NONLINEAR DEFORMED su(2) ALGEBRAS INVOLVING TWO DEFORMING FUNCTIONS

D. BONATSOS, P. KOLOKOTRONIS

Institute of Nuclear Physics, NCSR Demokritos, GR-15310 Aghia Paraskevi, Attiki, Greece

C. DASKALOYANNIS

Department of Physics, Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece

A. LUDU

Department of Theoretical Physics, Faculty of Physics, University of Bucharest, Bucharest-Magurele, P.O. Box MG-5211, Romania

C. QUESNE

Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

Abstract

The most common nonlinear deformations of the su(2) Lie algebra, introduced by Polychronakos and Roček, involve a single arbitrary function of J_0 and include the quantum algebra $\text{su}_q(2)$ as a special case. In the present contribution, less common nonlinear deformations of su(2), introduced by Delbecq and Quesne and involving two deforming functions of J_0, are reviewed. Such algebras include Witten’s quadratic deformation of su(2) as a special case. Contrary to the former deformations, for which the spectrum of J_0 is linear as for su(2), the latter give rise to exponential spectra, a property that has aroused much interest in connection with some physical problems. Another interesting algebra of this type, denoted by $A_q^+(1)$, has two series of $(N + 1)$-dimensional unitary irreducible representations, where $N = 0, 1, 2, \ldots$. To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed. The resulting algebraic structure, referred to as a two-colour quasitriangular Hopf algebra, is described.

*Presented at the 5th International Colloquium “Quantum Groups and Integrable Systems”, Prague, 20–22 June 1996
†Directeur de recherches FNRS
1 Introduction

Quantized universal enveloping algebras, also called q-algebras, refer to some specific deformations of (the universal enveloping algebra of) Lie algebras, to which they reduce when the deforming parameter q (or set of deforming parameters) goes to one \[1\]. The simplest example of q-algebra, $\mathfrak{su}_q(2) \equiv U_q(\mathfrak{su}(2))$, was first introduced by Sklyanin, and by Kulish and Reshetikhin \[2\]. It has found a lot of applications in various branches of physics since its realization in terms of q-bosonic operators was proposed by Biedenharn and Macfarlane \[3\].

The $\mathfrak{su}_q(2)$ algebra is a special case of more general deformations of $\mathfrak{su}(2)$, independently introduced by Polychronakos and Roček \[4\]. They involve one arbitrary function $f(J_0)$ in the commutator of J_+ with J_-, and their representation theory is characterized by a rich variety of phenomena, whose interest in particle physics has been stressed.

More recently, deformations of $\mathfrak{su}(2)$ involving two deforming functions $F(J_0)$ and $G(J_0)$ in the commutator of J_+ with J_- and in that of J_0 with J_+ or J_-, respectively, have been proposed by Delbecq and Quesne \[5, 6, 7\]. It is the purpose of the present contribution to review the construction and representation theory of such algebras, and to show how the problem of endowing some of them with a Hopf algebraic structure can be addressed \[8\].

2 Nonlinear deformed $\mathfrak{su}(2)$ algebras

Polychronakos-Roček algebras (PRA’s) are associative algebras over \mathbb{C}, generated by three operators $j_0 = (\mathfrak{j}_0)\dagger$, j_+, and $j_- = (\mathfrak{j}_+)^\dagger$, satisfying the commutation relations \[1\]

\[
[j_0, j_+] = j_+, \quad [j_0, j_-] = -j_-, \quad [j_+, j_-] = f(j_0),
\]

where $f(z)$ is a real, parameter-dependent function of z, holomorphic in the neighbourhood of zero, and going to $2z$ for some values of the parameters. These algebras have a Casimir operator given by $c = j_+j_+ + h(j_0) = j_+j_- + h(j_0) - f(j_0)$, in terms of another real function $h(z)$, related to $f(z)$ through the equation $h(z) - h(z - 1) = f(z)$. An explicit expression for $h(z)$ has been given by Delbecq and Quesne \[8\] in terms of Bernoulli polynomials and Bernoulli numbers.

