Side effects of chaperone gene co-expression in recombinant protein production

Mónica Martínez-Alonso1,2,3, Elena García-Fruitós1,2,3, Neus Ferrer-Miralles1,2,3, Ursula Rinas4,5, Antonio Villaverde1,2,3*

Abstract
Insufficient availability of molecular chaperones is observed as a major bottleneck for proper protein folding in recombinant protein production. Therefore, co-production of selected sets of cell chaperones along with foreign polypeptides is a common approach to increase the yield of properly folded, recombinant proteins in bacterial cell factories. However, unbalanced amounts of folding modulators handling folding-reluctant protein species might instead trigger undesired proteolytic activities, detrimental regarding recombinant protein stability, quality and yield. This minireview summarizes the most recent observations of chaperone-linked negative side effects, mostly focusing on DnaK and GroEL sets, when using these proteins as folding assistant agents. These events are discussed in the context of the complexity of the cell quality network and the consequent intricacy of the physiological responses triggered by protein misfolding.

Review
Poor product quality is a common event in the biological synthesis of target proteins and a major cause for recombinant enzymes and pharmaceuticals to be excluded from the market [1]. Recombinant protein misfolding and the triggering of the consequent cell responses are both general events among microbial cell factories [2]. Although what protein quality means might be highly controversial [3-5], it is in general assumed that the soluble protein version, despite the potential occurrence of soluble aggregates [4,6-10] and the presence of functional protein species in protein aggregates [4,11-15], is the most desirable form of the final product of a protein production process. Traditionally, gaining solubility has been approached by tuning-down the production rate (e.g. by decreasing temperature), reducing recombinant gene dosage or the strength of the promoter, or supplying additional amounts of host chaperones, as they are seen as limiting during the overproduction of misfolding-prone protein species [16,17].

Under the high substrate load context of recombinant cells, chaperones, main players in the quality control system, might be over-titrated and therefore their protein targets excluded from folding pathways leading to the native conformation, accumulating as refractile particles called inclusion bodies (IBs) [13,18]. Therefore, several individual chaperones or chaperone sets have been selected for overproduction along with the target recombinant protein. In Escherichia coli (E. coli), most of these approaches have involved the two main cytosolic chaperones, namely DnaK and GroEL, as well as some of their co-chaperones [6,19]. However, the fine examination of physiological responses to protein production in bacteria and other microorganisms [2,10,20-22], has revealed that chaperone co-production, as a quality-addressed strategy, might eventually show undesirable side effects regarding protein yield and quality (Table 1). Here we summarize the main indications pointing out the chaperone side-effects, mainly focusing on DnaK, GroEL and their cooperating folding modulators.

DnaK
DnaK, homolog of the eukaryotic Hsp70, is the major cytosolic chaperone in E. coli, and plays an important role in the control of conformational quality. In fact, DnaK is involved in different activities such as prevention of aggregation, folding and refolding of misfolded species and protein disaggregation [23-27]. For this reason, DnaK has often been used in co-production approaches, either together with its co-chaperone DnaJ...
over-expression of Co-chaperones have been observed as necessary because they enhance solubility of the recombinant protein [37-40]. DnaK and DnaJ, for instance, are essential for the folding of many proteins [20,21] or both with DnaJ and their nucleotide exchange factor GrpE [6,29-36] to minimize aggregation and to control the degradation of aggregation-prone GFP. Proteolysis, reduced yield and lower conformational quality are independently considered.

Moreover, because DnaK is also a negative regulator of the heat shock response [50], an enhanced concentration of DnaK above physiological levels can result in down-regulation of other heat shock proteins. Actually, decreased levels of GroEL chaperone have been reported in DnaK-overproducing cells [28,51]. Thus, taking into account that selection of the appropriate set of folding modulators is still a trial and error process, this scenario may then result in a more pronounced folding impairment for proteins that not only require interaction with DnaK but also with the GroEL system.

