A Comparison between the Effect of Shisha and Cigarette Smoking on Serum Lipid Profile of Males in Nasiriayah City

Shatha Hamed Chwyeed
Department of Pathological Analysis Techniques, College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq

Abstract

Objective: This study aimed to recognize the harm of shisha smoking compared to cigarettes smoking by measuring serum lipid profile in males in AL-Nasiriya city and association lipid profile change with increase of smoking per day. Materials and Methods: This study was conducted between June to December (2015) in Nasiriya city in Iraq, all samples were randomly selected. Spectrophotometer was used for biochemical analysis for each group of lipid profile. The subjects were divided into three groups, cigarette smokers (n = 35), shisha smokers (n = 20) and non-smokers groups (n = 20). Age ranged between (30 – 60) years and mean of duration smoking was (13.4±1.3) years. Results: Results showed that the increased levels of total cholesterol (TC), triglyceride (TG), very low density lipoprotein (VLDL) and low density lipoprotein (LDL) were significant in all groups of smokers as compared to non-smokers. Conclusion: The study concludes that the danger of shisha impact on human health may be similar or even worse than cigarette smoking.

Keywords: Cholesterol, cigarette smoking, high-density lipoprotein, low-density lipoprotein, triglyceride

INTRODUCTION

Cigarette smoking is a serious health problem and most important avoidable cause of death in the world. Smoking causes atherosclerosis and deficiency of platelets and predominantly increases risk of cancer causing mutations which may appear until many years after man's first cigarette. Its estimated that tobacco-related deaths will amount to 6.4 million in 2015, 8.3 million in 2030 and one billion deaths during the 21st century.[1]

Shisha usage has a history which dates back to about 400 years with different names such as hookah, narghile, water-pipe, and argils,[2] it comes in different flavors, such as chocolate, mint, cherry, apple, and coconut which are often linked with social activity where two or more people may share the same pipe. People use Shisha smoke (SH-S) throughout the world, and they are daily used by more than 100 million men and women in Africa, Asia had been smoked for at least 400 years.[3]

Shisha use is widely perceived to be a safer alternative to cigarettes because the smoke is filtered through water but growing evidence which indicates that actively smoking shisha may be as or more harmful than smoking cigarettes.[4,5]

The danger of smoking promotes free radicals which interact with the biological molecules to cause elevation of oxidative stress through the exchange of lipid peroxidation chain reactions in the membranes thus smoking leads to alteration their metabolites from burning tobacco per day.[6] Free radicals (oxidizing chemicals highly reactive chemicals) which can damage heart muscles, blood vessels and also react with cholesterol leading to the build-up of fatty material on artery walls[7] also tobacco smoke contains dangerous metals including arsenic, cadmium, and lead, several of these metals were carcinogenic.[8,9]

Lipids are essential for body health which useful in digestion, providing energy storage, acting as functional and structural compounds in biomembranes and forming insulation to allow nerve conduction or to prevent heat loss. Increased number of cigarettes smoked per day lead to cardiovascular disease and increased morbidity and mortality.[10]

Address for correspondence: Dr. Shatha Hamed Chwyeed, College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq. E-mail: drnihadkhalawe@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Chwyeed SH. A comparison between the effect of shisha and cigarette smoking on serum lipid profile of males in Nasiriyah City. Med J Babylon 2018;15:39-42.
The aim of this study was to identify the harmful effects of smoking shisha by measuring lipid levels on healthy smokers and effect of increasing the number of cigarettes per day on lipid levels.

Materials and Methods

The study involved 75 males, their age range being from groups of 30–60 years. The study was divided into three groups: SH-S (20), cigarette smoker (CS) (20), and nonsmokers (NS) (35) groups. A volume of 5 ml of venous blood samples were performed in dry tubes. After centrifugation, the sera were frozen at −8°C until analysis. Total cholesterol (TC), triglycerides (TGs), and high-density lipoprotein (HDL) were measured in all subjects after 12 h fasting. Biochemical parameters including serum for TC, TG, and HDL were determined by enzymatic methods using Randox kit.

All male subjects were selected randomly, evaluated and selected by detailed medical history, physical examination, systemic examination, and routine investigations to rule out any underlying diseases and excluded any diseases which influence the lipid levels. All the statistical analysis was done using Pentium 4 computer through the SPSS program (version-20) statistic software package (IBM Corp, 2011).

Results

Table 1 shows the biochemical analysis for serum lipid profile TC, TG, HDL, very low-density lipoprotein (VLDL), and low-density lipoprotein (LDL) into three groups: NS, SH-S, and CS.

Table 1 shows highly significant mean differences among three groups (P < 0.00) NS, SH-S, and CS on serum HDL, LDL, TG, TC, and VLDL. In applying the LSD post hoc test, we recorded the CS group compared to the SH-S group and NS.

As shown in Table 2, this study showed highly significant differences in TC between CS and SH-S impact to NS and nonsignificant difference between SH-S and CS.

As shown in Table 3, this study showed nonsignificant difference (P = 0.09) between CS and SH-S groups on serum TG while highly significant between CS, SH-S compared to NS groups (P < 0.00).

No significant difference in VLDL reports between CS and SH-S groups (P = 0.086) on Table 4 but highly significant in VLDL on CS, SH-S groups compared to NS groups (P < 0.00).

There was no significant difference in applying the LSD post hoc test in LDL in Table 5 between CS and SH-S groups and highly significant in CS, SH-S groups compared NS groups (P < 0.00).

The study [Table 6] confirms that the increasing number of cigarettes smoked per day lead to increase level of serum TC, LDL, HDL, TG, and VLDL.

