Computer vision system in measurement of the volume and mass of egg using the disc method

To cite this article: M Widiasri et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 703 012050

View the article online for updates and enhancements.
Computer vision system in measurement of the volume and mass of egg using the disc method

M Widiasri, L P Santoso and J Siswantoro
Department of Informatics Engineering, Faculty of Engineering, University of Surabaya
Jl. Kali Rungkut, Surabaya, 60293, Indonesia

E-mail: monica@staff.ubaya.ac.id

Abstract. One important process in egg production is the sorting process to determine the grade of the egg. The volume and mass of the egg are the factors needed in this sorting process. But the conventional way to measure egg volume and mass can damage egg and takes a long time. This paper proposes a Computer Vision System (CVS) to measure egg volume and mass quickly, accurately, precisely without damaging the egg. The disc method is a method used to calculate the volume of an object with a circular cross-section such as an egg. CVS was designed to calculate the volume using the disc method and calculate the egg mass using density and regression models, based on images captured in real-time or images that have been captured previously. The validation process is carried out using 50 egg samples by comparing results from the proposed method with manual measurements. To compare the time needed by CVS and manual measurement, an average test was used. To test the output accuracy of the volume and mass of egg, relative absolute error, ANOVA test, and correlation test were used. Whereas to test the output precision, the coefficient of variation was used. Based on the results of the testing conducted, CVS in the proposed method successfully measuring the volume and mass of egg quickly, accurately, precisely, without damaging the egg.

1. Introduction
Egg volume and mass are important factors in the egg production process. One process that uses volume and mass of the eggs as its criteria is the sorting process. Because of the importance of knowing the volume and mass of eggs, the calculation method used must be precise and efficient. One method commonly used to measure egg volume is the water displacement method, where the volume of spilled water is the same as the volume of eggs put into it. But this method is considered to be less accurate, can damage the eggs, and takes a long time [1]. The using of the computer vision system (CVS) is a better alternative to the existing manual method. Computer Vision System (CVS) can measure accurate, precise, quick, and non-destructive egg volume [2]. To measure the volume of eggs, the method proposed used is a two-dimensional CVS, where the camera will capture the cross-sectional image of the egg. Assuming that eggs are an axisymmetric object, the egg volume can be calculated by rotating the cross-section of an egg around its long axis [3]. We can then use various methods of calculating the volume of solids of revolution, namely the cone method [4], methods based on the Pappus theorem [5], Simpson's rules [6], and the disc method [7][8]. The disc method assumes
that the volume of a solid of revolution is the sum of the volume of all the thin cylinders that made up the object. The disc method used by Bridge et al. [7] to calculate the volume of Florida Scrub-Jay bird eggs. Koc [8] also uses the disc method to calculate the volume of watermelons. The result from a study by Bridge [7] shows that the volume calculation is accurate. However, the CSV system used cannot automatically align the image obtained parallel to the main axis. This will cost extra time for the user to align the egg manually. The system proposed by Koc [8] was less accurate because as the size of the watermelon increased, the image processing method overestimated the volume. This was because of the change in distance between the camera and the watermelon surface. Although the distance between the camera and the surface where the object lays was constant, the distance between the watermelon surface and the camera reduced with increasing watermelon size.

Mass has a very close relationship with volume. The information about egg’s mass was not only used in the grading process but was also used to determine egg-yolk to egg ratio, eggshell thickness, and egg hatchability [9]. For egg mass calculations, if the egg volume is known, the egg mass can be obtained from multiplying the volume and density of eggs [5]. In addition, estimation of egg mass can also be done using a linear regression model [9]. This system uses diameter data obtained from digital image processing to estimate the mass of "White Leghorn Line" chicken eggs.

A similar system that has been developed, there is no system that can calculate the volume and mass of objects simultaneously. This study aims to propose a 2D CVS for predicting the volume and mass of egg using the disc method from the image of the egg. The proposed CSV system can automatically align the image obtained parallel to the main axis. The rest of the paper is organized as follow, section 2 explains the proposed computer vision system. The experimental results and discussion are provided in Section 3. The conclusion is explained in Section 4.

2. Proposed computer vision system
Computer Vision System proposed consists of hardware part and software apart. Hardware in the system is mainly used to take a picture of the egg. Software in the system is used to process the image captured, and perform mathematical calculations to find the volume and mass of the eggs.

2.1. Hardware part
The hardware consists of a camera, LED lighting, black background, and a computer to operate the software, as can be seen in Figure 1. The camera used in this system is a portable webcam "Logitech C170" with a resolution of 5 MP and connected to a computer via a USB cable. This webcam is also equipped with a clamp, making it easier to place. The webcam is placed 30 cm above the egg, with lighting coming from a 5 watts LED lights placed 40 cm above the webcam. The system uses dark-colored cotton fabric. This cover cloth serves to block light from outside the system during the image capture process.

