This is the published version of a paper published in *MycOKeys*.

Citation for the original published paper (version of record):

Kosuthova, A., Westberg, M., Otálora, M A., Wedin, M. (2019)
Rostania revisited – testing generic delimitations in Collemataceae (Peltigerales, Lecanoromycetes)
MycOKeys, 47: 17-33
https://doi.org/10.3897/mycokeys.47.32227

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3330
Rostania revised: testing generic delimitations in Collemataceae (Peltigerales, Lecanoromycetes)

Alica Košuthová¹, Martin Westberg², Mónica A.G. Otálora³, Mats Wedin¹

¹ Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
² Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
³ Plant Ecological Genetics, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland

Corresponding author: Alica Košuthová (alica.kosuthova@nrm.se)

Academic editor: T. Lumbsch | Received 6 December 2018 | Accepted 18 January 2019 | Published 20 February 2019

Citation: Košuthová A, Westberg M, Otálora MAG, Wedin M (2019) Rostania revised: testing generic delimitations in Collemataceae (Peltigerales, Lecanoromycetes). MycoKeys 47: 17–33. https://doi.org/10.3897/mycokeys.47.32227

Abstract
Here, we test the current generic delimitation of Rostania (Collemataceae, Peltigerales, Ascomycota) utilizing molecular phylogeny and morphological investigations. Using DNA sequence data from the mitochondrial SSU rDNA and two nuclear protein-coding genes (MCM7 and β-tubulin) and utilizing parsimony, maximum likelihood and Bayesian phylogenetic methods, Rostania is shown to be non-monophyletic in the current sense. A new generic delimitation of Rostania is thus proposed, in which the genus is monophyletic, and three species (Rostania coccophylla, R. paramensis, R. quadrifida) are excluded and transferred to other genera. Rostania occultata is further non-monophyletic, and a more detailed investigation of species delimitations in Rostania s. str. is needed. The new combinations Leptogium paramense and Scytinium quadrifidum are proposed.

Keywords
Classification, cyanolichens, nomenclature, systematics, taxonomy, thallus anatomy

Introduction
Collemataceae is a large group of predominantly foliose lichenized fungi commonly known as the “jelly lichens” due to their gelatinous habit. This is caused by a polysaccharide matrix around the Nostoc cyanobacterial photobionts that swells and becomes extremely gelatinous when wet. Until very recently, the generic classification of the
Collemataceae s. str. was very unnatural and based solely on one character, presence (*Leptogium*) or absence (*Collema*) of a cellular cortex (Degelius 1954, 1974; Jørgensen 2007). Already Degelius (1954) questioned the monophyly of *Collema* and *Leptogium*. This was also supported by molecular phylogenies (Wiklund and Wedin 2003; Miadlikowska and Lutzoni 2004; Miadlikowska et al. 2014), and somewhat surprisingly, gelatinous genera with one-septate spores that earlier were classified in Collemataceae, were shown to belong to the Pannariaceae (Wedin et al. 2009; Otálora et al. 2010; Ekman et al. 2014; Weerakoon et al. 2018) or Arctomiaceae (Otálora and Wedin 2013). Not until Otálora et al. (2013a, 2013b) investigated the family in detail was a modern classification of Collemataceae s. str. proposed. *Collema* and *Leptogium* were confirmed as highly non-monophyletic, and Otálora et al. (2013b) instead suggested accepting 10 more or less morphologically distinct monophyletic groups from their tree, as genera. In addition to *Collema* and *Leptogium* in restricted senses, six old generic names were resurrected (*Blennothallia* Trevis., *Enchylium* (Ach.) Gray, *Lathagrium* (Ach.) Gray, *Pseudoleptogium* Müll. Arg., *Rostania* Trevis., and *Scytinium* (Ach.) Gray), and two new genera were described (*Calloe* Otálora & Wedin and *Paracollema* Otálora & Wedin).

