Heart failure and atrial flutter: a systematic review of current knowledge and practices

Michael J. Diamant¹,²*, Jason G. Andrade², Sean A. Virani², Pardeep S. Jhund³, Mark C. Petrie³ and Nathaniel M. Hawkins²

¹Division of Cardiology, Royal Columbian Hospital, New Westminster, British Columbia, Canada; ²Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; and ³BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK

Abstract

While the interplay between heart failure (HF) and atrial fibrillation (AF) has been extensively studied, little is known regarding HF and atrial flutter (AFL), which may be managed differently. We reviewed the incidence, prevalence, and predictors of HF in AFL and vice versa, and the outcomes of treatment of AFL in HF. A systematic literature review of PubMed/Medline and EMBASE yielded 65 studies for inclusion and qualitative synthesis. No study described the incidence or prevalence of AFL in unselected patients with HF. Most cohorts enrolled patients with AF/AFL as interchangeable diagnoses, or highly selected patients with tachycardia-induced cardiomyopathy. The prevalence of HF in AFL ranged from 6% to 56%. However, the phenotype of HF was never defined by left ventricular ejection fraction (LVEF). No studies reported the predictors, phenotype, and prognostic implications of AFL in HF. There was significant variation in treatments studied, including the proportion that underwent ablation. When systolic dysfunction was tachycardia-mediated, catheter ablation demonstrated LVEF normalization in up to 88%, as well as reduced cardiovascular mortality. In summary, AFL and HF often coexist but are understudied, with no randomized trial data to inform care. Further research is warranted to define the epidemiology and establish optimal management.

Keywords Heart failure; Left ventricular systolic dysfunction; Atrial flutter; Arrhythmia; Catheter ablation; Systematic review

Received: 19 February 2021; Revised: 4 June 2021; Accepted: 5 July 2021
*Correspondence to: Michael J. Diamant, Division of Cardiology, Royal Columbian Hospital, Office: 420 Columbia St, New Westminster, BC V3L 1B1, Canada.
Email: michael.diamant@alumni.ubc.ca

Introduction

Atrial flutter (AFL) is an atrial macro-reentrant tachyarrhythmia,¹ further subcategorized as cavotricuspid isthmus (CTI)-dependent and non-CTI-dependent atypical flutter.² Atrial fibrillation (AF) and AFL often coexist due to shared risk factors and precipitants. Both rhythms may be a cause or consequence of heart failure (HF) and are associated with stroke and increased mortality.³–⁶ Treatment options for both rhythms include pharmacologic rate control⁷,⁸ and rhythm control (anti-arrhythmic drugs,⁹,¹⁰ cardioversion,⁹,¹⁰ and catheter ablation¹¹–¹³).

Most studies treat AFL and AF as interchangeable diagnoses.⁵,¹⁴ However, more than 70% of patients with AFL do not experience AF, and less than 10% with AF are also diagnosed with AFL.¹⁵,¹⁶ Furthermore, the distinction between AF, typical, and atypical AFL is important, as the risks and success of catheter ablation are markedly different. For AF, long-term freedom from all recurrent atrial arrhythmias exceeds 50% with a single procedure, and approximately 70–80% with multiple procedures, acknowledging selected cohorts and expertise.¹⁷ In small randomized trials, AF ablation reduced the composite of death and hospitalization in patients with HF with reduced ejection fraction.¹⁰,¹¹ By contrast, single-procedure ablation success rates exceed 90% for typical and atypical AFL,² with associated acute complication rates of 3–11%.¹²,¹³ Ablation of AFL in unselected patients is associated with decreased hospitalizations, emergency department visits, development of subsequent AF,¹⁸ and improved quality of life.¹,¹⁹ Guidelines therefore recommend it as first-line therapy.²⁰ However, few studies included patients with HF, and there
are no randomized controlled trials in patients with AFL and HF.

We therefore conducted a systematic review to define the following: (i) incidence, prevalence, and predictors of HF in AFL; (ii) incidence, prevalence, predictors, and phenotype of AFL in HF; (iii) overlap of AFL with AF in HF; (iv) prognosis of patients with HF and AFL compared with HF and no AFL; and (v) evidence for treatments of AFL in HF.

Methods

Search strategy

PubMed and EMBASE were searched without date restriction, limited to adult humans and English language, excluding case studies, reviews, and conference abstracts. The search strategy combined Medical Subject Headings terms and keywords in title and abstract to identify HF and AFL (Supporting Information). Reference lists of included articles were reviewed for additional citations. English language studies fulfilling the participant, outcome, and study design criteria were included. Titles and abstracts were screened for inclusion, and full texts reviewed by the primary author (M.J.D.), with confirmation by the supervising author (N.M.H.). Articles were excluded during full-text review if they did not report on HF patients, were narrative review articles, did not report either clinical outcomes or epidemiological estimates, or duplicated previously published data. Results are synthesized qualitatively due to heterogeneity in objectives, design, and results.

Results

The search identified 1404 articles in PubMed, 101 unique articles in EMBASE, and 4 articles added via bibliography review, totalling 1509 records (Figure 1). Of these, 65 met inclusion criteria. Only 10 studies included patients exclusively with AFL. The remaining 55 studies included both AF and...

Figure 1. Flow diagram of study selection. HF, heart failure
AFL, of which 21 studies reported the proportion with AFL separately. No study specifically described atypical AFL, and so all further discussion of AFL relates to either the typical phenotype or undifferentiated AFL only.

Heart failure in atrial flutter: epidemiology overview

Twenty-five studies reported the epidemiology of HF in patients with AFL alone (n = 16) or AFL/AF as a combined diagnosis (n = 9) (Tables 1 and S1). In all 25 studies, HF was defined clinically based on the development of typical symptoms and signs, an existing clinical diagnosis, or administrative database coding. No study definition specified left ventricular ejection fraction (LVEF). The prevalence of HF in hospital or ambulatory populations with AFL ranged from 8% to 56%. The prevalence of HF was higher in patients with established AFL (14% to 56%) compared with newly diagnosed AFL (6% to 28%) (Table 1 and Figure 2). The incidence rate was between 0.9 and 3.6 per 100 person-years. Potential factors contributing to the diverse estimates include differences in arrhythmia duration, setting (inpatient vs. outpatient), study design (e.g. retrospective vs. prospective), cohort inclusion criteria, case ascertainment methods, coding, and indication bias among patients referred for catheter ablation. Nine studies (Table S1) combined AF and AFL diagnoses without disclosing the proportion of patients with AFL, and are not discussed further.5,14,33–39

