TG-SUPPLEMENTED MODULES
BERNA KOŞAR AND CELIL NEBIYEV

Received 14 October, 2013

Abstract. In this work, we define tg-supplemented modules and investigate some properties of these modules. We prove that the finite t-sum of tg-supplemented modules is tg-supplemented. We also prove that the homomorphic image of a distributive tg-supplemented module is tg-supplemented. We give some examples separating tg-supplemented modules from supplemented and generalized \oplus-supplemented modules.

2010 Mathematics Subject Classification: 16D60; 16D80
Keywords: small submodules, radical, supplemented modules, generalized supplemented modules

1. INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule K of M by $K \leq M$. Let M be an R-module and $K \leq M$. If $T = M$ for every submodule T of M such that $K + T = M$, then K is called a small submodule of M and denoted by $K \ll M$. Let M be an R-module and $K \leq M$. If there exists a submodule T of M such that $K + T = M$ and $K \cap T = 0$, then K is called a direct summand of M and it is denoted by $M = K \oplus T$. For any module M, the intersection of maximal submodules of M is called the radical of M and denoted by $\text{Rad}M$. If M have no maximal submodules, then we define $\text{Rad}M = M$. A module M is called distributive [8] if for every submodules K, L, T of M, $K \cap (L + T) = K \cap L + K \cap T$ or equivalently $(K + L) \cap (K + T) = K + L \cap T$. Let U and V be submodules of a module M. If $U + V = M$ and V is minimal with respect to this property, or equivalently, $U + V = M$ and $U \cap V \ll V$, then V is called a supplement [10] of U in M. M is called a supplemented module if every submodule of M has a supplement in M. M is called (([5],[6]) \oplus-supplemented module if every submodule of M has a supplement that is a direct summand of M. Let M be an R-module and U, V be submodules of M, V is called a generalized supplement ([1],[9],[11]) of U in M if $M = U + V$ and $U \cap V \leq \text{Rad}V$. M is called generalized supplemented or briefly a GS-module if every submodule of M has a generalized supplement in M. Clearly
we see that every supplemented module is a generalized supplemented module. M is called a generalized \oplus-supplemented ([12],[4],[7],[8]) module if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we generalize these modules.

Lemma 1. Let V be a supplement of U in M and L, $K \leq V$. Then K is a supplement of L in V if and only if K is a supplement of $U + L$ in M. ([3], Exercise 20.39)

Proof. (\Rightarrow) Let $U + L + T = M$, for some $T \leq K$. Since V is a supplement of U in M and $L + T \leq V$, $L + T = V$ and by K being a supplement of L in V, $T = K$. Hence K is a supplement of $U + L$ in M.

(\Leftarrow) Let $L + T = V$, for some $T \leq K$. Then $U + L + T = M$, and by K being a supplement of $U + L$ in M, $T = K$. Hence K is a supplement of L in V. \square

Lemma 2. Let M be a π-projective module and K, L be two submodules of M. If K and L are mutual supplements in M, then $K \cap L = 0$ and $M = K \oplus L$.

Proof. See ([10], 41.14(2)). \square

2. TG-SUPPLEMENTED MODULES

Definition 1. Let M be an R-module and K, L be two submodules of M. If K and L are mutual supplements in M, then M is called a t-sum of K and L. This equivalent to $M = K + L$, $K \cap L \ll K$ and $K \cap L \ll L$. This case K and L are called t-summands of M.

Definition 2. Let M be an R-module and $\{A_i\}_{i \in I}$ be a family of submodules of M. M is called a t-sum of $\{A_i\}_{i \in I}$, if A_k and $\sum_{j \neq k} A_j$ are mutual supplements in M for every $k \in I$.

Lemma 3. Let M be an R-module, V be a t-summand of M and $K \leq V$. Then $K \ll M$ if and only if $K \ll V$.

Proof. Clear from ([12], Lemma 1.1). \square

Lemma 4. Let M be a t-sum of U and V. If K is a supplement of S in U and L is a supplement of T in V, then $K + L$ is a supplement of $S + T$ in M.