Rostania, the focus of the present study, corresponds to the *Occultatum*-group of *Collema* (Degelius 1954, 1974). It is a comparatively small genus with eight currently accepted, mainly epiphytic species, characterised by very small to medium sized (ca 0.3–5 cm in diam.) subcrustaceous to subfoliose thalli with very small apothecia (ca 0.2–0.8(–1) mm in diam.) and cuboid to oblong muriform spores. All five species included in the *Occultatum* group by Degelius were treated in *Rostania* by Otálora et al. (2013b); *Rostania callibotrys* (Tuck.) Otálora, P.M. Jørg. & Wedin, *Rostania ceranisca* (Nyl.) Otálora, P.M. Jørg. & Wedin, *Rostania coccophylla* (Nyl.) Otálora, P.M. Jørg. & Wedin, *Rostania occultata* (Bagl.) Otálora, P.M. Jørg. & Wedin and *Rostania multipunctata* (Degel.) Otálora, P.M. Jørg. & Wedin. In addition, *Rostania laevispora* (Swin. & Krog) Otálora, P.M. Jørg. & Wedin was included in the genus. Two further species were later added, *Rostania paramensis* (P.M. Jørg. & Palice) P.M. Jørg. & Palice (Jørgensen and Palice 2015) and *Rostania quadrifida* (D.F. Stone & McCune) McCune (McCune et al. 2014). Degelius (1954) divided *Collema occultatum* into two varieties: var. *populinum* which was characterised by a squamulose, somewhat lobate thallus, and which almost exclusively grew on the bark of *Populus*, and var. *occultatum* with a granulose thallus and which occurred on many deciduous trees, including *Populus*. Perlmutter and Rivas Plata (2018) combined var. *populinum* in *Rostania*, as *R. occultata* var. *populina* (Th. Fr.) Perlmutter & Rivas Plata.

Otálora et al. (2013a, 2013b) included only three species (*R. ceranisca*, *R. multipunctata* and *R. occultata*) in their phylogenies, and thus the taxonomical position of most species has not been tested by molecular methods. As there is a substantial variation in shape and size of the lobes, apothecia and ascospores, as well as the hyphal arrangement in the thallus among the *Rostania* species, and as several former Collemataceae taxa have been shown to belong outside the family, the delimitation of the whole genus needs investigation. Here, we will test the generic delimitation
of Rostania and investigate the relationships of any species falling outside Rostania s. str. Finally, we will note and comment on any indication of species non-monophyly, in this genus.

Material and methods

Taxon sampling and morphological studies

We sampled 52 specimens of Collemataceae for the molecular study, including six of the eight currently accepted Rostania species and representatives of all genera within the family Collemataceae, including type species. Sequences originating from the study of Otálora et al. (2013a) were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/) and all sequences used in this work are summarized in Table 1. Our own collections were deposited in UPS and S, and additional herbarium material from the herbaria PRA, GZU, UPS and S was also included (Table 1). Additional herbarium type material from the herbaria H and O was studied morphologically only (listed on the end of the manuscript). Herbarium acronyms follow Thiers (2018). Three species of Rostania not included in earlier studies were successfully added (R. callibotrys, R. quadrifida and R. paramensis). The sampling of Rostania occultata included specimens of both varieties. To enable testing of generic monophyly and family placement of taxa potentially to be excluded from Rostania, we added secondary outgroups including newly produced sequences of two species from the sister family Placynthiaceae (Placynthium nigrum and P. rosulans) and sequences available in GenBank of two from the more distantly related Pannariaceae (Pannaria rubiginosa and Staurolemma omphalarioides). Finally, Peltigera aphthosa was used as outgroup to root the tree.

We studied morphological and anatomical characters under the light microscope and dissecting microscope. We used hand-cut longitudinal sections of apothecia to observe internal and microscopic characteristics, in water. Microscopic examinations of the thalli were conducted on transversal cross-sections of lobes in water, or lactic blue.

Data generation

Two apothecia or (in the case of sterile samples) a thallus fragment, were selected for extraction. We extracted total DNA using the Plant DNA Mini Kit (Qiagen, Hilden, Germany) following the manufacturers’ instructions. We amplified ca 0.6 kb of the small subunit of the mitochondrial rDNA (mtSSU), ca 0.6 kb of the two protein-coding genes DNA replication licensing factor mini-chromosome maintenance complex component 7 (MCM7) and the β-tubulin gene (b-tub) using the same primer combinations and PCR settings as in previous studies (Otálora et al. 2013a; Košuthová et al. 2016). We assembled and edited DNA sequences using Geneious version R8 (http://www.geneious.com; Kearse et al. 2012).
Table 1. Sequences utilized in this study (newly produced sequences in bold, remaining sequences produced by Otálora et al. (2013a) and some of the outgroup sequences are taken from Wiklund and Wedin (2003), Buschbom and Mueller (2004), Otálora et al. (2010), Prieto et al. (2013)). In case of *Rostania* species, origin of both, state and provinces are given.

