Alkaloids are a secondary metabolite, which are extracted from a wide – array of organisms include Bacteria, Fungi, Plants and Animals. Here in present review mainly focused on the alkaloids derived from endophytic fungi and non – endophytic fungi. Fungi have provided a great source of spirit for novel drug compounds as fungi derived alkaloids have done major boon to human health and well - being. In the present review listed 35 different group of alkaloids from endophytes. In which 12 different alkaloids are kept under derivatives of Indole group, 4 different alkaloids are kept under Quinoline group, 4 different alkaloids kept under amines and amide group, from non-endophytic alkaloid 27 different group of alkaloids are reported. In which 9 different type of alkaloid are mentioned under indole group of alkaloids, 4 alkaloids are reported under diketopiperazine alkaloids, 4 different alkaloids are mentioned under ergot group of alkaloids, 3 alkaloids under prenylated indole alkaloids, 3 alkaloids are mentioned under pyrrolizidine, imidazole, piperidine, tropine, purine, pyrrolizidine, imidazole, quinolizidine, isoquinoline, and pyrrolidine alkaloids. Many scientists have propositioned distinct classification for alkaloids. One of the famous classifications that fractionate entire alkaloid compounds into 3 categories.

1. TRUE ALKALOIDS: these are the compounds which are acquired from an amino acid and have a heterocyclic ring with nitrogen. Example: Nicotine etc.
2. PROTO ALKALOIDS: these are the compound, which are obtained from an amino acid and possess nitrogen atom but it is not a segment of the heterocyclic ring. Example: Adrenaline etcetera.
3. PSEUDO ALKALOIDS: these are the compounds that do not derived from amino acids. Example: Caffeine etc.

Endophytic fungi are fungi that deaden indiscrete or proportion of their lifecycle colonizing interior intra cellulary inside tissues of the plants, generally do not cause any obvious symptoms of disease. These fungi can cause numerous secondary metabolites, some of these are alkaloids. The characterization of endophytic fungi is stressed as a significant position of causing for drug. Endophytic fungi generally attain nutrition or food and shelter from the host plant, reciprocated; they favor jeopardous amplified congruence to the host plants by generating some functional metabolites. Endophytic fungi inhare plant tissues without sabotaging or generating compounds that that attributable an infection to the host cell. Their coexistence means that the endophytes generate the similar or same substances to those arising from the plant. Endophytic fungi have been of immense
interest from the last 20 years as potential generator of biologically active resource. They are a wealthy notch of functional secondary metabolites that contain flavonoids, terpenoids, steroids, phenol, phenylpropanoid, quinines, indole derivatives, amines, alkaloids, amides, pyrrolizidines, aliphatic isocoumarin derivatives.

Endophytes were first noted by the German Botanist Johann Henrich Friedrich Link in 1809. They were conception to be plant parasitic fungi and they were conception to be plant parasitic fungi and they were subsequent named as ‘Microzymas’ by French scientist Antonie. Bechamp. Endophytes may be imparted either direct from parent to progeny or among individuals. Endophytes which transmitted from parent to offspring are ordinarily literalized clonal and impart through fungal hyphae penetrating the embryo within the host’s seeds, while reproduction of the fungi via asexual conidia or through sexual spore initiatives to horizontal transmission, where endophytes may propagate between plants in a population or community. Endophytes and plants apparently involve in mutualism, with endophytes, firstly aiding in the health and abidence of the host plant with subjects like pathogens and disease, water and heat stresses, nutrient accessibility and sillabub soil quality etc. In consideration, the endophytes experience carbon for energy from the plant host. Plant microbe correlations are not rigorously mutualistic as endophytic fungi can efficiently bechance pathogens or saprotrophs generally when the plant is accentuating. Endophytes may bechance operative and reproduce beneath particular environmental situations or when their host plants are pressurized or start to aging, desperately localizing the quantity of carbon provided to the endophyte.

Endophytic Fungal Alkaloids

In this review, we tried to provide an overview of the alkaloids that are derived from the different endophytic and non-endophytic fungi and potential against different diseases. And here we have mentioned 35 different groups of alkaloids. 12 different alkaloids are mentioned under derivatives of Indole group, 4 different alkaloids from Quinoline group, 4 different alkaloids from amines and amide group, 3 type of alkaloids from pyridone group, 2 different alkaloids under pyridines alkald, 2 alkaloids from quinazolines, 2 different alkaloids from indolizidine alkaloid group, 2 different alkaloids from spiroheterocyclic alkaloid group, 2 different alkaloids from chromone alkaloid group, 2 different alkaloids from steroidal alkaloid group, 2 alkaloids are mentioned under indole diketopiperazine alkaloids, 2 alkaloids from diketopiperazine alkaloid, 2 alkaloids from pyrrole group, 2 alkaloids from isoquinoline group, 2 alkaloid from indole – terpene alkaloid, 1 alkaloid from azaphilone alkaloid, 1 alkaloid from cinchona alkaloid group, 1 alkaloid from ergot group, 1 alkaloid from indole diterpene alkaloid, 1 alkaloid from loline group, 1 alkaloid from angularly prenylated indole alkaloid, 1 alkaloid from macfortine alkaloid, 1 alkaloid from benzophenanthridine alkaloid, 1 alkaloid from antileishmanial diketopiperazine alkaloid, 1 alkaloid from spiroquinazoline alkaloid, 1 alkaloid from flavipin derived alkaloid, 1 alkaloid from dioxopiperazine alkaloid, 1 alkaloid from dibenz-o-pyrene alkaloid, 1 alkaloid from prenylated indole alkaloids, 1 alkaloid from polyketide isoquinoline alkaloid, 1 alkaloid from dimeric pyrrolidine alkaloid, 1 alkaloid from sesquiterpene alkaloid, 1 alkaloid from quinzolinone alkaloid, 1 alkaloid from epipolythiodioxopiperazine group and 1 alkaloid from oxepine containing diketopiperazine type alkaloid (Table 1).

Camptothecine is a quinoline alkaloid, was produced by Fusarium solani, Formitopsis sp. Alternaria alternata and Phomopsis sp., which has great activity in the clinical use against ovarian small lung and refractory ovarian cancers and also acts as a chemotherapeutic agent in the treatment of leukemia.

Penicillium sp., have the ability to produce alkaloids such as Shearinines A, D – K, Paspalitrem A, Paspaline, Penicidones A - C, Melaeagrine, Chrysogine, Chrysogennamide A, Penioxamide A, Glandicoline B, Cerevisoler, Trihistatin, Peninsulfuranols A - F, Spirotrypstatin F, most of these alkaloids exhibited antimicrobial activity and anti-malignant activities on human cancer cell lines.

Chaetomium sp., produces alkaloids such as Chaetoglobosin B – D, F, G, Chaetominine, Swainsonine, Chaetofusin A – B, Chaetoseminudin F – G, which exhibited anticancer activity on breast cancer cell lines and antimicrobial activity.

Aspergillus fumigatus sp., produces alkaloids such as Pseurotin A, Asperfumoid, Pyripyropene A and E, Chaetominine, Tryptoquivaline J exhibited anti-inflammatory, immunosuppressive activities and Asperfungoid alkaloid showed Antifungal activity particularly against candida albicans.

Fusarium oxysporum produces Vinblastine and Vincristine which are used as an anticancer agent, and alkaloid Rohitukine used in chronic lymphocytic leukemia cancer treatment respectively.
Table-1: Alkaloids from Endophytic fungi

