Abstract—Since 2021, the term “Metaverse” has been the most popular one, garnering a lot of interest. Because of its contained environment and built-in computing and networking capabilities, a modern car makes an intriguing location to host its own little metaverse. Additionally, the travelers don’t have much to do to pass the time while traveling, making them ideal customers for immersive services. Vetaverse (Vehicular-Metaverse), which we define as the future continuum between vehicular industries and Metaverse, is envisioned as a blended immersive realm that scales up to cities and countries, as digital twins of the intelligent Transportation Systems, referred to as “TS-Metaverse”, as well as customized XR services inside each Individual Vehicle, referred to as “IV-Metaverse”. The two sub-categories serve fundamentally different purposes, namely long-term interconnection, maintenance, monitoring, and management on scale for large transportation systems (TS), and personalized, private, and immersive infotainment services (IV). By outlining the framework of Vetaverse and examining important enabler technologies, we reveal this impending trend. Additionally, we examine unresolved issues and potential routes for future study while highlighting some intriguing Vetaverse services.

Index Terms—Metaverse, Vehicle, Transportation system, XR, AR, VR, MR, V2X, Digital twin

I. INTRODUCTION

Autonomous vehicles have been an engineering goal since the early days of the automotive industry. First attempts at remote-controlled vehicles date back to the 1920s, where a Milwaukee car distributor demonstrated a "phantom car" controlled by telegraph keys [171]. However, there has not been significant breakthroughs until the last decade, enabled by the rapid progress of artificial intelligence (AI). Nevertheless, self-driving automobiles are at most reaching the "eyes off" level defined by the Society of Automotive Engineers (SAE) [75] and still require the driver to take back the control if necessary. Vehicles thus still require significant development to achieve full automation. As a result, academia and the automotive industry are under a lot of pressure to stay ahead and come up with new features to keep the field moving forward.

Among such new features, XR (Extended Reality) technology has been recently gaining a lot of attention from the automotive industry. XR is an umbrella term for any technology that alters our perception of the physical world by adding digital elements, including augmented reality (AR), mixed reality (MR) and virtual reality (VR). XR applications in vehicular environments were initially focused on training. The immersive capabilities of XR allow to develop simulation environments that can assist operators in mastering driving complex vehicles regardless of their location. Companies such as Boeing are already experimenting with virtual training in an attempt to reduce costs. XR has also been applied to vehicular maintenance. Porsche technicians can use AR glasses that overlays the blueprints onto vehicles and facilitate remote help by specialists, reducing service time by 40% [44]. Finally, the automotive industry has also experimented with XR at the customer-side, whether in terms of in-car entertainment or to visualize car models in immersive environments. Despite such a strong industry engagement in XR for vehicular applications, academic research remains limited. We have found only 207 papers related to AR/VR vehicular applications, and only 13 on AR/VR and transportation. In comparison to the ambitious moves in the industry and the keen interest of academia for the fields of AR and VR, XR & vehicle/transportation research is still in its infancy.

Since 2021, the interest in XR technologies has been reinforced by Facebook’s announcements relative to the Metaverse, a cyber-physical space that blends physical and digital elements in an immersive manner [104]. XR is essential to the current vision of the Metaverse as its primary access medium. Implementing a Metaverse-like immersive experience within vehicles, dubbed the Vetaverse, appears to be a potential future direction for intra- and inter-vehicular interactions. In addition to the XR applications mentioned above, the Metaverse’s pervasive ambitions will force us to rethink the vehicular ecosystem at a fundamental level. Some pioneer companies have already approached this problem for vehicle production. BMW and Nvidia teamed up to build a digital-twin-based virtual factory to reduce production planning [139]. Beyond the factory, Intelligent transportation systems (ITS) also raise opportunities in the coming Vetaverse era. Nvidia is currently experimenting with city-scale digital twins in South Korea. they leverage data from hundreds of cameras to simulate and optimize a network of roadways [140]. We believe that the Metaverse is likely to be a substantial trend in the coming years. Accordingly, we conduct this comprehensive survey on the intersection of Metaverse, vehicles, and ITS as a timely

https://www.boeingfuture.com/virtual-experiences/overview
guide to the academia and industry.

It is important to note that the Metaverse is a complex system that relies on a multitude of supporting technologies. The complexity increases with the amount of interaction between physical elements and their digital counterpart. For instance, accurately developing a digital twin of a vehicle and its driver in real-time requires pervasive sensing and interpretation, both inside-out and outside-in. In the vehicle, the on-board unity system (OBU) needs to seamlessly integrate a number of modules, such as sensors, context analysis, information filtering, personalized data mining, and XR rendering, with robust and real-time inter-module data transmissions and substantial processing capabilities. However, vehicles only have a limited vision of the road conditions that needs to be supplemented by other entities in the urban ecosystem, including other vehicles and roadside units (RSUs). These entities shall communicate with efficient networking technologies and protocols such as C-V2X, DSRC, and 5G/6G to address the real-time constraints of vehicular safety. Edge and cloud computing allow aggregating data from multiple road entities, offload some computationally-expensive operations, and process city-scale data into models that can be easily understood by human operators. Data is processed through widespread application of AI techniques, including computer vision (CV) to identify and track objects, and rebuild digital models of road elements.

It would be too long to cover each technology in great details. Therefore, in this work, we present a high-level umbrella vision of existing research related to building such a Vetalverse, with more focus on the primary enabler technologies. These technologies can function in combination with others to provide comprehensive immersive experiences. Next, we examine the existing survey in related directions for a better understanding of our work’s position.

A. Related Surveys and Selection of Articles

This subsection briefly outlines previous relevant surveys in various domains, i.e., XR for vehicles/transportation systems. As early as 2008, Zimmermann [237] gave an outlook on the use of VR in the automotive industry, which discusses VR-aided design in terms of concerns, concepts, use cases, and economic aspects. Lawson et al. [102] described an interview with 11 staff from Jaguar Land Rover to analyze the improvement brought by VR in product development and concluded with a positive view of frequently learning from academic literature for better services. Similarly, Henriques et al. [67] tried to identify the opportunities such as cost reduction and proximity to customers, and limitations such as depth and haptic perception and motion tracking, in the application of VR in automotive product development marketing, but mainly through a literature review. Tran et al. [190] reviewed 31 VR-based studies on vehicle-pedestrian interaction to uncover different factors influencing pedestrian experience and behavior, such as characteristics of vehicle, traffic, and environment, and a set of considerations for developing VR pedestrian simulators. Riegler et al. [157] summarized an MR research roadmap for automated driving based on the spotted challenges, including accessibility, usability testing, and evaluation criteria learned from their workshop and literature review. Hu et al. [72] systematically illustrated how to build the so-called driver digital twin with key enabling aspects and related technologies, to better understand both the external states such as distraction activity and drowsiness, as well as the internal states such as intentions, emotions, and trust.

This survey targets a wider view of the interaction between Metaverse and the vehicular field. It covers more than 200 papers collected from Google Scholar, IEEE Xplore, ACM Digital Library, Elsevier, ScienceDirect, DBLP, etc. The queries combine the following keywords: augmented reality & vehicle/transportation, virtual reality & vehicle/transportation, extended reality & vehicle/transportation, mixed reality &

Table I: Comparison of this work with related surveys.

Reference	Year	IV appl.	TS appl.	XR	Network	AI	Context	Others	Remarks
Surveys on supporting vehicular technologies									
Lu et al. [123]	2022	✓	✓	X	X	✓	✓	✓	Localization
Alalewi et al. [5]	2021	✓	✓	X	✓	X	X	X	5G and V2X
Alhilal et al. [7]	2022	✓	✓	✓	✓	✓	✓	✓	5G, V2X, and vehicular applications
Balkus et al. [11]	2022	✓	✓	X	✓	✓	✓	✓	Collaborative machine learning via V2X
Jiang et al. [177]	2022	✓	✓	✓	✓	✓	X	X	Video streaming over vehicular networks
Fu et al. [160]	2021	✓	✓	✓	✓	✓	✓	✓	Driving safety based on AI and V2X
Yang et al. [185]	2021	✓	✓	✓	✓	✓	✓	✓	Machine learning for vehicular networks
Hu et al. [187]	2022	✓	✓	✓	✓	✓	✓	✓	Driver digital twin
Riegler et al. [157]	2020	✓	✓	✓	✓	✓	✓	✓	Research challenges and agenda for in-car MR
Tran et al. [190]	2021	✓	✓	✓	✓	✓	✓	✓	VR-based vehicle-pedestrian interaction study
Surveys on Metaverse									
Lee et al. [104]	2021	✓	✓	✓	✓	✓	✓	✓	Key techs and ecosystem of Metaverse
Lee et al. [105]	2021	✓	✓	✓	✓	✓	✓	✓	Computational arts for Metaverse
Wang et al. [199]	2021	✓	✓	✓	✓	✓	✓	✓	Security and Privacy for Metaverse
Ning et al. [180]	2021	✓	✓	✓	✓	✓	✓	✓	Techs and Apps for Metaverse
Yang et al. [220]	2022	✓	✓	✓	✓	✓	✓	✓	Blockchain and AI for Metaverse
Our work	2022	✓	✓	✓	✓	✓	✓	✓	Definition of Vetaverse with key enabler techs and envisioned services

- ✓ Strong Relevance
- L Limited Relevance
- X Irrelevant

vehicle/transportation, digital twin, and the keywords related to key technologies discussed in Section III. We further complement the articles by adding prominent research featured on the Internet to cover a comprehensive set of important publications in this area. This process was continued until no new articles were found. We have carefully examined the papers and selected the most relevant and important selected articles while filtering out the less relevant ones. The selected papers form the core of this survey, and we have performed continuous updates during the survey writing process to cover papers published since the start of our process.

B. Structure of the survey

The remainder of this article is organized as follows. Section II proposes the high-level definitions and overall framework of Vetaverse. Section III dives down to key technologies, each of which plays a crucial role in the realm. Section IV and Section V give outlooks over the two major parts, Metaverse for ITS, and, Metaverse for in-car services. Finally, we discuss open challenges and future directions in Section VI and conclude the work in Section VII.

II. VETASURE FRAMEWORK

A. Overview

The Metaverse, vehicles, and ITS can interleave in countless ways, e.g., ARHUD for ADAS, in-car VR for infotainment, OBU assistant with avatar, and digital twin of ITS, to name a few. Therefore, accurately defining such an enormous realm is crucial yet challenging. In this work, we propose the skeleton of Vetaverse (Vetaverse), to outline an umbrella of the future interaction between vehicular industries, transportation industries, and the Metaverse. We define Vetaverse, according to whether focusing on intra-vehicle services, in two aspects: IV-Metaverse (intra-vehicle Metaverse) and TS-Metaverse (transportation system Metaverse). Figure 1 depicts our proposed taxonomy for the skeleton and technology stack of Vetaverse. The overall ITS is mapped into a huge digital twin, in which each individual vehicle runs its own in-car IV-Metaverse that is linked to other IV-Metaverses in the shared digital twin, composing the TS-Metaverse. IV-Metaverse, serving in-car drivers and passengers, and, TS-Metaverse, serving all road users, have different focuses of services thus requiring different technologies but with some overlaps. Next, we briefly describe the vision of two aspects. We detail the technology stack in Section IV and envisioned services in Section V and Section VI.