Proof. Since U is a supplement of V in M and K is a supplement of S in U, by Lemma 1.1, K is a supplement of $V + S$ in M. Hence $(V + S) \cap K \ll K$. Similarly, we prove that $(U + T) \cap L \ll L$. Then $(S + T) \cap (K + L) \leq (S + T + K) \cap L + (S + T + L) \cap K = (U + T) \cap L + (V + S) \cap K \ll K + L$, and by $M = U + V = S + K + T + L = S + T + K + L$, $K + L$ is a supplement of $S + T$ in M. \square
Lemma 5. Let \(M \) be a \(t \)-sum of \(U \) and \(V \), and \(L, T \leq V \). Then \(V \) is a \(t \)-sum of \(L \) and \(T \) if and only if \(M \) is a \(t \)-sum of \(U + L \) and \(T \), and \(M \) is a \(t \)-sum of \(U + T \) and \(L \).

Proof. (\(\Rightarrow \)) Let \(V \) be a \(t \)-sum of \(L \) and \(T \). Since \(T \) is a supplement of \(L \) in \(V \) and \(V \) is a supplement of \(U \) in \(M \), then by Lemma 1, \(T \) is a supplement of \(U + L \) in \(M \). Then \((U + L) \cap T \ll T \). Similarly, we can prove that \((U + T) \cap L \ll L \). Then by \(U \cap V \ll U \), \((U + L) \cap T \ll U \cap (L + T) + L \cap (U + T) = U \cap V + (U + T) \cap L \ll U + L \). Since \(U \cap V \ll U \), \((U + L) \cap T \ll U + L \) and \(M = U + V = U + L + T \), then by Definition 1 \(M \) is a \(t \)-sum of \(U + L \) and \(T \). Similarly, we prove that \(M \) is a \(t \)-sum of \(U + T \) and \(L \).

(\(\Leftarrow \)) Clear from Lemma 1.

Corollary 1. Let \(M \) be a \(t \)-sum of \(U_1, U_2, \ldots, U_n \). If \(K_i \) is a supplement of \(T_i \) in \(U_i \) (\(i = 1, 2, \ldots, n \)), then \(K_1 + K_2 + \cdots + K_n \) is a supplement of \(T_1 + T_2 + \cdots + T_n \) in \(M \).

Proof. Clear from Lemma 5.

Corollary 2. Let \(M \) be a \(t \)-sum of \(U_1, U_2, \ldots, U_n \). If \(U_i \) is a \(t \)-sum of \(K_i \) and \(T_i \) (\(i = 1, 2, \ldots, n \)), then \(M \) is a \(t \)-sum of \(K_1 + K_2 + \cdots + K_n \) and \(T_1 + T_2 + \cdots + T_n \).

Proof. Clear from Corollary 1.

Corollary 3. Let \(M \) be a \(t \)-sum of \(U_1, U_2, \ldots, U_n \). If \(K_i \) is a supplement in \(U_i \) (\(i = 1, 2, \ldots, n \)), then \(K_1 + K_2 + \cdots + K_n \) is a supplement in \(M \).

Proof. Clear from Corollary 1.

Corollary 4. Let \(M \) be a \(t \)-sum of \(U_1, U_2, \ldots, U_n \). If \(K_i \) is a \(t \)-summand of \(U_i \) (\(i = 1, 2, \ldots, n \)), then \(K_1 + K_2 + \cdots + K_n \) is a \(t \)-summand of \(M \).

Proof. Clear from Lemma 5.

Lemma 6. Let \(M \) be a distributive \(R \)-module and \(N \leq M \). Then \((K + N)/N \) is a \(t \)-summand of \(M/N \) for every \(t \)-summand \(K \) of \(M \).

Proof. Let \(K \) be a \(t \)-summand of \(M \). Then there exists a submodule \(L \) of \(M \) such that \(M = L + K, L \cap K \ll L \) and \(L \cap K \ll K \). Since \(M = L + K \), then \(M/N = (L + N)/N + (K + N)/N \). Since \(M \) is distributive, then we have \((L + N) \cap (K + N) = L \cap K + N \). Since \(L \cap K \ll L \) and \(L \cap K \ll K \), then we have \((L + N)/N \cap ((K + N)/N) = (L \cap K + N)/N \ll (L + N)/N \) and \((L + N)/N \cap ((K + N)/N) = (L \cap K + N)/N \ll (K + N)/N \). Hence \((K + N)/N \) is a \(t \)-summand of \(M/N \).

