A Novel QTL Controlling Flag Leaf Width Located on Chromosome Arm 7AS in Bread Wheat (Triticum Aestivum L.)

Xueling Ye
Chengdu University

Jian Li
Sichuan Agricultural University

Zhi Zheng
CSIRO

Hong Zhou
Sichuan Agricultural University

Dabing Xiang (✉️ xiangdabing@cdu.edu.cn)
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.

Research article

Keywords: Flag leaf width, Wheat, QTL, DArT, Candidate genes

Posted Date: December 4th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-117887/v1

License: ☑️ ☘️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Wheat is an important cereal crop and improving wheat production is essential for meeting the food demand from the growing population worldwide. Flag leaf width (FLW) is an important trait affecting plant architecture and contributing to grain yield. To detect loci conferring FLW, we assessed a population of recombinant inbred lines (RILs) from a cross of EGA Wylie/Sumai 3 in different environments.

Results: A total of six QTL were detected from the population. Two of them located on chromosome 2B and the other four located on chromosomes 2D, 4B, 7A, and 7B, respectively. The percentage of phenotypic variation (PEV) explained by these loci ranged from 14.6% to 33.8%, with LOD scores varying from 3.01 to 7.81. Of them, the locus located on chromosome arm 7AS is likely novel. Significant effects of this locus were detected in multiple trials conducted and the PEV explained by this QTL varied from 14.6% to 19.8% among the different trials. An orthologous analysis based on rice and Arabidopsis identified 3 putative genes underlying this potentially novel locus.

Conclusion: This study identified a stable potentially novel QTL in multiple environments and predicted three candidate genes of it, which laid the foundation for further fine-mapping and cloning the gene(s) underlying QFlw.WS-7A with the contribution to grain yield.

Background

Common or bread wheat (Triticum aestivum L.) is one of the most important food crops and provides about 20% of calories consumed by humans [1]. By 2050, the world population is anticipated to reach 9.6 billion which is 34% higher than that of today. To meet the demands of food requirement, the annual crop production should rise to 3 billion tons [2]. Producing enough wheat for the growing population is one of the vital tasks for food security.

Yield is a complex trait which is affected by many factors. The foundation of improving yield is to improve the accumulation of organic matter in grains. Almost 90%-95% dry material in plant is formed through photosynthesis, and leaves are the main organs for photosynthesis [3]. The flag leaf is an important morphological trait in wheat and other cereal crops. It influences plant architecture, absorbs the most irradiation light, and contributes to grain yield. The photosynthetic ability of flag leaf has a close relationship with grain yield [4]. In wheat, the flag leaf is the primary photosynthetic organ for grain filling which is the key period for kernel development [5, 6]. The flag leaf translocated almost all of the carbohydrate to grain directly and contributed up to one third of grain yield [7–9]. Important characteristics of flag leaf included length, width (FLW), area, and angle. There is a significant positive relationship between FLW and grain yield [10–14]. The genetic control of FLW is quantitative. The trait is regulated by multiple loci and influenced by environments [15–17]. With the development of molecular technique, more and more QTL/genes regulating FLW have been reported. Putative loci controlling FLW have been located on each of the 21 common wheat chromosomes [12–21]. For example, TaFLW1 is a major QTL that has
been fine-mapped to 0.2 centimorgan (cM) interval on the long arm of chromosome 5A [20]. And Yan et al. (2020) [17] used two related populations of introgression lines to identify the locus on 6A (QFLW-6A).

Conventional breeding methods are time-consuming, while marker-assisted selection (MAS) is faster and more efficient. MAS, as an optimal method in wheat breeding, mainly depends on the genes/QTL and their linkage markers. QTL mapping lay the foundation for MAS. QTL mapping as a popular and efficient method has a long story. Sax (1923) [22] first suggested the basic idea for studying QTL through linkage markers, and the idea was put into practice by Thoday (1961) [23]. Paterson et al. (1988) [24] proved for the first time that the QTL mapping using molecular markers worked well, which opened the door to QTL mapping in many traits. Afterward, many researchers have contributed to the improvement of QTL mapping methods for different conditions by different models or algorithms [25–30]. Now, QTL mapping has become a powerful tool and it is widely used in many species [31–35]. Many QTL associated with every aspect of traits were detected using QTL mapping in wheat [36–48]. The availability of the high throughput molecular markers [49–54] and the high-quality genome reference IWGSC RefSeq v1.0 [55] have resulted in more precise identification of QTL via the use of dense genetic maps.

