Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region

Muzaffar A. Kichloo 1, Asha Sohil 2 & Neeraj Sharma 3

1 Department of Environmental Sciences, Govt. Degree College, Banihal, Union Territory of Jammu & Kashmir 182146, India.
2 P.G. Department of Environmental Sciences, University of Jammu, Union Territory of Jammu & Kashmir 180006, India.
3 Institute of Mountain Environment, Bhaderwah Campus University of Jammu, Union Territory of Jammu & Kashmir 182222, India.

omar.mzfr@gmail.com (corresponding author), ashasohil04@gmail.com, nirazsharma@gmail.com

Abstract: Wildlife mortality due to vehicular collision is well known across the world and the number of such incidences is steadily rising in Himalaya as well. To assess the quantum of wildlife road kills, we conducted an intensive survey spanning 33 months along a mountainous National Highway 244 in the Union Territory of Jammu & Kashmir. Forty-nine wild animal carcasses of 13 species of higher vertebrates were observed lying on the road, shoulders, edges, and valley slopes. These included seven mammals, four birds, and two reptiles. This survey, first of its kind in this part of the Himalaya would be helpful in understanding the underlying reasons of the rising wildlife fatalities on the hill roads, identifying susceptible hotspots, and developing measures to address this new threat to Himalayan wildlife. We recommend creating wildlife passages, raising speed halters, and placing warning signages in vulnerable sections to reduce the road-related wildlife mortality in such mountainous highways.

Keywords: Carcasses, dumping sites, mammals, mortality, National Highway, non-protected areas, road kills, speed halters, wildlife fatalities, wildlife passages.

Roads are the leading cause of anthropogenic mortality after legal harvesting for many vertebrates world over (Hill et al. 2019). The effect of roads on wildlife is multidimensional, from habitat loss and fragmentation (Burnett 1992; Richardson et al. 1997; Carr & Fahring 2001), altering movement and distribution patterns (Newmark et al. 1996; Desai & Baskaran 1998), affecting breeding (Reijnen et al. 1995), and causing injury and mortality by vehicular collisions (Das et al. 2007; Seshadri et al. 2009; Baskaran & Boominathan 2010; Hill et al. 2019; Schwartz et al. 2020). This barrier effect and wildlife-vehicular collisions are predicted to worsen as road network and traffic intensity rise internationally. The incidents of mammal-vehicle collisions have increased dramatically since the early 1970s (Hill et al. 2019).

India has the world’s second largest road network, with a total road length of 6.2 million km (Ministry of Road Transport and Highways 2021). A country with such a massive road system puts animals that scurry or move across the highways in grave danger. The Union Territory (UT) of Jammu & Kashmir has seen a massive rise in national highway expansion, up about 194 percent from 823 km in 2003, to 2,433 km now, accounting for 1.8 percent of India’s entire national highway network (Ministry of Road Transport and Highways 2021).

Indian Himalayan region with a wide range of habitats support unique arrays of biodiversity and ecosystem services both within and outside of the protected areas. The non-protected areas (Non-PAs) in the Indian Himalaya house a good number of wildlife species (Thapa et al. 2021) which are ecological generalists and
possess good amount of behavioural plasticity (Buchi & Vuilleumier 2014; Gaynor et al. 2018). These non-PAs lack scientific monitoring and management strategies to conserve wildlife species which increases the risk of them coming in close proximity to human-dominated areas and thus becoming vulnerable to several fatalities including vehicular collisions. Apart from a few short-term studies on wildlife road kills (Gokula 1997; Snder 2004; Das et al. 2007; Seshadri et al. 2009; Baskaran & Boominathan 2010; Bapeshthy et al. 2011; Kumar & Srinivasulu 2015; Samson et al. 2016; Santhoshkumar et al. 2017; Hatti & Mubeen 2019), no major study has been conducted in India or in the western Himalaya, emphasizing the fact that very little attention is being paid to the impacts of roads and highways on wildlife. In order to assess the quantum of road kills in the region, we monitored wildlife road kills on National Highway 244 (NH-244), which connects Batote (Jammu) to Kashmir Valley. The highway, which is built into the mountainside, criss-crosses multiple perennial streams and runs the substantial length of the Chenab gorge. Located between 823 and 1,638 m, the corridor is characterized with a broad range of habitats, including sub-temperate broad-leaved mixed forests interspersed with pure conifer patches, dry open scrub, rocky slopes, villages and urban areas, supporting a rich biodiversity. Our study was limited to 120 km stretch on NH-244, from Batote, a sub-urban township to Kishtwar town (Figure 1). The highway was surveyed by car twice a month for a period of two years and nine months, from January 2018 to December 2019 and from December 2020 to August 2021. No surveys could be conducted during 2020 due to COVID-19 restrictions. The road kills sighted during the whole effort were identified up to the

