Cuspidal representations of $GL(n, F)$ distinguished by a maximal Levi subgroup, with F a non-archimedean local field

Nadir MATRINGE*

May 2, 2014

Abstract

Let ρ is a cuspidal representation of $GL(n, F)$, with F a non archimedean local field, and H a maximal Levi subgroup of $GL(n, F)$. We show that if ρ is H-distinguished, then n is even, and $H \simeq GL(n/2, F) \times GL(n/2, F)$.

1 Preliminaries

Let F be nonarchimedean local field. We denote $GL(n, F)$ by G_n for $n \geq 1$, and by N_n the unipotent radical of the Borel subgroup of G_n given by upper triangular matrices. For $n \geq 2$ we denote by U_n the group of matrices $u(x) = \begin{pmatrix} \lambda_n(x) & x \\ 0 & 1 \end{pmatrix}$ for $x \in F^{n-1}$.

For $n > 1$, the map $g \mapsto \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}$ is an embedding of the group G_{n-1} in G_n, we denote by P_n the subgroup $G_{n-1}U_n$ of G_n.

We fix a nontrivial character θ of $(F, +)$, and denote by θ again the character $n \mapsto \theta(\sum_{i=1}^{n-1} n_i, i+1)$ of N_n. The normaliser of $\theta |_{U_n}$ is then P_{n-1}.

When G is an l-group (locally compact totally disconnected group), we denote by $Alg(G)$ the category of smooth complex G-modules. If (π, V) belongs to $Alg(G)$, H is a closed subgroup of G, and χ is a character of H, we denote by δ_H the positive character of $N_G(H)$ such that if μ is a right Haar measure on H, and int is the action given by $(int(n)f)(h) = f(n^{-1}hn)$, of $N_G(H)$ smooth functions f with compact support on H, then $\mu \circ int(n) = \delta_H(n) \mu$ for n in $N_G(H)$.

If H is a closed subgroup of an l-group G, and (ρ, W) belongs to $Alg(H)$, we define the object $(\text{ind}_H^G(\rho), V_c = \text{ind}_H^G(W))$ as follows. The space V_c is the space of smooth functions from G to W, fixed under right translation by the elements of a compact open subgroup U_l of G, satisfying $f(hg) = \rho(h)f(g)$ for all h in H and g in G, and with support compact mod H. The action of G is by right translation on the functions.

If f is a function from G to another set, and g belongs to G, we will denote $L(g)f : x \mapsto f(g^{-1}x)$ and $R(g)f : x \mapsto f(xg)$.

We say that a representation π of G is H-distinguished, if the complex vector space $\text{Hom}_H(\pi, 1)$ is nonzero.

We will use the following functors following [B-Z]:

* Nadir Matringe, Université de Poitiers, Laboratoire de Mathématiques et Applications, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil Cedex. Email: Nadir.Matringe@math.univ-poitiers.fr

1 arXiv:1207.3925v1 [math.RT] 17 Jul 2012
Lemma 2.2. The functor Φ^+ from $\text{Alg}(P_{k-1})$ to $\text{Alg}(P_k)$ such that, for π in $\text{Alg}(P_{k-1})$, one has $\Phi^+\pi = \text{ind}_{G_{k-1},U_k}^G (\delta^1_{U_k} \pi \otimes \theta)$.

Lemma 2.1. The functor Ψ^+ from $\text{Alg}(G_{k-1})$ to $\text{Alg}(P_k)$, such that for π in $\text{Alg}(G_{k-1})$, one has $\Psi^+\pi = \text{ind}_{G_{k-1},U_k}^G (\delta^1_{U_k} \pi \otimes 1) = \delta^1_{U_k} \pi \otimes 1$.

We recall the following proposition, which is a consequence of theorem 4.4 of [B-Z].

Proposition 1.1. Let π be a cuspidal representation of G_n, then the restriction $\pi_{|P_n}$ is isomorphic to $(\Phi^+)^n \Psi^+ (1)$.

