Genetic and physical mapping of anther extrusion in elite European winter wheat

Quddoos H. Muqaddasi1*, Klaus Pillen2, Jörg Plieske3, Martin W. Ganal3, Marion S. Röder1

1 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland OT Gatersleben, Germany, 2 Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany, 3 TraitGenetics GmbH, Stadt Seeland OT Gatersleben, Germany

* muqaddasi@ipk-gatersleben.de

Abstract

The production and cultivation of hybrid wheat is a possible strategy to close the yield gap in wheat. Efficient hybrid wheat seed production largely depends on high rates of cross-pollination which can be ensured through high anther extrusion (AE) by male parental lines. Here, we report the AE capacity and elucidate its genetics in 514 elite European winter wheat varieties via genome-wide association studies (GWAS). We observed a wide range of variation among genotypes and a high heritability (0.80) for AE. The whole panel was genotyped with the 35k Affymetrix and 90k iSELECT single nucleotide polymorphism (SNP) arrays plus
Ppd-D1, Rht-B1 and Rht-D1 candidate markers. GWAS revealed 51 marker-trait associations (MTAs) on chromosomes 1A, 1B, 2A, 4D and 5B, with
Rht-D1 (4D) being the most significant marker. Division of whole panel according to the
Rht-D1 genotype resulted in 212 and 294 varieties harboring
Rht-D1a and
Rht-D1b allele, respectively. The presence of
Rht-D1a compared to
Rht-D1b (mutant) allele had a large phenotypic influence on AE resulting in its ~17% increase. GWAS performed on the sub-panels detected novel
MTAs on chromosomes 2D, 3B and 6A with increased phenotypic variance imparted by individual markers. Our study shows that AE is a highly quantitative trait and wild type
Rht-D1a allele greatly improves AE. Moreover, demarcating the quantitative trait loci regions based on intra-chromosomal linkage disequilibrium revealed AE’s candidate genes/genomic regions. Understanding the genetics of AE in elite European wheat and utilizing the linked markers in breeding programs can help to enhance cross-pollination for better exploitation of heterosis.

Introduction

Harnessing the advantages of heterosis has emerged as an important strategy for improving and stabilizing yield in many crops. Heterosis, a phenomenon where a hybrid offspring exhibits superior performance compared to the parents, has been in the focus of both plant breeders and geneticists [1]. While hybrid cultivars are widely used in out-crossing species such as maize, rapeseed and rye [2], heterotic advantages in wheat have so far not been optimally
realized. Much of this owes to the strict inbreeding nature of wheat. Wheat flowers having male and female organs in the same floret often does not open during flowering, forming the basis of self-pollination or cleistogamy in wheat. Industrial scale production of hybrid wheat seed demands a high level of pollen shedding outside the florets by male parents for efficient cross-fertilization of the female parents. Sufficient opening of florets at flowering time is therefore crucial to help anthers extrude, dehisce and shed pollen outside the floret.

The subject of hybrid wheat breeding has a long history [3] with a modest success [4]. A special emphasis has been given to the importance of anther extrusion (AE) for generating pools of efficient pollinators [5–8] and a more recent surge in hybrid wheat breeding also highlights the importance of high AE by male parental lines to improve cross-pollination and subsequent seed set on female parents [4, 9–13]. AE, a phenomenon in which anthers at yellow stage come out of the florets at flowering time [14], therefore, is a major contributing trait for hybrid wheat seed production. To prevent self-pollination and to achieve male sterility in female parents, the most common system for industrial scale hybrid wheat production is the use of chemical hybridization agents (CHAs) [4]. The application of CHAs renders the stamens of the female parent unfertile (male sterile). Male sterile female parents are subsequently pollinated via cross-pollination from male parental lines.

Recent positional cloning of a cleistogamous gene (cleistogamy 1) in barley showed that it inhibited the flower opening by reducing the size of the lodicules [15]. Cly1 encoded a transcription factor containing two AP2 domains and a putative microRNA (miR172) targeting site. Cleavage of mRNA directed by miR172 was detectable only in a non-cleistogamous background [15]. Orthologous genes to the barley cleistogamous gene Cly1 were detected in wheat in the subtelomeric regions of the long arms of the group 2 chromosomes [16]. These genes were designated as TaAP2-A, -B and -D, and had a high transcript abundance in the lodicules. Like the barley genes, the TaAP2 mRNAs were cleaved at their miR172 sites. However, resequencing of the TaAP2 genes showed a high degree of conservation for these genes even across different ploidy levels and no functional variants at the key miRNA172 targeting site were detected [17].

A wide range of variation for AE among wheat genotypes has been reported in recent studies [9, 10, 12, 18–21]. The AE variation can be utilized for i) efficient selection, breeding and development of high AE genotypes and ii) designing crosses between contrasting phenotypes for mapping purposes. The genetic architecture of AE or its equivalent “anther retention” has been investigated by linkage mapping [18–20, 22]. More recently, genome wide association mapping studies (GWAS) of AE on wheat genetic resources [10, 23], advanced spring breeding lines [14] and winter varieties [9] have been conducted and a strong quantitative genetic nature for this trait was revealed. GWAS is a widely used approach to establish the marker trait associations (MTAs) by harnessing the benefits of a large number of marker polymorphisms, the extent to which these markers are in linkage disequilibrium (LD) to the genes controlling the trait, long recombination history and large size of the investigated population [24–27]. The availability of single nucleotide polymorphic (SNP) markers in large numbers [28, 29] provides genome-wide variations which are exploited in GWAS. With the availability of the first draft sequence of hexaploid wheat genome [30], it also becomes possible to link the results of genetic mapping to the physical map and to identify the genomic regions underlying the detected quantitative trait loci (QTL) with the ultimate goal to determine the causal genes.

