Idealization of Ganster–Reilly decomposition theorems

Julian Dontchev
Department of Mathematics
University of Helsinki
PL 4, Yliopistonkatu 5
00014 Helsinki
Finland

Abstract

In 1990, Ganster and Reilly [6] proved that a function \(f: (X, \tau) \to (Y, \sigma) \) is continuous if and only if it is precontinuous and \(LC \)-continuous. In this paper we extend their decomposition of continuity in terms of ideals. We show that a function \(f: (X, \tau, I) \to (Y, \sigma) \) is continuous if and only if it is \(I \)-continuous and \(I-LC \)-continuous. We also provide a decomposition of \(I \)-continuity.

1 Introduction to topological ideals

In [3, 7, 8], Ganster and Reilly gave several new decompositions of continuity.

Let \(A \) be a subset of a topological space \((X, \tau) \). Following Kronheimer [12], we call the interior of the closure of \(A \), denoted by \(A^+ \), the consolidation of \(A \). Sets included in their consolidation are called preopen or locally dense [3]. If \(A \) is the intersection of an open and a closed (resp. regular closed) set, then \(A \) is called locally closed (resp. \(A \)-set [18]). A function \(f: (X, \tau) \to (Y, \sigma) \) is called precontinuous (resp. \(LC \)-continuous [5], \(A \)-continuous [18]) if the preimage of every open set is preopen (resp. locally closed, \(A \)-set). The following theorem is due to Ganster and Reilly [3, Theorem 4 (iv) and (v)].
Theorem 1.1 [4] For a function $f: (X, \tau) \to (Y, \sigma)$ the following conditions are equivalent:

1. f is continuous.
2. f is precontinuous and \mathcal{A}-continuous.
3. f is precontinuous and LC-continuous.

The aim of this paper is to present an idealized version of the Ganster–Reilly decomposition theorem.

A nonempty collection \mathcal{I} of subsets on a topological space (X, τ) is called an ideal on X if it satisfies the following two conditions:

1. If $A \in \mathcal{I}$ and $B \subseteq A$ (heredity).
2. If $A \in \mathcal{I}$ and $B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$ (finite additivity).

A σ-ideal on a topological space (X, τ) is an ideal which satisfies:

3. If $\{A_i: i = 1, 2, 3, \ldots\} \subseteq \mathcal{I}$, then $\bigcup \{A_i: i = 1, 2, 3, \ldots\} \in \mathcal{I}$ (countable additivity).

If $X \not\in \mathcal{I}$, then \mathcal{I} is called a proper ideal. The collection of the complements of all elements of a proper ideal is a filter, hence proper ideals are sometimes called dual filters.

The following collections form important ideals on a topological space (X, τ): the ideal of all finite sets \mathcal{F}, the σ-ideal of all countable sets \mathcal{C}, the ideal of all closed and discrete sets \mathcal{CD}, the ideal of all nowhere dense sets \mathcal{N}, the σ-ideal of all meager sets \mathcal{M}, the ideal of all scattered sets \mathcal{S} (here X must be T_0) and the σ-ideal of all Lebesgue null sets \mathcal{L} (here X is the real line).

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}). For a subset $A \subseteq X$, $A^*(\mathcal{I}) = \{x \in X: \text{for every } U \in \tau(x), U \cap A \not\in \mathcal{I}\}$ is called the local function of A with respect to \mathcal{I} and τ [10, 13]. We simply write A^* instead of $A^*(\mathcal{I})$ in case there is no chance for confusion. Note that often X^* is a proper subset of X. The hypothesis $X = X^*$ was used by Hayashi in [4], while the hypothesis $\tau \cap \mathcal{I} = \emptyset$ was used by Samuels in [7]. In fact, those two conditions are equivalent [10, Theorem 6.1] and we call the ideal topological spaces which satisfy this hypothesis Hayashi-Samuels spaces. Note that $(X, \tau, \{\emptyset\})$ and (X, τ, \mathcal{N}) are always Hayashi-Samuels spaces; also $(\mathbb{R}, \tau, \mathcal{F})$ is a Hayashi-Samuels space, where τ denotes the usual topology on the real line \mathbb{R}.

