Relaxed Lagrangian duality in convex infinite optimization: reverse strong duality and optimality

N. Dinh* M. A. Goberna† M. A. Lopez‡ M. Volle§

June 18, 2021

Abstract

We associate with each convex optimization problem posed on some locally convex space with an infinite index set T, and a given non-empty family \mathcal{H} formed by finite subsets of T, a suitable Lagrangian-Haar dual problem. We provide reverse \mathcal{H}-strong duality theorems, \mathcal{H}-Farkas type lemmas and optimality theorems. Special attention is addressed to infinite and semi-infinite linear optimization problems.

To Dinh The Luc on the occasion of his 70th anniversary

Keywords. Convex infinite programming; Lagrangian duality; Haar duality; Optimality

Mathematics Subject Classification Primary 90C25; Secondary 49N15; 46N10

1 Introduction

In a recent paper on convex infinite optimization [4], we have provided reducibility, zero duality gap, and strong duality theorems for a new type of Lagrangian-Haar duality associated with families of finite sets of indices. More precisely, given an optimization problem

\[\inf \ f(x) \ \text{s.t.} \ f_t(x) \leq 0, \ t \in T, \]

(1.1)
such that X is a locally convex Hausdorff topological vector space, T is an arbitrary infinite index set, and $\{f; f_t, t \in T\}$ are convex proper functions on X, as well as a family \mathcal{H} of non-empty finite subsets of the index set T, we consider the \mathcal{H}-dual problem

$$
\text{(D)}_{\mathcal{H}} \sup_{H \in \mathcal{H}, \mu \in \mathbb{R}_+^H} \inf_{x \in X} \left\{ f(x) + \sum_{t \in H} \mu_t f_t(x) \right\},
$$

(1.2)

where $\mu \in \mathbb{R}_+^H$ stands for $(\mu_t)_{t \in H} \in \mathbb{R}_+^H$, with the rule $0 \times (+\infty) = 0$. When \mathcal{H} is the family $\mathcal{F}(T)$ of all non-empty finite subsets of T, one gets the standard Lagrangian-Haar dual of (P),

$$
\text{(D)} \sup_{H \in \mathcal{F}(T), \mu \in \mathbb{R}_+^H} \inf_{x \in X} \left\{ f(x) + \sum_{t \in H} \mu_t f_t(x) \right\}.
$$

(1.3)

As in [4], this paper pays particular attention to the families $\mathcal{H}_1 := \{\{t\}, t \in T\}$ of singletons and (when $T = \mathbb{N}$) $\mathcal{H}_N := \{\{1, \ldots, m\}, m \in \mathbb{N}\}$ of sets of initial natural numbers. The dual pair $(P) - (\text{D}_{\mathcal{H}_0})$ has been used in [16] in the framework of convex semi-infinite programming (CSIP), where $X = \mathbb{R}^n$. More precisely, [16] gives a sufficient condition for the optimal value of a SIP problem (P) with $T = \mathbb{N}$ to be the limit, as $m \to \infty$, of the optimal values of the sequence of ordinary convex programs $(P_m)_{m \in \mathbb{N}}$ which results of replacing T by $\{1, \ldots, m\}$ in (P). This assumption on T is not as strong as it can seem at first sight as, if T is an uncountable topological space which contains a countable dense subset S and the mapping $t \mapsto f_t(x)$ is continuous on T for any $x \in \bigcap_{t \in T} \text{dom} f_t$, then (P) is equivalent to the countable subproblem which results of replacing T by S in (P). In the particular case of linear semi-infinite programming (LSIP), we can write

$$
\text{(P)} \quad \inf \langle c^*, x \rangle \quad \text{s.t.} \quad \langle a^*_t, x \rangle \leq b_t, \quad t \in T,
$$

(1.4)

with $\{c^*; a^*_t, t \in T\} \subset \mathbb{R}^n$ and $\{b_t, t \in T\} \subset \mathbb{R}$, where, in most applications, T is a convex body (i.e., a compact convex set with non-empty interior) in some Euclidean space and the mapping $t \mapsto (a^*_t, b_t)$ is continuous on T. Then, T can be replaced by any finite dense subset S to get an equivalent countable LSIP problem.

There exists a wide literature on the dual pair $(P) - (D)$, see e.g., the works [2], [7], [8], [11], [12], [18], and [19], most of them focused on constraint qualifications and/or duality theorems, some of them making use, in order to get optimality conditions, of suitable versions of the celebrated Farkas’ Lemma that have been reviewed in [5].

The duality theorems for the pair $(P) - (\text{D}_{\mathcal{H}})$ provide conditions guaranteeing a zero duality gap, i.e., that $\inf(P) = \sup(\text{D}_{\mathcal{H}})$ (see, [4] Theorem 6.1]). Other duality theorems in [4] are strong in the sense that the optimal value of $(\text{D}_{\mathcal{H}})$ is attained, situation represented by the equation $\inf(P) = \max(\text{D}_{\mathcal{H}})$ (see, [4] Theorems 5.1-5.3)). Similarly, the reverse duality theorems, in Section 3 of this paper, are duality theorems where the optimal value of (P) is attained, situation represented by the equation $\min(P) = \sup(\text{D}_{\mathcal{H}})$. Reverse (also called converse) duality theorems for the classical Lagrange dual problem, that is, for $\mathcal{H} = \mathcal{F}(T)$, in convex infinite programming (CIP in short)
can be found in [11 Theorem 3.3] and [12 Theorem 3]. Section 4 provides ad hoc Farkas-type results oriented to obtain, in Section 5, optimality conditions which are expressed in terms of multipliers associated to the indices belonging to the elements of \mathcal{H}.

2 Preliminaries

Let X be a locally convex Hausdorff topological vector space, and suppose that its topological dual X^*, with null element 0_{X^*}, is endowed with the weak*-topology. We denote by \overline{A} and $\text{ri } A$ the closure and the relative interior of a set $A \subset X$, and by $\text{co } A$ its convex hull. For a set $\emptyset \neq A \subset X$, by the convex cone generated by A we mean $\text{cone } A := \mathbb{R}_+(\text{co } A) = \{\mu x : \mu \in \mathbb{R}_+, x \in \text{co } A\}$, by $\text{span } A$ its linear span, and by $A_* = \text{dom } h$ the recession cone of the closed convex set $epi h$. The negative polar of $\emptyset \neq A \subset X$ is the convex cone $A^- := \{x^* \in X^*: \langle x^*, x \rangle \leq 0, \forall x \in A\}$. The lineality space of a convex set $K \subset X$ is $\text{lin } K = K \cap (-K)$.

The w^*-closure of a set $A \subset X^*$ is also denoted by \overline{A}. If $A \subset X^* \times \mathbb{R}$, then \overline{A} denotes the closure of A w.r.t. the product topology. A set $A \subset X^* \times \mathbb{R}$ is said to be w^*-closed (respectively, w^*-closed convex) regarding another subset $B \subset X^* \times \mathbb{R}$ if $\overline{A} \cap B = A \cap B$ (respectively, $(\overline{\text{co } A}) \cap B = \text{co } A \cap B$), see [1] (resp. [6]).

A function $h : X \to \mathbb{R} := \mathbb{R} \cup \{\pm \infty\}$ is proper if its epigraph $\text{epi } h$ is non-empty and never takes the value $-\infty$; it is convex if $\text{epi } h$ is convex; it is lower semicontinuous (lsc, in brief) if $\text{epi } h$ is closed; and it is upper semicontinuous (usc, in brief) if $-h$ is lsc. For a proper function h, we denote by $[h \leq 0] := \{x \in X : h(x) \leq 0\}$ its lower level set of 0, and by $\text{dom } h$, \overline{h}, ∂h, and h^* its domain, its lsc envelope, its Fenchel subdifferential, and its Legendre-Fenchel conjugate, respectively. We also denote by $\Gamma(X)$ the class of lsc proper convex functions on X. By δ_A we denote the indicator function of $A \subset X$, with $\delta_A \in \Gamma(X)$ whenever $A \neq \emptyset$ is closed and convex.

