Due to significant development in genetic selection of broiler chicken, present broiler birds achieve optimum body weight (1.5–2.0 kg) in relatively short growth periods (35–42 days). So period of incubation (21 days) becomes nearly 50% of the productive life span of commercial broiler chicken. Incubation period is becoming important window period for application of any scientific technique for successful rearing of broiler birds. So during incubation stage, it is essential to maintain incubator environment at optimum level with respect to temperature, humidity, ventilation and egg turning for getting healthy chicks. In commercial hatchery, usually eggs are incubated in dark condition so that the hatching eggs are exposed to light only during opening and closing of door for routine hatchery operation. Fairchild and Christensen (2000) suggested light as a possible fifth environmental variable, which is not monitored during the incubation of avian eggs. During incubation period from 3rd day of embryonic age, avian embryo can respond to light (Erwin et al. 1971). Lighting hours and timing of light exposure can significantly affect the embryo’s physiological traits, hatchability, chick quality and post-hatch performance (Ozkan et al. 2012, Archer and Mench 2013).

Effect of embryonic and post-hatch photo-stimulation with variable light sources on hatchability, endocrine parameters and growth performance in broiler chicken

I J REDDY*, V B AWACHAT, A MISHRA, S MONDAL and G RAVIKIRAN

ICAR–National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560 030 India

Received: 23 October 2019; Accepted: 15 November 2019

ABSTRACT

The objective of this study was to investigate the effects of embryonic and post-hatch photo-stimulation with variable light sources with respect to hatchability parameters, hormonal profile and growth performance of commercial broiler chicken. Uniform sized Cobb broiler eggs (174) were procured from commercial hatchery and incubated in three different groups with arrangement of variable colour light source [Control group; Red light photo-stimulated (675 nm); Green light photo-stimulated group (575 nm) of light]. After hatching, as per earlier grouping, chicks hatched out from respective groups reared under continuous lighting in normal, red, green light up to six week of age in standard management condition in battery cages. The result of the present study indicated that photo-stimulation of incubated eggs with different lights sources had no significant effect on hatchability percentage and hatching time. Green light photo-stimulated group showed significantly higher body weight gain with better feed conversion ratio than red and control groups from 0 to 6 wk of age. Feed intake did not differ significantly within the groups. Green light photo-stimulation promotes growth performance traits via stimulating circulating level of gonadal axis and somatotrophic axis hormone. The results of the study provide evidence that green light photo-stimulation used in this study is beneficial in terms of improved growth performance without affecting hatchability in broiler chicken.

Keywords: Broiler chicken, Embryonic photo-stimulation, Gonadal axis hormone, Growth performance, Hatchability, Somatotropic axis hormones

During post-hatch period, various external factors such as housing condition of broiler birds should be at optimum to get expected benefits. Usually broiler birds are reared in litter or in cages in half walled poultry sheds. Lighting is one of the most important environmental factors which directly influence the production of reared birds. Previous studies of researchers, established that the light (duration, intensity and wavelength) is possibly the major environmental stimulus affecting physiology, behaviour, immunity and growth rate of birds. Earlier studies on the impact of variation in light intensity and wavelength reported profound effects on growth performance of broilers (Rozenboim et al. 1999, Lewis and Morris 2000, Rozenboim et al. 2004). In poultry housing, variation in light during the brooding period can result in poor performance and low profitability. In broilers, beneficial effect of green light exposure on early age growth is mediated by enhancing the proliferation of skeletal muscle satellite cells and the expression of a growth hormone receptor gene (Halevy et al. 2006).