2
For every ideal topological space \((X, \tau, I)\), there exists a topology \(\tau^*(I)\), finer than \(\tau\), generated by the base \(\beta(I, \tau) = \{U \setminus I : U \in \tau \text{ and } I \in I\}\). In general, \(\beta(I, \tau)\) is not always a topology \([1]\). When there is no chance for confusion, \(\tau^*(I)\) is denoted by \(\tau^*\). Observe additionally that \(\text{Cl}^*(A) = A \cup A^*\) defines a Kuratowski closure operator for (the same topology) \(\tau^*(I)\).

Recall that \(A \subseteq (X, \tau, I)\) is called \(*\)-dense-in-itself \([9]\) (resp. \(*\)-closed \([10]\), \(*\)-perfect \([9]\)) if \(A \subseteq A^*\) (resp. \(A^* \subseteq A, A = A^*\)).

It is interesting to note that \(A^*(I)\) is a generalization of closure points, \(\omega\)-accumulation points and condensation points. Recall that the set of all \(\omega\)-accumulation points of subset \(A\) of a topological space \((X, \tau)\) is \(A^\omega = \{x \in X : U \cap A \text{ is infinite for every } U \in \mathcal{N}(x)\}\). The set of all condensation points of \(A\) is \(A^k = \{x \in X : U \cap A \text{ is uncountable for every } U \in \mathcal{N}(x)\}\). It is easily seen that \(\text{Cl}(A) = A^*(\emptyset)\), \(A^\omega = A^*(\mathcal{F})\) and \(A^k = A^*(\mathcal{C})\). Note here that in \(T_1\)-spaces the concepts of \(\omega\)-accumulation points and limit points coincide.

In 1990, D. Janković and T.R. Hamlett introduced the notion of \(I\)-open sets in ideal topological spaces. Given an ideal topological space \((X, \tau, I)\) and \(A \subseteq X\), \(A\) is said to be \(I\)-open \([1]\) if \(A \subseteq \text{Int}(A^*)\). We denote by \(IO(X, \tau, I) = \{A \subseteq X : A \subseteq \text{Int}(A^*)\}\) or simply write \(IO(X, \tau)\) or \(IO(X)\) when there is no chance for confusion with the ideal. A subset \(F \subseteq (X, \tau, I)\) is called \(I\)-closed if its complement is \(I\)-open. Note that \(X\) need not be an \(I\)-open subset. Thus, not only are \(I\)-open and \(\tau^*\)-open sets are different concepts, but the former do not give a topology. In the extreme case when \(I\) is the maximal ideal of all subsets of \(X\), only the void subset is \(I\)-open.

A function \(f : (X, \tau, J_1) \rightarrow (Y, \sigma, J_2)\) is said to be \(I\)-continuous (resp. \(I\)-open, \(I\)-closed) if for every \(V \in \sigma\) (resp. \(U \in \tau\), \(U\) closed in \(X\)), \(f^{-1}(V) \in IO(X, \tau)\) (resp. \(f(U) \in IO(X, \tau)\), \(f(U)\) is \(I\)-closed). The definitions are due to Monsef et al. \([1]\).

In \([15]\), a topology \(\tau^\alpha\) has been introduced by defining its open sets to be the \(\alpha\)-sets, that is the sets \(A \subseteq X\) with \(A \subseteq \text{Int}(\text{Cl}(ext{Int}(A)))\). Observe that \(\tau^\alpha = \tau^*(\mathcal{N})\).

2 Pre-\(I\)-open sets
Definition 1 A subset of an ideal topological space \((X, \tau, \mathcal{I})\) is called pre-\(\mathcal{I}\)-open if \(A \subseteq \text{Int}(\text{Cl}^*(A))\).

We denote by \(\text{PIO}(X, \tau, \mathcal{I})\) the family of all pre-\(\mathcal{I}\)-open subsets of \((X, \tau, \mathcal{I})\) or simply write \(\text{PIO}(X, \tau)\) or \(\text{PIO}(X)\) when there is no chance for confusion with the ideal. We call a subset \(A \subseteq (X, \tau, \mathcal{I})\) pre-\(\mathcal{I}\)-closed if its complement is pre-\(\mathcal{I}\)-open.

Although \(\mathcal{I}\)-openness and openness are independent concepts [1, Examples 2.1 and 2.2], pre-\(\mathcal{I}\)-openness is related to both of them as the following two results show.

Proposition 2.1 Every \(\mathcal{I}\)-open set is pre-\(\mathcal{I}\)-open.