We need to recall some basic facts about convex analysis recession. Given $h \in \Gamma(X)$, the recession cone of the closed convex set $\text{epi } h$ is the epigraph of the so-called recession function h_∞ of h: $(\text{epi } h_\infty) = \text{epi } h_\infty$. The recession function h_∞ coincides with the support function of the domain of the conjugate h^* of h (e.g., [17 Theorem 6.8.5]):

$$h_\infty = (\delta_{\text{dom } h^*})^*.$$

From (2.1),

$$[h_\infty \leq 0] = (\text{dom } h^*)^- = \{x \in X : \langle x^*, x \rangle \leq 0, \forall x^* \in \text{dom } h^*\},$$

which is called the recession cone of the function h and provides the common recession cone to all the non-empty sublevel sets $[h \leq r]$. Given $\{h_1, \cdots, h_m\} \subset \Gamma(X)$ such that $\bigcap_{1 \leq k \leq m}\text{dom } h_k \neq \emptyset$, by [13 Proposition 3.2.3] (whose proof is independent of the dimension of X), one has for all $\mu \in \mathbb{R}_+$:

$$\left(\sum_{k=1}^m \mu_k h_k\right)_\infty = \sum_{k=1}^m \mu_k (h_k)_\infty.$$

(2.3)
2.1 Classical Lagrange CIP duality

The support of $\lambda : T \to \mathbb{R}$ is the set $\text{supp} \lambda := \{ t \in T : \lambda_t \neq 0 \}$. Let $\mathbb{R}^{(T)}$ be the space of generalized finite sequences formed by all real-valued functions on T that vanish except on a finite set called support, i.e.,

$$\mathbb{R}^{(T)} := \{ \lambda : T \to \mathbb{R}_+ \text{ such that supp } \lambda \text{ is finite} \}$$

with positive cone $\mathbb{R}_+^{(T)} := \{ \lambda \in \mathbb{R}^{(T)} : \lambda_t \geq 0, \forall t \in T \}$. We can associate to each $\lambda \in \mathbb{R}^{(T)}_+$ the function $\sum_{t \in T} \lambda_t f_t : X \to \mathbb{R} \cup \{ +\infty \}$ such that

$$\left(\sum_{t \in T} \lambda_t f_t \right)(x) = \begin{cases} \sum_{t \in \text{supp } \lambda} \lambda_t f_t(x), & \text{if } \text{supp } \lambda \neq \emptyset, \\ 0, & \text{if } \text{supp } \lambda = \emptyset. \end{cases}$$

So, we can reformulate (D) in (1.3) as

$$(\text{D}) \sup_{\lambda \in \mathbb{R}^{(T)}_+} \inf_{x \in X} \left\{ f(x) + \left(\sum_{t \in T} \lambda_t f_t \right)(x) \right\}.$$

It is known that the function $\varphi : X^* \to \overline{\mathbb{R}}$ such that

$$\varphi(x^*) := \inf_{\lambda \in \mathbb{R}^{(T)}_+} \left(f + \sum_{t \in T} \lambda_t f_t \right)^*(x^*)$$

and the set

$$\mathcal{A} := \bigcup_{\lambda \in \mathbb{R}^{(T)}_+} \text{epi} \left(f + \sum_{t \in T} \lambda_t f_t \right)^* \subset X^* \times \mathbb{R}$$

are both convex, and $\text{epi } \varphi = \mathcal{A}$ (see, for instance, [4], [11], [12]).

We denote the feasible set of (P) by

$$E := \bigcap_{t \in T} [f_t \leq 0].$$

Then,

$$-\infty \leq (f + \delta_E)^*(x^*) \leq \varphi(x^*) \leq f^*(x^*) \leq +\infty, \ \forall x^* \in X^*,$$

and, taking $x^* = 0_{X^*}$, one gets the weak duality for the pair (P) – (D):

$$-\infty \leq \inf_X f \leq \sup(D) \leq \inf(P) \leq +\infty.$$

2.2 Relaxed Lagrange CIP duality

Let \mathcal{H} be a non-empty family of non-empty finite subsets of T, that is, $\emptyset \neq \mathcal{H} \subset \mathcal{F}(T)$, with associated dual problem $(\text{D}_{\mathcal{H}})$ as in (1.2). Obviously,

$$\sup(\text{D}_{\mathcal{H}}) \leq \sup(\text{D}_{\mathcal{F}(T)}) = \sup(D) \leq \inf(P). \quad (2.4)$$
Let us define the sets
\[E_H := \bigcap_{H \in \mathcal{H}, t \in H} [f_t \leq 0], \]
\[A_H := \bigcup_{H \in \mathcal{H}, \mu \in \mathbb{R}_+^H} \text{epi} \left(f + \sum_{t \in H} \mu_t f_t \right)^*, \]
and the function \(\varphi_H : X^* \to \mathbb{R} \) such that
\[\varphi_H := \inf_{H \in \mathcal{H}, \mu \in \mathbb{R}_+^H} \left(f + \sum_{t \in H} \mu_t f_t \right)^*. \]
Obviously, \(A_H \subset A \) and \(\varphi_H \geq \varphi \).

Definition 2.1

(i) A family \(\mathcal{H} \subset \mathcal{F}(T) \) is said to be covering if \(\bigcup_{H \in \mathcal{H}} H = T \).
(ii) A family \(\mathcal{H} \subset \mathcal{F}(T) \) is said to be directed if for each \(H, K \in \mathcal{H} \) there exists \(L \in \mathcal{H} \) such that \(H \cup K \subset L \).

The families \(\mathcal{F}(T) \) and \(\mathcal{H}_n \) are both covering and directed families, whereas \(\mathcal{H}_1 \) is just covering.

As shown in [4, Proposition 3.2], for each directed covering family \(\mathcal{H} \subset \mathcal{F}(T) \) one has
\[A_H = A_{\mathcal{F}(T)} = A, \] \hspace{1cm} (2.5)
and, consequently,
\[\varphi_H = \varphi_{\mathcal{F}(T)} = \varphi, \text{ and } \sup(D_H) = \sup(D_{\mathcal{F}(T)}) \equiv \sup(D). \] \hspace{1cm} (2.6)

Let \(\mathcal{H} \subset \mathcal{F}(T) \) be a covering family. Then, \(E_H = E \) and, according to [4, Lemma 5.2], \(\{f; f_t, t \in T\} \subset \Gamma(X) \) entails
\[(\varphi_H)^* = f + \delta_E \] \hspace{1cm} (2.7)
and if, additionally, \(E \cap (\text{dom } f) \neq \emptyset \), then
\[\text{epi}(f + \delta_E)^* = \overline{\text{co}} A_H = \overline{\text{co}} \left(\bigcup_{H \in \mathcal{H}, \mu \in \mathbb{R}_+^H} \text{epi} \left(f + \sum_{t \in H} \mu_t f_t \right)^* \right). \]
Moreover, by [4, Theorem 5.1], \(\mathcal{H} \)-strong duality holds at a given \(x^* \in X^* \), i.e.,
\[(f + \delta_E)^*(x^*) = \min_{H \in \mathcal{H}, \mu \in \mathbb{R}_+^H} \left(f + \sum_{t \in H} \mu_t f_t \right)^*(x^*), \] \hspace{1cm} (2.8)
if and only if \(A_H \) is \(w^* \)-closed convex regarding \(\{x^*\} \times \mathbb{R} \).
2.3 The \mathcal{H}-dual problem as a limit

It is easy to see that the mapping $\mathcal{F}(T) \supset \mathcal{H} \mapsto \sup(\mathcal{D}_{\mathcal{H}}) \in \mathbb{R}$ is non-decreasing w.r.t. the inclusion \subset in $\mathcal{F}(T)$. Consequently, if the family $\mathcal{H} \subset \mathcal{F}(T)$ is directed, we can express $\sup(\mathcal{D}_{\mathcal{H}})$ as the limit of a net as follows:

$$\sup(\mathcal{D}_{\mathcal{H}}) = \sup_{H \in \mathcal{H}} \sup(\mathcal{D}_{\mathcal{H}}) = \lim_{H \in \mathcal{H}} \sup(\mathcal{D}_{\mathcal{H}}).$$

