ON THE CLIQUE NUMBER OF NON-COMMUTING GRAPHS OF CERTAIN GROUPS

A. ABDOLLAHI, A. AZAD, A. MOHAMMADI HASSANABADI AND M. ZARRIN

Abstract. Let G be a non-abelian group. The non-commuting graph \mathcal{A}_G of G is defined as the graph whose vertex set is the non-central elements of G and two vertices are joint if and only if they do not commute. In a finite simple graph Γ the maximum size of a complete subgraph of Γ is called the clique number of Γ and it is denoted by $\omega(\Gamma)$. In this paper we characterize all non-solvable groups G with $\omega(\mathcal{A}_G) \leq 57$, where the number 57 is the clique number of the non-commuting graph of the projective special linear group $\text{PSL}(2, 7)$. We also complete the determination of $\omega(\mathcal{A}_G)$ for all finite minimal simple groups.

1. Introduction and results

Let G be a non-abelian group and $Z(G)$ be its center. Following [1] and [11], the non-commuting graph \mathcal{A}_G of G is defined as the graph whose vertex set is $G \setminus Z(G)$ and two distinct vertices a and b are joint whenever $ab \neq ba$. Let Γ be a simple graph. The set of vertices of every complete subgraph of Γ is called a clique of Γ. The maximum size (if it exists) of a complete subgraph of Γ is called the clique number of Γ and it is denoted by $\omega(\Gamma)$. Thus a clique of \mathcal{A}_G is no more than a set of pairwise non-commuting elements of G. However, as the following results show, the clique number of the non-commuting graph of a group not only has some influence on the structure of a group but also finding it, is important in some areas such as cohomology ring of a group. By a famous result of Neumann [12] answering a question of P. Erdős, we know that the finiteness of all cliques in \mathcal{A}_G implies the finiteness of the factor group $G/Z(G)$ (and so $\omega(\mathcal{A}_G)$ is finite). In [2, Theorem 1.4], non-solvable groups G satisfying the condition $\omega(\mathcal{A}_G) \leq 21$ are characterized. Specifically, such a group G is isomorphic to $Z(G) \times A_5$, where A_5 is the alternating group of degree 5. Also according to [2, Theorem 1.5], the derived length of a non-abelian solvable group G is at most $2\omega(\mathcal{A}_G) - 3$.

1991 Mathematics Subject Classification. 20D60.

Key words and phrases. Pairwise non-commuting elements of group; Non-commuting graph; Clique number of graph;
For a prime number \(p \), a finite \(p \)-group \(G \) is called extra-special if the center, the Frattini subgroup and the derived subgroup of \(G \) all coincide and are cyclic of order \(p \). The clique number of extra-special \(p \)-groups is important as it provides combinatorial information which can be used to calculate their cohomology lengths (The cohomology length of a non-elementary abelian \(p \)-group is a cohomology invariant defined as a result of a Serre’s theorem \([15]\)). Chin \([7]\) has obtained upper and lower bounds for clique numbers of non-commuting graphs of extra-special \(p \)-groups, for odd prime numbers \(p \). Specifically, it is proved in \([7, \text{Theorem 2.2}]\) that if \(G \) is an extra-special group of order \(p^{2n+1} \), then
\[\omega(A_{G_n}) = p + 1 \text{ and } np + 1 \leq \omega(A_{G_{n+1}}) \leq \frac{p(p-1)^n - 2}{p - 2}. \]

For \(p = 2 \), it has been shown by Isaacs (see \([3, \text{p. 40}]\)) that \(\omega(A_G) = 2m + 1 \) for any extra-special group \(G \) of order \(2^{2m+1} \).

Finding the clique number of the non-commuting graph of a group itself is of independent interest as a pure combinatorial problem. Brown in \([5] \) and \([6] \) has studied the clique and chromatic numbers of \(A_{S_n} \), where \(S_n \) is the symmetric group of degree \(n \). It is proved in \([9]\) that \(\omega(A_{S_n}) \neq \chi(A_{S_n}) \) for all \(n \geq 15 \), where \(\chi(\Gamma) \) is the chromatic number of the graph \(\Gamma \). It is easy to see that the chromatic number of \(A_G \) is equal to the minimum number (if it exists) of abelian subgroups of \(G \) whose set-theoretic union is the whole group \(G \).

In \([2]\) the authors have determined non-solvable groups \(G \) with \(\omega(A_G) \leq 21 \), where the number \(21 \) is the clique number of the non-commuting graph of the least (with respect to the order) non-abelian simple group \(A_5 \). The clique number of the non-commuting graph of \(\text{PSL}(2, 7) \) (which is the second-least order non-abelian simple group) is \(57 \). Here we give a characterization of non-solvable groups \(G \) with \(\omega(A_G) \leq 57 \).