For all PRA’s, the spectrum of j_0 is linear as in the special case of the q-algebra $\mathfrak{su}_q(2)$. The latter corresponds to $f(j_0) = [2j_0]_q$, and $h(j_0) = [j_0][j_0 + 1]_q$, with $[x]_q \equiv (q^x - q^{-x})/(q - q^{-1})$, and $q \in \mathbb{R}^+$ (the case where q is a phase will not be considered here, as throughout the present work we shall restrict the parameters to real values) \[9\].

Delbecq-Quesne algebras (DQA’s) differ from PRA’s by the replacement of \[1\] by \[10\]

\[
[j_0, J_+] = G(J_0)J_+, \quad [J_0, J_-] = -J_-G(J_0), \quad [J_+, J_-] = F(J_0),
\]
where \(J_0 = (J_0)^\dagger \), \(J_- = (J_+)^\dagger \), and the commutators involve two real, parameter-dependent functions of \(z \), \(F(z) \) and \(G(z) \), holomorphic in the neighbourhood of zero, and going to \(2z \) and 1 for some values of the parameters, respectively. These functions are further restricted by the assumption that the algebras have a Casimir operator given by \(C = J_- J_+ + H(J_0) = J_+ J_- + H(J_0) - F(J_0) \), in terms of some real function \(H(z) \), holomorphic in the neighbourhood of zero. The latter restriction implies that \(F(z) \), \(G(z) \), and \(H(z) \) satisfy the consistency condition
\[
H(z) - H(z - G(z)) = F(z).
\]

Since for \(G(J_0) = 1 \), DQA’s reduce to PRA’s, the first significant case corresponds to \(G(J_0) = 1 + (1 - q)J_0 \), where \(q \in \mathbb{R}^+ \). In such a case, it has been shown that there exist \((\lambda - 1) \)-parameter algebras \(\mathcal{A}_{\lambda}^+ \) and \(\mathcal{A}_\lambda \), for which the functions \(F(J_0) \) and \(H(J_0) \) are polynomials of degree \(\lambda \) in \(J_0 \). In particular, for \(\lambda = 2 \) and 3, one finds the algebras \(\mathcal{A}_2^+ \) and \(\mathcal{A}_3^+ \), for which
\[
F(J_0) = 2J_0(1 + (1 - q)J_0), \quad H(J_0) = 2(1 + q)^{-1}J_0(J_0 + 1)\text{, and } F(J_0) = 2J_0(1 + (1 - q)J_0)(1 - (1 - p)J_0), \quad H(J_0) = 2((1 + q)^{-1}(1 + q^2))^2J_0(J_0 + 1)(1 + (p + q)q - (1 - p)(1 + q)J_0), \text{ respectively.}
\]
The representation theory of the DQA’s can be dealt with as that of \(su_q(2) \), or more generally of the PRA’s. Considering the case where \(G(J_0) = 1 + (1 - q)J_0 \), and denoting by \(|cm\) a simultaneous eigenvector of the commuting Hermitian operators \(C \) and \(J_0 \), associated with the eigenvalues \(c \) and \(m \) respectively, it can be proved that \(J_0^\dagger |cm\) (resp. \(J_0^\dagger |cm\) \(n \in \mathbb{N}^+ \), is either the null vector or a simultaneous eigenvector of \(C \) and \(J_0 \), corresponding to the eigenvalues \(c \) and \(mq^{-n} - (1 - q^{-n})/(1 - q) \) (resp. \(mq^n - (1 - q^n)/(1 - q) \)). Hence, the spectrum of \(J_0 \) is exponential, instead of linear as for the PRA’s.

Moreover, if the starting \(m \) value belongs to the interval \(([q - 1]^{-1}, +\infty) \) (resp. \((-\infty, (q - 1)^{-1}) \)), then all the \(J_0 \) eigenvalues obtained by successive applications of \(J_+ \) or \(J_- \) upon \(|cm\) do not belong to the same interval and \(J_+ \) (resp. \(J_- \)) is a raising generator, whereas if \(m = (q - 1)^{-1} \), then neither \(J_+ \) nor \(J_- \) change the \(J_0 \) eigenvalue. The unirreps therefore separate into two classes according to whether the eigenvalues of \(J_0 \) are contained in the interval \((-\infty, (q - 1)^{-1}) \), or in the interval \(([q - 1]^{-1}, +\infty) \).

