Original article
Scand J Work Environ Health 1987;13(4):290-300
doi:10.5271/sjweh.2048

Bone and joint pathology in workers using hand-held vibrating tools. An overview.
by Gemne G, Saraste H

Affiliation: National Institute of Occupational Health, Unit of Occupational Medicine, Solna, Sweden.

The following article refers to this text: 2014;40(2):105-209

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/3324310

This work is licensed under a Creative Commons Attribution 4.0 International License.
Bone and joint pathology in workers using hand-held vibrating tools

An overview

by Gösta Gemne, MD, PhD,1 Helena Saraste, MD, PhD2

GEMNE G, SARASTE H. Bone and joint pathology in workers using hand-held vibrating tools: An overview. Scand J Work Environ Health 13 (1987) 290-300. A literature evaluation was made with regard to the radiological documentation of bone and joint pathology in the hands and arms of workers using vibrating tools. There is evidence that work with pneumatic percussive tools (such as chipping hammers and scalers) may cause premature elbow and wrist osteoarthrosis, although of very low prevalence. This work-related disorder is not specific to vibration exposure. Instead, it is likely to result from the strong dynamic and static joint loading (often in extreme positions of the joint) and the repetitive hand-arm movements (sometimes also repeated minor traumatization) typical for tool manipulation in any heavy labor. Exposure to low-frequency percussion may, however, play a particular etiologic role: damage to the joint cartilage by repeated shocks from the tool, additional articular load (and consequent strain) associated with a vibration-induced increase in the need for joint stabilization and higher gripping forces, the tonic vibration reflex (which increases muscle contraction), and a stronger grip induced when tactile sensibility is diminished by vibration. So far, no investigations have ventured into the great complexity of possible confounders and effect modifiers. — A constitutional susceptibility may be required to produce osteoarthrosis. — The allegation that hand-arm vibration exposure causes an excess prevalence of bone cysts, vacuoles, Kienböck’s disease, or pseudarthrosis of the scaphoid has not been validly documented. — Exposure to vibration of higher frequencies (such as from rotating drills, grinders, and chain saws) does not seem to be associated with excess bone and joint pathology. — The observed large variation in the prevalence of skeletal disorders may be explained by biodynamic and ergonomic differences between various occupations.

Key terms: bone cysts, elbow, hand, hand-arm vibration, joint load, Kienböck’s disease, manual work, osteoarthrosis, scaphoid pseudarthrosis, wrist.

The question of whether certain pathological changes in the bones and joints of the hand-arm system can be directly attributed to vibration exposure from hand-held tools is still largely unsettled. There seems to be a common opinion that conclusive evidence is lacking (105), and, as Taylor & Brammer (122) have stated, “it has proved difficult to differentiate between the effects of vibration and those of heavy manual work involving constant repetitive movements of the hands and arms to manipulate the tool or work piece [p 4]”.

Already in 1929, German legislation recognized some types of bone and joint pathology as a prescribed disease, liable to workmen’s compensation if there were no other probable causes than vibration exposure (41, 111, 120). In France, “hyperostotic arthrosis” and Kienböck’s disease have been accepted since 1947 as being vibration-induced (113).

In the present report a literature survey has been made to evaluate the epidemiologic evidence for radiologically demonstrable effects of vibration on the bones and joints of the hand and arm. The possible relationship between vibration exposure and changes in the shoulder bones and joints requires, for several reasons, a separate survey and has not been included.

Methods

A search was made in data bases such as Medline and CIS, in manual literature systems, eg, Excerpta Medica, and in reference lists of papers published during this century. About 250 pertinent works were initially examined. Some 20 rarely cited references could not be retrieved through available library facilities. Many of the references were excluded on the grounds that they proved to be review articles echoing other reviews or were otherwise of peripheral or minor interest. Among the remaining 180 references, about 125 were original clinical and radiological works pertinent to the subject and allowing a judgment of the validity of results, or orthopedic and radiological surveys of interest.

Reports of original investigations were excluded for the following reasons:

1. Lack of appropriate comparison groups that would have made possible an evaluation of the validity of the radiological diagnosis and the observed prevalences. A few investigations were excluded because there was obvious doubt concerning the data on vibration exposure.

2. Lack of age data for the vibration-exposed subjects and the subjects showing radiological pathology. This lack precludes evaluation of the pathology presented.

1 National Institute of Occupational Health, Solna, Sweden.
2 Department of Orthopaedic Surgery, Karolinska Institute, Stockholm, Sweden.

Reprint requests to: Dr G Gemne, National Institute of Occupational Health, Unit of Occupational Medicine, S-171 84 Solna, Sweden.
3. Doubt concerning the method of selecting subjects, for example, a study group consisting of only those persons who had consulted a physician because of complaints related to the pathology in question (Berkson's fallacy).

4. Unclear presentation of the results, together with a lack of data which justified the conclusions.

5. Limited number of subjects. This criterion also led to the exclusion of all case reports.

There were a few exceptions to the strict application of these exclusion criteria. Some reports presented original observations in a way that left little doubt as to the validity of the results, especially some German works on coal miners (for instance papers by Betzel, Bürkle de la Camp, Hagen, Laarmann, and Rostock). A few other papers were also considered because they contained data on certain topics of interest. Some works could be used in part to clarify particular types of pathology.

Thirty-nine papers (of which 26 were reports from original investigations) remained after the exclusion, in addition to some 20 other papers on various relevant subjects and several orthopedic reviews. The excluded works are listed in table 1 together with the reasons for their exclusion.

Excess pathology in the reviewed works

There were 15 studies reporting on various types of excess pathology that could be assumed to differ reliably from (appropriate) comparison groups. These reports are listed in table 2, which also gives the essential details on the groups examined.