Following the identification of QTL conferring FLW using a RIL population with an existing genetic map consisting of Diversity Arrays Technology (DArT) markers, we identified candidate genes for a novel locus through orthologous analysis. These results are reported in this publication.

Results

Phenotypic variation of flag leaf width in the mapping population

FLW of Sumai 3 was significant wider than that of EGA Wylie (Fig. 1). FLW was measured against the RIL population under different environments. Significant correlations were detected for results from these trials, with correlation coefficients ranging from 0.352 to 0.861 ($p < 0.01$) (Table 1). Two of these are conducted in the field environments at CSIRO Research Station in Queensland in 2018, one was located at 27°32'16.4"S 152°20'14.6"E (designated as E1), and the other at 27°33'56.9"S 152°19'49.4"E (designated as E2). FLW ranged from 1.17 to 2.08 in E1 and from 0.99 to 1.73 in E2. The mean value was significantly higher in E1 (1.66) than that in E2 (1.34), while the phenotypic diversity index was significantly higher in E2 (0.93) than that in E1 (0.88). The other two trials were conducted in glasshouses at the Queensland Bioscience Precinct (QBP) in Brisbane, Australia, one in 2017 and the other in 2018 (designated as E3 and E4, respectively). FLW varied from 0.95 to 2.10 in E3 and from 1.00 to 1.80 in E4. The mean values and the phenotypic diversity indexes of FLW in E4 were higher than that in E3. BLUP values of FLW from these trials ranged from 1.20 to 1.75 with a mean of 1.44 and the phenotypic diversity index being high as 0.96. The estimated h^2 for FLW from these trials was 0.96 (Table 2), suggesting that genetic effects were the major determinant for the phenotypic variance of this trait. The numbers of RILs for different FLW followed the normal distribution in all the four trials (Fig. 2).
Table 1
Pearson correlation coefficients for flag leaf width among the four trials conducted

Trials	E1	E2	E3	E4	BLUP
E1	1	-	-	-	-
E2	0.528**	1	-	-	-
E3	0.352**	0.535**	1	-	-
E4	0.364**	0.693**	0.518**	1	-
BLUP	0.673**	0.861**	0.718**	0.841**	1

E1 and E2 represent the two field, and E3 and E4 the two glasshouse trials; BLUP, the best linear unbiased prediction.

Table 2
Variations of flag leaf width among the RILs in the EGA Wylie/Sumai 3 population in different trials

Trials	Min	Max	Mean	STDEV	CV	H'	h^2
E1	1.17	2.08	1.66	0.19	0.11	0.88	0.96
E2	0.99	1.73	1.34	0.14	0.11	0.93	
E3	0.95	2.10	1.41	0.25	0.18	0.89	
E4	1.00	1.80	1.37	0.21	0.15	0.83	
BLUP	1.20	1.75	1.44	0.13	0.09	0.96	

STDEV, Standard deviation; CV, Coefficient of variation; H', The Shannon-Weaver diversity index; h^2, The broad sense heritability.

E1 and E2 represent the two field trials, and E3 and E4 the two glasshouse trials; BLUP, the best linear unbiased prediction.

The identification of QTL for flag leaf width

To identify QTL for FLW in the RIL population, the trait was evaluated in each of the four trials and BLUP values from these trial results were also obtained and used. A total of 6 QTL were detected, two of them located on chromosome 2B, and the other four located on chromosomes 2D, 4B, 7A, and 7B, respectively (Table 3, Fig. 3). The two QTL located on chromosome 2B (named as QFlw.WS-2B.1 and QFlw.WS-2B.2, respectively) were detected in E2 and also with the use of the BLUP values. They were mapped in the region of 25.87 cM to 31.29 cM and 56.02 cM to 57.79 cM, respectively. QFlw.WS-2B.1 had LOD scores of up to 7.1 with the percentages of phenotypic variation (PEV) varied from 15.4–31.1%. The LOD scores of QFlw.WS-2B.2 ranged from 3.12 to 6.99, and its PEV was up to 31.4%. Similarly, the locus on 7B (QFlw.WS-7B) was detected in E2 and with the use of the BLUP values. The LOD score of this locus was up to 7.39.
and its PEV reached 33.8%. The locus on 2D (QFlw.WS-2D) was only detected in one of the trials (E1). This locus was in the interval of 25.26 cM to 25.69 cM on the chromosome 2D. The loci on 4B (QFlw.WS-4B) and 7A (QFlw.WS-7A) were two stable QTL. Both were detected in all trials excepted E1. The locus on 4B (QFlw.WS-4B) was located in the region of 52.08 cM to 54.16 cM. LOD scores of this locus ranged from 3.16 to 7.81, and its PEV was up to 33.8%. QFlw.WS-7A was in the region of 17.92 cM to 18.04 cM on the short arm of this chromosome. The LOD score of this locus varied from 3.01 to 4.05 and its PEV ranged from 14.6–19.8%.

