Clinical and genomic epidemiology of carbapenem-non-susceptible Citrobacter spp. at a tertiary healthcare center over two decades

Ahmed Babiker¹,²†, Daniel R. Evans¹, Marissa P. Griffith¹,², Christi L. McElheny¹, Mohamed Hassan³, Lloyd G. Clarke¹, Roberta T. Mettus¹, Lee H. Harrison¹,²,⁴, Yohei Doi¹, Ryan K. Shields¹, Daria Van Tyne¹#

¹Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
²Microbial Genomic Epidemiology Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
³Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
⁴Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA

Running Title: Genomic epidemiology of carbapenem-non-susceptible Citrobacter

† Present address: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA

#Address correspondence to: Daria Van Tyne, vantyne@pitt.edu
Carbapenem-non-susceptible *Citrobacter* spp. (CNSC) are increasingly recognized as healthcare-associated pathogens. Information regarding their clinical epidemiology, genetic diversity, and mechanisms of carbapenem resistance is lacking. We examined microbiology records of adult patients at the University of Pittsburgh Medical Center (UMPC) Presbyterian Hospital (PUH) from 2000-2018 for CNSC, as defined by ertapenem non-susceptibility. Over this timeframe, the proportion of CNSC increased from 4% to 10% \((P=0.03)\), as did carbapenem daily defined doses/1000 patient days (6.52 to 34.5, \(R^2=0.831, P<0.001\)), which correlated with the observed increase in CNSC (lag=0 years, \(R^2=0.660\)). Twenty CNSC isolates from 19 patients at PUH and other UPMC hospitals were available for further analysis, including whole-genome short-read sequencing and additional antimicrobial susceptibility testing. Of the 19 patients, nearly all acquired CNSC in the healthcare setting and over half had polymicrobial cultures containing at least one other organism. Among the 20 CNSC isolates, *C. freundii* was the predominant species identified (60%). CNSC genomes were compared with genomes of carbapenem-susceptible *Citrobacter* spp. from UPMC, and with other publicly available CNSC genomes. Isolates encoding carbapenemases (\(blaKP{\text{C-2}}, blaKP{\text{C-3}}, \text{and } blaND{\text{M-1}}\)) were also long-read sequenced, and their carbapenemase-encoding plasmid sequences were compared with one another and with publicly available sequences. Phylogenetic analysis of 102 UPMC *Citrobacter* spp. genomes showed that CNSC from our setting did not cluster together. Similarly, a global phylogeny of 64 CNSC genomes showed a diverse population structure. Our findings suggest that both local and global CNSC populations are genetically diverse, and that CNSC harbor carbapenemase-encoding plasmids found in other *Enterobacterales*.

Keywords: Carbapenem, *Citrobacter*, Multidrug-resistance, Carbapenemase
Introduction

Carbapenem-resistant bacteria have become a major health concern worldwide (1). There are limited therapeutic options for treating infections caused by these multidrug-resistant organisms, resulting in greater morbidity and mortality compared to infections caused by susceptible organisms (2). Furthermore, multidrug-resistant infections place an additional economic burden on healthcare systems (3). In recognition of this threat, the treatment and control of carbapenem-resistant organisms have been prioritized by both the Centers for Diseases Control and Prevention and the World Health Organization (4, 5).

The recent increase in infections caused by carbapenem-resistant organisms in the United States has been largely driven by the dissemination of plasmid-encoded carbapenemase genes, which are often carried by members of the Enterobacterales, particularly Klebsiella pneumoniae (6, 7). However, rates of other carbapenem-resistant bacterial species have also increased (8). Among them, carbapenem-non-susceptible Citrobacter spp. (CNSC) have become increasingly recognized as a healthcare-associated pathogen (9-13). CNSC isolates have been found to be both genotypically and phenotypically diverse (14, 15), and their resistance to carbapenems is frequently caused by plasmid-encoded carbapenemase genes, which can be readily acquired through horizontal gene transfer (12, 16).

Information regarding the clinical epidemiology, genetic diversity, and mechanisms of carbapenem resistance among CNSC in the United States are currently limited to a small number of studies and very few isolates (9, 17-19). Here we aimed to investigate the emergence of CNSC within our healthcare system using epidemiology and genomics approaches. We conducted a
retrospective analysis of CNSC prevalence and carbapenem use over the last two decades, and
compared the genomes of CNSC isolates from our center with other local *Citrobacter* isolates, as
well as with CNSC genomes sampled from around the globe. We found that while the CNSC
sampled from our center are highly genetically diverse, their diversity is consistent with the local
carbapenem-susceptible *Citrobacter* population, as well as with CNSC sampled elsewhere.

Methods

Study design and isolate collection

This study was conducted at the University of Pittsburgh Medical Center (UPMC) Presbyterian
Hospital (PUH), an adult medical/surgical tertiary care hospital with 762 total beds, 150 critical
care unit beds, more than 32,000 yearly inpatient admissions, and over 400 solid organ transplants
per year. CNSC isolates were collected from both UPMC-PUH as well as other UPMC hospitals.

Ethics approval for this study was obtained from the Institutional Review Board of the University
of Pittsburgh.

To investigate CNSC epidemiology at UPMC-PUH, microbiology records of adult patients with a
positive clinical culture for CNSC were evaluated from January 1, 2000 to December 31, 2018.
Cases were excluded from re-inclusion within 90 days of any CNSC culture. Carbapenem non-
susceptibility was defined as non-susceptibility to any carbapenem according to the 2017 Clinical
Laboratory Standards Institute (CLSI) interpretative criteria (20). Antibiotic consumption was
measured by daily defined doses (DDDs) of any carbapenem (21). To further phenotype and
genotype CNSC at UPMC, 20 available CNSC isolates from 19 patients collected between 2013
and 2019 were included. Isolates were considered community-associated if the organism was
isolated from a specimen collected within 72 hours following hospital admission; isolates collected after 72 hours were considered healthcare-associated (22). Clinical characteristics and outcomes of patients with CNSC isolates that underwent further characterization were collected through retrospective chart review. The primary clinical outcome was in-hospital mortality and/or transfer to hospice.

CNSC isolate characterization
Initial species assignment was performed using standard clinical microbiology laboratory methods, and was confirmed or modified after whole-genome sequencing. Carbapenem non-susceptibility was initially determined by standard clinical microbiology laboratory methods, and was confirmed by the Kirby-Bauer disk diffusion method as per the 2017 Clinical Laboratory Standards Institute (CLSI) interpretative criteria (20). Susceptibility to additional agents was determined by the broth microdilution method (20). Presence of carbapenemase enzyme activity was assessed by modified carbapenem inactivation (mCIM) test (23).