Heart failure in established atrial flutter

Only three studies examined HF patients solely with AFL.12,21,22 In a large contemporary US cohort with AFL undergoing ablation (n = 5552), 31% had concurrent HF defined using administrative data.12 The prevalence of HF in AFL was even higher in two small historic cohorts: 40% in 110 patients undergoing ablation (1994–1997) and 56% in 71 patients hospitalized in Atlanta (1966–1970).21,22

Twelve studies included patients with both AF and AFL but separately reported characteristics of patients with AFL. The largest study reported HF in 30% of patients with AFL (n = 20 298), defining the cohort and comorbidities using International Classification of Disease (ICD) 9 codes in the US MarketScan claims database.26

Heart failure in newly diagnosed atrial flutter

In patients with newly diagnosed AFL, a higher prevalence of HF (22% and 28%) was reported in two studies (n = 76 and n = 181) from the Marshfield Epidemiologic Study Area in Wisconsin, a comprehensive population-based cohort defined using inpatient, outpatient, and electrocardiogram records.28,32 A similar prevalence of comorbid HF (23%) was observed in 121 patients developing AFL in the Framingham Heart Study.30 However, another Framingham study using a nested case-control design reported a lower prevalence of 8% in 112 individuals, the reason for the discrepancy being unclear.4 Finally, a large Taiwanese national study (n = 6121) and Canadian provincial registry (n = 9339) of incident AFL cases identified using administrative records reported lower rates of HF at 13% and 6%, respectively.15,16

Heart failure in atrial flutter: incidence and prevalence of heart failure in atrial flutter compared with atrial fibrillation

Eight studies reported prevalent HF in AFL and AF separately but within the same cohort and provide insights to their comparative frequency (Table 2). The prevalence of HF was similar in AFL compared with AF in five studies, and notably higher in three studies (45% vs. 35%,24 14% vs. 6%,23 and 28% vs. 17%).28 The two studies from Wisconsin confirmed the higher prevalence of HF in AFL vs. AF, with adjusted odds ratios ranging from 1.87 to 3.5.28,32 By contrast, in three studies reporting long-term outcomes, AFL had similar or even lower adjusted risk of incident HF or HF hospitalization compared with AF. However, the latter two studies used administrative data to define the cohort and outcomes in Taiwan.

Heart failure in atrial flutter: phenotype and predictors

Only one study characterized the phenotype of HF in patients with AFL. In a small post-ablation cohort from Boston (n = 36), patients who developed ‘symptomatic HF’ had slightly lower mean LVEF at baseline (43 vs. 55%, P = 0.071).23 No study examined independent predictors of HF in AFL.

Atrial flutter in heart failure: incidence and prevalence

No study described the incidence or prevalence of AFL in unselected patients with HF (Table 2), including any of the major HF registries.

Atrial flutter in heart failure: phenotype and predictors

No study reported the frequency of AFL phenotype (i.e. typical or atypical AFL) in HF. However, among the 181 individuals with new AFL in the Marshfield Epidemiologic Study
Study (first author, year)	Design	Population	LVEF (%)	Mean/median f/up (years)	Cohort, n	AFL, n (%)	HF in AFL (%)	Incidence HF in AFL (%)	AF (%)	Prevalence HF in AF (%)
Established AFL										
Lindsay, 21 74	Case series	Hospitalization	Any 66–70 nr	71	71 (100)	56	nr	23	n/a	
Paydak, 22 08	Prospective cohort	Ablation	Any 94–97 20.1 m	110	110 (100)	40	nr	0	n/a	
Tripathi, 12 17	National registry	Ablation	Any 13–14 90 d	5552	5552 (100)	31	12	n/a	n/a	
Huang, 23 16	Prospective cohort	Ablation	Any 13–14 30 d	156	36 (23)	14	17	77	6	
Almeida, 24 15	Cross-sectional	Emergency department	Any 12	n/a	407	51 (13)	45	nr	87	35
Almeida, 25 19	Retrospective cohort	Emergency department	Any 12 863 d	112	142 (13)	33	nr	87	28	
Naccarelli, 26 09	Registry national	Hospital or two outpatients	Any 04–05	n/a	242 903	20 298 (4)	28	nr	49	30
Newly diagnosed AFL										
Gula, 15 18	Registry provincial	Hospital or emergency department	Any 03–11 3	9339	9339 (100)	5.8	nr	Excluded	n/a	
Skjøth, 27 18	Registry national	Ablation	No HF 00–16 5.5	5807	1517 (26)	n/a	1.1 PY	62	n/a	
Mareedu, 26 10	Population cohort	Population MESA	Any 91–95 n/a	472	76 (16)	28	nr	84	17	
Stiell, 29 17	Prospective cohort	Emergency department	Any 10–12 30 d	1091	167 (15)	nr	nr	85	nr	
Rahman, 4 16	Nested case-control	Outpatients Framingham	Any 48–02 10	1090	112 (10)	8	3.6 PY	39	5	
Lubitz, 30 16	Prospective cohort	Population Framingham	Any 49–12 5.4	1530	121 (8)	23	18	92	21	
Lin, 17 17	Registry national	Hospital and outpatient	No HF 01–13 13	175 420	6239 (3)	n/a	0.9 PY	97	n/a	
Lin, 18 17	Registry national	Hospital or two outpatients	Any 01–12 3.1	219 416	6121 (3)	13	1.1 PY	86	15	
Granada, 32 00	Population case control	Population MESA	Any 91–95 n/a	58 820	181 (1)	22	nr	nr	nr	

AF, atrial fibrillation; AFL, atrial flutter; d, days; HF, heart failure; f/up, follow-up; m, months; MESA, Marshfield Epidemiologic Study Area; nr, not reported; PY, per 100 person-years.
Table 2. Characteristics of studies reporting incidence, prevalence, and predictors of AFL/AF in HF

