THE CALKIN ALGEBRA IS \aleph_1-UNIVERSAL

ILIJAS FARAH AND ALESSANDRO VIGNATI

Abstract. We discuss the existence of (injectively) universal C*-algebras and prove that all C*-algebras of density character \aleph_1 embed into the Calkin algebra, $\mathcal{Q}(H)$. Together with standard results, this shows that each of the following three assertions is relatively consistent with ZFC: (i) $\mathcal{Q}(H)$ is a 2^{\aleph_0}-universal C*-algebra. (ii) There exists a 2^{\aleph_0}-universal C*-algebra, but $\mathcal{Q}(H)$ is not 2^{\aleph_0}-universal. (iii) A 2^{\aleph_0}-universal C*-algebra does not exist. We also prove that it is relatively consistent with ZFC that there is no 2^{\aleph_0}-universal nuclear C*-algebra.

1. Introduction

Let H denote the separable infinite-dimensional complex Hilbert space. The Calkin algebra $\mathcal{Q}(H)$ is the quotient $\mathcal{B}(H)/\mathcal{K}(H)$ of the algebra $\mathcal{B}(H)$ of all bounded linear operators on H over the ideal of all compact operators.

Given a category C of metric structures and a cardinal κ, an object $A \in C$ is (injectively) κ-universal if it has density character κ and every object $B \in C$ of density character at most κ is isometric to a substructure of A. The dual notion, surjective universality, is trivialized in the category of unital C*-algebras. Since every unital C*-algebra is generated by its unitary group, the full group C*-algebra associated with the free group F_κ, $C^*(F_\kappa)$, is surjectively κ-universal for every infinite cardinal κ. Similarly in the abelian setting $C([0,1]^\kappa)$ is surjectively κ-universal.

The question whether the Calkin algebra can be \aleph_1-universal for the category of C*-algebras was raised by Piotr Koszmider (personal correspondence) and [28, Question E].

Theorem A. All C*-algebras of density character at most \aleph_1 embed into the Calkin algebra. Therefore the Continuum Hypothesis (CH) implies that the Calkin algebra is an \aleph_1-universal C*-algebra.

One of the ingredients of our proof is the analysis of the Extw-group of simple, separable, and unital C*-algebras that tensorially absorb the Cuntz algebra O_2.
Acknowledgments. We would like to thank George Elliott, Piotr Koszmider, and N. Christopher Phillips for helpful remarks and to Bradd Hart for pointing out to some omissions in the early draft of the present paper. Part of this work was completed during AV’s visit to Toronto and both authors’ visit to the program “IRP Operator Algebras: Dynamics and Interactions” at CRM (Barcelona). The authors would like to thank the organizers, in particular Francesc Perera, for their support and hospitality.

2. The proof of Theorem A

This section is entirely devoted to the proof of Theorem A. Familiarity with model theory, in particular axiomatizability and the different layers of saturation, is required (see [10], or [9] for an overview of the concept of saturation). For information on C*-algebras see [2] and for analytic K-homology see [16].

The main technical difficulty in the proof of Theorem A is posed by the absence of reasonable saturation properties in the Calkin algebra. The simplest instance of this is the fact that the image of the unilateral shift in \(\mathcal{B}(H) \) is a unitary with full spectrum and no square root. As pointed out in the introduction to [25], this implies that \(\mathcal{B}(H) \) is not injective (in a categorical sense) for separable C*-algebras and complicates construction of outer automorphisms of \(\mathcal{B}(H) \). More sophisticated obstructions to saturation in \(\mathcal{B}(H) \) were exhibited in [9, §4] and [13].

A unital C*-algebra \(A \) is purely infinite and simple if it is infinite dimensional and for every nonzero positive \(a \in A \) there is \(x \in A \) such that \(xax^* = 1 \). The Cuntz algebra \(\mathcal{O}_2 \) is the universal C*-algebra generated by two isometries \(s \) and \(t \) satisfying

\[
s^*s = t^*t = 1 = ss^* + tt^*.
\]

Let

\[
\mathcal{O} = \{ A : A \text{ is purely infinite, simple, and } A \otimes \mathcal{O}_2 \cong A \}.
\]

(Since \(\mathcal{O}_2 \) is nuclear, there is no ambiguity in what tensor product is used. In this case there is a unique C*-norm on the algebraic tensor product.)