If, moreover, \mathcal{H} is covering, then

$$\sup(\mathcal{D}) = \lim_{H \in \mathcal{H}} \sup(\mathcal{D}_{\mathcal{H}}). \quad (2.9)$$

In particular, if $T = \mathbb{N}$, we consider the countable program

$$(P_\mathbb{N}) \quad \inf f(x) \text{ s.t. } f_k(x) \leq 0, \ k \in \mathbb{N}, \quad (2.10)$$

and the sequence of finite subproblems

$$(P_m) \quad \inf f(x) \text{ s.t. } f_k(x) \leq 0, \ k \in \{1, \cdots, m\}, \ m \in \mathbb{N}, \quad (2.11)$$

whose ordinary Lagrangian dual problems are

$$(D_m) \quad \sup_{\mu \in \mathbb{R}_+^m} \inf_{x \in X} \left\{ f(x) + \sum_{k=1}^{m} \mu_k f_k(x) \right\}, \ m \in \mathbb{N}. \quad (2.12)$$

From (2.9), the Lagrangian-Haar dual of $(P_\mathbb{N})$,

$$(D_\mathbb{N}) \quad \sup_{\lambda \in \mathbb{R}_+^{(\mathbb{N})}} \inf_{x \in X} \left\{ f(x) + \sum_{k \in \mathbb{N}} \lambda_k f_k(x) \right\}, \quad (2.13)$$

and its $\mathcal{H}_\mathbb{N}$-dual Lagrange problem $(D_{\mathcal{H}_\mathbb{N}})$ can be expressed as limits in this way:

$$\sup(D_\mathbb{N}) = \sup(D_{\mathcal{H}_\mathbb{N}}) = \lim_{m \to \infty} \sup(D_m). \quad (2.14)$$

Corollary 3.3 below provides a sufficient condition for the primal counterpart of (2.12):

$$\inf(P_\mathbb{N}) = \lim_{m \to \infty} \inf(P_m).$$

3 \mathcal{H}-reverse strong duality

Let us go back to the general convex infinite optimization problem (P) in (1.1). Along this section we assume that $\{f: f_t, t \in T\} \subset \Gamma(X)$ and $E \cap \text{dom } f \neq \emptyset$, meaning that $\inf(P) \neq +\infty$.
Definition 3.1 Given a covering family \(\mathcal{H} \subset \mathcal{F}(T) \), we say that \(\mathcal{H} \)-reverse strong duality holds if

\[
\min(P) = \sup(D_{\mathcal{H}}),
\]
equivalently, that there exists \(\bar{x} \in E \cap \text{dom } f \) such that

\[
f(\bar{x}) = \sup(D_{\mathcal{H}}) \in \mathbb{R}.
\]

We first show that \(\mathcal{H} \)-reverse strong duality can be described in terms of subdifferentiability of the function \(\varphi_{\mathcal{H}} \).

Recall that the subdifferential of a function \(g : X^* \to \mathbb{R} \) at a point \(a^* \in X^* \) is given by

\[
\partial g(a^*) := \begin{cases}
\{ x \in X : g(x^*) \geq g(a^*) + \langle x^* - a^*, x \rangle, \forall x^* \in X^* \}, & \text{if } g(a^*) \in \mathbb{R}, \\
\emptyset, & \text{if } g(a^*) \notin \mathbb{R}.
\end{cases}
\]

We have

\[
x \in \partial g(a^*) \iff g(a^*) + g^*(x) = \langle a^*, x \rangle.
\] \hspace{1cm} (3.1)

Lemma 3.1 Let \(\mathcal{H} \) be a covering family. Then, \(\mathcal{H} \)-reverse strong duality holds if and only if \(\varphi_{\mathcal{H}} \) is subdifferentiable at \(0_{X^*} \). In such a case one has \(\partial \varphi_{\mathcal{H}}(0_{X^*}) = \text{sol}(P) \), where \(\text{sol}(P) \) is the optimal solution set of \((P) \).

Proof Let \(x \in \partial \varphi_{\mathcal{H}}(0_{X^*}) \). Since we are assuming that \(\mathcal{H} \) is covering, by (2.7) and (3.1), we have

\[
(f + \delta_E)(x) = (\varphi_{\mathcal{H}})^*(x) = -\varphi_{\mathcal{H}}(0_{X^*}) \in \mathbb{R}.
\]

Then \(x \in E \) and

\[
\inf(P) \leq f(x) = -\varphi_{\mathcal{H}}(0_{X^*}) = \sup(D_{\mathcal{H}}) \leq \inf(P).
\]

Consequently, if \(\varphi_{\mathcal{H}} \) is subdifferentiable at \(0_{X^*} \) then \(\mathcal{H} \)-reverse strong duality holds and

\[
\partial \varphi_{\mathcal{H}}(0_{X^*}) \subset \text{sol}(P).
\]

Assume now that \(\mathcal{H} \)-reverse strong duality holds. There exists \(x \in E \cap (\text{dom } f) \) such that

\[
(\varphi_{\mathcal{H}})^*(x) = f(x) = \sup(D_{\mathcal{H}}) = -\varphi_{\mathcal{H}}(0_{X^*}) \in \mathbb{R},
\] \hspace{1cm} (3.2)

that means \(x \in \partial \varphi_{\mathcal{H}}(0_{X^*}) \) and the first part of Lemma [3.1] is proved with, in addition, the inclusion \(\partial \varphi_{\mathcal{H}}(0_{X^*}) \subset \text{sol}(P) \). It remains to prove that if \(\mathcal{H} \)-reverse strong duality holds, then \(\text{sol}(P) \subset \partial \varphi_{\mathcal{H}}(0_{X^*}) \). Now for each \(x \in \text{sol}(P) \) we have (3.2). So, \(\varphi_{\mathcal{H}}(0_{X^*}) + (\varphi_{\mathcal{H}})^*(x) = 0 \), that means \(x \in \partial \varphi_{\mathcal{H}}(0_{X^*}) \). \(\square \)

In favorable circumstances we know that \(\varphi_{\mathcal{H}} \) is a convex function. For instance, when the covering family \(\mathcal{H} \) is also directed, by (2.5) and (2.6), \(A_{\mathcal{H}} = A \) and \(\varphi_{\mathcal{H}} = \varphi \), respectively, implying the convexity of both \(A_{\mathcal{H}} \) and \(\varphi_{\mathcal{H}} \). Another important example is furnished by

\[
\varphi_{\mathcal{H}_1} = \inf_{(t,\mu) \in T \times \mathbb{R}^+} (f + \mu f_I)^*,
\]
which is convex under the assumptions (a), (b), (c) of Corollary 3.1 below (see [4, Remark 5.5]). In order to propose a tractable subdifferentiability criterion when \(\varphi_{\mathcal{H}} \) is convex we need to recall some facts about quasicontinuous convex functions and convex analysis recession.

Definition 3.2 A convex function \(g : X^* \to \overline{\mathbb{R}} \) is said to be \(\tau(X^*, X) \)-quasicontinuous ([14], [15]), where \(\tau \) is the Mackey topology on \(X^* \), if the following four properties are satisfied:

1. \(\text{aff}(\text{dom } g) \) is \(\tau(X^*, X) \)-closed (or \(\sigma(X^*, X) \)-closed),
2. \(\text{aff}(\text{dom } g) \) is of finite codimension,
3. the \(\tau(X^*, X) \)-relative interior of \(\text{dom } g \), say \(\text{ri}(\text{dom } g) \), is non-empty,
4. the restriction of \(g \) to \(\text{aff}(\text{dom } g) \) is \(\tau(X^*, X) \)-continuous on \(\text{ri}(\text{dom } g) \).

Lemmas 3.2, 3.3, 3.4 below will be used in the sequel.

