Relationship between Understory Light and Growth of Forest-grown American Ginseng
(Panax quinquefolius L.)

Anick R. Fournier and André Gosselin
Horticultural Research Center, Envirotom Building, Laval University, Ste-Foy, Que., G1K 7P4, Canada

John T.A. Proctor
Department of Plant Agriculture, University of Guelph, Guelph, Ont., N1G 2W1, Canada

Louis Gauthier
Les Fraises de l’Île d’Orléans Inc., Île d’Orléans, Que., G0A 3Z0, Canada

Shahrokh Khanizadeh
Agriculture and Agri-Food Canada, Horticultural Research Center, St-Jean-sur-Richelieu, Que., J3B 3E6, Canada

Martine Dorais
Agriculture and Agri-Food Canada, Horticultural Research Center, Envirotom Building, Laval University, Ste-Foy, Que., G1K 7P4, Canada

ADDITIONAL INDEX WORDS. Panax quinquefolius, american ginseng, hemispherical photography, light quality, sunfleck durations

ABSTRACT. Our objective was to determine the relationship between daily and seasonal changes in understory light, and growth of 1- and 2-year-old american ginseng plants cultivated in a broadleaf forest. Using hemispherical photography and spectroradiometry, understory light [total, direct, and diffuse photon flux density (PFD), and sunfleck durations] and light quality [ultraviolet (UV) and red to far red (R:FR)] were evaluated during two consecutive growing seasons. While shoot and root dry weight (DW), and taproot area of 1-year-old american ginseng plants were related to sunfleck durations, accounting for up to 56% of the variation, the relationship reached a plateau at 2 h·d–1 sunfleck durations for growth. In September, growth of 1- and 2-year-old plants exposed to <2 h·d–1 sunfleck durations was positively related to diffuse PFD (and total PFD for 1-year-old plants), accounting for up to 69% of the variation. In mid-season (July 2000), shoot and root growth, and leaflet area of 2-year-old american ginseng were correlated with light PFD and light quality (UV and R:FR), accounting for up to 88% of the variation. Generally, the results suggest that exposing 1- and 2-year-old american ginseng plants to higher diffuse PFD and <2 h·d–1 sunfleck durations increases yield.

Indigenous to North American forest understories (Anderson et al., 1993), american ginseng (Panax quinquefolius L.) is a perennial shade plant highly valued for its medicinal properties attributed to the presence of ginsenosides (Briskin, 2000; Fournier et al., 2003). The almost complete decimation of american ginseng populations due to the destruction of its habitat and overexploitation (Charron and Gagnon, 1991) has rendered its cultivation, under artificial shade (Court et al., 1996), while those grown under forest conditions can take up to 8 years before achieving commercially valuable root sizes (Hsu, 2002). However, roots issued from forest cultivation are deemed more valuable since they contain higher levels of ginsenosides and resemble wild roots (Betz et al., 1984; Hsu, 2002). Even if fibrous roots contain higher levels of ginsenosides than taproots, the commercially-valuable section of root organs are taproots (Betz et al., 1984).

Once the development of the forest canopy is complete from end of May to late June (Anderson et al., 1993), understory plants are generally exposed to moderate light intensities, although they remain exposed to sunflecks. Depending on their duration and periodicity, sunflecks can be sources of excessive light which af-
fect the physiology of various shade plants (Königer et al., 1995; Kursar and Coley, 1999). To date, only a few authors explored the effect of understory light on growth of ginseng plants (Wang et al., 1995) and they showed that asian ginseng (Panax ginseng C.A. Meyer) has the highest root weight when plants are exposed to moderate light levels (10% to 35% of the solar radiation), followed by low light (<10% of the solar radiation) and then intense light (>35% of the solar radiation). While this study offered important clues as to the adaptability of Asian ginseng to understory light, the effect of light on forest-grown american ginseng has not been studied.

Previous studies, however, showed that american ginseng growing under artificial shade attains a maximum photosynthetic rate when exposed to 200 \( \mu \text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1} \), below which there is an exponential rise in photosynthetic rate following increasing light levels (Proctor, 1980). Furthermore, Asian ginseng plants exposed to high light levels (720 \( \mu \text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1} \)) suffer from photoinhibition of photosynthesis (Parmenter and Littlejohn, 1998, 2000; Smallfield et al., 1995), and if the conditions persist, there is a subsequent bleaching of chlorophyll pigments, followed by premature leaf death (Parmenter and Littlejohn, 2000; Proctor and Bailey, 1987). However, premature leaf death does not necessarily translate into reduced root weights since Asian ginseng plants exposed to 720 \( \mu \text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1} \) have similar root weights than plants grown under 160 or 400 \( \mu \text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1} \) (Parmenter and Littlejohn, 2000).

