The use of Hybrid Techniques in Whole-Breast Radiotherapy: A Systematic Review

Sibel Karaca, PhD

Abstract

Objectives The development of new techniques in radiotherapy (RT) provides a better planned target volume (PTV) dose distribution while further improving the protection of organs at risk (OARs). The study aims to present the dosimetric results of studies using hybrid techniques in whole-breast radiotherapy (WBRT). Methods: This systematic literature review was conducted by scanning the relevant literature in PubMed, Scopus, and Web of Science following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Among the parameters are dose values for PTV and OARs beam contribute ratios, the value of monitors, and treatment times for different RT techniques. Initially, 586 articles were identified; 196 duplicate articles were removed leaving 391 articles for screening. Three-hundred and thirty-seven irrelevant articles were excluded, leaving 54 studies assessed for eligibility. A total of 22 articles met the search criteria to evaluate dosimetric results of hybrid and other RT techniques in WBRT. Results: According to the dosimetric data of the studies, hybrid intensity-modulated RT (H-IMRT) and hybrid volumetric-modulated arc therapy (H-VMAT) techniques give dosimetrically advantageous results in WBRT compared to other RT techniques. Conclusion: Hybrid techniques using appropriate beams contribute value and show great promise in improving dosimetric results in WBRT. However, there is a need for new studies showing the long-term clinical results of hybrid RT.

Keywords
hybrid techniques, radiotherapy, whole breast

Abbreviations
DIBH, deep inspiration breath holding; FIF, field in field; FP-IMRT, forward-planned IMRT; HT, helical tomotherapy; H-IMRT, hybrid intensity-modulated RT; H-VMAT, hybrid volumetric-modulated arc therapy; IGRT, image-guided RT; IP-IMRT, inverse-planned IMRT; IMRT, intensity-modulated RT; MUs, monitor units; MLCs, multileaf collimators; MA-VMAT, multiple arc VMAT; NC-VMAT, non-coplanar VMAT; OARs, organs at risk; RT, radiotherapy; PRT, proton RT; PTV, planned target volume; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis; QA, quality assurance; RT, radiotherapy; SIB, simultaneous integrated boost; SD-VMAT, standard volumetric-modulated arc therapy; TD, TomoDirect; 2OFT, two open field tangential; 3D-CRT, three-dimensional conformal technique; WBT, whole-breast radiotherapy

Introduction
Cancers of the breast are the most commonly diagnosed malignancies in women. Female breast cancer surpassed lung cancer in 2020 with an estimated 2.3 million new cases, accounting for 11.7% of all cancer cases. It is the fifth leading cause of cancer deaths worldwide, with 685,000 deaths. The treatment of breast cancer varies according to stage. The basic treatment methods are surgery, radiotherapy (RT), and chemotherapy/hormone therapy. Advances in surgery and systemic therapy are gradually improving survival in breast cancer. Lumpectomy (surgery to remove cancerous
tissue from the breast) is usually performed on early stage breast cancer patients. Postoperative RT in the treatment of breast cancer has been shown to significantly reduce the risk of local recurrence and also improve long-term survival.6

Postoperative whole-breast RT (WBRT) is the standard treatment for early stage breast cancer.7,8 For many years, conventional (2D) two open field tangential (2OFT) photon beams have been used as WBRT techniques in the world.9–11 This method caused late toxicities and poor cosmetic results due to unequal dose distribution.9,12 Especially in the left breast irradiation performed with this method, there was an increase in the doses of the heart and bilateral lung. In addition, it has been proven that the 2OFT techniques increase the risk of cardiac toxicity and morbidity moderately in left breast cancer.13 Therefore, to reduce the side effects of WBRT, various RT techniques have been developed to improve the target dose and reduce the dose of organs at risk (OARs).14

The three-dimensional conformal technique (3D-CRT) is a widely used RT technique for WBRT today. The development of 3D-CRT and the use of multileaf collimators (MLCs) have been successful in improving local control by increasing the possibility of shaping the treatment area to match the dose to the target volume. However, normal tissue toxicities remain a concern.15,16 The field-in-field (FIF) technique can be used as an alternative to 3D-CRT. In the FIF technique, beam orientations are similar to 3D-CRT, but instead of wedges, additional fields with manually created apertures are used for blocking. FIF technique has an important role in improving dose homogeneity and in obtaining fewer acute skin and soft tissue toxicities in the long term as well as a better cosmetic appearance of the treated breast.9 Another frequently used technique is the intensity-modulated RT (IMRT) technique, which allows the user to modulate the intensity of each radiation beam. Each field used can have one or more high-intensity radiation fields and any number of lower-intensity radiation fields within the same field. Forward-planned IMRT (FP-IMRT) and inverse-planned IMRT (IP-IMRT) improved the target coverage while reducing the dose delivered to the lungs, heart, and contralateral breast tissue.12,17,18

In recent years, advanced techniques, such as arc-based approaches, namely volumetric-modulated arc therapy (VMAT) and helical tomotherapy (HT) are spreading rapidly. VMAT is a dynamic form of IMRT that uses single or multi-arc rotating irradiation.19–21 VMAT is based on simultaneous optimization of MLC, gantry rotation, and dose rate.22 Standard volumetric-modulated arc therapy (STD-VMAT), multiple arc VMAT (MA-VMAT), and non-coplanar VMAT (NC-VMAT) techniques improved dosimetry.23 HT is actually a multi-field IMRT technique. HT has a rotating gantry accompanied by a couch-moving and high-speed dual collimator.24 TomoDirect (TD) tomotherapy uses a fixed gantry angle instead of arc-based approaches. TD combines static gantry positions, concomitant couch translation and MLC modulation.25,26 Although photon therapy is the standard radiation therapy for breast cancer, proton RT (PRT) has become widespread nowadays due to its superiority in physical dose distribution. PRT represents a technique that allows dose reduction to structures beyond the target volume, depending on the properties of the proton particle.14

