Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design

Almudena Aguilera-Diaz¹,², Iria Vazquez²,³, Beñat Ariceta³, Amagoia Mañú³, Zuríñe Blasco-Iturri³, Sara Palomino-Echeverría³, María José Larrayoz²,³, Ramón García-Sanz⁴, María Isabel Prieto-Conde⁴, María del Carmen Chillón⁴, Ana Alfonso-Pierola⁵, Felipe Prosper¹,²,⁵, Marta Fernandez-Mercado¹,³,⁶*, María José Calasanz²,³,⁷

¹ Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain, ² Navarra Institute for Health Research (IdiSNA), Pamplona, Spain, ³ Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain, ⁴ Hematology Department, University Hospital of Salamanca, IBSAL and CIBERONC, Salamanca, Spain, ⁵ Hematology Department, Clinica Universidad de Navarra (CUN), Pamplona, Spain, ⁶ Biomedical Engineering Department, School of Engineering, University of Navarra, San Sebastian, Spain, ⁷ Scientific Co-Director of CIMA LAB Diagnostics, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain

* mfmercado@unav.es, marfermer@yahoo.es

Abstract

The diagnosis of myeloid neoplasms (MN) has significantly evolved through the last few decades. Next Generation Sequencing (NGS) is gradually becoming an essential tool to help clinicians with disease management. To this end, most specialized genetic laboratories have implemented NGS panels targeting a number of different genes relevant to MN. The aim of the present study is to evaluate the performance of four different targeted NGS gene panels based on their technical features and clinical utility. A total of 32 patient bone marrow samples were accrued and sequenced with 3 commercially available panels and 1 custom panel. Variants were classified by two geneticists based on their clinical relevance in MN. There was a difference in panel's depth of coverage. We found 11 discordant clinically relevant variants between panels, with a trend to miss long insertions. Our data show that there is a high risk of finding different mutations depending on the panel of choice, due both to the panel design and the data analysis method. Of note, CEBPA, CALR and FLT3 genes, remains challenging the use of NGS for diagnosis of MN in compliance with current guidelines. Therefore, conventional molecular testing might need to be kept in place for the correct diagnosis of MN for now.

Introduction

Myeloid neoplasms (MN) comprise a group of clonal disorders biologically and clinically heterogeneous characterized by ineffective hematopoiesis, due to Hematopoietic Stem Cells (HSC) excessive proliferation and defective myeloid lineage differentiation [1].
The diagnosis of myeloid malignancies has significantly evolved through the last few decades. Nowadays, blood cell morphology, blast count, cytogenetics and molecular analysis are crucial for clinicians to diagnose and to predict prognosis of MN following the World Health Organization (WHO) classification [2]. This classification includes the genetic characterization of genes such as JAK2, MPL and CALR for Myeloproliferative Neoplasms (MPN); ASXL1, CEBPA, DNMT3A, FLT3, IDH1/2, KIT, KMT2A, NPM1, RUNX1, TET2, TP53 and WT1 genes for Acute Myeloid Leukemia (AML); and SF3B1, for Myelodysplastic Syndromes (MDS). Along the last few years, the scientific community has deepened its understanding on the genetic aberration associated to MN through the discovery of other recurrently mutated genes such as ASXL1, DNMT3A, EZH2, RUNX1, SRSF2, TET2, TP53 and U2AF1 in MDS [3][4], and ASXL1, CBL, EZH2, NRAS/KRAS, RUNX1, SETBP1, SRSF2 and TET2 in Chronic Myelomonocytic Leukemia (CMML) [5][6][7][8]. A number of these genes have been related to patient prognosis; for example, it is well known that mutations in SF3B1 gene in MDS with ring sideroblasts (MDS-RS) are related to good prognosis [9], whereas mutations in TP53 gene are usually related to poor outcomes [10]. These discoveries are crucial to help clinicians in the management of the disease, hence the correct characterization of the genes is vital.

Hematological malignancies are genetically heterogeneous, and recent studies have elucidated the importance of genomic testing (rather than individual gene testing) to understand the pathology of the disease [3][4][11]. Due to its wide scope, Massive Parallel Sequencing (also called Next Generation Sequencing, NGS) is being increasingly used for genomic characterization of clinical samples. NGS is nowadays not just an essential tool for the discovery of new gene mutations, but is also becoming a rather useful technique to improve patient diagnosis, prognosis and treatment based on identified tumor variants.

There are several ways to perform NGS on DNA, including whole-genome sequencing (WGS), which allows sequencing of the entire genome; whole-exome sequencing (WES), which focuses on the coding regions (exons), encompassing ~2.5% of the total human genome; and targeted sequencing (also known as NGS panels), which focuses on a certain number of genes, generally involved in the biology of a specific disease [12]. NGS panels are the NGS tools most widely used for clinical applications, mainly for cost effectiveness reasons, but also because they allow deeper sequencing, permitting detection of small mutant clones. For MN there is a plethora of different NGS panels developed by research groups all over the world as well as commercially available panels.

In this study we have compared the analytic performance of four NGS panels focused on myeloid malignancies. To that end, samples from 32 patients with MN were sequenced using three different commercially available targeted gene panels, offered by Illumina, Oxford Gene Technology (OGT), and SOPHIA GENETICS; the other one is a customized pan-myeloid panel developed in collaboration with SOPHIA GENETICS. The aim of this study is to dissect a number of NGS panels available for genomic characterization of MN, discuss their design, chemistry, analysis pipeline, and whether they cover and detect mutations in the most relevant genes related to MN. We hope to offer helpful criteria to hematological genetic laboratories when implementing new NGS panels.

Materials and methods

Patient samples
A total of 32 patient bone marrow (BM) samples were accrued: 17 with AML, 7 with MPN, 6 with MDS, and 2 with CML. BM was the tissue of choice for analysis following European recommendations [13]. Seventeen of those samples were analyzed with TruSight™ Myeloid Panel (TSMP) (Illumina, San Diego, CA, USA), 16 with SureSeq™CoreMPN Panel and...
SureSeq™ AML Panel (SureSeq) (Oxford Gene Technology, Oxford, UK), 15 with Myeloid Solutions™ panel (MYS) (SOPHiA GENETICS, Saint Sulpice, Switzerland), and all 32 were tested with a custom Pan-Myeloid Panel (PMP) (University of Navarra and University Hospital of Salamanca) (Fig 1).

All DNA samples were extracted using QIamp DNA Blood Mini Kit (Qiagen, Hilden, Germany), quantified using Qubit dsDNA BR Assay Kit on a Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA), and DNA quality was assessed by DNA genomic kit on a Tape Station 4100 (Agilent Technologies, Santa Clara, CA, USA).

DNA samples from 15 patients were sent to SOPHiA GENETICS (Saint Sulpice, Switzerland) and 16 DNA samples to Oxford Gene Technology (OGT) (Oxford, UK) for library preparation, sequencing, and variant calling.

Samples and data from patients included in the study were provided by the Biobank of the University of Navarra (UN) and were processed following standard operating procedures approved by the CEI (Comité de Ética de la Investigación) of UN. Patient’s data were fully anonymized, and all patients provided informed written consent to have data from their medical records such as age, gender and diagnosis to be used for research purposes.

TruSight Myeloid Panel (TSMP)

TruSight Myeloid Panel (TSMP) (Illumina, San Diego, CA, USA), consists of 568 amplicons of 250 base pairs (bp) in length, with a total genomic footprint of 141 kb, targeting the full CDS of 15 genes and exonic hot spots of 39 additional genes (Fig 2) (S1 Table).

Libraries of 17 patient’s samples were prepared by our team following manufacturer’s instructions. Libraries quality was assessed using DNA D1000 kit and a Tape Station 4100 (Agilent Technologies, Santa Clara, CA, USA), and libraries quantity was assessed with Qubit dsDNA HS Assay Kit and Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). Libraries were normalized according to the measured quantity and pooled together at 4nM.

A total of 10.5 pM of the 8 pooled libraries was pair-end sequenced on a MiSeq (Illumina, San Diego, CA, USA) with 201x2 cycles using the Reagent Kit V3 600 cycles cartridge, according to manufacturer’s instructions. Bam and Variant Calling Files (VCF) were directly obtained from MiSeq instrument and variants were annotated using Variant Studio (Illumina, San Diego, CA, USA).

Myeloid Solutions™ Panel

Myeloid Solutions™ Panel (MYS) (SOPHiA Genetics, Saint Sulpice, Switzerland), consists in a hybridization capture-based panel, with a total genomic footprint of 49 kb, targeting the full CDS of 10 genes and exonic hotspots of 20 additional genes (Fig 2) (S2 Table).