The aims of this study were i) to study variance of AE in elite European winter wheat varieties also with regard to the dwarfing gene Rht-D1 ii) to perform GWAS of AE by using high marker density platforms and iii) to link the detected QTL to the current physical map of wheat.
Materials and methods

Plant material and collection of phenotypic data

An elite European winter wheat panel consisting of 514 varieties was used in this study (S1 Table). The whole panel was evaluated for its capacity of anther extrusion (AE) in field trials at the IPK-Gatersleben, Germany for two consecutive years (2015 and 2016). The individual plot size was 2 × 2 m, and each plot was split into six rows spaced 0.20 m apart. Standard agronomic wheat management practices were applied.

To estimate the AE, we first estimated the anther retention (AR; number of non-extruded anthers). AR was scored in six and ten spikes per plot in 2015 and 2016, respectively. The spikes were harvested five to seven days post-anthesis and held at -20˚C. After defrosting, AR was scored by counting the anthers retained inside the lateral florets of four spikelets sampled from the central portion of the spikes (two pairs on each side). AE was calculated by subtracting the number of retained anthers from 24, since the total number of anthers housed by eight florets is 24 (4 spikelets × 2 lateral florets × 3 anthers).

Statistical analysis of phenotypic data

We performed phenotypic analysis by fitting a linear mixed-effect model. The following model was used:

\[y_{ijk} = \mu + G_i + E_j + (G \times E)_{ij} + R_{(j)k} + e_{ijk} \]

where, \(y_{ijk} \) denotes the phenotypic record of the \(i \)-th genotype in the \(k \)-th replication of the \(j \)-th environment, \(\mu \) is the common intercept term, \(G_i \) is the effect of the \(i \)-th genotype, \(E_j \) is the effect of the \(j \)-th environment, \((G \times E)_{ij} \) is the interaction effect between the \(i \)-th genotype and \(j \)-th environment, \(R_{(j)k} \) is the effect of \(k \)-th replication in \(j \)-th environment and \(e_{ijk} \) is the corresponding residual term. Note that as field trials in both years were carried out at the IPK-Gatersleben, we denote years as environments for convenience and interpretation in further analyses.

We first assumed all effects except the intercept as random to estimate the variance components. The repeatability among the replicates in individual years was calculated as \(H^2 = \frac{\sigma^2_G}{\sigma^2_G + \sigma^2_E} \) and the broad sense heritability between the years as \(H^2 = \frac{\sigma^2_G + \sigma^2_{G \times E}}{\sigma^2_G + \sigma^2_{G \times E} + \sigma^2_E} \) where \(\sigma^2_G \), \(\sigma^2_{G \times E} \) and \(\sigma^2_E \) denote the variance components of genotypes, genotype-by-environment interaction and the residuals, respectively. \(n_E \) and \(n_R \) denote the number of environments and number of replications, respectively.

To calculate the best linear unbiased estimates (BLUEs) of each genotype, we assumed fixed intercept and genotypic effects, whereas all other effects in the aforementioned model remained random. All the above mentioned calculations were performed in R [31] by using lme4 package [32].

Genotyping and analysis of population structure

All 514 winter wheat varieties used in this study were genotyped with a 35k Affymetrix and a 90k iSELECT single nucleotide polymorphism (SNP) array [28, 29] which generated 35,143 and 81,587 SNP markers, respectively. We performed quality control for the SNP markers by setting the parameter of rejecting the SNPs having more than 5% missing values and heterozygotes, and the SNPs with minor allele frequency (MAF) below 0.05 on both SNP arrays. In total, quality control on SNP data resulted in 27,197 SNPs which remained in our study for the
subsequent analyses. In addition to SNP genotyping, we genotyped the whole panel with three candidate gene markers (a photoperiodism gene \textit{Ppd-D1}, and two dwarfing genes \textit{Rht-B1} and \textit{Rht-D1}) \cite{33, 34}.

To examine the genetic structure among the genotypes, we performed principal component analysis (PCA) based on SNP genotypes. The first two PCs were drawn two dimensionally to see the pronounced clustering among varieties. We also calculated the variance-covariance kinship among the genotypes following VanRaden \cite{35} to see the genetic relatedness. The aforementioned estimates were performed in Genome Association and Prediction Integrated Tool (GAPIT) \cite{36}. Furthermore, to see the hidden population sub-structuring, we used R-based STRUCTURE-like inference algorithm LEA by assuming 10 ancestral populations \((K = 1 - 10)\) and using the function snmf which provides least squares estimates of ancestry proportions and estimates an entropy criterion that evaluates the quality of fit of the statistical model to the data by using a cross-validation technique. The number of ancestral populations, which best explain the genotypic data can be chosen by using the entropy criterion. We performed 10 repetitions for each \(K\) and the optimal repetition explaining the minimal cross-entropy value was used to visualize clustering among varieties by drawing bar plots \cite{37, 38}.

