On a conjecture on linear systems

SONICA ANAND

Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, Mohali 140 306, India
E-mail: sonicaanand@iisermohali.ac.in; sonica.anand@gmail.com

Abstract. In a remark to Green’s conjecture, Paranjape and Ramanan analysed the vector bundle \(E \) which is the pullback by the canonical map of the universal quotient bundle \(T_{\mathbb{P}^{g-1}}(-1) \) on \(\mathbb{P}^{g-1} \) and stated a more general conjecture and proved it for the curves with Clifford Index 1 (trigonal and plane quintics). In this paper, we state the conjecture for general linear systems and obtain results for the case of hyper-elliptic curves.

Keywords. Green’s conjecture; linear systems; hyper-elliptic curves.

2010 Mathematics Subject Classification. 14H51, 14H52, 14H60.

1. Introduction

Let \(C \) be a smooth projective curve of genus \(g \geq 2 \) over a field \(k \) and let \(K \) be the canonical line bundle on \(C \). In [4], Green made a conjecture which relates two aspects: Koszul cohomology (an algebraic aspect) and Clifford Index \(\gamma_C \) (a geometric aspect) of a curve. This conjecture [4] is equivalent to the following [6]: Let \(E_K \) be the pullback by the canonical map \(\Phi : C \to \mathbb{P}^{g-1} \) of universal quotient bundle on \(\mathbb{P}^{g-1} \). Then the map \(\wedge^i \Gamma(C, E_K) \to \Gamma(C, \wedge^i E_K) \) is surjective \(\forall \ i \leq \gamma_C \). Paranjape and Ramanan [6] studied the vector bundle \(E_K \) (stability properties). They also proved that all sections of \(\wedge^i E_K \) which are locally decomposable are in the image of \(\wedge^i \Gamma(E_K) \forall \ i \leq \gamma_C \). Let \(\sum_{i,K} \) be the cone of locally decomposable sections of \(\wedge^i E_K \). In [5], Hulek et al. stated a conjecture.

\textbf{Conjecture 1.1.} \(\sum_{i,K} \) spans \(\Gamma(\wedge^i E_K) \forall \ i \) and for all curves.

This is stronger than Green’s conjecture. They proved it for curves with Clifford index 1 (trigonal curves and plane quintics). Conjecture 1.1 is trivial in case of hyperelliptic curves, since \(E_K \) is the \((g - 1)\)-fold direct sum of the hyper-elliptic line bundle. Vector bundle \(E_K \) is semi-stable (even stable if \(C \) is not hyper-elliptic). In a remark to conjecture made in [5], Eusen and Schreyer [3] asked a more general question, whether \(\Gamma(\wedge^i N) \) is spanned by locally decomposable sections and holds for every (stable) globally generated vector bundle \(N \) on every curve \(C \). They gave counter examples to this more general question [3]. By broadening our view point, in this paper we state a conjecture for general
linear systems. Let C be a smooth curve of genus $g \geq 2$ and let L be a globally generated line bundle on C. The evaluation map gives rise to an exact sequence

$$0 \to E^* \to \Gamma(L)_C \to L \to 0$$

where E^* is locally free of rank $h^0(L) - 1$. Let \sum_i be the cone of locally decomposable sections of $\wedge^i E$. We state as follows:

Conjecture 1.2. \sum_i spans $\Gamma(\wedge^i E) \forall i$ and for all curves.

In this paper, we prove Conjecture 1.2 in case of hyperelliptic curves for the line bundles with degree large enough and $i \leq g$.

Theorem 1. Let C be a smooth hyper-elliptic curve of genus $g \geq 2$ and let L be a globally generated line bundle on C of degree $d \geq 2g + 1$ such that $H^1(L \otimes T^{-2}) = 0$, where T is the hyper-elliptic line bundle on C. The evaluation map gives rise to an exact sequence

$$0 \to E^* \to \Gamma(L)_C \to L \to 0, \quad (1)$$

where E^* is locally free of rank $h^0(L) - 1$. Let \sum_i be the cone of locally decomposable sections of $\wedge^i E$. Then \sum_i spans $\Gamma(\wedge^i E) \forall i \leq g$.

2. **Geometry of the hyper-elliptic curve**

Since C is hyper-elliptic of genus $g \geq 2$, thus g^1_2 on C is unique. Let $\pi : C \to \mathbb{P}^1$ be the associated 2-sheeted covering, $T := \pi^* \mathcal{O}_{\mathbb{P}^1}(1)$ is the unique g^1_2.

Consider the rank 2 vector bundle W on \mathbb{P}^1, where $W := \pi^* L$. Since

$$\chi(L) = \chi(\pi^* L),$$

so

$$d + 1 - g = \text{rk}(W) \left(\frac{\deg W}{\rk W} + 1 - g_{\mathbb{P}^1} \right) = 2 \left(\frac{\deg W}{2} + 1 \right)$$

which gives

$$\deg W = d - g - 1.$$

Thus,

$$\det W \cong \mathcal{O}_{\mathbb{P}^1}(d - g - 1),$$

$$W \cong W^*(d - g - 1).$$

Since $\deg W = d - g - 1$, there is a unique integer $x \leq \frac{d - g - 1}{2}$ such that

$$W \cong \mathcal{O}_{\mathbb{P}^1}(x) \bigoplus \mathcal{O}_{\mathbb{P}^1}(d - g - 1 - x). \quad (2)$$

Remark 1.

(i) x is the least integer such that

$$H^1(W(-2 - x)) = H^1(\pi^* L(-2 - x)) = H^1(L \otimes T^{-2-x}) \neq 0.$$
In particular, this implies that \(\deg(L \otimes T^{-2-x}) \leq 2g - 2 \) and thus we have

\[
\frac{d - 2g - 2}{2} \leq x \leq \frac{d - g - 1}{2}.
\]

(ii) Since \(H^1(L \otimes T^{-2}) = 0 \), thus \(x > 0 \), so we have

\[
\max\left\{ 1, \frac{d - 2g - 2}{2} \right\} \leq x \leq \frac{d - g - 1}{2}.
\]

which implies that both \(W \) and \(W(-1) \) are globally generated.

(iii) Also, \(H^1(L \otimes T^{-2}) = 0 \) implies \(H^1(L) = 0 \), thus by Riemann–Roch theorem, we have

\[
h^0(L) = d - g + 1 \tag{3}
\]

and \(\operatorname{rank}(E) = h^0(L) - 1 = d - g \geq 3 \) (since \(d \geq 2g + 1 \) and \(g \geq 2 \)).

