Data Article

Data on the epidemiology of heart failure in Sub-Saharan Africa

Ulrich Flore Nyaga, Jean Joel Bigna, Valirie N. Agbor, Mickael Essouma, Ntobeko A.B. Ntusi, Jean Jacques Noubiap

A Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
B Faculty of Medicine, University of Paris Sud XI, Le Kremlin Bicêtre, Paris, France
C Ibal sub-divisional Hospital, Oku, North-west Region, Cameroon
D Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
E Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa
F Cape Universities Body Imaging Center, University of Cape Town, Cape Town, South Africa

Article history:
Received 15 December 2017
Received in revised form 21 January 2018
Accepted 30 January 2018
Available online 12 February 2018

Keywords:
Heart failure
Prevalence
Aetiologies
Treatment
Mortality
Sub-Saharan Africa

Abstract

In Sub-Saharan Africa (SSA), chronic non-communicable diseases and cardiovascular diseases in particular, are progressively taking over infectious diseases as the leading cause of morbidity and mortality. Heart failure is a major public health problem in the region. We summarize here available data on the prevalence, aetiologies, treatment, rates and predictors of mortality due to heart failure in SSA.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.ijcard.2017.12.048
* Corresponding author.
E-mail addresses: nyagaflore@gmail.com (U.F. Nyaga), bignarimj@yahoo.fr (J.J. Bigna), nvagbor@gmail.com (V.N. Agbor), essmic@rocketmail.com (M. Essouma), ntobeko.ntusi@uct.ac.za (N.A.B. Ntusi), noubiapij@yahoo.fr (J.J. Noubiap).

https://doi.org/10.1016/j.dib.2018.01.100
2352-3409 © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Medicine
More specific subject area	Cardiology
Type of data	Data presented in tables and figures
How data was acquired	Systematic search of literature
Data format	Raw and analyzed data
Experimental factors	Not applicable
Data source location	Not applicable
Data accessibility	All data are included in this article
Related research article	Heart failure in sub-Saharan Africa: a contemporaneous systematic review and meta-analysis. International Journal of Cardiology; In Press

Value of the data

- This work provides a deeper understanding of the prevalence, etiologies and prognosis of heart failure in SSA.
- The data allow examination of the different medications used for the treatment of heart failure and therefore could help in changing practices for an optimal management of this pathology.
- The data could be used as a baseline for comparison in future studies.

1. Data

In SSA, heart failure is a major public health problem, associated with high morbidity and mortality. Due to the shortage of data to distinctly understand the epidemiology of this pathology in this part of the world, we present here a summary of available data on the prevalence, aetiology, treatment, and prognosis of heart failure in SSA.

2. Experimental design, materials, and methods

Through a systematic literature search in MEDLINE and EMBASE (search strategies are presented in Tables 1 and 2), we included all published studies from January 1, 1996 to June 23, 2017 with available data on the prevalence, incidence, aetiologies, diagnosis, treatment and outcomes of heart failure in patients aged 12 years and older, living in SSA. We excluded studies conducted exclusively on African populations living outside Africa, commentaries, editorials, letters to the editor, case reports and case-series of less than 30 participants, studies lacking relevant data to compute the prevalence of the different heart failure aetiologies or treatment, and for duplicate studies, the most comprehensive and/or recent study with the largest sample size was considered, studies with inaccessible full-text, even after request from the corresponding author.

The titles and abstracts of articles retrieved from the bibliographic searches were independently screened by two investigators and full-texts of potentially eligible studies were retrieved and assessed for final inclusion. All discrepancies the selection of studies were resolved through discussion or with the arbitrage of a third investigator. A total of 35 studies were included in this review [1–35]. A summary of the selection process is presented in the Fig. 1.
Data were then extracted using a predesigned data extraction form. The extracted data include: the last name of first author and the year of study publication, the country in which the study was conducted, Region (Western, Southern, Central, Eastern), area (urban, semi-urban or rural), study design (cross-sectional, cohort, case control), data collection (prospective versus retrospective), random sampling (yes versus no), study population, male proportion, mean or median age (in years), age range (in years), sample size, criteria used for the diagnosis of heart failure, number of cases of the different aetiologies of heart failure and number of cases of the different medications used for the treatment of heart failure.

The quality and risk of bias of all included studies are presented in Tables 3–7. It was assessed using the risk of bias assessment tool for developed by Hoy et al. [36]. This tool was adapted for the different topics on heart failure covered in this review (prevalence, aetiology, treatment and prognosis of heart failure).

Data were analyzed using the ‘meta’ package of R software. A random-effects meta-analysis model was used to pool prevalence estimates after stabilization of the variance of the study-specific prevalence using the Freeman-Tukey single arc-sine transformation [37]. The Egger’s test was used to
assess publication bias which was considered significant if the p-value < 0.1. Summary statistics from meta-analyses of prevalence studies on the medications used to treat heart failure in sub-Saharan Africa are presented in Table 8.