German works. Following the first description of a work-related bone and joint disease by Holtzmann in 1926 (52), which concerned osteoarthrosis in the shoulder joints of a tanksmith (“Kesselschmiede”), degenerative changes in the wrist and elbow have been reported in surveys by several German authors (8, 19, 46, 47, 48, 72, 73, 74, 111, 114, 115, 116). An original work on bone and joint pathology in special occupational groups was published by Gelbke (38), who observed a higher than normal prevalence of cysts in the carpal bones of tanksmiths, and another by

Author and year of publication	Reference number	Lack of reference group	No age data on pathological cases	Selection bias
Anda (1960)	2	X	X	X
Baric et al (1981)	6	X	X	X
Barnes et al (1969)	7	X		
Blau et al (1981)	10	X		
Bovenzi et al (1980)	13	X		
Brückner et al (1964)	31	X		
Bugnion (1951)	20	X	X	
Bugyi (1957)	22	X		
Burke et al (1977)	23	X		
Caprotti et al (1979)	25	X	X	
Causani et al (1968)	26	X	X	
Casioli et al (1968)	27	X	X	
Cazamian et al (1954)	28	X	X	
Cornet et al (1962)	29	X		
Dart (1946)	30	X		
Decoux et al (1957)	31	X		
Deplas et al (1948)	32	X		
DiVito (1970)	33	X		
Fawer (1975)	35	X	X	
Fiorito et al (1977)	36	X		
Fusco et al (1963)	37	X		
Germaino et al (1980)	39	X	X	
Graczyk (1973)	40	X		
Grigorjan (1984)	42	X		
Grünig (1940)	43	X	X	
Harada & Fukushima (1956)	49	X	X	
Horváth et al (1979)	54	X		
Horváth et al (1960)	56	X	X	
Hunter et al (1945)	57	X	X	
Iwata (1960)	59	X	X	
Iwata et al (1974)	60	X		
Kouba (1967)	68	X		
Kulicz & Stasiów (1973)	69	X	X	
Latihnen et al (1974)	75	X	X	
Léslék & Magos (1956)	80	X		
Longley (1969)	86	X		
McLaren (1937)	88	X		
Meila et al (1963)	89	X	X	
Mermet (1960)	91	X	X	
Mintz & Fraga (1973)	93	X		
Müller (1974)	94	X		
Nazarow (1964)	95	X		
Oester & Selig (1975)	97	X	X	
Pardi et al (1982)	98	X	X	
Peters (1964)	102	X		
Pramatarov & Mitrev (1965)	103	X		
Priolo et al (1979)	104	X	X	
Ravault et al (1963)	109	X	X	
Roche et al (1961)	112	X	X	
Roche et al (1962)	113	X	X	
Salto et al (1980)	117	X	X	
Seyerling (1930)	118	X	X	
Stépanek & Kandus (1970)	119	X	X	
Viehweg (1966)	124	X		

* Control group not examined radiologically.
Table 2. Reports of reliably or reasonably well documented excess bone and joint pathology in workers using hand-held vibrating tools and other occupational groups (chronological order).

Author and year of publication	Reference number	Findings
Meiss (1933)	90	Humerus exostosis (“myositis ossificans”) in 20 of 107 riveters and in 0 of 100 farm workers, painters, etc.
Gelbke (1950)	38	Carpal bone cysts in 20 of 50 tanksmiths and in 7 of 67 quarry workers without vibration exposure
Kellgren & Lawrence (1952)	62	Osteoarthrosis of carpo-metacarpal joints in 8 of 18 nonvibration-exposed cotton workers (performing repetitive light work with their hands), in 18 of 74 vibration-exposed or unexposed coal miners, and in 12 of 81 other workers with miscellaneous occupations without vibration exposure
Lawrence (1955)	76	Elbow, wrist, and hand osteoarthrosis more frequent in miners than in other occupational groups; 16 % elbow osteoarthrosis in coal miners who had not drilled; 31 % in those who had drilled for more than one year, no osteoarthrosis in light manual and office workers; conclusion: “It is obvious that osteoarthrosis often occurs in those who have done no drilling and is, moreover, a feature of all heavy work studied (p 257)”; results attributed to awkward postures of underground workers
Lloyd-Davies et al (1957)	85	Minimal cystic changes in 6 of 31 dockyard workers and in 2 of 36 referents
Bittersohl (1960)	9	More elbow osteoarthrosis in tanksmiths and steel construction workers than in nonvibration-exposed workers with or without heavy manual work; more cysts in strongly vibration-exposed quarry workers than in tanksmiths and construction workers
Partridge & Duthie (1968)	100	Joint deformities in the fingers (mostly distal interphalangeal joint) in 36 of 206 dockers without vibration exposure and in 4 of 171 civil servants, after age stratification; trauma considered to be a pathogenic factor in addition to repetitive load on the finger joints
Kumlin et al (1973)	71	Vacuoles in 7 of 35 chain sawyers (39—58 years of age) and 2 cases of small cysts in 2 random, age-matched, nonvibration-exposed persons from a normal population
Horváth et al (1974)	55	6 cases of Kienböck’s disease in 450 chain sawyers, 2 of these after acute trauma (0 in 450 age-matched manual workers); 3 cases of navicular pseudarthrosis in vibration-exposed persons, 1 of these posttraumatic (0 in referents)
Rafalski et al (1977) (resumé of results)	108	Longitudinal five-year study of 207 chain sawyers, 97 referents of same age; with statistical significance, more cysts and osteoporosis in the hand, more degeneration and osteoporosis in the elbow of chain sawyers; no detailed statistics given; the pathological changes in the chain sawyers stated to arise mostly in the first 1 to 3 years of sawing
Lie (1980)	84	After age stratification, small excess of hand, wrist and right elbow arthrosis and wrist cysts in 70 road construction workers as compared with 32 nonvibration-exposed referents with manual work; some dose-response relationship
van den Bossche & Lahaye (1984)	11	Excess prevalence of carpal bone vacuoles and cysts in 282 male and 60 female workers using screwdrivers and nutrunners, as compared with 401 referents; this observation also in 78 % of less than 20-year-old workers with less than 5 years of exposure
Härdönen et al (1984)	44	Study on 279 chain sawyers, vibration-exposed at least 1 year (mean exposure 10 years) and 178 regionally and age-matched peat-bog workers without vibration exposure, radiographic evaluation by two independent radiologists without knowledge of patient occupation; 3 of 279 chain sawyers with lunate necrosis, 2 with navicular necrosis, 0 cases among referents; a history of “wrist strain” for 4 of the 5 cases with carpal bone pathology
Malchaire et al (1986)	87	Cross-sectional study on 82 stone quarry workers using pneumatic tools and 75 age-matched manual workers not exposed to vibration; cysts in the hand bones demonstrated in 13 of 82 exposed persons below 30 years of age and in 4 of 70 unexposed subjects
Bovenzi et al (1987)	12	After age adjustment, excess prevalence of wrist osteoarthrosis in 67 vibration-exposed foundry workers as compared with 46 referents doing manual work

Bittersohl (9), who reported on elbow arthrosis in tanksmiths and steel construction workers.