Genome sequencing and analysis
Genomic DNA was extracted from pure overnight cultures of single bacterial colonies using a Qiagen DNeasy Blood & Tissue Kit according to the manufacturer’s instructions (Qiagen, Germantown, MD). Library construction and sequencing were conducted using the Illumina Nextera NGS Library Prep Kit or the Illumina Nextera XT DNA Library Prep Kit (Illumina, San Diego, CA). Libraries were sequenced on an Illumina NextSeq with 150bp paired-end reads, or an Illumina MiSeq with 300bp paired-end reads. Isolates with suspected plasmid-encoded carbapenemases were sequenced with long-read technology on a MinION device (Oxford
Nanopore Technologies, Oxford, United Kingdom). Long-read sequencing libraries were prepared and multiplexed using a rapid multiplex barcoding kit (catalog SQK-RBK004) and sequenced on R9.4.1 flow cells. Base-calling on raw reads was performed using Guppy v2.3.1 (Oxford Nanopore Technologies, Oxford, United Kingdom), and hybrid assembly was performed with both short Illumina reads and long Oxford Nanopore reads using Unicycler v0.4.8beta (24).

Illumina reads were quality filtered and assembled de novo using SPAdes v3.11. Species were identified by Kraken and by performing pairwise comparisons of average nucleotide identity on the assembled genomes using fastANI using the many-to-many method (25). Assemblies were clustered using the hierarchy module of the python package SciPy by single linkage method and a distance criterion of 5% difference in average nucleotide identity. Multi-locus sequence typing (MLST) was performed with the mlst tool at github.com/tseeman/mlst. Genomes were annotated using Prokka v1.13 (26). Core genes were defined using Roary v3.12.0 with a 90% sequence identity cutoff (27). A phylogenetic tree based on a core gene alignment containing 1606 genes identified by Roary was generated using RAxML v8.2.11 (28) by running 1000 bootstrap replicates under the generalized time-reversible model of evolution, a categorical model of rate heterogeneity (GTR-CAT), and Lewis correction for ascertainment bias. The tree was visualized and annotated using Interactive Tree of Life (iTOL) v4 (29). The genomes of closely related isolates were compared with one another with breseq (30). AMR gene and plasmid content were assessed by BLASTn of assembled contigs against downloaded ResFinder and PlasmidFinder databases, with 80% sequence identity and 80% sequence coverage cut-off (31). Virulence gene content was assessed using the VirulenceFinder web interface with default settings and the *E. coli* database (32). Carbapenemase-encoding contigs resolved from hybrid assembly of CNSC
genomes were annotated using Prokka v1.13 (26), and resistance genes were identified using the ResFinder web interface with default settings (31). CNSC-encoding contigs were compared to one another and to plasmid sequences downloaded from the RefSeq database (n=18,364) using BLASTn of assembled contigs (33, 34). RefSeq and CNSC contigs whose sequences yielded at least 90% coverage of one another in either search direction were aligned to one another using EasyFig (35). Sequences were mapped to the *ompC* and *ompF* porin gene sequences from *C. freundii* ATCC 8090 (GenBank accession: CP049015.1) using Geneious v11.1.5 to assess putative loss-of-function mutations, such as those resulting in premature stop codons, frameshift mutations, or large deletions. Available CNSC genomes were downloaded from the GenBank or Sequence Read Archive repositories maintained by the National Center for Biotechnology Information (NCBI). Genome sequence data generated and analyzed in this study has been deposited in or accessed from SRA/GenBank with accession numbers listed in Supplemental Tables 1, 2, and 3. Accession numbers for genomes newly sequenced for this study are: SAMN14007636-SAMN14007655, SRR11038037-SRR11038052, and SAMN14082844-SAMN14082856.

Statistics

The proportion of CNSC was measured by dividing the number of CNSC isolates by the total number of *Citrobacter* spp. isolates tested for carbapenem susceptibility each year. Carbapenem (ertapenem, doripenem, meropenem, and imipenem) DDDs were measured per year at UPMC-PUH (21). Changes in the rate of carbapenem-non-susceptible pathogen isolation over time were measured by linear regression, and comparison with the rate of antibiotic DDDs per year was conducted with time-series cross-correlation analysis. Categorical data were compared using X^2.
Statistical analyses were performed using Stata V15 (StataCorp, College Station, TX) and R V3.5.1 (36).

Results

Clinical epidemiology of CNSC

During the study period from 2000 through 2018, 78 unique patients with CNSC were identified from 2817 *Citrobacter* spp. isolates tested. *Citrobacter* spp. were the seventh most common carbapenem-non-susceptible gram-negative bacteria, and fifth most common carbapenem-non-susceptible *Enterobacterales* at our center during this time period. The proportion of *Citrobacter* spp. isolates that were CNSC increased significantly over time ($R^2=0.257$, $P=0.03$), from 4% in 2000 to 10% in 2018 (Figure 1). Daily defined doses (DDDs) of carbapenems per 1000 patient days also increased during the same time period, from 6.52 in 2000 to 34.5 in 2018 ($R^2=0.831$, $P<.001$). We found that the increase in DDDs correlated with the increase in CNSC over the same time period (lag= 0 years, $R^2=0.660$) (Figure 1).

Isolation and characterization of CNSC

Twenty CNSC isolates from 19 patients from UPMC-PUH and three additional UPMC hospitals were available for further analysis (Table 1). Among these patients, the median age was 65 (range, 26-92) and 37% were female (7/19). The majority of patients had multiple comorbidities, frequently acquired CNSC in the healthcare setting (84%, 16/19), had polymicrobial cultures (57%, 11/19), and had high rates of in-hospital mortality/discharge to hospice (47%, 9/19) (Table 1). We sequenced the genomes of all 20 CNSC isolates on the Illumina platform (Supp. Table 1), and constructed a phylogenetic tree that also included an additional 82 carbapenem-susceptible
Citrobacter spp. isolates collected by the Enhanced Detection System for Hospital-Associated Transmission (EDS-HAT) project (Figure 2) (37, 38) (Supp. Table 4). Among the 20 CNSC isolates, C. freundii was the predominant species (60%, 12/20), followed by C. werkmanii (20%, 4/20), C. koseri (10%, 2/20), and C. farmeri (5%, 1/20). One CNSC isolate, YDC693, was originally identified as C. freundii but only showed 90-92% average nucleotide identity to other C. freundii genomes (Supp. Table 4). This isolate appears to belong to a new, unnamed Citrobacter species. YDC693 (Citrobacter sp.) and YDC697-2 (C. farmeri) were both cultured from the same patient, and were sampled approximately two weeks apart. Their distribution throughout the genome phylogeny suggested that the CNSC isolates were largely genetically distinct from one another (Figure 2, Supp. Table 4). The one exception was RS259 and YDC849-1, which were found to have fewer than 20 genetic variants (single nucleotide polymorphisms and insertion/deletion variants) that distinguished them from one another, despite being isolated from patients at two different facilities (Facility A vs. Facility B).