Genome-wide association mapping

A regular linear mixed model \cite{39} was implemented for genome-wide association studies (GWAS) as:

\[
y = X\beta + Zu + e
\]

where \(y\) is the vector of the BLUEs of each genotype, \(\beta\) is a vector containing fixed effects of the genetic marker and the intercept, \(u\) is a vector of random additive genetic effects of each genotype, \(X\) and \(Z\) are the corresponding design matrices and \(e\) is the vector of residuals. In the model, the genetic \((u)\) and the residual \((e)\) effects were assumed random, independent and normally distributed with null means as \(u \sim N(0, K\sigma_u^2)\), \(e \sim N(0, I\sigma_e^2)\). In GWAS, we corrected for the confounding effect of population structure by assigning a kinship matrix \((K)\) as the variance-covariance matrix \cite{35} for the random additive genetic effects. The association mapping scan was performed in R by using GAPIT package \cite{36}. We set a threshold of significance of \(P < 0.001\) \((-\log_{10}(P) \geq 3.0)\) for the detection of marker-trait associations (MTAs). To check whether the model we implemented was sufficiently stringent to control the population stratification, family structure or false positives, quantile-quantile (qq) plots were drawn based on observed \textit{versus} expected \(P\) values of all the SNPs at \(-\log_{10}\) scale.

We studied the influence of the most significant SNPs (MS-SNPs i.e., SNPs with highest \(-\log_{10}(P)\) and largest effect) from each chromosome on the AE phenotype by taking their both alleles. Boxplots were drawn for varieties containing individual alleles (reference and variant/minor allele) of MS-SNPs.

Linkage disequilibrium analysis and connection of significant SNPs to the genome zipper

A detailed description of the LD analysis is given in the S1 Note. Briefly, genome-wide LD analysis based on \(r^2\) measure \cite{40} was performed between the significant SNP profiles and genome-wide SNPs. An \(r^2\) threshold of \(>0.20\) was set to define the SNPs to be in LD (henceforth termed as LD-SNPs) with the significant SNPs. The entire chromosome-wise LD-SNPs were BLASTed \cite{41} against the wheat genome assembly IWGSC1+popseq \cite{30}. This resulted in the detection of the unique gene specific SNPs generating the gene identifiers (gene IDs), transcript IDs and the direction of the genes. These gene IDs were anchored onto the genome.
zipper [42], a resource which gives an ordered structure of the wheat genes based on synteny to well established grass genomes viz., *Brachypodium distachyon*, *Sorghum bicolor* and rice (*Oryza sativa*).

Visualizing the QTL transcript profiles

Anchoring the LD-SNPs onto the genome-zipper revealed putative quantitative trait loci (QTL) for AE. With the exception of chromosome 2A and 6A where not all the LD-SNPs were clustered in the same genetic region on genome zipper, all chromosome-wise LD-SNPs were generally clustered together. We extracted these genome zipper regions (QTL spanning ~3–5 cM) containing wheat genes and their syntenic genes of *Brachypodium*, *Sorghum* and rice on corresponding chromosomes. These QTL regions contained several wheat genes (genes that belong to the LD-SNPs and those in between). The transcript IDs of all these genes were taken from wheat sequence [30]. We used another publically available data base *expVIP* [43] to get the expression profiles of all these genes present in QTL in various organs of the wheat plant. The expression profiles were retrieved in transcripts per million (tpm) at log 2 scale. We divided the organs as AE related organs i.e., those which can influence AE (spikes, spikelets, stamen and pistil) and AE unrelated organs i.e., those which may not have any functional relevance to AE (roots, leaves, seedling and grain). To visualize the expression profiles, heat maps were drawn from the expression data of all the genes (transcript IDs) by using R package *ComplexHeatmap* [44].

Results

Intensive phenotyping results in correct estimates of variance components and heritability for anther extrusion

Anther extrusion (AE) was scored in 514 winter wheat varieties for two years (2015 and 2016). We observed a significant positive Pearson’s product moment correlation (*r* = 0.68; *P*< 0.001) between the mean AE values of both years (S1 Fig). The resulting best linear unbiased estimates (BLUEs) from both year data approximated a normal distribution ranging from 2.82 to 23.57 with a mean value of 13.51 (Fig 1). Individual variance component analysis showed that the genotypic variance (σ²G) principally contributed to AE (77.35%) whereas environment (σ²E) contributed only 13.38% with remaining variance accounted collectively by σ²G×E and σ²e. The estimates of repeatability among the replicates in individual year were high (2015 = 0.95, 2016 = 0.97). The broad sense heritability estimate between the years amounted to 0.80.

Population structure reveals absence of genetically distinct sub-populations

Extensive SNP genotyping on our panel provided 27,197 high quality SNP markers plus the candidate markers for three genes viz., *Ppd-D1, Rht-B1* and *Rht-D1*. Principal component analysis (PCA) based on SNP genotypes to examine the population structure in our panel revealed the absence of distinct sub-populations with first two PCs explaining only 11.36% of the total variation. There seems to be present, however, a substructure dividing the varieties with respect to the wildtype allele *Rht-D1a* and the mutant allele *Rht-D1b* of the dwarfing gene *Rht-D1* on chromosome 4D (Fig 2).