Proof. Let \((X, \tau, \mathcal{I})\) be an ideal topological space and let \(A \subseteq X\) be \(\mathcal{I}\)-open. Then \(A \subseteq \text{Int}(A^*) \subseteq \text{Int}(A^* \cup A) = \text{Int}(\text{Cl}^*(A)).\) \(\square\)

Proposition 2.2 Every open set is pre-\(\mathcal{I}\)-open.

Proof. Let \(A \subseteq (X, \tau, \mathcal{I})\) be open. Then \(A \subseteq \text{Int}A \subseteq \text{Int}(A^* \cup A) = \text{Int}(\text{Cl}^*(A)).\) \(\square\)

The converse in the proposition above is not necessarily true as shown by the following two examples.

Example 2.3 A pre-\(\mathcal{I}\)-open set, even an open set, need not be \(\mathcal{I}\)-open. Let \(X = \{a, b, c, d\},\) \(\tau = \{\emptyset, \{a, c\}, \{d\}, \{a, c, d\}, X\}\) and \(\mathcal{I} = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}\). Set \(A = \{a, c, d\}\). Then \(A \in \tau\) and hence \(A \in \text{PIO}(X)\) but \(A \notin \text{IO}(X)\) [1, Example 2.2].

Example 2.4 Let \((X, \tau)\) be the real line with the usual topology and let \(\mathcal{F}\) be as mentioned before the ideal of all finite subsets of \(X\). Let \(\mathbb{Q}\) be the set of all rationals. Since \(\mathbb{Q}^*(\mathcal{F}) = X\), then \(\mathbb{Q}\) is pre-\(\mathcal{I}\)-open (even \(\mathcal{I}\)-open). But clearly \(\mathbb{Q} \notin \tau\).

Our next two results together with Proposition 2.1 and Proposition 2.2 shows that the class of pre-\(\mathcal{I}\)-open sets is properly placed between the classes of \(\mathcal{I}\)-open and preopen sets as well as between the classes of open and preopen sets.
Proposition 2.5 Every pre-\mathcal{I}-open set is preopen.

Proof. Let (X, τ, \mathcal{I}) be an ideal topological space and let $A \in PIO(X)$. Then $A \subseteq \text{Int}(\text{Cl}^*(A)) = \text{Int}(A^* \cup A) \subseteq \text{Int}(\text{Cl}(A) \cup A) = \text{Int}(\text{Cl})(A)$. \qed

Example 2.6 A preopen set need not be pre-\mathcal{I}-open. Every singleton (for example) in an indiscrete topological space with cardinality at least two is preopen but if we set \mathcal{I} to be the maximal ideal, i.e., $\mathcal{I} = \mathcal{P}(X)$, then it is easy to see that none of the singletons is pre-\mathcal{I}-open.

Proposition 2.7 For an ideal topological space (X, τ, \mathcal{I}) and $A \subseteq X$ we have:

(i) If $\mathcal{I} = \emptyset$, then A is pre-\mathcal{I}-open if and only if A is preopen.

(ii) If $\mathcal{I} = \mathcal{P}(X)$, then A is pre-\mathcal{I}-open if and only if $A \in \tau$.

(iii) If $\mathcal{I} = \mathcal{N}$, then A is pre-\mathcal{I}-open if and only if A is preopen.

Proof. (i) Necessity is shown in Proposition 2.3. For sufficiency note that in the case of the minimal ideal $A^* = \text{Cl}(A)$.

(ii) Necessity: If $A \in PIO(X)$, then $A \subseteq \text{Int}(\text{Cl}^*(A)) = \text{Int}(A^* \cup A) = \text{Int}(A \cup \emptyset) = \text{Int}$. Sufficiency is given in Proposition 2.2.

(iii) By Proposition 2.3 we need to show only sufficiency. Note that the local function of A with respect to \mathcal{N} and τ can be given explicitly \[19\]. We have:

$$A^*(\mathcal{N}) = \text{Cl}(\text{Int}(\text{Cl}(A))).$$

Thus A is pre-\mathcal{I}-open if and only if $A \subseteq \text{Int}(A \cup \text{Cl}(\text{Int}(\text{Cl}(A))))$. Assume that A is preopen. Since always $\text{Int}(\text{Cl}(A)) \subseteq A \cup \text{Cl}(\text{Int}(\text{Cl}(A)))$, then $A \subseteq \text{Int}(A \cup \text{Cl}(\text{Int}(\text{Cl}(A)))) = \text{Int}(A \cup A^*(\mathcal{N})) = \text{Int}(\text{Cl}^*(A))$ or equivalently A is pre-\mathcal{I}-open. \quad \Box

The intersection of even two pre-\mathcal{I}-open sets need not be pre-\mathcal{I}-open as shown in the following example.