GroEL(S)

The GroELS heat shock chaperone team is of vital importance for *E. coli* with GroEL being an essential protein for growth at all temperatures [52]. Co-production of this chaperone team has been widely applied to improve the solubility of proteins which tend to form IBs, in many cases with remarkable success [37,38,53,54]. However, also failures of GroELS to improve solubility have been reported, mostly the impact of GroELS was neutral, namely without increasing the amount of properly folded protein [55,56] or decreasing the amount of IB-deposited target protein [57]. In particular, failures of GroELS co-production for improved target protein solubility have been observed when aiming for production of large proteins [55]. This is a comprehensible finding as large proteins can not enter the cavity formed by the GroEL chaperone [58] thus leading to a preference of GroEL for substrate proteins in the molecular mass range of 10/20 - 55/60 kDa [59-61].

In addition, past studies also indicated that GroEL is involved in promoting proteolytic degradation through target protein binding [62-65]. In fact, the natural role of GroEL not only includes chaperoning functions but also encompasses a vital role in fostering proteolytic degradation.

Table 1 Main undesired side effects observed during chaperone co-production on the quality and yield of recombinant proteins produced in *E. coli*, as exemplified by representative studies.

Chaperone/Chaperone set	Recombinant protein	Effects on protein production	References
DnaKIE	Horse radish peroxidase	Growth inhibition	[31]
DnaKJ	Aggregation-prone GFP	Proteolysis, reduced yield and lower conformational quality	[20,21]
DnaKIE and/or Trigger Factor	Guinea pig liver transglutaminase	Reduced specific activity	[74]
DnaKIE, ClpB and GroELS	Basic fibroblast growth factor	Reduced yield	[22]
DnaKIE-GroELS-ClpB and Trigger Factor	Human protein kinase catalytic domains	Increased soluble aggregate formation	[43]
GroELS	Basic fibroblast growth factor	Proteolysis, reduced yield	[22]
Trigger Factor and GroELS	N-acyl-D-amino acid amidohydrolases	Reduced specific activity	[75]
GroELS	Fab Antibody Fragment	Reduced yield	[46]
GroELS	scFv antibody fragment	Reduced solubility	[76]
GroELS	Cyclodextrin glycosyltransferase	Reduced specific activity	[32]
degradation. For example, GroEL plays a central role in promoting proteolytic degradation of a regulatory protein to reduce potentially detrimental effects of nontuned gene expression [66]. In addition, GroEL is also involved in "protein trash removal", namely fostering proteolytic degradation of endogenous protein aggregates generated during heat shock [67].

A detailed study on the involvement of GroEL in target protein degradation was carried out during temperature-induced production of basic fibroblast growth factor [22]. Temperature-induced production leads to the formation of soluble growth factor and growth factor deposited in the form of IBs [68]. Protein purified from the soluble cell fraction of temperature-induced cells is biologically active as determined by mitogenic activity measurements [69]. Co-production of GroEL does not prevent IB formation but leads to complete IB dissolution followed by proteolytic degradation of basic fibroblast growth factor [22]. In this case, IB dissolution followed by proteolytic degradation of the target protein was more efficient with GroEL than with the DnaKJ/GrpE system.

Solving chaperone-promoted proteolysis
Despite the mentioned reports indicating DnaK-induced proteolysis upon recombinant protein production, it is difficult to find in the literature any attempt to solve this problem. Even in *E. coli* genetic backgrounds knockout for the main cytosolic protease gene (Lon), proteolytic activity is still a hurdle to recombinant protein production probably by induction of other proteolytic systems [70]. However, in a recent study [71] we addressed this issue by re-hosting DnaK and its co-chaperone DnaJ into a system lacking orthologs of the