Antimicrobial susceptibility and identification of antibiotic resistance and virulence genes

While the CNSC isolates we collected were originally defined as non-susceptible to ertapenem, they displayed variable susceptibility patterns to other carbapenem antibiotics. Only about half of the isolates (55%, 11/20) were non-susceptible to meropenem, with three isolates showing intermediate resistance and eight being resistant (Table 2). We tested all isolates for the presence of a carbapenemase using a modified carbapenem inactivation (mCIM) test (23), for which 13 isolates (65%) tested positive. Carbapenemase genes were present in the genomes of all 13 isolates (Table 2). Among the carbapenemases identified, blakPC-3 was predominant (9/13), followed by blaNDM-1 (2/13) and blakPC-2 (2/13). Analysis of the major porin-encoding genes revealed that
ompC was intact in all CNSC isolates, while ompF was disrupted in at least six CNSC genomes (Table 2, Supp. Table 8). ompF disruption was not associated with increased meropenem MICs, however we did not find evidence of ompC or ompF disruptions in any of the carbapenem-susceptible isolates. Next, we tested all 20 CNSC isolates against novel β-lactam/β-lactamase inhibitor agents, and found they were frequently susceptible to ceftazidime-avibactam (17/20, 85%) and meropenem-vaborbactam (18/20, 90%). As expected, both isolates with blaNDM-1 exhibited phenotypic resistance to both agents (Table 2). Isolate RS237 was also found to be resistant to ceftazidime-avibactam, even though its genome did not contain a carbapenemase enzyme or evidence of porin mutations. We compared RS237 with the most closely related carbapenem-susceptible isolate, CB00023, and found a large number of mutations separating them from one another (Supp. Table 5). One of these was a missense mutation (S219I) in acrE, which is predicted to encode a multidrug export protein and could be a candidate resistance-associated gene.

In addition to carbapenemase genes, we also compared the non-β-lactam acquired antibiotic resistance gene content between CNSC and carbapenem-susceptible EDS-HAT isolates (Supp. Table 6). CNSC isolate genomes often carried genes encoding resistance to aminoglycoside, fluoroquinolone, and tetracycline antibiotic classes. Excluding β-lactam resistance genes, the average number of resistance genes was significantly higher among CNSC isolates compared to carbapenem-susceptible EDS-HAT isolates (mean(sd): 6(4) vs. 2(3); P<0.001; Supp. Table 6). Finally, we identified three CNSC isolates with virulence genes previously described in E. coli (32). RS289 and YDC689-2 both encoded a senB gene (Genbank accession: CP000038), which encodes an enterotoxin (39). Additionally, YDC667-1 encoded an astA gene (Genbank accession:
AF411067) which encodes an EAST-1 heat-stable toxin (40). These genes were also found among carbapenem-susceptible isolates (Supp. Table 7).

Global phylogeny of CNSC

To understand how the genomic diversity of the study isolates compared to CNSC isolates from other locations, we searched the NCBI databases for additional publicly available CNSC genomes. Using search terms “Citrobacter” and “Carbapenem,” we identified 64 additional CNSC genomes (Supp. Table 3). A global phylogeny of these 64 CNSC genomes combined with the 20 from this study showed abundant genetic heterogeneity (Figure 3). We investigated the species distribution of the global CNSC population using fastANI, and found that, similar to our UPMC isolates, the global CNSC population was dominated by *C. freundii* (41/64, 64%), followed by *C. amalonaticus* (9/64, 14%), *C. werkmanii* (3/64, 5%), and *C. koseri* (2/64, 3%). Carbapenem-non-susceptible *C. amalonaticus* was not found among our UPMC isolates, but has been isolated from the United States, South America, and Europe (Figure 3, Supp. Table 3). *Citrobacter* sp. YDC693 was found to cluster with an additional three isolates from the United States (Supp. Table 3). Three other global CNSC (two from the United States and one from China) appeared to belong to another distinct *Citrobacter* species with 90-93% average nucleotide identity to *C. freundii*. The proportion of global CNSC isolate genomes that encoded carbapenemase enzymes (49/64, 77%) was similar to our UPMC isolate set (Figure 3), however the diversity of enzyme types was greater and included *bla*NDM-5, *bla*IMP-38, and *bla*OXA-48-like enzymes.

Carbapenemase-encoding plasmid diversity
To better understand the genetic context of the carbapenemase enzymes encoded by our UPMC CNSC isolates, we conducted Oxford Nanopore long-read sequencing and hybrid assembly of the 13 carbapenemase-carrying isolate genomes (Table 3). A total of 11 complete, circular contigs were resolved from ten isolates and nine patients, and all but one of these contigs contained replicons belonging to the IncA/C2, IncL/M, IncN, and unnamed repA families. The genome assembly of RS259 contained a 21.4-kb circular contig encoding the \(\text{bla}_{\text{NDM-1}} \) carbapenemase on a class 1 integron, but lacked readily identifiable plasmid replication machinery. This circular contig was highly similar to the \(\text{bla}_{\text{NDM-1}} \)-encoding region of a 161-kb IncA/C2 plasmid resolved from the YDC849-1 genome. The RS259 genome appeared to also encode the remaining regions of the 161-kb plasmid from YDC849-1, however the coverage was split across multiple contigs, suggesting either excision of the class 1 integron into an unstable intermediate structure, and/or issues with mobile element sequence assembly. Additionally, the YDC876 genome contained two plasmids of different sizes with distinct replicons that both harbored \(\text{bla}_{\text{KPC-3}} \) carbapenemase genes. Direct comparison of these two plasmids confirmed they were distinct, even though they encoded the same carbapenemase and other acquired antimicrobial resistance genes (Table 3). Finally, three carbapenemase-encoding contigs were not completely resolved by hybrid assembly; in all cases the contigs were short (less than 20kb), and additional experiments would be needed to completely resolve their structures.