Varied results on hatchability parameters and growth performance has been reported earlier depending upon different type of artificial illumination system used (source, colour, intensity, wavelength, period, frequency of light), species, age, strain of broiler bird used in experiments (Cao...
et al. 2008). Although growth performance benefits reported earlier in studies, there is limited information regarding physiological mechanism by which lighting exerts its favourable effect on growth performance of broiler. Further, most of the studies have evaluated the effect of photo-stimulation with variable light in different phases of broiler production either in pre-hatch period (incubation period) or post hatch rearing. So it is necessary to test the efficacy of photo-stimulation with different lighting systems for post hatch performance in broiler chicken in complete life cycle of broiler chicken, i.e. embryonic and post hatch period. In the current study, the growth performance and physiological development of commercial broiler chicks was investigated, in response to photo-stimulation with different lights during embryonic and post hatch period. Therefore, in view of the aforementioned, this experiment is designed to study the effect embryonic and post hatch photo-stimulation with variable light sources on hatching parameters, growth performance and hormonal profile in broiler chicken.

MATERIALS AND METHODS

This experiment trial work was carried out at Experimental Livestock Unit of the institute. The animal experimental procedure was carried out as per the guidelines and approval of Institute Animal Ethical Committee (IAEC) of the Institute.

Experimental design

Incubation and photo-stimulation: Uniform sized cobb broiler eggs (174) were procured from commercial hatchery and incubated with the dry bulb temperature ranging from 37.22–37.77°C and wet bulb temperature of 29.44–30.55°C from day 1 to 18 in three different groups with arrangement of variable colour light source [Control group; Red light photo-stimulated group red (675 nm); green light photo-stimulated group green (575 nm) of light]. On day 18, all the unfertilized eggs were removed after candling and the fertile eggs were shifted to hatching trays. The relative humidity was increased by setting the wet bulb thermometer reading of more than 32.22°C till hatch. Hatchability percentage, cumulative hatch rate, cumulative cumulative feed conversion ratio (FCR) was calculated. Daily monitoring and recording on individually basis had been carried.

Birds and housing: After hatching, as per earlier grouping, hatched chicks from respective groups reared in red, green light up to six week of age in standard managemmetal condition in battery cages. A total of 105 hatched chicks, i.e. 35 chicks for each group were taken and divided into five replicates (5 replicates with 7 chicks in each replicate). The feed and fresh drinking water were provided ad lib. during the entire experimental period. Experimental diets were prepared with maize and soybean meal as major ingredients (Table 1).

Growth performance: Growth performance were recorded biweekly wise in terms of body weight (BW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR) and livability of the birds. The experimental diets were given ad lib. and the residue was weighed at biweekly interval in order to arrive at feed intake. Based on the data pertaining to the feed intake and body weight gain, cumulative feed conversion ratio (FCR) and livability of the birds. The experimental diets were prepared with maize and soybean meal as major ingredients (Table 1).

Statistical analysis: The observations were analyzed using the Statistical Package for Social Sciences (SPSS, 2010 Version 18.0). Different parameters with respect to hatchability, hormone assay and growth performance traits

Ingredients (%)	Pre-starter (0–7 days)	Starter (8–21 days)	Finisher (22–42 days)
Maize	56.81	58.53	62.41
Soybean meal	37.00	36.10	32.00
Fat/ oil	2.20	1.80	2.10
Lime stone	1.00	1.00	1.10
Di calcium phosphate	1.75	1.75	1.50
Salt	0.35	0.35	0.35
Lysine	0.40	0.10	0.12
Methionine	0.24	0.12	0.15
Vit. Min. premix	0.25	0.25	0.27

Nutrient composition (%)	Pre-starter (0–7 days)	Starter (8–21 days)	Finisher (22–42 days)
ME (kcal/kg)	2,996.00	2,994.00	3,051.00
CP	22.51	21.97	21.27
Lysine	1.52	1.27	1.15
Methionine	0.55	0.51	0.46
Threonine	0.81	0.68	0.66
Calcium	0.99	0.99	0.97
Phosphorus, avail.	0.45	0.45	0.40

*Trace mineral premix 0.1%, Vit. Premix 0.1%, B-Complex 0.02%, Choline 0.05%. Trace mineral premix supplied mg/kg diet: Mn, 75; Se, 0.2; Fe, 40; Zn, 70; Cu, 10. The vitamin premix supplied per kg diet: Vit. A, 8,250 IU; Vit. D₃, 1,200 IU; Vit. K, 1 mg; Vit. E, 40 IU; Vit. B₁, 2 mg; Vit. B₂, 4 mg; Vit. B₁₂, 10 mcg; niacin, 60 mg; pantothenic acid, 10 mg.
between control and treatment groups was determined by one way analysis of variance (ANOVA) for completely randomized design. Significance between the treatments tested by employing Tukey’s HSD Post-hoc test. The means of different groups were considered significant at P≤0.05.