Study (first author, year)	Cohort	Dates	Design	n	LVEF Inclusion (%)	% with AFL
Tachycardia-induced cardiomyopathy						
Brembilla-Perrot,						
40, 16	AFL ablation	96–14	Retro cohort	1269	Any	100
Pizzale,						
41, 09	AFL ablation	98–06	Prospect cohort	111	Any	100
Luchsinger,						
42, 98	AFL ablation	nr	Case series	11	<50%	100
Nerheim,						
43, 04	HF outpatients	nr	Case series	24	≤40%	16.7
Jeong,						
44, 08	TICM	nr	Case control	42	≤45%	50
Nia,						
45, 11	AF/AFL and LVSD	09–10	Case control	387	<40%	15
Hospitalized HF						
Wang,						
46, 19	Hospitalized	01–15	Pro cohort	5588	Any	nr
Devkota,						
47, 16	Hospitalized	14	Retro cohort	157	<50%	nr
von Scheidt,						
48, 14	Hospitalized	09–11	Registry	1853	≤40%	nr
Lund,						
49, 14	KaRen cohort	07–11	Registry multinational	539	≥45%	nr
Sulaiman,						
50, 15	Hospitalized	12	Registry multinational	5005	Any	nr
Sasaki,						
51, 13	Hospitalized	10–11	Registry national	8620	Any	nr
Sulaiman,						
52, 20	Hospitalized	07–14	Registry national	75 430	Any	nr
Dai,						
53, 12	Hospitalized	05–06	Registry national	42 399	Any	nr
Patel,						
54, 17	Hospitalized	08–13	Trial substudy	750	Any	nr
Greene,						
55, 17	ASTRONAUT	09–12	Trial substudy	1358	≤40%	nr
Mentz,						
56, 12	EVEREST	03–06	Trial substudy	4133	≤40%	nr
Pedersen,						
57, 05	TRACE	90–92	Trial substudy	6676	Any	nr
Benza,						
58, 04	OPTIME-CHF	97–99	Trial substudy	949	LVSD	nr
Pedersen,						
59, 01	DIAMOND	93–97	Trial substudy	506	≤35%	nr
Chronic HF						
Hummel,						
60, 13	Outpatients	09–10	Validation study	2467	Any	nr
Ibrahim,						
61, 19	Outpatients	08–18	Registry national	1 103 386	Any	nr
Gurwitz,						
62, 13	In/outpatient	05–08	Registry national	11 994	Any	nr
Zambito,						
63, 10	AFL ablation	01–05	Retro cohort	90	<55%	100
Kalscheur,						
64, 17	COMPANION	00–02	Trial substudy	293	≤35%	nr
Swedberg,						
65, 12	EMPHASIS-HF	06–12	Trial substudy	2737	≤30%/35%	nr
Vermeers,						
 66, 03 | SOLVD | 86–91 | Trial substudy | 391 | ≤35% | nr |

AF, atrial fibrillation; AFL, atrial flutter; HF, heart failure; LVSD, left ventricular systolic dysfunction; ms, milliseconds; nr, not reported; pro, prospective; retro, retrospective; TICM, tachycardia-induced cardiomyopathy.
Area general population study, 22% of whom had HF, 90% had electrocardiograms consistent with typical CTI-dependent AFL. Similarly, 84% of 1269 patients referred to a French centre for AFL ablation, 15% of which had prior HF, presented with ‘counter-clockwise’ AFL. of AFL in HF relative to either sinus rhythm or AF have never been investigated (Table 3; additional details in Table S2).

Atrial flutter in heart failure: concomitant diagnosis and subsequent development of atrial fibrillation

The overlap between AFL and AF in HF is poorly described. Without specific studies in unselected patients with HF, several indirect observations merit consideration. In a US national outpatient database derived from insurance claims (n = 484 537), isolated AFL was least common (0.03%), dual diagnosis AF/AFL more frequent (0.1%), and lone AF most common (1.4%). However, only a minority of patients in each group (28–30%) had concurrent HF, defined by ICD-9 codes.

In four studies of highly selected patients with HF/ left ventricular systolic dysfunction (LVSD) and AFL referred for ablation, 33% overall (range 25% to 57%) had concurrent AF (Table 2). Following AFL ablation, AF developed in 17–30% of patients over 350 days to 2 years. De novo AF was strongly associated with LVSD following AFL ablation:: 43% vs. 14% comparing LVEF < 50% vs. >50%, and 31% vs. 7% for LVEF < 35% vs. 36–55% in two US single-centre cohorts. In the remaining cohort and case series studying tachycardia-induced cardiomyopathy, the small sample sizes limit meaningful conclusions regarding the overlap.

Atrial flutter in heart failure: prognosis

While 13 studies examined mortality and/or rehospitalization in AF/AFL as a combined diagnosis, the prognostic implications of AFL in HF relative to either sinus rhythm or AF have never been investigated (Table 3; additional details in Table S2).

Atrial flutter in heart failure: treatment

Thirty-one studies described treatment of patients with AF or AFL, some or all having pre-existing HF or LVSD (Table 4). From these, 14 studies described the management separately for AF and AFL patients, of which 5 described electrical cardioversion, 10 catheter ablation, and 9 drug therapy. Potential explanations include that decompensated HF prompted cardioversion, anti-arrhythmic drug options are limited in HF, and greater cardiology specialist involvement in care. Across all studies, early and long-term maintenance of sinus rhythm after cardioversion ranged from 89% to 96% and 42% to 90%, respectively. The highest long-term success rate was achieved in 50 Dutch patients, of whom 16% had ‘cardiomyopathy’ not otherwise defined, using cardioversion and progressive anti-arrhythmic drugs with repeat cardioversion if needed. Cardioversion had similar short-term success (96%) among New Zealand patients admitted with HF and LVEF ≤ 40%, of whom 46 of 77 had concurrent AFL. This was the only study reporting outcomes after cardioversion or pharmacologic treatment of AFL in unselected HF patients, with a 1 year all-cause mortality or rehospitalization rate of 23% following cardioversion. Only four other studies reported outcomes after cardioversion or pharmacologic treatment in subgroups with AFL, although only 16% to 56% had concurrent HF.

