The Impacts of Family Physician Plan and Health Transformation Plan on Hospitalization Rates in Iran: An Interrupted Time Series

Samad Rouhani¹, Reza Esmaeil², Jamshid Yazdani Charati³, Masoud Khandehroo⁴

*Corresponding author. Masoud Khandehroo, Department of Public Health, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
Email: Masoud.khandehroo@gmail.com
Running Title: The Impacts of Iran health reforms on hospitalization

Abstract

Background: Low and middle income countries has recently implemented various reforms toward Universal Health Coverage (UHC). This study aims to assess the impact of Family Physician Plan (FPP) and Health Transformation Plan (HTP) on hospitalization rate in Iran.
Methods: We conducted an Interrupted Time Series (ITS) design. The data was monthly hospitalization of Mazandaran province over a period of 7 years. Segmented regression analysis was applied in R version 3.6.1.

Results: A decreasing trend by -0.056 for every month was found after implementation of Family Physician Plan, but this was not significant. Significant level change was appeared at the beginning of Health Transformation Plan and average of hospitalization rate increased by 1.04 (P<0.001). Also hospitalization trend increased significantly nearly 0.09 every month in period after Health Transformation Plan (P<0.001).

Conclusions: Family physician created a decreasing trend for hospitalization. Development of FPP to urban area of Iran will lead to health system efficiency. HTP with lower user fee in public hospitals and clinics as well as fee-for-service mechanisms, stimulated both level and trend changes in hospital admissions. Some integrated health policy is required to optimize the implementation of diverse simultaneous reforms in low and middle-income countries.

Key Words: Health Reform . Family Medicine . Referral System

Background

Universal Health Coverage (UHC) has become a key national aspiration in designing and implementing of health policies [1]. Strengthening Primary Health Care (PHC) was experienced in various models (i.e. introduction of family medicine scheme) as main strategy in process moving toward UHC in Iran and around the world [2-4]. Powerful evidence demonstrated that quality improvement in PHC reduces
secondary care admission and cost [5]. Family physician/general practice programs are a proven way to establish the referral systems for achieving health system efficiency toward UHC [6]. Hospitalization rate has been used frequently for evaluating the impacts of policy reforms on health system efficiency [7, 8]. In recent four decades Iran has established a network of primary health care facilities expanded thorough the country in order to improve the health of population with a priority devoted to rural and unprivileged areas. Based on national and international assessments the achievement was satisfactory, but it has been felt that more space is there to strengthen its PHC network [2].

Recent Primary Health Care Reforms in Iran

Iranian health system faced some critical challenges including high rate of noncommunicable diseases and high out-of-pocket payments [9]. In response to these challenges, family physician was implemented in rural area in 2005 [10]. Then, development of family physicians to the urban area began in 2013 in two provinces (Mazandaran and Fars). In these reforms a GP as family physician was contracted to serve an enlisted population and is paid on capitation basis. The services include a basic package of primary health care that formerly was provided by state employed physicians and related staffs of community health centers. In rural area all physicians are based in the community health centers but in urban area some private offices are in contract as well. Enrolled population in rural area require to pay up to 30% of tariffs when they use services through their family physicians, but in urban area such services is almost free of charge. Patients from both groups could benefit from inpatient and outpatient specialist services of public hospitals if they carry an issued referral letter from their family physicians. Family physicians could refer up to 10 percent of their patients for secondary care. In addition there are some other limitations such as items of drugs in each prescription, request for laboratory tests or images and so on. 80 percent of FP contract is paid monthly and the remaining 20 percent is subject to the results of seasonal assessment of their performance done jointly by staff of health insurance organization and district health authority [11].

Health Transformation Plan in Iran

After introduction of family physician scheme in Iran, Health Transformation Plan (HTP), with different objectives including facilitated with secondary care at public hospitals, reduction in out-of-pocket payments (co-insurance rates in public hospitals and specialty clinic), better quality of hospital services and so on was
implemented at country level in May 2014 [12]. In this reform, medical tariffs at public hospitals were heavily (three to more than five times) increased, but attendees were charged between 3 to 6 percent of their hospital bills whether they carry a referral letter or not. The justification for such reform was mainly to create incentive for both providers in particular physicians by sharing generated incomes with them and patients by subsidizing their bills by government allocated resources. High public resources (from government and insurer organizations) allocated to support the HTP [13].

Based on World Health Report 2000, conflicting evidence gathered about the impact of health systems to improve health [14], so comparative evaluation contribute to make judge and decision for rational and ethical resource allocation. This study aimed to assess the impacts of these two recent reforms on hospitalization rate in Iran.

