Diagnostic Criteria for TMD (RDC/TMD), classifies TMD as myalgia, arthralgia, condylar pathologies, disc displacement, osteoarthrosis, osteoarthritis, degenerative joint disease and subluxation [3]. TMD has a multifactorial etiology, the most common being trauma, psychological alterations, hormone, inflammatory diseases, parafunction, and genetics [1,4]. TMD usually requires a panorex, and depending on the TMD type, magnetic resonance imaging, scintigraphy and tomography, besides a thorough clinical evaluation [5,6].

Depending on the TMD type, it can be classified as condylar hyperplasia (CH), disc displacement without reduction (DDWoR) and mandibular dislocation (MD). DDWoR is the most common TMD disorder [7], and along with CH, its etiology’s understanding is still unclear. MD is a condition that is probably caused by physical alterations [8], and since it is less likely to have hormone contribution, it is a good TMD condition to compare the results with the other pathologies. DDWoR is caused by an abnormal positional association between the disc and the condyle, where the disc is permanently anteriorly displaced...
in relation to the condyle, causing limited range of mouth opening, pain and may lead to temporomandibular joint (TMJ) degeneration [9]. Disc displacement corresponds to 41% of TMD intra-articular disorders [7], and it is considered a multifactorial disease, with overlapping conditions contributing to its modulation including stress, parafunction, behavioral pattern, emotional status, and genetic background [3]. Among its different types of treatment, clinical handling is firstly employed (splint therapy, medication, physiotherapy) and when unsuccessful, surgery is indicated [6,10]. MD is an involuntary forward movement of the condyle beyond the articular eminence, mostly associated with trauma or excessive mouth opening, impairing its essential functions (speaking, chewing), and it accounts for 3% of all documented dislocations [11]. It usually needs mechanical manipulation to return to its normal position, and recurrent dislocations require surgical treatment [8]. Between these TMD types, CH is the rarest pathology that manifests a head condyle overgrowth, causing facial asymmetry, deformity, malocclusion and sometimes pain and dysfunction [12]. It is a self-limiting condition, more prevalent in female teenagers, but it usually requires surgical treatment to limit facial asymmetry progression and condyle continuous elongation [13]. Studies suggest it has a genetic involvement on its development, but its main etiology is still poorly understood [14].

Despite the etiological differences between CH, DDWoR and MD, current studies have limited understanding of the molecular variations that differentiates these TMD diseases. Condylar hyperplasia, mandibular dislocation and disc displacement have been the aim of many studies, due to their difficulty in targeting the proper treatment to each disease [9]. The employment of specific treatment, which may be improved with the unveiling of its specific etiology factors, will allow us to diminish treatment time and costs.

At the proteomic level, current studies focus only on individual mandibular dysfunctions, without comparing different TMD types to show the proteomic variability that could drive novel biomarkers as targets for disease diagnostic and treatment [15,16]. Proteomic analysis is a gold standard approach to analyze all identifiable proteins in a certain tissue, investigating its abundance, variety of proteoforms, and their stable or transient protein–protein interactions. This approach is especially beneficial in the clinical setting when studying proteins involved in different pathologies [17]. To date, there are very few studies investigating human TMD samples through proteomic output, and these studies analyzed only synovial fluid, focusing on specific target proteins [15,16]. Therefore, analyzing all proteins present in the synovial fluid and disc sample of different types of TMD may potentially lead TMD treatments towards a new reality.

In this research, a high throughput proteomic investigation of the three TMD pathologies CH, DDWoR and MD, was performed. Using state-of-the-art sample extraction procedures, biological samples of synovial fluid and TMJ discs were collected from distinct patients diagnosed with these conditions. The samples were processed, subjected to protein extraction and mass spectrometry proteomic identification. Generated proteomic data were analyzed using bioinformatics methods, and a per-sample protein identification and annotation were performed. The clinical phenotypes were then used to correlate the proteomic profile of each TMD condition.

2. Materials and Methods

2.1. Sample Selection

The sample was composed of 9 disc and synovial fluid specimens from female patients, with a mean age of 31.22 years (18–52). The patients presented different TMJ conditions, with three samples being composed of TMJ displaced disc without reduction (n = 3), two mandibular dislocation (n = 2) and four patients with condylar hyperplasia (n = 4) (Table 1). The specimens were collected from patients treated at the Evangelic University Hospital of Curitiba, Brazil. The study was approved by the Ethical Committee on Research at Pontifical Catholic University of Paraná, Brazil, according to Resolution 196/96 of the National Health Council and approved on 6 May of 2016 under registration number 1.863.521.
Table 1. Baseline characteristics of the sample, showing age and pathology of each female patient.

Number	Age	Diagnostic
1	18	Condylar Hyperplasia
2	20	Condylar Hyperplasia
3	38	Mandibular Dislocation
4	38	Mandibular Dislocation
5	36	Condylar Hyperplasia
6	29	Condylar Hyperplasia
7	25	Disc Displacement Without Reduction
8	25	Disc Displacement Without Reduction
9	52	Disc Displacement Without Reduction

Subjects did not present any of the following criteria: use of orthodontic appliances; chronic usage of anti-inflammatory drugs; history of diabetes, hepatitis, HIV infection; immunosuppressive chemotherapy; history of any disease known to compromise immune function; pregnancy or lactation; major jaw trauma; previous TMJ surgery; and previous steroid injection in the TMJ.

Subjects answered a personal medical history questionnaire and signed a consent form after being advised of the nature of the study. All patients were clinically examined by one experienced oral and maxillofacial surgeon. The clinical examination consisted of palpating the TMJ region, analyzing the occurrence of painful or limitation/excessiveness of mouth opening/closing, and the observation of facial asymmetry. Regarding complementary exams, all patients had a panorex and patients with disc displacement were submitted to a magnetic resonance image. The patients who were considered to be affected with disc displacement were treated surgically when they presented painful clinical signs of disc displacement after unsuccessful non-surgical treatment for at least 6 months [18].

Patients presenting pain related only to muscular spasms were not included in this research. Patients with condylar hyperplasia were diagnosed through clinical evaluation, panorex and when presenting a positive condylar growth in scintilography, a high condylectomy was indicated and performed [19]. Patients with recidivist mandibular dislocation (more than four episodes in six months) were treated with eminectomy [8].

2.2. Sample Acquisition

During access to the TMJ to perform the needed surgery [20], a 21-gauge needle was inserted into the upper TMJ space, then 1 mL of saline was injected into the joint space, which was aspirated thereafter by a second adapted syringe. This procedure was repeated five times to obtain a synovial fluid sample as described previously by Alstergren [21]. For each type of surgery performed, TMJ disc recontouring and repositioning was needed [16], therefore, first the displaced disc was freed, repositioned and sutured to the latero-posterior side of the condyle with a Mitek bone-cleat. The suture was then placed between the posterior and intermediate bands, and recontouring the thickened disk with a scalpel was necessary (this posterior debrided cartilage constituted the disc sample). Synovial fluid was spun down at 300 × g to remove debris, and stored at −80 °C until use or analysis, and the disc samples rinsed in phosphate-buffered saline (PBS), and either snap frozen in liquid nitrogen and stored at −80 °C.

2.3. Proteomic Analysis

The microcentrifuge tubes containing the synovial fluid and TMJ discs were removed from the −80 °C freezer, and after defrosting, the discs were cut into small pieces with the aid of sterile scissors, centrifuged, and the supernatants were collected and pooled according to each pathology group. The preparation of the samples for proteomic analysis was carried out as previously reported [22]. The analysis of the tryptic peptides was performed in the nanoACQUITY UPLC system (Waters, Milford, CT, USA) coupled to the Xevo Q-TOF G2 mass spectrometer (MS) (Waters, Milford, CT, USA). For this purpose,
the UPLC nanoACQUITY system was equipped with a column of type HSS T3 (Acquity UPLC HSS T3 column 75 mm × 150 mm; 1.8 µm, Waters), previously balanced with 7% of the mobile phase B (100% ACN + 0.1% formic acid). The peptides were separated through a linear gradient of 7%–85% of the mobile phase B over 70 min with a flow of 0.35 µL/min and the column temperature maintained at 45 °C. The MS was operated in positive ion mode, with a 75 min data acquisition time. The obtained data were processed using ProteinLynx GlobalServer (PLGS) version 3.03 (Waters, Millford, CT, USA). Protein identification was obtained using the ion counting algorithm incorporated into the software. The collected data were searched in the database of the species Homo sapiens downloaded from the catalog of the UniProt [23] in September of 2020. The identified proteins for the groups DDWoR, MD, and CH of synovial fluid and TMJ disc were classified and attributed by biological function, origin, and molecular interaction with the program Genemania [24]. The overlapping proteins between the groups were clustered by using an automatic Venn diagram generator.

3. Results

In this qualitative study, our aim was to explore, for the first time, a comparative analysis of the proteomic profile of three distinct TMD diseases. Although a statistical analysis was not performed, we were able to identify and describe the function of the proteins, including overlapping proteins between the investigated samples (DDWoR, MD, and CH and between both synovial fluid and disc samples).

In the synovial fluid samples, a total of 225 proteins (351 counting the repeated proteins in all groups) were successfully identified: 190 in the group DDWoR, 154 in the group MD and seven in the group CH. We also compared these three groups to identify shared or condition-specific proteins. We found 114 shared proteins between groups DDWoR and MD, and six proteins were shared by all groups (Table 2).

In the disc sample, 379 proteins were identified (697 counting the repeated proteins in all groups), with 235 proteins in group DDWoR, 196 in group MD and 266 in group CH. These three groups were also compared to identify shared or condition-specific proteins. There were nine shared proteins between groups DDWoR and MD, 28 shared proteins between groups DDWoR and CH, 17 shared proteins between groups MD and CH, and 132 shared proteins by all groups (Table 3).

Regarding the proteins in common in both synovial fluid and disc in the same sample groups, DDWoR presented two common proteins, MD presented three proteins, group CH had no protein in common, and the three groups together had six proteins in common (Table 4).

All synovial fluid and disc samples presented proteins involved in DNA repair, muscle and neural regeneration.

A selective pool of proteins was chosen to be studied according to the pathology group and protein function for synovial fluid and disc sample (Tables 5 and 6).

The synovial fluid sample presented the following proteins functions for each group (Table 5): the DDWoR group presented proteins involved in inflammatory process, apoptosis, hearing, interleukine-6 cascade, and protection against oxidative stress; the MD group showed proteins involved in inflammatory process, apoptosis, hearing, interleukine-6 cascade, protection against oxidative stress, and immune response; in the CH group, the expression of alcohol degradation protein (ADH1) was identified. The group comprising the pathologies DDWoR and MD were mainly involved in inflammatory process inhibition, bone resorption, chondrogenesis, bone and cartilage formation, osteoarthrosis, and neuropathic pain. No proteins were observed in the groups DDWoR and CH, and MD and CH. The proteins expressed in all three groups (DDWoR, MD and CH) were mainly implicated with muscle regeneration.
Table 2. Gene code and name of the proteins expressed in synovial fluid of all groups (disc displacement without reduction (DDWoR), mandibular dislocation (MD), condylar hyperplasia (CH)) and between the groups DDWoR and MD, DDWoR and CH, MD and CH and DDWoR, MD and CH.