2.2. Software part
The processing phase consists of image capture, initial processing, segmentation, opening-closing, rotation, extracting the size of the egg object, volume calculation using the disc method, and mass calculation.
1. Image Capture. The image capture process is carried out using a portable webcam placed right above the image. The captured image has an RGB color space and is then stored on the hard drive in jpg format with a size of 640 × 480 pixels.
2. Initial processing. Initial processing begins with the color transformation of the image from the RGB color space to the gray scale. The filtering process is done using a Gaussian filter with a 7x7 kernel size, aims to clear the image of existing noise.
3. Segmentation. The segmentation process separates an object from the background. This process begins with the search for the Threshold (T) value automatically. Pixels in gray scale images that have an intensity greater than T will be recognized as objects (white) with binary value 1, otherwise, it will be recognized as a background (black) with binary value 0.
4. Opening-closing. An opening-closing process is performed to remove white spots on the background and black dots on the foreground.

5. Rotation. An image that was not aligned properly will be rotated until its axis parallel to the x or y-axis.

6. Feature extraction. This process aims to find the major axis and the minor axis of the egg. First, we need to locate the leftmost pixel, the rightmost pixel, the topmost pixel, and the lowest pixel of the egg object in the image. The location of the leftmost pixel can be found by scanning the image from the leftmost column (x=0) to the right until the first white pixel found. This will be x. The position of the rightmost pixel (x), the topmost pixel (y), and the lowest pixel (y) can be found by similar fashion. The length of the x-axis (Δx) is the difference between x and x. The length of the y-axis (Δy) is the difference between y and y. The major axis is the longest between Δx and Δy.

7. Volume measurement. After the length of the major axis and the minor axis of the egg are known, the calculation of volume using the disc method. Volume measurement can be obtained by dividing the cross-section of the object above the major axis into n rectangles with width Δx of 1 pixel and length ½ Δyi with i = 1, 2, 3, ..., n as shown in Figure 2a. Then the rectangles are rotated around the x-axis to produce a cylinder with a height of Δx and a cylinder radius of ½ Δyi as shown in Figure 2b. The volume of egg (V) can be calculated using Eq. 1, with a k scale factor that can be calculated from the ratio of the object length in cm to the object length in pixels (from the image captured by the camera). In this experiment, the scale factor value k obtained from the average scale factor of five randomly selected samples.

$$ V = \pi k \frac{3}{4} \sum_{i=1}^{n} (\Delta y_i)^2 $$ \hspace{1cm} (1)

8. Mass measurement. Mass measurement is done using two methods, namely, using density and linear regression models. Density is a measurement of mass per unit volume of matter. The mass of eggs (m) was determined using volume (V) and density (ρ) by Eq. 2,

$$ m = V * \rho $$ \hspace{1cm} (2)

Linear regression is a statistical model that serves to predict the value of non-dependent variables (y) based on independent variables (x) (Franklin and Haribaran, 1994). Eq. 3 represents the common equation of linear regression.

$$ y = a + bx $$ \hspace{1cm} (3)

From 20 randomly selected egg samples, the density is found to be 1.07 gr/ml, and the regression model is

$$ y = 7.3148 + 0.448 x $$ \hspace{1cm} (4)
3. Result and discussion

The validation process of the proposed method is carried out using 50 egg samples from 9 different angles (0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, and 180°). The result of the proposed method will be compared by manual measurement using water displacement for volume and using digital scales for mass.

3.1. Average Test

The average measurement from 9 different angles, the average of measurement from the experiment, and the time needed by the proposed method will be compared with manual measurements, as shown in Table 1.

Angle	Volume (ml)	Mass (gr)-density	Mass (gr)-regression	Time (ms)
0°	57.79	61.85	61.91	311.59
30°	57.44	61.48	61.58	315.03
45°	57.11	61.13	61.27	312.52
60°	56.75	60.74	60.93	312.09
90°	56.49	60.46	60.69	316.14
120°	56.50	60.48	60.70	318.5
135°	56.54	60.52	60.74	312.22
150°	56.79	60.79	60.97	313.68
180°	56.99	61.00	61.16	319.52
Average measurement of CVS	56.93	60.94	61.11	314.59
Manual measurement	57.87	61.62	61.62	47962.8

As can be seen in Table 1, the results obtained from the proposed method are very close to the results obtained from manual measurement, with differences less than 1.62% in volume and less than 1.1% in mass on average. The average time to measure the volume and mass of the egg using CVS takes 314.59 ms. This is much faster than the time needed manual measurement of 47962.8 ms. This proves that using CVS to measure egg volume and mass can be done more quickly without damaging the egg.

3.2. Accuracy Test

To test the accuracy of the result of the volume and mass of egg measurement using CVS, the relative absolute error, ANNOVA test, and correlation test were used.

3.2.1. Relative absolute error test. The absolute error used in this experiment is the magnitude of the difference between the manual measurement value and the measurement value by CVS. The percent error is the relative error expressed in term of per 100, by the following equation:

$$\text{Relative absolute error} = \left| \frac{\text{manual measurement} - \text{measurement by CVS}}{\text{manual measurement}} \right| \times 100\%$$

The relative absolute error test results for this experiment are shown in Figure 3. An experimental result is said to be accurate if it yields a relatively small absolute error value. Based on the experimental results obtained the absolute relative error value is <5%. This proves that the proposed method is accurate.
3.2.2. Correlation test. Correlation is a method of statistical analysis used to measure relationships between variables using a value called the correlation coefficient (R). Two data are said to have a relationship if they have R values that are close to 1. The result of the correlation test in this experiment shown as in Figure 4. All the result of this experiment is close to 1. Thus, this proves that data from proposed method calculations have a relationship with manual data measurement.

