ON THE PROPERTIES OF SPECIAL FUNCTIONS ON THE LINEAR-TYPE LATTICES

R. ÁLVAREZ-NODARSE AND J. L. CARDOSO

Abstract. We present a general theory for studying the difference analogues of special functions of hypergeometric type on the linear-type lattices, i.e., the solutions of the second order linear difference equation of hypergeometric type on a special kind of lattices: the linear type lattices. In particular, using the integral representation of the solutions we obtain several difference-recurrence relations for such functions. Finally, applications to q-classical polynomials are given.

2000 Mathematics Subject Classification 33D15, 33D45

1. Introduction

The study of the so-called q-special functions has known an increasing interest in the last years due its connection with several problems in mathematics and mathematical-physics (see e.g. [3, 6, 8, 13, 17]). A systematic study starting from the second order linear difference equation that such functions satisfy was started by Nikiforov and Uvarov in 1983 and further developed by Atakishiyev and Suslov (for a very nice reviews see e.g. [7, 13, 16]). Of particular interest is the so-called q-classical polynomials (see e.g. [4]) introduced by Hahn in 1949 which are polynomials on the lattice q^s.

Our main aim in this paper is to present a constructive approach for generating recurrence relations and ladder-type operators for the difference analogues of special functions of hypergeometric type on the linear-type lattices. Here we will focus our attention on functions defined on the q-linear lattice (for the linear lattice $x(s) = s$ see [4] and references therein, and for the continuous case see e.g. [18]). Therefore we will complete the work started in [16] where few recurrence relations where obtained. In fact we will prove, by using the q-analogue of the technique introduced in [4] for the discrete case (uniform lattice), that the solutions (not only the polynomial ones) of the difference equation on the q-linear lattice $x(s) = c_1 q^s + c_2$ satisfy a very general recurrent-difference relation from where several well known relations (such as the three-term recurrence relation and the ladder-type relations) follow.

The structure of the paper is as follows: In section 2 the needed results and notations from the q-special function theory are introduced. In sections 3 and 4 the general theorems for obtaining recurrences relations are presented. In section 5 the special case of classical q-polynomials are considered in details and some examples are worked out in details.

2. Some Preliminary Results

Here we collect the basic background [11, 13, 16] on q-hypergeometric functions needed in the rest of the work.

The hypergeometric functions on the non-uniform lattice $x(s)$ are the solutions of the second order linear difference equation of hypergeometric type on non-uniform lattices

\[
\sigma(s) \frac{\Delta}{\Delta x(s - \frac{1}{2})} \left[\frac{\nabla y(s)}{\nabla x(s)} \right] + \tau(s) \frac{\Delta y(s)}{\Delta x(s)} + \lambda y(s) = 0, \\
\sigma(s) = \tilde{\sigma}(x(s)) - \frac{1}{2} \tilde{\tau}(x(s)) \Delta x \left(s - \frac{1}{2} \right), \quad \tau(s) = \tilde{\tau}(x(s)),
\]

Key words and phrases. q-hypergeometric functions, difference equations, recurrence relations, q-polynomials.

MAY 15, 2011
where $\Delta y(s) := y(s + 1) - y(s)$, $\nabla y(s) := y(s) - y(s - 1)$, are the forward and backward difference operators, respectively; $\delta(x(s))$ and $\bar{\tau}(x(s))$ are polynomials in $x(s)$ of degree at most 2 and 1, respectively, and λ is a constant. Here we will deal with the linear and q-linear lattices, i.e., lattices of the form

$$x(s) = c_1 s + c_2 \quad \text{or} \quad x(s) = c_1(q)s^q + c_2,$$

respectively, with $c_1 \neq 0$ and $c_1(q) \neq 0$.

We will define the k-order difference derivative of a solution $y(s)$ of (1) by

$$y^{(k)}(s) := \Delta^{(k)}[y(s)] = \frac{\Delta}{\Delta x_{k-1}(s)} \frac{\Delta}{\Delta x_{k-2}(s)} \cdots \frac{\Delta}{\Delta x(s)}[y(s)],$$

where $x_{\nu}(s) = x(s + \frac{s}{\nu})$. It is known [13] that $y^{(k)}(s)$ also satisfy a difference equation of the same type. Moreover, for the solutions of the difference equation (1) the following theorem holds

Theorem 2.1. [12, 16] The difference equation (1) has a particular solution of the form

$$y_\nu(z) = \frac{C_\nu}{\rho(z)} \sum_{s=0}^{b-1} \rho_\nu(s) \nabla x_{\nu+1}(s) \frac{\sigma(s) \rho_\nu(s) \nabla x_{\nu+1}(s)}{|x_{\nu-1}(s) - x_{\nu-1}(s+1)|^{(\nu+1)}},$$

if the condition

$$\left. \left| \frac{\sigma(s) \rho_\nu(s) \nabla x_{\nu+1}(s)}{|x_{\nu-1}(s) - x_{\nu-1}(s+1)|^{(\nu+1)}} \right| \right|_a^b = 0,$$

is satisfied, and of the form

$$y_\nu(z) = \frac{C_\nu}{\rho(z)} \int_C \frac{\rho_\nu(s) \nabla x_{\nu+1}(s)}{|x_{\nu}(s) - x_{\nu}(s+1)|^{(\nu+1)}} ds,$$

if the condition

$$\int_C \left[\frac{\sigma(s) \rho_\nu(s) \nabla x_{\nu+1}(s)}{|x_{\nu-1}(s) - x_{\nu-1}(s+1)|^{(\nu+1)}} \right] = 0,$$

is satisfied. Here C is a contour in the complex plane, C_ν is a constant, $\rho(s)$ and $\rho_\nu(s)$ are the solution of the Pearson-type equations

$$\frac{\rho(s+1)}{\rho(s)} = \frac{\sigma(s) + \tau(s) \Delta x(s - \frac{1}{2})}{\sigma(s+1)} = \frac{\phi(s)}{\sigma(s+1)},$$

$$\frac{\rho_\nu(s+1)}{\rho_\nu(s)} = \frac{\sigma(s) + \tau_\nu(s) \Delta x_{\nu}(s - \frac{1}{2})}{\sigma(s+1)} = \frac{\phi_\nu(s)}{\sigma(s+1)},$$

where

$$\tau_\nu(s) = \frac{\sigma(s + \nu) - \sigma(s) + \tau(s + \nu) \Delta x(s + \nu - \frac{1}{2})}{\Delta x_{\nu}(s)},$$

ν is the root of the equation

$$\lambda_\nu + [\nu]_q \left\{ \alpha_q(\nu - 1) \bar{\gamma}^q + [\nu - 1] \frac{\bar{\gamma}^q}{2} \right\} = 0,$$

and $[\nu]_q$ and $\alpha_q(\nu)$ are the q-numbers

$$[\nu]_q = \frac{q^{\nu/2} - q^{-\nu/2}}{q^{1/2} - q^{-1/2}}, \quad \alpha_q(\nu) = \frac{q^{\nu/2} + q^{-\nu/2}}{2}, \quad \forall \nu \in \mathbb{C},$$

respectively. The generalized powers $[x_k(s) - x_k(z)]^{(\nu)}$ are defined by

$$[x_k(s) - x_k(z)]^{(\nu)} = (q - 1)^\nu c_1 q^{\nu(k-\nu+1)/2} \frac{\Gamma_q(s - z + \nu)}{\Gamma_q(s - z)}, \quad \nu \in \mathbb{R},$$

for the q-linear (exponential) lattice $x(s) = c_1(q)s^q + c_2$ and

$$[x_k(s) - x_k(z)]^{(\nu)} = c_1^q \frac{\Gamma(s - z + \mu)}{\Gamma(s - z)}, \quad \nu \in \mathbb{R},$$
for the linear lattice \(x(s) = c_1 s + c_2 \), respectively. For the definitions of the Gamma and the \(q \)-Gamma functions see, for instance, [6].

Remark 2.2. For the special case when \(\nu \in \mathbb{N} \), the generalized powers become
\[
[x_k(s) - x_k(z)]^{(n)} = (-1)^n c_1^n q^{-n(n-1)/2} q^{n(z+k)/2} (q^{s-z}; q)_n,
\]
for \(q \)-linear and linear lattices, respectively.