Taxon	Geographic origin, voucher	GenBank accession number		
		mtSSU	b-tub	MCM7
Blenothallia crispa 1	Hungary: Thor 7021a (UPS–L48439)	JX992918	KC119040	JX992976
Blenothallia crispa 3	Spain: Westerg (S–F315127)	MK445278	MK451934	MK451920
Callome multipartita 1	Norway: Haugan 7015 (O–L117369)	GQ259019	–	–
Callome multipartita 2	Austria: Haefligner 74818 (GZU18–2009)	MK445271	MK451935	–
Collerna leptaleum	Argentina: Wedin 8822 (S–F335749)	JX992928	KC119038	JX992986
Collerna nigrescens	Spain: Aragón 80/04 (MA–L16262)	EU982563	KC119016	JX992989
Collerna subconveniens	New Zealand: Wedin 9225 (S–F335747)	JX992937	KC119019	JX992996
Enchylium bachmanianum	Sweden: Nordin 1521 (UPS–L133627)	JX992914	MK451936	JX992974
Enchylium polycarpon 3	Sweden: Odelvik 04700 (S–L316455)	JX992913	MK451937	JX992993
Enchylium tenax 1	Spain: Etayo 20214 (MA–L13396)	EU982556	KC128823	JX992998
Enchylium tenax 2	Spain: Sarrión 1509 (MA–L14789)	EU982579	KC128824	–
Lathagrium auriforme	Spain: Otálora 20904 (MA–L16249)	JX992923	KC119013	JX992983
Lathagrium cf. fuscovirens	Sweden: Tibell 23588 (UPSL–L145162)	JX992914	MK451936	JX992974
Lathagrium fuscovirens	Sweden: Nordin 2708 (UPS–L076283)	JX992925	KC119019	JX992996
Leptogium azureum	Chile: Cornejo 26507 (MA–L16273)	JX992925	KC119015	JX992996
Leptogium byssinum	Norway: Westerg (S–F264803)	KT240180	–	KT240183
Leptogium denticulatum	Argentina: Wedin 8690 (S–F332474)	JX992947	KC119025	JX992996
Leptogium terrenum	Portugal: van den Boom 41781 (hb. van den Boom)	KT240181	–	KT240184
Paracollema italicum 1	Croatia: Nordin 2708 (UPS–L076283)	JX992925	KC119019	JX992984
Pseudoleptogium diffractum 3	Sweden: Nygren 007 (UPS–L129612)	GQ259029	–	–
Rostania callibotrys 1	Kenya: Moberg 4431a (UPS–L22044)	JX992919	KC119021	JX993002
Rostania callibotrys 2	Costa Rica: Sipman 20495 (GZU–2–93)	MK445270	MK451939	–
Rostania ceranisca 1	Norway, Troms: Nordin 5721 (UPS–L130978)	MK445271	MK451940	–
Rostania ceranisca 2	Sweden, Pite Lappmark: Westberg PL433 (UPS–L931677)	JX992932	KC119025	JX993012
Rostania ceranisca 3	Austria, Salzburg: MW_HOC020 (S–F262465)	JX992926	–	JX992985
Rostania occultata v. occultata 1	Sweden, Pite Lappmark: Westberg PL467 (UPS–L931673)	JX992924	–	JX993015
Rostania occultata v. occultata 2	Sweden, Dalarna: Westerg (S–F304739)	JX992919	–	JX993015
Rostania occultata v. occultata 3	Sweden, Uppland: Westerg PL467 (UPS–L931673)	MK445270	MK451939	–
Rostania occultata v. populina 1	Sweden, Södermanland: Nordin 5407 (UPS–L120396)	JX992931	–	JX992991
Rostania occultata v. populina 2	Croatia: Llop 56060303 (S–F233720)	JX992932	MK451947	JX992990
Rostania occultata v. populina 3	Sweden, Gästrikland: Odelvik 01269 (S–F262465)	MK445260	MK451948	MK451927
Rostania occultata v. populina 4	Sweden, Jämtland: Klosterruna 174 (S–F332481)	MK445265	MK451949	MK451928
Rostania paramensis	Ecuador, Carchi: Palice 2796 (PRA–00013999) (HOLOTYPE)	MK445279	–	–
Rostania quadrifida 1	USA, Oregon: McCune 2744 (UPS–L513233)	MK445272	MK451950	–
Rostania quadrifida 2	USA, Oregon: McCune 28536 (UPS–L513222) (ISOTYPE)	MK445274	MK451951	–
Scytinium biatorinum	Sweden: Jonsson 5500 (UPS–L186460)	JX992940	KC119022	JX993003
Scytinium imbricatum	Sweden: Hermansson 18777 (UPS–L076500)	MK445264	MK451952	MK451929
Scytinium intermedium	Sweden: Nordin 7385 (UPS–L076203)	MK445263	MK451953	MK451930
Scytinium magnussonii	Spain: Östlara 20104 (MA)	EU982565	KC119004	JX993022
Scytinium palmatum	Sweden: Nordin 5369 (UPS–L133133)	JX992959	KC119027	JX993025
Scytinium parvum	Sweden: Thor 4300 (UPS–L174011)	JX992933	KC119018	JX992992
Sequence alignment and analysis

