A Theory of Matrices of Complex Elements

Wenpai Chang
Shinshu University
Nagano

Hiroshi Yamazaki
Shinshu University
Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Summary. A concept of “Matrix of Complex” is defined here. Addition, subtraction, scalar multiplication and product are introduced using correspondent definitions of “Matrix of Field”. Many equations for such operations consist of a case of “Matrix of Field”. A calculation method of product of matrices is shown using a finite sequence of Complex in the last theorem.

MML Identifier: MATRIX_5.

The articles [11], [14], [1], [4], [2], [15], [6], [10], [9], [3], [8], [7], [13], [12], and [5] provide the terminology and notation for this paper.

The following two propositions are true:
(1) \(1 = 1_{\mathbb{C}_F} \).
(2) \(0_{\mathbb{C}_F} = 0 \).

Let \(A \) be a matrix over \(\mathbb{C} \). The functor \(A_{\mathbb{C}_F} \) yields a matrix over \(\mathbb{C}_F \) and is defined by:
(Def. 1) \(A_{\mathbb{C}_F} = A \).

Let \(A \) be a matrix over \(\mathbb{C}_F \). The functor \(A_{\mathbb{C}_F} \) yielding a matrix over \(\mathbb{C} \) is defined by:
(Def. 2) \(A_{\mathbb{C}_F} = A \).

We now state four propositions:
(3) For all matrices \(A, B \) over \(\mathbb{C} \) such that \(A_{\mathbb{C}_F} = B_{\mathbb{C}_F} \) holds \(A = B \).
(4) For all matrices \(A, B \) over \(\mathbb{C}_F \) such that \(A_{\mathbb{C}_F} = B_{\mathbb{C}_F} \) holds \(A = B \).
(5) For every matrix \(A \) over \(\mathbb{C} \) holds \(A = (A_{\mathbb{C}_F})_{\mathbb{C}_F} \).
(6) For every matrix \(A \) over \(\mathbb{C}_F \) holds \(A = (A_{\mathbb{C}_F})_{\mathbb{C}_F} \).

Let \(A, B \) be matrices over \(\mathbb{C} \). The functor \(A + B \) yielding a matrix over \(\mathbb{C} \) is defined as follows:
Let A be a matrix over \mathbb{C}. The functor $-A$ yielding a matrix over \mathbb{C} is defined as follows:

(Def. 4) $-A = (-A)\cdot C$.

Let A, B be matrices over \mathbb{C}. The functor $A - B$ yields a matrix over \mathbb{C} and is defined as follows:

(Def. 5) $A - B = (A - B)\cdot C$.

Let A, B be matrices over \mathbb{C}. The functor $A \cdot B$ yielding a matrix over \mathbb{C} is defined as follows:

(Def. 6) $A \cdot B = (A \cdot B)\cdot C$.

Let x be a complex number and let A be a matrix over \mathbb{C}. The functor $x \cdot A$ yielding a matrix over \mathbb{C} is defined as follows:

(Def. 7) For every element e_1 of \mathbb{C}_F such that $e_1 = x$ holds $x \cdot A = (e_1 \cdot A)\cdot C$.

One can prove the following propositions:

(7) For every matrix A over \mathbb{C} holds $\text{len}(A) = \text{len}(A\cdot C)$ and $\text{width}(A) = \text{width}(A\cdot C)$.

(8) For every matrix A over \mathbb{C}_F holds $\text{len}(A) = \text{len}(A\cdot C)$ and $\text{width}(A) = \text{width}(A\cdot C)$.

(9) For every matrix M over \mathbb{C} such that $\text{len}(M) > 0$ holds $-\cdot M = M$.

(10) For every field K and for every matrix M over K holds $1_K \cdot M = M$.

(11) For every matrix M over \mathbb{C} holds $1 \cdot M = M$.

(12) For every field K and for all elements a, b of K and for every matrix M over K holds $a \cdot (b \cdot M) = (a \cdot b) \cdot M$.

(13) For every field K and for all elements a, b of K and for every matrix M over K holds $(a + b) \cdot M = a \cdot M + b \cdot M$.

(14) For every matrix M over \mathbb{C} holds $M + M = 2 \cdot M$.

(15) For every matrix M over \mathbb{C} holds $M + M + M = 3 \cdot M$.

