Molecular-targeting therapies against quantitative abnormalities in gene expression with malignant tumors

Toshiyuki Sakai and Yoshihiro Sowa

Key words
Carcinogenesis, molecular-targeting therapies, quantitative abnormalities, RB, trametinib

Correspondence
Toshiyuki Sakai, Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyoku-ku, Kyoto 602-8566, Japan.
Tel: +81-75-251-5339; Fax: +81-75-241-0792;
E-mail: tsakai@koto.kpu-m.ac.jp

Funding Information
No sources of funding were declared for this study

Accepted February 4, 2017
Cancer Sci 108 (2017) 570–573
doi: 10.1111/cas.13188

T

here are a variety of complicated carcinogenic mechanisms. Among them, exon mutations activating oncogenes and inactivating tumor-suppressor genes resulting in qualitative abnormalities of the product proteins are important. One more essential mechanism is the inactivation of promoter activities of tumor-suppressor genes by genetic or epigenetic changes resulting in quantitative abnormalities of the product proteins. Interestingly, even qualitative abnormalities of oncogenes or tumor-suppressor genes finally result in quantitative abnormalities in gene expression as described below.

Silencing of RB gene expression. The RB gene is a representative tumor-suppressor gene, and mutations and deletions of the exon regions of the gene are observed in not only retinoblastoma, but also many types of malignant tumors. Sakai et al. reported two types of mutations in the promoter region of the RB gene in hereditary retinoblastoma patients (Fig. 1). The mutations in the RB promoter region markedly decreased the promoter activity, suggesting that the quantitative abnormality is also important in carcinogenesis. Furthermore, Sakai et al. and another group also found that the promoter region of the RB gene was hypermethylated in retinoblastoma tumors (Fig. 1). Subsequently, Ohtani et al. demonstrated that the hypermethylation of the RB promoter region reduced its promoter activity by dissociation of the pivotal transcription factors, activating transcription factor (ATF) and the retinoblastoma binding factor 1 (RBF-1/E4TF1/GABP) from the core RB promoter region (Fig. 1), which was the first demonstration of epigenetic silencing of tumor-suppressor genes. The results indicate that epigenetic abnormalities can cause cancer and that quantitative abnormalities in tumor suppressor genes are essential for cancer. We therefore hypothesized that agents upregulating the expression of silenced tumor-suppressor genes may be promising for novel chemotherapeutics.

On the other hand, the p16 gene is also a representative tumor-suppressor gene and epigenetically silenced by hypermethylation in many types of malignant tumors. Indeed, a DNA methyltransferase (DNMT) inhibitor, decitabine, induced the expression of p16 in lung cancer cells. At present, decitabine (trade name Vidaza) and another DNMT inhibitor, azacitidine (trade name Vidaza), are used in the treatment of myelodysplastic syndrome. This is consistent with our original hypothesis.

Inactivation of RB protein in many malignancies, which finally increases expression of EZF-driven genes causing cancer. In addition to inactivation of RB promoter activity, RB protein is also inactivated by phosphorylation. This phosphorylation is caused by CDKs, for example, CDK2, CDK4 and CDK6 with their corresponding cyclins, and CDK inhibitors (CKIs), such as p21, p27, p16, p15, p18 and p19, repress the phosphorylation (Fig. 2).
As shown in Fig. 2, RB protein is inactivated by activated oncogenes and inactivated tumor-suppressor genes. For example, RAS genes, such as H-RAS, K-RAS and N-RAS, are representative oncogenes, and the active mutations are observed in a variety of types of malignant tumors. As RAS activates both the mitogen-activated protein kinase (MAPK) pathway, including RAF, MEK and ERK, and the PI3K/AKT/mTOR pathway, mutant RAS constitutively enhances CDK activity through the upregulation of cyclin D1 expression (Fig. 2). Oncogenic receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (Her2), and so on, are transmembrane kinases that act as receptors for extracellular growth factors. As RTKs activate RAS function, RTKs also have critical functions in cell proliferation. Indeed, amplification and/or active mutations in RTKs, such as EGFR and Her2, are observed in malignant tumors, resulting in the enhancement of CDK activity with inactivation of RB (Fig. 2). In addition, inactivation of the representative tumor-suppressor genes p53 and p16, the most commonly inactivated tumor-suppressor genes, also enhance CDK activity with RB inactivation (Fig. 2).

Taken together, activation of most oncogenes and inactivation of most tumor-suppressor genes finally activate CDK activity, thereby converting RB protein to the phosphorylated inactivated form. Unphosphorylated RB protein is an active form that binds to the transcription factor E2F. E2F can transactivate the genes accelerating the cells from G1 phase to S phase at the restriction point (R point), such as dihydrofolate reductase, myc, cyclin E, thymidylate synthase and DNA polymerase α, resulting in cellular proliferation. In summary, carcinogenesis is caused by the quantitative abnormalities in gene expression with most malignant tumors.

As CDK activity is regulated by upstream molecules, as mentioned above, we focused on the direct measurement of the CDK activity in clinical samples. As a result, CDK profiling technology, which was named “Cell Cycle Profiling (C2P)” was established in collaboration with Sysmex corporation, Kobe Japan. Using C2P technology, we found that CDK2 activity in more than 70% of gastric cancer and colon cancer tissues was higher than that in adjacent normal tissues. This result reflects that various qualitative and/or quantitative abnormalities of oncogenes and/or tumor-suppressor genes in malignant tumor cells converge on the elevation of CDK activity, resulting in inactivation of RB protein.