These data are attached to a systematic review and meta-analysis published in the International Journal of Cardiology [38].
First name of author, publication year	Country	Region	Area	Study design	Study setting	Data collection	Study population	Random sampling	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Criteria for diagnosis of HF
Oyoo, 1999 [1]	Kenya	Eastern	Urban	Cross-sectional	Hospital-based	Prospective	Patients ≥ 13 years admitted for congestive heart failure	No	48.4	NR	≥ 13	91	NR
Thiam, 2003 [2]	Senegal	Western	Urban	Cross-sectional	Hospital-based	Prospective	Patients suffering from heart failure	No	NR	50.0	12–91	170	NR
Kingue, 2005 [3]	Cameroon	Central	Urban	Cross-sectional	Hospital-based	Retrospective and prospective	Patients presenting with clinical and echocardiographic signs of heart failure	No	59.3	57.3	≥ 16	167	NR
Familoni, 2007 [4]	Nigeria	Western	Urban	Cross-sectional	Hospital-based	Prospective	Patients presenting with acute heart failure	No	61.7	57.6	NR	82	NR
Owusu, 2007 [5]	Ghana	Western	Urban	Cross-sectional	Hospital-based	Prospective	Patients above 12 years admitted with diagnosis of heart failure	No	51.5	51.1	13–90	167	Framingham’s criteria
Stewart, 2008 [6]	South Africa	Southern	Urban	Cross-sectional	Hospital-based	Prospective	Novo presentations in patients with heart failure and related cardiomyopathies	No	43	55.0	NR	884	European Society of Cardiology (ESC) guidelines on HF
Ogah, 2008 [7]	Nigeria	Western	Urban	Cross-sectional	Hospital-based	Retrospective	All cases of echocardiography done in the department of medicine between September 2005 and February 2007	No	51.6	54.0	15–90	1441	NR
Onwuchekwa et al., 2009 [8]	Nigeria	Western	NR	Cross-sectional	Hospital-based	Retrospective	Congestive cardiac failure cases admitted and/or discharged from the medical wards	No	57.2	54.4	18–100	423	Framingham’s criteria
Maro, 2009 [9]	Tanzania	Eastern	Urban	Cohort	Hospital-based	Prospective	Patients admitted for congestive heart failure	No	55.0	NR	NR	390	Framingham’s criteria
Damasceno, 2012 [10]	SSA	Eastern	Urban	Cohort	Hospital-based	Prospective	Patients admitted with acute heart failure	No	49.2	52.3	’12	1006	European Society of Cardiology (ESC) guidelines on HF
	Zambia	Southern	Urban	Cohort		Prospective		No	41	50	≥ 18	390	
Study	Location	Region	Study Type	Hospital-Based	Admissions Criteria	Age Median (Range)							
---------------------	---------------	-----------	------------------	----------------	---	--------------------							
Chansa, 2012	Rwanda	Eastern Rural	Cross-sectional	Hospital-Based	Adult patients (≥18 years) admitted for acute heart failure	No 30.0 NR NR 138							
Kwan, 2013	Djibouti	Eastern NR Cohort	Cross-sectional	Hospital-Based Based	Heart failure patients treated between November 2006 and March 2011	No 84.0 55.8 27–75 45							
Massouré, 2013	Nigeria	Western Urban	Cross-sectional	Hospital-Based	Djiboutian adults hospitalized for heart failure Subjects of African descent	No 49.3 49.0 NR 1515							
Sliwa, 2013	SSA	Cohort	Hospital-based		Patients presenting with acute heart failure	No 49.1 52.3 ≥12 1006							
Makubi, 2014	Tanzania	Eastern Urban Cohort	Hospital-Based		Patients ≥ 18 years of age with heart failure defined by the Framingham criteria	No 49.0 55.0 ≥18 427							
Ogah, 2014	Nigeria	Western Urban	Cross-sectional	Hospital-Based	Patients presenting with acute heart failure	No 54.9 56.4 NR 452							
Pio, 2014	Togo	Western Urban	Cross-sectional	Hospital-Based	Hospitalized patients with heart failure	No 48.2 52.2 18–106 297							
Pio, 2014	Togo	Western Urban	Cross-sectional	Hospital-Based	Files of patients hospitalized with heart failure All medical admission	No NR 36.5 18–45 376							
Osuji, 2014	Nigeria	Western NR	Cross-sectional	Hospital-Based	Patients admitted for acute heart failure Ambulatory and hospitalized adult patients with heart failure	No 50.5 60.7 18–110 NR 537							
Okello, 2014	Uganda	Eastern NR	Cross-sectional	Hospital-Based	Retrospective medical record review	No 30.3 52 NR 274							
Dokainish, 2015	SSA	Cohort	Hospital-based		Yes 51.8 53.4 ≥18 1294								
Adeoti, 2015	Nigeria	Western Urban	Cross-sectional	Hospital-Based	Retrospective All medical admissions	No 55.0 50.9 16–102 3750							
Ansa, 2016	Nigeria	Western NR	Cross-sectional	Hospital-Based	Retrospective medical record review	No NR NR ≥18 144							
Abebe 2016	Ethiopia	Eastern Urban	Chart review Cohort	Hospital-Based	Medical records of patients admitted for heart failure Adult patients (≥18 years) admitted for heart failure	No 30.2 53.6 NR 311							
Ali, 2016	Ethiopia	Eastern Urban	Chart review Cohort	Hospital-Based	Retrospective All cardiovascular admissions to the medical wards	No NR NR ≥18 144							

