BOWMAN-BRADLEY TYPE THEOREM FOR FINITE MULTIPLE ZETA VALUES IN \mathcal{A}_2

HIDEKI MURAHARA, TOMOKAZU ONOZUKA, AND SHIN-ICHIRO SEKI

Abstract. Bowman and Bradley obtained a remarkable formula among multiple zeta values. The formula states that the sum of multiple zeta values for indices which consist of the shuffle of two kinds of the strings \{1,3,\ldots,1,3\} and \{2,\ldots,2\} is a rational multiple of a power of π^2. Recently, Saito and Wakabayashi proved that analogous but more general sums of finite multiple zeta values in an adelic ring \mathcal{A}_1 vanish. In this paper, we partially lift Saito-Wakabayashi’s theorem from \mathcal{A}_1 to \mathcal{A}_2. Our result states that a Bowman-Bradley type sum of finite multiple zeta values in \mathcal{A}_2 is a rational multiple of a special element and this is closer to the original Bowman-Bradley theorem.

1. Introduction

For positive integers k_1,\ldots,k_r with $k_r \geq 2$, the multiple zeta values (MZVs) and the multiple zeta-star values (MZSVs) are defined by

$$\zeta(k_1,\ldots,k_r) := \sum_{1 \leq n_1 < \cdots < n_r} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}},$$

$$\zeta^*(k_1,\ldots,k_r) := \sum_{1 \leq n_1 \leq \cdots \leq n_r} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}.$$

By convention, we set $\zeta(\emptyset) = \zeta^*(\emptyset) = 1$ for the empty index. Let $\{a_1,\ldots,a_l\}^m$ denote the m-times repetition of a_1,\ldots,a_l, e.g. $\{2\}^2 = 2,2$ and $\{1,3\}^2 = 1,3,1,3$. For MZVs, Bowman and Bradley [1] established the following result:

Theorem 1.1 (Bowman-Bradley [1, Corollary 5.1]). For non-negative integers l and m, we have

$$\sum_{m_0 + \cdots + m_{2l} = m} \zeta(\{2\}^{m_0},1,\{2\}^{m_1},3,\{2\}^{m_2},\ldots,\{2\}^{m_{2l-2}},1,\{2\}^{m_{2l-1}},3,\{2\}^{m_{2l}}) = \left(\frac{2l + m}{2l}\right) \pi^{4l + 2m} \cdot (4l + 2m + 1)^m.$$

A similar result for MZSVs is known by Kondo-Saito-Tanaka [4] and Yamamoto [10], i.e. the similar sum for MZSVs is also a rational multiple of $\pi^{4l + 2m}$.

Let us consider counterparts of these results for finite multiple zeta values. For a positive integer n, we define the \mathbb{Q}-algebra \mathcal{A}_n by

$$\mathcal{A}_n := \left(\prod_p \mathbb{Z}/p^n\mathbb{Z}\right) / \left(\bigoplus_p \mathbb{Z}/p^n\mathbb{Z}\right).$$

2010 Mathematics Subject Classification. Primary 11M32.

Key words and phrases. Multiple zeta values, finite multiple zeta values, Bernoulli number, Bowman-Bradley’s theorem, super congruences.

The third author is supported in part by the Grant-in-Aid for JSPS Fellows (JP18J00151), The Ministry of Education, Culture, Sports, Science and Technology, Japan.
where \(p \) runs over prime numbers. For positive integers \(k_1, \ldots, k_r \) and \(n \), the finite multiple zeta values (FMZVs) and the finite multiple zeta-star values (FMZSVs) in \(\mathcal{A}_n \) are defined by

\[
\zeta_{\mathcal{A}_n}(k_1, \ldots, k_r) := \left(\sum_{1 \leq n_1 < \cdots < n_r \leq p-1} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}} \mod p^n \right) \in \mathcal{A}_n,
\]

\[
\zeta_{\mathcal{A}_n}^*(k_1, \ldots, k_r) := \left(\sum_{1 \leq n_1 < \cdots < n_r \leq p-1} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}} \mod p^n \right) \in \mathcal{A}_n.
\]

We set \(\zeta_{\mathcal{A}_n}(\emptyset) = \zeta_{\mathcal{A}_n}^*(\emptyset) = 1 \). For details, see Rosen \[6\] and Seki \[9\]. Recently, Saito and Wakabayashi \[7\] obtained Bowman-Bradley type results in a strong sense for finite multiple zeta values in \(\mathcal{A}_1 \). The following is a part of their results:

