ON SOME NEW INTEGRAL INEQUALITIES FOR K^2_s

MEVLU'T TUNC

Abstract. In this paper we establish some new inequalities of Hadamard-type for product of convex and $s-$convex functions in the second sense.

1. Introduction

A largely applied inequality for convex functions, due to its geometrical significance, is Hadamard’s inequality (see [2], [3] or [6]) which has generated a wide range of directions for extension and a rich mathematical literature. The following definitions are well known in the mathematical literature: a function $f : I \rightarrow \mathbb{R}, \emptyset \neq I \subseteq \mathbb{R}$, is said to be convex on I if inequality

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$$

holds for all $x, y \in I$ and $t \in [0, 1]$. Geometrically, this means that if P, Q and R are three distinct points on the graph of f with Q between P and R, then Q is on or below chord PR.

In the paper [4] Hudzik and Maligranda considered, among others, the class of functions which are $s-$convex in the second sense. This class is defined in the following way: [1] A function $f : [0, \infty) \rightarrow \mathbb{R}$ is said to be $s-$convex in the second sense if

$$f(tx + (1 - t)y) \leq tsf(x) + (1 - t)sf(y)$$

holds for all $x, y \in [0, \infty), t \in [0, 1]$ and for some fixed $s \in (0, 1]$. The class of $s-$convex functions in the second sense is usually denoted with K^2_s.

It can be easily seen that for $s = 1$, $s-$convexity reduces to ordinary convexity of functions defined on $[0, \infty)$.

In the same paper [4] Hudzik and Maligranda proved that if $s \in (0, 1), f \in K^2_s$ implies $f([0, \infty)) \subseteq [0, \infty), i.e., they proved that all functions from $K^2_s, s \in (0, 1)$, are nonnegative.

Example 1. [4]. Let $s \in (0, 1)$ and $a, b, c \in \mathbb{R}$. We define function $f : [0, \infty) \rightarrow \mathbb{R}$ as

$$f(t) = \begin{cases} a, & t = 0, \\ bt^s + c, & t > 0. \end{cases}$$

(1.3)

It can be easily checked that

(1) If $b \geq 0$ and $0 \leq c \leq a$, then $f \in K^2_s$

(2) If $b > 0$ and $c < 0$, then $f \notin K^2_s$

Many important inequalities are established for the class of convex functions, but one of the most famous is so called Hermite-Hadamard inequality (or Hadamard’s inequality). This double inequality is stated as follows (see for example [7, p.137]): let f be a convex function on $[a, b] \subseteq \mathbb{R}$, where $a \neq b$. Then

$$f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}. \tag{1.4}$$

1991 Mathematics Subject Classification. 26A51, 26D15.

Key words and phrases. convexity, s-convex, Hadamard’s inequality.
Then to the case in which \(f, g \) is not an integer.

Theorem 2. Let \(f, g : [a, b] \to \mathbb{R} \) be two convex functions and \(fg \in L^1 ([a, b]) \). Then,

\[
\frac{1}{(b-a)^2} \int_a^b (b-x)(f(a)g(x)+g(a)f(x)) \, dx \\
+ \frac{1}{(b-a)^2} \int_a^b (x-a)(f(b)g(x)+g(b)f(x)) \, dx \\
\leq \frac{1}{b-a} \int_a^b f(x)g(x) \, dx + \frac{M(a,b)}{3} + \frac{N(a,b)}{6},
\]

where \(M(a,b) = f(a)g(a) + f(b)g(b) \), \(N(a,b) = f(a)g(b) + f(b)g(a) \).

The main purpose of this paper is to establish new inequalities as given in Theorem 1, but now for the class of \(s \)-convex functions in the second sense by using the elementary inequalities.

2. Main Results

In the our next theorems we will also make use of Beta function of Euler type, which is for \(u, v > 0 \) defined as

\[
\beta (u, v) = \int_0^1 t^{u-1}(1-t)^{v-1} \, dt = \frac{\Gamma (u) \Gamma (v)}{\Gamma (u+v)}
\]

and

\[
\beta (u, v) = \beta (v, u),
\]

where the gamma function, denoted by \(\Gamma (x) \), provides a generalization of factorial \(n \) to the case in which \(n \) is not an integer.