The prediction of candidate genes for QFlw.WS-7A

QFlw.WS-7A was in the interval of 24.37 Mb to 26.04 Mb on chromosome arm 7AS based on the reference genome of Chinese spring (CS). There are 31 high-confidence genes in the interval. Among them, 19 genes were detected in the region of 18.86 Mb to 20.26 Mb on chromosome arm 7AS in the wild emmer wheat (Fig. 4). According to the Chinese Spring reference RefSeq v1.0 (IWGSC) and RefSeq Annotation v1.1 [55], the 31 high-confidence genes in the region of QFlw.WS-7A were selected for collinearity analysis with Arabidopsis and rice. Based on the function of their orthologous genes, we predicted three candidate genes that may be associated with FLW. They were TraesCS7A02G050900, TraesCS7A02G051200, and TraesCS7A02G052000, which were involved in melatonin degradation, substances and energy metabolism, and leaf development that affected the leaf width directly and indirectly.
Table 3
The details of QTL detected for flag leaf width in the mapping population in each of the four trials conducted

QTLs	Detected condition	Interval position (cM)	Leaf marker	Right marker	LOD	PEV (%)	Reference				
QFlw.WS-2B.1	E2	25.87–31.29	995682	F	0	3021168	F	0	3.12–6.99	15.1–31.4	Bennett et al. 2012
	BLUP	27.08–31.29	1117617	F	0	3021168	F	0	3.46–5.64	17.1–26.1	
QFlw.WS-2B.2	E2	56.02–57.79	1037396	F	0	1122548	F	0	4.20–7.10	30.0–31.1	Zhao et al. 2018
	BLUP	56.63–57.79	1117142	F	0	1122548	F	0	3.13–4.99	15.4–24.1	
QFlw.WS-2D	E1	25.26–25.69	1112617	F	0	1294025	F	0	3.16–3.32	15.2–15.9	Jia et al. 2013
QFlw.WS-4B	E2	52.08–54.16	1131412	F	0	100004321	F	0	5.59–7.14	25.2–32.4	Zhao et al. 2018
	E3	52.08–52.90	1131412	F	0	1112165	F	0	3.95–6.02	19.4–28.8	
	E4	52.08–52.90	1131412	F	0	1112165	F	0	3.16–3.96	15.3–18.9	
	BLUP	52.08–54.16	1131412	F	0	100004321	F	0	3.61–7.81	17.1–33.8	
QFlw.WS-7A	E2	17.92–18.04	1106129	F	0	1076278	F	0	3.43–3.56	16.8–17.2	*
	E3	17.92–18.04	1106129	F	0	1076278	F	0	3.15–3.53	15.7–18.3	
	E4	17.92–18.04	1106129	F	0	1076278	F	0	3.01–3.38	14.6–16.5	
	BLUP	17.92–18.04	1106129	F	0	1076278	F	0	3.80–4.05	17.8–19.8	
QFlw.WS-7B	E2	50.08–50.55	100035195	F	0	1056979	F	0	4.48–7.39	21.0–33.8	Huang et al. 2018

PEV, the percentage of phenotypic variation explained

E1 and E2 represent the two field sites (one at 27°32'16.4"S 152°20'14.6"E and the other at 27°33'56.9"S 152°19'49.4"E); and E3 and E4 represent the two glasshouse trials conducted in 2017 and 2018, respectively. BLUP, the best linear unbiased prediction

*, the potentially novel QTL
QTLs & Detected condition & Interval position (cM) & Leaf marker & Right marker & LOD & PEV (%) & Reference \\
--- & --- & --- & --- & --- & --- & --- & --- \\
BLUP & 50.08–50.55 & 100035195/F/0 & 1056979/F/0 & 3.75–6.23 & 18.2–29.5 & \\

