Review Article

Safety and Efficacy of Early Carotid Endarterectomy in Patients with Symptomatic Carotid Artery Stenosis: A Meta-Analysis

Xiao Chen, Jing Su, Guojun Wang, Han Zhao, Shizhong Zhang, Tao Liu, Xindi Su, and Ning Zhou

1Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan City, Shandong Province, China
2Shandong Taian City Central Hospital, Taian City, Shandong Province, China
3Jinzhou Medical University, Jinzhou City, Liaoning Province, China
4Shandong Taian City Central Hospital Branch, Taian City, Shandong Province, China

Correspondence should be addressed to Guojun Wang; wguojun2002@163.com

Received 21 November 2020; Revised 9 December 2020; Accepted 24 December 2020; Published 9 January 2021

Academic Editor: Yuzhen Xu

Copyright © 2021 Xiao Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background and Purpose. This study is aimed at assessing the differences in postoperative stroke, myocardial infarction (MI), and mortality in patients with symptomatic carotid artery stenosis (sCAS) treated with early or late carotid endarterectomy (CEA) to determine and compare the safety of different operation timing. Design. A systematic document retrieval of studies published in the past 10 years reporting periprocedural stroke/mortality/MI after carotid endarterectomy (CEA) related to the time between CEA and qualifying neurological symptoms. The application database has "PubMed, EMBase and Cochrane databases." RevMan5.3 software provided by the Cochrane collaboration was used for meta-analysis. Results. A systematic literature search was conducted in databases. A total of 10 articles were included in this study. They were divided into early CEA and delayed CEA with operation within 48 h, 1 w, or 2 w after onset of neurological symptoms. Incidence of the postoperative stroke in patients undergoing delayed CEA (≥48 h) was significantly higher than patients with delayed CEA (<48 h) (OR = 2.14, 95% CI: 1.43-3.21, \(P = 0.0002\)). The postoperative mortality of patients after delayed CEA (≥48 h) was significantly higher than patients after early CEA (<48 h) (OR = 1.35, 95% CI: 1.06-1.71, \(P = 0.02\)). The risk of postoperative mortality of patients treated with delayed CEA (≥7 d) was significantly higher than patients after the early CEA group (<7 d) (OR = 1.69, 95% CI: 1.21-2.32, \(P = 0.001\)). Conclusion. Early CEA is safe and effective for a part of patients with symptomatic carotid stenosis, but a comprehensive preoperative evaluation of patients with carotid stenosis must be performed.

1. Introduction

Stroke represents the fourth cause of death worldwide; carotid artery stenosis is one of the important causes of stroke [1]. Carotid endarterectomy (CEA) has been identified as the preferred treatment for carotid stenosis. In the past, it was believed that the risk of early recurrent TIA or stroke after the onset of neurological symptoms is not high, so CEA should be delayed for at least 6 weeks after an onset of neurological symptoms, and operating early on a recently symptomatic “unstable” carotid plaque was associated with an increased risk of perioperative stroke [2]. In recent years, early surgical intervention within 1-2 weeks of symptom onset has been advocated for patients with symptomatic carotid artery stenosis [3]. Therefore, the timing of CEA surgery has been gradually attracted the attention of all, and studies on it have also increased gradually in recent years. The current recommendations about when to perform carotid endarterectomy to patients with sCAS rely on multiple uncertainties. The present study reviewed the studies
published in the past 10 years, and the risks of postoperative complications of early CEA or delayed CEA were summarized, and meta-analysis was made.

2. Methods

A systematic literature search was conducted in PubMed, MEDLINE, Embase, and Cochrane databases. The retrieval language is English. Various synonyms and related Medical Subject Headings (MeSH) for “carotid artery,” “operation timing,” “early endarterectomy,” “delayed endarterectomy,” “carotid stenosis,” “Endarterectomy, Carotid” to build the search syntax.

