In silico validation of the indigenous knowledge of the herbal medicines among tribal communities in Sathyamangalam wildlife sanctuary, India

Pavithra Chinnasamy, Rajendran Arumugam*, Sarvalingam Ariyan

Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India

ARTICLE INFO

Article history:
Received 6 February 2017
Received in revised form 11 September 2017
Accepted 10 January 2018
Available online 3 May 2018

Keywords:
Ailments
Documentation
In silico
Quantitative indices
Traditional knowledge

ABSTRACT

The ethno-botanical documentation among ethnic people in Sathyamangalam wildlife sanctuary, Tamil Nadu, India has been investigated for the first time. A total of 61 medicinal plants having new combination uses were reported with adjuvant in the treatment of dermatological, Genitourinary and gastrointestinal ailments. This study could help in the recovery and conservation of traditional medicine system among educated generation. The present study was aimed to: (1) documentation of the traditional knowledge (2) quantitative analysis using Use value (UV), Informant consensus factor (ICF), Index of agreement on remedies (IAR), Relative frequency citation (RFC) and Cultural Importance index (CII) (3) validation of ethno-botanical data using in silico biological activity and toxicity prediction studies. Semi-structured direct interviews were conducted to acquire information from the study area tribes. Total of 89 tribes including both gender among various communities were interviewed and their ethno-botanical knowledge was documented. The data were assessed using ethno-botanical indices methods to estimate the consistency of usage herbal knowledge in various ailments. A total of 61 species were recorded for treatment of categorized ailments. The collected medicinal information from ethnic groups shows remarkable new usage of medicinal plants to particular ailments. Our comparative in silico studies also supported the traditional medicine results with correspondence to their bioactive. Traditional knowledge of ethnic people also linked to their culture and history. This study also infers the usage of traditional plant based medicine. Further research related to the bioactivities of reported plants should be encouraged to explore the importance in pharmaceutical industry.

1. Introduction

Indigenous knowledge is the neighbourhood information acquired by indigenous groups that is exceptional to an ethnic society. The scientific investigation and documentation of indigenous knowledge of plant resources are vital strategy to understand traditional life style of local ethnic people. The traditional herbal formulations from indigenous knowledge were considered as the oldest and greatest health care system. It includes plant species as regular medicine sources and still is an important system of healthcare in India. Common plants with adverse effects are being a part of our daily life and their toxic metabolites are closely related in the aspect of human’s health condition. Traditional people are using poisonous plants either processed or as raw form over a period of time for treating diseases.

The increasing interest in ethno-botanical studies also reveals their importance of traditional medicinal plants in various countries for local living holds and the important role these play in health care system. The impact of traditionally formulated medicines from various ancient systems in the communal health condition in India is considerably elevated and is closely associated with traditions. Various patented drugs and active compounds from various plant sources are also on the basis of ethno-botanical data.

The ethno-botanical data analyzed with quantitative indices is assumed to expose the usage and value of the medicinal plants.
from ethnic knowledge. These approaches measure the consent of the usage by various hypotheses and playing an important role in the further selection of biomedical analysis of a medicinal plant to treat particular ailment based on the survey results with excellent information.\(^9\) Now days, *In silico* studies are one of the main emerging studies with the ability to predict the drug-protein interaction which relates the mechanism of action of a bioactive compounds mainly from traditional medicinal plants.\(^9\)

So, there is an urgent requirement to document all ethnobotanical data as much as possible and the role of tribes in conserving them. Considering the importance of indigenous medicinal plant knowledge, this study aimed to identify potential medicinal plants and to evaluate *in silico* toxicological potential and biological activity of its major compounds responsible for medicinal activity.

2. Materials and methods

2.1. Study area tribal people

Sathyamangalam wildlife sanctuary located in the Nilgiri biosphere reserve covers about 1411.6 km\(^2\) (545.0 sq mi) forest area along the Western Ghats in Tamil Nadu, India (Fig. 1). This forest is mostly tropical dry forest and restricted to undersized high altitude hill tops between 750 and 1649 m above mean sea level and the slopes and plains are subjected to the average minimum and maximum temperatures of 21–27 °C with two persistent rivers namely Bhavani and Moyar. Uralis are the main ethnic group to this forest with some minor groups includes Soliga, Malayalee and Naicker communities.

2.2. Data collection

The field surveys were conducted between May 2015 and September 2016 in proposed study area and various ethnic community people were randomly interviewed after verbally requested about the purpose of the project in the local language. In this study, 89 informants including traditional herbalist and local people were interviewed and their knowledge on medicinal plants was gathered and documented mostly by Tamil and sometime the Urali language was translated to Tamil using local translator.

2.3. Botanical identification

The collected plants were identified with help of pertinent literature and also authenticated by comparing the species deposited in Madras Herbarium (Botanical Survey of India, Coimbatore). The processed specimens were mounted on herbarium sheets using standard procedures and were deposited for future reference at the Department Herbarium of Bharathiar University.

2.4. Ethno-medicinal data analysis

The recorded data were tabulated using Microsoft Excel and then analyzed with various ethno-botanical reports such as research and review articles, books, in scientific databases to find out the uses of unknown or well-known medicinal plants. The ethno-medicinal quantitative indices were used for interpreting this entire information.

Use reports were calculated by converting collected data with reference to the previous published articles related to quantitative ethno-botanical surveys. These use-reports about medicinal plants were then grouped into 14 ailments categories based on the collected ethno-botanical details from informants. These data were assessed with quantitative indices, such as Informant consensus factor, Fidelity level, Frequency citation and Use value, were calculated from the gathered information. The new medicinal uses from the study area are identified by comparing previous reports on the particular area and related regions of south India.