Image-guided RT (IGRT) and deep inspiration breath holding (DIBH) techniques used with advanced technology are among the most indispensable for whole-breast irradiation. Daily MV- or kV-based IGRT is a method that takes target/organ motion into account and improves setup accuracy. With the IGRT feature, the margin of safety around the target volume is reduced, thus reducing the irradiated breast volume.27,28 DIBH technique allows for maximizing the distance between the target volume and the heart, reducing heart doses without sacrificing target coverage, or increasing the contralateral breast dose.29

Some special techniques are also used to optimize plans in WBRT. Mayo et al. developed a new technique called hybrid-IMRT (H-IMRT) by combining conventional and IMRT fields for whole-breast irradiation.30 The goal in hybrid RT is better homogeneous dose distribution, better target coverage, and better critical organ protection.31 The hybrid-VMAT (H-VMAT) technique is a novel technique in which the majority of the dose is delivered to the target by conventional, static 3D-CRT fields, and the remainder by VMAT fields.32 Another H-VMAT technique is a H-IMRT/VMAT technique that uses a simultaneously optimized algorithm combining IMRT with desired intensity modulation and VMAT with desired angular beam sampling.33 Although different hybrid beam combinations are used in studies, in general, approximately two-thirds of the simultaneous dose is given from the static field and approximately one-third from IMRT or VMAT.34 However, the optimal beam weight for hybrid RT plans remains uncertain.35 This systematic review aims to present the dosimetric results of studies using hybrid techniques with other techniques in WBRT.

Methods
This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.36 The keywords “Dosimetric comparison of breast radiotherapy” or “Hybrid breast radiotherapy” or “Hybrid whole breast radiotherapy” or “Hybrid VMAT” and “Hybrid IMRT” were searched in different databases (PubMed, Scopus, and Web of Science). No language restrictions were applied in the selection of articles but there was a time restriction (between 2010 and 2021 years). Additionally, references were searched from the original articles obtained to identify eligible studies. Initially, 599 articles fulfilled the search criteria. By looking at the title and abstract of the article, duplicate articles and articles that did not match the research purpose were eliminated. Case reports, narrative reviews, editorial reports, abstracts, or conference proceedings were excluded from the study data and only original and published articles were included. The number of articles with available hybrid breast RT planning dosimetric data (planned target volume [PTV] and OARs parameters) was reduced to 54. Finally, 22 hybrid
WBRT articles were selected and included in the systematic review. The search strategy has been shown in the PRISMA flow diagram (Figure 1).

Results

After the screening, 22 potentially eligible articles were subjected to a detailed assessment. Dosimetric data of hybrid techniques along with different techniques are presented in Table 1. HI, CI, Dmean, or V95 values were included in the PTV values. V5, V20, V25, V30, or V40 values were presented for the ipsilateral or bilateral lung and the heart. Table 2 shows the country in which the articles in the research were made, the breast side, the defined dose (whether the simultaneous integrated boost [SIB] method was applied), hybrid beams contributed, monitor units (MU), time values, and key finding

Discussion

To improve WBRT dosimetric results, it is necessary to increase within-target dose homogeneity, reduce off-target hot-spots, and reduce doses delivered to the lungs, heart, and contralateral breast. By minimizing short-term and long-term complications, the local recurrence rate can be reduced and the survival rate can be increased in patients with breast cancer. In the majority of RT planning studies, the goal is to achieve even better dose distribution for treatment.

This systematic review provides an overview of the dosimetric results of commonly used techniques (2D/3D-RT, FIF, IMRT, VMAT, HT, TD, and PRT) and hybrid techniques (H-IMRT and H-VMAT) in WBRT. Most of the studies reviewed compare 2D/3D-CRT dosimetric results with other advanced RT technical results. Dosimetric results of treatment plans made with 2D/3D-CRT
Table 1. Dosimetric Results of Studies Using Hybrid and Other Radiotherapy (RT) Techniques in Whole-Breast Radiotherapy (WBRT).

