Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY.
Phytoseiid mites (Acari: Mesostigmata) of Mohéli Island (Comoros Archipelago)

Serge Kreiter, Rose-My Payet, Hamza Abdou Azali

Mohéli is one of the four main islands constituting Comoros Archipelago, with Mayotte, Anjouan and Grande Comore Islands. It is the third Island closer from Madagascar after Mayotte and Anjouan. So far, no species of the mite family Phytoseiidae had been reported from this island. We report in this paper the results of a survey conducted at the end of 2018 in Mohéli Island, in which 18 species have been recorded.

Keywords survey; collection; taxonomy; systematics

Introduction

Mites of the family Phytoseiidae are all predatory species on phytophagous mites and small insects like thrips and whiteflies, on commercial plants and the wild vegetation. Several species are biological control agents for the control of pest organisms in both open and protected crops all around the world (McMurtry and Croft 1997; McMurtry et al. 2013).

This family is widespread around the world, presents on all continents except Antarctica, and consists of 2,521 valid species in 94 genera belonging to three subfamilies (Demite et al. 2020).

Biodiversity surveys in poorly investigated areas is still urgently needed and might result in the discovery of additional species potentially useful for biological control as well as having more information on the biodiversity of these areas (Kreiter et al. 2018a, b, 2020a, b, c, d; Kreiter and Abo-Shnaf 2020a, b, Kreiter et al. 2021).

In these perspectives, the more interesting area are probably those with a high level of biodiversity. Most of the Indian Ocean constitutes one of the highest world biodiversity area, those area being called hotspots, concept defined by Myers (1988) in order to identify the most immediately important areas for biodiversity conservation. The common characteristics of these hotspots is that they hold high endemism levels and have lost at least 70% of their original natural vegetation (Myers et al. 2000). Knowledge of the phytoseiid diversity in these high interest areas in the context of global climate changes may contribute to identify potential biological control agents (BCA) and future establishment of conservation programs.

Located in the Indian Ocean at around 1,000 km from the northern coast of Madagascar, 165 km from Mayotte and about only 70 km from Anjouan and Grande Comore Islands, Mohéli (Mwali in Shicomori language) Island is one of the four main islands constituting Comoros Archipelago, with Mayotte, Anjouan and Grande Comore. No phytoseiid species are known from this island.

The objective of this paper is to present the phytoseiid species reported in a survey conducted in early December 2018 in Mohéli Island.
Material and methods

The survey took place in Mohéli in the very beginning of December 2018. Plant inhabiting mites were collected from cultivated and wild plants in few locations mainly in the southern part of the island.

Mites were directly collected on leaves with a fine brush with or without a pocket lens or a stereoscopic microscope when available (large leaves and herbaceous plants) or by beating the plants (mainly shrubs and trees with very small or spiny leaves) and collecting the mites in a black plastic rectangular saucer 45 x 30 cm (Ref. STR 45, BHR, 71370 Saint-Germain-du-Plain, France). Collected mites were then transferred with a fine brush into small plastic vials containing 1.5 ml of 70% ethanol.

The mites were then all slide-mounted in Hoyer’s medium (Walter and Krantz 2009), the slides were dried at 45-50 °C for at least two weeks and then all examined and identified using a phase and interferential contrast microscope (DMLB, Leica Microsystèmes SAS, Nanterre, France). Characters of specimens were measured using a graded eyepiece (Leica, see above).

Chant and McMurtry’s (1994, 2007) concepts of the taxonomy of the family Phytoseiidae for identification and the world catalogue database of Demite et al. (2014, 2020) for distribution and information on descriptions and re-descriptions were used. The setal nomenclature system adopted was that of Lindquist & Evans (1965) as adapted by Rowell et al. (1978) and Chant & Yoshida-Shaul (1989) for the dorsal surface and by Chant & Yoshida-Shaul (1991) for the ventral surface. Pore (= solenostome) and poroid (= lyrifissure) notations are that of Athias-Henriot (1975). Macrosetal notation (Sge = genual macroseta; Sti = tibial macroseta; St = tarsal macroseta) are that of Muma and Denmark (1970). Numbers of teeth on the fixed and movable cheliceral digits do not include the respective apical teeth. Setae not referred to in Results section should be considered as absent. All measurements are given in micrometres (µm) and presented with the mean in bold followed by the range in parenthesis. Type of spermatheca or insemination apparatus are that of Denmark and Evans 2011. Only some species with only few measurements mentioned in the literature are provided in this paper. Classification of plants follows the APG IV classification of 2016 (ex. Byng et al. 2018). Specimens collected in fields in Mohéli Island within these surveys were all identified. Only very few single males or immatures collected during this study are not taken into account.

Specimens of each species are deposited in the mite collections of Montpellier SupAgro conserved in UMR CBGP INRA/IRD/CIRAD/SupAgro/University of Montpellier. The following abbreviations are used in this paper for institutions: CBGP = Centre de Biologie pour la Gestion des Populations; CIRAD = Centre International de Recherche Agronomique pour le Développement; INRAE = Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement; INRAPE = Institut National de Recherche pour l’Agriculture, la Pêche et l’Environnement; IRD = Institut de Recherche pour le Développement; MSA = Montpellier SupAgro, France; UMR = Unité Mixte de Recherche; UR = Unité de Recherche.
Results and discussion

A total of 18 species had been found during this study, 16 presented thereafter (two new species, one *Paraggagnathus* n. sp. (Tribe Neoseiulini) and one *Typhlodromalus* n. sp. (Tribe Euseiini)) found also in other islands will be published later on, five of them with new measurements compared to the only few references already available in the literature.

Subfamily Amblyseiinae Muma

Amblyseiinae Muma 1961: 273.

Tribe Neoseiulini Chant & McMurtry

Neoseiulini Chant & McMurtry 2003a: 6.

Genus *Neoseiulus* Hughes

Neoseiulus Hughes 1948: 141.

Neoseiulus teke (Pritchard & Baker)

Amblyseius (*Amblyseius*) *teke* Pritchard & Baker 1962: 239.

Amblyseius teke, Meyer & Rodrigues 1966: 30; Moraes *et al.* 1989a: 83, 1989b: 97.

Neoseiulus teke, Moraes *et al.* 1986: 98, 2004: 147; Chant & McMurtry 2003a: 37, 2007: 31.

Amblyseius (*Amblyseius*) *bibens* Blommers 1973: 111 (synonymy according to Ueckermann and Loots 1988).

Neoseiulus teke belongs to the *barkeri* species group and the *womersleyi* species subgroup (Chant and McMurtry 2003a). This species is found in sub-Saharan Africa often associated with *Mononychellus tanajoa* (Bondar), the cassava green mite (CGM). It has been studied for its potential as BCA against the CGM. Nwilene and Nachman (1996) studied its reproduction characteristics on *M. tanajoa*. It was more efficient than *I. degenerans*, but seems not efficient enough in field conditions (Nwilene and Nachman 1996). Quilici *et al.* (2000) had collected this species before in La Réunion Island and it was recovered recently by Kreiter *et al.* (2020d).

World distribution: Burundi, DR Congo, Ghana, Kenya, Malawi, Mozambique, La Réunion Island, Rwanda, Sierra Leone, South Africa, Tanzania, Zimbabwe.

Specimens examined: 2 specimens (2 ♀♀) in total. *Fomboni*, inside the town (15 m aasl, 12°17′29″ S, 43°44′35″ E), 1 ♀ on *Abutilon hirtum* (Lamarck) Sweet (Malvaceae), 2/XII/2018; *Fomboni*, University (25 m aasl, 12°17′3″ S, 43°44′34″ E), 1 ♀ on *Zyzyphus mauritiana* Lamarck (Malvaceae), 3/XII/2018.

Remarks: measurements of morphological characters of *Neoseiulus teke* female and male specimens from Mohéli Island are very close to measurements for specimens from neighbouring countries, especially from specimens from Mayotte (Kreiter *et al.* 2020a), La Réunion Island (Keiter *et al.* 2020d) and various countries in Africa, except for the holotype (Zannou *et al.* 2006) and specimens from South Africa which are larger (van der Merwe 1965).

Tribe Kampimodromini Kolodochka

Kampimodromini Kolodochka 1998: 59; Chant & McMurtry 2003b: 189, 2006: 137, 2007: 33.

Subtribe Paraphytoseiina Chant & McMurtry

Paraphytoseiina Chant & McMurtry 2003b: 211.
Genus *Paraphytoseius* Swirskii & Shechter

Paraphytoseius Swirskii & Shechter 1961: 113; Moraes *et al.* 1986: 104, 2004a: 160; Chant & McMurtry 2003b: 216, 2007: 49.

Paraphytoseius orientalis (Narayanan, Kaur & Ghai)

Typhlodromus (*Amblyseius*) *orientalis* Narayanan, Kaur & Ghai 1960: 394.

Paraphytoseius orientalis, Moraes *et al.* 1986: 105, 2004a: 162; Chant & McMurtry 2003b: 220, 2007: 53.

Amblyseius ipomeai, Narayanan, Kaur & Ghai 1960: 394 (synonymy according to El-Banhawy 1984).

Paraphytoseius multidentatus, Swirski & Shechter 1961: 114 (synonymy according to Matthysse & Denmark 1981 in Denmark *et al.* 1999).

Paraphytoseius narayanani, Ehara 1967: 67 (synonymy according to Ehara & Ghai, in Ehara 1967).

This species belongs to the *orientalis* species group (Chant and McMurtry 2003b). Our specimens with relatively shorter setae *s4*, *Z4* and *Z5*, having a distinctly short, thick, spatulate macroseta on genu I belong to the species *P. orientalis*. This species is widely distributed in tropical and subtropical areas in South America, Africa and Asia. It belongs to a genus included in the large polyphagous generalist group named type III phytoseid mites (McMurtry and Croft 1997; McMurtry *et al.* 2013). Navasero and Navasero (2016) had studied the life history of *P. orientalis* on the broad mite (*Polyphagotarsonemus latus*) (Banks) as prey and reported high predation rates on the eggs of *P. latus*, suggesting good potential for the control of this pest.