To determine how the carbapenemase-encoding plasmids in this study compared to one another and whether they were unique to our study, we conducted pairwise comparisons of the resolved plasmids. In addition, we searched the RefSeq database (34) for plasmids that showed substantial homology and high sequence identity to one or more of the CNSC plasmids from our UPMC.
isolates. One of the plasmids we resolved (RS226_4) matched a \textit{bla}_{KPC-2}-encoding plasmid from a publicly available \textit{C. freundii} isolate genome (GenBank accession CP037739.1) with 100% coverage and 100% nucleotide identity, despite the isolates themselves being genetically distinct from one another. Three other plasmids that we identified (YDC608_5, YDC876_2, and YDC638-3) were highly similar to one another, and were found in \textit{C. freundii} isolates belonging to two different sequence types (ST185 and ST116, Figure 4A). While YDC608 and YDC876 belonged to two different \textit{C. freundii} sequence types, their plasmids were more similar to one another than the plasmid from YDC638-3, which belonged to the same sequence type as YDC876. These plasmids were also highly similar to the pCAV1193-166 plasmid found in a \textit{bla}_{KPC}-carrying \textit{K. pneumoniae} isolate from Virginia (Figure 4A) (41). Separately, the YDC849-1_2 plasmid encoding \textit{bla}_{NDM-1} had high similarity with plasmid p1540-2, which was found in a carbapenem-resistant \textit{E. coli} isolate from Hong Kong (GenBank accession: CP019053.1) (Figure 4B). In addition, the \textit{bla}_{KPC-3}-carrying plasmids YDC693_4 and YDC697-2_6 were from isolates of different species that came from the same patient. Despite being different sizes (259kb vs. 63kb), the plasmids showed some similarity to one another, and in particular the Tn\text{4401}\text{-like elements encoding} \textit{bla}_{KPC-3} on each plasmid contained only 1 mutation in more than 17-kb of sequence (Figure 4C). These data suggest possible transfer of a \textit{bla}_{KPC-3}-encoding mobile element between the isolates from this patient, however independent acquisition or independent transfer from another species cannot be ruled out.

\textbf{Discussion}

In this study, we conducted a retrospective review of the clinical and genomic epidemiology of CNSC over the past two decades at a large healthcare center in the United States. We analyzed the
genomes of 20 CNSC and 82 carbapenem-susceptible Citrobacter spp. sampled locally, as well as 64 publicly available genomes sampled from around the globe. We found that the rates of CSNC increased significantly over the last two decades at our center, that CSNC were frequently acquired in the healthcare setting along with other healthcare-associated organisms, and that patients from whom CNSC were isolated often had poor clinical outcomes. Our phylogenetic analyses revealed genetically diverse CNSC populations both locally and globally, suggesting that CNSC most often arise independently from one another. We also found that carbapenem-non-susceptibility was often mediated by acquisition of carbapenemases genes, with {\textit{bla}}_{KPC-3} being the predominant carbapenemase identified among CNSC isolates in our setting.

Citrobacter spp. have become increasingly recognized as a cause of multidrug-resistant healthcare-associated infections around the world (10, 42-44), and prior reports have identified CNSC predominantly from healthcare sources and often associated with nosocomial outbreaks (9, 12, 45). We detected a significant increase in the proportion of Citrobacter spp. isolates that were carbapenem-non-susceptible over the last two decades, which correlated with increased use of carbapenems at our center. While the incidence of carbapenem-resistant organisms has increased worldwide over recent years (7, 46), attention has been largely focused on other carbapenem-resistant members of the Enterobacteriales, such as Enterobacter spp., \textit{E. coli}, and \textit{Klebsiella} spp. (7). As with other gram-negative species, increasing antibiotic resistance among Citrobacter spp. is of significant concern, as our findings show that many CNSC appear to have acquired resistance genes from other bacteria by horizontal gene transfer.
Our analysis revealed extensive genomic diversity among both CNSC and carbapenem-susceptible
Citrobacter sampled from our center. This is similar to previous analyses of CNSC from non-US
centers that used more classical molecular typing methods (14, 47, 48). Among Citrobacter
species, C. freundii is most commonly associated with both clinical disease (44) and multidrug-
resistant phenotypes (14, 15, 49). Our findings were consistent with these prior reports – C.
freundii was the most frequent CNSC species we observed, though we also found CNSC belonging
to four additional species. The global CNSC population was similarly diverse, but C. freundii was
again the most prevalent species observed, which may be due to its higher rate of antibiotic
resistance compared to other Citrobacter spp. (43, 44).

The term “carbapenem non-susceptibility” encompasses a wide range of phenotypic
susceptibilities, which can be caused by different mechanisms. Among the CNSC isolates we
collected, roughly two thirds were found to produce carbapenemases, a rate that is similar to prior
reports (14), and to the global CNSC population. CSNC have been found to encode a diverse array
of carbapenemases. For example, a study by Arana et al. found five different carbapenemase types
among Citrobacter spp. isolates collected from Spain (14), and similar results were also
demonstrated in a study of carbapenemase-producing Enterobacterales in China (15). It has been
suggested that carbapenemase diversity depends on local geography (46), and future studies of
larger populations may confirm or refute this notion. The high diversity of carbapenemase-
encoding plasmids we found, all from isolates of a single genus at a single hospital, highlights the
complexity of antibiotic resistance gene transfer between pathogens in the hospital setting (50).
Even with a relatively small number of isolates, we observed identical and closely related plasmids
in genetically distinct bacteria, identical blaKPC-3-encoding mobile elements on different plasmids.
carried by the same bacterial isolate, and similar carbapenemase-encoding plasmids in CNSC of different species that were isolated from the same patient. These findings underscore the highly dynamic and variable transfer of carbapenemase-encoding mobile genetic elements into and among CNSC isolates.

There were several limitations to this study. While our study presents the largest genomic analysis of CNSC from the United States, the number of isolates we included was still rather limited. Moreover, the isolates we collected represent a convenience sample of available isolates, which may introduce bias. Furthermore, the correlation between carbapenem consumption and proportion of CNSC is a strictly ecologic analysis. Additionally, our genomic analysis of resistance determinants was limited to acquired carbapenemase genes, and we did not investigate other resistance mechanisms such as chromosomal *ampC* genes, efflux pumps, or functional testing of outer membrane protein mutations, which are known to be associated with carbapenem resistance. Furthermore, many of the global isolate genomes we analyzed were from the United States and/or were part of outbreak investigations, thus they may not be representative of the true global diversity of CNSC. Additionally, we only made *in silico*, sequence-based comparisons of the plasmids we resolved; as such, we cannot comment on their capacity for conjugative transfer. Finally, we were unable to determine whether the poor clinical outcomes among the patients from whom CNSC were isolated were indeed attributable to CNSC infection.

