Professional Skills Requirement of Mechanical Engineers

W Omar Ali Saifuddin Wan Ismail¹, Noraini Hamzah², Ireana Yusra Abdul Fatah¹, Azami Zaharim²

¹ Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
² Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia.

Abstract. Professional Skills is the basic requirement that all engineers need to master in the current job market. This study was conducted throughout peninsular Malaysia using the Soft Skills Model introduced by the Ministry of Education (MoE). Among the objectives of this study is the level of requirement of the Soft Skills (SS) element to produce a competitive Mechanical Engineer and identify the most dominant Soft Skills needed in the current job market against Mechanical Engineers. The questionnaire distributed to respondents and data was analysed using XL-STAT 2014 software to obtain Discriminant Analysis (DA) to achieve the objective of the study. The overall percentage for (SS) elements is 91% respectively. This study will be a complementary set for the students of Mechanical Engineering in Malaysia. Mastering the features required by the industry makes it easy for students to put themselves in the real job world.

1. Introduction

Soft Skills

The Ministry of Education (MoE) has emphasised on standard methods and objectives to measure the students’ soft skills. Among the elements emphasised are psychomotor, communication, English proficiency, leadership, ethics, spirituality and emotional intelligence. All universities need to incorporate these elements into the program’s learning outcomes to evaluate student achievement [1]. Soft skills, generic skills and employability skills refer to modern engineering graduates [2] who need to be skillful in every aspect of this skill if they want to succeed at work then carry out successful work at the workplace [3] in helping to improve the capabilities of a company [4]. It is the primary asset for any workforce at the professional level, manager or business owner [5].

![Soft Skills Model](image_url)

Figure 1. Soft Skills Model
Based on Figure 1, there are seven elements of Soft Skills outlined by (MoE) for reference of all universities. i. **Communication Skills:** through effective communication skills, one will try to absorb and adapt [6] with news or situation that has the potential to reduce concerns and improve performance [7] as claimed by employers to meet high market demands in the industry employment [8] especially engineering graduates [9]. ii. **Critical Thinking and Problem Solving Skills:** reform in education is now increasingly focusing on essential processes of thinking, including problem-solving items [10,11]. Critical thinking and judgment are needed for engineering at a professional level to solve workplace problems [12,13]. Critical thinking is a step to make assumptions, testing of legitimacy, seeing things from different points of view, and taking into account every action [14,15,16]. As future graduates, university students need to equip themselves with critical thinking and problem-solving skills [17,18] as this is the focus of employers in hiring a new workforce [19]. iii. **Teamwork Skills:** teamwork is a high-level need that needs to be addressed [20]. Students believe that they are studying teamwork skills through the curriculum approach [21], joining sports teams or volunteers to work in an organisation that does not involve profit [22]. iv. **Continuous Learning and Information Management:** through the development of the methods used by incorporating the adapted learning, it can address the various learning styles of students and improve the effectiveness of the use of technology and information management [23]. v. **Entrepreneurial Skills:** nowadays, entrepreneurial skills are considered the ideal strategy for expanding productivity and overall development of any organisation [24] and being recognised as one of the critical skills [25], among engineering graduates [26]. Graduates not only have business opportunities and manage their businesses but also to create jobs for others [27,28,29]. vi. **Professional Ethics and Moral:** professional ethics is the best practice for all engineering students and engineering practitioners and advisable to stick to this principle [30] for the well-being of society which is the essence of engineering profession [31]. vii. **Leadership Skills:** essential skills are personality skills that are related to interpersonal skills such as leadership skills [32,33] that can develop the quality of competent leadership skills [34].

Based on the Program Outcomes (PO), engineering students are expected to master the skills, knowledge and attitudes through programs offered. That includes the following items: i. Engineering Knowledge; ii. Problem Analysis; iii. Design/Development of Solutions; iv. Investigation; v. Modern Tool Usage; vi. The Engineer and Society; vii. Environment and Sustainability; viii. Ethics; ix. Communication; x. Individual and Team Work; xi. Life-Long Learning; and xii. Project Management and Finance [35]. The items contained in (PO) are closely related to the employability of mechanical engineering graduates also involve the professional skills required by the industry.

