Strong impact of natural-selection–free heterogeneity in genetics of age-related phenotypes

Alexander M. Kulminski¹, Jian Huang¹, Yury Loika¹, Konstantin G. Arbeev¹, Olivia Bagley¹, Arseniy Yashkin¹, Matt Duan¹, Irina Culminskaya¹

¹Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA

Correspondence to: Alexander M. Kulminski; email: Alexander.Kulminski@duke.edu

Keywords: genome-wide association studies, pleiotropy, age-related phenotypes, antagonistic genetic heterogeneity, aging, health span, life span

Received: December 12, 2017 Accepted: March 24, 2018 Published: March 29, 2018

Copyright: Kulminski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

A conceptual difficulty in genetics of age-related phenotypes that make individuals vulnerable to disease in post-reproductive life is genetic heterogeneity attributed to an undefined role of evolution in establishing their molecular mechanisms. Here, we performed univariate and pleiotropic genome-wide meta-analyses of 20 age-related phenotypes leveraging longitudinal information in a sample of 33,431 individuals and dealing with the natural-selection–free genetic heterogeneity. We identified 142 non-proxy single nucleotide polymorphisms (SNPs) with phenotype-specific (18 SNPs) and pleiotropic (124 SNPs) associations at genome-wide level. Univariate meta-analysis identified two novel (11.1%) and replicated 16 SNPs whereas pleiotropic meta-analysis identified 115 novel (92.7%) and nine replicated SNPs. Pleiotropic associations for most novel (93.9%) and all replicated SNPs were strongly impacted by the natural-selection–free genetic heterogeneity in its unconventional form of antagonistic heterogeneity, implying antagonistic directions of genetic effects for directly correlated phenotypes. Our results show that the common genome-wide approach is well adapted to handle homogeneous univariate associations within Mendelian framework whereas most associations with age-related phenotypes are more complex and well beyond that framework. Dissecting the natural-selection–free genetic heterogeneity is critical for gaining insights into genetics of age-related phenotypes and has substantial and unexplored yet potential for improving efficiency of genome-wide analysis.

INTRODUCTION

Genome-wide association studies (GWAS) are a powerful tool for hypothesis-free analysis of genetic predisposition to various phenotypes. Historically, GWAS were built within the “common disease – common genetic variant” concept following the framework of medical genetics. The underlying hypothesis in this framework is that there is a “true” or causal genetic effect on a phenotype of interest [1, 2]. This approach in GWAS has been supported by successful discovery of causal genetic mutations for Mendelian disorders [3]. Essentially the same approach is pursued in GWAS of complex phenotypes, which do not follow clear pattern of Mendelian inheritance [4]. Extension of the framework of medical genetics of hereditary disorders to the complex non-Mendelian phenotypes relies on the hypothesis that they can have a genetic component. This hypothesis is supported by the concept of heritability, with significant heritability interpreted as indication of “pure” or “true” genetic component in a trait [2]. The concept of heritability, introduced in breeding experiments to improve crop yield, requires, however, controlled and fixed environment [5, 6] that is strongly violated in human populations.
The problem becomes even more challenging for age-related phenotypes, i.e., phenotypes that make individuals vulnerable to disease in post-reproductive life. A conceptual difficulty in genetics of age-related phenotypes is the natural-selection–free genetic heterogeneity attributed to an undefined role of evolution in establishing their molecular mechanisms [7, 8]. This problem is complicated by recent changes in human life expectancy [9] and the fitness landscape [10-13]. Accordingly, in evolutionary biology, age-related phenotypes are viewed as the results of indirect mechanisms (“side effects”) such as co-evolution with fast-evolving pathogens, mismatch with environments, reproductive success at the expense of health, trade-offs that leave every trait suboptimal, defenses and their special costs, etc. [7]. The concept of heritability in the evolutionary framework for age-related phenotypes becomes even more problematic because the estimates of heritability change as environment changes [5, 6] and significant heritability does not imply that the same genetic variant carry the same risk in different population groups, even of the same ancestry [11].

The natural-selection–free genetic heterogeneity has not been addressed in mainstream GWAS. This heterogeneity implies that differences in genetic predisposition to age-related phenotypes across different population groups is biologically motivated. Accordingly, different, even antagonistic, effects of the same allele on the same phenotype in different population groups are biologically plausible [14, 15]. Another challenge in the evolutionary framework is that genetic variants predisposing to a phenotype may not necessarily predispose to another, even causally related, phenotype [16, 17] or such genetic variants can predispose to seemingly unrelated phenotypes [18-20].

Here, we examine genetic predisposition to age-related phenotypes following the concept of an undefined role of evolution in establishing their molecular mechanisms. We performed the univariate and pleiotropic GWAS meta-analyses of 20 age-related phenotypes in the sample of 33,431 Caucasians from five longitudinal studies. We identified 142 non-proxy (defined as linkage disequilibrium [LD] r²<70%) single nucleotide polymorphisms (SNPs) with genome-wide (GW) significance (p<GW=5×10⁻⁸). They include two novel and 16 previously reported SNPs attained GW significance in univariate meta-analysis of individual phenotypes, and 115 novel and nine previously reported SNPs attained GW significance in pleiotropic meta-analysis. We show that pleiotropic associations for most novel SNPs, 93.9% (108 of 115 SNPs), and for all replicated SNPs were strongly affected by the natural-selection–free genetic heterogeneity in a rarely recognized form of antagonistic heterogeneity, implying antagonistic directions of genetic effects for directly correlated phenotypes.

RESULTS

Study overview

We performed two-stage univariate and pleiotropic meta-analyses of genetic predisposition to 20 weakly-to-modestly correlated age-related phenotypes (Supplementary Figure 1). The data were drawn from five longitudinal studies for 33,431 men and women combined, who identified themselves as of Caucasian ancestry. In stage 1, we first performed simplified univariate GWAS of each phenotype in each cohort separately using plink software [21]. Then, these results were prioritized and top 1,000 promising SNPs were selected for more comprehensive analysis leveraging information on repeated measurements for quantitative markers and timing of the risk outcomes (Tables 1 and Supplementary Table 1). In stage 2, we performed univariate meta-analysis to combine statistics for these 1,000 selected SNPs across cohorts and pleiotropic meta-analysis to combine such statistics across phenotypes. These analyses addressed the natural-selection–free genetic heterogeneity in genetic predisposition to age-related phenotypes (see the Introduction) by performing five meta-tests (Fig. 1) (details in Methods).

Univariate meta-analysis

Using the Fisher test and a fixed-effect meta-test (Fig. 1, pathway 1a), we identified two novel (see Methods) non-proxy SNPs (defined as LD r²<70%, actual LD for the reported SNPs in the same locus ranged r²=1% to 64%, Supplementary Table 2) associated at GW level with HC (rs6745983, βmeta=0.077, pmeta=4.2×10⁻⁸) and BG (rs10885409, βmeta=0.672, pmeta=1.9×10⁻⁸) (Supplementary Table 3). We also replicated (p<GW=24 associations, primarily with lipids (21 associations), for 16 SNPs in or nearby (within ±100 Kb flanking region for the index SNP) 11 protein coding genes (Supplementary Table 3). Seven associations were replicated in the LPL-gene locus. P-values were smaller for the meta-test than for the Fisher test (pmeta>pFisher) for all associations except for the associations of rs780094 with BG (pFisher=2.7×10⁻⁸ vs. pFisher =2.4×10⁻¹¹) and rs261332 with TC (pFisher=5.1×10⁻⁸ vs. pFisher =2.7×10⁻⁸). The Fisher test benefited the meta-analysis because it disregarded strong heterogeneity in the effect sizes across cohorts measured by the heterogeneity coefficient I², i.e., I²=87.8% for rs780094 and I²=82.2% for rs261332, as supported by significant inverse correlation of the ratio log₁₀(pmeta)/log₁₀(pFisher) with I², rPearson=-0.634, p=5.0×10⁻⁴.
Table 1. Basic characteristics of cohorts included in the analyses.

Cohort	Sample size	Number of visits	Age (SD), years	Birth dates (range)	Quantitative markers	Risk outcomes
ARIC	9,612	4	54.3 (5.7)	1921-1944	All	All except AD
CHS	3,182	10	72.4 (5.4)	1885-1925	All	All
FHS	8,628	28*	37.8 (9.3)	1985-1980	All	All
MESA	2,527	5	64.3 (10.2)	1917-1957	All	All except cancer and AD
HRS	9,482	2	58.2 (9.1)	1905-1974	All except creatinine, FVC, HC, HR, and TG	All except AF

Cohort: Atherosclerosis Risk in Communities Study (ARIC); Cardiovascular Health Study (CHS); Framingham Heart Study (FHS), the Multi-Ethnic Study of Atherosclerosis (MESA), and Health and Retirement Study (HRS).

Age is given at baseline; standard deviation (SD).

*Number of visits in the FHS original cohort, offspring and 3rd generation cohort are 28, 8, and 2, respectively.

Quantitative markers: blood glucose (BG); body mass index (BMI); C-reactive protein (CRP); creatinine; diastolic blood pressure (DBP); forced vital capacity (FVC); heart rate (HR); hematocrit (HC); high-density lipoprotein cholesterol (HDL-C); systolic blood pressure (SBP); total cholesterol (TC); and triglycerides (TG).

Risk outcomes: Alzheimer’s disease and related dementias (AD); atrial fibrillation (AF); cancer; coronary heart disease (CHD); diabetes mellitus (DM); death; heart failure (HF); and stroke.

Additional details are provided in Supplementary Table 1.

