Abstract. Every prism manifold can be parametrized by a pair of relatively prime integers $p > 1$ and q. In our earlier papers, we determined a complete list of prism manifolds $P(p, q)$ that can be realized by positive integral surgeries on knots in S^3 when $q < 0$ or $q > p$; in the present work, we solve the case when $0 < q < p$. This completes the solution of the realization problem for prism manifolds.

1. Introduction

Let $P(p, q)$ be an oriented prism manifold with Seifert invariants

$$(-1; (2, 1), (2, 1), (p, q)),$$

where q and $p > 1$ are relatively prime integers. In [BHIM+16, BNOV17], we solved the Dehn surgery realization problem of prism manifolds for $q < 0$ and for $q > p$. The theme of the present work is to settle the remaining case $0 < q < p$. In [BHIM+16, Tables 1 and 2], the authors give a tabulation of prism manifolds that can be obtained by positive integral Dehn surgery on Berge–Kang knots [BK]. The tables conjecturally account for all realizable prism manifolds; in particular, [BHIM+16, Table 2] suggests that for a realizable $P(p, q)$ with $q > 0$, we must have $p \leq 2q + 1$. Indeed, this is the case:

Theorem 1.1. If $P(p, q)$ with $q > 0$ can be obtained by surgery on a knot $K \subset S^3$, then $p \leq 2q + 1$. If $p = 2q + 1$, then K is the torus knot $T(2q + 1, 2)$.

Doig, in [Doi16, Conjecture 12], conjectured that if $P(p, q)$ is realizable, then $p \leq 2|q| + 1$. The main result of [BHIM+16] settles the conjecture for $q < 0$; Theorem 1.1 verifies it for $q > 0$.

Our second main result, Theorem 1.2 below, provides the solution of the realization problem for those $P(p, q)$ with $q < p < 2q$.

Theorem 1.2. The prism manifold $P(p, q)$ with $q < p < 2q$ can be obtained by $4q$–surgery on a knot $K \subset S^3$ if and only if $q = \frac{1}{r^2 - 2r - 1}(r^2 p - 1)$, with $r \leq -3$ odd and $p \equiv -2r + 5$ (mod $r^2 - 2r - 1$). Moreover, in this case, there exists a Berge–Kang knot K_0 such that $P(p, q) \cong S^3_{4q}(K_0)$, and that K and K_0 have isomorphic knot Floer homology groups.

Remark 1.3. If we allow $r = -1$ in Theorem 1.2, we get $p = 2q + 1$: see Theorem 1.1.
1.1. The spherical manifold realization problem. The spherical manifold realization problem asks which spherical manifolds arise from positive integral surgery along a knot in S^3. Theorems 1.1 and 1.2 and our earlier results [BHM+16, BNOV17], combined with Gu’s work [Gu14] and Greene’s work [Gre13], provide a complete classification of realizable spherical manifolds. The interest is in finding a complete classification of knots in S^3 on which Dehn surgery produce spherical manifolds. In [Ber18], Berge proposed a complete list of knots in S^3 with lens space surgeries. Indeed, Berge’s conjecture states that the P/P knots form a complete list of knots in S^3 that admit lens space surgeries. All the known examples of knots on which surgeries will result in non-lens space spherical manifolds are P/SF knots.

We repeat the following conjecture from [BHM+16, Conjecture 1.7]: it is a generalization of Berge’s conjecture.

Conjecture 1.4. Let K be a knot in S^3 that admits an integral surgery to a spherical manifold. Then K is either a P/SF or a P/P knot.

1.2. Methodology. We first provide a brief overview of the methodology undertaken to solve the prism manifold realization problem in the cases $q < 0$ and $q > p$: the proof in both cases draws inspiration from that of Greene for lens spaces [Gre13]. We then discuss how (and why) the methodology is modified for the case of the present work.

We first require a combinatorial definition.

Definition 1.5. A vector $\sigma = (\sigma_0, \sigma_1, \ldots, \sigma_{n+1}) \in \mathbb{Z}^{n+2}$ that satisfies $0 \leq \sigma_0 \leq \sigma_1 \leq \cdots \leq \sigma_{n+1}$ is a changemaker vector if for every k, with $0 \leq k \leq \sigma_0 + \sigma_1 + \cdots + \sigma_{n+1}$, there exists a subset $S \subset \{0, 1, \ldots, n+1\}$ such that $k = \sum_{i \in S} \sigma_i$.

The key idea is to use the correction terms in Heegaard Floer homology in tandem with Donaldson’s Theorem A. The following is immediate from [Gre13, Theorem 3.3].

Theorem 1.6. Suppose that $P(p, q)$ bounds a sharp four-manifold $X(p, q)$. If $P(p, q)$ arises from positive integer surgery on a knot K in S^3, then the intersection lattice on $X(p, q)$ embeds as the orthogonal complement σ^\perp of some changemaker vector $\sigma \in \mathbb{Z}^{n+2}$, with $n+1 = b_2(X)$.

See Section 5 for the definition of a sharp four-manifold, and see Subsection 1.3 for the definition of the intersection lattice. When $q < 0$ or $q > p$, it turns out that $P(p, q)$ bounds a sharp four-manifold $X(p, q)$. We then solved a combinatorial problem: we classified all lattices isomorphic to the intersection lattice of $X(p, q)$, whose complements are changemakers in \mathbb{Z}^{n+2}. There is a heavy analysis of lattices involved that forms the main body of [BHM+16, BNOV17]. Finally, we verified that for every (p, q) corresponding to such a lattice, $P(p, q)$ is indeed realized by surgery on a P/SF knot.

We now turn our attention to the case $0 < q < p$. In light of Theorem 1.1, it suffices to consider $q < p < 2q$. When $q < p < 2q$, $P(p, q)$ does not bound a sharp four–manifold. Thus, we cannot use the embedding restriction of Theorem 1.6 – an essential to the classification of realizable prism manifolds in the previous two cases. Our strategy to prove Theorem 1.2 is to replace Theorem 1.6 with another lattice theoretic obstruction for $P(p, q)$ to being realizable, as follows. The prism manifold $P'(2, 1)$ bounds a rational homology four-ball Z_2 (the left two...
components of Figure 2 where the 0–framed unknot is replaced by a dotted circle and $a_{-1} = 2$; and that there exists a negative definite cobordism W from $P(2, 1)$ to $P(p, q)$ (the right $n + 1$ components of Figure 2). Suppose that $P(p, q)$ arises from surgery on a knot $K \subset S^3$, and let $W_{4q} = W_{4q}(K)$ be the corresponding two-handle cobordism obtained by attaching a two-handle to the four-ball along the knot K with framing $4q$. Form $Z := Z_2 \cup P(2, 1) W$; it will be a smooth four-manifold with boundary $P(p, q)$. The intersection lattice on Z is $\Lambda(q, -p)$, which is defined in Definition 3.1. Form $X := W \cup (-W_{4q})$. We prove that the intersection lattice on X is isomorphic to $D_4 \oplus \mathbb{Z}^{n-2}$. Finally, form $\hat{X} := Z \cup (-W_{4q})$; see Figure 1. It follows that \hat{X} is a smooth, closed, simply connected, negative definite four-manifold with $b_2(Z) = n + 2$ for some $n \geq 0$. Now, Donaldson’s Theorem A [Don83] implies that the intersection lattice on \hat{X} is the Euclidean integer lattice \mathbb{Z}^{n+2}. This provides a necessary condition for $P(p, q)$ to be realizable: the lattice $\Lambda(q, -p)$ embeds as a codimension one sublattice of \mathbb{Z}^{n+2}. Our new obstruction now reads as follows:

Theorem 1.7. Suppose $P(p, q)$ with $q < p < 2q$ arises from positive integer surgery on a knot K in S^3.

(a) The linear lattice $\Lambda(q, -p)$ embeds as the orthogonal complement to a changemaker $\sigma \in \mathbb{Z}^{n+2}, n + 1 = b_2(Z)$.

(b) There is an embedding of $D_4 \oplus \mathbb{Z}^{n-2}$ into \mathbb{Z}^{n+2} such that there exists some short characteristic covector χ for $D_4 \oplus \mathbb{Z}^{n-2}$ with $\langle \chi, \sigma \rangle = i$ if and only if $-2q + g(K) \leq i \leq 2q - g(K)$.

The strategy is now apparent: determine the list of all pairs (p, q) which pass the embedding restriction of Theorem 1.7. Finally, we verify that every manifold in our list is indeed realized by a knot surgery: we do so by comparing the list with the list of realizable manifolds tabulated in [BHM+16, Table 2]. It must be noted that Part (a) of Theorem 1.7 only provides a necessary condition for the prism manifold $P(p, q)$ to be realizable. Indeed, it is easy to find pairs (p, q) that satisfy Part (a) of Theorem 1.7, but the corresponding prism manifolds are not realizable; for example $P(13, 9)$ and $P(16, 9)$. The 9–surgery on the torus knot $T(2, 5)$ is $L(9, 13) \cong L(9, 16)$, then work of Greene [Gre13] shows that the corresponding linear lattice satisfies Part (a) of Theorem 1.7. However, the manifold $P(16, 9)$ is not realizable because of the parity of 16 (p is always odd for a realizable $P(p, q)$ [BHM+16]); and neither is $P(13, 9)$ by Theorem 1.2.
In the previous cases $q < 0$ and $q > p$ as well as in the lens space realization problem [Gre13], the first step was finding a sharp four-manifold bounded by $P(p, q)$ (respectively, the lens space $L(p, q)$): in each case a negative definite four-manifold was found; then it was almost immediate from the previous works of Ozsváth and Szabó [OS05b, OS03b] that the four-manifold is sharp. For the case at hand, however, $P(p, q)$ does not bound a sharp four-manifold. We need to carefully analyze the d–invariants of $P(p, q)$ in each Spinc structure in terms of the d–invariants of certain Spinc structures of $P(2, 1)$ and the grading shift of the cobordism W. In particular, we generalize the notion of sharpness to cobordisms between rational homology spheres, and show that the cobordism W is sharp (Proposition 5.3): again, see Figure 1. Using that the intersection lattice on X is isomorphic to $D^4 \oplus \mathbb{Z}^{n-2}$, it will be immediate that X is a sharp four–manifold (Corollary 6.4). Using this finding, we are able to prove Theorem 1.7 and translate it into a more practical condition on the changemaker vector σ (Proposition 6.11).

1.3. Notations. We use homology groups with integer coefficients throughout the paper. For a compact four–manifold X, regard $H_2(X)$ as an inner product space equipped with the intersection pairing Q_X on X. Also, we refer to $(H_2(X), -Q_X)$ as the intersection lattice on X, where $-Q_X$ denotes the negation of the pairing of Q_X. Finally, we call an oriented three–manifold Y a realizable manifold if it can be obtained by positive integral surgery on a knot in S^3.

1.4. Organization. This paper is organized as follows. In Section 2, we prove Theorem 1.1, thus solve the case of the realization problem when $2q < p$. In Section 3, we collect some basic results about linear lattices and changemaker lattices from [Gre13]. In Section 4, we study the topology of a certain type of cobordism between rational homology 3–spheres. In Section 5, we define sharp cobordisms, and prove that the cobordism W between $P(2, 1)$ and $P(p, q)$ is sharp. In Section 6, we use the result in Section 5 to prove a strengthened changemaker condition in the case $q < p < 2q$. In Section 7 and Section 8, we use the strengthened changemaker condition to enumerate all the possible changemaker lattices we can have. In Section 9, we determine the pairs (p, q) corresponding to the changemaker lattices, thus finish the proof of Theorem 1.2.

Acknowledgements. This project started during Caltech’s Summer Undergraduate Research Fellowships (SURF) program in the summer of 2017. Y. N. was partially supported by NSF grant numbers DMS-1252992 and DMS-1811900. F. V. was partially supported by an AMS-Simons Travel Grant.

2. Proof of Theorem 1.1

The goal of this section is to prove the following upper bound of p, and then to prove Theorem 1.1. Recall that we assume $q > 0$.

Proposition 2.1. If $P(p, q)$ is realizable, then $p \leq 2q + 1$.

Remark 2.2. If $P(p, q)$ is realizable with $p = 2|q| \pm 1$, then K must be a torus knot [NZ18, Theorem 1.6]. Recall that for a realizable $P(p, q)$, p is odd [BHM+16]. In particular, if we restrict attention to hyperbolic knots on which surgeries will result in $P(p, q)$, then $p \leq 2|q| - 3$.

2.1. The Casson–Walker invariant of $P(p, q)$. Let

$$\Delta_K(T) = \alpha_0 + \sum_{i>0} \alpha_i(T^i + T^{-i})$$

be the normalized Alexander polynomial of K. If K admits an L-space surgery, then $|\alpha_i| \leq 1$, $\alpha_q(K) = 1$, and +1 and −1 appear alternatingly among the nonzero α_i [OS05a, Theorem 1.2].

Given a real number x, let $\{x\} = x - [x]$ be the fractional part of x. Given a pair of coprime integers n, m with $n > 0$, let $s(m, n)$ be the Dedekind sum

$$s(m, n) = \sum_{i=1}^{n-1} \left(\left(\frac{i}{n} \right) \left(\frac{im}{n} \right) \right),$$

where

$$((x)) = \begin{cases} \{x\} - \frac{1}{2}, & \text{if } x \in \mathbb{R} \setminus \mathbb{Z}, \\ 0, & \text{if } x \in \mathbb{Z}. \end{cases}$$

Let $\lambda(\cdot)$ be the Casson–Walker invariant [Wal90], normalized so that

$$\lambda(S^3_1(T(3, 2))) = 2.$$

By [Les96, Proposition 6.1.1], the Casson–Walker invariant of $P(p, q)$ can be computed by the formula

$$\lambda(P(p, q)) = \frac{1}{12} \left(-\frac{p}{q} \left(\frac{1}{p^2} - \frac{1}{2} \right) - \frac{q}{p} + 3 + 12s(q, p) \right).$$

Since the Dedekind sum satisfies the reciprocity law

$$s(q, p) + s(p, q) = \frac{1}{12} \left(\frac{p}{q} + \frac{q}{p} + \frac{1}{pq} \right) - \frac{1}{4},$$

we get

$$\lambda(P(p, q)) = \frac{p}{8q} - s(p, q). \quad (2)$$

On the other hand, the surgery formula for the Casson–Walker invariant [BL90, Theorem 2.8] implies that

$$\lambda(S^3_{3q}(K)) = -s(1, 4q) + \frac{1}{4q} \Delta_K''(1)$$

$$= -\frac{(2q - 1)(4q - 1)}{24q} + \frac{1}{4q} \Delta_K''(1). \quad (3)$$

Lemma 2.3. For realizable $P(p, q)$ with q odd, $p \equiv -1 \pmod{4}$.