Lemma 2.1. Every C*-algebra \(A \) embeds into a C*-algebra \(B \in \mathcal{O} \) of the same density character as \(A \). If \(A \) is unital then the embedding can be chosen to be unital.

Proof. The class \(\mathcal{O} \) is separably axiomatizable by ([10, Theorem 2.5.1 and Theorem 2.5.2]). We first consider the case when \(A \) is separable. Then \(A \) is isomorphic to a subalgebra of \(\mathcal{B}(H) \), and the embedding can be chosen to be unital if \(A \) is unital. By the downward Löwenheim–Skolem theorem ([10, Theorem 2.6.2]) we can find a separable elementary submodel \(C \) of \(\mathcal{B}(H) \) into which \(A \) embeds. Then \(C \) is simple and purely infinite, and \(C \otimes \mathcal{O}_2 \) is as required.
Now suppose A is not separable and let κ be its density character. Again by the downward Löwenheim–Skolem theorem we can find a separable elementary submodel A_0 of A. By the first paragraph, we can find a separable $B_0 \in \mathfrak{O}$ into which A_0 embeds. By the standard elementary chain argument ([1] Proposition 7.10) we construct a κ-saturated elementary extension B_1 of B_0. Writing A as a union of an elementary chain of submodels of density character $< \kappa$ and using the saturation of B_1, we can embed A into B_1. Being elementarily equivalent to B_0, B_1 is purely infinite and simple. B_1 is not O_2-stable, essentially by [14], however $B = B_1 \otimes O_2$ satisfies all requirements.

An alternative (and more natural from the model-theoretic point of view) approach to the proof of Lemma [21] uses the axiomatizable class $\mathfrak{O}' := \{A: A$ is purely infinite, simple, and potentially O_2-absorbing} (see [11]) in place of \mathfrak{O}.

We shall need semigroups $\text{Ext}^w(A)$ and $\text{Ext}^w_{cpc}(A)$ associated to a separable and unital C^*-algebra A. An injective unital *-homomorphism $\pi: A \to \mathcal{B}(H)$ is the Busby invariant of an extension of A by $\mathcal{K}(H)$. By a slight abuse of terminology, we say that such *-homomorphism is an extension (see [16] Proposition 2.6.3)). Two extensions $\theta_j: A \to \mathcal{B}(H)$, for $j = 1, 2$ are weakly equivalent if there is a unitary $u \in \mathcal{B}(H)$ such that $\theta_1 = \text{Ad } u \circ \theta_2$.

Since $\mathcal{M}_2(\mathcal{B}(H)) \cong \mathcal{B}(H)$, the set of extensions of A is equipped with the direct sum operation. The set of weak equivalence classes of extensions of A forms a semigroup, denoted $\text{Ext}^w(A)$. An extension $\theta: A \to \mathcal{B}(H)$ is semisplit if there exists a completely positive contraction (c.p.c.) $\varphi: A \to \mathcal{B}(H)$ such that (denoting the quotient map from $\mathcal{B}(H)$ onto $\mathcal{B}(H)$ by π) $\pi \circ \varphi = \theta$. If φ is a unital *-homomorphism then we say that θ is split. A split extension exists when A is separable, and Voiculescu’s theorem ([16 Theorem 3.4.7]) implies that it acts as the unit in $\text{Ext}^w(A)$. Let

$$\text{Ext}^w_{cpc}(A) := \{\theta \in \text{Ext}^w(A) : \theta \text{ is semisplit}\}.$$

Stinespring’s theorem ([2 Theorem II.6.9.7]) easily implies that $\text{Ext}^w_{cpc}(A) = \text{Ext}^w(A)^{-1}$, the group of all invertible elements of $\text{Ext}^w(A)$.

The following is a standard application of quasicentral approximate units.