Extracted DNA from 15 patient samples was sent to SOPHiA GENETICS facilities, where they carried out libraries preparation and pair-end sequencing on a MiSeq (Illumina, San Diego, CA, USA) with 251x2 cycles using Reagent Kit V3 600 cycles cartridge, according to manufacturer’s instructions. Alignment, base calling and variant annotation were performed with SOPHiA DDM software.

SureSeq™ panels

SureSeq™ AML Panel and SureSeq™ Core MPN Panel (Oxford Gene Technology, Oxford, UK), consists in 2 hybridization capture-based panels with a total genomic footprint covering 53 kb; one panel targets the full CDS of 20 genes, and the other one targets exonic hotspots of 3 additional genes (MPL, JAK2 and CALR) (Fig 2) (S3 Table).
Extracted DNA from the same 15 patients sent to SOPHiA GENETICS, was sent to OGT facilities, where they carried out library preparation according to their own protocol. Libraries were pair-end sequenced on a MiSeq (Illumina, San Diego, CA, USA) with 151x2 cycles using Reagent Kit V2 cartridge, according to manufacturer’s instructions.

Pan-Myeloid Panel (PMP)
Pan-Myeloid Panel (PMP) consists in a hybridization capture-based panel developed by the UN (Pamplona, Spain) and the University Hospital of Salamanca (Salamanca, Spain) in collaboration with SOPHiA GENETICS (Saint Sulpice, Switzerland). It counts on a total genomic footprint of 114 kb, targeting 63 genes. For the detection of Single Nucleotide Variants (SNV), insertions and deletions (indels) we targeted 48 genes: full CDS of 22 genes, and exonic hotspots of 26 additional genes (Fig 2) (S4 Table). This panel was also designed with the aim of detecting Copy Number Variations (CNV) in chromosomes 5, 7, 8 and 20; these data have not been included in the present study.

Libraries were carried out following manufacturer’s instructions. Final libraries quantity was measured using the Qubit dsDNA HS Assay Kit in a Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA), and libraries quality was assessed using DNA D1000 kit, and visualized on the Agilent 4100 Tape Station (Agilent Technologies, Santa Clara, CA, USA). Libraries were normalized and pooled together at 4nM.

A total of 10.5 pM of 8 pooled libraries was pair-end sequenced on the MiSeq (Illumina, San Diego, CA, USA) with 251x2 cycles using the Reagent Kit V3 600 cycles cartridge, according to manufacturer’s instructions. Raw data were directly obtained from the MiSeq and uploaded onto SOPHiA DDM software, where alignment, variant calling and annotation were performed.

Sequencing and variant data analysis
Aligned reads were counted using SAMTools version 1.6. Read counting and plotting were performed using R version 3.4.2 (RStudio, Boston, MA, USA).

SureSeq™ panels bam files analysis was performed using VarScan version 2.3.9, with strand bias filters and setting minimum read to 5. Variant calling of the other three panels was performed within SOPHiA DDM software version 5.2.7.1 (SOPHiA GENETICS, Saint Sulpice, Switzerland) for MYS and PMP, or within the MiSeq (Illumina, San Diego, CA, USA) for TSMP.

List of annotated variants were reviewed for filtering out of intronic, intergenic and splice regions variants. Only variants with a minimum variant allele frequency (VAF) of 5% and with a minimum coverage of 100 reads were kept to avoid potential sequencing errors. Variants were categorized by two geneticists with expertise in hematological malignancies, and only variants classified as pathogenic and likely pathogenic were considered clinically relevant.

Clinical classification of the variants was individually reviewed according to current guidelines from the Spanish Group of Myelodysplastic Syndromes [14]. Aligned reads were manually curated for confirmation of the presence of the filtered-in variants within the Integrative Genomics Viewer (IGV) software (Broad Institute) [15]. Variant data were summarized using
median and range, and plotted using GraphPad Prism 5 (GraphPad, La Jolla, California, USA).

Genetic molecular testing

Purity and concentration of the extracted DNA were measured using a NanoDrop 1000 spectrophotometer (ThermoFisher SCIENTIFIC, Waltham, MA, USA).

Mutations in CEBPA exon were detected by genomic DNA PCR, cloning and Sanger sequencing using the primers and following the procedures previously described [16][17]. Mutations in CALR exon 9 were assessed by PCR and Sanger sequencing [18]. FLT3 exons 14 and 15 were assessed by PCR and capillary electrophoresis using 5ng of genomic DNA per samples to detect the presence of internal tandem duplications (ITD) [19]. The ratio of FLT3-ITD to wild-type FLT3 was quantified by the Applied Biosystems sequencing software GeneScan as described previously [20]. FLT3 exon 20 was tested by PCR and RFLP analysis for presence of mutations in codons p.Asp835/p.Ile836 [21]. PCR products were Sanger sequenced at Macrogen Europe’s facilities (Amsterdam, Netherlands).

The molecular analysis data obtained by conventional molecular techniques for all patients are shown in Table 1. Patients 1, 5 and 8 harbored biallelic CEBPA mutations; patients 2, 3, 7 and 12 harbored FLT3-ITD favorable ratio (< 0.5) and NPM1 not mutated; patient 11 had FLT3-ITD favorable ratio and mutated NPM1; patients 4, 9, 10 and 13 presented monoallelic CEBPA; patients 6 and 14 had CALR mutated; patients 15 and 16 had unfavorable FLT3-ITD ratio (> 0.5); and patient 23 presented triple negative MPN (CALR, JAK2 and MPL genes non mutated). The 14 remaining patients had not been tested by conventional molecular techniques.

Results

Comparison of the NGS panels characteristics

a) Panels performance. Based on the technology used for capturing the genomic regions of interest for library preparation there are two types of NGS targeted panels: hybridization capture-based libraries or amplicon-based libraries. TSMP was the only amplicon-based panel in this study; the other three panels (SureSeq, MYS and PMP) were hybridization capture-based panels. Library preparation for TSMP and SureSeq panels took one day, whereas for PMP and MYS panel took two working days. All panel’s chemistry was compatible with the Illumina sequencer MiSeq, but differ in the sequencing time, due to the number of sequencing cycles: PMP took the longest run time (50h, 250x2 cycles) and SureSeq panels the shorter run time (less than 24h, 151x2 cycles). Software analysis were available for TSMP, PMP and MYS panels at the time of the study. The performance of the panels is summarized in Table 2.

b) Panels design and clinical relevance of the genes covered. All four panels analyzed the same 19 genes (core myeloid gene set), among others, those being ASXL1, CALR, CEBPA, DNMT3A, ETV6, FLT3, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, RUNX1, TET2, TP53, U2AF1, WT1 (Figs 2 and 3). However, the target regions for that core myeloid gene set differ between the four panels included in this study (S1 Fig). Panels design and clinical relevance of the genes are represented in Fig 2.
For example, exon 10 of *MPL* gene is included in all panels, whereas exons 3–6 and 12 are targeted only by PMP. Similarly, *ASXL1* exon 12 is covered by all panels, while SureSeq™ AML covers *ASXL1* full CDS (S2 Fig, S1–S4 Tables).

Table 1. Conventional molecular testing data of patients included in the study.

Patient ID	Pathology	Karyotype	FISH	Molecular
1	AML	46, XY	NP	CEBPA biallelic
2	AML secondary to MDS	46,XX, del(20)(q12)[15]/46,XX[15]	NP	FLT3-ITD favorable/NPM1 non mutated
3	AML secondary to treatment	46,XX del(11)(q11.1)(p15q23)[23]/46,XX[7]	11q23 (KMT2A/MLL) negative	FLT3-ITD favorable/NPM1 non mutated
4	AML	null	RUNX1-RUNX1T1 negative	CEBPA monoallelic
5	AML M1	NP	PDGFRβ, FGFR1 negative	CEBPA biallelic
6	Essential Thrombocytopenia	NP	NP	CALR
7	AML M5	NP	NP	FLT3-ITD favorable/NPM1 non mutated/WT1 overexpressed
8	AML	NP	NP	CEBPA biallelic
9	AML M1	NP	PDGFRβ negative	CEBPA monoallelic /FLT3 non mutated
10	AML	46, XY	NP	CEBPA monoallelic
11	AML M1	NP	NP	FLT3-ITD favorable/NPM1 mutated
12	AML	NP	NP	FLT3-ITD favorable/CEBPA and NPM1 non mutated
13	AML	46, XX	NP	CEBPA monoallelic
14	Essential Thrombocytopenia	NP	NP	CALR mutated/JAK2 non mutated
15	AML secondary CMML	Null	NP	FLT3-ITD (ratio 1.11) Unfavorable
16	AML	46, XY	NP	FLT3-ITD (ratio 1.06) Unfavorable
17	MDS	45,X,-Y[29]/46,XY[1]	del(5q) and del (7q) negative	NP
18	AML M2	NP	NP	NP
19	MDS	47,XY,+13[10]/46,XY[40]	del(5q), del (20q) and del (7q) negative	NP
20	MDS-EB1	46,XX	del(5q), del (20q) and del (7q) negative	NP
21	Myelofibrosis	NP	NP	NP
22	Myelofibrosis	NP	NP	NP
23	Myelofibrosis	Null	NP	MPN Triple Negative
24	CMML	46,XX	NP	NP
25	MDS	46,XX	del(5q), del (20q) and del (7q) negative	NP
26	Polycythemia Vera	NP	NP	NP
27	Myelofibrosis	NP	NP	NP
28	MDS (del(5q))	NP	NP	NP
29	AML	NP	NP	FLT3 (ITD—D835) non mutated/CEBPA and NPM1 non mutated
30	AML in treatment	46,XY,t(3:6)(q26q21)	NP	NP
31	MDS-EB2	46,XY,inv(9)(p12q13)[30]	NP	NP
32	CMML	46,XY,add(15)(p13),add(21)(q22)[30]	NP	NP