We will need the following straightforward proposition which proof we omit here (see e.g. [11 10])

Proposition 2.3. Let \(\mu \) and \(\nu \) be complex numbers and \(m \) and \(k \) be positive integers with \(m \geq k \). For the \(q \)-linear lattice \(x(s) = c_1 q^s + c_2 \) we have
\[
\begin{align*}
(1) \quad & \frac{[x_\mu(s) - x_\mu(z)]^{(m)}}{[x_\nu(s) - x_\nu(z)]^{(m)}} = q^{\frac{m(\mu-\nu)}{2}}, \\
(2) \quad & \frac{[x_\mu(s) - x_\mu(z)]^{(m)}}{[x_\mu(s) - x_\mu(z)]^{(k)}} = [x_\mu(s) - x_\mu(z-k)]^{(m-k)}, \\
(3) \quad & \frac{[x_\mu(s) - x_\mu(z)]^{(m)}}{[x_\nu(s) - x_\nu(z)]^{(k)}} = q^{\frac{m(\mu-\nu)}{2}} [x_\mu(s) - x_\mu(z-k)]^{(m-k)}, \\
(4) \quad & \frac{[x_\mu(s) - x_\mu(z)]^{(m+1)}}{[x_\mu(s) - x_\mu(z)]^{(m+1)}} = x_\mu(s) - x_\mu(z), \\
(5) \quad & \frac{[x_\mu(s) - x_\mu(z)]^{(m+1)}}{[x_\mu(s) - x_\mu(z)]^{(m+1)}} = x_\mu(s) + m - x_\mu(z).
\end{align*}
\]

To obtain the result for the linear lattice one only has to put in the above formulas \(q = 1 \).

3. The general recurrence relation in the linear-type lattices

In this section we will obtain several recurrence relations for the solutions (3) and (4) of the difference equation (11) in the linear-type lattices (2). Since the equation (11) is linear we can restrict ourselves to the canonical cases \(x(s) = q^s \) and \(x(s) = s \).

Let us define the function\(^4\)
\[
\Phi_{\nu, \mu}(z) = \sum_{s=0}^{b-1} \frac{\rho_\nu(s) \nabla x_{\nu+1}(s)}{[x_\nu(s) - x_\nu(z)]^{(\nu+1)}} \quad (11)
\]
and
\[
\Phi_{\nu, \mu}(z) = \int_C \frac{\rho_\nu(s) \nabla x_{\nu+1}(s)}{[x_\nu(s) - x_\nu(z)]^{(\nu+1)}} ds. \quad (12)
\]

Notice that the functions \(y_\nu \) and the functions \(\Phi_{\nu, \mu} \) are related by the formula
\[
y_\nu(z) = \frac{C_\nu}{\rho(z)} \Phi_{\nu, \nu}(z), \quad (13)
\]

Lemma 3.1. For the functions \(\Phi_{\nu, \mu}(z) \) the following relation holds
\[
\nabla_z \Phi_{\nu, \mu}(z) = [\mu + 1] \Phi_{\nu, \mu+1}(z), \quad (14)
\]
where \([t]_q\) denotes the symmetric \(q \)-numbers \(^4\).

\(^4\) Obviously the functions (3) correspond to the functions (11), whereas the functions \(y_\nu \) given by (4) correspond to those of (12).
Using the identity proof for the case of functions of the form (11), the other case is completely equivalent. Differences \(i = 1 \) holds

\[\int \frac{1}{x_\nu(s) - x_\nu(z)} \left(\frac{1}{x_\nu(s) - x_\nu(z - 1)} - \frac{1}{x_\nu(s) - x_\nu(z - 1 - \mu)} \right) ds \]

Since \(x(s) - x(s - t) \) we then have

\[
\nabla_z \Phi_{\nu,\mu}(z) = \sum_{s=a}^{b-1} \frac{\rho_\nu(s) \nabla x_{\nu+1}(s)}{[x_\nu(s) - x_\nu(z)]^{(\mu+1)}}
\]

which is (14).

\[\nabla_z \Phi_{\nu,\mu}(z) = [\mu + 1] q \nabla x_{\nu-\mu}(z) \Phi_{\nu,\mu+1}(z) \]

\[\nabla_z \Phi_{\nu,\mu}(z) = [\mu + 1] q \nabla x_{\nu-\mu}(z) \Phi_{\nu,\mu+1}(z) \]

From (14) follows that

\[\Delta_z \Phi_{\nu,\mu}(z) = [\mu + 1] q \Delta x_{\nu-\mu}(z) \Phi_{\nu,\mu+1}(z + 1) \]

Next we prove the following lemma that is the discrete analog of the Lemma in [14] page 14.

Lemma 3.2. Let \(x(z) \) be \(x(z) = q^z \) or \(x(z) = z \). Then, any three functions \(\Phi_{\nu_i,\mu_i}(z) \), \(i = 1, 2, 3 \), are connected by a linear relation

\[\sum_{i=1}^{3} A_i(z) \Phi_{\nu_i,\mu_i}(z) = 0, \quad (15) \]

with non-zero at the same time polynomial coefficients on \(x(z) \), \(A_i(z) \), provided that the differences \(\nu_i - \nu_j \) and \(\mu_i - \mu_j \), \(i, j = 1, 2, 3 \), are integers and that the following condition hold:\[2\]

\[\frac{x^k(s) \sigma(s) \rho_{\nu_0}(s)}{[x_{\nu_0-1}(s) - x_{\nu_0-1}(z)]^{(\mu_0)}} \bigg|_{s=b}^{s=a} = 0, \quad k = 0, 1, 2, \ldots, \quad (16) \]

when the functions \(\Phi_{\nu_i,\mu_i} \) are given by (17) and

\[\int_C \nabla_z \Phi_{\nu_i,\mu_i}(z) \bigg|_{s=a}^{s=b} \nabla x_{\nu_i-1}(s) ds = 0, \quad k = 0, 1, 2, \ldots, \quad (17) \]

when \(\Phi_{\nu_i,\mu_i} \) are given by (12). Here \(\nu_0 \) is the \(\nu_i \), \(i = 1, 2, 3 \), with the smallest real part and \(\mu_0 \) is the \(\mu_i \), \(i = 1, 2, 3 \), with the largest real part.

Proof. Since in (14) we have proved the case when \(x(s) = s \) (the uniform lattice) we will restrict here to the case of the q-linear lattice \(x(s) = c_1 q^s + c_2 \). Moreover, we will give the proof for the case of functions of the form (11), the other case is completely equivalent. Using the identity

\[\nabla x_{\nu+1}(s) = q^{\frac{\mu - \nu}{2}} \nabla x_{\nu+1}(s), \]

\[\text{In some cases this condition is equivalent to the condition } x(s)^k \sigma(s) \rho_{\nu_0}(s) |_{s=a}^{s=b} = 0, \quad k = 0, 1, 2, \ldots. \]
as well as (3) of Proposition 2.3, we have

$$\sum_{i=1}^{3} A_i(z) \Phi(z, \mu_i) = \sum_{i=1}^{3} A_i(z) \sum_{s=0}^{b-1} \frac{\rho_{\nu_i}(s) \nabla x_{\nu_i+1}(s)}{[x_{\nu_i}(s) - x_{\nu_i}(z)]^{(\mu_i+1)}}$$

$$= \sum_{s=0}^{b-1} \sum_{i=1}^{3} A_i(z) \frac{\rho_{\nu_i}(s) \nabla x_{\nu_i+1}(s)}{[x_{\nu_i}(s) - x_{\nu_i}(z)]^{(\mu_i+1)}} = \sum_{s=0}^{b-1} \frac{1}{[x_{\nu_0}(s) - x_{\nu_0}(z)]^{(\mu_0+1)}} \times$$

$$\left(\sum_{i=1}^{3} A_i(z) q^{(\mu_0 + 1 - \mu_i - 1)} \frac{[x_{\nu_0}(s) - x_{\nu_i}(z)]^{(\mu_i-1)}}{[x_{\nu_i}(s) - x_{\nu_i}(z)]^{(\mu_i-1)}} \rho_{\nu_i}(s) \nabla x_{\nu_i+1}(s) \right)$$