S. No	Class	Name of Alkaloid	fungal isolate	Host	Function	Reference
1	Amines and amides	Phomenoamide	Phomopsis sp. PUS-D15	Leaves of Garcinia dulcis Kuiz	Antibacterial	Zhang et al., 2012
2	Amines and amides	p-aminoacetophenonic	Streptomyces sp.	Mangrove Aegiceras cornulatum	Pharmacological activities	Zhang et al., 2012
3	Amines and amides	7- amino-4- methylcoumarin	Xylaria sp.	Ginkgo biloba L.	Antibacterial and Antifungal activities	Zhang et al., 2012
4	Amines and amides	Ergot	Clavicepspurpurea	Rye, wheat and Millets grains	pharmaceutical uses	Zhang et al., 2012
5	Azaphilone alkaloids	Chaetofusins A and B	Chaetomium fusiforme	Liverwort Scapania verrucose	Antifungal activity	Kuiklev et al., 2016
6	Benzophenanthridine alkaloid	Sanguinarine	Fusarium proliferatum BLH51	Mauleaya cordata	Antibacterial, Anthelmintic and Anti-inflammatory	Wang et al., 2013
7	Chromone alkaloid	Rohitukine, flavopiridol	Fusarium oxysporum, Fusarium solani Gibberella fujikuroi	Amoora rohituka, Dysoxylum bintectariferum	Chronic lymphocytic Leukemia cancer treatment, Anti – inflammatory, antiancer and immunotherapy.	Kumara P. M et al., 2014
8	Cinchona alkaloids	Quinine, Quinidine, Cinchonidine, Cinchonine	Diaportha sp.	Cinchona ledgeriana	Antimalarial	Maehara et al., 2012
9	Dibenzo – α – pyrone alkaloid	Rhizovagine A	Rhizopycnis vagum Nita22	Nicotiana tabacum	Acetylcholinesterase inhibitory activity	Wang et al., 2020
10	Diketopiperazine alkaloid	SS-hydroxyNorvaline-S-Ile	Penicillium sp. GD6	Chinese Mangrove Bruguiera gymnorrhiza	Antibacterial	Jiang. C. S et al., 2018
11	Diketopiperazine alkaloid	Tryhistatin	Penicillium sp. HS-3	stems of Huperzia serrata	Antimicrobial activity	Shan et al., 2010
12	Diketopiperazine alkaloids	piperazine-2,5-dione-1 and 2	Trichosporum sp.	Seeds of Trigonella foenum-graecum (fabaceae)	Antileishmanial activities	Metwaly et al., 2015
13	Dimeric pyrrolidine alkaloid	Collacyclumines A-D	Colletotrichum salsoae SC5041021	Kandelia candel	Antimicrobial activity	Lin et al., 2020
14	Dioxopiperazine alkaloids	Dehydrovariecolorin L and dehydroechimulin	Eurotium rubrum	Stem of mangrove plant Hibiscus tilaeus	Cytotoxic effect	Li et al., 2008
15	Epipolythiodioxopiperazine (ETP)	Penisulfuranols A - F	Penicillium janthinellum HDN13-309	Root of Sonneratia caseolaris	Cytotoxic activities	Zhu et al., 2016
16	Ergot alkaloids	Fumigaclavine C and Pseudoert A	Aspergillus sp. EJC08	Bauhinia guianensis medicinal plant	Antibacterial	Pinheiro et al., 2013
17	Flavipirin – derived alkaloids	Azacoccones F-H	Epicoccum nigrum MK214079	Leaves of Salix sp.	Antibacterial activity	Harwoko et al., 2020
18	Indole – diterpene alkaloids	Lolitrem B	Epichole sp	Rye grass	Toxicity in insects	Philippe, 2016
19	Indole alkaloid	Glandicoline B,	Penicillium sp	Roots of Mauritia flexuosa	Antimicrobial activity	Koolen et al., 2012
20	Indole alkaloid	Piperine	Periconia sp.	Piper longum	Antituberculosis activity	Verma et al., 2011
21	Indole alkaloids	Vincamine	Geomyces sp	Nerium indicum	Nootropic drugs - Cerebral insufficiencies treatment	Na et al., 2016
22	Indole alkaloids	Vinblastine and vincristine	Fusarium solani, Fusarium oxysporum	Catharanthus roseus	Anticancer agents	Kumar et al., 2013
23	Indole alkaloids	Fumitremorgin B and C	Alternaria sp. FL25	Ficus carica	Anticancerous activity	Feng et al., 2010
24	Indole alkaloids	Cristatumins A-D	Eurotium cristatum EN-220	Marine alga Sargassum thanbergii	Antibacterial activity Cristatumins D showed average lethal activity	Du et al., 2012
25	Indole alkaloids	Chotoeminudin F and G	Chaetomium sp. SYP-F7930	Panax notoginseng	Antibacterial activity	Peng et al., 2019
26	Indole derivatives	Chaetoglobosin B-D, E-G	Chaetomium clatum	Isolated from soil	Anticancer agents	Zhang et al., 2012
27	Indole derivatives	Shearinines A, D – K, Paspalitrema A and paspaline	Penicillium sp.	Aegiceras corniculatum	Showed blocking activity on large conductance calcium – activated potassium channels in vitro	Zhang et al., 2012
28	Indole diketopiperazine alkaloids	Isovariecolorin I	Eurotium cristatum EN-220	Marine alga Sargassum thunbe	Exhibited antioxidative activities and showed lethal activity against brine shrimp	Du et al., 2017
29	Indole diketopiperazine alkaloids	Spirotryprostatin F	Penicillium brefeldianum	Solid cultures	Showed cytotoxic effects toward HepG2 and MDA – MB – 231 cells with inhibition concentration (IC50) values of 14.1µmol/L and 35.9µmol/L	Gao et al., 2017
30	Indolizidine alkaloids	Swainsonine	Chaetomium sp.	Swainsona canescens	An α-mannosidase and mannosidase ii	Grum et al., 2013
31	Indolizidine alkaloids	Swainsonine	Alternaria oxtypotis	Astragalus and oxtypotis genera	As a Selective inhibitor of both lysosomal acid and cytosolic α – mannosidase ii	Song et al., 2019, Cook et al., 2014,
32	Indolosquiterpenoid alkaloids	Mycoleptodiscins A and B	Mycoleptodiscus sp.	Desmodes incompressibilis in Panama	Anticancer agent	Ortega et al., 2013
33	Isoquinoline alkaloid	5-hydroxy-8-methoxy-4-phenylisoquinolin – 1 (2H)–one, 3-O-methylviridicatin and viridicatol	Penicillium sp. R22	Nerium indicum	All three showed antifungal activities and viridicatol showed antibacterial activity toward staphylococcus aureus with minimum inhibitory concentration (MIC) value of 15.6µg/mL	Ma et al., 2017
34	Loline alkaloids	Amino pyrrolizidines	Neotyphodium uncinatum	Meadow fescue grass	Defense mechanism toward insect herbivores	Blankenship et al., 2001
35	Macfornine group of alkaloids	Chrysogenamid A	Penicillium chrysogenum	Cistanche deserticola Y.C. Ma	Showed a neurote protection effect toward oxidative stress – induced cell death in SH-SYSY cells	Lin et al., 2008
36	Meleagrine alkaloid	Meleagrine and chrysochine	Penicillium sp.	Annona squamosa L.	Meleagrine alkaloid exhibited inhibitory activities toward leukemia	Yunianto et al., 2014
37	Mycoleptodiscin alkaloids	Mycoleptodiscin B	Mycoleptodiscus sp.	Calamus thwaitesii Becc	Antimicrobial activity	Dissanayake, et al., 2016
38	Oxepine containing diketopiperazine type alkaloids	Varioioids A and B	Paecilomyces variotii EN – 291	Algal derived	Displayed potent activity toward the plant pathogenic fungus Fusarium graminearum	Zhang et al., 2015
39	Polyketide isoquinoline alkaloid	Fusarinine	Fusarium sp. LN12	Melia azedarach	Antibacterial activity	Yang et al., 2012
40	Prenylated indole alkaloid	Penoxamide A and 18-hydroxydecaturin B	Penicillium oxalicium EN – 201	From the Leaves of Rhizophora stylosa	Exhibited potent brine shrimp lethality with lethal dose (LD50) values of 5.6 and 2.3µM respectively	Zhang et al., 2015
41	Prenylated indole alkaloids	Aomoenamide C and Sclerotiamide B	Fusarium sambucinum	Nicotiana tabacum	Insecticidal activities	Zhang et al., 2019
42	Protoberberine alkaloid	Palmitine 7 – N – oxide	Coelomycetes AFKR – 3	Young stems of yellow moon seed plant, Archangelisia flava (L.) Merr.	Antimicrobial activity toward pathogenic bacteria and fungi	Agusta et al., 2014
43	Pyridine alkaloid	Pyrpyropene A and E, 1,11-dideacetyl-pyrpyropene A, Chaetominine, Tryptoquivaline J, Fumitremorgen C, 1-acetyl-β-caroline and nicotinic acid	Aspergillus fumigatus HQD24	Chinese mangrove plant Rhizophora mucronate	They exhibited immunsuppressive and cytotoxic activities	Zou et al., 2021
---	---	---	---	---	---	---
44	Pyridines	Penicidones A -C	Penicillium sp.	Stem of Quercus variabilis	Anticancer agent Showed moderate cytotoxicity on human cancer cell lines	Zhang et al., 2012
45	Pyridone alkaloid	Campyridones A-D	Campylocarpon sp. HDN13-307	From the Roots of mangrove plant, Sonneratia caseolaris	Exhibited cytotoxic activity toward P388 cells	Zha et al., 2016
46	Pyridone alkaloids	Fusapyridons A and B	Fusarium sp. YG - 45	Maackia chinensis	Displayed antimicrobial activity toward Pseudomonas aeruginosa and staphylococcus aureus	Tsuchinari et al., 2007
47	Pyridone alkaloids	Tolpyridone A	Tolypocladium cylindrosporum (endolichen fungus)	Lethariella zahlbruckneri	Cytotoxic effects on human tumor cells	Li et al., 2015
48	Pyrrole alkaloid	N-[4-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-butyl]-acetamide	Fusarium incarnatum (HKI00504)	Aegiceras corniculatum	Cytotoxic activities	Li et al., 2008
49	Pyrrolidones alkaloids	Phomapyrrolidones A-C	Phoma sp.	Saurauia scaberrinae	Showed poor antitubercular activity at subcytotoxic concentrations	Wijeratne et al., 2013
50	Quinazoline alkaloid	(1R,4R)-1,4-(2,3)-indolmethane-1-methyl-2,4-dihydropyrrazine-2,1-b]-quinazoline-3,6-dione	Penicillium vinaceum	Crocus sativus	Antifungal agent	Zheng et al., 2011
51	Quinazolines	Chaetominine	Chaetomium sp.	Adenophora axilliflora leaves	Anticancer agent Showed high cytotoxicity toward human leukemia K562	Zhang et al., 2012
52	Quinazolinone alkaloids	Aniquinazolines A-D	Aspergillus nidulans	Rhizophora stylosa	Showed antibacterial and cytotoxic activity	An, et al., 2013
53	Quinoline	Camptothecine (CPT)	Fusarium solani, Fomitopsis sp., Alternaria alternata and Phomopsis sp.	Nethapodytes fortilae(grass), andMiquelia dentata Beld	As a chemotherapeutic agent in the treatment of leukemia and clinical use toward ovarian, small lung and refractory ovarian cancers	Zhang et al., 2012, Fund, Joshi 2017 and Shweta et al., 2013
54	Quinoline	Aspernigerin	Aspergillus niger	Cynodon dactylon (plant)	Cytotoxic potential to the cancer cell lines nasopharyngeal epidermoid KB with inhibition concentration value (IC50) 22µg	Zhang et al., 2012
55	Quinoline	Penicinoline	endophytic fungus Penicillium sp.	Mangrove	Showed cytotoxicity against 95 – D and HepG2 cell lines with IC values 0.57µg/mL and 6.5µg/mL	Zhang et al., 2012
56	Quinoline and iso quinoline	Asperfumoid	Aspergillus fumigatus CY018	Cynodon dactylon (plant)	Antifungal, has specific activity toward Candida albicans	Zhang et al., 2012
57	Sesquiterpene alkaloids	Huperzine A	Peccilomyces tenuis YS-13	Huperzia serrata	Acts as a cholinesterase inhibitor and improves neurotransmitters in the brain	Su et al., 2014
58	Spiro – heterocyclic alkaloid	3’S- pestaloidamide A	Pestalotiopsis sp.	Isodon xerophilus	Exhibited the latent cancer immunotherapy activities	Daley et al., 2021
Unbelievably destructive force, occasionally afflict commercial logging action and forest administration attempts. At Mount rainer, white pine blister, a fungal disease caused by Cronartium ribicola frightens more – Heave white bark pine. White pine blister rust was initiated to North America in the early 20th century. It affects branch swelling, branch death, and blights from which orange vesicle appear. Anyways affected trees generally die, occasionally within a few years of infection. Significantly, this fungus depends on two unlike varieties of hosts to full fill its life cycle. Spores sorted by affected white bark pine trees do not go on to affect other trees. In lieu, they infect smaller plants for examples, Gooseberry, Currant and also Indian paintbrush. Parasitic fungi are coming in close connection with their host plants, with the help of motile zoospores; this can break down the cytoplasm from where they will colonize the entire plant.

