COVERING DIMENSION OF CUNTZ SEMIGROUPS

HANNES THIEL AND EDUARD VILALTA

Abstract. We introduce a notion of covering dimension for Cuntz semigroups of C^*-algebras. This dimension is always bounded by the nuclear dimension of the C^*-algebra, and for subhomogeneous C^*-algebras both dimensions agree.

Cuntz semigroups of \mathbb{Z}-stable C^*-algebras have dimension at most one. Further, the Cuntz semigroup of a simple, \mathbb{Z}-stable C^*-algebra is zero-dimensional if and only if the C^*-algebra has real rank zero or is stably projectionless.

1. Introduction

The Cuntz semigroup of a C^*-algebra is a powerful invariant in the structure and classification theory of C^*-algebras. It was introduced by Cuntz [Cun78] in his pioneering work on the structure of simple C^*-algebras, and it was a key ingredient for proving the existence of traces on stably finite, exact C^*-algebras.

Later, the Cuntz semigroup was used by Toms [Tom08] to distinguish his groundbreaking examples of simple, nuclear C^*-algebras that have the same Elliott invariant (K-theoretic and tracial data). This led to an important revision of Elliott’s program to classify simple, nuclear C^*-algebras: To obtain classification by the Elliott invariant, an additional regularity condition is necessary.

The situation was further clarified by the Toms-Winter conjecture (see [Win18] for a recent discussion), which predicts that three regularity conditions are equivalent for simple, nuclear C^*-algebras, and that these conditions lead to classification by the Elliott invariant. The regularity conditions are:

1. finite nuclear dimension, where the nuclear dimension [WZ10] is a generalization of covering dimension to nuclear C^*-algebras;
2. \mathbb{Z}-stability, that is, tensorial absorption of the Jiang-Su algebra \mathbb{Z};
3. strict comparison of positive elements, a regularity property of the Cuntz semigroup.

It is known that (1) and (2) are equivalent [Win12, CET+21], that (2) implies (3) [Rør04], and that (3) implies (2) in many particular cases (see [Thi20b, Section 9] for a discussion). Moreover, by a remarkable breakthrough building on work of numerous people, it is known that unital, separable, simple, nuclear C^*-algebras with finite nuclear dimension and satisfying the Universal Coefficient Theorem (UCT) are classified by their Elliott invariant; see [EGLN15] and [TWW17, Corollary D].

This shows that generalizations of covering dimension for C^*-algebras and regularity properties of Cuntz semigroup are closely related and highly relevant for...
the structure and classification theory of C^*-algebras. In this paper, we combine these aspects by defining a notion of covering dimension for Cuntz semigroups, thus introducing a second-level invariant for C^*-algebras; see \textbf{Definition 3.1}.

More generally, we define covering dimension for abstract Cuntz semigroups, usually called Cu-semigroups, as introduced in \cite{CEi08} and extensively studied in \cite{APT18, APT20a, APT20b, APRT18, APRT21}.

Previously, the notion of n-comparison for Cu-semigroups had been considered as ‘an algebraic interpretation of dimension’; see \cite{Rob11} and \cite[Remarks 3.2(iii)]{Win12}. However, we believe that the results in this paper show that our notion of dimension is more suited to capture dimensional properties of a C^*-algebra and its Cuntz semigroup. For example, for every compact, metrizable space X, the Cu-semigroup $Lsc(X, \mathbb{N})$ of lower-semicontinuous functions $X \to \mathbb{N} = \{0, 1, 2, \ldots, \infty\}$ has dimension agreeing with the covering dimension of X; see \textbf{Example 3.4}. More interestingly, we show that a similar result holds for Cuntz semigroups of commutative C^*-algebras: \textbf{Proposition A (4.7)}. Let X be a compact, Hausdorff space. Then
\[
\dim(Cu(C(X))) = \dim(X).
\]

We prove the expected permanence properties: The covering dimension does not increase when passing to ideals or quotients of a Cu-semigroup \textbf{[Proposition 3.5]}; the covering dimension of a direct sum of Cu-semigroups is the maximum of the covering dimensions of the summands \textbf{[Proposition 3.5]}; and if $S = \lim_{\lambda} S_\lambda$ is an inductive limit of Cu-semigroups, then $\dim(\lim_{\lambda} S_\lambda) \leq \lim_{\lambda} \dim(S_\lambda)$ \textbf{[Proposition 3.9]}.

In \cite{TV21a}, we show that the dimension of a Cu-semigroup is determined by the dimensions of its countably based sub-Cu-semigroups. This allows us to reduce most questions about dimensions of Cu-semigroups to the countably based case. It also follows that the dimension of the Cuntz semigroup of a C^*-algebra is determined by the dimensions of the Cuntz semigroups of its separable sub-C^*-algebras.

In Section 4, we study the connection between the dimension of the Cuntz semigroup of a C^*-algebra and the nuclear dimension \cite{WZ10} of the C^*-algebra.

\textbf{Theorem B (4.1, 4.11)}. Every C^*-algebra A satisfies $\dim(Cu(A)) \leq \dim_{\text{nuc}}(A)$. If A is subhomogeneous, then $\dim(Cu(A)) = \dim_{\text{nuc}}(A)$.

We note that $\dim(Cu(A))$ can be strictly smaller than $\dim_{\text{nuc}}(A)$. For example, the irrational rotation algebra A_θ satisfies $\dim(Cu(A_\theta)) = 0$ while $\dim_{\text{nuc}}(A_\theta) = 1$; see \textbf{Example 4.12}. The dimension of the Cuntz semigroup of a C^*-algebra A can also be computed in many situations of interest beyond the subhomogeneous case:

1. If A has real rank zero, then $\dim(Cu(A)) = 0$; see \textbf{Theorem 5.7}.
2. If A is unital and of stable rank one, then $\dim(Cu(A)) = 0$ if and only if A has real rank zero; see \textbf{Theorem 5.7}.
3. If A is \mathbb{Z}-stable, then $\dim(Cu(A)) \leq 1$; if A is W-stable, that is, A tensorially absorbs the Jacelon-Razac algebra W, then $\dim(Cu(A)) = 0$; see \textbf{Proposition 3.21}.

Our results allow us to compute the dimension of the Cuntz semigroup of many simple C^*-algebras. In particular, by \textbf{Corollary 5.8} if A is a separable, simple, \mathbb{Z}-stable C^*-algebra, then
\[
\dim(Cu(A)) = \begin{cases} 0, & \text{if } A \text{ has real rank zero or if } A \text{ is stably projectionless} \\ 1, & \text{otherwise.} \end{cases}
\]
This should be compared to the computation of the nuclear dimension of a separable, simple C^*-algebra A as accomplished in [CE20, CET+21]:

$$\dim_{nuc}(A) = \begin{cases} 0, & \text{if } A \text{ is an AF-algebra} \\ 1, & \text{if } A \text{ is nuclear, } \mathcal{Z}-\text{stable, but not an AF-algebra} \\ \infty, & \text{if } A \text{ is nuclear and not } \mathcal{Z}-\text{stable, or } A \text{ is not nuclear.} \end{cases}$$

It will be interesting to tackle the following problem:

Problem C. Compute the dimension of the Cuntz semigroups of simple C^*-algebras. In particular, what dimensions can occur (beyond zero and one)?

Being low-dimension with respect to a certain dimension theory is often considered as a regularity property. For example, C^*-algebras of stable rank one or real rank zero enjoy properties and admit structure results that do not hold for higher stable or real ranks. For any notion of dimension it is therefore of much interest to study the objects of lowest dimension. In the last two sections, we begin such a study for our covering dimension of Cuntz semigroups. We focus here on the simple case – the non-simple case will be considered in forthcoming work [TV21b].

Given a separable, simple C^*-algebra A of stable rank one (a large class, which includes many interesting examples - see the introduction of [Thi20d]) such that $\text{Cu}(A)$ is zero-dimensional, we show that $\text{Cu}(A)$ is either algebraic (that is, the compact elements are sup-dense) or soft (that is, $\text{Cu}(A)$ contains no nonzero compact elements); see Lemma 7.1. In this setting, compact elements in $\text{Cu}(A)$ correspond to the Cuntz classes of projections in the stabilization $A \otimes K$, and nonzero soft elements in $\text{Cu}(A)$ correspond to the Cuntz classes of positive elements in $A \otimes K$ with spectrum $[0,1]$; see [BC09].

To describe the structure of $\text{Cu}(A)$ in the soft case, we introduce the class of elements with *thin boundary* (see Definition 6.3), which turn out to play a similar role to that of the compact elements in the algebraic case. We show that an element x has thin boundary if and only if it is *complementable* in the sense that for every y satisfying $x \ll y$ there exists z such that $x + z = y$; see Theorem 6.15. Further, the elements with thin boundary form a cancellative monoid; see Theorem 6.16. By combining Proposition 6.2 with Theorem 7.8, we obtain:

Theorem D. Let A be a separable, simple, stably projectionless C^*-algebra of stable rank one. Then $\text{Cu}(A)$ is zero-dimensional if and only if the elements with thin boundary are sup-dense.

We finish Section 7 by briefly studying the relation between zero-dimensionality, almost divisibility and the Riesz interpolation property; see Proposition 7.13.

Acknowledgements. The authors want to thank the referee for his thorough reading of this work and for providing valuable comments and suggestions which helped to greatly improve the paper.

2. Preliminaries

Let a,b be two positive elements in a C^*-algebra A. Recall that a is said to be *Cuntz subequivalent* to b, in symbols $a \prec b$, if there exists a sequence $(r_n)_n$ in A such that $a = \lim_n r_n b r_n^*$. One defines the equivalence relation \sim by writing $a \sim b$ if $a \prec b$ and $b \prec a$, and denotes the equivalence class of $a \in A_+$ by $[a]$. The Cuntz semigroup of A, denoted by $\text{Cu}(A)$, is defined as the quotient of $(A \otimes K)_+$ by the equivalence relation \sim. Endowed with the addition induced by $[a] + [b] = [[r_0 \; b]]$ and the order induced by \preceq, the Cuntz semigroup $\text{Cu}(A)$ becomes a positively ordered monoid.
2.1. Given a pair of elements x, y in a partially ordered set, we say that x is way-below y, in symbols $x \ll y$, if for any increasing sequence $(y_n)_n$, for which the supremum exists and is greater than y one can find n such that $x \leq y_n$.

It was shown in [CE10] that the Cuntz semigroup of any C^*-algebra satisfies the following properties:

1. Every increasing sequence has a supremum.
2. Every element can be written as the supremum of an \ll-increasing sequence.
3. Given $x' \ll x$ and $y' \ll y$, we have $x' + y' \ll x + y$.
4. Given increasing sequences $(x_n)_n$ and $(y_n)_n$, we have $\sup_n x_n + \sup_n y_n = \sup_n (x_n + y_n)$.

In a more abstract setting, any positively ordered monoid satisfying (O1)-(O4) is called a Cu-semigroup.

A map between two Cu-semigroups is called a generalized Cu-morphism if it is a positively ordered monoid homomorphism that preserves suprema of increasing sequences. We say that a generalized Cu-morphism is a Cu-morphism if it also preserves the way-below relation. Every *-homomorphism $A \to B$ between C^*-algebras naturally induces a Cu-morphism $\text{Cu}(A) \to \text{Cu}(B)$; see [CE10] Theorem 1.

We denote by Cu the category whose objects are Cu-semigroups and whose morphisms are Cu-morphisms.

The reader is referred to [CE10] and [APT18] for a further detailed exposition.

2.2. In addition to (O1)-(O4), it was proved in [APT18] Proposition 4.6 and [Rob13] that the Cuntz semigroup of a C^*-algebra always satisfies the following additional properties:

5. Given $x+y \leq z$, $x' \ll x$ and $y' \ll y$, there exists c such that $x'+c \leq z \leq x+c$ and $y' \ll c$.
6. Axiom (O5) is often used with $y = 0$. In this case, it states that, given $x' \ll x \leq z$, there exists c such that $x'+c \leq z \leq x+c$.

A subset $D \subseteq S$ in a Cu-semigroup S is said to be sup-dense if whenever $x', x \in S$ satisfy $x' \ll x$, there exists $y \in D$ with $x' \leq y \ll x$. Equivalently, every element in S is the supremum of an increasing sequence of elements in D.

We say that a Cu-semigroup is countably based if it contains a countable sup-dense subset. Cuntz semigroups of separable C^*-algebras are countably based (see, for example, [APS11]).

3. Dimension of Cuntz semigroups

In this section we introduce a notion of covering dimension for Cu-semigroups and study some of its main permanence properties while providing a variety of examples; see Proposition 3.3, Proposition 3.9 and Proposition 3.15.

In Proposition 3.17 we investigate the relation between the dimension of a simple Cu-semigroup and its soft part, while in Proposition 3.20 we study how the dimension behaves in the presence of certain R-multiplications. This result is then applied to the Cuntz semigroups of purely infinite, W-stable and \mathcal{Z}-stable C^*-algebras; see Proposition 3.21 and Proposition 3.22.

Definition 3.1. Let S be a Cu-semigroup. Given $n \in \mathbb{N}$, we write $\dim(S) \leq n$ if, whenever $x' \ll x \ll y_1 + \ldots + y_r$ in S, then there exist $z_{j,k} \in S$ for $j = 1, \ldots, r$ and $k = 0, \ldots, n$ such that:
(i) \(z_{j,k} \ll y_j \) for each \(j \) and \(k \);
(ii) \(x' \ll \sum_{j,k} z_{j,k} \);
(iii) \(\sum_{j=1}^r z_{j,k} \ll x \) for each \(k = 0, \ldots, n \).

We set \(\text{dim}(S) = \infty \) if there exists no \(n \in \mathbb{N} \) with \(\text{dim}(S) \leq n \). Otherwise, we let \(\text{dim}(S) \) be the smallest \(n \in \mathbb{N} \) such that \(\text{dim}(S) \leq n \). We call \(\text{dim}(S) \) the (covering) dimension of \(S \).

Remark 3.2. Recall that the (covering) dimension \(\text{dim}(X) \) of a topological space \(X \) is defined as the smallest \(n \in \mathbb{N} \) such that every finite open cover of \(X \) admits a finite open refinement \(V \) such that at most \(n + 1 \) distinct elements in \(V \) have nonempty intersection; see for example [Pea75] Definition 3.1.1, p.111].

By [KW04] Proposition 1.5, a normal space \(X \) satisfies \(\text{dim}(X) \leq n \) if and only if every finite open cover of \(X \) admits a finite open refinement \(V \) that is \((n+1)\)-colorable, that is, there is a decomposition \(V = V_0 \cup \ldots \cup V_n \) such that the sets in \(V_j \) are pairwise disjoint for \(j = 0, \ldots, n \). (The sets in \(V_j \) have color \(j \), and sets of the same color are disjoint.)

Definitions 3.1 is modeled after the above characterization of covering dimension in terms of colorable refinements. We interpret the expression \(x \ll y_1 + \ldots + y_r \) as saying that \(x \) is ‘covered’ by \(\{y_1, \ldots, y_r\} \). Then, condition (i) from Definitions 3.1 means that \(\{z_{j,k}\} \) is a ‘refinement’ of \(\{y_1, \ldots, y_r\} \); condition (ii) means that \(\{z_{j,k}\} \) is a cover of \(x' \) (which is an approximation of \(x \)); and condition (iii) means that \(\{z_{j,k}\} \) is \((n+1)\)-colorable; see also Example 3.4 below.

In Definitions 3.1 some of the \(\ll \)-relations may be changed for \(\leq \).

Lemma 3.3. Let \(S \) be a Cu-semigroup and \(n \in \mathbb{N} \). Then we have \(\text{dim}(S) \leq n \) if and only if, whenever \(x' \ll x \ll y_1 + \ldots + y_r \) in \(S \), there exist \(z_{j,k} \in S \) for \(j = 1, \ldots, r \) and \(k = 0, \ldots, n \) such that:

1. \(z_{j,k} \ll y_j \) for each \(j \) and \(k \);
2. \(x' \leq \sum_{j,k} z_{j,k} \);
3. \(\sum_{j=1}^r z_{j,k} \leq x \) for each \(k = 0, \ldots, n \).

Proof. The forward implication is clear. To show the converse, let \(x' \ll x \ll y_1 + \ldots + y_r \) in \(S \). Choose \(s', s, y'_1, \ldots, y'_r \in S \) such that

\[
x' \ll s' \ll s \ll y'_1 + \ldots + y'_r, \quad y'_1 \ll y_1, \ldots, \text{ and } y'_r \ll y_r.
\]

Applying the assumption, we obtain elements \(z_{j,k} \) for \(j = 1, \ldots, r \) and \(k = 0, \ldots, n \) satisfying properties (1)-(3) for \(s' \ll s \ll y'_1 + \ldots + y'_r \). Then the same elements satisfy (1)-(3) in Definitions 3.1 for \(x' \ll x \ll y_1 + \ldots + y_r \), thus verifying \(\text{dim}(S) \leq n \).