Figure 1. Scheme of univariate and pleiotropic meta-analyses in stage 2. (A) Statistics from stage 1 univariate GWAS of 20 phenotypes in five cohorts denoted $\text{P}i\text{C}_j$, $i \in \{1, 20\}$ and $j \in \{1, 5\}$. (B) Univariate statistics from the meta-analysis across cohorts using the fixed-effects meta-test (PiFM) and Fisher test (PiFC). (C) Statistics from the pleiotropic meta-analysis across phenotypes in cohort j for: (i) omnibus tests with correlation matrix for phenotypes Σ^p_{j} (OpCj) and effect statistics Σ^p_{j} (ObCj) and (ii) Fisher test (FpCj). (D) Meta-statistics from Fisher test across cohorts for the results in (C) (OpFC, ObFC, and FpFC). (E) Meta-statistics across phenotypes for the results in (B) from (i) meta-test across cohorts and omnibus test across phenotypes with correlation matrix for phenotypes Σ^p_{m} (MOp), (ii) meta-test across cohorts and omnibus test across phenotypes with correlation matrix for effect statistics Σ^p_{m} (MOB), (iii) meta-test across cohorts and Fisher test across phenotypes (MFp), and (iv) Fisher test across cohorts and Fisher test across phenotypes (FcFp).

Pathway 1: meta-analysis combining statistics across cohorts (pathway 1a) and pleiotropic meta-analysis across phenotypes (pathway 1b). Pathway 2: meta-analysis combining statistics across phenotypes (pathway 2a) and cohorts (pathway 2b).
Significance of the association of rs2155216 with TG in our modest sample of 33,431 individuals \((p_{\text{meta}}=9.4\times10^{-14}) \) was about the same as previously reported \((p_{\text{grasp}}=1.6\times10^{-14}) \) in a sample of 140,059 individuals [22]. These \(p \)-values indicate improvement of the efficiency of the analysis that can be quantified by the ratio of the \(\log_{10}(p\text{-value}) \) to the sample size [23] yielding 4-fold \((\log_{10}(9.4\times10^{-14})/140,059/\log_{10}(1.6\times10^{-14})/33,431) \) larger efficiency in our study than in [22]. This improvement was partly achieved by leveraging longitudinal information on repeated measurements that resulted in smaller standard errors (Supplementary Figure 2).

Pleiotropic meta-analysis

We used four tests in pathway 1 and three tests in pathway 2 (Fig. 1) to examine pleiotropy in the domains of 12 quantitative markers, 8 diseases and death, and all 20 phenotypes (Table 1). Pleiotropic associations were defined as at least one test showing GW significance (see Methods).

This analysis identified 115 novel pleiotropic SNPs in or nearby (within ±100 Kb flanking region for the index SNP) 84 protein coding genes (Table 2) and replicated nine SNPs (Supplementary Table 4) with \(p_{\text{pleio}}<p_{\text{GW}} \) by combining associations with multiple phenotypes that individually did not attain GW significance in univariate meta-analysis \((p_{\text{uni}}<p_{\text{GW}}) \) (Supplementary Table 5). SNPs were identified as novel if they did not attain GW significance in our pleiotropic meta-analysis of the results collected in GRASP for the index SNPs or for flanking SNPs, if no results for 20 selected phenotypes (Figure 1) were reported in GRASP for the index SNPs (see Methods). Specifically, of 115 SNPs, 31 were not reported in GRASP for the selected 20 phenotypes. For them, we identified multiple SNPs within ±1Mb flanking region in GRASP. For the flanking SNPs, which were in the strongest LD to the index SNPs, no GW significant pleiotropic associations were identified (Table 3). Nine flanking SNPs showed GW significant pleiotropic effects, which were independent of the pleiotropic effects for the index SNPs. Of 115 novel SNPs, 29 SNPs attained smaller \(p \)-value in pathway 1 and the remaining 86 SNPs in pathway 2.

ID	Gene(s)1	SNP2	Chr	Location, base pairs	EA	EAF	Domain	\(N_{\text{p}} \)	Pathway Meta \(p \)-values	Group	\(P_{\text{GRASP}} \)	\(N_{G} \)				
1	CLCN6	rs17376328	1	11,816,605	A 0.051	12M	3	2	6.89E-15	1.21E-05	2.83E-07	HP 3.08E-07	3			
2	NKAIN1-SNRNP40/ ZCCHC17*	rs7549339	1	31,249,319	A 0.218	12M	5	2	4.89E-10	3.69E-15	2.74E-06	HP/HB 3.33E-01	1			
3	TINAGL1-SEINC2*	rs16834550	1	31,550,916	A 0.125	12M	8	2	4.17E-10	5.48E-09	1.04E-08	M 0				
4	CSMD2	rs10914845	1	34,022,514	C 0.499	20P	3	1	2.23E-08	1.73E-03	1.41E-08	HP 3.20E-01	1			
5		rs7551194	1	38,680,229	A 0.249	12M	4	1	2.55E-08	3.99E-02	2.16E-04	3.92E-02	HP 1.66E-01	2		
6	AKIRIN1/ NDUFS5-5ACF1*	rs7554809	1	39,038,206	A 0.168	12M	3	2	2.55E-08	4.16E-05	1.30E-03	HP 6.04E-02	2			
7		rs778405	1	56,237,741	A 0.493	12M	2	2	1.38E-11	2.34E-05	4.20E-08	HP 2.98E-01	1			
8	PTGER3	rs1327464	1	70,900,555	A 0.339	12M	5	1	2.37E-16	1.17E-03	7.39E-07	2.04E-05	HP 3.14E-01	1		
9		rs17105569	1	80,872,915	A 0.136	12M	4	1	1.80E-09	6.06E-03	2.96E-04	1.36E-02	HP 1.62E-01	1		
10	RNPC3/ AMY2B-AMY2A*	rs487151	1	103,581,040	T 0.365	20P	5	2	1.04E-09	5.48E-04	1.45E-02	HP 3.23E-01	1			
11	NTNG1	rs7542677	1	107,319,431	T 0.1	12M	5	2	2.99E-09	1.94E-06	6.08E-04	HP 1.03E-02	2			
12	FCRL4-FCRL3*	rs1969742	1	115,643,547	C 0.317	12M	4	2	1.58E-12	1.60E-08	4.71E-05	HP/HB 0	0			
13	OLFML2B	rs2490420	1	161,994,746	G 0.3	20P	5	2	2.49E-08	1.02E-02	2.92E-03	HP 3.15E-01	1			
14	PRRX1	rs9426908	1	170,674,846	C 0.069	20P	7	2	5.97E-07	7.58E-10	2.24E-05	HB 3.09E-01	1			
15	KCNH1	rs1934628	1	210,739,125	G 0.164	12M	5	2	8.52E-10	1.98E-07	1.78E-05	HP 0				
16	ESRRG	rs1436879	1	216,909,043	A 0.041	20P	5	2	1.68E-07	8.21E-09	6.72E-07	M 2.91E-01	1			
17	GREB1	rs7596162	2	11,604,106	C 0.196	12M	5	1	3.83E-08	2.03E-04	3.02E-06	9.25E-04	M 3.18E-01	1		
18	SDCC1-LAPTM4A*	rs11685359	2	20,149,672	T 0.137	12M	3	1	2.80E-09	4.04E-03	6.86E-06	7.49E-04	HP 3.15E-01	1		
19	ADCY3-DNAJC27*	rs10182181	2	24,927,427	C 0.472	12M	3	2	8.48E-10	3.73E-06	4.44E-05	HP 3.41E-05	3			
Locus	rsID	Chromosome	Position	Genotype	Minor Allele Frequency	P-value (case-control)	OR (95% CI)	Haplotype	Minor Haplotype Frequency							
------------	----------	------------	----------	----------	------------------------	------------------------	-----------	-----------	--------------------------							
CAPN13	rs10173959	2	30,806,079	A	0.297	8.25E-11	5.43E-04	4.89E-05	HP	1.66E-02						
CAPN13	rs10176484	2	30,806,230	A	0.304	6.03E-10	1.49E-04	6.44E-05	HP	1.88E-02						
THADA	rs17334919	2	43,480,246	A	0.1	2.89E-14	3.96E-10	5.19E-07	HP/HP	1.17E-04						
EPAS1	rs10191091	2	46,346,071	G	0.498	1.48E-08	2.13E-11	5.63E-08	HP	1.43E-01						
ANTXR1	rs4255990	2	69,046,532	C	0.062	1.02E-11	1.67E-07	7.89E-10	M	8.35E-01						
DNAH6	rs11889456	2	84,619,559	C	0.077	8.17E-12	7.78E-05	1.11E-06	HP	1.65E-01						
MGAT5	rs755503	2	134,386,883	A	0.427	5.89E-11	2.13E-04	1.75E-04	HP	0						
TMEM163	rs503562	2	134,502,500	G	0.474	9.26E-21	1.37E-14	7.52E-06	HP/HP	2.62E-02						
ANTXR1	rs4255990	2	69,046,532	C	0.062	1.02E-11	1.67E-07	7.89E-10	M	8.35E-01						
THADA	rs17334919	2	43,480,246	A	0.1	2.89E-14	3.96E-10	5.19E-07	HP/HP	1.17E-04						
EPAS1	rs10191091	2	46,346,071	G	0.498	1.48E-08	2.13E-11	5.63E-08	HP	1.43E-01						
ANTXR1	rs4255990	2	69,046,532	C	0.062	1.02E-11	1.67E-07	7.89E-10	M	8.35E-01						
Rank	Gene	rsID	Chromosome	Position	allele	MAF	Z-score	p-value	FDR	HP	Trait	Z-score	p-value	FDR	HP	Trait
------	--------	---------	------------	----------	--------	-----	---------	-----------	-------------------	---------	-------	---------	-----------	-------------------	---------	-------
63	VGF	rs10953325	7	101,162,227	C	0.401	20P	5	2	5.91E-10	4.37E-07	1.69E-07	HP	0		
64	TSGA13	rs1038638	7	130,676,252	C	0.461	20P	5	1	4.01E-08	9.40E-02	3.28E-06	HP	0		
65	CNTNAP2	rs700278	7	146,492,560	T	0.458	12M	3	2	4.73E-09	1.26E-05	3.99E-03	HP	0		
66	BIN3-EGR3*	rs3893402	7	22,679,688	G	0.321	20P	7	2	8.35E-09	8.09E-04	2.20E-05	HP	0		
67	RP1	rs10103201	8	71,006,188	T	0.493	16M	6	1	3.94E-11	9.84E-05	4.10E-06	HP	0		
68	CNTNAP2	rs7815478	7	19,653,532	G	0.294	20P	6	1	7.37E-09	3.01E-03	1.15E-04	HP	0		
69	TSGA13	rs1038638	7	130,676,252	C	0.461	20P	5	1	4.01E-08	9.40E-02	3.28E-06	HP	0		
70	XKR9	rs2732091	7	115,825,666	A	0.134	20P	8	1	6.20E-09	4.29E-05	3.28E-06	HP	0		
71	SLC24A2	rs7815478	7	19,653,532	G	0.294	20P	6	1	7.37E-09	3.01E-03	1.15E-04	HP	0		
72	TSGA13	rs1038638	7	130,676,252	C	0.461	20P	5	1	4.01E-08	9.40E-02	3.28E-06	HP	0		
73	FBP2	rs2987900	7	115,825,666	A	0.134	20P	8	1	6.20E-09	4.29E-05	3.28E-06	HP	0		
74	ABCA1	rs4149313	8	115,825,666	A	0.134	20P	8	1	6.20E-09	4.29E-05	3.28E-06	HP	0		
75	ABCA1	rs10820738	8	115,825,666	A	0.134	20P	8	1	6.20E-09	4.29E-05	3.28E-06	HP	0		
76	BIN3-EGR3*	rs3893402	7	22,679,688	G	0.321	20P	7	2	8.35E-09	8.09E-04	2.20E-05	HP	0		
77	CNTNAP2	rs7815478	7	19,653,532	G	0.294	20P	6	1	7.37E-09	3.01E-03	1.15E-04	HP	0		
All SNPs attained GW significant associations either in the domain of 12 markers (76 of 115 novel SNPs and seven of nine replicated SNPs) or all 20 phenotypes (39 novel and two replicated SNPs). No associations with $p < p_{GW}$ were identified in the disease/death domain (Supplementary Table 6). The 115 novel and nine replicated SNPs were associated with up to 10 phenotypes at $p < 0.05$ (Table 2 and Supplementary Table 4). Figure 2 shows 39 novel pleiotropic SNPs attained GW significance in the domain of 20 phenotypes.