The types of pathology recognized by the German school are the following:

I. **Exostoses** at the sites of tendon insertion, mostly at the elbow.

II. Premature **osteoarthrosis** ("arthrosis deforms- mans"), chiefly in the elbow but also occurring in the wrist. **Type I lesions** are considered to arise as a reac-

tive formation of new bone tissue caused by the strain on tendons by the muscles used to manipulate the tools and ward off the shocks they produce. **Type II lesions** are taken to result from eventual damage to the joint cartilage by the constant repeated pressing together of the articular surfaces. This phenomenon is said to occur to a larger extent when the muscles become fatigued and can no longer parry and damp the shocks from the tool. The consequent wear and tear would lead to subchondral necroses and, secondary to this, a deformation of the joint surfaces. This pathogene-

292
sitis is also said to explain the preferred localization of the lesions. In the elbow both types develop, but in the wrist only type II appears since the muscles acting on this joint do not take part in reducing the shock impacts. The overall prevalence in the German material of bone and joint pathology accepted for compensation was (and still is) very low, about 1% (41, 120, see also the Discussion following this paper). This rate is in accordance with the early autopsy data of Heine (50), who showed that, at the time of his study, pronounced osteoarthrosis in the elbow of the general population was rare before the age of 60 years.) About 70% of this is osteoarthrosis, chiefly of the elbow but also of the wrist and shoulder. Due to the low prevalence and the observed absence of correlation between the severity of the changes and exposure time, the development of the arthrotic lesions is considered to require the presence of a constitutional weakness. The lack of “vibration specificity” has been pointed out repeatedly; the pathology seen in persons working with pneumatic tools can also be observed in nonvibration-exposed occupational groups. Osteochondritis dissecans has also been mentioned (41, 47, 74, 115) as a type of pathology often seen in persons working with pneumatic tools.

III. Special types of pathology (“Sonderformen”): Kienböck’s disease (lunate malacia) and pseudarthrosis of the scaphoid. The general opinion in the German works appears to be that these lesions are to be considered as sequelae of acute trauma or repeated, nonrecognized microtraumatization over a long period, with a disturbance of the blood flow to the afflicted bones. This traumatization may or may not be associated with pneumatic tool work.

IV. Cysts and vacuoles in the hand bones.

Works other than German. An excess prevalence of osteoarthrosis of the wrist and elbow joints in some occupational groups has also been reported from other countries in works that appear to be well-controlled, notably by Lawrence (76) in the wrist of (age-stratified) vibration-exposed and unexposed coal miners, by Lie (84) in the wrists and elbows of Norwegian road workers using pneumatic drilling machines, and by Bovenzi et al (12) in the wrists and elbows of (age-stratified) foundry workers as compared with “manual workers”. In the two latter investigations a dose-response relationship was also indicated. Increased osteoarthrosis of the elbow was (possibly) also observed by Rafalski et al (108) in chain sawyers (“degeneration in the elbow”).

The aforementioned work by Lawrence discussed the role of vibration exposure in explaining the pathology observed. Of those coal miners who had not drilled, 16% had elbow osteoarthrosis, whereas for those who had drilled for more than one year the prevalence was 31%. The difference was “statistically nonsignificant”. There were no cases of elbow osteoarthrosis among the light manual and office workers. The author concluded that “it is obvious that osteoarthrosis often occurs in those who have done no drilling and is, moreover, a feature of all heavy work studied”.

A similar viewpoint was taken by Anderson (3, 4), who suggested that awkward postures more than other possible etiologic factors (such as heavy lifting) may induce the osteoarthrosis seen in, for instance, miners, who often work continuously in stooped positions in narrow coal faces. Anderson also emphasized the observations of Lawrence (77), who described carpo-metacarpal osteoarthrosis in nonvibration-exposed cotton mill workers performing repetitive (although not heavy) movements with their fingers in transferring pieces of cotton from one place to another. These latter findings are in accordance with the results of another well-controlled study, that of Partridge & Duthic (100), who observed excess finger joint arthritis in dockers without vibration exposure.

An excess prevalence of Kienböck’s disease and pseudarthrosis of the scaphoid was reported by Horváth et al (55) and Härkönen et al (44) in chain sawyers. Higher than normal prevalences of cyst and/or vacuoles in various bones of the hand and arm were described in a few reports of investigations without obvious major deficiencies in their design (table 2). Meiss (90) reported on what he considered to be a special form of pathology characteristic for workers using pneumatic tools, namely, “reactive” exostosis on the anterior face of the distal part of the humerus in riveters. Similar observations were reported by Malchaire et al (87) and Bovenzi et al (12).

Excess pathology in the excluded works

Some of the excluded works reporting on high pathology prevalence may be mentioned particularly. Bovenzi et al (13), who examined shipyard workers radiologically but did not compare them with a reference group, found a 20% prevalence of wrist and a 10% prevalence of elbow osteoarthrosis, together with a 30% prevalence of hand bone cysts. Horváth et al (56), using no reference group, reported a 23% prevalence of hand arthritis in chain sawyers but did not give age data for the cases with pathology. Among the works excluded because of Berkson’s fallacy or other suspected selection bias, Caprotti et al (25) studied 300 road workers who had consulted a clinic because of complaints in the hand and arm, but they had no reference group. These authors claimed prevalences of 79 and 58% for “osteoarticular lesions” of the elbow and wrist/hand, respectively. Grüning (43) reported on the results of radiological examinations performed on 688 miners in his clinic between 1930 and 1938. In this material he found a 49% prevalence of elbow changes without mentioning age data for the cases. Horváth et al (54) reported on excess distal radioulnar joint arthritis in 978 chain
sawyers in comparison with 758 randomly selected adults as referents.

Absence of excess pathology in the reviewed works

There were 17 works which reported that no excess prevalence of certain types of pathology was observed (table 3).

