Dynamics and clinical significance of intestinal intraepithelial lymphocytes

Hayakazu Sumida
Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

ABSTRACT
Intestinal intraepithelial lymphocytes (IELs) are one of the largest populations of lymphocytes and comprised of heterogeneous populations with varying phenotypes and physiological/pathological functions. IELs located between the basolateral surfaces of the epithelial cells and then potentially provide a first line of immune defense against enteric pathogens, although, the precise roles of each IEL populations are not well defined. A variety of molecules are involved in the IEL-homing to the intestinal epithelium. Conventional IELs originate from circulating T cells activated in lymphoid organs and imprinted for gut homing. On the other hand, unconventional IELs derive from thymocytes and migrate to the intestinal epithelium, although, some of them may arise extrathymically. Regarding the interaction between IELs and epithelial cells, IELs are known to be highly motile and actively migrate along the basement membrane, suggesting their roles in immune surveillance. In addition, there has been growing evidence to support that IELs are involved in the pathogenesis of gut disorders such as celiac disease and inflammatory bowel diseases. In this review, we provide a comprehensive overview of IEL dynamics and their clinical significance.

1. Introduction
Intestinal intraepithelial lymphocytes (IELs) are a diverse population of lymphoid cells localized between the intestinal epithelial cells that form the intestinal mucosal barrier. IELs distributed in the small intestine and large intestine, and the small intestine contains at least ten times more IELs than the colon [1]. In the mouse, it is estimated that one IEL is present for every 10 intestinal epithelial cells in the small intestine [2]. It is assumed that IELs play crucial roles in regulating gut inflammations and host defense against intestinal pathogens. These lymphocytes have been complicated by the incredible heterogeneity of their function and these are represented by conventional (induced) and unconventional (natural) T-cell subsets. In this review, we focus on recent advances in IELs, especially on their dynamics and roles in physiological and/or pathological conditions.

2. Diverse population of IELs
In the murine intestinal IELs, two major groups of lymphocytes can be distinguished based on their expression of either a γδT-cell receptor (TCR) or an αβ TCR. These subsets are further subdivided on the basis of CD8 coreceptor expression. The overwhelming majority of TCRγδ+ IELs is predominantly Vγ7+ and expresses the CD8αα homodimer. This is very different from TCRγδ+ T cells located in lymphoid tissues, which predominantly lack CD8 expression. In humans, about 10% of the small intestinal IELs express TCRγδ+ [3]. However, the percentage of TCRγδ+ T cells in IELs drastically increases under certain inflammatory conditions, suggesting pathological roles of TCRγδ+ IELs [4]. Unlike T cells in other tissues, TCRαβ+ IELs in the small intestine mainly consists of CD8αα, CD8ββ, and CD4. CD8αα+ IELs that express TCRγδ or TCRαβ but do not express either CD4 or CD8β are so-called natural IELs [5]. Unconventional CD8αα+ IELs do not express some surface markers typically expressed by conventional T cells but express natural killer (NK) cell receptors such as NK1.1 [5]. Moreover, similar to tissue-resident type 1 innate lymphoid cells (ILC1), CD8αα+ IELs require the transcription factor T-bet for their development [6] and constitutively tissue-resident markers CD69 and CD103 [7]. On the other hand, conventional CD4+ or CD8β+ TCRαβ+ T cells are so-called induced IELs. In contrast to the natural IELs, induced IELs acquire an activated phenotype in response to cognate antigens encountered in the periphery [5]. In humans, IEL numbers are several-fold higher in the proximal compared with the distal
small intestine, decreasing even further in the colon [8]. To support these human data, mice studies revealed that the distribution of IELs and their different mucosal T-cell subtypes varies based on location and housing conditions [9]. Specifically, IEL numbers are descending from duodenum to ileum, with few found in the colon [10]. In addition, although, unconventional IELs are the dominant T cell population along the length of the small intestine, their proportions are higher in the proximal compared with distal small intestine [11]. Furthermore, although, germ-free mice have dramatically reduced numbers of IELs, the regional variations in subset composition are largely maintained in these mice [8].

Recent papers described another population of IELs, which expresses CD4 and CD8αα [6,12–14]. This CD8αα+CD4+ IEL population is peripherally-converted and categorized as induced-type IEL [5]. Similar to peripheral Foxp3-expressing regulatory T cells, Foxp3+CD8αα+CD4+ IELs depend on retinoic acid signaling for their development and have anti-inflammatory properties [6,15,16].