PEV, the percentage of phenotypic variation explained

E1 and E2 represent the two field sites (one at 27°32’16.4"S 152°20’14.6"E and the other at 27°33’56.9"S 152°19’49.4"E); and E3 and E4 represent the two glasshouse trials conducted in 2017 and 2018, respectively. BLUP, the best linear unbiased prediction

*, the potentially novel QTL

Discussions

The phenotype in multiple environments

FLW is an important agronomical trait affecting plant architecture and contributing to grain yield. To identify loci controlling this trait, it was measured in four trials. A strong correlation was detected among the results from these trials (Table 1). Genetic effects were the major determinant of the phenotypic variance on FLW as the estimated h^2 was high. Arbelbide *et al.* (2006) [56] reported there were many factors determining the power of QTL mapping, one of them was heritability. The high h^2 of FLW detected in this study laid the foundation for QTL identification.

QTL analysis

The population used in this study was derived from EGA Wylie and Sumai 3. Both parents were commercial varieties of great values and they performed well in agronomical and morphological traits. Identifying and utilizing the elite FLW QTL from these varieties could be an effective way to contribute to grain yield. We identified six QTL associated with FLW by assessing this population. These loci were all detected in multiple conditions except for $QFlw.WS-2B.1$, $QFlw.WS-2B.2$, $QFlw.WS-2D$, and $QFlw.WS-7B$. The physical location of $QFlw.WS-2B.1$ was 159.81 Mb to 337.91 Mb, which was co-located with the reported locus $QFlw.aww-2B$ [41]. $QFlw.WS-2B.2$ was mapped on the physical map of 627.32 Mb to 679.90 Mb. It covered the reported locus of $QFlw-2B$ [21]. $QFlw.WS-2D$ was a minor QTL. It was in the region between 22.44 Mb to 23.30 Mb on chromosome 2D, sharing a similar location with $QFlw.nau-2D$ [12]. $QFlw.WS-7B$ was located in the region of 50.08 cM to 50.55 cM at the long arm of chromosome 7B. The reported QTL associated with SNP marker $BE518436_7_B_Y_671$ [57] was co-located with $QFlw.WS-7B$. $QFlw.WS-4B$ and $QFlw.WS-7A$ were two stable QTL. Both of them were detected in three of the four environments assessed and with the use of the BLUP values. By comparing the physical position with reported QTL associated with FLW on chromosome 4B, we found this locus overlapped with $QFlw-4B$ [21]. $QFlw.WS-7A$ was in the region of 17.92 cM to 18.04 cM on the chromosome 7A and its physical location was between 24.37 Mb and 26.04 Mb. Compared with the reported QTL for FLW on short arm of chromosome 7A, the nearest one was a locus linked closely with the SSR marker $Xwmc139$ [19]. The physical location of $Xwmc139$ was
around 19.90 Mb, thus these two loci were separated by a physical interval of around 4.47 Mb. We analyzed the RIL population and their parents using \textit{Xwmc139} and found that the marker was not polymorphic. We thus believe that \textit{QFlw.WS-7A} was a different locus from those loci reported previously.

Many QTL have been reported but few have been utilized in breeding programs. One of the important factors determining the useful of a locus was its hereditary. In this study, the detected \(h^2 \) for FLW was high, which could lay the foundation for the identification of major and stable QTL. Based on the presence/absence of the two different alleles at \textit{QFlw.WS-7A}, the population was classified as two groups, one with EGA Wylie allele and the other Sumai 3 allele. The FLW of Sumai 3 type was significantly higher than that of Wylie type in each of the trials (Fig. 5). The presence of the Sumai 3 allele increased the FLW by an average of 16.6\% based on the results from the two field trials, by an average of 16.1\% based on results from the two glasshouse trials, and by an average of 18.6\% based on results from the BLUP values. These results suggested that the allele of \textit{QFlw.WS-7A} from Sumai 3 is a stable and effective QTL for breeding programs.