Because $p_{pleio} < p_{GW} < p_{uni}$ for pleiotropic SNPs, this inequality automatically validates pleiotropy for 29 SNPs in pathway 1, as it implies that pleiotropic statistics improved to attain $p_{pleio} < p_{GW}$ by pooling contributions from multiple phenotypes with $p_{uni} > p_{GW}$ (Supplementary Table 5). Likewise, GW significant pleiotropic associations in meta-analysis in pathway 2 were automatically validated for 37 SNPs with $p_{pleio} > p_{GW}$ in each individual cohort (i.e., in pathway 2a) as it implies that pleiotropic statistics improved to attain $p_{pleio} > p_{GW}$ in meta-analysis of individual cohorts. For the remaining 49 SNPs in pathway 2, we observed $p_{pleio} > p_{GW}$ in at least one cohort. For five of these 49 SNPs, pleiotropic associations did not attain Bonferroni adjusted significance level, $p < 0.05/(N_{cohorts} - 1)$, in at least one additional cohort, whereas they attained that level for the other 44 SNPs (Supplementary Table 7).

Antagonistic genetic heterogeneity in pleiotropic meta-analysis

Let us assume that an allele is associated with a higher risk of a phenotype P_1 and that P_1 is directly correlated with a phenotype P_2, e.g., individuals with larger values of P_1 tend to have larger values of P_2. An implicit expectation in medical genetics for partly correlated phenotypes, especially when they are etiologically related, is that the same allele will be also associated with a phenotype P_3 that is etiologically related, is that the same allele will be also associated with a phenotype P_3 that is etiologically related.
phenotypes (see Introduction), this logic may or may not hold because given allele may not be evolutionary selected in favor or against these phenotypes. A simple approach to examine this logic is to compare the results from different tests used in our pleiotropic meta-analysis.

Table 3. *P*-values from pleiotropic meta-analysis of GRASP results for SNPs within ±1Mb flanking region of the index SNPs not reported in GRASP for 20 selected phenotypes (Table 1).

ID	Index SNP	Chr	Flanking SNP₁	LD	*P*_{GRASP}	Flanking SNP₂	LD	*P*_{GRASP}
3	rs16834550	1	rs2377856	0.557	3.23E-01	rs4994302	0.008	7.03E-06
12	rs1969742	1	rs2777987	1.000	3.27E-01	rs7528684	0.089	3.43E-05
15	rs1934628	1	rs6665563	1.000	4.32E-01	rs6540664	0.000	1.83E-05
27	rs755503	2	rs10186614	0.718	1.81E-01	rs6730157	0.055	1.16E-18
37	rs16829273	3	rs6769314	0.772	1.82E-01	rs9825140	0.000	5.91E-05
40	rs10012631	4	rs1814082	0.266	3.34E-01	rs6831443	0.002	1.04E-03
44	rs1460770	4	rs11098258	0.745	4.14E-01	rs17046113	0.000	5.26E-04
47	rs259130	5	rs259114	0.418	4.01E-01	rs1315790	0.002	1.36E-19
48	rs980831	5	rs17160705	0.196	2.99E-01	rs10037968	0.007	1.21E-04
55	rs6936620	6	rs6457702	0.796	4.09E-01	rs9273363	0.001	1.52E-28
58	rs9482188	6	rs11750990	0.915	2.27E-01	rs1015451	0.420	2.35E-24
60	rs7785072	7	rs12671830	0.322	4.31E-01	rs864745	0.000	7.68E-12
63	rs10953325	7	rs734688	0.480	4.03E-01	rs13245899	0.000	2.74E-22
64	rs7807451	7	rs10224905	0.276	3.78E-01	rs3807989	0.004	5.85E-06
67	rs700278	7	rs696773	0.625	3.69E-01	rs802196	0.108	1.84E-02
71	rs7851478	9	rs16937690	0.745	3.97E-01	rs702257	0.001	1.23E-05
73	rs2987900	9	rs1536859	0.879	4.34E-01	rs3852402	0.025	2.50E-05
74	rs4149313	9	rs961160	0.005	7.40E-02	rs960644	0.003	8.03E-03
76	rs1476946	9	rs2014343	0.824	3.40E-01	rs7029898	0.000	1.14E-03
81	rs2442100	11	rs2084439	0.762	3.11E-01	rs2517996	0.000	3.82E-03
82	rs11045743	11	rs4149012	0.633	1.45E-01	rs7134375	0.046	9.02E-10
89	rs670676	13	rs682573	0.478	3.86E-01	rs9943924	0.000	9.90E-06
90	rs359412	13	rs359357	0.952	2.54E-01	rs275896	0.000	4.27E-03
91	rs4903274	14	rs11621041	0.807	3.89E-01	rs12433610	0.009	8.04E-04
92	rs4899173	14	rs2127870	0.947	3.73E-01	rs1256507	0.001	4.78E-04
93	rs7151718	14	rs10484104	1.000	4.07E-01	rs1978243	0.001	1.18E-34
96	rs626744	15	rs16962739	0.155	4.09E-01	rs3848128	0.000	1.68E-03
98	rs12444489	16	rs8052106	0.599	2.28E-01	rs3764261	0.000	0.00E+00
100	rs246134	16	rs246141	0.807	4.27E-01	rs9929218	0.000	1.54E-05
105	rs11539879	17	rs1046446	0.369	2.71E-02	rs9892909	0.003	9.29E-06
114	rs8136986	22	rs16997937	0.355	1.59E-01	rs5768709	0.000	1.68E-04

Chr = chromosome. LD: linkage disequilibrium, *r*².
Strongest LD: SNPs with the strongest LD reported in GRASP within ±1Mb flanking region of the index SNPs.
Smallest *p*-value: SNPs from the ±1Mb flanking region of the index SNPs attained smallest *p*-values in our pleiotropic meta-analysis of results reported in GRASP.
*P*_{GRASP}: *p*-values from the pleiotropic meta-analysis of the results for flanking SNPs reported in GRASP.
Indeed, the Fisher test in pathways 1b and 2a (Fig. 1) combined p-values across phenotypes assuming that they were from independent associations whereas the two omnibus tests adjusted the pleiotropic meta-statistics for correlation among phenotypes (Σ^p-based omnibus test) and the effect statistics (Σ^B-based omnibus test) (see Methods). Accordingly, the differences in p-values from the Fisher and omnibus tests reflect the impacts of heterogeneity and/or correlation in genetic associations. Below, we characterize these impacts. We used an ad-hoc cut-off for the difference in p-values between these tests of ≥2 orders of magnitude to characterize a strong impact.

Given a common assumption that the Fisher pleiotropic meta-test provides inflated p-values for correlated phenotypes, correlation-adjusted estimates in the omnibus tests are expected $p_{\text{Omnibus}} \geq p_{\text{Fisher}}$. Contrary to this expectation, for most novel SNPs, 93.9% (108 of 115 SNPs) and all nine replicated SNPs, we observe an opposite inequality, i.e., $p_{\text{Omnibus}} < p_{\text{Fisher}}$ by ≥2 orders of magnitude (Table 2 and Supplementary Table 4A). An unconventional set of 108 novel SNPs includes 27 SNPs from HP group in pathway 1, and 54, 5, and 22 SNPs from HP, HB, and HP/HB groups, respectively, in pathway 2 (Table 2). The HP group (27+54=81 SNPs) was characterized by attaining GW significance after the Σ^B-based omnibus tests (i.e., OpFc or MOp, Fig. 1) and substantially larger (≥2 orders of magnitude) p-values in the Fisher pleiotropic meta-tests, i.e., $p_{\text{MOp}} < p_{\text{MFp}}$ for pathway 1 and $p_{\text{OpFc}} < p_{\text{FpFc}}$ for pathway 2. The HB group (5 SNPs) resembled the HP group except for having $p_{\text{ObFc}} < p_{\text{FpFc}}$. The HP/HB group (22 SNPs) was characterized by attaining GW significance after the Σ^p- and Σ^B-based omnibus tests ($p_{\text{OpFc}}, p_{\text{ObFc}} < p_{\text{FpFc}}$) and substantially larger (≥2 orders of magnitude) p-values in the Fisher pleiotropic meta-tests (p_{FpFc}).