The physiology and structure of developing plants are not only affected by incident light quantity but also light quality (Barker et al., 1997; Bukhov et al., 1995; Gonzalez et al., 1998; Vladimirova et al., 1997). During forest canopy development, understory light quality changes due to the selective absorption of red (R) and blue (B) light by canopy leaves (Dalling et al., 1999; MacLellan and Frankland, 1985). Changes in R versus far red (FR) light ratios incident of plants affect phytochrome-mediated processes, and can profoundly affect plant growth and development (de la Rosa et al., 1999; Morgan and Smith, 1976; Stuefer and Huber, 1998; Tasker and Smith, 1977), while other species are hardly affected (Assman, 1992; Lee, 1985; Smith, 1982; Warrington et al., 1988).

The effect of light quality on forest-grown american ginseng has not been studied. Our objective was to determine the relationship between understory light levels and light quality, including sunfleck durations, on growth and morphology of 1- and 2-year-old american ginseng plants cultivated in a forest.

**Materials and Methods**

**Plant material and experimental design.** In Oct. 1998, stratified american ginseng seeds (Panax Q Farm Ltd., Vernon, BC, Canada) were planted in 15 experimental units each measuring 6 \( \text{m}^{2} \) in a broadleaf forest at Île d’Orléans, Que., Canada (Lat. 46° 57’ N; Long. 70° 56’ W). Forest canopy trees, primarily composed of Fagus grandifolia, Acer saccharum, and Betula alleghaniensis, had a leaf area index (LAI ± sd), measured using hemispherical photography (see below for description), of 2.3 ± 0.3 in September 1999 and 2.5 ± 0.3 in September 2000. The location of each experimental unit was allotted randomly on a forest surface area of 1.2 ha. Due to the heterogeneous nature of the forest canopy, there was no repetition of light levels, which were estimated at fixed points (one point per experimental unit) in each experimental unit. Before sowing ginseng seeds at a density of 30 kg·ha\(^{-1}\), the soil was tilled to a depth of 15 cm and lime was incorporated (6 t·ha\(^{-1}\)) to elevate soil pH to 5.2. The experimental units contained ≈150 ginseng plants per unit and weeding was done by hand weekly to minimize competition. Average soil mineral concentrations (ppm ± sd) during 1999 and 2000 were 15 ± 8 P, 86 ± 22 K, 3085 ± 1062 Ca, 50 ± 10 Mg, 1568 ± 245 Al, 258 ± 34 Fe, 2.0 ± 0.8 Cu, 10.3 ± 6.9 Mn, 20.24 ± 7.48 Zn, 0.17 ± 0.04 B, 12% ± 1% organic matter, and electrical conductivity of 0.114 ± 0.028 ds·m\(^{-1}\).

**Hemispherical photography.** Using hemispherical photography (Beaudet and Messier, 2002; Frazer et al., 1999), total (direct plus diffuse), direct, and diffuse light photon flux density (PFD), and sunfleck durations were estimated in each experimental unit at fixed points in September 1999 and at regular intervals (total of 14 times) from May to September 2000. Previous studies have shown significant positive correlations between direct sensor measurements and indirect photographic estimates of light transmission with hemispheric photographs (Chazdon and Field, 1987; Easter and Spies, 1994; Gendron et al., 1998). Hemispherical photographs of the forest canopy were recorded skyward on overcast days with uniform cloud cover using a digital camera (CoolPix 800; Nikon Corp., Tokyo, Japan) equipped with a fisheye lens converter (FC-E8; Nikon Corp.) assembled on a leveled tripod one meter above ground level. The images were then analyzed using a computer software named Gap Light Analyzer, version 2.0 (University of Victoria, B.C., Canada), which uses a solar radiation model that accounts for the influence of topography and seasonal patterns of cloudiness to estimate light levels. The physical location of the site (geographical location, slope, elevation), solar constant, cloudiness index, beam fraction (ratio of direct to total spectral radiation), and clear-sky transmission coefficient based on average North American conditions were parameters included in the program to account for atmospheric conditions during the growing seasons. Images were analyzed by transforming image pixel positions into angular coordinates, dividing pixel intensities into sky and nonsky classes (canopy foliage), and computing sky brightness distributions. The estimation of sunfleck durations using hemispherical photography does not take into consideration the movement of canopy leaves by the wind and the effect of clouds (Beaudet and Messier, 2002; Canham et al., 1990).

