The Effect of Cooperative Models of Pair Share Think on the PKn Learning Outcomes of Basic V Vocational School Students

Zuardi
Universitas Negeri Padang, Indonesia
zuardi.msi@gmail.com

Yunisrul
Universitas Negeri Padang, Indonesia
zuardi.msi@gmail.com

Arwin
Universitas Negeri Padang, Indonesia
zuardi.msi@gmail.com

Fitria Abadi
Universitas Negeri Padang, Indonesia
zuardi.msi@gmail.com

Abstract: Research this aiming for knowing influence of cooperative models Think Pair Share to the results learn civic education (PKn) class V SDN Gugus I Subdistrict Sungai Pua Districts Agam. Research this is research quantitative with method research experiment. Sample on research this composed from two group, i.e. group experiment totaling 20 students and group control which amounted to 20 students, with total population as many as 122 people. Instruments used to collect data i.e. in the form of test with type selection double. Results research that has analyzed, obtained $t_{\text{count}} > t_{\text{table}}$ namely 2.625 > 1.68595 with $\alpha = 0.05$ which means H_0 is rejected and H_a is accepted. So that could conclude there is influence of cooperative models Think Pair Share (TPS) against the results learn PKn class V SDN Gugus I Subdistrict Sungai Pua districts Agam.

Keywords: think pair share model, civic education

I. INTRODUCTION

The Cooperative Think Pair Share (TPS) type model uses a paired discussion model followed by a joint discussion that gives students the opportunity to express their opinions and students also learn to respect the opinions of others while still referring to the material / goals of learning. According to Hamdayama (2014), Think Pair Share Type Cooperative Learning Model is an effective way to vary the atmosphere of class discussion patterns.

Cooperative learning think pair share type is relatively simpler because it does not take a long time to arrange seating or classify students. It is expected that by using this model, it can improve student learning outcomes. In addition, learning with the Cooperative learning model type Think Pair Share (TPS) gives time to students to think critically and help each other.

In line with Kurniasih, et al. (2015) which states that in Think Pair Share models there are procedures that can give students more time to think, to respond and help each other. So that this model is suitable to be used in Citizenship Education (PKn) which is an effort to equip students with basic knowledge and abilities relating to the relationship between citizens and the state.

The fact that was found in the field during the observations on 18, 19, and July 20, 2018 in class V of SDN Gugus I, Sungai Pua Subdistrict, Agam Regency, namely PKn learning had not been implemented properly as it should. In PKn learning the teacher has not used the right learning model so that the expected goals have not been achieved. Civics learning should make students active and can collaborate between students in the learning process. But in the field, Civics learning is less effective, students tend to be asked to read the material in the textbook, so students look less active because they are only focused on reading learning material books, students do not have the courage to express ideas or opinions in learning, teachers also do not involve students as a whole in the learning process so students with students not wanting to share information with their friends. Lack of active student involvement in the learning process will affect student learning outcomes.

Underlying this, the Cooperative learning model type Think Pair Share is suitable for use in Civics learning in Elementary Schools. Through the use of the Cooperative learning type Think Pair Share, learning will be more meaningful for students because they are able to motivate and condition students to learn actively on the basis of their own abilities and beliefs, and can develop creativity in solving problems, so that it can increase student participation and learning outcomes. Based on the description described above, the researcher wanted to conduct further research to find out the effect of using cooperative learning models of the Think Pair Share type on the PKn learning outcomes of students.

II. METHOD

This research is a quantitative research with experimental research methods using quasi experimental design with the form of nonequivalent control group design, namely the design of experiments that use pretest before treatment and posttest after being treated. The population in this study were all fifth-grade students in SDN Gugus I, Sungai Pua Subdistrict, Agam District, which consisted of 4 SDNs totaling 122 students.

The sampling technique in this study uses simple random sampling technique which is part of probability sampling techniques. According to Sugiyanono (2012) simple random sampling is the technique of determining samples that is done randomly regardless of the strata that
exist in that population. Of the 4 elementary schools that researchers took as a population in Cluster I in Sungai Pua Subdistrict, researchers randomly collected one elementary school by drawing, with the SD provisions being taken into the study sample. Then the sample selected from this study is the fifth-grade students of SDN 14 Simpang Ampek which consists of 2 study rooms, namely VA, amounting to 20 students and VB which amounts to 20 students.