Using the Pearson-type equation (6) we obtain

$$\rho_{\nu_i}(s) = \phi(s + \nu_0) \phi(s + \nu_0 + 1) \ldots \phi(s + \nu_i - 1) \rho_{\nu_i}(s), \quad (18)$$

so

$$\sum_{i=1}^{3} A_i(z) \Phi(z, \mu_i) = \sum_{s=0}^{b-1} \frac{\rho_{\nu_0}(s) \nabla x_{\nu_0+1}(s)}{[x_{\nu_0}(s) - x_{\nu_0}(z)]^{(\mu_0+1)}} \Pi(s)$$

where

$$\Pi(s) = \sum_{i=1}^{3} A_i(z) q^{(\mu_0 - \mu_i)} \frac{[x_{\nu_0}(s) - x_{\nu_i}(z)]^{(\mu_i-1)}}{[x_{\nu_i}(s) - x_{\nu_i}(z)]^{(\mu_i-1)}} \times \phi(s + \nu_0) \phi(s + \nu_0 + 1) \ldots \phi(s + \nu_i - 1). \quad (19)$$

Let us show that there exists a polynomial \(Q(s) \) in \(x(s) \) (in general, \(Q \equiv Q(z, s) \) is a function of \(z \) and \(s \)) such that

$$\frac{\rho_{\nu_0}(s) \nabla x_{\nu_0+1}(s)}{[x_{\nu_0}(s) - x_{\nu_0}(z)]^{(\mu_0+1)}} \Pi(s) = \Delta \left[\frac{\rho_{\nu_0}(s - 1)}{[x_{\nu_0-1}(s) - x_{\nu_0-1}(z)]^{(\mu_0)}} Q(s) \right]$$

$$= \Delta \left[\frac{\sigma(s) \rho_{\nu_0}(s)}{[x_{\nu_0-1}(s) - x_{\nu_0-1}(z)]^{(\mu_0)}} Q(s) \right]. \quad (20)$$

If such polynomial exists, then, taking the sum in \(s \) from \(s = a \) to \(b - 1 \) and using the boundary conditions (16), we obtain (13).

To prove the existence of the polynomial \(Q(s) \) in the variable \(x(s) \) in (20) we write

$$\frac{\sigma(s + 1) \rho_{\nu_0}(s + 1)}{[x_{\nu_0-1}(s + 1) - x_{\nu_0-1}(z)]^{(\mu_0)}} Q(s + 1) - \frac{\sigma(s) \rho_{\nu_0}(s)}{[x_{\nu_0-1}(s) - x_{\nu_0-1}(z)]^{(\mu_0)}} Q(s) =$$

$$= \frac{\rho_{\nu_0}(s)}{[x_{\nu_0}(s) - x_{\nu_0}(z)]^{(\mu_0+1)}} \left[\frac{\sigma(s + 1) \rho_{\nu_0}(s + 1)}{x_{\nu_0-1}(s + 1) - x_{\nu_0-1}(z)} \right]^{(\mu_0+1)} \frac{x_{\nu_0}(s) - x_{\nu_0}(z)}{x_{\nu_0-1}(s + 1) - x_{\nu_0-1}(z)} Q(s + 1) -$$

$$- \sigma(s) \frac{x_{\nu_0}(s) - x_{\nu_0}(z)}{x_{\nu_0-1}(s) - x_{\nu_0-1}(z)} \frac{x_{\nu_0}(s) - x_{\nu_0}(z)}{x_{\nu_0-1}(s - 1) - x_{\nu_0-1}(z)} Q(s).$$

From (4) and (5) of Proposition 2.3, and using (19), the above expression becomes

$$\frac{\rho_{\nu_0}(s)}{[x_{\nu_0}(s) - x_{\nu_0}(z)]^{(\mu_0+1)}} \left\{ \phi_{\nu_0}(s) \left[x_{\nu_0-\mu_0}(s) - x_{\nu_0-\mu_0}(z) \right] Q(s + 1) - \sigma(s) \left[x_{\nu_0-\mu_0}(s + \mu_0) - x_{\nu_0-\mu_0}(z) \right] Q(s) \right\}.$$
Thus
\[(\sigma(s) + \tau_{\nu_0}(s) \nabla x_{\nu_0+1}(s)) [x_{\nu_0-\mu_0}(s) - x_{\nu_0-\mu_0}(z)] Q(s + 1) = \sigma(s) [x_{\nu_0-\mu_0}(s + \mu_0) - x_{\nu_0-\mu_0}(z)] Q(s) = \nabla x_{\nu_0+1}(s) \Pi(s). \] (21)

Since \(\nabla x_{\nu_0+1}(s) \) is a polynomial of degree one in \(x(s) \), \(x_k(s) \) and \(\tau_{\nu_0}(s) \) are polynomials of degree at most one in \(x(s) \), and \(\sigma(s) \) is a polynomial of degree at most two in \(x(s) \), we conclude that the degree of \(Q(s) \) is, at least, two less than the degree of \(\Pi(s) \), i.e., \(\deg Q \geq \deg \Pi - 2 \). Moreover, equating the coefficients of the powers of \(x(s) = q^s \) on the two sides of the above equation (21), we find a system of linear equations in the coefficients of \(Q(s) \) and the coefficients \(A_i(z) \) which have at least one unknown more then the number of equations. Notice that the coefficients of the unknowns are polynomials in \(q^z \), so that after one coefficient is selected the remaining coefficients are rational functions of \(q^z \), therefore after multiplying by the common denominator of the \(A_i(z) \) we obtain the linear relation with polynomial coefficients on \(x \equiv x(z) = q^z \). This completes the proof. \(\square \)

The above Lemma when \(q \to 1 \) and \(x(s) = s \) leads to the corresponding result on the uniform lattice \(x(s) \) [3].

3.1. Some representative examples. In the following examples, and for the sake of simplicity, we will use the notation
\[\sigma(s) = a q^{2s} + bq^s + c, \quad \tau(s) = dq^s + e, \quad \phi_{\nu}(s) = \sigma(s) + \tau_{\nu-1}(s) \nabla x_{\nu}(s) = fz^{2s} + gq^s + h. \] (22)

Example 3.3. The following relation holds
\[A_1(z) \Phi_{\nu,\nu-1}(z) + A_2(z) \Phi_{\nu,\nu} + A_3(z) \Phi_{\nu+1,\nu}(z) = 0, \]
where the coefficients \(A_1, A_2 \) and \(A_3 \) are polynomials in \(x \equiv x(z) = q^z \), given by
\[A_1(z) = -eq^z + \frac{b + e(q^z - q^{-z})}{a + d(q^z - q^{-z})} (dq^z + a[\nu]_q) + \left(dq^s + a[2\nu]_q \right) q^{z+2}, \]
\[A_2(z) = -c \frac{dq^z + a[2\nu]_q}{a + d(q^z - q^{-z})} + \frac{b + e(q^z - q^{-z})}{q^z - q^{-z}} \left(q^z + \frac{a}{q^z - q^{-z}} \right) q^{z+1}, \]
\[A_3(z) = - \frac{dq^z + a[\nu]_q}{a + d(q^z - q^{-z})}, \]
where \(a, b, c, d, \) and \(e \) are the coefficients of \(\sigma \) and \(\tau \) (22).

Proof. Using the notations of Lemma 3.2 we have \(\nu_1 = \nu, \nu_2 = \nu, \nu_3 = \nu + 1, \mu_1 = \nu - 1, \mu_2 = \nu \) and \(\mu_3 = \nu \), thus \(\nu_0 = \nu \) and \(\mu_0 = \nu \). By (19)
\[\Pi(s) = A_1(q^{s+\frac{z}{2}} - q^{-\frac{z}{2}}) + A_2 + A_3q^{-\frac{z}{2}} \left[(a + d(q^{s+\frac{z}{2}} - q^{-\frac{z}{2}})) q^{2\nu+2s} + (b + e(q^{s+\frac{z}{2}} - q^{-\frac{z}{2}})) q^{\nu+s} + c \right]. \] (23)

On the other hand, from (21) and because \(Q(s) = k \) is a constant notice that \(\deg(\Pi) = 2 \) we have
\[\nabla x_{\nu_0+1}(s) \Pi(s) = k \left\{ (a + d(q^{s+\frac{z}{2}} - q^{-\frac{z}{2}})) q^{2\nu+2s} + (b + e(q^{s+\frac{z}{2}} - q^{-\frac{z}{2}})) q^{\nu+s} + c \right\} (q^s - q^{-s}) \]
\[- (aq^{2s} + bq^s + c)(q^{\nu+s} - q^{-s}) \] (24)
where \(k \) is an arbitrary constant. Introducing (23) in (21), using the identity
\[\nabla x_{\nu_0+1}(s) = q^z \left(q^{\frac{z}{2}} - q^{-\frac{z}{2}} \right) q^s \]
and comparing the coefficients of the powers of \(x(s) = q^s \) we get a linear system of three equations with four variables \(A_1, A_2, A_3 \) and \(k \). Choosing \(k = 1 \) and solving the corresponding system we get, after some simplifications, the coefficients \(A_1, A_2 \) and \(A_3 \). \(\square \)
In the next examples, since the technique is similar to the previous one we will omit the details.