Theorem 1.2 (Saito-Wakabayashi \[7\] Theorem 1.4). Let \(a \) and \(b \) be odd positive integers and \(c \) an even positive integer. For non-negative integers \(l \) and \(m \) with \((l, m) \neq (0, 0)\), we have

\[
\sum_{m_0 + \cdots + m_{2l} = m \atop m_i \geq 0 \atop 0 \leq i \leq 2l} \zeta_{\mathcal{A}_1}\{\{c\}^{m_0}, a, \{c\}^{m_1}, b, \{c\}^{m_2}, \ldots, \{c\}^{m_{2l-2}}, a, \{c\}^{m_{2l-1}}, b, \{c\}^{m_{2l}}\} = 0.
\]

In this paper, we partially lift Saito-Wakabayashi’s result from \(\mathcal{A}_1 \) to \(\mathcal{A}_2 \). In fact, we show that the Bowman-Bradley type sum of FMZ(S)Vs in \(\mathcal{A}_2 \) for the shuffle of \(\{1, 3\}^l \) and \(\{2\}^m \) is a rational multiple of the special element \(\beta_{4l+2m+1}p \). Here, \(p \) and \(\beta_k \) are defined to be \((p \mod p^n)^{m} \) and \((B_{p-k} / k \mod p^n)^{m} \) as elements of \(\mathcal{A}_2 \), respectively, where \(B_n \) is the \(n \)th Seki-Bernoulli number and \(k \) is an integer greater than 1. Then, our main theorem is the following:

Theorem 1.3 (Main theorem). For non-negative integers \(l \) and \(m \) with \((l, m) \neq (0, 0)\), we have

\[
\sum_{m_0 + \cdots + m_{2l} = m \atop m_i \geq 0 \atop 0 \leq i \leq 2l} \zeta_{\mathcal{A}_2}\{\{2\}^{m_0}, 1, \{2\}^{m_1}, 3, \{2\}^{m_2}, \ldots, \{2\}^{m_{2l-2}}, 1, \{2\}^{m_{2l-1}}, 3, \{2\}^{m_{2l}}\}
\]

\[
= (-1)^m \left(-1\right)^{l+2l-2l} \left(l + m \atop l\right) - 4 \left(2l + m \atop 2l\right) \beta_{4l+2m+1}p.
\]

\[
\sum_{m_0 + \cdots + m_{2l} = m \atop m_i \geq 0 \atop 0 \leq i \leq 2l} \zeta_{\mathcal{A}_2}^*\{\{2\}^{m_0}, 1, \{2\}^{m_1}, 3, \{2\}^{m_2}, \ldots, \{2\}^{m_{2l-2}}, 1, \{2\}^{m_{2l-1}}, 3, \{2\}^{m_{2l}}\}
\]

\[
= (-1)^{l+2l-2l} \left(l + m \atop l\right) \beta_{4l+2m+1}p.
\]

Saito-Wakabayashi’s theorem (Theorem 1.2) says that the sum of FMZ(S)Vs in \(\mathcal{A}_1 \) for the shuffle of \(\{a, b\}^l \) and \(\{c\}^m \) is zero for any odd positive integers \(a, b \) and any even positive integer \(c \). On the other hand, by our computer calculations, it seems that the similar sum of FMZ(S)Vs in \(\mathcal{A}_2 \) is not a rational multiple of \(\beta_{(a+b)(l+cm+1)}p \), generally. For example, it is probable that \(\zeta_{\mathcal{A}_2}(1, 5, 1, 5) \) is not a rational multiple of \(\beta_{13}p \).
Zhao conjectures that the dimension of the \(\mathbb{Q} \)-vector space spanned by MZVs of weight \(k \) coincides with the dimension of the \(\mathbb{Q} \)-vector space spanned by FMZVs in \(A_2 \) of weight \(k \) ([11] Conjecture 9.6). It seems likely that the algebraic structures of the algebra of MZVs and the algebra of FMZVs in \(A_2 \) are different, but it is worth emphasizing that there exists a similarity between Bowman-Bradley type theorems for MZ(S)Vs and FMZ(S)Vs in \(A_2 \), i.e. the sum of MZ(S)Vs for the shuffle of \(\{1,3\}^1 \) and \(\{2\}^m \) is a rational multiple of \(\pi^{4l+2m} \) and the similar sum of FMZ(S)Vs in \(A_2 \) is a rational multiple of \(\beta_{4l+2m+1}p \).