2.1. Inclusion Criteria and Study Endpoints. Inclusion criteria: (1) patients with symptomatic carotid stenosis; (2) the treatment was carotid endarterectomy; (3) patients were grouped according to symptom timing of surgery. Articles were excluded if they were (1) noncontrolled test, (2) did not study human subjects, and (3) not published in full text. If clinical studies were conducted by the same team, the articles with the most complete data, the largest sample size, or the most relevant results are selected.

The primary endpoints were stroke and mortality after CEA. The secondary end point was MI. They were divided into early CEA and delayed CEA with operation within 48 h, 1 w, or 2 w after onset of neurological symptoms.

2.2. Study Selection and Data Extraction. Three independent investigators comprehensively evaluated the included articles, carefully read the abstract of the articles, and evaluated the eligibility based on the full text, and judgement differences were resolved by communicating with each other. References of the included articles were carefully examined and searched for some references if necessary. Data of the included articles were recorded on a spreadsheet, including the basic characteristic of the paper (year of publication, author, research method, etc.), the year of recruitment of patients; baseline characteristic of preoperative patients, grouped base on CEA timing, postoperative complications, etc. If some studies do not report relevant data, corresponding authors were requested to provide these data. If the authors are still not provided, they will be excluded in some outcomes or subgroup group. Although we tried to contact the authors to refine the study, we did not obtain unpublished data.

2.3. Assessment of Risk of Bias and Methodological Quality. Assessment of risk of bias according to the Newcastle-Ottawa quality assessment scale. Evaluation standard: (1) Is the case definition adequate?; (2) Representativeness of the cases; (3) Selection of Controls; (4) Definition of Controls; (5) Comparability of cases and controls on the basis of the design or analysis; (6) Ascertainment of exposure; (7) Same method of ascertainment for cases and controls; (8) Nonresponse rate.

2.4. Statistical Analysis. If more than 1 study had available data, and it will be performed and analyzed, an I^2 value was calculated to describe the percentage variance among studies attributable to heterogeneity. All meta-analyses were conducted using Review Manager (RevMan version 5.3). For each binary variable, an odds ratio (OR) and 95% confidence intervals (95% CI) were used to compare early CEA and delay CEA. I^2 value was used to estimate the degree of heterogeneity, I^2 values ranging from 0% to 100% (0-24%, low heterogeneity; 25-49%, moderate heterogeneity; 50%-74%, high heterogeneity; 75-100%, extreme heterogeneity). When there is low heterogeneity value ($I^2 \leq 25\%$), Mantel-Haenszel fixed effect model was used for data synthesis. When there is high heterogeneity value ($I^2 > 25\%$), the Mantel-Haenszel random effect model was selected as the endpoint, and sensitivity analysis was conducted to find the source of heterogeneity.
3. Results

3.1. Search Results. We used keywords to detect 377 related articles in each database and excluded 48 duplicates removed. A total of 95 articles were selected to check the full text by reading basic information and abstracts. The remaining 22 articles after excluding 73 articles according to asymptomatic patients, operation timing, and no reporting data were required. Finally, 10 articles were included for analysis (Figure 1).

3.2. Quality Assessment. The quality of the included studies was adequate, all of them have been published for nearly 10 years, and a total of 29,457 patients were included (Table 1). Quality evaluation was conducted according to the Newcastle-Ottawa quality assessment scale (Figure 2).

3.3. Outcomes. Stroke analysis of seven studies revealed that patients with delayed CEA (>48h) had a higher incidence of postoperative stroke than those with early CEA (≤48h) (OR = 2.14, 95% CI: 1.43-3.21, \(P = 0.0002 \)); Analysis of seven studies revealed that there was no statistically significant difference in the incidence of postoperative stroke between delayed CEA (>1w) and early CEA (≤1w) (OR = 1.37, 95% CI: 0.97-1.92, \(P = 0.07 \)); Analysis of eight studies revealed that there was no statistically significant difference in the incidence of postoperative stroke between delayed CEA (>2w) and early CEA (≤2w) (OR = 1.07, 95% CI: 0.77-1.49, \(P = 0.69 \)).