Figure 1 Aimed to increase recombinant quality and solubility, co-production of individual chaperones or chaperone sets has been a common strategy since the role of these proteins in quality control has been solved, mainly involving protein holding to prevent aggregation, folding or refolding activities and disaggregation from inclusion bodies. Many studies report on the positive effects of chaperone gene co-expression, regarding solubility, yield, secretion ability and specific activity (green box). However, it is also true that this strategy has been largely controversial and the eventual success seen as highly product- and/or process-dependent. Also, more recent studies reveal that an excess of certain chaperones has negative effects on protein yield and other parameters related to protein quality (red box), mainly due to the role of chaperones in promoting proteolysis of folding reluctant proteins. This promotion of proteolysis seems to be mechanistically linked to the disaggregation activities ruled by DnaK [21,77].
bacterial proteases responsible for the protein degradation mediated by DnaK. The goal of such approach was to uncouple the valuable folding activity of DnaK from its other activities linked to proteolysis. Because DnaK has been highly conserved in evolution (DnaK homologs can be found in all kingdoms of life) the reasoning was that its folding activity could be conserved in other organisms, but not so the associated proteolytic activity because it is dependent on the bacterial proteases Lon and ClpP. Insect cells were chosen as the host for the E. coli DnaK chaperone pair, which was introduced in the production system upon infection of the cells with recombinant baculovirus vectors carrying the corresponding genes. In this eukaryotic system, chaperone gene co-expression resulted in enhanced yield and biological activity of a reporter protein, which also showed increased stability in presence of the bacterial chaperones, indicative of absence of DnaK-mediated proteolysis. This was in marked contrast to what had previously been described in E. coli for the production of the same protein and chaperone combination [21]. The same study also showed positive effects of the set of bacterial folding modulators on the production of three other recombinant proteins in the insect cell-baculovirus system, namely VP1 and VP2 from the capsid of Foot-and-Mouth Disease Virus, and human α-galactosidase. A later, related study [72] extended this approach to an in vivo model by using the recombinant baculoviruses encoding the bacterial chaperones to infect insect larvae, a system of use as a biofactory but where yields are usually reduced due to protein aggregation. In this system, absence of DnaK-induced proteolysis was also evident, and co-production of the bacterial chaperones boosted protein solubility by almost 100%. Taken together, these studies not only show how the effective discrimination of activities has been a suitable strategy to exclude the undesirable effects of the DnaK chaperone pair, but also prove that bacterial folding modulators are functional in other recombinant systems.

Conclusions

Despite their proven success as folding modulators in protein production processes, bacterial chaperones (mainly DnaK and GroEL and associated cofactors) also show undesired side effects related to their activities in promoting proteolysis of target proteins (Figure 1). This fact might account, at least partially, for the inconsistent results reported upon the use of these chaperones in years of exploitation of microbial cell factories for protein production. Because of the lack of coincidence and the divergent control of protein solubility and quality observed in bacteria [3,21], chaperone co-production might have enhanced solubility as a consequence of an undesired reduction of recombinant protein yield. Probably, most failures of chaperone gene co-expression on target protein solubility have not been reported in the scientific literature (including our own observations) and, in some cases, a supposed positive effect of chaperone co-production might just reflect the presence of soluble aggregates but not of functional protein [43]. Moreover, over-production of chaperones as over-production of any other protein can contribute to the metabolic burden thereby leading to growth rate reduction as well as decreased final biomass yields [73]. As a first example, re-hosting of bacterial chaperones has proven to be a way to disconnect folding assistance and proteolysis. However, further studies are still needed to explore other alternative ways to systematically minimize chaperone side effects in protein production, keeping their desired activities on folding-reluctant recombinant proteins.

Acknowledgements

The authors appreciate the financial support through MEC (BIO2007-61194). We also appreciate the support from: The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Spain), an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolidador Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Antonio Villaverde has been granted with an ICREA ACADÈMIA award (from ICREA, Catalonia, Spain).

Author details

1Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08195 Barcelona, Spain. 2Department of Genetics and Microbiology, Universitat Autònoma de Barcelona,08193, Bellaterra Barcelona, Spain. 3CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain. 4Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany. 5Leibniz University Hannover, Life Science - Technical Chemistry, Callinstr. 5, 30167 Hannover, Germany.