2.4.1. Informant consensus factor (ICF)

ICF was calculated to highlight the usage of the relevant plants among various informants for each ailments category. The ICF value was calculated by minus the total use citations in each category (Nur) with the total number of species used (nt), divided by the total number of use citations minus one as follows:

\[
ICF = \frac{(Nur - nt)}{(Nur - 1)}
\]

The ICF value of approach to 0 indicates that the informants randomly use the species in the treatment of various ailments, and a value of approach to 1 indicates that relatively usage of the species by a large population to a particular ailment.\(^10\)

2.4.2. Fidelity level (FL) and index of agreement on remedies (IAR)

The importance of each species in the treatment of particular illness group was determined by FL and IAR values. A high ratio indicates common use of the ideal plant species for treating specific ailment in the studied area.\(^11\) The fidelity level was calculated as follows:

\[
FL(\%) = \frac{(Np/N) \times 100}{100}
\]

The FL is the ratio of number of informants who suggesting the plant as medicine for a particular ailment category (Np) and total number of informants who suggesting the plant for any ailment category (N).

\[
IAR = \frac{(Nr - Na)}{(Nr - 1)}
\]

Where, Nr is the total number of citations registered for a particular species and Na is the number of illness categories that are treated with this species.

2.4.3. Frequency citation (FC) and relative frequency citation (RFC)

The relative expression of usage (FC) is calculated as follows:

\[
FC = \frac{\text{Number of times a particular species was mentioned}}{\text{total number of times that all species were mentioned}} \times 100
\]

The RFC value was obtained by dividing the FC by the total number of informants interviewed (N) and not based on used categories. When the RFC value will be approach to zero, it refers, nobody suggests the plants as useful, and when its approach to one, it refers that every informant would suggest as useful and the RFC was calculated as follows: \(^12\)

\[
RFC = \frac{FC}{N}
\]

2.4.4. Use value (UV) and Cultural importance index (CII)

The importance of each plant species among ethnic people was determined by UV and CII.\(^12\) Based on, the vast usage of a particular ethnically important medicinal plant species was identified using CII value. The use value of a species (UV) is the summation of the number of use reports for the specific plant species (U) and is divided by the total number of informants (N) interviewed. If the use value is high, it indicates the many use reports and important of the plant, and low value indicates the fewer use reports. These were calculated as follows:
Fig. 1. Study area.
UV = \sum \frac{UR}{N}

\text{CII} = \frac{\sum_{u=1}^{unc} \sum_{r=1}^{in} \frac{UR_i}{N}}{	ext{NC}}

Where NC is the total number of different illness categories for each species, UR is the total number of use citations for each species, and N is the number of informant’s interviewed. The ethno-botanical indices such as ICF, UV, RFC and FL could be used to determine the consent individual species in the treatment of an ailment category in a population.

2.5. In silico pharmacological activity and toxicity prediction

The present study employed online based computational bioactive screening (PASS) to obtain biological effects and relationship for compounds which are previously reported on plants major ethno-botanical uses in the study area.13 The details about the compounds including structure, SMILES and molecular formula were obtained from ACS Chemspider. Probable activity (Pa) and inactivity (Pi) percentages (ranges from 0.000 to 1.000) were used to express the prediction results. Thus, in this study the higher Pa value (>0.900) and lower Pi value indicates higher activity. The adsorption, distribution and toxicity of the listed compounds were predicted by using admetSAR online prediction tool.

3. Results

3.1. Demographical description and documentation of ethno-botanical data

The ethnic people population was found limited in the study area, 89 of informants including male (58) and female (31) of various different age groups (ranges from 31 to 80 years) including 6 herbalists age ranges between 40 and 60 years belonging to the local communities were interrogated (Table 1). The collected data was divided and tabulated according to the corresponding 55 biomedical symptoms into 14 major ailment categories (Tables 2 and 3) respectively to the local term used. When compared to all major ailments categories gastrointestinal ailments had reported with high number of citations (375 citations of 22 plants) which was followed by dermatological (333 citations of 19 plants) and gynecotaurinary ailments category (222 citations of 9 plants) respectively (Table 3). The gastrointestinal (36%) and dermatological ailment category (31%) (Fig. 2) were cited as most treating ailments in the survey. A total of 61 plants species and 54 genera distributed over 23 families with various beneficial effects cited in the present study, particularly 15% of Fabaceae and 10% of Rutaceae (Fig. 3). The usage of different parts of medicinal plant used in traditional medicine were calculated in percentage, among various parts used the leaf showed highest (51%), followed by seeds, fruit, stem and rhizome

Table 1
Demographic representation of informants by age group in Sathyamangalam wild-life sanctuary, India.

Age group of informants (In years)	Local people	Herbalists
	Male (58)	Female (31)
31–40	28	16
41–50	15	5
51–60	9	8
61–70	4	2
71–80	2	

Table 2
List of ailments category with its corresponding tamil terms used by the tribes in Sathyamangalam wildlife sanctuary, Tamil Nadu, India.

S. No	Ailment category and Biomedical terms	Tamil terms
1	Circulatory system ailments	Raththa soagai
	Anemia	Idhaya pirachanai
	Heart problem	Idhaya valimai
	Cardio tonic	Raththa perukki
2	Dermatological ailments	
	Burns	Theekkaayam
	Itch	Namachal
	Wounds	Kaam
	Rash	Sori
	Inflammation	Udaliertchal
	Skin disease	Tholnokal
	Mouth ulcer	Vaaiippun
	Leprosy	Tholunoi
	Skin lotion	Sarumanarunthu
	Bacterial and fungal diseases	Thotrunoi
3	Ear, nose, throat ailments	
	Gums ache	Eeralvali
	Earache	Kathu vali
4	Eye ailments	
	Eye diseases	Kannoikal
5	Endocrinal ailments	
	Diabetes	Sakkara/Neerilivunoi
6	Fever ailments	Kaachiyal
7	Gastrointestinal ailments	
	Dysentry	Vayitupoaakku
	Indigestion	Ajeeranam
	Vomiting	Vaandhi
	Stomach ache	Vayitruvali
	Stomach ulcer	Vayitrupun
	Abdominal pain	Adi Vayitruvali
	Digestion disorders	Jeeranam kolarugal
	Gas trouble	Vaaviruhandhavaru
	Intestinal disorders	Kudalkaorugal
	Diaphragm	Neepokku
8	Genitourinary ailments	
	Bladder infection	Siruneerpathothru
	Diuretic	Siruneerperukki
	Urinary disorders	Siruneerkoraarugal
	Kidney stone	Sinuere kailadappu
	Leucorhoea	Veilappadathal
	Venereal diseases	Paalvinainoikal
	Jaundice	Manjankaamalai
	Liver diseases	Kalleirainoikal
	Abortion	Karukaalaiyu
9	Hemorrhoids ailments	Moolam
10	Neurology ailments	Thalaivali
11	Oncology ailments	Katti
12	Poisonous bites ailments	Paambu kadi
	Snake bite	Thel kadi
13	Respiratory ailments	
	Asthma	Kaasa noi
	Cold	Sali
	Cough	Irimal
	Breathing problem	Mochu thinaral
	Small pox	Sitrammai
14	Skeletal muscular ailments	
	Edema	Neer veekkam
	Joint pain	Mootu vali
	Body pain	Udal vali
	Rheumatism/Gout	Keel vaadhnam
	Swelling	Veekam
	Muscle pain	Thasai pidippu
	Arthritis	Mootu vali
	Paralyze	Mudakkuvadm
Table 3
Results obtained from informants belongs to Sathyamangalam wild life sanctuary, Tamil Nadu, India.