AML = Acute Myeloid Leukemia; NP = Non Performed; MDS = Myelodisplastic Syndromes; CMML = Chronic Myelomonocytic Leukemia; MDS-EB = Myelodisplastic Syndromes with Excess Blasts; MPN = Myeloproliferative Neoplasm

https://doi.org/10.1371/journal.pone.0227986.t001
Table 2. Characteristics of panel performance.

	PMP (SOPHIA GENETICS)	MYS (SOPHIA GENETICS)	SureSeq (OGT)	TSMP (Illumina)
Number of samples	32	15	16	17
Type of library preparation	Hybridization capture	Hybridization capture	Hybridization capture	Amplicon-based
Wet-lab working time (days)	2	2	1	1
Possibility of customization	Yes	Yes	Yes	No
Sequencing cycles and time	251 cycles/50h	251 cycles/48h	151 cycles/24h	201 cycles/40h
Analysis Software	SOPHIA DDM	SOPHiA DDM	Under development at the time of the study	Variant Studio

https://doi.org/10.1371/journal.pone.0227986.t002

Fig 3. Number of genes shared between panels. All four panels covered the same 19 genes (core myeloid gene set). TSMP, PMP and Sureseq panels design includes 4 genes not targeted by MYS. PMP, TSMP and MYS panels target 8 genes not included in SureSeq panel design. TSMP and PMP cover 9 genes that are not within MYS and SureSeq panel scope. TSMP and MYS panels cover 3 genes not included in the other two panels.

https://doi.org/10.1371/journal.pone.0227986.g003
The 19 genes included in the core myeloid gene set, have extensively been described as relevant in different myeloid malignancies. All of them show prognostic value; CALR, JAK2 and MPL have also diagnostic value; and CALR, DNMT3A, JAK2, KIT, FLT3, IDH1/2 and TET2 have been shown to bear predictive value. The remaining genes included in the panels, fine tune the design so they were useful for different aims. For example, SureSeq™ panels were designed for analysis of AML and MPN cases, but it lacked essential genes for the study of MDS, such as genes involved in splicing (SF3B1, SRSF2, ZRSR2), epigenetic regulation (EZH2), transcriptional regulation (GATA2) or signal transduction (CBL) [22][23][24][25]. Similarly, MYS panel was designed to characterize the mutational landscape of MDS, MPN and AML, but it missed a number of relevant genes such as the transcription regulators GATA2, IKZF1, and PHF6 [25][26]. On the contrary, TSMP included some genes relevant to lymphoid malignancies, such as MYD88, NOTCH1 and PTEN [27][28][29]. In addition, PMP was the only one that included the analysis of myeloid-relevant genes as CSNK1A1, NF1, PPM1D, and SH2B3 [30][31][32][33]. However, there is still room for PMP improvement, because it lacked targeting the recently described mutated exons in FLT3 gene [34], which are covered only by SureSeq™ AML panel. The recurrence of mutations for different MNs in the genes covered in any of the analyzed panels is summarized in S5 Table.

Comparison of the NGS panels coverage

Depth of coverage is the average number of mapped reads at a given locus in the panel. The importance of a good panel coverage resides in the fact that a low coverage limits the ability to confidently call a variant present in the sample, especially those variants with low allele frequency. Fig 4 shows the mean of depth of coverage for each panel by gene; a mean coverage of 1000x allows detection of clones present at 0.1% (cut-off value of 10 reads, assuming there is no strand-bias).

All panels showed mean coverage over 1000x. However, we observed that TSMP did not cover CEBPA gene as homogeneously as the other panels; this might be because TSMP is an amplicon-based panel, and CEBPA is a one-exon gene lying within a CpG Island [20]. Therefore, PCR-based library preparation struggles to amplify (and capture) this gene, challenging the detection of variants in CEBPA gene (S3 Fig). S4 Fig shows the mean coverage by region targeted for each panel.

Comparison of the detected variants in all four NGS panels

Filtered VCF obtained from the different software (from SOPHiA GENETICS and Illumina) and the in-house analysis of the SureSeq panels from all samples were compared. The number of variants called in each panel is plotted in Fig 5, and the VAFs comparison is represented in S5 Fig.

a) Comparison of all coding variants detected.

i. Called coding variants. A total of 1146 coding variants were detected by all four panels. Fig 5A shows that PMP was the panel that called a higher number of variants per patient (mean = 26) followed by TSMP (mean = 24), MYS panel (mean = 16), and SureSeq panels, which were the ones that called a lower number of variants (mean = 15). This might be due to the fact that PMP and TSMP were the larger panels, covering more genes (S1–S4 Tables).

ii. Coding variants called in the core myeloid gen set. When focusing on the core myeloid gene set of 19 genes, a total of 367 variants were detected by all four panels. SureSeq panels called a higher number of variants per patient (mean = 13), followed by MYS (mean = 9.2) and PMP (mean = 8.1); TSMP was the panel that called a lower number of variants.
Analysing in detail these differences, SureSeq panels were the ones that called more variants because it covers the whole CDS of the myeloid core gene set, and precisely ASXL1, FLT3, IDH1, IDH2, KIT, KRAS, NPM1, NRAS, U2AF1 and WT1 are the genes harboring more variants in our cohort (S1 Fig). Similarly, MYS panel covered the whole JAK2 gene, whereas PMP included exons 12 to 15 only, what led MYS panel calling more variants than PMP. Finally, PMP called more variants than TSMP because it analyzed more exons of MPL gene, and TSMP struggled covering CEBPA gene, as mention above (S1, S2 and S4 Figs).

b) Comparison of the clinically relevant variants detected. Since these panels were designed with the intention of being clinically useful, we repeated the analysis, focusing on the clinical relevance of the variants called. Variants were classified by two geneticists with expertise in hematological malignancies. Variants classified as “pathogenic” or “likely pathogenic” were kept as clinically relevant. Table 3 shows all clinically relevant mutations detected in each patient.