(iv) We have

\[
\Gamma(W(-1)) \cong \Gamma(\pi_*(L \otimes T^{-1})) \\
\cong \Gamma(L \otimes T^{-1})
\]

Also \(H^1(L \otimes T^{-2}) = 0 \) gives \(H^1(L \otimes T^{-1}) = 0 \). Thus, by Riemann–Roch theorem, we have

\[
h^0(L \otimes T^{-1}) = d - g - 1
\]

i.e., we have

\[
h^0(W(-1)) = d - g - 1. \tag{4}
\]

Since \(W(-1) \) is globally generated and \(\Gamma(W) \cong \Gamma(L) \), we have a surjection

\[
\Gamma(L)_{\mathbb{P}^1} \to W \to 0,
\]

which is an isomorphism for sections. Since \(W(-1) \) is a globally generated bundle on \(\mathbb{P}^1 \), \(W \) is very ample, i.e., we get an inclusion

\[
\mathbb{P}(W^*) \hookrightarrow \mathbb{P}(\Gamma(L)^*) =: \mathbb{P}. \tag{5}
\]

Also we have a surjection

\[
\pi^*W \to L \to 0.
\]

In other words, we have a subbundle of \(\pi^*(W^*) \) that is isomorphic to \(L^{-1} \). This gives a morphism from \(C \) to \(\mathbb{P}(W^*) \) with the property that the pullback of \(O_W(1) \) to \(C \) is \(L \). Also the composite of this morphism with the projection \(p : \mathbb{P}(W^*) \to \mathbb{P}^1 \) is \(\pi \). Since the induced map

\[
\Gamma(\mathbb{P}(W^*), O_W(1)) \cong \Gamma(\mathbb{P}^1, W) \to \Gamma(C, L)
\]
is an isomorphism, C is actually embedded in $\mathbb{P}(W^*)$. Let us denote the image of $\mathbb{P}(W^*)$ in \mathbb{P} by S. We return to the ruled surface $p : \mathbb{P}(W^*) \to \mathbb{P}^1$. By (5), there is an embedding $\mathbb{P}(W^*) \subset \mathbb{P} = \mathbb{P}(\Gamma(L)^*)$ with hyperplane section $\tau = \mathcal{O}_W(1)$. Note that $\tau^2 = \deg W = d - g - 1$. Let h be the class of a fibre of the projection p. Then the Picard group of $\mathbb{P}(W^*)$ is generated by τ and h. Since C is a secant (2-section) of $\mathbb{P}(W^*)$, its class is of the form $\mathcal{O}_W(2) \otimes p^*\mathcal{O}_{\mathbb{P}^1}(m)$. To compute m, we note that $d = C.\tau = 2\tau^2 + m$. Thus $m = 2g - d + 2$ and we have the following proposition.

Proposition 2.1

There are inclusions $C \subset S \subset \mathbb{P}$ with the following properties:

(i) the restriction of $\mathcal{O}_{\mathbb{P}}(1)$ to S is $\mathcal{O}_W(1)$;
(ii) the restriction of $\mathcal{O}_{\mathbb{P}}(1)$ to C is L;
(iii) both restrictions induce isomorphisms of the corresponding linear systems;
(iv) the divisor class on S defined by C is $\mathcal{O}_W(2) \otimes p^*\mathcal{O}_{\mathbb{P}^1}(-d + 2g + 2)$.

Notation. We will use the notation U for the vector space $\Gamma(L \otimes T^{-1})$, i.e. we have

$$\Gamma(W(-1)) \cong U.$$ \hfill (6)

and by (4), we have

$$\dim U = d - g - 1.$$ \hfill (7)

3. Computation of dimensions

In order to prove the conjecture, we want to relate the sections of $\bigwedge^i E$ to the sections of a suitable vector bundle on \mathbb{P}^1.

Lemma 3.1. Let F be a vector bundle on \mathbb{P}^1 that is globally generated. Then the evaluation sequence is

$$0 \to \Gamma(F(-1)) \otimes \mathcal{O}_{\mathbb{P}^1}(-1) \to \Gamma(F)_{\mathbb{P}^1} \to F \to 0.$$ \hfill (8)

Proof. F is a sum of line bundles of degree ≥ 0. Thus it remains to check for line bundles, which is easy. \hfill \square

We want to apply this lemma to W.

$$0 \to \Gamma(W(-1)) \otimes \mathcal{O}_{\mathbb{P}^1}(-1) \to \Gamma(W)_{\mathbb{P}^1} \to W \to 0.$$ \hfill (9)

Pulling back the evaluation sequence for W on \mathbb{P}^1 to C and using (6) and the fact that $\Gamma(\pi_*L) \cong \Gamma(L)$, we get

$$0 \to U \otimes T^{-1} \to \Gamma(L)_C \to \pi^*W \to 0.$$ \hfill (9)
Also, we have a surjective map $\pi^* W \to L \to 0$. Let Y be the kernel of $\pi^* W \to L \to 0$, i.e. we have

$$0 \to Y \to \pi^* W \to L \to 0,$$

$$\wedge^2(\pi^* W) \cong Y \otimes L,$$

$$\pi^*(\wedge^2 W) \cong Y \otimes L,$$

$$\pi^*(O_{\mathbb{P}^1}(d-g-1)) \cong Y \otimes L,$$

$$T^{d-g-1} \cong Y \otimes L,$$

$$Y \cong L^{-1} \otimes T^{d-g-1}.$$

Thus, we have

$$0 \to L^{-1} \otimes T^{d-g-1} \to \pi^* W \to L \to 0 \quad (10)$$

and we get a following commutative diagram

$$\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & U \otimes T^{-1} \\
\downarrow & & \downarrow \\
0 & \to & \Gamma(L)_C \\
\downarrow & & \downarrow \\
0 & \to & \Gamma(L)_C \\
\end{array} \quad (11)$$

where the left vertical map is the evaluation map.

Dualizing the diagram (11), we get

$$\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & L \otimes T^{-(d-g-1)} \\
\downarrow & & \downarrow \\
0 & \to & \pi^* W^* \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array} \quad (12)$$

The first line of (12) gives rise to an exact sequence

$$0 \to L \otimes T^{-(d-g-1)} \otimes \wedge^{i-1}U^* \otimes T^{i-1} \to \wedge^i E \to \wedge^i U^* \otimes T^i \to 0. \quad (13)$$
Since, π^*W^* is a rank 2 bundle we only get a filtration consisting of the following two exact sequences:

$$0 \to \bigwedge^2 \pi^*W^* \otimes \bigwedge^{i-2}U^* \otimes T^{i-2} \to \bigwedge^i \Gamma(L)^*_C \to L_i \to 0,$$ \hspace{1cm} (14)

$$0 \to \pi^*W^* \otimes \bigwedge^{i-1}U^* \otimes T^{i-1} \to L_i \to \bigwedge^i U^* \otimes T^i \to 0.$$ \hspace{1cm} (15)