Theorem 2. Let \(f, g : I \to \mathbb{R} \), \(I \subset [0, \infty) \), \(a, b \in I \), with \(a < b \) be functions such that \(f, g \) and \(fg \) are in \(L^1 ([a, b]) \). \(f \) is convex and \(g \) is \(s \)-convex function in the second sense on \([a, b] \), for some \(s \in (0, 1] \), then

\[
\frac{f(a)}{(b-a)^2} \int_a^b (b-x)g(x) \, dx + \frac{f(b)}{(b-a)^2} \int_a^b (x-a)g(x) \, dx \\
+ \frac{g(a)}{(b-a)^{s+1}} \int_a^b (b-x)^s f(x) \, dx + \frac{g(b)}{(b-a)^{s+1}} \int_a^b (x-a)^s f(x) \, dx \\
\leq \frac{1}{b-a} \int_a^b f(x)g(x) \, dx + \frac{M(a,b)}{s+2} + \frac{N(a,b)}{(s+1)(s+2)}
\]

where \(M(a,b) = f(a)g(a) + f(b)g(b) \) and \(N(a,b) = f(a)g(b) + f(b)g(a) \).

Proof. Since \(f \) is convex and \(g \) is \(s \)-convex on \([a, b] \), we have

\[
f(ta+(1-t)b) \leq tf(a) + (1-t)f(b) \\
g(ta+(1-t)b) \leq tg(a) + (1-t)g(b)
\]
Integral inequalities for K^2 for all $t \in [0, 1]$. Now, using the elementary inequality [5, p.4] $(a - b)(c - d) \geq 0$ $(a, b, c, d \in \mathbb{R}$ and $a < b, c < d)$, we get inequality:

$$
\begin{align*}
& tf(a) g(ta + (1-t)b) + (1-t) f(b) g(ta + (1-t)b) \\
& + t^s g(a) f(ta + (1-t)b) + (1-t)^s g(b) f(ta + (1-t)b) \\
& \leq f(ta + (1-t)b) g(ta + (1-t)b) + t^{s+1} f(a) g(a) \\
& + t(1-t)^s f(a) g(b) + t^s (1-t) f(b) g(a) \\
& + (1-t)^{s+1} f(b) g(b)
\end{align*}
$$

Integrating this inequality over t on $[0, 1]$, we deduce that

$$
\begin{align*}
& f(a) \int_0^1 tg(ta + (1-t)b) dt + f(b) \int_0^1 (1-t) g(ta + (1-t)b) dt \\
& + g(a) \int_0^1 t^s f(ta + (1-t)b) dt + g(b) \int_0^1 (1-t)^s f(ta + (1-t)b) dt \\
& \leq \int_0^1 f(ta + (1-t)b) g(ta + (1-t)b) dt \\
& + f(a) g(a) \int_0^1 t^{s+1} dt + f(a) g(b) \int_0^1 t (1-t)^s dt \\
& + f(b) g(a) \int_0^1 t^s (1-t) dt + f(b) g(b) \int_0^1 (1-t)^{s+1} dt
\end{align*}
$$
By substituting \(ta + (1 - t) b = x, (a - b) \, dt = dx \), we obtain
\[
\begin{align*}
& f(a) \int_0^1 t g(ta + (1 - t)b) \, dt + f(b) \int_0^1 (1 - t) g(ta + (1 - t)b) \, dt \\
& + g(a) \int_0^1 t^s f(ta + (1 - t)b) \, dt + g(b) \int_0^1 (1 - t)^s f(ta + (1 - t)b) \, dt \\
& = \frac{f(a)}{(b - a)^2} \int_a^b (b - x) g(x) \, dx + \frac{f(b)}{(b - a)^2} \int_a^b (x - a) g(x) \, dx \\
& + \frac{g(a)}{(b - a)^{s+1}} \int_a^b (b - x)^s f(x) \, dx + \frac{g(b)}{(b - a)^{s+1}} \int_a^b (x - a)^s f(x) \, dx \\
& \leq \int_0^1 f(ta + (1 - t)b) g(ta + (1 - t)b) \, dt \\
& + f(a) g(a) \int_0^1 t^{s+1} dt + f(a) g(b) \int_0^1 t (1 - t)^s dt \\
& + f(b) g(a) \int_0^1 t^s (1 - t) dt + f(b) g(b) \int_0^1 (1 - t)^{s+1} dt \\
& = \frac{1}{b-a} \int_a^b f(x) g(x) \, dx + \frac{f(a) g(a) + f(b) g(b)}{s+2} \\
& + f(a) g(b) \beta(2, s + 1) + f(b) g(a) \beta(s + 1, 2) \\
& = \frac{1}{b-a} \int_a^b f(x) g(x) \, dx + \frac{M(a, b)}{s+2} \\
& + f(a) g(b) \beta(2, s + 1) + f(b) g(a) \beta(2, s + 1) \\
& = \frac{1}{b-a} \int_a^b f(x) g(x) \, dx + \frac{M(a, b)}{s+2} + \beta(2, s + 1) [f(a) g(b) + f(b) g(a)] \\
& = \frac{1}{b-a} \int_a^b f(x) g(x) \, dx + \frac{M(a, b)}{s+2} + \frac{\Gamma(2) \Gamma(s + 1)}{\Gamma(s + 3)} N(a, b) \\
& = \frac{1}{b-a} \int_a^b f(x) g(x) \, dx + \frac{M(a, b)}{s+2} + \frac{\Gamma(s + 1)}{\Gamma(s + 3)} N(a, b) \\
& = \frac{1}{b-a} \int_a^b f(x) g(x) \, dx + \frac{M(a, b)}{s+2} + \frac{N(a, b)}{(s + 1)(s + 2)} \\
\end{align*}
\]
which completes the proof. \(\square \)