3. IEL homing and dynamics

IELs in the small intestine are distributed throughout the epithelium that overlies small intestinal villi. Even under homeostatic conditions, IELs actively migrate almost in the space between the epithelial layer and the basement membrane and occasionally showed transient movements in close association with epithelial cells (Figure 1) [17–19]. IEL-homing to the intestine and retention in the intestinal mucosa are critically dependent on the expression of a variety of gut-specific homing molecules (Table 1). β7 integrin and CC-chemokine receptor 9 (CCR9) have been well-known to be gut-homing receptors under homeostatic conditions [20]. In particular, the number of IELs was significantly reduced in all small intestinal segments of β7 integrin-deficient mice when compared to controls. In addition, the

Table 1. Gut-homing molecules on intestinal intraepithelial lymphocytes.

Molecules	Phenotypes in deficient mice
CCR9/CCL25	Reduced number of IELs (mainly due to the low number of TCRαβ+ IELs) in the small intestine.
β7 integrin	Reduced number of IELs and lamina propria lymphocytes in the small intestine.
CXCR3/CXCL10	Decreased number of CD8αα+IELs and increased number of CD8αα+IELs.
IL-15/IL-15Rα/IL-2Rβ	Reduced number of CD8αα+IELs and CD8αα+CD8αα+IELs.
Vitamin D receptor	Reduced number of CD8αα+IELs (remarkable in CD8αα+IELs).
GPR18	Reduced number of CD8αα+IELs and more extensive interaction between IELs and epithelial cells in the small intestine.
GPR55	Increased number of CD8αα+IELs and less interaction between IELs and epithelial cells in the small intestine.
occludin	Decreased number of TCRαβ+IELs and less interaction between IELs and epithelial cells in the small intestine.
GPR15	Reduced homing of regulatory T cells to the large intestine mucosa.
gut-associated lymphoid tissues (GALTs), comprising Peyer’s patches and lamina propria lymphocytes of the intestine, appeared hypoplastic in β7 integrin-deficient mice [21,22]. In CCR9-deficient mice, the total numbers of IELs was diminished 2-fold in comparison with wild-type mice and these decrease in IELs was mainly due to the presence of low numbers of TCRγδ+ IELs [23]. Natural IEL precursors such as CD8αα+ IELs have been reported to develop and express gut-homing receptors in the thymus [24–26]. On the other hand, induced IELs such as CD8ββ+ IELs and naive T cells generally do not express mucosal homing receptors are normally not detected within the intestinal epithelium. However, in these populations, gut-homing molecules β7 integrin and CCR9 are induced in GALTs, such as Peyer’s patches [27] and in mesenteric lymph nodes [28]. In these processes, the vitamin A metabolite, retinoic acid, is a key inducer of gut-homing-related molecules, upregulating β7 integrin and CCR9 [29].

Regarding the ligands for β7 integrin and CCR9, E-cadherin and CC-chemokine ligand 25 (CCL25) expressed in small intestinal epithelial cells, respectively [25]. The number of IEL in CCL25-deficient mice was reduced to the similar extent in CCR9-deficient mice [30].

As aforementioned, CCR9 and β7 integrin are involved in the migration of IELs into the intestinal mucosa under homeostatic conditions. Besides these, other molecules have been implicated to be involved in IEL recruitment to the small intestinal epithelium. For example, CXCR3 is expressed on the surface of activated T cells including CD8+ IELs, and this CXCR3 expression by gut IELs had been attributed to chronic activation of these cells by luminal pathogens [31]. CXCR3-deficient mice showed decreased number of CD8αβ+ IELs and increased number of CD8αα+ IELs [32]. Then, it is assumed that IEL recruitment is preferentially guided by CXCR3 and its ligands such as CXCL10, which have been suggested to be one of the most relevant chemokine axes promoting cells into inflamed gut tissues [33]. This axis is known to be active not only in inflammatory bowel diseases/celiac disease [34–38] but also in different chronic inflammatory processes such as rheumatoid arthritis [39]. If we return to the discussion under homeostatic condition, IL-15 has been shown to induce maturation and enhance survival and proliferation of both CD8αα+ TCRββ+ and CD8αβ+ TCRγδ+ IELs [40]. In the absence of IL-15, IL-15Rα, or IL-2Rβ, CD8αα+ TCRββ+ and CD8αβ+ TCRγδ+ IEL numbers are severely reduced [41–43]. In addition, vitamin D and vitamin D receptor (VDR) have recently been shown to regulate IEL numbers. Specifically, there are fewer total numbers of TCRββ+ T cells in the guts of VDR-deficient mice, and this reduction is remarkable in the CD8αα+ TCRββ+ IELs. Conversely TCRγδ+ T cells were normal in the VDR-deficient mice [44]. Although, this report explained that decreased maturation and proliferation of CD8αα+ TCRββ+ cells in VDR-deficient mice results in fewer functional CD8αα+ TCRββ+ T cells, another report stated that in VDR-deficient mice, the lack of CD8αα+ TCRββ+ IELs was due in part to decreased CCR9 expression on T cells, resulting in the failure of VDR-deficient T cells to home to the small intestinal epithelium [45].

