Activation-Induced Cytidine Deaminase Expression in CD4(+)T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age.

AUTHOR(S):
Qin, Hongyan; Suzuki, Keiichiro; Nakata, Mikiyo; Chikuma, Shunsuke; Izumi, Nakako; Thi Huong, Le; Maruya, Mikako; ... Busslinger, Meinrad; Honjo, Tasuku; Nagaoka, Hitoshi

CITATION:
Qin, Hongyan ...(et al). Activation-Induced Cytidine Deaminase Expression in CD4(+)T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age.. PloS one 2011, 6(12): e29141.

ISSUE DATE:
2011-12

URL:
http://hdl.handle.net/2433/152386

RIGHT:
© 2011 Qin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Activation-Induced Cytidine Deaminase Expression in CD4+ T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age

Hongyan Qin1*, Keiichiro Suzuki2, Mikiyо Nakata1, Shunsuke Chikuma1, Nakako Izumi1ab, Le Thİ Huong1, Mikako Maruya2, Sidonia Fagarasan2, Meinrad Busslinger3, Tasuku Honjo1*, Hitoshi Nagaoka1abc

Abstract

Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4+ T cells that had expressed Aicda (exAID cells) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4+ and B220+ cell populations. ExAID B cells remained IgM+, suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis.

Introduction

Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation (SHM) and class switch recombination (CSR), which diversify the immunoglobulin gene in activated peripheral B cells [1,2]. SHM introduces point mutations in the V region exons, thus contributing to the antibody affinity maturation associated with cell selection. CSR is a region-specific DNA recombination that occurs between two switch regions located 5' to each heavy chain constant (CH) region gene. This recombination replaces the V<sub>p</sub> proximal CH gene with a downstream CH gene by looping out the intervening sequence, thereby generating isotype-switched antibodies without changing the antigen specificity [3].

Both CSR and SHM are initiated by AID that induces the target DNA cleavages [4,5]. In addition to immunoglobulin (Ig) genes, a considerable number of non-Ig genes, including proto-oncogenes, can be attacked by AID [6]. Furthermore, a growing number of reports suggest that, because of its mutagenic activity, AID may be involved in tumorigenesis in both B and non-B cells [7–12]. Studies indicate that the incidence of lymphoma carrying a Myc-Ig translocation is drastically reduced in AID-deficient mice [7,12]. In contrast, systemic AID overexpression in transgenic mice consistently results in T-cell lymphoma, as well as lung tumor, liver tumor, and B lymphoma, with lower frequencies [13–16]. Notably, tumorigenic hepatitis C virus or H. pylori infection can induce AID expression [10,17]. AID thus appears to be genotoxic, and its expression must be tightly regulated.

We previously showed in vitro that Aicda expression is regulated by a balance between enhancers and silencers [18]. The silencers E2f and c-Myb strongly repress Aicda transcription in non-B cells and non-stimulated B cells. When B cells are stimulated, B-cell-specific (Pax5 and E2a) and stimulation-responsive (NF-kB, STAT6, Smad3/4, and C/EBP) enhancers act in concert to overcome the silencers, thereby turning on Aicda transcription [18]. This model explains the mechanism by which AID is restricted primarily to activated B cells, yet can be induced in non-B cells by strong environmental stimuli [18].

In fact, high AID levels are found only in germinal-center (GC) B cells, which actively undergo SHM and CSR [19]. Small amounts of AID have been found in immature B cells, although the amount of AID and the percentage of AID-positive immature
AID is difficult to detect convincingly at low levels. To overcome this problem, we introduced a genetic marking system using bacteria artificial chromosome (BAC) transgenic mice carrying Cre-ires-hCD2 knocked into the Aicda locus [27]. We also crossed this mouse with a genetically marked reporter mouse. This system allowed us to examine both past and current AID expression by detecting two genetic markers. Since the marked cells can accumulate in a cell population, the detection sensitivity for AID-expression history can be enormously enhanced. Using this system, we unexpectedly found that AID is expressed in a considerable fraction of CD4+ memory T cells in mice maintained under specific pathogen-free conditions.

**Results**

**The Aicda-cre system efficiently monitors Aicda expression**

The Aicda-cre transgenic mouse carries a 190-kb BAC DNA containing the entire Aicda locus (Figure S1A) [27]. The Aicda coding region on the transgene was engineered to generate the human CD2 and Cre recombinase instead of AID; thus, current Aicda promoter activation can be visualized by hCD2 staining. In addition, by crossing these mice with Rosa26 reporter mice (R26R or Rosa-tdRFP), previous Aicda promoter activation can be visualized, because Cre irreversibly turns on LacZ or RFP reporter expression at the Rosa26 locus (Rosa reporters) [28,29].

We analyzed the Aicda-cre/R26R and Aicda-cre/Rosa-tdRFP mice and found substantial numbers of LacZ+/RFP single-positive (exAID) and LacZ-/RFP hCD2 double-positive B cells in secondary lymphoid organs (Figure 1A and Figure S1B). The majority of LacZ+/hCD2+ B cells were peanut-agglutinin (PNA) positive, either CD38+ or CD95+, marking them as GC B cells (Figure 1A and Figure S1B); Rosa single-positives contained only a small fraction of GC B cells. This indicates that cells quickly lost AID expression after leaving the GC. Nonetheless, IgA+ plasmablasts, which should have expressed AID, were almost completely labeled by RFP in the Aicda-cre/Rosa-tdRFP mice (Figure 1B and 1C).