Remark 1. In Theorem 3, if we choose \(s = 1 \), then (2.1) reduces to (1.3).

Theorem 3. Let \(f, g : I \to \mathbb{R}, I \subseteq [0, \infty), a, b \in I, a < b \) be functions such that \(f, g \) and \(fg \) are in \(L^1([a, b]) \). If \(f \) is \(s_1 \)-convex and \(g \) is \(s_2 \)-convex in the second sense on \([a, b]\) for some \(s_1, s_2 \in (0, 1] \), then
\[
\frac{f(a)}{(b - a)^{s_1+1}} \int_a^b (b - x)^{s_1} g(x) \, dx + \frac{f(b)}{(b - a)^{s_1+1}} \int_a^b (x - a)^{s_1} g(x) \, dx \\
+ \frac{g(a)}{(b - a)^{s_2+1}} \int_a^b (b - x)^{s_2} f(x) \, dx + \frac{g(b)}{(b - a)^{s_2+1}} \int_a^b (x - a)^{s_2} f(x) \, dx \\
\leq \frac{1}{b-a} \int_a^b f(x) g(x) \, dx + \frac{1}{s_1 + s_2 + 1} \left[M(a, b) + s_1 s_2 \frac{\Gamma(s_1) \Gamma(s_2)}{\Gamma(s_1 + s_2 + 1)} N(a, b) \right],
\]
where \(M(a, b) = f(a) g(a) + f(b) g(b) \) and \(N(a, b) = f(a) g(b) + f(b) g(a) \).
Proof. Since \(f \) is \(s_1 \)-convex and \(g \) is \(s_2 \)-convex on \([a, b]\), we have

\[
\begin{align*}
 f (ta + (1 - t)b) & \leq t^{s_1} f(a) + (1 - t)^{s_1} f(b) \\
 g (ta + (1 - t)b) & \leq t^{s_2} g(a) + (1 - t)^{s_2} g(b)
\end{align*}
\]

for all \(a, b \in I \) and \(t \in [0, 1] \). Now, using the elementary inequality [(5, p.4)]
\((a - b)(c - d) \geq 0 \) \((a, b, c, d \in \mathbb{R} \) and \(a < b, c < d \)\), we get inequality:

\[
\begin{align*}
 t^{s_1} f(a) g(ta + (1 - t)b) + (1 - t)^{s_1} f(b) g(ta + (1 - t)b) \\
+ t^{s_2} g(a) f(ta + (1 - t)b) + (1 - t)^{s_2} g(b) f(ta + (1 - t)b) \\
\leq f(ta + (1 - t)b) g(ta + (1 - t)b) + t^{s_1 + s_2} f(a) g(a) \\
+ t^{s_1} (1 - t)^{s_2} f(a) g(b) + t^{s_2} (1 - t)^{s_1} f(b) g(a) \\
+ (1 - t)^{s_1 + s_2} f(b) g(b)
\end{align*}
\]

Integrating both sides of the above inequality over \([0, 1]\), we deduce that:

\[
\begin{align*}
 f(a) \int_0^1 t^{s_1} g(ta + (1 - t)b) \, dt + f(b) \int_0^1 (1 - t)^{s_1} g(ta + (1 - t)b) \, dt \\
+ g(a) \int_0^1 t^{s_2} f(ta + (1 - t)b) \, dt + g(b) \int_0^1 (1 - t)^{s_2} f(ta + (1 - t)b) \, dt \\
\leq \int_0^1 f(ta + (1 - t)b) g(ta + (1 - t)b) \, dt \\
+ f(a) g(a) \int_0^1 t^{s_1 + s_2} \, dt + f(b) g(b) \int_0^1 (1 - t)^{s_1 + s_2} \, dt \\
+ f(b) g(a) \int_0^1 t^{s_2} (1 - t)^{s_1} \, dt + f(b) g(b) \int_0^1 (1 - t)^{s_1 + s_2} \, dt
\end{align*}
\]
By substituting $ta + (1-t)b = x$, $(a-b) dt = dx$, we obtain