Since the second horizontal sequence of (12) is the pullback via π of the dual of the sequence (8), both the above sequences come from P^1, i.e. there exists a vector bundle L_i' on P^1, such that $L_i = \pi^* L_i'$ and the sequences

$$0 \to \bigwedge^2 W^* \otimes \bigwedge^{i-2}U^* \otimes O(i-2) \to \bigwedge^i \Gamma(L)^*_{P^1} \to L_i' \to 0,$$ \hspace{1cm} (16)

$$0 \to W^* \otimes \bigwedge^{i-1}U^* \otimes O(i-1) \to L_i' \to \bigwedge^i U^* \otimes O(i) \to 0$$ \hspace{1cm} (17)

are such that (14) and (15) are pullbacks of (16) and (17) respectively. Dualizing (1), we have

$$0 \to L^{-1} \to \Gamma(L)^*_C \to E \to 0.$$

Thus the map $\bigwedge^i \Gamma(L)^*_C \to \bigwedge^i E$ is surjective. Also we have $\bigwedge^i \Gamma(L)^*_C \to L_i \to 0$. The maps $\bigwedge^i \Gamma(L)^*_C \to \bigwedge^i E \to 0$ factors through $L_i = \pi^* L_i'$. Thus we get the following commutative diagram with exact rows and columns:

$$
\begin{array}{cccccc}
0 & & & & & 0 \\
& & & & & \\
0 & \to & L \otimes T^{-(d-g-1)} \otimes \bigwedge^{i-1}U^* \otimes T^{i-1} & \to & \bigwedge^i E & \to & \bigwedge^i U^* \otimes T^i \to 0 \\
& & & & & \\
& \uparrow & & & & \uparrow \\
0 & \to & \pi^*W^* \otimes \bigwedge^{i-1}U^* \otimes T^{i-1} & \to & \pi^* L_i' & \to & \bigwedge^i U^* \otimes T^i \to 0 \\
& & & & & \uparrow & \uparrow \\
& & & & & \bigwedge^i \bigwedge^{i-1}U^* \otimes T^{i-1} & \to & \bigwedge^i \bigwedge^{i-1}U^* \otimes T^{i-1} \\
& & & & & \uparrow & \uparrow \\
& & & & & \bigwedge^1 \bigwedge^{i-1}U^* \otimes T^{i-1} & \to & \bigwedge^1 \bigwedge^{i-1}U^* \otimes T^{i-1} \\
& & & & & \uparrow & \uparrow \\
& & & & & 0 & \to & 0 \\
\end{array}
$$ \hspace{1cm} (18)

where the top horizontal sequence is (13), middle horizontal sequence is (15), left vertical sequence is obtained by dualizing (10) and tensoring it with $\bigwedge^{i-1} U^* \otimes T^{i-1}$. Now let us compute the dimensions of the spaces $\Gamma(L'_i)$ and $\Gamma(\bigwedge^i E)$ for $i \leq d - g$ ($= \text{rank } E$).

Lemma 3.2. When $d \geq 2g + 1$, we have

$$\dim \Gamma(L'_i) = \binom{d-g+1}{i} + \binom{d-g-1}{i-2} (d-i-g)$$

for $i \leq d - g$

Proof. Consider (16). Then

$$0 \to \bigwedge^2 W^* \otimes \bigwedge^{i-2}U^* \otimes O(i-2) \to \bigwedge^i \Gamma(L)^*_{P^1} \to L_i' \to 0.$$
Conjecture on linear systems

Since
\[\det W \cong \mathcal{O}_{\mathbb{P}^1}(d - g - 1), \]
we get
\[\det W^* \cong \mathcal{O}_{\mathbb{P}^1}(-(d - g - 1)). \]
Hence we get
\[0 \to \wedge^{i-2}U^* \otimes \mathcal{O}(i - d + g - 1) \to \wedge^i \Gamma(L)^* \to L_i' \to 0. \]
Since
\[i \leq d - g, \quad h^0(\mathcal{O}(i - d + g - 1)) = 0, \]
therefore,
\[h^0(L_i') = h^0(\wedge^i \Gamma(L)^*) + h^1(\wedge^{i-2}U^* \otimes \mathcal{O}(i - d + g - 1)). \]
By (7), we have
\[\dim U = d - g - 1, \]
and by (3)
\[h^0(L) = d - g + 1, \]
\[h^1(\mathcal{O}(i - d + g - 1)) = d - i - g. \]
Thus
\[\dim \Gamma(L_i') = \left(\binom{d - g + 1}{i} \right) + \left(\binom{d - g - 1}{i - 2} \right)(d - i - g). \]

3.1 Syzygies of the curve

The syzygies of canonically embedded curves were computed by Schreyer [8]. Based on the parallel idea, we compute the syzygies of the curve \(C \). For this, let
\[R = \bigoplus_{i=1}^{\infty} \Gamma(C, L^i) \]
be the homogeneous coordinate ring of \(C \) with respect to \(L \) and
\[S = \text{Sym} \Gamma(C, L) = \bigoplus_{n \geq 0} \Gamma(\mathcal{O}_{\mathbb{P}^d-g}(n)). \]
Let
\[0 \to F_t \to \cdots \to F_0 \to R \to 0 \quad (19) \]
be a minimal free resolution of the graded \(S \)-module \(R \). Then \(F_i = \bigoplus_j S(-j)^{\beta_{ij}} = \bigoplus_j M_{ij} \otimes S(-j) \), where \(M_{ij} \) is a \(k \)-vector space of \(\dim \beta_{ij} \) and \(S(-j) \) is the free
S-module with one generator in degree j. The resolution (19) is equivalent to the free resolution of \mathcal{O}_C as an \mathcal{O}_{Pd-g}-module:

$$0 \to \bigoplus_j \mathcal{O}(−j)^{\delta_{d-g−1,j}} \to \cdots \to \bigoplus_j \mathcal{O}(−j)^{\delta_{0,j}} \to \mathcal{O}_C \to 0.$$

To find this resolution, one starts with the exact sequence

$$0 \to \mathcal{O}_S(−2τ + (d − 2g − 2)h) \to \mathcal{O}_S \to \mathcal{O}_C \to 0$$

(see Proposition 2.1). The idea is to first resolve the sheaves \mathcal{O}_S and $\mathcal{O}_S(−2τ + (d − 2g − 2)h)$ as \mathcal{O}_{Pd-g} modules and then form a mapping cone mapping cone. The result turns out to be a minimal resolution of \mathcal{O}_C. Firstly, we will recall from [2] the description of the syzygies of these sheaves.

