Functionals on the space of almost complex structures

Gabriella Clemente

Abstract

We study functionals on the space of almost complex structures on a compact \mathbb{C}-manifold, whose variational properties could be used to tackle Yau’s Challenge.

Contents

Introduction 1
Coordinates 4
Euler-Lagrange equations 7

Introduction

This is supposed to be a step in the direction of understanding Yau’s Challenge, which is to determine if there are compact almost complex manifolds of dimension at least 3 that cannot be given an integrable almost complex structure [3], through the calculus of variations. S-T. Yau proposed devising a parabolic flow on the space of almost complex structures to study this question [2].

Let X be a real $2n$-dimensional compact manifold, and $AC(X) = \{J \in C^\infty(X, \text{End}_{\mathbb{C}}(T_X)) \mid J^2 = -Id\}$ be the space of almost complex structures on X. This is an almost complex Fréchet manifold, and for any $J \in AC(X)$, $T_{AC(X), J} = \{h \in C^\infty(X, \text{End}_{\mathbb{C}}(T_X)) \mid J \circ h + h \circ J = 0\}$, which can be seen from the identity $0 = dJ^2 = d(J \circ J + J \circ dJ)$. An almost complex structure $\mathcal{J} : AC(X) \rightarrow \text{End}(T_{AC(X)})$ is given as $\mathcal{J}(J)(u) = J \circ u$, for any $J \in AC(X)$ and
Let \(u \in T_{AC(X),J} \). Let \(g \) be a fixed Riemannian metric on \(X \), and note that for any \(J \in AC(X) \), we get an almost hermitian metric \(g_J := \frac{1}{2}(g(\cdot,\cdot) + g(J,\cdot)) \).

We are looking for an energy functional \(F \) on \(AC(X) \) whose associated gradient flow is a parabolic PDE. Ideally, the critical points of \(F \) should be the integrable almost complex structures on \(X \), and the Euler-Lagrange equation of \(F \) should be elliptic so that the complex structures on \(X \) are energy minimizers. We would then expect any solution of the flow equation of \(F \) to converge to a genuine complex structure on \(X \). In some special cases, such as when \(AC(X) \) is connected (e.g. \(AC(S^6) \)), the non-existence of a flow solution might translate to the non-existence of complex structures. A more thorough development of these ideas will be the subject of future research. Here we only derive the Euler-Lagrange equations of the functionals \(N, \tilde{N} : AC(X) \rightarrow \mathbb{R}_{\geq 0} \),

\[
N(J) := \int_X \|N_J\|^2_{g_J} \text{vol}_g, \quad \text{and} \quad \tilde{N}(J) := \int_X \|N_J\|^2_{\tilde{g}_J} \text{vol}_{\tilde{g}_J},
\]

where \(\text{vol}_g \) is the Riemannian volume form, and \(\text{vol}_{g_J} \) is the volume form of \(\omega := \frac{i}{2}(g_J - \tilde{g}_J) \). Note that both \(N \), and \(\tilde{N} \) are identically zero on the integrable structures. A very similar, real version of \(N \) appears in [1].

We can think of first variations in terms of linear approximations. Let \(\text{Herm} \left(\Lambda^2 T^0_{1,1} \otimes T^1_{1,0} \right) \) denote the space of hermitian metrics on \(\Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \). Let

\[
f : AC(X) \rightarrow C^\infty \left(X, \Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \text{Herm} \left(\Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right)
\]

be the function \(f(I) = (N, h) = (N(I), h(I)) = (N_I, \overline{g_I}^{-1} \wedge \overline{g_I}^{-1} \otimes g_I), \) and

\[
\phi : C^\infty \left(X, \Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \text{Herm} \left(\Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \rightarrow C^\infty (X, \mathbb{R}_{\geq 0})
\]

be the function \(\phi(N, h) = h^{-1} \wedge h^{-1} \otimes h(N, N) \), and define \(\psi := \phi \circ f \), where \(\psi(I) = \overline{g_I}^{-1} \wedge \overline{g_I}^{-1} \otimes g_I(N_I, N_I) =: \|N_I\|^2_{\tilde{g}_I} \). And now, let

\[
F : AC(X) \rightarrow C^\infty \left(X, \Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \text{Herm} \left(\Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \Omega^{n,n}(X),
\]

\[
F(I) = (N(I), h(I), \text{vol}(I)) = (N_I, \overline{g_I}^{-1} \wedge \overline{g_I}^{-1} \otimes g_I, \text{vol}_{g_I}), \) and
\]

\[
\Phi : C^\infty \left(X, \Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \text{Herm} \left(\Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \Omega^{n,n}(X) \rightarrow C^\infty (X, \mathbb{R}_{\geq 0}),
\]

where \(\text{vol} \) is the Riemannian volume form, and \(\text{vol}_{\tilde{g}_I} \) is the volume form of \(\omega := \frac{i}{2}(g_I - \tilde{g}_I) \).

And now, let \(\tilde{\Psi}(n, h) = h^{-1} \wedge h^{-1} \otimes h(n, n) \), and define \(\phi := \tilde{\Psi} \circ \Phi \), where \(\phi(I) = \tilde{g}_I^{-1} \wedge \tilde{g}_I^{-1} \otimes \tilde{g}_I(N_I, N_I) =: \|N_I\|^2_{\tilde{g}_I} \). And now, let

\[
\tilde{F} : AC(X) \rightarrow C^\infty \left(X, \Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \text{Herm} \left(\Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \Omega^{n,n}(X),
\]

\[
\tilde{F}(I) = (N(I), h(I), \tilde{\text{vol}}(I)) = (N_I, \tilde{\overline{g_I}}^{-1} \wedge \tilde{\overline{g_I}}^{-1} \otimes \tilde{g_I}, \tilde{\text{vol}}_{\tilde{g_I}}), \) and
\]

\[
\Phi : C^\infty \left(X, \Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \text{Herm} \left(\Lambda^2 T^0_{X,1,1} \otimes T^1_{X,0} \right) \times \Omega^{n,n}(X) \rightarrow C^\infty (X, \mathbb{R}_{\geq 0}),
\]
\[\Phi(N,h,\text{vol}) = h^{-1} \wedge h^{-1} \otimes h(N,N)\text{vol}_H, \text{ and define } \Psi := \Phi \circ F \text{ so that } \Psi(I) = \bar{g}_I^{-1} \wedge \bar{g}_I^{-1} \otimes g_I(N_I,N_I)\text{vol}_{g_I}. \text{ Let } \gamma = \frac{1}{2}(g(u-,J) + g(J, u-)). \text{ Let } J \in AC(X), \text{ and } \delta J \text{ be a small perturbation of } J; \text{ i.e. if } u \text{ is a nearby structure in } AC(X), \text{ then } \delta J = (J + u) - J. \text{ Let } \delta N = N(J + \delta J) - N(J) = N_{J+u} - N_J = d_JN_J(u) + O(u^2), \delta h = h(J + \delta J) - h(J) = g_{J+u} - g_J = d_Jg_J(u) + O(u^2) = \gamma + O(u^2), \text{ and } d\text{vol} = vol(J + \delta J) - vol(J) = vol_{g_{J+u}} - vol_{g_J} = d_J(\text{vol}_{g_J}(u) + O(u^2)) = d_J(\text{vol}_{g_J})(u). \text{ Then,} \]

\[
d_J(\|N_J\|^2_{g_J})(u) \approx \|\Phi(N + \delta N,h + \delta h) - \Phi(N,h)\| + \|\Phi(N,h + \delta h) - \Phi(N,h)\|
\approx d_N\Phi(N,h) \cdot \delta N + d_h\Phi(N,h) \cdot \delta h
= d_N\|N_J\|^2_{g_{J+u}} \cdot d_JN_J(u) + d_{g_J}(\|N_J\|^2_{g_J}) \cdot \gamma,
\]

and

\[
d_J(\|N_J\|^2_{g_J} \text{vol}_{g_J})(u) \approx \|\Phi(N + \delta N,h + \delta h,\text{vol} + \delta \text{vol}) - \Phi(N,h + \delta h,\text{vol} + \delta \text{vol})\| + \\
\|\Phi(N,h + \delta h,\text{vol} + \delta \text{vol}) - \Phi(N,h,\text{vol} + \delta \text{vol})\| + \\
\|\Phi(N,h,\text{vol} + \delta \text{vol}) - \Phi(N,h,\text{vol})\|
\approx d_N\Phi(N,h) \cdot \delta N + d_h\Phi(N,h,\text{vol}) \cdot \delta h + d_{\text{vol}}\Phi(N,h,\text{vol}) \cdot \delta \text{vol}
= d_N\|N_J\|^2_{g_{J+u}} \cdot d_JN_J(u) + d_{g_J}(\|N_J\|^2_{g_J} \text{vol}_{g_{J+u}}) \cdot \gamma + \\
d_{\text{vol}}(\|N_J\|^2_{g_J} \text{vol}_{g_J}) \cdot d_J(\text{vol}_{g_J})(u).
\]