Non-Endophytes

Saprophytes are also known as Saprotroph or saprobe, organism that feeds on nonliving organic substance called as detritus at an infinitesimal stage. The etymology of the term saprotroph comes from the Greek word ‘Sapros’ means rotten and term ‘trope’ means nourishment. Saprophytic organisms are contemplated endangerment to decomposition and nutrient cycling and inhere fungi, some bacteria and also fungus like organisms called as water molds. Saprophytic fungi are the broadest swarm of fungi, also fungus like organisms called as water molds. Saprophytic fungi are coming in close connection with their host plants, with the help of motile zoospores; this can break down the cytoplasm from where they will colonize the entire plant.

Nonendophytic Fungal Alkaloids

Not only endophytic fungi have future and feature in the synthesis of secondary metabolites particularly alkaloids, but we can also extract alkaloids from non-endophytic fungi. These alkaloids have proven themselves their requirements in pharmacological activities, not only in medicinal field but also in the agricultural field. Under non-endophytic alkaloid we have reported 27 different group of alkaloids. 9 different type of alkaloid are mentioned under indole group of alkaloids, 4 alkaloids are reported under diketopiperazine alkaloids, 4 different alkaloids are mentioned under ergot group of alkaloids, 3 alkaloids are reported under cyclic acid alkaloids, 3 alkaloids are mentioned under pyridine, 2 alkaloids under benzodiazepine alkaloids, 2 alkaloids under quinazoline, 2 alkaloids under sesquiterpene alkaloid, 2 alkaloids under indole diketopiperazine alkaloids, 2 alkaloids are reported under clavine, 1 alkaloid under pyridone, 1 alkaloid under isoquinolone, 1 alkaloid under imidazole, 1 alkaloid under peptide ergot, 1 alkaloid under pyrrole based dimeric alkaloid, 1 alkaloid under pyrrole – imidazole, 2 alkaloid under
Claviceps species produces alkaloids such as Clavine, Elymoclavine – O – β – D – fructoside, γ – ergokryptinine, these alkaloids showed their activities in the production of antimigraine drugs, uterotonics, and also as prolactin inhibitor, antiparkinson agent and pain releivers.