Let $\xi = \mathcal{O}(e_1) \oplus \mathcal{O}(e_2) \oplus \cdots \oplus \mathcal{O}(e_s)$ be a locally free sheaf of rank s on \mathbb{P}^1, and let $p_\xi : \mathbb{P}(\xi) \to \mathbb{P}^1$ denote the corresponding $\mathbb{P}^{s−1}$ bundle. A rational normal scroll X of type $S(e_1, e_2, \cdots, e_s)$ with $e_1 \geq e_2 \geq \cdots \geq e_s \geq 0$ and

$$f = e_1 + e_2 + \cdots + e_s \geq 2$$

is the image of $\mathbb{P}(\xi)$ in $\mathbb{P}^r = \mathbb{P}(H^0(\mathbb{P}(\xi), \mathcal{O}_{\mathbb{P}(\xi)}(1)))$:

$$j : \mathbb{P}(\xi) \to X \subset \mathbb{P}^r, r = f + s − 1.$$

The Picard group of $\mathbb{P}(\xi)$ is generated by the hyper-plane class $H = [j^*\mathcal{O}_{\mathbb{P}^r}(1)]$ and the ruling $R = [p_\xi^*\mathcal{O}_{\mathbb{P}^1}(1)]$:

$$\text{Pic } \mathbb{P}(\xi) = \mathbb{Z}H \bigoplus \mathbb{Z}R.$$

The intersection product is given by

$$H^s = f, H^{s−1} \cdot R = 1, R^2 = 0.$$

We recall from [2], the description of the syzygies of the sheaves

$$\mathcal{O}_X(aH + bR) := j_*\mathcal{O}_{\mathbb{P}(\xi)}(aH + bR), \quad a, b \in \mathbb{Z}$$

regarded as $\mathcal{O}_{\mathbb{P}^r}$- modules, at least in case $b \geq −1$. Let

$$\Phi : F \to G$$

be a map of locally free sheaves of rank f' and g', $f' \geq g'$, respectively on a smooth variety V. We recall from [1] the family of complexes $\zeta^b, b \geq −1$ of locally free sheaves on V, which resolve the b-th symmetric power of coker Φ under suitable hypothesis on Φ.

Define the j-th term in the complex ζ^b by

$$\zeta^b_j = \begin{cases} \wedge^j F \otimes S_{b−j}G, & \text{for } 0 \leq j \leq b, \\ \wedge^{j+g'-1} F \otimes D_{j−b−1}G^* \otimes \wedge^{g'}G^*, & \text{for } j \geq b + 1 \end{cases}$$

and differential

$$\zeta^b_j \to \zeta^b_{j−1}.$$
by multiplication with $\Phi \in H^0(V, F^* \otimes G)$ for $j \neq b + 1$ and $\wedge^s \Phi \in H^0(V, \wedge^s F^* \otimes \wedge^s G)$ for $j = b + 1$ in the appropriate term of the exterior ($\wedge F$), symmetric (SG) or divided power (DG) algebra.

PROPOSITION 3.3 [2]

$\zeta_b(a)$ for $b \geq -1$ is the minimal resolution of $O_X(aH + bR)$ as an O_{Pr}-module, where $\zeta_b(a) = \zeta^b \otimes O_{Pr}(a)$.

3.2 Minimal resolution of O_C

We have

$$C \subset S \subset \mathbb{P} = \mathbb{P}(\Gamma(C, L)^*)$$

C is contained in a 2-dimensional rational normal scroll S of type $S(e_1, e_2)$ and degree $f = e_1 + e_2 = d - g - 1 \geq 2$. C is a divisor of class

$$C \sim 2H - (f - (g + 1))R \text{ on } S.$$

The mapping cone [8]

$$\zeta^{f-(g+1)}(-2) \to \zeta^0$$

is the minimal resolution of O_C as an O_{pd-g}-module. We consider

$$\Phi : F \otimes O_{pd-g}(-1) \to G \otimes O_{pd-g}$$

be the map of locally free sheaves, where F is a vector space of dimension $f = d - g - 1$ and G is a vector space of dimension 2.

Firstly, we will compute

$$\zeta^{f-(g+1)}(-2) = \zeta^{d-2g-2} \otimes O(-2).$$

Now,

$$\zeta^{d-2g-2}_j = \begin{cases}
\wedge^j(F \otimes O(-1)) \otimes S_{d-2g-2-j}(G \otimes O), & 0 \leq j \leq d - 2g - 2, \\
\wedge^{j+1}(F \otimes O(-1)) \otimes D_{j-d+2g+2-1}(G \otimes O)^* \otimes \wedge^2(G \otimes O)^*, & j \geq d - 2g - 1.
\end{cases}$$

Since $j + 1$ can be at most $d - g - 1$, we have

$$\zeta^{d-2g-2}_j = \begin{cases}
\wedge^j(F \otimes O(-1)) \otimes S_{d-2g-2-j}(G \otimes O), & 0 \leq j \leq d - 2g - 2, \\
\wedge^{j+1}(F \otimes O(-1)) \otimes D_{j-d+2g+2-1}(G \otimes O)^* \otimes \wedge^2(G \otimes O)^*, & d - 2g - 1 \leq j \leq d - g - 2.
\end{cases}$$
Similarly we can compute ζ^0_j:

$$
\zeta^0_j = \begin{cases}
\wedge^j (F \otimes O(-1)) \otimes S_{0-j} (G \otimes O), & j = 0, \\
\wedge^{j+1} (F \otimes O(-1)) \otimes D_{j-1} (G \otimes O)^* \otimes \wedge^2 (G \otimes O)^*, & 1 \leq j \leq d - g - 2.
\end{cases}
$$

Since the mapping cone $\xi_f^{-(g+1)(-2)} \to \zeta^0$ is the minimal free resolution of O_C as an O_{pd-g}-module, the exact sequence

$$
0 \to (\xi^{d-2g-2} - 2[-1] \bigoplus \zeta^0_{d-g-1}) \to (\xi^{d-2g-2} - 2[-1] \bigoplus \zeta^0)_{d-g-2} \to \cdots \to (\xi^{d-2g-2} - 2[-1] \bigoplus \zeta^0)_2 \to (\xi^{d-2g-2} - 2[-1] \bigoplus \zeta^0)_1 \to \zeta^0 \to O_C \to 0,
$$

where

$$(\xi^{d-2g-2} - 2[-1] \bigoplus \zeta^0)_p = \xi^{d-2g-2} - 2[-1] \bigoplus \zeta^0, \quad p \geq 1$$

is the minimal free resolution of O_C.

We will use this resolution to compute the $\dim \Gamma(\wedge^i E)$. For this, consider (19), the minimal free resolution of R and recalling the results from [7], we have

$$M_{p, p+q} = \operatorname{coker}(\wedge^{p+1} V \otimes \Gamma(C, K \otimes L^{g-1}) \to \Gamma(C, \wedge^p E^* \otimes L^q)),$$

where $M_{p, p+q} = \langle \text{Tor}^S_p (C, R) \rangle_{p+q}$ and $\dim(\text{Tor}^S_p (C, R))_{p+q} = \beta_{p, p+q}$. Since $H^1(L) = 0$, so we have

$$M_{p, p+2} \approx H^1(\wedge^{p+1} E^* \otimes L),$$

$$M^*_{p, p+2} \approx H^0(\wedge^{p+1} E \otimes L^{-1} \otimes K).$$

Lemma 3.4. When $d \geq 2g + 1$, we have

$$
\dim \Gamma(\wedge^i E) = \begin{cases}
\binom{d-g+1}{i} + \binom{d-g-1}{i-2} (d - i), & 2 \leq i \leq g - 1, \\
\binom{d-g+1}{i} + \binom{d-g-1}{i-2} (d - i), & g \leq i \leq d - g.
\end{cases}
$$