In general, they may fall into one out of four categories: (i) infinite-dimensional unirreps with a lower bound \(-j\), (ii) infinite-dimensional unirreps with an upper bound \(J \), (iii) infinite-dimensional unirreps with neither lower nor upper bounds, and (iv) finite-dimensional unirreps with both lower and upper bounds, \(-j \) and \(J \) (where in general \(j \neq J \)). In addition, there is a trivial one-dimensional unirrep corresponding to \(m = (q - 1)^{-1} \).

The exponential character of the \(J_0 \) spectrum in DQA representations may be of interest in various physical problems, wherein such spectra have been encountered, such as alternative Hamiltonian quantizations, exactly solvable potentials, \(q \)-deformed supersymmetric quantum mechanics, and \(q \)-deformed interacting boson models.
3 The algebra $A_q^+(1)$

Another example of DQA, for which the function $G(J_0)$ is linear, has been recently constructed [4]. Contrary to those considered in the previous section, this algebra, denoted by $A_q^+(1)$, is defined in terms of functions $F(J_0)$ and $H(J_0)$ that are not polynomials, but infinite series in J_0,

\[
\begin{align*}
F(J_0) &= \frac{-(G(J_0))^2 - (G(J_0))^{-2}}{q - q^{-1}}, \\
H(J_0) &= \frac{q^{-1}(G(J_0))^2 + q(G(J_0))^{-2} - q - q^{-1}}{(q - q^{-1})^2},
\end{align*}
\]

with $G(J_0) = 1 + (1 - q)J_0$. Since the transformation $q \rightarrow q^{-1}$, $J_0 \rightarrow -qJ_0$, $J_+ \rightarrow J_-$ is an automorphism of $A_q^+(1)$, the parameter values may be restricted to the range $0 < q < 1$.

$A_q^+(1)$ can be obtained from $su_q(2)$, a special case of PRA, by using a two-valued map $P_\delta : su_q(2) \rightarrow A_q^+(1)$, $\delta = \pm 1$, defined by

\[J_0 = p_\delta(j_0), \quad J_+ = j_+, \quad J_- = j_-, \quad \text{where} \quad p_\delta(z) \equiv \frac{1 - \delta q^{-z}}{q - 1}.\]

Such a generator map is well defined: it can indeed be easily checked that if j_0, j_+, j_- satisfy the $su_q(2)$ commutation relations, then J_0, J_+, J_-, given in (4), fulfill those of $A_q^+(1)$. The functions $p_\delta(z)$, $\delta = \pm 1$, defined in (4), are entire and invertible functions, with $g(z) = p_\delta^{-1}(z) = \ln(G^2(z))\ln(q^{-2})$. If $z \in \mathbb{R}$, the range of p_δ (and consequently the domain of p_δ^{-1}) is the interval $(-\infty, (q - 1)^{-1})$ or $((q - 1)^{-1}, +\infty)$ according to whether $\delta = -1$ or $\delta = +1$. The function $g(z)$ is well-behaved everywhere on \mathbb{R}, except in the neighbourhood of the point $z = (q - 1)^{-1}$.

It should be stressed that the use of P_δ, $\delta = \pm 1$, implies an extension of the well-known deforming functional technique [3] for two reasons: first because here a map between two deformed algebras, $su_q(2)$ and $A_q^+(1)$, is considered instead of a map between a Lie algebra and a deformed one, as in the original method; and second because use is made of a two-valued functional, whose inverse is singular, instead of a single-valued one.

It can be easily shown [7] that $A_q^+(1)$ has no infinite-dimensional unirrep, but has, for any $N = 0, 1, 2, \ldots$, two $(N + 1)$-dimensional unirreps, which may be distinguished by $\delta = \pm 1$. The corresponding spectrum of J_0 is given by $m_\delta = (1 - \delta q^{-N})/(q - 1)$, for $n = 0, 1, \ldots, N$, with maximum and minimum eigenvalues $J_\delta^+ = (1 - \delta q^{-N/2})/(q - 1)$, and $-J_\delta^- = (1 - \delta q^{N/2})/(q - 1)$ respectively. The unirrep specified by J_δ^+ (resp. J_δ^-) is entirely contained in the interval $((-1)^{-1}, +\infty)$ (resp. $(-\infty, (q - 1)^{-1})$). For both unirreps, the eigenvalue of the Casimir operator is given by $\langle C \rangle = H(\gamma_\delta)$, where $\gamma_\delta = (1 - \delta q^{-N/2})/(q - 1)$.