Let n, m be natural numbers. The functor \[
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}_{n \times m}
\] yields a matrix over \mathbb{C} and is defined by:

(Def. 8) \[
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}_{n \times m} = \left(\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}_{n \times m} \cdot C \right)_{C_F}.
\]

One can prove the following propositions:
(16) For all natural numbers n, m holds
\[
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}
\in \mathbb{C}_{\mathbb{F}}^{n \times m} =
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}
\in \mathbb{C}_{\mathbb{F}}^{n \times m},
\]

(17) For every matrix M over \mathbb{C} such that $\text{len } M > 0$ holds $M + -M =
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}
\in \mathbb{C}^{(\text{len } M) \times (\text{width } M)}.
\]

(18) For every matrix M over \mathbb{C} such that $\text{len } M > 0$ holds $M - M =
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}
\in \mathbb{C}^{(\text{len } M) \times (\text{width } M)}.
\]

(19) For all matrices M_1, M_2, M_3 over \mathbb{C} such that $\text{len } M_1 = \text{len } M_2$ and $\text{len } M_2 = \text{len } M_3$ and $\text{width } M_1 = \text{width } M_2$ and $\text{width } M_2 = \text{width } M_3$ and $\text{len } M_1 > 0$ and $M_1 + M_3 = M_2 + M_3$ holds $M_1 = M_2$.

(20) For all matrices M_1, M_2 over \mathbb{C} such that $\text{len } M_2 > 0$ holds $M_1 - (-M_2 = M_1 + M_2$.

(21) For all matrices M_1, M_2 over \mathbb{C} such that $\text{len } M_1 = \text{len } M_2$ and $\text{width } M_1 = \text{width } M_2$ and $\text{len } M_1 > 0$ and $M_1 = M_1 + M_2$ holds
\[
M_2 = \begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}
\in \mathbb{C}^{(\text{len } M_1) \times (\text{width } M_1)}.
\]

(22) For all matrices M_1, M_2 over \mathbb{C} such that $\text{len } M_1 = \text{len } M_2$ and $\text{width } M_1 = \text{width } M_2$ and $\text{len } M_1 > 0$ and $M_1 - M_2 =
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}
\in \mathbb{C}^{(\text{len } M_1) \times (\text{width } M_1)}
\]
holds $M_1 = M_2$.

(23) For all matrices M_1, M_2 over \mathbb{C} such that $\text{len } M_1 = \text{len } M_2$ and $\text{width } M_1 = \text{width } M_2$ and $\text{len } M_1 > 0$ and $M_1 + M_2 =
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}
\in \mathbb{C}^{(\text{len } M_1) \times (\text{width } M_1)}
\]
holds $M_2 = -M_1$.

(24) For all natural numbers n, m such that $n > 0$ holds
\[
-\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}^{n \times m}_{\mathbb{C}} = \begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}^{n \times m}_{\mathbb{C}}.
\]

(25) For all matrices \(M_1, M_2 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and width \(M_1 = \text{width} M_2 \) and \(\text{len} M_1 > 0 \) and \(M_2 - M_1 = M_2 \) holds

\[
M_1 = \begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}^{(\text{len} M_1) \times (\text{width} M_1)}_{\mathbb{C}}.
\]

(26) For all matrices \(M_1, M_2 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and width \(M_1 = \text{width} M_2 \) and \(\text{len} M_1 > 0 \) holds \(M_1 = M_1 - (M_2 - M_2) \).

(27) For all matrices \(M_1, M_2 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and width \(M_1 = \text{width} M_2 \) and \(\text{len} M_1 > 0 \) holds \(- (M_1 + M_2) = -M_1 + -M_2\).

(28) For all matrices \(M_1, M_2 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and width \(M_1 = \text{width} M_2 \) and \(\text{len} M_1 > 0 \) holds \(M_1 - (M_1 - M_2) = M_2 \).

(29) For all matrices \(M_1, M_2, M_3 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and \(\text{len} M_2 = \text{len} M_3 \) and width \(M_1 = \text{width} M_2 \) and width \(M_2 = \text{width} M_3 \) and \(\text{len} M_1 > 0 \) and \(M_1 - M_3 = M_2 - M_2 \) holds \(M_1 = M_2 \).

(30) For all matrices \(M_1, M_2, M_3 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and \(\text{len} M_2 = \text{len} M_3 \) and width \(M_1 = \text{width} M_2 \) and width \(M_2 = \text{width} M_3 \) and \(\text{len} M_1 > 0 \) and \(M_3 - M_1 = M_3 - M_2 \) holds \(M_1 = M_2 \).

(31) For all matrices \(M_1, M_2, M_3 \) over \(\mathbb{C} \) such that \(\text{len} M_2 = \text{len} M_3 \) and width \(M_2 = \text{width} M_3 \) and \(\text{len} M_1 = \text{len} M_2 \) and \(\text{len} M_1 > 0 \) and \(\text{len} M_2 > 0 \) holds \(M_1 \cdot (M_2 + M_3) = M_1 \cdot M_2 + M_1 \cdot M_3 \).

