Concatenation Operations and Restricted Variants of Two-Dimensional Automata

SOFSEM 2021

Taylor J. Smith

Joint work with K. Salomaa

School of Computing
Queen’s University
Kingston, Ontario, Canada

January 29, 2021
Section	Subsections
Introduction	Two-Dimensional Automata
	Restricted 2D Automata
	Concatenation Operations
Row/Column Concatenation	Two-Way 2D Automata
	Unary Two-Way 2D Automata
Diagonal Concatenation	Two-Way 2D Automata
	Three-Way 2D Automata
Conclusions	
Table of Contents

Introduction
 Two-Dimensional Automata
 Restricted 2D Automata
 Concatenation Operations

Row/Column Concatenation
 Two-Way 2D Automata
 Unary Two-Way 2D Automata

Diagonal Concatenation
 Two-Way 2D Automata
 Three-Way 2D Automata

Conclusions
A two-dimensional (2D) automaton is a generalization of a one-dimensional automaton.

Two major differences:

1. Different input word
2. Different transition function
Two-Dimensional Automata

- A two-dimensional (2D) automaton is a generalization of a one-dimensional automaton.

- Two major differences:
 1. **Different input word**
 2. Different transition function

```
# # # ··· # #
# a_{1,1} a_{1,2} ··· a_{1,n} #
# a_{2,1} a_{2,2} ··· a_{2,n} #
: : : ··· : :
# a_{m,1} a_{m,2} ··· a_{m,n} #
# # # ··· # #
```
A two-dimensional (2D) automaton is a generalization of a one-dimensional automaton.

Two major differences:
1. Different input word
2. Different transition function

\[\delta : (Q \setminus q_{\text{accept}}) \times (\Sigma \cup \{\#\}) \rightarrow Q \times \{U, D, L, R\} \]

Deterministic
four-way
(2DFA-4W)

Nondeterministic
four-way
(2NFA-4W)
Remark
A note on notation...

2DFA-nW

- dimension of input word
- # of input head moves

Notation like “4DFA” is found in literature discussing 2DFA-4W.
Restricted 2D Automata

- 2D automata do not have to be four-way automata.
- Restrict the transition function to get:
 - Three-way (3W) automata: \{D, L, R\}
 - Two-way (2W) automata: \{D, R\}
- Three-way automata cannot return to a row after moving downward, but they can read symbols multiple times in a row.
- Two-way automata are “read-once”.
 - Similar to a one-way one-dimensional automaton.
In two dimensions, we can concatenate two words \(w \) and \(v \):

- row-wise \((w \ominus v)\)
- column-wise \((w \oplus v)\)
In two dimensions, we can concatenate two words w and v:

- **row-wise** ($w \oplus v$)
- **column-wise** ($w \odot v$)

\[
\begin{array}{cccc}
\# & \# & \cdots & \# \\
\# & w_{1,1} & \cdots & w_{1,n} \\
\vdots & \vdots & \ddots & \vdots \\
\# & w_{m,1} & \cdots & w_{m,n} \\
\# & v_{1,1} & \cdots & v_{1,n} \\
\vdots & \vdots & \ddots & \vdots \\
\# & v_{m',1} & \cdots & v_{m',n} \\
\# & \# & \cdots & \# \\
\# & \# & \cdots & \# \\
\end{array}
\]

$$w \oplus v =$$

\[
\begin{array}{cccc}
\# & \# & \cdots & \# \\
\# & w_{1,1} & \cdots & w_{1,n} & \# \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\# & w_{m,1} & \cdots & w_{m,n} & \# \\
\# & v_{1,1} & \cdots & v_{1,n} & \# \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\# & v_{m',1} & \cdots & v_{m',n} & \# \\
\# & \# & \cdots & \# \\
\# & \# & \cdots & \# \\
\end{array}
\]
In two dimensions, we can concatenate two words w and v:

- row-wise ($w \ominus v$)
- column-wise ($w \oplus v$)

$$w \oplus v = \begin{bmatrix}
\# & \# & \# & \# & \# & \# \\
\# & w_{1,1} & \cdots & w_{1,n} & v_{1,1} & \cdots & v_{1,n'} & \#
\end{bmatrix}$$
In two dimensions, we can concatenate two words w and v:

- row-wise ($w \ominus v$)
- column-wise ($w \oplus v$)

Anselmo et al. (2005) introduced a third operation called **diagonal concatenation** ($w \oslash v$).

\[
\begin{array}{cccccccc}
\# & \# & \# & \# & \# & \# & \# & \# \\
\# & w_{1,1} & \cdots & w_{1,n} & x_{1,1} & \cdots & x_{1,n'} & \# \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\# & y_{1,1} & \cdots & y_{1,n} & v_{1,1} & \cdots & v_{1,n'} & \# \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\# & y_{m',1} & \cdots & y_{m',n} & v_{m',1} & \cdots & v_{m',n'} & \# \\
\# & \# & \# & \# & \# & \# & \# & \# \\
\end{array}
\]

\[w \oslash v = \]
In two dimensions, we can concatenate two words \(w \) and \(v \):
- row-wise \((w \ominus v) \)
- column-wise \((w \oplus v) \)

Anselmo et al. (2005) introduced a third operation called diagonal concatenation \((w \oslash v) \).