2 The result

Suppose $n = p + q$, with $p \geq q \geq 1$, we denote by $M_{(p,q)}$ the standard Levi of G_n given by matrices

\[
\begin{pmatrix}
h_p \\
h_q
\end{pmatrix}
\]

with $h_p \in G_p$ and $h_q \in G_q$, and by $M_{(p,q-1)}$ the standard Levi of G_{n-1} given by matrices

\[
\begin{pmatrix}
h_p \\
h_{q-1}
\end{pmatrix}
\]

with $h_p \in G_p$ and $h_{q-1} \in G_{q-1}$. We denote by $M_{(p-1,q-1)}$ the standard Levi of G_{n-2} given by matrices

\[
\begin{pmatrix}
h_{p-1} \\
q_{(q-1)}
\end{pmatrix}
\]

Let $w_{p,q}$ be the permutation matrix of G_n corresponding to the permutation

\[
\begin{pmatrix}
1 & \ldots & p - q & p - q + 1 & p - q + 2 & \ldots & p - 1 & p & p + 1 & \ldots & p + q - 2 & p + q - 1 & p + q \\
1 & \ldots & p - q & p - q + 1 & p - q + 2 & \ldots & p - 3 & p - q + 3 & p - q + 2 & \ldots & p + q - 4 & p + q - 2 & p + q
\end{pmatrix}
\]

Let $w_{p,q-1}$ be the permutation matrix of G_{n-1} corresponding to the permutation $w_{p,q}$ restricted to $\{1, \ldots, n-1\}$:

\[
\begin{pmatrix}
1 & \ldots & p - q & p - q + 1 & p - q + 2 & \ldots & p - 1 & p & p + 1 & \ldots & p + q - 2 & p + q - 1 \\
1 & \ldots & p - q & p - q + 1 & p - q + 2 & \ldots & p - 3 & p - q + 3 & p - q + 2 & \ldots & p + q - 4 & p + q - 2
\end{pmatrix}
\]

Let $w_{p-1,q-1}$ be the permutation matrix of G_{n-2} corresponding to the permutation

\[
\begin{pmatrix}
1 & \ldots & p - q & p - q + 1 & p - q + 2 & \ldots & p - 2 & p - 1 & p & \ldots & p + q - 3 & p + q - 2 \\
1 & \ldots & p - q & p - q + 1 & p - q + 2 & \ldots & p - 3 & p - q + 3 & p - q + 2 & \ldots & p + q - 4 & p + q - 2
\end{pmatrix}
\]

We denote by $H_{p,q}$ the subgroup $w_{p,q}M_{(p,q)}w_{p,q}^{-1}$ of G_n, by $H_{p,q-1}$ the subgroup $w_{p,q-1}M_{(p,q-1)}w_{p,q-1}^{-1}$ of G_{n-1}, and by $H_{p-1,q-1}$ the subgroup $w_{p-1,q-1}M_{(p-1,q-1)}w_{p-1,q-1}^{-1}$ of G_{n-2}.

The two following lemmas and propositions are a straightforward adaptation of Lemma 1 and Proposition 1 of [K].

Lemma 2.1. Let $S_{p,q} = \{g \in G_{n-1}, \forall u \in U_n \cap H_{p,q}, \theta(gug^{-1}) = 1\}$. Then $S_{p,q} = P_{n-1}H_{p,q-1}$.

Proof. Denoting by $L_{n-1}(g)$ the bottom row of g, one has $\theta(gu(x)g^{-1}) = \theta(L_{n-1}(g),x)$ for $u(x)$ in U_n. Hence $\theta(gug^{-1}) = 1$ for all u in $U_n \cap H_{p,q}$ if and only if $g_{n-1,j} = 0$ for $j = p - q, p - q + 2, \ldots, p - q + 2$. It is equivalent to say that g belongs to $P_{n-1}H_{p,q-1}$. \hfill \Box

Lemma 2.2. Let $S_{p,q-1} = \{g \in G_{n-2}, \forall u \in U_{n-1} \cap H_{p,q-1}, \theta(gug^{-1}) = 1\}$. Then $S_{p,q} = P_{n-2}H_{p-1,q-1}$.