To identify and avoid contaminants among the new sequences, we used Megablast high similarity matches in Geneious version R8 (http://www.geneious.com; Kearse et al. 2012). Alignments were constructed using AliView 1.09 (Larsson 2014) with the “ClustalW/Multiple alignment” option and subsequent manual adjustments. All ambiguously aligned regions (sensu Lutzoni et al. 2000) were excluded from analysis.

The mitochondrial and the two protein-coding datasets were analysed separately before concatenation using parsimony jackknifing (JK) in WinClada (Nixon 1999–2002) with 100–200 replicates and otherwise default settings. As no significant (JK support above 70%) incongruence was detected, the alignments were concatenated. Final alignments have been deposited in TREEBASE (http://www.treebase.org) with accession number (http://purl.org/phylo/treebase/phylows/study/TB2:S23889). After concatenation, we inferred phylogenetic relationships using parsimony, maximum likelihood and Bayesian phylogenetic methods with indels treated as missing data. Partitions scheme and optimal model of nucleotide substitution for Bayesian analysis were selected using PartitionFinder2 (Guindon et al. 2010; Lanfear et al. 2012, 2016). PartitionFinder was set as follow: linked branch lengths, data blocks according to each codon position of each genetic region (mtSSU, MCM7, b-tub), the greedy search scheme, the Bayesian information criterion as selection metric and only models that are implemented in MrBayes. The selected substitution model schemes are provided in Table 2.

We performed parsimony JK in WinClada (Nixon 1999–2002) with 2000 replicates and otherwise default settings. For maximum likelihood and ML bootstrapping we used RAxML 8 (Stamatakis 2014) implementing a general time reversible (GTR) model of nucleotide substitution with gamma distributed rate heterogeneity GTR+G (GTRGAMMA)following recommendations in the user manual. We used 4 parti-
Table 2. Evolutionary models and partitions according to the Best scheme calculated in PartitionFinder. In RAxML only the GTR+G (GTRGAMMA) model was used for all partitions.

Subset name	Analyses type	Nr of sites	Codon position	Best model	Partition
mtSSU	MrBayes	735	–	HKY+I+G	1
MCM7	MrBayes	194	1	SYM+I+G	2
MCM7	MrBayes	194	2	SYM+I+G	2
MCM7	MrBayes	194	3	HKY+I+G	3
b-tub	MrBayes	210	1	SYM+I+G	2
b-tub	MrBayes	210	2	JC	4
b-tub	MrBayes	210	3	HKY+I+G	3
mtSSU	RAxML	735	–	–	1
MCM7	RAxML	194	1	–	2
MCM7	RAxML	194	2	–	3
MCM7	RAxML	194	3	–	4
b-tub	RAxML	210	1	–	2
b-tub	RAxML	210	2	–	3
b-tub	RAxML	210	3	–	4

tions determined by PartitionFinders (Table 2). 1000 bootstrap (BS) replicates were completed using the parametric (BS) algorithm of RAxML-HPC2 on the Cipres Web Portal (Miller et al. 2010). Bayesian phylogenetic analysis was inferred using MrBayes 3.2.5 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003; Ronquist et al. 2011) with the evolutionary models following the partitioning scheme from PartitionFinder (Table 2). We estimated posterior probabilities (PP) by running one cold and two heated chains for 2130000 generations in parallel mode, saving trees every 100th generation. To test whether the Markov chain converged, we monitored the average standard deviation of split frequencies (ASDSF), which should fall below 0.01 when comparing two independent runs. We discarded the 25% of generations before the point where the ASDSF fell below 0.01 as burn-in. All remaining trees were summarized as a Bayesian 50% majority rule (MR) consensus tree with PP calculated for each clade.

Results and discussion

We produced 61 new sequences (Table 1) for the phylogenetic analyses (24 mtSSU, 15 MCM7, 22 b-tub) including 57 taxa and 1947 nucleotide positions (735 for mtSSU and 582 for MCM7 and 630 for b-tub) for the final matrix. The alignment contained 618 parsimony-informative characters (177 for mtSSU, 237 for MCM7 and 204 for b-tub). The most likely tree from the RAxML analysis is presented in Figure 1 with likelihood BS, Bayesian PP and parsimony JK support superimposed.