Protein Expressed in Each Group of TMJ Synovial Fluid Sample (n = 225)	DDWoR (n = 70)	MD (n = 34)	CH (n = 1)	DDWoR and MD (n = 114)	DDWoR and CH (n = 0)	MD and CH (n = 0)	DDWoR, MD and CH (n = 6)				
Code	Name	Code	Name	Code	Name	Code	Name	X	X	Code	Name
A2M	Alpha-2-Macroglobulin	ACTR3B	Actin Related Protein 3B	ADH1	Alcohol Dehydrogenase	ABI3BP	ABI Family Member 3 Binding Protein	ENO1	Enolase 1		
ANXA5	Annexin A5	ACTR3C	Actin Related Protein 3C	ACTA1	Actin Alpha 1, Skeletal Muscle	ENO2	Enolase 2				
APCS	Amyloid P Component	AKNA	AT-Hook Transcription Factor	ACTA2	Actin Alpha 2, Smooth Muscle	ENO3	Enolase 3				
APOH	Apolipoprotein H	ALDH1L1	Aldehyde Dehydrogenase 1 Family Member L1	ACTB	Actin Beta	MYH16	Myosin Heavy Chain 16 Pseudogene				
ARHGAP21	Rho GTPase Activating Protein 21	C4A	Complement C4A (Rodgers Blood Group)	ACTBL2	Actin Beta Like 2	RPL7L1	Ribosomal Protein L7 Like 1				
CFH	Complement Factor H	C4B_2	Complement Component 4B	ACTC1	Actin Alpha Cardiac Muscle 1	SHLD3	Shieldin Complex Subunit 3				
CHD8	Chromodomain Helicase DNA Binding Protein 8	C7orf57	Complement C7	ACTG1	Actin Gamma 1						
CILP2	Cartilage Intermediate Layer Protein	CAGE1	Cancer Antigen 1	ACTG2	Actin Gamma 2, Smooth Muscle						
CNOT6L	CCR4-NOT Transcription Complex Subunit 6 Like	CPSF2	Cleavage And Polyadenylation Specific Factor 2	ALB	Albumin						
DAGLA	Diacylglycerol Lipase Alpha	DCAF4L2	DDB1 And CUL4 Associated Factor 4 Like 2	ANXA1	Annexin A1						
Code	Name	Code	Name	Code	Name	Code	Name	X	X	Code	Name
----------	---	----------	---	------	---	------	---	---	---	----------	---
DPYSL2	Dihydropyrimidinase Like 2	DHRS11	Dehydrogenase/Reductase 11		ANXA2		Annexin A2				
DPYSL3	Dihydropyrimidinase Like 3	DMD	Dystrophin		ANXA2P2		Annexin A2 Pseudogene 2				
DYM	Dymeclin	FLNA	Filamin A		APOA1		Apolipoprotein A1				
DYN1H1	Dynein Cytoplasmic 1 Heavy Chain	HPR	Haptoglobin-Related Protein		ASPN		Asporin				
ENPP3	Ectonucleotide Pyrophosphatase/Phosphodiesterase 3	HPX	Hemopexin		ATP5F1B		ATP Synthase F1 Subunit Beta				
FGFR2	Fibroblast Growth Factor Receptor 2	IFT122	Intraflagellar Transport 122		BGN		Biglycan				
GPSM2	G Protein Signaling Modulator 2	LMO7	LIM Domain 7		C3		Complement C3				
GPX3	Glutathione Peroxidase 3	MYO6	Myosin VI		CILP		Cartilage Intermediate Layer Protein				
GSTP1	Glutathione S-Transferase Pi 1	PDIA3	Protein Disulfide Isomerase Family A Member 3		CLU		Clusterin				
H2B1C	H2B Clustered Histone 1	PPFIA1	PTPRF Interacting Protein Alpha 1		COL12A1		Collagen Type XII Alpha 1 Chain				
H2BE1	H2BE Variant Histone 1	PPFIA2	PTPRF Interacting Protein Alpha 2		COL14A1		Collagen Type XIV Alpha 1 Chain				
HSPA1A	Heat Shock Protein Family A (Hsp70) Member 1Å	PRDX1	Peroxiredoxin 1		COL1A1		Collagen Type I Alpha 1 Chain				
Table 2. Cont.

Protein Expressed in Each Group of TMJ Synovial Fluid Sample (n = 225)

Code	Name	Code	Name	Code	Name	X	X	Code	Name	
				DDWoR (n = 70)	MD (n = 34)	CH (n = 1)	DDWoR and MD (n = 114)	DDWoR and CH (n = 0)	MD and CH (n = 0)	DDWoR, MD and CH (n = 6)
HSPA1B	Heat Shock Protein Family A (Hsp70) Member 1B	PRDX2	Peroxiredoxin 2	COL6A1	Collagen Type VI Alpha 1 Chain					
HSPA1L	Heat Shock Protein Family A (Hsp70) Member 1 Like	RGMB	Repulsive Guidance Molecule BMP Co-Receptor B	COL6A2	Collagen Type VI Alpha 2 Chain					
HSPA2	Heat Shock Protein Family A (Hsp70) Member 2	SACM1L	SAC1 Like Phosphatidylinositide Phosphatase	COL6A3	Collagen Type VI Alpha 3 Chain					
HSPA8	Heat Shock Protein Family A (Hsp70) Member 8	SERPINA9	Serpin Family A Member 9	DCN	Decorin					
IGLC1	Immunoglobulin Lambda Constant 1	SERPINH1	Serpin Family H Member 1	DES	Desmin					
IGLC2	Immunoglobulin Lambda Constant 2	SLC4A1	Solute Carrier Family 4 Member 1	SMPD3	Sphingomyelin Phosphodiesterase 3					
IGLC3	Immunoglobulin Lambda Constant 3	SMPD3	Sphingomyelin Phosphodiesterase 3	DPT	Dermatopontin					
IGLC6	Immunoglobulin Lambda Constant 6	TENM4	Transmembrane Protein 4	FBN1	Fibrinogen Alpha Chain					
IGLC7	Immunoglobulin Lambda Like Polypeptide 1	TMTC3	Testis Specific 10	FGA	Fibrinogen Beta Chain					
IGLL1	Immunoglobulin Lambda Like Polypeptide 5	TSGA10	Transhyretin	FGB	Fibrinogen Gamma Chain					
IGLL5	Interferon Regulatory Factor 7	TTR	Ubiquitin Specific Peptidase 10	FGG	Fibromodulin					
Code	Name	Code	Name	Code	Name	X	X	Code	Name	
------------	---	----------	-------------------------------	--------	-------------------------------	---	---	----------	---------------------	
IRF7	Kalirin RhoGEF Kinase	USP10	Actin Related Protein 3B	FMOD	Fibronectin 1					
KALRN	Kelch Repeat And BTB Domain Containing 11			FN1	Glyceraldehyde-3-Phosphate Dehydrogenase					
KBTBD11	Keratocan	GAPDH	Gelsolin							
KERA	Keratin 18	GSN	H2B Clustered Histone 11							
KRT18	Keratin 7	H2BC11	H2B Clustered Histone 12							
KRT7	Keratin 8	H2BC12	H2B Clustered Histone 13							
KRT8	Keratin 84	H2BC13	H2B Clustered Histone 14							
KRT84	Putative Uncharacterized Protein	H2BC14	H2B Clustered Histone 15							
LOC400499	Leucine Rich Repeat Containing 9	H2BC15	H2B Clustered Histone 17							
LRRC9	Mitogen-Activated Protein Kinase Kinase 7	H2BC17	H2B Clustered Histone 18							
MAP3K7	Microfibril Associated Protein 5	H2BC18	H2B Clustered Histone 21							
MFAP5	Myosin Light Chain 6B	H2BC21	H2B Clustered Histone 3							
MYL6B	NCK Associated Protein 5	H2BC3	H2B Clustered Histone 5							
NCKAP5	Nik Related Kinase	H2BC5	H2B Clustered Histone 9							
Table 2. Cont.

Protein Expressed in Each Group of TMJ Synovial Fluid Sample ($n = 225$)

Protein Name	Code	Name	Code	Name	Code	Name	Code	Name	Code	Name	Code	Name	Code	Name
NRK Pericentriolar Material 1	NRK	Pericentriolar Material 1		H2BC9	H2BC9	H2B.S Histone 1		X		X		X		X
PCM1 Procollagen C-Endopeptidase Enhancer	PCM1	Procollagen C-Endopeptidase Enhancer		H2BS1	H2BS1	H2B.U Histone 1		X		X		X		X
PCOLCE RAD54 Like	PCOLCE	RAD54 Like		H2BU1	H2BU1	Hemoglobin Subunit Alpha 1		X		X		X		X
RAD54L Retinol Dehydrogenase 5	RAD54L	Retinol Dehydrogenase 5		HBA1	HBA1	Hemoglobin Subunit Alpha 2		X		X		X		X
RDH5 Ret Proto-Oncogene	RDH5	Ret Proto-Oncogene		HBA2	HBA2	Hemoglobin Subunit Beta		X		X		X		X
RET Regulatory Factor X1	RET	Regulatory Factor X1		HBB	HBB	Hemoglobin Subunit Delta		X		X		X		X
RFX1 RPTOR Independent Companion Of MTOR Complex 2	RFX1	RPTOR Independent Companion Of MTOR Complex 2		HBD	HBD	Hemoglobin Subunit Epsilon 1		X		X		X		X
RICTOR RIMS Binding Protein 3	RICTOR	RIMS Binding Protein 3		HBE1	HBE1	Hemoglobin Subunit Gamma 1		X		X		X		X
RIMBP3 RUN And FYVE Domain Containing 2	RIMBP3	RUN And FYVE Domain Containing 2		HBG1	HBG1	Hemoglobin Subunit Gamma 2		X		X		X		X
RUFY2 Serpin Family C Member 1	RUFY2	Serpin Family C Member 1		HBG2	HBG2	Haptoglobin		X		X		X		X
SERPINC1 Serpin Family F Member 1	SERPINC1	Serpin Family F Member 1		HP	HP	Heat Shock Protein Family B (Small) Member 1		X		X		X		X
Table 2. Cont.
Protein Expressed in Each Group of TMJ Synovial Fluid Sample (n = 225)