Example 2.8 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Set $A = \{a, c\}$ and $B = \{b, c\}$. Since $A^* = B^* = X$, then both A and B are pre-\mathcal{I}-open. But on the other hand $A \cap B = \{c\} \notin PIO(X)$.
Lemma 2.9 \[\text{[10, Theorem 2.3 (g)]}\] Let \((X, \tau, \mathcal{I})\) be an ideal topological space and let \(A \subseteq X\). Then \(U \in \tau \Rightarrow U \cap A^* = U \cap (U \cap A)^* \subseteq (U \cap A)^*\). \(\Box\)

Proposition 2.10 Let \((X, \tau, \mathcal{I})\) be an ideal topological space with \(\Delta\) an arbitrary index set. Then:

(i) If \(\{A_\alpha : \alpha \in \Delta\} \subseteq \text{PIO}(X)\), then \(\bigcup\{A_\alpha : \alpha \in \Delta\} \in \text{PIO}(X)\).

(ii) If \(A \in \text{PIO}(X)\) and \(U \in \tau\), then \(A \cap U \in \text{PIO}(X)\).

(iii) If \(A \in \text{PIO}(X)\) and \(B \in \text{SO}(X)\), then \(A \cap B \in \text{SO}(A)\).

(iv) If \(A \in \text{PIO}(X)\) and \(B \in \text{SO}(X)\), then \(A \cap B \in \text{PO}(B)\).

Proof. (i) Since \(\{A_\alpha : \alpha \in \Delta\} \subseteq \text{PIO}(X)\), then \(A_\alpha \subseteq \text{Int}(\text{Cl}^*(A_\alpha))\) for every \(\alpha \in \Delta\). Thus \(\bigcup_{\alpha \in \Delta} A_\alpha \subseteq \bigcup_{\alpha \in \Delta} \text{Int}(\text{Cl}^*(A_\alpha)) \subseteq \text{Int}(\bigcup_{\alpha \in \Delta} \text{Cl}^*(A_\alpha)) = \text{Int}(\bigcup_{\alpha \in \Delta} A_\alpha^*) \cup \bigcup_{\alpha \in \Delta} A_\alpha \subseteq \text{Int}(\bigcup_{\alpha \in \Delta} A_\alpha) \cap \text{Int}(U) = \text{Int}((A \cap U) \cap U) = \text{Int}((A \cap U) \cap U) \subseteq \text{Int}((A \cap U)^* \cup (A \cap U)) = \text{Int}(\text{Cl}^*(A \cap U))\).

(ii) By assumption \(A \subseteq \text{Int}(\text{Cl}^*(A))\) and \(U \subseteq \text{Int}(U)\). Thus applying Lemma 2.9, \(A \cap U \subseteq \text{Int}(\text{Cl}^*(A)) \cap \text{Int}(U) \subseteq \text{Int}(\text{Cl}^*(A) \cap U) = \text{Int}((A \cap U) \cap U) \subseteq \text{Int}((A \cap U)^* \cup (A \cap U)) = \text{Int}(\text{Cl}^*(A \cap U))\).

(iii) Since the intersection of a preopen set and an \(\alpha\)-set is always a preopen set, then the claim is clear due to Proposition 2.5.

(iv) and (v) It is proved in \[\text{[10]}\] that the intersection of a preopen and a semi-open set is a preopen subset of the semi-open set and a semi-open subset of the preopen set. Thus the claim follows from Proposition 2.5. \(\Box\)

Corollary 2.11 (i) The intersection of an arbitrary family of pre-\(\mathcal{I}\)-closed sets is a pre-\(\mathcal{I}\)-closed set.

(ii) The union of a pre-\(\mathcal{I}\)-closed set and a closed set is pre-\(\mathcal{I}\)-closed. \(\Box\)

Recall that \((X, \tau)\) is called submaximal if every dense subset of \(X\) is open.