The analyses resulted in a topology (Fig. 1) very similar to the results of Otálora et al. (2013a, 2013b). Some of the backbone topology, however, has unfortunately no or low support. In Otálora et al. (2013b) Callome was the sister to Rostania, but in our
study this relationship is not formed. All *Rostania* species are nested within *Collemataceae*, but *Rostania* in the sense of Otálora et al. (2013b) is non-monophyletic. Three species form a core group, which we here treat as *Rostania* s. str. *Rostania* s. str. is well

Figure 1. The most likely tree from the combined RAxML analysis based on 1947 aligned characters of mtSSU rDNA, MCM7 and b-tub from 57 specimens. Support values (Likelihood BS/Bayesian PP/parsimony JK) given when BS ≥ 70%, PP ≥ 0.90 and parsimony JK ≥ 70%. Branches receiving BS ≥ 75%, PP ≥ 0.95 and JK ≥ 75% are indicated with a black dot. The different colour indicate different genera: blue = *Leptogium*, pink = *Rostania*, orange = *Scytinium*.
supported and includes Rostania occultata (Fig. 2A), R. ceranisca, and R. multipunctata. We can conclude that R. occultata as currently circumscribed is non-monophyletic. Rostania multipunctata (Fig. 2B) shares the cuboid shape and size of the spores with R. occultata s. lat. (Fig. 3A), but the thallus differs in size (the lobes are generally larger, up to ca 2.5 cm long in R. multipunctata, while in R. occultata s. lat. they are up to ca 3 mm long). It has also accessory lobules developing from the wrinkles (Fig 2B), which do not occur in R. occultata s. lat. The delimitation of the two varieties of R. occultata is unclear, as is the separation from R. multipunctata. Our study is not designed to study species-delimitations and we will extend our investigation of this species complex in a larger study currently in preparation.

Rostania ceranisca, the only terricolous Rostania, is sister to the group consisting of R. multipunctata and R. occultata s. lat. In addition to its terricolous ecology, it is easily recognized by the erect accessory finger-like lobules (Fig. 2C), which grow from the edge of the main lobes. The spores in R. ceranisca differ in shape from the cuboid spores in R. multipunctata and R. occultata s. lat. (Fig. 3A) in being oblong (Fig. 3B). Although Degelius (1954) noted only four spores in the ascus, we have usually observed eight spores, even if four of them may be aborted or are at least not clearly visible when mature (Fig. 3B).

Rostania callibotrys does not group with Rostania s. str. (Fig. 1), but forms an unsupported group with Enchylium. Rostania callibotrys has a comparatively distinct thalline apothecium margin, similar to some species of Enchylium. However, this is a widespread feature in the family including some species of Rostania s. str. The thallus with characteristic accessory lobules in R. multipunctata (Fig. 2B) and R. laevispora (Fig. 2D) is very similar to R. callibotrys (Fig. 2E). Rostania callibotrys also has spores that are very similar to the typical cuboid to oblong Rostania-spores in R. multipunctata and R. occultata s. lat. (Fig. 3A, B), but the spores in R. callibotrys have fewer cells (Fig. 3C) than in these species. Rostania laevispora (Fig. 2D), a rarely collected species that we did not manage to get sequences from, is very similar and likely very closely related to R. callibotrys (Fig. 2E). As there is no support for excluding these species, and no distinct morphological evidence suggests any other relationship, we tentatively leave both R. callibotrys and R. laevispora in Rostania.

We did not manage to get molecular data from R. coccophylla (Fig. 4A), a tropical and rarely collected species where the available material was too old. Although R. coccophylla is similar to R. callibotrys and R. multipunctata, the apothecia in R. coccophylla are very different in that they are convex and stipitate when mature (compared to concave and initially immersed and later sessile, in Rostania) and considerably larger compared to other Rostania species. The apothecia of R. coccophylla are similar to several species in Collema sensu Otálora (2013b), where this species originally was placed. Although we preferably would want molecular data to test the correct placement of this species, we suggest that it is re-instated in Collema, where the name Collema coccophyllum Nyl. is available.