Table-2: Alkaloids from Non endophytic fungi

S. No	Class	Name of Alkaloid	Fungal isolate	Host	Function	Reference
1	Azaphilone alkaloid	N-glutaryl/chaetoviridins A – C	Chaetomium globosum	Deep sea sediment sample collected in south china sea	Exhibited a broad spectrum of cytotoxicity toward MGC – 803 and HO8910 with the inhibition concentration (IC50) values of 6.6 and 9.7µM	Sun et al., 2019
2	Benzodiazepine alkaloids	Circumdatin A-C	Aspergillus ochraceus	Utilized for Gastrointestinal and central nervous system disorders	Rabba et al., 1999	
3	Benzodiazepine and indole alkaloids	Circumdatins K and L and 5 – chlorosclerotamide	Aspergillus westerdijkiae	Deep sea	Exhibited cytotoxicity toward human carcinoma cell lines	Peng et al., 2013
4	Clavine alkaloids	Fumigaclavine A and B	Aspergillus fumigatus Fres	osprey	Pharmacological functions	Spilsbury et al., 1961
5	Clavinet type alkaloid	Triseclavine and isosetoclavine	Elymus type ergot fungus, Agropyrum type fungus	Pennisetum typhoides Rich	Antimicrobial activity	Abe et al., 2014
6	Diastereomeric quinolinoalkaloids	Peniprequinolone	Penicillium janczewskii	Marine sample	Exhibited average cytotoxicity on cancer cell lines	He et al., 2005
7	Diketopiperazin e alkaloid	Penicillin vinaceum	Penicillium vinaceum	Marine derived	Exhibited antimigratory functions toward the highly metastatic triple negative human breast cancer cells	Asiri et al., 2015
8	Diketopiperazin e alkaloid	Chrysopiperazines A and B	Penicillium chrysogenum	Gorgonian derived	Antimicrobial activity	Xu et al., 2019
9	Diketopiperazin e alkaloids	Effusin A	Aspergillus effuses H1-1	Mangrove rhizosphere soil	Showed cytotoxic activities on P388 cells	Gao et al., 2012
10	Diketopiperazin e alkaloids	Golmaenone, neoetoclavine A	Aspergillus species	Marine derived	Displayed a significant radical scavenging activity toward 1,1-diphenyl-2-picrylhydrazyl with inhibition concentration (IC50) values of 20 and 24 µM, and also Using as sunscreen	Li et al., 2004
11	Dioxopiperazine alkaloid	Dehydroxybisdethiobis(methylthio)giototoxin	Pseudallescheria	Marine derived fungus culture	Showed potent antibacterial activity toward the methicillin – resistant and multidrug – resistant staphylococcus aureus	Li et al., 2006
12	Epipolythiodioxopiperazine	Verticillan A, H, gliocladiocin A, C	Bionectriaceae	Exibited cytotoxicity toward a panel of human malignant cell lines	Figueroa et al., 2012	
13	Ergot alkaloid	Clavine alkaloid, D-lysergic acid and its derivaties and ergopeptides	Claviceps	cereals	Used in pharmaic, industry, where they utilized for synthesis of anti – migraine drugs, uterotonics, prolactin inhibitors and antiparkinsonian agents	Halova et al., 2013
14	Ergot alkaloid	Elymoclavine – O – β – D – fructoside	Claviceps strain SD 58	Pharmacological activities (Pain releivers)	Flieger et al., 1989	
15	Ergot alkaloids	Clavines, ergonovine alkaloids	Claviceps purpurea	Rice	Tsai et al., 1995	
---	---	---	---	---	---	
16	Ergot and clavine alkaloids	Chanoclavine, agroclavine, peniclavine, elymoclavine, ergonovine, ergonovinine	Balansia epichole	Smut grass	Bacon et al., 1979	
17	Imidazolone alkaloids	Tricladins A and B	Tricladium species	Exhibited marginal cytotoxicity toward MDA – mh-231 human breast cancer cells	Zoua et al., 2011	
18	Indole 2.5 – diketopiperazine alkaloids	Eurotiumins A – E	Marine derived fungus	Exhibited important radical scavenging functions toward DPPH	Zhong et al., 2018	
19	Indole alkaloid	Communesins G and H	Penicillium rivalum Frisvad	Inactive in antimicrobial, antiviral and anticancer assays	Dalsgaard et al., 2005	
20	Indole alkaloid	7- chlorofischerindoline	Neosartorya hiratsukae	Exhibited antibacterial and cytotoxic activity	Pulka et al., 2020	
21	Indole alkaloids	Hirsutelones A – E alkaloids	Hirsutella nivea BCC2594 (insect pathogenic fungus)	Exhibited important growth inhibitory activity toward Mycobacterium tuberculosis H37Ra	Isaka et al., 2005	
22	Indole alkaloids	Notoamides A-D	Aspergillus species	Notoamides A-C, Exhibited average cytotoxicity toward cancer cell lines	Kato, et al. 2007	
23	Indole alkaloids	Shearinines D, E, and F	Penicillium Janthinellum BioRage	Induce apoptosis in human Leukemia HL-60 cells	Smetanina et al., 2007	
24	Indole alkaloids	17-epi-notoamides Q and M	Aspergillus species	Exhibited antibacterial activity toward Staphylococcus epidermidis	Chen et al., 2013	
25	Indole alkaloids	Fumigatosides E and F	Aspergillus fumigatus	Deep sea	Showed antifungal activity	Limbadri, et al., 2018
26	Indole alkaloids	Glyantrypine	Cladosporium species, PJX-41	Mangrove derived fungus	Showed important effects toward influenza virus A (H1N1)	Peng et al., 2013
27	Indole alkaloids	Chaetoglobinol A, Chaetocochin J	Chaetomium globosum	Rice culture	Showed antibacterial activities toward Bacillus subtilis	Xu et al., 2015
28	Indole alkaloids	4-(3-indolyl) butane-1,2,3-triol; 3-(3,3-diindolyl) propane-1,2-diol; and 3-(3-indolyl) propane - 1,2,3-triol	Balansia epichole (Weese)	Laboratory culture	Parasitizes pasture grasses	Porter et al., 1977
29	Indole based cytchalasankaloids	Armoclaeglobines A and B	Chaetomium globosum	Anthropod derived, Armadillidi um vulgar	Anticancer activity on human cell lines	Chen et al., 2015
30	Indole diketopiperazine alkaloids	Spirotryprostatins C-E, 13-oxoverruculogen	Aspergillus fumigatus	Holothurian	Exhibited cytotoxic activities	Wang et al., 2008
31	Isoechimulin type alkaloids	Neoechimulin A, Preeechimulin, Isoechimulin A	Nigrospora genus	Soft coral	Showed antifouling activities toward the larval settlement of barnacle Balanus Amphitrite	Sun et al., 2014
32	Isoquinoline alkaloid	Ampullosine	Sepedonium ampullosorum	Exhibited antifungal activity toward the phytopathogenic fungus Cladosporium cucumerinum	Quang et al., 2010	
33	Mixture of quaternary alkaloid	Tannic, caffeic and ferulic acids	Argemone Mexicana	Exhibited antifungal activity	Singh et al., 2010	
34	Pentacyclic spiroindolinone alkaloid	Citrinadin A	Marine derived fungus, Penicillium citrinum	Marine red alga	Showed antimicrobial activity	Tsuda et al., 2004
35	Peptide ergot alkaloid	γ-ergokryptinine	Claviceps purpurea CCM 8059	Used in agriculture and medical fields	Cvak et al., 2005	
No.	Alkaloids/Compounds	Source	Activity/Pharmacology	References		
-----	---	-----------------------	---	------------		
36	Piperazine alkaloid	Herquiline alkaloid	Penicillus herquei Fg-372 Soil sample collected at Saitama Prefecture, Japan Inhibits blood platelet aggregation induced by adenosine diphosphate	Omura et al., 1979		
37	Prenylated indole alkaloids	Asperversiamides	Aspergillus versicolor Marine derived Showed anti – inflammatory activities	Li et al., 2018		
38	Prenylated indole alkaloids	17 – O – ethynloamide M	Aspergillus sulphureus and Isaria fiesa Marine derived fungi Inhibit the formation of colony of the human prostate malignant cells 22Rv1 at non – cytotoxic of 10µM	Aliyutullah et al., 2018		
39	Prenylated indole alkaloids	Speramides A	Aspergillus ohracexus KM007 Fresh water derived Displayed moderate activity toward Pseudomonas aeruginosa with a minimum inhibition concentration (MIC) value of 0.8µM	Chang et al., 2016		
40	Pyridinone alkaloid	1,4-dihydroxy-5-phenyl-2-pyridinone alkaloid	Septoria pistaciunum Showed average in vitro antimalarial activities toward chloroquine – sensitive (D6) and resistant (W2) strains of plasmodium falciparum and also active toward both methicillin – sensitive and methicillin – resistant staphylococcus aureus	Kumariahmy et al., 2010		
41	Pyridone alkaloid	Arthropyrone D – K	Arthrinium sp. UJNMF0008 Deep sea derived Exhibited Average to significant antibacterial activity toward Mycobacterium smegmatis and Staphylococcus aureus and also exhibited antimalarial activity toward two human Osteosarcoma cell lines	Bao et al., 2018		
42	Pyridone alkaloid	Militarinones D	Paeclomyces militaris Displayed cytotoxic activities and negligible neurotogenic effect in PC – 12cells	Schmidt et al., 2003		
43	Pyridone alkaloids	Arthropyrone A - C	Arthrinium arundinis– ZDS1 – F3 Sponge derived Antimicrobial activity	Wang et al., 2015		
44	Pyrrole – imidazole alkaloids	Fusarin species	Fusarin species Antifungal agent	Kato et al., 1996		
45	Pyrrole based dimeric alkaloid	Hirsutellone A	Trichoderma gelatinosum BCC7579 Anti - tubercular agent	Supothina et al., 2007		
46	Pyrrolidine alkaloids	Aegyptolidesines A and B	Aspergillus eigtyipetus Cotton textile yield Exhibited average cytotoxic effect on murine lymphoma tumor cell line	Ibrahim et al., 2015		
47	Pyrrolidine alkaloids	Ascosalpyrrolidine A	Ascochyla saltitornae (obligate marine fungus) Green alga Ulva species Showed anti-plasmodial effects against Plasmodium falciparum strains K1 and NF 54, and also exhibited antimicrobial activity and hindering tyrosine Kinase P63α	Osterhage et al., 2000		
48	Quinazoline alkaloid	Aurantiomides A-C	Penicillium aurantiogriseum sp0-19 Sponge Exhibited average cytotoxicity toward HL-60, P388 and BEL-7402 cell lines	Xin et al., 2007		
49	Quinazolinone alkaloids	Penipanoids A, B and C	Penicillium paneum SD – 44 Marine Sediment – derived Exhibited antimicrobial activity	Li et al., 2011		
50	Sesquiterpenoid alkaloid	Eurochevalierinealkaloid	Eurotium chevalieri Showed antimalarial functions toward Mycobacterium tuberculosis, and also exhibited antimalarial activity toward cancer cell lines	kanokmedh akul et al., 2011		
51	Spiroindolinone alkaloids	Cycloexpansamines A and B	Penicillium sp. (SP-5292) Moderately inhibited the protein’s activity Tyrosine phosphatase 1B	Lee et al., 2015		
52	Tyrosine alkaloids	Gymnstatin Z, Phomacin B and Tritecone D	Westerdykellae dispersa Marine sediment Exhibited antibacterial and cytotoxic activities on human malignant cancer cell line	Xu et al., 2017		
53	Zwitterionic sesquiterpene alkaloid	Consoramides A – C	Irpex consors Culture broth Exhibited antibacterial and antioxidant properties	Kim et al., 2021		
APPLICATIONS

1. BIOLOGICAL ROLES OF ENDOPHYTIC FUNGI

The potentiality of endophytic fungi is to synthesize new and notable bioactive secondary metabolites. These are more significant in the field of Pharmaceutical, industrial and agriculture. The several natural resources synthesized by endophytic fungi contain identical structures and bioactivities toward different diseases. Instead of a vast bund, this dedicates huge capabilities for oppression of secondary yields for medicinal, agricultural and industrial utilization.

2. NUTRIENT PEDALLING

It is an important procedure that appears enduringly to balance nutrients and wreak them accessible for each element of the environment.

The decadence of the dead biomass evolved into one crucial step to carryback used nutrients to the ecosystem, which in return else becomes available to the living beings. The primary significant characterizations in biodegradation to the trashery of its host plants. They have capacity to disintegrate involute substances into candid form.

Another significant characterization is bioremediation, which explains as a custom of uncapping of pollutants and eyas from the atmosphere by the utilize of microorganisms. It depends on the utilize of microorganisms. It depends on the life procedure of microbes to disintegrate these wastes substances and it has become contingent due to innumerable microbial variety.

3. PHOTOSTIMULATION

Endophytes also takepart in the uptake of necessary nutrients essential for plant growth. They educe uptake of Nitrogen and in giant rescue adjustment to Phosphorous blemish. A novel strain of fungus Cladosporium sphaerospermum extracted from the glycine max (L) Merr roots. Exhibited the aura of higher aggregates of bioactive GA3, GA4 and GA7, which persuade inordinate plant growth in both rice and soyabean types. The endophytes roles are thoroughly recorded for harborage of plant in soil, absorption of nutrient storage, water and ion and vegetative growth of plants, the root system is in close relationship with a broad range of soil microbial populations.