i. Called clinically relevant variants. A total of 50 clinically relevant variants were detected by all four panels. PMP and TSMP were the panels that called a higher number of clinically relevant mutations (Fig 5B). The mean coverage by gene in each panel is represented in yellow (1000x) through dark red (7000x).
Sample ID	M	S	T	Gene	Chr	Position	CodCons	Protein	Classification		
1	C	N	C	GATA2	3	12520767	missense	NM_00114561	c.953C>G	p.Ala318Gly	Pathogenic/COSM249850
2	C	C	C	NRAS	1	115256529	missense	NM_002524	c.182A>G	p.Gln61Arg	Pathogenic/COSM584
3	C	C	C	RUNX1	21	3625915	frameshift	NM_001001890	c.257-258delCC	p.Pro86HisfsX1	Likely Pathogenic/COSM417927
2	C	N	N	ND							
5	C	C	C	NRAS	1	115258744	missense	NM_002524	c.38G>A	p.Gly13Asp	Pathogenic/COSM573
6	C	C	C	CALR	19	1305459	frameshift	NM_004343	c.1119delC	p.Asp373GluufsX137	Pathogenic/COSM18544
7	C	C	C	CALR	19	1305456	frameshift	NM_004343	c.1099_1100insAAG	p.Leu367TrpfsX2	Pathogenic/COSM18544
8	C	C	C	TET2	4	106157572	frameshift	NM_004119	c.2474delC	p.Ser825fsX1	Likely Pathogenic/COSM417927
9	C	C	C	NF1							
10	C	C	C	NRAS	1	115258187	frameshift	NM_00114561	c.3088C>T	p.Gln1030	Likely Pathogenic/COSM476611
11	C	C	C	IDH2	15	9063193	missense	NM_002168	c.419G>A	p.Arg140Gln	Pathogenic/COSM41590
12	C	C	C	IDH2	15	9063202	frameshift	NM_001001890	c.860_863dupTCTG	p.Trp288CysfsfsX1	Pathogenic/COSM17559/
13	C	C	C	NPM1	5	170837543	frameshift	NM_002520	c.853G>T	p.Glu285Asp	Likely Pathogenic/COSM17559/
14	C	C	C	TET2	4	106157416	frameshift	NM_00114561	c.2317G>T	p.Gly773Asp	Likely Pathogenic/COSM417927
15	C	C	C	SF3B1	2	198267359	missense	NM_001195427	c.284A>G	p.Pro95Cys	Pathogenic/COSM13580
16	C	C	C	WT1	11	3241791	frameshift	NM_000378	c.1089_1090insGCCC TCTTGTA CGG	p.Ser364AlafsX73	Likely Pathogenic/COSM13580
17	C	N	N	U2AF1	21	44517924	frameshift	NM_000378	c.1076_1077insT	p.Thr360AspfsX2	Likely Pathogenic/COSM417927
18	C	N	N	NRAS	1	115258203	frameshift	NM_001195427	c.156C>A	p.156fsX1	Pathogenic/COSM13580
19	C	N	N	WT1	11	3241792	frameshift	NM_000378	c.1069_1070insT	p.Thr360AspfsX2	Likely Pathogenic/COSM417927
20	C	N	N	GNAS	20	57484421	missense	NM_001195427	c.156C>A	p.156fsX1	Pathogenic/COSM13580

(Continued)
Sample ID	P	M	S	T	Gene	Chr	Position	CodCons	Transcript	c.DNA	Protein	Classification
20	C	ND	ND	C	SF3B1	2	198267484	missense	NM_012433	c.1873C>T	p.Arg625Cys	Pathogenic/COSM110696
21	C	ND	ND	C	CALR	19	13054564	frameshift	NM_004343	c.1099_1150del	p.Leu367Thrfs*46	Pathogenic/COSM1738055
23	C	ND	ND	C	MPL	1	43815009	missense	NM_005373	c.1544G>T	p.Trp515Leu	Pathogenic/COSM3719407, COSM18918
24	C	ND	ND	C	SETBP1	18	42531913	missense	NM_015559	c.2608G>C	p.Gly870Arg	Pathogenic/COSM1684722
25	C	ND	ND	C	ASXL1	20	31022288	nonsense	NM_015338	c.1773C>A	p.Try591*	Pathogenic/COSM1681609
25	C	ND	ND	C	KIT	4	55599321	nonsense	NM_000222	c.2447A>T	p.Asp816Val	Pathogenic/COSM1314
26	C	ND	ND	C	GATA1	X	48649629	missense	NM_002049	c.113C>T	p.Pro38Leu	Likely Pathogenic/ COSM6498484, COSM6498483
27	C	ND	ND	C	CALR	19	13054627	frameshift	NM_004343	c.1154_1155insTTGTC	p.Lys385Asnfs*	Pathogenic/COSM1738056
27	C	ND	ND	C	U2AF1	21	44514777	missense	NM_001025203	c.470A>G	p.Gln157Arg	Pathogenic/ COSM211532, COSM1724886
28	C	ND	ND	C	ASXL1	20	31022441	frameshift	NM_015338	c.1934dupG	p.Gly646fs*12	Pathogenic/COSM34210
28	C	ND	ND	C	TP53	17	7577094	missense	NM_000546	c.844C>T	p.Arg282Trp	Pathogenic/COSM99955, COSM1636702, COSM10704
31	C	ND	ND	C	FLT3	13	28608244	frameshift	NM_004119	c.1788_1811dup	p.Glu604_Phe605ins8	Pathogenic/ITD
31	C	ND	ND	C	WTI	11	32417907	frameshift	NM_000378	c.1090_1093dupTGGG	p.Ala382ValfsTer4	Pathogenic/COSM5487332
32	C	ND	ND	C	CBL	11	119148931	missense	NM_005188	c.1151G>A	p.Cys34Trp	Pathogenic/COSM34066
32	C	ND	ND	C	WTI	11	32417913	frameshift	NM_000378	c.1080_1087dupTCTTGAC	p.Arg380LeufsTer72	Likely Pathogenic/COSM5487152

P = Pan-Myeloid panel; M = Myeloid solutions panel; S = SureSeq panels; T = TruSight Myeloid Panel; Chr = chromosome; CodCons = coding consequence; C = Called; NI = Not Included; ND = Not Done; NC = Not Called; SNP = Single nucleotide polymorphism

https://doi.org/10.1371/journal.pone.0227986.t003
relevant variants (mean = 1.5), followed by MYS (mean = 1.4), and SureSeq™ panels (mean = 1.1) (Fig 5C). There were 11 discordant variants, these variants were not detected because SureSeq and MYS did not include GATA2, BCORL1, SH2B3 and PTPN11 in their design, hence mutations such as GATA2 p.Ala318Gly and p.Ala318Val (patient 1 and 4), BCORL1 p.Arg1048* and SH2B3 p.Arg392Trp (patient 2), and PTPN11 p.Gly60Cys (patient 3) could not be called. Similarly, SureSeq™ panels missed SRSF2 p.Pro95His (patient 13) and SF3B1 p.Lys666Asn (patient 15) variants because those genes were not included in its design. Patient 20, tested with TSMP and PMP, harbored the likely pathogenic mutation GNAS p.Arg844His, which was called by TSMP but not by PMP, again due to panel design.

ii. Clinically relevant variants called in the core myeloid gene set. A total of 37 clinically relevant variants fell in one of the 19 genes of the core myeloid gene set (Fig 5D, Table 3). All panels called the same variants, with the exception of 3 cases, for which SureSeq™ AML Panel did not call two FLT3-ITD variants p.Phe594_Arg595ins12, p.Tyr589_Phe590ins12 (patient 7 and 16) and SureSeq™ Core MPN Panel did not called one CALR p.Leu367 Thrfs*46 variant (patient 14). Of note, all three missed variants were indels with a length larger than 35bp. Additionally, 2 FLT3-ITD positive cases by conventional molecular techniques (patients 2 and 3) (Table 1), tested negative with the SureSeq™ AML, MYS and PMP NGS panels. Moreover, the insertion could not be visualized on the corresponding bam files within IGV, which means that the ITD- harboring alleles were either not captured during library preparation, or that the corresponding reads were not correctly aligned. These data suggest that NGS is prone to missing long indels.

c) Comparison of all detected VAFs. Correlation analysis between VAFs detected by each panel showed high level of concordance between SOPHiA GENETICS panels (S5A Fig and Fig 5A $R^2 = 0.994$) and acceptable concordance between SOPHiA GENETICS and SureSeq™ panels (S5B and S5C Fig; $R^2 = 0.953$ and $R^2 = 0.942$, respectively). On the contrary, VAFs detected by TSMP and PMP showed an elevated level of dispersion (S5D Fig; $R^2 = 0.767$), indicating a relatively high discordance in detected VAF values between panels.

Common sequencing errors detected in the NGS panels

Those variants with a VAF of < 5%, recurrently present in ≥ 30% of samples analyzed by any of the panels, and found within a repetitive region (homopolymeric regions or repeating triplets) defined as sequencing errors. We detected a total of 20 sequencing errors. Eight were present in 100% of the sequenced samples; 4 were called in more than one panel. Of note, TSMP was the panel that called a higher number of sequencing errors (n = 15), followed by PMP (n = 6), SureSeq™ AML panel (n = 3) and MYS panel (n = 2). Sequencing errors are listed in S6 Table.

Discussion

Patients with MN are clinically heterogeneous. Mutations in the genes related with MNs are pathogenically important and confer a better understanding of the disease. Therefore, genetic testing might help clinicians choosing the best treatment for the patient, and predicting patient outcome. In this study we evaluated the utility of four targeted NGS gene panels (three commercially available and one custom), based on their technical features and clinicopathologic utility. The present analysis may offer helpful criteria to hematological genetic laboratories when implementing new NGS panels.
NGS panel target design, greatly depends on the intended use of the panel. Panels can be designed with a focus on a specific phenotype (e.g. AML or MDS with ring sideroblasts) or aiming to a wider scope (e.g. a pan-myeloid panel). In any case, a deep knowledge of the scientific literature of the disease of interest is necessary. Hence, we started our study by summarizing current information about all genes included in any of the four panels, and their relevance to MN (S5 Table).

