Buffon’s problem with a pivot needle

Uwe Bäsel

Abstract

In this paper, we solve Buffon’s needle problem for a needle consisting of two line segments connected in a pivot point.

2010 Mathematics Subject Classification: 60D05, 52A22

Keywords: Integral geometry, geometric probabilities, random convex sets, convex hull, hitting probabilities, intersection probabilities, Buffon’s needle problem, pivot needle, elliptic integral

1 Introduction

The classical Buffon needle problem asks for the probability that a needle of length ℓ thrown at random onto a plane lattice \mathcal{R}_d of parallel lines at a distance $d \geq \ell$ apart will hit one of these lines. This problem was stated and solved by Buffon in his *Essai d’Arithmétique Morale*, 1777 (see e. g. [5, pp. 71-72], [6, pp. 501-502]). If an arbitrary convex body C with maximum width $\leq d$ is used in this experiment, then the hitting probability is given by $u/(\pi d)$, where u denotes the perimeter of C. This is the result of Barbier in 1860 [1, pp. 274-275], [6, p. 507]. If C is a needle (line segment), then $u = 2\ell$. If C is an ellipse, then there are elliptic integrals in the formulas of the hitting probabilities, see Duma and Stoka [3].

We consider a needle $N_{a,b}$ consisting of two line segments $C' A'$, $C' B'$ of lengths $a := |C' A'|$ and $b := |C' B'|$, connected in a pivot point C' (see Fig. 1), and assume $a + b \leq d$. The random throw of $N_{a,b}$ onto \mathcal{R}_d is defined as follows: The y-coordinate of the point C' is a random variable uniformly distributed in $[0,d]$. The angles α and β between the lines of \mathcal{R}_d, and segments $C' A'$ and $C' B'$, respectively, are random variables uniformly distributed in $[0,2\pi]$. All three random variables are stochastically independent.

The probability of the event that $N_{a,b}$ hits two lines of \mathcal{R}_d at the same time is equal to zero, even in the case $a + b = d$. The expectation $E(n)$ of the random variable $n =$ number of intersection points between $N_{a,b}$ and \mathcal{R}_d is given by $E(n) = 2(a + b)/(\pi d)$, cp. [4].

Here we are asking for the probabilities $p(i)$, $i \in \{0, 1, 2\}$, of the events that $N_{a,b}$ hits \mathcal{R}_d in exactly i points. We denote by A and B the events that segments $C' A'$ and $C' B'$, respectively, hit one line of \mathcal{R}_d.
2 Hitting probabilities

Theorem. If $a + b \leq d$, then the probabilities $p(i)$ that $N_{a,b}$ hits R_d in exactly i points are given by

\[p(0) = 1 - \frac{(a + b)(\pi + 2E(k))}{\pi^2 d}, \quad p(1) = \frac{4(a + b)E(k)}{\pi^2 d}, \]

\[p(2) = \frac{(a + b)(\pi - 2E(k))}{\pi^2 d}, \]

where

\[E(k) = E(\pi/2, k) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \, d\theta \]

is the complete elliptic integral of the second kind with $k^2 = 4ab/(a + b)^2$.

Proof. We observe that the angle $\phi := \angle(C'A', C'B')$ is a random variable uniformly distributed in $[0, 2\pi]$. Due to the result of Barbier, the conditional probability $P(A \cup B | \phi)$ of $A \cup B$ for fixed value of $\phi \in [0, 2\pi]$ is given by $u(\phi)/(\pi d)$, where $u(\phi)$ is the perimeter of the convex hull of $N_{a,b}$. ($N_{a,b}$ hits R_d if and only if its convex hull hits R_d.) Using the law of total probability, the probability that $N_{a,b}$ hits R_d is given by

\[P(A \cup B) = \int_0^{2\pi} P(A \cup B | \phi) \frac{d\phi}{2\pi} = \frac{1}{2\pi^2 d} \int_0^{2\pi} u(\phi) \, d\phi \]

\[= \frac{1}{2\pi^2 d} \int_0^{2\pi} [a + b + c(\phi)] \, d\phi = \frac{a + b + c}{\pi d}, \]