Lemma 2.12 \[\text{[14, Lemma 5]}\] If \((X, \tau)\) is submaximal, then \(\text{PO}(X, \tau) = \tau\). \(\Box\)
Corollary 2.13 If \((X, \tau)\) is submaximal, then for any ideal \(\mathcal{I}\) on \(X\), \(\tau = PIO(X)\). \(\square\)

Remark 2.14 By Proposition 2.10, the intersection of a pre-\(\mathcal{I}\)-open set and an open set is pre-\(\mathcal{I}\)-open. However, the intersection of a pre-\(\mathcal{I}\)-open set and an \(\mathcal{I}\)-open set is not necessarily pre-\(\mathcal{I}\)-open, since in Example 2.8 \(\{c\} = A \cap B\) is not pre-\(\mathcal{I}\)-open, although \(A\) is pre-\(\mathcal{I}\)-open (even \(\mathcal{I}\)-open) and \(B\) is \(\mathcal{I}\)-open.

Remark 2.15 (i) In an ideal topological space \((X, \tau, \mathcal{I})\), the subset \(X\) need not always be \(\mathcal{I}\)-open. However, \(X\) is always pre-\(\mathcal{I}\)-open.

(ii) If \(A \subseteq (X, \tau, \mathcal{I})\) is \(\ast\)-perfect, then \(A \in \tau\) if and only if \(A \in IO(X)\) if and only if \(A \in P IO(X)\).

Problem. The class of ideal topological spaces \((X, \tau, \mathcal{I})\) with \(PIO(X, \tau, \mathcal{I}) \subseteq \tau^*(\mathcal{I})\) is probably of some interest. Call these spaces \(\mathcal{I}\)-strongly irresolvable. It is not difficult to observe that in the trivial case \(\mathcal{I} = \{\emptyset\}\), we have the class of strongly irresolvable spaces which were introduced in 1991 by Foran and Liebnitz [4]. Note also that in the case of the maximal ideal \(\mathcal{P}(X)\), every ideal topological space is \(\mathcal{P}(X)\)-strongly irresolvable. It is the author’s belief that further study of \(\mathcal{I}\)-strongly irresolvable spaces is worthwhile.

3 A decomposition of \(\mathcal{I}\)-continuity

Definition 2 A function \(f: (X, \tau, \mathcal{I}) \to (Y, \sigma)\) is called pre-\(\mathcal{I}\)-continuous if for every \(V \in \sigma\), \(f^{-1}(V) \in P IO(X, \tau)\).

In the notion of Proposition 2.2 we have the following result:

Proposition 3.1 Every continuous function \(f: (X, \tau, \mathcal{I}) \to (Y, \sigma)\) is pre-\(\mathcal{I}\)-continuous. \(\square\)

The converse is not true in general as shown in the following example.
Example 3.2 Consider first the classical Dirichlet function \(f : \mathbb{R} \to \mathbb{R} \):

\[
f(x) = \begin{cases}
1, & x \in \mathbb{Q} \\
0, & \text{otherwise.}
\end{cases}
\]

Let \(\mathcal{F} \) be the ideal of all finite subsets of \(\mathbb{R} \). The Dirichlet function \(f : (\mathbb{R}, \tau, \mathcal{F}) \to (\mathbb{R}, \tau) \) is pre-\(\mathcal{I} \)-continuous, since every point of \(\mathbb{R} \) belongs to the local function of the rationals with respect to \(\mathcal{F} \) and \(\tau \) as well as to the local function of the irrationals. Hence \(f \) is even \(\mathcal{I} \)-continuous. But on the other hand the Dirichlet function is not continuous at any point of its domain.

Due to Proposition 2.1 we have the next result:

Proposition 3.3 Every \(\mathcal{I} \)-continuous function \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) is pre-\(\mathcal{I} \)-continuous. \(\square \)

The reverse is again not true as the following example shows.

Example 3.4 Let \((X, \tau, \mathcal{I}) \) be the space from Example 2.3 and let \(\sigma = \{\emptyset, \{a, c, d\}, X\} \). Then the identity function \(f : (X, \tau, \mathcal{I}) \to (X, \sigma) \) is pre-\(\mathcal{I} \)-continuous but not \(\mathcal{I} \)-continuous.

From Proposition 2.3 we have:

Proposition 3.5 Every pre-\(\mathcal{I} \)-continuous function \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) is precontinuous. \(\square \)

Example 3.6 A precontinuous function need not be pre-\(\mathcal{I} \)-continuous. Let \((X, \tau) \) be the real line with the indiscrete topology and \((Y, \sigma) \) the real line with the usual topology. The identity function \(f : (X, \tau, \mathcal{P}(X)) \to (Y, \sigma) \) is precontinuous but not pre-\(\mathcal{I} \)-continuous.