Example 3.4. Let \(X \) be a compact, metrizable space. We use \(\text{Lsc}(X, \overline{\mathbb{N}}) \) to denote the set of functions \(f : X \to \overline{\mathbb{N}} \) that are lower-semicontinuous, that is, for each \(n \in \mathbb{N} \) the set \(f^{-1}(\{n, n+1, \ldots, \infty\}) \subseteq X \) is open. We equip \(\text{Lsc}(X, \overline{\mathbb{N}}) \) with pointwise addition and order. Then \(\text{Lsc}(X, \overline{\mathbb{N}}) \) is a Cu-semigroup; see, for example, [Vil21] Corollary 4.22. (If \(X \) is finite-dimensional, this also follows from [APS11] Theorem 5.15.) We will show that

\[
\text{dim}(\text{Lsc}(X, \overline{\mathbb{N}})) \geq \text{dim}(X).
\]

(The reverse inequality also holds and can be verified through a direct yet elaborate argument. We defer its proof to Corollary 4.8 where we will deduce it easily from the computation of \(\text{dim}(C(X)) \).)

Set \(n := \text{dim}(\text{Lsc}(X, \overline{\mathbb{N}})) \), which we may assume to be finite. To verify that \(\text{dim}(X) \leq n \), let \(\mathcal{U} = \{U_1, \ldots, U_r\} \) be a finite open cover of \(X \). We need to find a \((n+1)\)-colourable, finite, open refinement of \(\mathcal{U} \).
We use χ_U to denote the characteristic function of a subset $U \subseteq X$. Given open
subsets $U, V \subseteq X$, we have $\chi_U \ll \chi_V$ if and only if $\overline{U} \subseteq V$, that is, U is compactly
contained in V. (See the proof of [Vil21 Corollary 4.22].) Then

$$\chi_X \ll \chi_U \ll \chi_{U_1} + \ldots + \chi_{U_r}.$$

Applying that $\dim(Lsc(X, \overline{U})) \leq n$, we obtain elements $z_{j,k} \in Lsc(X, \overline{V})$ for
$j = 1, \ldots, r$ and $k = 0, \ldots, n$ such that

(i) $z_{j,k} \ll \chi_{U_j}$ for every j, k;

(ii) $\chi_X \ll \mathop{\sum}
{j,k} z{j,k};$

(iii) $\mathop{\sum}
j z{j,k} \ll \chi_X$ for every k.

For each j and k, condition (i) implies that $z_{j,k} = \chi_{V_{j,k}}$ for some open subset
$V_{j,k} \subseteq U_j$. Condition (ii) implies that X is covered by the sets $V_{j,k}$. Thus, the family
$V := \{V_{j,k}\}$ is a finite, open refinement of U. For each k, condition (iii) implies that
the sets $V_{1,k}, \ldots, V_{r,k}$ are pairwise disjoint. Thus, V is $(n + 1)$-colourable, as
desired.

Recall that an ideal I of a Cu-semigroup S is a downward-hereditary submonoid
closed under suprema of increasing sequences; see [APT13 Section 5].

Given $x, y \in S$, we write $x \sim_I y$ if there exists $z \in I$ such that $x \leq y + z$. We set
$x \sim_I y$ if $x \leq y$ and $y \leq_I x$. The quotient S/\sim_I endowed with the induced sum
and order \leq_I is denoted by S/I.

As shown in [APT13 Lemma 5.1.2], S/I is a Cu-semigroup and the quotient map $S \to S/I$ is a Cu-morphism.

Proposition 3.5. Let S be a Cu-semigroup, and let $I \subseteq S$ be an ideal. Then:

$$\dim(I) \leq \dim(S), \quad \text{and} \quad \dim(S/I) \leq \dim(S).$$

Proof. Set $n := \dim(S)$, which we may assume to be finite, since otherwise there
is nothing to prove. It is straightforward to show that $\dim(I) \leq n$ using that I
is downward-hereditary. Given $x \in S$, we use $[x]$ to denote its equivalence class
in S/I.

To verify $\dim(S/I) \leq n$, let $[u] \ll [x] \ll [y_1] + \ldots + [y_r]$ in S/I. Then there
exists $y_{r+1} \in I$ such that $x \leq y_1 + \ldots + y_r + y_{r+1}$ in S. Using that the quotient
map $S \to S/I$ preserves suprema of increasing sequences, we can choose $x'', x' \in S$
such that

$$x'' \ll x' \ll x, \quad \text{and} \quad [u] \leq [x''].$$

Applying the definition of $\dim(S) \leq n$ to $x'' \ll x' \ll y_1 + \ldots + y_r + y_{r+1}$, we obtain
elements $z_{j,k} \in S$ for $j = 1, \ldots, r + 1$ and $k = 0, \ldots, n$ such that $z_{j,k} \ll y_j$
for every j, k, such that $x'' \ll \mathop{\sum}
{j,k} z{j,k}$, and such that $\mathop{\sum}
j z{j,k} \ll x'$ for every k.

Since $y_{r+1} \in I$, we have $z_{r+1,k} \in I$ and thus $[z_{r+1,k}] = 0$ in S/I for $k = 0, \ldots, n$.
Using also that the quotient map $S \to S/I$ is \ll-preserving, we see that the elements
$[z_{j,k}]$ for $j = 1, \ldots, r$ and $k = 0, \ldots, n$ have the desired properties. \[\square\]

Problem 3.6. Let S be a Cu-semigroup, and let $I \subseteq S$ be an ideal. Can we bound $\dim(S)$ in terms of $\dim(I)$ and $\dim(S/I)$? In particular, do we always have
$\dim(S) \leq \dim(I) + \dim(S/I) + 1$?

Given Cu-semigroups S and T, we use $S \oplus T$ to denote the Cartesian product
$S \times T$ equipped with elementwise addition and order. It is straightforward to verify
that $S \oplus T$ is a Cu-semigroup and that $S \oplus T$ is both the product and coproduct
of S and T in the category Cu; see also [APT20 Proposition 3.10]. We omit the straightforward proof of the next result.

Proposition 3.7. Let S and T be Cu-semigroups. Then

$$\dim(S \oplus T) = \max\{\dim(S), \dim(T)\}.$$
By [APT13] Corollary 3.1.11, the category Cu admits inductive limits. (The sequential case was previously shown in [CE108] Theorem 2.) The next result provides a useful characterization of inductive limits in Cu.

Lemma 3.8. Let $((S_λ)_{λ∈Λ}, (ϕ_{μ,λ})_{λ≤μ ∈ Λ})$ be an inductive system in Cu, that is, $Λ$ is a directed set, each $S_λ$ is a Cu-semigroup, and for $λ ≤ μ ∈ Λ$ we have a connecting Cu-morphism $ϕ_{μ,λ}: S_λ → S_μ$ such that $ϕ_{λ,λ} = id_{S_λ}$ for every $λ ∈ Λ$ and $ϕ_{ν,μ} ◦ ϕ_{μ,λ} = ϕ_{ν,λ}$ for all $λ ≤ μ ≤ ν ∈ Λ$.

Then a Cu-semigroup S together with Cu-morphisms $ϕ_λ: S_λ → S$ for $λ ∈ Λ$ is the inductive limit in Cu of the system $((S_λ)_{λ∈Λ}, (ϕ_{μ,λ})_{λ≤μ ∈ Λ})$ if and only if the following conditions are satisfied:

1. $(L0)$ we have $ϕ_μ ◦ ϕ_{μ,λ} = ϕ_λ$ for all $λ ≤ μ ∈ Λ$;
2. $(L1)$ if $x_μ, x_λ ∈ S_λ$ and $x_μ ∈ S_μ$ satisfy $x_μ ≪ x_λ$ and $ϕ_λ(x_μ) ≤ ϕ_λ(x_λ)$, then there exists $ν ≥ λ, μ$ such that $ϕ_{ν,λ}(x_μ) ≪ ϕ_{ν,μ}(x_μ)$;
3. $(L2)$ for all $x_μ, x ∈ S$ satisfying $x_μ ≪ x$ there exists $x_λ ∈ S_λ$ such that $x_μ ≪ ϕ_λ(x_μ) ≪ x_λ ≪ x$.

Proof. It is shown in [APT20b] Theorem 2.9 that Cu is a full, reflective subcategory of the inductive limit in W. The inclusion $Cu → W$ is given by mapping a Cu-semigroup S to the underlying monoid of S together with $≺$.

To construct the inductive limit of the system $((S_λ)_{λ∈Λ}, (ϕ_{μ,λ})_{λ≤μ ∈ Λ})$ in W, consider the equivalence relation $≡$ on the disjoint union $\bigcup_λ S_λ$ given by $x_μ ≈ x_μ$ (for $x_μ ∈ S_μ$ and $x_μ ∈ S_μ$) if there exists $ν ≥ λ, μ$ such that $ϕ_{ν,λ}(x_μ) = ϕ_{ν,μ}(x_μ)$. The set of equivalence classes is the set-theoretic inductive limit, which we denote by S_{alg}. We write $[x_λ]$ for the equivalence class of $x_λ ∈ S_λ$.

We define an addition $+$ and a binary relation $≺$ on S_{alg} as follows: Given $x_λ ∈ S_λ$ and $x_μ ∈ S_μ$, set

$$[x_λ] + [x_μ] := [ϕ_{ν,λ}(x_λ) + ϕ_{ν,μ}(x_μ)]$$

for any $ν ≥ λ, μ$. Further, set $[x_λ] ≺ [x_μ]$ if there exists $ν ≥ λ, μ$ such that $ϕ_{ν,λ}(x_μ) ≺ ϕ_{ν,μ}(x_μ)$ in $S_{ν}$. This gives S_{alg} the structure of a W-semigroup, which together with the natural maps $S_λ → S_{alg}, x_λ → [x_λ]$, is the inductive limit in W.

The reflection of S_{alg} in Cu is a Cu-semigroup S together with a (universal) W-morphism $α: S_{alg} → S$. Using [APT13] Theorem 3.1.8, S and $α$ are characterized by the following conditions:

1. $(R1)$ $α$ is an order-embedding in the sense that $[x_λ] ≺ [x_μ]$ if (and only if) $α([x_λ]) ≺ α([x_μ])$, for any $x_λ ∈ S_λ$ and $x_μ ∈ S_μ$;
2. $(R2)$ $α$ has dense image in the sense that for all $x′, x ∈ S$ satisfying $x′ ≺ x$ there exists $x_λ ∈ S_λ$ such that $x′ ≺ α([x_λ]) ≺ x$.

Now the result follows using that the inductive limit of $((S_λ)_{λ∈Λ}, (ϕ_{μ,λ})_{λ≤μ ∈ Λ})$ in Cu is given as the reflection of S_{alg} in Cu. Here, condition $(R1)$ for the reflection of S_{alg} in Cu corresponds to $(L1)$, and similarly for $(R2)$ and $(L2)$. □
Proposition 3.9. Let $S = \varinjlim_{\lambda \in \Lambda} S_{\lambda}$ be an inductive limit of Cu-semigroups. Then $\dim(S) \leq \liminf \dim(S_{\lambda})$.

Proof. Let $\varphi_{\lambda} : S_{\lambda} \to S$ be the Cu-morphisms into the inductive limit. We use that S and the φ_{λ}’s satisfy (L1)-(L2) from Lemma 3.3. Set $n := \liminf \dim(S_{\lambda})$, which we may assume to be finite. To verify $\dim(S) \leq n$, let $x' \ll x \ll y_{1} + \ldots + y_{r}$ in S. Choose $y_{1}', \ldots, y_{r}' \in S$ such that

$$x \ll y_{1}' + \ldots + y_{r}', \ y_{1}' \ll y_{1}, \ldots, \text{ and } y_{r}' \ll y_{r}.$$

Using (L2), we obtain $b_{k} \ll \varphi_{\lambda}(b_{k}) \ll y_{k}$ for $k = 1, \ldots, r$.

Using that φ_{λ} is a Cu-morphism, we obtain $a'_{k}, a'_{k} \in S_{\lambda}$ such that $x' \ll \varphi_{\lambda}(a'_{k}) \ll \varphi_{\lambda}(a_{k}) \ll x$, and $a_{k}'' \ll a_{k} \ll a_{\lambda}$.

Choose $\mu \in \Lambda$ such that $\mu \geq \lambda, \lambda_{1}, \ldots, \lambda_{r}$, and set

$$a'' := \varphi_{\mu, \lambda}(a''_{\lambda}), \ a' := \varphi_{\mu, \lambda}(a'_{\lambda}), \ a := \varphi_{\mu, \lambda}(a_{\lambda}),$$

and

$$b_{1} := \varphi_{\mu, \lambda}(b_{\lambda_{1}}), \ldots, \text{ and } b_{r} := \varphi_{\mu, \lambda}(b_{\lambda_{r}}).$$

Hence,

$$\varphi_{\mu}(a) = \varphi_{\mu}(\varphi_{\mu, \lambda}(a_{\lambda})) = \varphi_{\lambda}(a_{\lambda}) \ll x \ll y_{1}' + \ldots + y_{r}' \ll \varphi_{\mu}(b_{1} + \ldots + b_{r}).$$

Applying (L1), we obtain $\nu \geq \mu$ such that $\varphi_{\nu, \mu}(a') \ll \varphi_{\nu, \mu}(b_{1} + \ldots + b_{r})$.

Using that $\liminf \dim(S_{\lambda}) \leq n$, we may also assume that $\dim(S_{\nu}) \leq n$. Applying $\dim(S_{\nu}) \leq n$ to

$$\varphi_{\nu, \mu}(a'') \ll \varphi_{\nu, \mu}(a') \ll \varphi_{\nu, \mu}(b_{1} + \ldots + \varphi_{\nu, \mu}(b_{r}),$$

we obtain elements $z_{j,k} \in S_{\lambda}$ for $j = 1, \ldots, r$ and $k = 0, \ldots, n$ satisfying properties (i)-(iii) from Definition 3.1. It is now easy to check that the elements $\varphi_{\nu}(z_{j,k}) \in S$ have the desired properties to verify $\dim(S) \leq n$. \qed

Proposition 3.10. Given a C^*-algebra A and a closed, two-sided ideal $I \subseteq A$, we have

$$\dim(Cu(I)) \leq \dim(Cu(A)), \text{ and } \dim(Cu(A/I)) \leq \dim(Cu(A)).$$

Given C^*-algebras A and B, we have

$$\dim(Cu(A \oplus B)) = \max\{\dim(Cu(A)), \dim(Cu(B))\}.$$

Given an inductive limit of C^*-algebras $A = \varinjlim_{\lambda \in \Lambda} A_{\lambda}$, we have

$$\dim(Cu(A)) \leq \liminf \dim(Cu(A_{\lambda})).$$

Proof. The first statement follows from Proposition 3.5 using that $Cu(I)$ is naturally isomorphic to an ideal of $Cu(A)$, and that $Cu(A/I)$ is naturally isomorphic to $Cu(A)/Cu(I)$; see APT18 Section 5.1. The second statement follows from Proposition 3.7 using that $Cu(A \oplus B)$ is isomorphic to $Cu(A) \oplus Cu(B)$. Finally, the third statement follows from Proposition 3.9 and the fact that the Cuntz semigroup of an inductive limit of C^*-algebras is naturally isomorphic to the inductive limit of the C^*-algebras; see APT18 Corollary 3.2.9. \qed

Example 3.11. Recall that $Cu(C)$ is naturally isomorphic to $\mathbb{N} := \{0, 1, 2, \ldots, \infty\}$. We say that a Cu-semigroup S is simplicial if $S \cong \mathbb{N}^{k} = \mathbb{N}^{0} \oplus \ldots \oplus \mathbb{N}$ for some $k \geq 1$. If A is a finite-dimensional C^*-algebra, then $Cu(A)$ is simplicial.

It is easy to verify that $\dim(\mathbb{N}) = 0$. By Proposition 3.7, we get $\dim(\mathbb{N}^{k}) = 0$ for every $k \geq 1$. (Using that $\mathbb{N}^{k} = \Lsc\{x_{1}, \ldots, x_{k}\}$ and that $\{x_{1}, \ldots, x_{k}\}$ is zero-dimensional, this also follows from Corollary 4.8.) Thus, if S is an inductive
limit of simplicial Cu-semigroups, then \(\dim(S) = 0 \) by Proposition 3.9. Further, it follows from Proposition 3.10 that \(\dim(\text{Cu}(A)) = 0 \) for every AF-algebra \(A \). In Theorem 5.7, we will generalize this to \(C^* \)-algebras of real rank zero (which include all AF-algebras).