All four panels had in common what we have called the "core myeloid gene set" of 19 genes, that have been extensively described in MN [2][35][36][37]. However, additional genes highly relevant to MN were not included in all four panels design: (i) CBL, CSF3R, EZH2, PTPN11, SETBP1, SF3B1, SRSF2, and ZRSR2 genes were not included in SureSeq panels (Oxford Gene Technology, Oxford, UK) [26][38][39][40][41][42]; (ii) BCOR, GATA1, KMT2A and PHF6 genes were not included in MYS panel (SOPHiA GENETICS, Saint Sulpice, Switzerland) [43][44][45][46]; (iii) TSMP and PMP were the only panels including exons from ATRX, BCOI1L, CUX1, GATA2, IKZF1, RAD21, SMC1A, SMC3, and STAG2 genes, all of them of interest in myeloid malignancies [43][47][48][49][50][51][52]. Interestingly, only PMP included SH2B3 and NF1 genes; SH2B3 is highly expressed in hematological cells and its clinical relevance in MPNs has been described in several studies [53][54][55]; NF1 mutations are thought to have a similar effect in leukemogenesis as mutations in the RAS pathway [25].

According to the literature, not all genes included in the panels have been shown to be clinically relevant. Therefore, when choosing an NGS panel, it might be important to prioritize the panel that includes all genes with diagnostic, prognostic and/or predictive value for the disease of interest. The clinical relevance of each gene included in all four panels is represented in Fig 2. The figure shows that ABL1, CALR, MPL, JAK2 and SF3B1 genes have diagnostic value, as described in several studies[2][18][37]. Similarly, ABL1, CALR, JAK2, KIT, FLT3, IDH1 and IDH2 gene mutations have FDA-approved treatments[56][57]. Patients harboring mutations in TET2 and DNMT3A genes have been shown to present better response to hypomethylating agents [58][59]; DNMT3 mutated patients could also benefit from daunorubicin induction therapy [60]. Fig 2 also shows a high number of genes related to prognosis, such as biallelic CEBPA and SF3B1 (good prognosis), and ASXL1 and TP53 (poor prognosis) [9][10][61]. As mentioned above, not all panels included all genes with clinical relevance, and therefore, those panels would miss important information about patient outcome.

TSMP (Illumina, San Diego, CA, USA) has been extensively used on the study of myeloid malignancies [20][62][63]. However it faces a couple of challenges: firstly, the panel hampers the capture of GC regions (such in the case of CEBPA) because is based on amplicon technology; secondly, TSMP covered ATRX exon 11, that according to Illumina´s panel description it is not in the panel design; and finally, it included genes with clinical implications in lymphoid malignancies, like CDKN2A and FBXW7 [64], MYD88 [27][65][66][67], NOTCH1 [28], and PTEN [29]. The fact that TSMP covered genes and regions not relevant to MN, might lessen the number of reads in the regions of interest. Of note, TSMP VCFs presented a high percentage (over 50%) of variants with a VAF of less than 5%, which might have been originated during PCR amplification [68]; this might also explain the divergent VAF between TSMP and the hybridization-based capture panels [69]. In addition, TSMP was the panel that showed more sequencing errors [70]. However, despite these issues, TSMP covered the majority of genes recurrently mutated in AML, MPN, MDS, and CMML, including all clinically relevant genes.

SureSeq™ panels (Oxford Gene Technology, Oxford, UK) were used combining two off-the-shelf panels available from OGT, designed for the study of AML and MPN, respectively. Currently, OGT also offers an extended MPN panel, but no wider myeloid solution panel was commercially available. Variant calling was done manually by their expert bioinformaticians, because their SureSeq™ Interpret Software was not available at the time of performing the
present study. This panel was the one showing lower coverage for all genes, probably due to the fact that all 16 samples were multiplexed on a V2 kit (8Gb per run; 150x2 cycles), whereas for the other three panels, 8 samples were multiplexed on a V3 kit (14Gb per run; 250x2 cycles); this might be the reason why FLT3-ITDs detected with low VAF in other panels, were not called with SureSeq™ AML panel. In contrast, it was the panel that called more variants within the core myeloid gene set, because the AML panel covered the CDS of all genes included. However, not all those covered extra regions have been reported as clinically relevant, and sequencing them lessens the read depth of the regions useful for clinical purposes. For example, out of the 12 exons of IDH1 gene, only mutations in exon 4 have been reported as deleterious [71][72].

In this study, we have used two solutions from SOPHiA GENETICS: their commercially available MYS panel, and our custom PMP. PMP lacks three genes from MYS (ABL1, BRAF, and HRAS), but its larger design intends to be a pan-myeloid test, covering (i) genes related to sporadic MNs, (ii) genes described to confer a germline predisposition to MN, such as ANKRD26, DDX41, and SRP72 (Fig 2, S5 Table)[73][74], and (iii) regions frequently affected by CNV, namely del (7q)/-7, del(5q), del(20q) and trisomy 8. Nevertheless, there is also room for improvement of PMP. For example: whole CDS of ANKRD26 gene was covered, but 5’ UTR should also be analyzed, since mutations related to disease progression are encompassed within 5’UTR through exon 2 [75][76]; and FLT3 exons 11 and 13 are neither included in the panel design [34][77]. Of note, the other 3 panels did include exon 13, but only SureSeq panel included exon 11. Both MYS panel and PMP benefit from SOPHiA DDM software, which greatly facilitates variant classification.

In order to design or choose a commercially available panel, it is important to know the MN that it is going to be characterized. For instance, all four panels target genes for MPN, but PMP includes MPL exons 3, 4, 5 and 12 recently described as mutated in triple negative patients [78], whereas TSMP, SureSeq™ CoreMPN and MYS panels did not include those exons in their design. Moreover, TSMP and SureSeq™ CoreMPN panels did not cover JAK2 exon 15, where mutations have been described [79]. PMP was designed in July 2017, which makes it the youngest of the four analyzed panels. This is probably the reason why its design is more up-to date with the literature. In fact, PMP is currently being upgraded, to fix ANKRD26 and FLT3 coverage, to target further genes related to predisposition to MN, and to include analysis of common rearrangements in myeloid disorders (through RNA sequencing) (e.g. BCR-ABL1 for Chronic Myeloid Leukemia, PML-RARA for Acute Promyelocytic Leukemia, etc.). Actually, more recently available myeloid panels also include the study of translocations, such as Oncomine™ Myeloid Research Assay (ThermoFisher SCIENTIFIC, Waltham, MA, USA) and MYS+ panel (SOPHiA GENETICS, Saint Sulpice, Switzerland). It should be noted that Oncomine™ Myeloid Research Assay is an amplicon-based panel, and therefore it might face the same limitations as TSMP when it comes to GC-rich regions amplification; interestingly, it is the only one that includes gene expression testing.

In this project we have detected that any NGS panel is still facing, at least, two challenges in the myeloid field. On the one hand, the detection of indels: correct calling of ITDs in the fms-related tyrosine kinase 3 gene (FLT3-ITD) are crucial in AML, since they are associated to prognosis and to specific treatments [34][80]. In our cohort, two FLT3-ITD mutations of 36bp in length (detected by classical molecular techniques in our laboratory) were not called by any of the NGS gene panels tested in this study, which means that conventional diagnostics techniques are still essential for hematological malignancies diagnosis [81]. NGS difficulty for long FLT3-ITD detection has been reported before [62][82]; this is because current NGS chemistries employ short reading sequencing (read length 50-300bp) and this makes it prone to lose structural variants such as long indels [83][84]. In support of this observation, in our cohort, the three variants missed by SureSeq panels (sequenced at shorter read length than the other
panels, 150bp vs >200bp), were indels. On the other hand, molecular testing of CCAAT/enhancer binding protein A gene (CEBPA) is also crucial for patients with AML, as biallelic CEBPA is correlated with good prognosis [61]; however, those mutations fall usually one at C-terminal and the other one at the N-terminal region of the gene, so, again because of the short read issue, NGS technology cannot detect if the mutations fall in different alleles or in the same allele of the gene.

Besides the technical capacity of detecting variant types, when using NGS panels it is important to discriminate the clinically relevant variants from accompanying events. In our cohort, the number of pathogenic or likely pathogenic variants was two orders of magnitude smaller than the number of coding variants passing quality control (50 vs 1146). This drop highlights the importance of including expert geneticists familiar with hematological malignancies and NGS technology within the multidisciplinary genomic tumor board, as it has been suggested before [13][83].