Methods:

Study Design

This was a quasi-experimental design using Interrupted Time Series (ITS). ITS is the strongest quasi-experimental design for evaluating the impacts of health policies and reforms and does not require to comparison group [15, 16]. The outcome measure for the time series analysis was hospitalization rate across monthly intervals. As both reforms could have impacts on hospitalization rate, therefore the change on this indicator will be traced on three segments including the period before FPP, from the start of FPP to before the introduction of HTP, and the period after implementation of HTP.

Data Sources

Mazandaran is a province located in the north of Iran with 3,283,582 population. In this study we used data on insured people by Iran Health Insurance Organization (IHIO) in Mazandaran as the main financing agent for these two reforms. From provincial office of IHIO including the number of insured people and the number of inpatient records (Table 1). The study observations were determined as monthly hospitalization rate from March 2010 to February 2017.
Data analysis

A linear regression model is specified to explain study hypotheses as following equation.

\[Y_t = \beta_0 + \beta_1 \text{time} + \beta_2 \text{interruption 1 (FFP)} + \beta_3 \text{time after interruption 1} + \beta_4 \text{interruption 2 (HTP)} + \beta_5 \text{time after interruption 2 (HTP)} + e \]

In this model:

- \(\beta_0 \) is the baseline level of hospitalization rate at the beginning of the time series
- \(\beta_1 \) is the pre-intervention slope prior to FFP
- \(\beta_2 \) is the change in level immediately after the FFP
- \(\beta_3 \) is the change in the slope from pre to post FFP
- \(\beta_4 \) is the change in level immediately after the HTP
- \(\beta_5 \) is the change in the slope from pre to post HTP
- \(e \) represents the value of residuals.

We used segmented analysis for estimating both immediate (level) and long-term (trend) impacts of interventions. Our sample size was 84 observation points, 19 observations before first interruption (FFP), 19 observations between two interruptions and 48 observation points after second interruption (HTP).

We conducted several diagnostic assessments. To detect autocorrelation between residuals we used Durbin Watson test which we corrected using the Praise method. We also used Augmented-Dickey-Fuller statistic to determine if the series was stationary. We estimated the Kolmogorov–Smirnov statistic to check the normality of the residuals. Bartlett test was used to assess the homogeneity of variance between residuals. All analyses were done in R version 3.6.1.

Table 1: Population and hospitalizations in the Mazandaran province during the study period

Parameter	2011	2012	2013	2014	2015	2016	2017
Population covered by Iranian Health Insurance	1628919	1682767	1708193	1577596	1674328	1676317	1432290
Total number of hospitalization	126862	129861	124561	132715	152478	155358	151698
Table 2: Parameter estimates from the segmented regression in two interrupted model

Parameter	Coefficients	Standard Errors	t-statistic	Confidence Interval	P Value
Initial level	6.321	0.265	23.823	6.851	0.000
Initial Trend	0.011	0.024	0.473	0.060	0.637
Change in level after FPP*	0.085	0.348	0.244	0.781	0.807
Trend after FPP	-0.056	0.033	-1.679	0.067	0.097
Change in level after HTP**	1.045	0.284	3.668	1.615	0.000
Trend after HTP	0.088	0.023	3.777	0.134	0.000

*FPP Family Physician Plan
**HTP Health Transformation Plan
Discussion

We applied segmented regression in interrupted time series design to assess the impact of two major reforms in Iranian health systems on hospitalization rate. Segmented regression was recommended as a practical approach for assessing the impact of health policy change in low and middle-income countries [17]. In recent years various studies used segmented regression to assess the impact of different health policies on drug prescribing [18], drug utilization [19], hospital quality measures [20], maternal and child care [21], outpatient care [22], and inpatient care [8] in different counties.

The same with expected impacts of provider-continuity polices [23], the results indicated a decreasing trend of hospitalization rate after the implementation of FPP. These findings are different to the result of a study about the effect of FPP on hospitalization in rural area in Iran [8]. Rashidian, et al reported that FPP in Iranian rural area has led to a significant increase of hospitalization rate. Rashidian, et al. have mentioned “access effect” and have argued that, unmet need in the rural area out-weighted the effect of FPP on hospitalization. Yet, after a decade, the improvement of health care accessibility in Iranian rural area and also different sets of public and private health facilities in urban area in Iran omitted the “access effect”
of urban FPP and lead to decrease in the trend of hospitalization rate. In other words, the implementation of FPP in two different contexts resulted in different impacts on hospitalization rate. Another study in the United-States also confirmed access to effective primary care result in lowering the rate of hospital admissions [24].

