Superconductivity and electronic state of annealed single-crystals of FeSe$_{1-x}$Te$_x$ $(0.6 \leq x \leq 1)$ studied by specific heat

Masato Imaizumi, Takashi Noji, Tadashi Adachi, and Yoji Koike
Department of Applied Physics, Tohoku University, Sendai, 980-8579, Japan
E-mail: noji@teion.apph.tohoku.ac.jp

Abstract. We have investigated the superconductivity and electronic state in FeSe$_{1-x}$Te$_x$ $(0.6 \leq x \leq 1)$ from the specific heat measurements, using annealed single-crystals of good quality. First, it has been found that annealed single-crystals of $x = 0.6 - 0.9$ exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, T_c. Both $2\Delta_0/k_BT_c$ [Δ_0: the SC gap at 0 K] and $\Delta C/(\gamma_n-\gamma_0)T_c$ [ΔC: the specific-heat jump at T_c, γ_n: the electronic specific-heat coefficient in the normal state, γ_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest at $x = 0.7$ and are 4.29 and 2.38, respectively, indicating that the superconductivity is strong-coupling. Secondly, it has been found that the γ_n value is much larger than that estimated from the band calculation and increases with increasing x and suddenly decreases above $x = 0.9$ due to the antiferromagnetic ordering around $x = 1$. The large value of γ_n is guessed to be due to the enhancement of the effective mass related to spin fluctuation and/or orbital fluctuation. Finally, it has been found that there remains a finite value of the electronic specific-heat coefficient at 0 K even in the SC state at $x = 0.8 - 0.9$. This suggests that a phase separation into SC and normal-state regions takes place at $x = 0.8 - 0.9$. Otherwise, there might remain a normal-state pocket at the Fermi surface even in the SC state.

1. Introduction
Recently discovered iron-based superconductors have vigorously been studied owing to their high superconducting (SC) transition temperature, T_c, and the variety of crystal structures, as in the case of copper-based superconductors. Among the iron-based superconductors, FeSe$_{1-x}$Te$_x$ has attracted interest, because this compound has the simplest crystal structure. It has been reported that T_c of FeSe$_{1-x}$Te$_x$ increases with increasing x, shows a maximum 14 K at $x = 0.6$ [1,2] and that the superconductivity disappears at $x = 1$ because of the appearance of an antiferromagnetic order [3,4].

As for single crystals of FeSe$_{1-x}$Te$_x$ $(0.5 \leq x \leq 1)$, Sales et al. [5] have reported that only single crystals of $x \sim 0.5$ exhibit bulk superconductivity. On the other hand, our magnetic-susceptibility and specific-heat measurements have revealed that single crystals of $x = 0.5 - 0.9$ annealed at 400°C for 100 h in vacuum exhibit bulk superconductivity [6,7]. In this paper, we have prepared FeSe$_{1-x}$Te$_x$ $(0.6 \leq x \leq 1)$ single-crystals annealed at different temperatures for different times in vacuum and investigated the superconductivity and electronic state from the specific-heat measurements.
2. Experimental

Single crystals of Fe$_{1-x}$Te$_x$ were grown by the Bridgman method. The details are described in the literature [6]. As-grown crystals obtained thus were annealed at 300 - 500°C for 100 - 200 h in vacuum. Specific-heat measurements were carried out by the thermal-relaxation method, using a commercial apparatus (Quantum Design, PPMS).

3. Results and discussion

Figure 1 shows the temperature dependence of the specific heat of FeSe$_{1-x}$Te$_x$ (0.6 \leq x \leq 0.9) single-crystals as-grown and annealed at 400°C for 100 h and 200 h. It is found that a jump of specific heat is clearly observed at T_c for annealed crystals of x = 0.6 - 0.9, indicating that bulk superconductivity appears in these crystals. This is consistent with our magnetic-susceptibility results [6]. It is remarkable that the specific-heat jump at T_c of x = 0.7 is clearer in the 200 h annealed crystal than in the 100 h annealed crystal, while the specific-heat jump of x = 0.9 is not different between 100 h and 200 h annealed crystals.

In order to estimate the electronic specific heat, C_{el}, the phonon specific heat, C_{ph}, must be subtracted from experimental values of the specific heat, C. In order to estimate C_{ph}, we prepared a non-SC annealed single-crystal of Fe$_{0.95}$Cu$_{0.05}$Se$_{0.4}$Te$_{0.6}$ also and measured the specific heat. The specific heat was well fitted using the equation, $C = \gamma_n T + \beta T^3 + \delta T^5 + \varepsilon T^7$. Values of β, δ and ε obtained...
by the fit were used to estimate C_{ph} for annealed single-crystals of FeSe$_{1-x}$Te$_x$, namely, $C_{ph} = \beta(\alpha T)^3 + \delta(\alpha T)^3 + \varepsilon(\alpha T)^3$. Here, α is a parameter reflecting the difference in the atomic mass between Fe$_{0.92}$Cu$_{0.08}$Se$_{0.06}$Te$_{0.04}$ and FeSe$_{1-x}$Te$_x$ and is nearly unity. Then, C_{el} of the SC annealed single-crystals was obtained as $C_{el} = C - C_{ph}$. The value of the electronic specific-heat coefficient in the normal state, γ_n, was also estimated as C_{el}/T above T_c. In this process, α and γ_n were determined taking into account the so-called entropy balance that the electronic entropy in the SC state accords with that in the normal state at the onset temperature of superconductivity, T_{onset}.

