Sociodemographic differences in patient experience with primary care during COVID-19: results from a cross-sectional survey in Ontario, Canada

Payal Agarwal,1,2 Ri Wang,3 Christopher Meaney,2 Sakina Walji,2,4 Ali Damji,2,5,6 Navsheer Gill,2,7 Gina Yip,2,8 Debbie Elman,2,9 Tiffany Florindo,2,10 Susanna Fung,2,11 Melissa Witty,2,12 Thuy-Nga Pham,2,13 Noor Ranji,2,14 Tara Kiran2,3,14,15

ABSTRACT

Purpose We sought to understand patients’ care-seeking behaviours early in the pandemic, their use and views of different virtual care modalities, and whether these differed by sociodemographic factors.

Methods We conducted a multisite cross-sectional patient experience survey at 13 academic primary care teaching practices between May and June 2020. An anonymised link to an electronic survey was sent to a subset of patients with a valid email address on file; sampling was based on birth month. For each question, the proportion of respondents who selected each response was calculated, followed by a comparison by sociodemographic characteristics using \(\chi^2 \) tests.

Results In total, 7532 participants responded to the survey. Most received care from their primary care clinic during the pandemic (67.7%, 5068/7482), the majority via phone (82.5%, 4195/5086). Among those who received care, 30.53% (1509/4943) stated that they delayed seeking care because of the pandemic. Most participants reported a high degree of comfort with phone (92.4%, 3824/4139), video (95.2%, 238/250) and email or messaging (91.3%, 794/870). However, those who delayed care, 30.53% (1509/4943) stated that they delayed seeking care because of the pandemic.

Conclusions Our study suggests that newcomers, people living with a lower income and those reporting poor or fair health have a stronger preference and comfort for in-person primary care. Further research should explore potential barriers to virtual care and how these could be addressed.

INTRODUCTION

The COVID-19 pandemic has dramatically shifted the way healthcare is delivered and experienced by patients in many developed nations. Primary care practices in Canada, the USA and elsewhere, rapidly switched to a virtual first approach—including the use of video, phone and secure messaging—to limit transmission of the SARS-CoV2 virus and conserve personal protective equipment.1-5 A study from Ontario, Canada found that shortly after the pandemic was declared, in-office visits reduced by 79% and virtual care conducted by phone or video increased 56-fold, comprising 71% of primary care physician visits.6 While this approach supported immediate public health goals, its impact on access, receipt of patient-centred evidence-based care and long-term health outcomes is unclear.7 As health systems consider what the ‘new normal’ should look like, an examination of these impacts will be crucial.

This shift in care delivery has raised several concerns, including potential negative impacts on patient experience and access. Clinicians have noted anecdotally that patients with worrisome symptoms are delaying care.8-12 While this approach supported immediate public health goals, its impact on access, receipt of patient-centred evidence-based care and long-term health outcomes is unclear.7 As health systems consider what the ‘new normal’ should look like, an examination of these impacts will be crucial.
studies suggest patient characteristics including older age and lower income may limit one’s ability to benefit from digital health and virtual care services. In addition, patients may not have access to required technologies such as a phone or internet access. Despite this, very little literature to date is available on patient experiences during the COVID-19 pandemic and how these differ by sociodemographic characteristics. Most existing studies on patient experience during COVID-19 are from acute care, and do not stratify experience based on patient demographics.

We conducted a patient survey at multiple academic primary care clinics in Ontario, Canada to better understand patient experience during COVID-19. We were interested in patients’ care-seeking behaviours, their use and views of different virtual care modalities and whether these differed by sociodemographic factors.

METHODS

Study design and setting

We conducted a multisite cross-sectional survey to understand patient experiences during the COVID-19 pandemic at thirteen core teaching practices affiliated with the University of Toronto Department of Family and Community Medicine situated in the Greater Toronto Area, a large, demographically diverse metropolitan area with more than 250 different ethnicities and half of all residents being foreign-born. Participating practices were located in Toronto and surrounding areas including Mississauga, Markham and Barrie. Practices range in size from roughly 11 physicians serving 14000 patients to 80 physicians serving 50000 patients; some have multiple locations; one provides services in English and French. Physicians in all teaching practices are part of Family Health Organisations and formally enrol patients, have shared responsibility for after-hours care, and are paid primarily by age-adjusted and sex-adjusted capitation; 12 of the 13 sites were part of Family Health Teams that included non-physician health professionals such as nurses, nurse practitioners, social workers and dieticians.