Theorem 1. Let \(M \) be a \(t \)-sum of \(\{A_i\}_{i \in I} \). Then \(\text{Rad} M = \sum_{i \in I} \text{Rad} A_i \).
Proof. Let $x \in \text{Rad} M$. Since $x \in M = \sum_{i \in I} A_i$, there exist $i_1, i_2, \ldots, i_n \in I$ and $x_{i_1} \in A_{i_1}, x_{i_2} \in A_{i_2}, \ldots, x_{i_n} \in A_{i_n}$ such that $x = x_{i_1} + x_{i_2} + \cdots + x_{i_n}$. Let $k \in \{1, 2, \ldots, n\}, T \leq A_{ik}$ and $Rx_{ik} + T = A_{ik}$. Let $a \in M$. Since $a \in M = \sum_{i \in I, i \neq ik} A_i + A_{ik}$, we can write $a = b + c$ for some $b \in \sum_{i \in I, i \neq ik} A_i$ and $c \in A_{ik}$. Since $c \in A_{ik} = Rx_{ik} + T$, there exist $r \in R$ and $t \in T$ such that $c = rx_{ik} + t$. Then $a = b + c = b + rx_{ik} + t = b + r \left(x - \sum_{s=1, s \neq ik}^{n} x_{is} \right) + t = rx + b - \sum_{s=1, s \neq ik}^{n} rx_{is} + t \in Rx + \sum_{i \in I, i \neq ik} A_i + T$. Hence $M = Rx + \sum_{i \in I, i \neq ik} A_i + T$ and since $Rx \ll M, M = \sum_{i \in I, i \neq ik} A_i + T$. Since $M = \sum_{i \in I, i \neq ik} A_i + T$ and M is a t-sum of $\{A_i\}_{i \in I, T = A_{ik}}$. Thus $Rx_{ik} \ll A_{ik}$ and $x_{ik} \in \text{Rad} A_{ik}$. Consequently, $x \in \sum_{i \in I} \text{Rad} A_i$ and $\text{Rad} M \leq \sum_{i \in I} \text{Rad} A_i$. \[\sum_{i \in I} \text{Rad} A_i \leq \text{Rad} M \] is clear. Thus $\text{Rad} M = \sum_{i \in I} \text{Rad} A_i$. \(\square\)

Definition 3. Let M be an R-module. M is called a tg-supplemented module if every submodule of M has a generalized supplement that is a t-summand of M. Clearly generalized \oplus-supplemented modules are tg-supplemented. But the converse is not true in general (See Example 4).

We can also clearly see that every supplemented module is tg-supplemented. But the converse of this statement is not always true (See Example 1, 2, 3). Since hollow and local modules are supplemented, they are tg-supplemented modules. Clearly, every tg-supplemented module is generalized supplemented.

Lemma 7. Let M be an R-module. If $\text{Rad} M = M$, then M is tg-supplemented.

Proof. Let N be any submodule of M. Since $N + M = M$ and $N \cap M \leq M = \text{Rad} M$, we get that M is a generalized supplement of N in M. On the other hand M and 0 are mutual supplements in M. Hence M is tg-supplemented. \(\square\)

Lemma 8. Let M be a tg-supplemented R-module and $N \ll M$. Then M/N is tg-supplemented.