Rostania quadrifida and R. paramensis are not closely related to Rostania s. str. Rostania quadrifida was described by Stone and McCune (2010) as Collema quadrifidum, and was later included in Rostania based on spore shape and thallus morphology (McCune et al. 2014). It differs from Rostania s. str. by having spores with fewer septa
Figure 2. Thallus habitus: A *Rostania occultata* var. *populina* (Odelvik 1269, S), thallus lobes (arrow) B *Rostania multipunctata* (Poelt 8852, GZU), accessory lobules (arrow) C *Rostania ceramica* (MW_HOCH020, S), accessory finger-like lobules (arrow) D *Rostania laevispora* (isotype of *Collema laevisporum* Swinscow & Krog, Tanzania, 1986, Swinscow & Krog T 3/6, O-00298), apothecium in initial stage (arrow) E *Rostania callibotrys* (Moberg 4431a, UPS), apothecium in initial stage (arrow). *tl* = thallus lobes, *al* = accessory lobules, *Ai* = apothecium in initial stage covering the top of the accessory lobules. Scale bar: 1 cm.
Figure 3. Ascospores: A Rostania occultata var. populina (Llop 56060303, S), cubic spores B Rostania ceranisca (Westberg L271_PL433, UPS), oblong spores; ascus (red line) with only four mature spores visible but remnants of four aborted spores can be seen (arrows) C Rostania callibotrys (Sipman 2049, GZU), oblong spores. Scale bar: 10 µm.

(Fig. 5A). Here it forms the sister group to Scytinium (Fig. 1), within a well-supported group consisting of Blennothallia, Lathagrium and Scytinium. Rostania quadrifida has a thallus composed by densely interwoven hyphae, and with a pseudocortex (Fig. 6A), features that do not occur in Rostania s. str., but in some species of Scytinium (similar to e.g. Scytinium intermedium and S. magnussonii; Jørgensen 1994). These similarities support including it in Scytinium, which we do below.

The generic position of R. paramensis has been complicated to assess. Jørgensen and Palice (2012) described it as Collema paramense, based on the holotype (Palice 2796) and another sample from a second locality in Ecuador (Palice 2273). As the thallus has a pseudocortex, Otálora et al. (2013b) transferred it to Scytinium. Jørgensen and Palice (2015) later studied another sample from the second locality (Palice 2274). They concluded that the spores in the holotype must have been unusually developed, and transferred it to Rostania based on the oblong spores (similar to R. ceranisca) found in Palice 2274. Our re-examination of these three specimens, including the holotype, shows that Palice 2273 and Palice 2274 contain two distinct Collemataceae species (Fig. 4C, D). One of these (Fig. 4D), present in small amounts only in both samples, is identical with holotype of Collema paramense and is characterised by a matt dark olive thallus with a pseudocortex (Fig. 6B), and hyaline, muriform, ellipsoid spores with acute ends (Fig. 5B). This is very different from the spores in Rostania, but typical for species in Leptogium s. str. (Fig. 5C). We
sequenced the holotype, and we can conclude that among the Leptogium species we have sampled, it forms a group with Leptogium azureum (the conserved type of Leptogium; Jørgensen et al. 2013) and L. denticulatum (Fig. 1). It has a thallus which is appressed to the substrate and composed by relatively small lobes (Fig. 4B) which is rare in other Leptogium s. str., and in section it has straight and unbranched hyphae which are perpendicular to the surface (Degelius 1954; Fig. 6B). This character is present in several groups in Collemataceae. It was observed by Degelius (1954) in
some *Collema* species, and has also been noted in the newly described *Leptogium antarcticum* by Kitaura et al. (2018) who used the term “columnar hyphae” for the same hyphal arrangement. We have observed this hyphal arrangement in *Leptogium azureum* (Fig. 6C) and *L. denticulatum* too, but it is apparently not present in *Rostania*. The second species present in Palice 2273 and Palice 2274, apparently confused Jørgensen and Palice (2015) as their observation of oblong spores (Fig. 5D, E) refer to this species, which has a shiny brown thallus (Fig. 4C) and not a matt dark olive thallus as in “*Rostania* paramense” (Fig. 4B). The second species differs from *Rostania* by having a proper eucortex (Fig. 6D), and by producing isidia along the apothecium margin (Fig. 4C). The thallus is paraplectenchymateous throughout (Fig. 6D). This hyphal arrangement is present in several groups in Collemataceae, including *Rostania occultata* s. lat. (Fig. 6E). Already Degelius (1954) noted this hyphal arrangement in his *Occultatum*-group and Otálora et al. (2013b) observed the same in *Blennothallia, Pseudoleptogium* and in *Scytinium*. We sequenced also this species and we can confirm that both samples belong in *Scytinium*, but the species remains to be identified.
Conclusions