The software estimated mean daily PFD during a time period (start and end dates) which, in our case, was from the day after the previous recording session to the day photographs were recorded during the 2000 growing season. Cumulative PFD were calculated by adding mean daily PFD (mol·m\(^{-2}\)·d\(^{-1}\)) estimated from May to July 2000 for analyses in July 2000, and from May to September 2000 for analyses in September 2000. In 1999, mean daily PFD were estimated from July to September. However, cumulative PFD (May to September) were not determined in 1999 since light levels were not estimated during the development of the forest canopy (May to July). Diffuse light is atmospheric light energy dispersed by atmospheric particles and dust, while direct light is nondispersed atmospheric light (Frazer et al., 1999). Sunflecks are naturally found gaps in the forest canopy that allow the penetration of direct beam radiation to the forest understory (Frazer et al., 1999).

**Spectroradiometry.** Understory light quality (300 to 1100 nm) was measured between 10:00 and 14:00 
hr with a spectroradiometer (LI-1800; LI-COR, Inc., Lincoln, Neb.) by placing a sensor at a fixed point in the experimental units before (4 May 2000), during (28 May 2000), and after (4 July 2000) the development of the forest canopy. For each wavelength, three measurements and indirect photographic estimates of light transmission were taken. For each measurement, the sensor was adjusted to the same height in the canopy, and the sky radiance was measured with a digital camera (CoolPix 800; Nikon Corp.) equipped with a fisheye lens converter (FC-E8; Nikon Corp.) assembled on a leveled tripod one meter above ground level. The images were then analyzed using a computer software named Gap Light Analyzer, version 2.0 (University of Victoria, B.C., Canada), which uses a solar radiation model that accounts for the influence of topography and seasonal patterns of cloudiness to estimate light levels. The physical location of the site (geographical location, slope, elevation), solar constant, cloudiness index, beam fraction (ratio of direct to total spectral radiation), and clear-sky transmission coefficient based on average North American conditions were parameters included in the program to account for atmospheric conditions during the growing seasons. Images were analyzed by transforming image pixel positions into angular coordinates, dividing pixel intensities into sky and nonsky classes (canopy foliage), and computing sky brightness distributions. The estimation of sunfleck durations using hemispherical photography does not take into consideration the movement of canopy leaves by the wind and the effect of clouds (Beaudet and Messier, 2002; Canham et al., 1990).

The software estimated mean daily PFD during a time period (start and end dates) which, in our case, was from the day after the previous recording session to the day photographs were recorded during the 2000 growing season. Cumulative PFD were calculated by adding mean daily PFD (mol·m\(^{-2}\)·d\(^{-1}\)) estimated from May to July 2000 for analyses in July 2000, and from May to September 2000 for analyses in September 2000. In 1999, mean daily PFD were estimated from July to September. However, cumulative PFD (May to September) were not determined in 1999 since light levels were not estimated during the development of the forest canopy (May to July). Diffuse light is atmospheric light energy dispersed by atmospheric particles and dust, while direct light is nondispersed atmospheric light (Frazer et al., 1999). Sunflecks are naturally found gaps in the forest canopy that allow the penetration of direct beam radiation to the forest understory (Frazer et al., 1999).

426 J. AMER. SOC. HORT. SCI. 129(3):425–432. 2004.
GROWTH AND MORPHOLOGY OF SHOOTS AND ROOTS. Nine (September 1999) and five (July and September 2000) American ginseng plants were randomly selected in each experimental unit to measure shoot and root growth, and morphology. Average values were calculated for each experimental unit and used in statistical analyses. Shoot and root fresh weights (FW) and dry weights (DW) were determined before and after a 48-h drying period at 40°C (Charest et al., 2000). Third leaflet surface area was measured using a planimeter (LI-3000A; LI-COR). Fibrous root (diameter ≤1mm) and taproot (diameter>1mm) areas were determined on fuchsin (0.005% solution) stained roots using Win Rhizo, version 3.8a (Régent Instrument, Inc., Quebec, Que., Canada) (Lambany and Veilleux, 1999).