S. No	Family/ Binomial name	Vernacular name	Parts Used	Method of preparation	Ailments treated	Administration route	Total number of citation	UV	IAR	FC (%)	
1	Annonaceae	Seetha maram	L	Juice	Diabetes (14)	O	44	0.49	0.98	49.44	0.56
2	Annona squamosa L.	F	Raw	Juice	Abortion (30)	T	20	0.22	1	22.47	0.25
3	Asteraceae	Vettamarunhuchi	L	Paste	Wound (20)	T	20	0.22	1	22.47	0.25
4	Spilanthes calva Wt.	L	Juice,	Paste,	Gums ache (7)	O	9	0.10	1	10.11	0.11
5	Tridax procumbens L.	L	Juice,	Paste,	Wound (9)	T	7	0.08	1	7.87	0.09
6	Eclipta prostrata (L.)	S, L, Wp	Decoction	Powder	Head ache (6)	T/O	28	0.31	0.93	31.46	0.35
7	Fabaceae	Kundumani	Se, L	Juice	Stomach ulcer (25)	O	71	0.80	0.96	79.78	0.90
8	Bauhinia divericata L.	Aathi	L	Extract	Fever (15)	I	24	0.27	0.96	26.97	0.30
9	Bauhinia tomentosa L.	B	Paste	Fumigation	Asthma (9)	O	21	0.24	1	23.60	0.27
10	Prosopis juliflora (Sw.) DC.	Vannimaram	L, B	Paste	Diahorrea (21)	O/T	16	0.18	1	17.98	0.20
11	Pongamia pinnata (L.) Pierre	Punagamaram	Fl	Dried	Abdominal pain (3)	O	23	0.26	0.91	25.84	0.29
12	Canavalia cathartica Thouars	Isaakottai	L	Juice	Snake bite (6)	O/T	14	0.18	1	17.98	0.20
13	Tephrosia purpurea (L.) Pers. Kolinjii	Agathimaram	R	Powder	Body pain (5)	O	9	0.10	1	10.11	0.11
14	Chitonia ternatae L.	L	Juice,	Powder	Fever (5)	T	9	0.10	1	10.11	0.11
15	Sesbania grandiflora (L.) Poir.	Agathamaram	L	Cooked	Indigestion (10)	O	35	0.39	1	39.33	0.44
16	Apocynaceae	Ezhakalari	B, R	Paste	Fever (15)	I	41	0.46	0.98	46.07	0.52
17	Bauhinia tomentosa L.	Aathi	L	Juice	Heart problem (5)	O	14	0.16	1	15.73	0.18
18	Bauhinia tomentosa L.	B	Paste	Juice	Itch (5)	T	18	0.20	1	20.22	0.23
19	Rutaceae	F, L, B	Raw	Juice	Fever (20)	O	57	0.64	0.95	64.04	0.72
20	Citrus aurantifolia (Christm.) Swingle	Elumicci	F	Juice	Blood tonic (8)	O	49	0.55	0.98	55.06	0.62
21	Citrus limon (L) Osbeck	Kicilippalam	L, F	Decoction	Indigestion (20)	O	33	0.37	1	37.08	0.42
22	Todalia asiatica Lamk.	Masihachedi	B	Paste	Paralyze (15)	O/T	15	0.17	1	16.85	0.19
23	Murraya paniculata (L.) Jack	Sedisil maram	L	Paste	Wounds (20)	T	20	0.22	1	22.47	0.25
24	Glycosmis pentaphylla (Retz.) DC.	Molehuluki	R	Juice	Asthma (15)	O	15	0.17	1	16.85	0.19
25	Lamiaceae	Nochi	L	Juice	Wound (10)	O	39	0.44	0.97	43.82	0.49
26	Vitex negundo L.	Thiruneetupachai	L	Juice	Head ache (13)	O	25	0.28	1	28.09	0.32
27	Ocimum basilicum L.	L	Fumigation	Thimbul	Asthma (25)	I	25	0.28	1	28.09	0.32
28	Leucas aspera (Willd.) Link	Ammaan pachcharisi	Wp	Fumigation	Head ache (20)	T	20	0.22	1	22.47	0.25
29	Euphorbiaceae	Ilaikanni	L	Juice	Leucorrhoea (28)	O	28	0.31	1	31.46	0.35
30	Euphorbia nivalia Buch.-Ham.	Kattaamaankku	L	Juice	Stomach ache (19)	O	19	0.21	1	21.35	0.24
31	Phyllanthus amarus L.	Keeva nelly	R, F	Juice	Liver problems (34)	O	34	0.38	1	38.20	0.43
32	Asclepiadaceae	Kuppaniemeni	L	Paste	Burns (10)	T	65	0.73	0.98	73.03	0.82
33	Calotropis gigantea (L.) Dryand.	Vellai erukku	R	Paste	Itch (27)	O	40	0.45	0.97	44.94	0.50
34	Calotropis procera (Aiton) Dryand.	Erulku	L	Paste	Skin diseases (30)	T	30	0.34	1	33.71	0.38
35	Hemidesmus indicus (L.) R. Br. ex Schult.	Nannari	L	Decoction	Head ache (20)	I/O	40	0.45	0.97	44.94	0.50
	Persicaria daemia (Forssk.) Chiov.	Vellyparuthi	L	Decoction	Stomach disorders (20)	T	30	0.34	1	33.71	0.38

(continued on next page)
powder and decoction (Juice) is ranges between 10 and 17% (Fig. 5). The paste preparation method (including extract and dried form) is the most used preparation method (47%) followed by powder and decoction (Juice) is ranges between 10 and 17% (Fig. 5).

