DATA NOTE

The genome sequence of the black-veined white butterfly, *Aporia crataegi* (Linnaeus, 1758) [version 1; peer review: awaiting peer review]

Sam Ebdon¹, Alexander Mackintosh¹, Konrad Lohse¹, Alex Hayward², Saad Arif³, Rebecca Whitla³, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
²Department of Biosciences, University of Exeter, Penryn, UK
³Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK

Abstract
We present a genome assembly from an individual male *Aporia crataegi* (the black-veined white; Arthropoda; Insecta; Lepidoptera; Pieridae). The genome sequence is 230 megabases in span. The complete assembly is scaffolded into 26 chromosomal pseudomolecules, with the Z sex chromosome assembled. Gene annotation of this assembly on Ensembl has identified 10,860 protein coding genes.

Keywords
Aporia crataegi, black-veined white, genome sequence, chromosomal, Lepidoptera

This article is included in the Tree of Life gateway.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Ebdon S: Investigation, Resources, Writing – Review & Editing; Mackintosh A: Investigation, Resources, Writing – Review & Editing; Lohse K: Investigation, Resources, Writing – Review & Editing; Hayward A: Investigation, Resources; Arif S: Writing – Original Draft Preparation, Writing – Review & Editing; Whitla R: Writing – Original Draft Preparation, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328). Fieldwork was supported by a NERC fellowship (NE/L011522/1) and an ERC grant (ModelGenom Land 757648) to KL. AH is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellowship (BB/N020146/1).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Ebdon S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Ebdon S, Mackintosh A, Lohse K et al. The genome sequence of the black-veined white butterfly, Aporia crataegi (Linnaeus, 1758) [version 1; peer review: awaiting peer review] Wellcome Open Research 2022, 7:81 https://doi.org/10.12688/wellcomeopenres.17709.1

First published: 08 Mar 2022, 7:81 https://doi.org/10.12688/wellcomeopenres.17709.1
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Papilionoidea; Pieridae; Pierinae; Aporia; *Aporia crataegi* (Linnaeus, 1758) (NCBI:txid111923).

Background
The black-veined white (*Aporia crataegi*) is a large butterfly with distinctive venation on its wings. This species is oligophagous with a larval host plant preference for *Prunus* and *Crataegus* spp. and is often considered a pest species in orchards (Jugovic et al., 2017; Manley, 2008). It is found in a wide variety of habitats including dry grassland, woodland edges, and shrubland (Tolman & Lewington, 2008). *Aporia crataegi* is found across the Palaearctic, with populations present in northwest Africa, as well as across Europe and Asia. The butterfly disappeared from the British Isles around 1925, and the last British specimens were collected from Herne Bay in Kent during the 1920s (Todisco et al., 2020). It is not understood why the species disappeared from the British Isles; however, climate variability along with other concurrent detrimental conditions, such as parasites, disease, or predation have been suggested as potential reasons (Pratt, 1983). Several reintroductions have been attempted, but all have been unsuccessful (Asher et al., 2001), including one purportedly by Winston Churchill after the end of World War II. Given the butterfly’s wide Palaearctic distribution, it remains listed as a species of least concern, but more recently it has been reported as extinct in the Czech Republic, the Netherlands (Van Swaay et al., 2010), and likely South Korea (Kim et al., 2015). Additionally, abundance and/or range is declining in Austria, Luxembourg, Romania, Ukraine, Albania, France, Latvia, Norway and Serbia (Van Swaay et al., 2010). No clear consensus exists on the reasons for these declines. We expect that the assembly reported here will facilitate conservation genomic approaches, shedding light on this species’ current status (Todisco et al., 2020). In particular, it will be a valuable resource for any future reintroductions, monitoring, and other local conservation efforts.

Genome sequence report
The genome was sequenced from a single female *A. crataegi* (Figure 1) collected from Planoles Station, Catalunya, Spain (latitude 42.3136, longitude 2.0996). A total of 101-fold coverage in Pacific Biosciences single-molecule circular consensus (HiFi) long reads and 147-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 4 missing/misjoins and removed 5 haplotypic duplications, reducing the assembly length by 0.37% and the scaffold number by 7.14%.