Statistical analysis was performed using the program named Essential Regression for Excel 97 (ER, 2.219). Using a linear and nonlinear (ln) models, and their two way interactions, multiple regression analysis was used to determine light factors that best modeled growth and morphology of American ginseng plants. For 1-year-old plants (1999), terms used in multiple regression model were mean daily total, direct, diffuse PFD, and sunflack durations. For 2-year-old plants (July 2000), terms used in the model were daily and cumulative total, direct, and diffuse PFD, and sunflack durations, and UV and R:FR fluence rates. For 2-year-old plants (September 2000), terms used in the statistical model were daily and cumulative PFD (total, direct, diffuse, and sunflack durations). Residual analyses for normal distribution were also done.

Results

Multiple regression analysis showed that shoot and root DW were best modeled by daily sunflack durations, accounting for up to 56% of the variation (Fig. 1A and B). One-year-old American ginseng plants exposed to increasing sunflack durations had decreasing shoot and root DW, especially when exposed to over 2 h·d⁻¹ sunflack durations (Fig. 1A and B). Further analyses were done using only data for plants exposed to <2 h·d⁻¹ sunflack durations (11 experimental units), revealing that shoot and root DW of 1-year-old American ginseng plants exposed to <2 h·d⁻¹ sunflacks were positively related to the interaction between daily diffuse and total PFD, accounting for up to 69% of the variation (Fig. 2A and B). Furthermore, fibrous root (diameter>1mm) area of 1-year-old plants was positively related to the interaction between daily total PFD and sunflack durations (Fig. 3A), while taproot area (diameter>1mm) was best modeled by sunflack durations, accounting for 47% of the variation (Fig. 3B). Root DW of 2-year-old plants collected in September 2000 was related to cumulative diffuse PFD, accounting for 45% of the variation (Fig. 4). However, root morphology of 2-year-old plants collected in September 2000 was not related to understory light (P > 0.05) (data not presented). Two-year-old American ginseng plants were exposed to lower average sunflack durations in July to September 2000 compared to 1-year-old plants (1999) during the same period with 1.5 to 1.8 h·d⁻¹ sunflack durations, respectively (Fig. 5). However, mean daily total, direct, and diffuse PFD decreased only slightly from 1999 to 2000 (Fig. 5).

During the 2000 growing season, understory daily total, direct, and diffuse PFD, and sunflack durations decreased from mid-May to end of May with only moderate variations thereafter (Fig. 6). Notably, after the month of May, average sunflack durations lasted <2 h·d⁻¹ (Fig. 6). Understory UV, R, and FR fluence rates, and R:FR ratio also declined during the development of the forest canopy, from 4 May (before canopy development) to 28 May (during canopy development) to 4 July 2000 (after canopy development) (Fig. 7).

In July 2000, shoot DW was positively linearly related to cumulative diffuse PFD and to the added effect of UV light (4 July 2000) and daily total PFD (Fig. 8A). Root DW was also positively linearly related to cumulative diffuse PFD, and to the interaction between UV light (4 July 2000) and cumulative sunflack durations (Fig. 8B) (root DW was not determined in July 2000). While leaflet area and stem length of 1-year-old plants were not related to understory light levels (P > 0.05) (data not presented), leaflet area of 2-year-old American ginseng plants measured in July 2000 was positively linearly related to interaction between UV light (4 July 2000) and cumulative diffuse PFD, and UV light (28 May 2000) and cumulative diffuse PFD (Fig. 8C). Moreover, root FW and leaflet area were negatively correlated with the interactive effect between R:FR (28 May 2000) and daily diffuse PFD (root FW) (Fig. 8B), and UV light (4 July 2000) (leaflet area) (Fig. 8C).