By applying the Cu-semigroup version of the Effros-Handelman-Shen theorem, [APT18 Corollary 5.5.13], it also follows that every countably-based, weakly cancellative, unperforated, algebraic Cu-semigroup satisfying (O5) and (O6) is zero-dimensional. In Proposition 5.6, we will generalize this to weakly cancellative, algebraic Cu-semigroups satisfying (O5) and (O6).

Example 3.12. Recall that a Cu-semigroup is said to be elementary if it is isomorphic to \(\{0\} \), or if it is simple and contains a minimal nonzero element; see [APT18 Paragraph 5.1.16]. Typical examples of elementary Cu-semigroups are \(\{0\} \) and \(E_k = \{0, 1, 2, \ldots, k, \infty\} \) for \(k \in \mathbb{N} \), where the sum of two elements in \(E_k \) is defined as \(\infty \) if their usual sum would exceed \(k \); see [APT18 Paragraph 5.1.16]. By [APT18 Proposition 5.1.19], these are the only elementary Cu-semigroups that satisfy (O5) and (O6).

It is easy to see that every elementary Cu-semigroup satisfying (O5) and (O6) is zero-dimensional. In Example 3.13 below, we show that this is no longer the case without (O5). To see that (O6) is also necessary, consider \(S := \mathbb{N} \cup \{1\} \), with \(1' \) a compact element not comparable with 1 and such that \(1' + 1' = 2 \) and \(1 + k = 1' + k \) for every \(k \in \mathbb{N} \setminus \{0\} \). We claim that \(\dim(S) = \infty \).

Assume, for the sake of contradiction, that \(\dim(S) \leq n \) for some \(n \in \mathbb{N} \). Then, since \(1' \ll 1' \ll 2 = 1 + 1 \), there exist elements \(z_{1,k}, z_{2,k} \in S \) for \(k = 0, \ldots, n \) satisfying conditions (i)-(iii) from Definition 3.1. By condition (i), we have \(z_{1,k} \ll 1 \) and therefore \(z_{1,k} = 0 \) or \(z_{1,k} = 1 \) for every \(j, k \). By condition (ii), we have \(1' \ll \sum z_{j,k} z_{j,k} \), and so there exist \(j' \in \{1, 2\} \) and \(k' \in \{0, \ldots, n\} \) such that \(z_{j',k'} = 1 \). However, by condition (iii), we have \(z_{j',k'} \ll 1' \), which is a contradiction because the elements 1 and 1' are not comparable.

Example 3.13. Let \(k, l \in \mathbb{N} \), and let \(E_k \) and \(E_l \) be the elementary Cu-semigroups as in Example 3.12. Then the abstract bivariant Cu-semigroup \([E_k, E_l]\), as defined in [APT20a], has dimension one whenever \(l > k \) and dimension zero otherwise.

Indeed, by [APT20a Proposition 5.18], we know that \([E_k, E_l] = \{0, r, \ldots, l, \infty\} \) with \(r = [(l + 1)/(k + 1)] \). Thus, if \(l \leq k \), then \([E_k, E_l] = E_l \), which is zero-dimensional by Example 3.12. Note that \([E_k, E_l] \) is an elementary Cu-semigroup satisfying (O6). Further, \([E_k, E_l] \) satisfies (O5) if and only if \(l \leq k \).

Let us now assume that \(l > k \), that is \(r > 1 \). Then, even though \(r + 1 \ll r + 1 \ll r + r \), one cannot find \(z_1, z_2 \ll r \) such that \(r + 1 = z_1 + z_2 \). This shows that \(\dim([E_k, E_l]) \neq 0 \).

To verify \(\dim([E_k, E_l]) \leq 1 \), let \(x \ll x \ll y_1 + \ldots + y_k \) in \([E_k, E_l] \). We may assume that \(y_j \) is nonzero for every \(j \). If there exists \(i \in \{1, \ldots, r\} \) with \(x \leq y_i \), then \(z_{i,0} := x \) and \(z_{j,k} := 0 \) for \(j \neq i \) or \(k = 1 \) have the desired properties.

So we may assume that \(y_j \ll x \) for every \(j \). Let \(k \) be the least integer such that \(x \leq y_1 + \ldots + y_k \). Define \(z_{j,0} := y_j \) for every \(j < k \) and \(z_{j,0} := 0 \) for \(j \geq k \). Further, define \(z_{k,1} := y_k \) and \(z_{j,1} := 0 \) for \(j \neq k \). By choice of \(k \), we have \(\sum z_{j,0} \ll x \). We also have \(\sum z_{j,1} = y_k \ll x \). Finally, \(x \ll \sum z_{j,0} + \sum z_{j,1} \), as desired.

Definition 3.14. Let \(S \) and \(T \) be Cu-semigroups. We say that \(S \) is a retract of \(T \) if there exist a Cu-morphism \(\iota : S \to T \) and a generalized Cu-morphism \(\sigma : T \to S \) such that \(\sigma \circ \iota = \text{id}_S \).

Many properties of Cu-semigroups pass to retracts. In Lemma 7.12 we show this for the Riesz interpolation property and for almost divisibility. The next result shows that the dimension does not increase when passing to a retract.
Proposition 3.15. Let S and T be Cu-semigroups and assume that S is a retract of T. Then $\dim(S) \leq \dim(T)$.

Proof. Let $\iota : S \to T$ be a Cu-morphism, and let $\sigma : T \to S$ be a generalized Cu-morphism such that $\sigma \circ \iota = \id_S$. Set $n := \dim(T)$, which we may assume to be finite, and let $x' \ll x \ll y_1 + \ldots + y_r$ in S. Then

$$\iota(x') \ll \iota(x) \ll \iota(y_1) + \ldots + \iota(y_r)$$

in T. Using that $\dim(T) \leq n$, we obtain elements $z_{j,k}$ in T satisfying conditions (i)-(iii) of Definition 3.1. Applying σ, we see that the elements $\sigma(z_{j,k})$ satisfy conditions (1)-(3) in Lemma 3.3 from which the result follows. □

Given a simple Cu-semigroup S, let us now show that its sub-Cu-semigroup of soft elements S_{soft}, as defined in Paragraph 6.1, is a retract of S. As we will see in Proposition 3.17 below, such elements play an important role in the study of the dimension of S.

Proposition 3.16. Let S be a countably based, simple, weakly cancellative Cu-semigroup satisfying (O5) and (O6). Then S_{soft} is a retract of S.

Proof. By [APT18 Proposition 5.3.18], S_{soft} is a Cu-semigroup. By [Ch20 Proposition 2.9], for each $x \in S$ there exists a (unique) maximal soft element dominated by x and the map $\sigma : S \to S_{\text{soft}}$ given by

$$\sigma(x) := \max \{ x' \in S_{\text{soft}} : x' \leq x \}, \text{ for } x \in S,$$

is a generalized Cu-morphism. Further, the inclusion $\iota : S_{\text{soft}} \to S$ is a Cu-morphism and the composition $\sigma \circ \iota$ is the identity on S_{soft}, as desired. □

Proposition 3.17. Let S be a countably based, simple, weakly cancellative Cu-semigroup satisfying (O5) and (O6). Then

$$\dim(S_{\text{soft}}) \leq \dim(S) \leq \dim(S_{\text{soft}}) + 1.$$

Proof. The first inequality follows from Propositions 3.15 and 3.16. To show the second inequality, set $n := \dim(S_{\text{soft}})$, which we may assume to be finite. If S is elementary, then $\dim(S) = 0$ as noted in Example 3.12. Thus, we may assume that S is nonelementary. By [APT18 Proposition 5.3.16], every nonzero element of S is either soft or compact. To verify $\dim(S) \leq n + 1$, let $x' \ll x \ll y_1 + \ldots + y_r$ in S. We may assume that x and y_1 are nonzero. If x is soft, then we let $s', s \in S$ be any pair of soft elements satisfying $x' \ll s' \ll s \ll x$. If x is compact, then we apply Lemma 6.7 to obtain a nonzero element $w \in S$ satisfying $w \ll x$. Then $x' \ll \sigma(x) + w$, which allows us to choose soft elements $s' \ll s$ such that $s \ll \sigma(x)$ and $x' \ll s' + w$. In both cases, we have

$$s' \ll s \ll \sigma(x) \leq \sigma(y_1) + \ldots + \sigma(y_r)$$

in S_{soft}. Using that $\dim(S_{\text{soft}}) \leq n$, we obtain (soft) elements $z_{j,k} \in S$ for $j = 1, \ldots, r$ and $k = 0, \ldots, n$ such that

(i) $z_{j,k} \ll \sigma(y_j)$ (and thus, $z_{j,k} \ll y_j$) for each j and k;

(ii) $s' \ll \sum_{j,k} z_{j,k}$;

(iii) $\sum_{j,k} z_{j,k} \ll s \ll \sigma(x)$ (and thus, $\sum_{j,k} z_{j,k} \ll x$) for each $k = 0, \ldots, n$.

If x is soft, then $x' \ll s' \ll \sum_{j,k} z_{j,k}$, which shows that the elements $z_{j,k}$ have the desired properties. If x is compact, then set $z_{1,n+1} := w$ and $z_{j,n+1} := 0$ for $j = 2, \ldots, r$. Then $z_{j,n+1} \ll y_j$ for each j. Further,

$$x' \ll x \ll s' + w \leq \left(\sum_{k=0}^n \sum_{j=1}^r z_{j,k} \right) + \sum_{j=1}^r z_{j,n+1} = \sum_{k=0}^n \sum_{j=1}^r z_{j,k}.$$
Lastly, $\sum_{j=1}^{r} z_{j,n+1} = w \ll x$, which shows that the elements $z_{j,k}$ have the desired properties. \hfill \blacksquare

Remark 3.18. Proposition 3.17 applies in particular to the Cuntz semigroups of separable, simple C^*-algebras of stable rank one (see [Rob13, Proposition 5.1.1]). More generally, Engbers showed in [Eng14] that for every separable, simple, stably finite C^*-algebra A, every compact element in $\Cu(A)$ has a predecessor. The proof of Proposition 3.17 can be generalized to this situation and we obtain

$$\dim(\Cu(A)_{\text{soft}}) \leq \dim(\Cu(A)) \leq \dim(\Cu(A)_{\text{soft}}) + 1.$$

Example 3.19. Let $Z = \Cu(Z)$, the Cuntz semigroup of the Jiang-Su algebra Z. Then, $\dim(Z) = 1$. Indeed, since $Z_{\text{soft}} \cong [0,\infty]$, and it is easy to verify that $\dim([0,\infty]) = 0$, we have $\dim(Z) \leq \dim([0,\infty]) + 1 = 1$ by Proposition 3.17.

On the other hand, to see that $\dim(Z) \neq 0$, consider the compact element $1 \in Z$ and the soft element $\frac{2}{5} \in Z$. Then $1 \ll 1 \ll \frac{2}{5} + \frac{2}{5}$, but there are no elements $z_0, z_1 \in Z$ satisfying $1 = z_0 + z_1$ and $z_0, z_1 \ll \frac{2}{5}$, which shows that $\dim(Z) \neq 0$. (It also follows from Lemma 7.1 that Z is not zero-dimensional.)

A similar argument shows that $\dim(Z') = 1$, where Z' is the Cu-semigroup considered in [APT18, Question 9(8)], that is, $Z' := Z \cup \{1''\}$ with $1''$ a compact element not comparable with 1 and such that $1'' + 1'' = 2$ and $1 + x = 1'' + x$ for every $x \in Z \setminus \{0\}$.

The notion of R-multiplication on a Cu-semigroup for a Cu-semiring R was introduced in [APT18, Definition 7.1.3]. Informally, an R-multiplication is a scalar multiplication on the semigroup with natural compatibility conditions. Given a solid Cu-semiring R (such as $[0,\infty]$, $[0,\infty]$ or Z), any two R-multiplications on a Cu-semigroup are equal, and therefore having an R-multiplication is a property; see [APT18, Remark 7.1.9].

It was shown in [APT18, Theorem 7.2.2] that a Cu-semigroup has $[0,\infty]$-multiplication if and only if every element in the semigroup is idempotent. By [APT18, Theorem 7.3.8], a Cu-semigroup has Z-multiplication if and only if it is almost unperforated and almost divisible. By [APT18 Theorem 7.5.4], a Cu-semigroup has $[0,\infty]$-multiplication if and only if it has Z-multiplication and every element in S is soft.

Proposition 3.20. Let S be a Cu-semigroup satisfying (O5) and (O6). Then:

1. If S has $[0,\infty]$-multiplication, then $\dim(S) = 0$.
2. If S has $[0,\infty]$-multiplication, then $\dim(S) = 0$.
3. If S has Z-multiplication, then $\dim(S) \leq 1$.

Proof. (1) Given elements $x' \ll x \ll y_1 + \ldots + y_e$ in a Cu-semigroup with $[0,\infty]$-multiplication, apply (O6) to obtain elements $z_j \leq x, y_j$ such that $x' \leq z_1 + \ldots + z_r$. Using that every element in S is idempotent, one also has $z_1 + \ldots + z_r \leq x + \ldots x + x = rx = x$.

This shows that the elements z_j satisfy the conditions in Lemma 3.3 as required. (2) Note that S is isomorphic to its realification S_R by Theorem 7.5.4 and Proposition 7.5.9 in [APT18]. We can now use the decomposition property of S_R proven in [Rob13, Theorem 4.1.1] to deduce that S is zero-dimensional.

(3) Assume that S has Z-multiplication. By [APT18 Proposition 7.3.13], an element $x \in S$ is soft if and only if $x = 1'x$ (where $1'$ denotes the soft one in Z). Further, the Cu-semigroup $S_{\text{soft}} := 1'S$ of soft elements in S is isomorphic to the
realification of S; see [APT18, Corollary 7.5.10]. Since the realification of S has $[0,\infty]$-multiplication, we get $\dim(S_{\text{soft}}) = 0$ by (2).

To verify $\dim(S) \leq 1$, let $x' \ll x \ll y_1 + \ldots + y_r$ in S. Using that S has \mathbb{Z}-multiplication, one gets

$$\frac{5}{8}x' \ll \frac{5}{8}x \ll \frac{7}{8}y_1 + \ldots + \frac{7}{8}y_r.$$

Note that all elements in the previous expression belong to S_{soft}. Since $\dim(S_{\text{soft}}) = 0$, we obtain (soft) elements $z_1,\ldots,z_r \in S$ such that $z_j \ll \frac{7}{8}y_j$ for each j, and such that

$$\frac{5}{8}x' \ll z_1 + \ldots + z_r \ll \frac{5}{8}x.$$

Define $z_{j,0} := z_j$ and $z_{j,1} := z_j$ for $j = 1,\ldots,r$. We trivially have $z_{j,k} \ll y_j$ for each j and k. Further,

$$x' \leq \frac{10}{8}x' \ll 2(z_1 + \ldots + z_r) = \sum_{j,k} z_{j,k},$$

and

$$\sum_j z_{j,k} \ll \frac{5}{8}x \leq x.$$

for each $k = 0,1$, as desired. \hfill \square

Let A be a C^*-algebra. Then, we know from [APT18, Proposition 7.2.8] that A is purely infinite if and only if $\text{Cu}(A)$ has $\{0,\infty\}$-multiplication.

Proposition 3.21. Let A be a purely infinite C^*-algebra. Then $\dim(\text{Cu}(A)) = 0$.

Let \mathcal{W} denote the Jacelon-Raeburn algebra. Given a C^*-algebra A, it follows from [APT18, Proposition 7.6.3] that $\text{Cu}(A \otimes \mathcal{W})$ has $\{0,\infty\}$-multiplication, and that $\text{Cu}(A \otimes \mathbb{Z})$ has \mathbb{Z}-multiplication.

Proposition 3.22. Let A be a C^*-algebra. Then

$$\dim(\text{Cu}(A \otimes \mathcal{W})) = 0, \quad \text{and} \quad \dim(\text{Cu}(A \otimes \mathbb{Z})) \leq 1.$$

In particular, Cuntz semigroups of \mathcal{W}-stable C^*-algebras are zero-dimensional, and Cuntz semigroups of \mathbb{Z}-stable C^*-algebras have dimension at most one.

Example 3.23. Let X be a compact, metrizable space containing at least two points, and let $S := \text{Lsc}(X,\mathbb{N})_{++} \cup \{0\}$ be the sub-Cu-semigroup of $\text{Lsc}(X,\mathbb{N})$ consisting of strictly positive functions and 0. Then $\dim(S) = \infty$.

Indeed, assume for the sake of contradiction that $\dim(S) \leq n$ for some $n \in \mathbb{N}$, and take $r > n$. Since X contains at least two points, we can choose open subsets $U',U \subset X$ such that

$$\emptyset \neq U', \quad \overline{U} \subseteq U, \quad \text{and} \quad U \neq X.$$

Let $\chi_{U'}$ and χ_U denote the corresponding characteristic functions. Consider the elements $x' := 1 + (n + 1)\chi_{U'}$ and $x := 1 + (n + 1)\chi_U$ in S. Then, we have $x' \ll x \ll r+1 = 1 + \ldots + r+1 \in S$.