In summary, based on the present study, the ideal NGS panel for the study of the myeloid malignancies should meet six requirements. (i) It should include in its design those genes described in MN to be clinically relevant for the pathology of the disease, being careful when choosing the relevant regions of each gene; this design requires periodical upgrade upon literature review. (ii) When studying SNV and indels, the chemistry should enable capturing all relevant genomic regions; hybridization capture-based panels usually evade the GC-rich regions glitches of an amplicon-based panel. (iii) It should have the capacity of detecting long indels, which is particularly important when it comes to defy the FLT3-ITD detection challenge. (iv) Since sequencing costs are gradually decreasing, genetic laboratories’ dream is that NGS technology provides a “just one test” for all relevant genetic abnormalities contemplated in WHO and European LeukemiaNet (ELN) guidelines [2][80]; therefore the ideal myeloid NGS panel should be able to simultaneously analyze SNVs, indels, CNVs, aberrant gene expression, and common gene rearrangements. (v) The turnaround time (TAT) for reporting should comply with current ELN guidelines [80]. For example, TAT for NPM1 and FLT3 reporting is 48–72 hours; however, sample processing, NGS library preparation, sequencing and reporting, take a minimum of 4 working days, which means that, for now, conventional molecular testing needs to be kept in place. (vi) Sequencing data should be interpreted by two geneticists, at least one of them with expertise in hematological malignancies, and both of them familiar with the challenges inherent to NGS technology [83].

Conclusion

The current study describes the performance of four NGS panels focused on MN from the technical and clinical perspective. Our data show that there is a risk of finding different mutations depending on the panel of choice. This discordance is motivated by panel design and sequencing data analysis. MN are genetically heterogeneous, therefore choosing a commercial NGS panel needs detailed study of its scope, to be aware of its limitations and to avoid missing the testing of genes relevant to a specific MN subtype.

Based on our data, the characterization of some genetic regions (CEBPA, CALR, and FLT3) remains a challenge for NGS; this is a major issue, since AML and MPN management strongly depends on their correct detection. In addition, NGS testing times are hard to harmonize with TAT established in current ELN guidelines. Therefore, conventional molecular testing might need to be kept in place for the correct diagnosis of MN in some instances for now.

Supporting information

S1 Fig. Detail of target region for genes differing between panels. SureSeq panels design included a larger target region of ASXL1, FLT3, IDH1, IDH2, KIT, KRAS, NPM1, NRAS, TET2, U2AF1 and WT1 genes, whereas JAK2 gene was more widely covered by MYS panel, and MPL
gene by PMP.

S2 Fig. Panel scope by genetic region.

S3 Fig. **CEBPA gene coverage in all four NGS panels.** IGV screenshot showing genomic position (top track), **CEBPA** gene structure (bottom track) and coverage for the different panels (four central tracks). Panel tracks show differential coverage in grey color, and reads 1 and 2 in red and blue bars. TSMP track shows poor and heterogeneous coverage for **CEBPA** gene.

S4 Fig. Panel coverage by genetic region.

S5 Fig. **Comparison of the detected variants’ VAF.** A: Comparison between variants called by PMP and MYS panel in their 27 genes in common. B: Comparison between variants called by PMP and SureSeq panels in their 23 genes in common. C: Comparison between variants called by MYS and SureSeq panels in their 19 genes in common. D: Comparison between variants called by PMP and TSMP in their 40 genes in common.

S1 Table. **TruSight Myeloid Panel (TSMP) target regions per gene.** TSMP includes a total of 54 genes for SNV and indels.

S2 Table. **Myeloid Solutions Panel (MYS) target regions per gene.** MYS panel design includes a total of 30 genes for SNV and indels.

S3 Table. **SureSeq panel target regions per gene.** SureSeq™ AML panel design includes a total of 20 genes and SureSeq™ CoreMPN panel design includes 3 genes for SNV and indels.

S4 Table. **Pan Myeloid Panel (PMP) target regions per gene.** PMP panel design includes a total of 48 genes for SNV and indels.

S5 Table. **Frequency of gene mutations in myeloid malignancies.**

S6 Table. **Common sequencing errors detected in the NGS gene panels.**

Acknowledgments

This work was funded by the Government of Navarra, Department of Industry, Energy and Innovation (Project DIANA, 0011-1411-2017-000028); and supported by CIMA LAB Diagnostics research program.

We are grateful to Oxford Gene Technology team, especially David Cook, and SOPHIA GENETICS team, especially José María Belloso, for technical assistance and fruitful discussions.

AAD is supported by a CIMA’s fellowship; MFM and her research is supported by the Spanish Association against Cancer (AECC, AIO2014) and ISCIII (Ministerio de Economía y
Author Contributions

Conceptualization: Ramón García-Sanz, María Isabel Prieto-Conde, María del Carmen Chil-lón, Marta Fernandez-Mercado, María José Calasanz.

Data curation: Almudena Aguilera-Diaz, Iria Vazquez, Beñat Ariceta, Amagoia Mañú, Zuriñe Blasco-Iturri, María José Larrayoz, Ana Alfonso-Pierola.

Formal analysis: Almudena Aguilera-Diaz, Beñat Ariceta.

Funding acquisition: Felipe Prosper, Marta Fernandez-Mercado, María José Calasanz.

Investigation: Almudena Aguilera-Diaz, Iria Vazquez, María José Larrayoz.

Methodology: Almudena Aguilera-Diaz, Amagoia Mañú, Zuriñe Blasco-Iturri, Sara Palomin-Echeverría, Marta Fernandez-Mercado.

Project administration: Iria Vazquez.

Resources: Felipe Prosper, Marta Fernandez-Mercado.

Software: Beñat Ariceta.

Supervision: Iria Vazquez, Felipe Prosper, Marta Fernandez-Mercado, María José Calasanz.

Validation: Ramón García-Sanz, María Isabel Prieto-Conde, María del Carmen Chil-lón.

Writing – original draft: Almudena Aguilera-Diaz, Marta Fernandez-Mercado.

Writing – review & editing: Iria Vazquez, Beñat Ariceta, Amagoia Mañú, Zuriñe Blasco-Iturri, Sara Palomin-Echeverría, María José Larrayoz, Ramón García-Sanz, María Isabel Prieto-Conde, María del Carmen Chil-lón, Ana Alfonso-Pierola, Felipe Prosper, María José Calasanz.

References

1. Korn Claudia and Simón Mendoza-Ferrer. Myeloid malignancies and the microenvironment. Blood. 2018; 129: 811–823. https://doi.org/10.1182/blood-2016-09-670224 PMID: 28064238

2. Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Beau MM Le, Bloomfeld CD, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127: 2391–2406. https://doi.org/10.1182/blood-2016-03-643544 PMID: 27069254

3. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Loo P Van, et al. CME Article Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013; 122: 3616–3627. https://doi.org/10.1182/blood-2013-08-518886 PMID: 24030381

4. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014; 28: 241–247. https://doi.org/10.1038/leu.2013.336 PMID: 24220272

5. Mughal TI, Cross NCP, Padron E, Tiu R V., Savona M, Malcovati L, et al. An international MDS/MPN working group’s perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2015; 100: 1117–1130. https://doi.org/10.3324/haematol.2014.114660 PMID: 26341525

6. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic Score Including Gene Mutations in Chronic Myelomonocytic Leukemia. J Clin Oncol. 2013; 31: 2428–2436. https://doi.org/10.1200/JCO.2012.47.3314 PMID: 23690417

7. Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern W, Gambacorti-Passerini C, et al. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with...
Comparison of four myeloid NGS panels

atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia. 2013; 27: 1852–1860. https://doi.org/10.1038/eu.2013.133 PMID: 23628959

8. Patnaik MM, Tefferi A. Cyto genetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016; 6: 1–8. https://doi.org/10.1038/bcj.2016.5 PMID: 26849014

9. Mangaokar AA, Lashe TL, Finke CM, Gangat N, Al-Kali A, Elliott MA, et al. Prognostic interaction between bone marrow morphology and SF3B1 and ASXL1 mutations in myelodysplastic syndromes with ring sideroblasts. Blood Cancer J. 2018; 8: 1–4. https://doi.org/10.1038/s41408-017-0043-6

10. Bejar R, Stevenson KE, Cuaghey B, Lindsey RC, Mar BG, Stojanov P, et al. Somatic Mutations Predict Poor Outcome in Patients With Myelodysplastic Syndrome After Hematopoietic Stem-Cell Transplanta tion. J Clin Oncol. 2014; 32: 2691–2698. https://doi.org/10.1200/JCO.2013.52.3381 PMID: 25092778