In the 10 catheter ablation studies, immediate procedural success ranged from 87% to 100%, with AFL recurrence of

Table 3 Mortality and hospitalization rates among studies with HF and concurrent AF/AFL

Study (first author, year)	AFL (%)	All-cause mortality (%)	All-cause admission (%)	All-cause mortality or HFH (%)	HFH (%)	Follow-up
Mentz, 56 12	nr	26^a	nr	nr	30^c	24 months
Pedersen, 57 05	nr	25^a	nr	nr	31^b	30 days
Greene, 35 17	nr	17	53^c	nr	40	60 days
Patel, 54 18	nr	nr	nr	50 at 120 days^a	nr	990 days
Kalscheur, 62 17	nr	nr	nr	nr	nr	4 years
Swedberg, 63 12	nr	nr^c	nr^c	nr	nr	42 months
Pederson, 64 01	nr	nr^b	nr	nr	nr	nr
Rodriguez, 65 66	28	12	nr	nr	nr	In-hospital (6.2 days)
Ueberham, 66 20	nr	1.3	nr	nr	nr	5
Aoyama, 67 20	nr	5	nr	5	2	20.3 months
Tripathi, 68 17	100	nr^c	nr	nr	2	90 days
Lund, 69 14	nr	nr^c	nr	nr	18	18 months
Hummel, 70 13	nr	nr^c	nr	nr	6	6 months

AF, atrial fibrillation; AFL, atrial flutter; HF, heart failure; nr, not reported; LVSD, LV systolic dysfunction.

^aSignificantly increased from patients in sinus rhythm.

^bSignificantly not reported, but significant difference from sinus rhythm.

^cSignificantly not reported, but no significant difference from sinus rhythm.
Study (first author, year)	Cohort	Dates	Design	Consecutive	n	LVEF (%)	% with AFL	% with prior HF	% with LVEF normalization	% with partial LVEF recovery	
Tachycardia-induced cardiomyopathy											
Pizzale, 41 09	AFL ablation	98–06	Prospect cohort	Yes	111	Any	100	25	57	89	
Brembilla-Perrot, 40 16	AFL ablation	96–14	Retro cohort	Yes	1269	Any	100	15	56	nr	
Brembilla-Perrot, 70 15	AFL ablation	99–04	Retro cohort	Yes	1187	Any	100	12	nr	nr	
Luchsinger, 42 98	AFL ablation	nr	Case series	Yes	11	<50%	100	100	55	73	
Jeong, 44 08	TICM	nr	Case control	No	42	≤45%	50	100	81	100	
Nerheim, 43 04	HF outpatients	nr	Case series	No	24	≤40%	16.7	100	33	100	
Nia, 45 11	AF/AFL and LVEF <40% outpatients	09–10	Case control	Yes	387	<40%	15	100	88	nr	
Left ventricular systolic dysfunction											
Zambito, 65 05	AFL ablation	01–05	Retro cohort	Yes	90	≤55%	100	100	nr	nr	
Foo, 68 19	New AF/AFL and HF	15–16	Retro cohort	Yes	79	≤40%	58	100	nr	75	
Rodriguez, 69 16	New AF/AFL and HF	09–14	Retro cohort	Yes	25	≤40%	28	100	40	84	
Shiga, 71 02	AF/AFL and HF outpatient	88–01	Retro cohort	No	108	≤50%	100	nr	nr	nr	
Aoyama, 62 20	AF/AFL ablation	14–18	Retro cohort	No	40	≤50%	150	100	75%	nr	
Greene, 72 17	ASTRONAUT trial	09–11	Regional registry	Yes	1853	≤40%	100	Nr	Nr	Nr	
von Scheidt, 73 14	EVEREST trial	03–06	Regional registry	No	4133	≤40%	100	Nr	Nr	Nr	
Kalscheur, 74 12	COMPANION trial	00–02	Regional registry	No	293	≤40%	100	Nr	Nr	Nr	
Swedberg, 63 12	EMPHASIS-HF trial	06–12	Regional registry	No	2737	≤30/35%	100	Nr	Nr	Nr	
Any LVEF											
Lindsay, 21 74	New AFL hospitalization	66–70	Case series	Yes	71	Any	100	56	nr	nr	
Paydak, 22 98	AFL ablation	94–97	Chronic AFL	Yes	110	Any	100	40	nr	nr	
Crijns, 69 97	Chronic AFL	86–93	Case series	Yes	50	Any	100	16	nr	nr	
LaPointe, 6 10	AFL inpatients	00–04	Case series	Yes	19 825	Any	100	16	nr	nr	
Almeida, 77 15	AF/AFL presenting to ED	2012	Regional registry	No	407	≤35%	100	Nr	Nr	Nr	
Steill, 78 11	AF/AFL ED visit	2008	Case series	Yes	1068	Any	12	4	nr	nr	
Santini, 79 04	AF/AFL ED visit	2000	Regional registry	Yes	2838	Any	101	11	nr	nr	
Zhang, 80 14	AF/AFL ED visit	08–11	Regional registry	No	2016	Any	3	37	nr	nr	
Sulaiman, 81 20	Hospitalized alcoholic CM	07–14	Registry national	No	75 430	Any	100	nr	nr	Nr	
Ueberham, 82 08	AFL and AF ablation	10–18	Registry national	Yes	54 645	Any	100	Nr	Nr	Nr	
Patel, 83 18	ROSE, DOSE, and CARRESS-HF trials	08–13	Regional registry	Yes	750	Any	100	Nr	Nr	Nr	
Scheuermeyer, 38 15	AF/AFL ED visit	09	Case series	Yes	416	Any	40	36	nr	nr	
Naccarelli, 39 12	AF/AFL and one hospitalization or two outpatient visits	03–09	Regional registry	Yes	377 808	Any	31	31	nr	nr	
Barbic, 74 18	AF/AFL ED visit	13	Case series	Yes	301	HF excluded	Nr	Nr	Nr	Nr	

Percentage of LVEF normalization and partial recovery reflects that of cohorts with HF/LVSD at baseline.

AFL, atrial flutter; AF, atrial fibrillation; ED, emergency department; HF, heart failure; LVEF, left ventricular ejection fraction; nr, not reported; TICM, tachycardia-induced cardiomyopathy.

*Defined as LVEF > 40%.

*Defined as LVEF increase ≥ 5%.

*Defined as LVEF improvement not explicitly defined.
5–30% up to 2.3 years. Only the aforementioned non-randomized New Zealand study described clinical outcomes in unselected HF patients undergoing ablation, with lower 1 year all-cause mortality or rehospitalization than patients undergoing cardioversion (8 vs. 23%, \(P = 0.57 \)).