Initially, we thought the exAID B cells were post-GC cells. However, these cells comprised a substantial fraction of the B220+ cells in the spleen of young animals (3–4 weeks), although the percentage varied from 3%–23% for unknown reasons (Figure 1D). The percentage of exAID B cells remained fairly stable at 5–10% between 5–40 weeks of age, after which it gradually increased, reaching a plateau of 20–25% (Figure 1D). The absolute numbers of exAID B cells followed a similar tendency; this was less apparent, however, perhaps due to the inevitable technical fluctuations of cell yield in each experiment (Figure S1C). The majority of accumulated exAID B cells in old animals remained IgM+IgD+, but SHM on the IgF downstream region was significant (Figure S1D and Table 1), suggesting that switched memory B cells may not accumulate in the spleen.
Aicda Expression in T Cells

A

B220+ SPL mLN PP

hCD2

Lac Z (FDG)

80.7

90

15.4

4.3

PNA

CD38

B

IgA RFP DAPI

C

Small Intestine

IgA

B220

RFP

D

SPL

Rosa1hCD2−% in B220+

Age (w)

B220+ 4 week

hCD2

LacZ (FDG)
Properties of exAID T cells

In T cells, Aicda expression occurred primarily in the activated CD4+ fraction. To examine whether there are functional differences between exAID and non-exAID cells, we first analyzed the localization of exAID T cells within lymphoid organs. Sections of a Peyer’s patch from an Aicda-cre/Rosa-tdRFP mouse were stained with antibodies for CD3 and AICDA. A cluster of RFP+ AID+ cells, which indicated GCs, included dispersed CD3+ cells (Figure 5). Scattered RFP+ AID+ B cells could be seen at the edge of the T-B zone, which was consistent with our previous report (Figure 5) [36]. CD3+ RFP+ T cells were seen throughout the area, including the GC, T zone, and T-B border (Figure 5). These results suggest that the exAID T cells may not have a special localization within lymphoid tissue.

Consistent with the histological observations, there was no difference in the expression of CXCR4 and CXCR5, which determine cellular localization in the lymphoid organ, between exAID and non-exAID EM CD4+ T cells (Figure 6A). However, we observed small but recognizable differences in the CCR7 and PSGL-1 levels (Figure 6A), suggesting that the exAID cells might have acquired some type of functional difference. On the other hand, there was no difference in ICOS, an important co-stimulatory molecule for T-B interaction (Figure 6A).

Older animals bear a unique T-cell subset with diminished reactivity, namely PD-1+ memory phenotype CD4+ T cells [37]. Because the fraction of exAID T cells increased with age, we checked for PD-1 in LacZ+ T cells from the spleen of aged Aicda-cre/R26R mice. The majority of CD62L+ LacZ+ CD4+ T cells expressed PD-1, while PD-1 was barely detectable in the CD62Llo T cells (Figure S3D). The CD62L+ LacZ− CD4+ T cells were a mixture of PD-1-positive and -negative cells (Figure S3D). Therefore, the exAID T cells found in aged mice seem to be included in a population of PD-1− memory CD4+ T cells that has been previously reported [37].

CD4+ T cells can be classified into several subsets, such as Th1, Th2, and Th17, according to their cytokine profiles [38–40]. If the Aicda expression in CD4+ T cells is associated with specific activating conditions, the cytokine profile of the exAID subset could be biased. To examine the cytokine signature, we purified LacZ+ EM CD4+ T cells and other control cells, and then stimulated them with phorbol myristate acetate (PMA) and ionomycin. Naïve cells secreted interleukin (IL)-2 and TNF-α, but no other cytokines typical to Th1, Th2, or Th17 (Figure 6B). The LacZ+ EM T cells secreted all of the cytokines examined, indicating that, as expected, this population contained various types of Th-cell subsets. By contrast, the exAID T cells produced lower levels of IL-2 and negligible amounts of IL-4, IL-17, and TGF-β. However, the IL-10 and interferon-γ productions were comparable to those of LacZ+ EM T cells (Figure 6B and 6C). The exAID T cells also produced TNF-α at a level similar to the naïve T cells. Stimulation with anti-CD3 plus anti-CD28 gave essentially the same results (Figure S4A). The bias in the cytokine signature suggests that Aicda expression may be associated with specific signals.

To examine whether in vitro stimulation can induce Aicda expression in T cells, we cultured naïve CD4+ T cells with combinations of various cytokines that can induce either Th1, Th2, or Th17 cells in vitro. However, none of these culture conditions induced LacZ+ T cells (Figure S4B). Given the slow accumulation of LacZ+ T cells in vivo (Figure 3D), the frequency of Aicda expression in T cells should be so low that it would not be detectable in short-term culture. Alternatively, Aicda expression might require a unique in vivo environment that is absent in the culture system.

In contrast, adoptive in vivo transfer of naïve CD4+ T cells or Aicda-cre/RFP+ EM CD4+ T cells into T-cell-deficient (CD3ε−/−) mice revealed that a considerable fraction of cells expressed Aicda and become RFP+ cells (Figure 7A). The frequency of RFP+ T cells generated from the RFP+ EM T cells was much

| Table 1. Mutation frequency of Jh4 downstream intron of Igh of B220+ CD3+ cells. |
|--------------------------|--------------------------|--------------------------|--------------------------|
| Cell | Mutation rate/(base pair) | Mutated base/Total base | Mutated clone/Total clone |
|--------------------------|--------------------------|--------------------------|--------------------------|
| LacZ− hCD2+ | 1.0 × 10−4 | 1/96,000<sup>ab</sup> | 1/160 |
| LacZ− hCD2+ | 3.0 × 10−4 | 30/98,400<sup>b</sup> | 10/164 |
| LacZ− hCD2+ | 8.3 × 10−4 | 75/90,600<sup>b</sup> | 8/151 |