Additionally, we employed a STRUCTURE-like inference algorithm LEA to reveal the correct sub-populations in our panel [38] by assuming the ancestral populations (*K*) between 1 and 10, with cross-entropy and 10 repetitions. This resulted in the distinction of sub-populations but with slight entropy shift. The bar plots and the cross-entropy plot indicated three
weak sub-clusters showing a change of slope in the curve at \(K = 3 \). The point that the curve does not reach a minimum value indicates that there might exist a slight sub-structuring in our panel. However, to accurately see the sub-population clustering, bar plots for \(K = 2–6 \) were drawn. Nevertheless, we could see no pronounced clustering among varieties (S2 Fig).

GWAS reveals Rht-D1 as a major QTL to promote AE

In total, 51 marker-trait associations (MTAs) underlying the genetic architecture of AE were identified. The significant MTAs were detected on chromosomes 1A, 1B, 2A, 4D and 5B with \(Rht-D1 \) on chromosome 4D being the most significant \((-\log_{10}(P) = 5.64)\) marker (Fig 3). Of the significant MTAs, 39 and 12 had negative and positive additive effects on the trait AE, respectively. The strong association of \(Rht-D1 \) with AE led us to divide the full set of varieties...
into two sub-panels with the varieties harboring either the wild type \textit{Rht-D1a} (212 varieties) or the mutant allele \textit{Rht-D1b} (294 varieties) and to perform a second round of GWAS on the individual panels. The phenotypic distribution of AE in these sub-panels showed that the \textit{Rht-D1a} panel had a mean value 15.91 compared to the mean of 11.81 for the \textit{Rht-D1b} panel (Fig 4). Moreover, to see if the individual panels had a pronounced population structuring, we performed PCA, which showed the absence of distinct sub-populations (S3 Fig). A second round of GWAS performed individually on \textit{Rht-D1a} and \textit{Rht-D1b} panels resulted in the detection of 14 and 31 MTAs, respectively. The GWAS model parameters were remained unchanged. The MTAs identified from the \textit{Rht-D1a} panel were present on chromosome 2D, while those from
the Rht-D1b panel were present on chromosomes 1A, 1B, 3B, 5B and 6A. The MTAs detected in these panels on chromosomes 2D, 3B and 6A were novel and remained undetected when GWAS was performed on the full-set (Fig 3 and S2 Table). While the R^2 values for the full set ranged from 1.31% to 2.47%, the sub-panels had increased R^2 values ranging from 2.54% to 4.54% (Table 1 and S2 Table). Boxplots of the most significant SNPs according to both alleles (reference and variant/minor allele) revealed the influence of the minor (variant) alleles on AE phenotype (Fig 5). Beside Rht-D1 and linked markers on chromosome 4D, markers on chromosome 5B showed a positive effect of the minor allele in the full-set of varieties, while for the Rht-D1b sub-set markers on chromosomes 1A, 3A and 5B had positive effects on AE.

Genome-wide LD analysis and connection to genome zipper help define the QTL regions for AE

Genome-wide LD analysis based on r^2 measure (Weir, 1996) between significant SNP profiles and genome-wide SNPs resulted in the detection of 330 LD-SNPs. The sequences of all the LD-SNPs blasted (BLAST) against wheat genome assembly (IWGSC1+popseq) resulted in 120 unique gene identifiers (gene IDs) on all chromosomes along with their transcript IDs and direction information (S2 Table). These gene IDs were anchored onto the genome zipper, a resource which provides an ordered scaffold of wheat genes based on synteny to the well-established genomes of Brachypodium distachyon, Sorghum bicolor and rice (Oryza sativa). With this scheme, we could anchor most of the genes (or LD-SNPs) onto the genome zipper on respective chromosomes. As assumed, the SNPs with high r^2 values were co-segregating as
they clustered in the same genetic region on respective chromosomes of genome zipper (S3 Table).

Study of the transcript profiles can help spot candidate genes for AE

The study of the transcript-profiles of all the genes in the QTL genetic regions of genome zipper revealed that some genes were expressing exclusively or relatively higher in the AE related organs (S4 Fig). The study of expression patterns of the genes from a particular region may establish an approach to spot candidate genes for other traits as well. For example, the transcript profile of the gene Traes_2AL_5BA7E2623.1 revealed its expression at relatively higher amount in flowering as compared to non-flowering organs. This gene being present on
chromosome 2A was in LD with the gene corresponded by the MS-SNP on chromosome 2A. The functional annotation revealed that this is an AP2-like ethylene responsive transcription factor (S2 Table). Interestingly, these AP2-like transcription factors are described to have functions in lodicule development and floret opening in barley (Cly1) and wheat [15–17].

Discussion

High cross-pollination rates are required for hybrid wheat seed production

Stable and heritable performance of beneficial traits is required for their appropriate biological understanding and utilization in efficient breeding of crops. However, development and deployment of homogeneous elite wheat varieties has required strict inbreeding in wheat.

![Anther extrusion for hybrid wheat breeding](https://doi.org/10.1371/journal.pone.0187744.g005)
which is a bottleneck in finding suitable pollinators. Breeding for hybrid wheat demands effective pollinators (out-crossers or male parental varieties) with stable performance across years. Therefore, defining the pools of male parental varieties with high cross-pollination capacities will serve in efficient hybrid wheat breeding.