In the carrier space $V^{J_\delta^+}$ of the unirrep characterized by J_δ^+, whose basis vectors are specified by the values of J_δ^+ and m_δ, the $A_q^+(1)$ generators are represented by
some linear operators $\Phi^J (A) \in \mathcal{A}_q^\pm (1)$, defined by

$$
\Phi^J (J_0) |J^\delta, m^\delta\rangle = m^\delta |J^\delta, m^\delta\rangle = (\frac{q^n}{m}) |J^\delta, m^\delta\rangle.
$$

$$
\Phi^J (J_-) |J^\delta, m^\delta\rangle = \sqrt{H(\delta^\delta) - H(qm^\delta - 1)} |J^\delta, qm^\delta - 1\rangle
= \sqrt{[n+1][N-n]q} |J^\delta, qm^\delta - 1\rangle,
$$

$$
\Phi^J (J_+) |J^\delta, m^\delta\rangle = \sqrt{H(\delta^\delta) - H(m^\delta) |J^\delta, q^{-1}(m^\delta + 1)\rangle
= \sqrt{[n+1][N-n+1]q} |J^\delta, q^{-1}(m^\delta + 1)\rangle.
$$

The generator mapping P_δ can be used to transfer the quasitriangular Hopf structure of $\mathfrak{su}_q(2)$ to $\mathcal{A}_q^\pm (1)$. One gets in this way a double quasitriangular Hopf structure, with comultiplication, counit, antipode maps, and universal R-matrix given by

$$
\Delta^\delta (J_0) = (q - 1)^{-1} (1 \otimes 1 - \delta G(J_0) \otimes G(J_0)),
$$

$$
\Delta^\delta (J_\pm) = \delta (J_\pm \otimes (G(J_0))^{-1} + G(J_0) \otimes J_\pm),
$$

$$
\epsilon^\delta (J_0) = (1 - \delta)(q - 1)^{-1}, \quad \epsilon^\delta (J_\pm) = 0,
$$

$$
S^\delta (J_0) = -J_0(G(J_0))^{-1}, \quad S^\delta (J_+) = -qJ_+, \quad S^\delta (J_-) = -q^{-1}J_-,
$$

$$
R^\delta = q^{2\log_q(\delta G(J_0))\otimes \log_q(\delta G(J_0))} \sum_{n=0}^{\infty} \frac{(1 - q^{-2})^n}{[n]_q} q^n(n-1)/2
\times ((G(J_0))^{-1}J_+ \otimes G(J_0)J_-)^n,
$$

respectively. Both $(\Delta^\pm, \epsilon^\pm, S_\pm, R^\pm)$, and $(\Delta^-, \epsilon^-, S_-, R^-)$ satisfy the Hopf and quasitriangularity axioms, but the former are only valid for the representations of $\mathcal{A}_q^\pm (1)$ with eigenvalues of J_0 in the interval $((q - 1)^{-1}, +\infty)$, whereas the latter act in $(-\infty, (q - 1)^{-1})$.

4 Two-colour quasitriangular Hopf structure of $\mathcal{A}_q^\pm (1)$

The double Hopf structure considered in the previous section allows one to couple any two $\mathcal{A}_q^\pm (1)$ unirreps characterized by J^\pm_1 and J^\pm_2 (resp. J^-_1 and J^-_2), and with respective carrier spaces $V^{J^\pm_1}$ and $V^{J^\pm_2}$ (resp. $V^{J^-_1}$ and $V^{J^-_2}$), to represent a reducible representation of the same in $V^{J^\pm_1} \otimes V^{J^\pm_2}$ (resp. $V^{J^-_1} \otimes V^{J^-_2}$). No coupling of two unirreps of the types J^\pm_1 and J^\pm_2, or J^-_1 and J^-_2, is however possible.