<sup>a</sup>P value (two tail Fisher’s exact test):

<sup>b</sup>p = 3.2 × 10−4,

<sup>c</sup>p = 2.3 × 10−2. Statistical comparisons between two types of cells (a- and b-pairs) were done by use of 2×2 contingency tables made by Mutated base/Total base of each pair.

doi:10.1371/journal.pone.0029141.t001
higher than that observed from naïve T cells. Furthermore, the RFP<sup>+</sup> cells generated from RFP<sup>+</sup> EM T cells appeared to be located predominantly in the mesenteric lymph nodes (mLN) and small intestine (Si) lamina propria while majority remained RFP<sup>−</sup> in the spleen, suggesting that RFP<sup>+</sup> EM T cells might be generated upon activation of EM T cells by environmental stimuli in the gut (Figure 7A). Both RFP<sup>+</sup> and RFP<sup>+</sup> EM phenotype T cells did not expand in CD3<sup>e−</sup> mice as compared with naïve T cells (Figure 7B). We did not find any difference in the recovered-cell number between the transfer of RFP<sup>−</sup>- and RFP<sup>−</sup>-cells. It suggested that RFP<sup>+</sup>- and RFP<sup>−</sup>-cells have similar capability for proliferation even after the transfer; the result is consistent with the result obtained by cell cycle indicator mice (Figure 7B and Figure 3E). We next explored the cytokine signature of transferred T cells recovered from CD3<sup>e−</sup> mice. A similar fraction of RFP<sup>+</sup> and RFP<sup>−</sup> EM cells became IFN-γ/IL-10 double-producing cells, consistent with their initial cytokine profile before transfer (Figure 7C and Figure 6B). Taken together, Aicda expression in T cells seems to be induced under specific in vivo conditions in response to stimuli derived from gut environment, with the resultant exAID T cells acquiring distinct functional properties, at least in the cytokine profile.

It is important to know whether the AID in T cells plays any role in T-cell functions. Aberrant AID expression could cause mutations in proto-oncogenes, such as Myc [6,8,14]). However, we could not find AID-dependent mutations in exAID T cells at the Myc mutation hotspot through sequencing (Table 2 and S1). T cell antigen receptor (TCR) genes are other possible SHM targets [14]. We sorted the hCD2<sup>+</sup>LacZ<sup>+</sup>T cells from mMT background mice, and a mixture of TCR cDNAs were randomly cloned for sequencing analysis; however, no significant difference in mutation frequency was observed between the LacZ<sup>+</sup>hCD2<sup>+</sup> and LacZ<sup>+</sup>hCD2<sup>−</sup> fractions (Table S2). Nevertheless, we cannot...
Figure 3. Aicda-cre/R26R mice reveal the history of Aicda expression in a subset of T cells. Spleen T cells (A), thymocytes (B), and peripheral lymphoid organs (C) from Aicda-cre/R26R mice were stained with the markers indicated. The gating used for each plot is shown at the top of each panel. Data shown is for 29-week-old (A and C) or 7-week-old (B) animals. Numbers in the panels show the percentage of gated cells of each.
quadrant/gate. (A) R26R (Aicda-cre) is shown as a negative control. (C) R1 and R2 gating represents EM and naive T-cell populations, respectively. FACs data shown in (B) are representative of analyses of the thymus in three independent experiments, using mice aged 7, 15, and 18 weeks. (D) The percentage of LacZ (diamond) or RFP+ (cross) cells in CD4+ T cells in the spleen, plotted by age. Symbols represent individual mice. Correlation coefficient (r) was 0.86. (E) Aicda-cre/Rosa-ttdRFP/Fucci mouse (64-week) spleen TCR+ CD4+ cells were sorted into CD44hi RFP+ and RFP− EM cells as well as CD44lo naive cells. Cells were gated to the S/G2/M phase of the cell cycle. Results are representative of analyses of 4 animals. SPL, spleen; mLN, mesenteric lymph node; PP, Peyer’s patch; R1, region 1; R2, region 2; R3, region 3.

doi:10.1371/journal.pone.0029141.g003

exclude the possibility that a limited number of TCR clones accumulated mutations, because the TCR sequencing analysis showed only the average in the total population analyzed.

AID expression in other tissues

AID expression in non-lymphocytes has been observed with viral or bacterial infection, or under other inflammatory conditions [10,17]. AID has also been found in non-lymphoid tissues, mouse ovary [25], and human testis [26] under normal conditions. We therefore histologically examined non-lymphoid tissues, including the testis and ovary of Aicda-cre/Rosa-ttdRFP mice, and found RFP-positive cells in both the seminiferous tube and the ovary (Figure S3A). However, only one or two tubules per tissue section contained RFP+, suggesting that Aicda is occasionally expressed in a few spermatocytes in normal spermatogenesis. In the ovary, many granulosa cells and Theca externa cells were RFP-positive. We could not find RFP+ oocytes so far as we examined. We also could not find clear RFP signals in any other tissues examined so far, which include the pancreas, cerebellum, cerebrum, lung, liver, and kidney (unpublished observations).

Discussion

In the present study, we employed a highly sensitive monitoring system for in vivo Aicda promoter activation and found a new fraction of CD4+ T cells that expressed Aicda at some point. This observation convincingly demonstrates that AID can be expressed in non-B somatic cells under physiological conditions. Such T-cell populations may not be discovered by conventional procedures, because less than 1% of the CD4+ T cells expressed hCD2 or AID at any given time point. Despite this low frequency, exAID CD4+ T cells accumulated with age, eventually making up about 25% of the CD4+ T-cell population. This raises the possibility that these cells play distinctive functions in long-term phenomena such as immune-memory or immunosenescence, rather than in short-term responses.