European Society of Cardiology guidelines on HF
Framingham’s criteria
Framingham’s criteria and ESC
European Society of Cardiology guidelines on HF
Framingham’s criteria
Framingham’s criteria
Boston criteria of HF
First name of author, publication year	Country	Region	Area	Study design	Study setting	Data collection	Study population	Random sampling	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Criteria for diagnosis of HF
Kingery, 2017 [27]	Tanzania	Eastern	Urban	Cohort	Hospital-based	Prospective	Medical inpatients admitted for heart failure	No	44.1	52.0	≥ 18	145	Framingham’s criteria
Boombhi, 2017 [28]	Cameroon	Central	Urban	Cross-sectional	Hospital-based	Retrospective	Patients hospitalized for acute heart failure diagnosed on clinical and/or ultrasound evidence	No	42.7	61.5	16–95	148	NR
Traore, 2017 [29]	Ivory Coast	Western	Urban	Cross-sectional	Hospital-based	Retrospective	Patients hospitalized for heart failure Individuals aged ≥ 18 years discharged from first heart failure admission	No	51.0	NR	NR	257	NR
Bonsu, 2017 [30]	Ghana	Western	Urban	Cohort	Hospital-based	Retrospective	Patients admitted with acute heart failure Adult patients (≥ 18 years) admitted for heart failure Patients presenting with acute heart failure	No	45.6	60.3	≥ 18	1488	NR
Mwita, 2017 [31]	Botswana	Southern	Urban	Cohort	Hospital-based	Prospective	No	53.9	54.2	20–89	193	NR	
Pallangyo, 2017 [32]	Tanzania	Eastern	Urban	Cohort	Hospital-based	Prospective	No	43.5	46.4	≥ 18	463	Framingham’s criteria	
Sani, 2017 [33]	SSA – The THE-SUS-HF registry	Prospective	No	49.2	52.3	≥ 12	954	European Society of Cardiology guidelines on HF diagnosis					
Ogah, 2014 [34]	Nigeria	Western	Urban	Cohort	Hospital-based	Prospective	Patients followed up for heart failure Health facilities with available diagnostic technologies for HF diagnosis	No	53.1	58.0	NR	239	NR
Carlson, 2017 [35]	Kenya; Uganda	Eastern	NR	Cross-sectional	Hospital-based	Prospective	No	NA	NA	NA	340 health facilities (197 in Uganda and 143 in Kenya)	NA	

HF=Heart failure; THESUS-HF=sub-Saharan Africa Survey for Heart Failure; INTER-CHF=INTERnational Congestive Heart Failure; NR=Not reported; NA=Not applicable; SSA=Sub-Saharan Africa.
First name of author, publication year	Country	Region	Area	Study design	Study setting	Data collection	Random sampling	Population	Male (%)	Mean age	Age range (in years)	Sample size	HF diagnostic tool	Prevalence of HF (%)	Study quality
Osuji, 2014 [20]	Nigeria	Western	NR	Cross-sectional	Hospital-based	Retrospective	No	Patients admitted to the medical ward	50.5	60.7	18–110	537	NR	30.9	Moderate
Kingue, 2005 [3]	Cameroon	Central	Urban	Chart review	Hospital-based	Retrospective	No	Patient ≥ 16 years admitted for cardiac pathologies	59.3	57.3	NR	144	Echocardiography	30	Moderate
Ansa, 2016 [24]	Nigeria	Western	Urban	Cross-sectional	Hospital-based	Retrospective	No	All cases of medical admissions	38.9	55	47–65	339	NR	42.5	Low
Pio, 2014 [18]	Togo	Western	Urban	Cross-sectional	Hospital-based	Retrospective	No	Patients admitted to the cardiology unit	NR	52.2	18–106	297	Echocardiography	25.6	High
Pio, 2014 [19]	Togo	Western	Urban	Cross-sectional	Hospital-based	Retrospective	No	Patients admitted to the cardiology unit	NR	36.5	18–45	376	Echocardiography	28.6	Low
Ogah, 2014 [17]	Nigeria	Western	Urban	Cohort	Hospital-based	Prospective	No	All medical admission	54.9	56.4	NR	452	Echocardiography	9.4	High
Adeoti, 2015 [23]	Nigeria	Western	Urban	Cross-sectional	Hospital-based	Retrospective	No	All medical admissions	55.0	50.9	16–102	3750	NR	11.0	Moderate

NR = Not reported.
Table 5
Aetiology of heart failure across sub-Saharan Africa (1996–2017).