Material and Methods

To understand the frequency of road kills, their likely causes and the wild animal species exposed to the accidents, we carried out surveys on NH-244, connecting Batote (Jammu) to Kashmir Valley. Upgraded to a national highway in 2016, the road is currently undergoing upgrades, including widening of the lanes and construction of extensive tunnels. The highway, which is built into the mountainside, criss-crosses multiple perennial streams and runs the substantial length of the Chenab gorge. Located between 823 and 1,638 m, the corridor is characterized with a broad range of habitats, including sub-temperate broad-leaved mixed forests interspersed with pure conifer patches, dry open scrub, rocky slopes, villages and urban areas, supporting a rich biodiversity. Our study was limited to 120 km stretch on NH-244, from Batote, a sub-urban township to Kishtwar town (Figure 1). The highway was surveyed by car twice a month for a period of two years and nine months, from January 2018 to December 2019 and from December 2020 to August 2021. No surveys could be conducted during 2020 due to COVID-19 restrictions. The road kills sighted during the whole effort were identified up to the

![Figure 1. Location of NH-244 in the UT of Jammu & Kashmir, India.](image-url)
Results and Discussion

During the surveys, we recorded 49 road kills involving 13 species of higher vertebrates (Table 1; Image 1a-g), including seven species of mammals, four species of birds, and two species of reptiles. Golden Jackal *Canis aureus*, Rhesus Macaque *Macaca mulatta*, and Red Fox *Vulpes vulpes* suffered the most fatalities among the mammals (Table 1). Two carcasses each of globally threatened Common Leopard *Panthera pardus* and Himalayan Vulture *Gyps himalayensis* were also observed during the surveys. The data analysis revealed an encounter rate of 0.40 road kills/km and most of the road kill aggregations were found near Batote, a vital junction intersecting the Jammu-Srinagar National Highway (NH-44). The location of carcasses found during the surveys is shown in Figure 2.

The animal carcasses so observed indicated that these species were struck or overrun by speeding vehicles especially during night as most of victims were nocturnal. During the night, animals can be seen roaming around the marketplaces and rubbish dumps in search of food. Predators also make their way down the mountainside in search of water and food sources. As a result, these animals are subjected to rash and reckless driving and end up in road mishaps. Our study found that mammals are affected more than other taxa, mostly including nocturnal animals. In many instances, the authors observed that species like Red Fox and Golden Jackal get traumatized in front of the high beam lights of vehicles and get transfixed on the road and ultimately fall victim to speeding vehicles. Another vulnerable group is the scavengers that are drawn to the roadside dead animal carcasses and eventually get killed. Although the numbers of these taxa seem to be very small, such loss is insufferable considering their slow life histories and low population densities (Baskaran & Boominathan 2010). The secondary information obtained as a result of casual conversation with regularly plying drivers substantiates an increase in wild animal sightings, notably vultures,
The wildlife in the Himalaya is subjected to many threats including the one under discussion that needs to be seriously addressed and appropriately dealt with. Assessment of wildlife vehicular mortality is important to understand road impacts, effects on local population of wildlife, to decipher the accident-prone hotspots, and identify the factors underlying the animal road fatalities (Das, et al. 2007). Our survey may not have reported all the road kills as many of the carcasses remain hidden beneath structures or foliage, or are removed by other motorists, authorities, or scavenger animals before being discovered (Baskaran, et al. 2007). The study revealed a major road kill cluster near Batote township, which may be because of the presence of open waste dumping site located by the side of the road as well as a water channel fulfilling feeding and water demands of wild animals. Given the current grim situation and foreseeing the highway expansion that would exacerbate already existing threats, necessitates call for scientifically-based mitigation measures. These include construction of wildlife passages at vulnerable sections especially the below-road crossing structures like culverts for larger species and drainage pipes for small size species (Chen et al. 2021), maintaining a wide field of view for drivers and wildlife, widening shoulders to facilitate wait and go calls, planting caution boards and laying speed breakers near water bodies and dumping sites, sensitizing the drivers and organising citizens to build a reliable dataset for better analysis.