Proof. By combining (2) and (3), we have
\begin{align*}
\frac{(2q - 1)(4q - 1)}{24q} + \frac{1}{4q} \Delta''_K(1) &= \lambda(P(p, q)) \\
&= \sum_{i=1}^{q-1} \left(\frac{i}{q} - \frac{1}{2} \right) \left(\frac{pi}{q} - \frac{1}{2} \right) \pmod{1} \\
&= \frac{p}{8q} - \frac{p(q - 1)(2q - 1)}{6q} + \frac{p(q - 1)}{4}.
\end{align*}

Multiplying both sides by $24q$, we get
\[1 - 6q + 8q^2 + p(-1 + 6q - 2q^2) \equiv 6\Delta''_K(1) \pmod{24q}.
\]
Since $\Delta''_K(1)$ is even and p, q are odd, we get
\[2q + 1 + p(2q + 1) \equiv 0 \pmod{4}.
\]
So $p \equiv -1 \pmod{4}$. □

2.2. The Spinc structures. The i-th torsion coefficient of a knot K is defined to be
\[t_i(K) = \sum_{j \geq 1} j\alpha_{i+j},\]
for $i \geq 0$, where the α_i are as in (1). Let
\[\varepsilon_i = t_i - t_{i+1}.
\]
When K admits an L-space surgery, it is proved in [Ras03, Proposition 7.6] that
\[\varepsilon_i \in \{0, 1\}.
\]
Suppose $4q$–surgery on K is $P(p, q)$, then $4q \geq 2g(K) - 1$ [OS11]. So
\[g(K) \leq 2q. \tag{4}\]
Since $a_{g(K)} = 1$ and $a_i = 0$ when $i > g(K)$, it follows from the definition of t_i that
\[t_i = 0 \quad \text{if and only if } i \geq g(K). \tag{5}\]
In particular, by (4), we get
\[t_{2q} = 0. \tag{6}\]
For $i > 0$,
\[\alpha_i = t_{i-1} - 2t_i + t_{i+1} = \varepsilon_{i-1} - \varepsilon_i.
\]
Since $1 = \Delta_K(1) = \alpha_0 + 2\sum_{i>0} \alpha_i$, we can also get
\[\alpha_0 = 1 - 2\sum_{i>0} \alpha_i.
Thus
\[
\Delta_K(-1) = \alpha_0 + 2\sum_{i>0}(-1)^i\alpha_i = 1 - 4\sum_{i>0}(-1)^i\varepsilon_i. \tag{7}
\]

Given a knot $K \subset S^3$ and an integer $n > 0$, there is an affine isomorphism [OS03a]
\[
\varphi : \mathbb{Z}/n\mathbb{Z} \to \text{Spin}^c(S^3_n(K)).
\]

For simplicity, let $d(S^3_n(K), i) = d(S^3_n(K), \varphi(i))$.

From [OS03a], we have
\[
d(L(n, 1), i) = -\frac{1}{4} + \frac{(2i - n)^2}{4n}. \tag{8}
\]

Using [OS11, Theorem 1.2], we get
\[
d(S^3_n(K), i) = d(L(n, 1), i) - 2t_{\min(i,n-i)}. \tag{9}
\]

Lemma 2.4. Suppose that $P(p, q)$ is obtained by the $4q$–surgery on K. Let i be an integer with $0 \leq i \leq q$. If i is even, we have
\[
d(S^3_{4q}(K), q - i) = d(S^3_{4q}(K), q + i),
\]
and
\[
t_{q-i} - t_{q+i} = \frac{i}{2}.
\]

If i is odd, we have
\[
d(S^3_{4q}(K), q - i) = d(S^3_{4q}(K), q + i) \pm 1,
\]
and
\[
t_{q-i} - t_{q+i} = \frac{i \mp 1}{2}.
\]

Proof. Since $S^3_{4q}(K)$ is a prism manifold, it contains a Klein Bottle. So the order–2 element in $H_1(S^3_{4q}(K))$ is represented by a curve in the Klein Bottle, such that the complement of the curve in the Klein Bottle is an annulus. By [NW14, Theorem 1.1], for any $j \in \mathbb{Z}/4q\mathbb{Z}$, we have
\[
|d(S^3_{4q}(K), j) - d(S^3_{4q}(K), j + 2q)| \leq 1. \tag{10}
\]

Since the conjugate of $\varphi(j + 2q)$ is $\varphi(2q - j)$, we have
\[
d(S^3_{4q}(K), j + 2q) = d(S^3_{4q}(K), 2q - j). \tag{11}
\]

Let $j = q - i$. Using (8) and (9), we get
\[
d(S^3_{4q}(K), q - i) - d(S^3_{4q}(K), q + i)
= -\frac{1}{4} + \frac{(2q - 2i - 4q)^2}{16q} - 2t_{q-i} - \left(-\frac{1}{4} + \frac{(2q + 2i - 4q)^2}{16q} - 2t_{q+i} \right)
= i - 2t_{q-i} + 2t_{q+i} \in \mathbb{Z}.
\]

Using (10) and (11), we get our conclusion. \qed
2.3. The proof of Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.4 and (6),
\[t_0 = t_0 - t_{2q} \leq \left\lfloor \frac{q + 1}{2} \right\rfloor. \]

By [NZ18, Lemma 6.1], \(p = |\Delta_K|(-1)|. \) Using (7), we get
\[p \leq 1 + 4 \sum_{i \geq 0} \varepsilon_i = 1 + 4t_0 \leq 1 + 4 \left\lfloor \frac{q + 1}{2} \right\rfloor. \]

When \(q \) is even, \(p \leq 2q + 1. \) When \(q \) is odd, \(p \leq 2q + 3. \) By Lemma 2.3, \(p \neq 2q + 3, \) so we must have \(p \leq 2q + 1. \) □

Proof of Theorem 1.1. The first statement is Proposition 2.1. The second statement follows from combining [NZ18, Theorem 1.6] and [BHM+16, Lemma 2.1]. □

3. Input from lattice theory

This section assembles facts about lattices that will be used in the paper. We mainly follow the treatment of [Gre15, Gre13, BHM+16, BNOV17].

Recall that an integral lattice is a finitely generated free abelian group \(L \) endowed with a positive definite symmetric bilinear form \(\langle , \rangle : L \times L \to \mathbb{Z}. \) Given \(v \in L, \) let \(|v| = \langle v, v \rangle \) be the norm of \(v. \) We can extend \(\langle , \rangle \) to a \(\mathbb{Q} - \text{valued} \) pairing on \(L \otimes \mathbb{Q}; \) using it we define
\[L^* = \{ x \in L \otimes \mathbb{Q} | \langle x, y \rangle \in \mathbb{Z}, \forall y \in L \}. \]

The pairing on \(L \) descends to a non-degenerate, symmetric bilinear form on the discriminant group \(\overline{L} = L^*/L \)
\[b : \overline{L} \times \overline{L} \to \mathbb{Q}/\mathbb{Z} \]
\[b(\overline{x}, \overline{y}) \equiv \langle x, y \rangle \pmod{1}, \]
the linking form, where \(\overline{x} \) denotes the class of \(x \in L \) in \(\overline{L}. \) The discriminant of \(L \) is the order of the finite group \(\overline{L}. \) Let \(\text{Char}(L) = \{ x \in L^* | \langle x, y \rangle \equiv \langle y, y \rangle \pmod{2}, \forall y \in L \} \)
denote the set of characteristic covectors for \(L. \) The set \(C(L) = \text{Char}(L)/2L \) forms a torsor over the discriminant group \(\overline{L}. \) Given \(\chi \in C(L), \) define
\[d_L([\chi]) = \min \left\{ \frac{|\chi' - \text{rk}(L)|}{4} \right\}_{\chi' \in [\chi]}, \] (12)
and call an element \(\chi \in \text{Char}(L) \) short if its norm is minimal in \([\chi]. \) We call the pair \((C(L), d_L) \) the \(d-\text{invariant} \) of the lattice \(L; \) in particular it is an invariant of the stable isomorphism type
of the lattice L [OS05b, Theorem 4.7]. We drop L from the notation when the lattice L is understood from the context.

3.1. Linear lattices.

Given a pair of relatively prime positive integers p, q, write $\frac{p}{q}$ in a Hirzebruch–Jung continued fraction

$$\frac{p}{q} = a_{-1} - \frac{1}{a_0 - \frac{1}{\ddots - \frac{1}{a_n}}} = [a_{-1}, a_0, \ldots, a_n]^{-},$$

with $a_i \geq 2$ when $i \geq 0$ in Equation (13).

Definition 3.1. The linear lattice $\Lambda(q, -p)$ has a basis

$$\{x_0, \ldots, x_n\},$$

and inner product given by

$$\langle x_i, x_j \rangle = \begin{cases} a_i, & i = j \\ -1, & |i - j| = 1 \\ 0, & |i - j| > 1, \end{cases}$$

where the coefficients a_i, for $i \in \{0, \ldots, n\}$, are defined by the continued fraction (13). We call (14) the **vertex basis** of $\Lambda(q, -p)$.

Remark 3.2. The reason that we use $\Lambda(q, -p)$ instead of $\Lambda(q, p)$ is that our convention for lens spaces is different from that of [Gre13]. In our paper, the lens space $L(q, p)$ is oriented as the $\frac{q}{p}$–surgery on the unknot, and $P(p, q)$ is the $\frac{q}{p}$–surgery on $\mathbb{R}P^1 \# \mathbb{R}P^1 \subset \mathbb{R}P^3 \# \mathbb{R}P^3$, so they both bound 4–manifolds with intersection lattice $\Lambda(q, -p)$.

An element $\ell \in L$ is **reducible** if $\ell = x + y$ for some nonzero $x, y \in L$, with $\langle x, y \rangle \geq 0$, and **irreducible** otherwise. An element $\ell \in L$ is **breakable** if $\ell = x + y$ with $|x|, |y| \geq 3$ and $\langle x, y \rangle = -1$, and **unbreakable** otherwise.

Definition 3.3. In a linear lattice, if I is any subset of $\{x_0, x_1, \ldots, x_n\}$ then write $[I] = \sum_{x \in A} x$. An interval is an element of the form $[I]$ with $I = \{x_a, x_{a+1}, \ldots, x_b\}$ for $0 \leq a \leq b \leq n$. We say that a is the left endpoint of the interval, and b is the right endpoint of the interval. Say that $[I]$ contains x_i if I does: we often write $x_i \in [I]$ in this case.

Proposition 3.4. [Gre13, Proposition 3.3] If $v \in \Lambda(q, -p)$ is irreducible, $v = \epsilon[I]$ for some $\epsilon = \pm 1$ and $[I]$ an interval.

From now on, let $[v]$ be the interval corresponding to v when v is irreducible.

Definition 3.5. A vertex x_i has **high weight** if $|x_i| = a_i > 2$.

Proposition 3.6. [Gre13, Corollary 3.5(4)] An element $\epsilon[I] \in \Lambda(q, -p)$ with $\epsilon \in \{\pm 1\}$ is **unbreakable** if and only if $[I]$ contains at most one element of high weight.
Definition 3.7. For two intervals $[I]$ and $[J]$ with left endpoints i_0, j_0 and right endpoints i_1, j_1, say that $[I]$ and $[J]$ are distant if either $i_1 + 1 < j_0$ or $j_1 + 1 < i_0$, that $[I]$ and $[J]$ share a common end if $i_0 = j_0$ or $i_1 = j_1$, and that $[I]$ and $[J]$ are consecutive if $i_1 + 1 = j_0$ or $j_1 + 1 = i_0$. Write $[I] < [J]$ if $I \subset J$ and $[I]$ and $[J]$ share a common end, and $[I] \uparrow [J]$ if they are consecutive. If $[I]$ and $[J]$ are either consecutive or share a common end, say that they abut. If $I \cap J$ is nonempty and $[I]$ and $[J]$ do not share a common end, write $[I] \cap [J]$.

Proposition 3.8. [Gre13, Corollary 3.5(2)] The lattice $\Lambda(q, -p)$ is indecomposable; that is, $\Lambda(q, -p)$ is not the direct sum of two nontrivial lattices.

Proposition 3.9 (Proposition 3.6 of [Gre13]). If $\Lambda(q, p) \equiv \Lambda(q', p')$, then $q = q'$ and either $p \equiv p'$ or $pp' \equiv 1 \pmod{q}$.

3.2. Changemaker lattices. When a lattice L is isomorphic to σ^\perp, the orthogonal complement of a changemaker vector $\sigma \in \mathbb{Z}^{n+2}$, L is called a changemaker lattice.

Definition 3.10. The standard basis of σ^\perp is the collection $S = \{v_1, \ldots, v_{n+1}\}$, where

$$v_j = \left(2e_0 + \sum_{i=1}^{j-1} e_i\right) - e_j$$

whenever $\sigma_j = 1 + \sigma_0 + \cdots + \sigma_{j-1}$, and

$$v_j = \left(\sum_{i \in A} e_i\right) - e_j$$

whenever $\sigma_j = \sum_{i \in A} \sigma_i$, with $A \subset \{0, \ldots, j - 1\}$ chosen to maximize the quantity $\sum_{i \in A} 2^i$. A vector $v_j \in S$ is called tight in the first case, just right in the second case as long as $i < j - 1$ and $i \in A$ implies that $i + 1 \in A$, and gappy if there is some index i with $i \in A$, $i < j - 1$, and $i + 1 \notin A$. Such an index, i, is a gappy index for v_j.

Definition 3.11. For $v \in \mathbb{Z}^{n+2}$, supp $v = \{i|\langle e_i, v \rangle \neq 0\}$, supp$^+ v = \{i|\langle e_i, v \rangle > 0\}$, and supp$^- v = \{i|\langle e_i, v \rangle < 0\}$.