Proof. Let $U/N \leq M/N$. Since M is tg-supplemented, U has a generalized supplement V that is a t-summand in M. Then by ([9], the proof of Proposition 2.6), $(V + N)/N$ is a generalized supplement of U/N in M/N. Since V is a t-summand of M, there exists a submodule L of M such that L and V are mutual supplements in M. Since L is a supplement of V in M and $N \ll M$, by ([10], 41.1(4)) L is a supplement of $V + N$ in M. Then by ([10], 41.1(7)) $(L + N)/N$ is a supplement of $(V + N)/N$ in M/N. Similarly, we can prove that $(V + N)/N$ is a supplement of $(L + N)/N$ in M/N. Hence $(L + N)/N$ and $(V + N)/N$ are mutual supplements in M/N. Thus M/N is tg-supplemented. \(\square\)

Corollary 5. Any small homomorphic image of a tg-supplemented module is tg-supplemented.
Lemma 9. Let M be a tg-supplemented module and $N \leq M$. If $(K + N)/N$ is a t-summand of M/N for every t-summant K of M, then M/N is tg-supplemented.

Proof. Let $U/N \leq M/N$. Since M is tg-supplemented, U has a generalized supplement K in M such that K is a t-summand of M. Since K is a generalized supplement of U in M and $N \leq U$, we can see that $(K + N)/N$ is a generalized supplement in M/N. Since K is a t-summand of M, then by hypothesis $(K + N)/N$ is a t-summand of M/N. Hence every submodule of M/N has a generalized supplement that is a t-summand of M/N, and M/N is tg-supplemented. □

Lemma 10. Let M be a distributive tg-supplemented R-module. Then every factor module of M is tg-supplemented.

Proof. Clear from Lemma 6 and Lemma 9. □

Corollary 6. Let M be a distributive tg-supplemented R-module. Then every homomorphic image of M is tg-supplemented.

Proof. Clear from Lemma 10. □

Lemma 11. Let M be an R-module and $RadM \ll M$. The following assertions are equivalent.

(i) M is supplemented.

(ii) M is tg-supplemented.

Proof. (i)⇒(ii) Clear from definitions.

(ii)⇒(i) Let $U \leq M$. Since M is tg-supplemented, there exists a generalized supplement V of U that is a t-summand of M. Since V is supplement in M, then $V \cap RadM = RadV$. Since $RadM \ll M$, $RadV \ll M$ and, by Lemma 3, $U \cap V \leq RadV \ll V$. Thus V is a supplement of U in M and M is supplemented. □

Corollary 7. Let M be a finitely generated R-module. The following assertions are equivalent.

(i) M is supplemented.

(ii) M is tg-supplemented.

Proof. Since M is finitely generated, $RadM \ll M$. Then clearly this assertions is derived from Lemma 11. □

Lemma 12. Let M be a t-sum of M_1 and M_2. If M_1 and M_2 are tg-supplemented, then M is tg-supplemented.
Proof. Let $U \subseteq M$. Since M_1 is tg-supplemented, $(M_2 + U) \cap M_1$ has a generalized supplement X that is a t-summand in M_1. Since M_2 is tg-supplemented, $(U + X) \cap M_2$ has a generalized supplement Y that is a t-summand in M_2. Then we get $M = M_1 + M_2 = M_2 + U + X = U + X + Y$ and $U \cap (X + Y) \subseteq (U + Y) \cap X + (U + X) \cap Y \leq \text{Rad}(X + Y)$. Hence $X + Y$ is a generalized supplement of U in M. Since M is a t-sum of M_1 and M_2, and X is a t-summand of M_1, and Y is a t-summand of M_2, then by Corollary 3, $X + Y$ is a t-summand of M. Thus M is tg-supplemented. □

Corollary 8. Let M be a t-sum of M_1, M_2, \ldots, M_n. If M_i is tg-supplemented ($i = 1, 2, \ldots, n$), then M is tg-supplemented.

Proof. Clear from Lemma 12. □

Example 1. Consider the \mathbb{Z}-module Q. Since Q has no maximal submodule, we have $\text{Rad}(Q) = Q$. By Lemma 2.13, Q is a tg-supplemented module. But it is well known that Q is not supplemented (See [3], Example 20.12).

Example 2. Let M be a non-torsion \mathbb{Z}-module with $\text{Rad}(M) = M$, then by Lemma 2.13, M is tg-supplemented. But M is not supplemented ([12]).