Analysis of this group revealed the incidence of postoperative stroke in patients with delayed CEA was significantly higher than that of patients with early CEA (OR = 1.37, 95% CI: 1.11-1.69, \(P = 0.003 \)) (Figure 3).

Mortality analysis of six studies revealed that patients with delayed CEA (>48h) had a higher incidence of postoperative mortality than those with early CEA (≤48h) (OR = 1.35, 95% CI: 1.06-1.71, \(P = 0.02 \)). Analysis of five studies revealed that patients with delayed CEA (>1w) had a higher incidence of postoperative mortality than those with early CEA (≤1w) (OR = 1.69, 95% CI: 1.24-2.32, \(P = 0.001 \)). Analysis of seven studies revealed that there was no statistically significant difference in the incidence of postoperative stroke between delayed CEA (>2w) and early CEA (≤2w) (OR = 0.89, 95% CI: 0.51-1.55, \(P = 0.67 \)).

Analysis of this group revealed that the incidence of postoperative mortality in patients with delayed CEA was significantly higher than that of patients with early CEA (OR = 1.41, 95% CI: 1.17-1.68, \(P = 0.0002 \)) (Figure 4).

Myocardial infarction analysis of seven studies revealed that there was no statistically significant difference in the incidence of postoperative MI between delayed CEA and early CEA, whether it has 1w (OR = 2.5, 95% CI: 0.38-16.50, \(P = 0.34 \)) or 2w (OR = 1.33, 95% CI: 0.2-8.69, \(P = 0.76 \)) (Figure 5).

Analysis of this group revealed that there was no statistically significant difference in the incidence of postoperative MI between delayed CEA and early CEA (OR = 1.81, 95% CI: 0.48-6.8, \(P = 0.38 \)).

3.4. Publication Bias. It can be seen that the overall bias is acceptable by drawing the funnel plot (Figure 6). If the heterogeneity of the results is too high (\(I^2 > 25\% \)), sensitivity analysis will be used to find the source of heterogeneity and remove it after it is identified.
CEA is an effective method to treat patients with symptomatic carotid artery stenosis. The choice of surgical timing is closely related to the patient’s postoperative recovery. The views on the timing of CEA to treat patients with sCAS have been changed with the development of CEA and perioperative management techniques. The traditional view of carotid revascularization was the intervention is delayed by at least six weeks after an acute stroke. The studies published in the
The results of subgroup analysis of NASCET [19, 20] showed that the perioperative outcomes of patients with sCAS after early CEA were generally worse than delay CEA. These outcomes may indicate that it is safe and effective of early CEA for a part of patients with sCAS. But it should be noted that the selection of early CEA or delay CEA for patients must be careful according to the current study. Balotta et al. [22] categorize patients according to the Rankin assessment scale, Rankin 0/2 indicated minor or nondisabling stroke, and Rankin 3/5 defined major or disabling stroke; the study showed early CEA after a nondisabling ischemic stroke can be performed safely. Capoccia et al. [23] suggest that minimizing the time for intervention for patients National Institutes of Health Stroke Scale (NIHSS) ≥ 8 not only reduces the risk of recurrence but can also improve neurologic outcome. Therefore, the timing of the operation should be based on a comprehensive assessment of the patient.

The present study revealed that there was no statistically significant difference in the incidence of postoperative MI between delayed CEA and early CEA. Roussopoulou et al.’s [24] findings highlight that urgent CEA performed within two days from the index event is related to a nonsignificant increase in the risk of periprocedural MI, this is the same as the results of our study. Early CEA might not increase the risk of postoperative MI.

Table: Differences in the incidence of post-CEA stroke between the early CEA groups and delayed CEA.