Lemma 3.12 (Lemma 3.12 (3) in [Gre13]). If $|v_{k+1}| = 2$, then k is not a gappy index for any v_j with $j \in \{1, \ldots, n + 1\}$.

Lemma 3.13 (Lemma 3.13 in [Gre13]). Each $v_j \in S$ is irreducible. In fact, suppose $A \subset \{0, 1, \ldots, j - 1\}$, then the vector

$$-e_j + \sum_{i \in A} e_i$$

is irreducible.

Lemma 3.14. Let $v = \sum_{i \in A} b_i e_i \in L$, with $A \subset \{0, 1, \ldots, n + 1\}$ and each $b_i \in \{-1, 1\}$. If $v = x + y$ with $\langle x, y \rangle \geq 0$, then there exists a subset $B \subset A$ such that

$$x = \sum_{i \in B} b_i e_i, \quad y = \sum_{i \in A \setminus B} b_i e_i.$$
Proof. Let $x = \sum x_i e_i, y = \sum y_i e_i$. Since $x_i + y_i \in \{-1, 0, 1\}, x_i y_i \leq 0$. If $\langle x, y \rangle \geq 0$, then each $x_i y_i = 0$, namely, one of x_i, y_i is 0. So our conclusion holds. \qed

Lemma 3.15 (Lemma 3.15 in [Gre13]). If $v_j \in S$ is breakable, then it is tight.

Lemma 3.16 (Lemma 4.2(1) in [Gre13]). If $\Lambda(q, -p)$ is a changemaker lattice, then it contains at most one tight vector.

Lemma 3.17 (Lemma 3.12(1) in [Gre13]). For any $v_j \in S$, we have $j - 1 \in \text{supp}(v_j)$.

Definition 3.18. If T is a set of irreducible vectors in a linear lattice $\Lambda(q, -p)$, the intersection graph $G(T)$ has vertex set T, and an edge between v and w if the intervals corresponding to v and w abut. We write $v \sim w$ if v and w are connected in $G(T)$.

Lemma 3.19. If the intervals corresponding to v and w abut, then $\langle v, w \rangle \neq 0$.

Lemma 3.20 (Lemma 4.4 in [Gre13]). If v_i and v_j are distinct unbreakable vectors with $|v_i|, |v_j| \geq 3$, then $|\langle v_i, v_j \rangle| \leq 1$, with equality if and only if $\langle v_i \rangle \uparrow \langle v_j \rangle$.

Lemma 3.21 (Corollary 4.5 in [Gre13]). If v_i and v_j are distinct unbreakable vectors with $|v_i|, |v_j| \geq 3$, then the high weight vertices contained in v_i, v_j are different.

Definition 3.22. A claw in a graph G is a quadruple $(v; w_1, w_2, w_3)$ of vertices such that v neighbors all the w_i, but no two of the w_i neighbor each other.

Lemma 3.23 (Lemma 4.8 of [Gre13]). The intersection graph $G(T)$ has no claws.

Definition 3.24. Given a set T of unbreakable elements in a linear lattice and $v_1, v_2, v_3 \in T$, (v_1, v_2, v_3) is a heavy triple if $|v_i| \geq 3$, and if each pair among the v_i is connected by a path in $G(T)$ disjoint from the third.

Lemma 3.25 (Based on Lemma 4.10 of [Gre13]). $G(T)$ has no heavy triples.

4. The topology of certain cobordisms

In this section, we will consider the topology of a certain cobordism $W : Y_0 \to Y_1$. We assume that W is obtained by adding $n+1$ two-handles along a link $L \subset Y_0$, such that one component L_0 of L represents a 2–torsion in $H_1(Y_0)$, and all other components of L are null-homologous in Y_0. Moreover, we assume that $|H_1(Y_0)| = 4$ and W is negative definite. So Y_1 is a rational homology sphere. Let $\iota_i : Y_i \to W$ be the inclusion map, $\iota_*^i : H^2(W) \to H^2(Y_i)$ be the induced maps on cohomology, and $\iota_*^i : \text{Spin}^c(W) \to \text{Spin}^c(Y_i)$ be the induced maps on Spin^c, $i = 0, 1$.

We make the further assumption that Y_0 is the boundary of a compact 4–manifold Z_0 with $H_1(Z_0) \cong \mathbb{Z}/2\mathbb{Z}$ and $H_2(Z_0) = 0$, and L_0 is null-homologous in Z_0. Let $Z = Z_0 \cup_{Y_0} W$.

From the handle structure of W, we can compute

$$H_1(W) \cong \mathbb{Z}/2\mathbb{Z}, H_2(W) \cong \mathbb{Z}^{n+1}, H_1(W, Y_i) = 0, H_2(W, Y_i) \cong \mathbb{Z}^{n+1}, i = 0, 1.$$

By the Universal Coefficient Theorem,

$$H_2(W) \cong \mathbb{Z}^{n+1} \oplus \mathbb{Z}/2\mathbb{Z}.$$

In particular, there exists a unique torsion class $\alpha \in H^2(W)$. Let $\alpha_i = \iota_i^*(\alpha)$, $i = 0, 1$.
Since Z is obtained by adding two-handles to Z_0, such that all attaching curves are null-homologous in Z_0, we have

$$H_1(Z) \cong H_1(Z_0) \cong \mathbb{Z}/2\mathbb{Z},$$

and the map $H_2(Z) \to H_2(Z, Z_0)$ is an isomorphism.

Lemma 4.1. The map $\iota_{W,Z}^* : H^2(Z) \to H^2(W)$ is injective with image containing α. The map $\iota_{Y_0,Z_0}^* : H^2(Z_0) \to H^2(Y_0)$ is injective with image generated by α_0. Moreover, $[L_0] \in H_1(Y_0)$ is the Poincaré dual of α_0.

Proof. Using the long exact sequences

$$H^2(Z, W) \to H^2(Z) \to H^2(W), \quad H^2(Z_0, Y_0) \to H^2(Z_0) \to H^2(Y_0),$$

and the fact that $0 = H^2(Z, Y_0) \cong H^2(Z, W)$, we get that $\iota_{W,Z}^*$ and ι_{Y_0,Z_0}^* are injective.

By the Universal Coefficient Theorem, $H^2(Z) \cong \text{Hom}(H_2(Z), \mathbb{Z}) \oplus \mathbb{Z}/2\mathbb{Z}$, so it has a unique 2-torsion $\overline{\alpha}$. Since $\iota_{W,Z}^*$ is injective, $\iota_{W,Z}^*(\overline{\alpha})$ is a 2-torsion in $H^2(W)$, which must be α. Let α_0 be the restriction of $\overline{\alpha}$ to $H^2(Z_0)$. Using the commutative diagram

$$\begin{array}{ccc}
H^2(Z) & \to & H^2(Z_0) \\
\downarrow & & \downarrow \\
H^2(W) & \to & H^2(Y_0)
\end{array}$$

we see that $\iota_{Y_0,Z_0}^*(\alpha_0) = \alpha_0$. Since $H^2(Z_0) \cong \mathbb{Z}/2\mathbb{Z}$, the image of ι_{Y_0,Z_0}^* is generated by α_0.

Since L_0 is null-homologous in Z_0, there exists a properly embedded oriented surface $F_0 \subset Z_0$ such that $\partial F_0 = L_0$. Thus the image of the Poincaré dual of $[F_0]$ under ι_{Y_0,Z_0}^* is the Poincaré dual of $[L_0]$. Since both $[L_0]$ and $[\alpha_0]$ have order 2, and $\iota_{Y_0,Z_0}^*(\alpha_0) = \alpha_0$, we get that $[L_0]$ is the Poincaré dual of α_0.

Lemma 4.2. (1) For $i = 0, 1$, we have $\ker \iota_i^* \cong H^2(W, Y_i)$, and ι_i^* is surjective. In particular, $\alpha_i \neq 0$ in $H^2(Y_i)$.

(2) The kernel of the restriction map $(\iota_0^*)^* : \ker \iota_1^* \to H^2(Y_0)$ is isomorphic to $H^2(W, \partial W)$, and its image is generated by α_0.

Proof. (1) The first statement follows from the long exact sequence

$$0 = H^1(Y_i) \to H^2(W, Y_i) \to H^2(W) \xrightarrow{\iota_i^*} H^2(Y_i) \to H^3(W, Y_i) = 0.$$

It follows that $\ker \iota_i^*$ is torsion-free, so $\alpha \notin \ker \iota_i^*$. Thus $\alpha_i \neq 0$.

(2) By (1), the map $(\iota_0^*)^*$ can be identified with $H^2(W, Y_1) \to H^2(Y_0)$, which is part of the long exact sequence

$$0 = H^1(\partial W, Y_1) \to H^2(W, \partial W) \to H^2(W, Y_1) \to H^2(\partial W, Y_1) = H^2(Y_0).$$

Thus $\ker(\iota_0^*)^*$ is $H^2(W, \partial W)$.

By Poincaré duality, $(ι^*_{0})^*$ can be identified with the boundary map $∂_0^* : H_2(W, Y_0) → H_1(Y_0)$. By the handle decomposition of W, we see that the image of $∂_0^*$ is generated by $[L_0]$. By Lemma 4.1, $\text{im}(ι^*_{0})^*$ is generated by $α_0$. □

Corollary 4.3. For each $t ∈ Spin^c(Y_1)$, there exists a subset

\[\mathcal{R}(t) = \{ ι_0, ι_1 = ι_0 + α_0 \} \subset Spin^c(Y_0) \]

such that for each $r ∈ Spin^c(Y_0)$, the set

\[(ι^*_{0}, ι^*_1)^*(r, t) := (ι^*_{0})^{-1}(r) ∩ (ι^*_1)^{-1}(t) \]

is nonempty if and only if $r ∈ \mathcal{R}(t)$. Moreover, the set (16) is an $H^2(W, ∂W)$-torsor when it is nonempty.

Proof. This follows from Lemma 4.2 and the fact that $Spin^c$ is an H^2-torsor. □

By the long exact sequence

\[0 = H_2(Y_0) → H_2(W) → H_2(W, Y_0) → H_1(Y_0), \]

$H_2(W)$ embeds as an index–2 subgroup of $H_2(W, Y_0) ≅ \mathbb{Z}^{n+1}$. Thus we can extend the intersection form on $H_2(W)$ to $H_2(W, Y_0)$, with value in $\frac{1}{2}\mathbb{Z}$. Let

\[\mathcal{L} ≅ H_2(W, Y_0) ≅ H_2(Z, Z_0) ≅ H_2(Z) \]

be the intersection lattice on the pair (W, Y_0). Suppose that the generators corresponding to the two-handles are x_0, \ldots, x_n, where x_0 corresponds to the two-handle attached along L_0. Let

\[L_0 = \langle 2x_0, x_1, \ldots, x_n \rangle \]

be the sublattice of \mathcal{L} generated by $2x_0, x_1, \ldots, x_n$; then L_0 can be identified with the intersection lattice $H_2(W)$. Let

\[\mathcal{L}^* = Hom(\mathcal{L}, \mathbb{Z}), \mathcal{L}^*_0 = Hom(\mathcal{L}_0, \mathbb{Z}) ⊂ \mathcal{L}^*. \]

Using the inner product on \mathcal{L}, we can embed \mathcal{L}^* and \mathcal{L}^*_0 as sublattices of $\mathcal{L} ⊗ \mathbb{Q}$.

Let

\[\tilde{\mathcal{C}} = \{ y ∈ \mathcal{L}^*_0 | \langle y, 2x_0 \rangle \equiv \langle 2x_0, x_0 \rangle, \langle y, x_j \rangle \equiv \langle x_j, x_j \rangle \ (\text{mod } 2), \ j > 0 \}. \]

Let $H^2(W) = H^2(W)/Tors = \mathcal{L}_0^*$ and let $\tilde{c}_1 : Spin^c(W) → H^2(W)$ be the composition of the map $c_1 : Spin^c(W) → H^2(W)$ and the quotient map $H^2(W) → H^2(W)$. Then $\tilde{\mathcal{C}}$ is the image of \tilde{c}_1.

Proposition 4.4. (1) The quotient $Spin^c(Y_1)/⟨α_1⟩$ can be identified with $\tilde{\mathcal{C}}/2\mathcal{L}$.

(2) Under the previous identification, suppose that the $⟨α_1⟩$-orbit $\{ t, t + α_1 \}$ is identified with $y + 2\mathcal{L}$ for some $y ∈ \tilde{\mathcal{C}}$. Let $\mathcal{R}(t) = \{ ι_0, ι_1 \}$. Then there exist $y_0, y_1 ∈ y + 2\mathcal{L}$, such that

\[\tilde{c}_1((ι^*_0, ι^*_1)^*(r_0, t)) = y_0 + 2\mathcal{L}_0, \quad \tilde{c}_1((ι^*_0, ι^*_1)^*(r_1, t)) = y_1 + 2\mathcal{L}_0, \]

and

\[\tilde{c}_1((ι^*_0, ι^*_1)^*(r_0, t + α_1)) = y_0 + 2\mathcal{L}_0, \quad \tilde{c}_1((ι^*_0, ι^*_1)^*(r_1, t + α_1)) = y_1 + 2\mathcal{L}_0. \]
Proof. (1) By Lemma 4.2, every \(t \in \text{Spin}^c(Y_1) \) is in the image of \(\iota_0^* \), and \(s_1, s_2 \in \text{Spin}^c(W) \) restrict to the same \(t \in \text{Spin}^c(Y_1) \) if and only if \(s_1 - s_2 \in H^2(W, Y_1) \cong H_2(W, Y_0) = \mathcal{L} \). So \(\text{Spin}^c(Y_1) \cong \text{Spin}^c(W) / \mathcal{L} \). Consider the map \(\bar{c}_1 : \text{Spin}^c(W) \to \bar{C} \). It is surjective, and \(\bar{c}_1(s_1) = \bar{c}_1(s_2) \) if and only if \(s_1 - s_2 \in \langle \alpha \rangle \). Using the formula

\[
c_1(s_1) - c_1(s_2) = 2(s_1 - s_2)
\]

we get that \(\text{Spin}^c(Y_1) / \langle \alpha_1 \rangle \cong \text{Spin}^c(W) / (\mathcal{L} + \langle \alpha \rangle) \cong \bar{C} / 2\mathcal{L} \).