\textbf{The analysis of candidate genes underlying \textit{QFlw.WS-7A}}

Three candidate genes were identified for \textit{QFlw.WS-7A}. They were \textit{TraesCS7A02G050900}, \textit{TraesCS7A02G051200}, and \textit{TraesCS7A02G052000}. These genes were involved in melatonin degradation, substances and energy metabolism, and leaf development that affected the leaf width directly and indirectly. Both \textit{TraesCS7A02G050900} and \textit{TraesCS7A02G051200} are homologous to rice gene \textit{2ODD11} (2-oxoglutarate-dependent dioxygenase 11) that was involved in melatonin degradation [58]. According to the reports of Arnao and Hernández-Ruiz (2015) [59], the absorption of melatonin can increase leaf size. It has also been reported that \textit{2ODD} was involved in several structural modifications in the biosynthesis of gibberellins and it played a key role in many growth and developmental processes including leaf expansion [60]. Function analysis also showed that \textit{2ODD11} participated in the dioxygenase activity, L-ascorbic acid binding, and metal ion binding. \textit{TraesCS7A02G052000} is aligned with rice gene \textit{SDH8A} (Succinate dehydrogenase subunit 8A). GO annotation analysis showed that this gene was involved in the pathway of tricarboxylic acid cycle, which is the important hub of substances and energy metabolism. The carbohydrate metabolism and photosynthesis involved in the tricarboxylic acid cycle provide the substances and energy for leaf development, which affecting FLW indirectly. Based on the report of Zhao \textit{et al.} (2015) [61], amino acids and organic acids participated in the tricarboxylic acid cycle were significantly different in metabolite levels between two rice accessions with different leaf width. There could be a relationship between leaf width and the tricarboxylic acid cycle [61–62].

Orthologs for these genes were also found in \textit{Arabidopsis}. \textit{TraesCS7A02G050900} and \textit{TraesCS7A02G051200} were orthologous with \textit{Arabidopsis} gene \textit{ANS} and \textit{SRG1}, respectively. Both genes belong to the iron/ascorbate-dependent oxidoreductase family. \textit{ANS} was involved in the flavonoid biosynthetic process and regulation of jasmonic acid mediated signaling pathway [63]. \textit{SRG1} was involved in leaf senescence [64].

\textbf{Conclusion}
To detect QTL for FLW, a RIL population consisting of RIL was assessed in different environments. We identified 6 QTL in these trials. They were located on chromosomes 2B, 2B, 2D, 4B, 7A, and 7B, respectively. Of them, QFlw.WS-4B was a stable major QTL with a PVE of up to 33.8%. Compared with the location of previously reported QTL associated with FLW, QFlw.WS-7A was potentially novel. Based on an orthologous analysis with rice and Arabidopsis, we identified three candidate genes for this locus. They were involved in the regulation of plant growth, substances and energy metabolism, and leaf development. The QTL mapping and the candidate genes prediction laid the foundation for cloning the gene(s) underlying QFlw.WS-7A.

Methods

Plant materials

A population of 92 RILs derived from a cross of EGA Wylie/Sumai 3 [44] was used in this study to detect QTL for FLW. EGA Wylie is a commercial variety widely grown in Australia and Sumai 3 was a variety released some four decades ago in China. The population was developed by Zheng et al. (2014) [44].

Collection and analysis of phenotypic data

The population was planted in two field environments at CSIRO Research Station in Queensland in 2018, one located at 27°32'16.4"S 152°20'14.6"E (designated as E1), and the other at 27°33'56.9"S 152°19'49.4"E (designated as E2). For each of the two trials, each RIL was planted with 3 replications. For each of these replicates, ten seeds for each line were evenly planted in a row of 1 m with a 0.3 m between rows. Both field trials were well watered and managed following the standard local practices. Five plants from the middle of each line were randomly selected during the grain-filling stage to measure the flag leaf width (FLW). The population was also assessed twice in a glasshouse at the Queensland Bioscience Precinct (QBP) in Brisbane, Australia, one in 2017 and the other in 2018 (designated as E3 and E4, respectively). In the glasshouse, the population was grown at day/night temperature of 25/16 (°C) and relative humidity of 58%/72%. Plants were well watered and managed. FLW was measured from three plants for each line during the grain-filling stage.

BLUP values were estimated based on the linear model using the lme4 package in the R program [65]. The broad-sense heritability (\(h^2\)) estimates for FLW was calculated across all the trials with the formula \(h^2 = V_G/(V_G+V_E)\) using the lme4 package [65], where \(V_G\) and \(V_E\) are the genotypic and environmental variances, respectively [66]. The Shannon-Weaver diversity index (\(H'\)) was calculated to reflect the phenotypic variation [67]. The analysis of variance (ANOVA), Pearson correlation coefficient, and the \(t\)-test were all carried out using the software SPSS 20.0 (IBM Corp., Armonk, NY, USA). The histograms of FLW were drawn using the ggplot2 package in the R program [68].