(32) For all matrices \(M_1, M_2, M_3 \) over \(\mathbb{C} \) such that \(\text{len} M_2 = \text{len} M_3 \) and width \(M_2 = \text{width} M_3 \) and \(\text{len} M_1 = \text{width} M_2 \) and \(\text{len} M_2 > 0 \) and \(\text{len} M_1 > 0 \) holds \((M_2 + M_3) \cdot M_1 = M_2 \cdot M_1 + M_3 \cdot M_1 \).

(33) For all matrices \(M_1, M_2 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and width \(M_1 = \text{width} M_2 \) holds \(M_1 + M_2 = M_2 + M_1 \).

(34) For all matrices \(M_1, M_2, M_3 \) over \(\mathbb{C} \) such that \(\text{len} M_1 = \text{len} M_2 \) and \(\text{len} M_1 = \text{len} M_3 \) and width \(M_1 = \text{width} M_2 \) and width \(M_1 = \text{width} M_3 \) holds \((M_1 + M_2) + M_3 = M_1 + (M_2 + M_3) \).

(35) For every matrix \(M \) over \(\mathbb{C} \) such that \(\text{len} M > 0 \) holds

\[
\begin{pmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{pmatrix}^{(\text{len} M) \times (\text{width} M)}_{\mathbb{C}} = M.
\]

(36) Let \(K \) be a field, \(b \) be an element of \(K \), and \(M_1, M_2 \) be matrices over \(K \). If \(\text{len} M_1 = \text{len} M_2 \) and width \(M_1 = \text{width} M_2 \) and \(\text{len} M_1 > 0 \), then \(b \cdot (M_1 + M_2) = b \cdot M_1 + b \cdot M_2 \).
(37) Let M_1, M_2 be matrices over \mathbb{C} and a be a complex number. If $\text{len} M_1 = \text{len} M_2$ and $\text{width} M_1 = \text{width} M_2$ and $\text{len} M_1 > 0$, then $a \cdot (M_1 + M_2) = a \cdot M_1 + a \cdot M_2$.

(38) For every field K and for all matrices M_1, M_2 over K such that $\text{width} M_1 = \text{len} M_2$ and $\text{len} M_1 > 0$ and $\text{len} M_2 > 0$ holds

\[
\begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix}_K \cdot M_2 = \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix}_K.
\]

(39) For all matrices M_1, M_2 over \mathbb{C} such that $\text{width} M_1 = \text{len} M_2$ and $\text{len} M_1 > 0$ and $\text{len} M_2 > 0$ holds

\[
\begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix}_\mathbb{C} \cdot M_2 = \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix}_\mathbb{C}.
\]

(40) For every field K and for every matrix M_1 over K such that $\text{len} M_1 > 0$ holds $0_K \cdot M_1 = \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix}_K$.

(41) For every matrix M_1 over \mathbb{C} such that $\text{len} M_1 > 0$ holds $0 \cdot M_1 = \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix}_\mathbb{C}$.

Let s be a finite sequence of elements of \mathbb{C} and let k be a natural number. Then $s(k)$ is an element of \mathbb{C}.

We now state the proposition

(42) Let i, j be natural numbers and M_1, M_2 be matrices over \mathbb{C}. Suppose $\text{len} M_1 > 0$ and $\text{len} M_2 > 0$ and $\text{width} M_1 = \text{len} M_2$ and $1 \leq i$ and $i \leq \text{len} M_1$ and $1 \leq j$ and $j \leq \text{width} M_2$. Then there exists a finite sequence s of elements of \mathbb{C} such that $\text{len} s = \text{len} M_2$ and $s(1) = (M_1 \circ (i, 1)) \cdot (M_2 \circ (1, j))$ and for every natural number k such that $1 \leq k$ and $k < \text{len} M_2$ holds $s(k+1) = s(k) + (M_1 \circ (i, k+1)) \cdot (M_2 \circ (k+1, j))$.

References

[1] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91–96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
[3] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(3):507–513, 1990.
[4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
[5] Library Committee. Binary operations on numbers. *To appear in Formalized Mathematics*.
[6] Katarzyna Jankowska. Matrices. Abelian group of matrices. *Formalized Mathematics*, 2(4):475–480, 1991.
[7] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
[8] Anna Justyna Milewska. The field of complex numbers. *Formalized Mathematics*, 9(2):265–269, 2001.
[9] Yatsuka Nakamura and Hiroshi Yamazaki. Calculation of matrices of field elements. Part I. *Formalized Mathematics*, 11(4):385–391, 2003.
[10] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics*.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
[12] Wojciech A. Trybulec. Groups. *Formalized Mathematics*, 1(5):821–827, 1990.
[13] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
[14] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67–71, 1990.
[15] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. *Formalized Mathematics*, 4(1):1–8, 1993.

Received December 10, 2004