The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling.
The effects of rising atmospheric carbon dioxide on shoot–root nitrogen and water signaling

Hsien Ming Easlon* and Arnold J. Bloom
Department of Plant Sciences, University of California at Davis, Davis, CA, USA

*Correspondence: Hsien Ming Easlon, Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA e-mail: hseinem@ucdavis.edu

INTRODUCTION

Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root-shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source-sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot-root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot–root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source–sink interactions.

Keywords: carbon dioxide, nitrogen, nitrate assimilation, water, drought, salinity, chilling
Shoot signals for root N availability suggest that these phytohormones serve as root to shoot NO$_3^-$ assimilation. Around 1 mM (Andrews, 1986b), but in fertilized agricultural soils, NO$_3^-$ can be much higher, ranging from 10 to 70 mM (Reisenuer, 1966). The negative charge of NO$_3^-$ prevents it from binding to most soil particles, and this contributes to substantial spatial and temporal heterogeneity in soil NO$_3^-$ availability (Jackson and Caldwell, 1993). Plants have responded to soil NO$_3^-$ variability with adaptations to increase NO$_3^-$ uptake rapidly when it is available. In response to high soil NO$_3^-$, individual roots increase NO$_3^-$ uptake (Forde, 2002a) and alter root hydraulic properties to increase mass flow (Goerka et al., 2008). These adaptations allow a few roots in a high NO$_3^-$ region of the soil to provide all of the N that the shoot requires (Laine et al., 1995).

ROOT TO SHOOT N SIGNALING

Root to shoot communication of soil N availability may be as simple as NO$_3^-$ delivery from roots to shoots in xylem sap (Takei et al., 2002). When soil NO$_3^-$ is low, root C/N ratios are high and roots have sufficient carbohydrate to assimilate most of the NO$_3^-$ that they absorb (Andrews et al., 1992) and thus deliver little NO$_3^-$ to shoots. As soil NO$_3^-$ increases, a greater proportion of absorbed NO$_3^-$ remains unassimilated in the root and is transported to the shoot (Andrews, 1986a; Agrawal et al., 1994). Xylem sap NO$_3^-$ directly links soil availability to the shoot and thereby serves as an ideal signal for such a temporally and spatially variable nutrient. High shoot NO$_3^-$ stimulates shoot growth and low shoot NO$_3^-$ inhibits shoot growth even when total shoot N is high (Walc-Liu et al., 2000; Rahayu et al., 2005). Species that predominantly transport N from root to shoot as amino acids instead of NO$_3^-$ may not use xylem sap NO$_3^-$ for root to shoot N signaling (Sprent and Thomas, 1984). Indeed, leaf growth is not always proportional to leaf NO$_3^-$ concentration (Rahayu et al., 2005), indicating the importance of other signals such as phytohormones for root to shoot communication of root N supply.

One class of phytohormones involved in root to shoot signaling is cytokinins. Stimulation of leaf growth by N supply is associated with increased concentrations of active forms of cytokinins (Rahayu et al., 2005). Root cytokinin production and xylem sap delivery of cytokinins to shoots increases with NO$_3^-$ fertilization (Takei et al., 2001; Forde, 2002a). Cytokinins stimulate leaf growth, increase shoot sink strength (Werner et al., 2008), and delay leaf senescence (Gan and Amasino, 1995), while they inhibit root elongation. Xylem sap transport of cytokinins increases expression of N responsive genes in leaves (Sakakibara et al., 1999; Takei et al., 2001; Kiba et al., 2011; Ruffel et al., 2011). All of these responses to cytokinins suggest that these phytohormones serve as root to shoot signals for root N availability.

ELEVATED CO$_2$ EFFECTS ON ROOT TO SHOOT N SIGNALS

CO$_2$ enrichment influences root to shoot N signaling through its effects on xylem sap flow rate, NO$_3^-$ assimilation, and root allocation.

Shoot to roots

Shoot to roots signals of N availability depend upon xylem sap flow for rapid signal delivery, and elevated CO$_2$ affects xylem flow rates. Elevated CO$_2$ decreases transpiration rates between 5 and 20% as stomata close in response to higher intercellular CO$_2$ concentration (Leakey et al., 2009). Stomatal closure slows water uptake and thereby xylem sap flow rate. Decreased transpiration may impede mass flow of NO$_3^-$ in the soil solution to roots (McDonald et al., 2002), but this decrease may not slow delivery of N to shoots (Schulze and Bloom, 1984) because N concentration in the xylem sap increases as xylem sap flow decreases, maintaining N delivery rates (Shaner and Boyer, 1975; Schulze and Bloom, 1984). Increasing xylem loading of N in roots does not require substantial energy in that xylem solute N concentrations are relatively low. Xylem concentrations of cytokinins are in the nanomolar range (Foo et al., 2007), and so are even less likely to be affected by xylem sap flow rates.