The Nijenhuis tensor \(N \) is \(g_J \)-orthogonal to \(dN_J(u)^2 \cdot 0 \) and \(dN_J(u)^1, 1 \). This is a consequence of the \(g_J \)-orthogonality of the holomorphic, and antiholomorphic tangent bundles of \(X \). From now on, all \(O(u^2) \)-terms will be omitted throughout with only a few exceptions in the last section. Then, we find that

\[
d_N(\|N_J\|^2_{g_{J+u}}) \cdot d_JN_J(u) = \left\langle d_JN_J(u), N_J \right\rangle_{g_{J+u}} + \left\langle d_JN_J(u), N_J \right\rangle_{g_{J+u}}
= 2\text{Re}\left[\left\langle dN_J(0,2)(u), N_J \right\rangle_{g_{J+u}} \right].
\]

Proposition 1. The first variation of \(N \) is

\[
d_JN_J(u) = \int_X \left\{ 2\text{Re}\left[\left\langle dN_J(0,2)(u), N_J \right\rangle_{g_{J+u}} \right] + d_{g_J}(\|N_J\|^2_{g_J}) \cdot \gamma \right\}\text{vol}_{g_J},
\]
and that of \tilde{N} is

$$d_J \tilde{N}(f)(u) = \int_X 2\Re \left[\langle dN_j^{0,2}(u), N_j \rangle_{g_J+u} \right] \text{vol}_{g_J+u} + \int_X d_{g_J} (\| N_j \|_{g_J+u}^2 \text{vol}_{g_J+u}) \cdot \gamma + \int_X d_{\text{vol}} (\| N_j \|_{g_J}^2 \text{vol}_{g_J}) \cdot d_J (\text{vol}_{g_J})(u).$$

In order to retrieve the Euler-Lagrange equations of interest, we need to integrate $2\Re \left[\langle dN_j^{0,2}(u), N_j \rangle_{g_J+u} \right]$ by parts. We do this in the coordinates defined below.

Acknowledgment I thank Jean-Pierre Demailly for his suggestions, and I thank the European Research Council for financial support from the grant project “Algebraic and Kähler geometry” (ALKAGE, no. 670846).

Coordinates

We try to develop intrinsic complex coordinates on the almost hermitian manifold (X,J,g_J), centered at a given point $p \in X$, that are the next best alternative to both holomorphic coordinates, which exist only when J is integrable, and geodesic coordinates at p, which exit iff the fundamental form ω of g_J is Kähler.

Recall that if $(z_k)_{1 \leq k \leq n}$ are holomorphic coordinates on $U \subset X$, then $\partial_J z_k = 0$ on some neighborhood $U_x \subset X$ of every $x \in U$. We do not have that in the almost complex case. However, we can design complex coordinates, which will be denoted here by w_k, for which $\partial_J w_k$ is as close as possible to being zero on each U_x. First note that we can always find complex coordinates $z_k \in C^\infty(U_p, \mathbb{C})$, centered at p, such that $\partial_J z_k(p) = 0$. Then, $(d_{z_k}(p))_{1 \leq k \leq n} = (\partial_J z_k(p))_{1 \leq k \leq n}$ is a basis of $(T_{X,p}^{1,0})^\ast$, and so $(\overline{\partial_J z_k(p)})_{1 \leq k \leq n}$ is a basis of $(T_{X,p}^{0,1})^\ast$. Hence, we get a local frame $(\partial_J z_k)_{1 \leq k \leq n}$ of $(T_{X,p}^{0,1})^\ast$, and so

$$\partial_J z_k = \sum_{1 \leq l \leq n} f_{kl}(z) \overline{\partial_J z_l},$$

where $f_{kl} \in C^\infty(U_p, \mathbb{C})$, and $f_{kl}(p) = 0$. Note that if z_k were holomorphic, all of the coefficient functions f_{kl} would be identically zero. Here, for every $1 \leq l \leq n$, each of these functions has a Taylor expansion

$$f_{kl}(z) = \sum_{|\alpha|+|\beta| \leq N} c_{k\alpha l\beta} z^\alpha \overline{z}^\beta + O(|z|^{N+1}).$$
Given that we will only differentiate once, we may instead work with the truncation

\[f_{kl}(z) = \sum_{1 \leq j \leq n} (a_{jkl}z_j + a'_{jkl}\bar{z}_j) + O(|z|^2). \]

Again, if the \(z_k \) were holomorphic, we would in particular have that \(a_{jkl} = a'_{jkl} = 0 \), for all \(1 \leq j, k, l \leq n \). We wish to emulate this situation \((a_{jkl} = a'_{jkl} = 0) \) in the almost complex case. Concretely, we are looking for new coordinates that annihilate as many of the coefficients \(a_{jkl} \), and \(a'_{jkl} \) as possible. To that end, let

\[w_k = z_k + \sum_{1 \leq r, s \leq n} (\alpha_{krs}z_rz_s + \beta_{krs}z_r\bar{z}_s + \gamma_{krs}\bar{z}_r\bar{z}_s) + O(|z|^3). \]

We still have that \(w_k(p) = 0, \partial_j w_k(p) = 0, \) and \(dw_k(p) = dz_k(p) \), and we still get a local frame \((\partial_j w_k)_{1 \leq k \leq n} \) of \(T^1_{X, p} \) so that

\[\partial_j w_k = \sum_{1 \leq j, l \leq n} (b_{jkl}w_j + b'_{jkl}\bar{w}_j + O(|w|^2))\partial_j w_l. \]

We will see that the holomorphic condition prescribes \(\beta_{klm}, \) and \(\gamma_{klm}, \) while the geodesic condition can be used to solve for \(\alpha_{klm} \). The point is that we are reducing the problem of finding optimal complex coordinates on an almost hermitian manifold to finding \(\alpha_{krs}, \beta_{krs}, \gamma_{krs} \) that annihilate the maximum number of coefficients of the Taylor expansions of \(f_{kl}, \) and \(\omega_{\lambda\bar{\mu}}. \) We call \(w_k = z_k + \sum_{1 \leq r, s \leq n}(\alpha_{krs}z_rz_s + \beta_{krs}z_r\bar{z}_s + \gamma_{krs}\bar{z}_r\bar{z}_s) + O(|z|^3), \) \(1 \leq k \leq n, \) with \(\alpha_{krs}, \beta_{krs}, \gamma_{krs} \) subject to these constraints almost holomorphic geodesic coordinates on \(X \) at \(p. \)

Lemma 1. Any complex coordinates \(z_k \in C^\infty(U_p, \mathbb{C}), 1 \leq k \leq n, \) on an almost hermitian manifold \((X, J, g) \) that are centered at \(p, \) and for which \(\partial_j z_k(p) = 0, \) and \(\left(\frac{\partial}{\partial z_k}(p) \right)_{1 \leq k \leq n} \) is an orthonormal basis of \(T^1_{X, p} \), determine almost holomorphic geodesic coordinates at \(p. \) Specifically, if the Taylor expansion of \(\partial_j z_k \) on \(U_p \) is

\[\partial_j z_k = \sum_{1 \leq j, l \leq n} (a_{kjl}z_j + a'_{kjl}\bar{z}_j + O(|z|^2))\partial_j z_l, \]
and if
\[\omega_{m\bar{l}} = \delta_{ml} + \sum_{s=1}^{n} (\tau_{mls}z_s + \tau'_{mls}\bar{z}_s) + O(|z|^2), \]
then
\[w_k = z_k - \sum_{1 \leq m, l \leq n} \left[\frac{1}{4} (a_{klm} + a_{mkl} + \tau_{klm} + \tau_{mkl})z_lz_m + a_{klm}z_l\bar{z}_m + \frac{1}{4} (a'_{klm} + a'_{kml})\bar{z}_l\bar{z}_m \right] + O(|z|^3). \]