World distribution: Argentina, Brazil, Burundi, India, Japan, Kenya, La Réunion Island, Madagascar Island, Martinique Island, Mauritius Island, Mozambique, Rwanda.

Specimens examined: 3 specimens (2 ♀ and 1 ♂) in total. Bandar-Es-Salam, Les Abous Inn (23 m aasl, 12°17′37″ S, 43°45′27″ E), 2 ♀ and 1 ♂ on *Solanum pyracanthos* Lamarck (Solanaceae), 2/XII/2018.

Remarks: morphological and morphometric characters and all measurements fit well measurements in Ferragut and Baumann (2019) and Kreiter *et al.* (2020d). This species was described from Asia (Narayanan *et al.* 1960) and presented also in Mauritius (Ferragut and Baumann 2019; Kreiter *et al.* 2018a; Kreiter and Abo-Shnaf 2020b), Mayotte (Kreiter *et al.* 2020a), Vietnam (Kreiter *et al.* 2020b), and in La Réunion Island (Kreiter *et al.* 2020d).

Tribe Amblyseiini Muma

Amblyseiinae Muma 1961: 273 and Amblyseiini Muma, Wainstein 1962: 26.

Subtribe Amblyseiina Muma

Amblyseiina Muma, Chant & McMurtry 2004: 179.

Genus *Amblyseius* Berlese

Amblyseius Berlese 1914: 143.

Amblyseius duplicesetus Moraes & McMurtry

Amblyseius duplicesetus Moraes & McMurtry 1988: 13; Moraes *et al.* 2004a: 143, 2004b: 22; Zannou *et al.* 2007: 10; El-Banhawy & Knapp 2011: 25.

Amblyseius duplicisetus [sic], Chant & McMurtry 2004: 208, 2007: 78.

Like the previous species and for the same reasons, *A. duplicesetus* belongs to the *largoensis* species group and to the *largoensis* species subgroup (Chant and McMurtry 2004a, 2007). First of all found only in Kenya (Moraes and McMurtry 1988; Zannou *et al.* 2007; El-Banhawy...
and Knapp 2011) and more recently in Sri Lanka (Moraes et al. 2004a), its biology is totally unknown. This is the second mention of that species in Indian Ocean Islands after Anjouan (Kreiter et al. 2021).

World distribution: Kenya, Sri Lanka.

Specimens examined: 55 specimens (30 ♀♀, 11 ♂♂ and 14 imm) collected during this study. **Fomboni**, inside the town (15 m aasl, 12°17′29″ S, 43°44′35″ E), 1 ♀ and 1 ♂ on *Annona muricata* L. (Annonaceae), 2/XII/2018; **Fomboni**, Les-Hauts (60 m aasl, 12°17′29″ S, 43°44′35″ E), 2 ♂ and 3 imm. on an unknown host plant, 2/XII/2018; **Fomboni**, University (25 m aasl, 12°17′3″ S, 43°44′34″ E), 1 ♀ on *Ricinus communis* L. (Euphorbiaceae), 3/XII/2018; **Hoani**, inside village (38 m aasl, 12°17′3″ S, 43°44′34″ E), 5 ♀♀, 1 ♂ and 2 imm. on the same unknown host plant than above, 1 ♀, 1 ♂ and 2 imm. on *A. muricata*, 10 ♀♀, 2 ♂♂ and 1 imm. on *Artocarpus altilis* J.R. Forster and G. Forster (Moraceae) and 4 ♀♀, 1 ♂ and 3 imm. on *Theobroma cacao* L. (Malvaceae), 3/XII/2018; **Bangoma**, Les-Hauts (137 m aasl, 12°17′18″ S, 43°43′41″ E), 1 ♂ on *Cinnamomum odoratum* Schäffer (Lauraceae), 3 ♀♀ and 2 imm. on *Annona senegalensis* Persoon (Annonaceae), 1 ♀ on *A. muricata*, 1 ♀ on *Magnifera indica* L. (Anacardiaceae), 2 ♀♀ and 1 ♂ on *A. altilis* and 1 ♀, 1 ♂ and 1 imm. on *Persea americana* Miller (Lauraceae), 4/XII/2018.

Remarks: this is the more abundant species found in several sites. All measurement values fit well those already published on this species with only very slight variations (Moraes and McMurtry 1988; Moraes et al. 2004a; Zannou et al. 2007; El-Banhawy and Knapp 2011; Kreiter et al. 2021). Measurement values of female specimens of Mohéli are very similar with values for specimens from Kenya and Sri Lanka, however with some shorter setae just like specimens of Anjouan (Kreiter et al. 2021). The male of that species will be redescribed in following papers.

Amblyseius herbicolus (Chant)

Typhlodromus (Amblyseius) herbicolus Chant 1959: 84.

Amblyseius (Amblyseius) herbicolus, Muma 1961: 287.

Typhlodromus herbicolus, Hirschmann 1962: 23.

Amblyseius herbicolus, Moraes et al. 1986: 14, 1989: 79, 2004b: 27; Chant & McMurtry 2004: 208, 2007: 78.

Amblyseius impactus Chaudhri 1968: 553 (synonymy according to Daneshvar & Denmark 1982).

Typhlodromus (Amblyseius) amitae Bhattacharyya 1968: 677 (synonymy according to Denmark & Muma 1989).

Amblyseius deleoni Muma & Denmark 1970: 68 (synonymy according to Daneshvar & Denmark 1982).

Amblyseius giganteus Gupta 1981: 33 (synonymy according to Gupta 1986).

Amblyseius (Amblyseialus) thermophilus Karg 1991: 12 (synonymy according to El-Banhawy & Knapp 2011).

This species belongs to the largoensis species group as setae J2 and ZI are present, setae s4 are minute and the ventrianal shield of the female is vase-shaped. It belongs to the largoensis species subgroup as setae Z4 are long, spermatheca has the calyx elongate and the female ventrianal shield is entire (Chant and McMurtry 2004).

Amblyseius herbicolus is widespread in all tropical and subtropical regions of the world. It is the second most abundant phytoseiid mite on *Coffea arabica* L. in Brazil, associated with *Brevipalpus phoenicis* (Geijskes), vector of the coffee ring spot virus and it was found to be an efficient predator (Reis et al. 2007). *Amblyseius herbicolus* is also found associated with the broad mite, *P. latus*, in crops such as chili pepper (*Capsicum annuum* L.) in Brazil and has also a good potential for controlling the pest. Rodriguez-Cruz et al. (2013) had studied biological, reproductive and life table parameters of *A. herbicolus* on three different diets: broad mites, castor bean pollen (*Ricinus communis* L.) and sun hemp pollen (*Crotalaria juncea* L.). The
predator was able to develop and reproduce on all three these diets. However, its intrinsic growth rate was higher on broad mites and castor bean pollen. Feeding on alternative food such as pollen can facilitate the predator’s mass rearing and maintain its population on crops when prey is absent or scarce. Many polyphagous generalist phytoseiid mites are important natural enemies because they can feed on plant provided pollen and various prey species, and thus persist in crops even in the absence of target pests (McMurtry et al. 2013). Hence, populations of these predators can be established in a crop by providing alternative food, thus increasing biological control. Alternative food affects *P. latus* control on chilli pepper plants by predatory mites (Duarte et al. 2015). *Amblyseius herbicolus* had high oviposition and population growth rates when fed with cattail pollen (*Typha latifolia* L.), chilli pepper pollen and bee-collected pollen, and a low rate on the alternative prey (*Tetranychus urticae* Koch). Supplementing pepper plants with pollen resulted in better control of broad mite populations (Duarte et al. 2015). Release of *A. herbicolus* on young plants with weekly addition of honeybee pollen or cattail pollen until plants produce flowers seems a viable strategy to sustain populations of this predator (Duarte et al. 2015).

World distribution: Argentina, Australia, Azores, Benin, Brazil, Burundi, Canary Islands, China, Colombia, Grande Comore Island, Costa Rica, Dominican Republic, Dr Congo, El Salvador, Ghana, Guadeloupe Island, Guatemala, Hawaii, Honduras, India, Iran, Kenya, Les Saintes, La Réunion and Madagascar Islands, Malawi, Malaysia, Martinique Island, New Caledonia Island, Papua New Guinea, Peru, Philippines, Portugal, Puerto Rico, Rwanda, Senegal, Singapore, South Africa, Spain, Taiwan, Thailand, Turkey, USA, Venezuela, West Indies.

Specimens examined: 18 specimens (10 ♀♀, 5 ♂♂ and 3 imm.) collected during this study. **Hoani**, inside village (38 m aasl, 12°17′3″ S, 43°44′34″ E), 1 ♂ on *Theobroma cacao* L. (Malvaceae), 3/XII/2018; **Bangoma**, top of the village (42 m aasl, 12°17′15″ S, 43°43′40″ E), 2 ♀♀ and 1 imm. on *Morinda citrifolia* L. (Rubiaceae), 1 ♂ on *Dendrocnide moroides* (Weddel) Chew (Urticacae), 4/XII/2020; **Bangoma**, Les Hauts (137 m aasl, 12°17′18″ S, 43°43′41″ E), 1 ♂ and 1 imm. on *Asplenium petiolulatum* Mettenius (Aspleniaceae), 1 ♀ and 1 imm. on *Cinnamomum odoratum* Schäffer (Lauraceae), 1 ♀ and 1 ♂ on *Annona muricata* L. (Annonaceae), 3 ♀♀ on *Magnifera indica* L. (Anacardiaceae), 1 ♂ on *Litchi chinensis* Sonnerat (Sapindaceae), 2 ♀♀ on *Artocarpus altulis* J.R. Forster and G. Forster (Moraceae) and 1 ♀ on an unknown host plant, 4/XII/2018.

Remarks: morphological and morphometric characters and all measurements fit well measurements provided in Kreiter et al. (2018b, 2020c, d). *Amblyseius herbicolus* was previously recorded in a lot of countries world-wide and especially in French West Indies (Moraes et al. 2000, Kreiter et al. 2006). It was first reported by Kreiter et al. (2018b) in the Comoros Archipelago in Grande Comore Island with two females collected. *Amblyseius herbicolus* was reported in the past from La Réunion Island from few specimens (Quilici et al. 1997, 2000) and more recently from a lot of specimens (Kreiter et al. 2020d). It is also reported recently from Vietnam (Kreiter et al. 2020c), Rodrigues and Maurice Islands (Kreiter and Abo-Shnaf 2020a, b) but only from females. The five male specimens of that species collected in this study will be redescribed in a following paper.