(2) By Corollary 4.3, there exist \(s_0, s_1 \in \text{Spin}^c(W) \), such that

\[
(\iota_0^*, \iota_1^*)^{-1}(r_0, t) = s_0 + \mathcal{L}_0, \quad (\iota_0^*, \iota_1^*)^{-1}(r_1, t) = s_1 + \mathcal{L}_0.
\]

Since

\[
\iota_0^*(s_0 + \alpha) = \iota_0^*(s_1) + \alpha_0 = r_0 + \alpha_0 = r_0, \quad \iota_0^*(s_0 + \alpha) = r_1,
\]

we also have

\[
(\iota_0^*, \iota_1^*)^{-1}(r_0, t + \alpha_0) = s_0 + \alpha + \mathcal{L}_0, \quad (\iota_0^*, \iota_1^*)^{-1}(r_1, t + \alpha_1) = s_0 + \alpha + \mathcal{L}_0.
\]

Applying \(\bar{c}_1 \) to the above equalities, we get our conclusion. \(\square \)

For any \(s \in \text{Spin}^c(W) \), let

\[
gr(W, s) = \frac{c_1^2(s) + b_2(W)}{4}.
\]

For any \(t \in \text{Spin}^c(Y_1) \), let

\[
D_W(Y_1, t) = \max_{s \in \text{Spin}^c(W)} (d(Y_0, s|Y_0) + gr(W, s)).
\]

Lemma 4.5. There are exactly two Spin\(^c\) structures \(c_0, c_1 \in \text{Spin}^c(Y_0) \) which can be extended over \(Z_0 \). Moreover,

\[
c_1 = c_0 + \alpha_0, \quad d(Y_0, c_i) = 0, \quad i = 0, 1.
\]

Proof. By Lemma 4.1, \(\alpha_0 \) is the restriction of a cohomology class in \(H^2(Z_0) \). Let \(c_0 \in \text{Spin}^c(Y_0) \) be a Spin\(^c\) structure which is the restriction of a Spin\(^c\) structure on \(Z_0 \), then \(c_1 := c_0 + \alpha_0 \) also extends over \(Z_0 \). Since \(H^2(Z_0) \cong \mathbb{Z} / 2\mathbb{Z} \), \(c_0, c_1 \) are the only two Spin\(^c\) structures which can be extended over \(Z_0 \). It follows from [OS03a, Proposition 9.9] that \(d(Y_0, c_i) = 0 \). \(\square \)

Lemma 4.6. The image of

\[
\bar{c}_1 : (\iota_0^*)^{-1}(\{c_0, c_1\}) \to \overline{\Pi^2}(W)
\]

is \(\mathcal{C} := \text{Char}(\mathcal{L}) \).

Proof. Let \(s_0 \) be the restriction of a Spin\(^c\) structure on \(Z \) to \(W \), then \(s_0 \in (\iota_0^*)^{-1}(\{c_0, c_1\}) \). Clearly, \(\bar{c}_1(s_0) \in \mathcal{C} \). By Lemma 4.1, \(\iota_0^*|_{W,Z} \) is injective, so the image of \(H^2(Z) \) in \(\overline{\Pi^2}(W) \) can be identified with \(Hom(H_2(Z), \mathbb{Z}) = Hom(H_2(W, Y_0), \mathbb{Z}) = \mathcal{L}^* \). Thus \(\bar{c}_1((\iota_0^*)^{-1}(\{c_0, c_1\})) \) is a \(2\mathcal{L}^* \)-torsor. Since \(\mathcal{C} \) is the unique \(2\mathcal{L}^* \)-torsor containing \(\bar{c}_1(s_0) \), our conclusion holds. \(\square \)
Corollary 4.7. The sum
\[\sum_{t \in \text{Spin}^c(Y_1)} D_W(Y_1, t) \]
only depends on the lattice \(L \) and the correction terms of \(Y_0 \).

In fact, if we write (19) as a function
\[\mathcal{D}(L, \{d_0, d_1\}) \]
of \(L \) and the multiset \(\{d_0, d_1\} \) of the correction terms of the two Spin\(^c\) structures other than \(\varepsilon_0, \varepsilon_1 \), then
\[\mathcal{D}(L, \{d_0 + c, d_1 + c\}) = \mathcal{D}(L, \{d_0, d_1\}) + c|L_0^\ast/L| \]
for any \(c \in \mathbb{Q} \). Note that, by Proposition 4.4, \(|H_1(Y_1)| = 2|L_0^\ast/L| \).

Proof. We will give the procedure of computing (19) from \(L \) and the correction terms of \(Y_0 \).

Let \(\varepsilon_0, \varepsilon_1 \) be the two Spin\(^c\) structures other than \(\varepsilon_0, \varepsilon_1 \) on \(Y_0 \). We choose \([z] \in \tilde{C}/2L\). By Proposition 4.4, \([z]\) corresponds to a pair of Spin\(^c\) structures \(t_0, t_1 = t_0 + \alpha_1 \in \text{Spin}^c(Y_1) \).

There are exactly two \(2L_0^\ast\)-torsors contained in \(z + 2L \), denoted by \(T_0, T_1 \).

Next we check whether \(z + 2L \) is contained in \(C \). If it is contained in \(C \), it follows from Lemma 4.6 that each \(t_i \) is cobordant to \(\varepsilon_0 \) and \(\varepsilon_1 \), \(i = 0, 1 \). Since \(d(Y_0, \varepsilon_0) = d(Y_0, \varepsilon_1) = 0 \), by Proposition 4.4,
\[D_W(Y_1, t_0) = D_W(Y_1, t_1) = 0 + \max_{y \in z + 2L} \frac{-\langle y, y \rangle + b_2(W)}{4}. \]

If \(z + 2L \) is not contained in \(C \), then each \(t_i \) is cobordant to \(\varepsilon_0 \) and \(\varepsilon_1 \). By Proposition 4.4, the multiset \(\{D_W(Y_1, t_0), D_W(Y_1, t_1)\} \) is equal to
\[\left\{ \max_{y \in T_0} \frac{-\langle y, y \rangle + b_2(W)}{4}, d(Y_0, \varepsilon_0) = 0, d(Y_0, \varepsilon_1) = 0 \right\}, \]
\[\max_{y \in T} \frac{-\langle y, y \rangle + b_2(W)}{4} \right\}. \]

Finally, to get (19), we add all the \(D_W(Y_1, t_0) + D_W(Y_1, t_1) \) together, for all \([z] \in \tilde{C}/2L\).

The equality (20) follows from the above procedure, since exactly \(\frac{1}{2}|H_1(Y_1)| \) values of \(D_W(Y_1, t) \) are increased by \(c \) after increasing \(d(Y_0, \varepsilon_i) \) by \(c \), \(i = 0, 1 \). \(\square \)

5. Sharp cobordisms

In this section, we will generalize the notion of sharp 4–manifolds defined by Greene [Gre15] to 4–dimensional cobordisms, and prove that certain cobordisms between prism manifolds are sharp. Recall that a smooth, compact, negative definite 4–manifold \(X \) with \(\partial X = Y \) is sharp if for every \(t \in \text{Spin}^c(Y) \), there exists some \(s \in \text{Spin}^c(X) \) extending \(t \) such that
\[c_1(s)^2 + b_2(X) = 4d(Y, t) \]
Definition 5.1. Let $W : Y_0 \to Y_1$ be a smooth, connected, negative definite cobordism between two rational homology spheres Y_0 and Y_1. We say W is **sharp**, if for any $t \in \text{Spin}^c(Y_1)$ we have

$$d(Y_1, t) = D_W(Y_1, t).$$

Here D_W is defined using the formula (18).

Lemma 5.2. Let Y_1, Y_2, Y_3 be rational homology spheres, $W_1 : Y_1 \to Y_2$ and $W_2 : Y_2 \to Y_3$ be two negative definite cobordisms. If $W = W_1 \cup_{Y_2} W_2$ is sharp, then W_2 is sharp.

Proof. Let $s \in \text{Spin}^c(W)$ and let $s_i = s|W_i$, $i = 1, 2$, then

$$c_1^2(s) = c_1^2(s_1) + c_1^2(s_2).$$

Our conclusion follows from the the above equality. □

5.1. **A Kirby diagram of $P(p, q)$.** Suppose that

$$\frac{p}{q} = [a_{-1}, a_0, \ldots, a_n]^-$$

as in (13), where each a_i is ≥ 2 when $i \geq 0$.

![Kirby Diagram](image)

Figure 2. A manifold bounded by $P(p, q)$. If we replace the leftmost component with a dotted circle, we get a negative definite 4–manifold $Z(p, q)$.

Figure 2 is a surgery diagram of $P(p, q)$. The leftmost two components give rise to a surgery diagram of $P(a_{-1}, 1)$, and other components give rise to a negative definite cobordism

$$W(p, q) : P(a_{-1}, 1) \to P(p, q).$$

If we replace the leftmost component, which is unknotted with slope 0, with a dotted circle representing a one-handle, we get a negative definite 4–manifold $Z(p, q)$ bounded by $P(p, q)$, and the two leftmost components give rise to a rational homology ball $Z_{a_{-1}}$ bounded by $P(a_{-1}, 1)$, with $H_1(Z_{a_{-1}}) = \mathbb{Z}/2\mathbb{Z}$.

The main result of this section is the following proposition.

Proposition 5.3. The cobordism $W(p, q)$ is sharp.

For simplicity, we only prove the case $q < p < 2q$. The proof of the general case is similar. From now on, let $W = W(p, q)$.
5.2. More Kirby diagrams. We will consider 3 other cobordisms. When \(q < p < 2q \), \(a_{-1} = 2 \). We have
\[
\frac{2q - (p - q)}{q - (p - q)} = 1 + \frac{q}{2q - p} = [a_0 + 1, a_1, \ldots, a_n]^-,
\]
Consider the following surgery diagram of \(P(p - q, q) \). By [BNOV17], this diagram gives rise to a sharp 4–manifold bounded by \(P(p - q, q) \). The component with label \(-4\) gives rise to \(P(1, 1) = L(4, -1) \), and the other two-handles give rise to a cobordism
\[
W_1 : P(1, 1) \to P(p - q, q).
\]

![Figure 3. A sharp 4–manifold \(X(p - q, q) \) bounded by \(P(p - q, q) \).](image)

Let
\[
\frac{p + q}{p} = [a'_0, a'_1, \ldots, a'_m]^-.
\]
By [BHM+16], \(P(p, -q) \) has a surgery diagram as in Figure 4, which gives rise to a sharp 4–manifold bounded by \(P(p, -q) \). The two components with label \(-2\) give rise to \(P(0, 1) = \mathbb{RP}^3 \# \mathbb{RP}^3 \), and the other two-handles give rise to a cobordism
\[
W' : P(0, 1) \to P(p, -q).
\]
Using the continued fraction
\[
\frac{-2q - (p - q)}{-q - (p - q)} = \frac{p + q}{p} = [a'_0, a'_1, \ldots, a'_m]^-,
\]
by [BNOV17], we get a surgery diagram of \(P(p - q, -q) \) as in Figure 5, which gives rise to a sharp 4–manifold bounded by \(P(p - q, -q) \). The component with label \(-4\) gives rise to \(P(1, 1) = L(4, -1) \), and the other two-handles give rise to a cobordism
\[
W'_1 : P(1, 1) \to P(p - q, -q).
\]
By Lemma 5.2, \(W_1, W', W'_1 \) are all sharp cobordisms.

Lemma 5.4. The intersection lattices on \((W, P(2, 1))\) and \((W_1, P(1, 1))\) are isomorphic; also, the intersection lattices on \((W', P(0, 1))\) and \((W'_1, P(1, 1))\) are isomorphic.
Proof. In Figure 2, consider the knot L_0 with label $-a_0$. The canonical longitude on L_0 is clearly rationally null-homologous in $P(2, 1) \setminus L_0$. As a result, the square of the generator of $H_2(W, P(2, 1))$ corresponding to the two-handle attached along L_0 is $-a_0$. In Figure 3, consider the knot K_0 with label $-(a_0 + 1)$. If the framing on K_0 is -1, the manifold we get by doing surgery on the two leftmost components is $P(1, 0)$ which has $b_1 > 0$. Thus the slope -1 on K_0 is rationally null-homologous in $P(1, 1) \setminus K_0$. As a result, the square of the generator of $H_2(W_1, P(1, 1))$ corresponding to the two-handle attached along K_0 is $-a_0$. So the intersection lattices on $(W, P(2, 1))$ and $(W_1, P(1, 1))$ are isomorphic.

Similarly, we see that the square of the generator of $H_2(W', P(0, 1))$ and $H_2(W'_1, P(1, 1))$ corresponding to the two-handle attached along the knot with label $-a'_0$ is $-(a'_0 - 1)$. So the intersection lattices are isomorphic. □

Lemma 5.5. All four cobordisms W, W_1, W', W'_1 satisfy the assumptions in the beginning of Section 4.

Proof. The cobordism W satisfies the assumptions by its construction.
For W_1, W'_1, notice that $P(1, 1)$ bounds a rational homology ball Z_1 with $H_1(Z_1) \cong \mathbb{Z}/2\mathbb{Z}$. Since $H_1(P(1, 1))$ is cyclic, the kernel of the surjective map $H_1(P(1, 1)) \to H_1(Z_1)$ is $2H_1(P(1, 1))$. From Figures 3 and 5, we see that the knot with label $-(a_0 + 1)$ or $-a'_0$ represents an element in $2H_1(P(1, 1))$. So W_1, W'_1 satisfy the assumptions.

For W', the rational ball bounded by $\mathbb{R}P^3 \# \mathbb{R}P^3$ is $Z_0 = (\mathbb{R}P^3 \setminus B^3) \times I$. Clearly, the knot labeled with $-a'_0$ in Figure 4 is null-homologous in Z_0. □

5.3. The proof of Proposition 5.3. Recall from Section 5.1 that $P(a, 1)$ bounds a rational homology ball Z_a with $H_1(Z_a) \cong \mathbb{Z}/2\mathbb{Z}$. There are exactly two Spinc structures $\mathfrak{o}_0, \mathfrak{e}_1 \in \text{Spin}^c(P(a, 1))$ which extend over Z_a. Let $\mathfrak{o}_0, \mathfrak{o}_1 \in \text{Spin}^c(P(a, 1))$ be two other Spinc structures, such that $d(P(a, 1), \mathfrak{o}_0) \geq d(P(a, 1), \mathfrak{e}_0)$.