Code	Name	Code	Name	Code	Name	Code	Name			
DDWoR (n = 70)		MD (n = 34)		CH (n = 1)		DDWoR and MD (n = 114)		DDWoR and CH (n = 0)	MD and CH (n = 0)	DDWoR, MD and CH (n = 6)
SERPINF1	SEC14 And Spectrin Domain Containing 1	HSPB1	Immunoglobulin Heavy Constant Alpha 1	X	X		X			
SESTD1	Small Nuclear Ribonucleoprotein U5 Subunit 200	IGHA1	Immunoglobulin Heavy Constant Alpha 2 (A2m Marker)	X	X		X			
SNRNP200	SVOP Like	IGHA2	Immunoglobulin Heavy Constant Gamma 1 (G1m Marker)	X	X		X			
SVOPL	Transcription Elongation Factor, Mitochondrial	IGHG1	Immunoglobulin Heavy Constant Gamma 2	X	X		X			
TEFM	Thrombospondin 3	IGHG2	Immunoglobulin Heavy Constant Gamma 3	X	X		X			
THBS3	Tenascin C	IGHG3	Immunoglobulin Heavy Constant Gamma 4	X	X		X			
TNC	Trio Rho Guanine Nucleotide Exchange Factor	IGHG4	Immunoglobulin Kappa Constant	X	X		X			
TRIO	Tubulin Beta 1 Class VI	IGKC	Internexin Neuronal Intermediate Filament Protein Alpha	X	X		X			
DDWoR (n = 70)	MD (n = 34)	CH (n = 1)	DDWoR and MD (n = 114)	DDWoR and CH (n = 0)	MD and CH (n = 0)	DDWoR, MD and CH (n = 6)				
---------------	-------------	------------	------------------------	----------------------	------------------	-----------------------				
TUBB1										
Ubiquitin Specific Peptidase 42										
USP42										
WW Domain Binding Protein 1 Like										
WBP1L										
Zinc Finger ZZ-Type And EF-Hand Domain Containing 1										
ZZEF1										
H2B Clustered Histone 1										
TUBB1										
Ubiquitin Specific Peptidase 42										
LGALS1										
WW Domain Binding Protein 1 Like										
LMNA										
ZZEF1										
H2B Clustered Histone 1										
LUM				Microfibril Associated Protein 4						
MFAP4										
Myosin Light Chain 6										
MYL6										
Myocilin										
MYOC				Neurofilament Heavy						
NEFH										
Neurofilament Light										
NEFL										
Neurofilament Medium										
NEFM										
Osteoglycin										
OGN				Pellino E3 Ubiquitin Protein Ligase Family Member 3						
PEI3										
Pyruvate Kinase M1/2										
PKM										
POTE Ankyrin Domain Family Member E										
Table 2. Cont.

Protein Expressed in Each Group of TMJ Synovial Fluid Sample (n = 225)
DDWoR (n = 70)
POTEE
POTEF
POTEI
POTEJ
POTEKp
PPIA
PRELP
PRPH
S100A10
SERPINA1
SOD3
Table 2. Cont.

Protein Expressed in Each Group of TMJ Synovial Fluid Sample (n = 225)

DDWoR (n = 70)	MD (n = 34)	CH (n = 1)	DDWoR and MD (n = 114)	DDWoR and CH (n = 0)	MD and CH (n = 0)	DDWoR, MD and CH (n = 6)
TF	Transforming Growth Factor Beta Induced	Thrombospondin 4				
TGFB1	THBS4	Tenascin XA				
TNXA	Tenascin XB					
TNXB	Tubulin Alpha 1a					
TUBA1A	Tubulin Alpha 1b					
TUBA1B	Tubulin Alpha 1c					
TUBA1C	Tubulin Alpha 3c					
TUBA3C	Tubulin Alpha 3d					
TUBA3D	Tubulin Alpha 3e					
TUBA3E	Tubulin Alpha 4a					
TUBA4A	Tubulin Alpha 8					
TUBA6	Tubulin Beta Class I					
TUBB	Tubulin Beta 2A Class IIa					
TUBB2A	Tubulin Beta 2B Class IIb					
TUBB2B	Tubulin Beta 3 Class III					
TUBB3	Tubulin Beta 4A Class IVa					
Table 2. Cont.

Protein Expressed in Each Group of TMJ Synovial Fluid Sample (n = 225)

Group	Protein Name	Code
DDWoR (n = 70)	TUBB4A	TUBB4A
MD (n = 34)	TUBB4B	TUBB4B
CH (n = 1)	TUBB6	TUBB6
DDWoR and MD (n = 114)	TUBB8	TUBB8
DDWoR and CH (n = 0)	TUBB8B	TUBB8B
DDWoR and MD (n = 114)	VCAN	VCAN
DDWoR and CH (n = 0)	VIM	VIM
DDWoR, MD and CH (n = 6)		

Table 3.

Gene code and name of the proteins expressed in temporomandibular joint (TMJ) discs of all groups (DDWoR, MD, CH) and between the groups DDWoR and MD, DDWoR and CH, MD and CH and DDWoR, MD and CH.

Code	Name												
ABCC9	ATP Binding Cassette	AFTH	Aftiphilin	ACTN1	Actinin Alpha 1	ATP7B	ATPase Copper Transporting Beta						
ACSS3	Acyl-CoA Synthetase	AKAP13	A-kinase anchor protein 13	ACTN4	Actinin Alpha 4	AXIN2	Axin 2						
AGO4	Argonaute RISC Component 4	ALDHJ1A2	Aldehyde dehydrogenase family 3 member A2	ACTR3	Actin Related Protein 3	C4A	Complement C4A	BRD3	Bromodomain Containing 3	KRT3	Keratin 3	ACTA1	Actin Alpha 1, Skeletal Muscle
Code	Name												
----------	-------------------------------	----------	-------------------------------	----------	-------------------------------	----------	-------------------------------	----------	-------------------------------	----------	-------------------------------	----------	-------------------------------
AMBP	Alpha-1-Microglobulin/Bikunin Precursor	ANKRD44	Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit B	ADAM10	ADAM Metalloprotease Domain 10	C4B	Complement C4B	CLTC	Clathrin Heavy Chain	KRT5	Keratin 5	ACTA2	Actin Alpha 2, Smooth Muscle
ANKRD17	Ankyrin Repeat Domain 17	ANKRD52	Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit C	ADSL	Adenylosuccinate Lyase	C4B_2	Complement Component 4B	COL1A1	Collagen Type 1 Alpha 1 Chain	KRT6A	Keratin 6A	ACTB	Actin Beta
ARHGAP35	Rho GTPase Activating Protein 35	ARMH3	Armadillo-like helical domain-containing protein 3	ALDOA	Aldolase, Fructose-Bisphosphate A	KERA	Keratocan	COL4A6	Collagen Type IV Alpha 6 Chain	KRT6B	Keratin 6B	ACTBL2	Actin Beta Like 2
ARHGEF10	Rho Guanine Nucleotide Exchange Factor 10	CCDC88A	Girdin	ALDOC	Aldolase, Fructose-Bisphosphate C	KIAA0556	Katanin Interacting Protein	DNAH8	Defensin Alpha 1	KRT6C	Keratin 6C	ACTC1	Actin Alpha Cardiac Muscle 1
ATAD2B	ATPase Family AAA Domain Containing 2B	CLUH	Clustered mitochondria protein homolog	ANKMY1	Ankyrin Repeat And MYND Domain Containing 1	MAP4	Microtubule Associated Protein 4	EEF1A1	Dynein Axonemal Heavy Chain 8	KRT75	Keratin 75	ACTG1	Actin Gamma 1
BCAS2	BCAS2 Pre-MRNA Processing Factor	COL4A1	Collagen alpha-II(V) chain	ANXA5	Annexin A5	SEMA4F	Semaphorin 4F	EEF1A1P5	Eukaryotic Translation Elongation Factor 1 Alpha 1	KRT76	Keratin 76	ACTG2	Actin Gamma 2
CARN51	Carnosine Synthase 1	DOCK10	Deducator of cytokinesis protein 10	ANXA6	Annexin A6	EEF1A2	Eukaryotic Translation Elongation Factor 1 Alpha 1	KRT78	Keratin 78	ALB	Albumin		
CCDC187	Coiled-Coil Domain Containing 187	DTHD1	Death domain-containing protein 1	ASXL1	ASXL Transcriptional Regulator 1	HMCN2	Eukaryotic Translation Elongation Factor 1 Alpha 2	KRT79	Keratin 79	ANXA1	Annexin A1		
Table 3. Cont.

Code	Name										
DDoWR (n = 66)		MD (n = 38)		CH (n = 89)		DDoWR and MD (n = 9)		DDoWR and CH (n = 28)		MD and CH (n = 17)	DDoWR, MD and CH (n = 132)
CDCP1	CUB Domain Containing Protein 1	ERAS	GTPase ERas	ATP2C1	ATPase Secretory Pathway Ca2+ Transporting 1	HSPA2	Hemicentin 2	KRT81	Keratin 81	ANXA2	Annexin A2
CDH3	Cadherin 3	ERBIN	Erbin	BLOC1S1	Biogenesis Of Lyosomal Organelles Complex 1 Subunit 1	HSPA8	Heat Shock Protein Family A (Hsp70) Member 2	KRT83	Keratin 83	ANXA2P2	Annexin A2 Pseudogene 2
CHD7	Chromodomain Helicase DNA Binding Protein 7	FLNA	Filamin-A	BRCA2	BRCA2 DNA Repair Associated	HYDIN	Heat Shock Protein Family A (Hsp70) Member 8	KRT85	Keratin 85	APOA1	Apolipoprotein A1
CHD8	Chromodomain Helicase DNA Binding Protein 8	GOT1L1	Putative aspartate aminotransferase, cytoplasmic 2	CMBP5	Calcium Binding Protein 5	IGLC1	HYDIN Axonemal Central Pair Apparatus Protein	KRT86	Keratin 86		
CHD9	Chromodomain Helicase DNA Binding Protein 9	HHHL1	HERV-H LTR-associating protein 1	CACNA2D3	Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta 3	IGLC2	Immunoglobulin Lambda Constant 1	PKM	Pyruvate Kinase M1/2	APOC1	Apolipoprotein C1
CSTF2T	Cleavage Stimulation Factor Subunit 2 Tau Variant	IGHV3OR16–9	Immunoglobulin heavy variable 3/OR16–9 (non-functional)	CDC18	Coiled-Coil Domain Containing 18	IGLC3	Immunoglobulin Lambda Constant 2	TTBK2	Tau Tubulin Kinase 2	BGN	Biglycan
ECH1	Enoyl-CoA Hydratase 1	KDF1	Keratinocyte differentiation factor 1	CDC20	Cell Division Cycle 20	IGLC6	Immunoglobulin Lambda Constant 3	C3	Complement C3	CILP	Cartilage Intermediate Layer Protein
ELAVL3	ELAV Like RNA Binding Protein 3	L1CAM	Neural cell adhesion molecule L1	CENPF	Centromere Protein F	IGLC7	Immunoglobulin Lambda Constant 6	CILP	Cartilage Intermediate Layer Protein		
EML4	EMA Like 4	MARK1	Serine/threonine-protein kinase MARK1	CFAP20DC	Domain Containing	IGLL1	Immunoglobulin Lambda Constant 7	CILP2	Cartilage Intermediate Layer Protein 2		
FARP2	FERM, ARH/RhoGEF And Pleckstrin Domain Protein 2	NEIL3	Endonuclease 8-like 3	CNTN1	Contactin 1	IGLL5	Immunoglobulin Lambda Like Polypeptide 1	CLU	Clusterin		
Table 3. Cont.