Convincing evidence of the absence of excess cyst prevalence was shown not only by James et al (61) but also by Taylor and his collaborators (123), the latter in a radiographic examination of the hands of 205 foundry workers engaged in chipping and grinding and 63 manual workers without vibration exposure. The radiographs were assessed by two independent radiologists who were unaware of the occupational history of the subjects. There were no statistically significant differences in the prevalence of bone cysts in the two populations.

Absence of excess pathology in the excluded works

Several works among those discarded from the main evaluation because of shortcomings in the exclusion criteria reported on negative findings or markedly low prevalences of various types of bone and joint pathology. Cornet et al (29) found “no elbow arthrosis” in 28 men working with pneumatic hammers, Fusco et al (37) reported “no pathology” in 14 riveters, Peters (102) detected “no pathology” in 13 airplane industry workers, and Pramatarov & Mitrev (103) showed “no pathology related to vibration exposure” in 26 miners (with high-frequency drills). In 50 tanksmiths Lélek & Magos (80) found only two cases of elbow changes of the type that had been described in persons working with pneumatic tools by other authors. Bugnion (20) found an excess occurrence of cysts and vacuoles in nonvibration-exposed manual and nonmanual workers. There were fewer cysts in persons doing manual work than in those who had nonmanual occupations. Brückner et al (17) reported no increased prevalence of cysts and/or vacuoles and denied correlation between cysts and vibration exposure. Bugyi (21, 22) observed an absence of changes in carpal bones. Dart (30) observed “minute cysts” in the carpal bones of only one person out of 20, working with high-speed, rotating, electric polishing tools. Lélek & Magos (80) reported having found no excess of Kienböck’s disease or pseudarthrosis of the scaphoid in 50 tanksmiths, and Cornet et al (29) no cases of Kienböck’s disease among 28 pneumatic hammer workers.

Discussion

Epidemiologic criteria for the exclusion of publications

To be able to answer the question of whether or not vibration exposure as such may cause bone and joint changes, the proper design of an investigation into the prevalence of such changes should involve a comparison of radiological pathology between one group working with hand-held vibrating tools and a reference group of manual workers regularly using tools that do not vibrate. Very few papers had taken this requirement into account. Exclusion because of a lack of appropriate reference groups was considered imperative.

The variability in diagnoses made by different radiologists is often considerable. In a survey of joint diseases in the United States, the results of Wright & Acheson (125) corroborated “the fact, already widely acknowledged, that comparisons of prevalence cannot afford to ignore the phenomenon of observer variation [p 390]”. This opinion was shared by Kellgren & Lawrence (63). Papers could not be excluded on the basis of radiographs not having been evaluated by two or more independent observers since such a method would have left only a very small number of works. The variability — also emphasized by James et al (61) — was, however, taken as a reason for paying less attention to the results of some investigations that showed only a very small difference between a group working with vibrating tools and a reference group.

Relation between tool types and pathology

It is obvious that, in discussions concerning the possible effect of vibration on bones and joints, a clear distinction should be made between the pathology that has been associated with work with hand-held pneumatic tools producing low-frequency spectra and that associated with work with other types of tools producing nonimpulsive vibration with higher frequencies. The low-frequency tools deliver repeated shocks continuously to the hand and arm. Most of these vibrations with frequencies up to about 40 Hz are transmitted to the bones of the elbow joint in work with normal gripping and press forces (67), thus constituting a potential risk for bone and joint injury. In the present review, only one (108) of the papers finally considered (table 2) reported on joint pathology related to the exclusive use of nonstriking tools. An association between this type of tool and pathology was positively denied in several papers (table 3).

Pathogenesis and etiology

Osteoarthrosis. Anderson and his co-workers (3, 4, 99), agreeing with, for instance, Kellgren & Lawrence (62) and Lawrence (78), believe local osteoarthrosis (65) to be associated with heavy manual work, especially when involving awkward postures and consequent static load which makes the articular surfaces come into prolonged contact. According to this assumption, work with pneumatic tools (which involves a considerable amount of static load and, in several occupations, awkward postures) may conceivably damage articular
cartilage in a way which eventually leads to osteoarthrosis.

The phases of this pathogenetic theory, as well as that expressed by the German school, closely resemble views expressed in recent surveys, for instance by Lee et al (79) and Radin and co-workers (106, 107). Supported by their findings in animal experiments, the latter authors believe that “impulsive loading” of the joint (such as by shocks from pneumatic tools) eventually damages the cartilage. The sequelae of this phenomenon can be of the following two types: either disorganization of the subchondral bone and nonprogressive chondromalacia or trabecular bone remodeling and stiffening, which results in progressive cartilage damage and osteoarthrosis. Lee et al (79) agree and point out that there seems to be an optimum cartilage load above and below which the prevalence of joint disease increases. If this threshold is surpassed (which may well happen in occupations with heavy loads on the joints) extrinsic forces — especially those caused by isometric muscle contraction — may result in osteoarthrosis by the mechanism just described.

With this interpretation, there are additional joint-loading factors specifically related to work with hand-held vibrating tools that may contribute to the development of osteoarthrosis. In comparison with work with nonvibrating tools, guiding a vibrating tool properly (especially a low-frequency tool producing shocks) necessitates a firmer grip around the handle and a greater amount of joint stabilization. Efficient work also requires pressing the tool against the workpiece. Furthermore, vibration stimulates muscle contraction by way of the so-called tonic vibration reflex (45) and impairs tactility (82, 96). The increase in vibration perception threshold during vibration is even greater in persons occupationally exposed to vibration from hand-held tools (83). Both of these mechanisms lead to a tendency towards the use of extra muscle force (5), which may increase the risk not only of chronic tendon and nerve disorders but also, quite conceivably, of arthrosis by increasing joint load. Awkward postures of the hand and arm (frequent in many occupations employing vibrating tools) may increase this risk still further (3, 4) by increasing joint load on less wear-
resistant susceptible parts of the articular surfaces. Other factors may contribute as well. In a study without a comparison group, Mintz & Fraga (93) described cases of severe, premature osteoarthrosis in workers who used thongs as levers for lifting metal rods in a foundry. The changes were interpreted to have resulted from a greater load on the joint and stronger tangential friction on the articular cartilage caused by this method of work.

