A primer on Answer Set Programming *

Alessandro Provetti
Dept. of Physics, Univ. of Messina, Italy.
ale@unime.it
http://mag.dsi.unimi.it/

Syntax
The following definitions describe the language DATALOG\(^{-}\) as well
as logic programs with no function symbols.
Assume a language of constants and predicate constants. Assume
also that terms and atoms are built as in the corresponding first-
order language. Unlike classical logic and standard logic pro-
gramming, no function symbols are allowed. A rule is an expression of
the form:

\[
\rho : A_0 \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n
\]

(1)

where \(A_0, \ldots, A_n\) are atoms and not is a logical connective called
negation as failure. Also, for every rule let us define head(\(\rho\)) = \(A_0\),
pos(\(\rho\)) = \(A_1, \ldots, A_m\), neg(\(\rho\)) = \(A_{m+1}, \ldots, A_n\) and body(\(\rho\)) = pos(\(\rho\)) \cup
neg(\(\rho\)). The head of rules is never empty, while if body(\(\rho\)) = \(\emptyset\) we refer to \(\rho\) as a fact.

A logic program is defined as a collection of rules. Rules with
variables are taken as shorthand for the sets of all their ground in-
stantiations and the set of all ground atoms in the language of a
program \(\Pi\) will be denoted by \(\mathbb{B}_\Pi\).
Queries and constraints are expressions with the same structure of
rules but with empty head.

Semantics
Intuitively, a stable model, also called answer set, is a possible view
of the world that is compatible with the rules of the program. Rules
are therefore seen as constraints on these views of the world.

* Several portions of this document reproduce definitions given in [GelLif88] and else-
where. This work was supported by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001-37004 WASP project.
Let us start defining stable models/answer sets of the subclass of positive programs, i.e. those where, for every rule ρ, $\text{neg}(\rho) = \emptyset$.

Definition 1. (Stable model of positive programs)

The stable model $a(\Pi)$ of a positive program Π is the smallest subset of B_Π such that for any rule (1) in Π:

$$A_1, \ldots, A_m \in a(\Pi) \Rightarrow A_0 \in a(\Pi) \quad (2)$$

Clearly, positive programs have a unique stable model, which coincides with that obtained applying other semantics; in other words positive programs are unambiguous. Moreover, the stable model of positive programs can be obtained as the fixpoint of the immediate consequence operator T_Π iterated from \emptyset on.

Definition 2. (Stable models of programs)

Let Π be a logic program. For any set S of atoms, let $\Gamma(\Pi, S)$ be a program obtained from Π by deleting

(i) each rule that has a formula “not A” in its body with $A \in S$;

(ii) all formulae of the form “not A” in the bodies of the remaining rules.

Clearly, $\Gamma(\Pi, S)$ does not contain not, so that its stable model is already defined. If this stable model coincides with S, then we say that S is a stable model of Π. In other words, a stable model of Π is characterized by the equation:

$$S = a(\Gamma(\Pi, S)). \quad (3)$$

Programs which have a unique stable model are called categorical.

Let us define entailment in the stable models semantics. A ground atom α is true in S if $\alpha \in S$, otherwise α is false, i.e., by abuse of notation, $\neg\alpha$ is true is S. This definition can extended to arbitrary first-order formulae in the standard way.

We will say that Π entails a formula ϕ (written $\Pi \models \phi$) if ϕ is true in all the stable models of Π. We will say that the answer to a ground query γ is
yes if γ is true in all stable models of Π, i.e. $\Pi \models \gamma$;

no if $\neg\gamma$ is true in all stable models of Π, i.e. $\Pi \models \neg\gamma$;

unknown otherwise.

It is easy to see that logic programs are nonmonotonic, i.e. adding new information to the program may force a reasoner associated with it to withdraw its previous conclusions.

Corollary 1. (Gelfond and Lifschitz [GelLif91])

If an extended logic program has an inconsistent Answer set, this is unique.

For programs without explicit negation stable models and answer sets coincide, so that in the following we will refer to [consistent]answer sets or stable models indifferently.

1 Reasoning with Answer Sets

In the following we report a basic result from Marek and Subramanian which -together with its corollaries- will be used in proofs about logic programs.

The result is slightly more general than the original, as it refers to answer sets and it is given a simple proof based on minimality.

Lemma 1 (Marek and Subramanian). The following result on answer sets is due to Marek and Subramanian, originally for general logic programs.