As they become more prevalent in the healthcare system, further studies will be needed to increase our understanding of CNSC genomic diversity and resistance mechanisms. In particular, examining the local and global epidemiology of horizontal transfer of drug resistance elements
among *Citrobacter* spp. – and between *Citrobacter* and other *Enterobacterales* species – would provide valuable insights into risk factors and other trends that could be targeted to limit the occurrence and spread of CNSC.

Acknowledgements: We gratefully acknowledge Hayley Nordstrom, Daniel Snyder, and Vaughn Cooper for generating genome sequence data. This study was funded by the National Institute of Allergy and Infectious Diseases (R21AI1109459 and R01AI127472 to L.H.H.), and by the University of Pittsburgh Department of Medicine. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Preliminary data included in this work was presented at the ID Week 2019 conference (abstract #485).

Conflict of Interests
The authors have no commercial or other associations that might pose a conflict of interest.

References
1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, AlMazroa MA, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Abdulhak AB, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M,
et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380:2095-2128.

2. Kadri SS, Lai YL, Ricotta EE, Strich JR, Babiker A, Rhee C, Klompas M, Dekker JP, Powers III JH, Danner RL, Adjemian J. 2019. External Validation of Difficult-to-Treat Resistance Prevalence and Mortality Risk in Gram-Negative Bloodstream Infection using Electronic Health Record Data from 140 US Hospitals. doi:10.1093/ofid/ofz110.

3. Bartsch SM, McKinnell JA, Mueller LE, Miller LG, Gohil SK, Huang SS, Lee BY. 2017. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin Microbiol Infect 23:48.e9-48.e16.

4. WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discover, and development of new antibiotics World Health Organization,

5. CDC. 2019. Antibiotic Resistance Threats in the United States. U.S. Department of Health and Human Services, CDC, Atlanta, GA.

6. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, Wilson LE, Vaeth E, Lynfield R, Shaw KM, Vagnone PMS, Bamberg WM, Janelle SJ, Dumyati G, Concannon C, Beldavs Z, Cunningham M, Cassidy PM, Phipps EC, Kenslow N, Travis T, Lonsway D, Rasheed JK, Limbago BM, Kallen AJ. 2015. Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012-2013. JAMA 314:1479-1487.

7. Iovleva A, Doi Y. 2017. Carbapenem-Resistant Enterobacteriaceae. Clin Lab Med 37:303-315.
8. Wilson BM, El Chakhtoura NG, Patel S, Saade E, Donskey CJ, Bonomo RA, Perez F. 2017. Carbapenem-Resistant Enterobacter cloacae in Patients from the US Veterans Health Administration, 2006-2015. Emerging infectious diseases 23:878-880.

9. Jiménez A, Castro JG, Munoz-Price LS, de Pascale D, Shimose L, Mustapha MM, Spychala CN, Mettus RT, Cooper VS, Doi Y. 2017. Outbreak of Klebsiella pneumoniae Carbapenem–Producing Citrobacter freundii at a Tertiary Acute Care Facility in Miami, Florida. Infection Control & Hospital Epidemiology 38:320-326.

10. Gaibani P, Ambretti S, Farruggia P, Bua G, Berlingeri A, Tamburini MV, Cordovana M, Guerra L, Mazzetti M, Roncarati G, Tenace C, Moro ML, Gagliotti C, Landini MP, Sambri V. 2013. Outbreak of Citrobacter freundii carrying VIM-1 in an Italian Hospital, identified during the carbapenemases screening actions, June 2012. International Journal of Infectious Diseases 17:e714-e717.

11. Cunha CB, Kassakian SZ, Chan R, Tenover FC, Ziakas P, Chapin KC, Mermel LA. 2016. Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. American Journal of Infection Control 44:126-130.

12. Venditti C, Fortini D, Villa L, Vulcano A, D'Arezzo S, Capone A, Petrosillo N, Nisii C, Carattoli A, Di Caro A. 2017. Circulation of bla(KPC-3)-Carrying IncX3 Plasmids among Citrobacter freundii Isolates in an Italian Hospital. Antimicrobial agents and chemotherapy 61:e00505-17.

13. Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF, Khil P, Odom RT, Deming C, Park M, Thomas PJ, Program NCS, Henderson DK, Palmore TN,
Segre JA, Frank KM. 2018. Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance. mBio 9:e02011-17.

Arana DM, Ortega A, González-Barberá E, Lara N, Bautista V, Gómez-Ruiz D, Sáez D, Fernández-Romero S, Aracil B, Pérez-Vázquez M, Campos J, Oteo J, Group SARSPC. 2017. Carbapenem-resistant Citrobacter spp. isolated in Spain from 2013 to 2015 produced a variety of carbapenemases including VIM-1, OXA-48, KPC-2, NDM-1 and VIM-2. Journal of Antimicrobial Chemotherapy 72:3283-3287.

Wang Q, Wang X, Wang J, Ouyang P, Jin C, Wang R, Zhang Y, Jin L, Chen H, Wang Z, Zhang F, Cao B, Xie L, Liao K, Gu B, Yang C, Liu Z, Ma X, Jin L, Zhang X, Man S, Li W, Pei F, Xu X, Jin Y, Ji P, Wang H. 2018. Phenotypic and Genotypic Characterization of Carbapenem-resistant Enterobacteriaceae: Data From a Longitudinal Large-scale CRE Study in China (2012–2016). Clinical Infectious Diseases 67:S196-S205.

Yoon E-J, Kang DY, Yang JW, Kim D, Lee H, Lee KJ, Jeong SH. 2018. New Delhi Metallo-Beta-Lactamase-Producing Enterobacteriaceae in South Korea Between 2010 and 2015. Frontiers in microbiology 9:571-571.

Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP, Feldgarden M, Chapman SB, Reis-Cunha JL, Shea TP, Young S, Zeng Q, Delaney ML, Kim D, Peterson EM, O’Brien TF, Ferraro MJ, Hooper DC, Huang SS, Kirby JE, Onderdonk AB, Birren BW, Hung DT, Cosimi LA, Wortman JR, Murphy CI, Hanage WP. 2017. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci U S A 114:1135-1140.

Conlan S, Lau AF, Deming C, Spalding CD, Lee-Lin S, Thomas PJ, Park M, Dekker JP, Frank KM, Palmore TN, Segre JA. 2019. Plasmid Dissemination and Selection of a
Multidrug-Resistant *Klebsiella pneumoniae* Strain during Transplant-Associated Antibiotic Therapy. MBio 10.

