Liver cancer stem cells: Recent progress in basic and clinical research
Taro Yamashita a, *, Shuichi Kaneko b

a Department of General Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
b Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan

A B S T R A C T

The cancer stem cell (CSC) hypothesis was proposed over 4 decades ago and states that tumor growth is maintained by a small subset of cancer cells analogous to normal tissue stem cells in terms of self-renewal and differentiation capacity. Advances in CSC isolation were initially achieved in hematological malignancies and later in solid tumors, including hepatocellular carcinoma (HCC), the major histological type of liver cancer. Increasing evidence suggests the importance of liver CSCs for tumor growth, metastasis, and chemo/radiation resistance in HCC, but the application of the liver CSC concept for the clinical diagnosis and treatment of HCC has not yet been achieved to the extent initially expected. Furthermore, the heterogeneity and plasticity of liver CSCs has recently been noted and might be related to drug resistance and the rapid growth and/or metastasis of the tumor after treatment. Here, we introduce our recent advancement in liver CSC research and discuss the clinical implications, which may lead to the development of improved diagnostics and treatment in HCC.

© 2021, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the second leading cause of cancer death worldwide [1]. The majority of HCCs arise from a background of chronic liver diseases caused by hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, and a high incidence has historically been observed in Asia and Africa due to high prevalence of these viruses [2,3]. Currently, several guidelines are available for HCC screening in high-risk patients infected with HBV or HCV. Moreover, increasing numbers of HCC cases have been observed in most industrialized countries, potentially related to the high incidence of obesity and underlying metabolic diseases known as non-alcoholic fatty liver diseases (NAFLD). There is an urgent need for the development of improved diagnostics and treatment of HCC in these populations.

HCC is known as a heterogeneous disease in terms of morphology, cellular behavior, responses to treatment, and clinical

Abbreviations: AFP, alpha-fetoprotein; CSC, cancer stem cells; HCC, hepatocellular carcinoma; LG2m, laminin γ2 monomer.

* Corresponding author. Department of General Medicine, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, Ishikawa 920-8641, Japan.
E-mail address: taroy62m@staff.kanazawa-u.ac.jp (T. Yamashita).

Peer review under responsibility of the Japanese Society for Regenerative Medicine.

https://doi.org/10.1016/j.reth.2021.03.002
2352-3294/© 2021, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
outcome [4–6]. Traditionally, these heterogeneities have been explained by differences in genetic/epigenetic changes accumulated during the clonal evolution of cancer cells [7,8]. In contrast, cancer cells have similar capacities to stem cells, including self-renewal, differentiation, and limitless division. These observations resulted in the proposal of the cancer stem cell (CSC) hypothesis, which states that a subset of tumor cells possess stem cell features, enabling them to self-renew and divide asymmetrically in order to generate heterogenous cell populations [9]. Recent evidence suggests the existence of CSCs in HCC, and they are considered highly tumorigenic, metastatic, and chemoradiation resistant, indicating the importance of targeting liver CSCs for the development of improved diagnostics and treatment of HCC [5,10]. Here we summarize the evidence surrounding liver CSCs by focusing on their heterogeneity and clinical application.

2. Heterogeneity of liver CSCs

The major characteristics of CSCs are self-renewal and differentiation capacity in isolated cells, experimentally confirmed by in vitro clonogenicity and in vivo tumorigenicity with the formation of cellular heterogeneity in the tumor [11]. Therefore, cell isolation methods for enriching tumorigenic cells with differentiation ability have been extensively explored to identify liver CSCs [12]. Thus far, various cell surface markers have been reported to enrich liver CSCs, including epithelial cell adhesion molecule (EpCAM), CD133, CD90 (Thy 1), CD44, CD24, and CD13 [13]. Most of these markers are also known to be expressed in hepatoblasts or hepatic progenitor cells but not in adult mature hepatocytes.

The characteristics of normal hepatic progenitor cells isolated using different markers might be distinct. For example, studies evaluating the characteristics of oval cells suggested different natures of EpCAM-positive and CD90-positive cells in chemically injured rat liver [14,15]. EpCAM-positive cells express classical oval cell markers including AFP, OV-1, and CK19, whereas CD90-positive cells express desmin and α-SMA but not AFP, OV-1, or CK19, indicating that CD90+ populations are more likely to be mesenchymal cells.

Similarly, we found that EpCAM-positive and CD90-positive cells isolated from HCC are distinct in terms of gene and protein expression patterns in both fresh primary HCC tissues and cell lines (Fig. 1) [16]. Alpha-fetoprotein (AFP), a well-known oncofetal protein and the most utilized tumor marker for the screening and evaluation of HCC, was produced mainly in EpCAM-positive cancer cells. EpCAM-positive HCC cells show polygonal epithelial cell morphology and highly tumorigenic capacity. In contrast, CD90-positive HCC cells show spindle-like mesenchymal cell shapes and are highly metastatic. To date, no tumor markers have been available to reflect the presence of CD90-positive cancer cells; however, we recently identified that a specific form of basement membrane component, laminin γ2 monomer (termed LG2m), is produced in abundance in CD90-positive HCC cells (see section 3) [17].