Discussion

The heterogeneous nature of the forest canopy creates a mosaic of light in the understory that significantly affects growth and morphology of 1- and 2-year-old American ginseng. The results showed that daily sunflack durations best modeled shoot and
root DW (Fig. 1A and B), and taproot area (Fig. 3B) of 1-year-old american ginseng plants, accounting for up to 56% of the variation. However, the relationship reached a plateau at ≈2 h·d⁻¹ sunfleck durations when plants exposed to the highest sunfleck durations (>2 h·d⁻¹) suffered from reduced growth (Fig. 1A-B) probably because direct PFD transmitted through gaps was over their point of light saturation. While light energy transmitted through gaps can represent 40% to 80% of understory light (Pitsch and Pearcy, 1989; Valladares and Pearcy, 1998), its utilization can account for only 20% to 40% of CO₂ assimilation in certain shade plants (Valladares and Pearcy, 1998). Photosynthesis of american ginseng plants could have been further restricted by long sunflecks because of increased leaf temperatures and higher water losses. However, 1-year-old plants exposed to longer sunflecks had increased fibrous root areas (Fig. 3A) which probably contributed to increasing uptake of mineral elements and water (Haase and Rose, 1994), compensating for potential losses. Even if american ginseng is a shade plant, it was capable of effectively using direct sunlight transmitted through forest gaps probably by developing physiological mechanisms to absorb understory light such as thicker leaves, larger mesophyll surface areas, and higher numbers of mesophyll cells, as was previously shown in Asian ginseng (Zhang et al., 1995).

The data further showed that 1-year-old american ginseng plants exposed to sunfleck durations <2 h·d⁻¹ were correlated with daily diffuse and total PFD, accounting for up to 69% of the variation (Fig. 2A and B), implying that light was a major controlling factor of growth at lower sunfleck durations. Similarly, shoot DW and root FW measured in July 2000, and root DW measured in September 2000 in a broadleaf forest. Multiple regression was performed using data collected in 11 experimental units (9 samples per unit).

The relationship between cumulative diffuse PFD and root dry weight (DW) of 2-year-old american ginseng plants collected in September 2000 in a broadleaf forest. Multiple regression was performed using data collected in 12 experimental units (5 samples per unit).
Fig. 5. Variation of mean daily total, direct, and diffuse PFD, and sunfleck durations (from July to September) in a forest understory in 1999 and 2000. Data are mean values of 15 (1999) and 75 (2000) independent measurements.

Fig. 6. Seasonal variation of mean daily total, direct, and diffuse PFD, and sunfleck durations from mid-May to September 2000 in the understory of a broadleaf forest. Data are mean values of 15 to 135 independent measurements.
September 2000 of 2-year-old American ginseng plants were also correlated with cumulative diffuse PFD, accounting for up to 45% of the variation (Fig. 4). Two-year-old American ginseng plants were generally exposed to shorter sun fl ecks than 1-year-old plants (Fig. 5), with an average of 1.5 h·d⁻¹ compared to 1.8 h·d⁻¹ for 1999, which decreased the potential for light saturation. Previous studies showed that shade plants (Sims and Pearcy, 1993; Valladares and Pearcy, 1998) preferentially use diffuse light rather than direct light for carbon gain with up to nine times higher growth than those grown under short or long sun fl ecks. One- and 2-year-old American ginseng plants probably used diffuse PFD at maximum quantum yield for CO₂ assimilation since its PFD (4.4 mol·m⁻²·d⁻¹ in 1999 and 4.0 mol·m⁻²·d⁻¹ in 2000) (Fig. 5) was well below their point of light saturation established at 200 µmol·m⁻²·s⁻¹ (Proctor, 1980). Hence, higher growth rates would probably be obtained by exposing American ginseng plants to between 100 to 200 µmol·m⁻²·s⁻¹ diffuse PFD since the results showed linear relationships between diffuse PFD and growth.

The development of the forest canopy altered light PFD (Fig. 6) and light quality (Fig. 7) in the understory. In mid-May 2000, young 2-year-old American ginseng plants were exposed to sun fl ecks lasting on average 8 h·d⁻¹ and total PFD averaging 28 mol·m⁻²·d⁻¹ (Fig. 6), which could have caused inhibition of photosynthesis (Proctor, 1980) and stunted growth. However, American ginseng was only exposed to these high PFD and long sun fl eck durations during its initial leaf development. The rapid development of the forest canopy decreased light PFD by 64% to levels below saturating PFD for American ginseng plants (Proctor, 1980). Similarly, UV and R:FR ratio decreased following canopy development. Notably, average UV fl uence rate decreased by 91% and average R:FR ratio decreased from 1.0 to 0.2 during canopy development (Fig. 7).