Amblyseius largoensis (Muma)

Amblyseiopsis largoensis Muma 1955: 266.

Typhlodromus (*Amblyseius*) *largoensis*, Chant 1959: 96.

Amblyseius (*Amblyseialus*) *largoensis*, Muma 1961: 287.

Typhlodromus largoensis, Hirschmann 1962: 2.

Amblyseius (*Amblyseius*) *largoensis*, Ehara 1966: 22.

Amblyseius largoensis, Swirski & Golan 1967: 225; Moraes et al. 1986: 17, 2004b: 33; Chant & McMurtry 2004: 208, 2007: 78.
Amblyseius magnolia Muma 1961: 289 (synonymy by Denmark & Evans 2011).
Amblyseius sakalava Blommers 1976: 96 (synonymy by Ueckermann & Loots 1988).
Amblyseius amalaensis Gupta 1977: 53 (synonymy by Gupta 1986).

Amblyseius largoensis belongs to the largoensis species group and to the largoensis species subgroup. It is widespread in all tropical and subtropical regions of the world and was the most abundant species collected by Moraes et al. (2000) in French Caribbean Islands and as a potential BCA of Raoiella indica Hirst in La Réunion Island (Moraes et al. 2012). Using morphometric analyses of 36 characters, molecular analyses and crossing tests, Navia et al. (2014) studied specimens collected in Brazil, La Réunion Island and Trinidad and Tobago to determine whether A. largoensis populations from different geographic origins belong to the same taxonomic entity. Though differences in the lengths of some setae were observed, molecular analyses and crossing experiments indicated that populations from Indian Ocean and America were conspecific. This species was previously recorded from Rodrigues Island by Kreiter and Abo-Shnaf (2020a), from Mauritius Island by Ferragut and Baumann (2019) and Kreiter and Abo-Shnaf (2020b) and from Mayotte by Kreiter et al. (2020a).

World distribution: this species is widely distributed in the tropical and subtropical regions of Africa, America, Asia and the Pacific Islands.

Specimens examined: 24 specimens (16 ♀♀, 5 ♂♂ and 3 imm.) collected during this study. Fomboni, inside the town (15 m aasl, 12°17′29″ S, 43°44′35″ E), 11 ♀♀, 4 ♂♂ and 1 imm. on Terminalia mantaly H. Perrier (Combretaceae), 1 imm. on Pentas lanceolata (Forskål) Deffers (Rubiaceae) and 1 ♀ on Artocarpus altitís J.R. Forster and G. Forster (Moraceae), 2/XII/2018; Bandar-Es-Salam, Les Abous Inn (23 m aasl, 12°17′37″ S, 43°45′27″ E), 2 ♀♀, 1 ♂ and 1 imm. on Citrus limon (L.) Burman (Rutaceae), 2/XII/2018; Hoani, inside village (38 m aasl, 12°17′3″ S, 43°44′34″ E), 2 ♀♀ on Amaranthus viridis L. (Amaranthaceae), 3/XII/2018.

Remarks: morphological and morphometric characters and all measurements of the Mohéli specimen fit well with those given in Zannou et al. (2007) for specimens from Africa, Navia et al. (2014) for specimens from Brazil, La Réunion and Trinidad & Tobago, by Ferragut and Baumann (2019) and Kreiter and Abo-Shnaf (2020b) for specimens from Mauritius Island and by Kreiter and Abo-Shnaf (2020a) for specimens from Rodrigues Island.

Tribe Euseiini Chant & McMurtry

Euseiini Chant & McMurtry 2005a: 191.

Subtribe Euseiina Chant & McMurtry

Euseiina Chant & McMurtry 2005a: 209.

Genus Euseius Wainstein

Amblyseius (Amblyseius) section Euseius Wainstein 1962: 15; Euseius De Leon 1966: 86.

Euseius baetae (Meyer & Rodrigues)

Amblyseius baetae (Meyer & Rodrigues, 1966): 28.
Euseius baetae (Meyer & Rodrigues), Moraes et al. 1986: 37, 2001: 11, 2004b: 62; Chant & McMurtry 2005b: 215; 2007: 120; El Banhawy & Knapp, 2011: 36.
Euseius (Amblyseius) kanguwanensis Ueckermann & Loots 1988: 85 (synonymy according to Ueckermann & Loots, 1988).

The 200 species of the genus Euseius are considered as Type IV species, polliniphagous generalists (McMurtry and Croft 1997; McMurtry et al. 2013). Like the previous Euseius species, the biology of E. baetae is however totally unknown.
Specimens examined: seven specimens (5 ♀♀, 1 ♂ and 1 imm.) collected during this study. Fomboni, inside the town (15 m aasl, 12°17′29″ S, 43°43′35″ E), 3 ♀♀ on Senna siamea (Lamarck) Irwin & Barneby (Fabaceae), 2/XII/2018 and 1 ♂ and 1 imm. on Pierocarpus indicus Wildenow (Fabaceae), 4/XII/2018; Bangoma, Bridge (11 m aasl, 12°17′2″ S, 43°45′5″ E), 3 ♀♀ on Averrhoa carambola L. (Oxalidaceae), 4/XII/2018.

Remarks: measurements of the five females (Table 1) and one male (Table 2) fit well with the measurements from the literature with slightly shorter dimensions in general, except concerning specimens from Grande Comore (Kreiter et al. 2018b), the neighboring island in the West less than 40 km from coasts of Mohéli. These specimens have almost identical measurements.

Euseius hima (Pritchard & Baker)

Amblyseius (Amblyseius) hima Pritchard & Baker 1962: 257; Blommers 1976: 89. Euseius hima, Moraes et al. 1986: 46, 2004b: 71; Quilici et al. 2000: 99; Chant & McMurtry 2005a: 215, 2007: 121.

The 200 species of the genus Euseius are considered as Type IV species, polliniphagous generalists (McMurtry and Croft 1997; McMurtry et al. 2013). The biology of this species, however, remains totally unknown.

World distribution: Cameroon, Equatorial Guinea, La Réunion Island, Madagascar Island.

Specimens examined: six specimens (6 ♀♀) collected during this study. Fomboni, inside the town (15 m aasl, 12°17′29″ S, 43°44′35″ E), 6 ♀♀ on Pentas lanceolata (Forskål) Deflers (Rubiaceae), 2/XII/2018.

Remarks: this species was recorded from several countries of Sub-Saharan Africa, but also from India (Demite et al. 2020), La Réunion (Quilici et al. 2000; Kreiter et al. 2020d), Madagascar (Blommers 1976), Mauritius (Kreiter and Abo-Shnaf 2020b) and Anjouan (Kreiter et al. 2021). Morphological and morphometric characters and all measurements of our specimens fit well measurements published in Kreiter et al. (2020d) and with measurements of specimens from Mauritius Island (Kreiter and Abo-Shnaf 2020b).

Euseius rhusi (van der Merwe)

Amblyseius (Amblyseius) rhusi van der Merwe 1965: 63. Euseius rhusi Moraes et al. 1986: 52. Typhlodromalus rhusi Moraes et al. 2004b: 203. Euseius rhusi Chant & McMurtry 2005a: 215, 2007: 123.

Species of Euseius are classified as type IV = polliniphagous generalists (McMurtry and Croft 1997; McMurtry et al. 2013). The biology of this species, however, is totally unknown.

World distribution: Burundi, Colombia, Kenya, Mozambique, La Réunion Island, Rwanda, South Africa.

Specimens examined: A single female was collected during this study. Fomboni, University (25 m aasl, 12°17′3″ S, 43°44′34″ E), 1 ♀ on Zizyphus mauritiana Lamarck (Malvaceae), 3/XII/2018.

Remarks: this species was described from Amanzimtoti Kwazulu-Natal Province in South Africa on Rhus rehmanniana Engler (Anacardiaceae) (van der Merwe 1965) and recorded in several countries of Africa (Ueckermann and Loots 1998; Moraes et al. 2006; El-Banhawy and Knapp 2011) and La Réunion (Quilici et al. 2000).