Example 3.4. The following relation holds

\[A_1(z)\Phi_{\nu,\nu}(z) + A_2(z)\Phi_{\nu,\nu+1}(z) + A_3(z)\Phi_{\nu+1,\nu+1}(z) = 0, \]

where the coefficients \(A_1, A_2 \) and \(A_3 \), are polynomials in \(x \equiv x(z) = q^z \), given by

\[
A_1(z) = f \left(a - f q^{2\nu} \right) q^z + agq - f b q^{\nu+1},
\]

\[
A_2(z) = q^{-\frac{\nu}{2}} \left(a - f q^{2\nu} \right) \left(f q^{2z} + g q^{z+1} + h q^2 \right),
\]

\[
A_3(z) = \sqrt{q} \left(a q - f q^{\nu} \right),
\]

where \(a, b, c, f, g \) and \(h \), are the coefficients of \(\sigma \) and \(\phi_\nu \).

Example 3.5. The following relation holds

\[A_1(z)\Phi_{\nu-1,\nu-1}(z) + A_2(z)\Phi_{\nu-1,\nu}(z) + A_3(z)\Phi_{\nu,\nu}(z) = 0, \]

where the coefficients \(A_1, A_2 \) and \(A_3 \), are polynomials in \(x \equiv x(z) = q^z \), given by

\[
A_1(z) = q^{-\frac{\nu}{2}} \left\{ \begin{array}{l}
q f^2 q^z + a^2 h q^4 + a g b q^{\nu+4} - q^{2\nu+2} (a g^2 q - 2 f a h + f b^2) \\
- f g b q^{3\nu+1} (q^2 - q - 1) + q f q^{4\nu} (q^2 (q - 1) q - f h) + q g q^{3\nu+1} (a^2 q^2 + a^2 q^{\nu+2} (g b q^2 + f h q^2 - f h) - q^{2\nu+2} (f a h + f g b + a q^2 - f q^{2a} b q^{2\nu+2} + a g b q^{\nu+5} (b q + g q - g) + f g b q^{\nu+4} (q g + b - g) - f^2 h q^{4\nu+2} - h q^{2\nu+3} (a g^2 q^2 + f g b q^2 + f g q^2 - 2 f a h q + f b q^2 - 2 f g q^2 - f g b + f q^2) \right\},
\]

\[
A_2(z) = (q^{-\frac{\nu}{2}} - q^{\nu}) \left(f q^{2z} + g q^{3\nu+1} + h q^2 \right) \left(f q^{-2x} (f q^{2x} - a q^2) + q f^{\nu+1} (g q + b - g) - a g q^3 \right),
\]

\[
A_3(z) = f (f q^{\nu} - a q) \left[(f q^{2x} + h q^2) (f q^{2x} - a q^2) + q g q^{z+1} (f q^{\nu} (q^2 - q - 1) - a q^2) \right],
\]

where \(a, b, c, f, g \) and \(h \), are the coefficients of \(\sigma \) and \(\phi_\nu \).

Example 3.6. The following relation holds

\[A_1(z)\Phi_{\nu-1,\nu-1}(z) + A_2(z)\Phi_{\nu,\nu}(z) + A_3(z)\Phi_{\nu+1,\nu+1}(z) = 0, \]

where the coefficients \(A_1, A_2 \) and \(A_3 \), are polynomials in \(x \equiv x(z) = q^z \), given by

\[
A_1(z) = q^2 h q^4 - a g b q^{\nu+3} + q^{2\nu+2} (f q^2 - 2 f a h + a g q^2) - f g b q^{3\nu+1} + f^2 h q^{4\nu},
\]

\[
A_2(z) = q^{\frac{\nu}{2}} \left(f q^{\nu} - a q^2 \right) \left(f q^{2\nu+2} - a q^{z+2} + q g q^{2\nu+1} - b q^{\nu+2} \right),
\]

\[
A_3(z) = -q^{\frac{\nu}{2}} \left(f q^{2x} - a q^2 \right) \left(q^{\nu+1} - 1 \right) (g q^{\nu+1} + f q^{\nu+2} + h q^2),
\]

where \(a, b, c, f, g \) and \(h \), are the coefficients of \(\sigma \) and \(\phi_\nu \).

Example 3.7. The relation

\[A_1(z)\Phi_{\nu,\nu}(z) + A_2(z)\Phi_{\nu,\nu+1}(z) + A_3(z)\Phi_{\nu+1,\nu+1}(z) = 0, \]

is verified when the polynomial coefficients \(A_1, A_2 \) and \(A_3 \), in the variable \(x \equiv x(z) = q^z \), are given by

\[
A_1(z) = q^{\nu+1} \left(f q^{\nu} - a q \right) \left(f q^{2\nu} - a q^{\nu+1} - f (h - b) q^{2\nu+1} - a q (g q^2 - b) \right),
\]

\[
A_2(z) = q^{-\frac{\nu}{2}} \left(f q^{2\nu} - a q \right) \left(f q^{2\nu} - a q^{\nu+1} + h q^2 \right),
\]

\[
A_3(z) = q^{\nu+1} \left(f q^{\nu} - a q \right) \left(q (g q^2 - a q - b) - f q^{\nu} (q^{\nu+1} - q - 1) \right) + q^{\nu+1} \left((h - b) q^{\nu+1} + g q^2 - h \right),
\]

where \(a, b, c, f, g \) and \(h \), are the coefficients of \(\sigma \) and \(\phi_\nu \).
4. Recurrences involving the solutions y_ν

In [16] the following relevant relation was established

$$\Delta^{(k)} y_\nu(s) = \frac{C^{(k)}_\nu}{\rho_k(s)} \Phi_{\nu, \nu-k}(s), \quad (25)$$

where

$$C^{(k)}_\nu = C_\nu \prod_{m=0}^{k-1} \left[\alpha_q(\nu + m - 1) \tilde{c}' + [\nu + m - 1] \tilde{c}'' \right].$$

This relation is valid for solutions of the form (3) and (4) of the difference equation (1).

Theorem 4.1. In the same conditions as in Lemma 3.2, any three functions $y^{(k_i)}_{\nu_i}(s)$, $i = 1, 2, 3$, are connected by a linear relation

$$\sum_{i=1}^{3} B_i(s) y^{(k_i)}_{\nu_i}(s) = 0, \quad (26)$$

where the $B_i(s)$, $i = 1, 2, 3$, are polynomials.

Proof. From Lemma 3.2 we know that there exists three polynomials $A_i(s)$, $i = 1, 2, 3$ such that

$$\sum_{i=1}^{3} A_i(s) \Phi_{\nu_i, \nu_i-k_i}(s) = 0,$$

then, using the relation (25), we find

$$\sum_{i=1}^{3} A_i(s) (C^{(k)}_\nu)^{-1} \rho_{k_i}(s) y^{(k_i)}_{\nu_i}(s) = 0.$$

Now, dividing the last expression by $\rho_{k_0}(s)$, where $k_0 = \min\{k_1, k_2, k_3\}$, and using (18) we obtain

$$\sum_{i=1}^{3} B_i(s) y^{(k_i)}_{\nu_i}(s) = 0, \quad B_i(s) = A_i(s) (C^{(k)}_\nu)^{-1} \phi(s + k_0) \cdots \phi(s + k_i - 1),$$

which completes the proof. \(\square\)

Corollary 4.2. In the same conditions as in Lemma 3.2 the following three-term recurrence relation holds

$$A_1(s) y_\nu(s) + A_2(s) y_{\nu+1}(s) + A_3(s) y_{\nu-1}(s) = 0,$$

with polynomial coefficients $A_i(s)$, $i = 1, 2, 3$.