Our recent studies suggested that these heterogeneous liver CSCs interact together to orchestrate tumor growth and metastasis [18]. For example, the presence of CD90-positive cells is a risk for distant metastasis in HCC [16]. We found that CD90-positive CSCs are not only metastatic to distant organs by themselves, but also help in the metastasis of CD90-negative cells, including EpCAM-positive cells, which originally have no distant metastatic capacity, through activation of TGF-β signaling (Fig. 2) [16]. Sorafenib is a receptor tyrosine kinase inhibitor that suppresses c-Kit signaling, and we found that inhibition of c-Kit signaling had no effect on primary tumor growth but suppressed distant organ metastasis mediated by CD90-positive CSCs [16,19]. EpCAM-positive CSCs produced DKK1, one of the target genes activated by Wnt signaling like EpCAM, suggesting that Wnt signaling is activated in EpCAM-positive CSCs [20,21]. However, DKK1 is also known to be a suppressor of Wnt signaling, and the role of DKK1 on HCC development needs to be investigated further.

Our recent studies also suggested that heterogeneous liver CSCs and non-CSCs might show cellular plasticity in response to genotoxic or molecularly targeted reagents. Sorafenib treatment resulted in an increase of EpCAM-positive CSCs in HCC cell lines [19,23].
We found that capicua, encoded by CIC, was mutated and functionally abrogated in acquired sorafenib-resistant HCC in humans [23]. Capicua is a regulator of receptor tyrosine kinase signaling and works as a tumor suppressor, whereas its inactivation induces extracellular signal-regulated kinase (ERK) signaling activation and an increase of EpCAM-positive cells. Furthermore, we found genotoxic stresses induced by 5-FU or epirubicin treatment results not only in enrichment of EpCAM-positive cells but also in de novo generation of CD90-positive and CD105-positive mesenchymal liver CSCs originally not found in EpCAM-positive HCC cell lines (Fig. 2) [24]. Indeed, CD105-positive HCC cells were detected in human HCC specimens surgically resected after transcatheter arterial chemoembolization (TACE) treatment, suggesting that mesenchymal liver CSCs expressing CD90 or CD105 are resistant to hypoxia and cytotoxic reagents, and are potentially generated de novo after cellular stresses from epithelial CSCs or non-CSCs. These data illustrate the complexity of HCC development organized by liver CSCs, and even after successful treatment targeting the specific liver CSC population, CSCs might arise de novo from a non-CSC population.

3. Application of liver CSC concept for clinical diagnosis

Several staging systems are currently available for HCC classification, including Barcelona Clinic Liver Cancer (BCLC) staging, and are based on tumor number and size, vascular invasion, metastatic status, hepatic reserve, and performance status. These systems can provide an approximate estimate of patient survival, but patients diagnosed at the same disease stage sometimes show a different prognosis, potentially due to the malignant phenotype of the tumor [25]. Extensive efforts to understand the nature of HCC at the molecular level through transcriptome analysis led to the definition of the molecular subclasses of HCC related to patient prognosis [26–28]. Hoshida’s S1–3 subclasses [29] or Boyault’s G1–6 subclasses [30] are based on microarray data and could be utilized for prognosis (Fig. 3). However, the application of microarray data still needs to be validated prior to its implementation in clinical practice. Thus far, AFP is the only marker clinically available for detecting HCC with poor prognosis, which is closely related to the presence of EpCAM-positive CSCs [31].

Metastasis determines the prognosis of cancer, but no markers are clinically available for diagnosing the metastatic nature of the tumor before it metastasizes. Given that the presence of CD90-positive CSCs is closely associated with distant organ metastasis, biomarkers reflecting the existence of CD90-positive CSCs could help to predict the metastatic nature of HCC. Recently, we found that LG2m, a monomeric form of γ2 chain of laminin-332 in basement membrane [32], is actively produced in CD90-positive HCC cells [17]. LG2m is cancer specific extracellular matrix and promotes malignant behaviors of cancer [33,34]. Accordingly, we evaluated the prognostic value of LG2m measurement in HCC patients. Microarray data of HCC cell lines clearly indicated that LG2m elevation is a marker of HCC corresponding to the Hoshida’s S1 and Boyault’s G3 subclasses. No correlation was observed between serum LG2m and AFP nor serum LG2m and des-gamma-carboxy prothrombin (DCP), indicating that LG2m is a novel distinct HCC marker. LG2m elevation correlated with poor overall patient survival in two independent HCC cohorts. Furthermore, we found that neither AFP nor DCP but rather LG2m elevation was closely associated with the risk of later development of extrahepatic spread. Thus, we concluded that LG2m is a novel serum marker produced by CD90-positive CSCs that is elevated in Hoshida’s S1 and Boyault’s G3 subclasses and is associated with distant organ metastasis and a poor prognosis. As far as we know, LG2m is the first tumor marker that correlates with the risk of metastasis to be identified, and efforts to measure serum LG2m in the clinical setting are currently ongoing.