The "wear and tear" of everyday life eventually takes its toll in the form of the degeneration of joints (66). Repeated minor traumatization, for instance, by loads on the joint during heavy labor, has been assumed (100) to result in osteoarthrosis at a premature age. Similarly, long-time work involving constant repetition of movements with the fingers and hands, as for instance in cotton mill workers (64, 77) and coal miners (76), has caused premature osteoarthrosis.

According to the opinion expressed by Brailsford (14), osteoarthrosis is only manifested in those joints which have been subjected to abnormal stress and strain in a person "who also exhibits elsewhere the signs and symptoms referred to as rheumatism, fibrositis, etc [659]". This assumption agrees with the aforementioned German view, based on the very low prevalence of osteoarthrosis in workers using pneumatic tools, that a constitutional weakness is required to produce the damage. However, the relative importance of such a constitutional factor has not been clarified in epidemiologic studies on occupational groups.

Kienböck's disease and pseudarthrosis of the scaphoid. The prevalence of Kienböck's disease in occupational groups as a condition caused by the long-time use of hand-held vibrating tools has been estimated (81) at the low figure of 0.4 % in a male worker population, but this figure varies widely. The main etiologic factor in Kienböck's disease is considered to be an "unfavorable anatomical environment" (92) — which means anatomical variations in, for instance, ulnar length — while trauma is considered to be a rare cause. The etiology of Kienböck's disease has been discussed for a long time. In contrast to Laarmann (72) — who advocated a disturbance in the blood flow to the lunate bone as the cause of the malacia — Bürkle de la Camp (19) regarded the condition as the result of a fatigue fracture, eventually produced by a series of repeated small traumata. This reasoning also applied to the pseudarthrosis of the scaphoid seen as a very rare condition among the numerous coal miners consulting his clinic. Both authors agreed, however, that Kienböck's disease was an occupational disease entity that might be caused by work with pneumatic tools. In modern literature, pseudarthrosis of the scaphoid is considered to be the direct result of fracture, and microtraumatization has not been seriously considered as an etiologic factor (110).

Amphoux and his co-workers (1) made a radiographic examination of 30 workers with Kienböck's disease in the building industry and found evidence of previous unrecognized fracture in about half of the cases. In these workers, exposure to low-frequency vibrating tools was said to be very uncommon.

Cysts and vacuoles. Cysts in the hand bones, particularly the scaphoid, were described early (15) as sequelae of trauma. This idea has received support from more recent work. Thus, James et al (61) stated that these lesions are characterized clinically by an injury, a latency period, and, finally, the development of symptoms. The predilection sites were the first and third metacarpal bones, the styloid process of the ulna, and the scaphoid. It was concluded that heavy manual activity would appear to be an important predisposing factor in cyst formation.

Differences in pathology and prevalence in various studies

In view of the possible pathogenic mechanisms that have been described in this overview, it is obvious that biodynamic and ergonomic differences between various types of work (5) may well explain the variation in the observed prevalence of bone and joint pathology in occupational groups using hand-held vibrating tools.

Conclusions

There is evidence of an association between work with hand-held vibrating tools of the percussive, low-frequency type (less than about 40 Hz) — such as chipping hammers and scalers — and a higher than normal, although very low, prevalence of premature elbow and wrist osteoarthrosis. This excess work-related risk is, however, not specific to vibration exposure. Instead, the major etiologic factors appear to be the joint load associated with the manipulation of any tool in heavy manual work, repetitive movements of the hand and arm (often together with minor traumatization), loading of the joint surfaces in extreme positions (such as occurs in awkward postures), and static work. All these factors are prominent in work with hand-held vibrating tools of the percussive type.

Against this background it is, however, obvious that the following vibration-specific factors may also be incriminated: damage to the articular cartilage from shocks from pneumatic tools with low-frequency vibration, additional articular load (and consequent strain) associated with a vibration-induced increase in the need for joint stabilization and higher gripping and pressing forces to work with and guide the tools optimally, the tonic vibration reflex (which increases muscle contraction), and a stronger grip on the tool handle induced when tactile sensibility is diminished.
by vibration. So far, no investigations have even begun to take into account the great complexity of possible confounders and effect modifiers.

A constitutional susceptibility may be required to produce the osteoarthritic lesion.

Available data show a lack of a causal relationship between vibration exposure and the formation of bone cysts or vacuoles. Manual work, with or without concomitant trauma, seems to be the primary etiologic factor for this type of pathology.

The allegation that Kienböck’s disease or pseudarthrosis of the scaphoid may be typically induced by hand-arm vibration has not been validly documented.

An excess risk for bone and joint pathology has not been conclusively demonstrated to be caused by vibration exposure from tools with medium or high frequencies (such as rotating drills, grinders, and chain saws).

The variation in observed prevalences of osteoarthrosis and other bone and joint pathology may be explained by biodynamic and ergonomic differences between various occupations.