Elevated CO$_2$ may disrupt root to shoot N signaling through shifting the location of NO$_3^-$ assimilation. Greater rates of photosynthesis at elevated CO$_2$ increase carbohydrate flux to roots (Grimmer and Komor, 1999). In the root, higher carbohydrates increase NO$_3^-$ assimilation (Matt et al., 2001), growth, and local demand for N (Kicher and Schopfer, 2012). Consequently, the root transports less NO$_3^-$ to the shoot, and xylem sap NO$_3^-$ becomes less effective as a signal of root N availability.

Plant allocation of carbohydrate to roots varies greatly with CO$_2$ enrichment (Rogers et al., 1996). For species in which carbohydrate flux to roots is insensitive to CO$_2$, the relationship among root N, assimilation, root N utilization, and xylem sap NO$_3^-$ transport could indicate the potential for improving root to shoot N signaling at elevated CO$_2$. For species in which CO$_2$ enrichment increases carbohydrate flux, elevated CO$_2$ may disrupt cytokinin signaling. A low baseline level of root cytokinin production at low root available NO$_3^-$ (Samuelson and Larsson, 1993) may result in greater root xylem cytokinin loading when root allocation is high under long-term growth at elevated CO$_2$ (Yong et al., 2000). Elevated rates of cytokinin delivery to shoots could induce shoot growth in excess of what can be supported by root N supply. This could partially explain the decline in leaf N after prolonged exposure to elevated CO$_2$ (Cren et al., 2001). Additional study of xylem sap and leaf cytokinins at elevated CO$_2$ are necessary to determine if this disruption in cytokinin signaling is responsible for declining leaf N content.

SHOOT TO ROOT N SIGNALING

When soil NO$_3^-$ is high, a few roots – 3.5% of the root system in spring wheat (Robinson et al., 1991) and 12% in lettuce (Burns, 1991) – can supply leaves with all of their N. When leaf N becomes limiting, plants may enhance root uptake by increasing (1) root growth, (2) root transporters to absorb soil N, and (3) root exudation to stimulate soil microbe activity that accelerates mineralization (Hawkes et al., 2003). All of these N acquisition strategies expend carbohydrate exported from shoots, and coordination of these processes is essential for optimal plant growth. Signals that stimulate root growth when leaf N is low or that repress root growth when leaf N is high balance root N acquisition and shoot demand.

A significant portion of N transported to shoots is recycled to roots via phloem transport of amino acids (Forde and Clarkson, 1999). It has been hypothesized that this transport of amino acids from shoots to roots in phloem could allow for feedback inhibition of shoot to root N signaling.
of root growth and NO\textsubscript{3} assimilation (Marschner, 1986; Imsande and Toumaire, 1994; Marschner et al., 1996). Although exogenously supplied amino acids can inhibit root growth and NO\textsubscript{3} uptake (Ouellé et al., 2002; Forde and Walch-Liu, 2009), composition and transport of amino acids in phloem often do not correlate with shoot N status or root NO\textsubscript{3} uptake (Forde, 2002a). In split root experiments, amino acids were preferentially transported to portions of root systems supplied with NO\textsubscript{3} rather than those deprived of exogenous N, and the roots receiving more amino acids had higher growth rates (Tillard et al., 1998). This supports that amino acids delivered via the phloem stimulate root growth rather than inhibit it (Marschner et al., 1996).

Auxins are primarily synthesized in shoots and inhibit shoot branching (Normanly et al., 1999; Liang et al., 2001). They are transported to roots through polar transport in the phloem (Baker, 2000) and promote proliferation of lateral roots. Phloem and root auxin concentrations decrease when plants are grown at high NO\textsubscript{3} (Caba et al., 2000; Tian et al., 2008) and increase in roots when N is limiting (Walch-Liu et al., 2006). Therefore, auxins are prime candidates for signals that communicate shoot NO\textsubscript{3} levels to roots (Forde, 2002b). Roots rely on photosynthesizing organs for carbohydrates, and thus, auxin-induced increases in root growth depend upon root carbohydrate supply (Reed et al., 1998; Balleras et al., 2002; Zhang et al., 2007). The amount of carbohydrate transported in phloem sap from shoots to roots may also signal shoot N status, and this carbohydrate signaling mechanism appears to be independent of phloem transport of auxin (Bingham et al., 1998). At high leaf N, shoot growth acts as a sink for shoot produced carbohydrates and relatively little carbohydrate is transported to roots. If leaf N is low, shoot growth is limited and more carbohydrate is transported to roots (Brouwer, 1967; Brouwer and DeWit, 1969; Bloom et al., 1986b). High root carbohydrates increases root elongation and lateral root initiation (Bingham et al., 1998; Kircher and Schoof, 2012) increases root area for N acquisition, and upregulates NO\textsubscript{3} uptake and assimilation (Lejay et al., 1999; Ono et al., 2000; Matt et al., 2001).