Proof. Denoting by $L_{n-2}(g)$ the bottom row of g, and by $u(x)$ the matrix

\[
\begin{pmatrix}
I_{n-2} & x \\
0 & 1
\end{pmatrix}
\]

so that $\theta(gug^{-1}) = \theta(L_{n-2}(g),x)$. Hence $\theta(gug^{-1}) = 1$ for all u in $U_{n-1} \cap H_{p,q-1}$ if and only if $g_{n-2,j} = 0$ for $j = 0, 1, \ldots, p - q, p - q + 1$ and $j = p - q + 3, p - q + 5, \ldots, p - q - 3, p - q - 1$. It is equivalent to say that g belongs to $P_{n-2}H_{p-1,q-1}$. \hfill \Box
Proposition 2.1. Let \(\sigma \) belong to \(\text{Alg}(P_{n-1}) \), and \(\chi \) be a positive character of \(P_{n-1} \cap H_{p,q} \), then there is a positive character \(\chi' \) of \(P_{n-1} \cap H_{p,q} \), such that
\[
\text{Hom}_{P_{n-1} \cap H_{p,q}}(\Phi^+ \sigma, \chi) \leftrightarrow \text{Hom}_{P_{n-1} \cap H_{p,q}}(\sigma, \chi').
\]

Proof. Let \(V \) be the space on which \(\sigma \) acts, and \(W = \phi^+ V \). Let \(A \) the projection from \(C_\infty^0(P_n, V) \) onto \(W \), defined by \(Af(p) = \int_{P_{n-1}U_n} \delta_{U_n}^{-1/2}(y) \sigma(y^{-1})f(yg)dy \). Lifting through \(A \) gives a vector space injection of \(\text{Hom}_{P_{n-1} \cap H_{p,q}}(\Phi^+ \sigma, \chi) \) into the space of \(V \)-distributions \(T \) on \(P_n \) satisfying relations
\[
T \circ R(h_0) = \chi(h_0)T
\]
for \(h_0 \) in \(P_{n-1} \cap H_{p,q} \) and \(y_0 \in P_{n-1}U_n \).

We introduce \(\Theta \) the map on \(P_n \) defined by \(\Theta(ug) = \theta(u) \) for \(u \) in \(U_n \) and \(g \) in \(G_{n-1} \). Then the \(V \)-distribution \(\Theta \cdot T \) is \(U_n \)-invariant, hence there is a \(V \)-distribution \(S \) with support in \(G_{n-1} \) such that \(\Theta \cdot T = du \otimes S \) (where \(du \) denotes a Haar measure on \(U_n \)), and thus \(T = \Theta^{-1} \cdot du \otimes S \) has support \(U_n \cdot \text{supp}(S) \). It is easily verified that \(du \otimes S \) is invariant of \(U_n \), but because of relation \(\Theta \), \(T \) is invariant of \((U_n \cap H_{p,q}) \). We deduce from these two facts that for \(g \) in \(\text{supp}(S) \), \(\Theta(g) \) must be equal to \(\Theta(g) \) for any \(u \) in \(U_n \cap H_{p,q} \). This means that \(\text{supp}(S) \subset \text{Sp}_{p,q} \), and \(\text{Sp}_{p,q} = P_{n-1}H_{p,q} \) according to Lemma \(\ref{lemma_2.1} \) hence \(T \) has support in \(P_{n-1}U_n H_{p,q} \).

Now consider the projection \(B : C_\infty^\infty(P_{n-1}U_n \times H_{p,q}, V) \rightarrow C_\infty^\infty(P_{n-1}U_n H_{p,q}, V) \), defined by \(B(\phi)(y^{-1}h) = \int_{P_{n-1} \cap H_{p,q}} (ay, ah) du \) (which is well defined because of the equality \(P_{n-1}U_n \cap H_{p,q} = P_{n-1} \cap H_{p,q} \)), and \(\phi \rightarrow \tilde{\phi} \) the isomorphism of \(C_\infty^\infty(P_{n-1}U_n \times H_{p,q}, V) \) defined by \(\tilde{\phi}(y, h) = (h, \tilde{\phi}(y, h)) \).

If one sets \(D(\phi) = T(B(\tilde{\phi})) \), then \(D \) is a \(V \)-distribution on \(P_{n-1}U_n \times H_{p,q} \) which is invariant of \(P_{n-1}U_n \times H_{p,q} \). This implies that there exists a unique linear form \(\lambda \) on \(V \), such that for all \(D(\phi) = \int_{P_{n-1}U_n \times H_{p,q}} \lambda(\phi(y, h))dydh \).