3.2.3. Anova test. Anova is a statistical method used to compare the mean of several populations (usually more than 2 populations)[10]. The hypothesis used in ANOVA in this study is:

- H0: \(\mu_1 = \mu_2 = ... = \mu_{10} \)
- H1: at least two of the means are not equal

Where \(\mu_1 \) to \(\mu_{10} \) are average measurements from 9 different angles and \(\mu \) is manual measurement as shown in Table 1. To test the hypothesis, use the calculation of the f value using Eq. 6, where \(MK_k \) is mean square between populations and \(MK_d \) is mean square values within population:

\[
f = \frac{MK_k}{MK_d}
\]

H0 is rejected significantly \(\alpha \) if the value \(f \) > \(f_\alpha \), the value of \(f_\alpha \) can be seen in the distribution table F. The results of Anova test in this experiment are shown in Table 2.

Table 2. The Anova test result

	Volume	Mass-density	Mass-regression
f	0.357	0.294	0.272
Significant	0.955	0.976	0.982

The significant value of the Anova test for volume is 0.955, for the mass data density method is 0.976 and for linear regression method is 0.982, so it can be concluded that H0 failed to be rejected. It proves that the mean square values of measured and calculated results are equal or not different. Thus the proposed method is accurate.

3.3. Precision Test

The coefficient of variation is useful to see the distribution of data from the calculated average if the percentage of data distribution is small (<1%) it can be stated that the data is precise. The coefficient of variation (CV) is the comparison between standard deviation (s) and the average value \(\bar{x} \) expressed in percentage. The coefficient of variation is expressed by the formula,

\[
CV = \left(\frac{s}{\bar{x}} \right) \times 100%
\]
The overall value of the CV of the proposed method can be seen in Figure 5. Based on the above equation, the CV value for all data measurement is <1%, so it can be stated that the volume and mass data resulted from this method are precise.

\[
CV = \frac{S}{\bar{x}} \times 100\%
\] (7)

![Figure 5. The coefficient of variation result](image)

4. Conclusion

This study proposes a 2D CVS for predicting the volume and mass of an egg using the disc method from the image of an egg. The proposed method has been tested using 50 egg samples from 9 different angles (0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°). The difference in the orientation of the angle of the egg used turned out to yield similar results. Based on the results of the experiments, CVS in the proposed method successfully measuring the volume and mass of eggs quickly, accurately, precisely, and without damaging the egg. The next study will be to develop CVS to calculate the volume and mass of several eggs simultaneously.

References

[1] Rush S A, Maddox T, Woodrey M S, Fisk A T and Cooper R J 2009 A precise water displacement method for estimating egg volume J. Field Ornith. 8 pp 193-7
[2] Siswantoro J, Hilman M and Widiasri M 2017 Computer vision system for egg volume prediction using backpropagation neural network IOP Conf. Ser.: Mater. Sci. Eng. 273 012002
[3] Marsden J and Weinstein A 1985 Calculus II Springer pp 98-104
[4] Wang T Y and Nguang S K 2007 Low-cost sensor for volume and surface area computation of axis-symmetric agricultural products J. Food Eng. 79 pp 870-7
[5] Soltani M, Omid M and Alimardani R 2014 Egg volume prediction using machine vision technique based on pappus theorem and artificial neural network J. Food Sci. Technol. pp 1-7
[6] Siswantoro J, Prabuwono A S and Abdullah A 2012 Kerangka kerja penentuan volume telur menggunakan computer vision dan aturan simpson SNASTIA 2012 pp 1-5
[7] Bridge E S, Boughton R K, Aldredge R A, Harrison T J E, Bowman R and Schoech S J 2007 Measuring egg size using digital photography: testing Hoyt’s method using florida scrub-jay eggs Field Ornitho 78 pp 109–16
[8] Koc A B 2007 Determination of watermelon volume using ellipsoid approximation dan image processing Postharvest Biol. Technol. 45 pp 366-71
[9] Asadi V, Raoufal M H and Nassiri S M 2012 Fresh egg mass estimation using machine vision technique Int. Agrophys. 26 pp 229-34
[10] Walpole R E, Myres R H, Myres S L, Ye K 2011 Probability & Statistics for Engineers & Scientists 9th Ed. pp 507-508
PAPER • OPEN ACCESS

Preface

To cite this article: 2019 IOP Conf. Ser.: Mater. Sci. Eng. 703 011001

View the article online for updates and enhancements.
Preface
Welcome Remarks,
Chair of the Steering Committee

It is a great pleasure to welcome all of you to Bali and to the International Conference on Informatics, Technology, and Engineering 2019 (InCITE 2019) held by the Faculty of Engineering, University of Surabaya (UBAYA) in collaboration with The University of Adelaide, Australia and Sirindhorn International Institute of Technology (Thammasat University), Thailand. The first InCITE has been successfully held in Bali, Indonesia in 2017. We are very delighted to host the second InCITE here in Bali, Indonesia again.