RESULTS AND DISCUSSION

Importance of light management during incubation is became one of the basic requirement for getting good and healthy quality of chicks. Stress level, corticosterone levels, bilateral physical asymmetry of hatched chicks significantly reduced under lighted incubation in compare to dark incubation (Archer and Mench 2013). It is always beneficial to get post-hatch chicks with minimum stress level which can withstand better during transportation stress from hatchery to farm.

Hatchability parameters: Photo-stimulation of incubated eggs with different lights sources had no significant effect on hatchability percentage on fertile egg basis and hatching time within the treatment groups (Table 2). Use of incandescent bulbs as light source during incubation may depress the hatchability and increase embryo mortality during incubation due to extra heat production in incubator (Rozenboim et al. 2003). Deviation of eggshell temperature from the optimum results in change of embryonic temperature, reduced hatchability, organ development and chick growth (Michels et al. 1974, Decuyperre 1979, Taylor 2000, Meijerhof 2003, Shafey 2004). In this study, non significant effect on hatchability percentage with different photo-illumination which indicated that used light sources did not produce excess heat in incubator.

These findings on hatchability are consistent with the findings of earlier researchers (Rozenboim et al. 2004, Archer et al. 2009, Zhang et al. 2016). Rozenboim et al. (2004) observed monochromatic green light exposure of broiler hatching eggs did not affect hatching time or hatchability percentage in compare to dark incubated group. Exposure of cobb broiler eggs to different lighting treatment continuous light (24L:0D); no light (0L:24D); 12 h of light (2004) observed monochromatic green light exposure of broiler breeder in comparison to dark incubated group (Archer 2015). Exposing hatching eggs with combination of white and red LED light (12 Light:12 Dark hour) during incubation improved hatchability of broiler birds by 5 percent and lowered post-hatch fear response compared to birds hatched in the dark or provided green LED light (Archer 2017).

Chick weight at hatch: Embryonic photo-stimulation of incubated broiler eggs with green light significantly influenced chick weight at hatch. GL_PGrp groups had significantly higher body weight (46.37 gm) in comparison to RL_PGrp (43.21 gm) and C_Grp (42.86 gm) at hatch (Table 2). Earlier studies reported favourable effect of photo-stimulation with green lights during incubation in broiler chicken (Shafey et al. 2002, Rozenboim et al. 2004). Pre and post-hatch growth performance was significantly improved in terms of body weight and pectoral muscle percentage in green light incubated broiler breeder in comparison to dark incubated eggs, also observed that green light incubated embryos grow faster in terms of daily weight gain from 5th day of incubation (Shafey et al. 2002). Body weight and pectoral muscle percentage improved significantly in the embryos and post-hatch birds incubated under monochromatic green light in comparison to dark incubation (Rozenboim et al. 2004). Commercial broiler hatching eggs incubated under red light had higher body weight of hatched chicks (47.64 gm average body weight, compared to white LED light hatched chicks 46.29 gm) with lower number of leg defects (4% less) in compare to dark control group chicks (Archer 2015).

Growth performance: Growth performance parameters, i.e. biweekly body weight, body weight gain, feed intake, feed conversion ratio of photo-stimulated birds with variable light groups are presented in Table 3.