Lemma 3.2 ([14, Proposition 5.4]) Let \(h \in \Gamma(X) \). The conjugate function \(h^* \) is \(\tau(X^*, X) \)-quasicontinuous if and only if \(h \) is weakly inf-locally compact; that is to say \([h \leq r] \) is weakly locally compact for each \(r \in \mathbb{R} \).

Lemma 3.3 ([20, Theorem II.4]) A convex function \(g : X^* \to \overline{\mathbb{R}} \) majorized by a \(\tau(X^*, X) \)-quasicontinuous one is \(\tau(X^*, X) \)-quasicontinuous, too.

Lemma 3.4 ([20, Theorem III.3]) Let \(g : X^* \to \overline{\mathbb{R}} \) be a \(\tau(X^*, X) \)-quasicontinuous convex function such that \(g(0_{X^*}) \neq -\infty \) and \(\text{cone } \text{dom } g \) is a linear subspace of \(X^* \). Then \(\partial g(0_{X^*}) \) is the sum of a non-empty weakly compact convex set and a finite dimensional linear subspace of \(X \).

We define the recession cone of \((P) \) by setting

\[
(P)_{\infty} := \bigcap_{t \in T} [(f_t)_\infty \leq 0] \cap [f_\infty \leq 0].
\]

For the next theorem and the corollaries below, recall that \(\inf (P) \neq +\infty \) as \(E \cap \text{dom } f \neq \emptyset \).

Theorem 3.1 (\(\mathcal{H} \)-reverse strong duality) Let \(\mathcal{H} \) be a covering family such that \(\varphi_{\mathcal{H}} \) is convex \(\tau(X^*, X) \)-quasicontinuous and \((P)_{\infty} \) is a linear subspace of \(X \). Then \(\mathcal{H} \)-reverse strong duality holds:

\[
\min(P) = \sup(D_{\mathcal{H}}) \in \mathbb{R}.
\]

Moreover, \(\text{sol}(P) \) is the sum of a weakly compact convex set and a finite dimensional linear subspace of \(X \).
Proof: One has $\varphi_\mathcal{H}(0_{X^*}) = -\sup(D_{\mathcal{H}}) \geq -\inf(P) > -\infty$ (the last strict inequality holds as $E \cap \text{dom } f \neq \emptyset$). In order to apply Lemma 3.4 to the convex function $\varphi_\mathcal{H}$, we have to prove that $\text{cone} \ \text{dom } \varphi_\mathcal{H}$ is a linear subspace. We have

$$\text{cone} \ \text{dom } \varphi_\mathcal{H} = (\text{dom } \varphi_\mathcal{H})^- = \{x^* \in X^* : \langle x^*, x \rangle \leq 0, \forall x \in (\text{dom } \varphi_\mathcal{H})^-\}.$$

Therefore, $\text{cone} \ \text{dom } \varphi_\mathcal{H}$ is a linear subspace if and only if $(\text{dom } \varphi_\mathcal{H})^-$ is a linear subspace. Now,

$$\text{dom } \varphi_\mathcal{H} = \bigcup_{H \in \mathcal{H}} \bigcup_{\mu \in \mathbb{R}^H_+} \text{dom } \left(f + \sum_{t \in H} \mu_t f_t\right)^*$$

and we can write

$$(\text{dom } \varphi_\mathcal{H})^- = \bigcap_{H \in \mathcal{H}} \bigcap_{\mu \in \mathbb{R}^H_+} \left(\text{dom } \left(f + \sum_{t \in H} \mu_t f_t\right)^*\right)^-$$

$$= \bigcap_{H \in \mathcal{H}} \bigcap_{\mu \in \mathbb{R}^H_+} \left[\left(f + \sum_{t \in H} \mu_t f_t\right)^* \leq 0\right] \quad \text{(by (2.2))}$$

$$= \bigcap_{H \in \mathcal{H}} \bigcap_{\mu \in \mathbb{R}^H_+} \left[\left(f_\infty + \sum_{t \in H} \mu_t (f_t)_\infty\right) \leq 0\right] \quad \text{(by (2.3))}$$

$$= \bigcap_{H \in \mathcal{H}} \left[\left(\sup_{\mu \in \mathbb{R}^H_+} \left(f_\infty + \sum_{t \in H} \mu_t (f_t)_\infty\right)\right) \leq 0\right]$$

$$= \bigcap_{H \in \mathcal{H}} \left[\left(f_\infty + \sup_{\mu \in \mathbb{R}^H_+} \sum_{t \in H} \mu_t (f_t)_\infty\right) \leq 0\right]$$

$$= \bigcap_{H \in \mathcal{H}} \left[\left(f_\infty + \delta_{[\sup_{H \in \mathcal{H}} (f_t)_\infty \leq 0]}\right) \leq 0\right] = \bigcap_{H \in \mathcal{H}} \bigcap_{t \in H} [(f_t)_\infty \leq 0] \cap [f_\infty \leq 0]$$

the penultimate equality coming from the fact that the family \mathcal{H} is covering. We conclude the proof of Theorem 3.1 with Lemmas 3.1 and 3.4.

Remark 3.1: Note that if $X = X^* = \mathbb{R}^n$ then the function $\varphi_\mathcal{H}$, when convex, is automatically $\tau(X^*, X)$-quasicontinuous since any extended real-valued convex function on \mathbb{R}^n with non-empty domain is quasicontinuous (e.g., [21, Theorem 10.1]).

Corollary 3.1 (\mathcal{H}_1-reverse strong duality) Assume that (P) satisfies the following conditions:

(a) $\text{dom } f \subset \bigcap_{t \in T} \text{dom } f_t$,

(b) T is a convex and compact subset of some locally convex topological vector space,

(c) $T \ni t \mapsto f_t(x)$ is concave and usc on T for each $x \in \bigcap_{t \in T} \text{dom } f_t$,
(d) There exists \((\bar{t}, \bar{\mu}) \in T \times \mathbb{R}_+\) such that \(f + \bar{\mu}f_\bar{t}\) is weakly inf-locally compact,

(e) \((P)_\infty\) is a linear subspace.

Then,

\[
\min(P) = \sup_{(t, \mu) \in T \times \mathbb{R}_+} \inf_{x \in X} \{ f(x) + \mu f_t(x) \} \in \mathbb{R}.
\]

Proof From the first three assumptions and [4, Remark 5.5] we get that \(\varphi_{\mathcal{H}_1}\) is convex. Moreover, \(\varphi_{\mathcal{H}_1} = \inf_{(t, \mu) \in T \times \mathbb{R}_+} (f + \mu f_t)^*\) is majorized by the function \((f + \bar{\mu} f_\bar{t})^*\), which is \(\tau(X^*, X)\)-quasicontinuous by Lemma 3.2 as, by (d), \(f + \bar{\mu} f_\bar{t} \in \Gamma(X)\) is weakly inf-locally compact. So, by Lemma 3.3 \(\varphi_{\mathcal{H}_1}\) is \(\tau(X^*, X)\)-quasicontinuous, and we conclude the proof by applying Theorem 3.1 with \(\mathcal{H} = \mathcal{H}_1\) thanks to (e). □

The next result recovers a variant of the reverse duality theorem of [11, Theorem 3.3].

Corollary 3.2 (\(\mathcal{F}(T)\)-reverse strong duality) Assume that \(E \cap \text{dom } f \neq \emptyset\) and that the two following conditions are satisfied:

(f) \(\exists \lambda \in \mathbb{R}_+^{(T)}\) such that \(f + \sum_{t \in T} \lambda_t f_t\) is weakly inf-locally compact.

(e) \((P)_\infty\) is a linear subspace.