In this study, the researcher used a test instrument, because the researcher measured the dependent variable, namely the results of the fifth-grade students’ Pkn learning on the importance of maintaining the integrity of the NKRI. Test questions are based on predetermined grids, then the question is tested to students outside the sample, namely students who apply as a trial group. The trial function is to find out whether the test questions are suitable for use. In this study, the trial was conducted on 26 students in class VI Semester I SDN 05 Tarok Dipo, academic year 2018/2019.

The test instrument used in this study is a written test with a number of 35 questions in the form of objective tests with a type of multiple choice test with four alternative answer choices (a, b, c, and d), where the questions are based on learning indicators to be given in the experimental group and the control group.

The results of the trial of the instrument were analyzed to see the validity, reliability, level of difficulty, and the power of the different questions. Furthermore, based on the results of the trial data obtained, it appears that the questions are well used and not, namely as many as 20 questions that are ready to be tested at the pretest (initial test) and posttest (final test) in the study sample.

Data analysis of this study is, analysis of test data, analysis of student learning outcomes test data aims to test whether the proposed hypothesis is accepted or rejected. To analyze student learning outcomes data used hypothesis testing using the t test. Before hypothesis testing is carried out, the normality test and homogeneity test are carried out first (Gunawan, 2017).

III. RESULTS

A. Pretest Data Experiment Class and Control Class

1. Pretest Experimental Class Data

Pretest data was obtained through the results of initial tests of students’ abilities before being given treatment. The results of the pretest analysis of the experimental class can be seen in the following Table 1.

Pretest Class Results Experiment	Pretest Control
N	20
Max	80
Min	25
Range	55
Mean	61.25

Based on the results of data analysis in the table above it can be seen that the average value of the pretest of the experimental class has not yet reached KKM. The highest score was obtained by 1 student and the lowest score was also obtained by 1 student. The number of students in the experimental class who reached KKM was 5 people, with scores ranging from 70 to 78 and the rest ranging from grades 34 to 69. So, it can be concluded that 15 students or 75% of students in the experimental class did not reach KKM at the pretest.

2. Pretest Control Class Data

The pretest control class data were obtained through the results of the initial test of students’ abilities before being given learning using Conventional models. The results of the pretest control class analysis can be seen in the following Table 2.

Pretest Class Results Control	Pretest Control
N	20
Max	75
Min	35
Range	40
Mean	59.75

Based on the results of data analysis in the table above, it can be seen that the average value of the pretest of the control class has not yet reached KKM. The highest score was obtained by 1 student as well as the lowest value obtained by 1 student and the rest ranged between grades 42 to 69. So, it can be concluded that 19 students or 95% of students in the control class did not reach KKM at the pretest.

3. Comparison of Pretest Values of Experimental Classes and Control Classes

Based on the results of the class average at pretest, the results of the experimental class (61.25) were higher than the average of the control class (59.75). The difference in the average value of the two classes is 1.5. Comparison of experimental and control values can be described in the histogram below (Figure 1).

B. Experiment Class and Control Class

1. Posttest Experimental Class Data

Posttest data was obtained through the final test results of students’ abilities after being treated. The results of the posttest analysis of the experimental class can be seen in the following Table 3.

Pretest Class Results Experiment	Pretest Control
N	20
Max	80
Min	25
Range	55
Mean	61.25

Based on the results of data analysis in the table above it can be seen that the average value of the experimental class posttest has reached KKM. The highest score was obtained by 1 student and the lowest value was obtained by 1 student, and the rest ranged from 75 to 95.
So, it can be concluded that 19 students or 95% of students in the experimental class had reached KKM at the posttest.

Table 3	Class Posttest Results Experiment
N	20
Max	100
Min	70
Range	30
Mean	86

2. Control Class Posttest Data

The posttest data of the control class were obtained through the final test results of students’ abilities after being given learning using Conventional models. The results of the posttest analysis of the control class can be seen in the following Table 4.

Table 4	Pretest Class Results Control
N	20
Max	75
Min	35
Range	40
Mean	59.75

Based on the results of data analysis in the table above it can be seen that the average value of the posttest of the control class has reached KKM. The highest score is obtained by one student and the lowest score is obtained by one student.