Photo-stimulation of GL_PGrp chicks group showed significantly (P<0.05) higher body weight gain (2,508 gm) than RL_PGrp (2,423) and C_Grp (2,437) groups during entire study period, i.e. 0–6 wk. Feed intake did not differ significantly within the groups in entire study period of 0 to 6 wk. Green light photo-stimulation significantly

Table 2. Hatchability and chick weight

Group	Egg wt (g)	Chick wt (g)	Hatchability (%)
CL-PGrp	63.03	42.86	87.50 (42/48)
RL-PGrp	62.96	43.21	85.71 (42/49)
GL-PGrp	62.52	46.37	87.23 (41/47)
SEM	0.78	0.686	0.056
Significance	0.776	0.01	

(CL-PGrp, Control group; RL-PGrp, Red light photo-stimulated group; GL-PGrp, Green light photo-stimulated group).
Table 3. Effect of photo-stimulation with different lights on growth performance in broiler chicken

Treatment	CL-PGrp	RL-PGrp	GL-PGrp	Means±SE
Weekly body weight (g)				
0 wk	42.86±0.81⁹	43.21±0.21⁹	46.38±0.05³	44.15±0.36
2 wk	432.75±0.53⁹	432.91±3.11⁹	440.81±2.09¹	435.49±1.91
4 wk	1322.27±4.84⁴	1319.71±1.47³	1316.92±10.85³	1318.32±9.01
6 wk	2480.4±30.21¹⁴	2466±20.18¹⁴	2554.22±19.01¹	2500.21±23.13
Body weight gain (g)				
0–2 wk	389.90±1.30	389.69±3.32	394.43±2.05	391.34±2.22
2–4 wk	889.52±5.34	886.81±10.09	876.11±1.10	884.15±5.51
4–6 wk	1158.12±28.06⁸	1146.91±9.15⁸	1237.3±23.6³	1180.78±20.28
0–6 wk	2437.54±29.77¹⁴	2423.41±20.32¹⁴	2507.85±19.02¹	2456.27±23.04
Feed intake (g)				
0–2 wk	562.2±1.26⁹	553.97±1.62²	555.67±1.37³	557.28±1.42
2–4 wk	1441.75±7.43	1455.12±4.67	1446.05±4.88	1447.64±5.66
4–6 wk	2460.67±3.80³	2442.4±2.59³	2443.62±3.39³	2448.9±3.26
0–6 wk	4464.62±11.63	4451.5±2.72	4445.35±6.23	4453.82±7.86
Body weight gain (g)				
0 wk	42.86±0.81⁹	43.21±0.21⁹	46.38±0.05³	44.15±0.36
2 wk	432.75±0.53⁹	432.91±3.11⁹	440.81±2.09¹	435.49±1.91
4 wk	1322.27±4.84⁴	1319.71±1.47³	1316.92±10.85³	1318.32±9.01
6 wk	2480.4±30.21¹⁴	2466±20.18¹⁴	2554.22±19.01¹	2500.21±23.13

CL-PGrp, Control group; RL-PGrp, Red light photo-stimulated group; GL-PGrp, Green light photo-stimulated group. Values represent means±standard error; a,b,c Means bearing different superscripts in a row differ significantly (P<0.05).

Influenced feed conversion ration within the treatment groups. GL-PGrp birds showed better FCR (1.77) in comparison to RL_PGrp (1.83) and C_Grp birds (1.83) from 0 to 6 wk of age. At later stages from 38th day up to 49th day blue light reared broilers had larger body weight than other groups with lowest FCR (2.36). In contrary to above results, Archer (2015) observed non significant effect on weight gain and feed conversion ratio at 45 day of age in broiler chicken on exposure of white LED light during incubation (18 or 21 days) in comparison to dark incubation.