Theorem 1.1. Let \(G \) be a finite non-solvable group such that \(\omega(A_G) \leq 57 \). Then \(G \) has one of the following structures

1. \(G \cong Z(G) \times \text{PSL}(2, p) \), where \(p \in \{5, 7\} \);
2. \(G = Z(G)K \), where \(K \) is a subgroup of \(G \) isomorphic to \(\text{SL}(2, p) \) and \(p \in \{5, 7\} \);
3. \(G = G''(a)S \), where \(a^2 \in Z(G) \) and \(G'' \cong A_5 \) or \(\text{SL}(2, 5) \), and \(S \) is the solvable radical of \(G \);
4. \(G = G''(a)Z(G) \), where \(a^2 \in Z(G) \) and \(G'' \cong \text{PSL}(2, 7) \) or \(\text{SL}(2, 7) \).

In \([1, \text{Lemma 4.4}]\), the clique numbers of \(A_G \) of all projective special linear groups \(G = \text{PSL}(2, q) \) have been obtained. A family of the minimal simple groups
CLIQUE NUMBER

(i.e. finite non-abelian simple groups all of whose proper subgroups are solvable) are projective special linear groups of degree 2 over a finite field. All minimal simple groups were completely classified by a well-known result of Thompson [17]. In Section 3, we shall find the clique number of A_G for the remaining finite minimal simple groups G i.e., the Suzuki groups $Sz(2^{2m+1})$ and the projective special linear group $PSL(3,3)$ over the field with 3 elements. As Thompson’s classification of the minimal simple groups is a very useful tool to obtain solvability criteria in the class of finite groups (see [18] for a recent and interesting application of Thompson’s theorem), we hope that these new information might be useful to obtain new solvability criterion.

A clique of a graph Γ is called a maximum clique if its size is $\omega(\Gamma)$. We say that a clique X of a graph can be extended to a maximum clique if there exists a maximum clique containing X. We will prove that every clique of A_G for every minimal simple group G except $PSL(3,3)$ can be extended to a maximum clique of A_G (see Proposition 2.6 and Theorem 1.2).

Theorem 1.2. Let $G = Sz(q)$ ($q = 2^{2m+1}$ and $m > 0$) be the Suzuki group over the field with q elements (see [10, p. 182]). Then

1. $\omega(Sz(q)) = (q^2 + 1)(q - 1) + \frac{q^2(q^2+1)}{2} + \frac{q^2(q^2+1)(q-1)}{4(q+2r+1)} + \frac{q^2(q^2+1)(q-1)}{4(q-2r+1)}$, where $r = 2^m$.
2. Every clique of A_G can be extended to a maximum clique of A_G.

Theorem 1.3. $\omega(A_{PSL(3,3)}) = 1067$.

We use the usual notation: for example $C_G(a)$ is the centralizer of an element a in a group G, $N_G(H)$ is the normalizer of a subgroup H in G, $GL(n,q)$, $SL(n,q)$, $PGL(n,q)$ and $PSL(n,q)$ denote respectively, the general linear group, the special linear group, the projective general linear group, and the projective special linear group of degree n over the finite field of order q, and D_{2n} is the dihedral group of order $2n$. A family $\{G_1, \ldots, G_k\}$ of proper subgroups of a group G is called a partition of G if every non-identity element of G belongs to exactly one of the G_i’s.

2. **Proofs**

To prove Theorem 1.3 we need the following lemmas.

Lemma 2.1. Let G be a finite non-abelian group.

(i) For any non-abelian subgroup H of G, $\omega(A_H) \leq \omega(A_G)$.

(ii) For any non-abelian factor group G/N of G, $\omega(A_{G/N}) \leq \omega(A_G)$.

Proof. It is straightforward. □
Lemma 2.2. $\omega(A_{PGL(2,q)}) = \begin{cases} 4 & \text{if } q = 2 \\ 10 & \text{if } q = 3 \\ q^2 + q + 1 & \text{if } q > 3 \end{cases}$

Proof. By Lemma 2.1, we have $\omega(A_{PSL(2,q)}) \leq \omega(A_{PGL(2,q)}) \leq \omega(A_{GL(2,q)})$.

Now, if $q > 5$ or $q = 4$, then by [1, Lemma 4.4] $q^2 + q + 1 = \omega(A_{PSL(2,q)}) \leq \omega(A_{PGL(2,q)}) \leq \omega(A_{GL(2,q)}) = q^2 + q + 1$.

Thus $\omega(A_{PGL(2,q)}) = q^2 + q + 1$, for $q = 4$ and $q > 5$. Also since $PGL(2,5) \cong S_5$ and $PGL(2,3) \cong S_4$ it follows from [5, p. 2] that $\omega(A_{PGL(2,5)}) = 31$, $\omega(A_{PGL(2,3)}) = 10$ and as $PGL(2,2) \cong PSL(2,2)$, by [1] Lemma 4.4 we have that $\omega(A_{PGL(2,2)}) = 4$. This completes the proof. □

Theorem 2.3. Let G be a non-abelian simple group such that $\omega(A_G) \leq 57$. Then $G \cong A_5$ or $G \cong PSL(2,7)$.