Then we have

\[
\min(P) = \sup(D) = \sup_{\lambda \in \mathbb{R}_+^{(T)}} \inf_{x \in X} \left\{ f(x) + \sum_{t \in T} \lambda_t f_t(x) \right\} \in \mathbb{R}.
\]

Proof Condition (f) amounts to

\[\exists H \in \mathcal{F}(T), \exists \mu \in \mathbb{R}_+^H \text{ such that } f + \sum_{t \in H} \mu_t f_t \text{ weakly inf-locally compact.}\]

Moreover, \(\varphi_{\mathcal{F}(T)}\) is majorized by \((f + \sum_{t \in H} \mu_t f_t)^*\) which is \(\tau(X^*, X)\)-quasicontinuous by Lemma 3.2. By Lemma 3.3 \(\varphi_{\mathcal{F}(T)}\) is then \(\tau(X^*, X)\)-quasicontinuous. Taking \(\mathcal{H} = \mathcal{F}(T)\) in Theorem 3.1 we obtain, by (2.5) and (2.6),

\[
\min(P) = \sup(D_H) = \sup(D),
\]

and the proof is complete. □

We finally consider the countable case when \(T = \mathbb{N}\). Let \((P_N), (P_m), (D_N),\) and \((D_m)\) be as in (2.10), (2.11), (2.12), and (2.13), respectively.

Corollary 3.3 (\(\mathcal{H}_N\)-reverse strong duality) Assume \(\inf(P_N) \neq +\infty\) and the two conditions below are satisfied:

(g) \(\exists (N, \mu) \in \mathbb{N} \times \mathbb{R}_+^N\) such that \(f + \sum_{k=1}^N \mu_k f_k\) is weakly inf-locally compact,

(e) \((P)_\infty\) is a linear subspace.
Then we have
\[\min(P_N) = \lim_{m \to \infty} \inf(P_m) = \lim_{m \to \infty} \sup(D_m) = \sup(D_N). \]

Moreover, the optimal solution set of \((P_N) \) is the sum of a weakly compact convex set and a finite dimensional linear subspace.

Proof Since the covering family \(\mathcal{H}_N \) is directed we know that \(\varphi_{\mathcal{H}_N} \) is a convex function. Moreover, \(\varphi_{\mathcal{H}_N} \) is majorized by \(\left(f + \sum_{k=1}^{N} \mu_k f_k \right)^* \) which is \(\tau(X^*, X) \)-quasicontinuous by Lemma 3.2. By Lemma 3.3 \(\varphi_{\mathcal{H}_N} \) is then \(\tau(X^*, X) \)-quasicontinuous and, by [4, Formula (5.6)], \(\sup(D_N) = \lim_{m \to \infty} \sup(D_m) \). Applying Theorem 3.1 with \(\mathcal{H} = \mathcal{H}_N \) we obtain,
\[\min(P_N) = \sup(D_N) = \sup_{m \in \mathbb{N}} \sup(D_m) = \lim_{m \to \infty} \sup(D_m) \leq \lim_{m \to \infty} \inf(P_m) \leq \min(P_N), \]
and the proof is complete. \(\square \)

Remark 3.2 We now comment conditions (a) – (g) when \(X = \mathbb{R}^n \), that is, in CSIP. Conditions (d), (f), and (g) are obviously satisfied while condition (e) is equivalent [10, Exercise 8.15] to
\[(h) \quad f_\infty(x) > 0, \forall x \in [(0^+ E) \cap M^\perp] \setminus \{0_n\}, \]
where \(M = \{ x \in \text{lin}(0^+ E) : f_\infty(x) = 0 = f_\infty(-x) \} \). So, Corollary 3.2 is, in the CSIP setting, equivalent to [10, Theorem 3.2] (see also [10, Theorem 8.8(ii)]). Analogously, [10, Corollary 4.2] is the CSIP version of Corollary 3.3.

If \((P) \) is the LSIP problem in \((1.4) \), we can write \(f(x) = \langle c^*, x \rangle \) and \(f_t(x) = \langle a^*_t, x \rangle - b_t, \ t \in T \). Then since all functions have full domain, (a) trivially holds. Moreover, since \((P)_\infty = \bigcap_{t \in T} \{ a^*_t \leq 0 \} \cap \{ c^* \leq 0 \} \), condition (e) can be expressed as follows:
\[(e') \quad \{ x \in X : \langle c^*, x \rangle \leq 0; \langle a^*_t, x \rangle \leq 0, \forall t \in T \} \]
\[\{ x \in X : \langle c^*, x \rangle = 0 = \langle a^*_t, x \rangle, \forall t \in T \}. \]

Moreover, condition (e') can be reformulated in terms of the data as
\[(e'') \quad \text{The pointed cone of } \text{cone} \{ \{ c^*; a^*_t, t \in T \} \times \mathbb{R}^+ \} \text{ (i.e., its intersection with the orthogonal subspace to its lineality) is a half-line in } \mathbb{R}^{n+1} \text{ [10, Theorem 5.13(ii)] (or, more precisely, the half-line } \mathbb{R}^+ (0_n, 1) \text{ [7, page 155]).} \]

In the same vein, since \(\text{dom } f = \mathbb{R}^n, f_\infty = \langle c^*, \cdot \rangle, 0^+ E = \bigcap_{t \in T} \{ a^*_t \leq 0 \} \), and
\[M^\perp = \{ x : \langle c^*, x \rangle = 0 = \langle a^*_t, x \rangle, \forall t \in T \}^{\perp} = \text{span} \{ c^*; a^*_t, t \in T \}, \]
condition (h) can be expressed as
\[(h') \quad \langle c^*, x \rangle > 0, \forall x \in \bigcap_{t \in T} \{ a^*_t \leq 0 \} \cap \text{span} \{ c^*; a^*_t, t \in T \} \setminus \{0_n\}. \]

Example 3.1 Consider the linear semi-infinite programming problem
\[(P) \quad \inf_{x \in \mathbb{R}^2} \quad f(x) = \langle c^*, x \rangle \]
\[\text{s.t.} \quad -tx_1 + (t - 1)x_2 + t^2 \leq 0, \ t \in [0, 1], \]
with \(c^* \in \mathbb{R}_+^2 \setminus \{ (0, 0) \} \) (see [4, Example 3.1]). According to Remark 3.2, (a), (d), (f), and (g) hold independently of the data. Condition (b) holds because \([0, 1] \subset \mathbb{R}\) is compact and convex and (c) because \(t \mapsto -tx_1 + (t - 1)x_2 + t - t^2\) is concave on \(\mathbb{R}\) for any \(x \in \mathbb{R}^2\). Regarding (e), the set in \((e')\)

\[
\{ x \in \mathbb{R}^2 : \langle c', x \rangle \leq 0; -tx_1 + (t - 1)x_2 \leq 0, \forall t \in [0, 1] \} = \{ x \in \mathbb{R}_+^2 : \langle c', x \rangle \leq 0 \}
\]

is \(\{ (0, 0) \}\) when \(c^*\) belongs to the interior \(\mathbb{R}_+^2\) of \(\mathbb{R}_+^2\) and a positive axis when \(c^*\) belongs to its boundary. Hence, \((e)\) only holds for \(c^* \in \mathbb{R}_+^2\). Observe that the cone in \((e'')\) is

\[
\text{cone} \left\{ \begin{pmatrix} c_1^* \\ c_2^* \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\} \times \mathbb{R}_+,
\]

and its pointed cone is

\[
\mathbb{R}_+ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \text{resp., cone} \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \text{cone} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}
\]

when \(c^* \in \mathbb{R}_+^2\) \((c^* \in \mathbb{R}_+^2 \setminus \{ 1, 1 \}, c^* \in \mathbb{R}_+^2 \setminus \{ 1, 0 \}, \) respectively). So, we get again that \((e)\) only holds for \(c^* \in \mathbb{R}_+^2\). Regarding condition (h), since \(\cap_{t \in [0, 1]} [a_t^* \leq 0] = \mathbb{R}_+\), and span \(\{ c^*; a_t^*, t \in T \} = \mathbb{R}^2\) if \(c^* \in \mathbb{R}_+^2\), so that \((h)\) holds while span \(\{ c^*; a_t^*, t \in T \}\) is a positive axis and \((h)\) fails, otherwise. Thus, \((e)\) and \((h)\) hold or not simultaneously.