First name of author, publication year	Country	Region	Area	Study design	Study setting	Data collection	Study population	Random sampling	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Criteria for diagnosis of HF	Aetiology of heart failure	Diagnostic criteria of IHD	Study quality
Oyoo, 1999 [1]	Kenya	Eastern	Urban	Cross-sectional	Hospital-based	Prospective	Patients ≥ 13 years admitted for congestive heart failure	No	48.4	NR	≥ 13	91	NR	Rheumatic heart disease (32%); Cardiomyopathy (25.2%); Hypertensive heart disease (17.6%); Pericardial disease (13.2%); Cor pulmonale (7.7%); Ischaemic heart disease (2.2%); Congenital heart disease (2.2%).	ECG and 2D Doppler Echo-cardiography	Moderate
Thiam, 2003 [2]	Senegal	Western	Urban	Cross-sectional	Hospital-based	Prospective	Patients suffering from heart failure	No	NR	50.0	12–91	170	NR	Hypertension heart disease (34%); Valvular heart diseases (45%); Chronic renal failure (14.5%); Ischaemic heart disease (18.9%); Pulmonary embolism with Right heart failure (3.5%); Aetiology unspecified (6%).	Clinical presentation ECG and Echo-cardiography	High
Kingue, 2005 [3]	Cameroon	Central	Urban	Cross-sectional	Hospital-based	Retrospective and prospective	Patients presenting with clinical and echocardiographic signs of heart failure	No	59.3	57.3	≥ 16	167	NR	Hypertensive heart disease (54.5%); Cardiomyopathies (26.3%); Rheumatic heart disease (24.6%); Valvular heart diseases (24.6%); Ischaemic heart disease (2.4%).	12-lead ECG and Echo-cardiography	Moderate
Familoni, 2007 [4]	Nigeria	Western	Semi-urban	Cross-sectional	Hospital-based	Prospective	Patients presenting with acute heart failure	No	61.7	57.6	NR	82	NR	Hypertensive heart disease (43.4%); Dilated cardiomyopathy (28%); Rheumatic heart disease (9.8%); Endomyocardial fibrosis (2.2%); Cor pulmonale (3.7%).	NR	Moderate
Study	Country	Region	Study Type	Design	Participants	Diagnosis	Methods									
-------	---------	--------	------------	--------	--------------	-----------	---------									
Owusu, 2007	Ghana Western	Cross-sectional	Prospective	No	51.5	Ischaemic heart disease (8.5%); others (3.5%)	12-lead ECG and Echo-cardiography									
Stewart, 2008	South Africa Southern	Cross-sectional	Prospective	No	43	Dilated cardiomyopathy (35%); Hypertensive heart disease (33%); Right heart failure (27%); Ischaemic heart disease (9%) and Valvular heart disease (8%)	12-lead ECG; echo-cardiography; stress test; cardiac nuclear imaging and cardiac catheterization									
Ogah, 2008	Nigeria Western	Cross-sectional	Retrospective	All cases of echocardiography done in the department of medicine between September 2005 and February 2007	51.6	Hypertensive heart disease (56.7%); Rheumatic heart disease (3.7%); Dilated cardiomyopathy (3.0%); Pericardial disease (1.8%); Cor pulmonale (1.6%); Ischaemic heart disease (0.6%); Congenital heart disease (0.4%); Diabetic heart disease (0.4%); Thyroid heart disease (0.1%); Sickle cell cardiopathy (0.1%).	12-lead ECG; echo-cardiography; stress test; cardiac nuclear imaging and cardiac catheterization									
Onwu-zechewa, 2009	Nigeria Western NR	Cross-sectional	Retrospective	Congestive cardiac failure cases admitted and/or discharged from the	57.2	Hypertensive heart disease (56.3%); Cardiomyopathies (12.2%); Chronic renal failure (7.80%); Severe anemia (4.72%); Rheumatic heart diseases (4.26%); Cor pulmonale (2.13%);	12-lead ECG; echo-cardiography									
First name of author, publication year	Country	Region	Area	Study design	Study setting	Data collection	Study population	Random sampling	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Criteria for diagnosis of HF	Aetiology of heart failure	Diagnostic criteria of IHD	Study quality
--------------------------------------	---------	--------	------	--------------	---------------	----------------	------------------	----------------	----------	-------------------	---------------------	--------------	--------------------------------	--------------------------------	--------------------------	--------------
Damasceno, 2012 [10]	SSA	–	Cohort	Hospital-based	Prospective	Patients admitted with acute heart failure	No	49.2	52.3	˃12	1006	European Society of Cardiology (ESC) guidelines on HF	Congenital valvular heart disease (0.24%); Ischemic heart disease (0.24%); Missing (11.11%)	12-lead ECG; echocardiography; stress test	Moderate	
Kwan, 2013 [12]	Rwanda	Eastern	Rural	Cross-sectional	Hospital-based	Heart failure patients treated between November 2006 and March 2011	No	30.0	NR	NR	138	NR	Dilated cardiomyopathy (54%), Rheumatic heart disease (25%), hypertensive heart disease (8%) and ischaemic heart disease (0%)	NR	Moderate	
Massouré, 2013 [13]	Djibouti	Eastern	NR	Cohort	Hospital-based	Prospective	Adults hospitalized for heart failure	No	84.0	55.8	27–75	45	Framingham criteria	Coronary artery disease (62%); hypertensive heart disease (18%); rheumatic valvular disease (13%) and primary dilated cardiomyopathy (7%)	12-lead ECG; echocardiography; stress test	Moderate
Ojji, 2013 [14]	Nigeria	Western	Urban	Cross-sectional	Hospital-based	Patients with novo presentations of	No	49.3	49.0	NR	1515	European Society of Cardiology (ESC)	Hypertensive heart disease (60.6%); Idiopathic dilated cardiomyopathy (12.0%); Valvular rheumatic	ECG; Cardiac enzymes;	High	
Study	Country	Region	Study Type	Patients Age	Patients	Heart Failure Criteria	Heart Disease Percentage	Other Causes (%)	Tests Used							
-----------------------	-------------	------------	-----------------------------	--------------	----------	------------------------	-------------------------	------------------	------------							
Makubi, 2014	Tanzania	Eastern	Hospital-based Prospective	18-55	427	Framingham criteria	8.6%	Alcoholic cardiomyopathy (4.2%); Thyrotoxic heart disease (2.9%); right heart failure (2.5%); Ischaemic heart disease (0.4%)	Echocardiography							
Ogah, 2014	Nigeria	Western	Hospital-based Prospective	18-42	452	Framingham criteria and ESC	78.5% (Hypertensive heart disease); 7.5% (Dilated cardiomyopathy); 4.4% (Cor pulmonale); 3.3% (Rheumatic heart disease); 2.4% (Ischaemic heart disease); 0.4% (Valvulopathies)	Echocardiography, 12-lead ECG, and Echo-cardiography								
Pio, 2014	Togo	Western	Hospital-based Prospective	18-55	297	European Society of Cardiology (ESC) guidelines on HF	43.1% (Hypertensive heart disease); 19.2% (Ischaemic heart disease); 11.8% (Peripartum cardiomyopathy); 2.2% (Valvulopathies); 1.8% (HIV-related cardiopathy); 3.4% (Thyrotoxic heart disease); 2.7% (Congenital cardiopathies); 2% (Chronic alcoholism) and 5.9% (idiopathic)	ECG, Cardiac enzymes; Echocardiography								
Pio, 2014	Togo	Western	Retrospective Files of patients	NR	376	Hypertensive heart disease (42.8%); Valvulopathies (18.1%);	ECG, Cardiac enzymes; Low									