Authors’ contributions

All authors have contributed to this review from their complementing areas of expertise and have read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 15 July 2010 Accepted: 2 September 2010 Published: 2 September 2010

References

1. Ferrer-Miralles N, Domingo-Espin J, Cocherero JA, Vazquez E, Villaverde A: Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 2009, 8:17.
2. Gasser B, Saloheimo M, Rinas U, Dragostis M, Rodriguez-Carmona E, Baumann K, et al: Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008, 7:11.
3. Gonzalez-Montalban N, Garcia-Frutos E, Villaverde A: Recombinant protein solubility-does more mean better? Nat Biotechnol 2007, 25:718-720.
4. Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Frutos E, Villaverde A: Learning about protein solubility from bacterial inclusion bodies. Microb Cell Fact 2009, 8:4.
5. de Marco A: Minimal information: an urgent need to assess the functional reliability of recombinant proteins used in biological experiments. Microb Cell Fact 2008, 7:20.
6. de Marco A, De Marco V: Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning. J Biotechnol 2004, 109:45-52.
7. Toledo-Rubio V, Vazquez E, Platas G, Domingo-Espin J, Unzueta U, Steinkamp E, et al. Protein aggregation and soluble aggregate formation screened by a fast microdialysis assay. J Biomed Screen 2010, 15:453-457.

8. de Marco A, Schroedel A. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem 2005, 6:10.

9. Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Frutos E, Villaverde A. The functional quality of soluble recombinant polypeptides produced in Escherichia coli is defined by a wide conformational spectrum. Appl Environ Microbiol 2006, 72:1353-1358.

10. Martinez-Alonso M, Garcia-Frutos E, Villaverde A. Yield, solubility, and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol Bioeng 2008, 101:1353-1358.

11. Jesusear S, Gaberc-Porekar V, Fonda J, Podobnik B, Grdaladnik J, Menart V. Production of nonclassical inclusion bodies from which correctly folded proteins can be extracted. Biotechnol Prog 2005, 21:652-659.

12. Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R. Engineering inclusion bodies for non denaturing extraction of functional proteins. Microbiol Cell Fact 2008, 7:34.

13. Garcia-Frutos E, Villaverde A. Friendly production of bacterial inclusion bodies. Korean J Chem Eng 2010, 27:385-389.

14. Garcia-Frutos E, Aris A, Villaverde A. Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 2007, 73:289-294.

15. Garcia-Frutos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, et al. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 2005, 4:37.

16. Soensens HP, Mørtensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 2005, 4:1.

17. Soensens HP, Mørtensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 2005, 115:113-128.

18. Villaverde A, Canto MM. Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 2003, 25:1385-1395.

19. de Marco A. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2007, 2:2632-2639.

20. Martinez-Alonso M, Vera A, Villaverde A. Role of the chaperone DnaK in protein solubility and conformational quality in inclusion body-forming Escherichia coli cells. FEBS Lett 2007, 573:187-195.

21. Garcia-Frutos E, Martinez-Alonso M, Gonzalez-Montalban N, Valls M, Mattanovich D, Villaverde A. Divergent Genetic Control of Protein Solubility and Conformational Quality in Escherichia coli. J Mol Biol 2007, 374:195-205.

22. Rinas U, Hoffmann F, Betiku E, Estape D, Marten S. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J Biotechnol 2007, 127:244-257.

23. Gragerov A, Nudler E, Komissarova N, Gaitanaris GA, Gottesman ME, Nikiforov V. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci USA 1992, 89:10341-10344.

24. Langen T, Lu F, Eichk H, Flanagan J, Hayer MK, Hardt FL. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 1992, 356:683-689.

25. Mogk A, Deuring E, Vordervollbecke S, Vierling E, Buka B. Small heat shock proteins, CspB and the Dnak system form a functional triad in reversing protein aggregation. Mol Microbiol 2003, 50:585-595.

26. Thomas JG, Baneyx F. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J Biol Chem 1996, 271:11414-11417.

27. Thomas JG, Baneyx F. Protein folding in the cytoplasm of Escherichia coli: requirements for the Dnak-DnaJ-GroEL and GroEL-GroES molecular chaperone machines. Mol Microbiol 1996, 21:1185-1196.

28. Schleker C, Tews I, Buka B, Mogk A. Solubilization of aggregated proteins by CspB/DnaJ relies on the continuous extraction of unfolded polypeptides. FEBS Lett 2004, 578:351-356.