11. Tefferi A, Lashe TL, Patnaik MM, Saaed L, Mudireddy M, Idosida D, et al. Targeted next-generation sequencing in myelodysplastic syndromes and prognostic interaction between mutations and IPSS-R. Am J Hematol. 2017; 92: 1311–1317. https://doi.org/10.1002/ajh.24901 PMID: 28875545

12. Serrati S, De Summa S, Pilato B, Petrellia D, Laca lamita R, Tommasi S, et al. Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targets Ther. 2016; 9: 7355–7365. https://doi.org/10.2147/OTT.S99807 PMID: 27980425

13. Rack KA, Berg E van den, Haferlach C, Beverloo HB, Costa D, Espinet B, et al. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia. 2019. https://doi.org/10.1038/s41375-019-0378-z PMID: 30696948

14. Palomo L, Ibáñez M, Abáigar M, Vázquez I, Álvarez S, Cabezón M, et al. Spanish Guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukemia. Br J Haematol. 2019; October: bjh.16175. https://doi.org/10.1111/bjh.16175 PMID: 31621063

15. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttmann M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011; 29: 24–26. https://doi.org/10.1038/nbt.1754 PMID: 21221095

16. Gombart AF, Hofmann W, Takeuchi S, Krug U, Kwok SH, et al. Mutations in the gene encoding the transcription factor CCAAT enhancer binding protein α in myelodysplastic syndromes and acute myeloid leukemias. 2013; 99: 1332–1340. https://doi.org/10.1182/blood.V99.4.1332 PMID: 11830484

17. Lin-LI, Chen C-Y, Lin D-T, Tsay W, Tang J-L, Yeh Y-C, et al. Characterization of CEBPA Mutations in Acute Myeloid Leukemia: Most Patients with CEBPA Mutations Have Biallelic Mutations and Show a Distinct Immunophenotype of the Leukemic Cells. Clin Cancer Res. 2005; 11: 1372–1379. https://doi.org/10.1158/1078-0432.CCR-04-1816 PMID: 11830484

18. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N Engl J Med. 2013; 369: 2391–2405. https://doi.org/10.1056/NEJMoa1312542 PMID: 24325359

19. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996; 10: 1911–1918. PMID: 8946930

20. Thomas M, Sukhai MA, Zhang T, Dolatshahi R, Harbi D, Garg S, et al. Integration of Technical, Bioinformatic, and Variant Assessment Approaches in the Validation of a Targeted Next-Generation Sequencing Panel for Myeloid Malignancies. Arch Pathol Lab Med. 2017; 141: 759–775. https://doi.org/10.5858/arpa.2016-0547-RA PMID: 28557600

21. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001; 97: 2434–2439. https://doi.org/10.1182/blood.v97.8.2434 PMID: 11290608

22. Pellagati A, Armstrong RN, Stee ples V, Sharma E, Repapi E, Singh S, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: Dysregulated genes/pathways and clinical associations. Blood. 2018; 132: 1225–1240. https://doi.org/10.1182/blood-2018-04-843771 PMID: 29930011

23. Kim KH, Roberts C WM. Targeting EZH2 in cancer. Nat Med. 2016; 22: 128–134. https://doi.org/10.1038/nm.4036 PMID: 26845405

24. Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivojevitch T, Suzuki H, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017; 49: 204–212. https://doi.org/10.1038/ng.3742 PMID: 27992414

25. Murati A, Brecqueville M, Devillier R, Mozzi coneacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer. 2012; 12. https://doi.org/10.1186/1471-2407-12-304 PMID: 22823977

26. Gill H, Leung A, Kwong Y-L. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy. Int J Mol Sci. 2016; 17: 440. https://doi.org/10.3390/ijms17040440 PMID: 27023522
27. Lee JH, Jeong H, Choi JW, Oh H, Kim Y-S. Clinicopathologic significance of MYD88 L265P mutation in diffuse large B-cell lymphoma: a meta-analysis. Sci Rep. 2017; 7: 1–8. https://doi.org/10.1038/s41598-016-0028-x

28. Hu Y, Su H, Liu C, Wang Z, Huang L, Wang Q, et al. DEPTOR is a direct NOTCH1 target that promotes cell proliferation and survival in T-cell leukemia. Oncogene. 2017; 36: 1038–1047. https://doi.org/10.1038/onc.2016.275 PMID: 27593934

29. Stenzinger A, Endris V, Pfarr N, Andrulis M, Jöhrns K, Klauschen F, et al. Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014; 5: 6404–6413. https://doi.org/10.18632/oncotarget.2223 PMID: 25115387

30. Bello E, Pellagatti A, Shaw J, Mecucci C, Kušec R, Killick S, et al. CSNK1A1 mutations and gene expression analysis in myelodysplastic syndromes with del(5q). Br J Haematol. 2015; 171: 210–214. https://doi.org/10.1111/bjh.13563 PMID: 26085061

31. Boudry-Labis E, Roche-Lestienne C, Nibourel O, Boissel N, Terre C, Perot C, et al. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol. 2013; 88: 306–311. https://doi.org/10.1002/ajh.23403 PMID: 23460398

32. Bullinger L, Döhner K, Dohner H. Genomics of acute myeloid leukemia: diagnosis and pathways. J Clin Oncol. 2017; 35: 934–946. https://doi.org/10.1200/JCO.2016.71.2208 PMID: 28297624

33. Lasho TL, Miller CA, Jotte MRM, Bagegni N, Baty JD, Schmidt AP, et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun. 2018; 9: 1–10. https://doi.org/10.1038/s41467-017-02088-w

34. Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematologic disorders. Leukemia. 2017; 31: 1661–1670. https://doi.org/10.1038/leu.2017.139 PMID: 28484264

35. Bullinger L, Döhner K, Dohner H. Genomics of acute myeloid leukemia: diagnosis and pathways. J Clin Oncol. 2017; 35: 934–946. https://doi.org/10.1200/JCO.2016.71.2208 PMID: 28297624

36. Zoi K, Cross NCP. Genomics of myeloproliferative neoplasms. J Clin Oncol. 2017; 35: 947–955. https://doi.org/10.1200/JCO.2016.70.7968 PMID: 28297629

37. Pardanani A, Lasho TL, Laborde RR, Elliott M, Hanson CA, Knudson RA, et al. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. 2013; 27: 1870–1873. https://doi.org/10.1038/leu.2013.122 PMID: 23604229

38. Perry AM, Attar EC. New Insights in AML Biology From Genomic Analysis. Semin Hematol. 2014; 51: 282–297. https://doi.org/10.1053/j.seminhematol.2014.08.005 PMID: 25311741

39. Makishima H. Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol. 2017; 105: 732–742. https://doi.org/10.1007/s12185-017-2241-1 PMID: 28447248

40. Lasho TL, Finke CM, Hanson CA, Jimma T, Knudson RA, Ketterling RP, et al. SF3B1 mutations in primary myelofibrosis: Clinical, histopathology and genetic correlates among 155 patients. Leukemia. 2012; 26: 1135–1137. https://doi.org/10.1038/leu.2011.320 PMID: 22064353

41. Pellagatti A, Boulwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol. 2015; 95: 3–15. https://doi.org/10.1111/ejh.12515 PMID: 25645650

42. Terada K, Yamaguchi H, Ueki T, Usuki K, Kobayashi Y, Tajika K, et al. Usefulness of BCOR gene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis. Genes Chromosom Cancer. 2018; 57: 401–408. https://doi.org/10.1002/gcc.22542 PMID: 29663558

43. Crispino JD, Horwitz MS. GATA factor mutations in hematologic disease. Blood. 2017; 129: 2103–2110. https://doi.org/10.1182/blood-2016-09-687889 PMID: 28179280

44. Song J, Hussaini M, Zhang H, Shao H, Qin D, Zhang X, et al. Comparison of the Mutational Profiles of Primary Myelofibrosis, Polycythemia Vera, and Essential Thrombocythemia. Am J Clin Pathol. 2017; 147: 444–452. https://doi.org/10.1016/j.ajcp.ajcpx22 PMID: 28419183

45. Mori T, Nagata Y, Makishima H, Sanada M, Shiozawa Y, Kon A, et al. Somatic PHF6 mutations in 1760 cases with various myeloid neoplasms. Leukemia. 2016; 30: 2270–2273. https://doi.org/10.1038/leu.2016.212 PMID: 27479181