Using that $\dim(S) \leq n$, we obtain elements $z_{j,k} \in S$ for $j = 1,\ldots,r+1$ and $k = 0,\ldots,n$ satisfying (i)-(iii) from Definition 3.1. By condition (i), we have $z_{j,k} \ll 1$ and therefore $z_{j,k} = 0$ or $z_{j,k} = 1$ for each j,k.

Given $k \in \{0,\ldots,n\}$, we have $\sum_j z_{j,k} \ll x$ by condition (iii), and thus all but possibly one of the elements $z_{j,k},\ldots,z_{r+1,k}$ are zero. Thus, $\sum_j z_{j,k} \leq 1$. Using this at the last step, and using condition (ii) at the first step, we get

$$x' \ll \sum_{j,k} z_{j,k} = \sum_{k=0}^n \left(\sum_{j=1}^r z_{j,k} \right) \leq n + 1,$$

a contradiction.
Note that S does not arise as the Cuntz semigroup of a C^*-algebra since it does not satisfy (O5). (Take, for instance, $1 \ll 1 \ll 1 + \chi_U$ with $U \neq X$.)

4. Commutative and subhomogeneous C^*-algebras

In this section, we first prove that the dimension of the Cuntz semigroup of a C*-algebra A is bounded by the nuclear dimension of A; see [Theorem 4.1].

For every compact, Hausdorff space X, we show that the dimension of the Cuntz semigroup of $C(X)$ agrees with the dimension of X; see [Proposition 4.7]. More generally, on the class of subhomogeneous C^*-algebras, the dimension of the Cuntz semigroup agrees with the topological dimension, which in turn is equal to the nuclear dimension; see [Theorem 4.11].

Theorem 4.1. Let A be a C^*-algebra. Then $\dim(Cu(A)) \leq \dim_{\text{nuc}}(A)$.

Proof. Set $n := \dim_{\text{nuc}}(A)$, which we may assume to be finite. By [Rob11] Proposition 2.2, there exists an ultrafilter \mathcal{U} on an index set Λ, and finite-dimensional C*-algebras $F_{\lambda,k}$ for $\lambda \in \Lambda$ and $k = 0, \ldots, n$, and completely positive, contractive (cpc.) order-zero maps $\psi_k : A \to \prod_{\mathcal{U}} F_{\lambda,k}$ and $\varphi_k : \prod_{\mathcal{U}} F_{\lambda,k} \to A_{\mathcal{U}}$ such that

$$\iota = \sum_{k=0}^n \varphi_k \circ \psi_k,$$

where $\iota : A \to A_{\mathcal{U}}$ denotes the natural inclusion map.

A cpc. order-zero map $\alpha : C \to D$ between C^*-algebras induces a generalized Cu-morphism $\alpha : Cu(C) \to Cu(D)$; see, for example, [APT18] Paragraph 3.2.5.

The equality $\iota = \sum_{k=0}^n \varphi_k \circ \psi_k$ implies that

$$\varphi_l(\psi_l(x)) \leq \iota(x) \leq \sum_{k=0}^n \varphi_k(\psi_k(x))$$

for each $x \in Cu(A)$ and each $l \in \{0, \ldots, n\}$.

To verify $\dim(Cu(A)) \leq n$, let $x', x, y_1, \ldots, y_r \in Cu(A)$ satisfy

$$x' \ll x \ll y_1 + \ldots + y_r.$$

For each $k \in \{0, \ldots, n\}$, set $x_k := \psi_k(x) \in Cu(\prod_{\mathcal{U}} F_{\lambda,k})$. We have

$$\iota(x') \ll \iota(x) \leq \sum_{k=0}^n \varphi_k(\psi_k(x)) = \sum_{k=0}^n \varphi_k(x_k).$$

Using that φ_k preserves suprema of increasing sequences, we can choose an element $x'_k \in Cu(\prod_{\mathcal{U}} F_{\lambda,k})$ such that $x'_k \ll x_k$ and

$$\iota(x') \ll \sum_{k=0}^n \varphi_k(x'_k).$$

Given $k \in \{0, \ldots, n\}$, we have

$$x'_k \ll x_k = \psi_k(x) \leq \psi_k(\sum_{j=1}^r y_j) = \sum_{j=1}^r \psi_k(y_j).$$

Since $\prod_{\mathcal{U}} F_{\lambda,k}$ has real rank zero, we obtain $z_{1,k}, \ldots, z_{r,k} \in Cu(\prod_{\mathcal{U}} F_{\lambda,k})$ such that $z_{j,k} \leq \psi_k(y_j)$ for $j = 1, \ldots, r$ and

$$x'_k \leq \sum_{j=1}^r z_{j,k} \leq x_k.$$

We now consider the elements $\varphi_k(z_{j,k}) \in Cu(A_{\mathcal{U}})$. For each j and k, we have

$$\varphi_k(z_{j,k}) \leq \varphi_k(\psi_k(y_j)) \leq \iota(y_j).$$
Further, we have
\[i(x') \ll \sum_{k=0}^{n} \varphi_k(x'_k) \leq \sum_{k=0}^{n} \varphi_k(\sum_{j=1}^{r} z_{j,k}) = \sum_{k=0}^{n} \sum_{j=1}^{r} \varphi_k(z_{j,k}). \]

For each \(k \in \{0, \ldots, n\} \), we also have
\[\sum_{j=1}^{r} \varphi_k(z_{j,k}) = \varphi_k(\sum_{j=1}^{r} z_{j,k}) \leq \varphi_k(x_k) = \varphi_k(\tilde{\psi}_k(x)) \leq i(x). \]

Since the classes of elements in \(\bigcup_{N \in \mathbb{N}} (A_{\mathcal{U}} \otimes M_N)_+ \) are sup-dense in \(\text{Cu}(A_{\mathcal{U}}) \), there exist \(N \in \mathbb{N} \) and positive elements \(c_{j,k} \in A_{\mathcal{U}} \otimes M_N \) such that \([c_{j,k}] \ll [\varphi_k(z_{j,k})]\) and \(i(x') \ll \sum_{j,k} [c_{j,k}]\).

We have \(A_{\mathcal{U}} = \prod_{\lambda} A_{\mathcal{U}, \lambda} \), where
\[c_{\mathcal{U}, \lambda} = \{(a_{\lambda})_{\lambda} \in \prod_{\lambda} A : \lim_{\lambda \to \mathcal{U}} \|a_{\lambda}\| = 0\}. \]

We let \(\pi : \prod_{\lambda} A \to A_{\mathcal{U}} \) denote the quotient map.

We have \(A_{\mathcal{U}} \otimes M_N \cong (A \otimes M_N)_{\mathcal{U}} \). We also use \(\pi \) to denote its amplification to matrix algebras. Choose positive elements \(c_{j,k,\lambda} \in A \otimes M_N \) such that \(\pi((c_{j,k,\lambda})_{\lambda}) = c_{j,k} \). Then, for a sufficiently large \(\lambda \), the elements \([c_{j,k,\lambda}] \in \text{Cu}(A)\) satisfy the conditions of Lemma 3.3 for \(x' \ll x \ll y_1 + \cdots + y_r \), as desired. \(\square \)

We will show in Theorem 4.11 that for subhomogeneous \(C^* \)-algebras, the dimension of the Cuntz semigroup is equal to the nuclear dimension. To prove this, we first apply some model theoretic techniques to reduce the problem to separable, subhomogeneous \(C^* \)-algebras; see Proposition 4.4.

4.2. Recall that the local dimension \(\text{locdim}(X) \) of a topological space \(X \) is defined as the smallest \(n \in \mathbb{N} \) such that every point in \(X \) has a closed neighborhood of covering dimension at most \(n \); see [Pea75] Definition 5.1.1, p.188. If \(X \) is a locally compact, Hausdorff space, then
\[\text{locdim}(X) = \text{sup} \{ \dim(K) : K \subseteq X \text{ compact} \}. \]

If \(X \) is \(\sigma \)-compact, locally compact and Hausdorff, then \(\text{locdim}(X) = \dim(X) \), but in general \(\text{locdim}(X) \) can be strictly smaller than \(\dim(X) \). If \(X \) is locally compact, Hausdorff but not compact, then it follows from [Pea75] Proposition 3.5.6 that \(\text{locdim}(X) \) agrees with the the dimension of \(\alpha X \), the one-point compactification of \(X \).

4.3. Let \(d \in \mathbb{N} \) with \(d \geq 1 \). Recall that a \(C^* \)-algebra \(A \) is said to be \(d \)-(sub)homogeneous if every irreducible representation of \(A \) has dimension (at most) \(d \). Further, \(A \) is (sub)homogeneous if it is \(d \)-(sub)homogeneous for some \(d \). If \(A \) is \(d \)-subhomogeneous, then so is every sub-\(C^* \)-algebra of \(A \). Let us briefly recall the main structure theorems for (sub)homogeneous \(C^* \)-algebras. For details, we refer to [Bla06] Sections IV.1.4, IV.1.7.

Given a locally trivial \(M_d(\mathbb{C}) \)-bundle over a locally compact, Hausdorff space \(X \), the algebra of sections vanishing at infinity is a \(d \)-homogeneous \(C^* \)-algebra with primitive ideal space homeomorphic to \(X \). Moreover, every homogeneous \(C^* \)-algebra arises this way.

Let \(A \) be a \(d \)-subhomogeneous \(C^* \)-algebra. For each \(k \geq 2 \), let \(I_{\geq k} \subseteq A \) be the set of elements \(a \in A \) such that \(\pi(a) = 0 \) for every irreducible representation \(\pi \) of \(A \) of dimension at most \(k - 1 \). Set \(I_{\geq 1} = A \). Then
\[\{0\} = I_{\geq d+1} \subseteq I_{\geq d} \subseteq \cdots \subseteq I_{\geq 2} \subseteq I_{\geq 1} = A \]
is an increasing chain of (closed, two-sided) ideals of A. For each $k \geq 1$, the canonical k-homogeneous ideal-quotient (that is, an ideal of a quotient) of A is
\[A_k := I_{\geq k}/I_{\geq k+1}. \]

Note that $A_k = \{0\}$ for $k \geq d + 1$.

For each $k \geq 1$, we have a short exact sequence
\[0 \to A_{k+1} \to A/I_{\geq k+1} \to A/I_{\geq k} \to 0. \]

In particular, $A/I_{\geq 3}$ is an extension of $A/I_{\geq 2} = A_1$ by A_2. Then $A/I_{\geq 4}$ is an extension of $A/I_{\geq 3}$ by A_3, and so on. Finally, A is an extension of $A/I_{\geq d-1}$ by A_d. Thus, every subhomogeneous C^*-algebra is obtained as a finite sequence of successive extensions of homogeneous C^*-algebras.

In [BP09], Brown and Pedersen introduced the topological dimension for certain C^*-algebras, including all type I C^*-algebras. We only recall the definition for subhomogeneous C^*-algebras. First, if A is homogeneous, then its primitive ideal space $\text{Prim}(A)$ is locally compact and Hausdorff, and then the topological dimension of A is defined as $\text{topdim}(A) := \text{locdim}(\text{Prim}(A))$.

If A is subhomogeneous, then the topological dimension of A is defined as the maximum of the topological dimensions of the canonical homogeneous ideal-quotients:
\[\text{topdim}(A) := \max_{k=1,\ldots,d} \text{topdim}(A_k) = \max_{k=1,\ldots,d} \text{locdim}(\text{Prim}(A_k)). \]

Given a C^*-algebra A, we use $\text{Sub}_{\text{sep}}(A)$ to denote the collection of separable sub-C^*-algebras of A. A family $S \subseteq \text{Sub}_{\text{sep}}(A)$ is said to be σ-complete if for every countable, directed subfamily $T \subseteq S$ we have $\bigcup \{B : B \in T\} \in S$. Further, a family $S \subseteq \text{Sub}_{\text{sep}}(A)$ is said to be cofinal if for every $B_0 \in \text{Sub}_{\text{sep}}(A)$ there exists $B \in S$ with $B_0 \subseteq B$.

Proposition 4.4. Let $n \in \mathbb{N}$. Then for every subhomogeneous C^*-algebra A satisfying $\text{topdim}(A) \leq n$, the set
\[\{B \in \text{Sub}_{\text{sep}}(A) : \text{topdim}(B) \leq n\} \]

is σ-complete and cofinal.

Proof. We will use the following facts. The first is a consequence of [Thi20a, Proposition 3.5], the second follows from [BP09, Proposition 2.2].

Fact 1: Given a homogeneous C^*-algebra B with $\text{locdim}(B) \leq n$, the collection
\[\{C \in \text{Sub}_{\text{sep}}(B) : \text{topdim}(C) \leq n\} \]

is σ-complete and cofinal.

Fact 2: If B is subhomogeneous and $I \subseteq B$ is an ideal, then
\[\text{topdim}(B) = \max \{\text{topdim}(I), \text{topdim}(B/I)\}. \]

We prove the result for d-subhomogeneous C^*-algebras by induction over d. First, note that a C^*-algebra is 1-subhomogeneous if and only if it is 1-homogeneous (if and only if it is commutative). In this case, the result follows directly from Fact 1.

Next, let $d \geq 1$ and assume that the result holds for every d-subhomogeneous C^*-algebra. Let A be $(d+1)$-subhomogeneous. We need to show that the set $S := \{B \in \text{Sub}_{\text{sep}}(A) : \text{topdim}(B) \leq n\}$ is σ-complete and cofinal.

To verify that S is σ-complete, let $T \subseteq S$ be a countable, directed family. Set $C := \bigcup \{B : B \in T\}$. Then C is a separable C^*-algebra that is approximated by the sub-C^*-algebras $B \subseteq C$ for $B \in T$ that each satisfy $\text{topdim}(B) \leq n$. By [Thi13, Proposition 8], we have $\text{topdim}(C) \leq n$. Thus, $C \in S$, as desired.

Next, we verify that S is cofinal. Set $I := I_{\geq d+1} \subseteq A$, the ideal of all elements in A that vanish under all irreducible representations of dimension at most d. Then
I is \((d + 1)\)-homogeneous and \(A/I\) is \(d\)-subhomogeneous. By Fact 2, we have \(\text{topdim}(I) \leq n\) and \(\text{topdim}(A/I) \leq n\). By Fact 1 and by the assumption of the induction, the collections
\[
\begin{align*}
T_1 & := \{C \in \text{Sub}_{\text{sep}}(I) : \text{topdim}(C) \leq n\}, \\
T_2 & := \{D \in \text{Sub}_{\text{sep}}(A/I) : \text{topdim}(D) \leq n\},
\end{align*}
\]
designate \(\sigma\)-complete and cofinal. By [Thi20a, Lemma 3.2], it follows that the families
\[
\begin{align*}
S_1 & := \{B \in \text{Sub}_{\text{sep}}(A) : \text{topdim}(B \cap I) \leq n\}, \\
S_2 & := \{B \in \text{Sub}_{\text{sep}}(A) : \text{topdim}(B/(B \cap I)) \leq n\},
\end{align*}
\]
designate \(\sigma\)-complete and cofinal as well. Given \(B \in S_1 \cap S_2\), it follows from Fact 2 that
\[
\text{topdim}(B) = \max\{\text{topdim}(B \cap I), \text{topdim}(B/(B \cap I))\} \leq n.
\]
Thus, \(S_1 \cap S_2 \subseteq S\). Since \(S_1 \cap S_2\) is cofinal, so is \(S\). \(\square\)

We deduce a result that is probably known to the experts, but which does not appear in the literature so far. The equality of the topological dimension and the decomposition rank \(\text{dr}(A)\) of a separable subhomogeneous \(C^\ast\)-algebra \(A\) was shown in [Win04].

Theorem 4.5. Let \(A\) be a subhomogeneous \(C^\ast\)-algebra. Then
\[
\dim_{\text{nuc}}(A) = \text{dr}(A) = \text{topdim}(A).
\]

Proof. As noted in [WZ10, Remark 2.2(ii)], the inequality \(\dim_{\text{nuc}}(B) \leq \text{dr}(B)\) holds for every \(C^\ast\)-algebra \(B\). To verify \(\text{dr}(A) \leq \text{topdim}(A)\), set \(n := \text{topdim}(A)\). We may assume that \(n\) is finite. By [Proposition 4.4] the family
\[
S := \{B \in \text{Sub}_{\text{sep}}(A) : \text{topdim}(B) \leq n\}
\]
is cofinal. Each \(B \in S\) is a separable, subhomogeneous \(C^\ast\)-algebra, whence we can apply [Win04, Theorem 1.6] to deduce that \(\text{dr}(B) = \text{topdim}(B) \leq n\). Thus, \(A\) is approximated by the collection \(S\) consisting of \(C^\ast\)-algebras with decomposition rank at most \(n\). It is straightforward to verify that this implies \(\text{dr}(A) \leq n\).