To allow such types of couplings, it is necessary to extend the double Hopf structure of $\mathcal{A}_q^\pm (1)$. This can be accomplished by considering the ‘transmutation’ operators $T^J : V^J \to V^{J^\delta}$, which change the basis states of an $(N+1)$-dimensional
unchanged. The results can be written as

\[\xi, \eta \in \mathcal{A}_q^+ \text{ specified by } \zeta, \eta, \delta \in \mathbb{Z} \text{ and the involutive automorphism of the algebra } \mathcal{A}_q^+ \text{ mapping } \sigma \mapsto \sigma \text{ of indices } \delta, \eta \in \mathbb{Z}, \delta \neq \eta. \]

where \(\zeta, \eta \) are the multiplication and unit maps of \(\mathcal{A}_q^+ \). Defining now \(\mathcal{A}_q^+ \) as the algebra of \(\mathcal{A}_q^+ \) and no sum-

It can be easily shown that the generalized comultiplication, counit, and antipode maps, \(\Delta_\zeta^\eta, \epsilon_\delta, S_\zeta^\eta \), defined in (3) and (4), transform under \(\sigma_\delta \) as

\[(\sigma_\mu \otimes \sigma_{\nu \eta}) \circ \Delta_\zeta^\eta = \Delta_\mu^\nu \circ \sigma_{\mu \delta}, \quad \epsilon_\delta \circ \sigma_{\delta \zeta} = \epsilon_\zeta, \quad \sigma_{\zeta \eta} \circ S_\zeta^\eta = S_\mu^\nu \circ \sigma_{\mu \delta}. \]

and satisfy the following generalized coassociativity, counit, and antipode axioms,

\[
\begin{align*}
(\Delta_\mu^\nu \otimes \text{id}) \circ \Delta_\zeta^\eta(A) &= (\text{id} \otimes \Delta_{\mu \nu}^\eta) \circ \Delta_\zeta^\eta(A), \\
(\epsilon_\zeta \otimes \sigma_{\delta \eta}) \circ \Delta_\zeta^\eta(A) &= (\sigma_{\zeta \delta} \otimes \epsilon_\eta) \circ \Delta_\zeta^\eta(A) = A, \\
m \circ (S_\zeta^\mu \otimes \sigma_{\mu \eta}) \circ \Delta_\zeta^\eta(A) &= m \circ (\sigma_{\mu \zeta} \otimes S_\mu^\eta) \circ \Delta_\zeta^\eta(A) = \iota \circ \epsilon_\delta(A),
\end{align*}
\]

where \(A \) denotes any element of \(\mathcal{A}_q^+ \), \(m \) and \(\iota \) are the multiplication and unit maps of \(\mathcal{A}_q^+ \), \(\delta, \zeta, \eta, \mu, \nu, \rho \) take any values in the set \(\{ -1, +1 \} \), and no sum-

\[\Delta_\zeta^\eta(A) = (\sigma_{\zeta \delta} \otimes \epsilon_\eta) \circ \Delta_\zeta^\eta(A) = A, \]

where \(\zeta, \eta \) are the multiplication and unit maps of \(\mathcal{A}_q^+ \) and no sum-

The comultiplication and antipode maps, as well as the double \(\mathcal{R} \)-matrix of equation (6) can be extended by setting

\[
\begin{align*}
\Delta_\zeta^\eta(A) &= (\sigma_{\zeta \delta} \otimes \sigma_{\eta \delta}) \circ \Delta_\delta(A), \\
S_\zeta^\eta(A) &= \sigma_{\zeta \delta} \circ S_\delta(A), \\
\mathcal{R}^\zeta^\eta &= (\sigma_{\zeta \delta} \otimes \sigma_{\eta \delta}) \left(\mathcal{R}^\delta \right),
\end{align*}
\]

where \(\zeta, \eta, \delta = \pm 1 \), while the counit map \(\epsilon_\delta \), defined in the same equation, is left unchanged. The results can be written as