ELEVATED CO\textsubscript{2} EFFECTS ON SHOOT TO ROOT N SIGNALING

Leaf N concentrations decline under prolonged growth at elevated CO\textsubscript{2} (Oren et al., 2001). Photosynthetic acclimation can account for some of this decrease (Long et al., 2004), but fertilization with NH\textsubscript{4}NO\textsubscript{3} eliminates it (Crous et al., 2010; Liu et al., 2010). Elevated CO\textsubscript{2} inhibits shoot NO\textsubscript{3} assimilation in C\textsubscript{3} plants (Rachmilevitch et al., 2004; Bloom et al., 2010), necessitating a greater reliance on root NO\textsubscript{3} assimilation to maintain plant capacity for NO\textsubscript{3} assimilation. In tobacco, 3 weeks of CO\textsubscript{2} enrichment enhances root NO\textsubscript{3} assimilation and may compensate for decreasing shoot NO\textsubscript{3} assimilation when there is sufficient root carbohydrate (Kruse et al., 2002). A shift from shoot NO\textsubscript{3} assimilation to root NO\textsubscript{3} assimilation requires translocation of more carbohydrate to the roots to provide sufficient energy and carbon skeletons for these processes (Zheng, 2009). NH\textsubscript{4} fertilization decreases the limitations of phloem carbohydrate transport on plant N status because NH\textsubscript{4} assimilation requires less carbohydrate.

WATER STRESS SIGNALING

Photosynthesis in land plants results in the inevitable water loss during CO\textsubscript{2} uptake because both diffusion of CO\textsubscript{2} into leaves and water vapor out of leaves occur through stomata. Soil drought, salinity, and chilling can result in an inability of water transport from roots to match shoot water loss. To maintain leaf photosynthesis, shoot turgor, and shoot growth, plants under water stress rely on local root responses that increase water uptake as well as shoot responses that reduce water use.

During drought or salt stress, xylem tension acts as an integrative hydraulic signal of soil water potential that rapidly communicates soil water stress to leaves (Malone, 1993). Likewise, low root hydraulic conductance during root chilling results in rapidly increasing xylem tension and declining leaf turgor (Bloom et al., 2004). Turgor loss causes stomatal closure through either passive or active regulation (Tardieu and Davies, 1995) and inhibits leaf growth as leaf cell turgor declines below the threshold for cell wall expansion (Hisao and Acrevo, 1974). Smaller leaf area and stomatal closure resulting from decreased leaf turgor protect leaves from desiccation. During slowly developing soil drought, soil moisture content has substantial heterogeneity, but hydraulic signals are integrative; that is, xylem tension in leaves is affected by xylem tension in all connected roots. Roots in drier regions experience greater decreases in water potential before hydraulic signals are transmitted to leaves. Non-hydraulic
signals can be generated in these roots with lower water potential, allowing shoots to preemptively reduce shoot water use before leaf water deficit develops (Dodd et al., 2008). During root chilling, chilling tolerant species close stomata before declines in leaf water potential occur, indicating that non-hydraulic chemical signals are also important in response to this type of water stress (Bloom et al., 2004).

Abscisic acid (ABA) increases with drought and salinity, induces stomatal closure, and inhibits transpirational water loss (Davies and Zhang, 1991; Bhabra et al., 2002; Liu et al., 2002). Lower root water potential increases both root ABA production (Simonneau et al., 1998) and xylem sap transport of ABA from root to shoot (Zhang and Davies, 1989). ABA production also increases during chilling stress in the long-term (Melkonian et al., 2004), but the rapidity of stomatal closure during root chilling indicates that other, more rapidly produced root to shoot signals are involved in root chilling.

Abscisic acid-induced stomatal closure is not solely dependent on root ABA production. Shoot vascular tissue ABA production (Endo et al., 2008) and ABA uptake by leaf xylem also affect guard cell ABA concentration. Xylem sap pH increases with soil drought, salinity, and root chilling, slow leaf xylem ABA uptake, and increases guard cell ABA concentration, thereby promoting stomatal closure (Vernieri et al., 2001; Wilkinson and Davies, 2002; Felle et al., 2005; Wilkinson et al., 2007).