4. ENDOPHYTES IN TISSUE CULTURE

Endophytes are principally precious to the host plants and for plant tissue culture. The ideal host plants and for plant tissue culture. The ideal goal of tissue culture is to grow uncontaminated plants. Even after stature fumigation of the explants, autoclaving and ultraviolet treatment of nutrient medium for tissue culture, endophytic fungi/bacteria/actinomycetes start developing from tissue cultured explant. These endophytes are commonly contemplated as pollutants impacting in complete waste of time, media and explants and also imperiled species of microbes, can be protected by this technique. Also, endophytic species constitution and plant genotype in conjunction under tissue culture circumstances are the basic ingredient for accomplishment of plant tissue cultures with promoted resumption potentiality. Interconnection between the endophytes and particular secondary compounds filtered from plant may be an utmost surface for darkening or browning and cell death, some endophytes were extracted in broth / cultures from roots and plant photosynthetic tissues.

5. ANTIVIRAL ACTIVITY

The alluring utilize of antibiotic products from endophytic fungi are the obstruction of viral growth. Two novel human cytomegalovirus protease hinders, cytolic acids A and B were illuminated by using mass spectrometry and nuclear magnetic resonance techniques and obtained to be effective toward virus growth. Some metabolites from endophytic fungi of xerophytic plants serve as a feasible source for recognizing paladin inhibitors of Human Immunodeficiency virus 1 replication.

6. ANTICANCER ACTIVITY

Paclitaxel and some of its derivatives indicate the top crucial category of antitumor agents generated by endophytes. The method of work of paclitaxel is to intercept tubulin molecules from depolymerizing throughout the cell division procedure. It is the first billion dollars anticancer drug in the world and which is utilized to trat a numerous tissues of human proliferating disease. Taxomyces andreanae lay out an another for synthesis of taxol through torreyanic acid is another significant antitumor agent synthesized from P. microspore extract/ed from T. taxifolia.

Hypocera Lixii, a novel endophytic fungus synthesized Cajanol, an anticancer agent, which is extracted from Cajanus cajan. First time, the endophytic fungus M. fragilis is capable to synthesize these bioactive metabolites, scilicet, Podophyllotoxin and Kaempferol. Also, Guanacastane diterpenoids described from the plant endophytic fungus Cercospora species.

7. ANTIDIABETIC ACTIVITY

A non-peptidal fungal metabolite was extracted from an endophytic fungus Pseudomassaria species gathered from an African rainforest. The nature has given enormous natural resources, which can be expurgated for their medicinal utilizations. The anti diabetic and hypolipidemic activity of endophytic fungi extracted from Salvadora oleoides in glucose aristocrat, fasting and alloxan fomentation diabetic Wistar albino rats and inquest new antidiabetic drugs.
from fungal endophytes name as Aspergillus species, Phoma species, and some unknown species; those noticeably decrease blood glucose level by glucose endurance test. α – amylase obstructive – generating endophytic actinomycetes from the leaves and stem of Leucas ciliate and Rauwolfia densiflora, two of the popular medicinal plants utilized in the diabetic treatment.

8. IMMUNOSUPPRESSIVE ACTIVITY

An endophytic fungus Fusarium subglutinans extracted from T. wilfordii generates subglutinol A and B, which function as the immunosuppressive agent. Now days, these drugs are used to deter allograft dismissal in transplant patients and in coming days they could be utilized to treat autoimmune disease like rheumatoid arthritis and insulin dependent diabetes. Pestaloside, pestalpyrone and hydroxyl pestalopyrone extracted from P. microspore contains plant toxic features. Pseudomycins are antifungal substances, these are antifungal substances, and these substances exhibited strong effectiveness toward human pathogen Candida albicans, which are peptide antibiotics possessing remarkable amino acids such as L – hydroxy aspartic acid, L -chorothreonine and the two D and L – diaminobutyric acid. Ambuic acid which is a cyclohexanone juncture to the Pseudomycins family extracted from Pestalotiopsis microsporeand effective toward human pathogens. Munumbicins, which is a bioactive substance, extracted from Streptomyces species, which are more effective towards gram negative and as well as gram positive bacteria. Munumbicins E – 4 and E – 5 exhibited antimalarial functions, this was more effective as compared with that of chloroquine.

ACKNOWLEDGEMENT

We thank the college management of St. Joseph’s College (Autonomous), Bangalore for providing the laboratory facilities and constant encouragement.

REFERENCES

1. Abe, M.; Yamatodani, S.; Yamano, T.; & Kusumoto, M. (2014). Relationship between Triseclavine and Isosetoclavine, Bull. Agr. Chem. Soc., 22(1); 59–60, https://doi.org/10.1080/03758397.1958.10857438

2. Afiyatullow, S. S.; Zhuravleva O. I.; Antonov A. S.; Berdyshev D. V.; Pivkin, M. V.; Denisenko, V. A.; Popov, R. S.; Gerasimenko, A. V.; Amsberg G. V.; Dyshlovoy, S. A.; Leshchenko, E. V.; & Yurchenko, A. N. (2018). Prenylated indole alkaloids from co – culture of marine – derived fungi Aspergillus sulphureus and Isaria feline. J Antibiot, 71(10): 846 – 853, https://doi.org/10.1038/s41429-018-0072-9

3. Agusta, A. Wulansari, D.; Nurkanto, A.; & Fatoni, A. (2014). Biotransformation of protoberberine alkaloids by the endophytic fungus Coelomycetes AFKR-3 isolated from yellow moonsheed plant (ArchangelisFlava) Merr. Procedia Chemistry, 13:38-43. https://doi.org/10.1016/j.proche.2014.12.004

4. An, C.Y.; Li X.M.; Li C.S.; M.H. Wang, Xu G.M., & Wang, B.G. (2013). Aniquinazolines A-D, four new quinazolinone alkaloids from marine derived endophytic fungus Aspergillus nidulans. Mar. Drugs, 11(7): 2682-2694, https://doi.org/10.3390/md11072682

5. Asiri, I.A.M.; Badr, J. M.; & Youssef, D.T.A. (2015). Penicilllivinacine, antimigratory diketopiperazine alkaloid from the marine – derived fungus Penicillium vinaceum, Phytochemistry letters,13; 53 – 58, https://doi.org/10.1016/j.phytol.2015.05.014

6. Bacon, C. W.; Porter J. K.; & Robbins J. D. (1979). Laboratory production of Ergot alkaloids by species of Balansa, Microbiology, 113(1); 119 – 126.

7. Bao, J. Zhai, H. Zhu, K. Yu J.H.; Zhang, Y.; Wang, Y.; Jiang C.S.; Zhang, Y.X.; Zhang, Y. Zhang. H. (2018), Bioactive pyridine alkaloids from a deep – sea – derived fungus Arthrithium sp. UJNMF0008, Marine Drugs, 16(5):174, https://doi.org/10.3390/md16050174

8. Barros, F. A. P.; & Edison Filho. (2005). Four Spiroquinazolinone alkaloids from Eupenicillium sp. isolated as an endophytic fungus from leaves of Murraya paniculate (Ruaceae). Biochemical Systematics and Ecology, 33(3); 257 – 268. https://doi.org/10.1016/j.bse.2004.09.002

9. Blankenship J.D., Spiering, M.J., Wilkinson, H., Fannin, F.; Bush, L.P., & Scharld, C.L. (2001). Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media, Phytochemistry, 58(3); 395-401, https://doi.org/10.1016/S0031-1871(01)00272-2

10. Chang, Y. W., Yuan, C. M., Zhang, J.; Liu, S., Cao, P., Hua, H. M., Di, Y. T; Hao, X. J. (2016). Speramides A – B, two new prenylated indole alkaloids from the freshwater – derived fungus Aspergillus ochraceus KM007. Tetrahedron Letters, 57(45):4952 – 4955, https://doi.org/10.1016/j.tetlet.2016.09.071

11. Chen, C.; Zhu, H.; Li X.N., Yang, J.; Wang, J.; Li, G., Li Y.; Tong, Q.; Yao, G.; Luo, Z.; Xue, Y.; & Zhang, Y. (2015). Armochaeglobines A and B, two new indole – based alkaloids from the arthropod derived fungus Chaetomium globosum, Org. Lett, 17(3); 644-647, https://doi.org/10.1021/ol503666b

12. Chen, M.; Shao, C. L.; Fu, X. M.; Xu, R. F; Zheng, J. J; Zhao, D. L.; She, Z. G; and Wang, C. Y. (2013). Bioactive indole alkaloids and phenyl ether derivatives from a marine – derived Aspergillus sp. Fungus, J. Nat. Prod., 76(4); 547 – 553, https://doi.org/10.1021/np300707x
13. Cook, D., Gardner, D. R., & Pfister, J. A. (2014). Swainsonine – containing plants and their relationship to endophytic fungi, J. Agric. Food chem., 62(30); 7326-7334, https://doi.org/10.1021/jf501674r

14. Cvak, L., Jegorov, A., Sedmera, P., Cisarova, I., Cejka, J., Kratochvil, B., & Pakhomova, S. Norleucine. (2005), Norleucine, a natural occurrence in a novel ergot alkaloid γ-ergokryptinine, Springer Nature, 29, 145 – 150,https://doi.org/10.1007/s00726-005-0180-2