\[
\begin{align*}
\Delta_\zeta^\eta(J_0) &= (q - 1)^{-1}(1 \otimes 1 - \delta \zeta G(J_0) \otimes G(J_0)), \\
\Delta_\zeta^\eta(J_\pm) &= \eta J_\pm \otimes (G(J_0))^{-1} + \xi G(J_0) \otimes J_\pm, \\
S_\zeta^\eta(J_0) &= (q - 1)^{-1} \left(1 - \xi \delta (G(J_0))^{-1} \right), \\
S_\zeta^\eta(J_\pm) &= -q^{-1} J_\pm, \\
\mathcal{R}^\zeta^\eta &= q^{2 \log_2(\xi G(J_0)) \otimes \log_2(\eta G(J_0))} \\
&\times \sum_{n=0}^{\infty} \frac{(1 - q^{-2})^n}{n!} \Delta^{n(n - 1)/2} \left((\xi G(J_0))^{-1} J_+ \otimes \eta G(J_0) J_- \right)^n.
\end{align*}
\]

It can be easily shown that the generalized comultiplication, counit, and antipode maps, \(\Delta_\zeta^\eta, \epsilon_\delta, S_\zeta^\eta \), defined in (3) and (4), transform under \(\sigma_\delta \) as

and satisfy the following generalized coassociativity, counit, and antipode axioms,
mation over repeated indices is implied. Moreover, Δ^ζ_η and ϵ_δ are algebra homomorphisms, while S^δ_ζ is both an algebra and a coalgebra antihomomorphism.

By using the generalized coproduct Δ^ζ_η, it is now possible to couple any $(N_1 + 1)$- and $(N_2 + 1)$-dimensional unirreps of $A_q^+(1)$, specified by J^ζ_1 and J^η_2 respectively, to provide two reducible representations in $V^{J^\zeta_1} \otimes V^{J^\eta_2}$, which are characterized by $\delta = +1$ and $\delta = -1$, respectively. They can be decomposed into a direct sum of $(N + 1)$-dimensional unirreps, specified by J^δ, by using some Wigner coefficients $\langle J^\zeta_1 m^\zeta_1, J^\eta_2 m^\eta_2 | J^\delta m^\delta \rangle_{DQ}$, given in terms of $\text{su}_q(2)$ Wigner coefficients by the relation

$$\langle J^\zeta_1 m^\zeta_1, J^\eta_2 m^\eta_2 | J^\delta m^\delta \rangle_{DQ} = \langle \frac{N_1}{2}, \frac{N_2}{2} | n_1, \frac{N_2}{2} | n_2, \frac{N_2}{2} - n \rangle_q.$$

(11)

The carrier space of the unirep J^δ in $V^{J^\zeta_1} \otimes V^{J^\eta_2}$ is therefore spanned by the states

$$|J^\zeta_1 J^\eta_2 J^\delta m^\delta\rangle = \sum_{m^\zeta_1, m^\eta_2} \langle J^\zeta_1 m^\zeta_1, J^\eta_2 m^\eta_2 | J^\delta m^\delta \rangle_{DQ} |J^\zeta_1, m^\zeta_1\rangle \otimes |J^\eta_2, m^\eta_2\rangle.$$

(12)

Turning now to the generalized universal R-matrix defined in (9) or (8), it can be easily shown \[8\] that its four pieces R^ζ_η, $\zeta, \eta = \pm 1$, are invertible and satisfy the properties

\[
\begin{align*}
(\sigma_{\mu \zeta} \otimes \sigma_{\nu \eta}) \left(R^{\zeta_\eta} \right) &= R^{\mu_\zeta}, \\
(\Delta^\zeta_\eta \otimes \sigma_{\mu \eta}) \left(R^{\zeta_\eta} \right) &= R^{\lambda_\zeta} R^{\mu_\eta} = (R^{\lambda_\zeta} R^{\mu_\eta})^{-1}, \\
(\Delta^\zeta_\eta \otimes \sigma_{\mu \eta}) \left(R^{\zeta_\eta} \right) &= R^{\lambda_\zeta} R^{\mu_\eta}, \quad (\sigma_{\lambda \zeta} \otimes \Delta^\mu_\eta) \left(R^{\zeta_\eta} \right) = R^{\lambda_\zeta} R^{\mu_\eta} \quad (13)
\end{align*}
\]