The survey is an ongoing effort to directly inform quality improvement (QI) efforts at participating sites during COVID-19.

Study population and recruitment

A link to an open electronic patient experience survey is emailed every quarter to a subset of patients with a valid email address on file; sampling each quarter is based on birth month with all eligible patients receiving a survey in a given year. The current analysis summarises results of the first survey, which was sent to patients with a date of birth during the months of March, April or May. They were sent the survey between May and June of 2020 which corresponded with the end of the first wave of COVID-19 in the Toronto region. Each site distributed an anonymised link to patients in the manner by which they usually communicate electronically to patients (ie, by email or using a secure messaging service). In some cases, the email address on file may belong to a family member or caregiver to allow them the option of filling out the survey on behalf of the patient. Recruitment was done in English, with one site also doing recruitment and survey completion in French. No incentives were provided to participants.

Survey design

The survey was developed collaboratively by family physicians who had a QI leadership role at participating sites, to support QI efforts related to the COVID-19 pandemic. Where possible, questions were informed by existing surveys including the Commonwealth Fund International Health Policy Survey and the Ontario Primary Care Experience Survey, which was developed as part of a larger Primary Care Performance Measurement strategy to measure the performance across nine domains. The survey went through several iterations based on feedback from practice QI teams, a survey methodologist, a biostatistician, patient education and engagement specialists, and patient and family advisors. A paragraph at the start of the survey outlined the purpose of the survey, the reason they were being asked to participate, and highlighted that the survey was voluntary and anonymous. The final survey was prepared using Qualtrics software, a digital platform to capture experience data, and included 43 potential questions over 5 thematic domains including: (1) seeking and delaying care, (2) use and comfort with virtual care, (3) urgent care access, (4) patient-centredness and (5) patient demographic and contextual factors. Participants could end the survey at any point and were able to review previously answered questions before submission (see online supplemental file 1 for full survey).

Data collection and storage

Data collected via the electronic survey were stored in Qualtrics. All data were downloaded onto a secure research server at the University of Toronto. A script was run to remove any potentially identifying information including (1) IP addresses, (2) email addresses, (3) longitude/latitude coordinates and (4) any free-text fields (which may contain unstructured protected health information).

Statistical analysis

We performed an initial descriptive statistics analysis on the responses of all participants across all sites who answered at least one question in the survey. Surveys conducted in French were excluded from analysis. For each question, we calculated the proportion of respondents who selected each response. We then compared patient responses by sociodemographic characteristics including age, gender, education, self-reported financial issues, immigration status, primary language, self-reported health and usual primary care provider. P values were calculated using \(\chi^2 \) tests and all data analysis was conducted using R V.4.0.
Patient and public involvement

Patients and families at participating clinic sites informed the survey questions and methods and have been engaged in discussions about the results and potential next steps.

RESULTS

The survey link was emailed to 32 307 patients at 13 practices (see online supplemental file 2). 7532 patients responded to the survey (23.3% response rate). We present sociodemographic data (table 1) on the 7482 participants who answered one or more questions in the survey in English. Sixty-five per cent of respondents were female (4379/6713) and 78.3% (5159/6588) reported having a college, university or graduate degree. Nine per cent of respondents (590/6556) reported trouble making ends meet at the end of the month, while 29.0% (1928/6656) were not born in Canada (with 16.9% of these having arrived in the last 10 years). Eight per cent (553/6851) reported filling out the survey on behalf of a family member. Fifty-five surveys were completed in French.