Proof. It is sufficient to put $k_1 = k_2 = k_3 = 0$, $\nu_1 = \nu$, $\nu_2 = \nu + 1$ and $\nu_3 = \nu - 1$ in (26). \(\square\)

Corollary 4.3. In the same conditions as in Lemma 3.2 the following Δ-ladder-type relation holds

$$B_1(s) y_\nu(s) + B_2(s) \frac{\Delta y_\nu(s)}{\Delta x(s)} + B_3(s) y_{\nu+m}(s) = 0, \quad m \in \mathbb{Z}, \quad (27)$$

with polynomial coefficients $B_i(s)$, $i = 1, 2, 3$.

Proof. It is sufficient to put $k_1 = k_3 = 0$, $k_2 = 1$, $\nu_1 = \nu_2 = \nu$ and $\nu_3 = \nu + m$ in (26). \(\square\)
Notice that for the case \(m = \pm 1 \) \((27) \) becomes

\[
B_1(s)y_{\nu}(s) + B_2(s)\frac{\Delta y_{\nu}(s)}{\Delta x(s)} + B_3(s)y_{\nu+1}(s) = 0, \tag{28}
\]

\[
\tilde{B}_1(s)y_{\nu}(s) + \tilde{B}_2(s)\frac{\Delta y_{\nu}(s)}{\Delta x(s)} + \tilde{B}_3(s)y_{\nu-1}(s) = 0, \tag{29}
\]

with polynomial coefficients \(B_i(s) \) and \(\tilde{B}_i(s), i = 1, 2, 3 \). The above relations are usually called raising and lowering operators, respectively, for the functions \(y_{\nu} \).

Let us now obtain a raising and lowering operators for the functions \(y_{\nu} \) but associated to the \(\nabla/\nabla x(s) \) operators.

We start applying the operator \(\nabla/\nabla x(s) \) to \((13) \)

\[
\frac{\nabla}{\nabla x(s)}y_{\nu}(s) = \frac{\nabla}{\nabla x(s)} \left[\frac{C_\nu}{\rho(s)} \Phi_{\nu,\nu}(s) \right]
= \frac{1}{\nabla x(s)} \left[C_\nu \Phi_{\nu,\nu}(s) \left(\frac{1}{\rho(s)} - \frac{1}{\rho(s-1)} \right) + \frac{C_\nu}{\rho(s-1)} \nabla \Phi_{\nu,\nu}(s) \right],
\]

or, equivalently,

\[
\frac{\nabla \Phi_{\nu,\nu}}{\nabla x(s)} = \frac{\rho(s-1)}{C_\nu} \frac{\nabla y_{\nu}}{\nabla x(s)} - \frac{\Phi_{\nu,\nu}}{\nabla x(s)} \left[\frac{\rho(s-1)}{\rho(s)} - 1 \right].
\]

By Lemma \(\text{[3.2]} \) with \(\nu_1 = \mu_1 = \nu_2 = \nu, \mu_2 = \nu + 1 \) and \(\nu_3 = \mu_3 = \nu + m \), there exist polynomial coefficients on \(x(s), A_i(s), i = 1, 2, 3 \), such that

\[
A_1(s)\Phi_{\nu,\nu}(s) + A_2(s)\Phi_{\nu,\nu+1}(s) + A_3(s)\Phi_{\nu+m,\nu+m}(s) = 0.
\]

From \(\text{(14)} \)

\[
\Phi_{\nu,\nu+1}(s) = \frac{1}{[\nu+1]_q} \frac{\nabla \Phi_{\nu,\nu}}{\nabla x(z)} = \frac{1}{[\nu+1]_q} \frac{\nabla \Phi_{\nu,\nu}}{\nabla x(z)}.
\]

Therefore

\[
A_1(s)\Phi_{\nu,\nu} + \frac{A_2(s)}{[\nu+1]_q} \left[\frac{\rho(s-1)}{C_\nu} \frac{\nabla y_{\nu}}{\nabla x(s)} - \frac{\Phi_{\nu,\nu}}{\nabla x(s)} \left(\frac{\rho(s-1)}{\rho(s)} - 1 \right) \right] + A_3\Phi_{\nu+m,\nu+m} = 0.
\]

Using now the Pearson equation \((3) \) and dividing by \(\rho(s) \) we get

\[
A_1(s)y_{\nu}(s) + \frac{A_2(q)}{[\nu+1]_q} \frac{\sigma(s)}{\phi(s-1)} \frac{\nabla y_{\nu}}{\nabla x(s)} - \frac{y_{\nu}(s)}{\nabla x(s)} \left(\frac{\sigma(s)}{\phi(s-1)} - 1 \right) + A_3\frac{C_\nu}{C_\nu+1} y_{\nu+m}(s) = 0.
\]

Multiplying both sides by \(\frac{[\nu+1]_q \phi(s-1)}{1} \),

\[
A_1(s)[\nu+1]_q \phi(s-1) y_{\nu}(s) + A_2(s)\sigma(s) \frac{\nabla y_{\nu}}{\nabla x(s)} - \frac{\sigma(s)}{\phi(s-1)} y_{\nu}(s) + A_2(s)\sigma(s) \frac{\nabla y_{\nu}}{\nabla x(s)} - A_2(s)\sigma(s) \frac{\nabla y_{\nu}}{\nabla x(s)} + A_3\frac{C_\nu}{C_\nu+1} A_3\phi(s-1) y_{\nu+m}(s) = 0.
\]

Thus we have proven the following

Theorem 4.4. In the same conditions as in Lemma \(\text{[3.2]} \) the following \(\nabla \)-ladder-type relation holds

\[
C_1(s)y_{\nu}(s) + C_2(s)\frac{\nabla y_{\nu}(s)}{\nabla x(s)} + C_3(s)y_{\nu+m}(s) = 0, \quad m \in \mathbb{Z}, \tag{30}
\]

with polynomial coefficients \(C_i(s), i = 1, 2, 3 \).
Notice that for the case \(m = \pm 1 \) (30) becomes
\[
C_1(s)y_\nu(s) + C_2(s)\frac{\nabla y_\nu(s)}{\nabla x(s)} + C_3(s)y_{\nu+1}(s) = 0,
\]
(31)
\[
\tilde{C}_1(s)y_\nu(s) + \tilde{C}_2(s)\frac{\nabla y_\nu(s)}{\nabla x(s)}y_\nu(s) + \tilde{C}_3(s)y_{\nu-1}(s) = 0,
\]
(32)
with polynomial coefficients \(C_i(s) \) and \(\tilde{C}_i(s), i = 1, 2, 3 \). The above relation are usually called raising and lowering operators, respectively, for the functions \(y_\nu \). Eq. (31) was firstly obtained in [16, Eq. (3.4)].

To conclude this section let us point that from formula (25) and the examples 3.3, 3.5 and 3.7 follow the relations
\[
\begin{align*}
B_1(s)y_\nu^{(1)}(s) + B_2(s)y_\nu(s) + B_3(s)y_{\nu+1}(s) &= 0, \\
B_1(s)y_\nu^{(1)}(s) + B_2(s)y_{\nu-1}(s) + B_3(s)y_\nu(s) &= 0, \\
B_1(s)y_\nu^{(1)}(s) + B_2(s)y_\nu(s) + B_3(s)y_{\nu+1}(s) &= 0,
\end{align*}
\]
(33)
respectively, being the last two expressions the lowering and raising operators for the functions \(y_\nu \). Moreover, combining the explicit values of \(A_1, A_2 \) and \(A_3 \) with formula (25), one can obtain the explicit expressions for the coefficients \(B_1, B_2 \) and \(B_3 \) in (35).

5. Applications to q-classical polynomials

In this section we will apply the previous results to the q-classical orthogonal polynomials [2, 10, 11] in order to show how the method works. We first notice that these polynomials are instances of the functions \(y_\nu \) on the lattice \(x(s) = q^s \) defined in (4). In fact we have [13, 16]
\[
P_n(x(s)) = \frac{[n]! B_n}{\rho(s) 2\pi i} \int_C \frac{\rho_n(z) \nabla x_{n+1}(z)}{[x_n(z) - x_n(s)]^{n+1}} dz,
\]
(34)
where \(B_n \) is a normalizing constant, \(C \) is a closed contour surrounding the points \(x = s, s - 1, \ldots, s - n \) and it is assumed that \(\rho_n(s) = \rho(s + n) \prod_{m=1}^{n} \sigma(s + m) \) and \(\rho_n(s + 1) \) are analytic inside \(C \) (\(\rho \) is the solution of the Pearson equation (6)), i.e., the condition (5) holds.