Figure 3. Schematic illustration of antagonistic genetic heterogeneity in the associations with two partly correlated age-related phenotypes P1 and P2. Small dots represent a sample of carriers of an effect allele A (red color) and those who do not carry this allele (no A; green color). Ellipse shows correlation of P1 and P2 in this sample (r=0.6). Red color denotes vector of correlation of P1 and P2 (thick diagonal vector) and its projections on phenotypes, i.e., β_1 (horizontal) and β_2 (vertical). Black vectors β_1 and β_2 denote the effects in the associations of allele A with P1 and P2. Sum of β_1 and β_2 represents bivariate vector (thick line) of the effects.

These results show that majority of novel SNPs with pleiotropic associations, 93.9%, is characterized by a strong impact of unconventional (natural-selection–free) genetic heterogeneity rather than commonly expected correlation. This form of the natural-selection–free genetic heterogeneity, called antagonistic heterogeneity, is schematically illustrated in Fig. 3 for two partly correlated phenotypes P1 and P2. This heterogeneity...
results in orthogonal directions of the bivariate vector of genetic effects \(\beta_1 \) and \(\beta_2 \) for phenotypes \(P_1 \) and \(P_2 \) and the vector of the correlation of these phenotypes and, accordingly, in opposite directions of vectors \(\beta_2 \) and \(\beta_2' \). As seen from Fig. 3, the antagonistic heterogeneity implies antagonistic directions of genetic effects for directly correlated phenotypes (see Methods).

Pathway 2 provides a natural opportunity to validate the antagonistic heterogeneity in different cohorts. Our analysis shows that this heterogeneity, characterized by \(p_{OpFc} \), \(p_{ObFc} < p_{FpFc} \) with a difference of \(\geq 0.2 \) orders of magnitude for associations with suggestive significance (\(p_{OpFc} \), \(p_{ObFc} < 0.1 \) or \(p_{FpFc} < 0.1 \)), was replicated for 77 of 81 novel pleiotropic SNPs in two or more cohorts (Supplementary Table 8).

Lastly, the M group (7 SNPs) included 2 SNPs from pathway 1 and 5 SNPs from pathway 2. It was characterized by attaining GW significance in several tests and/or minor (\(< 2 \) orders of magnitude) differences between \(p \)-values in OpFc and FpFc tests (pathway 2) and MOp and MFp (pathway 1).

Bioinformatics analysis

We performed biological pathway (IPA, www.qiagenbioinformatics.com) and gene ontology (GO) biological processes (BPs) (DAVID [24]) enrichment analysis for 96 protein coding genes mapped from 108 pleiotropic SNPs (Table 2). We excluded genes for five non-validated SNPs (Table 2, ID 1, 24, 25, 49, and 95) and for two SNPs (Table 2, ID 53, 55) from the Major Histocompatibility Complex (MHC). The GO analysis (by DAVID 6.8 GO category “GO_direct”) identified 10 BPs with enrichment for genes at \(p < 0.05 \) (Fisher’s exact test) (Supplementary Table 9). Two specific terms, adenylate cyclase-activating G-protein coupled receptor signaling pathway and activation of adenylate cyclase activity, were enriched at \(p < 10^{-4} \) and \(p < 10^{-3} \), respectively. The IPA analysis identified 18 pathways (Supplementary Table 10) enriched for genes at \(p < 0.05 \) (Fisher’s exact test). The strongest enrichment was observed for G-protein coupled receptor signaling (\(p < 10^{-8} \)), GPCR-mediated integration of enteroendocrine signaling exemplified by an L cell and cAMP-mediated signaling (\(p < 10^{-3} \)) (Figure 4) that is consistent with enrichment of GO BPs.

DISCUSSION

Our univariate and pleiotropic meta-analyses of 20 age-related phenotypes dealing with the natural-selection–free genetic heterogeneity identified large number of non-proxy SNPs, 142 SNPs, with GW significance in a relatively modest sample of 33,431 individuals of Caucasian ancestry from five longitudinal studies (Figure 5). Only 18 SNPs (12.7%) were identified in the univariate meta-analysis with most SNPs, 88.9% (16 of 18 SNPs), replicating previously reported associations, primarily with lipids. Two novel SNPs were associated with HC (rs6745983 in TMEM163 gene) and BG (rs10885409 in TCF7L2 gene). Two of 16 replicated SNPs, rs780094 (GCKR gene) and rs261332 (LIPC/LIPC-AS1 genes) associated with BG and TC, respectively, showed evidences for inter-cohort heterogeneity in the effect sizes. Accordingly, smaller \(p \)-values were attained by addressing this heterogeneity. The association of rs2155216 (BUD13-ZPR1/APOA5 gene locus) with TG was replicated with substantially higher (4-fold) efficiency in our analysis than in previous study [22] that was achieved, in part, by leveraging information on repeated measurements from longitudinal follow up.
Most SNPs, 87.3% (124 of 142 SNPs), were identified in our pleiotropic meta-analyses and most of them, 92.7% (115 of 124 SNPs), were novel (Figure 5). Novel pleiotropic SNPs attained GW significance by combining associations with multiple phenotypes, which individually did not attain GW significance in univariate meta-analysis (Figure 2). Therefore, pleiotropic meta-analysis has power to identify SNPs leveraging signals, which are often considered as noise in univariate GWAS. Most importantly, our analysis showed that the associations for most novel pleiotropic SNPs, 93.9% or 108 of 115 SNPs (and all 9 replicated SNPs) were strongly affected by the natural-selection–free genetic heterogeneity in a rarely recognized form of antagonistic heterogeneity, implying antagonistic directions of genetic effects for directly correlated phenotypes. This heterogeneity has not been addressed in the currently prevailing GWAS.

Thus, our analysis provides compelling evidences that the traditional sample-size-centered GWAS approach is well adapted to handle homogeneous univariate associations (one SNP – one phenotype) within Mendelian framework whereas most associations with age-related phenotypes are more complex and well beyond that framework. This complexity substantially decreases the efficiency of the analysis of such phenotypes within the current GWAS framework. This conclusion leads to three major implications.

First, discovery of a large number of common genetic variants associated with different phenotypes in GWAS [25], raised concern known as a “missing heritability problem” [26]. The problem is that the estimated variance attributed to GWAS-identified common SNPs is only a fraction of the expected genetic variance from the estimates of heritability of a phenotype. This problem even leads to questioning whether genetics could be helpful for improving health care [27]. Our results show that in large part missing heritability problem for age-related phenotypes can be due to missing associations with complex genetic predisposition to these phenotypes.

Second, the traditional GWAS approach is built on the concept of a “true” or causal genetic effect (see the Introduction) whereas biologically plausible concept for age-related phenotypes is that based on the undefined role of evolution in establishing their molecular mechanisms. The letter implies that the same genetic variant can predispose differently to the same phenotype in different population groups, even of the same ancestry, e.g., throughout the life course and/or across generations. This concept particularly implies that “small” genetic effects (often expected in GWAS of age-related phenotypes) can be due to a complex superposition of large effects rather than small penetrance. Then, just relaying on large samples in GWAS of age-related phenotypes without dissecting the natural-selection–free genetic heterogeneity is inefficient because increasing the sample size will also increase heterogeneity [28]. The current study supports this concept by highlighting strong impact of antagonistic heterogeneity, which is counter-intuitive in medical genetics but natural within the evolutionary framework. The antagonistic heterogeneity is also supported by the analyses of alleles from well-known apolipoprotein B and E genes [16, 17].

Third, all pleiotropic SNPs attained GW significance in the two largest domains of 12 quantitative markers and all 20 phenotypes. These findings support the hypothesis that pleiotropic predisposition to age-related phenotypes can be driven by fundamental mechanisms associated with aging [8, 18, 19, 29]. This attractive hypothesis in gerontology conceptualized as geroscience [28, 30] is based on observations that aging-related processes [31, 32] are among the most important risk factors for geriatric diseases of distinct etiologies. The dominant role of antagonistic heterogeneity in
pleiotropic associations cautions against simplistic approaches in studies of pleiotropic effects on age-related phenotypes and emphasizes the importance of personalized medicine which can potentially handle complexity of risk profiles on an individual basis [15, 33, 34]. Dissecting the role of antagonistic heterogeneity is particularly important as this provides a genetic basis for strategies focusing on anti-side-effect treatments in medical care.