Here we have tested the current generic concept of *Rostania* and conclude that at least three of the species should be excluded and that the position of *R. callibotrys* and *R. laevispora* in *Rostania* is uncertain. *Rostania* is characterized by crustose to subfoliose thallus with initially immersed apothecia (Fig. 2D, E), which only later become sessile. The disc is concave when young and plane when older, but never convex. The spores are muri-

Figure 6. Thalli, transversal cross-sections: A Thallus with pseudocortex and densely interwoven hyphae (*Rostania quadrifida*, McCune 2744, UPS) B Thallus with pseudocortex and straight and unbranched hyphae which are perpendicular to the surface (*Rostania paramensis*, Palice 2796, holotype of *Collema paramense*) C Thallus with eucortex and straight and unbranched hyphae which are perpendicular to the surface (*Leptogium azureum*, Tehler 3140, S) D Thallus with eucortex and paraplectenchymateous throughout (*Scytinium* sp. Palice 2273) E Thallus paraplectenchymateous throughout (*Rostania occultata* var. *populina*, Llop 56060303, S) A–E in lactic blue C in water. euC = eucortex, PsC = pseudocortex, Hp = hyphae, pPlect = paraplectenchyma. Scale bar = 10 µm
form with at least 5 cells, cuboid to oblong, but never fusiform to ellipsoid (Fig. 3A–C). Most species are comparatively small, and all lack cortex, rhizines and isidia.

Rostania includes six taxa: *R. callibotrys*, *R. ceranisca*, *R. laevispora*, *R. multipunctata*, *R. occultata* var. *occultata*, and *R. occultata* var. *populina*. *Rostania occultata* s. lat. is non-monophyletic and this species complex will be investigated in the near future.

New combinations

Leptogium paramense (P.M. Jørg. & Palice) A. Košuth. & Wedin, comb. nov. MB829590

Basionym. *Collema paramense* P.M. Jørg. & Palice, Biblioth. Lichenol. 108: 136 (2012)

Type. ECUADOR. Carchi: volcan Chiles, wet paramo, Palice 2796 (PRA-00013999!–holotype, BG, QCA–isotypes).

Scytinium quadrifidum (D.F. Stone & McCune) A. Košuth. & Wedin, comb. nov. MB829591

Basionym. *Collema quadrifidum* D.F. Stone & McCune, N. Amer. Fung. 5(2): 2 (2010)

Type. U. S. A. OREGON, Douglas County: Bushnell-Irwin Rocks ACEC, McCune 28536 (OSC–holotype, US, UPS–L513222!–isotypes).

Acknowledgements

This project was funded by the Swedish Taxonomy Initiative (Svenska artprojektet) administered by the Swedish Species Information center (ArtDatabanken), grant 2016-207 4.3. We would like to thank Ulrika Nordin and Fredrik Jonsson for their kind help during the fieldwork. We are grateful to the staff of the herbaria H, O, PRA and UPS for loans and the staff at S for administering our loans. Finally, we thank the staff at the Department of Bioinformatics and Genetics at the Swedish Museum of Natural History, in particular Bodil Cronholm and Wendy Solis for their skilful lab assistance; and Johan Nylander for his helpful discussions regarding selection of best-fit partitioning schemes for analyses.

References

Buschbom J, Mueller G (2004) Resolving evolutionary relationships in the lichen-forming genus *Porpidia* and related allies (Porpidiaceae, Ascomycota). Molecular Phylogenetic and Evolution 32: 66–82. https://doi.org/10.1016/j.ympev.2003.11.012
Degelius G (1954) The lichen genus *Collema* in Europe. *Symbolae Botanicae Upsalienses* 13: 1–499.

Degelius G (1974) The lichen genus *Collema* with special reference to the extra-European species. *Symbolae Botanicae Upsalienses* 20: 1–215.

Ekman S, Wedin M, Lindblom L, Jørgensen PM (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). *Lichenologist* 46: 627–656. https://doi.org/10.1017/S002428291400019X

Guindon S, Franc J, Dufayard O, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Systematic Biology* 59: 307–321. https://doi.org/10.1093/sysbio/syq010

Huelsenbeck JP, Ronquist F (2001) MRBAYES Bayesian inference of phylogenetic trees. *Bioinformatics* Applications Note 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Jørgensen PM (1994) Further notes on European taxa of the lichen genus *Leptogium*, with emphasis on the small species. *Lichenologist* 26: 1–29. https://doi.org/10.1006/lich.1994.1001

Jørgensen PM (2007) *Collemataceae*. *Nordic Lichen Flora* 3: 14–45.