A detailed study of the q-classical polynomials, including several characterization theorems, was done in [2, 9, 11]. In particular, a comparative analysis of the q-Hahn tableau with the q-Askey tableau [9] and Nikiforov-Uvarov tableau [15] was done in [5]. In the following we use the standard notation for the q-calculus [8]. In particular by \((a;q)_k = \prod_{m=0}^{k-1} (1 - aq^m) \), we denote the q-analogue of the Pochhammer symbol.

Since the q-classical polynomials are defined by (34) where the contour \(C \) is closed and \(\nu \) is a non-negative integer, then the condition (17) is automatically fulfilled, so Lemma 3.2 holds for all of them. Moreover, the Theorem 4.1 holds and there exist the non vanishing polynomials \(B_1, B_2 \) and \(B_3 \) of (26).

In the following we will assume that the three term recurrence relation is known, i.e.,
\[
x(s)P_n(x(s)) + \alpha_n P_{n+1}(x(s)) + \beta_n P_n(x(s)) + \gamma_n P_{n-1}(x(s)) = 0, \quad n \geq 0
\]
(35)
\[
P_{-1}(x(s)) = 0, \quad P_0(x(s)) = 1, \quad x(s) = q^s.
\]

where the coefficients \(\alpha_n, \beta_n \) and \(\gamma_n \) can be computed using the coefficients \(\sigma, \tau \) and \(\lambda \equiv \lambda_n \) of (1), being \(\lambda_n \) given by [8] and [9] with \(\nu = n \). For more details see, e.g., [1, 11].

Since the TTRR and the differentiation formulas for the q-polynomials are very well known (see e.g., [9, 11, 16]) we will obtain here two recurrent-difference relations involving the q-differences of the polynomials and the polynomials themselves.
5.1. The first difference-recurrence relation. If we choose \(\nu_1 = n - 1, \nu_2 = n, \nu_3 = n + 1, k_1 = 1, k_2 = 1 \) and \(k_3 = 0 \), in Theorem 4.1 one gets

\[
A_1(s)\Delta^{(1)} P_{n-1}(x(s)) + A_2(s)\Delta^{(1)} P_n(x(s)) + A_3(s)P_{n+1}(x(s)) = 0.
\]

Using [1], Eq. (6.14), page 193

\[
[\sigma(s) + \tau(s)\Delta x(s - 1/2)]\Delta^{(1)} P_n(x(s)) = \tilde{\alpha}_n P_{n+1}(x(s)) + \tilde{\beta}_n P_n(x(s)) + \tilde{\gamma}_n P_{n-1}(x(s)),
\]

where

\[
\tilde{\alpha}_n = \frac{\lambda_n}{[n]_q} \left[q^{-\frac{\tau}{2\tau_n}}\alpha_n - \frac{B_n}{\tau_n P_{n+1}} \right], \quad \tilde{\beta}_n = \frac{\lambda_n}{[n]_q} \left[q^{-\frac{\tau}{2\tau_n}}\beta_n + \frac{\tau_n(0)}{\tau_n} - c_3(q^{-\frac{\tau}{2}} - 1) \right],
\]

\[
\tilde{\gamma}_n = \frac{\lambda_n q^{-\frac{\tau}{2\tau_n}}} {[n]_q},
\]

to compute \(\Delta^{(1)} P_n(x(s)) = \frac{\Delta P_n(x(s))}{\Delta x(s)} \) we get

\[
\left[A_2(s)\tilde{\alpha}_n \left(q^{-\frac{\tau}{2\tau_n}}\alpha_n - \frac{B_n}{\tau_n P_{n+1}} \right) + (\sigma(s) + \tau(s)\Delta x(s - \frac{1}{2})) A_3(s) \right] P_{n+1} +
\]

\[
\left[A_1(s)\tilde{\alpha}_n \left(q^{-\frac{\tau}{2\tau_n}}\alpha_n - \frac{B_n}{\tau_n P_{n+1}} \right) + A_2(s)\tilde{\alpha}_n \left(q^{-\frac{\tau}{2\tau_n}}\beta_n + \frac{\tau_n(0)}{\tau_n} \right) \right] P_n +
\]

\[
\left[A_1(s)\tilde{\alpha}_n \left(q^{-\frac{\tau}{2\tau_n}}\beta_n + \frac{\tau_n(0)}{\tau_n} \right) + A_2(s)\tilde{\alpha}_n q^{-\frac{\tau}{2\tau_n}} \gamma_n \right] P_{n-1} +
\]

\[
A_1(s)\tilde{\alpha}_n \frac{n-1}{[n-1]_q} \tau_n^{-1} P_{n-2} = 0,
\]

By (35) we may write

\[
P_{n-2}(x(s)) = \frac{x(s) - \beta_{n-1}}{\gamma_{n-1}} P_{n-1}(x(s)) - \frac{\alpha_{n-1}}{\gamma_{n-1}} P_n(x(s))
\]

so the above equality becomes

\[
\left[\frac{\lambda_n}{[n]_q} \left(q^{-\frac{\tau}{2}}\alpha_n - \frac{B_n}{\tau_n P_{n+1}} \right) A_2(s) + (\sigma(s) + \tau(s)\Delta x(s - \frac{1}{2})) A_3(s) \right] P_{n+1}(x(s)) +
\]

\[
\left[\frac{\lambda_n}{[n]_q} \left(q^{-\frac{\tau}{2}}\beta_n + \frac{\tau_n(0)}{\tau_n} \right) \right] A_2(s) \left(q^{-\frac{\tau}{2}}\beta_n + \frac{\tau_n(0)}{\tau_n} \right) A_2(s)\right] P_n(x(s)) +
\]

\[
\left[\frac{\lambda_n}{[n]_q} \left(\frac{\tau_n(0)}{\tau_n} + q^{-\frac{\tau}{2}} x \right) A_1(s) + \frac{\lambda_n}{[n]_q} q^{-\frac{\tau}{2}} \gamma_n A_2(s) \right] P_{n-1}(x(s)) = 0.
\]

Comparing the above equation with the TTRR (35) one can obtain the explicit values of \(A_1, A_2, \) and \(A_3 \).

5.1.1. Some examples. Since we are working in the \(q \)-linear lattice \(x(s) = q^s \), for the sake of simplicity, we will use the letter \(x \) to denote the variable of the polynomials [9, 11]. We will consider monic polynomials, i.e., those with the leading coefficient equal to 1. In the following we need the value of \(\tau_n(x) \) for each family, which can be computed using [7].

Al-Salam-Carlitz I \(q \)-polynomials. For the Al-Salam-Carlitz I monic polynomials \(U_n^{(s)}(x; q) \) we have (see [1] see table 6.5, p.208 or [11])

\[
\sigma(x) = (1 - x)(a - x), \quad \tau_n(x) = \frac{1 - q^n}{1 - q} \left(x - (1 + a) \right),
\]

\[
\tau(x) = \tau_0(x), \quad \lambda_n = -q^{\frac{\tau}{2} - (1 - q^n)},
\]

and

\[
\alpha_n = 1, \quad \beta_n = (1 + a)q^n, \quad \gamma_n = -aq^{n-1} (1 - q^n).
\]
The constant B_n is given by [1] Eq. (5.57), p. 147, $B_n = q^{\frac{1}{2}n(3n-5)}(1-q)^n$. Introducing these values into the equation (38) it becomes

$$\left[q \left(q^{-\frac{q^2}{2}} - 1\right) A_2(x) + a(1-q)q^n A_3(x)\right] U_{n+1}^{(a)}(x; q) +$$

$$\left[q^{-\frac{q^2}{2}}A_1(x) + q^{1+\frac{q^2}{2}}(1+a) \left(1 - q^{\frac{q^2}{2}}\right) A_2(x)\right] U_{n}^{(a)}(x; q) +$$

$$\left([q^{\frac{n+1}{2}}(1+a) - q^{2-n}x] A_1(x) + aq^n (1-q^n) A_2(x)\right) U_{n-1}^{(a)}(x; q) = 0.$$