There are more than 75 presentations in this conference. We welcome leading experts not only from Indonesia, but also from different parts of the world. The experts will share the knowledge and experiences in the fields of informatics, technology, science, and engineering. The main theme of this conference is **Enhancing Engineering Innovation Towards A Greener Future** in response to several world challenges including sustainable development, global convergence of information and communications technologies, climate change and global warming as well as the depletion of unrenewable natural resources. We hope this conference will provide you a good opportunity to get to know each other better and consolidate bonds of friendship and mutual trust.

We would like to express our sincere gratitude to the Keynote and Plenary speakers, International Scientific Committee, Steering Committee, and Organising Committee for their huge efforts to make this conference successful.

Thank you all for your support and attendance at InCITE 2019. Please enjoy the conference and Bali!

Asst. Prof. Djuwari, Ph.D.
Preface
Welcome Remarks,
Chair of The Organizing Committee

Welcome to Bali, Indonesia to all delegates and presenters. It is my pleasure and privilege to welcome all of you to the 2nd (second) International Conference on Informatics, Technology, and Engineering 2019 (IncITE 2019) held by the Faculty of Engineering, University of Surabaya (UBAYA) in collaboration with The University of Adelaide, Australia and Sirindhorn International Institute of Technology (Thammasat University), Thailand.

IncITE 2019 has received more than 75 papers to be presented in this conference. All papers represent four following parallel clusters: Green Design and Innovation, Green Manufacturing and Green Processes, Power System and Green Energy Management, and The Role of IT in Innovation Enhancement. Each cluster supports the main theme of the conference, which is Enhancing Engineering Innovation Towards A Greener Future. The engineering innovation is the key to increase our awareness in maintaining the sustainable growth and development in the world.

The Organising Committee of IncITE 2019 would like to express our sincere gratitude for the tremendous supports and contributions from many parties. The supports from The Faculty of Engineering of UBAYA, keynote and plenary speakers, our International Scientific Committee, the Steering and Organising Committees are really acknowledged.

The last but not the least, thank you for your supports, enjoy the conference and we hope through this meeting all of you can extend your networks and collaborations.

Asst. Prof. Putu Doddy Sutrisna, Ph.D.
Conference Organizers

SCIENTIFIC COMMITTEE

• Prof. Willy Susilo, Ph.D. (University of Wollongong, AUSTRALIA)
• Prof. Dr. Anton Satria Prabuwno (King Abdulaziz University, SAUDI ARABIA)
• Assoc. Prof. Oki Muraza, Ph.D. (King Fahd University of Petroleum & Minerals, KINGDOM OF SAUDI ARABIA)
• Prof. Ravindra S. Goonetilleke, Ph.D. (Hong Kong University of Science & Technology, PRC)
• Assoc. Prof. Tan Kay Chuan, Ph.D. (National University of Singapore, SINGAPORE)
• Asst. Prof. Aldy Gunawan, Ph.D. (Singapore Management University, SINGAPORE)
• Asst. Prof. Hendry Raharjo, Ph.D. (Chalmers University of Technology, SWEDEN)
• Assoc. Prof. Dr. A. F. M. Saifuddin Saif (American International University, BANGLADESH)
• Asst. Prof. Itthisek Nilkhamhang, Ph.D. (Srinindhon International Institute of Technology, THAILAND)
• Assoc. Prof. Akawut Siriruk, Ph.D. (Saranaree University of Technology, THAILAND)
• Assoc. Prof. Avirut Chinkulijiniwat, Ph.D. (Saranaree University of Technology, THAILAND)
• Assoc. Prof. Peerapong Uthansakul, Ph.D. (Saranaree University of Technology, THAILAND)
• Assoc. Prof. Dr. Andi Cakrawastia Arisaputra Raja (Institut Teknologi Bandung, INDONESIA)
• Assoc. Prof. Dr. Anas Maruf (Institut Teknologi Bandung, INDONESIA)
• Assoc. Prof. Yassierli, Ph.D. (Institut Teknologi Bandung, INDONESIA)
• Prof. Dr. Ali Altway (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Dr.-Ing. I Made Londen Batan (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Assoc. Prof. Setiyo Gunawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Renanto Handogo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Mauridi Hery Purnomo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Nur Iriawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. I Nyoman Pujawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Asst. Prof. Budi Hartono, Ph.D. (Universitas Gadjah Mada, INDONESIA)
• Prof. Sarjiya, Ph.D. (Universitas Gadjah Mada, INDONESIA)
• Asst. Prof. Nemuel Daniel Pah, Ph.D. (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Markus Hartono, Ph.D (Universitas Surabaya, INDONESIA)
• Prof. Joniarto Parung, Ph.D. (Universitas Surabaya, INDONESIA)
• Prof. Lieke Riadi, Ph.D. (Universitas Surabaya, INDONESIA)
Conference Organizers

STEERING COMMITTEE
Chair:
Asst. Prof. Djuwari, Ph.D.