Proof. By Neumann’s result [12], $G/Z(G)$ is finite and since G is a non-abelian simple group, we have that $Z(G) = 1$. Thus G is finite. Suppose that the result is false, and let M be a minimal counter example. Thus every proper non-abelian simple section of M is isomorphic to A_5 or $PSL(2,7)$. By [4] Proposition 4] M is isomorphic to one of the following:

- PSL(2,2m), $m = 4$ or a prime;
- PSL(2,3p), PSL(2,5p), PSL(2,7p), p a prime;
- PSL(2,p), $p > 7$;
- PSL(3,3), PSL(3,5), PSL(3,7);
- PSU(3,3), PSU(3,4), PSU(3,7) (the projective special unitary group of degree 3 over the finite field of order 3,4 and 7 respectively) or $Sz(2^p)$, p an odd prime.

Now, for every prime number p and every integer $n \geq 0$, by [1] Lemma 4.4], $\omega(A_{PSL(2,p^n)}) = p^{2n} + p^n + 1$. Thus since $PSL(2,2^2) \cong A_5$, among the projective special linear groups, we only need to investigate $PSL(3,3)$, $PSL(3,5)$ and $PSL(3,7)$.

For each prime divisor p of $|G|$, let $\nu_p(G)$ be the number of Sylow p-subgroups of G.

If p is a prime number dividing $|G|$ such that the intersection of any two distinct Sylow p-subgroups is trivial, then by [8] Lemma 3, we must have $\nu_p(G) \leq 57 (*)$.

Now $PSL(3,3)$ has order $2^4 \times 3^3 \times 13$, so $\nu_{13}(PSL(3,3)) > 57$.

$PSL(3,5)$ has order $2^5 \times 3 \times 5^3 \times 31$, so $\nu_{31}(PSL(3,5)) > 57$.

$PSL(3,7)$ has order $2^5 \times 3 \times 7^3 \times 19$, so $\nu_{19}(PSL(3,7)) > 57$.
Proposition 2.4. Let $G = \text{PGL}(2, q)$, where q is a power of a prime number p and let $k = \gcd(q - 1, 2)$. Then

1. A Sylow p-subgroup P of G is an elementary abelian group of order q and the number of Sylow p-subgroups of G is $q + 1$.
2. G contains a cyclic subgroup D of order $q - 1$ such that the number of conjugates of D is $\frac{q(q+1)}{2}$.
3. G contains a cyclic subgroup I of order $q + 1$ such that the number of conjugates of I is $\frac{q(q-1)}{2}$.
4. The set $\{P^x, D^x, I^x \mid x \in G\}$ is a partition for G. If q is odd, then the following hold for non-trivial elements $a \in D$ and $b \in P$.
 (a) If a is not of order 2, then $C_G(a) = D$.
 (b) If a is of order 2, then $C_G(a) \cong D_{2(q-1)}$.
 (c) $C_G(b) = P$.
5. If $q \equiv 0 \pmod{4}$, then $G = \text{PGL}(2, q) \cong \text{PSL}(2, q)$ and by Proposition 3.21 of [1], if a is a non-trivial element of G, then

$$C_G(a) = \begin{cases} P^x & \text{if } a \in P^x \\ D^x & \text{if } a \in D^x \\ I & \text{if } a \in I^x \end{cases}$$

Proof. The proof follows from the results in Chapter II of [1] concerning projective linear groups. \hfill \square

A group G is called an AC-group if the centralizer of every non-central element is abelian.

Lemma 2.5. Let G be a non-abelian AC-group such that $\omega(\mathcal{A}_G)$ is finite. Then every non-empty clique of \mathcal{A}_G can be extended to a maximum clique set of G.

Proof. Let $\omega(\mathcal{A}_G) = n$. Then there exist elements a_1, \ldots, a_n in G such that $[a_i, a_j] \neq 1$, for all $i \neq j$. Thus $G = C_G(a_1) \cup \cdots \cup C_G(a_n)$ and also $C_G(a_i) \cap C_G(a_j) = Z(G)$, since G is an AC-group. Therefore $\{C_G(a_i) \setminus Z(G) \mid i = 1, \ldots, n\}$ is a partition for $G \setminus Z(G)$. Let X be a clique of \mathcal{A}_G. Then, for each i, $1 \leq i \leq m$, $\omega(X) = a_i$.
proof of Proposition 3.21 of [1]). For \(q = 5 \), it is not hard to see that \(q \) of order \(a \in \mathbb{Z} \) is a cyclic subgroup of order \(2^k \), where \(k = \gcd(q - 1, 2) \). Let \(a \) be a non-trivial element of \(G \). Then \(a \in M \), for some \(M \in \mathcal{P} \). Now take an arbitrary non-trivial element \(b_N \) in each member \(N \in \mathcal{P} \) which is different from \(M \). Let \(X \) be such a set of elements. For \(q > 5 \), it is not hard to see that \(\{a\} \cup X \) is a maximum clique set for \(\mathcal{A}_G \) (see the proof of Proposition 3.21 of [1]). For \(q \leq 5 \), see the proof of Proposition 3.21 of [1].