Finally, our bioinformatics analysis of genes for pleiotropic SNPs identified three interlinked pathways, G-protein coupled receptor signaling, GPCR-mediated integration of enteroendocrine signaling exemplified by an L cell, and cAMP-mediated signaling. G-protein coupled receptors (GPCRs), members of the largest family of membrane proteins, are activated by a wide variety of external signals (e.g., light, odorants, hormones, neurotransmitters, pharmacologic agents, etc.) and modulate the activity of signaling pathways involved in most physiological processes. In particular, GPCRs partly mediate secretion of enteroendocrine peptide hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) by L-cells, relevant to food intake and blood glucose homeostasis [35, 36]. GPCRs play a causative role in many human diseases and are the important drug targets [37, 38]. Adenylyl cyclase, a membrane-associated enzyme, when activated by G proteins, catalyzes synthesis of important second messenger cyclic adenosine monophosphate (cAMP). cAMP is involved in diverse biological processes (e.g., glycogen metabolism, hormone regulation, gene expression, sensory signal transduction). The cAMP levels also partly mediate secretion of enteroendocrine peptide hormones linked to feeding/metabolic control [35] and are associated with immune function [39]. Top GO BPs (adenylate cyclase-activating G-protein coupled receptor signaling pathway and activation of adenylate cyclase activity) support an enrichment of BPs related to GPCRs function and cAMP synthesis. Thus, these results suggest an important role of G protein-dependent signaling and adenylyl cyclase activity necessary for the proper biological response of cells to hormones and other extracellular signals in pleiotropic effect on age-related phenotypes.

METHODS

Study cohorts

Data were drawn from the Atherosclerosis Risk in Communities (ARIC) study [40, 41], the Cardiovascular Health Study (CHS) [42], the Multi-Ethnic Study of Atherosclerosis (MESA) [43], the Framingham Heart Study (FHS) [44-46], and the Health and Retirement Study (HRS) [47] for individuals who identified themselves as of Caucasian ancestry.

Phenotypes

The analyses focused on 20 phenotypes (12 quantitative markers, 7 diseases, and death) listed in Table 1. Given longitudinal design of the studied cohorts, the analyses leveraged repeated measurements of quantitative markers during follow up and timing information on onsets of diseases or death (Supplementary Table 1). These not strongly correlated phenotypes (Supplementary Figure 1) were available in majority of the selected cohorts. All studies except HRS collected information on diseases and death in population samples during follow-up. The HRS assessed information on date of death from the National Death Index Cause of Death file. Age at onset of diseases in HRS was assessed from the linked Medicare service use files, which include enrollment information and the diagnoses made (International Classification of Disease-revision 9, Clinical Modification) during episodes of care paid for by the Medicare system.

Genotyping

SNPs were available from Affymetrix 1M chip in ARIC and MESA, Illumina CVDSNP55v1_A chip (~50K SNPs) in FHS and CHS cohorts, Illumina HumanCNV370v1 chip (370K SNPs) in CHS, Affymetrix 500K in FHS, and Illumina HumanOmni 2.5 Quad chip (~2.5M SNPs) in HRS. SNPs were included in the analyses after quality control in each study (call rate>95%, Hardy-Weinberg disequilibrium \(p < 10^{-6} \), minor allele frequency [MAF] >2%). In case of marginally smaller MAF for prioritized SNPs in a specific cohort compared to the MAF cut off, these SNPs were used regardless of the MAF cut off. To facilitate cross-platform comparisons, we selected directly genotyped (index) SNPs using all available arrays for each study. Non-genotyped SNPs were imputed (IMPUTE2, [48]) according to the 1000 Genomes Project Phase I integrated variant set release (SHAPEIT2) in the NCBI build 37 (hg19) coordinate. Only SNPs with high imputation quality (info>0.8) were retained for the analyses.

Mapping to genes

SNPs were mapped to genes using variant effect predictor from Ensembl and NCBI SNP database (assembly GRCh38.p7). If an index SNP was not within protein coding gene, the closest gene(s) within ±100 Kb flanking region was (were) assigned. Multiple genes were selected if they were at about the same distance.
up- and downstream from the index SNP or the index SNP was within the region of overlapping genes.

Selecting SNPs in univariate GWAS in stage 1

GWAS was performed for each phenotype in each cohort separately using plink software [21]. In this analysis, we used quantitative markers measured at baseline, and diseases and death as binary outcomes. An additive genetic model with minor allele as an effect allele was adopted in all analyses throughout this article. We computed pleiotropic p-value by combining p-values for individual markers and binary outcomes for SNPs attained nominal significance only \((p<0.05)\) using Fisher’s test [49]. This computationally efficient but overly-simplified approach was used for prioritizing of promising SNPs. Because this procedure provides inflated \(p\)-values, we selected top 1,000 SNPs (with smallest \(p\)-values) for all downstream analyses, rather than selecting SNPs based on specific cut off for pleiotropic \(p\)-values.

Leveraging longitudinal information in stage 1 analysis

The analysis of the selected 1,000 SNPs were enhanced by leveraging longitudinal information. For quantitative markers, we used all measurements available during follow up of the same individuals. Information on longitudinal measurements has multiple advantages including potential gain in statistical power in the analyses [50]. To correct for repeated-measurements (all cohorts) and familial (FHS) correlations in the analyses of quantitative markers, we mostly used the linear mixed effects model (lme4 package in R [51]). Measurements of BG, BMI, HDL-C, HR, TC, and TG were natural-log-transformed to offset potential bias due to skewness of their frequency distributions. They were multiplied by 100 for better resolution. Measurements of creatinine, DBP, FVC, HC and SBP were used in their natural scale as no significant skewness was observed. Given gamma-like frequency distributions of CRP, a generalized linear mixed model (glmmPQL package in R) with a gamma function and log-link was used. We evaluated the associations for SNPs given the measurements of quantitative markers for individuals of a given age at each examination with available measurements.

Longitudinal information on time to events was implemented in the Cox proportional hazards mixed effects model (coxme package in R). This model addressed familial relatedness. In the FHS, we used both prospective and retrospective onsets. The use of retrospective onsets in a failure-type model is justified by Prentice, Breslow [52]. These analyses provide estimates of the effects in a given population. Time variable in these analyses was the age at onset of an event or at right censoring.

The models were adjusted for: (all studies) age and sex; (ARIC, CHS, and MESA) field center; (HRS) HRS cohorts, and (FHS) whether the DNA samples had been subject to whole-genome amplification [53]. No adjustment for principal components was performed as argued in Ref. [54].

Meta-analyses in stage 2

After stage 1, for each SNP we have a table with the association statistics for up to 20 phenotypes in 5 cohorts. These statistics were combined along two possible pathways: (i) first across studies and then across phenotypes and (ii) first across phenotypes and then across studies. To deal with the natural-selection–free heterogeneity in genetic predisposition to age-related phenotypes (see below), we used four tests in pathway 1 and three tests in pathway 2 (Fig. 1).

In pathway 1, univariate (phenotype-specific) meta-analysis combining the stage 1 statistics for the selected SNPs across cohorts (pathway 1a) was performed using the Fisher test and the traditional GWAS fixed-effects meta-test. Pleiotropic meta-analysis (pathway 1b) was performed by combining the univariate meta-statistics for the same SNPs across phenotypes. In pathway 1b, we used the Fisher test and two omnibus tests. The latter were designed to address correlations between the effect statistics and phenotypes. In pathway 2, we performed first pleiotropic meta-analysis by combining the stage 1 univariate statistics across phenotypes in each cohort separately (pathway 2a) using the Fisher test and the two omnibus tests as in pathway 1b. Then, we combined these pleiotropic meta-statistics across cohorts using the Fisher test (pathway 2b) (details on all tests are below).

Fixed-effects meta-test

We adopted a conventional GWAS meta-test using a fixed effects model with inverse-variance weighting (METAL software [55]). This test combines the estimated effect sizes across cohorts for each phenotype. Combining effect sizes is feasible because each phenotype was harmonized to be on the same scale and unit across cohorts. This meta-test could account for the directions of effects in different cohorts, and is more powerful than those tests that combines \(p\)-values or Z-scores [56]. In pathway 1a, the weighted average of the effect sizes was calculated as \(\Sigma_j(\hat{\omega}_j\hat{\beta}_j)/\Sigma_j(\hat{\omega}_j)\) with variance \(1/\Sigma_j(\hat{\omega}_j)\), where \(\hat{\omega}_j\) is the inverse variance of effect size \(\hat{\beta}_j\) in the cohort \(j \in (1,5)\) for a given
phenotype and SNP. Wald test was then used to obtain p-value.

Fisher’s test

The Fisher method [49] combines p-values assuming that they are from independent tests. In pathway 1a, this test combines p-values across cohorts. It has power to reject the “null” hypothesis of no pooled effect regardless of the effect sizes and directions in the cohort-specific estimates. Accordingly, the Fisher test can indicate heterogeneity in genetic associations by providing smaller p-value than that from the fixed-effects meta-test. In pathways 1b and 2a, the Fisher test combines p-values across phenotypes. This test is often used for pleiotropic meta-analysis of modestly correlated phenotypes [57]. Because the Fisher method combines p-values from multiple tests, it addresses the problem of multiple testing by increasing the number of degrees of freedom.

Omnibus tests

The statistics from tests of the same SNPs with different phenotypes may or may not be independent. It is then argued that tests penalizing for correlation of such statistics should be used to deflate the Fisher test estimates. A commonly adopted test in this case is an omnibus test [58-60].

For a certain SNP we have an estimated effect size $\hat{\beta}_{ij}$ and its standard error $\hat{\sigma}_j$ for the phenotype $i \in \{1, K_j\}$ in the cohort $j \in \{1, 5\}$, where K_j is the number of phenotypes in study j. The omnibus test statistic is constructed as $Z_j'\Sigma_j^{-1}Z_j$, where $Z_j = \hat{\beta}_j/\hat{\sigma}_j$ is a z-score vector of associations of SNPs with phenotypes and Σ_j is the correlation matrix of the z-scores to be estimated [58, 59]. Accordingly, this test takes into account the correlation of the effect statistics for different phenotypes. Under the null hypothesis ($\beta_j = 0$), the test statistic follows a chi-squared distribution with K_j degrees of freedom

$$Z_j'\Sigma_j^{-1}Z_j \sim \chi^2_{K_j},$$

from which we obtained a combined p-value p_j in the study j. Accordingly, this statistic addresses the problem of multiple testing by increasing the number of degrees of freedom.