Comparing with the TTRR for the Al-Salam I polynomials we obtain a linear system for getting the unknown coefficients A_1, A_2 and A_3

$$q \left(q^{-\frac{q^2}{2}} - 1\right) A_2(x) + a(1-q)q^n A_3(x) = 1,$$

$$q^{-\frac{q^2}{2}}A_1(x) + q^{1+\frac{q^2}{2}}(1+a) \left(1 - q^{\frac{q^2}{2}}\right) A_2(x) = (1+a)q^n - x,$$

$$\left([q^{\frac{n+1}{2}}(1+a) - q^{2-n}x] A_1(x) + aq^n (1-q^n) A_2(x)\right) = aq^{n-1} (q^n - 1).$$

The solution of the above system is

$$A_1(x) = \frac{aq^n (1+q^\frac{x}{2}) \left((1+a)-q^{-\frac{q^2}{2}}x\right)}{aq^{-\frac{q^2}{2}}(1+q^\frac{x}{2}) - q(1+a) \left(q^{\frac{n+1}{2}}(1+a) - q^{2-n}x\right)},$$

$$A_2(x) = \frac{-aq^{-\frac{q^2}{2}}(1-q^n) - \left((1+a)q^n - x\right) \left(q^{\frac{n+1}{2}}(1+a) - q^{2-n}x\right)}{(1-q^\frac{x}{2}) \left[aq^{-\frac{q^2}{2}}(1+q^\frac{x}{2}) - q(1+a) \left(q^{\frac{n+1}{2}}(1+a) - q^{2-n}x\right)\right]},$$

$$A_3(x) = \frac{a + q^{\frac{n+1}{2} - 2n}x^2 + q^{-\frac{q^2}{2}}(a-1)q^x}{(a-1)q^n \left[aq^n + q^{\frac{q^2}{2}}(a-1)q^x\right]}.$$

Then, the Al-Salam I q-polynomials satisfy the following relation

$$A_1(x)\Delta^{(1)} U_{n-1}^{(a)}(x; q) + A_2(x)\Delta^{(1)} U_{n}^{(a)}(x; q) + A_3(x)U_{n+1}^{(a)}(x; q) = 0,$$

where the coefficients A_1, A_2 and A_3 are given by (37).

Notice that the coefficients A_1, A_2 and A_3 are rational functions on x. Therefore, multiplying by appropriate factor it becomes a linear relation with polynomials coefficients.

Alternative q-Charlier polynomials. In this case (see [1] table 6.6, p.209)

$$\sigma(x) = q^{-1}x(1-x), \quad \tau_n(x) = -q^{\frac{n+1}{1-q}} \left(1 + aq^{1+2n} x - 1\right),$$

$$\tau(x) = \tau_0(x), \quad \lambda_n = q^{\frac{1+2n}{1-q}(1+aq^n)\left(1-q^{2n}\right)}.$$

and, for the monic case, $\alpha_n = 1$

$$\beta_n = \frac{q^{\frac{n(1+aq^n-1+aq^{n-2n})}{1+aq^{2n-1}(1+aq^{2n+1})}}, \quad \gamma_n = \frac{aq^{3n-2} (1-q^n) (1+aq^{n-1})}{(1+aq^{2n-2})(1+aq^{2n-1})^2(1+aq^{2n})}.$$

The corresponding normalizing constant B_n is given by

$$B_n = \frac{(-1)^n q^{\frac{1}{2}n(3n-1)}(1-q)^n}{(-aq^n)^n}.$$

Following the same procedure as before we obtain the following relation for the alternative Charlier q-polynomials:

$$A_1(x)\Delta^{(1)} K_{n-1}(x; a; q) + A_2(x)\Delta^{(1)} K_n(x; a; q) + A_3(x)K_{n+1}(x; a; q) = 0,$$
with the coefficients

\[A_1(x) = \frac{a(1 + aq^x)}{q^2(1 + aq^{2n-1})(1 + aq^{2n-1})} x \]

\[A_2(x) = \frac{-q^{3n+1}(1 + aq^n) x + (1 + aq^{2n}) \left(q^2 + (1 + aq^{2n+1}) + aq^{2n+1}(1 + q) + q^{2n}(1 - aq^{2n}) \right) x^2}{q^{3n}(1 + aq^n)(1 + aq^{2n})} \]

\[A_3(x) = \frac{\frac{a+1}{q} + aq^{2n} \left(q^{\frac{2}{n}} + 1 + q^{\frac{3}{n}} \right) - q^{\frac{2}{n}} \left(1 - aq^{\frac{3}{n}} \right) x}{q^{\frac{2}{n}} (1 + aq^n)} \]

Big q-Jacobi polynomials. In this case (see [I] see table 6.2, p.204) or [II]

\[\sigma(x) = q^{-1}(x - aq)(x - cq), \lambda_n = -q^{\frac{1-n}{2}} \frac{(1 - abq^{1+n})(1 - q^n)}{(1 - q)^2}, \]

\[\tau_n(x) = q^{\frac{1-n}{2}} \left(1 - abq^{2+2n} q^{-x} + a(b + c)q^{1+n} - (a + c) \right), \tau(x) = \tau_0(x), \]

and, for the monic case \(\alpha_n = 1 \),

\[\beta_n = \frac{c + a^2bq^n \left(1 + b + c \right)q^{1+n} - 1} {q^{1-n} (1 - abq^{2n}) (1 - abq^{2n+2})}, \]

\[\gamma_n = \frac{a(1 - q^n) (1 - abq^{2n}) (1 - b^q^n) (1 - c^q^n) (c - abq^n)} {q^{1-n} (1 - abq^{2n-1}) (1 - abq^{2n+1})^2 (1 - abq^{2n+1})}. \]

The corresponding normalizing constant is

\[B_n = \frac{(1 - q^n) q^{\frac{1-n}{2}n(3n-1)}}{(abq^{1+n}; q)_n}. \]

The big q-Jacobi polynomials satisfy the following relation

\[A_1(x)\Delta^{(1)}(x, a, b, c; q) + A_2(x)\Delta^{(1)}(x, a, b, c; q) + A_3(x)\Delta^{(1)}(x, a, b, c; q) = 0, \]

with the coefficients \(A_1, A_2 \) and \(A_3 \) given by

\[A_1(x) = \frac{aq^{\frac{1-n}{2}n(1 - abq^{n+1})} (1 - x)(c - bx) \left(c = (c - c) + bx \right)} {1 - abq^{2n+2}} \times \]

\[\left\{ (1 - q)q^n \left(1 - abq^{2n+2} \right) \left[q^{1+1-n(b+c)(c+a(1+b+c))q^{2n+1} - (1+c+1+a+b+c)q^n(1+q)} \right] - x \right\} D(x) - \]

\[(1 - q)q^n \left(1 - abq^{2n} \right) \left[(1 - abq^{2n})(c + a(-1 + (b + c)q^{n+1})) \right] \]

\[q^{\frac{1-n}{2}n(1 - abq^{n+1})} (1 - x)(c - bx)\left(c = c + b(1 + a + c)q^n(1 + q) \right) N(x) \right\}, \]

\[A_2(x) = a(1 - q^n) (1 - abq^{2n})^2 \left(1 - abq^{2n+1} \right) \left(1 - x)(c - bx) \left(c = (c - c) + bx \right) \right) N(x), \]

\[A_3(x) = (1 - abq^{n+1}) (1 - abq^{2n+2}) (1 - x)(c - bx) D(x) + \]

\[q^{1-\frac{1}{2}n} \left(1 - q^n \right) \left(1 - abq^{1+\frac{2}{n}} \right) (1 - abq^{2n+2})^2 \left(1 - abq^{2n+2} \right) \left(c = (c - c) + bx \right) N(x), \]

where the polynomials \(N(x) \) and \(D(x) \) are given by

\[N(x) = \frac{aq^{2(1-q^n)(1-abq^{n+1})(1-cq^n)(c-abq^n)}} {1-1-abq^{n+1}} \left[q^{\frac{1}{2}n(1-q^n)} \left(c + a(1+b+c)q^n \right) + q^{\frac{1-n}{2}n(3n-1)} \right] \times \]

\[\left[c^2 + a^2bq^n \left(c + a(1+b+c)q^{n+1} + a(1+b)(-1 + q^n + q^{n+1} - b^q^n \left(1 + q - q^n \right) - x \right) \right] \]
where the coefficients A

\[
\Delta^{(1)} \equiv -c + a^2 \frac{q^2}{1-q^2} (-1 - q + (b+c)q^{n+1} - q^{1+\frac{2}{n}}) + a \left[-1 + (b+c)(q^{\frac{2}{n}} + q^n + q^{n+1}) - bc(q^{\frac{2}{n}} + q^{1+\frac{2}{n}} + q^{2n+1})\right] \left[(c + a)q^{1+\frac{2}{n}} - a(b+c)q^{1+\frac{2}{n}} - q^{\frac{1}{n}} (1 - abq^{2n})x\right],
\]

respectively.