2. **Materials and methods**
The research was conducted throughout the Peninsular of Malaysia. It is also involved in Mechanical Engineering industrial activities. A set of questionnaires is distributed by researchers to obtain feedback from industry, employers and organisations involved in the process of finding and securing the workforce in this field. All surveys have distributed, updated into XL-Stat software. All of the data generated, and the results of the study included Descriptive Statistics (DS) and Discriminant Analysis (DA).

3. **Results and discussions**
A total of 300 respondents have responded to the question item with a different current position. Eight items for Soft Skills (Communication) - (SSA), seven items Soft Skills questions (Critical Thinking
and Problem Solving Skills) - (SSB), five Soft Skills questions (Teamwork) - (SSC), three-question item of soft skills (Continuous Learning and Information Management) - (SSD), four Soft Skills questions (Entrepreneurship Element) - (SSE), three Soft Skills questions (Professional Ethics and Moral) - (SSF) and four Soft Skills questions (Leadership) - (SSG).

Table 1. Descriptive Statistics Demographics

No.	Gender	Frequency	Percentage
1	Man	240	80.00
2	Woman	60	20.00

Table 1 shows the Histogram and Descriptive Statistics Gender Demographics with the number of respondents noted, 240 were men and 60 women. It involves staff in heavy, medium and small industries throughout Peninsular Malaysia.

Table 2. Descriptive Statistics Demographics

No.	Current Position	Frequency	Percentage
1	Management & Administration	100	33.33
2	Senior Engineers	72	24.00
3	Senior Technologist	38	12.67
4	Engineers	90	30.00

Table 2 shows the Histogram and Descriptive Statistics Current Position Demographics of respondents have work experience of more than five years in the industry, especially in the mechanical engineering field and engineering department.

Table 3. Percentage of Classification of Level Needed

Formula	Percentage	Level	Justification
80.6 - 100	Five	Very High	
60.7 - 80.5	Four	High	
40.8 - 60.6	Three	Moderate	
20.9 - 40.7	Two	Low	
1.00 - 20.8	One	Very Low	

Percentages used in this study were divided into five categories, as shown in Table 3 based on the Likert Scale (1932).

i. Soft Skills (Communication) - (SSA)

Mean of the question item i. SSA1 (4.37); ii. SSA2 (4.43); iii. SSA3 (4.47); iv. SSA4 (4.34); v. SSA5 (4.42); vi. SSA6 (4.30); vii. SSA7 (4.31); and viii. SSA8 (4.32).
Table 4. Descriptive Statistic Question Item Soft Skills (Communication)

Question Item	Frequency	Percentage	Level of Need
SSA1: Ability to communicate ideas, effectively, and with confidence, verbally and in writing	273	91.00	Very High
SSA2: Ability to practice active listening skills and provide feedback	292	97.34	Very High
SSA3: Ability to make a presentation expressly with confidence and appropriate to the audience level	276	92.00	Very High
SSA4: Ability to use technology in a presentation	260	86.67	Very High
SSA5: Ability to negotiate and reach agreement	278	92.67	Very High
SSA6: Ability to communicate with participants of communication with different cultures	260	86.67	Very High
SSA7: Ability to develop personal communication skills	275	91.66	Very High
SSA8: Ability to use non-verbal skills	258	86.00	Very High

Table 4 shows the question items SSA2 are ranked first with a percentage (97%) followed by SSA5 (93%), SSA3 (92%), SSA7 (92%), SSA1 (91%), SSA4 (87%), SSA6 (87%) finally is SSA8 (86%). The researcher collected the result shows significant as a ref [6,7,8,9].

ii. Soft Skills (Critical Thinking and Problem Solving Skills) - (SSB)

Mean of the question item i. SSB1 (4.52); ii. SSB2 (4.47); iii. SSB3 (4.57); iv. SSB4 (4.28); v. SSB5 (4.43); vi. SSB6 (4.56); and vii. SSB7 (4.48) as shown.