Proof. Since \(z_m\bar{\partial}_j z_l = O(|z|^2), \bar{z}_m\partial_j z_l = O(|z|^2), \) and \(\bar{\partial}_j z_l = \partial_j z_l, \) and since \(\gamma_{klm} \) is \((l,m)\)-symmetric,
\[\bar{\partial}_j w_k = \partial_j z_k + \sum_{1 \leq l, m \leq n} \bar{\partial}_j (a_{klm}z_lz_m + \beta_{klm}z_l\bar{z}_m + \gamma_{klm}\bar{z}_lz_m) + O(|z|^3) \]
\[= \partial_j z_k + \sum_{1 \leq l, m \leq n} (\beta_{klm}\bar{z}_l\partial_j z_m + (\gamma_{klm} + \gamma_{kml})z_l\bar{\partial}_j z_m) + O(|z|^2) \]
\[= \sum_{1 \leq l, m \leq n} \left[(a_{klm} + \beta_{klm})z_l + (a'_{klm} + 2\gamma_{klm})\bar{z}_l \right] \partial_j z_m + O(|z|^2). \]
Based on this calculation, \(\alpha_{klm} \) is free to be any complex number, while \(\beta_{klm} = -a_{klm}. \) And we may take, at best, the symmetric part of \(a'_{klm} + 2\gamma_{klm} \) to be zero, which is achieved by setting \(\gamma_{klm} = -\frac{1}{4}(a'_{klm} + a'_{kml}). \) So far, we gather that
\[w_k = z_k + \sum_{1 \leq m, l \leq n} \left[a_{klm}z_lz_m - a_{klm}z_l\bar{z}_m + \frac{1}{4} (a'_{klm} + a'_{kml})\bar{z}_l\bar{z}_m \right] + O(|z|^3). \]
Next, we optimize \(\alpha_{klm} \) subject to the constraint of \(w_k \) being geodesic coordinates at \(p. \) Since \(\alpha_{mlj} \) is \((l,j)\)-symmetric,
\[\partial_j w_m = \partial_j z_m + \sum_{l, j=1}^{n} (2\alpha_{mlj}z_j + \beta_{mlj}\bar{z}_j)\partial_j z_l + O(|z|^2) \]
so that
\[\bar{\partial}_j w_m = \bar{\partial}_j z_m + \sum_{l, j=1}^{n} (2\alpha_{mlj}z_j + \bar{\beta}_{mlj}\bar{z}_j)\bar{\partial}_j z_l + O(|z|^2). \]
Then, since \(O(|w|^2) = O(|z|^2) \),

\[
\frac{i}{2} \sum_{m,l=1}^{n} \left(\delta_{ml} + O(|w|^2) \right) \partial_j w_m \wedge \overline{\partial_j w_l} = \frac{i}{2} \sum_{m=1}^{n} \partial_j w_m \wedge \overline{\partial_j w_m} + O(|w|^2)
\]

\[
= \frac{i}{2} \sum_{m=1}^{n} \left(\partial_j z_m \wedge \overline{\partial_j z_m} + \sum_{l,j=1}^{n} \left(\frac{2\overline{\alpha_{mlj}} \bar{z}_j}{2} + \frac{2\overline{\beta_{mlj}} \bar{z}_j}{2} \right) \partial_j z_m \wedge \overline{\partial_j z_l} \right) + O(|z|^2) + O(|w|^2)
\]

\[
= \frac{i}{2} \sum_{l,m=1}^{n} \left(\delta_{ml} + \sum_{j=1}^{n} \left(\frac{2\overline{\alpha_{mlj}} + 2\overline{\alpha_{jm}} \bar{z}_j}{2} \right) \partial_j z_m \wedge \overline{\partial_j z_l} \right) + O(|z|^2) + O(|w|^2)
\]

\[
i.e. \quad \omega = \frac{i}{2} \sum_{m,l=1}^{n} \left(\delta_{ml} + O(|w|^2) \right) \partial_j w_m \wedge \overline{\partial_j w_l}, \text{ is a condition that can be attained, at best, by setting the } (m,j)-\text{symmetric part of } \alpha_{lmj} + \frac{1}{2}(\overline{\beta_{mlj}} - \tau_{mlj}) \text{ equal to zero. Thus, we may take}
\]

\[
\alpha_{lmj} = -\frac{1}{4} \left(\frac{\beta_{mlj} - \overline{\beta_{jm}} + \tau_{mlj} - \tau_{jm}}{2} \right)
\]

\[
= \frac{1}{4} \left(a_{mlj} + a_{jm} + \tau_{mlj} + \tau_{jm} \right),
\]

\[
\text{and therefore}
\]

\[
w_k = z_k + \sum_{1 \leq m,l \leq n} \left[\frac{1}{4} \left(a_{lkm} + a_{mkl} + \tau_{lkm} + \tau_{mkl} \right) z_l z_m - a_{klm} \bar{z}_l \bar{z}_m - \frac{1}{4} \left(a'_{klm} + a'_{mkl} \right) \bar{z}_l \bar{z}_m \right] + O(|z|^3).
\]
Euler-Lagrange equations

Let \((w_k)_{k=1}^n\) be almost holomorphic geodesic coordinates at \(p\). We now have local coordinate frames \(\frac{\partial^{1,0}}{\partial w_k}\left|_{1 \leq k \leq n}\right.) of \(T^1_\ast X\), and \(\frac{\partial^{0,1}}{\partial \bar{w}_k}\left|_{1 \leq k \leq n}\right.) of \(T^0_\ast X\) with dual coframes \(\left(dw_k^{1,0}\right)_{1 \leq k \leq n}\) and \(\left(d\bar{w}_k^{0,1}\right)_{1 \leq k \leq n}\). We also have the local coordinate expressions

\[
(g_{\lambda \bar{\mu}})_{\lambda \bar{\mu}} = \left(\frac{\partial^{1,0}}{\partial w_\lambda}, \frac{\partial^{0,1}}{\partial \bar{w}_\mu} \right)_{g_j} = \delta_{\lambda \mu} + \sum_{m=1}^n (\tau_{\lambda \bar{\mu}} w_m + \tau'_{\lambda \bar{\mu}} \bar{w}_m) + O(|w|^2),
\]

\[
N_j = \sum_{i,j,k=1}^n N_{ij}^k d\bar{w}_i^{0,1} \wedge d\bar{w}_j^{0,1} \otimes \frac{\partial^{1,0}}{\partial \bar{w}_k},
\]

and likewise

\[
dN_j^{0,2}(u) = \sum_{i,j,k=1}^n (dN_j(u))_{ij}^k d\bar{w}_i^{0,1} \wedge d\bar{w}_j^{0,1} \otimes \frac{\partial^{1,0}}{\partial \bar{w}_k}.
\]

Here we write \(dV = \left(\frac{i}{2} \right)^n dw_1^{1,0} \wedge d\bar{w}_1^{0,1} \wedge \cdots \wedge dw_n^{1,0} \wedge d\bar{w}_n^{0,1}\), \(h := g_{j+u} = g_j + \gamma + O(u^2)\), and

\[
h_{ij} = \delta_{ij} + \sum_{m=1}^n (\tau_{ijm} w_m + \tau'_{ijm} \bar{w}_m) + O(|w|^2) + \gamma_{ij} + O(u^2),
\]

the components of \(h^{-1}\) then being

\[
h_{ij}^{-1} := \delta_{ij} - \sum_{m=1}^n (\tau_{ijm} \bar{w}_m + \tau'_{ijm} w_m) - \gamma_{ij} + \sum_{c,v=1}^n \left(\overline{\tau_{cv}} w_v + \overline{\tau'_{cv}} \bar{w}_v \right) \overline{\gamma}_{cj} + \sum_{c,v=1}^n \overline{\gamma}_{cv} \left(\overline{\tau}_{cjv} \bar{w}_v + \overline{\tau'_{cjv}} w_v \right) + O(|w|^2) + O(u^2).
\]

Lemma 2.