Code	Name	Code	Name	Code	Name	Code	Name	Code	Name	Code	Name	Code	Name
FBN1	Fibrillin 1	NOL8	Nucleolar protein 8	COQ8B	Coenzyme Q8B	LOC441081	Immunoglobulin Lambda Like Polypeptide 5	COL12A1	Collagen Type XII Alpha 1 Chain				
GALK2	Galactokinase 2	NUFIP1	Nuclear fragile X mental retardation-interacting protein 1	CTNNA3	Catennin Alpha 3	MIS18BP1	POM121 Membrane Glycoprotein (Rat) Pseudogene	COL14A1	Collagen Type XIV Alpha 1 Chain				
GPR162	G Protein-Coupled Receptor 162	NUMA1	Nuclear mitotic apparatus protein 1	DPYSL2	Dihydropyrimidinase Like 2	MYO15B	MB18 Binding Protein 1	COL6A1	Collagen Type VI Alpha 1 Chain				
GPRAS1	G Protein-Coupled Receptor Associated Sorting Protein 1	PARP10	Protein mono-ADP-ribosyltransferase PARP10	EHD2	EH Domain Containing 2	POSTN	Myosin XV B	COL6A2	Collagen Type VI Alpha 2 Chain				
IKBKE	Inhibitor Of Nuclear Factor Kappa B Kinase Subunit Epsilon	PCDHA4	Protocadherin alpha-4	EYS	Eyes Shut Homolog	SERPINA9	Peristin	COL6A3	Collagen Type VI Alpha 3 Chain				
INS	Insulin	POLD1	DNA polymerase delta catalytic subunit	FI3A1	Coagulation Factor XII A Chain	VTN	Serpin Family A Member 9	COMP	Cartilage Oligomeric Matrix Protein				
IRF2BP1	Interferon Regulatory Factor 2 Binding Protein Like	POM121L2	POM121-like protein 2	GOLGA4	Golgin A4	G13A1	Glutathione S-Transferase Pi 1	DCN	Decorin				
ITGA6	Integrin Subunit Alpha 6	PFIA1	Liprin-alpha-1	GSTP1	Glutathione S-Transferase Pi 1	P1	DMD	DES	Desmin				
KRT26	Keratin 26	PFIA2	Liprin-alpha-2	GV1NP1	GTPase, Very Large Interferon Inducible Pseudogene 1	DMD	Dystrophin						
LEMD2	LEM Domain Nuclear Envelope Protein 2	PRR14L	Protein PRR14L	H3-2	H3.2 Histone (Putative)	H3-3A	H3.3 Histone A	DPT	Dermatopontin				
MAP3K21	Mitogen-Activated Protein Kinase Kinase Kinase 21	PTPN7	Tyrosine-protein phosphatase non-receptor type 7	H3-3A	H3.3 Histone A	ENO1	Enolase 1						

Protein Expressed in Each Group of TMJ Disc Sample (n = 379)

- DDWoR (n = 66)
- MD (n = 38)
- CH (n = 89)
- DDWoR and MD (n = 9)
- DDWoR and CH (n = 28)
- MD and CH (n = 17)
- DDWoR, MD and CH (n = 132)
Table 3. Cont.

Protein Expressed in Each Group of TMJ Disc Sample (n = 379)

Code	Name										
MDGA1	MAM Domain Containing Glycosylphosph-		RASSF10		H3-3B H3.3 Histone B		ENO2 Enolase 2				
	phatidylinositol Anchor 1										
MMP10	Matrix Metallopeptidase 10		RPS6KA6		H3-4 H3.4 Histone		ENO3 Enolase 3				
MMP27	Matrix Metallopeptidase 27		TRIO		H3-5 H3.5 Histone		FBLN1 Fibulin 1				
MMP3	Matrix Metallopeptidase 3		TSC1		HEAT Repeat Containing 6		FGA Fibrinogen Alpha Chain				
MOS	MOS Proto-Oncogene, Serine/Threonine		UPK3A		HPX Hemopexin		FGB Fibrinogen Beta Chain				
	Kinases										
MYL6	Myosin Light Chain 6		UROD		Heat Shock Protein Family 90 Beta Family Member 1		FGG Fibrinogen Gamma Chain				
MYO7B	Myosin VIIB		HSPA1A		Heat Shock Protein Family A (Hsp70) Member 1A		FLNB Filamin B				
NT5E	5'-Nucleotidase Ecto		HSPA1B		Heat Shock Protein Family A (Hsp70) Member 1B		FMOD Fibromodulin				
OLFML1	Olfactomedin Like 1		HSPA1L		Heat Shock Protein Family A (Hsp70) Member 1 Like		FN1 Fibronectin 1				
PGM5	Phosphoglhummatase 5		HSPA5		Heat Shock Protein Family A (Hsp70) Member 5		GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase				
Table 3. Cont.

Protein Expressed in Each Group of TMJ Disc Sample (n = 379)

Code	Name														
PHKA2	Phosphorylase Kinase Regulatory Subunit	IGFN1	Immunoglobulin Like And Fibronectin Type	GPX3	Glutathione Peroxidase 3										
	Alpha 2		III Domain Containing 1												
PLA2G7	Phospholipase A2	INF2	Inverted Formin 2	GSN	Angiotensin I Converting Enzyme 2										
	Group VII														
POR	Cytochrome P450	L3MBTL4	L3MBTL Histone Methyl-Lysine Binding	H2BC1	H2B Clustered Histone 1										
	Oxidoreductase		Protein 4	H2BC11	H2B Clustered Histone 11										
RANBP17	RAN Binding Protein 17	LMNB1	Lamin B1	H2BC12	H2B Clustered Histone 12										
RCS22	Regulator Of G Protein Signaling 22	LMNB2	Lamin B2	H2BC13	H2B Clustered Histone 13										
RIF1	Replication Timing Regulatory Factor 1	MFA5	Microfilibr Associated Protein 5	H2BC14	H2B Clustered Histone 14										
RTN4	Reticulon 4	MRPL50	Mitochondrial Ribosomal Protein L50	H2BC15	H2B Clustered Histone 15										
SARS2	Seryl-TRNA Synthetase 2, Mitochondrial	MS4A6A	Membrane Spanning 4-Domains A6A	H2BC17	H2B Clustered Histone 17										
SEPHS2	Selenophosphate Synthetase 2	MUC4	Mucin 4, Cell Surface Associated	H2BC18	H2B Clustered Histone 18										
SLFN13	Schlaen Family Member 13	MYH14	Myosin Heavy Chain 14	H2BC21	H2B Clustered Histone 21										
SLK	STE20 Like Kinase	MYL6B	Myosin Light Chain 6B	H2BC23	H2B Clustered Histone 3										
SPATA20	Spermatogenesis Associated 20	NEK10	NIMA Related Kinase 10	H2BC3	H2B Clustered Histone 3										
SPATA5	Spermatogenesis Associated 5	PAK3	P21 (RAC1) Activated Kinase 3	H2BC5	H2B Clustered Histone 5										
Table 3. Cont.

Protein Expressed in Each Group of TMJ Disc Sample (*n* = 379)

Code	Name					
DDWoR	MD (*n* = 38)	CH (*n* = 89)	DDWoR and MD (*n* = 9)	DDWoR and CH (*n* = 28)	MD and CH (*n* = 17)	DDWoR, MD and CH (*n* = 132)
SPTA1	Spectrin Alpha, Erythrocytic 1	**PAPOLA**	Poly(A) Polymerase Alpha	**H2BC9**	H2B Clustered Histone 9	
SQUE	Squalene Epoxidase	**PAPOLG**	Poly(A) Polymerase Gamma	**H2BS1**	H2B-S Histone 1	
ST20-AS1	ST20 Antisense RNA 1	**PDIA3**	Protein Disulfide Isomerase Family A Member 3	**H2BU1**	H2B-U Histone 1	
STIL	STIL Centriolar Assembly Protein	**PDLIM4**	PDZ And LIM Domain 1	**HBA1**	Hemoglobin Subunit Alpha 1	
TACC2	Transforming Acidic Coiled-Coil Containing Protein 2	**RALBP1**	RaLA Binding Protein 1	**HBA2**	Hemoglobin Subunit Alpha 2	
TAPI	Transporter 1, ATP Binding Cassette Subfamily B Member	**RNF213**	Ring Finger Protein 213	**HBB**	Hemoglobin Subunit Beta	
THADA	THADA Armadillo Repeat Containing	**SBF2**	SET Binding Factor 2	**HBD**	Hemoglobin Subunit Delta	
THBS3	Thrombospondin 3	**SERPINF1**	Serpin Family F Member 1	**HBE1**	Hemoglobin Subunit Epsilon 1	
UQCRC1	Ubiquinol-Cytochrome C Reductase Core Protein 1	**SERPINH1**	Serpin Family H Member 1	**HBG1**	Hemoglobin Subunit Gamma 1	
VWA3A	Von Willebrand Factor A Domain Containing 3A	**SLC4A5**	Solute Carrier Family 4 Member 5	**HBG2**	Hemoglobin Subunit Gamma 2	
ZNF333	Zinc Finger Protein 333	**SLIT2**	Slit Guidance Ligand 2	**HBZ**	Hemoglobin Subunit Zeta	
SMPD3	Sphingomyelin Phosphodiesterase 3	**HP**	Haptoglobin			
TAPT1	Transmembrane Anterior Posterior Trans-formation 1	**HPR**	Haptoglobin-Related Protein			
Table 3. Cont.

Protein Expressed in Each Group of TMJ Disc Sample (n = 379)

Code	Name										
TBX22	T-Box Transcription Factor 22										
TDRD1	Tudor Domain Containing 1										
TENM4	Teneurin Transmembrane Protein 4										
THBS1	Thrombospondin 1										
TJP2	Tight Junction Protein 2										
TTR	Transthyretin										
UBP1	Upstream Binding Protein 1										
WHRN	Whirlin										
ZNF155	Zinc Finger Protein 155										
ZNF221	Zinc Finger Protein 221										

DDWoR (n=66) | MD (n=38) | CH (n=89) | DDWoR and MD (n=9) | DDWoR and CH (n=28) | MD and CH (n=17) | DDWoR, MD and CH (n=132)
Table 3. Cont.

Protein Expressed in Each Group of TMJ Disc Sample (n = 379)

Code	Name										
	DDWoR (n = 66)	**MD** (n = 38)	**CH** (n = 89)	**DDWoR and MD** (n = 9)	**DDWoR and CH** (n = 28)	**MD and CH** (n = 17)	**DDWoR, MD and CH** (n = 132)				
LMNA	Lamin A/C										
LUM	Lumican										
MFAP4	Microfibril Associated Protein 4										
MFGF8	Milk Fat Globule EGF And Factor V/VII Domain Containing										
MYH16	Myosin Heavy Chain 16 Pseudogene										
MYOC	Myocilin										
NEFH	Neurofilament Heavy										
NEFL	Neurofilament Light										
NEFM	Neurofilament Medium										
OGN	Osteoglycin										
POTEE	POTE Ankyrin Domain Family Member E										
POTEF	POTE Ankyrin Domain Family Member F										
POTEI	POTE Ankyrin Domain Family Member I										
POTEJ	POTE Ankyrin Domain Family Member J										
POTEKP	POTE Ankyrin Domain Family Member K, Pseudogene										
PPIA	Peptidylprolyl Isomerase A										
Table 3. Cont.