REFERENCES

Baskaran, N. & D. Boominathan (2010). Road kills of animals by highway traffic in the tropical forest of Mudumalai Tiger Reserve, southern India. *Journal of Threatened Taxa* 2(3): 753–759. https://doi.org/10.11609/JoTT.o2101.753-9

Bhupathy, S., G. Srivinas, N. Sathish, T. Karthik & A. Madhivanan (2011). Herpetofaunal mortality due to vehicular traffic in the Western Ghats, India: a case study. *Herpetotropics* 5: 119–126.

Buchi, L. & S. Vuilleumier (2014). Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. *American Naturalist* 183: 612–624. https://doi.org/10.1086/675756

Burnett, S. (1992). Effects of a rainforest road on movements of small mammals: mechanisms and implications. *Wildlife Research* 19: 95–104. https://doi.org/10.1071/WR9920095

Carr, L.W. & L. Fahrig (2001). Impact of road traffic on two amphibian species of differing vagility. *Conservation Biology* 15: 1071–1078. https://doi.org/10.1046/j.1523-1739.2001.0150040107.x

Carvalho, F. & A. Mira (2010). Comparing annual vertebrate road kills over two time periods, 9 years apart: a case study in Mediterranean farmland. *European Journal of Wildlife Research* 57: 157–174. https://doi.org/10.1007/s10344-010-0410-0

Chen, H.-L., E.E. Posthumus & J.L. Koprowski (2021). Potential of small culverts as wildlife passages on forest roads. *Sustainability* 13: 7224. https://doi.org/10.3390/su13137224

Coulson, G. (1982). Road kills of macropods on a section of highway in central Victoria. *Australian Wildlife Research* 9: 21–26. https://doi.org/10.1071/WR98920021

Das, A., M.F. Ahmed, B.P. Lahkar & P. Sharma (2007). A preliminary report of reptilian mortality on road due to vehicular movements near Kaziranga National Park, Assam, India. *Zoos' Print Journal* 22(7): 2742–2744. https://doi.org/10.11609/JoTT.ZPJ.1541.2742-4

Table 1. Road kills recorded on NH-244 during the sampling period.

Species	Common name	IUCN status	Number	Habitat type	Altitude (in m)
Mammals					
1. Panthera pardus	Common Leopard	VU	2	PF, BD	1000–1415
2. Vulpes vulpes	Red Fox	LC	3	PF, BD, OS	1224–1580
3. Canis aureus	Golden Jackal	LC	12	PF, BD, DS, UR	990–1332
4. Paguma larvata	Himalayan Palm Civet	LC	2	PF, BD	890–940
5. Viverricula indica	Small Indian Civet	LC	2	OF, UR	934–1244
6. Macaca mulatta	Rhesus Macaque	LC	7	PF, BD, OS, UR	910–1310
7. Eoglaucomys fimbriatus	Kashmir Flying Squirrel	LC	2	PF	1100–1246
Birds					
8. Gyps himalayensis	Himalayan Vulture	NT	2	PF	1250
9. Milvus migrans	Black Kite	LC	3	OS, UR	1140–1402
10. Pycnonotus cafer	Red-vented Bulbul	LC	2	OS	1016–1456
11. Acredotheres tristis	Common Myna	LC	3	OS, UR	944–1113
Reptiles					
12. Snake sp.	-	-	2	UR	943–1105
13. Calotes sp.	-	-	7	OS, UR	946–1510

VU—Vulnerable | NT—Near Threatened | LC—Least Concern | PF—Pine forests | OS—Open Scrub | BD—Broadleaved mixed | UR—Urban areas.
Desai, A.A. & N. Baskaran (1998). Ecology of Malabar Giant Squirrel (Ratufa indica) in Mudumalai Wildlife Sanctuary, South India. Technical Report Bombay Natural History Society, Bombay.