Phenotypic selection of AE is possible with high accuracy

Anther extrusion (AE) is a major contributing trait for effective cross-pollination to improve hybrid wheat seed production. Our findings suggest that AE is a phenotypically diverse trait and varies widely among the varieties. The phenotypic distribution of AE suggests its strong quantitative nature. High genetic variance coupled with high repeatability and broad sense heritability estimates suggest that the method for AE phenotyping is reliable and the selection of AE is possible with high accuracy. These estimates are in accordance with recently published reports based on different wheat panels, methods of AE estimations and environments [9, 10, 12, 14, 18, 19]. Moreover, the strong heritable nature of AE proposes that its further genetic analyses for effective detection of quantitative trait loci (QTL) will not be compromised which is often hampered by low-quality phenotypic data [45].

High marker density coupled with rapid LD decay help examine the complex interplay of genetic variants

High resolution mapping demands a reasonable size of mapping population, a sharp decay in LD, high density of molecular markers (genetic variation) and the extent to which these markers are in linkage disequilibrium (LD) to the causative genes [24, 46]. This approach entails the principal that markers are in close vicinity to the gene controlling the phenotype and the likelihood of co-inheritance of marker plus causative gene is greater than expected under independent assortment [25]. Therefore, it warrants that the likelihood of finding the causative allele is directly proportional to the size of mapping population, genome-wide marker density, marker polymorphism and rapid LD decay. In our study, the applied population size, marker density of >27,000 SNPs and a sharp decline in LD suggested that the power of GWAS was not compromised.

GWAS suggests that AE is controlled by joint action of several genes

Although it was previously suggested that AE has a low heritability and is mainly controlled by a few, possibly, two genes [7] our results contradict these findings. The possible reasons are that the authors determined the AE in green house, used small population and worked on spring wheat. However, recent literature suggest that AE is controlled by the concerted action of several small to modest effect loci [9, 10, 18–20] which is in line with our findings. In our GWAS, we detected several MTAs which consisted of nine QTL, in total. The QTL on chromosome 4D harbored the most significant MTA with the candidate gene marker Rht-D1a. Rht-D1a is the wild type allele for the wheat reduced height (Rht) gene [47]. The presence of Rht-D1a allele compared to Rht-D1b (mutant) had a large phenotypic influence on AE resulting in ~17% increase, as the varieties harboring Rht-D1a and Rht-D1b alleles showed an average AE of 15.91 and 11.81, respectively. Similar results were obtained by Boeven, Longin (9). The remaining QTLs generally showed small effects, influencing AE either positively or negatively and imparted a minor phenotypic variance. The comparison of QTL intervals with previously published studies is difficult due to several problems e.g., the use of dissimilar mapping populations and molecular markers. Moreover, the comparison among previously published QTL shows that most of the QTL do not coincide both in linkage and association mapping studies. Based on these results, it seems that AE greatly depends on the mapping population.
background. A recent study on AE using winter wheat and SNP markers suggested several AE QTL [9]. In our study chromosome 1B harbored a QTL (~48–58 cM) signified by SNP “AX_94426392”. Boeven, Longin (9) reported a QTL on chromosome 1B represented by SNP “wsnp_Ex_c5101_9053178”. Our intra-chromosomal LD analysis shows that both of these SNPs were in LD ($r^2 = 0.53$) with each other, suggesting that they might comprise the same QTL. Similarly Rht- D1 was the most significant marker. The comparison of all other QTL regions suggested no connection.

Rht-D1a is a likely candidate QTL for improved AE

Recently, it was reported that plant height in wheat which is mainly controlled by Rht genes (Rht-B1 and Rht-D1) influences AE [18–20, 22]. Our GWAS also revealed Rht-D1a as the most significant marker associated with AE. The wild-type Rht-1 genes (Rht-B1a and Rht-D1a) encode DELLA proteins which are sensitive to gibberellin hormones (GAs). Conversely, the mutant alleles (Rht-B1b and Rht-D1b) encode forms of DELLA proteins which are relatively insensitive to GAs [47, 48]. Bioactive forms of GAs promote plant growth and their repression by Rht-1b alleles results in reduced height. Coupled with improved inputs of fertilizers, introduction of Rht-D1b allele in wheat has uplifted yield since the onset of the Green Revolution by reducing plant height by about 17% and increasing the assimilate partitioning and consequently harvest index [49]. In addition to plant height, GAs in both crop and model species regulate several floral development processes e.g., flower induction, pollen development, pollen tube growth, stamen development, filament extension, anther development and exertion [50–52]. Recently, it was reported that GAs are most likely involved in establishing anther extrusion patterning in barley spikes [53]. Based on the association of Rht-D1a and its pronounced positive effect on AE phenotype, it seems that Rht-D1a is a likely candidate gene with a prominent pleiotropic effect on AE. Increased sensitivity to GAs seems to be the reason of high AE in varieties harboring Rht-D1a. However, possibility of other genes or QTL effecting AE in wheat cannot be ruled out because GWAS identified several minor effect loci as well. For example, prevalence of Rht-D1b compared to Rht-B1b is quite high in elite European winter wheat varieties [54] which is why no association of AE with Rht-B1 was found. These results are in agreement with recent bi-parental and association studies where Rht-D1a alleles were highly associated with increased AE in wheat [9, 19, 22]. It also seems that the introduction of Rht-D1b and its homeolocus Rht-B1b to develop the short statured varieties led to improved inbreeding/self-pollination as these alleles confer dwarfism by producing more active forms of GA repressors compared to their counterparts.