Example 3. Consider the \mathbb{Z}-module $M = \mathbb{Q} \oplus \mathbb{Z}/p\mathbb{Z}$, for any prime p. In this case $\text{Rad}(M) \neq M$. Since \mathbb{Q} and $p\mathbb{Z}$ are tg-supplemented, then by Lemma 12, M is tg-supplemented. But M is not supplemented.

Example 4. Let R be a commutative local ring which is not a valuation ring. Let a and b be elements of R, where neither of them divides the other. By taking a suitable quotient ring, we may assume that $(a) \cap (b) = 0$ and $am = bm = 0$ where m is the maximal ideal of R. Let F be a free R-module with generators x_1, x_2, and x_3. K be the submodule generated by $ax_1 - bx_2$ and $M = F/K$. Thus, $M = \frac{Rx_1 \oplus Rx_2 \oplus Rx_3}{R(ax_1 - bx_2)} = (Rx_1 + Rx_2) \oplus Rx_3$. Here M is not \oplus-supplemented. But $F = Rx_1 \oplus Rx_2 \oplus Rx_3$ is completely \oplus-supplemented ([5]).

Since F is completely \oplus-supplemented, F is supplemented. Since a factor module of a supplemented module is supplemented, we have M is supplemented. So M is tg- supplemented. But since M is finitely generated and not \oplus-supplemented, M is not generalized \oplus-supplemented.

Lemma 13. Let M be a t-sum of M_1 and M_2. Then M_2 is tg-supplemented if and only if for every submodule N of M such that $M_1 \leq N \leq M$, there exists a t-summand K of M_2 such that $M = K + N$ and $N \cap K \leq \text{Rad}(M)$.

Example 5. Let R be a commutative local ring which is not a valuation ring. Let a and b be elements of R, where neither of them divides the other. By taking a suitable quotient ring, we may assume that $(a) \cap (b) = 0$ and $am = bm = 0$ where m is the maximal ideal of R. Let F be a free R-module with generators x_1, x_2, and x_3. K be the submodule generated by $ax_1 - bx_2$ and $M = F/K$. Thus, $M = \frac{Rx_1 \oplus Rx_2 \oplus Rx_3}{R(ax_1 - bx_2)} = (Rx_1 + Rx_2) \oplus Rx_3$. Here M is not \oplus-supplemented. But $F = Rx_1 \oplus Rx_2 \oplus Rx_3$ is completely \oplus-supplemented ([5]).

Since F is completely \oplus-supplemented, F is supplemented. Since a factor module of a supplemented module is supplemented, we have M is supplemented. So M is tg- supplemented. But since M is finitely generated and not \oplus-supplemented, M is not generalized \oplus-supplemented.
Proof. (\Rightarrow) Let $M_1 \leq N \leq M$. Since M_2 is tg-supplemented, there exists a generalized supplement K of $N \cap M_2$ in M_2 such that K is a t-summand of M_2. Then $M = M_1 + M_2 = N + N \cap M_2 + K = K + N$ and $N \cap K = N \cap M_2 \cap K \leq \Rad K \leq \Rad M$.

(\Leftarrow) Let $L \leq M_2$ and $N = M_1 + L$. By hypothesis, there exists a t-summand K of M_2 such that $M = K + N$ and $N \cap K \leq \Rad M$. Since $K, L \leq M_2$, by Modular law, $M_2 = M_2 \cap M = M_2 \cap (K + N) = K + M_2 \cap N = K + M_2 \cap (M_1 + L) = L + K + M_2 \cap M_1$, and then by $M_2 \cap M_1 \ll M_2$, $M_2 = L + K$. Since K is a t-summand of M_2, then by Corollary 3, K is a t-summand of M. Then $\Rad K = K \cap \Rad M$ and by $N \cap K \leq \Rad M, L \cap K \leq N \cap K = K \cap (N \cap K) \leq K \cap \Rad M = \Rad K$. Hence K is a generalized supplement of L in M_2. Thus, M_2 is tg-supplemented. □

Theorem 2. Let M be a tg-supplemented module. Assume that M is a t-sum of M_1 and M_2. If $K \cap M_2$ is a t-summand of M_2 for every t-summand K of M such that $M = K + M_2$, then M_2 is tg-supplemented.