Kwon et al. (2008) demonstrated that the efficiency of Cre-mediated deletion induced by the Aicda-cre transgene varies between the different floxed reporters present in the Tjfe2dα/F and R26Rβ alleles. Only 20% of the GC B cells recombine R26Rβ, whereas almost all of the GC B cells recombine Tjfe2dα, suggesting that Cre’s accessibility to a given locus is an important factor for conditional mutagenesis. Although the two reporter genes used in this study were inserted into the Rosa26 locus, which is similar to the R26Rβ allele, both of them allowed us to detect Cre activity with apparently higher sensitivity than that obtained with the R26Rβ. Therefore, the sensitivity of the Rosa26 system also seems to depend on the structure of the integrated reporter gene itself. Furthermore, despite its high efficiency in GC B cells, the Tjfe2dα allele fails to reveal Aicda-cre activity in immature B and T cells [27], suggesting that Cre’s accessibility to a given target gene may also vary in different cell types and developmental stages. These results imply that the fluctuating factors discussed above strongly influence the outcome of Cre-mediated conditional mutagenesis. Importantly, however, the Cre-positive cells detected with the more sensitive reporter system used in this study could not have been false positives, because they both depended on Aicda-cre and expressed Aicda transcripts, as shown by RT-PCR.

The exAID T cells expressed IFN-γ and IL-10, but little IL-4 or IL-17, indicating that they do not match any typical CD4+ T-cell subset. Actually, substantial fraction of cells expressed both IFN-γ and IL-10 as obvious in the intracellular staining. The IFN-γ production implies Th1, but IL-10, which has broad anti-inflammatory activity, has not been considered a typical Th1 cytokine [41]. Recently, however, cells producing IL-10 have been found in chronic infections caused by protozoa such as Toxoplasma gondii and Leishmania major [42,43]. These IL-10-producing Th1 cells are the major source of IL-10 in mice suffering from chronic intracellular parasite infection. IL-10 protects host animals from chronic hyperinflammation by T. gondii, while it prevents the healing of skin lesions in animals infected with L. major [42,43]. Although our mice were not infected with such protozoa, environmental antigens might occasionally stimulate T cells, thereby activating the regulatory cytokine program. Besides, the exAID EM T cells express slightly higher CCRI7 and lower PSGL-1 in comparison with the non-exAID EM T cells. Because CCRI7 and PSGL-1 is involved in leukocyte homing to lymphoid organ and effector site, respectively, exAID T cells might have some tendency closer to the central memory T cells although CD62L expression were not high [32]. The fact that exAID T cells acquired a cytokine signature and a homing receptor pattern distinct from other T cells suggests that the Aicda expression in T cells is associated with some specific stimuli.

A recent report demonstrated a unique PD-1+ T-cell subpopulation that is characteristic of aged animals [37]. These cells have memory phenotypes but hardly proliferate in response to TCR stimulation, and they produce fewer typical T-cell cytokines [37]. We found that most of the exAID CD4+ T cells in the spleen of aged animals were PD-1+, but many PD-1+ cells remained LacZ-negative. Therefore, it is possible that a fraction of the PD-1+ memory phenotype CD4+ T cells might comprise of heterogeneous cells, some of which express Aicda sometime during their development. Interestingly, C/EBPα, which has a binding motif involved in Aicda expression [18], is highly expressed in the PD-1+ T-cell population [37].

What kind of stimuli might be involved in Aicda expression in T cells? Aicda expression was not induced in T cells in our in vitro culture experiments with various polarizing conditions; thus the conventional stimulation to activate T cells is not sufficient to induce Aicda expression efficiently. In contrast, a considerable fraction of effector memory cells as well as naive CD4+ T cells became RFP+ upon in vivo transfer into T cell-deficient mice, suggesting that AID upregulation may take place during homeostatic expansion, induced likely by antigens from the commensal bacteria [44,45]. It has been reported that IL-10-producing Th1 cells are generated by stimulation with a high antigen dose in conjunction with IL-12 in vitro [46]. Therefore, strong antigen stimulation might also be involved in generating exAID T cells. TCR crosslinking induces NF-kB signaling [47,48], which can also promote Aicda expression [18]. NF-kB can also be activated through Toll-like receptors, which are important for Aicda expression in immature B cells [20]. Th1 cells express TLR2
Aicda Expression in T Cells

A self-archived copy in Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp
Aicda Expression in T Cells

Our finding that AID was more prominently expressed in the μMT background may reflect the increased environmental stimuli under such an immunodeficient condition. That is, in the absence of normal Ig production, the homeostasis of intestinal microbiota could be severely disturbed; causing increased systemic stimulation by aberrant bacterial components [50] and increasing the chance of NF-κB activation in T cells.

The biological significance of AID expressed in T cells is unclear. Although SHM on TeR has been reported, we were not able to detect it [51]; however, we cannot exclude the possibility that a limited number of T-cell clones accumulated TCR mutations. On the other hand, because the Aicda expression in T cells is not abundant, we cannot exclude the possibility that the expression simply results from a leaky transcriptional activation and has no functional relevance. Another aspect of AID expression is its involvement in tumorigenesis, since AID overexpression in vivo efficiently generates T-cell tumors [14]. Although we could not detect significant AID-induced Msc mutations in the exAID T cells, it is possible that even rare AID expression can still increase the probability of tumor formation. In this context, it is noteworthy that human T-cell leukemia virus 1 (HTLV-1) infection, which causes T-cell leukemia after a prolonged course, can induce Aicda expression in infected T cells [52,53].