3.2. Quantitative analysis of ethno-botanical indices

Plants with 20 or more than citations were considered as frequently cited plants and indicated by RFC which was ranges from 0.09 to 0.90 (Table 3). These plants can be explained by their reliable medicinal source among informants of studied area. In the present study, the highest number of citations was for Abrus

S. No	Family/ Binomial name	Vernacular name	Parts Used	Method of preparation	Ailments treated	Administration route	Total number of citation	UV	IAR	FC	RFC
36	Solanaceae	Kandangkathiri	F	Cooked	Intestinal disorders (10)	O/T	33	0.37	0.97	37.08	0.42
37	Solanum nigrum L.	Chukuti chedi	L	Cooked	Mouth ulcer (12) Intestinal disorders (19)	O	31	0.35	0.97	34.83	0.39
38	Solanum indicum L.	Mullu chundal	F	Cooked	Intestinal disorders (12)	O	12	0.13	1	13.48	0.15
39	Datura metel L.	Oomathai	L	Paste	Joint pain (14) Rheumatism/Gout (15)	T	29	0.33	1	32.58	0.37
40	Malvaceae	Kala karandai	L	Paste	Skin disease (23) Burns (10)	T	45	0.51	1	50.56	0.57
41	Abutilon indicum (L)	Thuthi	Wp, L	Cooked Paste	Piles (10) Inflammation (15) Dysentery (9)	O	34	0.38	0.94	38.20	0.43
42	Acanthaceae	Periya nangai	L	Paste (Juice)	Joint pain(9) Rheumatism (12) Gout (5) Swelling (4) Arthritis (8) Leprosy (8) Indigestion (10) Cold (9) Cough (10) Breathing problem (7)	O/T	47	0.53	0.96	52.81	0.59
43	Justicia adhatoda L.	Adathodai	L	Decoction	Fever (10) Abortion (30) Diuretic (13) Wound (8) Indigestion (11)	O	26	0.29	1	29.21	0.33
44	Ruellia patula Jacq.	Punai chedhi	L	Paste	Fever (10)	T	10	0.11	1	11.24	0.13
45	Pedaliaceae	Punai chedhi	L	Paste	Fever (10)	O/T	51	0.57	0.98	57.30	0.64
46	Myrtaceae	Koyyaramaram	L	Paste	Diabetes (20) Blood toxic (10) Fever (10) O 20	0.22	1	22.47	0.25		
47	Syzygium cumini L.	Pulikicherai	F, L	Powder Paste	Diabetes (20) Blood toxic (10) Fever (10) O 20	0.22	1	22.47	0.25		
48	Oxalidaceae	Oxals corniculata L.	L	Paste	Digestive disorder (9) Urinary tract infection (11) Bladder infection (6) Wound (6) Fever (5)	O	26	0.29	0.96	29.21	0.33
49	Nyctaginaceae	Saranda kodi	Wp	Paste	Wound (6) Fever (5)	T	11	0.12	0.9	12.36	0.14
50	Convolvulaceae	Shriruttallai	Sl	Juice	Wound (6) Fever (5)	T	14	0.16	1	15.73	0.18
51	Evolvulus alsinoides L.	Vishnukaranadi	L	Paste	Burn (6) Wound (8) Indigestion (7)	O	7	0.08	1	7.87	0.09
52	Rivea hypoceratiformis (Desr.) Choisy	Minna chedi	L	Cooked	Indigestion (11)	O	11	0.12	1	12.36	0.14
53	Rubiaceae	Manjai Kadamai	B	Paste	Anemia (8) Urinary disorders (12)	O	20	0.22	0.95	22.47	0.25
54	Rauvolfia cordifolia L.	Chevali kodi	L	Paste	Scorpion sting (9) Diahrorea (8)	T	9	0.10	1	10.11	0.11
55	Oleaceae	Kattu malligai	L	Juice	Diahrorea (8)	O	8	0.09	1	8.99	0.10
56	Pooaceae	Karumppu	S	Juice	Rash (5)	T	5	0.06	1	5.62	0.06
57	Mimosoideae	Karvelam	L	Paste	Wound (6) Piles (3) Cough (5)	O/T	13	0.15	0.83	14.61	0.16
58	Menispermacae	Kattukodi	L	Paste	Blood toxic (6) Piles (4)	O	20	0.22	0.84	22.47	0.25
59	Tinospora sinensis (Lour.) Merr.	Seenthal kodi	L	Powder	Burn (10) Edema (12)	T	22	0.25	0.95	24.72	0.28
60	Zingiberaceae	Injii	Rh	Paste Powder	Head ache (6) Abdominal pain (10) Indigestion (7)	T/O	40	0.45	0.92	44.94	0.50
61	Sapindaceae	Thathu putu chedi	L	Paste	Joint pain (8) Arthritis (10) Asthma (12)	T/O	54	0.61	0.96	60.67	0.68

* B- bark, L-leaf, S-stem, Se-seed, Fl-flower, F-fruit, R-root, Rh-rhizome, Wp-whole plant, Sl-stem latex.

b O- oral, T-topical, I- inhalation.
Fig. 2. Ailment percentages of reported ethno-botanical data.

Fig. 3. Family diversity of reported ethno-botanical data.

Fig. 4. Usage percentages of different parts.