Table 5. Descriptive Statistics Question Item Soft Skills (CTPSS)

Question Item	Frequency	Percentage	Level of Need
SSB1: Ability to identify and analyse problems in complex and blurring situations, and make a justified evaluation	282	94.00	Very High
SSB2: Ability to expand and improve thinking skills such as describing, interpreting and evaluating discussions	282	94.00	Very High
SSB3: Ability to find ideas and find alternative solutions	281	93.66	Very High
SSB4: Ability to think beyond the reach	259	86.33	Very High
SSB5: Ability to make decisions based on substantial evidence	287	95.66	Very High
SSB6: Ability to survive and to give full responsibility 300 100.00 Very High
SSB7: Ability to understand and adapt to a new community and working culture 274 91.33 Very High

Table 5 shows the question item SSB6 lead the highest value with percentage value (100%), followed by item SSB5 with percentage (96%), SSB1 (94%), SSB2 (94%), SSB3 (94%), SSB7 (91%) and SSB4 (86%). Percentage gives the impression that the element of the Critical Thinking and Problem-Solving Skills needed by engineering students as a ref [10,11,12,13,14,15,16,17,18,19] mentioned in the research before.

iii. Soft Skills (Teamwork)

The Mean values recorded are as follows: i. SSC1 (4.46); ii. SSC2 (4.38); iii. SSC3 (4.41); iv. SSC4 (4.43); and SSC5 (4.46).

Table 6. Descriptive Statistic Question Item Soft Skills (Teamwork)

Question Item	Frequency	Percentage	Level of Need
SSC1: Ability to build relationships, interact with others and work effectively with them to achieve the same objectives	279	93.00	Very High
SSC2: Ability to understand and take alternate roles between the group leader and group members	267	89.00	Very High
SSC3: Ability to recognise and respect, behaviours and beliefs of others.	263	87.66	Very High
SSC4: Ability to contribute to planning and aligning the outcome of the group's efforts	280	93.33	Very High
SSC5: Responsible for group decisions	287	95.66	Very High

Table 6 shows the SSC5 question items got the highest percentage requirement reading (96%), followed by SSC4 (93%), SSC1 (93.00%), SSC2 (89%) and SSC3 (88%). As mention before in ref [20,21,22], all the item gives their contribution to producing the competitive of Mechanical Engineers in the future.

iv. Soft Skills (Continuous Learning and Information Management)

The Mean values recorded by the researcher are as follows: i. SSD1 (4.39); ii. SSD2 (4.44); and iii. SSD3, (4.56).

Table 7. Descriptive Statistic Question Item Soft Skills (CLIM)

Question Item	Frequency	Percentage	Level of Need
SSD1: Ability to locate and manage relevant Information from multiple sources	279	93.00	Very High
SSD2: Ability to accept new ideas and capable of autonomous learning	267	89.00	Very High
SD3: Ability to develop curiosity and a thirst for knowledge 287 95.66 Very High

Table 7 shows the question item SSD3 gets the highest percentage requirement reading (96%), followed by SSD1 (93%) and SSD2 (89%) as a ref [23] mention before, the effectiveness of the use of technology and information management should be improved and up to date.

v. Soft Skills (Entrepreneurship)
Mean values recorded are as follows: i. SSE1 (4.29); ii. SSE2 (4.17); iii. SSE3 (4.21) and iv. SSE4 (4.12).

Table 8. Descriptive Statistic Question Item Soft Skills (Entrepreneurship)

Question Item	Frequency	Percentage	Level of Need
SSE1: Ability to identify business opportunities	258	86.00	Very High
SSE2: Ability to design business planning	239	79.67	High
SSE3: Ability to build, explore and seize business and employment opportunities	251	83.67	Very High
SSE4: Ability to work alone	252	84.00	Very High

Table 8 shows the SSE1 question items get the highest percentage requirement reading (86%), followed by SSE4 (84%), and SSE3 (84%). The only question in a high group is SSE2 (80%). According to the ref [24,27,28,29], entrepreneurship is one of the strategies to manage properly by the graduate to fulfil the needed of the job and task on the engineering fields.

vi. Soft Skills (Professional Moral and Ethics)
The Mean values recorded are as follows: i. SSF1 (4.41); ii. SSF2 (4.38); and iii. SSF3 (4.47).