Immature B cells have been reported to express low levels of AID, for which the Toll-like receptor signal is responsible [20]. SHM in immature B cells has been proposed to contribute diversity to the primary repertoire [20–22,54]. It is not clear, however, whether such mechanisms are critical for B-cell repertoire maintenance. ExAID cells comprised only 5–10% of immature B cells, and the average level of AID mRNA expression was less than 10% of that in GC B cells. Aicda expression in immature B cells may be induced or triggered in part of the population, rather than intrinsically programmed. The AID expressed in immature B cells has been suggested to play a role in the negative selection of auto-reactive B cells [20,23,24]. ExAID immature B cells might have expressed BCR reactive to environmental antigens, including self-antigens, and such BCR could be edited to change its specificity.

Recently, two groups reported analogous strategies for analyzing AID expression in memory B cells [55,56]; these reports did not study AID in immature B cells, as our study did. Differences may be due at least partly to the cre expression level or the reporter sensitivity. Dogan et al. used the cre-ER system, in which cre is inactive until tamoxifen is administered [56]. This system is excellent for labeling the cells at one particular moment by tamoxifen injection, but it does not allow the accumulation of labeled exAID cells. Despite these

Figure 4. T-B interaction is not required for Aicda expression in T cells. (A) Results of B220 and IgM staining of Aicda-cre/R26R/μMT and Aicda-cre/R26R spleen (SPL) cells from 35-week-old animals are shown. (B) LacZ expressed in Aicda-cre/R26R/μMT (upper) and Aicda-cre/R26R (lower) spleen T cells. Naïve and EM CD4+ T cells were gated as populations with CD3+CD4+CD62LloCD44hi and CD3+CD4+CD62LhiCD44lo phenotypes, respectively. FACS data shown are representative of five independent experiments. (C) Endogenous Aicda mRNA expression in peripheral B and CD4+ T cells was quantified by real-time PCR with Taqman® probes. Pooled spleen and lymph node cells were sorted and analyzed. Each value was normalized to the Ppib signal and shown as a number relative to the signal of germinal center B cells in each experiment; therefore, in this graph, one corresponds to the signal equivalent to germinal center B cells. The error bar indicates the standard deviation of triplicate PCR. The results are representative of two independent sorting experiments using two animals each. The following markers were used to define each fraction: germinal center B, B220+CD38+; transitional B, B220+IgM+IgD+CD21+; naïve B, B220+IgM+IgD−; naïve T, B220−CD3+CD4+CD62LhiCD44hiLacZ−; EM T (LacZ−), B220−CD3−CD4−CD62LloCD44hiLacZ−; and EM T (LacZ+), B220−CD3−CD4−CD62LhiCD44hi Lacz+.

Figure 5. The localization of exAID CD3+ cells in Peyer’s patches. Left panel: an image of a Peyer’s patch, taken with a low power field, stained with CD3 (green), AID (blue), and RFP (red). The section was cut at the position where the germinal center was dense. The dotted line indicates part of a T-B border. Bar represents 200 μm. Right panels: enlarged view of the area indicated in the left panel. White arrows indicate CD3+RFP+ double-positive cells.

doi:10.1371/journal.pone.0029141.g004
doi:10.1371/journal.pone.0029141.g005
Aicda Expression in T Cells

A

naïve T

LacZ−

LacZ+

B

PMA lo.  non-stim.

IL-2

IFN-γ

IL-10

TNF

IL-4

IL-17

24h  36h  48h

C

TGFβ

48h
Figure 6. Distinct functional feature of exAID T cells. (A) Naive T (CD3ε− CD4− CD62Lhi CD44lo) and EM T (CD3ε− CD4− CD62Llo CD44hi) cells, with or without LacZ, from Aicda-cre/R26R spleens were gated and examined for the indicated molecules. (B) Cytokine production of naive (diamond) and EM (LacZ+, triangle; LacZ−, square) T-cell fractions after stimulation with PMA and ionomycin is shown for the indicated time points. Unstimulated LacZ− EM cells (non-stim, cross) were used as negative controls. Each symbol represents the result of an individual sample of multiple cultures (naive, n = 2; LacZ+, n = 6; LacZ−, n = 8; non-stim, n = 4). (C) TGF-β production 48 hours after PMA ionomycin addition, measured by ELISA. Symbols are the same as in (B). The result is representative of three independent experiments. IL, interleukin; IFN, interferon; TNF, tumor necrosis factor.

doi:10.1371/journal.pone.0029141.g006

differences, all the systems clearly detected AID-expressing B cells in the GC. ExAID B cells, which have been proposed to be memory B cells [56], actually accumulated after 40 weeks of age. However, the majority of exAID cells were non-switched cells (IgM+ IgD−), even in very old animals. This may suggest that switched memory B cells are not a major population. Alternatively, such cells may emigrate from the spleen. The importance of memory plasma cells in humoral memory has recently been reinforced [57]. It is possible that switched cells preferentially differentiate to plasma cells, as earlier proposed [56].