IV-Metaverse focuses on the infotainment services provided to the drivers and passengers through the windshield and side windows to experience a seamless connection between the real and virtual worlds. As depicted in Figure 1, the vehicle provides an immersive Metaverse experience powered by AR, AI, spatial audio, streaming, edge computing, and
V2X technologies. Potential services include user-friendly assistant based on emotional AI [224], ARHUD-based driving assistance facilitated by V2X and context understanding [230], [233], AR-RecSys (recommendation system) according to situation awareness and personalized training, volumetric streaming services optimized by privacy-preserved learning techniques [48], and realistic spatial audio services [81], etc.

TS-Metaverse. Based on V2X, edge, and cloud techniques, TS-Metaverse provides a universal immersive platform to host the digital twin and shadow of everything on the road for real-time and long-term traffic monitoring and large-scale on-road interactions as depicted in Figure 10 Sensing technologies such as LiDAR enable the situation awareness capability for the vehicles to accurately reconstruct surrounding environments with 3D reconstruction techniques, as shown at the left bottom in the figure. V2X technologies link every machine on the road to exchange critical information, including each vehicle’s sensed surroundings in real-time, as shown at the right bottom in the figure. The surrounding environments sensed by the vehicles are connected and mapped into the “global” digital twin of the transportation system, collectively built with the smart city sensors, compromising a TS-Metaverse that can monitor the transportation in 3D as well as allow intercommunication between the users’ IV-Metaverses.

III. Key Technologies

Building the futuristic Metaverse requires a lot of technologies to function integrally. We briefly lay out the key technologies that play crucial roles following the top-down sequence shown in Figure 1

The most human-centered interaction between a vehicle and the driver/passengers is the intelligent car assistant [208] running in the central control module (CCM) that listens to the audio and reacts with provided services. Two fundamental functions to guarantee the QoE of such services are speech understanding [32] and emotion comprehension [224], which require speech recognition and synthesis, physiological monitoring, NLP analysis, and emotional AI, etc. Speech understanding allows the assistant to understand the intention of the driver’s command and provide the demanded services. Emotional AI allows the assistant to understand the inertial mood of the driver and give proper reactions, such as responding in proper tones or showing the avatar in proper expressions. To further augment the assistant’s service, spatial audio can be employed to control the audio effect and angle for an immersive experience.

The next major driver-vehicle interaction is the driving assistant functions that provide context awareness and action recommendations. For instance, CV, DL (deep learning), and SLAM capacities allow the recognition of the surrounding dangers or POI (point of interest) [64], [88], [132], which can be displayed to the driver via AR display such as ARHUD [234], for better context understanding. Users can also enjoy immersive video streaming services powered by advanced networking technologies such as 5G/6G [48]. Nevertheless, given the trend of electric vehicles, battery consumption would become a major concern for most future vehicles in the Vetaverse era since most of the aforementioned immersive services incorporate complex computation tasks that drain the battery. V2V/V2X, Edge, and Cloud technologies can all assist by orchestrating resource and task allocations between vehicles, edge, and cloud for optimized offloading services to reduce vehicle computation burden [6], [20], [230], [232].

Built on a point cloud map, TS-Metaverse can show how ITS works in the real world in almost real-time because it constantly gets updated data from city-scale distributed sensors. TS-Metaverse can enable several exciting futuristic approaches: 1) Near-real-time 3D traffic and ITS monitoring. Current map services like Google Maps can provide 3D navigation from the user’s point of view to explore points of interest (POI) using the Google Earth service. However, none of the businesses in the market can provide a near-real-time 3D digital twin of the real-world ITS and traffic on large scale. Sensory data fusion and 3D modeling can enable a twin-based simulation environment for autonomous driving by generating realistic data that can be fed into simulated cameras, LiDAR, and other sensors [34], [172]. Advanced communication and control technologies make it possible for digital twins and physical objects to share data and control each other in real-time, realizing the digital shadow of ITS.

Next, we describe the key enabler technologies in detail.

A. Artificial Intelligence

AI has been broadly deployed in vehicles and transportation systems, in terms of data mining, decision-making, context understanding, computer vision tasks, etc. Notably, these tasks are often interwoven and required interleaved AI operations. For instance, context understanding normally requires deep learning for analyzing sensory data, computer vision algorithms for processing camera-captured images, and 3D reconstruction algorithms to further comprehend the 3D geometry and structure of objects and scenes for a better understanding of the surroundings. More specifically, the aforementioned tasks require machine learning algorithms for scene classification [88], object detection [116], semantic segmentation [194], depth estimation [151], pose estimation [111], image restoration [113] and augmentation [107], etc., which demands a variety of neural networks such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Transformer, and Deep Neural Network (DNN) etc. Please refer to Section III-E and Section III-H for more details of AI usage in context understanding and computer vision tasks. Reinforcement learning has also been employed for large-scale intelligent traffic light control [229], which can control the lights according to real-time traffic conditions. Decentralized-learning-based traffic light systems can collect and aggregate data to the ITS digital twin (TS-Metaverse) in real-time, thanks to edge and cloud computing [237].

In Vetaverse, AI can play a more important role. For example, emotion AI can drive the development of user-friendly car assistant that can understand and react to the driver’s and passengers’ emotions, which requires several AI-enabled technologies (see Section III-E for details). Moreover, deep learning techniques can be applied for optimized
resource allocation and task assignment [11], which is crucial for computation-intensive and latency-sensitive metaverse applications. For instance, federated learning can be applied for adaptive bitrate encoding for seamless volumetric in-car streaming services while protecting user privacy [48].

B. Speech Understanding

Since connection or communication in virtual spaces is becoming an essential part of future, being able to understand speech becomes very important for AR/MR-based interaction systems. Unlike context understanding, speech understanding facilitates the understanding or communication with objects and avatars without requiring visual attention or physical manipulation. Speech understanding is also used to lower the risk of car accidents by letting drivers give commands with their voices. Speech recognition makes it possible for drivers to directly control devices without having to move their eyes or hands. Speech enhancement is used to improve the voice of vehicle noise. This makes it easier to get rid of the noise from the vehicle and improves the rate of speech recognition in the vehicle. Moreover, speech emotion recognition [184] can perceive and analyze drivers’ emotional expressions in vehicles, and then vehicles can perceive drivers’ emotions and respond accordingly. This makes it possible to enhance the interactive relationship between drivers and vehicles.

Speech interaction has recently been exploited for MR-based maintenance to help users control the workflow when engineers’ hands are busy with equipment [178]. Similarly, [177] proposed the Aircraft Maintenance Metaverse for aircraft maintenance training and education of Boeing-737 and designed a speech understanding module to control the virtual environment effectively. In summary, speech understanding is significantly crucial for guaranteeing the achievement of the Vetaverse. Speech understanding in Vetaverse aims to: 1) remove the vehicle noise; 2) improve communication between avatars; 3) operate devices in Vetaverse accurately. GGSA-AR [202] proposes the speech-based interaction through verbal command, enabling users to interact with AR objects. Furthermore, Lamberti et al. [99] elaborated a framework that can automatically generate speech-based interfaces to control VR and AR applications on wearable devices. For AR applications, Williams et al. [207] proposed to combine gesture and speech for object manipulation, where speech is adopted for creating new objects.

C. Human Key Point Detection and Shape Reconstruction

The goal of human keypoints detection is to locate the positions of keypoints of the human body, such as the head, shoulders, and knees [43], to facilitate driver and passenger monitoring. Keypoints detection includes 2D keypoint detection [18], [19], [176], [203] and 3D keypoint detection [25], [55]. The coordinates of 2D keypoint positioning are the pixel coordinates in the image. The coordinates of the 3D keypoint are the relative coordinates of the human body key points in three-dimensional space. Human shape reconstruction [97] is highly related to human keypoint detection. It focuses on reconstructing the 3D shape of the human body which contains more information than keypoint locations. Human keypoint detection methods can be divided into two categories: bottom-up [18], [19] and top-down [28], [108], [216]. In general, top-down methods have high accuracy but require more computation, while bottom-up methods are faster and easier to deploy.

D. Physiological parameter monitoring

The multi-parameters of the driver’s physical condition are important indicators to measure the healthy driving state. Fatigue driving, drunken driving, and sudden illness during driving will cause changes in these parameters, and they are also one of the main causes of traffic accidents. Therefore, it is necessary for Vetaverse to monitor the values of these parameters and opportunistically adjust the vehicle’s driving state to make prevention. The existing life feature extraction work has achieved non-interference extraction of driver’s heart rate based on multiple imaging [2], [73], non-contact detection of ECG [106], detection of blood alcohol concentration [162] and simultaneous extraction of heart rate and respiratory rate based on radar [23], [166]. Some indirect parameters, such as cognitive load, can also be detected by detecting pupil size [45]. When the detected parameters are abnormal, Vetaverse is supposed to inform relatives, friends, or traffic agencies of the driver’s dangerous driving circumstance and propose treatment or relief programs. For instance, VR has been proven to relieve anxiety and pain, and reduce heart rate and blood pressure [204].

E. Emotion recognition

Emotion recognition has the potential to be applied to natural language processing (NLP) assistant, digital twin & avatar reconstruction, and wireless emotion recognition.

1) NLP Assistant: NLP-based emotion recognition can help non-player character(NPC) or AI assistants in the Vetaverse understand human feelings and needs for a better human-machine interaction experience. With input signals such as
text, speech, or conversation, researchers have already developed various emotion recognition methods [31], [85], [150].

However, there are still many problems to be solved before the neural network models can fully understand how people feel and help people in the Vetaverse. For example, the textual emotion recognition approaches suffer from a shortage of high-quality datasets, fuzzy emotional boundaries and incomplete emotional information in the textual expressions [51]. Existing speech-based emotion recognition methods have limitations such as large architectures and lower efficiency for the temporally varying input data, implying that they are not robust enough for dynamic scenarios in the Vetaverse. The conversation-based emotion recognition method faces the challenges of speaker-specific modeling and multiparty conversation, which is not user-friendly enough when there are multiple users in the Vetaverse [85]. In conclusion, for Vetaverse to understand how users feel, it needs better, lighter NLP models with stable efficiency and high accuracy.

2) Digital Twin & Avatar Reconstruction: Avatar emotion reconstruction is more appealing than the traditional communication methods such as texting, phone calls, and video meetings because users can use dynamic avatars to represent different emotional states and interact with the Vetaverse participants [30]. According to [30], dynamic facial expressions rendered by avatars can generate a more immersive emotional experience for users. Existing emotion recognition and reconstruction approaches can help reconstruct the avatars' emotions according to the users' facial expressions, which makes communication between Vetaverse users more understandable. The most commonly used methods for face reconstruction involve statistical model fitting methods, photometric methods, and deep learning-based methods [131]. By using emotion recognition, not only can human-shaped avatars express emotions, but also characteristically shaped avatars such as animals or emojis can generate emotions.

Various sensors can capture different signals for ML-based emotion recognition and avatar emotion reconstruction. [152] proposed a method to reconstruct facial expressions of head-mounted display users for avatars by developing a three-stage machine learning pipeline and creating realistic avatars using photogrammetry, 3D modeling, and applied blend-shapes. In addition, the implementation of key functions in the driver digital twins is also inseparable from emotion recognition, such as driver distraction detection, driver drowsiness detection, and driver emotional state monitoring and so on [72]. For example, [154] conducted emotion recognition in the digital twin by using a brain-computer interface. [27] proposed a novel deep learning model to reconstruct 3D facial avatars for digital twins from monocular images. [211] proposed a vision-based approach for digital twins, in which facial expressions are identified through analyzing driver head poses and gaze captured by camera sensors. The ability to reconstruct emotions in real-time is vital for the Vetaverse to work and is essential for avatars to communicate better with each other.