Concatenation can be extended to languages in the usual way.

\[
A \circ B = \{ a \circ b \mid a \in A \text{ and } b \in B \}
\]
Concatenation Closure

	Row (\odot)	Column (\oplus)	Diagonal ($\odot\odot$)
2DFA-4W	X	X	?
2NFA-4W	X	X	?
2DFA-3W	X	X	?
2NFA-3W	✓	X	?
2DFA-2W	?	?	?
2NFA-2W	?	?	?
Concatenation Closure

	Row (\ominus)	Column (\oplus)	Diagonal (\oslash)
2DFA-4W	✗	✗	?
2NFA-4W	✗	✗	?
2DFA-3W	✗	✗	?
2NFA-3W	✓	✗	?
2DFA-2W	✗ / ✓†	✗ / ✓†	?
2NFA-2W	✗ / ✓†	✗ / ✓†	?

†: applies to unary alphabets
Concatenation Closure

	Row (\ominus)	Column (\oplus)	Diagonal (\oslash)
2DFA-4W	\times	\times	?
2NFA-4W	\times	\times	?
2DFA-3W	\times	\times	\times
2NFA-3W	\checkmark	\times	?
2DFA-2W	\times	\times	\times
2NFA-2W	\times / \checkmark \dagger	\times / \checkmark \dagger	\checkmark

\dagger: applies to unary alphabets
Table of Contents

Introduction
 Two-Dimensional Automata
 Restricted 2D Automata
 Concatenation Operations

Row/Column Concatenation
 Two-Way 2D Automata
 Unary Two-Way 2D Automata

Diagonal Concatenation
 Two-Way 2D Automata
 Three-Way 2D Automata

Conclusions
Theorem
The class 2NFA-2W is not closed under row concatenation.

Proof (not in paper)
Let $\Sigma = \{0, 1\}$, and define $L = \{w \mid \text{for all } j, w[1, j] = 0\}$. L is recognized by a two-way 2D automaton.
An automaton recognizing $L \ominus L$ accepts

\[
\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\end{array}
\in L \ominus L.
\]

But the accepting computation does not visit all symbols, so (for instance) the automaton may also accept

\[
\begin{array}{cc}
0 & 0 \\
1 & 0 \\
\end{array}
\notin L \ominus L.
\]
Theorem
The class 2NFA-2W is not closed under row concatenation.

▶ Adapting this to the deterministic case, we get...

Corollary
The class 2DFA-2W is not closed under row concatenation.

▶ And, following a similar proof, we get...

Corollary
The classes 2DFA-2W and 2NFA-2W are not closed under column concatenation.
Before we proceed, we must modify our model slightly.

An automaton \mathcal{A} is “IBR-accepting” if, upon reading a boundary marker on the bottom/right border of the word, \mathcal{A} immediately halts and accepts if it can reach q_{accept} from its current state.

Lemma

Given a two-way 2D automaton \mathcal{A}, there exists an equivalent IBR-accepting two-way 2D automaton \mathcal{A}'.
Unary Row Concatenation: 2NFA-2W

Theorem
The class 2NFA-2W over a unary alphabet is closed under row concatenation.

Proof Sketch
We take a case-based approach.

- Let A and B be IBR-accepting unary two-way 2D automata.
- Automaton A recognizes language A (and B recognizes B).
- Their accepting computations are denoted by C_A and C_B.
Proof Sketch (cont’d)

We construct an automaton \mathcal{M} to recognize $A \ominus B$. \mathcal{M} nondeterministically chooses which “types” of computation correspond to C_A and C_B, and interleaves.

“Types” of Computation

1. C_A accepts at bottom, C_B accepts at right
2. C_A accepts at right, C_B accepts at bottom
3. (a) C_A accepts at bottom in column i, C_B accepts at bottom in column $j < i$
 (b) C_A accepts at bottom in column i, C_B accepts at bottom in column $k \geq i$
4. C_A and C_B both accept at right
Proof Sketch (cont’d)

1. C_A accepts at bottom, C_B accepts at right

We divide the computation of M into two phases.