Measurements of the single female (Table 3) fit well with the measurements from the literature (Ueckermann and Loots 1988; Moraes et al. 2006; El-Banhawy and Knapp 2011), with however some slightly shorter dimensions, especially for Z5, and some longer dimensions, especially of j3.
Table 1 Character measurements of adult females of *Euseius baetae* collected in this study compared to those obtained in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mohéli (5) (this study)	Congo (1)	Grande Comore (4)	Kenya (1)	Mozambique (4)	South Africa (7)
Dsl	329 (325 – 335)	336	341 (310 – 375)	300	322 – 336	337 (343 – 359)
Dw	227 (218 – 238)	230	229 (220 – 238)	210	201 – 243	252 (224 – 239)
j1	28 (25 – 30)	29	28	21	29 – 38	32 (28 – 32)
j3	10	16	8 (6 – 10)	25	11 – 12	9 (8 – 11)
j4	8 (8 – 9)	11	6 (5 – 8)	12	9 – 10	9 (8 – 11)
j5	8 (8 – 9)	11	7 (6 – 8)	12	9	9 (8 – 11)
j6	8 (8 – 9)	16	8 (6 – 8)	12	10 – 11	9 (8 – 11)
J2	10	13	9 (8 – 10)	13	12 – 13	11 (11 – 13)
J5	8	8	7 (5 – 8)	7	7 – 9	6
r3	16 (13 – 18)	19	14 (13 – 15)	14	–	13 (13 – 16)
R1	10 (9 – 10)	11	9 (8 – 10)	14	–	9
s4	15	21	14 (13 – 14)	30	16 – 20	16 (16 – 19)
S2	12 (12 – 13)	14	9 (8 – 10)	16	12 – 14	11 (11 – 13)
S4	11 (10 – 12)	14	10 (9 – 10)	16	12 – 16	11 (11 – 13)
S5	10 (10 – 11)	14	9 (8 – 10)	14	11 – 13	11 (11 – 13)
z2	10 (8 – 12)	14	9 (8 – 10)	14	11 – 12	9 (8 – 11)
z4	9 (8 – 11)	13	9 (8 – 10)	20	11 – 12	9 (8 – 11)
z5	8	11	7 (5 – 8)	12	9 – 10	9 (8 – 11)
Z1	10 (9 – 11)	11	9 (9 – 10)	12	10 – 12	9 (8 – 11)
Z4	11 (10 – 13)	16	10	15	11 – 14	11 (11 – 13)
Z5	58 (55 – 60)	53	59 (55 – 65)	50	59 – 65	55 (55 – 60)
st1-st1	60 (58 – 61)	–	57 (55 – 58)	–	–	–
st2-st2	71 (70 – 73)	58	58 (55 – 60)	58	77 – 86	88 (82 – 91)
st3-st3	78 (75 – 80)	70	67 (65 – 68)	70	–	–
st1-st3	56 (53 – 59)	–	74 (70 – 78)	–	71 – 78	95 (91 – 101)
st4-st4	86 (80 – 89)	–	79 (78 – 80)	–	–	–
Gensl	123 (118 – 131)	–	–	–	–	–
Gensw st5	74 (73 – 75)	–	–	–	–	–
Gensw post. corn.	85 (80 – 90)	–	–	–	–	–
st5-st5	70 (68 – 70)	74	72 (68 – 75)	80	–	88 (82 – 91)
Lsd	26 (25 – 28)	–	26 (25 – 28)	–	–	–
Lsw	3 (2 – 3)	–	2	–	–	–
Sid	15 (10 – 20)	–	10 (8 – 13)	–	–	–
Vsl	93 (90 – 95)	–	91 (78 – 100)	100	95 – 108	88 (82 – 91)
vsw ZV2	51 (48 – 53)	48	49 (45 – 50)	–	69	69 (69 – 76)
Vsw anus	72 (68 – 73)	67	71 (70 – 73)	70	–	–
gv3 – grv3	30 (25 – 33)	–	–	–	–	–
JV5	42 (40 – 45)	–	39 (38 – 40)	37	–	38 (38 – 47)
Sgel	20 (20 – 22)	–	22 (20 – 25)	–	–	28
SgelII	29 (28 – 30)	29	27 (25 – 28)	25	–	32 (32 – 35)
SgelIII	34 (33 – 35)	38	35	30	–	38 (41 – 44)
StII	29 (25 – 33)	29	27 (25 – 28)	–	–	32 (32 – 35)
SgelIV	58 (55 – 60)	56	57 (55 – 58)	58	64 – 72	72 (63 – 72)
StIV	39 (38 – 40)	38	38	51	40 – 47	41 (44 – 47)
StV	71 (68 – 73)	70	67 (65 – 68)	95	71 – 80	76 (76 – 79)
sc1	17 (15 – 18)	19	15	24	16 – 18	–
scw	5	–	5	5	–	–
Fdl	24 (23 – 25)	–	25	–	–	–
No teeth Fdl	4	–	–	4	–	6
Mdl	24 (23 – 25)	–	24 (23 – 25)	–	–	–
No teeth Mdl	2	–	2	2	–	2

Sources of measurements – Grande Comore: Kreiter et al. (2018b); Kenya: El-Banhawy & Knapp (2011); Mozambique holotype + paratypes: Meyer & Rodrigues (1966); South Africa: Ueckermann & Loots (1988); –: not provided.
Sub-tribe Typhlodromalina Chant & McMurtry

Typhlodromalina Chant & McMurtry 2005a: 195.

Genus Typhlodromalus Muma

Amblyseius (Typhlodromalus) Muma 1961: 288; *Typhlodromalus* De Leon 1966: 87.

Typhlodromalus spinosus (Meyer & Rodrigues)

Amblyseius spinosus Meyer & Rodrigues 1966: 30; Moraes *et al.* 1986: 31. *Kampimodromus spinosus*, Quilici *et al.* 2000: 100. *Typhlodromalus spinosus*, Moraes *et al.* 2004b: 204; Chant & McMurtry 2005a: 199, 2007: 111.

This species belongs to the *athiasae* species group as setae J1 and S5 are absent. This species group contains six species (Chant and McMurtry 2005a, Moraes *et al.* 2006).

Typhlodromalus spinosus was collected from Eastern, Western, but mainly Southern Africa and La Réunion (Demite *et al.* 2020). The rapid multiplication of this species on the western flower thrips (*Frankliniella occidentalis* Pergande), was confirmed and clear evidence that *T. spinosus* predates on WFT under laboratory and field conditions, but not on *T. urticae* (Mwangi *et al.* 2015). It seems abundant in low vegetation as it was found in high populations in a study of companion plants in a citrus orchard (Le Bellec *et al.* unpub. data).

This species have never been record from Guadeloupe or Martinique in similar studies, but it is interesting to notice that in those islands, another *Typhlodromalus* was collected, *T. peregrinus* (Muma) (Mailloux *et al.* 2010; Kreiter *et al.* 2013, 2018c). *Typhlodromalus spinosus* was recorded from La Réunion by Quilici *et al.* (2000) and was then find in quite

Characters Mohéli (1) (this study)	Characters Mohéli (1) (this study)	Characters Mohéli (1) (this study)
Dsl 233	Dsl 233	st1–st1 55
Dsw 155	st2–st2 60	
j1 23	st3–st3 55	
j3 12	st1–st5 100	
j4 12	st4–st4 48	
j5 7	st5–st5 34	
j6 12	Vsl 93	
J2 9	Vsw ZV2 135	
J5 4	Vsw anus 73	
r3 15	gv3 – gv3 24	
R1 9	JV5 26	
s4 14	SgeI 18	
S2 10	SgeII 23	
S4 10	SgeIII 26	
S5 9	StiI 23	
z2 10	SgeIV 43	
z4 9	StiIV 55	
z5 8	Fdl 21	
Z1 9	No teeth Fd Not visible	
Z4 10	Mdl 23	
Z5 43	No teeth Md Not visible	
	Shaft 15	
	Branch 7	Sources of measurements – Mozambique paratypes: Meyer & Rodrigues (1966); – : not provided.

Table 2 Character measurements of the adult male of *Euseius baetae* collected in this study with those obtained from previous studies (localities followed by the number of specimens measured between brackets).
high numbers by Kreiter et al. (2020d) and in lower numbers from Mauritius Island (Kreiter and Abo-Shnaf 2020b).

World distribution: Benin, Burundi Dr Congo, Kenya, Malawi, Mozambique, La Réunion Island.

Specimens examined: four specimens (2 ♀♀ and 2 ♂♂) collected during this study. *Hoani*, inside village (38 m aasl, 12°17’3” S, 43°44’34” E), 2 ♀♀ and 2 ♂♂ on *Amaranthus viridis* L. (Amaranthaceae), 3/XII/2018.

Remarks: morphological and morphometric characters and all measurements of our specimens fit well measurements in Kreiter et al. (2020d). This species was described from Mozambique (Meyer and Rodrigues 1966), then mentioned in the Indian Ocean from la Réunion (Quilici et al. 2000; Kreiter et al. 2020d), Mauritius (Kreiter and Abo-Shnaf 2020b) and more recently from Anjouan (Kreiter et al. 2021).

Genus Ueckermannseius Chant & McMurtry

Ueckermannia Chant & McMurtry 2005a: 201. Preoccupied by *Ueckermannia* Kaźmierski, 1996 (Tydeidae).

Ueckermannseius Chant & McMurtry 2005b: 337, 2007: 115.

Ueckermannseius *eastafricae* Moraes, Zannou & Oliveira 2006: 30.

This species was described from Uganda and Kenya (Moraes et al. 2006) and recovered only once in Kenya (El-Banhawy et al. 2009). Its biology is totally unknown.

World distribution: Kenya, Uganda.

Table 3 Character measurements of an adult female of *Euseius rhusi* collected in this study with those obtained from previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mohéli (1) (this study)	Africa (5)	Kenya (?)	South Africa (5)
Dsl	318	367 (336–384)	320	350–355
Dsw	213	264 (238–285)	240	226–236
j1	30	25 (21–27)	22	25
j3	11	10 (10–13)	5	15
j4	8	8 (5–10)	5	9
j5	8	7 (5–10)	5	9
j6	8	9 (8–11)	5	12
J2	8	10 (8–11)	5	12
J5	8	8 (6–10)	7	9
r3	11	15 (14–15)	12	17
R1	9	13 (13–14)	12	17
s4	broken	18	14	20
S2	broken	18	12	17–19
S4	broken	16	12	17–19
S5	broken	15 (14–15)	9	15
z2	10	11 (8–14)	12	15
z4	10	11 (8–14)	12	14
z5	8	9 (6–10)	9	12
Z1	10	11 (8–14)	9	15
Z4	broken	26	9	17–19
Z5	23	36 (34–38)	25	26–29
St1-St1	58	–	–	–
St1-St3	53	62 (58–66)	60	–
St2-St2	63	66 (62–72)	65	–
St3-St3	70	–	–	–
St4-St4	85	–	–	–

Characters	Mohéli (1) (this study)	Africa (5)	Kenya (?)	South Africa (5)
Dsl	318	367 (336–384)	320	350–355
Dsw	213	264 (238–285)	240	226–236
j1	30	25 (21–27)	22	25
j3	11	10 (10–13)	5	15
j4	8	8 (5–10)	5	9
j5	8	7 (5–10)	5	9
j6	8	9 (8–11)	5	12
J2	8	10 (8–11)	5	12
J5	8	8 (6–10)	7	9
r3	11	15 (14–15)	12	17
R1	9	13 (13–14)	12	17
s4	broken	18	14	20
S2	broken	18	12	17–19
S4	broken	16	12	17–19
S5	broken	15 (14–15)	9	15
z2	10	11 (8–14)	12	15
z4	10	11 (8–14)	12	14
z5	8	9 (6–10)	9	12
Z1	10	11 (8–14)	9	15
Z4	broken	26	9	17–19
Z5	23	36 (34–38)	25	26–29
St1-St1	58	–	–	–
St1-St3	53	62 (58–66)	60	–
St2-St2	63	66 (62–72)	65	–
St3-St3	70	–	–	–
St4-St4	85	–	–	–

Sources of measurements – Africa (Burundi 1♀; Kenya 4♀♀; Rwanda 3♀♀): Moraes et al. (2006); Kenya: El-Banhawy & Knapp (2011); South Africa: van der Merwe (1965) & *Ueckermann & Loots (1988) for number of teeth; –: not provided.
Specimens examined: 12 specimens (11 ♀♀ and 1 ♂) collected during this study. Bandar-Es-Salam, Les Abous Inn (23 m asl, 12°17′37″ S, 43°45′27″ E), 11 ♀♀ and 1 ♂ on Carica papaya L. (Caricaceae), 2/XII/2018.