3) Safe Driving & Health Care: In Vetaverse, it is always essential to ensure passengers' safety with potential danger warnings and health care. There are mainly two aspects of how emotion recognition could help with the safety and health of Vetaverse users. One is to monitor the driver’s states to warn the driver of the potential danger, especially for vehicles without full automation [75]. The other one is using various signals such as electrocardiograms and facial images to conduct emotion recognition and further monitor drivers’ and passengers’ physical and psychological conditions for healthcare purposes.

Emotion recognition can be used in driver digital twins to monitor drivers’ conditions, which can help supervise drivers’ emotional conditions and prevent them from dangerous driving behaviour. For instance, [224] designed a driver state monitoring (DSM) system to analyze drivers' conditions and sound the alarm by emotion recognition based on monitoring drivers' faces. Biophysiological signals captured by wearable devices can also help to estimate if the driver is under abnormal emotional conditions such as stress and anger [83], [224].

In Vetaverse, it is also possible to apply emotion recognition to healthcare. Emotion recognition-based healthcare can be implemented by capturing users’ facial images, speech, or electrocardiograms via cameras and wearable devices. For example, according to [37], it is plausible to apply NLP to VR/AR virtual patient systems to recognize users’ emotions; [63] uses electrocardiograms to estimate if patients are stressed, anguished, or depressed; [33] uses audio-visual signals such as facial images to evaluate patients’ abnormal conditions; [182] proposed a digital twin model, which is capable of conducting real-time emotion recognition for personalized healthcare using an end-to-end framework. In this way, the health conditions of users can be monitored.

For the Vetaverse to operate safely, it is essential to have functions for monitoring the safety and health of users through emotion recognition. However, as people’s faces are usually captured for this purpose, it remains a challenge for human privacy protection in the future [199].

4) Wireless emotion recognition: Emotion recognition through wireless methods has also been explored in recent years. This strategy was first proposed in [228] to capture emotion information via radio frequency signals containing heartbeat segmentation information reflected off the body. EmoSense, a low-cost solution for emotion sensing combined with off-the-shelf WiFi devices, was proposed in [53]. In a smart home scenario, [71] combined different IoT devices to capture speech and image signals for emotion recognition.

F. Spatial Audio

Spatial audio [161], also referred to as 3D audio or 360 audio, can be produced by stereo speakers, headphones, surround-sound speakers, or speaker-arrays. When playing spatial audio, it changes with the movement of the viewer’s head. The common technique is spatial domain convolution of sound waves based on head-related transfer functions (HRTF) [179]. HRTF is a sound localization algorithm where a pair of binaural HRTFs can be used to synthesize binaural sounds from specific points in space [167]. It describes how sound from a specific point reaches the ear (usually the front of the tympanic membrane). Also, the signal from any point in space to the human ear can be described by a filter that can
describe the spatial information. Then it is possible to restore the sound signal from this orientation in space [56].

Due to its lightweight and real-time operation, spatial audio can bring great convenience to drivers [35]. Spatial audio is a critical component in creating truly immersive AR/MR-based systems [181]. Spatial audio technologies currently have many different application areas, such as personal entertainment devices, real-time communication systems [221], acoustic-based location monitoring [126], etc. In addition, they are also widely used in transportation applications [55].

G. Context Understanding

1) Holistic Scene Understanding: Holistic scene understanding is an indispensable part of achieving the perception of any AR/MR-based interaction systems. It ensures interaction with other objects and avatars in both the virtual and physical worlds. Therefore, scene understanding is the key technique that guarantees the functioning of the Vetaverse. It aims to: 1) understand what kind of scene a vehicle is expected to perceive, e.g., if a vehicle moves along the urban roads, it mostly sees buildings, vehicles, pedestrians, etc; 2) understand what kind of contents or objects are present around an avatar, namely a representative of a person in the physical world; 3) what are the semantic regions of the contents, e.g., buildings and roads; 4) how to deal with unfavorable weather or lighting condition for holistic scene understanding, e.g., rain, under-exposure, etc. Holistic scene understanding combines these aspects of a scene for a vehicle to provide a comprehensive understanding of the whole scene in the Vetaverse. In general, holistic scene understanding can be decomposed into four major tasks: scene classification, object detection, image segmentation, and image restoration and enhancement.

2) Scene Classification: Scene classification in Vetaverse aims to classify a scene into a certain scene type (e.g., urban, rural, and seaside) based on the ambient content, objects, and their layouts [88]. The core technique of scene classification is to transform a scene image into feature descriptors to recognize the scene. For AR-based Vetaverse, a representative approach for scene classification is dependent on an AR device to capture images first and a CNN-based framework to perform scene classification [79], [88]. For accomplishing the Vetaverse, one inevitable challenge is how to define the complexity of the virtual world so as to perform scene classification. For instance, the objects and contents in the Vetaverse can dynamically vary, and the avatar types can also change according to the driver’s preferences. Consequently, these uncertainties cause considerable technical difficulties for scene classification in the Vetaverse system. Moreover, it is expected to perform real-time scene classification in the Vetaverse. However, due to the complexity of the driving environment, it is difficult to deploy computing devices to meet such a requirement.

3) Object detection: Objection detection aims to localize the objects in a scene and identify the class information for each object [116]. Object detection in the Vetaverse can be classified into two categories: detection of specific instances (e.g., faces, markers, and text) and detection of generic categories (e.g., cars and humans). Text detection methods have been broadly studied in XR [64]. These methods have already matured and can be directly applied to achieving the Vetaverse. Face detection has also been studied extensively in recent years, and the methods have been shown to be robust in various recognition scenarios in AR applications, e.g., [96], [122]. For example, in VR, face detection is a typical object detection task, while pedestrian detection is a common object detection task in AR for autonomous driving.

In a more sophisticated application, AR object recognition aims to attach a 3D model to the physical world [112]. This requires the object detection algorithms to precisely locate the position of objects and correctly recognize their classes. By placing a 3D virtual object and connecting it with the physical object, users can manipulate and relocate it. AR object detection can help build a richer and more immersive 3D environment in the Vetaverse. A representative example is StradVision [3] which subtly leverages AI-based vehicle detection, lane detection, and semantic segmentation algorithms to build an AR-based ADAS system, as shown in Fig. 3(b).

In the Vetaverse, users are represented as avatars, and multiple avatars can interact with each other. The face detection algorithms need to detect both real faces from the physical world and synthetic faces from the virtual world. Moreover, the occlusion problems, sudden face pose changes, and illumination variations in the Vetaverse can make it more challenging to detect faces in the Vetaverse. Another problem with face detection is the privacy risk. Several research works have studied this problem in AR application [1]. In the Vetaverse, many users can stay in the 3D immersive environment; hence, privacy in face detection can be more stringent. Future research should consider the robustness of face detection, and better rules or criteria need to be studied.

4) Image Segmentation: Image segmentation aims to categorize an image into different classes based on the per-pixel information [193], [194]. It is considered as one of the fundamental techniques to understand the driving environment in the Vetaverse [186]. Semantic segmentation is one typical image segmentation task, aiming to efficiently and quickly segment each pixel based on the class information. In recent years, AI-driven semantic segmentation methods have demonstrated promising performance on numerous urban driving datasets of self-driving scenarios. Nonetheless, the XR-
information in a 3D immersive world, as shown in Fig. 4. Semantic segmentation methods to understand the pixel-wise segmentation in MR [21], [47], [89]. Some research works managed to achieve real-time semantic [175] or model compression [195]. Through these techniques, image crop/resizing [227] or efficient network design [128], [158]. However, as image segmentation deals with each pixel, it leads to considerable computation and memory load. These methods have been successfully applied to AR [95], [186]. Some works have shown the capability of semantic segmentation for tackling the occlusion problems in MR [90], [158]. However, as image segmentation deals with each pixel, it leads to considerable computation and memory load.

To tackle this problem, recent endeavors have focused on real-time semantic segmentation. Theses methods explore the image crop/resizing [227] or efficient network design [128], [175] or model compression [195]. Through these techniques, some research works managed to achieve real-time semantic segmentation in MR [21], [47], [89].

In the Vetaverse, we need more robust and real-time semantic segmentation methods to understand the pixel-wise information in a 3D immersive world, as shown in Fig. 4. Because of the diversity and complexity of virtual and real objects, contents, and human avatars, more adaptive semantic segmentation methods are required. In particular, in the interlaced Vetaverse world, semantic segmentation algorithms must distinguish virtual object pixels from real ones. In this case, class information may be more complex, and semantic segmentation models may have to deal with previously unseen classes.

5) Image Restoration and Enhancement: Image restoration and enhancement aim to improve image quality in the Vetaverse for more robust scene understanding. The traditional VR wearable prototype or AR display produces poor image quality and contrast due to hardware limitations and other factors. Image restoration has the potential to be useful in revealing more details with higher image resolution for a more pleasant user experience. For example, [91] designs small holographic glasses for VR, aiming to solve the problem of poor image quality with a near-eye display system by employing the HOGD-CITL algorithm.

The Vetaverse has the potential to speed up the development of autonomous driving with better scene understanding abilities through image restoration and enhancement. On the one hand, higher-quality images can build up users’ trust in this new technology and improve drivers’ safety via enhanced context awareness with “Invisible-to-Visible” (I2V) [115], [137] through XR devices. I2V is a technology that can extend drivers’ vision ability, as well as for corner case scene understanding, such as blind spots, in adverse weather, at a greater distance, or in poor lighting conditions, where human visual ability is greatly influenced. A nighttime AR system, for example, is intended to improve driving safety at night [145]. On the other hand, the intelligent perception and decision systems of the vehicle rely heavily on the quality of the collected data. Therefore, it is critical for the vehicle systems to have a better understanding of the environment in order for the intelligent system to make more accurate decisions. Moreover, with the diverse development of deep learning methods in image restoration [113], techniques such as derain [197], defog [10] and image enhancement [107] are potentially useful to solve the challenges of image quality degradation so as to achieve a more robust Vetaverse.

H. Image-based 3D Reconstruction

In the Vetaverse, drivers and passengers and their digital representatives (i.e., avatars) are connected and interact with each other at the junction of the physical driving environment and the virtual world. Therefore, building such a junction across the physical driving scene and the virtual environment inspires us to deeply understand human behaviors, which empowers the action of the avatar and the surroundings of the vehicle. In the physical driving environment, the driver can estimate the overall size and geometry of an object with their eyes and construct a 3D world based on their mental model of what an object looks like. Similarly, the Vetaverse also needs to build up the 3D structure of the driving environment and localize the moving objects. Image-based 3D reconstruction is a hot topic in computer vision and graphics that infers the 3D geometry and structure of objects and scenes (e.g., vehicles) from visual cues such as RGB image [51], [219].

Among existing techniques, formulating the 2D-to-3D projection is an important problem. Depth is thus a crucial piece of information for inferring such a projection. Depth can be obtained from a depth sensor, which can be combined with the RGB camera to form an RGB-D sensor, such as Kinect [7]. 3D reconstruction can be decomposed into two types: 1) 3D reconstruction from multiple views, and 2) 3D reconstruction from a single view. In recent years, extensive research has been focused on exploring the potential of deep learning to estimate depth in VR/AR, e.g., [98], [109], [141]. Depth estimation from the multi-view is a critical task in achieving the Vetaverse. The estimated distance directly determines the position of the contents in the immersive environment. The common

https://blog.mozvr.com/semantic-placement-in-ar/
way to estimate depth is to use a stereo camera [36]. In VR, stereo depth estimation is conducted in the virtual space. Therefore, depth estimation estimates the absolute distance between a virtual object and the virtual camera (first-person view) or the referred object (third-person view). The traditional methods first extract feature points and then use them to compute the cost volumes for disparity estimation [165].