Care-seeking during COVID-19

Of all respondents, 67.7% (5068/7482) reported they received care in some way from their primary care clinic since the start of the pandemic. Financial status and self-reported health were significantly associated with care seeking behaviours during the pandemic (p<0.001); a higher proportion of patients who noted trouble making ends meet (yes: 74.8%, 441/590, no: 65.3%, 3396/5201, prefer not to answer: 68.0%, 520/765) and those with lower self-rated health (fair or poor: 76.9%, 752/978, excellent: 59.8%, 599/1002) reported receiving care during the study period. Of the 32.3% (2414/7482) of patients who did not receive care during the study period, the most commonly cited reasons were that patients had no health need (72.4%) and patients were worried about safety (9.5%).

Of the 5068 patients who reported receiving care at their primary care practice during the pandemic, 30.5% (1509/4943) stated that they delayed seeking care because of the pandemic. Gender, age, education level, financial status and self-reported health status were significantly associated with differences in seeking care (p<0.05 for all); for example, a higher proportion of those with trouble making ends meet and those with lower self-rated health reported delays in seeking care (see table 2).

Use and perceptions of virtual care

Eighty-two per cent (4195/5086) of participants reported receiving care by phone, 30.5% (1553/5086) in-person, 17.4% (886/5086) via email or secure messaging and 5.1% (260/5086) via video. Age, immigration status and self-rated health were significantly associated with differences in receiving in-person care (p<0.05 for all); for example, a higher proportion of those with trouble making ends meet and those with lower self-rated health reported delays in seeking care (see table 2). Canada and those with lower self-rated health (table 3). Women, young adults, those who rate their health as fair or poor and those who reported trouble making ends

Table 1	Demographic characteristics of survey respondents (n=7482)
Age (n=6744)	Survey respondents n (%)
0–5 years	169 (2.51)
6–17 years	166 (2.46)
18–24 years	120 (1.78)
25–34 years	520 (7.71)
35–49 years	1412 (20.94)
50–64 years	2002 (29.69)
65–79 years	1921 (28.48)
80 years or older	434 (6.44)
Gender (n=6713)	
Woman	4379 (65.23)
Man	2221 (33.09)
Other	60 (0.89)
Prefer not to answer	53 (0.79)
Education level (n=6588)	
High school or less	1429 (21.69)
College/university	3198 (48.54)
Graduate/professional	1961 (29.77)
Trouble making ends meet (n=6556)	
Yes	590 (9.00)
No	5201 (79.33)
Don’t know/prefer not to answer	765 (11.67)
Born in Canada (n=6656)	
Yes	4728 (71.03)
No	1928 (28.97)
Arrive in last 10 years (n=1856)	
Yes	326 (17.56)
No	1530 (82.44)
Preferred language (n=6678)	
English	6576 (98.47)
Non-English	102 (1.53)
Self-rated health (n=6665)	
Excellent	1002 (15.03)
Very good	2599 (38.99)
Good	2086 (31.30)
Fair/poor	978 (14.67)
Usual PCP (n=6545)	
Staff physician	4842 (73.98)
Resident physician	1217 (18.59)
Nurse practitioner	173 (2.64)
Unsure	313 (4.78)
PCP, primary care provider	
reported less use of email and secure messaging relative to other groups.

Overall, most respondents indicated they were extremely or somewhat comfortable with the privacy and security of virtual modalities including phone (92.4%, 3824/4139), video (95.2%, 238/250) and email or secure messaging (91.3%, 794/870). Financial status, immigration status and self-reported health status were significantly associated with differences in comfort with virtual care use (p<0.05 for all); those having trouble making ends meet, those not born in Canada and those rating their health as fair or poor reported lower levels of comfort with phone calls and email or secure messaging relative to other groups (see table 4).

Future preferences for virtual care
Seventy-five per cent (3798/5068), 52.2% (2644/5068) and 42.9% (2172/5068) of respondents said they wanted their practice to continue offering phone, email/secure messaging and video after the pandemic, respectively. Age, education status, financial status, immigration status and self-reported health status were significantly associated with differences in wanting ongoing use of each of the three virtual care modalities (p<0.05 for all); those over age 65, those whose education was high school or less, those reporting yes or ‘I don’t know’ when asked about difficulty making ends meet, those born outside Canada, and those in fair or poor health reported the lowest desire for the three virtual care modalities to continue after the pandemic compared with other groups (see table 5).