Correlation matrices Σ were estimated based on the effect statistics of simulated SNPs in association models with phenotypes (denoted $\Sigma = \Sigma^B$). We randomly permuted the dosage data for alleles of a given SNP for 250 times, used each permuted SNP in association models with each of K phenotypes, and estimated Σ^B based on the 250 effect sizes of permuted SNPs with K phenotypes. Likewise, Σ can be also constructed by evaluating the correlations between phenotypes [61] (denoted $\Sigma = \Sigma^F$). The correlation matrices, Σ^B and Σ^F, were constructed for pathways 1 and 2 (Fig. 1) separately. Cohort-specific matrices Σ^F_m for pathway 2 were constructed by evaluating correlations of the effect statistics in each cohort. For pathway 1, matrix Σ^B_m was constructed by evaluating correlations of the effect statistics from a fixed effect meta-test of all cohorts for each permutation. The phenotype-based cohort-specific matrices for pathway 2, Σ^P, were evaluated using phenotype measurements in each cohort separately and matrix for pathway 1, Σ^F_m, was evaluated using phenotype measurements in the combined data from all cohorts. All correlation matrices were constructed using averaged values for quantitative traits measured longitudinally at different visits.

Correlation and genetic heterogeneity

Omnibus tests are commonly used to penalize correlation between the effect statistics or phenotypes in pleiotropic meta-analysis. This can be explicitly illustrated by the test statistics $Z_j'\Sigma_j^{-1}Z_j$ in two-dimensional case,

$$Z_j'\Sigma_j^{-1}Z_j = \frac{(\hat{z}_1^2\Sigma_{22}-\hat{z}_2\hat{z}_2\Sigma_{11})+(\hat{z}_1\hat{z}_2\Sigma_{12}-\hat{z}_1\hat{z}_2\Sigma_{12})}{\det(\Sigma)}.$$

Either the Σ^B or Σ^P-based omnibus test (see above) penalize pleiotropic meta-statistics, if $\hat{z}_1\hat{z}_2\Sigma_{22}, \hat{z}_1\hat{z}_2\Sigma_{12} > 0$.

The undefined role of evolution in establishing molecular mechanisms of age-related phenotypes is the source of genetic heterogeneity, which is driven by the lack, rather than the presence, of the evolutionary pressure in favor or against these phenotypes. The natural-selection–free genetic heterogeneity suggests that mechanisms driving associations of genes with age-related phenotypes and correlation between these phenotypes are, generally, of different origins. In case of antagonistic genetic heterogeneity (see “Antagonistic genetic heterogeneity in pleiotropic meta-analysis” section), omnibus test provides smaller p-values compared to the Fisher test as can be seen from (1) because $\hat{z}_1\hat{z}_2\Sigma_{22}, \hat{z}_1\hat{z}_2\Sigma_{12} < 0$ in this case.

Significance and novelty

The fixed-effect, Fisher, and two omnibus meta-tests used in our analyses have power to identify associations,
For univariate meta-analysis, we used evidence for the pleiotropic analysis of the results collected in GRASP. Fisher and two omnibus tests used in pleiotropic meta-analysis address the problem of multiple testing by increasing the number of degrees of freedom. Accordingly, GW level \((p=5\times10^{-8})\) attained in either of these tests was used as a cut off for the significance for a given SNP. The difference between \(p\)-values from these tests for a given SNP was used to characterize the impact of correlation and heterogeneity on the association.

SNPs were considered as novel if they attained GW significance in: (i) our univariate meta-analysis but were not reported in GRASP catalog \([62]\) at \(p\leq5\times10^{-8}\) or (ii) our pleiotropic meta-analysis but not in our pleiotropic analysis of the results collected in GRASP. For univariate meta-analysis, we used evidences for the same (index) SNP in our study and GRASP. For pleiotropic meta-analysis, we selected associations from GRASP for the index SNPs with 20 phenotypes used in our analysis (Table 1). If an index SNP was not available in GRASP for the index SNPs with 20 phenotypes, we selected SNPs within \(\pm1\text{Mb}\) flanking region. Then we performed pleiotropic meta-analysis by applying the Fisher method to these GRASP results to present performed pleiotropic meta-analysis by applying the selected SNPs within \(\pm1\text{Mb}\) flanking region. Then we performed pleiotropic meta-analysis by applying the Fisher method to these GRASP results to present evidence for pleiotropy in prior studies. We used the Fisher statistics \(p_{grasp}\) because the effect sizes were not reported in GRASP. We used a flat \(p\)-value, \(p=0.4\), to penalize the Fisher statistics for phenotypes with \(p\)-values not reported in GRASP. For flanking SNPs, we reported associations for SNPs having: (i) the strongest LD with the index SNP and (ii) the smallest \(p_{grasp}\) for SNPs within \(\pm1\text{Mb}\) flanking region.

Heterogeneity coefficient

We used METAL software \([55]\) to evaluate the heterogeneity coefficient \(\hat{\tau}^2\). The \(\hat{\tau}^2\) can be interpreted as the percentage of the total variability in a set of effect sizes due to between-sample variability.

ACKNOWLEDGEMENTS

The Atherosclerosis Risk in Communities Study (ARIC) is carried out as a collaborative study supported by the NHLBI contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). The authors thank the staff and participants of the ARIC study for their important contributions. Funding for GENEVA was provided by the National Human Genome Research Institute grant U01HG004402 (E. Boerwinkle).

The Cardiovascular Health Study (CHS) was supported by contracts HHSN268201200036C, HHSN26820080007C, N01-HC-85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, and N01-HC-85239; grant numbers U01 HL080295 and U01 HL130014 from the National Heart, Lung, and Blood Institute (NHLBI), and R01 AG-023629 from the National Institute on Aging, with additional contribution from the National Institute of Neurological Disorders and Stroke. A full list of principal CHS investigators and institutions can be found at https://chs-nhlbi.org/pi. This manuscript was not prepared in collaboration with CHS investigators and does not necessarily reflect the opinions or views of CHS, or the NHLBI. Additional support for infrastructure was provided by HL105756 and additional genotyping among the African-American cohort was supported in part by HL085251. DNA handling and genotyping at Cedars-Sinai Medical Center was supported in part by National Center for Research Resources grant UL1RR033176, now at the National Center for Advancing Translational Technologies CTSI grant UL1TR000124; in addition to the National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center.

The Framingham Heart Study (FHS) is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195 and HHSN268201500001I). This manuscript was not prepared in collaboration with investigators of the FHS and does not necessarily reflect the opinions or views of the FHS, Boston University, or NHLBI. Funding for SHArE Affymetrix genotyping was provided by NHLBI Contract N02-HL-64278. SHArE Illumina genotyping was provided under an agreement between Illumina and Boston University. Funding for CARe genotyping was provided by NHLBI Contract N01-HC-65226. Funding support for the Framingham Dementia dataset was provided by NIH/NIA grant R01 AG08122. Funding support for the Framingham C-reactive Protein dataset was provided by NIH grants R01 HL064753, R01 HL076784 and R01 AG028321.

Multi-Ethnic Study of Atherosclerosis (MESA) and the MESA SHArE project are conducted and supported by the NHLBI in collaboration with MESA investigators. Support for MESA is provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169 and CTSA UL1-RR-024156.
Phenotypic HRS data are available publicly and through phs000287.v5.p1 (CHS), phs000428.v1.p1 (HRS), phs000280.v3.p1 (ARIC), phs000209.v13.p3 (MESA), (accession numbers: phs000007.v22.p10 (FHS), a limited access datasets obtained though dbGaP.

The Health and Retirement Study (HRS) genetic data is sponsored by the Genetics Resource with HRS April 21, 2010, version G Page 5 of 7 National Institute on Aging (grant numbers U01AG009740, RC2AG036495, and RC4AG039029) and was conducted by the University of Michigan. This manuscript was not prepared in collaboration with HRS investigators and does not necessarily reflect the opinions or views of HRS, or the NHLBI.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING

This research was supported by Grants No P01 AG043352 and R01AG047310 from the National Institute on Aging. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This manuscript was prepared using a limited access datasets obtained though dbGaP (accession numbers: phs000007.v22.p10 (FHS), phs000280.v3.p1 (ARIC), phs000209.v13.p3 (MESA), phs000287.v5.p1 (CHS), phs000428.v1.p1 (HRS)). Phenotypic HRS data are available publicly and through restricted access from http://hrsonline.isr.umich.edu/index.php?p=data.

REFERENCES

1. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013; 14:365–76. https://doi.org/10.1038/nrn3475

2. Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. Concepts, estimation and interpretation of SNP-based heritability. Nat Genet. 2017; 49:1304–10. https://doi.org/10.1038/ng.3941

3. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005; 33:D514–17. https://doi.org/10.1093/nar/gki033

4. Plomin R, Haworth CM, Davis OS. Common disorders are quantitative traits. Nat Rev Genet. 2009; 10:872–78. https://doi.org/10.1038/nrg2670

5. Lewontin RC. Annotation: the analysis of variance and the analysis of causes. Am J Hum Genet. 1974; 26:400–11.

6. Rose SP. Commentary: heritability estimates--long past their sell-by date. Int J Epidemiol. 2006; 35:525–27. https://doi.org/10.1093/ije/dyl064

7. Nesse RM, Ganten D, Gregory TR, Omenn GS. Evolutionary molecular medicine. J Mol Med (Berl). 2012; 90:509–22. https://doi.org/10.1007/s00109-012-0889-9

8. Kirkwood TB, Cordell HJ, Finch CE. Speed-bumps ahead for the genetics of later-life diseases. Trends Genet. 2011; 27:387–88. https://doi.org/10.1016/j.tig.2011.07.001

9. Oeppen J, Vaupel JW. Demography. Broken limits to life expectancy. Science. 2002; 296:1029–31. https://doi.org/10.1126/science.1069675

10. Corella D, Ordovás JM. Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Rev. 2014; 18:53–73. https://doi.org/10.1016/j.arr.2014.08.002