UF Nyago et al. / Data in Brief 17 (2018) 1228–1239
First name of author, publication year	Country	Region	Area	Study design	Study setting	Data collection	Study population	Random sampling	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Criteria for diagnosis of HF	Aetiology of heart failure	Diagnostic criteria of IHD	Study quality	
Dokainish, 2015 [22]	SSA	–	Cohort	Hospital-based	Prospective, international, multicenter	Ambulatory Yes and hospitalized adult patients with heart failure		51.8	53.4	≥ 18	1294	Boston criteria of HF	Peripartum cardiomyopathy (15.4%); Idiopathic dilated cardiomyopathy (5.8%); Alcoholic cardiomyopathy (3.2%); IHD (2.7%); Congenital cardiopathy (2.7%); Cor pulmonale (2.1%); thyrotoxic heart failure (1.8%); Pericardial tamponade (1.1%) and HIV-associated myocarditis (1.1%)	Echo-cardiography			
Ansa, 2016 [24]	Nigeria	Western	NR	Cross-sectional	Hospital-based	Retrospective medical record review	All cardiovascular admissions to the medical wards	NR	NR	≥ 18	144	NR	Hypertensive heart disease (35%); Ischaemic cardiomyopathy (20%); Idiopathic dilated cardiomyopathy (14.5%); Valvular rheumatic heart disease (7.2%); Endocrine/metabolic heart disease (5.3%); Valvular non-rheumatic heart disease (2.3%); Alcohol/drug induced cardiopathy (0.7%); HIV cardiomyopathy (0.7%)	NR	Moderate		
Abebe 2016 [25]	Ethiopia	Eastern	Urban	Chart review	Hospital-based	Retrospective	Medical records of	NR	30.2	53.6	NR	311	NR	Hypertensive heart disease (48.6%); dilated cardiomyopathy (35.4%); Anaemia (14.6%) and Rheumatic heart disease (14.6%)	Valvular heart disease (40.8%); Hypertensive	NR	Moderate
Study	Country	Region	Cohort Type	Study Design	No	Median Age	Range	Gender	Diagnosis								
---------------	-----------------	--------------	-----------------	--------------------	----	------------	-------	--------	--								
Kingery, 2017	Tanzania Eastern Urban Cohort	Hospital-based Prospective	Medical inpatients admitted for heart failure	No	44.1	52.0	≥ 18	145	Framingham criteria of HF								
Hypertensive heart disease (16.1%); Ischaemic heart disease (15.8%); Dilated cardiomyopathy (12.5%); Cor pulmonale (4.5%); Others (10.3%)																	
Boombhi, 2017	Cameroon Central Urban Cross-sectional	Hospital-based Retrospective	Patients hospitalized for acute heart failure, diagnosed on clinical and/or ultrasound evidence	No	42.7	61.5	16–95	148	NR								
Hypertensive heart disease (30.16%); Dilated cardiomyopathy (28.57%); Valvular heart disease (11.90%); Chronic cor pulmonale (8.73%); Ischemic heart disease (6.35%); Pericardial diseases (3.96%); Peripartum cardiomyopathy (3.18%)																	
Traore, 2017	Ivory Coast Western Urban Cross-sectional	Hospital-based Retrospective	Patients hospitalized for heart failure	No	51.0	NR	NR	257	NR								
 Hypertensive heart disease (22.9%); Dilated cardiomyopathy (55.57%); Valvular heart disease (6.76%); Ischemic heart disease (11.23%); Other (9.9%) |