Lemma 2.2. Suppose that a separable C^*-algebra A is an inductive limit of subalgebras A_n, for $n \in \mathbb{N}$. If $\theta: A \to \mathcal{B}(H)$ is an extension such that its restriction to A_n is semisplit for every n, then θ is semisplit.

Proof. Let $\delta_n > 0$ be small enough so that for all operators e and a satisfying $0 \leq e \leq 1$, $\|a\| \leq 1$, and $\|[e, a]\| < \delta_n$ we have $\| e^{1/2} a \| < 2^{-n}$. Let ψ_n be a u.c.p. lift for $\theta \upharpoonright A_n$. By the Arveson Extension Theorem ([2 Theorem II.6.9.12]) we can extend ψ_n to a c.p.c. map $\tilde{\psi}_n: A \to \mathcal{B}(H)$. Let $E = \pi^{-1}(\pi(A))$ and let a_n, for $n \in \mathbb{N}$, be an enumeration of a dense subset of the unit ball of A whose intersection with the unit ball of A_n is dense for all n. By [16 Proposition 3.2.8] we can find a sequence f_n, for $n \in \mathbb{N}$,
which is an approximate identity for \(\mathcal{K}(H) \) that is quasicentral for \(E \). By refining this sequence, we may assume that the following conditions hold for all \(i, j, k, \) and \(n \) with \(i, j, k \leq n \).

1. \(\| f_n, \tilde{\psi}_t(a_j) \| < \delta_n \).
2. \(\| (1 - f_n)(\psi_t(a_j) - \tilde{\psi}_t(a_j)) \| < 2^{-n} \), if \(a_j \in A_i \cap A_k \).

The second condition can be assured because the assumptions imply \(\psi_t(a_j) - \tilde{\psi}_t(a_j) \) is compact, and the first condition can be assured by the quasicentrality of the sequence.

Given these conditions we have \(\| ([f_{n+1} - f_n]^{1/2}, \tilde{\psi}_{n}(a_j)] \| < 2^{-n} \) for all \(j \leq n \) and

\[
\psi(a) = \sum_n (f_{n+1} - f_n)^{1/2} \tilde{\psi}_n(a_j)(f_{n+1} - f_n)^{1/2}
\]

is well-defined since the finite partial sums converge in the strong operator topology. Since every partial sum is c.p.c., \(\psi \) is c.p.c. For \(a_j \in A_t \) we also have that \(\psi(a_j) - \tilde{\psi}(a) \) is compact and therefore \(\psi \) is a c.p.c. lift of \(\theta \) as required. \(\square \)

Proposition 2.3. Suppose \(A \in \mathbb{D} \) is separable. Then \(\text{Ext}_c^{\text{cpc}}(A) = 0 \)

Proposition 2.3 is proved by putting together several known (and deep) results. An endomorphism \(\phi \) of a \(C^* \)-algebra \(A \) is \emph{asymptotically inner} if there exists a continuous path of unitaries \(u_t \), for \(0 \leq t < \infty \), such that \(u_0 = 1 \) and \(\phi(a) = \lim_{t \to \infty} (\text{Ad} u_t)a \) for all \(a \in A \).

Lemma 2.4. Suppose \(A \cong A \otimes O_2 \) and let \(s \) and \(t \) be the generators of \(O_2 \). Then the endomorphism \(\zeta(a) = (1 \otimes s)a(1 \otimes s^*) + (1 \otimes t)a(1 \otimes t^*) \) of \(A \) is asymptotically inner.

Proof. It is well-known that every endomorphism of \(O_2 \) is asymptotically inner. This is a consequence of [24] Lemma 2.2.1: Take \(D = O_2 \), \(m = 2 \), \(\phi = \text{id} \), and note that the assumption on the \(K_1 \)-class of \(u_0 \) is automatic since \(O_2 \) has trivial \(K \)-theory. Since the endomorphism \(\zeta_0(a) = sa^* + ta^* \) of \(O_2 \) is asymptotically inner, so is \(\zeta = \text{id} \otimes \zeta_0 \). \(\square \)

Proof of Proposition 2.3. Since \(\text{Ext}^{\text{cpc}}(A) \) is a group, it suffices to prove that each of its elements is idempotent. This follows from a deep theorem of Kasparov, modulo a reformulation of the problem.