References

1. Amphoux M, Gentax R, Poli J-P, Sevin A. La maladie de Kienböck: Un accident de travail? Arch Mal Prof Med Trav Secur Soc 34 (1973) 309–320.
2. Anda B. Forekomsten av vasospastiske forstyrrelser ("hvite fingerer") blant gruvearbeidere i Sulitjelma [Occurrence of vasospastic disorders ("white fingers")] among miners in Sulitjelma]. Nor Hyg Tidskr 41 (1960) 123–147.
3. Anderson JA. Rheumatism in industry: A review. Br J Ind Med 28 (1971) 103–121.
4. Anderson JA. Arthritis and its relation to work. Scand J Work Environ Health 10 (1984) 429–433.
5. Armstrong TJ, Fine LJ, Radwin RG, Silverstein BS. Ergonomics and the effects of vibration in hand intensive work. Scand J Work Environ Health 13 (1987) 286–289.
6. Bario P, Frau P, Anni MS, Casciu G, Flore C, Le Mancoc A, Casula D. Indagini sulle alterazioni radiologiche dell’apparato osteoarticolare. G Ital Med Lav I (1979) 105–110.
7. Barnes R, Longley EO, Smith ARB, Allen JG. Vibration disease. Med J Aust 1 (1969) 901–905.
8. Betzel F. Presslufterkranzungen. Kompass, Mitteilungsbl Bergbau-Bergarbeiter. Int Arch Gewerbepathol Gewerbehyg 37 (1960) 97–109.
9. Blau E, Konetzke G, Enderlein G. Ergebnisse komplexer arbeitshygienischer und arbeitsmedizinischer Untersuchungen in Giessereibetrieben der DDR. Z Gesamte Hyg ihre Grenzgeb 27 (1981) 1–5.
10. Bossche J van den, Lahaye D. X-ray anomalies occurring in workers exposed to vibration caused by light tools. Br J Ind Med 41 (1984) 137–141.
11. Bovenzi M, Fioritto A, Volpe C. Bone and joint disorders in the upper extremities of chipping and grinding operators. Int Arch Occup Environ Health 59 (1987) 189–198.
33. DiVito G. Considerazioni clinico-radiologiche sulle osteo-arthropatie da vibrazioni. Lav Um 22 (1970) 64—70.
34. Dobek J, Rafalski H, Bernacki K. Zmiany rentgenograficzne w ukadzie kostowo-stawowym [X-ray changes in the osteo-articular system of sawyers]. Med Pr 28 (1977) 217—227. (English summary).
35. Fawer R. Pathologie professionnelle provoquee par les vibrations des maroarte-piqueurs et des perforatrices. Arch Mal Prof Med Trav Secur Soc 37 (1976) 739—760.
36. Fiorio A, Biava PM, Lombardo S. Motor effects of vibratory movements. Riv Med Lav Ig Ind 1 (1977) 99—117.
37. Fusco M, Poggi E, Rossi A, Sessa G. L'azione delle vibrazioni sull'apparato circulatorio periferico e sulla colonna vertebrale. Folia Med 46 (1963) 361—372.
38. Gelbke H. Hand- und Ellenbogengelenksveranderungen bei Schwerarbeitern. Z Orthop Ihre Grenzgeb 79 (1950) 122—142.
39. Germano D, Bellinghieri G, Zimarco G, Baratto C, Corvaja E. La malattia da strumenti vibranti: Approccio multidisciplinare allo studio della patologia indotta da martello pneumatico sulle estremita distali degli arti superiori. Riv Med Lav Ig Ind 4 (1980) 271—283.
40. Graczyk M. Lesions in the osseous-articular system of the upper extremities and cervical spine caused by mechanical vibration. Biul Inst Med Morsk Gdansku 24 (1973) 63—72.
41. Greinemann H. Behandlungsmoglichkeiten und -aussichten bei berufsbedingten Erkrankungen des Bewegungsapparates. Arbeitsmed Sozialmed Praventivmed 11 (1981) 272—279.
42. Grigorjan EA, Druzhinin VN. X-ray assessment of changes in the hand bones under the action of local low-frequency vibration in car body grinders [in Russian]. Gig Tr Prof Zabol (1984): 4, 40—42. (English summary).
43. Gruning P. Die Verteilung der "Erkrankungen der Muskeln, Knochen und Gelenke durch Arbeit mit Pressluftwerkzeugen" hinsichtlich ihrer Lokalisierung. Medizinische Fakultat, Westfälische Wilhelms-Universität zu Münster, Münster 1940. (Inaugural-Dissertation).
44. Harkönen H, Riihimäki H, Tola S, Mattsson T, Pekkarinen M, Zitting A, Husman K. Symptoms of vibration syndrome and radiographic findings in the wrists of lumberjacks. Br J Ind Med 41 (1984) 133—136.
45. Hagbarth KE, Eklund G. Motor effects of vibratory muscle stimuli in man. In: Granit R, ed. Muscular afferents and motor control. John Wiley & Sons, New York, NY 1965, pp 177—186.
46. Hagen J. Erkrankungen durch Pressluft-Werkzeugarbeit. In: Holstein E, ed. Arbeitsmedizin. Abhandlungen über Berufskeimheiten und derer Behütung. Heft 22. Barth Verlag, Leipzig 1947.
47. Hagen J. Erkrankungen durch Erschütterung bei Arbeit mit Pressluftwerkzeugen und gleichartig wirkenden Werkzeugen und Maschinen sowie durch Arbeit an Ankompleffmaschinen. In: Bürkle de la Camp H, Rostock P, ed. Handbuch der gesamten Unfallheilkunde, Bd 3. Enke Verlag, Stuttgart 1956, pp 595—608.
48. Hagen J. Klinik der entschädigungspflichtigen Berufskrankheiten. In: Handbuch der gesamten Unfallheilkunde, Vol III. Enke Verlag, Stuttgart 1965, pp 595—608.
49. Harada T, Fukuhara K. On the hazards of upper extremities caused by portable pneumatic tools — especially on X-ray findings of workers' elbows. Kobe J Med Sci 3 (1958) 179—184.
50. Heine J. Ueber die Arthritis deformans. Virchows Arch 260 (1926) 521—605.
51. Hellström B, Lange Andersen K. Vibration injuries in Norwegian forest workers. Br J Ind Med 29 (1972) 255—263.
52. Holtzmann F. Eine Gelenkveränderung durch Arbeit mit Presslufthammern. Zentralbl Gewerbehyg 3 (1926) 235—237.
53. Holtzmann F. Erkrankungen durch Arbeit mit Pressluftwerkzeugen. Umschau 33 (1929) 1002—1003.
54. Horváth F, Kákosy T. Arthrose des distalen radioulnaren Gelenkes bei Motorsägenbetreibern. Fortschr Röntgenstr 131 (1979) 54—59.
55. Horváth F, Kákosy T, Kovács L. Röntgenbefunde an den Handwurzelknochen von Motorsägenführern. Radiol Diagn 14 (1974) 583—594.
56. Horváth F, Kákosy T, Villányi G. Motorfürzesszol dolgozók kétségsontjainak strukturalis elváltozásairól. Magy Radiol 21 (1969).
57. Hunter D, McLoughlin AIC, Perry KMA. Clinical effects of the use of pneumatic tools. Br J Ind Med 2 (1945) 10—16.
58. Ivanchuk YV, Bazhinsky NN. On the incidence and manifestations of vibration disease in drillers and headworks men of underground mines in Arctic regions [in Russian]. Gig. Tr Prof Zabol (1967) 11, 31—35. (English summary).
59. Iwata H. Effects of rock drills on operators. Part 3: Joint and muscle pain and deformity of bone and joint. Ind Health 6 (1968) 47—58.
60. Iwata H, Katagiri Y, Katoni A. Vibration syndrome in chain saw operators in a mountain village. Acta Sch Med Univ Gifu 22 (1974) 479—484. (English translation from Japanese original).
61. James PB, Yates JR, Pearson ICG. An investigation of the prevalence of bone cysts in hands exposed to vibration. In: Taylor W, Pelmeir PL, ed. Vibration white finger in industry. Academic Press, London 1975, pp 43—52.
62. Kellgren JH, Lawrence JS. Rheumatism in miners: Part II X-ray study. Br J Ind Med 9 (1952) 197—207.
63. Kellgren JH, Lawrence JS. Radiological assessment of osteoarthritis. Ann Rheum Dis 16 (1957) 494—502. (English summary).
64. Kellgren JH, Lawrence JS. Osteo-arthritis and disk degeneration in an urban population. Ann Rheum Dis 17 (1958) 388—397.
65. Kellgren JH, Moore R. Generalized osteoarthritis and Heberden's nodes. Br Med J 1 (1952) 181—187.
66. Kelsey JL. Epidemiology of musculo-skeletal disorders. Oxford University Press, Oxford 1982. (Monographs in epidemiology and biostatistics, volume 3).
72. Laarmann A. Kahnbeinpseudarthrose und Mondbein-
nekrosen Pressluf tschäden. Dtsch Med J 12 (1961)
189—197.
73. Laarmann A. Differentialdiagnosen der Pressluf
- schäden. Zentralbl Arbeitsmed 20 (1970) 118—121.
74. Laarmann A. Berufskrankheiten nach mechanischen
Einzweckungen. Enke Verlag, Stuttgart 1977. 159 p.