19. Rasheed JK, Biddle JW, Anderson KF, Washer L, Chenoweth C, Perrin J, Newton DW, Patel JB. 2008. Detection of the *Klebsiella pneumoniae* carbapenemase type 2 Carbapenem-hydrolyzing enzyme in clinical isolates of *Citrobacter freundii* and *K. oxytoca* carrying a common plasmid. Journal of clinical microbiology 46:2066-2069.

20. Clinical and Laboratory Standards Institute. M100-S27 Psfast, 27th informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.

21. WHO. 2018. WHO Collaborating Centre for Drug Statistics Methodology (WHOCC): DDD Definition and general considerations. World Health Organization.

22. CDC. 2019. CDC/NHSN Surveillance Definitions for Specific Types of Infections U.S. Department of Health and Human Services, CDC, Atlanta, GA.

23. Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK, Brasso WB, Bobenchik AM, Lockett ZC, Charnot-Katsikas A, Ferraro MJ, Thomson RB, Jenkins SG, Limbago BM, Das S. 2017. Modified Carbapenem Inactivation Method for Phenotypic Detection of Carbapenemase Production among *Enterobacteriaceae*. Journal of Clinical Microbiology 55:2321.

24. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595.
25. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9:5114.

26. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-9.

27. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691-3.

28. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-3.

29. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242-5.

30. Deatherage DE, Barrick JE. 2014. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 1151:165-88.

31. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640-4.

32. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501-10.

33. Garcillan-Barcia MP, Redondo-Salvo S, Vielva L, de la Cruz F. 2020. MOBscan: Automated Annotation of MOB Relaxases. Methods Mol Biol 2075:295-308.
34. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733-45.

35. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer.

36. Team RC. 2019. R: A Language and Environment for Statistical Computing. 2019, Available at: https://www.r-project.org/.

37. Sundermann AJ, Babiker A, Marsh JW, Shutt KA, Mustapha MM, Pasculle AW, Ezeonwuka C, Saul MI, Pacey MP, Van Tyne D, Ayres AM, Cooper VS, Snyder GM, Harrison LH. 2019. Outbreak of Vancomycin-resistant Enterococcus faecium in Interventional Radiology: Detection Through Whole Genome Sequencing-Based Surveillance. Clinical Infectious Diseases doi:10.1093/cid/ciz666.

38. Sundermann AJ, Miller JK, Marsh JW, Saul MI, Shutt KA, Pacey M, Mustapha MM, Ayres A, Pasculle AW, Chen J, Snyder GM, Dubrawski AW, Harrison LH. 2019. Automated data mining of the electronic health record for investigation of healthcare-associated outbreaks. Infect Control Hosp Epidemiol 40:314-319.
39. Mao B-H, Chang Y-F, Scaria J, Chang C-C, Chou L-W, Tien N, Wu J-J, Tseng C-C, Wang M-C, Chang C-C, Hsu Y-M, Teng C-H. 2012. Identification of *Escherichia coli* genes associated with urinary tract infections. Journal of clinical microbiology 50:449-456.

40. Sánchez S, Llorente MT, Herrera-León L, Ramiro R, Nebreda S, Remacha MA, Herrera-León S. 2017. Mucus-Activatable Shiga Toxin Genotype *stx2d* in *Escherichia coli* O157:H7. Emerging infectious diseases 23:1431-1433.

41. Sheppard AE, Stoesser N, Sebra R, Kasarskis A, Deikus G, Anson L, Walker AS, Peto TE, Crook DW, Mathers AJ. 2016. Complete Genome Sequence of KPC-Producing *Klebsiella pneumoniae* Strain CAV1193. Genome announcements 4:e01649-15.

42. Chen S, Hu F, Liu Y, Zhu D, Wang H, Zhang Y. 2011. Detection and spread of carbapenem-resistant *Citrobacter freundii* in a teaching hospital in China. American Journal of Infection Control 39:e55-e60.

43. Maraki S, Vardakas KZ, Mavromanolaki VE, Kyriakidou M, Spais G, Kofteridis DP, Samonis G, Falagas ME. 2017. In vitro susceptibility and resistance phenotypes in contemporary *Citrobacter* isolates in a University Hospital in Crete, Greece. Infect Dis (Lond) 49:532-539.

44. Samonis G, Karageorgopoulos DE, Kofteridis DP, Matthaiou DK, Sidiropoulou V, Maraki S, Falagas ME. 2009. *Citrobacter* infections in a general hospital: characteristics and outcomes. Eur J Clin Microbiol Infect Dis 28:61-8.

45. Hammerum AM, Hansen F, Nielsen HL, Jakobsen L, Stegger M, Andersen PS, Jensen P, Nielsen TK, Hansen LH, Hasman H, Fuglsang-Damgaard D. 2016. Use of WGS data for investigation of a long-term NDM-1-producing *Citrobacter freundii* outbreak and
secondary in vivo spread of blaNDM-1 to *Escherichia coli*, *Klebsiella pneumoniae* and *Klebsiella oxytoca*. Journal of Antimicrobial Chemotherapy 71:3117-3124.

46. Nordmann P, Naas T, Poirel L. 2011. Global spread of Carbapenemase-producing
Enterobacteriaceae. Emerg Infect Dis 17:1791-8.

47. Villa J, Arana DM, Viedma E, Perez-Montarelo D, Chaves F. 2017. Characterization of
mobile genetic elements carrying VIM-1 and KPC-2 carbapenemases in *Citrobacter
freundii* isolates in Madrid. International Journal of Medical Microbiology 307:340-345.

48. Liu L, Lan R, Liu L, Wang Y, Zhang Y, Wang Y, Xu J. 2017. Antimicrobial Resistance
and Cytotoxicity of *Citrobacter* spp. in Maanshan Anhui Province, China. Frontiers in
Microbiology 8.

49. Praharaj AK, Khajuria A, Kumar M, Grover N. 2016. Phenotypic detection and
molecular characterization of beta-lactamase genes among *Citrobacter* species in a
tertiary care hospital. Avicenna journal of medicine 6:17-27.

50. Lerminiaux NA, Cameron ADS. 2019. Horizontal transfer of antibiotic resistance genes
in clinical environments. Can J Microbiol 65:34-44.

Figure Legends

Figure 1. Carbapenem consumption and proportion of carbapenem-non-susceptible
Citrobacter spp. (CNSC), 2000-2018. Carbapenem daily defined doses (DDDs) per 1000 patient
days (yellow bars) and the proportion of *Citrobacter* spp. isolates that were carbapenem-non-
susceptible (solid blue line) were quantified for each year between 2000 and 2018 at UPMC PUH.