In conclusion, by Corollary 3.1, \(H_1\)-reverse strong duality holds whenever \(c^* \in \mathbb{R}_+^2\) while, by Corollary 3.2, \(F(T)\)-reverse strong duality holds whenever \(c^* \in \mathbb{R}_+^2\). Observe that, from the direct computations carried out in [4, Example 3.1], \(H_1\)-reverse strong duality actually holds for all \(c^* \in \mathbb{R}_+^2 \setminus \{ (0, 0) \}\).

Example 3.2 The countable linear semi-infinite programming problem

\[
(P_N) \quad \inf_{x \in \mathbb{R}^2} x_2 \\
\text{s.t.} \quad x_1 + k(k + 1)x_2 \geq 2k + 1, \quad k \in \mathbb{N},
\]

violates the assumptions of Corollaries 3.1, 3.2 and 3.3 as \((b)\) and \((c)\) obviously fail, as well as \((e)\) and \((h)\). In fact, \((e')\) and \((e'')\) fail because

\[
\{ x \in \mathbb{R}^2 : x^2 \leq 0, -x_1 - k(k + 1)x_2 \leq 0, k \in \mathbb{N} \} = \mathbb{R}_+ \times \{ 0 \}
\]

is not a linear subspace and the pointed cone of

\[
\text{cone} \{ (0, 1); (-1, -k(k + 1)), k \in \mathbb{N} \} \times \mathbb{R}_+ = \{ x \in \mathbb{R}^3 : x_1 \leq 0, x_3 \geq 0 \}
\]

is not a half-line, respectively, while \((h)\) fails because \(x_2\) vanishes on an edge of

\[
(0^+ E) \cap M^\perp = 0^+ E \cap \mathbb{R}^2 = \text{cone} \{ (2, 1), (1, 0) \}.
\]

So, we cannot apply the mentioned corollaries to conclude that \(H\)-reverse strong duality holds for \(H = H_1, H_2, F(T)\). Actually, \(H\)-reverse strong duality does not hold for these three families because the feasible set of \((P_N)\) is

\[
E = \text{co} \left\{ \left\{ \left(k, \frac{1}{k} \right), k \in \mathbb{N} \right\} \cup \{ x \in \mathbb{R}^2 : x_1 + 2x_2 = 3, x_1 \leq 1 \} \right\},
\]

which implies \(\inf(P_N) = 0\) with \(\text{sol}(P_N) = \emptyset\), while \(\sup(D) = -\infty\), which in turn implies \(\sup(D_H) = -\infty\) for any \(H\) such that \(\emptyset \neq H \subset F(T)\), by \(2.4\).
4 \textit{H}–Farkas lemma

We now establish some new versions of Farkas lemma relative to a given family \(H \subset \mathcal{F}(T) \). These results assert the equivalence between some inclusion (i) of the solution set \(E \) of \(\{ f_t(x) \leq 0, t \in T \} \) into certain set involving \(f \) and some condition (ii) involving \(\{ f; f_t, t \in T \} \) and \(H \). We first provide a Farkas-type result relative to the family \(H_1 \) without assuming the lower semicontinuity of the involved functions. Stronger results (characterizations of Farkas lemma) will be then obtained under the lower semicontinuity (or even continuity) assumption.

Proposition 4.1 (\(H_1 \)-Farkas lemma) Assume that conditions (a), (b), (c) in Corollary 3.1 altogether with the generalized Slater condition:

\[\exists \bar{x} \in \text{dom } f : f_t(\bar{x}) < 0, \forall t \in T. \]

Then, for any \(\alpha \in \mathbb{R} \), the following statements are equivalent:

(i) \[f_t(x) \leq 0, \forall t \in T \] \(\Rightarrow \) \(f(x) \geq \alpha \).

(ii) There exist \(\bar{t} \in T \) and \(\bar{\mu} \in \mathbb{R}_+ \) such that

\[f(x) + \bar{\mu} f_{\bar{t}}(x) \geq \alpha, \forall x \in X. \] (4.1)

Proof We observe first that (i) is equivalent to \(\inf(P) \geq \alpha \), where \(\inf(P) = \max(D_{H_1}) \); i.e., (i) is equivalent to

\[\max_{(t,\mu) \in T \times \mathbb{R}_+} \inf_{x \in \text{dom } f} \{ f(x) + \mu f_t(x) \} \geq \alpha. \]

In other words, there exists \((\bar{t}, \bar{\mu}) \in T \times \mathbb{R} \) satisfying (4.1), which is (ii), and we are done. \(\square \)

Observe that statement (i) means that \(E \) is contained in the reverse convex set \(\{ x \in X : f(x) \geq \alpha \} \) while (ii) would be the same replacing the infinite family \(\{ f_t, t \in T \} \) by the singleton one \(\{ f_t \} \), so that Lemma 4.1 characterizes when an inequality \(f(x) \geq \alpha \) is consequence of some single constraint \(f_t(x) \leq 0 \).

The next two propositions provide, under the lower semicontinuity assumption, a characterization in terms of \(A_H \) (statement (I)) of the Farkas lemma (statement (II)) relative to an arbitrary non-empty covering family \(H \subset \mathcal{F}(T) \).

Proposition 4.2 (Characterization of \(H \)-Farkas lemma) Let \(H \subset \mathcal{F}(T) \) be a covering family. Assume that \(\{ f; f_t, t \in T \} \subset \Gamma(X), E \cap (\text{dom } f) \neq \emptyset \), and consider the following statements:

(I) \(A_H \) is \(w^* \)-closed convex regarding \(\{ 0_{X^*} \} \times \mathbb{R} \).

(II) For \(\alpha \in \mathbb{R} \), the next two conditions are equivalent:

(i) \[f_t(x) \leq 0, \forall t \in T \] \(\Rightarrow \) \(f(x) \geq \alpha \),
(ii) there exist $H \in \mathcal{H}$ and $\mu \in \mathbb{R}^H_+$ such that
\[f(x) + \sum_{t \in H} \mu_t f_t(x) \geq \alpha, \forall x \in X. \tag{4.2} \]

Then, \([(I) \implies (II)], and the converse implication, \([(II) \implies (I)], holds when \(\inf(P) \in \mathbb{R} \).

Proof By the characterization of \mathcal{H}-strong duality at a point in (2.8), applied to $x^* = 0_{X^*}$, one gets that (I) is equivalent to
\[\inf(P) = \max(D_H), \tag{4.3} \]
which is itself equivalent to the existence of $H \in \mathcal{H}$ and $\mu \in \mathbb{R}^H_+$ such that
\[\inf(P) = \inf_{x \in X} \left(f(x) + \sum_{t \in H} \mu_t f_t(x) \right). \]

Since (i) is equivalent to $\inf(P) \geq \alpha$, it now follows that \([(I) \implies (II)].

Conversely, if $\inf(P) \in \mathbb{R}$ and (II) holds, then just take $\alpha = \inf(P)$. As (II) holds, it follows that there are $H \in \mathcal{H}$ and $\mu \in \mathbb{R}^H_+$ such that (4.2) holds, and
\[\sup(D_H) \geq \inf_{x \in X} \left(f(x) + \sum_{t \in H} \mu_t f_t(x) \right) \geq \alpha = \inf(P). \]

In other words, $\sup(D_H) = \inf(P)$, $\sup(D_H)$ is attained at $H \in \mathcal{H}$ and $\mu \in \mathbb{R}^H_+$, meaning that (4.3) holds, which is (I), and the proof is complete. \(\square\)

Remark 4.1 In the special case when $\mathcal{H} = \mathcal{F}(T)$ the condition (ii) in Proposition 4.2 reads as
\[(ii') \text{ there exists } \lambda \in \mathbb{R}^T_+ \text{ such that } f(x) + \sum_{t \in T} \lambda_t f_t(x) \geq \alpha, \text{ for all } x \in X,\]
and Proposition 4.2 goes back to the Farkas lemma given in [2, Theorem 2] under a slightly different qualification condition. So, Proposition 4.2 is a variant of [2, Theorem 2].