DISCUSSION
Our analysis of more than 7400 patient experience surveys across 13 primary care clinics during the first months of the COVID-19 pandemic found important differences in care-seeking and comfort with virtual care based on patient income, self-reported health and other demographic characteristics. Most participants received care from their primary care clinic in some way during the study period; however, almost a third who sought care reported they delayed it due to concerns about the pandemic. Patients who had trouble making ends meet and those who reported their health as fair or poor were more likely to seek care during the pandemic yet were also more likely to report they delayed seeking care. Patient generally reported a high degree of comfort with phone, video and email or secure messaging. But, those reporting ‘yes’ or ‘don’t know/prefer not to answer’ when asked about difficulty making ends meet, those born outside Canada, and those in fair or poor health reported the lowest desire for the three virtual care modalities to continue after the pandemic compared with other groups (see table 5).

Table 2 Proportion of respondents who received care at their primary care practice who reported that they delayed seeking care because of the pandemic, by sociodemographic characteristic

Demographics	Delayed Care n (%)	P value
All	1509 (30.53)	
Age		
<18 years	61 (29.90)	<0.01
18–34 years	158 (35.03)	
35–64 years	704 (31.44)	
65+ years	429 (26.85)	
Gender		
Woman	932 (31.65)	<0.001
Man	376 (26.07)	
Other	20 (42.55)	
Prefer not to answer	18 (46.15)	
Education		
High school or less	238 (24.74)	<0.001
College/university	637 (30.09)	
Graduate/professional	443 (33.95)	
Trouble making ends meet		
Yes	188 (42.63)	<0.001
No	928 (27.33)	
Don’t know/prefer not to answer	196 (37.69)	
Born in Canada		
Yes	966 (30.92)	0.07
No	366 (28.09)	
Arrive <10 years		
Yes	66 (29.33)	0.79
No	289 (28.20)	
Preferred language		
English	1322 (30.20)	0.49
Non-English	24 (34.78)	
Self-rated health		
Excellent	153 (25.54)	<0.001
Very good	475 (28.84)	
Good	433 (30.20)	
Fair/poor	275 (36.57)	
Usual PCP		
Staff physician	976 (30.13)	0.47
Resident physician	246 (29.85)	
Nurse practitioner	45 (36.59)	
Unsure	52 (29.21)	

PCP, primary care provider.
to the pandemic found that while younger patients and those with physical disabilities were more likely to use video visits to access care, those who reported lower incomes and lived in rural populations were less likely to use this modality.33 A recent US-based primary care study found that after care shifted to a virtual-first approach during the pandemic, a significantly smaller proportion of visits overall were with people who were low income, non-white or non-English speakers.34 However, a Canadian-based study found that similar to our participants, those with the highest care needs (older, multiple comorbidities), were more likely to access primary care during the early months of the pandemic compared with other groups.6

As many predict virtual care will continue to be a part of care delivery post-pandemic, this study highlights the importance of integrating patient experience data into