\[
\frac{\partial^{1,0} h_{r \bar{s}}}{\partial w_i}(p) = \tau_{r \bar{s} i} + O(u), \quad \frac{\partial^{0,1} h_{r \bar{s}}}{\partial \bar{w}_i}(p) = \tau'_{r \bar{s} i} + O(u),
\]

\[
\frac{\partial^{1,0} h_{r \bar{s}}}{\partial w_i}(p) = -\tau_{r \bar{s} i} + O(u), \quad \frac{\partial^{0,1} h_{r \bar{s}}}{\partial \bar{w}_i}(p) = -\tau'_{r \bar{s} i} + O(u).
\]
Proof. These equalities are a consequence of \(\gamma_{ij} \), and hence its derivatives with respect to \(w_m \) and \(\bar{w}_m \), being of order \(O(u) \). \qed

Lemma 3.

\[
\left\langle dN_{J}^{0,2}(u), N_{J} \right\rangle_{g_{\mathcal{L}u}} = 2\left(h^{s} h_{i} h_{k} h_{q} f_{j} \frac{\partial^{1,0} u_{s}^{k}}{\partial w_{i}} + h^{s} h_{i} h_{k} h_{q} \left(\frac{\partial^{0,1} u_{s}^{k}}{\partial w_{i}} + \frac{\partial^{0,1} u_{s}^{k}}{\partial \bar{w}_{i}} \right) + \right.
\]

\[
h^{s} h_{j} h_{k} \frac{\partial^{1,0} u_{s}^{k}}{\partial \bar{w}_{i}} f_{j} N_{\bar{m} \bar{\rho}}^{q} - 2h^{s} h_{i} h_{k} h_{q} \left(\frac{\partial^{0,1} u_{s}^{k}}{\partial w_{i}} + \frac{\partial^{0,1} u_{s}^{k}}{\partial \bar{w}_{i}} \right) N_{\bar{m} \bar{\rho}}^{q} + \right.
\]

\[
2h^{s} h_{i} h_{k} h_{q} \left(u \left[\frac{\partial^{0,1} u_{s}^{k}}{\partial w_{i}} f_{j} \right], d w_{k}^{1,0} \right) N_{\bar{m} \bar{\rho}}^{q}.
\]

Proof. First, note that

\[
dN_{J}(u(\zeta, \eta)) = u(\zeta, \eta) + J(\zeta, u(\eta)) + u(J(\zeta, \eta)) - u(\zeta, J(\eta)) - J(\zeta, u(\eta)).
\]

Since \(u = u^{s} d w_{r}^{1,0} \otimes \frac{\partial^{1,0}}{\partial w_{s}} + u^{s} d w_{r}^{1,0} \otimes \frac{\partial^{0,1}}{\partial \bar{w}_{s}} + u^{s} d \bar{w}_{r}^{1,0} \otimes \frac{\partial^{1,0}}{\partial \bar{w}_{s}} + u^{s} d \bar{w}_{r}^{1,0} \otimes \frac{\partial^{0,1}}{\partial \bar{w}_{s}} \)

and \(J = f_{j}^{r} d w_{i}^{1,0} \otimes \frac{\partial^{1,0}}{\partial w_{r}} + u_{i}^{s} d w_{i}^{1,0} \otimes \frac{\partial^{0,1}}{\partial w_{s}} + u_{i}^{s} d \bar{w}_{i}^{1,0} \otimes \frac{\partial^{1,0}}{\partial \bar{w}_{s}} + u_{i}^{s} d \bar{w}_{i}^{1,0} \otimes \frac{\partial^{0,1}}{\partial \bar{w}_{s}} \)

it follows that

\[
J \left[\frac{\partial^{0,1}}{\partial w_{i}}, \frac{\partial^{0,1}}{\partial w_{j}} \right] = \left(\frac{\partial^{0,1} u_{s}^{k}}{\partial w_{i}} f_{j}^{r} + \frac{\partial^{0,1} u_{s}^{k}}{\partial w_{j}} f_{j}^{r} \right) \frac{\partial^{1,0}}{\partial w_{s}} + \left(\frac{\partial^{0,1} u_{s}^{k}}{\partial \bar{w}_{i}} f_{j}^{r} + \frac{\partial^{0,1} u_{s}^{k}}{\partial \bar{w}_{j}} f_{j}^{r} \right) \frac{\partial^{0,1}}{\partial \bar{w}_{s}}.
\]

and

\[
u \left[\frac{\partial^{0,1}}{\partial w_{i}}, \frac{\partial^{0,1}}{\partial w_{j}} \right] = \left(\frac{\partial^{0,1} f_{j}^{r}}{\partial w_{i}} u_{j}^{v} + \frac{\partial^{0,1} f_{j}^{r}}{\partial w_{j}} u_{j}^{v} \right) \frac{\partial^{1,0}}{\partial w_{s}} + \left(\frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{i}} u_{j}^{v} + \frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{j}} u_{j}^{v} \right) \frac{\partial^{0,1}}{\partial \bar{w}_{s}}.
\]

A similar computation shows that

\[
J \left[\frac{\partial^{0,1}}{\partial w_{i}}, u \frac{\partial^{0,1}}{\partial w_{j}} \right] = \left(\frac{\partial^{0,1} f_{j}^{r}}{\partial w_{i}} u_{j}^{v} + \frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{i}} u_{j}^{v} \right) \frac{\partial^{1,0}}{\partial w_{s}} + \left(\frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{i}} u_{j}^{v} + \frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{i}} u_{j}^{v} \right) \frac{\partial^{0,1}}{\partial \bar{w}_{s}}.
\]

Therefore,

\[
J \left[\frac{\partial^{0,1}}{\partial w_{i}}, u \frac{\partial^{0,1}}{\partial w_{j}} \right] + J \left[\frac{\partial^{0,1}}{\partial w_{j}}, u \frac{\partial^{0,1}}{\partial w_{i}} \right] = \left(\frac{\partial^{0,1} f_{j}^{r}}{\partial w_{i}} u_{j}^{v} + \frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{i}} u_{j}^{v} \right) \frac{\partial^{1,0}}{\partial w_{s}} + \left(\frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{i}} u_{j}^{v} + \frac{\partial^{0,1} f_{j}^{r}}{\partial \bar{w}_{i}} u_{j}^{v} \right) \frac{\partial^{0,1}}{\partial \bar{w}_{s}}.
\]
Lemma 4. At p, we have that

\[
\frac{\partial^{1,0}}{\partial w_i} \left[h_s^m h_i^p h_{k\bar{q}} f_j^i N_{\bar{m}p} \det(h) \right] u_k^s = \left(-\tau_{s\bar{m}i} f_j^i N_{s m}^{k} - \tau_{i\bar{p}j} f_j^i N_{s p}^{k} + \tau_{k\bar{q}j} f_j^i N_{s q}^{k} + \partial^{1,0} \frac{\partial^{1,0} N_{s q}^{k}}{\partial w_i} + \tau_{c\bar{e}j} f_j^i N_{s q}^{k} \right) u_k^s,
\]

\[
\frac{\partial^{0,1}}{\partial \bar{w}_i} \left[h_s^m h_i^p h_{k\bar{q}} f_j^i N_{\bar{m}p} \det(h) \right] u_j^s = \left(-\tau_{s\bar{m}i} f_j^i N_{s m}^{k} - \tau_{i\bar{p}j} f_j^i N_{s p}^{k} + \tau_{k\bar{q}j} f_j^i N_{s q}^{k} + \partial^{1,0} \frac{\partial^{1,0} N_{s q}^{k}}{\partial \bar{w}_i} + \tau_{c\bar{e}j} f_j^i N_{s q}^{k} \right) u_j^s,
\]
\[
\frac{\partial^{0,1}}{\partial \bar{w}_i} \left[h^{i\bar{m}} h^{i\bar{p}} h_{k\bar{q}} j^k_j N^q_{\bar{m}\bar{p}} \det(h) \right] u^s_j= \left(- \tau_{\bar{m}i\bar{m}} j^k_j N^k_{\bar{m}j} - \tau_{\bar{p}j\bar{p}} j^k_j N^k_{\bar{p}j} + \tau'_{k\bar{q}j} j^k_j N^q_{\bar{q}j} + \right. \\
\left. \frac{\partial^{0,1} j^k_j}{\partial \bar{w}_i} \right) N^k_{\bar{m}j} + j^k_j \frac{\partial^{0,1} N^k_{\bar{m}j}}{\partial \bar{w}_i} + j^k_j N^k_{\bar{m}j} \left(\sum_{c=1}^{n} \tau'_{c\bar{c}j} \right) u^s_j,
\]

and

\[
\frac{\partial^{0,1}}{\partial \bar{w}_i} \left[h^{\bar{s}n} h^{\bar{i}\bar{p}} h_{\bar{k}\bar{q}} j^i_j N^q_{\bar{k}m} \det(h) \right] u^k_i= \left(- \tau_{\bar{s}m\bar{n}i} j^i_j N^i_{\bar{n}m} - \tau_{\bar{p}\bar{j}i} j^i_j N^i_{\bar{p}j} + \tau'_{\bar{k}\bar{q}j} j^i_j N^q_{\bar{q}j} + \right. \\
\left. \frac{\partial^{0,1} j^i_j}{\partial \bar{w}_i} \right) N^i_{\bar{n}m} + j^i_j \frac{\partial^{0,1} N^i_{\bar{n}m}}{\partial \bar{w}_i} + j^i_j N^i_{\bar{n}m} \left(\sum_{c=1}^{n} \tau'_{c\bar{c}j} \right) u^k_i.
\]