Proof. Consider (13),

$$0 \to L \otimes T^{-(d-g-1)} \otimes \wedge^{i-1} U^* \otimes T^{i-1} \to \wedge^i E \to \wedge^i U^* \otimes T^i \to 0,$$

i.e.,

$$0 \to L \otimes T^{-(d-g-i)} \otimes \wedge^{i-1} U^* \to \wedge^i E \to \wedge^i U^* \otimes T^i \to 0.$$
Thus,

\[h^0(\wedge^i E) = [h^0(L \otimes T^{-(d-g-i)}) - h^1(L \otimes T^{-(d-g-i)})] \left(\begin{array}{c} d - g - 1 \\ i - 1 \end{array} \right) \]

\[+ [h^0(T^i) - h^1(T^i)] \left(\begin{array}{c} d - g - 1 \\ i \end{array} \right) + h^1(\wedge^i E) \]

\[= \left(\begin{array}{c} d - g - 1 \\ i - 1 \end{array} \right) (g - d + 2i + 1) + \left(\begin{array}{c} d - g - 1 \\ i \end{array} \right) (1 + 2i - g) \]

\[+ h^1(\wedge^i E). \]

Now,

\[H^1(\wedge^i E) = H^1(\wedge^{d-g-i} E^* \otimes L) \quad (\text{rank } E = d - g) \]

\[= H^0(\wedge^{d-g-i} E \otimes L^{-1} \otimes K)^*. \]

Thus,

\[h^1(\wedge^i E) = h^0(\wedge^{d-g-i} E \otimes L^{-1} \otimes K). \]

Since

\[M_{p,p+2}^* \approx H^0(\wedge^{p+1} E \otimes L^{-1} \otimes K), \]

we have

\[M_{d-g-i-1}^* = H^0(\wedge^{d-g-i} E \otimes L^{-1} \otimes K) \]

and

\[\dim M_{d-g-i-1,d-g-i+1}^* = h^0(\wedge^{d-g-i} E \otimes L^{-1} \otimes K) = h^1(\wedge^i E). \]

In order to compute \(h^1(\wedge^i E) \), i.e. \(\dim M_{d-g-i-1,d-g-i+1}^* \), let us look at degree \((d - g - i + 1)\) component of the term \((\zeta^{d-2g-2}(-2)[-1] \oplus \xi^0)_{d-g-i-1} = \zeta^{d-2g-2}_{d-g-i-2}(-2) \oplus \xi^0_{d-g-i-1}\) in the minimal free resolution of \(\mathcal{O}_C \).

For \(i \leq g - 1, d - g - i + 2 \geq d - 2g - 1 \), we have

\[\dim M_{d-g-i-1,d-g-i+1}^* = \dim[\wedge^{d-g-i-1}(F \otimes \mathcal{O}(-1)) \otimes D_{g-i-1} \]

\[\times (G \otimes \mathcal{O})^* \otimes \wedge^2(G \otimes \mathcal{O})^* \otimes \mathcal{O}(-2)] \]

\[= \left(\begin{array}{c} d - g - 1 \\ i \end{array} \right) (g - i), \]

since the contribution of term \(\zeta^0_{d-g-i-1} \) in degree \((d - g - i + 1)\) in the minimal free resolution of \(\mathcal{O}_C \) is zero.

For \(i \geq g \),

\[\dim M_{d-g-i-1,d-g-i+1}^* = 0, \]
since the contribution of both terms $\xi^{d-g-i-1}_d$ and $\xi^{d-2g-2}_{d-g-i-2}$ in degree $(d-g-i+1)$ in the minimal free resolution of O_C is zero. Thus for $i < g$,

$$h^0(\wedge^i E) = \left(\frac{d-g-1}{i-1}\right)(g-d+2i+1) + \left(\frac{d-g-1}{i}\right)(1+2i-g) + h^1(\wedge^i E)$$

$$= \left(\frac{d-g-1}{i-1}\right)(g-d+2i+1) + \left(\frac{d-g-1}{i}\right)(1+i) - \left(\frac{d-g-1}{i}\right)(g-i) + \left(\frac{d-g-1}{i}\right)(g)$$

$$= \left(\frac{d-g-1}{i-1}\right)(g-d+2i+1) + \left(\frac{d-g-1}{i}\right)(1+i) + \left(\frac{d-g+1}{i}\right) - \left(\frac{d-g+1}{i}\right)$$

$$= \left(\frac{d-g+1}{i}\right) + \left(\frac{d-g-1}{i-2}\right)(d-i-g),$$

and for $i \geq g$,

$$h^0(\wedge^i E) = \left(\frac{d-g+1}{i}\right) + \left(\frac{d-g-1}{i-2}\right)(d-i-g) + \left(\frac{d-g-1}{i}\right)(i-g).$$

Thus, we have

$$\dim \Gamma(\wedge^i E) = \left\{\begin{array}{ll}
\left(\frac{d-g+1}{i}\right) + \left(\frac{d-g-1}{i-2}\right)(d-i-g), & 2 \leq i \leq g-1, \\
\left(\frac{d-g+1}{i}\right) + \left(\frac{d-g-1}{i-2}\right)(d-i-g) + \left(\frac{d-g-1}{i}\right)(i-g), & g \leq i \leq d-g.
\end{array}\right.$$
where α'_i’s are induced by diagram (18).

- α_1 is injective. Consider the left vertical sequence of (18),

$$
0 \to L^{-1} \otimes \wedge^{i-1} U^* \otimes T^{i-1} \to \pi^* W^* \otimes \wedge^{i-1} U^* \otimes T^{i-1} \\
\to L \otimes T^{-(d-g-1)} \otimes \wedge^{i-1} U^* \otimes T^{i-1} \to 0.
$$

This gives rise to

$$
0 \to \Gamma(L^{-1} \otimes T^{i-1}) \otimes \wedge^{i-1} U^* \to \Gamma(W^*(i-1)) \otimes \wedge^{i-1} U^* \\
\alpha_1 \Gamma(L \otimes T^{-(d-g-1)+(i-1)}) \otimes \wedge^{i-1} U^* \to \ldots.
$$

Since

$$
\Gamma(W^* \otimes O_{\mathbb{P}^1}(i-1)) \cong \Gamma(W \otimes O_{\mathbb{P}^1}(-d+g+i)) \\
\cong \Gamma(\pi_* L \otimes O_{\mathbb{P}^1}(-d+g+i)) \\
\cong \Gamma(\pi_* (L \otimes \pi^* O_{\mathbb{P}^1}(-d+g+i))) \\
\cong \Gamma(L \otimes \pi^* O_{\mathbb{P}^1}(-d+g+i)) \\
\cong \Gamma(L \otimes T^{-d+g+i}).
$$

Thus α_1 is injective.

- α_3 is injective by definition. Hence α_2 is injective and since both the spaces have the same dimension for $i \leq g$, the map $\Gamma(L^i) \to \Gamma(\wedge^i E)$ is an isomorphism. □

4. Construction of a subbundle of E

We want to prove the conjecture for hyperelliptic curves of genus g. We shall first do this for $i = 2$. The main point is to construct sufficiently many locally decomposable sections that are not globally decomposable.