Honorary Members:
Prof. David Lewis, Ph.D.
Prof. Joniarto Parung, Ph.D.
Prof. Lieke Riadi, Ph.D.
Asst. Prof. Dr. Steve Kardinal Jusuf
Asst. Prof. Dr. Itthisek Nilkhahang

Members:
Assoc. Prof. Amelia Santoso, Ph.D.
Mr. Agung Prayitno
Assoc. Prof. Emma Savitri, Ph.D.
Assoc. Prof. Markus Hartono, Ph.D., CHFP.
Assoc. Prof. Budi Hartanto, Ph.D.
Mr. Sunardi Tjandra
Assoc. Prof. Eric Wibisono, Ph.D.
Asst. Prof. Nemuel Daniel Pah, Ph.D.
Assoc. Prof. Elieser Tarigan, Ph.D.
Assoc. Prof. Jaya Suteja, Ph.D.
Prof. Joniarto Parung, Ph.D.
Assoc. Prof. Hudiyo Firmanto, Ph.D.
Assoc. Prof. Restu Kartiko Widi, Ph.D.

ORGANIZING COMMITTEE
Chair:
Asst. Prof. Putu Doddy Sutrisna, Ph.D.
Vice Chair:
Dr. Delta Ardy Prima
Secretary:
Ms. Aprilia Karina
Treasurers:
Ms. Dhiani Tresna Absari
Secretariat:
Maria Agatha E.Gunawan, Ph.D.
Asst. Prof. Lanny Sapei, Ph.D.
Mr. Rahman Dwi Wahyudi
Ms. Yenny Sari
Ms. Yuana Elly Agustin
Ms. Susana Limanto
Ms. Monica Widiasri
Conference Organizers

Program: Mr. Yunus Fransiscus
Ms. Melissa Angga
Mr. I Made Ronyastra
Mr. Henry Hermawan
Mr. Felix Handani
Ms. Indri Hapsari
Mr. Mochammad Arbi Hidayat

Website: Mr. Daniel Soesanto
Mr. Marcellinus Ferdinand Suciadi

Design: Ms. Tyrsa Adelia

Sponsorship: Assoc. Prof. Susila Candra, Ph.D.
Logistic: Mr. Arief Rachman Hakim
Mr. Muhamad Yulham Effendi

REVIEWER

- Prof. David Lewis, Ph.D. (University of Adelaide, AUSTRALIA)
- Prof. Willy Susilo, Ph.D. (University of Wollongong, AUSTRALIA)
- Dr. Jingwei Hou (University of Queensland, AUSTRALIA)
- Asst. Prof. Hendry Raharjo, Ph.D. (Chalmers University of Technology, SWEDEN)
- Prof. Dr. Anton Satria Prabuwo (King Abdulaziz University, SAUDI ARABIA)
- Assoc. Prof. Oki Muraza, Ph.D. (King Fahd University of Petroleum & Minerals, KINGDOM OF SAUDI ARABIA)
- Prof. Dr. Winarto Kurniawan (Tokyo Institute of Technology, JAPAN)
- Dr. Wahyudiono (Nagoya University, JAPAN)
- Prof. Ravindra S. Goonetilleke, Ph.D. (Hong Kong University of Science & Technology, PRC)
- Asst. Prof. Dr. Steve Kardinal Jusuf (Singapore Institute of Technology, SINGAPORE)
- Assoc. Prof. Tan Kay Chuan, Ph.D. (National University of Singapore, SINGAPORE)
- Asst. Prof. Alyd Gunawan, Ph.D. (Singapore Management University, SINGAPORE)
- Assoc. Prof. Dr. A. F. M. Saifuddin Saif (American International University, BANGLADESH)
- Asst. Prof. Itthisek Niltkhhamhang, Ph.D. (Sirindhorn International Institute of Technology, THAILAND)
- Assoc. Prof. Akawut Siriruk, Ph.D. (Saranaree University of Technology, THAILAND)
- Assoc. Prof. Avirut Chinkulkijniwat, Ph.D. (Saranaree University of Technology, THAILAND)
- Assoc. Prof. Peerapong Uthansakul, Ph.D. (Saranaree University of Technology, THAILAND)
- Asst. Prof. Dr. Phuong Lan Tran Nguyen (Can Tho University, VIETNAM)
- Assoc. Prof. Dr. Anas Maruf (Institut Teknologi Bandung, INDONESIA)
- Dr. Khairuddin (Institut Teknologi Bandung, INDONESIA)
- Assoc. Prof. Dr. Veinardi Suendo (Institut Teknologi Bandung, INDONESIA)
Conference Organizers