Study	2OFT/3D-CRT	FIF	IMRT	VMAT/HT/PRT	H-IMRT (2OFT/3D-CRT + IMRT)	H-VMAT (2OFT/3D-CRT + VMAT or IMRT + VMAT)							
	PTV	Lung (BL/IL)	Heart										
Smith et al.31	Dmean: 96.4	V20: 5.0	V30: 4.0	Dmean: 95.3	V20: 4.6	V30: 2.8	Dmean: 95.3	V20: 4.8	V30: 2.7	V95: 96.0	V30: 11.4	V30: 4.7	
(2010)	Hi: 0.8												
Spruijt et al.37	V95: 5.0	C(70.1)		V95: 4.9	C(70.1)		V95: 4.8	C(65.6)		V95: 4.6	C(65.6)		
(2012)													
Ouyang et al.38	V95: 95.8	Dmean: 51.9	V20: 17.8	V30: 8.8	Dmean: 51.7	V20: 17.7	V30: 7.0	Dmean: 51.7	V20: 17.7	V30: 7.0			
(2013)	HI: 1.09	C(65.6)		HI: 1.09	C(65.6)		HI: 1.09	C(65.6)		HI: 1.09	C(65.6)		
Xie et al.39	V95: 95.3	Dmean: 50.2	V20: 14.0	V30: 8.2	Dmean: 50.2	V20: 14.0	V30: 8.2	Dmean: 50.2	V20: 14.0	V30: 8.2			
(2014)	HI: 0.99	C(65.6)		HI: 0.99	C(65.6)		HI: 0.99	C(65.6)		HI: 0.99	C(65.6)		
Nakamura40	V95: 95.3	Dmean: 51.0	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2			
(2014)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Shiau et al.41	V95: 95.3	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2			
(2014)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Jöst et al.42	V95: 95.3	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2			
(2015)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Aly et al.43	V95: 95.3	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2			
(2015)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Lin et al.44	V95: 95.3	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2			
(2015)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Jeulink et al.45	V95: 95.3	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2			
(2015)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Smith et al.46	Dmean: 54.0	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2				
(2016)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Chen et al.47	V95: 95.3	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2	Dmean: 50.2	V20: 12.3	V30: 8.2			
(2017)	HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		HI: 0.95	C(65.6)		
Zheng et al.48	Dmean: 51.3	V20: 24.5	V30: 12.3	Dmean: 50.9	V20: 23.1	V30: 15.2	Dmean: 50.9	V20: 26.1	V30: 9.4	V95: 96.0	V30: 11.4	V30: 4.7	
(2017)	Hi: 1.15	V30: 20.0	Dmean: 50.9	V20: 23.1	V30: 15.2		Dmean: 50.9	V20: 26.1	V30: 9.4		V95: 96.0	V30: 11.4	V30: 4.7
	CI: 0.38												

(continued)
Study	2OFT/3D-CRT	FIF	IMRT	VMAT/HT/PRT	H-IMRT (2OFT/3D-CRT + IMRT)	H-VMAT (2OFT/3D-CRT + IMRT or IMRT + VMAT)
	PTV					
	Dmean					
	Lung (BL/IL)					
	Heart					
Liu et al.49 (2020)						
Xie et al.50 (2020)	Dmean:50.7	V3:18.3	V2:25.3	V2:30.15	V2:46.6	V2:46.9
	HI:0.15					
	CI:0.5					
Balaji et al.51 (2020)						
Chen et al.52 (2020)	V3:98.2	V2:15.4	V2:2.97	V2:97.97	V2:98.8	V2:98.6
	HI:1.09					
	CI:0.98					
Cunningham et al.53 (2021)						
Santos et al.54 (2021)						
Cilla et al.55 (2021)	Dmean:60.2	V2:26.1	V2:60.5	V2:249	V2:60.6	V2:55.6
	HI:0.08					
	CI:0.23					
Lamprecht et al.56 (2021)						
Ambrose et al.57 (2021)						

Abbreviations: BL, bilateral; CI, conformity index; Dxx(%), dose incident on xx% structure volume; FIF, field in field; HI, homogeneity index; H-VMAT, hybrid VMAT; HT, helical tomotherapy; H-IMRT, hybrid IMRT; IL, ipsilateral; IMRT, intensity-modulated radiotherapy; PRT, proton radiotherapy; PTV, planning target volume; 2OFT, two open field tangential; 3D-CRT, three-dimensional conformal technique; VMAT, volumetric-modulated arc therapy; Vxx(%) Gy, % volume of structure receiving a dose of xx Gy.
Study	Country	Breast side (n)	Prescribed dose, Gy/F	Hybrid beams contributed	MU	Time (s/min) (TT, PT, DT)	Technique of RT Key finding
Smith et al.31 (2010)	Canada	Left (12)	42.5/16	NA% 2OFT + NA% IMRT	336	PT 15min	CP
		Right (8)			328	PT 60-90	FP IMRT
Spruijt et al.37 (2012)	Netherlands	Left (10)	68.75 and 50 / 25 (SIB)	80% 2OFT + 20% IMRT	1050	DT 150s	ETC
					848	DT 161	MSF
Ouyang et al.38 (2013)	China	Left (8)	50/25	60% 2OFT + 40% IMRT	320	NA	NA IMRT
Xie et al.39 (2014)	China	Left (8)	50/25	60% 3D-CRT + 40% IMRT	740	NA	IMRT
Nakamura et al.40 (2014)	Japan	Left (10)	50/25	90% 2OFT + 10% IMRT	1016	DT 153s	Wedge
		Right (10)			241	TT 8.7min	FIF
Shiau et al.41 (2014)	China	Left (30)	50/4/28	80% 3D-CRT + 20% IMRT	241	TT 8.7min	IMRT
Jöst et al.42 (2015)	Germany	Left (10)	63 and 51 (SIB)	NA% IMRT + NA% VMAT	241	TT 8.7min	3D CRT
		Right (10)			242	TT 8.7min	H-VMAT
Aly et al.43 (2015)	Germany	Left (6)	64.4 and 54.4 28 (SIB)	NA% IMRT + NA% VMAT	242	TT 8.7min	T-2F
		Right (6)			242	TT 8.7min	T-NC
Lin et al.44 (2015)	Taiwan	Left (10)	62 and 50.4/28 (SIB)	75% IMRT + 25% VMAT	242	TT 8.7min	H-VMAT
Jeulink et al.45 (2015)	Netherlands	Left (10)	50.25 and 40.5/15 (SIB)	85% 3D CRT + 15% IMRT	320	NA	H-VMAT
Smith et al.46 (2016)	Australia	Left (10)	60 and 50.4/28 (SIB)	60% 2OFT + 40% IMRT	320	NA	H-IMRT
		Right (5)			320	NA	H-VMAT (60:40)
USA		Left (9)	70% 3D-CRT +		320	NA	H-IMRT (70:30)
					320	NA	H-IMRT (80:20)
					320	NA	H-IMRT (H-15°-IMRT)