$$f(a)\int_0^1 t^{s_2}g(ta + (1-t)b)\,dt + f(b)\int_0^1 (1-t)^{s_2}g(ta + (1-t)b)\,dt$$

$$+ g(a)\int_0^1 t^{s_2}f(ta + (1-t)b)\,dt + g(b)\int_0^1 (1-t)^{s_2}f(ta + (1-t)b)\,dt$$

$$= \frac{f(a)}{(b-a)^{s_1+1}} \int_a^b (b-x)^{s_1}g(x)\,dx + \frac{f(b)}{(b-a)^{s_1+1}} \int_a^b (a-x)^{s_1}g(x)\,dx$$

$$+ \frac{g(a)}{(b-a)^{s_2+1}} \int_a^b (b-x)^{s_2}f(x)\,dx + \frac{g(b)}{(b-a)^{s_2+1}} \int_a^b (a-x)^{s_2}f(x)\,dx$$

$$\leq \int_0^1 f(ta + (1-t)b)g(ta + (1-t)b)\,dt$$

$$+ f(a)g(a)\int_0^1 t^{s_1+s_2}dt + f(a)g(b)\int_0^1 t^{s_1}dt$$

$$+ f(b)g(a)\int_0^1 t^{s_2}dt + f(b)g(b)\int_0^1 dt$$

$$= \frac{1}{b-a} \int_a^b f(x)g(x)\,dx + f(a)g(a) + f(b)g(b)$$

$$+ f(a)g(b)\beta(s_1 + 1, s_2 + 1) + f(b)g(a)\beta(s_2 + 1, s_1 + 1)$$

$$= \frac{1}{b-a} \int_a^b f(x)g(x)\,dx + \frac{M(a,b)}{s_1 + s_2 + 1}$$

$$+ f(a)g(b)\beta(s_1 + 1, s_2 + 1) + f(b)g(a)\beta(s_2 + 1, s_1 + 1)$$

$$= \frac{1}{b-a} \int_a^b f(x)g(x)\,dx + \frac{M(a,b)}{s_1 + s_2 + 1}$$

$$+ f(a)g(b)\beta(s_1 + 1, s_2 + 1) + f(b)g(a)\beta(s_2 + 1, s_1 + 1)$$

which completes the proof.

Remark 2. In Theorem 3 if we choose $s_1 = s_2 = 1$, then (2.2) reduces to (1.5).

Corollary 1. With the above assumptions and under the conditions that $s_1 = s_2 = 1$ and $x = \frac{a+b}{2}$, the following inequality will be obtained

$$\frac{f(a) + f(b)}{2}g\left(\frac{a+b}{2}\right) + \frac{g(a) + g(b)}{2}f\left(\frac{a+b}{2}\right)$$

$$\leq f\left(\frac{a+b}{2}\right)g\left(\frac{a+b}{2}\right) + \frac{M(a,b)}{3} + \frac{N(a,b)}{6}. \tag{2.3}$$

Remark 3. Similarly to Hadamard’s inequality applications, some applications to special means can be deduced by the above obtained two new theorems.
INTEGRAL INEQUALITIES FOR K^2

REFERENCES

[1] Breckner, W.W., *Stetigkeitsaussagen für eine Klasse verallgemeinerner konvexer funktionen in topologischen linearen* Raumen, Pupl. Inst. Math., 23 (1978), 13–20.

[2] Dragomir, S.S. and Pearce, C. E. M., *Selected Topic on Hermite–Hadamard Inequalities and Applications*, Melbourne and Adelaide, December, 2000.

[3] Hadamard, J., *Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann*, J. Math Pures Appl., 58 (1893), 171–215.

[4] Hudzik, H. and Maligranda, L., *Some remarks on s-convex functions*, Aequationes Math. 48 (1994) 100–111.

[5] Manfrino, R.B., Delgado, R.V. and Ortega, J.A.G. *Inequalities a Mathematical Olympiad Approach*, Birkhäuser, 2009.

[6] Pachpatte, B.G. On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (E), (2003).

[7] Pečarić, J.E., Proschan, F. and Tong, Y.L. *Convex Functions, Partial Orderings, and Statistical Applications*, Academic Press Inc., 1992.

[8] Tunç, M., *On Some New Inequalities for Convex Functions*, Turk. J. Math (In Press).

University of Kilis 7 Aralik, Faculty of Arts and Sciences, Department of Mathematics, 79000, Kilis, Turkey

E-mail address: mevluttunc@kilis.edu.tr