Proposition 2.6. Let \(G = \text{PSL}(2, q) \) or \(\text{PGL}(2, q) \), where \(q \) is a power of a prime \(p \). Then any singleton containing a non-central element of \(G \) can be extended to a maximum clique set of \(\mathcal{A}_G \).

Proof. We give only the proof for \(G = \text{PSL}(2, q) \), for the other group the proof is similar and Lemma 2.4 may be used in the proof.

By [1] Proposition 3.21, \(\mathcal{P} = \{P^x, A^x, B^x | x \in G\} \) is a partition for \(G \), where \(P \) is a Sylow \(p \)-subgroup, \(A \) is a cyclic subgroup of order \(\frac{2^k - 1}{k} \) and \(B \) is a cyclic subgroup of order \(\frac{2^k - 1}{k} \), where \(k = \gcd(q - 1, 2) \). Let \(a \) be a non-trivial element of \(G \). Then \(a \in M \), for some \(M \in \mathcal{P} \). Now take an arbitrary non-trivial element \(b_N \) in each member \(N \in \mathcal{P} \) which is different from \(M \). Let \(X \) be such a set of elements. For \(q > 5 \), it is not hard to see that \(\{a\} \cup X \) is a maximum clique set for \(\mathcal{A}_G \) (see the proof of Proposition 3.21 of [1]). For \(q \leq 5 \), see the proof of Proposition 3.21 of [1].

Theorem 2.7. Let \(G \) be a semi-simple group, such that \(\omega(\mathcal{A}_G) \leq 57 \). Then \(G \cong \text{A}_5, \text{S}_5, \text{PSL}(2, 7) \) or \(\text{PGL}(2, 7) \).

Proof. By Neumann’s result [12], \(G \) is finite, since in a semi-simple group the center is trivial. Let \(R \) be the centerless CR-Radical of \(G \). Then \(R \) is a direct product of a finite number of finite non-abelian simple groups, say \(R \cong S_1 \times \ldots \times S_m \). By Lemma 2.1 for each \(i \in \{1, \ldots, m\} \), \(\omega(S_i) \leq 57 \). Now by Theorem 2.3, for each \(i \in \{1, \ldots, m\} \), \(S_i \cong \text{A}_5 \) or \(S_i \cong \text{PSL}(2, 7) \). Since \(\omega(\mathcal{A}_{S_i}) \leq 21 \), it follows from [2] Lemma 2.2 that \(m = 1 \). Therefore \(R \cong \text{A}_5 \) or \(R \cong \text{PSL}(2, 7) \). We know that \(C_G(R) = 1 \) and so \(G \) is embedded into \(\text{Aut}(R) \). If \(R \cong \text{A}_5 \), \(\text{Aut}(R) \cong \text{S}_5 \) and so \(G \cong \text{A}_5 \) or \(G \cong \text{S}_5 \); if \(R \cong \text{PSL}(2, 7) \), then \(\text{Aut}(R) \cong \text{PGL}(2, 7) \) and \(G \cong \text{PSL}(2, 7) \) or \(G \cong \text{PGL}(2, 7) \). This completes the proof.

For a finite group \(G \), \(\text{Sol}(G) \) denotes the solvable radical of \(G \), i.e., the largest normal solvable subgroup of \(G \).

Corollary 2.8. Let \(G \) be a finite group such that \(\omega(\mathcal{A}_{\text{Sol}(G)}) = 57 \). Then \(\frac{G}{\text{Sol}(G)} \cong \text{PSL}(2, 7) \) or \(\frac{G}{\text{Sol}(G)} \cong \text{PGL}(2, 7) \).

Proof. Since for any finite group \(M \), \(M/\text{Sol}(M) \) has no non-trivial and proper normal abelian subgroup, the proof follows from Theorem 2.7.
Lemma 2.9. Let G be a finite non-solvable group such that $\omega(A_G) \leq 57$ and $\frac{G}{Z(G)} \cong A_5$. Then $G \cong Z(G) \times A_5$ or $G = Z(G)\text{SL}(2, 5)$.