The number of control class students who reached KKM was 16 people, with values ranging from 74 to 94 and the rest ranged from grades 66 to 73. So, it can be concluded that 16 students or 80% of students in the control class had reached KKM at posttest.

3. Comparison of Posttest Values of Experimental Classes and Control Classes

Based on the results of the class average at posttest, the experimental class using the TPS cooperative learning model scored an average of 86. While the control class using the conventional learning, model obtained an average score of 78.75. So, the average posttest value of the experimental class is higher than the control class with a difference of 7.25. This shows that the ability of the experimental class students after being given treatment with the TPS learning model is higher than the control class using the Conventional model. Comparison of the values of the experimental class and the control class can be illustrated in the histogram below (Figure 2).

D. Data Normality Test

Based on data analysis obtained by L_{table} with $n = 20$ is 0.19 for significance level $\alpha 0.05$. Based on the results of the normality test on the pretest value of the experimental class, the $L_{count} < L_{table}$ is 0.1126 < 0.19; and in the control class the results of $L_{count} < L_{table}$ were 0.0943 < 0.19. The results of the normality test on the posttest value of the experimental class obtained the results of $L_{count} < L_{table}$ which is 0.1643 < 0.19; and in the control class, the $L_{count} < L_{table}$ is 0.0879 < 0.19. Based on these data it can be concluded that the experimental class and control class data came from groups that were normally distributed for the results of the pretest and posttest.

E. Data Homogeneity Test

Based on the data analysis obtained F_{table} with $n = 20$ is 20.6 for a significance level of $\alpha 0.05$. Based on the results of the homogeneity test on the pretest value of the experimental class and the control class, the results of $F_{count} < F_{table}$ are 2.561 < 20.6. The homogeneity test results on the posttest value of the experimental class and the control class obtained the results of $F_{count} < F_{table}$ which is 1.401 <
20.6. Thus, it can be concluded that the pretest and posttest data of the experimental class and the control class are homogeneous. Homogeneous data shows that both classes have almost the same abilities.

F. Hypothesis testing

In this study t_{count} was 2.625 and t_{table} was 1.68595 so that $t_{\text{count}} > t_{\text{table}}$ (1.72472), then H_a is acceptable. Based on these calculations, it can be concluded that the use of the Cooperative Think Pair Share (TPS) model has a significant effect on PKn learning outcomes.

IV. DISCUSSION

This study was conducted to see the effect of the Think Pair Share cooperative learning model on student learning outcomes in the material examples of behavior in maintaining the integrity of the Class V NKRI of SDN Gugus I, Sungai Pua Subdistrict, Agam District. Before doing the learning in the experimental class and the control class, students are given the initial test or pretest first. In the experimental class, it was obtained an average of 61.25 with the highest score of 80 and the lowest score of 25. Whereas in the control class it was obtained an average of 59.75 with the highest score of 75 and the lowest score of 35.

Furthermore, an analysis prerequisite test is carried out, namely the normality and homogeneity of data. The purpose of the normality test is to find out whether the data is normally distributed or not. The normality test in this study uses the Lilliefors test with the provisions of $L_{\text{count}} < L_{\text{table}}$ then the data are normally distributed at the 0.05 significance level. Based on the Lilliefors test performed on the pretest grade of the experimental class, L_{count} was obtained at 0.1126 and in the control class L_{count} was 0.0943. The L_{table} value at the significance level of 0.05 with $n = 20$ is 0.19.

So that based on the test results $L_{\text{count}} < L_{\text{table}}$ which means the data pretest of the experimental class and the control class are normally distributed. Data from the results of the pretest also tested the homogeneity analysis prerequisites to find out whether the variance of the data was homogeneous or heterogeneous. The homogeneity test in this study used the Hartley test by comparing the largest variance with the smallest variance. The criteria for testing homogeneity are if $F_{\text{count}} < F_{\text{table}}$ then the data is homogeneous with a significance level of 0.05.

Based on the Hartley test conducted on the results of the experimental class pretest and control class, obtained F_{count} of 2.561 while F_{table} at the 0.05 significance level was 20.6. Then it can be concluded $F_{\text{count}} < F_{\text{table}}$ which means the pretest data of the two classes has a homogeneous variance. After being given a pretest in both classes, learning was done with the cooperative model Think Pair Share (TPS) type in the experimental class and learning with conventional models in the control class.