The genotyping and QTL mapping

The genetic map for the population used in this study was generated using DArT Pty Ltd as described in an earlier study [44]. The QTL analysis was carried out using software MapQTL 5.0 through MQM.
mapping [69]. For each trial, the significant LOD threshold was determined by a test of 1000 permutations with the whole genome scanning of 0.05 level. QTL detected in multiple trials was considered as a stable QTL. The genetic maps were drawn with MapChart 2.32 (https://www.wur.nl/en/show/MapChart-2.32.htm). Comparison of QTL detected in this study and those reported earlier was conducted based on the Chinese Spring reference RefSeq v1.0 [55].

The analysis of candidate genes

Identification of candidate genes for the novel QTL was conducted based on an orthologous analysis. Firstly, we delineated the physical intervals of novel QTL based on the wheat reference genome RefSeq v1.0 of Chinese Spring [55]. Gene sequences in the targeted interval were extracted using TBtools [70] and used to blast against the wild emmer (*T. turgidum* ssp *dicoccoides*) genome [71] and protein database SWISS-PROT [72] using TBtools [70] with default parameters. Functions of the candidate genes were extracted from their homologs in *Oryza sativa* and *Arabidopsis*.

Abbreviations

FLW
flag leaf width; RILs: recombinant inbred lines; MAS: marker-assisted selection; DArT: Diversity Arrays Technology; STDEV: standard deviation; CV: coefficient of variation; *H'*: the Shannon-Weaver diversity index; *h*²: the broad sense heritability; BLUP: best linear unbiased prediction; PEV: the percentage of phenotypic variation; cM: centimorgan; CS: Chinese spring.

Declarations

Acknowledgements

The authors are grateful to Dr. Chunji Liu at Commonwealth Scientific and Industrial Organization (CSIRO) for helping in providing the materials, completing the experiment, and revising the manuscript. Xueling Ye is also grateful to CSIRO, the Sichuan Agricultural University, and the China Scholarship Council (CSC) for funding her visit to CSIRO.

Funding

None.

Availability of data and materials

All data are fully available within the manuscript and without restriction.

Authors’ contributions
D.X. and X.Y. conceived the study; X.Y., J.L., Z.Z. and H.Z. collected and analyzed data; X.Y. and D.X. prepared the manuscript with contribution from other authors. And all authors have read and approved the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–710.
2. Tripathi AD, Mishra R, Maurya KK, Singh RB, Wilson DW. Estimates for world population and global food availability for global health. The role of functional food security in global health (p. 3–24). Academic Press: Cambridge, MA, USA. 2019.
3. Xiang D, Ma C, Song Y, Wu Q, Wu X, Sun Y, et al. Post-anthesis photosynthetic properties provide insights into yield potential of Tartary buckwheat cultivars. Agronomy, 2019;9(3),149.
4. Ali MA, Hussain M, Khan MI, Ali Z, Zulkiffal M, Anwar J, et al. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (*Triticum aestivum*). Int J Agric Biol. 2010;12(4):509–515.
5. Ibrahim HA, Abo Elenein RA. The relative contribution of different wheat leaves and awns to the grain yield and its protein content. 1977.
6. Sharma SN, Sain RS, Sharma RK. The genetic control of flag leaf length in normal and late sown durum wheat. J Agric Sci. 2003;141(3–4):323–331.
7. Stoy V. The translocation of C14-labelled photosynthetic products from the leaf to the ear in wheat. Physiol Plant. 1963;16(4):851–866.
8. Monyo JH, Whittington WJ. Genotypic differences in flag leaf area and their contribution to grain yield in wheat. Euphytica. 1973;22(3):600–606.
9. Araus JL, Tapia L. Photosynthetic gas exchange characteristics of wheat flag leaf blades and sheaths during grain filling: the case of a spring crop grown under Mediterranean climate conditions. Plant
10. Spagnoletti Zeuli PL, Qualset CO. Flag leaf variation and the analysis of diversity in durum wheat. Plant Breed. 1990;105(3):189–202.

11. Hansen KA, Martin JM, Lanning SP, Talbert LE. Correlation of genotype performance for agronomic and physiological traits in space-planted versus densely seeded conditions. Crop Sci. 2005;45:1023–1028.

12. Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, et al. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet. 2013;126(8):2123–2139.