AE is a trait to improve male parents in hybrid wheat breeding and selection of varieties based on Rht-D1a will help to i) produce relatively taller male plants and ii) improve pollen shedding by male parents. Taller male plants are required for ease in pollen shed on male part and active reception of pollen on stigma, on female part. Furthermore, pollen shed by taller male parents can travel longer distances.

Demarcating the critical QTL regions based on SNP-LD and the study of genes/ transcript content is an appropriate method for spotting the putative candidate genes in wheat

GWAS performed on a diverse and extensive set of genotypes takes the advantage of long recombination history and smaller LD decay [24]. Bi-parental populations segregating for particular traits, on the other hand, have narrow genetic base and far shorter recombination history. Moreover, time and difficulty to develop these populations remain chief obstacles for breeders. Due to fewer recombinations, bi-parental populations used in linkage mapping
studies have lower-resolution versus association mapping studies. This indicates that the association studies are particularly useful for dissection of complex traits to capture maker alleles located close to causal variant from a broader genetic base [25, 27, 55].

QTL regions can be demarcated by estimating the intra-chromosomal LD among the SNPs i.e., estimating the LD (r^2) between the marker with largest effect and the remaining markers on the same chromosome. Significant markers with large effects on the phenotype mostly act as proxies (by virtue of being in LD) for the causal genetic variant [55]. Demarcating the QTL regions by anchoring the markers (most significant and those in LD with it) on chromosome (gene order given in genome-zipper [42]) can help to study the genes located in those QTL regions. Moreover, annotated functions, transcript profiles and expression level of the genes in demarcated QTL regions supply information about their possible role. In our study, we noticed a sharp decline in LD with an average LD of $r^2 = 0.20$ between adjacent SNPs with a 10% quantile dropping down to 0.001. This indicates that on one hand the marker density across the wheat genome can be increased and on the other hand, the markers with LD >0.20 can be considered as one linkage block or critical QTL region. By adopting this approach, we could demarcate the specific regions on the chromosomes harboring significant MTAs by aligning all significant and LD-SNPs (those in LD to the MS-SNP) on individual chromosomes. The annotated functions and expression profiles of some of the genes in critical QTL regions suggested their involvement in GA production, stamen, anther and floral expansion. For example, genes Traes_1AL_8D078BE99.1, Traes_2AL_AC14A6352.1, Traes_4DS_4C358A987.1, Traes_4DS_7394D3FBE.1 and Traes_5BL_0333145DD.1 expressed either exclusively or at relatively fairly high amount in stamens as compared other organs. The functional annotations of these genes suggest that they mainly belong to protein kinase and synthase families which are known to have roles in various flowering related processes [56]. Moreover, the differential expressions of AP2-like ethylene-responsive transcription factors in an AE QTL on chromosome 2A propose that they are involved in flowering related processes.

Conclusions

Hybrid wheat breeding is attractive to both breeders and plant geneticists due to its potential as an alternative to break the yield barriers and understanding the genetic underpinnings of heterosis. Hybrid wheat seed set depends upon the efficient cross-pollination which is hampered by wheat’s strict inbreeding nature. Anther extrusion (AE) in wheat provides the basis for efficient out-crossing. Our results show that AE in elite European winter wheat has wide variation and is genetically stable. Therefore, strong selection response for AE can be expected in breeding programs. Our GWAS results demonstrate the quantitative nature of AE and that Rht-D1a is a major QTL to improve AE. Further understanding of pleiotropic effect of Rht-D1 on AE in wheat can help to improve AE for efficient cross-pollination.

Supporting information

S1 Note. Linkage disequilibrium analysis to define the genetic regions in wheat.
(PDF)

S1 Table. List of varieties and phenotypic information.
(XLSX)

S2 Table. List of LD-SNPs.
(XLSX)

S3 Table. Anchoring the LD-SNPs onto the genome zipper.
(XLSX)
S1 Fig. Box and whisker plots show the distribution of the mean values of the trait anther extrusion (AE) in 2015 and 2016 and their best linear unbiased estimates (BLUEs).

S2 Fig. Population structure analysis of whole wheat panel (full-set) based on SNP genotypes. Bar plots show the existence of three to five weak sub-populations. The minimal cross-entropy plot shows slight sub-structuring within the panel.

S3 Fig. Principal component analysis (PCA) on sets of varieties harboring either \textit{Rht-D1a} or \textit{Rht-D1b} alleles. \textit{n} denotes the number of varieties present in individual set.

S4 Fig. Expression profiles of the wheat genes in transcript-per-million (tpm) at log 2 scale. Color key is given in the figure with white marking no expression of genes and purple as highest expression. All genes (transcript IDs) are taken from the QTL genetic regions from genome zipper from corresponding chromosomes. Category refers to the organ categories based on AE-relatedness (blue) and un-relatedness (green).

Acknowledgments
QHM thanks DAAD (Deutscher Akademischer Austauschdienst) for supporting his PhD candidature. We acknowledge Ellen Weiß, Sonja Allner and Rosemarie Czihal for contribution in data collection. We are grateful to Olivier François, Yusheng Zhao, Martin Mascher and Andreas Börner for helpful discussions.