75. Laitinen J, Puranen J, Vuorinen P. Vibration syndrome
in lumbermen (working with chain saws). J Occup
Med 16 (1974) 552—556.
76. Lawrence JS. Rheumatism in coal miners: Part III
Occupational factors. Br J Ind Med 12 (1955) 249—261.
77. Lawrence JS. Rheumatism in cotton operatives. Br J
Ind Med 18 (1961) 270—276.
78. Lawrence JS. Generalized osteoarthritis in a popula-
tion sample. Am J Epidemiol 90 (1969) 381—389.
79. Lee P, Rooney PJ, Sturrock RD, Kennedy AC, Carson
DW. The etiology and pathogenesis of osteoarthritis:
A review. Semin Arthritis Rheum 3 (1974): 3, 189—218.
80. Lélek I, Magos L. Röntgenuntersuchungen der Knochen
und Gelenke von Stahlgußputzern. Int Arch Gewer-
beopathol Gewerbehyg 15 (1956) 77—90.
81. Le van Loc M. Maladie de Kienbock d’origine profes-
sionnelle. Université de Paris, Paris 1976. (Thése).
82. Lidström I-M. Lokala vibrationers inverkan
in the mining and metallurgic industy. Roum Med Rev
19 (1985, pp 1106—1116.
83. Lidstrom I-M, Hagelthorn G, Bjerker N. Vibrati-
on effects on the hand and arm in industry. John Wiley & Sons, New York, 1982, pp 59—65.
84. Lie A. Helseundersøkelse av arbeidere i Oslo Veivesen.
Del I: Ledskader hos anleggsarbeidere [Health
examination of workers in the Oslo Road Administra-
tion: Part I Joint damage in construction workers].
York: Trygdedirektoratet, Arbetsforbundet, 1980.
(Report no HD 815/791220). (English summary).
85. Lloyd-Davies TA, Glaser EM, Collins CP. Absence of
Raynaud’s phenomenon in workers using vibratory
tools in a warm climate. Lancet 1 (1957) 1014—1016.
86. Longley EO. Vibration disease in timber workers in
New South Wales. In: Proceedings of the XVI inter-
national congress on occupational health, Tokyo 1969.
1969 pp 141—152.
87. Malchaire J, Maldague B, Huberlant JM, Croquet F.
Bone and joint changes in the wrists and elbows and
their association with hand and arm vibration exposure.
Ann Occup Hyg 30 (1986) 461—468.
88. McLaren JW. Disability of workers using pneumatic
drills with special reference to the radiological changes.
Lancet 2 (1937) 1296—1299.
89. Meila I, Braborescu E, Meila D. Aseptic osteonec-
sis of the lunate bone caused by repeated microtrauma
in the mining and metallurgic industry. Roum Med Rev
7 (1963) 89—93.
90. Meiss WC. Gelenkveränderungen durch die Benutzung
von durch Pressluft getriebenen Werkzeugen.
Monatschr Unfallheilkd 40 (1933) 453—462.
91. Mermet J. Contributions à l’étude de la pathologie des
membres supérieurs provoquée par l’utilisation des
matériaux pneumatiques. Université de Lyon, Lyon
1960. (Thése).
92. Michon J. Kienböck’s disease and complications of
injuries to the lunate bone. In: Tibania R, ed.
Le Hand. Volume II. WB Saunders, Philadelphia, PA
1985, pp 1106—1116.
93. Mintz G, Fraga A. Severe osteoarthritis of the elbow
in foundry workers. Arch Environ Health 27 (1973)
78—82.
94. Müller H. Röntgenologische Veränderungen an den
Knochen und Gelenken bei Kesselschmieden und bei
Schlossern. Arztli Dienst 31 (1974) 41—44.
95. Nazarov IG. X-ray diagnosis of osseous fibrosa cystica
in foundry cleaners (choppers) [in Russian]. Gig Tr Prof
Zabol (1964): 3, 10—13. (English summary).
96. Nishiyama K, Watanabe W. Temporary threshold shift
of vibratory sensation after clapping a vibrating handle.
Int Arch Occup Environ Health 49 (1981) 21—33.
97. Oester R, Selig R. Ergebnisse epidemiologischer Unter-
suchungen hinsichtlich der Gefährdungsmöglichkeit
durch Teilkörpervibration in metallbearbeitenden
Berufen. Z Ges Hyg 21 (1975) 118—119.
98. Partridge REH, Anderson JA, Duthie JIR. Lehrhuma-
tismeech le des ouvriers de l’industrie. Méd Hyg (Genève)
22 (1964) 360—362.
99. Partridge REH, Duthie JIR. Rheumatism in dockers
and civil servants: A comparison of heavy manual and
sedentary workers. Ann Rheum Dis 27 (1968) 559—568.
100. Pelnar PV, Gibb s GW, Pathak BP. A pilot investiga-
tion of the vibration exposure of miners in Eastern Canada. In: Bramer AJ, Taylor W, ed. Vi-
bration effects on the hand and arm in industry. John
Wiley & Sons, New York, NY 1982, pp 173—187.
101. Peters FM. A disease resulting from the use of pneu-
matic tools. J Occup Med 2 (1946) 55—66.
102. Piarato F, Leone A, Russo S, Bergamaschi A, Magnavita
N. Osteoartropatia da strumenti vibranti: Aspetti radi-
ologici. Radiol Med (Torino) 65 (1979) 899—903.
103. Priolo F, Leone A, Russo S, Bergamaschi A, Magnavita
N. Osteoartropatia da strumenti vibranti: Aspetti radi-
ologici. Radiol Med (Torino) 65 (1979) 899—903.
104. Pykkö I. The hand-arm vibration syndrome: Defini-
tions and assessment of symptoms. J Low Freq Noise
Vib 1 (1983): special issue, 6—18.
105. Radin EL. Mechanical aspects of osteoarthritis. Bull
Rheum Dis 26 (1976) 862—864.
106. Radin EL, Parker H, Pugh J, Steinberg R, Paul I, Rose
R. Response of joints to impact loading: III Rela-
. tionship between trabecular microfractures and carti-
lage degeneration. J Biomech 6 (1973) 51—57.
107. Rafalski H, Bernacki K, Switoniak T. The diagnostics
and epidemiology of vibration disease and hearing im-
pairment in motor sawyers. In: Wasserman DE, Tay-
lor W, ed. Proceedings of the International Occupa-
tional Hand-Arm Vibration Conference. US Depart-
ment of Health, Education and Welfare, Cincinnati,
OH 1977, pp 84—88. (NIOSH publ no 77-170).
108. Razemon l-P. Fracture des os du carpe. In: Tibiana
R, ed. Traité de chirurgie de la main. Volume 2. Mas-
son, Paris 1984, pp 667—692.
109. Rehm S. Chronische Wirkungen auf das Knochen-
und Gelenksystem. In: Dupuis H, ed. Wirkung mecha-
nischer Schwingungen auf das Hand-Arm-System.
Expertenkoollaborium 1982. Bundesanstalt für Arbeits-
schutz und Unfallforschung, Dortmund 1983, pp
19—28. (Forschungsbericht 348).
110. Roche L, Maitrepierre J, Lejeune E, Mermet J. Les
osteo-arthropaties des marteaux pneumatiques. Rev
Rhum 30 (1963) 723—733.
111. Razemon I-P. Fracture des os du carpe. In: Tibania
R, ed. Traitement de chirurgie de la main. Volume 2. Mas-
son, Paris 1984, pp 667—692.
112. Roche L, Maitrepierre J, Lejeune E, Mermet J. Les
atteintes du membre supérieur chez les ouvriers travail-
_lant au marteau pneumatique. Arch Mal Prof Med Trav
Soc Sec 22 (1961) 57—61.
113. Roche L, Maitrepierre J, Lejeune E, Mermet J. Das
Röntgenbild der “Vibrationskrankheit”. Roentgen-Eur
4 (1962) 111—119.
In Germany, vibration-induced diseases of the hand-arm system have been compensated for more than 50 years in cases of earning capacity reduction. Before 1976, bone and joint injuries due to vibration (no 25 in the list of occupational diseases) were only compensated after long-term intensive use of pneumatic tools. The majority of the cases occurred in the mining industry. Since 1977, hand-held vibrating tools with electric or combustion-engine drives have also been accepted as causing this disease (no 2103). Compensation has been paid to about 7,500 persons because of bone and joint injuries due to vibration. In 1984 this disease was in third place (about 10% of all compensated cases), after noise-induced hearing impairment and silicosis. The average reduction of earning capacity was about 24% and the average compensation has been paid to about 7,500 persons because of bone and joint injuries due to vibration. In 1984 this disease was in third place (about 10% of all compensated cases), after noise-induced hearing impairment and silicosis. The average reduction of earning capacity was about 24% and the average compensation was about 24% and the average compensation was DM 5,440 per year.