15. Daley, S. K., & Cordell. G. A. (2021). Biologically significant and recently isolated alkaloids from endophytic fungi. J. Nat. Prod. 84(3); 871-897 https://doi.org/10.1021/acs.jnatprod.0c01195

16. Dalsgaard. P. W., Blunt. J. W, Munro. M. H. G, Frisvad. J. C., & Christophersen. C. (2005).Communesins G and H, new alkaloids from the Psychrotolerant fungus Penicillium rivalum, J. Nat. Prod., 68(2); 258 – 261, https://doi.org/10.1021/jp049646i

17. Dissanayake. R. K., Ratnaweera. P.B., Williams D., Wijayarathne. C. D, Wijesundera. R. L.C., Dissanayake. R. K., Ratnaweera P.B, Williams D., https://doi.org/10.1021/np049646i

18. Du F.Y., Li X., Li, C.S., & Shang, Z. (2012). Cristatins A-D, new indole alkaloids from the marine – derived endophytic fungus Eurotium cristatum EN -220. Phytochemistry Letters. 22(14): 4650-4653, https://doi.org/10.1016/j.phyto.2012.05.088

19. Du, F.Y., Li X., Li X.M., Zhu L.W., & Wang, B.G. (2017). Indole diketopiperazine alkaloids from Eurotium cristatum EN – 220, an endophytic fungus isolated from the marine alga Sargassum thunbergii. Marine Drugs. 15(2),https://doi.org/10.3390/md15020024

20. Feng, C., & Ma. Y. (2010). Isolation and anti – phytopathogenic activity of secondary metabolites from Alternaria sp. FL25, an endophytic fungus in Ficus carica. Chinese Journal of applied and Environmental Biology, 16(1):76-78, https://doi.org/10.3724/SP.J.1145.2010.00076

21. Figueroa. M., Graf. T.N., Ayers. S., Adcock. A. F., Kroll. D. J., Yang. J, Swanson. S.M, Acuna. U. M, Blanco. E.J.C.D, Agrawal. R., Wani. M.C, Darveau, B.A., Pearce. C. J., Oberlies N. H. (2012). Cytotoxic epiophthidioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae, the journal of antibiotics., 65(11):559-564,https://doi.org/10.1038/jfa.2012.69

22. Flieger. M., Zelenkova. N.F., Sedmera. P., Kren. V., Novak. J., Rylko. V., Sadji, P., & Rehacek. Z. (2004). Ergot alkaloid glycosides from saprophytic cultures of Claviceps, I.Elymoclavine fructosides, J. Nat. Prod., 53(3): 506 – 510, https://doi.org/10.1021/np05063a007

23. Gao H., Liu W., Zhu T., Mo X., Mandi A., Kurtan T., Li J., Ai J., Gu Q. & Li D. (2012). Diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Org. Biomol. Chem., 10: 9501-9506, https://doi.org/10.1039/C2OB26757H

24. Gao. N., Shang. Z. C., Yu. P., Luo. J., Jian. K. L., Kong. L. Y and Yang. M. H. (2017),Alkaloids from the endophytic fungus Penicillium brevisidianum and their cytotoxic activities, Chinese Chemical Letters, 28(6):1194–1199, https://doi.org/10.1016/j.ccl.2017.02.022

25. Grumi S. D., Cook D., Baucom D., Mottl. W., Gardner D. R., Creamer, R., & Allen, J. G. (2013). Production of the alkaloid Swainsonine by a fungal endophyte in the host Swainsonia canescens, J.Nat.Prod.,76(10): 1984-1988, https://doi.org/10.1021/jp400274n

26. Harwoko, H., Lee, J., Hartmann, R., Mándi, A., Kurtán, T., Müller, W.E.G., Feldbrügge, M., Kalscheuer, R., Ancheeva, E., Daletos, G., Frank, M., Liu, Z., Proksch, P. (2020). Azacoccones F – H, new flavipin – derived alkaloids from an endophytic fungus Epicoccum nigrum MK214079.Fitoterapia146: 104698https://doi.org/10.1016/j.fitote.2020.104698

27. Hawary - El. S. S., Moawad. A. S., Bahr. H. S., Abdelmohsen U. R., & Mohammed. R. (2020). Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv, 10(37); 22058-22079, https://doi.org/10.1039/DORA04290K

28. He, J. Lion. U., Sattler. I., Gollmick F. A., Grabley. S., Cau. J., Meiners. M., Schunke. H, Schaumann. K, Decher. U., & Krohn. M. (2005). Diastereomeric Quinoline alkaloids from the marine derived fungus Penicillium Janczewskii, J. Nat. Prod. 68(9); 1397 – 1399, https://doi.org/10.1021/jp058018g

29. Hulvova H., Gluszka, P., Frebortova, J., & Frebort, I. (2012). Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnology Advances, 31(1): 79-89, https://doi.org/10.1016/j.biotechadv.2012.01.005

30. Ibrahim. S. R. M., Mohamed. G. A., Moharram. A. M, Diaa T. A., & Youssef. D. T. A. (2015). Aegyptolidines A and B: New pyrrolidine alkaloids from the fungus Aspergillusaepticytus. Phytochemistry Letters. 12 : 90 – 93, https://doi.org/10.1016/j.phytol.2015.03.001

31. Isaka. M., Rugseree. N., Maithip. P., Kongsaeree. P., Prabpai. S., & Thebtaranonth. Y. (2005). Hirsutellones A- E, antimycobacterial alkaloids from the insect pathogenic fungus Hirustella nivea BCC2594. Tetrahedron., 61(23):5577–5583, https://doi.org/10.1016/j.tet.2005.03.099
32. Jiang, C.S., Zhou, Z.F., Yang X.H., Lan L. F., Gu Y.C., Ye B.P., & Guo, Y.W. (2018). Antibacterial sorbicillin and diketopiperazines from the endogenous fungus Penicillium sp. GD6 associated Chinese mangrove Bruguiera gymnorrhiza. *Chinese Journal of Natural Medicines*, 16(5): 358 – 365. https://doi.org/10.1016/S1875-5364(18)30068-2
33. Kanokmedhakul, K., Kanokmedhakul, S., Suwannatrai, R., Soytong, K., Prabpai, S., & Kongsaeree, P. (2011). Bioactive meroterpenoids and alkaloids from the fungus Eurotium chevalieri. *Tetrahedron*, 67(30): 5461-5468, https://doi.org/10.1016/j.tet.2011.05.066
34. Katoh, Y., Yoshiida, T., Tokue, T., Nojiri Y., Hirota H., Ohita T., Williams R. M., Tsukamoto S. (2007). Notoamides A-D: prenylated indole alkaloids isolated from a marine – derived fungus, Aspergillus sp., Angew. Chem. Int. Ed. Engl., 46(13):2254-2256, https://doi.org/10.1002/anie.200604381
35. Kato, Y., Koshino, H., Uzawa, J., & Anzai, K. (1996). Fungerin, a new antifungal alkaloid from Fusarium sp. (1996). *Bioscience, Biotechnology, and Biochemistry*, 60(12): 2081 – 2083, https://doi.org/10.1271/bbb.60.2081
36. Kim, J. Y., Ki., D. W., Lee, Y. J., Ha, J. S., Kim, J. H., Lee, I. K., & Yun, B. S. (2021). Consoramides A – C, New zwiterionic alkaloids from the fungus Irpex consors, *Mycobiology*, 49(4); 434 – 437, https://doi.org/10.1080/12298093.2021.1924926
37. Koolen, H. H. F., Soares E. R., Dasilva F. M. A., Dealemeida R. A., DesouzaA. D. L., DemedeirosL. S., Filho E. R., Desouza A. Q. L. (2012). An antimicrobial alkaloid and other metabolites produced by Penicillium sp. An endophytic fungus isolated from Mauritia flexuosa Lf. *Quim. Nova*, 35(4); 771-774. https://doi.org/10.1590/S0100-40422012000400022
38. Kuklev, D.V., & Dembitsky, V.M. (2016). Chemistry, origin, antitumor and other activities of fungal homo – dimeric alkaloids, *M J Pharm*, 1(1); 004, ISSN 2474 – 753X
39. Kumara, A., Patil, Deepak., Rajamohanan, P. R., & Ahmad. A. (2013). Isolation, purification and characterization of vinblastine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One. 16; 8(9):e71805. https://doi.org/10.1371/journal.pone.0071805
40. Kumara. P. M., Soujanya, K. N., Ravikanth. G., Vasudeva, R., Ganeshiah, K.N., & Shaankar. R. U. (2014). Rohitukine, a chromosome alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from *Diosyoxylum binectariferum* Hook.f and Amoora rohituka (Roxb).Wight and Arn. *Phytotherapy*, 21(4); 541-6,https://doi.org/10.1016/j.phymed.2013.09.019
41. Kumariamy, M., Fronczcek, F. R., Diferriera. Jacob M., Khan, S. I., Nanayakkara. N.P.D. (2010). Bioactive 1, 4-dihydroxy – 5 – phenyl – 2 – pyrinidine alkaloids from Septoria pusticarium, J. Nat. Prod., 73(7):1250 – 1253, https://doi.org/10.1021/np1000939
42. Lee, C., Sohn, J. H., Jang, J. H., Ahn, J. S., H. O.H., J. Baltrusaitis. (2015). Cyclopanamines A, & B: Spiroindololmine alkaloids from a marine isolate of *penicillium* sp (SF – 5292). *The Journal of Antibiotics*, 68; 715–718, https://doi.org/10.1038/ja.2015.56
43. Li, D., Li X. M., Li, T. G., Dang, H.Y., Proksch, P., & Wang, B.G. (2008). Benzaldehyde derivatives from *Eurotium rubrum*, an endophytic fungus derived from the mangrove plant *Hibiscus tiliae*c Chem Pharm Bull (Tokyo) 56(9); 1282–1285, https://doi.org/10.1248/cpb.56.1282
44. Li, H., Sun, W., Deng, M., Zhou, Q., Wang, J., Liu., J., Chen, C., Qi, C., Luo., Z., Xue, Y., Zhu., H., & Zhang, Y. (2018). Asperversiamides, linearly fused prenylated indole alkaloids from the marine derived fungus *Aspergillus versicolor*. *J. Org. Chem.*, 83(15); 8483–8492, https://doi.org/10.1021/acs.joc.8b01087
45. Li, L. Y., Ding, Y., Groth, I., Menzel. K. D., Peschel, G., Voigt, K., Deng. Z. W., Sattler., L., & Lin. W.H. (2008). Pyrrole and indole alkaloids from an endophytic Fusarium incarnatum (HKI00504) isolated from the mangrove plant Aegiceras corniculatum, *Journal of Asian Natural Products Research*, 10(8); 765-770,https://doi.org/10.1080/10286020802031106
46. Li, X.B., Li. L., Zhu. R. X., Li, W, Chang. W. Q., Zhang, L.L., Wang. X. N., Zhao. Z. T., and Lou. H. X. (2015). Tetramic acids and pyridine alkaloids from the endolichenic fungus *Tolypocladium cylindrosporum, J. Nat. Prod.*, 78(9); 2155–2160, https://doi.org/10.1021/np501018w
47. Li, X, Kim, S. K., Nam. K. W., Kang. J. S., Choi. H. D., & Byeng Wha Son. B. W. (2006). A new antibacterial dioxopiperazine alkaloid related to Gliotoxin from a marine isolate of the fungus Psudallescheria. *J Antibiot, 59* (8); 23
48. Li, X.B., Li. L., Zhu. R. X., Li, W, Chang. W. Q., Zhang, L.L., Wang. X. N., Zhao. Z. T., and Lou. H. X. (2015). Tetramic acids and pyridine alkaloids from the endolichenic fungus *Tolypocladium cylindrosporum, J. Nat. Prod.*, 78(9); 2155–2160, https://doi.org/10.1021/np501018w
49. Limbadri. S., Luo. X., Lin. X., Liao. S., Wang. J., Zhou. X., Yang. B and Liu. Y. (2018). Bioactive novel indole alkaloids and steroids from deep sea – derived fungus *Aspergillus fumigatus* SC5102. *Molecules*, 23(9); 2379, https://doi.org/10.3390/molecules23092379
50. Lin X, Ai. W., Li M, Zhou. X., Liao. S., Wang. J., Liu. J., Yang. B., & Liu, Y. (2020).
Cytotoxic alkaloids from the Endophytic fungus Penicillum herquei (1979). Omura., S., Hirano. A., Iwai, Y., & Masuma. R. https://doi.org/10.7164/antibiotics.32.786