(continued)
Study	Country	Breast side (n)	Prescribed dose, Gy/F	Hybrid beams contributed	MU	Time (s/min) (TT, PT, DT)	Technique of RT	Key finding
Chan et al.47 (2017)			60 and 50.4/28 (SIB)	30% IMRT 70% 3D CRT + 30% VMAT	756	TT 1.7	H-45°-IMRT	H-VMAT advantages in the conformity index. H-VMAT plans better to the H-IMRT plans with regard to heart dose and treatment delivery time.
Zheng et al.48 (2017)	China	Left (6) Right (4)	50/25	80% 3D-CRT 20% IMRT	NA	NA	3D CRT FIF IMRT VMAT H-IMRT	Among all techniques, IMRT provided similar or superior target volume coverage and better breast implant protection.
Liu et al.49 (2020)	Taiwan	Right (RANDO phantom)	50.4/28 70% 3D-CRT + 30% IMRT	NA	687	DT 234s DT 1.46	VMAT (CPA) VMAT (CPA) H-IMRT IMRT	VMAT have better target coverage. H-IMRT has the lowest mean heart dose. VMAT (CPA) has the lowest mean dose in the lung area.
Xie et al.50 (2020)	USA	Left (15)	50/25 80% OFT + 20% IMRT	7343	7343	5647 8673 19300 10263 10397 11523	NA	NC-VMAT provided the best conformal target coverage. Among 7 techniques, MA-VMAT and NC-VMAT provided better OAR sparing.
Balaji et al.51 (2020)	India	Left (20)	48 and 40.5/15 (SIB)	70% 3D-CRT + 30% IMRT 70% 3D-CRT + 30% VMAT	919	TT 7.8min TT 4.4	H IMRT H VAMT	H-IMRT and H-VMAT provide similar dosimetric results.
Chen et al.52 (2020)	Australia	Left (17) Right (13)	42.5/16 2OFT + IMRT	311	311	303 303 500 364 520 465	3DCRT FIF IMRT VMAT ECOMP H-IMRT	ECOMP provided better HI. OARs protection was better using tangential fields arrangements.
Cunningham et al.53 (2021)	Australia	Left (16)	40.05/15 70% 2OFT + 30% IMRT	NA	NA	NA NA 500 364 520 465 303	IMRT H-IMRT IMPT	H-IMRT and IMPT provided better homogeneous dose distribution than IMRT. IMPT provided better OAR sparing.
Santos et al.54 (2021)	Australia	Left (15)	40.05/15 70% 2OFT + 30% IMRT	NA	NA	NA NA 500 364 520 465	HIMRT IMPT 3D-CRT	IMPT provided less dose to the lungs and contralateral breast then that of the H-IMRT. The use of IMPT leads to reduced risk estimates for secondary carcinogenesis.
Germany	Left (25)		80% 3D-CRT +	NA	NA	NA NA	IMPT 3D-CRT	(continued)
Study	Country	Breast side (n)	Prescribed dose, Gy/F	Hybrid beams contributed	Time (s/min) (TT, PT, DT)	Technique of RT	Key finding	
---------------------	-----------	-----------------	-----------------------	--------------------------	---------------------------	-----------------	---	
Cilla et al.55	Australia	Left (15)	50 and 60/25 (SIB)	20% IMRT	42.5/16	20% IMRT	H-VMAT resulted in superior target dose conformity and homogeneity compared to other techniques.	
		Right (15)		80% 3DCRT				
Lamprech et al.56	Australia	Left (15)	42.5/16	416 NA% 3D-CRT + 20% VMAT		3DCRT	Both techniques had similar PTV dosimetry. BT and BTFFF provided lower OAR doses.	
		Right (15)		NA% IMRT				
Abrose et al.57	Australia	Left (8)	50/25	443 2OFT + 651		3D CRT	H-IMRT provided a good dose coverage and OAR protection.	
		Right (9)						

Abbreviations: BT, Bowtie; BTFFF, Bowtie flattening filter free; CP, conventional tangents; DT, delivery time; ETC, electronic tissue compensator; ECOMP, electronic tissue compensation; FP-IMRT, forward-planned IMRT; IMPT, intensity-modulated proton therapy; MU, monitor units; MA-VMAT: multiple arc VMAT; MSF, multistatic fields; NA, not available; NC-VMAT, non-coplanar VMAT; NCPA, non-continuous partial arc; OARs, organs at risk; PT, planning time; RT, radiotherapy; SIB, simultaneous integrated boost; SOc, standard of care; SP-IMRT, surface compensated IMRT; 2OFT, two open field tangential; 3D-CRT, three-dimensional conformal technique; TT, treatment time; TomoT, tomotherapy; T-2F, two coplanar fields; T-NC, two noncoplanar fields.
techniques are less competent than other techniques. While some of the studies stated that IMRT or FIF techniques provide better PTV homogeneity and OAR protection, some studies have demonstrated the superiority of VMAT techniques or tomotherapy techniques. In addition, it has been determined that PRT provides better dose homogeneity and OAR protection in breast RT.

Especially in the past 10 years, clinicians have started to develop hybrid RT techniques to improve the quality of their treatment plans. The use of hybrid techniques was started for the first time in RT of breast cancer patients. The reason for this was to minimize the irregularities in the dose distribution caused by the irregularity of the area in the breast. Using the hybrid technique, the advantages of the 2 RT techniques can be combined and promising results can be obtained. The hybrid RT results obtained indicate that the quality of treatment plans can be increased with the hybrid techniques used. Hybrid techniques are mostly created with the combination of 2D/3D-CRT and IMRT or 2D/3DCRT + VMAT or IMRT + VMAT.