![Figure 1](image-url)
Figure 1. Fore and hind wings of the *Aporia crataegi* specimens used for sequencing. Dorsal (A) and ventral (B) surface view of wings from specimen PS_AC_246 (iApoCrat1) from Planoles, Spain, used to generate Pacific Biosciences and 10X genomics data. Dorsal (C) and ventral (D) surface view of wings from specimen NU_AC_677 (iApoCrat2) from Nueno, Spain, used to generate RNA-Seq data.
The final assembly has a total length of 230 Mb in 26 sequence scaffolds with a scaffold N50 of 25.5 Mb (Table 1). The complete assembly sequence was assigned to 26 chromosomal-level scaffolds, representing 25 autosomes (numbered by sequence length), and the Z sex chromosome (Figure 2–Figure 5; Table 2). The assembly has a BUSCO v5.1.2 (Manni et al., 2021) completeness of 98.5% (single 97.8%, duplicated 0.6%) using the lepidoptera_odb10 reference set (n=5286). While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Genome annotation report

The ilApoCrat1.1 genome has been annotated using the Ensembl rapid annotation pipeline (Table 1; https://rapid.ensembl.org/Aporia_crateagi_GCA_912999735.1/). The resulting annotation includes 17,867 transcribed mRNAs from 10,860 protein-coding

Table 1. Genome data for Aporia crateagi, ilApoCrat1.1.

Project accession data	
Assembly identifier	ilApoCrat1.1
Species	Aporia crateagi
Specimen	ilApoCrat1 (genome assembly); ilApoCrat2 (RNA-Seq)
NCBI taxonomy ID	NCBI:txid129397
BioProject	PRJEB45674
BioSample ID	SAMEA7523355
Isolate information	Male, whole organism (ilApoCrat1); male, thorax (ilApoCrat2)

Raw data accessions	
PacificBiosciences SEQUEL II	ERR6544652
10X Genomics Illumina	ERR6363316-ERR6363319
Hi-C Illumina	ERR6363321
Illumina polyA RNA-Seq	ERR6363320

Genome assembly	
Assembly accession	GCA_912999735.1
Accession of alternate haplotype	GCA_912999795.1
Span (Mb)	230
Number of contigs	28
Contig N50 length (Mb)	9.6
Number of scaffolds	26
Scaffold N50 length (Mb)	9.6
Longest scaffold (Mb)	12.8
BUSCO* genome score	C:98.5%[S:97.8%,D:0.6%],F:0.3%,M:1.2%,n:5286

Genome annotation	
Number of protein-coding genes	10,860
Average length of coding sequence (bp)	1597.20
Average number of exons per transcript	8.23
Average exon size (bp)	259.64
Average intron size (bp)	1337.70

*BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilApoCrat1.1/dataset/ilApoCrat1_1/busc.
and 1,089 non-coding genes. There are 1.54 coding transcripts per gene and 8.23 exons per transcript.

Methods

Sample acquisition and nucleic acid extraction
A male *A. crataegi* specimen (ilApoCrat1, genome assembly) was collected from Pinoles Station, Catalunya, Spain (latitude 42.3136, longitude 2.0996) using a net by Konrad Lohse, who also identified the specimen, and Alex Hayward. A second male *A. crataegi* specimen (ilApoCrat2, RNA-Seq) was collected from Nueno, Aragon, Spain (latitude 42.27, longitude -0.45) using a net by Sam Ebdon and Alexander Mackintosh. This specimen was also identified by Konrad Lohse. The samples were snap-frozen at -80°C. Permissions for field sampling were obtained from the Gobierno de Aragon (INAGA/500201/24/2018/0614 to Karl Wotton) and the Generalitat de Catalunya (SF/639).

DNA was extracted from the whole organism of ilApoCrat1 at the Wellcome Sanger Institute (WSI) Scientific Operations core from the whole organism using the Qiagen MagAttract HMW DNA kit, according to the manufacturer’s instructions. RNA (from the thorax of ilApoCrat2) was extracted in the Tree of Life Laboratory at the WSI using TRIzol, according to the manufacturer’s instructions. RNA was then eluted in 50 μl RNase-free water and its concentration RNA assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.
Figure 3. Genome assembly of Aporia crataegi, ilApoCrat1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilApoCrat1.1/dataset/ilApoCrat1_1/blob.

Sequencing

Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud DNA sequencing libraries were constructed according to the manufacturers’ instructions. Poly(A) RNA-Seq libraries were constructed using the NEB Ultra II RNA Library Prep kit. DNA and RNA sequencing was performed by the Scientific Operations core at the WSI on Pacific Biosciences SEQUEL II (HiFi), Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were also generated from remaining whole organism tissue of ilApoCrat1 using the Arima v2 Hi-C kit and sequenced on an Illumina NovaSeq 6000 instrument.