Evidence is mounting for non-hydraulic signals other than ABA and pH in xylem sap that also affect stomatal regulation during water stress (Munns, 1992; Chen et al., 2002; Holbrook et al., 2002). For example, salts carried in the transpiration stream can also act as long distance root to shoot signals. During salinity stress Na\(^+\) and Cl\(^-\) are transported in xylem sap and concentrated at sites of evaporation in leaves. High leaf apoplastic Na\(^+\) and Cl\(^-\) decrease water potential, prompting osmotic adjustment and, in some halophytes, stomatal closure (Vey et al., 1998).

Shoot to root signaling is also important for responses to chilling and high vapor pressure deficit stresses that do not directly affect root water potential. During both of these stresses, transpiration exceeds the capacity for root water transport. High root ABA increases root hydraulic conductance and water flow during chilling or at high vapor pressure deficit to ameliorate shoot water deficit (Markhart, 1984; Kudoyarova et al., 2011). This increase in root ABA requires water stress signaling from shoots; for example, if leaf water potential is maintained during chilling, there is no increase in root ABA (Vernieri et al., 2001). Shoot to root communication of shoot water deficits may be communicated hydraulically or through phloem transport of ABA or other signals.

ELEVATED CO\(_2\) EFFECTS ON WATER STRESS SIGNALING

The primary effect of elevated CO\(_2\) on water stress signaling derives from stomatal closure in response to high intercellular CO\(_2\) and the resulting lower transpiration rates (Leakey et al., 2009). Lower transpiration rates under elevated CO\(_2\) may decrease both accumulation of ABA at sites of evaporation near guard cells (Zhang and Ourlaw, 2001) and foliar ABA concentration in general (Teng et al., 2006). Moreover, stomatal closure in response to root ABA application and osmotic stress are greater at elevated CO\(_2\) (Leymarie et al., 1999) and may result from higher intercellular CO\(_2\). At ambient CO\(_2\), when stomata begin to close during water stress, low intercellular CO\(_2\) can partially reverse stomatal closure. At elevated CO\(_2\), intercellular CO\(_2\) remains high even after stomatal closure, and this can prevent reversal of stomatal closure.

Hydraulic signaling is also affected by lower transpiration rates at elevated CO\(_2\). Slower transpiration reduces leaf xylem tension and improves leaf water potential during drought (Xiao et al., 2005). This may mitigate midday declines in leaf water potential during early stages of drought that are necessary for shoot perception of water stress. Slower transpiration at elevated CO\(_2\) delays hydraulic signaling of declining root water potential, but does not delay non-hydraulic signaling. Non-hydraulic signals like ABA are still delivered to shoots at elevated CO\(_2\), decreasing shoot water use and further delaying hydraulic signaling of declining root water potential. Slower transpiration also minimizes development of leaf water deficit during chilling at elevated CO\(_2\) (Roese et al., 1997), which may inhibit root ABA production (Vernieri et al., 2001) that is important for root acclimation to chilling.

CONCLUSION

Leaf N concentration declines under prolonged growth at elevated CO\(_2\) (Oren et al., 2001) unless plants are heavily fertilized with NH\(_4\)NO\(_3\) (Crous et al., 2010; Liu et al., 2011). This suggests that mechanisms for long distance root–shoot communication of root N availability and shoot N status, which evolved under low CO\(_2\), may lack plasticity to maintain root–shoot coordination under elevated CO\(_2\). Leaf and root auxin concentrations increase in response to local root N under elevated CO\(_2\) which should increase root growth, root NO\(_3\)\(^-\) uptake, and root NO\(_3\)\(^-\) assimilation (Teng et al., 2006; Wang et al., 2009; Niu et al., 2011). However, root organic N supply to shoots may be limited by phloem carbohydrate transport from shoots to roots (Grozdevskii et al., 1998); although these effects may not affect growth until stored leaf N is depleted. The accumulation of non-structural carbohydrates in leaves at elevated CO\(_2\) that is often observed (Long et al., 2004) may result from an inability to transport carbohydrate out of leaves or to obtain enough N from roots for shoot growth. Photosynthetic acclimation, whereby carbon fixation per unit leaf area declines under prolonged exposure to elevated CO\(_2\), decreases leaf N requirements and increases leaf phloem export capacity. This may mitigate phloem carbohydrate export limitations and thus improve shoot–root N signaling.

The improvement in leaf water potential and water use efficiency resulting from higher intercellular CO\(_2\) concentration are predicted to benefit plant growth under elevated CO\(_2\), but productivity gains at elevated CO\(_2\) under water limitation are often lower than predicted (Nowak et al., 2004; Newingham et al., 2013). Slower transpiration impedes development of leaf water deficits important for shoot water stress perception as soil water potential declines. Plants generate ABA and other non-hydraulic signals of low root water potential, and these can decrease stomatal conductance and shoot growth before declines in leaf water.
potential occur. While stomatal closure from these non-hydraulic water stress signals has less negative impact on photosynthesis at elevated CO₂ as compared to ambient CO₂, these signals can still unnecessarily limit shoot growth (Leymarie et al., 1999). Greater stomatal sensitivity to osmotic and drought stress results in high water use efficiency and less negative leaf water potential, but more conservative shoot growth and lower potential productivity (Warren et al., 2011).