Lemma 5.6. The correction terms of $P(a, 1)$ are

$$d(P(a, 1), \mathfrak{o}_0) = d(P(a, 1), \mathfrak{e}_1) = 0,$$

$$d(P(a, 1), \mathfrak{o}_0) = -\frac{a + 2}{4}, \quad d(P(a, 1), \mathfrak{o}_1) = -\frac{a - 2}{4}.$$

Proof. The correction terms of $P(a, 1)$ are computed in [Doi15, Example 15], and they are $\{0, 0, -\frac{a + 2}{4}, -\frac{a - 2}{4}\}$. It is a standard fact that $d(P(a, 1), \mathfrak{e}_i) = 0, i = 0, 1$ [OS03a, Proposition 9.9]. So we must have $d(P(a, 1), \mathfrak{o}_i) = -\frac{a + 2}{4} + i, i = 0, 1$, by our choice of $\mathfrak{o}_0, \mathfrak{o}_1$. □

Proof of Proposition 5.3 in the case $a_1 = 2$. By [OS03a, Theorem 9.6],

$$d(P(p, q), t) \geq D_W(P(p, q), t). \quad (21)$$

Also, since W_1, W', W'_1 are sharp, we have

$$d(P(p - q, q), t_1) = D_{W_1}(P(p - q, q), t_1),$$

$$d(P(p, -q), t) = D_{W'}(P(p, -q), t),$$

$$d(P(p - q, -q), t_1) = D_{W'_1}(P(p - q, -q), t_1).$$

By Corollary 4.7, Lemma 5.4 and Lemma 5.6,

$$\sum_{t \in \text{Spin}^c(P(p, q))} D_W(P(p, q), t) = -\frac{2q}{4} + \sum_{t_1 \in \text{Spin}^c(P(p - q, q))} D_{W_1}(P(p - q, q), t_1),$$

$$-\frac{2q}{4} + \sum_{t \in \text{Spin}^c(P(p, -q))} D_{W'}(P(p, -q), t) = \sum_{t_1 \in \text{Spin}^c(P(p - q, -q))} D_{W'_1}(P(p - q, -q), t_1).$$
Adding the above two equalities together, and using (21) and the three equalities after it, we get

\[
0 = \sum_{t \in \text{Spin}^r(P(p,q))} d(P(p,q), t) + \sum_{t \in \text{Spin}^r(P(p,-q))} d(P(p,-q), t) \\
\geq \sum_{t \in \text{Spin}^r(P(p,q))} D_W(P(p,q), t) + \sum_{t \in \text{Spin}^r(P(p,-q))} D_W(P(p,-q), t) \\
= \sum_{t_1 \in \text{Spin}^r(P(p-q,q))} D_{W_1}(P(p-q,q), t_1) + \sum_{t_1 \in \text{Spin}^r(P(p-q,-q))} D_{W_1}(P(p-q,-q), t_1) \\
= \sum_{t_1 \in \text{Spin}^r(P(p-q,q))} d(P(p-q,q), t_1) + \sum_{t_1 \in \text{Spin}^r(P(p-q,-q))} d(P(p-q,-q), t_1) \\
= 0.
\]

So the equality in (21) must hold. \(\square\)

6. The changemaker condition when \(q < p < 2q\)

6.1. Positive definite manifold with boundary \(P(2,1)\). The goal of this subsection is to prove the following proposition.

Proposition 6.1. If \(X\) is a positive definite, simply connected four-manifold with \(\partial X \cong P(2,1)\), then the intersection form of \(X\) is isomorphic to \(D_4 \oplus \mathbb{Z}^{n-4}\) for some \(n\).

Lemma 6.2. If \(L \subset \mathbb{Z}^n\) is an index-two sublattice, then \(L \cong D_k \oplus \mathbb{Z}^{n-k}\) for some \(k \geq 1\). (In fact, there are indices \(i_1, \ldots, i_k\) such that \(L\) contains exactly the elements of \(\mathbb{Z}^n\) that have even pairing with \(e_{i_1} + \cdots + e_{i_k}\).) There are always two elements \(x \in \mathcal{T}\) with \(b(x,x) = 0 \pmod{1}\), and the other two elements satisfy \(b(x,x) = k/4 \pmod{1}\).

Proof. Let \(L \subset \mathbb{Z}^n\) have index two, and let \(i_1, \ldots, i_k\) be an enumeration of the indices \(i\) for which \(e_i \notin L\). Since \(L\) has index two, the elements \(\pm e_{i_j} \pm e_{i_j}\), are all in \(L\). Since these elements generate \(D_k\), we have \(L \cong D_k \oplus \mathbb{Z}^{n-k}\).

The dual lattice \(L^*\) is the set of elements of \(\mathbb{Q}^n\) with integral inner product with each element of \(L\), and in this representation we have that \(L^*\) is the set of vectors with integer components in all entries other than \(i_1, \ldots, i_k\), and with the components in entries \(i_1, \ldots, i_k\) either all integers or all half integers. Therefore, the discriminant group \(\mathcal{T}\) can be represented by the four vectors \(0, z = e_{i_1}, \text{ and} \)

\[
a = \frac{1}{2} (e_{i_1} + e_{i_2} + \cdots + e_{i_k}),
\]

\[
b = \frac{1}{2} (-e_{i_1} + e_{i_2} + \cdots + e_{i_k}).
\]

We have \(\langle z, z \rangle = 1 \equiv 0 \pmod{1}\), and \(\langle a, a \rangle = \langle b, b \rangle = k/4\). \(\square\)

Lemma 6.3. The \(d\)-invariant of \(L = D_k \oplus \mathbb{Z}^{n-k}\) takes on the values \(0,0,-k/4,1-k/4\).
Proof. The \(d \)-invariant is invariant under stable isomorphisms, so we can assume \(L = D_k \). Then a set of short representatives of the classes of characteristic covectors is \((1,\ldots,1)\), \((-1,\ldots,1)\), \((0,\ldots,0)\), and \((2,0,\ldots,0)\). These have norms \(k \), \(k \), \(0 \), and \(4 \). The result now follows: see Equation (12).

Proof of Proposition 6.1. As in Section 5.1, \(P(2,1) \) bounds a rational homology ball \(Z_2 \) with

\[
H_1(Z_2) \cong \mathbb{Z}/2\mathbb{Z}, \quad H_2(Z_2) = 0.
\]

If \(X \) is any simply connected positive definite 4-manifold with boundary \(P(2,1) \), then \(\hat{X} := X \cup_{P(2,1)} (-Z_2) \) is a closed, positive definite 4-manifold. Since \(\hat{X} \) can be obtained from \(X \) by attaching a two-handle, a three-handle and a four-handle, \(\hat{X} \) is also simply connected. By [Don83], \(\hat{X} \) has intersection form \(\mathbb{Z}^n \).

In the long exact sequence for the pair \((\hat{X},X)\), we have

\[
H_3(\hat{X},X) \to H_2(X) \to H_2(\hat{X}) \to H_2(\hat{X},X) \to H_1(X).
\]

We have \(H_3(\hat{X},X) \cong H_3(Z_2,\partial Z_2) \cong H^1(Z_2) = 0 \), \(H_2(\hat{X},X) \cong H^2(Z_2) \cong \mathbb{Z}/2\mathbb{Z} \), \(H_1(X) = 0 \), and both \(H_2(X) \) and \(H_2(\hat{X}) \) are torsionfree. Therefore, we have a short exact sequence

\[
0 \to H_2(X) \to H_2(\hat{X}) \to \mathbb{Z}/2\mathbb{Z} \to 0,
\]

so \(H_2(X) \) is an index-two subgroup of \(H_2(\hat{X}) \) under the natural inclusion map. Since \(\hat{X} \) has intersection lattice \(\mathbb{Z}^n \), the intersection lattice of \(X \) is an index-two sublattice of \(\mathbb{Z}^n \), so, by Lemma 6.2, is isomorphic to \(D_k \oplus \mathbb{Z}^{n-k} \).

Let \(X_0 \) be the positive definite plumbing 4-manifold with intersection form \(D_4 \), then \(P(2,1) = \partial X_0 \). Since the discriminant group and linking pairing of the intersection form of a 4-manifold are invariants of its boundary, Lemma 6.2 implies that \(k \) must be divisible by 4. Since the \(d \)-invariant of the intersection form of a positive definite 4-manifold gives an upper bound on the \(d \)-invariant of its boundary [OS03a] and \(-X_0\) is sharp [OS03b], Lemma 6.3 implies that \(k \leq 4 \). Therefore, \(k = 4 \), and the result follows. \(\square \)

Corollary 6.4. Any negative definite, simply connected 4-manifold with boundary \(-P(2,1)\) is sharp.

Proof. The 4–manifold \(-X_0\) is sharp. By Proposition 6.1, any negative definite, simply connected 4-manifold with boundary \(-P(2,1)\) has the same intersection form as that of \(-X_0\#(n - 4)CP^2\). \(\square \)

6.2. The changemaker condition. Whenever \(q < p < 2q \), using Proposition 5.3, there is a sharp cobordism \(W \) from \(P(2,1) \) to \(P(p,q) \). Suppose \(P(p,q) \) is positive surgery on some knot \(K \subset S^3 \). Let \(X = W \cup_{P(p,q)} (-W_{4q}(K)) \), then \(X \) is a negative definite manifold with boundary \(-P(2,1)\). Since \(X \) is obtained from \(W_{4q} \) (which is simply connected) by adding two-handles, \(X \) is simply connected. By combining Corollary 6.4 and Proposition 6.1, \(X \) is sharp and has intersection lattice \(-D_1 \oplus \mathbb{Z}^{n-2} \). Also, for \(Z_2 \) the rational homology ball with boundary \(P(2,1) \), the manifold \(\tilde{X} = X \cup_{P(2,1)} (-Z_2) \) is closed, simply connected and negative definite,
so has intersection lattice $-\mathbb{Z}^{n+2}$. From Kirby diagrams for W and $Z = W \cup P_{(2,1)} (-Z_2)$ (see Figure 2), we can also see that the intersection lattice of Z is the linear lattice $\Lambda(q, -p)$ with vertex basis x_0, \ldots, x_n, and the intersection lattice of W is (as a sublattice of $\Lambda(q, -p)$) spanned by $2x_0, x_1, \ldots, x_n$. Therefore, the following diagram of homology groups

$\begin{array}{ccc}
H_2(W) & \longrightarrow & H_2(Z) \\
\downarrow & & \downarrow \\
H_2(X) & \longrightarrow & H_2(\hat{X})
\end{array}$

with maps induced by inclusions is isomorphic to the diagram

$\begin{array}{ccc}
\langle 2x_0, x_1, \ldots, x_n \rangle & \longrightarrow & \langle x_0, x_1, \ldots, x_n \rangle = -\Lambda(q, -p) \\
\downarrow & & \downarrow \\
-(D_4 \oplus \mathbb{Z}^{n-2}) & \longrightarrow & -\mathbb{Z}^{n+2}.
\end{array}$

Lemma 6.5. Regarding $H_2(W)$ as subgroups of $H_2(Z)$ and $H_2(X)$, which are subgroups of $H_2(\hat{X})$, then

$H_2(W) = H_2(Z) \cap H_2(X).$

Proof. By the exact sequence $H_2(Z) \to H_2(\hat{X}) \to H_2(\hat{X}, Z)$, an element $\beta \in H_2(\hat{X})$ is contained in the image of $H_2(Z)$ if and only if the image of β in $H_2(\hat{X}, Z) \cong H_2(W_{4q}(K), \partial W_{4q}(K))$ is zero. Similarly, β is contained in the image of $H_2(X)$ if and only if the image of β in $H_2(\hat{X}, X) \cong H_2(Z_2, \partial Z_2)$ is zero, and β is contained in the image of $H_2(W)$ if and only if the image of β in $H_2(\hat{X}, W) \cong H_2(Z_2, \partial Z_2) \oplus H_2(W_{4q}(K), \partial W_{4q}(K))$ is zero. Our conclusion follows easily. \qed

The last piece of data we need is the class $[\hat{F}] \in H_2(-W_{4q}(K)) \subset H_2(X)$, where \hat{F} is obtained by smoothly gluing the core of the handle attachment to a copy of a minimal genus Seifert surface F for K; its homology class generates the second homology. Note that $H_2(-W_{4q}(K))$ is orthogonal to all of $H_2(W)$ and satisfies $\langle [\hat{F}], [\hat{F}] \rangle = -4q$ since $-W_{4q}(K)$ is negative definite. Let

$\varphi : \mathbb{Z}/4q\mathbb{Z} \to \text{Spin}^c(P(p, q))$

be the correspondence with $\varphi(i)$ equal $s_0|_{p(q, q)}$ for s_0 any Spinc structure on $-W_{4q}(K)$ satisfying

$\langle c_1(s_0), [\hat{F}] \rangle \equiv -4q + 2i \pmod{8q}.

Proposition 6.6. There is an extension $r \in \text{Spin}^c(X)$ of $\varphi(i)$ over X with $c_1(r)$ a short characteristic covector of $D_4 \oplus \mathbb{Z}^{n-2}$ if and only if $g(K) \leq i \leq 4q - g(K)$.

Proof. Since X has boundary $-P(2, 1)$ and $b_2(X) = n + 2$, we have that for any $r \in \text{Spin}^c(X)$,

$d(-P(2, 1), r|_{P(2, 1)}) \geq \frac{(c_1(r))^2 + (n + 2)}{4}, \quad (22)$
and since X is sharp this is an equality if and only if $c_1(\tau)$ is a short characteristic covector of $-H_2(X) = D_4 \oplus \mathbb{Z}^{n-2}$. Similarly, for any $s_1 \in \text{Spin}^c(W)$,
\[
d(P(p, q), s_1|_{P(p, q)}) \geq d(P(2, 1), s_1|_{P(2, 1)}) + \frac{(c_1(s_1))^2 + (n + 1)}{4}
\] (23)
and since W is sharp as a cobordism, for each $t \in \text{Spin}^c(P(p, q))$ there is some $s_1 \in \text{Spin}^c(W)$ such that this is an equality and $s_1|_{P(p, q)} = t$.