Many studies show that the H-IMRT technique used in breast RT is dosimetrically superior. The dosimetric advantages of the H-VMAT technique have also been reported in many studies. Balaji et al. investigated the dosimetric advantages of H-IMRT (3D-CRT + IMRT) and H-VMAT (3D-CRT + VMAT) techniques and found that both techniques gave similar dosimetric results. Chen et al. and Cilla et al. compared H-IMRT (3D-CRT + IMRT) and H-VMAT (3D-CRT + VMAT) plans, and they stated that H-VMAT plans provided superior dose distribution and homogeneity. Contrary to this Bi et al. compared H-IMRT (2DFT + IMRT) and H-VMAT (2DFT + VMAT) techniques and as a result, revealed that H-IMRT is the best treatment option.

The hybrid beam’s contributing value for each patient may differ as the patient needs to be evaluated individually. PTV size and OAR placement play a vital role in selecting the optimal beam contributing weight. Smith et al. showed the dosimetric results of H-IMRT plans made with different beam contribution ratios (80:20, 70:30, and 60:40). They discovered that the hybrid technique (70% 2DFT + 30% IMRT) provides dosimetrically superior dose compliance and homogeneity. Similarly, in their H-VMAT RT study, Balaji et al. provided dosimetric results for various beam contribution ratios (90:10, 80:20, 70:30, 60:40, and 50:50). They found that the hybrid technique, consisting of 70% to 80% 2DFT + 20% to 30% VMAT sum, provides optimal dosimetric results.

According to Mayo et al., the hybrid plan requires less planning time and is independent of the planner’s ability. Xie et al. created an analysis of the cost of different RT methods for WBRT patients. The FIF technique was seen as the most cost-effective option, followed by the H-IMRT technique.

Different RT techniques used have different dose-shaping capabilities but almost every method has some advantages and disadvantages. The increased survival rate of breast cancer patients raises concerns about secondary cancers associated with low-dose radiation. As the duration of treatment increases, patients’ discomfort during treatment may increase, and thus treatment uncertainty may arise. In addition, as the number of MU increases, the radiation dose affecting the whole body also increases. IMRT produces high MU in breast RT plans. The increase in the number of treatment fields used while making the treatment plan causes more normal tissue volume to receive radiation doses. Depending on the increase in low-dose exposure, the incidence of secondary cancers also increases. The study comparing IMRT with 3D-CRT revealed that the incidence of solid secondary cancers after IMRT could potentially increase compared to 3D-CRT. Other studies have shown that the risk of secondary cancer in breast RT performed with the 3D-CRT technique is lower in the IMRT or VMAT techniques or tomotherapy techniques. Hacıslamoğlu et al. stated that the risk of developing secondary cancer in breast RT performed with the FIF technique in whole-breast irradiation is lower than that of IMRT and VMAT. The disadvantage of tomotherapy is long treatment time with distress for the patient and risk of movement during RT. VMAT provides a faster treatment time compared to other techniques. VMAT improves dose distribution by providing greater degrees of freedom in RT plans, but the low dose areas formed in OARs are of concern in terms of the risk of developing a second malignancy. PRT offers dosimetric advantages in breast irradiation and a reduction in the rate of second cancer development, but PRT is not common and is a very expensive technique.

According to the volume of the heart exposed to radiation, there is an increase in cardiovascular diseases after left breast RT. For this reason, it tried to reduce the heart dose as much as possible with the appropriate RT technique. Studies have shown that the heart dose of H-IMRT gives similar results to 2DRT, 3DCRT, and FIF. It was observed that the heart dose was higher in VMAT and IMRT plans compared to H-IMRT and 2DRT. In the study in which the dosimetric results of the H-IMRT and H-VMAT plans were presented, it was observed that the heart doses were similar. In the comparison of H-IMRT and HT, it was observed that the heart dose of H-IMRT was lower. When contralateral breast doses were examined, IMRT and VMAT doses were found to be higher than 3DCRT, H-IMRT, and H-VMAT.

The main purpose of creating hybrid RT plans is to reduce the disadvantages of existing techniques. A well-doped hybrid beam scheme may be beneficial in reducing the risk of developing secondary cancer. Hybrid RT techniques, like other techniques, have some limitations. If the H-IMRT plan has a high MU, scattered radiation and hot dose areas outside the target may occur. Because hybrid techniques are created by combining 2 RT plans, it is necessary to use 2 different quality assurance (QA) methods before starting the treatment. Loss of time may occur during QAs of hybrid treatment plans. This is an important issue that needs to be clarified for hybrid techniques. It will be useful to support the dosimetric
results obtained from the hybrid methods used in WBRT with clinical results in the future.

Conclusions

The studies covered in this article provide a robust dataset for prospective hybrid WBRT. The dosimetric results of WBRT treatment plans using hybrid techniques are compared with other RT techniques and are exciting because they reveal superior aspects. Studies show that the rate of secondary cancer risk, which may be the result of applied RT techniques, is different. What factors contribute to the risk of secondary cancer formation can be further analyzed and discussed in the future. Hybrid RT is worthy of further investigation with new prospective protocols.