Jørgensen PM, Palice Z (2012) *Collema paramense*, sp. nova, with notes on *Collema* in the High Andes. *Bibliotheca Lichenologica* 108: 135–140.

Jørgensen PM, Palice Z (2015) Additions to the cyanolichens of the Andes. *Herzogia* 28: 285–287. https://doi.org/10.13158/heia.28.1.2015.285

Jørgensen PM, Otáñora MAG, Wedin M (2013) Proposal to conserve the name *Leptogium* (lichenized Ascomycota) with a conserved type. *Taxon* 62: 1333–1334. https://doi.org/10.12705/626.23

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thirier T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Kitaura MJ, Scur MC, Spielmann AA, Lorenz-Lemke AP (2018) A revision of *Leptogium* (Collemataceae, lichenized Ascomycota) from Antarctica with a key to species. *Lichenologist* 50: 467–485. https://doi.org/10.1017/S0024282918000269

Košuthová A, Fernández-Brime S, Westberg M, Wedin M (2016) *Collolechia* revisited, and a reassessment of ascus characteristics in Placynthiaceae (Peltigerales, Ascomycota). *Lichenologist* 48: 5–12. https://doi.org/10.1017/S0024282915000432

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution* 29: 1695–1701. https://doi.org/10.1093/molbev/mss020

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Molecular Biology and Evolution* 34: 772–773. https://doi.org/10.1093/molbev/msw260
Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628–651. https://doi.org/10.1080/106351500750049743
McCune B, Rosent reter R, Stribille T, Breuss O, Wheeler T (2014) Montana Lichens: An Annotated List. Monographs in North American Lichenology 2. Northwest Lichenologists, Corvallis, Oregon, 183 pp.
Miadlikowska J, Lutzoni F (2004) Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. American Journal of Botany 91: 449–464. https://doi.org/10.3732/ajb.91.3.449
Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MAG, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, mGeirHestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold E, Lutzonia, F, Stenroos S (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132–168. https://doi.org/10.1016/j.ympev.2014.04.003
Miller MA, Pfieffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, 1–8. https://doi.org/10.1109/GCE.2010.5676129
Nixon KC (1999–2002) WinClada ver. 1.0000 Published by the author, Ithaca, NY, USA.
Otálora MAG, Aragón G, Molina MC, Martínez I, Lutzoni F (2010) Disentangling the Collema-Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota). Mycologia, 102: 279–290. https://doi.org/10.3852/09-114
Otálora MAG, Aragón G, Martínez I, Wedin M (2013a) Cardinal characters on a slippery slope—a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str.). Molecular Phylogenetics and Evolution 68: 185–198. https://doi.org/10.1016/j.ympev.2013.04.004
Otálora MAG, Jørgensen PM, Wedin M (2013b) A revised classification of the jelly lichens, Collemataceae. Fungal Diversity 64[2014]: 275–293. https://doi.org/10.1007/s13225-013-0266-1
Otálora MAG, Wedin M (2013) Collema fasciculare belongs in Arctomiaceae. The Lichenologist 45: 295–304. https://doi.org/10.1017/S0024282912000849
Perlmutter GP, Rivas Plata E (2018) New combinations and notes on Buellia and Rostania. Opuscula Philolichenum 17: 319–321.
Prieto M, Baloch E, Tehler A, Wedin M (2012) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29: 296–308. https://doi.org/10.1111/j.1096-0031.2012.00429.x
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
Ronquist F, Huelsenbeck J, Teslenko M (2011) Draft MrBayes version 3.2 Manual: Tutorials and Model Summaries. http://mrbayes.sourceforge.net/mb3.2_manual.pdf

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–3. https://doi.org/10.1093/bioinformatics/btu033

Stone D, McCune B (2010) Collema quadrifidum, a new epiphytic lichen species from the Pacific Northwest of the United States. North American Fungi 5: 1–6. https://doi.org/10.2509/naf2010.005.002

Thiers B (2018) [Continuously updated] Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/ [Accessed on: 2018–10–27]

Wedin M, Wiklund E, Jørgensen PM, Ekman S (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53: 862–871. https://doi.org/10.1016/j.ympev.2009.08.013

Weerakoon G, Aptroot A, Wedin M, Ekman E (2018) Leightoniella zeylanensis belongs to the Pannariaceae. Nordic Journal of Botany: 1–6. https://doi.org/10.1111/njb.01880

Wiklund E, Wedin M (2003) The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales subborder Peltigerineae. Cladistics 19: 419–431. https://doi.org/10.1111/j.1096-0031.2003.tb00312.x