To verify \(\text{topdim}(A) \leq \dim_{\text{nuc}}(A)\), set \(m := \dim_{\text{nuc}}(A)\), which we may assume to be finite. It follows from [WZ10, Proposition 2.6] that the family
\[
T := \{B \in \text{Sub}_{\text{sep}}(A) : \dim_{\text{nuc}}(B) \leq m\}
\]
is cofinal. Let \(B \in T\). Then \(B\) is a separable, subhomogeneous \(C^\ast\)-algebra. For each \(k \geq 1\), let \(B_k\) be the canonical \(k\)-homogeneous ideal-quotient of \(B\); see [Paragraph 4.3] Using [WZ10, Corollary 2.10] at the first step, and using that the nuclear dimension does not increase when passing to ideals ([WZ10, Proposition 2.5]) or quotients ([WZ10, Proposition 2.3(iv)]), at the second step, we get
\[
\text{topdim}(B_k) = \dim_{\text{nuc}}(B_k) \leq \dim_{\text{nuc}}(B) \leq m.
\]

Using that \(B\) is obtained as a successive extension of \(B_1\) by \(B_2\), and then by \(B_3\), and so on, it follows from [BP09, Proposition 2.2] that \(\text{topdim}(B) \leq m\). Thus, \(A\) is approximated by the collection \(T\) consisting of \(C^\ast\)-algebras with topological dimension at most \(m\). By [Thi13, Proposition 8], we get \(\text{topdim}(A) \leq m\), as desired. \(\square\)

Lemma 4.6. Let \(X\) be a compact, Hausdorff space. Then
\[
\dim(X) \leq \dim(Cu(C(X)))).
\]
Proof. Set $n := \dim(\Cu(C(X)))$, which we may assume to be finite. To verify that $\dim(X) \leq n$, let $\mathcal{U} = \{U_1, \ldots, U_r\}$ be a finite open cover of X. We need to find a $(n+1)$-colourable, finite, open refinement of \mathcal{U}; see Remark 3.2.

Since X is a normal space, we can find an open cover $\mathcal{V} = \{V_1, \ldots, V_r\}$ of X such that $V_j \subseteq U_j$ for each j; see for example [Pea75, Proposition 1.3.9, p.20]. For each j, by Urysohn’s lemma we obtain a continuous function $f_j : X \to [0,1]$ that takes the value 1 on V_j and that vanishes on $X \setminus U_j$.

We have $1 \leq f_1 + \ldots + f_r$, and therefore

$$[1] \ll [1] \leq [f_1 + \ldots + f_r] \leq [f_1] + \ldots + [f_r]$$

in $\Cu(C(X))$. Using that $\dim(\Cu(C(X))) \leq n$, we obtain elements $z_{j,k} \in \Cu(C(X))$ for $j = 1, \ldots, r$ and $k = 0, \ldots, n$ satisfying (i)-(iii) in Definition 3.1.

For each j and k, choose $g_{j,k} \in (C(X) \otimes \mathcal{K})_+$ such that $z_{j,k} = [g_{j,k}]$. Viewing $g_{j,k}$ as a positive, continuous function $g_{j,k} : X \to \mathcal{K}$, we set

$$W_{j,k} := \{x \in X : g_{j,k}(x) \neq 0\}.$$

Then $W_{j,k}$ is an open set. Condition (i) implies that $g_{j,k} = \lim_n h_n f_j h_n^*$ for some sequence (h_n) in $C(X) \otimes \mathcal{K}$. Thus, $g_{j,k}(x) = 0$ whenever $f_j(x) = 0$, which shows that $W_{j,k} \subseteq U_j$. Condition (ii) implies that X is covered by the sets $W_{j,k}$. Thus, the family $\mathcal{W} := \{W_{j,k}\}$ is a finite, open refinement of \mathcal{U}.

Let $k \in \{0, \ldots, n\}$. Given $x \in X$, it follows from condition (iii) that the rank of $g_{1,k}(x) + \ldots + g_{r,k}(x)$ is at most one. This implies that at most one of $g_{1,k}(x), \ldots, g_{r,k}(x)$ is nonzero. Thus, the sets W_1, \ldots, W_r are pairwise disjoint.

Hence, \mathcal{W} is $(n+1)$-colourable, as desired. \qed

Proposition 4.7. Let X be a compact, Hausdorff space. Then

$$\dim(\Cu(C(X))) = \dim(X).$$

Proof. The inequality `\geq’ is shown in Lemma 4.6 by [WZ10, Proposition 2.4]. We have $\dim(X) = \dim_{\text{unc}}(C(X))$ if X is second-countable. By Theorem 4.5, this also holds for arbitrary compact, Hausdorff spaces. Thus, the inequality `\leq’ follows from Theorem 4.3. \qed

Corollary 4.8. Let X be a compact, metrizable space. Then

$$\dim(\Lsc(X, \mathbb{N})) = \dim(X).$$

Proof. It is enough to see that $\Lsc(X, \mathbb{N})$ is a retract of $\Cu(C(X))$, since the inequality `\geq’ has already been proven in Example 3.4 and the inequality `\leq’ will follow from Proposition 3.15 and Proposition 4.7.

Thus, set $S = \Lsc(X, \mathbb{N})$ and $T = \Cu(C(X))$. Define $\iota : \Lsc(X, \mathbb{N}) \to \Cu(C(X))$ as the unique Cu-morphism mapping the characteristic function χ_U to the class of a positive function in $C(X)$ with support U for every open subset $U \subseteq X$.

Also, let $\sigma : T \to S$ be the generalized Cu-morphism mapping the class of an element $a \in C(X) \otimes \mathcal{K}$ to its rank function $\sigma(a) : X \to \mathbb{N}$, $\sigma(a)(x) = \text{rank}(a(x))$.

It is easy to check that $\sigma \circ \iota = \text{id}_S$, as desired. \qed

Theorem 4.9. Let X be a locally compact, Hausdorff space. Then

$$\dim(\Cu(C_0(X))) = \text{locdim}(X).$$

Proof. Let $K \subseteq X$ be a compact subset. Then $C(K)$ is a quotient of $C_0(X)$. Using Proposition 4.7 at the first step and Proposition 3.10 at the second step, we get

$$\dim(K) = \dim(\Cu(C(K))) \leq \dim(\Cu(C_0(X))).$$

It follows that $\text{locdim}(X) \leq \dim(\Cu(C_0(X)))$. \qed
Conversely, we use that $C_0(X)$ is an ideal in $C(\alpha X)$. Applying Proposition 3.10 at the first step, and using Proposition 4.7 and dim$(\alpha X) = \text{locdim}(X)$ at the second step, we get

$$\dim(Cu(C_0(X))) \leq \dim(Cu(C(\alpha X))) = \text{locdim}(X).$$

This shows the converse inequality and finishes the proof. □

Lemma 4.10. Let A be a homogeneous C^*-algebra. Then

$$\dim_{\text{nuc}}(A) \leq \dim(Cu(A)).$$

Proof. Let $d \geq 1$ be such that A is d-homogeneous. Set $X := \text{Prim}(A)$, which is locally compact and Hausdorff. Then topdim$(A) = \text{locdim}(X)$, and we need to show that locdim$(X) \leq \dim(Cu(A))$.

Let $x \in X$. Since A is the algebra of sections vanishing at infinity of a locally trivial $M_d(\mathbb{C})$-bundle over X, there exists a compact neighborhood Y of x over which the bundle is trivial. Let $I \subseteq A$ be the ideal of all sections in A that vanish on $X \setminus Y$. Then A/I is the algebra of sections of the trivial $M_d(\mathbb{C})$-bundle over Y, and so $A/I \cong C(Y) \otimes M_d$. Using Lemma 4.6 at the first step, using that $C(Y)$ and $C(Y) \otimes M_d$ have isomorphic Cuntz semigroups at the second step, and using Proposition 3.10 at the last step, we get

$$\dim(Y) \leq \dim(Cu(C(Y))) = \dim(Cu(C(Y) \otimes M_d)) \leq \dim(Cu(A)).$$

Thus, every point in X has a closed neighborhood of dimension at most $\dim(Cu(A))$, whence locdim$(X) \leq \dim(Cu(A))$, as desired. □

Theorem 4.11. Let A be a subhomogeneous C^*-algebra. Then

$$\dim(Cu(A)) = \dim_{\text{nuc}}(A) = \text{dr}(A) = \text{topdim}(A).$$

Proof. The second and third equalities are shown in Theorem 4.5. By Theorem 4.1, the inequality $\dim(Cu(A)) \leq \dim_{\text{nuc}}(A)$ holds in general. It remains to verify that $\text{topdim}(A) \leq \dim(Cu(A))$.

For each $k \geq 1$, let A_k be the canonical k-homogeneous ideal-quotient of A as in Paragraph 4.3. Using Lemma 4.10 at the first step, and using Proposition 3.10 at the second step, we get

$$\text{topdim}(A_k) \leq \dim(Cu(A_k)) \leq \dim(Cu(A)).$$

Consequently,

$$\text{topdim}(A) = \max_{k \geq 1} \text{topdim}(A_k) \leq \dim(Cu(A)),$$

as desired. □

Example 4.12. There are many examples showing that Theorem 4.11 does not hold for all C^*-algebras. In Theorem 5.7, we will show that every C^*-algebra A of real rank zero satisfies $\dim(Cu(A)) = 0$. On the other hand, a separable C^*-algebra A satisfies $\dim_{\text{nuc}}(A) = 0$ if and only if A is an AF-algebra; see [WZ10, Remarks 2.2(iii)]. Thus, every separable C^*-algebra A of real rank zero that is not an AF-algebra is an example where $\dim(Cu(A))$ is strictly smaller than $\dim_{\text{nuc}}(A)$. More extremely, every non-nuclear C^*-algebra A of real rank zero, such as $B(l^2(\mathbb{N}))$, satisfies $\dim(Cu(A)) = 0$ while $\dim_{\text{nuc}}(A) = \infty$. Another example is the irrational rotation algebra A_θ, which satisfies $\dim(Cu(A_\theta)) = 0$ while $\dim_{\text{nuc}}(A_\theta) = 1$.
5. Algebraic, zero-dimensional Cuntz semigroups

In this section we begin our systematic study of zero-dimensional Cu-semigroups. After giving a useful characterization of zero-dimensionality (Lemma 5.1), we provide a sufficient criterion: A Cu-semigroup is zero-dimensional whenever it contains a sup-dense subsemigroup that satisfies the Riesz decomposition property with respect to the pre-order induced by the way-below relation; see Proposition 5.3. We deduce that the Cuntz semigroup of every C^*-algebra of real rank zero is zero-dimensional; and conversely, every unital C^*-algebra of stable rank one and with zero-dimensional Cuntz semigroup has real rank zero; Theorem 5.7.

We also show that every weakly cancellative, zero-dimensional Cu-semigroup satisfying (O5) contains a largest algebraic ideal, which contains all compact elements; see Proposition 5.5. In Section 7, we study certain zero-dimensional Cu-semigroups that contain no compact elements.

Lemma 5.1. Let S be a Cu-semigroup. Then $\dim(S) = 0$ if and only if, whenever $x' \ll x \ll y_1 + y_2$ in S, there exist $z_1, z_2 \in S$ such that
\[
z_1 \ll y_1, \quad z_2 \ll y_2, \quad \text{and} \quad x' \ll z_1 + z_2 \ll x.
\]

Proof. The forward implication is clear, so we are left to prove the converse. Given $r \geq 1$ and $x' \ll x \ll y_1 + \ldots + y_r$ in S, we need to find $z_1, \ldots, z_r \in S$ such that
\[
z_j \ll y_j \quad \text{for } j = 1, \ldots, r, \quad \text{and} \quad x' \ll z_1 + \ldots + z_r \ll x.
\]

We prove this by induction on r. The case $r = 1$ is clear and the case $r = 2$ holds by assumption.

Thus, let $r > 2$ and assume that the result holds for $r - 1$. Given $x' \ll x \ll y_1 + \ldots + y_r$, apply the assumption to
\[
x' \ll x \ll (y_1 + \ldots + y_{r-1}) + y_r
\]
to obtain $u_1, u_2 \in S$ such that
\[
u_1 \ll y_1 + \ldots + y_{r-1}, \quad u_2 \ll y_r, \quad \text{and} \quad x' \ll u_1 + u_2 \ll x.
\]

Choose u'_1 such that $u'_1 \ll u_1$ and $x' \ll u'_1 + u_2$. Applying the induction hypothesis to
\[
u'_1 \ll u_1 \ll y_1 + \ldots + y_{r-1},
\]
we obtain $z_1, \ldots, z_{r-1} \in S$ such that
\[
z_j \ll y_j \quad \text{for } j = 1, \ldots, r - 1, \quad \text{and} \quad u'_1 \ll z_1 + \ldots + z_{r-1} \ll u_1.
\]
Set $z_r := u_2$. Then z_1, \ldots, z_r have the desired properties. \hfill \square

Remark 5.2. It follows from Lemma 5.1 that every zero-dimensional Cu-semigroup satisfies (O6). The converse does not hold, that is, zero-dimensionality is strictly stronger than (O6). For example, the Cuntz semigroup of the Jiang-Su algebra satisfies (O6) but is not zero-dimensional; see Example 3.19.

Recall that a semigroup S with a pre-order \prec is said to satisfy the Riesz decomposition property if whenever $x, y, z \in S$ satisfy $x \prec y + z$, then there exist $e, f \in S$ such that $x = e + f$, $e \prec y$ and $f \prec z$.

Proposition 5.3. Let S be a Cu-semigroup, and let $D \subseteq S$ be a sup-dense subsemigroup such that D satisfies the Riesz decomposition property for the pre-order induced by \prec. Then $\dim(S) = 0$.

Proof. To verify the condition in Lemma 5.1, let $x' \ll x \ll y_1 + y_2$ in S. Using that D is sup-dense, we find $\bar{x}, \bar{y}_1, \bar{y}_2 \in D$ such that
\[
x' \ll \bar{x} \ll x \leq \bar{y}_1 + \bar{y}_2, \quad \bar{y}_1 \ll y_1, \quad \text{and} \quad \bar{y}_2 \ll y_2.
\]
Then \(\bar{x} \ll \bar{y}_1 + \bar{y}_2 \). Using that \(D \) satisfies the Riesz decomposition property, we obtain \(x_1, x_2 \in D \) such that
\[
\bar{x} = x_1 + x_2, \quad x_1 \ll \bar{y}_1, \quad \text{and} \quad x_2 \ll \bar{y}_2.
\]
Then \(x_1 \) and \(x_2 \) have the desired properties to verify the condition of Lemma 5.3.

Recall that a \(\mCu \)-semigroup is said to be algebraic if its compact elements are sup-dense; see [APT18] Section 5.5.

Lemma 5.4. Let \(S \) be a weakly cancellative \(\mCu \)-semigroup satisfying (O5) and \(\dim(S) = 0 \). Let \(e \in S \) be compact. Then the ideal generated by \(e \) is algebraic.

Proof. Let \(I \) be the ideal generated by \(e \). Note that \(x \in S \) belongs to \(I \) if and only if \(x \leq \infty \). To verify that \(I \) is algebraic, let \(x', x \in I \) satisfy \(x' \ll x \). We need to find a compact element \(z \) such that \(x' \ll z \ll x \).

Choose \(x'' \in S \) such that \(x' \ll x'' \ll x \). Then \(x'' \ll x \leq \infty \), which allows us to choose \(n \in \mathbb{N} \) such that \(x'' \leq nc \). Applying (O5) to \(x' \ll x'' \leq nc \), we obtain \(y \in S \) such that
\[
x' + y \leq nc \leq x'' + y.
\]
Using that \(\dim(S) = 0 \) for \(nc \ll x'' + y \), we obtain \(z_1, z_2 \in S \) such that \(nc = z_1 + z_2, \quad z_1 \ll x'', \quad \text{and} \quad z_2 \ll y \).

By weak cancellation, \(z_1 \) and \(z_2 \) are compact. We now have
\[
x' + y \ll nc = z_1 + z_2 \leq z_1 + y.
\]
Using weak cancellation, we get \(x' \ll z_1 \). Thus, \(z_1 \) has the desired properties. \(\square \)

Proposition 5.5. Let \(S \) be a weakly cancellative \(\mCu \)-semigroup satisfying (O5) and \(\dim(S) = 0 \). Then \(S \) contains a largest algebraic ideal, which agrees with the ideal generated by all compact elements of \(S \).

Proof. This follows directly from Lemma 5.3. \(\square \)

Proposition 5.6. Let \(S \) be a weakly cancellative \(\mCu \)-semigroup satisfying (O5). Then the following are equivalent:

1. \(\dim(S) = 0 \), and the set of compact elements of \(S \) is full (that is, there is no proper ideal of \(S \) containing all compact elements);
2. \(S \) is algebraic and satisfies (O6).