Fig. 5. Common preparation methods of medicinal plants.

precatorius L (71 citations with RFC 0.90) used in the treatment of gastrointestinal, dermatological and oncological ailments, followed by Acalypha indica L (65 citations with RFC 0.82) and Aegle marmelos (L) Correa (57 citations with RFC 0.72). The higher RFC indicates the more citation (at least 40 out of 89 interviewed informants) and implies the most common medicinal plants among the tribes of Sathyamangalam wildlife sanctuary. The relative use of particular medicinal plant for treating an ailment category was highlighted by ICF value. Based on the calculated ICF values (ranges from 0.88 to 1.00) the ailments are further categorized into Higher, Moderate and Lower ICF value ailments. The eye ailment category shows highest ICF value (1.00) with 8 reports of 1 species and genitourinary (0.96), skeletal-muscular (0.96), gastrointestinal (0.96) and dermatological (0.95) ailments are also categorized as high ICF value ailments category. The moderate and lowest ICF values were observed for diseases of the circulatory system ailments (0.92) followed by Hemorrhoids ailments (0.88) (Table 4). This high value indicates the homogeneity of ethno-medicinal knowledge between the informants. Medicinally significant plant was determined by FL it was calculated for the entire ailment category and tabulated (Table 4). Hemorrhoids, oncology and eye ailments are reported as categories consists lower FL (<<50) than other ailments. Among 14 listed ailment categories 11 ailments at least have one plant had the highest FL (100%) particularly dermatological and gastrointestinal ailments were reported with high number of FL 100% plants (8 respectively). The individual with most use-reports was considered as common medicine for a particular ailment treatment. Based on the use-reports collected from ethnic people CII, UV and IAR indices were calculated to highlight the usage priority, importance, recommendation and sharing medicinal knowledge about the particular species among the informants. In this study Abrus precatorius L (CII-3.191, UV-0.80, IAR-0.96), Aegle marmelos (L) Correa (CII-2.562, UV-0.64, IAR-0.95), Cardiospernum halicacabum L (CII-1.820, UV-0.61, IAR-0.96), Andrographis paniculata (Burm.f.) Nees (CII-1.584, UV-0.53, IAR-0.96), Zingiber officinale Roscoe (CII-1.348, UV-0.45, IAR-0.92) and Acalypha indica L (CII-1.461, UV-0.73, IAR-0.98) were showed commendable values this indicates the importance of the species among the studied area tribes (Tables 3 and 4). Among 61 recorded medicinal plants from the studied area, 19 plants revealed new use reports which were identified by comparing previous reported literature (Table 5). The local names of the cited plants were almost same among all community in the study area indicates the homogeneity and relevance of particular individual species in herbal medicine.

3.3. Validation of ethno-botanical data using In silico studies

Based on the ethno-botanical uses and literature review the components of the 22 medicinal plants and their pharmacological activities were studied to validate the traditional use by in silico study. The biological spectrum analysis (PASS online) used to reveal the correlation between the activities of structural properties of bioactive compounds (Table 7). Previously, Andrographis paniculata (Burm.f.) Nees was used ethnically in the treatment of skeletal ailments but the predicted biological spectrum (PASS) results of reported compounds revealed these could acts as best hepatic agent (Pa-0.964) and anti-allergic (Pa-0.721) (Table 6). The admetSAR online prediction was also done to predict the absorption, metabolism and toxicity of the listed compounds of medically important species (Table 5). From the results all the reported compounds were considered as they can easily metabolized, absorbed and transported through human intestinal [Example spilanthol, oleanolic acid, ramnazin-3-O-rutinoside, 2,4,8,9-tetrahydroxy-6H-(1)benzofuro(3,2-c)chromen-6-one, torvoside A,
Table 4
ICF value for the illness category and FL and CII values for the reported plants in Sathyamangalam wildlife sanctuary, Tamil Nadu, India.

S. No	Illness category	Number of citation (Nur)	Number of species cited (N)	ICF	FL% and CII
1	Eye ailments	15	1	1.00	
2	Genitourinary ailments	222	9	0.96	
3	Skeletal muscular ailments	179	9	0.96	
4	Dermatological ailments	333	19	0.95	

Table 5
Plants with adverse effects from Sathyamangalam wildlife sanctuary, Tamil Nadu, India.

S. No	Binomial name	Adverse effect and interaction
1	Annona squamosa L.	The seed is poisonous. Consuming seed leads to abortion. Sometimes used as rat poison
2	T. procumbens (L.)	Over dosage of leaves leads to ulcer effect.
3	Abrus precatorius L.	Consuming seeds leads to abortion, Hallucination, coma. Consult doctor after consuming
4	Prosopis juliflora (Sw.) DC.	Consumption of fruits of this plant leads to paralyzis
5	Plumeria alba L.	Accidental contact of latex of this plant leads to severe skin irritation
6	Wrightia tinctoria R.Br.	Consuming seeds and latex causes ulcer
7	Aegle marmelos (L.) Correa	Over dosage leads to emetic condition
8	Vitex negundo L.	Over dosage leads to gastric disorders
9	Leucas aspera (Wild.) Link	Raw consumption will lead to abortion
10	Jatropha curcas L.	Seed consumption leads to neurotoxic effects
11	Calotropis spp.	The latex causes severe eye and skin irritation
12	Pergularia daemia (Forssk.) Chiov.	Latex leads to skin and eye irritation.
13	Datura metel L.	Accidental consumption of fruits leads to coma, hallucination effects.
14	Sesamum indicum L.	Consumption of seeds leads to abortion
15	Acacia nilotica (L.) Delile	Consumption of seeds leads to vomiting

Species were considered more consent to treat particular ailment ethno-botanically.
β-ionone, umbelliferone and (±)-limonene]. The toxicity profile also reveals the carcinogenicity and cardiogenicity of the identified compounds and the results reveals some non-toxic [(±)-limonene, umbelliferone, procyanidin B1 and spilanthol] properties of the compounds (Table 6). The remaining herbal species also should be investigated to determine the efficacy and safety evaluation.