Proof. Let $M_1 \leq N \leq M$. Since M is tg-supplemented, $N \cap M_2$ has a generalized supplement K in M such that K is a t-summand of M. From this we have $M = N \cap M_2 + K$ and $N \cap M_2 \cap K \leq \Rad K \leq \Rad M$. Since $M = N \cap M_2 + K$, then by Modular law $M_2 = N \cap M_2 + M_2 \cap K$. Since $M_1 \leq N$, $M = M_1 + M_2 = M_1 + N \cap M_2 + M_2 \cap K = N + M_2 \cap K$. Since $M = K + M_2$ and K is a t-summand of M, then by hypothesis $M_2 \cap K$ is a t-summand of M_2. Hence by Lemma 13, M_2 is tg-supplemented. □

Lemma 14. Let M be a π-projective module. Then M is tg-supplemented if and only if M is generalized \oplus-supplemented.

Proof. Clear from Lemma 2. □

Theorem 3. Let M be a projective module. The following assertions are equivalent.

(i) M is semiperfect.
(ii) M is generalized \oplus-supplemented.
(iii) M is tg-supplemented.

Proof. (i)\Leftrightarrow(ii) Clear from ([10], 42.1).
(ii)\Leftrightarrow(iii) Clear from Lemma 14. □

Acknowledgment

The authors would like to thank the referees for their valuable suggestions and comments.
REFERENCES

[1] E. Büyükaşik and C. Lomp, “On a recent generalization of semiperfect rings,” *Bulletin of the Australian Mathematical Society*, vol. 78, no. 2, pp. 317–325, 2008.

[2] H. Çalışçand E. Türkmen, “Generalized \(@ \)-supplemented modules,” *Algebra and Discrete Mathematics*, vol. 10, pp. 10–18, 2010.

[3] J. Clark, C. Lomp, N. Vanaja, and W. R., *Lifting Modules - Supplements and Projectivity in Module Theory*. Basel Boston: Birkhäuser Verlag, 2006.

[4] Ş. Ecevit, M. Koşan, and R. Tribak, “Rad-\(@ \)-supplemented modules and cofinitely rad-\(@ \)-supplemented modules,” *Algebra Colloquium*, vol. 19, no. 6, pp. 637–648, 2012, doi: 10.1142/S1005386712000508.

[5] A. Idelhadj and R. Tribak, “On some properties of \(@ \)-supplemented modules,” *Int. J. Math. Sci.*, vol. 69, pp. 4373–4387, 2003, doi: 10.1155/S016117120320346X.

[6] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*. Cambridge New York: Cambridge University Press, 1990.

[7] Y. Talebi, A. R. M. Hamzekolaei, and D. K. Tütüncü, “On rad-\(@ \)-supplemented modules,” *Hadronic Journal*, vol. 32, pp. 505–512, 2009.

[8] Y. Talebi and A. Mahmoudi, “On rad-\(@ \)-supplemented modules,” *Thai Journal of Mathematics*, vol. 9, no. 2, pp. 373–381, 2011.

[9] Y. Wang and N. Ding, “Generalized supplemented modules,” *Taiwanese Journal of Mathematics*, vol. 10, no. 6, pp. 1589–1601, 2006.

[10] R. Wisbauer, *Foundations of Module and Ring Theory*. Philadelphia: Gordon and Breach, 1991.

[11] W. Xue, “Characterizations of semiperfect and perfect rings,” *Publications Mathematiques*, vol. 40, pp. 115–125, 1996, doi: 10.5565/PUBLMAT-40196-08.

[12] H. Zöschinger, “Komplementierte moduln Über dedekindringen,” *J. Algebra*, vol. 29, pp. 42–56, 1974, doi: 10.1016/0021-8693(74)90109-4.

Authors’ addresses

Berna Koşar
Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum-Samsun/Türkiye-Turkey
E-mail address: bernak@omu.edu.tr, bernacaglayan@hotmail.com

Celil Nebiyev
Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum-Samsun/Türkiye-Turkey
E-mail address: cnebiyev@omu.edu.tr