Table 9. Descriptive Statistic Question Item Soft Skills (Professional Ethics and Moral)

Question Item	Frequency	Percentage	Level of Need
SSF1: Ability to understand economic, environmental and socioeconomic effects in professional practice	283	94.83	Very High
SSF2: Ability to analyse and decide on ethical-related issues	270	90.00	Very High
SSF3: Ability to practise ethical behaviour, also to have a sense of responsibility towards society	281	93.66	Very High

Table 9 shows the question item SSF1 got the highest percentage (95%), followed by SSF3 (94%), and SSF2 (90%). To produce the competitive of the mechanical engineer, an institution of higher education must show good manners and principle, as mention before in ref [30,31].

vii. Soft Skills (Leadership)
The Mean values recorded are as follows: i. SSG1 (4.22); ii. SSG2 (4.35); iii. SSG3 (4.30); and iv. SSG4 (4.36).

Table 10. Descriptive Statistic Question Item Soft Skills (Leadership)

Question Item	Frequency	Percentage	Level of Need
SSG1: Knowledge of basic theories of leadership	247	82.34	Very High
SSG2: Ability to lead the project	275	91.66	Very High
SSG3: Ability to understand and take alternate roles	271	90.34	Very High
between team captains and team members			
SSG4: Ability to oversee team members	269	89.67	Very High

Table 10 shows the SSG2 question items got the highest percentage requirement reading (92%), followed by SSG3 (90%), SSG4 (90%), finally is SSG1 (82%). According to ref [32,33,34], the quality of competent leadership skills can be developed and learn time to time with the best attitude of the leader.

Fig. 2 shows a histogram ratio of the percentage of the requirement that involves seven Soft Skills: i. SSA - Communication (91%); ii. SSB - Critical Thinking and Problem Solving Skills (94%); iii. SSC - Teamwork (92%); iv. SSD - Continuous Learning and Information Management (95%); v. SSE - Entrepreneurship Elements (84%); vi. SSF - Professional Ethics and Morals (93%); and vii. SSG - Leadership (89%). The results of the study have shown that all the elements strongly required by the employers and the industry to the graduates of Mechanical Engineering. It is complementary to each other to produce the best result on an engineering organisation. It must be mastered completely before facing the real world, as mentioned in a ref [35].

Discriminant Analysis

Discriminant Analysis (DA) is used in systematic scientific research [36,37,38] to identify clusters [39], discriminating against two or more groups [40,41,42]. Four types of clusters are involved in Management and Administration, Senior Engineers, Senior Technicians and Engineers. DA is also used to validate the classification of careful observations [43] classification of identified groups [44],
and it is a classification technique [45] on observations performed [46] by researchers at the early stage of study [47].

Table 11. Wilks’ Lambda Test (Rao Estimate - Position)

Criteria	i: Management & Administration	Value	Criteria	ii: Senior Engineers	Value
Lambda	0.069	11.145	Lambda	0.069	11.095
F (Observed value)	1.261	102	F (Observed value)	1.262	102
DF1	788	<0.0001	DF1	785	<0.0001
DF2	<0.0001	0.05	p-value	<0.0001	0.05
p-value	alpha		alpha		

iii: Senior Technologist	iv: Engineers		
Criteria Lambda	Value	Criteria Lambda	Value
F (Observed value)	10.988	F (Observed value)	10.804
DF1	1.262	DF1	1.262
DF2	782	DF2	779
p-value	<0.0001	p-value	<0.0001
alpha	0.05	alpha	0.05

Table 11 (i, ii, iii, and iv) shows the Discriminant Analysis of the results of the Wilks' Lambda Test (Rao Estimate) obtained for the Soft Skills - (position) clusters for i. Management and Administration; ii. Senior Engineers; iii. Senior Technologist and; iv. Engineers. The test shows that H0: The vector mean of the four clusters is the same and Ha: At least one mean vector is different from the others. Based on the analysis, the resulting p-value is lower than the significant level of alpha = 0.05. Hence, the three hypotheses H0 Zero rejection, and alternative Ha hypotheses are accepted. The risk of rejecting the H0 zero hypothesis is when the accuracy is lower than 0.01%. The four clusters are different from each other [48].