For $s_0 \in \text{Spin}^c(-W_{4q}(K))$ with
\[
\langle c_1(s_0), [\hat{F}] \rangle = -4q + 2i
\]
(so that in particular $\varphi(i) = s_0|_{P(p, q)}$), we have
\[
(c_1(s_0))^2 = -\frac{(4q - 2i)^2}{4q}.
\]
Using (8) and (9), we have
\[
d(P(p, q), s_0|_{P(p, q)}) = \frac{-(c_1(s_0))^2 - 1}{4} - 2t_{\min(i, 4q - i)}(K).
\]
Since $t_i(K) \geq 0$ and (5),
\[
d(P(p, q), s_0|_{P(p, q)}) \leq \frac{-(c_1(s_0))^2 - 1}{4}
\] (24)
with equality if and only if $\langle c_1(s_0), [\hat{F}] \rangle = -4q + 2i$ for some i with $g(K) \leq i \leq 4q - g(K)$. Note that inequality (22) is the difference of inequalities (24) and (23) if $s_0|_{P(p, q)} = s_1|_{P(p, q)}$. If $g(K) \leq i \leq 4q - g(K)$, then there is some extension s_0 of $\varphi(i)$ over $-W_{4q}(K)$ that achieves equality in (24), and there is always some extension s_1 of $\varphi(i)$ over W achieving equality in (23). These two Spinc structures glue to a Spinc structure τ on $X = W \cup (-W_{4q}(K))$ that will achieve equality in (22), so $c_1(\tau)$ is short and $\tau|_{P(p, q)} = \varphi(i)$.

Conversely, if $\tau \in \text{Spin}^c(X)$ has $c_1(\tau)$ short, then τ achieves equality in (22), so $s_0 = \tau|_{-W_{4q}(K)}$ and $s_1 = \tau|_W$ will achieve equality in (23) and (24), respectively. Therefore, $s_0|_{P(p, q)} = \tau|_{P(p, q)}$ will equal $\varphi(i)$ for some $g(K) \leq i \leq 4q - g(K)$. □

Putting all of these together, we have a Euclidean lattice $\mathbb{Z}^{n+2} = -H_2(\hat{X})$, with a corank–1, linear sublattice
\[
-H_2(W) \cong \Lambda(q, -p) = \langle x_0, \ldots, x_n \rangle
\]
and a sublattice $D_4 \oplus \mathbb{Z}^{n-2} = -H_2(X)$ such that
\[
\langle 2x_0, \ldots, x_n \rangle = \langle x_0, \ldots, x_n \rangle \cap (D_4 \oplus \mathbb{Z}^{n-2}).
\] (25)
Since $\Lambda(q, -p)$ has discriminant q and corank 1 and is embedded primitively in \mathbb{Z}^{n+2} (this follows from the long exact sequence of the pair $(X \cup Z_0, W \cup Z_0)$), the orthogonal complement of $\Lambda(q, -p)$ has discriminant q and rank 1, so is generated by a vector σ with $\langle \sigma, \sigma \rangle = q$. Since $|(|[\hat{F}], [\hat{F}]|) = 4q$ and $[\hat{F}]$ is contained in the orthogonal complement of $\Lambda(q, -p)$, we must have $[\hat{F}] = 2\sigma$. Therefore, Proposition 6.6 gives the following:
Proposition 6.7. If \(P(p,q) \) is the result of 4q surgery on some knot \(K \subset S^3 \) and \(q < p < 2q \), then there is an embedding of \(\Lambda(q,-p) \) into \(\mathbb{Z}^{n-2} \) as the orthogonal complement of a vector \(\sigma \) and an embedding \(D_4 \oplus \mathbb{Z}^{n-2} \hookrightarrow \mathbb{Z}^{n+2} \) such that there exists some short characteristic covector \(\chi \) for \(D_4 \oplus \mathbb{Z}^{n-2} \) with \(\langle \chi, \sigma \rangle = 2q - i \) if and only if \(-2q + g(K) \leq i \leq 2q - g(K)\).

Pushing the logic of Proposition 6.6 a little further, the Alexander polynomial of \(K \) can be recovered from \(\sigma \):

Proposition 6.8. For \(0 \leq i \leq 2q \), the torsion coefficient \(t_i(K) \) satisfies

\[
t_i(K) = \min_{\chi \in \text{Char}(D_4 \oplus \mathbb{Z}^{n-2})} \left[\frac{\langle \chi, \chi \rangle - n - 2}{8} \right].
\]

Proof. Since \(\hat{F} = 2\sigma \) and the intersection lattice on \(X \) is \(D_4 \oplus \mathbb{Z}^{n-2} \), any characteristic covector \(\chi \) for \(D_4 \oplus \mathbb{Z}^{n-2} \) with \(\langle \chi, \sigma \rangle = 2q - i \) is the first Chern class of a Spin\(^c\) structure \(\tau \) on \(X \) with

\[
\langle c_1(\tau), [\hat{F}] \rangle = -4q + 2i.
\]

(Note that we need to change the sign of the inner product.) Then, exactly as in the proof of Proposition 6.6, the restriction of \(\tau \) to \(-W_{4q} = -W_{4q}(K)\) satisfies

\[
d(P(p,q), \tau|_{P(p,q)}) = \frac{-(c_1(\tau|_{-W_{4q}}))^2 - 1}{4} - 2t_i(K).
\]

Let \(s_1 \) be the restriction of \(\tau \) to \(W \), then \(s_1 \) satisfies

\[
d(P(p,q), s_1|_{P(p,q)}) \geq d(P(2,1), s_1|_{P(2,1)}) + \frac{(c_1(s_1))^2 + (n + 1)}{4}
\]

Combining (27) and (28) together,

\[
t_i(K) \leq \frac{-(c_1(\tau))^2 - (n + 2)}{8} - \frac{d(P(2,1), \tau|_{P(2,1)})}{2}.
\]

Using Proposition 5.3, some \(s_1 \in \text{Spin}^c(W) \) achieves equality in (28) with \(s_1|_{P(p,q)} = \varphi(i) \). Let \(\tau \in \text{Spin}^c(X) \) be the extension of \(s_1 \) with (26), then \(\tau \) achieves equality in (29). Therefore,

\[
t_i(K) = \min_{\tau \in \text{Spin}^c(X)} \left[\frac{-(c_1(\tau))^2 - (n + 2)}{8} - \frac{d(P(2,1), \tau|_{P(2,1)})}{2} \right].
\]

Since \(t_i(K) \) is an integer and \(d(P(2,1), \tau|_{P(2,1)}) \) will always be either 0 or -1, we get

\[
t_i(K) = \min_{\tau \in \text{Spin}^c(X)} \left[\frac{-(c_1(\tau))^2 - (n + 2)}{8} \right].
\]

Finally, Spin\(^c\) structures \(\tau \) on \(X \) with (26) correspond (under the first Chern class and a change in the sign of the inner product) with characteristic covectors \(\chi \) of \(D_4 \oplus \mathbb{Z}^{n-2} \) with \(\langle \chi, \sigma \rangle = 2q - i \), and \(- (c_1(\tau))^2 = \langle \chi, \chi \rangle \), so the desired formula follows. \(\square \)
By Proposition 6.1, specifying a sublattice $D_4 \oplus \mathbb{Z}^{n-2} \subset \mathbb{Z}^{n+2}$ is equivalent to choosing 4 indices $a > b > c > d$ such that for $v \in \mathbb{Z}^{n+2}$, $v \in D_4 \oplus \mathbb{Z}^{n-2}$ if and only if \(\langle v, e_a + e_b + e_c + e_d \rangle \) is even. The characteristic covectors for $D_4 \oplus \mathbb{Z}^{n-2}$ come in two types: those that are the restrictions of characteristic covectors of \mathbb{Z}^{n+2}, which can be represented by elements of \mathbb{Z}^{n+2} with all entries odd, and those that are not, which can be represented by elements of \mathbb{Z}^{n+2} with the entries in positions a, b, c, and d even and all other entries odd. Call these two types of covectors even and odd, respectively. The short characteristic covectors are exactly the ones with all odd entries equal to ± 1, and the even entries (if any) equal to ± 2, 0, 0, and 0 in some order.

As in [Gre13], we will assume $\sigma = (\sigma_0, \sigma_1, \ldots, \sigma_{n+1})$ with

\[0 \leq \sigma_0 \leq \sigma_1 \leq \cdots \leq \sigma_{n+1}. \]

Moreover, we can assume that for any two indices $i, j \in \{0, 1, \ldots, n+1\}$, we always have

\[i > j, \quad \text{if } \sigma_i = \sigma_j, i \in \{a, b, c, d\}, \text{ and } j \notin \{a, b, c, d\}. \quad (32) \]

Definition 6.9. Let $\text{Short}(D_4 \oplus \mathbb{Z}^{n-2}) = \text{Short}_0 \cup \text{Short}_1$, with $\text{Short}_0 = \text{Short}(\mathbb{Z}^n)$ the set of even short characteristic covectors and $\text{Short}_1 = \text{Short}(D_4 \oplus \mathbb{Z}^{n-2}) - \text{Short}_0$ the set of odd characteristic covectors. Let

\[\chi^0 = -\sum_{i=0}^{n+3} e_i \]

and

\[\chi^1 = -2e_a - \sum_{i \notin \{a, b, c, d\}} e_i \]

be the elements of Short_0 and Short_1, respectively, minimizing $\langle \chi, \sigma \rangle$. Let

\[T_0 = \left\{ \frac{1}{2}(\chi - \chi^0) \mid \chi \in \text{Short}_0 \right\} \]

and

\[T_1 = \left\{ \frac{1}{2}(\chi - \chi^1) \mid \chi \in \text{Short}_1 \right\} \]

be called the sets of even and odd test vectors, respectively.

For $\chi \in \mathbb{Z}^{n+2}$, let χ_i denote the component of χ corresponding to the index i. The following result is easy to see.

Proposition 6.10. For $\chi \in T_1$, $(\chi_d, \chi_c, \chi_b, \chi_a) = (\pm 1, 0, 0, 1)$ or $(0, \pm 1, 0, 1)$ or $(0, 0, \pm 1, 1)$ or $(0, 0, 0, 2)$ or $(0, 0, 0, 0)$.

Proposition 6.11. The sets $\{\langle \chi, \sigma \rangle \mid \chi \in T_0\}$ and $\{\langle \chi, \sigma \rangle \mid \chi \in T_1\}$ are both intervals of integers beginning at 0. Also,

\[\sum_{i=0}^{n+1} \sigma_i = \max\{\langle \chi, \sigma \rangle \mid \chi \in T_0\} = \max\{\langle \chi, \sigma \rangle \mid \chi \in T_1\} \pm 1. \quad (33) \]
Proof. By Proposition 6.7, the set \(\{ \langle \chi, \sigma \rangle \mid \chi \in \text{Short}(D_4 \oplus \mathbb{Z}^{n-2}) \} \) is an interval of integers. For each \(i \in \{0, 1\} \), the set \(\{ \langle \chi, \sigma \rangle \mid \chi \in \text{Short}_i \} \) contains the elements of this interval with the same parity. So the parities are different for \(i = 0 \) and \(i = 1 \). In particular, both sets are arithmetic progressions of step size 2, so subtracting off the smallest element and dividing by 2 gives intervals beginning at 0. \(\square \)

Corollary 6.12. \(\sigma \) is a changemaker.

Proof. The set \(T_0 \) consists of just vectors with all entries 0 or 1. \(\square \)

Proof of Theorem 1.7. This follows from the combination of Corollary 6.12 and Proposition 6.7. \(\square \)

Corollary 6.13. \(\sigma_a = \sigma_b + \sigma_c + \sigma_d + \theta \), where \(\theta \in \{-1, 1\} \).

Proof. Using (33), we see that
\[
\sum_{i=0}^{n+1} \sigma_i = 2e_a + \left(\sum_{j \notin \{a, b, c, d\}} \sigma_j \right) \pm 1.
\]
The result is now immediate. \(\square \)

Lemma 6.14. An irreducible vector \(v \in \sigma^\perp \) has an odd pairing with the vector \(e_a + e_b + e_c + e_d \) if and only if \([v] \) contains \(x_0 \).

Proof. Suppose \(v \in \sigma^\perp \) is irreducible. The pairing \(\langle v, e_a + e_b + e_c + e_d \rangle \) is even if and only if \(v \in D_4 \oplus \mathbb{Z}^{n-2} \), which is equivalent to \(v \in \langle 2x_0, \ldots, x_n \rangle \) by (25). Since \(v \) is irreducible, \(v \notin \langle 2x_0, \ldots, x_n \rangle \) if and only if \([v] \) contains \(x_0 \). \(\square \)

Let
\[
G = 1 + \sigma_0 + \sigma_1 + \cdots + \sigma_{d-1}.
\]

(34)

Lemma 6.15. There exists \(\chi \in T_1 \) with \(\langle \chi, \sigma \rangle = G \). Let \(f \) be the minimal index such that \(f > d \) and \(f \notin \{a, b, c\} \).

If \(\chi_a = 0 \), then
\[
G \geq \sigma_f.
\]

If \(\chi_a \neq 0 \), then
\[
G \geq \sigma_a - \sigma_b = \sigma_c + \sigma_d + \theta.
\]

Proof. Using Proposition 6.11, there exists \(\chi \in T_1 \) with \(\langle \chi, \sigma \rangle = G \). If \(\chi_a = 0 \), by Proposition 6.10 we have \(\chi_b = \chi_c = \chi_d = 0 \), then there must be an index \(i > d, i \notin \{a, b, c\} \), with \(\chi_i \neq 0 \) as otherwise \(\langle \chi, \sigma \rangle < G \). So
\[
G = \langle \chi, \sigma \rangle \geq \sigma_i \geq \sigma_f.
\]

If \(\chi_a \neq 0 \), by Proposition 6.10 we have
\[
G = \langle \chi, \sigma \rangle \geq \sigma_a - \sigma_b = \sigma_c + \sigma_d + \theta.
\] \(\square \)
7. Bounding d

In this section, we will prove that $d = 0$. We assume that $d > 0$ for contradiction.