Others: *Tuberculosis; HIV-related cardiomyopathy; endomyocardial fibrosis; obstructive pulmonary disease; IHD = Ischaemic heart disease; ECG = Electrocardiography; HF = Heart failure; THE-SUS-HF = sub-Saharan Africa Survey for Heart Failure; INTER-CHF = INTERnational Congestive Heart Failure; ESC = European Society of Cardiology; NR = not reported.*
First name of author, publication year	Country	Region	Area	Study design	Study setting	Data collection	Random sampling	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Criteria for diagnosis of HF	Treatment of heart failure	Study quality	
Kingue, 2005 [10]	Cameroon	Central	Urban	Cross-sectional	Hospital-based	Retrospective and prospective	No	59.3	57.3	≥ 16	167	NR	Loop diuretics (90%); angiotensin-converting enzyme inhibitor (ACEI) (64.7%); beta-blockers (19.8%); digoxin (30.5%); aldosterone antagonists (25.5%)	Moderate	
Stewart, 2008 [7]	South Africa	Southern	Urban	Cross-sectional	Hospital-based	Prospective	No	43.0	55.0	NR	844	ESC	Loop or thiazide diuretic (68%); ACEI (57.7%); beta-blocker (45.6%); digoxin (19%); aldosterone antagonist (42%); calcium channel blocker (18%)	High	
Ogah, 2014 [26]	Nigeria	Western	Urban	Cohort	Hospital-based	Prospective	No	54.9	56.4	NR	452	Framingham criteria and ESC	Loop diuretic (88.1%); ACEI (99.1%); beta-blockers (9.1%) digoxin (72.3%); long-acting calcium-channel blockers (26.8%); combined hydralazine and isosorbide dinitrate (14.4%)	High	
Damasceno, 2012 [17]	THESUS-HF Registry	SSA	NR	Cohort	Hospital-based	Prospective	No	49.2	52.3	≥ 12	1006	ESC	Loop diuretic (79%); ACEI/angiotensin receptor blocker (ARB) (82%); beta-blockers (30%); Digoxin (60%); Aldosterone antagonist (75%); Loop diuretics (88%); ACEI/ARB (92%); β-Blockers (42%); Digoxin (39%); Aldosterone antagonist (72%); Calcium channel blockers (19%); Nitrites (64%); Hydralazine (4%)	Moderate	
Makubi, 2014 [18]	Tanzania	Eastern	Urban	Cohort	Hospital-based	Prospective	No	49.0	55.0	≥ 18	427	Framingham criteria	Loop diuretics (88%); ACEI/ARB (92%); β-Blockers (42%); Digoxin (39%); Aldosterone antagonist (72%); Calcium channel blockers (19%); Nitrites (64%); Hydralazine (4%)	High	
Dokainish, 2016 [19]	SSA	Both	Cohort	Hospital-based	No	No	51.8	53.4	≥ 18	1294	Boston criteria of HF	Loop diuretics (93.7%); ACEI/ARB (77.1%); β-Blockers	Moderate		
Study	Country	Region	Study Type	Setting	Sample Size	Age (years)	Gender	HF Etiology	Treatments						
-------	---------	--------	------------	---------	-------------	-------------	--------	-------------	------------						
Boombhi, 2017 [29]	Cameroon	Central	Cross-sectional	Hospital-based	Prospective, international, multicenter	No	42.7	61.5	16–96	148	NR	Low			
Bonsu, 2017 [30]	Ghana	Western	Urban Cohort	Hospital-based	Retrospective	No	45.6	60.3	≥ 18	1488	Framingham criteria of HF	Low			
Mwita, 2017 [31]	Botswana	Southern	Urban Cohort	Hospital-based	Prospective	No	53.9	54.2	20–89	193	NR	Moderate			
First name of author, publication year	Country	Region	Area	Study setting	Data collection	Random sampling	Study Population	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Duration of follow-up	Mortality rate	Predictor(s) of mortality (HR or OR)	Study quality
--------------------------------------	---------	--------	------	---------------	----------------	----------------	-----------------	---------	-------------------	-------------------	------------	---------------------	---------------	----------------------------------	--------------
Familoni, 2007 [4]	Nigeria	Western	Semi-Urban	Hospital-based	Prospective	No	Adult patients (≥ 18 years) admitted for acute heart failure	67.1	57.6	NR	82	3 years	3-year mortality rate = 67.1%	Age (HR = 0.997); Systolic blood pressure (HR = 1.002); Congestion score (HR = 1.007)	Moderate
Maro, 2009 [9]	Tanzania	Eastern	Urban	Hospital-based	Prospective	No	Patients admitted for congestive heart failure	55.0	NR	NR	360	12 months	360-day mortality rate = 21.9%	NR	Moderate
Chansa, 2012 [11]	Zambia	Southern	Urban	Hospital-based	Prospective	No	Adult patients (≥ 18 years) admitted for acute heart failure	41	50	NR	390	30 days	In-hospital mortality rate = 24.1% 30-day mortality rate = 35%	Left ventricular ejection fraction < 40% (HR = 1.93); NYHA class IV (HR = 1.92); Serum urea nitrogen > 15 mmol/L (HR = 2.10); Hemoglobin levels < 12 g/dL (HR = 1.34); Systolic blood pressure < 115 mmHg (HR = 1.92)	Moderate
Sliwa, 2013 [15]	The THE-SUS-HF registry	SSA	–	Hospital-based	Prospective	No	Patients presenting with acute heart failure	49.1	52.3	NR	1006	Six months	60-day mortality rate = 9.5% 180-day mortality rate = 15.0%	Malignancy (HR = 5.04); History of cor pulmonale (HR = 2.50); Serum urea nitrogen (HR = 1.39); Systolic blood pressure	High
Study	Country	Region	Setting	Study Design	Eligible Population	Sample Size	Age Range	Follow-up	Mortality Rate	Risk Factors					
-------	---------	--------	---------	--------------	---------------------	-------------	-----------	------------	----------------	--------------					
Massouré, 2013	Djibouti	Eastern Urban	Hospital-based	Prospective	No Adult patients (<18 years) admitted for heart failure	84	55.8	27–75	45 months	14.4%	Mortality rate = 18.0%				
Okello, 2014	Uganda	Eastern NR	Hospital-based	Retrospective	No Patients admitted for acute heart failure	30.3	52	NR	274	13 months	In-hospital mortality rate = 18.3%				
Makubi, 2014	Tanzania	Eastern Urban	Hospital-based	Prospective	No Adult patients (<18 years) with heart failure	49.0	55	≥18	427	7 months	22.4 per 100 person-years				
Ali, 2016	Ethiopia	Eastern Urban	Hospital-based	Prospective	No Adult patients (<18 years) admitted for heart failure	50.7	50.9	≥18	152	9 months	In-hospital mortality rate = 3.9%				
Abebe, 2016	Ethiopia	Eastern Urban	Hospital-based	Retrospective	NR Adult patients admitted for HF	30.2	53.8	≥18	311	25 months	Mortality rate = 14.1%				