Proof. Let $S = \text{Sol}(G)$. Suppose that $C_G(S) = G$. Thus $S \leq Z(G)$ and so $S = Z(G)$. Now, consider the central extension $Z(G) \rightarrow G \rightarrow \frac{G}{Z(G)}$. By a similar argument as in [2 Lemma 4.2], we have that $K = G' \cap Z(G)$ is of order no more than 2, $G = G'Z(G)$ and $\frac{G}{K} \cong A_5$. Thus [2 Lemma 4.2] implies that there is a subgroup L of G' such that $G' = K \times L$ and $L \cong A_5$ or $G' \cong \text{SL}(2, 5)$. Therefore $G = G'Z(G) = LKZ(G) = LZ(G)$ and it is clear that $L \cap Z(G) = 1$ or $G = G'Z(G) \cong \text{SL}(2, 5)Z(G)$. Thus $G \cong A_5 \times Z(G)$ or $G = Z(G)\text{SL}(2, 5)$.

Now suppose that $C_G(S)$ is a proper (normal) subgroup of G. If $C_G(S)$ is solvable, $C_G(S) \leq S$. Now by [2 Remark 2.9], $\frac{G}{S} = \bigcup_{i=1}^{21} P_i$, where P_1, \ldots, P_{21} are all the Sylow subgroups of $\frac{G}{S}$. Assume that P_1, \ldots, P_{10} are Sylow 3-subgroups, P_{11}, \ldots, P_{17} are Sylow 5-subgroups, and P_{18}, \ldots, P_{21} are Sylow 2-subgroups of G. Now if we choose any element $a_iS \in P_i \setminus \{1\}$ ($i = 1, \ldots, 21$), then the set $\{a_1S, \ldots, a_{21}S\}$ is a maximum clique set for $\frac{G}{S}$ and $P_i = C_{\frac{G}{S}}(a_iS)$. For all $i \in \{1, \ldots, 10\}$, $|a_iS| = 3$ and for $i \in \{11, \ldots, 17\}$, $|a_iS| = 5$. Thus $C_{\frac{G}{S}}(a_iS) = \frac{(a_iS)^2}{S} = \langle a_iS \rangle$. Since $a_i \not\in S$ and for $i \in \{1, \ldots, 17\}$, $|a_iS|$ is prime, $a_i \not\in C_G(S)$ for each $i \in \{1, \ldots, 17\}$. Thus there exists $s_i \in S$ such that $a_is_i \not= s_ia_i$ for each $i \in \{1, \ldots, 17\}$. It is now easy to see that the set $\{a_is_i, a_i^2s_i \mid i = 1, \ldots, 10\} \cup \{a_ja_js_j, a_j^2s_j, a_j^3s_j, a_j^4s_j \mid j = 11, \ldots, 17\}$ is a clique set of A_G. It follows that $\omega(A_G) \geq 65$ which is a contradiction.

Now suppose that $C_G(S)$ is not solvable. Thus $\frac{C_G(S)S}{S}$ is not solvable and so $C_G(S)S = G$. Let N be a non-solvable subgroup of $C_G(S)$ of the least order. It follows that $NS = G$,

\[
\frac{N}{N \cap S} \cong \frac{NS}{S} = \frac{G}{S} \cong A_5,
\]

$\text{Sol}(N) = N \cap S$ and every proper subgroup of N is solvable.

If $\text{C}_N(\text{Sol}(N)) = N$, then $Z(N) = \text{Sol}(N)$. By the first part of the proof, $N = Z(N) \times A_5$ or $N = Z(N)\text{SL}(2, 5)$ which imply that $G = SN = S \times A_5$ or $G = \text{SSL}(2, 5)$, respectively. If $G = S \times A_5$, then by [2 Lemma 2.2], S is abelian. It follows that $G = \text{SC}_{C_G}(S) = C_G(S)$, a contradiction, as we are assuming $G \not= C_G(S)$.

Therefore $G = \text{SSL}(2, 5)$. Let $\{s_1, s_2, s_3\}$ be a clique of A_S and $\{b_1Z, b_2Z, \ldots, b_{21}Z\}$ be a (maximum) clique set of $\frac{\text{SL}(2, 5)}{Z} \cong A_5$, where $Z = Z(\text{SL}(2, 5))$. Then $[b_i, b_j] \not\in Z$, whenever $i \not= j$ and $i, j \in \{1, 2, \ldots, 21\}$. Now $(b_is_i)(b_js_k) = (b_js_k)(b_is_r)$ if and only if $[b_i, b_j] = [s_r^{-1}, s_i^{-1}] \in S' \cap \text{SL}(2, 5) \subseteq Z$, where $i, j \in \{1, 2, \ldots, 21\}$ and $r, k \in \{1, 2, 3\}$. It follows that $\{b_1s_i, b_2s_i, b_3s_i \mid i = 1, 2, 3\}$ is a clique set for
homomorphism $\delta : M(G/B) \to B$ so that $\text{Im} \, \delta = G' \cap B$, where $M(G/B)$ is the Schur multiplier of G/B (see [14] page 354, Exercise 10). On the other hand, we know that the Schur multiplier of $\text{PSL}(2,7)$ is \mathbb{Z}_2. Hence $G' \cap B = B$ and so $B \leq G'$. It follows that G is a perfect group of order 336. It is well-known that the only perfect group of order 336 is $\text{SL}(2,7)$. This completes the proof. \qed
Lemma 2.13. Let \(G \) be a finite non-solvable group such that \(\omega(A_G) \leq 57 \) and \(\frac{G}{\mathbb{Z}(G)} \cong \text{PSL}(2,7) \). Then \(G \cong \text{Z}(G) \times \text{PSL}(2,7) \) or \(G \cong \text{Z}(G)\text{SL}(2,7) \).