Inactivation of tumor-suppressor gene p53 decreases expression of p53 target genes causing malignancy, and histone deacetylase (HDAC) inhibitors reactivate the expressions of the genes suppressing tumor growth. In addition to RB, p53 is also a representative tumor suppressor gene inactivated in a variety of malignant tumors. As p53 protein acts as a transcription factor and activates the expression of cell cycle-, DNA repair- and apoptosis-regulating genes as a tumor suppressor, the expression of the target genes is decreased in p53-mutant malignant tumor cells. Therefore, we tried to screen agents to upregulate the expression of the target genes. First, we found that butyrate induces the expression of a CDK inhibitor, p21, through the Sp1 sites of the promoter in a p53-independent manner and converts RB protein to the unphosphorylated active form with G1-cell cycle arrest. Subsequently, we demonstrated that HDAC inhibitors also induce the expression of p21 in a similar manner (Fig. 3). We also found that an HDAC inhibitor enhances the promoter activities of other p53 target genes, gadd45 and DR5, in p53-mutated cancer cells in a p53-independent pathway (Fig. 3). Taken together, when expression of p53 target genes is not induced in p53-mutant cancer cells, HDAC inhibitors can reactivate expression, thereby suppressing cancer. The data above strongly suggest that carcinogenesis can be caused by quantitative abnormalities in gene expression and molecular-targeting agents, such as HDAC inhibitors, can normalize the quantitative abnormalities.

As mentioned previously, the p16 gene is another important tumor-suppressor gene inactivated in a variety of malignant tumors, and p16 converts RB protein to the unphosphorylated active form as a CDK inhibitor. The p16 gene belongs to the INK4 family genes, and we hypothesized that upregulation of other family genes, such as p15, p18, or p19, may compensate for the function of inactivated p16. We then found that HDAC inhibitors can activate the promoter activities of the family genes, such as p15, p18, and p19, converting RB protein to the unphosphorylated active form compensating for inactivated p16 (Fig. 3). The results also demonstrate that quantitative normalization by molecular-targeting agents is useful for treating malignant tumors.

Fig. 2. Activated oncogenes and inactivated tumor-suppressor genes finally activate CDK activity with inactivation of RB function.

Fig. 3. Histone deacetylase (HDAC) inhibitors can normalize the quantitative abnormality in gene expression with p53-mutated tumors, and can compensate for the inactivated p16 function by increasing the expression of the family genes.
In carcinogenesis, both qualitative and quantitative abnormalities are important. However, we focused on the importance of quantitative abnormalities in gene expression because even a variety of qualitative abnormalities finally can also cause quantitative abnormalities in gene expression and molecular-targeting agents could normalize the quantitative abnormalities. In addition, in our experience, we actually discovered very effective molecular-targeting agents with our original screening system searching for agents regulating the quantity of several molecules. We therefore emphasize the importance of quantitative abnormalities in gene expression with carcinogenesis and regulating the quantitative abnormalities by effective molecular-targeting agents.

Disclosure Statement

The authors have no conflict of interest to declare.

References

1. Sakai T, Ohtani N, McGee TL, Robbins PD, Dryja TP. Oncogenic germ-line mutations in Sp1 and ATM sites in the human retinoblastoma gene. Nature 1991; 353: 83–6.
2. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 1991; 48: 880–8.
3. Greger V, Debus N, Lohmann D, Hopping W, Passarge E, Horsthemke B. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet 1994; 94: 491–6.
4. Ohtani-Fujita N, Dryja TP. Rapaport JM et al. Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet Cytogenet 1997; 98: 43–9.
5. Ohtani-Fujita N, Fujita T, Aoki A, Osifchin NE, Robbins PD, Sakai T. CyclinD1 overexpression by activated cyclinD1 promoter activity in the human retinoblastoma tumor-suppressor gene. Oncogene 1993; 8: 1063–7.
6. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4: 143–53.
7. Hattori N, Ushijima T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem Biophys Res Commun 2014; 455: 3–9.
8. Merlo A, Herman JG, Mao L et al. S′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995; 1: 886–92.
9. Herman JG, Merlo A, Mao L et al. Inactivation of the CDKN2/p16/MTS1 gene frequently associated with aberrant DNA methylation in all common human cancers, Cancer Res 1995; 55: 4525–30.
10. Gonzalez-Zulueta M, Bender CM, Yang AS et al. Methylation of the S′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 1995; 55: 4531–5.
11. Otterson GA, Khleif SN, Chen W, Coxon AB, Kaye FJ. CDKN2/p16 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza-2′deoxycytidine. Oncogene 1995; 11: 1211–6.
12. Filmus J, Robles AJ, Shi W, Wong MJ, Colombo LL, Conti CJ. Induction of cyclinD1 overexpression by activated ras. Oncogene 1994; 9: 3627–33.
13. Stacey DW. CyclinD1 serves as a cell cycle regulated switch in actively proliferating cells. Curr Opin Cell Biol 2003; 15: 158–63.
14. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004; 4: 361–70.