Of 2817 total *Citrobacter* spp. isolates tested, 78 unique patients had CNSC (defined as ertapenem
The dotted blue line shows a linear regression for increased CNSC proportion over time ($R^2=0.257$, $P=0.03$). Carbapenem DDDs per 1000 patient days also increased over time ($R^2=0.831$, $P<.001$), and correlated with the increase in CNSC (lag=0 years, $R^2=0.660$).

Figure 2. Local phylogeny of carbapenem-susceptible and non-susceptible *Citrobacter* spp. from UPMC. A phylogenetic tree of 102 local *Citrobacter* spp. genomes (82 carbapenem-susceptible and 20 carbapenem-non-susceptible isolates) was generated based on an alignment of 1606 core genes using RAxML (27). The tree was visualized and annotated using Interactive Tree of Life (iTOL) (28). The tree is annotated based on species, facility source, carbapenem susceptibility phenotype, and carbapenemase genes identified, if any, in the genome of each isolate.

Figure 3. Global phylogeny of available CNSC genomes. A phylogenetic tree of 84 CNSC genomes (20 from this study and 64 from the NCBI) was generated based on an alignment of 1842 core genes using RAxML (27). The tree was visualized and annotated using Interactive Tree of Life (iTOL) (28). The tree is annotated based on species, whole genome sequencing data source, continent of isolation, and carbapenemase genes identified, if any, in the genome of each isolate.

Figure 4. Carbapenemase-encoding plasmid diversity among and between CNSC genomes. CNSC genome contigs were compared to each other, and with sequences deposited in the National Center for Biotechnology Information (NCBI). Sequences were aligned to one another with EasyFig. Sequence names correspond to isolateID_contig# from hybrid assembly, or to the sequence name from NCBI. Bacterial species and sequence type (ST) are listed, where available. ORFs are colored by function (blue = mobilization, pink = carbapenemase, red = other antibiotic resistance, gray = metal-interacting, orange = other/hypothetical). Antibiotic resistance genes, metal-interacting operons, and Type IV secretion system components are labeled. Grey blocks
between sequences indicates regions >5kb with >98% nucleotide identity, with darker shading indicating higher identity. Nucleotide identity between the \textit{bla}\textsubscript{KPC-3}-encoding Tn4401-like regions of YDC693_4 and YDC697-2_6 (from two isolates of different \textit{Citrobacter} species from the same patient) is noted with white text in panel C.
Table 1: Clinical characteristics of patients with CNSC

Isolate ID	Age	Gender	Year	Source	Facility	CNSC Organism	Culture site	Clinical Syndrome	Polymicrobial culture (Y/N)	Other organisms	Comorbid Conditions	Outcome of hospitalization	
RS77	49	M	2018	HA	A	C. freundii	Rectal swab	Colonization	N	None	None	Discharge to home	
RS102	74	F	2018	HA	A	C. sordellii	Rectal swab	Colonization	N	None	None	In-hospital death	
RS189	66	F	2017	HA	A	C. sordellii	BAL	Pneumonia	N	None	None	Discharge to facility	
RS226	56	F	2018	HA	A	C. freundii	Urine	Colonization	Y	E. coli	None	In-hospital death	
RS236	70	M	2018	Community	A	C. freundii	Peritoneal fluid	Intra-Abdominal	Y	C. freundii (ESBL), E. faecium	None	None	Transfer to hospice
RS237	80	F	2018	Community	A	C. freundii	Urine	Colonization	N	None	Sinus OM	Discharge to home	
RS259	61	F	2018	HA	B	C. freundii	Peritoneal fluid	Intra-Abdominal	Y	E. coli, P. aeruginosa	None	Metastatic lung cancer, COPD, DM	In-hospital death
RS289	92	M	2018	Community	A	C. koseri	Urine	UTI	Y	E. faecalis	Bladder cancer, dementia, CKD, COPD, CHF	Discharge to home	
YDC608	57	M	2013	HA	A	C. freundii	Biliary drainage	Intra-Abdominal	N	None	None	Transfer to hospice	
YDC608-2	27	M	2013	HA	A	C. freundii	Biliary drainage	Intra-Abdominal	Y	E. faecium (VRE)	None	Discharge to home	
YDC645	67	F	2013	HA	C	C. freundii	Blood	SSTI/Endocarditis	Y	Bacillus spp., E. raffinosus	CAD, CHF, DM, ESRD, CHF	Transfer to hospice	
YDC661	64	M	2014	HA	A	C. freundii	BAL	Pneumonia	Y	S. maltophilia	Heart transplant	In-hospital death	
YDC667-1	73	M	2014	HA	A	C. sordellii	BAL	Pneumonia	Y	K. pneumoniae (ESBL)	CHF, DM, CAD, CKD	In-hospital death	
YDC689-2	61	M	2015	HA	A	C. koseri	BAL	Pneumonia	N	None	ESRD, liver transplant	Discharge to facility	
YDC939*	65	M	2015	HA	A	Citrobacter spp.	BAL	Pneumonia	Y	E. coli (ESBL)	SBT, adrenal insufficiency	In-hospital death	
YDC947-2*	65	M	2015	HA	A	C. freundii	Tracheotomy site drainage	SSTI	Y	K. oxytoca (KPC)	SBT, adrenal insufficiency	In-hospital death	
YDC730	71	M	2015	HA	D	C. sordellii	Pelvic abscess	Intra-Abdominal	Y	E. faecium (VRE)	Multiple myeloma	Discharge to home	
Case #	Sex	Age	Year	Admission Site	Isolate	Site	Occurrence	Comorbidities	Outcome				
-------	-----	-----	------	----------------	----------	------	-------------	--------------	---------				
YDC3041	F	26	2018	HA A	C. freundii	Urine	UTI N	C. freundii (NDM)	CVID	In-hospital death			
YDC3876	M	53	2019	HA A	C. freundii	BAL	Pneumonia N	None	CAD, CHF	Discharge home			
YDC3888	M	73	2019	HA A	C. freundii	Rectal swab	Colonization N	None	Lung transplant	In-hospital death			

Abbreviations: BAL: Bronchoalveolar lavage, CAD: coronary artery disease, CHF: congestive heart failure, CKD: chronic kidney disease, COPD: chronic pulmonary disease, CNSC: carbapenem non-susceptible Citrobacter spp, CVID: common variable immunodeficiency, ESBL: Extended-spectrum beta-lactamase, ESLD: end-stage liver disease, ESRD: end-stage renal disease, DM: diabetes mellitus, F: female, HAP: hospital-acquired pneumonia, HCC: hepatocellular carcinoma, HTN: hypertension, KPC: Klebsiella pneumoniae carbapenemase, OM: osteomyelitis, M: male, NDM: New Delhi metallo-beta-lactamase, PSC: primary sclerosing cholangitis, SBT: small bowel transplant, SSTI: skin and soft tissue infection, VRE: Vancomycin-resistant Enterococcus, UTI: urinary tract infection.