Protein Expressed in Each Group of TMJ Disc Sample (*n* = 379)

DDWoR (n = 66)	MD (n = 38)	CH (n = 89)	DDWoR and MD (n = 9)	DDWoR and CH (n = 28)	MD and CH (n = 17)	DDWoR, MD and CH (n = 132)					
Code	Name										
PRDX1	Peroxiredoxin 1	PRDX2	Peroxiredoxin 2	PRELP	Proline And Arginine Rich End Leucine Rich Repeat Protein	PRPH	Peripherin	RPL7L1	Ribosomal Protein L7 Like 1	S100A10	S100 Calcium Binding Protein A10
SALL3	Spalt Like Transcription Factor 3	SERPINA1	Serpin Family A Member	SHLD3	Shieldin Complex Subunit 3	SLC4A1	Solute Carrier Family 4 Member 1	SOD3	Superoxide Dismutase 3	TF	Transferrin
TGFB1	Transforming Growth Factor Beta Induced	THBS4	Thrombospondin 4	TNC	Tenascin C	TNXA	Tenascin XA (Pseudogene)	TNXB	Tenascin XB	TUBA1A	Tubulin Alpha 1a
Table 3. Cont.

Protein Expressed in Each Group of TMJ Disc Sample (n = 379)

Code	Name	Code	Name	Code	Name	Code	Name	Code	Name	Code	Name
	DDWoR (n = 66)										
	MD (n = 38)										
	CH (n = 89)										
	DDWoR and MD (n = 9)										
	DDWoR and CH (n = 28)										
	MD and CH (n = 17)										
	DDWoR, MD and CH										
	(n = 132)										
TUBA1B	Tubulin Alpha 1b										
TUBA1C	Tubulin Alpha 1c										
TUBA3E	Tubulin Alpha 3e										
TUBA4A	Tubulin Alpha 4a										
TUBA5	Tubulin Alpha 8										
TUBB	Tubulin Beta		Class I								
TUBB1	Tubulin Beta 1		Class VI								
TUBB2A	Tubulin Beta 2A		Class IIa								
TUBB2B	Tubulin Beta 2B		Class IIb								
TUBB3	Tubulin Beta 3		Class III								
TUBB4A	Tubulin Beta 4A		Class IVa								
TUBB4B	Tubulin Beta 4B		Class IVb								
TUBB6	Tubulin Beta 6		Class V								
TUBB8	Tubulin Beta 8		Class VIII								
TUBB8B	Tubulin Beta 8B										
Table 4. Proteins expressed in both synovial fluid and TMJ disc samples of each group.

| Protein Expressed in Each Group of TMJ Synovial Fluid and Disc Samples (n = 11) |
|---------------------------------|---------|---------|-----------------|---------|---------|---------|
| DDWoR (n= 2) | MD (n= 3) | CH (n= 0) | DDWoR and MD (n= 0) | DDWoR and CH (n= 0) | MD and CH (n= 0) | DDWoR, MD and CH (n= 0) |
| CHD8 | FLNA | PPFIA1 | PPFIA2 | ENO1 | ENO2 | ENO3 |
| MYL6B | MYH16 | RPL7L1 | SHLD3 | | | |

Table 5. Gene code, protein name and function for each sample of TMJ synovial fluid.

Synovial Fluid Sample	Code	Name	Function
DDWoR	A2M	Alpha-2-Macroglobulin	Inhibits inflammatory cytokines.
	APCS	Amyloid P Component, Serum	Binds to apoptotic cells at an early stage.
	GPSM2	G Protein Signaling Modulator 2	Involved in the development of normal hearing.
	KRT18	Keratin 18	Is involved in interleukin-6-mediated barrier protection.
	MAP3K7	Mitogen-Activated Protein Kinase Kinase 7	Mediates signal transduction various cytokines including interleukin-1, transforming growth factor-beta, bone morphogenetic protein 2 and 4, Toll-like receptors, tumor necrosis factor receptor CD40 and B-cell receptor.
	SERPINC1	Serpin Family C Member 1	This protein inhibits thrombin and it regulates the blood coagulation cascade.
	ALDH1L1	Aldehyde Dehydrogenase 1 Family Member L1	Associated with decreased apoptosis, increased cell motility, and cancer progression.
	C4A	Complement C4A (Rodgers Blood Group)	An antimicrobial peptide and a mediator of local inflammation.
	HPX	Hemopexin	Acute phase protein that transports heme from the plasma to the liver and may be involved in protecting cells from oxidative stress.
	IFT122	Intraflagellar Transport 122	Involved in cell cycle progression, signal transduction, apoptosis, and gene regulation.
	MYO6	Myosin VI	This protein maintains the structural integrity of inner ear hair cells and mutations in this gene cause hearing loss.
	PRDX1	Peroxiredoxin 1	Has an antioxidant protective role in cells and may contribute to the antiviral activity of CD8(+) T-cells.
	SERPINH1	Serpin Family H Member 1	Plays a role in collagen biosynthesis as a collagen-specific molecular chaperone.
	SMPD3	Sphingomyelin Phosphodiesterase 3	Mediates cellular functions, such as apoptosis and growth arrest.
	ADH1	Alcohol Dehydrogenase Subunit Alpha	Catalyzes the oxidation of alcohols to aldehydes.
	ANXA1	Annexin A1	Inhibits phospholipase A2 and has anti-inflammatory activity.
Table 5. Cont.

Code	Name	Function
CH	DDWoR and MD	
ANXA2	Annexin A2	Functions as an autocrine factor which heightens osteoclast formation and bone resorption.
ASPN	Asporin	Regulate chondrogenesis by inhibiting transforming growth factor-beta 1-induced gene expression in cartilage. May induce collagen mineralization.
BGN	Biglycan	Plays a role in bone growth, muscle development and regeneration, and collagen fibril assembly in multiple tissues. This protein may also regulate inflammation and innate immunity.
CILP	Cartilage Intermediate Layer Protein	This protein is present in the cartilage intermediate layer protein (CILP), which increases in early osteoarthrosis cartilage.
CLU	Clusterin	Under stress conditions can be found in the cell cytosol. May be involved in cell death, tumor progression, and neurodegenerative disorders
COMP	Thrombospondin-5	Present in rheumatoid arthritis, is a noncollagenous extracellular matrix protein.
DCN	Decorin	Has a stimulatory effect on autophagy and inflammation and an inhibitory effect on angiogenesis and tumorigenesis.
FMOD	Fibromodulin	May also regulate TGF-beta activities by sequestering TGF-beta into the extracellular matrix.
FN1	Fibronectin 1	Fibronectin is involved in cell adhesion and migration processes including embryogenesis, wound healing, blood coagulation, host defense.
IGHG1	Immunoglobulin Heavy Constant Gamma 1 (G1m Marker)	Involved in pathways of Interleukin-4 and 13 signaling and IL4-mediated signaling events.

Table 6. Gene code, protein name and function for each sample of TMJ discs.

Code	Name	Function
DDWoR	Alpha-1-Microglobulin/Bikunin Precursor	Regulation of the inflammatory process.
MMP10	Matrix Metallopeptidase 10	Breakdown of extracellular matrix.
MMP27	Matrix Metallopeptidase 27	Breakdown of extracellular matrix.
MMP3	Matrix Metallopeptidase 3	Breakdown of extracellular matrix.
PLA2G7	Phospholipase A2 Group VII	Inflammatory and oxidative stress response.
Table 6. Cont.

Disc Sample

Code	Name	Function
DDWoR		
THADA	THADA Armadillo Repeat Containing	Apoptosis pathway.
THBS3	Thrombospondin 3	Matrix interactions.
MD		
AKAP13	A-kinase anchor protein 13	Regulation of apoptotic process.
CCDC88A	Girdin	Vascular endothelial growth factor receptor 2 binding.
COL4A1	Collagen alpha-1(IV) chain	Extracellular matrix structural constituent.
ERAS	GTPase ERas	Tumor-like growth properties of embryonic stem cells.
ERBIN	Erbin	Inhibits NOD2-dependent NF-kappa-B signaling and proinflammatory cytokine secretion.
PARP10	Protein mono-ADP-ribosyltransferase PARP10	Negative regulation of fibroblast proliferation.
PPFIA1	Liprin-alpha-1	Cell–matrix adhesion.
PPFIA2	Liprin-alpha-2	Cell–matrix adhesion.
PTPN7	Tyrosine-protein phosphatase non-receptor type 7	Regulation of T and B-lymphocyte development and signal transduction.
UPK3A	Uroplakin-3a	Epithelial cell differentiation.
CH		
ACTN4	Actinin Alpha 4	Transcriptional coactivator.
ADAM10	ADAM Metallopeptidase Domain 10	Responsible for the FasL ectodomain shedding.
COQ8B	Coenzyme Q8B	Biosynthesis of coenzyme Q.
HPX	Hemopexin	Protect cells from oxidative stress.
HSPA1A	Heat Shock Protein Family A (Hsp70) Member 1A	Protection of the proteome from stress.
NEK10	NIMA Related Kinase 10	Cellular response to UV irradiation.
PDLIM4	PDZ And LIM Domain 4	Involved in bone development.
SERPINH1	Serpin Family H Member 1	Chaperone in the biosynthetic pathway of collagen.
TTR	Transthyretin	Thyroid hormone-binding protein.
COL1A2	Collagen Type I Alpha 2 Chain	Fibril-forming collagen abundant in bone.
PRG4	Proteoglycan 4	This protein contains both chondroitin sulfate and keratan sulfate glycosaminoglycans.
PTPN13	Protein Tyrosine Phosphatase Non-Receptor Type 13	Regulates negatively FasL induced apoptosis.
DDWoR and MD		
C4A	Complement C4A	Antimicrobial peptide and a mediator of local inflammation.
C4B	Complement C4B	Mediator of local inflammation.
C4B_2	Complement Component 4B	Mediator of local inflammatory process.
SEMA4F	Semaphorin 4F	Plays a role in neural development.
DDWoR and CH		
ACAN	Aggrecan	Part of the extracellular matrix that withstands compression in cartilage.
COL1A1	Collagen Type I Alpha 1 Chain	Collagen component.
Table 6. Cont.