Recall that we write $(e_0, e_1, \ldots, e_{n+1})$ for the orthonormal basis of \mathbb{Z}^{n+2}, and $\sigma = \sum \sigma_i e_i$. Since $\Lambda(q, -p)$ is indecomposable (Proposition 3.8), $\sigma_0 \neq 0$, otherwise σ^\perp would have a direct summand \mathbb{Z}. So $\sigma_0 = 1$. By Lemma 6.14, we have that $[v_d]$ contains x_0. Set

$$w = \theta e_0 + e_d + e_c + e_b - e_a,$$

where $\theta \in \{-1, 1\}$ is as in Corollary 6.13.

Lemma 7.1. w is an irreducible vector of σ^\perp. Also, $x_0 \notin [w]$.

Proof. Corollary 6.13 shows that w is in σ^\perp. Suppose $w = x + y$ with $x, y \in \sigma^\perp$ and $\langle x, y \rangle \geq 0$. If both x, y are nonzero, by Lemma 3.14 we may assume that one of the vectors is $e_d - e_0$ and the other is $-e_a + e_b + e_c$. Both vectors will then be irreducible and $x_0 \in [x], [y]$. That implies $\langle x, y \rangle \neq 0$, which is a contradiction. The second statement is immediate from Lemma 6.14. \[\square\]

Corollary 7.2. If one of the following two conditions holds, then $\theta = 1$:

1. $\sigma_d = 1$;
2. there exists a vector v with $\langle v, e_0 \rangle = -\langle v, e_d \rangle = 1$, $\max \text{supp}(v) = d$ and $|\langle v, w \rangle| \leq 1$.

Proof. If $\sigma_d = 1$ and $\theta = -1$, then $w = (-e_0 + e_d) + (e_c + e_b - e_a)$ is reducible, a contradiction to Lemma 7.1.

If there exists a vector v as in the statement, then since $\langle v, e_0 \rangle = -\langle v, e_d \rangle = 1$ and $\max \text{supp}(v) = d$, we have $\langle v, w \rangle = \theta - 1$. Using $|\langle v, w \rangle| \leq 1$, we have $\theta = 1$. \[\square\]

Remark 7.3. When $d > 0$, we have $[v_d]$ contains x_0. For any $0 < i < d$, $[v_i]$ does not contain x_0. Also, $\text{supp}(v_i) \cap \text{supp}(w) = \emptyset$ or $\{0\}$, so $|\langle w, v_i \rangle| \leq 2$.

Lemma 7.4. Suppose that $0 \notin \text{supp}(v_d)$, then $[v_d] \nmid [w]$.

Proof. We can compute $\langle w, v_d \rangle = -1$. Assume that $[v_d] \nmid [w]$ does not happen, then either $[v_d] \prec [w]$ or $[v_d] \nmid [w]$. Note that $x_0 \in [v_d]$ and $x_0 \notin [w]$.

If $[v_d] \prec [w]$, then $|v_d| = 2$, and $[w]$ and $[v_d]$ share their right end. This is not possible since $|w| > |v_d|$.

If $[v_d] \nmid [w]$, then $|[v_d] \cap [w]| = 3$, and there exists $\epsilon \in \{-1, 1\}$ such that $w = \epsilon [w]$ and $v_d = -\epsilon [v_d]$. So $w + v_d = x + y$ with $[x]$ and $[y]$ being distant, and we may assume $x_0 \in [x]$.

Since v_d is not tight, v_d is unbreakable. So $|v_d| = |[w] \cap [v_d]| = 3$, and $|x| = 2$. We get $v_d = e_i + e_{d-1} - e_d$ for some $0 < i < d - 1$, and

$$w + v_d = \theta e_0 + e_i + e_{d-1} + e_c + e_b - e_a.$$

Using Lemma 3.14 and the fact that $x_0 \in [x]$, we have either $x = e_j - e_0$ for some $j \in \{0, i, d-1\}$ or $x = -e_0 + e_k$ for some $k \in \{c, b\}$. If $x = e_j - e_0$, then $\sigma_j = \sigma_a = \sigma_b$, contradicting Corollary 6.13. If $x = -e_0 + e_k$, then $\theta = -1$ and $\sigma_d = \sigma_k = 1$, contradicting Corollary 7.2. \[\square\]
Lemma 7.5. Suppose that $0 \notin \text{supp}(v_d)$ and $|(v_i, v_d)| = 1$ for some i with $0 < i < d$. Then $i = 1$.

Proof. Since $i < d$, $x_0 \notin [v_i]$ by Lemma 6.14. We have $[v_d] \uparrow [w]$ by Lemma 7.4.

If $[v_i] \uparrow [v_d]$, then $[v_i]$ and $[w]$ share their left end. If $|v_i| > 2$, we have $2 \leq |(v_i, w)|$, hence $(v_i, e_0) = 2$ and v_i is tight. If we also have $i > 1$, then $|v_i| \geq 6 > |w|$, so $|(v_i, w)| = |w| - 1 = 4$, which is not possible. So in order to prove $i = 1$, we only need to assume $|v_i| = 2$ in this case.

If $[v_i]$ and $[v_d]$ share their right end, then we must have $|v_i| = 2$.

In the above two cases we have $|v_i| = 2$ and $[v_i]$ abuts the right end of $[v_d]$, so $|(v_i, w)| = 1$, which implies $i = 1$.

If $[v_i] \cap [v_d]$, then $|v_i \cap [v_d]| = |v_d| = 3$. By Lemma 3.21, v_i is tight. If $i > 1$, $|v_i| \geq 6 = |w| + |v_d| - 2$. Since $[v_d] \uparrow [w]$, the interval $[v_i]$ must contain all high weight vertices of $[w]$. Thus $|(w, v_i)| \geq |w| - 2 = 3$, a contradiction (Remark 7.3).

Lemma 7.6. v_d is not gappy.

Proof. Suppose for contradiction that v_d is gappy. Take the index i to be the smallest gappy index of v_d. First suppose that $i = 0$. Then, using Lemma 3.12, v_1 will be tight with $|v_1| = 5$.

Note that $\langle w, v_1 \rangle = 2\theta$, $|v_1| = |w| = 5$, so $[w] \cap [v_1]$ with $|[v_1] \cap [w]| = 4$, and there exists $\epsilon \in \{-1, 1\}$ such that $w = \epsilon|w|$ and $v_1 = \theta \epsilon[v_1]$. It follows that $w - \theta v_1 = x + y$ with $|x|$ and $|y|$ being distant, $|x| = |y| = 3$.

Now

$$w - \theta v_1 = -\theta e_0 + \theta e_1 + e_d + e_c + e_b - e_a.$$

Since $x_0 \notin [w], [v_1]$, we have $x_0 \notin [x], [y]$. Using Lemma 3.14, one of x, y has the form $\pm e_j + e_k + e_l$, where $j \in \{0, 1\}, \{k, l\} \subseteq \{d, c, b\}$, but this vector is not in σ^\perp, a contradiction.

Suppose $i > 0$. Then $i = \min \text{supp}(v_d)$ by [Gre13, Paragraph 2 in Section 6, and Propositions 8.6, 8.7, 8.8]. Since $\langle v_{i+1}, v_d \rangle = 1$, by Lemma 7.5 we have $i + 1 = 1$, a contradiction.

Proposition 7.7. $\min \text{supp}(v_d) \leq 1$.

Proof. Set $i = \min \text{supp}(v_d)$. If $i > 0$, since $\langle v_i, v_d \rangle = -1$, by Lemma 7.5 we have $i = 1$.

Let G be defined as in (34). Our strategy is to first find a bound for G, and then find a bound for the integer d. Next, we do a case-by-case analysis to find that indeed $d = 0$.

Lemma 7.8. v_d is not tight.

Proof. Suppose for contradiction that v_d is tight. Using Lemma 6.15, we get

$$\sigma_d = G \geq \min \{\sigma_f, \sigma_d + \sigma_c + \theta\} \geq \min \{\sigma_f, 2\sigma_d - 1\},$$

which is not possible by (32) and Corollary 7.2.

Combining Proposition 7.7 and Lemmas 7.6 and 7.8, we have:
Corollary 7.9. \(v_d = v_{d,0} e_0 + e_1 + \cdots - e_d \) with \(v_{d,0} \in \{0,1\} \).

With the notation of Corollary 7.9 in place, we start the analysis to deduce \(d = 0 \). The following identity will be useful to keep in mind:

\[
\sigma_d = G - 2 + v_{d,0}.
\] (36)

Lemma 7.10. If either \(|v_d| > 2 \) or \(d = 1 \), then

\[
G \geq \sigma_d + \sigma_c + \theta.
\]

Proof. Let \(\chi \) be the vector as in Lemma 6.15. By that lemma, it will suffice to show \(\chi_a \neq 0 \). Assume that \(\chi_a = 0 \), then Lemma 6.15 implies that \(G \geq \sigma_f > \sigma_d \). Using (36), we have that \(G \leq \sigma_d + 2 \), so \(\sigma_f \in \{\sigma_d + 1, \sigma_d + 2\} \).

If \(\sigma_f = \sigma_d + 1 \), set \(v'_f = -e_f + e_d + e_0 \). If \(\sigma_f = \sigma_d + 2 \), set \(v'_f = -e_f + e_d + e_1 + e_0 \). (Note that \(d \neq 1 \) in this case, otherwise \(G = 2 \neq \sigma_d + 2 \).) In either case, \(v'_f \) is irreducible and also in \(\sigma^\perp \). Since \(\langle v'_f, e_a + e_b + e_c + e_d \rangle = 1 \), we get that \(x_0 \in [v'_f] \). So \([v_d] \) and \([v'_f] \) share their left endpoint. If \(|v_d| > 2 \), then \(|\langle v_d, v'_f \rangle| \geq 2 \), which contradicts the direct computation \(|\langle v_d, v'_f \rangle| \leq 1 \). If \(d = 1 \), using Lemma 7.8, we get \(\langle v_d, v'_f \rangle = 0 \): this is still giving a contradiction since the intervals \([v_d]\) and \([v'_f]\) share their left endpoints, and so \(\langle v_d, v'_f \rangle \neq 0 \).

Proposition 7.11. If \(|v_d| = 2 \), then either \(d = 1, G = 2 \), or else \(d = 2, G \in \{3, 4\} \).

If \(|v_d| > 2 \), then \(d \in \{3, 4\}, \theta = -1, v_{d,0} = 0 \), and \(1 + d \leq G \leq 5 \).

Proof. If \(|v_d| = 2 \), our conclusion follows from Corollary 7.9.

Now we assume that \(|v_d| > 2 \). Using Lemma 7.10, we have

\[
G \geq \sigma_d + \sigma_c + \theta \geq 2\sigma_d + \theta = 2(G - 2 + v_{d,0}) + \theta,
\]

thus

\[
G \leq 4 - \theta - 2v_{d,0}.
\] (37)

If \(d \leq 2 \), by Corollary 7.9 we have \(v_{d,0} = 1 \) and \(d = 2 \). We have \(x_0 \in [v_2] \) while \(x_0 \notin [w] \). Since \(|v_2| = 3 < |w| \), we must have \(|\langle v_2, w \rangle| \leq 1 \). Then \(\theta = 1 \) by Corollary 7.2. So \(G \leq 1 \) by (37), which is not possible.

If \(d \geq 3 \), it follows from (37) that

\[
4 - \theta - 2v_{d,0} \geq G \geq d + 1 \geq 4,
\]

so \(\theta = -1, v_{d,0} = 0, d \leq 4 \) and \(G \leq 5 \).

Proposition 7.11 implies that \(d \in \{0, 1, 2, 3, 4\} \). We now argue that \(d = 0 \).

Proposition 7.12. \(d = 0 \).

Proof. Suppose that \(d = 1 \). Using Lemma 7.8, we get that \(v_1 = -e_1 + e_0 \). We have that \(G = 2 \) and \(\sigma_1 = 1 \). By Corollary 7.2 and Lemma 7.10, we get that

\[
2 = G \geq \sigma_c + \sigma_1 + 1 \geq 3,
\]
which is a contradiction.

Suppose that \(d = 2 \). It follows from Proposition 7.11 that \(|v_2| = 2\). We separate the cases to whether \(\sigma_1 (= \sigma_2) \) is 1 or 2.

First assume that \(\sigma_1 = \sigma_2 = 1 \). If \(c \neq 3 \), then \(x_0 \in [v_3] \), thus \([v_2]\) and \([v_3]\) share their left end. So \(\langle v_3, v_2 \rangle \neq 0 \). In particular, \(1 \notin \text{supp}(v_3) \). Since \(\sigma_0 = \sigma_1 = 1 \), \(0 \notin \text{supp}(v_3) \), so \(|v_3| = 2\), which is impossible as \(\sigma_3 > 1 \) by (32). If \(c = 3 \), note that \(\theta = 1 \) by Corollary 7.2, by Lemma 6.15 we have

\[
3 = G \geq \min\{\sigma_f, \sigma_3 + 2\}.
\]

By (32), \(\sigma_f > \sigma_3 \), so we have \(\sigma_3 \leq 2 \). If \(\sigma_3 = 1 \), then \(\langle v_3, w \rangle = 0 \) and \(\langle v_3, v_2 \rangle = -1 \). Since \(x_0 \notin [v_3] \), \([v_3]\) abuts the right endpoint of \([v_2]\). Since \([v_2] \nmid [w] \) by Lemma 7.4, we get \(\langle v_3, w \rangle \neq 0 \), a contradiction. If \(\sigma_3 = 2 \), then \(v_3 = -e_3 + e_2 + e_1 \). We have \(v_3 \sim v_1 \sim v_2 \), \(|v_1| = |v_2| = 2\), \([v_2] \nmid [w] \), so \([v_3]\) contains the leftmost high weight vertex of \([w]\), which contradicts the fact that \(\langle v_3, w \rangle = 0 \).