Regarding local dynamics in the small intestine, it is not fully understood how each IEL population move and contact with epithelial cells in the physiological and/or pathological conditions. γδ IELs, a major population of IELs, are highly motile and actively migrate along the basement membrane and into the lateral intercellular space between epithelial cells [19]. Further morphometric analyses of intravital microscopy data showed that γδ IELs rapidly localized to and remained near epithelial cells in direct contact with pathogen such as Salmonella typhimurium. In terms of functions, this interaction between IELs and pathogens is essential to γδ IEL surveillance and immediate host defense [46]. As for the interaction between IELs and epithelial cells, another report showed that occluding, a tight-junction protein, positively regulates TCRγδ+ IEL migration within epithelial monolayers and this interaction was attenuated by tumor necrosis factor administration. Furthermore, in vivo analyses demonstrated that occluding-deficient TCRγδ+ T cells are defective in the accumulation within the intraepithelial compartment and showed less interaction with intestinal epithelial cells [19]. When it comes to CD4+ regulatory T cells, one paper reported difference of γδ T cell and CD4+ regulatory T cell movement in the small intestine. Concretely, more than 80% of γδ IELs preferentially remained in the epithelium, while 68% and 14% of CD4+ regulatory T cells were considered lamina propria and intraepithelial residents, respectively [14].

With respect to the roles of G protein–coupled receptors in IEL homing and/or dynamics, recent report showed that G protein-coupled receptor 18 (GPR18) is abundantly expressed in CD8αα+ IELs and that mice lacking this orphan receptor have reduced numbers of CD8αα+ TCRγδ+ IELs [47–49]. Further analysis suggests that GPR18 has a role in augmenting the accumulation of CD8 T cells in the intraepithelial versus lamina propria compartment [47]. Moreover, another recent paper demonstrated that GPR55, a receptor that mediates migration inhibition in response to lyso phosphatidylinositol, negatively regulates CD8αα+ TCRγδ+ IEL accumulation in
the small intestine. Intraval imaging studies, in this report, showed that GPR55-deficient IELs migrate faster and interact more extensively with epithelial cells [18].

4. Clinical significance of IELs

This strategic localization and migration within the intestinal mucosa (Figure 1) might be able to make them easy to interact with enterocytes to maintain epithelium integrity and prevent pathogenic incursion. IELs have an ability to produce antimicrobial factors and tissue repair factors in response to bacteria. Therefore, IELs can help to preserve the integrity of damaged epithelial surface [50]. In particular, TCRγδ⁺ subset of IELs can produce a variety of proinflammatory cytokines, anti-inflammatory cytokines, and antimicrobial proteins [51]. A number of recent studies have shown that TCRγδ⁺ IELs are highly motile for an efficient immune surveillance, and this is driven by commensal bacteria [17,19,46] and negatively regulated by GPR55 [18]. Following infection with microbial pathogens, TCRγδ⁺ IELs quickly change their motility and pattern of movement within the epithelium [17]. Cross-talk between TCRγδ⁺ IELs and intestinal epithelial cells is critical for immune surveillance/protection against a wide variety of intestinal species. For instance, the importance of this interaction is previously implicated in infection of Salmonella typhimurium [46,51], Toxoplasma gondii [46,52] and clearance of Nippostrongylus brasiliensis parasites [53]. In addition, IELs are implicated to contribute to viral immunity in the gut. At least, TCRβ⁺ IELs take part in viral clearance in the mucosa [54,55]. In IELs, stimulation with anti-CD3 can upregulates IFN genes and the supernatant of activated IELs can reduce viral infection [56,57]. In terms of clinical significance, given that most of these pathological findings come from mouse studies, further studies using human samples are needed for verification because there are considerable differences in physiology and anatomy between mice and humans.