In XR, one of the critical issues is to ensure that depth estimation is done based on both virtual and real objects. In this way, the XR users can place the virtual objects in the correct positions. Early methods in the literature for depth estimation in AR/MR rely on the absolute egocentric depth [205], indicating how far it is from a virtual object to the viewer. The key techniques include “blind walking” [100], imagined blind walking [120], and triangulation by walking [206]. Recently, deep learning-based methods have been applied to XR [7], [151], showing much more precise depth estimation performance. Stereo cameras have been applied to some HMDs, e.g., the Oculus Rift [80]. Infrared camera sensors are also embedded in some devices, such as HoloLens, enabling easier depth information collection.

I. Simultaneous Localization and Mapping (SLAM)

Visual SLAM is a pivotal component inside the complex architecture of the autonomous driving system. A visual SLAM algorithm has to solve several challenges simultaneously: (1) unknown space, (2) free-moving or uncontrollable camera, (3) real-time, and (4) robust feature tracking (drifting problem) [142]. Among the diverse SLAM algorithms, the ORB-SLAM series, e.g., ORB-SLAM-v2 [132], have been shown to work well, e.g., in the AR systems [142], [222].

Visual SLAM algorithms often rely on three primary steps: (1) feature extraction, (2) mapping the 2D frame to the 3D point cloud, and (3) close loop detection. The first step for many SLAM algorithms is to find feature points and generate descriptors [15]. Traditional feature tracking methods, such as Scale-invariant feature transform (SIFT) [121], detect and describe the local features in images; however, they are often too slow to run in real-time. Therefore, most AR systems rely on computationally efficient feature tracking methods, such as feature-based detection [159] to match features in real-time without using GPU acceleration. Although recently, convolutional neural networks (CNNs) have been applied to visual SLAM and achieved promising performance for autonomous driving with GPUs [129], it is still challenging to apply to resource-constrained mobile systems.

With the tracked key points (features), the second step for visual SLAM is how to map the 2D camera frames to get 3D coordinates or landmarks, which is closely related to camera pose estimation [156]. The SLAM algorithm first estimates the key points when the camera outputs a new frame. These points are then mapped to the previous frame to estimate the scene’s optical flow. As a result, camera motion estimation paves the way for the same key points to be found in the new frame. However, in some cases, the estimated camera pose is not precise enough. Some SLAM algorithms, e.g., ORB-SLAM [132], [134] add extra data to refine the camera pose by finding more key point correspondences. Triangulation of the matching key points from the connected frames generates new map points. This procedure combines the 2D positions of key points in the frames, as well as the translations and rotations between them.

The last key step of SLAM aims to recover the camera pose and obtain a geometrically consistent map, also called close-loop detection [13]. As shown in Figure 6 for autonomous driving [129], local map generation or vehicle pose estimation is an essential step for the driving system’s scene understanding. ORB-SLAM [132] determines whether key points in a frame match previously detected key points from a different location. If the similarity exceeds a certain threshold, it indicates that the user has returned to a previously visited location. Some SLAM algorithms have recently combined the camera with other sensors, such as the IMU sensor, to improve loop detection precision [147], and some works, e.g., [168], have attempted to fuse semantic information to SLAM algorithms to ensure loop detection performance.

Although current SOTA visual SLAM algorithms have established a solid foundation for spatial understanding, Vetaverse requires understanding of more complex environments, particularly the integration of virtual objects and real environments. Hololens has already begun to improve its spatial understanding, and Apple has introduced ARKit+ [129] for 3D keypoint tracking. In Vetaverse, the perceived virtual universe is built in the shared 3D virtual space. As a result, acquiring the 3D structure of an unknown environment and sensing its motion is critical but difficult. This could aid in data

![Figure 5: An example of 3D reconstruction for autonomous driving](https://developer.apple.com/videos/play/wwdc2018/602)

![Figure 6: An example of visual SLAM for autonomous driving](https://developer.apple.com/videos/play/wwdc2018/602)
collection for purposes such as digital twin construction, which can be linked with AI to achieve auto conversion from the physical world. Furthermore, it is critical in Vetaverse to ensure the accuracy of object registration and interaction with the physical world. With these stringent requirements, we anticipate that Vetaverse’s SLAM algorithms will become more precise and computationally efficient.

J. XR

XR is a shared virtual space that combines physical reality, AR and VR. This allows users to work, play, and interact socially in the blended post-reality universe, which is a web of social, networked immersive environments on persistent multi-user platforms.

AR is a set of technologies that superimpose digital items (e.g., visual components, sound, and 3D objects) on the physical world. It spatially augments the physical layer with virtual objects using mobile devices such as smartphones, tablets, glasses, or other transparent surfaces such as the vehicle’s windshield. AR bridges the gap between all the digital information we have and the real world where we use it. It extends the user’s capability to take advantage of the torrent of information and insights produced by billions of smart, connected devices (i.e., IoTs). AR is becoming the new interface between humans and vehicles, bridging the digital and physical worlds.

AR-assisted ADAS provides the drivers with visual guidance using information computed cooperatively by multiple connected vehicles. This system uses AR as a human-machine interface (HMI), which puts guidance information on top of what the driver can see through the windshield. This becomes an effective solution in intersections that are not served by traffic signals. In these cases, the driver can cross the intersection under the AR guidance without any full stop. This reduces travel time and energy consumption in a safer, more efficient, and more comfortable way. EAVVE and AICP push AR-assisted ADAS forward towards reality via edge-offloading provision and lightweight information filtering, to compensate for the less-powered vehicles and remove noisy visual data.

Virtual reality (VR) creates separate digital and artificial environments in which users feel immersed as if they are in a different world, and behave as they would in real life. Using head-mounted displays (e.g., Oculus Quest 2), VR platforms (e.g., Mozilla Hubs, Spatial, and Meta Workrooms) extend the user’s field of view (FOV), block the entire ambient, and offer an immersive virtual environment independent of the user’s actual surroundings. These environments are completely virtual and intensify fictional realities. They are based on 3D models of the virtual space and objects in which 3D models of vehicles or pedestrians (i.e., avatars) navigate.

VR has been utilized to demonstrate the safety of L3+ automated driving with respect to human drivers. Owing to the need of test driving up to several million miles, simulations and high-fidelity virtual environments are employed to efficiently achieve the testing of autonomous vehicles. Such testing requires two primary components in a synthetic environment, which are validated sensor models and noise models for each sensor technology. The sensors feed the vehicle’s information into the automated system to plan its trajectory and navigate safely. Espineira et al. propose innovative real-time LiDAR-based and probabilistic rain models. The model is based on the Unreal engine and runs in real-time, synchronized with the visual rendering, in an immersive driving simulator.

K. Edge and Cloud

Vetaverse applications are computation intensive and present challenges for onboard capacities. Offloading thus is a good method to ensure speedy processing and a good user experience. Traditional cloud, although can provide long-term large-scale data maintenance, is hindered by latency and network congestion to provide offloading services for real-time user interaction. Edge computing computes, stores, and transports data closer to end-users and their devices, reducing latency. Satyanarayana et al. observed in 2009 that providing cloud-like infrastructure just one wireless hop away from mobile devices may revolutionize the game. As such, edge can provide for real-time application offloading such as object detection for ARHUD and cloud can provide large-scale orchestration like traffic monitoring and scheduling.

L. HD Map

Map plays a crucial role in automatic driving. It compensates for the circumstances when the sensor is blocked or the range is insufficient. In the meantime, it provides the correct interpretation corresponding to the understanding of the scene. Furthermore, knowledge of the map can be inherited from previous driving tracks. With the continuous progress in the field of automatic driving, the maps are of necessity to be more and more precise, while fulfilling higher quality requirements. Although rough road routes are adequate for navigation equipment, maps must provide more diversified information for automatic driving. Therefore, the high-definition (HD) map, which is dedicated to automatic driving, is an indispensable component in all major automated driving projects. Unlike traditional navigation maps, HD maps not only provide road-level navigation information but also provide lane-level navigation information. It is far superior to the traditional navigation map in terms of information richness or accuracy.

1) Point Cloud Map: One of the most popular categories of HD map is point cloud maps. A point cloud is a set of data points in space. These points can represent 3D shapes or objects. Each point location has its own coordinate set (X, Y, Z), and some point clouds also have color values (R, G, B) and reflection intensity values. Point clouds are usually generated by 3D scanners, which measure...
Figure 7: This figure shows the application of HD map.

Figure 8: A sample of point cloud map from [12].

many points on the surface of surrounding objects. Self-driving vehicles have many LiDARs that can obtain a large number of point clouds outside the vehicle, as shown in Fig. 8. These point clouds can be used for visualization, rendering, and semantic understanding of the environment outside the vehicle. The maps formed by these point clouds have important applications in the Vetaverse.

We believe that the application of point cloud maps in the Vetaverse has three points. 1. Outside reconstruction: point cloud maps can provide data for 3D reconstruction of the outside environment. 2. The registration of point cloud data of adjacent vehicles provides a potential possibility for vehicle-to-vehicle communication. 3. The collection of point clouds from multiple vehicles lays the foundation for building a global map of the educational system.

For 3D reconstruction, many techniques on point clouds have application value. These 3D reconstruction techniques based on point clouds can be roughly summarized into the following four processes. 1. Data preprocessing: such as pose correction, coordinate unification. The purpose of this step is to remove some problems caused by the hardware, such as inconsistent coordinate systems, noise, etc. 2. Filtering [226], denoising [124], [223], registration [149], [218], segmentation [101], [135] of point cloud data. The purpose of this step is to segment the point cloud into different parts, e.g., distinguishing the point clouds of street trees, vehicles, people, and roads. 3. Gridding of point cloud, this step will complete the conversion of point cloud to mesh [215]. 4. Panoramic texture map, which maps information such as color to the mesh.

The 3D reconstructed map of the point cloud can map the real-world scene into the Vetaverse, and prompt the driver according to the semantic information of the scene. For a single vehicle, the driver can get prompts from the Vetaverse system in real time, e.g., obstacles detected in point cloud maps. In the case of multiple vehicles, different vehicles can broadcast their own driving routes through the shared point cloud map. This is extremely valuable for some attack scenarios, such as ambulances and police cars in emergency scenarios. For the global traffic system, the point cloud maps obtained by all vehicles are used to form a global map, which can provide important information in traffic planning and route setting.

M. Digital Twin

As an integral part of a city, the performance of the transportation system is inseparable from city activity. Therefore, a more intelligent transportation system (ITS) is essential for urban development. With the gradual maturation of digital twin technology, the construction of digital twins of ITS has become essential to provide efficient transportation operation, analysis, presentation, simulation, prediction, and planning [119]. The digital twin of vehicles, pedestrians, roads, and traffic signals allows for the visualization of real-time dynamics, and 3D models enable the observation of space from multiple angles [22]. Transferring transportation demand and traffic flow into the management system can effectively reduce accidents and violations, improve transportation efficiency, and improve residential well-being [160], [26]. Furthermore, the continuously collected data increases the degree of similarity between the digital twin and the real world, enabling the development of a twin-based simulation environment for autonomous driving. 3D model reconstruction can generate synthetic data similar to realistic camera, LiDAR and other sensors, based on learning from historical traces, thus drastically reducing the cost of data collection for developing autonomous driving algorithms [34], [72]. Leveraging advanced communication networks and sensory-and-image data fusion techniques, bidirectional real-time data exchange between physical entities and digital twins can achieve seamless bidirectional communica-
Figure 9: An example of a 3D digital twin of ITS (the image on the right side), showing vehicles traveling in a city and a first-person view of one car (the bottom right rectangle). The image on the left is a screenshot of real world map (San Francisco, Lombard Street, from Google Map).