REVIEWER

• Assoc. Prof. Dr. Andi Cakrawastia Arisaputra Raja (Institut Teknologi Bandung, INDONESIA)
• Assoc. Prof. Yassierli, Ph.D. (Institut Teknologi Bandung, INDONESIA)
• Prof. Dr. Judy Retti B. Witono (Universitas Parahyangan, INDONESIA)
• Asst. Prof. Budi Hartono, Ph.D. (Universitas Gadjah Mada, INDONESIA)
• Prof. Sarjya, Ph.D. (Universitas Gadjah Mada, INDONESIA)
• Asst. Prof. Dr. Hendri Himawan Triharminto (Akademi Angkatan Udara Yogyakarta, INDONESIA)
• Assoc. Prof. Dr. Djoko Budiyanto Setyojadi (Universitas Atmajaya Yogyakarta, INDONESIA)
• Prof. Dr. Ali Altway (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Renanto Handogo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Mauridhi Hery Purnomo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Nur Iriawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Asst. Prof. Astria Nur Irfansyah, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. Dr-Ing. I Made Londen Batan (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Assoc. Prof. Setiyono Gunawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Prof. I Nyoman Pujawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
• Asst. Prof. Rr. Poppy Puspitasari, S, Ph.D (Universitas Negeri Malang, INDONESIA)
• Asst. Prof. Ratna Surya Aliwi, S.T., M.Si., Ph.D (Universitas Fajar Makassar, INDONESIA)
• Prof. Joniarto Parung, Ph.D. (Universitas Surabaya, INDONESIA)
• Prof. Lieke Riadi, Ph.D. (Universitas Surabaya, INDONESIA)
• Asst. Prof. Nemuel Daniel Pah, Ph.D. (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Markus Hartono, Ph.D (Universitas Surabaya, INDONESIA)
• Asst. Prof. Dr. Hazrul Iswadi (Universitas Surabaya, INDONESIA)
• Asst. Prof. Gunawan, Ph.D (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Dr. Evi Herowati (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Dr. Amelia Santosou (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Eric Wibisono, Ph.D. (Universitas Surabaya, INDONESIA)
• Asst. Prof. Dr. Joko Siswantoro (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Dr. Budi Hartanto (Universitas Surabaya, INDONESIA)
• Asst. Prof. Dr. Delta Ardy Prima (Universitas Surabaya, INDONESIA)
• Asst. Prof. Jimmy (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Lisana (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Dr. Emma Savitri (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Restu Kartiko Widi, Ph.D. (Universitas Surabaya, INDONESIA)
• Assoc. Prof. Akbarningrum Fatmawati (Universitas Surabaya, INDONESIA)
Conference Organizers

REVIEWER
- Assoc. Prof. Akbaringrum Fatmawati (Universitas Surabaya, INDONESIA)
- Asst. Prof. Putu Doddy Sutrisna, Ph.D. (Universitas Surabaya, INDONESIA)
- Asst. Prof. Djuwari, Ph.D. (Universitas Surabaya, INDONESIA)
- Asst. Prof. Elieser Tarigan, Ph.D. (Universitas Surabaya, INDONESIA)
- Assoc. Prof. The Jaya Suteja, Ph.D (Universitas Surabaya, INDONESIA)
- Assoc. Prof. Dr. Susila Candra (Universitas Surabaya, INDONESIA)
- Asst. Prof. Sunardi Tjandra (Universitas Surabaya, INDONESIA)
- Asst. Prof. Yuwono Budi Pratiknyo (Universitas Surabaya, INDONESIA)

CONFERENCE ORGANIZING COMMITTEE:
FACULTY OF ENGINEERING, UNIVERSITAS SURABAYA
DEAN BUILDING TB 2, RAYA KALIRUNGKUT
SURABAYA, 60293, INDONESIA
PHONE: +62-31-2981150, FAX: +62-31-2981151
E-MAIL: incite@unit.ubaya.ac.id
WEBSITE: https://incite.ubaya.ac.id; http://teknik.ubaya.ac.id
IOP Conference Series: Materials Science and Engineering

Table of contents

Volume 703
2019

International Conference on Informatics, Technology and Engineering
22-23 August 2019, Bali, Indonesia

Accepted papers received: 6 November 2019
Published online: 5 December 2019

preface

Papers

Green Manufacturing and Green Processes

The use of blockchain to support sustainable supply chain strategy
J Parung

Green chemical engineering: challenges in chemical industrial processes for a better life
L Riani

IOP Latinoamérica
IOP Publishing, premier content for a global market
OPEN ACCESS
The surface roughness analysis using sound signal in turning of mild steel
Anayet U Patwari, A A Zamee, M H Bhuiyan and S M Sakib
View abstract PDF

OPEN ACCESS
A review of a machine design of chocolate extrusion based co-rotating twin screw extruder
P Pitayasawat and P Watcharamaisakul
View abstract PDF

OPEN ACCESS
Tofu wastewater treatment through a combined process of coagulation-flocculation and ultrafiltration
P Prawati, A Oktariany, S S Putri, I Astibya and S Kartochardjono
View abstract PDF

OPEN ACCESS
Carbon emission modelling in container terminal operations planning using a system dynamics approach
D N Prayogo
View abstract PDF

OPEN ACCESS
Effect of NR-g-cellulosa coupling agent into NR-cellulose composite dispersibility and its physical properties
H Handayanti, A Chifaudi, A S Handayani, M Chand, S Sestiana and M Christwardana
View abstract PDF

OPEN ACCESS
Formulation and characterization of chitosan-alginate freeze dried matrices loaded with oleoresin extract of red ginger
E A Krisandi, A Sarfya and K Mulia
View abstract PDF

OPEN ACCESS
The effects of electroculture on shoot proliferation of garlic (Allium sativum L.)
Von Laosale R Mangkuam, Ashley Marie N. Margate, Rosa Danielle G Hilahan, Harold Gian L Lucin, Kristopher Ray S Pamintuan and Adonis P Adorno
View abstract PDF