First Phase

(i) Simulate downward moves of A by moving input head and changing state

(ii) Simulate downward moves of B by moving input head and changing state

(iii) Simulate rightward moves of A and B by moving input head and changing state simultaneously

After completing step (iii), return to step (i) and repeat.
Proof Sketch (cont’d)

1. C_A accepts at bottom, C_B accepts at right

We divide the computation of M into two phases.

First Phase

(i) Simulate downward moves of A by moving input head and changing state

(ii) Simulate downward moves of B by moving input head and changing state

(iii) Simulate rightward moves of A and B by moving input head and changing state simultaneously

- In step (i), M can guess nondeterministically that the input head of A is at the bottom border.
- If A is in an accepting state, M moves to the second phase.
Proof Sketch (cont’d)

1. C_A accepts at bottom, C_B accepts at right

We divide the computation of M into two phases.

Second Phase

- M simulates the remainder of the computation of B.
- If B is in an accepting state when the input head of M reaches the right border, M accepts.
Example

1. C_A accepts at bottom, C_B accepts at right

Input word for A

Input word for B

➤ First phase, step: (i) (ii) (iii)
Example

1. C_A accepts at bottom, C_B accepts at right

First phase, step: (i) (ii) (iii)
Example

1. C_A accepts at bottom, C_B accepts at right

- First phase, step: (i) (ii) (iii)
Example

1. \(C_A\) accepts at bottom, \(C_B\) accepts at right

\[\begin{array}{c}
\text{Input word for } A \\
\end{array}\]

\[\begin{array}{c}
\text{Input word for } B \\
\end{array}\]

- First phase, step: (i) (ii) (iii)
Unary Row Concatenation: 2NFA-2W

Example

1. C_A accepts at bottom, C_B accepts at right

Input word for A

Input word for B

First phase, step: (i) (ii) (iii)
Example

1. C_A accepts at bottom, C_B accepts at right

First phase, step: (i) (ii) (iii)
Example

1. C_A accepts at bottom, C_B accepts at right

Input word for A

Input word for B

First phase, step: (i) (ii) (iii)
Example

1. C_A accepts at bottom, C_B accepts at right

First phase, step: (i) (ii) (iii)
 Unary Row Concatenation: 2NFA-2W

Example

1. C_A accepts at bottom, C_B accepts at right

Input word for A

Input word for B

▶ First phase, step: (i) (ii) (iii)
Example

1. C_A accepts at bottom, C_B accepts at right

Input word for A
Input word for B

▶ First phase, step: (i) (ii) (iii)
Example

1. C_A accepts at bottom, C_B accepts at right

First phase, step: (i) (ii) (iii)
Unary Row Concatenation: 2NFA-2W

Example

1. C_A accepts at bottom, C_B accepts at right

\[\text{Input word for } A \]
\[\text{Input word for } B \]

▶ First phase, step: (i) (ii) (iii)
Unary Row Concatenation: 2NFA-2W

Example

1. C_A accepts at bottom, C_B accepts at right

First phase, step: (i) (ii) (iii)

Simulation of C_A accepts at (1)
Unary Row Concatenation: 2NFA-2W

Example

1. C_A accepts at bottom, C_B accepts at right

- First phase, step: (i) (ii) (iii)
- Simulation of C_A accepts at (1)
- Computation of M begins second phase at (2)
Example

1. C_A accepts at bottom, C_B accepts at right

- Second phase
- Simulation of C_A accepts at (1)
- Computation of M begins second phase at (2)
Unary Row Concatenation: 2NFA-2W

Example

1. C_A accepts at bottom, C_B accepts at right

- Second phase
- Simulation of C_A accepts at (1)
- Computation of M begins second phase at (2)
Example

1. C_A accepts at bottom, C_B accepts at right

- Second phase
- Simulation of C_A accepts at (1)
- Computation of M begins second phase at (2)
Example

1. \(C_A \) accepts at bottom, \(C_B \) accepts at right

- Second phase
- Simulation of \(C_A \) accepts at (1)
- Computation of \(M \) begins second phase at (2)
Theorem
The class 2NFA-2W over a unary alphabet is closed under row concatenation.

By swapping downward and rightward moves, we get . . .

Corollary
The class 2NFA-2W over a unary alphabet is closed under column concatenation.
Table of Contents

Introduction
Two-Dimensional Automata
Restricted 2D Automata
Concatenation Operations

Row/Column Concatenation
Two-Way 2D Automata
Unary Two-Way 2D Automata

Diagonal Concatenation
Two-Way 2D Automata
Three-Way 2D Automata

Conclusions
Theorem
The class 2NFA-2W is closed under diagonal concatenation.