Figure 10: Transportation-System Metaverse. Each vehicle detects its surroundings via sensory data (bottom left of the figure) and communicates the learned context with nearby vehicles via V2V (bottom right) and aggregates it to the cloud via V2X. The central server maintain the TS-Metaverse using the aggregated context data (top of the figure).

IV. TS-MetaVERSE

In this section, we present the vision of TS-Metaverse and discuss core aspects in detail, including the digital twin of the system, XR for connected vehicles, and resource orchestrations.

A. Intelligent Transportation Systems (ITS) and Metaverse

Intelligent Transport Systems (ITS) are novel transport systems that leverage information, communication, and control technologies (ICT) to link humans, vehicles, and roads. ITS aims to resolve a variety of road traffic issues by enabling smart, efficient, and safe transportation [125]. As part of enabling ICT, Automotive IoT is the primary component that has become a prominent hotspot for diversified multi-purpose applications. For instance, in-vehicle IoT assists drivers with driving, braking, parking, and lane-changing activities. It also takes on-the-spot decisions while partly controlling the vehicle operations to avoid accidents and reduce the load on the driver. In-vehicle IoTs integrate multiple sensors such as proximity sensors, LiDAR, radar, and cameras with IoT systems to reduce human error and make driving safer and more convenient. The pervasive deployment of communication technologies such as cellular vehicle-to-everything (C-V2X) [60], dedicated short-range communication (DSRC) [84], and the European standard (ITS-G5) [42], has enabled networking among the vehicles and with the infrastructure. In particular, vehicles intercommunicate, vehicle-to-vehicle (V2V), in an ad-hoc manner (VANET). They also communicate with road infrastructure (V2I), pedestrians (V2P), and data networks (V2N) [198].

TS-Metaverse. With the advent of the Metaverse, physical and cyber worlds can be blended into mixed physical-virtual environments. The real-world data collected by IoT devices and sensors installed in vehicles, on pedestrians’ mobile
phones, and along the roads is the key enabler for synchronizing the two worlds. For example, location data from GPS sensors and vehicle characteristics can aid in transforming them into digital twins in the Vetaverse. Accordingly, vehicles can be represented as dynamic objects, while buildings, roads, and road infrastructure are represented as stationary objects in the virtual space. Humans (e.g., drivers, passengers, and pedestrians) can use avatars to represent themselves and communicate with each other and the virtual environment. Data freshness is crucial to maintaining a well-synchronized digital twin in the Vetaverse, i.e., acquiring the most up-to-date data from the road users (e.g., vehicles, pedestrians) and roadside sensors (e.g., inductive loop detectors, traffic lights) in the physical world to keep the digital twin updated in real-time [62].

B. Digital Twin

Currently, digital twin technology is widely used in industry, particularly for real-time automated monitoring, control, and management, and there is a high demand for these applications in increasingly complex urban and rural transportation systems. In the TS-Metaverse, the construction of a high-precision digital twin can serve as the foundation for high-precision mapping and navigation services, accident analysis and prediction, and autonomous driving simulations, which can accelerate the development of ITS [160]. The construction of a digital twin of ITS can be divided into the following phases:

1) **Modeling** is the first step in creating a digital twin. Traditional traffic simulation systems have a tendency to oversimplify the environment and traffic objects, making it challenging to achieve comprehensive utilization of the collected data. Roads, traffic signals, traffic signs and markings, vehicles, road users, transportation-related services, the natural environment, and weather conditions are the ITS objects to be modeled. We need to construct their geometric models, physical models, behavioral models, and rule models to accurately reflect their actual conditions in the virtual world [188]. Technologies such as 3D scanning, 3D reconstruction, and geographic mapping are essential for geometric modeling. Rule modeling necessitates the collection of extensive data. Meanwhile, detailed physical modeling and behavioral modeling require more manual intervention, which remains an open challenge [155].

2) **Sensor data acquisition.** Using GPS, LiDAR, cameras, traffic signals, and other sensor devices to collect various types of data necessitates collecting and filtering traffic information comprehensively and effectively through edge computing, IoT and other technologies, and securely transferring the useful information to the digital twin platform [54], [187].

3) **Real-time data transmission and model updates.** The collected data is transferred to the platform via advanced communication networks in real-time to update the digital twin. Data processing faces challenges such as the harmonization of diverse protocols and standards, data fusion, information prioritization, and noise pruning [212] etc.

4) **Reversed control.** The digital twin should be able to control the physical entity (at least to some extent) [76], which is a key difference with traditional virtual model solutions. ITS can guide real traffic by directing the digital twin, for example, to improve driving safety. Better, in a digital world, we can predict the impact of each object's behavior in advance.

5) **Data analysis.** The digital twin can not only reflect the current state of the physical entity but also store and replay historical traces, which is extremely useful for data analysis. The traffic information obtained in real time can be used to optimize the deployment of traffic infrastructures, and the characteristics of vehicle and pedestrian movements can be used for simulation and prediction.

6) **Services connection.** The digital twin of ITS can be linked with various related services such as parking lots, restaurants, shopping malls, etc., to effectively improve user convenience during commute.

7) **Simulation** is an important function of the ITS digital twin, which can provide great help in the training and testing of autonomous vehicles. The digital twin combines sensory data with map information to reconstruct realistic scenarios in a digital platform, which is capable of performing high-precision simulations of various road, traffic, light, weather and other conditions. This can greatly enhance the generalizability of self-driving algorithms within faster development cycles while reducing training and testing costs.

C. XR for Connected Vehicles

Lots of jams are caused by accidents and greatly impact the efficiency of ITS. A major cause of accidents is the blind spots caused by view obstruction and unfavorable weather conditions. Extended vision can efficiently reduce the blind spots and thus is of great importance for accident avoidance, driving safety, and transportation system efficiency. Currently, a suite of technologies can be utilized to actualize the extended vision for automobiles and drivers. Following, we discuss how to utilize XR for connected vehicles to expand the scope of vision and context comprehension.

Most automobiles nowadays are outfitted with sensors and display devices that provide the driver with helpful information, such as about the driving environment and driving habits. The most common form of display is a heads-up display (HUD). Recently, academic and commercial interest in combining AR and HUD has been increasing. AR enables the incorporation of 3-D data images into the HUD rendering background, enabling precise obstacle detection and emergency notifications. Relevant research has focused on various problems, such as cognitive utility, visibility, and the alignment of embedded information with the actual environment [144], [145]. Connecting vehicular perspectives via ARHUD is in its infancy, though. Indeed, it is already a challenging matter when only two vehicles share the same vision. Extending this model to a large number of vehicles on the road in real-time would significantly increase the system's complexity. Numerous ambient broadcast messages are transmitted to
Figure 11: Two accidents that can be avoided with connected vehicular vision [230].

autos in this scenario. Vehicles must select just the necessary data to prevent information overload and adverse consequences (driver distraction, performance declines, network congestion).

But the effort is definitely worthy. For example, Fig 11 illustrates two different car incidents that the poor visibility contributed to: (i) The leading vehicle’s driver suddenly notices a pedestrian crossing the street quickly and thus hits the brake. However, the following vehicle’s driver, whose vision is obstructed by the leading vehicle, is unaware of the pedestrian and is just about to pass the leading vehicle, which is quite a common case and often causes a tragic collision. (ii) Out of the line of sight of the vehicles turning right, some vehicles are parked just around the corner. The leading vehicle luckily took a big curve and avoided the collision. However, the following vehicle is taking a small curve and it is too late to brake when the driver finds out about the parked vehicles [234].

In the past decade, there have been some efforts focused on extending vehicular vision, utilizing terms such as “see through”, “cooperative vision”, and “cooperative perception”, among others. Kim et al. proposed a paradigm for general vehicular cooperative perception that tackles several important challenges in the field, such as map merging, communication uncertainty, and sensor multi-modality [92]. In addition, to enable drivers to share local sensory data for collective perception, [57] proposed and analyzed several communication formats based on ETSI ITS 5G [40]. After that, they developed an engineering-feasible multimodal cooperative perception system [94] and broadened their study with a mirror neuron-inspired algorithm for intention awareness in cooperative autonomous driving [93]. Garlich et al. [50] presented a set of generating rules in 2019 to reduce the transmission burden while retaining perception capabilities. This idea was subsequently incorporated into the ETSI standard [41]. Thandavarayan et al. conducted an in-depth examination of the message-generating rules after reviewing the ETSI standards [189]. Under the current standards, they assessed the trade-off between communication performance and perception skills and determined that additional optimization is required to reduce information redundancy. To achieve this, Aoki et al. [9] employed an approach of deep reinforcement learning, selectively transmitting information about objects that were unlikely to have been directly observed by neighboring vehicles. Some related works have been done with ARHUD. For instance, [153] investigates the sharing of augmented vision between two vehicles. Due to stringent outdoor constraints such as bandwidth, latency, and computing resources, scalability was not addressed. However, the effort did provide answers for fundamental view transformation. EA VVE [230] is a comprehensive V2X framework for the instantaneous sharing of enhanced contextual information to allow real-time emergency detection and notification by utilizing the low latency of edge servers.

Connected vehicles face numerous challenges, including timely and synchronized information distribution, data fusion, communication overhead, and an often-overlooked one: the shared information may be overwhelming for both the driver and the vehicle’s decision-making system, resulting in driver distraction rather than assistance. Figure 12 depicts an example of a following vehicle’s vision in a leading-following vehicle situation utilizing naive cooperative perception and augmented reality (AR). The vehicle in the lead detects objects within its field of view and relays information about them. Based on received signals, the following vehicle calculates position transformations and renders all green-boxed objects. When such a system is extended to city-block-level perception without information filtering, drivers are faced with an abundance of items. This hinders their vision, and consequently, their driving experience is diminished. In reality, the time it takes a driver to make a decision increases logarithmically as the
number of stimuli or objects increases \cite{118}. In addition, it is crucial to limit the number of objects to the cognitive capacity of humans, which is approximately 7 ± 2 items \cite{170}. Therefore, cooperative perception requires efficient filtering. Such a system may, for instance, recognize the things indicated in the pink box in Figure 12 as essential and display their data while ignoring the remaining items. Augmented Informativeness Cooperative Perception (AICP) presents the first answer to this challenge. AICP is a fast-filtering solution that maximizes the informativeness of shared visionary data between vehicles to improve the fused presentation at the cost of an appropriate amount of additional delay \cite{233}.

D. Resource Orchestration with Edge and Cloud

TS-Metaverse can greatly improve the efficiency of the transportation system and benefit the drivers by enhancing visionary and context-understanding capabilities. However, the bulk of those tasks are computationally intensive and battery-consuming. To alleviate these burdens, offloading is a pivotal step, particularly for the ordinary vehicles that dominate the roadways. But it comes at the expense of increased network latency. A balanced trade-off is essential in order to make the offloading process transparent to the user experience. For instance, to better understand the surroundings, a vehicle needs to process captured images (or point clouds, etc.) at a higher frequency to get more granular information, for which offloading results in longer latency.