Proof. Since \(57 = \omega(A_G) \leq \omega(A_G) \leq 57 \), we have \(\omega(A_G) = \omega(A_G) = 57 \). By Lemma 2.11 \(S = \text{Z}(G) \) and since \(\frac{G}{\mathbb{Z}(G)} \cong \text{PGL}(2,7) \) and it follows from Lemma 2.13 that \(\text{PSL}(2,7) \). Thus Lemma 2.12 implies that there is a subgroup \(L \) of \(G' \) such that \(G' = K \times L \) or \(G' \cong \text{SL}(2,7) \) and \(L \cong \text{PSL}(2,7) \). Now if \(G' = K \times L \), then \(G = G'\text{Z}(G) = KL\text{Z}(G) = L\text{Z}(G) \) and it is clear that \(L \cap \text{Z}(G) = 1 \). So \(G = L \times \text{Z}(G) \cong \text{PSL}(2,7) \times \text{Z}(G) \). Otherwise \(G' \cong \text{SL}(2,7) \), and so \(G \cong \text{Z}(G)\text{SL}(2,7) \). \(\square \)

Lemma 2.14. Let \(G \) be a finite non-solvable group such that \(\omega(A_G) \leq 57 \) and \(\frac{G}{\mathbb{Z}(G)} \cong \text{PGL}(2,7) \). Then \(G = G'^{(a)}\text{Z}(G) \), where \(a^2 \in \text{Z}(G) \) and \(G'^{(a)} \cong \text{PSL}(2,7) \) or \(G'^{(a)} \cong \text{SL}(2,7) \).

Proof. Since \(57 = \omega(A_G) \leq \omega(A_G) \leq 57 \), we have \(\omega(A_G) = \omega(A_G) = 57 \). By Lemma 2.11 \(S = \text{Z}(G) \) and so \(\frac{G}{\mathbb{Z}(G)} \cong \text{PGL}(2,7) \) and it follows from Lemma 2.13 that \(\frac{G'}{\mathbb{Z}(G)} \cong \text{PSL}(2,7) \) or \(G'\mathbb{Z}(G) = \text{Z}(G)\text{SL}(2,7) \) and \(|\frac{G}{\mathbb{Z}(G)} : \frac{G'\mathbb{Z}(G)}{\mathbb{Z}(G)}| = 2 \). Thus \(G'^{(a)} \cong \text{PSL}(2,7) \) or \(G'^{(a)} \cong \text{SL}(2,7) \). Suppose that \(a\mathbb{Z}(G) \) is an element of \(\frac{G}{\mathbb{Z}(G)} \) \(\frac{G'\mathbb{Z}(G)}{\mathbb{Z}(G)} \) of order 2. Then \(G = G'^{(a)}\text{Z}(G) \), where \(a^2 \in \text{Z}(G) \) and \(G'^{(a)} \cong \text{PSL}(2,7) \) or \(G'^{(a)} \cong \text{SL}(2,7) \). \(\square \)

Proof of Theorem 1.1. This follows from Lemmas 2.8, 2.11, 2.13 and 2.14.

3. Clique Numbers of the Non-Commuting Graphs of the Minimal Simple Groups

For a non-trivial abelian group \(A \), we define \(\omega(A_A) = 1 \).

Lemma 3.1. Let \(G \) be a group such that there exist non-trivial subgroups \(A_1, \ldots, A_n \) of \(G \) with \(G = \bigcup_{i=1}^{n} A_i \) and \(A_i \cap A_j = \text{Z}(G) \) for \(i \neq j \).

1. If \(C_G(g) \leq A_i \) for all \(g \in A_i \text{Z}(G) \), then \(\omega(A_G) = \sum_{i=1}^{n} \omega(A_{A_i}) \).

2. If every clique of \(A_{A_i} \) can be extended to a maximum clique of \(A_{A_i} \) for each \(i \in \{1, \ldots, n\} \), then the same property for \(A_G \) is true. In particular, if all \(A_i \)'s are either abelian or AC-groups, the mentioned property holds for \(A_G \).