Study or subgroup	Early CEA	Delay CEA	Odds ratio	Odds ratio
	Weight	M-H, fixed, 95% CI	M-H, fixed, 95% CI	
2.1.1 ≤ 48h VS >48h				
Ferrero 2010		1.33 [0.33, 5.29]		
Kjorstad 2017		1.22 [0.07, 21.90]		
Nordangstig 2017		3.23 [1.11, 9.36]		
Rantner 2015		1.21 [0.51, 2.91]		
Sharpe 2013		4.22 [0.18, 98.47]		
Stromberg 2012		3.50 [1.99, 6.15]		
Tsantilas 2017		0.43 [0.02, 7.67]		
Subtotal (95% CI)		2.14 [1.43, 3.21]		
Total events	57	93		

Heterogeneity: Chi² = 7.08, df = 6 (p = 0.33); I² = 15%
Test for overall effect: Z = 3.69 (p = 0.0002)

2.1.2 ≤ 7d vs >7d
Annambhotla 2012
Kjorstad 2017
Saleh 2011
Sharpe 2013
Stromberg 2012
Tsantilas 2017
Subtotal (95% CI)
Total events

Heterogeneity: Chi² = 3.37, df = 6 (p = 0.76); I² = 0%
Test for overall effect: Z = 1.81 (p = 0.07)

2.1.3 ≤14d vs >14d
Annambhotla 2012
Ferrero 2010
Kjorstad 2017
Rantner 2015
Saleh 2011
Sharpe 2013
Stromberg 2012
Tsantilas 2017
Subtotal (95% CI)
Total events

Heterogeneity: Chi² = 3.17, df = 7 (p = 0.87); I² = 0%
Test for overall effect: Z = 0.40 (p = 0.69)

2.1.4 ≤ 30d vs >30d
Annambhotla 2012
Ferrero 2010
Kjorstad 2017
Rantner 2015
Saleh 2011
Sharpe 2013
Stromberg 2012
Tsantilas 2017
Subtotal (95% CI)
Total events

Heterogeneity: Chi² = 23.24, df = 21 (p = 0.33); I² = 10%
Test for overall effect: Z = 2.96 (p = 0.003)

Test for subgroup differences: Chi² = 6.79, df = 2 (p = 0.03), I² = 70.5%

Figure 3: Differences in the incidence of post-CEA stroke between the early CEA groups and delayed CEA.
Study or subgroup	Early CEA Events	Delay CEA Events	Weight	Odds ratio M-H, fixed, 95% CI
Total events	90	274		
Heterogeneity:				
$\chi^2 = 6.04$, df = 5 ($p = 0.30$); $I^2 = 17\%$				
Test for overall effect: $Z = 2.42$ ($p = 0.02$)				

Figure 4: Differences in the incidence of post-CEA mortality between the early CEA groups and delayed CEA.

Study or subgroup	Early CEA Events	Delay CEA Events	Weight	Odds ratio M-H, fixed, 95% CI
Total events	426	356		
Heterogeneity:				
$\chi^2 = 17.55$, df = 17 ($p = 0.42$); $I^2 = 3\%$				
Test for overall effect: $Z = 3.71$ ($p = 0.002$)				

| Test for subgroup differences: $\chi^2 = 4.09$, df = 2 ($p = 0.13$); $I^2 = 51.1\%$ |

Figure 5: Differences in the incidence of post-CEA myocardial infarction between the early CEA groups and delayed CEA.
4.1. Limitations. CEA has been used for many years, and the perioperative management and operative style are generally uniform. Most of the articles are recorded, but some are not mentioned. It is not clear whether some patients are used technologies such as pCEA, etc. The follow-up time of the 10 articles that were included in the study was not the same; however, most of them could be followed up more than 30 days; the longest follow-up time could be up to 10 years. There is no clear data about the perioperative medication treatment of CEA. Symptomatic carotid artery is now not graded on admission. Patient with sCAS is not classified.

5. Conclusions

Early CEA is safe and effective for a part of patients with symptomatic carotid stenosis. Early CEA may be able to reduce postoperative complications of patients with sCAS, but a comprehensive preoperative evaluation of patients with sCAS must be performed. The safety of early CEA requires further evaluation in larger datasets.

Data Availability

A systematic literature search was conducted in PubMed, MEDLINE, Embase, and Cochrane databases.