Due to the fluctuating and unpredictable high latency \cite{164}, \cite{230}, cloud offloading cannot consistently achieve the ideal balance and results in long-tail latency performance, which harms the user experience \cite{29}. Recent cloud reachability measurements indicate that the present cloud distribution can provide network latency of less than 100 milliseconds, meeting ordinary vehicular application requirements. However, in wireless networks, only China (out of 184) satisfies the delay requirement for more delay-sensitive in-car applications such as AR, VR, and emergency warning. Therefore, a complementary solution is required to ensure a smooth and safe driving experience.

Edge computing, which computes, stores, and transmits data closer to end-users and their devices, can minimize user-experienced latency relative to cloud offloading. Satyanarayanan et al. \cite{164} identified in 2009 that installing cloud-like infrastructures just one wireless hop away from mobile devices, i.e., so-called cloudlets, may revolutionize the game, as demonstrated by several subsequent efforts. Specifically, Chene ineff. et al. \cite{24} examined the latency performance of edge computing by conducting practical tests on various applications. They demonstrated that LTE cloudlets might deliver considerable benefits (60 percent reduced latency) over cloud offloading by default. Similarly, Haemph et al. \cite{58} discovered through measurements that edge computing may cut service latency by at least 80 ms on average compared to the cloud, which is crucial for real-time in-car applications.

Multi-access edge computing (MEC) is anticipated to enhance the vehicular user experience by delivering standard and universal edge offloading services one hop away from connected vehicles, such as danger prediction, as 5G and 6G evolve. MEC, as proposed by the European Telecommunications Standards Institute (ETSI), is a telecommunication-vendor-centric edge cloud model in which the deployment, operation, and maintenance of edge servers are handled by an ISP operating in the area and typically co-located or one hop away from the base stations \cite{130}. It not only decreases the round-trip time (RTT) of packet delivery \cite{232}, but it also enables near-real-time orchestration for V2X interactions \cite{210}, \cite{235}. MEC is important for connected vehicular services to understand the specific local context and coordinate close cooperation between adjacent vehicles. 5G MEC servers, for instance, may manage the AR content of adjacent vehicles with a single hop of packet transfer and enable real-time cooperative AR vision. Figure 13 depicts an illustration of a MEC solution for connected vehicular vision offered by EAVVE \cite{230}. Another similar solution is CAD3 \cite{6}, which integrates Apache Kafka and Spark in the RSUs to process vehicle
AR RecSys
Spatial audio
Volumetric Streaming
ARHUD
ADAS
Emotional Avatar Assistant

Figure 14: Intra-Vehicle Metaverse services can provide users in the vehicle with immersive experience during commute. For instance, ARHUD can provide AR-based recommendation system for POI discovery and augmented information for driving assistance. Volumetric streaming allows the users enjoy volumetric videos in the car. Spatial audio and emotional AI can improve the understanding and feedback of OBU assistant for more user friendly service experience.

data and detect any deviation from normal driving speed in real-time (i.e., end-to-end latency <50 ms) as depicted in Fig [13b]. Using AR and the location information of the vehicle, being unsafely driven, these warnings can be augmented to the vehicle’s windshield.

V. IV-METAVESRE

Besides operating the Vetaverse as a giant TS-Metaverse as described Section IV, each individual vehicle can become a small metaverse space that hosts exciting immersive services to the users inside. In this section, we present two promising services that most likely will be employed and already generate research interests, i.e., AR-RecSys and Volumetric streaming.

A. AR-RecSys

The recommendation system (RecSys) is a vital service in the IV-Metaverse, primarily used to improve the driver’s and passengers’ commute experience. At present, some companies have started exploring its potential, such as BMW, Porsche, Audi, NIO, and AutoNavi map. Rich vehicle terminals and massive driving data can provide long-lasting power for the development of onboard RecSys.

Adomavicius et al. [2] have sorted out the modes of several traditional RecSys. Onboard RecSys is a new variant which combines content-based and context-aware methods, preferably augmented by knowledge-based techniques. For example, Burke et al. [14] used some domain knowledge about restaurants, cuisines, and foods to recommend restaurants to users. Sun et al. [183] proposed a hierarchical context model for information definition and classification in a smart car. The recommendation of restaurants and points-of-interest (POI) is important for the onboard RecSys. Some works [59], [127], [146], [180], [201] proposed mobile recommendation systems suitable for onboard RecSys, based on features like location, time, preference, and user profiles.

For ITS, [8], [117], [163], [209] proposed a variety of solutions based on location-based social networks (LBSNs) methods for route and parking recommendation. For instance, [117] developed a novel route RecSys to provide self-driving tourists with real-time personalized route recommendations to reduce traffic jams and queuing time in hot spots. Sarker et al. [163] designed and implemented a multi-preference routing system VRT to recommend the optimal route with low energy consumption. Wu et al. [209] designed an agile urban parking recommendation service to facilitate city citizens with fully efficient, real-time, and precise parking lot guiding suggestions. [8] provided next destination prediction as well as a onboard RecSys based on riders’ personalized information. Figure 15 shows the general process of the onboard RecSys in the smart city commuting scenario.

XR can greatly improve onboard RecSys with richer and personalized vehicle-human interaction. A key player in this direction is multimodal information fusion. UMPR [217] is a deep multimodal preferences-based recommendation method which captures the textual and visual matching of users and items for recommendation. In IV-Metaverse, the multimodal
Figure 15: The general process of onboard RecSys. Three stages, (i) GPS data collection stage, data can be stored locally or uploaded to the cloud (ii) model training and calculation stage, (iii) result output stage, used to filter and display onboard recommended results.

information gathered via V2V communications can provide the system with richer background and better performance. Nissan proposed Omni-Sensing technology, which uses a virtual hub to gather real-time data from the vehicle’s surroundings and interior, such as road status, visibility, signage, nearby cars and pedestrians, the driver’s level of alertness, and facial expressions, and body tracking for virtual avatar or Virtual Personal Assistant (VPA) interaction.

B. Volumetric Streaming

In recent years, video streaming services have become an irreplaceable part of in-vehicle infotainment services. This forces network operators and service providers to ensure a certain quality of experience (QoE) for video streaming. However, the dynamic mobility of the vehicles leads to unstable connectivity and poses variable network conditions. Therefore, adaptive video streaming is essential to deliver a high-quality experience. Many studies have been conducted to ensure satisfactory QoE in the presence of such conditions. Nebula [5] protects against visual distortion resulting from packet loss and ensures low end-to-end latency to guarantee QoE. The works [38], [52], [78], [110], [173], [196] enhance the QoE in single-cell or multi-cell network scenarios via power control and resource allocation, while [16], [17], [49], [86], [87] satisfy the QoE using network slicing in vehicular networks.

Abovementioned solutions target traditional video streaming without considering the provision of an immersive experience. Volumetric streaming offers an immersive viewing experience with six degrees of freedom, i.e., 6 DoF, including the position (X, Y, Z) and the orientation (yaw, pitch, roll) of the viewer. Owing to its high encoding/decoding complexity, high video bitrate, and low latency requirement, the transmission of volumetric video remains a challenging problem. Van der Hooft et al. [191] propose PCC-DASH, a standards-compliant means for HTTP adaptive streaming of scenes, comprising multiple, dynamic point cloud objects. They present several rate adaptation heuristics using users’ position and focus, the available bandwidth, and the client’s buffer status to decide upon the most appropriate quality representation of each object. ViVo [61] performs the first comprehensive study of mobile volumetric video streaming. To reduce bandwidth consumption, ViVo determines the video content to fetch based on how, what, and where the viewer is perceiving it. This solution can save on average 40% of data usage with virtually no drop in visual quality according to their evaluations. PCC-DASH and ViVo adapt the video bitrate using heuristic algorithms. FRAS [48] proposes the first federated reinforcement learning framework for adaptive point cloud video streaming based on a variety of features, including the network conditions, the viewer’s focus and position, playback buffer state, and the device computing capability etc. FRAS enables joint training using multiple participants and preserves privacy while enhancing the training performance. Figure 16 illustrates the framework of adaptive volumetric video streaming in vehicular networks.

In addition to the traditional adaptive bitrate (ABR) algorithms, there are numerous techniques to optimize vehicular volumetric video streaming. For instance, Anlan Zhang, et al. [225] propose to leverage 3D super-resolution (SR) to drastically increase the visual quality of volumetric video streaming. Lee et al. [103] enhance the viewer’s QoE by optimizing the transmission formats and codec methods of the volumetric video. Yakun Huang, et al. [74] propose ATTransfer, an AI-powered bandwidth-aware and adaptive transmission technique driven by extracting and transferring key point cloud features to reduce bandwidth consumption and alleviate computational pressure.

C. Virtual Companion

An emotional avatar is essentially a digital representation through VR methods, which can adaptively adjust itself to the appropriate appearance according to the user’s emotional situation. In more detail, an emotion avatar expresses corresponding emotions based on the user’s emotion recognition to alleviate the user’s negative emotions. Emotion avatars have already been applied in some areas. FaceSay [70] improves children’s social skills with interactive, realistic emotion avatar assistants. [82] proposed a robotic system as an emotional avatar which
detects the user’s emotions and enacts them to extend users’ methods of communication with motor disabilities.

Figure 17 shows how the emotional avatar framework works in IV-Metaverse. Introducing emotional avatars can potentially improve the user’s emotional experience and driving safety.

1) Spatial Audio for ADAS: Back in 2002, Holland et al. proposed AudioGPS, the first spatial audio-based global positioning system (GPS) with a user interface. This was intended to allow a mobile computer to perform location tasks when the user’s attention is otherwise engaged. Audio-GPS accepts the audio signal and converts it into a binaural signal that the user listens to through headphones. The system then provides an audio representation of the direction and distance to the destination for navigation. In 2016, Albrecht et al. creatively integrated the enjoyment of music with navigation services. They use spatial audio for navigation by way of route guides and beacon guides. Drivers can drive to their destination according to the directions indicated by the music. In 2018, Heller et al. proposed NavigaTone, a system that utilizes multichannel recording and provides directional navigation by moving individual tracks in auditory space. The driver can position the sound source as if using stereo panning, while the listening experience is closer to that of regular music listening.

In 2019, Kari et al. applied the idea of procedural game music to car drivers using a system called Soundsride. It is an onboard audio AR system that synchronizes music with the environment in real time. In the system, high-contrast events in music are aligned with high-contrast events in the environment as the vehicle enters or exits a sound affordance. It also uses recursive filtering algorithms to keep the temporal availability distance up to date and change the audio signal in real time. The results prove that Soundsride can create a great music experience and positively impact subjective driving safety. In 2021, Dupre et al. achieved the synthesis of spatial audio and the integration of ambient sounds in the vehicle cockpit by adjusting timbre and spatial parameters. They did this by combining simultaneous 3D sound field measurements with 3D video recording in the seat view, allowing the driver to actually control the sound source from inside the vehicle and to be spatially aware of the overall vehicle design soundscape. This approach creates a suitable and pleasant soundscape inside the vehicle to ensure the user’s comfort and safety.

A. Safety

A user’s awareness and understanding can be improved by the rich information provided in XR. However, if the interface and information delivery are poorly designed, it may potentially draw the driver’s attention and present a threat. Therefore, it is essential to carefully design the onboard XR interfaces that run the danger of causing distractions and carry out exhaustive user research and road tests. For instance, when displaying too much or in the incorrect places, ARHUD, which overlays augmented reality information on the real world, can easily obstruct a driver’s perspective. Data filtering and user-friendly display are therefore essential. When users look at the emotional avatar on the central control panel, which is where we envision it being rendered to intimately engage with the drivers and passengers, it may lead to the driver’s head movements, which severely impact the driving safety. Therefore, spatial audio facilitated techniques are important to help the driver avoid frequent head movements.