Proposition 3.7 For a function \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) the following conditions are equivalent:

1. \(f \) is pre-\(\mathcal{I} \)-continuous.
2. For each \(x \in X \) and each \(V \in \sigma \) containing \(f(x) \), there exists \(W \in \operatorname{PIO}(X) \) containing \(x \) such that \(f(W) \subseteq V \).
3. For each \(x \in X \) and each \(V \in \sigma \) containing \(f(x) \), \(\operatorname{Cl}^*(f^{-1}(V)) \) is a neighborhood of \(x \).
4. The inverse image of each closed set in \((Y, \sigma) \) is pre-\(\mathcal{I} \)-closed.
Proof. (1) ⇒ (2) Let \(x \in X \) and let \(V \in \sigma \) such that \(f(x) \in V \). Set \(W = f^{-1}(V) \). By (1), \(W \) is pre-\(\mathcal{I} \)-open and clearly \(x \in W \) and \(f(W) \subseteq V \).

(2) ⇒ (3) Since \(V \in \sigma \) and \(f(x) \in V \), then by (2) there exists \(W \in PIO(X) \) containing \(x \) such that \(f(W) \subseteq V \). Thus, \(x \in W \subseteq \text{Int}(\text{Cl}^*(W)) \subseteq \text{Int}(\text{Cl}^*(f^{-1}(V))) \subseteq \text{Cl}^*(f^{-1}(V)) \).

Hence, \(\text{Cl}^*(f^{-1}(V)) \) is a neighborhood of \(x \).

(3) ⇒ (1) and (1) ⇔ (4) are obvious. □

The composition of two pre-\(\mathcal{I} \)-continuous functions need not be always pre-\(\mathcal{I} \)-continuous as the following example shows.

Example 3.8 Let \(\mathbb{R} \) be again the real line and \(\tau \) the usual topology. Note that the identity function \(g: (\mathbb{R}, \tau, P(X)) \to (\mathbb{R}, \tau, F) \) is pre-\(\mathcal{I} \)-continuous and also the Dirichlet function \(f: (\mathbb{R}, \tau, F) \to (\mathbb{R}, \tau) \) is pre-\(\mathcal{I} \)-continuous (Example 3.2). But their composition \((f \circ g): (\mathbb{R}, \tau, P(X)) \to (\mathbb{R}, \sigma) \) is not pre-\(\mathcal{I} \)-continuous, since (for example) \(f^{-1}\{(0, 2)\} = \mathbb{Q} \not\in PIO(\mathbb{R}, \tau, P(X)) \).

However the following result holds.

Proposition 3.9 Let \(f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J}) \) and \(g: (Y, \sigma, \mathcal{J}) \to (Z, \upsilon) \) be two functions, where \(\mathcal{I} \) and \(\mathcal{J} \) are ideals on \(X \) and \(Y \) respectively. Then:

(i) \(g \circ f \) is pre-\(\mathcal{I} \)-continuous, if \(f \) is pre-\(\mathcal{I} \)-continuous and \(g \) is continuous.

(ii) \(g \circ f \) is precontinuous, if \(g \) is continuous and \(f \) is pre-\(\mathcal{I} \)-continuous.

Proof. Obvious. □

Hayashi [9] defined a set \(A \) to be \(\ast \)-dense-in-itself if \(A \subseteq A^*(\mathcal{I}) \). We say that a function \(f: (X, \tau, \mathcal{I}) \to (Y, \sigma) \) is \(\ast \)-\(\mathcal{I} \)-continuous if the preimage of every open set in \((Y, \sigma) \) is \(\ast \)-dense-in-itself in \((X, \tau, \mathcal{I}) \). In what follows, we try to decompose \(\mathcal{I} \)-continuity but before that we will give a decomposition of \(\mathcal{I} \)-openness. Our next two examples (the ones after Proposition 3.10 and Proposition 3.11) will show that pre-\(\mathcal{I} \)-continuity and \(\ast \)-\(\mathcal{I} \)-continuity are independent concepts.
Proposition 3.10 For a subset $A \subseteq (X, \tau, I)$ the following conditions are equivalent:

1. A is I-open.
2. A is pre-I-open and \star-dense-in-itself.

Proof. (1) By Proposition 2.1, every I-open set is pre-I-open. On the other hand $A \subseteq \text{Int}(A^*) \subset A^*$, which shows that A is \star-dense-in-itself.