We prove our main theorem in [2] and [3]

2. Preliminaries

We prepare some notation and lemmas in this section. Let \(\mathcal{H} \) be the Hoffman algebra \(\mathbb{Q} + \mathbb{Q}(x, y)y \). We define two kinds of shuffle products \(\mathfrak{m} \) and \(\mathfrak{m}^\prime \) on \(\mathcal{H} \) as in [5] §2. We call a tuple of positive integers an index. Let \(X \) be an index. Let \(\xi \) coincide with the dimension of the \(\mathfrak{m} \). It seems likely that the algebraic structure of the algebra of MZVs is similar to the shuffle of \(\{1,3\}^1 \) and \(\{2\}^m \), respectively. Here, we extend \(\zeta_{A_2} \) and \(\zeta_{A_2}^\prime \) to functions on \(\mathcal{H} \), linearly.

Lemma 2.1. For non-negative integers \(l \) and \(m \), we have

\[
4^l \{\{1,3\}^l\} \mathfrak{m} \{\{2\}^m\} = (\{2\}^{l+m}) \mathfrak{m} \{\{2\}^l\} - \sum_{k=0}^{l-1} 4^k \left(\begin{array}{c} 2l + m - 2k \\ k \\
\end{array} \right) \{\{1,3\}^k\} \mathfrak{m} \{\{2\}^{2l+m-2k}\}.
\]

Proof. This follows from [5] Proposition 2 (1). \(\square \)

The following lemma is the shuffle relation for FMZVs in \(A_2 \).

Lemma 2.2. For indices \(k \) and \(l = (l_1, \ldots, l_s) \), we have

\[
\zeta_{A_2}(k \mathfrak{m} l) = (-1)^{l_1 + \cdots + l_s} \sum_{e_1 + \cdots + e_s = 0, 1} \prod_{j=1}^{s} \left(\begin{array}{c} l_j + e_j - 1 \\ e_j \\
\end{array} \right) \zeta_{A_2}(k, l_s + e_s, \ldots, l_1 + e_1) p^{e_1 + \cdots + e_s}.
\]

Proof. This follows from [3] Theorem 6.4] which is also proved independently by Jarossay in [3] Lemma 4.17 by taking \(\lim_{n \to \infty} A_n \to A_2 \). \(\square \)

Lemma 2.3. For a positive integer \(r \), we have

\[
(3) \quad \zeta_{A_2}^\prime(\{2\}^r) = (-1)^{r-2} 2\beta_{2r+1} p,
\]

\[
(4) \quad \zeta_{A_2}(\{2\}^r) = 2\beta_{2r+1} p.
\]

Proof. This is a special case of the result of [12]. \(\square \)

Lemma 2.4 (Hessami Pilehrood-Hessami Pilehrood-Tauraso [2] Theorem 4.1). For non-negative integers \(a \) and \(b \), we have

\[
\zeta_{A_1}(\{2\}^a, 3, \{2\}^b) = \left(\frac{-1}{a+1} \right)^{a+b+2} \left(\begin{array}{c} 2a + 2b + 3 \\ 2b + 2 \\
\end{array} \right) \beta_{2a+2b+3}.
\]

Here, we regard \(\beta_{2a+2b+3} \) as an element of \(A_1 \) by the projection \(A_2 \to A_1 \).
Lemma 2.5. For non-negative integers \(l\) and \(m\) with \((l, m) \neq (0, 0)\), we have
\[
\zeta_A((\{2\}^{l+m}) \, \mathfrak{m} \, (\{2\}^l)) = (-1)^m 2 \left\{ 1 - 2 \left(\frac{4l + 2m}{2l} \right) \right\} \beta_{4l+2m+1}.
\]

Proof. By Lemma 2.2, 2.3 (3), and 2.4, we have
\[
\zeta_A((\{2\}^{l+m}) \, \mathfrak{m} \, (\{2\}^l)) = \sum_{j=0}^{l-1} \zeta_A((\{2\}^{l+m-j}) \, 3, \{2\}^{l-j}) \mathfrak{p}
= (-1)^{m-1} \left\{ 2 \beta_{4l+2m+1} \mathfrak{p} + 4 \sum_{j=0}^{l-1} \frac{m + 2j + 1}{l + m + j + 1} \left(\frac{4l + 2m + 1}{2l - 2j} \right) \beta_{4l+2m+1} \mathfrak{p} \right\}.
\]
Since \(\frac{a-2b}{a} = (\frac{a-1}{b}) - (\frac{a-1}{b-1})\), by putting \(a = 4l + 2m + 2\) and \(b = 2j\), we have
\[
\sum_{j=0}^{l} \frac{m + 2j + 1}{l + m + j + 1} \left(\frac{4l + 2m + 1}{2l - 2j} \right) = \sum_{j=0}^{l} 2l - 2j + 1 \left(\frac{4l + 2m + 2}{2l} \right)
= \sum_{j=0}^{l} \left\{ \left(\frac{4l + 2m + 1}{2l} \right) - \left(\frac{4l + 2m + 1}{2l - 2j} \right) \right\} = \sum_{j=0}^{2l} (-1)^j \left(\frac{4l + 2m + 1}{2l} \right).
\]
Hence, we obtain the desired formula. \(\square\)