Proof. Assuming (1), it follows from Lemma 5.4 that \(S \) is algebraic. Further, it is clear that \(\dim(S) = 0 \) implies that \(S \) satisfies (O6).

Conversely, assuming (2), set \(D := \{ x \in S : x \ll x \} \), the semigroup of compact elements. By assumption, \(D \) is sup-dense. By [APT18] Corollary 5.5.10, \(D \) satisfies the Riesz decomposition property. Hence, \(\dim(S) = 0 \) by Proposition 5.3.

Since \(S \) is algebraic, it is clear that compact elements of \(S \) are full. \(\square \)

Theorem 5.7. If \(A \) is a \(\C^* \)-algebra of real rank zero, then \(\dim(\mCu(A)) = 0 \). Conversely, if \(A \) is a unital \(\C^* \)-algebra of stable rank one, then \(A \) has real rank zero if (and only if) \(\dim(\mCu(A)) = 0 \).

Proof. 1. Let \(A \) be a \(\C^* \)-algebra of real rank zero. It follows that the submonoid \(\mCu(A)_c \) of compact elements in \(\mCu(A) \) is sup-dense. With view towards Proposition 5.3, it suffices to show that \(\mCu(A)_c \) satisfies the Riesz decomposition property.

By [BP91, Corollary 3.3], \(A \otimes \mathcal{K} \) has real rank zero. Hence, it follows from Zlin90, Theorem 1.1] that the Murray-von Neumann semigroup \(V(A) \) of equivalence classes of projections in \(A \otimes \mathcal{K} \) satisfies the Riesz decomposition property.
Given a projection $p \in A \otimes K$, we let $[p]_0$ denote its equivalence class in $V(A)$. Then the map $V(A) \to \text{Cu}(A)_c$, given by $[p]_0 \mapsto [p]$, is well-defined, additive and order-preserving. Using that A has real rank zero, it follows that A is surjective onto $\text{Cu}(A)_c$. (However, A is not injective in general, and $V(A)$ and $\text{Cu}(A)_c$ need not be isomorphic.)

To verify that $\text{Cu}(A)_c$ satisfies the Riesz decomposition property, let p, q, r be projections in $A \otimes K$ such that $[p] \prec [q] + [r]$ in $V(A)$, then $[p]_0 \leq [q]_0 + [r]_0$ in $V(A)$. Using that $V(A)$ satisfies the Riesz decomposition property, we obtain projections $q' \leq q$ and $r' \leq r$ such that $[p]_0 = [q']_0 + [r']_0$ in $V(A)$. It follows that $[p'], [q'] \in \text{Cu}(A)_c$ satisfy $[p] = [q'] + [r']$, $[q'] \prec [r'] \prec [r]$, as desired.

2. Let A be a unital C^*-algebra of stable rank one and assume $\dim(\text{Cu}(A)) = 0$. Since A is unital, the compact elements in $\text{Cu}(A)$ form a full subset. Thus, by Proposition 5.6, $\text{Cu}(A)$ is algebraic. Now it follows from [CEI08, Corollary 5] that A has real rank zero.

Corollary 5.8. Let A be a separable, simple, \mathbb{Z}-stable C^*-algebra. Then we have $\dim(\text{Cu}(A)) \leq 1$. Moreover, $\dim(\text{Cu}(A)) = 0$ if and only if A has real rank zero or A is stably projectionless.

Proof. It follows from [Rør02, Theorem 4.1.10] that A is either purely infinite or stably finite. Thus, we can distinguish three cases: A is either purely infinite or stably projectionless, or stably finite and not stably projectionless.

The first statement follows from Proposition 3.22. To show the forward implication of the second statement, assume that $\dim(\text{Cu}(A)) = 0$. We need to show that A has real rank zero or is stably projectionless. First, if A is purely infinite, then A has real rank zero; see [Bla06, Proposition V.3.2.12]. Second, if A is stably projectionless, then there is nothing to show. Third, we consider the case that A is stably finite and not stably projectionless. Let $p \in A \otimes K$ be a nonzero projection. Then $p(A \otimes K)p$ is a separable, unital, simple, stably finite, \mathbb{Z}-stable C^*-algebra and therefore has stable rank one by [Rør04, Theorem 6.7]. Since A and $p(A \otimes K)p$ are stably isomorphic, they have isomorphic Cuntz semigroups. Thus, $\dim(\text{Cu}(p(A \otimes K)p)) = 0$, and we deduce from Theorem 5.7 that $p(A \otimes K)p$ has real rank zero. By [BP91, Corollary 2.8 and 3.3], a C^*-algebra has real rank zero if and only if its stabilization does. Thus, A has real rank zero.

To show the backward implication of the second statement, assume that A has real rank zero or is stably projectionless. We need to show that $\dim(\text{Cu}(A)) = 0$. If A has real rank zero, this follow from Theorem 5.7. Let us consider the case that A is stably projectionless. Then $\text{Cu}(A)$ contains no nonzero compact elements by [BC09]. Thus, $\text{Cu}(A)$ is soft and has \mathbb{Z}-multiplication, which by [APT18, Theorem 7.5.4] implies that $\text{Cu}(A)$ has $[0, \infty]$-multiplication. Hence, $\dim(\text{Cu}(A)) = 0$ by Proposition 3.20.

6. Thin boundary and complementable elements

In this section, we study soft elements in simple Cu-semigroups that behave very similar to compact elements: the elements with thin boundary (Definition 6.3), and the complementable elements (Definition 6.12). If S is a simple, stably finite, soft Cu-semigroup satisfying (O5) and (O6) (for example, the Cuntz semigroup of a simple, stably projectionless C^*-algebra; see Proposition 6.2), then every element with thin boundary is complementable; see Corollary 6.14. The converse holds if S is also weakly cancellative (for example, the Cuntz semigroup of a simple, stably projectionless C^*-algebra of stable rank one); see Theorem 6.15.

In Section 7 we will show that zero-dimensionality of certain simple Cu-semigroups is characterized by sup-denseness of the elements with thin boundary.
6.1. We say that a simple Cu-semigroup S is stably finite if for all $x, z \in S$, we have that $x + z \ll z$ implies $x = 0$. Using that S is simple, one can show that this definition is equivalent to the one given in [APT18] Paragraph 5.2.2. We note that every simple, weakly cancellative Cu-semigroup is stably finite.

Let S be a simple, stably finite Cu-semigroup satisfying (O5). Recall that an element $x \in S$ is compact if $x \ll x$. We say that $x \in S$ is soft if $x = 0$ or if $x \neq 0$ and for every $x' \in S$ satisfying $x' \ll x$ there exists a nonzero $t \in S$ such that $x' + t \ll x$. (Using [APT18] Proposition 5.3.8, one sees that this is equivalent to the original definition.) We say that S is soft if every element in S is soft.

We let S_c and S_{soft} denote the set of compact and soft elements in S, respectively. We also set $S_{soft}' := S_{soft} \setminus \{0\}$. It is easy to see that S_c, S_{soft} and S_{soft}' are submonoids of S. Further, S_{soft}' is absorbing in the sense that $x + y$ belongs to S_{soft}' whenever x or y does; see [APT18] Theorem 5.3.11.

By [APT18] Proposition 5.3.16, every element in S is either compact, or nonzero and soft. Hence, S can be decomposed as $S = S_{soft}' \cup S_c$.

Proposition 6.2. Let A be a simple, stably projectionless C^*-algebra. Then $\text{Cu}(A)$ is a simple, stably finite, soft Cu-semigroup satisfying (O5) and (O6).

Proof. The Cuntz semigroup $\text{Cu}(A)$ is simple and satisfies (O5) and (O6) since it is the Cuntz semigroup of a simple C^*-algebra (see, for example, [APT18] Corollary 5.1.12). As A is stably projectionless, $\text{Cu}(A)$ has no nonzero compact elements by [BC09].

It is easy to check that a simple Cu-semigroup is stably finite if and only if ∞ is not compact or if S is zero. Therefore, the Cuntz semigroup of a stably projectionless C^*-algebra is always stably finite.

By [APT18] Proposition 5.3.16 we have $\text{Cu}(A)^{\times} = \text{Cu}(A)_{soft}^{\times}$ as desired. \qed

Definition 6.3. Let S be a simple Cu-semigroup. We say that an element $x \in S$ has thin boundary if $x \ll x + t$ for every nonzero $t \in S$. We let S_{tb} denote the set of elements in S with thin boundary.

Note that every compact element has thin boundary, but the converse is not true: In $[0, \infty]$ every element has thin boundary, but only 0 is compact.

Example 6.4. Let K be a metrizable, compact, convex set. Let $\text{LAff}(K)_{+++}$ denote the set of lower semicontinuous, affine functions $K \to [0, \infty]$. Equipped with pointwise order and addition, $S := \text{LAff}(K)_{+++} \cup \{0\}$ is a simple Cu-semigroup; see, for example, [Thi20b] Proposition 3.9. By [Thi20b] Lemma 3.6, $f, g \in S$ satisfy $f \ll g$ if and only if there exist $\varepsilon > 0$ and a continuous, finite-valued function $h \in S$ such that $f + \varepsilon \leq h \leq g$. Using this, we deduce that $f \in S$ has thin boundary in the sense of Definition 6.3 if and only if f is continuous and finite-valued.

Example 6.5. Let S be a countably based, simple, stably finite Cu-semigroup containing a nonzero, compact element $u \in S$. Let K denote the metrizable, compact, convex set of functionals $\lambda : S \to [0, \infty]$ satisfying $\lambda(u) = 1$. The rank of an element $x \in S$ is the function $\hat{x} : K \to [0, \infty]$ given by $\hat{x}(\lambda) := \lambda(x)$.

Given $x \in S$, its rank \hat{x} belongs to the simple Cu-semigroup $\text{LAff}(K)_{+++} \cup \{0\}$. If x has thin boundary, then \hat{x} is continuous (using for example [Rob13] Lemma 2.2.5)] and finite-valued, and it follows from Example 6.4 that $\hat{x} \in \text{LAff}(K)_{+++} \cup \{0\}$ has thin boundary as well.

Remark 6.6. The definition of ‘thin boundary’ is inspired by the notion of ‘small boundary’ in dynamical systems. Let $T : X \to X$ be a minimal homeomorphism on a compact, metrizable space X. We let $M_T(X)$ denote the set of T-invariant probability measures on X, which is a non-empty, metrizable Choquet simplex.
The rank of an open subset \(U \subseteq X \) is the map \(\hat{U}: M_{\mathcal{T}}(X) \to [0,1] \) given by \(\hat{U}(\mu) := \mu(U) \). Then \(\hat{U} \) belongs to the simple \(\text{Cu} \)-semigroup \(\text{LAff}(M_{\mathcal{T}}(X))_{+} \cup \{0\} \).

An open set \(U \subseteq X \) is said to have ‘small boundary’ if \(\mu(\partial U) = 0 \) for every \(\mu \in M_{\mathcal{T}}(X) \); see \cite{Lin99} Section 3. If \(U \) has small boundary, then \(\hat{U} \) is continuous. Indeed, consider the open set \(V := X \setminus \overline{U} \). Then \(\hat{U} \) and \(\hat{V} \) are lower semicontinuous functions, which by assumption add to the constant function 1, which implies that they are continuous. Thus, just as ‘thin boundary’ implies continuous rank \[\text{Example 6.5}, \] so does ‘small boundary’.

Further, to the dynamical system \((X,T)\) one can associate a dynamical version of the \(\text{Cu} \)-semigroup based on the dynamical notion of comparison defined in \cite{Ker20} Section 3. One can then show that an open set \(U \subseteq X \) has small boundary whenever it has ‘thin boundary’ in the sense that \([U] \ll [U] + [V] \) in the dynamical \(\text{Cu} \)-semigroup for every nonempty open set \(V \subseteq X \).

Thus, in the dynamical setting, ‘thin boundary’ implies ‘small boundary’, and we can think of ‘small boundary’ as the measurable (or tracial) version of ‘thin boundary’.

We will repeatedly use the following result.

Lemma 6.7. Let \(S \) be a simple, nonelementary \(\text{Cu} \)-semigroup satisfying (O5) and (O6). Let \(u_0, u_1 \in S \) be nonzero. Then there exists a nonzero \(w \in S \) such that \(2w \leq u_0, u_1 \).

Proof. This follows by combining \cite{APT18} Lemma 5.1.18 and \cite{Rob13} Proposition 5.2.1. For the convenience of the reader, we include the simple argument.

First, choose nonzero elements \(u_0'', u_0' \in S \) such that \(u_0'' \ll u_0' \ll u_0 \). Since \(S \) is simple and \(u_1 \neq 0 \), we have \(u_0'' \ll u_0 \leq \infty \ll u_1 \), which allows us to choose \(n \geq 1 \) such that \(u_1' \leq nu_1 \).

Applying (O6) to \(u_0'' \ll u_0' \leq u_1 + \ldots + u_1 \), we obtain \(z_1, \ldots, z_n \in S \) such that

\[
0 \ll u_0'' \ll z_1 + \ldots + z_n, \quad \text{and} \quad z_1, \ldots, z_n \ll u_0', u_1.
\]

Since \(u_0'' \) is nonzero, there is \(j \in \{1, \ldots, n\} \) such that \(v := z_j \) is nonzero. Then \(v \ll u_0, u_1 \).

Since \(S \) is nonelementary, \(v \) is not a minimal nonzero element. Thus, we can choose a nonzero \(v' \in S \) with \(v' \leq v \) and \(v' \neq v \). Choose a nonzero \(v'' \in S \) with \(v'' \ll v' \). Applying (O5) to \(v'' \ll v' \ll v \), we obtain \(c \in S \) such that

\[
v'' + c \leq v \leq v' + c.
\]

Since \(v' \neq v \), we have \(c \neq 0 \). Applying the first part of the argument to the nonzero elements \(u_0 = v'' \) and \(z_1 = c \), we obtain \(w \in S \) such that \(0 \neq w \ll v', c \). Then \(w \) has the desired properties.

Lemma 6.8. Let \(S \) be a simple \(\text{Cu} \)-semigroup satisfying (O5) and (O6). Then \(S_{\text{tb}} \) is a submonoid.

Proof. This is clear if \(S \) is elementary, since then every element in \(S \) way-below another is compact and therefore \(S_{\text{tb}} = S \); see \cite{APT18} Proposition 5.1.19.

We now assume that \(S \) is nonelementary. Let \(x, y \in S_{\text{tb}} \). To verify that \(x + y \) has thin boundary, let \(t \in S \) be nonzero. By Lemma 6.7, there is a nonzero element \(s \) such that \(2s \leq t \).

This implies

\[
x + y \ll x + s + y + s \leq x + y + t,
\]

as required.

Lemma 6.9. Let \(S \) be a simple, weakly cancellative \(\text{Cu} \)-semigroup satisfying (O5). Let \(x, y, z \in S \) satisfy \(x + z \leq y + z \). Assume that \(x, y \) are soft, and that \(z \) has thin boundary. Then \(x \leq y \).
Proof. If $x = 0$ the result is trivial, so we may assume otherwise.

Let $x' \in S$ satisfy $x' \ll x$. Choose $x'' \in S$ such that $x' \ll x'' \ll x$. Since x is nonzero and soft, there exists a nonzero $t \in S$ with $x'' + t \leq x$. Hence,

$$x' + z \ll x'' + (z + t) \leq x + z \leq y + z.$$

Using weak cancellation, we get $x' \ll y$.

Since this holds for every x' way-below x, we get $x \leq y$. \qed

Lemma 6.10. Let S be a simple, weakly cancellative Cu-semigroup. Let $x, y \in S$ such that $x + y$ has thin boundary. Then x and y have thin boundary.

Proof. To show that x has thin boundary, let $t \in S$ be nonzero. Then

$$x + y \ll (x + y) + t = (x + t) + y,$$

which, by weak cancellation, implies that $x \ll x + t$, as desired. Analogously, one shows that y has thin boundary. \qed

Lemma 6.11. Let S be a simple, stably finite Cu-semigroup satisfying (O5). Let $x \in S$ have thin boundary, and let $s, t \in S$ satisfy $s \ll t$. Assume that t is nonzero and soft. Then $x + s \ll x + t$.

Proof. Choose $t' \in S$ such that $s \ll t' \ll t$. Since t is nonzero and soft, there exists a nonzero $c \in S$ such that $t' + c \leq t$. Then

$$x + s \ll (x + c) + t' \leq x + t,$$

as desired. \qed

Definition 6.12. Let S be a simple, soft Cu-semigroup. We say that $x \in S$ is complementable if for every $y \in S$ satisfying $x \ll y$ there exists $z \in S$ such that $x + z = y$.

The next result implies that elements with thin boundary are complementable; see Corollary 6.14.