Shoot-root N and water signaling involve both resource and phytohormone transport from source organs to distant sink organs to achieve a functional equilibrium between roots and shoots. Rising atmospheric CO₂ concentrations will increase net photosynthesis, decrease water use, and may alter source-sink interactions beyond the capability of signaling mechanisms that evolved at the lower atmospheric CO₂ concentrations, which have prevailed throughout recent history (Table 1). Critical assessment of limitations in shoot-root signaling at elevated CO₂ and careful genetic manipulations of N and water signaling could enhance crop response to rising atmospheric CO₂ and avoid declines in plant N.

REFERENCES

Apel, D., Oosterhuis, P., and Larson, C. M. (1994). Translocation of N to and from barley roots – its dependence on local nitrate supply in split-root cultures. Physiol. Plant. 90, 467–474. doi: 10.1111/j.1399-3040.1994. td03083.x

Andrews, M. (1989a). Nitrate and reduced-N concentrations in the xylem sap of Solanum lycopersicum. Plant Cell Environ. 12, 405–408. doi: 10.1111/j.1365-3040.1989.ep116359.x

Andrews, M. (1986b). The partitioning of nitrogen assimilation between root and shoot of higher plants. Plant Cell Environ. 9, 511–519. doi: 10.1111/j.1365-3040.1986.ep116228.x

Berntson, G. M., Wayne, P. M., and Bazzaz, F. A. (1997). Belowground responses to elevated CO₂ and NO₃- to N in three ambrosia: implications for early lateral root emergence in response to NO₃- enrichment. Plant Cell Environ. 20, 625–632. doi: 10.1046/j.1365-3040.1997.tb00861.x

Boer, D. J., and Chaloner, W. G. (1993). Evolutionary responses of stomatal density to global CO₂ change. Biol. J. Linn. Soc. 48, 343–353. doi: 10.1111/j.1095-8312.1993.tb00854.x

Brenchley, K. E., and McMahon, D. R. (1993). Leaf growth as a function of atmospheric CO₂ and temperature. Plant Cell Environ. 16, 199–206. doi: 10.1111/j.1365-3040.1993.tb00864.x

Boyce, C. K., and Zwieniecki, M. A. (1993). Leaf water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ. 26, 797–809. doi: 10.1111/j.1365-3040.1993.ep12018.x

Boote, S. R., Wolfe, D. W., and Melkozernov, I. I. (1997). Elevated CO₂ mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell Environ. 20, 625–632. doi: 10.1046/j.1365-3040.1997.tb00862.x

Boyer, J. S. (1982). Plant productivity and environment. Science 216, 443–448. doi: 10.1126/science.216.4571.443

Brenner, R. W. (1987). Relationships between Spruce-Sward and woodmolemancy

Table 1 Root–shoot N and water signal responses to elevated CO₂

Signal	Rule	Response to elevated CO₂
N₂O	Root to shoot signal of root N₂O availability	Root N₂O assimilation, local root demand for N increase, and xylem transport of N₂O decreases
Cytochrome	Root to shoot signal of root N₂O availability	Cytochrome production and xylem transport increases even at low root available N₂O decreases
Auxin	Shoot to root signal of leaf N availability	Auxin production and transport to roots increases in response to low leaf N
Carbohydrate	Shoot to root signal of leaf N availability	Increased carbohydrate delivery to roots, but delivery does not increase proportionally with leaf carbohydrate production
Xylem tension	Bilateral signal of root or shoot water stress	Stomatal closure reduces leaf xylem tension delaying shoot perception of water stress
ABA	Bilateral signal of root or shoot water stress	Transpirational accumulation of leaf and guard cell ABA decreases and stomatal sensitivity to ABA increases
Climate change and the evolution of C4 photosynthesis. Trends Ecol. 6, 95–99. doi: 10.1016/0169-5347(90)90124-X

Gao, A., Tardieu, F., Xie, H., Okamoto, M., Ilagami, K., Komiya, H., et al. (2008). Drought induction of Arabidopsis root cortex parenchyma tissue. Plant Physiol. 147, 1844–1995. doi: 10.1104/pp.108.116052

Eisen, P. and Bloom, A. J. (2005). Mineral Nutrition of Plants: Principles and Perspectives. Philadelphia: Sinauer Associates.