Results of plasma Testosterone showed a higher concentration of testosterone in broiler chickens with photostimulated light (Rozenboim 2003, 2004, Cao et al. 2008). In earlier studies, involving embryonic exposure of green light to hatching eggs during incubation, increased proliferation and differentiation of adult myoblasts and altered the pattern of myofiber formation which resulted in higher skeletal muscle development during incubation and the posthatch period (Halevi et al. 1998). Favourable effect was reported by embryonic green light photo-stimulation of turkey embryo during incubation in terms of increased weight gain and muscle growth in comparison to control group (Rozenboim et al. 2003). Rozenboim et al. (2004) observed embryonic photo-stimulation of hatching eggs in broiler chicken, increased muscle development rate especially pectoralis muscle as percentage of body weight and gained more body weight than control birds reared in dark condition during 0–6 week of age in broiler birds. Further they concluded that higher weight gain in green embryonic photo-stimulated birds due to enhancement of proliferation and differentiation of embryonic myoblasts and subsequent muscle hypertrophy. Cao et al. (2008) in their studies on Arbor Acres broilers reared under white, red, green and blue lights from light-emitting diode lamps as light sources, green light reared birds had higher body weight with better FCR during the early period of growth (0 to 26 d of age). At later stages from 38th day up to 49th day blue light reared broilers had larger body weight than other groups with lowest FCR (2.36). In contrary to above results, Archer (2015) observed non significant effect on weight gain and feed conversion ratio at 45 day of age in broiler chicken on exposure of white LED light during incubation (18 or 21 days) in comparison to dark incubation. Variable result obtained in with different studies light exposure probably due to the use of different light source, light schedule, light intensity, strain of broiler birds, pigment concentration of hatching eggs, hatching environment of incubator (Shafey et al. 2005, Cao et al. 2008, Archer 2015).
Somatotropic axis hormones: In this study, embryonic photo-stimulation with green light significantly elevated cGH and IGF-I level of post-hatch birds than RL_PGrp and C_Grp during entire study period Table 4.

For normal growth and development of chick embryo, optimum concentration of circulating growth hormone is essential. Exposure of broiler eggs with green light during incubation significantly influenced cGH and IGF-I levels during early post-hatch period, optimum levels of cGH and IGF-I are important factors that increase the early post-hatch performance and muscle mass of birds (Zhang et al. 2014). Earlier studies also reported that lighting stimuli enhanced cGH secretion from pituitary somatotroph cells of male broilers and compensatory growth in broilers was associated with an amplification of cGH secretory burst mass (Kuhn et al. 1996).

IGF-I is an important regulating factor in cellular proliferation and differentiation, satellite cell proliferation, DNA synthesis and tissue growth (Florini et al. 1996). Chicks reared under monochromatic green light had higher level of circulating IGF-I levels with rise in chick satellite cell myogenic processes during early post-hatch stages in comparison to white or red light reared chicks (Liu et al. 2010). IGF-I stimulates the proliferation and DNA synthesis in chicken muscle satellite cells (Florini et al. 1996), enhances glucose and amino acid uptake and protein synthesis and inhibits protein degradation in chicken muscle cells (Duclos et al. 1999) subsequently induces the hypertrophy of adult skeletal muscle (Adams and McCue, 1998, Chakravarthy et al. 2000). Photoperiodic lighting during incubation is favourable for better adaptation, reduction of adaptive stress by inducing melatonin rhythms and altering secretion hypothalamic-pituitary-adrenal axis hormone than their dark-incubated counterparts during incubation period (Ozkan et al. 2012).

In conclusion, our results indicated that green light embryonic photo-stimulation improved body weight of hatched chicks without affecting hatchability. In addition embryonic and post-hatch photo-stimulation with green light improved body weight gain with better feed conversion ratio. Green light photo-stimulation promotes growth performance traits via stimulating circulating level of circulating gonadal axis and somatotrophic axis hormone. The results of the study provide evidence that green light photo-stimulation used in this study is beneficial in terms of improved growth performance without affecting hatchability in broiler chicken. Future studies are warranted to understand effect of green light photo-stimulation on metabolic pathways involved in embryonic development during embryogenesis.

ACKNOWLEDGEMENTS
We thankfully acknowledge the Director of the institute for providing the necessary inputs and facilities to carry out this study.

REFERENCES
Adams G R and McCue S A. 1998. Localized infusion of IGF-I
results in skeletal muscle hypertrophy in rats. *Journal of Applied Physiology* **84**: 1716–22.