4. Discussion

4.1. Demographical description and documentation of ethno-botanical data

Comparing the demographical depiction of the present study with other related studies in nearer area, the average age of local population is close in the studied area.14–18 Among the interviewed communal tribes herbalist and traditional healers were also limited in number, it clearly indicates the improper sharing of their knowledge on medicinal plants. The extensive single species usage in herbal treatment was specify the particular medicine for particular symptom which can be used to treat all related symptoms to the same category with some adjuvant like honey, milk, etc.19,20 This study also claims some poly herbal combinations can treat skeletal muscular and gastrointestinal ailments category.21 However these two reported low FL of 63% and 61% respectively to diabetes and liver disease.22 This variation in medicinal plant diversity of selected areas is influenced of nature and climate of selected areas.32 Likewise, there are about 19 species were reported present study area. It is also reported to treat Liver injuries and jaundice,30 despite the fact consuming the fruit may leads to the abortion.31

4.2. Quantitative analysis of ethno-botanical indices

This study also proves the importance of ethno medicinal plants in the treatment of genitourinary ailment. The ethnic people have grater medicinal information on indigenous plants. Gastrointestinal system and genitourinary ailment diseases have been reported to have the highest ICF in other surveys and these results indicates the sign of unhealthy lifestyle.23,24 Some results from current study also correlated with other surveys carried out in India, such as Cardioaccaum l. (63%), Solanum nigrum L. (61%) were mentioned to treat same ailment categories in a reported earlier, however these two reported low FL of 63% and 61% respectively to treat skeletal muscular and gastrointestinal ailments category.27 Three of 14 listed ailment categories i.e. eye, oncology and Hemorrhoids ailments reported with low FL < 50%. But related studies also revealed the activities of Aegle marmelos (L.) Correa (18), S. grandiflora (L.) Pers. (19) and Abutilon indicum (L.) Sweet (29) in the reported uses, it clearly shows the lack of sharing their medicinal knowledge among tribal communities.26,27 The higher fidelity level indicates the consent use of these medicinal plants for the treatment of particular ailment by informants of the studied area. However, least CII, UV and IAR values were indicate the limited knowledge of medicinal uses and may be due to its adverse effects of those plants. For example, Annona squamosa was recorded and reported as anti-diabetic agent,20 despite the fact consuming the fruit may leads to the abortion.31 E. prostrata (L.) L. used for neurological disorders (headache) by tribes in the present study area. It is also reported to treat Liver injuries and jaundice by the traditional healers of Chitgoor district, Andhra Pradesh, India.22 Likewise, there are about 19 species were reported with new uses by comparing with other ethno-botanical studies. This new medicinal information can lead to evaluating active principles to derive new drug molecules.

4.3. Validation of ethno-botanical data using In silico studies

In silico studies are more valuable in ethno botanical research to validate and find potential bioactive compounds which leads in development of new drugs.33 From the PASS results of listed species and paste preparation are most common methods used in Siddha medicinal system and similar results of various surveys also supporting the present study results.

The new uses obtained from informants belongs to Sathyamangalam wild life sanctuary, Tamil Nadu, India.

S. No	Binomial name	Medicinal uses from present study	Reported medicinal uses from other studies
1	Eclipta prostrata (L.) L.	Head ache	Liver injuries, jaundice
2	Abrus precatorius L.	Stomach ulcer, Dysentery, Mouth ulcer	Rheumatism, Anti-diabetic, Head ache
3	Bauhinia divaricata L.	Asthma	Fever
4	Prosopis juliflora (Sw.) DC.	Snake bite	Poisonous effect
5	Pongamia pinnata (L.) Pierre	Abdominal pain, Gas trouble, Snake bite	Diarrhea
6	Canavalia cathartica Thouars	Body pain, Muscle pain	Indigestion
7	Rauwolfia serpentina (L.) Benth. ex Kurz	Heart problem, Cardio tonic	Blood pressure
8	Citrus aurantifolia (Christm.) Swingle	Stomach ache	Blood toxic
9	Toddalia asiatica (L.) Lam.	Paralize	Stomachic, Anti-ptyric, Diarrhea
10	Murraya paniculata (L.) Jack	Wounds	Helminthiasis, Liver disease
11	Euphorbia hirta L.	Leucorrhoea	Boils, Warts, Ulcers
12	Pergularia daemia (Forssk.) Chiov.	Head ache	Acidity
13	Andrographis paniculata (Burm.f.) Nees	Leprosy	Dyspepsia, anthelmistic, stomach ache
14	Evolvulus alsinoides (L.) L.	Burn, Wound	Fever
15	Rivea hypocotyliformis Choisy	Indigestion	Ethno veterinary important
16	Halidina cardifolia (Roxb.) Ridsdale	Anemia	Urinary disorders
17	Saccharum officinarum L.	Rash	Gastrintestinal ailments, infertility
18	Acacia nilotica (L.) Delile	Piles, Cough	Wound healing and sex related ailments
19	Timospora sinensis (Lour.) Merr.	Burn wound healing	Insecticides
Table 7

In silico validation of important ethno-botanical plants of Sathyamangalam wild life sanctuary, Tamil Nadu, India.