If \(\theta : A \to \mathcal{B}(H) \) is a unital representation of \(A \) which is ample (i.e. \(\theta(A) \) has zero intersection with the ideal of compact operators), then the dual algebra of \(A \) is \(\mathcal{D}(A) = \{ b \in \mathcal{B}(H) : [\theta(a), b] \in \mathcal{K}(H) \text{ for all } a \in A \} \) ([16] Definition 5.1.1). Then \(K_0(\mathcal{D}(A)) \cong \text{Ext}_c^{\text{cpc}}(A) \) (this is essentially [16] Proposition 5.1.4 or—modulo passing to \(cpc \mathcal{B}(H) \)—[13] Lemma 3). The group \(K_0(\mathcal{D}(A)) \) (also known as \(K^1(A) \)) is isomorphic to the Kasparov group \(KK^1(A) \) by [16] Theorem 8.4.3].
The semigroup of endomorphisms of A acts on $K^1(A)$ by composition: if $\zeta: A \to A$ and $\theta: A \to \mathcal{F}(A)$ is an extension, then $\zeta \circ \theta$ is an extension of A. A theorem of Kasparov ([16, Theorem 9.3.3]) implies that homotopic endomorphisms of A induce the same map on $K^1(A)$. Lemma 2.3 thus implies that θ and $\theta \oplus \theta$ are equivalent for every $\theta \in \text{Ext}^w_{\text{cpc}}(A)$; this completes the proof.

We are now ready to prove Theorem A. By Lemma 2.1 it suffices to prove that every limit ordinal $\delta < \aleph_1$ for separable C^*-algebras ([10, Theorem 2.5.1 and Theorem 2.5.2]).

We want to find extensions $\varphi_\alpha \in \text{Ext}^w_{\text{cpc}}(A_\alpha)$ such for all $\alpha < \beta < \aleph_1$ we have

$$\varphi_\alpha \in \text{Ext}^w_{\text{cpc}}(A_\alpha) \text{ and } \varphi_\beta | A_\alpha = \varphi_\alpha.$$ Choose $\varphi_0 \in \text{Ext}^w_{\text{cpc}}(A_0)$. Suppose φ_α has been defined for all $\alpha < \beta$. If β is a successor ordinal, let α be such that $\alpha + 1 = \beta$. Fix $\psi \in \text{Ext}^w_{\text{cpc}}(A_\beta)$. Then Proposition 2.3 implies that both $\psi' := \psi | A_\alpha$ and φ_α are split. By Voiculescu’s theorem ([16, Theorem 3.4.7]) there exists a unitary $u \in \mathcal{F}(H)$ such that $\varphi_\alpha = \text{Ad} u \circ \psi'$ and $\varphi_\beta = \text{Ad} u \circ \psi$ is as required.

Now suppose β is a limit ordinal. Then φ_β is already defined on a dense subalgebra $\bigcup_{\alpha < \beta} A_\alpha$ of A_β, and Lemma 2.2 implies that its continuous extension to A is semisplit.

This describes the recursive construction. Since $A = \bigcup_{\alpha < \aleph_1} A_\alpha$, for all $a \in A$ the ordinal $\alpha(a) = \min\{\alpha: a \in A_\alpha\}$ is well-defined. Then $\Phi(a) = \varphi_{\alpha(a)}(a)$ extends each φ_α, provides the desired embedding of A into $\mathcal{F}(H)$, and completes the proof of Theorem A.

3. Corollaries and related results

Corollary 3.1. Each of the following assertions is relatively consistent with ZFC:

1. $\mathcal{F}(H)$ is a 2^{\aleph_0}-universal C^*-algebra.
2. There exists a 2^{\aleph_0}-universal C^*-algebra, but $\mathcal{F}(H)$ is not 2^{\aleph_0}-universal.
3. A 2^{\aleph_0}-universal C^*-algebra does not exist.