Let us get back to the linear case, where
\[f(x) = \langle c^*, x \rangle, \ f_t(x) = \langle a^*_t, x \rangle - b_t, t \in T, \tag{4.4} \]
with $\{c^*, a^*_t, t \in T\} \subset X^*$, and $\{b_t, t \in T\} \subset \mathbb{R}$. Then, $\mathcal{A}_H = \{(c^*, 0)\} + \mathcal{K}_H$ (see [4 (4.4)]), where
\[\mathcal{K}_H = \bigcup_{H \in \mathcal{H}} \text{cone } \{(a^*_t, b_t), \ t \in H\} + \{0_{X^*}\} \times \mathbb{R}_+. \]
In particular,
\[\mathcal{K}_{H_t} = \bigcup_{t \in T} \text{cone } \{(a^*_t, b_t + \varepsilon) : \varepsilon \geq 0\}. \]
and, by [1] Proposition 4.1,
\[K_{F(T)} = \text{cone}\left(\{(a_t^*, b_t) : t \in T\} \times \mathbb{R}_+\right). \]

For instance, for the LSIP problem in Example 3.1,
\[K_{H_1} = \bigcup_{t \in [0,1]} \text{cone}\left\{(-t, t - 1, t^2 - t + \varepsilon) : \varepsilon \geq 0\right\} \]
while \(K_{F(T)} \) is (see [1] Example 4.1) the union of the origin with the epigraph of the convex function
\[\psi(x) := \begin{cases} \frac{x_1 x_2}{x_1 + x_2}, & x \in \mathbb{R}_2^2 \setminus \{0_2\}, \\ +\infty, & \text{else}. \end{cases} \]

We finish this section with a characterization, in terms of \(K_{H} \), of the Farkas lemma (statement (II) below) relative to an arbitrary non-empty covering family \(H \subset F(T) \).

Proposition 4.3 (\(H \)-Farkas lemma for linear infinite systems) Consider the linear functions \(\{f_t : t \in T\} \) defined in (4.4), and suppose that \(\inf(P) \) is finite and that \(H \) is a covering family. Given \(c^* \in X^* \), the following statements are equivalent:

(I) \(\text{co}(K_H) \cap \{-c^* \times \mathbb{R}_+\} = K_H \cap \{-c^* \times \mathbb{R}_+\}, \)

(II) For \(\alpha \in \mathbb{R} \), the following statements are equivalent:

(i) \(\langle a_t^*, x \rangle \leq b_t, \forall t \in T \implies \langle c^*, x \rangle \geq \alpha. \)

(ii) There exist \(H \in H \) and \(\mu \in \mathbb{R}^H_+ \) such that \(\sum_{t \in H} \mu_t a_t^* = -c^* \) and \(-\sum_{t \in H} \mu_t b_t \geq \alpha. \)

Proof. When \(H \) is a covering family and \(E \neq \emptyset \), according to [1] Corollary 5.3], one has
\[\left(\inf(P) = \max(D_H) \right) \iff \left(\text{co}(K_H) \cap \{-c^* \times \mathbb{R}_+\} = K_H \cap \{-c^* \times \mathbb{R}_+\} \right). \quad (4.5) \]
The rest of the proof is similar to that of Proposition 4.2 using (2.8) and (4.5). □

5 \(H \)-optimality conditions

In this section we establish optimality conditions for the problem (P) associated with some family \(H \subset F(T) \). We shall represent by \(\text{sol}(D_H) \) the set of optimal solutions of (D_H). In particular, when \(H = F(T) \), one obtains the classical KKT conditions involving finitely many multipliers and, when \(H = H_1 \), optimality conditions involving a unique multiplier.

Theorem 5.1 (Primal-dual \(H \)-optimality condition) Let \(\bar{x} \in E \cap (\text{dom } f) \), \(H \in H \) and \(\mu \in \mathbb{R}^H_+ \). Then, the following statements are equivalent:

(i) \(\bar{x} \in \text{sol}(P) \), \((H, \mu) \in \text{sol}(D_H) \), and \(\inf(P) = \sup(D_H) \).

(ii) \(f(\bar{x}) = \inf_X \left(f + \sum_{t \in H} \mu_t f_t \right) \), and \(\mu_t f_t(\bar{x}) = 0 \), for all \(t \in H \).

(iii) \(0_{X^*} \in \partial \left(f + \sum_{t \in H} \mu_t f_t \right)(\bar{x}) \), and \(\mu_t f_t(\bar{x}) = 0 \), for all \(t \in H \).
Proof. [(i) ⇒ (ii)] We have
\[\inf_X \left(f + \sum_{t \in H} \mu_t f_t \right) = \sup(D_H) = \inf(P) = f(\bar{x}), \]
and
\[f(\bar{x}) = \inf_X \left(f + \sum_{t \in H} \mu_t f_t \right) \leq f(\bar{x}) + \sum_{t \in H} \mu_t f_t(\bar{x}) \leq f(\bar{x}). \]
Hence, \(\sum_{t \in H} \mu_t f_t(\bar{x}) = 0 \) and (ii) holds.

[(ii) ⇒ (iii)] We have
\[\left(f + \sum_{t \in H} \mu_t f_t \right)(\bar{x}) = f(\bar{x}) = \inf_X \left(f + \sum_{t \in H} \mu_t f_t \right). \]
Thus, \(\bar{x} \in \arg\min \left(f + \sum_{t \in H} \mu_t f_t \right) \) or, equivalently, \(0_{X^*} \in \partial \left(f + \sum_{t \in H} \mu_t f_t \right)(\bar{x}) \).

[(iii) ⇒ (i)] Now we write
\[\inf(P) \leq f(\bar{x}) = \left(f + \sum_{t \in H} \mu_t f_t \right)(\bar{x}) = \inf_X \left(f + \sum_{t \in H} \mu_t f_t \right) \leq \sup(D_H) \leq \inf(P), \]
and (i) holds. \(\square \)

Corollary 5.1 (1st \(\mathcal{H} \)-optimality condition for \(P \)) Assume that \(\inf(P) = \max(D_H) \) and let \(\bar{x} \in E \cap (\text{dom } f) \). Then, the following statements are equivalent:
(i) \(\bar{x} \in \text{sol}(P) \).
(ii) For each \((H, \mu) \in \text{sol}(D_H) \), we have
\[0_{X^*} \in \partial \left(f + \sum_{t \in H} \mu_t f_t \right)(\bar{x}), \text{ and } \mu_t f_t(\bar{x}) = 0, \forall t \in H. \] (5.1)
(iii) There exists \((H, \mu) \in \text{sol}(D_H) \) such that (5.1) is fulfilled.

Proof. [(i) ⇒ (ii)] is just [(i) ⇒ (iii)] in Theorem 5.1
[(ii) ⇒ (iii)] is due to the assumption \(\text{sol}(D_H) \neq \emptyset \).
[(iii) ⇒ (i)] follows from [(iii) ⇒ (i)] in Theorem 5.1. \(\square \)

Corollary 5.2 (2nd \(\mathcal{H} \)-optimality condition for \(P \)) Let \(\mathcal{H} \subset \mathcal{F}(T) \) be a covering family. Assume that \(\{f; f_t, t \in T\} \subset \Gamma(X) \) and \(E \cap (\text{dom } f) \neq \emptyset \). Assume further that \(\mathcal{A}_H \) is \(w^* \)-closed convex regarding \(\{0_{X^*}\} \times \mathbb{R} \). Then \(\bar{x} \in \text{sol}(P) \) if and only if there exist \(H \in \mathcal{H} \) and \(\mu \in \mathbb{R}^H_+ \) such that (5.1) holds.