Remarks: morphological and morphometric characters and all measurements of our specimens (Table 4) fit well measurements in Moraes et al. (2006) for specimens from Africa and above all that of Kreiter et al. (submitted) for specimens from Anjouan. But specimens from Mohéli have shorter setae j4, j5, j6, R1, s4, S2, z2, z4, z5, SgeII, SgeIII and smaller ventrianal shield and cheliceral digits but have longer macrosetae StIV compared to specimens from Africa. Above all, our specimens have pointed macrosetae or slightly rounded macrosetae on leg IV and the original description (Moraes et al. 2006) mentioned three evidently knobbed macrosetae. As it is the only main difference, we consider this difference as a variation of the character and not enough for considering that our specimens belong to a new species. The male of U. eastafricai was unknown until our collection. The single male collected will be described in a following paper.

Subfamily Phytoseiinae Berlese
Phytoseiini Berlese 1913: 3; Phytoseiinae Vitzthum 1941: 767.

Genus Phytoseius Ribaga
Phytoseius Ribaga 1904: 177.

Characters	Mohéli (11) (this study)	Anjouan (2)	Africa (7)	Characters	Mohéli (11) (this study)	Anjouan (2)	Africa (7)
Dsl	330 (318 – 353)	333 – 338	390 (336 – 405)				
Dsw	220 (200 – 240)	170 – 195	274 (258 – 291)				
j1	37 (35 – 40)	34 – 35	34 (30 – 38)				
j3	24 (23 – 25)	22 – 24	23 (19 – 27)				
j4	10 (8 – 10)	8 – 10	15 (11 – 18)				
j5	10 (8 – 10)	8 – 10	14 (10 – 19)				
j6	11 (10 – 13)	9 – 11	12 (10 – 16)				
J2	13 (10 – 14)	12 – 13	13 (10 – 16)				
J5	8 (7 – 9)	6 – 7	5 (3 – 6)				
r3	18 (15 – 20)	15 – 18	18 (16 – 21)				
R1	13 (10 – 16)	13	18 (14 – 21)				
s4	23 (20 – 25)	21 – 23	26 (19 – 35)				
S2	14 (13 – 15)	13 – 15	18 (16 – 22)				
S4	13 (12 – 15)	13 – 15	17 (14 – 21)				
S5	14 (12 – 16)	13 – 15	16 (14 – 21)				
z2	14 (13 – 15)	13 – 15	20 (16 – 24)				
z4	15 (13 – 16)	13 – 15	21 (13 – 29)				
z5	10 (9 – 11)	10	14 (13 – 16)				
Z1	12 (11 – 13)	11 – 13	16 (13 – 21)				
Z4	14 (13 – 16)	13 – 14	16 (11 – 19)				
Z5	42 (35 – 47)	43	39 (32 – 53)				
s1-st1	58 (55 – 60)	55	–				
s2-st2	66 (62 – 70)	63 – 65	72 (69 – 80)				
s3-st3	79 (75 – 84)	75	–				
s4-st4	60 (54 – 64)	63 – 65	71 (62 – 77)				
s5-st5	86 (78 – 90)	75 – 81	–				

Sources of measurements – Africa: (Uganda 2 ♀♀, Kenya 5 ♀♀) Moraes et al. (2006); Anjouan: Kreiter et al. 2021) – : not provided.
Phytoseius hongkongensis

Phytoseius (Phytoseius) hongkongensis Swirski & Shechter 1961: 99; Amitai & Swirski 1966: 22.
Phytoseius (Pennaseius) hongkongensis Ehara 1966: 25; Ehara 1972: 169; Moraes et al. 1986: 211.
Phytoseius hongkongensis Moraes et al. 2004a: 240; Chant & McMurtry 2007: 129.

This species belongs to the plumifer species group (Chant and McMurtry 1994) as setae R1 and J2 are present. This species was described from specimens collected on Heterosmilax gaudichaudiana (Kunth) Maximovich (Smilacaceae), and Urena lobata L. (Malvaceae) in Victoria Mount Forest, Hong Kong Island, Hong Kong. Although species of the genus Phytoseius are considered to belong to the type III (polyphagous generalist predators) of McMurtry and Croft (1997) and McMurtry et al. (2013), its specific biology is totally unknown.

World distribution: Benin, Burundi, Cameroon, Cape Verde, DR Congo, Kenya, Madagascar Island, Malawi, Mozambique, Nigeria, Reunion Island, Rwanda, Senegal, South Africa, Zambia, Zimbabwe.

Specimens examined: 22 specimens (16 ♀♀, 2 ♂♂ and 4 imm.) collected during this study. Fomboni, Les-Hauts (60 m aasl, 12°17′29″ S, 43°44′35″ E), 7 ♀♀ and 2 imm. on *Psidium cattleianum* Afzelius ex Sabine (Myrtaceae), 7 ♀♀ and 2 imm. on *Annona senegalensis* Persoon (Annonaceae) and 4 ♀♀, 2 ♂♂ and 1 imm. on *Adansonia digitata* L. (Malvaceae), 2/XII/2018.

Remarks: Measurements of the three adult females agree well with measurements of the literature, especially with those of Ueckermann et al. (2007) obtained with a great number of specimens (29) from various countries in Africa with those of Kreiter et al. (2020b) for specimens from Vietnam.

Subfamily Typhlodrominae Wainstein

Typhlodromini Wainstein 1962: 26; Typhlodrominae Chant & McMurtry 1994: 235.

Tribe Chanteiini Chant & McMurtry

Chanteiini Chant & McMurtry 1994: 237, 2007: 132.

Genus Chanteius Wainstein

Chanteius Wainstein 1962: 19.

Chanteius contiguus (Chant)

Typhlodromus (Typhlodromus) contiguus Chant 1959: 29.
Typhlodromus (Diadromus) contiguus, Athias-Henriot 1960: 62.
Typhloseiopsis contiguus, Muma 1961: 294.
Chanteius (Chanteius) contiguus, Wainstein 1962: 9.
Typhlodromus contiguus, Hirshmann 1962: 2.
Typhlodromus (Typhloseiopsis) contiguus, Pritchard & Baker 1962: 222.
Diadromus contiguus, Chant & Yoshida-Shaul 1986: 2030, Moraes et al. 1986: 184.
Chanteius contiguus, Moraes et al. 2004b: 261; Chant & McMurtry 1994: 239.
Chanteius lieni (Tseng 1976): 97 (synonymy according to Chant & Yoshida-Shaul 1986).

This species belongs to the *contiguus* species group (Chant and McMurtry 1994) and its biology remains totally unknown.

World distribution: China, Hong-Kong, Japan, Madagascar, Philippines, Singapore.
Specimens examined: 31 specimens (10 ♀♀, 15 ♂♂ and 6 imm.) collected during this study. **Fomboni**, inside the town (15 m aasl, 12°17′29″ S, 43°44′35″ E), 1 ♂ on *Senna siamea* (Lamarck) Irwin & Barneby (Fabaceae), 2/XII/2018; **Fomboni**, Les-Hauts (60 m aasl, 12°17′29″ S, 43°44′35″ E), 1 imm. on *Lawsonia inermis* L. (Lythraceae), 1 ♀ and 1 ♂ on *Psidium cattleianum* Afzelius ex Sabine (Myrtaceae) and 1 ♀ on *Adansonia digitata* L. (Malvaceae), 2/XII/2018; **Bandar-Es-Salam**, Les Abous Inn (23 m aasl, 12°17′37″ S, 43°45′27″ E), 2 ♀♀, 5 ♂♂ and 2 imm. on *Cajanus cajan* L. (Fabaceae), 2/XII/2018; **Fomboni**, University (25 m aasl, 12°17′3″ S, 43°44′34″ E), 2 ♀♀, 5 ♂♂ and 2 imm. on *Zyzyphus mauritiana* Lamarck (Malvaceae), 3/XII/2018; **Hoani**, inside village (38 m aasl, 12°17′3″ S, 43°44′34″ E), 1 ♂ on *Amaranthus viridis* L. (Amaranthaceae), 1 ♀ + 1 imm. on *Citrus* sp., 3/XII/2018; **Bangoma**, top of the village (42 m aasl, 12°17′15″ S, 43°43′40″ E), 1 ♀ on *Dendrocnide moroides* (Weddel) Chew (Urticaceae), 1 ♀ and 1 ♂ on *Anacardium occidentale* L. (Anacardiaceae) 4/XII/2020; **Bangoma**, Les Hauts (137 m aasl, 12°17′18″ S, 43°43′41″ E), 1 ♀ on *Asplenium petiolulatum* Mettenius (Aspleniaceae) and 1 ♀ on *Abutilon hirtum* (Lamarck) Sweet (Malvaceae), 4/XII/2018.

Remarks: morphological and morphometric characters and all measurements of our specimens fit well measurements in numerous descriptions and redescriptions available in the literature, especially those of Blommers (1976) for specimens from Madagascar. Mentioned only from South-East Asia and Madagascar, it is the second mention in the Indian Ocean of this species outside Madagascar after Mayotte Island (Kreiter et al. 2020a).

Tribe Typhlodromini Wainstein

Typhlodromini Wainstein 1962: 26.

Genus Typhlodromus Scheuten

Typhlodromus Scheuten 1857: 111.

Subgenus Anthoseius De Leon

Typhlodromus (Anthoseius) De Leon 1959: 258; van der Merwe 1968: 20; Karg 1982: 194; Chant & McMurtry 1994: 250, 2007: 149.