Lemma 2.6. For non-negative integers \(l\) and \(m\), we have
\[
\sum_{k=0}^{l} (-1)^k \left(\frac{2l + m - 2k}{l - k} \right) \left(\frac{2l + m - k}{k} \right) = 1,
\]
\[
\sum_{k=0}^{l} 4^k \left(\frac{2l + m - 2k}{l - k} \right) \left(\frac{2l + m}{2k} \right) = \left(\frac{4l + 2m}{2l} \right).
\]

Proof. Since \(\frac{a-b}{c-b} (\frac{c}{b}) = (-1)^{a-c} (\frac{a-c-1}{b})\), by putting \(a = 2l + m - k\), \(b = k\), and \(c = l\), we have
\[
\sum_{k=0}^{l} (-1)^k \left(\frac{2l + m - 2k}{l - k} \right) \left(\frac{2l + m - k}{k} \right)
= (-1)^{l+m} \sum_{k=0}^{l+m} \left(\frac{l}{k} \right) \left(\frac{-1}{l - m - k} \right) = (-1)^{l+m} \left(\frac{-1}{l + m} \right) = \left(\frac{l + m}{l + m} \right) = 1
\]
by the Chu-Vandermonde identity. Next, we prove the second equality. Let \((\frac{n}{a,b,c}) := n!/(a!b!c!)\). Since
\[
(1 + Y)^{4l+2m} = (1 + 2Y + Y^2)^{2l+m} = \sum_{a+b+c=2l+m}^{a+b+c=2l+m} \left(\frac{2l + m}{a, b, c} \right) (2Y)^{b} Y^{2c}
\]
holds, by comparing the coefficient of Y^{2l}, we have

$$
\binom{4l + 2m}{2l} = \sum_{j=0}^{l} \binom{2l + m}{j + m, 2l - 2j, j} 2^{2l-2j} = \sum_{k=0}^{l} 4^k \binom{2l + m - 2k}{l - k} \binom{2l + m}{2k}.
$$

This concludes the proof. \qed

Lemma 2.7. For non-negative integers l and m, we have

$$
\zeta_{A_2}^*([1, 3]^l \{2\}^m) = \sum_{2l + k + u = 2l} (-1)^{j+k} \binom{k + n}{k} \binom{u + v}{u} \zeta_{A_2}([1, 3]^l \{2\}^l) \zeta_{A_2}^{*}([2]^{k+n}) \zeta_{A_2}([2]^{u+v}),
$$

where parameters i, j, k, n, u, v are non-negative integers.

Proof. This follows from [10, Theorem 2.1]. \qed

3. Proof of the Main Theorem

Proof of Theorem 1.3. First, we prove (1) by induction on l. We see that the case $l = 0$ holds by Lemma 2.3 [3]. For the general case, let l be a positive integer and m a non-negative integer. By Lemma 2.1 we have

$$
\zeta_{A_2}([1, 3]^l \{2\}^m) = 4^{-l} \zeta_{A_2}([2]^{l+m}) \{2\}^l - \sum_{k=0}^{l-1} 4^{k-l} \binom{2l + m - 2k}{l - k} \zeta_{A_2}([1, 3]^{k}) \{2\}^{2l+m-2k}).
$$

Hence, by Lemma 2.5 and the induction hypothesis, we have

$$
\zeta_{A_2}([1, 3]^l \{2\}^m) = (-1)^m 4^{1-2l} \left\{ 1 - 2 \left(\frac{4l + 2m}{2l} \right) \right\} \zeta_{A_2}^{*}([2]^{l+2m+1}) - \sum_{k=0}^{l-1} 4^{k-l} \binom{2l + m - 2k}{l - k} \left\{ (-1)^{k-2} \frac{2l + m - k}{2k} - 4 \frac{2l + m}{2k} \right\} \zeta_{A_2}^{*}([2]^{l+2m+1})
$$