After that, in the second class the final test or posttest was conducted to measure the extent of students’ abilities after learning. Based on the results of the posttest in the experimental class, it was obtained an average of 86 with the highest score of 100 and the lowest value of 70, while the control class obtained an average of 78.75 with the highest score of 100 and the lowest value 60.

The analysis prerequisite test was also conducted on the posttest values of the experimental class and the control class. Based on the Lilliefors normality test conducted on the posttest value of the experimental class, L_{count} was obtained at 0.1643 and in the control class L_{count} was 0.0879. The L_{table} value at the significance level of 0.05 with $n = 20$ is 0.19.

So, based on the test results $L_{\text{count}} < L_{\text{table}}$ which means the posttest data of the experimental class and the control class are normally distributed. Then the homogeneity test using the Hartley test was carried out. Based on the Hartley test conducted on the results of the experimental class and control class posttest, obtained F_{count} of 1.401 while F_{table} at the 0.05 significance level was 20.6. Then it can be concluded that $F_{\text{count}} < F_{\text{table}}$ means that the posttest data of the two classes has a homogeneous variance. While the hypothesis testing in this study was carried out by using the t test (T test) at the 0.05 significance level with the decision criteria if the value of $t_{\text{count}} > t_{\text{table}}$, then H_a is accepted and H_0 is rejected. Based on the results of the calculation of the hypothesis test performed, the value of $t_{\text{count}} > t_{\text{table}}$ is 2.625 > 1.68595 so that H_a is accepted. Then it can be concluded that this study can provide a significant influence on student learning outcomes.

Based on the analysis above, it has been proven that there is a significant effect on learning by using the cooperative model Think Pair Share (TPS) type on the learning outcomes of class V Civics in SDN Gugus I, Sungai Pua Subdistrict, Agam District. In the class that applies learning with the cooperative model the Think Pair Share (TPS) type has a higher average of 7.25 compared to the conventional learning model, because the cooperative model of the Think Pair Share (TPS) type makes students actively participate in the learning process. Kurniasih, et al. (2015: 59) stated that the cooperative model of Think Pair Share (TPS) can increase student participation in the learning process and increase student activeness because the groups formed are not broad, and each student can freely express his opinion.

According to Hamdayana (2014) the cooperative model of Think Pair Share (TPS) involves students actively in the teaching and learning process, it will be more interesting and not monotonous compared to Conventional models so that student learning outcomes can be better than learning with Conventional models. In the Cooperative Think Pair Share (TPS) type problem solving can be done directly, and students can understand a material in groups and help each other with each other, making conclusions (discussions) and presenting in front of the class as one of the evaluations steps the learning activities that have been carried out.

V. CONCLUSIONS

The conclusions of the results of this study are that the learning outcomes of students in the experimental class taught using the Cooperative Think Pair Share (TPS) type with the acquisition of an average value of 86 higher than the learning outcomes of students in the control class taught using conventional models with the acquisition of average scores average of 78.75.

Furthermore, from the results of hypothesis testing obtained through the t test at the 0.05 level of significance,
where $t_{\text{count}} > t_{\text{table}}$ is 2.625 > 1.68595, so Ha is accepted which means that there is a significant influence on the use of the cooperative model Think Pair Share (TPS) type on learning outcomes in class V Civics learning in SDN Gugus I Sungai Pua District Agam District 2018 Academic Year / 2019. Thus, the cooperative learning model of the Think Pair Share (TPS) type can influence student learning outcomes in PKn.

REFERENCES

[1] Gunawan, I. 2017. *Pengantar Statistika Inferensial*. Jakarta: Rajawali Pers.

[2] Hamdayama, J. 2014. *Model dan Metode Pembelajaran Kreatif dan Berkarakter*. Bogor: Ghalia Indonesia.

[3] Huda, M. 2014. *Cooperative Learning*. Yogyakarta: Pustaka Pelajar

[4] Kurniasih, I. & Sani, B. 2015. *Ragam Pengembangan Model Pembelajaran*. Jakarta: Kata Pena.

[5] Sugiyono. 2011. *Metode Penelitian Kuantitatif, Kualitatif dan R&D*. Bandung: Alfabeta.