Seven studies specifically reported outcomes after treatment in tachycardia-induced cardiomyopathy (with or without ablation or LVSD control groups) — five after catheter ablation, and two with pharmacologic rate or rhythm control (Table 4). Tachycardia induced cardiomyopathy was typically defined as LVEF < 40–50% with concurrent tachyarrhythmia, no alternate etiology identified, and subsequent improvement with arrhythmia control. The rates of LVEF improvement (57% to 100%) or normalization (33% to 88%) appear greater than in unselected patients with HF, with improvement variably defined as LVEF increase of 5% to 15%, or to above 40% (Table 4). Factors associated with failed LVEF recovery included age, ischaemic heart disease, prior anti-arrhythmic use, lack of heart rate reduction, and increasing left ventricular end-diastolic diameter. AFL-related tachycardia-induced cardiomyopathy was associated with lower cardiovascular mortality compared with LVSD unrelated to AFL among French patients undergoing catheter ablation; this was the only study that described survival after treatment of tachycardia-induced cardiomyopathy.

Discussion

This systematic review has several key findings. First, the incidence and prevalence of HF in patients with AFL is high. Second, in unselected patients with HF, remarkably little is known about AFL—the incidence, prevalence, predictors, phenotype, overlap with AF, role of imaging, prognostic implications, and pharmacological treatment have not been described. Finally, ablation has mainly been studied in selected cohorts with tachycardia-induced cardiomyopathy, so the effectiveness in patients with AFL and HF due to other etiologies is unknown. Figure 3 provides a summary of key findings.

Heart failure in atrial flutter

The incidence and prevalence of HF in AFL was high, particularly in patients with prevalent AFL (28% to 56% in six studies). Because many studies enrolled patients undergoing catheter ablation, the most generalizable estimate of HF prevalence in patients with established AFL was 28% observed in the US MarketScan claims database. The prevalence of HF in newly diagnosed AFL is likely lower, reported to be 6–13% in large contemporary cohorts.
How much of this high prevalence relates to tachyarrhythmia vs. shared risk factors is unclear. The phenotype of HF including LVEF and aetiology is also uncertain. The finding of similar or higher risk of developing HF in AFL relative to AF requires further confirmation. Yet, if the prevalence of LVSD in AFL is high, then routine assessment of cardiac function may be appropriate to ensure timely initiation of guideline-directed medical therapies. The diagnostic yield and cost effectiveness of such a strategy would require evaluation. Additionally, if AFL conveys significantly increased risk of HF, and this risk is modifiable, then earlier and more aggressive intervention may be warranted. Therapeutic strategies that could be compared include electrical cardioversion or AFL ablation.

Atrial flutter in heart failure

In the general population, the prevalence of both HF and AF/AFL is increasing. AFL concurrent with HF will accordingly increase. The implications for health systems need defining, starting with the burden of disease and associated healthcare utilization including ambulatory and hospital care. If the prognostic implications of AFL are similar to AF/AFL considered as a combined diagnosis, then HF hospitalization may be a marker of further adverse events, and an opportune time to intervene. Whether arrhythmia is an indicator of risk, such as a consequence of increasing filling pressures leading to atrial remodelling and subsequent AFL, or a target for specific interventions, warrants investigation. It also remains unclear whether typical AFL may be a consequence of right-sided HF. While the studies included in this review do not report phenotype of HF nor right-sided involvement, studies examining atrial arrhythmias in arrhythmogenic cardiomyopathy with predominant right ventricular involvement may provide further insight. Among four studies of arrhythmogenic cardiomyopathy patients (n = 36 to 294), 2–11% had documented AFL compared with 8–11% with AF, and 2–19% with both AF and AFL. Atrial arrhythmias were associated with either right-sided or left-sided ventricular dysfunction or chamber enlargement, but analyses among patients specifically with AFL were never reported.

There is insufficient evidence to comment on specific elements of a rate control strategy. However, the early success of cardioversion was high, as was longer term rhythm control using anti-arrrhythmic drugs in selected studies. Whether the benefits of ablation in tachycardia-induced cardiomyopathy extend to HF due to alternate aetiologies also merits study. This is particularly relevant given the high success rates and reduction in de novo AF resulting from CTI ablation, as well as the accruing evidence to suggest prognostic benefit from PVI ablation for concurrent AF and HF. The CAMERA-MRI trial demonstrated greater improvement in ventricular function after PVI ablation in the absence of ventricular fibrosis on cardiac MRI. Similar studies are warranted in patients with AFL to develop more personalized treatment pathways.

Overlap of atrial fibrillation with atrial flutter

The intersection between AF and AFL has two distinct perspectives: (i) the prevalence of AFL in patients with AF and (ii) the prevalence of AF in patients with AFL. Because AF is approximately 10-fold more common than AFL in the general population, if even a small proportion of patients with AF have concurrent AFL (e.g. 10%), then a large proportion of patients with AFL have concurrent AF. The trials of AF in HF offer another potential view of the overlap between AF and AFL. However, only one study described the proportion of patients with concomitant AFL (9%).

The overlap between AFL and AF also merits consideration when planning ablation for AFL in patients with LVSD, as up to 43% of whom subsequently develop AF. Concurrent PVI and CTI ablation could be considered without documented AF in those deemed high risk for future AF. Alternatively, pulmonary vein triggers for both arrhythmias could be targeted, as currently being studied in the CRAFT trial. However, randomized controlled trials are needed to examine these strategies in patients with HF before adoption into clinical practice. Further, in those with multiple arrhythmias amenable to ablation, personalized ablation strategies chosen from a combination of presenting arrhythmias, clinical and treatment history, imaging, and mapping may ultimately yield the best clinical outcomes.

Limitations

Several limitations merit consideration and highlight areas for further research. Many studies considered AF and AFL as an interchangeable diagnosis, reflecting the limited accuracy of ICD coding to distinguish AFL in administrative databases. Many HF trials require elevated natriuretic peptide levels for inclusion, so these patients may be distinct from patients with AF/AFL enrolled in community-based cohorts or registries. The significant heterogeneity in study design, populations, and outcomes prevented quantitative synthesis.

Conclusion

There is limited evidence in all aspects of the intersection between AFL and HF. Outcomes for these patients are unknown, and the treatments and processes of care provided are poorly defined. While previous efforts have largely focused on AF and HF, future studies need to characterize the burden of disease and contemporary management of AFL.
and other atrial arrhythmias, compare treatment strategies, and delineate subgroups that may benefit from more intensive or invasive therapy.

Conflict of interest
None declared.

Funding
The authors received no financial support in preparing the manuscript.