Risk Factors: Hypotension on admission (adjusted OR = 4.6); Reduced left ventricular ejection fraction (adjusted OR = 7.6); Creatinine clearance (HR = 0.98); Pulmonary hypertension (HR = 2.11); Anaemia (HR = 2.27); No formal education (HR = 2.34); Inpatient (HR = 3.23); Atrial fibrillation (HR = 3.37).
First name of author, publication year	Country	Region	Area	Study setting	Data collection	Random sampling	Study Population	Male (%)	Mean age (in years)	Age range (in years)	Sample size	Duration of follow-up	Mortality rate	Predictor(s) of mortality (HR or OR*)	Study quality
Kingery, 2017 [27]	Tanzania	Eastern	Urban	Hospital-based	Prospective	No	Adult patients (≥ 18 years) admitted for heart failure	38.3	50.8	18	145	12 months	In-hospital mortality rate = 25.2%	Low eGFR (HR = 2.94); Proteinuria (HR = 2.03).	High
Bonsu, 2017 [30]	Ghana	Western	Urban	Hospital-based	Retrospective	No	Adult patients (≥ 18 years) admitted for heart failure	45.6	60.3	18	1488	5 years	5-year mortality rate = 31.7%	Age (HR = 1.01); NYHA IV (HR = 1.96); Ejection fraction (HR = 0.99); LDLC-C (HR = 1.1); Chronic kidney disease (HR = 1.74); Atrial fibrillation (HR = 1.26); Anaemia (HR = 1.40); Diabetes mellitus (HR = 1.50); Statin (HR = 0.70); Aldosterone antagonists (HR = 0.81)	High
Mwita, 2017 [31]	Botswana	Southern	Urban	Hospital-based	Prospective	No	Adult patients (≥ 18 years) admitted for acute heart failure	53.9	54.2	20–89	193	1 year	In-hospital mortality rate = 10.9%	Advanced age; Lower haemoglobin level; Lower eGFR; Lower serum sodium levels; Higher length of hospital stay; Higher serum creatinine levels; Higher serum urea levels; Higher serum NT-proBNP levels	Moderate
Pallangyo, 2017 [32]	Tanzania	Eastern	Urban	Hospital-based	Prospective	No	Adult patients (≥ 18 years) admitted	43.5	46.4	18	463	180 days	180-day mortality rate = 57.8%	Renal dysfunction (HR = 1.9); Severe anaemia (HR = 1.8); Hyponatraemia (HR = 2.2);	High
Study	Registry/Study	Sampling	Design	No	Follow-up	Mortality	Predictors of mortality	HR*	OR**	Notes					
-------	---------------	----------	--------	----	-----------	-----------	------------------------	------	------	-------					
Sani, 2017	The THE-SUS-HF registry	Hospital-based Prospective	No Patients presenting with acute heart failure	49.2	52.3	≥ 12	954	180 days	NR	Low	Predictors of mortality within 60 days: Heart rate (HR = 1.07); left atrial size (HR = 1.00) Predictors of mortality within 180 days: Heart rate > 80 bpm (HR = 1.25); left ventricular posterior wall thickness in diastole > 9 mm (HR = 1.32); Presence of aortic stenosis (HR = 3.60)				

HR* = Hazard ratio; OR** = Odd's ratio; NYHA = New York Heart Association; bpm = Beats per minute; NR = Not reported; eGFR = Estimated glomerular filtration rate.
Table 8
Summary statistics from meta-analyses of prevalence studies on the medications used to treat heart failure in sub-Saharan Africa.