Apeldoorn E J, Schrama J W, Mashaly M M and Parmentier H K. 1999. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens. *Poultry Science* **78**: 223–29.

Archer G S. 2015. Effect of exposing layer and broiler eggs to red or white light during incubation. *International Journal of Poultry Science* **14**: 491–96.

Archer G S and Mench J A. 2013. The effects of light stimulation during incubation on indicators of stress susceptibility in broilers. *Poultry Science* **92**: 3103–08.

Archer G S, Shivaprasad H L and Mench J A. 2009. Effect of providing light during incubation on the health, productivity and behaviour of broiler chickens. *Poultry Science* **88**: 29–37.

Archer G S. 2017. Exposing broiler eggs to green, red and white light during incubation. *Animal* **11**: 1203–09.

Axell A M, MacLean H E, Harcourt L J, Davis J A, Jimenez M, Handelsman D J, Lynch G S and Zajac J D. 2006. Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. *American Journal of Physiology, Endocrinology and Metabolism* **291**: E506–E516.

Cao J, Liu W, Wang Z, Xie D, Jia L and Chen Y. 2008. Green and blue monochromatic lights promote growth and development of broilers via stimulating testosterone secretion and myofiber growth. *Journal of Applied Poultry Research* **17**: 211–18.

Chakravarthy M V, Davis B S and Booth F W. 2000. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. *Journal of Applied Physiology* **89**: 1365–79.

Chen X, Deng Y, Zhou Z, Tao Q, Zhu J, Li X, Chen J and Hou J. 2010. 17 beta estradiol combined with testosterone promotes chicken osteoblast proliferation and differentiation by accelerating the cell cycle and inhibiting apoptosis in vitro. *Veterinary Research Communications* **34**(2):143–52.

Crowley M A and Matt K S. 1996. Hormonal regulation of skeletal muscle hypertrophy in rats: The testosterone to cortisol ratio. *European Journal of Applied Physiology* **73**: 66–72.

Decuyper I. 1979. Effect of incubation temperature patterns on morphological, physiological and reproduction criteria in Rhode Island Red birds. *Agriculutra* **27**: 65–68.

Duclos M J, Beccavin C and Simon J. 1999. Genetic models for the study of insulin-like growth factors (IGF) and muscle development in birds compared to mammals. *Domestic Animal Endocrinology* **17**: 231–43.

Erwin W T, Boone M and Barnett B D. 1971. Response of developing embryo to light. *Poultry Science* **50**: 1383–84.

Fairchid B D and Christensen V L. 2000. Photostimulation of turkey eggs accelerates hatching times without affecting hatchability, liver or heart growth or glycogen content. *Poultry Science* **79**: 1627–31.

Florini J R, Ewton D Z and Coolican S A. 1996. Growth hormone and insulin-like growth factor system in myogenesis. *Endocrine Reviews* **17**: 481–517.

Haley O, Biran I and Rozenboim I. 1998. Various light source treatments affect body and skeletal muscle growth by affecting skeletal muscle satellite cell proliferation in broilers. *Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology* **120**: 317–23.

Haley O, Piestun Y, Rozenboim I and Yablonka-Reuveni Z. 2006. In ovo exposure to monochromatic green light promotes skeletal muscle cell proliferation and affects myofiber growth in posthatch chicks. *American Journal of Physiology-Endocrinology and Metabolism* **290**: 1062–70.

Huchy S, Toman R, Cabaj M and Adamkovicova M. 2012. The effect of white and monochromatic lights on chicken hatching. *Animal Science Biotechnology* **45**: 408–10.

Huth J C and Archer G S. 2015. Effects of LED lighting during incubation on layer and broiler hatchability, chick quality, stress susceptibility and post-hatch growth. *Poultry Science* **94**: 3052–58.