At the end of canopy development (July 2000), shoot and root growth, in addition to leaflet area, were positively related to cumulative diffuse PFD, while higher R:FR ratio stunted leaflet area and root growth of 2-year-old American ginseng (Fig. 8A-C). Since R light was largely absorbed by forest canopy leaves (Dalling et al., 1999; MacLellan and Frankland, 1985), American ginseng in the forest understory was gradually exposed to reduced R:FR ratios (Fig. 7) that could have induced a phytochrome-mediated response involved in the perception of shade (de la Rosa et al., 1999; Morgan and Smith, 1976; Smith, 1982; Stuefer and Huber, 1998; Tasker and Smith, 1977). In this sense, lower R:FR ratio in diffuse radiation compared to direct radiation (Lee, 1987) could in part account for the positive influence of diffuse light on shoot and root growth of American ginseng plants. Light quantity and light quality both influenced the allocation of biomass to increasing assimilatory tissue (leaflet area), concordant with results obtained in sun plants grown in shade (Stuefer and Huber, 1998), but not with results generally observed in shade plants (Assmann, 1992; Lee, 1985; Smith, 1982; Warrington et al., 1988). While American ginseng is identified as an obligate shade plant (Hsu, 2002), the results suggest that it has physiological responses resembling facultative shade plants. Moreover, Proctor (1980) showed that chlorophyll a/b ratio of American ginseng plants grown under artificial shade is comparable to sun species, with a 3:1 ratio.

Leaflet area of 2-year-old plants (July 2000) was also positively related to UV fl uence rates during and after the development of the forest canopy (Fig. 8C). Understory plants exposed to higher UV light have been shown to suffer from DNA damage through...
the formation of DNA dimers (Taylor et al., 1997) and reduced biomass (Allen et al., 1998). However, 2-year-old american ginseng plants had higher growth and increased leaflet areas when exposed to higher UV light. González et al. (1998) showed that plants exposed to high followed by low UV-B levels, as was the case in our study (Fig. 7) caused by canopy development, have higher leaf areas than those exposed to consistently high or low UV-B levels. The allocation of more carbon energy to leaves, which are critical to future plant productivity (Parmenter and Littlejohn, 1998; Sinha, 1999), probably accounted for the higher leaf areas when exposed to higher UV light. González et al. (1998) showed that UV-B levels. The allocation of more carbon energy to leaves, which are critical to future plant productivity (Parmenter and Littlejohn, 1998; Sinha, 1999), probably accounted for the higher leaf areas when exposed to higher UV light.

Fig. 8. Relationship between daily and cumulative light PFD, and light quality [ultraviolet (UV) and red to far red (R:FR ratio), and (A) shoot dry weight (DW) and (B) root fresh weight (FW), and (C) leaflet area of 2-year-old american ginseng plants collected in July 2000 in a broadleaf forest. Multiple regression was performed using data collected in 12 experimental units (5 samples per unit).

specification UV and R:FR ratio, accounting for up to 88% of the variation. Similarly, growth of 2-year-old american ginseng estimated in September was correlated with cumulative diffuse PFD. The data suggest that exposing american ginseng plants to higher diffuse PFD (up to 200 µmol·m⁻²·s⁻¹) and <2 h·d⁻¹ sun-fleck durations would maximize root growth. Sims and Pearcy (1993) suggested that if PFD supplied in sunflecks could be more uniformly distributed, by growing understory plants under tall canopies with small leaves (Smith et al., 1989) for example, then growth of understory plants could be maximized. Small gap diameters produce penumbral sunflecks that contain higher proportions of diffuse light than larger gaps (Chazdon and Pearcy, 1991), hence increasing diffuse PFD in the understory.

**Literature Cited**

Allen, D.J., S. Nogués, and N.R. Baker. 1998. Ozone depletion and increased UV-B radiation: Is there a real threat to photosynthesis? J. Exp. Bot. 49:1775–1788.

Anderson, R.C., J.S. Fraish, and J.E. Armstrong. 1993. The ecology and biology of *Panax quinquefolium* L. (Araliaceae) in Illinois. Amer. Midl. Nat. 129:357–372.

Assmann, S.M. 1992. Effects of light quantity and quality during development on the morphology and stomatal physiology of *Commelina communis*. Oecologia 92:188–195.

Barker, D.H., G.G.R. Seaton, and S.A. Robinson. 1997. Internal and external photoprotection in developing leaves of the CAM plant *Cotyledon orbiculata*. Plant Cell Environ. 20:617–624.