Code	Name	Function
	DDWoR and CH	
COL4A6	Collagen Type IV Alpha 6 Chain	Major structural component of basement membranes.
HSPA2	Heat Shock Protein Family A (Hsp70) Member 2	Protection of the proteome from stress.
POSTN	Periostin	Extracellular matrix protein that functions in tissue development and regeneration, including wound healing.
	MD and CH	
KRT6A	Keratin 6A	Epidermis-specific type I keratin involved in wound healing.
	DDWoR, MD and CH	
ANXA1	Annexin A1	Anti-inflammatory activity.
ANXA2	Annexin A2	Heightens osteoclast formation and bone resorption.
ANXA2P2	Annexin A2 Pseudogene 2	May be involved in heat-stress response.
APCS	Amyloid P Component	Is involved in dealing with apoptotic cells in vivo.
ASPN	Asporin	Regulates chondrogenesis by inhibiting transforming growth factor-beta 1-induced gene expression in cartilage
BGN	Biglycan	Plays a role in bone growth, and collagen fibril assembly in multiple tissues. This protein may also regulate inflammation and innate immunity.
C3	Complement C3	Modulates inflammation and possesses antimicrobial activity.
CILP	Cartilage Intermediate Layer Protein	Increases in early osteoarthrosis cartilage.
COL12A1	Collagen Type XII Alpha 1 Chain	Type XII collagen.
COL14A1	Collagen Type XIV Alpha 1 Chain	Type XIV collagen.
COL6A1	Collagen Type VI Alpha 1 Chain	Collagen VI.
COL6A2	Collagen Type VI Alpha 2 Chain	Type VI collagen.
COL6A3	Collagen Type VI Alpha 3 Chain	Type VI collagen.
COMP	Cartilage Oligomeric Matrix Protein	Degradation of the extracellular matrix.
ENO1	Enolase 1	Tumor suppressor.
ENO2	Enolase 2	Found in mature neurons and cells of neuronal origin.
ENO3	Enolase 3	Plays a role in muscle development and regeneration.
FN1	Fibronectin 1	Involved in wound healing, blood coagulation, host defense.
KRT7	Keratin 7	Co-expressed during differentiation of simple and stratified epithelial tissues.
LUM	Lumican	May regulate collagen fibril organization, epithelial cell migration and tissue repair.
MFAP4	Microfibril Associated Protein 4	Extracellular matrix protein which is involved in cell adhesion or intercellular interactions.
MFGE8	Milk Fat Globule EGF And Factor V/VIII Domain Containing	Promotes phagocytosis of apoptotic cells. This protein has also been implicated in wound healing, autoimmune disease, and cancer.
OGN	Osteoglycin	Induces ectopic bone formation in conjunction with transforming growth factor beta and may regulate osteoblast differentiation.
Table 6. Cont.

Code	Name	Function
MD and CH		
DDWoR, MD and CH		
SOD3	Superoxide Dismutase 3	Antioxidant enzymes that protect tissues from oxidative stress.
TGFB1	Transforming Growth Factor Beta Induced	May be involved in endochondrial bone formation in cartilage.
TNC	Tenascin C	Modulation of inflammatory cytokine.
TNXB	Tenascin XB	Accelerates collagen fibril formation.
VCAN	Versican	A large chondroitin sulfate proteoglycan and is a major component of the extracellular matrix.
VIM	Vimentin	Involved in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2.

The disc sample presented the following protein functions for each group (Table 6): the DDWoR group expressed proteins involved in inflammatory process, neurogenesis, cartilage formation, extracellular matrix degradation, oxidative stress and apoptosis. The MD group presented proteins related to apoptosis, vascular growth, inflammatory inhibitors, immunologic factors and epithelial growth, and the CH group showed protein expression implicated in apoptosis, apoptosis inhibition, oxidative stress, bone formation, chondroïtin, bone and cartilage formation. The group with DDWoR and MD samples had proteins involved in inflammatory process; the group with DDWoR and CH samples showed proteins with collagen formation and wound healing functions; the group with MD and CH was involved in wound healing; and the group containing DDWoR, MD and CH samples was involved with inflammatory cascade modulation, osteoclastogenesis, chondrogenesis, apoptosis, bone formation, vascular and tissue repair, antioxidative activity.

There were proteins identified in both synovial fluid and TMJ disc samples, however, some of them in different pathology groups (Table 7).

Table 7. Name and function of expressed proteins in common between synovial fluid and TMJ disc sample, and the groups in each protein was expressed.

Name	Function	Disc	Synovial Fluid
Amyloid P Component, Serum	Is involved in dealing with apoptotic cells in vivo.	DDWoR, MD and CH	DDWoR
Annexin A1	Anti-inflammatory activity.	DDWoR, MD and CH	DDWoR and MD
Annexin A2	Heightens osteoclast formation and bone resorption.	DDWoR, MD and CH	DDWoR and MD
Asporin	Regulates chondrogenesis.	DDWoR, MD and CH	DDWoR and MD
Biglycan	Plays a role in bone growth, and collagen fibril assembly in multiple tissues.	DDWoR, MD and CH	DDWoR and MD
Cartilage Intermediate Layer Protein	Increases in early osteoarthrosis cartilage.	DDWoR, MD and CH	DDWoR and MD
Complement C4A	Antimicrobial peptide and a mediator of local inflammation.	DDWoR and MD	MD
Enolase 2	Found in mature neurons and cells of neuronal origin.	DDWoR, MD and CH	DDWoR, MD and CH
Table 7. Cont.

Name	Function	Disc	Synovial Fluid
Enolase 3	Play a role in muscle development and regeneration.	DDWoR, MD and CH	DDWoR, MD and CH
Fibronectin 1	Involved in wound healing, blood coagulation, host defense.	DDWoR, MD and CH	DDWoR and MD
Hemopexin	Protect cells from oxidative stress.	CH	MD
Lumican	May regulate collagen fibril organization, epithelial cell migration and tissue repair.	DDWoR, MD and CH	DDWoR and MD
Osteoglycin	Regulate osteoblast differentiation.	DDWoR, MD and CH	DDWoR and MD
Serpin Family H Member 1	Chaperones in the biosynthetic pathway of collagen.	CH	MD
Superoxide Dismutase 3	Antioxidant enzymes that protect tissues from oxidative stress.	DDWoR, MD and CH	DDWoR and MD
Tenascin XB	Modulation of inflammatory cytokine.	DDWoR, MD and CH	DDWoR and MD
Transforming Growth Factor Beta Induced	May be involved in endochondral bone formation in cartilage.	DDWoR, MD and CH	DDWoR and MD
Versican	A large chondroitin sulfate proteoglycan and is a major component of the extracellular matrix.	DDWoR, MD and CH	DDWoR and MD

Different types of collagen were identified in discs of the MD group, CH group, DDWoR and CH group, and in the group with all pathologies together (DDWoR, MD and CH). Besides the known collagen type I present in TMJ discs, collagen type IV, VI, XII and XIV were also identified (Table 8).

Table 8. Types of collagen identified in each TMJ disc group.

Type of Collagen Identified in Each Group	DDWoR and MD	CH	DDWoR and MD	DDWoR and CH	MD and CH	DDWoR, MD and CH
COL4A1 Collagen Type IV Alpha 1 Chain	COL1A2 Collagen Type I Alpha 2 Chain	COL1A1 Collagen Type I Alpha 1 Chain	COL12A1 Collagen Type XII Alpha 1 Chain			
COL4A6 Collagen Type IV Alpha 6 Chain	COL14A1 Collagen Type XIV Alpha 1 Chain	COL6A1 Collagen Type VI Alpha 1 Chain				
COL6A2 Collagen Type VI Alpha 2 Chain	COL6A3 Collagen Type VI Alpha 3 Chain					

All shared and group-specific proteins are indicated in a Venn diagram for the synovial fluid (Figure 1) and disc samples (Figure 2).
Different types of collagen were identified in discs of the MD group, CH group, DDoW, and CH group, and in the group with all pathologies together (DDDoW, MD, and CH). Besides the known collagen type I present in TMJ discs, collagen type IV, VI, XII, and XIV were also identified (Table 8).

All shared and group-specific proteins are indicated in a Venn diagram for the synovial fluid (Figure 1) and disc samples (Figure 2).

![Venn diagram for synovial fluid](image1)

Figure 1. Venn diagram for synovial fluid: group 1—DDDoW, group 2—MD, group 3—CH.

![Venn diagram for TMJ disc](image2)

Figure 2. Venn diagram for the TMJ disc: group 1—DDDoW, group 2—MD, group 3—CH.

The interactions between the proteins were analyzed with Genemania (https://genemania.org—accessed on 5 September 2020), and its genetic network pointed out distinct protein cascades that might be modulating each pathology through the synovial fluid and disc samples. The physical and genetic interactions, co-expression and pathway of the proteins are shown in Figures 3 and 4.
samples. The physical and genetic interactions, co-expression and pathway of the proteins are shown in Figures 3 and 4.

The main proteins with important functions and networks that were identified in the synovial fluid sample were analyzed for each group (Figure 3). A brief description of these findings are: in the DDWoR group (Figure 3A) alpha-2-macroglobulin (A2M) involved in inflammatory process, amyloid P component (APCS) involved with apoptosis and complement factor H (CFH) that modulates inflammatory cascade were highlighted in the Genemania interaction figure; in the MD group (Figure 3B), hemopexin (HPX) involved in protection against oxidative stress was present; in the CH group (Figure 3C), alcohol dehydrogenase subunit alpha (ADH1) that is responsible for alcohol degradation and interacts with growth hormone receptor (GHR) was present. In the group of DDWoR and MD (Figure 3D), annexin A1 (ANXA1), decorin (DCN), and immunoglobulin heavy constant gamma 1 (IGHG1) involved in inflammatory process, annexin A2 (ANXA2) involved with bone resorption, asporin (ASPN), biglycan (BGN), cartilage intermediate layer protein (CILP), osteoglycin (OGN), transforming growth factor beta induced (TGFBI) involved in bone and cartilage formation, fibronectin 1 (FN1), lumican (LUM) and tenascin XB (TNXB) involved in tissue repair, and neurofilament medium (NEFM) and thrombospondin 4 (THBS4) involved in neuropathic pain were included in the net.

The DDWoR and CH group, and MD and CH group had no protein to be analyzed. The group with the three pathologies (DDWoR, MD and CH) showed an interaction of enolase 2 (ENO2) and 3 (ENO3), involved in muscle regeneration (Figure 3E).

Figure 3. Gene interactions between the main functional proteins of synovial fluid. (A) showing the gene interactions of the DDWoR group. (B) showing the gene interactions of the MD group. (C) showing the gene interactions of the CH group. (D) showing the gene interactions of the DDWoR and MD group. (E) showing the gene interactions of the DDWoR, MD and CH group.
Figure 3. Gene interactions between the main functional proteins of synovial fluid. (A) showing the gene interactions of the DDWoR group. (B) showing the gene interactions of the MD group. (C) showing the gene interactions of the CH group. (D) showing the gene interactions of the DDWoR and MD group. (E) showing the gene interactions of the DDWoR, MD and CH group.