OPEN ACCESS
Preparation and characterization of polyvinyl alcohol-chitosan-tripolyposphate hydrogel for extended release of anti-tuberculosis drugs
K Mulia, S A Chadanawati, A J Rahyussalim and E A Krisandi
View abstract PDF
OPEN ACCESS
The surface roughness analysis using sound signal in turning of mild steel
Anayet U Patwari, A A Zamee, M H Bhuiyan and S M Sakib
+ View abstract PDF

OPEN ACCESS
A review of a machine design of chocolate extrusion based co-rotating twin screw extruder
P Pittayachaval and P Watcharamalsakul
+ View abstract PDF

OPEN ACCESS
Tofu wastewater treatment through a combined process of coagulation-flocculation and ultrafiltration
P Prawati, A Oktariany, S S Putri, I Atiya and S Kartohardjono
+ View abstract PDF

OPEN ACCESS
Carbon emission modelling in container terminal operations planning using a system dynamics approach
D N Prayogo
+ View abstract PDF

OPEN ACCESS
Effects of initial concentration, adsorbent mass, pH and temperature to personal care products waste removal with activated carbon as adsorbent
H R Priyantini, L Riaidi, C Effendi, F Effendi and A Mitayani
+ View abstract PDF

OPEN ACCESS
The integration of social responsibility into business operation: case study of Indonesian manufacturing industry
E D Rihawiyanti, C Huang and S As-Saber
+ View abstract PDF

OPEN ACCESS
A kinetic study of oil-in-water emulsion formation stabilized by rice husk ash and lecithin
L Sapit, S W Kurniawan and A P Siantoro
+ View abstract PDF

OPEN ACCESS
A systematic literature review for developing sustainability assessment tool: formulating the state of the art and future direction
Y Sari, A Hidayaturo, A Suzianti and M Hartono
+ View abstract PDF
| Title | Authors | Access Options |
|--|---|----------------|
| Controlled release fertilizer based on starch chitosan encapsulation | E Savitri, E Perwanto, A N Kodrat and E Yonathan | View abstract |
| Price and inventory policy strategy model in a price sensitive dual | R Y H Silitonga and N Christina | View abstract |
| channel supply chain structure considering product substitution | | PDF |
| Assessing materials from hoarded mobile phones: hidden e-waste subject | R Siringgo, H Hardiyansyah, R D Kusumastuti and A E Lucianto | View abstract |
| for reverse logistics | | PDF |
| Optimisation of subtractive rapid prototyping process parameters | T J Suteja and M A Hadyat | View abstract |
| using response surface methodology | | PDF |
| Green dynamic capability for enhancing green innovations performance | R Amaranti, R Govindaraju and D Iranti | View abstract |
| in a manufacturing company: a conceptual framework | | PDF |
| Combined structural equation modelling - artificial neural networks | M A Hadyat | View abstract |
| model for predicting customer loyalty | | PDF |
| The use of consumer behavior to identify the flow mapping of waste | S Hartini, D P Sari and A A Utami | View abstract |
| cooking oil: A finding from Semarang, Indonesia | | PDF |
| Perceived kansei and performance-based usability impact on satisfaction| M Hartono | View abstract |
| for web-based applications | | PDF |
Measurement of student satisfaction and loyalty using service quality model for higher education (HadQual) at industrial engineering department University of Pelita Harapan
N Hartono, Laurence and B F Tjahjadi
View abstract | PDF

Expertise-based decision makers' importance weights for solving group decision making problems under fuzzy preference relations
E Harowati
View abstract | PDF

Organic-inorganic nanocomposite membranes for molecular separation and bioapplications
J Hou, P D Sutrisna, L Li and Y Chen
View abstract | PDF

Tensile Properties of Kenaf Fiber by Alkalinization Treatment: Effect of different concentration
Ismojo, K A Zahidah, E Yuanita, E Kusdiyah and M Chalid
View abstract | PDF

How do the Indonesian ecologically conscious millennials value upcycled clothing?
O A Parung
View abstract | PDF

Passive design implementation as sustainable development approach on vertical housing case study: Sentra Timur Residence
T Riutama and H Herdiansyah
View abstract | PDF

Development and usability evaluation of virtual guide using augmented reality for Candi Gunung Gangsir in East Java
I M Romjastra, I Hapsari and F P Pani
View abstract | PDF

The Role of Ergonomics in Supporting Supply Chain Performance in Manufacturing Companies: a Literature review
N Sampouw and M Hartono
View abstract | PDF
Power System and Green Energy Management

OPEN ACCESS

The use of pyrolusite to remove Pb and Cd in aqueous solutions: isotherm and thermodynamic

Y Franques, M W B Kemble and N M Tanusaputra

+ View abstract PDF

OPEN ACCESS

Power generation in a plant-microbial fuel cell assembly with graphite and stainless steel electrodes growing Vigna Radata

K R S Pamintuan and K M Sanchez

+ View abstract PDF

OPEN ACCESS

Gas sensitive properties of ZnO nanorods formed on silicon and glass substrates

V V Petrov, A P Starnikova, Y N Varzarev, K A Abdullin and D P Makarenko

+ View abstract PDF

OPEN ACCESS

The study of the properties of lead zirconate-titanate films on silicon substrate after halogen lamps rapid thermal annealing