13. Wu Q, Chen Y, Fu L, Zhou S, Chen J, Zhao X, et al. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica. 2016;208(2):337–351.

14. Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, et al. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet. 2020;133(1):297–315.

15. Fan X, Cui F, Zhao C, Zhang W, Yang L, Zhao X, et al. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breed. 2015;35(1):24.

16. Yang D, Liu Y, Cheng H, Chang L, Chen J, Chai S, et al. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet. 2016;17(1):94.

17. Yan X, Wang S, Yang B, Zhang W, Cao Y, Shi Y, et al. QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PloS One. 2020;15(3):e0229912.

18. Dodig D, Zoric M, Kobiljski B, Savic J, Kandic V, Quarrie S, et al. Genetic and association mapping study of wheat agronomic traits under contrasting water regimes. Int J Mol Sci. 2012;13(5):6167–6188.

19. Isidro J, Knox R, Clarke F, Singh A, DePauw R, Clarke J, et al. Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta. 2012;236(6):1713–1723.

20. Xue S, Xu F, Li G, Zhou Y, Lin M, Gao Z, et al. Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2013;126(8):1941–1949.

21. Zhao C, Bao Y, Wang X, Yu H, Ding A, Guan C, et al. QTL for flag leaf size and their influence on yield-related traits in wheat. Euphytica. 2018;214(11):209.

22. Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics. 1923;8(6):552.

23. Thoday JM. Location of polygenes. Nature. 1961;191(4786):368–370.

24. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988;335(6192):721–726.

25. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185–199.
26. Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA. 1993;90(23):10972–10976.

27. Zeng ZB. Precision mapping of quantitative trait loci. Genetics. 1994;136(4):1457–1468.

28. Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In: Chen LS, Ruan SG, and Zhu J (eds) Advanced topics in biomathematics. Proc Inter Conf on Mathematical Biol. World Scientific Publishing Co., Singapore; 1998. p. 321–330.

29. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics. 1999;152(3):1203–1216.

30. Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics. 2007;175(1):361–374.

31. Romero CC, Vermeulen JP, Vels A, Himmelbach A, Mascher M, Niks RE. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL. Theor Appl Genet. 2018;131(5):1031–1045.

32. Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, et al. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol. 2019;19(1):398.

33. Yadav S, Sandhu N, Singh VK, Catolos M, Kumar A. Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Sci Rep. 2019;9(1):1–2.

34. Hu J, Wang X, Zhang G, Jiang P, Chen W, Hao Y, et al. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor Appl Genet. 2020;133(3):917–933.

35. Li P, Fan Y, Yin S, Wang Y, Wang H, Xu Y, Yang Z, Xu C. Multi-environment QTL mapping of crown root traits in a maize RIL population. Crop J. 2020;645–654.

36. Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN. Genetic analysis of the dwarning gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet. 1998; 96(8):1104–1109.

37. Jantasuriyarat C, Vales MI, Watson CJ, Riera-Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genetet, 2004, 108(2):261–273.

38. Kumar N, Kulwal PL, Balyan HS, Gupta PK. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed. 2007;19(2):163–177.

39. Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 2009;128(1):1–26.

40. Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AM, et al. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica. 2010;174(3):423–436.

41. Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T. Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet. 2012;125(2):255–271.
42. Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS, et al. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica. 2013;190(1):117–129.
43. Zhang J, Wu J, Liu W, Lu X, Yang X, Gao A, et al. Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat. Mol Breed. 2013;31(2): 441–449.
44. Zheng Z, Kilian A, Yan G, Liu C. QTL conferring Fusarium crown rot resistance in the elite bread wheat variety EGA Wylie. PloS One. 2014;9(4):e96011.
45. Deng Z, Cui Y, Han Q, Fang W, Li J, Tian J, et al. Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages. Front Plant Sci. 2017;8:2120.
46. Ren Y, Qian Y, Xu Y, Zou C, Liu D, Zhao X, et al. Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Front Plant Sci. 2017;8:2096.
47. Kumar A, Jain S, Elias EM, Ibrahim M, Sharma LK. An overview of QTL identification and marker-assisted selection for grain protein content in wheat. InEco-friendly agro-biological techniques for enhancing crop productivity 2018 (p. 245–274). Springer, Singapore.
48. Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U, et al. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor Appl Genet. 2020;133(1):239–257.
49. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet. 2006;113(8):1409–1420.
50. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One. 2011;6(5):e19379.
51. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA. 2013;110(20):8057–8062.
52. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12(6): 787–796.
53. Jia JZ, Zhao G. 2016. Wheat660 SNP array developed by CAAS[P]. http://wheat.pw.usda.gov/ggpages/topics/Wheat660_SNP_array_developed_by_CAAS.pdf. Accessed 19 Feb 2018.
54. Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, et al. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep. 2017;7(1): 3788.
55. Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191
56. Arbelbide M, Yu J, Bernardo R. Power of mixed-model QTL mapping from phenotypic, pedigree and marker data in self-pollinated crops. Theor Appl Genet. 2006;112(5):876–884.
57. Huang S, Sun L, Hu X, Wang Y, Zhang Y, Nevo E, et al. Associations of canopy leaf traits with SNP markers in durum wheat (Triticum turgidum L. durum (Desf.)). PloS One. 2018;13(10).
58. Byeon Y, Back K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J Pineal Res. 2015;58(3):343–351.