5.2. The second difference-recurrence relation. If we choose $\nu_1 = n - 1$, $\nu_2 = n$, $\nu_3 = n + 1$, $k_1 = 0$, $k_2 = 0$ and $k_3 = 1$ in Theorem 4.1, and proceeding as in the previous case one gets

\[
A_1(x)P_{n-1}(x; q) + A_2(x)P_n(x; q) + A_3(x)\Delta^{(1)}P_{n+1}(x; q) = 0,
\]

(39)

where the coefficients A_1, A_2 and A_3, satisfy the linear relation

\[
A_3(x) \left[\left(q^{\frac{n+1}{2}} - \frac{B_{n+1}}{\alpha_{n+1}^2 B_{n+2}}\right) (x - \beta_{n+1}) + \left(q^{\frac{n+1}{2}} \beta_{n+1} + \frac{\gamma_{n+1}(0)}{\alpha_{n+1}}\right)\right] P_{n+1} +
\]

\[
A_3(x) \left[\frac{B_{n+1}}{\alpha_{n+1}^2 B_{n+2}} - \beta_{n+1} + \left(\sigma(x) + \tau(x)\Delta x (s - \frac{1}{2})\right)\left[\frac{n+1}{\lambda_{n+1}}\right] A_2(x)\right] P_n +
\]

\[
\left(\sigma(x) + \tau(x)\Delta x (s - \frac{1}{2})\right) \left[\frac{n+1}{\lambda_{n+1}}\right] A_1(x) P_{n-1} = 0.
\]

Comparing the above relation with the three-term recurrence relation (35) one can obtain the explicit expressions for the coefficients A_1, A_2 and A_3 in (39).

5.2.1. Some examples.

Al-Salam and Carlitz I polynomials. Using the main data for the Al-Salam and Carlitz I polynomials we obtain the relation

\[
A_1(x)U_{n-1}(x; q) + A_2(x)U_n(x; q) + A_3(x)\Delta^{(1)}U_{n+1}(x; q) = 0
\]

where

\[
A_1(x) = aq^{n-1} (1 - q^n) x, \quad A_2(x) = a \left[1 + q^{\frac{n}{2}}\right] q^n - (1 + a)q^n - x\right] x,
\]

\[
A_3(x) = -a \left[1 - q^{\frac{n}{2}} + q^{\frac{n+1}{2}}\right].
\]

Alternative q-Charlier polynomials. In this case, one gets

\[
A_1(x)K_{n-1}(x; a; q) + A_2(x)K_n(x; a; q) + A_3(x)\Delta^{(1)}K_{n+1}(x; a; q) = 0,
\]

\[
A_1(x) = a \left(1 - q^n\right) \left[1 + aq^{n-1}\right] \left[aq^n(1 - q^{n-1}) + q^{\frac{n+1}{2}}(1 + aq^{n+1})\right] \left[1 + aq^{n+1} - aq^{\frac{n+1}{2}}(1 + aq^{2n+2})\right] x
\]

\[
A_2(x) = -x \left[aq^n(1 - q^{n+1}) + q^{\frac{n+1}{2}}(1 + aq^{2n+1})\right] \left[1 + aq^{n+1} - aq^{\frac{n+1}{2}}(1 + aq^{2n+2})\right] x
\]

\[
A_3(x) = a \left[1 - q^{\frac{n+1}{2}}(1 + aq^{2n+1})\right] x^2.
\]

Concluding remarks. In this paper we present a constructive approach for finding recurrence relations for the hypergeometric-type functions on the linear-type lattices, i.e., the solutions of the hypergeometric difference equation (11) on the linear-type lattices. Important instances of “discret” functions are the celebrated Askey-Wilson polynomials and q-Racah polynomials. Such functions are defined on the non-uniform lattice of the form $x(s) = c_1(q)q^s + c_2(q)q^{-s} + c_2(q)$ with $c_1c_2 \neq 0$, i.e., a non-linear type lattice and therefore they require a more detailed study (some preliminar general results can be found in [16]).
Acknowledgements. The authors thank J. S. Dehesa and J.C. Petronilho for interesting discussions. The authors were partially supported by DGES grants MTM2009-12740-C03; PAI grant FQM-0262 (RAN) and Junta de Andalucía grants P09-FQM-4643, Spain; and CM-UTAD from UTAD (JLC).

References

[1] R. Álvarez-Nodarse, Polinomios hipergeométricos y q-polinomios. Monografías del Seminario Matemático “García de Galdeano” Vol. 26. Prensas Universitarias de Zaragoza, Zaragoza, Spain, 2003.
[2] R. Álvarez-Nodarse, On characterizations of classical polynomials, J. Comput. Appl. Math. 196 (2006), 320-337.
[3] R. Álvarez-Nodarse, N. M. Atakishiyev, and R. S. Costas-Santos, Factorization of hypergeometric-type difference equations on nonuniform lattices: dynamical algebra. J. Phys. A: Math. Gen. 38 (2005) 153-174.
[4] R. Álvarez-Nodarse and J. L. Cardoso, Recurrence relations for discrete hypergeometric functions. J. Difference Eq. Appl. 11 (2005), 829-850.
[5] R. Álvarez-Nodarse y J. C. Medem, q−Classical polynomials and the q−Askey and Nikiforov-Uvarov Tableaus. J. Comput. Appl. Math. 135 (2001), 157-196.
[6] G. E. Andrews, R. Askey, and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
[7] N. M. Atakishiyev, M. Rahman, and S. K. Suslov, Classical Orthogonal Polynomials, Constr. Approx. 11 (1995) 181-226.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series. (2nd Ed.) Encyclopedia of Mathematics and its Applications 96. Cambridge University Press, Cambridge, 2004.
[9] R. Koekoek, Peter A. Lesky, and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues. Springer Monographs in Mathematics, Springer-Verlag, Berlin-Heidelberg, 2010.
[10] T. H. Koornwinder, Compact quantum groups and q-special functions. En: Representations of Lie groups and quantum groups. V. Baldoni y M.A. Picardello (Eds.) Pitman Research Notes in Mathematics, Series 311, Longman Scientific & Technical (1994), 46-128.
[11] J. C. Medem, R. Álvarez-Nodarse, and F. Marcellán, On the q−polynomials: A distributional study. J. Comput. Appl. Math. 135 (2001), 197-223.
[12] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable on nonuniform grids. Soviet Math. Dokl. 34 (1987), no. 3, 576–579.
[13] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.
[14] A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics. Birkhäuser, Basel, 1988.
[15] A. F. Nikiforov and V. B. Uvarov, Polynomial Solutions of hypergeometric type difference Equations and their classification. Integral Transform. Spec. Funct. 1 (1993), 223-249.
[16] S. K. Suslov, The theory of difference analogues of special functions of hypergeometric type. Uspekhi Mat. Nauk. 44:2 (1989), 185-226. (Russian Math. Survey 44:2 (1989), 227-278.)
[17] N. Ja. Vilenkin y A.U. Klimyk, Representations of Lie Groups and Special Functions. Vol. I, II, III. Kluwer Academic Publishers. Dordrecht, 1992.
[18] R.J. Yáñez, J.S. Dehesa, and A.F. Nikiforov, The three-term recurrence relations and the differentiation formulas for functions of hypergeometric type. J. Math. Anal. Appl. 185 1994, 855-866.

IMUS & DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICA, UNIVERSIDAD DE SEVILLA. APDO. POSTAL 1160, SEVILLA, E-41080, SEVILLA, SPAIN
E-mail address: address ran@us.es

CM-UTAD & DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE TRÁS-Os-MONTES E ALTO DOURO. APARTADO 202, 5001 - 911 VILA REAL, PORTUGAL
E-mail address: jluis@utad.pt