Next we suppose that \((d = 2 \) and \(\sigma_1 = \sigma_2 = 2 \). Then \(v_1 = 2e_0 - e_1, v_2 = e_1 - e_2 \). We have \(x_0 \in [v_2], x_0 \notin [v_1], [w] \), and \([v_2]\) abuts both \([v_1]\) and \([w]\). So \([v_1]\) and \([w]\) share their left endpoint. It follows that \(\langle v_1, w \rangle = 4 \), which is not possible by Remark 7.3.

Suppose \(d \geq 3 \). Proposition 7.11 implies that \(v_d = -e_d + e_{d-1} + \cdots + e_1 \). Also, since \(5 \geq G \geq 2 + \sigma_1 + \sigma_2 \), we find that \(\sigma_1 = 1 \). Consider the vector \(v_d' = v_d - e_1 + e_0 \). Since \(\theta = -1 \) by Proposition 7.11, \(\langle v_d', w \rangle = 0 \). Using Corollary 7.2, we get \(\theta = 1 \), a contradiction. \(\square \)

8. The Case \(d = 0 \)

We now turn our attention to the classification in the case \(d = 0 \): in what follows, we classify all changemaker linear lattices of this sort.

Lemma 8.1. \(c = 1, \sigma_c = 1 \), and \(\sigma_a = \sigma_b + 1 \).

Proof. By Lemma 6.15, we have

\[
1 = G \geq \min\{\sigma_f, \sigma_a - \sigma_b\} \geq \min\{\sigma_f, \sigma_c + \sigma_0 - 1\} = \min\{\sigma_f, \sigma_c\}.
\]

Using (32), we get \(\sigma_c = 1, c = 1 \), and \(\sigma_a = \sigma_b + 1 \). \(\square \)

For the rest of the section, we will replace \(w \) in (35) with

\[
w' = -e_a + e_b + e_c.
\]

The following is an immediate corollary of Lemma 8.1.

Corollary 8.2. The vector \(w' \) is an irreducible, unbreakable vector in \(\sigma^\perp \), and \(x_0 \in [w'] \).

Lemma 8.3. \(b = 2, \sigma_b = 1 \), and \(\sigma_a = 2 \). Hence \((\sigma_0, \ldots, \sigma_a) = (1, 1, 1, 2^{[s]}, 2) \) for some \(s \geq 0 \).

Proof. Suppose towards a contradiction that \(b > 2 \). Since \(\sigma_0 = \sigma_1 = 1 \) and \(b > 2, \sigma_2 \in \{2, 3\} \).

If \(\sigma_2 = 2 \), then \(\langle v_2, v_1 \rangle = 0, \langle v_2, w' \rangle = 1 \) and \(\langle v_1, w' \rangle = -1 \). Since \(|v_1| = 2 \) and \(x_0 \notin [v_1] \), \([v_1]\) abuts the right end of \([w']\). If \([v_2]\) also abuts \([w']\), noting that \(x_0 \notin [v_2] \), it abuts the right
end of $[w']$, so $[v_2]$ abuts $[v_1]$, contradicting the fact that $\langle v_2, v_1 \rangle = 0$. Thus we must have $[v_2] \cap [w'] = \epsilon [v_2]$ and $w' = \epsilon [w']$ for some $\epsilon \in \{1, -1\}$. It follows that $w' - v_2$ is reducible. However, $w' - v_2 = -e_a + e_b + e_2 - e_0$ is irreducible by Lemma 3.14 and the fact that $\sigma_a = \sigma_b + 1$, a contradiction.

If $\sigma_2 = 3$, then $[v_2]$ contains x_0, so $[w'] < [v_2]$. However, since $|w'| = 3$, this can happen only if $|\langle v_2, w' \rangle| = 2$, contradicting the fact that $\langle v_2, w' \rangle = 1$.

Having proved $b = 2$, we must have $\sigma_2 \in \{1, 2, 3\}$. If $\sigma_2 = 2$, the interval $[v_2]$ contains x_0, so $[v_2]$ and $[w']$ share their left end, a contradiction to the direct computation $\langle v_2, w' \rangle = 0$. If $\sigma_2 = 3$, using Proposition 6.11, there must be some $\chi \in T_1$ with $\langle \chi, \sigma \rangle = 2$. Moreover, since $\{0, 1, 2\} = \{d, c, b\}$, $\sigma_f > \sigma_2 = 3$. Therefore, $\chi_a \neq 0$ by Proposition 6.10. Using Lemma 8.1, $\sigma_a = 4$. It must be the case that for some $i \in \{b, c, d\}$, $\chi_i = -1$ and $\chi_j = 0$ for $j \neq i, a$. Then $\langle \chi, \sigma \rangle$ is either 1 or 3, a contradiction.

Therefore, $b = 2$, $\sigma_2 = 1$, and $\sigma_a = \sigma_b + 1 = 2$.

Lemma 8.4. $\sigma_i = 2s + 3$ for $i > a$. That is, $\sigma = (1, 1, 1, 2|s|, 2, 2s + 3|d|)$ with $s, t \geq 0$.

Proof. First, consider v_{a+1}. Since $\sigma_{a+1} > 2$, $m := \min \supp(v_{a+1}) < a$, so if $m \geq 3$ then $s := a - 3 > 0$ and there would be a claw centered at v_m, a contradiction to Lemma 3.23. Therefore, $\supp(v_{a+1}) \cap \{0, 1, 2\}$ is nonempty, thus is one of $\{0, 1, 2\}$, $\{1, 2\}$, or $\{2\}$ by Lemma 3.12.

We note that $x_0 \in [v_a]$ no matter $s = 0$ or $s > 0$.

We claim that there is no index j such that v_j is tight. Otherwise, we have $j > a$ and $[v_j]$ contains x_0, so $[v_a] < [v_j]$. If $s > 0$, $\langle v_a, v_j \rangle = 0$, a contradiction to $[v_a] < [v_j]$. If $s = 0$, then $|v_a| = 3$ hence $|\langle v_a, v_j \rangle| = 2$, contradicting the direct computation $\langle v_a, v_j \rangle = 1$.

If $m = 0$, then $3 \in \supp(v_{a+1})$ since otherwise $\langle v_3, v_{a+1} \rangle = 2$, a contradiction to Lemma 3.20. Then since $|v_i| = 2$ for $3 < i \leq a$, v_{a+1} is just right by the claim in the last paragraph. However, if $s > 0$, then $\langle v_3, v_4, v_1, v_{a+1} \rangle$ will give a claw, a contradiction (Lemma 3.23). If $s = 0$ then $[v_3]$ contains x_0 so $[v_1]$ and $[v_{a+1}]$ must both abut the right endpoint of $[v_3]$, contradicting the fact that they are orthogonal.

If $m = 1$, then again we must have $3 \in \supp(v_{a+1})$ and v_{a+1} just right. Since $\{a, b, c, d\} \cap \supp(v_{a+1}) = 3$, $x_0 \in [v_{a+1}]$, so $[v_a] < [v_{a+1}]$ and $|\langle v_{a+1}, v_a \rangle| = |v_a| - 1$. This contradicts the direct computation of $\langle v_a, v_{a+1} \rangle$ no matter $s = 0$ or $s > 0$.

If $m = 2$, then $v_{a+1} = e_2 + e_k + \cdots + e_a - e_{a+1}$ for some $3 \leq k \leq a$. If $3 < k < a$, there is a claw $\langle v_k, v_{k-1}, v_{k+1}, v_{a+1} \rangle$ (Lemma 3.23). If $k = a$ and $a > 3$, then $x_0 \subset [v_a]$ but $x_0 \notin [v_{a+1}]$, and so $[v_a] \notin [v_{a+1}]$ since $|v_a| = 2 < |v_{a+1}|$. If $s = 1$, then since $x_0 \notin [v_3]$, $\langle v_3, v_a \rangle = -1$, $[v_3] \in [v_{a+1}]$ will share a right weight vertex, which is not possible. If $s > 1$, then both $[v_{a+1}]$ and $[v_{a-1}]$ abut the right endpoint of $[v_a]$, hence $\langle v_{a+1}, v_{a-1} \rangle = \pm 1$, a contradiction to the direct computation $\langle v_{a+1}, v_{a-1} \rangle = 0$. Therefore, $k = 3$, so v_{a+1} is just right and $\sigma_{a+1} = 2s + 3$.

Finally, suppose that for some $j > a + 1$, $|v_j| > 2$. Take j to be the smallest such index. Then v_j is unbreakable by our earlier claim. Let $\ell = \min \supp(v_j)$. If either $\ell \geq a + 1$ or $3 \leq \ell < a$, there will be a claw centered at v_j, contradicting Lemma 3.23. If $\ell = a$, then $[v_j]$ contains x_0, so $[v_a] < [v_j]$. If $s = 0$, $|v_a| = 3$, thus $[v_j]$ contains the high weight vertex of $[v_a]$.
a contradiction. If \(s > 0 \), \([v_3]\) is connected to \([v_a]\) via a (possibly empty) sequence of norm 2 vectors, so the intervals \([v_3]\) and \([v_j]\) will share a high weight vertex, a contradiction. If \(\ell < 3 \), then there is a heavy triple \((v_3, v_{a+1}, v_j)\), contradicting Lemma 3.25.

9. Proof of Theorem 1.2

Lemma 8.4 specifies a changemaker vector in \(\mathbb{Z}^{n+2}\) whose orthogonal complement is the linear changemaker lattice \(\Lambda(q, -p)\). From the integers \(a_0, a_1, \cdots a_n\) in (15), we can recover \(p\) and \(q\) using (13). Since \(q < p < 2q\), we have

\[
\frac{p}{q} = [2, a_0, a_1, \ldots, a_n]^-.
\]

We use the following facts:

Lemma 9.1. \([\text{Gre13, Lemma 9.5 (2) and (3)}]\) For integers \(s, t, b\) with \(b \geq 2\) and \(s, t \geq 0\),

1. \([\cdots, b, 2^{[t-1]}]^- = [\cdots, b - 1, -t]^-.
2. If \([2^{[s+1]}, b, \cdots]^- = \frac{p}{q}\), then \([- (s + 2), b - 1, \cdots]^- = \frac{p}{q - p}\).

We have

\[
\sigma = (1, 1, 1, 2^s, 2, 2s + 3^t),
\]

with \(s, t \geq 0\). One can check that the standard basis of the linear changemaker lattice

\[
S = \{v_{s+3}, \cdots, v_3, v_1, v_2, v_{s+4}, \cdots, v_{s+t+3}\}
\]

coinsides with its vertex basis with norms given by

\[
\{2^s, 3, 2, 2, s + 3, 2^{[t-1]}\}.
\]

By Lemma 6.14, \([v_{s+3}]\) contains \(x_0\), so \(v_{s+3} = x_0\). Hence we have

\[
\frac{p}{q} = [2^{[s+1]}, 3, 2, 2, s + 3, 2^{[t-1]}]^-.
\]

Using Lemma 9.1, we see that

\[
q = 7 + 4s + 9t + 12st + 4s^2t, \quad \text{and}
\]

\[
p = 11 + 4s + 14t + 16st + 4s^2t.
\]

It is straightforward to check that

\[
q = \frac{1}{r^2 - 2r - 1}(r^2 p - 1),
\]

with \(r = -2s - 3\) and \(p \equiv -2r + 5 \pmod{r^2 - 2r - 1}\).

Proof of Theorem 1.2. Suppose \(P(p, q) \cong S^3_{4q}(K)\), the above computation shows that \((p, q)\) must be as in the statement. On the other hand, if \((p, q)\) is as in the statement, it follows from \([\text{BHM}+16, \text{Table 2}]\) that there exists a Berge–Kang knot \(K_0\) such that \(P(p, q) \cong S^3_{4q}(K_0)\). For the second statement, we note that \(K\) and \(K_0\) correspond to the same changemaker vector. Using Proposition 6.8, we know that \(\Delta_K = \Delta_{K_0}\), so \(HF(K) \cong HF(K_0)\) by \([\text{OS05a, Theorem 1.2}]\).
REFERENCES

[BHM+16] William Ballinger, Chloe C. Hsu, Wyatt Mackey, Yi Ni, Tynan Ochse, and Faramarz Vafaee, The prism manifold realization problem, Preprint, arXiv:1612.04921, 2016.

[BNOV17] William Ballinger, Yi Ni, Tynan Ochse, and Faramarz Vafaee, The prism manifold realization problem II, Preprint, arXiv:1710.00089, 2017.

[Ber18] John Berge, Some knots with surgeries yielding lens spaces, Preprint, arXiv:1802.09722, 2018.

[BK] John Berge and Sungmo Kang, The hyperbolic P/P, P/SF_d, and P/SF_m knots in S^3, Preprint.

[BL90] Steven Boyer and Daniel Lines, Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990), 181–220.

[Doi15] Margaret I. Doig, Finite knot surgeries and Heegaard Floer homology, Algebr. Geom. Topol. 15 (2015), no. 2, 667–690.

[Doi16] ———, On the number of finite p/q-surgeries, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2205–2215.

[Don83] Simon Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315.

[Gre13] Joshua E. Greene, The lens space realization problem, Ann. of Math. (2) 177 (2013), no. 2, 449–511.

[Gre15] ———, L-space surgeries, genus bounds, and the cabling conjecture, J. Differential Geom. 100 (2015), no. 3, 491–506.

[Gu14] Liling Gu, Integral finite surgeries on knots in S^3, Preprint, arXiv:1401.6708, 2014.

[Les96] Christine Lescop, Global surgery formula for the Casson-Walker invariant, Annals of Mathematics Studies, vol. 140, Princeton University Press, Princeton, NJ, 1996.

[NW14] Yi Ni and Zhongtao Wu, Heegaard Floer correction terms and rational genus bounds, Adv. Math. 267 (2014), 360–380.

[NZ18] Yi Ni and Xingru Zhang, Finite Dehn surgeries on knots in S^3, Algebr. Geom. Topol. 18 (2018), no. 1, 441–492.

[OS03a] Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261.

[OS03b] ———, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185–224 (electronic).

[OS05a] ———, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300.

[OS05b] ———, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1–33.

[OS11] ———, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 1–68.

[Ras03] Jacob Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003, Thesis (Ph.D.)–Harvard University.

[Wal90] Kevin Walker, An extension of Casson’s invariant to rational homology spheres, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 2, 261–267.