Table 12. Error Matrix for Budget Samples

From / To	1	2	3	4	Total	% Correct
1	75	21	0	4	100	75.00
2	8	61	0	3	72	84.72
3	0	10	28	0	38	73.68
4	7	20	0	63	90	70.00

Table 12 shows the formulation of the matrix of errors in the sample estimates involving four Cluster Type Positions. Based on the table: i. One hundred respondents from Management and Administration with 75% correct percentage; ii. Seventy-two respondents from Senior Engineer with 85% correct; iii. Thirty-eight respondents from Senior Technician with percentage right 74%; and iv.
Ninety respondents among engineers with a percentage of 70%. That means Senior Engineer answered questions item of the study with the highest level of accuracy.

4. Conclusions
Overall, it can be stated by the researcher that industry in Malaysia needs the seven elements of Soft Skills in obtaining competitive Mechanical Engineers. It can be proved by the evidenced available in the results of the study. The most dominant Soft Skills is Continuous Learning and Information Management. Employers and engineering organisations today expect every engineer always strive to find and get the latest inputs as well as efficient in technologically advanced. These soft skills are combined with the knowledge and attitudes to produce future high-quality Mechanical Engineering workforce following the expectations expected by the (MoE) and the Malaysian industry.

References
[1] Mentransformasi Sistem Pendidikan. Rancangan Malaysia Kesebelas, 2016-2020: Hala Tuju. Unit Perancang Ekonomi, Jabatan Perdana Menteri.
[2] Kilam I. K., Jyoti Sharma (2013). Analysis and evaluation of various soft skills training models employed by private technical educational institutions in india. Vol. 2, Issue 2.
[3] Inayatullah Kakepoto, Noor Abidah Mohd Omar, Yusuf Boon, S M Zafar Iqbal (2012). Perspectives on oral communication skills for engineers in engineering profession of Pakistan. International Journal of Applied Linguistics & English Literature. Vol. 1 No. 5; September 2012 [Special Issue on General Linguistics Perspectives.
[4] Cushing Anderson, John F. Gantz. (2013). Skills requirement for tomorrow’s best jobs helping educators provide students with skills and tools they need. IDC Analyse the future.
[5] Dipawalee Santosh Mishra, (2016). Engineering employability skills required by employers in india. International Research Journal of Engineering and Technology (IRJET). Vol. 3, Issue: 02 Feb-2016.
[6] Najib Ahmad Marzuki, Che Su Mustaffa & Zarina Mat Saad. (2015). Emotional intelligence: it’s relationship with communication and information technology skills. Asian Social Science. Retrieved.
[7] Bramhall, E (2014). Effective communication skills in nursing practice. Nursing Standard. 29, 14, 53-59.
[8] Rosdiadee Nordin (2013). Technical communication skills among recent electrical and electronics engineering graduates in job industries. 164 (2013). Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
[9] Vijaya Lakshmi D. (2016). Significance of language labs in engineering education. International Journal of Humanities in Technical Education. Institute of Technology, Bhimavaram, (Andhra Pradesh).
[10] Pusat Perkembangan Kurikulum (2002). Kemahiran Berfikir dalam Pengajaran dan Pembelajaran. Pusat Perkembangan Kurikulum, Kementerian Pendidikan Malaysia.
[11] Bahagian Jaminan Kualiti (2004). Panduan Kriteria dan Standard bagi Program Bidang Pendidikan. Jabatan Pendidikan Tinggi, Kementerian Pendidikan Malaysia.
[12] Stevens R., A. Johri, and K. O’Connor, Professional Engineering Work, Chapter 7 in Cambridge Handbook of Engineering Education Research, edited by A. Johri and B.M. Olds, Cambridge University Press, New York, 2014.
[13] Hector Montiel Campos, Alenjandro Magos Rubio, Gerardo Haces Atondo & Yarissa Marcela Palma Chorres (2015). Relationship between Creativity, Personality and Entrepreneurship: An Exploratory Student, Mexico.
[14] Brookfield S.D., Teaching for Critical Thinking, Jossey-Bass, San Francisco, 2012.
[15] Mansoor Fahim., Maryam Pezeshki (2012). Manipulating Critical Thinking Skills in Test Taking. International Journal of Education. Vol. 4, No. 1.
[16] Forrest Thompson, H. Lee Washington (2015). Critical Thinking Skills and Teaching
Accounting: A Comparative Study. Journal of Finance and Accountancy. Vol. 19, March, 2015.