References
1. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW, ACC/AHA Task Force Members. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 2014; 130: 2071–2104.
2. Cosio FG. Atrial Flutter, Typical and Atrial: A Review. Arrhythm Electrophysiol Rev 2017; 6: 55–62.
3. Ghali WA, Wasił BI, Brant R, Exner DV, Cornuz J. Atrial flutter and the risk of thromboembolism: a systematic review and meta-analysis. Am J Med 2005; 118: 101–107.
4. Rahman F, Wang N, Yin X, Ellinor PT, Lubitz SA, Le Lorier PA, McManus DD, Sullivan LM, Seshadri S, Vasan RS, Benjamin EJ, Magnani JW. Atrial flutter: Clinical risk factors and adverse outcomes in the Framingham Heart Study. Heart Rhythm 2016; 13: 233–240.
5. Healey JS, Oldgren J, Ezekowitz MD, Zhu J, Pais P, Wang J, Commerford P, Jansky P, Avezum A, Sigamani A, Damasceno A, Reilly P, Grunvalds A, Nakayma J, Aje A, Almahmeed W, Moriarty A, Wallentin L, Yusuf S, Connolly SJ. Occurrence of death and stroke in patients in 47 countries 1 year after presenting with atrial fibrillation: a cohort study. Lancet 2016; 388: 1161–1169.
6. Hummel SL, Ghalib HH, Ratz D, Koelling TM. Risk stratification for death and all-cause hospitalization in heart failure clinic outpatients. Am Heart J 2013; 166: 895–903.e1.
7. Stiell IG, Clement CM, Brison RJ, Rowe BH, Borgundvaag B, Langhan T, Lang E, Magee K, Stenstrom R, Perry JJ, Birnie D, Wells GA. Variation in management of recent-onset atrial fibrillation and flutter among academic hospital emergency departments. Ann Emerg Med 2011; 57: 13–21.
8. LaPointe NM, sun J-I, Kaplan S. In-hospital management of patients with atrial flutter. Am Heart J 2010; 159: 370–376.
9. Pedersen OD, Bagger H, Keller N, Marchant B, Kober L, Torp-Pedersen C. Efficacy of Dofetilide in the Treatment of Atrial Fibrillation-Flutter in Patients With Reduced Left Ventricular Function: A Danish Investigations of Arrhythmia and Mortality ON Dofetilide (DIAMOND) Substudy. Circulation 2001; 104: 292–296.
10. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, Reddy M, Jaïs P, Themistoclakis S, Dello Russo A, Casella M, Pelargonio G, Calabrò S, Barbanti P, Avezum A, Sigamani A, Damasceno A, Damiano R, Skogen J, Hango S, Rossillo A, Forleo G, Cappato R, Hao S, Rossillo A, Forleo G, Tondo C, Burkhardt JD, Haissaguerre M, Natale A. Ablation Versus Amiodarone for Treatment of Persistent Atrial Fibrillation in Patients With Congestive Heart Failure and an Implanted Device: Results From the AATAC Multicenter Randomized Trial. Circulation 2016; 133: 1637–1644.
11. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaan L, Merkely B, Pociusbalov E, Sanders P, Proff J, Schunkert H, Christ H, Vogt J, Bänsch D. Catheter Ablation for Atrial Fibrillation with Heart Failure. New EnglandJ Med 2018; 378: 417–427.
12. Tripathi B, Arora S, Mishra A, Kundoor VR, Lahewala S, Kumar V, Shah M, Lakhani D, Shah H, Patel NV, Patel NJ, Dave M, Deshmukh A, Sudhakar S, Gopalan R. Short-term outcomes of atrial flutter ablation:TRIPATHI et al. J Cardiovas Electrophysiol 2017; 28: 1275–1284.
13. Pérez FJ, Schubert CM, Parvez B, Pathak V, Ellenbogen KA, Wood MA. Long-term outcomes after catheter ablation of cavo-tricuspid isthmus dependent atrial flutter: a meta-analysis. Circ Arrhythm Electrophysiol 2009; 2: 393–401.
14. Schmidt M, Ulrichsen SP, Pedersen L, Bøtker HE, Nielsen JC, Sørensen HT. 30-year nationwide trends in incidence of atrial fibrillation in Denmark and associated 5-year risk of heart failure, stroke, and death. Int J Cardiol 2016; 225: 30–36.
15. Gula LJ, Redfearn DP, Jenkyn KB, Allen B, Skanes AC, Leong-Sit P, Shariff SZ. Elevated Incidence of Atrial Fibrillation and Stroke in Patients With Atrial Flutter—A Population-Based Study. Can J Cardiol 2018; 34: 774–783.
16. Lin Y-S, Chen Y-L, Chen T-H, Lin M-S, Liu C-H, Yang T-Y, Chung C-M, Chen M-C. Comparison of Clinical Outcomes Among Patients With Atrial Fibrillation or Atrial Flutter Stratified by CHA2DS2-VASc Score. JAMA New Open 2018; 1: e180941.
17. Ganesan AN, Shipp NJ, Brooks AG, Kuklik P, Lau DH, Lim HS, Sullivan T, Roberts-Thomson KC, Sanders P. Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis. J Am Heart Assoc 2013; 2: e004549.
18. Dewland TA, Glidden DV, Marcus GM. Healthcare Utilization and Clinical Outcomes after Catheter Ablation of Atrial Flutter. Sowari AA, ed. PLoS ONE 2014; 9: e100509.
19. Cabanas-Grandío P, García-Seara J, Gude F, Martínez-Sande JL, Fernández-López XA, González-Juanatey JR. Assessment of long-term quality of life after cavitricuspid isthmus ablation for

Supporting information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Studies of heart failure in atrial flutter or fibrillation as combined diagnosis.

Table S2. Characteristics of studies reporting outcomes of patients with HF and concurrent AF/AFL.

DOI: 10.1002/ehf2.13526
22. Paydak H, Kall JG, Burke MC, Rubenstein D, Kopp DE, Verdino RJ, Wilber DJ. Atrial Fibrillation After Radiofrequency Ablation of Type I Atrial Flutter: Time to Onset, Determinants, and Clinical Course. Circulation 1998; 98: 315–322.

23. Huang HD, Waks JW, Contreras-Valdes FM, Haftfree C, Buxton AE, Josephson ME. Incidence and risk factors for spontaneous heart failure after catheter ablation of atrial fibrillation and atrial flutter. Europace 2016; 18: 521–530.

24. Almeida ED, Guimarães RB, Stephan LS, Medeiros AK, Foltz K, Santanna RT, Pires LM, Kruse ML, de Lima GG, Leiria TLL. Clinical Differences between Subtypes of Atrial Fibrillation and Flutter: Cross-Sectional Registry of 407 Patients. Arq Bras Cardiol 2015; 105: 3–10.