Same patient isolates
Table 2: Carbapenemase genes, porin genotypes, antimicrobial susceptibilities, and mCIM test results for 20 CNSC isolates.

Isolate	Organism	Carbapenemase gene	OmpC	OmpF	Meropenem MIC (µg/ml)	Ceftazidime-Avibactam MIC (µg/ml)	Meropenem-Vaborbactam MIC (µg/ml)	mCIM Test Result
RS77	*C. freundii*	*bla*KPC-3	intact	intact	1	0.5	0.015	Positive
RS102	*C. werkmanii*	-	intact	intact	0.25	0.5	0.06	Negative
RS189	*C. werkmanii*	-	intact	intact	≤0.06	0.5	0.015	Negative
RS226	*C. freundii*	*bla*KPC-2	intact disrupted	2 (I)	<0.25	0.015	Positive	
RS236	*C. freundii*	-	intact	intact	2 (I)	2	0.5	Negative
RS237	*C. freundii*	-	intact	intact	4 (R)	64 (R)	0.5	Negative
RS259	*C. freundii*	*bla*NDM-1	intact	intact	16 (R)	>256 (R)	>8 (R)	Positive
RS289	*C. koseri*	-	intact	unknown	0.12	2	0.12	Negative
YDC608	*C. freundii*	*bla*KPC-3	intact	intact	16 (R)	4	0.06	Positive
YDC638-3	*C. freundii*	*bla*KPC-3	intact	intact	2 (I)	2	0.06	Positive
YDC645	*C. freundii*	*bla*KPC-2	intact	intact	≤0.06	<0.25	0.03	Positive
YDC661	*C. freundii*	*bla*KPC-3	intact	intact	1	4	0.06	Positive
YDC667-1	*C. werkmanii*	*bla*KPC-3	intact	intact	1	0.5	0.03	Positive
YDC689-2	*C. koseri*	-	intact	intact	0.5	4	0.12	Negative
YDC693*	Citrobacter sp.	*bla*KPC-3	intact	unknown	16 (R)	1	0.03	Positive
YDC697-2*	*C. farmeri*	*bla*KPC-3	intact	intact	32 (R)	4	0.12	Positive
YDC730	*C. werkmanii*	-	intact	intact	0.12	0.5	0.12	Negative
YDC849-1	*C. freundii*	*bla*NDM-1	intact	intact	16 (R)	>256 (R)	16 (R)	Positive
YDC876	*C. freundii*	*bla*KPC-3	intact	intact	8 (R)	1	0.06	Positive
YDC880	*C. freundii*	*bla*KPC-3	intact	intact	4 (R)	1	0.03	Positive

All isolates were determined to be Carbapenem non-susceptible based on ertapenem non-susceptibility.

OmpC and OmpF porin genotypes were evaluated by comparing to *C. freundii* ATCC 8090. “Intact” = protein sequence of expected length; “disrupted” = premature stop codon, frameshift, or large deletion detected; “unknown” = unable to assess due to contig break (RS289) or highly divergent sequence (YDC693).

Intermediate (I) and resistance (R) designations are based on CLSI breakpoints.

*Same patient isolates.
Table 3: Carbapenemase-encoding contigs identified in CNSC genomes

Isolate_ Contig	Length (bp)	Circular	Replicon(s)	Carbapenemase gene	Carbapenemase-carrying element	Additional Acquired Antimicrobial Resistance Genes
RS77_21	10,011	No	None	blaKPC-3	Tn4401b-like	None
RS226_4	43,621	Yes	repA	blaKPC-2	Tn4401-like	blaTEM-1B
RS259_9	21,420	Yes	None	blbNDM-1	Class 1 integron	aac(3)-IId, aac(6')-Ib-cr, adaA16, arr-3, catB3, dfrA27, mph(A), sul1
YDC608_5	172,511	Yes	IncA/C2	blaKPC-3	Tn4401b-like	aac(6')-Ib, adaA1, ant(2')-Ia, blbOXA-9, blbTEM-7, blbTEM-1A
YDC638-3_3	213,257	Yes	IncA/C2	blaKPC-3	Tn4401b-like	aac(6')-Ib, aac(6')-Ib-cr, adaA1, ant(2')-Ia, blbOXA-9, blbTEM-7, blbTEM-1A, qnrA1, sul1
YDC645_3	44,364	Yes	repA	blaKPC-2	Tn4401-like	None
YDC661_9	15,031	No	None	blaKPC-3	Tn4401b-like	None
YDC667-1_41	4,894	No	None	blaKPC-3	Incomplete Tn4401	None
YDC693_4*	258,721	Yes	IncA/C2, IncN	blaKPC-3	Tn4401-like	aac(6')-Ib, adaA1, blbOXA-9, blbTEM-7, dfrA14
YDC697-2_6*	62,530	Yes	IncN	blaKPC-5	Tn4401-like	dfrA14
YDC849-1_2	160,983	Yes	IncA/C2	blbNDM-1	Class 1 integron	aac(3)-IId, aac(6')-Ib-cr, adaA16, aph(3')-Ib, aph(3')-Ia, aph(6)-Ia, arr-3, catB3, dfrA27, floR, mph(A), qnrS1, sul1, sul2, tet(A)
YDC876_2*	176,497	Yes	IncA/C2	blaKPC-3	Tn4401b-like	aac(6')-Ib, aac(6')-Ib-cr, adaA1, ant(2')-Ia, blbOXA-9, blbTEM-7, blbTEM-1A, qnrA1, sul1
YDC876_4*	78,220	Yes	IncL/M	blaKPC-3	Tn4401b-like	aac(6')-Ib, aac(6')-Ib-cr, adaA1, blbOXA-9, blbTEM-1A
YDC880_4	88,095	Yes	IncL/M	blaKPC-3	Tn4401-like	adaA2, blbTEM-30, dfrA12, sul1

1 Circular contigs were identified through hybrid assembly with Unicycler (24).
2 Antimicrobial resistance genes were identified by querying the ResFinder database (29).
3 Contigs from same-patient isolates.
4 Contigs from the same isolate.
Carbapenem Consumption Non-susceptible Citrobacter spp.

Daily Defined Doses per 1000 patient days

Proportion of Carbapenem Non-susceptibility

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