Falk, H. H., Herrmann, A., Hackelton, B., and Keil, H. G. (2005). Root-to-shoot signalling: apoplastic alkalisation, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma 227, 17–24. doi: 10.1007/s00709-005-0151-3

Field, C. B., and Mooney, H. A. (1986). “The photosynthesis-nitrogen relationship in wild plants” in On the Ecology of Plant Form and Function, ed. T. J. Givnish (Cambridge: Cambridge University Press), 25–56.

Forde, B. G. (2002b). The role of long-range signaling pathways reg- ulating root growth. J. Exp. Bot. 53, 2201–2206. doi: 10.1093/jxb/erf094

Forde, B. G., and Walch-Liu, P. (2009). Nitrate and ammonium nutrition of plants: physiological and molecular perspective. Adv. Bot. Res. 55, 39–45. doi: 10.1016/j.absr.2008.12.006

Forde, B. G. (2002). “The role of long-distance signalling in plant responses to nitrate and other nutrients” in Plant Physiol. 205, 203–224. doi: 10.1104/murplant.105.059708

Forde, B. G. (2002). Local and long-distance signaling pathways reg- ulating plant root responses to nitrate. J. Exp. Bot. 53, 2201– 2206. doi: 10.1093/jxb/erf094

Forde, B. G., and Walch-Liu, P. (2009). Nitrate in a global environmental context for biochemical responses in plant roots. Plant Cell Environ. 32, 682–693. doi: 10.1111/j.1365-3040.2008.01527.x

Gan, S., and Amaeshi, B. M. (1995). Inhibition of leaf senes- cence by autoregulated production of cytokinin. Science 270, 1898–1998. doi: 10.1126/science.270.5244.1998

Gorka, A., Ye, Q., Holbrook, N. M., and Zwieback, M. A. (2018). Nitrate control of root hydraulic properties in plants: transplanting local information to whole plant response. Plant Physiol. 148, 1159–1167. doi: 10.1104/pp.17.012249

Granger, C., and Kormo, E. (1999). Assimilate export by leaves of rice, a model crop: insights from elevated CO2. Plant Physiol. 120, 407–417. doi: 10.1104/pp.120.1.407

Green, J. D. (1998). Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2. Plant Physiol. 117, 2007–215. doi: 10.1104/pp.117.1.2007

Greulich, B., van, J. R., and Leonard, W. B. (2001). Root-to-shoot signaling: apoplastic alkalisation, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma 227, 17–24. doi: 10.1007/s00709-005-0151-3

Hedrich, R., and Mooney, H. A. (1986). “The photosynthesis-nitrogen relationship in wild plants” in On the Ecology of Plant Form and Function, ed. T. J. Givnish (Cambridge: Cambridge University Press), 25–56.

Heath, C. B. (1998). “The scale of nutrient heterogeneity in soils” in soil nitrogen. J. Exp. Bot. 49, 940–950. doi: 10.1093/jxb/49.328.940

Heath, C. B. (1998). “The scale of nutrient heterogeneity in soils” in soil nitrogen. J. Exp. Bot. 49, 940–950. doi: 10.1093/jxb/49.328.940

Hirose, N., Bresson, C. G., and Studen, I. (1997). Impact of de- vatated atmospheric CO2 on nitrate reductase transcription and activ- ity in leaves and roots of Plantago major. Plant. Physiol. 110, 940– 948. doi: 10.1104/pp.110.3.940

Hinz, T. F., Marchal, O., and Schmit- teker, C. (2005). Nitrate control of root hydraulic properties in plants: transplanting local information to whole plant response. Plant Physiol. 148, 1159–1167. doi: 10.1104/pp.117.1.2007

Hirner, C. V., Wen, I. E., Herman, D. J., and Freon, M. K. (2005). Plant invasion shunts nitrogen cycling by modulating the soil nutrient com- munity. Ecol. Lett. 8, 976–985. doi: 10.1111/j.1461-0248.2005.00492.x

Holbrook, N. M., Shadel, H. V., Jones, R. A., and Munne, R. (2002). Stomatal control in tomato with ABA-deficient root system. Plant Physiol. 129, 1251–1254. doi: 10.1104/pp.120.1.1251

Horvath, E. (2002). Responses of agricul- tural crops to free-air CO2 enrichment. Adv. Agron. 77, 293–368. doi: 10.1016/S0065-2113(01)77107-X

Kirsch, S., and Schopfer, P. (2012). Photosynthetic sucrose acts as cytokinin-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109, 12172–12177. doi: 10.1073/pnas.1215786109

Korner, E. (2000). “The role of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in plants” in Plant Physiol. 127, 464–467. doi: 10.1104/pp.127.1.464