Figure 4. Cont.
The main proteins with important functions and networks that were identified in the synovial fluid sample were analyzed for each group (Figure 3). A brief description of these findings are: in the DDWoR group (Figure 3A) alpha-2-macroglobulin (A2M) involved in inflammatory process, amyloid P component (APCS) involved with apoptosis and complement factor H (CFH) that modulates inflammatory cascade were highlighted in the Genemania interaction figure; in the MD group (Figure 3B), hemopexin (HPX) involved in protection against oxidative stress was present; in the CH group (Figure 3C), alcohol dehydrogenase subunit alpha (ADH1) that is responsible for alcohol degradation and interacts with growth hormone receptor (GHR) was present. In the group of DDWoR and MD (Figure 3D), annexin A1 (ANXA1), decorin (DCN), and immunoglobulin heavy constant gamma 1 (IGHG1) involved in inflammatory process, annexin A2 (ANXA2) involved with bone resorption, asporin (ASPN), biglycan (BGN), cartilage intermediate layer protein (CILP), osteoglycin (OGN), transforming growth factor beta induced (TGFBI) involved in bone and cartilage formation, fibronectin 1 (FN1), lumican (LUM) and tenascin XB (TNXB) involved in tissue repair and neurofilament medium (NEFM) and thrombospondin 4 (THBS4) involved in neuropathic pain were included in the net. The DDWoR and CH group, and MD and CH group had no protein to be analyzed. The group with the three pathologies (DDWoR, MD and CH) showed an interaction of enolase 2 (ENO2) and 3 (ENO3), involved in muscle regeneration (Figure 3E).

The disc sample presented the following protein interactions in Genemania (Figure 4): group DDWoR (Figure 4A) presented mainly the matrix metalloproteinase protein (MMP) family (1,2,5,6,8,10,13,15,16), integrin subunit alpha 6 (ITGA6) and phospholipase A2 group VII (PLA2G7) that are involved in inflammatory cascade. Additionally, thrombospondin 3 (THBS3) and 4 (THBS4) involved in tissue remodeling, and THADA armadillo repeat containing (THADA) involved in apoptosis were present. In the MD group (Figure 4B), A-kinase anchor protein 13 (AKAP13), Erbin (ERBIN) and uroplakin-3a (UPK3A) involved in apoptosis, collagen alpha-1(IV) chain (COL4A1) and GTPase Eras (ERAS) involved in disc matrix constitution, and liprin-alpha-1 (PPFIA1) and (PPFIA2) 2 responsible for cell interactions were identified in the Genemania network. In the CH group (Figure 4C), the present proteins were ADAM metallopeptidase domain 10 (ADAM10), that regulates apoptosis, collagen type I alpha 2 chain (COL1A2) and serpin family H member 1 (SERPINH1) involved in collagen formation, actinin alpha 4 (ACTN4), PDZ Additionally, LIM domain 4 (PDLIM4), transhyretin (TTR) and protein tyrosine phosphatase non-receptor type 13

![Figure 4. Gene interactions between the main functional proteins of the TMJ disc. (A) showing the gene interactions of the DDWoR group. (B) showing the gene interactions of the MD group. (C) showing the gene interactions of the CH group. (D) showing the gene interactions of the MD and CH group. (E) showing the gene interactions of the DDWoR and CH group. (F) showing the gene interactions of the DDWoR and CH group. (G) showing the gene interactions of the DDWoR, MD and CH group.](image-url)
(PTPN13) involved in apoptosis, hormone modulation and bone formation. In the group of DDWoR and MD (Figure 4D), the complement C4A (C4A) and complement C4B (C4B) proteins that mediates the inflammatory process were identified. In the DDWoR and CH group (Figure 4E), mainly the proteins aggrecan (ACAN), collagen type I alpha 1 chain (COL1A1) and collagen type IV alpha 6 chain (COL4A6) that constitutes disc matrix, and periostin (POSTN) involved in wound healing were identified. In the MD and CH group (Figure 4F), keratin 6A (KRT6A) involved in wound healing was identified. Additionally, in the group with all three pathologies (DDWoR, MD and CH) the proteins that interacted were annexin A1 (ANXA1), complement C3 (C3) and tenasin C (TNC) involved in inflammatory cascade modulation, annexin A2 (ANXA2) and transforming growth factor beta induced (TGFBI) involved in osteoclastogenesis, asporin (ASPN), biglycan (BGN), collagen type VI alpha 1 chain (COL6A1), osteoglycin (OGN) and vimentin (VIM) involved in chondrogenesis and osteogenesis, amyloid P component (APCS) and complement C3 (C3) in apoptosis and lumican (LUM) involved in tissue repair (Figure 4G).

4. Discussion

The different types of TMD may jeopardize patients’ quality of life, masticatory function and have a great impact on health expenses. The identification of its multifactorial etiological components will enhance the employment of specific treatments, diminishing the hazard it causes in the TMJ. Therefore, the identification of the proteins expressed on each pathology group of this study (DDWoR, MD, and CH) might elucidate the cascades involved in the progression and severity of each TMD, leading to an assertive handling of TMD.

A total of 225 proteins were identified in the synovial fluid sample, and 379 in the TMJ disc sample (Table 2). It is important to highlight that the synovial fluid sample is very complex to obtain, therefore some proteins might not have been identified due to the technique that advocates the dilution of the synovial fluid. Nevertheless, the sample was collected according to worldwide employed standard methods previously described by other research groups [21,25]. Additionally, even though few proteins’ expression might not have been observed, the expression of new proteins were identified for each pathology group, which enriches the global analysis of this study.

In our analysis, we found that all proteins expressed in the DDWoR group (synovial fluid and disc sample) (Tables 2 and 3) presented many proteins related to inflammatory process (MMP-3, -10, -27 in the disc sample) and apoptosis (mitogen-activated protein kinase 7—MAP3K7) and THADA in synovial fluid). Only the MMP-3 protein was previously associated with TMD [26,27]. These are proteins that highly impact the degeneration process in the TMJ of patients with DDWoR [26,28]. In the MD group, ERBIN protein was found in the disc sample, and it modulates TGFB, which was previously associated with TMJ degeneration [29]. Additionally, unprecedented proteins were seen in the synovial fluid associated with apoptosis (aldehyde dehydrogenase 1 family member L—ALDH1L1) and protection against oxidative stress (HPX), which probably helps diminish the mechanical overload consequences of the dislocation in the TMJ. Regarding CH proteins in the synovial fluid sample, ADH1 catalyzes the oxidation of alcohols to aldehydes, but as seen in Genemania (Figure 3C), it interacts with GHR, which might be involved with the condylar overgrowth. In a previous study, GHR has been injected in rabbits’ TMJ to increase cartilage thickness [30], but it has not been studied as a possible etiology of condylar overgrowth yet.

Additionally, we also found a set of proteins to be common in both synovial fluid and disc samples (Table 4) in the groups DDWoR (chromodomain-helicase-DNA-binding protein 8 and myosin light chain 6B), MD (filamin A and liprin-alpha-1), and in the three groups (enolase 1, 2, 3, myosin heavy chain 16, ribosomal protein L7 like 1 and component of the shield in complex). These proteins were involved in cell matrix adhesion, cellular motor protein, reorganization of cytoskeleton, muscle development and regeneration. Additionally, another group of proteins were identified in both synovial fluid and disc
samples (Table 7), being prevalent in all groups of disc samples. In the DDWoR and MD groups of synovial fluid samples, proteins implicated in apoptosis, inflammatory process, bone formation and resorption, chondrogenesis, wound healing, tissue repair and protection against oxidative stress were found. CH disc samples and MD synovial fluid samples presented, as common proteins, HPX (protection against oxidative stress) and SERPINC1 (biosynthetic pathway of collagen).

LUM is associated with the regulation of collagen fibers and with cell migration. In this study, LUM was present in all disc samples, and it has been pointed out to be elevated when the disc is under stress, as it enhances tissue repair [31]. Ulmner [32] reported that higher levels of LUM in synovial tissue might diminish TMD surgical success. On the other hand, TNC was present in all disc samples and in DDWoR and MD synovial fluid sample, being an important protein in wound healing [33].

Temporomandibular joint discs are fibrocartilaginous discs composed mainly by collagen, glycosaminoglycan and proteoglycans [34]. Studies in human adults and fetuses showed the expression of mainly collagen type I and III in TMJ discs, with type I collagen observed in the posterior band of the articular disc and collagen type III on the inferior surface of the articular disc [35,36]. Moreover, collagen type II synthesis was expressed on the external layer of the TMJ disc [37]. In this study, collagen type IV was identified in MD and CH samples (Table 8), and a previous study observed the presence of collagen type IV in the middle part of fetuses’ TMJ disc, indicating the development of blood vessels [38]. The TMJ disc is an avascular tissue, although under stress it may undergo metaplasia, forming a vascularized fibrous tissue. Collagen type VII was present in all samples, and along with collagen type IV, it has chondroprotective effects against inflammation [39].

Collagen type XII and XIV were present in the disc samples of this study, which have never been identified in this region before in humans. A study identified collagen type XII only in bovine disc samples, which helps maintain collagen type I integrity [40]. Nevertheless, collagen type XIV was also observed in all TMJ disc samples, and it plays an essential structural role in the integrity of collagen type I, mechanical properties, organization, and shape of articular cartilage, which has never been described in the TMJ disc before [41]. This is important information to understand the composition’s strength and weakness of the TMJ disc.

5. Conclusions

In conclusion, many proteins were identified for the first time in the TMJ disc and synovial fluid of the groups DDWoR, MD and CH, leading to the enlightenment of each pathology’s etiology, modulation and progression. Further studies with a greater sample are necessary to evaluate other proteins that might be present in these pathologies as well.
Data Availability Statement: Data is data contained within the article.