Proof. (1) Assume CH. Theorem A implies that $\mathcal{F}(H)$ is 2^{\aleph_0}-universal.

(2) We shall prove that the Proper Forcing Axiom, PFA, implies the conclusion. If $2^\kappa = 2^{\aleph_0}$ for all $\kappa < 2^{\aleph_0}$, then [1] Proposition 7.10] implies that the theory of $\mathcal{F}(H)$ has a saturated model B of density character 2^{\aleph_0}. By Lemma 2.1 (and its proof), such B is a 2^{\aleph_0}-universal C^*-algebra. It is well-known that PFA implies $2^{\aleph_1} = 2^{\aleph_0} = \aleph_2$ (e.g. see [20]).

2 Readers concerned with the consistency strength issues may rest assured that only a small fragment of PFA with zero large cardinal strength is required in [28].
By [25] Corollary 5.3.14 and Theorem 5.3.15 (also [22]) PFA implies that there exist a closed subset X of $\beta \mathbb{N} \setminus \mathbb{N}$ such that $C(X)$ does not embed into the Calkin algebra. Such an X can be chosen as follows. Let $Z_0 = \{S \subseteq \mathbb{N} : \lim_{n \to \infty} |S \cap n|/n = 0\}$, the ideal of asymptotic density zero sets. (Any other dense analytic P-ideal would do in place of Z_0; see [28].) Identifying $\beta \mathbb{N}$ with the set of all ultrafilters on \mathbb{N}, we may let $X = \{U \in \beta \mathbb{N} : U \cap Z_0 = \{\emptyset\}\}$. By standard forcing techniques ([20]) the assertion $\aleph_2^\mathbb{N} < 2^\aleph_0 < 2^{\aleph_1}$ is relatively consistent with ZFC. (For example, start from a model of GCH, add \aleph_4 Cohen subsets of \aleph_1, then add \aleph_3 Cohen reals.) Therefore $\kappa = 2^{\aleph_0}$ and $\lambda = \aleph_1$ satisfy the following inequality (λ^+ denotes the least cardinal greater than λ):

$$\lambda^+ < \kappa < 2^\lambda.$$

If such λ exists then κ is said to be far from GCH ([19]). We shall prove that (3) and $\kappa^{\aleph_0} = \kappa$ together imply that there is no κ-universal C*-algebra.

By [6, §3.3] every Banach space embeds isometrically into an operator space (and therefore into a C*-algebra) of the same density character. Hence a κ-universal C*-algebra would also be a κ-universal Banach space. But, by [27, Corollary 2.4], (3) implies that there is no (isometrically) κ-universal Banach space, and this concludes the proof.

Remark 3.2. A sketch of an alternative, self-contained (and, we believe, more informative) proof that the condition (3) in Corollary 3.1 together with $\kappa^{\aleph_0} = \kappa$ implies there is no κ-universal C*-algebra is in order. Instead of using [27, Corollary 2.4], we follow the lines of its proof. By [19, Theorem 3.10], (3) implies that there is no κ-universal linear order, and moreover that any theory T with the order property does not have a 2^{\aleph_0}-universal model. As in [12, Lemma 5.3], consider the following condition in the language of C*-algebras

$$\varphi(x, y) = \max(|1 - \|x\|, |1 - |y|, \|xy - y\|).$$

For x and y in a C*-algebra A, $\varphi(x^*x, y^*y) = 0$ if and only $\|x\| = \|y\| = 1$ and in the second dual A^{**} of A the support projection of y^*y is below the spectral projection of x^*x corresponding to 1. Therefore $\varphi(x, y)$ defines a partial order, \preceq_φ, on A. Every infinite-dimensional C*-algebra contains an infinite \preceq_φ chain (consider a masa or see [12, Lemma 5.3]). Thus every infinite-dimensional C*-algebra has the Strict Order Property ([27, Definition 1.1]). Since φ is quantifier-free, an embedding of A into B is an embedding of the poset (A, \preceq_φ) into (B, \preceq_φ). Hence if C is a κ-universal C*-algebra for some cardinal κ, then every linear ordering of cardinality κ embeds into the linearization of (C, \preceq_φ). Hence the latter is a κ-universal linear ordering.