Declaration of Conflicting Interests

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Sibel Karaca https://orcid.org/0000-0003-0957-3932

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30. doi:10.3322/caac.21387
2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
3. Trayes KP, Sarah C. Breast Cancer Treatment. Am Fam Physician. 2021;104(2):171-178.
4. American Cancer Society. Cancer Facts and Figures, 2019.
5. Aebi S, Karlsson P, Wapir IL. Locally advanced breast cancer. Breast. 2022;62(Suppl 1):S58-S62. doi:10.1016/j.breast.2021.12.011
6. McGale P, Taylor C, Correa C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127-2135. doi:10.1016/S0140-6736(14)60488-8.
7. Clarke M. et al. 2021 Articles Post-BCS Available 2021, www.lancet.com. www.thelancet.com
8. Early Breast Cancer Trialists’ Collaborative Group. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet. 2011;378(9804):1707-1716.
9. Taylor ME, Perez CA, Halverson KJ, et al. Factors influencing cosmetic results after conservation therapy for breast cancer. Int J Radiat Oncol Biol Phys. 1995;31(4):753-764.
10. Chan OSH, Lee MCH, Hung AWM, Chang ATY, Yeung RMW, Lee AWM. The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer - A planning study. Radiother Oncol. 2011;101(2):298-302. doi:10.1016/j.radonc.2011.08.015
11. Fong A, Bromley R, Beat M, Vien D, Dineley J, Morgan G. Dosimetric comparison of intensity modulated radiotherapy techniques and standard wedged tangents for whole breast radiotherapy. J Med Imaging Radiat Oncol. 2009;53(1):92-99. doi:10.1111/j.1754-9485.2009.02043.x
12. Kestin LL, Sharpe MB, Frazer RC, et al. Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Int J Radiat Oncol Biol Phys. 2000;48(5):1559-1568.
13. Correa CR, Litt HI, Hwang WT, Ferrari VA, Solin LJ, Harris EE. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol. 2007;25(21):3031-3037. doi:10.1200/JCO.2006.08.6595
14. Fogliata A, Bolsa A, Cozzi L. Critical appraisal of treatment techniques based on conventional photon beams, intensity modulated photon beams and proton beams for therapy of intact breast. Radiother Oncol. 2002;62(2):13-145.
15. Fisher B, Anderson S, Redmond CK, Wolmark N, Wickerham DL, Cronin WM. Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med. 1995;333(22):1456-1461.
16. Gyenes G, Rutqvist LE, Liedberg A, Fonnarth T. Long-term cardiac morbidity and mortality in a randomized trial of pre-and postoperative radiation therapy versus surgery alone in primary breast cancer. Radiother Oncol. 1998;48(2):185-190.
17. Dogan N, Cuttin L, Lloyd R, Bump EA, Arthur DW. Optimized dose coverage of regional lymph nodes in breast cancer: the role of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(4):1238-1250. doi:10.1016/j.ijrobp.2007.03.059
18. Lo YC, Yasuda G, Fitzgerald TJ, Urie MM. Intensity modulation for breast treatment using static multi-leaf collimators. Int J Radiat Oncol Biol Phys. 2000;46(1):187-194.
19. Abo-Madyan Y, Aziz MH, Aly MMOM, et al. Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother Oncol. 2014;110(3):471-476. doi:10.1016/j.radonc.2013.12.002
20. Yan H, Dai JR, Li YX. A fast optimization approach for treatment planning and dosimetric comparison for volumetric modulated arc therapy. Radiat Oncol. 2018;13(1):1-13. doi:10.1186/s13014-018-1050-x
21. Nicolini G, Clivio A, Fogliata A, Vanetti E, Cozzi L. Simultaneous integrated boost radiotherapy for bilateral breast: a planning study. Radiother Oncol. 2009;4:1-12. doi:10.1186/s13014-018-1050-x
22. Nicolini G, Clivio A, Fogliata A, Vanetti E, Cozzi L. Simultaneous integrated boost radiotherapy for bilateral breast: a planning study. Radiother Oncol. 2009;4:1-12. doi:10.1186/s13014-018-1050-x
23. Popescu CC, Olovitlo IA, Beckham WA, et al. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys. 2010;76(1):287-295. doi:10.1016/j.ijrobp.2009.05.038
23. Tsai PF, Lin SM, Lee SH, et al. The feasibility study of using multiple partial volumetric-modulated arcs therapy in early stage left-sided breast cancer patients. *J Appl Clin Med Phys.* 2012;13(5):62-73.

24. Qiu J, Liu Z, Yang B, Hou X, Zhang F. Low-dose-area-constrained helical tomotherapy-based whole breast radiotherapy and dosimetric comparison with tangential field-in-field IMRT. *BioMed Res Int.* 2013;87(2):753-754. doi:10.1155/2013/513708

25. Franco P. Tomo direct to deliver static angle tomotherapy treatments. *J Nucl Med Radiat Ther.* 2012;3(4):1-2. doi:10.4172/2155-9619.1000e107

26. Franco P, Zeverino M, Migliaccio F, et al. Intensity-modulated adjuvant whole breast radiation delivered with static angle tomotherapy (TomoDirect): a prospective case series. *J Cancer Res Clin Oncol.* 2013;139(11):1927-1936. doi:10.1007/s00432-013-1515-0

27. Laaksomaa M, Kapanen M, Haltamo M, et al. Determination of the optimal matching position for setup images and minimal setup margins in adjuvant radiotherapy of breast and lymph nodes treated in voluntary deep inhalation breath-hold. *Radiat Oncol.* 2015;10(1):1-10. doi:10.1186/s13014-015-0383-y

28. Latifi K, Pritz J, Zhang GG, Moros EG, Harris EER. Fiducial-based image-guided radiotherapy for whole breast irradiation. *J Radiat Oncol.* 2013;2(2):185-190. doi:10.1007/s13566-013-0102-y

29. Smyth LM, Knight KA, Aarons YK, Wasiak J. The cardiac dose-sparing benefits of deep inspiration breath-hold in left breast irradiation: a systematic review. *J Med Radiat Sci.* 2015;62(1):66-73. doi:10.1002/jmr.s8