"Cytotoxic and antimicrobial indole alkaloids from an endophytic fungus Chaetomium sp. Isolated from Fritillaria unibracteata var.wabensis". Fitotermia, 103:213-221, https://doi.org/10.1016/j.fitote.2015.04.006

"Antiviral alkaloids produced by the mangrove derived fungus Cladosporium sp. SYP-F7950 of Panax notoginseng. RSC Adv 9:28754-28763, https://doi.org/10.1039/C9RA047447F

"Two new antileishmanial diketopiperazine alkaloids are also produced by an endophytic fungus of the genus Neosartorya hiratsukae. J. Nat. Prod, 76(6):1133 – 1140, https://doi.org/10.1021/np400200k

"Alkaloids from the deep-sea-derived fungus Aspergillus westerdijkiae DFFSCS013. J. Nat. Prod, 76(5); 983 – 987, https://doi.org/10.1021/np040132m

"The genus Epichole and its toxic effects in livestock". Toxins, 8(2):47,https://doi.org/10.3390/toxins8020047

"Antiviral alkaloids produced by the mangrove derived fungus Ficus carica. J. Nat. Prod. 76(6):1133 – 1140, https://doi.org/10.1021/np400200k

"Indole and diterpene alkaloids produced by endophytic fungi of the genus Ficus carica and their toxic effects in livestock. Toxins, 8(2):47,https://doi.org/10.3390/toxins8020047

"Indole alkaloids from the mangrove fungus derived from the medicinal plant Bauhinia guianensis, Natural Product Research, 27(18): 1633-1638, DOI: 10.1080/14786419.2012.750316

"Indole alkaloids from Balansia epichole (Weesee). J. Agric. Food Chem., 25(1); 88-93, https://doi.org/10.1021/jf60209a043

"Nano – and microscale drug delivery systems. https://doi.org/10.1016/B978-0-323-52727-9.00023-6
70. Quang, D. N., Schmidt, J., & Porzel, A. (2010). Ampullinosine, a new isoquinoline alkaloid from Sepedonium ampullosporum (Ascomycetes), Natural Product Communications, 5(6); 869 - 872.https://doi.org/10.1177/1934578X100500609
71. Rahbaek, L., Breinholt, J., Frisvad, J. C., & Christensen, C. (1999). Circumdatin A.B.C: Three new benzodiazepine alkaloids isolated from a culture of the fungus Aspergillus ochraceus, J. Org. Chem., 64(5):1689–1692, https://doi.org/10.1021/jo981536u
72. Roy, A. (2017). A review on the alkaloids an important therapeutic compound from plants. International Journal of Plant Biotechnology, 3(2); 1–9.
73. Schmidt, K., Riese, U. L. Z., & Hamburger, M. (2003). Novel Tetramic acids and pyridine alkaloids, militarinones B, C., & D from the insect pathogenic fungus Paecilomyces martialis, J. Nat. prod., 66(3); 378 – 383, https://doi.org/10.1021/np020430y
74. Shankar, G. V., Lingam, Y. M., Yu. H. N., & Liu, W. H. (2010). Diketopiperazine alkaloids from Penicillium sp. HS-3, an endophytic fungus in Huperzia serrata. Helvetica Chimica Acta. 93(4):772 – 776, https://doi.org/10.1002/hlca.200900331
75. Shweta, S., Gurumurthy, B. R., Ravikanth, G., Ramanan, U. S., & Shivananda, M. R. (2012). Endophytic fungi from Miquella dentate Bedd., produce the anti – cancer alkaloid, camptothecine. Phytomedicine, 15; (203-4):337-42,https://doi.org/10.1016/j.phymed.2012.11.015
76. Singh, S. Singh. A., Jaiswal, J., Singh T. D., Singh V. P., Pandey, V.B., Tiwari, A., & Singh. U. P. (2010). Antifungal activity of the mixture of quaternary alkaloids isolated from Argemone Mexicana against some phytopathogenic fungi. Archives of Phytopathology and Plant Protection, 43(8):769 - 774, https://doi.org/10.1080/03235400802176159
77. Smetanina, O.F., Kalinovsky A.I., Khudyakova Y. V., Pivkin M.V., Dmitrenok. P. S., Fedorov. S. N., Ji. H., Kwak, J. Y., & Kuznetsova. T. A. (2007). Indole alkaloids produced by a marine fungus isolate of Penicillium janthinellum Biourge, J.Nat.Prod., 70(6):906-909, https://doi.org/10.1021/np060396d
78. Song, R., Wang, J., Sun, L., Zhang, Y., Ren, Z., Zhao, B., and Lu. H. (2019).The study of metabolites from fermentation culture of Alternariaoxystropis, BMC Microbiol. 19(1):35. https://doi.org/10.1186/s12866-019-1408-8
79. Spilsbury, J.F., & Wilkinson, S. (1961). The isolation of festuclavine and two new clavinet alkaloids from Aspergillus fumigatusFres, J. Che. Soc., (0)2085–2091, https://doi.org/10.1039/JR9610002085
80. Su, J. and Yang. M. (2015). Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Nat Prod Res., 29(11):1035-41,https://doi.org/10.1080/14786419.2014.980245
81. Sun, C., Ge, X., Madusiss, S., Zhou, L., Yu, G., Che, Q., Zhang, G., Peng, J., Gu, Q., Zhu T. Li, D. (2019). New glutamine containing Azaphilone alkaloids from deep sea derived fungus Chaetomium Globosum HDN151398, Mar Drugs. 17(5):253, https://doi.org/10.3390/md17050253
82. Sun, X. P., Xu. Y., Cao, F., Xu R. F., Zhang. L. X., & Wang. C. Y. (2014). Isoeochinulin – type alkaloids from a soft coral derived fungus Nigrosporaoryzae. Chemistry of Natural Compounds, 50; 1153 – 1166, https://doi.org/10.1007/s10600-014-1189-0
83. Supothina, S., Isaka, M., & Wongsa, P. (2007). Optimization of culture conditions for production of the anti – tubercular alkaloid hirsutellone A by Trichoderma gelatinosum BCC7579. Lett Appl Microbiol., 44(5):531–537, https://doi.org/10.1111/j.1742-765X.2006.02089.x
84. Tsai H.F., Wang H., Gebler J.C., Poulter C.D., & Schardt C.I. The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. From the chemist to the farmer: 2012, 19(1):119–125, https://doi.org/10.1006/bbrc.1995.2599
85. Tsuchinari, M., Shimanuki, K., Hiramatsu, F., Murayama, T., Koseki, T., & Shiono. Y. (2007). Fusapyridons A and B, Novel Pyridone alkaloids from an endophytic fungus, Fusarium sp. YG- 45, Z.Naturforsch.62b:1203–1207, https://doi.org/https://doi.org/10.1515/znb-2007-0916
86. Tsuda, M., Kasai, Y., Komatsu, K., Sone, T., Tanaka, M., Mikami, Y., & Kobayashi, J. (2004). Citrinadin A, a novel pentacyclic alkaloid from marine – derived fungus Penicillium citrinum, Org.Lett., 6(18):3087-3089. https://doi.org/10.1021/ol048900y
87. Verma. V. C., Lobokovsky E., Gange. A. C., Singh. S. K., and Prakash. S. (2012). Piperine production by endophytic fungus Periconia sp. Isolated from Piperlongum L.,The journal of antibiotics. 64(6):427-431, https://doi.org/10.1038/ JA.2011.27
88. Wang, A., Zhao, S., Gu G., Xu D., Zhang X., Lai, D., & Zhou, L. (2020). Rhizovagine A, an unusual dibenzo – α – pyrone alkaloid from the endophytic fungus Rhizopycnis vagum Nital22. RSC Adv., 10: 27894-27898, https://doi.org/10.1039/DORA05022A
89. Wang, F., Fang Y., Zhu, T., Zhang, M., Lin A., Gu, Q., & Zhu, W. (2008). Seven new prenylated indole diketopiperazine alkaloids from holothurian derived fungus Aspergillus fumigatus. Tetrahedron64(4): 7986–7991, https://doi.org/10.1016/j.tet.2008.06.013
90. Wang, J., Wei, X., Qin, X., Lin, X., Zhou, X., Liao, S., Yang, B., Liu, J., Tu, Z., Liu, Y. (2015). Arthropyrone A – C, pyridine alkaloids from a sponge-derived fungus *Arthrinium arundinidis* ZSDS1 – F3. Org. Lett. 17(3):656 – 659, https://doi.org/10.1021/ol503646c