29. Thomas JG, Baneyx F. Protein folding in the cytoplasm of Escherichia coli: requirements for the Dnak-DnaJ-GroEL and GroEL-GroES molecular chaperone machines. Mol Microbiol 1996, 21:1185-1196.

30. Thomas JG, Baneyx F. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J Biol Chem 1996, 271:11414-11417.
et al

et al

et al

et al

Curr Opin Biotechnol

2010

Enzyme Microb Technol

are essential for bacterial growth at all

heat shock

2010

Re-hosting bacterial chaperones for high-quality protein

Rapid degradation of an abnormal

protein in

2005,

groEL

1989,

groES

1995,

Microbial Cell Factories

Combined effects of the signal

cells.

402

proceeds through repeated cycles of

Side effects of chaperone

Two-step chromatographic procedure for purification

The

and promotes its binding to certain

Co-

and

26

2

122

269

Molecular basis for regulation of the heat shock

189

46

Prep Biochem Biotechnol

Cell

1997,

involves the chaperones GroEL and

Localization of chaperones DnaK and GroEL in

J Biol Chem

Soluble expression of cloned phage K11 RNA

Escherichia coli

Expression of correctly folded proteins in

thioredoxin.

1999.

Co-

thioredoxin.

16

1995,

19

60. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU:

58. Sakikawa C, Taguchi H, Makino Y, Yoshida M:

59. Ewalt KL, Hendrick JP, Houry WA, Hartl FU:

54. Georgiou G, Valax P: Expression of correctly folded proteins in

Escherichia coli.

Curr Opin Biotechnol 1996, 7:190-197.

51. Tian J, Zou HC, Yang JH, Yin DQ: Fusion expression of human pro-

urokinase with E. coli thioredoxin. Biochem Mol Biol Int 1998, 46:479-486.

50. Sun AL, Hua ZC, Yao J, Yang YH, Yin DQ: Fusion expression of human pro-

urokinase with E. coli thioredoxin. Biochem Mol Biol Int 1998, 46:479-486.

53. Kolaj D, Spada S, Robin S, Wall JG. Use of folding modulators to improve

heterologous protein production in Escherichia coli. Microb Cell Fact 2009, 8:9.

52. Fayet O, Ziegelhofer T, Georgopoulos C: Two-step chromatographic procedure for purification

of GroEL from E. coli.

Protein Expr Purif 1999, 16:103-108.

55. Han KG, Lee SS, Kang C: Soluble expression of cloned phage K11 RNA polymerase gene in

Escherichia coli at a low temperature. Protein Expr Purif 1999, 16:103-108.

56. Moon HJ, Jeya M, Yu IS, Ji H, Oh DK, Lee JK: Chaperone-aided expression of

lipA and lppA followed by the increase in u-lipoic acid production. Appl Microbiol Biotechnol 2008, 83:329-337.

57. Sun AL, Hua ZC, Yao J, Yang YH, Yin DQ: Fusion expression of human pro-

urokinase with E. coli thioredoxin. Biochem Mol Biol Int 1998, 46:479-486.

57. Sun AL, Hua ZC, Yao J, Yang YH, Yin DQ: Fusion expression of human pro-

urokinase with E. coli thioredoxin. Biochem Mol Biol Int 1998, 46:479-486.

58. Sakikawa C, Taguchi H, Makino Y, Yoshida M: On the maximum size of

proteins to stay and fold in the cavity of GroEL under GroES.

J Biol Chem 1999, 274:21251-21256.

59. Ewalt KL, Hendrick JP, Houry WA, Hartl FU: In vivo observation of

polypeptide flux through the bacterial chaperonin system. Cell 1997, 90:491-500.

60. Houry WA, Frishman D, Eckerstrom C, Lottspeich F, Hartl FU: Identification of

in vivo substrates of the chaperonin GroEL. Nature 1999, 402:147-154.

61. Kemner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, et al: Proteome-wide analysis of chaperonin-dependent protein folding in

Escherichia coli. Cell 2005, 122:209-220.

62. Kandror O, Busson L, Sherman M, Goldberg AL: Rapid degradation of an

abnormal protein in Escherichia coli involves the chaperones GroEL and

GroES. J Biol Chem 1994, 269:23575-23582.