After 9 years from beginning of rural FPP and 19 months from urban FPP, third reform known as Health Transformation Plan (HTP) was started in Iran [2]. Based on HTP components, it was expected that, the hospitalization rate may be affected after HTP. Therefore we entered HTP as second interruption in the analysis and the results demonstrated that implementation of HTM lead to significant changes in the terms of level and trend in hospitalization rate. In similar study in Fars province, Bayati, et al. [25] reported an insignificant increase of hospitalization service after HTP. Piroozi, et al. [22] also assessed the impact of HTP on specialist outpatient visit rate in Kurdistan province in Iran and have reported an increased rate for outpatients visit after beginning of HTP. Since that, outpatient service and inpatient care are considered as complementary goods rather than substitute services in health care markets [26], an increased level and trend of outpatients specialty visits have stimulated inpatient services after HTP in Iran. Furthermore, lower co-insurance in public hospitals and clinics as well as fee-for-services payment mechanisms have increased inpatients care utilization that could be a sign of provider’s induced demand or consumer’s moral hazards [27].

In brief, the results of this study demonstrated different impacts of FPP and THP on secondary care utilization in Iran. FPs as gatekeepers by filtering attendees reduced inpatient care utilization through more logical referral pattern, but the increasing impacts of HTP on hospitalization would be controversial, from addressing unmet needs to the stimulating moral hazards. Considering the implementation of family physician in both rural and urban areas of Mazandaran province before HTP, the impact of HTP on hospitalization rate might be different in other provinces without family physician in urban area.

The present study encountered some limitations. We have only used the data of hospitalized patients who were insured by IHIO and not all hospitalization occurred in the study period.
Conclusion

Family physician created a decreasing trend for hospitalization. Development of FPP to urban area of Iran will lead to health system efficiency. HTP with lower user fee in public hospitals and clinics as well as fee-for-services payment mechanism stimulated both level and trend of hospital admissions. More integrated health policy is required to optimize the implementation of diverse simultaneous reforms in low and middle-income countries.

Abbreviations

FPP: Family Physician Plan; HTP: Health Transformation Plan; IHIO: Iran Health Insurance Organization; ITS: Interrupted Time Series; PHC: Primary Health Care; UHC: Universal Health Coverage

Acknowledgements

This manuscript is a part of Master of Science thesis. The Mazandaran University of Medical Sciences supported the study. Special thanks go to Ruhollah Esfandiari at the IHIO office in Mazandaran.

Authors' contributions

SR, MKh, RE conceptualized the study. SR, MKh, RE developed the analytical plan. MKh and RE completed and JYC supervised analysis. SR, MKh, RE and JYC drafted the manuscript. All authors contributed comments and approved the final manuscript.

Funding

The Mazandaran University of Medical Sciences supported the study. The funding body had no role in this study.

Availability of data material

The datasets used in the study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

We gained approval from ethics committee of Mazandaran University of Medical Science (ethical code: REC.1398.5197).
Consent for publication Not applicable.

Competing interests
The authors declared that they have no competing interest.

Authors' details
1Department of Public Health, School of Health, Mazandaran University of Medical Sciences, Sari, Iran. 2Department of Public Health, School of Health, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran, 3Department of Biostatistics, School of Health, Mazandaran University of Medical Sciences, Sari, Iran. 4Department of Public Health, School of Health, Mazandaran University of Medical Sciences, Sari, Iran.