The incidence of "new" cases (ie, compensated for the first time) peaked in 1950 (1,210 cases). After a decrease to 200-300 in the 1970s, it was only 137 in 1984. In the 1970s, the mining industry predominated with 85% of the cases. After the inclusion of other vibrating hand-held tools, however, the proportion of cases in the remaining industrial branches (mainly the building, and the iron and metal industries) has increased to almost 30%.

In the mining industry, pneumatic pick hammers, without exception, are regarded as tools that may cause vibration-induced diseases. These tools are also extensively used in the building industry (partly with electric or combustion-engine drives). The cases occurring in the building industry are mainly caused by pick hammers, but also by track-packing machines, vibrating compressors, and pile drivers. In the iron and metal industry, pick hammers play an important role in installation and metallurgical operations. In addition, riveting hammers, chisel hammers, other handheld hammers, and the right angle grinders used in steel construction and casting cleaning have been shown to be health hazards.

The strong coupling between the hand and the tool handle, as well as resonance phenomena in the frequency range 15-20 Hz, are obviously important for the pathogenesis. In addition, however, constitutional factors in the form of a predisposition to degenerative processes in the joints of the hand-arm system seem to be important, since the prevalence of premature chronic degeneration in the group of workers exposed in the Federal Republic of Germany is below 1%. About 70% of all compensated cases concern the elbow joint, and 24.5% the wrist bones and joint. The minimum of exposure required for compensation is two years of work with low-frequency vibrating tools and strong coupling hand forces. The diagnostic procedure includes clinical and radiographic examinations. The radiographs must show clear degenerative changes, which must be considered as obviously premature and must be more pronounced in the most exposed arm.