Proof. Taking \(x^* = 0_{X^*} \) in (2.8) one has \(\inf(P) = \max(D_H) \). Corollary 5.1 concludes the proof. \(\square \)
Remark 5.1 When $\mathcal{H} = \mathcal{F}(T)$, the conclusion of Corollary 5.3 is that $\bar{x} \in \text{sol}(P)$ if and only if there exist $\lambda \in \mathbb{R}_+^T$ such that

$$0_{X^*} \in \partial \left(f + \sum_{t \in T} \lambda_t f_t \right) (\bar{x}) \text{ and } \lambda_t f_t(\bar{x}) = 0, \forall t \in T,$$

which recalls us about the optimality condition given in [2, Theorem 3] under the assumptions that both the sets $K_{\mathcal{F}(T)}$ and $\text{epi} f^* + \overline{\mathcal{K}_{\mathcal{F}(T)}}$ are w^*-closed.

Corollary 5.3 (\mathcal{H}–optimality condition for linear (P)) Let (P) be linear with $E \neq \emptyset$. Let \mathcal{H} be a covering family. Assume that $K_{\mathcal{H}}$ is weak*-closed convex regarding $\{-c^*\} \times \mathbb{R}$. Then $\bar{x} \in \text{sol}(P)$ if and only if there exist $H \subset \mathcal{H}$ and $\mu \in \mathbb{R}_+^H$ such that

$$\sum_{t \in H} \mu_t a^*_t = -c^* \text{ and } \sum_{t \in H} \mu_t b_t = -\langle c^*, \bar{x} \rangle. \quad (5.2)$$

Proof. By [3, Corollary 5.3] one has $\inf (P) = \max(D_{\mathcal{H}})$. In the linear case one has (5.1) \iff (5.2). We conclude the proof with Corollary 5.1.\hfill \square

Corollary 5.4 (Optimality condition for $(D_{\mathcal{H}})$) Assume that $\min(P) = \sup(D_{\mathcal{H}}) \neq +\infty$, and let $H \subset \mathcal{H}$ and $\mu \in \mathbb{R}_+^H$. Then, the following statements are equivalent:

(i) $(H, \mu) \in \text{sol}(D_{\mathcal{H}})$.

(ii) For each $\bar{x} \in \text{sol}(P)$, (5.1) holds.

(iii) There exists $\bar{x} \in \text{sol}(P)$ such that (5.1) is fulfilled.

Proof. [(i) \Rightarrow (ii)] follows from [(i) \Rightarrow (iii)] in Theorem 5.1.

[(ii) \Rightarrow (iii)] is due to the assumption $\text{sol}(P) \neq \emptyset$.

[(iii) \Rightarrow (i)] follows from [(iii) \Rightarrow (i)] in Theorem 5.1.\hfill \square

We finish by revisiting again Example 3.1, with $\mathcal{H} = \mathcal{H}_1$. For $c^* \in \mathbb{R}_+^2$, let us check the fulfilment of (5.2) at $\bar{x} = \left(\left(\frac{c_1^*}{c_1^* + c_2^*} \right)^2, \left(\frac{c_2^*}{c_1^* + c_2^*} \right)^2 \right)$. Taking $H = \{ \overline{t} \}$, with $\overline{t} = \frac{c_1^*}{c_1^* + c_2^*} \in]0, 1[,$ and $\mu \in \mathbb{R}_+^{(0,1)}$ such that $\mu_t = c_1^* + c_2^* > 0$ and $\mu_{\overline{t}} = 0$ for all $t \in [0, 1] \setminus \{ \overline{t} \}$, one has

$$\sum_{t \in H} \mu_t a^*_t = (c_1^* + c_2^*) \left(-\frac{c_1^*}{c_1^* + c_2^*}, -\frac{c_2^*}{c_1^* + c_2^*} \right) = -c^*$$

and

$$\sum_{t \in H} \mu_t b_t = (c_1^* + c_2^*) \left(\left(\frac{c_1^*}{c_1^* + c_2^*} \right)^2 - \frac{c_1^*}{c_1^* + c_2^*} \right) = -\frac{c_1^* c_2^*}{c_1^* + c_2^*} = -\langle c^*, \bar{x} \rangle,$$

so that $\bar{x} \in \text{sol}(P)$ (recall that $K_{\mathcal{H}_1}$ is closed). Moreover, $(H, \mu) \in \text{sol}(D_{\mathcal{H}})$ by Corollary 5.4 as

$$\partial \left(c^* + \sum_{t \in H} \mu_t a^*_t \right) = \left\{ c^* + (c_1^* + c_2^*) \left(-\frac{c_1^*}{c_1^* + c_2^*}, -\frac{c_2^*}{c_1^* + c_2^*} \right) \right\} = \{(0, 0)\}$$. \hfill \square
and the complementarity condition $\mu_t f_t(\bar{x}) = 0$, for all $t \in T$, holds.

Acknowledgements
This research was supported by Vietnam National University HoChiMinh city (VNU-HCM) under the grant number B2021-28-03 (N. Dinh) and by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI), and European Regional Development Fund (ERDF), Project PGC2018-097960-B-C22 (M.A. Goberna and M.A. López).

References

[1] R.I. Boţ, Conjugate Duality in Convex Optimization, Springer, Berlin/Heidelberg 2010.

[2] N. Dinh, M.A. Goberna, M.A. López, T.Q. Son, New Farkas-type constraint qualifications in convex infinite programming, ESAIM: Control, Optim. & Calculus of Variations 13 (2007), 580-597.

[3] N. Dinh, M.A. Goberna, M.A. López, M. Volle, A unifying approach to robust convex infinite optimization duality, J. Optim. Theory App. 174 (2017), 650-685.

[4] N. Dinh, M.A. Goberna, M.A. López, M. Volle, Relaxed Lagrangian and convex infinite optimization duality: reducibility and strong duality, preprint available at http://arxiv.org/abs/2106.01662.

[5] N. Dinh, V., Jeyakumar, Farkas’ lemma: three decades of generalizations for mathematical optimization, TOP 22 (2014), 1-22.

[6] E. Ernst, M. Volle, Zero duality gap for convex programs: a generalization of the Clark-Duffin Theorem, J. Optim. Theory Appl. 158 (2013), 668-686.

[7] D.H. Fang, C. Li, K.F. Ng, Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming, SIAM J. Optim. 20 (2009), 1311-1332.

[8] D.H. Fang, X. Zhao, Optimality conditions for convex and DC infinite optimization problems, J. Nonlinear Convex Anal. 17 (2016), 683-700.

[9] M.A. Goberna, V. Jornet, M. Rodríguez, On the characterization of some families of closed convex sets, Beitr. Algebra Geom. 43 (2002), 153-169.

[10] M.A. Goberna, M.A. López, Linear Semi-Infinite Optimization, J. Wiley, Chichester, U.K. 1998.

[11] M.A. Goberna, M.A. López, M. Volle, Primal attainment in convex infinite optimization duality, J. Convex Anal. 21 (2014), 1043-1064.
[12] M.A. Goberna, M.A. López, M. Volle New glimpses on convex infinite optimization duality, RACSAM 109, 431-450 (2015)

[13] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer, Berlin 1993.

[14] Joly, J.L.: Une famille de topologies et de convergences sur l’ensemble des fonctionnelles convexes (French). PhD Thesis, IMAG - Institut d’Informatique et de Mathématiques Appliquées de Grenoble (1970)

[15] J.L. Joly, P.J. Laurent, Stability and duality in convex minimization problems, RAIRO - Rev. Française Informat. Recherche Opérationnelle 5, 3-42 (1971)

[16] Karney, D.F.: A duality theorem for semi-infinite convex programs and their finite subprograms, Math. Programming 27 (1983), 75-82.

[17] P.-J. Laurent, Approximation et Optimisation (French), Hermann, Paris 1972.

[18] C. Li, K.F. Ng, T.K. Pong, Constraint qualifications for convex inequality systems with applications in constrained optimization, SIAM J. Optim. 19 (2008), 163-187.

[19] C. Li, X. Zhao, Y. Hu, Quasi-Slater and Farkas-Minkowski qualifications for semi-infinite programming with applications, SIAM J. Optim. 23 (2013), 2208-2230.

[20] M. Moussaoui, M. Volle, Quasicontinuity and united functions in convex duality theory, Comm. Appl. Nonlinear Anal. 4 (1997), 73-89.

[21] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J. 1970.