Several groups have reported the presence of AID mRNA in germ cells [23,26,58,59]. It has been proposed that AID plays a critical role in reprogramming the DNA epigenetic mark. However, it is difficult to reconcile this with the long-term observation that AID knockout mice are fertile and physiologically normal. We only occasionally detected an RFP-positive seminiferous tubule; therefore, the expression is unlikely to be a developmentally programmed event that occurs in every cell. In the ovary, consistent with previous reports, we observed many RFP+ granular and Theca cells in ovarian follicles, whereas the oocytes appeared to be RFP−. We cannot exclude the possibility that our detection system is limited. Moreover, in contrast to sperm, the number of oocytes that could be examined by our procedure is limited. Although we do not exclude the possibility that some of oocytes occasionally express the Aicda gene, it is clear that AID expression in non-lymphoid tissues is either very low or a rare event under normal conditions. Therefore, strong pathogen stimulation is likely to be needed to trigger AID expression in non-lymphoid cells, which could lead to tumorigenesis.

Materials and Methods

Mice

Aicda-cre [27], R26R [29], Rosa-ttdRFP [28], Fucci [33], μMT [34] and CD3ε−−/−− [60] mice were bred and maintained in specific pathogen-free conditions at the Institute of Laboratory Animals, Kyoto University, and in the animal facility at RIKEN. These animals were backcrossed at least 7 times on a C57BL/6 background. All experimental protocols involving animal use were approved by the Kyoto University Animal Research Committee and/or the Institutional Animal Care and Use Committee at RIKEN (Protocol number MedKyoi10053).

Antibody staining, LacZ detection and cell sorting

Cells were suspended in FACS buffer (PBS supplemented with 4% FBS, 1 mM HEPES, and 0.6% sodium citrate). The following antibodies were used for staining: monoclonal antibodies conjugated with FITC, PE, PE-Cy7, APC, APC-Cy7, Biotin or Pacific-

Figure 7. Generation of exAID CD4+ T cells in vivo by Adoptive transfer to CD3ε−−−/− mice. (A) RFP expression of CD4+ T cells recovered from spleen, mesenteric lymph node, and small intestine of CD3ε−−−/− mice transferred indicated phenotype of T cells. (B) CD4+ T cells that were recovered from the spleen, mesenteric lymph node, Peyer’s patch, small intestine and large intestine of the mice transferred RFP+ EM (n = 3; square) and RFP+ EM CD4− T cells (n = 3; triangle) as well as naive T cells (n = 2; square) were pooled; the total number of cells was counted and plotted. Average numbers are shown by column graphs. (C) IFN-γ and IL-10 double producing cell from EM CD4+ T cells after the adoptive transfer. IFN-γ and IL-10 expression in spleen CD4+ T cells obtained from T-cell-transferred CD3ε−−−/− mice were analyzed by intra-cellular cytokine staining. Recovered cells were stimulated with PMA and ionomycin for 4 hours before the staining. SPL, spleen; mLN, mesenteric lymph node; Si, small intestine; memory, effector memory.

doi:10.1371/journal.pone.0029141.g007
Blue, specific for B220 (RA3-6B2), CD19 (1D3), CD93 (AA4.1), IgM (R6-60.2), IgD (11-26), CD38 (90), CD3 (50A2), CD4 (GK1.5), CD8 (53-6.7), CD44 (IM7), CD62L (MEL-14), NKG2D (DX5), NK1.1 (PK136), CCR7 (4B12), PSGL-1 (2PH1), ICOS (15F9), CXCR5 (2G8), CXCR4 (2B11), or hCD2 (RPA-C5), Dx5, or FITC conjugated or Alexa Fluor 488, 555, or 647 conjugated antibodies. For LacZ detection, equal volumes of cell suspension and 2 mM fluorescein-dil-β-galactopyranoside (FDG) in H2O were mixed at 37°C for 1 min. Stained cells were analyzed and sorted by FACS CantoII (BD Biosciences) and FACSAria, respectively, and analyzed with FlowJo software (TreeStar, Inc.). A live lymphocyte population was gated according to forward-side scatter and 7-amino-actinomycin D staining.

Cell culture and cytokine detection

Sorted cells were cultured with PMA (50 ng/ml) and ionomycin (1 μg/ml) in RPMI-1640 supplemented with 10% fetal calf serum, 2 mM L-glut, 100 μg/ml penicillin, 100 μg/ml streptomycin, and 1 mM sodium pyruvate. In some experiments, cells were stimulated by co-incubating plate with 2 mM anti-mouse CD3e (145-2C11, eBioscience) and 2 μg/ml anti-mouse CD28 (37.51, BD Biosciences) with or without added cytokine combinations, including TGF-β (3 ng/ml), IL-6 (20 ng/ml), IL-12 (5 ng/ml; BD Pharmingen), or IL-4 (10 ng/ml; R&D Systems). Concentrations of IL-2, IL-4, IL-10, IL-17, IFN-γ, and TNF-α in culture supernatants were measured by ELISA, a Ready-SET-Go kit (eBioscience), a CBA Mouse Th1/Th2/Th17 cytokine kit (BD Biosciences), or a TGF-β1 Enax ImmunoAssay System (Promega), used according to the manufacturer’s protocol. All experiments were performed with either streptavidin-APC-Cy7 or streptavidin-APC (BD Biosciences). For LacZ detection, equal volumes of cell suspension and 2 mM fluorescein-dil-β-galactopyranoside (FDG) in H2O were mixed at 37°C for 1 min. Stained cells were analyzed and sorted by FACS CantoII (BD Biosciences) and FACSAria, respectively, and analyzed with FlowJo software (TreeStar, Inc.).