S. No	Binomial name	Ethno uses	Reported pharmacological activities	Reported compounds	PASS prediction	admetSAR prediction					
					Pa	Pi	A	M	T		
1	Annona squamosa L.	Diabetes, Abortion	Anti-diabetic effect, Effects on early pregnancy	4-(β-D-glucopyranosyloxy)benzoic acid	0.988	0.001	+	+	+	+	+
				Procyanidin B1	0.972	0.002					
					0.979	0.001	+++	+++	ND		
				Phobic disorders treatment	0.929	0.004					
				Antiseborrheic	0.881	0.006					
2	Spilanthes calva DC. and Spilanthes acmella (L.) L.	Wound, Gums ache	Vasorelaxant and antioxidant activities	Spilanthol	0.820	0.005	+++	+++	ND		
					0.802	0.026					
3	Sesbania grandiflora (L.) Pers.	Eye ailments	Anemia, Bronchitis, Ophthalmia, rheumatism	Oleanolic acid	0.987	0.001	+++	+++	ND		
				Antidiabetic	0.984	0.002					
				Anticancer	0.895	0.001					
				Antineoplastic	0.877	0.005					
				Antiviral	0.836	0.002					
4	Abrus precatorius L.	Stomach ulcer, Abortion	Anti-microbial, Abortion	Apigenin	0.963	0.003	+	+	+	ND	
				Wound healing	0.926	0.002					
				Antimutagenic	0.899	0.003					
				0.950	0.002	+++	+++	ND			
				Cardioprotectant	0.948	0.001					
				Free radical scavenger	0.920	0.002					
				Hepatoprotectant	0.864	0.003					
				Anticancer	0.977	0.001					
				Antiprotzoal	0.853	0.004					
5	Bauhinia tomentosa L.	Diarrhoea	Anti-diarrhea, anti-inflammatory activity	Hesperidin	0.927	0.004	+++	+++	ND		
				Anticancer	0.703	0.008					
				Antidiabetic	0.822	0.003					
6	Pongamia pinnata (L.) Pierre	Abdominal pain, Gas trouble, Snake bite, Diabetes	Anti-diabetic	Cyqualon	0.936	0.002	++	+++	+		
				Anticancer	0.909	0.001					
				Free radical scavenger	0.991	0.001	+	+	+	ND	
				Cardioprotectant	0.950	0.002	+++	+++	ND		
				Anticancer	0.985	0.001					
				Antiprotzoal	0.981	0.001					
7	Acalypha indica L.	Burns, Itch	Wound healing, Analgesic, anti-inflammatory	Ramnazzin-3-O-rutinoside	0.936	0.002	++	+++	+		
				Transplant rejection treatment	0.892	0.001					
				Antidiabetic	0.991	0.001	+	+	+	ND	
				Free radical scavenger	0.991	0.001	+	+	+	ND	
8	Calotropis gigantean (L.) Dryand.	Rash, Edema	Wound healing	Ramnazin-3-O-rutinoside	0.993	0.000	+++	+++	ND		
				Free radical scavenger	0.992	0.001					
				Cardioprotectant	0.987	0.001					
				Anticancer	0.918	0.003					
9	Vitex negundo L.	Joint pain, Head ache	Arthritis	Casticin	0.928	0.002	+++	+++	ND		
				Antimutagenic	0.845	0.002					
				Free radical scavenger	0.953	0.003					
10	Eclipta prostrata (L.) L.	Head ache, Abdominal pain, Jaundice	Antibacterial, Antioxidant, hypolipidemic	2,4,8,9-Tetrahydroxy-6H-[1]benzofuro[3,2-c]chromen-6-one	0.956	0.003	+++	+++	ND		
				Anticancer	0.823	0.001					
				Antiseborrheic	0.733	0.031					
S. No	Binomial name (L.)	Ethno uses	Reported pharmacological activities	Reported compounds	PASS prediction	admetSAR predictiona					
-------	--------------------	------------	-------------------------------------	--------------------	-----------------	----------------------					
						Predicted bioactivities	Pa	Pi	A	M	T
11	Cocculus hirsutus	Blood tonic Piles	Dysentery Diabetes	Spermatogenic and anti-diabetic activity	Hirsutine	Antinociceptive	0.814	0.002	+++	ND	
	(L.) W.Theob.					Analgesic	0.800	0.005			
						Vasodilator	0.736	0.006			
12	Solanum spp.	Mouth ulcer Intestinal disorders	Small pox	Neuropharmacological activity	Torvoside A	Anticancer	0.942	0.002	+++	+++	
						Hepatoprotectant	0.902	0.002			
						Antiprotozoal	0.896	0.003			
						Antineoplastic	0.872	0.005			
13	Aegle marmelos	Fever Cold	Blood tonic Cancer	Anticancer	ß-Ionone	Antineoplastic	0.892	0.005	+++	+++	
(L.) Correa						Dermatologic	0.831	0.004			
						Antipsoriatic	0.786	0.004			
14	Haldina cordifolia (Roxb.) Ridsdale	Anemia Urinary disorders	Anti-amoebic	Umbelliferone	Cardiovascular analgesic	0.908	0.003	+++	+++		
						Antimutagenic	0.898	0.002			
						Antiseborrheic	0.875	0.006			
						Cardioprotective	0.898	0.006			
15	Citrus aurantifolia (Christm.) Swingle	Stomachache Blood tonic	Anti-ulcer	(+/-)-Limonene	Anticancer	0.961	0.001	+++	+++		
						Hepatoprotectant	0.902	0.002			
						Antiprotozoal	0.896	0.005			
						Antineoplastic	0.818	0.010			
						Chemoprotective	0.781	0.002			
16	Andrographis paniculata (Burm.f.) Nees	Skeletalmuscular ailments	Anti-inflammatory	(-)-Andrographolide	Choleretic	0.980	0.001	+++	+++		
						Hepatitis	0.975	0.002			
						Antineoplastic	0.964	0.004			
						Antiallergic	0.721	0.007			
17	Sesamum indicum L.	Genitourinary ailments	Affecting sex hormones	Sesamin	Anticancer	0.800	0.005	+++	+		
						Antineoplastic	0.797	0.012			
						Antidysskinetic	0.742	0.010			
						Antineurotic	0.738	0.030			
						Carminative	0.761	0.004			
18	Osmus corniculata L.	Blood tonic Fever	Cardioprotective	Isoorientin	Cardioprotectant	0.963	0.002	+++	+++		
						Anticancer	0.922	0.004			
						Hepatoprotectant	0.913	0.002			
						Antithromorrhagi	0.821	0.002			
19	Zingiber officinale Roscoe	Ear, nose, throat ailments, Neurology ailments	Digestive disorders	Zingerone	Preneoplastic treatment	0.773	0.004	+++	+++		
						Fibrinolytic	0.758	0.008			
						Vasodilator	0.729	0.007			
						Antipyretic	0.725	0.004			
						Antimutagenic	0.851	0.003	+++	+++	
						Antieczematic	0.842	0.011			
						Mucositis	0.803	0.013			
						Antinflammatory	0.732	0.012			

(continued on next page)
we found that most of the ethno-botanical uses correlate their predicted bioactivities and some compounds targeted as new ligands for particular receptor targets. The greater Pa values indicate the binding capacity of the particular compounds as ligands to that respective receptor. In silico studies combined with traditional knowledge evidently recommend a reasonable efficient background and support in the drug formulation of a suitable drug for laboratory testing.