Proof. Note that \(h_{ij}(p) = \delta_{ij} + \gamma_{ij}(p) = \delta_{ij} + O(u) \), and \(h^{ij}(p) = \delta_{ij} - \bar{\gamma}_{ij} = \delta_{ij} + O(u) \). Then using Lemma [2],

\[
\frac{\partial^{1,0}}{\partial \bar{w}_i} h^{\bar{s}n} h^{\bar{i}\bar{p}} h_{\bar{k}\bar{q}} = - \tau_{\bar{s}m\bar{n}i} \delta_{jp} \delta_{kq} + O(u), \quad h^{\bar{s}n} \frac{\partial^{1,0} h^{\bar{i}\bar{p}}}{\partial \bar{w}_i} h_{\bar{k}\bar{q}} = - \tau_{\bar{i}p\bar{j}} \delta_{sm} \delta_{kq} + O(u),
\]

and

\[
h^{\bar{s}n} h^{\bar{i}\bar{p}} \frac{\partial^{1,0} h_{\bar{k}\bar{q}}}{\partial \bar{w}_i} = \tau_{\bar{k}qj} \delta_{sm} \delta_{jp} + O(u).
\]

Now since \(\det(h(p)) = 1 + \sum_{c=1}^{n} \gamma_{c\bar{c}c} = 1 + O(u) \),

\[
\frac{\partial^{1,0}}{\partial \bar{w}_i} h^{\bar{s}n} h^{\bar{i}\bar{p}} h_{\bar{k}\bar{q}} j^i_j N^q_{\bar{k}m} \det(h) u^k_i= \left(\frac{\partial^{1,0} h^{\bar{s}n} h^{\bar{i}\bar{p}} h_{\bar{k}\bar{q}}}{\partial \bar{w}_i} \right) + h^{\bar{s}n} \frac{\partial^{1,0} h^{\bar{i}\bar{p}}}{\partial \bar{w}_i} h_{\bar{k}\bar{q}} + \\
h^{\bar{s}n} h^{\bar{i}\bar{p}} \frac{\partial^{1,0} h_{\bar{k}\bar{q}}}{\partial \bar{w}_i} j^i_j N^q_{\bar{k}m} \det(h) u^k_i= \left(- \tau_{\bar{s}m\bar{n}i} \delta_{jp} \delta_{kq} + \tau_{\bar{i}p\bar{j}} \delta_{sm} \delta_{kq} + \tau_{\bar{k}qj} \delta_{sm} \delta_{jp} \right),
\]

Moreover, \(h^{\bar{s}n} h^{\bar{i}\bar{p}} h_{\bar{k}\bar{q}}(p) = \delta_{sm} \delta_{jp} \delta_{kq} + O(u) \), and since

\[
\det(h) = 1 + \sum_{c,m=1}^{n} \tau_{c\bar{c}m} w_m + \tau_{c\bar{c}m} \bar{w}_m + \sum_{c=1}^{n} \gamma_{c\bar{c}} + O(|w|^2),
\]

11
\[\frac{\partial^{1,0} \det(h)}{\partial w_i} (p) = \sum_{c=1}^{n} \tau_{c\bar{c}} + \sum_{c=1}^{n} \frac{\partial^{1,0} \gamma_{c\bar{c}}}{w_i} (p) = \sum_{c=1}^{n} \tau_{c\bar{c}} + O(u), \]

implying that

\[h^{s\bar{m}} h^{j\bar{p}} h_{k\bar{q}} \frac{\partial^{1,0} J^i_j}{\partial w_i} \left(J^i_j N^{\bar{q}}_{\bar{m}\bar{\rho}} \det(h) \right) u_s^k = h^{s\bar{m}} h^{j\bar{p}} h_{k\bar{q}} \left(\frac{\partial^{1,0} J^i_j}{\partial w_i} N^{\bar{q}}_{\bar{m}\bar{\rho}} \det(h) + J^i_j \frac{\partial^{1,0} N^{\bar{q}}_{\bar{m}\bar{\rho}}}{\partial w_i} \right) u_s^k \]

\[= \delta_{sm} \delta_{jp} \delta_{kq} \left(\frac{\partial^{1,0} J^i_j}{\partial w_i} N^{\bar{q}}_{\bar{m}\bar{\rho}} + J^i_j \frac{\partial^{1,0} N^{\bar{q}}_{\bar{m}\bar{\rho}}}{\partial w_i} + J^i_j N^{\bar{q}}_{\bar{m}\bar{\rho}} \sum_{c=1}^{n} \tau_{c\bar{c}} \right) u_s^k. \]

(2)

Now, using equations [1] and [2] we see that

\[\frac{\partial^{1,0}}{\partial w_i} \left[h^{s\bar{m}} h^{j\bar{p}} h_{k\bar{q}} J^i_j N^{\bar{q}}_{\bar{m}\bar{\rho}} \det(h) \right] u_s^k = \left[\left(- \tau_{smi} \delta_{jp} \delta_{kq} - \tau_{j\bar{p}i} \delta_{sm} \delta_{kq} + \tau_{k\bar{q}i} \delta_{sm} \delta_{jp} \right) J^i_j N^{\bar{q}}_{\bar{m}\bar{\rho}} + \delta_{sm} \delta_{jp} \delta_{kq} \left(\frac{\partial^{1,0} J^i_j}{\partial w_i} N^{\bar{q}}_{\bar{m}\bar{\rho}} + J^i_j \frac{\partial^{1,0} N^{\bar{q}}_{\bar{m}\bar{\rho}}}{\partial w_i} + J^i_j N^{\bar{q}}_{\bar{m}\bar{\rho}} \sum_{c=1}^{n} \tau_{c\bar{c}} \right) \right] u_s^k \]

\[= \left(- \tau_{smi} J^i_j N^{\bar{k}}_{\bar{m}\bar{j}} - \tau_{j\bar{p}i} J^i_j N^{\bar{k}}_{\bar{m}\bar{\rho}} + \tau_{k\bar{q}i} J^i_j N^{\bar{q}}_{\bar{m}\bar{\rho}} + \frac{\partial^{1,0} J^i_j}{\partial w_i} N^{\bar{k}}_{\bar{m}\bar{j}} + J^i_j \frac{\partial^{1,0} N^{\bar{k}}_{\bar{m}\bar{j}}}{\partial w_i} + J^i_j N^{\bar{k}}_{\bar{m}\bar{j}} \sum_{c=1}^{n} \tau_{c\bar{c}} \right) u_s^k. \]