for any $A \in A_q^+(1)$. From these results, or more simply from the corresponding properties fulfilled by R^δ, one obtains the relations

\[
\begin{align*}
R^{\zeta_\eta} R^{\zeta_\eta} R^{\mu_\eta} &= R^{\eta_\mu} R^{\zeta_\eta} R^{\zeta_\eta}, \\
(\epsilon_\zeta \otimes \text{id}) \left(R^{\zeta_\eta} \right) &= (\text{id} \otimes \epsilon_\eta) \left(R^{\zeta_\eta} \right) = 1, \\
(S^\lambda_\zeta \otimes \sigma_{\mu \eta}) \left(R^{\zeta_\eta} \right) &= (\sigma_{\lambda \zeta} \otimes (S^\mu_\eta)^{-1}) \left(R^{\zeta_\eta} \right) = (R^{\lambda_\mu})^{-1}. \quad (14)
\end{align*}
\]

The first relation in (14) shows that the generalized universal R-matrix is a solution of the coloured YBE \[12\], where the ‘colour’ parameters ζ, η, μ take discrete values in the set \{-1, +1\}. We may therefore call $(A_q^+(1), +, m, \epsilon, \Delta^\zeta_\eta, \epsilon_\delta, S^\delta_\zeta, R^{\zeta_\eta}; \mathbb{C})$ a two-colour quasitriangular Hopf algebra over \mathbb{C} \[8\]. As will be shown elsewhere \[13\], this type of algebraic structure admits generalizations, which will be referred to as coloured quasitriangular Hopf algebras.

References
[1] Drinfeld V. G.: in Proc. Int. Congress of Mathematicians (Berkeley, CA, 1986) (Ed. A. M. Gleason), AMS, Providence, RI, 1987, p. 798.
Jimbo M.: Lett. Math. Phys. 10 (1985) 63.

[2] Sklyanin E. K.: Funct. Anal. Appl. 16 (1982) 262.
Kulish P. P. and Reshetikhin N. Y.: J. Sov. Math. 23 (1983) 2435.

[3] Biedenharn L. C.: J. Phys. A 22 (1989) L873.
Macfarlane A. J.: J. Phys. A 22 (1989) 4581.

[4] Polychronakos A. P.: Mod. Phys. Lett. A 5 (1990) 2325.
Roček M.: Phys. Lett. B 255 (1991) 554.

[5] Delbecq C. and Quesne C.: J. Phys. A 26 (1993) L127.

[6] Delbecq C. and Quesne C.: Phys. Lett. B 300 (1993) 227.

[7] Delbecq C. and Quesne C.: Mod. Phys. Lett. A 8 (1993) 961.

[8] Bonatsos D., Daskaloyannis C., Kolokotronis P., Ludu A., and Quesne C.: A nonlinear deformed su(2) algebra with a two-colour quasitriangular Hopf structure, Preprint, Université Libre de Bruxelles, 1996.

[9] Witten E.: Nucl. Phys. B 330 (1990) 285.

[10] Fairlie D. B. and Nuyts J., J. Phys. A 24 (1991) L1001.
Spiridonov V., Phys. Rev. Lett. 69 (1992) 398; Mod. Phys. Lett. A 7 (1992) 1241.
Gupta R. K. and Ludu A., Phys. Rev. C 48 (1993) 593.

[11] Curtright T. L. and Zachos C. K., Phys. Lett. B 243 (1990) 237.
Curtright T. L., Ghandour G. I., and Zachos C. K., J. Math. Phys. 32 (1991) 676.

[12] Murakami J.: in Proc. Int. Conf. of Euler Mathematical School: Quantum Groups (Leningrad, 1990), Lecture Notes in Physics, Springer, Berlin, 1991, p. 350.
Akutsu Y. and Deguchi T.: Phys. Rev. Lett. 67 (1991) 777.
Ge M.-L., Liu X.-F., and Sun C.-P.: Phys. Lett. A 155 (1991) 137.
Burdík Č. and Hellinger P.: J. Phys. A 25 (1992) L1023.
Kundu A. and Basu-Mallick B.: J. Phys. A 25 (1992) 6307.

[13] Quesne C.: Coloured Hopf algebras, in preparation.