Molecular profiling of HCC also provides information on HCC subclasses with better survival rates (Fig. 3). This HCC subclass is characterized by gene expression patterns reminiscent to mature hepatocytes. Gd-EOB-DTPA-enhanced MRI has been used to evaluate liver tumors in Japan since 2008. Gd-EOB-DTPA is characterized by its rapid and specific uptake by hepatocytes via organic anion transporting polypeptides (OATPs) expressed in the sinusoidal membrane. Therefore, Gd-EOB-DTPA uptake at hepatobiliary phase (HBP) in the liver is considered to reflect hepatocyte function [35]. We found that HCC with high Gd-EOB-DTPA uptake capacity at HBP showed good overall survival without elevation of AFP [31]. Gene signature analysis suggested that this specific HCC is characterized by the activation of transcription factor HNF4A, a master regulator of mature hepatocyte function, in HCC [36,37]. Furthermore, this HCC subclass showed strong nuclear β-catenin staining or CTNNB1 mutations [37,38], and lower expression of EpCAM.

Taken together, our studies demonstrate the utility of serum AFP, LG2m, and Gd-EOB-DTPA-enhanced MRI findings for reflecting the presence or absence of liver CSCs and patient prognosis (Fig. 3). Importantly, AFP and Gd-EOB-DTPA-MRI findings are currently available in the clinical setting, and the addition of LG2m would further supplement the information about the nature and clinical outcome of HCC in the near future.

4. Conclusions

Accumulating evidence suggests that the diversity of liver CSCs might explain the heterogeneous nature of HCC in terms of growth, metastasis, treatment responses, and prognosis. Efforts to apply these basic research data to the clinical setting will foster the development of novel diagnostic and therapeutic approaches to defeat HCC.

Declaration of competing interest

All authors declare that they have no competing financial interests regarding this manuscript.
Acknowledgments

We would like to thank Drs. Naohiko Koshikawa (Tokyo Institute of Technology) and Motoharu Seiki (Institute of Medical Science, The University of Tokyo), inventors of the method to detect serum LC2m, for their fruitful discussions to prepare this review article. The preparation of this review article was supported by grants from the Japan Agency for Medical Research and Development (Grant No. JP19ae0101075) and JSPS KAKENHI (JP18H02792).