Proposition 6.13. Let S be a simple, stably finite Cu-semigroup satisfying (O5) and (O6). Let $x, y \in S$ satisfy $x \ll y$. Assume that x has thin boundary and that y is soft. Then there exists $z \in S$ such that $x + z = y$.

Proof. Applying [APT18, Proposition 5.1.19], the result is clear if S is elementary. Thus, we may assume that S is nonelementary. The result is also clear if $x = 0$, so we may assume that $x \neq 0$.

Step 1: We construct an increasing sequence $(y_n)_n$ with supremum y and $x \leq y_0$, and a sequence $(s_n)_n$ of nonzero elements such that

$$y_n + s_n \ll y_{n+1}$$

for every $n \in \mathbb{N}$.

First, let $(y_n)_n$ be any \ll-increasing sequence in S with supremum y. Set $y_0 := x$.

Since S is simple and stably finite, it follows from [APT18, Proposition 5.3.18] that there exists a soft element y' such that $y_0 \ll y' \ll y$. Since y' is nonzero and soft, one can find a non-zero element s_0 such that $y_0 + s_0 \leq y'$.

Using that $y_0 + s_0$ and y_1 are way-below y, choose y_1 such that

$$y_0 + s_0 \ll y_1, \quad y_1 \ll y_1, \quad \text{and} \quad y_1 \ll y.$$

Then $y_1 \ll y$, and we can apply the previous argument once again to obtain $s_1 \neq 0$ such that $y_1 + s_1 \ll y$. Using that $y_1 + s_1$ and y_2 are way-below y, we obtain y_2 such that

$$y_1 + s_1 \ll y_2, \quad y_2 \ll y_2, \quad \text{and} \quad y_2 \ll y.$$

Continuing this way, we obtain the desired sequences $(y_n)_n$ and $(s_n)_n$.

Step 2: We construct a sequence \((r_n)_n\) of nonzero elements such that
\[
2r_{n+1} \ll r_n, s_{n+1}, \quad \text{and} \quad y_n + r_n + r_{n+1} \ll y_{n+1}
\]
for every \(n \in \mathbb{N}\).

Applying Lemma 6.7 with \(n_0\), we obtain a nonzero \(r_0 \in S\) such that \(2r_0 \ll s_0\).

Then, applying Lemma 6.7 for \(r_0\) and \(s_1\), we obtain a nonzero \(r_1 \in S\) such that \(2r_1 \ll r_0, s_1\).

Continuing this way, we obtain a sequence \((r_n)_n\) such that \(2r_{n+1} \ll r_n, s_{n+1}\) for every \(n \in \mathbb{N}\).

For each \(n \in \mathbb{N}\), we have
\[
y_n + r_n + r_{n+1} \leq y_n + 2r_n \leq y_n + s_n \ll y_{n+1},
\]
which shows that \((r_n)_n\) has the desired properties.

Step 3: We construct an \(\ll\)-increasing sequence \((w_n)_n\) and a sequence \((v_n)_n\) such that
\[
x + r_{n+1} + v_n \leq y_n \leq x + r_n + v_n, \quad w_n \ll r_n + v_n, v_{n+1}, \quad \text{and} \quad y_{n-1} \leq x + w_n
\]
for every \(n \geq 1\).

To start, using Lemma 6.11 at the first step, we have
\[
x + r_2 \ll x + r_1 \leq y_0 + s_0 \leq y_1.
\]
Applying (O5), we obtain \(v_1 \in S\) such that
\[
x + r_2 + v_1 \leq y_1 \leq x + r_1 + v_1.
\]
Using that \(y_0 \ll y_1\), we can choose \(w_1 \in S\) such that
\[
y_0 \leq x + w_1, \quad \text{and} \quad w_1 \ll r_1 + v_1.
\]

Next, let \(n \geq 1\), and assume that we have chosen \(v_n\) and \(w_n\). Using for the first inequality that \(x + r_{n+1} + v_n \leq y_n\) and (6.1), we have
\[
x + r_{n+1} + r_n + v_n \leq y_{n+1}, \quad x + r_{n+2} \ll x + r_{n+1}, \quad \text{and} \quad w_n \ll r_n + v_n.
\]
Applying (O5), we obtain \(v_{n+1} \in S\) such that
\[
x + r_{n+2} + v_{n+1} \leq y_{n+1} \leq x + r_{n+1} + v_{n+1}, \quad \text{and} \quad w_n \ll v_{n+1}.
\]
Using that \(y_n \ll y_{n+1}\) and \(w_n \ll v_{n+1} \leq r_{n+1} + v_{n+1}\), we obtain \(w_{n+1} \in S\) such that
\[
y_n \leq x + w_{n+1}, \quad \text{and} \quad w_n \ll w_{n+1} \ll r_{n+1} + v_{n+1}.
\]

Now, the sequence \((w_n)_n\) is increasing, which allows us to set \(z := \sup_n w_n\). For every \(n \geq 1\), we have
\[
x + w_n \leq x + v_{n+1} \leq y_{n+2} \leq y
\]
and therefore \(x + z \leq y\). Further, for every \(n \geq 1\), we have
\[
y_n \leq x + w_{n+1} \leq x + z
\]
and therefore \(y \leq x + z\). This implies \(x + z = y\). \(\square\)

Corollary 6.14. Let \(S\) be a simple, soft, stably finite Cu-semigroup satisfying (O5) and (O6). Then every element in \(S\) with thin boundary is complementable.

If we additionally assume that \(S\) is weakly cancellative, then the converse of Corollary 6.14 also holds:

Theorem 6.15. Let \(S\) be a simple, soft, weakly cancellative Cu-semigroup satisfying (O5) and (O6), and let \(x \in S\) satisfy \(x \ll \infty\). Then \(x\) has thin boundary if and only if \(x\) is complementable.
Proof. The forwards implication follows from Corollary 6.14. To show the backwards implication, assume that \(x \) is complementable. To verify that \(x \) has thin boundary, let \(t \in S \) be nonzero. Choose a nonzero element \(t' \in S \) with \(t' \ll t \). Then \(x \ll \infty = \infty t' \), which allows us to choose \(n \geq 1 \) such that \(x \leq nt' \). Choose \(t_1, \ldots, t_n \in S \) such that

\[
t' \ll t_1 \ll t_2 \ll \ldots \ll t_n \ll t.
\]

Set \(y := t_1 + \ldots + t_n \). Then \(x \leq nt' \ll y \). Since \(x \) is complementable, we obtain \(z \in S \) such that \(x + z = y \).

Note that

\[
y = t_1 + t_2 + \ldots + t_{n-1} + t_n \ll t_2 + t_3 + \ldots + t_n + t \leq y + t,
\]

and therefore

\[
x + z = y \ll y + t = x + z + t.
\]

By weak cancellation, we obtain \(x \ll x + t \), as desired. \(\square \)

Theorem 6.16. Let \(S \) be a simple, soft, weakly cancellative \(\text{Cu} \)-semigroup satisfying (O5) and (O6). Then \(S_{tb} \) is a cancellative monoid. Further, \(x, y \in S_{tb} \) satisfy \(x \ll y \) if and only if there exists \(z \in S_{tb}^* \) with \(x + z = y \).

Proof. By Lemma 6.8 and Lemma 6.10, \(S_{tb} \) is a cancellative monoid. Let \(x, y \in S_{tb} \). If \(x \ll y \), then by Theorem 6.15 there exists \(z \in S \) such that \(x + z = y \). Since \(y \) is not compact, we have \(z \neq 0 \). Further, by Lemma 6.10, we have \(z \in S_{tb} \). Conversely, if \(z \in S \) is nonzero such that \(x + z = y \), then \(x \ll x + z = y \) by definition. \(\square \)

7. Simple, zero-dimensional Cuntz semigroups

In this section, we study countably based, simple, weakly cancellative \(\text{Cu} \)-semigroups \(S \) that satisfy (O5) and (O6) (for example the Cuntz semigroups of separable, simple \(C^* \)-algebras of stable rank one). First, we prove a dichotomy: If \(S \) is zero-dimensional, then \(S \) is either algebraic or soft; see Lemma 7.1. Conversely, if \(S \) is algebraic, then \(S \) is automatically zero-dimensional by Proposition 5.6. On the other hand, if \(S \) is soft, then \(S \) is zero-dimensional if and only if the elements with thin boundary are sup-dense; see Theorem 7.8. We deduce that \(S \) is zero dimensional if and only if \(S \) is the retract of a simple, algebraic \(\text{Cu} \)-semigroup; see Theorem 7.10.

This should be compared with Corollary 5.8 where we showed that a separable, simple, \(\mathbb{Z} \)-stable \(C^* \)-algebra has zero-dimensional Cuntz semigroup if and only if \(A \) has real rank zero or \(A \) is stably projectionless.

Lemma 7.1. Let \(S \) be a simple, weakly cancellative \(\text{Cu} \)-semigroup satisfying (O5). Assume that \(\dim(S) = 0 \) and \(S \neq \{0\} \). Then, \(S \) is either algebraic or soft.

Proof. Assume that \(S \) is not soft. Then there exists a nonzero compact element in \(S \), which by Lemma 5.4 implies that \(S \) is algebraic. \(\square \)

Lemma 7.2. Let \(S \) be a simple, soft, weakly cancellative \(\text{Cu} \)-semigroup satisfying (O5) and (O6). Assume that \(S_{tb} \) is sup-dense. Let \(x, y, z \in S \) satisfy \(x \ll y + z \), and assume that \(x \) has thin boundary. Then there exist \(v, w \in S_{tb} \) such that

\[
x = v + w, \quad v \ll y, \quad \text{and} \quad w \ll z.
\]

Proof. We may assume that \(z \) is nonzero, since otherwise \(v = x \) and \(w = 0 \) trivially satisfy the required conditions. Choose \(z' \in S \) such that

\[
x \ll y + z', \quad \text{and} \quad z' \ll z.
\]
Using that \(z \) is nonzero and soft, we obtain a nonzero \(t \in S \) such that \(z' + t \ll z \). Since \(x \) has thin boundary, we have \(x \ll x + t \), which allows us to choose \(x' \in S \) such that
\[
x' \ll x \ll x' + t.
\]
Since \(S_{tb} \) is sup-dense, we may assume that \(x' \) has thin boundary.

Applying (O6) to \(x' \ll x \ll y + z' \), we obtain \(e, f \in S \) such that
\[
x' \ll e + f, \quad e \ll x, y, \quad \text{and } f \ll x, z'.
\]
Since \(S_{tb} \) is sup-dense, we may assume that \(e \) has thin boundary.

By Corollary 6.14 \(e \) is complementable. Thus, we obtain \(c \in S \) such that \(e + c = x \).

Then
\[
e + c = x \ll x' + t \ll e + f + t.
\]
By weak cancellation, we get \(c \ll f + t \) and therefore
\[
c \ll f + t \leq z' + t \ll z.
\]
By Lemma 6.10 \(e \) and \(c \) have thin boundary. Hence, \(v := e \) and \(w := c \) have the desired properties.

Proposition 7.3. Let \(S \) be a simple, soft, weakly cancellative \(\text{Cu} \)-semigroup satisfying (O5) and (O6). Assume that \(S_{tb} \) is sup-dense. Then \(S_{tb} \) is a simple, cancellative refinement monoid and \(\dim(S) = 0 \).

Proof. By Theorem 6.16 \(S_{tb} \) is a cancellative monoid such that \(x, y \in S_{tb} \) satisfy \(x \ll y \) if and only if there exists \(z \in S_{tb}^\text{\textit{alg}} \) with \(x + z = y \). This implies that \(x, y \in S_{tb} \) satisfy \(x \leq \text{\textit{alg}} y \) if and only if \(x = y \) or \(x \ll y \).

It follows from Lemma 7.2 that \(S_{tb} \) satisfies the Riesz decomposition property for the pre-order induced by \(\ll \). Hence, \(\dim(S) = 0 \) by Proposition 5.3.

Since \(S_{tb} \) is a cancellative monoid, to show that it is a refinement monoid it suffices to show that it satisfies the Riesz decomposition property for the algebraic partial order \(\leq \text{\textit{alg}} \). Let \(x, y, z \in S_{tb} \) satisfy \(x \leq \text{\textit{alg}} y + z \). We need to find \(y', z' \in S_{tb} \) such that \(x = y' + z' \), \(y' \leq \text{\textit{alg}} y \) and \(z' \leq \text{\textit{alg}} z \). We either have \(x = y + z \) or \(x \ll y + z \).

In the first case, \(y' := y \) and \(z' := z \) have the desired properties. In the second case, we apply Lemma 7.2 to obtain \(y', z' \in S_{tb} \) such that \(x = y' + z' \), \(y' \ll y \) and \(z' \ll z \). Then \(y' \leq \text{\textit{alg}} y \) and \(z' \leq \text{\textit{alg}} z \), which shows that \(y' \) and \(z' \) have the desired properties. Using that \(S \) is simple, it easily follows that \(S_{tb} \) is a simple monoid.

Example 7.4. Let \(Z \) be the Cuntz semigroup of the Jiang-Su algebra \(Z \). Then every element of \(Z \) has thin boundary, yet \(Z \) is neither algebraic nor soft, and therefore \(Z \) is not zero-dimensional. (We have \(\dim(Z) = 1 \) by Example 3.19)

This shows that Proposition 7.3 does not hold without assuming that \(S \) is soft.

Next, we prove the converse of Proposition 7.3. Zero-dimensionality implies that \(S_{tb} \) is sup-dense. We start with a crucial technical result.

Lemma 7.5. Let \(S \) be a weakly cancellative \(\text{Cu} \)-semigroup satisfying (O5), and let \(x', x'', x, e, t \in S \) satisfy
\[
x' \ll x'', \quad \text{and} \quad x'' + t \leq x \ll e \ll e + t.
\]
Assume that \(\dim(S) = 0 \). Then there exists \(y \) such that
\[
x' \ll y \ll x, \quad \text{and} \quad y \ll y + t.
\]
Proof. Applying (O5) to \(x' \ll x'' \leq e \), we obtain \(c \in S \) such that
\[
x' + c \leq e \leq x'' + c.
\]
Then
\[
e \ll e + t \leq x'' + c + t.
\]
Using that \(\dim(S) = 0 \), we obtain \(u, v \in S \) such that
\[
u \ll x'', \quad v \ll c + t, \quad \text{and} \quad e \ll u + v \ll e + t.
\]
Then
\[
x' + c \leq e \ll u + v \leq u + c + t,
\]
Using weak cancellation, we get \(x' \ll u + t \). Further, we have
\[
u + v \ll c + t \leq u + v + t
\]
and therefore \(u \ll u + t \) by weak cancellation.

Choose \(t' \in S \) such that
\[
t' \ll t, \quad x' \ll u + t', \quad \text{and} \quad u \ll u + t'.
\]
Set \(y := u + t' \). Then
\[
x' \ll u + t' = y, \quad \text{and} \quad y = u + t' \ll x'' + t \leq x.
\]
Using that \(u \ll u + t' \) and \(t' \ll t \), we get
\[
y = u + t' \ll u + t' + t = y + t,
\]
which shows that \(y \) has the desired properties. \(\square \)

Lemma 7.6. Let \(S \) be a countably based, simple, soft, weakly cancellative \(Cu \)-semigroup satisfying (O5) and (O6).

Assume that for every \(x', x, t \in S \) satisfying \(x' \ll x \) and \(t \neq 0 \) there exists \(y \in S \) such that
\[
x' \ll y \ll x, \quad y \ll y + t.
\]
Then for every \(x', x \in S \) satisfying \(x' \ll x \) there exists \(y \in S \) with thin boundary such that \(x' \ll y \ll x \).

Proof. Using that \(S \) is countably based, we can choose a sequence \((t_n)_n \in \mathbb{N} \) of nonzero elements such that for every nonzero \(t \in S \) there exists \(n \) with \(t_n \leq t \).