(2) \Rightarrow (1) By assumption $A \subseteq \text{Int}(\text{Cl}^*(A)) = \text{Int}(A^* \cup A) = \text{Int}(A^*)$ or equivalently A is I-open. ✷

Thus we have the following decomposition of I-continuity:

Theorem 3.11 For a function $f: (X, \tau, I) \to (Y, \sigma)$ the following conditions are equivalent:

1. f is I-continuous.
2. f is pre-I-continuous and \star-I-continuous. ✷

Example 3.12 The identity function $f: (\mathbb{R}, \tau, \mathcal{P}(X)) \to (\mathbb{R}, \tau)$, where τ stands for the usual topology on the real line is pre-I-continuous as mentioned in Example 3.8 but not \star-I-continuous, since the local function of every subset of \mathbb{R} with respect to $\mathcal{P}(X)$ and τ coincides with the void set.

Example 3.13 Note that in the case of the minimal ideal every function is \star-I-continuous, since the local function of every set coincides with its closure. But since not every function is precontinuous, then \star-I-continuity does not always imply pre-I-continuity.

Remark 3.14 Of course a very appropriate example would be the construction of a space with a fixed ideal on it and finding topologies on the space such that certain functions would show the independence of pre-I-continuity and \star-I-continuity as well as the fact that they are both weaker than I-continuity. Such an example is the following: Let $X = \{a, b, c\}$, $\mathcal{I} = \emptyset, \{c\}$, $\mathcal{T} = \emptyset, \{b\}, X$, $\mathcal{S} = \emptyset, \{c\}, X$, $\nu = \emptyset, \{a\}, X$. The identity function $f: (X, \tau, I) \to (X, \nu, I)$ is \star-I-continuous but neither I-continuous nor pre-I-continuous. On the other hand the identity function $g: (X, \sigma, I) \to (X, \sigma, I)$ is pre-I-continuous but neither I-continuous nor \star-I-continuous.
In the case when N is the ideal of all nowhere dense subsets precontinuity coincides with pre-\mathcal{I}-continuity, while β-continuity is equivalent to $\star\mathcal{I}$-continuity due to Proposition 2.7. Recall that a function $f: (X, \tau) \to (Y, \sigma)$ is called β-continuous (or sometimes semi-precontinuous) if the preimage of every open set in (Y, σ) is β-open in (X, τ), where a set A is called β-open if $A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A)))$. It is clear, since every preopen set is β-open but not vice versa, that the family of all pre-\mathcal{I}-open subsets of an ideal topological space (X, τ, \mathcal{I}) is a proper subset of the family of all β-open sets.

Consider next the ideal of all meager subsets. Recall that a set is meager if it is a countable union of nowhere dense sets. Meager sets are called often sets of first category. If a set is not meager it is said to be of second category. The points of second category of A are the points of $A^*(\mathcal{M})$. In 1922 Blumberg called a point x of a space (X, τ) inexhaustibly approached by $A \subseteq X$ if $x \in A^*(\mathcal{M})$. If we call the set A inexhaustibly approached when every point of A is inexhaustibly approached by A, then clearly a function is $\star\mathcal{M}$-continuous if and only if the inverse image of every open set is inexhaustibly approached.

4 Idealized Ganster–Reilly decomposition theorem

A subset A of an ideal topological space (X, τ, \mathcal{I}) is called \mathcal{I}-locally closed if $A = U \cap V$, where $U \in \tau$ is \star-perfect. Note that in the case of the minimal ideal, \mathcal{I}-locally closed is equivalent to locally closed, while N-locally closed is equivalent to the Tong’s notion of an \mathcal{A}-set from [18].

Proposition 4.1 For a subset $A \subseteq (X, \tau, \mathcal{I})$ of a Hayashi-Samuels space the following conditions are equivalent:

1. A is open.
2. A is pre-\mathcal{I}-open and \mathcal{I}-LC-continuous.

Proof. (1) \Rightarrow (2) The first part is Proposition 22. For the second part, note that $A = A \cap X$, where $A \in \tau$ and X is \star-perfect.