Quantitative Real-time PCR

Total RNA was extracted by TRizol reagent (Invitrogen Life Technologies), and cDNA was synthesized with TaqMan® Reverse Transcription Reagents (Applied Biosystems). A LightCycler RNA Pre-Amplification Kit (Roche). The Aicda, IgM, Cα19, and Gapdh expressions were amplified with TaqMan® Gene Expression Assays (Applied Biosystems; Mn0057774_m1, Mn01718956_m1, Mn00515428_m1, and Mn99999915_g1) using Applied Biosystem’s 7900HT PCR system. Gene expression was normalized to the Gapdh or Pgly expression as assessed by iQ Sybr green supermix (Bio-Rad Laboratories, Inc.) with cyclophiLin-F and cyclophiLin-R primers (Table S3).
Adaptive transfer

Spleen and lymph node cells of Aicda-cre/Rosa-tdRFP mice were pooled and used for the sorting. One hundred thousand of CD62L+CD44hiRFP− naïve T cells, 1×10⁵ CD62LloCD44-hiRFP− and 1×10⁵ CD62LloCD44-hiRFP+ EM T cells were injected intravenously into CD3−/− mice. They were analyzed at 10 weeks after the transfer.

Statistics

P values (two-tailed) were calculated by Fisher’s exact test. Correlation coefficient between age and percentage of exAID lymphocytes were calculated by Excel software (Microsoft).

Supporting Information

Figure S1 Characterization of Aicda-cre mouse crossed with Rosa reporter mice. (A) Schematic representation of Aicda-cre, R26R and Rosa-tdRFP alleles. (B) FACS analysis of B220+ cells for hCD2 and RFP expression in peripheral lymphoid tissues of Aicda-cre/Rosa-tdRFP mice (31-week) are shown. CD95 (Fas) is an activated B cell marker. (C) Estimated absolute numbers of Rosa marker (R26R, diamond; Rosa-tdRFP, cross) positive hCD2− B220+ exAID B cells were plotted by age. (D) Ig isotype of LacZ+ and LacZ− B cells in the spleen of aged mouse (64-week). The result is representative for three independent staining experiments. SPL, spleen; LN, lymph node; PP, Peyer’s patch.

Figure S2 ExAID CD4+ T cells visualized by Rosa-tdRFP system. (A) (B) Spleen cells from Aicda-cre/Rosa-tdRFP mouse (33-week, upper panels) were stained with indicated markers. RFP positive CD4+ T cells appeared Aicda-cre dependent manner. (B) RFP histograms of the CD3+CD4+ fraction were shown. (C) Spleen (SPL), lymph node (LN) and Peyer’s patch (PP) T cells were immuno-stained and gated as indicated.

Figure S3 Analysis of non-B exAID cells. (A) NK cells contain a small fraction of cells with Aicda expression history. Spleen cells from Aicda-cre/R26R mouse (21-week) were stained by NK cell markers. Almost no NK marker positive cells are detected within CD3+ CD4+ T cells while CD3− CD4− contains few but obvious LacZ+ NK marker positive cells. The number indicates percent of the fraction in each quadrant among gated cells. The result was representative for three independent experiments with 1 or 2 mice. (B) Estimated absolute numbers of Rosa marker (R26R, diamond; Rosa-tdRFP, cross) positive CD4+ B220− exAID T cells were plotted by age. (C) Percentage of Rosa marker positive cells (R26R, diamond; Rosa-tdRFP, cross) in cytotoxic T cells fraction in the spleen. The fractions were defined as CD3+ (filled diamond) or CD4− (open diamond) T cells. The x-axis is the age of mouse (week).

PD-1 expression of naïve (CD62Llo), non-exAID effector memory (CD62L+ LacZ−) and exAID effector memory (CD62Llo LacZ+) T cells in aged (65-week) mouse. The result was representative for the analysis of three old mice (65- or 64-week).

Figure S4 In vitro stimulation of CD4+ T cells. (A) CD4 T cells were fractionated to Naïve, and LacZ+ and LacZ− effector memory T cells by sorting according to their expression of CD44 and CD62L. They were cultured with 2 μg/ml anti-mouse CD3e (clone 145-2C11, eBioscience) and 2 μg/ml anti-mouse CD28 (clone 37.51, eBioscience) for 2 Days. IL-2, IL-4, IL-17, IFN-γ and TNF-α in culture supernatants were measured by ELISA. Ready-SET-Go kit (eBioscience). The experiment was done twice and the results were essentially the same. (B) In vitro stimulation of naïve CD4+ cells failed to induce AID expression. Naïve CD4+ T cells were sorted from Aicda-cre/R26R mice and cultured in vitro with various combination of stimulants with which T cells should polarize to different types of helper T cell states as indicated above each panel. The left most is the culture with un-fractionated CD4+ T cells that included LacZ+ cells as a control culture. The data is the representative of two independent experiments.

Figure S5 Histological analyses of testis and ovary. Frozen section of fixed tissues from Aicda-cre/Rosa-tdRFP and control mice (wt) were examined. Nuclear counter staining of DAPI and bright field image (BF) were shown below and above. (A) Images of testis. Boxed regions were magnified as indicated by arrows. A scale bar is shown in the high power magnification picture of the DAPI staining. Scale bar = 25 μm. (B) Images of ovary. Three different follicles of Aicda-cre/Rosa-tdRFP ovary are shown. Two sets of males and one set of female with the same number of controls were examined.

Table S1 Mutation frequency of Myc exon 1-intron 1 region.

Table S2 Mutation analysis on randomly cloned TCR cDNA.

Table S3 Primers used in this study.

Acknowledgments

We thank Dr. Atsushi Miyawaki for providing the Fucci mice, Dr. Hiroshi Hiai for advice on histological analysis, Dr. Nagahiro Minato and Dr. Takashi Shinkohara for helpful discussions, and Ms. Shiraki for manuscript preparation.