Again, using Lemma [2] we find that

\[\frac{\partial^{0,1} h^{i\bar{m}} h^{j\bar{p}} h_{k\bar{q}}}{\partial \bar{w}_i} J^k_s N^{\bar{q}}_{\bar{m}\bar{\rho}} \det(h) u_j^s = \left(\frac{\partial^{0,1} h^{i\bar{m}}}{\partial \bar{w}_i} h^{j\bar{p}} h_{k\bar{q}} + h^{i\bar{m}} \frac{\partial^{0,1} h^{j\bar{p}}}{\partial \bar{w}_i} h_{k\bar{q}} + h^{i\bar{m}} h^{j\bar{p}} \frac{\partial^{0,1} h_{k\bar{q}}}{\partial \bar{w}_i} \right) J^k_s N^{\bar{q}}_{\bar{m}\bar{\rho}} \det(h) u_j^s \]

\[= \left(- \tau_{im\bar{i}} \delta_{jp} \delta_{kq} - \tau_{j\bar{p}i} \delta_{im} \delta_{kq} + \tau_{k\bar{q}i} \delta_{im} \delta_{jp} \right) J^k_s N^{\bar{q}}_{\bar{m}\bar{\rho}} u_j^s. \]
Since
\[
\frac{\partial^{0.1} \det (h)}{\partial w_i}(p) = \sum_{c=1}^{n} \tau'_{c\ell i} + O(u),
\]
then
\[
h^{i\ell} h^{j\ell} h_{kq} \frac{\partial^{0.1}}{\partial w_i} (J^k_s N^q_{mp} \det (h)) u^s_j = h^{i\ell} h^{j\ell} h_{kq} \left(\frac{\partial^{0.1}}{\partial w_i} N^q_{mp} \det (h) + J^k_s \frac{\partial^{0.1} N^q_{mp}}{\partial w_i} \right) u^s_j + J^k_s \frac{\partial^{0.1} N^q_{mp}}{\partial w_i} u^s_j,
\]
confirming that
\[
\frac{\partial^{0.1}}{\partial w_i} \left[h^{i\ell} h^{j\ell} h_{kq} J^k_s N^q_{mp} \det (h) \right] u^s_j = \left[\left(-\tau_{i\ell m} \delta_{jq} \delta_{lk} - \tau_{ijp} \delta_{im} \delta_{lk} + \tau'_{kqj} \delta_{im} \delta_{jq} \right) J^k_s N^q_{mp} + \delta_{im} \delta_{jq} \delta_{lk} \right] u^s_j.
\]

\[
\text{Lemma 5. Let } g'_{ij} = \frac{1}{2} g \left(\frac{\partial^{1.0}}{\partial w_i}, J \frac{\partial^{1.0}}{\partial w_j} \right), g_{ij} = \frac{1}{2} g \left(\frac{\partial^{0.1}}{\partial w_i}, J \frac{\partial^{1.0}}{\partial w_j} \right), \text{ and so forth. Then,}
\]
\[
d_{g_l} (\|N\|_{g_{l+1}}^2 \text{vol}_{g_{l+1}}) \cdot \gamma (p) = \left(u_s^k \left(2 g'_{kj} N^q_{ij} - g'_{kj} N^q_{ij} \right) + u_s^k \left(2 g'_{kj} N^q_{ij} - g'_{kj} N^q_{ij} \right) \right) \text{d}V,
\]
and
\[
d_{\text{vol}} (\|N\|_{g_l}^2 \text{vol}_{g_l}) \cdot d_f (\text{vol}_{g_l}) (u) (p) = \left(u_s^k g'_{kj} + u_s^k g'_{kj} + u_s^k g'_{kj} + u_s^k g'_{kj} \right) \text{N}^p_{ij} \text{d}V.
\]
Proof. First note that

\[d_{g_l}(\|N_j\|^2_{g_{l+\gamma}} \cdot \gamma(p) = (\|N_j\|^2_{l+\gamma} - \|N_j\|^2_{l})(1 + tr(\gamma)) dV = -\left(\gamma_{im} N_{ij}^k N_{im}^k + \gamma_{im} N_{ij}^k N_{mj}^k - \gamma_{km} N_{ij}^m N_{ij}^m\right)dV = -2\gamma_{im} N_{ij}^k N_{im}^k - \gamma_{km} N_{ij}^m N_{ij}^m\] dV,

and that

\[d_{\text{vol}}(\|N_j\|^2_{g_l}) \cdot d_{f}(\text{vol}_{g_l})(u)(p) = \|N_j\|^2_{l+\gamma} (\text{vol}_{l+\gamma} - \text{vol}_{l}) = |N_{ij}^k|^2 2 tr(\gamma) dV.

Also, \(\gamma_{km} = u^v_k g^\nu_{\nu m} + u^v_k g^\nu_{\nu \bar{m}} + u^\nu_m g^\nu_{\nu k} + u^\nu_m g^\nu_{\nu \bar{k}}\). Equation 4 is obtained by a relabeling of indices in \(\gamma_{mj}, \gamma_{mi}, \) and \(\gamma_{km}\) so that the upper index of \(u\) is \(k\) (or \(\bar{k}\)) and the lower index is \(s\) (or \(\bar{s}\)), and collecting terms with the same \(u\)-coefficients. Equation 5 follows after writing \(tr(\gamma) = \sum_{s=1}^{n} \gamma_{s\bar{s}} = u^v_s g_{s\bar{s}} + u^\nu_s g_{s\bar{s}} + u^v_s g_{s\bar{s}} + u^\nu_s g_{s\bar{s}}\), and a similar relabelling of indices. □

Proposition 2. Suppose that \(u\) is compactly supported in \(U_p\). Let \(1 \leq p, q \leq n\).

The Euler-Lagrange system of equations of \(\tilde{N}\) at \(p\) is

\[\tilde{T}_p^q := 4 \frac{\partial_1 f}{\partial \tilde{w}_i} N_{ij}^q - (2 g_{dq} N_{ij}^q N_{ip}^q - g_{q\bar{m}} N_{ij}^p N_{ij}^m) + g_{\bar{q}p} |N_{ij}^q|^2 = 0,
\]

\[\tilde{T}_p^\bar{q} := -(2 g_{dq} N_{ij}^q N_{ip}^q - g_{q\bar{m}} N_{ij}^p N_{ij}^m) + g_{\bar{q}p} |N_{ij}^q|^2 = 0,
\]

\[\tilde{T}_p^q := 4 \left[(J(\frac{\partial_0}{\partial \tilde{w}_j}) \omega_{mp} N_{ij}^q + (J(\frac{\partial_0}{\partial \tilde{w}_j}) \omega_{mj}) N_{ip}^q - (J(\frac{\partial_0}{\partial \tilde{w}_j}) \omega_{q\bar{m}} N_{ij}^p N_{ij}^m) - \frac{\partial_1}{\partial \tilde{w}_i} (j^q N_{ij}^q) \right]
\]

\[-\frac{\partial_0}{\partial \tilde{w}_i} (j^q N_{ij}^q) - (J(\frac{\partial_0}{\partial \tilde{w}_j}) \omega_{c\bar{c}}) N_{ij}^q + J_q \left(\frac{\partial_0}{\partial \tilde{w}_i} \omega_{c\bar{c}} N_{ij}^q + \frac{\partial_0}{\partial \tilde{w}_i} \omega_{c\bar{c}} N_{ij}^q \right)
\]

\[-\frac{\partial_0}{\partial \tilde{w}_i} \omega_{jm} N_{ij}^q + \sum_{c=1}^{n} \frac{\partial_0}{\partial \tilde{w}_i} \omega_{c\bar{c}} N_{ij}^q - \frac{\partial_0}{\partial \tilde{w}_i} (j^q N_{ij}^q) \right] - \frac{\partial_1}{\partial \tilde{w}_i} (j^q N_{ij}^q) + \frac{\partial_1}{\partial \tilde{w}_i} (j^q N_{ij}^q)
\]

\[-(2g_{q\bar{m}} N_{ij}^q N_{ip}^q - g_{q\bar{m}} N_{ij}^p N_{ij}^m) + g_{\bar{q}p} |N_{ij}^q|^2 = 0,
\]
Proof. The procedure is to use Lemma 4 to integrate by parts the terms involving derivatives of \(u \) in the first variation of \(\mathcal{N} \) (Proposition 4), and then isolate \(u \) in the resulting formula by writing it as the \(g_{ij} \)-inner product of a tensor, the Euler-Lagrange equation at \(p \), and \(u \). Lemmas 3, 5 lead to

\[
\tilde{T}_p := 4 \left[j_q \left(\frac{\partial^{0,1} \omega_{m_i} N_{j_m}}{\partial \bar{w}_i} + \frac{\partial^{0,1} \omega_{m_p}}{\partial \bar{w}_i} N_{j_p}^{m} - \frac{\partial^{0,1} \omega_{j_m}}{\partial \bar{w}_i} N_{i_m}^{m} - \sum_{c=1}^{n} \frac{\partial^{0,1} \omega_{c c}}{\partial \bar{w}_i} N_{i_p}^{c} \right) \right] - \frac{\partial^{0,1}}{\partial \bar{w}_i} \left(j_q \left(N_{j_i}^{m} \right) \right) - (2 g_{i_m} N_{i_p}^{m} N_{j_i}^{p} - g_{j_m} N_{i_p}^{m} N_{i_j}^{p}) + g_{j_m} |N_{i_j}^{p}|^2 = 0,
\]

and that of \(\mathcal{N} \) is

\[
\tilde{T}_p - g_{i_m} |N_{i_j}^{p}|^2 = 0,
\]

\[
\tilde{T}_g + 4 j_q \sum_{c=1}^{n} \frac{\partial^{0,1} \omega_{c c}}{\partial \bar{w}_i} N_{i_p}^{m} - g_{i_m} |N_{i_j}^{p}|^2 = 0.
\]