11. Kulminski AM. Unraveling genetic origin of aging-related traits: evolving concepts. Rejuvenation Res. 2013; 16:304–12. https://doi.org/10.1089/rej.2013.1441

12. Vijg J, Suh Y. Genetics of longevity and aging. Annu Rev Med. 2005; 56:193–212. https://doi.org/10.1146/annurev.med.56.082103.104617

13. Crespi B, Stead P, Elliot M. Evolution in health and medicine Sacker colloquium: comparative genomics of autism and schizophrenia. Proc Natl Acad Sci USA. 2010 (Suppl 1); 107:1736–41. https://doi.org/10.1073/pnas.0906080106

14. Day-Williams AG, Zeggini E. The effect of next-generation sequencing technology on complex trait research. Eur J Clin Invest. 2011; 41:561–67. https://doi.org/10.1111/j.1365-2362.2010.02437.x

15. Ukrainetsvea S, Yashin A, Arbee K, Kulminski A, Akushevich I, Wu D, Joshi G, Land KC, Stallard E. Puzzling role of genetic risk factors in human longevity: “risk alleles” as pro-longevity variants. Biogerontology. 2016; 17:109–27. https://doi.org/10.1007/s10522-015-9600-1

16. Kulminski AM, Kernogitsky Y, Culinskaya I, Loika Y, Arbee KG, Bagley O, Duan M, Arbee E, Ukrainetsvea SV, Wu D, Stallard E, Yashin AI. Uncoupling
associations of risk alleles with endophenotypes and phenotypes: insights from the ApoB locus and heart-related traits. Aging Cell. 2017; 16:61–72. https://doi.org/10.1111/acel.12526

17. Kulminski AM, Raghavachari N, Arbee KG, Culminskaya I, Arbeeva L, Wu D, Ukraintseva SV, Christensen K, Yashin AI. Protective role of the apolipoprotein E2 allele in age-related disease traits and survival: evidence from the Long Life Family Study. Biogerontology. 2016; 17:893–905. https://doi.org/10.1007/s10252-016-9659-3

18. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci USA. 2007; 104:8685–90. https://doi.org/10.1073/pnas.0701361104

19. Kulminski AM, He L, Culminskaya I, Loika Y, Kernogitsky Y, Arbee KG, Loika E, Arbeeva L, Bagley O, Duan M, Yashkin A, Fang F, Kovtun M, et al. Pleiotropic Associations of Allelic Variants in a 2q22 Region with Risks of Major Human Diseases and Mortality. PLoS Genet. 2016; 12:e1006314. https://doi.org/10.1371/journal.pgen.1006314

20. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011; 12:56–68. https://doi.org/10.1038/nrg2918

21. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559–75. https://doi.org/10.1086/519795

22. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koscielniak M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010; 466:707–13. https://doi.org/10.1038/nature09270

23. Kulminski AM, Loika Y, Culminskaya I, Arbee KG, Ukraintseva SV, Stallard E, Yashin AI. Explicating heterogeneity of complex traits has strong potential for improving GWAS efficiency. Sci Rep. 2016; 6:35390. https://doi.org/10.1038/srep35390

24. Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4:44–57. https://doi.org/10.1038/nprot.2008.211

25. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014; 42:D1001–06. https://doi.org/10.1093/nar/gkt1229

26. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008; 456:18–21. https://doi.org/10.1038/456018a

27. Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009; 360:1696–98. https://doi.org/10.1056/NEJMp0806284

28. Franceschi C, Garagnani P. Suggestions from Geroscience for the Genetics of Age-Related Diseases. PLoS Genet. 2016; 12:e1006399. https://doi.org/10.1371/journal.pgen.1006399

29. Franco OH, Karnik K, Osborne G, Ordovas JM, Catt M, van der Ouderaa F. Changing course in ageing research: the healthy ageing phenotype. Maturitas. 2009; 63:13–19. https://doi.org/10.1016/j.maturitas.2009.02.006

30. Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: the ultimate preventative medicine. Science. 2015; 350:1191–93. https://doi.org/10.1126/science.aad3267

31. Guarente L, Franklin H. Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med. 2011; 364:2235–44. https://doi.org/10.1056/NEJMra1100831

32. Zhavoronkov A, Moskalev A. Editorial: Should We Treat Aging as a Disease? Academic, Pharmaceutical, Healthcare Policy, and Pension Fund Perspectives. Front Genet. 2016; 7:17. https://doi.org/10.3389/fgene.2016.00017

33. Schork NJ. Personalized medicine: time for one-person trials. Nature. 2015; 520:609–11. https://doi.org/10.1038/520609a

34. Jazwinski SM, Kim S, Dai J, Li L, Bi X, Jiang JC, Arnold J, Batzer MA, Walker JA, Welsh DA, Lefante CM, Volaufova J, Myers L, et al, and Georgia Centenarian Study and the Louisiana Healthy Aging Study. HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging. Aging Cell. 2010; 9:698–708. https://doi.org/10.1111/j.1474-9726.2010.00600.x

35. Spreckley E, Murphy KG. The L-Cell in Nutritional Sensing and the Regulation of Appetite. Front Nutr. 2015; 2:23. https://doi.org/10.3389/fnut.2015.00023

36. Reimann F, Tolhurst G, Gribble FM. G-protein-coupled receptors in intestinal chemosensation. Cell Metab. 2012; 15:421–31. https://doi.org/10.1016/j.cmet.2011.12.019

37. Zalewska M, Siara M, Sajewicz W. G protein-coupled receptors: abnormalities in signal transmission,
disease states and pharmacotherapy. Acta Pol Pharm. 2014; 71:229–43.

38. Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther. 2004; 104:173–206. https://doi.org/10.1016/j.pharmthera.2004.08.008

39. Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol. 2008; 39:127–32. https://doi.org/10.1165/rcmb.2008-0091TR

40. Sharrett AR. The Atherosclerosis Risk in Communities (ARIC) Study: Introduction and objectives of the hemostasis component. Ann Epidemiol. 1992; 2:467–69. https://doi.org/10.1016/1047-2797(92)90096-9

41. Investigators TA. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989; 129:687–702. https://doi.org/10.1093/oxfordjournals.aje.a115184

42. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB, Newman A, O’Leary DH, Psaty B, Rautaharju P, et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. 1991; 1:263–76. https://doi.org/10.1016/1047-2797(91)90005-W

43. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K, Nelson JC, O’Leary D, Saad MF, et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002; 156:871–81. https://doi.org/10.1093/aje/kwf113

44. Govindaraju DR, Cupples LA, Kannel WB, O’Donnell CJ, Atwood LD, D’Agostino RB Sr, Fox CS, Larson M, Levy D, Murabito J, Vasan RS, Splansky GL, Wolf PA, Benjamin EJ. Genetics of the Framingham Heart Study population. Adv Genet. 2008; 62:33–65. https://doi.org/10.1016/S0065-2660(08)00602-0

45. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D’Agostino RB Sr, Fox CS, Larson MG, Murabito JM, O’Donnell CJ, Vasan RS, Wolf PA, Levy D. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007; 165:1328–35. https://doi.org/10.1093/aje/kwm021

46. Cupples LA, Heard-Costa N, Lee M, Atwood LD, and Framingham Heart Study Investigators. Genetics Analysis Workshop 16 Problem 2: the Framingham Heart Study data. BMC Proc. 2009 (Suppl 7); 3:S3. https://doi.org/10.1186/1753-6561-3-s7-3

47. Juster FT, Suzman R. An overview of the health and retirement study. J Hum Resour. 1995; 30:57–56. https://doi.org/10.2307/1462777

48. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009; 5:e1000529. https://doi.org/10.1371/journal.pgen.1000529

49. Fisher RA. 1970. Statistical methods for research workers. (Edinburgh: Oliver and Boyd).

50. Shi G, Rice TK, Gu CC, Rao DC. Application of three-level linear mixed-effects model incorporating gene-age interactions for association analysis of longitudinal family data. BMC Proc. 2009 (Suppl 7); 3:S89. https://doi.org/10.1186/1753-6561-3-s7-s89

51. Bates D, Machler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using Lme4. J Stat Softw. 2015; 67:1–48. https://doi.org/10.18637/jss.v067.i01

52. Prentice R, Breslow N. Retrospective studies and failure time models. Biometrika. 1978; 65:153–58. https://doi.org/10.1093/biomet/65.1.153

53. Ikram MA, Seshadri S, Bis JC, Fornage M, DeStefano AL, Aulchenko YS, Debette S, Lumley T, Folsom AR, van den Herik EG, Bos MJ, Beiser A, Cushman M, et al. Genomewide association studies of stroke. N Engl J Med. 2009; 360:1718–28. https://doi.org/10.1056/NEJMoa0900094

54. Yashin AI, Wu D, Arbeev KG, Arbeeva LS, Akushevich I, Kulminski A, Culminskaya I, Stallard E, Ukrainsteva SV. Genetic Structures of Population Cohorts Change with Increasing Age: Implications for Genetic Analyses of Human aging and Life Span. Ann Gerontol Geriatr Res. 2014; 1.

55. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010; 26:2190–91. https://doi.org/10.1093/bioinformatics/btq340

56. Begum F, Ghosh D, Tseng GC, Feingold E. Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Res. 2012; 40:3777–84. https://doi.org/10.1093/nar/gkr1255

57. Fortney K, Dobriban E, Garagnani P, Pirazzini C, Monti D, Mari D, Atzmon G, Barzilai N, Franceschi C, Owen AB, Kim SK. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity. PLoS Genet. 2015; 11:e1005728. https://doi.org/10.1371/journal.pgen.1005728
58. Xu X, Tian L, Wei LJ. Combining dependent tests for linkage or association across multiple phenotypic traits. Biostatistics. 2003; 4:223–29. https://doi.org/10.1093/biostatistics/4.2.223

59. Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, Tier B, Savin K, Hayes BJ, Goddard ME. A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet. 2014; 10:e1004198. https://doi.org/10.1371/journal.pgen.1004198

60. Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, Smith JA, Yanek LR, Sun YV, Edwards TL, Chen W, Nalls M, Fox E, et al, and COGENT BP Consortium. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet. 2015; 96:21–36. https://doi.org/10.1016/j.ajhg.2014.11.011

61. Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, Smith JA, Yanek LR, Sun YV, Edwards TL, Chen W, Nalls M, Fox E, et al, and COGENT BP Consortium. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet. 2015; 96:21–36. https://doi.org/10.1016/j.ajhg.2014.11.011

62. Leslie R, O'Donnell CJ, Johnson AD. GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics. 2014; 30:i185–94. https://doi.org/10.1093/bioinformatics/btu273
Supplementary Figure 1. Pairwise correlation between phenotypes selected for the analysis. Correlation coefficients are from correlation matrix Σ̃ evaluated using phenotype measurements in the combined data from all cohorts (see Online Methods). Quantitative markers: blood glucose (BG); body mass index (BMI); C-reactive protein (CRP); creatinine; diastolic blood pressure (DBP); forced vital capacity (FVC); heart rate (HR); hematocrit (HC); high-density lipoprotein cholesterol (HDL-C); systolic blood pressure (SBP); total cholesterol (TC); and triglycerides (TG). Risk outcomes: Alzheimer’s disease and related dementias (AD), atrial fibrillation (AF); cancer; coronary heart disease (CHD); diabetes mellitus (DM); death; heart failure (HF); and stroke.
Supplementary Table 1. Basic characteristics of cohorts included in the analyses and available sample sizes.

Variable	ARIC	CHS	FHS	MESA	HRS
Sample size	9,612	3,182	8,628	2,527	9,482
Age (SD), years	54.3 (5.7)	72.4 (5.4)	37.8 (9.3)	64.3 (10.2)	58.2 (9.1)
Birth dates, range	1921-1944	1885-1925	1885-1980	1917-1957	1905-1974
Gender, female (%)	5,095 (53.0)	1,841 (60.4)	4,659 (54.0)	1,320 (52.3)	5,489 (57.9)

Quantitative markers: number of visits (number of person-observations available for the analyses)

Variable	ARIC	CHS	FHS	MESA	HRS
BG [mg/dl]	4 (35,090)	3 (7,515)	17 (40,065)	5 (11,180)	1 (7,404)
BMI [kg/m²]	4 (35,055)	3 (7,570)	19 (46,187)	5 (11,200)	1 (9,419)
CRP [mg/l]	1 (523)	2 (5,564)	3 (18,699)	2 (2,716)	1 (8,087)
Creatinine [mg/dl]	3 (26,603)	3 (7,515)	6 (23,210)	4 (8,816)	N/A
DBP [mmHg]	4 (35,109)	7 (21,872)	28 (54,740)	5 (11,234)	2 (18,806)
FVC [liter]	2 (18,668)	3 (6,915)	4 (4,813)	1 (1,324)	N/A
HC [%]	3 (26,529)	2 (5,934)	14 (15,070)	1 (396)	N/A
HDL-C [mg/dl]	4 (35,033)	2 (5,611)	8 (35,548)	5 (11,166)	1 (5,973)
HR [beat/min]	4 (34,966)	7 (21,961)	25 (47,932)	2 (4,291)	N/A
SBP [mmHg]	4 (35,109)	7 (21,922)	28 (54,751)	5 (11,234)	2 (18,806)
TC [mg/dl]	4 (35,065)	6 (16,258)	18 (46,287)	5 (11,173)	1 (7,067)
TG [mg/dl]	4 (35,082)	2 (5,617)	4 (7,728)	5 (11,177)	N/A

Supplementary Figure 2. Forest plots illustrating benefits of longitudinal information for rs2155216. Cohorts: Atherosclerosis Risk in Communities Study (ARIC), Framingham Heart Study (FHS), and the Multi-Ethnic Study of Atherosclerosis (MESA). N indicates the sample size at a given examination (visit) and person-observations. “All” denotes the estimates evaluated leveraging longitudinal information. SE denotes standard error. Bars show 95% confidence intervals. The x-axis shows effects sizes beta.
Risk outcomes: number of cases available for the analyses

Follow up through	2005	2003	2014	2012	2013
AD	N/A	185	437	N/A	261
AF	837	631	957	137	N/A
Cancer	1,298*	631	1,140	170	2,644
CHD	1,497	952	1,140	170	2,580
DM	862	406	709	382	1,956
Death	1,430	1,345	176	1,239	1,239
HF	823	676	596	72	1,360
Stroke	398	300	462	57	1,232

All cancer sites combined; otherwise, all cancer sites except skin.

Cohort: Atherosclerosis Risk in Communities Study (ARIC); Cardiovascular Health Study (CHS); Framingham Heart Study (FHS), the Multi-Ethnic Study of Atherosclerosis (MESA), and Health and Retirement Study (HRS).

Quantitative markers: blood glucose (BG); body mass index (BMI); C-reactive protein (CRP); creatinine; diastolic blood pressure (DBP); forced vital capacity (FVC); heart rate (HR); hematocrit (HC); high-density lipoprotein cholesterol (HDL-C); systolic blood pressure (SBP); total cholesterol (TC); and triglycerides (TG).

Risk outcomes: Alzheimer’s disease and related dementias (AD), atrial fibrillation (AF); cancer; coronary heart disease (CHD); diabetes mellitus (DM); death; heart failure (HF); and stroke.

N/A identifies phenotypes not available in a given cohort.

Age is given at baseline; standard deviation (SD).

Supplementary Table 2. Linkage disequilibrium (LD, r²) for all non-proxy SNPs reported in the paper, which are within ±1Mb flanking region for the index SNP.

SNP_A	Chr_A	BP_A	SNP_B	Chr_B	BP_B	LD, r²
rs17367504	1	11802721	rs17367504	1	11802721	0.228
rs7549339	1	31249319	rs17367504	1	11802721	0.028
rs780094	2	27518370	rs780094	2	27518370	0.138
rs755503	2	134386883	rs503562	2	134502500	0.091
rs755503	2	134386883	rs666614	2	134532882	0.070
rs755503	2	134386883	rs6430585	2	134673139	0.037
rs503562	2	134502500	rs666614	2	134673139	0.219
rs503562	2	134502500	rs6745983	2	134673139	0.130
rs503562	2	134502500	rs6430585	2	135749357	0.040
rs666614	2	134532882	rs6430585	2	135749357	0.399
rs666614	2	134532882	rs6430585	2	135749357	0.115
rs6745983	2	134673139	rs6430585	2	135749357	0.125
rs2844720	6	30507940	rs6936620	6	33016674	0.007
rs2410616	8	19971168	rs1748753	8	19975135	0.019
rs2410616	8	19971168	rs1749026	8	19990569	0.020
rs2410616	8	19971168	rs17410962	8	19990569	0.465
rs17482753	8	19975135	rs1749026	8	19990569	0.639
rs17482753	8	19975135	rs17401956	8	19994534	0.251
rs17410962	8	19990569	rs1749268	8	19994534	0.190
rs2155216	11	116661022	rs6589567	11	116799960	0.101
rs2155216	11	116661022	rs7115242	11	117037567	0.043
rs6589567	11	116799960	rs7115242	11	117037567	0.232
rs9315885	13	42068674	rs670676	13	42127603	0.248
rs261332	15	58453126	rs261332	15	5845219	0.509

BP = base pairs, Chr = chromosome.

Linkage disequilibrium (LD) was evaluated with cut off $r^2=0.01$ in the Framingham Heart Study.
ADDITIONAL SUPPLEMENTARY MATERIAL

Please browse the Full Text version to see the links to Supplementary Tables of this manuscript.

Supplementary Table 3. SNPs attained genome-wide significance (p<5E-8) in univariate meta-analysis of individual phenotypes.

Supplementary Table 4. Replicated SNPs attained genome-wide significance in pleiotropic meta-analysis. (A) Replicated SNPs attained genome-wide significance in pleiotropic meta-analysis. (B) Effect sizes and p-values from the univariate meta-analysis of the associations of SNPs from Supplementary Table 4A with 20 phenotypes in pathway 1a using fixed-effects meta-test. (C) P-values from the univariate meta-analysis of the associations of SNPs from Supplementary Table 4A with 20 phenotypes in pathway 1a using Fisher's test. (D) The results of pleiotropic meta-analysis for SNPs from Supplementary Table 4A in each phenotypic domain.

Supplementary Table 5. Results of univariate meta-analysis of the associations of SNPs from Table 2 with 20 phenotypes in pathway 1a. (A) Effect sizes and p-values from the univariate meta-analysis of the associations of SNPs from Table 2 with 20 phenotypes in pathway 1a using fixed-effects meta-test. (B) P-values from the univariate meta-analysis of the associations of SNPs from Table 2 with 20 phenotypes in pathway 1a using Fisher's test.

Supplementary Table 6. The results of pleiotropic meta-analysis for SNPs from Table 2 in each phenotypic domain.

Supplementary Table 7. The results of pleiotropic meta-analyses for SNPs reported in Table 2 for pathway 2 in each cohort separately (pathway 2a) and after Fisher meta-analysis across cohorts (pathway 2b).

Supplementary Table 8. Pleiotropic meta-statistics for the antagonistic heterogeneity reported in Table 2 for pathway 2 in each cohort separately and combined using three meta-tests, FpFc, OpFc, and ObFc in pathway 2b (Figure 1).

Supplementary Table 9. Ten nominally significant gene ontology (GO) terms (Fisher’s exact test) for biological processes enriched in DAVID.

Supplementary Table 10. Top 18 nominally significant (Fisher's exact test) Ingenuity canonical pathways.