Author Contributions

Conceived and designed the experiments: TH HN. Performed the experiments: HQ KS MN NI LTH MM HN. Analyzed the data: HQ KS MN SC SF HN. Contributed reagents/materials/analysis tools: SC SF MB. Wrote the paper: HQ KS SF MB TH HN.

References

1. Muramatsu M, Kinosita K, Fagarasan S, Yamada S, Shinkai Y, et al. (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553–563.

2. Revy P, Muto T, Levy Y, Greissmann F, Plebani A, et al. (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565–573.

3. Revy P, Muto T, Levy Y, Greissmann F, Plebani A, et al. (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565–573.
28. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful
27. Kwon K, Hutter C, Sun Q, Bilic I, Cobaleda C, et al. (2008) Instructive role of
25. Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004)
24. Meyers G, Ng YS, Bannock JM, Lavoie A, Walter JE, et al. (2011) Activation-
23. Kuraoka M, Holl TM, Liao D, Womble M, Cain DW, et al. (2011) Activation-
22. Ueda Y, Liao D, Yang K, Patel A, Kelsoe G (2007) T-independent activation-
21. Mao C, Jiang L, Melo-Jorge M, Puthenveetil M, Zhang X, et al. (2004) T cell-
20. Han JH, Akira S, Calame K, Beutler B, Selsing E, et al. (2007) Class switch
18. Tran TH, Nakata M, Yoshida K, Ito M, Sunaga M, Morita M, et al. (2010) Preferential localization of IgG memory B cells adjacent to contracted gut flora. Science 323: 1488–1492.
17. Machida K, Cheng KT, Sung VM, Shimodaira S, Lindsay KL, et al. (2004) A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene 23: 6042–6047.
16. Takai A, Toyoshima T, Uemura M, Kitawaki Y, Marusawa H, et al. (2009) AID deficiency in mice is required for germinal center-derived lymphomagenesis. Nat Genet 41: 108–112.
15. Rucci F, Cattaneo L, Marrella V, Sacco MG, Sobacchi C, et al. (2006) Tissue-specific expression of AID in human glioblastoma and prostate cancer: implications for AID involvement in a common step of class switch recombination. PLoS ONE 1: e26.
14. Okazaki IM, Nakazato M, Kobayashi A, Moriyama S, Sakaue-Sawano A, et al. (2010) Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323: 1488–1492.
13. Morisawa T, Marusawa H, Ueda Y, Iwai A, Okazaki IM, et al. (2008) Organ-specific role of activation-induced cytidine deaminase in the homeostasis of gut flora. Cell 135: 257–267.
12. Crouch EE, Li Z, Billon P, Gourley S, Gourley D, et al. (2007) APOBEC3G generates novel mouse models of human T-cell leukemia virus type 1 proviral genomes in vivo. J Virol 81: 7287–7297.
11. Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, et al. (2008) AID is required to initiate Nbs1/gamma-H2AX focus formation in the V(D)J recombination: linkage with somatic hypermutation. Annu Rev Immunol 20: 165–196.
10. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, et al. (2007) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in phagocytic tissues: implications for epigenetic reprogramming. J Biol Chem 282: 52535–52540.
9. Schreck S, Buettner M, Kremmer E, Bogdan M, Herbst H, et al. (2006) Activation-induced cytidine deaminase (AID) is expressed in normal spermatogenesis but only infrequently in testicular germ cell tumours. J Pathol 210: 26–31.
8. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage-tracing studies. Eur J Immunol 37: 43–53.
7. Tran TH, Nakata M, Suzuki K, Begas NA, Shinoura K, et al. (2010) B cell-specific and stimulation-responsive enhancer derepressed A overcomes the effects of silencers. Nat Immunol 11: 140–154.
6. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, et al. (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274: 14070–14076.
5. Har JH, Akira S, Calame K, Beutler B, Selsing E, et al. (2007) Class switch recombination and somatic hypermutation in early mouse B cells are mediated by the V(D)J recombinease and p53. Immunity 27: 130–140.
4. Kuraoka M, Toyoshima T, Uemura M, Morita M, Marusawa H, et al. (2009) A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene 28: 469–478.
3. Machida K, Cheng KT, Sung VM, Shimodaira S, Lindsay KL, et al. (2004) Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase (AID) in human gastric epithelium. Nat Immunol 5: 476–482.
2. Crouch EE, Li Z, Billon P, Gourley S, Gourley D, et al. (2007) APOBEC3G generates novel mouse models of human T-cell leukemia virus type 1 proviral genomes in vivo. J Virol 81: 7287–7297.
1. Ishikawa C, Nakachi S, Senba M, Sugai M, Mori N (2011) Activation of AID by C/EBPalpha underlies T cell differentiation but only infrequently in testicular germ cell tumours. J Pathol 210: 658–663.

PLoS ONE | www.plosone.org 14 December 2011 | Volume 6 | Issue 12 | e29141

Kyoto University Research Information Repository
https://repository.ku.usp.br
59. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, et al. (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135: 1201–1212.
60. Malissen M, Gillet A, Ardouin L, Bouvier G, Trucy J, et al. (1995) Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 14: 4641–4653.
61. Suzuki K, Maruya M, Kawamoto S, Sitnik K, Kitamura H, et al. (2010) The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 33: 71–83.
62. Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, et al. (2008) Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29: 261–271.
63. Giudicelli V, Chaume D, Lefranc MP (2005) IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 33: D256–61.