Proof (not in paper)
Construct an automaton C that simulates the computations of both original automata A and B.
Some modifications:

- Convert first automaton A to be IBR-accepting.
- Modify transition function so that C accepts if and only if IBR-accepting A would accept on boundary marker.
- Move input head of C some **nondeterministically-selected** number of cells before simulating B.
Theorem
The class 2NFA-2W is closed under diagonal concatenation.

▶ As a consequence of the construction, we get...

Theorem
The class 2DFA-2W is not closed under diagonal concatenation.
We did not have closure for the class 2DFA-2W.

We can reasonably assume that the class 2DFA-3W will also not be closed.

However, we require a different approach:

- Need to account for added direction of movement
- The input head can now read all symbols in a row
Theorem
The class 2DFA-3W is not closed under diagonal concatenation.

Key Observations

- Using a two-way 1D automaton N, we can simulate the computation of a three-way 2D automaton M on a certain row of its input.
- The number of states of N depends linearly on the number of states of M.
Let $\Sigma = \{0, 1\}$, and let \mathcal{M} be a deterministic three-way 2D automaton with n states.

To prove our result, we need two lemmas that use \mathcal{M}.

First Lemma
Consider the computation of \mathcal{M} on a row of all-0s. If the input head of \mathcal{M} reads the first or last symbol of the row, then it moves downward to the next row at most $n + 1$ cells away from a boundary marker.

\[
\begin{array}{cccccccc}
1 & 2 & \cdots & n-1 & n & n+1 & n+2 & \cdots \\
\# & 0 & 0 & \cdots & 0 & 0 & 0 & \to \\
\downarrow & & & & & & & \\
\# & 1 & 0 & \cdots & 0 & 1 & 1 & 0
\end{array}
\]
Let $\Sigma = \{0, 1\}$, and let \mathcal{M} be a deterministic three-way 2D automaton with n states.

To prove our result, we need two lemmas that use \mathcal{M}.

Second Lemma

Suppose \mathcal{M} enters a row at most $n + 1$ cells away from a boundary marker. Then there exists a two-way 1D automaton \mathcal{N} with at most $2n + 3$ states that

1. simulates the computation of \mathcal{M} on that row, and
2. accepts if and only if the input head of \mathcal{M} moves downward to the next row.
Kapoutsis (2005) showed that we can take a deterministic two-way 1D automaton with n states and convert it to a one-way automaton with $h(n) = n(n^n - (n - 1)^n)$ states.

We use this value to construct a “diagonal concatenation” language of words of a certain size, where each row contains certain patterns of symbols.

Proof Sketch
Using our lemmas, reach a contradiction:

- Start with a three-way 2D automaton \mathcal{C} with n states
- Convert to a two-way 1D automaton \mathcal{D} with $2n + 3$ states
- Convert to a one-way 1D automaton \mathcal{D}' with $h(2n + 3)$ states
- Problem: \mathcal{D}' becomes incapable of recognizing rows of words accepted by \mathcal{C}!
Table of Contents

Introduction
 Two-Dimensional Automata
 Restricted 2D Automata
 Concatenation Operations

Row/Column Concatenation
 Two-Way 2D Automata
 Unary Two-Way 2D Automata

Diagonal Concatenation
 Two-Way 2D Automata
 Three-Way 2D Automata

Conclusions
Conclusions

- 2D automata can be restricted to move in fewer than four directions.
- Depending on the model, two concatenated words from some class of languages may or may not belong to that same class.
- Neither row nor column concatenation is closed for two-way 2D automata...
 - ...except in the unary nondeterministic case.
- Diagonal concatenation is closed for nondeterministic two-way 2D automata...
 - ...but not in the deterministic two-way or deterministic three-way cases.
Future Work

- What kind of closure results can we get for other models in the unary case?
- Do we have closure for diagonal concatenation on four-way 2D automata?
- Do we have closure for diagonal concatenation on nondeterministic three-way 2D automata?
 - Conjecture: no, but we require essentially a different approach.
[1] M. Anselmo, D. Giammarresi, and M. Madonia. New operations and regular expressions for two-dimensional languages over one-letter alphabet. *Theoret. Comput. Sci.*, 340(2):408–431, 2005.

[2] C. Kapoutsis. Removing bidirectionality from nondeterministic finite automata. In J. Jędrzejowicz and A. Szepietowski, editors, *Proc. of MFCS 2005*, volume 3618 of *LNCS*, pages 544–555, Berlin Heidelberg, 2005. Springer-Verlag.

[3] T. J. Smith and K. Salomaa. Concatenation operations and restricted variants of two-dimensional automata. In T. Bureš et al., editors, *Proc. of SOFSEM 2021*, volume 12607 of *LNCS*, pages 147–158, Berlin Heidelberg, 2021. Springer-Verlag.