V V Petrov, A S Kamentsev, V V Polyakov and Y N Varzarev

+ View abstract PDF

OPEN ACCESS

Temperature Dependence of Electrical Properties of ZnO Nanorods Array

V V Petrov, Y N Varzarev and K A Abdullin

+ View abstract PDF

OPEN ACCESS

The kinetics oxidative degradation of chitosan in formic acid with the presence of hydrogen peroxide

E Purwanto, J Connor and Y Ngothai

+ View abstract PDF

OPEN ACCESS

Drying of colony leaves (Apium graveolens L.) using a PV/T solar dryer

L Sapei, E Tanggan, D N Sugianto and D Gianlucia

+ View abstract PDF
Mass transfer kinetic model and removal capacity of acid blue 29 adsorptions onto activated carbon
P Setyopratomo, H R Prisantini and R Agustiyanto
View abstract PDF

Utilization of rice straw and used paper for the recycle papermaking
N Suseno, T Adiarto, M Sihra and V Enika
View abstract PDF

Current Perspectives and Mini Review on Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes on Organic Substrates
P D Sudirsno, E Savitri, N F Himno, N Prasetya and I G Wentan
View abstract PDF

The Influence of water and catalyst leach process toward propane oxidation on MoVTeNb catalyst
R K Widi
View abstract PDF

The Role of IT in Innovation Enhancement

Requirements analysis for the disaster logistics inventory information system to improve the effectiveness and efficiency of handling emergency response periods
N U Handayani, D P Sari, Y Widharto and G Basir
View abstract PDF

Anchored instruction IIS: a novel approach to make learning programming interesting and effective
B Hartarto and J Reya
View abstract PDF

The evaluation of academic websites using eye tracker and UEQ: a case study in a websites of xyz
A H Kusumo and M Hartono
View abstract PDF

Computer vision system in measurement of the volume and mass of egg using the disc method
M Widiati, L P Santoso and J Sirowanto
View abstract PDF
Computer vision system for egg volume prediction using backpropagation neural network

J Skewenator, M Y Himsen and M Wiaseni
Published under licence by IOP Publishing Ltd
IOP Conference Series: Materials Science and Engineering Volume 273 conference 1

Abstract

One important process in egg production is the sorting process to determine the grade of the egg. The volume and mass of the egg are the factors needed in this sorting process. But the conventional way to measure egg volume and mass can damage egg and takes a long time. This paper proposes a Computer Vision System (CVS) to measure egg volume and mass quickly, accurately, precisely without damaging the egg. The disc method is a method used to calculate the volume of an object with a circular cross-section such as an egg. CVS was designed to calculate the volume using the disc method and calculate the egg mass using density and regression models, based on images captured in real-time or images that have been captured previously. The validation process is carried out using 50 egg samples by comparing results from the proposed method with manual measurements. To compare the time needed by CVS and manual measurement, an average test was used. To test the output accuracy of the volume and mass of egg, relative absolute error, ANOVA test, and correlation test were used. Whereas to test the output precision, the coefficient of variation was used. Based on the results of the testing conducted, CVS in the proposed method successfully measuring the volume and mass of egg quickly, accurately, precisely, without damaging the egg.
References

[1] Rush S A, Maddox T, Woodrey M S, Fisk A T and Cooper R J 2009 A precise water displacement method for estimating egg volume J. Field Ornith. 8 193-7
 CrossRef Google Scholar

[2] Siswanto J, Hilman M and Widiasri M 2017 Computer vision system for egg volume prediction using backpropagation neural network IOP Conf. Ser.: Mater. Sci. Eng. 273 012002
 Google Scholar

[3] Maraden J and Weinstein A 1985 Calculus II (Springer) 98-104
 CrossRef Google Scholar

[4] Wang T Y and Nguang S K 2007 Low-cost sensor for volume and surface area computation of axisymmetric agricultural products J. Food Eng. 79 870-7
 CrossRef Google Scholar

[5] Soltani M, Omid M and Alimardani R 2014 Egg volume prediction using machine vision technique based on pappus theorem and artificial neural network J. Food Sci. Technol. 1-7
 Google Scholar

[6] Siswanton J, Prabuwono A S and Abdullah A 2012 Kerangka kerja penentuan volume telur menggunakan computer vision dan aturan simpson SWASTIA 2012 1-5
 Google Scholar

[7] Bridge E S, Boughton R K, Aldredge R A, Harrison T J E, Bowman R and Schoech S J 2007 Measuring egg size using digital photography: testing Hoyt’s method using florida scrub-jay eggs Field Ornitho 78 109-16
 CrossRef Google Scholar

[8] Koc A E 2007 Determination of watermelon volume using ellipsoid approximation dan image processing Postharvest Biol. Technol. 45 366-71
 CrossRef Google Scholar

[9] Asadi V, Raoufali M H and Nassiri S M 2012 Fresh egg mass estimation using machine vision technique Int. Agrophys. 26 229-34
 CrossRef Google Scholar

[10] Walpole R E, Myres R H, Myres S L and Ye K 2011 Probability & Statistics for Engineers & Scientists 9 507-506
 Google Scholar