Consider $p : \mathbb{P}(W^*) \to \mathbb{P}^1$, the natural projection. For every $a \in \mathbb{P}^1$, the fibre $l_a = p^{-1}(a)$ is a secant of the curve C. Let W^*_a be the fibre of W^* at a. Since W is globally generated, we have $\Gamma(W)_{\mathbb{P}^1} \to W \to 0$. Hence $W = \pi_* L$ and $\Gamma(\pi_* L) \cong \Gamma(L)$ and thus we have $\Gamma(L)_{\mathbb{P}^1} \to W \to 0$, which gives $W^* \to \Gamma(L^*)_{\mathbb{P}^1}$ and we can identify $\Gamma(L)^*$ with $\Gamma(E)$. Also, we have

$$
0 \to E^* \to \Gamma(L)_C \to L \to 0,
$$

which gives $\Gamma(L^*)_C \to E$, i.e. a map $\Gamma(E)_C \to E$. Thus we get a map

$$(W_a)^*_C \to \Gamma(E)_C \to E$$

which is composite of the inclusion of W_a^* in $\Gamma(E)$ and the evaluation map.

Let $F(a)$ be the subbundle of E generated by the image of W_a^*. A section of $\Gamma(E)$ is non-zero at every point of C if it corresponds to a point of $\mathbb{P}(\Gamma(L)^*)$ not on the curve C, while a section corresponding to a point say $x \in C$ vanishes exactly at x. Hence the map $W_a^* \to F(a)$ is an isomorphism outside $C \cap l_a$ but has rank 1 over $C \cap l_a$. The induced map $\wedge^2 W_a^* \to \wedge^2 F(a)$ has simple zeros exactly over $C \cap l_a$. Hence $F(a)$ has rank 2 and $\wedge^2 F(a) = T$. The vector bundle $F(a)$ has W_a^* as its space of sections i.e. $\dim \Gamma(F(a)) = 2$. On the other hand, $\dim \Gamma(\wedge^2 F(a)) = \dim \Gamma(T) = 2$. Thus we get a 2-dimensional subspace of $\Gamma(\wedge^2 E)$ consisting of locally decomposable sections of
which only the 1-dimensional subspace $\wedge^2\Gamma(F(a)) \subset \Gamma(\wedge^2 F(a))$ consists of globally decomposable sections.

The next step is to globalize this construction, i.e. to vary the point a. We consider the graph inclusion $\Gamma \subset C \times \mathbb{P}^1$ given by the map π. This divisor belongs to the line bundle $p_1^* T \otimes p_2^* \mathcal{O}_{\mathbb{P}^1}(1)$, where p_1 and p_2 are the natural projections to C, resp. \mathbb{P}^1. The direct image by p_2 of the bundle morphism $p_2^* W^* \to \Gamma(E)_{C \times \mathbb{P}^1}$ yields the map $W^* \to \Gamma(E)_{\mathbb{P}^1}$, and hence a map $\wedge^2 W^* \to \wedge^2 \Gamma(E)_{\mathbb{P}^1}$.

On the other hand, the bundle homomorphism $p_2^* W^* \to \Gamma(E)_{C \times \mathbb{P}^1} \to p_1^* E$ fails to be injective precisely over Γ. Thus, we get a morphism $p_2^* (\wedge^2 W^*) \otimes \mathcal{O}(\Gamma) \to p_1^* (\wedge^2 E)$. Taking direct image by p_2 gives a morphism $\wedge^2 W^* \otimes \Gamma(T) \otimes \mathcal{O}(1) \to \Gamma(\wedge^2 E)_{\mathbb{P}^1}$. For every $a \in \mathbb{P}^1$ this induces a map $\Gamma(T) \to \Gamma(\wedge^2 E)_{\mathbb{P}^1}$ and this gives exactly the space of locally decomposable sections described above.

Finally, we get a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \wedge^2 W^* & \longrightarrow & \wedge^2 W^* \otimes \Gamma(T) \otimes \mathcal{O}_{\mathbb{P}^1}(1) & \longrightarrow & \wedge^2 W^* \otimes \mathcal{O}_{\mathbb{P}^1}(2) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \wedge^2 \Gamma(E)_{\mathbb{P}^1} & \longrightarrow & \Gamma(\wedge^2 E)_{\mathbb{P}^1} & \longrightarrow & D^2_{\mathbb{P}^1} & \longrightarrow & 0
\end{array}
\]

where $D^2_{\mathbb{P}^1} := \Gamma(\wedge^2 E)_{\wedge^2 \Gamma(E)}$ and the top horizontal row is the evaluation sequence for $\mathcal{O}_{\mathbb{P}^1}(1)$, which is

\[0 \to \mathcal{O}_{\mathbb{P}^1}(-1) \to \Gamma(\mathcal{O}_{\mathbb{P}^1}(1)) \otimes \mathcal{O}_{\mathbb{P}^1} \to \mathcal{O}_{\mathbb{P}^1}(1) \to 0.\]

Tensoring with $\wedge^2 W^* \otimes \mathcal{O}_{\mathbb{P}^1}(1)$, we get

\[0 \to \wedge^2 W^* \otimes \mathcal{O}_{\mathbb{P}^1}(1) \to \wedge^2 W^* \otimes \mathcal{O}_{\mathbb{P}^1}(2) \to 0.\]

We have to show that the locally decomposable sections constructed above together with $\wedge^2 \Gamma(E)$ generate $\Gamma(\wedge^2 E)$. For this, we consider the map $\wedge^2 W^* \otimes \mathcal{O}_{\mathbb{P}^1}(2) \to D^2_{\mathbb{P}^1}$.

We want to show that this map is injective (as a bundle map) and that the resulting rational curve in $\mathbb{P}(D^2)$ is the rational normal curve of degree $d - g - 3$ (recall that $\dim D^2 = d - g - 2$). This is sufficient since the rational normal curve of degree n in \mathbb{P}^n spans \mathbb{P}^n.

Our aim is to do this by entirely reducing the problem to computations on \mathbb{P}^1, respectively $\mathbb{P}^1 \times \mathbb{P}^1$.

Lemma 4.1 [5]. Let $\mathcal{O}_{\mathbb{P}^1}(-n) \to \Gamma(\mathcal{O}_{\mathbb{P}^1}(n))_{\mathbb{P}^1}$ be a non-zero $SL_2(\mathbb{C})$-equivariant morphism. Then this morphism defines an embedding of \mathbb{P}^1 into $\mathbb{P}(\Gamma(\mathcal{O}_{\mathbb{P}^1}(n)))$ as a rational normal curve of degree n.