Treatment	N studies	N participants	% (95% confidence interval)	I² (95% confidence interval)	H (95% confidence interval)	P heterogeneity	P Egger test
ACEI/ARB	9	5692	75.5 (64.4–85.1)	98.8 (98.4–99.0)	8.9 (7.8–10.2)	< 0.0001	0.879
Aldosterone antagonists	6	4925	51.5 (32.4–70.3)	99.4 (99.3–99.6)	13.4 (11.8–15.2)	< 0.0001	0.807
Digoxin	7	5027	31.5 (19.4–45.0)	98.9 (98.6–99.2)	9.6 (8.3–11.2)	< 0.0001	0.924
loop diuretics	9	5692	31.6 (22.6–41.0)	98.1 (97.4–98.6)	7.3 (6.3–8.5)	< 0.0001	0.549
β-Blockers	9	5692	31.4 (22.6–41.0)	98.1 (97.4–98.6)	7.3 (6.3–8.5)	< 0.0001	0.549

ACEI = Angiotensin II enzyme inhibitor; ARB = Angiotensin receptor blocker; N = frequency; CI = confidence interval.

Acknowledgments

None.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.dib.2018.01.100.

References

[1] G.O. Oyoo, E.N. Ogola, Clinical and socio demographic aspects of congestive heart failure patients at Kenyatta National Hospital, Nairobi, East Afr. Med. J. 76 (1999) 23–27.
[2] M. Thiam, Cardiac insufficiency in the African cardiology milieu, Bull. Soc. Pathol. Exot. 96 (2003) 217–218.
[3] S. Kingue, A. Dzudie, A. Menanga, M. Akono, M. Ouankou, W. Muna, A new look at adult chronic heart failure in Africa in the age of the Doppler echocardiography: experience of the medicine department at Yaounde General Hospital, Ann. Cardiol. Angeiol. (Paris) 54 (2005) 276–283.
[4] O. Familoni, T. Olunuga, B. Olufemi, A clinical study of pattern and factors affecting outcome in Nigerian patients with advanced heart failure, Cardiovasc J Afr. 18 (2007) 308–311.
[5] I.K. Owusu, Causes of heart failure as seen in Kumasi Ghana, Internet J. Third World Med. [Internet] (2006) 5 (Available from) (https://ispub.com/IJTWM/5/1/9012).
[6] S. Stewart, D. Wilkinson, C. Hansen, V. Vaghela, R. Mvungi, J. McMurray, et al., Predominance of heart failure in the Heart of Soweto Study cohort: emerging challenges for urban African communities, Circulation 118 (2008) 2360–2367.
[7] O.S. Ogah, G.D. Adegbite, R.O. Akinyemi, J.O. Adesina, O.I. Udoa, et al., Spectrum of heart diseases in a new cardiac service in Nigeria: an echocardiographic study of 1441 subjects in Abeokuta, BMC Res. Notes 1 (2008) 98.
[8] A.C. Onwuchekwa, G.E. Asekomeh, Pattern of heart failure in a Nigerian teaching hospital, Vasc. Health Risk Manag. 5 (2009) 745–750.
[9] E.E. Maro, R. Kaushik, The role of echocardiography in the management of patients with congestive heart failure. “Tanzanian experience”, Cent. Afr. J. Med. 55 (2009) 35–39.
[10] A. Damasceno, B.M. Mayosi, M. Sani, O.S. Ogah, C. Mondo, D. Ojji, et al., The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries, Arch. Intern. Med. 172 (2012) 1386–1394.
[11] P. Chansa, S. Lakhi, A. Ben, S. Kalinichenko, R. Sakr, Factors associated with mortality in adults admitted with heart failure at the university teaching hospital in Lusaka, Zambia, Cardiovasc. Ther. 30 (2012) 32.
[12] G.F. Kwan, A.K. Bukhman, A.C. Miller, G. Ngoga, J. Mucumbitsi, C. Bavuma, et al., A simplified echocardiographic strategy for heart failure diagnosis and management within an integrated noncommunicable disease clinic at district hospital level for sub-Saharan Africa, JACC Heart Fail. 1 (2013) 230–236.
[13] P.L. Massoure, N.C. Roche, G. Lamblin, F. Topin, C. Dehan, E. Kaiser, et al., Heart failure patterns in Djibouti: epidemiologic transition, Med. Sante Trop. 23 (2013) 211–216.
[14] D. Ojji, S. Stewart, S. Ajayi, M. Mamak, K. Sliva, A predominance of hypertensive heart failure in the Abuja Heart Study cohort of urban Nigerians: a prospective clinical registry of 1515 de novo cases, Eur. J. Heart Fail. 15 (2013) 835–842.
[15] K. Sliva, B.A. Davison, B.M. Mayosi, A. Damasceno, M. Sani, O.S. Ogah, et al., Readmission and death after an acute heart failure event: predictors and outcomes in sub-Saharan Africa: results from the THESUS-HF registry, Eur. Heart J. 34 (2013) 3151–3159.