5. Conclusion

From this study, 61 ethno-botanical plants among tribes of Sathyamangalam wildlife sanctuary, were validated and documented in silico for treating various illness categories. The obtained quantitative results (UV, ICF, CII and FL) in silico validation and new reports from this study also used to reveal compounds responsible for bio-activities of herbal formulations. This study results also indicates the importance of experience and knowledge about traditional herbal formulation by the tribes in the treatment of various ailments. The present study suggested promoting programs such as digital documentation of traditional knowledge. These could be used to derive some drug development and application of medicinal plants to treat various disorders and also to promote obtains medicine from nature.

References

1. Panghal M, Arya V, Yadav S, Kumar S, Yadav JP. Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Bhajjar District, Haryana, India. J Ethnobiol Ethnomed. 2010;6(1):4.
2. Gurb-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspect Med. 2006;27(1):1–93.
3. Lewis WH, Elvin-Lewis MP. Medical Botany: Plants Affecting Human Health. John Wiley & Sons; 2003.
4. Mukherjee PK, Wahile A. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. J Ethnopharmacol. 2006;103(1):25–35.
5. Alagesaboopathi C. Ethnomedicinal plants and their utilization by villagers in Kamaragiri hills of Salem district of Tamilnadu, India. Afr J Trad Compl. 2009;6(3):222–227.
6. Ravishankar B, Shukla VJ. Indian systems of medicine: a brief profile. Afr J Trad Compl & Alter Med. 2007;4(3):319–337.
7. Rates SMK. Plants as source of drugs. Toxicon. 2001;39(5):503–613.
8. Rameshwar S, Pandikumar P, Chellappandian M, Ignacimuthu S. Documentation and quantitative analysis of the local knowledge on medicinal plants among traditional Siddha healers in Virudhunagar district of Tamil Nadu, India. J Ethnopharmacol. 2011;137(1):523–533.
9. Einis S. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discov Today. 2004;9(6):276–285.
10. Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. Medicinal plants in Mexico: healers consensus and cultural importance. Soc Sci Med. 1998;47:1863–1875.
11. Andrade-Cetto A. Ethnobotanical study of the medicinal plants from Tlanchi- nol, Hidalgo, Mexico. J Ethnopharmacol. 2009;122:163–171.
12. Tardio J, Faro-de Santayana M. Cultural importance indices: a comparative analysis based on the useful wild plants of southern Cantabria (northern Spain). Eco Bot. 2006;62:24–39.
13. Jambhale PG, Wattamwar AS, Pekamwar SS, Chandak PG. Antioxidant, anti-microbial activity and in silico PASS prediction of Annona reticulata Linn. root extract. Beni-Suef Uni J Basic & Appl Sci. 2014;3(2):140–148.
14. Revathi P, Parimalelazhan T. Traditional knowledge on medicinal plants used by the Inila tribe of Hasansai Hills, Erode District, Tamil Nadu, India. Ethnobot Leaflets. 2010;4(2):136–160.
15. Poongodi A, Thilagavathi S, Aravindhan V, Rajendran A. Observations on some ethnomedicinal plants in Sathyamangalam forests of Erode district, Tamil Nadu, Ind J Med Plants Res. 2011;5(19):4709–4714.
16. Revathi P, Parimalelazhan T, Manian S. Ethnomedicinal plants and novel formulation used by Hoorali tribe in Sathyamangalam forests, Western Ghats of Tamil Nadu, India. J Med Plants Res. 2013;7(28):2083–2097.
17. Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. J Ethnobiol Ethnomed. 2006;2(1):1.
18. Prabhoo S, Vijayakumar S, Morvin Yabesh JE, Ravichandran K, Sathivel B. Documentation and quantitative analysis of the local knowledge on medicinal plants in Kalrayan hills of Villupuram district, Tamil Nadu, India. J Ethnopharmacol. 2014;157:7–20.
19.Valencénnnes E, Smadja J, Conan JY. Screening for biological activity and chemical composition of Euodia borbónica var. borbónica (Rutaceae), a medicinal plant in Reunion Island. J Ethnopharmacol. 1999;64(3):283–288.
20. Gond SK, Verma VC, Kumar A, Kumar V, Kharwar RN. Study of endophytic fungal community from different parts of Aegle marmelos Correa (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol. 2007;23(10):1371 –1375.
21. Dutra RC, Campos MM, Santos AR, Calixto JB. Medicinal plants in Brazil: pharmaceutical studies, drug discovery, challenges and perspectives. Pharm Res. 2016;112:4–29.
22. Tandon N, Yadav SS. Contributions of Indian Council of Medical Research (ICMR) in the area of medicinal plants/traditional medicine. J Ethnopharmacol. 2016;197:39–45.
23. Usha S, Rajasekaran C, Siva R. Ethnoveterinary medicine of the Shervary hills of Eastern Ghats, India as alternative medicine for animals. J Trad Compl Med. 2016;6(1):118–125.
24. Vijayakumar S, Harikrishnan JP, Prabhoo S, Yabesh JM, Manopgar P. Quantitative ethnobotanical survey of traditional Siddha medical practitioners from Tirunelveli hills of Western Ghats, India. J Ethnopharmacol. 2014;2015:62:43–50.
25. Ayyanar M, Ignacimuthu S. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. J Ethnopharmacol. 2011;134(3):851–864.
26. Chaudhary T, Anand S, Arora R, Baloch E, Mishra M. Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L) Cor. Ind J Exp Biol. 2009;47(11):849–861.
27. Sharma R. Medicinal plants diversity in Bhilai city district Durg, Chhattisgarh, India. Int J Pharm Life Sci. 2016;7(3):4952–4966.
28. Gupta RK, Kesari AN, Verma AN, Tandon V, Watal G. Hypoglycemic activity of ethanolic extract of leaves of Annona squamosa L. J Indian Soc Plant Res. 2009;28(4):285–288.
29. Damasceno DC, Volpato GT, Sartori TF, et al. Effects of Annona squamosa L. extract on early pregnancy in rats. Phytomed. 2002;9(7):667–72.
30. Reddy RK. Folk medicine from Chittoor District, Andhra Pradesh, India, used in the treatment of jaundice. Int J Drug Res. 1998;26(3):137–140.
31. Barlow DJ, Buriain A, Ehrman T, Bossio E, Eberini I, Hylands PJ. In-silico studies in Chinese herbal medicines’ research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date.