where $c := |A'B'|$, and

\[\bar{c} := \frac{1}{2\pi} \int_0^{2\pi} c(\phi) \, d\phi = \frac{1}{2\pi} \int_0^{2\pi} \sqrt{a^2 + b^2 - 2ab \cos \phi} \, d\phi. \]
Using \(\cos \phi = 2 \cos^2(\phi/2) - 1 \), we have
\[
\tau = \frac{1}{2\pi} \int_0^{2\pi} \sqrt{(a+b)^2 - 4ab \cos^2(\phi/2)} \, d\phi
= \frac{a+b}{2\pi} \int_0^{2\pi} \sqrt{1 - \frac{4ab}{(a+b)^2} \cos^2(\phi/2)} \, d\phi.
\]
For abbreviation we put \(k^2 = \frac{4ab}{(a+b)^2} \). From the inequality \(\sqrt{ab} \leq \frac{(a+b)}{2} \) between the geometric and the arithmetic mean, one finds \(k^2 \leq 1 \), hence \(0 \leq k \leq 1 \) with \(k = 1 \) only for \(a = b \). With the substitution \(\chi = \phi/2 \) we get
\[
\tau = \frac{a+b}{\pi} \int_0^{\pi} \sqrt{1 - k^2 \cos^2(\chi)} \, d\chi
= \frac{2(a+b)}{\pi} \int_0^{\pi/2} \sqrt{1 - k^2 \cos^2(\chi)} \, d\chi
= \frac{(a+b)(\pi + 2E(k))}{\pi d}.
\]
It follows that
\[
P(A \cup B) = \frac{a+b+\tau}{\pi d} = \frac{(a+b)(\pi + 2E(k))}{\pi^2 d},
\]
\[
P(A \cap B) = P(A) + P(B) - P(A \cup B) = \frac{2a}{\pi d} + \frac{2b}{\pi d} - \frac{a+b+\tau}{\pi d}
= \frac{(a+b)(\pi - 2E(k))}{\pi^2 d},
\]
and
\[
p(0) = 1 - P(A \cup B) = 1 - \frac{(a+b)(\pi + 2E(k))}{\pi^2 d},
\]
\[
p(1) = P(A \cup B) - P(A \cap B) = \frac{a+b+\tau}{\pi d} - \frac{a+b-\tau}{\pi d} = \frac{2\tau}{\pi d}
= \frac{4(a+b)E(k)}{\pi^2 d},
\]
\[
p(2) = P(A \cap B) = \frac{(a+b)(\pi - 2E(k))}{\pi^2 d}.
\]
This is the result from [2, pp. 57-58]. There it was obtained as special case of the more general result in Corollary 4.2 [2, p. 56].

Remark. If the angle \(\phi \) is constant, then we have
\[
P(A \cup B) = \frac{a+b+c}{\pi d} \quad \text{and} \quad P(A \cap B) = \frac{a+b-c}{\pi d}
\]
with \(c = \sqrt{a^2 + b^2 - 2ab \cos \phi} \). This yields
\[
p(0) = 1 - \frac{a+b+c}{\pi d}, \quad p(1) = \frac{2c}{\pi d}, \quad p(2) = \frac{a+b-c}{\pi d},
\]
see Santaló [5, pp. 77-78].
3 Special cases

If $a = b$, we have $k = 1$, $E(1) = 1$, and therefore

$$p(0) = 1 - \frac{2a(\pi + 2)}{\pi^2 d}, \quad p(1) = \frac{8a}{\pi^2 d}, \quad p(2) = \frac{2a(\pi - 2)}{\pi^2 d}.$$

If $a \neq 0$ and $b = 0$, then $k = 0$ and $E(0) = \pi/2$, and therefore $P(A \cup B) = P(A) = 2a/(\pi d)$. This is the result of the classical Buffon needle problem.

References

[1] J.-É. Barbier: Note sur le problème de l’aiguille et le jeu du joint couvert, *Journal des mathématiques pures et appliquées*, 2d ser., 5 (1860), 273-286.

[2] U. Bäsel: *Geometrische Wahrscheinlichkeiten für nichtkonvexe Testelemente (Geometrical Probabilities for Non Convex Test Bodies)*, PhD thesis, FernUniversität Hagen, Hagen (Germany) 2008.

[3] A. Duma, M. Stoka: Hitting probabilities for random ellipses and ellipsoids, *J. Appl. Prob.* 30 (1993), 971-974.

[4] J. F. Ramaley: Buffon’s Noodle Problem, *Amer. Math. Monthly* 76 (1969), 916-918.

[5] L. A. Santaló, *Integral Geometry and Geometric Probability*, Addison-Wesley, London, 1976.

[6] E. Seneta, K. H. Parshall, F. Jongmans: Nineteenth-century developments in probability: J. J. Sylvester, M. W. Crofton, J.-É. Barbier and J. Bertrand, *Arch. Hist. Exact Sci.* 55 (2001), 501-524.

Uwe Bäsel

HTWK Leipzig,
Fakultät für Maschinenbau und Energietechnik,
PF 30 11 66, 04251 Leipzig, Germany

uwe.baesel@htwk-leipzig.de