Izuno, M., and Tsuraine, B. (1994). N demand and the regulation of nitrate uptake. Plant Physiol. 105, 153–154. doi: 10.1104/pp.105.1.153

Hino, T. C., and Acero, E. (1974). Plant responses to water deficits, source-sink efficiency, and drought resistance. Agr. Meteorol. 14, 58–84. doi: 10.1016/0002-1812(74)90048-4

Jones, J. D., and Firestone, M. K. (2005). Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2. Plant Physiol. 148, 1159–1167. doi: 10.1104/pp.117.1.2007

Kircher, S., and Amasino, R. M. (1999). Senescence in soybean. Plant Physiol. 119, 1525–1531. doi: 10.1104/pp.119.3.1525

Kim, H., Kim, S., Na, K., and Park, I. K. (1997). Response of trees to sap-feeding herbivores to elevated CO2. Ecol. Appl. 7, 51–59. doi: 10.1890/1051-0761(1997)007[0051:ROTSFB]2.0.CO;2

Dodd, I. C., Ega, G., and Dutes, W. J. (2008). Accounting for sap- flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture. J. Exp. Bot. 59, 409–403. doi: 10.1093/jxb/ern284

Dukes, J. S., Chiariello, N. R., Clark, E. R., Moore, L. A., Shieh, M. R., Thayer, S. E., et al. (2005). Responses of grassland produc- tion to single and multiple global environmental changes. PLoS Biol. 3, 1031–1041. doi: 10.1371/jour- nal.pbio.0030153

Ehrlinger, J., Sary, R. F., Flan- gan, L. B., and Ponsy, R. W. (1991).
Eason and Bloom

Shoot-root nitrogen and water signaling

Laine, P., Oster, A., and Boucard, J. (1995). Shoot control of nitrate uptake rates by roots of Brassica napus L. – effects of localized nitrate supply. Plant Physiol. 107, 77–84. doi: 10.1097/00003188-199501000-00010

Leskay, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., and Ort, D. R. (2005). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 56, 2859–2870. doi: 10.1093/jxb/erh106

Luo, L., Pallard, P., Lepist, M., Oliva, F. D., Elikk, S., Daniel-Vedele, F., et al. (1999). Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J. 19, 509–518. doi: 10.1046/j.1365-3137.1999.00840.x

Leunca, I., Luco, G., and Vourou, A. (1999). Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant Cell Environ. 22, 323–330. doi: 10.1046/j.1365-3040.1999.00603.x

Lin, J., X. Zhou, G. Y., Xu, Z. H., Duan, H. L., Li, Y. L., and Zhang, M. (2011). Photosynthetic acclimation, leaf nitrogen concentration, and growth of four tree species over 30 years from the elevated CO2 period. J. Exp. Bot. 62, 253–280. doi: 10.1093/jxb/erq107

Marschner, H. (1986). Mineral Nutrition of Higher Plants. London: Academic Press.

Malone, M. (1993). Hydraulic signals. Plant Cell Environ. 16, 1378–1384. doi: 10.1111/j.1365-3040.1993.tb00319.x

Moreno, J., Lu, Y. X., and Soltis, D. E. (2008). Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J. 19, 509–518. doi: 10.1046/j.1365-3137.1999.00840.x

Nowak, R. S., Ellsworth, D. S., and Running, S. W. (1992). A leaf elongation model from the shoot into the root. Aust. J. Plant Physiol. 19, 2168–2181. doi: 10.1071/Ph9921681

Normanly, J., Slovin, J. P., and Cohen, J. (2001). “fpls-04-00304” — 2013/8/7 — 18:40 — page 7—# 7

Ono, F., Frommer, W. B., and Von Wieren, N. (2000). Coordinated internal regulation of low- and high-affinity nitrate transporters in tobacco. Plant Cell 12, 17–25. doi: 10.1105/tpc.12.1.17

Orten, R., Ellsworth, D. S., Johnson, K. H., Phillips, N., Bures, R. E., Maier, C., et al. (2001). Soil fertility limits carbon acquisition by forest ecosystems in a CO2-enriched atmosphere. Nature 414, 469–472. doi: 10.1038/35079084

Ottow, M., Filharm, S., Fransen, V., and Daniel-Vedele, F. (2001). Nitrate transport in plants: which gene and which control? J. Exp. Bot. 52, 825–833. doi: 10.1093/jxb/erl007

Fardel, S., Krook-Gates, E., Davis, J. E., Brinek, B., and Davis, J. E. (2002). Multiple routes communicat-ing nitrogen availability from roots to shoots.
shoots: a signal transduction pathway mediated by cytokinin. J. Exp. Bot. 55, 873–877. doi: 10.1093/jxb/55.379.971