46. Herbaux C, Duployez N, Badens C, Poret N, Gardin C, Decamp M, et al. Incidence of ATRX mutations in myelodysplastic syndromes, the value of microcytosis. Am J Hematol. 2015; 90: 737–738. https://doi.org/10.1002/ajh.24073 PMID: 26017030
48. Wong CC, Martincorena I, Rust AG, Rashid M, Alfrangis C, Alexandrov LB, et al. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. 2014; 46: 33–38. https://doi.org/10.1038/ng.2846 PMID: 24316979

49. Hirabayashi S, Wlodarski MW, Kozyra E, Niemeyer CM. Heterogeneity of GATA2-related myeloid neoplasms. Int J Hematol. 2017; 106: 175–182. https://doi.org/10.1007/s12185-017-2285-2 PMID: 28643018

50. Jäger R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B, et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia. 2010; 24: 1290–1298. https://doi.org/10.1038/leu.2010.99 PMID: 20508609

51. Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, et al. Deletions of the transcript ion factor Ikaros in myeloproliferative neoplasms. Leukemia. 2010; 24: 1290–1298. https://doi.org/10.1038/leu.2010.99 PMID: 20508609

52. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, et al. Recurren t mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013; 45: 1232–1237. https://doi.org/10.1038/ng.2731 PMID: 23955599

53. Ha Jung-Sook and Jeon Dong-Seok . Possible new LNK mutations in myeloproliferative neoplasms. Am J Hematol. 2011; 86: 866–868. https://doi.org/10.1002/ajh.22107 PMID: 21922527

54. Hurtado C, Erquiaga I, Aranaz P, Migueliz I, García-Delgado M, Novo FJ, et al. LNK can also be mutated outside PH and SH2 domains in myeloproliferative neoplasms with and without V617F-JAK2 mutation. Leuk Res. 2011; 35: 1537–1539. https://doi.org/10.1016/j.leukres.2011.07.009 PMID: 21794913

55. Lasho TL, Tefferi A, Finke C, Pardanani A. Clonal hierarchy and allelic mutation segregation in a myelofibrosis patient with two distinct LNK mutations. Leukemia. 2011; 25: 1056–1058. https://doi.org/10.1038/leu.2011.45 PMID: 21415853

56. Kantarjian HM, Keating MJ, Freireich EJ. Toward the potential cure of leukemias in the next decade. Cancer. 2018; 124: 4301–4313. https://doi.org/10.1002/cncr.31669 PMID: 30291792

57. Stone RM. Which new agents will be incorporated into frontline therapy in acute myeloid leukemia? Best Pract Res Clin Haemat ol. 2017; 30: 312–316. https://doi.org/10.1016/j.beha.2017.09.006 PMID: 29156201

58. Bejar R, Lord A, Stevenson K, Bar-Natan M, Pérez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014; 124: 2705–2712. https://doi.org/10.1182/blood-2014-06-582809 PMID: 25224413

59. Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield D, et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. Nature Publishing Group; 2012. https://doi.org/10.1038/leu.2011.342 PMID: 22124213

60. Luskin MR, Lee JW, Fernandez HF, Abdel-wahab O, Bennett JM, Ketterling RP, et al. Benefit of high-dose daunorubicin in AML induction extends across cytogenetic and molecular groups. Blood. 2016; 127: 1551–1558. https://doi.org/10.1182/blood-2015-07-657403 PMID: 26757712

61. Pabst T, Eyholzer M, Fos J, Mueller BU. Heterogeneity within AML with CEBPA mutations; Only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis. Br J Cancer. 2009; 100: 1343–1346. https://doi.org/10.1038/sj.bjc.6604977 PMID: 19277035

62. Albitar A, Townsley D, Ma W, De Dios I, Funari V, Young NS, et al. Prevalence of somatic mutations in patients with aplastic anemia using peripheral blood cfDNA as compared with BM. Leukemia. 2018; 32: 227–229. https://doi.org/10.1038/leu.2017.271 PMID: 28832022

63. Taylor J, Xiao W, Abdel-wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood. 2017; 130: 410–424. https://doi.org/10.1182/blood-2017-02-734541 PMID: 28600336

64. Hattori K, Sakata-Yanagimoto M, Suehara Y, Yokoyama Y, Kato T, Kurita N, et al. Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci. 2018; 109: 225–230. https://doi.org/10.1111/cas.13450 PMID: 29151258

65. Qin SC, Xia Y, Miao Y, Zhu HY, Wu JZ, Fan L, et al. MYD88 mutations predict unfavorable prognosis in chronic lymphocytic leukemia patients with mutated IGHV gene. Blood Cancer J. 2017; 7. https://doi.org/10.1038/s41408-017-0014-y PMID: 29242635

66. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, et al. Prevalence and clinical signifi-
lymphoid neoplasms. Blood. 2013; 121: 2522–2528. https://doi.org/10.1182/blood-2012-09-457101 PMID: 2335533

68. Young AL, Challen GA, Birnmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016; 7:12454. https://doi.org/10.1038/ncomms12454

69. Hung SS, Meissner B, Chavez EA, Ben-Neriah S, Ennishi D, Jones MR, et al. Assessment of Capture and Amplicon-Based Approaches for the Development of a Targeted Next-Generation Sequencing Pipeline to Personalize Lymphoma Management. J Mol Diagnostics. 2018; 20: 203–214. https://doi.org/10.1016/j.jmoldx.2017.11.010 PMID: 29429887

70. Kadri S, Zhen CJ, Wurst MN, Long BC, Jiang ZF, Wang YL, et al. Amplicon Indel Hunter Is a Novel Bio-informatics Tool to Detect Large Somatic Insertion/Deletion Mutations in Amplicon-Based Next-Generation Sequencing Data. J Mol Diagnostics. 2015; 17: 635–643. https://doi.org/10.1016/j.jmoldx.2015.06.005 PMID: 26319364

71. Patel KP, Barkoh BA, Chen Z, Ma D, Reddy N, Medeiros LJ, et al. Diagnostic testing for IDH1 and IDH2 variants in acute myeloid leukemia an algorithmic approach using high-resolution melting curve analysis. J Mol Diagnostics. 2011; 13: 678–686. https://doi.org/10.1016/j.jmoldx.2011.06.004 PMID: 21889610

72. Petrova L, Vrbacky F, Lanska M, Zavrelova A, Zak P, Hrochova K. IDH1 and IDH2 mutations in patients with acute myeloid leukemia: Suitable targets for minimal residual disease monitoring? Clin Biochem. 2018; 61: 34–39. https://doi.org/10.1016/j.clinbiochem.2018.08.012 PMID: 30176204

73. Bannor SA, Dinardo CD. Hereditary predispositions to myelodysplastic syndrome. Int J Mol Sci. 2016; 17: 838. https://doi.org/10.3390/ijms17060838 PMID: 27248996

74. Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma. 2016; 57: 520–536. https://doi.org/10.3109/10428194.2015.1115041 PMID: 26693794

75. Cabbagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythaemia. Blood. 2016; 127: 333–342. https://doi.org/10.1182/blood-2015-07-661983 PMID: 26450985

76. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative essential thrombocythemia patients. Blood. 2016; 127: 325–332. https://doi.org/10.1182/blood-2015-07-661835 PMID: 26423830

77. Schnitter S, Bacher U, Haerlach C, Alpermann T, Kern W, Haferlach T. Diversity of the Juxtamembrane and TKD I Mutations (Exons 13–15) in the FLT3 Gene with Regards to Mutant Load, Sequence, Length, Localization, and Correlation with Biological Data. Genes Chromosomes Cancer. 2012; 51: 910–924. https://doi.org/10.1002/gcc.21975 PMID: 22674490

78. Alonso CM, Llop M, Sargas C, Pedrola L, Panadero J, Hervas D, et al. Clinical Utility of a Next-Generation Sequencing Panel for Acute Myeloid Leukemia Diagnostics. J Mol Diagnostics. 2019; 21: 228–240. https://doi.org/10.1016/j.jmoldx.2018.09.009 PMID: 30576870

79. Schranz K, Hubmann M, Harin E, Vosberg S, Herold T, Metzeler KH, et al. Clonal heterogeneity of FLT3-ITD detected by high-throughput amplicon sequencing correlates with adverse prognosis in acute myeloid leukemia. Oncotarget. 2018; 9: 30128–30145. https://doi.org/10.18632/oncotarget.25729 PMID: 30046393

80. Baker SC. Nex-Generation sequencing challenges. Genet Eng Biotechnol News. 2017:37: accessed on Feb 4, 2019. Available: https://www.genengnews.com/magazine/286/next-generation-sequencing-challenges