Typhlodromus (Anthoseius) *grewiae* Zannou, Moraes & Oliveira

Typhlodromus (Anthoseius) *grewiae* Zannou, Moraes & Oliveira in Ueckermann et al. 2008: 48.

This species belongs to the *singularis* species group as setae JV3 are absent and dorsal shield setae are short (Chant and McMurtry 1994). The biology of that species is totally unknown. It was mentioned only from Kenya (Ueckermann et al. 2008) only from one female.

World distribution: Kenya, Mayotte Island.

Specimens examined: 5 specimens (2 ♀♀ and 3 ♂♂) collected during this study. **Fomboni**, Les-Hauts (60 m aasl, 12°17′29″ S, 43°44′35″ E), 1 ♀ on *Annona senegalensis* Persoon (Annonaceae), 2/XII/2018; **Bangoma**, top of the village (42 m aasl, 12°17′15″ S, 43°43′40″ E), 1 ♀ and 3 ♂♂ on *Syzygium aromaticum* (L.) Merrill & Perry, 4/XII/2018.

Remarks: the species was mentioned only once from Kenya and described from only one female specimen (Ueckermann et al. 2008). Morphological and morphometric characters and all measurements of our specimens (Table 5) fit well measurements of the original description of Zannou, Moraes & Oliveira in Ueckermann et al. (2008) and with measurements of specimens from Mayotte Island (Kreiter et al. 2020a)
Typhlodromus (Anthoseius) hartlandrowei Evans

Typhlodromus (Typhlodromus) hartlandrowei Evans, 1958: 580-581; Chant 1959: 60.
Clavidromus hartlandrowei, Muma, 1961: 296.
Typhlodromus (Neseiulus) hartlandrowei, Pritchard & Baker, 1962: 222.
Typhlodromus (Anthoseius) hartlandrowei, Moraes et al. 2004b: 328; Chant & McMurtry, 2007: 155; Ueckermann et al. 2008: 50.

This species belongs to the bergi species group (Chant and McMurtry 1994). The biology of that species is totally unknown. This is the first mention of that species outside the African continent.

World distribution: Democratic Republic of Congo, Nigeria, Uganda.

Specimens examined: two specimens (♀) collected during this study. Fomboni, University (25 m aasl, 12°17’3″ S, 43°43’4″ E), 1 ♀ on Persea americana Miller (Lauraceae), 4/XII/2018; Bangoma, top of the village (42 m aasl, 12°17’15″ S, 43°43’40″ E), 1 ♀ on Anacardium occidentale L. (Anacardiaceae) 4/XII/2020.

Remarks: morphological and morphometric characters and all measurements of our specimens (Table 6) fit well with measurements of the original description given by Evans (1958), those given by Ueckermann et al. (2008) concerning specimens from Africa and those of specimens from Anjouan Island (Kreiter et al. 2021).

Typhlodromus (Anthoseius) lobatus Zannou, Moraes & Oliveira

Typhlodromus (Anthoseius) lobatus Zannou, Moraes & Oliveira in Ueckermann et al. 2008: 59.

This species belongs to the large rhenanus species group (Chant and McMurtry 1994). The biology of this species is totally unknown.

World distribution: Ghana, Mauritius Island, Mayotte Island, Rodrigues Island.

Table 5 Character measurements of adult females of Typhlodromus (Anthoseius) grewiae collected in this study compared to those obtained in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mohéli (2) (this study)	Anjouan Island (1)	Kenya (1, the holotype)	Mayotte Island (2)
Dsl	300	315	298	288 - 308
Dw	179	205	179	168 - 180
j1	15	13	Not visible	15
j3	20	16	16	15 – 20
j4	18	15	16	13 – 15
j5	18	15	16	15
j6	23	20	19	20
J2	28 – 30	25	22	21 – 23
J3	10	10	9 – 10	
s1	16 – 18	18	16	15
R1	17 – 18	18	16	15 – 18
s4	20 – 23	20	19	18 – 20
s6	25 – 26	25	22	21 – 23
S2	30	30	24	26 – 28
s4	29 – 30	30	27	28
S5	25	25	22	23
s2	16	18	14	13 – 15
s3	18 – 20	18	14	15
s4	21 – 23	20	18	15 – 18
s5	20	19	18	18
Z1	33 – 35	35	29	30 – 33
Z2	35 – 37	36	35	33 – 35

Characters	Mohéli (2) (this study)	Anjouan Island (1)	Kenya (1, the holotype)	Mayotte Island (2)
st1-st3	43 – 47	48		38
st2-st2	55 – 60	60	61	53
st3-st3	58	59		48
st1-st1	55 – 58	63	58	55
st4-st4	65	63		43
Gensl	95	100		93
Gensw	60	63	53	50
Gensw post. corn.	73	68		75
st5-st5	55	55		4
Lst	25	20	20	18 – 23
Law	3	5	5	4
sisl	10	10		10
Vsl	103	110	99	95 – 100
Vsw ZV2	90	63	90	83 – 90
Vsw annus	73	70		68 – 75
gv3 – gv3	24	25	25	26
JVs	25	26	25	27
StV	16 – 20	20	20	18
Scl	14 – 15	15	14	13 – 15
Scw	8 – 12	5	5	5
Fdl	23	25	23	25
No teeth Fdl	3	Not visible		4
Mdl	25	26	25	25 – 28
No teeth Md	2	Not visible		2

Sources of measurements: Kenya: Ueckermann et al. (2008), original description base on a single female; Mayotte Island (Kreiter et al. 2020a); – not provided.
Specimens examined: ten specimens (9 ♀♀ and 1 imm.) collected during this study. Fomboni, inside the town (15 m aasl, 12°17′29″ S, 43°44′35″ E), 2 ♀♀ + 1 imm. on Ablution hirtum (Lamarck) Sweet (Malvaceae) and 4 ♀♀ on Hibiscus tiliaeusus L. (Malvaceae), 2/XII/2018; Bandar-Es-Salam, Les Abous Inn (23 m aasl, 12°17′37″ S, 43°45′27″ E), 1 ♀ on Cajanus cajan L. (Fabaceae), 2/XII/2018; Bangoma, Les Hauts (137 m aasl, 12°17′18″ S, 43°43′41″ E), 2 ♀♀ on Cananga odorata (Lamarck) Hooker & Thomson (Malvaceae), 4/XII/2018.

Remarks: morphological and morphometric characters and all measurements of our specimens fit well with measurements of the original description by Zannou, Moraes and Oliveira in Ueckermann et al. (2008) concerning specimens from Ghana, Western Africa. And with measurements of specimens from Rodrigues (Kreiter and Abo-Shnaf 2020a), Mauritius (Kreiter and Abo-Shnaf 2020b), Mayotte (Kreiter et al. 2020a) and Anjouan (Kreiter et al. 2021). This species seems rather common in the Indian Ocean Islands, except in La Réunion Island.

Typhlodromus (Anthoseius) moraesii Kreiter & Ueckermann

The biology of this species found in La Réunion Island by Kreiter et al. (2002) on various host plants (Kreiter et al. 2002) and then in French Caribbean Islands (Mailloux et al. 2010; Kreiter et al. 2013) remains unknown.

World distribution: La Réunion Island.

Specimens examined: three specimens (3 ♀♀) collected during this study. Bandar-Es-

Table 6 Character measurements of adult females of *Typhlodromus (Anthoseius) hartlandrowei* collected in this study compared to those in previous studies (localities followed by the number of specimens measured between brackets).

Characters	Mohéli (2) (this study)	Africa (3)	Anjouan Island (2)	Holotype
D1l	308	290 (285 – 295)	325	295
Dow	200 – 205	206 (200 – 215)	180	190
j1	27 – 30	26 (25 – 27)	20	–
j3	40 – 43	43 (40 – 45)	38	48
j5	25 – 26	40 (36 – 44)	30	43
j6	40	55 (50 – 59)	33	57
J2	45 – 47	53 (50 – 55)	40	56
J5	8 – 9	10	8	9
r3	38 – 40	40 (38 – 43)	40	44
R1	45	59 (58 – 60)	45	60
s4	55 – 60	61 (60 – 62)	58	63
s6	53 – 55	65 (65 – 66)	55	67
S2	63 – 65	69 (68 – 71)	60	71
S4	63 – 65	70 (70 – 71)	65	71
S5	20 – 22	22 (19 – 24)	22	17
z2	25 – 28	24 (23 – 25)	25	23
z3	44 – 47	51 (50 – 51)	45	53
z4	45	56 (54 – 57)	48	58
z5	28 – 30	38 (35 – 40)	29	38
Z4	60	63 (62 – 64)	60	62
Z5	65 – 67	64 (63 – 66)	66	63
s1l-s1	50	–	50	–
s2l-s2	48 – 50	55 (54 – 56)	53	50
s3l-s3	60	–	65	–
s4l-s4	58	55 (52 – 57)	55	59
s5l-s5	60 – 68	–	70	–
GenI	103 – 105	–	110	–
GenII	58 – 60	55 (53 – 57)	Not visible	55
GenIII	68 – 75	–	Not visible	–
s25 – s5	54 – 55	–	Not visible	–
L1l	23 – 28	–	30	–
L2l	3	–	4	–
s11	10	–	11	–
Val	95 – 113	102 (98 – 104)	100	97
Vsw ZV2	78 – 80	89 (84 – 96)	90	85
Vsw anus	68 – 79	–	68	–
g5v3 – g3	38 – 39	–	–	–
JVS	65 – 67	–	63	–
SgeI	18 – 20	22 (21 – 22)	19	20
SdII	18 – 19	18 (17 – 19)	18	19
SgeIV	28 – 30	32 (31 – 32)	29	32
StIV	24 – 25	22 (21 – 24)	22	23
StV	40 – 47	40 (37 – 42)	45	43
Sc1	7	14 (11 – 17)	10	–
Scw	–	–	8	–
Fdl	23 – 25	24	23	–
Md1	28	27	26	–
No teeth Md	Not visible	1	Not visible	–

Sources of measurements – Africa (DR Congo 1♀, Nigeria 1♀, Uganda 1♀) & Holotype: Ueckermann et al. (2008); Anjouan Island: Kreiter et al. (2021). – not provided.
Salam, Les Abous Inn (23 m asl, 12°17′37″ S, 43°45′27″ E), 1 ♀ on *Punica granatum* L. (Lythraceae), 4/XII/2018/

Remarks: several species are found both in La Réunion Island (in the Indian Ocean) and in the West Indies, probably because of reciprocal introductions certainly a long time ago with slave-trade and commercial exchanges between the two areas or because of introduction of plants from Antilles into La Réunion coming from the same African countries than slaves. The measurements and description of the specimens collected fit very well those given by Kreiter *et al.* (2002) for the original description and measurements of specimens from La Réunion (Kreiter *et al.* 2020d) and Rodrigues Islands (Kreiter and Abo-Shnaf 2020a).