63. Kandror O, Sherman M, Goldberg A: Rapid degradation of an abnormal protein in

Escherichia coli proceeds through repeated cycles of

association with GroEL. J Biol Chem 1999, 274:37743-37749.

64. Kandror O, Sherman M, Rhode M, Goldberg AL: Trigger factor is involved in

GroEL-dependent protein degradation in Escherichia coli and

promotes binding of GroEL to unfolded proteins. EMBO J 1995, 14:6021-6027.

65. Kandror O, Sherman M, Moeschell R, Goldberg AL: Trigger factor

associates with GroEL in vivo and promotes its binding to certain

polypeptides. J Biol Chem 1997, 272:1750-1754.

66. Zahrl D, Wagner A, Tschermer M, Koraimann G: GroEL plays a central role in

stress-induced negative regulation of bacterial conjugation by

promoting proteolytic degradation of the activator protein TraJ. J

Bacteriol 2007, 189:5885-5894.

67. Kedzeska S, Staniszewska M, Wiegrzyn A, Taylor A: The role of DnaK/DnaJ

and GroEL/GroES systems in the removal of endogenous proteins

aggregated by heat-shock from Escherichia coli cells. FEBS Lett 1999, 446:331-337.

68. Seeger A, Schneppe B, McCarthy JEG, Deckwer WD, Rinas U: Comparison of temperature- and isopropyl-β-D-thiogalacto-pyranoside-induced synthesis of basic fibroblast growth factor in high-cell-density cultures

of recombinant Escherichia coli. Enzyme Microb Technol 1995, 17:947-953.

69. Seeger A, Rinas U: Two-step chromatographic procedure for purification of

basic fibroblast growth factor from recombinant Escherichia coli and

characterization of the equilibrium parameters of adsorption. J Chromatogr A 1996, 746:17-24.

70. Straus DB, Walker WA, Gross CA: Escherichia coli heat shock gene mutants

are defective in proteolysis. Genes Dev 1988, 2:1851-1858.

71. Martinez-Alonso M, Toledo-Rubio V, Noad R, Unzueta U, Ferrer-Miralles N, Roy P, et al: Re-hosting bacterial chaperones for high-quality protein

production. Appl Environ Microbiol 2009.

72. Martinez-Alonso M, Gomez-Sebastian S, Escrivan JM, Saiz JC, Ferrer-

Miralles N, Villaverde A: DnaK/DnaJ-assisted recombinant protein

production in Trichoplusia ni larvae. Appl Microbiol Biotechnol 2010, 86:633-639.

73. Berges H, Josepht-Liauzun E, Fayette O: Combined effects of the signal

sequence and the major chaperone proteins on the export of human
cytokines in Escherichia coli. Appl Environ Microbiol 1996, 62:55-60.

74. Iura K, Kokubu T, Natsuka S, Ishikawa A, Adachi M, Nishihara K, et al: Co-

expression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Prep Biochem Biotechnol 2002, 32:189-205.

75. Yoshimune K, Ninomiya Y, Wakyama M, Monguchi M: Molecular

chaperones facilitate the soluble expression of N-acetyl-D-amino acid

amidohydrolases in Escherichia coli. J Ind Microbiol Biotechnol 2004, 31:421-426.

76. Hu X, O’Hara L, White S, Magner E, Kane M, Wall JG: Optimisation of

production of a domastic acid-binding scFv antibody fragment in

Escherichia coli using molecular chaperones and functional

immobilisation on a mesoporous silicate support. Protein Expr Purif 2007, 52:194-201.

77. Carrio MM, Villaverde A: Localization of chaperones DnaK and GroEL in

bacterial inclusion bodies. J Bacteriol 2005, 187:3599-3601.

Cite this article as: Martínez-Alonso et al: Side effects of chaperone
gene co-expression in recombinant protein production. Microbial Cell Factories 2010 9:64.

doi:10.1186/1475-2859-9-64

Inclusion in PubMed, CAS, Scopus and Google Scholar

Immediate publication on acceptance

No space constraints or color figure charges

Convenient online submission

Research which is freely available for redistribution