59. Arnao MB, Hernández-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res. 2015;59(2):133–150.

60. Farrow SC, Facchini PJ. Functional diversity of 2-oxoglutarate/Fe (II)-dependent dioxygenases in plant metabolism. Front Plant Sci. 2014;5:524.

61. Zhao X, Zhang G, Wang Y, Zhang F, Wang W, Zhang W, et al. Metabolic profiling and physiological analysis of a novel rice introgression line with broad leaf size. PLoS One. 2015;10(12):e0145646.

62. Schröder F, Lisso J, Obata T, Erban A, Maximova E, Giavalisco P, et al. Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC Plant Biol. 2014;14(1):309.

63. Caarls L, Elberse J, Awwanah M, Ludwig NR, de Vries M, Zeilmaker T, et al. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Ncad Sci USA. 2017;114(24):6388–6393.

64. Callard D, Axelos M, Mazzolini L. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 1996;112(2):705–715.

65. Bates D, Maechler M, Bolker B, Walker S. Ime4: Linear mixed-effects models using Eigen and S4. R package version 1. 2014;(7):1–23.

66. Smith SE, Kuehl RO, Ray IM, Hui R, Soleri D. Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Sci. 1998;38:1125–1129.

67. Li R, Zeng Y, Xu J, Wang Q, Wu F, Cao M, et al. Genetic variation for maize root architecture in response to drought stress at the seedling stage. Breed Sci. 2015;65(4):298–307.

68. Wickham H. ggplot2: elegant graphics for data analysis. Springer. 2016.

69. Van Ooijen JW. MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen. 2004;63.

70. Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools—an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020. doi: https://doi.org/10.1101/289660

71. Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357(6346):93–97.

72. Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 1999;27:49–54.

Figures
Figure 1

The flag leaf width of parents. The Wylie and Sumai 3 are maternal and paternal, respectively.
Figure 2

The distribution of flag leaf width in the Wylie/Sumai 3 recombinant inbred lines (RILs) population. E1 and E2 indicate the population was planted in the field environments at 27°32'16.4"S 152°20'14.6"E and 27°33'56.9"S 152°19'49.4"E at CSIRO Research Station at Gatton in Queensland in 2018; E3 and E4 indicate the glasshouse in 2017 and 2018; BLUP, the best linear unbiased prediction.
Figure 3

The locations of QTL for flag leaf width on the genetic map in the population. E1 and E2 indicate the population was planted in a glasshouse in 2017 and 2018; E3 and E4 indicate the field environments at 27°32’16.4”S 152°20’14.6”E and 27°33’56.9”S 152°19’49.4”E at CSIRO Research Station at Gatton in Queensland in 2018; BLUP, the best linear unbiased prediction
Figure 4

The physical position for QFlw.WS-7A and their predicted genes
Figure 5

The effect of QFlw.WS-7A on the flag leaf width in all trials. The Sumai 3 and Wylie type indicates two different groups based on the flanking markers of QFlw.WS-7A. The Sumai 3 type carrying QFlw.WS-7A had significant higher FLW than Wylie type without QFlw.WS-7A. ***, significant at p < 0.0001; ****, significant at p < 0.00001. FLW, flag leaf width. E1 and E2 indicate the population was planted in the field environments at 27°32′16.4″S 152°20′14.6″E and 27°33′56.9″S 152°19′49.4″E at CSIRO Research Station at Gatton in Queensland in 2018; E3 and E4 indicate the glasshouse in 2017 and 2018; BLUP, the best linear unbiased prediction.