Celiac disease, or gluten sensitive enteropathy, occurs when an inappropriate immune response, thought to be controlled by T cells, is initiated towards dietary gluten. The apparent T-lymphocytic infiltration associated with the disease has previously been determined [4]. Frequencies of TCRγδ⁺ IELs are significantly elevated within the epithelial layer in both active and treated celiac patients [58]. In another report, in active celiac patients, CD4⁺CD8⁺ human small intestinal T cells were significantly decreased in both the epithelial layer and lamina propria, which may play a critical immunoregulatory role in the gastrointestinal tract and contribute to the breakdown of oral tolerance to harmless dietary antigens [59]. Regarding the roles of CD8αβ⁺ TCRαβ⁺ IELs, in humans with celiac disease, CD8αβ⁺ TCRαβ⁺ IELs contribute to disease pathogenesis by inducing the enterocyte apoptosis [60]. These studies suggest that each IEL populations have unique roles in pathogenesis or healing process after tissue damage in celiac disease.

Regarding inflammatory bowel disease (IBD), there is limited data for a role of IELs in IBD. Disease severity is reported to correlate with increase in the number of TCRγδ⁺ IELs in ulcerative colitis [61] and Crohn’s disease [62]. One recent paper defined a novel subset of human γδ T-cells expressing CD8αβ and reported that the numbers of this CD8αβ⁺ TCRγδ⁺ IELs correlate inversely with disease severity, and the numbers are restored to levels observed in healthy controls upon treatment [63], suggesting its important role in mucosal healing in inflammatory bowel disease. As described here, although, there are several studies on the roles of IELs in the pathological situation, the data on a role for IELs in preventing or reducing susceptibility to IBD still remain unclear.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective anti-inflammatory drugs and are the most widely consumed classes of medications worldwide. However, a major limitation to their use is the adverse reaction they cause to serious dose-dependent gastrointestinal (GI) complications, including the formation of gastric lesions and the impairment of gastric ulcer healing [64]. The gastrointestinal toxicity by NSAIDs is mainly caused by inhibiting cyclooxygenase, which is well known as the major protective factor of gastrointestinal system. In addition to gastric injury, the more distal parts of the GI tract are also frequently affected, which have been revealed as a result of the development of the capsule endoscope and double-balloon endoscope. For instance, serious injury to the small intestine has been estimated to account for one third of all NSAIDs-associated complications [65,66]. Although, there is not enough human studies, given that mouse studies showed that IELs have protective roles in the intestinal barrier dysfunction [18,51], IEL could be a therapeutic target for the treatment of gut epithelial injury or integrity in the human.

5. Conclusion

IELs in the gut have a heterogeneous population and, especially in human IELs, future studies are required to define detailed IEL populations and its location for further analysis to reveal their roles in physiological and pathological conditions. IELs and its interaction with epithelial cells have been
reported to be crucial in the intestinal homeostasis, immune surveillance, and maintenance in epithelial integrity. These crucial roles contribute to host-microbial relationships, protection against invasion, tissue damage, and inflammatory diseases. As described in this review, a lot remains unclear, and there are controversial arguments which need further studies. Previously, experimental difficulties in IEL such as isolating IELs, complicated their populations, and their uneasy accessible location, have made us difficult to promote IEL-related researches. However, recent technological advantages, such as multicolor flow cytometry and intravital two-photon microscopy at the mucosal sites [17–19,46], now help us and must help us to make further advance in functions of IELs and related gut immunology. Furthermore, given the diverse functions of IELs in the gut, previous and future insights may aid in the rational design of novel treatments.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Cheroutre H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu Rev Immunol. 2004;22:217–246.

[2] Beagley KW, Fujihashi K, Lagoo AS, et al. Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol. 1995;154:5611–5619.

[3] McDonald BD, Jabri B, Bendelac A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol. 2018;18:514–525.

[4] Spencer J, Isaacson PG, MacDonald TT, et al. Gamma/delta T cells and the diagnosis of coeliac disease. Clin Exp Immunol. 1991;85:109–113.

[5] Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol. 2011;11:445–456.

[6] Reis BS, Hoytema van Konijnenburg DP, Grivennikov SI, et al. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity. 2014;41:244–256.