Demographics	In person care n (%)	P value	Phone care n (%)	P value
All	1553 (30.64)		4195 (82.77)	
Age				
<18 years	102 (50.00)	<0.001	143 (70.10)	<0.001
18–34 years	181 (40.13)		404 (89.58)	
35–64 years	603 (26.93)		1922 (85.84)	
65+ years	476 (29.79)		1338 (83.73)	
Gender				
Woman	882 (29.95)	0.57	2559 (86.89)	<0.001
Man	443 (30.72)		1163 (80.65)	
Other	17 (36.17)		41 (87.23)	
Prefer not to answer	9 (23.08)		33 (84.62)	
Education level				
High school or less	303 (31.50)	0.42	787 (81.81)	<0.05
College/university	618 (29.19)		1818 (85.88)	
Graduate/professional	396 (30.34)		1109 (84.98)	
Trouble making ends meet				
Yes	122 (27.66)	0.28	396 (89.80)	<0.001
No	1047 (30.83)		2840 (83.63)	
Born in Canada				
Yes	977 (31.27)	<0.05	2630 (84.19)	0.13
No	363 (27.86)		1121 (86.03)	
Arrive <10 years				
Yes	77 (34.22)	<0.05	196 (87.11)	0.73
No	276 (26.93)		881 (85.95)	
Preferred language				
English	1326 (30.29)	0.88	3706 (84.67)	1.00
Non-English	22 (31.88)		58 (84.06)	
Self-reported health				
Excellent	221 (36.89)	<0.001	470 (78.46)	<0.001
Very good	522 (31.69)		1390 (84.40)	
Good	383 (26.71)		1222 (85.22)	
Fair/poor	220 (29.26)		673 (89.49)	
Usual PCP				
Staff physician	963 (29.73)	0.10	2750 (84.90)	0.22
Resident physician	270 (32.77)		701 (85.07)	
Nurse practitioner	46 (37.40)		97 (78.86)	
Unsure	50 (28.09)		146 (82.02)	

PCP, primary care provider.
future care delivery planning. Similar to other recently published data,6, 35, 36 our data indicate phone was by far the most used modality of virtual care and overall, participants were comfortable using virtual modalities to receive care. Patients who report financial troubles and poor health, had a higher percentage reporting accessing care (virtually and in person) during the pandemic compared with other groups; however, they reported greater concerns with the privacy and security of virtual care and less desire for virtual care to be an ongoing part of their primary care experience. This suggests that while public health measures may have pushed populations

Table 4	Percentage of patients who reported they were comfortable with the privacy and security of using phone, video and email or secure messaging to receive care during the pandemic, by sociodemographic characteristic				
Demographics					
All	3824 (92.39)	238 (95.20)	794 (91.26)		
Age					
<18 years	138 (96.50) <0.05 19 (95.00) 0.60 17 (94.44) 0.43				
18–34 years	371 (91.83) 28 (93.33) 90 (87.38)				
35–64 years	1800 (93.65) 104 (94.55) 383 (90.54)				
65+ years	1223 (91.41) 63 (98.44) 249 (92.57)				
Gender					
Woman	2385 (93.20) 128 (96.97) 0.17 501 (90.60) <0.001				
Man	1077 (92.61) 75 (94.94) 219 (92.80)				
Other	40 (97.56) 4 (80.00) 15 (100.00)				
Prefer not to answer	24 (72.73) 6 (85.71) 2 (40.00)				
Education level					
High school or less	743 (94.41) 0.17 47 (92.16) 0.20 121 (93.08) 0.65				
College/university	1679 (92.35) 94 (97.92) 358 (90.63)				
Graduate/professional	1032 (93.06) 66 (92.96) 250 (91.91)				
Trouble making ends meet					
Yes	354 (89.39) <0.001 24 (92.31) 0.63 70 (85.37) <0.001				
No	2679 (94.33) 153 (96.23) 576 (93.96)				
I don’t know/prefer not to answer	400 (87.53) 30 (96.77) 75 (78.12)				
Born in Canada					
Yes	2471 (93.95) <0.001 159 (95.78) 1.00 526 (92.93) <0.05				
No	1019 (90.90) 54 (94.74) 204 (87.18)				
Arrive in the last 10 years					
Yes	176 (89.80) 0.80 7 (100.00) 1.00 34 (82.93) 0.52				
No	799 (90.69) 45 (93.75) 163 (88.11)				
Preferred language					
English	3440 (92.82) 0.50 209 (95.43) 0.48 727 (91.33) 0.40				
Non-English	52 (89.66) 3 (75.00) 7 (77.78)				
Self-reported health					
Excellent	455 (96.81) <0.001 30 (93.75) 0.98 105 (95.45) <0.05				
Very good	1324 (95.25) 65 (95.59) 259 (93.50)				
Good	1131 (92.55) 72 (94.74) 235 (90.04)				
Fair/poor	579 (86.03) 42 (95.45) 133 (85.81)				
Usual PCP					
Staff physician	2575 (93.64) <0.05 164 (96.47) 0.17 568 (92.21) 0.07				
Resident physician	640 (91.30) 28 (87.50) 107 (87.70)				
Nurse practitioner	86 (88.66) 4 (100.00) 17 (89.47)				
Unsure	130 (89.04) 11 (91.67) 24 (80.00)				