By [18], \mathcal{O}_2 is an \aleph_0-universal nuclear (and even exact) C*-algebra.

\footnote{See Remark 3.2 for a sketch of a self-contained proof}
Corollary 3.3. If 2^{\aleph_0} is far from GCH then there is no 2^{\aleph_0}-universal nuclear C*-algebra.

Proof. By Remark 3.2 the theory of $C([0,1])$ has the Strict Order Property witnessed by a quantifier-free formula. Since every abelian C*-algebra is nuclear (and being abelian is axiomatizable, [10] Theorem 2.5.1), the corollary follows by the argument of Remark 3.2. □

Although CH implies that there exists \aleph_1-universal linear ordering, and the existence of an \aleph_1-universal linear ordering is even relatively consistent with the negation of CH ([26]), it is not clear whether the existence of an \aleph_1-universal nuclear C*-algebra is relatively consistent with ZFC.

We could not find a proof of the following lemma in the literature; it is included for the reader’s convenience.

Lemma 3.4. Suppose A is a C*-algebra and B is a C*-subalgebra of A that contains an approximate unit for A. Then the inclusion from B into A extends to an injection from $\mathcal{M}(B)$ into $\mathcal{M}(A)$, and $\mathcal{M}(B)/B$ is isomorphic to a subalgebra of $\mathcal{M}(A)/A$.

Proof. We can identify A with a nondegenerate subalgebra of $\mathcal{B}(H)$ and $\mathcal{M}(A)$ with the idealizer of A in $\mathcal{B}(H)$, $\{c \in \mathcal{B}(H) : cA \subseteq A\}$ ([2], II.7.3.5)]. Since B has an approximate unit for A it is also nondegenerate in $\mathcal{B}(H)$ and $\mathcal{M}(B)$ can be identified with the idealizer of B in $\mathcal{B}(H)$. Fix an approximate unit (e_λ) for A included in B. If $c \in \mathcal{M}(B)$ and $a \in A$, then $ca = \lim_\lambda ce_\lambda a$. Since $ce_\lambda \in B$ for all λ, ca is a limit of a Cauchy net in A and therefore in A. Similarly $ac \in A$, and since $c \in \mathcal{M}(B)$ was arbitrary we have $\mathcal{M}(B) \subseteq \mathcal{M}(A)$. Since $\mathcal{M}(B) \cap A = B$, $\mathcal{M}(B)/B$ is isomorphic to a subalgebra of $\mathcal{M}(A)/A$. □

From Theorem [A] and Lemma 3.3 we immediately have the following.

Corollary 3.5. Let A be a unital separable C*-algebra. If $\mathcal{D}(H)$ is 2^{\aleph_0}-universal, then so is the corona of $A \otimes \mathcal{K}(H)$. □

We record an easy consequence of a trick first used in [24, Theorem 4.3.11].

Proposition 3.6. If $\kappa < 2^{\aleph_0}$, there is no κ-universal C*-algebra.

Proof. This follows from [17] Theorem 2.3 and Remark 2.10. The space OS$_3$ of three-dimensional operator spaces can be equipped by a metric δ_{cb} such that the space of all operator spaces that embed into a C*-algebra A has density at most equal to the density character of A ([17] Proposition 2.6(a))], and the space $(\text{OS}_3, \delta_{cb})$ has density character 2^{\aleph_0}. □

This is analogous to the fact that the space $D(T)$ of quantifier-free types in models of theory T has density 2^{\aleph_0} whenever it is nonseparable; see [19].
4. Remarks on universality in related categories

Isomorphic embeddings of Banach spaces. Theorem [A] was inspired by [3, Theorem 1.4], where the analogous statement for 2^{\aleph_0}-universal Banach spaces was proved. Brech and Koszmider constructed a forcing extension in which an isometrically 2^{\aleph_0}-Banach space exists, but ℓ_∞/c_0 is not isometrically, or even isomorphically, 2^{\aleph_0}-universal Banach space. The result of [27, Corollary 2.4] used in the proof of Corollary 3.1 was improved in [3, Theorem 1.3], where it was proved that consistently there is no isomorphically 2^{\aleph_0}-universal Banach space.