[17] Colley, B. M., Bilics, A. R., & Lerch, C. M. (2012). Reflection: A Key Component to Thinking Critically. The Canadian Journal for the Scholarship of Teaching and Learning, 3(1), 1-19.

[18] Charles E. Baukal (2015). Promoting Critical Thinking during Problem Solving: Assessing Solution Credibility. Proceedings of the 2015 Zone III Conference of the American Society for Engineering Education.

[19] Shazaitul Azreen Rodzalana, Maisarah Mohamed Saab (2015). The Perception of Critical Thinking and Problem Solving Skill among Malaysian Undergraduate Students. Procedia-Social and Behavioral Sciences 172 (2015) 725 – 732 Global.

[20] David Burkus ((2013). 10 Practices from the Most Innovative Organizations.

[21] Cathie McClellan (2016). Assessment Update • January–February 2016 • Vol. 28, Number 1

[22] Salpeter, M. (2012). “7 Soft Skills You Need to Get Hired in 2013.” Aol Jobs. Retrieved.

[23] Roselainy Abdul Rahman, Yudariah Mohammad Yusof, Hamidreza Kashefi, Sabariah Baharun (2012). Developing Mathematical Communication Skills of Engineering Students. Procedia-Social and Behavioral Sciences 46 (2012) 5541 – 5547.

[24] Amineh Aali, Nader Naderi, Bijan Rezaie, Habib Jafari, Mohammad Bagher Aali (2016). Examine the Relationship between Organizational Justice and Organizational Commitment with Entrepreneurial Skills (Case Study: Urmia Industrial Estate). International Journal of Contemporary Applied Sciences. Vol. 3, No. 2, February.

[25] Salwah Che Mat, Siti Mistima Maat, Norhatta Mohd (2015). Identifying Factors that Affecting the Entrepreneurial Intention among Engineering Technology Students. 2nd Global Conference on Business and Social Science-2015, GCBS-2015, 17-18 September 2015, Bali, Indonesia. Procedia-Social and Behavioral Sciences 211 (2015) 1016 – 1022.

[26] Daniela Cristina Momete. Joining Economic and Engineering Perspectives – A Tool for Successful Entrepreneurs. The 6th International Conference Edu World 2014 “Education Facing Contemporary World Issues”, 7th - 9th November 2014. Procedia-Social and Behavioral Sciences 180 (2015) 395 – 400.

[27] Hasniyati Hamzah, Zahiriah Yahya, Abdul Ghani Sarip & Yasmin Mohd Adnan (2016). Impact of Entrepreneurship Education Programme (EEP) on Entrepreneurial Intention of Real Estate Graduates.

[28] Aleksander Kucel, Peter Robert, Marian Buil & Nuria Masferrer (2016). Entrepreneurial Skills and Education-Job Matching of Higher Education Graduates. European Journal of Education, Vol. 51, No. 1, 2016.

[29] European Council (2012). Towards Growth Friendly Consolidation and Job Friendly Growth, In: Council, M.O. T. E. (Ed) (Brussels, European Council Publishing Department).

[30] Krishnamurthy. N. Forensic Civil Engineering and Professional Ethics. Proceedings of the International Conference on Forensic Civil Engineering, Nagpur, India 21,22,23 January 2016.

[31] Jaghannath, K. Ethics and values: The Need for Student Awareness of Workplace Value Systems. International Journal of Engineering Research and General Science Vol. 4, 2016.