(2) \Rightarrow (1) By assumption $A \subseteq \text{Int}(\text{Cl}^*(A)) = \text{Int}(\text{Cl}^*(U \cap V))$, where $U \in \tau$ and V is \star-perfect. Hence, $A = U \cap A \subseteq U \cap (\text{Int}(\text{Cl}^*(U)) \cap \text{Int}(\text{Cl}^*(V))) = U \cap \text{Int}(V \cup V^*) = \text{Int}(U) \cap \text{Int}(V) = \text{Int}(U \cap V) = \text{Int}(A)$. This is shows that $A \in \tau$. \square
Definition 3 A function \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) is called \(\mathcal{I}\text{-LC-continuous} \) if for every \(V \in \sigma \), \(f^{-1}(V) \) is \(\mathcal{I}\text{-LC-closed} \).

Proposition 4.2 Let \((X, \tau, \mathcal{I})\) be a Hayashi-Samuels space. Then, every continuous function \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) is \(\mathcal{I}\text{-LC-continuous} \). \(\square \)

The converse is not true in general, since in the case of the minial ideal \((X, \tau, \mathcal{I})\) is a Hayashi-Samuels space but (usual) \(LC\text{-continuous} \) functions need not be \(LC\text{-continuous} \) [4].

Now, in the notion of Proposition 4.1, we have the following idealized decomposition of continuity:

Theorem 4.3 Let \((X, \tau, \mathcal{I})\) be a Hayashi-Samuels space. For a function \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) the following conditions are equivalent:

1. \(f \) is continuous.
2. \(f \) is pre-\(\mathcal{I} \)-continuous and \(\mathcal{I}\text{-LC-continuous} \). \(\square \)

Remark 4.4 From the particular cases \(\mathcal{I} = \{\emptyset\} \) and \(\mathcal{I} = \mathcal{N} \) in Theorem 4.3 we derive the well-known Ganster–Reilly decomposition Theorem [1].

References

[1] M.E. Abd El-Monsef, E.F. Lashien and A.A. Nasef, On I-open sets and I-continuous functions, *Kyungpook Math. J.*, **32** (1) (1992), 21-30.

[2] H. Blumberg, New properties of all real functions, *Trans. Amer. Math. Soc.*, **24** (1922) 113-128.

[3] H.H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.*, **8** (1964), 351–360.

[4] J. Foran and P. Liebnitz, A characterization of almost resolvable spaces, *Rend. Circ. Mat. Palermo (2)*, **40** (1991), 136–141.

[5] M. Ganster and I.L. Reilly, Locally closed sets and \(LC\text{-continuous} \) functions, *Internat. J. Math. Math. Sci.*, **3** (1989), 417–424.

[6] M. Ganster and I. Reilly, A decomposition of continuity, *Acta Math. Hungar.*, **56** (3-4) (1990), 299–301.
[7] M. Ganster and I. Reilly, On a decomposition of continuity, *General Topology and Applications*, Vol. 134 Lecture Notes Pure Appl. Math., Dekker, New York, 1991.

[8] M. Ganster and I. Reilly, Another decomposition of continuity, *Annals of the New York Academy of Sciences*, Vol. 704 (1993), 135–141.

[9] E. Hayashi, Topologies defined by local properties, *Math. Ann.*, 156 (1964), 205-215.

[10] D. Janković and T.R. Hamlett, New topologies from old via ideals, *Amer. Math. Monthly*, 97 (1990), 295-310.

[11] D. Janković and T.R. Hamlett, Compatible Extensions of Ideals, *Boll. Un. Mat. It.*, 7 (1992), 453-465.

[12] E.H. Kronheimer, The topology of digital images, *Topology Appl.*, 46 (3) (1992), 279–303.

[13] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.

[14] R.A. Mahmound and D.A. Rose, A note on spaces via dense sets, *Tamkang J. Math.*, 24 (3) (1993), 333–339.

[15] O. Njåstad, On some classes of nearly open sets, *Pacific J. Math.*, 15 (1965), 961-970.

[16] T. Noiri, Hyperconnectedness and pre-open sets, *Rev. Roumaine Math. Pures Appl.*, 29 (4) (1984), 329-334.

[17] P. Samuels, A topology formed from a given topological space, *J. London Math. Soc.*, 10 (2) (1975), 409–416.

[18] J. Tong, A decomposition of continuity, *Acta Math. Hungar.*, 48 (1-2) (1986), 11–15.

[19] R. Vaidyanathaswamy, *Proc. Indian Acad. Sci.*, 20 (1945), 51–61.

E-mail: dontchev@cc.helsinki.fi, dontchev@e-math.ams.org