Linear orders. The existence of universal linear orders is a well-studied subject ([19]). Much attention has been devoted to the question of 2^{\aleph_0}-universality of $\mathcal{P}(\mathbb{N})/\text{Fin}$. Since the Calkin algebra is its noncommutative analogue (see e.g. [29]), we shall concentrate on the role of $\mathcal{P}(\mathbb{N})/\text{Fin}$. While it is consistent that CH fails and $\mathcal{P}(\mathbb{N})/\text{Fin}$ is 2^{\aleph_0}-universal ([21]), it is not clear whether the assertion `$\mathcal{L}(H)$ is a 2^{\aleph_0}-universal C^*-algebra' is relatively consistent with the failure of CH. Even the (probably much easier) problem, whether for a given C^*-algebra A there exists a ccc forcing notion (see [20, §III.2]) that forces an embedding of A into $\mathcal{L}(H)$ appears to be nontrivial. Notably, the structure of the small category of linear orders that embed into $\mathcal{P}(\mathbb{N})/\text{Fin}$ is remarkably malleable in ZFC (see [7, §1]) and very rigid if a fragment of PFA holds ([8]).

Surjective universality for compact Hausdorff spaces. A compact Hausdorff space X is said to be κ-universal if it is surjectively universal among compact Hausdorff spaces of weight κ. By Gelfand–Naimark duality, this is equivalent to $C(X)$ being an injectively universal unital abelian C^*-algebra. CH implies that $\beta\mathbb{N}\setminus\mathbb{N}$ is an \aleph_1-universal compact Hausdorff space (Parovičenok’s theorem) and that $\beta\mathbb{R}_+\setminus\mathbb{R}_+$ is an \aleph_1-universal connected compact Hausdorff space ([5]). As in Corollary 3.1, PFA implies that $\beta\mathbb{N}\setminus\mathbb{N}$ is not 2^{\aleph_0}-universal because it does not map onto the Stone space of the Lebesgue measure algebra ([4]).

Π_1-factors. In [23] it was proved that there is no κ-universal Π_1-factor for any $\kappa < 2^{\aleph_0}$. As in Corollary [3.1], $\kappa < \kappa = \kappa$ implies there is a κ-universal Π_1-factor. The theory of Π_1-factors has the Order Property ([12, Lemma 3.2]) but it is not known whether it has the Strict Order Property. If it does, the argument from Remark 3.2 would imply that the existence of a cardinal λ such that $\lambda^+ < 2^{\aleph_0} < 2^\lambda$ implies there is no 2^{\aleph_0}-universal Π_1-factor. As a curiosity, we note that Connes’ Embedding Problem has the positive solution if and only if the Continuum Hypothesis implies that an ultrapower of the hyperfinite Π_1-factor is a 2^{\aleph_0}-universal Π_1-factor. Similarly, Kirchberg’s Embedding Problem ([15]) has the positive solution if and only if the Continuum Hypothesis implies that an ultrapower of \mathcal{O}_2 is 2^{\aleph_0}-universal C^*-algebra.
THE CALKIN ALGEBRA IS \aleph_1-UNIVERSAL