C. Human-centered Trustworthiness

Rapidly developing technologies are getting more and more potent, raising questions about their reliability from a human perspective. Both XR and AI are expanding quickly and finding more use in people’s daily lives. Therefore, it is essential to guarantee that both their basic operating processes and the services they provide are reliable. Prior to now, the reliability and robustness of systems and algorithms was more of a priority in relation to the primary and original aim of the design. As suggested by numerous AI ethics guidelines

VI. Challenges and Open Research Directions

The development and deployment of Vetaverse on large scale faces many challenges regarding resource and operation efficiency, timely data delivery, privacy and security, safety and well-being, etc. Here we discuss three challenges in detail.

A. High Capacity Communication

Vetaverse requires high bandwidth and low latency communication to deliver audio-video services in real-time for an immersive experience (e.g., 360° VR video delivery). It is anticipated that current communication systems (LTE and 5G) will fail to satisfy these requirements. While mobile edge computing (MEC) is a crucial component for the computation offloading of users’ heavy tasks to satisfy low-latency demands, the bandwidth offered by the 4G and 5G networks could be incapable of meeting Vetaverse demand. The sixth generation (6G) networks are envisioned to enable Vetaverse by providing the end users with high-capacity communications to the MEC servers. Future work can study the utilization of 6G networks to cover a variety of deployment use cases and applications of Vetaverse. This would involve investigating emerging 6G technologies such as visible light communication (VLC) and Terahertz (THz) wireless communication, intelligent reflecting surfaces (IRS), and non-orthogonal multiple access (NOMA). This would also involve studying deployment use cases to cope with data traffic congestion.

B. Safety

A user’s awareness and understanding can be improved by the rich information provided in XR. However, if the interface and information delivery are poorly designed, it may potentially draw the driver’s attention and present a threat. Therefore, it is essential to carefully design the onboard XR interfaces that run the danger of causing distractions and carry out exhaustive user research and road tests. For instance, when displaying too much or in the incorrect places, ARHUD, which overlays augmented reality information on the real world, can easily obstruct a driver’s perspective. Data filtering and user-friendly display are therefore essential. When users look at the emotional avatar on the central control panel, which is where we envision it being rendered to intimately engage with the drivers and passengers, it may lead to the driver’s head movements, which severely impact the driving safety. Therefore, spatial audio facilitated techniques are important to help the driver avoid frequent head movements.

C. Human-centered Trustworthiness

Rapidly developing technologies are getting more and more potent, raising questions about their reliability from a human perspective. Both XR and AI are expanding quickly and finding more use in people’s daily lives. Therefore, it is essential to guarantee that both their basic operating processes and the services they provide are reliable. Prior to now, the reliability and robustness of systems and algorithms was more of a priority in relation to the primary and original aim of the design. As suggested by numerous AI ethics guidelines
around the world [65], [68], the emphasis is now turning to human-centered considerations, such as fairness, privacy, explainability, and well-being among others. Both Vetaverse and Metaverse are struggling with difficulties of trustworthiness issues, because users are more likely to become confused in the immersive blended virtual-reality world. Therefore, the primary requirements and challenges are to ensure that the immersive services are benign, reliable, and trustworthy.

VII. CONCLUSION

In this paper, we define the anticipated Vetaverse, which is the meeting point of the Metaverse with the world of cars and transportation. We suggest the taxonomy and thoroughly outline the major enablers. We divide the Vetaverse into two subcategories—IV-Metaverse and TS-Metaverse—and outline a number of potential immersive, futuristic services they might offer. We also go through some of the most important unsolved problems for interested scholars.

REFERENCES

[1] A. Acquisti, R. Gross, and F. D. Stutzman. Face recognition and privacy in the age of augmented reality. Journal of Privacy and Confidentiality, 6(2):1, 2014.
[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6):734–749, 2005.
[3] A. Alalewi, I. Dayoub, and S. Cherkaoui. On 5G-v2x use cases and enabling technologies: A comprehensive survey. IEEE Access, 9:107513–107537, 2021.
[4] R. Albrecht, R. Väänänen, and T. Lokki. Guided by music: pedestrian and cyclist navigation with route and beacon guidance. Personal and Ubiquitous Computing, 20(1), 2016.
[5] A. Alhilal, T. Braud, B. Han, and P. Hui. Nebula: Reliable low-latency video transmission for mobile cloud gaming. In Proceedings of the ACM Web Conference 2022, WWW ’22, page 3407–3417. ACM, 2022.
[6] A. Alhilal, T. Braud, X. Si, L. A. Asadi, and P. Hui. Cad3: Edge-facilitated real-time collaborative abnormal driving distributed detection. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), 2021.
[7] A. Alhilal, B. Finley, T. Braud, D. Su, and P. Hui. Street smart in 5G: Vehicular applications, communication, and computing. IEEE Access, 1–1, 2022.
[8] T. Anagnostopoulos. A predictive vehicle ride sharing recommendation system for smart cities commuting. Smart Cities, 4(1):177–191, 2021.
[9] S. Aoki, T. Higuchi, and O. Altintas. Cooperative perception with deep reinforcement learning for connected vehicles. In 2020 IEEE Intelligent Vehicles Symposium (IV), pages 328–334. IEEE.
[10] Z. H. Arif, M. A. Mahmoud, K. H. Abdulkareem, M. A. Mohammed, M. N. Al-Mhiqani, A. A. Mutilag, and R. Damaševičius. Comprehensive review of machine learning (ml) in image defogging: taxonomy of concepts, scenes, feature extraction, and classification techniques. IET Image Processing, 16(2):289–310, 2020.
[11] S. V. Balkus, H. Wang, B. D. Cornet, C. Mahabal, H. Ngo, and H. Feng. A survey of collaborative machine learning using 5G vehicular communications. IEEE Communications Surveys & Tutorials, 24(2):1280–1303, 2022.
[12] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. SemanticKittie: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9297–9307, 2019.
[13] J. Biswas and M. Veloso. Depth camera based indoor mobile robot localization and navigation. In 2012 IEEE International Conference on Robotics and Automation, pages 1697–1702. IEEE, 2012.
[14] R. Burke. Knowledge-based recommender systems. Encyclopedia of library and information systems, 69(Supplement 32):175–186, 2000.
[15] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32(6):1309–1332, 2016.
[16] C. Campolo, A. Molinaro, A. Iera, R. R. Fontes, and C. E. Rothenberg. Towards 5G network slicing for the v2x ecosystem. In 2018 4th IEEE conference on network softwarization and workshops (NetSoft), pages 400–405. IEEE, 2018.
[17] C. Campolo, A. Molinaro, A. Iera, and F. Menichella. 5G network slicing for vehiculo-everything services. IEEE Wireless Communications, 24(6):38–45, 2017.
[18] Z. Cao, G. Hidalgo Martínez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
[19] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d pose estimation using part affinity fields. In CVPR, 2017.
[20] L. Chang, Z. Zhang, P. Li, S. Xi, W. Guo, Y. Shen, Z. Xiong, J. Kang, N. Niyato, X. Qiao, et al. 6g-enabled edge ai for metaverse: Challenges, methods, and future research directions. arXiv preprint arXiv:2204.06192, 2022.
[21] L. Chen, W. Tang, N. W. John, T. R. Wan, and J. J. Zhang. Context-aware mixed reality: A learning-based framework for semantic-level interaction. In Computer Graphics Forum, volume 39, pages 484–496. Wiley Online Library, 2020.
[22] X. Chen, E. Kang, S. Shiraishi, V. M. Preciado, and Z. Jiang. Digital behavioral twins for safe connected cars. In Proceedings of the 21th ACM/IEEE International Conference on Mobile Driven Engineering Languages and Systems, pages 144–153, 2018.
[23] Y. Chen, M. Xue, J. Zhang, R. Ou, Q. Zhang, and P. Kuang. Detectdui: An in-car detection system for drink driving and bac. IEEE/ACM Transactions on Networking, 30:896–910, 2022.
[24] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar, P. Pillai, R. Klatzky, D. Siewiorek, and M. Satyanarayan. An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, SEC ’17. ACM, 2017.
[25] Y. Cheng, B. Yang, B. Wang, W. Yan, and R. T. Tan. Occlusion-aware networks for 3d human pose estimation in video. In Proceedings of the IEEE/CVF international conference on computer vision, pages 723–732, 2019.
[26] C. Cretl, Z. Bing, and A. C. Knoll. Intelligent transportation systems and enabling technologies: A comprehensive survey. IEEE Access, 6(2):1, 2014.
[27] R. Dunček, M. J. Black, and T. Bolkart. Emoca: Emotion driven monocular face capture and animation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20311–20322, 2022.
[28] Q. Dong, J. Yin, B. Wang, and W. Zheng. Deep learning based 2d human pose estimation: A Survey. Tsinghua Science and Technology, 24(6):663–676, 2019.
[29] J. Dean and L. A. Barroso. The tail at scale. Communications of the ACM, 56:74–80, 2013.
[30] J. Del Aguila, L. M. González-Gualda, M. A. Jávita, P. Fernández-Sotos, A. Fernández-Caballero, and A. S. García. How interpersonal distance between avatar and human influences facial affect recognition in immersive virtual reality. Frontiers in Psychology, 12, 2021.
[31] J. Deng and F. Ren. A survey of textual emotion recognition and its challenges. IEEE Transactions on Affective Computing, 2021.
[32] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams, et al. Recent advances in deep learning for speech research at microsoft. In 2013 IEEE international conference on acoustics, speech and signal processing, pages 8604–8608. IEEE, 2013.
[33] M. Dhuheir, A. Albaseer, E. Baccour, A. Erbad, M. Abdallah, and M. Hamdi. Emotion recognition for healthcare surveillance systems using neural networks: A Survey. In 2021 International Wireless Communications and Mobile Computing (IWCMC), pages 681–687. IEEE, 2021.
[34] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1–16, 2017.
[35] T. Dupré, S. Denjean, M. Aramaki, and R. Kronland-Martinet. Spatial Sound Design in a Car Cockpit: Challenges and Perspectives. In 2017 Proceedings of the 1st ACM/CNRHAC Workshop on Affective Computing in Immersive Virtual Reality, pages 063–068. IEEE, 2019.
[36] F. El Jamii and R. Marsh. Distance estimation in virtual reality and augmented reality. In Proceedings of the 2019 IEEE International Conference on Electro Information Technology (EIT), pages 063–068. IEEE, 2019.
[37] Y. El Miedany. Virtual reality and augmented reality. In Rheumatology Teaching, pages 403–427. Springer, 2019.
[174] M. Siam, S. Elkerdawy, M. Jagersand, and S. Yogamani. Deep semantic segmentation for automated driving: Taxonomy, roadmap and challenges. In 2017 IEEE 20th international conference on intelligent transportation systems (ITSC). IEEE, 2017.

[175] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, and M. Jagersand. Rtsseg: Real-time semantic segmentation comparative study. In 2018 23rd IEEE International Conference on Image Processing (ICIP), pages 1603–1607. IEEE, 2018.

[176] T. Simon, H. Joo, J. Matthews, and Y. Sheikh. Hand keypoint detection in single images using multiview bootstrapping. In CVPR, 2017.

[177] A. Siyaev and G. Jo. Neuro-symbolic speech understanding in aircraft maintenance metaverse. IEEE Access, 9:154484–154499, 2021.

[178] A. Siyaev and G.-S. Jo. Towards aircraft maintenance metaverse using speech interactions with virtual objects in mixed reality. Sensors, 21(6):2066, 2021.