Conclusion

The results of a survey carried out in 2018 in Mohéli Island is presented in this paper. A total of 18 new records, 16 of which being documented in this paper: 12 Amblyseiinae, 1 Phytoseiinae and 5 Typhlodrominae, have been obtained, namely: *Neoseiulus teke*, *Paraphytoseius orientalis*, *Amblyseius duplicesetus*, *A. herbicolus*, *A. largoensis*, *Euseius hima*, *E. baetae*, *E. rhusi*, *Typhlodromalus spinosus*, *Ueckermannseius eastafricae*, *Phytoseius hongkongensis*, *Chanteius contiguus*, *Typhlodromus (Anthoseius) grewiae*, *T. (A.) harlandrowei*, *T. (A.) lobatus*, *T. (A.) moraei*. Two new species (*Paragigagnathus* sp. and *Typhlodromalus* sp.) found in several islands will be described in a next paper.

Among the 18 recorded species, at least five species (*P. orientalis*, *A. largoensis*, *A. herbicolus*, *T. spinosus* and *T. [A.] transvaalensis*) are already known as biological control agents (BCAs). In addition to the intrinsic value of phytoseiid mite biodiversity in tropical environments, demonstration of the natural occurrence of efficient BCAs in a developing country such as Mohéli Island is of great agricultural, commercial and strategic interests for the country.

Acknowledgements

Thanks are first due to the Department to which the senior author belong for funds that have granted travels and accommodations to him in Mohéli Island: UMR CBGP (Internal call for proposals 2018). A grateful thanks to UR Hortsys and to the head Dr Fabrice Le Bellec that have allowed Rose-My Payet to join the senior author for collections and partly granted field collecting trips. Field collections had been made with authorizations of the government of Union des Comores by letters of the head of INRAPE, Union des Comores (ref. n°18/193/INRAPE/DG and n°18/210/INRAPE/DG, respectively).

We also would like to warmly thank Professor Marie-Stéphane Tixier for valuable discussion on taxonomy of some species and especially *Ueckermannseius eastafricae* Moraes, Zannou and Oliveira.

References

Amitai S., Swirski E. 1966. Illustrations of spermathecae in several previously described phytoseiid mites (Acarina) from Hong Kong and Israel. The Israel Journal of Agricultural Research, 16: 19-24.

Athias-Henriot C. 1960. Phytoseiidae et Accosejidae (Acarina: Gamasina) d’S’Algérie. IV. Genre *Typhlodromus* Scheuten, 1857. Bull. Soc. Hist. Nat. Afr. Nord, 51: 62-107.

Athias-Henriot C. 1975. Nouvelles notes sur les Amblyseini. II. Le relevé organotaxique de la face dorsale adulte (Gamasides protoadéniques, Phytoseiidae). Acarologia, 17(1): 20-29.

Berlese A. 1913. Systema Acarorum genera in familiis suis disposita. Acaroteca Italiana, 1: 1-2: 3-19.

Berlese A. 1914. Acarina novii. Manipulius IX. Redia, 16: 113-150.

Bhattacharyya S.K. 1969. Two new phytoseiid mites from east India (Acarina: Phytoseiidae). J. Bombay Nat. Hist. Soc., 65(3): 677-680.

Blommers L. 1973. Five new species of phytoseid mites (Acarina: Phytoseiidae) from southwest Madagascar. Bull. Zool. Mus. Univ. Amsterdam, 3(16): 109-117.
Bloomers L. 1976. Some Phytoseiidae (Acarina: Mesostigmata) from Madagascar, with descriptions of eight new species and notes on their biology. Bijdragen tot Dierkunde, 46(1): 80-106. doi:10.1163/26606044-04601005

Byng J.W., Smets E.F., van Vugt R., Bidault E., Davidson C., Kenicer G., Chase M.W., Christenhuz M.J.M. 2018. The phylogeny of angiosperms: A visual summary of APG IV family relationships and floral diversity. The Global Flora, 4-7.

Chant D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of thirty-eight new species. Can. Entomol., 61(12): 1-166. doi:10.4039/entm9412f

Chant D.A., McMurtry J.A. 1994. A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). Intern. J. Acarol., 20(4): 223-310. doi:10.1080/01647959408684022

Chant D.A., McMurtry J.A. 2003a. A review of the subfamily Amblyseinae Muma (Acari: Phytoseiidae): Part I. Neoseiulini new tribe. Intern. J. Acarol., 29(1): 3-46. doi:10.1080/01647950308684319

Chant D.A., McMurtry J.A. 2003b. A review of the subfamily Amblyseinae Muma: Part II. The tribe Kampimodomini Kolodochka. Intern. J. Acarol., 29(3): 179-224. doi:10.1080/01647950308684331

Chant D.A., McMurtry J.A. 2004. A review of the subfamily Amblyseinae Muma (Acari: Phytoseiidae): Part III. The tribe Amblyseini Wainstein, subtribe Amblyseina n. subtribe. Intern. J. Acarol., 30(3): 171-228. doi:10.1080/01647950408684398

Chant D.A., McMurtry J.A. 2005a. A review of the subfamily Amblyseinae Muma (Acari: Phytoseiidae): Part VI. The tribe Euseiini n. tribe, subtribes Tylodothromalina n. subtribe, Euuseiina n. subtribe, and Ricoseiina n. subtribe. Intern. J. Acarol., 31(3): 187-224. doi:10.1080/01647950508684424

Chant D.A., McMurtry J.A. 2005b. A review of the subfamily Amblyseinae Muma (Acari: Phytoseiidae): Part V. The tribe Tylodothrompsini n. tribe. Intern. J. Acarol., 31(4): 315-340. doi:10.1080/01647950508684673

Chant D.A., McMurtry J.A. 2006. A review of the subfamily Amblyseinae Muma (Acari: Phytoseiidae): Part IX. An overview. Intern. J. Acarol., 32(2): 1-27. doi:10.1080/01647950608684453

Chant D.A., McMurtry J.A. 2007. Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, 219 pp.

Chant D.A., Yoshida-Shaul E. 1989. A world review of the Phytoseiidae. Intern. J. Acarol., 23(3): 247-289. doi:10.1080/01647958908683906

Chant D.A., McMurtry J.A. 2008. The phylogeny of the family Phytoseiidae (Acari: Mesostigmata). Zootaxa, 171-228.