PCP, primary care provider.
with the highest care needs to use virtual care, these modalities did not provide all patients with an equitable, patient-centred care experience. Further research should explore reasons behind the relative discomfort and low interest in virtual care and how barriers could be addressed. While access to technology may be part of this problem, other factors such as health and digital literacy, and support from peers and healthcare providers may also be significant. Without further patient experience and demographic data to understand the ongoing use of

Table 5 Preferences for ongoing uses of virtual care options after the pandemic, by sociodemographic characteristic

Demographics	Phone n (%)	Video n (%)	Email Messaging n (%)
All	3798 (74.94)	2172 (42.86)	2644 (52.17)
Age			
<18 years	171 (83.82)	120 (58.82)	117 (57.35)
18–34 years	385 (85.37)	252 (55.88)	292 (64.75)
35–64 years	1886 (84.23)	1206 (53.86)	1352 (60.38)
65+ years	1291 (80.79)	549 (34.36)	834 (52.19)
Gender			
Woman	2510 (85.23)	1418 (48.15)	1758 (59.69)
Man	1142 (79.20)	662 (45.91)	780 (54.09)
Other	37 (78.72)	23 (48.94)	31 (65.96)
Prefer not to answer	29 (74.36)	21 (53.85)	20 (51.28)
Education level			
High school or less	770 (80.04)	384 (39.92)	468 (48.65)
College/university	1777 (83.94)	993 (46.91)	1227 (57.96)
Graduate/professional	1098 (84.14)	705 (54.02)	846 (64.83)
Trouble making ends meet			
Yes	362 (82.09)	195 (44.22)	257 (58.28)
No	2869 (84.48)	1665 (49.03)	2037 (59.98)
I don’t know/prefer not to answer	387 (74.42)	204 (39.23)	232 (44.62)
Born in Canada			
Yes	2687 (86.01)	1579 (50.54)	1890 (60.50)
No	1005 (77.13)	527 (40.45)	683 (52.42)
Arrive in the last 10 years			
Yes	166 (73.78)	89 (39.56)	101 (44.89)
No	806 (78.63)	413 (40.29)	554 (54.05)
Preferred language			
English	3642 (83.21)	2086 (47.66)	2532 (57.85)
Non-English	52 (75.36)	25 (36.23)	29 (42.03)
Self-reported health			
Excellent	519 (86.64)	330 (55.09)	382 (63.77)
Very good	1392 (84.52)	843 (51.18)	977 (59.32)
Good	1179 (82.22)	635 (44.28)	809 (56.42)
Fair/poor	597 (79.39)	294 (39.10)	394 (52.39)
Usual PCP			
Staff physician	2730 (84.29)	1613 (49.80)	1943 (59.99)
Resident physician	659 (79.98)	336 (40.78)	415 (50.36)
Nurse practitioner	104 (84.55)	55 (44.72)	73 (59.35)
Unsure	133 (74.72)	79 (44.38)	92 (51.69)

PCP, primary care provider.
virtual care, we risk leaving behind those who need care most.

Our study had several key strengths and limitations. Our study included a large sample of respondents from multiple clinics across both urban and suburban communities. Patients were randomly sampled using birth month. Survey questions were relevant to COVID-19 and informed by primary care leaders and patients. However, our findings are open to selection bias because of the response rate, mode of delivery, and the survey being offered primarily in English; however, demographics of our sample confirm that we reached a diverse group of patients. We found substantial differences in utilisation and perspectives of virtual care by sociodemographic characteristics, but these may be an underestimate of true differences. Our survey reports on experience during the early phase of the pandemic and patients’ comfort and preferences may have evolved since then. Finally, although our sample was taken from 13 primary care practices, these were all academic practices in the Greater Toronto Area where physicians were paid by capitation which may limit the generalisability of the findings to other settings including rural or low-resource settings.