Dickerson, I.M. (1939). The problem of wildlife destruction by automobile traffic. *Journal of Wildlife Management* 3: 104–116. https://doi.org/10.2307/3796352

Gaynor, K.M., C.E. Hojnowski, N.H. Carter & J.S. Brashares (2018). The influence of human disturbance on wildlife nocturnality. *Science* 360: 1232–1235. https://doi.org/10.1126/science.aar7121

Gokula, V. (1997). Impact of vehicular traffic on snakes in Mudumalai Wildlife Sanctuary. *Cobra* 27: 26

Sunder, K.S.G. (2004). Mortality of herpetofauna, birds and mammals due to vehicular traffic in Etawah district, Uttar Pradesh. India. *Journal of the Bombay Natural History Society* 103(3): 392–398.

Hatti, S.S. & H. Mubeen (2019). Roadkill of animals on the road passing from Kalaburagi to Chincholi, Karnataka, India. *Journal of Threatened Taxa* 11(7): 13868–13874. https://doi.org/10.11609/jott.4292.11.7.13868-13874

Hill, J.E., T.L. DeVault & J.L. Belant (2019). Cause-specific mortality of the world's terrestrial vertebrates. *Global Ecology and Biogeography* 28: 680–689. https://doi.org/10.1111/geb.12881

Kumar, G.C. & C. Srinivasulu (2015). Impact of vehicular traffic on Kashmir Rock Agama Laudakia tuberculata (Gary, 1827) near Kalatop-Khajjar Wildlife Sanctuary, Chamba, Himachal Pradesh, India. *Reptile Rap* 17: 44–47.

Ministry of Road Transport & Highways (2021). [accessed on 07-11-2021](https://morth.nic.in/)

Newmark, W.D., J.I. Boshe, H.I. Sariko & G.K. Makumbule (1996). Effects of highway on large mammals in Mikumi National Park, Tanzania. *African Journal of Ecology* 34: 15–31. https://doi.org/10.1111/j.1365-2028.1996.tb00590.x

Reijnen, R., R. Poppen, C.T. Braak & J. Thissen (1995). The effects of car traffic on breeding bird populations in woodland III: Reduction of density in relation to the proximity of main roads. *Journal of Applied Ecology* 32: 187–202. https://doi.org/10.2307/2404428

Richardson, J.H., R.F. Shore, J.R. Treweek & S.B.C. Larkin (1997). Are
Road kills on mountainous highway in Himalaya

Kichloo et al.

20522

J TT

major roads a barrier to small mammals? Journal of Zoology 243: 840–846. https://doi.org/10.1111/j.1469-7998.1997.tb01982.x

Samson, A., B. Ramakrishnan, A. Veeramani, P. Santhoshkumar, S. Karthick, G. Sivasubramanian, M. Ilakkia, A. Chitheena, J.L. Princy & P. Ravi (2016). Effect of vehicular traffic on wild animals in Sigur Plateau, Tamil Nadu, India. Journal of Threatened Taxa 8(9): 9182–9189. https://doi.org/10.11609/jott.3962.8.9.9182-9189

Santhoshkumar, S., P. Kannan, A. Veeramani, A. Samson, S. Karthick & J. Leonaprincy (2017). A preliminary report on the impact of road kills on the herpetofauna species in Nilgiris, Tamil Nadu, India. Journal of Threatened Taxa 9(3): 10004–10010. http://doi.org/10.11609/jott.3001.9.3.10004-10010