References
1. Sachs JD. Achieving universal health coverage in low-income settings. The Lancet. 2012;380(9845):944-947. https://doi.org/10.1016/S0140-6736(12)61149-0
2. Sajadi HS, Majdzadeh R. From Primary Health Care to Universal Health Coverage in the Islamic Republic of Iran: A Journey of Four Decades. Arch Iranian Med. 2019;1;22(5):262-268
3. Sanders D, Nandi S, Labonté R, Vance C, Van Damme W. From primary health care to universal health coverage—one step forward and two steps back. The Lancet. 2019;394(10199):619-621. https://doi.org/10.1016/s0140-6736(19)31831-8
4. World Health Organization. A vision for primary health care in the 21st century: towards universal health coverage and the Sustainable Development Goals. Geneva World Health Organization; 2018
5. World Health Organization. Building the economic case for primary health care: a scoping review. Geneva: WHO; 2018
6. Saltman R, Bankauskaite V, Vrangbaek K. Primary care in the driver's seat? Organizational reform in European primary care. McGraw-Hill Education; 2005. https://doi.org/10.1111/j.16015037.2007.00273.x
7. Fung CS, Wong CK, Fong DY, Lee A, Lam CL. Having a family doctor was associated with lower utilization of hospital-based health services. BMC health services research. 2015;15(1):42. https://doi.org/10.1186/s12913-015-0705-7
8. Rashidian A, Joudaki H, Khodayari-Moez E, Omranikhoo H, Geraili B, Arab M. The impact of rural health system reform on hospitalization rates in the Islamic Republic of Iran: an interrupted time series. Bull World Health Organ. 2013;91:942-949. https://doi.org/10.2471/blt.12.111708
9. Gressani D, Larbi h, Fetini H, Jourgensen S L, Maeda A, Langenbrunner J. Islamic Republic of Iran Health Sector Review. World Bank; 2008
10. Takian A, Doshmangir L, Rashidian A. Implementing family physician programme in rural Iran: exploring the role of an existing primary health care network. Fam pract. 2013;30(5):551-559. https://doi.org/10.1093/fampra/cmt025
11. Ministry of Health and Medical Education (2013) Operational guide for family physician project implementation. Ministry of Health and Medical Education, Tehran, Iran
12. Aghajani M, Harirchi I, Shahrami A, Maher A, Olyaeemanesh A, Kolivand P (2017) Planning, Elaborating, and Implementing the Health Transformation Plan, Implementation of a National Plan with the Trusteeship of Ministry of Health and Medical Education Through the Creation of New Credit Resources and Extensive Inter-Sectoral Collaboration with the Overall Aim of Continuously Improving the Level of Health Alongside the Creation of Justice in Accessing and Benefiting and Protecting Citizens from Health Costs. Hakim Health Sys Res. 20(2):110-121.
13. Piroozi B, Rashidian A, Moradi G, Takian A, Ghasri H, Ghadimi T. Out-of-pocket and informal payment before and after the health transformation plan in Iran: evidence from hospitals located in Kurdistan, Iran. Int J health policy manag. 2017;6(10):573. https://doi.org/10.15171/ijhpm.2017.16
14. World Health Organization. The world health report 2000: health systems: improving performance: Geneva World Health Organization; 2000
15. Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D. Segmented regression analysis of interrupted time series studies in medication use research. J Clin Pharm Ther. 2002;27(4):299-309. https://doi.org/10.1046/j.1365-2710.2002.00430.x
16. Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the evaluation of public health interventions: a tutorial. Int J Epidemiol. 2017;46(1):348-355. https://doi.org/10.1093/ije/dyw098
17. Lagarde M. How to do (or not to do)... Assessing the impact of a policy change with routine longitudinal data. Health Policy Plan. 2011; 27(1):76-83. https://doi.org/10.1093/heapol/czr004
18. MacBride-Stewart S, Marwick C, Houston N, Watt I, Patton A, Guthrie B. Evaluation of a complex intervention to improve primary care prescribing: a phase IV segmented regression interrupted time series analysis. Br J Gen Pract. 2017;67(658):e352-e360. https://doi.org/10.3399/bjgp17x690437
19. Donnelly NJ. The use of interrupted time series analysis to evaluate the impact of pharmaceutical benefits scheme policies on drug utilisation in Australia. University of New South Wales; 2005.
20. Devkaran S, O’Farrell PN. The impact of hospital accreditation on quality measures: an interrupted time series analysis. BMC Health Serv Res. 2015;15(1), 137. https://doi.org/10.1186/s12913-0150784-5
21. Beyrami HJ, Doshmangir L, Ahmadi A, Jafarabadi MA, Morasae EK, Gordeev VS. Impact of rural Family Physician programme on maternal and child health indicators in Iran: an interrupted time series analysis. BMJ open. 2019;9(1):e021761. https://doi.org/10.1136/bmjopen-2018-021761
22. Piroozi B, Takian A, Moradi G, Amerzadeh M, Safari H, Faraji O. The effect of Iran's health transformation plan on utilization of specialized outpatient visit services: An interrupted time series. Med J Islam Repub Iran. 2018;32, 121. https://doi.org/10.14196/mjiri.32.121
23. Gill JM, Mainous A. The role of provider continuity in preventing hospitalizations. Arch Fam Med. 1998;7(4):352-359. https://doi.org/10.1001/archfami.7.4.352
24. Ricketts TC, Randolph R, Howard HA, Pathman D, Carey T. Hospitalization rates as indicators of access to primary care. Health & place. 2001;7(1):27-38. https://doi.org/10.1016/s13538292(00)00035-6

25. Bayati M, Keshavarz K, Lotfi F, KebriaeeZadeh A, Barati O, Zareian S, et al. Effect of two major health reforms on health care cost and utilization in Fars Province of Iran: family physician program and health transformation plan. BMC Health Services Research. 2020;20:1-9

26. Ringel JS, Hosek SD, Vollaard BA, Mahnovski S. The elasticity of demand for health care. A review of the literature and its application to the military health system. RAND;2002.

27. Doshmangir L, Bazyar M, Najafi B, Haghparast-Bidgoli H. Health financing consequences of implementing health transformation plan in Iran: achievements and challenges. International Int J health policy manag. 2019;8(6):384-386. https://doi.org/10.15171/ijhpm.2019.18