Now for \(h \) in \(P_{n-1} \cap H_{p,q} \), one has the integral expression of \(D(\phi) \) for some positive modulus character \(\delta \). On the other hand, writing \(D \) as \(\phi \rightarrow T(B(\tilde{\phi})) \), one has \(D(\phi) = \int_{P_{n-1} \cap H_{p,q}} (ay, ah) du \), and \(B(\phi)(y, h) = \delta_1(\phi)B \) for a positive modulus character \(\delta_1 \), so that \(D(\phi) = \int_{P_{n-1} \cap H_{p,q}} (ay, ah) du \), and \(\delta_1(\phi)B \).

Comparing the two expressions for \(D(\phi) \), we get the relation \(D \circ \sigma(b) = \chi(\phi)b \), with \(\chi \) being the positive character \(\delta^{-1} \delta_1 \delta_3^{3/2} \).

This in turn implies that the linear form \(\lambda \) on \(V \) satisfies the same relation, i.e. belongs to \(\text{Hom}_{P_{n-1} \cap H_{p,q}}(\sigma, \chi) \), and \(T \rightarrow \lambda \) gives a linear injection of \(\text{Hom}_{P_{n-1} \cap H_{p,q}}(\Phi^+ \sigma, \chi) \) into \(\text{Hom}_{P_{n-1} \cap H_{p,q}}(\sigma, \chi') \), and this proves the proposition.

Using Lemma \(\ref{lemma_2.2} \) instead of Lemma \(\ref{lemma_2.1} \) in the previous proof, one obtains the following statement.

Proposition 2.2. Let \(\sigma' \) belong to \(\text{Alg}(P_{n-2}) \), and \(\chi' \) be a positive character of \(P_{n-2} \cap H_{p,q} \), then there is a positive character \(\chi'' \) of \(P_{n-2} \cap H_{p,q} \), such that
\[
\text{Hom}_{P_{n-2} \cap H_{p,q}}(\Phi^+ \sigma', \chi') \leftrightarrow \text{Hom}_{P_{n-2} \cap H_{p,q}}(\sigma, \chi'').
\]

A consequence of these two propositions is the following.

Proposition 2.3. Let \(n \geq 3 \), and \(p \) and \(q \) two integers with \(p + q = n \) and \(p - 1 \geq q \geq 0 \), then one has \(\text{Hom}_{P_{n} \cap H_{p,q}}((\Phi^+)^n, (\Phi^+)^n) = 1 \).
Proof. Using repeatedly the last two propositions, we get the existence of a positive character χ of P_{p-q+1} such that $\text{Hom}_{P_{p-q+1}\cap H_{p-q+1,0}}((\Phi^+)^{n-1}\Psi^+(1),1) \leftrightarrow \text{Hom}_{P_{p-q+1}\cap H_{p-q+1,0}}((\Phi^+)^{p-q}\Psi^+(1),\chi) = \text{Hom}_{P_{p-q+1}}((\Phi^+)^{p-q}\Psi^+(1),\chi)$, and this last space is 0 because $(\Phi^+)^{p-q}\Psi^+(1)$ and χ are two non-isomorphic irreducible representations of P_{p-q+1}, according to corollary 3.5 of [B-Z].

This implies the following theorem about cuspidal representations.

Theorem 2.1. Let π be a cuspidal representation of G_n, which is distinguished by a maximal Levi subgroup M, then n is even and $M \simeq M_{n/2,n/2}$.

Proof. Let M be the maximal Levi subgroup such that π is M-distinguished. Then M is conjugate to a standard Levi subgroup $M_{p,q}$ with $p \geq q$ and $p+q = n$. Suppose $p \geq q+1$, $M_{p,q}$ is conjugate to $H_{p,q}$, so that π is $H_{p,q}$-distinguished, and $\pi|_{P_n}$ is thus $H_{p,q}\cap P_n$-distinguished. But by Proposition 1.1, the restriction $\pi|_{P_n}$ is isomorphic to $(\Phi^+)^{n-1}\Psi^+(1)$, and this contradicts Proposition 2.3. Hence one must have $p = q$, and this proves the theorem.

References

[B-Z] J. N. Bernstein and A.V. Zelevinsky, *induced representations of reductive p-adic groups*, Ann. Sc. E.N.S., 1977.

[K] A. C. Kable, *Asai L-functions and Jacquet’s conjecture*, American Journal of Mathematics, Volume 126, Number 4, August 2004.