30. Mayo CS, Urie MM, Fitzgerald TJ. Hybrid IMRT plans - currently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. *Int J Radiat Oncol Biol Phys.* 2005;61(3):922-932. doi:10.1016/j.ijrobp.2004.10.033

31. Smith W, Menon G, Wolfe N, Ploquin N, Trotter T, Pudney D. IMRT For the breast: a comparison of tangential planning techniques. *Phys Med Biol.* 2010;55(4):1231-1241. doi:10.1088/0031-9155/55/4/022

32. Smith W, Menon G, Wolfe N, Ploquin N, Trotter T, Pudney D. IMRT For the breast: a comparison of tangential planning techniques. *Phys Med Biol.* 2010;55(4):1231-1241. doi:10.1088/0031-9155/55/4/022

33. Blom GJ, Verbakel WFAR, Dahele M, Hoffmans D, Slotman BJ, Senan S. Improving radiotherapy planning for large volume lung cancer: a dosimetric comparison between hybrid-IMRT and RapidArc. *Acta Oncol (Madr).* 2015;54(3):427-432. doi:10.3109/0284186X.2014.963888

34. Raturi VP, Motegi A, Zenda S, et al. Comparison of a hybrid IMRT/VMAT technique with non-coplanar VMAT and non-coplanar IMRT for uncontrollable olfactory neuroblastoma using the RayStation treatment planning system-EUD, NTCP and planning study. *J Radiat Res.* 2021;62(3):540-548. doi:10.1093/jrr/rrab010

35. Nishimura Y, Komaki R. Intensity-modulated radiation therapy: clinical evidence and techniques. *Springer.* 2015.

36. Takakusagi Y, Kusunoki T, Kano K, et al. Dosimetric comparison of radiation therapy using hybrid-VMAT technique for stage I esophageal cancer. *Anticancer Res.* 2021;41(4):1951-1958. doi:10.21873/anticancerres.14962

37. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ (Clinical research ed).* 2009;339:e1-e34. doi:10.1136/bmj.b2700

38. Spruit KH, Dahele M, Cuijpers JP, et al. Flattening filter free vs flattened beams for breast irradiation. *Int J Radiat Oncol Biol Phys.* 2013;85(2):506-513. doi:10.1016/j.ijrobp.2012.03.040

39. Ouyang S, He L, Xie X, Zhou Q, Kuang W, Shen L. Dosimetric comparison of left-side whole breast irradiation with IMRT and hybrid IMRT. *J Cent South Univ (Medical Sciences).* 2013;38(10):1003-1008. doi:10.3969/j.issn.1672-7347.2013.10.005

40. Xie X, Ouyang S, Wang H, et al. Dosimetric comparison of left-sided whole breast irradiation with 3D-CRT, IP-IMRT and hybrid IMRT. *Oncol Rep.* 2014;31(5):2195-2205. doi:10.3892/or.2014.3058

41. Aly M, Bahal RM, Maged Y, et al. Comparison of breast simultaneous integrated boost (SIB) radiotherapy techniques. *Radiat Oncol.* 2015;10(1):1-8. 10.1186/s13014-015-0452-2

42. Lin LF, Yeh DC, Yeh HL, Chang CF, Lin JC. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy and intensity-modulated radiation therapy for left-sided early breast cancer. *Med Dosim.* 2015;40(3):262-267. doi:10.1016/j.meddos.2015.05.003

43. Jöst V, Kretschmer M, Sabatino M, et al. Herzdosisreduktion bei der Brustkrebsbehandlung mit simultanintegriertem Boost: Vergleich von Behandlungsplanung und Dosimetrieerenerneuern Hybridechnik und der 3D-CRT. *Strahlenther Onkol.* 2015;191(9):734-741. doi:10.1007/s00066-015-0874-7

44. Aly MM, Glatting G, Jahnke L, Wenz F, Abo-Madyan Y. Comparison of breast simultaneous integrated boost (SIB) radiotherapy techniques. *Radiat Oncol.* 2015;10(1):1-8. 10.1186/s13014-015-0452-2

45. Smith SK, Estoesta RP, Kader JA, et al. Hybrid intensity-modulated radiation therapy (IMRT) simultaneous integrated boost (SIB) technique versus three-dimensional (3D) conformal radiotherapy with SIB for breast radiotherapy: a planning comparison. *J Appl Clin Med Phys.* 2015;16(3):197-205. doi:10.1120/jacmp.v16i3.5266

46. Smith SK, Estoque RP, Kader JA, et al. Hybrid intensity-modulated radiation therapy (IMRT) simultaneous integrated boost (SIB) technique versus three-dimensional (3D) conformal radiotherapy with SIB for breast radiotherapy: a planning comparison. *J Appl Clin Med Phys.* 2015;16(3):197-205. doi:10.1120/jacmp.v16i3.5266

47. Chen YG, Li AC, Li WY, et al. The feasibility study of a hybrid coplanar arc technique versus hybrid intensity-modulated radiotherapy in treatment of early-stage left-sided breast cancer with simultaneous-integrated boost. *Transl Cancer Res.* 2017;6(4):788-797. doi:10.21037/tcr.2017.06.38
49. Liu YC, Chang HM, Lin HH, Lu CC, Lai LH. Dosimetric comparison of intensity-modulated radiotherapy, volumetric modulated arc therapy and hybrid three-dimensional conformal radiotherapy/intensity-modulated radiotherapy techniques for right breast cancer. J Clin Med. 2020;9(12):1-14. doi:10.3390/jcm9123884