Chant D.A., Evans G.O. 1958. Some mesostigmatid mites from an est of social spiders in Uganda. Ann. Mag. Nat. Hist., Ser. 13, 1: 580-590. doi:10.1111/j.1477-2026.1958.tb02669.x
Gupta S.K. 1981. On a collection of Phytoseiidae (Acari: Mesostigmata) from Himachal Pradesh (India), with descriptions of two new species. Indian J. Acarol., 5: 32-36.
Gupta S.K. 1986. Fauna of India. Family Phytoseiidae. Zoological Survey of India, Calcutta, India, 350 pp.
Hirschmann W. 1962. Gangsystematik der Parasitiformes. Acarologie Schriftenreihe für Vergleichende Milbenkunde, Hirschmann-Verlag, Furth/Bay, 9(5-6): 80 pp.+32 plates.
Hughes A.M. 1948. The mites associated with stored food products. Ministry of Agriculture and Fisheries, H. M. Stationary Office, London, 168 pp.
Karg W. 1982. Diagnostic and systematics of predatory mites of the family Phytoseiidae Berlese in orchards. Zool. Jahrb., Syst., 109: 188-210.
Karg W. 1991. Die Raubmilbenarten der Phytoseiidae Berlese (Acarina) Mitteleuropas sowie angrenzender Gebiete. Zool. Jahrb., Syst., 118(1): 1-64.
Kazmierski A. 1996. A revision of the subfamilies Pteretidae and Tydeinae (Acari: Actincondida: Tydeidae). Part III. Seven new genera and some new species of the Tydeinae, with a generic key. Mitt. Hamburg. Zool. Mus. Inst., 93: 199-227.
Kolodocha L.A. 1998. Two new tribes and the main results of a revision of Paleartic phytoseiid mites (Parasitiformes, Phytoseiidae) with the family system concept. Vest. Zool., 32(1-2): 51-63 [in Russian].
Kreiter S., Ago-Shnaf R.I.A. 2020a. Phytoseiid mites of Rodrigues Island. Acarologia, 60(2): 449-468. doi:10.24349/acarologia/20204376
Kreiter S., Ago-Shnaf R.I.A. 2020b. New records of phytoseiid mites from Mauritius Island (Acari: Mesostigmata). Acarologia 60(3): 520-545. doi:10.24349/acarologia/20204362
Kreiter S., Ago-Shnaf R.I.A., Payet R.-M. 2020a. Phytoseiid mites of Mayotte Island (Acari: Mesostigmata). Acarologia, 60(3): 622-642. doi:10.24349/acarologia/20204391
Kreiter S., Amir K., Douin M., Bohin T., Trdan S., Tixier M.-S. 2020b. Phytoseiid mites of Slovenia (Acari: Mesostigmata): new records and first description of the male of Amblyseius microorientalis. Acarologia, 60(2): 203-242. doi:10.24349/acarologia/20204364
Kreiter S., Bopp M.-C., Douin M., Nguyen D.T., Wyckhuys K. 2020c. Phytoseiidae of Vietnam with description of a new species. Acarologia, 60(1): 75-110. doi:10.24349/acarologia/20204369
Kreiter S., Fontaine O., Payet R.-M. 2018a. New records of Phytoseiidae (Acari: Mesostigmata) from Rodrigues Island. Acarologia, 60(2): 203-242. doi:10.24349/acarologia/20184243
Kreiter S., Fontaine O., Payet R.-M. 2018b. First record of Phytoseiid mites (Acari: Mesostigmata) from the island Mayotte, with the family system concept. Acarologia, 60(3): 622-642. doi:10.24349/acarologia/20184392
Kreiter S., H. 2018. New phytoseiid species of the French West Indies, with description of a new species, and new records (Acari: Mesostigmata). Acarologia, 53(3): 285-303. doi:10.1051/acarologia/20132095
Kreiter S., Payet R.-M., Douin M., Fontaine O., Fillâtre J., Le Bellec F. 2020d. Phytoseiidae of La Réunion Island (Acari: Mesostigmata): three new species and two males described, new synonymies, and new records. Acarologia, 60(1): 111-195. doi:10.24349/acarologia/20204361
Kreiter S., Payet R.-M., Abdou Azali H. 2021. Phytoseiid mites (Acari: Mesostigmata) of Anjouan Island (Comoros Archipelago). Acarologia, 61(1): 62-83. doi:10.24349/acarologia/20214416
Kreiter S., Payet R.-M., Fillâtre J., Abdou Azali H. 2018b. First records of Phytoseiidae from one island of the Comoros Archipelago. Acarologia, 58(3): 529-545. doi:10.24349/acarologia/20184256
Kreiter S., Tixier M.-S., Etienne J. 2013. Revision of the life styles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol., 18: 297-320. doi:10.11646/zootaxa.3129.2.1
Kreiter S., Zanik Z., Ryckewaert P., Pancarte C., Douin M., Tixier M.-S. 2018c. New phytoseiid mites of Martinique, with redescription of four species and new records. Acarologia, 58(2): 366-407. doi:10.24349/acarologia/20184248
Lindquist E.E. 1994. Some observations on the chaetotaxy of the caudal body region of gamasine mites (Acari: Mesostigmata), with a modified notation for some ventrolateral body setae. Acarologia, 35: 323-326.
Lindquist E.E., Evans G.W. 1965. Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina. Mem. Entomol. Soc. Canada, 47: 1-64. doi:10.4039/entr67474v
Maililou J., Le Bellec F., Kreiter S., Tixier M.-S., Dubois P. 2010. Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp. Appl. Acarol., 52: 275-290. doi:10.1007/s10493-010-9367-7
Matthysse J.G., Denmark H.A. 1981. Some phytoseiids of Nigeria (Acarina: Mesostigmata). Fla Entomol., 64: 340-357. doi:10.2307/3494585
McMurtry J.A., Croft B.A. 1997. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol., 42: 291-321. doi:10.1146/annurev.ento.42.1.291
Meyer M.K.P., Rodrigues M. da C. 1966. Acari associated with Cotton in Southern Africa. References to other plants. Garcia de Orta, Rev. Junta Investig., 13: 27-31.
Moraes G.J. de, Castro T.M.G. de, Kreiter S., Quilici S., Gondim J. M.G.C., Sá L.A. 2012. Search for natural enemies of Raoiella indica Hirst in Réunion Island. Acarologia, 52(2): 129-134. doi:10.1151/acarologia/20122043
Moraes G.J. de, Kreiter S., Lofego A.C. 2000. Plant mites (Acari) of the French Antilles. 3. Phytoseiidae (Gamasida). Acarologia, 40(3): 237-264.
Moraes G.J. de, Lopes P.C., Fernando C.P. 2004a. Phytoseiid mite (Acari: Phytoseiidae) of coconut growing areas in Sri Lanka, with descriptions of three new species. J. Acarol. Soc. Japan, 13(2): 141-160. doi:10.2300/acari.13.141.1

Moraes G.J. de, McMurtry J.A. 1988. Some phytoseiid mites from Kenya, with description of three new species. Acarologia, 29(1): 13-18.

Moraes G.J. de, McMurtry J.A., Denmark H.A. 1986. A catalog of the mite family Phytoseiidae. References to taxonomy, synonymy, distribution and habitat. EMBRAPA - BDT, Brasilia, Brazil, 353 pp.

Moraes G.J. de, McMurtry J.A., Denmark H.A., Campos C.B. 2004. A revised catalog of the mite family Phytoseiidae. Zootaxa, 434: 1-494. doi:10.11646/zootaxa.434.1.1

Moraes G.J. de, McMurtry J.A., van den Berg H., Yaninek J.S. 1989a. Phytoseiid mites (Acari: Phytoseiidae) of Kenya, with descriptions of five new species and complementary descriptions of eight species. Intern. J. Acarol., 15(2): 79-93. doi:10.1080/01647958808683629

Moraes G.J. de, McMurtry J.A., Yaninek J.S. 1989b. Some phytoseiid mites (Acari: Phytoseiidae) from tropical Africa with description of a new species. Intern. J. Acarol., 15(2): 95-102. doi:10.1080/01647958908683830

Moraes G.J. de, Ueckermann E.A., Oliveira A.R., Yaninek J.S. 2001. Phytoseidae mites of the genus Euseius (Acari: Phytoseiidae) from Sub-Saharan Africa. Zootaxa, 3, 1-70. doi:10.11646/zootaxa.1.1

Moraes G.J. de, Zannou I.D., Oliveira A.R., Yaninek J.S., Hanna R. 2006. Phytoseiid mites of the subtribes Typhlodromalina and Euseiina (Acari: Phytoseiidae: Euseiini) from Sub-Saharan Africa. Zootaxa, 1114: 1-52. doi:10.11646/zootaxa.1114.1.1

Muma M.H. 1955. Phytoseiidae associated with citrus in Florida. Ann. Entomol. Soc. Amer., 48: 262-272. doi:10.1093/aesa/48.4.262

Muma M.H. 1961. Subfamilies, genera, and species of Phytoseiidae. Fla St. Mus. Bul., 5(7): 267-302.

Muma M.H., Denmark H.A. 1970. Phytoseiidae of Florida. Arthropods of Florida and neighboring land areas, 6. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, USA, 150 pp.

Mwangi E., Kiarie A., Wainwright H. 2015. Ueckermann E.A., Loots G.C. 1988. The African species of the subgenera Typhlodromalus spinosus as a potentially new biological control agent for Western Flower Thrips. Glob. Adv. Res. J. Agric. Sci., 4 (3): 162-165.

Myers N. 1988. Threatened biotas: hostspots in tropical forests. Environmentalist, 8: 187-208.

doi:10.1080/BF02240252

Myers N., Mittermeier R.A., Mittermeier C.G., Da Fonseca G.A., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853-858. doi:10.1007/BF00025202

Narayanan E.S., Kaur R.B.N., Ghai S. 1960. Importance of some taxonomic characters in the family Phytoseiidae, with new records and descriptions of species. Proceed. Nat. Inst. Sc. India, 26B: 384-394.

Navasero M.M., Navasero M.V. 2016. Biology of Paraphytoseius orientalis (Narayanan et al.) reared on the broad mite, Polyphagotarsonemus latus (Banks) (Acari: Phytoseiidae, Tarsenemidae) in the Philippines. Philipp. Entomol., 50 (1): 21-28.

Navia D., Domingos C.A., Mendonça R.S., Ferragut F., Rodrigues M.A.N., Tixier M.-S., Gondim Jr. M.G.C. 2014. Reproductive compatibility and genetic and morphometric variability among populations of the predatory mite, Amblyseius laroensis (Acari: Phytoseiidae), from Indian Ocean Islands and the Americas. Biol. Cont., 72: 17-29. doi:10.1016/j.biocontrol.2014.01.011

Nwline F.E., Nachman G. 1996. Functional responses of Iphiseius degenerans and Neoseiulus teke (Acari: Phytoseiidae) to changes in the density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae). Exp. Appl. Acarol., 20: 259-271. doi:10.1007/BF00052876

Pritchard A.E., Baker E.W. 1962. Mites of the family Phytoseiidae from Central Africa, with remarks on the genera of the world. Hilgardia, 33(7): 205-309. doi:10.3733/hilg.v33n07p205

Quilici S., Kreiter S., Ueckermann E. A., Vincenot D. 1997. Predatory mites (Acari) from various crops on Réunion Island. Intern. J. Acarol., 23(4): 283-291. doi:10.1080/01647959708863578

Quilici S., Ueckermann E. A., Kreiter S., Vayssières J.-F. 2000. Phytoseiidae (Acari) of La Réunion Island. Acarologia, 41(1-2): 97-108.

Reis P.R., Teodoro A.V., Pedro Neto M., Da Silva E.A. 2007. Life history of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) on coffee plants. Neotrop. Entomol., 36(2): 282-287. doi:10.1590/S1519-566X2007000200016

Ribaga C. 1904. Gamasidi planticoli. Riv. Patol. Veget., 10: 175-178.

Rodriguez-Cruz F.A., Venzon M., Pinto C.M.F. 2013. Performance of Amblyseius herbicolus on broad mites and on castor bean and sunnhemp pollen. Exp. Appl. Acarol., 60: 497-507. doi:10.11646/zootaxa.1114.1.1

Rowell H.J., Chant D.A., Hansel R.C. 1978. The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae. Can. Entomol., 110: 859-876. doi:10.4039/Ent110859-8

Scheuten A. 1857. Einiges uber Milben. Archiv für Naturgeschichte, 23: 104-112.

Swirski E., Golan Y. 1967. On some phytoseiid mites (Acara: Phytoseiidae) from Luzon Island (Philippines). Israel J. Agric. Res., 17: 225-227.

Swirski E., Shechter R. 1961. Some phytoseiid mites (Acariina: Phytoseiidae) of Hong-Kong, with a description of a new genus and seven new species. Isr. J. Agric. Res., 11: 97-117.

Tseng Y.H. 1976. Systematics of the mite family Phytoseiidae from Taiwan, with a revised key to genera of the world (II). J. Agric. Ass. China New Series, 94: 85-128.

Ueckermann E.A., Loots G.C. 1988. The African species of the subgenera Anthoseius De Leon and Amblyseius Berlese (Acari: Phytoseiidae). Entomol. Mem., Dep. Agric. Water Supply, Rep. South Africa 73, 168 pp.