[7] Wang HC, Zhou Q, Dragoo J, et al. Most murine CD8+ intestinal intraepithelial lymphocytes are partially but not fully activated T cells. J Immunol. 2002;169:4717–4722.

[8] Suzuki H, Jeong KI, Itoh K, et al. Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp Mol Pathol. 2002;72:230–235.

[9] Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–685.

[10] Camerini V, Panwala C, Kronenberg M. Regional specialization of the mucosal immune system. Intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine. J Immunol. 1993;151:1765–1776.

[11] Suzuki K, Oida T, Hamada H, et al. Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity. 2000;13:691–702.

[12] Cheroutre H, Husain MM. CD4 CTL: living up to the challenge. Semin Immunol. 2013;25:273–281.

[13] Klose CS, Blatz K, d’Hargues Y, et al. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8α(+) intraepithelial lymphocyte development. Immunity. 2014;41:230–243.

[14] Sujino T, London M, Hoytema van Konijnenburg DP, et al. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science. 2016;352:1581–1586.

[15] Mucida D, Husain MM, Muroi S, et al. Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol. 2013;14:281–289.

[16] Reis BS, Rogoz A, Costa-Pinto FA, et al. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4(+) T cell immunity. Nat Immunol. 2013;14:271–280.

[17] Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell. 2017;171:783–794 e11.

[18] Sumida H, Lu E, Chen H, et al. GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Sci Immunol. 2017;2 pii: eaa01135.

[19] Edelblum KL, Shen L, Weber CR, et al. Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc Natl Acad Sci USA. 2012;109:7097–7102.

[20] Gorfu G, Rivera-Nieves J, Ley K. Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med. 2009;9:836–850.

[21] Werner N, Kohler J, Kunkel EJ, et al. Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature. 1994;372:190–193.

[22] Kaemmerer E, Kuhn P, Schneider U, et al. Beta-7 integrin controls enterocyte migration in the small intestine. World J Gastroenterol. 2015;21:1759–1764.

[23] Wurbel MA, Malissen M, Guy-Grand D, et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood. 2001;98:2626–2632.

[24] Cepek KL, Shaw SK, Parker CM, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature. 1994;372:190–193.

[25] Staton TL, Habtezion A, Winslow MM, et al. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat Immunol. 2006;7:482–488.

[26] Staton TL, Johnston B, Butcher EC, et al. Murine CD8+ recent thymic emigrants are alphaE integrin-positive and CC chemokine ligand 25 responsive. J Immunol. 2004;172:7282–7288.
[27] Mora JR, Bono MR, Manjunath N, et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature. 2003;424:88–93.

[28] Masopust D, Choo D, Vezys V, et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med. 2010;207:553–564.

[29] Iwata M, Hirakiyama A, Eshima Y, et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21:527–538.

[30] Wurbel MA, Malissen M, Guy-Grand D, et al. Impaired accumulation of antigen-specific CD8 lymphocytes in chemokine CCL25-deficient intestinal epithelium and lamina propria. J Immunol. 2007;178:7598–7606.

[31] Strauch UG, Mueller RC, Li XY, et al. Integrin alpha E(CD103)beta 7 mediates adhesion to intestinal microvascular endothelial cell lines via an E-cadherin-independent interaction. J Immunol. 2001;166:3506–3514.

[32] Annunziato F, Cosmi L, Liotta F, et al. CXCR3 and alphaEbeta7 integrin identify a subset of CD8+ mature thymocytes that share phenotypic and functional properties with CD8+ gut intraepithelial lymphocytes. Gut. 2006;55:961–968.

[33] Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res. 2011;317:620–631.

[34] Schroepf S, Kappler R, Brand S, et al. Strong over-expression of CXCR3 axis components in childhood inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:1882–1890.

[35] Hosomi S, Ohtani N, Kamata N, et al. Increased numbers of immature plasma cells in peripheral blood specifically overexpress chemokine receptor CXCR3 and CXCR4 in patients with ulcerative colitis. Clin Exp Immunol. 2011;163:215–224.

[36] Ostvik AE, Granlund AV, Bugge M, et al. Enhanced expression of CXCL10 in inflammatory bowel disease: potential role of mucosal Toll-like receptor 3 stimulation. Inflamm Bowel Dis. 2013;19:265–274.

[37] Bondar C, Araya RE, Guzman L, et al. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One. 2014;9:e89068.