Figure 2 shows the x dependence of γ_n and the residual electronic specific-heat coefficient at 0 K in the SC state, γ_0, for FeSe$_{1-x}$Te$_x$ ($0.6 \leq x \leq 1$) single-crystals annealed at 400°C for 100 h and 200 h. The γ_n values are one order of magnitude larger than those estimated from the band calculation: 3.055 mJ/molK2 in FeSe and 4.783 mJ/molK2 in FeTe [8]. They increase with increasing x for $x = 0.6 - 0.9$. The large value of γ_n is guessed to be due to the enhancement of the effective mass related to spin fluctuation and/or orbital fluctuation. The decrease in γ_n above $x = 0.9$ is due to the antiferromagnetic ordering around $x = 1$.

As for the γ_0 value, it is nearly zero for $x = 0.6$ and 0.7 annealed for 200 h, meaning that there is no normal-state region at 0 K in these crystals. In contrast, it is finite for $x = 0.8$ and 0.9 annealed for 100 h and 200 h also, indicating that there remain normal-state carriers at 0 K even in the SC state. Compared with the annealing for 100 h, the annealing for 200 h is found to be most effective for $x = 0.7$, because the γ_0 value has decreased to zero and the specific-heat jump at T_c has become clear with increasing annealing-time. Through the long annealing, it seems that the distribution of Se and Te in the crystal of $x = 0.7$ has become homogeneous so that the SC state has become homogeneous in the crystal [9]. For $x = 0.8$ and 0.9, on the other hand, it does not seem that the SC state becomes homogeneous through further long annealing, because the effects of the annealing for 200 h are not so different from those of the annealing for 100 h. Therefore, it is guessed that a phase separation into SC and normal-state regions inevitably takes place at $x = 0.8 - 0.9$. Otherwise, inhomogeneity might appear in the momentum space, namely, there might remain a normal-state pocket at the Fermi surface even in the SC state at $x = 0.8 - 0.9$. According to our recent muon-spin-relaxation experiment, the normal state is guessed to be a magnetic one related to the antiferromagnetic ordering around $x = 1$ [10].

Figure 2. Dependences on x of the electronic specific-heat coefficient in the normal state, γ, and the residual electronic specific-heat coefficient at 0 K in the SC state, γ_0, for FeSe$_{1-x}$Te$_x$ single-crystals annealed at 400°C for 100 h and 200 h.

Finally, we estimate several SC parameters from the data of C_{el} for annealed single-crystals of FeSe$_{1-x}$Te$_x$. The SC condensation energy at 0 K, U_0, is estimated using the equation,

$$U_0 = \frac{\gamma_0}{2} \left(T_{onset} - \int_0^{T_{onset}} \frac{C_{el}}{T} dT \right).$$

The SC gap at 0 K, Δ_0, is estimated using the equation, $\Delta_0 = \left\{ \frac{4 \pi^2 k_B^2 U_0}{3(\gamma_n - \gamma_0)} \right\}^{1/2}$. Here, k_B is the Boltzmann constant. As shown in Fig. 3, it is found that the superconductivity is strongest for $x = 0.7$ annealed for 200 h. In this crystal, $2\Delta_0/k_B T_c$ and $\Delta C/(\gamma_n - \gamma_0) T_c$ are as large as 4.29 and 2.38, respectively, indicating that the superconductivity is strong-coupling. As for $x = 0.8$ and 0.9, the
superconductivity is found to become weak with increasing x, which will be due to the coexistence of SC and normal-state carriers.

4. Summary
We have investigated the superconductivity and electronic state of annealed FeSe$_{1-x}$Te$_x$ (0.6 \leq x \leq 1) single-crystals from the specific-heat measurements. The appearance of bulk superconductivity has been confirmed at x = 0.6 - 0.9. The superconductivity is strongest at x = 0.7 and it is strong-coupling. The γ_n value has been found to be large and increase with increasing x at x = 0.6 - 0.9, which is guessed to be due to the enhancement of the effective mass related to spin fluctuation and/or orbital fluctuation. At x = 0.8 - 0.9, it has been suggested that a phase separation into SC and normal-state regions takes place; otherwise there might remain a normal-state pocket at the Fermi surface even in the SC state.

References
[1] Yeh K-W, Huang T-W, Huang Y-L, Chen T-K, Hsu F-C, Wu P M, Lee Y-C, Chu Y-Y, Chen C-L, Luo J-Y, Yan D-C and Wu M-K 2008 Europhys. Lett. 84 37002
[2] Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L and Mao Z Q 2008 Phys. Rev. B 78 224503
[3] Li S, de la Cruz C, Huang Q, Chen Y, Lynn J W, Hu J, Huang Y-L, Hsu F-C, Yeh K-W, Wu M-K and Dai P 2009 Phys. Rev. B 79 054503
[4] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L and Mao Z Q 2008 Phys. Rev. Lett. 102 247001
[5] Sales B C, Sefat A S, McGuire M A, Jin R Y, Mandrus D and Mozharivskyj Y 2009 Phys. Rev. B 79 094521
[6] Noji T, Suzuki T, Abe H, Adachi T, Kato M and Koike Y 2010 J. Phys. Soc. Jpn. 79 084711
[7] Imaizumi M, Noji T, Adachi T and Koike Y, Proc. 23rd Int. Sym. Superconductivity, Tsukuba, 2010 Physica C, in press
[8] Ma F, Ji W, Hu J, Lu Z-Y and Xiang T 2009 Phys. Rev. Lett. 102 177003
[9] Taen T, Tsuchiya Y, Nakajima Y and Tamegai T 2009 Phys. Rev. B 80 092502
[10] Adachi T, Imaizumi M, Noji T, Kawamata T, Ohishi K, Watanabe I and Koike Y unpublished