Discussion

The study showed differences in levels of serum lipid profile between smoking and nonsmoking groups. The current study included 75 smokers who was divided into CS, SH-S, and NS as control groups. The results showed biochemical analysis of serum TC, TG, LDL, HDL, and VLDL. We found increased serum levels of TC, TG, LDL, VLDL in smoking group (shisha and cigarette) compared to nonsmoking group. The results suggested that cigarette and SH-S produce the same effect on lipid profile (in spite of SH-S was higher on serum level lipid profile than CS) compared to NS and this is in agree with the study by Al-Fayez and et al. Serum HDL levels were significantly lower in smokers (shisha and cigarette) group as compared to NS groups although the mean levels of TC, TG, VLDL, LDL, and HDL of both groups were within normal limits.

The results were in line with the work Kronenberger et al. The result demonstrates that smokers are predisposed to developing coronary heart disease earlier than their nonsmoking. This is due to the stimulation of the adrenal-sympathetic system by nicotine level which releases catecholamine which induces lipolysis in adipose tissue, thus increasing levels of serum free fatty acid, promoting cholesterol synthesis, and secretion in the liver. This mechanism may be due to impairment of lipoprotein metabolism reduces the ability of blood vessel walls.

Other contributing factor on normal lipid profile values in this study is the mean duration of smoking among the subjects. Majority of these smokers were heavy smokers (>20 cigarettes/day) shown by dyslipidemia condition in smoking group, which induces atherosclerosis. Cigarette smoking generates substantial quantities of oxidative stress, explained by that smoke inhaled by the smoking modes (shisha and cigarette) leads to increasing effects of nicotine and similar risks of alteration and inflammation by these two types of smoking methods. Smoking significantly increases biomarkers of oxidative damage to proteins, DNA, and lipids.

Conclusions

The harmful effect of SH-S on healthy lifestyle may be similar
or even worse than cigarette smoking. It is recommended that men who have a habit of shisha smoking as an alternative to cigarette smoking tobacco should be informed about the potential adverse effects of their habit on cardiorespiratory health.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.
Table 6: Influence of daily cigarette smoking on lipid profile in healthy male subject

Cigarette smoking (cigarettes/day)	Subject (n)	Lipid profile				
	TC (mg/dl)	LDL (mg/dl)	HDL (mg/dl)	TG (mg/dl)	VLDL (mg/dl)	
1-10	6	131.1	136.6	37.4	130.9	26.8
11-20	13	199.6	204.4	40.8	257.6	51.4
≥20	16	210.8	221.7	42.9	299.6	59.6

TC: Total cholesterol, LDL: Low-density lipoprotein, HDL: High-density lipoprotein, TG: Triglyceride, VLDL: Very low-density lipoprotein

REFERENCES

1. World Health Organization. Report on the Global Tobacco Epidemic. World Health Organization; 2009. p. 136.
2. Eissenberg T, Shihadeh A. Waterpipe tobacco and cigarette smoking: Direct comparison of toxicant exposure. Am J Prev Med 2009;37:518-23.
3. Wolfram RM, Chehne F, Oguogho A, Sinzinger H. Narghile (water pipe) smoking influences platelet function and (iso-) eicosanoids. Life Sci 2003;74:47-53.
4. Chaouachi K. Hookah (Shisha, Narghile) smoking and environmental tobacco smoke (ETS). A critical review of the relevant literature and the public health consequences. Int J Environ Res Public Health 2009;6:798-843.
5. Fiala SC, Morris DS, Pawlak RL. Measuring indoor air quality of hookah lounges. Am J Public Health 2012;102:2043-5.
6. Chaouachi K, Sajid KM. A critique of recent hypotheses on oral (and lung) cancer induced by water pipe (Hookah, Shisha, Narghile) tobacco smoking. Med Hypotheses 2010;74:843-6.
7. Fortmann AL, Romero RA, Sklar M, Pham V, Zakarian J, Quintana PJ, et al. Residual tobacco smoke in used cars: Futile efforts and persistent pollutants. Nicotine Tob Res 2010;12:1029-36.
8. Salameh P, Bacha ZA, Waked M. Saliva cotinine and exhaled carbon monoxide in real life waterpipe smokers: A Post hoc analysis. Tobacco Use Insights 2009;2:1-10.
9. Barnett TE, Curbow BA, Soule EK Jr., Tomar SL, Thombs DL. Carbon monoxide levels among patrons of hookah cafes. Am J Prev Med 2011;40:324-8.
10. Adeleji OA, Etukudo MH. Lipid profile of cigarette smokers in Calabar municipality Pakistan. Pak J Nutrition 2006;5:237-8.
11. Al-Fayez SF, Salleh M, Ardawi M. Zahran FM. Effects of sheesha and cigarette smoking on pulmonary functions of Saudi males and females. Trop Geogr Med 1988;40:115-123.
12. Kronenberger H, Seiffert UB, Grob W. Effects of cigarette smoking on plasma lipids, apolipoproteins and lipoprotein (a) in healthy subjects. Clin Chem 1994;40:1350.
13. Bazzano LJ, Muntner S. Relationship between Cigarette smoking and novel risk factors for cardiovascular disease in the United States. Am J Int Med 2003;138:891-7.
14. Hadidi KA, Mohammed FI. Nicotine content in tobacco used in hubble-bubble smoking. Saudi Med J 2004;25:912-7.
15. Meenakshisundaram R, Rejendiran C, Thirumalaikolundusubramanian P. Lipid and lipoprotein profiles among middle aged male smokers: Study from Southern India. Tob Induc Dis 2010;8:1-5.
16. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 2012;33:1655-701.
17. Bonnie RJ, Stratton K, Kwan LY, editors. Public Health Implications of Raising the Minimum Age of Legal Access to Tobacco Products. US: National Academies Press; 2015.