Tardieu, F., and Davies, W. J. (1993). Integration of hydraulic and chemical control in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ. 16, 345–349. doi: 10.1111/j.1365-3040.1993.tb00880.x

Tong, N. S., Wang, J., Chen, T., Wu, X. Q., Wong, V. H., and Liu, J. X. (2008). Elevated CO2 induces physiological and structural changes in leaves of Arabidopsis thaliana. New Phytol. 177, 102–103. doi: 10.1111/j.1469-8137.2008.02818.x

Tian, Q., Chen, F., Liu, J., Zhang, F., and Mi, G. (2008). Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol. 165, 962–951. doi: 10.1016/j.jplph.2007.02.011

Tillard, F., Pannu, L., and Groen, A. (1998). Are phloem amino acids involved in the shoot to root control of NO3- uptake in Ricinus communis plants? J. Exp. Bot. 49, 1371–1379. doi: 10.1093/jxb/39.325.1371

van Bel, A. J. B. (2005). The phloem, a miracle of ingenuity. Plant Cell Environ. 26, 123–140. doi: 10.1111/j.1365-3040.2005.01005.x

Vermaas, P., Lenni, A., Figuero, M., Tognoni, F., and Par��son, A. (2001). How the roots contribute to the ability of Phaseolus vulgaris L. to cope with drought-induced water stress. J. Exp. Bot. 52, 2199–2206.

Very, A. A., Robinson, M. F., Mansfield, T. A., and Sanders, D. (1998). Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte. Plant J. 14, 509–521. doi: 10.1046/j.1365-313X.1998.00147.x

Wals-Liu, P., Junon, B., Filloux, S., Gian, Y., Remus, T., and Forod, B. G. (2006). Nitrogen regulation of root branching. Ann. Bot. 97, 875–881. doi: 10.1093/abolbio/evil003

Wals-Liu, P., Neumann, C., Rengert, F., and Engeli, C. (2008). Rapid effects of nitrogen form on leaf morphogenesis in tomatoes. J. Exp. Bot. 59, 2659–2672. doi: 10.1093/jxb/erm114

Wang, Y., Du, S. T., Li, L. X., Huang, L. D., Fang, P., Lin, X. Y., et al. (2009). Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings. Plant Physiol. 159, 579–579. doi: 10.1104/pp.109.150511-X

Warren, J. M., Norby, R. J., and Waltersheger, S. D. (2011). Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. For. Physiol. 51, 117–130. doi: 10.1007/s10496-010-00911-1

Werner, T., Holst, K., Pors, V., Gaint, A., Mauroph, A., Chirani, D., et al. (2008). Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 59, 2659–2672. doi: 10.1093/jxb/erm126

Wheel, T., and Keeling, C. D. (1998). Rising carbon. New Sci. 157, 54.

Wilkinson, S., and Davies, W. J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25, 195–210. doi: 10.1046/j.1365-3040.2001.00824.x

Xiao, C. W., Sun, G. J., Zhao, G. S., Zhao, J. Z., and Wu, G. (2003). Interactive effects of elevated CO2 and drought stresses on leaf water potential and growth in Crape-juniper. Trees 19, 711–720. doi: 10.1007/s00468-005-0453-2

Yong, J. W. H., Wong, S. C., Letham, D. S., Hocart, C. H., and Pasquehar, G. D. (2006). Effects of elevated (CO2) and nitrogen nutrition on cytokinin in the xylem sap and leaves of cotton. Plant Physiol. 144, 797–779. doi: 10.1104/pp.114.2.787

Zhang, H., Song, H., and Pelbame, D. (2007). Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J. Exp. Bot. 58, 2329–2338. doi: 10.1093/jxb/erm064

Zhang, J., and Davies, W. J. (1989). Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ. 12, 73–81. doi: 10.1111/j.1365-3040.1989.00019.x

Zhong, S. Q., and Outlaw, W. H. (2001). Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Environ. 24, 1045–1054. doi: 10.1046/j.1365-3040.2001.00773.x

Zhu, Z. L. (2009). Carbon and nitrogen nutrient balance signalling in plants. Plant Signal. Behav. 4, 584–591. doi: 10.4161/psb.4.7.8540

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 23 March 2013; accepted: 22 July 2013; published online: 09 August 2013.

Citation: Easlon HM and Bloom AJ (2013) The effects of rising atmospheric carbon dioxide on shoot–root nitrogen and water signaling. Front. Plant Sci. 4:304. doi: 10.3389/fpls.2013.00304

This article was submitted to Frontiers in Functional Plant Ecology, a specialty of Frontiers in Plant Science. Copyright: © 2013 Easlon and Bloom. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.