25. Almeida ED, Ley ALG, de Lima GG, Saffi MAL, Leiria TLL. Prognostic impact of atrial fibrillation and flutter temporal pattern on anticoagulation and return visits to the emergency department: A historic cohort of 1112 patients. J Electrocardiol 2019; 56: 109–114.

26. Naccarelli GV, Varkey H, Lin J, Schulman KL. Increasing Prevalence of Atrial Fibrillation and Flutter among Patients With Type 2 Diabetes Mellitus: Insights From the DECLARE-TIMI 58 Trial. Circulation 2020; 141: 1227–1234.

27. Naccarelli GV, Panaccio MP, Cummins G, Tu N. CHADS2 and CHA2DS2-VASC Risk Factors to Predict First Cardiovascular Hospitalization Among Atrial Fibrillation/Flutter Patients. Am J Cardiol 2017; 119: 2242–2246.

28. Naccarelli GV, Johnston SS, Lin J, Patel PP. Rates and implications for hospitalization of patients =65 years of age with atrial fibrillation/flutter. Am J Cardiol 2012; 109: 543–549.

29. Naccarelli GV, Johnston SS, Lin J, Patel PP, Schulman KL. Cost Burden of Cardiovascular Hospitalization and Mortality in ATHENA-Like Patients With Atrial Fibrillation/Flutter in the United States. Clin Cardiol 2010; 33: 270–279.

30. Wong YW, Thomas L, Sun J-L, McMurray JJV, Krum H, Hernandez AF, McMurray JJV, Krum H, Hernandez AF, McMurray JJV, Krum H, Hernandez AF. Atrial Fibrillation/Atrial Flutter in the United States. Heart Lung Circ 2010; 19: 106–115.

31. Amin AN, Jhaveri M, Lin J. Incremental cost burden to US healthcare payers of atrial fibrillation/flutter patients with additional risk factors. Adv Ther 2011; 28: 907–926.

32. Scheuermeier FX, Pourvall R, Rowe BH, Grafstein E, Heslop C, MacPhee J, McGrath L, Ward J, Heilborn B, Christenson J. Emergency Department Patients With Atrial Fibrillation or Flutter and an Acute Underlying Medical Illness May Not Benefit From Attempts to Control Rate or Rhythm. Ann Emerg Med 2015; 65: 511–522.e2.

33. Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Budaj A, Kiss RG, Padilla F, Gause-Nilsson I, Langkilde AM, Raz I, Sabatine MS, Wiviott SD. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Results From the DECLARE-TIMI 58 Trial. Circulation 2020; 141: 1227–1234.

34. Brembilla-Perrot B, Ferreira JP, Manenti V, Sellal JM, Olivier A, Vilmien T, Beurrer D, De Chilou C, Louis P, Brembilla A, Juilière Y, Girerd N. Predictors and prognostic significance of tachycardiomypathy: insights from a cohort of 1269 patients undergoing atrial flutter ablation: Atrial flutter-related tachycardiomypathy. Eur J Heart Fail 2016; 18: 394–401.
failure with preserved ejection fraction. *Eur J Heart Fail* 2014; 16: 992–1001.

50. Sulaiman K, Panduranga P, Al-Zakwani I, Alsheikh-Ali AA, AllHabib KF, Al-Suwaidi J, Al-Mahmeed W, AlFaleh H, Elasar F, Al-Motareeb A, Ridha M, Bulbanat B, Al-Jarallah M, Bazargani N, Aasa N, Amin H. Clinical characteristics, management, and outcomes of acute heart failure patients: observations from the Gulf acute heart failure registry (Gulf CARE). *Eur J Heart Fail* 2015; 17: 374–384.

51. Sasaki N, Lee J, Park S, Umegaki T, Kunisawa S, Otsbou T, Ikai H, Imanaka Y. Development and validation of an Acute Heart Failure-Specific Mortality Predictive Model Based on Administrative Data. *Can J Cardiol* 2013; 29: 1055–1060.

52. Sulaiman S, Yousef N, Benjamin MM, Sundararajan S, Wingert R, Wingert M, Mohammed A, Jahangir A. Burden of arrhythmia and electrophysiological procedures in alcoholic cardiomyopathy hospitalizations. *Int J Cardiol* 2020; 284: 63–70.

53. Dai S, Walsh P, Wielgoz A, Gurevich Y, Bancej C, Morrison H. Comorbidities and Mortality Associated With Hospitalized Heart Failure in Canada. *Can J Cardiol* 2012; 28: 74–79.

54. Patel RB, Vaduganathan M, Rikhi A, Chakraborty H, Greente SJ, Hernandez AF, Felker GM, Redfield MM, Butler J, Shah SJ. History of Atrial Fibrillation and Trajectory of Decongestion in Acute Heart Failure. *JACC Heart Fail* 2019; 7: 47–55.

55. Greene SJ, Fonarow GC, Solomon SD, Subacius HP, Ambrosy AP, Vaduganathan M, Maggioni AP, Böhm M, Lewis EF, Zannad F, Butler J, Gheorghiade M, the ASTRONAUT Investigators and Coordinators. Influence of atrial fibrillation on post-discharge na-triuretic peptide trajectory and clinical outcomes among patients hospitalized for heart failure: insights from the ASTRONAUT trial: Atrial fibrillation and natriuretic peptide trajectory. *Eur J Heart Fail* 2017; 19: 552–562.

56. Mentz RJ, Chung MJ, Gheorghiade M, Pang PS, Kwansy MJ, Ambrosy AP, Vaduganathan M, O'Connor CM, Lewis EF, Zannad F, Butler J, Gheorghiade M, THE OPTIME-CHF investigators. The impact of arrhythmias in acute heart failure. *J Card Fail* 2004; 10: 279–284.

57. Ibrahim NE, Song Y, Cannon CP, Doros G, Russo P, Pomirakis A, Alexanian C, Januzzi JL. Heart failure with mid-range ejection fraction: characterization of patients from the PINNACLE Registry®. *ESC Heart Fail* 2019; 6: 784–792.

58. Gurwit JL, Magid DJ, Smith DH, Goldberg RJ, McManus DO, Allen LA, Saczynski JS, Thorp ML, Hsu G, Sung SH, Go AS. Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction. *Am J Med* 2013; 126: 393–400.