References

[1] Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019;380(15):1450–62.
[2] Yamashita T, Honda M, Kaneko S. Molecular mechanisms of hepatocarcinogenesis in chronic hepatitis C virus infection. J Gastroenterol Hepatol 2011;26(5):960–4.
[3] Yamashita T, Nault JC. Stemness of liver cancer: from hepatitis B virus to Wnt activation. J Hepatol 2016;65(5):873–5.
[4] Yamashita T, Honda M, Takatori H, Nishino R, Minato H, Takamura H, et al. Activation of Wnt-pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol 2009;50(1):100–10.
[5] Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest 2013;123(5):1911–8.
[6] Nishino R, Honda M, Yamashita T, Takatori H, Minato H, Zen Y, et al. Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma. J Hepatol 2008;49(2):207–16.
[7] Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23.
[8] Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Rev Genet 2004;3:789–99.
[9] Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006;355(12):1253–61.
[10] Yamashita T, Kaneko S. Orchestration of hepatocellular carcinoma development by diverse liver cancer stem cells. J Gastroenterol 2014;49(7):1105–10.
[11] Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008;8(10):755–68.
[12] Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Canc 2017;16(1):4.
[13] Oishi N, Yamashita T, Kaneko S. Molecular biology of liver cancer stem cells. Liver Cancer 2014;3(2):71–84.
[14] Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Cuha C, Dabeva MD. Identification of adult hepatic progenitor cell markers repopulating injured rat liver. Hepatology 2008;47(2):636–47.
[15] Yovchev MI, Zhang J, Neufeld DS, Grozdanov PN, Dabeva MD. Thymin cell antigen-1-expressing cells in the oval cell compartment. Hepatology 2009;50(2):601–11.
[16] Yamashita T, Honda M, Nakamoto Y, Baba M, Nio K, Hayashi T, et al. Discrete nature of EpCAM (+) and CD90 (−) cancer stem cells in human hepatocellular carcinoma. HEPATOLOGY 2013;57(4):1484–97.
[17] Yamashita T, Koshikawa N, Shimakami T, Terasshima T, Nakagawa M, Nio K, et al. Serum laminin γ2 monomer as a novel diagnostic and predictive biomarker for hepatocellular carcinoma. HEPATOLOGY 2021. https://doi.org/10.1002/hep.31758. Epub 2021/02/21. In press.
[18] Yamashita T, Kaneko S. Orchestration of hepatocellular carcinoma development by diverse liver cancer stem cells. J Gastroenterol 2014;49(9):1105–10. https://doi.org/10.1002/jgh2.24591.
[19] Yoshida M, Yamashita T, Okada H, Oishi N, Nio K, Hayashi T, et al. Sorafenib suppresses hepatocellular metastasis de novo in hepatocellular carcinoma through inhibition of mesenchymal cancer stem cell characteristics by the expression of CD90. Sci Rep 2017;7(1):11292.
[20] Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Can Res 2007;67(22):10831–9.
[21] Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009;136(3):1012–24.
[22] Yamashita T, Honda M, Nio K, Nakamoto Y, Takamura H, Tani T, et al. Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation. Can Res 2010;70(11):4687–97.
[23] Hashiba T, Yamashita T, Okada H, Nio K, Hayashi T, Asahina Y, et al. Inactivation of transcriptional repressor capicua confers sorafenib resistance in human hepatocellular carcinoma. Cellular and molecular gastroenterology and hepatology 2020;10(2):260–85.
[24] Nomura Y, Yamashita T, Oishi N, Nio K, Hayashi T, Yoshida M, et al. De novo emergence of mesenchymal stem-like CD105+ cancer cells by cytotoxic agents in human hepatocellular carcinoma. Translational oncology 2017;10(2):184–9.
[25] Villanueva A, Hoshida Y, Toftanin S, Lachenmayer A, Alsinet C, Savic R, et al. New strategies in hepatocellular carcinoma: genomic prognostic markers. Clin Canc Res : an official journal of the American Association for Cancer Research 2010;16(19):4688–94.
[26] Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Can Res 2008;68(5):1451–61.
[27] Yamashita T, Hashimoto S, Kaneko S, Nagai S, Toyoda N, Suzuki T, et al. Comprehensive gene expression profile of a normal human liver. Biochem Biophys Res Commun 2000;269(1):110–6.
[28] Yamashita T, Honda M, Kaneko S. Application of serial analysis of gene expression in cancer research. Curr Pharmaceut Biotechnol 2008;9(5):375–82.
[29] Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Can Res 2009;69(18):7385–92.
[30] Boyault S, Rickman DS, de Reynies A, Babalabaud A, Reboissou S, Jeannot E, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. HEPATOLOGY 2007;45(1):42–52.
[31] Yamashita T, Kitao A, Matsui O, Hayashi T, Nio K, Kondo M, et al. Gd-EOB-DTPA–enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. HEPATOLOGY 2014;60(5):1674–85.
[32] Koshikawa N, Moriyama K, Takamura H, Mizushima H, Nagashima Y, Yanoma S, et al. Overexpression of laminin gamma 2 chain inovating gastric carcinoma cells. Can Res 1999;59(21):5596–601.
[33] Yasuda H, Nakagawa M, Kiyokawa H, Yoshida E, Yoshimura T, Koshikawa N, et al. Unique biological activity and potential role of monoclonal laminin-gamma 2 as a novel biomarker for hepatocellular carcinoma: a review. Int J Mol Sci 2019;20(1).
[34] Rousselle P, Scoazec JY. Laminin 332 in cancer: when the extracellular matrix turns signals from cell anchorage to cell movement. Semin Canc Biol 2020;62:149–65.
[35] Kanke A, Tamada T, Higaki A, Node Y, Yaminato D, Sato T, et al. Hepatic parenchymal enhancement at Gd-EOB-DTPA–enhanced MR imaging: correlation with morphological grading of severity in cirrhosis and chronic hepatitis. Magen Reson Imaging 2012;30(3):356–60.
[36] Kitao A, Matsui O, Yoneda N, Kozaka K, Kobayashi S, Koda W, et al. Hypervascular hepatocellular carcinoma: correlation between biologic features and signal intensity on gadoxetic acid-enhanced MR images. Radiology 2012;265(3):780–9.
[37] Kitao A, Matsui O, Yoneda N, Kozaka K, Kobayashi S, Sanada J, et al. Hepatocellular carcinoma with beta-catenin mutation: imaging and pathologic characteristics. Radiology 2015;275(3):708–17.
[38] Kitao A, Matsui O, Yoneda N, Kozaka K, Kobayashi S, Koda W, et al. Gadoxetic acid–enhanced magnetic resonance imaging reflects co-activation of beta-catenin and hepatocyte nuclear factor 4 alpha in hepatocellular carcinoma. HEPATOLOGY 2018;68(2):205–16.