Beaudet, M. and C. Messier. 2002. Variation in canopy openness and light transmission following selection cutting in northern hardwood stands: an assessment based on hemispherical photographs. Agr. For. Meteorol. 110:217–228.

Betz, J.M., A.H. Der Marderosian, and T.M. Lee. 1984. Continuing studies on the ginsenoside content of commercial ginseng products by TLC and HPLC, II, p. 65–83. In: J.T.A. Proctor (ed.). Proc. 6th N. Amer. Ginseng Conf., Guelph Univ., Ont.

Briskin, D.P. 2000. Medicinal plants and phytomedicines: linking plant biochemistry and physiology to human health. Plant Physiol. 124:507–514.

Bukhov, N.G., I.S. Drozdova, and V.V. Bondar. 1995. Light response curves of photosynthesis in leaves of sun-type and shade-type plants grown in blue or red light. Photochem. Photobiol. 30:39–41.

Canham, C.D., J.S. Denslow, W.J. Platt, J.R. Runkle, T.A. Spies, and P.S. White. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res. 20:620–631.

Charest, P., L. Gauthier, S. Khanizadeh, and M. Dorais. 2000. The influence of soil preparation, seedling rates and organic mulch on the production of woods-cultivated ginseng. Acta Hort. 523:87–96.

Charron, D. and D. Gagnon. 1991. The demography of northern populations of *Panax quinquefolium* (american ginseng). J. Ecol. 79(2):431–445.

Chazdon, R.L. and C.B. Field. 1987. Photographic estimation of photosynthetically active radiation: evaluation of a computerized technique. Oecologia 73:525–532.

Chazdon, R.L. and R.W. Pearcy. 1991. The importance of sunflecks for forest understory plants. BioScience 41(11):760–766.

Court, W.A., L.B. Reynolds, and J.G. Hendel. 1996. Influence of root age on the concentration of ginsenosides of american ginseng (*Panax quinquefolium*). Can. J. Plant Sci. 76:853–855.

Dalling, J.W., C.E. Lovelock, and S.P. Hubbell. 1999. Growth responses of seedlings of two neotropical pioneer species to simulated forest gap environments. J. Trop. Ecol. 15:827–839.

Della Rosa, T.M., T. Lehto, and P.J. Aphalo. 1999. Does far-red light affect growth and mycorrhizas of scots pine seedlings grown in forest soil? Plant Soil 211:259–268.

Easter, M.J. and T.A. Spies. 1994. Using hemispherical photography for estimating photosynthetic photon flux density under canopies and in

J. AMER. SOC. HORT. SCI. 129(3):425–432. 2004.
gaps in Douglas-fir forests of the Pacific Northwest. Can. J. For. Res. 24:2050–2058.

Fournier, A.R., J.T.A. Proctor, L. Gauthier, S. Kanzianadeh, A. Belanger, A. Gosselin, and M. Dorais. 2003. Understory light and root ginsenosides in forest-grown *Panax quinquefolius*. Phytochemistry 63(7):777–782.

Frazer, G.W., C.D. Canham, and K.P. Lertzman. 1999. Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fish-eye photographs, users manual and program documentation. Simon Fraser Univ., Burnaby, B.C., and the Inst. Ecosystem Studies, Millbrook, N.Y.

Gendron, F., C. Messier, and P.G. Comeau. 1998. Comparison of various methods for estimating the mean growing season percent photosynthetic photon flux density in forests. Agr. For. Meteorol. 92:55–70.

González, R., R. Mepsted, A.R. Wellburn, and N.D. Paul. 1998. Non-cyclic photochemistry in forest understory and initial root volume on the nutrient status of 2 + 0 Douglas fir seedlings. New Forests 8:269–277.

Hsu, P.C. 2002. Commercial production of American ginseng (*Panax quinquefolius* L.). Native Plants J. 3(2):106–108.

Königer, M., G.C. Harris, A. Virgo, and K. Winter. 1995. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: A comparative field study on canopy, gap and understory plants. Oecologia 104:280–290.

Kursar, T.A. and P.D. Coley. 1999. Contrasting modes of light acclimation in two species of the rainforest understory. Oecologia 121:489–498.

Lambany, G. and L. Veilleux. 1999. Système d’imagerie informatisé appliqué au développement des racines de semis d’épinette. For. Res. Notes n° 97. Que. Govt., Ministry Natural Resources, Que.

Lee, D.W. 1985. Duplicating forest shade for research on plant development. HortScience 20:116–118.