Schwartz, A.L.W., F.M. Shilling & S.E. Perkins (2020). The value of monitoring wildlife roadkill. European Journal of Wildlife Research 66: 18. https://doi.org/10.1007/s10344-019-1357-4

Seshadri, K.S., A. Yadav & K.V. Gururaja (2009). Road kills of amphibians in different land use areas from Sharavathi river basin, central Western Ghats, India. Journal of Threatened Taxa 1(11): 549–552. https://doi.org/10.11609/jott.2148.549-552

Taylor, B.D. & R.L. Goldingay (2003). Cutting the carnage: wildlife usage of road culverts in north-eastern New South Wales. Wildlife Research 30: 529–537. https://doi.org/10.1071/WR01062

Taylor, B.D. & R.L. Goldingay (2010). Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. Wildlife Research 37: 320–331. https://doi.org/10.1071/WR09171

Thapa, A., P.K. Pradhan, B.D. Joshi, T. Mukherjee, M. Thakur, K. Chandra & L.K. Sharma (2021). Non-protected areas demanding equitable conservation strategies as of protected areas in the Central Himalayan region. PLoS ONE 16(8): e0255082. https://doi.org/10.1371/journal.pone.0255082

Vestjens, W.J.M. (1973). Wildlife mortalities on a road in New South Wales. Emu - Austral Ornithology 73: 107–112. https://doi.org/10.1071/MU973107
Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered publishing peer-reviewed articles online every month at a reasonably rapid rate at under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

January 2022 | Vol. 14 | No. 1 | Pages: 20311–20538

Date of Publication: 26 January 2022 (Online & Print)

DOI: 10.11609/jott.2022.14.1.20311-20538

Articles

- Estimating the completeness of orchid checklists and atlases: a case study from southern India
 - Antonio Croce, Pp. 20311–20322

- A floristic survey across three coniferous forests of Kashmir Himalaya, India – a checklist
 - Ashfaq Ahmad Dar, Akhtar Hussain Malik & NarayanDaswamy Parthasarathy, Pp. 20323–20345

- Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning
 - Arun Pratap Singh, Pp. 20346–20370

- Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal
 - Jagan Nath Adhikari, Janak Raj Khatiwada, Dipendra Adhikari, Suman Sapkota, Bishnu Prasad Bhattarai, Deepak Rijal & Lila Nath Sharma, Pp. 20371–20386

- Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Asota) in western Sarawak, Malaysian Borneo
 - Jayasihid Mohd-Azlan, Joon Yee Yong, Nabila Norshuhadah Mohd Hazzol, Philovenney Pengiran, Arianti Atong & Sheema Abdul Azit, Pp. 20387–20399

Communications

- Macrolichens of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records
 - Aswathi Anilkumar, Stephen Sequeira, Arun Christy & S.M. Arsha, Pp. 20400–20405

- New distribution record of globally threatened Ocean Turf Grass *Halophila beccarii* Ascherson, 1871 from the North Andaman Islands highlights the importance of seagrass exploratory surveys
 - Swapnali Gole, Prasad Gaidhani, Srabani Bose, Anant Pande, Jeyaraj Antony Johnson & Kuppusamy Sivakumar, Pp. 20406–20412

- An inventory of new orchid (Orchidaceae) records from Kozhikode, Kerala, India
 - M. Sulaiman, C. Murugan & M.U. Sharief, Pp. 20413–20419

- Abundance and spatial distribution analyses of Stemonoporus moonii Thwaites (Dipterocarpaceae) - a critically endangered species endemic to Sri Lanka
 - K.A.M.R.P. Atapattu, H.D.D.C.K. Perera, H.S. Kathiriarachchi & A.R. Gunawardena, Pp. 20426–20432

- Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck Antilope cervicapra L.
 - Ashutosh Kumar Upadhya, A. Andrew Emmanuel, Ansa Sarah Varghese & D. Narasimhan, Pp. 20433–20443