91. Wang, X. J., Min, C. L., Ge, M. and Zuo, R. H. (2014). An endophytic Sanguinarine-producing fungus from Macleaya cordata, *Fusarium proliferatum* BLHS1. Cur. Microbiol. 68(3):336-341, https://doi.org/10.1007/s00284-013-0482-7

92. Wijeratne, E. M., He, H., Franzblau, S. G., Hoffman, A. M. and Gunatilaka, A. L. (2013). Phomapyrrolidiones A – C, antitubercular alkaloids from the endophytic fungus *Phoma sp.* NRRL 46751. J. Nat. Prod. 76, (10): 1860 – 1865, https://doi.org/10.1021/np400391p

93. Xin, Z. H., Fang, Y., Du, L., Zhu, T., Duan, L., Chen, J., Gu, Q. Q., Zhu, W. M. (2007). Aurantimiones A-C, Quinazoline alkaloids from the sponge – derived fungus *Penicillium aurantiogriseum* SP-19. J. Nat. Prod. 70(5): 853-855, https://doi.org/10.1021/np060516h

94. Xu, G. B., He, G., Bai, H. H., Yang, T., Zhang, G. L., Wu, L. W. and Li, G. Y. (2015). Indole alkaloids from *Chaetomium globosum* J. Nat. Prod. 78, (7):1479 – 1485, https://doi.org/10.1021/np5007253

95. Xu, D., Luo, M., Liu, F., Wang, D., Pang, X., Zhao, T., Xu, L., Wu, X., Xia, M., Mand Yang, X. (2017). Cytochalasain and tyrosine derived alkaloids from the marine sediment derived fungus *Westerdykella dispera* and their bioactivities. Sci Rep 7:11956, https://doi.org/10.1038/s41598-017-12327-1

96. Xu, W. F., Mao, N., Xue, X. J., Qi, Y. X., Wei, M. Y., Wang, C. Y., & Shao, C. L. (2019). Structures and Absolute configurations of Diketopiperazine of alkaloids Chrysopiperazines A – C from the Gorgonian – derived *Penicillium Chrysogenum* fungus. Mar. Drugs. 17(5):250, https://doi.org/10.3390/md17050250

97. Yang, S. X., Xiao, J., Holstein, L. J., Dittrich, B., Zhang, Q., Gao, J. M. (2012). Fusarimine, a novel polyketide isoquinoline alkaloid, from the endophytic fungus *Fusarium* sp. LN12, isolated from *Melia azedarach*. Tetrahedron Letters.53(47):6372-6375, https://doi.org/10.1016/j.tetlet.2012.09.031

98. Yunitsio, P., Rusman, Y., Saepudin, E., Suwarso, W. P., & Sumaryono, W. (2014). Alkaloid (Meleagrine and Chrysogine) from endophytic fungi (*Penicillium* sp.) of *Annona squamosa* L., Pak J Biol Sci., 17(5):667-674, https://doi.org/10.3923/pjbs.2014.667.674

99. Zhang, P., Li, X. M., Liu, H., Li, X., & Wang, B. G. (2015). Two new alkaloids from *Penicillium oxalicum* EN-201, an endophytic fungus derived from the marine mangrove plant *Rhizophora stylosa*, Phytochemistry Letters, 13:160-164, https://doi.org/10.1016/j.phytol.2015.06.009

100. Zhang, P., Yuan, X. L., Du, Y. M., Zhang, H. B., Shen, G. M., Zhang, Z. F., Liang, Y. J., Zhao, D. L. and Xu, K. (2019). Angularly prenylated indole alkaloids with antimicrobial and insecticidal activities from an endophytic fungus *Fusarium sambucinum* TE – 6L. J Agri Food Chem., 67(43):11994 – 12001, https://doi.org/10.1021/acs.jafc.9b05827

101. Zhang, P., Li, X. M., Wang, J. N., & Wang, B. G. (2015). Oxepine – containing diketopiperazine alkaloids from the algal derived endophytic fungus *Paecilomyces varioti* EN – 291, Helvetica Chimica Acta., 98(6):800 – 804, https://doi.org/10.1002/hilc.201400328

102. Zhang, Y., Han, T., Ming, Q., Wu, L., Rahman, K and Qin, L. (2012). Alkaloids produced by endophytic Fungi. Nat Prod Commun. 7(7):963-968, https://doi.org/10.1177/1934578X1200742

103. Zheng C.J., Li L., Zou J.P., Han T., Qin L. P. (2011). Identification of a quinazoline alkaloid produced by *Penicillium vinaceum*, an endophytic fungus from *Crocus sativus*. Pharmaceutical Biology 50(2): 129 – 133, https://doi.org/10.3109/13880209.2011.569726

104. Zhong, W. M., Wang, J. F., Shi, X. F., Wei, X. Y., Chen, Y. C., Zeng, Q., Xiang, Y., Chen, X. Y., Tian, X. P., Xiao, Z. H., Zhang, W. M., Wang, F. Z., & Zhang, S. (2018). Eurotumins A – E, five new alkaloids from the marine derived fungus *Eurotium sp*. SCSSIO F452. MarDrugs.16(4):136, https://doi.org/10.3390/md16040136

105. Zhu, M., Zhang, X., Feng, H and Che, Q. (2016). Campyridones A-D, pyridone alkaloids from a mangrove endophytic fungus *Campylocarpon sp*. HDN13-307, Tetrahedron, 72(37):5679-5683, https://doi.org/10.1016/j.tet.2016.07.080

106. Zhu, M., Zhang, X., Feng, H., Dai, J., Li, J., Che, Q., Gu, Q., Zhu, T. and Li, D. (2016). Penicilisulfuranols A – F, alkaloids from the mangrove endophytic fungus *Penicillium janthinellum* HDN13 – 309. J. Nat. Prod. 80(1):71-75, https://doi.org/10.1021/acs.jnatprod.6b00483

107. Zhou, R., Wei, C., Xueia, Zhang, X., Zhou, D., and Xu, J. (2021). Alkaloids from endophytic fungus *Aspergillus fumigatus* HQD24 isolated from the Chinese mangrove plant *Rhizophora mucronate*. Nat Prod Res. 1-5, https://doi.org/10.1080/14786419.2021.1916017

108. Zhou, X., Liu, S., Zheng, Z., Zhang, H., Chen, X., Liu, X., & Li, E. (2011). Two new imidazoline – containing alkaloids and further metabolites from the ascomycete fungus *Tricladium* sp. Chem Biodivers. 8(10):1914 – 1920, https://doi.org/10.1002/cbdv.201000372