[179] R. So, N. Leung, J. Braasch, and K. Leung. A low cost, non-individualized surround sound system based upon head related transfer functions: An ergonomics study and prototype development. Applied ergonomics, 37(6):695–707, 2006.

[180] Z. B. Sojahrood and M. Taleai. A poi group recommendation method in location-based social networks based on user influence. Expert Systems with Applications, 171:114593, 2021.

[181] S. Spagnol, G. Wersényi, M. Bujacq, O. Bálan, M. Herrera Martínez, A. Moldoveanu, and R. Unnthorsson. Current use and future perspectives of spatial audio technologies in electronic travel aids. Wireless Communications and Mobile Computing, 2018.

[182] B. Subramanian, J. Kim, M. Maray, and A. Paul. Digital twin model: A real-time emotion recognition system for personalized healthcare. IEEE Access, 10:81155–81165, 2022.

[183] J. Sun, Z.-h. Wu, and G. Pan. Context-aware smart car: from model to prototype. Journal of Zhejiang University-Science A, 10(7):1049–1059, 2009.

[184] L. Tan, K. Yu, L. Lin, X. Cheng, G. Srivastava, J. C.-W. Lin, and W. Wei. Speech emotion recognition enhanced traffic efficiency solution for autonomous vehicles in a 5g-enabled space-air-ground integrated intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 23(3):2830–2842, 2021.

[185] F. Tang, B. Mao, N. Kato, and G. Gui. Comprehensive survey on machine learning in vehicular network: technology, applications and challenges. IEEE Communications Surveys & Tutorials, 2021.

[186] L. Tanzi, P. Piazzolla, F. Porpiglia, and E. Vezzetti. Real-time deep learning semantic segmentation during intra-operative surgery for 3d augmented reality assistance. International Journal of Computer Assisted Radiology and Surgery, pages 1–11, 2021.

[187] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui. Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9):3563–3576, 2018.

[188] F. Tao, W. Liu, M. Zhang, T. Hu, Q. Qi, H. Zhang, F. Sui, T. Wang, H. Xu, Z. Huang, et al. Five-dimension digital twin model and its ten applications. Computer integrated manufacturing systems, 25(1):1–18, 2019.

[189] L. Thandavarayan, M. Sepulcre, and J. Gozalvez. Analysis of message transactions in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 37(6):695–707, 2018.

[190] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, and M. Jagersand. Gridding residual network for dense point cloud completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 608–619, 2021.

[191] L. Wang, K. Yuan, and K.-J. Yoon. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[192] N. Wang, S. Gong, Z. Fei, and J. Kuang. A qoe-based jointly subcarrier and power allocation for multiuser multiservice networks. Science China Information Sciences, 59(12):1–13, 2016.

[193] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, and R. W. Lau. Spatial attentive single-image deraining with a high quality real rain dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12720–12729, 2019.

[194] X. Wang, S. Mao, and M. X. Gong. An overview of 3gpp cellular vehicle-to-everything standards. GetMobile: Mobile Comp. and Comm., 21(3):19–25, nov 2017.

[195] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen. A survey on metaverse: Fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials, 2022.

[196] Z. Wang, K. Han, and P. Tsividis. Augmented reality-based advanced driver-assistance system for connected vehicles. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 752–759, 2020.

[197] Z. Wang, J. Liu, S. Shen, and M. Li. Restaurant recommendation in vehicle context based on prediction of traffic conditions. International Journal of Pattern Recognition and Artificial Intelligence, 35(10):2159044, 2021.

[198] Z. Wang, H. Wang, H. Yu, and F. Lu. Interaction with gaze, gesture, and speech in a flexibly configurable augmented reality system. IEEE Trans. Hum. Mach. Syst., 51(5):524–534, 2021.

[199] S.-E. Wei, Y. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. In CVPR, 2016.

[200] B.-K. Wiederhold and M. D. Wiederhold. A review of virtual reality as a psychotherapeutic tool. Cyberpsychology Behav. Soc. Netw., 14:55, 1998.

[201] J. G. W. Wildenbeest, D. A. Abbink, C. J. M. Heemskerk, F. C. T. Van Der Helm, and H. Boessenkool. The impact of haptic feedback quality on the performance of teleoperated assembly tasks. IEEE Transactions on Haptics, 6(2):242–252, 2013.

[202] P. Willemsen, M. B. Colton, S. H. Creem-Regehr, and W. B. Thompson. The effects of head-mounted display mechanics on distance judgments in virtual environments. In Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pages 35–38, 2004.

[203] A. S. Williams, J. Garcia, and F. Ortega. Errata to “understanding multimodal user gesture and speech behavior for object manipulation in augmented reality using elicitation”. IEEE Trans. Vis. Comput. Graph., 28(7):2808, 2022.

[204] K. J. Williams, J. C. Peters, and C. L. Breazeal. Towards leveraging the driver’s mobile device for an intelligent, sociable in-car robotic assistant. In 2013 IEEE intelligent vehicles symposium (IV), pages 369–376. IEEE, 2013.

[205] E. H.-K. Wu, J. Sahoo, C.-Y. Liu, M.-H. Jin, and S.-H. Lin. Agile urban parking recommendation service for intelligent vehicular guiding system. IEEE Intelligent Transportation Systems Magazine, 6(1):35–49, 2014.

[206] J. Wu, J. Wang, Q. Chen, Z. Yuan, P. Zhou, X. Wang, and C. Fu. Resource allocation for delay-sensitive vehicle-to-multi-edges (v2es) communications in vehicular networks: A multi-agent deep reinforcement learning approach. IEEE Transactions on Network Science and Engineering, 8(2):1873–1886, 2021.

[207] S. Wu, Z. Du, W. Li, D. Huang, and Y. Wang. Continuous emotion recognition in videos by fusing facial expression, head pose and eye gaze. In 2019 International Conference on Multimodal Interaction, pages 40–48, 2019.

[208] K. Xia, C. Sacco, M. Kirkpatrick, C. Saidy, L. Nguyen, A. Kircaliali, and R. Harik. A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence. Journal of Manufacturing Systems, 58:210–230, 2021.

[209] Y. Xiang, W. Choi, Y. Lin, and S. Savarese. Data-driven 3d voxel patterns for object category recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1903–1911, 2015.

[210] H. Xiao, C. Xu, Z. Feng, R. Ding, S. Yang, L. Zhong, J. Liang, and G.-M. Muntean. A transcoding-enabled 360° vr video caching and delivery framework for edge-enhanced next-generation wireless networks. IEEE Journal on Selected Areas in Communications, 40(5):1615–1631, 2022.

[211] H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun. Gnet: Gridding residual network for dense point cloud completion. In European Conference on Computer Vision, pages 365–381. Springer, 2020.

[212] Y. Xin, J. Li, H. Wang, Y. Fang, and C. Lu. Pose Flow: Efficient online pose tracking. In BMVC, 2018.
[217] C. Xu, Z. Guan, W. Zhao, Q. Wu, M. Yan, L. Chen, and Q. Miao. Recommendation by users’ multimodal preferences for smart city applications. *IEEE Transactions on Industrial Informatics*, 17(6):4197–4205, 2021.

[218] H. Yang, J. Shi, and L. Carlone. Teaser: Fast and certifiable point cloud registration. *IEEE Transactions on Robotics*, 37(2):314–333, 2020.

[219] M.-D. Yang, C.-F. Chao, K.-S. Huang, L.-Y. Lu, and Y.-P. Chen. Image-based 3d scene reconstruction and exploration in augmented reality. *Automation in Construction*, 33:48–60, 2013.

[220] Q. Yang, Y. Zhao, H. Huang, Z. Xiong, J. Kang, and Z. Zheng. Fusing blockchain and ai with metaverse: A survey. *IEEE Open Journal of the Computer Society*, 3:122–136, 2022.

[221] S.-N. Yao. Headphone-based immersive audio for virtual reality headsets. *IEEE Transactions on Consumer Electronics*, 63(3), 2017.

[222] F. Zeng, W. Zeng, and Y. Gan. Orb-slam2 with 6dof motion. In *2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)*, pages 556–559. IEEE, 2018.

[223] J. Zeng, G. Cheung, M. Ng, J. Pang, and C. Yang. 3d point cloud denoising using graph laplacian regularization of a low dimensional manifold model. *IEEE Transactions on Image Processing*, 29:3474–3489, 2019.

[224] S. Zepf, J. Hernandez, A. Schmitt, W. Minker, and R. W. Picard. Driver emotion recognition for intelligent vehicles: A survey. *ACM Computing Surveys (CSUR)*, 53(3):1–30, 2020.

[225] A. Zhang, C. Wang, B. Han, and F. Qian. {YuZu}: {Neural-Enhanced} volumetric video streaming. In *19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22)*, pages 137–154, 2022.

[226] D. Zhang, X. Lu, H. Qin, and Y. He. Pointfilter: Point cloud filtering via encoder-decoder modeling. *IEEE Transactions on Visualization and Computer Graphics*, 27(3):2015–2027, 2020.

[227] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. Icnet for real-time semantic segmentation on high-resolution images. In *Proceedings of the European conference on computer vision (ECCV)*, pages 405–420, 2018.

[228] M. Zhao, F. Adib, and D. Katabi. Emotion recognition using wireless signals. In *Proceedings of the 22nd annual international conference on mobile computing and networking*, pages 95–108, 2016.

[229] P. Zhou, T. Braud, A. Afihilal, P. Hui, and J. Kangasharju. Erl: Edge based reinforcement learning for optimized urban traffic light control. In *2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)*, pages 849–854. IEEE, 2019.

[230] P. Zhou, T. Braud, A. Zavodovski, Z. Liu, X. Chen, P. Hui, and J. Kangasharju. Edge-facilitated augmented vision in vehicle-to-everything networks. *IEEE Transactions on Vehicular Technology*, 69(10):12187–12201, 2020.

[231] P. Zhou, X. Chen, Z. Liu, T. Braud, P. Hui, and J. Kangasharju. Drle: Decentralized reinforcement learning at the edge for traffic light control in the iov. *IEEE Transactions on Intelligent Transportation Systems*, 22(4):2262–2273, 2020.

[232] P. Zhou, B. Finley, X. Li, S. Tarkoma, J. Kangasharju, M. Ammar, and P. Hui. 5g mec computation handoff for mobile augmented reality. *arXiv preprint arXiv:2101.00256*, 2021.

[233] P. Zhou, P. Kortoczi, Y.-P. Yau, B. Finley, X. Wang, T. Braud, L.-H. Lee, S. Tarkoma, J. Kangasharju, and P. Hui. Aiicp: Augmented informative cooperative perception. *IEEE Transactions on Intelligent Transportation Systems*, 2022.

[234] P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju. Arve: Augmented reality applications in vehicle to edge networks. In *Proceedings of the 2018 Workshop on Mobile Edge Communications*, pages 25–30, 2018.

[235] P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju. Enhanced augmented reality applications in vehicle-to-edge networks. In *2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)*, pages 167–174. IEEE, 2019.

[236] J. Ziegler, P. Bender, M. Schreiber, H. Latagahn, T. Strauß, C. Stiller, T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrmann, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler, C. Knöppel, J. Hipp, M. Haueis, M. Trepte, C. Breik, A. Tamke, M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and E. Zeeb. Making bertha drive—an autonomous journey on a historic route. *IEEE Intelligent Transportation Systems Magazine*, 6:8–20, 2014.

[237] P. Zimmermann. Virtual reality aided design. a survey of the use of vr in automotive industry. In *Product engineering*, pages 277–296. Springer, 2008.