Proof. The procedure is to use Lemma 4 to integrate by parts the terms involving derivatives of \(u \) in the first variation of \(\mathcal{N} \) (Proposition 4), and then isolate \(u \) in the resulting formula by writing it as the \(g_{ij} \)-inner product of a tensor, the Euler-Lagrange equation at \(p \), and \(u \). Lemmas 3, 5 lead to

\[
d_j \tilde{\mathcal{N}}(f)(u) = 4 \Re \left[\int_X \left(h^{s \bar{m} i} h^{j \bar{p}} h_{k \bar{q}} f_j i \frac{\partial^{1,0} u^k}{\partial \bar{w}_i} + h^{s \bar{m} i} h^{j \bar{p}} h_{k \bar{q}} \left(\frac{\partial^{0,1} u^k}{\partial \bar{w}_i} f_j i + \frac{\partial^{0,1} u^k}{\partial \bar{w}_i} f_j i \right) \right) \right] (p) + 4 \Re \left[\int_X \left(h^{s \bar{m} i} h^{j \bar{p}} h_{k \bar{q}} \left(u^k \frac{\partial^{0,1} f_j i}{\partial \bar{w}_i} + u^k \frac{\partial^{0,1} f_j i}{\partial \bar{w}_i} \right) N_{i_m}^{m} \text{vol}_{g_{j+u}} \right) \right] (p)
\]

\[
- 4 \Re \left[\int_X \left(h^{s \bar{m} i} h^{j \bar{p}} h_{k \bar{q}} \left(u^k \frac{\partial^{0,1} f_j i}{\partial \bar{w}_i} + u^k \frac{\partial^{0,1} f_j i}{\partial \bar{w}_i} \right) N_{i_m}^{m} \text{vol}_{g_{j+u}} \right) \right] (p)
\]

\[
+ \int_X \left(u^k \left(2 g_{j k} N_{i_j}^{i} N_{i_j}^{m} - g_{k m} N_{i_j}^{i} N_{i_j}^{m} \right) + u^k \left(2 g_{j k} N_{i_j}^{i} N_{i_j}^{m} - g_{k m} N_{i_j}^{i} N_{i_j}^{m} \right) + u^k \left(2 g_{j k} N_{i_j}^{i} N_{i_j}^{m} - g_{k m} N_{i_j}^{i} N_{i_j}^{m} \right) dV +
\]
\[
\int_X \left(u_s^{j} g_{ks}^{j} + u_s^{j} g_{ks}^{j} + u_s^{k} g_{ks}^{j} + u_s^{k} g_{ks}^{j} \right) |N_{ij}^{2}|^2 dV
\]

\[
= 4 \text{Re} \left[\int_X \left(\tau_{smi}^j j_{N_{mj}}^{k} + \tau_{ji}^j j_{N_{pj}}^{k} - \tau_{k\bar{q}i}^j j_{N_{sj}}^{q} - \frac{\partial^{1,0} j_i^j}{\partial \bar{w}_i} - j_i^j \frac{\partial^{1,0} N_{ij}^{k}}{\partial \bar{w}_i} \right) u_s^{j} dV + \int_X \left(\tau_{imi}^j j_{N_{mj}}^{k} + \tau_{ji}^j j_{N_{pj}}^{k} - \tau_{k\bar{q}i}^j j_{N_{sj}}^{q} \right) u_s^{k} dV + \int_X \left(\tau_{imi}^j j_{N_{mj}}^{k} + \tau_{ji}^j j_{N_{pj}}^{k} - \tau_{k\bar{q}i}^j j_{N_{sj}}^{q} \right) u_s^{k} dV \right]
\]

\[
+ 4 \text{Re} \left[\int_X \left(\frac{\partial^{0,1} j_i^j}{\partial \bar{w}_i} u_s^{k} + \frac{\partial^{0,1} j_i^j}{\partial \bar{w}_i} u_s^{k} \right) |N_{ij}^{2}|^2 dV \right]
\]

\[
- \int_X \left(u_s^{j} \left(2 g'_{ij} N_{ij}^{q} - g_{km} N_{ij}^{q} - g'_{ij} N_{ij}^{m} N_{ij}^{m} \right) + u_s^{j} \left(2 g'_{ij} N_{ij}^{q} - g_{km} N_{ij}^{q} - g'_{ij} N_{ij}^{m} N_{ij}^{m} \right) + u_s^{k} \left(2 g'_{km} N_{ij}^{q} - g_{kv} N_{ij}^{q} - g'_{km} N_{ij}^{m} N_{ij}^{m} \right) - \int_X \left(u_s^{j} g_{ks}^{j} + u_s^{j} g_{ks}^{j} + u_s^{k} g_{ks}^{j} + u_s^{k} g_{ks}^{j} \right) |N_{ij}^{2}|^2 dV
\]

\[
= \text{Re} \left[\int_X \left(\left(\tau_{smi}^j j_{N_{mj}}^{k} + \tau_{smi}^j j_{N_{pj}}^{k} \right) N_{sj}^{k} + \left(\tau_{ji}^j j_{N_{pj}}^{k} + \tau_{ji}^j j_{N_{pj}}^{k} \right) N_{sj}^{k} \right) \right]
\]

\[
- \left(\tau_{kmi}^j j_{N_{mj}}^{m} - \left(\frac{\partial^{1,0} j_i^j}{\partial \bar{w}_i} + \frac{\partial^{0,1} j_i^j}{\partial \bar{w}_i} - j_i^j \frac{\partial^{1,0} N_{ij}^{k}}{\partial \bar{w}_i} \right) \right)
\]

\[
- j_i^j \frac{\partial^{0,1} N_{ij}^{k}}{\partial \bar{w}_i} - N_{sj}^{k} \left(j_j^i \left(\sum_{c=1}^{n} \tau_{cci}^k + \sum_{c=1}^{n} \tau_{cci}^2 \right) \right) + \tau_{imi}^j N_{ij}^{m} \right]
\]
\[
\tilde{T}_{sm} l_k l_{im} - \tau_{jmi} k n_{is} - \frac{\partial^0.1 j^l_k}{\partial \bar{w}_i} N_{ijs} - J^l_k \frac{\partial^0.1 N_{ijs}}{\partial \bar{w}_i} - J^l_k \left(\sum_{c=1}^n \tau^*_{c\bar{c}i} \right) \\
- \frac{\partial^1.0 j^l_k}{\partial \bar{w}_k} N_{sij} + \frac{\partial^0.1 j^l_i}{\partial \bar{w}_i} (N_{ij}^m) - \left(2g'_{km} N^v_i N^m_{is} - g'_{kv} N^v_i N^m_{ij} + g'_{ks} N^v_{ij} \right) u^k + \left(4\left(\tilde{T}_{imi} l_i k N^1_{ms} + \tilde{T}_{sm} i l_n N^1_{is} - \tau_{jmi} k n_{is} - \frac{\partial^0.1 j^l_k}{\partial \bar{w}_i} N_{ijs} - J^l_k \frac{\partial^0.1 N_{ijs}}{\partial \bar{w}_i} - J^l_k \left(\sum_{c=1}^n \tau^*_{c\bar{c}i} \right) \right) - \left(2g'_{km} N^v_i N^m_{is} - g'_{kv} N^v_i N^m_{ij} + g'_{ks} N^v_{ij} \right) u^k + \left(4\frac{\partial^0.1 j^l_k}{\partial \bar{w}_i} N^l_{ij} \right) u^k + \left(4\frac{\partial^0.1 j^l_k}{\partial \bar{w}_i} N^l_{ij} \right) u^k \right) dV \\
\]