Lee, D.W. 1987. The spectral distribution of radiation in two neotropical rain forests. Biotropica 19:161–166.

MacLellan, A.J. and B. Frankland. 1985. A simple field method for measuring light quality: seasonal changes in a temperate deciduous wood. Photochem. Photobiol. 42:689–695.

Morgan, D.C. and H. Smith. 1976. Linear relationship between phytochrome photoequilibrium and growth in plants under simulated natural radiation. Nature 262:210–212.

Parmenter, G. and R. Littlejohn. 1998. The effect of irradiance during leaf development on photo-inhibition in *Panax ginseng* C.A. Meyer. J. Ginseng Res. 22:102–113.

Parmenter, G. and R. Littlejohn. 2000. Effect of shade on growth and photosynthesis of *Panax ginseng*. New Zealand J. Crop Hort. Sci. 28:255–269.

Persons, W.S. 1995. American ginseng farming in its native woodland habitat, p. 78–88. In: W.G. Bailey, C. Whitehead, J.T.A. Proctor, and J.T. Kyle (eds.). Proc. Intl. Ginseng Conf., Simon Fraser Univ. Press, B.C.

Pfistsch, W.A. and R.W. Pearly. 1989. Daily carbon gain by *Adenocaulon bicolor* (Asteraceae), a redwood forest understory herb, in relation to its environment. Oecologia 80:465–470.

Proctor, J.T.A. 1980. Some aspects of the Canadian culture of ginseng (*Panax quinquefolius* L.), particularly the growing environment, p. 39–47. In: Y.C. Kim (ed.). Proc. 3rd Intl. Ginseng Symp., Korean Ginseng Res. Inst., Seoul.

Proctor, J.T.A. and W.G. Bailey. 1987. Ginseng: Industry, botany and culture. Hort. Rev. 9:187–236.

Proctor, J.T.A., D. Loutitt, and J. Jiao. 1998. Seasonal growth and root respiration of North American ginseng. J. Ginseng Res. 22:161–167.

R. Sims, D.A. and R.W. Pearly. 1993. Sunfleck frequency and duration affects growth rate of the understory plant, *Alocasia macrorrhiza*. Funct. Ecol. 7:683–689.

Sinha, N. 1999. Leaf development in angiosperms. Annu. Rev. Plant Physiol. 50:419–446.

Smallfield, B.M., J.M. Follett, M.H. Douglas, J.A. Douglas, and G.A. Parmenter. 1995. Production of *Panax* spp. in New Zealand. Acta Hort. 390:83–89.

Taylor, R.M., A.K. Tobin, and C.M. Bray. 1997. DNA damage and repair in plants, p. 53–76. In: P.L. Lumsden (ed.). Plants and UV-B: Responses to environmental change. Univ. Press, Cambridge.

Valladare, F. and R.W. Pearly. 1998. The functional ecology of shoot architecture in sun and shade plants of *Heteromeles arbutifolia* M. Roem., a Californian chaparral shrub. Oecologia 114:1–10.

Vladimirova, S.V., D.B. McConnell, and M.E. Kane. 1997. Morphological plasticity of *Dracaena sanderana* ‘Ribbon’ in response to four light intensities. HortScience 32:1049–1052.

Wang, H., J. Fan, X. Yang, G. Fan, Q. Liu, and H. Dai. 1995. A study on ginseng cultivation under forest conditions and its physiological and ecological characteristics, p. 452–462. In: W.G. Bailey, C. Whitehead, J.T.A. Proctor, and J.T. Kyle (eds.). Proc. Intl. Ginseng Conf., Simon Fraser Univ. Press, B.C.

Warrington, I.J., D.A. Rook, D.C. Morgan, and H.L. Turnbull. 1988. The influence of simulated shadelight and daylight on growth, development and photosynthesis of *Pinus radiata*, *Agathis australis* and *Dacrydium cupressinum*. Plant Cell Environ. 11:343–356.

Zhang, Z.A., K.Z. Xu, C.G. Qiao, Y.Y. Yin, X. Chen, and R.T. Qiao. 1995. The effects of light on the microstructure and ultrastructure of *Panax ginseng* leaves, p. 504–509. In: W.G. Bailey, C. Whitehead, J.T.A. Proctor, and J.T. Kyle (eds.). Proc. Intl. Ginseng Conf., Simon Fraser Univ. Press, B.C.