CONCLUSIONS

We found that sociodemographic characteristics impacted patients experience accessing and receiving primary care during the early months of the COVID-19 pandemic. While most patients were comfortable using virtual modalities, those having difficulty making ends meet, reporting poor or fair health, and born outside of Canada being less likely to report comfort with virtual modalities and less likely to want virtual care options to continue post-pandemic. Moving forward, clinicians and system decision-makers need to carefully consider how we integrate virtual care into practices to ensure equity in access to primary care.

Author affiliations

1Women’s College Hospital Institute for Health System Solutions and Virtual Care, Toronto, Ontario, Canada
2Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
3MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Toronto, Ontario, Canada
4Mount Sinai Academic Family Health Team, Toronto, Ontario, Canada
5Credit Valley Family Health Team, Mississauga, Ontario, Canada
6Institute for Better Health, Trillium Health Partners, Mississauga, Ontario, Canada
7Department of Family and Community Medicine, Southlake Regional Health Centre, Newmarket, Ontario, Canada
8Department of Family and Community Medicine, Oak Valley Health Markham Stouffville Hospital, Markham, Ontario, Canada
9Department of Family and Community Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
10Department of Family and Community Medicine, North York General Hospital, Toronto, Ontario, Canada
11Department of Family and Community Medicine, Scarborough Health Network, Scarborough, Ontario, Canada
12Barrie and Community Family Health Team, Barrie, Ontario, Canada
13South East Toronto Family Health Team, Toronto, Ontario, Canada
14Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
15Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada

Twitter Ali Damji @Alidamji and Tara Kiran @tara_kiran

Acknowledgements We wish to thank Frances Cousins, Jennifer Stulberg, Joanne Laine-Gossin, Karuna Gupta, Linda Weber, Sam Tikos and Susie Kim for their support in developing and implementing the survey at their respective teaching practices, Trish O’Brien and Kirsten Eldridge for their support with survey implementation across all sites, Danielle Martin for her feedback on our draft manuscript, and the patient partners who helped us refine the survey questions.

Contributors PA and TK conceived of and designed the study together and TK is the guarantor of the study. PA, CM, SW, AD, NG, GE, DE, TF, SF, MW, T-NP, NR and TK designed the survey. RW and CM informed and conducted the analysis. PA, RW, CM, SW, AD, NG, GE, DE, TF, SF, MW, T-NP, NR and TK helped interpret the data. PA drafted the manuscript with the support of TK and all authors critically reviewed it. All authors read and approved the final manuscript.

Funding TK is the Fidani Chair of Improvement and Innovation in Family Medicine at the University of Toronto and is supported as a Clinician Scientist by the Department of Family and Community Medicine (DFCM) at the University of Toronto and at St. Michael’s Hospital. Funds from the Fidani Chair supported PA as the Patient Experience Measurement Lead for the DFCM.

Competing interests None declared.

Patient and public involvement Patients and/or the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants but the initiative was formally reviewed through the ReQuIST (Review of Quality Improvement Studies) process at Unity Health Toronto, which is overseen by the Vice-President, Care Experience and Equity and the Vice-President, Quality and Chief Information Officer. The study was deemed to neither require research ethics board approval nor written informed consent from participants (ie, the need for ethical approval was waived). The survey was developed to directly inform quality improvement (QI) efforts at participating sites during COVID-19. The initiative was formally reviewed by institutional authorities at Unity Health Toronto and deemed to neither require research ethics board approval nor written informed consent from participants.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request. Extra data are available on reasonable request by emailing TK at dfcm.quality@utoronto.ca

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Tara Kiran http://orcid.org/0000-0002-2520-112X

REFERENCES

1 Lemire F, Slade S. Reflections on family practice and the pandemic first wave. Can Fam Physician 2020;66:468.
2 Stamenova V, Agarwal P, Kelley L, et al. Uptake and patient and provider communication modality preferences of virtual visits in