By Lemma 2.6 we can simplify as

$$
\zeta_{A_2}([1, 3]^l \{2\}^m) = (-1)^m 4^{1-2l} \left\{ 1 - 2 \left(\frac{4l + 2m}{2l} \right) \right\} \zeta_{A_2}^{*}([2]^{l+2m+1}) - (-1)^m 4^{1-2l} \left\{ 1 - (-1)^l \left(\frac{l + m}{l} \right) \right\} \zeta_{A_2}^{*}([2]^{l+2m+1}) + (-1)^m 4^{1-2l} \left\{ \left(\frac{4l + 2m}{2l} \right) - 4 \left(\frac{2l + m}{2l} \right) \right\} \zeta_{A_2}^{*}([2]^{l+2m+1}) = (-1)^m \left\{ (-1)^l 4^{1-2l} \left(\frac{l + m}{l} \right) - 4 \left(\frac{2l + m}{2l} \right) \right\} \zeta_{A_2}^{*}([2]^{l+2m+1}).
$$
Next, we prove (2). By the equality (1) and Lemma 2.3 (4), many terms in the right-hand side of the equality in Lemma 2.7 vanish and we have
\[
\zeta^*_{A_2}((\{1,3\}^l\bar{m}\ (\{2\}^m))) = (-1)^m\zeta_{A_2}((\{1,3\}^l\bar{m}\ (\{2\}^m))) + 2\binom{2l + m}{2l}\zeta^*_{A_2}(\{2\}^{2l+m})
\]
\[
= (-1)^l2^{1-2l}\binom{l+m}{l}\beta_{4l+2m+1p}.
\]
This finishes the proof. □

Acknowledgements

The authors would like to thank Doctor Hisatoshi Kodani for valuable comments.

References

[1] D. Bowman and D. M. Bradley, The algebra and combinatorics of shuffles and multiple zeta values, J. Combin. Theory Ser. A 97 (2002), 43–61.
[2] KH. Hessami Pilehrood, T. Hessami Pilehrood, and R. Tauraso, New properties of multiple harmonic sums modulo \(p\) and \(p\)-analogues of Leshchiner’s series, Trans. Amer. Math. Soc. 366 (2014), no. 6, 3131–3159.
[3] D. Jarossay, An explicit theory of \(\pi^{n, cry}(\mathbb{P}^1 - \{0, \mu_N, \infty\})\): Standard algebraic equations of prime weighted multiple harmonic sums and adjoint multiple zeta values, arXiv:1412.5099v3.
[4] H. Kondo, S. Saito, and T. Tanaka, The Bowman-Bradley theorem for multiple zeta-star values, J. Number Theory 132 (2012), 1984–2002.
[5] S. Muneta, A note on evaluations of multiple zeta values, Proc. Amer. Math. Soc. 137 (2009), 931–935.
[6] J. Rosen, Asymptotic relations for truncated multiple zeta values, J. Lond. Math. Soc. (2) 91 (2015), 554–572.
[7] S. Saito and N. Wakabayashi, Bowman-Bradley type theorem for finite multiple zeta values, Tohoku Math. J. 68 (2016), 241–251.
[8] S. Seki, Finite multiple polylogarithms, Doctoral dissertation in Osaka University, 2017.
[9] S. Seki, The \(p\)-adic duality for the finite star-multiple polylogarithms, to appear in Tohoku Math. J.
[10] S. Yamamoto, Explicit evaluation of certain sums of multiple zeta-star values, Funct. Approx. Comment. Math. 49 (2) (2013), 283–289.
[11] J. Zhao, Finite multiple zeta values and finite Euler sums, arXiv:1507.04917.
[12] X. Zhou and T. Cai, A generalization of a curious congruence on harmonic sums, Proc. Amer. Math. Soc. 135 (2007), 1329–1333.

(Hideki Murahara) NAKAMURA GAKUEN UNIVERSITY GRADUATE SCHOOL, 5-7-1, BEFU, JONANKU, FUKUOKA, 814-0198, JAPAN
E-mail address: hmurahara@nakamura-u.ac.jp

(Tomokazu Onozuka) MULTIPLE ZETA RESEARCH CENTER, KYUSHU UNIVERSITY 744, MOTOOKA, NISHIKU, FUKUOKA, 819-0395, JAPAN
E-mail address: t-onozuka@math.kyushu-u.ac.jp

(Shin-ichiro Seki) MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY, 6-3, AOBA, ARAMAKI, AOBA-KU, SENDAI, 980-8578, JAPAN
E-mail address: shinichiro.seki.b3@tohoku.ac.jp