Genome assembly

Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with
purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination as described previously (Howe et al., 2021). Manual curation (Howe et al., 2021) was performed using HiGlass (Kerpedjiev et al., 2018) and Pretex. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021), which performed annotation using MitoFinder (Allio et al., 2020). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.
Table 2. Chromosomal pseudomolecules in the genome assembly of *Aporia crataegi*, ilApoCrat1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
OU538729.1	1	12.85	32.4
OU538730.1	2	11.89	32.4
OU538731.1	3	11.06	31.9
OU538733.1	4	10.56	32.3
OU538734.1	5	10.37	32.0
OU538735.1	6	10.35	32.1
OU538736.1	7	9.98	32.5
OU538737.1	8	9.76	32.4
OU538738.1	9	9.64	32.2
OU538739.1	10	9.63	32.5
OU538740.1	11	9.51	32.1
OU538741.1	12	9.47	32.2
OU538742.1	13	9.42	32.1
OU538743.1	14	9.39	32.6
OU538744.1	15	9.37	32.4
OU538745.1	16	8.83	32.5
OU538746.1	17	8.79	32.4
OU538747.1	18	8.74	32.1
OU538748.1	19	8.73	32.5
OU538749.1	20	8.36	32.3
OU538750.1	21	6.60	33.2
OU538751.1	22	4.59	33.4
OU538752.1	23	4.58	34.1
OU538753.1	24	3.40	33.5
OU538754.1	25	3.03	33.8
OU538732.1	Z	10.79	32.1
OU538755.1	MT	0.02	18.7

Figure 5. Genome assembly of *Aporia crataegi*, ilApoCrat1.1: Hi-C contact map. Hi-C contact map of the ilApoCrat1.1 assembly, visualised in HiGlass. Chromosomes are shown in size order from left to right and top to bottom.
Data availability
European Nucleotide Archive: Aporia crataegi (black veined white). Accession number PRJEB45674; https://identifiers.org/ena.embl/PRJEB45674.

The genome sequence is released openly for reuse. The A. crataegi genome sequencing initiative is part of the Darwin Tree of Life (DTol) project. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

Author information
Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.5744972.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.5744840.

Members of the Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5743293.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.

References

Software tool	Version	Source
Hifiasm	0.12-r304	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	2	Uliano-Silva et al., 2021
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.2.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.4	Challis et al., 2020

Members of the Wellcome Sanger Institute Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.5744972.

Members of the Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5743293.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905. [PubMed Abstract] | [Publisher Full Text] | [Free Full Text]

Asher J, Warren M, Fox R, et al.: The Millennium Atlas of Butterflies in Britain and Ireland. Oxford University Press. 2001.

Challis R, Richards E, Rajan J, et al.: BlobToolKit—Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361-74. [PubMed Abstract] | [Publisher Full Text] | [Free Full Text]

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods. 2021; 18(2): 170–75. [PubMed Abstract] | [Publisher Full Text] | [Free Full Text]

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv: 1207.3907, July, 2012. [Reference Source]

Ghurye J, Rhee A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273. [PubMed Abstract] | [Publisher Full Text] | [Free Full Text]

Jugovic J, Grando M, Genov T: Microhabitat Selection of Aporia Crataegi (Lepidoptera: Pieridae) Larvae in a Traditionally Managed Landscape. J Insect Conserv. 2017; 21(2): 307–18. [Publisher Full Text]

Kerpedjiev P, Abdennur N, Lekschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. [PubMed Abstract] | [Publisher Full Text] | [Free Full Text]

Kim TG, Han YG, Kwon O, et al.: Changes in Aporia Crataegi’s Potential...
Habitats in Accordance with Climate Changes in the Northeast Asia.
Han’gug Hwan’gyeong Saengtae Haghoeji = Korean Journal of Environment and Ecology. 2015; 38(1): 15–23.
Publisher Full Text
Manley C: British Moths and Butterflies: A Photographic Guide. Bloomsbury Publishing. 2008.
Manni M, Berkeley MR, Seppey M, et al.: BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021; 38(10): 4647–54.
PubMed Abstract | Publisher Full Text | Free Full Text
Pratt C: Modern Review of the Demise of Aporia Crataegi L.: The Black-Veined White. Entomologist’s Record and Journal of Variation. 1983.
Reference Source
Rao SSP, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 158(7): 1665–80.
PubMed Abstract | Publisher Full Text | Free Full Text
Todisco V, Vodă R, Prosser SWJ, et al.: Next Generation Sequencing-Aided Comprehensive Geographic Coverage Sheds Light on the Status of Rare and Extinct Populations of Aporia Butterflies (Lepidoptera: Pieridae). Sci Rep. 2020; 10(1): 13970.
PubMed Abstract | Publisher Full Text | Free Full Text
Tolman T, Lewington R: Collins Butterfly Guide. HarperCollins UK. 2008.
Reference Source
Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021.
Publisher Full Text
Van Swaay C, Wynhoff I, Verovnik R, et al.: IUCN Red List of Threatened Species: Aporia Crataegi. IUCN Red List of Threatened Species. 2010.
Reference Source