- Raptors observed (1983–2016) in National Chambal Gharial Sanctuary: semi-arid biogeographic region suggestions for parametric studies on ecological continuity in Khathiar-Gir Ecoregion, India
 - L.A.K. Singh, R.K. Sharma & Udayan Rao Pawar, Pp. 20444–20446

- Nesting success of Sharpe’s Longclaw (Macronyx sharpei Jackson, 1904) around the grasslands of lake O’bolosat Nyandarua, Kenya
 - Hamisi Ann Risper, Charles M. Warui & Peter Njorge, Pp. 20461–20468

- Population, distribution and diet composition of Smooth-coated Otter *Lutrogale perspicillata* (Mammalia: Carnivora: Mustelidae): in Ratnagiri, Maharashtra, India
 - Aparna Sureshchandra Kalawate, K.P. Dinesh & A. Shabnam, Pp. 20503–20510

- Estimating the completeness of orchid checklists and atlases: a case study from southern India
 - Antonio Croce, Pp. 20311–20322

- Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal
 - Jagan Nath Adhikari, Janak Raj Khatiwada, Dipendra Adhikari, Suman Sapkota, Bishnu Prasad Bhattarai, Deepak Rijal & Lila Nath Sharma, Pp. 20371–20386

- Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Asota) in western Sarawak, Malaysian Borneo
 - Jayasihid Mohd-Azlan, Joon Yee Yong, Nabila Norshuhadah Mohd Hazzol, Philovenney Pengiran, Arianti Atong & Sheema Abdul Azit, Pp. 20387–20399

Notes

- Revival of Eastern Swamp Deer *Rucervus duvaucelli ranjitsinhi* (Groves, 1982) in Manas National Park of Assam, India
 - Nazrul Islam, Aftab Ahmed, Ratihan Barman, Sanatan Deka, Bhaskar Choudhury, Prasanta Kumar Saikia & Jyotishman Deka, Pp. 20488–20493

- Trypanosoma evansi infection in a captive Indian Wolf *Canis lupus pallipes*
 - molecular diagnosis and therapy
 - Manojita Dash, Sarat Kumar Sahu, Santosh Kumar Gupta, Niranjana Sahoo & Debarat Mohapatra, Pp. 20494–20499

View Point

- COVID-19 and civil unrest undoing steady gains in karst conservation and herpetological research in Myanmar, and an impediment to progress
 - Evan S.H. Quah, Lee L. Grismer, Perry L. Wood, Jr., Aung Lin & Myint Kyaw Thura, Pp. 20500–20502

Short Communications

- Morphological characterization and mt DNA barcode of a tiger moth species, *Asota fuscus* (Fabricius, 1775) (Lepidoptera: Erebidae: Erebinae) from India
 - Aparna Sureshchandra Kalawate, K.P. Dinesh & A. Shabnam, Pp. 20503–20510

- Distribution of Smooth-coated Otters *Lutrogale perspicillata* (Mammalia: Carnivora: Mustelidae): in Ratnagiri, Maharashtra, India
 - Swanand Patil & Kranti Yardi, Pp. 20511–20516

- Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region
 - Muzaffar A. Kichloo, Asha Sohil & Neeraj Sharma, Pp. 20517–20522

Book Review

- *R. sericeus* (Lindl.) Galay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
 - B. Subbaiyan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

- *Ipomoea laxiflora* (H.J. Chowdhery & Deba (Convolvulaceae): new records for the Western Ghats and semi-arid regions
 - Sachin M. Patil, Ajsit M. Vasava, Vinay M. Raole & Kishore S. Rajput, Pp. 20526–20529

- Counting the cost: high demand puts *Bunius persicum* (Boiss.) F.Bedsch. in jeopardy
 - Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

- First record of Parasitic Jaeger *Stercorarius parasiticus* (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar
 - Sai Sein Lin Do, Myint Kyaw, L.C.K. Yun, Min Zaw Tun, Yar Zar Lay Naung, Soe Naing Aye & Swn C. Renner, Pp. 20534–20536

- *Capparis* of India
 - V. Sampath Kumar, Pp. 20537–20538

Publisher & Host

WILDThreatened Taxa