REFERENCES

[1] I. Ben Yaacov, A. Berenstein, C.W. Henson, and A. Usvyatsov. Model theory for metric structures. In Z. Chatzidakis et al., editors, Model Theory with Applications to Algebra and Analysis, Vol. II, number 350 in London Math. Soc. Lecture Notes Series, pages 315–427. 2008.
[2] B. Blackadar. Operator algebras, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. Theory of C^*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.
[3] C. Brech and P. Koszmider. On universal Banach spaces of density continuum. Israel J. Math., 190:93–110, 2012.
[4] A. Dow and K.P. Hart. The measure algebra does not always embed. Fundamenta Mathematicae, 163:163–176, 2000.
[5] A. Dow and K.P. Hart. A universal continuum of weight \aleph. Trans. Amer. Math. Soc., 353(5):1819–1838, 2001.
[6] E.G. Effros and Z.-J. Ruan. Operator spaces, volume 23 of London Math. Soc. Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000.
[7] I. Farah. Embedding partially ordered sets into ω^ω. Fundamenta Mathematicae, 151:53–95, 1996.
[8] I. Farah. Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Mem. Amer. Math. Soc., 148(702):xvi+177, 2000.
[9] I. Farah and B. Hart. Countable saturation of corona algebras. C.R. Math. Rep. Acad. Sci. Canada, 35:35–56, 2013.
[10] I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, and W. Winter. Model theory of C^*-algebras. http://arxiv.org/abs/1602.08072.
[11] I. Farah, B. Hart, M. Rørdam, and A. Tikuisis. Relative commutants of strongly self-absorbing C^*-algebras. Selecta Math., to appear.
[12] I. Farah, B. Hart, and D. Sherman. Model theory of operator algebras I: Stability. Bull. London Math. Soc., 45:825–838, 2013.
[13] I. Farah and I. Hirschberg. The Calkin algebra is not countably homogeneous. Proc. Amer. Math. Soc., 144(12):5351–5357, 2016.
[14] S. Ghasemi. SAW* algebras are essentially non-factorizable. Glasg. Math. J., 57(1):1–5, 2015.
[15] I. Goldbring and T. Sinclair. On Kirchberg’s embedding problem. J. Funct. Anal., 269:155–198, 2015.
[16] N. Higson and J. Roe. Analytic K-homology. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000.
[17] M. Junge and G. Pisier. Bilinear forms on exact operator spaces and $B(H) \otimes B(H)$. Geom. Funct. Anal., 5(2):329–363, 1995.
[18] E. Kirchberg and N. C. Phillips. Embedding of exact C^*-algebras in the Cuntz algebra O_2. J. Reine Angew. Math., 525:17–53, 2000.
[19] M. Kojman and S. Shelah. Nonexistence of universal orders in many cardinals. The Journal of Symbolic Logic, 57(3):875–891, 1992.
[20] K. Kunen. Set theory, volume 34 of Studies in Logic (London). College Publications, London, 2011.
[21] R. Laver. Linear orders in ω^ω under eventual dominance. Studies in Logic and the Foundations of Mathematics, 97:299–302, 1979.
[22] P. McKenney and A. Vignati. Forcing axioms and coronas of nuclear C^*-algebras. in preparation.
[23] N. Ozawa. There is no separable universal Π_1-factor. Proc. Amer. Math. Soc., 132(2):487–490, 2004.
[24] N. C. Phillips. A classification theorem for nuclear purely infinite simple C^*-algebras. Doc. Math., 5:46–114, 2000.
[25] N.C. Phillips and N. Weaver. The Calkin algebra has outer automorphisms. *Duke Math. Journal*, 139:185–202, 2007.

[26] S. Shelah. Independence results. *The Journal of Symbolic Logic*, 45(3):563–573, 1980.

[27] S. Shelah and A. Usvyatsov. Banach spaces and groups—order properties and universal models. *Israel J. Math.*, 152:245–270, 2006.

[28] A. Vignati. *Logic And C*-Algebras: Set Theoretical Dichotomies In The Theory Of Continuous Quotients*. PhD thesis, York University, Toronto, 2017.

[29] N. Weaver. Set theory and C*-algebras. *Bull. Symb. Logic*, 13:1–20, 2007.

(I. Farah) **Department of Mathematics and Statistics, York University**, 4700 Keele Street, North York, Ontario, Canada, M3J 1P3
E-mail address: ifarah@mathstat.yorku.ca
URL: http://www.math.yorku.ca/~ifarах

(A. Vignati) **Department of Mathematics and Statistics, York University**, 4700 Keele Street Toronto, Ontario, Canada, M3J 1P3
E-mail address: ale.vignati@gmail.com
URL: http://www.automorph.net/avignati