Kuhn E R, Darras C, Gysemans E, Decuyper I R, Berghman L and Buyse J. 1996. The use of intermittent lighting in broiler raising. 2. Effects on the somatotropic and thyroid axes and on plasma testosterone levels. *Poultry Science* **75**: 595–600.

Lewis P D and Morris T R. 2000. Poultry and coloured light. *World's Poultry Science Journal* **56**: 189–207.

Liu W, Wang Z and Chen Y. 2010. Effects of monochromatic light on developmental changes in satellite cell population of pectoral muscle in broilers during early posthatch period. *Anatomical Record* **293**: 1315–24.

Meijerhof R. 2003. Problem solving in the commercial broiler sector. *Avian and Poultry Biology Reviews* **14**: 212–14.

Michels H, Geers R and Muambi S. 1974. The effect of incubation temperature on pre and post-hatching development in chickens. *British Poultry Science* **15**: 517–23.

Molenar R, Reijink A M, Meijerhof R and Van den Brand H. 2010. Meeting embryonic requirement of broilers throughout incubation: A review. *Brazilian Journal of Poultry Science* **12**: 137–48.

Ozkan S, Yalcin S, Babacanoglu E, Kozanoglu H, Karadas, F and Uysal S. 2012. Photoperiodic lighting (16 hours of light: 8 hours of dark) programs during incubation: 1. Effects on growth and circadian physiological traits of embryos and early stress response of broiler chickens. *Poultry Science* **91**: 2912–21.

Rozenboim I, Biran I, Chaischa Y, Yahav S, Rosenstrauch A, Sklan D and Haley O. 2004. The effect of a green and blue monochromatic light combination on broiler growth and development. *Poultry Science* **83**: 842–45.

Rozenboim I, Biran I, Uni Z, Robinson B and Haley O. 1999. The effect of monochromatic light on broiler growth and development. *Poultry Science* **78**: 135–38.

Rozenboim I, Huisinga R, Haley O and Elhalawani M E. 2003. Effect of embryonic photostimulation on the posthatch growth of turkey pouls. *Poultry Science* **82**: 1181–87.

Shafey T M, Al-molhen T H, Al-sobayel A A, Al-hassan M J and Ghnnam M M. 2002. Effects of egg shell pigmentation and egg size on the spectral properties and characteristics of eggshell of meat and layer breeder eggs. *Asian-Australasian Journal of Animal Sciences* **15**: 297–302.

Shafey T, Al-Batshan H, Ghanam M and Al-Ayed M. 2005. Effect of intensity of egg shell pigment and illuminated incubation on hatchability of brown eggs. *British Poultry Science* **46**: 190–98.

Shafey T. 2004. Effect of lighted incubation on embryonic growth and hatchability performance of two strains of layer breeder eggs. *British Poultry Science* **45**: 223–29.

Sinha-Hikim I, Roth S M, Lee M I and Bhasin S. 2003. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. *American Journal of Physiology-Endocrinology and Metabolism* **285**: 197–205.

SPSS Version 18.0. 2010: *SPSS Software products, Marketing Department*, SPSS Inc. Chicago, IL, USA.

Taylor G. 2000. High yield breeds require special incubation. *World's Poultry Science* **15**: 27–29.
Veterany L, Hluchy S, Toman R, Cabaj M and Adamkovicova M. 2007. The effect of white and monochromatic lights on chicken hatching. *Zootehnie si Biotehnologi* 40: 411–17.

Zhang L, Wu J, Wang X, Qiao H, Yue J, Yao, Zhang H and Qi G. 2014. Changes of plasma growth hormone, insulin-like growth factors-I, thyroid hormones, and testosterone concentrations in embryos and broiler chickens incubated under monochromatic green light. *Italian Journal of Animal Science* 13: 530–35.

Zhang L, Zhu X D, Wang X F, Li J L, Gao F and Zhou G H. 2016. Green light-emitting diodes light stimuli during incubation enhances post hatch growth without disrupting normal eye development of broiler embryos and hatchlings. *Asian-Australasian Journal of Animal Sciences* 29: 1562–68.