Conflicts of Interest

The authors have no conflict of interest to declare.

References

[1] A. d. A. C. e. Silva, A. T. V. da Cruz Júnior, N. I. C. do Nascimento et al., “Positive balance recovery in ischemic post-stroke patients with delayed access to physical therapy,” BioMed Research International, vol. 2020, Article ID 9153174, 8 pages, 2020.

[2] K. I. Paraskevas and I. M. Loftus, “Safety of carotid revascularization within 48 hours of symptomatic presentation,” Journal of Cardiovascular Surgery, vol. 58, no. 2, p. 139, 2016.

[3] H. Liu, J. Chu, L. Zhang, C. Liu, Z. Yan, and S. Zhou, “Clinical comparison of outcomes of early versus delayed carotid artery stenting for symptomatic cerebral watershed infarction due to stenosis of the proximal internal carotid artery,” BioMed Research International, vol. 2016, Article ID 6241546, 7 pages, 2016.

[4] S. Annambhotla, M. S. Park, M. L. Keldahl et al., “Early versus delayed carotid endarterectomy in symptomatic patients,” Journal of Vascular Surgery, vol. 56, no. 5, pp. 1296–1302, 2012.

[5] K. E. Kjørstad, S. T. Baksaa, D. Bundgaard et al., “Editor’s choice—The National Norwegian Carotid Study: time from symptom onset to surgery is too long, resulting in additional neurological events,” European Journal of Vascular & Endovascular Surgery, vol. 54, pp. 415–422, 2017.

[6] B. Rantner, C. Schmidauer, M. Knoflach, and G. Fraedrich, “Very urgent carotid endarterectomy does not increase the procedural risk,” European Journal of Vascular & Endovascular Surgery, vol. 49, pp. 129–136, 2015.

[7] S. Strömberg, J. Gelin, and T. Österberg, “Very urgent carotid endarterectomy confers increased procedural risk,” Stroke, vol. 56, no. 3, pp. 877–877, 2012.

[8] L. Jivegård, J. Gelin, S. Strömberg, and K. Österberg, “Comments regarding ‘rapid access carotid endarterectomy can be
performed in the hyperacute period without a significant increase in procedural risks” by M.K. Salem, R.D. Sayers, M.J. Brown, D.J. Eveson, T.G. Robinson and A.R. Naylor, “European Journal of Vascular & Endovascular Surgery official journal of the European Society for Vascular Surgery, vol. 42, no. 3, p. 403, 2011.

[9] P. Tsantilas, A. Kühnl, M. Kallmayer et al., “A short time interval between the neurologic index event and carotid endarterectomy is not a risk factor for carotid surgery,” Journal of Vascular Surgery, vol. 65, no. 1, pp. 12–20.e1, 2017.

[10] E. Ferrero, M. Ferri, A. Viazzo et al., “Early carotid surgery in patients after acute ischemic stroke: is it safe? A retrospective analysis in a single center between early and delayed/deferred carotid surgery on 285 patients,” Annals of Vascular Surgery, vol. 24, no. 7, pp. 890–899, 2010.

[11] M. R. Villwock, A. Singla, D. J. Padalino, R. Ramaswamy, and E. M. Deshaies, “Optimum timing of revascularization for emergent admissions of carotid artery stenosis with infarction,” Clinical Neurology and Neurosurgery, vol. 127, pp. 128–133, 2014.

[12] A. Nordanstig, L. Rosengren, S. Strömberg et al., “Editor’s choice—very urgent carotid endarterectomy is associated with an increased procedural risk: the carotid alarm study,” European Journal of Vascular & Endovascular Surgery is the Official Journal of the European Society for Vascular Surgery, vol. 54, pp. 278–286, 2017.

[13] R. Sharpe, R. D. Sayers, N. J. M. London et al., “Procedural risk following carotid endarterectomy in the hyperacute period after onset of symptoms,” European Journal of Vascular and Endovascular Surgery, vol. 46, no. 5, pp. 519–524, 2013.