Acknowledgments: We thank all individuals that were volunteers for agreeing to participate in this study. A.D.D. was supported by Fundação Araucária scholarship. P.C.T. is supported by the National Council for Scientific and Technological Development, Chamada MCTIC/CNPq No. 28/2018—Universal, Process: 426505/2018-2 for this research. R.H.H. is supported by Fundação Araucária (grant FA409/2016). We thank Alexandra Senegaglia and Paulo R. S. Brofman for the laboratory support at Pontifícia Universidade Católica do Paraná, Brazil.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Slade, G.D.; Ohrbach, R.; Greenspan, J.D.; Fillingim, R.B.; Bair, E.; Sanders, A.E.; Dubner, R.; Diatchenko, L.; Meloto, C.B.; Smith, S.; et al. Painful Temporomandibular Disorder: Decade of Discovery from OPPERA Studies. J. Dent. Res. 2016, 95, 1084–1092. [CrossRef]
2. National Institute of Health. Available online: https://www.nidcr.nih.gov/health-info/tmj (accessed on 3 October 2019).
3. Ohrbach, R.; Dworkin, S.F. The Evolution of TMD Diagnosis: Past, Present, Future. J. Dent. Res. 2016, 95, 1093–1101. [CrossRef]
4. Herr, M.M.; Fries, K.M.; Upton, L.G.; Edsberg, L.E. Potential Biomarkers of Temporomandibular Joint Disorders. Eur. J. Oral Maxillofac. Surg. 2004, 61, 343–352. [CrossRef] [PubMed]
5. West, P.; et al. Painful Temporomandibular Disorder: Decade of Discovery from OPPERA Studies. J. Appl. Oral Sci. 2013, 21, 243–247. [CrossRef] [PubMed]
6. Murphy, M.K.; MacBarb, R.F.; Wong, M.E.; Athanasiou, K.A. Temporomandibular Joint Disorders: A Review of Etiology, Clinical Management, and Tissue Engineering Strategies. Int. J. Oral Maxillofac. Implant. 2013, 28, 393–414. [CrossRef] [PubMed]
7. Mehra, P.; Wolford, L.M. Serum nutrient deficiencies in the patient with complex temporomandibular joint problems. J. Oral Maxillofac. Surg. 2003, 61, 1171–1178. [CrossRef]
8. Cassiano, L.P.; Ventura, T.M.; Silva, C.M.; Leite, A.L.; Magalhães, A.C.; Pessan, J.P.; Buzalaf, M.A.R. Protein Profile of the Acquired Enamel Pellicle after Rinsing with Whole Milk, Fat-Free Milk, and Water: An in vivo Study. Caries Res. 2018, 52, 288–296. [CrossRef]
9. Olate, S.; Netto, H.D.; Rodriguez-Chessa, J.; Alister, J.P.; Albergaria-Barbosa, J.P.; de Moraes, J. Mandible condylar hyperplasia: A review of mechanisms and clinical presentation. J. Appl. Oral Sci. 2019, 27, e20180433. [CrossRef]
10. Fayed, M.M.S.; El-Mangoury, N.H.; El-Bokle, D.N.; Belal, I.A. Occlusal splint therapy and magnetic resonance imaging. World J. Orhtod. 2004, 5, 133–140. [CrossRef]
11. Prechel, U.; Ottl, P.; Ahlers, O.M.; Neff, A. The Treatment of Temporomandibular Joint Dislocation: A Systematic Review. Dtsch. Arztebl. Int. 2018, 115, 59–64. [CrossRef]
12. Nitzan, D.W.; Katsnelson, A.; Bermanis, I.; Brin, I.; Casap, N. The clinical characteristics of condylar hyperplasia: Expe-rience with 61 patients. J. Oral Maxillofac. Surg. 2008, 66, 312–318. [CrossRef] [PubMed]
13. Rajmakers, P.G.; Karssemakers, L.H.; Tuinzing, D.B. Female Predominance and Effect of Gender on Unilateral Condylar Hypertrophy: A Review and Meta-Analysis. J. Oral Maxillofac. Surg. 2012, 70, 72–76. [CrossRef]
14. Dtsch. Arztebl. Int. 2011, 108, 41–47. [CrossRef] [PubMed]
15. Demerjian, G.G.; Sims, A.B.; Stack, B.C. Proteomic signatures of Temporomandibular Joint Disorders (TMD): Toward di-agnostically predictive biomarkers. Bioinformation 2011, 6, 282–284. [CrossRef] [PubMed]
16. Murphy, M.K.; MacBarb, R.F.; Wong, M.E.; Athanasiou, K.A. Temporomandibular Joint Disorders: A Review of Etiology, Clinical Management, and Tissue Engineering Strategies. Int. J. Oral Maxillofac. Implant. 2013, 28, 393–414. [CrossRef] [PubMed]
17. Olate, S.; Netto, H.D.; Rodriguez-Chessa, J.; Alister, J.P.; Albergaria-Barbosa, J.P.; de Moraes, J. Mandible condylar hyperplasia: A review of diagnosis and treatment protocol. Int. J. Clin. Exp. Med. 2013, 6, 727–737. [PubMed]
18. Mehra, P.; Wolford, L.M. Serum nutrient deficiencies in the patient with complex temporomandibular joint problems. Bayl. Univ. Med. Cent. Proc. 2008, 21, 243–247. [CrossRef]
19. Cassiano, L.P.; Ventura, T.M.; Silva, C.M.; Leite, A.L.; Magalhães, A.C.; Pessan, J.P.; Buzalaf, M.A.R. Protein Profile of the Acquired Enamel Pellicle after Rinsing with Whole Milk, Fat-Free Milk, and Water: An in vivo Study. Caries Res. 2018, 52, 288–296. [CrossRef] [PubMed]
20. Alstergren, P.; Benavente, C.; Kopp, S. Interleukin-1beta, interleukin-1 receptor antagonist, and interleukin-1 soluble receptor II in temporomandibular joint synovial fluid from patients with chronic polyarthritis. J. Oral Maxillofac. Surg. 2003, 61, 1171–1178. [CrossRef] [PubMed]
21. Alstergren, P.; Benavente, C.; Kopp, S. Interleukin-1beta, interleukin-1 receptor antagonist, and interleukin-1 soluble receptor II in temporomandibular joint synovial fluid from patients with chronic polyarthritis. J. Oral Maxillofac. Surg. 2003, 61, 1171–1178. [CrossRef] [PubMed]
22. Cassiano, L.P.; Ventura, T.M.; Silva, C.M.; Leite, A.L.; Magalhães, A.C.; Pessan, J.P.; Buzalaf, M.A.R. Protein Profile of the Acquired Enamel Pellicle after Rinsing with Whole Milk, Fat-Free Milk, and Water: An in vivo Study. Caries Res. 2018, 52, 288–296. [CrossRef] [PubMed]
23. Universal Protein Resource. Available online: http://www.uniprot.org (accessed on 5 September 2020).

24. Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. *Nucleic Acids Res.* 2010, 38, 214–220. [CrossRef]

25. Fredriksson, L.; Alstergren, P.; Kopp, S. Tumor Necrosis Factor-α in Temporomandibular Joint Synovial Fluid Predicts Treatment Effects on Pain by Intra-Articular Glucocorticoid Treatment. *Mediat. Inflamm.* 2006, 2006, 59425. [CrossRef]

26. Fujita, H.; Morisugi, T.; Tanaka, Y.; Kawakami, T.; Kiriti, T.; Yoshimura, Y. MMP-3 activation is a hallmark indicating an early change in TMJ disorders, and is related to nitrification. *Int. J. Oral Maxillofac. Surg.* 2009, 38, 70–78. [CrossRef]

27. Tiilikainen, P.; Pirttiniemi, P.; Kainulainen, T.; Pernu, H.; Raustia, A. MMP-3 and -8 expression is found in the condylar surface of temporomandibular joints with internal derangement. *J. Oral Pathol. Med.* 2005, 34, 39–45. [CrossRef] [PubMed]

28. Fujita, H.; Morisugi, T.; Tanaka, Y.; Kawakami, T.; Kirita, T.; Yoshimura, Y. MMP-3 activation is a hallmark indicating an early change in TMJ disorders, and is related to nitration. *Int. J. Oral Maxillofac. Surg.* 2009, 38, 70–78. [CrossRef]

29. Tiilikainen, P.; Pirttiniemi, P.; Kainulainen, T.; Pernu, H.; Raustia, A. MMP-3 and -8 expression is found in the condylar surface of temporomandibular joints with internal derangement. *J. Oral Pathol. Med.* 2005, 34, 39–45. [CrossRef] [PubMed]

30. Loreto, C.; Filetti, V.; Almeida, L.E.; Rosa, G.R.; Leonardi, R.; Grippaudo, C.; Giudice, A. MMP-7 and MMP-9 are over-expressed in the synovial tissue from severe temporomandibular joint dysfunction. *Eur. J. Histochem.* 2020, 64, 3113. [CrossRef]

31. Loreto, C.; Filetti, V.; Almeida, L.E.; Rosa, G.R.; Leonardi, R.; Grippaudo, C.; Giudice, A. MMP-7 and MMP-9 are over-expressed in the synovial tissue from severe temporomandibular joint dysfunction. *Eur. J. Histochem.* 2020, 64, 3113. [CrossRef] [PubMed]

32. Berkovitz, B.K.B.; Holland, G.R.; Moxham, B.J. *Oral Anatomy, Histology and Embryology*, 4th ed.; Mosby: St. Louis, MD, USA, 2009.

33. Gage, J.; Virdi, A.; Trifftt, J.; Howlett, C.; Francis, M. Presence of type III collagen in disc attachments of human temporomandibular joints. *Arch. Oral Biol.* 1990, 35, 283–288. [CrossRef]

34. De Moraes, L.O.; Lodi, F.R.; Gomes, T.S.; Marques, S.R.; Oshima, C.T.; Lancellotti, C.L.; Rodriguez-Vázquez, J.F.; Mé-rida-Velasco, J.R.; Alonso, L.G. Immunohistochemical expression of types I and III collagen antibodies in the tempomandibular joint disc of human foetuses. *Eur. J. Histochem.* 2011, 55, 24. [CrossRef]

35. Kondoh, T.; Hamada, Y.; Iino, M.; Takahashi, T.; Kikuchi, T.; Fujikawa, K.; Seto, K. Regional differences of type II collagen synthesis in the human temporomandibular joint disc: Immunolocalization study of carboxy-terminal type II procollagen peptide (chondrocalcin). *Arch. Oral Biol.* 2003, 48, 621–625. [CrossRef]

36. De Moraes, L.O.; Lodi, F.R.; Gomes, T.S.; Marques, S.R.; Oshima, C.T.; Lancellotti, C.L.; Rodriguez-Vázquez, J.F.; Mé-rida-Velasco, J.R.; Alonso, L.G. Immunohistochemical expression of types I and III collagen antibodies in the tempomandibular joint disc of human foetuses. *Eur. J. Histochem.* 2011, 55, 24. [CrossRef]

37. De Moraes, L.O.; Lodi, F.R.; Gomes, T.S.; Marques, S.R.; Fernandes Junior, J.A.; Oshima, C.T.; Alonso, L.G. Immunohistochemical expression of collagen type IV antibody in the articular disc of the temporomandibular joint of human foetuses. *Eur. J. Histochem.* 2011, 55, 24. [CrossRef]

38. De Moraes, L.O.; Lodi, F.R.; Gomes, T.S.; Marques, S.R.; Fernandes Junior, J.A.; Oshima, C.T.; Alonso, L.G. Immunohistochemical expression of collagen type IV antibody in the articular disc of the temporomandibular joint of human foetuses. *Eur. J. Histochem.* 2011, 55, 24. [CrossRef]

39. Chu, W.C.; Zhang, S.; Sng, T.J.; Ong, Y.J.; Tan, W.-L.; Ang, V.Y.; Foldager, C.B.; Toh, W.S. Distribution of pericellular matrix molecules in the temporomandibular joint and their chondroprotective effects against inflammation. *Int. J. Oral Sci.* 2017, 9, 43–52. [CrossRef] [PubMed]

40. Deng, M.H.; Xu, J.; Cai, H.X.; Fang, W.; Long, X. Effect of temporomandibular joint disc perforation on expression of type IV collagen in temporomandibular joint disc cells. *Chin. J. Stomatol.* 2017, 52, 274–277.

41. Ciavarella, D.; Mastrovincenzo, M.; Sabatucci, A.; Campisi, G.; Di Cosola, M.; Suriano, M.; Muzzio, L.L. Primary and secondary prevention procedures of temporo-mandibular joint disease in the evolutive age. *Minerva Pediatr.* 2009, 61, 93–97.