For any answer set A of an extended logic program Π:

1. For any ground instance of a rule of the type:

 $$L_0 \leftarrow L_1, \ldots, L_m, \text{not } L_{m+1}, \ldots, \text{not } L_n$$ (4)

 from Π, if

 $\{L_1, \ldots, L_m\} \subseteq A$ and $\{L_{m+1}, \ldots, L_n\} \cap A = 0$

 then $L_0 \in A$.

3
If A is a consistent Answer set of Π and $L_0 \in A$, then there exists a ground instance rule of type 4 from Π such that:

$$\{L_1, \ldots, L_m\} \subseteq A \text{ and } \{L_{m+1}, \ldots, L_n\} \cap A = 0.$$

\[\square \]

Corollary 2. If $\{L \leftarrow\} \in \Pi$ then L belongs to every Answer set of Π. It follows directly from Lemma 1.

\[\square \]

Definition 3. We will say that an axiom r supports a literal L if the head of r matches with L. Moreover, we say that L is supported only by r if there is no other ground rule with head L.

Definition 4. We will say that a rule r justifies a literal L w.r.t. an answer set A if

(a) r supports L;

(b) r satisfies the conditions set forth in the first half of Lemma 1 w.r.t. A: the atoms occurring positively in the body being in A while those occurring negatively being not.

Clearly, justified literals belong to A.

Corollary 3. If A is a consistent answer set of Π, $L_0 \in A$, and L_0 is supported only by an axiom r of type (4) from Π then:

$$\{L_1, \ldots, L_m\} \subseteq A \text{ and } \{L_{m+1}, \ldots, L_n\} \cap A = 0.$$

It follows directly from Lemma 1.

\[\square \]

2 Examples

Example 1. $\pi_1 =

happy \leftarrow \text{not sad.}

sad \leftarrow \text{not happy.}$

has two answer sets: \{happy\} and \{sad\}.
Example 2. \(\pi_2 = \)
happy ← not sad.
sad ← not soandso.
soandso ← not happy.

has no answer set.

Example 3. \(\pi_3 = \)
drinks ← happy.
drinks ← sad.
happy ← not sad.
sad ← not happy.

has two answer sets: \{drinks, happy\} and \{drinks, sad\}.

Example 4. \(\pi_4 = \)
soandso ← not sad, not happy.
happy ← not sad, not soandso.
sad ← not happy, not soandso.

has three answer sets: \{happy\} and \{sad\} and \{soandso\}.

Example 5. \(\pi_5 = \)
f ← not f, not a.
a ← not b.
b ← not a.

has only one answer set: \{a\}.

Example 6. \(\pi_6 = \)
f ← not f, a.
a ← not b.
b ← not a.

has only one answer set: \{b\}.

Exercise 1. \(\pi_x = \)
f ← b.
c ← a.
a ← d.
d ← not b.
b ← not a.
2.1 Examples with explicit negation

Example 7. \(\pi_7 = \)
\[-a \leftarrow \text{not } a. \]
\[b \leftarrow \neg a. \]

has only one answer set: \(\{b, \neg a\} \).

3 Sources

Several ASP solvers are now available and can be downloaded from [Solvers].

A textbook on Answer Set Programming is now available [Bar03], and exercises can be downloaded from there.

References

[AptBol94] Apt K. R. and Bol R.N., 1994. Logic programming and negation: a survey. Journal of Logic Programming, 19/20:9–71.

[BarGe94] Baral, C. and Gelfond, M., 1994. Logic programming and knowledge representation, J. of Logic Programming, 19/20:73–148.

[Bar03] Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving Cambridge University Press.

[GeLif88] Gelfond, M. and Lifschitz, V., 1988. The stable model semantics for logic programming. Proc. of 5th ILPS conference, pp. 1070–1080.

[GeLif91] M. Gelfond and V. Lifschitz., 1991. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3/4):365–386.

[MarTru99] W. Marek, and M. Truszczyński. Stable models and an alternative logic programming paradigm, The Logic Programming Paradigm: a 25-Year Perspective, Springer-Verlag, 75–398. CoRR cs.LO/9809032.

[Solvers] Web location of some ASP solvers:

Cmodels: http://www.cs.utexas.edu/users/tag/cmodels.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-potsdam.de/~linke/nomore/
SMODELS: http://www.tcs.hut.fi/Software/smodels/

[SacZan97] Saccà D. and Zaniolo C., 1997. Deterministic and Non-Deterministic Stable Models. J. of Logic and Computation 7(5):555–579.