Proof. (1) If \(X \) is any clique of \(A_G \), then \(X = \bigcup_{i=1}^{n} X_i \), where \(X_i \subset A_i \text{Z}(G) \) for each \(i \in \{1, \ldots, n\} \). By hypothesis, \(|X| = \sum_{i=1}^{n} |X_i| \) and since \(|X_i| \leq \omega(A_{A_i}) \), it follows that \(|X| \leq \sum_{i=1}^{n} \omega(A_{A_i}) \). Now let \(W_i \) be a maximum clique of \(A_{A_i} \) for each \(i \in \{1, \ldots, n\} \). We claim that \(W = \bigcup_{i=1}^{n} W_i \) is a maximum clique for \(A_G \). Suppose, for
a contradiction, that there exist two distinct commuting elements \(a \) and \(b \) in \(\bigcup_{i=1}^{n} W_i \). Thus there exist \(i \neq j \) such that \(a \in A_i \) and \(b \in A_j \). Therefore \(a, b \in C_G(b) \), and so \(a \in A_i \cap A_j = Z(G) \), which is impossible. Since \(|W| = \sum_{i=1}^{n} \omega(A_{A_i}) \), the proof of (1) is complete.

(2) It is straightforward.

\[\square \]

Proof of Theorem 1.2 (i) The Suzuki group \(G \) contains subgroups \(F, A, B \) and \(C \) such that \(|F| = q^2, |A| = q - 1, |B| = q - 2r + 1 \) and \(|C| = q + 2r + 1 \) (see [10], Chapter XI, Theorems 3.10 and 3.11). Also by [10] pp. 192-193, Theorems 3.10 and 3.11, the conjugates of \(A, B, C \) and \(F \) in \(G \) form a partition for \(G \), and \(A, B, C \) are cyclic. These subgroups are all centralizers of some elements in \(G \) and \(F \) is a Sylow \(2 \)-subgroup of \(G \).

Now [10] Chapter XI, Theorems 3.10 and 3.11 implies that the number of conjugates of \(C, B, A \) and \(F \) in \(G \) are respectively, \(\alpha = \frac{q^2(q^2(q^2+1)}{4(q+2r+1)}, \beta = \frac{q^2(q^2(q^2+1)}{4(q-2r+1)}, \gamma = \frac{q^2(q^2+1)}{2} \) and \(\delta = q^2 + 1 \) and also

\[G = \bigcup_{i=1}^{\beta} C_G(f_i) \bigcup_{i=1}^{\gamma} C_G(a_i) \bigcup_{i=1}^{\beta} C_G(b_i) \bigcup_{i=1}^{\gamma} C_G(c_i). \]

Now by [10] Chapter XI, proof of Lemma 5.9, \(|C_F(g) : Z(F)| = 2 \), for all \(g \in F \setminus Z(F) \). If \(C_F(g) = H \), then \(|Z(F)F| = 2 \) which implies that \(H \) is abelian. It follows that \(F \) is an AC-group. Let \(\{a_1,a_2,\ldots,a_n\} \) be a clique of \(A_F \). Then \(F = C_F(a_1) \cup \cdots \cup C_F(a_n) \) and the set \(\{C_F(a_i) \mid i = 1,2,\ldots,n\} \) forms a partition for \(F \). Thus \(\omega(A_F) = q - 1 \). Now it follows from Lemma 3.11 that

\[\omega(A_{S_2(q)}) = (q^2 + 1)(q - 1) + \frac{q^2(q^2+1)}{2} + \frac{q^2(q^2+1)(q - 1)}{4(q+2r+1)} + \frac{q^2(q^2+1)(q - 1)}{4(q-2r+1)}. \]

(ii) It follows from Lemma 3.1 and the proof of part (i).

\[\square \]

Proof of Theorem 1.3 Let \(G = \text{PSL}(3, 3) \). It is easy to see (e.g., by GAP [16]) that the set of order elements of \(G \) is \(\{1,2,3,4,6,8,13\} \) and if \(A = \{C_G(g) \mid g \in G, |C_G(g)| = 6\}, B = \{C_G(g) \mid g \in G, |C_G(g)| = 8\}, C = \{C_G(g) \mid g \in G, |C_G(g)| = 9\} \) and \(D = \{C_G(g) \mid g \in G, |C_G(g)| = 13\} \), then \(|A| = 468, |B| = 351, |C| = 104 \) and \(|D| = 144 \). Also we know that if \(|C_G(g)| \in \{6,8\}, then \(C_G(g) \) is a cyclic subgroup of \(G \) and so there exists \(a \in G \) such that \(C_G(g) = \langle a \rangle \).