[32] David J. Demiang (2015). The Growing Importance of Social Skills in the Labor Market, Harvard University and NBER.

[33] Aseel Berglund and Fredrik Heintz (2014). Integrating Soft Skills into Engineering Education for Increased Student Through put and more Professional Engineers, IDA, Linkoping University, Sweden.

[34] Manshoor Hussain Abbasi, Attiya Siddiqi, Rahatul Ain Azim (2011). Role of Effective Communications for Enhancing Leadership and Entrepreneurial Skills in University Students. International Journal of Business and Social Science Vol. 2 No. 10; June 2011.

[35] Engineering Programme Accreditation Manual (2012). Malaysia.

[36] Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z., Zain, S.M.,
& Dominick, D. (2013). Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia. Environmental Science, Processes & Impacts 1-12.

[37] Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) a case study. Water Research, 38, 3980–3992.

[38] Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques-a case study. Analytica Chimica Acta, 538, 355–374.

[39] Aminu Ibrahim, Hafizan Juahir, Mohd Ekhwan Toriman, Adamu Mustapha, Azman Azid, Hamza A Isiyaka. Assessment of Surface Water Quality Using Multivariate Statistical Techniques in the Terengganu River Basin. Malaysian Journal of Analytical Sciences, Vol. 19 No 2 (2015): 338-348

[40] Juahir, H., Zain, S.M., Yusoff, M.K., Hanidza, T.I.T., Armi, A.S.M., Toriman, M.E., Mokhtar, M., 2011. Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environ. Monit. Assess. 173, 625–641.

[41] Fermo, P., Berretta, G., Facino, R.M., Gelmini, F., Piazzalunga, A., (2013). Ionic profile of honey as a potential indicator of botanical origin and global environmental pollution. Environ. Pollut. 178, 173–181.

[42] Retnam, A., Zakaria, M.P., Juahir, H., Aris, A.Z., Zali, M.A., Kasim, M.F., (2013). Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia. Mar. Pollut. Bull. 69 (1–2), 55–66.

[43] Azimah Ismail a, Mohd Ekhwan Toriman, Hafizan Juahir, Sharifuddin Md Zain, Nur Liyana Abdul Habir, Ananthy Retnam, Mohd Khairul Amri Kamaruddin, Roslan Umar, Azman Azid (2015) Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques. Marine Pollution Bulletin.

[44] Manjunath, B.G., Frick, M. and Reiss, R.D. (2012). Some Notes on Extremal Discriminant Analysis. Journal of Multivariate Analysis. 103: 107–115.

[45] Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z., Zain, S. M. and Dominick, D. (2013). Spatial and temporal air quality pattern recognition using chemometric techniques: a case study in Malaysia. Environmental Science: Processes and Impact. 15(9):1717-1728.

[46] Azid, A., Juahir, H., Aris, A.Z., Toriman, M.E., Latif, M.T., Zain, S.M., Yusof, K.M.K.K. and Saud, A.S.M. (2014). Spatial analysis of the air pollutant index in the southern region of peninsula Malaysia using environmetric techniques. From Sources to Solution. 307-312.

[47] Azid, A., Juahir, H., Ezani, E., Toriman, M.E., Endut, A., Rahman, M.N.A., Yunus, K., Kamarudin, M.K.A., Hasnam, C.N.C., Saud, A.S.M., and Umar, R. (2015). Identification source of variation on regional impact of air quality pattern using chemometric. Aerosol and Air Quality Research. 1-14

[48] Mohamad Romizan Osman, Azman Azid, Hafizan Juahir, Kamaruzzaman Yunus, Mohammad Azizi Amran, Ahmad Dasuki Mustafa, Fazureen Azaman, Syahrir Farihan Mohamed Zainuddin (2015). Indoor air quality at higher institution’s laboratory: a study on pre-symptoms, awareness and understanding among occupants. Jurnal Teknologi.

Acknowledgments
The research fully funded under the Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin (UniSZA), Centre for Engineering Education Research, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), and Ministry of Higher Education (MoE).