[14] E. Ferrero, M. Ferri, A. Viazzo et al., “Early carotid surgery in patients after acute ischemic stroke: is it safe? A retrospective analysis in a single center between early and delayed/deferred carotid surgery on 285 patients,” Annals of Vascular Surgery, vol. 24, no. 7, pp. 890–899, 2010.

[15] M. R. Villwock, A. Singla, D. J. Padalino, R. Ramaswamy, and E. M. Deshaies, “Optimum timing of revascularization for emergent admissions of carotid artery stenosis with infarction,” Clinical Neurology and Neurosurgery, vol. 127, pp. 128–133, 2014.

[16] A. Nordanstig, L. Rosengren, S. Strömberg et al., “Editor’s choice—very urgent carotid endarterectomy is associated with an increased procedural risk: the carotid alarm study,” European Journal of Vascular & Endovascular Surgery is the Official Journal of the European Society for Vascular Surgery, vol. 54, pp. 278–286, 2017.

[17] R. Sharpe, R. D. Sayers, N. J. M. London et al., “Procedural risk following carotid endarterectomy in the hyperacute period after onset of symptoms,” European Journal of Vascular and Endovascular Surgery, vol. 46, no. 5, pp. 519–524, 2013.

[18] M. L. Keldahl and M. K. Eskandari, “Timing of carotid surgery after acute stroke,” Expert Review of Cardiovascular Therapy, vol. 8, no. 10, pp. 1399–1403, 2014.

[19] G. Moneta, “Early carotid endarterectomy in symptomatic patients is associated with poorer perioperative outcomes,” Yearbook of Vascular Surgery, vol. 2008, pp. 290–292, 2008.

[20] C. B. Rockman, T. S. Maldonado, G. R. Jacobowitz, N. S. Cayne, P. J. Gagne, and T. S. Riles, “Early carotid endarterectomy in symptomatic patients is associated with poorer perioperative outcomes,” Journal of Vascular Surgery, vol. 44, pp. 480–487, 2006.

[21] A. R. Naylor, “Delay may reduce procedural risk, but at what price to the patient?,” European Journal of Vascular and Endovascular Surgery, vol. 35, no. 4, pp. 383–391, 2008.

[22] J. L. Saver, “Time is brain—quantified,” Stroke, vol. 37, no. 1, pp. 263–266, 2006.

[23] H. J. Barnett, D. W. Taylor, M. Eliasziw et al., “Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis,” The New England Journal of Medicine, vol. 339, no. 20, pp. 1415–1425, 1998.

[24] P. M. Rothwell, M. Eliasziw, S. A. Gutnikov, C. P. Warlow, and H. J. M. Barnett, “Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery,” The Lancet, vol. 363, no. 9413, pp. 915–924, 2004.

[25] W. Dorigo, R. Pulli, M. Nesi et al., “Urgent carotid endarterectomy in patients with recent/crescendo transient ischaemic attacks or acute stroke,” European Journal of Vascular and Endovascular Surgery, vol. 41, no. 3, pp. 351–357, 2011.

[26] E. Ballotta, G. Da Giacomo, C. Baracchini, E. Abbruzzese, M. Saladini, and G. Meneghetti, “Early versus delayed carotid endarterectomy after a nondisabling ischemic stroke: a prospective randomized study,” Surgery, vol. 131, no. 3, pp. 287–293, 2002.

[27] L. Capoccia, E. Sbarigia, F. Spiaziale, D. Toni, and P. Fiorani, “Urgent carotid endarterectomy to prevent recurrence and improve neurologic outcome in mild-to-moderate acute neurologic events,” Journal of Vascular Surgery, vol. 53, no. 3, pp. 622–628, 2011.

[28] A. Roussopoulou, G. Tsivgoulis, C. Krogias et al., “Safety of urgent endarterectomy in acute non-disabling stroke patients with symptomatic carotid artery stenosis: an international multicenter study,” European Journal of Neurology, vol. 26, no. 4, pp. 673–679, 2019.