Author Contributions
Conceptualization: Quddoos H. Muqaddasi, Marion S. Röder.
Data curation: Quddoos H. Muqaddasi, Jörg Plieske, Martin W. Ganal, Marion S. Röder.
Formal analysis: Quddoos H. Muqaddasi.
Funding acquisition: Quddoos H. Muqaddasi, Marion S. Röder.
Investigation: Quddoos H. Muqaddasi.
Methodology: Quddoos H. Muqaddasi, Marion S. Röder.
Project administration: Quddoos H. Muqaddasi, Marion S. Röder.
Resources: Marion S. Röder.
Supervision: Klaus Pillen, Marion S. Röder.
Validation: Marion S. Röder.
Writing – original draft: Quddoos H. Muqaddasi.
Writing – review & editing: Quddoos H. Muqaddasi, Marion S. Röder.

References
1. Schnable PS, Springer NM. Progress Toward Understanding Heterosis in Crop Plants. Annu Rev Plant Biol. 2013; 64:71–88. https://doi.org/10.1146/annurev-arplant-042110-103827 PMID: 23394499
2. Kempe K, Gils M. Pollination control technologies for hybrid breeding. Molecular Breeding, 2011; 27 (4):417–37.
3. Pickett AA. Hybrid wheat-results and problems. Fortschritte der Pflanzenzüchtung (Germany). 1993.
4. Longin CFH, Mühleisen J, Maurer HP, Zhang HL, Gowda M, Reif JC. Hybrid breeding in autogamous cereals. Theor Appl Genet. 2012; 125(6):1087–96. https://doi.org/10.1007/s00122-012-1967-7 PMID: 22918662
5. D’Souza L. Studies on the suitability of wheat as pollen donor for cross pollination, compared with rye, *Triticale* and *Secaleculturium*. Zeitschrift fur Pflanzenzüchtung. 1970; 63:246–69.
6. Vries APD. Flowering biology of wheat, particularly in view of hybrid seed production—a review. Euphytica. 1971; 20(2):152–70.
7. Sage G, De Isturiz MJ. The inheritance of anther extrusion in two spring wheat varieties. Theor Appl Genet. 1974; 45(3):126–33. https://doi.org/10.1007/BF00291142 PMID: 24419327
8. Vries APD. Some aspects of cross-pollination in wheat (*Triticum aestivum* L.) 2. Anther extrusion and ear and plant flowering pattern and duration. Euphytica. 1973; 22(3):445–56.
9. Boeven PH, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T. Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet. 2016; 129(12):2343–57. https://doi.org/10.1007/s00122-016-2771-6 PMID: 27553082
10. Muqaddasi OH, Lohwasser U, Nagel M, Börner A, Pillen K, Röder MS. Genome-wide association mapping of anther extrusion in hexaploid spring wheat. PloS one. 2016; 11(5):e0155494. https://doi.org/10.1371/journal.pone.0155494 PMID: 27191600
11. Waines J, Hegde S. Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Science. 2003; 43(2):451–63.
12. Langer SM, Longin CFH, Würschum T. Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (*Triticum aestivum* L.). Plant Breeding. 2014; 133(4):433–41.
13. Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, et al. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot. 2013; 64(18):5411–28. https://doi.org/10.1093/jxb/ert333 PMID: 24179097
14. Muqaddasi OH, Reif JC, Li Z, Basnet BR, Dreisigacker S, Röder MS. Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat. Euphytica. 2017; 213(3):73. https://doi.org/10.1007/s10681-017-1863-y
15. Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, et al. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A. 2010; 107(1):490–5. https://doi.org/10.1073/pnas.0909097107 PMID: 20018663
16. Ning S, Wang N, Sakuma S, Pourkheirandish M, Wu J, Matsumoto T, et al. Structure, transcription and post-transcriptional regulation of the bread wheat orthologs of the barley cleistogamy gene Cly1. Theor Appl Genet. 2013; 126(2):1273–83. https://doi.org/10.1007/s00122-013-2052-6 PMID: 23381807
17. Ning S, Wang N, Sakuma S, Pourkheirandish M, Koba T, Komatsuwa T. Variation in the wheat AP2 homoeologs, the genes underlying lodicule development. Breeding science. 2013; 63(3):255–66. https://doi.org/10.1270/jsbbs.63.255 PMID: 24273420
18. Buerstmayr M, Buerstmayr H. Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo x Arina. Theor Appl Genet. 2015; 128(8):1519–30. https://doi.org/10.1007/s00122-015-2527-8 PMID: 25982129
19. Lu RX, Lillemo M, Skinner H, He XY, Shi JR, Ji F, et al. Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet. 2013; 126(2):317–34. https://doi.org/10.1007/s00122-013-2052-6 PMID: 23381807
20. Skinner H, Semaag K, Tarkegne Y, Maroy AG, Bjernstad Å. The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breeding. 2010; 129(2):149–55. https://doi.org/10.1111/j.1439-0523.2009.01731.x
21. Muqaddasi OH, Brassac J, Börner A, Pillen K, Röder MS. Genetic Architecture of Anther Extrusion in Spring and Winter Wheat. Front Plant Sci. 2017; 8. ARTN 754 https://doi.org/10.3389/fpls.2017.00754 PMID: 28559904
22. He X, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E. Dwarfing Genes *Rht-B1b* and *Rht-D1b* Are Associated with Both Type I FHB Susceptibility and Low Anther Extrusion in Two Bread Wheat Populations. PloS one. 2016; 11(9):e0162499. https://doi.org/10.1371/journal.pone.0162499 PMID: 27606928
23. Muqaddasi OH, Brassac J, Börner A, Pillen K, Röder MS. Genetic architecture of anther extrusion in spring and winter wheat. Front Plant Sci. 2017; 8:754. https://doi.org/10.3389/fpls.2017.00754 PMID: 28559904
24. Mackay TF. The genetic architecture of quantitative traits. Annual review of genetics. 2001; 35(1):303–39.
25. Collins FS, Guyer MS, Chakravarti A. Variations on a theme: cataloging human DNA sequence variation. Science. 1997; 278(5343):1580–1. PMID: 9411782
26. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996; 273(5281):1516–7. https://doi.org/10.1126/science.273.5281.1516 PMID: 8801636
27. Hamblin MT, Buckler ES, Jannink J-L. Population genetics of genomic-based crop improvement methods. Trends in Genetics. 2011; 27(3):98–106. https://doi.org/10.1016/j.tig.2010.12.003 PMID: 21227531
28. Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, et al. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J. 2017; 15(3):390–401. https://doi.org/10.1111/pbi.12635 PMID: 27627182
29. Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014; 12(6):787–96. https://doi.org/10.1111/pbi.12183 PMID: 24646323
30. Consortium IWGS. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014; 345(6194):1251788. https://doi.org/10.1126/science.1251788 PMID: 25035500
31. Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. URL http://www.R-project.org. 2016.
32. Bates D, Machler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015; 67(1):1–48.
33. Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R. "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet. 2002; 105(6–7):1038–42. https://doi.org/10.1007/s00122-002-1048-4 PMID: 12582931
34. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 2007; 115(5):721–33. https://doi.org/10.1007/s00122-007-0603-4 PMID: 17634915
35. VanRaden PM. Efficient methods to compute genomic predictions. Journal of Dairy Science. 2008; 91(11):4414–23. https://doi.org/10.3168/jds.2007-0980 PMID: 18946147
36. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPI: genome association and prediction integrated tool. Bioinformatics. 2012; 28(18):2397–9. https://doi.org/10.1093/bioinformatics/bts444 PMID: 22796960
37. Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and efficient estimation of individual ancestry coefficients. Genetics. 2014; 196(4):973–83. https://doi.org/10.1534/genetics.113.160572 PMID: 24496008
38. Frichot E, François O. LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution. 2015; 6(8):925–9.
39. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006; 38(2):203–8. https://doi.org/10.1038/ng1702 PMID: 16380716
40. Weir BS. Genetic data analysis II. Sinauer. Sunderland, MA. 1996:73.
41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology. 1990; 215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 24011260
42. Spannagl M, Martis MM, Pfeifer M, Nussbaumer T, Mayer KF. Analysing complex Triticeae genomes–concepts and strategies. Plant Methods. 2013; 9(1):35. https://doi.org/10.1186/1746-4811-9-35 PMID: 23047199
43. Borrill P, Ramirez-Gonzalez R, Uauy C. expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform. Plant Physiol. 2016; 170(4):2172–86. https://doi.org/10.1104/pp.15.01667 PMID: 28663702
44. Gu Z, Ellis R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016, 32(18):2847–9. https://doi.org/10.1093/bioinformatics/btw313 PMID: 27207943
45. Liu W, Maurer HP, Reif JC, Melchinger AE, Utz HF, Tucker MR, et al. Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity. 2013; 110(1):71–9. https://doi.org/10.1038/hdy.2012.63 PMID: 23047199
46. Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet. 2004; 5(2):89–100. https://doi.org/10.1038/nrg1270 PMID: 14735120
47. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999; 400(6741):256–61. https://doi.org/10.1038/22307 PMID: 10421366

48. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol. 2011; 157(4):1820–31. https://doi.org/10.1104/pp.111.183657 PMID: 22013218

49. Flintham J, Börner A, Worland A, Gale M. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. Journal of Agricultural Science. 1997; 128:11–25.

50. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, et al. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development. 2004; 131(5):1055–64. https://doi.org/10.1242/dev.00992 PMID: 14973286

51. Chhn T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, et al. Gibberellin regulates pollen viability and pollen tube growth in rice. The Plant Cell. 2007; 19(12):3876–88. https://doi.org/10.1105/tpc.107.054759 PMID: 18083909

52. Mutasa-Göttgens E, Hedden P. Gibberellin as a factor in floral regulatory networks. J Exp Bot. 2009; 60:1979–89. https://doi.org/10.1093/jxb/erp040 PMID: 19264752

53. Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, et al. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet. 2017; 49(1):157–61. https://doi.org/10.1038/ng.3717 PMID: 27841879

54. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, et al. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PloS one. 2014; 9(11):e113287. https://doi.org/10.1371/journal.pone.0113287 PMID: 25405621

55. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, et al. Association mapping: critical considerations shift from genotyping to experimental design. The Plant Cell. 2009; 21(8):2194–202. https://doi.org/10.1105/tpc.109.084337 PMID: 19654263

56. Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008; 59:225–51. https://doi.org/10.1146/annurev.arplant.59.032607.092804 PMID: 18173378