It follows that \(\langle a \rangle = C_G(a) = C_G(g) \). Thus there exist elements \(a_i, b_j, c_k, d_l \in G \) such that \(|C_G(a_i)| = 6 \) for \(1 \leq i \leq 468, |C_G(b_j)| = 8 \) for \(1 \leq j \leq 351, |C_G(c_k)| = 9 \) for \(1 \leq k \leq 104 \) and \(|C_G(d_i)| = 13 \) for \(1 \leq i \leq 144 \). Now it is easy to see (e.g., by
GAP [10] that
\[G = \bigcup_{x \in X} C_G(x), \]
where \(X = \{a_1, \ldots, a_{468}, b_1, \ldots, b_{351}, c_1, \ldots, c_{104}, d_1, \ldots, d_{144}\} \). Since the set of order elements of \(G \) is \(\{1, 2, 3, 4, 6, 8, 13\} \), it follows that \(X \) is a clique for \(A_G \). Also since for all \(x \in X, C_G(x) \) is abelian, we have \(\omega(A_G) = |X| = 468+351+104+144 = 1067 \). This completes the proof. □

Remark 3.2. It is not true that every clique of the non-commuting graph of \(G = PSL(3, 3) \) can be extended to a maximum clique. It can be seen that there are two distinct elements \(x_1, x_2 \in X \) such that \(C_G(x_1) \cap C_G(x_2) \) contains a non-trivial element \(a \). Now \(\{a\} \) cannot be extended to a maximum clique. On the other hand it is easy to see that every clique containing only elements of orders in \(\{6, 8, 13\} \) can be extended to a maximum clique. We leave the easy proof to the reader.

Acknowledgements. The authors are grateful to the referees for their very helpful comments. The research of the first and third authors were supported by the Center of Excellence for Mathematics, University of Isfahan. The first author’s research was in part supported by a grant from IPM (No. 87200118).

References

[1] A. Abdollahi, A. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006) 468-492.
[2] A. Abdollahi and A. Mohammadi Hassanabadi, Finite groups with a certain number of elements pairwise generating a non-nilpotent subgroup, Bull. Iranian Math. Soc. 30 No. 2 (2004) 1-20.
[3] E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44 (1983) 31-43.
[4] R. D. Blyth and D. J. S. Robinson, Semisimple groups with the rewriting property \(Q_5 \), Comm. Algebra 23 No. 6 (1995) 2171-2180.
[5] R. Brown, Minimal covers of \(S_n \) by abelian subgroups and maximal subsets of pairwise noncommuting elements, J. Combin. Theory Ser. A 49 (1988) 294-307.
[6] ———, Minimal covers of \(S_n \) by abelian subgroups and maximal subsets of pairwise noncommuting elements, II, J. Combin. Theory Ser. A 56 (1991) 285-289.
[7] A. Y. M. Chin, On non-commuting sets in an extraspecial \(p \)-group, J. Group Theory 8 (2005) 189-194.
[8] G. Endimioni, Groupes finis satisfaisant la condition \((N, n)\), C. R. Acad. Sci. Paris Ser. I 319 (1994) 1245-1247.
[9] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[10] B. Huppert and N. Blackburn, Finite groups III, Springer-Verlag, Berlin, 1982.
[11] A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi, On the noncommuting graph associated with a finite group, Siberian Math. J. 46 No. 2 (2005) 325-332.
[12] B. H. Neumann, *A problem of Paul Erdős on groups*, J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.

[13] L. Pyber, *The number of pairwise non-commuting elements and the index of the centre in a finite group*, J. London Math. Soc. (2) 35 (1987) 287-295.

[14] D. J. S. Robinson, *A course in the theory of groups*, 2nd Ed., Springer-Verlag, Berlin, 1995.

[15] J. P. Serre, *Sur la dimension cohomologique des groupes profinis*, Topology 3 (1965) 413-420.

[16] The GAP Group, *GAP-Groups, Algorithms, and Programming, Version 4.4; 2005*, http://www.gap-system.org.

[17] J. G. Thompson, *Nonsolvable finite groups all of whose local subgroups are solvable (Part I)*, Bull. Amer. Math. Soc. (NS) 74 (1968) 383-437.

[18] J. S. Wilson, *Finite axiomatization of finite soluble groups*, J. London Math. Soc. (2) 74 (2006) No. 3, 566-582.

1 Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran.

3 Shaikhbahaee University, Isfahan 81797-35296, Iran.

E-mail address: (1-2 A. Abdollahi) a.abdollahi@math.ui.ac.ir abdollahi@member.ams.org

E-mail address: (1 A. Azad) a-azad@sci.ui.ac.ir

E-mail address: (1-3 A. Mohammadi Hassanabadi) aamohaha@yahoo.com

E-mail address: (1 M. Zarrin) m.zarrin@math.ui.ac.ir