50. Chung MJ, Kim SH, Lee JH, Suh YJ. A dosimetric comparative analysis of TomoDirect and three-dimensional conformal radiotherapy in early breast cancer. J Breast Cancer. 2015;18(1):57-62. doi:10.4048/jbc.2015.18.1.57

51. Kivanc H, Gultekin M, Gurkaynak M, Ozuyigit G, Yildiz F. Dosimetric comparison of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for left-sided chest wall and lymphatic irradiation. J Appl Clin Med Phys. 2019;20(12):36-44. doi:10.1002/acm2.12757

52. Mayo CS, Urie MM, Fitzgerald TJ, Ding L, Lo YC, Bogdanov M. Hybrid IMRT for treatment of cancers of the lung and esophagus. Int J Radiat Oncol Biol Phys. 2008;71(5):1408-1418. doi:10.1016/j.ijrobp.2007.12.008.

53. Balaji K, Yadav P, Balaji Subramanian S, Anu Radha C, Ramasubramanian V. Hybrid planning techniques for hypofractionated whole-breast irradiation using flattening filter-free beams. Strahlenther Onkol. 2020;196(4):376-385. doi:10.1007/s00066-019-01555-1

54. Santos AMC, Kotsanis A, Cunningham L, Penfold SN. Estimating the second primary cancer risk due to proton therapy compared to hybrid IMRT for left sided breast cancer. Acta Oncol (Madr). 2021;60(3):300-304. doi:10.1080/0284186X.2020.1862421

55. Cilla S, Romano C, Macchia G, et al. Automated hybrid volumetric modulated arc therapy (HVMAT) for whole-breast irradiation with simultaneous integrated boost to lumpectomy area. Strahlenther Onkol. 2021;198(3):254-267. Published online November 12, 2021. doi:10.1007/s00066-021-01873-3

56. Lamprecht B, Muscat E, Harding A, et al. Comparison of whole breast dosimetry techniques – From 3DCRT to VMAT and the impact on heart and surrounding tissues. J Med Radiat Sci. 2021;69(1):98-107. Published online 2021. doi:10.1002/jmrs.541

57. Ambrose L, Stanton C, Lewis L, et al. Potential gains: comparison of a mono-isocentric three-dimensional conformal radiotherapy (3D-CRT) planning technique to hybrid intensity-modulated radiotherapy (hIMRT) to the whole breast and supravacular fossa (SCF) region. J Med Radiat Sci. 2021;69(1):75-84. Published online 2021. doi:10.1002/jmrs.473

58. Sun GY, Wen G, Zhang YJ, et al. Radiotherapy plays an important role in improving the survival outcome in patients with T1–2N1M0 breast cancer – a joint analysis of 4262 real world cases from two institutions. BMC Cancer. 2020;20(1):1-11. doi:10.1186/s12885-020-07646-y

59. Hashimoto H, Omura M, Matsui K, et al. Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation. J Appl Clin Med Phys. 2015;16(3):225-232.

60. Chung MJ, Kim SH, Lee JH, Suh YJ. A dosimetric comparative analysis of TomoDirect and three-dimensional conformal radiotherapy in early breast cancer. J Breast Cancer. 2015;18(1):57-62. doi:10.4048/jbc.2015.18.1.57

61. Kivanc H, Gultekin M, Gurkaynak M, Ozuyigit G, Yildiz F. Dosimetric comparison of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for left-sided chest wall and lymphatic irradiation. J Appl Clin Med Phys. 2019;20(12):36-44. doi:10.1002/acm2.12757
technique for synchronous bilateral breast cancer. Med Dosim. 2020;45(3):271-277. doi:10.1016/j.meddos.2020.01.006
75. Balaji K, Subramanian B, Yadav P, Anu Radha C, Ramasubramanian V. Radiation therapy for breast cancer: literature review. Med Dosim. 2016;41(3):253-257. doi:10.1016/j.meddos.2016.06.005
76. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56(1):83-88. doi:10.1016/S0360-3016(03)00073-7
77. Zhang Q, Liu J, Ao N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep. 2020;10(1):1-12. doi:10.1038/s41598-020-58134-z
78. Lee B, Lee S, Sung J, Yoon M. Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot. 2014;34(2):325-331. doi:10.1088/0952-4746/34/2/325
79. Haciislamoglu E, Cinar Y, Gurcan F, Gungor G, Yoney A. Secondary cancer risk after whole-breast radiation therapy: field-in-field versus intensity modulated radiation therapy versus volumetric modulated arc therapy. 2019;95(1102):2019.
80. Corradini S, Ballhausen H, Weingandt H, et al. Left-sided breast cancer and risks of secondary lung cancer and ischemic heart disease: effects of modern radiotherapy techniques. Strahlenther Onkol. 2018;194(3):196-205. doi:10.1007/s00066-017-1213-y
81. Xiang M, Chang DT, Polom EL. Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer. 2020;126(15):3560-3568. doi:10.1002/cncr.32938
82. Mutter RW, Choi JI, Jimenez RB, et al. Proton therapy for breast cancer: a consensus statement from the particle therapy cooperative group breast cancer subcommittee. Int J Radiat Oncol Biol Phys. 2021;111(2):337-359. doi:10.1016/j.ijrobp.2021.05.110
83. Sun T, Lin X, Tong Y, et al. Heart and cardiac substructure dose sparing in synchronous bilateral breast radiotherapy: a dosimetric study of proton and photon radiation therapy. Front Oncol. 2020;9:1456. doi:10.3389/fonc.2019.01456
84. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998. doi:10.1056/NEJMoA1209825