We return to the bundle W. Sequence (16) gives for $i = 2$ the following sequence:

\[0 \to \wedge^2 W^* \otimes \mathcal{O}(\Gamma) \to L'_2 \to 0\]

Consider $\mathbb{P}^1 \times \mathbb{P}^1$ together with projections q_1 and q_2 respectively. Taking pullback of (21) via q_1 and q_2, we get a map $q_2^* \wedge^2 W^* \to q_1^* L'_2$ that vanishes along the diagonal $\Delta \subset \mathbb{P}^1 \times \mathbb{P}^1$. Hence, we get a morphism

\[q_2^* \wedge^2 W^* \otimes \mathcal{O}(\Delta) \to q_1^* L'_2.\]
Applying q_2^*, we get a map
\[\wedge^2 W^* \otimes \Gamma(O(1)) \otimes O(1) \to \Gamma(L'_2)_{\mathbb{P}^1}. \]

This gives rise to a commutative diagram
\[
\begin{array}{c}
0 \\
\downarrow \\
\wedge^2 W^* \\
\downarrow \\
\wedge^2 W^* \otimes \Gamma(O(1)) \otimes O(1) \\
\downarrow \\
\wedge^2 W^* \otimes O(2) \\
\downarrow \\
0
\end{array}
\quad \begin{array}{c}
0 \\
\downarrow \\
\wedge^2 \Gamma(W)^{\ast}_{\mathbb{P}^1} \\
\downarrow \\
\Gamma(L'_2)_{\mathbb{P}^1} \\
\downarrow \\
H^1(\wedge^2 W^*) = \Gamma(\wedge^2 W \otimes O(-2))^* \\
\downarrow \\
0
\end{array}
\]

(22)

where the left-hand column is the Euler sequence on \mathbb{P}^1 twisted by $\wedge^2 W^* \otimes O(1)$, the right hand column comes from (21) and the map $\wedge^2 W^* \to \wedge^2 \Gamma(W)^*$ is the natural one. This diagram is $SL_2(\mathbb{C})$ equivariant, where $SL_2(\mathbb{C})$ acts on \mathbb{P}^1 in the usual way and on $\mathbb{P}^1 \times \mathbb{P}^1$ by the diagonal action. In particular the morphism $\wedge^2 W^* \otimes O(2) \to \Gamma(\wedge^2 W \otimes O(-2))^*$ is $SL_2(\mathbb{C})$ equivariant, by Lemma 4.2, it defines an embedding of \mathbb{P}^1 into $\mathbb{P}(\Gamma(\wedge^2 W \otimes O(-2))^*)$ as a rational normal curve of degree $d - g - 3$.

Lemma 4.2 [5]. Diagram (22) gives rise to a commutative and exact diagram
\[
\begin{array}{c}
0 \\
\downarrow \\
\Gamma(\wedge^2 W \otimes O(-2)) \\
\downarrow \\
\Gamma(\wedge^2 W \otimes O(-2)) \otimes \Gamma(O(1)) \\
\downarrow \\
0
\end{array}
\quad \begin{array}{c}
\Gamma(L'_2)^* \\
\downarrow \\
\wedge^2 \Gamma(W) \\
\downarrow \\
0
\end{array}
\]

(23)

PROPOSITION 4.3

$\Gamma(\wedge^2 E)$ is generated by locally decomposable sections.

Proof. We have constructed maps $p_2^*(\wedge^2 W^*) \otimes O(\Gamma) \to p_1^*(\wedge^2 E)$ on $C \times \mathbb{P}^1$ and $q_2^* \wedge^2 W^* \otimes O(\Delta) \to q_1^* L'_2$ on $\mathbb{P}^1 \times \mathbb{P}^1$. Consider the diagram
\[
\begin{array}{c}
C \xrightarrow{p_1} C \times \mathbb{P}^1 \\
\downarrow \pi \quad \downarrow \pi \times id \\
\mathbb{P}^1 \quad \mathbb{P}^1 \times \mathbb{P}^1 \xrightarrow{q_3} \mathbb{P}^1
\end{array}
\]

(24)
Pulling the morphism $q_2^* \wedge^2 W^* \otimes \mathcal{O}(\Delta) \rightarrow q_1^* L'_2$ on $\mathbb{P}^1 \times \mathbb{P}^1$ back to $C \times \mathbb{P}^1$, we get a morphism $p_2^*(\wedge^2 W^*) \otimes \mathcal{O}(\Gamma) \rightarrow p_1^*(\pi^* L'_2)$. By construction the diagram,

$$
p_2^*(\wedge^2 W^*) \otimes \mathcal{O}(\Gamma) \rightarrow p_1^*(\pi^* L'_2) \\
\| \\
p_2^*(\wedge^2 W^*) \otimes \mathcal{O}(\Gamma) \rightarrow p_1^*(\wedge^2 E)
$$

(25)

commutes where the map $p_1^*(\pi^* L'_2) \rightarrow p_1^* \wedge^2 E$ is the pullback via p_1 of the corresponding map in diagram (18). Pushing this down via $\pi \times id$ to $\mathbb{P}^1 \times \mathbb{P}^1$ leads to the commutative diagram

$$
q_2^* \wedge^2 W^* \otimes \mathcal{O}(\Delta) \rightarrow q_1^* L'_2 \\
q_2^* \wedge^2 W^* \otimes \mathcal{O}(\Delta) \rightarrow q_2^* \wedge^2 W^* \otimes (\pi \times id)_* \mathcal{O}(\Gamma) \rightarrow q_1^* (\pi_* \pi^* L'_2) \\
q_2^* \wedge^2 W^* \otimes \mathcal{O}(\Delta) \rightarrow q_2^* \wedge^2 W^* \otimes (\pi \times id)_* \mathcal{O}(\Gamma) \rightarrow q_1^* (\pi_* \wedge^2 E)
$$

(26)

Now taking q_2^* of the outermost square, we get

$$
\wedge^2 W^* \otimes \Gamma(\mathcal{O}_{\mathbb{P}^1}(1)) \otimes \mathcal{O}_{\mathbb{P}^1}(1) \rightarrow \Gamma(\mathbb{P}^1, L'_2) \\
\wedge^2 W^* \otimes \Gamma(\mathcal{O}_{\mathbb{P}^1}(1)) \otimes \mathcal{O}_{\mathbb{P}^1}(1) \rightarrow \Gamma(C, \wedge^2 E)
$$

(27)

where the right-hand vertical map is an isomorphism from Proposition 4.3. Thus in order to compute the diagram

$$
\wedge^2 W^* \rightarrow \wedge^2 \Gamma(W)^*_{\mathbb{P}^1} \\
\wedge^2 W^* \otimes \Gamma(\mathcal{O}_{\mathbb{P}^1}(1)) \otimes \mathcal{O}_{\mathbb{P}^1}(1) \rightarrow \Gamma(\wedge^2 E)
$$

(28)

we can compute

$$
\wedge^2 W^* \rightarrow \wedge^2 \Gamma(W)^*_{\mathbb{P}^1} \\
\wedge^2 W^* \otimes \Gamma(\mathcal{O}_{\mathbb{P}^1}(1)) \otimes \mathcal{O}_{\mathbb{P}^1}(1) \rightarrow \Gamma(L'_2)^*_{\mathbb{P}^1}
$$