[38] Chami B, Yeung AW, van Vreden G, et al. The role of CXCR3 in DSS-induced colitis. PLoS One. 2014;9:e101622.

[39] Lagrigione T, Brenner M, Sherry B, et al. CXCL10 and its receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid arthritis. Arthritis Rheum. 2011;63:3274–3283.

[40] Ma LJ, Acero LF, Zal T, et al. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8alphaalpha IELs. J Immunol. 2009;183:1044–1054.

[41] Suzuki H, Duncan GS, Takimoto H, et al. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med. 1997;185:499–505.

[42] Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 1998;9:669–676.

[43] Kennedy MK, Glaccum M, Brown SN, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191:771–780.

[44] Bruce D, Cantorna MT. Intrinsic requirement for the vitamin D receptor in the development of CD8alphaalpha-expressing T cells. J Immunol. 2011;186:2819–2825.

[45] Yu S, Bruce D, Froicu M, et al. Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci USA. 2008;105:20834–20839.

[46] Edelblum KL, Singh G, Odenwald MA, et al. g0 intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology. 2015;148:1417–1426.

[47] Wang X, Sumida H, Cyster JG. GPR18 is required for a normal CD8alphaalpha intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211:2351–2359.

[48] Becker AM, Callahan DJ, Richner JM, et al. GPR18 controls reconstitution of mouse small intestine intraepithelial lymphocytes following bone marrow transplantation. PLoS One. 2015;10:e0133854.

[49] Sumida H, Cyster JG. G-protein coupled receptor 18 contributes to establishment of the CD8 effector T cell compartment. Front Immunol. 2018;9:660.

[50] Chen Y, Chou K, Fuchs E, et al. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA. 2002;99:14338–14343.

[51] Ismail AS, Severson KM, Vaishnava S, et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci USA. 2011;108:8743–8748.

[52] Dalton JE, Cruickshank SM, Egan CE, et al. Intraepithelial gammadelta + lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology. 2006;131:818–829.

[53] Inagaki-Ohara K, Sakamoto Y, Dohi T, et al. g0 T cells play a protective role during infection with Nippostrongylus brasiliensis by promoting goblet cell function in the small intestine. Immunology. 2011;134:448–458.

[54] Muller S, Buhl-Jungo M, Mueller C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J Immunol. 2000;164:1986–1994.

[55] Sydora BC, Jamieson BD, Ahmed R, et al. Intestinal intraepithelial lymphocytes respond to systemic lymphocytic choriomeningitis virus infection. Cell Immunol. 1996;167:161–169.

[56] Swamy M, Abeler-Dorner L, Chettle J, et al. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat Commun. 2015;6:7090.

[57] Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334:249–252.

[58] Halstensen TS, Scott H, Brandtzaeg P. Intraepithelial T cells of the TeR gamma/ delta + CD8- and V delta 1/ delta 1+ phenotypes are increased in coeliac disease. Scand J Immunol. 1989;30:665–672.
[59] Carton J, Byrne B, Madrigal-Estebas L, et al. CD4+CD8+ human small intestinal T cells are decreased in coeliac patients, with CD8 expression downregulated on intra-epithelial T cells in the active disease. Eur J Gastroenterol Hepatol. 2004; 16:961–968.

[60] Mazzarella G, Stefanile R, Camarca A, et al. Gliadin activates HLA class I-restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology. 2008;134:1017–1027.

[61] Yeung MM, Melgar S, Baranov V, et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-gammadelta expression. Gut. 2000;47: 215–227.

[62] Kanazawa H, Ishiguro Y, Munakata A, et al. Multiple accumulation of Vdelta2+ gammadelta T-cell clonotypes in intestinal mucosa from patients with Crohn’s disease. Dig Dis Sci. 2001;46: 410–416.

[63] Kadivar M, Petersson J, Svensson L, et al. CD8alphabeta+ gammadelta T cells: a novel T cell subset with a potential role in inflammatory bowel disease. J Immunol. 2016;197:4584–4592.

[64] Wallace JL. NSAID gastropathy and enteropathy: distinct pathogenesis likely necessitates distinct prevention strategies. Br J Pharmacol. 2012;165: 67–74.

[65] Boelsterli UA, Redinbo MR, Saitta KS. Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci. 2013;131:654–667.

[66] Scarpignato C, Hunt RH. Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin North Am. 2010;39: 433–464.