We may use \(g_j(p) = 1 \) to induce the inner product \(\langle T, V \rangle = \sum_{s,k=1}^n (T^k_s V^k_s + T^k_s V^k_s + T^k_s V^k_s) \) of any \(T, V \in C^\infty(X, \text{End}(T_X^C)) \). Consider now the tensor \(\tilde{T}_j = \tilde{T}_p d w^p \otimes \frac{\partial^1.0}{\partial w^p} + \tilde{T}_p d w^p \otimes \frac{\partial^1.0}{\partial w^p} + \tilde{T}_p d w^p \otimes \frac{\partial^1.0}{\partial w^p} + \tilde{T}_p d w^p \otimes \frac{\partial^1.0}{\partial w^p} \), where

\[
\tilde{T}_p = 4 \frac{\partial^0.1 j^l_k}{\partial \bar{w}_i} N^v_i N^m_{ij} - \left(2g'_{dq} N^v_i N^m_{ij} - g'_{dq} N^v_i N^m_{ij} + g'_{dp} N^v_{ij} \right) u^k + \left(4\frac{\partial^0.1 j^l_k}{\partial \bar{w}_i} N^l_{ij} \right) u^k + \left(4\frac{\partial^0.1 j^l_k}{\partial \bar{w}_i} N^l_{ij} \right) u^k, \\
\]
\[\tilde{T}_p^q = 4 \left(\tau_{pmi} J_i^j + \tau_{pmi} J_i^j \right) N_{ij}^m + \left(\tau_{jmi} J_i^j + \tau_{jmi} J_i^j \right) N_{ij}^m \\
- \left(\tau_{qmj} J_i^j + \tau_{qmj} J_i^j \right) N_{ij}^m \\
\frac{\partial^1,0 J_i^j}{\partial w_i} + \frac{\partial^0,1 J_i^j}{\partial \tilde{w}_i} \right) N_{ij}^m - J_i^j \frac{\partial^1,0 N_{ij}^m}{\partial \tilde{w}_i} \\
- \frac{\partial^1,0 J_i^j}{\partial \tilde{w}_i} - \frac{\partial^0,1 J_i^j}{\partial w_i} \right) + \left(\sum_{c=1}^n \tau_{c\bar{c}} \right) \\
- \left(\frac{\partial^1,0 J_i^j}{\partial \tilde{w}_i} \right) - \left(2 \bar{g}_{qm} N_{ip}^v N_{im}^v - g_{qij} N_{ij}^{v^2} \right) + g_{qij} |N_{ij}^v|^2. \]

and where

\[\tilde{T}_p^q = 4 \left(\tau_{imj} J_i^j N_{ip}^m + \tau_{pmi} J_i^j N_{ip}^m \right) - \tau_{jmi} J_i^j N_{ip}^m - \frac{\partial^1,0 J_i^j}{\partial w_i} N_{ip}^m - \frac{\partial^0,1 J_i^j}{\partial \tilde{w}_i} N_{ip}^m \right) - J_i^j \frac{\partial^1,0 N_{ip}^m}{\partial \tilde{w}_i} \left(\sum_{c=1}^n \tau_{c\bar{c}} \right) \\
- \frac{\partial^1,0 J_i^j}{\partial \tilde{w}_i} N_{ip}^m \right) - \left(2 \bar{g}_{qm} N_{ip}^v N_{im}^v - g_{qij} N_{ij}^{v^2} \right) + g_{qij} |N_{ij}^v|^2. \]

Then,

\[d_J \tilde{N}(J)(u) = \Re \left\{ \int_X \langle \tilde{T}_j, \bar{w} \rangle dV \right\}, \]

and so \(\tilde{T}_j = 0 \) is the Euler-Lagrange equation at \(p \).

We can rewrite \(T_p^q \), and \(\tilde{T}_p^q \) somewhat more meaningfully, using that

\[J \left(\frac{\partial^0,1}{\partial w_i} \right) = J_i^j \frac{\partial^0,1}{\partial w_i} + J_i^j \frac{\partial^0,1}{\partial \tilde{w}_i}, \]

and the hermitian nature of the fundamental form \(\omega \):

\[T_p^q = 4 \left[J_i^j \left(\frac{\partial^0,1 \omega_{mi}}{\partial \tilde{w}_i} N_{ip}^m + \frac{\partial^0,1 \omega_{mp}}{\partial \tilde{w}_i} N_{im}^m - \frac{\partial^0,1 \omega_{jm}}{\partial \tilde{w}_i} N_{ij}^m - \sum_{c=1}^n \frac{\partial^0,1 \omega_{c\bar{c}}}{\partial \tilde{w}_i} N_{ij}^m \right) \\
- \frac{\partial^0,1 \omega_{i\bar{p}}}{\partial \tilde{w}_i} \right] - \left(2 \bar{g}_{qm} N_{ip}^v N_{im}^v - g_{qij} N_{ij}^{v^2} \right) + g_{qij} |N_{ij}^v|^2, \]

18
\[T^q_p = 4 \left[J \left(\frac{\partial^{0,1}}{\partial \bar{w}_j} \right) \omega_{mp} \right] N^q_{mj} + \left(J \left(\frac{\partial^{0,1}}{\partial \bar{w}_j} \right) \omega_{mj} \right) \bar{N}^q_{pj} - \left(J \left(\frac{\partial^{0,1}}{\partial \bar{w}_j} \right) \omega_{qm} \right) \bar{N}^m_{pj} - \frac{\partial^{1,0}}{\partial \bar{w}_i} \left(J^i \bar{N}^q_{pj} \right) \\
- \frac{\partial^{0,1}}{\partial \bar{w}_i} (J^i \bar{N}^q_{pj}) - \left(J \left(\frac{\partial^{0,1}}{\partial \bar{w}_j} \right) \left(\sum_{c=1}^{n} \omega_{cc} \right) \right) \bar{N}^q_{pj} + J^i \left(\frac{\partial^{0,1}}{\partial \bar{w}_i} \omega_{mj} \right) \bar{N}^j_{mj} + \frac{\partial^{0,1}}{\partial \bar{w}_i} \omega_{mp} \bar{N}^j_{pj} \\
- \frac{\partial^{0,1}}{\partial \bar{w}_i} \omega_{jm} \bar{N}^m_{ip} \sum_{c=1}^{n} \frac{\partial^{0,1}}{\partial \bar{w}_i} \omega_{cc} \bar{N}^j_{ip} \right) - \frac{\partial^{0,1}}{\partial \bar{w}_i} \left(J^i \bar{N}^j_{ip} \right) - \frac{\partial^{1,0}}{\partial \bar{w}_i} \left(J^i \bar{N}^j_{ip} \right) + \frac{\partial^{0,1}}{\partial \bar{w}_i} \left(J^i \bar{N}^q_{ij} \right) \right) \\
- \left(2g^q_{im} \bar{N}^m_{ip} \bar{N}^p_{ij} - g^q_{ip} \bar{N}^p_{ij} \right) + g^q_{ip} |\bar{N}^p_{ij}|^2. \]

In the case of \(\mathcal{N} \), there is no \(d_{\text{Vol}} \|N_j\|_{g_j}^2 \cdot d_{\text{Vol}} g_j(\text{id}) \) term in the first variation, neither are there derivatives of the Riemannian volume form. We can recover the Euler-Lagrange equation of \(\mathcal{N} \) at \(p \) from that of \(\mathcal{N} \) to find that it is a tensor equation \(T_{\mathcal{N}} = 0 \), where the components of \(T_{\mathcal{N}} \) are of the claimed form. \(\square \)

All integrable almost complex structures on \(X \) are critical points of both \(\mathcal{N} \), and \(\mathcal{N} \), but they are likely not the only ones. It is also unclear if \(\mathcal{N} \) has any advantages over \(\mathcal{N} \). It might make sense to try eliminating the derivatives of \(\mathcal{N} \) that appear in the Euler-Lagrange equation of \(\mathcal{N} \) since they do not directly contain information about integrability.

References

[1] J. Milewski, Holomorphons and the standard almost complex structure on \(S^6 \). Annales Societatis Mathematicae Polonae, Series I: Commentationes Mathematicae, XLVI (2) (2006), 245–254.

[2] S-T. Yau, Open problems in geometry. Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), 1–28, Proc. Sympos. Pure Math. 54, Part 1, Amer. Math. Soc., Providence, RI, 1993.

[3] S-T. Yau, Perspectives on geometric analysis: geometric structures, I. Transcript of a talk given at UCLA (Los Angeles, California, 2007).

Gabriella Clemente
e-mail: clemente6171@gmail.com

19