(29)

and the result follows from Lemma 4.2. \(\square\)

5. Proof of the main result

Here we prove Theorem 1. We shall first show that for $2 \leq i \leq d - g$, there is a natural epimorphism

$$
\wedge^{i-2} \Gamma(W)^* \otimes \Gamma(L'_2)_{\mathbb{P}^1} \rightarrow \Gamma(L'_i)_{\mathbb{P}^1} \rightarrow 0.
$$
Setting $i = 2$ in (16), we get

$$0 \to \wedge^2 W^* \to \wedge^2 \Gamma(L)^*_{\mathbb{P}^1} \to L'_2 \to 0.$$

Twisting with $\wedge^{i-2} \Gamma(W)^*$, we get an exact sequence

$$0 \to \wedge^{i-2} \Gamma(W)^* \otimes \wedge^2 W^* \to \wedge^{i-2} \Gamma(W)^* \otimes \wedge^2 \Gamma(W)^* \to \wedge^{i-2} \Gamma(W)^* \otimes L'_2 \to 0$$

(since $\Gamma(L) \cong \Gamma(W)$) Combining this with (16), we get

$$0 \to \wedge^{i-2} \Gamma(W(-1))^* \otimes \mathcal{O}(i - 2) \otimes \wedge^2 W^* \to \wedge^{i-2} \Gamma(W)^* \to L'_i \to 0 \quad \text{(30)}$$

Here the middle vertical map is the canonical one and the left hand vertical map is given by taking \wedge^{i-2} of the dual evaluation sequence

$$0 \to W^* \to \Gamma(W)^* \otimes \mathcal{O}_{\mathbb{P}^1} \to \Gamma(W(-1))^* \otimes \mathcal{O}_{\mathbb{P}^1}(1) \to 0.$$

Taking \wedge^{i-2} of the above sequence, we get

$$0 \to \wedge^2 W^* \otimes \wedge^{i-2} \Gamma(W(-1))^* \otimes \mathcal{O}_{\mathbb{P}^1}(i - 2) \to \wedge^{i-2} \Gamma(W)^* \to F_{i-2} \to 0,$$

$$0 \to F_{i-2} \to \wedge^{i-2} \Gamma(W)^* \otimes \mathcal{O}_{\mathbb{P}^1} \to \wedge^{i-2} \Gamma(W(-1))^* \otimes \mathcal{O}_{\mathbb{P}^1}(i - 2) \to 0.$$

Tensoring the above sequence with $\wedge^2 W^*$, we get

$$0 \to F_{i-2} \otimes \wedge^2 W^* \to \wedge^{i-2} \Gamma(W)^* \otimes \mathcal{O}_{\mathbb{P}^1} \otimes \wedge^2 W^*$$

$$\to \wedge^{i-2} \Gamma(W(-1))^* \otimes \mathcal{O}_{\mathbb{P}^1}(i - 2) \otimes \wedge^2 W^* \to 0.$$

Taking the associated cohomology sequence of (30), we get the following commutative diagram:

$$
\begin{array}{cccc}
0 & \to & \wedge^{i-2} \Gamma(W)^* \otimes \wedge^2 \Gamma(W)^* & \to \wedge^{i} \Gamma(W)^* \\
\downarrow & & \downarrow & \downarrow \\
\wedge^{i-2} \Gamma(W)^* \otimes \Gamma(L'_2) & \to & \Gamma(L'_i) & \to 0 \\
\downarrow & & \downarrow & \\
H^1(\wedge^{i-2} \Gamma(W)^* \otimes \wedge^2 W^*) & \to & H^1(\wedge^{i-2} \Gamma(W(-1))^* \otimes \mathcal{O}(i - 2) \otimes \wedge^2 W^*) & \to 0 \\
\downarrow & & \downarrow & \vdots \\
0 & & \vdots & \\
\end{array}
$$

(31)

Here W is a rank 2 vector bundle on \mathbb{P}^1 of degree $d - g - 1$.

$$\det W \cong \mathcal{O}(d - g - 1),$$

$$\det W^* \cong \mathcal{O}(-d + g + 1),$$

i.e.

$$\wedge^2 W^* \cong \mathcal{O}(-d + g + 1).$$

Since $2 \leq d - g - 1$. Therefore $\Gamma(\wedge^2 W) = 0$,
The top horizontal map is clearly surjective. The bottom horizontal map is surjective since H^2 vanishes on \mathbb{P}^1. By standard diagram chasing the middle horizontal map must be surjective thus giving our first claim.

By construction the natural diagram

\[
\begin{array}{ccc}
\wedge^{i-2}\Gamma(W)^* \otimes \Gamma(L'_2) & \rightarrow & \wedge^{i-2}\Gamma(E) \otimes \Gamma(\wedge^2 E) \\
\downarrow & & \downarrow \\
\Gamma(L'_i) & \rightarrow & \Gamma(\wedge^i E)
\end{array}
\] (32)

commutes.

Since $\Gamma(W)^* \cong \Gamma(L)^*$ and $\Gamma(L)^*$ can be identified with $\Gamma(E)$, by Proposition 3.5, the horizontal maps are isomorphisms for $i \leq g$. Hence the natural map $\wedge^{i-2}\Gamma(E) \otimes \Gamma(\wedge^2 E) \rightarrow \Gamma(\wedge^i E)$ is surjective for $i \leq g$ and our claim follows from Proposition 4.3.

Acknowledgements

This work has been done as a part of the author’s Ph.D. thesis under the guidance of Prof. Kapil H. Paranjape. She would like to gratefully acknowledge IISER Mohali, the host institution and University Grant Commission, India for the financial support during this period.

References

[1] Buchsbaum D A and Eisenbud D, Generic free resolutions and a family of generically perfect ideals, Adv. Math. 18(3) (1975) 245–301
[2] Eisenbud D, The geometry of syzygies, volume 229 of Graduate Texts in Mathematics, A second course in commutative algebra and algebraic geometry (2005) (New York: Springer-Verlag)
[3] Eusen F and Schreyer F-O, A remark on a conjecture of Paranjape and Ramanan, in: Geometry and arithmetic, EMS Ser. Congr. Rep. (2012) (Zürich: Eur. Math. Soc.) pp. 113–123
[4] Green M L, Koszul cohomology and the geometry of projective varieties, J. Diff. Geom. 19(1) (1984) 125–171
[5] Hulek K, Paranjape K and Ramanan S, On a conjecture on canonical curves, J. Algebraic Geom. 1(3) (1992) 335–359
[6] Paranjape K and Ramanan S, On the canonical ring of a curve, in: Algebraic geometry and commutative algebra, vol. II (1988) (Tokyo: Kinokuniya) pp. 503–516
[7] Paranjape Kapil H, Ph.D. thesis, chapter 1, section 2 (India: University of Bombay, Bombay)
[8] Schreyer F-O, Syzygies of canonical curves and special linear series, Math. Ann. 275(1) (1986) 105–137

Communicating Editor: Nitin Nitsure