To prove the statement, let \(x', x \in S \) satisfy \(x' \ll x \). By assumption, we can choose \(y_0 \in S \) with \(x' \ll y_0 \ll x \) and \(y_0 \ll y_0 + t_0 \). Choose \(y'_0 \) such that
\[
x' \ll y'_0 \ll y_0 \ll x, \quad y_0 \ll y'_0 + t_0.
\]
Next, applying the assumption for \(y'_0, y_0, t_1 \), we obtain \(y_1 \) such that \(y'_0 \ll y_1 \ll y_0 \) and \(y_1 \ll y_1 + t_1 \). Then choose \(y'_1 \) such that
\[
y'_0 \ll y'_1 \ll y_1 \ll y_0, \quad y_1 \ll y'_1 + t_1.
\]
Inductively, choose \(y'_n \) and \(y_n \) such that
\[
x' \ll y'_0 \ll \ldots \ll y'_n \ll y_n \ll \ldots \ll y_0 \ll x, \quad y_n \ll y'_n + t_n.
\]
Set \(y := \sup_n y'_n \). Then \(x' \ll y'_0 \leq y \leq y_0 \ll x \). To show that \(y \) has thin boundary, let \(t \in S \) be nonzero. By choice of \((t_n)_n \), there exists \(n \) such that \(t_n \leq t \). Then
\[
y \leq y_n \ll y'_n + t_n \leq y + t_n \leq y + t,
\]
as desired. \(\square \)

Proposition 7.7. Let \(S \) be a countably based, simple, soft, weakly cancellative \(Cu \)-semigroup satisfying (O5) and (O6). Assume that \(\dim(S) = 0 \). Then \(S_{tb} \) is sup-dense, that is, the elements with thin boundary form a basis.
Proof. We verify the assumption of Lemma 7.6, which then proves the statement. Let \(x', x, t \in S \) satisfy \(x' \ll x \) and \(t \neq 0 \). We need to find \(y \in S \) such that
\[
x' \ll y \ll x, \quad y \ll y + t.
\]
If \(x' = 0 \), then set \(y := 0 \). Thus, we may assume from now on that \(x' \) is nonzero.

Choose \(x'', u \in S \) such that
\[
x' \ll x'' \ll u \ll x.
\]
By Lemma 6.7, there exists a nonzero \(r \in S \) such that \(u \ll r \leq s \).

Choose a nonzero \(r' \in S \) such that \(r' \ll r \). Then \(u \ll \infty = \infty r' \), which allows us to choose \(n \geq 1 \) such that \(u \leq nr' \). Choose \(r_1, \ldots, r_n \in S \) such that
\[
r' \ll r_1 \ll r_2 \ll \ldots \ll r_n \ll r.
\]
Set \(e := r_1 + \ldots + r_n \). As in the proof of Theorem 6.15, we obtain \(e \ll e + r \), and consequently \(e \ll e + t \). Further, we have
\[
x' \ll x'', \quad x'' + r \leq x'' + s \ll u \leq nr' \leq e \ll e + t.
\]
Applying Lemma 7.6, we obtain \(y \in S \) such that
\[
x' \ll y \ll u, \quad \text{and} \quad y \ll y + t,
\]
Now \(y \) has the desired properties. \(\square \)

Theorem 7.8. Let \(S \) be a countably based, simple, soft, weakly cancellative Cuntz semigroup satisfying (O5) and (O6). Then, the following conditions are equivalent:

1. \(\dim(S) = 0 \);
2. the elements with thin boundary are sup-dense;
3. there exists a countably based, simple, algebraic, weakly cancellative Cuntz semigroup \(T \) satisfying (O5) and (O6) such that \(S \cong T_{\text{soft}} \).

Proof. By Proposition 7.7, (1) implies (2). Conversely, (2) implies (1) by Proposition 7.3.

To show that (3) implies (1), let \(T \) be as in (3) such that \(S \cong T_{\text{soft}} \). Using Proposition 3.17 at the second step, and using Proposition 5.6 at the last step, we get
\[
\dim(S) = \dim(T_{\text{soft}}) \leq \dim(T) = 0.
\]
Finally, assuming (2) let us verify (3). By Proposition 7.3, \(S_{tb} \) is a simple, cancellative refinement monoid. Using that \(S \) is countably based and that \(S_{tb} \) is sup-dense, we can choose a countable subset \(M_0 \subseteq S_{tb} \) that is sup-dense.

By successively adding elements to \(M_0 \) we can construct a countable refinement submonoid \(M \subseteq S_{tb} \) such that the algebraic order on \(M \) agrees with the restriction of the algebraic order on \(S_{tb} \) to \(M \), that is, \((M, \leq_{\text{alg}}) \rightarrow (S_{tb}, \leq_{\text{alg}}) \) is an order-embedding. Set \(T := \text{Cu}(M, \leq_{\text{alg}}) \), the sequential round ideal completion of \(M \) with respect to the algebraic partial order; see [APT18, Section 5.5]. Then \(T \) is a countably based, algebraic Cuntz-semigroup. Using that \(M \) is a cancellative monoid that is algebraically ordered and that satisfies the Riesz decomposition property, it follows from [APT18, Proposition 5.5.8] that \(T \) is weakly cancellative and satisfies (O5) and (O6). Using that \(M \) is a simple monoid, it follows that \(T \) is simple.

Recall that a subset \(I \subseteq M \) is an interval if \(I \) is downward hereditary and upward directed. Since \(M \) is countable, we can identify \(T \) with the set of intervals in \(M \), ordered by inclusion. The compact elements in \(T \) are precisely the intervals \(\{ y \in M : y \leq_{\text{alg}} x \} \) for \(x \in M \). Thus, the nonzero soft elements in \(T \) are precisely the intervals that do not contain a largest element. Using that every upward directed set in a countably based Cuntz-semigroup has a supremum, we can define \(\alpha : T_{\text{soft}} \rightarrow S \) by
\[
\alpha(I) := \sup I,
\]
for every (soft) interval \(I \subseteq M \). It is now straightforward to verify that \(\alpha \) is an isomorphism. \(\square \)

Remark 7.9. There is no canonical choice for the algebraic Cu-semigroup \(T \) in Theorem 7.8(3). Take for example \(S = [0, \infty] \). For every supernatural number \(q \) satisfying \(q = q^2 \neq 1 \), we consider the UHF-algebra \(M_q \) of infinite type, and set \(R_q := \text{Cu}(M_q) \); see [APT18, Section 7.4]. Then \(R_q \) is a countably based, simple, algebraic, weakly cancellative Cu-semigroup satisfying (O5) and (O6), and \((R_q)_{\text{soft}} \cong [0, \infty]\).

Given a countably based, simple, soft, weakly cancellative Cu-semigroup \(S \) satisfying (O5) and (O6), we can consider \(T := \text{Cu}(S, \leq_{\text{alg}}) \), which is a simple, algebraic, weakly cancellative Cu-semigroup satisfying (O5) and (O6) such that \(S \cong T_{\text{soft}} \). However, \(T \) is not countably based in general since every basis of \(T \) contains all compact elements of \(T \) and so has at least the cardinality of \(S_{\text{th}} \).

Recall the notion of a retract from Definition 3.14.

Theorem 7.10. Let \(S \) be a countably based, simple, weakly cancellative Cu-semigroup satisfying (O5) and (O6). Then \(S \) is zero-dimensional if and only if \(S \) is a retract of a countably based, simple, algebraic, weakly cancellative Cu-semigroup satisfying (O5) and (O6).

Proof. By Lemma 7.1, \(S \) is either algebraic or soft. In the first case, we consider \(S \) as a retract of itself. In the second case, the result follows from Theorem 7.8 and Proposition 3.16. \(\square \)

Question 7.11. Is every zero-dimensional, weakly cancellative Cu-semigroup satisfying (O5) a retract of a weakly cancellative, algebraic Cu-semigroup satisfying (O5) and (O6)?

Recall that a partially ordered set \(M \) has the **Riesz interpolation property** if for all \(x_0, x_1, y_0, y_1 \in M \) satisfying \(x_j \leq y_k \) for all \(j, k \in \{0, 1\} \), there exists \(z \in M \) such that \(x_j \leq z \leq y_k \) for all \(j, k \in \{0, 1\} \). By [APT18, Theorem 3.5], Cuntz semigroups of stable rank one \(C^* \)-algebras have the Riesz interpolation property.

Recall that a Cu-semigroup \(S \) is said to be **almost divisible** if for all \(n \in \mathbb{N} \) and \(x', x \in S \) satisfying \(x' \preccurlyeq x \) there exists \(y \in S \) such that \(ny \leq x \) and \(x' \leq (n+1)y \); see [APT18, Definition 7.3.4].

Lemma 7.12. Let \(S \) be a retract of a Cu-semigroup \(T \). Then, if \(T \) is almost divisible, so is \(S \). Further, if \(T \) has the Riesz interpolation property, then so does \(S \).

Proof. Let \(\iota : S \rightarrow T \) be a Cu-morphism, and let \(\sigma : T \rightarrow S \) be a generalized Cu-morphism with \(\sigma \circ \iota = \text{id}_S \).

First, assume that \(T \) has the Riesz interpolation property. Let \(x_0, x_1, y_0, y_1 \in S \) satisfy \(x_j \leq y_k \) for all \(j, k \in \{0, 1\} \). Then \(\iota(x_j) \leq \iota(y_k) \) in \(T \) for all \(j, k \in \{0, 1\} \). By assumption, there is \(z \in T \) such that \(\iota(x_j) \leq z \leq \iota(y_k) \) and thus \(x_j \leq \sigma(z) \leq y_k \) for all \(j, k \in \{0, 1\} \). Thus, \(\sigma(z) \) has the desired properties.

Next, assume that \(T \) is almost divisible. Let \(n \in \mathbb{N} \) and let \(x', x \in S \) satisfy \(x' \preccurlyeq x \). Then \(\iota(x') \preccurlyeq \iota(x) \) in \(T \). By assumption, there exists \(y \in T \) such that \(ny \leq \iota(x) \) and \(\iota(x') \leq (n+1)y \). Then \(\sigma(y) \leq x \) and \(x' \leq (n+1)\sigma(y) \). \(\square \)

Proposition 7.13. Let \(S \) be a zero-dimensional, countably based, simple, weakly cancellative, nonelementary Cu-semigroup satisfying (O5). Then \(S \) satisfies the Riesz interpolation property and is almost divisible.

Proof. By Theorem 7.10 there exists a countably based, simple, algebraic, weakly cancellative Cu-semigroup \(T \) satisfying (O5) and (O6) such that \(S \) is a retract of \(T \). Then \(T_c \) is a simple, cancellative refinement monoid, and therefore \(T_c \) has the Riesz
interpolation property. Hence, T has the Riesz interpolation property by [APT18 Proposition 5.5.8(3)].

Since S is nonelementary, it follows from [APGPSM10 Theorem 6.7] that T_c is weakly divisible, that is, for every $x \in T_c$ there exist $y, z \in T_c$ such that $x = 2y + 3z$. This implies that T is almost divisible.

Now the result follows from [Lemma 7.12].

Remark 7.14. One might wonder to what extent the converse of Proposition 7.13 holds: Given a countably based, simple, soft, weakly cancellative, almost divisible Cu-semigroup S that satisfies (O5), (O6) and the Riesz interpolation property, is S zero-dimensional?

We thank the referee for pointing out that without softness, this question has a negative answer. Indeed, the Cuntz semigroup of the Jiang-Su algebra is countably based, simple, weakly cancellative, almost divisible, and it satisfies (O5), (O6) and the Riesz interpolation property – nevertheless, it is not zero-dimensional by Example 3.19.

Question 7.15. Let S be a zero-dimensional, weakly cancellative Cu-semigroup satisfying (O5). Does S have the Riesz interpolation property? Assuming also that S has no elementary quotients, is S almost divisible?

Note that a positive answer to [Question 7.11] entails a positive answer to [Question 7.15].

References

[APRT18] R. Antoine, F. Perera, L. Robert, and H. Thiel, C^*-algebras of stable rank one and their Cuntz semigroups, Duke Math. J. (to appear), preprint (arXiv:1809.03984 [math.OA]), 2018.

[APRT21] R. Antoine, F. Perera, L. Robert, and H. Thiel, Edwards’ condition for quasitraces on C^*-algebras, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 525–547.

[APS11] R. Antoine, F. Perera, and L. Santiago, Pullbacks, $C(X)$-algebras, and their Cuntz semigroup, J. Funct. Anal. 260 (2011), 2844–2880.

[APT18] R. Antoine, F. Perera, and H. Thiel, Tensor products and regularity properties of Cuntz semigroups, Mem. Amer. Math. Soc. 251 (2018), viii+191.

[APT20a] R. Antoine, F. Perera, and H. Thiel, Abstract bivariant Cuntz semigroups, Int. Math. Res. Not. IMRN (2020), 5342–5386.

[APT20b] R. Antoine, F. Perera, and H. Thiel, Cuntz semigroups of ultraproduct C^*-algebras, J. Lond. Math. Soc. (2) 102 (2020), 994–1029.

[APGPSM10] G. Aranda Pino, K. R. Goodearl, F. Perera, and M. Siles Molina, Non-simple purely infinite rings, Amer. J. Math. 132 (2010), 563-610.

[Bla06] B. Blackadar, Operator algebras, Encyclopedia of Mathematical Sciences 122, Springer-Verlag, Berlin, 2006, Theory of C^*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.

[BP91] L. G. Brown and G. K. Pedersen, C^*-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.

[BP09] L. G. Brown and G. K. Pedersen, Limits and C^*-algebras of low rank or dimension, J. Operator Theory 61 (2009), 381–417.

[BC09] N. P. Brown and A. Ciuperca, Isomorphism of Hilbert modules over stably finite C^*-algebras, J. Funct. Anal. 257 (2009), 332–339.

[CE20] J. Castillejos and S. Evington, Nuclear dimension of simple stably projectionless C^*-algebras, Anal. PDE 13 (2020), 2205–2240.

[CEI+21] J. Castillejos, S. Evington, A. Tikuisis, S. White, and W. Winter, Nuclear dimension of simple C^*-algebras, Invent. Math. 224 (2021), 245–290.

[CEI08] K. T. Coward, G. A. Elliott, and C. Ivanescu, The Cuntz semigroup as an invariant for C^*-algebras, J. Reine Angew. Math. 623 (2008), 161–193.

[Cun78] J. Cuntz, Dimension functions on simple C^*-algebras, Math. Ann. 233 (1978), 145–153.

[EGLN15] G. A. Elliott, G. Gong, H. Lin, and Z. Niu, On the classification of simple amenable C^*-algebras with finite decomposition rank, II, preprint (arXiv:1507.03437 [math.OA]), 2015.
M. Engbers, Decomposition of simple Cuntz semigroups, Ph.D Thesis, WWU Münster, 2014.

D. Kerr, Dimension, comparison, and almost finiteness, J. Eur. Math. Soc. (JEMS) 22 (2020), 3697–3745.

E. Kirchberg and W. Winter, Covering dimension and quasidiagonality, Internat. J. Math. 15 (2004), 63–85.

E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. (1999), 227–262 (2000).

A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.

L. Robert, Nuclear dimension and n-comparison, Münster J. Math. 4 (2011), 65–71.

L. Robert, The cone of functionals on the Cuntz semigroup, Math. Scand. 113 (2013), 161–186.

M. Rørdam, Classification of nuclear, simple C*-algebras, in Classification of nuclear C*-algebras. Entropy in operator algebras, Encyclopaedia Math. Sci. 126, Springer, Berlin, 2002, pp. 1–145.

M. Rørdam, The stable and the real rank of Z-absorbing C*-algebras, Internat. J. Math. 15 (2004), 1065–1084.

M. Rørdam and W. Winter, The Jiang-Su algebra revisited, J. Reine Angew. Math. 642 (2010), 129–155.

H. Thiel, The topological dimension of type I C*-algebras, in Operator algebra and dynamics, Springer Proc. Math. Stat. 58, Springer, Heidelberg, 2013, pp. 305–328.

H. Thiel, The generator rank of subhomogeneous C*-algebras, preprint (arXiv:2006.03624 [math.OA]), 2020.

H. Thiel, Ranks of operators in simple C*-algebras with stable rank one, Comm. Math. Phys. 377 (2020), 37–76.

H. Thiel and E. Vilalta, Covering dimension of Cuntz semigroups II, preprint (arXiv:2103.13062 [math.OA]), 2021.

H. Thiel and E. Vilalta, Zero-dimensional Cuntz semigroups, in preparation, 2021.

A. Tikuisis, S. White, and W. Winter, Quasidiagonality of nuclear C*-algebras, Ann. of Math. (2) 185 (2017), 229–284.

A. S. Toms, On the classification problem for nuclear C*-algebras, Ann. of Math. (2) 167 (2008), 1029–1044.

E. Vilalta, The Cuntz semigroup of unital commutative AI-algebras, preprint (arXiv:2104.08165 [math.OA]), 2021.

W. Winter, Decomposition rank of subhomogeneous C*-algebras, Proc. London Math. Soc. (3) 89 (2004), 427–456.

W. Winter, Nuclear dimension and Z-stability of pure C*-algebras, Invent. Math. 187 (2012), 259–342.

W. Winter, Structure of nuclear C*-algebras: from quasidiagonality to classification and back again, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1801–1823.

W. Winter and J. Zacharias, The nuclear dimension of C*-algebras, Adv. Math. 224 (2010), 461–498.

S. Zhang, A Riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory 24 (1990), 209–225.

H. Thiel, Institute of Geometry, TU Dresden, 01069 Dresden, Germany.

E. Vilalta, Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

H. Thiel, hannes.thiel@posteo.de
URL: www.hannesthiel.org

E. Vilalta, evilalta@mat.uab.cat
URL: www.eduardvilalta.com