59. Zambito PE, Talreja A, Gundewar S, Fisher J, Ferrick K, Gross J, Kim S, Palma EC. Severe Left Ventricular Systolic Dysfunction Increases Atrial Fibrillation After Ablation of Atrial Flutter. *Pacing Clin Electrophysiol* 2005; 28: S.

60. Kalscheur MM, Saxon LA, Lee BK, Steinbeck CM, McEl C, Buhr KA. DeMees DJ, Bristow MR, Singh SN. Outcomes of cardiac resynchronization therapy in patients with intermittent atrial fibrillation or atrial flutter in the COMPANION trial. *Heart Rhythm* 2017; 14: 858–865.

61. Wedberg K, Zannad F, McMurray J, Krum H, van Gelderhuisen DJ, Shi H, Vincent J, Pitt B. Eplerenone and Atrial Fibrillation in Mild Systolic Heart Failure. *J Am Coll Cardiol* 2012; 59: 1598–1603.

62. Vermees E. Enalapril decreases the Incidence of Atrial Fibrillation in Patients With Left Ventricular Dysfunction: Insight From the Studies Of Left Ventricular Dysfunction (SOLVD) Trials. *Circulation* 2003; 107: 2926–2931.

63. Rodriguez Y, Althouse AD, Adelstein EC, Liu S, Mackey RH, Magid DJ, Sugiura R, Hagiwara N, Kasauni H. Effect of Low-Dose Amiodarone on Atrial Fibrillation or Flutter in Japanese Patients With Heart Failure. *Circ J* 2002; 66: 600–600.

64. Santini M, Ferrari GMD, Pandozzi C, Alboni P, Capucci A, Desorti M, Gaita F, Lombardi F, Maggioni AP, Mugeli A, Salerno-Urriarte JA, Sermasi S, Schwartz PJ. Atrial fibrillation requiring urgent medical care. Approach and outcome in the various departments of admission. Data from the atrial Fibrillation/flutter Italian Registry (FIRE). *atrial fibrillation* 2004; 5: 9.

65. Zhang H, Yang Z, Zhu J, Song M, Liu Y, Zhao N, Yu P, Zhang H, He Q, Gu X. Baseline characteristics and management of patients with atrial fibrillation/flutter in the emergency department: results of a prospective, multicentre registry in China. *Intern Med J* 2014; 44: 742–748.

66. Barbic D, Dettwe C, Harris D, Stenstrom R, Grafein E, Wu C, Vadeanu C, Heilbron B, Haaf J, Tung S, Kalla D, Marsden J, Christenson J, Scheurermeier F. Implementation of an emergency department atrial fibrillation and flutter pathway improves rates of appropriate anticoagulation, reduces length of stay and thirty-day revisit rates for congestive heart failure. *CJEM* 2018; 20: 392–400.

67. Gopinathannair R, Etheredge SP, Marchlinski FE, Spinale FG, Lakireddy D, Olsansky B. Arrhythmia-Induced Cardiomyopathies. *J Am Coll Cardiol* 2015; 66: 1714–1728.

68. Writing Group MembersMozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Hostman MD, Isasi CR, Jimenez MC, Judd SE, Kissel BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Mintner P, Mussolino ME, Nasir K,
Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodríguez CJ, Rosamond W, Sorel PE, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association. Circulation 2016; 133: e38–e360.

77. Conrad N, Judge A, Tran J, Mohseni H, Hegeduck D, Crespillo AP, Allison M, Hemingway H, Cleland JG, McMurray JJV, Rahimi K. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 2018; 391: 572–580.

78. Chu AF, Zado E, Marchlinski FE. Atrial Arrhythmias in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia and Ventricular Tachycardia. Am J Cardiol 2010; 106: 720–722.

79. Camm CF, James CA, Tichnell C, Murray B, Bhonsale A, te Riele AS, Judge DP, Tandri H, Calkins H. Prevalence of atrial arrhythmias in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart Rhythm 2013; 10: 1661–1668.

80. Wu L, Guo J, Zheng L, Chen G, Ding L, Qiao Y, Sun W, Yao Y, Zhang S. Atrial Remodeling and Atrial Tachyarrhythmias in Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol 2016; 118: 750–753.

81. Cardona-Guarrache R, Åström-Aneq M, Oesterle A, Asirvatham R, Svetlichnaya J, Marcus GM, Gerstenfeld EP, Klein L, Scheinman MM. Atrial arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy: Prevalence, echocardiographic predictors, and treatment. J Cardiovasc Electrophysiol 2019; 30: 1801–1810.

82. Malhi N, Hawkins NM, Andrade JG, Krähn AD, Deyell MW. Catheter ablation of atrial fibrillation in heart failure with reduced ejection fraction: MALHI et al. J Cardiovasc Electrophysiol 2018; 29: 1049–1058.

83. Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA, Voskoboinik A, Sugumar H, Lockwood SM, Stokes MB, Pathik B, Nalliah CJ, Wong GR, Azzopardi SM, Gutman SJ, Lee G, Layland J, Mariani JA, Ling L, Kalman JM, Kistler PM. Catheter Ablation Versus Medical Rate Control in Atrial Fibrillation and Systolic Dysfunction. J Am Coll Cardiol 2017; 70: 1949–1961.

84. Khan MN, Jais P, Cummings J, Di Biase L, Sanders P, Martin DO, Kautzner J, Hao S, Themistoclakis S, Fanelli R, Potenza D, Massaro R, Wazni O, Schweikert R, Saliba W, Wang P, Al-Ahmad A, Beheiry S, Santarelli P, Starling RC, Russo AD, Pelargonio G, Brachmann J, Schibgilla V, Bonso A, Casella M, Raviele A, Haïssaguerre M, Natale A. Pulmonary-Vein Isolation for Atrial Fibrillation in Patients with Heart Failure. New England J Med 2008; 359: 1778–1785.

85. Williams EA Cryoballoon Ablation as First Line Treatment of Atrial Flutter (CRAFT). ClinicalTrials.gov. [Internet]. Bethesda (MD): U.S. National Library of Medicine. 2017. https://clinicaltrials.gov/ct2/show/NCT03401099 (3 June 2021).

86. Rix TA, Riahi S, Overvad K, Lundbye-Christensen S, Schmidt EB, Joensen AM. Validity of the diagnoses atrial fibrillation and atrial flutter in a Danish patient registry. Scand Cardiovasc J 2012; 46: 149–153.